Basic Circuit Principles

Dr. Albert T. L. Lee

Department of Electrical and Electronic Engineering
Faculty of Engineering
The University of Hong Kong

Basic Concepts

- I. Charge and Current
- II. Voltage
- III. Power and Energy
- IV. Circuit Element

Motivation

- An electric circuit is an interconnection of electrical elements.
- What is circuit analysis?
 To predict how a circuit behaves without implementing it
- For a simple circuit, it is trivial

$$I = 10 \text{ V} / 5 \Omega = 2 \text{ A}$$

How about this ?

10 V

International Systems of Units (SI)

- Universal language of measurement
- The metric system is often referred to as the SI unit which is based on the number 10 and multiples of 10.

Example: 100,000,000 mm 100,000 m 100 km

Quantity	Basic unit	Symbol
Length	meter	m
Mass	kilogram	kg
Time	second	S
Electric current	ampere	A
Thermodynamic temperature	kelvin	K
Luminous intensity	candela	cd
Amount of substance	mole	mol

Multiplier	Prefix	Symbol
10 ¹⁸	exa	Е
10 ¹⁵	peta	P
10 ¹²	tera	T
10 ⁹	giga	G
10 ⁶	mega	M
10^{3}	kilo	k
10^{2}	hecto	h
10	deka	da
10^{-1}	deci	d
10^{-2}	centi	c
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p
10^{-15}	femto	f
10^{-18}	atto	a

I. Charge and Current

II. Voltage

III. Power and Energy

IV. Circuit Element

Charge and Current

- Electrons have a negative charge (Q) measured in coulombs (C).
 - \triangleright charge on a proton is +1.602 x 10⁻¹⁹ C
 - \triangleright charge on an electron is $-1.602 \times 10^{-19} \text{ C}$

What is current?

- Net movement of electrons carrying negative charges.
- By convention, the direction of electric current is the direction in which a positive charge would move from positive to negative charged terminal in a closed circuit.

• Current and electrons move in opposite directions.

Charge and Current

- Electric current is the amount of charge flowing per second (rate of change of charge) and is given the unit ampere (A).
- Mathematically, it is given by $i(t) = \frac{dq(t)}{dt}$ Charge transferred in coulombs (C)

 Current in amperes (A) Time duration in seconds (s)
- A current of 1 A means 1 C of charge moving across a fixed surface in 1 s.
- The charge transferred between time t_0 and t_1 is given by the inverse relationship: $Q = \int_{t_0}^{t_1} i(t) dt$

Example (1)

(1) The total charge entering a terminal is given by:

$$q(t) = 5t \sin(4\pi t) \text{ mC}$$

Calculate the current at t = 0.5 s.

By applying the Product Rule, we have

Ans:

$$\frac{d}{dx}(u \cdot v) = u \cdot \frac{dv}{dx} + v \cdot \frac{du}{dx}$$

$$i(t) = \frac{dq(t)}{dt} = \frac{d}{dt} \left[5t \sin(4\pi t) \right] = 5\sin(4\pi t) + 20\pi t \cos(4\pi t)$$

$$i(0.5) = 5\sin(2\pi) + 10\pi\cos(2\pi) \approx 31.42 \text{ mA}$$

Example (2)

(1) The charge profile entering a certain element across time is shown in Fig. 1. Find the current at (a) t = 1 ms, (b) t = 6 ms, and (c) t = 10 ms.

(Hint: Current is the *slope* of the curve.)

Ans: (a) i(1 ms) = 80/2 = 40 A(b) i(6 ms) = 0 A

(c) i(10 ms) = -80/4 = -20 A

(2) Determine the total charge entering a terminal between t = 1 s and t = 2 s if the current across the terminal is given by: $i(t) = (6t^2 - t)$ A.

Ans:
$$Q = \int_{1}^{2} i(t)dt = \int_{1}^{2} (6t^2 - t)dt = \left(2t^3 - \frac{t^2}{2}\right)\Big|_{1}^{2} = (16 - 2) - \left(2 - \frac{1}{2}\right) = 12.5 \text{ C}$$

I. Charge and Current

II. Voltage

III. Power and Energy

IV. Circuit Element

Voltage

- Electric current does not flow on its own (free electrons in conductors are in random motions with zero net flow).
- To move an electron from point *a* to point *b*, an external electromotive force (EMF), e.g. battery, is needed.
- The strength of the EMF is expressed in **voltage** and is measured in **volts** (V).
- The voltage v_{ab} between two points a and b is the energy required to move a unit charge from a to b. Mathematically,

$$v_{ab} = \frac{dw}{dq}$$
Energy in joules (J)

Voltage in volts (V)

Charge transferred in coulombs (C)

• 1 volt = 1 joule / coulomb (1 V = 1 J C^{-1}).

