A Novel Approach to Parameterized Verification of Cache Coherence Protocols

Yongjian Li¹ Kaiqiang Duan¹ Yi Lv¹ Jun Pang² Shaowei Cai¹

State Key Laboratory of Computer Science, China

Computer Science and Communications, University of Luxembourg, Luxembourg

October 1, 2016

Problem of Parameterized Verification

Consdier a protocol P, a property Inv

- $P(N) \models Inv$ for any N
- Not just for a single protocol instance $P(c) \models Inv$, where c is a fixed number
- Model-checking can only check $P(c) \models Inv$
- Our opinion: A theorem proving problem is a complete solution to parameterized verification

State of Arts-CMP method

- CMP: parameter abstraction and guard strengthening
- Proposed, by McMillan, elaborated by Chou, Mannava, and Park (CMP), and formalized by Krstic
- construction of an abstract instance which can simulate any protocol instance
- Not automatic: human provides auxiliary invariants (non-interference lemmas)

State of Arts-Invisible invariants

- Proposed by Amir Pnueli, Sitvanit Ruah, and Lenore Zuck
- auxiliary invariants are computed from reachable state set in a finite protocol instance P(c)
- "Invisible invariants" are raw formulas translated from BDD
- Problem: the required reachable state set can't be enumerated for complex protocol, e.g., the FLASH protocol

Two central and difficult problems

• searching auxiliary invariants is not automatic

Two central and difficult problems

- searching auxiliary invariants is not automatic
- soundness problem: Neither is the theoretical foundation mechanized, nor is there a formal proof for all the things

Our Motivation

• automatically searching auxiliary invariants

Our Motivation

- automatically searching auxiliary invariants
- Formally proving all the things: both the theoretical foundation and case studies
- A formal proof script as a formal verification product

An Overview of Our Approach

Figure: The workflow of paraVerifier.

Some Explanations

- paraVerifier=invFinder + proofGen
- protoocl.m: a small reference instance of the protocol in Murphi
- invFinder searches auxiliary invariants automatically
- protocol.tbl: stores the set of ground invariants and a causal relation table in a concrete form
- proofGen: creates an Isabelle proof script protocol.thy which models the protocol
- runs Isabelle script to automatically proof-check protocol.thy

Theoretical Foundation-Protocol

A protocol is formalized as a pair (ini, rules), where

- ini is a formula to specify initial states
- rules is a set of transition rules. Each rule $r \in rules$ is defined as $g \triangleright S$, where S is a parallel assignment $S = \{x_i := e_i | i > 0\}$.

We write pre r = g, and act r = S if $r = g \triangleright S$.

Theoretical Foundation-Causal Relation

We define the following relations

- invHoldForRule₁ s f $r \equiv s \models \text{pre } r \longrightarrow s \models \text{preCond } f$ (act r), where preCond S $f = f[x_i := e_i]$, which substitutes each occurrence of x_i by e_i ;
- ② invHoldForRule₂ s f $r \equiv s \models f \longleftrightarrow s \models \text{preCond } f$ (act r);
- ③ invHoldForRule₃ s f r F ≡ ∃<math>f' ∈ F s.t. $s \models (f' \land (pre \ r)) \longrightarrow s \models preCond \ f (act \ r);$
- invHoldForRule s f r F represents a disjunction of invHoldForRule₁, invHoldForRule₂ and invHoldForRule₃.

Theoretical Foundation - Consistency Relation)

A consistency relation, i.e., consistent *invs ini rules*, that holds between a protocol (ini, rules) and a set of invariants $invs = \{inv_1, \ldots, inv_n\}$, is defined as:

- For any invariant $inv \in invs$ and state s, ini implies inv
- For any inv ∈ invs, and r ∈ rules, and any state s, invHoldForRule s inv r invs.

