GROUP J

DATA MINING FRAMEWORK

INSTRUCTOR: DR. NGUYEN THI THANH SANG

TEAM MEMBER

NGUYỄN VĂN NGỌC THI ITCSIU22251

PHAM MINH KHÁNH ITCSIU21194

TRỊNH VŨ THẾ
ANH
ITCSIU22009

LÊ TRỌNG ĐẠI ITITIU20176

TABLE OF CONTENTS

- 1. DATA PREPROCESSING
- 2. SEQUENTIAL PARTERN MINING
- 3. CLASSIFICATION ALGORITHM
- 4. IMPROVEMENT
- 5. MODEL EVALUATION
- 6. CONCLUSION

2

DATA PREPROCESSING

2.1 DATA PREPROCESSING

THE DATASET CONTAINS 13,200 INSTANCES (ROWS) AND 11 ATTRIBUTES (COLUMNS):

11 Atributes	Temperature	Humidity	Wind Speed	Precipitation	Cloud Cover
Atmospheric Pressure	UV Index	Season	Visibility	Location	Weather Type

KEY CHARACTERISTICS

Mix of Numerical and Categorical Data

Class Imbalance

Data Range and Scaling

Duplicate-Free

2.2 DATA CLEANING PROCESS

1 NORMALIZATION

Scales numerical data into a uniform range

2 ENCODING

Converts categorical values into numeric representations

3 EXECUTION

Filters the dataset to retain only specific features

2.2 DATA CLEANING PROCESS

4 MISSING DATA HANDLING

Replaces missing/invalid values with column modes

5 DEDUPLICATION

Ensures unique rows in the dataset

6 DATA SPLITTING

Divides data into training and test sets

2.3 DATA TRANSFORMATION

1. NORMALIZATION

Purpose: To scale numerical data into a consistent range (usually between 0 and 1) for easier comparison and to prevent features with large magnitudes from dominating the learning algorithm.

Implementation:

- Finding Min/Max Values: The program computes the minimum and maximum values for each numeric column across the dataset.
- Scaling: Each numeric value is transformed using the formula

```
    \text{normalized\_value} = \frac{\text{value} - \min}{\max - \min}
```

- Handling Zero Range: If max == min for a feature (e.g., all values are the same), the normalized value is set to 0.
- Impact: Ensures numerical features are on a comparable scale, enhancing the performance of distance-based algorithms (e.g., k-NN, clustering) and gradient-based optimizations.

2.3 DATA TRANSFORMATION

2. ENCODING CATEGORICAL VARIABLES

Purpose: To convert categorical data (nonnumeric) into numeric form, as most machine learning algorithms require numerical inputs.

Implementation:

- A unique integer is assigned to each unique categorical value in a column.
- The mapping for each categorical column is stored in a map (encoders), where the key is the categorical value, and the value is its numeric encoding.
- Rows in the dataset are transformed based on these mappings, with unknown or missing values defaulting to -1.

Impact: Transforms non-numeric features into numeric form while preserving the uniqueness of each category. This step is a prerequisite for applying most machine learning algorithms.

2.3 DATA TRANSFORMATION

3. FEATURE SELECTION

Purpose: To reduce dimensionality by selecting only the most relevant features, thereby simplifying the model and potentially improving its performance.

Implementation:

- The program accepts a list of selected features (selectedFeatures) as input.
- It determines the indices of the selected features in the header and extracts only these columns from the dataset.

Impact:

- Reduces computational overhead and risk of overfitting.
- Focuses the model on features likely to have the most predictive power, improving interpretability and performance.

