明細書

記録液、液体カートリッジ、液体吐出装置及び液体吐出方法 技術分野

[0001] 本発明は、対象物に記録を行うために液滴の状態で対象物に付着される記録液、 この記録液が収容される液体カートリッジ、この液体カートリッジに収容された記録液 を吐出口より液滴の状態にして対象物に吐出する液体吐出装置及び液体吐出方法 に関する。

本出願は、日本国において2003年12月8日に出願された日本特許出願番号200 3-409616を基礎として優先権を主張するものであり、これらの出願は参照すること により、本出願に援用される。

背景技術

[0002] 液体を吐出する装置として、対象物となる記録紙に対してインク吐出ヘッドより記録 液、いわゆるインクを吐出させて、画像や文字を記録するインクジェット方式のプリン タ装置がある。このインクジェット方式を用いたプリンタ装置は、低ランニングコスト、装置の小型化、印刷画像のカラー化が容易という利点がある。

インク吐出ヘッドよりインクを吐出するインクジェット記録方式は、例えばディフレクション方式、キャビティ方式、サーモジェット方式、バブルジェット(登録商標)方式、サーマルインクジェット方式、スリットジェット方式、スパークジェット方式等があり、これらに代表される種々の作動原理により、インクを微小な液滴にしてインク吐出ヘッドの吐出口、いわゆるノズルより吐出させて記録紙に着弾させ、画像や文字等の記録を行う。

ところで、このようなインクジェット記録方式に用いる記録液に対しては、ノズルが目詰まりを起こさないことが求められている。例えばインク中に生ずる微小な泡等がノズルの目詰まりを生じさせる要因の一つとして考えられている。

インクにおいては、空気等の気体が所定量溶解するが、温度上昇に伴い気体の溶解度が低下したときに、液中の溶解しきれない気体が分離し、それが液中で微小な泡となる。具体的には、インクをインク吐出ヘッド等に供給するインクタンクやインク流

WO 2005/054382 2 PCT/JP2004/018316

路やインク吐出ヘッド内に存在するインクの温度が上昇すると、液中に溶存していた 気体が放出され、微小な泡が形成される。

このような微少な泡がインク吐出ヘッド内に存在すると、ノズルよりインクが吐出されない不吐出や、ノズルより吐出されたインクの吐出方向がずれる吐出曲がり等といった吐出不良が生じ、印刷された画像にカスレや白抜けが生じ、印刷画像の品質を著しく低下させる虞がある。

特に、熱エネルギーを作用させてインクを微小な液滴にしてノズルより吐出させる記録方式、すなわちサーマル方式及びバブルジェット(登録商標)方式のインクジェット記録方式の場合、インクをヒーターで急熱し、インクの膜沸騰で生成する気泡の圧力で液滴を吐出するため、ヒーター近傍に熱が蓄積され、インク流路内にあるインクの温度が非常に上昇し易くなっており、上述した不吐出や吐出曲がり等の吐出不良が顕著に生じる虞がある。

このような問題を改善するために、例えば特許文献1及び特許文献2等には、水性 顔料インクに低級アルコールのプロピレンオキサイド付加重合体を配合することが提 案されている。しかしながら、これらの提案では、微少な泡の発生を十分に抑制する ことは困難であり、さらなる改良が求められている。

また、特許文献3には、例えばインクに高級第2アルコールアルコキシレートのエチレンオキサイド付加物を含有させることも提案されている。この特許文献3に提案されたインクは、高周波数駆動時の吐出安定性、記録紙への浸透性および乾燥性に優れているとされている。しかしながら、特許文献3に提案されたインクでは、高級第2アルコールアルコキシレートにエチレンオキサイドのみを付加させた化合物を含有させても、微小な泡によるノズルの目詰まりを改良することはできなかった。具体的には、エチレンオキサイドだけを7モル以上付加させたような化合物を含有したインクは泡立ちが激しく、ノズルの目詰まりが著しいものになる。

インクジェット記録方式に用いるインクにおいては、ノズルの目詰まりを起こさないといった要求の他に、コピー用紙やレポート用紙などの普通紙、いわゆる上質紙に対して印刷を行った場合でも、光学濃度が低下、境界滲み、混色ベタ斑等が発生しないようにするということも要求されている。

このような要求に対しては、例えば特許文献4等に、水不溶性色材をスルホン酸(塩)基を有する高分子および/またはリン酸(塩)基を有する高分子で処理したものを色材として使用し、さらにインクにカルボン酸(塩)基を有する高分子を添加することが提案されている。また、特許文献5には、インクに、Dーマンヌロン酸とLーグルロン酸の比が0.5~1.2の範囲にあるアルギン酸を配合することが提案されている。さらに、特許文献6には、インクにフッ素系またはシリコン系から選ばれる少なくとも1種以上の界面活性剤とアルギン酸塩とを配合することが提案されている。しかしながら、いずれも、上述した要求を十分に満足させる結果を得ることは困難であり、さらなる改良が求められている。

上述した微少な泡による問題は、記録紙に対して高速印刷を行うことが可能なプリンタ装置、すなわち記録紙の幅と略同じ範囲をインクの吐出範囲としたライン型のプリンタ装置において、より顕著に発生する(例えば、特許文献7~特許文献9を参照。)。

具体的に、記録紙の送り方向の略直交方向、すなわち記録紙の幅方向に1列以上 ノズルを並べて設けたライン型のプリンタ装置では、記録紙の送り方向と略直交方向 にインク吐出ヘッドを走査しながら印刷を行うシリアル型のプリンタ装置等と異なり、例 えば記録紙の送り方向を横切るようにインクタンクよりインクを導くインク流路を形成し 、インク流路の両側もしくは片側にノズルを有するインク吐出ヘッドが複数配置された 構造になることから、ノズルが多くなる分インクの発熱箇所も多くなって微少な泡が発 生し易く、且つインクタンクからインク吐出ヘッドまでの距離が長くて構造が複雑で発 生した微少な泡を取り除き難くなっており、微少な泡による不具合が顕著に発生する

ライン型のプリンタ装置においては、ノズルライン毎の液滴の吐出周期が極めて短いため、記録紙への浸透性に優れたインクを用いる必要がある。このようなインクを普通紙等に用いた場合、インクが普通紙の深さ方向、すなわち厚み方向に染込み過ぎることから光学濃度が低下する虞がある。

また、ノズルライン毎の液滴の吐出周期が短いライン型のプリンタ装置においては、例えば異なる色のインクを吐出して記録紙に印刷する、いわゆるカラー印刷を行う場

合、記録紙に着弾した液滴が十分に紙の内部へ浸透しないうちに次色の液滴が次々と着弾されることから各色間に境界滲みや混色ベタ斑が発生する虞がある。

特許文献1:特開2001-2964号公報

特許文献2:特開平10-46075号公報

特許文献3:特開平7-70491号公報

特許文献4:特開2000-154342号公報

特許文献5:特開平8-290656号公報

特許文献6:特開平8-193177号公報

特許文献7:特開2002-36522号公報

特許文献8:特開2001-315385号公報

特許文献9:特開2001-301199号公報

発明の開示

[0003] 本発明の目的は、上述したような従来の技術が有する問題点を解消することができる記録液を提供することにある。

また、本発明の他の目的は、微小泡立ちが少なく、吐出安定性に優れ、対象物となる普通紙に文字や画像などを多色印刷しても光学濃度が高く、境界滲みや混色ベタ斑の無い、高品位印刷が可能な記録液、この記録液が収容される液体カートリッジ、この液体カートリッジに収容された記録液を用いて高品位な印刷を行える液体吐出装置及び液体吐出方法を提供することにある。

本発明は、記録液の微小泡立ちによる吐出安定性の低下、対象物となる普通紙に文字や画像などを多色印刷したときの光学濃度の低下、境界滲み、混色ベタ斑等の問題を、記録液の0秒動的表面張力を特定の範囲にし、さらに記録液に所定の有機性値(OV)に対する無機性値(IV)の比率(I/O)を有する多価アルコールを含有させることで抑制させるものである。さらに、本発明は、静的表面張力を特定の範囲とし、所定の有機性値(OV)に対する無機性値(IV)の比率(I/O)を有する多価アルコールのアルキレンオキサイド付加物を含有させることで上述した問題を一層抑制させるものである。また、本発明は、多価アルコールのアルキレンオキサイド付加物に代わって、少なくとも1種類以上のエチレンオキサイド/プロピレンオキサイド共重合体

を含有させることで、上述した問題を一層抑制させるものである。

本発明に係る記録液は、対象物に記録を行うために液滴の状態で当該対象物に付着される記録液であって、色素と、色素を分散させる溶媒とを有し、0秒動的表面張力が30mN/m以上、40mN/m以下の範囲にされている。

さらに、本発明に係る記録液は、静的表面張力が30mN/m以上、35mN/m以下の範囲にされている。

さらにまた、本発明に係る記録液は、炭素数が9以下の炭化水素基を有し、且つ有機性値(OV)に対する無機性値(IV)の比率(I/O)が1以上、1.33以下の範囲にある多価アルコールのアルキレンオキサイド付加物を含有している。

さらにまた、本発明に係る記録液は、多価アルコールのアルキレンオキサイド付加 物に代わって、少なくとも1種類以上のエチレンオキサイド/プロピレンオキサイド共 重合体を含有している。

さらにまた、本発明に係る液体カートリッジは、液体容器に収容された記録液を液 滴の状態で吐出し、対象物に付着させることで記録を行う液体吐出装置に備わる液 体吐出ヘッドに着脱可能に装着され、液体吐出ヘッドに対し、記録液の供給源となる 液体カートリッジであって、液体容器に収容された記録液は、色素と、色素を分散さ せる溶媒とを有し、0秒動的表面張力が30mN/m以上、40mN/m以下の範囲に されている。

さらにまた、本発明に係る液体吐出装置は、記録液を液滴の状態で吐出させる吐出口を有し、吐出口と対向する位置まで搬送された対象物に吐出口より液滴を吐出する液体吐出ヘッドと、液体吐出ヘッドに接続され、液体吐出ヘッドに対する記録液の供給源となる液体カートリッジとを備える液体吐出装置であって、液体吐出ヘッドに供給される記録液は、色素と、上記色素を分散させる溶媒とを有し、0秒動的表面張力が30mN/m以上、40mN/m以下の範囲にされている。

さらにまた、本発明に係る液体吐出方法は、記録液を液滴の状態で吐出させる吐出口を有し、吐出口と対向する位置まで搬送された対象物に吐出口より上記液滴を吐出する液体吐出ヘッドと、液体吐出ヘッドに接続され、液体吐出ヘッドに対する記録液の供給源となる液体カートリッジとを備える液体吐出装置による液体吐出方法で

あって、色素と、色素を分散させる溶媒とを有し、0秒動的表面張力が30mN/m以上、40mN/m以下の範囲にある記録液を、液体吐出ヘッドの吐出口より吐出させる

以上のように、本発明は、記録液に、有機性値(OV)に対する無機性値(IV)の比率(I/O)が1.18以上、2.5以下の範囲にあり、且つ炭素数が9以下の炭素水素基を有する多価アルコールを含有させ、記録液の0秒動的表面張力を30mN/m以上、40mN/m以下の範囲にすることにより、対象物に対する記録液の濡れ性を良好し、記録液中に微少な泡が生じることを抑え、吐出口から記録液が吐出される際の不吐出や吐出曲がり等といった吐出不良を防止できる。

また、本発明によれば、記録液に、さらに炭素数が9以下の炭化水素基を有し、且つ有機性値(OV)に対する無機性値(IV)の比率(I/O)が1以上、1.33以下の範囲にある多価アルコールのアルキレンオキサイド付加物を含有させ、記録液の静的表面張力を30mN/m以上、35mN/m以下の範囲にすることにより、記録液の濡れ性の向上や、液中に微少な泡が発生することを抑えるといった作用効果をさらに高めることができる。

また、本発明によれば、記録液に多価アルコールのアルキレンオキサイド付加物に 代わって、少なくとも1種類以上のエチレンオキサイド/プロピレンオキサイド共重合 体を含有させることにより、記録液の濡れ性の向上や、液中に微少な泡が発生することを抑えるといった作用効果をさらに高めることができる。

したがって、本発明によれば、記録液中に生じた微少な泡による吐出不良を防止でき、カスレや白抜けがなく、光学濃度が高く、境界滲みや混色ベタ斑のない、高品位な記録ができる。

本発明の更に他の目的、本発明によって得られる具体的な利点は、以下において 図面を参照して説明される実施の形態の説明から一層明らかにされるであろう。 図面の簡単な説明

[0004] [図1]図1は、本発明が適用されたプリンタ装置を示す斜視図である。 [図2]図2は、同プリンタ装置に備わるヘッドカートリッジを示す斜視図である。 「図3]図3は、同ヘッドカートリッジを示す断面図である。 [図4]図4は、イソプロピルアルコールのIOを説明する説明図である。

[図5]図5は、化16のIOを説明する説明図である。

[図6]図6は、同ヘッドカートリッジにインクタンクが装着されたときのインク供給部を示しており、同図(A)は供給口が閉塞された状態を示す模式図であり、同図(B)は供給口が開口された状態を示す模式図である。

[図7]図7は、同ヘッドカートリッジにおけるインクタンクとインク吐出ヘッドとの関係を示す模式図である。

[図8]図8は、同インクタンクの接続部における弁機構を示しており、同図(A)は弁が閉じた状態を示す断面図であり、同図(B)は弁が開いた状態を示す断面図である。 [図9]図9は、同インク吐出ヘッドの構造を示す断面図である。

[図10]図10は、同インク吐出ヘッドを示しており、同図(A)は発熱抵抗体に気泡が発生した状態を模式的に示す断面図であり、同図(B)はノズルよりインク液滴を吐出した状態を模式的に示す断面図である。

[図11]図11は、同プリンタ装置の一部を透視して示す側面図である。

[図12]図12は、同プリンタ装置の制御回路を模式的に示すブロック図である。

[図13]図13は、同プリンタ装置の印刷動作を説明するフローチャートである。

[図14]図14は、同プリンタ装置において、ヘッドキャップが開いている状態を一部透視して示す側面図である。

発明を実施するための最良の形態

[0005] 以下、本発明が適用された記録液、液体カートリッジ、液体吐出装置及び液体吐出方法について、図面を参照して説明する。図1に示すインクジェットプリンタ装置(以下、プリンタ装置と記す。)1は、所定の方向に走行する記録紙Pに対してインク等を吐出して画像や文字を印刷するものである。また、このプリンタ装置1は、記録紙Pの印刷幅に合わせて、記録紙Pの幅方向、すなわち図1中矢印W方向にインク吐出口(ノズル)を略ライン状に並べて設けた、いわゆるライン型のプリンタ装置である。

このプリンタ装置1は、図2及び図3に示すように、記録紙Pに対して画像や文字等を記録する記録液であるインク2を吐出するインクジェットプリンタヘッドカートリッジ(以下、ヘッドカートリッジと記す。)3と、このヘッドカートリッジ3を装着するプリンタ本

体4とを備える。プリンタ装置1は、ヘッドカートリッジ3がプリンタ本体4に対して着脱可能であり、更に、ヘッドカートリッジ3に対してインク供給源となり、インク2を収容する液体カートリッジであるインクタンク5y, 5m, 5c, 5kが着脱可能となっている。このプリンタ装置1では、イエローのインクタンク5y、マゼンタのインクタンク5m、シアンのインクタンク5c、ブラックのインクタンク5kが使用可能となっており、また、プリンタ本体4に対して着脱可能なヘッドカートリッジ3と、ヘッドカートリッジ3に対して着脱可能なインクタンク5y, 5m, 5c, 5kとを消耗品として交換可能になっている。

このようなプリンタ装置1は、記録紙Pを積層して収納するトレイ65aをプリンタ本体4の前面底面側に設けられたトレイ装着部6に装着することにより、トレイ65aに収納されている記録紙Pをプリンタ本体4内に給紙できる。トレイ65aは、プリンタ本体4の前面のトレイ装着部6に装着されると、給排紙機構64により記録紙Pが給紙口65からプリンタ本体4の背面側に給紙される。プリンタ本体4の背面側に送られた記録紙Pは、後述する反転ローラ83により走行方向が反転され、往路の上側をプリンタ本体4の背面側から前面側に送られる記録紙Pは、プリンタ本体4の前面に送られる記録紙Pは、プリンタ本体4の前面に設けられた排紙口66より排紙されるまでに、パーソナルコンピュータ等の後述する情報処理装置79より入力された文字データや画像データに応じた印刷データが文字や画像として印刷される。

印刷するときに記録液となるインク2は、例えば0秒動的表面張力を30mN/m以上、40mN/m以下の範囲にさせて記録紙Pに対する濡れ性を高める有機化合物と、色素となる水溶性染料や各種顔料等といった色材と、この色材を分散させる溶媒とを少なくとも含有している。

インク2の0秒動的表面張力を30mN/m以上、40mN/m以下の範囲にさせる有機化合物としては、例えばメタノール、エタノール、イソプロピルアルコール等の1価の低級アルコール類や、エチレングリコールモノn-ブチルエーテル、ジエチレングリコールモノn-ブチルエーテル、ジエチレングリコールモノn-ブチルエーテル、ジエチレングリコールモノn-ブチルエーテル、ジエチレングリコールモノへキシルエーテル等のグリコールエーテル類や2-メチル-2-プロピル-1、3-プロパンジオール、2、2-ジエチル-1、3-プロパンジオール等の有機溶剤等が挙げられる。

WO 2005/054382 9 PCT/JP2004/018316

ここで、0秒動的表面張力について説明する。数1で示される界面活性剤を含有する液体の動的表面張力-時間変化の緩和関数式については、例えばHua X. Y, R osen M. J:J. ColloidInterface Sci. 124, 652(1988)や、田村隆光:表面 V ol. 38 No. 10 22〜44(2000)に記載されている。そして、導かれる結果を指す。 [数1]

$$\gamma_{t} = \gamma_{m} + (\gamma_{0} - \gamma_{m}) / \{1 + (t/t *)^{n}\}$$

(但し、 γ_m は30秒間の表面張力変化が ImN/m以下になったときの表面張力であり、 γ_o は溶媒の表面張力であり、 $t* は \gamma_t$ が γ_o と γ_m との中間になった時間であり、 n は定数である。)

このRosenにより提唱された数1に示す界面活性剤を含有する液体の動的表面張力-時間変化の緩和関数式をt=0として展開した場合について数2示す。
[数2]

数1をt=0として展開すると、

$$\gamma_{t} = \gamma_{m} + (\gamma_{0} - \gamma_{m}) / \{1 + (0/t *)^{n}\}$$

$$= \gamma_{m} + (\gamma_{0} - \gamma_{m}) / 1$$

$$= \gamma_{m} - \gamma_{m} + \gamma_{0}$$

$$= \gamma_{0}$$

数2に示すように、0秒動的表面張力は、インク2から色材や、後述する防腐剤、防力ビ剤、分散剤、浸透剤、界面活性剤等といった界面活性能を有する成分を除いた、水及び有機溶剤からなる溶媒の静的表面張力を測定することで求めることができる。ここで、上記した界面活性能を有する成分を除いたインク2の溶媒の動的表面張力を、例えば最大泡圧力法により泡の発生する速度、いわゆる泡速度を変化させて連続測定した場合、具体的には泡速度を20泡/秒~0.1泡/秒の範囲にして連続測

