

3.0 Classification Methodologies

Eugene Rex L. Jalao, Ph.D.

Associate Professor

Department Industrial Engineering and Operations Research
University of the Philippines Diliman

@thephdataminer

Module 3 of the Business Intelligence and Analytics Certification of UP NEC and the UP Center for Business Intelligence

Outline for This Training

- 1. Introduction to Data Mining
- 2. Data Preprocessing
 - Case Study on Big Data Preprocessing using R
- 3. Classification Methodologies
 - Case Study on Classification using R
- 4. Regression Methodologies
 - Case Study: Regression Analysis using R
- 5. Unsupervised Learning
 - Case Study: Social Media Sentiment Analysis using R

This Session's Outline

- What is Classification?
- Frequency Table
 - Zero R
 - One R
 - Naïve Bayes
 - Decision Tree
 - Rule Based Classifiers
- Similarity
 - K-Nearest Neighbors
- Perceptron Based
 - ANN
 - SVM

- Ensembles
 - Adaboost
 - Random Forests
- Model Evaluation
- Case Study

Required Input Dataset Structure

Attributes/Columns/Variables/Features (p + 1)

Tid Refund **Marital** Taxable Cheat Income **Status** Yes Single 125K No No Married 100K No No Single 70K No No Yes Married 120K No 95K Yes Divorced 60K No Married No Yes Divorced 220K No No Single 85K Yes No Married 75K No 10 90K Yes No Single

Rows/ Instances /Tuples /Objects (n)

Predictor Variables/Independent Variables/Control Variables

Response Variable/
Dependent Variable/
Class Variable/ Label
Variable/ Target Variable

What is Classification?

- Given a collection of records
 - Multiple predictor variables usually $x_1, x_2, ... x_p$
 - One categorical response variable usually y
- Find a model for predicting the class variable from the predictor variables.
 - Use historical "training data" to build the model
- Goal: previously unseen records should be predicted a class as accurately as possible.
 - Use "testing data" to test the accuracy of the model

Illustrating Classification Task

Tid	Attrib1	Attrib2	Attrib3	Class
11	No	Small	55K	?
12	Yes	Medium	80K	?
13	Yes	Large	110K	?
14	No	Small	95K	?
15	No	Large	67K	?

Test Set

Golf Dataset

Outlook	Temperature Nominal	Humidity Nominal	Windy	Play (Class)
overcast	hot	high	false	yes
overcast	cool	normal	true	yes
overcast	mild	high	true	yes
overcast	hot	normal	false	yes
rainy	mild	high	false	yes
rainy	cool	normal	false	yes
rainy	cool	normal	true	no
rainy	mild	normal	false	yes
rainy	mild	high	true	no
sunny	hot	high	false	no
sunny	hot	high	true	no
sunny	mild	high	false	no
sunny	cool	normal	false	yes
sunny	mild	normal	true	yes

This Session's Outline

- What is Classification?
- Frequency Table
 - Zero R
 - One R
 - Naïve Bayes
 - Decision Tree
 - Rule Based Classifiers
- Similarity
 - K-Nearest Neighbors
- Perceptron Based
 - ANN
 - SVM

- Ensembles
 - Adaboost
 - Random Forests
- Model Evaluation
- Case Study

ZeroR

- ZeroR is the simplest classification methodology which relies on the target and ignores all predictors.
- Simply predicts the majority class.
- Is useful for determining a baseline performance as a benchmark for other classification methods.
- For the Golf Data Set: Majority is Yes (9 Yes, 5 No)
 - Predict Everything to be Yes: Accuracy = 64%

This Session's Outline

- What is Classification?
- Frequency Table
 - Zero R
 - One R
 - Naïve Bayes
 - Decision Tree
 - Rule Based Classifiers
- Similarity
 - K-Nearest Neighbors
- Perceptron Based
 - ANN
 - SVM

- Ensembles
 - Adaboost
 - Random Forests
- Model Evaluation
- Case Study

OneR

- OneR, short for "One Rule"
- Simple, yet accurate, classification algorithm that generates one rule for each predictor in the data
- The rule with the smallest total error as its "one rule"
- Algorithm:
 - For each predictor:
 - For each value of that predictor, make a rule as follows:
 - Count how often each value of target (class) appears
 - Find the most frequent class
 - Make the rule assign that class to this value of the predictor
 - Calculate the total error of the rules of each predictor
 - Choose the predictor with the smallest total error.

Golf Dataset

Outlook	Temperature Nominal	Humidity Nominal	Windy	Play (Class)
overcast	hot	high	false	yes
overcast	cool	normal	true	yes
overcast	mild	high	true	yes
overcast	hot	normal	false	yes
rainy	mild	high	false	yes
rainy	cool	normal	false	yes
rainy	cool	normal	true	no
rainy	mild	normal	false	yes
rainy	mild	high	true	no
sunny	hot	high	false	no
sunny	hot	high	true	no
sunny	mild	high	false	no
sunny	cool	normal	false	yes
sunny	mild	normal	true	yes

Generate Frequency Tables

Outlook Table		Actual Play Golf	
		Yes	No
Outlook	Sunny	2	3
	Overcast	4	0
	Rainy	3	2

Temperature Table		Actual Play Golf	
		Yes	No
Temp.	Hot	2	2
	Mild	4	2
	Cool	3	1

Humidity Table		Actual Play Golf		
		Yes	No	
Humidity	High	3	4	
	Normal	6	1	

Windy Table		Actual Play Golf		
		Yes	No	
VA Consider	False	6	2	
Windy	True	3	3	

OneR Model

Uunaidit	v Toblo	Actual Play Golf		
Humidity Table		Yes	No	
11	High	3	4	
Humidity	Normal	6	1	

- IF Humidity = High THEN Play Golf = No
- IF Humidity = Normal THEN Play Golf = Yes

Confusio		Actual Play Golf		
Confusion Matrix		Yes	No	
Duo di oto d	Yes	6	1	
Predicted	No	3	4	

Prediction Confidence

- Level of Confidence we get for each prediction rule
- Example 1:
 - IF Humidity = High THEN Play Golf = No (4/7)
 - The rule is correct 7/11 times
- Example 2:
 - IF Humidity = Normal THEN Play Golf = No (1/7)
 - The rule is correct 7/8 times
- Hence we are more comfortable using Rule 2 in predicting play golf as compared to Rule 1.

This Session's Outline

- What is Classification?
- Frequency Table
 - Zero R
 - One R
 - Naïve Bayes
 - Decision Tree
 - Rule Based Classifiers
- Similarity
 - K-Nearest Neighbors
- Perceptron Based
 - ANN
 - SVM

- Ensembles
 - Adaboost
 - Random Forests
- Model Evaluation
- Case Study

Naïve Bayes Classifier

- Uses a probabilistic framework for classification
- Review: Conditional Probability, Bayes theorem:

$$P(C|A) = P(A|C) \frac{P(C)}{P(A)}$$

- Interpreted as:
 - The probability of C happening given A is true is equal to the Probability of A happening given C is true times the ratio of the probability of C happening and probability of A happening

Example of Bayes Theorem

- Given Historical Data:
 - A doctor knows that if a patient has meningitis, the probability that he has a stiff neck is 50%.
 - Prior probability of any patient having meningitis is 1/50,000
 - Probability of any patient having stiff neck is 1/20
- If a patient has stiff neck, what's the probability he/she has meningitis?

$$P(M = Y | S = Y) = \frac{P(S = Y | M = Y)P(M = Y)}{P(S = Y)}$$

$$=\frac{0.5*\frac{1}{50000}}{\frac{1}{20}}=0.0002$$

Naïve Bayes Classifier

- Given a record with p attributes $(A_1, A_2, ..., A_p)$
 - Goal is to predict class C, specifically, we want to find the value of C that maximizes $P(C|A_1,A_2,\ldots,A_n)$
 - Example: $(A_{Outlook} = Rainy, A_{Temp} = Hot)$
- We choose the bigger probability:
 - $P(Play = Yes | A_{Outlook} = Rainy, A_{Temp} = Hot)$ or
 - $P(Play = No|A_{Outlook} = Rainy, A_{Temp} = Hot)$
- How can we compute these directly from the data?

