# Unit: Efficiency and level sets



Orange Mountains  $f_1(x_1, x_2) \rightarrow \max$ 

*Blue Mountains*  $f_1(x_1, x_2) \rightarrow \max$ 

#### Pareto optimization: All Definitions

Decision space  $\mathbb S$ , Feasible decision space  $\mathcal X$ 

Objective functions  $f_1: \mathbb{S} \to \mathbb{R}, f_2: \mathbb{S} \to \mathbb{R}, \ldots, f_m: \mathbb{S} \to \mathbb{R}$ .

Or as a vector valued function:  $\mathbf{f}(\mathcal{X}) \to \mathbb{R}^m$ 

Image of  $\mathcal{X}$  under f:

$$\mathcal{Y} = \mathbf{f}(\mathcal{X}) = \{ \mathbf{y} \in \mathbb{R}^m \mid \text{exists } x \in \mathcal{X} : \mathbf{f}(x) = \mathbf{y} \}$$

Pareto dominance:

$$\forall \mathbf{y}^1, \mathbf{y}^2 \in \mathbb{R}^m : \mathbf{y}^1 \prec \mathbf{y}^2 \Leftrightarrow \mathbf{y}^1 \leq \mathbf{y}^2 \wedge \mathbf{y}^1 \neq \mathbf{y}^2.$$

We define a preorder in the feasible decision space  $\mathcal{X}$ :

$$\forall \mathbf{x}^1, \mathbf{x}^2 \in \mathcal{X} : \mathbf{x}^1 \preceq \mathbf{x}^2 : \Leftrightarrow \mathbf{f}(\mathbf{x}^1) \leq \mathbf{f}(\mathbf{x}^2)$$

$$\mathbf{x}^1 \prec \mathbf{x}^2 : \Leftrightarrow \mathbf{f}(\mathbf{x}^1) \prec \mathbf{f}(\mathbf{x}^2) \prec$$

$$\leq: weak \ component \ wise \ order. \ In \ every \ component \ smaller \ or \ equal$$

Matthias Ehrgott: Multicriteria Optimization: Springer 2005 Open Access:

Emmerich, M. T., & Deutz, A. H. (2018). A tutorial on multiobjective optimization: fundamentals and evolutionary methods. *Natural computing*, *17*(3), 585-609. https://link.springer.com/article/10.1007/s11047-018-9685-y

### Learning Goals

- Correct definition related to multiobjective optimization: Efficient set, Pareto front, weak efficient set, strict efficient set, strictly nondominated set, weakly non-dominated set.
- Shapes of Pareto fronts: Classification convex/concave and invariances
- 3. Identification of efficient sets based on contour plots and level sets



#### Pareto optimization: All Definitions

Efficient point: A point  $x \in \mathcal{X}$  is called efficient, iff not exists  $x' \in \mathcal{X}$  with  $x' \prec x$ 

Efficient set  $\mathcal{X}_E$ : Set of all efficient points in  $\mathcal{X}$ 

Nondominated point: A point  $y\in \mathcal{Y}$  is called nondominated (or Pareto optimum), iff not exists  $y'\in \mathcal{Y}$  with  $y'\prec y$ 

Nondominated set or Pareto front  $\mathcal{Y}_N$ : The set of all nondominated points in  $\mathcal{Y}$  is called the Pareto front or nondominated set.

### Weakly efficient and nondominated set

A point x is weakly efficient, if it there is no other point x' in  $\mathcal{X}$  with  $f_1(x') < f_1(x) \wedge \ldots \wedge f_m(x') < f_m(x)$ .

A point x is strictly efficient, if it there is no other point x' in  $\mathcal{X}$  with  $x' \prec x$ .

The weakly (strictly) efficient set  $\mathcal{X}_{wE}$  (  $\mathcal{X}_{sE}$ ) is the set of all weakly (strictly) efficient points.

A point in  $y \in \mathcal{Y}$  is called weakly non-dominated, iff there is no point in  $y' \in \mathcal{Y}$  such that  $y_1' < y_1 \wedge \ldots \wedge y_m' < y_m$ .

The weakly non-dominated set  $\mathcal{Y}_{wN}$  is the set of all weakly nondominated solutions in  $\mathcal{Y}$ .

