Обучение нейронных сетей

Лекция 3

План лекции

- Регуляризация
- Инициализация весов
- Нормализация по мини-батчам
- Варианты градиентного спуска

Регуляризация

- Сокращение весов (Weight decay)
 - L1-регуляризация
 - L2-регуляризация
- Ранняя остановка (Early stopping)
- Дропаут (Dropout)

Регуляризация

$$f(x) = x^3 - 4x^2 + 3x - 2$$

+ нормально распределенный шум N(0, 0.25)

Регуляризация

Весовые коэффициенты:

- Degree = 1: [-2.5, 1.6]
- Degree = 3: [-1.9, 3.1, -4.1, 1.0]
- Degree = 5: [-1.9, 3.1, -3.7, 0.5, -1.3, 1.4]
- Degree = 7: [-1.8, 1.8, -7.5, 18.5, 8.4, -51.4, 20.4, 9.8]
- Degree = 9: [-1.6, 1.5, -19.2, 36.8, 127.6, -280.0, 186.1, 653.5, -352.4, 18.2]

Регуляризация: weight decay

 L₂-регуляризатор – гребневая регрессия (ridge regression):

$$R(\vec{w}) = \|\vec{w}\|_2^2 = \sum_{i=1}^a w_i^2$$

L₁-регуляризатор – Lasso regression
 (least absolute shrinkage and selection operator):

$$R(\vec{w}) = \|\vec{w}\|_1 = \sum_{i=1}^d |w_i|$$

Регуляризация: weight decay

Весовые коэффициенты (degree = 7):

- $\alpha = 0$: [-1.8, 1.8, -7.5, 18.5, 8.4, -51.4, 20.4, 9.8]
- $\alpha = 0.01$: [-1.9, 3.1, -3.3, 0.5, -1.1, -0.1, 0.1, 0.8]
- $\alpha = 0.1$: [-2.1, 2.7, -2.0, 0.2, -0.7, -0.1, -0.1, 0.1]
- $\alpha = 1.0$: [-2.3, 1.4, -0.4, 0.1, -0.2, -0.1, -0.2, -0.1]

Регуляризация: weight decay — PyTorch

- L2-регуляризация: параметр weight_decay в оптимизаторах
 - По умолчанию = 0
- L1-регуляризация:

```
l1_alpha = 0.01
reg_loss = 0
for param in model.parameters():
    reg_loss += torch.norm(param, 1)
loss += l1_alpha * reg_loss
```

Регуляризация: early stopping

Training dataset → training dataset + validation dataset

Регуляризация: early stopping — PyTorch

- В PyTorch поддержка отсутствует
- Сторонние библиотеки:
 - PyTorch Lightning (<u>ссылка</u>)
 - ignite (<u>ссылка1</u>, <u>ссылка2</u>)

- Обучение (training phase): на каждом обучающем примере каждый нейрон (кроме нейронов выходного слоя) исключается из сети с вероятностью p (распределение Бернулли)
 - Для входов тоже можно применять dropout, но есть риск потерять важную информацию
- Предсказание (inference phase): выход каждого нейрона умножается на вероятность 1-p
- Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, Ruslan R. Salakhutdinov. Improving neural networks by preventing co-adaptation of feature detectors // arXiv:1207.0580. 2012
 - https://arxiv.org/abs/1207.0580

Dropout

Inverted dropout

Обучение Предсказание

- Дропаут эквивалентен усреднению 2^N моделей, где N- количество нейронов, для которых применяется дропаут
- Рекомендуемые значения p:
 - входной слой: [0.1 ... 0.2]
 - скрытые слои: [0.2 ... 0.5]
- PyTorch: torch.nn.Dropout(p=0.5)

```
p = 0.5
dropout = nn.Dropout(p)
                                      dropout.training = False
a = torch.tensor([1.0, 2.0])
                                      for i in range(10):
for i in range(10):
                                          print(dropout(a))
    print(dropout(a))
                                      tensor([1., 2.])
tensor([2., 4.])
                                      tensor([1., 2.])
tensor([0., 4.])
                                      tensor([1., 2.])
tensor([0., 4.])
                                      tensor([1., 2.])
tensor([0., 0.])
                                      tensor([1., 2.])
tensor([2., 0.])
                                      tensor([1., 2.])
tensor([0., 0.])
tensor([2., 0.1)
                                      tensor([1., 2.])
                                      tensor([1., 2.])
tensor([0., 4.])
                                      tensor([1., 2.])
tensor([0., 0.])
                                      tensor([1., 2.])
tensor([2., 0.])
```

Инициализация весов

Инициализация весов: предобучение

- *Предобучение* (pretraining) обучение простой модели на простой задаче перед обучением желаемой модели на желаемой задаче
- *Тонкая настройка, дообучение* (fine-tuning) обучение заранее предобученной модели на желаемой задаче
- Перенос обучения (transfer learning) = предобучение + тонкая настройка