Naïve Bayes Classifier

Using Bayes Formula:

$$P(\text{Play} = \text{Yes}|A_{Outlook} = Rainy, A_{Temp} = Hot) = P(A_{Outlook} = Rainy|\text{Play} = \text{Yes}) * $P(A_{Temp} = Hot|\text{Play} = \text{Yes}) * P(\text{Play} = \text{Yes})/\text{constant}$$$

$$P(\text{Play} = No|A_{Outlook} = Rainy, A_{Temp} = Hot) = P(A_{Outlook} = Rainy|\text{Play} = \text{No}) * $P(A_{Temp} = Hot|\text{Play} = \text{No}) * P(\text{Play} = \text{No})/\text{constant}$$$

How to Estimate Probabilities from Discrete Data?

Outlook	Temp	Play (Class)
overcast	hot	yes
overcast	cool	yes
overcast	mild	yes
overcast	hot	yes
rainy	mild	yes
rainy	cool	yes
rainy	cool	no
rainy	mild	yes
rainy	mild	no
sunny	hot	no
sunny	hot	no
sunny	mild	no
sunny	cool	yes
sunny	mild	yes

• Class:
$$P(C) = \frac{N_c}{N}$$

- e.g., $P(No) = 5/14$, $P(Yes) = 9/14$

For discrete attributes:

$$P(A_i \mid C_k) = \frac{|A_{ik}|}{N_c}$$

- where $|A_{ik}|$ is number of instances having attribute A_i and belongs to class C_k
- Examples:

$$P(Outlook = Rainy|Play = Yes) = \frac{3}{9}$$

Example of a Naïve Bayes Classifier

 Given today's Outlook = Rainy, Temperature = Hot, Humidity = High and Windy = False, will I play golf?

```
- P(Play = Yes | Outlook = Rainy, Temp = Hot)
= P(Outlook = Rainy | Play = Yes) * P(Temp = Hot | Play = Yes)
* P(Play = Yes)
```

-P(Play = No|Outlook = Rainy, Temp = Hot)

$$= P(Outlook = Rainy|Play = No) * P(Temp = Hot|Play = No) * P(Play = No)$$

How to Estimate Probabilities from Continuous Data?

For continuous attributes:

- Discretize the range into bins
 - one ordinal attribute per bin
 - violates independence assumption
- Two-way split: (A < v) or (A > v)
 - choose only one of the two splits as new attribute
- Example: (A < 15) or $(A \ge 15)$

Original Data	Discretized Data
10	Low
20	High
15	High
11	Low

Naïve Bayes Classifier

• If one of the conditional probability is zero, then the entire expression becomes zero

Original:
$$P(A_i|C) = \frac{N_{ic}}{N_c}$$

c: number of classes

Laplace Probability Estimation:

p: prior probability

Laplace:
$$P(A_i|C) = \frac{N_{ic} + 1}{N_c + c}$$

- The Nursery Data set originally developed to rank applications into nursery schools
 - parents: usual, pretentious, great pret
 - has_nurs: proper, less_proper, improper, critical, very_crit
 - form: complete, completed, incomplete, foster
 - children: 1, 2, 3, more
 - housing: convenient, less_conv, critical
 - finance: convenient, inconv
 - social: non-prob, slightly_prob, problematic
 - health: recommended, priority, not_recom
 - Rank: not_recom, priority, reocommend, spec_prior, very_recom

New Data:

parents	has_nur	form	children	housing	finance	social	health	rank
usual	proper	complete	1	convenient	inconv	problematic	priority	
pretentious	critical	foster	2	critical	convenient	slightly_prob	not_recom	?

Type the following lines of code in RStudio and run.

Results

Advantages and Disadvantages Table: Naïve Bayes

Parameter	Advantages	Disadvantages
Complexity		
Assumptions		
Preprocessing		
Categorical/Numerical		
Parameters		
Speed of Algorithm		
Handling Outliers/Noise		
Handling Missing Data		
Interpretability		
Relative Predictive Power		
s Stability of Model		
Optimality of Model	F.R. I. 12120 Converget LIP NEC	

This Session's Outline

- What is Classification?
- Frequency Table
 - Zero R
 - One R
 - Naïve Bayes
 - Decision Tree
 - Rule Based Classifiers
- Similarity
 - K-Nearest Neighbors
- Perceptron Based
 - ANN
 - SVM

- Ensembles
 - Adaboost
 - Random Forests
- Model Evaluation
- Case Study

Decision Trees

- Decision tree builds classification models in the form of a tree structure.
- It breaks down a dataset into smaller and smaller subsets while at the same time an associated decision tree is incrementally developed.
- The final result is a tree with decision nodes and leaf nodes.
 - A decision node (e.g., Outlook) has two or more branches (e.g., Sunny, Overcast and Rainy). Leaf node (e.g., Play) represents a classification or decision.

Decision Trees

Example

Decision Tree Generation: The ID3 Algorithm

- The core algorithm for building decision trees called ID3
- Employs a top-down, greedy search through the space of possible branches with no backtracking.
- ID3 uses Entropy and Information Gain to construct a decision tree.
- A decision tree is built top-down from a parent node and involves partitioning the data into subsets that contain instances with similar values (homogenous).

Definition: Entropy

Entropy: Measures homogeneity of a node.

$$Gini(t) = 1 - \sum_{j} p(j|t)^{2}$$

- Where $p(j \mid t)$ is the relative frequency of class j at node t

The Tax Dataset

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Entropy Calculation Example

Actual Tax Cheat

No

7

Yes

3

Entropy of Class Tax Cheat

$$Gini(t) = 1 - \sum_{j} p(j|t)^{2}$$

$$Gini(t) = 1 - \left(\frac{7}{10}\right)^2 - \left(\frac{3}{10}\right)^2$$

If the sample is an equally divided (e.g. 5/5) it has entropy
 of 0.5.

Definition: Information Gain

 Gini Split: Measures Reduction in Gini achieved because of the split.

$$Gini(i)_{Gain} = Gini(p) - \sum_{i=1}^{k} \frac{n_i}{n} Gini(c_i)$$

— Where parent node, p is split into k partitions; n_i is number of records in partition i

Example: Gini Split

Example: Gini Split

Calculate Gini of Children Nodes

Actual Tax Cheat		
Yes	No	
0	3	

$$Gini(t_1) = 1 - \left(\frac{3}{3}\right)^2 - \left(\frac{0}{3}\right)^2$$
$$Gini(t_1) = \mathbf{0}$$

Actual Tax Cheat		
Yes	No	
3	4	

$$Gini(t_2) = 1 - \left(\frac{3}{7}\right)^2 - \left(\frac{4}{7}\right)^2$$
$$Gini(t_2) = 0.48$$

• Gini Child:
$$Gini Split(c) = 0 * \frac{3}{10} + 0.48 * \frac{7}{10} = 0.34$$

• Gini Gain:
$$Gini Gain(c) = 0.42 - 0.34 = 0.08$$

Computing Gini Index for Continuous Attributes

- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing gini index
 - Choose the split position that has the least gini index

Sc	rted	Values
Sp	lit Po	ositions

- Constructing a decision tree is all about finding attribute that returns the highest information gain (i.e., the most homogeneous branches).
- Step 1: Calculate entropy of the parent class.

