

CURSO DE ENGENHARIA DE SOFTWARE

RELATÓRIO – TRABALHO FINAL QUALIDADE DE SOFTWARE Prontuário

Equipe:
Javel Queiroz Freitas
Edson Ivo Maia Lima Brito
Professora:
Carla Ilane Moreira Bezerra

QUIXADÁ

Março, 2021

SUMÁRIO

1.	DES	CRIÇÃO DO PROJETO	2
2.		LIAÇÃO DO PROJETO	2
	2.1.	Medição 1 – Antes de refatorar o projeto	2
	2.2.	Detecção dos Code Smells	4
	2.3.	Medição 2 – Após Refatorar Code Smell Feature Envy	5
	2.4.	Medição 3 – Após Refatorar Code Smell Intensive Coupling	6
	2.5.	Medição 4 – Após Refatorar Code Smell Dispersed Coupling	7
	2.6.	Medição 5 – Após Refatorar Code Smell Shotgun Surgery	8
	2.7.	Medição 6 – Após Refatorar Code Smell Parent Bequest	8
3.	CON	IPARAÇÃO DOS RESULTADOS	9
4.	REF	ERÊNCIAS	11
5.	APÊ	NDICE A	11

1 DESCRIÇÃO DO PROJETO

O projeto "Prontuário" é um sistema utilizado para pesquisa científica na UFC que está dentro do domínio de saúde trabalhando com clínicas médicas. Além de javascript, html e css, o projeto conta com Java orientado a objetos como sua principal linguagem. A seguir são dispostos o link para o projeto e uma tabela apresentando algumas características do projeto.

Link do projeto original: https://github.com/julioserafim/prontuariov1.3.1
Link do Fork do projeto: https://github.com/Edson-Ivo/prontuariov1.3.1

Tabela 1 – Características do Projeto

Projeto	LOC	# de classes	# de releases
Prontuário	8,411	163	1

2 AVALIAÇÃO DO PROJETO

2.1 Medição 1 – Antes de refatorar o projeto

Nessa seção foi incluída a Tabela com a medição das métricas de coesão, acoplamento, complexidade, herança e tamanho, antes do projeto ser refatorado. Foi utilizada a ferramenta Understand. A Tabela 2 apresenta a descrição das métricas adquiridas pelo uso da ferramenta.

Tabela 2 – Medição dos atributos antes de refatorar o projeto.

Sistema	Coesão	Comp	lexidad	e		Hera	nça		Acoplamento	Tama	nho		
	LCOM	ACC	SCC	EVG	MaxNet	DIT	NOC	IFANIN	CBO	LO	CLOC	NIM	CDL
	2									С			
S1 antes	5907	128	1286	263	117	204	36	172	642	841	199	1001	163
da										1			
refatoraçã													
О													
S1 após	6096	126	1314	263	117	204	36	172	644	858	252	1056	163
refat. CS										5			
Feature													
Envy													

S1 após	6102	126	1323	263	117	204	36	172	644	861	256	1065	163
1 1	0102	120	1323	203	11/	204	30	1/2	044		230	1003	103
refat. CS										2			
Intensive													
Coupling													
S1 após	6167	125	1379	264	118	204	36	172	644	873	272	1099	163
refat. CS										2			
Dispersed													
Coupling													
S1 após	6347	130	1386	271	117	212	36	180	695	888	270	1124	171
refat. CS										6			
Shotgun													
Surgery													
S1 após	6347	129	1386	270	116	210	35	179	694	887	272	1124	170
refat. CS										8			
Parent													
Bequest													

Tabela 3 – Métricas dos atributos internos de qualidade (MCCABE, 1976; CHIDAMBER; KEMERER, 1994; LORENZ; KIDD, 1994; DESTEFANIS et al., 2014)

