ALGORITMOS E PROGRAMAÇÃO DE COMPUTADORES II

Árvores

Árvores

Em listas, temos uma linearidade dos elementos: nós adjacentes, com a identificação de sucessor e antecessor.

Diversas aplicações necessitam de estruturas mais complexas do que listas lineares.

- Listas não lineares: árvores, grafos, etc.

Exemplo

Motivação

Inúmeros problemas podem ser representados e tratados por árvores.

Permitem tratamento computacional eficiente quando comparadas a estruturas mais genéricas como grafos (que são mais flexíveis e, portanto, mais complexos).

Árvores são ótimas para busca.

Conceitos

Uma árvore T é um conjunto finito de elementos denominados nós ou vértices, tal que:

- T é uma árvore vazia, ou
- Existe um nó especial R, chamado raiz de T; os nós restantes constituem um único conjunto vazio ou são divididos em m conjuntos não vazios que são as subárvores de R, sendo que cada subárvore é, por sua vez, uma árvore.

Conceitos

Conceitos

Nós filhos, pais, tios, irmãos e avô.

Grau de saída de um nó e grau da árvore.

Nó folha e nó interior.

Nível e altura de um nó e altura de uma árvore.

Árvores binárias

Árvores com grau 2, ou seja, cada nó pode ter 2 filhos, no máximo.

Terminologia:

- filho esquerdo
- filho direito
- informação

Também chamadas 'árvores de pesquisa' ou 'árvores ordenadas'.

Definição: uma árvore binária com raiz R é uma ABB se:

- a chave (informação) de cada nó da subárvore da esquerda de R é menor do que a chave do nó R
- a chave de cada nó da subárvore da direita de R é maior do que a chave do nó R.
- as subárvores esquerda e direita também são ABBs.

Exemplos

Por que ABBs são eficientes?

Para se buscar em uma ABB:

- Em cada nó, compara-se o elemento buscado com o elemento presente
 - Se menor, percorre-se a subárvore esquerda
 - Se maior, percorre-se a subárvore direita.
- Desce-se verticalmente até as folhas, no pior caso, sem passar por mais de um nó em um mesmo nível.
- Assim, no pior caso, a busca passa por tantos nós quanto for a altura da árvore.

Exemplo de busca: elemento E

Nível	Quantos nós cabem?
1	1
2	3
3	7
4	15
10	1.023
13	8.191
16	65.535
18	262.143
20	1.048.575
30	1.073.741.823
N	2 ^N - 1

ALGORITMOS E PROGRAMAÇÃO DE COMPUTADORES II

Árvores