Fe de erratas del trabajo de fin de grado las integrales de Borwein.

Lorena Escribano Huesca

Junio 2023

Ubicación	Dice	Debe decir
Página IV, último párrafo.	El tercer capítulo se presenta $[\cdots]$	En el tercer capítulo se presenta $[\cdots]$
Página 25, Sección 2.1, justo después de la fórmula (2.1).	$[\cdots]$ donde la función $\operatorname{senc}(x)$ es la llamada función seno cardinal. Laas expresiones $[\cdots]$	$[\cdots]$ donde la función $\operatorname{senc}(x)$ es la llamada función seno cardinal. Las expresiones $[\cdots]$
Página 42, fórmula (3.14).	$\operatorname{senc}(-ax) = [\cdots] = \operatorname{senc}(ax) = \sigma_1(x)$	$\operatorname{senc}(-ax) = [\cdots] = \operatorname{senc}(ax).$
Página 44, en el caso $a_0 > s_n$.	\blacksquare Si $a_0 > s_n$.	\blacksquare Si $a_0 \ge s_n$.
Página 46, fórmula (3.18), primera línea.	Aparece el inverso de a_0 .	Debe aparecer el inverso de a_{n+1} .
Página 47, en el quinto párrafo. En la integral de la función F_{n+1} , segunda línea.	$\int_0^t F_{n+1}(x)dx = \frac{1}{2a_{n+1}} (I_1 + I_2) \int_0^t F_n(u)du.$	$\int_0^t F_{n+1}(x)dx = \frac{1}{2a_{n+1}} (I_1 + I_2) + \int_0^t F_n(u)du.$