高数精讲 (8)

8 导数的应用、方程的根及函数不等式举例

P70-P81

181-91

主讲 武忠祥 教授

二. 常考题型方法与技巧

题型一 函数的单调性、极值及最值 题型二 曲线的凹向、拐点、渐近线及曲率

题型三 方程根的存在性及个数 题型四 证明函数不等式

题型五 微分中值定理有关的证明题 🗸

【例1】求函数 $f(x) = \int_{1}^{x^{2}} (x^{2} - t) e^{-t^{2}} dt$ 的单调区间与极值.

【解】 f(x) 的定义域为 $(-\infty,+\infty)$, 由于

$$f(x) = x^{2} \int_{1}^{x^{2}} e^{-t^{2}} dt - \int_{1}^{x^{2}} t e^{-t^{2}} dt,$$

$$f'(x) = 2x \int_{1}^{x^{2}} e^{-t^{2}} dt + 2x^{3} e^{-x^{4}} - 2x^{3} e^{-x^{4}} = 2x \int_{1}^{x^{2}} e^{-t^{2}} dt, = 0$$

所以 f(x) 的驻点为 $x = 0,\pm 1$. 列表讨论如下: f(x) 化分子

因此, f(x) 的单调增加区间为 (-1,0) 及 $(1,+\infty)$, 单调减少区

间为 $(-\infty,-1)$ 及 (0,1); 极小值为 $f(\pm 1) = 0$, 极大值为

$$f(0) = \int_0^1 t' e^{-t^2} dt = \frac{1}{2} (1 - e^{-1}).$$

【例2】设函数 y = f(x) 由方程 $y^3 + xy^2 + x^2y + 6 = 0$ 确定, 求 f(x) 的极值.

【解】方程 $y^3 + xy^2 + x^2y + 6 = 0$ 两端对 x 求导得

$$3y^2y' + y^2 + 2xyy' + 2xy + x^2y' = 0$$
 (1)

令
$$y'=0$$
, 得 $y^2+2xy=0$, 由此可得, $y=0,y=-2x$,

显然 y=0 不满足原方程,将 y=-2x 代入原方程得

$$-6x^3+6=0$$
, 解得 $x_0=1$, $f(1)=-2$, $f'(1)=0$.

对(1)式两端再对 x 求导得

$$6yy'^{2} + 3y^{2}y'' + 4yy' + 2xy'^{2} + 2xyy'' + 2y + 4xy' + x^{2}y'' = 0$$

* 将
$$x=1, f(1)=-2, f'(1)=0$$
 代入上式得 $f''(1)=\frac{4}{9}>0.$

【例3】设 f(x) 有二阶连续导数,且 f'(0) = 0,

- (A) f(0) 是 f(x) 的极大值;
- (B) f(0) 是 f(x)的极小值;
- **②**(C)(0, f(0)) 是曲线 y = f(x)的拐点;

(D) f(0) 不是 f(x) 的极值, (0, f(0)) 也不是曲线 y = f(x) 的拐点

【解】由于
$$\lim_{x\to 0} \frac{f''(x)}{|x|} = 1 > 0$$
,则在 $x = 0$ 的某法小邻域内 $x = 0$ 的某法小邻域内 $x = 0$ 的某法小邻域内 $x = 0$ 的 x

【例4】设 f(x) 二阶导数连续,且 $(x-1)f''(x)-2(x-1)f'(x)=1-e^{1-x}$,

- 1) 若 x = a $(a \ne 1)$ 是极值点时, 是极小值点还时极大值点?

- (1/2) 若 x=1 是极值点时, 是极大值点还是极小值点?
- 【解】 1) 由于 x = a 为极值点,则 f'(a) = 0, \checkmark

$$(a-1)f''(a)-2(a-1)f'(a)=1-e^{1-a}$$

$$f''(a) = \frac{1 - e^{1-a}}{a - 1} > 0$$
 $(a \ne 1)$

$$f''(x) - 2f'(x) = \frac{1 - e^{1-x}}{x - 1}$$

2)
$$\pm (x-1)f''(x) - 2(x-1)f'(x) = 1 - e^{1-x}$$
 $\pm f''(x) - 2f'(x) = \frac{1 - e^{1-x}}{x-1}$ $\pm f''(x) - 2\lim_{x \to 1} f'(x) = \lim_{x \to 1} \frac{1 - e^{1-x}}{x-1} = 1, \text{ If } f''(x) = 1 > 0,$

[例5] 设
$$f(x)$$
 二阶可导,且 $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)-f'(x_0)}{h^2\longrightarrow 0} = \underbrace{a\neq 0}$ 试讨论 $f(x)$ 在 x_0 点的极值.

