PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-046038

(43) Date of publication of application: 16.02.1999

(51)Int.CI.

H01S 3/18

(21)Application number: 09-285405

(71)Applicant : NICHIA CHEM IND LTD

(22)Date of filing:

17.10.1997

(72)Inventor: SANO MASAHIKO

NAKAMURA SHUJI

(30)Priority

Priority number: 09139754

Priority date: 29.05.1997

Priority country: JP

(54) NITRIDE SEMICONDUCTOR LASER ELEMENT AND MANUFACTURE OF THE SAME (57) Abstract:

PROBLEM TO BE SOLVED: To realize the low threshold value of a laser element and single mode thereof by providing a novel structure of a surface—emitting laser, consisting of a nitride semiconductor and a method of manufacturing the same.

SOLUTION: An n-type nitride semiconductor layers 2, 3, an active layer 4 and a p-type nitride semiconductor layer 5 are sequentially formed on a first main surface side of a substrate, having a first main surface and a second main surface. A hole 100 is provided in the second main surface side of the substrate 1 and a first reflecting mirror 11 is provided at the bottom part of the hole 100, the outermost surface of one p-type nitride semiconductor is provided with a second-reflecting mirror 12 and the surface-emitting laser having low threshold value can be realized by realizing oscillation through the resonance of light emission of an active layer with the first reflecting mirror 11 and the second reflecting mirror 12.

LEGAL STATUS

[Date of request for examination]

17.02.2000

[Date of sending the examiner's decision of

21.09.2004

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection] [Date of requesting appeal against examiner's decision of rejection] [Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-46038

(43)公開日 平成11年(1999)2月16日

(51) Int.Cl. 6

觀別配号

FI

H01S 3/18

H01S 3/18

審査請求 未請求 請求項の数7 OL (全 10 頁)

(21)出願番号

特願平9-285405

(22)出願日

平成9年(1997)10月17日

(32)優先日

(31) 優先権主張番号 特顧平9-139754 平 9 (1997) 5 月29日

(33)優先権主張国

日本 (JP)

(71)出願人 000226057

日亜化学工業株式会社

徳島県阿南市上中町岡491番地100

(72)発明者 佐野 雅彦

徳島県阿南市上中町岡491番地100 日亜化

学工業株式会社内

(72)発明者 中村 修二

徳島県阿南市上中町岡491番地100 日亜化

学工案株式会社内

(54) 【発明の名称】 窒化物半導体レーザ素子及びその製造方法

(57)【要約】

【目的】 窒化物半導体よりなる面発光レーザの新規な 構造とその製造方法を提供することにより、レーザ素子 の低閾値化、単一モード化を実現する。

【構成】 第1の主面と、第2の主面とを有する基板の 第1の主面側に、n型窒化物半導体層と、活性層と、p 型窒化物半導体層とを順に有し、前記基板の第2の主面 側に孔が設けられて、その孔の底部に第1の反射鏡が設 けられており、一方p型窒化物半導体の最表面には第2 の反射鏡が設けられており、第1の反射鏡と第2の反射 鏡とで活性層の発光を共振させて発振させることによ り、低閾値の面発光レーザが実現できる。

【特許請求の範囲】

【請求項1】 第1の主面と、第2の主面とを有する基 板の第1の主面側に、n型室化物半導体層と、活性層 と、p型窒化物半導体層とを順に有し、前記基板の第2 の主面側に孔が設けられて、その孔の底部に第1の反射 鏡が設けられており、一方p型窒化物半導体の最表面に は第2の反射鏡が設けられており、第1の反射鏡と第2 の反射鏡とで活性層の発光を共振させて発振する窒化物 半導体レーザ素子。

1

【請求項2】 前記基板の第1の主面側にn電極が形成 10 され、前記第2の反射鏡の形成部を除くp型窒化物半導 体層の表面にはp電極が形成されており、n電極と、p 電極とが同一面側にあって、n電極がp電極の周囲を囲 んでなることを特徴とする請求項1に記載の窒化物半導 体レーザ素子。

【請求項3】 前記基板が導電性の基板であり、その基 板の第2の主面側にn電極が形成され、前記第2の反射 鏡の形成部を除くp型窒化物半導体層の表面にはp電極 が形成され、n電極が前記第1の反射鏡の周囲を囲んで なることを特徴とする請求項1に記載の窒化物半導体レ 20 ーザ素子。

【請求項4】 前記n型窒化物半導体層側、若しくは前 記p型窒化物半導体層側の内の少なくとも一方の層側に は、互いに組成が異なる窒化物半導体層が積層されてな る超格子層をクラッド層として有することを特徴とする 請求項1乃至4の内のいずれか1項に記載の窒化物半導 体レーザ素子。

【請求項5】 第1の主面と第2の主面とを有する基板 の第1の主面上に、活性層を含む窒化物半導体層を気相 成長させる第1の工程と、基板の第2の主面側をエッチ 30 ングして孔を設け、その孔の底部に活性層の発光を共振 させる第1の反射鏡を形成する第2の工程と、前記孔の 底部に対応した前記室化物半導体層の最表面に活性層の 発光を共振させる第2の反射鏡を形成する第3の工程と を備えることを特徴とする窒化物半導体レーザ素子の製 造方法。

前記第1の工程後、最上層の窒化物半導 【請求項6】 体層の表面に保護膜を形成して、活性層を含む窒化物半 導体層をエッチングし、エッチングにより露出した半導 体層表面に、電流阻止層となる窒化物半導体層を成長さ 40 せる第4の工程を備えることを特徴とする請求項5に記 載の窒化物半導体レーザ素子の製造方法。

【請求項7】 第4の工程後、p電極を形成すべき窒化 物半導体層を電流阻止層の上に成長させる第5の工程を 備える請求項6に記載の窒化物半導体レーザ素子の製造 方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は窒化物半導体(InxA

