සියලු ම හිමිකම් ඇවිරිණි / மුඟුට பதிப்புரிமையுடையது / All Rights Reserved }

## ( නව නිර්දේශය/பුதிய பாடத்திட்டம்/New Syllabus)

oddade & ලංකා විභාග දෙපැතැම්බැල්<mark>ට ඇත</mark>ැතින දැනැම්බින් සම්පූත්තයට විභාග දෙපාර්තමේන්තුව & ලංකා විභාග දෙපාර්තමේන්තුව திணைக்களம் இலங்கைப் மட்சைத் திணைக்களம் இலங்கைப் பரட்சைத் திணைக்களம் இலங்கைப் பரட்சைத் திணைக்களம் lions, Sri Lanka Departmen **இதுத்துத்துத்து நடித்த ந**ரதி**துது காக்குமாகி**ions. Sri Lanka Department of Examinations, Sri Lanka மதின்ற இ ලංකා විභාග දෙපාර්තමේන්තුව & ලංකා විභාග දෙපාර්තමේන්තුව & ලංකා විභාග දෙපාර්තමේන්තුව & ලංකා විභාග දෙපාර්තමේන්තුව திணைக்களம் இலங்கைப் பரீட்சைத் திணைக்களம்

අධාායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2020 கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2020 General Certificate of Education (Adv. Level) Examination, 2020

රසායන විදාහව இரசாயனவியல் Chemistry



පැය දෙකයි இரண்டு மணித்தியாலம் Two hours

### அறிவுறுத்தல்கள் :

- 🔆 ஆவர்த்தன அட்டவணை வழங்கப்பட்டுள்ளது.
- 💥 இவ்வினாத்தாள் 09 பக்கங்களைக் கொண்டுள்ளது.
- **💥 எல்லா** வினாக்களுக்கும் விடை எழுதுக.
- 🔆 கணிப்பானைப் பயன்படுத்த இடமளிக்கப்படமாட்டாது.
- இது விடைத்தாளில் தரப்பட்டுள்ள இடத்தில் உமது கூட்டெண்ணை எழுதுக.
- 🔆 விடைத்தாளின் மறுபக்கத்தில் தரப்பட்டுள்ள அறிவுறுத்தல்களைக் கவனமாக வாசித்துப் பின்பற்றுக.
- st  $oldsymbol{1}$  தொடக்கம்  $oldsymbol{50}$  வரையுள்ள வினாக்கள் ஒவ்வொன்றுக்கும் (1),(2),(3),(4),(5) என இலக்கமிடப்பட்ட விடைகளில் **சரியான** அல்லது **மிகப் பொருத்தமான** விடையைத் தெரிந்தெடுத்து, **அதனைக் குறித்து நிற்கும் இலக்கத்தைத் தரப்பட்டுள்ள அறிவுறுத்தல்களுக்கு அமைய** விடைத்தாளில் **புள்ளடி** (×) இடுவதன் மூலம் காட்டுக.

அகில வாயு மாறிலி  $R=8.314~\mathrm{J~K}^{-1}~\mathrm{mol}^{-1}$ அவகாதரோ மாறிலி  $N_A=6.022\times 10^{23}~\mathrm{mol}^{-1}$ 

பிளாங்கின் மாறிலி  $h=6.626\times 10^{-34}~\mathrm{J~s}$ ஒளியின் வேகம்  $c=3\times 10^8~\mathrm{m~s}^{-1}$ 

- 1. அணுக் கட்டமைப்பு தொடர்பாகச் செய்யப்பட்ட பின்வரும் கண்டுபிடிப்புகளைக் கருதுக.
  - I. ஒரு கதோட்டுக் கதிர்க் குழாயினுள்ளே நேர்க் கதிர்கள்
  - II. சில வகைக் கருக்களின் மூலம் உண்டாக்கப்படும் கதிர்த்தொழிற்பாடு

மேற்குறித்த I,II ஆகிய கண்டுபிடிப்புகளைச் செய்த இரு விஞ்ஞானிகளும் முறையே

- (1) ஜே.ஜே. தொம்சனும் ஹென்றி பெக்ரலும்
- (2) ஒயிகென் கோல்ட்ஸ்ரைனும் நொபேட் மில்லிக்கனும்
- (3) ஹென்றி பெக்கரலும் ஒயிகென் கோல்ட்ஸ்ரைனும்
- (4) ஜே.ஜே. தொம்சனும் ஏணெஸ்ற் றதபேட்டும்
- (5) ஒயிகென் கோல்ட்ஸ்ரைனும் ஹென்றி பெக்ரலும்
- 2. மங்கனீசு அணுவில் (Mn, Z = 25)  $l=0,\ m_l=-1$  என்னும் சக்திச் சொட்டெண்கள் உள்ள இலத்திரன் எண்ணிக்கைகள் முறையே எண்ணிக்கைகள் முறையே
  - (1) 6, 4 ஆகும்.
- (2) 8, 12 ஆகும். (3) 8, 5 ஆகும்.
- (4) 8, 6 ஆகும்.
- (5) 10, 5 ஆகும்.
- M ஆனது ஆவர்த்தன அட்டவணையில் உள்ள இரண்டாம் ஆவர்த்தனத்திற்குரிய ஒரு மூலகமாகும். அது இருமுனைவுத் திருப்புதிறன் உள்ள ஒரு பங்கீட்டுவலு மூலக்கூறு  $\mathbf{MCl}_3$  ஐ உண்டாக்குகின்றது. ஆவர்த்தன அட்டவணையில் M இன் கூட்டம்
  - (1) 2

- **4.** ஒரு பெரொக்கிநைத்திரிக் அமில மூலக்கூறிற்கு (சூத்திரம்  $ext{HNO}_4$ ,  $ext{H} \ddot{ ext{O}} \ddot{ ext{O}} \ddot{ ext{O}} = \ddot{ ext{O}}$  ) வரையத்தக்க **உறுதியற்ற** லூயி குற்று-கோட்டுக் கட்டமைப்புகளின் எண்ணிக்கை
  - (1) 1
- (2) 2
- (3) 3
- (4) 4
- (5) 5

- 5. தரப்பட்டுள்ள சேர்வையின் IUPAC பெயர்
  - (1) 1-bromo-4-methyl-5-hydroxypent-1-en-3-one
  - (2) 5-bromo-1-hydroxy-2-methylpent-4-en-3-one
  - (3) 1-bromo-5-hydroxy-4-methylpent-1-en-3-one
  - (4) 5-bromo-2-methyl-3-oxopent-4-en-1-ol
  - (5) 1-bromo-4-methyl-3-oxopent-1-enol

- **6.** O,  $O^{2-}$ , F,  $F^{-}$ ,  $S^{2-}$ ,  $Cl^{-}$ என்னும் இனங்களின் ஆரைகள் **குறையும்** வரிசை
  - (1)  $S^{2-} > Cl^{-} > O^{2-} > F^{-} > O > F$
  - (2)  $S^{2-} > Cl^{-} > O^{2-} > F^{-} > F > O$
  - (3)  $Cl^{-} > S^{2-} > O^{2-} > F^{-} > O > F$
  - (4)  $Cl^{-} > S^{2-} > F^{-} > O^{2-} > O > F$ (5)  $S^{2-} > Cl^{-} > O^{2-} > O > F^{-} > F$

More Past Papers at

tamilguru.lk

- $7. \ \ T_{_1}({
  m K})$  வெப்பநிலையிலும்  $P_{_1}({
  m Pa})$  அமுக்கத்திலும் ஒரு விறைத்த மூடிய கொள்கலத்தில் ஓர் இலட்சிய வாயுவின்  $n_{_{
  m I}}$  மூல்கள் உள்ளன. இக்கொள்கலத்தினுள் ஒரு மேலதிக அளவு வாயுவை அனுப்பும்போது புதிய வெப்பநிலையும் அமுக்கமும் முறையே  $T_2$  ,  $P_2$  ஆகும். இப்போது கொள்கலத்தில் இருக்கும் வாயு மூல்களின் மொத்த எண்ணிக்கை
  - (1)  $\frac{n_1 T_1 P}{T_2 P_2}$  (2)  $\frac{n_1 T_1 P}{T_2 P_1}$  (3)  $\frac{T_2 P}{n_1 T_1 P_1}$  (4)  $\frac{n_1 T_2 P}{T_1 P_2}$  (5)  $\frac{n_1 T_2 P}{T_1 P_2}$

- **8.** அமில  ${
  m K_2Cr_2O_7}$  கரைசலைப் பயன்படுத்தி எதனோல்  ${
  m (C_2H_5OH)}$  ஐ அசற்றிக் அமிலம்  ${
  m (CH_3COOH)}$ ஆக ஒட்சியேற்றும் தாக்கத்தில் பரிமாறப்படும் இலத்திரன்களின் மொத்த எண்ணிக்கை
  - (1) 6
- (2) 8
- (3) 10
- (4) 12
- (5) 14
- 9. நீர் NaOH உடன் தாக்கம் புரியம்போது பின்வரும் எச்சேர்வை அல்டொல் ஒடுங்கலுக்கு உட்படலாம்?

- (1) CH<sub>3</sub>C-OH (2) CH<sub>3</sub>C-OCH<sub>3</sub> (3) H-C-OCH<sub>3</sub> (4) CH<sub>3</sub>CH<sub>2</sub>C-H (5) (CH<sub>3</sub>)<sub>3</sub>CC-H
- ${f 10.}$   ${f AX}({f s}),\ {f AZ}({f s})$ ,  ${f AZ}({f s})$  ஆகியன நீரில் அரிதாகக் கரையும் உப்புகளாகும்.  ${f 25~^{\circ}C}$  இல் அவற்றின்  ${\it K_{SD}}$ பெறுமானங்கள் முறையே  $1.6 \times 10^{-9}$ ,  $3.2 \times 10^{-11}$  ,  $9.0 \times 10^{-12}$  ஆகும். 25 °C இல் கற்றயன்  $A^+(aq)$  இன் செறிவு குறையும் விதத்தில் இவ்வுப்புகளின் மூன்று நிரம்பிய கரைசல்களின் வரிசையைப் பின்வருவனவற்றில் எது காட்டுகின்றது?
  - (1) AX(s) > A<sub>2</sub>Y(s) > AZ(s)
  - (2)  $A_2Y(s) > AX(s) > AZ(s)$
  - (3)  $AX(s) > AZ(s) > A_2Y(s)$ (4)  $A_2Y(s) > AZ(s) > AX(s)$

  - (5)  $\tilde{AZ}(s) > A_{\gamma}Y(s) > AX(s)$
- 11. பின்வரும் சேர்வைகளைக் கருதுக.

சார் மூலக்கூற்றுத்

திணிவ

86

86

86

88

இச்சேர்வைகளின் கொதிநிலைகளின் மாறலை மிகச் சிறந்த விதத்தில் காட்டுவது

B.P (1)









| ALI. | 2020/ | U2/ 1-1(1            | 1121 | *)     |     |        |      |                   |              |           |              |       |
|------|-------|----------------------|------|--------|-----|--------|------|-------------------|--------------|-----------|--------------|-------|
| 12.  | NaC   | I, Na <sub>2</sub> S | 5, K | F, KCl | என் | னும் இ | ரசாu | பன இனங்களின்      | பங்கீட்டுவலு | இயல்புகள் | அதிகரிக்கும் | வரிசை |
|      | (1)   | KF                   | <    | NaCl   | <   | KCl    | <    | Na <sub>2</sub> S |              |           |              |       |
|      | (2)   | KCl                  | <    | NaCl   | <   | KF     | <    | Na <sub>2</sub> S |              |           |              |       |
|      | (3)   | KF                   | <    | KCl    | <   | NaCl   | <    | Na <sub>2</sub> S |              |           |              |       |
|      | (4)   | Na S                 | _    | NaCl   | _   | KCl    | _    | KF                |              |           |              |       |

- (5) KF < Na<sub>2</sub>S < NaCl < KCl 13. 298 K இல்  $H_2(g)$ , C(s),  $CH_3OH(l)$  ஆகியவற்றின் நியமத் தகன வெப்பவுள்ளுறைகள் முறையே  $-286\,\mathrm{kJ}\,\mathrm{mol}^{-1}$  $-393~{
  m kJ~mol}^{-1}$  ,  $-726~{
  m kJ~mol}^{-1}$ ஆகும்.  ${
  m CH_2OH}(l)$  இன் ஆவியாகலின் வெப்பவுள்ளுறை  $+37~{
  m kJ~mol}^{-1}$ ஆகும். 298 K இல் **வாயுநிலையில்** உள்ள  $CH_3OH$  இன் ஒரு மூலின் ஆக்க வெப்பவுள்ளுறை  $(kJ \ mol^{-1})$  ஆனது
  - (4) + 84(2) -239(3) -202
- 14. பின்வரும் சமன்படுத்திய இரசாயனச் சமன்பாட்டினால் காட்டப்படுகின்றவாறு ஒரு மின்னுலையில் பொசுபரசைத் தயாரிக்கலாம்.

$$2 \text{ Ca}_{3}(\text{PO}_{4})_{2} + 6 \text{SiO}_{2} + 10 \text{ C} \rightarrow 6 \text{ CaSiO}_{3} + 10 \text{ CO} + \text{P}_{4}$$

 ${
m Ca}_{3}({
m PO}_{4})_{2}$  இன்  $620~{
m g}, {
m SiO}_{2}$  இன்  $180~{
m g}$  ,  ${
m C}$  இன்  $96~{
m g}$  ஆகியன தாக்கம் புரிந்தபோது  ${
m P}_{4}$  இன்  $50~{
m g}$  கிடைத்தது. இந்நிலைமைகளின் கீழ் எல்லைச் சோதனைப் பொருளும் (முற்றாகச் செலவிடப்படும் சோதனைப் பொருள்)  $P_4$  இன் சதவீத விளைவும் (% yield) முறையே (C = 12, O = 16, Si = 28, P = 31, Ca = 40)

- (1) Ca $_{3}(PO_{4})_{2}$ , 80.7% ஆகும்.
- (2) SiO<sub>2</sub> , 80.7% ஆகும். (5) C , 25.2% ஆகும்.
- (3) C, 50.4% ஆகம்.

- (4) SiO<sub>2</sub> , 40.3% ஆகும்.
- 15. ஒரே நிலைமைகளின் கீழ் வெவ்வேறான இரு விறைத்த மூடிய கொள்கலங்களில் நடைபெறும் பின்வரும் இரு சமநிலைகளையும் கருதுக.

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g) ; K_{P_1} = 3.0 \times 10^{-4}$$
  
 $NH_3(g) + H_2S(g) \rightleftharpoons NH_4HS(g); K_{P_2} = 8.0 \times 10^{-4}$ 

இந்நிலைமைகளின் கீழ்ச் சமநிலை  $2\text{H}_2 ext{S}(g)+ ext{N}_2(g)+3 ext{H}_2(g) 
ightharpoons 2 ext{NH}_4 ext{HS}(g)$  இந்கு  $K_P$  ஆனது

- (1)  $5.76 \times 10^{-12}$
- (2)  $7.2 \times 10^{-10}$  (3)  $1.92 \times 10^{-8}$  (4)  $3.40 \times 10^{-6}$

- (5)  $3.75 \times 10^{-2}$
- 16. புரோமொபென்சீனின் நைத்திரேற்றேற்றத் தாக்கத்தைக் கருதுக. இத்தாக்கத்தில் பரிவின் மூலம் உறுதியாக்கிய காபோகற்றயன் இடைநிலைகள் உண்டாக்கப்படுகின்றன. பின்வருவனவற்றில் எது இந்த இடைநிலைகளின் ஒரு பரிவுக் **கட்டமைப்பன்று**?



