GRAFOS - 25/2

Ciência da Computação Universidade do Vale do Itajaí – UNIVALI

Profa Fernanda dos Santos Cunha fernanda.cunha@univali.br

1

Grafos: Unidade 6 – Coloração em Grafo

- O problema de coloração consiste em colorir, com um número mínimo de cores, os nós de um grafo de tal modo que dois nós adjacentes não tenham a mesma cor.
- Aplicações: atribuição de frequências de rádio, armazenamento de mercadorias, transporte de bens, problemas de horários, quantidade de placas em ligações elétricas,

- □ Dizemos que G é k-colorível se podemos atribuir k cores para colorir G.
- O número cromático de um grafo G é o menor número de cores que é necessário para colorir G. Seja c o número cromático de G, escrevemos crom(G)=c.

crom(G) = 4

3

Coloração em Grafo

Número Cromático dos Vértices = 3

No grafo os Vértices Adjacentes têm cor diferente.

O número mínimo de cores para colorir todos os vértices do Grafo é 3 (Número Cromático dos Vértices)

Número Cromático das Arestas = 4

No grafo as Arestas Adjacentes têm cor diferente.

O número mínimo de cores para colorir todas as arestas do Grafo é 4 (Número Cromático das Arestas)

As seguintes observações seguem diretamente da definição:

1) Um grafo que consiste somente de nós isolados é dito 1-cromático.

2

 N_4

 $crom(N_4) = 1$

3) Um grafo completo de n vértices é n-cromático

7

Coloração em Grafo

4) Um grafo que consiste de um ciclo com n > 2 vértices é 2-cromático, se n for par; e 3-cromático se n for impar.

Cor 1 – Nós A e C Cor 2 – Nós B e D

Cor 3 - Nó E

5) Qualquer grafo planar pode ser colorido com no máximo 4 cores.

Exemplo: Grafo completo de 4 nós (K₄).

9

Coloração em Grafo

6) Toda árvore com dois ou mais vértices é 2-cromático.

Problema das 4 Cores

- □ Teorema proposto em 1852 e finalmente resolvido por Appel&Haken, 1977.
- □ Decidir se um grafo planar é 3-colorível é um problema NP-completo.
- O número cromático de um grafo planar não é maior que 4.
- O problema das 4 cores surgiu historicamente em conexão com a coloração de mapas.

11

Teorema das 4 Cores

- Dado um mapa contendo diversos países, podemos questionar quantas cores são necessária para colorir todos os países de forma que os países que fazem fronteira entre si possuam cores diferentes.
- Provavelmente a forma mais familiar do teorema das 4 cores é a sentença que diz que todo mapa pode ser colorido com apenas 4 cores.

Teorema das 4 Cores

- □ Esclarecendo a sentença, deve-se explicar como usar grafos para representar mapas.
 - Cada região do mapa é representada por um vértice.
 - As arestas ligam os vértices que representam regiões que fazem fronteira entre si.

13

Algoritmo 1 – Algoritmo Guloso para coloração de vértices

Entrada: Vértices de G listados em ordem v1, v2, ..., vn. Conjunto de cores disponíveis $C = \{1, 2, ..., n\}$.

Saída: Uma coloração própria dos vértices de G.

1: **for** i := 1 **to** n **do**

2: Vértice vi recebe a menor cor disponível que ainda não foi atribuída a nenhum de seus vizinhos já coloridos.

3: end for

Obs.: sempre realiza a escolha que parece ser a melhor no momento, fazendo uma escolha ótima local, na esperança de que esta escolha leve até a solução ótima global.

Coloração em Grafo - Exemplo

Quatro alunos vão fazer as avaliações indicadas. No mesmo dia, o aluno não pode fazer mais do que uma avaliação.

	Álgebra	Inv. Op.	Estatística	Análise I	Análise II
José	1	1	1		
António	1			1	1
Maria		1			1
Joana			1	1	

No mínimo, quantos dias serão precisos para realizar todas as avaliações?

2 dias

3 dias

4 dias

15

Coloração em Grafo - Exemplo

	Álgebra	Inv. Op.	Estatística	Análise I	Análise II
José	1	1	1		
António	1			1	1
Maria		1			1
Joana			1	1	

1° Associar cada uma das avaliações a um vértice de um grafo

Coloração em Grafo — Exemplo

No mínimo, são necessárias 3 cores.

Número Cromático dos vértices = 3.

São precisos 3 dias para as avaliações.