ーザ素子とレーザ素子の製造方法に係り、特に面発光レ ーザ素子とその製法に関する。なお、本明細書において 示す窒化物半導体の一般式は単に窒化物半導体の組成を 示すものであって、例えば異なる窒化物半導体層が同一 の一般式で示されていても、それらの式のX値、Y値が一 致した層を示すものでは決してない。

[0002]

【従来の技術】窒化物半導体は高輝度青色LED、純緑 色LEDの材料として、フルカラーLEDディスプレ イ、交通信号等で最近実用化されたばかりである。これ らの各種デバイスに使用されるLEDは、n型窒化物半 導体層とp型窒化物半導体層との間に、単一量子井戸構 造(SQW: Single-Quantum-Well)のInGaNより なる活性層が挟まれたダブルヘテロ構造を有している。 青色、緑色等の波長はInGaN活性層のIn組成比を 増減することで決定されている。

【0003】また、本出願人は、この材料を用いてパル ス電流下、室温での410mmのレーザ発振を世界で初 めて発表した (例えば、Jpn. J. Appl. Phys. 35 (1996) L74、 Jpn. J. Appl. Phys. 35 (1996) L217等 。このレーザ素子 は、InGaNを用いた多重量子井戸構造の活性層を有 するダブルヘテロ構造を有し、パルス幅2μs、パルス 周期2msの条件で、閾値電流610mA、閾値電流密 度8.7kA/cm²、410nmの発振を示す。さら に、我々は改良したレーザ素子をAppl. Phys. Lett. 69(19 96) 1477において発表した。このレーザ素子は、p型室 化物半導体層の一部にリッジストライプが形成された構 造を有しており、パルス幅1μs、パルス周期1ms、 デューティー比0.1%で、閾値電流187mA、閾値 電流密度3kA/cm²、410nmの発振を示す。そし て、さらに我々は室温での連続発振にも初めて成功し、 発表した。 (例えば、日経エレクトロニクス 1996年12月 2日号技術速報、Appl. Phys. Lett. 69(1996)3034、Appl. P hys. Lett. 69 (1996) 4056 等}、このレーザ素子は20℃ において、閾値電流密度3.6kA/cm²、閾値電圧 5. 5 V、1. 5 m W 出力において、2 7 時間の連続発 振を示す。

【0004】既に赤外半導体レーザは通信用光源とし て、赤色半導体レーザはDVD光源として既に実用化さ れている。410 n m前後の青色レーザ光源ができるこ とにより、一気に記録容量は4倍となるため、現在数々 の方面から熱心に研究が成されている。その中で、窒化 物半導体レーザ素子は、今まで発表された材料の中で、 最も発振波長が短く、さらに上記のように連続発振が実 現されたことにより、非常に注目されている。

[0005]

【発明が解決しようとする課題】半導体レーザはストラ イプ型の導波路を有し、活性層端面の劈開面を共振面と されることが多く、現在実用化されている赤外、赤色半 lrGai-xr N、0≦X、0≦Y、X+Y≦1)よりなるレ 50 導体レーザは、ほとんどがこの型である。一方、基板に

対して垂直な方向でレーザ光が出射される、いわゆる面発光レーザも提案されている。面発光レーザは、レーザ素子の低閾値化、横モード、縦モード等を安定化させるためには非常に有用であることが知られているが、窒化物半導体レーザ素子では全く知られていない。窒化物半導体よりなる面発光レーザが実現できると、レーザビムを小さくすることもできるので、DVD光源としては、非常に有利である。また、光通信分野には単一モードのレーザ光が求められている。従って、本発明の目的とするところは窒化物半導体よりなる面発光レーザの新規な構造とその製造方法を提供することにより、レーザ素子の低閾値化、単一モード化を実現することにある。【0006】

【課題を解決するための手段】本発明の窒化物半導体レーザ素子は、第1の主面と、第2の主面とを有する基板の第1の主面側に、n型窒化物半導体層と、活性層と、p型窒化物半導体層とを順に有し、前記基板の第2の主面側に孔が設けられて、その孔の底部に第1の反射鏡が設けられており、一方p型窒化物半導体の最表面には第2の反射鏡が設けられており、第1の反射鏡と第2の反射鏡とで活性層の発光を共振させて発振することを特徴とする。本発明のレーザ素子において、第1の反射鏡と第2の反射鏡との距離は5μm以下、さらに好ましくは2μm以下、最も好ましくは2μm以下に設定することが望ましい。なお下限については特に限定しないが、100オングストローム以上、特に好ましくは活性層の発光波長以上に調整することが望ましい。

【0007】また本発明のレーザ素子では、前記基板の第1の主面側にn電極が形成され、前記第2の反射鏡の形成部を除くp型窒化物半導体層の表面にはp電極が形 30成されており、n電極と、p電極とが同一面側にあって、n電極がp電極の周囲を囲んでなることを特徴とする。

【0008】また本発明のレーザ素子の別態様では、前記基板が導電性の基板であり、その基板の第2の主面側にn電極が形成され、前記第2の反射鏡の形成部を除くp型窒化物半導体層の表面にはp電極が形成され、n電極が前記第1の反射鏡の周囲を囲んでなることを特徴とする。

【0009】本発明のレーザ素子の好ましい態様として、前記n型窒化物半導体層側、若しくは前記p型窒化物半導体層側の内の少なくとも一方の層側には、互いに組成が異なる窒化物半導体層が積層されてなる超格子層をクラッド層として有することを特徴とする。さらに、超格子層にはn型不純物若しくはp型不純物が変調ドーピングされていることが望ましい。

【0010】また本発明のレーザ素子の製造方法は、第 1の主面と第2の主面とを有する基板の第1の主面上 に、活性層を含む窒化物半導体層を気相成長させる第1 の工程と、基板の第2の主面側をエッチングして孔を設 50 け、その孔の底部に活性層の発光を共振させる第1の反射鏡を形成する第2の工程と、前記孔の底部に対応した 窒化物半導体層の最表面に活性層の発光を共振させる第 2の反射鏡を形成する第3の工程とを備えることを特徴 とする。

