

Lecture 2: Discrete Time Systems and Z-Transform

ELEN 472: Introduction to Digital Control

Lingxiao Wang, Ph.D.

Assistant Professor of Electrical Engineering Louisiana Tech University

Discrete-Time Signals

- A discrete-time signal is a sequence of values that correspond to particular instants in time.
 - By **sampling**, a continuous-time signal can be converted into a discrete-time signal.
- The time instants at which the signal is defined are the signal's *sample times*, and the associated signal values are the signal's *samples*.
- For a periodically sampled signal, the equal interval between any pairs of consecutive sample times is the signal's **sample period** T_s .

Relationship of Discrete-time/Continuous-time and Digital/Analog Signals

- Discrete-time/Continuous-time describe the time behaviors of signals
 - If the signal is continuous in time -> Continuous-time Signal
 - If the signal is **discrete in time** -> Discrete-time Signal
- Digital/Analog describe the amplitude values of signals
 - If the signal's amplitude can take **any (infinite) values** -> Analog Signals
 - If the signal's amplitude only takes finite values -> Digital Signals

Continuous Time, Analog

Discrete Time, Analog

Continuous Time, Digital

Discrete Time, Digital

Some Useful Discrete-Time Signals

Discrete-Time Impulse function $\delta[k]$:

$$u(k) = \delta(k) = \begin{cases} 1, & k = 0 \\ 0, & k \neq 0 \end{cases}$$

Discrete-Time Unit Step Function u[k]:

$$u[k] = \begin{cases} 1 & \text{for } k \ge 0 \\ 0 & \text{for } k < 0 \end{cases}$$

$$u[k] = \begin{cases} 1 & for \ k \ge 0 \\ 0 & for \ k < 0 \end{cases}$$

Discrete-Time Exponential function u[k]:

$$u(k) = \begin{cases} a^{k}, & k \ge 0 \\ 0, & k < 0 \end{cases}$$

$$u(k) = \begin{cases} a^k, & k \ge 0\\ 0, & k < 0 \end{cases}$$

Discrete-Time Systems

 Systems whose inputs and outputs are discrete-time signals are called discrete-time systems.

- Example Discrete-Time System:
 - Question: A person makes a deposit in a bank regularly at an interval of T (say, 1 month). The bank pays a certain interest (r) on the account balance during the period T and mails out the account balance to the depositor. Find the equation relating the balance y[k] to the deposit u[k].
 - **Solution:** The balance y[k] is the sum of:
 - The previous balance y[k-1]
 - The interest on y[k-1] during the period T
 - The deposit u[k]
 - y[k] = y[k-1] + ry[k-1] + u[k]
 - $y[k] = (1+r)y[k-1] + u[k] \implies y[k] (1+r)y[k-1] = u[k]$

Difference Equations

In the previous example, the equation:

$$y[k] - (1+r)y[k-1] = u[k]$$

is named as **Difference Equation**.

• *Difference Equations* relate to *differential equations* as discrete mathematics relates to continuous mathematics.

Continuous-Time Systems

 $\frac{dy(t)}{dt} = u(t) + \cdots$

Discrete-Time Systems

$$y(k) - y(k-1) = u(k) \dots$$

• General Form of Difference Equations:

$$y(k+n) = f[y(k+n-1), y(k+n-2), ..., y(k+1), y(k), u(k+n), u(k+n-1), ..., u(k+1), u(k)]$$

Linear Difference Equations

Linear Difference Equations:

$$y(k+n) + a_{n-1}y(k+n-1) + \dots + a_1y(k+1) + a_0y(k)$$

= $b_nu(k+n) + b_{n-1}u(k+n-1) + \dots + b_1u(k+1) + b_0u(k)$

• where $a_0, a_1, \dots a_{n-1}$ and b_0, b_1, \dots, b_n are coefficients of y(.) and u(.).

Properties:

- System Order: the difference between the highest and lowest arguments of y(.) and u(.).
- **Time Invariant**: If these coefficients $(a_0, ..., a_{n-1}, b_0, ..., b_n)$ are constants, then this difference equation is **T**ime Invariant.
- Homogeneous: If u(.) = 0, then this difference equation is Homogeneous.

Examples

 For each of the following difference equations, determine the order of the equation. Is the equation (a) linear, (b) time invariant, or (c) homogeneous?

$$y(k+2) + 0.8y(k+1) + 0.07y(k) = u(k)$$

$$y(k+4) + \sin(0.4k)y(k+1) + 0.3y(k) = 0$$

$$y(k+1) = -0.1y^{2}(k)$$

Solution:

- System 1:
 - The order is 2.
 - The system is *linear* and *time invariant* since all coefficients are constant.
 - The system is **not homogeneous** due to u(k).
- The order is 4. The system is *linear* but *time varying* due to the second coefficient. The system is *homogeneous*.
- The order is 1. The right-hand side is a nonlinear function of y(k), but does not include u(k) and coefficients that depend on time explicitly. The system is **nonlinear**, **time invariant**, and **homogeneous**.