Theoretical Foundation - Consistent Lemma

[|consistent invs ini rules; $s \in \text{reachableSet ini rules}|] \Longrightarrow \forall inv \in invs.s \models inv$

- reachableSet ini rules is the set of reachable states of the protocol.
- $s \models inv$ means inv holds at the state s

Key Algorithm of invFinder

3

4

5

6

8

10

11

12 **return** *tuples*;

Input: Initially given invariants F, a protocol $\mathcal{P} = \langle I, R \rangle$ **Output**: A set of tuples which represent causal relations between concrete rules and invariants: 1 $A \leftarrow F$; tuples \leftarrow []; newInvs \leftarrow F; 2 while newlnvs is not empty do $f \leftarrow newInvs.dequeue$; for $r \in R$ do $paras \leftarrow Policy(r, f);$ for para ∈ paras do $cr \leftarrow apply(r, para)$; $newInvOpt, rel \leftarrow coreFinder(cr, f, A);$ tuples \leftarrow tuples @[< r, para, f, rel >];**if** *newInvOpt* ≠ *NONE* **then** $newInv \leftarrow get(newInvOpt);$ newInvs.engueue(newInv); $A \leftarrow A \cup \{newInv\}$;

More on invFinder

- trying to construct a consistency relation that guides the tool invFinder to find auxiliary invariants
- works in a semi-proving and semi-searching way, the result of causal relation can be regarded as key information to construct a concrete proof
- After fetching an unchecked formula f from newInvs, for any rule r, Policy(r, f) generates groups of parameters paras according to r and f.
- For each parameter *para* in *paras*, it is applied to instantiate *r* into a concrete rule *cr*

More on invFinder

- trying to construct a consistency relation that guides the tool invFinder to find auxiliary invariants
- works in a semi-proving and semi-searching way, the result of causal relation can be regarded as key information to construct a concrete proof
- After fetching an unchecked formula f from newInvs, for any rule r, Policy(r, f) generates groups of parameters paras according to r and f.
- For each parameter para in paras, it is applied to instantiate r into a concrete rule cr
- coreFinder(cr, f, A) is called to check whether a causal relation exists between cr and f.

Intuition behind Policy(r, f)

- Question: How many groups of rule parameters are needed to instantiate r into concrete rules?
- The answer will determine how to compute the enough auxiliary invariants and causal relations between these concrete rules and f for generating a proof.
- For instance, [1], [2], and [3] are three groups which are enough to instantiate r into crit(1), crit(2), and crit(3). But [4] is not needed.
- Here the generated groups of parameters should cover the typical cases which are needed in case analysis in a proof of generalized protocol instance.
- avoiding choosing redundant group of parameters which are similar (or equivalent) to each other.

Formalizing Policy(r, f)

Let m and n be two natural numbers, where $n \leq m$, L and L' are two n-permutations of m,

- 3 semiP(m, n, S) ≡ ($\forall L \in \text{perms}_m^n \exists L' \in S.L \simeq_m^n L'$) \land ($\forall L \in S.\forall L' \in S.L \neq L' \longrightarrow \neg(L \simeq_m^n L')$.
- **4** A set S is called a quotient of the set permsⁿ under the relation \simeq^{n}_{m} if semiP(m, n, S).

Consider a a parameterized rule r with nR-parameters, and a concrete invariant formula with nI- actual parameters. We only need choose the elements of semiP(nR + nI, nR, S) to instantiate a rule r.

Formalizing Policy(r, f)

```
Algorithm 1: Computing a quotient of perms_m^n: cmpSemiperm

Input: m, n

Output: A list of permutations L

1 L_0 \leftarrow \operatorname{perms}_m^n; L \leftarrow [];

2 while L_0 \neq [] do

3 | para \leftarrow \operatorname{hd}(L_0); L_0 \leftarrow \operatorname{tl}(L_0);

4 | if \forall para' \in \operatorname{set}(L).para' \not\simeq_m^n para then

5 | L \leftarrow L@[para];

6 return L:
```

Policy(r, f) is simply calling cmpSemiperm(nR + nI, nR)

