# Stochastic Optimal Growth with Unbounded Shock

John Stachurski

### Introduction

#### **Unbounded Shock**

Why:  $\mathbb{R}_{++}$  and distributions in mathematical statistics unbounded.

f is unbounded but ||Pf|| bounded

## **Definitions**

- lacktriangle A semidynamical system (U, T)
  - $\bullet$  U is a metric space
  - $oldsymbol{2}$  T is a continuous self map on U
- $\bullet$  (U, T) is asymptotically stable if it is globally stable.
- $A \subseteq U$  is **precompact** if every sequence in A has a convergent subsequence.
- (U, T) is Lagrange stable if  $\{T^n x\}$  is precompact for every  $x \in U$ .

## Fixed Point Theorem I

#### Theorem

Let U be a **nonempty convex closed** subset of a normed linear space X. Let  $T: X \to X$  be linear and continuous, with  $TU \subseteq U$ .

(U,T) is Lagrange stable  $\Rightarrow T$  has a fixed point in U.

#### Sketch of Proof.

- **②**  $\gamma(x)$  (precompact) is the convex hull and  $cl(\gamma(x))$  (compact) is its closure.
- $Tcl(\gamma(\hat{x})) \subset cl(\gamma(\hat{x})) \subset U$
- T has a fixed point in  $cl(\gamma(x))$

## **Definitions**

• T is said to be a **contraction mapping** if there exists an  $\alpha < 1$  such that

$$d(Tx, Ty) \le \alpha d(x, y), \quad \forall x, y \in U$$
 (1)

lacktriangle A semidynamical system (U, T) is called **contractive** if

$$d(Tx, Ty) \le d(x, y), \quad \forall x, y \in U$$
 (2)

ullet A semidynamical system (U, T) is called **strongly contractive** if, in addition,

$$d(Tx, Ty) < d(x, y), \quad \forall x, y \in U, \quad x \neq y.$$
 (3)

$$(1) \Rightarrow (3) \Rightarrow (2)$$



### Fixed Point Theorem II

## Lemma (Joshi and Bose 4.1.6)

Let (U, T) be a semidynamical system. If (U, T) is strongly contractive and U is compact, then (U, T) is asymptotically stable.

- Compactness might not hold

  Densities on P not compact i.e. f(x)
  - Densities on  $\mathbb{R}_{++}$  not compact, i.e.  $f_n(x) = n \cdot \mathbf{1}_{[0,1/n]}(x)$
- Possible to replace it with Lagrange stable (recover some local compactness)

## Fixed Point Theorem II

#### **Theorem**

Let X be a metric space, let U be a nonempty closed subset of X, and let  $T: X \to X$  be a continuous function invariant on U.

(U, T) Lagrange stable & strongly contractive  $\Rightarrow T$  asymptotically stable.

#### Sketch of Proof.

- Fix x and let  $\Gamma(x)$  be the closure of  $\{T^nx\}$ .
- **②** (U, T) Lagrange stable  $\Rightarrow \Gamma(x)$  compact and  $T\Gamma(x) \subset \Gamma(x)$  (continuity)
- **1** ( $\Gamma(x)$ , T) strongly contractive on compact set and T has a fixed point in  $\Gamma(x)$
- Strong contractivity implies unique fixed point

## Application

#### At each time t, the agent:

- receives income x<sub>t</sub>
- chooses consumption  $c_t \in [0, x_t]$
- invests the remainder  $x_t c_t$  in production,
- and enters the next period with income  $x_{t+1}$  as defined

$$x_{t+1} = f(x_t - c_t) \cdot \varepsilon_t,$$

## Assumptions

**Assumption 1.** The production function  $f: \mathbb{R}_+ \to \mathbb{R}_+$  is zero at zero, strictly increasing, strictly concave, differentiable, and satisfies the Inada conditions

$$\lim_{x\downarrow 0}f'(x)=\infty\quad \text{and}\quad \lim_{x\uparrow \infty}f'(x)=0.$$

**Assumption 2.** The utility function  $u: \mathbb{R}_+ \to \mathbb{R}$  is strictly increasing, strictly concave, differentiable, and satisfies the interiority condition

$$\lim_{x\downarrow 0}u'(x)=\infty.$$

**Assumption 3.** The shocks are i.i.d.. The distribution of  $\varepsilon$  is represented by density  $\psi$ . The shock has finite mean  $\mathbb{E}(\varepsilon)$ . In addition,  $\varepsilon$  satisfies  $\mathbb{E}(1/\varepsilon) < 1$ . The shock is less than one with positive probability, i.e.,

$$\int_0^1 \psi(x) \, dx \neq 0.$$



## Main Result

#### Theorem

Let u, f, and  $\psi$  satisfy Assumptions 1–3. The following statements are true.

- The economy  $(u, f, \psi)$  has at least one (nonzero) equilibrium fixed point Thm I
- **9** If, in addition,  $\psi$  is everywhere positive, then the equilibrium is unique and globally stable.

fixed point Thm II

# Sketch 1 : Lagrange Stability

- Construct semidynamical system  $(D(\mathbb{R}_{++}), Q)$  $D(\mathbb{R}_{++})$  densities and at time t, income distributed by  $Q^t\psi_0$
- ② Construct a dense subset  $\mu \subset D(\mathbb{R}_{++})$  with elements h s.t.

$$\int_0^\infty x \ h(x)dx < \infty \quad \text{and} \quad \int_0^\infty \frac{1}{x} \ h(x)dx$$

- **1** Truncate any  $\psi$  by  $h_k^0 = \mathbf{1}_{(\frac{1}{k},k)}\psi$  and let  $\{h_k = \frac{h_k^0}{\|h_k^0\|}\}$ , so  $\{h_k\} \subset \mu$
- $\bullet$   $\{Q^nh\}$  weakly precompact (precompact in fixed point Thm1)
- Q is both linear and continuous and  $D(\mathbb{R}_{++})$  is closed and convex.



## Sketch 2: Strong Contractiveness

#### Lemma

Given measure space  $(U, \Sigma, \nu)$ , let p be a stochastic kernel, and let P be the associated Markov operator.

If p > 0 on  $U \times U$ , then  $(\mathcal{D}(U), P)$  is strongly contractive.

 $\psi$  is everywhere positive