```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
%matplotlib inline
```

```
df=pd.read_csv("/content/bank-additional.csv",delimiter=';')
df.rename(columns={'y':'deposit'},inplace=True)
print("DISPLAY HEAD DATA")
print('-----')
df.head()
```



| <b></b> |       |          |             |              |                |               |           |             |         |
|---------|-------|----------|-------------|--------------|----------------|---------------|-----------|-------------|---------|
|         | pdays | previous | poutcome    | emp.var.rate | cons.price.idx | cons.conf.idx | euribor3m | nr.employed | deposit |
|         | 999   |          | nonexistent | -1.8         | 92.893         | -46.2         | 1.313     | 5099.1      | no      |
|         | 999   |          | nonexistent | 1.1          | 93.994         | -36.4         | 4.855     | 5191.0      | no      |
|         | 999   |          | nonexistent | 1.4          | 94.465         | -41.8         | 4.962     | 5228.1      | no      |
|         | 999   |          | nonexistent | 1.4          | 94.465         | -41.8         | 4.959     | 5228.1      | no      |
|         | 999   |          | nonexistent | -0.1         | 93.200         | -42.0         | 4.191     | 5195.8      | no      |
|         |       |          |             |              |                |               |           |             |         |

```
print('DISPLAY DATA INFO')
print('-----')
df.info()
```

#### **DISPLAY DATA INFO**

-----

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 4119 entries, 0 to 4118

Data columns (total 21 columns):

# Column Non-Null Count Dtype
--- ----
0 age 4119 non-null int64

1 job 4119 non-null object

2 marital 4119 non-null object

3 education 4119 non-null object

4 default 4119 non-null object

5 housing 4119 non-null object

6 loan 4119 non-null object

7 contact 4119 non-null object

8 month 4119 non-null object

9 day\_of\_week 4119 non-null object

10 duration 2727 non-null float64

11 campaign 4119 non-null int64

12 pdays 4119 non-null int64

13 previous 4119 non-null int64

14 poutcome 4119 non-null object

15 emp.var.rate 4119 non-null float64

16 cons.price.idx 4119 non-null float64

17 cons.conf.idx 4119 non-null float64

18 euribor3m 4119 non-null float64

19 nr.employed 4119 non-null float64

20 deposit 4119 non-null object

dtypes: float64(6), int64(4), object(11)

memory usage: 675.9+ KB

# **INPUT**

print('DISPLAY TAIL DATA')
print('----')
df.tail()

# **OUTPUT**

DISPLAY TAIL DATA

|      | age | job        | marital | education   | default | housing | loan | contact   | month | day_of_week | <br>campaign | pdays | previous | poutcome    |
|------|-----|------------|---------|-------------|---------|---------|------|-----------|-------|-------------|--------------|-------|----------|-------------|
| 4114 | 30  | admin.     | married | basic.6y    | no      | yes     | yes  | cellular  | jul   | thu         | <br>1        | 999   | 0        | nonexistent |
| 4115 | 39  | admin.     | married | high.school | no      | yes     | no   | telephone | jul   | fri         | <br>1        | 999   | 0        | nonexistent |
| 4116 | 27  | student    | single  | high.school | no      | no      | no   | cellular  | may   | mon         | <br>2        | 999   | 1        | failure     |
| 4117 | 58  | admin.     | married | high.school | no      | no      | no   | cellular  | aug   | fri         | <br>1        | 999   | 0        | nonexistent |
| 4118 | 34  | management | single  | high.school | no      | yes     | no   | cellular  | nov   | wed         | <br>1        | 999   | 0        | nonexistent |

5 rows × 21 columns

| emp.var.rate | cons.price.idx | cons.conf.idx | euribor3m | nr.employed | deposit |
|--------------|----------------|---------------|-----------|-------------|---------|
| 1.4          | 93.918         | -42.7         | 4.958     | 5228.1      | no      |
| 1.4          | 93.918         | -42.7         | 4.959     | 5228.1      | no      |
| -1.8         | 92.893         | -46.2         | 1.354     | 5099.1      | no      |
| 1.4          | 93.444         | -36.1         | 4.966     | 5228.1      | no      |
| -0.1         | 93.200         | -42.0         | 4.120     | 5195.8      | no      |

```
print('DISPLAYING SHAPE')
df.shape
```

## **OUTPUT**

DISPLAYING SHAPE (4119, 21)

## **INPUT**

df.columns

```
print('DISPLAY DATA TYPE')
print('-----')
df.dtypes
```



df.dtypes.value\_counts()

