STOCHASTIC PROCESSES NOTES

Contents

1.	Basics	1
2.	Martingales	5
3.	Brownian Motion	6

1. Basics

Definition 1.1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, (S, \mathcal{G}) a measurable space, T an index set and $X : T \times \Omega \to S$. Then X is said to be a **stochastic processes** if for each $t \in T$, $X(t, \cdot)$ is \mathcal{F} - \mathcal{G} measurable (i.e. X is just a collection of random variables indexed by time).

Note 1.2. We will work primarily with $T = [0, \infty)$ and $(S, \mathcal{G}) = (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ and we often write $X_t(\omega)$ to mean $X(t, \omega)$ as well as the function $X(\cdot, \omega)$.

Definition 1.3. Let X be a process and $\omega \in \Omega$. The function $X(\cdot, \omega)$ is called the **sample** path of ω .

Definition 1.4. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and $\{\mathcal{F}_t\}_{t\geq 0}$ a collection of sub σ -algebras of \mathcal{F} such that for each $s, t \in [0, \infty)$, s < t implies that $\mathcal{F}_s \subset \mathcal{F}_t$. Then $\{\mathcal{F}_t\}_{t\geq 0}$ is said to be a **filtration** of \mathcal{F} .

Definition 1.5. Let $\{\mathcal{F}_t\}_{t\geq 0}$ be a filtration. Then $\{\mathcal{F}_t\}_{t\geq 0}$ is said to be **complete** if for each $t\in [0,\infty)$, \mathcal{F}_t contains all the null sets of \mathcal{F} . (i.e. \mathcal{F}_0 contains all the null sets of \mathcal{F})

Definition 1.6. Let $\{\mathcal{F}_t\}_{t\geq 0}$ be a filtration. Then $\{\mathcal{F}_t\}_{t\geq 0}$ is said to be **right continuous** if for each $t\in [0,\infty)$, $\mathcal{F}_t=\bigcap_{s>t}\mathcal{F}_s$

Definition 1.7. Let $\{\mathcal{F}_t\}_{t\geq 0}$ be a filtration. Then $\{\mathcal{F}_t\}_{t\geq 0}$ is said to satisfy the **usual** conditions if $\{\mathcal{F}_t\}_{t\geq 0}$ is complete and right continuous.

Definition 1.8. Let $\{\mathcal{F}_t\}_{t\geq 0}$ be a filtration. Define $\mathcal{F}_{\infty} = \sigma(\mathcal{F}_t : t \geq 0)$.

Definition 1.9. Let X be a process and $\{\mathcal{F}_t\}_{t\geq 0}$ a filtration. Then X is said to be **adapted** to $\{\mathcal{F}_t\}_{t\geq 0}$ if for each $t\in [0,\infty)$, X_t is \mathcal{F}_t measurable

Definition 1.10. Let X be a process. Then the **minimal augmented filtration** of X is defined to be the smallest filtration $\{\mathcal{F}_t\}_{t\geq 0}$ such that X is adapted to $\{\mathcal{F}_t\}_{t\geq 0}$ and $\{\mathcal{F}_t\}_{t\geq 0}$ satisfies the usual conditions. (here, "smallest" means that if $\{\mathcal{G}_t\}$ is filtration satisfying the usual conditions to which X is adapted, then for each $t \in [0, \infty)$, $\mathcal{F}_t \subset \mathcal{G}_t$)

Definition 1.11. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, (S, \mathcal{G}) a measurable space, T an index set and $X: T \times \Omega \to S$ a stochastic process. We can define a function $\Phi_X: \Omega \to S^T$ by $\Phi_X(\omega)(t) = X(t, \omega)$. The **law** of X is defined to be the pushforward measure of \mathbb{P} by Φ_X and is denoted by \mathcal{L}_X . (i.e. $\mathcal{L}_X(A) = \mathbb{P}(\Phi_X^{-1}(A))$ for $A \in \mathcal{G}$)

Definition 1.12. Let X and Y be processes. Then X and Y are said to be **modifications** if for each $t \geq 0$, $N_t = \{\omega \in \Omega : X_t(\omega) \neq Y_t(\omega)\}$ is a null set.

