(Two-level) Logic Synthesis PLAs and Two-level Logic Synthesis

Becker/Molitor, Chapter 7.1

Jan Reineke Universität des Saarlandes

Programmable Logic Arrays (PLA)

Special two-level circuits to implement

Boolean Polynomials $f_i = m_{i1} + m_{i2} + ... + m_{ik}$ with m_{iq} from $\{m_1, ..., m_s\}$

Short excursion: Transistors

- A transistor can be seen as a voltage-controlled switch:
 - Gate g controls the conductivity between source and sink
- n-type transistor:
 - transmits, if gate is 1
 - disconnects, if gate is 0
- p-type transistor:
 - transmits, if gate is 0
 - disconnects, if gate is 1

PLAs: Implementation of monomials

PLAs use n-type-transistors as switches:

If gate is 1,

the 1 at the source is pulled down to 0.

Computes the conjunction of the complements of the inputs.

How to implement disjunctions?

Employ double negation and de Morgan:

$$a + b = -(a + b) = ((-a) \cdot (-b))$$

Two-level logic synthesis

Programmable Logic Arrays: Example (1/2)

$$f_1 = x_1'x_2' + x_2'x_3 + x_1x_2$$

 $f_2 = x_2'x_3$

Three monomials:

 $x_1'x_2'$, $x_2'x_{3}$, and x_1x_2

Programmable Logic Arrays: Example (2/2)

$$f_1 = x_1'x_2' + x_2'x_3 + x_1x_2$$
 Three monomials: $x_1'x_2', x_2'x_3, und x_1x_2$

Assume valuation $x_1=1$, $x_2=1$, $x_3=1$. Then we have:

Two-level logic synthesis

Cost of monomials

Let $q = q_1 \cdot q_2 \cdot \dots \cdot q_r$ be a monomial.

Then, the cost |q| of q is defined to be the number of transistors required to implement q in the PLA, so |q| := r.

Cost of polynomials

Let $p_1,...,p_m$ be polynomials, and let $M(p_1,....,p_m)$ denote the set of monomials occurring these polynomials.

- The **primary cost** $cost_1(p_1,...,p_m)$ of a set of polynomials $\{p_1,...,p_m\}$ is the number of required rows in a PLA to implement $p_1,...,p_m$, and so $cost_1(p_1,...,p_m) = |M(p_1,...,p_m)|$.
- The secondary cost $cost_2(p_1,...,p_m)$ of a set of polynomials $\{p_1,...,p_m\}$ is the number of transistors required, and so

$$cost_2(p_1,...,p_m) = \sum_{q \in M(p_1,...,p_m)} |q| + \sum_{i=1,...,m} |M(p_i)|$$

Comparing costs

Let $cost = (cost_1, cost_2)$ be a cost function.

We define the following total order on costs as follows:

We have $cost(p_1, ..., p_m) \le cost(q_1, ..., q_m)$, if

- $cost_1(p_1, ..., p_m) < cost_1(q_1, ..., q_m)$ or
- $cost_1(p_1, ..., p_m) = cost_1(q_1, ..., q_m)$ and $cost_2(p_1, ..., p_m) \le cost_2(q_1, ..., q_m)$.

I.e. costs are lexicographically ordered.

Two-level logic minimization

Given:

A Boolean function $f = (f_1,...,f_m)$ in n variables and m outputs represented via

- a truth table of size m²ⁿ or
- a set of m polynomials $\{p_1,...,p_m\}$ with $\psi(p_i)=f_i$.

Wanted:

A set of polynomials $\{g_1, ..., g_m\}$, such that

- $\psi(g_i)=f_i$ for all i,
- $cost(g_1, ..., g_m)$ is minimal.

In the following, for simplicity, we will only consider total Boolean functions with a single output.

Two-level logic synthesis

Illustration of monomials and polynomials

Illustration via hypercubes (1/2)

Every Boolean function f in n variables and a single output, can be specified by marking its on-set ON(f).

Example:

$$f(x_1,x_2,x_3,x_4)$$

$$= x_1 x_2$$

$$+ x_1 x_2' x_3' x_4$$

Illustration via hypercubes (2/2)

- Monomials of length k correspond to (n-k)-dimensional subcubes!
- A polynomial corresponds to the union of subcubes.

Formulation as a covering problem

Given:

A Boolean function $f = (f_1,...,f_m)$ in n variables and a single output represented via a marked n-dimensional hypercube

Wanted:

A minimal covering of the marked nodes via maximal subcubes in the *n*-dimensional hypercube.

Minimal = with a minimal number of subcubes

... corresponds to the minimal polynomial:

