

planetmath.org

Math for the people, by the people.

distributivity in po-groups

Canonical name DistributivityInPogroups

Date of creation 2013-03-22 17:05:12 Last modified on 2013-03-22 17:05:12

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 6

Author CWoo (3771)
Entry type Definition
Classification msc 06F05
Classification msc 06F20
Classification msc 06F15
Classification msc 20F60

Let G be a po-group and A be a set of elements of G. Denote the supremum of elements of A, if it exists, by $\bigvee A$. Similarly, denote the infimum of elements of A, if it exists, by $\bigwedge A$. Furthermore, let $A^{-1} = \{a^{-1} \mid a \in A\}$, and for any $g \in G$, let $gA = \{ga \mid a \in A\}$ and $Ag = \{ag \mid a \in A\}$.

- 1. If $\bigvee A$ exists, so do $\bigvee gA$ and $\bigvee Ag$.
- 2. If 1. is true, then $g \bigvee A = \bigvee gA = \bigvee Ag$.
- 3. $\bigvee A$ exists iff $\bigwedge A^{-1}$ exists; when this is the case, $\bigwedge A^{-1} = (\bigvee A)^{-1}$.
- 4. If $\bigwedge A$ exists, so do $\bigwedge gA$, and $\bigwedge Ag$.
- 5. If 4. is true, then $g \wedge A = \bigwedge gA = \bigwedge Ag$.
- 6. If 1. is true and $A = \{a, b\}$, then $a \wedge b$ exists and is equal to $a(a \vee b)^{-1}b$.

Proof. Suppose $\bigvee A$ exists.

- (1. and 2.) Clearly, for each $a \in A$, $a \leq \bigvee A$, so that $ga \leq g \bigvee A$, and therefore elements of gA are bounded from above by $g\bigvee A$. To show that $g\bigvee A$ is the least upper bound of elements of gA, suppose b is the upper bound of elements of gA, that is, $ga \leq b$ for all $a \in A$, this means that $a \leq g^{-1}b$ for all $a \in A$. Since $\bigvee A$ is the least upper bound of the a's, $\bigvee A \leq g^{-1}b$, so that $g\bigvee A \leq b$. This shows that $g\bigvee A$ is the supremum of elements of gA; in other words, $g\bigvee A = \bigvee gA$. Similarly, $\bigvee Ag$ exists and $g\bigvee A = \bigvee Ag$ as well.
- (3.) Write $c = \bigvee A$. Then $a \le c$ for each $a \in A$. This means $c^{-1} \le a^{-1}$. If $b \le a^{-1}$ for all $a \in A$, then $a \le b^{-1}$ for all $a \in A$, so that $c \le b^{-1}$, or $b \le c^{-1}$. This shows that c^{-1} is the greatest lower bound of elements of A^{-1} , or $(\bigvee A)^{-1} = \bigwedge A^{-1}$. The converse is proved likewise.
- (4. and 5.) This is just the dual of 1. and 2., so the proof is omitted.
- (6.) If $A = \{a, b\}$, then $aA^{-1}b = A$, and the existence of $\bigwedge A$ is the same as the existence of $\bigwedge (aA^{-1}b)$, which is the same as the existence of $a(\bigwedge A^{-1})b$ by 4 and 5 above. Since $\bigvee A$ exists, so does $\bigwedge A^{-1}$, and hence $a(\bigwedge A^{-1})b$, by 3 above. Also by 3, we have the equality $a(\bigwedge A^{-1})b = a(\bigvee A)^{-1}b$. Putting everything together, we have the result: $a \wedge b = a(a \vee b)^{-1}b$.

This completes the proof.

Remark. From the above result, we see that group multiplication distributes over arbitrary joins and meets, if these joins and meets exist.

One can use this result to prove the following: every Dedekind complete po-group is an Archimedean po-group.

Proof. Suppose $a^n \leq b$ for all integers n. Let $A = \{a^n \mid n \in \mathbb{Z}\}$. Then A is bounded from above by b so has least upper bound $\bigvee A$. Then $a \bigvee A = \bigvee aA = \bigvee A$, since aA = A. As a result, multiplying both sides by $(\bigvee A)^{-1}$, we get a = e.

Remark. The above is a generalization of a famous property of the real numbers: \mathbb{R} has the Archimedean property.