

Visión Artificial

1. Introducción

JOSÉ MIGUEL GUERRERO HERNÁNDEZ

EMAIL: JOSEMIGUEL.GUERRERO@URJC.ES

Índice de contenidos

- 1. Introducción
- 2. Captura de una imagen
- 3. Procesamiento de imágenes
- 4. Robot: componentes
- 5. Software
- 6. Aplicaciones prácticas

Índice de contenidos

- 1. Introducción
- 2. Captura de una imagen
- 3. Procesamiento de imágenes
- 4. Robot: componentes
- 5. Software
- 6. Aplicaciones prácticas

Definiciones de Visión:

- Aristóteles: "visión es saber qué hay y dónde mediante la vista"
- **Gibson:** "visión es recuperar de la información de los sentidos (vista) propiedades válidas del mundo exterior"
- Marr: "visión es un proceso que produce, a partir de las imágenes del mundo exterior, una descripción que es útil para el observador y que no tiene información irrelevante"

• Visión Artificial, tres aspectos importantes:

- La visión es un proceso computacional
- La descripción a obtener depende del observador
- Se reduce la información: es necesario eliminar la información que no sea útil

- Actividades de la Visión Artificial:
 - Procesamiento de imágenes digitales: cuyo objetivo es la descripción y reconocimiento del contenido de una imagen digital
 - Visión computacional: pretende dotar a los ordenadores de la capacidad de poder simular la visión humana

• Dificultades:

- Cambios de iluminación
- Cambios de escala
- Mimetización del entorno
- Oclusión
- Movimiento
- Pérdida de información
- •

Cambios de iluminación

Cambios de escala

Mimetización del entorno

TEMA 1 - INTRODUCCIÓN

6

Oclusión

Movimiento

TEMA 1 - INTRODUCCIÓN

- Las escenas que se perciben suele ser tridimensionales (3D)
- Los dispositivos de captura general imágenes bidimensionales

Objeto en 3D

Objeto en 2D

Pérdida de información

- Obtener una descripción de una imagen es un proceso muy complejo
- La solución está en descomponer el problema en distintos niveles:
 - **Nivel bajo**: se trabaja directamente con los **píxeles** (valores de los puntos) para extraer propiedades como el gradiente, profundidad, textura, color, etc.
 - **Nivel intermedio**: agrupa los elementos obtenidos en el nivel bajo para obtener bordes, líneas, regiones, generalmente para realizar una segmentación la imagen
 - **Nivel alto**: se interpreta los datos obtenidos en los niveles inferiores y se utilizan modelos o conocimiento a priori del problema
- La información se reduce y refina en cada nivel hasta conseguir la descripción deseada, se elimina toda información irrelevante
- La relación entre los niveles no es siempre secuencial, hay interacciones entre ellos y retroalimentación

Índice de contenidos

- 1. Introducción
- 2. Captura de una imagen
- 3. Procesamiento de imágenes
- 4. Robot: componentes
- 5. Software
- 6. Aplicaciones prácticas

2. Captura de una imagen

- Dispositivo de captura:
 - Dispositivo físico sensible a una determinada banda del espectro electromagnético
 - Produce una señal eléctrica proporcional al nivel de energía detectado

CMOS

- Conversor A/D:
 - Convierte la señal analógica obtenida por el dispositivo de captura en una señal digital
- Memoria de vídeo:
 - Memoria semiconductora (RAM) en la que se almacena la imagen digitalizada
- Procesador:
 - Procesador de propósito general que permite operar sobre la imagen digital

2. Captura de una imagen

CCD CMOS

Índice de contenidos

- 1. Introducción
- 2. Captura de una imagen
- 3. Procesamiento de imágenes
- 4. Robot: componentes
- 5. Software
- 6. Aplicaciones prácticas

3. Procesamiento de imágenes

Objetivos:

- Mejorar la calidad visual de las imágenes para permitir la interpretación humana
- Extraer información de las imágenes en un formato entendible por el ordenador

• Fases o etapas:

- 1. Digitalización
- 2. Preprocesamiento
- 3. Segmentación
- 4. Representación
- Descripción
- Reconocimiento
- 7. Interpretación

3.1. Digitalización

- Digitalización:
 - Imagen analógica (continua): imagen natural capturada con una cámara, sensor o cualquier otro dispositivo
 - Imagen digital (discreta): proyección de la imagen analógica para que pueda ser manipulada usando un ordenador
 - La transformación de una imagen analógica a otra digital se llama digitalización
- La digitalización es el primer paso en cualquier aplicación de procesamiento de imágenes digitales

3.1. Digitalización

Vista por una persona

Vista por un ordenador

3.1. Digitalización: dificultades

- Degradación de la imagen digitalizada:
 - Ruido
 - Pérdida de definición de la imagen
- Causas:
 - Calibración o enfoque de la cámara defectuosos
 - Ruido producido por los sensores de captura
 - Movimiento del dispositivo de captura o de la escena
 - Transmisión defectuosa de la señal captada
 - Perturbaciones aleatorias como la propagación de la radiación en el medio de transmisión (generalmente el aire)
 - Etc.

