```
PoloTech | Data Science
```

Machine Learning I

```
def estudo_de_caso():
  resultados = "Análise da aplicação de \
  Machine Learning em um dataset sobre \
  vinhos"
  return resultados
estudo de caso()
```

```
2 3 4 5
```

```
for i in range(5):
   print(integrantes[i])
```

Gustavo Wohlers Karine Alves Luiz Fonseca Maísa Santos Pablo Brito

Sumário {

- Objetivo do trabalho
- Exploração do dataset
- Aplicação do estimador Base Line
- Resultados Preliminares
- Resultados Finais
- Conclusões
- Referências Bibliográficas

O objetivo do trabalho é fazer uso de algoritmos de aprendizado de máquinas para analisar as características e prever a qualidade dos **vinhos** com base em suas propriedades químicas, como teor alcoólico, acidez, pH e outros fatores.

Quais são as features presentes no dataset?

1	1 df_winewhite.head()											
	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
0	7.0	0.27	0.36	20.7	0.045	45.0	170.0	1.0010	3.00	0.45	8.8	6
1	6.3	0.30	0.34	1.6	0.049	14.0	132.0	0.9940	3.30	0.49	9.5	6
2	8.1	0.28	0.40	6.9	0.050	30.0	97.0	0.9951	3.26	0.44	10.1	6
3	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.9956	3.19	0.40	9.9	6
4	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.9956	3.19	0.40	9.9	6

Exploração do dataset

Existem valores Null ou NaN no dataset?

```
1 df winewhite.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4898 entries, 0 to 4897
Data columns (total 12 columns):
   Column
                        Non-Null Count Dtype
   fixed acidity
                        4898 non-null float64
    volatile acidity
                        4898 non-null float64
    citric acid
                        4898 non-null float64
    residual sugar 4898 non-null float64
    chlorides
                        4898 non-null float64
    free sulfur dioxide
                        4898 non-null float64
    total sulfur dioxide 4898 non-null
                                     float64
    density
                        4898 non-null float64
 8
    рH
                        4898 non-null float64
                        4898 non-null float64
    sulphates
 10 alcohol
                        4898 non-null float64
11 quality
                        4898 non-null
                                      int64
dtypes: float64(11), int64(1)
memory usage: 459.3 KB
```

PoloTech | Data Science

Machine Learning I

Qual a matriz de correlação do dataset?

O quão desbalanceado está o target do dataset?

E em relação aos outliers?

1 df_winewhite.describe()

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рH	sulphates	alcohol	quality
count	4898.000000	4898.000000	4898.000000	4898.000000	4898.000000	4898.000000	4898.000000	4898.000000	4898.000000	4898.000000	4898.000000	4898.000000
mean	6.854788	0.278241	0.334192	6.391415	0.045772	35.308085	138.360657	0.994027	3.188267	0.489847	10.514267	5.877909
std	0.843868	0.100795	0.121020	5.072058	0.021848	17.007137	42.498065	0.002991	0.151001	0.114126	1.230621	0.885639
min	3.800000	0.080000	0.000000	0.600000	0.009000	2.000000	9.000000	0.987110	2.720000	0.220000	8.000000	3.000000
25%	6.300000	0.210000	0.270000	1.700000	0.036000	23.000000	108.000000	0.991723	3.090000	0.410000	9.500000	5.000000
50%	6.800000	0.260000	0.320000	5.200000	0.043000	34.000000	134.000000	0.993740	3.180000	0.470000	10.400000	6.000000
75%	7.300000	0.320000	0.390000	9.900000	0.050000	46.000000	167.000000	0.996100	3.280000	0.550000	11.400000	6.000000
max	14.200000	1.100000	1.660000	65.800000	0.346000	289.000000	440.000000	1.038980	3.820000	1.080000	14.200000	9.000000

13

14

E em relação aos outliers?

1 df_w	df_winewhite.describe()											
	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
count	4898.000000	4898.000000	4898.000000	4898.000000	4898.000000	4898.000000	4898.000000	4898.000000	4898.000000	4898.000000	4898.000000	4898.000000
mean	6.854788	0.278241	0.334192	6.391415	0.045772	35.308085	138.360657	0.994027	3.188267	0.489847	10.514267	5.877909
std	0.843868	0.100795	0.121020	5.072058	0.021848	17.007137	42.498065	0.002991	0.151001	0.114126	1.230621	0.885639
min	3.800000	0.080000	0.000000	0.600000	0.009000	2.000000	9.000000	0.987110	2.720000	0.220000	8.000000	3.000000
25%	6.300000	0.210000	0.270000	1.700000	0.036000	23.000000	108.000000	0.991723	3.090000	0.410000	9.500000	5.000000
50%	6.800000	0.260000	0.320000	5.200000	0.043000	34.000000	134.000000	0.993740	3.180000	0.470000	10.400000	6.000000
75%	7.300000	0.320000	0.390000	9.900000	0.050000	46.000000	167.000000	0.996100	3.280000	0.550000	11.400000	6.000000
max	14.200000	1.100000	1.660000	65.800000	0.346000	289.000000	440.000000	1.038980	3.820000	1.080000	14.200000	9.000000
	3											