Равномерное распределение (Uniform):

Нормальное распределение (Normal):

$$N(\mu, \sigma^2)$$

 μ – математическое ожидание, σ^2 – дисперсия

- Инициализация Яна Лекуна
 - LeCun Y.A., Bottou L., Orr G.B., Müller K.-R. Efficient BackProp // Neural Networks: Tricks of the Trade. 1998. P. 9–50.
- Один из часто используемых вариантов инициализации:

$$w_i \sim U\left(-\frac{1}{\sqrt{m}}, \frac{1}{\sqrt{m}}\right),$$

где m – количество входов некоторого слоя

- Инициализация Ксавье Глоро (Xavier initialization, Glorot initialization)
 - Glorot Xavier, Bengio Yoshua. Understanding the Difficulty of Training Deep Feedforward Neural Networks // International Conference on Artificial Intelligence and Statistics. 2010. P. 249–256.

$$w_i \sim U\left(-\sqrt{\frac{6}{m+n}}, \sqrt{\frac{6}{m+n}}\right),$$

где m — количество входов слоя, n — количество выходов слоя

 Дисперсия активаций при прямом распространении и дисперсия градиентов при обратном распространении будут одинаковы и примерно равны единице —> сигналы не затухают

- Инициализация Каймина Хе для несимметричных функций активации (Kaiming initialization, He initialization)
 - He Kaiming, Zhang Xiangyu, Ren Shaoqing, Jian Sun. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification // Proceedings of the IEEE International Conference on Computer Vision (ICCV). 2015 – P. 1026–1034.

$$w_i \sim N\left(0, \frac{2}{m}\right)$$
,

где m – количество входов слоя, $\frac{2}{m}$ – дисперсия

Рекомендации

- Симметричные функции: инициализация Ксавье Глоро
 - Логистический сигмоид, гиперболический тангенс
 - Xavier initialization, Glorot initialization

$$w_i \sim U\left(-\sqrt{\frac{6}{m+n}}, \sqrt{\frac{6}{m+n}}\right)$$

- Несимметричные функции: инициализация Каймина Хе
 - ReLU, ELU, Leaky ReLU, SeLU
 - Kaiming initialization, He initialization

$$w_i \sim N\left(0, \frac{2}{m}\right)$$

- torch.nn.init.uniform_(tensor, a=0.0, b=1.0)
- torch.nn.init.normal_(tensor, mean=0.0, std=1.0)
- torch.nn.init.xavier_uniform_(tensor, gain=1.0)
- torch.nn.init.xavier_normal_(tensor, gain=1.0)
- torch.nn.init.kaiming_uniform_(tensor, a=0, mode='fan_in', nonlinearity='leaky_relu')
- torch.nn.init.kaiming_normal_(tensor, a=0, mode='fan_in', nonlinearity='leaky_relu')
- gain опциональный масштабирующий коэффициент
 - torch.nn.init.calculate_gain(nonlinearity)

• Standard scaling (Z-score normalization) — мера относительного разброса значения признака, которая показывает, сколько стандартных отклонений составляет его разброс относительного среднего значения признака:

$$z = \frac{x - \mu}{\sigma}, \qquad \mu = M[x] = \frac{1}{N} \sum_{i=1}^{N} x_{i}, \qquad \sigma = \sqrt{D[x]} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_{i} - \mu)^{2}}$$

где μ – мат. ожидание признака, σ – стандартное отклонение

- Standard scaling приводит произвольное распределение к распределению со средним значением 0 и дисперсией 1
- «Правило трёх сигм» с вероятностью 0,9973 значение **нормально** распределённой случайной величины лежит в интервале ($\mu 3\sigma, \mu + 3\sigma$)

- Batch Normalization
 - Ioffe S., Szegedy C. Batch Normalization: Accelerating Deep Network
 Training by Reducing Internal Covariate Shift // Proc. 32nd ICML, 2015. –
 P. 448–456.
- Нормализованные входные векторы каждого слоя:

$$\hat{\vec{x}} = (\hat{x}_1, \dots, \hat{x}_d), \qquad \hat{x}_k = \frac{x_k - M[x_k]}{\sqrt{D[x_k]}}$$

где $M[x_k]$ и $D[x_k]$ вычисляются по мини-батчу

• Проблема: пропадает нелинейность (например, для сигмоиды значения оказываются в линейной области)

• Решение: дополнительные параметры γ_k и β_k , которые настраиваются в процессе обучения:

$$y_k = \gamma_k \hat{x}_k + \beta_k = \gamma_k \frac{x_k - M[x_k]}{\sqrt{D[x_k]}} + \beta_k$$

