Title

D. Zack Garza

August 19, 2019

Contents

0.1	Exercises	1
0.2	Qual Problems	2

0.1 Exercises

Problem 1 (Hungerford 1.6.3).

If $\sigma = (i_1 i_2 \cdots i_r) \in S_n$ and $\tau \in S_n$, then show that $\tau \sigma \tau^{-1} = (\tau(i_1)\tau(i_2)\cdots\tau(i_r))$.

Solution 1. Let

$$\sigma = (s_1 s_2 \cdots s_r) \in S_n$$

in cycle notation, and $\tau \in S_n$ be arbitrary. Define $t_j = \tau(s_j)$; we would then like to show that

$$(t_1, t_2, \dots t_r)$$
 is given by $(\tau(s_1)\tau(s_2)\dots \tau(s_r))$.

Problem 2 (Hungerford 1.6.4).

Show that $S_n \cong \langle (12), (123 \cdots n) \rangle$ and also that $S_n \cong \langle (12), (23 \cdots n) \rangle$

Problem 3 (Hungerford 2.2.1).

Let G be a finite abelian group that is not cyclic. Show that G contains a subgroup isomorphic to $\mathbb{Z}_p \oplus \mathbb{Z}_p$ for some prime p.

Problem 4 (Hungerford 2.2.12.b).

Determine all abelian groups of order n for $n \leq 20$.

Problem 5 (Hungerford 2.4.1).

Let G be a group and $A \subseteq G$ be a normal abelian subgroup. Show that G/A acts on A by conjugation and construct a homomorphism $\varphi: G/A \to \operatorname{Aut}(A)$.

Problem 6 (Hungerford 2.4.9).

Let Z(G) be the center of G. Show that if G/Z(G) is cyclic, then G is abelian.

Note that Hungerford uses the notation C(G) for the center.

Problem 7 (Hungerford 2.5.6).

Let G be a finite group and $H \subseteq G$ a normal subgroup of order p^k . Show that H is contained in every Sylow p-subgroup of G.

Problem 8 (Hungerford 2.5.9).

Let $|G| = p^n q$ for some primes p > q. Show that G contains a unique normal subgroup of index q.

0.2 Qual Problems

Problem 9.

Let G be a finite group and p a prime number. Let X_p be the set of Sylow-p subgroups of G and n_p be the cardinality of X_p . Let Sym(X) be the permutation group on the set X_p .

- 1. Construct a homomorphism $\rho: G \to \operatorname{Sym}(X_p)$ with image a transitive subgroup (i.e. with a single orbit).
- 2. Deduce that G is simple and the order of G divides $n_p!$.
- 3. Show that for any $1 \le a \le 4$ and any prime power p^k , no group of order ap^k is simple.

Problem 10.

Let G be a finite group and H < G a subgroup. Let n_H be the number of subgroups of G that are conjugate to H. Show that n_H divides the order of G.

Problem 11.

Let $G = S_5$, the symmetric group on 5 elements. Identify all conjugacy classes of elements in G, provide a representative from each class, and prove that this list is complete.