▼ Load Dataset

```
import pandas as pd
df = pd.read_csv('/content/drive/MyDrive/ML Projects/adult.csv')
```

	age	workclass	fnlwgt	education	educational- num	marital-status	occupation	relationship	race	gender	capi
0	25	Private	226802	11th	7	Never-married	Machine-op- inspct	Own-child	Black	Male	
1	38	Private	89814	HS-grad	9	Married-civ- spouse	Farming-fishing	Husband	White	Male	
2	28	Local-gov	336951	Assoc-acdm	12	Married-civ- spouse	Protective-serv	Husband	White	Male	
3	44	Private	160323	Some- college	10	Married-civ- spouse	Machine-op- inspct	Husband	Black	Male	
4	18	?	103497	Some- college	10	Never-married	?	Own-child	White	Female	
					•••		•••				
48837	27	Private	257302	Assoc-acdm	12	Married-civ- spouse	Tech-support	Wife	White	Female	
48838	40	Private	154374	HS-grad	9	Married-civ- spouse	Machine-op- inspct	Husband	White	Male	
48839	58	Private	151910	HS-grad	9	Widowed	Adm-clerical	Unmarried	White	Female	
48840	22	Private	201490	HS-grad	9	Never-married	Adm-clerical	Own-child	White	Male	
48841	52	Self-emp- inc	287927	HS-grad	9	Married-civ- spouse	Exec-managerial	Wife	White	Female	1

48842 rows × 15 columns

Data Preparation

Data Preprocessing

```
df.shape
    (48842, 15)
df.columns
    'income'],
         dtype='object')
df.dtypes
                    int64
    workclass
                   object
    fnlwgt
                   int64
    education
                   object
    educational-num
                   int64
    marital-status
                   object
    occupation
                   object
    relationship
                   object
    race
                   object
    gender
                   object
    capital-gain
                    int64
    capital-loss
                    int64
    hours-per-week
                    int64
    native-country
                   object
    income
                   object
    dtype: object
df.nunique()
```

```
age
                          74
     workclass
                           9
     fnlwgt
                        28523
     education
                          16
     educational-num
                          16
     marital-status
                          15
     occupation
     relationship
                           6
     race
                           5
     gender
                           2
     capital-gain
                         123
     capital-loss
                          99
     hours-per-week
                          96
     native-country
     income
     dtype: int64
df.isna().any()
                       False
     workclass
                       False
     fnlwgt
                       False
     education
                       False
     educational-num
                       False
     marital-status
                       False
     occupation
                       False
     relationship
                       False
                       False
     race
     gender
                       False
     capital-gain
                       False
     capital-loss
                       False
     hours-per-week
                       False
     native-country
                       False
     income
                       False
     dtype: bool
```

df.describe()

	age	fnlwgt	educational-num	capital-gain	capital-loss	hours-per-week	
count	48842.000000	4.884200e+04	48842.000000	48842.000000	48842.000000	48842.000000	ıl.
mean	38.643585	1.896641e+05	10.078089	1079.067626	87.502314	40.422382	
std	13.710510	1.056040e+05	2.570973	7452.019058	403.004552	12.391444	
min	17.000000	1.228500e+04	1.000000	0.000000	0.000000	1.000000	
25%	28.000000	1.175505e+05	9.000000	0.000000	0.000000	40.000000	
50%	37.000000	1.781445e+05	10.000000	0.000000	0.000000	40.000000	
75%	48.000000	2.376420e+05	12.000000	0.000000	0.000000	45.000000	
max	90.000000	1.490400e+06	16.000000	99999.000000	4356.000000	99.000000	

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 48842 entries, 0 to 48841
Data columns (total 15 columns):

