ЛАБОРАТОРНА РОБОТА 4

Виконав Ваврикович Михайло ПМІ-43

Потрібно:

◆ Побудувати за заданою дискретною вибіркою наближувальні функції в мультиплікативній формі (аналітичні та графічно представлені функціональні залежності), які з практично прийнятною похибкою в сенсі чебишевського наближення характеризують справжні функціональні залежності.

Для функцій Φ_i відомі межі інтервалів, які визначаються наступними умовами:

$$\beta^{-} \min_{k} \Phi_{i_{k}}(x_{k}) \leq \Phi_{i} \leq \beta^{+} \max_{k} \Phi_{i_{k}}(x_{k});$$
$$0 < \beta^{-} \leq 1; \quad 1 < \beta^{+} \leq M_{0}; \quad M_{0} \neq \infty.$$

Для функцій Φ_{i_k} відомі границі інтервалів, які визначаються такими умовами:

$$\begin{split} \Psi_{k}^{-} &\leq \Phi_{i_{k}}(x_{k}) \leq \Psi_{k}^{+}; \\ \Psi_{k}^{+} &= \alpha^{+} \max_{j} \Psi_{kj}(x_{kj_{k}}); \quad \Psi_{k}^{-} &= \alpha^{-} \min_{j} \Psi_{kj}(x_{kj_{k}}); \\ 0 &< \alpha^{-} \leq 1; \quad 1 < \alpha^{+} \leq N_{0}; \quad N_{0} \neq \infty. \end{split}$$

- ◆ Запропонувати свій варіант дискретної вибірки і побудувати наближувальні функції в мультиплікативній формі.
- lacktriangle Запропонувати свій варіант структури функцій Φ_i і базової функції $\phi_{p_k}(x_{j_k})$ та побудувати в мультиплікативній формі функції наближення.
 - Зробити письмовий звіт про виконану роботу.

Хід роботи

Вибірка вихідних даних

Тестова вибірка 2

Tаблиця 3.3. Вихідні дискретні дані для $X_1[X_{11},X_{12}],\ X_2[X_{21},X_{22}],\ X_3[X_{31},X_{32}X_{33}]$ і $Y_i[X_1,X_2X_3],\ i=\overline{1,4}$