试讨论 f(x) 在 x_0 点的极值.

 $=\frac{1}{2}f''(x_0) + \bigcirc$

[解1]由
$$\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)-f'(x_0)}{h^2} = a \neq 0$$
知, $f'(x_0)=0$,

即 x_0 为驻点. 且

$$a = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h^2} = \lim_{h \to 0} \frac{f'(x_0 + h)}{2h}$$

$$= \lim_{h \to 0} \frac{f'(x_0 + h) - f'(x_0)}{2h}$$

$$= \lim_{h \to 0} \frac{f'(x_0 + h) - f'(x_0)}{2h}$$

【例5】设 f(x) 二阶可导,且 $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)-f'(x_0)}{h^2} = a \neq 0$

试讨论 f(x) 在 x_0 点的极值.

[解2]由
$$\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)-f'(x_0)}{h^2} = a \neq 0$$
知, $f'(x_0)=0$,
$$a = \lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h^2} \qquad \qquad f(x_0+h) + f'(x_0) +$$

$$=\frac{f''(x_0)}{2}$$

【例5】设 f(x) 二阶可导,且 $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)-f'(x_0)}{h^2} = a \neq 0$

试讨论 f(x) 在 x_0 点的极值.

【解3】由
$$\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)-f'(x_0)}{h^2} = a \neq 0$$
 知, $f'(x_0)=0$,

即 x_0 为驻点. 且

+
$$\underline{a} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h^2 + 20} > 0$$

题型二 曲线的凹向、拐点、渐近线及曲率

【例1】设函数 f(x) 满足关系式 $f''(x)+[f'(x)]^2=\sin x$, 且 f'(0)=0.则

- (A) f(0) 是 f(x)的极大值;
- (B) f(0) 是 f(x) 的极小值;

- (D) f(0) 不是 f(x) 的极值, (0, f(0)) 也不是曲线 y = f(x) 的拐点.
- 【解】 选(C)

$$f''(x) + 2 f(x) f''(x) = \omega X$$

 $f'''(0) = 1 \neq 0$

y = y(x) 的极值和曲线 y = y(x) 的凹凸区间及拐点

【解】令
$$\frac{dy}{dx} = \frac{t^2 - 1}{t^2 + 1} = 0$$
, 得 $t = \pm 1$.

当
$$t=$$
 时, $x=\frac{5}{3}$; 当 $t=-1$ 时, $x=-1$.

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{\overline{(t^2+1)^2}}{t^2+1} = \frac{4t}{(t^2+1)^3} = 0 , \quad \text{if } t = 0, \quad \text{if } x = \frac{1}{3}.$$

由此可知,函数 y(x) 的极大值为 $y(-1) = y|_{t=-1} = 1$,极小值为

$$y(\frac{5}{3}) = y|_{t=1} = -\frac{1}{3}.$$

曲线
$$y = y(x)$$
 的凹区间为 $(\frac{1}{3}, +\infty)$, 凸区间为 $(-\infty, \frac{1}{3})$.

由于
$$y(\frac{1}{3}) = y|_{t=0} = \frac{1}{3}$$
 , 所以曲线 $y = y(x)$ 的拐点为 $(\frac{1}{3}, \frac{1}{3})$.

【例3】 曲线 $y = \frac{(1+x)^{\frac{1}{2}}}{\sqrt{x}}$ 的斜渐近线方程为_______.

$$\lim_{x \to +\infty} [y - ax] = \lim_{x \to +\infty} \left[\frac{(1+x)^{\frac{3}{2}}}{\sqrt{x}} - x \right] = \lim_{x \to +\infty} \frac{(1+x)^{\frac{3}{2}} - x\sqrt{x}}{\sqrt{x}}$$

$$= \lim_{x \to +\infty} \frac{x^{\frac{3}{2}} \left[(1 + \frac{1}{x})^{\frac{3}{2}} - 1 \right]}{\sqrt{x}} = \lim_{x \to +\infty} \frac{x^{\frac{3}{2}} \frac{3}{2} \frac{1}{x}}{\sqrt{x}} = 3 = 0$$

则斜渐近线方程为
$$y=x+\frac{3}{2}$$
.

【例3】 曲线
$$y = \frac{(1+x)^{\frac{3}{2}}}{\sqrt{x}}$$
 的斜渐近线方程为______.

