Math 562 Mathematical Statistics Lecture Notes on X and S2

Theorem Let X1, X2, ", Xn be a random sample of size n from $N(\mu, \sigma^2)$, $X = \frac{1}{2} \sum_{i=1}^{n} X_i$ and $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$. Then

1) X and S2 are independent;

2) $\frac{(M-1)}{O^2} S^2 = \sum_{n=1}^{\infty} \frac{(X_i - X_i)^2}{O^2} \sim \chi^2 (M-1)$

Proof. 1) We first show that X and Xi-X are independent, Isism.

Disserve that $\sum_{n=0}^{\infty} \frac{(x_n - x_n)^2}{n^2} = \sum_{n=0}^{\infty} \frac{(x_n - x_n + x_n - \mu)^2}{n^2}$

 $= \sum_{n=1}^{\infty} \frac{(x_{n}^{2} - \bar{x})^{2}}{\sigma^{2}} + \sum_{n=1}^{\infty} \frac{(\bar{x} - \mu)^{2}}{\sigma^{2}} + 2 \sum_{n=1}^{\infty} \frac{6(x_{n}^{2} - \bar{x})(\bar{x} - \mu)}{\sigma^{2}}$

 $=\underbrace{\sum_{i=1}^{n}}_{0}\frac{(x_{i}-x_{i})^{2}}{(x_{i}-x_{i})^{2}}+\underbrace{\sum_{i=1}^{n}}_{0}\frac{(x_{i}-x_{i})^{2}}{(x_{i}-x_{i})^{2}}+\underbrace{\sum_{i=1}^{n}}_{0}\frac{(x_{i}-x_{i})^{2}}{(x_{i}-x_{i})^{2}}+\underbrace{\sum_{i=1}^{n}}_{0}\frac{(x_{i}-x_{i})^{2}}{(x_{i}-x_{i})^{2}}+\underbrace{\sum_{i=1}^{n}}_{0}\frac{(x_{i}-x_{i})^{2}}{(x_{i}-x_{i})^{2}}+\underbrace{\sum_{i=1}^{n}}_{0}\frac{(x_{i}-x_{i})^{2}}{(x_{i}-x_{i})^{2}}+\underbrace{\sum_{i=1}^{n}}_{0}\frac{(x_{i}-x_{i})^{2}}{(x_{i}-x_{i})^{2}}+\underbrace{\sum_{i=1}^{n}}_{0}\frac{(x_{i}-x_{i})^{2}}{(x_{i}-x_{i})^{2}}+\underbrace{\sum_{i=1}^{n}}_{0}\frac{(x_{i}-x_{i})^{2}}{(x_{i}-x_{i})^{2}}+\underbrace{\sum_{i=1}^{n}}_{0}\frac{(x_{i}-x_{i})^{2}}{(x_{i}-x_{i})^{2}}+\underbrace{\sum_{i=1}^{n}}_{0}\frac{(x_{i}-x_{i})^{2}}{(x_{i}-x_{i})^{2}}+\underbrace{\sum_{i=1}^{n}}_{0}\frac{(x_{i}-x_{i})^{2}}{(x_{i}-x_{i})^{2}}+\underbrace{\sum_{i=1}^{n}}_{0}\frac{(x_{i}-x_{i})^{2}}{(x_{i}-x_{i})^{2}}+\underbrace{\sum_{i=1}^{n}}_{0}\frac{(x_{i}-x_{i})^{2}}{(x_{i}-x_{i})^{2}}+\underbrace{\sum_{i=1}^{n}}_{0}\frac{(x_{i}-x_{i})^{2}}{(x_{i}-x_{i})^{2}}+\underbrace{\sum_{i=1}^{n}}_{0}\frac{(x_{i}-x_{i})^{2}}{(x_{i}-x_{i})^{2}}+\underbrace{\sum_{i=1}^{n}}_{0}\frac{(x_{i}-x_{i})^{2}}{(x_{i}-x_{i})^{2}}+\underbrace{\sum_{i=1}^{n}}_{0}\frac{(x_{i}-x_{i})^{2}}{(x_{i}-x_{i})^{2}}+\underbrace{\sum_{i=1}^{n}}_{0}\frac{(x_{i}-x_{i})^{2}}{(x_{i}-x_{i})^{2}}+\underbrace{\sum_{i=1}^{n}}_{0}\frac{(x_{i}-x_{i})^{2}}{(x_{i}-x_{i})^{2}}+\underbrace{\sum_{i=1}^{n}}_{0}\frac{(x_{i}-x_{i})^{2}}{(x_{i}-x_{i})^{2}}+\underbrace{\sum_{i=1}^{n}}_{0}\frac{(x_{i}-x_{i})^{2}}{(x_{i}-x_{i})^{2}}+\underbrace{\sum_{i=1}^{n}}_{0}\frac{(x_{i}-x_{i})^{2}}{(x_{i}-x_{i})^{2}}+\underbrace{\sum_{i=1}^{n}}_{0}\frac{(x_{i}-x_{i})^{2}}{(x_{i}-x_{i})^{2}}+\underbrace{\sum_{i=1}^{n}}_{0}\frac{(x_{i}-x_{i})^{2}}{(x_{i}-x_{i})^{2}}+\underbrace{\sum_{i=1}^{n}}_{0}\frac{(x_{i}-x_{i})^{2}}{(x_{i}-x_{i})^{2}}+\underbrace{\sum_{i=1}^{n}}_{0}\frac{(x_{i}-x_{i})^{2}}{(x_{i}-x_{i})^{2}}+\underbrace{\sum_{i=1}^{n}}_{0}\frac{(x_{i}-x_{i})^{2}}{(x_{i}-x_{i})^{2}}+\underbrace{\sum_{i=1}^{n}}_{0}\frac{(x_{i}-x_{i})^{2}}{(x_{i}-x_{i})^{2}}+\underbrace{\sum_{i=1}^{n}}_{0}\frac{(x_{i}-x_{i})^{2}}{(x_{i}-x_{i})^{2}}+\underbrace{\sum_{i=1}^{n}}_{0}\frac{(x_{i}-x_{i})^{2}}{(x_{i}-x_{i})^{2}}+\underbrace{\sum_{i=1}^{n}}_{0}\frac{(x_{i}-x_{i})^{2}}{(x_{i}-x_{i})^{2}}+\underbrace{\sum_{i=1}^{n}}_{0}\frac{(x_{i}-x_{i})^{2}}{(x_{i}-x_{i})^{2}}+\underbrace{\sum_{i=1}^{n}}_{0}\frac{(x_{i}-x_{i})^{2}}{(x_{i}-x_{i})^{2}}+\underbrace{\sum_{i=1}^{n}}_{0}\frac{(x_{i}-x_{i})^{2}}{(x_{i}-x_{i})^{2}}+\underbrace{\sum_{i=1}^{n}$

