[19]中华人民共和国专利局

[51]Int.Cl6

C09K 11/79

[12] 发明专利申请公开说明书

[21] 中请号 98105078.6

[43]公开日 1998年9月30日

[11] 公开号 CN 1194292A

[22]申请日 98.3.20

[30]优先权

[32]97.3.26 [33]CN[31]97103524.5 [32]97.12.3 [33]CN[31]97123325.X

[71]申请人 肖志国

地址 116025辽宁省大连市甘井子区七贤岭火炬 路 10 号大连路明光源有限公司

共同申请人 肖志强 [72]发明人 肖志国 肖志强

权利娶求书 2 页 说明书 27 页 附图页数 9 页

[54]发明名称 硅酸盐长余辉发光材料及共制造方法 [57]搞要

一种硅酸盐长余辉发光材料,共主要化学组成表示式为: $aMO \cdot bM'O \cdot cSiO_2 \cdot dR$: Eux、Eux, Eux, Eu

权利要求书

- $i \cdot$ 种长余辉发光材料,其特征为主要含有硅酸盐和激活剂离子,其主要化学组成表示式为: $aM0 \cdot bM'0 \cdot cSiO_2 \cdot dR$:Eux、Lny,其中 M选自Sr、Ca、Ba、Zn中的一种或多种元素;M'选自Mg、Cd、Be中的一种或多种元素;R选自 B_2O_3 、 P_2O_5 中的一种或二种成分;Ln选自Nd、Dy、Ho、Tm、La、Pr、Tb、Ce、Mn、Bi、Sn、Sb 中的一种或多种元素;a、b、c、d、x、y为摩尔系数,其中: $0.6 \le a \le 6$, $0 \le b \le 5$, $1 \le c \le 9$, $0 \le d \le 0.7$, $0.00001 \le x \le 0.2$, $0 \le y \le 0.3$;该材料在500nm以下短波光激发下,发出 $420 \sim 650nm$ 的发射光谱,峰值为 $450 \sim 580nm$,可呈现兰、 兰绿、 绿、 绿黄、黄颜色长余辉发光。
- 2. 如权利要求 1 所述的长余辉发光材料, 其特征为化学组成表示式中的 M 选自 Sr、 Ca 中的一种或二种元素; M' 为 Mg; Ln 选自 Nd、 Dy、 Ho、 Bi、 Sn 中的一种或多种元素, 其中: $0.6 \le a \le 4$, $0.6 \le b \le 4$, $1 \le c \le 5$, $0 < d \le 0.4$; R 选自 B_2O_3 、 P_2O_5 中的一种或二种成分。
- 3. 如权利要求2所述的长余辉发光材料, 其特征为M、M′中元素的 0~40%摩尔可以被Ba、Zn、Cd、Be取代。
- 4. 如权利要求 1或 2 所述的长余辉发光材料, 其特征为材料主要化合物为: $M_2MgSi_2O_7$ 或 $M_3MgSi_2O_8$, 其中 M为 $Sr_{1-z}Ca_z$, $0 \le z \le 1$ 。
- 5. 如权利要求 1 或 2 所述的长余辉发光材料, 其特征为主要化学表示式为: M₂MgSi₂O₇: Eu、Ln或 M₃MgSi₂O₈: Eu、Ln,其中 M为 Sr₁₋₂Ca₂, 0≤ z≤1。
- 6. 如权利要求1或2所述的长余辉发光材料, 其特征为材料的主要化学表示式为:M₂MgSi₂O₇:Eu、Ln或M₃MgSi₂O₈:Eu、Ln, 其中M为Sr₁₋₂Ca₂,0≤2≤1,Ln选自Nd、By、Ho、Sn、Bi中的一种或多种元素。
- 7.如权利要求1所述的长余辉发光材料, 其特征为材料的主要化学表示式为:Ba₅Si₈O₂₁:Eu、Dy。

- 8. 如权利要求!所述的长余辉发光材料, 其特征为材料的主要化学 表示式为:Zn2SiO4:Eu、Dy、Mn。
- 9. 如权利要求1所述的长余辉发光材料的制造方法, 其特征为所用原 料中元素摩尔配比为:

M: 0.6~6

R:0~0.7 以B₂O₃、P₂O₅计

 $M': 0 \sim 5$ Eu: 0.00001 ~ 0.7

 $Si: 1 \sim 9$ $In: 0 \sim 0.3$

其中:M代表Sr、Ca、Ba、Zn中的一种或多种元素的化合物;

M'代表 Mg、Cd、Be中的一种或多种元素的化合物;

R代表B、P中的一种或二种元素的化合物;

Ln 代表 Nd、 Dy、 Ho、 Tm、 La、 Pr、 Tb、 Ce、 Mn、 Bi、 Sn、 Sb 中一 种或多种元素的化合物;

Si 代表 Si 的化合物;

Eu 代表 Eu 的化合物;

M、M'、Ln、Eu的化合物是分别用它们所代表元素的碳酸盐、硫 酸盐、硝酸盐、磷酸盐、硼酸盐、醋酸盐、草酸盐、柠檬酸盐或其氧化 物、 氢氧化物、 卤化物,Si 的化合物是使用 Si O2、 硅酸、 硅胶或硅酸盐, R是硼、磷的化合物;制造工艺为高温固相反应法,将上述原料按摩尔配比 称取,研细并混合均匀,在还原气氛下,于1100-1400℃ 熔结2~50h。后经 冷却、粉碎、过筛而成。

- 10. 如权利要求 9 所述的长余辉发光材料的制造方法, 其特征为所述 的还原气氛为氢气、 氦气、 氦气和氢气或碳粒存在下。
- 11. 如权利要求 9 所述的长余辉发光材料的制造方法, 其特征为 可在混合原料中加入占原料重量 0~15%的 NH₄Cl、NH₄F、Li₂CO₃、SrF₂、 CaF₂、CaSO₄、SrSO₄、SrHPO₄或CaHPO₄参与固相反应。
- 12. 如权利要求 9 所述的长余辉发光材料的制造方法, 其特征为 M' 为 Mg元素,使用原料为碱式碳酸镁。

硅酸盐长余辉发光材料及其制造方法

本发明是长余辉发光材料,特别涉及的是硅酸盐长余辉发光材料及其制造方法。

传统的 ZnS系列长余辉发光材料自19世纪发明以来,经过不断的改进,已形成几个典型产品,如: ZnS: Cu(绿色发光),(CaSr)S: Bi(兰色发光),(ZnCd)S: Cu(黄橙发光),并应用于某些商业领域,但这类材料的缺点是稳定性差,在空气中易分解,在阳光照射下易变灰至黑,发光余辉时间短,一般在0.5-2小时以内,且发光亮度偏低,满足不了实用的要求。为了提高材料的发光亮度,延长余辉时间,人们先后在这类材料中添加了 Co、Ra、材料的发光亮度,延长余辉时间,人们先后在这类材料中添加了 Co、Ra、li3等放射性元素,制成了放射发光长余辉材料,虽然使材料可持续发光并曾应用于航空仪表、钟表等领域,但由于放射性的污染且价格昂贵,使用范围受到极大限制。

九十年代初,发明了银酸盐体系的长余辉发光材料,如中国专利公开号 CN1053807A和中国专利 ZL92110744.7所示,其发光亮度、长余辉性能、稳定性均显著优于上述的硫化物系列产品,已开始在生活用品、弱照明指示标牌、钟表等方面得到应用。但这类材料尚存在耐水性差,对原材料的矩度、形态要求高,生产成本较高,以及发光色单一等缺点,在一定程度上又不能很好地满足对长余辉发光材料的要求。

1968年 T.L. Barry 曾发春过 Me 3 Mg Si 2 Oa: Eu²+ (Me = Ca、Sr、Ba)
和 Me 2 Si O4: Eu²+ (Me = Sr、Ba) 的发光光谱和激发光谱研究结果
(J. Electrochem. Soc. V115 No. 7, 733-738, 1968年; V115 No. 11, 11811184, 1968年); 随后 T.L. Barry 又发表了 BaMg 2 Si 2 O7: Eu²+ 的发光和激发
光谱的研究结果 (J. Electrochem. Soc. V117 NO. 3, 381-385, 1970年);
1968年 Blasse, G. 等发表了 Fluorescence of Eu²+activated silicates

(Philips Res. Rep. (1968), 23(2), 189-200)。 但至今未见到具有较强长 余辉性能的硅酸盐材料的报导。

针对以上现有技术的不足,本发明提供一种颜色多样、光谱范围宽, 耐水性和稳定性优良,余辉强度高且时间长的硅酸盐系列长余辉发光材料。

本发明是继铝酸盐体系长余辉发光材料之后,又一种新型体系的长余辉发光材料,这就是以硅酸盐为基质、稀土离子和其它离子为激活剂,以及加入一定量的硼或磷的化合物促成长余辉性能提高的长余辉发光材料, 在硅酸盐体系中实现了兰、绿、黄等多色长余辉发光特性。

本发明长余辉发光材料的主要化学组成可用式(!)表示:

 $aMO \cdot bM'O \cdot cSiO_2 \cdot dR: Eux, Lny$ (1)

其中M选自锶 (Sr)、钙 (Ca)、、钡 (Ba)、锌 (Zn)中的一种或多种元素; M′选自镁 (Mg)、镅 (Cd)、铵 (Be)中的一种或多种元素; R选自 B₂O₃、 P₂O₅中的一种或二种成分; Ln选自钕 (Nd)、镝 (Dy)、钬 (Ho)、铥 (Tm)、镅 (La)、镨 (Pr)、铽 (Tb)、铈 (Ce)、锰 (Mn)、铋 (Bi)、锡 (Sn)、锑 (Sb) 中的一种或多种元素,a、b、c、d、x、y为摩尔系数,其中 $0.6 \le a \le 6$, $0 \le b \le 5$, $1 \le c \le 9$, $0 \le d \le 0.7$, $0.00001 \le x \le 0.2$, $0 \le y \le 0.3$; 该材料在 500nm以下短波光激发下,发出 $420 \sim 650$ nm的发射光谱,峰值为 $450 \sim 580$ nm,可呈现 兰、 兰绿、绿、绿黄、黄等颜色长余辉发光。

