Corso di Algebra per Ingegneria

Lezione 10: Esercizi

(1) $f: n \in \mathbb{N} \mapsto \{n\} \in P(\mathbb{N})$ ammette retrazioni? Se sì, scriverne una. E sezioni?

(2) Trovare una sezione per $f: n \in \mathbb{Z} \mapsto |n| \in \mathbb{N}$

(3) Sia $f: \{a, b, c\} \in P_3(\mathbb{Z}) \mapsto abc \in \mathbb{Z}$. f è suriettiva? Se sì, trovare una sezione. (Per la definizione di P_3 , vedere Esercizi per la Lezione 08)

(4) Siano $f: n \in \mathbb{Z} \mapsto n^2 + 1 \in \mathbb{Z}$ e $x = \{n \in \mathbb{N} \mid n^2 \le 100\}$. Trovare $\overrightarrow{f}(x)$, $\overleftarrow{f}(x)$, $\overrightarrow{f}(\overleftarrow{f}(x))$, $\overleftarrow{f}(x)$, $\overrightarrow{f}(x)$,

(5) Siano $a = \{-1, 0, 1\}$ e $f: (x, y) \in a \times a \mapsto x + y \in \mathbb{Z}$. Calcolare $\overrightarrow{f}(\{-1\} \times a)$, $\overrightarrow{f}(a \times \{1\})$, $\overleftarrow{f}(\mathbb{N})$, $\overleftarrow{f}(\{0\})$ e scrivere tutte le possibili sezioni e retrazioni di f.

(6) Sia $f: n \in \mathbb{N} \mapsto n^2 + 1 \in \mathbb{N}$. Trovare tutte le retrazioni e le sezioni di f.

(7) Trovare, se possibile, le inverse delle applicazioni

- (i) $f: n \in \mathbb{N} \mapsto 4 n \in \mathbb{Z}$,
- (ii) $g: n \in \mathbb{N} \mapsto 3n 2 \in \mathbb{Q}$,
- (iii) $h: n \in \mathbb{N} \setminus \{0\} \mapsto (2n-1)/n \in \mathbb{Q}$ e

(iv)
$$i: a \to a$$
 dove $a = \{0, 1, 2\}$ e $i(0) = 1$, $i(1) = 2$, $i(2) = 0$.

(8) Verificare che

$$f: n \in \mathbb{Z} \mapsto \begin{cases} 2n-1, & \text{se } n > 0 \\ -2n, & \text{se } n \le 0 \end{cases} \in \mathbb{N}$$

e

$$g: n \in \mathbb{Z} \mapsto \begin{cases} 2n, & \text{se } n > 0 \\ 1 - 2n, & \text{se } n \le 0 \end{cases} \in \mathbb{N}$$

sono biettive

(9) Verificare che

$$n \in \mathbb{N} \mapsto \begin{cases} -n/2, & \text{se } n \text{ è pari} \\ (n+1)/2, & \text{se } n \text{ è dispari} \end{cases} \in \mathbb{Z}$$

è biettiva

(10) Una delle due funzioni dell'Esercizio 8 è l'inversa di quella dell'Esercizio 9?

(11) Sia a un insieme. Dimostrare che l'applicazione $x \in P(a) \mapsto a \setminus x \in P(a)$ è biettiva e trovarne l'inversa.