

MATEMÁTICA ELEMENTAR II: situações de matemática do ensino médio no dia a dia

© 2009 – IESDE Brasil S.A. É proibida a reprodução, mesmo parcial, por qualquer processo, sem autorização por escrito dos autores e do detentor dos direitos autorais.

CIP-BRASIL. CATALOGAÇÃO-NA-FONTE SINDICATO NACIONAL DOS EDITORES DE LIVROS, RJ

L55m

Leite, Olímpio Rudinin Vissoto.

Matemática elementar II: situações de matemática do ensino médio no dia a dia. / Olímpio Rudinin Vissoto Leite, Marcelo Gorges. - Curitiba, PR: IESDE, 2009.

444 p.

Sequência de: Matemática elementar I

ISBN 978-85-387-0414-0

1. Matemática (Ensino médio). I. Gorges, Marcelo. II. Inteligência Educacional e Sistemas de Ensino. III. Título.

09-3612. CDD: 510

CDU: 51

Capa: IESDE Brasil S.A. Imagem da capa: Júpiter Images/DPI Images

Todos os direitos reservados.

IESDE Brasil S.A.

Al. Dr. Carlos de Carvalho, 1.482. CEP: 80730-200 Batel - Curitiba - PR Ad Maiora Seugar! 0800 708 88 88 - www.iesde.com.br

Esse material é parte integrante do Aulas Particulares on-line do IESDE BRASIL S/A, mais informações www.aulasparticularesiesde.com.br

Olímpio Rudinin Vissoto Leite

Mestre em Gestão de Negócios pela Universidade Católica de Santos. Graduado em Licenciatura em Matemática pela USP.

Marcelo Gorges

Licenciado em Matemática pela Pontifícia Universidade Católica do Paraná.

Sumário

Números e operações | 11

- Números naturais | 11
- Números inteiros | 14
- Números racionais | 17
 - Números reais | 20
 - Porcentagem | 24
- Fator de aumento | 26
- Fator de redução | 27

Geometria e medidas | 33

- Comprimento e massa | 33
- Área, volume e capacidade | 37
 - Volume e capacidade | 42
- Estimativas e arredondamentos | 46
 - Teorema de Tales | 51
 - Teorema de Pitágoras | 58

Gráficos | 65

Tipos de gráficos | 65

Introdução às funções | 83

- Conceito intuitivo de função | 83
 - Gráfico cartesiano | 85
- Domínio e imagem de uma função | 88
 - Uma nova notação para função | 89

Função afim | 97

Gráfico da função afim | 97
Função linear | 98
Função identidade | 98
Função constante | 99
Coeficientes da função afim | 100
Interseção da reta com eixo x (raiz da função afim) | 101
Equações da reta | 108

Função quadrática | 115

Gráfico de uma função quadrática | 115 Domínio e imagem da função quadrática | 126 Máximo ou mínimo de uma função quadrática | 127

Tópicos complementares de funções | 135

Função definida por várias sentenças | 135 Estudo da variação das funções | 139 Valores extremos de uma função | 141 Estudo do sinal de uma função | 147 Inequação | 149

Funções exponenciais | 155

Potenciação | 155 Propriedades das potências | 156 Notação científica | 157 Função exponencial | 163 Equações exponenciais | 169

Função logarítmica | 175

O que é logaritmo? | 175

Propriedades dos logaritmos | 178

Função logarítmica | 186

Equação logarítmica | 190

A função exponencial de base 'e' e de base $\frac{1}{e}$ | 192

Logaritmo natural | 193

Introdução à trigonometria | 197

As razões trigonométricas | 197

Como calcular o seno, o cosseno e a tangente de um ângulo agudo? | 199

Seno, cosseno e tangente de um ângulo obtuso | 211

Lei dos senos | 219

Lei dos cossenos | 219

Progressão Aritmética (P.A.) | 225

Sequência numérica | 225

Progressão Aritmética (P.A.) | 228

Progressão Geométrica (P.G.) | 241

Progressão Geométrica | 241

Classificação de P.G. | 242

Sistemas lineares | 259

Matrizes | 259

Determinantes | 265

Sistemas lineares | 269

Princípio fundamental da contagem | 279

Princípio fundamental da contagem | 279 Tipos de agrupamentos | 281

Análise combinatória | 287

Fatorial | 287
Permutação simples | 288
Permutação com repetição | 289
Arranjo simples | 292
Combinação simples | 295