根据本发明一种优选方案的长余辉发光材料,其中通式(1)中M选自Sr、Ca中的一种或二种元素; M'为Mg; Ln选自Nd、Dy、Ho、Bi、Sn中的一种或多种元素,其中: $0.6 \le a \le 4$, $0.6 \le b \le 4$, $1 \le c \le 5$, $0 < d \le 0.4$,R选自 B_2O_3 、 P_2O_5 中的一种或二种成分。

根据本发明一种长余辉发光材料,其中材料的主要化合物为: $M_2MgSi_2O_7$ 或 $M_3MgSi_2O_8$,其中M为 $Sr_{i-z}Ca_z$, $0 \le z \le 1$ 。

根据本发明一种长余辉发光材料,其中材料的主要化学表示式为: $M_zMgSi_zO_7$: Eu、Ln或 $M_3MgSi_zO_8$: Eu、Ln、其中M为 $Sr_{1-z}Ca_z$, $0 \le z \le 1$ 。

在制造本发明的长余辉发光材料时,采用含有表示式(1)中元素的化 合物,一般选用原料中,M、M'、Ln、Eu的化合物是分别用它们所代表元素 的碳酸盐、硫酸盐、硝酸盐、磷酸盐、硼酸盐、醋酸盐、草酸盐、柠檬 酸盐或其氧化物、 氢氧化物、 卤化物等,Si 的化合物是使用 Si Oz、 硅酸、 硅胶或硅酸盐, R是硼、磷的化合物, 所用原料中元素摩尔配比为:

M: 0.6~6

R:0~0.7 以B203、P205计

M':0~5

Eu: $0.00001 \sim 0.2$

 $Si: 1 \sim 9$ $Ln: 0 \sim 0.3$

其中:M代表 Sr、Ca、Ba、 Zn 中的一种或多种元素的化合物:

M'代表 Mg、Cd、Be中的一种或多种元素的化合物;

R代表B、P中的一种或二种元素的化合物;

Ln 代表 Nd、Dy、Ho、Tm、La、Pr、Tb、Ce、Mn、Bi、Sn、Sb 中的 一种或多种元素的化合物;

Si 代表 Si 的化合物;

Eu代表 Eu 的化合物。

其制造工艺采用高温固相反应法制成,将上述原料按摩尔配比称取, 研细并混合均匀,混合时可用干混法,也可用加溶剂(如乙醇、丙酮等)混 合后烘干,或采用化学反应熔胶——凝胶法,制得混合物料,装入坩埚容 器中,放入高温炉中,在还原气氛下(如氢气(H2)、氦气(NH3)、氦气和氢 气 (N2+H2),碳粒 (C粒)), 于 1100-1400℃,根据炉体容量和物料重量,燃 结 2 至 50 小 时, 一 般 少 量 物 料 为 2-5 小 时。 为 提 高 材 料 的 质 量 。 可 在 原 料 中加入少量其它化合物,如NH₄Cl、NH₄F、CaF₂、SrF₂、Li₂CO₃、CaSO₄、 SrSO₄、SrHPO₄、CaHPO₄等。烧结后,经冷却、粉碎、过输工序。根据使 用要求, 筛分成各级粒径材料。

本发明对样品进行发光余辉测量是将样品置于直径50mm、深5mm的圆 盘中,在暗室保持10h以上,取出置于标准D65光源1000lx照度下。照射 10min后用发光辉度计测其随时间变化的发光强度。测试的同时对现有技

术的比较样品在同一条件下激发,以比较样品为100,求取样品的相对余癖强度。 兰色余辉比较样品为 (CaSr) S: Bi; 黄色余辉比较样品为 (ZnCd) S: Cu; 绿、兰绿、绿黄余辉的比较样品为 ZnS: Cu。 材料的晶体结构和化合物组成采用 X-光衍射方式测得,测其 X-光衍射数值,并与卡片值对照,确定其主要化合物。 材料的发射光谱和激发光谱采用荧光光谱仪测试。

大量研究工作表明,在化学组成表示式(1)中,当M、M'中的元素不同,材料的长余辉发光颜色不同,材料的主要化合物不同;a,b,c的数值变化对材料的发光强度、化合物结构和发光颜色有一定的影响;R和Ln中的不同元素成分及系数d、x、y的数值变化对发光强度有明显的影响,而对主要化合物结构未见明显的影响。

表1给出了材料的发光颜色与M、M'及a、b有关部分试验结果。

表1 试验条件是选用表示式中 c=2.5, d=0.1, $R=B_2O_3$, x=0.005, y=0.04 Ln=Nd, 还原气氛选用 $N_2(90\%)+H_2(10\%)$, 合成温度 1250-1320 \mathbb{C} , 时间 4小时。

表! 发光颜色试验

X	.1 2	UPA									
试	元孝	M:	Sr	Ca	Ba	Zn		M':Mg	Cd	Be	发光
验	系数	a:						b:			颜色
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32			3 0 2 0 0 5 1 0 0 5 1 0 0 0 5 1 0 0 0 5 7 1 0 0 0 5 7 1 0 0 0 5 7 5 0 0 6 2 5 0 0 6 2 5 5 0 0 6 2 5 5 0 0 6 2 5 5 0 0 6 2 5 5 0 0 6 2 5	0 3 0 2 1.5 1.0 0.5 0 1 0.75 0.5 0.25 0.25 0.75 0.25 0.75 0.75 0.62! 1.05 0.87! 1.05	5	0.2	0.2			0.1	兰绿兰黄绿绿兰兰黄绿绿兰兰黄绿绿兰绿绿绿绿绿绿绿绿绿浅浅浅色色色色黄色绿色色黄色绿

当M代表Sr或Sr为其中主要元素,Ca、Ba、Zn为次要元素,M′代表Mg或Mg为其中主要元素,Cd、Be为次要元素时,合成的材料经450nm以下短波光照射后呈現兰色—兰绿色长余辉发光颜色。实验表明a、b、c的不同数值,对材料的发光强度和结构有一定影响,当 $0.6 \le a \le 4$, $0.6 \le b \le 4$, $1 \le c \le 5$,材料呈现较强的兰色—兰绿色发光,当 $1.5 \le a \le 2.4$, $0.6 \le b \le 2$, $1.5 \le c \le 2.5$ 时,从X— 光衍射数据分析材料的主要化合物为 $Sr_2MgSi_2O_7$,如图2所示;当超出上述系数范围时,材料中也可以出现

化合物 $Sr_2MgSi_2O_7$,但其它化合物成分较多;当 $2.7 \le a \le 3.3$, $0.8 \le b \le 1.2$, $1.7 \le c \le 2.3$ 时,材料的主要化合物为 $Sr_3MgSi_2O_a$,如图 14 所示。

当 M代表 Ca 或 Ca 为其中主要元素,Sr、Ba、 2n 为次要元素,M'代表 Mg 或 Mg 为其中主要元素,Cd、Be 为次要元素时,合成的材料经 500nm 以下短波光照射后呈现绿—黄色长余辉发光颜色。同样实验表明 a、b、c的不同数值,对材料的发光强度和结构有一定影响。当 $0.6 \le a \le 4$, $0.6 \le b \le 4$, $1 \le c \le 5$,材料呈现较强的绿—黄色发光,当 $1.5 \le a \le 2.4$, $0.6 \le b \le 2$, $1.5 \le c \le 2.5$ 时,从 X-光衍射数据分析材料的主要化合物为 $Ca_2MgSi_2O_7$,如图 6 所示;当超出上述系数范围时,材料中也可以出现化合物 $Ca_2MgSi_2O_7$,但其它化合物成分较多;当 $2.7 \le a \le 3.3$, $0.8 \le b \le 1.2$, $1.7 \le c \le 2.3$ 时,材料的主要化合物为 $Ca_3MgSi_2O_6$,如图 16 所示。

参照发光学有关材料的表示式,当材料的晶体结构尚不能确定时, 以该材料的主要成分表示,即化学组成表示式表示; 当材料的主要化 **合和晶体结构确定后, 以化学衰示式衰示。**

根据上述材料的化合物和晶体结构,本发明的这类材料主要化学表示式: $M_2MgSi_2O_7$:Eu、Ln或 $M_3MgSi_2O_8$:Eu、Ln,其中 M为 $Sr_{1-z}Ga_z$, $0 \le z \le 1$ 。

当 M 代表 Ba, $4 \le a \le 6$, b=0, $6 \le c \le 9$, 材料呈现浅绿色长余辉发光,从 X-光衍射数据确定主要化合物为 Ba₅Si₈O₂₁。本发明的这类材料主要化学表示式: Ba₅Si₈O₂₁: Eu、Ln。

当 M 代表 Zn, $1 \le a \le 3$, b=0, $0.7 \le c \le 1.5$, 材料呈现浅绿色长余辉发光,从 X-光衍射分析数据确定主要化合物为 Zn_2SiO_4 。 本发明的这类材料的主要化学表示式: Zn_2SiO_4 : Eu、Ln。

当 M 代表 Sr_{1-z} Ca_z , $0 \le z \le 1$, M' 代表 Mg, 其中 M、M'的 $0 \sim 40% 摩尔可被 Ba、 <math>Zn$ 、Cd、 Be 取代,材料具有长余辉的发光性能,尤其当 Ba、Cd 占 5-20% 摩尔时,材料具有良好的发光性能。

在化学组成表示式中,没有R或/和Ln元素(即d或/和y为零时),合成的材料也能发出余辉,有的组合有较强的余辉发光。但是当材料中有了R或/和Ln,其余辉发光强度有了显著的增强,当然其摩尔系数d和y的不同对余辉发光强度有一定影响。Ln中诸元素的加入,元素不同,发光强度不同,两个以上复合元素的掺入比单一元素的加入发光效果更好一些。

当 y=0,材料的化学组成表示式为 aM0·bM′0·cSi0₂·dR:Eux, 输 (Eu) 为激活剂,从材料的光谱分析,该材料的发射光谱是二价销离子 (Eu²⁺) 的特征发射光谱,即销为主激活剂,随着x数值不同,其长余辉发光强度呈现不同的变化,x的较佳范围是:0.00001 \leq x \leq 0.2。

当 y>0,材料中增加 Ln 成份,实验表明, Ln 成分中 Nd、 Dy、 Ho、 Tm、 La、 Pr、 Tb、Ce、 Mn、 Bi、 Sn、 Sb的一种或数种存在,对材料的长 余辉发光强度产生不同程度的增强效果,尤其 Nd、 Dy、 Ho、 Bi、 Sn 效果显著,实验表明当 $0 < y \le 0.3$,对材料均有明显的增强作用,如表 $2 \sim 10$ 试验所示,按发光学理论,可做为共激活剂作用。

