

استاد: دکتر یغمایی تاریخ تحویل: ۱۴۰۱/۱۰/۱۶

سیستمهای کنترل خطی

پروژهی جایگزین

شیرین *ج*مشیدی ۸۱۰۱۹۹۵۷۰

١.

از شکل میبینیم که مقدار ماندگارمان ۷ و زمان نشستمان(۲۹ (ts ثانیه میباشد. G_a از محاسبات زیر بدست می آید.

$$G_{k(n)} = \frac{C_{(s)}}{R_{(s)}} = \frac{k}{1 + Ts} \cdot R_{(s)} = \frac{1}{s} \Rightarrow C_{(s)} = \frac{k}{(1 + Ts)s} \Rightarrow C_{(s)} = C_{(s)} = C_{(s)}$$

$$C_{ss} = \lim_{s \to \infty} s C_{(s)} = k \implies C_{ss} = k \implies k = 7$$

$$S \to s$$

$$987 \quad \text{plane} : t_{s} = 4T \quad ; \quad \frac{98}{100} \times 7 = 6.86 \implies t_{s} = 27s \implies T = 7.25_{(s)} \implies C_{n(s)} = \frac{7}{1 + 7.25_{(s)}}$$

در معادله دوبرو ، معادس + دروی دا حیانداد کامیانشم و مه را ورت مارم. (از بام ر مراسم ۲ دور)

٣. الف)

:w=0.01

بهره برای این مقدار، ۶.۹۸۴ و اختلاف زمانی خروجی به ورودی، ۹.۷۱۷ - ثانیه میباشد.(۴7.167+166.884-)

:w=0.02

بهره برای این مقدار، ۶٬۹۳۸ و اختلاف زمانی خروجی به ورودی، ۹٬۱۵۷ و ثانیه میباشد.

:w=0.1

بهره برای این مقدار، ۵.۷۷(5.769/0.9997) و اختلاف زمانی خروجی به ورودی، ۸.۷۱۶- ثانیه میباشد.

w=0.2

بهره برای این مقدار، ۳.۹۱۹ و اختلاف زمانی خروجی به ورودی، ۷.۶۱۸- ثانیه میباشد.

:w=0.5

بهره برای این مقدار، ۱.۲۸۷ و اختلاف زمانی خروجی به ورودی، ۴.۵۹۱ ثانیه میباشد.

w=1

بهره برای این مقدار، ۳۴.۰ و اختلاف زمانی خروجی به ورودی، ۳.۳۸۵- ثانیه میباشد.

w=2

بهره برای این مقدار، ۰.۰۶ و اختلاف زمانی خروجی به ورودی، ۱.۵۹۷ - ثانیه میباشد.

w=5: بهره برای این مقدار، ۰.۰۵۳ و اختلاف زمانی خروجی به ورودی، ۸۶.۰- ثانیه میباشد.

w=10: بهره برای این مقدار، ۰.۰۰۰۷ و اختلاف زمانی خروجی به ورودی، ۴۵.۰- ثانیه میباشد.

سان. ۳-20 بهره برای این مقدار، ۰.۰۰۰۸۷ و اختلاف زمانی خروجی به ورودی، ۲۳.۰- ثانیه میباشد. w=20

سانی مقدار، ۴۰۰۰۰۰ و اختلاف زمانی خروجی به ورودی، -0.98 ثانیه میباشد. w=50

w=100: بهره برای این مقدار، ۰.۰۰۰۰۰۷ و اختلاف زمانی خروجی به ورودی، ۴۶۵.۰۰- ثانیه میباشد.

ب) چنانچه مجانبهای نمودار بهره را بکشیم، میتوانیم تعداد و نوع نقاط شکست را بدست آوریم.

همانطور که از نمودار مشخص است، ما حداقل ۳ نقطهی شکست داریم که ۳ تای آن، از نوع قطب اند.(چراکه شیب را منفی تر کردهاند.)

