HYUNWOO OH

hyunwooh@umd.edu \(\dig (240) \) 825-6201 \(\dig \) hyunwooh5.github.io \(\dig \) Woodbridge, VA

RESEARCH INTERESTS

Numerical problems in Monte Carlo calculations; Machine learning applications in physics; Quantum simulation of field theories

EDUCATION

University of Maryland

College Park, MD

Ph.D. Candidate in Physics (Advisors: Paulo Bedaque, Thomas Cohen)

Sep. 2020 - Present

Yonsei University

Seoul, Korea

B.S. in Physics, B.S. in Mathematics

2013 - 2019

Graduated with Highest Honors, Valedictorian

RESEARCH EXPERIENCE

Nuclear Theory Group

College Park, MD

Research Assistant

Sep. 2020 – Present

- Working on numerical issues of Monte Carlo calculations using various methods, including machine learning
 - Solved infinite variance problem by adding extra variables in Monte Carlo sampling and reweighting
 - Studying physical systems that is limited to signal-to-noise problem using control variates method combined with machine learning
- Finding efficient ways to prepare eigenstates on quantum computers
 - Removed exponential fluctuations of Rodeo projection algorithm and found more than twice faster projection
 - Made a state preparation method with quadratic speedup over adiabatic preparation and the quantum Zeno effect
 - Studying various aspects of errors in adiabatic state preparation for applying it to simulation of field theories

PAPERS

- [10] Hyunwoo Oh, Training neural control variates using correlated configurations, arXiv:2505.07719 [hep-lat]
- [9] Thomas D. Cohen, Andrew Li, Hyunwoo Oh, and Maneesha Sushama Pradeep, On the utility of the switching theorem for adiabatic state preparation, arXiv:2502.06534 [quant-ph]
- [8] Thomas D. Cohen and Hyunwoo Oh, Asymptotic errors in adiabatic evolution, Phys. Rev. A 111, 042612 (2025), arXiv:2501.10641 [quant-ph]
- [7] Thomas D. Cohen, Hyunwoo Oh, and Veronica Wang, Numerical study of computational cost of maintaining adiabaticity for long paths, arXiv:2412.08626 [quant-ph]
- [6] Thomas D. Cohen and Hyunwoo Oh, Corrections to adiabatic behavior for long paths, Phys. Rev. A 110, 062601 (2024), arXiv:2405.10294 [quant-ph]
- [5] Paulo F. Bedaque and Hyunwoo Oh, Leveraging neural control variates for enhanced precision in lattice field theory, Phys. Rev. D 109, 094519 (2024), arXiv:2312.08228 [hep-lat]
- [4] Thomas D. Cohen and Hyunwoo Oh, Efficient vacuum-state preparation for quantum simulation of strongly interacting local quantum field theories, Phys. Rev. A 109, L020402 (2024), arXiv:2310.19229 [hep-lat]
- [3] Thomas D. Cohen and Hyunwoo Oh, Optimizing the rodeo projection algorithm, Phys. Rev. A 108, 032422 (2023), arXiv:2305.19952 [quant-ph]

- [2] Andrei Alexandru, Paulo F. Bedaque, Andrea Carosso, and Hyunwoo Oh, Infinite variance problem in fermion models, Phys. Rev. D **107**, 094502 (2023), arXiv:2211.06419 [hep-lat]
- [1] Scott Lawrence, Hyunwoo Oh, and Yukari Yamauchi, Lattice scalar field theory at complex coupling, Phys. Rev. D **106**, 114503 (2022), arXiv:2205.12303 [hep-lat]

PROCEEDINGS

- [2] Hyunwoo Oh, Control variates with neural networks, PoS LATTICE2024 051, arXiv:2501.14614 [hep-lat]
- [1] Hyunwoo Oh, Andrei Alexandru, Paulo F. Bedaque, and Andrea Carosso, A solution for infinite variance problem of fermionic observables, PoS LATTICE2023 021, arXiv:2311.16074 [hep-lat]

TALKS

- [7] Neural control variates for variance reduction (Poster), USQCD All-Hands Meeting 2025, College Park, MD, March 2025
- [6] Control variates with neural networks, Lattice 2024 at Liverpool, UK, July 2024
- [5] State preparation of local quantum field theories using projection, HEP-QIS Forum at Fermilab, Batavia, IL, October 2023
- [4] State preparation of local quantum field theories using quantum Zeno effect, Nuclear Theory Seminar at UMD, College Park, MD, October 2023
- [3] A solution for infinite variance problem of fermionic observables, Lattice 2023 at Fermilab, Batavia, IL, August 2023
- [2] Infinite variance problem in lattice fermions, Nuclear Theory Seminar at UMD, College Park, MD, November 2022
- [1] Lattice scalar field theory at complex coupling, Fall 2022 Meeting of the APS Division of Nuclear Physics, New Orleans, LA, October 2022

HONORS AND FELLOWSHIPS

Dean's Fellowship, University of Maryland	2020 - 2022
Kwanjeong Domestic Scholarship, Kwanjeong Educational Foundation	2015-2019
National Science & Technology Scholarship, Korea Student Aid Foundation	Fall 2014
Truth Scholarship (Merit based), Yonsei University	Spring 2014, Fall 2013
Dean's List, Yonsei University	2013-2016,2018

WORK EXPERIENCE

Samsung Electronics Process Integration Engineer

• Responsible for designing DRAM process integration

• Participated in a project on developing a next-generation DRAM product

Military Service in Republic of Korea Air Force

Staff Sergeant

Seongnam, Korea Sep. 2016 – Sep. 2018

Mar. 2019 - Mar. 2020

Hwaseong, Korea

- Responsible for driving military vehicles
- Worked as a counselor and a representative of mandatory military service soldiers

MENTEES

- Veronica Wang, Summer 2024
- Andrew Li, Summer 2024

\mathbf{SKILLS}

Programming Python, Mathematica, C++

Software & Tools JAX, Numpy, Scipy, Pandas, scikit-learn, Git, Linux

Last updated: September 19, 2025