

Magnetosheath jets using MMS

Savvas Raptis

Division of Space and Plasma Physics, KTH Royal Institute of Technology, Sweden

Dayside Kinetic Processes | mini-GEM 2021 19/01/2021

Introduction – Magnetosheath Jets

Motivation – Main Subcategories

"Found ~9 times more often behind the Qpar bow shock"

Classification Procedure in progress

Raptis, Karlsson, et al. (2020) | JGR Karlsson, Raptis, et al. (2020) | Ongoing

Multispacecraft Classification using Cluster

Energy Spectrum Solar Wind (eV)

Magnetic Field (nT)

Magnetic Field (nT)

Magnetic Field Stdev (nT)

Anisotropy(Q)

High Energy Flux

Energy Flux Ratio

Theta Bn

Main Categories of Jets

Raptis S., Karlsson T., et al. (2020) | JGR Raptis S., Aminalragia-Giamini S., et al. (2020) | Frontiers

Mini-GEM 2021 | 19/01/2021

MSH

Connecting to existent mechanisms

Bow shock ripples

Faster flow $(\Delta V) \rightarrow \text{Less heated } (\Delta T)$

SLAMS penetration

Steepened wave $(\Delta B) \rightarrow Density enhancement (\Delta n)$

Recent Results

Raptis S., Karlsson T., et al. (2020) | JGR Raptis S., Aminalragia-Giamini S., et al. (2020) | Frontiers Palmroth M., Raptis S., et al. (2020) | Annales (under review)

Current main results (1)

Raptis S., Karlsson T., et al. (2020) | JGR Raptis S., Aminalragia-Giamini S., et al. (2020) | Frontiers

Current main results (2)

Ongoing Work

Ongoing work – Approaching the shock

Palmroth M., **Raptis S**., et al. (2020) | Annales (under review) Palmroth M., et al. (2018) | Annales

Raptis S., Aminalragia-Giamini S., et al. (2020) | Frontiers

Updated database of jets

Initial: N = 8499

Subset	Number	Percentage (%)
Quasi-parallel	2284	26.9
Final cases	860	10.1
Quasi-perpendicular	504	5.9
Final cases	211	2.5
Boundary	744	8.8
Final cases	154	1.8
Encapsulated	77	0.9
Final cases	57	0.7
Other	4890	57.5
Unclassified/Uncertain	3499	41.2
Border	1346	15.8
Data Gap	45	0.5

09/2015 - 04/2019

<u>Updated</u>: N = 9196

Subset	Number	Percentage (%)
Quasi-parallel	2458	26.7
Final cases	901	10.1
Quasi-perpendicular	542	5.9
Final cases	214	2.3
Boundary	781	8.5
Final cases	191	2.1
Encapsulated	80	0.9
Final cases	60	0.7
Other	5335	58.0
Unclassified/Uncertain	3789	41.2
, Border	1500	16.3
Data Gap	46	0.5

9/2015 - 9/2020

~300 close to the bow shock

Raptis S., Karlsson T., et al. (2020) | JGR Raptis S., Aminalragia-Giamini S., et al. (2020) | Frontiers Palmroth M., Raptis S., et al. (2020) | Annales (under review)

Raptis, Karlsson, et al. | Ongoing

Example: close to the bow shock jet

Ongoing Correlation Results

Summary & Conclusion

Good indication that existent mechanism are at least partially responsible for what we see.

Quite a few things to be done:

- See class specific correlations close to the bow shock.
- Check burst data availability and see if this provides new insight.
- Check other tools of connecting mechanisms (time series analysis, mutual information (MI), prediction power scores (PPS), machine learning (ML), analytical prediction etc.)
- Quantification of other possible mechanisms (e.g. reconnection "plasmoids", Preisser et. al. 2020 | ApJL).
- Inspect for statistical artifacts (e.g. partial shock crossings, foreshock, other irregularities etc.)

Extra

Background – Fully automated

Background – Manual Addition

