Gaussian SLR: Inference and Prediction

GR 5205 / GU 4205 Section 2/ Section 3 Columbia University Xiaofei Shi

Classical inference steps:

Suppose iid $Y_i \sim \mathcal{N}(\mu, \sigma^2)$

• Estimation of parameters of observed data:

$$\widehat{\mu}=ar{y}=rac{1}{n}\sum_{i=1}^n y_i$$
 $\widehat{\sigma}^2=rac{1}{n-1}\sum_{i=1}^n (y_i-ar{y})^2$

• "Distribution" of the statistics:

$$\widehat{\mu}=ar{Y}=rac{1}{n}\sum_{i=1}^nY_i\sim\mathcal{N}(\mu,rac{\sigma^2}{n})$$
 $\widehat{\sigma}^2=rac{1}{n-1}\sum_{i=1}^n(Y_i-ar{Y})^2\simrac{\sigma^2}{n-1}\chi^2(n-1)$

Relationship:

$$ar{Y} \perp rac{1}{n-1} \sum_{i=1}^n (Y_i - ar{Y})^2 \ \Rightarrow rac{\sqrt{n(Y-\mu)}}{\sqrt{rac{1}{n-1} \sum_{i=1}^n (Y_i - ar{Y})^2}} \sim t(n-1)$$

• Continue with confidence interval and hypothesis testing, etc.

(Simple) linear regression procedures:

X - predictor (random) variable Y - response random variable

- Build your model:
 - 1) relationship: $Y=eta_0+Xeta_1+\epsilon,\;\mathbb{E}[\epsilon]=0,\; ext{Var}[\epsilon]=\sigma^2I_n$
 - 2) preference: choose $\widehat{eta}_0, \widehat{eta}_1$ to minimize $\mathbb{E}\left[\|Y-eta_0-Xeta_1\|^2
 ight]$
- ullet Estimate your model parameters: $(x_1,y_1),(x_2,y_2),\ldots,(x_n,y_n)$
- Estimate your model parameters: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$
- 1) using observed data to express your preference $\min_{eta_0,eta_1}Q:=\sum_{i=1}^n(y_i-eta_0-eta_1x_i)^2$ 2) get parameters estimation for your model: $b_1=rac{(x-ar x1_n)^ op(y-ar y1_n)}{\|x-ar x1_n\|^2}$ $b_0=ar y-ar xb_1$
- Understand your model: both \widehat{eta}_0 , \widehat{eta}_1 and b_0 , b_1
- 1) properties of estimations: $\widehat{eta}_0=ar{Y}-ar{X}\widehat{eta}_1,\ \widehat{eta}_1=rac{(X-ar{X}1_n)^ op(Y-ar{Y}1_n)}{\|X-ar{X}1_n\|^2}$
 - 2) predictions: ${\widehat Y}_0={\widehat eta}_0+X_0{\widehat eta}_1 \qquad {\widehat y}_0=b_0+x_0b_1$

Prediction and residual

$$b_1 = rac{(x - ar{x} 1_n)^ op (y - ar{y} 1_n)}{\|x - ar{x} 1_n\|^2} \qquad \qquad b_0 = ar{y} - ar{x} b_1$$

$$b_0=ar{y}-ar{x}b_1$$

- Prediction: $\hat{y}_i = b_0 + x_i b_1$
- Residual: $e_i = y_i - \hat{y}_i = y_i - b_0 - x_i b_1$
- Residual can be viewed as the estimation of unobservable error terms

$$\hat{\epsilon}_i=e_i=y_i-\hat{y}_i=y_i-b_0-x_ib_1$$

Estimation of $\widehat{\sigma}^2 = \text{MSE} = \frac{\sum_{i=1}^n e_i^2}{\sum_{i=1}^n e_i^2} = \frac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{\sum_{i=1}^n e_i^2} = \frac{\|y - \hat{y}\|^2}{\sum_{i=1}^n e_i^2}$

$$Y=eta_0+Xeta_1+\epsilon, \;\; \epsilon\sim \mathcal{N}(0,\sigma^2I_n)$$

- Given X_1, \ldots, X_n
- $ullet Y_i | X_i = eta_0 + X_i eta_1 + \epsilon_i \sim \mathcal{N}(eta_0 + X_i eta_1, \sigma^2)$
- It is enough to model the error term in the linear relationship!
- ullet Let's first focus on $\widehat{eta}_0=ar{Y}-ar{X}\widehat{eta}_1,\ \widehat{eta}_1=rac{(X-ar{X}1_n)^ op(Y-ar{Y}1_n)}{\|X-ar{X}1_n\|^2}$