当d=0,材料的化学组成表示式为aMO·bM'O·cSiO₂:Eux、Lny,该材料呈现一定的长余辉发光效果,随着x、y值的改变,材料的长余辉发光强

度也呈一定的变化。

当 d>0,R 成分的加入,使材料的长余辉发光强度相对 d=0 时,得到了显著提高,d 成分的原料可以是硼 (B) 或磷 (P) 的化合物,如三氧化硼 (B_2O_3) ,硼酸 (H_3BO_3) ,五氧化二磷 (P_2O_5) ,磷酸 (H_3PO_4) ,磷酸氢二铵 $((NH_4)_2HPO_4)$,磷酸二氢铵 $(NH_4H_2PO_4)$ 等,这些成分的加入,提高了材料的长余辉发光强度;降低了材料的合成温度,改善了材料的合成质量,合成材料粉体疏松,成品率高。

R成分对材料的发光影响见表 2。

表 2 试验选用兰绿色材料,取M=Sr_{0.75}Ca_{0.25},M'=Mg,R=B₂O₃ 或/和P₂O₅,Ln=By, a=1.5,b=1.5,c=2.5,x=0.01,y=0.08,还原气氛为NH₃ 气,合成温度为1280℃。

表2 R、 Ln 成分作用试验

序号	化学组成表示式	发光余章 10′	「相对强度 60′
		10	ΟU
1	1.5(Sr _{0.75} Ca _{0.25})0 • 1.5Mg0 • 2.5SiO ₂ :Eu _{0.01}	40.1	102
2	1.5(Sr _{0.75} Ca _{0.25})0 • 1.5Mg0 • 2.5SiO ₂ • 0.1B ₂ O ₃ :Ev _{0.01}	114	176
3	1.5(Sr _{0.75} Ca _{0.25})0 • 1.5Mg0 • 2.5SiO ₂ • 0.05P ₂ O ₅ :Eu _{0.01}	94.6	137
4	1.5(Sr _{0.75} Ca _{0.25})0 - 1.5Mg0 - 2.5SiO ₂ - 0.1B ₂ O ₃ - 0.05P ₂ O ₅ : Eu _{0.01}	121	182
5	1.5(Sr _{0.75} Ca _{0.25})0 - 1.5Mg0 - 2.5SiO ₂ : Eu _{0.01} Dy _{0.08}	772	1540
6	1.5(Sr _{0.75} Ca _{0.25})0 • 1.5Mg0 • 2.5SiO ₂ • 0.1B ₂ O ₃ : Eu _{0.01} Dy _{0.08}	2541	4808
7	1.5(Sr _{0.75} Ca _{0.25})0 · 1.5Mg0 · 2.5SiO ₂ · 0.05P ₂ O ₅ : Eu _{0.01} Dy _{0.08}	1724	3946
8	1.5(Sr _{0.75} Ca _{0.25})0 · 1.5Mg0 · 2.5SiO ₂ · 0.1B ₂ O ₃ · 0.05P ₂ O ₅ : Eu _{0.01} Dy _{0.08}	2638	4972

R加入量对材料的发光影响如表 3 所示。

表 3 试验选用兰色和绿色材料,其中实验 $1 \sim 8$ 兰色材料取 $M = S_{\rm r}$, $M' = M_{\rm g}$, a = 2, b = 1, c = 2, x = 0.004, $R = B_{\rm g} O_{\rm g}$;

试验 $9\sim14$ 为绿色材料, 其中 $M=Sr_{0..5}Ca_{0..5}$, M'=Mg, a=2, b=1, c=2..3, $R=P_2O_5$, Ln=Dy, x=0.004, y=0.01。

表3 R成分量(d)影响试验

试验	化学组成表示式	R成分 (原料)	d	发光余年	相对强度 60°	全成進 度(C)
1	2Sr0 • Mg0 • 2Si02: Eu _{0.004}	0	0	37.4	100	1350
2	ZSrO • MgO • ZSiOz • 0.01BzO55 Euo.004	2H ₃ BO ₃	0.01	78.7	115.4	1340
3	2Sr0 • Mg0 • 2Si0z • 0.05Bz03: Evo. 004	2H3B03	0.05	134.8	169.2	1330
4	2SrO • MgO • 2SiO ₂ • O. 1B ₂ O ₃ : Ev _{o. 004}	2H3B03	0.1	132.4	158.5	1320
5	2SrO • MgO • 2SiO ₂ • 0. 2B ₂ O ₃ ; Eu _{0. 004}	2H ₃ BO ₃	0.2	109-2	127	1310
6	2SrO • MgO • 2SiO ₂ • 0. 3B ₂ O ₃ ; Eu _{0. 004}	2H3B03	0.3	94.5	102	1280
7	2SrO • NgO • 2SiO ₂ • D. 5B ₂ O ₃ : Eu _{0.004}	2H ₃ BO ₃	0.5	73.4	96.4	1230
8	ZSrO • MgO • ZSiO ₂ • 0.7B ₂ O ₃ : Eu _{0.004}	2H3BO3	0.7	42.1	74.2	1150
9	2(Sr _{0.5} • Ca _{0.5})0 • MgO • 2.3SiO ₂ : Eu _{0.004} Dy _{0.01}	0	0	482.4	1263.7	1350
10	2(Sr _{0.5} • Ca _{0.5})0 • Mg0 • 2.3SiO ₂ • 0.05P ₂ O ₅ : Eu _{0.004} Dy _{0.01}	2NH4H2PO4	0.05	613	1804	1340
11	7(Sro. 5 · Cao. 5)0 · MgO · 2. 3SiOz · 0. 1P2O5: Euo. 004 Dyo. 01	2NH ₄ H ₂ PO ₄	0.1	1034	2542	1320
12	2(Sr _{0.5} • Ca _{0.5})0 • Mg0 • 2.3SiO ₂ • 0.2P ₂ O ₅ : Eu _{0.004} Dy _{0.01}	2NH4H2PO4	0.2	807	2326	1310
	2(Sr _{0.5} · Ca _{0.5}) 0 · Mg0 · 2.3SiO ₂ · 0.3P ₂ O ₅ : Eu _{0.004} Dy _{0.01}	2NH ₄ H ₂ PO ₄	0.3	721	1742	1250
14	$2(Sr_{0.5} \cdot Ca_{0.5})0 \cdot Mg0 \cdot 2.3Si0_2 \cdot 0.5P_20_5: Eu_{0.004} Dy_{0.01}$	2NH ₄ H ₂ PO ₄	0.5	501	1271	1200

实验表明, $0 < d \le 0.7$ 对材料发光强度具有一定影响,加入量以 $0 < d \le 0.4$ 为佳。 R成分的存在,从材料的 X-光衍射数据分析来看,对前述材料已知晶体结构化合物组成未产生大的影响,主要化合物为硅酸盐成分,但对材料进行元素分析测试,确认表明 R中的硼 (B)、磷 (P) 元素存在于材料中,即材料中含有硼、磷成分,按化学组成,标记为 B_2O_3 和 P_2O_5 。

下面结合部分试验叙述本发明材料:

(一) 兰色长余辉发光材料:

当 M=Sr, M'=Mg, R=B₂O₃, a=2, b=1, c=2, d=0.1, 材料的化学组成表示式为: $2SrO \cdot MgO \cdot 2SiO_2 \cdot 0.1B_2O_3$: Eux、Lny, 改变x值、Ln的元素及y值,其试验结果如表 4 所示

试验	化学 组成表 示 式	余辉 相对强度		
*		10'	60′	
1-1	2Sr0 • Mg0 • 2Si0 ₂ • 0. 1B ₂ 0 ₃ : Eu _{0.0001}	67	114	
1-2	2Sr0 • Mg0 • 2Si02 • 0.1B203: Eu0.0004	81	122	
1-3	2Sr0 • Mg0 • 2Si0 ₂ • 0.1B ₂ 0 ₃ : Eu _{0.001}	124	143	
1-4	2Sr0 • Mg0 • 2Si0 ₂ • 0.1B ₂ 0 ₃ : Eu _{0.004}	136	178	
1-5	2Sr0 • Mg0 • 2Si0 ₂ • 0.1B ₂ 0 ₃ : Eu _{0.01}	130	167	
1-6	2Sr0 • Mg0 • 2Si0 ₂ • 0.1B ₂ 0 ₃ : Eu _{0.1}	91	121	
1-7	2Sr0 • Mg0 • 2Si0 ₂ • 0. 1B ₂ 0 ₃ : Eu _{0.2}	80	102	
2-1	2Sr0 • Mg0 • 2Si0 ₂ • 0.1B ₂ 0 ₃ : Eu _{0.004} Nd _{0.001}	621	734	
2-2	2Sr0 • Mg0 • 2Si02 • 0.1B203: Euo. 004 Ndo. 005	884	896	
2-3	2Sr0 • Mg0 • 2Si0 ₂ • 0.1B ₂ 0 ₃ : Eu _{0.004} Nd _{0.01}	1130	1175	
2-4	2Sr0 • Mg0 • 2Si0z • 0. 1B203: Euo. 004 Ndo. 04	1527	1847	
2-5	2Sr0 • Mg0 • 2Si0 ₂ • 0. 1B ₂ 0 ₃ : Eu _{0.004} Nd _{0.1}	862	859	
2-6	2Sr0 • Mg0 • 2Si0 ₂ • 0. 1B ₂ 0 ₃ : Eu _{0.004} Nd _{0.3}	645	692	
3-1	2Sr0 • Mg0 • 2Si0z • 0. 1B203: Euo. 004 Dyo. 0005	592	913	
3-2	2Sr0 • Mg0 • 2Si0z • 0.1B203: Euo.004 Dyo.004	927	1754	
3-3	2SrO • MgO • 2SiO ₂ • 0.1B ₂ O ₃ : Eu _{0.004} Dy _{0.01}	1108	2100	
3-4	2Sr0 • Mg0 • 2Si02 • 0. 1B203: Euo.004 Dyo.04	1658	3947	
3-5	2Sr0 • Mg0 • 2Si0 ₂ • 0.1B ₂ 0 ₃ : Eu _{0.004} Dy _{0.00}	1421	3136	
3-6	2Sr0 • Mg0 • 2Si0 _z • 0.1B _z 0 ₃ : Eu _{0.004} Dy _{0.15}	1215	2306	
3-7	2Sr0 • Mg0 • 2Si0 _z • 0.1B ₂ 0 ₃ : Eu _{0.004} Dy _{0.3}	823	1214	
4-1	2Sr0 • Mg0 • 2Si0 ₂ • 0. 1B ₂ 0 ₃ : Eu _{0.004} Ho _{0.0004}	827	1512	
4-2	2Sr0 • Mg0 • 2Si02 • 0.1B203: Euo.004 Hoo.001	1014	1894	
4-3	2Sr0 • Mg0 • 2Si02 • 0. 1B203: Euo. 004 Hoo. 05	1 47 2	22 4 6	
4-4	2Sr0 • Mg0 • 2Si0 ₂ • 0. 1B ₂ O ₃ : Eu _{0.004} Ho _{0.1}	1034	1675	
5-1	2Sr0 • Mg0 • 2Si0 ₂ • 0.1B ₂ 0 ₃ : Eu _{0.004} Tm _{0.001}	289	310	
5-2	2Sr0 • Mg0 • 2Si0 ₂ • 0.1B ₂ 0 ₃ : Eu _{0.004} Tm _{0.05}	378	420	
5-3	2Sr0 • Mg0 • 2Si0 ₂ • 0.1B ₂ 0 ₃ : Eu _{0.004} Tm _{0.1}	384	456	

