Realtime Event Summarization

Lingting Lin, Yunjie Wang, Chen Lin

March 1, 2018

- 1 Introduction
- 2 Related Work
- 3 Static Summarization

3.1 Problem Definition

Suppose that we have N tweets to be summarized, within which M tweets are credible and relevant. We are going to select a few representative posts from the tweet universe to form the summary. To model this problem, we use a vector $\tilde{\mathbf{x}} \in R^N$, where each element $\tilde{\mathbf{x}}_j \in \{0,1\}$ is a binary variable. If a tweet i is chosen as the abstractive sentence, the corresponding $\tilde{\mathbf{x}}_i = 1$. Otherwise, we set $\tilde{\mathbf{x}}_i = 0$. We use another N-dim vector $\tilde{\mathbf{c}} \in R^M$ to describe the loss of choosing each tweet as a candidate. $\tilde{\mathbf{A}} \in R^{M \times N}$ is a similarity matrix, where $\tilde{a}_{i,j}$ is the similarity between a credible and relevant tweet i and a candidate tweet j in the tweet universe. $\mathbf{b} \in R^M$ is a weight vector, where b_i indicates the importance of i being covered in the summary. Our objective is to

$$\min \tilde{\mathbf{c}}^T \tilde{\mathbf{x}}$$
 subject to $\tilde{\mathbf{A}} \tilde{\mathbf{x}} \geq \mathbf{b}, \tilde{\mathbf{x}} \in \{0, 1\}$

3.2 Methodology Overview

We first transform it to a standard form of bounded linear programming problem by making the following adjustments: $\mathbf{c} = [\tilde{\mathbf{c}}, \mathbf{0}], \mathbf{x} = [\tilde{\mathbf{x}}, \mathbf{z}]^T, \mathbf{A} = [\tilde{\mathbf{A}}, -\mathbf{I}],$ where \mathbf{I} is the $M \times M$ identity matrix. Therefore we have

min **cx** subject to
$$\mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \ge \mathbf{0}, \tilde{\mathbf{x}} \le \mathbf{1}$$
 (1)

We modify the LP so that there is an easy choice of basic solution. We start by solving

$$\min \mathbf{e}^{\mathbf{T}} \mathbf{s} \text{ subject to } \mathbf{A} \mathbf{x} + \mathbf{I} \mathbf{s} = \mathbf{b}, \mathbf{x} \ge \mathbf{0}, \tilde{\mathbf{x}} \le \mathbf{1}, \mathbf{s} \ge \mathbf{0}$$
 (2)

where **e** is the vector of all ones, **s** are called artificial variables, and $b_i \geq \mathbf{0}$. To solve the above LP relaxation, we adopt the bounded simplex method. In

each iterate, only M variables are selected as the basic points. Suppose $\mathbf{A}_{,j}$ is the jth column, and the corresponding columns of basic variables in $\bf A$ are denoted as A_B , others are denoted as A_N . Non-basic variables are either at

upper bound $(j \in U)$ or at lower bound $(j \in L)$. Define $\mathbf{c}' = [\mathbf{e}, \mathbf{0}], \mathbf{x}' = [\mathbf{x}, \mathbf{s}]^T$ and $\mathbf{A}' = [\mathbf{A}, \mathbf{I}]$ so that the constraints of the modified LP can be written as $\mathbf{A}'\mathbf{x}' = \mathbf{b}, \mathbf{x}' \geq \mathbf{0}, \tilde{\mathbf{x}} \leq \mathbf{1}$.

Step 1: Let ${\bf B}$ be the indices of the artificial variables and set the all non-basic variables to be $x_i = 0$. Then **B** is a basis, since the corresponding columns of $\mathbf{A}_{\mathbf{B}}^{'}$ are \mathbf{I} , the identity, the corresponding basic feasible solution is $\mathbf{x} = \mathbf{0}, \mathbf{z} = \mathbf{b}$.

Step 2: Pricing. $\mathbf{y} = \mathbf{B}^{T-1} \mathbf{e_B}$ Step 3: Compute $\bar{c_j} = c_j - y^T \mathbf{A'_{,j}}$. If $x_j = 0, \bar{c_j} > 0$ and $x_j = 1, \bar{c_j} < 0$, then the problem is solved. Else pick q the most contradictive variable, i.e. the most negative \bar{c}_q for $x_q = 0$ as the entering index(step 4 in Algorithm 1).

Step 4: Choose the outing index(step 5 to step 27 in Algorithm 1) and update the basis and the value of variables.

