

Bachelor of Computer Application

Computational Mathematics

LECTURE 23 NOTES

Adjoint of a Matrix

Adjoint of a Matrix

The adjoint of a square matrix $A = [a_{ij}] n \times n$ is defined as the transpose of the matrix $[A_{ij}] n \times n$, where A_{ij} is the cofactor of the element a_{ij} . Adjoint of the matrix A is denoted by adj A.

Then
$$adj \ A = Transpose \ of \begin{bmatrix} A_{11} \ A_{12} \ A_{13} \\ A_{21} \ A_{22} \ A_{23} \\ A_{31} \ A_{32} \ A_{33} \end{bmatrix} = \begin{bmatrix} A_{11} \ A_{21} \ A_{31} \\ A_{12} \ A_{22} \ A_{32} \\ A_{13} \ A_{23} \ A_{33} \end{bmatrix}$$

Example:

Find adj A for A
$$\begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$$

Solution:

We have
$$A_{11} = 4$$
, $A_{12} = -1$, $A_{21} = -3$, $A_{22} = 2$

■ Hence,
$$adj A = \begin{bmatrix} A_{11} & A_{21} \\ A_{12} & A_{22} \end{bmatrix} = \begin{bmatrix} 4 & -3 \\ -1 & 2 \end{bmatrix}$$

THEOREM 1:

If A be any given square matrix of order n, then

$$A (adj A) = (adj A) A = A I$$

where I is the identity matrix of order n.

Verification:

Let
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}, \text{ then adj } A = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix}$$

Since sum of product of elements of a row (or a column) with corresponding cofactors is equal to | A| and otherwise zero, we have

$$A (adj A) = \begin{bmatrix} |A| & 0 & 0 \\ 0 & |A| & 0 \\ 0 & 0 & |A| \end{bmatrix} = |A| \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = |A| I$$

Similarly, we can show (adj A) A = A I

Hence A (adj A) = (adj A) A = A I

Singular Matrix

Definition: A square matrix A is said to be singular if |A| = 0.

For example, the determinant of matrix $\begin{bmatrix} 1 & 2 \\ 4 & 8 \end{bmatrix}$ is zero.

Hence A is a singular matrix.

Non-Singular Matrix

Definition: A square matrix A is said to be non-singular if $A \neq 0$

Let
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
. Then $|A| = A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = 4 - 6 = -2 \neq 0$.

Hence A is a non-singular matrix

Theorem 2:

• If A and B are non-singular matrices of the same order, then AB and BA are also non-singular matrices of the same order.

THEOREM 3:

The determinant of the product of matrices is equal to product of their respective determinants, that is, $|AB| = |A| \, |B|$, where A and B are square matrices of the same order

Remark We know that (adj A) A =
$$|A|$$

$$\begin{bmatrix} |A| & 0 & 0 \\ 0 & |A| & 0 \\ 0 & 0 & |A| \end{bmatrix}$$
, $|A| \neq 0$

Writing determinants of matrices on both sides, we have

$$|(adj A) A| = \begin{vmatrix} |A| & 0 & 0 \\ 0 & |A| & 0 \\ 0 & 0 & |A| \end{vmatrix}$$

i.e.,
$$|(\text{adj A})| |A| = |A^3| \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

i.e.,
$$|(adj A)| |A| = |A|^3 (1)$$

i.e.,
$$|(adj A)| = |A|^2$$

In general, if A is a square matrix of order n, then |adj(A)| = |A| n-1

THEOREM 4:

A square matrix A is invertible if and only if A is non-singular matrix.

Proof:

Let A be invertible matrix of order n and I be the identity matrix of order n. Then, there exists a square matrix B of order n such that AB = BA = I

Now
$$AB = I. So |AB| = |I| or |A| |B| = 1$$
 (since $|I| = 1$, $|AB| = |A| |B|$)

This gives $|A| \neq 0$. Hence A is non-singular.

Conversely, let A be non-singular. Then $|A| \neq 0$

Now A (adj A) = (adj A) A =
$$|A|I$$
 (Theorem 1)

or
$$A\left(\frac{1}{|A|}adj A\right) = \left(\frac{1}{|A|}adj A\right)A = I$$

or AB = BA = I, where B =
$$\frac{I}{|A|}$$
 adj A

Thus, A is invertible and
$$A^{-1} = \frac{I}{|A|} adj A$$

SUNSTONE

***** EXAMPLES:

Example 1:

If
$$A = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}$$
, then verify that A adj $A = |A| I$. Also find A^{-1} .