续表4

试验	化学组成表示式	余海 10′	相对强度 60′
6-1	2Sr0 • Mg0 • 2Si0 ₂ • 0. 1B ₂ 0 ₃ : Eu _{0.004} La _{0.001}	204	189
6-2	2Sr0 • Mg0 • 2Si0 ₂ • 0. 1B ₂ 0 ₃ : Eu _{0.004} La _{0.005}	235	267
6-3	2Sr0 • Mg0 • 2Si0 ₂ • 0. 1B ₂ 0 ₃ : Eu _{0.004} La _{0.02}	269	317
7-1	2Sr0 • Mg0 • 2Si0 ₂ • 0. 1B ₂ 0 ₃ : Eu _{0.004} Pr _{0.001}	275	292
7-2	2Sr0 • Mg0 • 2Si0 ₂ • 0. 1B ₂ 0 ₃ : Eu _{0.004} Pr _{0.004}	254	264
7-3	2Sr0 • Mg0 • 2Si0 ₂ • 0. 1B ₂ 0 ₃ : Eu _{0.004} Pr _{0.02}	250	253
8-1	2Sr0 • Mg0 • 2Si0 ₂ • 0. 1B ₂ O ₃ : Eu _{0.004} Tb _{0.001} 2Sr0 • Mg0 • 2Si0 ₂ • 0. 1B ₂ O ₃ : Eu _{0.004} Tb _{0.004} 2Sr0 • Mg0 • 2Si0 ₂ • 0. 1B ₂ O ₃ : Eu _{0.004} Tb _{0.02}	224	267
8-2		284	368
8-3		230	276
9-1	2Sr0 • Mg0 • 2Si0 ₂ • 0. 1B ₂ 0 ₃ : Eu _{0.004} Ce _{0.0017}	278	367
9-2	2Sr0 • Mg0 • 2Si0 ₂ • 0. 1B ₂ 0 ₃ : Eu _{0.004} Ce _{0.007}	238	262
9-3	2Sr0 • Mg0 • 2Si0 ₂ • 0. 1B ₂ 0 ₃ : Eu _{0.004} Ce _{0.027}	224	237
10-1	$2Sr0 \cdot Mg0 \cdot 2Si0_2 \cdot 0.1B_20_3$: $Eu_{0.004} Mn_{0.001}$	264	290
10-2	$2Sr0 \cdot Mg0 \cdot 2Si0_2 \cdot 0.1B_20_3$: $Eu_{0.004} Mn_{0.005}$	273	287
10-3	$2Sr0 \cdot Mg0 \cdot 2Si0_2 \cdot 0.1B_20_3$: $Eu_{0.004} Mn_{0.02}$	232	264
11-1	2Sr0 • Mg0 • 2Si0 ₂ • 0. 1B ₂ 0 ₃ : Eu _{0.004} Bi _{0.001}	2 54	347
11-2	2Sr0 • Mg0 • 2Si0 ₂ • 0. 1B ₂ 0 ₃ : Eu _{0.004} Bi _{0.005}	314	472
11-3	2Sr0 • Mg0 • 2Si0 ₂ • 0. 1B ₂ 0 ₃ : Eu _{0.004} Bi _{0.02}	421	564
12-1	2SrO • MgO • 2SiO2 • 0. 1B2O3: Eug. 004 Sbo. 006	195	227
12-2		184	215
12-3		147	169
13-1	2Sr0 • Mg0 • 2Si0 ₂ • 0. 1B ₂ 0 ₃ : Eu _{0.004} Sn _{0.001}	124	138
13-2	2Sr0 • Mg0 • 2Si0 ₂ • 0. 1B ₂ 0 ₃ : Eu _{0.004} Sn _{0.005}	278	367
13-3	2Sr0 • Mg0 • 2Si0 ₂ • 0. 1B ₂ 0 ₃ : Eu _{0.004} Sn _{0.02}	167	236
14-1	2SrO • MgO • 2SiO ₂ • 0. 1B ₂ O ₃ : Eu _{0.004} Nd _{0.02} Dy _{0.01}	1831	3150
15-1	2Sr0 • Mg0 • 2Si0 ₂ • 0. 1B ₂ O ₃ : Eu _{0.004} Nd _{0.02} Sn _{0.01}	1672	2804
16-1	2SrO • MgO • 2SiO ₂ • 0. [B ₂ O ₃ ; Eu _{0.004} Dy _{0.02} Bi _{0.01}	1837	4356
比较样品	ZnS: Cu	100	100

上表 4 试验材料经太阳光、日光灯或紫外灯照射后, 呈现出兰色余辉 发光;在 365nm 紫外光激发下,呈现 420-550nm 宽带发射光谱,峰值 469nm 附 近; 监测 469nm处, 其激发光谱是 450nm以下的宽带谱, 说明该材料对短波光具有较强的吸收能力; 经 X-光衍射谱图确定其主要化合物 Sr₂Mg Si₂O₇; 由于加入的成分不同, 光谱的峰值可产生一定的位移。图 1 (a) 、 (b) 和图 2分别是试验 1-4材料的发射光谱、激发光谱和 X-光衍射谱图, 其发射光谱峰值为 469nm; 图 3 (a) 、 (b) 是试验 3-4材料的发射光谱、激发光谱,其发射光谱峰值为 470nm。

- 1. 若在化学组成表示式中 y=0, 即无 Ln 高子存在, Eu 的加入量对余解效果有一定的影响, 见表 4 中试验 1-1~7 所示。同对比样品 (CaSr) S: Bi 相比,该材料呈现一定的长余辉发光效果。进一步实验表明,当 Eu 的摩尔量 x小于 0.00001 和大于 0.2 时,其发光效果较差,因此给定 0.00001 ≤ x ≤ 0.2。
- 2. 若 x=0.004, Ln=Nd,加入量 y 的变化对应的条辉效果见表 4 中试验 $2-1\sim6$,加入量 y 以 $0.0001 \le y \le 0.3$ 为宜,可以看出余辉强度明显高于试验 $1-1\sim7$,这说明 Nd 的加入增加了材料的发光性能。 对试验 2-4 材料的发光 余辉随时间变化进行双对数余辉特性曲线绘制,该曲线基本是一条直线,达人眼最小可视光度 $0.32mcd/m^2$ 时间在 20h 以上。
- 3. 若 x=0.004, Ln=Dy, 加入量y的变化对余輝效果见表1中试验3-1~7, 加入量以0.0001≤y≤0.3为宜,可以看出余辉强度明显高于试验1-1~7, 这说明Dy的加入增加了材料的发光性能。对试验3-4材料的发光余辉随时间变化进行双对数余辉特性曲线绘制,该曲线基本是一条直线,见图4所示, 达人眼最小可视光度的时间在35h以上。
- 4. 若x=0.004, Ln分别为Ho、Tm、La、Pr、Tb、Ce、Mn、Bi、Sb、Sn及双元素Nd、Dy;Nd、Sn;Dy、Bi,其加入量y对应的余辉效果分别见表4之试验4~16。

以上结果可以看出这类材料的发光余辉效果均明显优于对比材料。 特别是加入Nd、Dy、Ho、Bi、Sn其效果更为显著。根据上述材料的晶体 结构和主要化合物,该兰色体系材料的化学表示式为Sr₂MgSi₂O₇:Eu、Ln。

二、黄色长余辉发光材料

当 M=Ca, M'=Mg, R=B2O3, a=2, b=1, c=2, d=0.15, 材料的化学组成

表示式为: $2CaO \cdot MgO \cdot 2SiO_2 \cdot 0.15B_2O_3$:Eux、Lny,改变 x 值、Ln 的元素及 y 值,其试验结果如表 5 所示。