Ducu	COTAMILIS (COCAT I	J COTAMITS).	
#	Column	Non-Null Count	Dtype
0	age	48842 non-null	int64
1	workclass	48842 non-null	object
2	fnlwgt	48842 non-null	int64
3	education	48842 non-null	object
4	educational-num	48842 non-null	int64
5	marital-status	48842 non-null	object
6	occupation	48842 non-null	object
7	relationship	48842 non-null	object
8	race	48842 non-null	object
9	gender	48842 non-null	object
10	capital-gain	48842 non-null	int64
11	capital-loss	48842 non-null	int64
12	hours-per-week	48842 non-null	int64
13	native-country	48842 non-null	object
14	income	48842 non-null	object
		. (0)	

dtypes: int64(6), object(9)
memory usage: 5.6+ MB

▼ Data Visualization

```
import matplotlib.pyplot as plt
import seaborn as sns

plt.figure(figsize=(6,4))
sns.barplot(x = 'gender' , y = 'income' , data = df , palette='YlGnBu')

<Axes: xlabel='gender', ylabel='income'>
```



```
plt.figure(figsize=(14,8))
sns.barplot(x = 'race' , y = 'income' , data = df)
plt.xlabel('Race' , size='large')
plt.ylabel('Income' , size = 'large')
plt.title("Income Distribution by Race")
plt.show()
```



```
plt.figure(figsize=(14,8))
sns.barplot(x = 'marital-status' , y = 'income' , data = df)
plt.xlabel('Marital Status' , size='large')
plt.ylabel('Income' , size = 'large')
plt.title("Income Distribution by Marital Status")
plt.show()
```



```
plt.figure(figsize =(8,6))
sns.heatmap(df.corr() , annot = True , cmap = "coolwarm")
plt.title("Correlation Heatmap")
```

<ipython-input-112-86ab77d31fb3>:2: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future ve sns.heatmap(df.corr() , annot = True , cmap = "coolwarm") Text(0.5, 1.0, 'Correlation Heatmap')

▼ Data Cleaning

```
df.isnull().sum()
    age
    workclass
    fnlwgt
                     0
    education
                     0
    educational-num
                     0
    marital-status
                     a
    occupation
    relationship
                     0
    race
    gender
                     0
    capital-gain
    capital-loss
    hours-per-week
    native-country
                     0
    income
                     0
    dtype: int64
df['workclass'].unique()
    dtype=object)
for x in df.index:
 if df.loc[x , 'workclass'] == '?':
   df.drop(x , inplace=True)
df['workclass'].unique()
    dtype=object)
df['occupation'].unique()
    array(['Machine-op-inspct', 'Farming-fishing', 'Protective-serv',
           'Other-service', 'Prof-specialty', 'Craft-repair', 'Adm-clerical', 'Exec-managerial', 'Tech-support', 'Sales', 'Priv-house-serv',
```

▼ Data Separation

```
y = df['income']
x = df.drop(columns='income')
```

workclass fnlwgt marital-status education educational-num occupation relationship race gender capital age 0 25 Private 226802 11th Never-married Machine-op-inspct Own-child Black Male 1 38 Private 89814 HS-grad 9 Married-civ-spouse Farming-fishing Husband White Male 28 Local-gov 336951 Husband White 2 Assoc-acdm 12 Married-civ-spouse Protective-serv Male 3 44 Private 160323 Some-college 10 Married-civ-spouse Machine-op-inspct Husband Black Male 5 34 Private 198693 10th 6 Never-married Other-service Not-in-family White Male 48837 Private 257302 Wife White 27 Assoc-acdm 12 Married-civ-spouse Tech-support Female 154374 48838 40 Private HS-grad Married-civ-spouse Machine-op-inspct Husband White Male 48839 58 Private 151910 HS-grad 9 Widowed Adm-clerical Unmarried White Female 48840 22 Private 201490 HS-grad Never-married Adm-clerical Own-child White Male 48841 52 Self-emp-inc 287927 HS-grad Married-civ-spouse Exec-managerial Wife White Female

45222 rows × 14 columns

```
У
     0
               <=50K
     1
               <=50K
     2
                >50K
     3
                >50K
               <=50K
     48837
               <=50K
     48838
                >50K
     48839
               <=50K
     48840
               <=50K
     48841
                >50K
     Name: income, Length: 45222, dtype: object
```

Data Spliting

```
from sklearn.model_selection import train_test_split
x_train , x_test , y_train , y_test = train_test_split(x , y , test_size = 0.2 , random_state = 100)
x_train.shape
```

```
(36177, 14)

x_test.shape
(9045, 14)
```

