Implement a linear regression model to predict the prices of houses based on their square footage and the number of bedrooms and bathrooms.

```
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from \ sklearn.metrics \ import \ mean\_squared\_error, \ r2\_score
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
#reading files
train_ = pd.read_csv('train.csv')
test_ = pd.read_csv('test.csv')
print(train_.shape)
print(test_.shape)
→ (1460, 81)
     (1459, 80)
train_.head(10)
₹
         Id MSSubClass MSZoning LotFrontage LotArea Street Alley LotShape LandContour Utilities ... PoolArea PoolQC Fence Mis
      0
                     60
                                                   8450
         1
                               RL
                                           65.0
                                                            Pave
                                                                   NaN
                                                                              Reg
                                                                                            Lvl
                                                                                                    AllPub
                                                                                                                       0
                                                                                                                             NaN
                                                                                                                                    NaN
      1
         2
                     20
                               RL
                                           80.0
                                                   9600
                                                           Pave
                                                                   NaN
                                                                              Reg
                                                                                            Lvl
                                                                                                    AllPub
                                                                                                                       0
                                                                                                                             NaN
                                                                                                                                    NaN
         3
                     60
                               RL
                                           68.0
                                                  11250
                                                                              IR1
                                                                                                    AllPub
                                                                                                                       0
      2
                                                           Pave
                                                                   NaN
                                                                                            Lvl
                                                                                                                            NaN
                                                                                                                                    NaN
      3
          4
                     70
                               RL
                                           60.0
                                                   9550
                                                           Pave
                                                                   NaN
                                                                              IR1
                                                                                            Lvl
                                                                                                    AllPub
                                                                                                                       0
                                                                                                                             NaN
                                                                                                                                    NaN
      4
          5
                     60
                               RL
                                          84.0
                                                  14260
                                                           Pave
                                                                   NaN
                                                                              IR1
                                                                                            Lv
                                                                                                    AllPub
                                                                                                                       0
                                                                                                                            NaN
                                                                                                                                    NaN
      5
                     50
                                           85.0
                                                  14115
                                                                              IR1
                                                                                                                       0
                                                                                                                             NaN MnPrv
          6
                               RL
                                                           Pave
                                                                   NaN
                                                                                            Lvl
                                                                                                    AllPub
      6
         7
                     20
                               RL
                                          75.0
                                                  10084
                                                           Pave
                                                                   NaN
                                                                              Reg
                                                                                            Lv
                                                                                                    AllPub
                                                                                                                       0
                                                                                                                             NaN
                                                                                                                                    NaN
      7
          8
                     60
                               RL
                                          NaN
                                                  10382
                                                                              IR1
                                                                                                    AllPub
                                                                                                                       0
                                                           Pave
                                                                   NaN
                                                                                            Lvl
                                                                                                                            NaN
                                                                                                                                    NaN
      8
          9
                     50
                              RM
                                           51.0
                                                   6120
                                                           Pave
                                                                   NaN
                                                                              Reg
                                                                                            Lvl
                                                                                                    AllPub
                                                                                                                       0
                                                                                                                             NaN
                                                                                                                                    NaN
      9 10
                    190
                               RL
                                           50.0
                                                   7420
                                                                                                    AllPub
                                                                                                                       0
                                                                                                                            NaN
                                                           Pave
                                                                   NaN
                                                                             Reg
                                                                                            Lvl
                                                                                                                                    NaN
     10 rows × 81 columns
from IPython.display import display #to show all columns
# Set pandas display options globally
pd.set_option('display.max_columns', None)
pd.set_option('display.max_columns', None)
display(train_)
display(test_)
Afficher la sortie masquée
print(train_.dtypes)
                                 _")
print("
print(test_.dtypes)
→
                        int64
    Ιd
     MSSubClass
                        int64
     MSZoning
                       object
     LotFrontage
                      float64
     LotArea
                        int64
                        int64
     MoSold
     YrSold
                        int64
     SaleType
                       object
     SaleCondition
                       object
     SalePrice
                        int64
```