Atributos	Métricas	Descrição
C*-	Lack of Cohesion of Methods (LCOM2)	Mede a coesão de uma classe.
Coesão	(CHIDAMBER; KEMERER, 1994)	Quanto maior o valor dessa métrica, menos coesiva é a classe
A1	Coupling Between Objects (CBO)	Número de classes que uma classe está acoplada
Acoplamento	(CHIDAMBER; KEMERER, 1994)	Quanto maior o valor dessa métrica, maior é o acoplamento de classes e métodos.
Complexidade	Average Cyclomatic Complexity (ACC) (MCCABE, 1976)	Média da complexidade ciclomática de todos os métodos.
Complexidade	(MCCABE, 1970)	Quanto maior o valor dessa métrica, mais complexa são a classes e métodos.
	Sum Cyclomatic Complexity (SCC) (MCCABE, 1976)	Somatório da complexidade ciclomática de todos os métodos
	(MCCML, 1970)	Quanto maior o valor dessa métrica, mais complexos são as classes e métodos.
	Nesting (MaxNest) (LORENZ; KIDD, 1994)	Nível máximo de aninhamento de construções de controle.
		Quanto maior o valor dessa métrica, maior é a complexidade de classes e métodos.
	Essential Complexity (EVG) (MCCABE, 1976)	Mede o grau na qual um módulo contém construtores não estruturados. Quanto maior o valor dessa métrica mais complexas são a: classes e métodos.
Herança	Number Of Children (NOC) (CHIDAMBER; KEMERER, 1994)	Número de subclasses de uma classe.
rierança	(CHIDAMBER, REMERER, 1994)	Quanto maior o valor dessa métrica maior é o grau de herança de un sistema.
	Depth of Inheritance Tree (DIT) (CHIDAMBER; KEMERER, 1994)	O número de níveis que uma subclasse herda de métodos o atributos de uma superclasse na árvore de herança. Quanto maior o valor dessa métrica maior é o grau de herança de um sistema.
	Bases Classes (IFANIN)	Número imediato de classes base.
	(DESTEFANIS et al., 2014)	Quanto maior o valor dessa métrica, maior o grau de herança de um sistema.
Tamanho	Lines of Code (LOC) (LORENZ; KIDD, 1994)	Número de linhas de código, excluindo espaços e comentá rios. Quanto maior o valor dessa métrica, maior é o tamanho de sistema.
	Lines with Comments (CLOC) (LORENZ; KIDD, 1994)	Número de linhas com comentários.
	(LUNEAU, AUDI, 1994)	Quanto maior o valor dessa métrica maior o tamanho do sis tema.
	Classes (CDL) (LORENZ; KIDD, 1994)	Número de classes. Quanto maior o valor , maior o tamanho do sistema.
	Instance Methods (NIM) (LORENZ; KIDD, 1994)	Número de métodos de instância. Quanto maior o valor dess métrica maior é o tamanho do sistema.

2.2 Detecção dos Code Smells

A seguir estão dispostos os code smells e o número de instâncias no início do trabalho, antes da refatoração. Encontramos 5 code smells e um total de 67 ocorrências.

Tabela 3 – Code smells do projeto.

Nome do Code Smell	Quantidade
Shotgun Surgery	10
Refused Parent Bequest	2
Dispersed Coupling	8
Intensive Coupling	1
Feature Envy	46

Total:	67

2.3 Medição 2 – Após Refatorar Code Smell Feature Envy

Foram refatorados 24 Code Smells do tipo Feature Envy no total, onde 18 foram refatorados com Extract Method, 2 com Move Method e 4 com ambas as técnicas, foi documentado na planilha enviada o nome de cada classe refatorada juntamente com a técnica de refatoração. Após a refatoração apenas o atributo de qualidade Herança permanece idêntico ao estado anterior, em resumo: Em Coesão, LCOM aumentou passando de 5,907 para 6,096; Em Complexidade os atributos EVG e MaxNet permaneceram idênticos, enquanto ACC diminuiu 2 unidades e SCC aumentou de 1,286 para 1,314; Em Acoplamento CBO teve aumento de 2 unidades; Em Tamanho LOC passou de 8,411 para 8,585, CLOC de 199 para 252, NIM de 1,001 para 1,056 e CDL permaneceu com o mesmo número.

