# FACULDADE DE CIÊNCIAS DA UNIVERSIDADE DE LISBOA

## SISTEMAS DINÂMICOS

PROJECTO FINAL

# Dinâmica do Mapa Discreto do Gato de Arnold

Autor: Cláudio Santos Nº 42208

19 de Junho de 2017



#### Resumo

Um sistema dinâmico discreto conhecido como o mapa discreto do gato de Arnold é dado por:

$$egin{bmatrix} x_{t+1} \ y_{t+1} \end{bmatrix} = egin{bmatrix} 1 & 1 \ 1 & 2 \end{bmatrix} egin{bmatrix} x_t \ y_t \end{bmatrix} \pmod{N},$$

que actua numa rede quadrada dois dimensional de tamanho  $N \times N$ . A característica fundamental deste mapa é a propriedade de quando uma rede  $N \times N$  é uma imagem cujos os pixéis têm coordenadas (x,y), o mapa baralha a imagem a cada iteração. Depois de um número finito de iterações, a imagem é recuperada à sua forma e ordem originais.

O objectivo deste projecto é explorar as propriedades dinâmicas do mapa discreto do gato de Arnold, um mapa simples que exibe um elevado nível de caos. São apresentados resultados numéricos sobre os periodos mínimos, o comprimento de periodo e as órbitas disjuntas do mapa discreto do gato de Arnold. Aborda-se também generalizações do mapa do gato de Arnold e no final são apresentados algumas aplicações do mapa discreto do gato de Arnold.

# Conteúdo

| 1                         | Intr                                  | rodução                                                                                                                    | 3  |  |  |  |
|---------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----|--|--|--|
| <b>2</b>                  | 2 Definição do Mapa do Gato de Arnold |                                                                                                                            |    |  |  |  |
| 3                         |                                       | nexão entre o Mapa do Gato de Arnold e a sequência de onnaci                                                               | 8  |  |  |  |
| 4                         | Pro                                   | priedades do Mapa do Gato de Arnold                                                                                        | 10 |  |  |  |
|                           | 4.1                                   | Comprimento do periodo                                                                                                     | 11 |  |  |  |
|                           | 4.2                                   | Órbitas disjuntas                                                                                                          | 12 |  |  |  |
|                           | 4.3                                   | Maiores dimensões do mapa                                                                                                  |    |  |  |  |
|                           | 4.4                                   | Mapas do gato generalizados com determinante positivo unitário                                                             | 14 |  |  |  |
|                           | 4.5                                   | Miniaturas e Fantasmas                                                                                                     | 14 |  |  |  |
| 5                         | Apl                                   | icações do Mapa do Gato de Arnold                                                                                          | 16 |  |  |  |
|                           | 5.1                                   | Encriptação de imagens e texto                                                                                             | 16 |  |  |  |
|                           | 5.2                                   | Esteganografia, marca d'água e detecção de tratamento de                                                                   |    |  |  |  |
|                           |                                       | $imagem \dots \dots$ | 17 |  |  |  |
| 6                         | Cor                                   | nclusão                                                                                                                    | 18 |  |  |  |
| $\mathbf{R}_{\mathbf{c}}$ | eferê                                 | ncias                                                                                                                      | 19 |  |  |  |

### 1 Introdução

Considere um recipiente com uma determinada quantidade de café. De seguida, adicione a mesma quantidade de leite e misture ambos sempre com o mesmo movimento. Certamente ninguém pensaria que o café e o leite vão separar-se e aparecer nos seus estados originais após um certo número de misturas. E também não ia passar pela cabeça que nalgum ponto intermédio no tempo ter-se-ia subitamente uma mistura de café e leite como de um tabuleiro de xadrez se tratasse. Contudo é esta a consequência do Teorema de Recurrência de Poincaré: que alguns destes objectos matemáticos denominados de sistemas dinâmicos, após um tempo suficientemente longo mas finito, regressam a um estado muito próximo do seu estado inicial.