Length: 81, dtype: object

int64

int64

object

float64

Τd

MSSubClass

LotFrontage

MSZoning

LotArea int64
...
MiscVal int64
MoSold int64
YrSold int64
SaleType object
SaleCondition object
Length: 80, dtype: object

#Summary
train_.describe()

→		Id	MSSubClass	LotFrontage	LotArea	OverallQual	OverallCond	YearBuilt	YearRemodAdd	MasVnrArea	BsmtFi
	count	1460.000000	1460.000000	1201.000000	1460.000000	1460.000000	1460.000000	1460.000000	1460.000000	1452.000000	1460.000
	mean	730.500000	56.897260	70.049958	10516.828082	6.099315	5.575342	1971.267808	1984.865753	103.685262	443.639
	std	421.610009	42.300571	24.284752	9981.264932	1.382997	1.112799	30.202904	20.645407	181.066207	456.098
	min	1.000000	20.000000	21.000000	1300.000000	1.000000	1.000000	1872.000000	1950.000000	0.000000	0.000
	25%	365.750000	20.000000	59.000000	7553.500000	5.000000	5.000000	1954.000000	1967.000000	0.000000	0.000
	50%	730.500000	50.000000	69.000000	9478.500000	6.000000	5.000000	1973.000000	1994.000000	0.000000	383.500
	75%	1095.250000	70.000000	80.000000	11601.500000	7.000000	6.000000	2000.000000	2004.000000	166.000000	712.250
	max	1460.000000	190.000000	313.000000	215245.000000	10.000000	9.000000	2010.000000	2010.000000	1600.000000	5644.000

test_.describe()

_ →		Id	MSSubClass	LotFrontage	LotArea	OverallQual	OverallCond	YearBuilt	YearRemodAdd	MasVnrArea	BsmtFin:
	count	1459.000000	1459.000000	1232.000000	1459.000000	1459.000000	1459.000000	1459.000000	1459.000000	1444.000000	1458.0000
	mean	2190.000000	57.378341	68.580357	9819.161069	6.078821	5.553804	1971.357779	1983.662783	100.709141	439.2037
	std	421.321334	42.746880	22.376841	4955.517327	1.436812	1.113740	30.390071	21.130467	177.625900	455.2680
	min	1461.000000	20.000000	21.000000	1470.000000	1.000000	1.000000	1879.000000	1950.000000	0.000000	0.0000
	25%	1825.500000	20.000000	58.000000	7391.000000	5.000000	5.000000	1953.000000	1963.000000	0.000000	0.0000
	50%	2190.000000	50.000000	67.000000	9399.000000	6.000000	5.000000	1973.000000	1992.000000	0.000000	350.5000
	75%	2554.500000	70.000000	80.000000	11517.500000	7.000000	6.000000	2001.000000	2004.000000	164.000000	753.5000
	max	2919.000000	190.000000	200.000000	56600.000000	10.000000	9.000000	2010.000000	2010.000000	1290.000000	4010.0000

#show the number of empty values
train_.isna().sum()

ld 0 **MSSubClass** 0 MSZoning 0 LotFrontage 259 LotArea MoSold 0 YrSold 0 SaleType 0 SaleCondition SalePrice 0 81 rows × 1 columns

dtype: int64

test_.isna().sum()

```
\overrightarrow{\exists}
```

```
0
    ld
               0
MSSubClass
               0
 MSZoning
LotFrontage
             227
  LotArea
               0
  MiscVa
               0
  MoSold
   YrSold
               0
  SaleType
               1
SaleCondition
               0
```

dtype: int64

80 rows × 1 columns

```
for column in train_.columns:
    if train_[column].dtype == 'object':
        # Replace Nan with the mode for categorical columns
        train_[column] = train_[column].fillna(train_[column].mode()[0]) # We don't use inplace=True here
    if column in test_.columns:
        test_[column] = test_[column].fillna(test_[column].mode()[0])
else:
    # Replace Nan with the mean for numeric columns
    train_[column] = train_[column].fillna(train_[column].mean())
    if column in test_.columns:
        test_[column] = test_[column].fillna(test_[column].mean())
```

train_.head(10)

