

POLITECNICO DI MILANO DIPARTIMENTO DI MECCANICA

20158 MILANO - Via La Masa, 34

ESERCIZIO 1

Sia dato il circuito con ingressi stazionari riportato in figura. Si determino i coefficienti di auto e mutua induttanza, l'energia totale accumulata nel campo magnetico e la forza f specificando se si tratta di una forza attrattiva o repulsiva rispetto all'armatura in ferro superiore.

.

ESERCIZIO 2

Ad un trasformatore monofase di potenza nominale $A_n = 40$ kVA e rapporto di trasformazione $K = V_{1n} / V_{20} = 45$, $f_n = 50$ Hz a è connesso un carico che assorbe la corrente nominale $I_2 = 154$ A alla tensione $V_2 = 60$ V, a cos $\phi_2 = 0.8$. La prova di corto circuito e la prova a vuoto hanno fornito i seguenti risultati:

Prova di corto circuito: $v_{cc\%} = 5\%$, $\cos \varphi_{cc} = 0.45$

Prova a vuoto: $P_{0\%} = 0.4\%$, $i_{0\%} = 2\%$

Si determinino:

1) Tensione di alimentazione V_1 e la corrente I_1 del trasformatore e il $\cos \phi 1$

[La potenza attiva e reattiva assorbite dal carico sono pari a $P=V_2*I_2*\cos\phi_2=7.392$ kW e $Q=V_2*I_2*\sin\phi_2=5.544$ kVar. Il contributo dovuto alla resistenza e reattanza serie è quello che si trova dalla prova di corto circuito visto che $I_2=I_{2n}$ dal testo. La tensione di corto circuito $Vc2=(v_{cc}*/100)*V_{2n}=12.987V$, dove $V_{2n}=An/I_{2n}=259.74$ V. La potenza di corto circuito è pari a $Pcc=Vc2*I_{2n}*\cos\phi_{cc}=900$ W e $Qcc=Pcc*tan\phi_{cc}=1.786$ kVar. Chiamando B la sezione che comprende il carico e l'impedenza serie si ottiene PB=P2+Pcc=e QB=Q2+Qcc=IB=I2. La tensione nella sezione B riportata al primario del trasformatore è data da $VB=(\sqrt{((PB)^2+(QB)^2))}/I_{1n}=3.234$ kV, dove $I_{1n}=I_{2n}/K=3.422$ A. Per tenere conto del contributo dovuto al ramo derivato è necessario calcolare Ro e Xo dai dati della prova a vuoto. La potenza Po è data da $Po=(P_{o}*/100)*An=160$ W, $Io=(i_{o}*/100)*I_{1n}=0.068$ A, $\cos\phi_0=Po/(V_{1n}*Io)=0.2$, dove $V_{1n}=An/I_{1n}=11.69$ kV. Da cui si ricava Qo=Po*tanfo=783.83 Var. Si ottiene quindi $Ro=V_{1n}^2/Po=853.9$ k Ω e $Xo=V_{1n}^2/Qo=174.3$ k Ω . Chiamando A la sezione che comprende il ramo derivato si ottiene $PA=PB+VB^2/Ro$ e $QA=QB+VB^2/Xo$, da cui so ottiene VI=VB=3.234 kV, $II=(\sqrt{((PA)^2+(QA)^2)})/VI=3.347A$ e $\cos\phi_1=PA/(V1*II)=0747$]