O mapa do gato de Arnold é provalvemente a transformação mais simples que exibe esta propriedade bem como um elevado nível de caos. O mapa deve o seu nome a Vladimir I. Arnold que utilizou a imagem de um gato antes e depois da aplicação do mapa. Este mapa serviu como guia no desenvolvimento da teoria de sistemas dinâmicos para ilustrar novos conceitos como entropia (Sinai 1959) e partições de Markov (Adler & Weiss 1967).

Uma imagem é composta por unidades discretas chamadas pixéis. Um pixel é um pequeno quadrado que representa um código de cor e quando se toma em conjunto todos os pixeís, forma-se um mosaico que é a imagem. A imagem é uma matriz  $M\times N$ , onde M representa o número de linhas dos pixéis e N o número de colunas dos pixéis. Cada entrada da matriz é um valor numérico que representa uma dada cor. Como exemplo considere a imagem  $212\times 212$  abaixo:



Figura 1.1: Fotografia de M&M's.

Seja a imagem a matriz X e pode examinar-se as entradas numéricas de X que representam um certo código de cor.

$$X = \begin{bmatrix} 139 & 70 & 77 & \cdots & 255 & 245 & 239 \\ 100 & 74 & 74 & \cdots & 254 & 253 & 251 \\ 98 & 159 & 156 & \cdots & 253 & 255 & 255 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 193 & 175 & 161 & \cdots & 220 & 220 & 220 \\ 219 & 181 & 156 & \cdots & 220 & 219 & 220 \\ 219 & 176 & 156 & \cdots & 218 & 219 & 219 \end{bmatrix}$$

Uma iteração do mapa do gato de Arnold é o efeito da multiplicação de todas as coordenadas do pixéis pela matriz  $\begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$ . Depois todos os valores são tomados com módulo igual ao lado da imagem. A imagem é por assim dizer esticada e depois dobrada de forma a caber nas fronteiras do quadrado original. Contudo, se iterado vezes suficiente, como se por magia, a imagem original reaparece.



Figura 1.2: lustração geométrica de uma iteração do mapa do gato de Arnold.

### 2 Definição do Mapa do Gato de Arnold

O mapa do gato de Arnold é o mapeamento num toro dois dimensional. O toro  $\mathbb{T}^2$ , que topologicamente tem a forma de um donut, pode ser definido como os pontos no plano  $\mathbb{R}^2$  módulo translações inteiras em  $\mathbb{Z}^2$ . Isto resulta na representação de  $\mathbb{T}^2$  como a família de espaços  $\mathbb{R}^2/\mathbb{Z}^2 := \{x + \mathbb{Z}^2 : x \in \mathbb{R}^2\}$ . O mapa do gato é agora um mapeamento  $\Gamma_{cat} : \mathbb{T}^2 \to \mathbb{T}^2$  definido por  $x \mapsto Ax$  ( mod  $\mathbb{Z}^2$ ), onde:

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \qquad A = \begin{bmatrix} a & b \\ c & d \end{bmatrix},$$

desde que  $a, b, c, d \in \mathbb{Z}$  sejam escolhidos tal que:

- 1.  $|\det(A)| = 1$ ;
- 2. A tenha valores próprios  $|\lambda_{\pm}| \neq 1$

A propriedade (1.) implica que o mapa preserva a área e a orientação (como observado na Figura 1.2) e a propriedade (2.) implica que os valores próprios são reais e distintos. Mapas com estas propriedades são conhecidos na literatura como *automorfismo torais*.

