

Brain Modelling Workshop

Session 3: Bifurcations in Neural Dynamics and Cognition

Dominik Krzemiński, Luke Tait, Marinho Lopes, Alex Shaw

Housekeeping

Slides + practical files:

github.com/lukewtait/intro to modelling

Questions: <u>brainmodelworkshop.freeforums.net</u>

Please unmute your mic at any point to ask questions, or write on chat. There are tutors monitoring it and ready to help you!

Plan

Talk:

- 1) Recap & Stability analysis
- 2) Types of bifurcations
- 3) Example from cognitive neuroscience
- 4) Intro to exercises

Exercises:

- Decision modeling with Wong&Wang model

Recap

Dynamical system - system that evolves according to a set of rules.

$$\dot{x} = f_r(x)$$
Parameters state variables
$$f = r_0 \exp(x^2) + r_1$$

Recap

- We describe (continuous) dynamical systems using ordinary differential equations (ODEs)
- ➤ A one dimensional system (one equation) has 2 types of asymptotic dynamics:
 - X -> ∞
 - $\circ \quad X \to X_{\epsilon}$
- $\succ x_{s}$ is called a steady state, and can be stable or unstable

Gradient =
$$\frac{df}{dx}(x_s) < 0$$

Gradient =
$$\frac{df}{dx}(x_s) > 0$$

Gradient =
$$\frac{df}{dx}(x_s) < 0$$

Gradient =
$$\frac{df}{dx}(x_s) > 0$$

$$\frac{df(x_S)}{dx} < 0$$

$$\frac{df(x_S)}{dx} > 0$$

stable

unstable

Stability analysis - exercise

Stability analysis in higher dimensions

In higher dimensions, we can calculate the gradient in each of the 'blue' directions below. These 'gradients' are called **eigenvalues***

^{*}Technically, they are eigenvalues of the Jacobian matrix, which quantifies the gradient in each variable with respect to all other variables.

Stability analysis in higher dimensions

$$\lambda < 0$$

$$\lambda > 0$$

stable unstable

Poincare Diagram

When which which which was many was at it in the company when the company

What is bifurcation?

Bifurcation occurs when a small smooth change made to the parameter values (the bifurcation parameters) of a system causes a sudden 'qualitative' change in its behavior. For example, a sudden change in stability of a steady state or oscillation.

What is bifurcation?

Bifurcations

$$\dot{x} = r + x^2$$

Bifurcation plot

Saddle-node bifurcation

Quadratic neuron model

$$\dot{x} = r + x^2$$

$$\downarrow$$

$$\dot{V} = V^2 + I$$

(with reset mechanism)

Handy model for mathematical analysis of **type I neurons**

Theta model

$$\frac{d\theta}{dt} = \dot{\theta} = 1 - \cos\theta + (1 + \cos\theta)I$$

Saddle node on limit cycle.

Andronov-Hopf bifurcation

Wilson-Cowan model

$$\tau_E \dot{E} = -E + S_E (P + c_{EE} E - c_{IE} I)$$

$$\tau_I \dot{I} = -I + S_I (c_{EI} E - c_{II} I)$$

Parameter P

Andronov-Hopf vs Saddle-node bifurcation

Saddle-node	Andronov-Hopf
Can generate infinitely slow oscillations	Generates oscillations at fixed frequency
Can be used for modelling epilepsy	Can be used for gamma oscillations
Emerge with fixed amplitude	Can emerge with low amplitude
Theta model	Wilson-Cowan model
Type I neurons	Type II neurons

Andronov-Hopf vs Saddle-node bifurcation

Pitch-fork bifurcation

$$\dot{x} = rx - x^3$$

Pitch-fork bifurcation

$$\dot{x} = rx - x^3$$

Pitch-fork bifurcation

$$\dot{x} = rx - x^3$$

Types of bifurcations

- Saddle-node
- Pitch-fork
- Andronov-Hopf

And many others!

http://virtualmathmuseum.org

More: http://scholarpedia.org/article/Bifurcation

Perceptual Decision making Task

Shadlen and Newsome, 1996

2D Wong and wang model

$$\frac{dS_i}{dt} = -\frac{S_i}{\tau_{NMDA}} + (1 - S_i)\gamma H_i$$

$$H_i = \frac{ax_i - b}{1 - exp(-d(ax_i - b))}$$

$$x_1 = J_{11}S_1 - J_{12}S_2 + I_0 + I_1 + I_{noise,1}$$

$$x_2 = J_{22}S_2 - J_{21}S_1 + I_0 + I_2 + I_{noise,2}$$

$$I_i = J_{A,ext} \mu_0 (1 \pm \frac{c}{100\%})$$

$$\tau_{AMPA} \frac{dI_{noise,i}(t)}{dt} = -I_{noise,i}(t) + \eta_i(t) \sqrt{\tau_{AMPA} \sigma_{noise}^2}.$$

Modifying parameter c

Wong & Wang (2006) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6674568/

Modifying parameter *c*

Wong & Wang (2006) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6674568/

Working memory

Biological realism

$$I = C_m rac{{
m d} V_m}{{
m d} t} + ar{g}_{
m K} n^4 (V_m - V_K) + ar{g}_{
m Na} m^3 h (V_m - V_{Na}) + ar{g}_l (V_m - V_l),$$

$$rac{dn}{dt} = lpha_n(V_m)(1-n) - eta_n(V_m)n$$

$$rac{dm}{dt} = lpha_m(V_m)(1-m) - eta_m(V_m)m$$

$$rac{dh}{dt} = lpha_h(V_m)(1-h) - eta_h(V_m)h$$

Spiking neuronal network model

Reduced two-variable model

Biological realism

(Britten, Shadlen, Newsome, & Movshon, 1993)

Wong & Wang (2006) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6674568/

Deco's model

$$\frac{dS_i(t)}{dt} = -\frac{S_i}{\tau_S} + (1 - S_i)\gamma H(x_i) + \sigma v_i(t)$$

Deco's model

$$\frac{dS_i(t)}{dt} = -\frac{S_i}{\tau_S} + (1 - S_i^{(0)}) \gamma H(x_i^{(0)})$$

The optimal operating point for explaining the emergence of RSN is near a critical point.

Thank you!

Questions?

Let's move on to the practical session: github.com/lukewtait/intro to modelling

Clone the repo or pull the changes if you have it.

Mymany Myman Mandally Mandally