Examples

Perceptrons

• A perceptron computes its output z in two steps:

First step:
$$a = \mathbf{w}^T \mathbf{x} = \sum_{i=0}^{D} (w_i x_i)$$

Second step:
$$z = h(a)$$

- h is called an activation function.
- For example, h could be the sigmoidal function $\sigma(a) = \frac{1}{1+e^{-a}}$

AND Perceptron

• Verification: If $x_1 = 0$ and $x_2 = 0$:

$$- \mathbf{w}^T \mathbf{x} = -1.5 + 1 * 0 + 1 * 0 = -1.5.$$

$$-h(\mathbf{w}^T \mathbf{x}) = h(-1.5) = 0.$$

Corresponds to case false AND false = false.

- Verification: If $x_1 = 0$ and $x_2 = 1$:
 - $\mathbf{w}^T \mathbf{x} = -1.5 + 1 * 0 + 1 * 1 = -0.5.$
 - $-h(\mathbf{w}^T \mathbf{x}) = h(-0.5) = 0.$
- Corresponds to case false AND true = false.

- Verification: If $x_1 = 1$ and $x_2 = 0$:
 - $\mathbf{w}^T \mathbf{x} = -1.5 + 1 * 1 + 1 * 0 = -0.5.$
 - $-h(\mathbf{w}^T \mathbf{x}) = h(-0.5) = 0.$
- Corresponds to case true AND false = false.

• Verification: If $x_1 = 1$ and $x_2 = 1$:

$$- \mathbf{w}^T \mathbf{x} = -1.5 + 1 * 1 + 1 * 1 = 0.5.$$

$$-h(\mathbf{w}^T \mathbf{x}) = h(0.5) = 1.$$

Corresponds to case true AND true = true.

OR Perceptron:

• Verification: If $x_1 = 0$ and $x_2 = 0$:

$$-\mathbf{w}^T\mathbf{x} = -0.5 + 1 * 0 + 1 * 0 = -0.5.$$

$$-h(\mathbf{w}^T \mathbf{x}) = h(-0.5) = 0.$$

Corresponds to case false OR false = false.

NOT Perceptron

- Verification: If $x_1 = 0$:
 - $\mathbf{w}^T \mathbf{x} = 0.5 1 * 0 = 0.5.$
 - $-h(\mathbf{w}^T \mathbf{x}) = h(0.5) = 1.$
- Corresponds to case NOT(false) = true.

XOR Perceptron

- Suppose that $x_1 = 0$, $x_2 = 1$ (corresponding to **false** XOR **true**).
- For the output unit (computing the A AND (NOT B) function):
 - The dot product is: 1 * (-0.5) * 1 + 1 * 1 + 1 * 0 = 0.5.
 - The activation function (assuming a step function) outputs 1.

- We can follow the same process to compute the output of this network for the other three cases.
 - Here we consider the case where $x_1=0$, $x_2=0$ (corresponding to false XOR false).
 - The output is 0, as it should be.

Example 2:

1. Calculation with a Single Unit

The following are the computation examples of using random input and weight values ranged in $0\sim1$, bias as 0:

x1	x2	w1	w2	weighted input z	sigmoid	у
0.1	0.3	0.6	0.2	z = 0.1 * 0.6 + 0.3 * 0.2 + 0	$\sigma(z) = \frac{1}{1 + \exp(-0.12)} = 0.530$	0.530
0.7	0.2	0.8	0.1	z = 0.7 * 0.8 + 0.2 * 0.1 + 0	$\sigma(z) = \frac{1}{1 + \exp(-0.58)} = 0.641$	0.641
0.2	0.4	0.9	0.5	z = 0.2 * 0.9 + 0.4 * 0.5 + 0	$\sigma(z) = \frac{1}{1 + \exp(-0.38)} = 0.594$	0.594

Example 3:

The figure above describes the neural network classifying 4×3 pixel picture.

Here, we will introduce variables and parameters which are commonly used in thesis or interpretations. The figure would help you grasp more deeply.

