0.1 集合及其运算

0.1.1 集合的基本概念

集合的定义

定义 0.1 (集合)

具有确定内容或满足一定条件的事物的全体称为**集合**(或**集**),通常用大写字母如A,B,C等表示.构成一个集合的那些事物称为集合的元素(或元),通常用小写字母如a,b,c等表示.

若 a 是集合 A 的元素, 则称 a 属于 A, 记为 $a \in A$; 若 a 不是集合 A 的元素, 则称 a 不属于 A, 记为 $a \notin A$. 对于给定的集合, 任一元素要么属于它, 要么不属于它, 二者必居其一.

不含任何元素的集合称为空集,用0表示;只含有限个元素的集合称为有限集;不是有限集的集合称为无限集.

我们用 $\mathbb{Z}, \mathbb{N}, \mathbb{Q}, \mathbb{R}$ 分别表示整数集、自然数集 (不包含 0)、有理数集和实数集. 特别地, 我们用 \mathbb{N}_0 表示 $\mathbb{N} \cup 0$.

集合的表示方法

(1) 列举法——列出给定集合的全部元素. 例如

$$A = \{a, b, c\}, B = \{1, 3, \dots, 2n - 1\}$$

(2) 描述法 $---A = \{x : x 具有性质P\}$. 例如

$$\ker f = \{x : f(x) = 0\}$$

集合的相等与包含

若集合 A 和 B 具有完全相同的元素,则称 A 与 B 相等,记为 A = B. 若 A 中的每个元素都是 B 的元素,则称 A 为 B 的子集,记为 $A \subset B$ 或 $B \supset A$. 若 $A \subset B$ 且 $A \neq B$,则称 A 为 B 的真子集,记为 $A \subseteq B$.

0.1.2 集合的运算

交与并

设 A, B 为两个集合, 由属于 A 或属于 B 的所有元素构成的集合, 称为 $A \cup B$ 的并, 记为 $A \cup B$, 即

$$A \cup B = \{x : x \in A \ \overrightarrow{\boxtimes} x \in B\}$$

由既属于 A 又属于 B 的元素构成的集合, 称为 A 与 B 的交, 记为 $A \cap B$, 即

$$A \cap B = \{x : x \in A \perp \exists x \in B\}$$

若 $A \cap B = \emptyset$, 则称 A 与 B 互不相交.

集族

 $\{A_{\alpha}\}_{\alpha\in\Gamma}$ 称为集族, 其中 Γ 为指标集 (有限或无限), α 为指标. 特别地, 当 $\Gamma=\mathbb{N}$ 时, 集族称为列集, 记为 $\{A_{n}\}_{n=1}^{\infty}$ 或 $\{A_{n}\}$.

0.1.2.0.1 集族的并:

$$\bigcup_{\alpha \in \Gamma} A_{\alpha} = \{x : \exists \alpha_0 \in \Gamma \notin \{ \exists x \in A_{\alpha_0} \} \}$$

0.1.2.0.2 集族的交:

$$\bigcap_{\alpha \in \Gamma} A_{\alpha} = \{x : x \in A_{\alpha}, \forall \alpha \in \Gamma\}$$

差与余

由属于 A 但不属于 B 的元素构成的集合, 称为 A 与 B 的差, 记为 A - B 或 $A \setminus B$, 即

$$A - B = \{x : x \in A \perp \exists x \notin B\}$$

通常所讨论的集合都是某一固定集 X 的子集,X 称为全集或基本集. 全集 X 与子集 A 的差集 X - A, 称为 A 的余 集,记为 A^c ,即

$$A^c = \{x : x \notin A\}$$

 $\dot{\mathbf{L}}$ 补集是相对概念, 若 $A \subset B$, 则 B - A 称为 A 关于 B 的补集. 特别地, 余集是集合关于全集的补集.

