

On Commonsense Domains within the Winograd Schema Challenge

Aneta Koleva Supervisor: Emmanuelle-Anna Dietz

Commonsense Reasoning in Computers

Hector Levesque (2011) proposes a new test for assessing computer intelligence that requires use of commonsense reasoning when predicting the correct answer.

- S: The trophy does not fit into the brown suitcase because it is too [small/large].
- Q: What is too [small/large]?
- A: The suitcase/the trophy.

Winograd Schema Challenge (WSC)

- ► Structure of a Winograd Schema
 - Sentence containing two nouns, one ambiguous pronoun and a special word.
 - Question asking about the referent of the pronoun.
 - Two possible answers corresponding to the noun phrases in the sentence.
- Characteristics
 - Easy to answer for an adult English speaker.
 - Always contains special word.
 - ► Google-proof statistical methods over large text corpora should not be able to resolve a WS.

Machine-Learning vs Knowledge-Based Approaches

Technique	PDPs Size Correct	WSC Size Correct	WSC* Size Correct	Remarks
Supervised ranking SVM model [6]	NA	NA	282 - 30% 205 - 73%	-provided additional dataset set -no evaluation on WSC dataset
Classification task with NN [3]	NA	282 - 100% 157 - 56%	282 - 30% 177 - 63%	-first to use substitution of the pronoun with the antecedents
Knowledge Enhanced Embeddings (KEE) [4]	60-100% 40 - 66.7%	NA	NA	-best results in the 2016 WSC competition
Google's language models [9]	60-100% 42 - 70%	273 - 100% 173 - 63.7%	NA	-no reasoning involved in the discovery of the correct answer-state-of-the-art for PDPs
OpenAl language models [5]	NA	273 - 100% 193 - 70.70%	NA	-current state-of-the-art for WSC -requires a lot of data for training -results are not reproducible
Graphs with Relevance theory [7]	NA	4 - 2.6% 4 - 100%	NA	-manual construction of graphs -first representation of WS as dependency graph
2 identified categories [8]	NA	71 -25% 49 - 69%	NA	-first attempt of identifying commonsense knowledge types -developed the KParser
Semantic relations categories [1]	NA	100 - 34% 100 - 100%	138 - 14% 111 - 80%	-provided Reasoning Algorithm -identified 12 commonsense types which capture the entire WSC
Knowledge hunting framework [2]	NA	273 - 100% 119 - 43.5%	NA	-refined query generation-developed an algorithm for scoring the retrieved sentences

References

- [1] C. Baral A. Sharma. Commonsense knowledge types identification and reasoning for the winograd schema challenge, 2018.
- A. Emami, N. De La Cruz, A. Trischler, K. Suleman, and J. Chi Kit Cheung. A knowledge hunting framework for common sense reasoning. In *Proceedings of the* 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, October 31 November 4, 2018, pages 1949–1958, 2018.
- Opitz J. and Frank A. Addressing the winograd schema challenge as a sequence ranking task. In *Proceedings of the First International Workshop on Language Cognition and Computational Models*, pages 41–52. Association for Computational Linguistics, 2018.
- [4] Q. Liu, H. Jiang, Z. Ling, X. Zhu, S. Wei, and Y. Hu. Combing context and commonsense knowledge through neural networks for solving winograd schema problems. 2016.
- [5] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. Language models are unsupervised multitask learners, 2019.

 [6] A. Rahman and V. Ng. Resolving complex cases of definite pronouns: The winograd schema challenge. In *Proceedings of the 2012 Joint Conference on Empirical*
- [6] A. Rahman and V. Ng. Resolving complex cases of definite pronouns: The winograd schema challenge. In *Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, EMNLP-CoNLL 2012, July 12-14, 2012, Jeju Island, Korea, pages 777–789, 2012.*[7] D. Sabiilan, Taablian vincensed askerses by femalicing releases the empirical schema challenge. In *Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, EMNLP-CoNLL 2012, July 12-14, 2012, Jeju Island, Korea, pages 777–789, 2012.*
- [7] P. Schüller. Tackling winograd schemas by formalizing relevance theory in knowledge graphs. In *Principles of Knowledge Representation and Reasoning: Proceedings of the Fourteenth International Conference, KR 2014, Vienna, Austria, July 20-24, 2014, 2014.*
- [8] A. Sharma, Nguyen Ha Vo, Somak Aditya, and Chitta Baral. Towards addressing the winograd schema challenge building and using a semantic parser and a knowledge hunting module. In *Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015*, pages 1319–1325, 2015.
- [9] Q. V. Le T. H. Trinh. A simple method for commonsense reasoning. 2018.

Knowledge Types Identification and Reasoning (Sharma and Baral, 2018)

- ► Identified 12 knowledge types which cover the entire WSC dataset.
- ► The categorization is based on the structure of the Winograd sentence.
- ▶ 10 of the knowledge types are based on different interactions between entities, actions and properties
- ► Developed a logical reasoning algorithm.
- ► Evaluated on 100 problems from WSC and achieved 100% accuracy

Extracted knowledge: "weak y prevents y lifts". Knowledge type "Property prevents Action" ASP encoding:

```
has_k(weak_1, is_trait_of, y_2).
has_k(weak_1, instance_of, weak).
has_k(y_2, instance_of, entity).
has_k(weak_1, prevents, lifts_5).
has_k(lifts_5, instance_of, lift).
has_k(lifts_5, agent, y_2).
```

► The reasoning algorithm does not consider rule 4 in the reasoning process.

Categorization of Winograd Schemas

- ► Inductively analyzed the WSC dataset and identified 6 categories.
- ► The categorization is based on the content of the Winograd sentence.
- ► Two annotators annotated the entire WSC corpus with these categories.
- lacksquare Calculated Cohen's kappa measure for inter-rater agreement $\kappa=0.66$

Category	Example		
1. Physical	S: John couldn't see the stage with Billy in front of him because he is so [short		
	Q: Who is so [short/tall]?		
2. Emotional	S: Frank felt [vindicated/crushed] when his longtime rival Bill		
	revealed that he was the winner of the competition.		
	Q: Who was the winner of the competition?		
3. Interactions	S: Joan made sure to thank Susan for all the help she had [given/received].		
	Q: Who had [given/received] help?		
4. Comparison	S: Joe's uncle can still beat him at tennis, even though he is 30 years [older/younger].		
	Q: Who is [older/younger]?		
5. Causal	S: Pete envies Martin [because/although] he is very successful.		
	Q: Who is very successful?		
6. Multiple knowledge	S: Sam and Amy are passionately in love, but Amy's parents are unhappy about it,		
	because they are [snobs/fifteen].		
	Q: Who are [snobs/fifteen]?		

Winograd Schemas from the Physical Category

The trophy doesn't fit into the brown suitcase because it's too small.

The man couldn't lift his son because he was so weak.

Reasoning algorithm

Change of the formalization of the background knowledge such that it contributes to the reasoning procedure.

```
has_k(small_1, is_trait_of, y_2) :— has_k(fits_5, recipient, y_2),
not has_k(fits_5, modifier, could_3).
has_k(y_2, instance_of, entity).
has_k(fits_5, recipient, y_2).
```

Listing 1: Additional knowledge