LRRU: Long-short Range Recurrent Updating Networks for Depth Completion

Yufei Wang¹, Bo Li¹, Ge Zhang¹, Qi Liu¹, Tao Gao², Yuchao Dai¹

¹School of Electronics and Information, Northwestern Polytechnical University, Xi'an, China ²Chang'an University

https://npucvr.github.io/LRRU/

Motivation

Existing depth completion methods can be categorized into the following two groups:

- Direct-regression: using traditional or modified Encoder-Decoder network to predict dense depth.
- *Direct-regression* + *SPNs*: refining the output of the direct-regression methods by predicting neighbors and their affinities of each pixel.

Drawbacks:

- Heavy computing resource: direct-regression network requires massive learnable parameters.
- Content-agnostic update unit: the parameters of SPN module are not adaptively adjusted to the target map.
- Inflexible recurrent strategy: the kernel scope of SPN is fixed during the update process.

Our work:

- Lightweight: we first pre-fill the sparse depth to relieve the heavy burden of the direct-regression
- Target-dependent update unit: we predict the parameters by jointly considering the target map.
- Long-short range recurrent strategy: we dynamically adjust the kernel scope from big to small.

Model Scaling

Smallest model only contains 0.3M, which so remains much smaller than existing methods.

RMSE[mm]

Models	Number of channels					Params.
	stage1	stage2	stage3	stage4	stage5	r ai aiiis.
LRRU-Mini	8	16	32	32	32	0.3 M
LRRU-Tiny	16	32	64	64	64	1.3 M
LRRU-Small	32	64	128	128	128	5 M
LRRU-Base	64	128	256	256	256	21 M

Experimental Results

