PRELIMINARY DEFINITIONS

Definition 1. A monad over a category $\mathcal C$ is an endofunctor $P:\mathcal C\to\mathcal C$ equipped with

- a natural transformation $\eta_A: A \to PA$ (unit)
- a natural transformation $\mu_A: PPA \to PA$ (multiplication)
- Diagram

Definition 2. The *Kleisli category* of a monad (P, μ, η) over a category C is a category C_P where

- $Obj(\mathcal{C}) = Obj(\mathcal{C}_{\mathcal{P}})$
- $Hom_{\mathcal{C}_P}(A, B) = Hom_{\mathcal{C}}(A, PB)$
- $1_A = \eta_A$
- $g \circ f = \mu_C \circ Tg \circ f : A \to PC$

Definition 3. A monoidal category (mc) is a category C equipped with

- a bifunctor $\otimes : \mathcal{C} \times \mathcal{C} \to \mathcal{C}$ (tensor product)
- an object I (unit object)
- a natural isomorphism $\alpha_{A,B,C}: (A \otimes B) \otimes C \cong A \otimes (B \otimes C)$ (associator)
- a natural isomorphism $\lambda_A : I \otimes A \cong A \ (left \ unitor)$
- a natural isomorphism $\rho_A : A \otimes I \cong A \ (right \ unitor)$
- Diagram

Definition 4. A symmetric monoidal category (smc) is a monoidal category (C, \otimes, I) equipped with

- a natural isomorphism $\sigma_{A,B}: A \otimes B \to B \otimes A \ (swap)$
- Diagram

Definition 5. A strong monad over a monoidal category $(\mathcal{C}, \otimes, I)$ is a monad (P, μ, η) equipped with

- a natural transformation $\tau_{A,B}: A \otimes P(B) \to P(A \otimes B)$ (strength)
- Diagram

Definition 6. A cartesian monoidal category (**cmc**) is a monoidal category (\mathcal{C}, \otimes, I) in which \otimes is the categorical product and I is the terminal object in \mathcal{C} . Every object A in \mathcal{C} is equipped with

- a natural transformation $\Delta_A: A \to A \otimes A \ (duplication)$
- a natural transformation $\delta_A: A \to I \ (deletion)$
- Diagram

that determine a unique comonoid on A.

GENERAL COMPREHENSIONS

Definition 7. A context is a finite list $\overrightarrow{x} = x_1 x_2 ... x_n$ of distinct variables, where n = 0 is the empty context []. If \overrightarrow{x} is a context and $y \neq x_i$ for all $i \leq n$, then $\overrightarrow{x}y$ denotes the context obtained by appending y to \overrightarrow{x} . Similarly $\overrightarrow{x}y$ denotes the context obtained by concatenating \overrightarrow{x} and \overrightarrow{y} ($x_i \neq y_j$ for all x_i in \overrightarrow{x} and y_j in \overrightarrow{y}). The type of a context \overrightarrow{x} is the string of the types of the variables appearing in it.

1

In the following definitions, C is assumed to be a symmetric cartesian monoidal category (scmc) $(C, \times, 1, \sigma)$ with a strong monad (P, μ, η, τ) . We use the equivalence $MA = M(A_1 \times A_2 \times ... \times A_n)$ to denote contexts and $[t \mid x_1 \leftarrow u_1, x_2 \leftarrow u_2, ..., x_n \leftarrow u_n] = [t \mid u_1, u_2, ..., u_n]$ to denote comprehensions.

Definition 8. Let $[\![\overrightarrow{x}.u]\!]_M: MA \to P(MB)$ be a morphism in \mathcal{C} . The *context sensitive* morphism $[\![\overrightarrow{x}.\overline{u}]\!]_M$ of $[\![\overrightarrow{x}.u]\!]_M$ is the morphism

$$MA \xrightarrow{\Delta_{MA}} MA \times MA \xrightarrow{1_{MA} \times \llbracket \overrightarrow{x} \cdot u \rrbracket} MA \times P(MB) \xrightarrow{\tau_{MA,P(MB)}} P(MA \times MB)$$

We can think of a context sensitive morphism as information preserving; the source of the morphism is present in the target.

Definition 9. Let M be a Σ -structure in \mathcal{C} . If $\overrightarrow{x}.t$ is a term-in-context over Σ and t is of type PD, then the morphism

$$[\![\overrightarrow{x}.t]\!]_M:MA\to P(MD)$$

is defined inductively by the following clauses:

(1) If t = [u] is of type PD and u is of type D

$$MA \xrightarrow{\llbracket \overrightarrow{x}.u \rrbracket_M} MD \xrightarrow{\eta_D} P(MD)$$

(2) If $t = [u \mid v]$ is of type PD, u is of type D, and v is of type PC

$$MA \xrightarrow{[\![\overrightarrow{x}.\overrightarrow{v}]\!]_M} P(MA \times MC) \xrightarrow{P([\![\overrightarrow{x}y.u]\!]_M)} P(MD)$$

(3) If $t = [u \mid v, w]$ is of type PD, u is of type D, v is of type PB, and w is of type PC

$$MA \xrightarrow{\llbracket\overrightarrow{x}.\overrightarrow{v}\rrbracket} P(MA \times MB) \xrightarrow{P(\llbracket\overrightarrow{x}y.\overrightarrow{w}\rrbracket_M)} PP(MA \times MB \times MC) \xrightarrow{P(P(\llbracket\overrightarrow{x}yz.u\rrbracket_M))} PP(MA \times MB \times MC \times MD)$$

$$\xrightarrow{\mu_{MA \times MB \times MC \times MD}} P(MA \times MB \times MC \times MD$$

Note that (2) and (3) together are sufficient to define comprehensions with non-negative finite qualifiers. The derivation of the composition in (3) is given below.

$$\begin{split} [\![\overrightarrow{x}.t]\!]_M &= [\![\overrightarrow{x}.[u\mid v,w]]\!]_M \\ &= \mu_D \circ [\![[u\mid w]\mid v]]\!]_M \\ &= \mu_D \circ P([\![\overrightarrow{x}y.[u\mid w]]\!]_M) \circ [\![\overrightarrow{x}.\overline{v}]\!] \\ &= \mu_D \circ P(P([\![\overrightarrow{x}yz.u]\!]_M) \circ [\![\overrightarrow{x}y.\overline{w}]\!]_M) \circ [\![\overrightarrow{x}.\overline{v}]\!] \\ &= \mu_D \circ P(P([\![\overrightarrow{x}yz.u]\!]_M)) \circ P([\![\overrightarrow{x}y.\overline{w}]\!]_M) \circ [\![\overrightarrow{x}.\overline{v}]\!] \end{split}$$

Definition 10. Let $[\![\overrightarrow{x}.u]\!]_M: MA \to P(MB)$ and $[\![\overrightarrow{y}.v]\!]_M: MB \to P(MC)$ be morphisms in \mathcal{C} . The Kleisli composition $[\![\overrightarrow{x}.u]\!]_M \leadsto [\![\overrightarrow{y}.v]\!]_M$ of $[\![\overrightarrow{x}.u]\!]_M$ and $[\![\overrightarrow{y}.v]\!]_M$ is the morphism

$$MA \xrightarrow{[\![\overrightarrow{x}.u]\!]_M} P(MB) \xrightarrow{P([\![\overrightarrow{y}.v]\!]_M)} PP(MC) \xrightarrow{\mu_{MC}} P(MC)$$