表5

试 验	化学组成表示式	余海相对强度 10′ 60′
1-1 1-2 1-3 1-4 1-5 1-6 1-7	$\begin{array}{c} 2\text{CaO} \bullet \text{MgO} \bullet 2\text{SiO}_2 \bullet 0.15\text{B}_2\text{O}_3\text{:} \text{Eu}_0.0001\\ 2\text{CaO} \bullet \text{MgO} \bullet 2\text{SiO}_2 \bullet 0.15\text{B}_2\text{O}_3\text{:} \text{Eu}_0.0004\\ 2\text{CaO} \bullet \text{MgO} \bullet 2\text{SiO}_2 \bullet 0.15\text{B}_2\text{O}_3\text{:} \text{Eu}_0.001\\ 2\text{CaO} \bullet \text{MgO} \bullet 2\text{SiO}_2 \bullet 0.15\text{B}_2\text{O}_3\text{:} \text{Eu}_0.004\\ 2\text{CaO} \bullet \text{MgO} \bullet 2\text{SiO}_2 \bullet 0.15\text{B}_2\text{O}_3\text{:} \text{Eu}_0.01\\ 2\text{CaO} \bullet \text{MgO} \bullet 2\text{SiO}_2 \bullet 0.15\text{B}_2\text{O}_3\text{:} \text{Eu}_0.01\\ 2\text{CaO} \bullet \text{MgO} \bullet 2\text{SiO}_2 \bullet 0.15\text{B}_2\text{O}_3\text{:} \text{Eu}_0.1\\ 2\text{CaO} \bullet \text{MgO} \bullet 2\text{SiO}_2 \bullet 0.15\text{B}_2\text{O}_3\text{:} \text{Eu}_0.2\\ \end{array}$	127 217 201 404 238 417 223 389 152 345 56 127 45 87
2-1 2-2 2-3 2-4	2CaO • MgO • 2SiO ₂ • 0.15B ₂ O ₃ : Eu _{0.004} Dy _{0.005} 2CaO • MgO • 2SiO ₂ • 0.15B ₂ O ₃ : Eu _{0.004} Dy _{0.01} 2CaO • MgO • 2SiO ₂ • 0.15B ₂ O ₃ : Eu _{0.004} Dy _{0.05} 2CaO • MgO • 2SiO ₂ • 0.15B ₂ O ₃ : Eu _{0.004} Dy _{0.15}	387 1071 832 1324 914 1451 597 921
3-1 3-2	2CaO • MgO • 2SiO ₂ • 0.15B ₂ O ₃ : Eu _{0.004} Nd _{0.002} 2CaO • MgO • 2SiO ₂ • 0.15B ₂ O ₃ : Eu _{0.004} Nd _{0.01}	512 714 490 837
4-1 4-2	ZCaO • MgO • ZSiO ₂ • 0.15B ₂ O ₃ : Eu _{0.004} Ho _{0.01} ZCaO • MgO • ZSiO ₂ • 0.15B ₂ O ₃ : Eu _{0.004} Ho _{0.05}	482 694 531 728
5-1 5-2	2CaO • MgO • 2SiO ₂ • 0.15B ₂ O ₃ : Eu _{0.004} Tm _{0.01} 2CaO • MgO • 2SiO ₂ • 0.15B ₂ O ₃ : Eu _{0.004} Tm _{0.05}	417 623 465 704
6-1 6-2	2CaO • MgO • 2SiO ₂ • 0.15B ₂ O ₃ : Eu _{0.004} Ce _{0.0015} 2CaO • MgO • 2SiO ₂ • 0.15B ₂ O ₃ : Eu _{0.004} Ce _{0.06}	317 572 354 643
7-1 7-2	2CaO • MgO • 2SiO ₂ • O. 15B ₂ O ₃ : Eu _{0.004} Sn _{0.001} 2CaO • MgO • 2SiO ₂ • O. 15B ₂ O ₃ : Eu _{0.004} Sn _{0.004}	397 845 492 897
8-1 8-2	2CaO • MgO • 2SiO ₂ • 0.15B ₂ O ₃ : Eu _{0.004} Bi _{0.001} 2CaO • MgO • 2SiO ₂ • 0.15B ₂ O ₃ : Eu _{0.004} Bi _{0.004}	426 823 549 864
9-1	2CaO • MgO • 2SiO ₂ • 0.15B ₂ O ₃ : Eu _{0.004} Dy _{0.02} Nd _{0.01}	965 1534
10-1	2CaO • MgO • 2SiO ₂ • 0.15B ₂ O ₃ : Eu _{0.004} Dy _{0.02} Bi _{0.01}	873 1424
比较样品	(ZnCd) S: Cu	100 100

上表5试验材料经太阳光、日光灯或紫外灯照射后,呈现黄色余辉发光;在365nm紫外光激发下,呈现420~650nm宽带发射光谱,峰值535nm附近;监测535nm处,其激发光谱是500nm以下的宽带谱,说明该材料对短波光具有较强的吸收能力;经X-光衍射谱图确定主要化合物为Ca₂MgSi₂O₇;

由于加入的成分不同,其光谱的峰值可产生一定的位移。图 5(a)、(b)和图 6分别是试验 2-3 材料发射光谱、激发光谱和 X-光衍射谱图,其发射光谱峰值 535nm。

- 1. 若化学组成表示式中 y=0, Eu 的加入量对余辉效果有一定的影响,见表 5 中试验 1-1~7 所示。
- 2. 若 x=0.004, Ln=Dy, 加入量 y 的变化对余辉效果见表 5 中 $2-1\sim4$ 所示,可以看出 Dy 的加入增强了材料的发光性能,实验表明 Dy 加入量以 $0.0001 \le y \le 0.2$ 为佳, 图 7 是试验 2-3 材料的发光余辉随时间变化的双对数特性曲线。
- 3. 者 x=0.004 时, Ln分别为 Nd、Ho、Tm、Ce、Sn、Bi 以及双元素 Dy、Nd; By、Bi,加入量与余辉效果分别见表 5 中试验 3~10 所示,其发光余辉效果均明显优于对比材料。

根据上述材料的晶体结构和主要化合物,该黄色体系材料的化学表示式为Ca₂MgSi₂O₇:Eu、Ln。

三、绿色长余辉发光材料

当 M=Sro.5Cao.5, M'=Mg, R=B₂O₃, a=2, b=1, c=2, d=0.05, 材料的化学组成表示式为 2 (Sro.5Cao.5) 0 · MgO · 2SiO₂ · 0.05B₂O₃: Eux、lny, 改变x值、Ln元素及y值,其试验结果如表6所示。

试验		化学组成表	示式	余辉相 10′	对强度 60'
1-1 1-2 1-3 1-4 1-5 1-6	2 (Sr _{0.5} Ca _{0.5}) 0 2 (Sr _{0.5} Ca _{0.5}) 0 2 (Sr _{0.5} Ca _{0.5}) 0 2 (Sr _{0.5} Ca _{0.5}) 0	- Mg0 - $2SiO_z$ - $0.05B_zO_3$; - Mg0 - $2SiO_z$ - $0.05B_zO_3$;	Eu _{0.001} Eu _{0.004} Eu _{0.01} Eu _{0.02}	89.5 105.3 89.5 52.6 42.1 21	226. 3 247. 4 323 215 110. 5 57. 9
2-1 2-2 2-3 2-4 2-5	2 (Sr ₀ . 5Ca ₀ . 5) 0 2 (Sr ₀ . 5Ca ₀ . 5) 0 2 (Sr ₀ . 5Ca ₀ . 5) 0	• Mg0 • 2SiO ₂ • 0.05B ₂ O ₃ ; • Mg0 • 2SiO ₂ • 0.05B ₂ O ₃ ; • Mg0 • 2SiO ₂ • 0.05B ₂ O ₃ ; • Mg0 • 2SiO ₂ • 0.05B ₂ O ₃ ; • Mg0 • 2SiO ₂ • 0.05B ₂ O ₃ ;	Euo.oosDyo.oo4 Euo.oosDyo.oo8 Euo.oosDyo.o4	562 1237 1206 1246 1219	1515 3333 3158 3421 3591
3-1 3-2 3-3	2 (Sro. 5Cao. 5) 0	• Mg0 • 2SiO ₂ • 0.05B ₂ O ₅ ; • Mg0 • 2SiO ₂ • 0.05B ₂ O ₅ ; • Mg0 • 2SiO ₂ • 0.05B ₂ O ₅ ;	Eu _{0.005} Nd _{0.008}	1127 1212 11 4 6	2815 3032 3012
4-1 4-2	2 (Sr _{0.5} Ca _{0.5}) 0 2 (Sr _{0.5} Ca _{0.5}) 0	• Mg0 • 2SiO _z • 0.05B ₂ O ₃ ; • Mg0 • 2SiO _z • 0.05B ₂ O ₃ ;	:Eu _{0.005} H0 _{0.01} :Eu _{0.005} H0 _{0.05}	472 534	1324 1427
5-1 5-2	2 (Sr _{0.5} Ca _{0.5}) 0 2 (Sr _{0.5} Ca _{0.5}) 0	• MgO • 2SiO ₂ • 0.05B ₂ O ₅ ; • MgO • 2SiO ₂ • 0.05B ₂ O ₅ ;	Eu _{0.005} Tm _{0.01} Eu _{0.005} Tm _{0.05}	567 621	1624 17 3 5
6-1 6-2 6-3	2 (Sro. 56ao. 5) U	• Mg0 • 2SiO ₂ • 0.05B ₂ O ₃ ; • Mg0 • 2SiO ₂ • 0.05B ₂ O ₃ ; • Mg0 • 2SiO ₂ • 0.05B ₂ O ₃ ;	Eug. ogsCeg. ogs	116 95 116	184 174 216
7-1 7-2 7-3	$2(Sr_{0.5}Ca_{0.5})U$	• MgO • 2SiO ₂ • 0.05B ₂ O ₃ ; • MgO • 2SiO ₂ • 0.05B ₂ O ₃ ; • MgO • 2SiO ₂ • 0.05B ₂ O ₃ ;	Eun ansSin nos	118 2 34 121	267 349 254
8-1 8-2 8-3	$2(Sr_{0.5}Ca_{0.5})U$	• MgO • 2SiO ₂ • 0.05B ₂ O ₅ ; • MgO • 2SiO ₂ • 0.05B ₂ O ₅ ; • MgO • 2SiO ₂ • 0.05B ₂ O ₅ ;	Eug. onsTbg. onsa	89.5 94.7 31.6	231-6 242 368
9-1 9-2 9 -3	$2(Sr_{0.5}Ca_{0.5})0$	Mg0 • 2Si0 ₂ • 0.05B ₂ 0 ₃ ; Mg0 • 2Si0 ₂ • 0.05B ₂ 0 ₃ ; Mg0 • 2Si0 ₂ • 0.05B ₂ 0 ₃ ;	Eug. onsPin. nos	52.6 73.7 89.5	136.8 194.7 226.3
10-1 10-2 10-3	$2(Sr_{0.5}Ca_{0.5})0$	Mg0 • 2SiO ₂ • 0.05B ₂ O ₃ ; Mg0 • 2SiO ₂ • 0.05B ₂ O ₃ ; Mg0 • 2SiO ₂ • 0.05B ₂ O ₃ ;	Eun, nosBin, nos	1 54 282 297	317 431 442
11-1	2(Sr _{0.5} Ca _{0.5})0	• MgO • 2SiO ₂ • 0.05B ₂ O ₅ : B	Eu _{0.005} Dy _{0.02}	2042	4127
比较 样品	ZnS: Cu			100	100