 $= \sum_{i=1}^{2} \frac{(x_{i} - \bar{x})^{2}}{\sigma^{2}} + \frac{v_{i}(\bar{x} - \mu)^{2}}{r^{2}}$

The gaint density function of (X_1, X_2, \dots, X_n) can be written as $f(x_1, x_2, \dots, x_n) = \frac{1}{(2\pi)^{\frac{n}{2}} \sigma^n} \exp\left[-\frac{1}{2} \sum_{n=1}^{\infty} \frac{(x_n - \mu)^2}{\sigma^2}\right]$

$$=\frac{1}{(2\pi)^{\frac{1}{2}}}\exp\left[-\frac{1}{2\pi^{2}}\left(\sum_{n=1}^{n}(x_{n}-\bar{x})^{2}+n(\bar{x}-\mu)^{2}\right)\right]$$

Net $y_1 = \overline{x}$, $y_i = x_i - \overline{x}$, $z \le i \le n$. Then $z_1 - \overline{x} = -\sum_{i=2}^{n} (x_i - \overline{x}) = -\sum_{i=2}^{n} y_i$. The soint density function

of $Y_1 = X$, $Y_1 = X_1 - X$, $Z \le i \le n$, 13 $g(y_1, y_2, ..., y_n) = \frac{K}{(2\pi)^N \sigma^n} \exp\left[-\frac{1}{2\sigma^2}\left(+\frac{\Sigma}{2}y_n^2\right) + \frac{N}{2\sigma^2}y_n^2 + n(y_1 - N)^2\right]$ where $K_1 \ge a$ constant (Secotion of the transformation). Now $Y_1 = X \cap N(\mu, y_n^2)$, so $Y_1 \ge independent$ of $Y_1 \ge independent$ of $Y_1 \ge independent$ of $Y_1 \ge independent$ of $Y_1 \ge independent$ or $X_1 - X = -\frac{N}{2\sigma^2}(X_1 - X_1) = -\frac{N}{2\sigma^2}(X_1 -$

2. To show $\frac{(m-1)}{\sigma^2} S^2 \sim \chi^2 (n-1)$, observe that $V_1 = \sum_{l=1}^{\infty} \frac{(\chi_1 - \mu_1)^2}{\sigma^2} = \frac{1}{\sigma^2} \sum_{l=1}^{\infty} (\chi_1 - \chi_1)^2 + \frac{\eta(\chi_1 - \mu_1)^2}{\sigma^2} = \frac{(m-1)}{\sigma^2} S^2 + \frac{\eta(\chi_1 - \mu_1)^2}{\sigma^2}$ Therefore $M_{v_1}(t) = \frac{M_{v_1}(t)}{M_{v_3}(t)} = \frac{(1-2t)^{-1/2}}{(1-2t)^{-1/2}} = \frac{1}{(1-2t)^{\frac{m-1}{2}}}$

Penark $\frac{N-1}{6^2}S^2 \sim \chi^2(n-1)$, $E\left[\frac{n-1}{6^2}S^2\right] = n-1$ AD $E\left[S^2\right] = \frac{\sigma^2}{N-1}E\left[\frac{N-1}{6^2}S^2\right] = \frac{\sigma^2}{N-1}(n-1) = \sigma^2$ Pais is The reason we use n-1 in stead of n.