

SRINIVAS UNIVERSITY COLLEGE OF ENGINEERING & TECHNOLOGY

Department Of Computer Science and Engineering TEACHING/LESSON PLAN (EVEN Semester 2021-22)

Subject Code		19SEC641	Title	CRYPTOG NETWORK CYBER LA	SECURITY	AND	Class	VI TH	SEM	
Prerequisites					Faculty Name		Prof. Veerann	a Ko	tagi	
Credits	4	Hours/week	L-T-P: 4		CIE Marks	50	SEE Marks	50	Total Hours	50

Course Objectives:

- 1. Understand the use of number theory and finite fields network security.
- 2. Explain the concepts of encryption techniques.
- 3. Illustrate key management issues and solutions.
- 4. Familiarize with cryptography and very essential algorithms.

Course Outcomes of the Course:

On Completion of this Course the Student was able to,

CO id	Course Outcome
CO1	Define and explain number theory and finite fields network security.
CO2	Discuss cryptography and it's needs to various applications.
CO3	Define types of ciphers.
CO4	Design and develop simple cryptography algorithms.
CO5	Use hash functions.

CO-PO Mapping:

i i 0												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	-	-	2	-					
CO2	3	3	2	-	1	-	-					
CO3	1	2	2	3	-	2	2					
CO4	2	1	3	2	2	-	1					
CO5	2	3	3	-	2	1	3					

Lesson/Teaching Plan of the Course:

Hour No.	Plan Date	Actual Date	Topic to be covered	CO Mapping	Mode of Delivery	Text/ Reference book
1	15/03/2 022	15/03/2 022	Module-1: Basic concepts of number theory and finite fields: Divisibility	1	PPT/CHA LK	T1
2	15/03/2 022	19/03/ 2022	Divisibility algorithm	4	PPT/CHA LK	T1
3	15/03/2 022	22/03/ 2022	Euclidian algorithm	4	PPT/CHA LK	T1
4	15/03/ 2022	29/03/ 2022	Modular arithmetic	1	PPT/CHA LK	T1
5	15/03/2 022		Groups	3	PPT/CHAL K	T1
6	15/03/2 022		Rings	3	PPT/CHA LK	T1
7	15/03/2 022		Fields	3	PPT/CHA LK	T1

8	15/03/2 022	Finite fields if the form GF(p)	1	PPT/CHA LK	T1
9	16/03/2 022	Polynomial arithmetic	1	PPT/CHA	T1
10	17/03/2 022	Finite fields of the formGF(2n)	2	PPT/CHA LK	T1
11	19/03/2 022	Module-2: Classical encryption techniques: Symmetric cipher model	2	PPT/CHA LK	T1
12	22/03/2 022	Symmetric cipher model (Cont)	3	PPT/CHA LK	T1
13	22/03/2 022	Substitution techniques	3	PPT/CHAL K	T1
14	23/03/2 022	Substitution techniques (Cont)	3	PPT/CHA LK	T1
15	24/03/2 022	Transposition techniques	4	PPT/CHA LK	T1
16	26/03/2 022	Transposition techniques (Cont), Stegnography	4	PPT/CHA LK	T1
17	29/03/2 022	Symmetric ciphers: Traditional block cipher structure	4	PPT/CHAL K	T1
18	30/03/2 022	Traditional block cipher structure (Cont)	4	PPT/CHA LK	T1
19	31/03/ 2022	Data encryption technique	2	PPT/CHA LK	T1
20	01/04/2 022	Data encryption technique (Cont)	2	PPT/CHA LK	T1
21	05/04/2 022	Module-3: Symmetric ciphers: AES cipher	4	PPT/CHAL K	T2
22	06/04/2 022	Pseudo-Random –Sequence Generators and Sream ciphers.	4	PPT/CHA LK	T2
23	07/04/2 022	Linear congruential generators	4	PPT/CHA LK	T2
24	09/04/2 022	Linear congruential generators (Cont)	4	PPT/CHA LK	T2
25	12/04/2 022	Linear feedback shift registers	4	PPT/CHAL K	T2
26	13/04/2 022	Linear feedback shift registers (Cont)	4	PPT/CHA LK	T2
27	16/04/ 2022	Linear feedback shift registers (Cont)	4	PPT/CHA LK	T2
28	26/04/2 022	Design and analysis of stream ciphers using LFSRs	4	PPT/CHA LK	T2
29	27/04/2 022	Design and analysis of stream ciphers using LFSRs (Cont)	4	PPT/CHAL K	T2
30	28/04/ 2022	Design and analysis of stream ciphers using LFSRs (Cont)	1	PPT/CHA LK	T2
31	30/04/2 022	Module-4: More number theory	1	PPT/CHA LK	T2
32	04/05/2 022	Prime numbers	1	PPT/CHA LK	T2
22	05/05/2 022	Fermat's theorem	1	PPT/CHAL K	T2
34	07/05/ 2022	Euler theorem	1	PPT/CHA LK	T2
35	10/05/2 022	Primality testing, Chinese remainder theorem	4	PPT/CHA LK	T2
36	11/05/2 022	Discrete logarithm	4	PPT/CHA LK	T2
37	12/05/2 022	The RSA algorithm	4	PPT/CHAL K	T2

	14/05/2	Diffie-Hellman key exchange	3	PPT/CHA	T2
38	022	Diffie-Heiffian key exchange	3	LK	12
39	17/05/2	Elliptic curve arithmetic	3	PPT/CHA	T2
39	022	•		LK	
40	18/05/2	Elliptic curve cryptography	3	PPT/CHA	T2
40	022			LK	
41	19/05/2	Module-5: One way hash functions: Background,	5	PPT/CHAL	T1
71	022	Snefru		K	
42	21/05/2	N-Hash, MD4, Secure hash algorithm	5	PPT/CHA	T2
	022			LK	
43	24/05/2	One way hash functions using symmetric block	5	PPT/CHA	T1
	022	algorithms		LK	
44	25/05/2	Using public key algorithms	4	PPT/CHA	T1
	022			LK	
45	26/05/	Choosing one way hash functions	4	PPT/CHAL	T2
	2022			K	
46	28/05/2	Message authentication codes	3	PPT/CHA	T2
	022			LK	
47	31/05/2	Digital signature algorithm	4	PPT/CHA	T2
	022			LK	
48	01/06/2	Digital signature algorithm (Cont)	4	PPT/CHA	T1
-10	022			LK	
49	02/06/2	Discrete logarithm signature scheme	4	PPT/CHA	T2
	022			LK	
50	04/06/2	Discrete logarithm signature scheme (Cont)	4	PPT/CHA	T2
	022			LK	

TEXT/REFERENCE BOOKS:

	,
T/R	BOOK TITLE/AUTHORS/PUBLICATION
T1	Cryptography, Network Security And Cyber Law – William Stallings, Pearson Education, 7 th edition.
T2	Cryptography, Network Security, 2 nd edition, Debadeep Mukhyopadhyay
R1	Network Security: The Complete Reference Paperback – 1 July 2017 by Roberta Bragg (Author), Mark
	Rhodes-Ousley (Author), Keith Strassberg (Author)
R2	Cryptography And Network Security 3rd Edition Paperback – 1 January 2015 by Forouzan

Faculty Member	HOD

Date: