DA 250 / MDA 710 FINAL: **NETFLIX** SENTIMENT **ANALYSIS**

ARI BAZIGOS, CARTER EKBERG, HUNTER LUCKOW, TYLER WELSH

Overview

- Significance and Objectives
- Data Preprocessing
- Exploratory Analysis
- Topic Modeling
- Machine Learning

Project Objectives

- Use tweets regarding Netflix to calculate consumer sentiment
- Observe whether stock price during the dip of 4/19/22 had an effect on tweet sentiment
- Utilize Topic Modeling to group tweets into different categories

Project Significance

- Netflix recently had the worst quarter in its history
- First time ever they lost more subscribers than gained
- Company stakeholders may begin to predict company sentiment from external sources.
- This may assist in public relations, customer satisfaction, and shareholder comfort.
 - If the company can gain a sense of what the masses are saying about the company via social media, they can better structure their business and applications to satisfy various parties.
- Not only applicable to Twitter data, may also be applicable to other social media platforms.

Data Sources

DATA PRE-PROCESSING AND DATA FRAME CONSTRUCTION

Loading Tweets

- snscrape using keyword "Netflix"
- 2000 tweets per day from April 11 April 22
- Created a .csv file for each day
- Loaded all files into DataFrame below

	id	date	user	content	likes	retweets	quotes	replies	day
0	1513668213938307074	2022-04-11 23:59:59+00:00	https://twitter.com/simesanony2	@xtinethomas01 @KEdge23 So they have never watched the plethora of cooking programmes or seen the range of food on the internet.\n\nI accept they have probably never read a book and rely on a diet of Netflix and Facebook but it's all there for the finding.\n\nI don't buy the lack of knowledge, it's laziness	1	0	0	1	11
1	1513668179855220743	2022-04-11 23:59:51+00:00	https://twitter.com/lanMcGraw1000	@netflix Netflix you really have me staring at a clock the whole day	7	0	0	0	11

EXPLORATORY ANALYSIS

Calculating Sentiment Scores

- Applied VaderSentiment to calculate sentiment scores
- Each tweet given neg, pos, neu, and compound score
- Added scores to our DataFrame

	id	date	user	content	likes	retweets	quotes	replies	day	neg	neu	pos	compound
2	1513668177506574342	2022-04-11 23:59:50+00:00	https://twitter.com/King_Zulair	Netflix finally brought back Blade	0	0	0	0	11	0.000	0.698	0.302	0.3818
3	1513668167662460930	2022-04-11 23:59:48+00:00	https://twitter.com/TheLastDiety32	Netflix shows be half-way thru production and get canceled like gahhhhh damn bitch	0	0	0	0	11	0.331	0.420	0.249	-0.3182

Removing Compound Scores of O

- Removed because no net positive or negative with a compound score = 0.
- Felt that these tweets would not be beneficial to our algorithms
- Originally 24,000 tweets
- After removal, approximately
 17,000 tweets

Sentiment Scores by Day

- Grouped by "day" to calculate mean scores for each day
- Now we can see a trend in scores over time
- Negative score stands out as we see an increasing trend.

	neg	neu	pos	compound
day				
11	0.066070	0.811103	0.122826	0.134012
12	0.068213	0.816968	0.114818	0.111923
13	0.063543	0.802457	0.133998	0.180205
14	0.067166	0.810852	0.121978	0.142359
15	0.073695	0.814461	0.111842	0.109852
16	0.077697	0.812575	0.109735	0.098675
17	0.072620	0.808624	0.118749	0.116685
18	0.073180	0.803624	0.123195	0.135079
19	0.082189	0.815173	0.102644	0.078409
20	0.089902	0.806432	0.103663	0.054481
21	0.084562	0.804063	0.111375	0.083004
22	0.085164	0.795063	0.119780	0.093277

