

SRM Institute of Science and Technology Kattankulathur

DEPARTMENT OF MATHEMATICS

18MAB201T- TRANSFORMS AND BOUNDARY VALUE PROBLEMS

Sl. No.		Questions		Answer
Part - A				
1	Solve $(D^2 - 3DD' + 2D'^2)z = 0.$		$z = \phi_1(y+x) + \phi_2(y+2x)$	
2	Solve $(D^2 - 4DD' + 4D'^2)z = e^{2x+y}$.		$z = \phi_1(y+2x) + x\phi_2(y+2x) + \frac{x^2}{2}e^{2x+y}$	
3	Solve $(D^3 - 2D^2D')z = 4\sin(x+y)$.		$z = \phi_1(y) + x\phi_2(y) + \phi_3(y+2x) - 4\cos(x+y)$	
4	Solve $(D^2 - 6DD' + 5D'^2)z = xy$.		$z = \phi_1(y+x) + \phi_2(y+5x) + \frac{x^3y}{6} + \frac{x^4}{4}$	
5	Solve $(D^2 - DD')z = \sin x \sin 2y$.		$z = \phi_1(y) + \phi_2(y+x)$ $-\frac{1}{3} (2\cos x \cos 2y - \sin x \sin 2y)$	
Part - B				
6	Solve $(D^2 + 2)$	$DD' + D'^2)z = 2\cos y - x\sin y.$	$z = \phi_1(y - x) + x\phi_2 + x\sin y + 2\cos x$	•
7	Solve $(D^3 + D^3)$	$D^2D' - DD'^2 - D'^3)z = e^x \cos(2y).$	$z = \phi_1(y - x) + x\phi_2$ $+ \frac{e^x}{25}(\cos 2y + 2x)$	$(y-x) + \phi_3(y+x)$ $2\sin 2y$
8	Solve $(D^3 - 2)$	$D^{2}D')z = \sin(x+2y) + 3x^{2}y.$	$z = \phi_1(y) + x\phi_2(y)$ $-\frac{1}{3}\cos(x+2y)$	
9	Solve $(D^2 + D^2)$	$(DD' - 6D'^2)z = y\cos x.$	$z = \phi_1(y+2x) + \phi_2 + \sin x - y \cos x$	
10	Solve $(D^2 - 3)$	$DD' + 2D'^2)z = (2+4x)e^{x+2y}.$	$z = \phi_1(y+x) + \phi_2(1 + \frac{2}{9}e^{x+2y}) + \frac{2}{9}e^{x+2y}$	