Lecture 2

词法分析

徐辉 xuh@fudan.edu.cn

主要内容

- ❖一、词法定义:正则表达式
- *二、正则语言及其等价性
- ❖三、词法解析:正则表达式转NFA
- ❖四、NFA转DFA

一、正则表达式

问题定义

- 词法声明定义了什么是对词法分析器
 - 有效的输入(valid inputs)
 - 及其关联标签类型(token types)

基本概念

• 模式(Pattern):字符串模式描述,一般用正则表达式

• 词素(Lexeme):符合某标签模式的字符串实例

• 标签(Token): 由标签类型和属性组成的二元组

标签	模式	词素举例
BINOP	+,-,*,/	+
NUM	任意数据常量	3.1415926

正则表达式(Regular Expression)

- 字母表Σ上的字符串集合, 其字符元素的表述方式包括:
 - o a: 含义为 $\{x | x = a\}$
 - o [ab]: 含义为 $\{x | x = a \text{ or } x = b\}$
 - [a-z]: 含义为 $\{x|x=a \text{ or ... or } x=z\}$
 - [a-zA-Z]: 含义为 $\{x|x=a \text{ or ... or } x=z \text{ or ... or } x=Z\}$
 - [^a]: 含义为 $\{x|x! = a \text{ and } x \in \Sigma\}$
 - o a?: 含义为 $\{x | x = a \text{ or } x = \epsilon\}$
 - .: 通配符 $\{x | x \in \Sigma\}$
 - ←: 空

正则表达式(Regular Expression)

- 字符元素间以及正则表达式之间的组合方法包括:
 - 。 选择(union): R|S, 含义为 $\{x|x \in R \text{ or } x \in S\}$
 - 。 连接(concatenation): RS, 含义为 $\{xy | x \in R \text{ and } y \in S\}$
 - 。 闭包(Kleene closure): R^* ,含义为 $lue{}_{i=0}^{\infty}R^i$
 - ightharpoonup 正闭包: R^+ ,含义为 $\bigcup_{i=1}^{\infty} R^i$
 - ▶ 更多量化方式: {min, max}, 如
 - ▶ a{1,10},表示任意1-10个a组成的字符串。
 - ▶ a{10},表示10个a的组成的字符串。

基本运算法则

- 优先级顺序:
 - 闭包(*)优先级最高
 - 连接符其次
 - 。 选择符(|) 最低

运算法则:

- \circ 选择符满足交换律(commutative):r|s=s|r,
- 选择符满足结合律(associative): r|(s|t) = (r|s)|t
- 连接符满足结合律(associative): r(st) = (rs)t
- 。 连接符满足分配律(distributive): r(s|t) = rs|rt
- 闭包满足幂等率(idempotent): $r^* = r^{**}$

使用正则表达式声明词法

```
UINT := [0-9]^+
UNUM := [0-9]^+(.[0-9]^+|\epsilon)
```

利用中间变量简化词法声明

```
DIGIT := [0-9]
UINT := \{DIGIT\}^+
UNUM := \{DIGIT\}^+(.\{DIGIT\}^+|\epsilon)
```

练习

- 定义无符号数的正则表达式:
 - 支持浮点数和整数,如0.1、123
 - 支持科学计数法表示,如123e2、2.1e-3
 - 指数不能作浮点数,如2.1e-3.1

HOW TO REGEX

(\(?[0-9])((\+|-|*|\/)(\(?[0-9])\)?)*

二、正则语言及其等价性

正则集

- 假设Σ = {a,b}, 则
 - \circ a|b表示的语言为: $\{a,b\}$ (称为正则集)
 - \circ (a|b)(a|b)表示的语言为: {aa,ab,bb,ba}
 - 。 a^* 表示的语言为: { ϵ ,a,aa,aaa,...}
 - \circ $(a|b)^*$ 表示的语言为: $\{\epsilon,a,b,aa,ab,ba,...\}$
 - $a|a^*b$ 表示的语言为: {a,aab,aaab,...}

