实验指导书: 回归分析模型

【实验目的】

- 1、通过本次试验掌握回归分析的基本思想和基本方法,理解最小二乘法的计算步骤,理解模型的设定 T 检验,并能够根据检验结果对模型的合理性进行判断,进而改进模型。理解残差分析的意义和重要性,会对模型的回归残差进行正态性和独立性检验,从而能够判断模型是否符合回归分析的基本假设。
 - 2、掌握回归分析的几种求解方法。

【实验相关知识】

初识线性回归:

例 1: 利用 matlab 计算一元回归分析函数如下所示,根据试验数据 x 和 y, 可在 matlab 中利用一元拟合实现回归直线的计算、相关系数计算、同时得出一个散点图和回归直线图。

Matlab 程序代码如下:

x=[15.0,25.8,30.0,36.6,44.4]

y=[39.4,42.9,41.0,43.1,49.2] x, y 以数组的形式输入

n=1; 拟合阶数设置为1

p=polyfit(x,y,n) 计算拟合系数 a, b

xi=linspace(15,45,100);规定拟合曲线横轴的分度z=polyval(p,xi);虚拟出拟合曲线上的点

plot(x,y,'*b',xi,z,'r') 画出散点图和回归直线图

xlabel('x'),ylabel('y=0.2924x+34.2417'),legend('散点图和回归直线')

散点图:

一、多元线性回归(含一元线性回归)

多元线性回归: $y = \beta_0 + \beta_1 x_1 + ... + \beta_p x_p$

1、确定回归系数的点估计值:

命令为: b=regress(Y, X)

①b 表示
$$b = \begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \\ \dots \\ \hat{\beta}_p \end{bmatrix}$$
, ②Y 表示 $Y = \begin{bmatrix} Y_1 \\ Y_2 \\ \dots \\ Y_n \end{bmatrix}$, ③X 表示 $X = \begin{bmatrix} 1 & x_{11} & x_{12} & \dots & x_{1p} \\ 1 & x_{21} & x_{22} & \dots & x_{2p} \\ \dots & \dots & \dots & \dots \\ 1 & x_{n1} & x_{n2} & \dots & x_{np} \end{bmatrix}$

- 2、求回归系数的点估计和区间估计、并检验回归模型:
- 命令为: [b, bint,r,rint,stats]=regress(Y,X,alpha)
- ①bint 表示回归系数的区间估计.
- ②r表示残差.
- ③rint 表示置信区间.
- ④stats 表示用于检验回归模型的统计量,有三个数值:相关系数 r^2 、F 值、与 F 对应的概率 p.

说明:相关系数 r^2 越接近 1,说明回归方程越显著; $F>F_{1-\alpha}(k,n-k-1)$ 时拒绝 H_0 ,F 越大,说明回归方程越显著;与 F 对应的概率 $p<\alpha$ 时拒绝 H_0 ,回归模型成立.

- ⑤alpha 表示显著性水平(缺省时为 0.05)
- 3、画出残差及其置信区间.

命令为: rcoplot(r,rint)

例 2.如下程序.

解: (1)输入数据.

x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]';

X = [ones(16,1) x];

Y=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]';

(2)回归分析及检验.

[b,bint,r,rint,stats]=regress(Y,X)

b,bint,stats

得结果: b = bint =
-16.0730 -33.7071 1.5612
0.7194 0.6047 0.8340

0.9282 180.9531 0.0000

即 $\hat{\beta}_0 = -16.073$, $\hat{\beta}_1 = 0.7194$; $\hat{\beta}_0$ 的置信区间为[-33.7017,1.5612], $\hat{\beta}_1$ 的置信区间为[0.6047,0.834]; $r^2 = 0.9282$, F = 180.9531, p = 0.0000, 我 们 知 道 p < 0.05 就 符 合 条 件 , 可 知 回 归 模 型 y = -16.073 + 0.7194x 成立.

(3)残差分析,作残差图.

rcoplot(r,rint)

从残差图可以看出,除第二个数据外,其余数据的残差离零点均较近,且残差的置信区间均包含零点,这说明回归模型 y=-16.073+0.7194x 能较好的符合原始数据,而第二个数据可视为异常点.

(4)预测及作图.

$$z=b(1)+b(2)*x$$

 $plot(x,Y,'k+',x,z,'r')$

二、多项式回归

(一)一元多项式回归.

- 1、一元多项式回归: $y = a_1 x_m + a_2 x_{m-1} + ... + a_m x + a_{m+1}$
- (1)确定多项式系数的命令: [p,S]=polyfit(x,y,m)

说明: $x=(x_1,x_2,...,x_n),y=(y_1,y_2,...,y_n)$; $p=(a_1,a_2,...,a_{m+1})$ 是多项式 $y=a_1x^m+a_2x^{m-1}+...+a_mx+a_{m+1}$ 的系数; S 是一个矩阵,用来估计预测误差.

