LISTING OF PENDING CLAIMS

We claim:

1. (currently amended) A process for rendering a polyarnine-epihalohydrin resin storage stable, comprising:

treating a composition containing a wet strength polyamine-epihalohydrin resin, the composition comprising a solids content of at least 15 wt% and including CPD-forming species, with at least one enzymatic agent under conditions to at least one of inhibit, reduce and remove the CPD-forming species to obtain a gelation storage stable reduced CPD-forming resin so that the composition containing the reduced CPD-forming polyamine-epihalohydrin resin when stored for 24 hours at 50°C, and a pH of about 1.0 releases less than about 250 ppm dry basis of CPD, wherein the solids content of the composition containing a wet strength polyamine-epihalohydrin resin is at least 15 wt% when treated with the at least one enzymatic agent.

- 2. (original) The process according to claim 1, wherein the composition containing the reduced CPD-forming polyamine-epihalohydrin resin when stored for 24 hours at 50°C, and a pH of about 1.0 releases less than about 50 ppm dry basis of CPD.
- 3. (original) The process according to claim 1, wherein the treatment conditions comprise a temperature of from about 20°C to 60°C.
- 4. (original) The process according to claim 3, wherein the treatment conditions comprise a temperature of from about 20°C to 40°C.
- 5. (original) The process according to claim 1, wherein the treatment conditions comprise a reaction time of from about 30 minutes to about 96 hours.
- 6. (original) The process according to claim 5, wherein the treatment conditions comprise a reaction time of from about 2 hours to about 12 hours.
- 7. (original) The process according to claim 1, wherein the treatment conditions comprise a pH of from about 2.5 to about 9.

- 8. (original) The process according to claim 7, wherein the treatment conditions comprise a pH of from about 7 to about 9.
- 9. (original) The process according to claim 8, wherein the treatment conditions comprise a pH of from about 6 to about 8.5.
- 10. (original) The process according to claim 1, wherein the ratio of at least one enzymatic agent to polyamine-epihalohydrin resin (dry basis) is from about 1:1600 to about 1:1.5.
- 11. (original) The process according to claim 10, wherein the ratio of at least one enzymatic agent to polyamine-epihalohydrin resin (dry basis) is from about 1:160 to about 1:4.
- 12. (original) The process according to claim 1, wherein the ratio of at least one enzymatic agent (active enzyme, dry basis) to polyamine-epihalohydrin resin (dry basis) is from about 0.04:1600 to about 0.04:1.5.
- 13. (original) The process according to claim 1, wherein the solids content is 15 to 50 wt% active solids, the treatment conditions comprise a temperature of from about 0°C to about 35°C, a reaction time of from about 4 to about 24 hours, a pH of from about 6.9 to about 7.9, the ratio of at least one enzymatic agent to polyamine-epihalohydrin resin (dry basis) is from about 1:20 to about 1:8.
- 14. (original) The process according to claim 1, wherein the at least one enzymatic agent is selected from the group consisting of an esterase, a lipase, a protease or a combination thereof.
- 15. (original) The process according to claim 1, wherein the at least one enzymatic agent is a protease in the subtilisin group.
- 16. (original) The process according to claim 1, wherein the at least one enzymatic agent has esterase activity.

- 17. (original) The process according to claim 1, wherein the at least one enzymatic agent is produced from a microorganism selected from the group consisting of *Bacillus licheniformis* (Swiss-Prot Accession Number: P00780), or *Bacillus amyloliquifaciens* (P00782), and *Bacillus lentus* (P29600).
- 18. (previously presented) The process according to claim 1, wherein the at least one enzymatic agent is in the subtilisin group.
- 19. (original) The process according to claim 1, wherein the resin is characterized by the presence of the functionality represented by the formula:

20. (original) The process according to claim 1, wherein the resin is characterized by the presence of the functionality represented by the formula:

21. (original) The process according to claim 1, wherein the resin is characterized by the presence of the functionality represented by the formula:

wherein X is an anion.