【0011】さらに、前記第1の工程後、最上層の窒化物半導体層の表面に保護膜を形成して、活性層を含む窒化物半導体層をエッチングし、エッチングにより露出した半導体層表面に、電流阻止層となる窒化物半導体層を成長させる第4の工程を備えることを特徴とする。

・【0012】さらにまた、第4の工程後、p電極を形成 すべき窒化物半導体層を電流阻止層の上に成長させる第 5の工程を備えることを特徴とする。

[0013]

【発明の実施の形態】図1は本発明のレーザ素子の一構 造を示す模式的な断面図であり、また図2は図1のレー ザ素子を第2の反射鏡12側から見た平面図である。こ のレーザ素子は基本的に、第1と、第2の主面とを有す る基板1の第1の主面側に、n側コンタクト層2、n側 クラッド層3、活性層4、p側クラッド層5とを有し、 n側クラッド層3、活性層4、p側クラッド層4の周囲 はn-p逆接合を有する第1の電流阻止層6と第2の電 流阻止層7とで包囲されており、さらに第2の電流阻止 層7とp側クラッド層5の上にはp側コンタクト層8が 形成された構造を有する。一方基板1の第2の主面側は 孔が設けられ、その孔の底部には活性層の発光を共振さ せるための第1の反射鏡11が設けられている。一方そ の第1の反射鏡と対面した側にあるp側コンタクト層8 の表面には、同じく活性層の発光を共振させるための第 2の反射鏡12が形成されている。また第2の反射鏡1 2の形成部分を除く、p側コンタクト層8の最表面に は、p電極9がほぼ全面に形成され、一方エッチングさ れて露出したn側コンタクト層2の表面にはp電極9を 囲むようにn電極10が形成されている。

【0014】本発明のレーザ素子では基板1の第1の主面側に窒化物半導体が積層されてなり、第2の主面側には孔100が設けられ、その孔100の底部には活性層の発光波長を反射する第1の反射鏡11が形成されている。一方基板1の第2の主面側にある最上層のp側コンタクト層8の最表面には同じく活性層の発光波長を反射する第2の反射鏡12が形成されている。このレーザ素子は活性層の発光を第1と第2の反射鏡とで共振させて、いずれか一方、若しくは両方の反射鏡側にレーザ光が出力がされる。

【0015】特に本発明では、基板1の第2の主面側に孔100を設け、その孔の底部に第1の反射鏡を設けている。この孔100を設けることにより。活性層の共振器長が短くなり、低閾値で発振して単一モードのレーザ光が得られやすくなる。第1と第2の反射鏡との距離は 5μ m以下、さらに好ましくは 3μ m以下、最も好まし

くは 2μ m以下に調整することが望ましい。下限については特に限定しないが、100 オングストローム以上、好ましくは活性層の発光波長以上、通常は 380 n m以上に調整する。 5μ mよりも長いと損失が大きくなって関値が上昇して素子寿命が短くなる傾向にある。また、A1を含む窒化物半導体は単独で厚膜が成長しにくい傾向にある。そのため、電流阻止層 6、7をA1を含む窒化物半導体で成長させると成長中に結晶中にクラックが入ってしまうと、次に成長させる p側コンタクト層 8 がその層の上に 2 が、次に成長させる p側コンタクト層 2 が、水に成長させる p側コンタクト層 2 が、或いは n側クラッド層 3 、p側クラッド層 2 を成長しやすくする作用もある。

【0016】第1の反射鏡11、第2の反射鏡12の材料は活性層の発光を反射させるため、例えば誘電体多層膜、金属薄膜等で形成できる。誘電体多層膜の材料としては、例えばSiO2、Al2O3、ZrO2、TiO2等の高誘電体材料を λ /4n(λ :活性層自然発光の発光波長、n:誘電体の屈折率)となるような膜厚で複数層積層することにより形成できる。反射率としては60%以上、さらに好ましくは70%以上、最も好ましくは80%以上の反射率となるように設計することが望ましい。さらに第1、第2の反射鏡の面積(平面における面積)は、活性層3の面積よりも大きくすることが望ましい。活性層3の面積は30 μ m²以下、さらに好ましくは20 μ m²以下、最も好ましくは5 μ m²以下に調整し、第1、第2の反射鏡の面積は活性層の面積の2倍以上にすることが望ましい。

【0017】また、図1、図2に示すように、本発明の 30 レーザ素子では、基板1の第1の主面側(具体的にはn 側コンタクト層3)の表面にn電極10が形成され、第 2の反射鏡12の形成部を除くp型窒化物半導体層(具 体的にはp側コンタクト層8)の表面にはp電極9が形 成されて、n電極10と、p電極9とが同一面側にあっ て、n電極がp電極の周囲を囲んでいる。特に面発光の レーザ素子ではこのように同一面側に電極がある場合、 一方の電極の周囲を他方の電極が囲む構造とすることに より、均一に電流が流れて、閾値を低下させる上で非常 に効果的である。なお、図2ではn電極10の形状は矩 40 形を有しているが、n電極形状はp電極の周囲を囲んで いれば、円形、多角形とのような形状でも形成すること ができる。但し、多角形の形状とした場合、p電極9の 縁部の距離と、n電極10の縁部との距離とは等しくす ることが望ましい。

【0018】一方、図3では、基板にGaNのような導電性基板を用いた場合のレーザ素子の構造を示している。基板に導電性基板を用いた場合は、基板の第2の主面側にn電極を形成することができる。図3に示すように、n電極10が第1の反射鏡11の周囲を囲むように 50