- (2)一元多项式回归命令: polytool(x,y,m)
- 2、预测和预测误差估计.
- (1)Y=polyval(p,x)求 polyfit 所得的回归多项式在 x 处的预测值 Y;
- (2)[Y,DELTA]=polyconf(p,x,S,alpha)求 polyfit 所得的回归多项式在 x 处的预测值 Y 及预测值 的显著性为 1-alpha 的置信区间 Y±DELTA; alpha 缺省时为 0.5.
- 例 3. 观测物体降落的距离 s 与时间 t 的关系,得到数据如下表,求 s. (关于 t 的回归方程 $\hat{s} = a + bt + ct^2$)

t(s)	1/30	2/30	3/30	4/30	5/30	6/30	7/30
s (cm)	11.86	15.67	20.60	26.69	33.71	41.93	51.13
t(s)	8/30	9/30	10/30	11/30	12/30	13/30	14/30
s (cm)	61.49	72.90	85.44	99.08	113.77	129.54	146.48

解法一:直接作二次多项式回归.

t=1/30:1/30:14/30;

s=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48]; [p,S]=polyfit(t,s,2)

得回归模型为:

10万元人工/10

 $\hat{s} = 489.2946t^2 + 65.8896t + 9.1329$

解法二: 化为多元线性回归.

t=1/30:1/30:14/30;

 $s=[11.86\ 15.67\ 20.60\ 26.69\ 33.71\ 41.93\ 51.13\ 61.49\ 72.90\ 85.44\ 99.08\ 113.77\ 129.54\ 146.48];$

 $T = [ones(14,1) t' (t.^2)'];$

[b,bint,r,rint,stats]=regress(s',T);

b,stats

得回归模型为:

$$\hat{s} = 9.1329 + 65.8896t + 489.2946t^2$$

预测及作图:

Y=polyconf(p,t,S)

plot(t,s,'k+',t,Y,'r')

(二)多元二项式回归

多元二项式回归命令: rstool(x,y,'model', alpha)

说明: x 表示 n×m 矩阵; Y 表示 n 维列向量; alpha: 显著性水平(缺省时为 0.05); model 表示由下列 4 个模型中选择 1 个(用字符串输入,缺省时为线性模型):

linear(线性):
$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_m x_m$$

purequadratic(纯二次):
$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_m x_m + \sum_{j=1}^n \beta_{jj} x_j^2$$

interaction(
$$\mathfrak{P}$$
): $y = \beta_0 + \beta_1 x_1 + \dots + \beta_m x_m + \sum_{1 \le i \ne k \le m} \beta_{jk} x_j x_k$

quadratic(完全二次):
$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_m x_m + \sum_{1 \le j,k \le m} \beta_{jk} x_j x_k$$

例 4. 设某商品的需求量与消费者的平均收入、商品价格的统计数据如下,建立回归模型,预测平均收入为 1000、价格为 6 时的商品需求量.

需求量	100	75	80	70	50	65	90	100	110	60
收入	1000	600	1200	500	300	400	1300	1100	1300	300
价格	5	7	6	6	8	7	5	4	3	9

解法一: 选择纯二次模型,即 $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{11} x_1^2 + \beta_{22} x_2^2$.

直接用多元二项式回归:

 $x1=[1000\ 600\ 1200\ 500\ 300\ 400\ 1300\ 1100\ 1300\ 300];$

x2=[5 7 6 6 8 7 5 4 3 9];

y=[100 75 80 70 50 65 90 100 110 60]';

x=[x1' x2'];

rstool(x,y,'purequadratic')

在左边图形下方的方框中输入 1000,右边图形下方的方框中输入 6,则画面左边的"Predicted Y"下方的数据变为 88.47981,即预测出平均收入为 1000、价格为 6 时的商品需求量为 88.4791. 在画面左下方的下拉式菜单中选"all",则 beta、rmse 和 residuals 都传送到 Matlab 工作区中.

在 Matlab 工作区中输入命令: beta, rmse

4.5362

故回归模型为: $y = 110.5313 + 0.1464x_1 - 26.5709x_2 - 0.0001x_1^2 + 1.8475x_2^2$ 剩余标准差为 4.5362, 说明此回归模型的显著性较好.

解法二: 将 $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{11} x_1^2 + \beta_{22} x_2^2$ 化为多元线性回归:

 $X=[ones(10,1) \times 1' \times 2' (\times 1.^2)' (\times 2.^2)'];$

[b,bint,r,rint,stats]=regress(y,X);

b,stats

结果为: b =

110.5313
0.1464
-26.5709
-0.0001
1.8475
stats =
0.9702 40.6656

三、非线性回归

1、非线性回归:

(1)确定回归系数的命令: [beta,r,J]=nlinfit(x,y,'model', beta0)

0.0005

说明: beta 表示估计出的回归系数; r 表示残差; J 表示 Jacobian 矩阵; x,y 表示输入数据 x,y 分别为矩阵和 n 维列向量,对一元非线性回归,x 为 n 维列向量; model 表示是事先用 m-文件定义的非线性函数; beta0 表示回归系数的初值.

