4 Let L' be the formal deductive system which differs from L only in having the axiom scheme (L'3) $((\sim \mathcal{A} \rightarrow \sim \mathcal{B}) \rightarrow ((\sim \mathcal{A} \rightarrow \mathcal{B}) \rightarrow \mathcal{A}))$ in place of (L3). Show that, for any wfs. \mathcal{A} and \mathcal{B} of L (and so of L'):

(i)
$$\vdash ((\sim \mathcal{A} \rightarrow \sim \mathcal{B}) \rightarrow ((\sim \mathcal{A} \rightarrow \mathcal{B}) \rightarrow \mathcal{A})),$$

and

(ii)
$$\vdash_{\mathsf{L}} ((\sim \mathcal{A} \to \sim \mathcal{B}) \to (\mathcal{B} \to \mathcal{A})).$$

Deduce that a wf is a theorem of L if and only if it is a theorem of L'.

The rule HS is an example of a legitimate additional rule of deduction for L. Is the following rule legitimate in the same sense: from the wfs. \mathcal{B} and $(\mathcal{A} \rightarrow (\mathcal{B} \rightarrow \mathcal{C}))$, deduce $(\mathcal{A} \rightarrow \mathcal{C})$?

$$\begin{array}{ccc}
\dot{\gamma} & \beta & * & \\
\dot{\gamma} & A \rightarrow (B \rightarrow C) & * & \\
L 2 & (A \rightarrow B) \rightarrow (A \rightarrow C) & * & \\
L 1 & B \rightarrow (A \rightarrow B) & * & \\
MP, * & A \rightarrow B & * & \\
MP, * & A \rightarrow C & * & \\
\vdots & \left\{ \beta, A \rightarrow (B \rightarrow C) \right\} \vdash_{L} (A \rightarrow C)
\end{array}$$

$$\begin{array}{cccc}
& & & & & & & \\
& & & & & \\
& & & & & \\
\end{array}$$

Let \mathcal{A} be a wf. of L and let L^+ be the extension of L obtained by including \mathcal{A} as a new axiom. Prove that the set of theorems of L^+ is different from the set of theorems of L if and only if \mathcal{A} is not a theorem of L.

8 Let \mathscr{A} be the wf. $((\sim p_1 \rightarrow p_2) \rightarrow (p_1 \rightarrow \sim p_2))$. Show that L^+ , obtained by including this \mathscr{A} as a new axiom, has a larger set of theorems than L. Is L^+ a consistent extension of L?

از آی جاکہ ۸ ہو تو لوڑی نے ، ہی اللہ ان کے توسع اکس ان اے واز آن جاکہ ۸ کافعنی نے در اور آن جاکہ ۱ کی توسع اللہ و کار کار از کا اے واز آن جاکہ اللہ و کار کار از کا اے واز آن جاکہ اللہ و کار کار از کا اے واز آن جاکہ اللہ و کار کار از کا اے واز آن جاکہ اللہ و کار کار از کا اے واز آن جاکہ اللہ و کار کار از کا اے واز آن جاکہ اللہ و کار کار از کا اے واز آن جاکہ اللہ و کار کار از کا ا

9 Prove that if \mathcal{B} is a contradiction then \mathcal{B} cannot be a theorem of any consistent extension of L.

10 Let L^{++} be the extension of L obtained by including as a fourth axiom scheme:

$$((\sim \mathcal{A} \to \mathcal{B}) \to (\mathcal{A} \to \sim \mathcal{B})).$$

Show that L^{++} is inconsistent. (Hint: see Chapter 1 exercise 7.)

11 Let J be a consistent complete extension of L, and let \mathscr{A} be a wf. of L. Show that the extension of J obtained by including \mathscr{A} as an additional axiom is consistent if and only if \mathscr{A} is a theorem of J.

