```
import pandas as pd
import numpy as np
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
data=pd.read_csv(r"heart.csv")
x=data.iloc[:,0:20] #independent columns
y=data.iloc[:,-1] #target columns
```

data.head()

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	th
0	63	1	3	145	233	1	0	150	0	2.3	0	0	
1	37	1	2	130	250	0	1	187	0	3.5	0	0	
2	41	0	1	130	204	0	0	172	0	1.4	2	0	
3	56	1	1	120	236	0	1	178	0	8.0	2	0	
4	57	0	0	120	354	0	1	163	1	0.6	2	0	

print(data.describe())

₽		age	sex	ср	 ca	thal	target
	count	303.000000	303.000000	303.000000	 303.000000	303.000000	303.000000
	mean	54.366337	0.683168	0.966997	 0.729373	2.313531	0.544554
	std	9.082101	0.466011	1.032052	 1.022606	0.612277	0.498835
	min	29.000000	0.000000	0.000000	 0.000000	0.000000	0.000000
	25%	47.500000	0.000000	0.000000	 0.000000	2.000000	0.000000
	50%	55.000000	1.000000	1.000000	 0.000000	2.000000	1.000000
	75%	61.000000	1.000000	2.000000	 1.000000	3.000000	1.000000
	max	77.000000	1.000000	3.000000	 4.000000	3.000000	1.000000

[8 rows x 14 columns]

print(data.shape)

(303, 14)

#apply SelectKBest class to extract top 10 features
bestfeatures=SelectKBest(score_func=chi2,k=8)
fit=bestfeatures.fit(x,y)

dfscores=pd.DataFrame(fit.scores_)
dfcolumns=pd.DataFrame(x.columns)

#concat two dataframes for better visualization
featureScores=pd.concat([dfcolumns,dfscores],axis=1)
featureScores.columns=['values','Scores'] #naming the dataframe columns

	values	Scores
0	age	23.286624
1	sex	7.576835
2	ср	62.598098
3	trestbps	14.823925
4	chol	23.936394
5	fbs	0.202934
6	restecg	2.978271
7	thalach	188.320472
8	exang	38.914377
9	oldpeak	72.644253
10	slope	9.804095
11	ca	66.440765
12	thal	5.791853
13	target	138.000000

print(featureScores.nlargest(10, 'Scores'))

	values	Scores
7	thalach	188.320472
13	target	138.000000
9	oldpeak	72.644253
11	ca	66.440765
2	ср	62.598098
8	exang	38.914377
4	chol	23.936394
0	age	23.286624
3	trestbps	14.823925
10	slope	9.804095

from sklearn.ensemble import ExtraTreesClassifier
import matplotlib.pyplot as plt
model=ExtraTreesClassifier()
model.fit(x,y)

```
print(model.feature_importances_)
```

```
[0.01128683 0.01909092 0.05162095 0.00732613 0.00913291 0.00415975 0.00774644 0.01593183 0.0425676 0.03095078 0.02734842 0.04014682 0.03753551 0.6951551 ]
```

feat_importances=pd.Series(model.feature_importances_,index=x.columns)
feat_importances.nlargest(10).plot(kind='barh')
plt.show()

th	restecg	fbs	chol	trestbps	ср	sex	age	
-0.3	-0.026793	0.168401	0.218388	0.292784	-0.047924	-0.137750	1.000000	age
-0.0	-0.054692	0.027645	-0.192253	-0.097475	-0.070390	1.000000	-0.137750	sex
0.2	0.006994	0.087377	-0.022464	-0.034019	1.000000	-0.070390	-0.047924	ср
-0.1	-0.080388	0.190868	0.144821	1.000000	-0.034019	-0.097475	0.292784	trestbps
-0.0	-0.084454	0.032476	1.000000	0.144821	-0.022464	-0.192253	0.218388	chol

import seaborn as sns
#using pearson Correlation
plt.figure(figsize=(12,10))
cor=x_train.corr()
sns.heatmap(cor,annot=True,cmap=plt.cm.CMRmap_r)
plt.show()


```
def correlation(dataset,threshold):
   col_corr=set() #set of all names of correlated columns
   corr_matrix=dataset.corr()
   for i in range(len(corr_matrix.columns)):
        for j in range(i):
        if abs(corr_matrix.iloc[i,j])>threshold:
```

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	ca	thal	t
225	70	1	0	145	174	0	1	125	1	2.6	0	3	
152	64	1	3	170	227	0	0	155	0	0.6	0	3	
228	59	1	3	170	288	0	0	159	0	0.2	0	3	
201	60	1	0	125	258	0	0	141	1	2.8	1	3	
52	62	1	2	130	231	0	1	146	0	1.8	3	3	
253	67	1	0	100	299	0	0	125	1	0.9	2	2	
293	67	1	2	152	212	0	0	150	0	0.8	0	3	
76	51	1	2	125	245	1	0	166	0	2.4	0	2	
272	67	1	0	120	237	0	1	71	0	1.0	0	2	
238	77	1	0	125	304	0	0	162	1	0.0	3	2	

91 rows × 13 columns

New Section