THE MATHEMATICS OF LATTICE-BASED CRYPTOGRAPHY

5. SIS/LWE and Lattices

Alfred Menezes cryptography 101.ca

Outline

- 1. The SIS lattice
- 2. Average-case hardness of SIS
- 3. The LWE lattice
- 4. Average-case hardness of LWE

Definition of the SIS lattice

- + SIS(n, m, q, B). Given $A \in_R \mathbb{Z}_q^{n \times m}$ (where $m \gg n$) and $B \ll q/2$, find $z \in \mathbb{Z}_q^m$ such that $Az = 0 \pmod{q}$, where $z \neq 0$ and $z \in [-B, B]^m$.
- + Define the SIS lattice to be $L_A^{\perp} = \{z \in \mathbb{Z}^m : Az = 0 \pmod{q}\}.$ $A \qquad |z| = b \pmod{q}$
- + Claim 1. L_A^{\perp} is an integer lattice in \mathbb{R}^m .
- * The claim can be easily proven using the following equivalent definition of a lattice.
- * Fact. A lattice L is a discrete additive subgroup of \mathbb{R}^m .
 - **→** *L* is an *additive subgroup* of \mathbb{R}^m means that (i) *L* is non-empty subset of \mathbb{R}^m ; and (ii) $x + y, -x \in L$ for all $x, y \in L$.
 - * L is discrete means that for each $x \in L$, there exists $\epsilon > 0$ such that no element of L (other than x) is within distance ϵ of x.

Rank of the SIS lattice

- + Claim 2. The SIS lattice $L_A^{\perp} = \{z \in \mathbb{Z}^m : Az = 0 \pmod{q}\}$ has full rank m.
- **Proof**. The lattice $q\mathbb{Z}^m$ is a sublattice of L_A^{\perp} . Now, the m vectors (q,0,...,0), (0,q,...,0), ..., (0,0,...,q) are in $q\mathbb{Z}^m$ and are linearly independent (over \mathbb{R}). Thus, $q\mathbb{Z}^m$ is a full-rank lattice, and so L_A^{\perp} is also a full-rank lattice. □
- + Notes.
 - 1. L_A^{\perp} is a q-ary lattice, i.e. for all $z \in \mathbb{Z}^m$ we have $z \in L_A^{\perp}$ if and only if $z \mod q \in L_A^{\perp}$.
 - 2. A basis matrix for the lattice $q\mathbb{Z}^m$ is qI_m . Thus, $\operatorname{vol}(q\mathbb{Z}^m) = |\det(qI_m)| = q^m$ and hence $\operatorname{vol}(L_A^{\perp}) \leq q^m$.

Volume of the SIS lattice

- **Claim 3**. The SIS lattice $L_A^{\perp} = \{z \in \mathbb{Z}^m : Az = 0 \pmod{q}\}$ has volume q^n (assuming that A has rank n over \mathbb{Z}_q .)
- + **Proof**. \mathbb{Z}^m and L_A^{\perp} are free (additive) abelian groups of rank m.
- * Since L_A^{\perp} is a subgroup of \mathbb{Z}^m , and they have the same rank, the quotient group \mathbb{Z}^m/L_A^{\perp} is finite. Moreover, $\operatorname{vol}(L_A^{\perp}) = |\mathbb{Z}^m/L_A^{\perp}|$. (This is Theorem 1.17 in Stewart & Tall's book.)
- See Section 1.6 of *Algebraic*Number Theory and Fermat's

 Last Theorem (3rd edition), by

 Stewart and Tall.

- * So, to determine $\operatorname{vol}(L_A^{\perp})$, we need to compute $|\mathbb{Z}^m/L_A^{\perp}|$, the number of cosets of L_A^{\perp} in \mathbb{Z}^m .
 - * Now, let $x, y \in \mathbb{Z}^m$. Then $L_A^{\perp} + x = L_A^{\perp} + y \Longleftrightarrow x y \in L_A^{\perp} \Longleftrightarrow A(x y) = 0 \pmod{q} \Longleftrightarrow Ax = Ay \pmod{q}$.
 - * Assuming that *A* has rank *n* over $\mathbb{Z}_{q'}$ its column space has dimension *n* over $\mathbb{Z}_{q'}$.
 - + Thus, the column space of A has size q^n , whence $|\mathbb{Z}^m/L_A^{\perp}| = q^n$. \square

A basis of the SIS lattice

Claim 4. Suppose that the first *n* columns of *A* are linearly independent over $\mathbb{Z}_{q'}$ so *A* can be row-reduced to a matrix $\tilde{A} = [I_n | \overline{A}]$ (where $\overline{A} \in \mathbb{Z}_q^{n \times (m-n)}$).

