Clase 9

Santiago Cifuentes

June 18, 2025

- 1. Decidir en qué clase están los siguientes problemas:
 - CON-111 = $\{x_1 \dots x_n : \exists 1 \le i \le n-2, x_i x_{i+1} x_{i+2} = 111\}.$
 - ullet CON-p donde p es un patrón arbitrario, y el problema se define igual que en el ejercicio anterior.
 - PARITY = $\{x_1 \dots x_n : x \text{ tiene una cantidad par de 1s}\}$
 - EULERIANO = $\{\langle G \rangle : G \text{ es un grafo euleriano}\}^1$
 - SUMA = $\{\langle x, y, z \rangle : x + y = z\}$
 - MULT = $\{\langle x, y, z \rangle : x * y = z\}$
- 2. Probar, asumiendo que Parity no está en AC^0 , que majority tampoco está en AC^0 .
- 3. En este ejercicio vamos a probar que SHORTEST-PATH = $\{\langle D, v, w, k \rangle$: el camino mínimo de v a w en G tiene peso $k\}$ está en AC_2 .
 - (a) Probar que el producto de matrices de $n \times n$ definido como:

$$(A \star B)_{v,w} = \min_{k=1,...,n} (A_{v,k} + B_{k,w})$$

está en AC_1 .

- (b) Sea A una matriz tal que $A_{v,w}$ es igual al peso del camino mínimo de longitud menor o igual a k_1 de v a w, y sea B tal que $B_{v,w}$ es lo mismo pero de longitud k_2 . Probar que $(A \star B)_{v,w}$ es el peso del camino mínimo de v a w de longitud menor o igual a $k_1 + k_2$.
- (c) Dar una implementación de Floyd en AC₂.
- 4. Probar que programación lineal es P-hard.

 $^{$^{-1}{\}rm En}$$ este ejercicio consideramos que un grafo es euleriano si cada componente admite un circuito euleriano.