Por conta das técnicas utilizadas é natural que haja um aumento do número de métodos e de linhas, e que a herança não seja uma preocupação. Houve breve aumento em coesão, complexidade, acoplamento e tamanho. Também, ocorreu de uma das refatorações de Feature Envy estar atrelada a um Shotgun Surgery, esse code smell obteve esse decremento em sua quantidade. O nível de dificuldade das refatorações alterou entre os code smells refatorados, Feature Envy foi o mais fácil de ser refatorado, e em seus piores casos foi trabalhoso.

Tabela 4 – Code Smells após refatorar Feature Envy

Nome do Code Smell	Quantidade
Shotgun Surgery	10
Refused Parent Bequest	2
Dispersed Coupling	7
Intensive Coupling	1
Feature Envy	22
Total:	42

2.4 Medição 3 – Após Refatorar Code Smell Intensive Coupling

Obtivemos uma ocorrência do code smell Intensive Coupling, que foi refatorado utilizando Extract Method e Move Method. Diferente dos smells anteriores, este se mostrou um problema mais complexo que o previsto e gerou uma quantidade enorme de métodos para ser resolvido. Os atributos de qualidade Herança e Acoplamento continuam com os mesmos números da medição anterior em todas as métricas medidas, em resumo: Coesão teve um aumento no LCOM de 6,096 para 6,102; Complexidade manteve as métricas EVG, MaxNet e ACC com os números da medição anterior, enquanto SCC teve um aumento de 1,314 para 1,323; Em Tamanho LOC aumentou de 8,585 para 8,612, CLOC de 252 para 256, NIM de 1,056 para 1,065 enquanto CDL se manteve com 163. Novamente o atributo de qualidade.

Herança manteve os mesmos dados das métricas, com a novidade sendo que o Acoplamento não foi alterado pelo uso dos métodos de refatoração Extract Method e Move Method. Mesmo sendo apenas uma instância de code smell, sua dificuldade foi expressa no número de linhas de código e número de métodos que obtiveram aumento considerável. Nossa estratégia de refatoração inicial fez com que o Intensive Coupling se tornasse um Dispersed Coupling, o que nos fez repensá-la e retomar do zero para não alterar os dados extraídos.

Tabela 5 – Code Smells após refatorar Intensive Coupling

Nome do Code Smell	Quantidade
Shotgun Surgery	10
Refused Parent Bequest	2
Dispersed Coupling	7
Intensive Coupling	0
Feature Envy	22
Total:	41

2.5 Medição 4 – Após Refatorar Code Smell Dispersed Coupling

Obtivemos oito ocorrências do code smell Dispersed Coupling, que foram refatoradas utilizando Extract Method. A refatoração não foi tão complexa pois ficava evidente o grande número de chamada de métodos por um conjunto das mesmas variáveis . Então dividimos em outros métodos para ficar mais organizado, eliminando o code smell. Os atributos de qualidade Herança e Acoplamento continuam com os mesmos números da medição anterior(Intensive Coupling) em todas as métricas medidas, em resumo: Coesão teve um aumento no LCOM de 6,102 para 6,167; Complexidade teve alteração nas métricas EVG de 263 para 264, MaxNet de 117 para 118, ACC de 126 para 125; SCC de 1,323 para 1,379; Em Tamanho LOC aumentou de 8,612 para 8732; CLOC de 256 para 272; NIM de 1,065 para 1099 enquanto CDL se manteve com 163.

A Herança se manteve a mesma pela falta de alterações em relação a criação de classes, só foram criados métodos para a remoção do code smell. Com isso, claramente aumentando o número de linhas e de métodos para no lugar de ter várias funções sendo chamadas em uma variável, apenas ter os métodos que retornam o que é necessário para o funcionamento do código. Dispersed Coupling foi um code smell de dificuldade mediana, em comparação com os outros ele levou mais tempo, porém não foi muito complicado.