- ஒரு தாக்கம் அறை வெப்பநிலையிலும் l atm அமுக்கத்திலும் சுய தாக்கமாக இராத அதே வேளை அதே அமுக்கத்திலும் உயர் வெப்பநிலையிலும் சுய தாக்கமாக அமைகின்றது. பின்வருவனவற்றில் எது அறை வெப்பநிலையில் இத்தாக்கம் தொடர்பாகச் சரியானது $?~(\Delta H~,~\Delta S~$ ஆகியன வெப்பநிலையுடனும் அமுக்கத்துடனும் மாறுவதில்லையெனக் கொள்க.)
  - $\Delta G$  $\Delta H$  $\Delta S$ (1) நேர் நேர் நேர் (2) நேர் மறை மறை நேர் (3) மறை நேர்
  - (4) மறை நேர் மறை (5) மறை மறை மறை
- 18. வேகம் u உடன் செல்லும் ஒரு நியூத்திரனின் டி புறொக்லி அலைநீளம்  $\lambda$  ஆகும். இந்நியூத்திரனின் இயக்கப்பாட்டுச் சக்தி  $E~(E=rac{1}{2}\,mv^2)$  ஆனது நான்கு மடங்காக அதிகரிக்குமாயின், புதிய டி புறொக்லி அலை நீளம்
- (3)  $2\lambda$
- (4)  $4\lambda$
- (5)  $16\lambda$

19. உப்பு MX இன் ஒரு நீர்க் கரைசலை மின்பகுப்புச் செய்வதற்கு அமைக்கப்பட்ட மின்பகுப்புக் கலத்தைப் பின்வருவனவற்றுள் எது **சரியாகக்** காட்டுகின்றது?











More Past Papers at tamilguru.lk

- **20.** ஓர் எசுத்தரைத் தருவதற்கு ஒரு காபொட்சிலிக் அமிலத்திற்கும் ஓர் அற்ககோலுக்குமிடையே நடைபெறும் தாக்கம் தொடர்பாகப் பின்வரும் கூற்றுகளில் எது சரியானது?
  - (1) ஒட்டுமொத்தத் தாக்கமானது ஒரு காபனைல் சேர்வையின் கருநாட்டக் கூட்டல் தாக்கமாகும்.
  - (2) அது அற்ககோல் ஒரு கருநாடியாகத் தொழிற்படும் தாக்கமாகும்.
  - (3) அது காபொட்சிலிக் அமிலத்தின் O—H பிணைப்பை உடைத்துக் கொண்டு நடைபெறும் தாக்கமாகும்.
  - (4) அது அற்ககோலின் C—O பிணைப்பை உடைத்துக் கொண்டு நடைபெறும் தாக்கமாகும்.
  - (5) அது ஓர் அமில மூலத் தாக்கமாகும்.
- **21.** உயர் வெப்பநிலைகளில்  $\mathrm{CH_3OH}(l)$  இன்  $1 \ \mathrm{mol}$  பின்வருமாறு பிரிகையடைகின்றது.

$$CH_3OH(I) \rightarrow CO(g) + 2H_2(g); \Delta H = +128 \text{ kJ}$$

பின்வருவனவற்றில் எது மேற்குறித்த தாக்கம் தொடர்பாகச் **சரியானதன்று**? (H = 1, C = 12, O = 16)

- (1) CH<sub>3</sub>OH(g) இன் 1 mol பிரிகையடையும்போது உறிஞ்சப்படும் வெப்பம் 128 kJ mol<sup>-1</sup> இலும் பார்க்க குறைவானது.
- (2)  $CO(g) + 2H_2(g)$  இன் வெப்பவுள்ளுறை  $CH_2OH(l)$  இன் வெப்பவுள்ளுறையிலும் உயர்ந்தது.
- (3) CO(g) இன் 1<sup>\*</sup>mol உண்டாகும்போது 128 kJ வெப்பம் வெளியேறுகின்றது.
- (4) தாக்கியின் ஒரு மூல் பிரிகையடையும்போது 128 kJ வெப்பம் உறிஞ்சப்படுகின்றது.
- (5) விளைபொருள்களின் 32 g உண்டாகும்போது 128 kJ வெப்பம் உறிஞ்சப்படுகின்றது.
- **22.** பின்வருவனவற்றில் **பிழையான** கூற்றை இனங்காண்க.
  - (1) நைதரசன் [N(g)] இன் இலத்திரன் பெறும் சக்தி நேரானது.
  - (2) BiCl<sub>2</sub>(aq) கரைசலை நீருடன் ஐதாக்கும்போது ஒரு வெள்ளை வீழ்படிவு கிடைக்கின்றது.
  - (3) H<sub>2</sub>S வாயுவானது ஓர் ஒட்சியேற்றக் கருவியாகவும் ஒரு தாழ்த்தும் கருவியாகவும் தொழிற்படலாம்.
  - (4) He இன் ஒரு வலுவளவு இலத்திரனினால் உணரப்படும் பயன்படு கரு ஏற்றம் (Z\*) ஆனது 2 இலும் குறைவானது.
  - (5) அலுமினியம் ஓர் உயர் வெப்பநிலைக்கு வெப்பமாக்கப்படும்போதும்  $N_2$ வாயுவை நோக்கிச் சடத்துவமானது.
- 23. 298 Kஇல் ஒரு மென்னமிலம் HA இன் ஓர் ஐதான நீர்க் கரைசலின் செறிவு  $C \mod dm^{-3}$  உம் அதன் அமிலக் கூட்டப்பிரிகை மாறிலி  $K_a$  உம் ஆகும். பின்வரும் கோவைகளில் எது  $298 \ {
  m K}$  இல் கரைசலின்  ${
  m pH}$  ஐத் தருகின்றது?
  - (1)  $pH = \frac{1}{2}pK_a \frac{1}{2}\log C$
  - (2)  $pH = -\frac{1}{2}pK_a \frac{1}{2}\log C$
  - (3)  $pH = -\frac{1}{2}pK_a + \frac{1}{2}\log C$
  - (4)  $pH = -\frac{1}{2}pK_a \frac{1}{2}\log(1/C)$
  - (5)  $pH = \frac{1}{2}pK_a \frac{1}{2}\log(1/C)$

 ${f 24.}$  ஓர்  ${
m H_2O_2}$  கரைசலின் வலிமை நியம வெப்பநிலையிலும் அமுக்கத்திலும் (நி.வெ.அ.) உண்டாக்கப்படும்  ${
m O}_{
m s}$  வாய்ுவின் கனவளவாக எடுத்துரைக்கப்படலாம். உதாரணமாக, **கனவளவு வலிமை** 20 லீற்றர் ஆகவுள்ள  $H_2^2O_2$  (20 volume strength  $H_2O_2$ ) கரைசல் நி.வெ.அ. இல்  $O_2$  வாயுவின் 20 லீற்றரை உண்டாக்கும்  $(2^2 H_2^2 O_2(aq) \rightarrow 2 H_2 O(l) + O_2^2(g))$  (வாயுவின் 1 மூல் நி.வெ.்அ. இல் 22.4 லீற்றர் கனவளவைக் கொண்டிருக்குமெனக் கொள்க.)

 ${f X}$  எனப் பெயரிடப்பட்டுள்ள ஒரு போத்தலில்  ${f H_jO}_{f j}$  கரைசல் உள்ளது. இக்கரைசல்  ${f X}$  இன்  $25.0~{
m cm}^3$ ஆனது ஐதான்  $H_3\mathrm{SO}_4$  இன் முன்னிலையில்  $1.0~\mathrm{mol}^2\mathrm{dm}^{-3}~\mathrm{KMnO}_4$  உடன் நியமிப்புச் செய்யப்படும்போது முடிவுப் புள்ளியை அடைவதற்குத் தேவையான கனவளவு  $25.0\,\mathrm{cm}^3$  ஆகும். கரைசல்  $\mathbf X$  இன் கனவளவு வலிமை

(1) 15

(2) 20

(3) 25

(4) 28

**25.**  $M(OH)_{\gamma}(s)$  ஆனது 298~K இல்  $M^{2+}(aq)$  அயனிற்கும்  $OH^{-}(aq)$  அயனிற்குமிடையே உள்ள தாக்கத்தின் மூலம் உண்டாகிய நீரில் அரிதாகக் கரையும் உப்பாகும். pH=5 இல் நீரில்  $M(OH)_2(s)$  இன் கரைதிறன் (mol dm<sup>-3</sup>) (298 K ( $\otimes$ io),  $K_{sp_{M(OH)_2}} = 4.0 \times 10^{-36}$ )

(1)  $\sqrt{2} \times 10^{-18}$ 

(2)  $2 \times 10^{-18}$  (3)  $1 \times 10^{-18}$  (4)  $\sqrt[3]{2} \times 10^{-12}$  (5)  $1 \times 10^{-12}$ 

26. 298 K இல் ஒரு நியம ஐதரசன் மின்வாய், ஒரு நியம Mg-மின்வாய், ஓர் உப்பும் பாலம் ஆகியவற்றைப் பயன்படுத்தி அமைக்கப்பட்ட நியமக் கல்வானிக் கலத்தைப் பின்வருவனவற்றில் எது சரியாகக் குறிப்பிடுகின்றது?

 $(1)\ \ Mg(s)\,\big|\,Mg^{2+}\,(aq,1.00\ mol\ dm^{-3})\,\big|\,H^{+}\,(aq,1.00\ mol\ dm^{-3})\,\big|\,H_{2}(g)\,\big|\,Pt(s)$ 

(2)  $Pt(s) \mid H_2(g) \mid H^+(aq, 1.00 \text{ mol dm}^{-3}) \mid Mg^{2+}(aq, 1.00 \text{ mol dm}^{-3}) \mid Mg(s)$ 

(3) Mg(s),  $Mg^{2+}$  (aq, 1.00 mol dm<sup>-3</sup>)  $\|H^{+}$ (aq, 1.00 mol dm<sup>-3</sup>)  $|H_{2}(g)|$  Pt(s)

(4)  $Mg(s) | Mg^{2+} (aq, 1.00 \text{ mol dm}^{-3}), H^{+}(aq, 1.00 \text{ mol dm}^{-3}), H^{2}_{3}(g) | Pt(s)$ 

(5) Pt(s),  $H_2(g) \mid H^+(aq, 1.00 \text{ mol dm}^{-3}) \parallel Mg^{2+}$  (aq, 1.00 mol dm<sup>-3</sup>), Mg(s)

27. 298 K இல் இருகுளோரோமெதேனிற்கும் நீருக்குமிடையே ஓர் ஒருமூலச் சேதன அமிலத்தின் பங்கீட்டுக் குணகம்  $K_D$  ஐத் துணிவதற்குப் பின்வரும் முறை பயன்படுத்தப்பட்டது. அமிலத்தின் ஒரு  $0.20~{
m mol~dm}^{-1}$ நீர்க் கரைசலின்  $50.00~{
m cm}^3$  ஆனது இருகுளோரோமெதேனின்  $10.00~{
m cm}^3$  உடன் நன்றாகக் கலக்கப்பட்டு, இரு படைகளும் வேறாவதற்கு விடப்பட்டன. பின்னர் குடுவையின் அடியில் உள்ள இருகுளோரோமெதேன் படை அகற்றப்பட்டது. நீர்ப் படையில் எஞ்சியிருக்கும் அமிலத்தை நடுநிலையாக்குவதற்கு  $0.02~{
m mol~dm}^{-3}~{
m NaOH(aq)}$  கரைசலின் $10.00~{
m cm}^{3}$  தேவைப்பட்டது. (சேதன அவத்தையில் அமிலம் இருபகுதியமாவதில்லையெனக் கொள்க.) 298 K இல் இருகளோரோமெதேனிற்கும் நீருக்குமிடையே உள்ள அமிலத்தின்  $K_D$  ஆனது

(1) 0.05

(2) 0.25

(3) 4.00

(4) 20.00

(5) 245.00

28. ஒரு தரப்பட்ட வெப்பநிலையில் ஒரு விறைத்த மூடிய கொள்கலத்தில் தாக்கம்  $C_2H_4(g)+3O_2(g) \rightarrow 2CO_2(g)+2H_2O(g)$ நடைபெறுகின்றது. ஒரு குறித்த நேரத்திற்குப் பின்னர்  $C_2H_4(g)$  செல்விடப்படுத்ல் தொடர்பான தாக்க வீதம்  $x \mod \operatorname{dm}^{-3} \operatorname{s}^{-1}$  ஆக இருக்கக் காணப்பட்டது. அந்நேரத்தின்போது  $O_2(g)$  ஐச் செலவிடுதல்,  $CO_2(g)$ உண்டாதல்,  $\mathrm{H}_{2}\mathrm{O}(\mathrm{g})$  உண்டாதல் ஆகியன தொடர்பான வீதங்களை முறையே பின்வருவனவற்றில் எது காட்டுகின்றது?

வீதம் / mol dm<sup>-3</sup>s<sup>-1</sup>

|     | $O_2(g)$      | $CO_2(g)$     | $H_2O(g$      |
|-----|---------------|---------------|---------------|
| (1) | $\frac{3}{x}$ | $\frac{2}{x}$ | $\frac{2}{x}$ |
| (2) | x             | x             | x             |
| (3) | $\frac{x}{3}$ | $\frac{x}{2}$ | $\frac{x}{2}$ |
| (4) | $\frac{1}{x}$ | $\frac{1}{x}$ | $\frac{1}{x}$ |
| (5) | 3x            | 2x            | 2x            |

**29.** வெப்பநிலை T இல் ஒரு விறைத்த மூடிய கொள்கலத்தில் நடைபெறும் பின்வரும் தாக்கத்தைக் கருதுக.  $\mathbf{M}(\mathbf{g}) + \mathbf{Q}(\mathbf{g}) \rightarrow \mathbf{R}(\mathbf{g}) + \mathbf{Z}(\mathbf{g})$ 

 ${f M},{f Q}$  ஆகியவற்றின் செறிவுகள் முறையே  $1.0 imes10^{-5}\,{
m mol~dm}^{-3}$  ,  $2.0\,{
m mol~dm}^{-3}$  ஆக இருக்கும்போது தாக்க வீதம்  $5.00 \times 10^{-4} \, \mathrm{mol} \, \mathrm{dm}^{-3} \, \mathrm{s}^{-1}$ ஆகும். **M** இன் செநிவு இரு மடங்காகியபோது தாக்க வீதம் இருமடங்காயிற்று. இந்நிலைமைகளின் கீழ்த் தாக்க வீத மாநிலி

(1)  $2.5 \times 10^{-4} \,\mathrm{s}^{-1}$ 

(2)  $12.5 \text{ s}^{-1}$ 

(3)  $25 \,\mathrm{s}^{-1}$ 

(4)  $50 \,\mathrm{s}^{-1}$ 

பின்வரும் தாக்க ஒழுங்குமுறையைக் கருதுக.

இங்கு 
$$\mathbf{P}, \mathbf{Q}$$
 ஆகியன முறையே  $\mathbf{Cl}_2/\mathrm{AlCl}_3$   $\mathbf{P}$   $\frac{1. \ \mathrm{LiAlH}_4}{2. \ \mathrm{H}^+/\mathrm{H}_2\mathrm{O}}$   $\mathbf{Q}$   $\mathbf{Q}$  இங்கு  $\mathbf{P}, \mathbf{Q}$  ஆகியன முறையே  $\mathbf{Cl}_2$   $\mathbf{C$ 

- 31 தொடக்கம் 40 வரையுள்ள வினாக்கள் ஒவ்வொன்றுக்கும் (a), (b), (c), (d) என்னும் நான்கு தெரிவுகள் தரப்பட்டுள்ளன. அவற்றுள் ஒன்று திருத்தமானது அல்லது ஒன்றுக்கு மேற்பட்டவை திருத்தமானவை. திருத்தமான தெரிவை / தெரிவுகளைத் தேர்ந்தெடுக்க.
  - (a),(b) ஆகியன மாத்திரம் திருத்தமானவையெனில் (1) இன் மீதும்
  - (b),(c) ஆகியன மாத்திரம் திருத்தமானவையெனில் (2) இன் மீதும்
  - (c),(d) ஆகியன மாத்திரம் திருத்தமானவையெனில் (3) இன் மீதும்
  - (d),(a) ஆகியன மாத்திரம் திருத்தமானவையெனில் (4) இன் மீதும்

**வேறு** தெரிவுகளின் எண்ணோ சேர்மானங்களோ திருத்தமானவையெனில் (5) இன் மீதும் உமது விடைத்தாளில் கொடுக்கப்பட்ட அறிவுறுத்தல்களுக்கமைய விடையைக் குறிப்பிடுக.