Exploração do dataset

Exploração do dataset

Random Forest - Base Line

Random best parameters: {'rf_n_estimators': 180, 'rf_max_features': 2, 'rf_max_depth': 7}
Random best Score: 0.5818112486672196

		Métricas	de TR	EINO			Métricas	de TE	STE	
		precision	recall	f1-score	support		precision	recall	f1-score	support
	3	0.00	0.00	0.00	15	3	0.00	0.00	0.00	5
	4	1.00	0.08	0.15	122	4	0.00	0.00	0.00	41
	5	0.73	0.69	0.71	1093	5	0.63	0.57	0.60	364
	6	0.61	0.87	0.72	1648	6	0.54	0.79	0.65	550
0	7	0.80	0.37	0.51	660	7	0.62	0.26	0.37	220
ש	8	0.00	0.00	0.00	131	8	0.00	0.00	0.00	44
	9	0.00	0.00	0.00	4	9	0.00	0.00	0.00	1
	accuracy			0.66	3673	accuracy			0.57	1225
3	macro avg	0.45	0.29	0.30	3673	macro avg	0.26	0.23	0.23	1225
4	weighted avg	0.67	0.66	0.63	3673	weighted avg	0.54	0.57	0.53	1225

Random Forest - SMOTE/STRATIFIED KFOLD

Random Forest - SMOTE/STRATIFIED KFOLD

Grid best parameters: {'rf__n_estimators': 165, 'rf__max_features': 2, 'rf__max_depth': 7}
Grid best Score: 0.5327800829875518

		Métricas	de TR	EINO		Métricas de TESTE				
		precision	recall	f1-score	support		precision	recall	f1-score	support
	4	0.65	0.55	0.59	121	4	0.53	0.40	0.46	42
	5	0.74	0.53	0.61	1074	5	0.64	0.45	0.53	383
	6	0.61	0.69	0.65	1648	6	0.54	0.63	0.58	550
	7	0.50	0.64	0.56	676	7	0.44	0.60	0.51	204
	8	0.94	0.33	0.48	135	8	1.00	0.05	0.10	40
0				-						
	accuracy			0.61	3654	accuracy			0.54	1219
	macro avg	0.69	0.55	0.58	3654	macro avg	0.63	0.43	0.43	1219
	weighted avg	0.64	0.61	0.61	3654	weighted avg	0.57	0.54	0.53	1219

SVC (Support Vector Classifier)

SVC (Support Vector Classifier)

Grid best parameters: {'svc_gamma': 0.500000000000000, 'svc_C': 4}
Grid best Score: 0.5618257261410788

6		Métricas	de TR	EINO	
		precision	recall	f1-score	support
8	4	0.70	0.98	0.82	121
^	5	0.85	0.73	0.79	1074
9	6	0.83	0.74	0.78	1648
10	7	0.70	0.96	0.81	676
	8	0.83	0.95	0.88	135
12	accuracy			0.80	3654
	macro avg	0.78	0.87	0.82	3654
13	weighted avg	0.81	0.80	0.79	3654

	Métricas	de TE	STE	
	precision	recall	f1-score	support
4	0.37	0.40	0.39	42
5	0.62	0.54	0.58	383
6	0.59	0.57	0.58	550
7	0.51	0.67	0.58	204
8	0.33	0.38	0.35	40
accuracy			0.57	1219
macro avg	0.49	0.51	0.50	1219
weighted avg	0.57	0.57	0.57	1219

Random Forest - Feature Selection

Random Forest - Feature Selection

Grid best parameters: {'rf_n_estimators': 180, 'rf_max_features': 2, 'rf_max_depth': 7}
Grid best Score: 0.5673291414027997

	Métricas	de	TREINO		ı	Métricas	de T	ESTE	
	precision	recall	f1-score	support		precision	recall	f1-score	support
4 5 6 7 8	1.00 0.69 0.60 0.70 1.00	0.20 0.68 0.82 0.31 0.12	0.33 0.68 0.69 0.43 0.21	121 1074 1648 676 135	4 5 6 7 8	0.00 0.58 0.54 0.57 0.75	0.00 0.59 0.72 0.24 0.07	0.00 0.59 0.62 0.34 0.14	42 383 550 204 40
accuracy macro avg weighted avg	0.80 0.67	0.43 0.64	0.64 0.47 0.61	3654 3654 3654	accuracy macro avg weighted avg	0.49 0.54	0.33 0.55	0.55 0.34 0.52	1219 1219 1219

Index(['volatile acidity', 'free sulfur dioxide', 'density', 'alcohol'], dtype='object')

PoloTech | Data Science

Machine Learning I

AdaBoost

AdaBoost

Grid best parameters: {'adb__n_estimators': 9, 'adb__learning_rate': 0.97, 'adb__algorithm': 'SAMME'}
Grid best Score: 0.4816179954981637