笛卡尔积

$$A \times B = \{(x, y) : x \in A, y \in B\}$$
$$A_1 \times \dots \times A_n = \{(x_1, \dots, x_n) : x_i \in A_i, i = 1, \dots, n\}$$

例如,n 维欧氏空间 $\mathbb{R}^n = \mathbb{R} \times \cdots \times \mathbb{R}$.

定理 0.1 (集合的运算及性质)

- (1) $A \cup A = A \cdot A \cap A = A$:
- (2) $A \cup \emptyset = A, A \cap \emptyset = \emptyset$;
- (3) $A \cup B = B \cup A, A \cap B = B \cap A$;
- $(4) (A \cup B) \cup C = A \cup (B \cup C), (A \cap B) \cap C = A \cap (B \cap C);$
- (5) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C), A \cup (B \cap C) = (A \cup B) \cap (A \cup C),$ $A \cap (\bigcup_{\alpha \in \Gamma} B_{\alpha}) = \bigcup_{\alpha \in \Gamma} (A \cap B_{\alpha}), A \cup (\bigcap_{\alpha \in \Gamma} B_{\alpha}) = \bigcap_{\alpha \in \Gamma} (A \cup B_{\alpha});$ (6) $A \cup A^{c} = X, A \cap A^{c} = \emptyset;$
- (7) $X^c = \emptyset, \emptyset^c = X$;
- $(8) A B = A \cap B^c.$

定理 0.2 (De Morgan 定律)

设
$$\{A_{\alpha}\}_{\alpha\in\Gamma}$$
 为一集族, 则

(i)
$$(\bigcup_{\alpha \in \Gamma} A_{\alpha})^{c} = \bigcap_{\alpha \in \Gamma} A_{\alpha}^{c}$$
;
(ii) $(\bigcap_{\alpha \in \Gamma} A_{\alpha})^{c} = \bigcup_{\alpha \in \Gamma} A_{\alpha}^{c}$.

证明 (i) 设 $x \in (\bigcup_{\alpha \in \Gamma} A_{\alpha})^{c}$, 则 $x \notin \bigcup_{\alpha \in \Gamma} A_{\alpha}$, 故对 $\forall \alpha \in \Gamma, x \notin A_{\alpha}$, 即 $\forall \alpha \in \Gamma, x \in A_{\alpha}^{c}$. 从而 $x \in \bigcap_{\alpha \in \Gamma} A_{\alpha}^{c}$, 因此, $(\bigcup_{\alpha \in \Gamma} A_{\alpha})^{c} \subset \bigcap_{\alpha \in \Gamma} A_{\alpha}^{c}$. 上述推理反过来也成立,故 $\bigcap_{\alpha \in \Gamma} A_{\alpha}^{c} \subset (\bigcup_{\alpha \in \Gamma} A_{\alpha})^{c}$. 因此, $(\bigcup_{\alpha \in \Gamma} A_{\alpha})^{c} = \bigcap_{\alpha \in \Gamma} A_{\alpha}^{c}$.

(ii) 类似可证.

定义 0.2 (对称差集)

设 A, B 为两个集合, 称集合 $(A \setminus B) \cup (B \setminus A)$ 为 $A \subseteq B$ 的**对称差集**, 记为 $A \triangle B$.

輸送 **室 2 2 2 2 2 2 3 2 3 4 5 5 6 7 7 8 9 9 10**</p

定理 0.3 (集合对称差的性质)

- (i) $A \triangle B = (A \cup B) \setminus (A \cap B)$.
- (ii) $A \triangle \emptyset = A, A \triangle A = \emptyset, A \triangle A^c = X, A \triangle X = A^c$.
- (iii) 交换律: $A \triangle B = B \triangle A$.
- (iv) 结合律: $(A \triangle B) \triangle C = A \triangle (B \triangle C)$.
- (v) 交与对称差满足分配律: $A \cap (B \triangle C) = (A \cap B) \triangle (A \cap C)$.
- (vi) $A^c \triangle B^c = A \triangle B$; $A = A \triangle B$ 当且仅当 $B = \emptyset$.
- (vii) 对任意的集合 A 与 B, 存在唯一的集合 E, 使得 $E \triangle A = B$ (实际上 $E = B \triangle A$).