Practice Questions

 For each of the following equations, determine the order of the equation and then test it for (1) linearity, (2) time invariance, and (3) homogeneity.

(a)
$$y(k + 2) = y(k + 1) y(k) + u(k)$$

(b)
$$y(k+3) + 2 y(k) = 0$$

(c)
$$y(k+4) + y(k-1) = u(k)$$

Solution:

- (a): System order: 2; Linear: No, due to y(k+1)y(k); Time-invariant: yes; homogeneous: no, due to u(k).
- (b): System order: 3; Linear: yes; Time-invariant: yes; homogeneous: yes.
- (c): System order: 5, 4--1=5; Linear: yes; Time-invariant: yes; Homogeneous: no, due to u(k).

The Z-Transform

- The z-Transform is an important tool in the analysis and design of discrete-time systems.
 - It is equivalent to Laplace-Transform in continuous-time systems.

Why z-Transform?

• It simplifies the solution of discrete-time problems by converting **Convolution** into **Multiplication**.

• z-Transform is the discrete-time version of Laplace-Transform s^T

$$z = e^{sT}$$

• Where *T* is the sampling period.

The Z-Transform

Causal signals: Signals with zero values for negative time.

Causal

Noncausal

The following is the definition of the z-transform:

DEFINITION 2.1

Given the causal sequence $\{u_0, u_1, u_2, \dots, u_k, \dots\}$, its z-transform is defined as

$$U(z) = u_0 + u_1 z^{-1} + u_2 z^{-2} + \dots + u_k z^{-k}$$

= $\sum_{k=0}^{\infty} u_k z^{-k}$

- The z^{-1} in the above equation can be regarded as a time delay operator.
- Example:
 - Obtain the z-transform of the sequence $\{u_k\}_{k=0}^{\infty}=\{1,3,2,0,4,0,0,0,0..\}$
- Solution:
 - Using the z-transform's definition equation, we have:

$$U(z) = 1 + 3z^{-1} + 2z^{-2} + 4z^{-4}$$

Practice Questions

- Find the z-transforms of the following sequences:
 - (a) $\{0, 1, 2, 4, 0, 0, \ldots\}$
 - **(b)** $\{0, 0, 0, 1, 1, 1, 0, 0, 0, \ldots\}$
 - (c) $\{0, 2^{-0.5}, 1, 2^{-0.5}, 0, 0, 0, \dots\}$
- Solution:
 - (a) $z^{-1} + 2z^{-2} + 4z^{-3}$
 - (b) $z^{-3} + z^{-4} + z^{-5}$
 - (c) $2^{-0.5}z^{-1} + z^{-2} + 2^{-0.5}z^{-3}$

Z-Transforms of Standard Discrete-time Signals: Unit Impulse

- Example: Unit Impulse
 - Consider the discrete-time impulse:

$$u(k) = \delta(k) = \begin{cases} 1, & k = 0 \\ 0, & k \neq 0 \end{cases}$$

• Apply the z-transform, we have

$$U(z) = 1$$

Z-Transforms of Standard Discrete-time Signals: Sampled Step

• Consider the sequence $\{u_k\} = \{1, 1, 1, 1, 1, \dots \}$

• Using the z-transform on u_k , we have:

$$U(z) = 1 + z^{-1} + z^{-2} + z^{-3} + \dots + z^{-k} + \dots$$
$$= \sum_{k=0}^{\infty} z^{-k}$$

- Since $\sum_{k=0}^{\infty} a^k = \frac{1}{1-a}$, |a| < 1
 - We have $U(z) = \frac{1}{1-z^{-1}} = \frac{z}{z-1}$

Note that this equation is **only** valid for |z| < 1. This implies that the z-transform expression we obtain has a region of convergence outside which is not valid.