Actual Tax Cheat			
Yes No			
3	7		

$$Gini(t) = 0.42$$

• Step 2: Calculate the Information Gain for all Attributes.

Outlook Table		Actual Tax Cheat	
		Yes	No
Dofund	Yes	0	3
Refund	No	3	4
Gain =0.08			

Taxable Income Table		Actual Tax Cheat	
		Yes	No
Taxable	> 97 K	0	4
Income	<= 97K	4	3
Gain = 0.12			

Marital Status Table		Actual Ta	x Cheat	
		Yes	No	
Married	Yes	0	4	
Marrieu	No	3	3	
Gain =0.12				

Step 3: Choose attribute with the largest gini gain as the decision node.

• Step 4a: Label a branch if entropy = 0 as a leaf node.

Information Gain

• Step 4b: The ID3 algorithm is run recursively on the non-leaf branches, until all data is classified.

Information Gain

• Step 5: The ID3 algorithm is run recursively on the non-leaf branches, until all data is classified.

Final Decision Tree

From Decision Trees To Rules

Classification Rules

(Refund=Yes) ==> No

(Refund=No, Marital Status={Single,Divorced}, Taxable Income<80K) ==> No

(Refund=No, Marital Status={Single, Divorced}, Taxable Income>80K) ==> Yes

(Refund=No, Marital Status={Married}) ==> No

Rules are mutually exclusive and exhaustive Rule set contains as much information as the tree

Rule Based Classifiers

- These are classifiers that utilizes rules to generate predictions
- Created using the RIPPER Algorithm
- Same principle as the decision trees
- Based on frequency tables

Characteristics of Rule-Based Classifier

Mutually exclusive rules

- Classifier contains mutually exclusive rules if the rules are independent of each other
- Every record is covered by at most one rule

Exhaustive rules

- Classifier has exhaustive coverage if it accounts for every possible combination of attribute values
- Each record is covered by at least one rule

How does Rule-based Classifiers Work?

R1: (Give Birth = no) \land (Can Fly = yes) \rightarrow Birds

R2: (Give Birth = no) \land (Live in Water = yes) \rightarrow Fishes

R3: (Give Birth = yes) \land (Blood Type = warm) \rightarrow Mammals

R4: (Give Birth = no) \land (Can Fly = no) \rightarrow Reptiles

R5: (Live in Water = sometimes) \rightarrow Amphibians

Name	Blood Type	Give Birth	Can Fly	Live in Water	Class
lemur	warm	yes	no	no	?
turtle	cold	no	no	sometimes	?
dogfish shark	cold	yes	no	yes	?

A lemur triggers rule R3, so it is classified as a mammal

A turtle triggers both R4 and R5

A dogfish shark triggers none of the rules. Usually a default rule is recommended

Rule Coverage and Accuracy

- Coverage of a rule:
 - Fraction of records that satisfy the antecedent of a rule
- Accuracy of a rule:
 - Fraction of records that satisfy
 both the antecedent and
 consequent of a rule

Tid	Refund	Marital Status	Taxable Income	Class
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

If (Status=Single) → Cheat= No

Coverage = 40%, Accuracy = 50%

- A leading bank's marketing department would like to profile its clients to know which factors lead to the purchase of one of its flagship products: PEP (Personal Equity Plan)
- 600 Clients where gathered from the company's various databases each having variables such as: age, region, income, sex, married, children, car, save_act, current_act, and mortgage

Type the following lines of code in RStudio and run.


```
> J48Model
J48 pruned tree
children <= 1
    children <= 0
        married = NO
            mortgage = NO: YES (48.0/3.0)
            mortgage = YES
                save\_act = NO: YES (12.0)
                save\_act = YES: NO (23.0)
        married = YES
            save\_act = NO
                mortgage = NO
                    income \leq 21506.2
                         age \leq 41: NO (11.0/1.0)
                         age > 41: YES (5.0/1.0)
                    income > 21506.2: NO (20.0)
                mortgage = YES: YES (25.0/3.0)
            save_act = YES: NO (119.0/12.0)
    children > 0
        income \leq 15538.8
            age \leq 41: NO (22.0/2.0)
            age > 41: YES (2.0)
        income > 15538.8: YES (111.0/5.0)
children > 1
    income \leq 30404.3: NO (124.0/12.0)
    income > 30404.3
        children \leq 2: YES (51.0/5.0)
        children > 2
            income \leq 44288.3: NO (19.0/2.0)
            income > 44288.3: YES (8.0)
Number of Leaves :
                        15
Size of the tree:
                         29
```


To export the plot, click on Export —>Save as Image

- Set the Width to 2000 and Height to 1000.
- Click on Save.
- An image of the plot is saved in the working directory.

2/

Type the following lines of code in RStudio and run.

Advantages and Disadvantages Table: Decision Trees/Rule Classifiers

Parameter	Advantages	Disadvantages
Complexity		
Assumptions		
Preprocessing		
Categorical/Numerical		
Parameters		
Speed of Algorithm		
Handling Outliers/Noise		
Handling Missing Data		
Interpretability		
Relative Predictive Power		
s Stability of Model		
Optimality of Model	F.R. L. Jalan, Convright LIP NEC	

This Session's Outline

- What is Classification?
- Frequency Table
 - Zero R
 - One R
 - Naïve Bayes
 - Decision Tree
 - Rule Based Classifiers
- Similarity
 - K-Nearest Neighbors
- Perceptron Based
 - ANN
 - SVM

- Ensembles
 - Adaboost
 - Random Forests
- Model Evaluation
- Case Study

Nearest Neighbor Classifiers

Basic idea:

If it walks like a duck, quacks like a duck, then it's probably a duck

eljalao@up.edu.ph

Nearest Neighbor Classifiers

- Requires three things
 - The set of stored records
 - Distance Metric to compute distance between records
 - The value of k, the number of nearest neighbors to retrieve
- To classify an unknown record:
 - Compute distance to other training records
 - Identify k nearest neighbors
 - Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

Definition of Nearest Neighbor

K-nearest neighbors of a record x are data points that have the k smallest distance to x

Nearest Neighbor Classification

- Compute distance between two points:
 - Euclidean distance

$$d(p,q) = \sqrt{\sum_{i} (p_i - q_i)^2}$$

- Determine the class from nearest neighbor list
 - take the majority vote of class labels among the k-nearest neighbors
 - Weigh the vote according to distance
 - weight factor, $w = \frac{1}{d^2}$

Nearest Neighbor Classification

- Choosing the value of *k*:
 - If k is too small, sensitive to noise points

If k is too large, neighborhood may include points from other

classes

- Good Value for $k = \sqrt{n}$

Business Scenario: Delivery Time Data

- Management would like to determine whether a new order for soft drinks would be either a "Fast," "Medium" or "Slow" delivery from the Number of Cases and Distance.
- 25 Historical Deliveries where gathered and profiled whether it was "Fast," "Medium" or "Slow"

deltime	ncases	deldistance
Medium	7	560
Fast	3	220
Fast	3	340
Fast	4	80
Fast	6	150
Medium	7	330
Fast	2	110
Medium	7	210
Slow	30	1460
Slow	5	605
Slow	16	688
Slow	10	215
Fast	4	255
Medium	6	462
Slow	9	448
Slow	10	776
Fast	6	200
Medium	7	132
Fast	3	36
Slow	17	770
Medium	10	140
Slow	26	810
Medium	9	450
Medium	8	67635
Fast	4	150