	Id	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	Utilities	LotConfig	LandSlope	Neighborhoc
	0 1	60	RL	65.000000	8450	Pave	Grvl	Reg	Lvl	AllPub	Inside	Gtl	Collg(
	1 2	20	RL	80.000000	9600	Pave	Grvl	Reg	Lvl	AllPub	FR2	Gtl	Veenk
:	2 3	60	RL	68.000000	11250	Pave	Grvl	IR1	Lvl	AllPub	Inside	Gtl	Collg(
;	3 4	70	RL	60.000000	9550	Pave	Grvl	IR1	Lvl	AllPub	Corner	Gtl	Crawfo
	4 5	60	RL	84.000000	14260	Pave	Grvl	IR1	Lvl	AllPub	FR2	Gtl	NoRidç
!	5 6	50	RL	85.000000	14115	Pave	Grvl	IR1	Lvl	AllPub	Inside	Gtl	Mitch
(5 7	20	RL	75.000000	10084	Pave	Grvl	Reg	Lvl	AllPub	Inside	Gtl	Somer
	7 8	60	RL	70.049958	10382	Pave	Grvl	IR1	Lvl	AllPub	Corner	Gtl	NWAm€
;	3 9	50	RM	51.000000	6120	Pave	Grvl	Reg	Lvl	AllPub	Inside	Gtl	OldTow
	9 10	190	RL	50.000000	7420	Pave	Grvl	Reg	Lvl	AllPub	Corner	Gtl	BrkSic

```
# Sale price distribution
plt.figure(figsize=(8, 5))
sns.histplot(train_['SalePrice'], color="skyblue" , kde=True) #Kernel Density Estimate (kde=True) adds a smooth curve to the histogram,
plt.title('Sale Price Distribution')
plt.show()
```

Sale Price Distribution


```
#Correlation verification
correlation_matrix = train_.corr(numeric_only=True)
plt.figure(figsize=(18,10))
sns.heatmap(correlation_matrix, annot=True, cmap='gist_heat', fmt=".1f")
```

- 1.0

0.8

0.6

0.4

0.2

-0.2

-0.4


```
col = ['GrLivArea', 'BedroomAbvGr', 'FullBath']
X = train_[col]
y = train_['SalePrice']

# Split the dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

Train the Linear Regression Model

plt.title('Actual vs Predicted Sale Price')

```
# Initialize and train the model
model = LinearRegression()
model.fit(X_train, y_train)
# Display model coefficients
print("Model Coefficients:", model.coef_)
print("Model Intercept:", model.intercept_)
→ Model Coefficients: [ 104.02630701 -26655.16535734 30014.32410896]
     Model Intercept: 52261.74862694461
# Predict on the test set
y_pred = model.predict(X_test)
# Calculate evaluation metrics
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
print("Mean Squared Error (MSE):", mse)
print("R-squared (R2):", r2)
   Mean Squared Error (MSE): 2806426667.247853
     R-squared (R2): 0.6341189942328371
plt.scatter(y_test, y_pred, alpha=0.7)
plt.xlabel('Actual Sale Price')
plt.ylabel('Predicted Sale Price')
```


Actual vs Predicted Sale Price 700000 - 600000 - 600000 - 600000 - 600000 - 600000 700000 100000 - 100000 200000 300000 400000 500000 600000 700000 Actual Sale Price

 $\verb|plt.plot([y.min(), y.max()], [y.min(), y.max()], '#D20103', linestyle='-.', linewidth=3)|$

```
plt.figure(figsize=(12, 8))
sns.pairplot(train_[col + ['SalePrice']], hue='SalePrice', palette='coolwarm')
plt.show()
```



```
Enter the square footage (e.g., 1800): 2000
Enter the number of bedrooms above grade (e.g., 2): 4
Enter the number of full baths (e.g., 2): 2
The price of the house is about \simeq $213,722.35
```