電極を形成して、n電極10とp電極9とが対向したような構造とすることにより、図2と同じく活性層に均一に電流を注入できるので、低閾値で発振する。しかも、p電極9をp側コンタクト層8の第2の反射鏡12形成部を除くほぼ全面に形成してあるので、p電極側をヒートシンクに接する側としてボンディングすると放熱性も良くなり素子寿命も向上する。なお、基板1に導電性基板を用いても図1、2に示すような同一面側に電極があるレーザ素子を作製することもできる。

【0019】次に、各層構成について説明する。基板1には、例えばC面、A面、R面を主面とするサファイア、(111)面を主面とするスピネル(MgAl2O1)のような絶縁性基板の他、GaN、SiC、Si、ZnO、GaAsのような導電性(半導体)基板を用いることができ、その基板の主面の面方位は特に問うものではない。またGaNのような半導体基板を用いた場合には、図3に示す構造のレーザ素子もできる。

【0020】n側コンタクト層2はn電極を形成して電 流を注入する層であり、n型窒化物半導体で構成するこ とができる。通常は、n型不純物をドープしたInxA $l_Y G a_{1-X-Y}$ N $(0 \leq X, 0 \leq Y, X+Y \leq 1)$ で構成し、 その組成は特に問うものではないが、好ましくはn型G a N、若しくはY値が O. 1以下のA Ir Gair Nとす るとn電極10と良好なオーミックが得られやすい。n 型不純物濃度は1×10¹¹ /cm³~1×10²¹ /cm³の範 囲、さらに好ましくは、1×10¹⁸ /cm³~1×10¹⁹ /cm³に調整することが望ましい。1×10¹⁷/cm³より も小さいとn電極の材料と好ましいオーミックが得られ にくくなるので、レーザ素子では閾値電流、電圧の低下 が望めず、1×10²¹ /cm³よりも大きいと、素子自体 のリーク電流が多くなったり、また結晶性も悪くなるた め、素子の寿命が短くなる傾向にある。n側コンタクト 層3の膜厚は0.2μm以上、4μm以下に調整するこ とが望ましい。0. 2 μ m よりも薄いと、n 電極 1 0 を 形成する際に、n側コンタクト層2の表面を露出させる ようにエッチングレートを制御するのが難しく、一方、 4μm以上にすると不純物の影響で結晶性が悪くなる傾 向にある。また、このn側コンタクト層2を、例えばI nGaN/InGaN(但しIn組成比は異なる。)、 InGaN/GaN、InGaN/AlGaN、AlG a N/G a N等の組み合わせによる超格子構造としても 良い。なお、図3に示すように、基板1にGaNのよう な導電性基板を使用して、基板側にn電極を設けた場合 にはコンタクト層としては作用せず、バッファ層として 作用する。

【0021】n側クラッド層3は、光閉じ込め、キャリア閉じ込め層として作用し、バンドギャップエネルギーの大きな第1の窒化物半導体層と、第1の窒化物半導体層よりもバンドギャップエネルギーの小さな第2の窒化物半導体層とが積層されて、互いに不純物濃度が異なる

超格子構造のn側クラッド層3を有している。さらに第 1の窒化物半導体層は少なくともA1を含む窒化物半導 体、好ましくはAlxGaix N(0<X≤1)を成長さ せる方が望ましい。一方、第2の窒化物半導体は第1の 窒化物半導体よりもバンドギャップエネルギーが小さい 窒化物半導体であればどのようなものでも良いが、好ま しくはAlrGai-r N (0≤Y<1、X>Y)、InzGa 1-2 N (0 ≦Z<1) のような2元混晶、3元混晶の窒化 物半導体が成長させやすく、また結晶性の良いものが得 られやすい。その中でも特に好ましくは第1の窒化物半 10 導体は実質的に In、Gaを含まないAlaGaia N (0 < X < 1) とし、第2の窒化物半導体は実質的にA lを含まない Inz Gai-z N (0 ≤ Z < 1) とし、中で も結晶性に優れた超格子を得る目的で、A1混晶比(Y 値) 0. 3以下のAl_xGa_{1-x} N (0<X≦0.3) と、GaNの組み合わせが最も好ましい。第1の、第2 の窒化物半導体層の各膜厚は100オングストローム以 下、さらに好ましくは70オングストローム以下、最も 好ましくは10~40オングストロームの膜厚に調整す る。100オングストロームよりも厚いと、窒化物半導 20 体層が弾性歪み限界以上の膜厚となり、膜中に微少なク ラック、あるいは結晶欠陥が入りやすい傾向にある。膜 厚下限は特に限定せず、1原子層以上であればよいが、 10オングストローム以上が最も好ましい。

【0022】キャリア閉じ込め層としてクラッド層を形成する場合、活性層よりもバンドギャップエネルギーの大きい窒化物半導体を成長させる必要がある。バンドギャップエネルギーの大きな窒化物半導体層とは、即ちA1混晶比の高い窒化物半導体である。従来ではA1混晶比の高い窒化物半導体で成長させると、クラックが入りやすくなるため、結晶成長が非常に大力のたが、本発明のように歪み超格子層にすると、歪み超格子層を構成する単一層をA1混晶比の高い層としても、弾性臨界膜厚以下の膜厚で成長させているのでクラットとは、そのため、A1混晶比の高い層を結晶性の人りにくい。そのため、A1混晶比の高い層を結晶性の人りにくい。そのため、A1混晶比の高い層を結晶性の人りにくい。そのため、A1混晶比の高い層を結晶性の人りにくい。そのため、A1混晶比の高い層を結晶性の人が表別にくいることにより、光閉じ込め、キャリア閉じ込め効果が高くなり、特に面発光レーザ素子に適用すると関値電圧、関値電流を低下させる上で有利である。