همچنین برای k داریم:

$$\log_{10}|G(s)| = \log_{10}k \longrightarrow 20 \log k = 16.9 \longrightarrow k = 10^{0.845} \approx 7$$

با استفاده از cftool، به مقادیر قطبهای مدنظر میرسیم:

با جاگذاری مقادیر داده شده، با تقریب خوبی به تابع تبدیل مدنظر میرسیم.

نمودار زرد مربوط به G_a ، نمودار آبی مربوط به G_b و نمودار قرمز مربوط به G_c میباشد. همانطور که میبینیم، G_a بسیار سریع به حالت پایدار خود رسیده است و نمودار G_b ، پس از چندین نوسان نیز تقریبا به پایداری رسیده است اما نمودار G_c ، بعلت مسیر فیدبک ناپایدار شده و با افزایش فرکانس، از نقطه تعادل فاصله بیشتری میگیرد.

Gc: بازه بهره برای پایداری سیستم، (0, 0.578) میباشد.

Gb: بازه بهره برای پایداری سیستم، (1.32) میباشد.

Ga: به ازای هر مقداری از بهره پایدار است.

:Ga

10⁰

10¹

حاشیه ی فاز برای این سیستم، ۵۲.۶ درجه میباشد و این سیستم حاشیه ی بهره ی Infinit دارد (Gm = Inf) و به ازای هرمقدار از بهره، پایدار میماند.(در قسمت ۵ هم به همین نتیجه رسیدیم.)

با استفاده از دستور bandwidth نیز میتوانیم پهنای باند سیستم را بدست آوریم که برابر با ۱۲۸۷. میباشد.

:Gb

حاشیهی فاز برای این سیستم، ۱۱.۲ درجه میباشد و حاشیهی بهرهی ۲.۹۳ دسیبل دارد.

با استفاده از دستور bandwidth نیز میتوانیم پهنای باند سیستم را بدست آوریم که برابر با ۰.۱۲۲ میباشد.

Bode Diagram

10⁻¹

Frequency (rad/s)

20

Magnitude (dB)

Phase (deg)

-90 -135

10⁻³

10⁻²

:Gc

حاشیهی فاز برای این سیستم، ۲۴.۸ - درجه میباشد و حاشیهی بهرهی ۴.۳ - دسیبل دارد.

با استفاده از دستور bandwidth نیز میتوانیم پهنای باند سیستم را بدست آوریم که برابر با ۳۱۴۳۰ میباشد.

:Ga

$$\begin{array}{lll}
G_{P(1)} \in K_{C}(5+2) & \frac{5+2}{5} \\
G_{CS_{1}} &= \frac{7 \times 0.5}{(1+7.255)(5+0.5)} & \begin{cases}
E_{p} \in 8 & \Rightarrow G_{A(S_{1})} = \frac{41.8}{(5+0.17)(5+0.5)} \\
E_{p} \in 8 & \Rightarrow G_{A(S_{1})} = \frac{41.8}{(5+0.17)(5+0.5)} \\
M_{p} &= \exp\left(\frac{-7}{\sqrt{1-7^{2}}}\Pi\right) & \langle 0.05 \Rightarrow \frac{7}{\sqrt{1-7^{2}}} \geqslant 0.95 \Rightarrow 7 \geqslant 0.69 \Rightarrow \cos^{2}(0.69) = 46.37^{2} = 0
\end{array}$$

$$\begin{array}{lll}
E_{p} &= \frac{1}{\omega_{d}} & \langle S \Rightarrow \omega_{d} \geqslant 0.39 \\
E_{p} &= \frac{1}{\omega_{d}} & \langle S \Rightarrow \omega_{d} \geqslant 0.39 \\
E_{p} &= \frac{180 - (19.31)}{(19.31)} = 1.11 \xrightarrow{\text{con}} Z_{1} = 1.51
\end{array}$$