#### **OUTPUT**

|         | count |
|---------|-------|
| object  | 11    |
| int64   | 5     |
| float64 | 5     |

dtype: int64

# **INPUT**

print('DUPLICATED VALUE')
df.duplicated().sum()

## OUTPUT

**DUPLICATED VALUE** 

1

df.isna().sum()



```
print('DISPLAYING COLUMNS')
print('-----')
cat_cols=df.select_dtypes(include='object').columns
print(cat_cols)
num_cols=df.select_dtypes(exclude='object').columns
print(num_cols)
```

## **OUTPUT**

#### **DISPLAYING COLUMNS**

print('DISPLAYING DATA')
print('-----')
df.describe()

#### OUTPUT

DISPLAYING DATA

|       | age         | duration    | campaign    | pdays       | previous    | emp.var.rate | cons.price.idx | cons.conf.idx | euribor3m   | nr.employed |
|-------|-------------|-------------|-------------|-------------|-------------|--------------|----------------|---------------|-------------|-------------|
| count | 4119.000000 | 2727.000000 | 4119.000000 | 4119.000000 | 4119.000000 | 4119.000000  | 4119.000000    | 4119.000000   | 4119.000000 | 4119.000000 |
| mean  | 40.113620   | 129.639897  | 2.537266    | 960.422190  | 0.190337    | 0.084972     | 93.579704      | -40.499102    | 3.621356    | 5166.481695 |
| std   | 10.313362   | 63.753556   | 2.568159    | 191.922786  | 0.541788    | 1.563114     | 0.579349       | 4.594578      | 1.733591    | 73.667904   |
| min   | 18.000000   | 0.000000    | 1.000000    | 0.000000    | 0.000000    | -3.400000    | 92.201000      | -50.800000    | 0.635000    | 4963.600000 |
| 25%   | 32.000000   | 81.000000   | 1.000000    | 999.000000  | 0.000000    | -1.800000    | 93.075000      | -42.700000    | 1.334000    | 5099.100000 |
| 50%   | 38.000000   | 128.000000  | 2.000000    | 999.000000  | 0.000000    | 1.100000     | 93.749000      | -41.800000    | 4.857000    | 5191.000000 |
| 75%   | 47.000000   | 180.000000  | 3.000000    | 999.000000  | 0.000000    | 1.400000     | 93.994000      | -36.400000    | 4.961000    | 5228.100000 |
| max   | 88.000000   | 252.000000  | 35.000000   | 999.000000  | 6.000000    | 1.400000     | 94.767000      | -26.900000    | 5.045000    | 5228.100000 |

# **INPUT**

df.describe(include='object')

|        | job    | marital | education         | default | housing | loan | contact  | month | day_of_week | poutcome    | deposit |
|--------|--------|---------|-------------------|---------|---------|------|----------|-------|-------------|-------------|---------|
| count  | 4119   | 4119    | 4119              | 4119    | 4119    | 4119 | 4119     | 4119  | 4119        | 4119        | 4119    |
| unique | 12     | 4       | 8                 | 3       | 3       | 3    | 2        | 10    | 5           | 3           | 2       |
| top    | admin. | married | university.degree | no      | yes     | no   | cellular | may   | thu         | nonexistent | no      |
| freq   | 1012   | 2509    | 1264              | 3315    | 2175    | 3349 | 2652     | 1378  | 860         | 3523        | 3668    |

```
print('CONSTRUCTING HISTOGRAMS')
print('----')
df.hist(figsize=(10,10),color='#40E0D0')
plt.show()
```



```
print('CONSTRUCTING BARPLOT')
print('----')
num plots=len(cat cols)
num_rows=(num_plots+1)//2
num_cols=2
plt.figure(figsize=(20,25))
for i,feature in enumerate(cat_cols,1):
 plt.subplot(num_rows,num_cols,i)
 sns.countplot(x=feature,data=df,palette='Wistia')
 plt.title(f'Bar plot of {feature}')
 plt.xlabel(feature)
 plt.ylabel('count')
 plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
```