Delivery Time Data: 1 Nearest Neighbor

New Order:

- 11 Cases
- 500 ft Distance
- Standardized New Order
 - 0.33 SCases
 - 0.28 SDistance
- Distance =

$$\sqrt{(0.33 - (-0.26))^2 + (0.28 - 0.46)^2}$$

- Distance = 0.616
- Closest Neighbor:
 - 9 Cases
 - 450 Ft Distance

Prediction

Medium Delivery
 Time

Fast

deltime	ncases	deldistance	sncases	sdeldistance	eucdistance
Medium	7	560	-0.26	0.46	0.616
Fast	3	220	-0.84	-0.58	1.447
Fast	3	340	-0.84	-0.21	1.262
Fast	4	80	-0.69	-1.01	1.644
Fast	6	150	-0.40	-0.80	1.299
Medium	7	330	-0.26	-0.24	0.782
Fast	2	110	-0.98	-0.92	1.774
Medium	7	210	-0.26	-0.61	1.064
Slow	30	1460	3.09	3.23	4.042
Slow	5	605	-0.55	0.60	0.930
Slow	16	688	1.05	0.86	0.929
Slow	10	215	0.18	-0.60	0.888
Fast	4	255	-0.69	-0.47	1.266
Medium	6	462	-0.40	0.16	0.736
Slow	9	448	0.03	0.12	0.332
Slow	10	776	0.18	1.13	0.861
Fast	6	200	-0.40	-0.64	1.174
Medium	7	132	-0.26	-0.85	1.272
Fast	3	36	-0.84	-1.15	1.840
Slow	17	770	1.20	1.11	1.204
Medium	10	140	0.18	-0.83	1.117
Slow	26	810	2.51	1.23	2.379
Medium	9	450	0.03	0.13	0.329
Medium	8	635	-0.11	0.69	0.602
	1				

150

-0.69

-0.80

1.481

Delivery Time Data: 5 Nearest Neighbors

• [New	Orc	ler:
-----	-----	-----	------

- 11 Cases
- 500 ft Distance
- Standardized
 - 0.33 SCases
 - 0.28 SDistance
- Closest Neighbors:
 - 4 Medium
 - 1 Slow
- Prediction
 - Medium DeliveryTime

	deltime	1			sdeldistance	eucdistance
		ncases	deldistance			
	Medium	7	560			0.610
	Fast	3	220			1.447
	Fast	3	340			1.262
	Fast	4	80			1.644
_	Fast	6	150			1.299
	Medium	7	330	-0.26	-0.24	0.782
	Fast	2	110	-0.98	-0.92	1.774
	Medium	7	210	-0.26	-0.61	1.064
	Slow	30	1460	3.09	3.23	4.042
	Slow	5	605	-0.55	0.60	0.930
	Slow	16	688	1.05	0.86	0.929
	Slow	10	215	0.18	-0.60	0.888
	Fast	4	255	-0.69		1.266
Г	Medium	6	462	-0.40	0.16	0.736
Г	Slow	9	448	0.03	0.12	0.332
	Slow	10	776	0.18	1.13	0.861
	Fast	6	200	-0.40	-0.64	1.174
	Medium	7	132	-0.26	-0.85	1.272
	Fast	3	36	-0.84	-1.15	1.840
	Slow	17	770	1.20	1.11	1.204
	Medium	10	140	0.18	-0.83	1.117
	Slow	26	810	2.51	1.23	2.379
	Medium	9	450			
	Medium	8	635			
_	Fast	4	150		i	

Advantages and Disadvantages Table: KNN

Parameter	Advantages	Disadvantages
Complexity		
Assumptions		
Preprocessing		
Categorical/Numerical		
Parameters		
Speed of Algorithm		
Handling Outliers/Noise		
Handling Missing Data		
Interpretability		
Relative Predictive Power		
s Stability of Model		
Optimality of Model	E P. L. 19190 Converget LIV NIEC	

This Session's Outline

- What is Classification?
- Frequency Table
 - Zero R
 - One R
 - Naïve Bayes
 - Decision Tree
 - Rule Based Classifiers
- Similarity
 - K-Nearest Neighbors
- Perceptron Based
 - ANN
 - SVM

- Ensembles
 - Adaboost
 - Random Forests
- Model Evaluation
- Case Study

The Perceptron

- Let $x_1, x_2, ... x_p$ be numerical variables
- Let a binary $y = Green \ or \ Red$
- Given data
 - Find a line that separates the data

$$\beta_o + \beta_1 x_1 + \ldots + \beta_p x_p = 0$$

OY

$$\beta^T x = 0$$

• Predict
$$\hat{y} = \begin{cases} Green & if (\beta^T x) < 0 \\ Red & if (\beta^T x) > 0 \end{cases}$$

Perceptron in a Nutshell

Perceptron Learning Algorithm

- Find weights β using the Stochastic Gradient Descent methodology
 - Start with random β values
 - Update the β values as follows

$$\beta_{k+1} = \beta_k + \lambda (y_i - \hat{y}_i)(x_i)$$

- $-\lambda$ is called the Step Size
 - λ may decrease with the number of iterations
- Iterate through each row and adjust β for each point misclassified

- Example: the training data set contains three examples
- Find a single-neuron perceptron

Business Age (Ave = 10, SD=3)	Number of Days Delinquent (Ave = 50, SD=10)	Default ?
13	70	Yes
7	70	No
10	40	No

sBUSAGE	sDAYSDELQ	DEFAULT
1	2	Yes
-1	2	No
0	-1	No

Graphically:

Algebraically:

$$\left\{ x = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, y = 1 \right\}$$

$$\left\{ x = \begin{bmatrix} -1 \\ 2 \end{bmatrix}, y = -1 \right\}$$

$$\left\{ x = \begin{bmatrix} 0 \\ -1 \end{bmatrix}, y = -1 \right\}$$

eljalao@up.edu.ph

eljalao@up.edu.ph

eljalao@up.edu.ph

Perceptron Induction Usage

• Final Equation of the line: $3x_1 + 0.2 x_2 = 0$

BUSAGE	DAYSDELQ	DEFAULT	
1	2	Yes	3(1) + 0.2(2) = 3.4 > 0
-1	2	No	3(-1) + 0.2(2) = -2.6 < 0
0	-1	No	3(0) + 0.2(-1) = -0.2 < 0

Perceptron Induction Issues

- Separable data implies there is a plane that classifies training data perfectly
- Algorithm converges for separable data, if λ is sufficiently small
- If separable, many solutions, depends on the initial w
- If not separable, does not converge: Needs ANN

Artificial Neural Networks

- Is a network of Perceptrons or Nodes that mimics a biological network of Neurons in a brain
- An ANN attempts to recreate the computational mirror of the biological neural network
- Each neuron takes many input signals, then based on an internal weighting system, produces a single output signal that's typically sent as input to another neuron.
- Finding the weights in an ANN constitute the bulk of the time done in learning the ANN.