23[23]; 23[223] : 2[[2]; 22[3]; : -1; :											
q_0	X_{11}	X ₁₂	X ₂₁	X ₂₂	X_{31}	X_{32}	X ₃₃	Y_1	<i>Y</i> ₂	Y_3	Y_4
1	0,1	0,2	0,3	0,4	0,5	0,6	0,7	7,9365	4,547688	0,801869	0,119987
2	0,2	0,3	0,4	0,5	0,6	0,7	0,8	11,21875	1,890384	1,479495	0,374644
3	0,3	0,4	0,5	0,6	0,7	0,8	0,9	17,71544	1,222225	1,328362	0,682022
4	0,4	0,5	0,6	0,7	0,8	0,9	1	9,11836	1,832328	1,676315	1,572026
5	0,5	0,6	0,7	0,8	0,9	1	0,1	7,549978	1,590182	17,37797	8,801038
6	0,6	0,7	0,8	0,9	1	0,1	0,2	8,542536	1,326691	3,313404	1,980978
7	0,7	0,8	0,9	1	0,1	0,2	0,3	5,561438	1,505732	3,50597	2,546557
8	0,8	0,9	1	0,1	0,2	0,3	0,4	10,277052	11,785362	1,89941	1,314689
9	0,9	1	0,1	0,2	0,3	0,4	0,5	3,167	1,639647	1,649217	1,594511
10	1	0,1	0,2	0,3	0,4	0,5	0,6	4,842161	5,95181	1,250931	0,846673
11	0,1	0,2	0,3	0,4	0,5	0,6	0,7	4,604236	3,147089	0,590717	0,128808
12	0,2	0,3	0,4	0,5	0,6	0,7	0,8	11,2643	0,38775	1,274238	0,416578
13	0,3	0,4	0,5	0,6	0,7	0,8	0,9	6,489882	0,834699	1,241998	2,229534
14	0,4	0,5	0,6	0,7	0,8	0,9	1	10,03773	1,53636	2,318899	5,880715
15	0,5	0,6	0,7	0,8	0,9	1	0,1	6,011635	1,527918	12,35336	2,523813
16	0,6	0,7	0,8	0,9	1	0,1	0,2	5,876103	1,88011	8,63539	1,979993
17	0,7	0,8	0,9	1	0,1	0,2	0,3	8,389618	1,009955	4,157769	2,327825
18	0,8	0,9	1	0,1	0,2	0,3	0,4	3,688077	7,542901	2,443695	3,390519
19	0,9	1	0,1	0,2	0,3	0,4	0,5	3,95483	2,938639	3,150956	1,511092
20	1	0,1	0,2	0,3	0,4	0,5	0,6	4,005693	1,112283	1,51112	0,837446
21	0,1	0,2	0,3	0,4	0,5	0,6	0,7	17,47966	0,138018	0,783525	0,156697
22	0,2	0,3	0,4	0,5	0,6	0,7	0,8	7,426851	0,731431	1,35616	0,841923
23	0,3	0,4	0,5	0,6	0,7	0,8	0,9	6,957012	0,655745	0,987224	0,777008
24	0,4	0,5	0,6	0,7	0,8	0,9	1	8,56587	1,184751	1,735836	1,815796
25	0,5	0,6	0,7	0,8	0,9	1	0,1	5,984332	1,109914	15,43216	3,976453
26	0,6	0,7	0,8	0,9	1	0,1	0,2	5,716426	1,116735	5,087297	2,365669
27	0,7	0,8	0,9	1	0,1	0,2	0,3	5,204267	1,658519	3,011189	2,033238
28	0,8	0,9	1	0,1	0,2	0,3	0,4	9,147076	14,03578	2,239021	2,348903
29	0,9	1	0,1	0,2	0,3	0,4	0,5	6,772665	2,222949	3,805971	1,59734
30	1.	0,1	0,2	0,3	0,4	0,5	0,6	2,379775	2,940966	3,448381	0,565375

Структура наближувальних функцій та варіант функцій $\Phi_{pk}(x_{ik})$

I. Структура функцій Φ_i :

$$1 + \Phi_{i}(x) = \prod_{k=1}^{K_{0}} [1 + c_{i_{k}} \Phi_{i_{k}}(x_{k})]^{L_{i_{k}}};$$

$$1 + c_{i_{k}} \Phi_{i_{k}}(x_{k}) = \prod_{j_{k}=1}^{n_{k}} [1 + a_{i_{k}j_{k}} \Psi_{kj_{k}}(x_{kj_{k}})]^{N_{kj_{k}}};$$

$$\ln[1 + \Phi_{i}(x)] = \sum_{k=1}^{K_{0}} L_{i_{k}} [1 + c_{i_{k}} \Phi_{i_{k}}(x_{k})];$$

$$\Phi_{i}(x) = \exp\left\{\sum_{k=1}^{K_{0}} L_{i_{k}} \ln[1 + c_{i_{k}} \Phi_{i_{k}}(x_{k})]\right\} - 1; \quad i = \overline{1, m}; \quad k = \overline{1, K_{0}};$$

$$\Phi_{i_{k}}(x_{k}) = \frac{1}{c_{i_{k}}} \left\langle \exp\sum_{j_{k}=1}^{n_{k}} N_{kj_{k}} \ln[1 + a_{i_{k}j_{k}} \Psi_{kj_{k}}(x_{k})] - 1 \right\rangle; \quad x_{k} = \left\langle x_{kj_{k}}, j_{k} = \overline{1, n_{k}} \right\rangle;$$

$$\Psi_{kj_{k}}(x_{kj_{k}}) = \frac{1}{a_{i_{k}j_{k}}} \left\langle \exp\left\{ \varphi_{0j_{k}} + \sum_{j_{k}=1}^{p_{kj_{k}}} V_{pj_{k}} \ln[1 + \lambda_{kj_{k}} \varphi_{pj_{k}}(x_{kj_{k}})] \right\} - 1 \right\rangle.$$