Noções de probabilidade | 299

Experimentos aleatórios | 299 Probabilidade | 300 Probabilidade condicional | 306

Matemática Financeira | 313

Porcentagem | 313
Porcentagem de uma quantia | 314
Porcentagem de um número em relação a outro | 314
Aumento | 315
Desconto | 317
Juros | 320

Geometria espacial | 327

Prismas | 327

Paralelepípedo reto-retângulo | 329

Cubo | 330

Pirâmides | 334

Cilindro | 339

Cone | 341

Esfera | 342

Estatística | 345

Notações | 345

Tipos de variáveis | 345

Medidas de tendência central | 346

Medidas de dispersão | 350

Apresentação de dados estatísticos | 353

Frequências | 354

Circunferência trigonométrica | 359

Circunferência trigonométrica | 359

Relações trigonométricas | 363

Função afim

Olímpio Rudinin Vissoto Leite

A lei de uma função afim é dada por f(x) = ax + b ou y = ax + b, com a e $b \in \mathbb{R}$ (a e b são números reais).

■ Gráfico da função afim

O gráfico de f(x) = ax + b ou y = ax + b é uma reta.

Exemplo:

Esboçar o gráfico da função f(x) = 10x + 100 (ou y = 10x + 100).

Solução:

Para desenhar uma reta, basta determinar dois pontos distintos dessa reta. Assim, se x = 0, então y = 10 . 0 + 100 = 100; se x = 3, então y = 10 . 3 + 100 = 130

Esse material é parte integrante do **Aulas Particulares** *on-line* do *IESDE BRASIL S/A*, mais informações <u>www.aulasparticularesiesde.com.br</u>

■ Função linear

Se uma função afim $f(x) = |R| \rightarrow |R|$ é definida por uma lei da forma f(x) = ax + b, com $a \ne 0$ e b = 0, ou seja f(x) = ax, ela é denominada função linear.

Exemplo:

х	у	(x,y)
1	2 3	$\left(1,\frac{2}{3}\right)$
3	2	(3, 2)

No gráfico anterior, por exemplo, temos a reta $y = \frac{2}{3}x$. Quando x = 1, temos $y = \frac{2}{3}$ e quando x = 3, temos y = 2. Observe que as variáveis x e y são proporcionais. Além disso, sempre que x for zero, y também será. O gráfico de uma função linear

Além disso, sempre que x for zero, y também será. O gráfico de uma função linear sempre intercepta a origem, ponto (0, 0).

■ Função identidade

A função afim f(x) = ax + b, com a = 1 e b = 0, fica reduzida a f(x) = x. A função f(x) = x é chamada de função identidade, pois a cada x ela associa um valor igual ao de x, ou seja, o valor de y é **idêntico** ao do x.

O gráfico da função identidade é uma reta particular: ela é bissetriz do primeiro e do terceiro quadrantes do referencial cartesiano, como pode ser observado no gráfico a seguir.

X	у	(x, y)
0	0	(0, 0)
1	1	(1, 1)

■ Função constante

Uma outra função pode ser obtida a partir da função afim: a função constante. Em f(x) = ax + b, fazendo a = 0, obtemos f(x) = 0x + b, ou, simplesmente, f(x) = b.

O gráfico da função constante é uma reta paralela ao eixo x.

Exemplo:

Esboçar o gráfico da reta y = 2.

Solução:

Para qualquer valor de x, y é constante, isto é, vale sempre 2.

х	у	(x, y)
-2	2	(-2, 2)
-1	2	(-1, 2)
0	2	(0, 2)
1	2	(1, 2)
2	2	(2, 2)
3	2	(3, 2)
4	2	(4, 2)

Coeficientes da função afim

A lei da função afim, f(x) = ax + b ou y = ax + b, apresenta dois coeficientes: $a \in b$. O coeficiente $a \in b$ chamado de coeficiente angular.