A matriz A estudada neste projecto é

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$$

e por isso o sistema dinâmico discreto induzido pelo mapa do gato de Arnold é

$$\Gamma_{cat}\left(\begin{bmatrix} x_{t+1} \\ y_{t+1} \end{bmatrix}\right) = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_t \\ y_t \end{bmatrix} \pmod{1}$$

Para uma imagem com coordenadas racionais  $0 \leq \frac{x}{N}, \frac{y}{N} < 1$  o escalamento da imagem torna possível trabalhar com coordenadas inteiras  $0 \leq x, y < N-1$ . Isto obriga a usar módulo N em vez de módulo 1 e define-se o mapa discreto do gato de Arnold  $\Gamma_A : \mathbb{Z}_N \times \mathbb{Z}_N \to \mathbb{Z}_N \times \mathbb{Z}_N$  que é

$$\Gamma_A \left( \begin{bmatrix} x_{t+1} \\ y_{t+1} \end{bmatrix} \right) = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_t \\ y_t \end{bmatrix} \pmod{N}$$

Seja  $\Phi$  a transição das coordenadas racionais no intervalo [0,1[ para as coordenadas inteiras  $(0,1,2,\ldots,N-1)$ , tem-se o seguinte diagrama comutativo

$$\mathbb{T}^{2} \xrightarrow{\Gamma_{cat}} \mathbb{T}^{2}$$

$$\Phi \downarrow \qquad \qquad \downarrow \Phi$$

$$\mathbb{Z}_{N} \times \mathbb{Z}_{N} \xrightarrow{\Gamma_{A}} \mathbb{Z}_{N} \times \mathbb{Z}_{N}$$

O polinómio característico da matriz A é

$$\lambda^2 - \text{Tr}(A)\lambda + \det(A) = \lambda^2 - 3\lambda + 1$$

e os dois valores próprios da matriz A (as raízes do polinómio característico) são  $\lambda_1 = \frac{3+\sqrt{5}}{2} \approx 2,61803$  e  $\lambda_2 = \frac{3-\sqrt{5}}{2} \approx 0,38167$ . Como os dois valores próprios de A são diferentes da unidade, o mapa  $\Gamma_{cat}: \mathbb{T}^2 \to \mathbb{T}^2$  é um automorfismo toral hiperbólico. Por outro lado os dois vectores próprios de A são ortogonais pois a matriz é simétrica.

Para mostrar que o sistema dinâmico discreto referente ao mapa do gato de Arnold segue o Teorema de Recurrência de Poincaré e, por isso, ser periódico leva à seguintes definição.

**Definição 2.1.** O periodo mínimo do mapa discreto do gato de Arnold é o inteiro positivo n mais pequeno tal que  $A^n = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \pmod{N}$  (matriz identidade). Define-se por  $\Pi_A(N)$  o periodo mínimo do mapa discreto do gato de Arnold módulo N.

**Exemplo 2.2.** Da Figura 2.3 conclui-se que  $\Pi_A(332) = 84$ , ou seja não existe um inteiro positivo menor do que n = 84 tal que a imagem original reaparece.

Notar que com apenas n=6 (2.3e iterações a imagem é uma *chuva* de pixéis sem quaisquer características que a relacionem à imagem original. Daí uma das aplicações do mapa do gato de Arnold ser a encriptação (ver secção 5). Os casos 2.3f, 2.3g e 2.3h, conhecidos como miniaturas e fantasmas, são analisados na secção 4.5.



Figura 2.3: O efeito do mapa do gato de Arnold numa imagem de  $332\times332$  pixéis após n iterações.

# 3 Conexão entre o Mapa do Gato de Arnold e a sequência de Fibonnaci

**Definição 3.1.** Seja n o número da sequência de Fibonacci definido pela relação de recorrência  $F_n = F_{n-1} + F_{n-2}$ , com  $F_1 = 1$  e  $F_0 = 0$ .

Os primeiros números de Fibonacci são  $0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \dots$ 

A sequência de Fibonacci pode ser encontrada em vários contextos desde o triângulo de Pascal a situações reais, como a forma de uma concha ou a reprodução de coelhos.