Варіант 1

$$[1 + a_{i_k j_k} \Psi_{k j_k}(x_{k j_k}) = \prod_{p j_k = 1}^{P_{k j_k}} \left[1 + \lambda_{k j_k} T_{p j_k}^*(x_{k j_k}) \right]^{V_{k j_k}};$$

$$\Psi_{k j_k}(x_{k j_k}) = \frac{1}{a_{i_k j_k}} \left\langle \exp \left\{ \lambda_{0 j_k} \ln 1, 5 + \sum_{p j_k = 1}^{P_{k j_k}} V_{p j_k} \ln [1 + \lambda_{k j_k} T_{p j_k}^*(x_{k j_k})] \right\} - 1 \right\rangle.$$

Варіанти функцій $\varphi_{p_k}(x_{j_k})$:

$$\begin{split} & \phi_{p_k}(x_{j_k}) \Rightarrow T_n^*(x); \ \, \phi_{0j_k} = \lambda_{0j_k} \, \ln(1+T_0^*) = \lambda_{0j_k} \, \ln 1,5; \ \, k = \overline{1,K_0}; \ \, j_k = \overline{1,n_k}. \\ & \phi_{p_k}(x_{j_k}) \Rightarrow T_n(x); \ \, \phi_{0j_k} = \lambda_{0j_k} \, \ln(1+T_0^*) = \lambda_{0j_k} \, \ln 1,5; \ \, k = \overline{1,K_0}; \ \, j_k = \overline{1,n_k}. \\ & \phi_{p_k}(x_{j_k}) \Rightarrow U_n^*(x); \ \, \phi_{0j_k} = \lambda_{0j_k} \, \ln(1+U_0^*) = \lambda_{0j_k} \, \ln 1,5; \ \, k = \overline{1,K_0}; \ \, j_k = \overline{1,n_k}. \end{split}$$

Для виконання даної лабораторної роботи оновив програму з 3 лабораторної роботи.

Розмірності векторів (х1, х2, х3) - (2; 2; 3)

Кількість цільових функцій - 4

Степені поліномів (х1, х2, х3) - (3; 2; 3)

Розмір вибірки - 30

Отримую значення лямбда

```
Lambda 1
-2,234375 0,231167057671453 0,302332068380394 -0,132138749336081 0,12890625 -0,25 -0,23046875

Lambda 2
-2,234375 -0,080078125 0,3203125 -0,099609375 -0,6484375

Lambda 3
-2,234375 0,1064453125 -0,04296875 -0,15478515625 0,041015625 -0,375 -0,0498046875 -0,03125 -0,0625 0,00390625
```