Netflix Stock

 We then imported Netflix stock data from yahoo finance for the same date range

Open	High	Low	Close	Volume	Dividends	Stock Splits	day
350.000000	354.779999	345.200012	348.000000	3777100	0	0	11
355.910004	359.410004	342.250000	344.100006	3824300	0	0	12
343.920013	352.000000	341.160004	350.429993	3231000	0	0	13
350.950012	352.000000	339.859985	341.130005	4338100	0	0	14
340.000000	342.359985	331.619995	337.859985	5105000	0	0	18
333.220001	351.679993	333.220001	348.609985	20906900	0	0	19
245.199997	248.699997	212.509995	226.190002	133387500	0	0	20
220.000000	227.679993	211.520004	218.220001	53501600	0	0	21
220.179993	226.270004	210.050003	215.520004	37458500	0	0	22
	350.000000 355.910004 343.920013 350.950012 340.000000 333.220001 245.199997 220.000000	350.000000 354.779999 355.910004 359.410004 343.920013 352.000000 350.950012 352.000000 340.000000 342.359985 333.220001 351.679993 245.199997 248.699997 220.000000 227.679993	350.000000 354.779999 345.200012 355.910004 359.410004 342.250000 343.920013 352.000000 341.160004 350.950012 352.000000 339.859985 340.000000 342.359985 331.619995 333.220001 351.679993 333.220001 245.199997 248.699997 212.509995 220.000000 227.679993 211.520004	350.000000 354.779999 345.200012 348.000000 355.910004 359.410004 342.250000 344.100006 343.920013 352.000000 341.160004 350.429993 350.950012 352.000000 339.859985 341.130005 340.000000 342.359985 331.619995 337.859985 333.220001 351.679993 333.220001 348.609985 245.199997 248.699997 212.509995 226.190002 220.0000000 227.679993 211.520004 218.220001	350.000000 354.779999 345.200012 348.000000 3777100 355.910004 359.410004 342.250000 344.100006 3824300 343.920013 352.000000 341.160004 350.429993 3231000 350.950012 352.000000 339.859985 341.130005 4338100 340.000000 342.359985 331.619995 337.859985 5105000 333.220001 351.679993 333.220001 348.609985 20906900 245.199997 248.699997 212.509995 226.190002 133387500 220.000000 227.679993 211.520004 218.220001 53501600	350.000000 354.779999 345.200012 348.000000 3777100 0 355.910004 359.410004 342.250000 344.100006 3824300 0 343.920013 352.000000 341.160004 350.429993 3231000 0 350.950012 352.000000 339.859985 341.130005 4338100 0 340.000000 342.359985 331.619995 337.859985 5105000 0 333.220001 351.679993 333.220001 348.609985 20906900 0 245.199997 248.699997 212.509995 226.190002 133387500 0 220.000000 227.679993 211.520004 218.220001 53501600 0	350.000000 354.779999 345.200012 348.000000 3777100 0 0 355.910004 359.410004 342.250000 344.100006 3824300 0 0 343.920013 352.000000 341.160004 350.429993 3231000 0 0 350.950012 352.000000 339.859985 341.130005 4338100 0 0 340.000000 342.359985 331.619995 337.859985 5105000 0 0 333.220001 351.679993 333.220001 348.609985 20906900 0 0 245.199997 248.699997 212.509995 226.190002 133387500 0 0 220.000000 227.679993 211.520004 218.220001 53501600 0 0

Negative Sentiment Score and NFLX Stock Price

TOPIC MODELING

Cleaning Tweets

- Before Topic Modeling, need to "clean" text
- Remove hyperlinks, emojis, usernames, and punctuation.
- We utilized the nltk and re libraries
- Also some written functions found online

content

@xtinethomas01 @KEdge23 So they have never watched the plethora of cooking programmes or seen the range of food on the internet.\n\nl accept they have probably never read a book and rely on a diet of Netflix and Facebook but it's all there for the finding.\n\nI don't buy the lack of knowledge, it's laziness

clean_tweet

never watch
plethora
cook
programm
seen rang
food internet
accept
probabl
never read
book reli
diet netflix
facebook
find buy lack
knowledg

netflix realli stare clock whole day

netflix final brought back blade

@netflix Netflix

you really have

me staring at a clock the whole

day

Implementing Topic Modeling

- Imported Topic Modeling Algorithm "LatentDirichletAllocation"
- Clusters words frequently found in individual tweets.
- Made "Netflix" a stop word (cannot be a word in a topic)
- Set cluster frequency minimum to 20 instances
- Set number of Topics to 4, and cluster size to 6.

	Topic 0 words	Topic 0 weights	Topic 1 words	Topic 1 weights	Topic 2 words	Topic 2 weights	Topic 3 words	Topic 3 weights
0	watch	508.6	subscrib	364.6	ad	469.9	share	342.7
1	show	313.7	time	256.6	price	255.4	subscrib	207.9
2	like	256.2	first	235.9	plan	234.1	content	205.6
3	movi	228.1	stock	175.6	cancel	227.3	password	202.2
4	get	191.8	lose	149.5	stream	212.4	price	190.0
5	good	179.9	year	148.8	support	206.2	disney	175.6

MACHINE LEARNING PREDICTIVE MODELS

Constructing "neg_tweet" Variable

- Used chosen words from our Topic Modeling to flag in tweets
- If these words are in a tweet, we flag it as a "negative tweet"

i	d date	user	content	likes	retweets	quotes	replies	day	neg	neu	pos	compound	score	neg_tweet
5	6 2022-04-11 23:58:36+00:00	https://twitter.com/SlimJenkins9	@netflix , its you or groceries at this point. These prices getting out of hand.	0	0	0	0	11	0.000	0.814	0.186	0.4939	0	1

Further Processing

- Chose 4 features and target column.
- 4 features include "neg", "neu", "pos", and "neg_tweet" columns.
- Target is "score" column
- Target column is based off of negative and positive compound scores.
- Since scores are based on compound values, we removed the compound feature column as it would add too much bias to the models.
- Now we are ready to start developing our models.