【0023】さらにこのn側クラッド層を超格子層とする場合、超格子層にn型不純物を変調ドープすることが 40 望ましい。変調ドープとは、超格子層を構成するバンドギャップエネルギーの大きな第1の窒化物半導体層とバンドギャップエネルギーの小さな第2の窒化物半導体層とのn型不純物濃度が異なることで、一方の層のn型不純物濃度を小さく、好ましくは不純物をドープしない状態(アンドープ)として、もう一方を高濃度にドープすると、閾値電圧、Vf等を低下させることができる。これは不純物濃度の低い層を歪み超格子層中に存在させることにより、その層の移動度が大きくなり、また不純物濃度が高濃度の層も同時に存在することにより、キャリ 50

ア濃度が高いままで歪み超格子層が形成できることによる。つまり不純物濃度が低い移動度の高い層と、不純物濃度が高いキャリア濃度が大きい層とが同時に存在することにより、キャリア濃度が大きく、移動度も大きい層n側クラッド層となるために、閾値電圧、Vfが低下すると推察される。

【0024】バンドギャップエネルギーの大きな窒化物 半導体層に高濃度に不純物をドープした場合、この変調 ドープにより高不純物濃度層と、低不純物濃度層との間 に二次元電子ガスができ、この二次元電子ガスの影響に より抵抗率が低下すると推察される。例えば、n型不純 物がドープされたバンドギャップの大きい窒化物半導体 層と、バンドギャップが小さいアンドープの窒化物半導 体層とを積層した超格子層では、n型不純物を添加した 層と、アンドープの層とのヘテロ接合界面で、障壁層側 が空乏化し、バンドギャップの小さい層側の厚さ前後の 界面に電子(二次元電子ガス)が蓄積する。この二次元 電子ガスがバンドギャップの小さい側にできるので、電 子が走行するときに不純物による散乱を受けないため、 超格子の電子の移動度が高くなり、抵抗率が低下する。 なおp側の変調ドープも同様に二次元正孔ガスの影響に よると推察される。またp層の場合、AlGaNはGa Nに比較して抵抗率が高い。そこでAIGaNの方にp 型不純物を多くドープすることにより抵抗率が低下する ために、超格子層の実質的な抵抗率が低下するので素子 を作製した場合に、閾値が低下する傾向にあると推察さ れる。

【0025】一方、バンドギャップエネルギーの小さな 窒化物半導体層に高濃度に不純物をドープした場合、以 下のような作用があると推察される。例えばAIGaN 層とGaN層にMgを同量でドープした場合、AIGa N層ではMgのアクセプター準位の深さが大きく、活性 化率が小さい。一方、GaN層のアクセプター準位の深 さはAlGaN層に比べて浅く、Mgの活性化率は高 い。例えばMgを1×10²⁰ /cm³ドープしてもGaN では1×10¹⁸ /cm³程度のキャリア濃度であるのに対 し、AlGaNでは1×10¹⁷ /cm³程度のキャリア濃 度しか得られない。そこで、本発明ではAIGaN/G a Nとで超格子とし、高キャリア濃度が得られるG a N 層の方に多く不純物をドープすることにより、高キャリ ア濃度の超格子が得られるものである。しかも超格子と しているため、トンネル効果でキャリアは不純物濃度の 少ないAlGaN層を移動するため、実質的にキャリア はAlGaN層の作用は受けず、AlGaN層はバンド ギャップエネルギーの高いクラッド層として作用する。 従って、バンドギャップエネルギーの小さな方の窒化物 半導体層に不純物を多くドープしても、レーザ素子、L ED素子の閾値を低下させる上で非常に効果的である。 なおこの説明はp型層側に超格子を形成する例について 説明したが、n層側に超格子を形成する場合において

も、同様の効果がある。

【0026】バンドギャップエネルギーが大きい第1の 窒化物半導体層にn型不純物を多くドープする場合、第 1の窒化物半導体層への好ましいドープ量としては、1 ×10"/cm'~1×10"/cm'、さらに好ましくは1 ×10¹⁸ /cm²~5×10¹⁹ /cm²の範囲に調整する。1 ×10"/cm"よりも少ないと、第2の窒化物半導体層 との差が少なくなって、キャリア濃度の大きい層が得ら れにくい傾向にあり、また1×10^m /cm³よりも多い と、素子自体のリーク電流が多くなりやすい傾向にあ る。一方、第2の窒化物半導体層のn型不純物濃度は第 1の窒化物半導体層よりも少なければ良く、好ましくは 1/10以上少ない方が望ましい。最も好ましくはアン ドープとすると最も移動度の高い層が得られるが、膜厚 が薄いため、第1の窒化物半導体側から拡散してくるn 型不純物があり、その量は1×10¹⁹ /cm³以下が望ま しい。n型不純物としてはSi、Ge、Se、S、O等 の周期律表第IVB族、VIB族元素を選択し、好ましくは Si、Ge、Sをn型不純物とする。この作用は、バン ドギャップエネルギーが大きい第1の窒化物半導体層に 20 n型不純物を少なくドープして、バンドギャップエネル ギーが小さい第2の窒化物半導体層に n 型不純物を多く ドープする場合も同様である。以上、超格子層に不純物 を好ましく変調ドープする場合について述べたが、バン ドギャップエネルギーが大きい窒化物半導体層とバンド ギャップエネルギーが小さい窒化物半導体層との不純物 濃度を等しくすることもできる。