证明

(i) 由对称差集的定义及集合的运算及性质 (5)可得

$$A \triangle B = (A \cap B^c) \cup (B \cap A^c) = \left[(A \cap B^c) \cup B \right] \cap \left[(A \cap B^c) \cup A^c \right]$$
$$= (A \cup B) \cap (A^c \cap B^c) = (A \cup B) \cap (A \cap B)^c$$
$$= (A \cup B) \setminus (A \cap B).$$

- (ii)
- (iii)
- (iv)
- (v)
- (vi)
- (vii)

0.1.3 上限集与下限集

设 $\{A_n\}$ 为单调集列, 若 $\{A_n\}$ 单调递增, 即

$$A_1 \subset A_2 \subset \cdots \subset A_n \subset \cdots$$

则 $\{A_n\}$ 收敛, 且 $\lim_{n\to\infty}A_n=\bigcup_{n=1}^\infty A_n$. 若 $\{A_n\}$ 单调递减, 即

$$A_1 \supset A_2 \supset \cdots \supset A_n \supset \cdots$$

则 $\{A_n\}$ 收敛, 且 $\lim_{n\to\infty}A_n=\bigcap_{n=1}^{\infty}A_n$.

定义 0.3 (上限集和下限集)

对于一般的集列 $\{A_n\}$

$$\bigcup_{k=1}^{\infty} A_k \supset \bigcup_{k=2}^{\infty} A_k \supset \cdots \supset \bigcup_{k=n}^{\infty} A_k \supset \cdots$$

9

记
$$C_n = \bigcup_{k=n}^{\infty} A_k$$
, 则 $\{C_n\}$ 单调递减, 故 $\{C_n\}$ 收敛且

$$\lim_{n\to\infty} C_n = \bigcap_{n=1}^{\infty} C_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$$

称
$$\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$$
 为 $\{A_n\}$ 的**上限集**, 记为 $\limsup_{n\to\infty} A_n$ 或 $\overline{\lim}_{n\to\infty} A_n$. 又

$$\bigcap_{k=1}^{\infty} A_k \subset \bigcap_{k=2}^{\infty} A_k \subset \cdots \subset \bigcap_{k=n}^{\infty} A_k \subset \cdots$$

记 $D_n = \bigcap_{k=n}^{\infty} A_k$, 则 $\{D_n\}$ 单调递增, 故 $\{D_n\}$ 收敛且

$$\lim_{n\to\infty} D_n = \bigcup_{n=1}^{\infty} D_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k$$

 $\Re \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k$ 为 $\{A_n\}$ 的下限集, 记为 $\liminf_{n\to\infty} A_n$ 或 $\varliminf_{n\to\infty} A_n$. 显然有如下关系

$$\bigcap_{n=1}^{\infty} A_n \subset \liminf_{n \to \infty} A_n \subset \limsup_{n \to \infty} A_n \subset \bigcup_{n=1}^{\infty} A_n$$

若 $\liminf_{n\to\infty} A_n = \limsup_{n\to\infty} A_n$, 则称 $\{A_n\}$ 收敛, 其极限记为 $\lim_{n\to\infty} A_n$

命题 0.1

设 $\{A_n\}$ 为一集列,则

$$\limsup_{n\to\infty}A_n=\bigcap_{n=1}^\infty\bigcup_{k=n}^\infty A_k=\{x:x$$
 属于无穷多个 $A_n\}$
$$=\{x:\ \forall\forall k\in\mathbb{N},\ \text{都存在}n_k\ \text{使得}x\in A_{n_k}\}$$

$$\liminf_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k = \{x : 除有限个A_n 外, 都含有x\}$$

$$= \{x : \exists n_0 \in \mathbb{N}, 使得x \in A_n, \forall n \geqslant n_0\}$$

证明 (1) 设 $x \in \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$, 则对 n=1, 有 $x \in \bigcup_{k=1}^{\infty} A_k$, 故 $\exists n_1 \in \mathbb{N}$, 使得 $x \in A_{n_1}$; 对 $n=n_1+1$, 有 $x \in \bigcup_{k=n_1+1}^{\infty} A_k$, 故

