Microprocessor and Computer Architecture

Dr. Trần Thị Anh Xuân Department of Instrumentation and Industrial Informatics

BM. Kỹ Thuật Đo & THCN – Viện Điện

Documents

MCS-51 Microcontroller Family Users Manual – Intel 1994

1.7. Fixed and Floating Point Number System

Fixed Point Number System

8-bit signed binary 4.4 fixed-point representation

1.7. Fixed and Floating Point Number System

- Floating Point Number
 - Floating-point numbers

```
x = \pm s \times b^e or \pm significand \times base^{exponent}
```

- The binary floating point numbers will always be of the general form:
 - (sign) 1.mmmmmm x 2 exponent

1.7. Fixed and Floating Point Number System

- Floating Point Number
 - The ANSI/IEEE standard floating-point number representation formats

```
Sign Biased exponent Significand s = 1.f (the 1 is hidden)

\pm e + bias f

32-bit: 8 bits, bias= 127 23+1 bits, single-precision or short format 52+1 bits, double-precision or long format
```

value =
$$(-1)^{\text{sign}} \left(1 + \sum_{i=1}^{23} b_{23-i} 2^{-i} \right) \times 2^{(E-127)}$$

1.8. Tri-state Buffer

Tri-State Buffer, example:

$$B = \begin{cases} 1, & C = A \\ 0, & High-impedance \end{cases}$$

1.9. Decoders

- Decoder is a combinational circuit that has:
 - 'n' input lines
 - And maximum of 2ⁿ output lines
 - One of these outputs will be active based on the combination of inputs present

1.9. Decoders

Example 1: 2-to-4 Decoder

1.10. Register

- A collection of two or more D Flip-Flops with a common clock input is called a register
- Registers are often used to store a collection of data bits:
 - Can be the related bits, such as a byte of data in a computer
 - Can be the unrelated bits, such as bits of data or control information

1.11. Memory

- Store large number of bits → memory array:
 - Capacity: m x n (bits): m words of n bits each
- Memory access (Read/Write)
- Memory Architecture

1.12. The microprocessor based system

Structure Diagram:

1.12. The microprocessor based system

- Including:
 - CPU (Central Processing Unit)
 - RAM/ROM
 - Peripheral I/O devices (interface circuit)

Connect together by System Bus

1.13.1. The microprocessor

- The Microprocessor (CPU):
 - is the master, which controls all the activities of the system
- Functions:
 - Calculate and data process control
 - Work done both internal and external to the processor

1.13.1. The microprocessor

- The Microprocessor types base on:
 - The word size
 - Instruction set structure
 - Functions
 - And more...

1.13.2. I/O Interfacing

- Functions:
 - is utilized to move information between internal storage and external Input/Output devices

1.14. Internal structure of the Microprocessor (CPU)

The Microprocessor based System:

1.14. Internal structure of the Microprocessor (CPU)

- CPU includes 3 main components:
 - ALU (Arithmetic Logic Unit): do all computations
 - Register (PC, MAR, IR, MBR, SP,...): stores variables
 - CU (Control Unit)
 - → These components transfer data together by Internal Data Bus

1.14.1. ALU (Arithmetic Logic Unit)

ALU Architecture:

1.14.2. Register

- Two types:
 - General purpose
 - Special purpose
- 1st type: General purpose registers
 - Used for storing temporary data/results
 - Example: Register A (Accumulator)

1.14.2. Register

- 2nd type: Special Register
 - PC (Program Counter)
 - For storing memory address of next executed instruction
 - IR (Instruction Register)
 - Contains whole content of current instruction
 - Still more...