Potências da matriz  $F=\left[\begin{smallmatrix}0&1\\1&1\end{smallmatrix}\right]=\left[\begin{smallmatrix}F_0&F_1\\F_1&F_2\end{smallmatrix}\right]$  geram números da sequência de Fibonacci

$$F^n = \begin{bmatrix} F_{n-1} & F_n \\ F_n & F_{n+1} \end{bmatrix}$$

Muitas vezes a matriz F é chamada do  $mapa\ dourado\ devido\ a\ relação\ dos números de Fibonacci com o número de ouro. O número de ouro é o limite da razão de dois números sucessivos da sequência de Fibonacci e também é igual ao maior valor próprio de <math>F$ .

$$\lim_{n \to \infty} \frac{F_{n+1}}{F_n} = \phi = \frac{1 + \sqrt{5}}{2} \approx 1,61803...$$

Como F e A têm a relação

$$F^2 = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} = A$$

os números de Fibonacci também aparecem quando se toma potências da matrix  ${\bf A}$ 

$$A^{n} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}^{n} = \begin{bmatrix} F_{2n-1} & F_{2n} \\ F_{2n} & F_{2n+1} \end{bmatrix}$$

com as primeiras potências de A

$$A^{2} = \begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix}, \quad A^{3} = \begin{bmatrix} 5 & 8 \\ 8 & 13 \end{bmatrix}, \quad A^{4} = \begin{bmatrix} 13 & 21 \\ 21 & 34 \end{bmatrix}, \quad A^{5} = \begin{bmatrix} 34 & 55 \\ 55 & 89 \end{bmatrix}, \quad \dots$$

Da definição 2.1 de periodo mínimo do mapa do gato de Arnold, está-se à procura do menor inteiro n tal que  $A^n = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \pmod{N}$ . Isto significa que

n satisfaz as condições  $F_{2n} \equiv 0 \pmod{N}$  e  $F_{2n-1} \equiv 1 \pmod{N}$ . Por isso o periodo do mapa do gato de Arnold tem uma conexão directa com o periodo de Pisano dos números de Fibonacci.

O periodo de Pisano n, escrito  $\Pi(n)$ , é o periodo no qual a sequência de números de Fibonacci tomada módulo n se repete.

**Exemplo 3.2.** A sequência de Fibonacci F tomada módulo 3 é

$$0, 1, 1, 2, 0, 2, 2, 1, 0, 1, 1, 2, 0, 2, 2, 1, 0, 1, 1, 2, 0, 2, 2, 1, \dots$$

A sequência tem periodo 8, por isso  $\Pi(3) = 8$ .

Da relação definida entre as matrizes A e F segue que o periodo do mapa do gato de Arnold é exacmente metade do periodo de Pisano para qualquer  $N \geq 3$ .

## 4 Propriedades do Mapa do Gato de Arnold

Como ilustrado na Fig. 4.1, não existe uma conexão óbvia entre os periodos mínimos do mapa do gato de Arnold, e por isso o periodo de Pisano e o número N.



Figura 4.1: Os periodos mínimos  $\Pi_A(N)$  do mapa do gato de Arnold e a razão  $\frac{\Pi_A(N)}{N}$  para o intervalo  $2 \leq N \leq 100$ .

É importante referir que não é conhecido uma expressão em forma fechada de  $\Pi(N)$  válida para todos o N. Por isso, recorreu-se a cálculos numéricos para calcular o periodo minímo.

#### 4.1 Comprimento do periodo

Analisando apenas os periodos mínimos de números primos p entre  $5 \le p \le 100$ , observa-se o padrão ilustrado na Fig. 4.1.1



Figura 4.1.1: Os periodos mínimos do mapa do gato de Arnold para números primos no intervalo 5 .

A maior fatia dos números primos (87,5%) inserem-se ou na linha  $\Pi_A(p) = p+1$  ou em  $\Pi_A(p) = \frac{p-1}{2}$ . Os restantes são conhecidos como números primos curtos por o periodo mínimo ser inferior que as fórmulas referidas. O caso p=5 é uma exceção pois  $\Pi_A(5)=10$ . O periodo  $\Pi_A(N)$  pode ser calculado devido à factorização de primos de qualquer número composto N usando o seguinte teorema, demonstrado em [4].