$$\begin{array}{lll}
Z_{p} &= \frac{1}{(15-2)} & \langle S \Rightarrow S \Rightarrow S_{A(S_{1})} = \frac{41.8}{(5+0.67)} & \langle S \Rightarrow S \Rightarrow S_{A(S_{1})} = \frac{41.8}{(5+0.67)} & \langle S \Rightarrow S \Rightarrow S_{A(S_{1})} = 0.39 \\
E_{p} &= \frac{1}{(15-2)} & \langle S \Rightarrow S \Rightarrow S_{A(S_{1})} = \frac{41.8}{(15-2)} & \langle S \Rightarrow S \Rightarrow S_{A(S_{1})} = 0.39 \\
E_{p} &= \frac{1}{(15-2)} & \langle S \Rightarrow S \Rightarrow S_{A(S_{1})} = \frac{41.8}{(15-2)} & \langle S \Rightarrow S \Rightarrow S_{A(S_{1})} = \frac{41.8}{(15-2)} & \langle S \Rightarrow S \Rightarrow S_{A(S_{1})} = 0.39 \\
E_{p} &= \frac{1}{(15-2)} & \langle S \Rightarrow S \Rightarrow S_{A(S_{1})} = \frac{41.8}{(15-2)} & \langle S \Rightarrow S \Rightarrow S_{A(S_{1})} = \frac{41.8}{(15-2)} & \langle S \Rightarrow S \Rightarrow S_{A(S_{1})} = 0.39 \\
E_{p} &= \frac{1}{(15-2)} & \langle S \Rightarrow S \Rightarrow S_{A(S_{1})} = \frac{41.8}{(15-2)} & \langle S \Rightarrow S \Rightarrow S_{A(S_{1})} = \frac{41.8}{(15-2)} & \langle S \Rightarrow S \Rightarrow S_{A(S_{1})} = \frac{41.8}{(15-2)} & \langle S \Rightarrow S \Rightarrow S \Rightarrow S_{A(S_{1})} = \frac{41.8}{(15-2)} & \langle S \Rightarrow S \Rightarrow S \Rightarrow S_{A(S_{1})} = \frac{41.8}{(15-2)} & \langle S \Rightarrow S \Rightarrow S \Rightarrow S_{A(S_{1})} = \frac{41.8}{(15-2)} & \langle S \Rightarrow S \Rightarrow S_{A(S_{1})} = \frac{41.8}{(15-2)} & \langle S \Rightarrow S \Rightarrow S_{A(S_{1})} = \frac{41.8}{(15-2)} & \langle S \Rightarrow S \Rightarrow S_{A(S_{1})} = \frac{41.8}{(15-2)} & \langle S \Rightarrow S \Rightarrow S_{A(S_{1})} = \frac{41.8}{(15-2)} & \langle S \Rightarrow S \Rightarrow S_{A(S_{1})} = \frac{41.8}{(15-2)} & \langle S \Rightarrow S \Rightarrow S_{A(S_{1})} = \frac{41.8}{(15-2)} & \langle S \Rightarrow S \Rightarrow S_{A(S_{1})} = \frac{41.8}{(15-2)} & \langle S \Rightarrow S \Rightarrow S_{A(S_{1})} = \frac{41.8}{(15-2)} & \langle S \Rightarrow S \Rightarrow S_{A(S_{1})} = \frac{41.8}{(15-2)} & \langle S \Rightarrow S \Rightarrow S_{A(S_{1})} = \frac{41.8}{(15-2)} & \langle S \Rightarrow S \Rightarrow S_{A(S_{1})} = \frac{41.8}{(15-2)} & \langle S \Rightarrow S \Rightarrow S_{A(S_{1})} = \frac{41.8}{(15-2)} & \langle S \Rightarrow S \Rightarrow S_{A(S_{1})} = \frac{41.8}{(15-2)} & \langle S \Rightarrow S \Rightarrow S_{A(S_{1})} = \frac{41.8}{(15-2)} & \langle S \Rightarrow S \Rightarrow S_{A(S_{1})} = \frac{41.8}{(15-2)} & \langle S \Rightarrow S \Rightarrow S \Rightarrow S_{A(S_{1})} = \frac{41.8}{(15-2)} & \langle S \Rightarrow S \Rightarrow S_{A(S_{1})} = \frac{41.8}{(15-2$$

