ДЗ н4 (31 января).

Задача ДЗ-н4-1 (2 балла).

Рассмотрим свободную частицу, гамильтониан которой есть $\hat{H} = \hat{\mathbf{p}}^2/2m$. Рассматривая оператор скорости $\hat{\mathbf{v}}$ по общему правилу как производную оператора координаты $\hat{\mathbf{r}}$ по времени, найдите $\hat{\mathbf{v}}$ в явном виде и выразите его через оператор импульса.

Задача ДЗ-н4-2 (4 балла).

Рассмотрим одномерную заряженную частицу с зарядом e в электрическом поле \mathcal{E} . Используя гайзенберговские операторы $\hat{x}(t)$ и $\hat{p}(t)$, найдите закон движения и расплывания волнового пакета из задачи ДЗ-нЗ-1, т.е. найдите $\langle \hat{x}(t) \rangle$, $\langle \hat{p}(t) \rangle$, $\langle \Delta x^2(t) \rangle$, $\langle \Delta p^2(t) \rangle$ для состояния с волновой функцией

$$\psi(x) = \frac{1}{\pi^{1/4}\sqrt{a}} \exp\left[\frac{ip_0 x}{\hbar} - \frac{(x - x_0)^2}{2a^2}\right].$$

$Задача \ ДЗ-н4-3* \ (2 \ балла).$

Найдите проекционные операторы \hat{P}_+ и \hat{P}_- , проектирующие волновую функцию $\psi(\mathbf{r})$ на состояния, чётные и нечётные относительно инверсии координат соответственно. Выразите результат через оператор инверсии \hat{I} . Проверьте, чему равно \hat{P}_\pm^2 и $\hat{P}_+ + \hat{P}_-$.