R=1 R=1

$$x \in A_{n_k} \subset \bigcup_{k=n}^{\infty} A_k$$
. $\boxtimes \mathfrak{L}, x \in \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$.

$$(2) x \in \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k \iff \exists n_0 \in \mathbb{N}, \ \notin \ \exists x \in \bigcap_{k=n_0}^{\infty} A_k \iff x \in A_n, \forall n \geqslant n_0.$$

例题 0.1 设 $A_{2n+1} = [0, 2-1/(2n+1)], n = 0, 1, 2, \dots, A_{2n} = [0, 1+1/2n], n = 1, 2, \dots, 求 \liminf_{n \to \infty} A_n 与 \limsup_{n \to \infty} A_n$.

解 注意到

$$[0,1] \subset \bigcap_{n=1}^{\infty} A_n \subset \liminf_{n \to \infty} A_n \subset \limsup_{n \to \infty} A_n \subset \bigcup_{n=1}^{\infty} A_n \subset [0,2)$$

故只需考察 (1,2) 中的点. 对 $\forall x \in (1,2)$, 存在 $n_0 \in \mathbb{N}(5)$ 有关), 使得

$$1+\frac{1}{2n}< x<2-\frac{1}{2n+1}, \quad \forall n \geq n_0$$

即当 $n \ge n_0$ 时,有 $x \notin A_{2n}, x \in A_{2n+1}$. 这说明: (i)x 不能 "除有限个 A_n 外,都含有x",即 $x \notin \liminf_{n \to \infty} A_n$; (ii) "x 属于无穷多个 A_n ",故 $x \in \limsup_{n \to \infty} A_n$. 因此, $\liminf_{n \to \infty} A_n = [0,1]$, $\limsup_{n \to \infty} A_n = [0,2)$.

例题 0.2 设 $f_n(x)$, f(x) 为 \mathbb{R} 上的实值函数, 则所有 $\{f_n(x)\}$ 不收敛于 f(x) 的点 x 构成的集合 D 可表示为

$$D = \bigcup_{k=1}^{\infty} \bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} \{x : |f_n(x) - f(x)| \ge \frac{1}{k}\}$$

证明 若 $x \in D$, 则 " $f_n(x) \rightarrow f(x)$ ", 即 $\exists \varepsilon_0 > 0$, 对 $\forall k \in \mathbb{N}$, $\exists n_k \geqslant k$, 使得

$$|f_{n_k}(x) - f(x)| \ge \varepsilon_0$$

记 $E_n(\varepsilon_0) = \{x : |f_n(x) - f(x)| \ge \varepsilon_0\}$, 则由命题 1.1 知,

$$D = \bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} E_n(\varepsilon_0), \quad \exists \varepsilon_0 > 0$$

考虑到 ε_0 的取法, 不妨设 $\varepsilon_0 = 1/k_0, k_0 \in \mathbb{N}$. 因此

$$D = \bigcup_{k=1}^{\infty} \bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} E_n\left(\frac{1}{k}\right) = \bigcup_{k=1}^{\infty} \bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} \{x: |f_n(x) - f(x)| \geq \frac{1}{k}\}.$$

 $\dot{\mathbf{L}}$ 由于收敛点集是不收敛点集的余集, 由德 摩根公式, 所有 $\{f_n(x)\}$ 收敛于 f(x) 的点 x 构成的集合 C 可表示为

$$C = \bigcap_{k=1}^{\infty} \bigcup_{N=1}^{\infty} \bigcap_{n=N}^{\infty} \{x : |f_n(x) - f(x)| < \frac{1}{k}\}$$