

2

公众号:考研拼课₁ 配套课程请关注

王道考研/CSKAOYAN.COM

王道考 ",, 。。、。。, 。....

主存储器的基本组成 主存储器 存储体 地址 每个地址对应 一个存储单元 存储单元 0 数据在存储体 内按地址存储 存 存储单元 1 储 2 体 3 4 MAR MDR MDR位数=存储字长 5 储单元的个数 6 MAR=4位 → 总共有 2⁴ 个存储单元 MDR=16位 → 每个存储单元可存放16bit, <mark>存储单元</mark>:每个存储单元存放一串二进制代码 <mark>存储字(word)</mark>:存储单元中二进制代码的组合 1个字(word) = 16bit 易混淆: 1个字节(Byte) = 8bit <mark>存储字长</mark>:存储单元中二进制代码的位数 1B=1个字节, 1b=1个bit 存储元:即存储二进制的电子元件,每个存储元可存 1bit 王道考研/CSKAOYAN.COM

1

公众号:考研拼课。 配套课程请关注

控制器的基本组成 控制器 CU: 控制单元,分析指令,给出控制信号 IR: 指令寄存器,存放当前执行的指令 PC: 程序计数器,存放下一条指令地址,有自动加1功能 控制 Control Unit 单元 Instruction Register **Program Counter** 完成 取指令 PC • 取指 一条 分析指令 IR 指令 执行指令 执行 CU 王道考研/CSKAOYAN.COM

6

公众号:考研拼课。 配套课程请关注

计算机的工作过程 主存 指令 CPU 注释 地址 存储体 操作码 地址码 ACC MQ 000001 000000101 取数a至ACC 0 CU 3 8 IR 000100 0000000110 乘b得ab,存于ACC中 I/O 1 ALU 控制 加c得ab+c,存于ACC中 MAR MDR 2 000011 0000000111 PC 单元 Х 3 000010 0000001000 将ab+c,存于主存单元 运算器 控制器 主存储器 0000000000 4 000110 停机 5 原始数据a=2 00000000000000011 原始数据b=3 6 初: (PC)=0,指向第一条指令的存储地址 #1: (PC)→MAR, 导致(MAR)=0 00000000000000001 原始数据c=17 #3: M(MAR)→MDR,导致(MDR)=**000001** 0000000101 00000000000000000 原始数据v=0 8 #4: (MDR)→IR, 导致(IR)=000001 0000000101 #5: OP(IR)→CU, 指令的操作码送到CU, CU分析后得知, 这是"取数"指令 取指令 (#1~#4) #6: Ad(IR)→MAR,指令的地址码送到MAR,导致(MAR)=5 分析指令(#5) #8: M(MAR)→MDR, 导致(MDR)=0000000000000010=2 执行取数指令(#6~#9) #9: (MDR)→ACC, 导致(ACC)=0000000000000010=2 王道考研/CSKAOYAN.COM

计算机的工作过程 主存 指令 CPU 注释 地址 操作码 地址码 存储体 ACC __ MQ 000001 000000101 取数a至ACC 0 CU 10 8 乘b得ab,存于ACC中 IR 1 000100 0000000110 I/O ALU 控制 PC 2 000011 0000000111 加c得ab+c,存于ACC中 单元 PC MAR MDR X 3 000010 0000001000 将ab+c,存于主存单元 运算器 控制器 主存储器 0000000000 4 000110 停机 000000000000000010 原始数据a=2 5 原始数据b=3 00000000000000011 6 上一条指令取指后(PC)=2, 执行后, (ACC)=6 #1: (PC)→MAR, 导致(MAR)=2 7 00000000000000001 原始数据c=1 #3: M(MAR)→MDR, 导致(MDR)= 000011 0000000111 00000000000000000 原始数据y=0 8 #4: (MDR)→IR, 导致(IR)= 000011 0000000111 #5: OP(IR)→CU, 指令的操作码送到CU, CU分析后得知, 这是"加法"指令 #6: Ad(IR)→MAR,指令的地址码送到MAR,导致(MAR)=7 取指令 (#1~#4) #8: M(MAR)→MDR, 导致(MDR)=0000000000000001=1 分析指令(#5) #9: (MDR)→X, 导致(X)=0000000000000001=1 执行<mark>加法</mark>指令(#6~#10) #10: (ACC)+(X)→ACC, 导致(ACC)=7, 由ALU实现加法运算 王道考研/CSKAOYAN.COM

回顾: 冯诺依曼机的特点

冯·诺依曼计算机的特点:

- 1. 计算机由五大部件组成
- 2. 指令和数据以同等地位存于存储器,可按地址寻访
- 3. 指令和数据用二进制表示
- 4. 指令由操作码和地址码组成
- 5. 存储程序
- 6. 以运算器为中心(现在一般以存储器为中心)

王道考研/CSKAOYAN.COM