正则语言及其等价性

- 正则表达式是一种(表达能力有限的)语言描述方法
- 可用正则表达式描述的语言称为正则语言
- 正则集相等的两个正则表达式等价,如:
 - a|b=b|a
 - $(a|b)^* = (a^*|b^*)^*$

练习

- 分析下列正则表达式是否等价?
 - $a^*(a|b)^*a$
 - $((\epsilon|a)b^*)^*$
 - $b^*(abb^*)^*(a|\epsilon)$

非正则语言

- 不能用正则表达式或有穷自动机表示的语言。
- $L = \{a^n b^n, n > 0\}$ 是不是正则语言?
 - 证明:
 - 假设DFA可识别该语言,其包含p个状态;
 - 假设某词素为 $a^q b^q$, q > p。
 - 识别该词素需要经过某状态 s_i 至少两次,分别对应第j和第k个 a_i
 - 该DFA可同时接受 $a^q b^q$ 和 $a^{q-k+j} b^q$,推出矛盾。
- 结论:正则语言不能计数

正则语言的泵引理(Pumping Lemma)

- 词素数量有限的语言一定是正则语言。
- 词素数量无穷多的语言是否为正则语言?
- 某语言L(r)是正则语言的必要条件:
 - 任意长度超过p(泵长)的句子都可以被分解为xyz的形式
 - 其中x和z可为空,
 - 子句y被重复任意次(如xyyz)后得到的句子仍属于该语言。

正则表达式能否识别四则运算?

- 表达能力受限,不能处理括号匹配问题: (*)*
 - {1*(2+3), (1+2)*3, ...}
 - 如(\(?[0-9])((\+|-|*|\/)(\(?[0-9])\)?)*
 - 可导致单词流被错误接收:
 - (1*(2+3))
 - (1*(2+(3))

三、正则表达式转NFA

有穷自动机(Finite State Automaton)

- · 识别无符号浮点数的FSA:
 - 字符集: $\Sigma = \{0,1,2,3,4,5,6,7,8,9,.\}$
 - 状态集: $S = \{s_0, s_1, s_2, s_3\}$
 - 初始状态: $S_0 = S_0$
 - 接受状态: $S_{acc} = \{s_1, s_3\}$
 - 状态转移关系: $\Delta = \begin{cases} s_0 \xrightarrow{[0-9]} S_1, S_1 \xrightarrow{[0-9]} S_1, S_1 \xrightarrow{i} S_2 \\ S_2 \xrightarrow{[0-9]} S_3, S_3 \xrightarrow{[0-9]} S_3 \end{cases}$

FSA接受字符串的条件

- 假设 $\sum_{i=1}^{\infty}$ 是所有由属于 $\sum_{i=1}^{\infty}$ 的元素组成的有限长度序列的集合 (包含空字符串 ϵ),如1.23,
- FSA接受字符串 $w = x_1 x_2 \dots x_k \in \Sigma^*$ 的充要条件是:
 - 存在序列 $s_{t_0}s_{t_1}...s_{t_n} \in S$,其中 s_{t_0} 是初始状态, $s_{t_n} \in S_{acc}$
 - 并且 $\forall s_{t_{i-1}}, x_i, s_{t_i}, (s_{t_{i-1}}, x_i, s_{t_i}) \in \Delta$
 - 即 $\delta(\ldots\delta(\delta(s_{t_0},x_1),x_2)\ldots,x_n)\in S_{acc}$
- FSA拒绝字符串的充要条件是:
 - 在某一状态($S_{t_i} \notin S_{acc}$)无匹配的状态转移规则
 - 转移至拒绝状态 s_{rej}

如何将正则表达式转换为FA?

• 如何构造正则表达式 $[0-9]^+((.[0-9]^+)|\epsilon)$ 对应的FA?

