

An Efficient Search-and-Score Algorithm for Ancestral Graphs Using Multivariate Information Scores

Nikita Lagrange, Hervé Isambert, cnrs, Institut Curie, Paris

Motivation

Likelihood of Bayesian Networks (BN)

$$\mathcal{L}_{\mathcal{D}|\mathcal{G}_{\text{BN}}} = \frac{1}{Z_{\mathcal{D},\mathcal{G}_{\text{BN}}}} \exp\left(-N \sum_{X_i \in \mathbf{V}}^{\text{vertices}} H(X_i \mid \mathbf{Pa}_{X_i})\right)$$

Likelihood of Ancestral Graphs (AG)

$$\mathcal{L}_{\mathcal{D}|\mathcal{G}_{AG}} = \frac{1}{Z_{\mathcal{D},\mathcal{G}_{AG}}} \exp(-N H(p,q))$$

$$H(p,q) = \sum_{x} -p(x) \log q(x) = -\sum_{C \subseteq V} (-1)^{|C|} I(C)$$

Step 2

Theory

Definition: ac-connected subset

- A subset C is said to be ac-connected if $\forall X, Y \in C$, either:
- $\bullet X$ and Y are connected through any type of edge, or
- there exists an ac-connecting path between X and Y given C. An ac-connecting path between X and Y given C is a collider path

$$X* \to Z_1 \leftrightarrow \cdots \leftrightarrow Z_k \leftarrow *Y,$$

such that each $Z_i \in \mathbf{An}_G(\{X,Y\} \cup \mathbf{C})$, that is, with $Z_i \in \mathbf{C}$ or through an ancestor path, *i.e.*, $Z_i \rightarrow \cdots \rightarrow T$ with $T \in \{X, Y\} \cup C$.

Code: github.com/miicTeam/miicsearchscore

Theorem: likelihood of ancestral graphs¹

The likelihood $\mathcal{L}_{\mathcal{D}|\mathcal{G}}$ of an ancestral graph \mathcal{G} is decomposable in terms of multivariate cross-information $I(\mathbf{C})$, summed over all ac-connected subsets of variables C:

$$\mathcal{L}_{\mathcal{D}|\mathcal{G}} = \frac{1}{Z_{\mathcal{D},\mathcal{G}}} \exp \left(N \sum_{\boldsymbol{C} \subseteq \boldsymbol{V}}^{a\boldsymbol{c}\text{-connected}} (-1)^{|\boldsymbol{C}|} I(\boldsymbol{C}) \right)$$

where N is the number of iid samples in dataset \mathcal{D} , and $Z_{\mathcal{D},\mathcal{G}}$ is a data- and model-dependent normalization constant.

ac-connected

Proposition: estimation of cross-information for ac-connected subset C

$$I(\mathbf{C}) = \sum p(x, y, z) \log \frac{q(x, y, z) \ q(x) \ q(y) \ q(z)}{q(x, y) \ q(x, z) \ q(y, z)} \equiv \sum p(x, y, z) \log \frac{p(x, y, z) \ p(x) \ p(y) \ p(z)}{p(x, y) \ p(x, z) \ p(y, z)}$$

Cross-entropy decomposition of ancestral graphs

$I(x_i; x_j; x_k; x_l)$

ac-connected

MIIC_search&score

Edge removal

Edge orientation priming

MIIC: Multivariate Information-based Inductive Causation^{2,3,4}

MIIC: information-theoretic causal discovery (handles latent variables)

Conditional mutual information → conditional independence

$$I'(X; Y \mid Z) = I(X; Y \mid Z) - \frac{k_{X;Y|Z}}{N}$$

 $k_{X;Y|Z}$: fNML (factorized Normalized Maximum Likelihood) complexity term

Edge orientation

X

Penalizes model complexity • Prevents overfitting • Favors simpler, robust graphs • Removes spurious edges

Benchmarks

Key Takeaways Results

- ✓ High precision & robust recall Strong on non-linear, non-Gaussian, and
- categorical data ✓ Works with small samples
- Competitive scalability
- No strong assumptions

Limitations

X Limited local scores

- X No undirected edges X Outperformed on purely linear Gaussian data
- (GFCI & DAG-GNN best) Perspectives
- Higher-order collider paths
- MCMC or oracle search
- Mixed and time-series data

Step 1 – Local node score minimization $\min_{\mathbf{Pa}_{X_i}'} H(X_i \mid \mathbf{Pa}_{X_i}') + \mathbf{complexity}$

 $\mathsf{Pa}'_{X_i}\!\subseteq\!\mathsf{Pa}_{X_i}\cup\mathsf{Sp}_{X_i}\cup\mathsf{Ne}_{X_i}$

 \mathbf{Pa}_{X_i} : parents of X_i , e.g. $Y \to X_i$

 \mathbf{Sp}_{X_i} : spouses of X_i , e.g. $\mathbf{Y} \leftrightarrow X_i$ Ne_{X_i} : neighbors of X_i , e.g. $Y - X_i$

Step 2 – Local edge score minimization

 $X \star Y = -I(X; Y \mid \mathbf{Pa'_{\star}}) + \mathbf{cplx}$ $\min_{\star \in \{\rightarrow, \leftarrow, \leftrightarrow\}}$ With:

> $\operatorname{Pa'}_{X \to Y} = \operatorname{Pa}_{Y} \cup \operatorname{Sp}_{Y} \backslash X$ $\mathbf{Pa'}_{X \leftarrow Y} = \mathbf{Pa}_{X} \cup \mathbf{Sp}_{X} \setminus Y$

 $\mathsf{Pa'}_{X \leftrightarrow Y} = \mathsf{Pa'}_{X \to Y} \cup \mathsf{Pa'}_{X \leftarrow Y}$

[2] Ribeiro-Dantas M., Li H., Cabeli V., et al. (2024). Learning interpretable causal networks from large-scale data: application to 400,000 breast cancer records. iScience.

[1] Lagrange N., Isambert H. (2025). An Efficient Search-and-Score Algorithm for Ancestral

Graphs using Multivariate Information Scores for Complex Non-linear and Categorical

References

Data. In ICML.

[3] Cabeli V., Li H., Ribeiro-Dantas M., et al. (2021). Reliable causal discovery using mutual information supremum principle. In Why21 @ NeurIPS.

[4] Li H., Cabeli V., Sella N., Isambert H. (2019). Constraint-based causal structure learning with consistent separating sets. In NeurIPS.