CAR PRICE PREDICTION

```
import pandas as pd
import numpy as np
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows',None)
```

Loading data

```
In [ ]: data = pd.read_csv('/kaggle/input/car-data/CarPrice_Assignment.csv')
In [ ]: data.head()
```

Out[]:		car_ID	symboling	CarName	fueltype	aspiration	doornumber	carbody	drivewheel	enginel
	0	1	3	alfa-romero giulia	gas	std	two	convertible	rwd	
	1	2	3	alfa-romero stelvio	gas	std	two	convertible	rwd	
	2	3	1	alfa-romero Quadrifoglio	gas	std	two	hatchback	rwd	
	3	4	2	audi 100 ls	gas	std	four	sedan	fwd	
	4	5	2	audi 100ls	gas	std	four	sedan	4wd	

Analyzing

```
data.shape
In [ ]:
         (205, 26)
Out[ ]:
         data.drop(columns=['car_ID', 'CarName'], inplace=True)
In [ ]:
In [ ]:
        def summary(df):
             sum = pd.DataFrame(df.dtypes, columns=['dtypes'])
             sum['missing#'] = df.isna().sum().values*100
             sum['missing%'] = (df.isna().sum().values*100)/len(df)
             sum['uniques'] = df.nunique().values
             sum['count'] = df.count().values
             #sum['skew'] = df.skew().values
             desc = pd.DataFrame(df.describe().T)
             sum['min'] = desc['min']
             sum['max'] = desc['max']
             sum['mean'] = desc['mean']
             return sum
```

summary(data).style.background_gradient(cmap='twilight_shifted_r')

Out[]:		dtypes	missing#	missing%	uniques	count	min	max	me
	symboling	int64	0	0.000000	6	205	-2.000000	3.000000	0.8341
	fueltype	object	0	0.000000	2	205	nan	nan	r
	aspiration	object	0	0.000000	2	205	nan	nan	r
	doomumber	object	0	0.000000	2	205	nan	nan	r
	carbody	object	0	0.000000	5	205	nan	nan	r
	drivewheel	object	0	0.000000	3	205	nan	nan	r
	enginelocation	object	0	0.000000	2	205	nan	nan	r
	wheelbase	float64	0	0.000000	53	205	86.600000	120.900000	98.7565
	carlength	float64	0	0.000000	75	205	141.100000	208.100000	174.0492
	carwidth	float64	0	0.000000	44	205	60.300000	72.300000	65.9078
	carheight	float64	0	0.000000	49	205	47.800000	59.800000	53.7248
	curbweight	int64	0	0.000000	171	205	1488.000000	4066.000000	2555.5658
	enginetype	object	0	0.000000	7	205	nan	nan	r
	cylindemumber	object	0	0.000000	7	205	nan	nan	r
	enginesize	int64	0	0.000000	44	205	61.000000	326.000000	126.9073
	fuelsystem	object	0	0.000000	8	205	nan	nan	r
	boreratio	float64	0	0.000000	38	205	2.540000	3.940000	3.3297
	stroke	float64	0	0.000000	37	205	2.070000	4.170000	3.2554
	compressionratio	float64	0	0.000000	32	205	7.000000	23.000000	10.1425
	horsepower	int64	0	0.000000	59	205	48.000000	288.000000	104.1170
	peakrpm	int64	0	0.000000	23	205	4150.000000	6600.000000	5125.1219
	citympg	int64	0	0.000000	29	205	13.000000	49.000000	25.2195
	highwaympg	int64	0	0.000000	30	205	16.000000	54.000000	30.7512
	price	float64	0	0.000000	189	205	5118.000000	45400.000000	13276.7105
)

In []: data[['symboling', 'wheelbase', 'carlength', 'carwidth', 'carheight', 'curbweight', 'e

```
symboling
                             0.211072
Out[ ]:
        wheelbase
                             1.050214
        carlength
                             0.155954
        carwidth
                             0.904003
         carheight
                             0.063123
        curbweight
                             0.681398
         enginesize
                             1.947655
        boreratio
                             0.020156
        stroke
                            -0.689705
         compressionratio
                             2.610862
        horsepower
                             1.405310
        peakrpm
                             0.075159
        citympg
                             0.663704
        highwaympg
                             0.539997
        dtype: float64
```

- We have 0 null values
- We have 9 categorical columns and rest of them are integers
- Compressionratio has outliers

Visualising data

```
data.hist(figsize=(24, 20))
        array([[<Axes: title={'center': 'symboling'}>,
Out[ ]:
                <Axes: title={'center': 'wheelbase'}>,
                <Axes: title={'center': 'carlength'}>,
                <Axes: title={'center': 'carwidth'}>],
               [<Axes: title={'center': 'carheight'}>,
                <Axes: title={'center': 'curbweight'}>,
                <Axes: title={'center': 'enginesize'}>,
                <Axes: title={'center': 'boreratio'}>],
                [<Axes: title={'center': 'stroke'}>,
                <Axes: title={'center': 'compressionratio'}>,
                <Axes: title={'center': 'horsepower'}>,
                <Axes: title={'center': 'peakrpm'}>],
               [<Axes: title={'center': 'citympg'}>,
                <Axes: title={'center': 'highwaympg'}>,
                <Axes: title={'center': 'price'}>, <Axes: >]], dtype=object)
```


Visualizing categorical columns

```
In [ ]: import seaborn as sns
    sns.countplot(x=data['fueltype'])
Out[ ]: <Axes: xlabel='fueltype', ylabel='count'>
```



```
In [ ]: sns.countplot(x=data['doornumber'])
Out[ ]: <Axes: xlabel='doornumber', ylabel='count'>
```



```
In [ ]: sns.countplot(x=data['carbody'])
Out[ ]: <Axes: xlabel='carbody', ylabel='count'>
```