Mé	tricas	de T	REINO	
ì	precision	recall	f1-score	support
3	0.00	0.00	0.00	15
4	0.00	0.00	0.00	122
5	0.48	0.80	0.60	1093
6	0.49	0.53	0.51	1648
7	0.19	0.03	0.06	660
8	0.00	0.00	0.00	131
9	0.00	0.00	0.00	4
accuracy			0.48	3673
macro avg	0.17	0.19	0.17	3673
weighted avg	0.40	0.48	0.42	3673

M	étricas	de 1	ESTE	
	precision	recall	f1-score	support
3	0.00	0.00	0.00	5
4	0.00	0.00	0.00	41
5	0.48	0.78	0.59	364
6	0.50	0.54	0.52	550
7	0.14	0.02	0.04	220
8	0.00	0.00	0.00	44
9	0.00	0.00	0.00	1
accuracy			0.48	1225
macro avg	0.16	0.19	0.16	1225
weighted avg	0.39	0.48	0.41	1225

Nova abordagem {

Após o teste de diferentes técnicas, ficou constatada a baixa acurácia para os diferentes modelos. Como possível solução, o problema foi dividido em duas etapas:

- Classificar o vinho como bom ou ruim;
- Diferenciar a classificação do vinho bom.

```
Novos Algoritmos {
```

O primeiro algoritmo irá classificar entre vinho bom e vinho ruim:

```
qualidade_vinho = {3:'bad', 4: 'bad', 5: 'bad', 6: 'bad', 7: 'good', \
8: 'good', 9:'good'}
```

O segundo algoritmo irá diferenciar a classe dos vinhos bons:

```
df_winewhite_good = df_winewhite[df_winewhite ['quality'].isin([7, 8])]
```

<"Obs.: nota 9 não utilizada, pois apresenta poucas amostras" >

SVC Classificando Vinhos bons x Vinhos ruins

Grid best parameters: {'svc_gamma': 0.9000000000000000, 'svc_C': 2}
Grid best Score: 0.8559797417367611

Resultados finais

SVC Classificando Vinhos bons x Vinhos Ruins

	Métricas	de TR	EINO	
	precision	recall	f1-score	support
bad	0.99	1.00	0.99	2878
good	0.99	0.97	0.98	795
accuracy			0.99	3673
macro avg	0.99	0.98	0.99	3673
weighted avg	0.99	0.99	0.99	3673

	Métricas	de TE	STE	
	precision	recall	f1-score	support
bad	0.89	0.97	0.93	960
good	0.85	0.58	0.69	265
accuracy			0.89	1225
macro avg	0.87	0.78	0.81	1225
weighted avg	0.88	0.89	0.88	1225

SVC para Vinhos de nota 7 x Vinhos nota 8

SVC para Vinhos de nota 7 x Vinhos nota 8

Grid best parameters: {'rf__n_estimators': 180, 'rf__max_features': 2, 'rf__max_depth': 7}
Grid best Score: 0.8282134818149508

		Métricas de TREINO					Métricas de TESTE				
		precision	recall	f1-score	support		precision	recall	f1-score	support	
	7	1.00	1.00	1.00	660	7	0.89	0.95	0.91	220	
	8	0.98	1.00	0.99	131	8	0.59	0.39	0.47	44	
0	accuracy			1.00	791	accuracy			0.85	264	
1	macro avg	0.99	1.00	0.99	791	macro avg	0.74	0.67	0.69	264	
_ つ	weighted avg	1.00	1.00	1.00	791	weighted avg	0.84	0.85	0.84	264	

3

5

7

8

9

10

4.7

13

14

Por fim, o modelo iria para produção?

Sim! Os resultados do projeto podem ser usados por produtores de vinho para melhorar a qualidade de seus produtos, bem como por consumidores para tomar decisões mais informadas sobre quais vinhos escolher.

Além disso, o modelo poderia ajudar a expandir o conhecimento sobre a produção de vinho, auxiliar no aprendizado de novos enólogos e auxiliar nas avaliações feitas pelos sommeliers que, por se basearem em experiências, estão propensos a fatores subjetivos.

```
CORTEZ, P.; CERDEIRA, A.; ALMEIDA, F.; MATOS, T.; REIS, J. Modeling
Decision Support Systems, v. 47 (4), p. 547-553, 2009. DOI:
10.1016/j.dss.2009.05.016.
Kaggle. Wine Quality Dataset. Disponível
                                                             em:
<https://www.kaggle.com/datasets/yasserh/wine-quality-dataset> Acesso
em: 30 março de 2023.
Slidego. Oficina de linguagens de programação para iniciantes.
Disponível
                                                               em:
<https://slidesgo.com/pt/tema/oficina-de-linguagens-de-programacao-pa</pre>
ra-iniciantes#position-8&related-1&rs=detail-related>. Acesso em: 30
de março de 2023.
```