✓ Exp 1

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

df = pd.read_csv('supermarket_sales - Sheet1.csv')
df['Date'] = pd.to_datetime(df['Date'])
df.head()
```

₹		Invoice ID	Branch	City	Customer type	Gender	Product line	Unit price	Quantity	Tax 5%	Total	Date	Time	Payment	cogs	gross margin percentage	
	0	750-67- 8428	А	Yangon	Member	Female	Health and beauty	74.69	7	26.1415	548.9715	2019- 01-05	13:08	Ewallet	522.83	4.761905	2
	1	226-31- 3081	С	Naypyitaw	Normal	Female	Electronic accessories	15.28	5	3.8200	80.2200	2019- 03-08	10:29	Cash	76.40	4.761905	
	2	631-41- 3108	А	Yangon	Normal	Male	Home and lifestyle	46.33	7	16.2155	340.5255	2019- 03-03	13:23	Credit card	324.31	4.761905	1
	3	123-19- 1176	А	Yangon	Member	Male	Health and beauty	58.22	8	23.2880	489.0480	2019- 01-27	20:33	Ewallet	465.76	4.761905	2
	1 ■	373-73-	٨	Vangan	Mormal	Mala	Sports and	QC 21	7	3U 3U8E	621 27 <u>0</u> 5	2019-	10.27	Ewallot	60/ 17	A 76100E)

product_sales = df.groupby('Product line')['Total'].sum()
product_sales.plot(kind='bar', title='Product-wise Sales', ylabel='Total Sales', xlabel='Product Line', color='skyblue')
plt.xticks(rotation=45)
plt.show()


```
# Region-wise sales (City-wise sales)
region_sales = df.groupby('City')['Total'].sum()
region_sales.plot(kind='bar', title='Region-wise Sales', ylabel='Total Sales', xlabel='City', color='salmon')
plt.xticks(rotation=45)
plt.show()
```



```
# Scatter plot for Quantity vs Total Sales
plt.figure(figsize=(10, 6))
sns.scatterplot(data=df, x='Quantity', y='Total', hue='Product line',
palette='viridis')
plt.title('Quantity vs Total Sales by Product Line')
plt.xlabel('Quantity')
plt.ylabel('Total Sales')
plt.legend(title='Product Line')
plt.show()
```



```
# Payment method distribution
payment_counts = df['Payment'].value_counts()
payment_counts.plot(kind='pie', autopct='%1.1f%%', startangle=140,
title='Payment Method Distribution')
plt.ylabel('') # Removes the y-axis label for clarity
plt.show()
```

4

Payment Method Distribution


```
# Daily sales timeline
daily_sales = df.groupby(df['Date'].dt.date)['Total'].sum()
plt.figure(figsize=(12, 6))
daily_sales.plot(kind='line', title='Daily Sales Over Time', xlabel='Date',
ylabel='Total Sales', color='purple')
plt.show()
```


2019-02-15

Date

2019-03-01

2019-03-15

```
# Sales distribution
df['Total'].plot(kind='hist', bins=20, title='Sales Distribution',
color='lightgreen', edgecolor='black')
plt.xlabel('Total Sales')
plt.ylabel('Frequency')
plt.show()
```

2019-01-15

2019-01-01

2019-02-01

2019-04-01