print("CONSTRUCT CHART 1")
print('-----')
df.plot(kind='box',subplots=True,layout=(2,5),figsize=(20,10),color='#
7b3f00')
plt.show()



```
column=df[['age','campaign','duration']]
q1=np.percentile(column,25)
q3=np.percentile(column,75)
iqr=q3-q1
lowerbound=q1- 1.5 *iqr
upperbound=q3+ 1.5 *iqr
df[['age','campaign','duration']]=column[(column>lowerbound)&(column<upperbound)]</pre>
```

```
print('CONSTRUCT CHART 2')
print('-----')
df.plot(kind='box',subplots=True,layout=(2,5),figsize=(20,10),color='#
808000')
plt.show()
```



```
numeric_df = df.drop(columns=cat_cols)
corr = numeric_df.corr()
print(corr)
corr=corr[abs(corr) >=0.90]
print('\n')
print('CONSTRUCT HEATMAP')
print('-----')
print('\n')
sns.heatmap(corr, annot=True, cmap='Set3', linewidths=0.2)
plt.show()
```

| age           | -0.019192   | -0.000482  | 0.098135 -0.0 | 015033   |
|---------------|-------------|------------|---------------|----------|
| duration      | -0.063870   | -0.013338  | 0.045889 -    | 0.067815 |
| campaign      | 0.176079    | 0.145021   | 0.007882      | 0.159435 |
| pdays         | 0.270684    | 0.058472   | -0.092090 0.  | 301478   |
| previous      | -0.415238   | -0.164922  | -0.051420 -   | 0.458851 |
| emp.var.rate  | 1.000000    | 0.755155   | 0.195022      | 0.970308 |
| cons.price.id | dx 0.755155 | 1.000000   | 0.045835      | 0.657159 |
| cons.conf.id  | x 0.195022  | 0.045835   | 1.000000      | 0.276595 |
| euribor3m     | 0.970308    | 0.657159   | 0.276595      | 1.000000 |
| nr.employed   | 0.89717     | 3 0.472560 | 0.107054      | 0.942589 |

#### nr.employed

age -0.041936

duration -0.097339

campaign 0.161037

pdays 0.381983

previous -0.514853

emp.var.rate 0.897173

cons.price.idx 0.472560

cons.conf.idx 0.107054

euribor3m 0.942589

nr.employed 1.000000



high\_corr\_cols=['emp.var.rate','euribor3m','nr.employed']

## **INPUT**

df1=df.copy()

df1.columns

#### **INPUT**

```
df1.drop(high_corr_cols,inplace=True,axis=1)
df1.columns
```

#### **OUTPUT**

#### **INPUT**

df1.shape

#### **OUTPUT**

(4119, 18)

from sklearn.preprocessing import LabelEncoder lb=LabelEncoder() df\_encoded=df1.apply(lb.fit\_transform) df\_encoded

## **OUTPUT**

|      | age | job | marital | education | default | housing | loan | contact | month | day_of_week | duration |
|------|-----|-----|---------|-----------|---------|---------|------|---------|-------|-------------|----------|
| 0    | 12  | 1   | 1       | 2         | 0       | 2       | 0    | 0       | 6     | 0           | 250      |
| 1    | 21  | 7   | 2       | 3         | 0       | 0       | 0    | 1       | 6     | 0           | 250      |
| 2    | 7   | 7   | 1       | 3         | 0       | 2       | 0    | 1       | 4     | 4           | 224      |
| 3    | 20  | 7   | 1       | 2         | 0       | 1       | 1    | 1       | 4     | 0           | 14       |
| 4    | 29  | 0   | 1       | 6         | 0       | 2       | 0    | 0       | 7     | 1           | 55       |
|      |     |     |         |           |         |         |      |         |       |             |          |
| 4114 | 12  | 0   | 1       | 1         | 0       | 2       | 2    | 0       | 3     | 2           | 50       |
| 4115 | 21  | 0   | 1       | 3         | 0       | 2       | 0    | 1       | 3     | 0           | 216      |
| 4116 | 9   | 8   | 2       | 3         | 0       | 0       | 0    | 0       | 6     | 1           | 61       |
| 4117 | 40  | 0   | 1       | 3         | 0       | 0       | 0    | 0       | 1     | 0           | 250      |
| 4118 | 16  | 4   | 2       | 3         | 0       | 2       | 0    | 0       | 7     | 4           | 172      |

4119 rows × 18 columns

| campaign | pdays | previous | poutcome | cons.price.idx | cons.conf.idx | deposit |
|----------|-------|----------|----------|----------------|---------------|---------|
| 1        | 20    | 0        | 1        | 8              | 4             | 0       |
| 3        | 20    | 0        | 1        | 18             | 16            | 0       |
| 0        | 20    | 0        | 1        | 23             | 8             | 0       |
| 2        | 20    | 0        | 1        | 23             | 8             | 0       |
| 0        | 20    | 0        | 1        | 11             | 7             | 0       |
|          |       |          |          |                |               |         |
| 0        | 20    | 0        | 1        | 17             | 6             | 0       |
| 0        | 20    | 0        | 1        | 17             | 6             | 0       |
| 1        | 20    | 1        | 0        | 8              | 4             | 0       |
| 0        | 20    | 0        | 1        | 13             | 17            | 0       |
| 0        | 20    | 0        | 1        | 11             | 7             | 0       |

df\_encoded['deposit'].value\_counts()