Definition 1.13. Let X and Y be processes. Then X and Y are said to be **indistinguishable** if $N = \{\omega \in \Omega : \text{ for some } t \geq 0, X_t(\omega) \neq Y_t(\omega)\}$ is a null set.

Exercise 1. Let X and Y be processes. Suppose that X and Y are modifications and that a.s. (i.e. except on a null set) X and Y have right continuous paths. Then X and Y are indistinguishable.

Proof. By assumption, $N_r = \{\omega \in \Omega : X_t(\omega) \text{ is not right continuous or } Y_t(\omega) \text{ is not right continuous} \}$ is a null set. Let $\omega \in \Omega \cap N_r^c$. Right continuity tells us that for each $t \geq 0$, $X_t(\omega) = Y_t(\omega)$ if and only if for each $t \in [0, \infty) \cap \mathbb{Q}$, $X_t(\omega) = Y_t(\omega)$. Since X and Y are modifications, for each $t \in [0, \infty) \cap \mathbb{Q}$, $N_t = \{\omega \in \Omega : X_t(\omega) \neq Y_t(\omega)\}$ is a null set. Thus

$$N = \{\omega \in \Omega : \text{ for some } t \geq 0, X_t(\omega) \neq Y_t(\omega)\}$$

$$= (N \cap N_r) \cup (N \cap N_r^c)$$

$$= (N \cap N_r) \cup \{\omega \in \Omega \cap N_r^c : \text{ for some } t \in [0, \infty) \cap \mathbb{Q}, X_t(\omega) \neq Y_t(\omega)\}$$

$$= (N \cap N_r) \cup \bigcup_{t \in [0, \infty) \cap \mathbb{Q}} N_t$$

is a null set. Hence X and Y are indistinguishable.

Definition 1.14. Let X be a process. Then X is said to be **cadlag** if $N = \{\omega \in \Omega : X_t(\omega) \text{ is not cadlag}\}$ is a null set.

Definition 1.15. Let X be a process and $\{\mathcal{F}_t\}_{t\geq 0}$ be a filtration. Then X is said to be progressively measurable with respect to $\{\mathcal{F}_t\}_{t\geq 0}$ if for each $t\geq 0$, $X|_{[0,t]\times\Omega}$ is $\mathcal{B}([0,t])\times\mathcal{F}_t$ measurable.

Exercise 2. Let X be a process and $\{\mathcal{F}_t\}_{t\geq 0}$ a filtration. Suppose that X is adapted to $\{\mathcal{F}_t\}_{t\geq 0}$. If each sample path of X is right continuous or each path of X is left continuous, then X is progressively measurable.

Proof. Fist suppose that each path of X is right continuous. Let $t \geq 0$. Define X_n : $[0,t] \times \Omega \to \mathbb{R}$ by $X_n(s,\omega) = X_0(\omega)\mathbf{1}_{\{0\}}(s) + \sum_{k=1}^2 X_{tk/2^n}(\omega)\mathbf{1}_{(t(k-1)/2^n,tk/2^n]}(s)$. Since X is adapted to $\{\mathcal{F}_t\}_{t\geq 0}$, X_n is $\mathcal{B}([0,t]) \times \mathcal{F}_t$ measurable. Let $(s,\omega) \in [0,t] \times \Omega$. Suppose that s>0. Then for each $n \in \mathbb{N}$, there exists a unique $k_n \in \mathbb{N}$ such that $k_n \leq 2^n$ and $t(k_n-1)/2^n < s \leq tk_n/2^n$. Thus $X_n(s,\omega) = X_{tk_n/2^n}(\omega)$, $tk_n/2^n \geq s$ and $tk_n/2^n \to s$. Since each path of X is right continuous, $X_n(s,\omega) \to X_s(\omega)$. If s=0, then $X_n(s,w) = X_0(\omega) = X_s(\omega)$. Hence $X_n(s,\omega) \to X_s(\omega)$. Since $X_n \to X|_{[0,t]\times\Omega}$ pointwise, $X|_{[0,t]\times\Omega}$ is $\mathcal{B}([0,t]) \times \mathcal{F}_t$ measurable. So X is progressively measurable.