WO 2005/054382 10 PCT/JP2004/018316

定した場合、動的表面張力曲線はほぼ横一直線となり、泡速度が低下しても動的表面張力曲線が大きく下がることはない。

ここで、インク2の0秒動的表面張力が30mN/m未満である場合、インク2の濡れ性が高くなりすぎて後述するノズル52a内に形成されるメニスカスの形状が不安定になり、インク2の吐出間隔を狭めて吐出、具体的には3kHzを超えるような高速吐出したときにインク2の吐出方向がずれて記録紙Pに画質を低下させることがある。また、この場合、インク2の濡れ性が高くなりすぎていることから、記録紙Pに着弾したインク2が記録紙Pの深さ方向、すなわち記録紙Pの厚み方向に染み込みすぎて光学濃度が低下したり、記録紙Pの裏側にまでインク2が染み出したりする虞がある。一方、インク2の0秒動的表面張力が40mN/mを超えた場合、記録紙Pの厚み方向への染み込みが遅く、境界滲みや、インク2の着弾点より記録紙Pの繊維に沿って流れたインク2が鳥の羽状に滲む、いわゆるフェザリング等が発生する虞がある。

以上では、このようなインク特性にさせる有機化合物として例えば1価の低級アルコール類、グリコールエーテル類等を一例として挙げたが、有機性値(OV)に対する無機性値(IV)の比率(以下、I/Oと記す。)が1.18以上、2.5以下の範囲にあり、且つ炭素数が9以下の炭化水素基を有する多価アルコール類を用いることが好ましく、分岐した炭化水素基を有する多価アルコールであればさらに好ましい。

具体的には、0秒動的表面張力を30mN/m以上、40mN/m以下の範囲にさせ、I/Oが1.18以上、2.5以下の範囲にあり、炭素数が9以下の炭化水素基を有するといった条件を満たす多価アルコールとして化1〜化5に示す有機化合物が挙げられ、これらのうちの何れか一種又は複数種を用いることができる。

[化1]

(但し、式中 R_1 及び R_2 は炭化水素基を示し、 $2 \le R_1 + R_2 \le 4$ 、 $R_1 \ge 0$ 、 $R_2 \ge 0$ であり、 $R_1 = 0$. $R_2 = 0$ の場合、 R_1 . R_2 は水素元素を示す。)

[化2]

(但し、式中 R_3 及び R_4 は炭化水素基を示し、 $2 \le R_3 + R_4 \le 6$ 、 $R_3 \ge 0$ 、 $R_4 \ge 0$ であり、 R_3 =0, R_4 =0 の場合、 R_3 , R_4 は水素元素を示す。)

[化3]

(但し、式中 R_5 及び R_6 は炭化水素基を示し、 $1 \le R_5 + R_6 \le 4$ 、 $R_5 \ge 0$ 、 $R_6 \ge 0$ であり、 $R_5 = 0$, $R_6 = 0$ の場合、 $R_5 = 0$, $R_6 = 0$ の場合、 $R_5 = 0$ は水素元素を示す。)

[化4]

(但し、式中 R_7 及び R_8 は炭化水素基を示し、 $2 \le R_7 + R_8 \le 6$ である。)

[化5]

(但し、式中 R_9 及び R_{10} は炭化水素基を示し、 $2 \le R_9 + R_{10} \le 4$ である。)

ここでの無機性値(IV)及び有機性値(OV)は、例えば「有機概念図-基礎と応用-」甲田善生著 三共出版(1984)、「系統的有機定性分析(混合物編)」藤田・赤塚著 風間書房(1974)、「染料理論化学」黒木宣彦著 槙書店(1966)、「ファインケミカ ルズ」飛田・内田著 丸善(1982)、「有機化合物分離法」井上・上原・南著 裳華房(1990)等に記載されている有機概念図論より求めることができる。

この有機概念図論とは、有機化合物の物理的化学的物性について、電気的親和力による物性の程度を「無機性」と呼び、VanDerWaals力による物性の程度を「有機性」と呼び、これらの組み合わせで被化合物の物理的特性を捕らえる手法である。すなわち、I/Oにおいては、ある化合物の無機性値(IV)が大きくなると、分極し易くなって水への溶解性が高まり、ある化合物の有機性値(OV)が大きくなると、親油性が高まり、水への溶解性が低下して有機溶剤への溶解性が高まる。

なお、上述した1価の低級アルコール類、グリコールエーテル類等のI/Oは、上述 した「有機概念図-基礎と応用-」甲田善生著の13ページ、表1.1に基づいて算出 する。なお、「有機概念図―基礎と応用―」甲田善生著の13ページに記載されている表1.1を以下の表1及び表2に示す。表1及び表2では示されていないが、上述した「有機概念図―基礎と応用―」甲田善生著には、炭素原子の有機性値が20であり、これに従って炭素原子は20としてI/Oを算出している。また、表1及び表2には、Iso分枝及びTert分枝を末端部分に適用することが記載されているが、ここでは末端部分の他に、C連鎖の場合にも適用した。この表1及び表2に基づいて、1価の低級アルコール類、グリコールエーテル類等のI/Oを算出すると、以下の表3のようになる。I/O値を算出する際において、有機性値は、炭素原子の有機性値から求めることができる。無機性値は、表1及び表2に示す無機性基表から求めることができ、有機性も有する有機性兼無機性基については有機性値も求め、上述した有機性値に加算することで求めることができる。以上のようにして得られた無機性値を有機性値で除することによってI/Oを求めることができる。

[表1]

無機性基	数值	有機性兼無機性基	数值	
 			有機性	無機性
軽金属(塩)	500以上	R ₄ Bi-OH	80	250
重金属(塩)、アミンおよびNH。塩	400以上	R _e SbOH	60	250
-AsO ₃ H ₂ , >AsO ₂ H	300	R _a As − OH	40	250
-SO ₂ -NH-CO-, -N=N-NH ₂	260	R _I P-OH	20	250
=>N*-OH, -SO ₃ H, -NH-SO ₂ -NH-	250	-oso₃H	20	220
-co-NH-co-NH-co-	250	>502	40	170
->S-OH, -CO-NH-CO-NH-	240	>so	40	140
-so _z -NH-	240	-CSSH	100	80
-cs-NH-*, -co-NH-co-*	230	-SCN	90	80
=N-OH, -NH-CO-NH-*	220	-csoh, -cosh	80	80
=N-NH-*, -CO-NH-NH ₂	210	-NCS	90	75
-CO-NH-*	200	-Bi<	80	70
->N→O	170	-NO ₂	70	70
-соон	150	-Sb<	60	70
ラクトン環	120	-As<, -CN	40	70
-co-o-co-	110	-P<	20	70

[注]上記表1、表2では、無機性基中の炭素は有機性に加算すること。ただし有機性兼有基中のものは等有有機性中に加算済みとす。Rはアルキル、中はアルキルまたはフェニル等をあらわす。赤環式部分に適用. ※ 末端部分に適用. †〔〕内の部分の値。

[表2]

無機性基	数值	有機性兼無機性基	数值	
		一种或证款和做证签	有機性	無機性
アントラセン核, フェナントレン核	105	-0-(-CH ₂ -CH ₂ -0-)-CH ₂ -†	30	60
ОН	100	-cssФ	130	50
>Hg(共有給合)	95	-csoФ, -cosФ	80	50
-NH-NH-, -0-C0-O-	80	-NO	50	50
-N<(-NH₂, -NHΦ, -NΦ₂)アミン性	70	-O-NO ₂	60	40
>co	65	-NC	40	40
-COOΦ,ナフタレン核,キノリン核	60	Sb=Sb-	90	30
>C=NH	50	-As=As-	60	30
-0-0-	40	-P=P-, -NCO	30	30
-N=N-	30	oNO,sH,s	40	20
-0-	20	-1	80	10
ベンゼン核(一般芳香族単環)	15	-Br	60	10
環(一般非芳香性単環角不関)	10	=S	50	10
三重結合	3	-CI	40	10
二重結合		-F	5	5
		Iso分枝 ** >-	-10	0
		Tert分枝 ※ ->	-20	0

[注]上記表1、表2では、無機性基中の炭素は有機性に加算すること。ただし有機性兼有基中のものは乗有有機性中に加算済に Rはアルキル、のはアルキルまたはフェニル等をあらわす。 * 非環式部分に適用、 ※ 末端部分に適用、 † []内の部分の値。

	無機性値 (IV)	有機性値 (IO)	1/0
メタノール	100	20	5
エタノール	100	40	2.5
イソプロピル アルコール	100	50	2
エチレングリコール モノnーブチルエーテル	120	120	1
ジエチレングリコール モノnーブチルエーテル	180	150	1.2
トリエチレングリコール モノnーブチルエーテル	240	180	1.33
ジエチレングリコール モノヘキシルエーテル	180	190	0.95

上記表3のうち、イソプロピルアルコールを例に挙げて、I/Oの算出方法を説明する。

イソプロピルアルコールは、図4に示すように、無機性基であるOHを1つ有し、有機性基であるCを3つ有し、Iso分枝を1つ有している。上記表1及び表2より、無機性基であるOHのIVが100であることから、イソプロピルアルコールの無機性値(IV)=100×1(OHの個数)=100となる。また、有機性基であるCのOVは、20であり、Iso分枝のOVが-10であることから、イソプロピルアルコールの有機性値(OV)=20×3(Cの個数)+(-10)×1(Iso分枝の個数)=50となる。したがって、イソプロピルアルコールのI/O=100/50=2となる。

インク2に含有されるインク2の0秒動的表面張力を所定の範囲にさせる有機化合物のI/Oが1.18未満である場合、親水性に乏しくなってインク2中で分離し、油滴となってノズル52aを目詰まりさせる等、吐出安定性を劣化させる虞がある。一方、インク2の0秒動的表面張力を所定の範囲にさせる有機化合物のI/Oが2.5を超えると疎水性に乏しくなってインク2中に微小な泡を発生しやすくなり、やはり吐出安定性

WO 2005/054382 17 PCT/JP2004/018316

を劣化させる虞がある。

〇秒動的表面張力を30mN/m以上、40mN/m以下の範囲にさせる有機化合物は、インク2全重量に対して0.1重量~10重量%の範囲、より好ましくは0.5重量%~3重量%の範囲で含有されることが好ましい。インク2に対し、0秒動的表面張力を30mN/m以上、40mN/m以下の範囲にさせる有機化合物の含有量が0.1重量%より少なくなると、上述した作用効果を得ることが困難になる。一方、インク2に対し、0秒動的表面張力を30mN/m以上、40mN/m以下の範囲にさせる有機化合物の含有量が10重量%より多くなると、インク2の粘度が高くなってインク2の記録紙Pに対する浸透性を劣化させる虞がある。

また、上述したインク2の0秒動的表面張力を所定の範囲にさせる多価アルコール においては、炭素数が9を超えるような有機化合物になると、インク2の粘度が高くな ってインク2への含有量にもよるが、インク2の記録紙Pに対する浸透性を劣化させる 虞がある。なお、多価アルコールにおいて、炭素数は、I/Oの値によって自ずと決定 される。

以上で説明したように、インク2の0秒動的表面張力を30mN/m以上、40mN/m以下の範囲にさせる有機化合物や、この有機化合物としてI/Oが1.18以上、2.5以下の範囲にあり、炭素数が9以下の炭化水素基を有するといった条件を満たす多価アルコールをインク2に含有させることにより、インク2の記録紙Pに対する濡れ性が高まることから、インク2で記録紙Pに印刷したときに、インク2中に生じた微少な泡による吐出不良を防止して吐出安定性を向上でき、カスレや白抜けがなく、境界滲みや混色ベタ斑を抑制することができる。

以下の表4に、上述した化1〜化5の炭化水素基(R)の数を変化させた多価アルコールにおける無機性値(IV)、有機性値(IO)、I/Oを示す。なお、ここでのI/Oも上記表1及び表2に基づいて算出したものである。但し、上述したように、C連鎖の場合にも表1及び表2中のIso分枝およびTert分枝を適用した。

[表4]

多価 アルコール	化学式	炭化水条基	無機性値(IV)	有機性値(IO)	1/0
Α	1	$R_1 = 2, R_2 = 0$	200	130	1.54
В		$R_1 = 3, R_2 = 0$	200	150	1.33
С		$R_1 = 4, R_2 = 0$	200	170	1,18
D		R ₁ =1, R ₂ =1	200	120	1.67
Ε		$R_1=2, R_2=1$	200	140	1,43
F		R ₁ =2, R ₂ =2	200	160	1,25
G		$R_3 = 1, R_4 = 1$	200	80	2.5
Н		R ₃ =2, R ₄ =1	200	100	2
1		R ₃ =3, R ₄ =1	200	120	1.67
J		R ₃ =4, R ₄ =1	200	140	1.43
K	2	$R_3 = 5, R_4 = 1$	200	160	1.25
L		R ₃ =2, R ₄ =2	200	120	1.67
M		R ₃ =3,R ₄ =2	200	140	1.43
N		R ₃ =3,R ₄ =3	200	160	1.25
0		R ₃ =4, R ₄ =2	200	160	1.25
Р	-	$R_6 = 1, R_6 = 0$	200	100	2
Q		$R_6 = 2, R_6 = 0$	200	120	1.67
R]	$R_6 = 3, R_6 = 0$	200	140	1.43
S	3	R ₆ =4, R ₆ =0	200	160	1.25
T		R ₅ =1, R ₆ =1	200	100	2
U	į	$R_6=2, R_6=1$	200	120	1.67
		$R_0 = 2, R_0 = 2$	200	140	1.43
W		$R_7 = 1, R_8 = 1$	200	90	2.22
×	Į	$R_7 = 2, R_8 = 1$	200	110	1.82
Y	1	$R_7 = 3, R_8 = 1$	200	130	1.54
z		$R_7 = 4$, $R_8 = 1$	200	150	1.33
AA		R ₇ =5, R ₈ =1	200	170	1.18
AB		$R_7 = 1, R_8 = 2$	200	110	1,82
AC	4	$R_7 = 1, R_8 = 3$	200	130	1.54
AD		R ₇ =1, R ₈ =4	200	150	1,33
AE		$R_7 = 1, R_8 = 5$	200	170	1.18
AF		R ₇ =2, R ₈ =2	200	130	1.54
AG		$R_7 = 2, R_8 = 3$	200	150	1.33
AH		R ₇ =3, R ₈ =2	200	150	1.33
At		R ₇ =3, R ₈ =3	200	170	1.18
AJ		$R_9 = 1, R_{10} = 1$	200	80	2.5
AK	5	R ₉ =2, R ₁₀ =1	200	100	2
AL_	-	R ₉ =2, R ₁₀ =2	200	120	1.67
AM		$R_9 = 3, R_{10} = 1$	200	120	1.67

表4に示すA〜AMまでの多価アルコールでは、I/Oが1.18以上、2.5以下の範囲であり、インク2に含有されることにより、後述するノズル52aの内周側面やノズルシート52等に対する濡れ性を高め、インク2中に油滴や微少な泡が発生することを抑制することから、不吐出や吐出曲がり等といった吐出不良を防止することが可能になる

なお、ここでは、炭素数が9以下の炭化水素基を有し、且つI/Oが1.18~2.5の 範囲にある多価アルコールとして、具体的に化1~化5の炭化水素基の数を変化さ せた有機化合物を例として挙げたが、これらの有機化合物に限定されることはなく、インク2の0秒動的表面張力を30mN/m以上、40mN/m以下の範囲にさせ、I/Oが1.18以上、2.5以下の範囲にあり、且つ炭素数が9以下の炭化水素基を有する多価アルコールであればインク2に含有させることができ、化1〜化5の有機化合物と同様の作用効果が得られる。

インク2においては、O秒動的表面張力を30mN/m以上、40mN/m以下の範囲にすることの他に、さらに静的表面張力を30mN/m以上、35mN/m以下の範囲にすることにより、吐出安定性、高速印刷時の境界滲みや混色ベタ斑をさらに改良することができる。すなわち、インク2においては、O秒動的表面張力を所定の範囲にさせる有機化合物や、この有機化合物として上述した多価アルコールを適宜添加することにより、静的表面張力をも最適なものにすることも可能であるが、次に説明する界面活性剤をさらに含有させることでO秒動的表面張力を所定の範囲にさせる有機化合物により得られる作用効果をさらに高めることができる。

具体的には、インク2の静的表面張力を適切な範囲にさせる界面活性剤として例えばI/Oが1~1.33であり、且つ炭素数9以下の炭化水素基を有する多価アルコールのアルキレンオキサイド付加物、又は少なくとも1種類以上のエチレンオキサイド/プロピレンオキサイド共重合体をインク2に含有させる。

特に、多価アルコールのアルキレンオキサイド付加物を用いる場合には、多価アルコールのエチレンオキサイド付加物をインク2に含有させることが好ましい。I/Oが1~1.33であり、且つ炭素数9以下の炭化水素基を有する多価アルコールのアルキレンオキサイド付加物としては、例えば化6~化10に示す有機化合物が挙げられ、これらを単独或いは混合して用いる。

[化6]

$$O(EO)_mH$$

(但し、式中 EO はエチレンオキサイド基を示し、m+n=2 である。)

[化7]

(但し、式中 EO はエチレンオキサイド基を示し、 m+n=4 である。)

[化8]

(但し、式中 EO はエチレンオキサイド基を示し、m+n=6 である。)

[化9]

(但し、式中 EO はエチレンオキサイド基を示し、 m+n=2 である。)

[化10]

[化11]

(但し、式中 EO はエチレンオキサイド基を示し、m+n=3 である。)

インク2おいては、以上のような多価アルコールのアルキレンオキサイド付加物を含有させ、静的表面張力を適切な範囲、すなわち静的表面張力を30mN/m以上、35mN/m以下の範囲にすることによって、液中の微小な泡が生じることや、記録紙Pに印刷したときに境界滲みや混色ベタ斑が生じることを抑制できる。

さらに、インク2においては、炭素数が9以下の炭化水素基を有し、且つI/Oが1~1.33の範囲にある多価アルコールのアルキレンオキサイド付加物として例えば化11~化18に示すIso分枝分岐若しくはTert分枝分岐している炭化水素基を有する多価アルコールのアルキレンオキサイド付加物が含有されることで、これら多価アルコールのアルキレンオキサイド付加物の立体的な化学構造が障害となって微小な泡の発生をさらに抑制することから、さらに優れた吐出安定性を得ることができる。

(但し、式中 EO はエチレンオキサイド基を示し、 m+n=2 である。)

[化12]

(但し、式中 EO はエチレンオキサイド基を示し、m+n=3 である。)

[化13]

(但し、式中 EO はエチレンオキサイド基を示し、 m+n=2 である。)

[化14]