• Например, тождественная функция реализуется при:

$$\gamma_k = \sqrt{D[x_k]}, \qquad \beta_k = M[x_k]$$

Слой нормализации по мини-батчам

- Вход: мини-батч $B = \{\vec{x}_1, ..., \vec{x}_m\}$
- Вычисление базовых статистик:

$$\mu_B = \frac{1}{m} \sum_{i}^{m} \vec{x}_i$$
, $\sigma_B^2 = \frac{1}{m} \sum_{i}^{m} (x_i - \mu_B)^2$

• Нормализация входов:

$$\hat{\vec{x}}_i = \frac{\vec{x}_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}$$

Вычисление результата:

$$\vec{y}_i = \vec{\gamma} \hat{\vec{x}}_i + \vec{\beta}$$

• PyTorch: torch.nn.BatchNorm1d(num_features, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True

Layer Normalization

Batch Normalization

Layer Normalization

std

Same for all feature dimensions

Layer Normalization

• Градиентом функции $f: \mathbb{R}^d \to \mathbb{R}$ называется вектор её частных производных $(\nabla - \text{ оператор набла, оператор Гамильтона}):$

$$\nabla f(x_1, \dots, x_d) = \left(\frac{\partial f}{\partial x_j}\right)_{j=1}^d = \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_d}\right)$$

 Градиент является направлением наискорейшего роста функции, а антиградиент (¬∇f) направлением наискорейшего убывания

• *Пример*: функция $y=x^2$, производная $\frac{dy}{dx}=2x$

• Пример: функция $y = -(\cos^2 x_1 + \cos^2 x_2)^2$

Алгоритм градиентного спуска:

- 1. Выбрать начальную точку $\overrightarrow{w}^{(0)}$
- 2. Повторять до сходимости:

$$\overrightarrow{w}^{(k)} = \overrightarrow{w}^{(k-1)} - \eta_k \nabla Q(\overrightarrow{w}^{(k-1)}),$$

где k — номер шага,

 $Q(\overrightarrow{w})$ — функционал ошибки для набора параметров \overrightarrow{w} , η_k — скорость спуска (длина k-го шага).

- Условия останова:
 - вектор весов почти перестает изменяться
 - достигнуто максимальное число итераций

- Скорость спуска:
 - слишком высокая ightarrow переход через минимум
 - слишком низкая \rightarrow медленная сходимость

Варианты изменения скорости спуска:

- константная: $\eta_k = const$
- затухание (learning rate decay/annealing):
 - линейное затухание (linear decay): $\eta_k = \eta_0 \left(1 \frac{k}{K} \right)$
 - экспоненциальное затухание (exponential decay):

$$\eta_k = \eta_0 e^{-\frac{k}{K}}$$

• повышение (learning rate warmup)

PyTorch ("How to adjust learning rate"):

```
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
scheduler = ExponentialLR(optimizer, gamma=0.9)
for epoch in range(20):
    for input, target in dataset:
        optimizer.zero grad()
        output = model(input)
        loss = loss fn(output, target)
        loss.backward()
        optimizer.step()
    scheduler.step()
```

Стохастический градиентный спуск

• Функционал ошибки представим в виде суммы l функций ошибок:

$$Q(\overrightarrow{w}) = \frac{1}{l} \sum_{i=1}^{l} L_i(\overrightarrow{w})$$

• При градиентном спуске необходимо вычислять градиент всей суммы:

$$\nabla Q(\overrightarrow{w}) = \frac{1}{l} \sum_{i=1}^{l} \nabla L_i(\overrightarrow{w})$$

• Если выборка большая, вычисление градиента трудоемко

Стохастический градиентный спуск

• Оценить градиент суммы функций можно градиентом одного случайно взятого i_k слагаемого:

$$\nabla Q(\vec{w}) \approx \nabla L_{i_k}(\vec{w})$$

• Метод стохастического градиентного спуска (stochastic gradient descent, SGD):

$$\vec{w}^{(k)} = \vec{w}^{(k-1)} - \eta_k \nabla L_{i_k} (\vec{w}^{(k-1)})$$

• Градиентный спуск по мини-батчам (mini-batch gradient descent):

$$\nabla Q(\overrightarrow{w}) \approx \frac{1}{n} \sum_{j=1}^{n} \nabla L_{i_{kj}}(\overrightarrow{w}),$$

Стохастический градиентный спуск

Stochastic Gradient Descent

Mini-Batch Gradient Descent

Метод моментов

• Направление антиградиента может меняться на каждом шаге:

Метод моментов

• Можно усреднять векторы антиградиента с нескольких предыдущих шагов с помощью вектора инерции:

$$\vec{h}_0 = 0,$$

$$\vec{h}_k = \alpha \vec{h}_{k-1} + \eta_k \nabla Q(\vec{w}^{(k-1)}),$$

где α — коэффициент момента.