上表6试验材料在太阳光、日光灯或紫外灯照射后,呈现绿色余辉发光;在365nm紫外光激发下,呈现430~600nm宽带发射光谱,峰值500nm附近;监测500nm处,其激发光谱是在460nm以下的宽带谱,这说明该材料对短波光具有较强的吸收能力;经X-光衍射数据分析,其衍射谱图与Sr₂MgSi₂O₇和Ca₂MgSi₂O₇谱图很相近,结合表示式中Sr、Ca摩尔配比,推断其主要化合物为(Sr₀.5Ca₀.5)₂MgSi₂O₇,如图9所示。由于加入成分不同,其光谱峰值可产生一定位移。图8(a)、(b)和图9分别是试验2-5材料的发射光谱、激发光谱和X-光衍射谱图,其发射光谱峰值为500nm。

- 1. 若在化学组成表示式中y=0, Eu 的加入量对余辉效果见表6中试验1-1~6所示。
 - 2. 若 x=0.005, Ln=Dy, 加入量 y 的变化对余辉效果见表 6 中试验 2-1~
- 3. 若 x=0.005 时, Ln=Nd, 加入量 y 的变化对余辉效果见表 6 中的试验 3-1~3, 可以看出余辉强度也是很高的, 余辉时间也很长。
- 4. 若 X=0.005, Ln 分别为 Ho、Tm、Ce、Sn、Tb、Pr、Bi, 其加入量对余 辉强度影响见表6试验4-10。
- 5. 若 X=0.005, Ln=Dy和Bi,其同时加入对发光余辉强度有较大的增强, 见表6中试验11。

根据上述材料的晶体结构和主要化合物, 该绿色体系材料的化学表示式为:(Sro.sCao.s) 2MgSi 207:Eu、Ln。

四、兰绿色--绿黄色长余辉发光材料

当 $M=Sr_{1-z}Ca_z$, M'=Mg, $R=B_2O_3$, a=2, b=1, c=2, d=0. 1, 材料的化学组成表示式为: $2(Sr_{1-z}Ca_z)$ $0 \cdot Mg$ $0 \cdot 2SiO_2 \cdot 0$. $1B_2O_3$: Eux、Lny, $0 \le z \le 1$, 随着z 值不同,其材料的发光余辉颜色不同,当z=0 则为兰色; z=1 则为黄色; z=0. 5则为绿色。随着z 值从0 到 1 的变化,即改变Sr 与 Ca 的比例,材料的发光颜色则呈现兰到绿到黄色的变化。

1. 表 7 列出在 2 (Sr_{1-z}Ca_z) 0·Mg 0·2Si 0₂·0.1B₂0₃: Eu_{0.004}、
Dy_{0.02}中,试验 Sr与 Ca 的比例变化对发射光谱峰值的影响,可以看出随

着 Z 值从 0~1的变化,发射光谱的峰值从 496nm 到 535nm, 致使发光颜色呈现兰、兰缘、绿、绿黄、黄的变化, 见表 7 所示。

表 7

2.	0	0-1	0-2	0.3	0.4	0.5	0.6	0.7	0-8	0.9	1
Sr	Sr	Sr _{0.9}	Sro. 8	Sr ₀₋₇	Sr _{o. 6}	Sr _{0.5}	Sr _{0.4}	Sr _{0. 3}	Sr _{0.2}	Sr ₀₋₁	0
Ca	o	Ca _{O-1}	(a _{0.2}	Ca _{0.3}	(a _{0.4}	Ca _{0.5}	Ca _{o-6}	Ca ₀₋₇	Ca _{o.e}	Ca _{0.9}	Ca
发射光谱 峰值(m)	469	473	48 2	485	496	500	505	509	517	532	535

- 2. 在 Z=0.25, 选择化学组成表示式 2 (Sr_{0.75}Ca_{0.25}) 0·Mg0·2Si₀₂·0.1B₂0₃: Eu_{0.004}、Ln_{0.02}试验, 如表 8 中试验 1~6 所示, 其材料呈兰绿色长余辉发光, Ln 离子的加入, 使其发光强度显著增强, 如表 8 中试验 2 与比较样品相比有很大差别, 呈现非常强的兰绿色余辉发光, 其发射光谱、激发光谱见图 11 (a)、(b) 所示。
- 3. 在 Z=0.75, 选择化学表示式 2 (Sro. 25 Cao. 75) 0 · Mg0 · 2SiO₂ · 0.1B₂O₃: Euo. 004、 Lno. 02 试验,如表 8 中试验 7-12 所示,其材料呈黄 绿色长余辉发光, Ln离子的加入,使其发光强度显著增强,如表 8 中试验 8 与比较样品相比有明显差别,其发射光谱、激发光谱见图 12 (a)、(b) 所示。

五、其它发光

1. 在化学组成表示式中, 当 M=Sr_{1-z}Ca_z, 其中 0≤z≤1, M'=Mg, R=B₂O₃, a=3, b=1, c=2, d=0.1, 即 3M0 · Mg0 · 2SiO₂ · 0.1B₂O₃: Eux、Lny, 该材料呈 现兰—黄绿色余辉发光。

表 9 中试验 1 选择 M=Sr, Ln=Dy、Nd, 该材料呈兰色 众辉发光。图 13 (a)、 (b) 和图 14分别是 $3Sr0 \cdot Mg0 \cdot 2Si0_2 \cdot 0 \cdot 1B_20_3$: Eu_{0.004}、Dy_{0.02}材料的发射光谱、激发光谱和 X—光衍射谱图,其发射光谱峰值为 462nm, 主要化合物是 $Sr_3MgSi_20_8$, 次要化合物是 Sr_2MgSi0_7 。材料的化学表示式: $Sr_3MgSi_20_8$: Eu、Ln。

表 9 中试验 2 选择 M=Ca, Ln=Dy、Nd, 该材料呈现浅绿色余辉发光。图 15 (a), (b) 和图 16 分别是 3 Ca0·Mg0·2 Si02: Euo.oo4、Dyo.oz 材料的发射光谱、激发光谱及 X-光衍射谱图,其发射光谱峰值 475nm, 主要化合物是 Ca₃Mg Si₂O₈,次要化合物是 Ca₂Mq Si₂O₇。

同样,当M=Sro.5Cao.5, Ln=Dy、Nd,该材料呈兰绿色余辉发光,其发光余辉效果见表9中试验3-1、2所示。

试验	化学组成表示式	余 海村 政	强度 60′	发光颜色
1-1	3SrO • MgO • 2SiO ₂ • 0. 1B ₂ O ₃ : Eu _{0.004} Nd _{0.02}	211	489	兰色发光
1-2	3SrO • MgO • 2SiO ₂ • 0. 1B ₂ O ₃ : Eu _{0.004} Dy _{0.02}	300	579	兰色发光
2-1	3CaO • MgO • 2SiO ₂ • 0. 1B ₂ O ₃ : Eu _{0.004} Nd _{0.02} 3CaO • MgO • 2SiO ₂ • 0. 1B ₂ O ₃ : Eu _{0.004} Dy _{0.02}	31.4	56.1	淡绿发光
2-2		67.1	146	淡绿发光
3-1	3 (Sr _{0. 5} Ca _{0. 5}) 0 • MgO • 2SiO ₂ • 0. 1B ₂ O ₃ : Eu _{0. 004} Dy _{0. 02} 3 (Sr _{0. 5} Ca _{0. 5}) 0 • MgO • 2SiO ₂ • 0. 1B ₂ O ₃ : Eu _{0. 004} Nd _{0. 02}	173	345	兰 绿发光
3-2		91	183	兰 绿发光
比較样品	(CaSr)S ≎Bi ZnS ≎Cu	100 100	100 100	

 $2 \cdot$ 在化学组成表示式中,当M代表 $Sr_{1-z}Ca_z$,其中 $0 \le z \le 1$,M′代表Mg, M和M′中元素可被0-40%摩尔的Ba、Zn、Cd、Be 所取代,材料可呈现兰、绿、黄等色余海发光。

M以Sr为主的材料呈现兰—兰绿色余辉,如表10中的试验1-1~4所示,其余辉发光效果以(CaSr)S:Bi为比较样品;M以Ca为主的材料呈现绿-黄色余辉,如表10中的试验2-1~4所示,其余辉发光效果以(ZnCd)S:Cu为比较样品;M以Sr和Ca为主的材料呈现绿色余辉,如表10中的试验3-1~2所示,其余辉发光效果以ZnS:Cu为比较样品。从表上可看出发光强度显著优于比较样品。

表!0

试验	化学组成表示式	余海村 10′	对强度
1-1	$\begin{array}{l} 2\left(Sr_{0.} \cdot 2N_{0. \cdot 1}\right)0 \cdot Mg0 \cdot 2SiO_{2} \cdot 0 \cdot 1B_{2}O_{3} : Eu_{0. \cdot 004} Dy_{0. \cdot 02} \\ 2Sr0 \cdot \left(Mg_{0. \cdot 2}Zn_{0. \cdot 1}\right)0 \cdot 2SiO_{2} \cdot 0 \cdot 1B_{2}O_{3} : Eu_{0. \cdot 004} Nd_{0. \cdot 02} \\ 2Sr0 \cdot \left(Mg_{0. \cdot 9}Ba_{0. \cdot 1}\right)0 \cdot 2SiO_{2} \cdot 0 \cdot 1B_{2}O_{3} : Eu_{0. \cdot 004} Dy_{0. \cdot 02} \\ 2\left(Sr_{0. \cdot 9}Cd_{0. \cdot 1}\right)0 \cdot Mg0 \cdot 2SiO_{2} \cdot 0 \cdot 1B_{2}O_{3} : Eu_{0. \cdot 004} Dy_{0. \cdot 02} \end{array}$	976	1793
1-2		1170	2104
1-3		836	1706
1-4		1031	1842
2-1	$ \begin{array}{l} 2 \left(\text{Ca}_{09} \text{Zn}_{01} \right) \cdot \text{MgO} \cdot 2 \text{SiO}_{2} \cdot 0.1 \text{B}_{2} \text{O}_{3} : \text{Eu}_{0004} \text{ Dy}_{002} \\ 2 \text{CaO} \cdot \left(\text{Mg}_{09} \text{Zn}_{01} \right) \cdot 2 \text{SiO}_{2} \cdot 0.1 \text{B}_{2} \text{O}_{3} : \text{Eu}_{0004} \text{ Dy}_{002} \\ 2 \left(\text{Ca}_{095} \text{Ba}_{005} \right) \cdot \text{MgO} \cdot 2 \text{SiO}_{2} \cdot 0.1 \text{B}_{2} \text{O}_{3} : \text{Eu}_{0004} \text{ Nd}_{002} \\ 2 \text{CaO} \cdot \left(\text{Mg}_{09} \text{Be}_{01} \right) \cdot \text{MgO} \cdot 2 \text{SiO}_{2} \cdot 0.1 \text{B}_{2} \text{O}_{3} : \text{Eu}_{0004} \text{ Dy}_{002} \\ \end{array} $	635	784
2-2		703	802
2-3		507	769
2-4		603	726
3-!	$ 2(Sr_{0.495}Ca_{0.495}Zn_{0.05})0 \cdot Mg0 \cdot 2SiO_2 \cdot 0.1B_2O_5: Eu_{0.004} Dy_{0.02} \\ 2(Sr_{0.5}Ca_{0.5})0 \cdot (Mg_{0.9}Ba_{0.1})0 \cdot 2SiO_2 \cdot 0.1B_2O_5: Eu_{0.004} Dy_{0.02} $	108 3	2835
3-2		1017	2786
比较样品	(CaSr) S: Bi (兰)	100	100
	(ZnCd) S: Cu (黄)	100	100
	ZnS: Cu (錄)	100	100