【0027】活性層4は1nを含む窒化物半導体、好ま しくは I n XG a 1-XN(0 < X≤1)よりなる井戸層 と、井戸層よりもバンドギャップエネルギーが大きい窒 30 化物半導体よりなる障壁層とを積層した多重量子井戸構 造とすることが望ましい。井戸層の好ましい膜厚は10 0オングストローム以下、さらに望ましくは70オング ストローム以下、最も好ましくは50オングストローム 以下に調整する。障壁層は150オングストローム以 下、さらに好ましくは100オングストローム以下、最 も好ましくは70オングストローム以下に調整する。 【0028】p側クラッド層5もn側クラッド層3と同 じく、光閉じ込め、キャリア閉じ込め層として作用し、 バンドギャップエネルギーの大きな第3の窒化物半導体 40 層と、第3の窒化物半導体層よりもバンドギャップエネ ルギーの小さな第4の窒化物半導体層とが積層されて、 互いの不純物濃度が異なる超格子構造のp側クラッド層 5を有している。このp側クラッド層5の超格子層を構 成する第3、第4の窒化物半導体層の膜厚も、n側クラ ッド層3と同じく、100オングストローム以下、さら に好ましくは70オングストローム以下、最も好ましく は10~40オングストロームの膜厚に調整する。同様 に、第3の窒化物半導体層は少なくともAlを含む窒化 物半導体、好ましくはAlxGaix N(0<X≦1)を

成長させることが望ましく、第4の窒化物半導体は好ましくは $A l_r G a_{1-r} N (0 \le Y < 1, X > Y)$ 、 $I n_z G a_{1-z} N (0 \le Z \le 1)$ のような2元混晶、3元混晶の窒化物半導体を成長させることが望ましい。

10

【0029】 p側クラッド層 5 を超格子構造とすると、超格子構造が発光素子に与える作用は、n側クラッド層 3 の作用と同じであるが、さらにn 層側に形成した場合に加えて次のような作用がある。即ち、p型窒化物半導体はn型窒化物半導体に比べて、通常抵抗率が 2 桁以上高い。そのため超格子層をp 層側に形成することにより、V f の低下が顕著に現れる。詳しく説明するととの地半導体はp型結晶が非常に得られにくい半導体であることが知られている。p型結晶を得るためp型不純物をドープした窒化物半導体層をp0、p1、p1、p2、p3、p3、p4、p3、p4、p5 にのしたといってもその抵抗率を除去する技術が知られている(特許第 25 4 07 91 p5 。しかしp2 が得られたといってもその抵抗率は数p6 のに下が見れやすい。

【0030】p側クラッド層5の第3の窒化物半導体層と第4の窒化物半導体層とのp型不純物濃度が異なり、一方の層の不純物濃度を大きく、もう一方の層の不純物濃度を小さくする。n側クラッド層3と同様に、バンドギャップエネルギーの大きな第3の窒化物半導体層のp型不純物濃度を小さく、好ましくはアンドープとすると、閾値電圧、Vf等を低下させることができる。またその逆でも良い。つまりバンドギャップエネルギーの大きな第3の窒化物半導体層のp型不純物濃度を小さくして、バンドギャップエネルギーの小さな第4の窒化物半導体層のp型不純物濃度を大きくしても良い。理由は先に述べたとおりである。

【0031】第3の窒化物半導体層への好ましいドープ 量としては1×10¹⁸ /cm³~1×10²¹ /cm³、さらに 好ましくは1×10¹⁹ /cm³~5×10²⁰ /cm³の範囲に 調整する。1×10¹⁸ /cm³よりも少ないと、同様に第 4の窒化物半導体層との差が少なくなって、同様にキャ リア濃度の大きい層が得られにくい傾向にあり、また1 ×10²¹ /cm³よりも多いと、結晶性が悪くなる傾向に ある。一方、第4の窒化物半導体層のp型不純物濃度は 第3の窒化物半導体層よりも少なければ良く、好ましく は1/10以上少ない方が望ましい。最も好ましくはア ンドープとすると最も移動度の高い層が得られるが、膜 厚が薄いため、第3の窒化物半導体側から拡散してくる p型不純物があり、その量は1×10^m /cm³以下が望 ましい。p型不純物としてはMg、Zn、Ca、Be等 の周期律表第IIA族、IIB族元素を選択し、好ましくは Mg、Ca等をp型不純物とする。この作用は、バンド ギャップエネルギーが大きい第3の窒化物半導体層にp 型不純物を少なくドープして、バンドギャップエネルギ

ーが小さい第4の窒化物半導体層にp型不純物を多くドープする場合も同様である。

【0032】さらにまた超格子を構成する窒化物半導体 層において、不純物が高濃度にドープされる層は、厚さ 方向に対し、半導体層中心部近傍の不純物濃度が大き く、両端部近傍の不純物濃度が小さい(好ましくはアン ドープ)とすることが望ましい。具体的に説明すると、 例えばn型不純物としてSiをドープしたAlGaN と、アンドープのG a N層とで超格子層を形成した場 合、AlGaNはSiをドープしているのでドナーとし 10 て電子を伝導帯に出すが、電子はポテンシャルの低いG a Nの伝導帯に落ちる。G a N結晶中にはドナー不純物 をドープしていないので、不純物によるキャリアの散乱 を受けない。そのため電子は容易にGaN結晶中を動く ことができ、実質的な電子の移動度が高くなる。これは 前述した二次元電子ガスの効果と類似しており、電子横 方向の実質的な移動度が高くなり、抵抗率が小さくな る。さらに、バンドギャップエネルギーの大きいAIG a Nの中心領域にn型不純物を高濃度にドープすると効 果はさらに大きくなる。即ちGaN中を移動する電子に 20 よっては、AlGaN中に含まれるn型不純物イオン (この場合Si)の散乱を多少とも受ける。しかしA1 GaN層の厚さ方向に対して両端部をアンドープとする とSiの散乱を受けにくくなるので、さらにアンドープ GaN層の移動度が向上するのである。作用は若干異な るが、p層側の第3の窒化物半導体層と第4の窒化物半 導体層とで超格子を構成した場合も類似した効果があ り、バンドギャップエネルギーの大きい第3の窒化物半 導体層の中心領域に、p型不純物を多くドープし、両端 部を少なくするか、あるいはアンドープとすることが望 30 ましい。一方、バンドギャップエネルギーの小さな窒化 物半導体層にn型不純物を多くドープした層を、前記不 純物濃度の構成とすることもできる。超格子層は、少な くともp側層にあることが好ましく、p側層に超格子層 があるとより閾値が低下し好ましい。