Solution:

We have
$$|A| = 1(16-9)-3(4-3)+3(3-4)=1 \neq 0$$

Now
$$A_{11} = 7$$
, $A_{12} = -1$, $A_{13} = -1$, $A_{21} = -3$, $A_{22} = 1$, $A_{23} = 0$, $A_{31} = -3$, $A_{32} = 0$, $A_{33} = 1$

$$adj A = \begin{bmatrix} 7 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

$$A (adj A) = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix} \begin{bmatrix} 7 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 7-3-3 & -3+3+0 & -3+0+3 \\ 7-4-3 & -3+4+0 & -3+0+3 \\ 7-3-4 & -3+3+0 & -3+0=4 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = (1) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = |A|.I$$

$$A^{-1} = \frac{1}{|A|} adj A = \frac{1}{1} \begin{bmatrix} 7 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 7 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

Example 2:

If
$$A = \begin{bmatrix} 2 & 3 \\ 1 & -4 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix}$, then verify that $(AB)^{-1} = B^{-1}A^{-1}$

Solution:

We have
$$AB = \begin{bmatrix} 2 & 3 \\ 1 & -4 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} -1 & 5 \\ 5 & -14 \end{bmatrix}$$

Since $|AB| = -11 \neq 0$, $(AB)^{-1}$ exists and is given by

$$(AB)^{-1} = \frac{1}{|AB|} adj (AB) = -\frac{1}{11} \begin{bmatrix} -14 & -5 \\ -5 & -1 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 14 & 5 \\ 5 & 1 \end{bmatrix}$$

Further, $|A| = -11 \neq 0$ and $|B| = 1 \neq 0$. Therefore, A^{-1} and B^{-1} both exist and are given by

$$A^{-1} = -\frac{1}{11} \begin{bmatrix} -4 & -3 \\ -1 & 2 \end{bmatrix}, B^{-1} = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}$$

Therefore
$$B^{-1}A^{-1} = -\frac{1}{11} \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} -4 & -3 \\ -1 & 2 \end{bmatrix} = -\frac{1}{11} \begin{bmatrix} -14 & -5 \\ -5 & -1 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 14 & 5 \\ 5 & 1 \end{bmatrix}$$

Hence $(AB)^{-1} = B^{-1} A^{-1}$

Example 3:

Show that the matrix
$$=\begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$$
 satisfies the equation $A^2 - 4A + I = 0$, where I

is 2×2 identity matrix and O is 2×2 zero matrix. Using this equation, find A⁻¹.

Solution:

We have,
$$A^2 = A.A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 7 & 12 \\ 4 & 7 \end{bmatrix}$$

Hence
$$A^2 - 4A + I = \begin{bmatrix} 7 & 12 \\ 4 & 7 \end{bmatrix} - \begin{bmatrix} 8 & 12 \\ 4 & 8 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = 0$$

Now
$$A^2 - 4A + I = 0$$

Theref ore
$$AA - 4A = -I$$

or
$$AA(A^{-1}) - 4AA^{-1} = -IA^{-1}$$
 (Post multiplying by A^{-1} because $|A| \neq 0$)

or
$$A(AA^{-1}) - 4I = -A^{-1}$$

or
$$AI - 4I = -A^{-1}$$

or
$$A^{-1} = 4I - A = \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix} - \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}$$

Hence
$$A^{-1} = \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}$$

SUNSTONE

***** EXERCISE:

- Find adjoint of each of the matrices 1:

 - $(i) \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \qquad (ii) \begin{bmatrix} 1 & -1 & 2 \\ 2 & 3 & 5 \\ 2 & 0 & 1 \end{bmatrix}$
- 2: Verify A (adj A) = (adj A) A = |A|I

 - $(i) \begin{bmatrix} 2 & 3 \\ -4 & -6 \end{bmatrix} \qquad (ii) \begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 2 \end{bmatrix}$
- For the matrix $A = \begin{bmatrix} 3 & 2 \\ 1 \end{bmatrix}$, find the numbers a and b such that $A^2 + aA + bI = 0$
- For the matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix}$, Show that A3-6A2 + 5A + 11 I = 0. Hence, find A⁻¹.
- **5:** If $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & 1 & 2 \end{bmatrix}$, verify that A3-6A2 + 9A-4I = 0 and hence find A⁻¹.
- Let A be a non-singular square matrix of order 3 × 3. Then adj A is equal to 6:
 - (A) | A |
- (B) | A |2
- (C) | A |3
- (**D**) 3|A|
- If A is an invertible matrix of order 2, then det (A⁻¹) is equal to
 - (A) det (A)
- (B) 1 / det (A)
- (C) 1

(D) 0