- **Definition 1.** A category C, consists of the following data:
- 1. A collection of *objects* ob \mathcal{C} ,
- 2. For every two objects $x, y \in \text{ob } C$ a collection of morphisms $\text{Hom}_{\mathcal{C}}(x, y)$.
- 3. For every $x \in \mathcal{C}$, the identity morphism $\mathrm{id}_x \in \mathrm{Hom}_{\mathcal{C}}(x,x)$.
- 4. A composition map $\circ: \operatorname{Hom}_{\mathcal{C}}(y,z) \times \operatorname{Hom}_{\mathcal{C}}(x,y) \longrightarrow \operatorname{Hom}_{\mathcal{C}}(x,z)$
- Such that, for all $x, y \in \mathcal{C}$ and $f \in \text{Hom}_{\mathcal{C}}(x, y)$:

$$f \circ \mathrm{id}_x = f \ \mathrm{id}_y \circ f = f$$

And for all x, y, z, v with $f \in \text{Hom}_{\mathcal{C}}(x, y), g \in \text{Hom}_{\mathcal{C}}(y, z), h \in Homzv$:

$$h\circ (g\circ f)=(h\circ g)\circ f$$

- **Definition 2.** A functor $F: \mathcal{C} \longrightarrow \mathcal{D}$ is a map $ob\mathcal{C} \rightarrow ob\mathcal{D}$ and a map of morphisms $Hom_{\mathcal{C}}(x,y) \rightarrow ob\mathcal{D}$
- Hom_{\mathcal{D}}(F(x), F(y)). Such that $F(\mathrm{id}_x) = \mathrm{id}_{F(x)}$ and $F(g \circ f) = F(g) \circ F(f)$.
- Definition 3. $F: \mathcal{C} \to \mathcal{D}$ is faithful if for all $x, y \in \mathcal{C}$, $\operatorname{Hom}_{\mathcal{C}}(x, y) \to \operatorname{Hom}_{\mathcal{D}}(F(x), F(y))$ is injective. It
- is *full* if every such map is surjective.
- Definition 4. A functor $F: \mathcal{C} \to \mathcal{D}$ is essentially surjective if for all $d \in \mathcal{D}$ there is $c \in \mathcal{C}$ such that
- $F(x) \cong d$.
- **Definition 5.** For two functors $F,G:\mathcal{C}\to\mathcal{D}$, a natural transformation $\eta:F\Rightarrow D$ is a collection of
- morphisms $\eta_x \in \operatorname{Hom}_{\mathcal{D}}(F(x), G(x))$ such that for every $x \xrightarrow{f} y$, $\eta_y \circ F(f) = G(f) \circ \eta_x$.
- It is a natural isomorphism if all morphisms η_x are isomorphisms.
- Definition 6. Equivalence of categories: $F: \mathcal{C} \to \mathcal{D}$ and $G: \mathcal{D} \to \mathcal{C}$ with natural isomorphisms $e: \mathrm{id}_{\mathcal{C}} \Rightarrow$
- $GF, \epsilon : FG \Rightarrow \mathrm{id}_{\mathcal{D}}$. An adjoint equivalence is an equivalence where $F \dashv G$.
- Proposition 7. The following are equivalent: \mathcal{C} and \mathcal{D} are equivalent, \mathcal{C} and \mathcal{D} are adjoint equivalent
- and there is $F \colon \mathcal{C} \to \mathcal{D}$ that is fully faithful and essentially surjective.