General Structure of ANN

Choice of Hidden Layers

- Typically the number of hidden units is somewhere in the range of 5 to 100, with the number increasing with the number of inputs and number of training cases.
- Choice of the number of hidden layers is guided by background knowledge and experimentation. (Friedman et al.)

ANN ZIP code example

• A 16x16 8 bit greyscale image of numbers

ANN ZIP code example

- Net-1: No hidden layer, equivalent to multinomial logistic regression.
- Net-2: One hidden layer, 12 hidden units fully connected.
- Net-3: Two hidden layers locally connected.
- Net-4: Two hidden layers, locally connected with weight sharing.
- Net-5: Two hidden layers, locally connected, two levels of weight sharing.

² NEC,

ANN ZIP code example

- Credit scoring is the practice of analyzing a persons background and credit application in order to assess the creditworthiness of the person
- The variables *income* (yearly), *age*, *loan* (size in euros) and *LTI*(the loan to yearly income ratio) are available.
- The goal is to devise a model which predicts, whether or not a default will occur within 10 years.

http://www.r-bloggers.com/using-neuralnetworks-for-credit-scoring-a-simpleexample/

New Data:

income	age	loan	LTI	default10yr
42710	46	6104	0.143	5
66953	19	8770	0.131	5
24904	57	15	0.001	,

Type the following lines of code in RStudio and run.

> creditsettest

	income	age	loan	LTI	default10yr	predictions
1	42710	46	6104	0.143	NA	0
2	66953	19	8770	0.131	NA	1
3	24904	57	15	0.001	NA	0

Advantages and Disadvantages Table: ANN

Parameter	Advantages	Disadvantages
Complexity		
Assumptions		
Preprocessing		
Categorical/Numerical		
Parameters		
Speed of Algorithm		
Handling Outliers/Noise		
Handling Missing Data		
Interpretability		
Relative Predictive Power		
s Stability of Model		
Optimality of Model		

This Session's Outline

- What is Classification?
- Frequency Table
 - Zero R
 - One R
 - Naïve Bayes
 - Decision Tree
 - Rule Based Classifiers
- Similarity
 - K-Nearest Neighbors
- Perceptron Based
 - ANN
 - SVM

- Ensembles
 - Adaboost
 - Random Forests
- Model Evaluation
- Case Study

 A Support Vector Machine (SVM) performs classification by finding a plane that maximizes the margin between the two classes. The vectors (cases) that define the plane are the support vectors.

Recall: Limitations of Perceptrons

- Solution not unique if separable
- Data needs to be separable to converge
- Linear Model

These are solved using Support Vector Machines (SVM)

• Find a linear hyperplane (decision boundary) that will separate the data

One Possible Solution

Another possible solution

Other possible solutions

- Which one is better? B1 or B2?
- How do you define better?

Find hyperplane maximizes the margin => B1 is better than B2

E.R. L. Jalao, Copyright UP NEC, eljalao@up.edu.ph

- We want to maximize: $Margin = \frac{2}{\|\beta\|^2}$
 - Which is equivalent to minimizing: $Z(\beta) = \frac{\|\beta\|^2}{2}$
 - But subjected to the following constraint:

$$y_i(\beta^T x_i + b) \ge 1, \ \forall (y_i, x_i), i = 1, 2...n$$

- If $y_i = 1$, prediction $\beta^T x_i + b = 1$ and if $y_i = -1$ then $\beta^T x_i + b = -1$
- This is a constrained optimization problem
 - Numerical approaches to solve it (e.g., quadratic programming)

Limitations of Perceptrons

- Solution not unique if separable
- Data needs to be separable to converge
- Linear Model

• What if the problem is not linearly separable?

- What if the problem is not linearly separable?
 - Introduce slack variables
 - Need to minimize:

$$Min Z(\beta) = \frac{\|\beta\|^2}{2} + \lambda \left(\sum_{i=1}^N \xi_i^k\right)$$

• Subject to:

$$y_i(\beta^T x_i + b) \ge 1 - \xi_i, \quad \forall (y_i, x_i), i = 1, 2...n$$

The Tuning/Complexity Parameter λ

• If λ is Large: Focus on Minimizing Errors

E.R. L. Jalao, Copyright UP NEC, eljalao@up.edu.ph

The Tuning/Complexity Parameter λ

• If λ is Small: Focus on Maximizing Margin

E.R. L. Jalao, Copyright UP NEC, eljalao@up.edu.ph

Limitations of Perceptrons

- Solution not unique if separable
- Data needs to be separable to converge
- Linear Model

Nonlinear Support Vector Machines

What if decision boundary is not linear?

Nonlinear Support Vector Machines

Transform data into higher dimensional space

Non-linear SVMs: Feature spaces

 General idea: the original feature space can always be mapped to some higher-dimensional feature space where the training set is separable:

Kernels

- Kernel methods transform the training data into higher dimensional spaces such that the data can be more easily separated
- Kernel Trick: A complex function can be approximated by a Kernel:

- E.g.
$$f(x_1, x_2) = 1 + \sqrt{2}x_1 + \sqrt{2}x_2 + x_1^2 + x_2^2 + \sqrt{2}x_1x_2$$

- Kernel:
$$k(x_1, x_2) = (1 + x_1 x_2^t)^2$$

Business Scenario: Credit Scoring

We will be using the credit scoring dataset again.

income	age	loan	LTI	default10yr
42710	46	6104	0.143	
66953	19	8770	0.131	?
24904	57	15	0.001	5

http://www.r-bloggers.com/using-neuralnetworks-for-credit-scoring-a-simpleexample/

Business Scenario: Credit Scoring

Type the following lines of code in RStudio and run.

Business Scenario: Credit Scoring

>	credits	sette	es tSMC)		
	income	age	loan	LTI	default10yr	predictions
1	42710	46	6104	0.143	<na></na>	0
2	66953	19	8770	0.131	<na></na>	1
3	24904	57	15	0.001	<na></na>	0

Advantages and Disadvantages Table: SVM

Parameter	Advantages	Disadvantages
Complexity		
Assumptions		
Preprocessing		
Categorical/Numerical		
Parameters		
Speed of Algorithm		
Handling Outliers/Noise		
Handling Missing Data		
Interpretability		
Relative Predictive Power		
s Stability of Model		
Optimality of Model		

This Session's Outline

- What is Classification?
- Frequency Table
 - Zero R
 - One R
 - Naïve Bayes
 - Decision Tree
 - Rule Based Classifiers
- Similarity
 - K-Nearest Neighbors
- Perceptron Based
 - ANN
 - SVM

- Ensembles
 - Adaboost
 - Random Forests
- Model Evaluation
- Case Study

Ensemble Methods

- Construct a set of classifiers from the training data
- Predict class label of previously unseen records by aggregating predictions made by multiple classifiers
- Wisdom of the Crowd
- Types of Ensembles
 - Parallel Ensemble
 - Serial Ensemble

Parallel Ensembles

- Parallel: Combines approx. independent, diverse base learners
- Different learners should make different errors
- Ensemble can outperform any one of its components
- Bagging, Random Forest (RF) examples

General Idea

Generation of Datasets: Bagging

Sampling with replacement

Original Data	1	2	3	4	5	6	7	8	9	10
Bagging (Round 1)	7	8	10	8	2	5	10	10	5	9
Bagging (Round 2)	1	4	9	1	2	3	2	7	3	2
Bagging (Round 3)	1	8	5	10	5	5	9	6	3	7

