Problem Set 7

COSC 290 Spring 2018

Caio Brighenti

April 22, 2018

1 Problem 1: Using induction to prove algorithm correctness, DLN 5.71

Claim: Let P(n) if for a sorted array A[1...n] of length n, $binarySearch(A, x) \iff x \in A$. The claim is that $\forall n \in \mathbb{Z}^{\geq 0} : P(n)$.

Proof. We will prove by strong induction on n.

Base cases: The base cases are n = 0 and n = 1. Both P(0) and P(1) are true, as any array of length 0 or 1 is sorted.

Inductive case: Let $n \ge 2$. We will show $P(0) \land ... \land P(n-1) \iff P(n)$.

- Given: Assume $P(0) \wedge ... \wedge P(n-1)$ is true.
- Want to show: P(n) is true.

We proceed by cases. There are three ways in which x can exist with relation to A[1...n] and middle. These cases are as such:

$$A[1...x = middle...n]$$

$$A[1...x...middle...n]$$

$$A[1...middle...x...n]$$

In Case 1, we have that x = middle. In Case 2, we have that $1 \le x < middle \le n$. In Case 3, we have that $1 \le middle < x \le n$.

Case 1: In the first case, the algorithm successfully found the item x it was searching for. Thus, the function returns true.

Case 2: In the second case, the function will be called recursively on A[1...middle-1]. From there

Case 3: In the third case, the function will be called recursively on A[middle + 1...n]. From there

2 Problem 2: proving a relation is a partial order

2.1 DLN 8.131

replace with your answer

2.2 DLN 8.132

 $replace\ with\ your\ answer$

3 Problem 3: an equivalence relation and a partial order? DLN 8.155

replace with your answer