【解2】
$$y = \frac{(1+x)^{\frac{1}{2}}}{\sqrt{x}} = x(1+\frac{1}{x})^{\frac{3}{2}}$$

才= K+==

$$= x[1 + \frac{3}{2} \cdot \frac{1}{x} + o(\frac{1}{x})]$$

$$= x + \frac{3}{2} + x \cdot o(\frac{1}{x})$$

$$\int_{0}^{1} = 0x + b + 4x$$

$$\int_{0}^{1} = (x + b)$$

【例4】 曲线 $y = e^{x+\frac{1}{x}}$ arctan $\frac{x^2 + x + 1}{(x-1)(x-2)}$ 的渐近线的条数为

$$(C)$$
 3

【解】由于
$$\lim_{x \to -\infty} e^{x + \frac{1}{x}} \arctan \frac{x^2 + x + 1}{(x - 1)(x - 2)} = 0$$

则 y=0 为水平渐近线 \checkmark

$$\lim_{x \to 0^{+}} e^{x + \frac{1}{x}} \arctan \frac{x^{2} + x + 1}{(x - 1)(x - 2)} = +\infty$$

则 x=0 为其垂直渐近线 J

$$\lim_{x \to +\infty} \frac{y}{x} = \lim_{x \to +\infty} \left(\frac{e^x}{x} \right) e^{\frac{1}{x}} \arctan \frac{x^2 + x + 1}{(x - 1)(x - 2)} = +\infty$$

则原曲线无斜渐近线,应选(B).

【例5】求曲线 $y = x \arctan x$ 的渐近线.

【解1】显然曲 $y = x \arctan x$ 无水平渐近线和垂直渐近线.

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \arctan x = \frac{\pi}{2} = a$$

$$b = \lim_{x \to +\infty} \left(f(x) - ax \right) = \lim_{x \to +\infty} \left(x \arctan x - \frac{\pi}{2} x \right) = \lim_{x \to +\infty} x \left(\arctan x - \frac{\pi}{2} \right)$$

$$\frac{0}{0} = \lim_{x \to +\infty} \frac{\arctan x - \frac{\pi}{2}}{\frac{1}{x}} = \lim_{x \to \infty} \frac{\frac{1}{1 + x^2}}{-\frac{1}{x^2}} = -1 = 0$$

$$\therefore y = ax + b = \frac{\pi}{2}x - 1 \quad \exists x \to +\infty \text{ 时的斜渐近线.}$$
同理 $y = -\frac{\pi}{2}x - 1 \quad \exists x \to -\infty \text{ 时的斜渐近线.}$

【例5】求曲线 $y = x \arctan x$ 的渐近线.

【解2】显然曲 $y = x \arctan x$ 无水平渐近线和垂直渐近线.

$$y = x \arctan x = x(\frac{\pi}{2} - \arctan \frac{1}{x}) \qquad (\arctan x + \arctan \frac{1}{x} = \frac{\pi}{2}(x > 0))$$

$$= \frac{\pi}{2}x - x \arctan \frac{1}{x}$$

$$= \frac{\pi}{2}x - 1 + [1 - x \arctan \frac{1}{x}]$$

∴
$$y = ax + b = \frac{\pi}{2}x - 1$$
 是 $x \to +\infty$ 时的斜渐近线.

 $y = x \arctan x$ 是偶函数,则 $y = -\frac{\pi}{2}x - 1$ 是 $x \to -\infty$ 时的斜渐近线岛埃老师 @考研可爱因子

题型三 方程的根的存在性及个数

1.存在性:

方法1:零点定理;

方法2: 罗尔定理;

2.根的个数:

方法1:单调性;

方法2: 罗尔定理推论;

$$F(x) = f(x) = 0$$

通论: 11十个

罗尔定理推论: 若在区间 I 上 $f^{(n)}(x) \neq 0$, 则方程 f(x) = 0

在 I 上最多 n 个实根.

【例1】设 a_1, a_2, \dots, a_n 为任意实数, 求证方程

$$\int_{-\infty}^{\infty} (x) = a_1 \cos x + a_2 \cos 2x + \dots + \underbrace{a_n \cos nx}_{n} = 0 \text{ ft } [0, \pi] \text{ PWA Asymptotic Properties of the prope$$

$$f(x) = \underbrace{a_1 \sin x + \frac{a_2}{2} \sin 2x + \dots + \frac{a_n}{n} \sin nx}_{n}$$

显然
$$f'(x) = a_1 \cos x + a_2 \cos 2x + \dots + a_n \cos nx$$

- 2
- (3) $f(0) = 0 = f(\pi)$

$$f(x) = f(x) = a_1 + a_2 - a_3 - a_1 + a_2 - a_3 - a_1 + a_2 - a_3 - a_$$

【例2】 试讨论方程 $\ln x - \frac{x}{e} + 1 = 0$ 的实根个数.