Coeficiente angular ou declividade (a), é a tangente da inclinação da reta, isto é, é a tangente do ângulo α que a reta forma com o eixo x, conforme pode ser observado na figura a seguir:

O coeficiente b é chamado de coeficiente linear.

Fazendo x = 0 em y = ax + b, obtemos y = b. Isso significa que o coeficiente linear representa a ordenada do ponto P(0, b), interseção da reta com o eixo y.

Exemplo:

A partir da reta da equação y = 2x + 3, determine os significados dos coeficientes linear e angular.

Solução:

A partir da fórmula da função, percebemos que o coeficiente linear é 3. No gráfico, notamos que a reta intercepta o eixo y no ponto P(0, 3), ou seja, o coeficiente linear representa a ordenada do ponto onde a reta intercepta o eixo y.

O coeficiente angular é 2. Sendo assim, a tangente do ângulo α que a reta forma com o eixo x, vale 2. Utilizando uma calculadora científica, podemos determinar que a medida do ângulo α , que a reta forma com o eixo x, é aproximadamente 63°.

Interseção da reta com eixo x (raiz da função afim)

Todos os pontos do eixo x têm como ordenada com valor 0 (zero). Sendo assim, para descobrir o ponto de intersecção de uma reta de equação y = ax + b ($a \ne 0$) com eixo x, basta fazer y = 0 e calcular o valor de x correspondente.

Assim temos:

$$y = ax + b$$

$$0 = ax + b$$

$$x = -\frac{b}{a}$$

O valor $-\frac{b}{a}$ é chamado de raiz ou zero da função.

Portanto, a intersecção de uma reta de equação y = ax + b ($a \ne 0$) com eixo x é o ponto P ($-\frac{b}{a}$, 0). Também podemos pensar que raiz de uma função é o valor de x que torna a função nula, ou seja, y igual a zero.

Exemplo:

Determinar a raiz da função y = 2x + 5 e o ponto de interseção com o eixo x, da reta que a representa.

Solução:

Fazendo y = 0 em y = 2x + 5, obtemos 0 = 2x + 5. Logo, x = $-\frac{5}{2}$ = -2,5.

Assim, a raiz da função y=2x+5 é x=-2,5, e o ponto de interseção da reta com o eixo x é $P(-\frac{5}{2},0)$. Perceba que para x=-2,5 temos y=0.

Exercícios

1. Em cada item, esboce o gráfico da função, dê o coeficiente angular e o coeficiente linear, explicando o significado de cada um.

a)
$$y = 2x + 4$$

b)
$$f(x) = -x + 3$$

- 2. Considere a função f(x) = -2x + 5.
 - a) Esboce o gráfico da função.
 - b) Dê os pontos de interseção da reta com os eixos coordenados.

c) Qual é a raiz dessa função?

3. Calcule a área do triângulo colorido, sendo y = -2x + 6:

4. Em cada um dos itens a seguir, a partir dos gráficos, dê o sinal (positivo ou negativo) do coeficiente angular (a) e do coeficiente linear (b) da função correspondente.

5. Em uma loja de Miami, o salário mensal fixo de um vendedor é de 100 dólares. Além disso, ele ganha 2 dólares por unidade vendida. Expresse o ganho mensal y desse vendedor em função do número x de unidades vendidas. Quantas unidades ele deve vender para receber um salário de 800 dólares?

6.	Um botijão de cozinha contém	13kg de gás.	Em média,	é consumido, p	or
	dia, 0,5kg.				

a) Expresse a massa m de gás no botijão, em função de t (dias de consumo).

b) Esboce o gráfico dessa função.

c) Depois de quantos dias a massa de gás no botijão será de 6,5kg?

d) Depois de quantos dias o botijão estará vazio?