Now suppose that each path of X is left continuous. Let $t \geq 0$. Define $X_n : [0, t] \times \Omega \to \mathbb{R}$ by $X_n(s, \omega) = \sum_{k=1}^{2^n} X_{t(k-1)/2^n}(\omega) \mathbf{1}_{[t(k-1)/2^n, tk/2^n)}(s) + X_t(\omega) \mathbf{1}_{\{t\}}(s)$. The rest of the proof is similar to the other case, just this time utilizing left continuity.

Exercise 3. Let X be a process and $\{\mathcal{F}_t\}_{t\geq 0}$ a complete filtration. Suppose that X is adapted to $\{\mathcal{F}_t\}_{t\geq 0}$ and that X is right continuous or X is left continuous (a.s. of course). Then X is progressively measurable.

Proof. First we assume that X is right continuous. Let $N = \{\omega \in \Omega : X(\cdot, \omega) \text{ is not right continuous}\}$. By assumption, N is null and therefore for each $t \geq 0$, $N \in \mathcal{F}_t$. Define $\widetilde{X} : [0, \infty) \times \Omega \to [0, \infty)$ by $\widetilde{X}(t, \omega) = X(t, \omega) \mathbf{1}_{N^c}(\omega)$

Since for each $t \geq 0$, X_t is \mathcal{F}_t measurable and $N^c \in \mathcal{F}_t$, we have that \widetilde{X}_t is \mathcal{F}_t measurable and thus \widetilde{X} is adapted to $\{\mathcal{F}_t\}_{t\geq 0}$. By construction, each sample path of \widetilde{X} is right continuous. By the previous exercise, \widetilde{X} is porgressively measurable.

Now, let $t \geq 0$ and $B \in \mathcal{B}([0,t])$. If $0 \notin B$, then

$$X|_{[0,t]\times\Omega}^{-1}(B) = \widetilde{X}|_{[0,t]\times\Omega}^{-1}(B)$$

. If $0 \in B$, then

$$X|_{[0,t]\times\Omega}^{-1}(B) = \left[X|_{[0,t]\times\Omega}^{-1}(B)\cap([0,t]\times N)\right] \cup \left[X|_{[0,t]\times\Omega}^{-1}(B)\cap([0,t]\times N^c)\right]$$

$$= X|_{[0,t]\times\Omega}^{-1}(B\setminus\{0\})\cup X|_{[0,t]\times\Omega}^{-1}(\{0\})$$

$$= \widetilde{X}|_{[0,t]\times\Omega}^{-1}(B\setminus\{0\})\cup X^{-1}(\{0\})\cup([0,t]\times N)$$

Definition 1.16. Let $\{\mathcal{F}_t\}_{t\geq 0}$ be a filtration and $T:\Omega\to [0,\infty]$ a random variable. Then T is said to be a **stopping time** for $\{\mathcal{F}_t\}_{t\geq 0}$ if for each $t\in [0,\infty]$, $\{\omega\in\Omega:T(\omega)\leq t\}\in\mathcal{F}_t$.

Note that if $t = \infty$, then

$$\{\omega \in \Omega : T(\omega) \le t\} = \Omega \in \mathcal{F}_{\infty}$$

We will typically just say that T is a stopping time when the filtration is clear.

Proposition 1.17. Let $\{\mathcal{F}_t\}_{t\geq 0}$ be a filtration. Then we have the following:

- (1) if S and T are stopping times, then S + T is a stopping time.
- (2) if S is a stopping time, then for $\alpha \geq 1$, αS is a stopping time.
- (3) if there exists $c \in [0, \infty]$ such that $T \equiv c$, then T is a stopping time.
- (4) If $(T_n)_{n\in\mathbb{N}}$ is a sequence of stopping times, then $\sup_{n\in\mathbb{N}} T_n$ and $\inf_{n\in\mathbb{N}} T_n$ are stopping times.