**Teorema 4.1.2.** Se N tiver factorização primo  $N=p_1^{\alpha_1}\cdot p_2^{\alpha_2}\cdot \cdots \cdot p_k^{\alpha_k}$ , então  $\Pi_A(N)=mmc$   $(\Pi_A(p_1^{\alpha_1}),\Pi_A(p_2^{\alpha_2}),\ldots,\Pi_A(p_k^{\alpha_k}),$  onde mmc é o minimo miltiplo comum.

**Exemplo 4.1.3.** 
$$\Pi_A(21) = mmc \ (\Pi_A(3), \Pi_A(7)) = mmc \ (4, 8) = 8$$

Notar que p=2 é o único primo onde  $\Pi_A(p)=\Pi_A(N^2)$ . Para todos os outros primos acredita-se que  $\Pi_A(p^n)=p^{n-1}$   $\Pi_A(p)$ .

**Exemplo 4.1.4.** Para números compostos N têm-se casos onde  $\Pi_A(N^2) = \Pi_A(N)$ , como por exemplo  $\Pi_A(6) = \Pi_A(36) = 12$  e  $\Pi_A(12) = \Pi_A(144) = 12$ .

O limite superior para o periodo mínimo do mapa do gato de Arnold é 3N. Como mostra [5], em particular para  $k = 1, 2, 3, \ldots$  tem-se:

$$\begin{cases} \Pi_A(N) = 3N, & \text{se } N = 2 \cdot 5^k \\ \Pi_A(N) = 2N, & \text{se } N = 5^k \text{ ou } N = 6 \cdot 5^k \\ \Pi_A(N) \leq \frac{12}{7}N & \text{para qualquer outro } N \end{cases}$$

#### 4.2 Órbitas disjuntas

Além da periodicidade podem-se definir outras propriedades distintas e válidas para sistemas dinâmicos discretos.

**Definição 4.2.1.** Seja a *órbita* de um ponto definido como o conjunto de coordenadas que um ponto individual assume perante iterações do mapa do gato de Arnold, até retornar ao seu valor inicial. O número de coordenadas únicas na órbita recebe o nome de *comprimento de periodo*. Claro que todos os pontos que pertencem a uma e mesma órbita têm o mesmo comprimento de periodo.

**Definição 4.2.2.** Para um sistema dinâmico discreto todos os pontos com comprimento de órbita 1 recebem o nome de *pontos fixos*. Pontos com comprimento de órbita maiores que 1 são chamados de pontos *não-triviais*.

**Exemplo 4.2.3.** Para o mapa discreto do gato de Arnold  $\Gamma_A : \mathbb{Z}_N \times \mathbb{Z}_N$ , o ponto com coordenadas (0,0) é um ponto trivial. Todos os outros pontos são não-triviais pois são periódicos e têm um comprimento de órbita maior do que 1.

**Exemplo 4.2.4.** A órbita, com comprimento 12, do ponto (1,1) para o mapa do gato de Arnold com N = 6 consiste nas coordenadas  $\{(1,1), (2,3), (5,2), (1,3), (4,1), (5,0), (5,5), (4,3), (1,4), (5,3), (2,5), (1,0)\}.$ 

Como se sabe que (0,0) é um ponto trivial e que o limite superior para o mapa do gato de Arnold é 3N, para N>3, nenhum ponto pode ter uma órbita que inclua todos os  $N^2-1$  pontos não triviais. Daqui é possível concluir que vão existir órbitas disjuntas e o comprimento destas órbitas é ou igual ao periodo mínimo ou um divisor deste. Por outras palavras, uma imagem não é densa nela própria sobre o mapa discreto do gato de Arnold.



Figura 4.2.5: Comprimento de órbitas do mapa do gato de Arnold para p=5 e p=7.

Quando N é um número primo p, excepto para p=5, todos os pontos não triviais têm o mesmo comprimento de órbita. Quando p=5 o comprimento de órbita dos pontos não triviais é ou  $\Pi(5)=10$  ou  $\frac{\Pi(5)}{5}=2$ .