3.2. Preprocesamiento

- Objetivos:
 - Atenuar la degradación de la imagen para que las siguientes etapas tengan una probabilidad de éxito mayor
 - Las operaciones típicas de esta etapa son:
 - Supresión de ruido
 - Realce del contraste

3.3. Segmentación

Objetivos:

- Extraer la información contenida en la imagen
- Dicha extracción se realiza mediante una descomposición de la imagen en unidades o partes que:
 - Son homogéneas con respecto a una o más características
 - Tienen una fuerte relación con objetos o áreas del mundo real

• Dificultades:

- Las partes u objetos componentes de una imagen dependen de la aplicación. Un sistema aéreo busca vehículos, edificios, rutas, etc. Un estudio geográfico busca montañas, ríos, etc.
- Cada objeto de la imagen segmentada debe ser etiquetado para que pueda ser integrado dentro de una descripción de la imagen original

3.4. Representación

- Objetivos:
 - Parametrizar los objetos o partes de los objetos generados por la segmentación del paso anterior
- Dificultades:
 - Sistemas de coordenadas cartesianas, polares
 - Códigos de cadena
 - Etc.

3.5. Descripción

Objetivos:

 Extraer información (características o descriptores) de la representación elegida para permitir la posterior clasificación de los objetos

Ejemplos de descriptores:

- Puntos dominantes, más significativos o relevantes de un contorno
- Perímetro del contorno
- Área de una región
- Número de huecos
- Etc.

3.6. Reconocimiento

- Objetivos:
 - Clasificar los diferentes objetos de la imagen utilizando sus descriptores
 - Los objetos detectados que presenten unos descriptores semejantes se agrupan en una misma clase
- Ejemplos:
 - Personas
 - Libros
 - Tazas
 - Plantas
 - Etc.

3.7. Interpretación

- Objetivos:
 - Su misión es de darle un significado a los grupos de objetos reconocidos
- Ejemplos:
 - Localizar los objetos, estáticos o dinámicos en un mapa
 - Esquivar obstáculos
 - Seguimiento
 - Detección de posición del cuerpo

Índice de contenidos

- 1. Introducción
- 2. Captura de una imagen
- 3. Procesamiento de imágenes
- 4. Robot: componentes
- 5. Software
- 6. Aplicaciones prácticas

- Sistema informático con:
 - Sensores
 - Actuadores
 - Computador
- Hay que programarlo para que consiga sus objetivos y sea sensible a la situación
- La inteligencia reside en su software

• Sensores:

- Miden magnitudes físicas del entorno del robot: distancias, luz, etc.
- Lo percibido depende de los sensores del robot
- El robot existe en el espacio de los sensores
- Los sensores de los robots son muy distintos de los biológicos
- El diseñador deberá tratar de "situarse" en el mundo del robot
- El tipo de sensores dependerá de la tarea a realizar

- Actuadores:
 - Un robot interacciona con el mundo a través de sus actuadores
 - Le dotan de capacidad de movimiento o de hacer algo
 - Los actuadores robóticos son muy distintos de los biológicos
 - Locomoción (trasladarse de un lugar a otro)
 - Manipulación (manejo de objetos)
 - Grosso modo dividen a la robótica en dos campos:
 - Robots móviles
 - Robots manipuladores (brazos)

- Otros componentes:
 - Controladores para todos los anteriores
 - Computador/es
 - Comunicaciones con otros robots u ordenadores: redes
 - Interacción con humanos: interfaces de usuario, pantallas, botones, audio

Índice de contenidos

- 1. Introducción
- 2. Captura de una imagen
- 3. Procesamiento de imágenes
- 4. Robot: componentes
- 5. Software
- 6. Aplicaciones prácticas

5. Software

- Determina el comportamiento del robot
- Establece cómo se coordinan la percepción y la actuación
- No hay una manera universalmente aceptada de programarlos
- Lenguajes: ensamblador, C, C++ (de bajo y alto nivel)
- Heterogeneidad
 - Dispositivos hardware
 - Encapsular funcionalidad
- Requisitos específicos
- Sistemas operativos y plataformas
- Simuladores

Asignatura: ROS2 & C++ & OpenCV & PCL

Índice de contenidos

- 1. Introducción
- 2. Captura de una imagen
- 3. Procesamiento de imágenes
- 4. Robot: componentes
- 5. Software
- 6. Aplicaciones prácticas

32

• Interfaz de configuración

Interfaz de usuario

6. Aplicación práctica