மேற்கூறிய அறிவுறுத்தற் சுருக்கம் (5)**(2)** (3) (4)(1)வேறு தெரிவுகளின் (b), (c) ஆகியன (c), (d) ஆகியன (d), (a) ஆகியன (a), (b) ஆகியன மாத்திரம் எண்ணோ சேர்மானங்களோ மாத்திரம் மாத்திரம் மாத்திரம் திருத்தமானவை திருத்தமானவை திருத்தமானவை திருத்தமானவை கிருக்கமானவை

- 31. 3*d*-தொகுப்பு மூலகங்களையும் அவற்றின் சேர்வைகளையும் பற்றிப் பின்வரும் கூற்றுகளில் எது/எவை சரியானது /சரியானவை?
  - (a) 3d-தொகுப்பு மூலகங்களில் Sc ஒரு தாண்டல் மூலகமாகக் கருதப்படுவதில்லை.
  - (b) அணுக்களின் (Sc தொடக்கம் Cu வரைக்கும்) ஆரைகள் இடமிருந்து வலமாகக் குறைகின்றன.
  - (c)  $[\mathrm{Ni}(\mathrm{NH_3})_6]^{2+}$  நீல நிறமாக இருக்கும் அதே வேளை  $[\mathrm{Zn}(\mathrm{NH_3})_4]^{2+}$  நிறமற்றதாகும்.
  - (d) K NiCl இன் IUPAC பெயர் dipotassium tetrachloronickelate (II) ஆகும்.
- 32. பின்வரும் மூலக்கூறு பற்றி எந்தக் கூற்று /கூற்றுகள் சரியானது /சரியானவை?

$$\begin{array}{ccc} H & & \\ H - C_{Q} - C_{Q} - C_{R} \equiv C_{S} - C_{Q} = O_{U} \\ H & & H_{U} \end{array}$$

- (a) P, Q, R, S எனப் பெயரிடப்பட்ட அணுக்க'ள் ஒரு நேர்கோட்டில் இருக்கின்றன.
- (b) Q, R, S, T எனப் பெயரிடப்பட்ட அணுக்கள் ஒரு நேர்கோட்டில் இருக்கின்றன.
- (c) R, S, T, U, V எனப் பெயரிடப்பட்ட அணுக்கள் ஒரே தளத்தில் இருக்கின்றன.
- (d) R, S, T, U எனப் பெயரிடப்பட்ட அணுக்கள் ஒரு நேர்கோட்டில் இருக்கின்றன.
- 33.  $500~{\rm K}$  இல்  ${
  m N_2(g)}$  இன் 0.01 மூல்களும்  ${
  m H_2(g)}$  இன் 0.10 மூல்களும்  ${
  m NH_3(g)}$  இன் 0.40 மூல்களும் ஓர்  $1.0~{
  m dm}^3$  விறைத்த மூடிய கொள்கலத்தில் இடப்பட்டு, கீழே தரப்பட்டவாறு  $500~{
  m K}$  இல் சமநிலையை அடைவதற்கு விடப்பட்டன.

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$
  $K_C = 2.0 \times 10^2 \text{ mol}^{-2} \text{ dm}^6$ 

தொகுதியில் தொடக்கத்திலிருந்து சமநிலை வரைக்கும் எற்படும் மாற்றங்கள் பற்றிய பின்வரும் கூற்றுகளில் எது/எவை சரியானது/சரியானவை?  $Q_{\mathcal{C}}$  ஆனது தாக்க ஈவாகும்.

- (a) தொடக்கத்தில்  $Q_C > K_C$ ;  $\mathrm{NH_3(g)}$  ஆனது  $\mathrm{N_2(g)}$  ஐயும்  $\mathrm{H_2(g)}$  ஐயும் உண்டாக்கத் தொடங்கித் தொகுதி சமநிலையை அடைகின்றது.
- (b) தொடக்கத்தில்  $Q_C$  <  $K_C$ ;  $\mathrm{NH_3}(\mathrm{g})$  ஆனது  $\mathrm{N_2}(\mathrm{g})$  ஐயும்  $\mathrm{H_2}(\mathrm{g})$  ஐயும் உண்டாக்கத் தொடங்கித் தொகுதி சமநிலையை அடைகின்றது.
- (c) தொடக்கத்தில்  $Q_C$  <  $K_C$  ;  $N_2(g)$  உம்  $H_2(g)$  உம்  $NH_3(g)$  ஐ உண்டாக்குவதற்குத் தாக்கம் புரிந்து தொகுதி சமநிலையை அடைகின்றது
- (d) தொடக்கத்தில்  $Q_C > K_C$  ;  $N_2(g)$  உம்  $H_2(g)$  உம்  $NH_3(g)$  ஐ உண்டாக்குவதற்குத் தாக்கம் புரிந்து தொகுதி சமநிலையை அடைகின்றது

34. ஓர் அந்கைல் ஹேலைட்டை உண்டாக்குவதற்குச் சேர்வை P இற்கும் HCl இற்குமிடையே உள்ள தாக்கம் பற்றிப் பின்வரும் கூற்றுகளில் எது/எவை சரியானது/சரியானவை?



- (a) பெரும் விளைபொருள் 2-chloro-2- methylbutane ஆகும்.
- (b) இத்தாக்கத்தில் ஓர் இடைநிலையாக ஒரு துணைக் காபோகற்றயன் உண்டாகின்றது.
- (c) இத்தாக்கத்தின் ஒரு படியில் HCl பிணைப்பு உடைந்து ஒரு குளோரீன் மூலிகம்  $(Cl^{ullet})$ தரப்படுகின்றது.
- (d) இத்தாக்கத்தின் ஒரு படியில் ஒரு கருநாடி ஒரு காபோகற்றுயனுடன் தாக்கம் புரிகின்றது.
- 35. ஒரு தரப்பட்ட வெப்பநிலையில் ஒரு வெற்றிடமாக்கப்பட்ட மூடிய கொள்கலத்தில் இரு திரவங்களைக் கலப்பதன் மூலம் தயாரிக்கப்படும் ஒரு துவிதத் திரவக் கலவை இரவோல்ற்றின் விதியிலிருந்து ஒரு எதிர் (மறை) விலகலைக் காட்டுகின்றது. இத்தொகுதிக்குப் பின்வரும் கூற்றுகளில் எது/எவை சரியானது/சரியானவை?
  - (a) கலவையின் மொத்த ஆவியமுக்கம் அக்கலவை ஓர் இலட்சியக் கலவையாக நடந்து கொள்ளுமெனின் எதிர்பார்க்கத்தக்க மொத்த ஆவியமுக்கத்திலும் குறைவானது.
  - (b) கலவை உண்டாகும்போது வெப்பம் வெளிவரும்.
  - (c) கலவையின் ஆவி அவத்தையில் உள்ள மூலக்கூறுகளின் எண்ணிக்கை அக்கலவை ஓர் இலட்சியக் கலவையாக நடந்துகொள்ளுமெனின் எதிர்பார்க்கத்தக்க மூலக்கூறுகளின் எண்ணிக்கையிலும் கூடியதாகும்.
  - (d) கலவை உண்டாகும்போது வெப்பம் உரிஞ்சப்படுகின்றது.
- **36.** CFC, HCFC, HFC ஆகியன பற்றிப் பின்வரும் கூற்றுகளில் எது/எவை சரியானது/சரியானவை?
  - (a) CFC, HCFC ஆகிய சேர்வைக் கூட்டங்கள் இரண்டும் மேல் வளிமண்டலத்தில் (படைமண்டலம்) குளோரீன் இன்றிய மூலிகங்களை உண்டாக்குவதற்கான ஆற்றலைக் கொண்டுள்ளன.
  - (b) HFC, HCFC ஆகிய சேர்வைக் கூட்டங்கள் இரண்டும் மேல் வளிமண்டலத்தில் (படை மண்டலம்) குளோரீன் இன்றிய மூலிகங்களை உண்டாக்குவதற்கான ஆற்றலைக் கொண்டுள்ளன.
  - (c) CFC, HCFC, HFC ஆகிய மூன்று சேர்வைக் கூட்டங்களும் வலிமையான பச்சை வீட்டு வாயுக்களாகும்.
  - (d) CFC, HCFC, HFC ஆகிய மூன்று சேர்வை வகுப்புகளும் ஓசோன் படை வறிதாக்கத்திற்குக் (depletion) கணிசமான அளவில் பங்களிப்புச் செய்கின்றன.
- 37. அலசன்கள், விழுமிய வாயுக்கள், அவற்றின் சேர்வைகள் என்பன பற்றிப் பின்வரும் கூற்றுகளில் எது/எவை சரியானது/சரியானவை?
  - (a) ஹைப்பொக்குளோரசு அயன் அமிலக் கரைசல்களில் விரைவாக இருவழி விகாரமடைகின்றது.
  - (b) Xe ஆனது F வாயுடன் ஒரு தொடர் சேர்வைகளை உண்டாக்கும் அதே வேளை  $XeF_{_{\!\it A}}$ இற்கு ஒரு சதுரத் தளக் கேத்திரகணிதம் உண்டு.
  - (c) ஐதரசன் ஹேலைட்டுகளில் HF ஆனது மூலிற்கு அதியுயர் பிணைப்புக் கூட்டப்பிரிகைச் சக்தியைக் கொண்டுள்ளது.
  - (d) இலண்டன் விசைகளின் வலிமை அதிகரிப்பதன் விளைவாக அலசன்களின் கொதிநிலைகள் கூட்டத்தில் கீழ்நோக்கி அதிகரிக்கின்றன.
- $oldsymbol{38}$ . அறை வெப்பநிலையில் தொழிற்படும் டானியல் கலம் பற்றிய பின்வரும் கூற்றுகளில் எது/எவை சரியானது/ சரியானவை  $?(E_{cell}^{\circ} = +1.10 \text{ V})$  (a) தேறிய இலத்திரன் பாய்ச்சல்  $\mathbf{Z}\mathbf{n}$  தொடக்கம்  $\mathbf{C}\mathbf{u}$  வரைக்கும் நடைபெறுகின்றது.

  - (b) சமநிலை  ${\rm Zn}^{2+}({\rm aq}) + 2{\rm e} 
    ightharpoons {\rm Zn}({\rm s})$  வலது பக்கமாக நகருகின்றது.
  - (c) ஓர் உப்புப் பாலம் இருப்பதனால் திரவச் சந்தி அழுத்தம் உண்டாகின்றது.
  - (d) சமநிலை  $\operatorname{Cu}^{2+}(\operatorname{aq}) + 2\operatorname{e} \rightleftharpoons \operatorname{Cu}(\operatorname{s})$  வலது பக்கமாக நகருகின்றது.
- $oldsymbol{39}$ . மாறா வெப்பநிலையில் இலட்சிய வாயுக்களுக்கும் மெய் வாயுக்களுக்கும் பின்வரும் கூற்றுகளில் எது/ எவை சரியானது/சரியானவை?
  - (a) அதியுயர் அமுக்கங்களில் ஒரு மெய் வாயுவின் கனவளவு ஓர் இலட்சிய வாயுவின் கனவளவிலும் உயர்ந்தது.
  - (b) உயர் அமுக்கங்களில் மெய் வாயுக்கள் இலட்சிய வாயுக்களாக நடந்து கொள்வதற்கு நாடுகின்றன.
  - (c) அதியுயர் அமுக்கங்களில் ஒரு மெய் வாயுவின் கனவளவு ஓர் இலட்சிய வாயுவின் கனவளவிலும் குறைவானது.
  - (d) தாழ் அமுக்கங்களில் மெய் வாயுக்கள் இலட்சிய வாயுக்களாக நடந்து கொள்வதற்கு நாடுகின்றன.
- f 40. சில கைத்தொழிற் செயன்முறைகள் தொடர்பாகப் பின்வரும் கூற்றுகளில் எது/எவை சரியானது/சரியானவை?
- (a) சோல்வே முறையின் மூலம் நடைபெறும்  $\operatorname{Na_2CO_3}$  உந்பத்தியுடன் தொடர்புபட்ட முதலிரு படிகளும்
  - அகவெப்பப் படிகளாகும். (b) பிறைனில்  ${\rm Mg}^{2^+}, {\rm Ca}^{2^+}$   ${\rm SO}_4^{2^-}$ அயன்கள் இருத்தலானது மென்சவ்வுக் கல முறையைப் பயன்படுத்தி நடைபெறும் NaOH உற்பத்திக்குத் தடையாக இருக்கின்றது.
  - (c) ஒஸ்வால் முறையின் மூலம் நடைபெறும் நைத்திரிக் அமில உற்பத்தியில் இடம்பெறும் முதலாம் படியானது ஓர் ஊக்கியின் முன்னிலையில் வளியில் உள்ள  ${
    m O_2}$  ஐப் பயன்படுத்தி  ${
    m NH_3}$  வாயுவை ஒட்சியேற்றி  ${
    m NO_2}$ வாயுவைத் தருதலாகும்.
  - (d) ஹேபர்–பொஷ் செயன்முறையைப் பயன்படுத்தி நடைபெறும்  $\mathrm{NH}_{_{\! {f Q}}}$  வாயு உற்பத்தியில் உயர் வெப்பநிலை, தாழ் அமுக்கம் ஆகிய நிபந்தனைகள் பயன்படுத்தப்படுகின்றன.

41 தொடக்கம் 50 வரையுள்ள வினாக்கள் ஒவ்வொன்றிலும் இரண்டு கூற்றுகள் தரப்பட்டுள்ளன.
 அட்டவணையில் உள்ள (1),(2),(3),(4),(5) ஆகிய தெரிவுகளிலிருந்து ஒவ்வொரு வினாவுக்கும் தரப்பட்டுள்ள கூற்றுகளுக்கு மிகவும் சிறப்பாகப் பொருந்தும் தெரிவைத் தெரிந்து பொருத்தமாக விடைத்தாளிற் குறிப்பிடுக.

| தெரிவு | முதலாம்<br>கூற்று |          | இரண்டாம் கூற்று |         |              |            |              |        |  |  |
|--------|-------------------|----------|-----------------|---------|--------------|------------|--------------|--------|--|--|
| (1)    |                   |          |                 |         |              |            | விளக்கத்தைத் |        |  |  |
| (2)    | உண்மை             | உண்மையாக | இருந்து         | முதலாம் | கூற்றுக்குத் | திருத்தமான | விளக்கத்தைத் | தராதது |  |  |
| (3)    | உண்மை             | பொய்     |                 |         |              |            |              |        |  |  |
| (4)    | பொய்              | உண்மை    |                 |         |              |            |              |        |  |  |
| (5)    | பொய்              | பொய்     |                 |         |              |            |              |        |  |  |

