Daniel Ty

TCSS 343

Assignment 2

Due 10/30/2020

2.1 UNDERSTAND

1.

Pseudocode:

If
$$(a \ge b)$$

return A

$$k = minx(A[a...b])$$

If
$$(a < b \text{ and } A[a] \text{ is even or } a == k)$$

return A[a]
$$\parallel$$
 OS([$a + 1 \dots b$])

If (a < b and A[a] is odd and a < k)

return A[k]
$$\parallel$$
 OS(A[$a + 1 ... k - 1$]) \parallel A[a] \parallel A([$k + 1 ... b$])

End OS

2.

(I am assuming array concatenation takes dn operations.)

$$T(n) = \begin{cases} c & \text{if } n \le 1 \\ T(n-2) + dn & \text{if } n > 1 \end{cases}$$

$$T(n) = T(n-2) + dn$$

$$= T(n-4) + d(n-2) + dn$$

$$= T(n-6) + d(n-4) + d(n-2) + dn$$

= ...

$$= T(n-k) + \sum_{i=0}^{k-2} d(n-2i)$$

$$T(n - (n - 1)) = T(1) = c$$

Substitute k = n - 1

$$c+d\sum_{i=0}^{n-3}(n-2i)$$

$$c + d\sum_{i=3}^{n} 2i = c + 2d\sum_{i=3}^{n} i = c + 2d\frac{n(n+1)}{2} - d = c + dn^{2} + dn - d = \Theta(n^{2})$$

Upper Bound

Lemma: The recurrence $T(n) \le bn^2$ for all $n > n_0$.

Proof:

Base Case (n = 1):

$$T(1) = c \le b * 1^2 = b$$

The base case is true if $b \ge c$.

Inductive Hypothesis: Let n > 1, and assume $T(k) \le bk^2$ for all $1 \le k < n$

Inductive Step (n > 1):

$$T(n) = T(n-2) + dn$$

$$\leq b(n-2)^2 + dn$$

$$= bn^2 - 4bn + 4b + dn$$
$$\le bn^2$$

The last step is true if $4bn \ge 4b + dn$. Since n > 1, we know 4bn > 4b, so this condition holds if 4bn > dn. We select b = max(c, d).

Lower Bound

Lemma: The recurrence $T(n) \ge an^2$ for all $n > n_0$.

Proof:

Base Case (n = 1):

$$T(1) = c \ge a * 1^2 = a$$

The base case is true if $a \le c$.

Inductive hypothesis: Let n > 1, and assume $T(k) \ge ak^2$ for all $1 \le k < n$

Inductive Step (n > 1):

$$T(n) = T(n-2) + dn$$

$$\ge a(n-2)^2 + dn$$

$$= an^2 - 4an + 4a + dn$$

$$\ge an^2$$

The last step is true if $4an \le 4a + dn$. Since n > 1, we know $4an \ge 4a$, so this condition only holds if 4an < dn. We select $a = \min(c, \frac{d}{4})$.

Considering both lemmas, we get $an^2 \le T(n) \le bn^2$ for all $n \ge 1$. So, the recurrence $T(n) \in \Theta(n^2)$.

3.

Pseudocode:

SOS(A[a...b])

If
$$(a \ge b)$$

Return A

If
$$(b = a + 1)$$

Return pairsort(A[a], A[b])

$$t_1 = a + \left\lfloor \frac{b-a}{3} \right\rfloor$$

$$t_2 = b - \left[\frac{b - a}{3} \right]$$

$$\mathbf{A}' = \operatorname{SOS}(\mathbf{A}[\alpha \dots t_2]) \parallel \mathbf{A}(t_2 + 1 \dots b)$$

$$A'' = A'[a ... t_1] \parallel SOS(A'[t_1 + 1 ... b])$$

$$A''' = SOS(A''[a ... t_2]) || A''[t_2 + 1 ... b]$$

If
$$(b > a + 1)$$

Return A'''

End SOS

4.

$$T'(n) = \begin{cases} c & \text{if } n \le 1\\ 3T\left(\frac{2n}{3}\right) + dn & \text{if } n > 1 \end{cases}$$

Master's Theorem:

$$a = 3$$

$$\frac{2n}{3} = \frac{n}{\left(\frac{3}{2}\right)}, b = \frac{3}{2}$$

$$f(n) = dn$$

$$dn \in O\left(n^{\log_{\frac{3}{2}} 3 - \epsilon}\right) for \ 0 < \epsilon < 2.7095 \ (\log_{\frac{3}{2}} 3 = 2.7095)$$

So, we can conclude $T(n) \in \Theta(n^{\log_{3/2} 3})$.

2.2 EXPLORE

1.

Self-reduction 1:

$$C2(S[a \dots b]) = \begin{cases} \epsilon \text{ if } a \geq b \text{ and } len(S[a]) \text{ is odd} \\ S[a] \text{ if } a \geq b \text{ and } len(S[a]) \text{ is even} \\ C2(S[a+1 \dots b]) \text{ if } a < b \text{ and } len(S[a]) \text{ is odd} \\ S[a] \mid\mid C2(S[a+1 \dots b]) \text{ if } a < b \text{ and } len(S[a]) \text{ is even} \end{cases}$$

Self-reduction 2:

$$C2(S[a \dots b]) = \begin{cases} \epsilon & \text{if } a \ge b \text{ and } len(S[a]) \text{ is odd} \\ S[a] & \text{if } a \ge b \text{ and } len(S[a]) \text{ is even} \\ C2(S[a \dots l]) & \text{|| } C2(S[r \dots b]) \text{ if } a < b \end{cases}$$

$$with l = \left\lfloor \frac{b-a}{2} \right\rfloor, r = \left\lceil \frac{b-a}{2} \right\rceil$$

2.