- 22. (original) The process according to claim 1, wherein, at least one of simultaneously with, prior to or subsequent to the treating a composition containing polyamine-epihalohydrin resin to obtain a reduced CPD-forming resin, the resin is contacted with at least one microorganism, or at least one enzyme isolated from the at least one microorganism, in an amount, and at a pH and temperature effective to dehalogenate residual quantities of organically bound halogen.
- 23. (original) The process according to claim 22 wherein the at least one microorganism, or at least one enzyme isolated from the at least one microorganism is a hydrogen halide lysase type dehalogenase.
- 24. (original) The process according to claim 22 wherein the at least one microorganism, or at least one enzyme isolated from the at least one microorganism comprises at least one of *Arthrobacter histidinolovorans* (HK1), and *Agrobacterium radiobacter* (HK7).
- 25. (original) The process according to claim 22, wherein the at least one microorganism comprises a mixture comprising at least one of *Agrobacterium radiobacter* (HK7) and, *Arthrobacter histidinolovorans* (HK1).
- 26. (original) The process according to claim 1, wherein, simultaneously with the treating a composition containing polyamine-epihalohydrin resin to obtain a reduced CPD-forming resin, the CPD-forming resin is contacted with at least one microorganism, or at least one enzyme isolated from the at least one microorganism, in an amount, and at a pH and temperature effective to dehalogenate residual quantities of organically bound halogen.
- 27. (original) The process according to claim 26, wherein the treatment conditions comprise a reaction time of 48 hours or less.
- 28. (original) The process according to claim 26, wherein the temperature of from about 20°C to 35°C.
- 29. (original) The process according to claim 26, wherein the treatment conditions comprise a pH of from about 6.5 to 8.0.

32. (deleted)

- 30. (original) The process according to claim 26 wherein the at least one microorganism, or at least one enzyme isolated from the at least one microorganism is a hydrogen halide lysase type dehalogenase.
- 31. (original) The process according to claim 26 wherein the at least one microorganism, or at least one enzyme isolated from the at least one microorganism comprises at least one of *Arthrobacter histidinolovorans* (HK1), and *Agrobacterium radiobacter* (HK7).
- 32. (original) The process according to claim 26, wherein the at least one microorganism comprises a mixture comprising at least one of *Agrobacterium radiobacter* (HK7) and, *Arfhrobacter histidinolovorans* (HK1).
- 33. (original) The process according to claim 26 wherein the treatment conditions comprise a reaction time of 48 hours or less, a temperature of from about 20°C to 35°C, a pH of from about 6.5 to about 8.0 and the ratio of at least one enzymatic agent to polyamine-epihalohydrin resin (dry basis) is from about 1:1600 to about 1:1.5 and the at least one microorganism comprises a mixture comprising at least one of *Agrobacterium radiobacter* (HK7) and, *Arthrobacter histidinolovorans* (HK1).
- 34. (original) The process according to claim 1, wherein, simultaneously, prior to or subsequent to the treating a composition containing polyamineepihalohydrin resin to obtain a reduced CPD-forming resin, the resin is treated to reduce at least one of epihalohydrins, epihalohydrin hydrolysis by-products and organic halogen bound to the polymer backbone.
 - 35. (currently amended) A process for preparing a paper product, comprising:

treating a composition containing wet strength polyamine-epihalohydrin resin, the composition comprising a solids content of at least 15 wt% and including CPD-forming species, with at least one enzymatic agent under conditions to at least one of inhibit, reduce and remove the CPD-forming species to obtain a gelation storage stable reduced

CPD-forming resin, and forming a paper product with the reduced CPD-forming polyamine-epihalohydrin resin, so that a paper product, when corrected for adding at about a 1 wt% addition level of the reduced CPD-forming resin, contains less than about 250 ppb of CPD, wherein the solids content of the composition containing a wet strength polyamine-epihalohydrin resin is at least 15 wt% when treated with the at least one enzymatic agent.

- 36. (original) The process according to claim 35, wherein the paper product, when corrected for adding at about a 1 wt% addition level of the reduced CPD-forming resin, contains less than about 50 ppb of CPD.
- 37. (original) The process according to claim 35, wherein the solids content is 15 to 50 wt% active solids, the temperature of the reaction is from about 0°C to about 35°C, the reaction time is from about 4 to about 24 hours and the pH of the reaction is from about 6.9 to about 7.9, the ratio of at least one enzymatic agent to polyamine-epihalohydrin resin (dry basis) is from about 1:20 to about 1:8.
- 38. (previously presented) The process according to claim 26 wherein the ratio of at least one enzymatic agent to polyamine-epihalohydrin resin (dry basis) is from about 1:1600 to about 1:1.5.