3. SEQUENTIAL PATTERN MINING

METHODOLOGY

• DATA PREPROCESSING: REMOVE NUMERIC ATTRIBUTES

• MINING FREQUENT PATTERNS: USE APRIORI ALGORITHM

RULE EVALUATION

3. SEQUENTIAL PATTERN MINING

RESULTS AND FINDINGS

- BEST RULES FOUND
- 1.CLOUD COVER=CLEAR ⇒ WEATHER TYPE=SUNNY (CONFIDENCE: 100%, LIFT: 4)
- 2.CLOUD COVER=OVERCAST, WEATHER TYPE=SNOWY ⇒ SEASON=WINTER (CONFIDENCE: 97%)
- 3. LOCATION=INLAND, WEATHER TYPE=SNOWY ⇒ SEASON=WINTER (CONFIDENCE: 96%)
- 4. LOCATION=MOUNTAIN, WEATHER TYPE=SNOWY ⇒ SEASON=WINTER (CONFIDENCE: 96%)
 - 5. WEATHER TYPE=SNOWY \Rightarrow SEASON=WINTER (CONFIDENCE: 94%)

3. SEQUENTIAL PATTERN MINING

RESULTS AND FINDINGS

BENEFITS

• LIMITATIONS AND CHALLENGES

4. CLASSIFICATION ALGORITHM

IMPLEMENTATION PROCESS

Convert data to ARFF

```
public static void csvToArff(String filePath) throws Exception { 1usage ≛ ThiNVN
   //Load csv file
   CSVLoader loader = new CSVLoader();
   loader.setSource(new File(filePath));
   Instances dataset = loader.getDataSet();
   //Save as arff format
   ArffSaver saver = new ArffSaver();
   saver.setInstances(dataset);
   saver.setFile(new File( pathname: "src/data/weather_classification.arff"));
   saver.writeBatch();
```

4. CLASSIFICATION ALGORITHM

MODEL SELECTION

Comparison: OneR vs NaiveBayes

	OneR	NaiveBayes	
Accuracy	Correctly Classified Intances: 66.89%	Correctly Classified Intances: 87.22%	
Precision, Recall F-Measure	Precision: 55.23% Recall: 44.06% F-Measure: 49.02%	Precision: 83.22% Recall: 85.31% F-Measure: 84.25%	
AUC	0.3838	0.8428	
Error Measures	Mean Absolute Error: 0.1655 Root Mean Squared Error: 0.4069 Relative Absolute Error: 44.14% Root Relative Squared Error: 93.95%	Mean Absolute Error: 0.0816 Root Mean Squared Error: 0.2262 Relative Absolute Error: 21.76% Root Relative Squared Error: 52.22%	

METHODOLOGY

DATA PREPROCESSING: ONE-HOT ENCODING

CLUSTERING WITH SIMPLEKMEANS

CLUSTER EVALUATION

CLASSIFICATION WITHIN CLUSTERS

CLUSTER SPECIFIC DATASET

SPLIT TRAINING AND TESTING SET

TRAIN J48 DECISION TREE

CLASSIFICATION WITHIN CLUSTERS

MODEL EVALUATION

	Cluster#0	Cluster#1	Cluster#2
Accuracy	92.3891 %	91.4857 %	96.6872 %

OVERALL ACCURACY

$$\frac{\sum (Accuracy * Number of instances in testset)}{\sum (Number of instances in dataset)} = 93.535\%$$

EVALUATION AND COMPARISION

	Initial model (NaiveBayes)	J48 Tree apply on full dataset	Improved model (clustering and classification)
Accuracy	87.2222 %	90.9091 %	93.535%

IMPROVE 6.32%

6. MODEL EVALUATION

PERFORMANCE METRICS

	Cluster#0 (5037)	Cluster#1 (3837)	Cluster#2 (4326)
Accuracy	90.8874 %	92.2075 %	96.0472 %
Precision	0.909	0.920	0.961
Recall	0.909	0.922	0.960
f-Measure	0.909	0.921	0.961
Runtime	0.11s	0.06s	0.08s

6. MODEL EVALUATION

INSIGHTS AND TRADE-OFFS

RECOMMENDATIONS FOR IMPROVEMENT

CONCLUSION

KEY FINDINGS

LESSON LEARNED

FUTURE DEVELOPMENT

THANKS FOR LISTENING