$$Y=eta_0+Xeta_1+\epsilon, \;\; \epsilon\sim \mathcal{N}(0,\sigma^2I_n)$$

• Express $\widehat{\beta}_1$

$$Y=eta_0+Xeta_1+\epsilon, \;\; \epsilon\sim \mathcal{N}(0,\sigma^2I_n)$$

• Express \widehat{eta}_0

$$Y=eta_0+Xeta_1+\epsilon, \;\; \epsilon\sim \mathcal{N}(0,\sigma^2I_n)$$

• Express $\widehat{\sigma}_{\mathrm{LS}}^2$

$$Y=eta_0+Xeta_1+\epsilon, \;\; \epsilon\sim \mathcal{N}(0,\sigma^2I_n)$$

• Express $\widehat{\sigma}_{\mathrm{LS}}^2$

Hand-waving explanations for:

$$(\widehat{eta}_0,\widehat{eta}_1)\perp\widehat{\sigma}_{\mathrm{LS}}^2$$

- n i.i.d normal distributed error term
- ullet using 2 degree of freedom to estimate $\widehat{eta}_0, \widehat{eta}_1$
- ullet extra n-2 degree of freedom is in $\;\widehat{\sigma}_{ ext{LS}}^2$

Confidence interval for coefficient:

$$({\widehat{eta}}_0,{\widehat{eta}}_1)\perp{\widehat{\sigma}}_{ t LS}^2$$

$$egin{aligned} \widehat{eta}_1 &\sim \mathcal{N}\left(eta_1, rac{\sigma^2}{\|x - ar{x} 1_n\|^2}
ight) \ \widehat{eta}_0 &\sim \mathcal{N}\left(eta_0, \sigma^2\left(rac{1}{n} + rac{ar{x}^2}{\|x - ar{x} 1_n\|^2}
ight)
ight) \ \widehat{\sigma}_{ ext{LS}}^2 &\sim rac{\sigma^2}{n-2}\chi^2(n-2) \end{aligned}$$

What to choose as a statistics?

Confidence interval for coefficient:

$$(\widehat{eta}_0,\widehat{eta}_1)\perp\widehat{\sigma}_{ ext{LS}}^2$$
 \widehat{eta}_1

$$egin{aligned} \widehat{eta}_1 &\sim \mathcal{N}\left(eta_1, rac{\sigma^2}{\|x - ar{x} \mathbf{1}_n\|^2}
ight) \ \widehat{eta}_0 &\sim \mathcal{N}\left(eta_0, \sigma^2\left(rac{1}{n} + rac{ar{x}^2}{\|x - ar{x} \mathbf{1}_n\|^2}
ight)
ight) \ \widehat{\sigma}_{ ext{LS}}^2 &\sim rac{\sigma^2}{n-2}\chi^2(n-2) \end{aligned}$$

• Choice of statistics:

$$\sqrt{rac{\|x-ar{x}1_n\|^2}{\widehat{\sigma}^2}}\left(\widehat{eta}_1-eta_1
ight)\sim t(n-2),\;\sqrt{rac{\left(rac{1}{n}+rac{ar{z}^2}{\|x-ar{x}1_n\|^2}
ight)^{-1}}{\widehat{\sigma}^2}}\left(\widehat{eta}_0-eta_0
ight)\sim t(n-2)$$

• (100-a)% confidence intervals for ground truth:

$$egin{aligned} \left[\widehat{eta}_1 - \sqrt{rac{\widehat{\sigma}^2}{\|x - ar{x} \mathbf{1}_n\|^2}} t(1 - rac{lpha}{2}; n - 2), \widehat{eta}_1 + \sqrt{rac{\widehat{\sigma}^2}{\|x - ar{x} \mathbf{1}_n\|^2}} t(1 - rac{lpha}{2}; n - 2)
ight] \ \left[\widehat{eta}_0 - \sqrt{\widehat{\sigma}^2 \left(rac{1}{n} + rac{ar{x}^2}{\|x - ar{x} \mathbf{1}_n\|^2}
ight)} t(1 - rac{lpha}{2}; n - 2), \widehat{eta}_0 + \sqrt{\widehat{\sigma}^2 \left(rac{1}{n} + rac{ar{x}^2}{\|x - ar{x} \mathbf{1}_n\|^2}
ight)} t(1 - rac{lpha}{2}; n - 2)
ight] \end{aligned}$$

