Binary Arithmetic

Binary arithmetic is essential part of all the digital computers and many other digital system.

Binary Addition

It is a key for binary subtraction, multiplication, division. There are four rules of binary addition.

Case	А	+	В	Sum	Carry
1	0	+	0	0	0
2	0	+	1	1	0
3	1	+	0	1	0
4	1	+	1	0	1

In fourth case, a binary addition is creating a sum of (1 + 1 = 10) i.e. 0 is written in the given column and a carry of 1 over to the next column.

Example - Addition

Binary Subtraction

Subtraction and Borrow, these two words will be used very frequently for the binary subtraction. There are four rules of binary subtraction.

Case	Α	NE	В	Subtract	Borrow
1	0	:57:	0	0	0
2	1		0	1	0
3	1	12	1	0	0
4	0		1	0	1

Example - Subtraction

Binary Multiplication

Binary multiplication is similar to decimal multiplication. It is simpler than decimal multiplication because only 0s and 1s are involved. There are four rules of binary multiplication.

Case	Α	х	В	Multiplication
1	0	х	0	0
2	0	х	1	0
3	1	х	0	0
4	1	х	1	1

Example – Multiplication

Example:

0011010 x 001100 = 100111000

Binary Division

Binary division is similar to decimal division. It is called as the long division procedure.

There are four rules of binary division.

Input A	Input B	Sum (S) A+B	Carry (C)	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

Example - Division

101010 / 000110 = 000111

$$\begin{array}{r}
111 & = 7_{10} \\
000110 \overline{\smash{\big)} - 4^{1}0 \ 10 \ 10} & = 42_{10} \\
-110 & = 6_{10} \\
\hline
4 \overline{0 \ 1} \\
-110 \\
\hline
110 \\
-110 \\
\hline
0
\end{array}$$

MCQs

- 1. What is the addition of the binary numbers 11011011010 and 010100101?
- a) 0111001000
- b) 1100110110
- c) 11101111111
- d) 10011010011

Answer: c

Explanation: The rules for Binary Addition are:

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 0 (Carry 1)

- 2. Perform binary addition: 101101 + 011011 = ?
- a) 011010
- b) 1010100
- c) 101110
- d) 1001000

```
Answer: d
```

```
1 1 1 1 1 1

1 0 1 1 0 1

+ 0 1 1 0 1 1

1 0 0 1 0 0 0
```

Therefore, the addition of 101101 + 011011 = 1001000.

- 3. Perform binary subtraction: 101111 010101 = ?
- a) 100100
- b) 010101
- c) 011010
- d) 011001

Answer: c

Explanation: The rules for Binary Subtraction are:

0 - 0 = 0

0 - 1 = 1 (Borrow 1)

1 - 0 = 1

1 - 1 = 0

1 0 1 1 1 1 - 0 1 0 1 0 1

0 1 1 0 1 0

Therefore, The subtraction of 101111 – 010101 = 011010.

- 4.Perform multiplication of the binary numbers: $01001 \times 01011 = ?$
- a)001100011
- b)110011100
- c)010100110
- d) 101010111

Answer:a

Explanation: The rules for binary multiplication are:

0*0=0

0*1=0

1*0=0

1 * 1 = 1

```
0 1 0 0 1

x 0 1 0 1 1

0 1 0 0 1

0 1 0 0 1 0

0 0 0 0 0 0 0
```

Therefore, $01001 \times 01011 = 001100011$.

5.On multiplication of (10.10) and (01.01), we get ______ a)101.0010 b)0010.101 c)011.0010

Answer: c

d) 110.0011

Therefore, $10.10 \times 01.01 = 011.0010$.

- 6. Divide the binary numbers: $111101 \div 1001$ and find the remainder.
- a)0010
- b)1010
- c)1100
- d) 0111

Answer: d

Explanation: Binary Division is accomplished using long division method.

Therefore, the remainder of $111101 \div 1001 = 0111$.

- 7. Divide the binary number (011010000) by (0101) and find the quotient.
- a)100011
- b)101001
- c)110010
- d) 010001

Answer: b Explanation:

```
0 1 0 1 ) 0 1 1 0 1 0 0 0 0 ( 0 1 0 1 1 1
         0 0 0 0
         0 1 1 0 1
         0 0 1 0 1
         0 1 0 0 0 0
         0 0 0 0 0
           1 0 0 0 0
            0 0 1 0 1
            0 1 0 1 1 0
              0 0 0 1 0 1
              1 0 0 0 1 0
               0 0 0 1 0 1
                  1 1 1 0 1 0
                  0 0 0 1 0 1
                    1 0 1 0 1
                     0 0 1 0 1
                     1 0 0 0 0
```

Therefore, the quotient of 011