The AGN Butcher-Oemler Effect

Paul Martini
The Ohio State University

Collaborators

John Mulchaey (Carnegie)
Dan Kelson (Carnegie)
Jason Eastman (Ohio State)
Greg Sivakoff (Ohio State)
Kim-Vy Tran (Leiden)

Allen et al.

The Butcher-Oemler Effect

Fig. 3.—Blue galaxy fraction versus redshift. Filled circles, compact clusters ($C \ge 0.40$); open circles, irregular clusters (C < 0.35); dotted circles, intermediate clusters ($0.35 \le C < 0.40$).

The Butcher-Oemler Effect

0.04 < z < 0.08

0.4 < z < 0.8

Galaxy Evolution in Clusters

AGN Identification

Determine Cluster Membership

AGN Classification

40 X-ray sources in 8 clusters with 0.06 < z < 0.3

35 are classified as AGN
Only 4 show AGN spectral signatures

Martini et al. (2006)

Evolution of the AGN Fraction

$$f_A = \frac{N_X (L>L_X; M_R<-20)}{N_{gal} (M_R<-20)}$$

Comparison of AGN in the low and highredshift clusters shows:

- 11 low-z clusters have 2 AGN with L_{X,H}
 >10⁴³ erg/s in over 1600 member galaxies
- 4 high-z clusters have 8 AGN with $L_{X,H}$ > 10^{43} in over 400 member galaxies

An AGN Butcher-Oemler Effect

Factor of >10 increase in the cluster AGN fraction

Due to systematics, this is likely an underestimate

Eastman, Martini, et al. (2007), Sivakoff et al. (2007)

An AGN Butcher-Oemler Effect

More pronounced than the field evolution (Ueda et al. 2003)

Evidence for environment-dependent downsizing

Eastman, Martini, et al. (2007), Sivakoff et al. (2007)

The Butcher-Oemler Effect

Fig. 3.—Blue galaxy fraction versus redshift. Filled circles, compact clusters ($C \ge 0.40$); open circles, irregular clusters (C < 0.35); dotted circles, intermediate clusters ($0.35 \le C < 0.40$).

AGN Butcher-Oemler Effect

Rate of evolution is consistent with blue galaxy fraction

Cosmology Implications?

Evolution:

- Cluster environment provides a unique set of conditions to explore triggering, AGN feedback
- May have implications for clustering properties of high-redshift X-ray sources

X-ray:

 AGN can be a significant fraction (>10%) of the cluster L_x, which impacts selection

SZ:

 A comparable evolution in radio sources could bias SZ selection vs. redshift