

Summery

Alice has her pair of keys (ska , pka).

Message d is encrypted with a symmetric key DEK.

D = enought_data (d, DEK)

Message D is an encrypted version of messege d with the DEK key. Now, it's time for Alice to encrypt the DEK key, and put it into a capsule only she can open while decrypting it with her sluret key ska.

There is a ciphertext c_A , and a capsule k_A . The capsule can only be opened with a search bey ska which is a counterpart to pk_A .

DEK = decrypt (ca, ka, ska)

In order to enable Bob to open the capsule, Alice has to pravide a re-energetion key $\tau_{A\gg B}$, such that allow to transform (c_4,k_4) into (c_8,k_B) .

TASB = generate_reencryption_key (ska, pkB)

(cB, kB) = reencrypt (cA, kA, TASB)

Beb would now be able to retrieve DEK.

DER = decrypt (cb, kb, SkB)

to improve the level of security. Alice needs to split the reencryption key $r_{A>B}$, and send ports to multiple locations. This process makes it possible to reduce trust required from a re-energytion proxy. If it doesn't know the whole $r_{A>B}$, then it has no incentive to missbehave.

Instead of generating a single $r_{A>B}$, we will have it split into multiple fragments, could kfrage.

kfragy, = split_reenaryption. key (ska, pk, M, N)

where kfrags = kfraga-so,;

Once Africe have kfraggas generated, she needs to publish it to the network of proxies. These movies will later use partial reeneryption hegs kfraggas to transform C_A into Graggas.

Cfrogs = = reemypt-frag(c, k, kfragass,i)

Bob will need exactly M of all distinct ofrags, avoidable in order to veveal DEK. The order of ofrags doesn't matter.

(CBIKB) = merge (CAIKA, cfrags *)

And now, finally, Bob com access DEK

DEK = decrypt (c, k, sk)

Following DEX occess, it's time to see what is hidden under the ciphertext D.

d = decrypt_data (D, DEK)