Números compostos vão ter mais que um comprimento de periodo para pontos não-triviais. O maior número de órbitas até N=500 ocorre para N=390 e as 17 diferentes comprimentos de órbita são 2,3,4,6,10,12,14,20,28,30,42,60,70,84,140,210 e 420.



Figura 4.2.6: Comprimento de órbitas do mapa do gato de Arnold para N=9 e N=10.

#### 4.3 Maiores dimensões do mapa

É possível extender o mapa do gato a maiories dimensões, fixando cada coordenada x,y e z e depois multiplicando os resultados para obter uma matriz três dimensional do mapa do gato  $A_{3D}$ .

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 4 & 4 \end{bmatrix} = A_{3D}$$

Devido à as propriedades não comutativas da multiplicação de matrizes, a matriz  $A_{3D}$  não é única mas todos os mapas  $A_{3D}$  têm os mesmos valores próprios  $\lambda_1 = 7, 18, \lambda_2 = 0, 57$  e  $\lambda_3 = 0, 24$ . Por outro lado, os periodos mínimos do mapa do gato três dimensional apresentam um padrão completamente diferente que  $\Pi_A(N)$ .

O mapa do gato quatro dimensional seria agora calculado usando  $A_{3D}$  e repetindo o mesmo procedimento com uma coordenada adicional. E assim sucessivamente até uma dimensão arbitária. A razão da escolha de um mapa do gato de dimensão maior é o comportamento que maior valor próprio toma. O mapa do gato de maior dimensão é considerado mais caótico pela medição da entropia topológica  $\ln |\lambda_{max}|$ . Esta propriedade é preferida num contexto criptográfico e, por exemplo, o maior valor próprio de  $A_{8D}$  é 1090.

#### 4.4 Mapas do gato generalizados com determinante positivo unitário

Os mapas de gato generalizados, com determinante 1, de tipo 1 e 2 podem ser definidos como

$$\Gamma_{G_1}\left(\begin{bmatrix} x_{t+1} \\ y_{t+1} \end{bmatrix}\right) = \begin{bmatrix} 1 & a \\ a & a^2 + 1 \end{bmatrix} \begin{bmatrix} x_t \\ y_t \end{bmatrix} \pmod{N}$$

е

$$\Gamma_{A_2}\left(\begin{bmatrix} x_{t+1} \\ y_{t+1} \end{bmatrix}\right) = \begin{bmatrix} 1 & a \\ b & ab+1 \end{bmatrix} \begin{bmatrix} x_t \\ y_t \end{bmatrix} \pmod{N}$$

Estas famílias do mapa do gato ainda não foram muito estudadas mas acredita-se que apresentam também uma distribuição periódica.

#### 4.5 Miniaturas e Fantasmas

Por vezes antes de se obter o periódo mínimo observa-se que a imagem parece menos caótica do que se esperava. Estes fenómenos recebem o nome de *miniaturas* e *fantasmas* e têm as seguintes propriedades

• Miniaturas podem acontecer quando os valores absolutos de todos os elementos de  $A^t \pmod{N}$  são pequenos quando comparados a N.

$$min|a_{i,j}, N - a_{i,j}|, \text{ para } i, j = 1, 2$$

- A orientação das miniaturas vai depender dos vectores coluna de  $A^t$  (mod N).
- $\bullet$  Fantasmas têm mais tendência a aparecer quando N é um número composto do que quando é um número primo.
- O número de fantasmas e respectivos declives depende dos vectores, com menor valor absoluto, que são mapeados neles próprios por  $A^t$  (mod N).

As figuras 2.3f e 2.3h são exemplos numéricos de miniaturas para uma imagem 322 × 322 que ocorrem após 23 e 61 iterações, respectivamente. Por outro lado a figura 2.3g é o exemplo de um fantasma. Contudo não são exemplos matematicamente perfeitos de miniaturas e fantasmas pois verificando as propriedades como indicado em [1], não se obtem resultados análogos.