|     | முதலாம் கூற்று                                                                                                                                                                    | இரண்டாம் கூற்று                                                                                                                                                                                                                                                                                                                                                                      |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 41. | Cr, Mn ஆகியவற்றின் ஒட்சைட்டுகளில் CrO, MnO<br>ஆகியன அமில ஒட்சைட்டுகளும் CrO <sub>3</sub> , Mn <sub>2</sub> O <sub>7</sub><br>ஆகியன மூல ஒட்சைட்டுகளுமாகும்.                        | Cr, Mn ஆகியவற்றின் ஒட்சைட்டுகளின் அமில/மூல<br>இயல்பு உலோகத்தின் ஒட்சியேற்ற எண்ணைச்<br>சார்ந்துள்ளது.                                                                                                                                                                                                                                                                                 |
| 42. | ஒரு மென்னமிலம் HA(aq) ஐ அதன் சோடிய உப்பு<br>NaA(aq) உடன் கலப்பதன் மூலம் ஓர் அமிலத்<br>தாங்கற் கரைசலைத் தயாரிக்கலாம்.                                                              | OH¯(aq) அல்லது $H$ ¯(aq) அயன்கள் ஒரு தாங்கற் கரைசலுடன் சேர்க்கப்படும்போது சேர்க்கப்பட்ட OH¯(aq) அல்லது $H$ ¯(aq) அயன்களின் அளவுகள் முறையே $OH$ ¯(aq) $+$ $HA$ (aq) $\rightarrow$ $A$ ¯(aq) $+$ $H_Q$ ( $l$ ) $H$ ¯(aq) $+$ $A$ ¯(aq) $\rightarrow$ $HA$ (aq) |
| 43. | கொதிநீராவி முறை வடித்தல் மூலம் 100°C இலும்<br>குறைந்த ஒரு வெப்பநிலையில் தாவரங்களிலிருந்து<br>சாற்றுத் தைலங்களைப் பிரித்தெடுக்கலாம்.                                               | சாற்றுத் தைலத்தினதும் நீரினதும் கலவை<br>கொதிக்கும் வெப்பநிலையில் தொகுதியின் மொத்த<br>ஆவியமுக்கம் வளிமண்டல அமுக்கத்திலும்<br>குறைவாகும்.                                                                                                                                                                                                                                              |
| 44. | ஒரு தரப்பட்ட வெப்பநிலையிலும் அமுக்கத்திலும்<br>வேறுபட்ட இரு இலட்சிய வாயுக்களின் மூலர்க்<br>கனவளவுகள் ஒன்றிலிருந்தொன்று வேறுபட்டவை.                                                | 0°C வெப்பநிலையிலும் 1 atm அமுக்கத்திலும்<br>ஓர் இலட்சிய வாயுவின் மூலர்க் கனவளவு<br>22.4 dm <sup>3</sup> mol <sup>-1</sup> ஆகும்.                                                                                                                                                                                                                                                     |
| 45. | ஒரு C=C பிணைப்பு உள்ள எல்லாச் சேர்வைகளும்<br>ஈர்வெளிமையச்சமபகுதிச்சேர்வைக் காட்டுகின்றன.                                                                                          | ஒவ்வொன்றும் மற்றையதன் ஆடி விம்பமாக இராத<br>எவையேனும் இரு சமபகுதியங்கள் ஈர்வெளிமையச்<br>சமபகுதியங்களாகும்.                                                                                                                                                                                                                                                                            |
| 46. | பென் சீனின் ஐதரசனேற்றம் அற் கீன் களின்<br>ஐதரசனேற்றத்திலும் பார்க்க மிகவும் கடினமானது.                                                                                            | ஐதரசனை பென்சீனுடன் சேர்ப்பதன் விளைவாக<br>அரோமற்றிக்கு உறுதியாக்கல் இழக்கப்படுகின்றது.                                                                                                                                                                                                                                                                                                |
| 47. | சல்பூரிக் அமில உற்பத்தியில் SO <sub>3</sub> வாயுவுக்கும்<br>நீருக்குமிடையே நடைபெறும் தாக்கம் அகவெப்பத்<br>தாக்கமாகும்.                                                            | SO <sub>3</sub> வாயு செறிந்த H <sub>2</sub> SO <sub>4</sub> உடன் தாக்கம் புரிந்து<br>ஓலியத்தைத் தருகின்றது.                                                                                                                                                                                                                                                                          |
| 48. | அமோனியாவுக்கும் ஓர் அற்கைல் ஹேலைட்டுக்கு<br>மிடையே நடைபெறும் தாக்கத்திலிருந்து முதல்,<br>துணை, புடை அமீன்களினதும் ஒரு நாற்பகுதியுள்ள<br>அமோனிய உப்பினதும் ஒரு கலவை கிடைக்கின்றது. | முதல், துணை, புடை அமீன்கள் கருநாடிகளாகத்<br>தாக்கம் புரியலாம்.                                                                                                                                                                                                                                                                                                                       |
| 49. | P+Q → R ஆனது தாக்கி Pதொடர்பாக முதலாம்<br>வரிசைத் தாக்கமெனின், Pஇன் செறிவுக்கு எதிரே<br>வீதத்தின் வரைபு உற்பத்தியினூடாகச் செல்லும்<br>ஒரு நேர்கோட்டைத் தருகின்றது.                 | ஒரு முதலாம் வரிசைத் தாக்கத்தின் தொடக்க<br>வீதம் தாக்கியின் /தாக்கிகளின் செறிவைச்<br>சார்ந்திருப்பதில்லை.                                                                                                                                                                                                                                                                             |
| 50. | அதிக வாகன நெரிசல் உள்ள நகரத்தில் நல்ல<br>சூரியவொளி இருக்கும் ஒரு நாளில் வலிமையான<br>ஒளியிரசாயனப் புகாரைக் காண முடியும்.                                                           | வாகனங்களின் வெளிப்படுத்தல் தொகுதிகளினால்<br>காலப் படும் சிறிய துணிக்கைகளினாலும்<br>நீர்ச் சிறுதுளிகளினாலும் சூரிய கதிர்ப்பு<br>சிதறப்படுவதனாலேயே ஒளியிரசாயனப் புகார்<br>உண்டாக்கப்படுகின்றது.                                                                                                                                                                                        |

# ஆவர்த்தன அட்டவணை

| ſ | 1  |     |     |     |     |     |     |     |     |     |     |     |     |     |              |     |     | 2   |
|---|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--------------|-----|-----|-----|
| , | TT |     |     |     |     |     |     |     |     |     |     |     |     |     |              |     |     | He  |
| 1 | H  |     |     |     |     |     |     |     |     |     |     |     | 5   | 6   | 7            | 8   | 9   | 10  |
|   | 3  | 4   |     |     |     |     |     |     |     |     |     |     | В   | C   | N            | 0   | F   | Ne  |
| 2 | Li | Be_ |     |     |     |     |     |     |     |     |     |     |     |     |              |     |     |     |
|   | 11 | 12  |     |     |     |     |     |     |     |     |     |     | 13  | 14  | 15           | 16  | 17  | 18  |
| 3 | Na | Mg  |     |     |     |     |     |     |     |     |     |     | Al  | Si  | P            | S   | Cl  | Ar  |
| , | 19 | 20  | 21  | 22  | 23  | 24  | 25  | 26  | 27  | 28  | 29  | 30  | 31  | 32  | 33           | 34  | 35  | 36  |
| 4 |    | Ca  | Sc  | Ti  | V   | Cr  | Mn  | Fe  | Co  | Ni  | Cu  | Zn  | Ga  | Ge  | As           | Se  | Br  | Kr  |
| 4 | K  | Ca  | SC  | .11 |     |     |     |     |     |     |     |     |     |     | <i>E</i> 1   | 52  | 53  | 54  |
|   | 37 | 38  | 39  | 40  | 41  | 42  | 43  | 44  | 45  | 46  | 47  | 48  | 49  | 50  | 51           | !   | ĺ   |     |
| 5 | Rb | Sr  | Y   | Zr  | Nb  | Mo  | Tc  | Ru  | Rh  | Pd  | Ag  | Cd  | In  | Sn  | Sb           | Te  | I   | Xe  |
| _ | 55 | 56  | La- | 72  | 73  | 74  | 75  | 76  | 77  | 78  | 79  | 80  | 81  | 82  | 83           | 84  | 85  | 86  |
| , | ļ  |     |     | Hf  | Ta  | w   | Re  | Os  | Ir  | Pt  | Au  | Hg  | Tl  | Pb  | Bi           | Po  | At  | Rn  |
| 6 | Cs | Ba  | Lu  |     | la  |     |     |     | -   |     |     |     |     |     | <del> </del> |     | 117 | 118 |
|   | 87 | 88  | Ac- | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115          | 116 | 1   | 1   |
| 7 | Fr | Ra  | Lr  | Rf  | Db  | Sg  | Bh  | Hs  | Mt  | Ds  | Rg  | Cn  | Nh  | Fl  | Mc           | Lv  | Ts  | Og  |

|    |    |    |    |    | ,  |    |    |    |    |    |     |     | 70  | 71  |
|----|----|----|----|----|----|----|----|----|----|----|-----|-----|-----|-----|
| 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68  | 69  | /0  | 71  |
| La | Ce |    |    |    |    |    |    |    |    |    |     |     |     |     |
| 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 |
| Ac | 1  |    |    |    |    |    |    |    |    |    |     |     |     |     |

More Past Papers at tamilguru.lk

් සියලු ම හිමිකම් ඇව්රිණි /( $\wp$ ( $\wp$ ப் பதிப்புரிமையுடையது /All~Rights~Reserved)

## නව නිර්දේශය/புதிய பாடத்திட்டம்/New Syllabus

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2020 கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2020 General Certificate of Education (Adv. Level) Examination, 2020

රසායන විදාහව **II இரசாயனவியல்** II Chemistry II

**02 T II** 

පැය තුනයි

மூன்று மணித்தியாலம் Three hours අමතර කියවීම් කාලය - මිනික්තු 10 යි **மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள்** Additional Reading Time - 10 minutes

வினாத்தாளை வாசித்து, வினாக்களைத் தெரிவுசெய்வதற்கும் விடை எழுதும்போது முன்னுரிமை வழங்கும் வினாக்களை ஒழுங்கமைத்துக் கொள்வதற்கும் மேலதிக வாசிப்பு நேரத்தைப் பயன்படுத்துக.

- \* ஆவர்த்தன அட்டவணை பக்கம் 15 இல் வழங்கப்பட்டுள்ளது.
- \* கணிப்பாணப் பயன்படுத்த இடமளிக்கப்படமாட்டாது.

சுட்டெண்: .....

- \* அகில வாயு மாறிலி  $R = 8.314 \,\mathrm{J \, K^{-1} \, mol^{-1}}$ .
- \* அவகாதரோ மாறிலி  $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$ .
- \* இவ்வினாத்தாளுக்கு விடை எழுதும்போது அற்கைற் கூட்டங்களைச் சுருக்கமான விதத்தில் காட்டலாம்.

- 🛘 பகுதி A அமைப்புக் கட்டுரை (பக்கங்கள் 2 8)
- \* எல்லா வினாக்களுக்கும் இவ்வினாத்தாளிலேயே விடை எழுதுக.
- ※ ஒவ்வொரு வினாவுக்குக் கீழும் விடப்பட்டுள்ள இடத்தில் உமது விடைகளை எழுதுக. கொடுக்கப்பட்டுள்ள இடம் விடைகளை எழுதுவதற்குப் போதுமானது என்பதையும் விரிவான விடைகள் எதிர்பார்க்கப்படவில்லை என்பதையும் கவனிக்க.
  - ப பகுதி B உம் பகுதி C உம் கட்டுரை (பக்கங்கள் 9 14)
- \* ஒவ்வொரு பகுதியிலிருந்தும் **இரண்டு** வினாக்களைத் தெரிவுசெய்து எல்லாமாக **நான்கு** வினாக்களுக்கு விடை எழுதுக. உமக்கு வழங்கப்படும் எழுதும் தாள்களை இதற்குப் பயன்படுத்துக.
- \* இவ்வினாத்தாளுக்கென வழங்கப்பட்ட நேர முடிவிலே பகுதி  ${f A}$  மேலே இருக்கும்படியாக  ${f A}, {f B}, {f C}$  ஆகிய மூன்று பகுதிகளின் விடைத்தாள்களையும் ஒன்றாகச் சேர்த்துக் கட்டிய பின்னர் பரீட்சை மேற்பார்வையாளரிடம் கையளிக்க.
- \* வினாத்தாளின் **B, C** ஆகிய பகுதிகளை **மாத்திரம்** ப**ரீ**ட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்ல அனுமதிக்கப்படும்.

#### பரீட்சகர்களின் உபயோகத்திற்கு மாத்திரம்

| பகுதி | வினா இல. | புள்ளிகள் |
|-------|----------|-----------|
|       | 1        |           |
|       | 2        |           |
| A     | 3        |           |
|       | 4        |           |
|       | 5        |           |
| В     | 6        |           |
|       | 7        |           |
|       | 8        |           |
| C     | 9        |           |
|       | 10       |           |
| ြေ    | மாத்தம்  |           |

|             | <u> مروروانهاه</u> |
|-------------|--------------------|
| இலக்கத்தில் |                    |
| எழுத்தில்   |                    |

### கு**றியீட்டெண்**கள்

CHATERIA

| வினாத்தாள் பரீட்சகர் 1      |  |
|-----------------------------|--|
| வினாத்தாள் பரீட்சகர் 2      |  |
| புள்ளிகளைப் பரீட்சித்தவர் : |  |
| மேற்பார்வை செய்தவர் :       |  |
| (                           |  |

| பகுதி ${f A}$ - அமைப்புக் கட் | .டுரை |
|-------------------------------|-------|
|-------------------------------|-------|

**நான்கு** வினாக்களுக்கும் விடைகளை இத்தாளிலேயே எழுதுக. (ஒவ்வொரு வினாவின் விடைக்கும் **100** புள்ளிகள் வழங்கப்படும்.) இப்பகுதியில் எதனையும் எழுதுதல் ஆகாது.

- 1. (a) பின்வரும் வினாக்களுக்குத் தரப்பட்டுள்ள புள்ளிக் கோட்டின் மீது விடை எழுதுக.
  - (i) Na<sup>+</sup>, Mg<sup>2+</sup>, F<sup>-</sup> என்னும் மூன்று அயன்களில் எதற்கு **மிகச் சிறிய** அயன் ஆரை உள்ளது?
  - (ii) C,N,O என்னும் மூன்று மூலகங்களில் எதற்கு **மிக உயர்ந்த** இரண்டாம் அயனாக்கச் சக்தி உள்ளது?
  - (iii) H<sub>2</sub>O, HOCl, OF<sub>2</sub> என்னும் மூன்று சேர்வைகளில் எதற்கு **மிகக் கூடுதலான** மின்னெதிர் ஒட்சிசன் அணு உள்ளது? ......

  - (v) NaF, KF, KBr என்னும் மூன்று அயன் சேர்வைகளில் எது நீரில் **மிகக்** கூடுதலான கரைதிறனை உடையது? ......
  - (vi) HCHO,  ${\rm CH_3F, H_2O_2}$  என்னும் மூன்று சேர்வைகளில் எது **மிக வலிமையான** மூலக்கூற்றிடை விசைகளை உடையது? .....

**(24** புள்ளிகள்)

(b) (i) அயன்  $N_2O_3^{\ 2-}$  இற்கு **மிகவும்** ஏற்றுக்கொள்ளத்தக்க லூயி குற்று - கோட்டுக் கட்டமைப்பை வரைக. அதன் அடிப்படைக் கட்டமைப்பு கீழே தரப்பட்டுள்ளது.

(ii) இவ்வயனுக்கு மேலும் **மூன்று** லூயி குற்று - கோட்டுக் கட்டமைப்புகளை (பரிவுக் கட்டமைப்புகள்) வரைக. மேலே (i) இல் வரையப்பட்ட மிகவும் ஏற்றுக்கொள்ளத்தக்க கட்டமைப்புடன் ஒப்பிடும்போது நீர் வரைந்த கட்டமைப்புகளின் சார் உறுதிநிலைகளை அக்கட்டமைப்புகளின் கீழ் '**குறைந்த உறுதியுள்ளது**' அல்லது '**உறுதியற்றது**' என எழுதுவதன் மூலம் காட்டுக.

(iii) கீழே தரப்பட்டுள்ள லூயி குற்று-கோட்டுக் கட்டமைப்பையும் அதன் பெயரிடப்பட்ட அடிப்படைக் கட்டமைப்பையும் அடிப்படையாகக் கொண்டு தரப்பட்டுள்ள அட்டவணையைப் பூரணப்படுத்துக.

| Ų                |              |
|------------------|--------------|
|                  |              |
| $CI - N^1 - N^2$ | $-O^3-C^4-N$ |
|                  | 0 0 11       |

| ·                                                     | N¹ | N <sup>2</sup> | O <sub>3</sub> | C <sup>4</sup> |
|-------------------------------------------------------|----|----------------|----------------|----------------|
| அணுவைச் சுற்றியுள்ள VSEPR சோடிகள்                     |    |                |                |                |
| அணுவைச் சுற்றியுள்ள இலத்திரன் சோடிக்<br>கேத்திரகணிதம் | -  |                |                |                |
| அணுவைச் சுற்றியுள்ள வடிவம்                            |    |                |                |                |
| அணுவின் கலப்பாக்கம்                                   |    |                |                |                |

பெயர் யாது?