DFA和NFA

- 确定型有穷自动机(Deterministic FSA)
 - 对于FSA的任意一个状态和输入字符,最多只有一条状态转移边
- 非确定型有穷自动机(Nondeterministic FSA)
 - 对于FSA的任意一个状态和输入字符,可能存在多条状态转移边

Thompson构造法: McNaughton-Yamada-Thompson

- 将正则表达式递归展开为子表达式(只有一个符号)
 - 语法解析树
- 构造子表达式的NFA
- 根据关系对子表达式的NFA进行合并
 - 选择: *S*|*T*
 - 连接: ST
 - 闭包: *S**

如何使用一个NFA表示多个正则表达式?

• 使用 ϵ 转移将多个正则表达式的NFA合并为一个NFA

RPAR

UNUM

ϵ 闭包(closure)

• 状态 s_i 的 ϵ 闭包指的是 s_i 的 ϵ -transition的状态集合

[0-9]

UNUM

- $Cl^{\epsilon}(s_i) = \bigcup \{s_j : (s_i, \epsilon) \to^* (s_j, \epsilon)\}$
- $Cl^{\epsilon}(s_0) = \{s_0, s_1, s_{15}, s_{17}, s_{19}, s_{21}, s_{23}, s_{25}, s_{27}\}$
- 状态集S的 ϵ 闭包指的是S中所有状态的 ϵ -transition的状态集合
 - $Cl^{\epsilon}(S) = \bigcup_{q \in S} \{q' : (q, \epsilon) \rightarrow^* (q', \epsilon)\}$

a-transition

- 大态集S接受字符 α 后状态集的 ϵ 闭包
 - $\bullet \ \delta(S,a) = Cl^{\epsilon}(\bigcup_{q \in S} \{q' \colon (q,a) \to q'\})$
 - $\delta(\{s_0, s_1, s_{15}, s_{17}, s_{19}, s_{21}, s_{23}, s_{25}, s_{27}\}, 0)$

[0-9]

 ϵ

 $= \{s_2, s_3, s_5, s_6, s_{12}, s_{13}, s_{14}\}$

四、NFA转DFA

NFA转换为DFA: 子集构造法

Powerset Construction

- 给定一个字符集 Σ 上的NFA (N, Δ , n_0 , N_{acc}),它对应的可接受同一语言的DFA (D, Δ' , d_0 , D_{acc})定义如下:
 - D中的所有状态 d_i 都是N的一个子集, $D \subseteq 2^N$
 - $d_0 = Cl^{\epsilon}(n_0) //d_i$ 均为 ϵ 闭包
 - $\Delta' = \{d_i \times c \times d_j\}, \forall n_j \in d_j, \exists n_i \in d_i \& c \in \Sigma, \text{ s.t. } (n_i, c, n_j) \in \Delta\}$
 - $D_{acc} = \{d_i \subseteq D \mid d_i \cap N_{acc} \neq \emptyset\}$

```
d0 = eclosure(n0);
D = d0; //保存得到的状态
worklist ={d0}; //待检验的状态
While (worklist!=null) do:
    worklist.remove(d);
    for each c in alphabets do:
        t = trans(d,c)
        if D.find(t) = null then:
        worklist.add(t);
        D.add(t);
```

