PROPOSED IRRIGATION-NEED FUNCTION

IRRIGATION-NEED = ET_C - (P + SM_AVAIL)

Where:

- **ET_c**: Crop evapotranspiration demand, influenced by temperature, humidity, and solar radiation.
- **P**: Effective precipitation.
- **SM** avail: Available soil moisture in the root zone.

This calculates net irrigation need by subtracting precipitation and existing soil moisture from total water demand.

From Theory to Application: Deriving the Irrigation Need Formula

Directly computing ETc typically requires complex parameters like solar radiation, wind speed, and crop-specific coefficients — data that is often unavailable or inconsistent in field conditions.

To make this formula more practical and data-driven, we restructured it into a normalized model using readily available environmental variables as proxies. The resulting formula is:

This adjusted formula captures the same core logic:

- Higher temperature increases water demand (acting as a proxy for ETc),
- Higher rainfall and soil moisture reduce irrigation need (representing P + SM_avail),
- Humidity reduces evapotranspiration, acting as a dampening factor.

This simplification enables easier integration into machine learning workflows and automated irrigation systems while still aligning with fundamental agronomic principles.

JUSTIFICATION AND SUPPORTING REFERENCES

1. Evapotranspiration (ET) as a Core Metric

- Evapotranspiration is the sum of water loss via evaporation + transpiration. Core to irrigation estimation.
- Colorado State University notes that irrigation is essential when ET exceeds rainfall and stored moisture.

https://extension.colostate.edu/topic-areas/agriculture/effects-of-weather-on-irrigation-requirements-4-721/

2. Importance of Soil Moisture Monitoring

- Soil sensors enable precise water scheduling based on real-time soil data.
- University of Minnesota Extension highlights sensors as highly effective tools for irrigation management.

https://extension.umn.edu/irrigation/soil-moisture-sensors-irrigation-scheduling

3. Integration of Weather Data

Using weather forecasts (temp, humidity, rainfall) refines irrigation timing and quantity.

SAI Platform discusses tools that use local weather data to optimize irrigation practices.
https://www.saiplatform.org/uploads/Library/Technical%20Brief%206.%20Irrigation%20Scheduling.pdf

4. Data-Driven Approaches in Irrigation Management

- Advanced models leverage sensor data to forecast soil moisture and optimize irrigation.
- A study on ScienceDirect details predictive modeling of soil moisture using real-time data. https://www.sciencedirect.com/science/article/pii/S2772375524002971