Z-Transforms of Standard Discrete-time Signals: Exponential

Let

$$u(k) = \begin{cases} a^k, k \ge 0\\ 0, k < 0 \end{cases}$$

• If 0 < a < 1, we can plot the u(k) as follows:

• Using z-transform on u(k), we have

$$U(z) = 1 + az^{-1} + a^2z^{-2} + a^3z^{-3} + \dots = \sum_{k=0}^{\infty} \left(\frac{a}{z}\right)^k$$

• Since
$$\sum_{k=0}^{\infty} a^k = \frac{1}{1-a}$$
, $|a| < 1$

• We have
$$U(z) = \frac{1}{1-a/z} = \frac{z}{z-a}$$

Z-Transforms of Standard Discrete-time Signals: Summary

Discrete-time Signals	Z-transform Results
Unit Impulse	U(z) = 1
$u(k) = \delta(k) = \begin{cases} 1, & k = 0 \\ 0, & k \neq 0 \end{cases}$	
$\begin{array}{c c} 1 & & \\ \hline & & \\ \hline & -1 & 0 & 1 \end{array}$	
Sampled Step	$U(z) = \frac{1}{1 - z^{-1}} = \frac{z}{z - 1}$
$\{u_k\} = \{1, 1, 1, 1, 1, \dots \}$	$1 - z^{-1} - z - 1$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Exponential	$II(z) = \frac{1}{z}$
$u(k) = \begin{cases} a^k, & k \ge 0 \\ 0, & k < 0 \end{cases}$	$U(z) = \frac{1}{1 - a/z} = \frac{z}{z - a},$ $ a < 1$

Z-Transform Pairs

	Continuous	Laplace	·	
No.	Time	Transform	Discrete Time	z-Transform
1	$\delta(t)$	1	$\delta(k)$	1
2	1(<i>t</i>)	$\frac{1}{s}$	1(<i>k</i>)	$\frac{z}{z-1}$
3	t	$\frac{1}{s^2}$	kT^{**}	$\frac{zT}{(z-1)^2}$
4	t^2	$\frac{2!}{s^3}$	$(kT)^2$	$\frac{z(z+1)T^2}{(z-1)^3}$
5	t^3	$\frac{3!}{s^4}$	$(kT)^3$	$\frac{z(z^2 + 4z + 1)T^3}{(z-1)^4}$
6	$e^{-\alpha t}$	$\frac{1}{s+\alpha}$	a^{k} ***	$\frac{z}{z-a}$
7	$1 - e^{-\alpha t}$	$\frac{\alpha}{s(s+\alpha)}$	$1-a^k$	$\frac{(1-a)z}{(z-1)(z-a)}$
8	$e^{-\alpha t} - e^{-\beta t}$	$\frac{\beta - \alpha}{(s + \alpha)(s + \beta)}$	$a^k - b^k$	$\frac{(a-b)z}{(z-a)(z-b)}$

***The function $e^{-\alpha kT}$ is obtained by setting $a = e^{-\alpha T}$.

Z-Transform Pairs (Continued)

9	$te^{-\alpha t}$	$\frac{1}{(s+\alpha)^2}$	kTa ^k	$\frac{azT}{(z-a)^2}$
10	$\sin(\omega_n t)$	$\frac{\omega_n}{s^2 + \omega_n^2}$	$\sin(\omega_n kT)$	$\frac{\sin(\omega_n T)z}{z^2 - 2\cos(\omega_n T)z + 1}$
11	$\cos(\omega_n t)$	$\frac{s}{s^2 + \omega_n^2}$	$\cos(\omega_n kT)$	$\frac{z[z-\cos(\omega_n T)]}{z^2-2\cos(\omega_n T)z+1}$
12	$e^{-\zeta\omega_n t}\sin(\omega_d t)$	$\frac{\omega_d}{(s+\zeta\omega_n)^2+\omega_d^2}$	$e^{-\zeta\omega_nkT}\sin(\omega_dkT)$	$\frac{e^{-\zeta\omega_n T}\sin(\omega_d T)z}{z^2 - 2e^{-\zeta\omega_n T}\cos(\omega_d T)z + e^{-2\zeta\omega_n T}}$

Properties of the Z-transform

Linearity:

$$\mathcal{Z}\{\alpha f_1(k) + \beta f_2(k)\} = \alpha F_1(z) + \beta F_2(z)$$

- Example:
 - Find the z-transform of the causal sequence:

$$f(k) = 2 \times 1(k) + 4\delta(k),$$
 $k = 0,1,2,3,...$

- Solution:
 - Using linearity, the transform of the sequence is:

$$F(z) = \mathcal{Z}\{2 \times 1(k) + 4\delta(k)\} = 2\mathcal{Z}\{1(k)\} + 4\mathcal{Z}\{\delta(k)\} = \frac{2z}{z-1} + 4 = \frac{6z-4}{z-1}$$
Sampled Step Signal Unit Impulse

Practical Question

- Use the linearity of the z-transform to obtain the transform of the following discrete-time functions:
 - $\sin(k\omega T)$
 - Hint: $\sin(k\omega T) = \frac{e^{jk\omega T} e^{-jk\omega T}}{2i}$ a^{k}

