Lecture Notes 3

Minfei Chen

2025年8月14日

1 最优策略 (optimal policy)

1.1 定义

一个策略 π^* 是最优策略,如果 $v_{\pi^*}(s) \ge v_{\pi}(s)$ 对于所有状态 s 和其他所有策略 π .

2 贝尔曼最优公式 (BOE)

2.1 elementwise form

$$v(s) = \max_{\pi} \sum_{a} \pi(a|s) \left(\sum_{r} p(r|s,a)r + \gamma \sum_{s'} p(s'|s,a)v(s') \right), \quad \forall s \in \mathcal{S}$$

* 已知:系统信息 (状态转移概率、reword、 γ); 求解: 最优策略 π

2.2 最优化问题

对于某个状态,最优的策略是选择 action value 最大的那一个 action,即把它的概率设为 1,其他的 action 的概率设为 0。

$$\pi(a|s) = \begin{cases} 1 & \text{if } a = a^* \\ 0 & \text{if } a \neq a^* \end{cases}$$

where $a^* = \arg \max_{a} q(s, a)$.

2.3 压缩映射定理 (contract mapping theorem)

BOE 可以写成:

$$v = f(v)$$

不动点 (fixed point):

 $x \in X$ is a fixed point of $f: X \to X$ if

$$f(x) = x$$

压缩映射 (contract mapping):

压缩映射定理:

对于任何形如 x = f(x) 的方程,如果函数 f 是一个**压缩映射 (contraction mapping)**,那么:

- **存在性 (Existence):** 存在一个不动点 x^* 满足 $f(x^*) = x^*$ 。
- 唯一性 (Uniqueness): 该不动点 x^* 是唯一的。
- 算法/收敛性 (Algorithm): 对于一个序列 $\{x_k\}$, 如果 $x_{k+1} = f(x_k)$, 那么当 $k \to \infty$ 时,序列 x_k 将收敛到 x^* $(x_k \to x^*)$ 。并且,该收敛是指数级快速的 (exponentially fast)。

2.4 利用压缩映射定理求解 BOE

第一步: 证明 f(v) 是一个 contract mapping, 公式中的 γ 恰好为 discount rate

第二步:利用压缩映射定理来求出不动点 v^* ,即最高的状态值,并且可以知道解是唯一存在的,可以通过迭代的方法逐渐收敛到这个解

2.5 BOE 的最优性

BOE 实际上是一个特殊的贝尔曼公式 $v^* = r_{\pi^*} + \gamma P_{\pi^*} v^*$, 它所对应的策略是最优策略。

从状态值的角度看,假设 v^* 是贝尔曼最优方程 $v = \max_{\pi} (r_{\pi} + \gamma P_{\pi} v)$ 的唯一解,并且对于任何给定的策略 π , v_{π} 是满足贝尔曼期望方程 $v_{\pi} = r_{\pi} + \gamma P_{\pi} v_{\pi}$ 的状态价值函数,那么:

$$v^* \ge v_{\pi}, \quad \forall \pi$$

贝尔曼最优公式所代表的其实是一个**贪心**最优策略,在这个策略下,每个状态都选择 action value 最大的 action。

3 最优策略分析

影响策略的主要有三个因素:

- 奖励设计 (Reward design): r
- 系统模型 (System model): p(s'|s,a), p(r|s,a)
- 折扣率 (Discount rate): γ

在系统模型固定的情况下,通过**调整 reward 和** γ , 最优策略会发生很大的改变。

对于不同的 γ,γ 越大,agent 会更注重长远的 reward。 γ 越小,agent 会更注重 immediate reward。

对于不同的 reward, 调整 reward 的大小不一定会使最优策略发生改变。影响最优策略的是 **reward 之间的关系 (relative reward)**。对奖励函数的线性修改不会改变 action value 的相对大小关系

考虑一个马尔可夫决策过程,其最优状态价值函数为 $v^* \in \mathbb{R}^{|S|}$,满足贝尔曼最优方程 $v^* = \max_\pi (r_\pi + \gamma P_\pi v^*)$ 。

如果将每一个奖励 r 都进行一次仿射变换 (affine transformation) 得到新的奖励 ar+b,其中 $a,b\in\mathbb{R}$ 且 a>0,那么对应的新最优状态价值函数 v' 也是 v^* 的一个仿射变换:

$$v' = av^* + \frac{b}{1 - \gamma} \mathbf{1}$$

其中 $\gamma \in (0,1)$ 是折扣率, $\mathbf{1} = [1, ..., 1]^T$ 是全1向量。

因此可以推断,最优策略对于奖励信号的仿射变换是保持不变的。

*Discount rate 实际上是对绕远路 (meaningless detour) 的一种惩罚。