

American International University – Bangladesh

Faculty of Engineering – Electrical & Electronics Engineering

Make sure to add the following table and questions with your assignment as your cover page.

Course Name :	Microprocessor Systems	and	Embedded	Course Code:	EEE 4103			
Semester:	Fall 24-25			Section:	М			
Assignment No:	1 (individual sub	missior	n consisting o	of 30 marks)				
Student Name:	MD Abdul Aziz			Student ID:	22-47013-1			
Submission Date:	Submission Date: 30-01-2025			Submission deadline:	Day of final exam.			
Submission link: https://forms.office.com/r/TriiTgFhdC								

Answer all questions given below, each question contains 3 marks

- 1) Design a n-bit Adder/ Subtractor circuit, where collect the value from your ID , consider ID is XX-XXXXn-X.
- 2) If your ID is XX-XXABC-X, then explain the working principle of bus organization where the number of registers is Y=A+B+C in a micro-operation R1=R2-R0+5.
- 3) Now, based on question number 2, design and explain the working process of scratchpad memory and a two-port memory system.
- 4) Explain the process of control logic design including all steps for a signed addition function only.
- 5) Explain the process of control logic design including all steps for a signed subtraction function only.
- 6) Deduce a flowchart and microinstruction table for counting the number of 1's in register R_A and storing the count in register R_B. Include the values of A and B from your ID if it is XX-XXXXAB-X.
- 7) Deduce a flowchart and microinstruction table for counting the number of 0's in register R_A and storing the count in register R_B. Include the values of A and B from your ID if it is XX-XXXXAB-X.

American International University – Bangladesh

Faculty of Engineering - Electrical & Electronics Engineering

8) For the processor unit with 16-bit control word variable as in table below, deduce the control words (using table from question no 10) for the following listed micro-operations:

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
A		В		D		F		Cin	Н						

- i) **R2←SHL** (**R3 OR R6**)
- ii) **R**4←1
- iii) R3+R5 +1
- iv) R4←input
- **v) R4** ←**CLC R2**
- 9) Design a 4-bit shifter from the given table of question number of 10.
- 10) Design a 4-bit ALU using table below [consider A & B as ALU source selection, F as the ALU function selection, D as the destination selection and H as shift operation selection variables]

Binary	Function of selection variables									
Code	В	A	F with $C_{in} = 0$	F with $C_{in} =$	D	Н				
				1						
000	Input Data	Input Data	A-1	A	None	-				
001	R1	R1	A-B-1	A-B	R1	No shift				
010	R2	R2	A+B	A+B+1	R2	Circulate-Right with Carry				
011	R3	R3	A	A+1	R3	0's to the output Bus				
100	R4	R4	A'	A'	R4	Shift Right with I _p =0				
101	R5	R5	A XOR B	A XOR B	R5	Shift Left with I ₁ =0				
110	R6	R6	AUB	AUB	R6	Circulate-Left with Carry				
	R7	R7	$A \cap B$	$A \cap B$	R7	1's to the output Bus				