0368-3248-01-Algorithms in Data Mining

Fall 2013

Lecture 13: Algorithms in Data Mining - Exam

Lecturer: Edo Liberty

Warning: This note may contain typos and other inaccuracies which are usually discussed during class. Please do not cite this note as a reliable source. If you find mistakes, please inform me.

General Info

- 1. Solve 3 out of 4 questions.
- 2. Each correct answer is worth 35 points and each question part is worth 7 points.
- 3. Since the maximal grade is 105, grades will potentially be rounded down to 100.
- 4. If you solved more than three questions, please indicate which three you would like to be checked.
- 5. The exam's duration is 3 hours. If you need more time please ask the attending professor.
- 6. Good luck!

Useful facts

1. For any vector $x \in \mathbb{R}^d$ we define the p-norm of x as follows:

$$||x||_p = \left[\sum_{i=1}^d (x(i))^p\right]^{1/p}$$

2. Markov's inequality: For any non-negative random variable X:

$$\Pr[X > t] \le E[X]/t.$$

3. Chebyshev's inequality: For any random variable X:

$$\Pr[|X - E[X]| > t] \le \operatorname{Var}[X]/t^2.$$

4. Chernoff's inequality: Let x_1, \ldots, x_n be independent $\{0,1\}$ valued random variables. Each x_i takes the value 1 with probability p_i and 0 else. Let $X = \sum_{i=1}^n x_i$ and let $\mu = E[X] = \sum_{i=1}^n p_i$. Then:

$$\Pr[|X - \mu| > \varepsilon \mu] \le 2e^{-\mu \varepsilon^2/4}$$

5. For $z \in [0,1]$ we have $e^z < 1 + z + z^2$ and that $1 + z^2 < e^{z^2}$

Probabilistic inequalities 1

setup

In this question you will be asked to derive a version of the Chernoff bound for sums of independent mean zero random variables. Let X_1, \ldots, X_n be a independent random variables such that

$$|X_i| \le R$$
 and $\mathbb{E}[X_i] = 0$ and $\mathbb{E}[X_i^2] = \sigma_i^2$

Let
$$\sigma^2 = \sum_{i=1}^n \sigma_i^2$$
 and $X = \sum_{i=1}^n X_i$.

questions

- 1. Prove that $\mathbb{E}[X] = 0$ and that $\mathbb{E}[X^2] = \sigma^2$
- 2. Argue that for any positive parameter $\lambda > 0$ we have:

$$\Pr[X > t] \le \frac{\prod_{i=1}^{n} \mathbb{E}[e^{\lambda X_i}]}{e^{\lambda t}}$$

Explain each step in the derivation and indicate what properties of the random variables X_i are used.

3. Argue that for any $\lambda \in (0, 1/R]$

$$\mathbb{E}[e^{\lambda X_i}] \le e^{\lambda^2 \sigma_i^2}$$

Explain each step in the derivation and indicate what properties of the random variables X_i are used. **Hint:** you should use the fact that for any $z \le 1$ we have $e^z < 1 + z + z^2$ and that $1 + z^2 < e^{z^2}$.

4. Conclude that for $\lambda = \min\{t/2\sigma^2, 1/R\}$ we obtain:

$$\Pr[X > t] \leq e^{-t^2/4\sigma^2} \text{ if } t \leq 2\sigma^2/R$$

$$\Pr[X > t] \leq e^{-t/2R} \text{ if } t \geq 2\sigma^2/R$$

$$(1)$$

$$\Pr[X > t] \le e^{-t/2R} \text{ if } t \ge 2\sigma^2/R \tag{2}$$

5. Let Z_1, \ldots, Z_n be random indicator variables such that $Z_i = 1$ with probability p_i and $Z_i = 0$ else. Let $Z = \sum_{i=1}^n Z_i$ and $\mu = \mathbb{E}[Z] = \sum_{i=1}^n p_i$. Using the above, conclude that for $\varepsilon \in [0, 1]$:

$$\Pr[Z - \mu > \varepsilon \mu] \le e^{-\mu \varepsilon^2/4}$$

Hint: notice that you cannot apply the above directly because $\mathbb{E}[Z_i] = p_i \neq 0$. However the fact that $\mathbb{E}[Z_i - p_i] = 0$ might assist you.

2 Approximate item frequencies

setup

We are given a stream of n integers $a_1, \ldots, a_n \in [m]$. We define the frequency of item i to be the number of times i appeared in the stream. That is, $f_i = \sum_{j \in [n]} 1_{a_j = i}$. Assume we also hold an array b of ℓ counters, initially set to zero. Finally we assume a perfect hash function $h : [m] \to [\ell]$. The question will discuss the result of the following algorithm.

```
b \leftarrow \text{empty counters array of size } \ell \text{ initialized to } 0.
h \leftarrow \text{perfect hash function from } 1, \dots, m \text{ to } 1, \dots, \ell.
\text{for } i \in a_1, \dots, a_n \text{ do}
b[h(i)] \leftarrow b[h(i)] + 1
\text{end for}
```

Particularly, we will examine the relation between f_i and b[h(i)]. Throughout the question we will denote by $h^{-1}(i)$ the set of indexes that collide with i using the hash function h, namely, $h^{-1}(i) = \{j | h(i) = h(j)\} \setminus \{i\}$.