Then
$$C = \begin{bmatrix} qI_n & -\overline{A} \\ 0 & I_{m-n} \end{bmatrix} \in \mathbb{Z}^{m \times m}$$
 is a basis matrix for the SIS lattice L_A^{\perp} .

* **Proof**. Since A and \tilde{A} are row equivalent (over \mathbb{Z}_q), they have the same null space (mod q). Hence, $L_{\tilde{A}}^{\perp} = L_A^{\perp}$, so we will find a basis for $L_{\tilde{A}}^{\perp}$.

59

Now, each column v of C is in $L_{\tilde{A}}^{\perp}$ since $\tilde{A}v=0 \pmod{q}$ [check this!].

Moreover, the columns of C are linearly independent over \mathbb{R} since $\det(C) = q^n$.

Thus, C is a basis matrix for a full-rank sublattice L of $L_{\tilde{A}}^{\perp}$.

Since $\operatorname{vol}(L) = q^n = \operatorname{vol}(L_A^{\perp}) = \operatorname{vol}(L_{\tilde{A}}^{\perp})$, we have $L_{\tilde{A}}^{\perp} = L$.

Thus, C is a basis matrix for the SIS lattice L_A^{\perp} . \square

Solving SIS

- * SIS(n, m, q, B). Given $A \in_R \mathbb{Z}_q^{n \times m}$ find $z \in \mathbb{Z}_q^m$ such that $Az = 0 \pmod{q}$, where $z \neq 0$ and $z \in [-B, B]^m$.
- * An equivalent lattice formulation is:

SIS(n, m, q, B): Given $A \in_R \mathbb{Z}_q^{n \times m}$, find a nonzero $z \in [-B, B]^m$ in the SIS lattice $L_A^{\perp} = L(C)$

where
$$C = \begin{bmatrix} qI_n & -\overline{A} \\ 0 & I_{m-n} \end{bmatrix}$$
.

- * For $z \in \mathbb{R}^m$, the infinity norm of z is $||z||_{\infty} = \max_i |z_i|$.
 - * So, an SIS solution $z \in \mathbb{Z}^m$ must satisfy $0 < ||z||_{\infty} \le B$.
- * SIS hardness is usually studied using the Euclidean norm: $||z||_2 = \sqrt{z_1^2 + z_2^2 + \cdots + z_m^2}$.
- + **Exercise**: Show that for all $z \in \mathbb{R}^m$, $||z||_{\infty} \le ||z||_2 \le \sqrt{m} ||z||_{\infty}$.

Solving SIS₂

- * SIS₂(n, m, q, β). Given $A \in_R \mathbb{Z}_q^{n \times m}$ where $\beta \ll q$, find nonzero $z \in \mathbb{Z}_q^m$ such that $Az = 0 \pmod{q}$ and $\|z\|_2 \leq \beta$.
- * An equivalent lattice formulation is: $\mathbf{SIS}_2(n, m, q, \beta)$: Given $A \in_R \mathbb{Z}_q^{n \times m}$, find nonzero z with $||z||_2 \leq \beta$ in the SIS lattice L_A^{\perp} .
 - * By Minkowski's Theorem (slide 49), $\lambda_1(L_A^{\perp}) \leq \sqrt{m} \ q^{n/m}$.
 - * We'll assume that $\beta \ge \sqrt{m} q^{n/m}$, whereby an SIS₂ solution is guaranteed to exist.
- * Now, by the Gaussian heuristic (slide 49), $\lambda_1(L_A^{\perp}) \approx \sqrt{m/(2\pi e)} \ q^{n/m}$.
- * Thus, SIS₂ can be seen as an instance of approximate-SVP (SVP_{γ}) in the SIS lattice L_A^{\perp} with approximation factor $\gamma = \beta \sqrt{2\pi e}/(\sqrt{m}q^{n/m})$.
- **◆ Exercise**: Show that $SIS(n, m, q, B) \le SIS_2(n, m, q, B) \le SIS(n, m, q, B/\sqrt{m})$.

Average-case hardness of SIS

- * It's reasonable to conjecture that SIS is hard in the worst case.
- * But, what can we say about the hardness of SIS *on average*?
- * In 1996, Ajtai proved a striking average case hardness result for SIS:
 - * If SIVP $_{\gamma}$ is hard in the *worst-case*, then SIS is hard on *average*.
 - * Such a reduction is called a *worst-case to average-case reduction*.
- * Since the assumption that $SIVP_{\gamma}$ is hard in the worst case is a reasonable assumption, we have a provable guarantee that SIS is hard on average.