(但し、式中 EO はエチレンオキサイド基を示し、m+n=6 である。)

[化15]

(但し、式中 EO はエチレンオキサイド基を示し、 m+n=2 である。)

[化16]

(但し、式中 EO はエチレンオキサイド基を示し、m+n=5 である。)

[化17]

(但し、式中 EO はエチレンオキサイド基を示し、m + n = 2 である。)

[4k:18]

(但し、式中 EO はエチレンオキサイド基を示し、m + n = 6 である。)

特に、インク2においては、炭素数が9以下の炭化水素基を有し、且つI/Oが1~1 . 33の範囲にある多価アルコールのアルキレンオキサイド付加物として化13~化18 に示す化合物を含有させることが好ましく、これらの化合物を単独或いは混合して含有させることで寄り顕著な作用効果を得ることができる。

インク2に含有される多価アルコールのアルキレンオキサイド付加物においては、炭素数が9を超えるような有機化合物になると、インク2の粘度が高くさせてしまい、インク2への含有量にもよるが、インク2の記録紙Pに対する浸透性を劣化させる虞がある。なお、多価アルコールのアルキレンオキサイド付加物において、炭素数は、I/Oの値によって自ずと決定される。

この炭素数が9以下の炭化水素基を有し、且つI/Oが1〜1.33の範囲にある多価アルコールのアルキレンオキサイド付加物は、インク2全重量に対して0.1重量〜

WO 2005/054382 25 PCT/JP2004/018316

5重量%の範囲、より好ましくは0.5重量%~3重量%の範囲で含有されることが好ましい。インク2に対する多価アルコールのアルキレンオキサイド付加物の含有量が0.1重量%より少なくなると、上述した作用効果を得ることが困難になる。一方、インク2に対する多価アルコールのアルキレンオキサイド付加物の含有量が5重量%より多くなると、インク2の粘度が高くなってインク2の記録紙Pに対する浸透性を劣化させる 虞がある。

また、インク2に含有される多価アルコールのアルキレンオキサイド付加物においては、I/Oが1未満である場合、親水性に乏しくなってインク2中で分離し、油滴となってノズル52aを目詰まりさせる等、吐出安定性を劣化させる虞がある。一方、I/Oが1.33を超えると疎水性に乏しくなってインク2中に微小な泡を発生しやすくなり、やはり吐出安定性を劣化させる虞がある。

以下の表5に、上述した化6〜化18に示す多価アルコールのアルキレンオキサイド付加物における無機性値(IV)、有機性値(IO)、I/Oを示す。なお、ここでのI/Oも上記表1及び表2に基づいて算出したものである。但し、上述したように、C連鎖の場合にも表1及び表2中のIso分枝およびTert分枝を適用した。

[表5]

多価アルコールの アルキレンオキサイド付加物	無機性値 (IV)	有機性値 (IO)	I/O
化6	240	240	1
化7	360	300	1.2
化8	480	360	1.33
化9	240	200	1.2
化10	240	230	1.04
化11	240	200	1.2
化12	300	230	1.3
化13	240	240	1
化14	480	360	1.33
化15	240	230	1.04
化16	420	320	1.31
化17	240	240	1
化18	480	360	1.33

WO 2005/054382 26 PCT/JP2004/018316

例えば、上記表5のうち化16の具体的なI/Oの算出方法を説明する。化16は、図5に示すように、無機性基である-OHを2つ有し、-O-を2つ有し、有機性兼無機性基である $(-O-CH_2-CH_2-)$ (以下、「EO」とする)を3つ有し、有機性基であるCを12つ有し、ISO分枝を1つ有している。表1及び表2より、-O-のIVは20である。これにより、化16のIV= 100×2 (OHの個数)+ 20×2 (Oの個数)+ 60×3 (EOの個数)=420となる。化160OV= 20×12 (Cの個数)+ $(-10)\times1$ (ISO分枝の個数)+ 30×3 (EOの個数)=320となる。したがって、化160I/O=420/320=1.31となる。

表5に示すI/O値から、化6〜化18に示す多価アルコールのアルキレンオキサイド付加物においては、I/Oが1以上、1.33以下の範囲であり、インク2に含有されることでインク2中に油滴や微少な泡の発生を抑制することから、不吐出や吐出曲がり等といった吐出不良を防止することが可能になる。

なお、ここでは、炭素数が9以下の炭化水素基を有し、且つI/Oが1~1.33の範囲にある多価アルコールのアルキレンオキサイド付加物として、具体的には化6~化18に示す有機化合物を示したが、これらの有機化合物に限定されることはなく、静的表面張力を30mN/m以上、35mN/m以下の範囲にさせ、I/Oが1以上、1.33以下の範囲にあり、且つ炭素数が9以下の炭化水素基を有する多価アルコールのアルキレンオキサイド付加物であればインク2の界面活性剤として使用可能であり、化6~化18の化合物と同様の作用効果が得られる。

また、インク2において、静的表面張力の調整は、基本的に、炭素数が9以下の炭化水素基を有し、且つI/Oが1~1.33の範囲にある多価アルコールのアルキレンオキサイド付加物の種類や、この多価アルコールのアルキレンオキサイド付加物をインク2に含有させる量を調節することによって適切に行うことができる。しかしながら、満足な静的表面張力の調整が困難な場合、上述した炭素数が9以下の炭化水素基を有し、且つI/Oが1~1.33の範囲にある多価アルコールのアルキレンオキサイド付加物による作用効果を阻害しない範囲で、従来公知の界面活性剤を添加することができる。

具体的に、従来公知の界面活性剤としては、例えば多環フェノールエトキシレート

WO 2005/054382 27 PCT/JP2004/018316

等の特殊フェノール型非イオン界面活性剤や、グリセライトのエチレンオキサイド付加物、ポリエチレングリコールオレート、ポリオキシアルキレンタロエート、ソルビタンラウリルエステル、ソルビタンオレイルエステル、ポリオキシエチレンソルビタンオレイルエステル等のエステル型非イオン界面活性剤や、ヤシ油脂肪酸ジエタノールアマイド、ポリオキシエチレンヤシ油脂肪酸モノエタノールアマイド等のアマイド型非イオン界面活性剤や、アセチレングリコール及びそのエチレンオキサイド付加物や、アルコールサルフェートナトリウム塩、高級アルコールサルフェートナトリウム塩、ポリオキシエチレンアルキルフェニルエーテル硫酸エステルアンモニウム塩、アルキルベンゼンスルフォン酸ナトリウム塩等の陰イオン界面活性剤や、モノ長鎖アルキルカチオン、ジ長鎖アルキルカチオン、アルキルアミンオキサイド等の陽イオン界面活性剤や、ラウリルアミドプロピル酢酸ベタイン、ラウリルアミノ酢酸ベタイン等の両性界面活性剤等を挙げることができ、これら従来

公知の界面活性剤を単独或いは混合して用いることができる。

上述した従来公知の界面活性剤は、インク2中に含有された炭素数が9以下の炭化水素基を有し、且つI/Oが1〜1.33の範囲にある多価アルコールのアルキレンオキサイド付加物全体に対して30重量%以下、より好ましくは20重量%以下で添加させる。従来公知の界面活性剤が、炭素数が9以下の炭化水素基を有し、且つI/Oが1〜1.33の範囲にある多価アルコールのアルキレンオキサイド付加物に対して30重量%を超えて添加されると、光学濃度が低下し、境界滲みや混色ベタ斑が生じる虞がある。

また、インク2には、I/Oが1.18以上、2.5以下の範囲にあり、且つ炭素数が9以下の炭素水素基を有する多価アルコールの他に、界面活性剤としてアルキレンオキサイド付加物に代わって、下記に示す化19のエチレンオキサイド/プロピレンオキサイド共重合体(以下、「EOPOEO」とする)を含有させる。このEOPOEOは、インク2中の微小な泡の発生を抑制したり、インク2の濡れ性を良好にすることができる。[化19]

WO 2005/054382 28 PCT/JP2004/018316

HO(CH₂CH₂O)_x(CHCH₂O)_y(CH₂CH₂O)_zH | | CH₃

(但し、x、yおよびzは、整数であり、3≦x+z≦12、8≦y≦21であり、かつ、エチレンオキサイドユニットの分子中における含有量が20重量%~40重量%である。)

EOPOEOは、エチレンオキサイド(以下、「EO」とする)の合計ユニット数(x+z)は3以上、12以下の範囲であり、より好ましくは3以上、10以下の範囲であり、EOPOEOの分子中のEOの合計ユニットの含有量が20重量%以上、40重量%以下の範囲である。また、EOPOEOは、プロピレンオキサイド(以下、「PO」とする)のユニット数(y)が8以上、21以下の範囲であり、より好ましくは8以上、16以下の範囲である。

EOの合計ユニット数(x+z)が3より小さい場合やEOの合計ユニットの含有量が20 重量%よりも少ない場合には、EOPOEOの水に対する溶解性が劣り、暖機状態に おいてインク2が白濁してしまい、インク2の物性が損なわれてしまう。

一方、EOの合計ユニット数(x+z)が12より大きい場合やEOの合計ユニットの含有量が40重量%よりも多い場合には、EOPOEOの親水性が高くなり過ぎるため、界面活性剤の機能が低下してインク2中に微小な泡が発生することを抑制することが困難となる。

また、EOPOEOにおいて、POのユニット数(y)が8より小さい場合には、EOPOE Oの親水性が高くなり、水に溶解しやすくなるが、界面活性能が低下し、微小な泡の発生を抑制することができなくなる。

一方、POのユニット数(y)が21より大きい場合には、EOPOEOが疎水性となり、常温でも溶けにくくなり、暖機状態においてインク2が白濁し、インク2の物性が低下して

しまう。

EOPOEO中におけるEOの合計ユニット(x+z)と、POのユニット(y)との比は、(x+z)/yとして、具体的に3~6/7,3~7/8,3~7/9,4~8/10,4~9/11,4~10/12,5~11/13,5~12/14,5~12/15,6~12/16,6~12/17,6~12/18,7~12/19,7~12/20,7~12/21などである。これら各種EOPOEOは、概ね分子量1700以下であり、より好ましくは1300以下である。分子量が1700を超えるような高分子量であるとインク2の粘度が増加するため好ましくない。

以上のようなEOPOEOでは、EOの合計ユニット数(x+z)は3以上、12以下の範囲であり、EOPOEOの分子中のEOの合計ユニットの含有量が20重量%以上、40重量%以下の範囲とし、POのユニット数(y)が8以上、21以下の範囲とすることによって、インク2の物性を損なうことなくインク2中に微小な泡の発生を抑えることができる。これにより、インク2では、微小な泡によるノズル52aの目詰まりが防止され、吐出安定性が向上する。また、インク2では、EOPOEOが含有されていることによって、インク2の濡れ性を向上し、記録紙Pに印刷すると、光学濃度が高く、境界滲みや混色ベタ斑が防止された画像を形成することができる。

EOPOEOは、インク2全重量に対して各々0.05重量%~5重量%の範囲であり、より好ましくは0.1重量%~2重量%の範囲である。EOPOEOの含有量が0.05重量%よりも小さい場合には、微小な泡の発生を抑えたり、上述した効果が得られなくなってしまう。一方、EOPOEOの含有量が5重量%よりも大きい場合には、インク2が増粘し、吐出安定性が低下し、記録紙Pへの浸透が遅くなってしまう。

インク2中に多価アルコールとEOPOEOを含有させた場合には、インク2の発熱箇所が多く、インク2が加熱された際や複雑な構造の流路内で微小な泡が発生することをより抑制することができる。また、このようなインク2では、吐出周期が極めて短い場合でも記録紙Pに対する浸透性が高いため、記録紙Pに普通紙を用いた場合でも高品位な画像を形成することができる。

多価アルコールの含有量は、インク2全重量に対して0.1重量%~10重量%であり、より好ましくは0.5重量%~7重量%である。インク2に対する多価アルコールの含有量が0.1重量%より少なくなると、上述した作用効果を得ることが困難になる。一

WO 2005/054382 30 PCT/JP2004/018316

方、インク2に対する多価アルコールの含有量が5重量%より多くなると、インク2の粘度が高くなったり、インク2に一部しか溶解できず、間欠吐出性等が低下してしまう。

上述したインク2に含有される色材としては、従来公知の染料、顔料、着色ポリマー 微粒子などを単独で、あるいは混合して用いることができるが、特に水溶性染料を用 いることが好ましい。ここで水溶性染料としては、酸性染料、直接染料、塩基性染料、 反応性染料、食用染料のいずれでも良いが、水への溶解度、発色性や堅牢性など の観点から適宜選択することが好ましい。

具体的に、イエロー系の水溶性染料としては、例えばC. I. アシッドイエロー17、同23、同42、同44、同79、同142、C. I. フードイエロー3、同4、C. I. ダイレクトイエロー1、同12、同24、同26、同33、同44、同50、同86、同120、同132、同142、同144、C. I. ダイレクトオレンジ26、同29、同62、同102、C. I. ベーシックイエロー1、同2、同11、同13、同14、同15、同19、同21、同23、同24、同25、同28、同29、同32、同36、同40、同41、同45、同49、同51、同53、同63、同64、同65、同67、同70、同73、同77、同87、同91、C. I. リアクティブイエロー1、同5、同11、同13、同14、同20、同21、同22、同25、同40、同47、同51、同55、同65、同67等を挙げることができる。

マゼンダ系の水溶性染料としては、例えばC. I. アシッドレッド1、同8、同13、同14、同18、同26、同27、同35、同37、同42、同52、同82、同87、同89、同92、同97、同106、同111、同114、同115、同134、同186、同249、同254、同289、C. I. フードレッド7、同9、同14、C. I. ダイレクトレッド1、同4、同9、同13、同17、同20、同28、同31、同39、同80、同81、同83、同89、同225、同227、C. I. ベーシックレッド2、同12、同13、同14、同15、同18、同22、同23、同24、同27、同29、同35、同36、同38、同39、同46、同49、同51、同52、同54、同59、同68、同69、同70、同73、同78、同82、同102、同104、同109、同112、C. I. リアクティブレッド1、同14、同17、同25、同26、同32、同37、同44、同46、同55、同60、同66、同74、同79、同96、同97等を挙げることができる。

シアン系の水溶性染料としては、例えばC. I. アシッドブルー9、同29、同45、同9 2、同249、C. I. ダイレクトブルー1、同2、同6、同15、同22、同25、同71、同76、 同79、同86、同87、同90、同98、同163、同165、同199、同202、C. I. ベーシックブルー1、同3、同5、同7、同9、同21、同22、同26、同35、同41、同45、同47、同54、同62、同65、同66、同67、同69、同75、同77、同78、同89、同92、同93、同105、同117、同120、同122、同124、同129、同137、同141、同147、同155、C. I. リアクティブブルー1、同2、同7、同14、同15、同23、同32、同35、同38、同41、同63、同80、同95等を挙げることができる。

ブラック系の水溶性染料としては、例えばC. I. アシッドブラック1、同2、同7、同24、同26、同94、C. I. フードブラック1、同2、C. I. ダイレクトブラック19、同22、同32、同38、同51、同56、同71、同74、同75、同77、同154、同168、同171、C. I. ベーシックブラック2、同8、C. I. リアクティブブラック3、同4、同7、同11、同12、同17等を挙げることができる。

インク2に対する上述した色材の含有量は、例えばインク2全重量に対して1重量% ~10重量%の範囲、より好ましくは3重量%~5重量%の範囲であり、インク2の粘度 、乾燥性、吐出安定性、発色性や印画物の保存安定性などを考慮して決定される。 インク2は水を溶媒として使用するものであるが、インク2に所望の物性を与え、色材 の水への溶解性や分散性を改良し、且つインク2の乾燥を防止する等の目的で、上 述した0秒動的表面張力を所定の範囲にさせる有機化合物と共に従来公知の有機 溶媒を併用することができる。

具体的に、溶媒として使用可能な有機溶剤としては、例えばエチレングリコール、ジェチレングリコール、トリエチレングリコール、ポリエチレングリコール等の多価アルコール類やNーメチルー2ーピロリドン、Nーヒドロキシエチルーピロリドン、1,3ージメチルイミダゾイリジノン、εーカプロラクタム、γーブチロラクトン等の含窒素複素環化合物や、ホルムアミド、Nーメチルホルムアミド、N,Nージメチルホルムアミド等のアミド類や、モノエタノールアミン、ジェタノールアミン、トリエタノールアミン、ジェチルアミン、トリエチルアミン、ジェチルアミン、トリエチルアミン、ジェチルアミン、トリエチルアミン、ジェチルアミン、トリエチルアミン等のできる。

インク2における上述した有機溶剤の含有量は、インク2全重量に対して5重量~5 0重量%の範囲、より好ましくは10重量%~35重量%の範囲であり、色材の場合と WO 2005/054382 32 PCT/JP2004/018316

同様にインク2の粘度、乾燥性や吐出安定性などを考慮して決定される。

なお、インク2には、上述したO秒動的表面張力を所定の範囲にさせる有機化合物、静的表面張力を所定の範囲にさせる多価アルコールのアルキレンオキサイド付加物、あるいはEOPOEO、色材、溶媒、従来公知の界面活性剤等の他に、例えばpH調整剤、キレート試薬、防腐防剤、防錆剤等を添加させることも可能である。

具体的に、pH調整剤等としては、例えばジエタノールアミン、トリエタノールアミン等 のアミン、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等のアルカリ金属元素の 水酸化物、水酸化アンモニウム、第4級アンモニウム水酸化物、第4級ホスホニウム水 酸化物、炭酸リチウム、炭酸ナトリウム、炭酸カリウム等のアルカリ金属の炭酸塩等が 挙げられ、これらを単独或いは混合して用いることができる。キレート試薬としては、 例えばエチレンジアミン四酢酸ナトリウム、ニトリロ三酢酸ナトリウム、ヒドロキシエチル エチレンジアミン三酢酸ナトリウム、ジエチレントリアミン五酢酸ナトリウム、ウラミルニ 酢酸ナトリウム等が挙げられ、これらを単独或いは混合して用いることができる。防腐 剤としては、例えはデヒドロ酢酸ナトリウム、ソルビン酸ナトリウム、2-ピリジンチオール ー1ーオキサイドナトリウム、安息香酸ナトリウム、ペンタクロロフェノールナトリウム等が 挙げられ、これらを単独或いは混合して用いることができる。防錆剤としては、例えば 酸性亜硫酸塩、チオ硫酸ナトリウム、チオジグリコール酸アンモン、ジイソプロピルア ンモニウムニトライト、四硝酸ペンタエリスリトール、ジシクロヘキシルアンモニウムニト ライト等が挙げられ、これらを単独或いは混合して用いることができる。その他にも、イ ンク2には、例えば特開平9-227811号公報で提案されているような紫外線吸収剤 等を適宜添加することもできる。

以上のような構成のインク2を調製する際は、上述したO秒動的表面張力を所定の 範囲にさせる有機化合物、静的表面張力を所定の範囲にさせる多価アルコールのア ルキレンオキサイド付加物又はEOPOEO、色材、溶媒、従来公知の界面活性剤等 を所定の配合比で混合し、常温或いは40℃~80℃程度に加熱ながらスクリュー等 で攪拌、分散させることで調製できる。