【0033】第1の電流阻止層6、第2の電流阻止層7はn-p逆接合を有する窒化物半導体で形成する。つまり、第1の電流阻止層6をp型窒化物半導体層で形成し、第2の電流阻止層7をn型窒化物半導体で形成する。第1、第2の電流阻止層の構成としては、活性層の40発光を横方向にも閉じ込める目的で形成するため、少なくともA1を含む窒化物半導体、好ましくはA1vGa1、N(0<Y≦1)で形成することが望ましい。特にA1混晶比(Y値)が0.4以上の窒化物半導体を成長させると、高抵抗なi型になる性質あるので、この性質を利用して、A1混晶比の高いi型の窒化物半導体を成長させるよい。i型の窒化物半導体を成長させてもよい。i型の窒化物半導体を成長させる場合には、特に第1の電流阻止層と第2の電流阻止層とで逆n-p接合を作らなくとも、高抵抗な第1の電流阻止層のみでもよい。またこの電流阻止層はSiOz、TiOz、50

 ZrO_2 のような絶縁性材料で形成することもできる。 【0034】 p側コンタクト層8はp型のInxAlrG a_{1-x-1} N ($0 \le X$ 、 $0 \le Y$ 、 $X+Y \le 1$) で構成することができ、好ましくはMgをドープしたGaN、若しくはMgをドープしたY値が0.1以下のAlrGar Nとすれば、p電極9と最も好ましいオーミック接触が得られる。p側コンタクト層8の膜厚は500オングストローム以下、 最も好ましくは300 オングストローム以下、 最も好ましくは200 オングストローム以下に調整することが望ましい。 なぜなら、抵抗率が高いp型窒化物半導体層の膜厚を500 オングストローム以下に調整することにより、さらに抵抗率が低下するため、閾値で

の電流、電圧が低下する。またアニール時にp型層から

除去される水素が多くなって抵抗率が低下しやすい傾向

12

【0035】基板1の第2の主面側に孔100を形成するには、例えば孔の部分を除いて保護膜を第2の主面側に形成した後、エッチングすることで実現できる。エッチング手段としては、大別してウエットエッチング、ドライエッチングがあるが、好ましくはドライエッチングを用いる。ドライエッチングとしては、例えば、反応性イオンエッチング(RIE)、反応性イオンビームエッチング(RIBE)、電子サイクロトロンエッチング(ECR)、イオンビームエッチング等の装置があるが、基板の材料に応じて適宜、エッチング装置、エッチングガス等の条件を選択すればよい。

[0036]

にある。

【実施例】図4~図7は本発明の実施例において得られるレーザ素子の構造を示す模式的な断面図である。以下、これらの図面を元に本発明のレーザ素子の製造方法について、順に説明する。

【0037】 [実施例1] まずスピネル(111)面を主面とする基板1を用意し、この基板1の上にMOVP E法を用いて500℃でGaNよりなるバッファ層を200オングストロームの膜厚で成長させ、次に1050℃で $Siを1\times10$ 00 / cm ドープしたn型GaN層を4 μ mの膜厚で成長させる。

【0039】次に温度を800℃にして、アンドープInon Gaos Nよりなる井戸層を25オングストロームの膜厚で成長させ、続いてアンドープInon Gaos Nよりなる障壁層を50オングストロームの膜厚で成長させる。この操作を2回繰り返し、最後に井戸層を積層した総膜厚175オングストロームの多重量子井戸構造

(MQW) の活性層4を成長させる。活性層4は本実施例のようにアンドープでもよいし、またn型不純物及び/又はp型不純物をドープしても良い。不純物は井戸層、障壁層両方にドープしても良く、いずれか一方にドープしてもよい。

【0041】 p側クラッド層 5 成長後、ウェーハを反応容器から取りだし、 SiO_2 よりなる $4\mu m\phi$ の保護膜 20を所定の位置に複数形成する。保護膜 20形成後のウェーハの部分的な断面図が図 4 である。

【0042】保護膜20形成後、ウェーハをRIE装置に移送し、保護膜を形成していない部分の窒化物半導体層をエッチングし、n側コンタクト層2の表面を露出させる。エッチング後のウェーハの構造を示す断面図が図5である。

【0043】エッチング後、保護膜を形成したまま、再度ウェーハをMOVPE反応容器に移送し、1050℃で露出させたn側コンタクト層2の表面にZnを1×10°/cm°ドープしたAla、Gaas N層よりなる第1の電流阻止層6を0.21μmの膜厚で成長させ、続いてSiを1×10°/cm°ドープしたAla、Gaas Nよりなる第2の電流阻止層を0.21μmの膜厚で成長させる。第1の電流阻止層はp型不純物としてZnをドープししている。ZnはMgに比べて活性化率が低く、p型になりにくい性質を有しており、しかもAl混晶比が高いため、第1の電流阻止層は半絶縁性に近い。成長後のウェーハの構造を示す図が図6である。

【0044】電流阻止層6、7成長後、ウェーハを反応容器から取りだし、保護膜20を酸で除去した後、再び反応容器内にて、1050℃で第2の電流阻止層7、p側クラッド層5の表面にMgを1×10²⁰ /cm³ドープしたp型GaNよりなるp側コンタクト層7を200オングストロームの膜厚で成長させる。成長後のウェーハの構造を示す断面図が図7である。

【0045】以上のようにして窒化物半導体を成長したウェーハを反応容器から取りだし、窒化物半導体を成長していない側の基板1の所定の位置に保護膜を形成し、保護膜を形成していない部分をエッチングして、図8に示すように $20\mu m \phi$ の孔100を形成する。孔100の深さは孔100の底部と、n側クラッド層3との距離とが $0.5\mu m$ となるように調整する。