|                                                                             | TO 702                                                                                                                                   |                                                                                                                             |                |
|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------|
| 2020/02-T-II(A)(NEW)                                                        | - 3 -                                                                                                                                    | சுட்டெண்:                                                                                                                   | <u></u>        |
| அடிப்படையாய்க் கொண்ட<br>(iv) கீழே தரப்பட்டுஎ்                               | _வை. அணுக்களைப் பெயரிடுதல்                                                                                                               | தரப்பட்ட லூயி குற்று-கோட்டுக் கட்டமைப்<br>பகுதி (iii)இல் உள்ளவாநாகும்.<br>யே <i>O</i> பிணைப்புகளை உண்டாக்குவதற்கு<br>காண்க. |                |
| I. Cl—N <sup>1</sup>                                                        | Cl                                                                                                                                       | N <sup>1</sup>                                                                                                              |                |
| II. N <sup>1</sup> —O                                                       | N <sup>1</sup>                                                                                                                           | O                                                                                                                           |                |
| III. $N^1 - N^2$                                                            | N <sup>1</sup>                                                                                                                           | N <sup>2</sup>                                                                                                              |                |
| IV. $N^2 - O^3$                                                             | N <sup>2</sup>                                                                                                                           | O <sup>3</sup>                                                                                                              |                |
| V. $O^3 - C^4$                                                              | O <sup>3</sup>                                                                                                                           | C <sup>4</sup>                                                                                                              |                |
| VI. C <sup>4</sup> —N                                                       | C <sup>4</sup>                                                                                                                           | N                                                                                                                           |                |
|                                                                             | ணுக்களுக்கிடையேயும் $\pi$ பிணை                                                                                                           | ரப்புகளை உண்டாக்குவதற்குப் பங்குபற்றும்                                                                                     | Ď              |
| I. N <sup>1</sup> N <sup>2</sup>                                            | N <sup>1</sup>                                                                                                                           | N <sup>2</sup>                                                                                                              |                |
| II. C <sup>4</sup> —N                                                       | C <sup>4</sup>                                                                                                                           | N                                                                                                                           |                |
|                                                                             | C <sup>4</sup>                                                                                                                           | N                                                                                                                           |                |
| (vi) $N^1$ , $N^2$ , $O^3$ , $C^4$ e                                        | அணுக்களைச் சுற்றியுள்ள அண்ண                                                                                                              | ளவான பிணைப்புக் கோணங்களைக் குறிப்பி(                                                                                        | நக.            |
| $N^1$                                                                       | , N <sup>2</sup> ,                                                                                                                       | O <sup>3</sup> C <sup>4</sup>                                                                                               |                |
| (vii) N <sup>1</sup> , N <sup>2</sup> , O <sup>3</sup> , C <sup>4</sup> 616 | ர்னும் அணுக்களை மின்னெதிர்த்தக                                                                                                           | ன்மை <b>அதிகரிக்கும்</b> வரிசையில் ஒழுங்குபடுத்து                                                                           | 51 <b>5</b> 5. |
| •••                                                                         | < <                                                                                                                                      | < ( <b>56</b> प्रवंति                                                                                                       | ள்)            |
| (c) பின்வரும் தகவல்க <i>ை</i>                                               | ளக் கருதுக.                                                                                                                              |                                                                                                                             |                |
| I. <b>A,B</b> ஆகிய                                                          |                                                                                                                                          | ணப்பைக் கொண்ட ஒரு விசமஈரணு மூலக்க<br>ககுறிப்பிடப்படும்.                                                                     | <b>թս</b> ββ]  |
|                                                                             | ர்னெதிர்த்தன்மை <b>B</b> இன் மின்னெ<br>வின் மின்னெதிர்த்தன்மை.                                                                           | திர்த்தன்மையிலும் குறைவானது ( ${ m X}_{ m A} < { m X}$                                                                      | (B).           |
| உள்ள கர                                                                     | சமன்பாட்டின் மூலம் ${f AB}$ மூலக்<br>நவிடைத் தூரம் ( ${f d}_{{f A}-{f B}}$ ) தரப்படுகி<br>+ ${f r}_{f B}-{f c}({f X}_{f B}-{f X}_{f A})$ | க்கூறின் <b>A, B</b> ஆகிய அணுக்களுக்கிடை<br>ின்றது.                                                                         | யே             |
|                                                                             | ஆரை; c = 9 pm                                                                                                                            |                                                                                                                             |                |

r = அணு **குறிப்பு**:  $\mathbf{d}$ ,  $\mathbf{r}$  ஆகியன பிக்கோமீற்றரில் (pm) அளக்கப்படுகின்றன (1 pm =  $10^{-12}$  m).

மேற்குறித்த தகவல்களை அடிப்படையாய்க் கொண்டு பின்வரும் வினாக்களுக்கு விடை எழுதுக. (i)  $\mathbf{A}$  இற்கும்  $\mathbf{B}$  இற்குமிடையே உள்ள  $\sigma$  பிணைப்பின் வகையை இனங்காண்பதற்குப் பயன்படுத்தப்படும்

(ii) மூலக்கூறு **AB** இல் பகுதி (fractional) ஏற்றங்கள் (δ+ உம் δ – உம்) எவ்வாறு அமைந்துள்ளன எனக் காட்டுக.

(iii) மூலக்கூறு  ${f AB}$  இன் இருமுனைவுத் திருப்புதிறன்  $(\mu)$  ஐக் கணிப்பதற்கான சமன்பாட்டை எழுதி அதன் திசையைக் காட்டுக.

| $F_2$ இன் கருவிடைத் தூரம் $\left( d_{F-F} \right) =$ 144 pm $$ HF இன் இருமுனைத் திருப்புதிறன் =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $= 4.0$ $= 6.0 \times 10^{-30} \text{ C}$ $= 1.6 \times 10^{-19} \text{ C}$ |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |             |
| - \ \/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = 1.6×10 <sup>-19</sup> 0                                                   | °C          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ( <b>20</b> புள்ளிகள்                                                       | ள்)         |
| $a)$ $\mathbf{A},\mathbf{B},\mathbf{C},\mathbf{D}$ ஆகியன $p$ -தொகுப்பு மூலகங்களின் குளோரைட்டுகளாகும். இம்மூலகங்களின்                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                                                                           | -           |
| 20 இலும் குறைந்தவையாகும். 🗛 ஆனது ஒரு வரையறுத்த அளவு நீருடன் தாக்கம்                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ்<br>ச <b>ுணுவெண்</b> க<br>ம் புரியும்போத                                   | கள்<br>தும் |
| 20 இலும் குறைந்தவையாகும். A ஆனது ஒரு வரையறுத்த அளவு நீருடன் தாக்கம் B, C, D ஆகியன மிகையான நீருடன் தாக்கம் புரியும்போதும் உண்டாகும் வி                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ்<br>ச <b>ுணுவெண்</b> க<br>ம் புரியும்போத                                   | கள்<br>தும் |
| 20 இலும் குறைந்தவையாகும். A ஆனது ஒரு வரையறுத்த அளவு நீருடன் தாக்கம் B, C, D ஆகியன மிகையான நீருடன் தாக்கம் புரியும்போதும் உண்டாகும் வி $(P_1 - P_9)$ இன் ஒரு விவரணம் கீழே தரப்பட்டுள்ளது.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ்<br>ச <b>ுணுவெண்</b> க<br>ம் புரியும்போத                                   | கள்<br>தும் |
| 20 இலும் குறைந்தவையாகும். A ஆனது ஒரு வரையறுத்த அளவு நீருடன் தாக்கம் B, C, D ஆகியன மிகையான நீருடன் தாக்கம் புரியும்போதும் உண்டாகும் வி $(P_1 - P_9)$ இன் ஒரு விவரணம் கீழே தரப்பட்டுள்ளது.  சேர்வை விளைபொருள்களின் விவரணம்                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ா அணுவெண்க<br>ம் புரியும்போத<br>சிளைபொருள்க                                 | கள்<br>தும் |
| 20 இலும் குறைந்தவையாகும். A ஆனது ஒரு வரையறுத்த அளவு நீருடன் தாக்கம் B, C, D ஆகியன மிகையான நீருடன் தாக்கம் புரியும்போதும் உண்டாகும் வி $(P_1 - P_9)$ இன் ஒரு விவரணம் கீழே தரப்பட்டுள்ளது.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ா அணுவெண்க<br>ம் புரியும்போத<br>சிளைபொருள்க                                 | கள்<br>தும் |
| B, C, D ஆகியன மிகையான நீருடன் தாக்கம் புரியும்போதும் உண்டாகும் வி (P <sub>1</sub> - P <sub>9</sub> ) இன் ஒரு விவரணம் கீழே தரப்பட்டுள்ளது. <b>சேர்வை விளைபொருள்களின் விவரணம்</b> A  P <sub>1</sub> ஒரு பங்கீட்டுவலு வலையமைப்புக் கட்டமைப்பு உள்ள ஒரு சேர்  P <sub>2</sub> இரு வலிமையான ஒருமூல அமிலம்  P <sub>3</sub> செற்பாசிச்சாயுக்கை நீலமாக மாம்வும் கை வாயு                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ா அணுவெண்க<br>ம் புரியும்போத<br>சிளைபொருள்க                                 | கள்<br>தும் |
| 20 இலும் குறைந்தவையாகும். A ஆனது ஒரு வரையறுத்த அளவு நீருடன் தாக்கம் $\mathbf{B}$ , $\mathbf{C}$ , $\mathbf{D}$ ஆகியன மிகையான நீருடன் தாக்கம் புரியும்போதும் உண்டாகும் வி $(\mathbf{P}_1 - \mathbf{P}_9)$ இன் ஒரு விவரணம் கீழே தரப்பட்டுள்ளது. $egin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ா அணுவெண்க<br>ம் புரியும்போத<br>சிளைபொருள்க                                 | கள்<br>தும் |
| 20 இலும் குறைந்தவையாகும். A ஆனது ஒரு வரையறுத்த அளவு நீருடன் தாக்கம் B, C, D ஆகியன மிகையான நீருடன் தாக்கம் புரியும்போதும் உண்டாகும் வி $(P_1 - P_9)$ இன் ஒரு விவரணம் கீழே தரப்பட்டுள்ளது.  கேர்வை விளைபொருள்களின் விவரணம் கீரே தரப்பட்டுள்ளது.  \$\begin{align*} \begin{align*} \begi | ா அணுவெண்க<br>ம் புரியும்போத<br>சிளைபொருள்க                                 | கள்<br>தும் |
| 20 இலும் குறைந்தவையாகும். A ஆனது ஒரு வரையறுத்த அளவு நீருடன் தாக்கம் B, C, D ஆகியன மிகையான நீருடன் தாக்கம் புரியும்போதும் உண்டாகும் வி $(P_1 - P_9)$ இன் ஒரு விவரணம் கீழே தரப்பட்டுள்ளது. <b>சேர்வை விளைபொருள்களின் விவரணம்</b> A  P <sub>1</sub> ஒரு பங்கீட்டுவலு வலையமைப்புக் கட்டமைப்பு உள்ள ஒரு சேர் ஒரு வலிமையான ஒருமூல அமிலம்  B  P <sub>3</sub> P <sub>4</sub> வெளிற்றும் இயல்புகள் உள்ள ஒரு சேர்வை                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ா அணுவெண்க<br>ம் புரியும்போத<br>சிளைபொருள்க                                 | கள்<br>தும் |
| 20 இலும் குறைந்தவையாகும். A ஆனது ஒரு வரையறுத்த அளவு நீருடன் தாக்கம் B, C, D ஆகியன மிகையான நீருடன் தாக்கம் புரியும்போதும் உண்டாகும் வி $(P_1 - P_9)$ இன் ஒரு விவரணம் கீழே தரப்பட்டுள்ளது.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ா அணுவெண்க<br>ம் புரியும்போத<br>சிளைபொருள்க                                 | கள்<br>தும் |
| 20 இலும் குறைந்தவையாகும். A ஆனது ஒரு வரையறுத்த அளவு நீருடன் தாக்கம் B, C, D ஆகியன மிகையான நீருடன் தாக்கம் புரியும்போதும் உண்டாகும் வி $(P_1 - P_9)$ இன் ஒரு விவரணம் கீழே தரப்பட்டுள்ளது. <b>சேர்வை விளைபொருள்களின் விவரணம்</b> A  P <sub>1</sub> ஒரு பங்கீட்டுவலு வலையமைப்புக் கட்டமைப்பு உள்ள ஒரு சேர் ஒரு வலிமையான ஒருமூல அமிலம்  B  P <sub>3</sub> P <sub>4</sub> வெளிற்றும் இயல்புகள் உள்ள ஒரு சேர்வை  C  P <sub>5</sub> ஒரு மும்மூல அமிலம்  ஒரு வலிமையான ஒருமூல அமிலம்                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ா அணுவெண்க<br>ம் புரியும்போத<br>சிளைபொருள்க                                 | கள்<br>தும் |

