M5A44 COMPUTATIONAL STOCHASTIC PROCESSES Dr G.A. PAVLIOTIS

PROJECT 2

HANDED OUT: 21/02/2014

DEADLINE FOR HANDING IN: 07/03/2014 PLEASE MAKE SURE TO INCLUDE ALL THE CODE THAT YOU HAVE WRITTEN.

YOU MUST SUBMIT A SINGLE DOCUMENT WHICH SHOULD START WITH A DECLARATION THAT THIS IS ALL YOUR OWN WORK.

1. Consider the stochastic differential equation in \mathbb{R}^2

$$d\mathbf{X}_t = \mathbf{v}(t, \mathbf{X}_t) dt + \sqrt{2\kappa} dW_t, \quad \mathbf{X}_0 = \mathbf{x}, \tag{1}$$

where W_t denotes standard Brownian motion on \mathbb{R}^2 . Let $\mathbf{X}_t = (X_t, Y_t)$ and $\mathbf{x} = (x, y)$.

(a) Solve (1) for

$$\mathbf{v}(t, \mathbf{x}) = (0, \sin(x)\sin(\omega t)).$$

Calculate

$$D(t) = \frac{\operatorname{Var}(Y_t)}{2t}.$$

Show numerically that it becomes constant, the **effective diffusion coefficient** D when t is sufficiently long. Study numerically the dependence of D on κ and ω . Generate plots of D as a function of κ for $\omega = 1$, for $\kappa \in [10^{-2}, 10^2]$, and of D as a function of ω for $\kappa = 0.1$ for $\omega \in [10^{-2}, 10^2]$. You can take the initial conditions for (1) to be either deterministic or random.

(b) Repeat the same experiment for

$$\mathbf{v}(t,\mathbf{x}) = (0,\sin(x)\eta_t),$$

where η_t is the solution of the SDE

$$d\eta_t = -\alpha \eta_t dt + \sqrt{2\alpha} dW_t, \quad \eta_0 \sim \mathcal{N}(0, 1).$$

Study the dependence of the effective diffusion coefficient on κ and on α .

2. Consider the system of SDEs

$$\frac{dx_t}{dt} = \frac{x_t y_t}{\epsilon} - y_t^2 x_t^3, \quad x_0 = 1,$$
(2a)

$$dy_t = -\frac{1}{\epsilon^2} y_t dt + \sqrt{2} \frac{1}{\epsilon} dW_t, \quad y_0 \sim \mathcal{N}(0, 1).$$
 (2b)

In the limit as $\epsilon \to 0$ the solution of (2a), x_t converges to the solution of the SDE

$$dX_t = (X_t - X_t^3) dt + \sqrt{2}X_t dW_t, \quad X_0 = 1.$$
 (2c)

Investigate this limit numerically:

- (a) Solve (2) for ϵ sufficiently small to show that x_t is close to X_t . Solve the equations over [0, T] with T = 10 with a sufficiently small stepsize and an appropriate numerical method. Discuss about the choice of the numerical method.
- (b) Calculate $\operatorname{err}(\epsilon) = \mathbb{E}|x_T X_T|^2$ as a function of ϵ . Show numerically that $\operatorname{err}(\epsilon) \approx C\epsilon^{\gamma}$ for ϵ sufficiently small the estimate the exponent γ .
- (c) Investigate numerically the accuracy of the approximation of x_t by X_t as T increases.

3. Consider the scalar SDE

$$dX_t = b(X_t) dt + \sigma(X_t) dW_t, \quad X_0 = x.$$

The θ Milstein scheme is

$$X_{n+1} = X_n + \left(\theta b_{n+1} + (1-\theta)b_n\right) \Delta t + \sigma_n \Delta W_n + \frac{1}{2}\sigma_n \sigma_n' \left((\Delta W_n)^2 - \Delta t\right),\tag{3}$$

where $\theta \in [0,1]$ and $X_n = X(n\Delta t)$, $b_n = b(X_n)$, $\sigma_n = \sigma(X_n)$. Consider the SDE

$$dX_t = \lambda X_t dt + \sigma X_t dW_t, \tag{4}$$

where λ , $\sigma \in \mathbb{C}$.

(a) Obtain a formula for $\mathbb{E}|X_t|^2=\mathbb{E}X_t\overline{X_t}$ where $\overline{X_t}$ denotes complex conjugate. Show that X_t is mean square stable provided that

$$2\operatorname{Re}(\lambda) + |\sigma|^2 < 0.$$

(b) Apply the θ Milstein scheme to (4). Show that it can be written in the form

$$X_{n+1} = G(\Delta t, \lambda, \sigma, \theta) X_n$$

and obtain a formula for $G(\Delta t, \lambda, \sigma, \theta)$. Let $Z_n = \mathbb{E}X_n^2$. Use the previous calculation to obtain an equation of the form

$$Z_{n+1} = R(\Delta t, \lambda, \sigma, \theta) Z_n$$
.

- (c) Investigate the region of mean square stability for the θ Milstein scheme. Compare the stability region of the numerical scheme with the stability region of the SDE. For what values of θ is the θ Milstein scheme A-stable?
- (d) Test your results for the SDEs

$$dX_t = -100X_t dt + 10X_t dW_t$$

and

$$dX_t = (-100 + 100i)X_t dt + 10X_t dW_t.$$

Comment on your results.

4. MASTERY COMPONENT The following SDE appears in population dynamics:

$$dX_t = -\lambda X_t (1 - X_t) dt - \mu X_t (1 - X_t) dW_t$$
(5)

- (a) Show that $X_t = 1$ is a fixed point for (5) and that linearizing about this fixed point we obtain the SDE for geometric Brownian motion.
- (b) Solve (5) numerically using the explicit Euler and Milstein schemes for $\lambda = -1$, $X_0 = 1.1$ and for $\mu = 0.5$, 0.6, 0.7, 0.8, 0.9. Calculate numerically $\mathbb{E}(X_t 1)^2$. Comment on the mean square stability of the explicit Euler and Milstein schemes for the nonlinear SDE (5).
- (c) Solve (5) using the theta scheme with $\theta = \frac{1}{2}$. Investigate the mean square stability of this numerical scheme when applied to (5).