- Build classifier on each bootstrap sample
- Each sample has probability $\left(1 \frac{1}{n}\right)^n$ of NOT being selected
- $\approx \frac{1}{3}$ is not inside the bag: OOB

Bagging

Example Initial Data

x	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
у	1	1	1	-1	-1	-1	-1	1	1	1

Round 1: Random Data Selected

x	0.1	0.2	0.2	0.3	0.4	0.4	0.5	0.6	0.9	0.9
у	1	1	1	1	-1	-1	-1	-1	1	1

Round 1 Optimal Split

- if
$$x \le 0.35 \rightarrow y = 1, x > 0.35 \rightarrow y = -1$$

х	0.1	0.2	0.2	0.3	0.4	0.4	0.5	0.6	0.9	0.9
ŷ	1	1	1	1	-1	-1	-1	-1	-1	-1

Bagging

Round 2: Random Data Selected

x	0.2	0.4	0.5	0.6	0.7	0.7	0.7	0.8	0.9	0.9
у	1	-1	-1	-1	-1	-1	-1	1	1	1

Round 2 Optimal Split:

$$- \text{ if } x \le 0.75 \rightarrow y = -1, x > 0.75 \rightarrow y = 1$$

х	0.2	0.4	0.5	0.6	0.7	0.7	0.7	0.8	0.9	0.9
ŷ	-1	-1	-1	-1	-1	-1	-1	1	1	1

Bagging

Round 3: Random Data Selected

x	0.1	0.1	0.1	0.3	0.3	0.4	0.8	0.9	0.9	1
y	1	1	1	1	1	-1	1	1	1	1

• Round 3 Optimal Split:

$$y = 1$$

х	0.1	0.1	0.1	0.3	0.3	0.4	0.8	0.9	0.9	1
ŷ	1	1	1	1	1	1	1	1	1	1

Bagging Ensemble

Ensemble Model

• If
$$x \le 0.35 \to y = 1, x > 0.35 \to y = -1$$

• If
$$x \le 0.75 \rightarrow y = -1, x > 0.75 \rightarrow y = 1$$

•
$$y = 1$$

Round	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
1	1	1	1	-1	-1	-1	-1	-1	-1	-1
2	-1	-1	-1	-1	-1	-1	-1	1	1	1
3	1	1	1	1	1	1	1	1	1	1
Majority	1	1	1	-1	-1	-1	-1	1	1	1
True	1	1	1	-1	-1	-1	-1	1	1	1

This Session's Outline

- What is Classification?
- Frequency Table
 - Zero R
 - One R
 - Naïve Bayes
 - Decision Tree
 - Rule Based Classifiers
- Similarity
 - K-Nearest Neighbors
- Perceptron Based
 - ANN
 - SVM

- Ensembles
 - Adaboost
 - Random Forests
- Model Evaluation
- Case Study

Serial Ensemble

- Serial: New learner uses previously built learners
 - Iteratively reweight the training data to focus on previous errors—known as boosting
 - Combine as linear combination Adaboost Algorithm (1996)
 - Dramatic increase in accuracy with even weak base learners—can reduce bias and variance
 - Initially, all n records are assigned equal weights
 - Unlike bagging, weights may change at the end of boosting round

Boosting

- Records that are wrongly classified will have their weights increased
- Records that are classified correctly will have their weights decreased

Original Data	1	2	3	4	5	6	7	8	9	10
Boosting (Round 1)	7	3	2	8	7	9	4	10	6	3
Boosting (Round 2)	5	4	9	4	2	5	1	7	4	2
Boosting (Round 3)	4	4	8	10	4	5	4	6	3	4

• Its weight is increased, therefore it is more likely to be chosen again in subsequent rounds

Adaboost - Adaptive Boosting

- Instead of resampling, uses training set re-weighting
 - Each training sample uses a weight to determine the probability of being selected for a training set.
- AdaBoost is an algorithm for constructing a "strong" classifier as linear combination of "simple" "weak" classifier

$$f(x) = \sum_{t=1}^{T} \alpha_t h_t(x)$$

Final classification based on weighted vote of weak classifiers

Business Scenario: Bank Data

Type the following lines of code in RStudio and run.

Business Scenario: Bank Data

	> 3	adaboostp	red[[1:10,]								
		id	age	sex	re	egion	income	married	children	car	save_act	
	1	ID12101	48	FEMALE	INNER_	_CITY	17546.00	NO	1	NO	NO	
	2	ID12102	40	MALE		TOWN	30085.10	YES	3	YES	NO	
	3	ID12103	51	FEMALE	INNER_	_CITY	16575.40	YES	0	YES	YES	
	4	ID12104	23	FEMALE		TOWN	20375.40	YES	3	NO	NO	
	5	ID12105	57	FEMALE	F	RURAL	50576.30	YES	0	NO	YES	
	6	ID12106	57	FEMALE		TOWN	37869.60	YES	2	NO	YES	
	7	ID12107	22	MALE	F	RURAL	8877.07	NO	0	NO	NO	
	8	ID12108	58	MALE		TOWN	24946.60	YES	0	YES	YES	
	9	ID12109	37	FEMALE	SUBL	JRBAN	25304.30	YES	2	YES	NO	
	10	ID12110	54	MALE		TOWN	24212.10	YES	2	YES	YES	
		current_	act	mortgag	e pep	pred	ictions					
	1		NO	N	O YES		YES					
	2		YES	YE	S NO		NO					
	3		YES	N	IO NO		NO					
	4		YES	N	IO NO		NO					
	5		NO	N	IO NO		NO					
	6		YES	N	O YES		YES					
us	7		YES	N	O YES		YES					
	8		YES	N	IO NO		NO					
Q	9		NO	N	IO NO		NO					
4	10		YES	N	IO NO		NO					

This Session's Outline

- What is Classification?
- Frequency Table
 - Zero R
 - One R
 - Naïve Bayes
 - Decision Tree
 - Rule Based Classifiers
- Similarity
 - K-Nearest Neighbors
- Perceptron Based
 - ANN
 - SVM

- Ensembles
 - Adaboost
 - Random Forests
- Model Evaluation
- Case Study

Random Forests

- The random forest (<u>Breiman</u>, 2001) is an ensemble of decision trees
- Trees are combined by average (regression) or voting (classification)
- Tree provides a class probability estimates so that weighted votes can be used

Random Forests

Random Forests Algorithm

- For some number of trees T
- Sample N cases at random with replacement to create a subset of the data at each node:
 - For some number p, p predictor variables are selected at random from all the predictor variables.
 - The predictor variable that provides the best split, according to some objective function, is used to do a binary split on that node.
 - At the next node, choose another p variables at random from all predictor variables and do the same.

Random Forests

- Selecting p variables randomly reduces correlation between trees (variance)
- Brieman suggests three possible values for m: $1/2\sqrt{p}$, \sqrt{p} , and $2\sqrt{p}$

Business Scenario: Census Income

- Predict whether a person's income exceeds \$50K/yr based on various demographic data like: age, workclass, education, marital status, occupation, relationship, race, sex, capital gains, hours per week and country.
- Sample Data:

age					educati on-num	1		relation ship		sex	capitalg ain	capitallos s	· .	country	income
185			6 •			-		, , , , , , , , , , , , , , , , , , ,	Asian-					oo am ur y	
									Pac-						
				Some-		Never-	Craft-	Own-	Island						
	27	Private	116358	college	10	married	repair	child	er	Male	0	1980	40	Philippines	<=50K
									Asian-						
									Pac-						
		State-		Some-		Never-	Adm-	Unmarri	Island						
	29	gov	71592	college	10	married	clerical	ed	er	Female	0	0	40	Philippines	<=50K
						Married									
S				Bachelo		-civ-	Adm-	Other-							
	32	Private	270335	rs	13	spouse	clerical	relative	White	Male	0	0	40	Philippines	>50K

Business Scenario: Income Data

Type the following lines of code in RStudio and run.