3. 当 M=Ba, a=5,b=0,c=8,R=B₂O₃,d=0.1,材料表示式为 5BaO·8SiO₂

 \cdot 0.1 B_2 0₃: Eux、Lny,选择 x=0.01,Ln=By,y=0.02,试验合成材料呈浅绿色发光,其主要化合物为 Ba₅Si₈O₂₁。其发射光谱、激发光谱如图 17(a)、(b) 所示,表11为其余辉相对效果。用 Ca、Sr、Zn、Cd、Be取代部分 Ba也有长余辉发光效果。

表门

试验	表 示 式	· 余辉相:	对强度 60′
1-1	Ba ₅ Si ₈ O ₂₁ :Eu, Dy	87.4	174
比较样品	ZnS: Cu	100	100

4. 当 M=Zn, R=B₂O₃, a=Z, b=O, c=1, d=O.1, Ln=Dy和Mn, x=O.01, y=O.02, 试验合成材料呈浅绿色余辉发光, 其主要化合物为 Zn₂SiO₄: Eu、Dy、Mn, 其余辉发光效果见表 12 所示。用 Ca、Sr、Ba、Cd、Be 取代部分 Zn也有长余辉发光效果。

表 12

	表示式	余辉相	对强度
试验		10'	60'
1-1	Zn ₂ SiO ₄ :Eū、Dy、Mn	32.6	95.8
比较样品	ZnS: Cu	100	100

在材料的合成中,制成同一化合物时,使用含有Mg元素的原料中,用碱式碳酸镁比氧化镁制得的材料发光强度要高 50%以上。

本发明还发现在材料的原料中加入其重量 0-15%的其它化合物成分参与固相反应,有助于提高产品的长余辉发光强度,改善产品的合成质量,而不影响材料的主要晶体结构。在绿黄材料中加入一些化合物的效果如表13所示。

表 13 试验选用绿黄材料,取 $M=S_{10.3}Ca_{0.7}$, M'=Mg, $R=B_2O_3$, Ln=Dy, a=2.5, b=1.2, c=2.5, d=0.1, x=0.02, y=0.1。

表13 其它化合物的加入影响试验

试	化学组成表示式	化加入成	加入量	发光余辉相对强度	
			(mol)	10'	60'
1	2.5(Sr _{0.3} Ca _{0.7} 0) • 1.2Mg0 • 2.5SiO ₂ • 0.1B ₂ O ₃ ; Eu _{0.02} Dy _{0.1}	0	0	643	1374
2	2.5(Sr _{0.3} Ca _{0.7} 0) • 1.2Mg0 • 2.5SiO ₂ • 0.1B ₂ O ₃ :Eu _{0.02} Dy _{0.1}	NH ₄ C1	0.1	684	1427
3	2.5(Sr _{0.3} Ca _{0.7} 0) • 1.2Ng0 • 2.5SiO ₂ • 0.1B ₂ O ₃ :Eu _{0.02} Dy _{0.1}	NH ₄ F ₂	0.1	672	1 39 5
4	2.5(Sr _{0.3} Ca _{0.7} 0) • 1.2Mg0 • 2.5SiO ₂ • 0.1B ₂ O ₃ :Eu _{0.02} Dy _{0.1}	Li ₂ CO ₃	0.05	693	1432
5	2.5(Sr _{0.3} Ca _{0.7} 0) • 1.2Mg0 • 2.5SiO ₂ • 0.1B ₂ O ₃ :Eu _{0.02} Dy _{0.1}	StF2	0.1	675	1398
6	2.5(Sr _{0.3} Ca _{0.7} 0) • 1.2Mg0 • 2.5SiO ₂ • 0.1B ₂ O ₃ : Eu _{0.02} Dy _{0.1}	CaFz	0.1	663	1388
7	$2.5(Sr_03Ca_{07}O) \cdot 1.2MgO \cdot 2.5SiO_2 \cdot 0.1B_2O_3: Eu_{002}Dy_{01}$	CaSO₄	0.1	670	1391
8	2.5(Sr _{0.3} Ca _{0.7} O) • 1.2MgO • 2.5SiO ₂ • 0.1B ₂ O ₃ : Eu _{0.02} Dy _{0.1}	SrS04	0.1	675	1382
9	2.5(Sr _{0.3} Ca _{0.7} 0) • 1.2Ng0 • 2.5SiO ₂ • 0.1B ₂ O ₃ : Eu _{0.02} Dy _{0.1}	StHP04	0.1	682	1407
10	2.5(Sr _{0.3} Ca _{0.7} 0) • 1.2Mg0 • 2.5SiO ₂ • 0.1B ₂ O ₃ : Eu _{0.02} Dy _{0.1}	CaHPO ₄	0.1	6 67	1379

在化学组成表示式中的其它组合中,同样也可发现这些化合物的加入或多或少地影响余辉效果。

本发明的材料具有良好的耐水性能和稳定性,在同一条件下,将现有技术的铝酸盐长余辉材料和本发明的硅酸盐长余辉材料分别放入水中,发现铝酸盐材料三天后即开始水解,一周后将完全分解,丧失发光性能,而硅酸盐材料在同样条件下3个月后未见分解,仍可见发光。

本发明产品可广泛用于室内外的各种长余辉发光制品,作为夜间或 黑暗条件的指示标识和装饰美化,该材料可与涂料、塑料、橡胶、油墨 等介质结合,在建筑、交通、装修装饰、消防应急、日用品、钟表、渔具、 玩具等领域,具有较好用途。

本发明与现有技术相比具有三大特点:

- (1) 发明了以硅酸盐为主要基质成分的新型体系长余辉发光材料, 具有较高的化学稳定性和耐水性能,并实现了兰、兰绿、绿、绿黄、黄 的多种颜色长余辉发光。
- (2) 在该体系材料中,发现了多种离子对输离子发光的显著增强作用,提高了材料的发光性能。
 - (3) 硼和磷元素化合物的添加, 进一步改善了材料的发光性能。

图表说明:

- 图 1 表示 Sr 2 Mg Si 2 O 7: Eu 材料的发射光谱 (a) 和激发光谱 (b)
- 图 2 表示 Sr₂MgSi₂O₇: Eu 材料的 X- 光衍射谱
- 图 3表示 SrzMgSizOr: Eu Dy材料的发射光谱 (a) 和激发光谱 (b)
- 图 4表示 Sr₂MgSi₂O₇: Eu Dy 材料的余辉特性曲线
- 图 5 表示 Ca₂MgSi₂O₇: Eu Dy 材料的发射光谱 (a) 和激发光谱 (b)
- 图 6 表示 Ca₂MgSi₂O₇: Eu Dy 材料的 X-光衍射谱
- 图 7表示 Ca₂MgSi₂O₇: Eu Dy 材料的余辉特性曲线
- 图 8 表示 (Sr_{0.5}Ca_{0.5}) ₂MgSi₂O₇: Eu By 材料的发射光谱 (a) 和激发光谱 (b)
- 图 9 表示 (Sro. 5 Cao. 5) 2 Mg Si 2 O7: Eu Dy 材料的 X- 光衍射谱
- 图 10 表示 (Sro. 5Cao. 5) 2 Mg Si 2 O7: Eu Dy 材料的余辉特性曲线
- 图 11表示 (Sr_{0.75}Ca_{0.25})₂MgSi₂O₇: Eu Dy 材料的发射光谱 (a) 和激发光谱 (b)
- 图 12 表示 (Sr_{0.25}Ca_{0.75})₂MgSi₂O₇; Eu Dy 材料的发射光谱 (a) 和激发光谱 (b)
- 图 13表示 Sr 3 Mg Si 20a: Eu By 材料的发射光谱 (a) 和激发光谱 (b)
- 图 14表示 Sr 3 Mg Si 20a: Eu Dy 材料的 X-光衍射谱
- 图 15表示 Ca 3 Mg Si 2 Oa: Eu Dy 材料的发射光谱 (a) 和激发光谱 (b)
- 图 16 表示 Ca 3 Mg Si 2 Oe: Eu Dy 材料的 X- 光衍射谱
- 图 17 表示 Ba 5 Si 8 O 21: Eu Dy 材料的发射光谱 (a) 和激发光谱 (b)

实施例

例 1. 2Sr0·Mg0·2Si02·0.1B203:Euo.004材料的合成和分析结果原料配比

元素	摩尔数	原料	数量
Sr	1.996	SrCO ₃ 4MgCO ₃ • Mg (OH) ₂ • 5H ₂ O SiO ₂ B ₂ O ₃ Eu ₂ O ₃	294.6克
Mg	1		97.1克
Si	2		120克
B	0.2		6.96克
Eu	0.004		0.704克