|                                                                | •                                                                  |                                                                               |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                         |
|----------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                | II. F                                                              | <sub>3</sub> உடன்                                                             | Mg                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                         |
|                                                                |                                                                    |                                                                               |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                         |
|                                                                | III. <b>F</b>                                                      | 7 உடன்                                                                        | அமில $K_2Cr_2O_7$                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                         |
|                                                                | •                                                                  |                                                                               |                                                                                                                                                                                                                                                                  | الله والمريد والمريد                                                                                                                                                                                                                                                    |
| A1 (0C                                                         | <b>.</b>                                                           | T CO N                                                                        | L C O D CL DL(A)                                                                                                                                                                                                                                                 | (50 புள்ளிகள்)                                                                                                                                                                                                                                                          |
|                                                                |                                                                    |                                                                               |                                                                                                                                                                                                                                                                  | ) <sub>2</sub> , KOH ஆகியவற்றின் நீரக் கரைசல்களைக் கொண்டுள்ள<br>எனப் பெயரிட்ட போத்தல்கள் ஒரு மாணவனிடம்                                                                                                                                                                  |
|                                                                |                                                                    |                                                                               | - <del></del>                                                                                                                                                                                                                                                    | ன்பதற்கு ஒரு தடவைக்கு இரு கரைசல்கள் வீதம்                                                                                                                                                                                                                               |
|                                                                |                                                                    |                                                                               |                                                                                                                                                                                                                                                                  | அவதானிப்புகள் கீழே தரப்பட்டுள்ளன.                                                                                                                                                                                                                                       |
| (Ac - e                                                        | அசற்6                                                              | றற்று அ                                                                       | யன்)                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                         |
|                                                                |                                                                    | 856                                                                           | லக்கப்பட்ட கரைசல்கள்                                                                                                                                                                                                                                             | அவதானிப்புகள்                                                                                                                                                                                                                                                           |
|                                                                |                                                                    | I                                                                             | T + R                                                                                                                                                                                                                                                            | ஒரு தெளிவான நிறமற்ற கரைசல்                                                                                                                                                                                                                                              |
|                                                                |                                                                    | II                                                                            | P + R                                                                                                                                                                                                                                                            | ஒரு வெள்ளை வீழ்படிவு                                                                                                                                                                                                                                                    |
|                                                                |                                                                    | III                                                                           | T + S                                                                                                                                                                                                                                                            | செலற்றின் போன்ற ஒரு வெள்ளை வீழ்படிவு                                                                                                                                                                                                                                    |
|                                                                |                                                                    | IV                                                                            | U+R                                                                                                                                                                                                                                                              | ஒரு வெள்ளை வீழ்படிவு                                                                                                                                                                                                                                                    |
|                                                                |                                                                    | V                                                                             | P + Q                                                                                                                                                                                                                                                            | ஒரு வெள்ளை வீழ்படிவு வெப்பமாக்கப்படும்போது<br>கறுப்பாக மாறுகின்றது                                                                                                                                                                                                      |
|                                                                |                                                                    | VI                                                                            | P+U                                                                                                                                                                                                                                                              | ஒரு வெள்ளை வீழ்படிவு வெப்பமாக்கப்படும்போது<br>கரைகின்றது                                                                                                                                                                                                                |
| (i) <b>P</b>                                                   | கொ                                                                 | _க்கம் <b>U</b>                                                               | வரைக்கும் இனங்காண்                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                         |
|                                                                | •                                                                  |                                                                               |                                                                                                                                                                                                                                                                  | R:                                                                                                                                                                                                                                                                      |
| -                                                              | • • • • • •                                                        |                                                                               | _                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                         |
|                                                                | ٦.                                                                 |                                                                               | Tr.                                                                                                                                                                                                                                                              | ¥ I.                                                                                                                                                                                                                                                                    |
|                                                                |                                                                    | I Gasti /                                                                     |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                         |
| (ii) Cı                                                        | ம <b>லே</b>                                                        |                                                                               | க்கம் <b>VI வரையுள்</b> ள த                                                                                                                                                                                                                                      | U:<br>ருக்கங்கள் ஒவ்வொன்றுக்கும் சமன்படுத்திய இரசாயனச்                                                                                                                                                                                                                  |
| (ii) Cı                                                        | ம <b>லே</b>                                                        | I தொட<br>ரடுகளைத்                                                             | க்கம் VI வரையுள்ள த<br>தருக.                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                         |
| (ii) பே<br>சா                                                  | மலே<br>மன்பா<br>I:                                                 | I தொட                                                                         | க்கம் VI வரையுள்ள த<br>ந்தருக.                                                                                                                                                                                                                                   | ாக்கங்கள் ஒவ்வொன்றுக்கும் சமன்படுத்திய இரசாயனச்                                                                                                                                                                                                                         |
| (ii) பேசா                                                      | மலே<br>மன்பா<br>I:<br>II:                                          | I தொட<br>முகளைத்                                                              | க்கம் VI வரையுள்ள த<br>ந்தருக.                                                                                                                                                                                                                                   | ாக்கங்கள் ஒவ்வொன்றுக்கும் சமன்படுத்திய இரசாயனச்                                                                                                                                                                                                                         |
| (ii) Ci<br>#I                                                  | மலே<br>மன்பா<br>I:<br>II:<br>III:                                  | I தொட                                                                         | க்கம் VI வரையுள்ள த<br>ந்தருக.                                                                                                                                                                                                                                   | ாக்கங்கள் ஒவ்வொன்றுக்கும் சமன்படுத்திய இரசாயனச்                                                                                                                                                                                                                         |
| (ii) Gi                                                        | மலே<br>மன்பா<br>I:<br>II:<br>III:                                  | I தொட                                                                         | க்கம் <b>VI</b> வரையுள்ள த<br>ந் தருக.                                                                                                                                                                                                                           | ாக்கங்கள் ஒவ்வொன்றுக்கும் சமன்படுத்திய இரசாயனச்                                                                                                                                                                                                                         |
| (ii) Ci<br>#I                                                  | மலே<br>மன்பா<br>I:<br>II:<br>III:                                  | I தொட                                                                         | க்கம் <b>VI</b> வரையுள்ள த<br>ந் தருக.                                                                                                                                                                                                                           | ாக்கங்கள் ஒவ்வொன்றுக்கும் சமன்படுத்திய இரசாயனச்                                                                                                                                                                                                                         |
| (ii) Gi                                                        | மலே<br>மன்பா<br>II:<br>III:<br>IV:<br>V:                           | I தொட<br>டுகளைத்<br>வெள்ளை                                                    | க்கம் <b>VI</b> வரையுள்ள த<br>ந் தருக.<br>எ வீழ்படிவு உண்டாதல்                                                                                                                                                                                                   | ாக்கங்கள் ஒவ்வொன்றுக்கும் சமன்படுத்திய இரசாயனச்                                                                                                                                                                                                                         |
| (ii) Gi<br>Fi<br>I                                             | மலே<br>மன்பா<br>II:<br>III:<br>IV:<br>V:                           | I தொட<br>படுகளைத்<br>வெள்ளை<br>வெப்பமாக                                       | க்கம் <b>VI</b> வரையுள்ள த<br>ந் தருக.<br>எ வீழ்படிவு உண்டாதல்<br>க்கும்போது கறுப்பாக மா                                                                                                                                                                         | ாக்கங்கள் ஒவ்வொன்றுக்கும் சமன்படுத்திய இரசாயனச்                                                                                                                                                                                                                         |
| (ii) Gi<br>Fi<br>I                                             | மலே<br>மன்பா<br>I:<br>II:<br>IV:<br>V: (                           | I தொட<br>படுகளைத்<br>வெள்ளை<br>வெப்பமாக                                       | க்கம் <b>VI</b> வரையுள்ள த<br>ந் தருக.<br>எ வீழ்படிவு உண்டாதல்<br>க்கும்போது கறுப்பாக மா                                                                                                                                                                         | ாக்கங்கள் ஒவ்வொன்றுக்கும் சமன்படுத்திய இரசாயனச்                                                                                                                                                                                                                         |
| (ii) Gi                                                        | மலே<br>மன்பா<br>I:<br>II:<br>IV:<br>V: (                           | I தொடர்<br>நெகளைத்<br>வெள்ளை<br>வெப்பமாக்                                     | க்கம் <b>VI</b> வரையுள்ள த<br>ந்தருக.<br>எவீழ்படிவு உண்டாதல்<br>க்கும்போது கறுப்பாக மா<br>வீழ்படிவுகளை <b>↓</b> எனக்                                                                                                                                             | ாக்கங்கள் ஒவ்வொன்றுக்கும் சமன்படுத்திய இரசாயனச்                                                                                                                                                                                                                         |
| (ii) பேசா<br>ப<br>நீரில் அ<br>நீரின்1.                         | மலே<br>மன்பா<br>I:<br>II:<br>IV:<br>V: ((<br>VI:<br>அரிதா<br>.0 dm | I தொட்<br>ரடுகளைத்<br>வெள்ளை<br>வெப்பமாக்<br>கக் கரைர<br>-3 இல் A             | க்கம் <b>VI</b> வரையுள்ள த<br>ந் தருக.<br>எ வீழ்படிவு உண்டாதல்<br>க்கும்போது கறுப்பாக மா<br>வீழ்படிவுகளை <b>↓</b> எனக்<br>யும் ஓர் உப்பு AB <sub>2</sub> (s) இ<br>B <sub>2</sub> (s) இன் ஒரு மிகைய                                                               | ாக்கங்கள் ஒவ்வொன்றுக்கும் சமன்படுத்திய இரசாயனச் : : : : : : : : : : : : : : : : : : :                                                                                                                                                                                   |
| (ii) பேசா<br>சா<br>நீரில் அ<br>நீரின் 1.<br>இந்நிரம்           | மலே<br>மன்பா<br>I:<br>II:<br>IV:<br>V: (<br>VI:<br>(சரிதா<br>odm   | I தொடல்<br>நெகளைத்<br>வெள்ளை<br>வெப்பமாக<br>கக் கரை<br>-3 இல் A<br>நீர்க் கணை | க்கம் <b>VI</b> வரையுள்ள த<br>த் தருக.<br>வீழ்படிவு உண்டாதல்<br>க்கும்போது கறுப்பாக மா<br>வீழ்படிவுகளை <b>↓</b> எனக்<br>யும் ஓர் உப்பு AB <sub>2</sub> (s) இ<br>B <sub>2</sub> (s) இன் ஒரு மிகைய<br>ரசலில் இருக்கும் A <sup>2+</sup> (a                          | நாக்கங்கள் ஒவ்வொன்றுக்கும் சமன்படுத்திய இரசாயனச்<br>நுதல்:<br>காட்டுக.) ( <b>50</b> புள்ளிகள்<br>இன் ஒரு நிரம்பிய நீர்க் கரைசல் 25°C இல் காய்ச்சி வடித்த<br>பான அளவைக் கலக்குவதன் மூலம் தயாரிக்கப்பட்டது<br>q) அயன்களின் அளவு 2.0×10 <sup>-3</sup> mol எனக் காணப்பட்டது |
| (ii) பேசா<br>சா<br>நீரில் ச<br>நீரின் 1.<br>இந்நிரம்<br>(i) 25 | மலே<br>மன்பா<br>I:<br>II:<br>IV:<br>V:<br>VI:<br>vii<br>odm        | I தொடல்<br>நெகளைத்<br>வெள்ளை<br>வெப்பமாக<br>கக் கரை<br>-3 இல் A<br>நீர்க் கணை | க்கம் <b>VI</b> வரையுள்ள த<br>ந் தருக.<br>எ வீழ்படிவு உண்டாதல்<br>க்கும்போது கறுப்பாக மா<br>வீழ்படிவுகளை <b>↓</b> எனக்<br>யும் ஓர் உப்பு AB <sub>2</sub> (s) இ<br>B <sub>2</sub> (s) இன் ஒரு மிகைய<br>ரசலில் இருக்கும் A <sup>2+</sup> (a<br>மற்குறித்த தொகுதியி | ாக்கங்கள் ஒவ்வொன்றுக்கும் சமன்படுத்திய இரசாயனச் : : : : : : : : : : : : : : : : : : :                                                                                                                                                                                   |

| (iii)   | 25°C இல் மேலே (ii) இந் குறிப்பிட்ட சமநிலை மாறிலியின் பெறுமானத்தைக் கணிக்க.                                                                                                                                                                                                                                                                                                                                                                  | இப்பகுதியில்<br>எதனையும்<br>எழுதுதல்<br>ஆகாது. |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                             | į                                              |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                |
|         | ••••••                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                |
| (iv)    | ${ m AB}_2$ இன் வேறொரு நிரம்பிய நீரக் கரைசல் $25~^{\circ}{ m C}$ இல் காய்ச்சி வடித்த நீரின் $2.0~{ m dm}^3$ இல் ${ m AB}_2({ m s})$ இன் ஒரு மிகையான அளவைக் கலக்குவதன் மூலம் தயாரிக்கப்பட்டது. இத்தொகுதிக்குரிய சமநிலை மாநிலியின் பெறுமானத்தைக் காரணங்கள் தந்து எதிர்வுகூறுக.                                                                                                                                                                |                                                |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                |
| (v)     | $25\ ^\circ\mathrm{C}$ இல் இருக்கும் $\mathrm{AB}_2$ இன் ஒரு நிரம்பிய நீர்க் கரைசலுடன் வலிமையான மின்பகுபொருள் $\mathrm{NaB}(\mathrm{s})$ இன் ஒரு சிறிதளவு சேர்க்கப்பட்டது. $\mathrm{A}^{2+}(\mathrm{aq})$ இன் செறிவு அதிகரிக்கின்றதா, குறைகின்றதா என்பதைக் காரணங்கள் தந்து எதிர்வுகூறுக.                                                                                                                                                    |                                                |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                |
|         | ( <b>60</b> புள்ளிகள்)                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                |
| (b) ஒரு | நீர்க் கரைசலில் புறொப்பனொயிக் அமிலம் ( $\mathrm{C_2H_5COOH}$ ) பின்வருமாறு அயனாகின்றது.                                                                                                                                                                                                                                                                                                                                                     |                                                |
|         | $C_2H_5COOH(aq) + H_2O(l) \rightleftharpoons C_2H_5COO^-(aq) + H_3O^+(aq)$                                                                                                                                                                                                                                                                                                                                                                  |                                                |
|         | $25~^{\circ}\mathrm{C}$ இல் $K_a$ (புறொப்பனொயிக் அமிலம்) = $1.0 \times 10^{-5}$                                                                                                                                                                                                                                                                                                                                                             |                                                |
| (i)     | 25 °C இல் மேற்குறித்த தாக்கத்திற்கான சமநிலை மாறிலிக்குரிய கோவையை எழுதுக.                                                                                                                                                                                                                                                                                                                                                                    |                                                |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                |
| (ii)    | $25~^\circ\text{C}$ இல் $\text{C}_2\text{H}_5\text{COOH}$ இன் $0.74~\text{cm}^3$ ஐக் காய்ச்சி வடித்த நீரில் கரைப்பதன் மூலம் $\text{C}_2\text{H}_5\text{COOH}(\text{aq})$ இன் ஒரு நீர்க் கரைசலின் $100.0~\text{cm}^3$ தயாரிக்கப்பட்டது. $25~^\circ\text{C}$ இல் இக்கரைசலின் pH பெறுமானத்தைக் கணிக்க. $(\text{C}=12; \ \text{O}=16; \ \text{H}=1; \ \text{C}_2\text{H}_5\text{COOH}$ இன் அடர்த்தி $1.0~\text{g}~\text{cm}^{-3}$ எனக் கருதுக.) |                                                |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                |

100

இப்பகுதியில் எதனையும் எழுதுதல் ஆகாது.

4. (a)  $\mathbf{A}$ ,  $\mathbf{B}$ ,  $\mathbf{C}$ ,  $\mathbf{D}$  ஆகியன மூலக்கூற்றுச் சூத்திரம்  $\mathbf{C}_6\mathbf{H}_{10}$  ஐக் கொண்ட கட்டமைப்புச் சமபகுதியங்களாகும். இவற்றில் எதுவும் ஒளியியற் சமபகுதிச்சேர்வைக் காட்டுவதில்லை.  $\mathbf{A}$ ,  $\mathbf{B}$ ,  $\mathbf{C}$ ,  $\mathbf{D}$  ஆகிய இந்நான்கு சமபகுதியங்களும்  $\mathbf{HgSO}_4$  ஐதான  $\mathbf{H_2SO}_4$  உடன் பரிகரிக்கப்படும்போது தரும் விளைபொருள்கள்  $\mathbf{2}$ ,4- இருநைத்திரோபீனைல்ஹைதரசீன்  $(\mathbf{2},\mathbf{4}\text{-DNP})$  உடன் தாக்கம் புரிந்து நிற வீழ்படிவுகளைத் தருகின்றன. அமோனியாசேர்  $\mathbf{AgNO}_3$  உடன்  $\mathbf{A}$  மாத்திரம் ஒரு வீழ்படிவைத் தருகின்றது.  $\mathbf{A}$  இற்கு ஒரு தானச் (position) சமபகுதியம் மாத்திரம் இருக்கும். அது  $\mathbf{B}$  ஆகும்.  $\mathbf{B}$  ஆனது  $\mathbf{C}$  இன் ஒரு சங்கிலிச் சமபகுதியமாகும்.  $\mathbf{C}$  ஆனது  $\mathbf{HgSO}_4$ / ஐதான  $\mathbf{H_2SO}_4$  உடன் தாக்கம் புரிந்து  $\mathbf{E}$ ,  $\mathbf{F}$  என்னும் இரு விளைபொருள்களைத் தருகின்றது.  $\mathbf{D}$  ஆனது  $\mathbf{HgSO}_4$ / ஐதான  $\mathbf{H_2SO}_4$  உடன் தாக்கம் புரிந்து ஒரு விளைபொருளை மாத்திரம் தருகின்றது. அது  $\mathbf{E}$  ஆகும்.



- (ii)  $H_2$  / Pd- $BaSO_4$  / குவினொலீனுடன்  ${\bf A}, {\bf B}, {\bf C}, {\bf D}$  ஆகிய சேர்வைகள் வேறுவேறாகத் தாக்கம் புரியும்போது எச்சேர்வை ஈர்வெளிமயச்சமபகுதிச்சேர்வைக் காட்டாத ஒரு விளைபொருளைத் தரும்?
- (iii)  ${f A}$  ஆனது மிகையான  ${f HBr}$  உடன் தாக்கம் புரியும்போது பெறப்படும் விளைபொருள்  ${f G}$  இன் கட்டமைப்பைக் கீழே தர<u>ப்பட்டுள்ள பெட்</u>டியில் வரைக.



(iv) E பின்வரும் தாக்கங்களில் தரும் X, Y ஆகிய விளைபொருள்களின் கட்டமைப்புகளை உரிய பெட்டிகளில் வரைக.\_\_\_\_\_



X, Y ஆகியவற்றை ஒன்றிலிருந்தொன்று வேறுபடுத்தி இனங்காண்பதற்கு ஒரு சோதனையைக் குறிப்பிடுக.

(60 புள்ளிகள்)

இப்பகுதியில் எதனையும் எழுதுதல் அகாகு

(b) (i) கீழே தரப்பட்டுள்ள பெட்டிகளில்  ${f K}, {f L}, {f M}$  ஆகிய சேர்வைகளின் கட்டமைப்புகளை வரைவதன் மூலமும்  ${f P}, {f Q}, {f R}$  ஆகிய சோதனைப் பொருள்களை/ஊக்கிகளைத் தருவதன் மூலமும் பின்வரும் மூன்று தாக்கத் தொடரிகளையும் பூரணப்படுத்துக.







**(30** புள்ளிகள்)

(ii) தாக்கங்கள் I-VI இலிருந்து தெரிந்தெடுத்துக் கீழே தரப்பட்டுள்ள தாக்கங்களின் வகைகள் ஒவ்வொன்றுக்கும் ஓர் (01) உதாரணம் வீதம் தருக.

100

සියලු ම හිමිකම් ඇවිරිනි / முழுப் பதிப்புரிமையுடையது / All Rights Reserved]

## නව නිඊදේශය/புதிய பாடத்திட்டம்/New Syllabus

අධානයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2020 கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2020 General Certificate of Education (Adv. Level) Examination, 2020

රසායන විදහාව II **இரசாயனவியல்** II Chemistry II



\* அகில வாயு மாறிலி  $R=8.314~\mathrm{J~K}^{-1}_{23}~\mathrm{mol}^{-1}$  \* அவகாதரோ மாறிலி  $N_A=6.022~\mathrm{\times}~10^2~\mathrm{mol}^{-1}$ 

பகுதி B — கட்டுரை

இரண்டு வினாக்களுக்கு மாத்திரம் விடை எழுதுக. (ஒவ்வொரு வினாவுக்கும் 150 புள்ளிகள் வீதம் வழங்கப்படும்.)

5. (a) ஒரு சேர்வை  $XY_2Z_2(g)$  ஆனது 300~K இலும் கூடிய வெப்பநிலைகளுக்கு வெப்பமாக்கப்படும்போது பின்வருமாறு கூட்டப்பிரிகையடைகின்றது.

 $XY_2Z_2(g) \stackrel{\Delta}{\rightleftharpoons} XY_2(g) + Z_2(g)$ 

 $XY_2Z_2(g)$  இன் 7.5~g ஆன மாதிரி ஒன்று ஒரு வெற்றிடமாக்கப்பட்ட  $1.00~\mathrm{dm}^3$  விறைத்த மூடிய கொள்கலத்தில் வைக்கப்பட்டு வெப்பநிலை  $480~\mathrm{K}$  இற்கு உயர்த்தப்பட்டது.

