Linear Systems

20/9/2023

PREPARED BY KYLE CHUNG

Linear Systems - Linearity

Suppose $f: X \to f[X]$, a function f is said to be *linear* if

$$f(c_1x_1 + c_2x_2) = c_1f(x_1) + c_2f(x_2)$$

where $x_1, x_2 \in X$, and c_1 and c_2 are constants.

20/9/202

PREPARED BY KYLE CHUNG

1

Linear Systems

Suppose
$$f: X \to Y$$
 $\begin{matrix} \psi & \psi \\ x \mapsto y \end{matrix}$

and $f^{-1}: Y \to X$ $v \mapsto x$

then f^{-1} is called the *inverse function*,

s.t.
$$f^{-1}(f(x)) = x$$
 and $f(f^{-1}(y)) = y$.

20/9/2023

PREPARED BY KYLE CHUN

Matrices

Let \underline{A} be a matrix.

- If there exists $\underline{\underline{I}}$ such that $\underline{\underline{A}}\underline{\underline{I}} = \underline{\underline{IA}} = \underline{\underline{A}}$, then $\underline{\underline{I}}$ is called the *identity matrix* (單位矩陣).
- If there exists $\underline{\underline{A}}^{-1}$ such that $\underline{\underline{A}}^{-1}\underline{\underline{A}} = \underline{\underline{A}}^{-1}\underline{\underline{A}} = \underline{\underline{I}}$, then $\underline{\underline{A}}^{-1}$ is called the *inverse matrix* (逆矩陣).

Note that

$$\blacksquare \qquad \underline{\underline{I}} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & 1 \end{pmatrix};$$

• $\underline{\underline{A}}^{-1} = \frac{adj(\underline{\underline{A}})}{\det(\underline{\underline{A}})}$ where $adj(\underline{\underline{A}}) = [cof(\underline{\underline{A}})]^T$.

20/9/2023

© PREPARED BY KYLE CHUN

Linear Systems

 $\underline{\underline{Ax}} = \underline{f}$ is a linear system.

This linear system is said to be

- homogeneous if $f = \underline{0}$;
- *non-homogeneous* if $f \neq \underline{0}$;

20/9/2023

PREPARED BY KYLE CHUN

System of Linear Equations

Theorem [System of linear equations] The system of linear equations $\underline{\underline{A}}\underline{x} = \underline{0}$ has a non-trivial solution if $|\underline{\underline{A}}| = 0$.

<u>Proof</u>.

 $\therefore \underline{\underline{A}}^{-1} = \frac{ad\underline{j}\underline{\underline{A}}}{|\underline{\underline{A}}|}, \text{ hence } \underline{\underline{A}}\underline{\underline{x}} = \underline{0} \text{ has a trivial solution (i.e. } \underline{\underline{x}} = \underline{0} \text{) if } \underline{\underline{A}}^{-1} \text{ exists.}$

 $\therefore \underline{\underline{A}}\underline{x} = \underline{0}$ has a non-trivial solution only if $\underline{\underline{A}}^{-1}$ does not exist, i.e. $|\underline{\underline{A}}| = 0$.

20/9/202

© PREPARED BY KYLE CHUN

6