Core Searching Algorithm: coreFinder

```
Input: r, inv, invs
   Output: A formula option f, a new causal relation rel
 1 g \leftarrow the guard of r, S \leftarrow the statement of r, inv' \leftarrow preCond(inv, S);
 2 if inv = inv' then
       relltem \leftarrow (r, inv, invRule_2, -);
       return (NONE, relltem);
 5 else if tautChk(g \rightarrow inv') = true then
        relltem \leftarrow (r, inv, invRule_1, -);
       return (NONE, relltem);
  else
        candidates \leftarrow subsets(decompose(dualNeg(inv') \land g));
 9
        newInv \leftarrow choose(chk, candidates);
10
        relltem \leftarrow (r, inv, invRule_3, newInv);
11
       if isNew(newInv, invs) then
12
            newInv \leftarrow normalize(newInv);
13
            return (SOME(newInv), relItem);
14
       else
15
            return (NONE, relltem);
16
```

Core Searching Algorithm: coreFinder

After computing the pre-condition inv' (line 1) then:

- If inv = inv', meaning that statement S does not change inv, then no new invariant is created, and new causal relation item marked with tag invHoldRule₂ is recorded between r and inv.
- If tautChk verifies that g --→ inv' is a tautology, then no new invariant is created, and the new causal relation item marked with tag invHoldRule₁ is recorded between r and inv.
- If neither of the above two cases holds, then a new auxiliary invariant newInv will be constructed, which will make the causal relation invHoldRule₃ to hold.

A fragment of output of invFinder

rule	ruleParas	inv	causal relation	f'
crit	[1]	mutualInv 1 2	invHoldForRule3	invOnX ₁ 2
crit	[2]	mutualInv 1 2	invHoldForRule3	invOnX ₁ 1
crit	[3]	mutualInv 1 2	invHoldForRule2	
crit	[1]	invOnX ₁ 1	invHoldForRule1	-
crit	[2]	invOnX ₁ 1	invHoldForRule1	-

- invariants and causal relations are in concrete form
- we need parameterized form (or symbolic form)

Generalization

There are two main kinds of generalization in our work:

- generalization of a normalized invariant into a symbolic one. For instance, $\neg(x \doteq \text{true} \land n[1] \doteq C)$ is generalized into $\neg(x \doteq \text{true} \land n[\text{iInv}_1] \doteq C)$.
- The generalization of concrete causal relations into parameterized causal relations, which consists of two phases.
 - Phase I: groups of rule parameters such as [[1],[2],[3]] will be generalized into a list of symbolic formulas such as $[iR_1 = iInv_1, iR_1 = iInv_2, (iR_1 \neq iInv_1) \land (iR_1 \neq iInv_2)]$
 - Phase II: the formula field accompanied with a relation of kind invHoldRule₃ is also generalized

-From groups of parameters to symbolic formulas

Let *LR* and *LI* be two permutations which represent rule parameters and invariant parameters, we define:

• symbolic comparison condition generalized from comparing $LR_{[i]}$ and $LI_{[j]}$: symbCmp(LR, LI, i, j) \equiv

$$\begin{cases} iR_i = iInv_j & \text{if } LR_{[i]} = LI_{[j]} \\ iR_i \neq iInv_j & \text{otherwise} \end{cases}$$
 (1)

• symbolic comparison condition generalized from comparing LR_{Ii1} and with all LI_{Ii1} : symbCasel(LR, LI, i) \equiv

$$\begin{cases} symbCmp(LR, LI, i, j) & \text{if } \exists ! j. LR_{[i]} = LI_{[j]} \\ forallForm(|LI|, pf) & \text{otherwise} \end{cases}$$
 (3)

where $pf(j) = \operatorname{symbCmp}(LR, LI, i, j)$, and $\exists ! j.P$ is a qualifier denoting there exists an unique j s.t. property P;

• symbolic case generalized from comparing LR with LI: symbCase(LR, LI) \equiv forallForm(|LR|, pf), where pf(i) = symbCasel(LR, LI, i);

The result of generalizing lines of Table

rule	inv	case	causal relation	f'
r	f	$iR_1 = iInv_1$	invHoldRule3	invOnXC(iInv ₂)
r	f	$\mathtt{iR}_1 = \mathtt{iInv}_2$	invHoldRule3	invOnXC(iInv ₁)
r	f	$egin{aligned} (\mathtt{iR}_1 eq \mathtt{iInv}_1) \land \ (\mathtt{iR}_1 eq \mathtt{iInv}_2) \end{aligned}$	invHoldRule2	