Self-reduction 1 pseudocode:

C2(S[a...b])

If $(a \ge b \text{ and len}(S[a]) \text{ is odd})$

Return ϵ

If $(a \ge b \text{ and len}(S[a]) \text{ is even})$

Return S[a]

If (a < b and len(S[a]) is odd)

Return C2(S[a+1...b])

If (a < b and len(S[a]) is even)

Return $S[a] \parallel C2(S[a+1...b])$

End C2(S[a...b])

Self-reduction 2 pseudocode:

C2(S[a...b])

If $(a \ge b \text{ and len}(S[a]) \text{ is odd})$

Return ϵ .

If $(a \ge b \text{ and len}(S[a]) \text{ is even})$

Return S[a].

If (a < b)

$$1 = \left\lfloor \frac{b - a}{2} \right\rfloor$$

$$\mathbf{r} = \left\lceil \frac{b - a}{2} \right\rceil$$

Return $C2(S[a \dots l]) \mid\mid C2(S[r \dots b])$.

End C2(S[a...b])

3.

The worst-case runtime for both solutions is $\Theta(n)$

1.

Assume n is a power of 9, $n = 9^k$. $k = \log_9 n$

$$T(n) = 3T\left(\frac{n}{9}\right) + \sqrt{n}$$

$$= 3\left(3T\left(\frac{n}{81}\right) + \sqrt{\frac{n}{9}}\right) + \sqrt{n} = 9T\left(\frac{n}{81}\right) + 3\sqrt{\frac{n}{9}} + \sqrt{n} = 9T\left(\frac{n}{81}\right) + \sqrt{n} + \sqrt{n}$$

$$= 9\left(3T\left(\frac{n}{729}\right) + \sqrt{\frac{n}{81}}\right) + \sqrt{n} + \sqrt{n} = 27T\left(\frac{n}{729}\right) + 9\sqrt{\frac{n}{81}} + \sqrt{n} + \sqrt{n}$$

$$= 27T\left(\frac{n}{729}\right) + \sqrt{n} + \sqrt{n} + \sqrt{n}$$

= ...

$$= 3^{k}T\left(\frac{n}{9^{k}}\right) + k\sqrt{n}$$

$$= 3^{\log_{9} n}T(1) + \log_{9}(n)\sqrt{n}$$

$$= 3^{\log_{9} n} + \log_{9}(n)\sqrt{n} \in \theta(\sqrt{n}\log_{9} n)$$

$$g(n) = \sqrt{n}\log_{9} n$$

2.

Lemma: $T(n) \le b\sqrt{n}\log_9 n$ for all $n > n_0$

Proof:

Base case (n = 9):

$$T(9) = 3T\left(\frac{9}{9}\right) + \sqrt{9} = 3 + 3 = 6 \le b\sqrt{9}\log_9 9 = 3b$$

$$2 \leq b$$

The base case is true if $b \ge 2$.

Inductive hypothesis: Let n > 9, and assume $T(k) \le b\sqrt{k}\log_9 k$ for all $9 \le k < n$. Inductive Step (n > 9):

$$T(n) = 3T\left(\frac{n}{9}\right) + \sqrt{n}$$
 definition of T(n)

$$\leq 3b\sqrt{\frac{n}{9}}\log_9\frac{n}{9} + \sqrt{n}$$
 Inductive hypothesis

$$\leq b\sqrt{n}\log_9\frac{n}{9} + \sqrt{n}$$

$$\leq b\sqrt{n}\log_9 n - b\sqrt{n} + \sqrt{n}$$

$$\leq b\sqrt{n}\log_9 n$$

The last step is only true if $-b\sqrt{n} + \sqrt{n} \le 0$, that is, if $b \ge 1$.

Combining with the constraint from the base case, we can select b = 2.

By Induction, we have shown for all $n \ge 9$ that $T(n) \le b\sqrt{n} \log_9 n$. In other words, $T(n) \in O(g(n))$.

3.

Lemma: $T(n) \ge b\sqrt{n}\log_9 n$ for all $n > n_0$

Proof:

Base Case (n = 1):

$$T(1) = 1 \ge b\sqrt{1}\log_9 1 = b * 1 * 0 = 0$$

This base case is true for all b.

Inductive hypothesis: Let $n \ge 1$, assume $T(k) \ge b\sqrt{k}\log_9 k$ for all $1 \le k < n$.

$$T(n) = 3T\left(\frac{n}{9}\right) + \sqrt{n}$$
 definition of T(n)

$$\geq 3b\sqrt{\frac{n}{9}}\log_9\frac{n}{9} + \sqrt{n}$$

Inductive hypothesis

$$\geq b\sqrt{n}\log_9\frac{n}{9} + \sqrt{n}$$

$$\geq b\sqrt{n}\log_9 n - b\sqrt{n} + \sqrt{n}$$

$$\geq b\sqrt{n}\log_9 n$$

The last step is only true if $-b\sqrt{n} + \sqrt{n} \ge 0$, that is, if $b \le 1$.

Combining with the constraint from the base case, we can select b = 1.

By Induction, we have proven for $n \ge 1$ that $T(n) \ge b\sqrt{n}\log_9 n$. In other words, $T(n)\epsilon \Omega(g(n))$. This combined with $T(n)\epsilon \Omega(g(n))$ above proves that $T(n)\epsilon \Omega(g(n))$.