Note that the third statement holds for $T \equiv c$ almost surely if $\{\mathcal{F}_t\}_{t\geq 0}$ is complete and the last statement implies that mins $\limsup T_n$ and $\liminf T_n$ and that for stopping times S and T, $S \wedge T$ and $S \vee T$ are stopping times.

The proof is similar to showing measurbaility of the same functions.

Proposition 1.18. Let $\{\mathcal{F}_t\}_{t\geq 0}$ be a right continuous filtration and $T:\Omega\to [0,\infty]$ a random variable. Then T is a stopping time for $\{\mathcal{F}_t\}_{t\geq 0}$ if and only if for each $t\geq 0$, $\{\omega\in\Omega:T(\omega)< t\}\in\mathcal{F}_t$.

Proof. Suppose that for each $s \geq 0$, $\{\omega \in \Omega : T(\omega) < s\} \in \mathcal{F}_s$. Let $t \geq 0$. Then

$$\{\omega \in \Omega : T(\omega) \le t\} = \bigcap_{n \in \mathbb{N}} \{\omega \in \Omega : T(\omega) < t + 1/n\}$$

$$\in \bigcap_{n \in \mathbb{N}} \mathcal{F}_{t+1/n}$$

$$= \mathcal{F}_t \qquad \text{(right continuity)}$$

Conversely, suppose that T is a stopping time for $\{\mathcal{F}_t\}_{t\geq 0}$. Let $t\geq 0$. Then

$$\{\omega \in \Omega : T(\omega) < t\} = \bigcup_{n \in \mathbb{N}} \{\omega \in \Omega : T(\omega) \le t - 1/n\}$$
$$\in \mathcal{F}_t$$

Exercise 4. Let $\{\mathcal{F}_t\}_{t\geq 0}$ be right continuous and $T:\Omega\to [0,\infty)$ be a stopping time for $\{\mathcal{F}_t\}_{t\geq 0}$. Define $T_n:\Omega\to [0,\infty)$ by $T_n(\omega)=k_\omega/2^n$ where $k_\omega\in\mathbb{N}$ is the unique positive integer such that $(k_\omega-1)/2^n\leq T(\omega)< k_\omega/2^n$. Then for each $n\in\mathbb{N}$, T_n is a stopping time for $\{\mathcal{F}_t\}_{t\geq 0}$. **FINISH!!!!!!!!**

Proof. Let
$$t \geq 0$$
.

Definition 1.19. Let X be a process and $\Lambda \in \mathcal{B}(\mathbb{R})$. Then the **hitting time** of Λ is defined to be the random variable $T_{\Lambda}: \Omega \to [0, \infty]$ given by $T_{\Lambda}(\omega) = \inf\{t > 0 : X_t(\omega) \in \Lambda\}$.

Theorem 1.20. Let $\{\mathcal{F}_t\}_{t\geq 0}$ be a complete filtration, X a right continuous process adapted to $\{\mathcal{F}_t\}_{t\geq 0}$ and $\Lambda \subset \mathbb{R}$ an open set. Then T_Λ is a stopping time for $\{\mathcal{F}_t\}_{t\geq 0}$.

Proof. Let $t \geq 0$. Note that for $\omega \in \Omega$, if $X(\cdot, \omega)$ is right continuous, then since Λ is open, we have that $T_{\Lambda}(\omega) < t$ if and only if there exists $s \in (0, t)$ such that $X_s(\omega) \in \Lambda$ if and only if there exists $s \in \mathbb{Q} \cap (0, t)$ such that $X_s(\omega) \in \Lambda$. The completeness of $\{\mathcal{F}_t\}_{t\geq 0}$ tells us that for each $s \in [0, \infty)$, \mathcal{F}_s has all the null sets of \mathcal{F} . Finally, Λ being open and X being adapted tell us that for each s < t, $X_s^{-1}(\Lambda) \in \mathcal{F}_s \subset \mathcal{F}_t$.