Tabela 6 – Code Smells após refatorar Dispersed Coupling

Nome do Code Smell	Quantidade
Shotgun Surgery	10
Refused Parent Bequest	2
Dispersed Coupling	0
Intensive Coupling	0
Feature Envy	22
Total:	34

2.6 Medição 5 – Após Refatorar Code Smell Shotgun Surgery

Obtivemos nove ocorrências do code smell Shotgun Surgery, que foi refatorado utilizando: Move Method e Extract Method. A refatoração foi um pouco complicada, pois não tínhamos noção como achar onde o método era chamado diversas vezes, então pegamos o método, comentamos ele, e onde apareciam os erros, era onde deveríamos corrigir. Criamos classes com métodos abstratos para que a função fosse instanciada somente uma vez, neutralizando o code smell. Os atributos de qualidade Herança e Acoplamento foram alterados, como os atributos DIT de 204 para 212; NOC permanece o mesmo; Base Casses de 172 para 180 e CBO de 644 para 695. Coesão teve um aumento no LCOM de 6,167 para 6,347; Complexidade teve alteração nas métricas EVG de 264 para 271, MaxNet de 118 para 117, ACC de 125 para 130; SCC de 1,379 para 1,386; Em Tamanho LOC aumentou de 8732 para 8886; CLOC de 272 para 270; NIM de 1099 para 1124 enquanto CDL de 163 para 171.

A partir daqui já houveram mudanças que antes não tinham sido mudadas, isso foi por conta da criação das classes com funções abstratas. Porém essa tática de fazer a função ser instanciada somente uma vez, faz com que os diversos locais que chamam ela, pegue apenas o valor retornado da única instância criada na função abstrata, modificando as métrica de Herança no código. Shotgun Surgery foi o mais complicado de ser refatorado, buscar por todos os métodos que causavam a anomalia foi difícil até termos a idéia de comentar o método onde estava o warning de Shotgun Surgery para que erros surgissem nas classes que utilizavam-no.

Tabela 7 – Code Smells após refatorar Shotgun Surgery

Nome do Code Smell	Quantidade
Shotgun Surgery	1
Refused Parent Bequest	2
Dispersed Coupling	0
Intensive Coupling	0
Feature Envy	19
Total:	22

2.7 Medição 6 – Após Refatorar Code Smell Parent Bequest

Refatoramos uma ocorrência do code smell Parent Bequest, que foi refatorado utilizando Move Method. A refatoração foi rápida, pois tínhamos visto que tinha uma classe herda de outra, porém, utiliza pouquíssimos métodos, por causa disso existe o code smell. Então pegamos e colocamos os métodos da classe mãe e colocamos na outra classe, eliminando o code smell. Os atributos de qualidade Herança e Acoplamento foram alterados, como os atributos DIT de 212 para 210; NOC de 36 para 35; Base Classes de 180 para 179 e CBO de 695 para 694. Coesão permanece o mesmo; Complexidade teve alteração nas métricas EVG de 271 para 270, MaxNet de 117 para 116, ACC de 130 para 129; SCC permanece o mesmo; Em Tamanho LOC diminuiu de 8886 para 8878; CLOC de 270 para 272; NIM permanece o mesmo enquanto CDL de 171 para 170.

Diferentes dos anteriores, fizermos uma remoção de uma classe mãe e importamos suas funções para sua única classe filha, no qual usava poucos métodos criando o code smell, a partir que removemos essa classe e importamos as funções, o code smell foi removido e código continuou a funcionar normalmente. Parent Bequest se tornou difícil pela falta de método oficial de refatoração, buscar uma solução para um problema com base na sua definição e aplicá-lo foi bastante demorado.