▼ Data Encoding

```
df.dtypes
                       int64
     age
     workclass
                       object
     fnlwgt
                       int64
     education
                       obiect
     educational-num
                       int64
     marital-status
                       object
     occupation
                       object
     relationship
                       object
                       object
     gender
                       object
     capital-gain
                        int64
     capital-loss
                       int64
                       int64
     hours-per-week
    native-country
                       object
     income
                       object
     dtype: object
df.columns
    'income'l.
          dtype='object')
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
df['income'] = le.fit_transform(df['income'])
df['income']
     0
             0
     1
             0
             1
     3
     5
             0
     48837
             0
     48838
             1
     48839
             a
     48840
             0
     48841
             1
     Name: income, Length: 45222, dtype: int64
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
x_train['workclass'] = le.fit_transform(x_train['workclass'])
x_test['workclass'] = le.transform(x_test['workclass'])
x_train['education'] = le.fit_transform(x_train['education'])
x_test['education'] = le.transform(x_test['education'])
x_train['marital-status'] = le.fit_transform(x_train['marital-status'])
x_test['marital-status'] = le.transform(x_test['marital-status'])
x_train['occupation'] = le.fit_transform(x_train['occupation'])
x_test['occupation'] = le.transform(x_test['occupation'])
x_train['relationship'] = le.fit_transform(x_train['relationship'])
x_test['relationship'] = le.transform(x_test['relationship'])
x_train['race'] = le.fit_transform(x_train['race'])
x_test['race'] = le.transform(x_test['race'])
x_train['gender'] = le.fit_transform(x_train['gender'])
x_test['gender'] = le.transform(x_test['gender'])
x_train['native-country'] = le.fit_transform(x_train['native-country'])
x_test['native-country'] = le.transform(x_test['native-country'])
```

Model phase

▼ Logistic Regression model

▼ Build the model

```
from sklearn.linear_model import LogisticRegression
lr_model = LogisticRegression()
```

▼ Train the model

```
lr_model.fit(x_train , y_train)

v LogisticRegression
LogisticRegression()
```

Make predicitons

```
y_lr_model_pred = lr_model.predict(x_test)
```

▼ Evaluate the model

```
from sklearn.metrics import confusion_matrix
lr_results = confusion_matrix(y_test , y_lr_model_pred)
lr_results
     array([[6448, 367], [1595, 635]])
def accuracy_percentage_from_confusion_matrix(confusion_matrix):
 true_positive , false_positive = confusion_matrix[0]
  false_negative , true_negative = confusion_matrix[1]
  accuracy = (true_positive + true_negative) / (true_positive + true_negative + false_positive + false_negative)
  #convert the accuracy_score to a percentage
 lr_accuracy_result = accuracy * 100
  return lr_accuracy_result
confusion_matrix = ([6448, 367],
                    [1595, 635])
lr_accuracy_result = accuracy_percentage_from_confusion_matrix(confusion_matrix)
print(f'Accuracy: {lr_accuracy_result:.2f}%')
     Accuracy: 78.31%
```

Confusion Matrix Visualization

plt.title('Confusion Matrix')
plt.ylabel('Actual Label')
plt.xlabel('Predicted Label')
plt.show()

Decision Tree model

▼ Random Forest model

```
rf_accuracy_result = pd.DataFrame(["Random Forest" , result2]).transpose()
rf_accuracy_result.columns=['Model' , 'Accuracy_percentage']
rf_accuracy_result

Model Accuracy_percentage

0 Random Forest 85.936982
```

Conclusion

Logistic Regression:

Logistic Regression is a linear model that works well for binary classification tasks like predicting income categories (>50k or <=50k). -The model has **78.31%** accuracy percentage

Decision Tree:

Decision Tree is a non-linear model that can capture complex relationships in the data. -The model has **78.30**% accuracy percentage which is similar to the logistic regression model

Random Forest:

Random Forest is an ensemble of Decision Trees that can improve predictive performance and reduce overfitting. It tends to provide better predictive accuracy compared to a single Decision Tree. Random Forest can capture complex interactions between features and is a robust choice for predicting income categories. -The model has **85.68**% accuracy percentage which is better than both decision tree and logistic regression models