The weakly non-dominated set  $\mathcal{Y}_{wN}$  is the image of  $\mathcal{X}_{wE}$  under  $\mathbf{f}$ ,

that is  $\mathcal{Y}_{wN} = \mathbf{f}(\mathcal{X}_{wE})$ 

#### Weak non-domination vs. non-domination

Consider the set  $\mathcal{Y} = \{ \mathbf{y} \in \mathbb{R}^2 | 0 < y_1 < 1, 0 \le y_2 \le 1 \}$ :

The non-dominated set  $\mathcal{Y}_N$  is empty, while  $\mathcal{Y}_{wN}$  is not.

Consider the closed square  $\mathcal{Y} = \{\mathbf{y} \in \mathbb{R}^2 | 0 \leq y_1 \leq 1, 0 \leq y_2 \leq 1\}$ 

We have  $\mathcal{Y}_N = \{0\}$  and  $\mathcal{Y}_{wN} = \{y \in \mathcal{Y} | y_1 = 0 \lor y_2 = 0\}$ 



### Convex and concave PF: precise definition

A Pareto front  $\mathcal{Y}$  is said to be convex, if  $\mathcal{Y} \oplus \mathbb{R}^m_{\geq}$  is a convex set.

A Pareto front  $\mathcal{Y}$  is said to be concave if  $\mathcal{Y} \oplus \mathbb{R}^m_{\leq}$  is a convex set.



... convex: monotonically decreasing, slope is increasing

... concave: " is decreasing (gets more negative)

#### Different shapes of Pareto fronts

Convex pareto front

Concave pareto front



PF that is neither convex nor concave. Disconnected Pareto front





### Special points

Ideal vector:  $y_k^I := \underline{y}_k := \min_{\mathbf{y} \in \mathcal{Y}} y_k$ Maximal point:  $\overline{y}_k = \max_{\mathbf{y} \in \mathcal{Y}} y_k$ 

Nadir point:  $y_k^N = \max_{\mathbf{y} \in \mathcal{Y}_N} y_k$ 



Computation of ideal point can be reduced to the solution of m single-objective optimization problems

The computation of the Nadir point is a very difficult problem and no efficient method for computing  $y^N$  is known for m > 2, yet.

f1

#### 3-D Attainment surface, dominated space



3D Attainment surface: Useful for visualizing finite non-dominated sets in 3-D

<sup>&#</sup>x27;Steps' into direction north to east.

#### 3-D Attainment Surface, Continuous



The slope of the attainment surface is always in the direction north-northeast-east

#### Pareto front in three dimensons



0.2

Visualization of finite PF with 5 points.

3-D continuous Pareto fronts and approximations to them with 70 points.

Here maximization is considered: Dominance cones are the negative orthants

## Optima seeking using contour plots

Contour plots help to localize optimizers of single-objective problems.

Often, they provide an intuition for reasoning about optima for higher dimensional functions.

A level set is informally defined as a set of arguments (variable settings) for which the function obtains the same value.

A contour is a connected part of a level set of a 2-dimensional function.



## Finding efficient set using level sets (contours): Single objective optimization, linear case



Draw constraint boundaries  $g_i(\mathbf{x}) = 0$  and contours for  $f(\mathbf{c}) \equiv C$  for different constants C.

## Hillclimbing in Multiobjective Landscapes



*Orange Mountains*  $f_1(x_1, x_2) \rightarrow \max$ 

*Blue Mountains*  $f_1(x_1, x_2) \rightarrow \max$ 

### Finding efficient points using contour plots

Contour plots can sometimes be used to find efficient points in bi-objective optimization graphically.



#### Finding the efficient set in IR<sup>2</sup>: Example!!!!!



Indicate region that is dominated by  $\hat{\mathbf{p}}_1$ .

## Finding the efficient set in IR<sup>2</sup>: Example



#### Take home messages

Important definitions in Pareto optimization are the (weakly, strictly) efficient set, Pareto front, ideal/nadir point, (feasible) decision/objective space

Pareto fronts can be convex or concave, connected or disconnected

Theorems on level sets can be used to identify (globally) efficient points analytically; they are useful for reasoning about the location of the efficient set;

Often optima occur at the constraint boundary; In particular, for linear problems this is the case. In 2-D countour plots can be used to identify efficient solutions at the boundary.