そして、以上で説明したインク2は、図2及び図3に示すように、イエローを呈するものがインクタンク5yに収容され、マゼンタを呈するものがインクタンク5mに収容され、

シアンを呈するものがインクタンク5cに収容され、ブラックを呈するものがインクタンク5kに収容される。

次に、上述したプリンタ装置1を構成するプリンタ本体2に対して着脱可能なヘッドカートリッジ3と、このヘッドカートリッジ3に着脱可能にされたインクタンク5y, 5m, 5c, 5kとについて図面を参照して説明する。

記録紙Pに印刷を行うヘッドカートリッジ3は、図1に示すように、プリンタ本体4の上面側から、すなわち図1中矢印A方向から装着され、給排紙機構64により走行する記録紙Pに対してインク2を吐出して印刷を行う。

ヘッドカートリッジ3は、上述したインク2を、例えば電気熱変換式又は電気機械変換式等を用いた圧力発生手段が発生した圧力により微細に粒子化して吐出し、記録紙P等といった対象物の主面に液滴状態にしたインク2を吹き付ける。具体的に、ヘッドカートリッジ3は、図2及び図3に示すように、カートリッジ本体21を有し、このカートリッジ本体21にインク2が充填された容器であるインクタンク5y, 5m, 5c, 5kが装着される。なお、以下では、インクタンク5y, 5m, 5c, 5kを単にインクタンク5ともいう

ヘッドカートリッジ3に着脱可能なインクタンク5は、強度や耐インク性を有するポリプロピレン等の樹脂材料等を射出成形することにより成形されるタンク容器11を有している。このタンク容器11は、長手方向を使用する記録紙Pの幅方向の寸法と略同じ寸法となす略矩形状に形成され、内部に貯留するインク容量を最大限に増やす構成となっている。

具体的に、インクタンク5を構成するタンク容器11には、インク2を収容するインク収容部12と、インク収容部12からヘッドカートリッジ3のカートリッジ本体21にインク2を供給するインク供給部13と、外部よりインク収容部12内に空気を取り込む外部連通孔14と、外部連通孔14より取り込まれた空気をインク収容部12内に導入する空気導入路15と、外部連通孔14と空気導入路15との間でインク2を一時的に貯留する貯留部16と、インクタンク5をカートリッジ本体21に係止するための係止突部17及び係合段部18とが設けられている。

インク収容部12は、気密性の高い材料によりインク2を収容するための空間を形成

WO 2005/054382 34 PCT/JP2004/018316

している。インク収容部12は、略矩形に形成され、長手方向の寸法が使用する記録 紙Pの幅方向、すなわち図3中矢印W方向で略同じ寸法となるように形成されている

インク供給部13は、インク収容部12の下側略中央部に設けられている。このインク供給部13は、インク収容部12と連通した略突形状のノズルであり、このノズルの先端が後述するヘッドカートリッジ3の接続部26に嵌合されることにより、インクタンク2のタンク容器11とヘッドカートリッジ3のカートリッジ本体21を接続する。

インク供給部13は、図6(A)及び図6(B)に示すように、インクタンク5の底面13aに インク2を供給する供給口13bが設けられ、この底面13aに、供給口13bを開閉する 弁13cと、弁13cを供給口13bの閉塞する方向に付勢するコイルバネ13dと、弁13c を開閉する開閉ピン13eとを備えている。ヘッドカートリッジ3の接続部26に接続され るインク2を供給する供給口13bは、図6(A)に示すように、インクタンク5がヘッドカートリッジ3のカートリッジ本体21に装着される前の段階において、付勢部材であるコイルバネ13dの付勢力により弁13cが供給口13bを閉じる方向に付勢され閉塞されている。そして、インクタンク5がカートリッジ本体21に装着されると、図6(B)に示すように、開閉ピン13eがヘッドカートリッジ3を構成するカートリッジ本体21の接続部26の上部によりコイルバネ13dの付勢方向とは反対の方向に押し上げられる。これにより、押し上げられた開閉ピン13eは、コイルバネ13dの付勢力に抗して弁13cを押し上げて供給口13bを開放する。このようにして、インクタンク5のインク供給部13は、ヘッドカートリッジ3の接続部26に接続され、インク収容部12とインク溜め部31へのインク2の供給が可能な状態となる。

また、インクタンク5をヘッドカートリッジ3側の接続部26から引き抜くとき、すなわちインクタンク5をヘッドカートリッジ3の装着部22より取り外すときは、弁13cの開閉ピン13eによる押し上げ状態が解除され、弁13cがコイルバネ13dの付勢方向に移動して供給口13bを閉塞する。これにより、インクタンク5をカートリッジ本体21に装着する直前にインク供給部13の先端部が下方を向いている状態であってもインク収容部12内のインク2が漏れることを防止することができる。また、インクタンク5をカートリッジ本体21から引き抜いたときには、直ちに弁13cが供給口13bを閉塞するので、インク供

WO 2005/054382 35 PCT/JP2004/018316

給部13の先端からインク2が漏れることを防止できる。

外部連通孔14は、図3に示すように、インクタンク5外部からインク収容部12に空気を取り込む通気口であり、ヘッドカートリッジ3の装着部22に装着されたときも、外部に臨み外気を取り込むことができるように、装着部22への装着時に外部に臨む位置であるタンク容器11の上面の所定の位置に、ここでは上面略中央に設けられている。外部連通孔14は、インクタンク5がカートリッジ本体21に装着されてインク収容部12からカートリッジ本体21側にインク2が流下した際に、インク収容部12内のインク2が減少した分に相当する分の空気を外部よりインクタンク5内に取り込む。

空気導入路15は、インク収容部12と外部連通孔14とを連通し、外部連通孔14より取り込まれた空気をインク収容部12内に導入する。これにより、このインクタンク5がカートリッジ本体21に装着された際に、ヘッドカートリッジ3のカートリッジ本体21にインク2が供給されてインク収容部12内のインク2が減少し内部が減圧状態となっても、インク収容部12には、空気導入路15によりインク収容部12に空気が導入されることから、内部の圧力が平衡状態に保たれてインク2をカートリッジ本体21に適切に供給することができる。

貯留部16は、外部連通孔14と空気導入路15との間に設けられ、インク収容部12に連通する空気導入路15よりインク2が漏れ出た際に、いきなり外部に流出することがないようにインク2を一時的に貯留する。この貯留部16は、長い方の対角線をインク収容部12の長手方向とした略菱形に形成され、インク収容部12の最も下側に位置する頂部に、すなわち短い方の対角線上の下側に空気導入路15を設けるようにし、インク収容部12より進入したインク2を再度インク収容部12に戻すことができるようにされている。また、貯留部16は、短い方の対角線上の最も下側の頂部に外部連通孔14を設けるようにし、インク収容部12より進入したインク2が外部連通孔14より外部に漏れにくくする。

係止突部17は、インクタンク5の短辺の一方の側面に設けられた突部であり、ヘッドカートリッジ3のカートリッジ本体21のラッチレバー24に形成された係合孔24aと係合する。この係止突部17は、上面がインク収容部12の側面に対して略直交するような平面で形成されると共に、下面は側面から上面に向かって傾斜するように形成されて

いる。

係合段部18は、インクタンク5の係止突部17が設けられた側面の反対側の側面の上部に設けられている。係合段部18は、タンク容器11の上面と一端を接する傾斜面18aと、この傾斜面18aの他端と他方の側面と連続し、上面と略平行な平面18bとからなる。インクタンク5は、係合段部18が設けられていることで、平面18bが設けられた側面の高さがタンク容器11の上面より1段低くなるように形成され、この段部でカートリッジ本体21の係合片23と係合する。係合段部18は、ヘッドカートリッジ3の装着部22に挿入されるとき、挿入端側の側面に設けられ、ヘッドカートリッジ3の装着部22に何条合片23に係合することで、インクタンク5を装着部22に装着する際の回動支点部となる。

以上のような構成のインクタンク5は、上述した構成の他に、例えばインク収容部12 内のインク2の残量を検出するための残量検出部や、インクタンク5y, 5m, 5c, 5kを 識別するための識別部等を備えている。

次に、以上のように構成されたイエロー、マゼンタ、シアン、ブラックのインク2を収納 したインクタンク5y, 5m, 5c, 5kが装着されるヘッドカートリッジ3について説明する

ヘッドカートリッジ3は、図2及び図3に示すように、上述したインクタンク5とカートリッジ本体21とによって構成され、カートリッジ本体21には、インクタンク5が装着される装着部22y, 22m, 22c, 22k(以下、全体を示すときには単に装着部22ともいう。)と、インクタンク5を固定する係合片23及びラッチレバー24と、インクタンク5を取り出し方向に付勢する付勢部材25と、インク供給部13と接続されてインク2が供給される接続部26と、インク2を吐出するインク吐出ヘッド27と、インク吐出ヘッド27を保護するヘッドキャップ28とを有している。

インクタンク5が装着される装着部22は、インクタンク5が装着されるように上面をインクタンク5の挿脱口として略凹形状に形成され、ここでは4本のインクタンク5が記録紙Pの幅方向と略直交方向、すなわち記録紙Pの走行方向に並んで収納されている。装着部22は、インクタンク5が収納されることから、インクタンク5と同様に印刷幅の方向に長く設けられている。カートリッジ本体21には、インクタンク5が収納装着され

WO 2005/054382 37 PCT/JP2004/018316

る。

装着部22は、図2に示すように、インクタンク5が装着される部分であり、イエロー用のインクタンク5yが装着される部分を装着部22yとし、マゼンタ用のインクタンク5mが装着される部分を装着部22mとし、シアン用のインクタンク5cが装着される部分を装着部22cとし、ブラック用のインクタンク5kが装着される部分を装着部22kとし、各装着部22y, 22m, 22c, 22kは、隔壁22aによりそれぞれ区画されている。なお、上述したようにブラックのインクタンク5kは、一般的に使用量が多いことから、インク2の内容量が大きくなるように厚く形成されているため、幅が他のインクタンク5y, 5m, 5cよりも大きくなっている。このため、装着部22kは、インクタンク5kの厚みに合わせて他の装着部22y, 22m, 22cよりも広くなっている。

また、インクタンク5が装着される装着部22の開口端には、図3に示すように、係合 片23が設けられている。この係合片23は、装着部22の長手方向の一端縁に設けら れており、インクタンク5の係合段部18と係合する。インクタンク5は、インクタンク5の 係合段部18側を挿入端として斜めに装着部22内に挿入し、係合段部18と係合片2 3との係合位置を回動支点として、インクタンク5の係合段部18が設けられていない 側を装着部22側に回動させるようにして装着部22に装着することができる。これによって、インクタンク5は、装着部22に容易に装着することができる。

ラッチレバー24は、板バネを折曲して形成されるものであり、装着部22の係合片2 3に対して反対側の側面、すなわち長手方向の他端の側面に設けられている。ラッチレバー24は、基端部が装着部22を構成する長手方向の他端の側面の底面側に一体的に設けられ、先端側がこの側面に対して近接離間する方向に弾性変位するように形成され、先端側に係合孔24aが形成されている。ラッチレバー24は、インクタンク5が装着部22に装着されると同時に、弾性変位し、係合孔24aがインクタンク5の係止突部17と係合し、装着部22に装着されたインクタンク5が装着部22より脱落しないようにする。

付勢部材25は、インクタンク5の係合段部18に対応する側面側の底面上にインクタンク5を取り外す方向に付勢する板バネを折曲して設けられる。付勢部材25は、折曲することにより形成された頂部を有し、底面に対して近接離間する方向に弾性変位し

WO 2005/054382 38 PCT/JP2004/018316

、頂部でインクタンク5の底面を押圧し、装着部22に装着されているインクタンク5を装着部22より取り外す方向に付勢するイジェクト部材である。付勢部材25は、ラッチレバー24の係合孔24aと係止突部17との係合状態が解除されたとき、装着部23よりインクタンク5を排出する。

各装着部22y, 22m, 22c, 22kの長手方向略中央には、インクタンク5y, 5m, 5c, 5kが装着部22y, 22m, 22c, 22kに装着されたとき、インクタンク5y, 5m, 5c, 5kのインク供給部13が接続される接続部26が設けられている。この接続部26は、装着部22に装着されたインクタンク5のインク供給部13からカートリッジ本体21の底面に設けられたインク2を吐出するインク吐出ヘッド27にインク2を供給するインク供給路となる。

具体的に、接続部26は、図7に示すように、インクタンク5から供給されるインク2を 溜めるインク溜め部31と、接続部26に連結されるインク供給部13をシールするシー ル部材32と、インク2内の不純物を除去するフィルタ33と、インク吐出ヘッド27側へ の供給路を開閉する弁機構34とを有している。

インク溜め部31は、インク供給部13と接続されインクタンク5から供給されるインク2 を溜める空間部である。シール部材32は、インク溜め部31の上端に設けられた部材であり、インクタンク5のインク供給部13が接続部26のインク溜め部31に接続されるとき、インク2が外部に漏れないようインク溜め部31とインク供給部13との間を密閉する。フィルタ33は、インクタンク5の着脱時等にインク2に混入してしまった塵や埃等のごみを取り除くものであり、インク溜め部31よりも下流に設けられている。

弁機構34は、図8(A)及び図8(B)に示すように、インク溜め部31からインク2が供給されるインク流入路41と、インク流入路41からインク2が流入するインク室42と、インク室42からインク2を流出するインク流出路43と、インク室42をインク流入路41側とインク流出路43側との間に設けられた開口部44と、開口部44を開閉する弁45と、弁45を開口部44の閉塞する方向に付勢する付勢部材46と、付勢部材46の強さを調節する負圧調整ネジ47と、弁45と接続される弁シャフト48と、弁シャフト48と接続されるダイアフラム49とを有する。

インク流入路41は、インク溜め部31を介してインクタンク5のインク収容部12内のイ

ンク2をインク吐出ヘッド27に供給可能にインク収容部12と連結する供給路である。 インク流入路41は、インク溜め部31の底面側からインク室42まで設けられている。インク室42は、インク流入路41、インク流出路43及び開口部44と一体となって形成された略直方体をなす空間部であり、インク流入路41からインク2が流入し、開口部44を介してインク流出路43からインク2を流出する。インク流出路43は、インク室42から開口部44を介してインク2が供給されて、更にインク吐出ヘッド27と連結された供給路である。インク流出路43は、インク室42の底面側からインク吐出ヘッド27まで延在されている。

弁45は、開口部44を閉塞してインク流入路41側とインク流出路43側とを分割する 弁であり、インク室42内に配設される。弁45は、付勢部材46の付勢力と、弁シャフト 48を介して接続されたダイアフラム49の復元力と、インク流出路43側のインク2の負 圧によって上下に移動する。弁45は、下端に位置するとき、インク室42をインク流入 路41側とインク流出路43側とを分離するように開口部44を閉塞し、インク流出路43 に対するインク2の供給を遮断する。弁45は、付勢部材46の付勢力に抗して上端に 位置するとき、インク室42をインク流入路41側とインク流出路43側とを遮断せずに、 インク吐出ヘッド27へインク2の供給を可能とする。なお、弁45を構成する材質は、 その種類を問わないが、高い閉塞性を確保するため例えばゴム弾性体、いわゆるエ ラストマー等により形成される。

付勢部材46は、例えば圧縮コイルバネ等であり、弁45の上面とインク室42の上面との間で負圧調整ネジ47と弁45とを接続し、付勢力により弁45を開口部44の閉塞する方向に付勢する。負圧調整ネジ47は、付勢部材46の付勢力を調整するネジであり、負圧調整ネジ47を調整することで付勢部材46の付勢力を調整することができるようにしている。これにより、負圧調整ネジ47は、詳細は後述するが開口部44を開閉する弁45を動作させるインク2の負圧を調整することができる。

弁シャフト48は、一端に接続された弁45と、他端に接続されたダイアフラム49とを連結して運動するように設けられたシャフトである。ダイアフラム49は、弁シャフト48の他端に接続された薄い弾性板である。このダイアフラム49は、インク室42のインク流出路43側の一主面と、外気と接する他主面とからなり、大気圧とインク2の負圧に

より外気側とインク流出路43側とに弾性変位する。

以上のような弁機構34では、図8(A)に示すように、弁45が付勢部材46の付勢力とダイアフラム49の付勢力とによってインク室42の開口部44を閉塞するように押圧されている。そして、インク吐出ヘッド27からインク2が吐出された際には、開口部44で分割されたインク流出路43側のインク室42のインク2の負圧が高まると、図8(B)に示すように、インク2の負圧によりダイアフラム49が大気圧により押し上げられて、弁シャフト48と共に弁45を付勢部材46の付勢力に抗して押し上げる。このとき、インク室42のインク流入路41側とインク流出路43側と間の開口部44が開放され、インク2がインク流入路41側からインク流出路43側に供給される。そして、インク2の負圧が低下してダイアフラム49が復元力により元の形状に戻り、付勢部材46の付勢力により弁シャフト48と共に弁45をインク室42が閉塞するように引き下げる。以上のようにして弁機構34では、インク2を吐出する度にインク2の負圧が高まると、上述の動作を繰り返す。

また、この接続部26では、インク収容部12内のインク2がインク室42に供給されると、インク収容部12内のインク2が減少するが、このとき、空気導入路15から外気がインクタンク5内に入り込む。インクタンク5内に入り込んだ空気は、インクタンク5の上方に送られる。これにより、インク液滴iが後述するノズル52aから吐出される前の状態に戻り、平衡状態となる。このとき、空気導入路15内にインク2がほとんどない状態で平衡状態となる。

この接続部26では、上述したように複雑な構造になっており、この複雑な流路内をインク2が移動するが、インク2には上述した0秒動的表面張力を30mN/m以上、40mN/m以下の範囲にさせる有機化合物が少なくとも含有されており、流路内壁に対するインク2の濡れ性が高められ、且つ弁の34eの開閉動作やインク2の流路移動等でインク2中に微少な泡が生じることが抑制されていることから、微少な泡の混入のないインク2がインク吐出ヘッド27に供給される。

また、インク2の0秒動的表面張力を30mN/m以上、40mN/m以下の範囲にさせる有機化合物と共に、静的表面張力を30mN/m以上、35mN/m以下の範囲にさせる多価アルコールのアルキレンオキサイド付加物がインク2に含有されているこ

WO 2005/054382 41 PCT/JP2004/018316

とにより、0秒動的表面張力を所定の範囲にさせる有機化合物だけがインク2に含有されているときよりインク2中に微少な泡が発生することをさらに抑えることができる。

また、インク2の0秒動的表面張力を30mN/m以上、40mN/m以下の範囲にさせる有機化合物と共に、多価アルコールのアルキレンオキサイド付加物に代わってE OPOEOを含有させたインク2を用いた場合でも、0秒動的表面張力を所定の範囲にさせる有機化合物だけがインク2に含有されているときよりインク2中に微少な泡が発生することをさらに抑えることができる。

