Constraint Satisfaction Problems

Outline

- Constraint Satisfaction Problems (CSP)
- Backtracking search for CSPs

2

Constraint satisfaction problems (CSPs)

- Standard search problem:
 - state is a "black box" any data structure that supports successor function, heuristic function, and goal test
- CSP:
 - state is defined by variables X_i with some values from domain D_i
 - a set of constraints C_i specifies allowable combinations of values for subsets
 - a consistent state violates none of the constraints C
 - a complete assignment has values assigned to all variables.
 - A Solution is a complete, consistent assignment.
- · Simple example of a formal representation language
- Allows useful general-purpose algorithms with more power than standard search algorithms

• Variables WA, NT, Q, NSW, V, SA, T

Example: Map-Coloring

- Domains $D_i = \{\text{red,green,blue}\}$
- · Constraints: adjacent regions must have different colors
- e.g., WA \neq NT, or (WA,NT) in {(red,green),(red,blue),(green,red), (green,blue),(blue,red),(blue,green)}

Example: Map-Coloring

• Solutions are complete and consistent assignments, e.g., WA = red, NT = green,Q = red,NSW = green,V = red,SA = blue,T = green

5

Constraint graph

- Binary CSP: each constraint relates two variables
- Constraint graph: nodes are variables, arcs are constraints

6

Varieties of CSPs

- Discrete variables
 - finite domains:
 - *n* variables, domain size $d \rightarrow O(d^n)$ complete assignments
 - e.g., Boolean CSPs, incl.~Boolean satisfiability (NP-complete)
 - infinite domains:
 - · integers, strings, etc.
 - e.g., job scheduling, variables are start/end days for each job
 - need a constraint language, e.g., $StartJob_1 + 5 \le StartJob_3$
- Continuous variables
 - e.g., start/end times for Hubble Space Telescope observations
 - linear constraints solvable in polynomial time by linear programming algorithms from operations research

Varieties of constraints

- Unary constraints involve a single variable,
 - e.g., SA ≠ green
- Binary constraints involve pairs of variables,
 - $-\ e.g.,\,SA\neq WA$
- Higher-order constraints involve 3 or more variables,
 - e.g., cryptarithmetic column constraints
- Global constraints: arbitrary # of constraints, not necessarily all the variables in a problem
 - e.g., AllDiff: all values must be different. Sudoku rows, cols, squares

Example: Cryptarithmetic

T W O + T W O F O U R

- Variables: $F T U W R O X_1 X_2 X_3$
- Domains: {0,1,2,3,4,5,6,7,8,9}
- Constraints: Alldiff (F,T,U,W,R,O)
 - $O + O = R + 10 \cdot X_I$
 - $-X_1 + W + W = U + 10 \cdot X_2$
 - $-X_2 + T + T = O + 10 \cdot X_3$
 - $-X_3 = F, T \neq 0, F \neq 0$

9

11

Real-world CSPs

- Common problems:
 - Assignment problems
 - e.g., who teaches what class
 - Timetabling problems
 - e.g., which class is offered when and where?
 - Transportation scheduling
 - Factory scheduling
- Notice that many real-world problems involve real-valued variables
- May also include preference constraints: constraint optimization

10

Standard search formulation (incremental)

Let's start with the straightforward approach, then fix it: States are defined by the values assigned so far

- Initial state: the empty assignment { }
- Successor function: assign a value to an unassigned variable that does not conflict with current assignment
 - → fail if no legal assignments
- Goal test: the current assignment is complete
- 1. This is the same for all CSPs
- 2. Every solution appears at depth n with n variables \rightarrow use depth-first search
- 3. Path is irrelevant, so can also use complete-state formulation
- 4. b = (n l)d at depth l, hence $n! \cdot d^n$ leaves

Backtracking search

- Variable assignments are commutative}, i.e.,
- [WA = red then NT = green] same as [NT = green then WA = red]
- Only need to consider assignments to a single variable at each node
 - \rightarrow b = d and there are dⁿ leaves
- Depth-first search for CSPs with single-variable assignments is called backtracking search
- Backtracking search is the basic uninformed algorithm for CSPs
- Can solve *n*-queens for $n \approx 25$

Backtracking search

function BACKTRACKING-SEARCH(csp) returns a solution, or failure return RECURSIVE-BACKTRACKING({}, csp)

function Recursive-Backtracking (assignment, csp) returns a solution, or failure

if assignment is complete then return assignment $var \leftarrow \text{Select-Unassigned-Variables}(csp]$, assignment, csp) for each value in Order-Domain-Values(var, assignment, csp) do if value is consistent with assignment according to Constraints[csp] then add { var = value } to assignment result $\leftarrow \text{Recursive-Backtracking}(assignment, csp)$ if $result \neq failue$ then return result

 $\begin{array}{ll} {\sf remove} \; \{ \; var = \, value \; \} \; {\sf from} \; \; assignment \\ {\sf return} \; failure \end{array}$

13

Backtracking example

14

Backtracking example

Backtracking example

16

Backtracking example

17

Improving backtracking efficiency

- General-purpose methods can give huge gains in speed:
 - Which variable should be assigned next?
 - In what order should its values be tried?
 - Can we detect inevitable failure early?

18

Most constrained variable

• Most constrained variable: choose the variable with the fewest legal values

• a.k.a. minimum remaining values (MRV) heuristic

Most constraining variable

- Tie-breaker among most constrained variables
- Most constraining variable:
 - choose the variable with the most constraints on remaining variables

Least constraining value

- Given a variable, choose the least constraining value:
 - the one that rules out the fewest values in the remaining variables

• Combining these heuristics makes 1000 queens feasible

Summary

- CSPs are a special kind of problem:
 - states defined by values of a fixed set of variables
 - goal test defined by constraints on variable values
- Backtracking = depth-first search with one variable assigned
- Variable ordering and value selection heuristics help significantly