

Def: Si F:
$$\mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$$
 lo podenos eschr asi:

 $F(x,y,t) = (F_{1}(x,y,t), F_{2}(x,y,t), F_{3}(x,y,t))$

ROTACIONAL DE F

Fi: $\mathbb{R}^{2} \longrightarrow \mathbb{R}$.

Vol F:= $\frac{2}{2x}$ $\frac{2}{2y}$ $\frac{2}{2z}$

(NABLA

FI F2 F3

Lema: Sea F on campo vertal differentiable on \mathbb{R}^{3}

(1) Si $\mathbb{V} \times \mathbb{F} \neq \mathbb{F}$ \mathbb{F} F \mathbb{F} Es conservativo.

(2) Si $\mathbb{V} \times \mathbb{F} = \mathbb{F}$ y \mathbb{F} esta definition or usan \mathbb{R}^{3}

Conservativo.

Ejemplo: $\mathbb{F}(x,y,t) = (xy,y)$ $\mathbb{F}(x,y) =$

$$=(0,0,-x)=\nabla x F$$

Por lena, pote (1) F NO ES consecutio.

$$F(x,y) = (-y, x)$$
 en \mathbb{R}^2 ? Extendence el campo vechal a \mathbb{R}^3 y vivo nucle 17to de \mathbb{R}^3 . Así

$$\begin{cases}
(x,y,z) = (-y, x, 0) \\
(x,y,z) = (-y, x, 0)
\end{cases}$$

$$\begin{cases}
(x,y,z) = -(x,y,z) \\
(x,y,z) = -(x,y,z)
\end{cases}$$

$$\begin{cases}
(x,y,z) = -(x,y,z) \\
(x,y,z) = -(x,y,z)
\end{cases}$$

$$\begin{cases}
(x,y,z) = -(x,y,z) \\
(x,y,z) = -(x,y,z)
\end{cases}$$

$$\begin{cases}
(x,y,z) = -(x,y,z) \\
(x,y,z) = -(x,y,z)
\end{cases}$$

$$\begin{cases}
(x,y,z) = -(x,y,z) \\
(x,y,z) = -(x,y,z)
\end{cases}$$

$$\begin{cases}
(x,y,z) = -(x,z,z)
\end{cases}$$

$$\begin{cases}
(x,z,z) = -(x,z,z)
\end{cases}$$

El campo esta deposido en todo
$$\mathbb{R}^3$$
 que es una regista son huecos luego \mathbb{F} y po- lo hto \mathbb{F}^3 (son consenation).

(b) $\mathbb{F}(x,y) = \mathbb{F}(x,y) = \mathbb{F}(x,y)$

Queros $\mathbb{F}(x,y) = \mathbb{F}(x,y) = \mathbb{F}(x,y)$
 $\mathbb{F}(x,y) = \mathbb{F}(x,y) = \mathbb{F}(x,y) = \mathbb{F}(x,y) = \mathbb{F}(x,y)$
 $\mathbb{F}(x,y) = \mathbb{F}(x,y) = \mathbb{F}(x,y) = \mathbb{F}(x,y)$
 $\mathbb{F}(x,y) = \mathbb{F}(x,y) = \mathbb{F}(x,y)$

Sushibyedo $\mathbb{F}(x,y) = \mathbb{F}(x,y) = \mathbb{F}(x,y)$

Sushibyedo $\mathbb{F}(x,y) = \mathbb{F}(x,y) = \mathbb{F}(x,y)$

Sushibyedo $\mathbb{F}(x,y) = \mathbb{F}(x,y) = \mathbb{F}(x,y)$

$$\frac{\partial u}{\partial y} = x + A'(y) = 6y^2 + x$$

$$[A'(y) = 6y^2] \Rightarrow A(y) = 2y^3 + K$$

$$U(x,y) = 2x^2 + xy + 2y^3 + K$$

$$\int Fd3 = U(7,2) - U(1,0)$$

$$= 2.49 + 3.7 + 2.27 - 2$$