Tabela 8 – Code Smells após refatorar Parent Bequest

Nome do Code Smell	Quantidade
Shotgun Surgery	1
Refused Parent Bequest	1
Dispersed Coupling	0
Intensive Coupling	0
Feature Envy	19
Total:	21

3 COMPARAÇÃO DOS RESULTADOS

Na Tabela 9 apresentada abaixo mostramos brevemente as melhorias e pioras entre cada medição feita durante o projeto. A comparação é feita de forma a apresentar o dado de mudança percentual entre a medição de um determinado code smell e a medição anterior. Por exemplo: Em comparação com a primeira medição do projeto, o atributo NIM apresentado na medição após a refatoração dos Feature Envy teve grande aumento percentual por conta das técnicas de refatoração que consistem em extrair uma certa lógica para um novo método ou classe.

O motivo de CLOC (linhas de código comentadas) ter um forte aumento entre as duas primeiras medições está no modo de organização de código utilizado em conjunto à uma das técnicas de refatoração. Este modo de organização foi utilizado apenas durante a refatoração dos Feature Envy, nota-se que nas refatorações seguintes o número não possui variação expressiva como na primeira medição

Tabela 9- Comparação percentual de atributos em relação à medição anterior

Sistema		S1 após refat. CS Feature Envy	S1 após refat. CS Intensive Coupling	S1 após refat. CS Dispersed Coupling	S1 após refat. CS Shotgun Surgery	S1 após refat. CS Parent Bequest
Coesão	LCOM2	3,20%	0,10%	1,07%	2,92%	0,00%
Complexid ade	ACC	-1,56%	0,00%	-0,79%	4,00%	-0,77%
	scc	2,18%	0,68%	4,23%	0,51%	0,00%
	EVG	0,00%	0,00%	0,38%	2,65%	-0,37%
	MaxNet	0,00%	0,00%	0,85%	-0,85%	-0,85%
Herança	DIT	0,00%	0,00%	0,00%	3,92%	-0,94%
	NOC	0,00%	0,00%	0,00%	0,00%	-2,78%
	IFANIN	0,00%	0,00%	0,00%	4,65%	-0,56%
Acoplamen to	СВО	0,31%	0,00%	0,00%	7,92%	-0,14%
Tamanho	LOC	2,07%	0,31%	1,39%	1,76%	-0,09%
	сгос	26,63%	1,59%	6,25%	-0,74%	0,74%
	NIM	5,49%	0,85%	3,19%	2,27%	0,00%
	CDL	0,00%	0,00%	0,00%	4,91%	-0,58%

Na Tabela 10 apresentada abaixo temos a comparação percentual da primeira e a última medição do projeto. Apenas o atributo de complexidade MaxNet e o atributo de herança NOC obtiveram reduções em seus números em relação à primeira medição. Por conta do uso do Extract Method na maioria das refatorações o número de métodos (NIM) subiu mais de 12%.

Tabela 10 – Comparação percentual da última medição de atributos em relação à primeira

Sistema	Porcentagem		
Coesão	LCOM2	7,45%	
	ACC	0,78%	
	SCC	7,78%	
	EVG	2,66%	
Complexidade	MaxNet	-0,85%	
	DIT	2,94%	
	NOC	-2,78%	
Herança	IFANIN	4,07%	
Acoplamento	СВО	8,10%	
	LOC	5,55%	
	CLOC	36,68%	
	NIM	12,29%	
Tamanho	CDL	4,29%	

REFERÊNCIAS

AZEEM, Muhammad. Machine learning techniques for code smell detection: A systematic literature review and meta-analysis. Information and Software Technology, v. 108, p. 115-138, 2019.

SABIR, Fatima. A systematic literature review on the detection of smells and their evolution in object-oriented and service-oriented systems. Software: Practice and Experience, v. 49, n. 1, p. 3-39, 2019.

APÊNDICE A

Documentos utilizados para a agregação de dados estão disponíveis no .zip enviado.