Avaliações da mesma cor podem ocorrer no mesmo dia.

3° Colorir os vértices. Cores diferentes para vértices adjacentes

Álgebra

Estatística

Análise II

Número Cromático dos Vértices - Heurística

- □ Inicialização (1º vértice para colorir)
 - Escolher o vértice com maior grau (maior número de ligações)
- Após a inicialização
 - Escolher para colorir o vértice que, no momento, for adjacente do maior número de cores diferentes (grau de saturação).
 - Repetir esta escolha até todos os vértices ficarem coloridos.
- Nota:
 - Numerar as cores por ordem crescente (tabela de cores)
 - Escolhido um vértice para colorir, selecionar sempre a cor admissível com número mais baixo.

Exemplo

Inicialização (1º vértice para colorir)

Escolher o vértice com maior grau

Escolha arbitrária entre A, B, C e E (todos com grau 4). Escolhendo "A" atribui-se a cor nº 1.

Cor	1						
	Α	В	С	D	Е	F	Grau
Α		1	1	1	1		4
В	1		1		1	1	4
С	1	1		1		1	4
D	1		1		1		3
E	1	1		1		1	4
F		1	1		1		3

25

Exemplo

Após a inicialização

Escolher para colorir o vértice que, no momento, for adjacente do <u>maior</u> <u>número de cores diferentes</u> (grau de saturação).

Repetir esta escolha até todos os vértices ficarem coloridos.

Os vértices B, C, D, E são adjacentes da cor 1.

Escolhe-se arbitrariamente B para colorir. Percorrendo as cores por ordem crescente $(1, 2, 3 \dots)$ a primeira admissível é a cor 2.

Cor	1						
	Α	В	С	D	Е	F	Grau
Α		1	1	1	1		4
В	1		1		1	1	4
С	1	1		1		1	4
D	1		1		1		3
E	1	1		1		1	4
F		1	1		1		3

Exemplo

Após a inicialização

Escolher para colorir o vértice que, no momento, for adjacente do <u>maior</u> <u>número de cores diferentes</u> (grau de saturação).

Repetir esta escolha até todos os vértices ficarem coloridos.

Os vértices C e E são adjacentes de duas cores diferentes (cores 1 e 2).

Os vértices restantes têm menor grau de saturação - assim, se escolhe arbitrariamente "C" para colorir. Percorrendo as cores por ordem crescente (1, 2, 3 ...) a primeira admissível é a cor 3.

Cor	1		3				
	Α	В	С	D	Е	F	Grau
Α		1	1	1	1		4
В	1		1		1	1	4
С	1	1		1		1	4
D	1		1		1		3
E	1	1		1		1	4
F		1	1		1		3

27

Exemplo

Após a inicialização

Escolher para colorir o vértice que, no momento, for adjacente do <u>maior</u> <u>número de cores diferentes</u> (grau de saturação).

Repetir esta escolha até todos os vértices ficarem coloridos.

Os vértices D, E e F são adjacentes de duas cores diferentes.

Escolhe-se arbitrariamente "D" para colorir. Percorrendo as cores por ordem crescente (1, 2, 3 ...) a primeira admissível é a cor 2 (notar que "D" é adjacente das cores 1 e 3).

Cor	1		3	2			
	Α	В	С	D	Е	F	Grau
Α		1	1	1	1		4
В	1		1		1	1	4
С	1	1		1		1	4
D	1		1		1		3
E	1	1		1		1	4
F		1	1		1		3

Exemplo

Após a inicialização

Escolher para colorir o vértice que, no momento, for adjacente do <u>maior</u> <u>número de cores diferentes</u> (grau de saturação).

Repetir esta escolha até todos os vértices ficarem coloridos.

Os vértices E e F são adjacentes de duas cores diferentes.

Escolhe-se arbitrariamente "E" para colorir. Percorrendo as cores por ordem crescente $(1,2,3\dots)$ a primeira admissível é a cor 3 (notar que "E" é adjacente das cores 1 e 2)

Cor	1			2			
	Α	В	С	D	E	F	Grau
Α		1	1	1	1		4
В	1		1		1	1	4
С	1	1		1		1	4
D	1		1		1		3
E	1	1		1		1	4
F		1	1		1		3

29

Exemplo

Após a inicialização

Escolher para colorir o vértice que, no momento, for adjacente do <u>maior</u> <u>número de cores diferentes</u> (grau de saturação).

Repetir esta escolha até todos os vértices ficarem coloridos.