Out[]: <Axes: xlabel='drivewheel', ylabel='count'>


```
In [ ]: sns.countplot(x=data['enginelocation'])
Out[ ]: <Axes: xlabel='enginelocation', ylabel='count'>
```



```
In [ ]: sns.countplot(x=data['enginetype'])
Out[ ]: <Axes: xlabel='enginetype', ylabel='count'>
```


In []: sns.countplot(x=data['cylindernumber'])

Out[]: <Axes: xlabel='cylindernumber', ylabel='count'>


```
In [ ]: sns.countplot(x=data['fuelsystem'])
```

Out[]: <Axes: xlabel='fuelsystem', ylabel='count'>

Removing outliers

In []: low_leadtime,high_leadtime=remove_outlier(data['compressionratio'])
 data['compressionratio']=np.where(data['compressionratio']>high_leadtime,high_leadtime,data['compressionratio']<low_leadtime,low_leadtime,catalline</pre>

Encoding categorical columns

```
In [ ]: lst=[]
for i in data.columns:
    if data[i].dtype=='object':
        lst.append(i)
lst
```

```
['fueltype',
Out[ ]:
          'aspiration',
          'doornumber',
          'carbody',
          'drivewheel',
          'enginelocation',
          'enginetype',
          'cylindernumber',
          'fuelsystem']
In [ ]: | from sklearn.preprocessing import OneHotEncoder
         ohe=OneHotEncoder()
         data=pd.get_dummies(data,columns=['fueltype',
          'aspiration',
          'doornumber',
          'carbody',
          'drivewheel',
          'enginelocation',
          'enginetype',
          'cylindernumber',
          'fuelsystem'])
In [ ]:
         data.shape
         (205, 53)
Out[ ]:
```

Applying models

```
In [ ]: from sklearn.model_selection import train_test_split
        from sklearn.preprocessing import StandardScaler
        from sklearn.linear_model import LinearRegression
        from sklearn.metrics import mean squared error,r2 score
        from sklearn.ensemble import GradientBoostingRegressor, RandomForestRegressor
        from sklearn.linear model import Lasso, Ridge
        import xgboost as xgb
In [ ]: y = data['price']
        x = data.drop(columns=['price'])
In [ ]: x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=
In [ ]: lr = LinearRegression()
        gb = GradientBoostingRegressor()
        rf = RandomForestRegressor()
        ls = Lasso()
        rd = Ridge()
In [ ]: lr.fit(x_train, y_train)
        gb.fit(x train, y train)
        rf.fit(x_train, y_train)
        ls.fit(x_train, y_train)
        rd.fit(x_train, y_train)
```

```
Out[]: ▼ Ridge
Ridge()
```

```
In [ ]:
        plrtr = lr.predict(x train)
        plrte = lr.predict(x_test)
         pgbtr = gb.predict(x_train)
         pgbte = gb.predict(x_test)
         prftr = rf.predict(x_train)
         prfte = rf.predict(x_test)
         plstr = ls.predict(x_train)
         plste = ls.predict(x_test)
         prdtr = rd.predict(x train)
         prdte = rd.predict(x test)
In [ ]: print(r2_score(y_train, plrtr))
        print(r2_score(y_test, plrte))
        0.9387450937876193
        0.8839592012175543
        print(r2_score(y_train, pgbtr))
In [ ]:
        print(r2 score(y test, pgbte))
        0.9940039372167675
        0.9511714314281142
In [ ]: print(r2_score(y_train, prftr))
        print(r2_score(y_test, prfte))
        0.9875171514009213
        0.9554492021406589
In [ ]: print(r2_score(y_train, plstr))
        print(r2_score(y_test, plste))
        0.9386844106484762
        0.8893497025186052
In [ ]:
        print(r2_score(y_train, prdtr))
        print(r2_score(y_test, prdte))
        0.9326868128089326
        0.9180301614576438
In [ ]: models = pd.DataFrame(
                 'Model' : ['LR', 'LR', 'GB', 'GB', 'RF', 'RF', 'LS', 'LS', 'RD', 'RD'],
                 'Group' : [
                     'train',
                     'test',
                     'train',
                     'test',
                     'train',
                     'test',
                     'train',
```

```
'test',
        'train',
        'test',],
    'Accuracy2' : [
        r2_score(y_test, plrte)*100,
        r2_score(y_test, plrte)*100,
        r2_score(y_test, pgbte)*100,
        r2_score(y_test, pgbte)*100,
        r2_score(y_test, prfte)*100,
        r2_score(y_test, prfte)*100,
        r2_score(y_test, plste)*100,
        r2_score(y_test, plste)*100,
        r2_score(y_test, prdte)*100,
        r2_score(y_test, prdte)*100,
    ]
}
```

In []: models

Out[]: Model Group Accuracy2

```
0
       LR
             train
                    88.395920
1
       LR
              test
                    88.395920
2
      GB
             train
                    95.117143
3
      GB
              test
                   95.117143
4
       RF
                    95.544920
             train
5
       RF
                   95.544920
              test
6
       LS
             train
                   88.934970
7
       LS
                   88.934970
              test
8
      RD
             train
                   91.803016
9
      RD
              test 91.803016
```

```
import matplotlib.pyplot as plt
sns.barplot(
    x='Model',
    y='Accuracy2',
    hue='Group',
    data= models
)
plt.xlabel('Model')
plt.ylabel('Accuracy')
plt.show()
```