7. Um capital de R\$500.000,00 é investido a juros simples de 1% ao mês, isto é, vai render mensalmente 1% de R\$500.000,00. Expresse o montante M (capital + juros) em função do tempo de aplicação n (em meses). Qual o valor do montante após três meses de investimento?

Equações da reta

1.° caso: reta não vertical

Exemplo:

Determinar a reta que passa pelos pontos A (2, 1) e B (3, 4).

Solução:

Considerar um ponto P(x, y) que se movimenta sobre a reta \overrightarrow{AB} . Ao percorrê-la, a abscissa e a ordenada de P variam. Mas $\alpha = \beta$. Logo, $tg\alpha = tg\beta$.

Assim,
$$tg\alpha = \frac{4-1}{3-2}$$
 e $tg\beta = \frac{y-4}{x-3}$. Daí, $3 = \frac{y-4}{x-3}$, ou ainda, $y = 3x-5$, que é a equação da reta \overrightarrow{AB} .

Repetindo esse procedimento para dois pontos quaisquer, A e B, de uma reta não vertical, obtém-se sempre uma equação do tipo y = ax + b. Reciprocamente, prova-se que qualquer equação do tipo y = ax + b, com a e b números reais, representa sempre uma reta.

Observação:

Toda equação é uma condição. Assim, a equação y = ax + b é a condição para que um ponto P (x, y) pertença à reta que essa equação representa.

2.° caso: reta vertical

Exemplo:

Obter a equação da reta que passa pelos pontos A (4, 2) e B (4, 5).

Solução:

Inicialmente, vamos construir o gráfico da reta que passa pelos pontos A e B.

Considere um ponto P(x, y) que se movimenta sobre essa reta. Ao percorrê-la, apenas a ordenada de P varia. A abscissa é sempre constante e igual a 4. Essa é a principal característica da reta vertical: seus pontos têm sempre a mesma abscissa.

A condição x = 4 é a equação da reta vertical que passa pelos pontos A (4, 2) e B (4, 5). Repetindo esse procedimento para dois pontos, a (k, y_1) e b (k, y_2), concluímos que a equação da reta vertical \overrightarrow{AB} é sempre do tipo x = k.

Exemplo:

Obter a equação da reta determinada pelos pontos A (2, 3) e B(3, 5).

Solução:

$$tg\alpha = \frac{5-3}{3-2} \qquad tg\beta = \frac{y-5}{x-3}$$

$$tg\beta = \frac{y-5}{y-3}$$

$$tg\alpha = \frac{2}{1}$$
 $tg\beta = \frac{y-5}{x-3}$

$$tg\beta = \frac{y-5}{x-3}$$

$$tg\alpha = 2$$

Como $tg\alpha = tg\beta$, temos:

 $2 = \frac{y-5}{y-3}$, então: y = 2x - 1, que representa a equação da reta que passa pelos pontos A(2, 3) e B(3, 5).

A equação da reta que passa pelos pontos A(2, 3) e B(3, 5), pode ser obtida de outra maneira, vejamos:

A equação de uma reta é y = ax + b. Temos: $tg\alpha = a$, onde α é a inclinação da reta. Do gráfico anterior, obtemos $tg\alpha = 2$. Logo, a = 2. Assim, já encontramos y = 2x + b.

Como a reta passa pelo ponto A (2, 3), substituindo x = 2 e y = 3 nessa equação, obtemos o valor de b:

$$3 = 2.2 + b$$

Daí, b = -1. Assim, a equação procurada é y = 2x -1.

Exercícios

8. Desenhe o gráfico cartesiano da reta que passa pelos pontos A (2, 2) e B (3, 3). Em seguida, determine a equação dessa reta.

- 9. Determine a equação da reta que passa pelos pontos O (0, 0) e L (2, 2) e esboce o gráfico cartesiano dessa reta.
- 10. Considere a reta de equação y = x + 2. Atribua a x os valores 2 e 4, e use os dois pontos obtidos para esboçar o gráfico cartesiano dessa reta.