By assumption $N = \{\omega \in \Omega : X(\cdot, \omega) \text{ is not right continuous} \}$ is a null set, so for each $s \in [0, \infty), N \in \mathcal{F}_s$ and $N^c \in \mathcal{F}_s$. The previous note implies that

$$\{\omega \in \Omega : T_{\Lambda}(\omega) < t\} = (\{\omega \in \Omega : T_{\Lambda}(\omega) < t\} \cap N^{c}) \cup (\{\omega \in \Omega : T_{\Lambda}(\omega) < t\} \cap N)$$

$$= \left(\bigcup_{s \in \mathbb{Q} \cap (0,t)} \{\omega \in \Omega : X_{s}(\omega) \in \Lambda\} \cap N^{c}\right) \cup \left(\{\omega \in \Omega : T(\omega) < t\} \cap N\right)$$

$$\in \mathcal{F}_{t}$$

Hence T_{Λ} is a stopping time for $\{\mathcal{F}_t\}_{t\geq 0}$.

Note that the same result is true if X is a left continuous process. Also, as usual, we could get rid of the assumption that $\{\mathcal{F}_t\}_{t\geq 0}$ is complete if each sample path of X were right or left continuous instead of the paths being almost surely right or left continuous.

Definition 1.21. Let $\{\mathcal{F}_t\}_{t\geq 0}$ be a filtration and T a stopping time for $\{\mathcal{F}_t\}_{t\geq 0}$. The **stopping algebra** of T to be $\mathcal{F}_T = \{A \in \mathcal{F} : \text{ for each } t \geq 0, A \cap T^{-1}([0,t]) \in \mathcal{F}_t\}$

Note that \mathcal{F}_T is a σ -algebra

Lemma 1.22. Let $\{\mathcal{F}_t\}_{t\geq 0}$ be a filtration and T a stopping time for $\{\mathcal{F}_t\}_{t\geq 0}$. Then T is \mathcal{F}_T measurable.

Proof. Let $t, s \in [0, \infty]$. Then

$$T^{-1}([0,s]) \cap T^{-1}([0,t]) = T^{-1}([0,t \wedge s])$$

$$\in \mathcal{F}_{t \wedge s}$$

$$\subset \mathcal{F}_t.$$

So for each $s \in [0, \infty]$, $T^{-1}([0, s]) \in \mathcal{F}_T$. Hence T is \mathcal{F}_T measurable.

Theorem 1.23. Let $\{\mathcal{F}_t\}_{t\geq 0}$ be a filtration and $T:\Omega\to [0,\infty)$ a finite stopping time for $\{\mathcal{F}_t\}_{t\geq 0}$. Then $\mathcal{F}_T=\sigma(X_T:X \text{ is an everywhere cadlag process adapted to } \{\mathcal{F}_t\}_{t\geq 0})$.

Proof. Put $\mathcal{G} = \sigma(X_T : X \text{ is an everywhere cadlag process adapted to } \{\mathcal{F}_t\}_{t\geq 0})$. Let $\Lambda \in \mathcal{F}_T$. Define $X_t(\omega) = \mathbf{1}_{\Lambda}(\omega)\mathbf{1}_{T^{-1}([0,t])}(\omega) = \mathbf{1}_{\Lambda\cap T^{-1}([0,t])}(\omega)$. Then each sample path of X is clearly cadlag. Moreover, since $\Lambda \in \mathcal{F}_T$, for each $t\geq 0$, $\Lambda \cap T^{-1}([0,t]) \in \mathcal{F}_t$. So for each $t\geq 0$, X_t is \mathcal{F}_t measurable and thus X is adapted to $\{\mathcal{F}_t\}_{t\geq 0}$. So by definition, X_T is \mathcal{G} measurable. It is easy to see that $X_T = \mathbf{1}_{\Lambda}$ and therefore $\Lambda \in \mathcal{G}$. Hence $\mathcal{F}_T \subset \mathcal{G}$.

