

Apendice 1. Variables Dummies

José L. Sainz-Pardo Auñón

TÉCNICAS ESTADÍSTICAS PARA EL APRENDIZAJE II

Máster Universitario en Estadística Computacional y Ciencia de Datos para la Toma de Decisiones.

Variables Dummies

Definición:

- Las variables dummies son variables binarias (0 o 1) que se utilizan para representar categorías en modelos estadísticos y de machine learning.
- Permiten incluir variables categóricas en modelos que requieren datos numéricos.

Tipos de Variables Dummies

- **Dummies Binarias**: Representan dos categorías (por ejemplo, "Sí" o "No").
- **Dummies de Múltiples Clases**: Representan más de dos categorías. Por ejemplo, para la variable "Color" con valores "Rojo", "Verde" y "Azul", se crearían tres variables:
 - D_{Rojo}
 - D_{Verde}
 - D_{Azul}

Ejemplo de Codificación con Redundancia

- Supongamos la variable categórica "Color" con tres valores: Rojo, Verde, Azul.
- Podemos crear una variable dummy para cada categoría:

Color	D_{Rojo}	D_{Verde}	D_{Azul}
Rojo	1	0	0
Verde	0	1	0
Azul	0	0	1

 Cada color se representa con una combinación única de las tres variables dummies.

Ejemplo de Codificación sin Redundancia

 En algunos modelos, una de las variables es redundante. Podemos codificar usando solo dos variables dummies:

Color	D_{Rojo}	D_{Verde}
Rojo	1	0
Verde	0	1
Azul	0	0

- En este caso, el valor "Azul" es implícito cuando ambas variables dummies son 0.
- Esta codificación elimina la redundancia, ya que una tercera variable sería linealmente dependiente de las otras dos.

Eliminación de Redundancia en Variables Dummies

Es imprescindible eliminar la redundancia en:

- Regresión lineal y logística: Evita la multicolinealidad, que causa inestabilidad en los coeficientes y dificultades en la interpretación.
- Análisis Discriminante Lineal (LDA): También sensible a la colinealidad.

No es necesario eliminar la redundancia en:

- Árboles de decisión, Random Forests, SVM, k-NN, Redes Neuronales.
- Estos algoritmos no se ven afectados por la colinealidad y seleccionan las variables más relevantes automáticamente.

Dado que:

- eliminar o no (cuando no sea imprescindible) las variables redundantes finalmente produce resultados similares:
- es más eficiente eliminar la redundancia en términos de tiempo de computación y memoria;

resulta siempre recomendable eliminar las variables redudantes.

Formas de Crear Variables Dummies

Método Manual: Crear las columnas manualmente y asignar 0 o 1 según corresponda. Supongamos que tenemos una columna 'Color' y queremos crear una variable dummy manualmente para 'Rojo':

Usando librerías:

Sin eliminar redundancia:

```
dummies = pd.get_dummies(df['Color'])
```

• Eliminando redundancia:

Cuándo Usar Variables Dummies

- Modelos de Regresión: Cuando se incluyen variables categóricas en modelos de regresión lineal o logística.
- Árboles de Decisión: Para representar categorizaciones en modelos de árboles de decisión y ensemble.
- Redes Neuronales: Para convertir categorías en un formato numérico que pueda ser procesado por la red.
- Machine Learning: En algoritmos como kNN, SVM, y otros que requieren entradas numéricas.