インク吐出ヘッド27は、図7に示すように、カートリッジ本体21の底面に沿って配設されており、接続部26から供給されるインク液滴iを吐出するインク吐出口である後述するノズル52aが各色毎、記録紙Pの幅方向、すなわち図7中矢印W方向に略ライン状をなすようにされている。

ヘッドキャップ28は、図2に示すように、インク吐出ヘッド27を保護するために設けられたカバーであり、印刷動作するときにはインク吐出ヘッド27より退避する。ヘッドキャップ28は、図2中矢印W方向の両端に開閉方向に設けられた一対の係合突部28aと、長手方向に設けられインク吐出ヘッド27の吐出面27aに付着した余分なインク2を吸い取るクリーニングローラ28bとを有している。ヘッドキャップ28は、係合突部28aが吐出ヘッド27の吐出面27aに図2中矢印W方向とは略直交方向に亘って設けられたに一対の係合溝27bに係合され、この一対の係合溝27bに沿ってインクタンク5の短手方向、すなわち図2中矢印W方向とは略直交方向に開閉するようにされている。そして、ヘッドキャップ28においては、開閉動作時に、クリーニングローラ28bがインク吐出ヘッド27の吐出面27aに当接しながら回転することで、余分なインク2を吸い取り、インク吐出ヘッド27の吐出面27aに当接しながら回転する。このクリーニングローラ28bには、例えば吸湿性の高い部材、具体的にはスポンジ、不織布、織布等が用いられる。また、ヘッドキャップ28は、印刷動作しないときにはインク吐出ヘッド27内のインク2が乾燥しないように吐出面27aを閉塞する。

以上のような構成のヘッドカートリッジ3は、上述した構成の他に、例えばインクタン ク5内におけるインク残量を検出する残量検出部や、接続部26にインク供給部13が 接続されたときにインク2の有無を検出するインク有無検出部等を備えている。 インク吐出ヘッド27は、図9に示すように、ベースとなる回路基板51と、複数のノズル52aが形成されたノズルシート52と、回路基板51とノズルシート52との間をノズル52a毎に区画するフィルム53と、インク流路43を通して供給されたインク2を加圧するインク液室54と、インク液室54に供給されたインク2を加熱する発熱抵抗体55と、インク液室54にインク2を供給するインク流路56とを有している。

回路基板51は、シリコン等からなる半導体ウェハ上に、ロジックIC(Integrated Circuit)やドライバートランジスタ等からなる制御回路を構成すると共に、インク液室54の上面部を形成している。

ノズルシート52は、厚みが10μm~15μm程度のシート状部材であり、吐出面27 aに向かって縮径され、且つ吐出面27a側の口径が20μm程度のノズル52aが穿設されると共に、回路基板51とフィルム53を挟んで対向配置されることで、インク液室5 4の下面部を形成している。

フィルム53は、例えば露光硬化型のドライフィルムレジストからなり、上述したインク 流路43と連通される部分を除いて各ノズル52aの周囲を囲むように形成されている。 また、このフィルム53は、回路基板51とノズルシート52との間に介在されることによって、インク液室54の側面部を形成している。

インク液室54は、上述した回路基板51、ノズルシート52及びフィルム53により囲まれることで、ノズル52a毎にインク流路43から供給されたインク2を加圧する加圧空間を形成している。

発熱抵抗体55は、インク液室54に臨む回路基板51に配置されると共に、この回路基板51に設けられた制御回路等と電気的に接続されている。そして、この発熱抵抗体55は、制御回路等により制御されることで発熱し、インク液室54内のインク2を加熱する。

インク流路56は、接続部26のインク流出路43と接続されており、接続部26に接続されたインクタンク5からインク2が供給され、このインク流路56に連通する各インク液室54にインク2を送り込む流路である。すなわち、インク流路56と接続部26とが連通されている。これにより、インクタンク5から供給されるインク2がインク流路56に流れ込み、インク液室54内に充填される。

上述した1個のインク吐出ヘッド27には、インク液室54毎に発熱抵抗体55が設けられ、発熱抵抗体55が設けられたインク液室54を各色インクタンク5毎に100個~5000個程度備えている。そして、インク吐出ヘッド27においては、プリンタ装置1の後述する制御部78からの命令によって各インク液室54の発熱抵抗体55それぞれを適宜選択して発熱させ、発熱した発熱抵抗体55に対応するインク液室54内のインク2を、インク液室54に対応するノズル52aからインク液滴iにして吐出させる。

具体的に、このインク吐出ヘッド27では、回路基板51の制御回路が発熱抵抗体55を駆動制御し、選択された発熱抵抗体55に対して、例えば1〜3マイクロ秒程度の間パルス電流を供給する。これにより、インク吐出ヘッド27では、発熱抵抗体55が急速に加熱される。すると、インク吐出ヘッド27では、図10(A)に示すように、発熱抵抗体55と接するインク液室54内のインク2に気泡bが発生する。そして、インク吐出ヘッド27では、図10(B)に示すように、このインク液室54内において、気泡bが膨張しながらインク2を加圧し、押し退けられたインク2がインク液滴iとなってノズル52aより吐出される。また、インク吐出ヘッド27においては、インク液滴iが吐出された後は、インク流路43を通してインク2がインク液室54に供給されることによって、再び吐出前の状態へと戻る。

なお、上述したインク吐出ヘッド27は、回路基板51の一主面上にフィルム53を全面に亘って形成し、フォトリソグラフィ技術を用いてフィルム53をインク液室54に対応した形状に成形した後に、この上にノズルシート52を積層することで形成される。

以上のような構成のインク吐出ヘッド27では、上述したように複数備わる発熱抵抗体55の分インク2の発熱箇所も多くなって微少な泡が発生し易くなっているが、インク2に0秒動的表面張力を30mN/m以上、40mN/m以下の範囲にさせる有機化合物が少なくとも含有されており、インク液室54内壁に対するインク2の濡れ性が高められ、且つインク2のインク流路移動中に微少な泡が生じることが抑制されることから、例えばインク液室54内のインク2に微少な泡が発生することを抑制でき、インク液滴iの不吐出や吐出曲がり等といった吐出不良が抑制される。

また、このインク吐出ヘッド27では、インク2の0秒動的表面張力を30mN/m以上、40mN/m以下の範囲にさせる有機化合物と共に、静的表面張力を30mN/m以

上、35mN/m以下の範囲にさせる多価アルコールのアルキレンオキサイド付加物が含有されたインク2をノズル52aより吐出した場合、0秒動的表面張力を所定の範囲にさせる有機化合物だけがインク2に含有されているときよりインク2中に微少な泡が発生することをさらに抑えることができ、インク液滴iの吐出不良をさらに抑制できる

また、このインク吐出ヘッド27では、インク2の0秒動的表面張力を30mN/m以上、40mN/m以下の範囲にさせる有機化合物と共に、多価アルコールのアルキレンオキサイド付加物に代わって、EOPOEOが含有されたインク2を用いた場合でも、インク2中に微少な泡が発生することをさらに抑えることができ、インク液滴iの吐出不良をさらに抑制できる。

次に、以上のように構成されたヘッドカートリッジ3が装着されるプリンタ装置1を構成するプリンタ本体4について図面を参照して説明する。

プリンタ本体4は、図1及び図11に示すように、ヘッドカートリッジ3が装着されるヘッドカートリッジ装着部61と、ヘッドカートリッジ3をヘッドカートリッジ装着部61に保持、固定するためのヘッドカートリッジ保持機構62と、ヘッドキャップを開閉するヘッドキャップ開閉機構63と、記録紙Pを給排紙する給排紙機構64と、給排紙機構64に記録紙Pを供給する給紙口65と、給排紙機構64から記録紙Pが出力される排紙口66とを有する。

ヘッドカートリッジ装着部61は、ヘッドカートリッジ3が装着される凹部であり、走行する記録紙にデータ通り印刷を行うため、インク吐出ヘッド27の吐出面27aと走行する記録紙Pの紙面とが互いに略平行となるようにヘッドカートリッジ3が装着される。そして、ヘッドカートリッジ3は、インク吐出ヘッド27内のインク詰まり等で交換する必要が生じる場合等があり、インクタンク5程の頻度はないが消耗品であるため、ヘッドカートリッジ装着部61に対して着脱可能にヘッドカートリッジ保持機構62によって保持される。

ヘッドカートリッジ保持機構62は、ヘッドカートリッジ装着部61にヘッドカートリッジ3を着脱可能に保持するための機構であり、ヘッドカートリッジ3に設けられたつまみ62aをプリンタ本体4の係止孔62b内に設けられた図示しないバネ等の付勢部材に係止

することによってプリンタ本体4に設けられた基準面4aに圧着するようにしてヘッドカートリッジ3を位置決めして保持、固定できるようにする。

ヘッドキャップ開閉機構63は、ヘッドカートリッジ3のヘッドキャップ28を開閉する駆動部を有しており、印刷を行うときにヘッドキャップ28を開放してインク吐出ヘッド27が記録紙Pに対して露出するようにし、印刷が終了したときにヘッドキャップ28を閉塞してインク吐出ヘッド27を保護する。

給排紙機構64は、記録紙Pを搬送する駆動部を有しており、給紙口65から供給される記録紙Pをヘッドカートリッジ3のインク吐出ヘッド27まで搬送し、ノズル52aより吐出されたインク液滴iが着弾し、印刷された記録紙Pを排紙口66に搬送して装置外部へ排出する。給紙口65は、給排紙機構64に記録紙Pを供給する開口部であり、トレイ65a等に複数枚の記録紙Pを積層してストックすることができる。排紙口66は、インク液滴iが着弾し、印刷された記録紙Pを排出する開口部である。

次に、以上のように構成されたプリンタ装置1による印刷を制御する図12に示す制御回路71について図面を参照して説明する。

制御回路71は、上述したプリンタ本体3のヘッドキャップ開閉機構63、給排紙機構64の駆動を制御するプリンタ駆動部72と、各色のインクiに対応するインク吐出ヘッド27に供給される電流等を制御する吐出制御部63と、各色のインクiの残量を警告する警告部74と、外部装置と信号の入出力を行う入出力端子75と、制御プログラム等が記録されたROM(Read Only Memory)76と、読み出された制御プログラム等を一旦格納し、必要に応じて読み出されるRAM(Random Access Memory)77と、各部の制御を行う制御部78とを有している。

プリンタ駆動部72は、制御部78からの制御信号に基づき、ヘッドキャップ開閉機構63を構成する駆動モータを駆動させてヘッドキャップ28を開閉動作するように、ヘッドキャップ開閉機構を制御する。また、プリンタ駆動部72は、制御部78からの制御信号に基づき、給排紙機構64を構成する駆動モータを駆動させてプリンタ本体4の給紙口65から記録紙Pを給紙し、印刷後に排紙口66から記録紙Pを排出するように給排紙機構64を制御する。

吐出制御部63は、インク吐出ヘッド27に備わる発熱抵抗体55にパルス電流を供

給する外部電源との電気的な接続をオン/オフするスイッチング素子や、発熱抵抗体55に供給されるパルス電流値を調整する抵抗体や、スイッチング素子等のオン/オフの切り替えを制御する制御回路部等を有する電気回路である。そして、吐出制御部63は、制御部78からの制御信号に基づき、インク吐出ヘッド27に備わる発熱抵抗体55に供給されるパルス電流等を調整し、ノズル52aよりインクiを吐出するインク吐出ヘッド27を制御する。

警告部74は、例えばLCD(Liquid Crystal Display)等の表示手段であり、印刷条件、印刷状態、インク残量等の情報を表示する。また、警告部74は、例えばスピーカ等の音声出力手段であってもよく、この場合は、印刷条件、印刷状態、インク残量等の情報を音声で出力する。なお、警告部74は、表示手段及び音声出力手段をともに有するように構成してもよい。また、この警告は、情報処理装置79のモニタやスピーカ等で行うようにしてもよい。

入出力端子75は、上述した印刷条件、印刷状態、インク残量等の情報をインタフェースを介して外部の情報処理装置79等に送信する。また、入出力端子75は、外部の情報処理装置79等から、上述した印刷条件、印刷状態、インク残量等の情報を出力する制御信号や、印刷データ等が入力される。ここで、上述した情報処理装置79は、例えば、パーソナルコンピュータやPDA (Personal Digital Assistant)等の電子機器である。

情報処理装置79等と接続される入出力端子75は、インタフェースとして例えばシリアルインタフェースやパラレルインタフェース等を用いることができる。また、入出力端子75は、情報処理装置79との間で有線通信又は無線通信の何れ形式でデータ通信を行うようにしてもよい。

入出力端子75と情報処理装置79との間には、例えばインターネット等のネットワークが介在していてもよく、この場合、入出力端子75は、

ROM76は、例えばEP-ROM (Erasable Programmable Read-Only Memory)等のメモリであり、制御部78が行う各処理のプログラムが格納されている。この格納されているプログラムは、制御部78によりRAM77にロードされる。RAM77は、制御部78によりROM76から読み出されたプログラムや、プリンタ装置1の各種状態を記憶する

0

制御部78は、入出力端子75から入力された印刷データ、ヘッドカートリッジ3から 入力されがインク2の残量データ等に基づき、各部を制御する。制御部78は、入力さ れた制御信号等に基づいて各部を制御する処理プログラムをROM76から読み出し てRAM77に記憶し、この処理プログラムに基づき各部の制御や処理を行う。

なお、以上のように構成された制御回路71においては、ROM76に処理プログラムを格納するようにしたが、処理プログラムを格納する媒体としては、ROM76に限定されるものでなく、例えば処理プログラムが記録された光ディスクや、磁気ディスク、光磁気ディスク、ICカード等の各種記録媒体を用いることができる。この場合に制御回路71は、各種記録媒体を駆動するドライブと直接又は情報処理装置79を介して接続されてこれら記録媒体から処理プログラムを読み出すように構成する。

ここで、以上のように構成されるプリンタ装置1の印刷動作について図13に示すフローチャートを参照にして説明する。なお、本動作はROM76等の記憶手段に格納された処理プログラムに基づいて制御部78内の図示しないCPU(Central Processing Unit)の演算処理等により実行されるものである。

先ず、ユーザが、印刷動作をプリンタ装置1が実行するように、プリンタ本体4に設けられている操作パネル等を操作して命令する。次に、制御部78は、ステップS1において、各装着部22に所定の色のインクタンク5が装着されているかどうかを判断する。そして、制御部78は、全ての装着部22に所定の色のインクタンク5が適切に装着されているときはステップS2に進み、装着部22においてインクタンク5が適切に装着されていないときはステップS7に進み、印刷動作を禁止する。

制御部78は、ステップS2において、インクタンク5内のインク2が所定量以下、すなわちインク無し状態であるか否かを判断し、インク無し状態であると判断されたときは、警告部74でその旨を警告し、ステップS7において、印刷動作を禁止する。一方、制御部78は、インクタンク5内のインク2が所定量以上であるとき、すなわちインク2が満たされているとき、ステップS3において、印刷動作を許可する。

印刷動作を行う際は、ステップS4において、制御部78がプリンタ駆動部72によって各駆動機構53、54を駆動制御して記録紙Pを印刷可能な位置まで移動させる。

WO 2005/054382 48 PCT/JP2004/018316

具体的に、制御部78は、図14に示すように、ヘッドキャップ開閉機構63を構成する駆動モータを駆動させてヘッドキャップ28をヘッドカートリッジ3に対してトレイ65a側に移動させ、インク吐出ヘッド27のノズル52aを露出させる。そして、制御部78は、給排紙機構64を構成する駆動モータを駆動させて記録紙Pを走行させる。具体的に、制御部78は、トレイ65aから給紙ローラ81によって記録紙Pを引き出し、同一方向に回転する一対の分離ローラ82a,82bによって引き出された記録紙Pの一枚を反転ローラ83に搬送して搬送方向を反転させた後に搬送ベルト84に記録紙Pを搬送し、搬送ベルト84に搬送された記録紙Pを押さえ手段85が所定の位置で保持させることでインク2が着弾される位置が決定されるように給排紙機構64を制御する。

次に、制御部78は、ステップS5において、吐出制御部63によってインク吐出ヘッド 27を制御し、この印刷位置に搬送された記録紙Pに対してノズル52aよりインク液滴i を吐出、着弾させてインクドットからなる画像や文字等を記録させる。

このとき、インク吐出ヘッド27では、インク2に0秒動的表面張力を30mN/m以上、40mN/m以下の範囲にさせる有機化合物が少なくとも含有されており、インク液室54内壁に対するインク2の濡れ性が高められ、且つインク流路56を移動するインク2中に微少な泡が生じることが抑制されていることから、インク液室54内に充填されているインク2に微少な泡が発生することを抑制でき、インク液滴iの不吐出や吐出曲がり等といった吐出不良を防止できる。

また、印刷された画像や文字は、着弾したインク液滴iにO秒動的表面張力を30m N/m以上、40mN/m以下の範囲にさせる有機化合物が少なくとも含有されていることから、光学濃度が高くなり、且つ境界滲みや混色ベタ斑の発生が抑制された高品位な画質になる。

さらに、このインク吐出ヘッド27では、インク2の0秒動的表面張力を30mN/m以上、40mN/m以下の範囲にさせる有機化合物と共に、静的表面張力を30mN/m以上、35mN/m以下の範囲にさせる多価アルコールのアルキレンオキサイド付加物がインク2に含有されていることにより、0秒動的表面張力を所定の範囲にさせる有機化合物だけがインク2に含有されているときよりインク2中に微少な泡が発生することをさらに抑えることができる。また、このインク吐出ヘッド27では、インク2に多価アル

WO 2005/054382 49 PCT/JP2004/018316

コールのアルキレンオキサイド付加物が含有されていることによって、濡れ性がより高められ、画像や文字も品位を更に向上させることができる。

また、このインク吐出ヘッド27では、インク2の0秒動的表面張力を30mN/m以上、40mN/m以下の範囲にさせる有機化合物と共に、多価アルコールのアルキレンオキサイド付加物に代わってEOPOEOが含有されたインク2を用いた場合でも、インク2の微小な泡の発生を更に抑えることができ、濡れ性もより高めることができ、0秒動的表面張力を所定の範囲にさせる有機化合物により得られる作用効果をさらに高めることができる。

そして、インク液滴iがノズル52a吐出されると、インク液滴iを吐出した量と同量のインク2がインク流路56から直ちにインク液室54内に補充され、図8(A)に示すように、元の状態に戻る。インク吐出ヘッド27からインク液滴iが吐出されると、付勢部材46の付勢力とダイアフラム49の付勢力とによってインク室42の開口部44を閉塞している弁45は、図8(B)に示すように、インク吐出ヘッド27からインク液滴iが吐出された際に、開口部44に分割されたインク流出路43側のインク室42内のインク2の負圧が高まると、インク2の負圧によりダイアフラム49が大気圧により押し上げられて、弁シャフト48と共に弁45を付勢部材46の付勢力に抗して押し上げる。