Now, let X be an everywhere cadlag process adapted to $\{\mathcal{F}_t\}_{t\geq 0}$ and $t\geq 0$. Define $\phi:\Omega\to[0,\infty)\times\Omega$ by $\phi(\omega)=(T(\omega),\omega)$. Then $X_T=X\circ\phi$. For $t\geq 0$, define the σ -algebra $\mathcal{F}_t\cap T^{-1}([0,t])$ on $T^{-1}([0,t])$ by $\mathcal{F}_t\cap T^{-1}([0,t])=\{A\cap T^{-1}([0,t]):A\in\mathcal{F}_t\}$. Let $U_1\in\mathcal{B}([0,\infty))$ and $U_2\in\mathcal{F}_t$. Then $\phi|_{T^{-1}([0,t])}^{-1}(U_1\times U_2)=T^{-1}(U_1)\cap (U_2)\cap T^{-1}([0,t])$. Since T is \mathcal{F}_T measurable, $T^{-1}(U_1)\in\mathcal{F}_T$. By definition, $T^{-1}(U_1)\cap T^{-1}([0,t])\in\mathcal{F}_t\cap T^{-1}([0,t])$. Since $U_2\in\mathcal{F}_t$, we have that $\phi|_{T^{-1}([0,t])}^{-1}(U_1\times U_2)\in\mathcal{F}_t\cap T^{-1}([0,t])$. So $\phi|_{T^{-1}([0,t])}$ is $(\mathcal{F}_t\cap T^{-1}([0,t]),\mathcal{B}([0,\infty))\otimes\mathcal{F}_t)$ measurable.

Since each sample path of X is cadlag and X is adapted to $\{\mathcal{F}_t\}_{t\geq 0}$, X is progressively measurable. In particular, $X|_{[0,t]\times\Omega}$ is $\mathcal{B}([0,\infty))\bigotimes \mathcal{F}_t$) measurable.

Hence $X_T|_{T^{-1}([0,t])}$ is $F_t \cap T^{-1}([0,t])$ measurable and for $B \in \mathcal{B}([0,\infty))$,

$$X_T^{-1}(B) \cap T^{-1}([0,t]) = X_T|_{T^{-1}([0,t])}^{-1}(B)$$

$$\in \mathcal{F}_t \cap T^{-1}([0,t])$$

$$\subset \mathcal{F}_t$$

So X_T is \mathcal{F}_T measurable and thus $\mathcal{G} \subset \mathcal{F}_T$.

2. Martingales

Definition 2.1. Let $\{\mathcal{F}_t\}_{t\geq 0}$ be a filtration and M a process. The M is said to be a **submartingale** with respect to $\{\mathcal{F}_t\}_{t\geq 0}$ if

- (1) M is adapted to $\{\mathcal{F}_t\}_{t\geq 0}$
- (2) for each $t \in [0, \infty)$, $\mathbb{E}[\overline{|M_t|}] < \infty$
- (3) for each $s, t \in [0, \infty)$, if s < t, then $\mathbb{E}[M_t | \mathcal{F}_s] \ge M_s$

Recall that the third condition means equal except on a null set.

Definition 2.2. Let $\{\mathcal{F}_t\}_{t\geq 0}$ be a filtration and M a process. The M is said to be a **supermartingale** with respect to $\{\mathcal{F}_t\}_{t\geq 0}$ if

- (1) M is adapted to $\{\mathcal{F}_t\}_{t\geq 0}$
- (2) for each $t \in [0, \infty)$, $\mathbb{E}[|M_t|] < \infty$
- (3) for each $s, t \in [0, \infty)$, if s < t, then $\mathbb{E}[M_t | \mathcal{F}_s] \le M_s$

Definition 2.3. Let $\{\mathcal{F}_t\}_{t\geq 0}$ be a filtration and M a process. The M is said to be a **sub-martingale** with respect to $\{\mathcal{F}_t\}_{t\geq 0}$ if -M is a supermartingale with respect to $\{\mathcal{F}_t\}_{t\geq 0}$

Definition 2.4. Let $\{\mathcal{F}_t\}_{t\geq 0}$ be a filtration and M a process. The M is said to be a **martingale** with respect to $\{\mathcal{F}_t\}_{t\geq 0}$ if M is a submartingale with respect to $\{\mathcal{F}_t\}_{t\geq 0}$ and M is a supermartingale with respect to $\{\mathcal{F}_t\}_{t\geq 0}$.

Theorem 2.5.

3. Brownian Motion

Definition 3.1.