# Coursera Capstone Project: IBM Data Science

Exploring and Analyzing Schools in Lusaka

Mwimbi Shindola

mwimbi.shindola@gmail.com Lusaka, Zambia June 15, 2020

### Introduction

#### **Background**

- Lusaka is the capital and largest city of Zambia. It is one of the fastest developing cities in southern Africa
- It is important to analyze location of schools in Lusaka neighborhoods so as to properly plan how institutions of learning are located

#### **Problem**

- Where investors can deploy new schools
- Which neighborhoods should government target for building schools
- What neighborhoods can parents with school going children target to live

#### **Interest**

Government, Parents with school going children and, Private investors for schools

## Data acquisition and cleaning

#### Data sources

- Wikipedia page for Lusaka
- Macpro
- Created CSV file and uploaded to assets of coursera project

#### 2. Import CSV file and create a Dataframe for Lusaka Locations uploaded a the project assests

```
# @hidden_cell
# The project token is an authorization token that is used to access project resources like data sources, connect
from project_lib import Project
project = Project(project_id='0fb9cca2-467f-4596-8794-c01c4453f927', project_access_token='p-078e0048fb252b796908
pc = project_project_context

# Fetch the file
my_file = project.get_file("Lusaka_neighborhoods.csv")
# Read the CSV data file from the object storage into a pandas DataFrame
my_file.seek(0)
lsk_df=pd.read_csv(my_file, ) #nrows=10
```

### Data acquisition and cleaning contd

### Geocoding

- contents from Lusaka\_nieghborhoods.csv were stored in a Pandas DataFrame
- The latitude and longitude of the neighborhoods were retrieved using Google Maps Geocoding API
- The geometric location values were then stored into the a dataframe

### Data acquisition and cleaning contd

#### **Venue Data Feature selection**

 Venue data is found out by passing in the required parameters to the FourSquare API, and creating another DataFrame to contain all the venue details along with the respective neighborhoods.

### Methodology

- we analyze the data by exploring the various categories to which the schools belong
- we explore the distribution in each neighborhood in a more explanatory way using choropleth maps for visualization
- cluster this data using K-Means.

# Analysis

### Categories



# **Analysis contd**

### Clustering the neighborhoods

- the neighborhoods were clustered using K-Means clustering algorithm into 3 clusters
- Also I have counted the number of schools in each neighborhood and created a dataframe

|   | Neighborhood    | Latitude   | Longitude | Near_school | num_schools_in_2km |
|---|-----------------|------------|-----------|-------------|--------------------|
| 0 | Avondale        | -15.382134 | 28.394314 | 2100        | 0                  |
| 1 | Bauleni         | -15.444570 | 28.377290 | 2100        | 0                  |
| 2 | Cathedrall Hill | -15.425610 | 28.278710 | 2100        | 0                  |
| 3 | Chainda         | -15.388320 | 28.404560 | 2600        | 0                  |
| 4 | Chaisa          | -15.384820 | 28.275150 | 2100        | 0                  |

### Results and Discussion

- We observe that schools providing education only at High School level are comparatively less.
- most of the neighborhoods fall under category with label 0, i.e., the average distance to nearest school for these neighborhoods are 2100 meters
- These regions consist of potential neighborhoods for the families with school going children to live
- Neighborhoods under category label 1 are a great potential for building school

### Conclusions

- In this analysis, the distribution of schools in Lusaka has been analyzed.
- The various neighborhoods have been clustered based on their access to school facilities.
- The neighborhoods requiring improvement have been identified along with those neighborhoods which have potential for profitable schools.
- The various categories of schools have been observed.