Machine Learning

$y_i = f(x_i)$

$y_i = \beta x_i$

$y_i = \beta x_i$

"explanation"

Explanation

- Goal is to understand the complex process by which one variable "affects" another
- Technical in estimation, moral in implication
- Generalizable across all contexts within scope conditions (otherwise you don't really understand the cause)
- Output is a story that must "makes sense" to someone

$y_i = \beta x_i$

"prediction"

Prediction

- Goal is to forecast what will happen
- Technical in estimation, practical in implication
- Only relevant to context of prediction
- Output it a state of affairs

Prediction and Explanation

Prediction

- Goal is to forecast what will happen
- Technical in estimation, practical in implication
- Only relevant to context of prediction
- Output it a state of affairs
- Machine learning

Explanation

- Goal is to understand the complex process by which one variable "affects" another
- Technical in estimation, moral in implication
- Generalizable across all contexts within scope conditions (otherwise you don't really understand the cause)
- Output is a story that must "makes sense" to someone
- Causal inference, process tracing

Prediction vs. Explanation?

- If you can perfectly explain, you can perfectly predict
- If you can perfectly predict, doesn't necessarily mean you can perfectly explain ("black box" prediction)
- However, if you can't predict at all than your explanation is probably wrong
- Some philosophers (see Carl Hempel) have said that a good theory is one that predicts (though I disagree with this to some degree)

A difference in games

- For prediction, **LITERALLY ANYTHING** that increases your performance is "fair-game"
- The one caveat is that it has to be information that came about before the outcome was decided
- For models intended for explanation, you should only include variables that are either of theoretical interest or may confound your variables of interest
- Given that you don't have perfect explanation, different tools work better for different goals (in the words of Susan Athey, "you don't get anything for free")

Predict y from x

Higher R-squared!

"Over-fitting"

- More complex models (same model with added terms) always fit the data better
- Standard regression framework fits the "signal", but also fits the "noise"

"Over-fitting" (it gets worse...)

- We can "explain" our data arbitrarily well with a binary variable that is equal to 1 for each observation and 0 for all others
- So how do we properly evaluate prediction models?

Predict whether
The circle will have a
"+" or a "-"

If the observation appears in a red circle, predict "+"; if in blue circle, predict "-"

Why is this not ideal?

We were "overfitting" to the data, so can't predict on new data!

Regularized regression

OLS

$$\lambda = \sum_{i=1}^{n} (\hat{y}_i - y_i)^2$$

OLS

we'll minimize

OLS

$$\lambda = \sum_{i=1}^{n} (\sum_{j=1}^{k} \beta_{j} x_{ij} - y_{i})^{2}$$

LASSO

$$\lambda = \sum_{i=1}^{n} (\sum_{j=1}^{\kappa} \beta_j x_{ij} - y_i)^2 + \alpha \sum_{j=1}^{\kappa} |\beta_j|$$

LASSO

$$\lambda = \sum_{i=1}^{n} (\sum_{j=1}^{k} \beta_j x_{ij} - y_i)^2 + \alpha \sum_{j=1}^{k} |\beta_j|$$

Standard OLS

Regularization

LASSO

$$\lambda = \sum_{i=1}^{n} (\sum_{j=1}^{k} \beta_j x_{ij} - y_i)^2 + \alpha \sum_{j=1}^{k} |\beta_j|$$

Regularization parameter

Ridge

$$\lambda = \sum_{i=1}^{n} (\sum_{j=1}^{k} \beta_j x_{ij} - y_i)^2 + \alpha \sum_{j=1}^{k} (\beta_j)^2$$

Regularized regression

- By penalizing the model for the size of the coefficients, we...
 - Force the model to only emphasize important coefficients
 - De-select variables that have strong correlates
 - Allow the model to predict relatively well even when we throw k >> n
 variables at it
 - Bias the coefficient estimates associated with any particular variable
- We're basically purposefully introducing omitted variable bias
- We better our performance on prediction by introducing bias to OLS!

Regularized regression (cont.)

- The slight different in cost function leads to very different outcomes...
 - LASSO will select important variables and then send all others to zero
 - Ridge will select important variables and send all others near zero
- So some people use LASSO for model selection (even though they shouldn't!)
- Which one "should" you use? Whichever performs better!
- But we can only test on the test data once...?
- The lower α , the more you "fit" the data (the closer we get to regression); as $\alpha \rightarrow \infty$, model becomes the constant only model
- How do you select α ?

"development "test set" set" "training set" data

Decision trees

Decision Trees

- Some parameters that can be set...
 - How "deep" is the tree allowed to be (how many splits can the tree make)
 - How many nodes must exist in a "leaf" (the endpoint of a tree)
 - The "complexity factor" (how much the tree prefers few splits)
 - How do we select these? Whatever performs the best on the development set or on our k-folds!
- In general, this is a decent "out of the box" classifier (i.e. using the standard parameter values is pretty good)
- Also can do "regression trees" (on continuously valued variables)
- Generally good if variables are somewhat meaningful on their own
- Very fast to train

Random forests

One in the hand isn't worth 10,000 in the forest

- Decision trees, in many contexts, tend to over-fit to the data (and don't generalize well)
- Let's take a random sample of the training set (say 10% with replacement) and "grow" a decision tree that overfits on that data
- Let's do this 10,000 times so we have a "forest" of 10,000 trees which, on their own, perform poorly
- Now, when we predict, take the average prediction over the 10,000 trees and make that prediction
- This is a general meta-algorithm that can be used on many different classifiers (for instance LASSO), but is really popular to use with decision trees
- Can also randomly sample variables AND observations

So, as social scientists, why do we care about this?

- Some points in the research process can benefit from using machine learning
 - Classify tweets as "civil" or "uncivil"; emails as being "formal" or "informal"
 - Classify images of neighborhoods to get a measure of gentrification
- It turns out there are ways to incorporate these techniques into causal inference procedures, or ways to slightly modify them in order to do explanation
- To really understand the difference between prediction and explanation you need to at least kind of understand both