#### **Additional Material**

#### Level sets and curves

Level sets can be used to visualize  $\mathcal{X}_E$ ,  $\mathcal{X}_{wE}$  and  $\mathcal{X}_{sE}$  for continuous spaces:

$$\mathcal{L}_{\leq}(f(\hat{\mathbf{x}})) = \{\mathbf{x} \in \mathcal{X} : f(\mathbf{x}) \leq f(\hat{\mathbf{x}})\} : \text{Level set}$$

$$\mathcal{L}_{=}(f(\hat{\mathbf{x}})) = \{\mathbf{x} \in \mathcal{X} : f(\mathbf{x}) = f(\hat{\mathbf{x}})\} : \text{Level curve}$$

$$\mathcal{L}_{<}(f(\hat{\mathbf{x}})) = \{\mathbf{x} \in \mathcal{X} : f(\mathbf{x}) < f(\hat{\mathbf{x}})\} : \text{Strict level set}$$

Draw the level set  $\mathcal{L}_{\leq}(f(\mathbf{x}_0))$  for  $f(\mathbf{x}) = |1 - \mathbf{x}|^2 = (x_1 - 1)^2 + (x_2 - 1)^2$  and  $\mathbf{x}_0 = (1, 0)$  in the  $x_1, x_2$  plane!

## Finding Efficient Points by Level Sets: Example 1

Level sets can be used to determine whether  $\hat{x} \in \mathcal{X}$  is (strictly, weakly) non-dominated or not.



The point  $\hat{x}$  cannot be nondominated! Why?

Answer: Dominating solutions are in the area where the two strict level sets intersect.

#### Finding Efficient Points by Level Sets: Example 2



#### Is $\hat{x}$ efficient?

Answer: It is not possible to improve  $f_1$  and  $f_2$  at the same time relative to their values in  $\hat{\mathbf{x}}$ . Therefore,  $\hat{\mathbf{x}}$  is efficient.

#### **Level Sets**

The point  $\hat{x}$  can only be efficient if its level sets intersect in level curves.

x is efficient 
$$\Leftrightarrow \bigcap_{k=1}^m \mathcal{L}_{\leq}(f_k(\mathbf{x})) = \bigcap_{k=1}^m \mathcal{L}_{=}(f_k(\mathbf{x}))$$

The point  $\hat{x}$  can only be weakly efficient if its strict level sets do not intersect.

x is weakly efficient 
$$\Leftrightarrow \bigcap_{k=1}^m \mathcal{L}_{<}(f_k(\mathbf{x})) = \emptyset$$

The point  $\hat{\mathbf{x}}$  can only be strictly efficient if its level sets intersect in exactly one point.

x is strictly efficient 
$$\Leftrightarrow \bigcap_{k=1}^m \mathcal{L}_{\leq}(f_k(\mathbf{x})) = \{\mathbf{x}\}$$

#### Proof: Theorem on efficient points

The point  $\hat{x}$  can only be efficient if its level sets intersect in level curves.

$$\hat{\mathbf{x}}$$
 is efficient  $\Leftrightarrow \bigcap_{k=1}^m \mathcal{L}_{\leq}(f_k(\hat{x})) = \bigcap_{k=1}^m \mathcal{L}_{=}(f_k(\hat{x}))$ 

#### Proof:

 $\hat{\mathbf{x}}$  is efficient

 $\Leftrightarrow$  there is no  $\mathbf{x}$  such that both  $f_k(\mathbf{x}) \leq f_k(\hat{\mathbf{x}})$  for all  $k = 1, \ldots, m$  and  $f_k(\mathbf{x}) < f(\hat{\mathbf{x}})$  for at least one  $k = 1, \ldots, m$ 

 $\Leftrightarrow$  there is no  $\mathbf{x} \in \mathcal{X}$  such that both  $\mathbf{x} \in \cap_{k=1}^m \mathcal{L}_{\leq}(f(\hat{\mathbf{x}}))$  and  $\mathbf{x} \in \mathcal{L}_{<}(f_j(\hat{\mathbf{x}}))$  for some j

$$\Leftrightarrow \bigcap_{k=1}^m \mathcal{L}_{\leq}(f_k(\widehat{x})) = \bigcap_{k=1}^m \mathcal{L}_{=}(f_k(\widehat{x}))$$