# OUTPUT

count

## deposit

| 0 | 3668 |
|---|------|
| 1 | 451  |

dtype: int64

```
print('DISPLAYING SHAPE AND TYPE')
x=df_encoded.drop('deposit',axis=1)
y=df_encoded['deposit']
print(x.shape)
print(y.shape)
print(type(x))
print(type(y))
```

```
DISPLAYING SHAPE AND TYPE

(4119, 17)

(4119,)

<class 'pandas.core.frame.DataFrame'>

<class 'pandas.core.series.Series'>
```

from sklearn.model\_selection import train\_test\_split

```
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25,rando
m_state=1)
print(x_train.shape)
print(y_train.shape)
print(y_train.shape)
print(y_test.shape)
```

## **OUTPUT**

(3089, 17)

(3089,)

(3089,)

(1030,)

```
from sklearn.metrics import
confusion_matrix,classification_report,accuracy_score

def eval_model(y_test,y_pred):
    acc=accuracy_score(y_test,y_pred)
    print('Accuracy_Score',acc)
    cm=confusion_matrix(y_test,y_pred)
    print('confusion matrix\n',cm)
    print('classification report\n',classification_report(y_test,y_pred))

def mscore(model):
    train_score=model.score(x_train,y_train)
    test_score=model.score(x_test,y_test)
    print('training score',train_score)
    print('testing score',test_score)
```

```
from sklearn.tree import DecisionTreeClassifier

dt=DecisionTreeClassifier(criterion='gipi' may depth=5 min samp
```

```
dt=DecisionTreeClassifier(criterion='gini',max_depth=5,min_samples
    _split=10)
dt.fit(x_train,y_train)
```

# DecisionTreeClassifier DecisionTreeClassifier(max\_depth=5, min\_samples\_split=10)

#### **INPUT**

mscore(dt)

#### **OUTPUT**

training score 0.9148591777274199 testing score 0.8990291262135922

## **INPUT**

```
ypred_dt=dt.predict(x_test)
print(ypred_dt)
```

## **OUTPUT**

[001...000]

## **INPUT**

eval\_model(y\_test,ypred\_dt)

```
Accuracy_Score 0.8990291262135922
confusion matrix
[[905 25]
[79 21]]
classification report
       precision recall f1-score support
     0
        0.92 0.97
                       0.95
                              930
         0.46 0.21
     1
                       0.29
                              100
                      0.90
                             1030
  accuracy
             0.69
                    0.59
                           0.62
                                  1030
 macro avg
weighted avg
              0.87
                     0.90
                            0.88
                                   1030
```

## **INPUT**

from sklearn.tree import plot\_tree

```
cn=['no','yes']
fn=x_train.columns
print(fn)
print(cn)
```

## **INPUT**

```
print('DISPLAYING TREE PLOT 1')
print('-----')
plt.figure(figsize=(30,10))
plot_tree(dt,class_names=cn,filled=True)
plt.show()
```



dt1=DecisionTreeClassifier(criterion='entropy',max\_depth=4,min\_sa mples\_split=15)

dt1.fit(x\_train,y\_train)

#### **OUTPUT**

DecisionTreeClassifier

DecisionTreeClassifier(criterion='entropy', max\_depth=4, min\_samples\_split=15)

#### **INPUT**

mscore(dt)

## **OUTPUT**

training score 0.9148591777274199

testing score 0.8990291262135922

#### **INPUT**

ypred\_dt1=dt1.predict(x\_test)

#### **INPUT**

eval\_model(y\_test,ypred\_dt1)

```
Accuracy_Score 0.9048543689320389
confusion matrix
[[915 15]
[83 17]]
classification report
       precision recall f1-score support
     0
         0.92 0.98
                       0.95
                               930
     1
          0.53 0.17
                       0.26
                               100
                       0.90
                             1030
  accuracy
             0.72
                    0.58
                           0.60
                                  1030
 macro avg
weighted avg
               0.88
                      0.90
                            0.88
                                   1030
```

```
print('DISPLAYING TREE PLOT 2')
print('----')
plt.figure(figsize=(40,20))
plot_tree(dt1,class_names=cn,filled=True)
plt.show()
```