قف من و بن توبع ناماز ال

Let \mathcal{A} be a wf. of L in which the statement letters p_1, \ldots, p_n occur, and let $\mathcal{A}_1, \mathcal{A}_2, \ldots, \mathcal{A}_n$ be any wfs. of L. Let \mathcal{B} be the wf. of L obtained by substituting \mathcal{A}_i for each occurrence of p_i in \mathcal{A} $(1 \le i \le n)$. Prove that if \mathcal{A} is a theorem of L then \mathcal{B} is a theorem of L.

یدائے ایکر صورت گزارہ ای ما مل انز جا گزیاری متغیر کی گذاری ، تو تولوئی بارکہ ، آن کا ہ صورت ادامی بنز تو تولوئی بارک ، آن کا ہ صورت ادامی بنز تو تولوئی ارسے (طبق معفے) و از آن جا کہ سے فرس فوشی ساخت از سا ، در سا قعند ارت جا تو تولوئی بائی ہی میں حکم ایا ۔ وہلود۔

 Γ فرض کنید Γ مجموعه Γ از فرمول های L سازگار است اگر هیچ فرمولی مانند A وجود نداشته باشد که Γ از فرمول های L سازگار است اگر هیچ فرمولی مانند Γ مجموعه ای از فرمول ها باشد، تابع ارزش دهی v را مدلی از Γ مینامیم، اگر برای هر Γ هر Γ از فرمول ها باشد، تابع ارزش دهی Γ را مدلی از Γ مینامیم، اگر برای هر Γ هر از فرمول ها باشد، تابع ارزش دهی Γ را مدلی از Γ مینامیم، اگر برای هر Γ از فرمول ها باشد، تابع ارزش دهی Γ را مدلی از Γ مینامیم، اگر برای هر Γ از فرمول ها باشد اگر Γ اسازگار باشد، آنگاه مدل دارد. (لم وجود مدل)

خوش کین $A_1, A_2, ...$ خرص کی $A_1, A_2, ...$ خوش کین $A_1, A_2, ...$ خوش کی $A_1, A_2, ...$ $A_1, A_2, ...$ $A_1 \in I$ $I \in$

پرسش ۲. نشان دهید دو گزاره ی زیر برای مجموعه ای از فرمول ها مانند Γ معادل اند: (قضیه فشردگی)

 Γ . Γ مدل دارد.

۲. هر زیرمجموعه ی متناهی Γ مدل دارد.

** = وجود دارد رنالی ۵٬ ۵٬۰۰۰ کر ایات ۸۰۰ کی د

$$\Gamma' = \Gamma \cap \left[\begin{pmatrix} 0 \\ U \\ i=1 \end{pmatrix} \cup \left(\begin{pmatrix} 0 \\ U \\ i=1 \end{pmatrix} \right) \cup \left(\begin{pmatrix} 0 \\ U \\ i=1 \end{pmatrix} \right) \right]$$

$$\Rightarrow |\Gamma'| \leq n+n' \Rightarrow = \lim_{N \to \infty} |\Gamma'| + A, |\Gamma'| + A$$

$$|\Gamma'| = A, |\Gamma'| = A, |\Gamma'| = A, |\Gamma'| = A$$

$$|\Gamma'| = A, |\Gamma'| = A, |\Gamma'| = A, |\Gamma'| = A$$

ي المعتمان مل دائد بالد.

پرسش ۳. فرمول A را مستقل از مجموعه ای از فرمول ها مانند Γ می نامیم اگر A \forall A و C \forall A نامیم اگر A و B مستقل از مجموعه ای از فرمول نیستند، ترویه $A \land B$ و $A \land B$ و $A \land B$ فرمول نیستند، زیرا مجموعه $\{p_1 \leftrightarrow p_0 \land \neg p_2, p_2 \to p_0\}$ است. توجه کنید که اگر A و $A \lor B$ بنست. برای رفع این مشکل، $A \leftrightarrow B$ مختصری برای فرمول ی نماد های استفاده شده در آن ها زیر مجموعه $\{(,,,\neg,\to,p_0,p_1,p_2,\ldots\}\}$ نیست. برای رفع این مشکل، $A \leftrightarrow B$ مختصری برای فرمول $A \leftrightarrow B$ مختصری برای فرمول $A \lor B$