このとき、インク室42のインク流入路41側とインク流出路43側との間の開口部44が 開放され、インク2がインク流入路41側からインク流出路43側に供給され、インク吐 出ヘッド27のインク流路56にインク2が補充される。そして、インク2の負圧が低下し てダイアフラム49が復元力により元の形状に戻り、付勢部材46の付勢力により弁シ ャフト48と共に弁45をインク室42が閉塞するように引き下げる。以上のようにして弁 機構34では、インク液滴iを吐出する度にインク2の負圧が高まると、上述の動作を繰り返す。

インク吐出ヘッド27においては、以上のようにしてインク2の供給が繰り返し行われるとき、すなわち複雑な構造の流路を通ってインク2が繰り返し供給されるときでも、インク2にインク液滴iに0秒動的表面張力を30mN/m以上、40mN/m以下の範囲にさせる有機化合物が少なくとも含有されていることから、流路内を移動するインク2に微少な泡が発生することがなく、微少な泡が発生していないインク2がインク吐出へ

ッド27に供給され、不吐出や吐出曲がりといった吐出不良を防止できる。

このようにして、給排紙機構64によって走行している記録紙Pには、順に印刷データに応じた文字や画像が優れた画質で印刷されることになる。そして、印刷が終了した記録紙Pは、ステップS6において、給排紙機構64によって排紙口66より排出される。

以上で説明したプリンタ装置1では、インクタンク5内に、インク2の0秒動的表面張力を30mN/m以上、40mN/m以下の範囲にさせる有機化合物や、この有機化合物として上述した化1~化5に示す多価アルコールを少なくとも含有するインク2が収容され、このインク2をノズル52aよりインク液滴iにして記録紙Pに吐出しており、インク2中に微小な泡が発生することが抑制されて吐出不良を防止できることから、画像にカスレや白抜けが生じることがなく、高品位な画質の画像や文字を印刷できる。また、このプリンタ装置1では、インク2の0秒動的表面張力を30mN/m以上、40mN/m以下の範囲にさせる有機化合物を少なくとも含有するインク2をインク液滴iにして記録紙Pに着弾させて印刷を行うことから、記録紙Pに対するインク液滴iの濡れ性が高められて光学濃度が高く、境界滲みや混色ベタ斑の発生が抑制された高品位な画像の印刷を行うことができる。

さらに、このプリンタ装置1では、インク2の0秒動的表面張力を所定の範囲にさせる 有機化合物と共に、インク2の静的表面張力を30mN/m以上、35mN/m以下の 範囲にさせる多価アルコールのアルキレンオキサイド付加物を含有させたインク2で 記録紙Pに印刷することにより、0秒動的表面張力を所定の範囲にさせる多価アルコ ールによって得られる高品位な画像の印刷よりさらに高められた品位の画像の印刷 を行うことができる。

また、このプリンタ装置1では、インク2の0秒動的表面張力を所定の範囲にさせる 有機化合物と共に、多価アルコールのアルキレンオキサイド付加物に代わってEOP OEOが含有されたインク2を用いた場合でも0秒動的表面張力を所定の範囲にさせ る多価アルコールによって得られる高品位な画像の印刷よりさらに高められた品位の 画像の印刷を行うことができる。

なお、上述したヘッドカートリッジ2では、カートリッジ本体12に対してインクタンク5

が着脱可能となっているが、このような構成に必ずしも限定されるものではない。すなわち、このヘッドカートリッジ2自体が消耗品として取り扱われており、プリンタ本体3に対して着脱可能なことから、このカートリッジ本体12にインクタンク5が一体に設けられた構成とすることも可能である。

以上は、本発明をプリンタ装置に適用した例について説明したが、本発明は、以上の例に限定されるものではなく、液体を吐出する他の液体吐出装置に広く適用することが可能である。例えばファクシミリやコピー機、液体中のDNAチップ用吐出装置(特開2002-253200号公報)、プリンタ配線基板の配線パターンを形成するための導電性粒子を含む液体を吐出したりする液体吐出装置等にも適用可能である。

以上では、1つの発熱抵抗体55がインク2を加熱して吐出するインク吐出ヘッド27を例に挙げて説明したが、このような構造に限定されることはなく、複数の圧力発生素子を備え、各圧力発生素子に異なるエネルギー又は異なるタイミングでエネルギーを供給することで吐出方向を制御することが可能な吐出手段を備える液体吐出装置にも適用可能である。

以上では、ライン型のプリンタ装置1を例に挙げて説明したが、このことに限定されることはなく、例えばインクヘッドが記録紙Pの走行方向と略直交する方向に移動するシリアル型の液体吐出装置にも適用可能である。

実施例

[0006] 以下、本発明を適用した記録液としてインクを実際に調製したサンプルについて説明する。

〈サンプル1〉

サンプル1では、先ず、イエロー系のインクを調製した。イエロー系のインクを調製 する際は、色材となるアシッドイエロー142を3重量部と、溶媒として水77重量部と、 その他の溶媒としてグリセリン10重量部と、ジエチレングリコール5重量部と、2-ピロリドン3重量部と、インクの0秒動的表面張力を所定の範囲、具体的にはインクの0秒動的表面張力を30mN/m以上、40mN/m以下以下の範囲にさせるための有機溶媒としてトリエチレングリコールモノn-ブチルエーテル(以下、TEBEと記す。)を3重量部とを混合し、ミリポア社製のポアサイズ0. 22 μ mのメインブランフィルター(商品名: Millex-0. 22)にて濾過し、イエロー系のインクを調製した。

次に、ブラック系のインクを調製した。ブラック系のインクを調製する際は、色材となるフードブラック2を4重量部と、溶媒として水76重量部と、その他の溶媒としてグリセリン10重量部と、ジエチレングリコール4重量部と、2-ピロリドン3重量部と、インクの0秒動的表面張力を所定の範囲にさせるための有機溶媒としてTEBEを3重量部とを混合し、ミリポア社製のポアサイズ0.22μmのメインブランフィルター(商品名:Mille x-0.22)にて濾過し、ブラック系のインクを調製した。

このようにして、サンプル1では、インクの0秒動的表面張力を所定の範囲にさせる ための有機溶媒としてTEBEを含有するイエロー系のインクとブラック系のインクとを 調製した。

〈サンプル2〉

サンプル2では、TEBEの代わりにインクの0秒動的表面張力を所定の範囲にさせるための有機化合物として上述した表4中Fの多価アルコールを1重量部加えたこと以外は、サンプル1と同様にしてイエロー系及びブラック系のインクをそれぞれ調製した。

〈サンプル3〉

サンプル2では、TEBEの代わりにインクの0秒動的表面張力を所定の範囲にさせるための有機化合物として上述した表4中Gの多価アルコールを5重量部加えたこと以外は、サンプル1と同様にしてイエロー系及びブラック系のインクをそれぞれ調製した。

〈サンプル4〉

サンプル4では、TEBEの代わりにインクの0秒動的表面張力を所定の範囲にさせるための有機化合物として上述した表4中Lの多価アルコールを1重量部加えたこと

以外は、サンプル1と同様にしてイエロー系及びブラック系のインクをそれぞれ調製した。

〈サンプル5〉

サンプル5では、TEBEの代わりにインクの0秒動的表面張力を所定の範囲にさせるための有機化合物として上述した表4中Oの多価アルコールを1重量部加えたこと以外は、サンプル1と同様にしてイエロー系及びブラック系のインクをそれぞれ調製した。

〈サンプル6〉

サンプル6では、TEBEの代わりにインクの0秒動的表面張力を所定の範囲にさせるための有機化合物として上述した表4中Tの多価アルコールを3重量部加えたこと以外は、サンプル1と同様にしてイエロー系及びブラック系のインクをそれぞれ調製した。

〈サンプル7〉

サンプル7では、TEBEの代わりにインクの0秒動的表面張力を所定の範囲にさせるための有機化合物として上述した表4中AEの多価アルコールを1重量部加えたこと以外は、サンプル1と同様にしてイエロー系及びブラック系のインクをそれぞれ調製した。

〈サンプル8〉

サンプル8では、TEBEの代わりにインクの0秒動的表面張力を所定の範囲にさせるための有機化合物として上述した表4中AJの多価アルコールを5重量部加えたこと以外は、サンプル1と同様にしてイエロー系及びブラック系のインクをそれぞれ調製した。

〈サンプル9〉

サンプル9では、インクの0秒動的表面張力を所定の範囲にさせるTEBEの他に、インクの静的表面張力を所定の範囲、具体的にはインクの静的表面張力を30mN/m以上、35mN/m以下の範囲にさせるための多価アルコールのアルキレンオキサイド付加物として上述した化13に示す有機化合物を0.5重量部加えたこと以外は、サンプル1と同様にしてイエロー系及びブラック系のインクをそれぞれ調製した。

〈サンプル10〉

サンプル10では、インクの0秒動的表面張力を所定の範囲にさせるためのTEBE の他に、インクの静的表面張力を所定の範囲にさせるための多価アルコールのアルキレンオキサイド付加物として上述した化18に示す有機化合物を0.7重量部加えたこと以外は、サンプル1と同様にしてイエロー系及びブラック系のインクをそれぞれ調製した。

〈サンプル11〉

サンプル11では、インクの0秒動的表面張力を所定の範囲にさせるための上述した表4中Fの多価アルコールの他に、インクの静的表面張力を所定の範囲にさせるための多価アルコールのアルキレンオキサイド付加物として上述した化9に示す有機化合物を0.5重量部加えたこと以外は、サンプル2と同様にしてイエロー系及びブラック系のインクをそれぞれ調製した。

〈サンプル12〉

サンプル12では、インクの0秒動的表面張力を所定の範囲にさせるための上述した表4中Fの多価アルコールの他に、インクの静的表面張力を所定の範囲にさせるための多価アルコールのアルキレンオキサイド付加物として上述した化17に示す有機化合物を0.5重量部加えたこと以外は、サンプル2と同様にしてイエロー系及びブラック系のインクをそれぞれ調製した。

〈サンプル13〉

サンプル13では、インクの0秒動的表面張力を所定の範囲にさせるための上述した表4中Gの多価アルコールの他に、インクの静的表面張力を所定の範囲にさせるための多価アルコールのアルキレンオキサイド付加物として上述した化13に示す有機化合物を0.7重量部加えたこと以外は、サンプル3と同様にしてイエロー系及びブラック系のインクをそれぞれ調製した。

〈サンプル14〉

サンプル14では、インクの0秒動的表面張力を所定の範囲にさせるための上述した表4中Gの多価アルコールの他に、インクの静的表面張力を所定の範囲にさせるための多価アルコールのアルキレンオキサイド付加物として上述した化17に示す有

機化合物を0.7重量部加えたこと以外は、サンプル3と同様にしてイエロー系及びブラック系のインクをそれぞれ調製した。

〈サンプル15〉

サンプル15では、インクの0秒動的表面張力を所定の範囲にさせるための上述した表4中Fの多価アルコールの他に、エチレンオキサイドユニット数(x+z)が3であり、プロピレンオキサイドユニット数(y)が8であり、エチレンオキサイド(EO)含有量が22.1重量%のエチレンオキサイド/プロピレンオキサイド共重合体(EOPOEO)を0.5重量部加えたこと以外は、サンプル2と同様にしてイエロー系及びブラック系のインクをそれぞれ調製した。

〈サンプル16〉

サンプル16では、エチレンオキサイドユニット数(x+z)が5であり、プロピレンオキサイドユニット数(y)が8であり、EOの含有量が32.2重量%のEOPOEOを0.5重量部加えたこと以外は、サンプル15と同様にしてイエロー系及びブラック系のインクをそれぞれ調製した。

〈サンプル17〉

サンプル17では、TEBEの代わりにインクの0秒動的表面張力を所定の範囲にさせるための上述した表4中Iの多価アルコールを3重量部と、この多価アルコールの他に、エチレンオキサイドユニット数(x+z)が4であり、プロピレンオキサイドユニット数(y)が12であり、EOの含有量が20.2重量%のEOPOEOを0.5重量部加えたこと以外は、サンプル1と同様にしてイエロー系及びブラック系のインクをそれぞれ調製した。

〈サンプル18〉

サンプル18では、エチレンオキサイドユニット数(x+z)が7であり、プロピレンオキサイドユニット数(y)が12であり、EOの含有量が30.7重量%のEOPOEOを0.5重量部加えたこと以外は、サンプル17と同様にしてイエロー系及びブラック系のインクをそれぞれ調製した。

〈サンプル19〉

サンプル19では、インクの0秒動的表面張力を所定の範囲にさせるための上述し

た表4中Lの多価アルコールを3重量部と、この多価アルコールの他に、エチレンオキサイドユニット数(x+z)が9であり、プロピレンオキサイドユニット数(y)が16であり、EOの含有量が29.9重量%のEOPOEOを0.5重量部加えたこと以外は、サンプル4と同様にしてイエロー系及びブラック系のインクをそれぞれ調製した。

〈サンプル20〉

サンプル20では、エチレンオキサイドユニット数(x+z)が12であり、プロピレンオキサイドユニット数(y)が21であり、EOの含有量が30.2重量%のEOPOEOを0.5重量部加えたこと以外は、サンプル19と同様にしてイエロー系及びブラック系のインクをそれぞれ調製した。

〈サンプル21〉

サンプル21では、インクの0秒動的表面張力を所定の範囲にさせる有機溶剤を含有させなかったこと以外は、サンプル1と同様にしてイエロー系及びブラック系のインクをそれぞれ調製した。

〈サンプル22〉

サンプル22では、TEBEの代わりにイソプロピルアルコールを5重量部加えたこと 以外は、サンプル1と同様にしてイエロー系及びブラック系のインクをそれぞれ調製し た。

〈サンプル23〉

サンプル23では、多価アルコールのアルキレンオキサイド付加物の代わりに日信 化学工業製のアセチレングリコール系非イオン界面活性剤(商品名、オルフィンE10 10)を1.5重量部加えたこと以外は、サンプル21と同様にしてイエロー系及びブラック系のインクをそれぞれ調製した。

〈サンプル24〉

サンプル24では、TEBEを2重量部にしたこと以外は、サンプル1と同様にしてイエロー系及びブラック系のインクをそれぞれ調製した。

〈サンプル25〉

サンプル25では、TEBEの他に、日信化学工業製のアセチレングリコール系非イオン界面活性剤(商品名、オルフィンE1010)を1.5 重量部加えたこと以外は、サン

プル24と同様にしてイエロー系及びブラック系のインクをそれぞれ調製した。 〈サンプル26〉

サンプル26では、TEBEの代わりにイソプロピルアルコールを5重量部加え、多価アルコールのアルキレンオキサイド付加物及びEOPOEOの代わりに日信化学工業製のアセチレングリコール系非イオン界面活性剤(商品名、オルフィンE1010)を1.5重量部加えたこと以外は、サンプル1と同様にしてイエロー系及びブラック系のインクをそれぞれ調製した。

そして、各サンプルのインクについてO秒動的表面張力及び静的表面張力を測定した。以下の表6にサンプル1ーサンプル26のO秒動的表面張力を低下させる有機化合物又は多価アルコール、多価アルコールのアルキレンオキサイド付加物、及びEOPOEOの配合をまとめ、表7に各サンプルのO秒動的表面張力及び静的表面張力を測定した測定結果を示す。

[表6]

	幅像の	0秒動的表面張力を低下させる	5個下	させる		め 佰アルコートの	911			B	EOPOEO	:
	価額行	合物又は多(ヨケイ		47	アルキレンオキサイド付加物	ナイド付	首物		•		
	種類	及化水素 基	0/1	合有量 (重量部)	種類	現代火素 基	0/1	含有量 (重量部)	z+x	λ	EO含有量 (質量%)	含有量 (重量
サング51	TEBE	1	1.33	3		添加七ず	1			烧	添加せず	
サンナル2	表4中F	6	1.25	-		添加仕ず	- Por			漿	添加せず	
サンプル3	聚4中G	22	2.5	5		るが出せず	alor.			贬	添加せず	
キンレジネ	数4中几	7	1.67	_		秘括仕ず	100			授	加せず	
サンレン5	数4中0	6	1.25	_		添加仕ず	Je.			烧	添加せず	
サンプバ6	表4中7	7	2	က		添加せず	₽¢.			授	添加せず	
サンプラフ	表4中AE	6	1.18	-		液岩中が	*			悞	加せず	
サンプバ8	泰4中AJ	9	2.5	2		添加セず	Je.			授	添加せず	
サンプル9	TEBE	ı	1.33	က	Æ13	6	-	0.5	ı	-	ı	-
サンプル10	TEBE	***	1.33	3	1E18	6	1.33	0.7		ı	l	ı
サンプラニ	数4中F	6	1.25	-	क्ष	φ	1.2	0.5]		1	I
サンプル12	表4中F	6	1.25	1	1617	හ	-	0.5	-	1		ì
サンプル13	表4中G	5	2.5	5	(L13	6	1	0.7	j	1	ı	1
サンプル14	表4中 G	5	2.5	5	1E17	6	1	0.7	1	ı	I	ı
サンプル15	表4中F	6	1.25	-	-	ı	1	ı	3	8	22.1	0.5
サンプル16	表4中F	6	1.25	-	_	1	ı	1	5	8	32.2	0.5
サンプルロ	1中7番	7	1.67	3	ı	ı	ı	ı	4	12	20.2	0.5
サンプバ18	表4中1	7	1.67	8		1	1	3	7	- 12	20'0	0.5
サンプル19	数4中厂	7	1.87	က	ļ	1		1	6	16	29.9	0.5
サンプル20	表4中L	7	1.67	3	ı	1	1	1	12	21	30.2	0.5
サンプル21		添加せず						幾	添加せず			
サンプル22	イソプロピ	代替えとして イソプロピルアルコールを5重量部	て **51	海				授	添加セず			
サンプル23		液加柱ず				代替えとし	77	チレンダ 1.5	グリコール※ .5重量部	ギイオン。	代替えとして アセチレングリコール系非イオン界面活性剤15 重量 部	
サンプル24	TEBE		1.33	2				矮	添加せず			
サンプル25	TEBE	ı	1.33	2		代替えとして アセチレングリコール系 1.5重量部	てアセ	チレング! 1.5	グリコール系 1.5重量部	非イオン	非イオン界面活性剤	
サンプル26	イソプロピ	代替えとして イソプロピルアルコールを5重量部	て 12を5日	10000000000000000000000000000000000000		代替えどし	. ር ን ቲ	チレング 1.5	77 <u>77—77条</u> 5重量部	非イオンシ	代替えとして アセチレンクリコール糸非イオン界面活性剤 1.5重量部	