Step 5: If all artificial variables are non-basic or some artificial variables are in the basis but all $x_{z_i} = 0$ then go to Step 6,otherwise return to Step 2.

Step 6: If some artificial variables are in the basis, remove them from basis. Change $\mathbf{c}' = [\tilde{\mathbf{c}}, \mathbf{0}]$, repeat Step 2 to Step 4.

Update Summarization

$$\min c_0 x_0 + c_1 x_1 s.t. \begin{bmatrix} A & D \\ D^T & B \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} \ge \begin{bmatrix} b_0 \\ b_1 \end{bmatrix}$$
 (3)

 $D^T x_0 \geq b_1$

```
Input: \mathbf{c} = [\mathbf{e}, \mathbf{0}], \mathbf{x'} = [\mathbf{x}, \mathbf{s}]^T \text{ and } \mathbf{A'} = [\mathbf{A}, \mathbf{I}]
Output: \mathbf{x'_B} = \mathbf{A'_B}^{'-1}(\mathbf{b} - \mathbf{u}), where \mathbf{u} = \Sigma_{j \in U} \mathbf{A'_{,j}}
  1 Pricing \mathbf{y} = \mathbf{B}^{T^{-1}} \mathbf{e}_{\mathbf{B}};
   2 Compute \bar{c_j} = c_j - y^T \mathbf{A'_{j}};
   3 while \exists x_j = 0, \bar{c_j} < 0 \text{ or } x_j = 1, \bar{c_j} < 0 \text{ do}
                   q = \arg\max_{j} \{\bar{c}_{j} \forall j \in \{\mathbf{z_N}, \mathbf{s_N}, \mathbf{x_L}\}, -\bar{c}_{j} \forall j \in \mathbf{x_U}\};
                   d = \mathbf{B}^{-1} \mathbf{A}'_{,a};
  5
                   if q \in \{\mathbf{z_N}, \mathbf{s_N}\} then
  6
                             x_q^{new} = \min_i \left\{ \left\{ \frac{x_{\mathbf{B}_i}}{d_i}, \frac{s_{\mathbf{B}_i}}{d_i}, \frac{z_{\mathbf{B}_i}}{d_i} \right\} \forall d_i > 0, \left\{ \frac{x_{\mathbf{B}_i} - 1}{d_i} \right\} \forall d_i < 0 \right\};
\mathbf{x}_{\mathbf{B}^{old}}^{'new} = \mathbf{x}_{\mathbf{B}^{old}}^{'old} - dx_q^{new};
  8
  9
                              p = \arg\min_i;
                           \mathbf{B}^{new} \leftarrow \mathbf{B}^{old} - \{p\} \bigcup \{q\};
10
11
                   end
                   if q \in L then
12
                              x_q^{new} = \min_i \left\{ \left\{ \frac{x_{\mathbf{B}_i}}{d_i}, \frac{s_{\mathbf{B}_i}}{d_i}, \frac{z_{\mathbf{B}_i}}{d_i} \right\} \forall d_i > 0, \left\{ \frac{x_{\mathbf{B}_i} - 1}{d_i} \right\} \forall d_i < 0, 1 \right\};
13
                             \mathbf{x}_{\mathbf{B}^{old}}^{'new} = \mathbf{x}_{\mathbf{B}^{old}}^{'old} - dx_q^{new};
\mathbf{if} \ x_q^{new} \neq 1 \ \mathbf{then}
14
15
                                        p = \arg\min_i;
16
                                        \mathbf{B}^{new} \leftarrow \mathbf{B}^{old} - \{p\} \bigcup \{q\};
17
                             end
18
19
                    end
                   if q \in U then
20
                              x_q^{new} = 1 - \min_i \left\{ \left\{ \frac{x_{\mathbf{B}_i}}{-d_i}, \frac{s_{\mathbf{B}_i}}{-d_i}, \frac{z_{\mathbf{B}_i}}{-d_i} \right\} \forall d_i < 0, \left\{ \frac{1 - x_{\mathbf{B}_i}}{d_i} \right\} \forall d_i > 0, 1 \right\};
21
                             \mathbf{x}_{\mathbf{B}^{old}}^{'new} = \mathbf{x}_{\mathbf{B}^{old}}^{'old} + d(1 - x_q^{new});
\mathbf{if} \ x_q^{new} \neq 0 \ \mathbf{then}
22
23
                                       p = \arg\min_i;
24
                                       \mathbf{B}^{new} \leftarrow \mathbf{B}^{old} - \{p\} \bigcup \{q\};
25
26
                              end
                   \mathbf{end}
27
28 end
```

Algorithm 1: the bounded simplex method