将其研细混匀后,装入氧化铝坩埚,置入高温炉中,通入氦气(NH₃),于1350 ℃烧结3小时,冷却,再将烧成物粉碎,100目筛网过筛,制得实

例材料。

该实例材料外观呈灰白色,经太阳光照射后,在暗处呈现出兰色余辉发光;材料进行发光余辉强度测量,如表 4 中实验 1 - 4 所示;对实例材料进行光谱和结构测试,如图 1 (a)、(b) 和图 2 分别是实例材料的发射光谱、激发光谱和 X - 光衍射谱图,该材料的主要晶体结构是黄长石的结构,其化合物是 $Sr_2MgSi_2O_7$ 。根据其主要化合物,确定材料的化学表示式 $Sr_2MgSi_2O_7$: Eu。

例 2. 2Sr0·Mg0·2Si02·0.1B203: Euo.oo4Dyo.o4材料的合成和分析结果

原料配比

元素	摩尔数	原料	数量
Sr	1.96	SrCO ₃ 4MgCO ₃ • Mg (OH) ₂ • 5H ₂ O SiO ₂ H ₃ BO ₃ Eu ₂ O ₃ Dy ₂ O ₃	289.3克
Mg	0.996		96.7克
Si	2		120克
B	0.2		12.56克
Eu	0.004		0.704克
Dy	0.04		7.46克

将其在乙醇溶液中研细混匀烘干后, 装入氧化铝坩锅, 置于高温炉中, 通入氦气 (NH₃),于1350 ℃ 烧结 3小时,冷却,烧成物粉碎,100 目筛网过筛, 制得实例材料。

该实例材料外观呈灰白色,经日光灯照射后,在暗处呈现出很强的 兰色余辉发光;材料的发光余辉相对强度如表 4 中试验 3-4 所示,其强度 值明显高于实例 1;材料的余辉时间长,如图 4 所示;图 3(a)、(b) 为材料 的发射光谱、激发光谱;材料的主要化合物为 Sr₂MgSi₂O₇,与例 1相同,因 此确定材料的化学表示式 Sr₂MgSi₂O₇:Eu、Dy。

例 3. Sr0·3Mg0·2Si02·0.05P205:Euo.oo4 Ndo.o1 材料的合成原料配比

元素	摩尔数	原料	数量
Sr	0.993	SrCO ₅	146.6克
Mg	2.993	4MgCO ₃ • Mg (OH) 2 • 5H ₂ O	290.6克
Si	2	SiO ₂	120克
P	0.1	(NH ₄) ₂ HPO ₄	13.2克
Eu	0.004	Eu ₂ 0 ₃	0.704克
Nd	0.01	Nd ₂ O ₃	1.68克

将其在丙酮溶液中研细混匀烘干后, 装入氧化铝坩锅, 置于高温炉中, 通入氢气 (H_2) , 于 1350 °C 烧结 3小时, 冷却, 烧成物粉碎, 100 目 筛网过筛, 制得实例材料。

该实例材料经紫外灯照射后,呈较强的兰色余辉发光,经X-光衍射分析,其主要化合物成分为 $Sr_2MgSi_2O_7$ 和 Mg_2SiO_4 。因此材料采用化学组成表示式 $SrO \cdot 3MgO \cdot 2SiO_2 \cdot O.05P_2O_5$: Eu、 Nd_o

例 4. 2CaO·MgO·2SiO₂·0.15B₂O₃:Eu_{0.004} Dy_{0.05}材料的合成和分析结果

原料配比

元素	摩尔数	原料	数量
Ca	1.946	CaCO ₃ 4MgCO ₃ • Mg (OH) ₂ • 5H ₂ O SiO ₂ H ₃ BO ₃ Eu ₂ O ₃ Dy ₂ O ₃	194.6克
Mg	1		97.1克
Si	2		120克
B	0.3		18.84克
Eu	0.004		0.764克
Dy	0.05		9.325克

将其研细混匀后,装入氧化铝坩埚,置于高温炉中,通入氢气和氮气 (H₂30%+N₂70%),于1320 ℃烧结5小时,冷却,烧成物粉碎,100目筛网过筛,制得实例材料。

该实例材料外观呈浅黄色,经日光灯照射后,在暗处呈现出很强的 黄色余辉发光;材料的发光余辉相对强度值如表5中试验2-3所示,其强 度明显高于表 5 中的试验 1-4, 其发射光谱、激发光谱如图 5(a)、(b) 所示;材料的余辉时间长,图 7 为材料的余辉特性曲线;材料的主要化合物为 $Ca_2MgSi_2O_7$,如图 6 所示,因此确定材料的化学表示式 $Ca_2MgSi_2O_7$: Eu、Dy。

例 5.1.5CaO·3MgO·2SiO₂·0.15B₂O₃:Eu_{0.004}Ho_{0.08}材料的合成 原料配比

元素	摩尔数	原料	数量
Ca	1.5	CaCO ₃ 4MgCO ₃ • Mg (OH) 2 • 5H ₂ O H ₂ SiO ₃ B ₂ O ₃ EU ₂ O ₃ HO ₂ O ₃	150 克
Mg	3		291·3克
Si	2		156克
B	0.15		10·44克
Eu	0.004		0·704克
Ho	0.08		15·1克

该实例材料合成制备方法同例1。

该材料经紫外灯照射后,呈浅黄色余辉发光;经X-光衍射分析,其化合物成分是 $Ca_2MgSi_2O_7$ 、 $CaMgSiO_4$ 和 $Ca_3Si_2O_7$ 。材料的化学组成表示式 $1.5CaO \cdot 3MgO \cdot 2SiO_2 \cdot 0.15B_2O_3$: Eu、Ho。

例 6. 2(Sr_{0.5}Ca_{0.5})0·MgO·2SiO₂·0.05B₂O₃:Eu_{0.005} Dy_{0.08} 原料配比

元素	摩尔数	原料	数量
Sr	1	SrCO ₃	147.6克
Ca	1	CaCO ₃	100克
Mg	1	4MgCO ₃ • Mg (OH) z • 5H ₂ O	97.1 克
Si	2	SiO ₂	120克
В	0.1	H ₃ BO ₃	6.28克
Eu	0.005	Ev_2O_3	0.88克
Dy	0.08	Dy ₂ 0 ₃	14.92克

将其研细混匀后,装入氧化铝坩埚,置于高温炉中,通入氨气 (NH₃), 于1330 ℃烧结3小时,冷却,烧成物粉碎,100目筛网过筛, 制得实例材料。

该实例材料呈浅绿色,经日光灯照射后,呈现出很强的绿色余辉发光;其发光余辉相对强度如表6所示,其发射光谱、激发光谱和X-光衍射

光;其发光余辉相对强度如表 6 所示,其发射光谱、激发光谱和 X-光衍射图如图 B(a)、(b) 和图 9 所示:材料的余辉时间长,图 10 为材料的余辉特性曲线。材料化学表示式为 $(Sr_0.5Ca_0.5)_2MgSi_2O_7$: Eu、Dy。

例 7. 2(Sr_{0.25}Ca_{0.75}) 0·Mg 0·2.3Si 0₂·0.05P₂0₅: Eu_{0.01} Nd_{0.02} 材料的合成

原料配比

元素	摩尔数	原料	数量
Sr	0.5	$Sr(NO_3)_2$ $Ca(NO_3)_2 \cdot 4H_2O$ $Mg(NO_3)_2 \cdot 6H_2O$ $硅胶$ $NH_4H_2PO_4$ Eu_2O_3 Nd_2O_3	105.8克
Ca	1.5		354克
Mg	1		256.4克
Si	2.3		138克
P	0.1		11.5克
Eu	0.01		1.76克
Nd	0.02		3.36克

该实例材料合成侧备方法同例1。

该材料经日光灯照射后,呈现绿黄色余辉发光;材料的 X-光衍射谱图与例 6 中图 9 很相似,因此推断其化合物为 $(Sr_{0.25}Ca_{0.75})_2MgSi_2O_7$,其化学表示式 $(Sr_{0.25}Ca_{0.75})_2MgSi_2O_7$: Eu、Nd。

例 8.3Sr0·Mg0·2Si02:Euo.o1Hoo.o8材料的合成

原料配比

元素	摩尔数	原料	教量
Sr	3	Sr (NO ₃) ₂ Mg0 H ₂ SiO ₃ Eu ₂ O ₃ Ho ₂ O ₃	634.8克
Mg	1		40.3克
Si	2		156克
Eu	0.01		1.76克
Ho	0.08		15.1克

该实例材料合成制备方法同例1。

该实例材料经太阳光照射后, 呈兰色余辉发光,材料的主要化合物成

例 9.2(Sr_{0.6}Ca_{0.4}) 0 · (Mg_{0.8}Cd_{0.2}) 0 · 2.5Si 0₄ · 0.1B₂O₃: Eu_{0.01} Dy_{0.02} Bi_{0.01} 材料的合成

原料配比

元素	摩尔数	原料	数量
Sr	1.3	SrCO ₃	177.1克
Ca	0.8	CaCO ₃	80 克
Mg	0.8	4MgCO ₃ • Mg (OH) 2 • 5H ₂ O	77.7克
Cd	0.2	' CdO	25.7克
Si	2.5	SiO _z	150 克
В	0.2	B ₂ O ₅	6.96克
Eu	0.01	Eu ₂ 0 ₃	1.76克
Dy	0-02	Dy ₂ 0 ₃	3.73克
Bi	0.01	Bi ₂ 0 ₃	2.33克

在以上混合原料中,加入其重量 5%的 NH₄Cl, 研细并混匀后, 烧结工艺如例1, 制备出的材料, 经太阳光照射后, 呈现很强的兰绿色余辉发光。

例 10. 5Ba0 · 8Si0₂ · 0.1B₂0₃: Eu_{0.01} Dy_{0.02} 材料的合成 原料配比

元素	摩尔数	原料	数量
Ba	5	BaCO ₅	985 克
Si	8	SiO ₅	480 克
B	0•2	B ₂ O ₅	6·96克
Eu	0•01	Eu ₂ O ₅	1·76克
Dy	0•02	Dy ₂ O ₅	3·73克

该实例材料的合成制备方法同例 1,经太阳光照射后,在暗处呈现浅绿色余辉发光,材料的化合物为 $Ba_5Si_8O_{21}$,其化学表示式为 $Ba_5Si_8O_{21}$: Eu、Dy。

...

