Homework 4

Liu Huihang

SA 18017026 QQ: 184050473

MAIL: huihanq@mail.ustc.edu.cn

Problem 1 Read the first four chapters of Owen (2001).

Problem 2 Coding

Problem 3 Assume that (X_i, Y_i) , $i = 1, \dots, n$ are i.i.d. samples from population (\mathbf{X}, \mathbf{Y}) . Parameter of interest is $\tau = \sigma_X^2/\sigma_Y^2$, where σ_X^2 and σ_Y^2 are variance of X and Y respectively. Denote θ by $(\tau, \eta')'$ where η is nuisance parameter. Try to give a set of simultaneous equations to estimate θ and represent the empirical likelihood confidence intercal of τ .

Solution

To define τ by X and Y, we formulate the following five estimation equations:

$$0 = E[X - \mu_x],$$

$$0 = E[Y - \mu_y],$$

$$0 = E[(X - \mu_x)^2 - \sigma_X^2],$$

$$0 = E[(Y - \mu_y)^2 - \sigma_Y^2],$$

$$0 = E[\sigma_X^2/\sigma_Y^2 - \tau].$$

for the parameter $\theta = (\tau, \mu_x, \mu_y, \sigma_X^2, \sigma_Y^2)'$.

To handle nuisance parameter, write the estimating function as $m(X,Y,\tau,\eta')=0$, $\tau\in\mathbb{R},\eta\in\mathbb{R}^4$. The parameters (τ,η') satisfy the equations $E[m(X,Y,\tau,\eta')]=0$. Now we define

$$\mathcal{R}(\tau, \eta') = \max \left\{ \prod_{i=1}^{n} n\omega_i | \sum_{i=1}^{n} \omega_i m(X, Y, \tau, \eta') = 0, \omega_i \ge 0, \sum_{i=1}^{n} \omega_i = 1 \right\}$$

and

$$\mathcal{R}(\tau) = \max_{\eta} \mathcal{R}(\tau, \eta').$$

Under mild conditions as described in Chapter 3.10 (Owen, 2001), $-2log\mathcal{R}(\tau) \to \chi^2_{(1)}$. Thus, a $100(1-\alpha)\%$ empirical likelihood confidence intercal of τ can be represented as

$$\left\{ \tau | -2log\mathcal{R}(\tau) \le \chi_{(1)}^{2,1-\alpha} \right\}.$$

References

Art B. Owen. Empirical Likelihood. 2001.