Отримую коефіцієнти матриць

Отримую відновлені функції $\Phi_i(x_1, x_2, x_3)$:

```
Restored Func
```

```
\begin{array}{l} \Phi 0 = \exp \left\{ 0.172066339932746 * \ln(1+\Phi 11) \cdot 0.00177954070393094 * \ln(1+\Phi 12) + 0.869053971377201 * \ln(1+\Phi 13) \right\} \\ \Phi 1 = \exp \left\{ 0.00485924457344167 * \ln(1+\Phi 21) + 0.350044761496689 * \ln(1+\Phi 22) + 0.741898438732431 * \ln(1+\Phi 23) \right\} \\ \Phi 2 = \exp \left\{ 0.117474612075396 * \ln(1+\Phi 31) + 0.400626090966977 * \ln(1+\Phi 32) + 0.655238887034509 * \ln(1+\Phi 33) \right\} \\ \Phi 3 = \exp \left\{ -0.025485150687956 * \ln(1+\Phi 41) + 0.536825663133667 * \ln(1+\Phi 42) + 0.55882155463492 * \ln(1+\Phi 43) \right\} \\ \Phi_0 = \exp \left\{ 0.172066339932746 * \ln(1+\Phi 1_1) - 0.00177954070393094 * \right. \\ \ln(1+\Phi_{12}) + 0.869053971377201 * \ln(1+\Phi_{13}) \right\} \\ \Phi_1 = \exp \left\{ 0.00485924457344167 * \ln(1+\Phi_{21}) + 0.350044761496689 * \ln(1+\Phi_{22}) + 0.741898438732431 * \ln(1+\Phi_{23}) \right\} \\ \Phi_2 = \exp \left\{ 0.0741898438732431 * \ln(1+\Phi_{23}) \right\} \\ \Phi_3 = \exp \left\{ 0.0741898438732431 * \ln(1+\Phi_{23}) \right\} \\ \Phi_4 = \exp \left\{ 0.0741898438732431 * \ln(1+\Phi_{23}) \right\} \\ \Phi_5 = \exp \left\{ 0.0741898438732431 * \ln(1+\Phi_{23}) \right\} \\ \Phi_6 = \exp \left\{ 0.0741898438732431 * \ln(1+\Phi_{23}) \right\} \\ \Phi_7 = \exp \left\{ 0.0741898438732431 * \ln(1+\Phi_{23}) \right\} \\ \Phi_{10} = \exp \left\{ 0.0741898438732431 * \ln(1+\Phi_{23}) \right\} \\ \Phi_{11} = \exp \left\{ 0.0741898438732431 * \ln(1+\Phi_{23}) \right\} \\ \Phi_{12} = \exp \left\{ 0.0741898438732431 * \ln(1+\Phi_{23}) \right\} \\ \Phi_{13} = \exp \left\{ 0.0741898438732431 * \ln(1+\Phi_{23}) \right\} \\ \Phi_{14} = \exp \left\{ 0.0741898438732431 * \ln(1+\Phi_{23}) \right\} \\ \Phi_{15} = \exp \left\{ 0.0741898438732431 * \ln(1+\Phi_{23}) \right\} \\ \Phi_{15} = \exp \left\{ 0.0741898438732431 * \ln(1+\Phi_{23}) \right\} \\ \Phi_{15} = \exp \left\{ 0.0741898438732431 * \ln(1+\Phi_{23}) \right\} \\ \Phi_{15} = \exp \left\{ 0.0741898438732431 * \ln(1+\Phi_{23}) \right\} \\ \Phi_{15} = \exp \left\{ 0.0741898438732431 * \ln(1+\Phi_{23}) \right\} \\ \Phi_{15} = \exp \left\{ 0.0741898438732431 * \ln(1+\Phi_{23}) \right\} \\ \Phi_{15} = \exp \left\{ 0.0741898438732431 * \ln(1+\Phi_{23}) \right\} \\ \Phi_{15} = \exp \left\{ 0.0741898438732431 * \ln(1+\Phi_{23}) \right\} \\ \Phi_{15} = \exp \left\{ 0.0741898438732431 * \ln(1+\Phi_{23}) \right\} \\ \Phi_{15} = \exp \left\{ 0.0741898438732431 * \ln(1+\Phi_{23}) \right\} \\ \Phi_{15} = \exp \left\{ 0.0741898438732431 * \ln(1+\Phi_{23}) \right\} \\ \Phi_{15} = \exp \left\{ 0.0741898438732431 * \ln(1+\Phi_{23}) \right\} \\ \Phi_{15} = \exp \left\{ 0.0741898438732431 * \ln(1+\Phi_{23}) \right\} \\ \Phi_{15} = \exp \left\{ 0.0741898438732431 * \ln(1+\Phi_{23}) \right\} \\ \Phi_{15} = \Phi \left\{ 0.0741898438732431 * \ln(1+\Phi_{23}) \right\} \\ \Phi_{15} = \Phi \left\{ 0.07418
```

 $\Phi_2 = \exp(0.117474612075396 * \ln(1 + \Phi_{31}) + 0.400626090966977 * \ln(1 + \Phi_{32}) + 0.655238887034509 * \ln(1 + \Phi_{33}))$

 $\Phi_3 = \exp(-0.025485150687956 * In(1 + \Phi_{41}) + 0.536825663133667 * In(1 + \Phi_{42}) + 0.55882155463492 * In(1 + \Phi_{43})\}$

Виводжу графіки апроксимованих функцій Y_1, Y_2, Y_3, Y_4

Висновок

Із графіків апроксимацій видно, що при степенях поліномів - 3, 2, 3, найменшої незв'язки досягнуто при апроксимації Y_4 та Y_3 , а найбільшої при Y_2 .