 $XY_2Z_2(g)$  இன் மூலர்த் திணிவு  $150~{
m g~mol}^{-1}$  ஆகும்.  $480~{
m K}$  இல் RT இன் அண்ணளவுப் பெறுமானமாக  $4000~{
m J~mol}^{-1}$  ஐப் பயன்படுத்துக. எல்லா வாயுக்களுக்கும் இலட்சிய வாயுவின் நடத்தையைக் கருதுக.

- (i) கூட்டப்பிரிகைக்கு முன்னர் கொள்கலத்தில் உள்ள  $XY_2Z_2(g)$  முல்களின் எண்ணிக்கையைக் கணிக்க
- (ii) மேற்குறித்த தொகுதி  $480~{\rm K}$  இல் சமநிலையை அடையும்போது கொள்கலத்தில் உள்ள மூல்களின் மொத்த எண்ணிக்கை  $7.5\times 10^{-2}~{\rm mol}$  எனக் காணப்பட்டது.  $480~{\rm K}$  இல் சமநிலைக் கலவையில் உள்ள  $XY_2Z_2(g), XY_2(g), Z_2(g)$  ஆகியவற்றின் மூல்களின் எண்ணிக்கையைக் கணிக்க.
- (iii) 480 K இல் மேற்குறித்த தாக்கத்திற்கான சமநிலை மாறிலி  $K_c$  ஐக் கணிக்க.
- $(\mathrm{iv})$   $480~\mathrm{K}$  இல் சமநிலைக்கு  $\mathit{K}_{\scriptscriptstyle D}$  ஐக் கணிக்க.

(75 புள்ளிகள்)

- (b) மேலே (a) இல் விவரிக்கப்பட்ட தாக்கம்  $XY_2Z_2(g) \rightarrow XY_2(g) + Z_2(g)$  இற்கு 480 K இல்  $XY_2Z_2(g), XY_2(g), Z_2(g)$  ஆகியவற்றின் கிப்ஸ் சுயாதீனச் சக்திகள் (G) முறையே  $-60 \text{ kJ mol}^{-1}, -76 \text{ kJ mol}^{-1}, -30 \text{ kJ mol}^{-1}$  ஆகும்.
  - (i) 480 K இல் தாக்கத்தின்  $\Delta G$  ஐ (kJ  $\mathrm{mol}^{-1}$  இல்) கணிக்க.
  - (ii) மேற்குறித்த தாக்கத்தில்  $480~{
    m K}$  இல்  $\Delta S$  இன் பருமன்  $150~{
    m J}~{
    m K}^{-1}~{
    m mol}^{-1}$ ஆகும்.  $\Delta S$  இன் சரியான குறியைப் (— அல்லது +) பயன்படுத்தி  $480~{
    m K}$  இல் தாக்கத்தின்  $\Delta H$  ஐக் கணிக்க.
  - (iii) மேலே (ii) இற் பெற்ற  $\Delta H$ இன் குறியை (— அல்லது +) பயன்படுத்தி இத்தாக்கம் புறவெப்பத் தாக்கமா அகவெப்பத் தாக்கமா என விளக்குக.
  - (iv) 480~K இல்  $XY_2(g), Z_2(g)$  ஆகியவற்றிலிருந்து  $XY_2Z_2(g)$  உண்டாகும்போது வெப்பவுள்ளுறை வித்தியாசத்தை உய்த்தறிக.
  - (v)  $XY_2Z_2(g)$  இல் X—Z பிணைப்பின் பிணைப்பு வெப்பவுள்ளுறை  $+250~{
    m kJ}~{
    m mol}^{-1}$  எனின், Z—Z பிணைப்பின் பிணைப்பு வெப்பவுள்ளுறையைக் கணிக்க. ( $XY_2Z_2(g)$  இன் கட்டமைப்பு Z—X—Z எனக் கொள்வோம்.) Y
  - (vi) வாயுநிலையில் உள்ள  $XY_2Z_2$  இற்குப் பதிலாகத் திரவம்  $XY_2Z_2$  பயன்படுத்தப்படுமெனின், தாக்கம்  $XY_2Z_2$   $(l) o XY_2(g) + Z_2(g)$  இற்குக் கிடைக்கும்  $\Delta H$  இன் பெறுமானம் மேலே (ii) இற் பெற்ற  $\Delta H$  இன் பெறுமானத்திற்குச் சமமானதா, பெரியதா, சிறியதா எனக் காரணங்கள் தந்து விளக்குக.  $(75\$ புள்ளிகள்)

**6**. (a) ஒரு தரப்பட்டுள்ள வெப்பநிலை T இல் ஒரு மூடிய கொள்கலத்தில் நடைபெறும் கீழே தரப்பட்டுள்ள தாக்கத்தைக் கருதுக.

$$2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$$

- (i) தாக்கத்தில் காட்டப்பட்டுள்ள சேர்வைகள் ஒவ்வொன்றுக்கும் உரிய தாக்க வீதத்திற்கு **மூன்று** கோவைகளை எழுதுக.
- (ii) இத்தாக்கம் வெப்பநிலை Tஇல்  $N_2O_5(g)$  இன் தொடக்கச் செறிவு  $0.10\,\mathrm{mol\,dm}^{-3}$  உடன் நடைபெற்றது.  $400\,\mathrm{s}$  நேரத்திற்குப் பின்னர் தொடக்க அளவில் 40% ஆனது பிரிகையடைந்திருப்பதாகக் காணப்பட்டது
  - I. இந்நேர ஆயிடையில்  $N_2O_5(g)$ இன் சராசரிப் பிரிகை வீதத்தைக் (average rate of decomposition) கணிக்க.
  - $NO_2(g), O_2(g)$  ஆகியவற்றின் சராசரி ஆக்கல் வீதங்களைக் (average rates of formation) கணிக்க.
- (iii) வேநொரு பரிசோதனையில், இத்தாக்கத்திற்கு 300 K இல் தொடக்க வீதங்கள் அளக்கப்பட்டு, பேறுகள் கீழே தரப்பட்டுள்ளன.

| [N <sub>2</sub> O <sub>5</sub> (g)] / mol dm <sup>-3</sup> | 0.01                   | 0.02                   | 0.03                   |  |  |
|------------------------------------------------------------|------------------------|------------------------|------------------------|--|--|
| தொடக்க வீதம் / mol dm <sup>-3</sup> s <sup>-1</sup>        | $6.930 \times 10^{-5}$ | $1.386 \times 10^{-4}$ | $2.079 \times 10^{-4}$ |  |  |

300 K இல் தாக்கத்திற்கான வீத விதியைப் பெறுக.

- (iv) வேறொரு பரிசோதனை  $300\,\mathrm{K}$  இல்  $\mathrm{N_2O_5(g)}$  இன் தொடக்கச் செறிவு  $0.64\,\mathrm{mol\,dm}^{-3}$  உடன் நடைபெற்றது.  $500\,\mathrm{s}$  நேரத்திற்குப் பின்னர் எஞ்சியிருந்த  $\mathrm{N_2O_5(g)}$  இன் செறிவு  $2.0\,\mathrm{x}$   $10^{-2}\,\mathrm{mol\,dm}^{-3}$  எனக் காணப்பட்டது.
  - $I. 300~{
    m K}$  இல் தாக்கத்தின் அரை வாழ்வுக் காலம் ( $t_{1/2}$ ) ஐக் கணிக்க.
  - II. 300 K இல் தாக்கத்தின் வீத மாறிலியைக் கணிக்க.
- (v) இத்தாக்கம் பின்வரும் தொடக்கப் படிகளைக் கொண்ட ஒரு பொறிமுறையினூடாக நடைபெறுகின்றது.

படி 
$$1: N_2O_5(g)$$
  $\rightleftharpoons$   $NO_3(g)$  +  $NO_2(g)$  : விரைவாக

படி 
$$2: NO_3(g) + NO_2(g) \rightarrow 2NO_2(g) + O(g)$$
 : மெதுவாக

படி 
$$3: N_2O_5(g) + O(g)$$
  $\rightarrow 2NO_2(g) + O_2(g)$  : விரைவாக

மேற்குறித்த பொறிமுறை தாக்கத்தின் வீத விதிக்கு இசைவானதெனக் காட்டுக.

(80 धुनंनीऊनं)

- (b) வெப்பநிலை T இல்  ${\bf A}, {\bf B}$  என்னும் இரு திரவங்களை ஒரு வெற்றிடமாக்கப்பட்ட மூடிய கொள்கலத்தில் கலப்பதன் மூலம் ஓர் இலட்சியத் துவிதத் திரவக் கலவை தயாரிக்கப்பட்டது. வெப்பநிலை T இல் சமநிலையைத் தாபித்த பின்னர் ஆவி அவத்தையில்  ${\bf A}, {\bf B}$  ஆகியவற்றின் பகுதியமுக்கங்கள் முறையே  $P_{\bf A}$ ,  $P_{\bf B}$  ஆகும். வெப்பநிலை T இல்  ${\bf A}, {\bf B}$  ஆகியவற்றின் நிரம்பிய ஆவியமுக்கங்கள் முறையே  $P_{\bf A}^{\circ}$ ,  $P_{\bf B}^{\circ}$  ஆகும். கரைசலில்  ${\bf A}, {\bf B}$  ஆகியவற்றின் மூல் பின்னங்கள் முறையே  $X_{\bf A}, X_{\bf B}$  ஆகும்.
  - (i)  $P_{\bf A} = P_{\bf A}^{\circ} X_{\bf A}$  எனக் காட்டுக. (சமநிலையில் ஆவியாகல் வீதமும் ஒடுங்கல் வீதமும் சமமெனக் கருதுக.)
  - (ii)  $300~\rm K$  இல் மேற்குறித்த தொகுதியின் மொத்த அமுக்கம்  $5.0 \times 10^4~\rm Pa$  ஆகும்.  $300~\rm K$  இல் தூய  ${\bf A}, {\bf B}$  ஆகியவற்றின் நிரம்பிய ஆவியமுக்கங்கள் முறையே  $7.0 \times 10^4~\rm Pa$ ,  $3.0 \times 10^4~\rm Pa$  ஆகும்.
    - I. சமநிலைக் கலவையில் திரவ அவத்தையில் இருக்கும் A இன் மூல் பின்னத்தைக் கணிக்க.
    - II. சமநிலைக் கலவையில் **A** இன் ஆவியமுக்கத்தைக் கணிக்க. (70 புள்ளிகள்)

7. (a) (i) மின்பகுப்புக் கலத்தினதும் கல்வானிக் கலத்தினதும் இயல்புகளை ஒப்பிடுவதற்குத் தரப்பட்டுள்ள பதங்களைப் பயன்படுத்திப் பின்வரும் அட்டவணையை பிரதி செய்து பூரணப்படுத்துக. பதங்கள்: அனோட்டு, கதோட்டு, நேர், மறை, சுயமான, சுயமற்ற

|    |                                           | மின்பகுப்புக் கலம்   | கல்வானிக் கலம்       |
|----|-------------------------------------------|----------------------|----------------------|
| A. | ஒட்சியேற்ற அரைத் தாக்கம் நடைபெறுவது       |                      |                      |
| B. | தாழ்த்தல் அரைத் தாக்கம் நடைபெறுவது        |                      |                      |
| C. | $E^{\circ}_{ m cell}$ இன் குறி            |                      |                      |
| D. | இலத்திரன் பாய்ச்சல்                       | இருந்து<br>வரைக்கும் | இருந்து<br>வரைக்கும் |
| E. | கலத் தாக்கத்தின் சுயவியல்பு (spontaneity) |                      |                      |

(ii) கீழே காட்டப்பட்டுள்ளவாறு  $300~{\rm K}$  இல் ஒரு Zn(s) அனோட்டு, ஒரு கார நீர் மின்பகுபொருள், வளியில் உள்ள ஒட்சிசன்  $O_2(g)$  ஐச் சேகரிப்பதற்கு உதவும் நுண்டுளையுள்ள ஒரு Pt கதோட்டு ஆகியவற்றைப் பயன்படுத்தி ஒரு மின்னிரசாயனக் கலம் அமைக்கப்பட்டது. கலம் தொழிற்படும்போது ZnO(s) உண்டாகின்றது.



- III. 300 K இல் கலத்தின் அழுத்தம்  $E^{\circ}_{cell}$  ஐக் கணிக்க
- IV. மின்வாய்களுக்கிடையே OH¯(aq) அயன்கள் செல்லும் பாதையின் திசையைக் குறிப்பிடுக.
- V. 300 Kஇல் கலம் 800 s நேரத்திற்குத் தொழிற்படும்போது  $O_2(g)$  இன்  $2 \mod 6$  சலவிடப்படுகின்றது.
  - A. கலத்தினூடாகச் செல்லும் இலத்திரன்களின் மூல்களின் எண்ணிக்கையைக் கணிக்க.
  - B. உண்டாகும் ZnO(s) இன் திணிவைக் கணிக்க.
  - C. கலத்தினூடாகச் செல்லும் ஓட்டத்தைக் கணிக்க.

(75 புள்ளிகள்)

(b) உப்பு  $\mathbf{M}(\mathrm{NO_3})_\mathrm{n}$  ஐக் காய்ச்சி வடித்த நீரிற் கரைக்கும்போது ஒரு நிறமுள்ள சிக்கலயன்  $\mathbf{P}$  உண்டாகின்றது.  $\mathbf{M}$  ஆனது 3d தொகுப்புக்குரிய ஒரு தாண்டல் மூலகமாகும்.  $\mathbf{P}$  பின்வரும் தாக்கங்களுக்கு உட்படுகின்றது.



(செங்கபில வீழ்படிவு) **T** , **U** ஆகியன ஒவ்வொன்றும் நான்கு மூலகங்களைக் கொண்ட இணைப்புச் சேர்வைகளாகும். **P**, **R** , **S** ஆகியன சிக்கலயன்களாகும்.

- ு (i) உலோகம் **M** ஐ இனங்காண்க. சிக்கலயன் **P** இல் **M** இன் ஒட்சியேற்ற நிலையைத் தருக.
- $(ii)\ \mathbf{M}(\mathrm{NO_3})_{\mathrm{n}}$  இல்  $\mathrm{n}\$ இன் பெறுமானத்தைத் தருக.
- (iii) சிக்கலயன் **P** இல் **M** இன் பூரண இலத்திரன் நிலையமைப்பை எழுதுக.
- (iv) **P.O.R.S.T.U** ஆகியவற்றின் இரசாயனச் சூத்திரங்களை எழுதுக்.
- $(v)\ P,R,S,T,U$  ஆகியவற்றின் IUPAC பெயர்களைத் தருக.
- (vi) P இன் நிறம் யாது?
- (vii) கீழே தரப்பட்டுள்ள I, II ஆகியவற்றில் நீர் எதிர்பார்க்கும் அவதானிப்புகள் யாவை?
  - I. அறை வெப்பநிலையில்  ${f P}$  ஐக் கொண்ட ஓர் அமிலக் கரைசலுக்கு  $H_2S$  வாயுவை அனுப்பும்போது
  - m II. மேலே  $m I இல் கிடைக்கும் கலவையைக் கரைந்துள்ள <math>
    m H_2S$  ஐ நீக்கிய பின்னர் ஐதான  $m HNO_3$  உடன் வெப்பமாக்கும்போது.
- (viii) ஒரு நீர்க் கரைசலில் இருக்கும் **M**<sup>n+</sup> இன் செறிவைத் துணிவதற்கான ஒரு முறையைப் பின்வரும் இரசாயனப் பொருள்களைப் பயன்படுத்திச் சமன்படுத்திய இரசாயனச் சமன்பாடுகளின் துணையுடன் சுருக்கமாக விவரிக்க:

  KI, Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> மாப்பொருள் (75 **புள்ளிகள்**)

#### பகுதி C — கட்டுரை

**இரண்டு** வினாக்களுக்கு மாத்திரம் விடை எழுதுக. (ஒவ்வொரு வினாவுக்கும் **150 புள்ளிகள்** வீதம் வழங்கப்படும்.)

(a) (i) ஒரே சேதனத் தொடக்கும் சேர்வையாக CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>OH ஐ மாத்திரம் பயன்படுத்திச் சேர்வை
 G இன் தொகுப்புக்கான ஒரு தாக்க ஒழுங்குமுறை கீழே தரப்பட்டுள்ளது.