questions

- 1. What is the probability that $j \in h^{-1}(i)$ for $j \neq i$.
- 2. Show that by the end of the stream $b[h(i)] = f_i + \sum_{i \in h^{-1}(i)} f_i$.
- 3. Show that $\mathbb{E}[b[h(i)]] = f_i + (n f_i)/\ell$.
- 4. Show that $\operatorname{Var}[b[h(i)]] \leq \sum_{j \in [m]} f_j^2 / \ell$.
- 5. Use Chebyshev's inequality and your results for 3 and 4 to find a value of ℓ such that

$$\Pr[b[h(i)] > f_i + \varepsilon n] \le \delta$$

It might help to notice that $n = \sum_{i \in [m]} f_i \ge \sqrt{\sum_{i \in [m]} f_i^2}$.

3 Approximate median

setup

Given a list A of n numbers a_1, \ldots, a_n , we define the rank of an element $r(a_i)$ as the number of elements that are smaller than it. For example, the smallest number has rank zero and the largest has rank n-1. Equal elements are ordered arbitrarily. The median of A is an element a such that r(a) = n/2. An α -approximatemedian is a number a such that:

$$n(1/2 - \alpha) \le r(a) \le n(1/2 + \alpha)$$

In this question we sample k elements uniformly at random with replacement from the list A. Let the samples be $\{x_1, \ldots, x_k\} = X$. You will be asked to show that the median of X is an α -approximate-median of A for some value of k.

questions

1. What is the probability the a randomly chosen element x is such that:

$$r(x) > n(1/2 + \alpha)$$

- 2. Let us define $X_{>\alpha}$ as the set of samples whose rank is greater than $n(1/2 + \alpha)$. More precisely, $X_{>\alpha} = \{x_i \in X | r(x_i) > n(1/2 + \alpha)\}$. Similarly we define $X_{<\alpha} = \{x_i \in X | r(x_i) < n(1/2 \alpha)\}$. Prove that if $|X_{>\alpha}| < k/2$ and $|X_{<\alpha}| < k/2$ then the median of X is an α -approximate-median of A.
- 3. Let $Z = |X_{>\alpha}|$. Find t for which:

$$\Pr[Z \ge k/2] = \Pr[Z \ge (1+t)E[Z]]$$

(Hint: this is only an auxiliary step that is supposed to help you relate k/2 and $\mathbb{E}[Z]$ in a form similar to Chernoff's bound)

- 4. Bound from above the probability that $Z \ge k/2$ as tightly as possible. If you do so using a probabilistic inequality, justify your choice.
- 5. What value of k will guarantee that $|X_{>\alpha}| < k/2$ and $|X_{<\alpha}| < k/2$ simultaneously with probability at least 1δ ?

4 k-means clustering with equal cluster sizes

\mathbf{setup}

You are given n vectors $X = \{x_1, \dots, x_n\}$ and $x_i \in \mathbb{R}^d$. The k-means cost function for X and a set of k centers $M = \{\mu_1, \dots, \mu_k\}$ is defined as:

$$f(X, M) = \sum_{i=1}^{n} \min_{j} ||x_i - \mu_j||^2 = \sum_{j=1}^{k} \sum_{i \in S_j} ||x_i - \mu_j||^2$$

where $i \in S_j$ if the center closest to x_i is μ_j . From here on, we will denote by $\mathrm{OPT}(X,k)$ the lowest possible value of f using k clusters for the points X. Namely, $\mathrm{OPT}(X,k) = f(X,M^*)$ where $M^* = \arg\min_{|M|=k} f(X,M)$. Moreover, we denote by $\mathrm{ALG}(X,k)$ the cost of f(X,M) where each center μ_j is picked uniformly at random (with replacement) from X. In other words, for every i and j we have $\mathrm{Pr}[\mu_j = x_i] = 1/n$. Note that $\mathrm{ALG}(X,k)$ is a random variable which depends on the choice of centers.

To make things simpler, we assume that the best solution is obtained with equal cluster sizes. That it $|S_i^*| = n/k$ for all j and n/k is an integer.

questions

1. We start with the case of k=1. That is, there is only one center. In this case the optimal center has a closed form solution which is $\mu_1^* = \frac{1}{n} \sum_{i=1}^n x_i$. Show that

$$OPT(X,1) = \sum_{i=1}^{n} x_i^T x_i - \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} x_i^T x_j$$

- 2. Compute $\mathbb{E}[ALG(X,1)]$. Show that $\mathbb{E}[ALG(X,1)] = 2OPT(X,1)$.
- 3. We now turn to the more interesting case where k > 1. Define E_{cover} to be the event that the algorithm picks exactly one point from each optimal cluster S_j^* . Show that $\Pr(E_{cover}) \ge e^{-k}$. **Hint:** you might find Stirling's formula useful: $\log(k!) = k \log(k) k + O(\log(k))$.
- 4. Argue that given that E_{cover} happens the expected cost of the algorithm is low. That is

$$\mathbb{E}[ALG(X, k)|E_{cover}] \leq 2OPT(X, k).$$

5. Given the observation above, describe an algorithm whose running time is $O(e^k \log(1/\delta)dkn)$ that produced a set of centers M such that $f(X, M) \leq 4 \text{OPT}(X, k)$ with probability at least $1 - \delta$.