Solution

$$Z \left\{ \sin(k\omega T) \right\} = \frac{1}{2j} \left[Z \left\{ e^{jk\omega T} \right\} - Z \left\{ e^{-jk\omega T} \right\} \right]$$

$$= \frac{1}{2j} \left[\frac{z}{z - e^{j\omega T}} - \frac{z}{z - e^{-j\omega T}} \right]$$

$$= \frac{1}{2j} \left[\frac{\left(e^{j\omega T} - e^{-j\omega T} \right) z}{z^2 - \left(e^{j\omega T} + e^{-j\omega T} \right) z + 1} \right] = \frac{\sin(\omega T) z}{z^2 - 2\cos(\omega T) z + 1}$$

Properties of the Z-transform: Time Delay

This equation shows the time delay property of z-transform:

$$\mathcal{Z}\{f(k-n)\} = z^{-n}F(z)$$

- Example:
 - Find the z-transform of the causal sequence:

$$f(k) = \begin{cases} 4, & k = 2, 3, \dots \\ 0, & \text{otherwise} \end{cases}$$

- Solution:
 - The given sequence is a sampled step starting at k=2 rather than k=0 (i.e., it is delayed by two sampling periods). Using the delay property, we have:

$$F(z) = \mathcal{Z}\{4 \times 1(k-2)\} = 4 \ z^{-2} \mathcal{Z}\{1(k)\} = z^{-2} \frac{4z}{z-1} = \frac{4}{z(z-1)}$$

Properties of the Z-transform: Time Advance

The following equations show the time advance property:

$$\mathcal{Z}\{f(k+1)\} = zF(z) - zf(0)$$

$$\mathcal{Z}\{f(k+n)\} = z^n F(z) - z^n f(0) - z^{n-1} f(1) - \dots - zf(n-1)$$

• Example:

• Using the time advance property, find the z-transform of the causal sequence: $\{f(k)\} = \{4, 8, 16, ...\}$

Solution:

- The sequence can be written as $f(k) = 2^{k+2} = g(k+2)$, k = 0,1,2,...
- g(k) is the exponential time function, $g(k) = 2^k$, k = 0,1,2,3...
- Using the time advance property, we can write:

$$F(z) = z^{2}G(z) - z^{2}g(0) - zg(1) = z^{2}\frac{z}{z - 2} - z^{2} - 2z = \frac{4z}{z - 2}$$

Properties of the Z-transform: Multiplication by Exponential

 The following equation presents the multiplication by exponential property:

$$\mathcal{Z}\{a^{-k}f(k)\} = F(az)$$

Example:

• Find the z-transform of the exponential sequence: $f(k) = e^{-\alpha kT}, k = 0,1,2,...$

Solution:

- Recall that z-transform of a sampled step signal is $F(z) = (1 z^{-1})^{-1}$
- Observe that f(k) can be rewritten as $f(k) = (e^{\alpha T})^{-k} \times 1$
- Then apply the multiplication by exponential property:

$$\mathscr{Z}\left\{ (e^{\alpha T})^{-k} f(k) \right\} = [1 - (e^{\alpha T} z)^{-1}]^{-1} = \frac{z}{z - e^{-\alpha T}}$$

Practice

- Use the multiplication by exponential property to obtain the transforms of the following discrete-time functions.
 - $e^{-\alpha kT}\sin(k\omega T)$

Solution:

• The multiplication by exponential property gives:

$$z\{e^{-\alpha kT}f(k)\} = F(e^{\alpha T}z)$$

$$Z\left\{e^{-\alpha kT}\sin(k\omega T)\right\} = \frac{\sin(\omega T)\left(e^{\alpha T}z\right)}{\left(e^{\alpha T}z\right)^2 - 2\cos(\omega T)\left(e^{\alpha T}z\right) + 1} = \frac{\sin(\omega T)e^{-\alpha T}z}{z^2 - 2\cos(\omega T)e^{-\alpha T}z + e^{-2\alpha T}}$$

Properties of the Z-transform: Complex Differentiation

The complex differentiation property can be presented by using:

$$\mathscr{Z}\left\{k^{m}f(k)\right\} = \left(-z\frac{d}{dz}\right)^{m}F(z)$$

Example:

Find the z-transform of the sampled ramp sequence:

$$f(k) = k,$$
 $k = 0,1,2,...$

Solution:

• Recall that the z-transform of a sampled step signal is

$$F(z) = \frac{z}{z - 1}$$

And observe that f(k) can be rewritten as $f(k) = k \times 1$, k = 0,1,2,...

Then, apply the complex differentiation property to obtain:

$$\mathcal{Z}\{k \times 1\} = \left(-z \frac{d}{dz}\right) \left(\frac{z}{z-1}\right) = (-z) \frac{(z-1)-z}{(z-1)^2} = \frac{z}{(z-1)^2}$$