Developing Train and Test Sets

```
df = days no0[['neg', 'neu', 'pos', 'neg tweet', 'score']]
In [94]:
In [95]:
          df.head()
   Out[95]:
                       neu
                             pos neg tweet score
              0 0.000 0.926 0.074
              2 0.000 0.698 0.302
              3 0.331 0.420 0.249
              4 0.161 0.621 0.218
              7 0.026 0.809 0.165
In [59]:
          X=df.iloc[:,0:-1].values
             y=df.iloc[:,-1].values
             le = LabelEncoder()
             y=le.fit transform(y)
In [96]:
          # Creating train & test sets.
             X train, X test, y train, y test = train test split(X, y,
                                                                  test size=0.20,
                                                                  stratify=y,
                                                                  random state=1)
```

 Created dataframe with features and target.

- Assigning feature columns to X and target column to y.
- Using sklearn train test split to develop train and test sets.

Perceptron

	Predicted Negative	Predicted Positive
Actual Negative	1829	304
Actual Positive	0	1296

- Perceptron model with 50 iterations through the data.
- Accurately predicted score 91.4% of the time.

Confusion Matrix

Logistic Regression

 Obtained accuracy of 98.3% using Logistic Regression

Predicted Negative Predicted Positive

Actual Negative	2104	29
Actual Positive	28	1268

Confusion Matrix

SVM with Cross Validation

CV accuracy: 0.984 +/- 0.004

```
Mean cross
In [105]: N svc = SVC(kernel='linear', C=1.0, random state=1)
                                                                                                                       validation score of
In [106]: ► svc.fit(X train, y train)
                                                                                                                       98.4% with a
             v pred = svc.predict(X test)
             print(svc.score(X test, y test))
                                                                                                                       standard deviation
             0.9813356663750364
                                                                                                                       of 0.4%.
In [107]: ► kfold = StratifiedKFold(n_splits=10).split(X_train, y_train)
             scores=[]
             for k, (train,test) in enumerate(kfold):
                 svc.fit(X_train[train], y_train[train])
                 score=svc.score(X train[test], y train[test])
                 scores.append(score)
                 print('Fold: %2d, Class dis.: %s, Acc: %.3f' % (k+1, np.bincount(y train[train]), score))
             print('\nCV accuracy:%.3f +/- %.3f' % (np.mean(scores), np.std(scores)))
             Fold: 1, Class dis.: [7675 4665], Acc: 0.988
                                                                          from sklearn.model selection import cross val score
                                                              In [108]:
             Fold: 2, Class dis.: [7675 4665], Acc: 0.982
             Fold: 3, Class dis.: [7676 4665], Acc: 0.985
                                                                              scores = cross_val_score(estimator=svc,
             Fold: 4, Class dis.: [7676 4665], Acc: 0.981
             Fold: 5, Class dis.: [7675 4666], Acc: 0.985
                                                                                                       X=X train,
             Fold: 6, Class dis.: [7675 4666], Acc: 0.985
                                                                                                       y=y train,
             Fold: 7, Class dis.: [7675 4666], Acc: 0.987
                                                                                                       cv=10,
             Fold: 8, Class dis.: [7675 4666], Acc: 0.989
                                                                                                       n jobs=1)
             Fold: 9, Class dis.: [7675 4666], Acc: 0.977
                                                                              print(np.mean(scores))
             Fold: 10, Class dis.: [7675 4666], Acc: 0.978
```

0.9837366800424453

Conclusions

- Using Sentiment Analysis and Topic Modeling, we were able to effectively predict whether tweets would have a positive or negative score.
- Topic Modeling allowed us to choose relevant keywords to utilize in our Machine Learning models.
- The combination of chosen keywords by humans and calculated sentiment scores allowed our models to predict accurately.
- With help from Machine Learning, companies could enhance their customer and stakeholder satisfaction, if able to effectively predict overall market sentiment.

REFERENCES

- Investigate.ai
 - https://investigate.ai/bloomberg-tweet-topics/scrape-tweets-from-presidential-primarycandidates/
- Snscrape
 - https://urldefense.com/v3/__https://medium.datadriveninvestor.com/how-to-build-a-twitter-scraping-app-with-python-b3fc069a19c6*5Cn_;JQ!!Delc-uvKXH9G!5T9CbaEqjUZdNgpKYalRx5XoU3s8gU2y6eKQSVr-6WS_2Q1CTrH0mP8asxTfF6kBC5BOfhqtUlGIcOeiDS_g2RciMuCe4iTT\$
- Topic Modeling
 - https://urldefense.com/v3/_https://ourcodingclub.github.io/tutorials/topic-modelling-python/*5Cn_;JQ!!Delc-uvKXH9G!5T9CbaEqjUZdNgpKYalRx5XoU3s8gU2y6eKQSVr-6WS_2Q1CTrH0mP8asxTfF6kBC5BOfhqtUlGlcOeiDS_g2RciMjseTSiN\$
- Python Machine Learning (Sebastian Raschka)

THANK YOU