Advantages and Disadvantages Table: Random Forests

Parameter	Advantages	Disadvantages
Complexity		
Assumptions		
Preprocessing		
Categorical/Numerical		
Parameters		
Speed of Algorithm		
Handling Outliers/Noise		
Handling Missing Data		
Interpretability		
Relative Predictive Power		
s Stability of Model		
Optimality of Model		

This Session's Outline

- What is Classification?
- Frequency Table
 - Zero R
 - One R
 - Naïve Bayes
 - Decision Tree
 - Rule Based Classifiers
- Similarity
 - K-Nearest Neighbors
- Perceptron Based
 - ANN
 - SVM

- Ensembles
 - Adaboost
 - Random Forests
- Model Evaluation
- Case Study

Model Evaluation

- How to evaluate the performance of a model?
 - Metrics for Performance Evaluation
- How to obtain reliable estimates?
 - Methods for Performance Evaluation
 - Overfitting and Underfitting
- How to compare the relative performance among competing models?
 - Methods for Model Comparison

Model Evaluation

 Model Evaluation is a methodology that helps to find the best model that represents our data and how well the chosen model will work in the future.

Definition of Terms

• Error:

$$error = 1 if \hat{y} \neq y$$

- If predicted value of the classifier model is not equal to the actual value, then we define that as an error.
- We would like to minimize error
- Given a binary classification model, how do we count the error predictions?

Metrics for Performance Evaluation

Confusion Matrix: A way to tabulate errors

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	а	b
	Class=No	С	d

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

Metrics for Performance Evaluation

	ACTUAL CLASS		
		Class=Yes	Class=No
PREDICTED CLASS	Class=Yes	a (TP)	b (FN)
	Class=No	c (FP)	d (TN)

Most widely-used metric:

Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Re-Substitution Errors

Re-substitution errors: error on training data

Re-Substitution Errors

Type the following lines of code in RStudio and run.

Re-Substitution Errors

```
> summary(J48Model)
=== Summary ===
Correctly Classified Instances
                                        554
                                                           92.3333 %
Incorrectly Classified Instances
                                         46
                                                            7.6667 %
Kappa statistic
                                          0.845
Mean absolute error
                                          0.1389
Root mean squared error
                                          0.2636
Relative absolute error
                                          27.9979 %
Root relative squared error
                                          52.9137 %
Total Number of Instances
                                        600
=== Confusion Matrix ===
       b <-- classified as</pre>
 309 17 l
             a = NO
  29 245 |
             b = YES
```

Generalization Errors

Generalization errors: error on unseen data

Generalization Errors

Type the following lines of code in RStudio and run.

```
bankdata = read.csv("bankdata.csv")
sample <- floor(2/3 * nrow(bankdata))</pre>
set.seed(123)
train_ind <- sample(seq_len(nrow(bankdata)),
                     size = sample
bankdatatrain <- bankdata[train_ind, ]</pre>
bankdatatest <- bankdata[-train_ind, ]</pre>
J48ModelHoldout <- J48(pep \sim age + sex+ region + income
                 + married + children + car
                 + save_act+ current_act+ mortgage
                 , data=bankdatatrain)
evaluate_Weka_classifier(J48ModelHoldout,
                          newdata = bankdatatest)
```

Generalization Errors

```
=== Summary ===
Correctly Classified Instances
                                        178
                                                           89
Incorrectly Classified Instances
                                         22
                                                           11
Kappa statistic
                                          0.7727
Mean absolute error
                                          0.1696
Root mean squared error
                                          0.3252
Relative absolute error
                                         34.7989 %
Root relative squared error
                                         65.8951 %
Total Number of Instances
                                        200
=== Confusion Matrix ===
       b <-- classified as
 107 \quad 9 \mid a = NO
  13 71 | b = YES
```


Model Evaluation

- How to evaluate the performance of a model?
 - Metrics for Performance Evaluation
- How to obtain reliable estimates?
 - Methods for Performance Evaluation
 - Overfitting and Underfitting
- How to compare the relative performance among competing models?
 - Methods for Model Comparison

Methods for Performance Evaluation

- Disclaimer: Performance of a model may depend on other factors besides the learning algorithm:
 - Class distribution
 - Cost of misclassification
 - Size of training and test sets

Methods of Estimation

Holdout

Reserve x% for training and 100-x% for testing

Cross validation

- Estimates the performance of the Model generated using all data.
- Partition data into k disjoint subsets
- k-fold: train on k-1 partitions, test on the remaining one
- If k=10,11 Decision Tree Models will be created. One for each fold, and 1 using all data.

Cross Validation

Overall Accuracy = Ave(Round 1, Round 2...)

Cross Validation

Type the following lines of code in RStudio and run.

Cross Validation

```
=== 10 Fold Cross Validation ===
=== Summary ===
Correctly Classified Instances
                                       539
                                                          89.8333 %
Incorrectly Classified Instances
                                                          10.1667 %
                                        61
Kappa statistic
                                         0.7942
Mean absolute error
                                         0.167
Root mean squared error
                                         0.305
                                        33.6511 %
Relative absolute error
                                        61.2344 %
Root relative squared error
Total Number of Instances
                                       600
=== Detailed Accuracy By Class ===
                 TP Rate FP Rate Precision
                                              Recall
                                                                            ROC Area PRC Area
                                                        F-Measure
                                                                   MCC
                                                                                                Class
                 0.929
                          0.139
                                   0.889
                                              0.929
                                                        0.909
                                                                   0.795
                                                                            0.883
                                                                                      0.863
                                                                                                 NO
                 0.861
                          0.071
                                   0.911
                                              0.861
                                                       0.886
                                                                   0.795
                                                                            0.883
                                                                                      0.847
                                                                                                YES
                 0.898
                                   0.899
                                              0.898
                                                        0.898
                                                                   0.795
                                                                            0.883
                                                                                      0.856
Weighted Avg.
                          0.108
=== Confusion Matrix ===
           <-- classified as
 303 23 1
             a = NO
```


38 236 |

b = YES

Underfit

- Simple Model
- Lots of Errors
- Stable Prediction

Overfit

- Complex Model
- No Errors
- Unstable Prediction
- Predicts Even Noise

- Just Right
 - Small Errors
 - Stable Predictions

Overfitting due to Noise

Decision boundary is distorted by noise point

Underfitting: when model is too simple, both training and test errors are large

Notes on Overfitting

- Overfitting results in classification models that are more complex than necessary
- Training error no longer provides a good estimate of how well the tree will perform on previously unseen records
- Need new ways for estimating errors

How to Address Overfitting

- Post-pruning
 - Grow model to its entirety
 - Trim the complexity of the model
 - If generalization error improves after trimming, replace the complex model with the less complex model

Addressing Overfitting and Underfitting

Fitting a complex model:

Overfitting Model

Complexity:

Number of Leaves : 64

Size of the tree : 113

Training Error:

```
> summary(J480verfit)
=== Summary ===

Correctly Classified Instances 572 95.3333 %
Incorrectly Classified Instances 28 4.6667 %
```