Тогда обновление весов:

$$\vec{w}^{(k)} = \vec{w}^{(k-1)} - \vec{h}_k$$

Метод Нестерова

• Можно вычислять градиент сразу в промежуточной точке:

$$\overrightarrow{w}^{(k)} = \overrightarrow{w}^{(k-1)} - \alpha \overrightarrow{h}_{k-1} - \eta_k \nabla Q \left(\overrightarrow{w}^{(k-1)} - \alpha \overrightarrow{h}_{k-1} \right)$$

• PyTorch: torch.optim.SGD(params, lr=<required parameter>, momentum=0, weight_decay=0, nesterov=False

Метод AdaGrad

 Разное изменение скорости для разных компонентов вектора весов:

$$\nabla Q(\vec{w}^{(k-1)}) = (g_1^{k-1}, \dots, g_d^{k-1})$$

$$G_{kj} = G_{k-1,j} + (g_j^{k-1})^2$$

$$w_j^{(k)} = w_j^{(k-1)} - \frac{\eta_k}{\sqrt{G_{kj} + \varepsilon}} g_j^{k-1}$$

• PyTorch: $\eta = 0.01$, $\varepsilon = 10^{-10}$

Метод AdaGrad

• Проблема: переменная G_{kj} монотонно растёт, из-за чего шаги становятся всё медленнее и могут остановиться ещё до того, как достигнут минимум функционала

$$\nabla Q \left(\overrightarrow{w}^{(k-1)} \right) = \left(\mathbf{g}_1^{k-1}, \dots, \mathbf{g}_d^{k-1} \right)$$

$$G_{kj} = G_{k-1,j} + (g_j^{k-1})^2$$

$$w_j^{(k)} = w_j^{(k-1)} - \frac{\eta_k}{\sqrt{G_{kj} + \varepsilon}} \mathbf{g}_j^{k-1}$$

Метод AdaDelta

• Идея 1: используется экспоненциальное среднее градиентов:

$$G_{kj} = \rho G_{k-1,j} + (1 - \rho) (g_j^{k-1})^2,$$

$$w_j^{(k)} = w_j^{(k-1)} - \frac{\eta_k}{\sqrt{G_{kj} + \varepsilon}} g_j^{k-1}$$

где $\rho \in [0,1]$ – сглаживающая константа; PyTorch: $\rho = 0.9$

Метод AdaDelta

• Проблема: размерности при обновлении весов не совпадают:

$$w_j^{(k)} = w_j^{(k-1)} - \eta_k \frac{\partial Q}{\partial w_j}$$

• Идея 2: выравнивание размерностей:

$$\Delta w_j^{(k)} = \frac{\sqrt{E\left[\Delta w_j^2\right]_{k-1}}}{\sqrt{G_{kj} + \varepsilon}} g_j^{(k-1)}$$

$$w_j^{(k)} = w_j^{(k-1)} - \Delta w_j^{(k)}$$

$$E\left[\Delta w_j^2\right]_k = \rho E\left[\Delta w_j^2\right]_{k-1} + (1 - \rho) \left(\Delta w_j^{(k)}\right)^2$$

Метод RMSprop

- Предложен Джеффри Хинтоном независимо от AdaDelta
- Использует идею о квадратном корне из экспоненциального среднего квадратов градиентов (RMS Root Mean Squares среднее квадратическое):

$$G_{kj} = \alpha G_{k-1,j} + (1 - \alpha) (g_j^{k-1})^2$$

$$w_j^{(k)} = w_j^{(k-1)} - \frac{\eta_k}{\sqrt{G_{kj} + \varepsilon}} g_j^{k-1}$$

• PyTorch: $\eta = 0.01$, $\alpha = 0.99$

Метод Adam (adaptive moment estimation)

• Использует сглаженные версии среднего и среднеквадратичного градиентов:

$$m_{k} = \beta_{1} m_{k-1} + (1 - \beta_{1}) g_{k}$$

$$v_{k} = \beta_{2} v_{k-1} + (1 - \beta_{2}) g_{k}^{2}$$

$$w^{(k)} = w^{(k-1)} - \frac{\eta_{k}}{\sqrt{v_{k} + \epsilon}} m_{k}$$

• PyTorch: $\eta = 0.001$, $\beta_1 = 0.9$, $\beta_2 = 0.999$

Метод AdamW

• Добавление регуляризации в Adam (Adam with weight decay)

$$w^{(k)} = w^{(k-1)} - \eta_k \left(\frac{m_k}{\sqrt{\nu_k + \epsilon}} + \omega w^{(k-1)} \right)$$

• PyTorch: $\eta = 0.001$, $\beta_1 = 0.9$, $\beta_2 = 0.999$, $\omega = 0.01$