【解】 令
$$f(x) = \ln x - \frac{x}{e} + 1$$
,则 $f'(x) = \frac{1}{x} - \frac{1}{e}$,

令
$$f'(x)=0$$
 得 $x=e$.

当
$$x \in (0,e)$$
 时, $f'(x) > 0, f(x)$ 单调增.

当
$$x \in (e,+\infty)$$
 时, $f'(x) < 0, f(x)$ 单调减. 人

$$\nabla f(e) = 1 > 0$$
, $\lim_{x \to 0^{+}} f(x) = -\infty$, $\lim_{x \to +\infty} f(x) = -\infty$;

则 f(x) 在 (0,e) 和 $(e,+\infty)$ 内各有一个零点,故原方程

有两个实根。

【例4】 试证方程 $2^x - x^2 = 1$ 有且仅有三个实根.

0 11. 12

【证】令 $f(x) = 2^x - x^2 - 1$,则

$$f(0) = 0$$
, $f(1) = 0$, $f(2) = -1 < 0$, $f(5) = 2^5 - 25 - 1 = 6 > 0$

从而 f(x) 在 (2,5)内至少有一个零点,原方程至少有三

f(k) = 2k - 1 f(k) = 2k - 2k = 0

个实根,又

$$f'(x) = 2^x \ln 2 - 2x$$

$$f''(x) = 2^x \ln^2 2 - 2$$

$$f'''(x) = 2^x \ln^3 2 \neq 0$$

从而原方程最多三个实根,原题得证.

【例5】 试确定方程 $x = ae^x(a > 0)$ 实根个数.

【解】 将原方程变形得
$$xe^{-x} - a = 0$$

$$f(x) = xe^{-x} - a \qquad (x > 0)$$

$$f'(x) = e^{-x} - xe^{-x} = (1 - x)e^{-x}$$

令
$$f'(x) = 0$$
 得 $x = 1$

当 $x \in (0,1)$ 时, f'(x) > 0, f(x) 单调增.

当 $x \in (1,+\infty)$ 时, f'(x) < 0, f(x) 单调减.

$$\lim_{x \to 0^+} f(x) = -a < 0, \quad \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(\frac{x}{e^x} - a \right) = -a < 0 \qquad f(1) = \frac{1}{e} - a$$

则 1) 当
$$a < \frac{1}{\rho}$$
 时,两个实根.

2) 当
$$a = \frac{1}{a}$$
 时,唯一实根. \checkmark 3) 当 $a > \frac{1}{a}$ 时,无实根.

【例6】设当 x>0 时, 方程 $kx+\frac{1}{x^2}=1$ 有且仅有一个解, 试求 k 的取值范围.

【解2】 将原方程变形得
$$(k) = \frac{1}{x} - \frac{1}{x^3} = (k)(x > 0)$$

$$f(x) = \frac{1}{x} - \frac{1}{x^3} \quad (x > 0)$$

$$f'(x) = -\frac{1}{x^2} + \frac{3}{x^4} = \frac{3 - x^2}{x^4}$$

令
$$f'(x) = 0$$
 得 $x = \sqrt{3}$

当
$$x \in (0,\sqrt{3})$$
 时, $f'(x) > 0, f(x)$ 单调增.

当
$$x \in (\sqrt{3}, +\infty)$$
 时, $f'(x) < 0, f(x)$ 单调减.

$$f(\sqrt{3}) = \frac{2}{9}\sqrt{3}$$
, $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \frac{x^2-1}{x^3} = -\infty$, $\lim_{x\to +\infty} f(x) = 0$.

从而若原方程有具仅有一个实根,则 $k = \frac{2}{9}\sqrt{3}$ 或 $k \le 1$

【例7】设 f(x) 在 [0,1] 上可微, 且当 $0 \le x \le 1$ 时,

 $0 < f(x) < 1, f'(x) \neq 1$. 试证在 (0,1) 内有且仅有一个 x, 使 f(x) = x.