$$\left\{ \left| \left(\left(\left(\left(\rho_{i} \gg \rho_{i} \right) \rightarrow \left(\left(\rho_{i} \gg \rho_{i} \right) \right) \right) \rightarrow \rho_{i} \right), \rho_{i} \rightarrow \rho_{i} \right\} \right| \stackrel{?}{\vdash} \left(\rho_{i} \rightarrow \rho_{i} \rightarrow \rho_{i} \right) \right\}$$

$$\frac{1}{L} \quad \text{T} \left[\begin{bmatrix} T & (P_1 \xrightarrow{T} P_1) \xrightarrow{F} P_2 & P_3 \\ T & T & T \end{bmatrix} \xrightarrow{F} P_4 \right] \xrightarrow{F} \left[(P_1 \xrightarrow{T} P_2) \xrightarrow{F} (P_1 \xrightarrow{F} P_2) \right]$$

 $= \frac{1}{2} (2g \log C) = \frac{1}{2} (F \circ CG) = \frac{1}{2} (F \circ F \circ CG) = \frac{1}{2} (F \circ F \circ F) = \frac{1}{2} (F \circ F)$

F(y) = (F, F, F) ارزی F(y) = (F, F, F) یا ان سے میں کورد.

. $\Gamma \vdash B$ آنگاه $\Gamma \cup \{\neg A\} \models B$ و $\Gamma \cup \{A\} \models B$ و $\Gamma \cup \{A\} \models B$ آنگاه $\Gamma \cup \{A, B\}$ آنگاه $\Gamma \cup \{A, B\}$ نماد $\Gamma \cup \{A, B\}$ یعنی اگر $\Gamma \cup \{A, B\}$ محموعه ای از $\Gamma \cup \{A, B\}$ باشد، آنگاه $\Gamma \cup \{A, B\}$ ب

غرمن كني ٧ مدلى از ٢ ي. ي. عب مهاي از ٢ ي.

برهان فلف ، فرعن كني F = (۱۶) ۲ ، براي A داريم :

الر ⊤ = (A) از (A) ارے کی طبق ذمن یاس ⊤ = (B) ایک حض یاس ⊤ = (B) ایک کار

پرسش ۵. فرمول A را نامتناقض می نامیم اگر $A \leftrightarrow \bot$ و دو فرمول A و او دو فرمول $A \leftrightarrow \bot$ از دو متغیر p_0 و برسش ۵. فرمول متناقض دو به دو ناسازگار می توان ساخت؟ این فرمول ها را مشخص کنید. p_1

تھا دکل نرمول } ، ۴۴ = ۲۲ اے کہ فقط کے حالت تناقف اے کے فرمول نامنا قض اے الرو تنا الر صافل کے سطر ازدہ ول درست آن ، ۲۰ یک.

مطابق تدرن ، دو فرمول ناساز ، رهستند الله وتها الله به ازان هیم مطره ، هردو ی نوند. لم . حدا کش ع خرمول ناشنا قتن دوب دو ناساز ما می توان سافت.

انات. از آن باکه هر فرمول حراقل کیدملم ۱۰ دارد و تقراد کل مطر ای ع است و در هر کهای هر مطری که ۲۰ بری و برای در آن مطر ۴ مشند، یس این تقداد از ۶ من تواند بری تر با در این کمات ، بیمان است به بیمان این کمات ، بیمان است .

۴.	۴,	A،	Ą۲	A ~	A۶
o	•	١	ø	•	•
•	1	۱ .	1	•	•
1	•	6	•	١	•
1	1	•	٥	•	1