

What is claimed is:

1. A structure of electro-optics device with a high efficiency, comprising:
a plurality of convex die carriers, wherein a convex portion of each of the
plurality of convex die carriers is defined as a cell-fixing surface; and
a plurality of electro-optics cells, and each of the plurality of electro-optics cells
has a first electrode and a second electrode, wherein the first electrode is electrically
connected with each of the plurality of convex die carriers and the second electrode is
electrically connected with a lead frame.
- 10 2. The structure of electro-optics device with a high efficiency of claim 1, wherein
the structure further comprises a transparent fixing-glue which is used for fixing each
of the plurality of convex die carriers and each of the plurality of electro-optics cells.
- 15 3. The structure of electro-optics device with a high efficiency of claim 1, wherein
the structure comprises a plurality of light reflecting layers located on the surface of
each of the plurality of convex die carriers.
- 20 4. The structure of electro-optics device with a high efficiency of claim 1, wherein
each of the plurality of electro-optics cells is selected from the group consisting of a
light-emitting cell, a PIN photo diode cell, an avalanche photo diode cell, a metal-
semiconductor-metal photo detector cell, a metal-oxide-semiconductor field effect
transistor cell, and a metal-semiconductor field effect transistor cell.

5. The structure of electro-optics device with a high efficiency of claim 1, wherein
a silver paste is used for wire bonding between the first electrode and the cell-fixing
surface.

5

6. The structure of electro-optics device with a high efficiency of claim 1, wherein
a conductive paste is used for wire bonding between the first electrode and the cell-
fixing surface.

10

7. The structure of electro-optics device with a high efficiency of claim 1, wherein
an eutectic method is used for wire bonding between the first electrode and the cell-
fixing surface.

15

8. The structure of electro-optics device with a high efficiency of claim 1, wherein
the plurality of convex die carriers further comprises:

a plurality of bases; and

a plurality of semiconductor bases, wherein a first surface of each of the plurality
of semiconductor bases is located on each of the plurality of bases, and a second
surface of each of the plurality of semiconductor bases has a convex portion, and the
convex portion is the cell-fixing surface.

20

9. The structure of electro-optics device with a high efficiency of claim 8, wherein

the structure further comprises a light reflecting layer located on the convex second surface of each of the plurality of semiconductor bases.

10. The structure of electro-optics device with a high efficiency of claim 8,
5 wherein a metal material is used for wire bonding between the first electrode and the
cell-fixing surface.

11. The structure of electro-optics device with a high efficiency of claim 10,
wherein the metal material is selected from the group consisting of AuSn alloy, PbSn
10 alloy, PbIn alloy, PbSnAg alloy, AuSi alloy, AuGe alloy, AuBe alloy, InSn alloy,
AgIn alloy, SnAg alloy, SnAgBi alloy, AuGeNi alloy, and In.

12. The structure of electro-optics device with a high efficiency of claim 1,
wherein the cell-fixing surface is selected from a symmetric cell-fixing surface having
15 a first pattern and a second pattern, the first pattern and the second pattern being
mirror-reflected to each other.

13. The structure of electro-optics device with a high efficiency of claim 1,
wherein the cell-fixing surface is selected from an asymmetric cell-fixing surface
20 having a first pattern and a second pattern, the first pattern and the second pattern not
being mirror-reflected to each other.

14. A method for forming a high efficiency electro-optics device, comprising:
providing a plurality of convex die carriers having a convex portion defined as a
cell-fixing surface;
bonding a first electrode of an electro-optics cell on each of the plurality of cell-
fixing surfaces to connect electrically with each of the plurality of die carriers; and
connecting electrically a second electrode of the electro-optics cell with an
electrical adapter.

15. The method for forming a high efficiency electro-optics device of claim 14,
10 wherein the steps of providing the convex die carriers further comprise:

providing a plurality of bases;
etching a plurality of semiconductor bases to form each of a plurality of convex
cell-fixing surfaces on each of a plurality of first surfaces of the plurality of
semiconductor bases; and
15 fixing each of a plurality of second surfaces of the plurality of semiconductor
bases on each of the plurality of bases.

16. The method for forming a high efficiency electro-optics device of claim 15,
wherein the method further comprises a light reflecting layer (located) on each of the
20 plurality of first surfaces of the plurality of semiconductor bases.

17. The method for forming a high efficiency electro-optics device of claim 14,
wherein the electrical adapter is a lead frame.

18. The method for forming a high efficiency electro-optics device of claim 14,
wherein the electrical adapter is a printed circuit board.

5 19. The method for forming a high efficiency electro-optics device of claim 14,
wherein said electrical adapter is a metal base.

10 20. The method for forming a high efficiency electro-optics device of claim 14,
wherein the method further comprises a step of providing a transparent fixing-glue for
fixing each of the plurality of convex die carriers and the electro-optics cell.

15 21. The method for forming a high efficiency electro-optics device of claim 14,
wherein the method further comprises~~a light reflecting layer~~^{an adhesive}~~(plated)~~ on the surface of
each of the plurality of convex die carriers.

20 22. The method for forming a high efficiency electro-optics device of claim 14,
wherein the electro-optics cell is selected from the group consisting of a light-emitting
cell, a PIN photo diode cell, an avalanche photo diode cell, a metal-semiconductor-
metal photo detecting cell, a metal-oxide-semiconductor field effect transistor cell, and
a metal-semiconductor field effect transistor cell.

23. The method for forming a high efficiency electro-optics device of claim 14,

wherein the method further comprises a step of providing a self-aligning process for fixing the first electrode and each of the plurality of cell-fixing surfaces, and the self-aligning process comprising:

forming a metal material on the first electrode;

5 forming a metal layer on each of the plurality of cell-fixing surfaces; and

under a specific temperature, contacting the metal layer and the metal material to form a metal bonding for accomplishing an electrical connection between the first electrode and the plurality of die carriers.

10 24. The method for forming a high efficiency electro-optics device of claim 23, wherein the metal bonding is an eutectic bonding.

25. The method for forming a high efficiency electro-optics device of claim 23, wherein the metal bonding is a metal melting.

15

26. The method for forming a high efficiency electro-optics device of claim 23, wherein the metal material is selected from the group consisting of an AuSn alloy, PbSn alloy, PbIn alloy, PbSnAg alloy, AuSi alloy, AuGe alloy, AuBe alloy, InSn alloy, AgIn alloy, SnAg alloy, SnAgBi alloy, AuGeNi alloy, and In.

20

27. The method for forming a high efficiency electro-optics device of claim 23, wherein the specific temperature is higher than the melting temperature of the metal

material.

28. The method for forming a high efficiency electro-optics device of claim 14,
wherein each of the plurality of cell-fixing surfaces is selected from a symmetric cell-
fixing surface having a first pattern and a second pattern, the first pattern and the
second pattern being mirror-reflected to each other.

29. The method for forming a high efficiency electro-optics device of claim 14,
wherein each of the plurality of cell-fixing surfaces is selected from an asymmetric cell-
fixing surface having a first pattern and a second pattern, the first pattern and the
second pattern not being mirror-reflected to each other.

PCT/EP2017/062222