Sombras y Ocupación de Terreno

Energía Solar Fotovoltaica

Oscar Perpiñán Lamigueiro

Universidad Politécnica de Madrid

Planteamiento

- ► Al diseñar una central fotovoltaica se debe decidir la ubicación de las diferentes partes del generador resolviendo un compromiso entre la mejor ocupación del terreno disponible y la minimización del impacto de sombras mutuas arrojadas entre los módulos.
- Métricas de ocupación de terreno:

$$GCR = \frac{A_G}{A_T}$$

$$ROT = \frac{A_T}{A_G}$$

Ejemplo

Un sistema con un ROT = 4 requiere un terreno de un área 4 veces el área del generador fotovoltaico. O, dado que GCR = 0.25, el generador fotovoltaico ocupará una cuarta parte del terreno.

- 1 Sistemas estáticos
- 2 Sistemas de seguimiento 2X
- 3 Seguidores de eje horizontal NS
- 4 Elección de separaciones

Sombras entre filas

Sombras entre filas

- ► Suele establecerse un objetivo de 4 horas de sol en torno al mediodía del solsticio de invierno libres de sombra.
- La longitud de la sombra de un obstáculo se mide con:

$$d = \frac{h}{\tan \gamma_s}$$

En el mediodía del solsticio de invierno

$$\gamma_s = 90 - 23.45 - \phi \simeq 67 - \phi$$

Para 2 horas antes y después:

$$d_{min} = \frac{h}{\tan(61^{\circ} - \phi)}$$

Separación entre filas

$$W = \infty$$

$$ROT = d/L$$

$$GCR = L/d$$

- Sistemas estáticos
- 2 Sistemas de seguimiento 2X
- 3 Seguidores de eje horizontal NS
- 4 Elección de separaciones

Separación de seguidores Doble Eje

$$ROT = rac{L_{ns} \cdot L_{eo}}{L \cdot W}$$
 $GCR = rac{L \cdot W}{L_{ns} \cdot L_{eo}}$ $E_{ac} = f(ROT)$??

Radiación promedio

$$G_{ef,av} = 1/24 \cdot \left(10 \cdot G_{ef,0} + 5 \cdot G_{ef,A} + G_{ef,B} + 2 \cdot G_{ef,C} + G_{ef,D} + 5 \cdot G_{ef,E}\right)$$

Separación de Seguidores Doble Eje

1-FS

0.98

0.97

0.96

0.95

- 0.94

- 0.93

0.92

- Sistemas estáticos
- 2 Sistemas de seguimiento 2X
- 3 Seguidores de eje horizontal NS
- 4 Elección de separaciones

Separación de Seguidores Eje Horizontal

Separación de Seguidores Horizontal N-S

Backtracking

- ► El **sombreado** en un generador puede producir problemas por el efecto de **punto** caliente.
- ► En seguidores de eje horizontal se puede evitar la incidencia de sombras en cualquier instante mediante el «backtracking»:
 - ► Al amanecer el seguidor está en posición horizontal.
 - Según avanza el día el seguidor gira en sentido contrario al movimiento solar para evitar las sombras.
 - ► En un determinado momento se cruza con el sol y puede continuar el movimiento «convencional».
 - En un instante de la tarde debe volver a cambiar el sentido hasta la **horizontal en la noche**.

Backtracking

Separación con backtracking

Limitación de ángulo

- ► Es habitual limitar el ángulo de inclinación a valores máximos alrededor de 70° por motivos estructurales (protección frente al viento)
- ▶ Implica un desvio de los seguidores de su posición óptima.
 - Sombras más cortas que en el caso teórico (red más densa).
 - Reducción en la energía generada por incidencia no perpendicular

- Sistemas estáticos
- 2 Sistemas de seguimiento 2X
- 3 Seguidores de eje horizontal NS
- 4 Elección de separaciones

Elección de separaciones

La **separación óptima** entre elementos (seguidores o estructuras estáticas) es aquella que conduce al **mínimo valor del coste de la energía** producida por el sistema.

Al aumentar la separación:

- Disminuyen las **pérdidas por sombreado mutuo** (aumenta la productividad del
- ► Aumentan:
 - los costes relacionados con el área ocupada por unidad de potencia.
 - los costes relacionados con los elementos de unión entre estructuras (cableado, canalizaciones, zanjas).

Elección de separaciones

- Esta separación óptima **depende** de las **estructuras elegidas** y de las **condiciones económicas** de los elementos.
- La separación finalmente elegida debe **tomar en consideración las condiciones del terreno** (fronteras, irregularidades, vaguadas, etc.)

Ocupación óptima

Coste Energía

$$C_E = \frac{C_P}{E_{AC}}$$

Coste Sistema

$$C_p = C_c + C_A + C_{PV}$$

- ► C_{PV} entre 1,5 €/W y 2,5 €/W
- $ightharpoonup C_A$ entre $2 \notin /m^2$ y $3 \notin /m^2$

Separaciones y coste de la energía

