REFERENCIAS, FÓRMULAS Y SIMBOLOGÍA

Tomás Barak y Santiago Fiore

Septiembre 2022

Índice

1.	Introducción	2
2.	Principio general de la multiplicación	3
3.	Factorial de un número	3
4.	Permutaciones	4
	4.1. Sin repetición	4
	4.2. Con repetición	4
	4.3. Circulares	4
5.	Variaciones	5
	5.1. Sin repetición	5
	5.2. Con repetición	5
6.	Combinaciones	5
	6.1. Sin repetición	5
	6.2. Con repetición	5
7.	Referencias bibliográficas	5

1. Introducción

El programa permite realizar las cuentas correspondientes a diferentes situaciones de Combinatoria y muestra los distintos agrupamientos que se pueden realizar mediante: números, letras o figuras geométricas.

Contacto: santiago.fiore@ipm.edu.ar tomas.barak

2. Principio general de la multiplicación

Supongamos que un suceso s_1 acepta a resultados, luego por cada uno de éstos resultados un suceso s_2 permite b resultados. Entonces la realización conjunta de s_1 y s_2 arroja $a \times b$ resultados.

El principio también es válido para tres o más sucesos, pero es necesario que el número de resultados que pueda tener cada suceso sea el mismo para cada realización conjunta de las anteriores.

Ejemplo:

¿Cuántos números impares de 3 cifras se pueden formar con los dígitos: 4;5;6;8 (sin repetición)?

Solución:

$$3 \times 2 \times 1 = 6$$

Los números son:

3. Factorial de un número

Dado un número n que pertenece al conjunto de los números naturales (\mathbb{N}) definimos el factorial del número n como:

$$n! = n \times (n-1) \times \ldots \times 3 \times 2 \times 1$$

Ejemplos:

$$3! = 3 \times 2 \times 1$$

$$4! = 4 \times 3 \times 2 \times 1$$

Aclaraciones:

$$0! = 1$$

$$1! = 1$$

4. Permutaciones

4.1. Sin repetición

Denominamos permutación sin repetición a cada una de las formas en que podemos ordenar un conjunto de n elementos distintos, siendo n un número natural cualquiera.

Calculamos el número de permutaciones de n objetos distintos mediante n!

4.2. Con repetición

Se refiere a las formas en que podemos ordenar un conjunto de n elementos, pero uno o más elementos se pueden repetir.

Es decir: dados n elementos, de los cuales n_1 son idénticos entre sí, otros n_2 son idénticos entre sí, ..., y finalmente n_k son idénticos entre sí. Entonces la cantidad de ordenamientos de los n elementos es:

$$\frac{n!}{n_1!n_2!\dots n_k!}$$

Ejemplo:

¿Cuántas palabras de 7 letras (con o sin sentido) podemos formar con las letras de la AMÉRICA?

Solución:

Disponemos de 7 letras, por lo tanto n! = 7! = 5040.

Se repite dos veces la letra A, por lo tanto $n_1! = 2! = 2$

$$\frac{7!}{2!} = 2520$$

4.3. Circulares

Denominamos permutación circular a cada uno de los ordenamientos alrededor de un círculo que podemos realizar con un conjunto de n elementos distintos, siendo n un número natural cualquiera.

Calculamos el número de permutaciones circulares de n objetos distintos mediante (n-1)!

5. Variaciones

5.1. Sin repetición

Denominamos variación sin repetición a los diferentes ordenamientos que podemos construir con n objetos distintos en m grupos en los que importa el orden, tal que $m \leq n$.

Calculamos el número de variaciones sin repetición mediante:

$$\frac{n!}{(n-m)!}$$

5.2. Con repetición

Denominamos variación con repetición a los diferentes ordenamientos que podemos construir con n objetos distintos que se pueden repetir en m grupos en los que importa el orden, tal que $m \leq n$.

Calculamos el número de variaciones con repetición mediante:

$$n^m$$

6. Combinaciones

6.1. Sin repetición

6.2. Con repetición

7. Referencias bibliográficas

"Notas de Combinatoria", Maria Elena Becker, Norma Pietrocola y Carlos Sánchez. (1996) Editoria Red Olímpica. Buenos Aires, Argentina.