DS 7347 High-Performance Computing (HPC) and Data Science Session 8

Robert Kalescky Adjunct Professor of Data Science HPC Research Scientist May 19, 2022

Research and Data Sciences Services Office of Information Technology Center for Research Computing Southern Methodist University

Outline

Session Question

Docker

Singularity

Spack

Readings and Assignments

Session Question

Session Question

Why don't HPC systems use Docker?

Docker

Docker Image Registries

- There are several public and private sources for Docker images.
- Images can be used as the base image for custom images.
- Already optimized images can help with reproducible and efficient development workflows.

Docker Image Registries


```
Docker https://hub.docker.com
Quay.io https://quay.io
NVIDIA https://catalog.ngc.nvidia.com
Intel https://hub.docker.com/u/intel
AMD https://hub.docker.com/u/amdih
```

Pulling Images from Registries


```
#!/usr/bin/env sh
2
    pull_and_check() {
3
      name=${1}
      tag=`echo ${name} | cut -d':' -f2`
      docker pull ${name}
      docker image ls | egrep "REPOSITORY|${tag}"
      docker run --rm -it ${name} bash
8
9
10
    images[0]="ubuntu:jammv"
11
    images[1]="nvcr.io/nvidia/nvhpc:22.3-devel-cuda multi-ubuntu20.04"
12
    images[2]="nvcr.io/nvidia/nvhpc:20.7-runtime-cuda10.1-centos7"
13
14
15
    for image in ${images[@]}; do
      pull and check ${image}
16
17
    done
18
```

Multi-Architecture Builds

- · Images are CPU-architecture specific
- Docker supports multi-architecture builds
 - Platforms: amd64, arm32v5, arm32v6, arm32v7, arm64v8, i386, ppc64le, and s390x
 - docker build --platform with single platform
 - docker buildx --platform with list of platforms
- Builds on non-native platforms will be slower as it is running through a virtual machine

Basic Dockerfile


```
FROM ubuntu:20.04
2
3
    ENV DEBIAN_FRONTEND noninteractive
    RUN apt-get update &6√
     apt-get -y install\
6
     python3-pip\
     python3-numpy\
     python3-pandas
9
10
    RUN pip3 install
11
     jupyterlab
12
13
    ENTRYPOINT ["python3"]
14
15
```

Docker Multi-Architecture Builds


```
#!/usr/bin/env sh
2
3
    # Create builder to build images
    docker buildx create --name builder --use
5
    # Build images for x86_64 and ARM64
6
    docker buildx build --platform\
     linux/amd64,linux/arm64 -t rkalescky/python3:latest\
8
     -f pvthon3.dockerfile --push .
9
10
    # Inspect the built images
11
    docker buildx imagetools inspect rkalescky/python3:latest
12
13
```

Multi-Stage Builds with Docker

- Images with build tools can be very large.
- Use the needed image for building.
- Use the smallest image for running.
- · Define both the build and execution in a single Dockerfile.

Basic Multi-Stage Dockerfile


```
FROM nvcr.io/nvidia/nvhpc:22.3-devel-cuda_multi-ubuntu20.04 as builder
WORKDIR /build
COPY hello_world.cpp ./
RUN nvc++ -Bstatic -o hello_world hello_world.cpp

FROM alpine:3.15.4
WORKDIR /opt/hello/bin
COPY --from=builder /build/hello_world ./
ENTRYPOINT ["/opt/hello/bin/hello_world"]
```

Docker Multi-Architecture Builds


```
#!/usr/bin/env sh

# Build image using multi-stage Dockerfile

docker build -t hello:20.04 -f hello_world.dockerfile .

# Run the image

docker run hello:20.04

# Note the size difference

docker image ls | egrep "hello|22.3-devel"
```

Singularity

Building Singularity Images

- · Singularity has it's own image definition language.
 - · Requires (re)writing the definition file.
 - Requires root or "fakeroot", which is not widely available on HPC systems.
 - Can be done on a Linux system with Singularity installed and them copying the image.
 - Not generally recommended as there would be two definition files to maintain, presumably Docker and also Singularity.
- Pull from Docker registries.
 - · Requires pushing and pulling of Docker images.
- · Build from Docker archives.
 - · Requires exporting, copying, and conversion of Docker images.

Pulling Docker Containers

Pulling Docker Containers


```
# Pull Docker image to a Singularity image
10
    ssh m2 'bash -l -c "module load singularity\
11
    && singularity pull -F python3 3.9.13-slim.sif docker://python:3.9.13-slim
12
    && ls -lh ./python3 3.9.13-slim.sif\
13
    && singularity exec ./python3_3.9.13-slim.sif python3 -c \"import sys;
14
    → print(sys.version)\""'
15
    # Singularity mount points
16
    ssh m2 'bash -l -c "module load singularity\
17
    && echo $SINGULARITY BIND"'
18
19
```

Converting from Docker Archives

Spack

Spack Containerize

- Build images defined by Spack environments.
- · Spack-based build optimizations are preserved.
- · Intermediate Dockerfile uses multi-stage builds
- · Currently does not work for multi-architecture builds.

Define a Spack Environment


```
spack:
specs:
specs:
- gromacs+mpi
- mpich
container:
format: docker
images:
so: "ubuntu:20.04"
spack: develop
```

Build the Image from the Environment


```
1 #!/usr/bin/env sh
2
3 # Define the Spack environment
4 cat spack.yaml
5
6 # Build container definition file
7 spack containerize > Dockerfile
8
9 # Build the container image
10 docker build -t gromacs:latest .
```

Readings and Assignments

Readings and Assignments

Readings

None

Lab

- Use **spack containerize** to produce a Dockerfile of the Spack environment from Lab 1.
- · Build and export the Docker image.
- Use Singularity on M2 to convert and run the image.
- · Commit to your class repo:
 - assignments/lab_02.dockerfile.
 - 2. assignments/lab_02.{png,jpg} of your terminal session showing a Python session with NumPy, Matplotlib, and Pandas loaded.
- · Due 12:00 AM Central, Thursday, May 26, 2022