- x_i^{l-1} : The output from unit i in layer l-1. It becomes the inputs of the units in layer l.
- x_i^l : The output from unit j in layer l. It becomes the inputs of the units in layer l+1.
- w_{ii}^l : The weight bears on the signal which is outputted from unit i in layer l-1 and goes in to unit j in layer l.
- b_i^l : The bias bears on unit j in layer l.
- z_i^l : The weighted input of unit j in layer l.
- $\sigma_i^l(z_i^l)$: The activation function of unit j in layer l

The following are examples:

- x_2^1 : The output from unit 2 in layer 1. It becomes the inputs of the units in layer 2.
- x_3^2 : The output from unit 3 in layer 2. It becomes the inputs of the units in layer 3.
- w_{31}^2 : The weight bears on the signal which is outputted from the unit No. 1 in layer 1 and goes in to unit 3 in layer 2.
- b_3^2 : The bias bears on unit 3 in layer 2.
- z_3^2 : The weighted input of unit 3 in layer 2.
- $\sigma_3^2(z_3^2)$: The activation function of unit 3 in layer 2

Binary Classification of a Picture Using 1 Unit

$$egin{array}{lll} x_1^1=1, & x_2^1=1, & x_3^1=0 \ x_4^1=0, & x_5^1=1, & x_6^1=0 \ x_7^1=0, & x_8^1=1, & x_9^1=0 \ x_{10}^1=0, & x_{11}^1=1, & x_{12}^1=0 \end{array}$$

Let's see how the calculation will go on in unit 1 of layer 2.

Just like we did in section 1, the weights are set as random (0~1 value) and the bias is set as 0.

$$w_{11}^2=0.48,\ w_{12}^2=0.29,\ w_{13}^2=0.58,\ w_{14}^2=0.61,\ w_{15}^2=0.47,\ w_{16}^2=0.18,\ w_{17}^2=0.02,\ w_{18}^2=0.49,\ w_{19}^2=0.67,\ w_{110}^2=0.62,\ w_{111}^2=0.017,\ w_{112}^2=0.28,\ b_1^2=0$$

The weighted input would be as follows:

$$\begin{split} z_1^2 &= x_1^1 w_{11}^2 + x_2^1 w_{12}^2 + x_3^1 w_{13}^2 + x_4^1 w_{14}^2 + x_5^1 w_{15}^2 + x_6^1 w_{16}^2 + x_7^1 w_{17}^2 \\ &\quad + x_8^1 w_{18}^2 + x_9^1 w_{19}^2 + x_{10}^1 w_{110}^2 + x_{11}^1 w_{111}^2 + x_{12}^1 w_{112}^2 + b_1^2 \\ &= 1 \times w_{11}^2 + 1 \times w_{12}^2 + 0 \times w_{13}^2 + 0 \times w_{14}^2 + 1 \times w_{15}^2 + 0 \times w_{16}^2 + 0 \times w_{17}^2 \\ &\quad + 1 \times w_{18}^2 + 0 \times w_{19}^2 + 0 \times w_{110}^2 + 1 \times w_{111}^2 + 0 \times w_{112}^2 + b_1^2 \\ &= 1 \times 0.48 + 1 \times 0.29 + 0 \times 0.58 + 0 \times 0.61 + 1 \times 0.47 + 0 \times 0.18 + 0 \times 0.02 \\ &\quad + 1 \times 0.49 + 0 \times 0.67 + 0 \times 0.62 + 1 \times 0.017 + 0 \times 0.28 + 0 \\ &= 1 \times 0.48 + 1 \times 0.29 + 1 \times 0.47 + 1 \times 0.49 + 1 \times 0.017 + 0 \\ &= 1.277 \end{split}$$

We insert the value into an activation function. We will use sigmoid function for the same reason in section 1. The output of the unit will be,

$$egin{aligned} x_1^2 &= \sigma_1^2(z_1^2) = rac{1}{1 + \exp(-z_1^2)} \ &= rac{1}{1 + \exp(-(1.277))} \ &= 0.782 \end{aligned}$$

The same computations are conducted in other units of the neural network.