Para colorir o vértice "F", percorrendo as cores por ordem crescente (1, 2, 3 ...), a primeira admissível é a cor 1 (notar que "F" é adjacente das cores 2 e 3).

Cor	1		3	2	3	1	
	Α	В	С	D	E	F	Grau
Α		1	1	1	1		4
В	1		1		1	1	4
С	1	1		1		1	4
D	1		1		1		3
E	1	1		1		1	4
F		1	1		1		3

O número cromático dos vértices é 3.

Algoritmo 2 – Algoritmo de Welsh-Powell

Entrada: Grafo G com n vértices v1, v2, ..., vn.

Saída: Uma coloração própria dos vértices de G.

- 1: Calcule o grau de cada vértice de G.
- 2: Liste os vértices em ordem decrescente de grau.
- 3: Associe a cor 1 ao primeiro vértices da lista e ao próximo vértice da lista não adjacente a ele, e sucessivamente para cada nó da lista não adjacente a um nó com a cor 1.
- 4: Associe a cor 2 ao próximo vértice da lista ainda sem cor. Sucessivamente associe a cor 2 para o próximo vértice da lista não adjacente aos vértices com cor 2 e que ainda não está colorido.
- 5: Continue esse processo até que todos os vértices sejam coloridos.

Obs.: muitas heurísticas para coloração de vértices se baseiam na intuição de que um vértice de maior grau será mais difícil de colorir mais tarde do que um de menor grau.

Exercício

Uma empresa tem agendadas para amanhã reuniões com os clientes A, B, ..., N, cfe. indicado no quadro.

Estes períodos de 1 hora de reunião correspondem ao intervalo de tempo das 9 horas às 13 horas e das 15 às 19 horas (considere período 1 das 9 às 10h, ... e período 8 das 18 às 19h).

Quantas salas serão necessárias para efetuar o conjunto de reuniões com os clientes?

Clientes	Período marcado
Α	7
В	1
С	4,5
D	7,8
Е	4, 5, 6
F	2, 3
G	1, 2
Н	6, 7
- 1	7, 8
J	4, 5
K	2, 3
L	4, 5, 6
M	1, 2
N	4, 5, 6, 7

33

Exercício

Uma empresa tem agendadas para amanhã reuniões com os clientes A, B, ..., N, cfe. indicado no quadro.

Estes períodos de 1 hora de reunião correspondem ao intervalo de tempo das 9 horas às 13 horas e das 15 às 19 horas (considere período 1 das 9 às 10h, ... e período 8 das 18 às 19h).

Quantas salas serão necessárias para efetuar o conjunto de reuniões com os clientes?

Α	7
В	1
С	4,5
D	7,8
Е	4, 5, 6
F	2, 3
G	1, 2
Н	6, 7
- 1	7, 8
J	4, 5
K	2, 3
L	4, 5, 6
М	1, 2
N	4, 5, 6, 7

Clientes Período marcado

O que representar com os Vértices?

Clientes

Períodos

Salas

Exercício

- Se há 3 clientes com reunião marcada para o mesmo período serão necessárias 3 salas para reuniões separadas.
- Estas 3 salas corresponderão a 3 vértices do grafo que serão coloridos com cores diferentes...
- Assim a matriz necessária para cálculo é das ligações entre CLIENTES associados a cada um dos 8 períodos de reunião.

Horário da prova final. Existem 7 disciplinas, e a existência de alunos em comum é dada pela tabela: onde há * na célula ij, existe um aluno matriculado nas disciplinas i e j.

A matriz é simétrica: a parte abaixo da diagonal principal não foi preenchida

Horário Disciplina
1 1 e 6
2 7 e 4
3 3 e 5

39

Número Cromático de Arestas - Exemplo

Seis alunos são finalistas do torneio de bilhar. Amanhã realizam-se os sequintes iogos:

zum se o <u>s seguimes jogos:</u>							
		José	Antônio	Maria	Joana	João	Sandra
	José		1	1			1
	Antônio	1			1	1	
	Maria	1				1	
	Joana		1				1
	João		1	1			1
	Sandra	1			1	1	

É necessário organizar os pares que <u>podem jogar à mesma</u> <u>hora</u> e <u>determinar quantos bilhares</u> são necessários.

Número Cromático de Arestas – Exemplo

Joana

Antônio

Sandra

Furekal! Está feito!

Vou pintar com cores diferentes as arestas com vértice comum!

José

Grafo dos jogos a realizar

(aresta = par com jogo para realizar)