Voltage

- If the voltage of the DC EMF is maintained between two points of a circuit, current will flow in one direction from high (+) to low (–) potential.
- This is called a *direct current (DC) circuit*.
- Battery-powered circuits are DC circuits.

Voltage

Without loss of generality, assume point b is connected to ground. So, $V_b = 0$ V.

Case (a):
$$V_{in} = V_{ab} = V_a - V_b = 9 \text{ V} - 0 \text{ V} = +9 \text{ V}$$

Case (b):
$$V_{in} = -V_{ba} = -(V_b - V_a) = -(0 \text{ V} - 9 \text{ V}) = +9 \text{ V}$$

Hence, case (a) and (b) are equivalent, i.e., $V_{ab} = -V_{ba}$.

Voltage (or potential difference), measured in volts (V), is defined as the energy required to move a unit charge through an element.

- I. Charge and Current
- II. Voltage
- III. Power and Energy
- IV. Circuit Element

- Power is the rate (w.r.t. time) of expending or absorbing energy, measured in watts (W).
- Mathematically,

$$p(t) = \frac{dw(t)}{dt} \qquad \Longrightarrow \qquad p(t) = \frac{dw(t)}{dq(t)} \frac{dq(t)}{dt} = v(t)i(t)$$

- The sign of power across a circuit element depends on the current direction and voltage difference across that element.
- In DC circuits, since p(t), v(t) and i(t) are constants, p(t) = P = VI.

• The element absorbs (consumes) a power of +12 W.

The 3 A current flows into the **positive** terminal of the element, i.e., it goes from a higher potential to lower potential.

• The element absorbs a power of -12 W (or supplies a power of +12 W).

The 3 A current flows into the **negative** terminal of the element, i.e., it goes from a lower potential to a higher potential.

- Based on the current direction, the voltage across the battery B1 (i.e., from point b to point a): $V_{ba} = V_b V_a = 0 \text{ V} 5 \text{ V} = -5 \text{ V}$
- Likewise, the voltage across the load RI (i.e., from point c to point d): $V_{cd} = V_c V_d = 5 \text{ V} 0 \text{ V} = 5 \text{ V}$ (Note: $V_{cd} = -V_{ba} = 5 \text{ V}$)
- Power absorbed by B1: $P_{B1} = V_{ba}I = -5 \text{ V} \times 2 \text{ A} = -10 \text{ W}$ (or equivalently, B1 supplies a power of +10 W.)
- Power absorbed by R1: $P_{RI} = V_{cd}I = 5 \text{ V} \times 2 \text{ A} = 10 \text{ W}$

Recall:
$$p(t) = \frac{dw(t)}{dt}$$

Energy absorbed (or supplied) by a circuit element from time t_0 to t_1 :

$$w = \int_{t_o}^{t_1} p(t)dt = \int_{t_o}^{t_1} v(t)i(t)dt$$

In particular, when p(t) is a constant (i.e., $p(t) = P_o$), we have

$$w = P_O \left(t_1 - t_0 \right)$$

Example (3)

(1) Find the power delivered to an electronic load at t = 10 ms if the current entering its positive terminal is $i(t) = 5\cos(2\pi t)$ A and the voltage is: a) v = 3i; b) v = 3di/dt.

Ans: (a)
$$p(t) = v(t)i(t) = 3[i(t)]^2 = 75\cos^2 2\pi t$$
 W
=> $p(0.01) = 75\cos^2(0.02\pi) \approx 74.7$ W

(b)
$$v(t) = 3di/dt = -30\pi[\sin(2\pi t)]$$

 $= > p(t) = v(t)i(t) = -150\pi[\sin(2\pi t)][\cos(2\pi t)] \text{ W}$
 $= > p(0.01) = -150\pi[\sin(0.02\pi)][\cos(0.02\pi)] = -29.53 \text{ W}$

(2) How much energy does a 100 W LED light bulb consume in two hours?