【0046】孔100形成後ウェーハをCVD装置に移送し、SiO2とTiO2との誘電体多層膜からなる第1の反射鏡11を、図8に示すように孔100の底部に形 50

成する。一方、p側コンタクト層8の表面にも所定の形状の保護膜を形成して、図8に示すように20μmφの第2の反射鏡12を形成する。これらの反射鏡は410nmの発光波長に対して80%以上の反射率を有するように設計されている。

14

【0047】次に、所定の形状のマスクを形成して、p側コンタクト層8側からエッチングを行い、n側コンタクト層2の表面を露出させ、露出したn側コンタクト層2にはTi/Alよりなるn電極10を形成し、一方最上層のp側コンタクト層8の表面の第2の反射鏡12を除くほぼ全面にNi/Auよりなるp電極9を形成する。電極形成後の構造を示す断面図が図1、平面図が図2である。以上のようにして以上のようにして作製した面発光レーザ素子は、従来の電極ストライプ型の窒化物半導体レーザ素子に比較して、約1/30の電流で408nmの室温連続発振を示し、寿命は1分以上であった。

【0048】 [実施例2] 実施例2は図3を元に説明する。サファイア基板の上に成長させた 60μ mの厚さを有する 1×10^{19} / cm S i ドープG a N基板 1'を用意する。このG a N基板 1'の上にMOVPE装置を用いて、1050 ℃でS i を 5×10^{18} / cm ドープしたG a Nよりなるバッファ層 2'を 1μ mの膜厚で成長させる。なおこのバッファ層 2'は実施例1において 500 ℃の低温で成長したバッファ層とは区別される。

【0049】このバッファ層2'の上に先ほどと同様にして、超格子構造よりなるn側クラッド層3、活性層4、p側クラッド層5、第1の電流阻止層6、第2の電流阻止層7、p側コンタクト層8を成長させる。

【0050】p側コンタクト層8成長後、サファイア基板を研磨により除去し、GaN基板1'の表面を露出させる。その後実施例1と同様にして、GaN基板1'の第2の主面側に 20μ m ϕ の孔100を設ける。なお孔100の底部の距離と、n側クラッド層3との距離は 0.1μ mに調整する。次に、孔100の底部に誘電体多層膜よりなる第1の反射鏡を形成し、p側コンタクト層の表面にも 20μ m ϕ の誘電体多層膜よりなる第2の反射鏡を形成する。

【0051】次に研磨により露出したGaN基板1'のほぼ全面にTi/Alよりなるn電極を設け、実施例1と同様にレーザ発振させたところ、実施例1とほぼ同等の条件においてレーザ発振を示し、寿命は10分以上であった。

【0052】 [実施例3] 実施例1において、n側クラッド層3成長時に、 $Si を 1 \times 10^{19}$ / cm^3 ドープした GaNよりなる第2の層を40オングストロームと、アンドープのAla3 Gaa7 Nよりなる第1の層を40オングストローム成長させて、このペアを25回成長させ、総膜厚0. 2μ m(2000オングストローム)の 超格子構造よりなるn側クラッド層3を成長させ、ま

た、p側クラッド層5成長時に、Mgを1×10^{to} /cm ¹ドープしたGaNよりなる第4の層を40オングスト ロームと、アンドープのAlas Gaar Nよりなる第3 の層を40オングストローム成長させて、このペアを2 5回成長させ、総膜厚 0. 2 μm (2000オングスト ローム) の超格子構造よりなる p 側クラッド層 5 を成長 させる他は実施例1と同様にしてレーザ素子を得たとこ ろ、実施例1とほぼ同様に良好な結果が得られた。

15

[0053] 【発明の効果】以上説明したように、本発明によると窒 10 物半導体ウェーハの構造を示す模式断面図。 化物半導体よりなる面発光レーザ素子が実現できる。面 発光レーザ素子は基板と垂直な面に発光し、LEDのよ うに横方向の光の漏れがほとんどない。そのため、一枚 のウェーハに複数の活性領域を作製することにより半導 体ウェーハで面状光源ができる。特に窒化物半導体レー ザ素子は380nm~450nmの紫、青色発光領域を 主としているため、このレーザ素子の発光面側に、例え ば青色発光で励起されて、黄色~オレンジ色に発光する 蛍光物質を配置すると、白色発光が得られる。この白色 発光を蛍光灯に変わる光源として利用すると、省エネル 20 7・・・第2の電流阻止層 ギーで効率の高い光源が得られる。このように面発光レ ーザ素子を実現することは非常に産業上有用である。

【図面の簡単な説明】

【図1】 本発明の一実施例に係るレーザ素子の構造を 示す模式断面図。

【図2】 図1のレーザ素子をp電極側から見た平面 図。

*【図3】 本発明の他の実施例に係るレーザ素子の構造 を示す模式断面図。

16

【図4】 本発明の方法の一工程において得られる窒化 物半導体ウェーハの構造を示す模式断面図。

【図5】 本発明の方法の一工程において得られる窒化 物半導体ウェーハの構造を示す模式断面図。

【図6】 本発明の方法の一工程において得られる窒化 物半導体ウェーハの構造を示す模式断面図。

【図7】 本発明の方法の一工程において得られる窒化

【図8】 本発明の方法の一工程において得られる窒化 物半導体ウェーハの構造を示す模式断面図。

【符号の説明】

11・・・基板

2・・・n側コンタクト層

3・・・n側クラッド層

4・・・活性層

5 · · · p側クラッド層

6・・・第1の電流阻止層

8・・・p側コンタクト層

9 · · · p 電極

10・・・n電極

11・・・第1の反射鏡

12・・・第2の反射鏡

100 · · · 孔

【図1】

【図4】

【図2】

*

【図5】

【図3】

【図6】

【図7】

【図8】