The worst-case to average-case reduction is asymptotic

- * Although Ajtai's worst-case to average-case reduction provides a strong guarantee for the average-case hardness of SIS, the guarantee is an *asymptotic* one.
 - * Also, the reduction is highly non-tight.
- * In 2004, Micciancio & Regev proved the following: **Theorem**. For any $m(n) = \Theta(n \log n)$, there exists a $q(n) = O(n^2 \log n)$ such that for any function $\gamma(n) = \omega(n \log n)$, solving $SIS_2(n, m, q, \beta)$ on average with nonnegligible probability is at least as hard as solving $SIVP_{\gamma}$ in the worst case.

WORST-CASE TO AVERAGE-CASE REDUCTIONS BASED ON GAUSSIAN MEASURES*

DANIELE MICCIANCIO[†] AND ODED REGEV[‡]

SIS summary

SIS is considered a lattice problem for two reasons.

- 1. SIS is equivalent to solving SVP $_{\gamma}$ in the SIS lattice.
 - * The fastest algorithm known for solving SVP_{γ} is the Block-Korkine-Zolotarev (BKZ) algorithm, which has an exponential running time.
 - * The running time of BKZ is used to select concrete parameters for SIS for a desired security level.
- 2. Solving SIS on average is provably at least as hard as solving SIVP $_{\gamma}$ in the worst case.
 - * This hardness guarantee is an asymptotic one, and its relevance to the hardness SIS in practice is not clear.

Definition of the LWE lattice

+ **LWE**(m, n, q, B). Let $s \in_R \mathbb{Z}_q^n$ and $e \in_R [-B, B]^m$. Given $A \in_R \mathbb{Z}_q^{m \times n}$ and $b = As + e \pmod{q}$, find s.

- * Define the LWE lattice to be $L_A = \{y \in \mathbb{Z}^m : Az = y \pmod{q} \text{ for some } z \in \mathbb{Z}^n\} \subseteq \mathbb{R}^m.$
- * Claim 1. L_A is a full-rank (integer) q-ary lattice in \mathbb{R}^m .
- **Proof**. L_A is a discrete additive subgroup of \mathbb{R}^m , and thus is a lattice.

A basis of the LWE lattice

- * Claim 2. Let $A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$ where $A_1 \in \mathbb{Z}_q^{n \times n}$ and $A_2 \in \mathbb{Z}_q^{(m-n) \times n}$, and suppose that A_1 is invertible mod q. Let $D_2 = A_2 A_1^{-1} \pmod{q}$. Then $D = \begin{bmatrix} I_n & 0 \\ D_2 & qI_{m-n} \end{bmatrix} \in \mathbb{Z}^{m \times m}$ is a basis matrix for L_A (and so $\operatorname{vol}(L_A) = q^{m-n}$).
- **Proof**. Since $\det(D) = q^{m-n}$, the columns of D are linearly independent over \mathbb{R} . Write $y \in \mathbb{Z}^m$ as $\begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$ where $y_1 \in \mathbb{Z}^n$ and $y_2 \in \mathbb{Z}^{m-n}$.

Now, $y \in L_A \iff y = Az \pmod q$ for some $z \in \mathbb{Z}^n \iff y_1 = A_1z \pmod q$ and $y_2 = A_2z \pmod q$ for some $z \in \mathbb{Z}^n \iff y_2 = A_2A_1^{-1}y_1 \pmod q \iff y_2 = D_2y_1 + qc$ for some $c \in \mathbb{Z}^{m-n}$.

Observing that $y = D \begin{bmatrix} y_1 \\ c \end{bmatrix}$, it follows that the columns of D are a basis for L_A . \square

Solving LWE

- + LWE(m, n, q, B). Let $s \in_R \mathbb{Z}_q^n$ and $e \in_R [-B, B]^m$. Given $A \in_R \mathbb{Z}_q^{m \times n}$ and $b = As + e \pmod{q}$, find s.
- * LWE lattice: $L_A = \{y \in \mathbb{Z}^m : As = y \pmod{q} \text{ for some } s \in \mathbb{Z}^n\} \subseteq \mathbb{R}^m.$
- * Note that for an LWE instance (A, b, s, e), we have $y = As \mod q \in L_A$, and $||b y||_2 = ||e||_2 \le \sqrt{m} B$.
- * Thus, LWE is a special instance of the following lattice problem:

Bounded Distance Decoding (BDD $_{\alpha}$):

Given a lattice $L = L(D) \subseteq \mathbb{R}^m$ and $b \in \mathbb{R}^m$ with the guarantee that there is a unique $y \in L$ within distance α of b, find y.