• where define t(q; n-2) as $P(Z \le t(q; n-2)) = q$

Confidence interval for estimation:

$$(\widehat{eta}_0,\widehat{eta}_1)\perp\widehat{\sigma}_{\operatorname{LS}}^2$$

$$egin{aligned} \widehat{eta}_1 &\sim \mathcal{N}\left(eta_1, rac{\sigma^2}{\|x - ar{x} 1_n\|^2}
ight) \ \widehat{eta}_0 &\sim \mathcal{N}\left(eta_0, \sigma^2\left(rac{1}{n} + rac{ar{x}^2}{\|x - ar{x} 1_n\|^2}
ight)
ight) \ \widehat{\sigma}_{ ext{LS}}^2 &\sim rac{\sigma^2}{n-2}\chi^2(n-2) \end{aligned}$$

Choice of statistics:

• (100-a)% confidence intervals for ground truth:

Confidence interval for prediction:

$$(\widehat{eta}_0,\widehat{eta}_1)\perp\widehat{\sigma}_{\operatorname{LS}}^2$$

$$egin{aligned} \widehat{eta}_1 &\sim \mathcal{N}\left(eta_1, rac{\sigma^2}{\|x - ar{x} 1_n\|^2}
ight) \ \widehat{eta}_0 &\sim \mathcal{N}\left(eta_0, \sigma^2\left(rac{1}{n} + rac{ar{x}^2}{\|x - ar{x} 1_n\|^2}
ight)
ight) \ \widehat{\sigma}_{ ext{LS}}^2 &\sim rac{\sigma^2}{n-2}\chi^2(n-2) \end{aligned}$$

• Choice of statistics:

• (100-a)% confidence intervals for ground truth:

Asymptotically normality

	t Table	•										
	cum. prob	t .50	t.75	t .80	t .85	t .90	t .95	t .975	t .99	t .995	t .999	t .9995
	one-tail	0.50	0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
	two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.002	0.001
	df											
_	1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
	2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599
/	3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
	4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
	5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869
	6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
	7	0.000	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5.408
	8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	4.501	5.041
	9	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.297	4.781
	10 11	0.000	0. 700 0.697	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.144	4.587
	12	0.000	0.695	0.876 0.873	1.088	1.363 1.356	1.796 1.782	2.201 2.179	2.718 2.681	3.106 3.055	4.025 3.930	4.437 4.318
	13	0.000	0.694	0.870	1.003	1.350	1.702	2.179	2.650	3.012	3.852	4.221
- 1	14	0.000	0.692	0.868	1.079	1.345	1.761	2.145	2.624	2.977	3.787	4.140
╛	15	0.000	0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	3.733	4.073
	16	0.000	0.690	0.865	1.071	1.337	1.746	2.120	2.583	2.921	3.686	4.015
	17	0.000	0.689	0.863	1.069	1.333	1.740	2.110	2.567	2.898	3.646	3.965
4	18	0.000	0.688	0.862	1.067	1.330	1.734	2.101	2.552	2.878	3.610	3.922
	19	0.000	0.688	0.861	1.066	1.328	1.729	2.093	2.539	2.861	3.579	3.883
	20	0.000	0.687	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.552	3.850
	21	0.000	0.686	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.527	3.819
- 1	22	0.000	0.686	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.505	3.792
	23	0.000	0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.485	3.768
=	24	0.000	0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.467	3.745
	25	0.000	0.684	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.450	3.725
	26	0.000	0.684	0.856	1.058	1.315	1.706	2.056	2.479	2.779	3.435	3.707
7	27	0.000	0.684	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.421	3.690
	28	0.000	0.683	0.855	1.056	1.313	1.701	2.048	2.467	2.763	3.408	3.674
	29	0.000	0.683	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3.396	3.659
	30	0.000	0.683	0.854	1.055	1.310	1.697	2.042	2.457	2.750	3.385	3.646
- 1	40	0.000	0.681 0.679	0.851	1.050	1.303 1.296	1.684	2.021	2.423 2.390	2.704	3.307 3.232	3.551 3.460
4	60 80	0.000	0.679	0.848 0.846	1.045 1.043	1.296	1.671 1.664	1.990	2.390	2.639	3.232	3.416
	100	0.000	0.677	0.845	1.043	1.292	1.660	1.984	2.364	2.626	3.195	3.416
	1000	0.000	0.675	0.842	1.042	1.282	1.646	1.962	2.330	2.581	3.098	3.300
	10											
	Z	0.000	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	3.090	3.291
	9	0%	50%	60%	70%	80%	90%	95%	98%	99%	99.8%	99.9%
		Confidence Level										

References and further reading

- Kutner, Nachtsheim, Neter: Applied Linear Regression Models Chapter 2
- Agresti: Foundations of Linear and Generalized Linear Models Chapter 2&3