- (2)非线性回归命令: nlintool(x,y,'model', beta0,alpha)
- 2、预测和预测误差估计:

[Y,DELTA]=nlpredci('model', x,beta,r,J)

表示 nlinfit 或 nlintool 所得的回归函数在 x 处的预测值 Y 及预测值的显著性为 1-alpha 的置信区间 Y±DELTA.

例 5. 如下程序.

解: (1)对将要拟合的非线性模型 $y=a e^{b/x}$,建立 m-文件 volum.m 如下:

function yhat=volum(beta,x) yhat=beta(1)*exp(beta(2)./x);

(2)输入数据:

x=2:16;

y=[6.42 8.20 9.58 9.5 9.7 10 9.93 9.99 10.49 10.59 10.60 10.80 10.60 10.90 10.76];

beta0=[8 2]';

(3)求回归系数:

[beta,r,J]=nlinfit(x',y','volum',beta0);

beta

(4)运行结果:

beta =

11.6036

-1.0641

即得回归模型为:

$$y = 11.6036e^{-\frac{1.1064}{x}}$$

(5)预测及作图:

[YY,delta]=nlpredci('volum',x',beta,r ,J); plot(x,y,'k+',x,YY,'r')

四、逐步回归

1、逐步回归的命令: stepwise(x,y,inmodel,alpha)

说明: x 表示自变量数据, $n \times m$ 阶矩阵; y 表示因变量数据, $n \times 1$ 阶矩阵; inmodel 表示矩阵的列数的指标,给出初始模型中包括的子集(缺省时设定为全部自变量); alpha 表示显著性水平(缺省时为 0.5).

- 2、运行 stepwise 命令时产生三个图形窗口: Stepwise Plot, Stepwise Table, Stepwise History. 在 Stepwise Plot 窗口,显示出各项的回归系数及其置信区间.
- (1)Stepwise Table 窗口中列出了一个统计表,包括回归系数及其置信区间,以及模型的统计量剩余标准差(RMSE)、相关系数(R-square)、F 值、与 F 对应的概率 P.
- 例 6 水泥凝固时放出的热量 y 与水泥中 4 种化学成分 x1、x2、x3、 x4 有关,今测得一组数据如下,试用逐步回归法确定一个线性模型.

序号	1	2	3	4	5	6	7	8	9	10	11	12	13
X 1	7	1	11	11	7	11	3	1	2	21	1	11	10

X2	26	29	56	31	52	55	71	31	54	47	40	66	68
X3	6	15	8	8	6	9	17	22	18	4	23	9	8
X4	60	52	20	47	33	22	6	44	22	26	34	12	12
у	78.5	74.3	104.3	87.6	95.9	109.2	102.7	72.5	93.1	115.9	83.8	113.3	109.4

解: (1)数据输入:

x1=[7 1 11 11 7 11 3 1 2 21 1 11 10]';

x2=[26 29 56 31 52 55 71 31 54 47 40 66 68]';

x3=[6 15 8 8 6 9 17 22 18 4 23 9 8]';

x4=[60 52 20 47 33 22 6 44 22 26 34 12 12]';

y=[78.5 74.3 104.3 87.6 95.9 109.2 102.7 72.5 93.1 115.9 83.8 113.3 109.4]';

 $x=[x1 \ x2 \ x3 \ x4];$

(2)逐步回归.

①先在初始模型中取全部自变量: stepwise(x,y)

得图 Stepwise Plot 和表 Stepwise Table.

图 Stepwise Plot 中四条直线都是虚线,说明模型的显著性不好.

		Confidence :	Intervals
Column #	Parameter	Lower	Opper
1	1.551	-0.8319	3.934
2	0.5102	-1.806	2.826
3	0.1019	-2.313	2.517
4	-0.1441	-2.413	2.125
RMSE	R-square	F	P
2.446	0.9824	111.5	4.756e-l
Close			Help

从表 Stepwise Table 中看出变量 x3 和 x4 的显著性最差.

②在图 Stepwise Plot 中点击直线 3 和直线 4,移去变量 x3 和 x4.

移去变量 x3 和 x4 后模型具有显著性

		Confidence	Intervals
Column #	Parameter	Lower	Opper
1	1.468	1.1	1.836
2	0.6623	0.5232	0.8013
	0.25	-0.3235	0.8236
	-0.2365	-0.7746	0.3015
RMSE	R-square	F	P
2.406	0.9787	229.5	4.407e-0
Close			Help

虽然剩余标准差(RMSE)没有太大的变化,但是统计量 F 的值明显增大,因此新的回归模型更好.

(3)对变量 y 和 x1、x2 作线性回归.

 $X=[ones(13,1) \times 1 \times 2];$

b=regress(y,X)

得结果: b=

52.5773

1.4683

0.6623

故最终模型为: y=52.5773+1.4683x1+0.6623x2