构造过程

结果

DFA 状态	NFA 状态集合	0-9		+	-	*	/	^	()
d_0	$\{s_0, s_{15}, s_{17}, \\ s_{19}, s_{21}, s_{23}, \\ s_{25}, s_{27}\}$	d_1 : $\{s_2, s_3, s_5, s_6, \ s_{12}, s_{13}, s_{14}\}$	-	d_2 : $\{s_{16}\}$	d_3 : $\{s_{18}\}$	d_4 : $\{s_{20}\}$	d_5 : $\{s_{22}\}$	d_6 : $\{s_{24}\}$	d_7 : $\{s_{26}\}$	d_8 : $\{s_{28}\}$
d_1	$\{s_2, s_3, s_5, s_6, s_{12}, s_{13}, s_{14}\}$	d_9 : $\{s_3, s_4, s_5, s_6, s_{12}, s_{13}, s_{14}\}$	d_{10} : $\{s_7\}$	-	-	-	-	-	-	-
d_2	$\{s_{16}\}$	-	-	-	-	-	-	-	-	-
d_3	$\{s_{18}\}$	-	-	-	-	-	-	-	-	-
d_4	$\{s_{20}\}$	-	-	-	-	-	-	-	-	-
d_5	$\{s_{22}\}$	-	-	-	-	-	-	-	-	-
d_6	$\{s_{24}\}$	-	-	-	-	-	-	-	-	-
d_7	$\{s_{26}\}$	-	-	-	-	-	-	-	-	-
d_8	$\{s_{28}\}$	-	-	-	-	-	-	-	-	-
d_9	$\{s_3, s_4, s_5, s_6, s_{12}, s_{13}, s_{14}\}$	d_9	d_{10}	-	-	-	-	-	-	-
d_{10}	$\{s_7\}$	d_{11} : $\{s_8, s_9, s_{11}, s_{14}\}$	-	-	-	-	-	-	-	-
d_{11}	$\{s_8, s_9, s_{11}, s_{14}\}$	d_{12} : $\{s_9, s_{10}, s_{11}, s_{14}\}$	-	-	-	-	-	-	-	-
d_{12}	$\{s_9, s_{10}, s_{11}, s_{14}\}$	d_{12}	-	-	-	-	-	-	-	-

转换DFA结果

DFA优化思路: 合并同类项

- 对于两个同类型节点 d_i 和 d_j ,可以合并的条件是:
 - $\forall c \in \Sigma, \delta(d_i, c) = \delta(d_i, c)$

优化结果

DFA优化思路: Hopcroft分割算法

```
将DFA的状态集合D划分为两个子集:接受
状态D<sub>ac</sub>和普通状态D\D<sub>ac</sub>。
D = \{D_{ac}, D\backslash D_{ac}\};
S = \{\}
While (S!=D) do:
   S = D;
   D = \{\};
   foreach s_i \in S do:
       D = D \cup Split(s_i)
Split(s) {
   foreach c in \Sigma
       if c splits s into \{s_1, s_2\}
           return \{s_1, s_2\}
   return s
```

- 两个节点 s_i 和 s_j 不用split的条件 是:
 - $\forall c \in \Sigma, \delta(s_i, c) = \delta(s_i, c)$
- 如果不同的接受状态分别对应不同标签应如何改进算法?

Hopcroft分割算法应用示例

NFA/DFA复杂度分析

- 对于正则表达式r来说,如采用Thompson构造法,
 - NFA状态数≤ |2r|, 边数≤ |4r|
 - 解析单个词素x的时间复杂度为 $O(|x| \times |r|)$ 。
- 如果转化为DFA:
 - 对应DFA的状态数≤ |2|2r||个
 - 解析单个词素的时间复杂度为O(|x|)。
- 结论:
 - NFA构造较快,但运行效率低;
 - DFA构造耗时,但运行效率高。

练习

- 使用Thompson算法将下列正则表达式转化为NFA;
- 应用子集构造法将NFA转化为DFA;
- 化简上一步得到的DFA。

```
\begin{array}{lll} \textbf{IDENFIFIER} &:= & [a-z]([a-z]|[0-9])^* \\ \\ & \textbf{DIGIT} &:= & [0-9] \\ \\ & \textbf{DIGITS} &:= & \{ \textbf{DIGIT} \} \ \{ \textbf{DIGIT} \}^* \\ \\ & \textbf{FRACTION} &:= & \{ \textbf{DIGITS} \} | \epsilon \\ \\ & \textbf{EXPONENT} &:= & \{ \textbf{e}(+|-|\epsilon) \{ \textbf{DIGITS} \} ) | \epsilon \\ \\ & \textbf{UNUM} &:= & \{ \textbf{DIGITS} \} \ \{ \textbf{FRACTION} \} \ \{ \textbf{EXPONENT} \} \\ \end{array}
```