11. Determine os pontos da reta de equação y = 2x + 4 que pertencem aos eixos coordenados. Esboce o gráfico dessa reta.

12. Esboce o gráfico cartesiano das retas de equações:

a)
$$y = 2x + 4$$

b)
$$y = -x + 2$$

c)
$$y = 5$$

d)
$$x = -2$$

13. Sendo $tg\alpha \approx 0.8$, determine a equação da reta r, que passa pelo ponto P (0, 2) e forma um ângulo de medida α com o sentido positivo do eixo x.

14. Sabendo que $tg\alpha = -0.8$, determine a equação da reta **s**, que passa pelo ponto Q (0, 0) e forma um ângulo de medida α com o sentido positivo do eixo x.

15. Qual é o coeficiente angular da reta de equação x + y = 10?

16. Determine as leis das funções afim, representadas graficamente a seguir:

17. O valor da bandeirada de um táxi é de R\$3,00 e do quilômetro rodado é de R\$1,50. Seja y o valor a ser pago para percorrer x quilômetros, considerando quilômetros rodados mais bandeirada. Dê a expressão de y em função de x e desenhe, num referencial cartesiano, a reta associada à equação que você achou. Quanto um passageiro deverá pagar se "rodar" 10km?

18. Um tanque continha 15.000ℓ de petróleo. Uma válvula aberta escoa 10ℓ /min. Sejam V o volume de petróleo e t os minutos que a válvula vai ficar aberta. Dê a expressão de V em função de t e desenhe, num referencial cartesiano, a reta associada à equação que você achou. Em quanto tempo o tanque ficará vazio (V=0)?

Gabarito

Função afim

1.

a)

coeficiente angular = tg α = 2 coeficiente linear = 4 (a reta intercepta o eixo y no ponto (0, 4))

b)

coeficiente angular = tg α = -1 coeficiente linear = 3 (a reta intercepta o eixo y no ponto (0, 3)) 2.

d)
$$(0, 5) e\left(\frac{5}{2}, 0\right)$$

e)
$$x = \frac{5}{2} = 2.5$$

3. A = 9 unidades de área.

4.

a)
$$a > 0 e b > 0$$

b)
$$a < 0 e b > 0$$

c)
$$a > 0 e b < 0$$

d)
$$a < 0 e b < 0$$

5.
$$y = 100 + 2x$$

 $800 = 100 + 2x$
 $x = 350$
Logo, deve vender $x = 350$ unidades

6.

a)
$$m = 13 - 0.5t$$

b)

c)
$$13 - 0.5t = 6.5$$

$$t = 13 dias$$

d)
$$13 - 0.5t = 0$$

$$t = 26 dias$$

7. Valor do montante em função do tempo de aplicação:

$$M = C (1 + i.n)$$

$$M = 500\ 000\ (1 + 0.01\ .\ n)$$

$$M = 500000 + 5000n$$

Após 3 meses, o valor do investimento é de:

$$M = 500000 + 5000.n$$

$$M = 500000 + 5000.3$$

$$M = 515000$$

Assim, o montante ao final de 3 meses é de R\$515.000,00.

8.

$$tg \beta = tg \alpha$$

$$\frac{y-3}{x-3} = \frac{3-2}{3-2} \Longrightarrow y = x$$

9.

10. Para x = 2 temos y = 4

Para x = 4 temos y = 6

12.

a)

11.

b)

c)

d)

13. $y = 0.8 \cdot x + 2$

14.
$$y = -0.8 \cdot x$$

15. y = -x + 10, logo, o coeficiente angular dessa reta é -1.

a)
$$y = \frac{x}{2} + 1$$

b)
$$y = -\frac{2}{3}x + 2$$

17.
$$y = 1.5x + 3$$

Sendo x = 10, temos:

$$y = 1.5 \cdot 10 + 3$$

$$y = 15 + 3$$

$$y = 18$$

Assim, o passageiro pagará R\$18,00.

18. $V = 15\,000 - 10t$. Sendo V = 0, tem-se $t = 1\,500$, isto é, o tanque ficará vazio em 1 500 minutos, ou seja, em 25 horas.

·	
·	

Matemática Elementar II: situações de matemática do ensino médio no dia a dia