	0秒動的	表面張	静的表面張力		
		b	(mN		
!	イエロー	ブラック	イエロー	ブラック	
	インク	インク	インク	インク	
サンプル1	39.1	38.5	38.8	38.5	
サンブル2	38.5	38.2	38.2	38	
サンプル3	40	39.8	39.9	39.8	
サンプル4	36.1	36	35.8	36	
サンプル5	32.1	31.5	32	31.5	
サンブル6	39.1	39.3	39.1	39	
サンプル7	38.8	38.8	38.8	38.7	
サンプル8	37.4	37.5	37.4	37.3	
サンプル9	39.1	38.5	33.6	33.3	
サンプル10	39.1	38.5	34.6	34.7	
サンプル11	38.5	38.2	34.4	34	
サンプル12	38.5	38.2	33	32.6	
サンプル13	40	39.8	34.1	33.5	
サンプル14	40	39.8	33.1	32.7	
サンプル15	38.5	38.2	37.2	37	
サンプル16	38.5	38.2	37.7	37.4	
サンプル17	38.8	39.1	36.5	36.6	
サンプル18	38.8	39.1	37.1	36.9	
サンプル19		35.4	35.1	34.9	
サンプル20	35.5	35.4	35.1	35.2	
サンプル21	61.8	61.8	61.8	61.8	
サンプル22	27.7	27.4	27.7	27.3	
サンブル23		61.8	34.2	33.5	
サンプル24	44.5	44.6	44.5	44.6	
サンプル25	44.5	44.6	34.5	34	
サンプル26	27.7	27.4	27	26.8	

なお、ここでは、協和界面科学社製の表面張力計(CBVP-Z)を用い、25℃雰囲気での0秒動的表面張力及び静的表面張力を測定した。ここで、サンプル1~8、21、22及び24ではインク成分より色材を除き、また、サンプル9~14、23及び25ではインク成分より色材と界面活性剤を除いて静的表面張力を測定し、その測定結果を0秒動的表面張力とした。表6中のI/O値は、表1及び表2に基づいて算出した。但し、上述したように、C連鎖の場合にも表1及び表2中のIso分枝およびTert分枝を適用した。

次に、各サンプルのイエロー系及びブラック系のインクについて、吐出安定性、間 欠吐出安定性、境界滲み、混色ベタ斑、光学濃度の評価を行った。

なお、吐出安定性は、次のようにして評価した。各サンプルのインクをインクタンクに それぞれ充填してヘッドカートリッジに装着したライン型のインクジェットプリンタ装置 にて各インクを吐出した後に、一旦、インクジェットプリンタ装置からヘッドカートリッジを取り外し、このヘッドカートリッジを温度10℃、湿度50%の雰囲気中で5日間、さらに温度40℃、湿度50%の雰囲気中に5日間保存し、温度20℃、湿度50%の環境下に曝した。そして、再び、ヘッドカートリッジをライン型のインクジェットプリンタ装置に取り付けて三菱製紙社製のコピー用紙(商品名:三菱PPC用紙)に各色について所定の領域の塗り費した印刷、いわゆるベタ印刷を行った直後に、ヘッドカートリッジからインクタンクを取り外してインク吐出ヘッド内に微少な泡が発生していないかどうかを目視により観察した。また、印刷した画像も目視により観察した。

間欠吐出安定性は、次のようにして評価した。各サンプルのインクをインクタンクにそれぞれ充填してヘッドカートリッジに装着したライン型のインクジェットプリンタ装置にて各インクを吐出した後に、一旦、インクジェットプリンタ装置からヘッドカートリッジを取り外し、このヘッドカートリッジの吐出面を外部に露出した状態で温度30℃、湿度10%の雰囲気中で10分間静置した。そして、再び、ヘッドカートリッジをライン型のインクジェットプリンタ装置に取り付けて三菱製紙社製のコピー用紙(商品名:三菱PPC用紙)に各色それぞれのベタ印刷を行い、印刷した画像を目視により観察した。境界滲みは、次のようにして評価した。各サンプルのインクをインクタンクにそれぞれ充填してヘッドカートリッジに装着したライン型のインクジェットプリンタ装置にて三菱製紙社製のコピー用紙(商品名:三菱PPC用紙)に各色を隣接させたベタ印刷を行い、印刷した画像における各色の境界部の滲み具合を目視により観察した。

混色ベタ斑は、次のようにして評価した。各サンプルのインクをインクタンクにそれぞれ充填してヘッドカートリッジに装着したライン型のインクジェットプリンタ装置にて三菱製紙社製のコピー用紙(商品名:三菱PPC用紙)に各色を重ね合わせるようにして80%濃度のベタ印刷を行い、印刷した画像における色濃度の均一性、すなわち色むらの有無を目視により観察した。

光学濃度は、次のようにして測定した。各サンプルのインクをインクタンクにそれぞれ充填してヘッドカートリッジに装着、ライン型のインクジェットプリンタ装置にて三菱製紙製のコピー用紙(商品名:三菱PPC用紙)に各色それぞれのベタ印刷を行い、得られた画像についてマクベス社製の光学濃度計(TR924)により反射光学濃度を

測定した。

以下、表8に以上のようにして評価した各サンプルの吐出安定性、間欠吐出安定性、境界滲み、混色ベタ斑、光学濃度の評価結果を示す。

[表8]

•	光学派	腹度	吐出安定性	間欠吐出 安定性	境界滲み	混色ベタ斑
サンプル 1	イエロー	1.15	0	0	0	0
	ブラック	1.21				
サンプル 2	イエロー	1.14	6	0	0	0
	ブラック	1.22				
サンブル 3	イエロー	1.14	0	0	lo	0
	ブラック	1.21		ļ. <u> </u>		
サンブル 4	イエロー ブラック	1.14	©	l 0	Ιo	0
	イエロー	1.25				
サンプル 5	ブラック	1.24	Ø	0	6	0
	イエロー	1.11		 		
サンプル 6	ブラック	1.24	●	0	0	0
*** - *	イエロー	1.15	 	 		
サンプル 7	ブラック	1.23	●	0	0	0
44200	イエロー	1.14				
サンプル 8	ブラック	1.24	©	0	0	0
サンプル 9	イエロー	1.15		<u> </u>		
シンフルも	ブラック	1.26	0	0	0	©
サンプル 10	イエロー	1.16	_			
	ブラック	1.25		0	0	0
サンプル 11	イエロー	1.14	6	0	. @	
	ブラック	1.24				9
サンプル 12	イエロー	1.17		0	0	0
 .	ブラック	1.25	ļ			
サンプル 13	イエロー	1.15	- 0	0	⊚	0
	ブラック	1.24	<u> </u>			
サンプル 14	イエロー	1.15	-	0	0	6
	ブラック	1.24				
サンプル 15	ブラック	1.18	-	0	0	l ⊚
	イエロー	1.17	 	-	 	
サンブル 16	ブラック	1.25	∤ ⊚	0	•	0
***	120-	1.17		+		
サンブル 17	ブラック	1.24	9	0	0	•
	イエロー	1.15	 		 	
サンプル 18 -	ブラック	1.23	{	0	©	© .
サンプル 19	イエロー	1.13		_	<u> </u>	
92710 18	ブラック	1.22	┪╺ᢀ	0	◎	©
サンプル 20	イエロー	1.13				<u> </u>
	ブラック	1.24		0	0	0
サンブル 21	イエロー	1.07				
	ブラック	1.03	×	×	×	×
サンプル 22	イエロー	1.01	0	×		
	ブラック	1		^_	Δ	Δ
サンブル 23	イエロー	1.09	×	×	×	
	ブラック	1.18		<u> </u>	<u></u>	×
サンプル 24	イエロー	1.11	Δ	×	Δ	1
	ブラック	1.19				Δ
サンプル 25	1 <u>1</u>	1.13	Δ	Δ	Δ	
	ブラック	1.18	<u> </u>	<u> </u>		Δ
サンプル 26	イエロー	1.01	Δ	Δ	Δ	Δ
	ブラック	1.04			<u> </u>	

表8における吐出安定性では、画像全体に白抜けがなく、且つインク吐出ヘッド内のインクに微少な泡の発生がないものを©印で示し、画質には問題がないが画像に 僅かな白抜けがあり、且つインク吐出ヘッド内のインクに微少な泡が極少量発生した ものを〇印で示し、画質を劣化させる白抜けがあり、且つインク吐出へッド内のインクに微少な泡が極少量発生したものを△印で示し、画質を劣化させる白抜けがあり、且つインク吐出へッド内のインクに微少な泡が多量発生したものを×印で示している。表8における間欠吐出安定性では、画像が鮮明で、掠れがないものを〇印で示し、画像に少しの掠れがあるものを△印で示し、画像全体に掠れがあり、画質が著しく劣化しているものを×印で示している。表8における境界滲みでは、境界部に各色のにじみが全くないものを◎印で示し、画質には問題がないが境界部に各色のにじみが少量あるものを〇印で示し、境界部に画質を劣化させる各色のにじみがあるものを△印で示し、境界部全体に各色のにじみがあり、画質が著しく劣化しているものを×印で示している。表8における混色ベタ斑では、青色にベタ塗りされた画像に色ムラが全くないものを◎印で示し、画質には問題がないが画像に僅かな色ムラがあるものを〇印で示し、画質を劣化させる色ムラがあるものを△印で示し、画質を劣化させる色ムラがあるものを△印で示し、画質を劣化させる色ムラがあるものを△印で示し、画像全体に色ムラがあり、画質が著しく劣化しているものを×印で示している。

表8に示す評価結果から、表7において0秒動的表面張力が30mN/m以上、40mN/m以下の範囲にされているサンプル1〜サンプル20では、0秒動的表面張力が30mN/m以上、40mN/m以下の範囲から外れるサンプル21〜サンプル26に比べ、吐出安定性、間欠吐出安定性、境界滲み、混色ベタ斑、光学濃度が優れていることがわかる。

サンプル21ーサンプル23、26では、0秒動的表面張力を低くさせるための有機化合物が含有されてないことから、液室内や流路等に対する濡れ性を高めることが困難となり、インク内に微少な泡が発生して不吐出や吐出曲がり等といった吐出不良が生じ、白抜けや掠れが発生して画質が劣化してしまう。また、サンプル21ーサンプル23、26では、0秒動的表面張力を低くさせるための有機化合物が含有されてないことから、コピー用紙に対する濡れ性も高めることが困難となり、境界滲みや混色ベタ斑が発生して高品位な画像を得ることができなくなる。

サンプル24及びサンプル25では、O秒動的表面張力を低くさせることが可能なTB BEが含有されているが、含有量が少な過ぎてO秒動的表面張力を十分に低くすることができず、サンプル21ーサンプル23、26と同様に、吐出不良、境界滲み、混色べ タ斑が発生して高品位な画像を得ることができなくなる。

これらのサンプルに対し、サンプル1〜サンプル20では、0秒動的表面張力を低くさせるための有機化合物としてTEBEや多価アルコールが適量含有されており、表7に示すように0秒動的表面張力が30mN/m以上、40mN/m以下の範囲にされていることから、液室内や流路等に対する濡れ性が高められると共に、インク内に微少な泡が発生することが抑制される。これにより、サンプル1〜サンプル20では、微少な泡によるノズルの目詰まりが防止されて吐出不良を防ぐことができ、白抜けや掠れのない高品位な画像を印刷できる。

また、サンプル1ーサンプル20では、0秒動的表面張力を低くさせるための有機化合物としてTEBEや多価アルコールが含有されて0秒動的表面張力が適切な範囲にされていることから、コピー用紙に対する濡れ性が高められ、境界滲みや混色ベタ斑の発生が抑制された高品位な画像を印刷できる。

特に、サンプル2ーサンプル8は、0秒動的表面張力を低くさせるための有機化合物として炭素数が9以下の多価アルコールが含有されていることから、液室内や流路等に対する濡れ性がさらに高められ、吐出安定性が一層優れるものとなる。

また、サンプル9〜サンプル14は、0秒動的表面張力を低くさせるための有機化合物としてTEBEや多価アルコールと共に、インクの静的表面張力を30mN/m以上、35mN/m以下の範囲にさせる多価アルコールのアルキレンオキサイド付加物も含有されていることから、インク内に微少な泡が発生することをさらに抑制することができる。したがって、サンプル9〜サンプル14では、境界滲みや混色ベタ斑の発生がさらに抑制された高品位な画像を印刷できる。

また、表8に示す評価結果から、表7において0秒動的表面張力が30mN/m以上、40mN/m以下の範囲にされ、EOPOEOが含有されているサンプル15ーサンプル20では、0秒動的表面張力を低くさせるための有機化合物としてTEBEや多価アルコールのみを含有するサンプル1ーサンプル8に比べ、吐出安定性、間欠吐出安定性、境界滲み、混色ベタ斑が更に優れていることがわかる。

サンプル15〜サンプル20では、0秒動的表面張力を低くさせるための有機化合物 として多価アルコールと共に、界面活性剤として多価アルコールのアルキレンオキサ イド付加物に代わってEOPOEOも含有されていることから、インク内に微少な泡が発生することをさらに抑制することができる。したがって、サンプル15〜サンプル20では、境界滲みや混色ベタ斑の発生がさらに抑制された高品位な画像を印刷できる。

以上のことから、インクを調製する際に、インクの0秒動的表面張力を30mN/m以上、40mN/m以下の範囲にさせる有機化合物や多価アルコールを含有させることは、吐出安定性、間欠吐出安定性に優れ、境界滲み、混色ベタ斑が抑制された高品位な印刷を可能にするインクを調製する上で大変重要であることがわかる。

また、インクを調製する際に、インクの0秒動的表面張力を30mN/m以上、40mN/m以下の範囲にさせる有機化合物として炭素数が9以下の多価アルコールを含有させることは、吐出安定性にさらに優れるインクを調製する上で大変重要であることがわかる。

さらに、インクを調製する際に、インクの0秒動的表面張力を30mN/m以上、40m N/m以下の範囲にさせる有機化合物や多価アルコールと共に、インクの静的表面 張力を30mN/m以上、35mN/m以下の範囲にさせる多価アルコールのアルキレンオキサイド付加物を含有させることは、境界滲み、混色ベタ斑がさらに抑制され、さらに品位が高められた印刷を可能にするインクを調製する上で大変重要であることが わかる。

また、インクを調製する際に、インクのO秒動的表面張力を30mN/m以上、40mN/m以下の範囲にさせる有機化合物や多価アルコールと共に、界面活性剤として多価アルコールのアルキレンオキサイド付加物に代わってEOPOEOを含有させることは、同様に、境界滲み、混色ベタ斑がさらに抑制され、さらに品位が高められた印刷を可能にするインクを調製する上で大変重要であることがわかる。

産業上の利用可能性

[0007] 本発明は、微小泡立ちが少なく、吐出安定性に優れ、対象物となる普通紙に文字 や画像などを多色印刷しても光学濃度が高く、境界滲みや混色ベタ斑の無いため、 高品位な印刷に用いられる。

請求の範囲

[1] 1. 対象物に記録を行うために液滴の状態で当該対象物に付着される記録液において、

色素と、上記色素を分散させる溶媒とを有し、O秒動的表面張力が30mN/m以上、40mN/m以下の範囲にあることを特徴とする記録液。

- [2] 2. 上記色素及び上記溶媒の他に、有機性値(OV)に対する無機性値(IV)の比率(I/O)が1. 18以上、2. 5以下の範囲にあり、且つ炭素数が9以下の炭素水素基を有する多価アルコールを含有していることを特徴とする請求の範囲第1項記載の記録液。
- [3] 3. 上記多価アルコールは、分岐した炭化水素基を有していることを特徴とする請求の範囲第2項記載の記録液。
- [4] 4. 上記多価アルコールとして化1〜化5に示す有機化合物のうちの何れか一種又は 複数種を含有していることを特徴とする請求の範囲第2項記載の記録液。 [化1]

(但し、式中 R_1 及び R_2 は炭化水素基を示し、 $2 \le R_1 + R_2 \le 4$ 、 $R_1 \ge 0$ 、 $R_2 \ge 0$ であり、 $R_1 = 0$ の場合、 R_1 、 R_2 は水素元素を示す。)

[化2]

(但し、式中 R_3 及び R_4 は炭化水素基を示し、 $2 \le R_3 + R_4 \le 6$ 、 $R_3 \ge 0$ 、 $R_4 \ge 0$ であり、 R_3 =0, R_4 =0 の場合、 R_3 , R_4 は水素元素を示す。)

[化3]

(但し、式中 R_5 及び R_6 は炭化水素基を示し、 $1 \le R_5 + R_6 \le 4$ 、 $R_5 \ge 0$ 、 $R_6 \ge 0$ であり、 $R_6 = 0$ の場合、 R_5 、 は水素元素を示す。)

[化4]

(但し、式中 R_7 及び R_8 は炭化水素基を示し、 $2 \le R_7 + R_8 \le 6$ である。)

[化5]

(但し、式中 R_9 及び R_{10} は炭化水素基を示し、 $2 \le R_9 + R_{10} \le 4$ である。)

- [5] 5. 静的表面張力が30mN/m以上、35mN/m以下の範囲にあることを特徴とする 請求の範囲第1項記載の記録液。
- [6] 6. 界面活性剤として、炭素数が9以下の炭化水素基を有し、且つ有機性値(OV)に対する無機性値(IV)の比率(I/O)が1以上、1. 33以下の範囲にある多価アルコールのアルキレンオキサイド付加物を含有していることを特徴とする請求の範囲第1項記載の記録液。
- [7] 7. 上記多価アルコールのアルキレンオキサイド付加物は、分岐した炭化水素基を有していることを特徴とする請求の範囲第6項記載の記録液。
- [8] 8. 上記多価アルコールのアルキレンオキサイド付加物として化6〜化8に示す有機 化合物のうちの何れか一種又は複数種を含有していることを特徴とする請求の範囲 第6項記載の記録液。

[化6]

(但し、式中 EO はエチレンオキサイド基を示し、 $1 \le a + b \le 6$ である。)

[化7]

(但し、式中 EO はエチレンオキサイド基を示し、 $1 \le c + d \le 6$ である。)

[化8]

(但し、式中 EO はエチレンオキサイド基を示し、 $1 \le e + f \le 5$ である。

- [9] 9. 静的表面張力が30mN/m以上、35mN/m以下の範囲にあることを特徴とする 請求の範囲第6項記載の記録液。
- [10] 10. 界面活性剤として、化9に示す少なくとも1種類以上のエチレンオキサイド/プロピレンオキサイド共重合体を含有していることを特徴とする請求の範囲第2項記載の記録液。

[化9]

$$HO(CH_2CH_2O)_x(CHCH_2O)_y(CH_2CH_2O)_zH$$
 CH_3

(但し、x、yおよびzは、整数であり、3≦x+z≦12、8≦y≦21であり、かつ、エチレンオキサイドユニットの分子中における含有量が20重量%~40重量%である。)

[11] 11. 液体容器に収容された記録液を液滴の状態で吐出し、対象物に付着させること

で記録を行う液体吐出装置に備わる液体吐出ヘッドに着脱可能に装着され、上記液体吐出ヘッドに対し、上記記録液の供給源となる液体カートリッジにおいて、

上記記録液は、色素と、上記色素を分散させる溶媒とを有し、0秒動的表面張力が30mN/m以上、40mN/m以下の範囲にあることを特徴とする液体カートリッジ。

- [12] 12. 上記記録液は、上記色素及び上記溶媒の他に、有機性値(OV)に対する無機性値(IV)の比率(I/O)が1. 18以上、2. 5以下の範囲にあり、且つ炭素数が9以下の炭素水素基を有する多価アルコールを含有していることを特徴とする請求の範囲第11項記載の液体カートリッジ。
- [13] 13. 上記多価アルコールは、分岐した炭化水素基を有していることを特徴とする請求 の範囲第12項記載の液体カートリッジ。
- [14] 14. 上記記録液は、上記多価アルコールとして化10〜化14に示す有機化合物のうちの何れか一種又は複数種を含有していることを特徴とする請求の範囲第12項記載の液体カートリッジ。