【证】 \diamondsuit F(x) = f(x) - x, 则

$$F(0) = f(0) > 0$$

$$F(1) = f(1) - 1 < 0$$

$$f'(x) = f(x) - | \neq 0$$

由零点定理知方程 F(x) = 0 在 (0,1) 内室少有一实根,

 $F'(x) = f'(x) - 1 \neq 0$, 则 F(x) = 0 最多一个实根, 原题得证.

【例8】设 f''(x) < 0, f(1) = 2, f'(1) = -3. 求证: f(x) = 0 在 $(1,+\infty)$ 有且仅有一根.

【证1】由
$$f''(x) < 0$$
及 $f'(1) = -3 < 0$ 知方程 $f(x) = 0$ 在

(1,+∞) 上最多一个实根.

由泰勒公式知当 $x \in (1,+\infty)$ 时

$$f(x) = f(1) + f'(1)(x-1) + \frac{f''(\xi)}{2!}(x-1)^{2}$$

$$= 2 - 3(x-1) + \frac{f''(\xi)}{2}(x-1)^{2}$$

$$\leq 2 - 3(x-1) = 5 - 3x$$

$$f(2) \leq 5 - 6 = -1 < 0$$

$$f(3) = \frac{f(3) + f''(\xi)}{2!}(x-1)^{2}$$

$$f(3) = \frac{f'(3) + f''(\xi)}{2!}(x-1)^{2}$$

$$f(4) = \frac{f''(\xi)}{2!}(x-1)^{2}$$

(iE2)
$$f(2) - f(1) = f'(c)(2-1)$$
 $(1 < c < 2)$

$$\leq f'(1)(2-1)$$

即
$$f(2) \le f(1) + f'(1)(2-1) = 2-3 = -1 < 0$$

证明不等式常用的五种方法:

单调性;

- 2) 最大最小值;
- 3) 拉格朗日中值定理;
- 4) 泰勒公式;
- 5) 凹凸性;

【例1】设 $x \in (0,1)$, 证明 $(1+x)\ln^2(1+x) < x^2$.

【证】令
$$f(x) = x^2 - (1+x)\ln^2(1+x)$$
 , 则 $f(0) = 0$

$$f'(x) = 2x - \ln^2(1+x) - 2\ln(1+x) > 0$$
 $f'(0) = 0$

$$f''(x) = 2 - \frac{2\ln(1+x)}{1+x} - \frac{2}{1+x}$$

$$=\frac{2}{1+x}[x-\ln(1+x)]>0 x\in(0,1),$$

则当 $x \in (0,1)$ 时, f(x) > 0. 原题得证.

【注】当
$$x > 0$$
 时, $\left(\frac{x}{1+x} < \ln(1+x) < x.\right)$

【例2】求证:
$$\ln \frac{b}{a} > \frac{2(b-a)}{b+a}$$
 $(0 < a < b)$
【证1】只要证 $(b+a)(\ln b - \ln a) > 2(b-a)$

【证1】只要证
$$(b+a)(\ln b - \ln a) > 2(b-a)$$

:
$$f'(x) = (\ln x - \ln a) + \frac{x+a}{x} - 2, > 0$$

$$f''(x) = \frac{1}{x} - \frac{a}{x^2} = \frac{x - a}{x^2} > 0$$

$$\therefore f'(x) 单调增,且 f'(a) = 0,$$

则
$$f'(x) > 0$$
 , $f(x)$ 单调增且 $f(a) = 0$: $f(x) > 0$ $f(b) > 0$

即
$$\ln \frac{b}{a} > \frac{2(b-a)}{b+a}$$

【例2】 求证:
$$\ln \frac{b}{a} > \frac{2(b-a)}{b+a}$$
 $(0 < a < b)$

【证2】只要证
$$\ln \frac{b}{a} > \frac{2(\frac{b}{a}-1)}{(\frac{b}{a}+1)}$$

即
$$\ln x > \frac{2(x-1)}{x+1}, (x>1).$$

$$\Leftrightarrow f(x) = \ln x - \frac{2(x-1)}{x+1}, (x \ge 1).$$

$$f'(x) = \frac{1}{x} - \frac{4}{(x+1)^2} = \frac{(x-1)^2}{x(x+1)^2} > 0, (x > 1).$$

又
$$f(1) = 0$$
, 则 $f(x) > 0$, $(x > 1)$. 原题得证.

【例3】比较 e^{π} 与 π^{e} 的大小.

