Friday, February 16, 2024 11:39 AM

$$A = \{ a^{2} : n > 0 \}$$

* Demon has picked K.

* Demon Ras
$$f$$
 K

* $X = \xi$, $Y = a^2$, $Z = \xi$

{ $|y| = 2^K > K$

* Demon chooses u, v, w where uvw=y, v≠E.

goal: xuviwz = uviω ¢A] * pick i?

$$y = a a a - 1 - a a - 1 \dots a$$

$$v \neq \epsilon \qquad \omega$$

*what if we pick 2=0 ?

Does not work, since the demon can pick u, v, w such that

v = a

y = aaaa -> uvw = aa e A

* what if we pick i=2?

* if u=2, w=2, V=4

then $uv^2\omega = v^2 = y^2 = a^2 \in A$

 $y = aa \rightarrow \mu v^2 \omega = aaaa \in A$

2AC3_W24 Page 1

y - w -

* Note that for any other choice of u, v, w, we are fine.

if $uw \neq 2 \stackrel{?}{\Longrightarrow} uv^2w \notin A$ Assume $v = a^{\ell}$, $\ell < 2^{k}$ then $uv^2w = a^{2^{k}+\ell}$ but $2^{k}+\ell$ cannot

be a power of two:

 2^{K} $2^{K} + 2 < 2^{K} + 2^{K} = 2^{K+1}$

*what if we pick i=3?

 $\neq uv^3\omega$

doesn't work for $w = \xi$, $N = V = \alpha^2$ $uv^3 w = \alpha^2 x^{-1} (2^{K-1})x^3$ $uv^3 w = \alpha^2 x^{-1} (2^{K-1})x^3$ $uv^3 w = \alpha^2 x^{-1} (2^{K-1})x^3$ $uv^3 w = \alpha^2 x^{-1} (2^{K-1})x^3$

However, at least when $u = w = \varepsilon$ and v = y then z = 3 works! $u = v^3 \omega = v^3 = a$

2 K+1

2 X X X X X

So 3.2 X is not a power of 2

So $uv^3w \notin A$.

Our winning strategy against

the demon!

(pick i=3 when $u=w=\epsilon$ pick i=2 otherwise,