[化10]

(但し、式中 R_1 及び R_2 は炭化水素基を示し、 $2 \le R_1 + R_2 \le 4$ 、 $R_1 \ge 0$ 、 $R_2 \ge 0$ であり、 $R_1 = 0, R_2 = 0$ の場合、 R_1, R_2 、 は水素元素を示す。)

[化11]

(但し、式中 R_3 及び R_4 は炭化水素基を示し、 $2 \le R_3 + R_4 \le 6$ 、 $R_3 \ge 0$ 、 $R_4 \ge 0$ であり、 $R_3 = 0$ の場合、 R_3 , R_4 は水素元素を示す。)

[化12]

(但し、式中 R_5 及び R_6 は炭化水素基を示し、 $1 \le R_5 + R_6 \le 4$ 、 $R_5 \ge 0$ 、 $R_6 \ge 0$ であり、 $R_5 = 0$, $R_6 = 0$ の場合、 R_5, R_6 は水素元素を示す。)

[化13]

(但し、式中 R_7 及び R_8 は炭化水素基を示し、 $2 \le R_7 + R_8 \le 6$ である。)

[化14]

(但し、式中 R_9 及び R_{10} は炭化水素基を示し、 $2 \le R_9 + R_{10} \le 4$ である。)

- [15] 15. 上記記録液は、静的表面張力が30mN/m以上、35mN/m以下の範囲にあることを特徴とする請求の範囲第11項記載の液体カートリッジ。
- [16] 16. 上記記録液は、界面活性剤として、炭素数が9以下の炭化水素基を有し、且つ 有機性値(OV)に対する無機性値(IV)の比率(I/O)が1以上、1. 33以下の範囲 にある多価アルコールのアルキレンオキサイド付加物を含有していることを特徴とす る請求の範囲第11項記載の液体カートリッジ。
- [17] 17. 上記多価アルコールのアルキレンオキサイド付加物は、分岐した炭化水素基を有していることを特徴とする請求の範囲第16項記載の液体カートリッジ。
- [18] 18. 上記記録液は、上記多価アルコールのアルキレンオキサイド付加物として化15 〜化17に示す有機化合物のうちの何れか一種又は複数種を含有していることを特 徴とする請求の範囲第16項記載の液体カートリッジ。 [化15]

(但し、式中 EO はエチレンオキサイド基を示し、 $1 \le a + b \le 6$ である。)

[化16]

(但し、式中 EO はエチレンオキサイド基を示し、 $1 \le c + d \le 6$ である。)

[化17]

(但し、式中 EO はエチレンオキサイド基を示し、 $1 \le e + f \le 5$ である。

- [19] 19. 上記記録液は、静的表面張力が30mN/m以上、35mN/m以下の範囲にあることを特徴とする請求の範囲第16項記載の液体カートリッジ。
- [20] 20. 上記記録液は、界面活性剤として化18に示す少なくとも1種類以上のエチレン オキサイド/プロピレンオキサイド共重合体を含有していることを特徴とする請求の範 囲第12項記載の液体カートリッジ。 [化18]

$$\begin{array}{c} \mathsf{HO}(\mathsf{CH_2CH_2O)_x}(\mathsf{CHCH_2O)_y}(\mathsf{CH_2CH_2O)_z}\mathsf{H} \\ | \\ \mathsf{CH_3} \end{array}$$

(但し、x、yおよびzは、整数であり、3≤x+z≤12、8≤y≤21であり、かつ、エチレンオキサイドユニットの分子中における含有量が20重量%~40重量%である。)

[21] 21. 記録液を液滴の状態で吐出させる吐出口を有し、上記吐出口と対向する位置ま

で搬送された対象物に上記吐出口より上記液滴を吐出する液体吐出ヘッドと、上記液体吐出ヘッドに接続され、上記液体吐出ヘッドに対する上記記録液の供給源となる液体カートリッジとを備える液体吐出装置において、

上記記録液は、色素と、上記色素を分散させる溶媒とを有し、0秒動的表面張力が30mN/m以上、40mN/m以下の範囲にある液体吐出装置。

- [22] 22. 上記記録液は、上記色素及び上記溶媒の他に、有機性値(OV)に対する無機性値(IV)の比率(I/O)が1. 18以上、2. 5以下の範囲にあり、且つ炭素数が9以下の炭素水素基を有する多価アルコールを含有していることを特徴とする請求の範囲第21項記載の液体吐出装置。
- [23] 23. 上記多価アルコールは、分岐した炭化水素基を有していることを特徴とする請求 の範囲第22項記載の液体吐出装置。
- [24] 24. 上記記録液は、上記多価アルコールとして化19〜化23に示す有機化合物のうちの何れか一種又は複数種を含有していることを特徴とする請求の範囲第22項記載の液体吐出装置。

[化19]

(但し、式中 R_1 及び R_2 は炭化水素基を示し、 $2 \le R_1 + R_2 \le 4$ 、 $R_1 \ge 0$ 、 $R_2 \ge 0$ であり、 $R_1 = 0, R_2 = 0$ の場合、 R_1, R_2 は水素元素を示す。)

[化20]

(但し、式中 R_3 及び R_4 は炭化水素基を示し、 $2 \le R_3 + R_4 \le 6$ 、 $R_3 \ge 0$ 、 $R_4 \ge 0$ であり、 R_3 =0, R_4 =0 の場合、 R_3 , R_4 は水素元素を示す。)

[化21]

(但し、式中 R_5 及び R_6 は炭化水素基を示し、 $1 \le R_5 + R_6 \le 4$ 、 $R_5 \ge 0$ 、 $R_6 \ge 0$ であり、 $R_5 = 0$ の場合、 $R_5 = 0$ の場合、 $R_6 = 0$ の $R_6 = 0$ の場合、 $R_6 = 0$ の場合、 $R_6 = 0$ の場合、 $R_6 = 0$ の $R_6 = 0$ の

[化22]

(但し、式中 R_7 及び R_8 は炭化水素基を示し、 $2 \le R_7 + R_8 \le 6$ である。)

[化23]

(但し、式中 R_9 及び R_{10} は炭化水素基を示し、 $2 \le R_9 + R_{10} \le 4$ である。)

- [25] 25. 上記記録液は、静的表面張力が30mN/m以上、35mN/m以下の範囲にあることを特徴とする請求の範囲第21項記載の液体吐出装置。
- [26] 26. 上記記録液は、界面活性剤として炭素数が9以下の炭化水素基を有し、且つ有機性値(OV)に対する無機性値(IV)の比率(I/O)が1以上、1. 33以下の範囲にある多価アルコールのアルキレンオキサイド付加物を含有していることを特徴とする請求の範囲第21項記載の液体吐出装置。
- [27] 27. 上記多価アルコールのアルキレンオキサイド付加物は、分岐した炭化水素基を 有していることを特徴とする請求の範囲第26項記載の液体吐出装置。
- [28] 28. 上記記録液は、上記多価アルコールのアルキレンオキサイド付加物として化24 〜化26に示す有機化合物のうちの何れか一種又は複数種を含有していることを特 徴とする請求の範囲第26記載の液体吐出装置。 [化24]

(但し、式中 EO はエチレンオキサイド基を示し、 $1 \le a + b \le 6$ である。)

[化25]

(但し、式中 EO はエチレンオキサイド基を示し、 $1 \le c + d \le 6$ である。)

[化26]

(但し、式中 EO はエチレンオキサイド基を示し、 $1 \le e + f \le 5$ である。

- [29] 29. 上記記録液は、静的表面張力が30mN/m以上、35mN/m以下の範囲にあることを特徴とする請求の範囲第26項記載の液体吐出装置。
- [30] 30. 上記液体吐出ヘッドは、上記吐出口が略ライン状に並んで設けられていることを 特徴とする請求の範囲第21項記載の液体吐出装置。
- [31] 31. 上記記録液は、界面活性剤として化27に示す少なくとも1種類以上のエチレン オキサイド/プロピレンオキサイド共重合体を含有していることを特徴とする請求の範 囲第22項記載の液体吐出装置。 [427]

$$HO(CH_2CH_2O)_x(CHCH_2O)_y(CH_2CH_2O)_zH$$
 $|$
 CH_3

(但し、x、yおよびzは、整数であり、3≦x+z≦12、8≦y≦21であり、かつ、エチレンオキサイドユニットの分子中における含有量が20重量%~40重量%である。)

[32] 32. 記録液を液滴の状態で吐出させる吐出口を有し、上記吐出口と対向する位置まで搬送された対象物に上記吐出口より上記液滴を吐出する液体吐出ヘッドと、上記液体吐出ヘッドに接続され、上記液体吐出ヘッドに対する上記記録液の供給源となる液体カートリッジとを備える液体吐出装置による液体吐出方法において、

色素と、上記色素を分散させる溶媒とを有し、0秒動的表面張力が30mN/m以上、40mN/m以下の範囲にある上記記録液を、上記液体吐出ヘッドの吐出口より吐出させることを特徴とする液体吐出方法。

- [33] 33. 上記色素及び上記溶媒の他に、有機性値(OV)に対する無機性値(IV)の比率 (I/O)が1. 18以上、2. 5以下の範囲にあり、且つ炭素数が9以下の炭素水素基を 有する多価アルコールを含有する上記記録液を、上記吐出口より吐出させることを特 徴とする請求の範囲第32項記載の液体吐出方法。
- [34] 34. 上記多価アルコールに、分岐した炭化水素基を含有させることを特徴とする請求の範囲第33項記載の液体吐出方法。
- [35] 35. 上記記録液に含有される上記多価アルコールとして化28〜化32に示す有機化 合物のうちの何れか一種又は複数種を用いることを特徴とする請求の範囲第33項記 載の液体吐出方法。

[化28]

(但し、式中 R_1 及び R_2 は炭化水素基を示し、 $2 \le R_1 + R_2 \le 4$ 、 $R_1 \ge 0$ 、 $R_2 \ge 0$ であり、 $R_1 = 0$ 、 $R_2 = 0$ の場合、 R_1 、 R_2 は水素元素を示す。)

[化29]

(但し、式中 R_3 及び R_4 は炭化水素基を示し、 $2 \le R_3 + R_4 \le 6$ 、 $R_3 \ge 0$ 、 $R_4 \ge 0$ であり、 $R_3 = 0$, $R_4 = 0$ の場合、 R_3 , R_4 は水素元素を示す。)

[化30]

(但し、式中 R_5 及び R_6 は炭化水素基を示し、 $1 \le R_5 + R_6 \le 4$ 、 $R_5 \ge 0$ 、 $R_6 \ge 0$ であり、 $R_6 = 0$ の場合、 $R_5 = 0$, $R_6 = 0$ の場合、 $R_5 = 0$ の $R_6 = 0$ の場合、 $R_5 = 0$ の $R_6 = 0$ の R_6

[化31]

(但し、式中 R_7 及び R_8 は炭化水素基を示し、 $2 \le R_7 + R_8 \le 6$ である。)

[化32]

(但し、式中 R_9 及び R_{10} は炭化水素基を示し、 $2 \le R_9 + R_{10} \le 4$ である。)

- [36] 36. 静的表面張力が30mN/m以上、35mN/m以下の範囲にある上記記録液を 、上記吐出口より吐出させることを特徴とする請求の範囲第32項記載の液体吐出方 法。
- [37] 37. 界面活性剤として、炭素数が9以下の炭化水素基を有し、且つ有機性値(OV)に対する無機性値(IV)の比率(I/O)が1以上、1. 33以下の範囲にある多価アルコールのアルキレンオキサイド付加物を含有する上記記録液を上記吐出口より吐出させることを特徴とする請求の範囲第32項記載の液体吐出方法。
- [38] 38. 上記多価アルコールのアルキレンオキサイド付加物に、分岐した炭化水素基を含有させることを特徴とする請求の範囲第37項記載の液体吐出方法。
- [39] 39. 上記記録液に含有される上記多価アルコールのアルキレンオキサイド付加物として化33〜化35に示す有機化合物のうちの何れか一種又は複数種を用いることを特徴とする請求の範囲第37項記載の液体吐出方法。
 [423]

(但し、式中 EO はエチレンオキサイド基を示し、 $1 \le a + b \le 6$ である。)

[化34]

(但し、式中 EO はエチレンオキサイド基を示し、 $1 \le c + d \le 6$ である。)

[化35]

(但し、式中 EO はエチレンオキサイド基を示し、 $1 \le e + f \le 5$ である。

- [40] 40. 静的表面張力が30mN/m以上、35mN/m以下の範囲にある上記記録液を 、上記吐出口より吐出させることを特徴とする請求の範囲第37項記載の液体吐出方 法。
- [41] 41. 界面活性剤として、化36に示す少なくとも1種類以上のエチレンオキサイド/プロピレンオキサイド共重合体を含有する上記記録液を上記吐出口より吐出させることを特徴とする請求の範囲第33項記載の液体吐出方法。
 [化36]

(但し、x、yおよびzは、整数であり、3≦x+z≦12、8≦y≦21であり、 かつ、エチレンオキサイドユニットの分子中における含有量が 20重量%~40重量%である。) [図1]

FIG.1

[図2]

FIG.2

[図3]

[図4]

FIG.4

[図5]

[図6]

FIG.6

[図7]

[図8]

FIG.8

WO 2005/054382 PCT/JP2004/018316

[図9]

FIG.9

[図10]

FIG.10

[図11]

[図12]

[図13]

FIG.13

[図14]

FIG. 14

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2004/018316

		PCT/JPZ	004/018316			
A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ C09D11/00, B41J2/01, B41M5/00						
According to International Patent Classification (IPC) or to both national classification and IPC						
B. FIELDS SEARCHED						
Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ C09D11/00, B41J2/01, B41M5/00						
Jitsuyo Kokai J	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo Shinan Koho 1922-1996 Toroku Jitsuyo Shinan Koho 1994-2004 Kokai Jitsuyo Shinan Koho 1971-2004 Jitsuyo Shinan Toroku Koho 1996-2004					
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)						
	NTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.			
х	JP 2000-327974 A (Seiko Epso 28 November, 2000 (28.11.00), Claims; Par Nos. [0037] to [0 [0116] & EP 978547 A1	- '	1-41			
X	JP 2000-345082 A (Seiko Epson Corp.), 12 December, 2000 (12.12.00), Claims; Par Nos. [0020] to [0021], [0025], [0038] to [0046] (Family: none)		1-41			
P,X P,A	JP 2004-197037 A (Seiko Epso 15 July, 2004 (15.07.04), Claims (Family: none)	n Corp.),	1-9,11-19, 21-30,32-40 10,20,31,41			
X Further documents are listed in the continuation of Box C. See patent family annex.						
"A" document defining the general state of the art which is not considered to be of particular relevance		"T" later document published after the interdate and not in conflict with the applicat the principle or theory underlying the inv	ion but cited to understand			
"E" earlier application or patent but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is		"X" document of particular relevance; the classifier of considered novel or cannot be considered step when the document is taken alone	red to involve an inventive			
cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed		"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "&" document member of the same patent family				
11 Jan	al completion of the international search uary, 2005 (11.01.05)	Date of mailing of the international search 25 January, 2005 (2)				
Name and mailing address of the ISA/ Japanese Patent Office		Authorized officer				
Facsimile No.		Telephone No.				

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2004/018316

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No	
A	JP 2000-272252 A (Mitsubishi Chemical Corp.), 03 October, 2000 (03.10.00), Claims; Par Nos. [0028], [0029] (Family: none)	1-41	

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2004/018316

With respect to ethylene oxide adducts of dihydric alcohol represented by chemical formulae shown in the description, the results of calculation of inorganic values and organic values as per the calculation basis set forth on pages 12-16 of the description, as apparent from comparisons of, for example, chemical formula 9 with chemical formula 10 and chemical formula 11 with chemical formula 12, often definitely disagree with the respective inorganic values and organic values indicated in the description.

Therefore, whether or not the ethylene oxide adducts of dihydric alcohol mentioned in the description correspond to the ethylene oxide adducts of dihydric alcohol mentioned in the claims is unclear, and what particular compounds are the ethylene oxide adducts of dihydric alcohol mentioned in the claims is unclear.

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. Cl7 C 0 9 D 1 1 / 0 0, B 4 1 J 2 / 0 1, B 4 1 M 5 / 0 0

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl' C 0 9 D 1 1 / 0 0, B 4 1 J 2 / 0 1, B 4 1 M 5 / 0 0

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報 1922-1996年

日本国公開実用新案公報 1971-2004年

日本国登録実用新案公報 1994-2004年

日本国実用新案登録公報 1996-2004年

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)

C. 関連すると認められる文献

引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
JP 2000-327974 A(セイコーエプソン株式会社)2000.11.28 特許請求の範囲 【0037】-【0040】【0084】-【0116】 & EP 978547 A1	1-41
JP 2000-345082 A(セイコーエプソン株式会社)2000.12.12 特許請求の範囲 【0020】-【0021】【0025】【0038】-【0046】 (ファミリーなし)	1-41
	JP 2000-327974 A (セイコーエプソン株式会社) 2000.11.28 特許請求の範囲 【0037】-【0040】【0084】-【0116】 & EP 978547 A1 JP 2000-345082 A (セイコーエプソン株式会社) 2000.12.12 特許請求の範囲 【0020】-【0021】【0025】【0038】-【0046】

区欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した 日

11.01.2005

国際調査報告の発送日 25.1.2005

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号100-8915 東京都千代田区設が関三丁目4番3号 特許庁審査官(権限のある職員) 山田 泰之 4V 8720

電話番号 03-3581-1101 内線 3483

C(続き).				
引用文献の カテゴリー*		関連する 請求の範囲の番号		
PΧ	JP 2004-197037 A (セイコーエプソン株式会社) 2004.07.15 特許請求の範囲 (ファミリーなし)	1-9, 11-19, 21-30, 32-40		
PA		10, 20, 31, 41		
A	JP 2000-272252 A (三菱化学株式会社) 2000.10.03 特許請求の範囲 【0028】【0029】(ファミリーなし)	1-41		
,				
		·		
	,			
-				

明細書12-16頁に記載の算出の基礎を基にして、明細書に記載の各化学式で示される 2価アルコールのエチレンオキサイド付加物の無機性値及び有機性値を求めた結果は、例え ば化9と化10、化11と化12を比較しても明らかなように、明細書に記載されたそれぞ れの無機性値及び有機性値と明らかに異なる場合がある。

そうすると、明細書に記載の2価アルコールのエチレンオキサイド付加物は、請求の範囲に記載の2価アルコールのエチレンオキサイド付加物に相当するものであるのかが不明確であるし、請求の範囲に記載の2価アルコールのエチレンオキサイド付加物は、具体的にどのような化合物であるのかも不明確である。