Ans: Since p is a constant (i.e., $p(t) = P_{LED} = 100 \text{ W}$), $w = P_{LED} t = 100 \times 2 \times 3600 = 720 \text{ kJ}$

- I. Charge and Current
- II. Voltage
- III. Power and Energy
- IV. Circuit Element

Circuit Element

• Active elements are capable of generating or supplying energy to a circuit. e.g. generator, battery, operational amplifier (op amp), and transistors.

• Passive elements can only receive energy, which it can dissipate or absorb. e.g. resistors, capacitors, and inductors.

Voltage Source & Current Source

There are two important active elements: (a) voltage source and (b) current source. Definition:

- (i) Ideal voltage source is a voltage source that supplies <u>constant voltage</u> to a circuit despite the current which the circuit draws. It has zero internal resistance.
- (ii) Ideal current source is a current source that supplies <u>constant current</u> to a circuit despite any other conditions present in the circuit. It has infinite internal resistance.

Independent vs Dependent Source

Independent voltage (current) source maintains a specified voltage (current) whose value is *not* affected by other circuit elements.

> Independent voltage source $\begin{array}{c|c}
> & + \\
> & V_{dc} & V_{in} & V(t)
> \end{array}$

Independent current source

Dependent voltage (current) source has its voltage (current) value varying with another variable (or a set of variables). It is designated by a diamond-shaped symbol.

Voltage controlled voltage source

Current controlled voltage source

Voltage controlled current source

Example (4)

(1) Calculate the power absorbed (dissipated) by each element in the following circuit.

(Hint: Consider the direction of the current across each element.)

Example (4) cont'd

Ans:

Technique:

First determine the values of the dependent sources wherever possible.

- For v_1 : Since the 2 A current flows out of the positive terminal of v_1 , the power absorbed by v_1 is: $P_{vI} = -V_{in}I_{in} = -12(2) = -24$ W (In other words, v_1 supplies +24 W of power).
- For r_1 : Since the 2 A current flows into the positive terminal of r_1 , the power absorbed by r_1 is: $P_{r_1} = V_{r_1} I_{r_1} = 4(2) = 8$ W
- For r_2 : Since the 6 A current flows into the positive terminal of r_2 , the power absorbed by r_2 is: $P_{r2} = V_{r2} I_{r2} = 8(6) = 48 \text{ W}$
- For d_1 : Since the 4 A current flows out of the positive terminal of d_1 , the power absorbed by d_1 is: $P_{d1} = -V_{d1}I_{d1} = -8(4) = -32$ W

Example (4) cont'd

Observations:

- The independent voltage source (v_1) and the current-controlled current source (d_1) are supplying power.
- The two passive elements (r_1, r_2) are absorbing (consuming) power.
- Note that the total power of *all* elements is equal to zero, i.e., $P_{vl} + P_{dl} + P_{rl} + P_{r2} = -24 32 + 8 + 48 = 0$ W. This is *the law of conservation of energy*!

Summary

I. Charge and Current

- ✓ Current and electrons move in opposite direction.
- ✓ Current flows from the positive terminal to the negative terminal in a closed circuit.
- ✓ The mathematical relationship between charge and current is defined as

$$i(t) = \frac{dq(t)}{dt}$$
 or $Q = \int_{t_0}^{t_1} i(t)dt$

II. Voltage

✓ The mathematical relationship between energy and voltage is defined as

$$v_{ab} = \frac{dw}{dq}$$

The voltage (potential difference) between two points a and b is expressed as $v_{ab} = v_a - v_b$. In general, $v_{ab} = -v_{ba}$.

Summary (cont'd)

III. Power and Energy

✓ The mathematical relationship between power and energy is defined as

$$p(t) = \frac{dw(t)}{dt} = v(t)i(t)$$

- ✓ By convention, when the current flows from the +ve terminal to -ve terminal of an element, the element absorbs (dissipates) power. The sign of power is positive.
- ✓ Likewise, when the current flows from the –ve terminal to +ve terminal of an element, the element supplies (generates) power. The sign of power is negative.

Summary (cont'd)

IV. Circuit Element

- ✓ Know the difference between active element and passive element.
- ✓ Understand the meaning of ideal voltage (current) source.
- ✓ Distinguish between independent and dependent voltage (current) source.
- ✓ Be able to determine the power absorbed (or supplied) by each element.
- ✓ Remember that all closed circuits obey the law of conservation of energy.