Automatic Generation of Isabelle Proof

- Building formal model and properties for a protocol in a theorem prover
 - Building formal model and properties automatically
 - ullet Murphi model and computed invariants \longrightarrow Isabelle model

Automatic Generation of Isabelle Proof

- Building formal model and properties for a protocol in a theorem prover
 - Building formal model and properties automatically
 - ullet Murphi model and computed invariants \longrightarrow Isabelle model
- Proving that properties hold in the formal model
 - Instead of working interactively, we construct our proof automatically
 - \bullet lines of symbolic causal table \longrightarrow a proof doing case analysis

A Fragment of Isabelle model

- Definition of a formula of an invariant:
 definition inv_1::"nat ⇒ nat ⇒ formula" where [simp]:
 "inv_1 p_Inv3 p_Inv4 ≡
 (neg (andForm (eqn (IVar (Para (Ident "n") p_Inv4)) (Const C)) (eqn (IVar (Para (Ident "n") p_Inv3)) (Const C))))"
- Definition of a lemma: lemma critVsinv1: assumes a1: ∃ iR1. iR1 ≤ N ∧ r=crit iR1 and a2: ∃ ilnv1 ilnv2. ilnv1 ≤ N ∧ ilnv2 ≤ N ∧ ilnv1 ≠ ilnv2 ∧ f=inv1 ilnv1 ilnv2 shows invHoldForRule s f r (invariants N)

A Fragment of Isabelle proof of Lemma critVsinv1

```
1lemma critVsinv1:
2 assumes a1: ∃ iR1. iR1 < N ∧ r=crit iR1 and
a2: ∃iInv1 iInv2. iInv1<N ∧ iInv2 < N ∧ iInv1≠iInv2 ∧ f=inv1 iInv1 iInv2
3 shows invHoldRule s f r (invariants N)
4 proof -
from a1 obtain iR1 where a1:iR1 < N \land r=crit iR1
 by blast
from a2 obtain iInv1 iInv2 where a2: iInv1 < N
∧ iInv2 < N ∧ iInv1 ≠ iInv2 ∧ f=inv1 iInv1 iInv2</p>
 by blast
5 have iR1=iInv1 \lor iR1=iInv2 \lor (iR1 \neq iInv1 \land iR1 \neq iInv2)
by auto
6 moreover{assume b1:iR1=iInv1
   have invHoldRule3 s f r (invariants N)
   proof(cut_tac a1 a2 b1, simp,
rule_tac x=¬ (x=true \ n[iInv2]=C) in exI.auto)ged
   then have invHoldRule s f r (invariants N) by auto}
9 moreover{assume b1:iR1=iInv2
10 have invHoldRule3 s f r (invariants N)
   proof(cut_tac a1 a2 b1, simp,
rule_tac x=- (x=true \( n[iInv1]=C \) in exI,auto)qed
11 then have invHoldRule s f r (invariants N) by auto}
12 moreover{assume b1:(iR1 ≠ iInv1 ∧ iR1 ≠ iInv2)
13 have invHoldRule2 s f r
   proof(cut_tac a1 a2 b1, auto) qed
14 then have invHoldRule s f r (invariants N) by auto}
15ultimately show invHoldRule s f r (invariants N) by blast
16qed
```

Experiments

Protocols	#rules	#invariants	time (sec.)	Memory (MB)
mutualEx	4	5	3.25	7.3
MESI	4	3	2.47	11.5
MOESI	5	3	2.49	13.5
German	13	52	38.67	14
FLASH_nodata	60	152	280	26
FLASH_data	62	162	510	26

Among them, the former three ones are small, German is medium, FLASH is industrial-scale.

Conclusions

- invFinder generates automatically invariants
- proofGen generates automatically proofs to prove invariants
- Our verification output: a formally readable proof.
- Our verification goal: verifying the protocol in both an automatic and rigorous way