Testing Error

```
> evaluate_Weka_classifier(J480verfit,
+ newdata = bankdata,
+ numFolds = 10, class = TRUE, seed =1)
=== 10 Fold Cross Validation ===

=== Summary ===

Correctly Classified Instances 519 86.5 %
Incorrectly Classified Instances 81 13.5 %
```


Addressing Overfitting and Underfitting

Fitting a underfit model:

Underfit Model

Complexity:

Number of Leaves : 9

Size of the tree: 17

Training Error:

```
> summary(J48ModelUnderfit)
=== Summary ===
Correctly Classified Instances 501 83.5 %
Incorrectly Classified Instances 99 16.5 %
```

Testing Error

Addressing Overfitting and Underfitting

• Fitting a pruned model:

Pruned Model

Complexity:

Number of Leaves : 15

Size of the tree : 29

Training Error:

```
> summary(J48ModelWPrunning)
=== Summary ===
Correctly Classified Instances 554 92.3333 %
Incorrectly Classified Instances 46 7.6667 %
```

Testing Error:

Model Summaries

Type of Model	Training Error	Testing Error
Underfit Model	16.5%	19.67%
Just Right Model	7.67%	10.16%
Overfit Model	4.67%	13.50%

Model Evaluation

- How to evaluate the performance of a model?
 - Metrics for Performance Evaluation
- How to obtain reliable estimates?
 - Methods for Performance Evaluation
 - Overfitting and Underfitting
- How to compare the relative performance among competing models?
 - Methods for Model Comparison

Limitation of Accuracy

- Consider a 2-class problem
 - Number of Class "–" examples = 9990
 - Number of Class "+" examples = 10
- If model predicts everything to be class "-", accuracy is 9990/10000 = 99.9 %
 - Accuracy is misleading because model does not detect any class "+" example

Cost Matrix

	PREDICTED CLASS		
	C(i j)	Class=Yes	Class=No
ACTUAL	Class=Yes	C(Yes Yes)	C(No Yes)
	Class=No	C(Yes No)	C(No No)

C(i|j): Cost of misclassifying class j example as class i

Computing Cost of Classification

Cost Matrix	PREDICTED CLASS		
ACTUAL CLASS	C(i j)	+	•
	+	-1	100
	•	1	0

Model M ₁	PREDICTED CLASS		
ACTUAL CLASS		+	-
	+	255	40
	-	60	145

Accuracy = 80%

Cost = 3805

Accuracy = 90%

Cost = 4255

Computing Cost of Classification

With Cost

Result:

=== Summary ===				
Correctly Classified Instances Incorrectly Classified Instances Kappa statistic Total Cost	539 61 0.7942 99	89.8333 % 10.1667 %		
eljalao@up.edu.ph				

Cost-Sensitive Measures

Precision (p) =
$$\frac{a}{a+c}$$

Recall (r) =
$$\frac{a}{a+b}$$

F-measure (F) =
$$\frac{2rp}{r+p} = \frac{2a}{2a+b+c}$$

- Precision is biased towards C(Yes | Yes) & C(Yes | No)
- Recall is biased towards C(Yes | Yes) & C(No | Yes)
- F-measure is biased towards all except C(No|No)

ROC (Receiver Operating Characteristic)

- Developed in 1950s for signal detection theory to analyze noisy signals
 - Characterize the trade-off between positive hits and false alarms
- ROC curve plots TP (on the y-axis) against FP (on the x-axis)
- Performance of each classifier represented as a curve with varying TP and FP performance

ROC Curve

- (TP,FP):
- (0,0): declare everything to be negative class
- (1,1): declare everything to be positive class
- (1,0): ideal
- Diagonal line:
 - Random guessing
 - Below diagonal line:
 - prediction is opposite of t

http://www.datasciencecentral.com/profiles/blogs/how-to-assess-quality-and-correctness-of-classification-models

Using ROC for Model Comparison

- No model consistently outperform the other
 - M₁ is better for small FPR
 - M₂ is better for large FPR
- Area Under the ROC curve
 - Ideal:
 - Area = 1
 - Random guess:
 - Area = 0.5

Practical Application of ROCs

- Predicting Churn
 - Must have high true positive rate = very low false negative rate
 - Must be able to capture all Churn Customers
 - Ok to have high false positive rate
 - Predicting that you will Churn but actually will Not Churn
 - Choose Model 2
- Predicting Flu
 - Must have low false positive rate
 - Predicting You Have Flu but actually have no Flu
 - Must have an acceptable true positive rate
 - Must be able to detect Flu at least 60% of the time
 - Choose Model 1

Using ROC Curves

Type the following lines of code in RStudio and run.

```
bankdata = read.csv("bankdata.csv")
sample <- floor(0.67 * nrow(bankdata))</pre>
set.seed(123)
train_ind <- sample(seq_len(nrow(bankdata)),
                     size = sample)
bankdatatrain <- bankdata[train_ind, ]</pre>
bankdatatest <- bankdata[-train_ind, ]</pre>
J48Model < J48(pep \sim age + sex+ region + income
                 + married + children + car
                 + save_act+ current_act+ mortgage
                 , data=bankdatatrain)
JRipModel \leftarrow JRip(pep \sim age + sex+ region + income
                   + married + children + car
                   + save_act+ current_act+ mortgage
                   , data=bankdatatrain)
```

186

Using ROC Curves

Type the following lines of code in RStudio and run.

```
library("ROCR")
labels = ifelse(bankdatatest$pep=="YES",1,0)
predictions = cbind(predict(J48Model,
                             newdata =bankdatatest,
                             type = c("probability"))[,c("YES")],
                     predict(JRipModel,
                             newdata =bankdatatest,
                             type = c("probability"))[,c("YES")])
labels = cbind(labels, labels)
pred2 <- prediction( predictions, labels)</pre>
perf2 <- performance(pred2,"tpr","fpr")</pre>
plot(perf2, col=list("red", "blue"))
legend("bottomright", legend=c("J48Model", "JRipModel"),
       col=c("red", "blue"), lty=1:1, cex=0.8)
```

Using ROC Curves

This Session's Outline

- What is Classification?
- Frequency Table
 - Zero R
 - One R
 - Naïve Bayes
 - Decision Tree
 - Rule Based Classifiers
- Similarity
 - K-Nearest Neighbors
- Perceptron Based
 - ANN
 - SVM

- Ensembles
 - Adaboost
 - Random Forests
- Model Evaluation
- Case Study

Case 2: Classification Using R

 Selecting the Best Classification Model for the Churn Data Using R

Algorithm Cheat Sheet

http://scikit-

of ter for

learn

learn.org/stable/tutorial/machine_learning_map/index.html

Algorithm Cheat Sheet

Machine Learning Applied to Big Data

http://www.datasciencecentral.com/profiles/blogs/key-tools-of-big-data-for-transformation-review-case-study

This Session's Outline

- What is Classification?
- Frequency Table
 - Zero R
 - One R
 - Naïve Bayes
 - Decision Tree
 - Rule Based Classifiers
- Similarity
 - K-Nearest Neighbors
- Perceptron Based
 - ANN
 - SVM

- Ensembles
 - Adaboost
 - Random Forests
- Model Evaluation
- Case Study

References

- Data Mining Overview: http://www.saedsayad.com/
- Tan et al. Intro to Data Mining Notes
- Runger, G. IEE 520 notes
- http://axon.cs.byu.edu/Dan/678/miscellaneous/SVM.example.pdf
- G. Runger, ASU IEE 578