取对数得 $\pi \ln e$; $e \ln \pi$

只要考察
$$f(x) = \frac{\ln x}{x}$$
 在 $[e, \pi]$ 上的单调性,
$$f'(x) = \frac{1 - \ln x}{x^2} < 0 \qquad x \in (e, \pi)$$

 $e^{\pi} > \pi^e$

【例4】设
$$\lim_{x\to 0} \frac{f(x)}{x\to 0} = 1$$
, 且 $f''(x) > 0$, 证明: $f(x) \ge x$.

【证1】由
$$\lim_{x\to 0} \frac{f(x)-f(0)}{x} = 1$$
 知 $f(0) = 0$, $f'(0) = 1$. 由泰勒公式知

$$f(x) = f(0) + f'(0)x + \frac{f''(\xi)}{2!}x^2 = x + \frac{f''(\xi)}{2!}x^2 \ge x$$

[iii2]
$$f(x) = f(x) - f(0) = f'(c)x$$

由于
$$f'(x)$$
 单调增,则

$$f(x) = f'(c)x \ge f'(0)x = x$$

【证3】令
$$F(x) = f(x) - x$$
,只要证明 $F(x) \ge 0$

由于
$$F'(x) = f'(x) - 1$$
, 显然 $F'(0) = f'(0) - 1 = 0$,

$$\nabla F''(x) = f''(x) > 0 \quad \text{fix} = 0$$

$$f(x)=f(x)-f(0)$$

F(0)> D

【例4】设
$$\lim_{x\to 0} \frac{f(x)}{x} = 1$$
,且 $f''(x) > 0$,证明: $f(x) \ge x$.

【证4】由
$$\lim_{x\to 0} \frac{f(x)}{x} = 1$$
 知 $f(0) = 0$, $f'(0) = 1$,

$$\int (x) \geqslant \chi$$

【例5】设 f(x) 在 $[0,+\infty)$ 上可导,且 f(0)=1, f(x)>-f'(x) $(x \ge 0)$.则()

A.
$$\frac{f(2)}{f(1)} > 1$$

B.
$$\frac{f(0)}{f(1)} > e^{-\frac{1}{2}}$$

A.
$$\frac{f(2)}{f(1)} > 1$$
 B. $\frac{f(0)}{f(1)} > e$ /C. $\left(\frac{f(2)}{f(1)} > \frac{1}{e}\right)$ D. $\frac{f(2)}{f(0)} > e$

$$D. \quad \frac{f(2)}{f(0)} > e$$

【解1】直接法 由题设可知 f'(x) + f(x) > 0,

$$\mathbb{P} \quad e^{x} f(x)]' = e^{x} [f'(x) + f(x)] > 0$$

则 $F(x) = e^x f(x)$ 在 $[0,+\infty)$ 上单调增,又 F(0) = 1,则 F(x) > 0.

$$\frac{F(2)}{F(1)} = \frac{e^2 f(2)}{ef(1)} > 1$$

从而
$$\frac{f(2)}{f(1)} > \frac{1}{e}$$
 , 故应选C.

【例5】设 f(x) 在 $[0,+\infty)$ 上可导,且 $f(0)=1, f(x)>-f'(x) (x \ge 0)$.则()

A.
$$\frac{f(2)}{f(1)} > 1$$
 $\left(\begin{array}{c} B. & \frac{f(0)}{f(1)} > e \end{array} \right)$

A.
$$\frac{f(2)}{f(1)} > 1$$
 $\left\langle \begin{array}{c} B. & \frac{f(0)}{f(1)} > e \end{array} \right\rangle$ C. $\frac{f(2)}{f(1)} > \frac{1}{e}$ $\left\langle \begin{array}{c} D. & \frac{f(2)}{f(0)} > e \end{array} \right\rangle$

【解2】排除法 令 f(x)=1, 显然满足 f(0)=1, f(x)>-f'(x) ($x \ge 0$)

$$\frac{f(2)}{f(1)}=1,$$

$$\frac{f(0)}{f(1)}=1,$$

$$\frac{f(2)}{f(0)} = 1,$$

$$\begin{cases} f(x) = e^{-\frac{1}{2}x} & f(x) = e^{-\frac{1}{2}x} \\ f(x) = e^{-\frac{1}{2}x} & f(x) = e^{-\frac{1}{2}x}$$

则排除A, B, D, 故应选C.

微信扫码,关注【公众号:武忠祥老师】

定期更新:每日一题、数学资料、阶段备考等考研干货

还不关注,那你就慢了