Exercício LFSR em Assembly

- Pesquise sobre a geração de pseudos-aleatórios com registrador de deslocamento.
 - Na literatura especializada essa abordagem é conhecida como <u>linear feedback shift register</u> (LFSR)
 - Implemente um gerador baseado em registrador de deslocamento de 16 bits.
 - a) Nesse módulo, use programa Assembly NASM
 - b) Alternativamente, implemente um programa em C
 - Gere 64k pseudos-aleatórios (0..65535)
 - Divida-os em 64 intervalos e calcule a freqüência em cada.
 - Aplique o teste chi-quadrado e verifiquem se de fato os números são aleatórios ou não, ao nível de significância de 5%.
 - Nesse módulo, use linguagem C.
 - Compare os tempos de execução em C e em ASM

LFSR em Assembly Documentação de programa

• Divida os 64k números em cada algoritmo em 64 classes, a primeira de (0, 1k), etc. Para cada classe calcule a freqüência observada, fo, e a esperada, fe (se os números seguissem a distribuição uniforme).

chi-quadrado_{k-1, α} = \sum_{k} (fo_k - fe_k)² / fe_k

- A semente inicial não pode ser zero
- O trabalho é em grupo, o mesmo do exercício de C. Use o padrão C ISO. Entregue o código fonte e o código executável. Informe qual foi a semente que utilizou. O programa deve emitir um relatório com as freqüências observadas e esperadas e o valor da estatística do chiquadrado.
- Documentação requerida: número do grupo, matriculas e nomes dos componentes, nome do programa, função do programa e descrição das principais estruturas de dados utilizadas. Se o programa tiver módulos, apresente também um diagrama mostrando o relacionamento entre eles.
- Os nomes dos arquivos do programa devem iniciar com o número do grupo, traço, dois dígitos seqüenciais indicando o número do programa (nesse caso deve ser 02), traço, mnemônico para indicar a função do programa.

Técnica de Pesos Adaptativos de Operadores LFSR de n Bits

Estrutura geral

Período

- Máximo 2ⁿ-1.
- Depende da função de retro-alimentação e do valor inicial (que deve ser não nulo)

Técnica de Pesos Adaptativos de Operadores LFSR de n Bits

Função de retro-alimentação

XOR – representa um polinômio com coeficientes dados pela seqüência de captura (TAP).

Período

- Máximo se as posições de captura representam um polinômio primitivo módulo 2, isto é, as posições do LFSR com b_i = 1 apenas nas posições de TAP representam esse polinômio.
- Exemplo de LFSR de 32 bits

$$TAP = (32, 7, 6, 2)$$

Representa o polinômio p(x) = $x^{32} \oplus x^7 \oplus x^6 \oplus x^2 \oplus 1$, com período de 2^{32} - 1 (máximo).