A, B, C, D, E, F ஆகிய சேர்வைகளின் கட்டமைப்புகளை வரைவதன் மூலமும் படிகள் 1 – 7 இற்குப் பொருத்தமான சோதனைப் பொருள்களைப் பட்டியலில் தரப்பட்டுள்ளவற்றிலிருந்து மாத்திரம் தெரிந்தெடுத்து எழுதுவதன் மூலமும் இத்தாக்க ஒழுங்குமுறையைப் பூரணப்படுத்துக.

$$\begin{array}{c} \operatorname{CH_3CH_2CH_2OH} \xrightarrow{ \text{ LIQ } 1 } A \xrightarrow{ \text{ LIQ } 2 } B \xrightarrow{ \text{ LIQ } 3 } C \\ \downarrow \text{ LIQ } 4 \\ \downarrow \text{ D} \\ \hline \\ E \xrightarrow{ \text{ LIQ } 5 } \operatorname{CH_3CH_2CH-CH-CH_3} \xrightarrow{ \text{ LIQ } 6 } F \xrightarrow{ \text{ LIQ } 7 } \operatorname{CH_3CH_2CH-CHCH_3} \\ \xrightarrow{ \text{ CH}_3 } \xrightarrow{ \text{ CH}_3 CH_2CH-CHCH_3} \xrightarrow{ \text{ CH}_3 } G \\ \hline \\ G \xrightarrow{ \text{ Gerramonic Guirge description of the points} } G \\ \hline \\ HBr, \operatorname{PBr}_3, \operatorname{Liftendescription of the points} \operatorname{H_2SO_4}, \operatorname{Restored H_2SO_4} \end{array}$$

(ii) பின்வரும் தாக்கத் தொடர்களைக் கருதுக.

 ${f G, H, K}$  ஆகிய சேர்வைகளின் கட்டமைப்புகளை வரைக.  ${f X, Y, Z}$  ஆகிய சோதனைப் பொருள்களைத் தருக.

 ${f K}$  ஆனது  ${
m NaNO_2}$  / ஐதான HCl உடன் தாக்கம் புரியும்போது பென்சில் (benzyl) அந்ககோல் ( ${
m CH_2OH}$ ) ஐத் தரும் என்பதைக் கவனிக்க. (24 புள்ளிகள்)

(b) (i) பின்வரும் மாற்றல் எங்ஙனம் **மூன்றுக்கு மேற்படாத** படிகளில் நிறைவேற்றப்படலாமெனக் காட்டுக.

$$\bigcup_{\mathrm{Br}}^{\mathrm{NH}_2} \longrightarrow \bigcup_{\mathrm{Br}}^{\mathrm{Br}}$$

(20 புள்ளிகள்)

(ii) பின்வரும் தாக்கத்தைக் கருதுக.

$$\begin{array}{c|c} & CH_3CHCH_3 \\ \hline & & \\ & & \\ \end{array}$$

இத்தாக்கத்தை நிறைவேற்றுவதற்குத் தேவைப்படும்  ${f P},\ {f Q}$  ஆகிய இரசாயனப் பொருள்களை இனங்காண்க.

இத்தாக்கத்தின் பொறிமுறையை எழுதுக.

- (c) (i) இலத்திரன்நாட்டப் பிரதியீட்டுத் தாக்கங்களில் பென்சீனிலும் பார்க்கப் பீனோல் ஏன் தாக்குதிறன் மிக்கது என்பதை அவற்றின் பரிவுக் கலப்பினங்களைக் கருத்திற் கொண்டு விளக்குக.
  - (ii) ஓர் உகந்த தாக்கத்தைக் கொண்டு பீனோலுக்கும் பென்சீனுக்குமிடையே மேலே (i) இற் காட்டப்பட்டுள்ளவாறு உள்ள தாக்குதிறன் வேறுபாட்டை எடுத்துக் காட்டுக.
  - (iii) நீர் மேலே (ii) இல் விவரித்த தாக்கத்தின் விளைபொருளின் /விளைபொருள்களின் கட்டமைப்பை /கட்டமைப்புகளை வரைக. (34 புள்ளிகள்)

9. (*a*) (i) பின்வரும் பாய்ச்சற் கோட்டுப்படத்தில் **A**– **Q** இல் தரப்பட்டுள்ள பதார்த்தங்களின் இரசாயனச் சூத்திரங்களை எழுதுக.

(**குறிப்பு** : பதார்த்தங்கள்  $\mathbf{A}$ —  $\mathbf{Q}$  ஐ இனங்காண்பதற்கு இரசாயனச் சமன்பாடுகளும் காரணங்களும் எதிர்பார்க்கப்படவில்லை.)

திண்மங்கள், வீழ்படிவுகள், கரைசல்கள், வாயுக்கள் ஆகியவற்றைக் குறிப்பதற்குப் பெட்டியில் (முறிந்த கோடுகள்) உள்ள குறியீடுகள் பயன்படுத்தப்படுகின்றன.



- (ii) A இன் பூரண இலத்திரன் நிலையமைப்பை எழுதுக.
- (iii) **D** இலிருந்து **F** இற்கான மாற்றலில் **E** இன் தொழிற்பாட்டைக் குறிப்பிடுக. இத்தொழிற்பாட்டிற்குரிய சமன்படுத்திய இரசாயனச் சமன்பாடுகளைத் தருக. (**75 புள்ளிகள்**)
- (b) திண்மம்  ${f X}$  இல்  ${
  m Cu}_2{
  m S}$ ,  ${
  m CuS}$  ஆகியன மாத்திரம் அடங்கியுள்ளன.  ${f X}$  இல் அடங்கியுள்ள  ${
  m Cu}_2{
  m S}$  இன் சதவீதத்தைத் துணிவதற்குப் பின்வரும் நடைமுறை பயன்படுத்தப்பட்டது.

நடைமுறை

திண்மம்  $\mathbf{X}$  இன் ஒரு 1.00 g பகுதியானது ஐதான  $\mathbf{H_2SO_4}$  ஊடகத்தில் 0.16 mol  $\mathrm{dm}^{-3}$   $\mathrm{KMnO_4}$  இன் 100.0 cm $^3$  உடன் பரிகரிக்கப்பட்டது. இத்தாக்கம்  $\mathrm{Mn}^{2+}$ ,  $\mathrm{Cu}^{2+}$   $\mathrm{SO_4^{2-}}$  ஆகியவற்றை விளைபொருள்களாகத் தந்தது. பின்னர் இக்கரைசலில் உள்ள மிகையான  $\mathrm{KMnO_4}$  ஆனது 0.15 mol  $\mathrm{dm}^{-3}\mathrm{Fe}^{2+}$  கரைசலுடன் நியமிப்புச் செய்யப்பட்டது. நியமிப்புக்குத் தேவைப்பட்ட கனவளவு 35.00 cm $^3$  ஆகும்.

- (i) மேற்குறித்த நடைமுறையில் நடைபெறும் தாக்கங்களுக்குச் சமன்படுத்திய அயன் சமன்பாடுகளை எழுதுக.
- (ii) மேலே (i) இற்குரிய விடைகளை அடிப்படையாய்க் கொண்டு பின்வருவனவற்றுக்கிடையே உள்ள மூலர் விகிதத்தைத் துணிக..
  - I. Cu<sub>2</sub>S உம் KMnO<sub>4</sub> உம்
  - II. CuS உம் KMnO<sub>4</sub> உம்
  - III. Fe<sup>2+</sup> உம் KMnO<sub>4</sub> உம்
- (iii)  $\mathbf{X}$  இல்  $\mathrm{Cu}_2\mathrm{S}$  இன் சதவீதத்தை நிறைக்கேற்பக் கணிக்க ( $\mathrm{Cu}=63.5,\,\mathrm{S}=32$ ). (75 புள்ளிகள்)

- ${f 10.}\;(a)$  பின்வரும் வினாக்கள் தைத்தேனியம் ஈரொட்சைட்டின்  $({
  m TiO_2})$  இயல்புகளையும் அதன் உற்பத்தி "குளோரைட்டுச் செயன்முறை"யின் மூலம் நடைபெறுதலையும் அடிப்படையாய்க் கொண்டவை.
  - (i) இச்செயன்முறையில் பயன்படுத்தப்படும் மூலப்பொருள்களைக் குறிப்பிடுக.
  - (ii) தேவையான சந்தர்ப்பங்களில் சமன்படுத்திய இரசாயனச் சமன்பாடுகளைத் தந்து  ${
    m TiO_2}$  இன் உற்பத்திச் செயன்முறையைச் சுருக்கமாக விவரிக்க.
  - (iii)  ${
    m TiO_2}$  இன் **மூன்று** இயல்புகளைக் குறிப்பிட்டு, அவ்வியல்புகள் ஒவ்வொன்றுக்கும் ஒரு பயன்பாடு வீதம் தருக.
  - (iv) இலங்கையில் ஒரு TiO<sub>2</sub> உற்பத்தித் தொழிற்சாலையை நீர் தாபிப்பதற்கு எதிர்பார்த்தால், பூர்த்தி செய்யப்பட வேண்டிய **மூன்று** தேவைகளைக் குறிப்பிடுக.
  - (v) மேலே (ii) இல் விவரித்த உற்பத்திச் செயன்முறை பூகோள வெப்பமாதலுக்குப் பங்களிப்புச் செய்யுமா? உமது விடையை நியாயப்படுத்துக. (50 புள்ளிகள்)
  - (b) பச்சை வீட்டு விளைவின் மாற்றம் காரணமாகத் தற்போது பூகோள வெப்பமாதல் கைத்தொழிற் புரட்சிக்கு முன்னர் இருந்த நிலைமையிலும் பார்க்கக் கணிசமான அளவில் அதிகரித்துள்ளது
    - (i) பச்சை வீட்டு விளைவு என்பதனால் கருதப்படுவதனைச் சுருக்கமாக விளக்குக.
    - (ii) பூகோள வெப்பமாதல் காரணமாக ஏற்படும் பிரதான சுற்றாடற் பிரச்சினையை இனங்காண்க.
    - (iii) பூகோள வெப்பமாதலுக்குப் பங்களிப்புச் செய்யும் **இரு பிரதான** இயற்கை வாயுக்களைக் குறிப்பிடுக.
    - (iv) மேலே (iii) இல் நீர் குறிப்பிட்ட வாயுக்கள் சுற்றாடலுக்கு விடுவிக்கப்படுவதற்கு நுண்ணங்கிகள் பங்களிப்புச் செய்யும் விதத்தைச் சுருக்கமாக விளக்குக.
    - (v) மேலே (iii) இல் நீர் குறிப்பிட்ட வாயுக்களுக்கு மேலதிகமாகப் பூகோள வெப்பமாதலிற்கு நேரடியாகப் பங்களிப்புச் செய்யும் **இரு** தொகுப்பு ஆவிப்பறப்புள்ள சேர்வைகளின் **இரு** கூட்டங்களைக் குறிப்பிட்டு, ஒவ்வொரு கூட்டத்திலிருந்தும் **ஒரு** சேர்வை வீதம் தெரிந்தெடுத்து அவற்றின் கட்டமைப்புகளை வரைக.
    - (vi) மேலே (v) இல் நீர் குறிப்பிட்ட இரு சேர்வைக் கூட்டங்களிலிருந்தும் மேல் வளிமண்டலத்தில் ஓசோனின் ஊக்கல் தரங்குறைதலுக்குப் (catalytic degradation) பங்களிப்புச் செய்யும் ஒரு சேர்வைக் கூட்டத்தை தெரிந்தெடுக்க.
    - (vii) கோவிட்-19 எனப்படும் உலகளாவிய தொற்றுநோய் காரணமாகக் கைத்தொழிற் செயற்பாடுகள் மிக மெதுவாக நடைபெறுவதனால் பூகோளச் சுற்றாடற் பிரச்சினைகள் தற்காலிகமாகப் பெரும்பாலான நாடுகளில் குறைந்துள்ளன. நீர் கற்ற இரு பிரதான பூகோளச் சுற்றாடற் பிரச்சினைகளைப் பயன்படுத்தி இக்கூற்றை நியாயப்படுத்துக.

**(50 புள்ளிகள்)** 

- (c) பின்வரும் வினாக்கள் கீழே தரப்பட்டுள்ள பல்பகுதியங்களை அடிப்படையாகக் கொண்டவை. பல்வைனில் குளோரைட்டு (PVC), பொலியெதிலீன் (PE), பொலிஸ்ரைநீன் (PS), பேக்லைற்று, நைலோன் 6.6, பொலியெதிலீன் தெரெப்தலேற்று (PET), கட்டா பேர்ச்சா (Gutta percha)
  - (i) மேற்குறித்த பல்பகுதியங்களில் **நான்கின்** மீள்வரும் அலகுகளை (repeating units) வரைக.
  - (ii) மேற்குறித்த ஏழு (7) பல்பகுதியங்களையும்
    - I. இயற்கை அல்லது தொகுப்புப் பல்பகுதியங்களாக
    - II. கூட்டல் அல்லது ஒடுங்கற் பல்பகுதியங்களாக வகைப்படுத்துக.
  - (iii) பேக்லைற்றை ஆக்குவதற்குப் பயன்படுத்தப்படும் இரு ஒருபகுதியங்களைக் குறிப்பிடுக.
  - (iv) பல்பகுதியங்களை அவற்றின் வெப்ப இயல்புகளுக்கேற்ப இரு வகைகளாக வகைப்படுத்தலாம். இவ்விரு வகைகளையும் குறிப்பிடுக. PVC, பேக்லைற் ஆகியன இவற்றில் எவ்வகைகளுக்குரியனவென எழுதுக.
  - (v) மேற்குறித்த பட்டியலில் தரப்பட்டுள்ள பல்பகுதியங்களில் **மூன்றிற்கு ஒவ்வொரு** பயன்பாடு வீதம் குறிப்பிடுக. (**50 புள்ளிகள்**)

# ஆவர்த்தன அட்டவணை

|   | 1  |    |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 2   |
|---|----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1 | Н  |    |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | He  |
|   | 3  | 4  |     |     |     |     |     |     |     |     |     |     | 5   | 6   | 7   | 8   | 9   | 10  |
| 2 | Li | Be |     |     |     |     |     |     |     |     |     |     | B   | C   | N   | O   | F   | Ne  |
|   | 11 | 12 |     |     |     |     |     |     |     |     |     |     | 13  | 14  | 15  | 16  | 17  | 18  |
| 3 | Na | Mg |     |     |     |     |     |     |     |     |     |     | Al  | Si  | P   | S   | Cl  | Ar  |
|   | 19 | 20 | 21  | 22  | 23  | 24  | 25  | 26  | 27  | 28  | 29  | 30  | 31  | 32  | 33  | 34  | 35  | 36  |
| 4 | K  | Ca | Sc  | Ti  | V   | Cr  | Mn  | Fe  | Co  | Ni  | Cu  | Zn  | Ga  | Ge  | As  | Se  | Br  | Kr  |
|   | 37 | 38 | 39  | 40  | 41  | 42  | 43  | 44  | 45  | 46  | 47  | 48  | 49  | 50  | 51  | 52  | 53  | 54  |
| 5 | Rb | Sr | Y   | Zr  | Nb  | Мо  | Tc  | Ru  | Rh  | Pd  | Ag  | Cd  | In  | Sn  | Sb  | Te  | 1   | Xe  |
|   | 55 | 56 | La- | 72  | 73  | 74  | 75  | 76  | 77  | 78  | 79  | 80  | 81  | 82  | 83  | 84  | 85  | 86  |
| 6 | Cs | Ba | Lu  | Hf  | Ta  | w   | Re  | Os  | Ir  | Pt  | Au  | Hg  | Tl  | Pb  | Bi  | Po  | At  | Rn  |
|   | 87 | 88 | Ac- | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 |
| 7 | Fr | Ra | Lr  | Rf  | Db  | Sg  | Bh  | Hs  | Mt  | Ds  | Rg  | Cn  | Nh  | Fl  | Mc  | Lv  | Ts  | Og  |
|   |    | ·  | 1   |     | L   |     |     |     |     |     |     |     |     |     |     |     |     |     |

| 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68  | 69  | 70  | 71  |
|----|----|----|----|----|----|----|----|----|----|----|-----|-----|-----|-----|
| La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Но | Er  | Tm  | Yb  | Lu  |
| 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 |
| Ac | Th | Pa | U  | Np | Pu | Am | Cm | Bk | Cf | Es | Fm  | Md  | No  | Lr  |

More Past Papers at tamilguru.lk