Reducing BDD to SVP (1)

- ◆ **BDD**_α: Given a lattice $L = L(D) \subseteq \mathbb{R}^m$ and $b \in \mathbb{R}^m$ with the guarantee that there is a unique $y \in L$ within distance α of b, find y.
- * We'll suppose that $\alpha < \lambda_1(L)/\sqrt{2}$.
- + Let $D' = \begin{bmatrix} D & -b \\ 0 & \alpha \end{bmatrix} \in \mathbb{Z}^{(m+1)\times(m+1)}$. Then $L' = L(D') = \left\{ \begin{bmatrix} v cb \\ c\alpha \end{bmatrix} : v \in L(D) \text{ and } c \in \mathbb{Z} \right\}.$
- * Notice that for (v, c) = (y, 1), we have $\tilde{v} = \begin{bmatrix} y b \\ \alpha \end{bmatrix} \in L'$ with $\|\tilde{v}\|_2 = \sqrt{\|y b\|_2^2 + \alpha^2} \le \sqrt{2}\alpha$. Hence, $\lambda_1(L') \le \sqrt{2}\alpha < \lambda_1(L)$.

- * Suppose now that $v' = \begin{bmatrix} v cb \\ c\alpha \end{bmatrix} \in L'$ has length $\|v'\|_2 = \lambda_1(L')$.
- + If c = 0, then $||v'||_2 = ||v||_2 \ge \lambda_1(L) > \lambda_1(L')$, a contradiction.
- + And, if $|c| \ge 2$, then $||v'||_2 \ge 2\alpha > \sqrt{2}\alpha \ge \lambda_1(L')$, a contradiction.
- + Hence, we must have $c = \pm 1$. If c = 1, we have $v' = \begin{bmatrix} v - b \\ \alpha \end{bmatrix}$ for some $v \in L$.
- * Now, if $v \neq y$, then $||v b||_2 > ||y b||_2$, whence $||v'||_2 > ||\tilde{v}||_2$, contradicting $||v'||_2 = \lambda_1(L')$.
- * Hence $\pm \tilde{v}$ are the only vectors of length $\lambda_1(L')$ in L'.

Reducing BDD to SVP (2)

- *** BDD**_α: Given a lattice $L = L(D) \subseteq \mathbb{R}^m$ and $b \in \mathbb{R}^m$ with the guarantee that there is a unique $y \in L$ within distance α of b, find y.
- * **Summary**: We can solve the BBD $_{\alpha}$ instance by solving SVP for L(D') where $D' = \begin{bmatrix} D & -b \\ 0 & \alpha \end{bmatrix}$.
- * This method of solving LWE is called a "primal attack using a Kannan embedding".

Average-case hardness of LWE

- * It's reasonable to conjecture that LWE is hard in the worst case.
- * But, what can we say about the hardness of LWE on average?
- * In 2005, Regev proved a striking average-case hardness result for LWE:
 - * If SIVP_{γ} is quantumly hard in the *worst-case*, then LWE is hard on *average*.
- * Since the assumption that $SIVP_{\gamma}$ is quantumly hard in the worst case is a reasonable assumption, we have a provable guarantee that LWE is hard on average.
- * However, as with Ajtai's worst-case to average-case reduction for SIS, Regev's reduction is *highly non-tight* (and also a quantum reduction).
 - * For a concrete analysis of Regev's reduction, see Section 5 of:

 "Another look at tightness II: practical issues in cryptography"

 by Chatterjee, Koblitz, Menezes & Sarkar, https://eprint.iacr.org/2016/360.

Gaussian distributions

- * I should note that in Regev's worst-case to average-case reduction, and also in much of the cryptographic literature on LWE-based protocols, the components of the LWE error vector *e* are drawn from certain Gaussian distributions (and not from uniform distributions)
- * However, for the sake of simplicity, I didn't use Gaussians in my lectures.
- * Also, Kyber and Dilithium use uniform distributions and central binomial distributions.

LWE summary

LWE is considered a lattice problem for two reasons.

- 1. LWE can be reduced to solving BDD $_{\alpha}$ in the LWE lattice, which in turn can be reduced to solving an instance of SVP.
 - * The fastest algorithm known for solving SVP is the Block-Korkine-Zolotarev (BKZ) algorithm, which has an exponential running time.
 - * The running time of BKZ can be used to select concrete parameters for LWE for a desired security level.
- 2. Solving LWE on average is provably at least as hard as (quantumly) solving SIVP $_{\gamma}$ in the worst case.
 - * This hardness guarantee is an asymptotic one, and its relevance to LWE in practice is not clear.