## 5 Aplicações do Mapa do Gato de Arnold

Apesar de o conceito do mapa do gato ser abstracto, pode-se pensar nalgumas aplicações

#### 5.1 Encriptação de imagens e texto

Umas das maneiras mais simples de usar o mapa do gato num contexto criptográfico é trocar a informação da cor de um pixel com uma letra do alfabeto. Após um certo número de iterações é produzido um texto cifrado onde as letras aparentamente desordenadas tem uma ordem subjacente e, por isso, o proprietário da chave pode recuperar o texto original. Ao usar um mapa do gato generalizado onde os elementos da matriz são parte da chave complica a cripto-análise ainda mais. A figura 5.1.1 ilustra como a frase "SISTEMAS DINAMICOS É FIXE" transforma-se em "XMT OAF-NIEÉDEIASSSI SSCM" com apenas 2 iterações do mapa do gato de Arnold.

| S | I | S | Т | Е |
|---|---|---|---|---|
| M | A | S |   | D |
| I | N | Α | Μ | Ι |
| С | О | S |   | É |
|   | F | I | X | Е |

|   | X | M | Т |   |
|---|---|---|---|---|
| О | Α | F | N | I |
| Е | É | D | Е | I |
| Α | S | S | S | I |
|   | S | S | С | M |

Figura 5.1.1: O texto original e o texto cifrado após 2 iterações do mapa do gato de Arnold.

# 5.2 Esteganografia, marca d'água e detecção de tratamento de imagem

Esteganografia é a arte de esconder uma mensagem dentro de outra mensagem. Isto pode ser também aplicado a imagens e é usado para inserir uma marca d'água ou detectar se uma imagem foi alterada de uma maneira não autorizada (detecção de tratamento de imagem).

O método consiste em utilizar que um conjunto de pixéis vizinhos é espalhado ao longo de uma imagem  $N \times N$  após k iterações do mapa do gato de Arnold. Os pixéis da marca d'água são inseridos na imagem que queremos marcar e é tambem espalhada pela imagem toda. O algoritmo de detecção de tratamento de imagem consite em iterar a imagem  $\Pi(N) - k$  vezes. A imagem aparece caótica mas a marca d'água aparece intacta se a imagem não foi alterada.

#### 6 Conclusão

Este projecto consistiu em investigar algumas propriedades, e especialmente o periodo módulo N, de automorfismos torais hiperbólicos dois dimensional, fortemente ligados à sequência de Fibonacci, que recebem o nome de mapa do gato de Arnold. Isto inclui a generalização de mapas a determinante unitário positivo bem como a dimensões maiores. Explicou-se como se formam as miniaturas e fantasmas quando se aplica o mapa. Foram obtidos resultados numéricos sobre o periodo mínimo e o comprimento de periodo das orbitas. No final são apresentados algumas aplicações práticas do mapa do gato de Arnold como encriptação ou esteganografia.

#### Referências

[1] Fredrik Svanström, Properties of a generalized Arnold's discrete cat map, 2014,

http://www.diva-portal.org/smash/record.jsf?pid=diva2% 3A725545&dswid=-2366

- [2] Jens Marklof, Cat Map, https://people.maths.bris.ac.uk/~majm/bib/catmap.ps
- [3] Geon Ho Choe, Computational ergodic theory, 2005, http://www.ams.org/journals/bull/2007-44-01/ S0273-0979-06-01120-7/S0273-0979-06-01120-7.pdf
- [4] Freeman J. Dyson and Harold Falk, *Period of a Discrete Cat Mapping*, 1992,

http://www.jstor.org/stable/2324989

- [5] Gabriel Peterson, Arnold's Cat Map, 1997, https://pdfs.semanticscholar.org/edf4/ 23832801f51bdf3170cf64033913bac7ae2a.pdf
- [6] Joe Nance, Periods of the discretized Arnold's Cat Mapping and its extension to n-dimensions, 2011,

https://arxiv.org/abs/1111.2984v1