که البته با این مقدار از بهره به پاسخ مطلوبمان نرسیده و اورشوت زیادی خواهیم داشت. با تست کردن چند مقدار دیگر بهره، خواهیم دید که بهرهی ۳۴.۰، خواستهی مساله را ارضا میکند.

k=0.64: K=0.34:

struct with fields:

RiseTime: 0.4749
TransientTime: 31.8825
SettlingTime: 17.0211
SettlingMin: 0.9235
SettlingMax: 1.2615
Overshoot: 26.1525

Undershoot: 0

Peak: 1.2615 PeakTime: 2.1941 struct with fields:

RiseTime: 2.1253
TransientTime: 35.9997
SettlingTime: 29.5225
SettlingMin: 0.9157
SettlingMax: 1.0246
Overshoot: 2.4638
Undershoot: 0
Peak: 1.0246
PeakTime: 4.2276

sse = sse =

0.0017 0.0044

:Gb

که البته با این مقدار از بهره به پاسخ مطلوبمان نرسیده و t_p زیادی خواهیم داشت. با تست کردن چند مقدار دیگر بهره، خواهیم دید که بهرهی ۲.۲۴، خواستهی مساله را ارضا میکند.

> K=2.24: k=1.24:

struct with fields: struct with fields:

RiseTime: 40.4019 RiseTime: 2.0276 TransientTime: 82.7536 TransientTime: 56.3233 SettlingTime: 82.7536 SettlingTime: 56.3233 SettlingMin: 0.9008 SettlingMin: 0.7842 SettlingMax: 0.9982 SettlingMax: 1.0048

Overshoot: 0 Overshoot: 0.4839 Undershoot: 0 Undershoot: 0

Peak: 0.9982 Peak: 1.0048 PeakTime: 145.3405 PeakTime: 3.5338

sse = sse = 0.0041 0.0032

طراحی برای Gb در حوزه فرکانس:

:Gc

که البته با این مقدار از بهره به پاسخ مطلوبمان نرسیده و اورشوت زیادی خواهیم داشت. با تست کردن چند مقدار دیگر بهره، خواهیم دید که بهرهی ۴.۰، خواستهی مساله را ارضا میکند.

k=0.7: K=0.4:

struct with fields: struct with fields:

 RiseTime: 0.7972
 RiseTime: 1.4622

 TransientTime: 39.3793
 TransientTime: 56.5755

 SettlingTime: 39.3793
 SettlingTime: 56.5755

 SettlingMin: 0.4946
 SettlingMin: 0.6274

 SettlingMax: 1.5714
 SettlingMax: 1.0428

 Overshoot: 57.1359
 Overshoot: 4.2798

Undershoot: 0 Undershoot: 0

Peak: 1.5714 Peak: 1.0428
PeakTime: 2.2662 PeakTime: 2.7079

sse = sse =

0.0047 0.0025

میبینیم که به چه زیبایی تمام سیستمها پایدار شده و با اورشوت و t_p کم و خطای ماندگار صفر، به تمام خواستههای مسئله رسیدیم.

Ga: به ازای هر مقداری از بهره پایدار است.

Gb: به ازای هر مقداری از بهره پایدار است.

ن به ازای هر مقداری از بهره پایدار است. Gc

:⋏-۶

:Gc

حاشیه ی فاز برای این سیستم، ۸۰.۴ درجه میباشد و این سیستم حاشیه ی بهره ی Infinit دارد (Gm = Inf) و به ازای هرمقدار از بهره، پایدار میماند.(در قسمت ۵ هم به همین نتیجه رسیدیم.)

:Gb

حاشیه ی فاز برای این سیستم، ۷۷.۸ درجه میباشد و این سیستم حاشیه ی بهره ی Infinit دارد (Gm = Inf) و به ازای هرمقدار از بهره، پایدار میماند.(در قسمت Δ هم به همین نتیجه رسیدیم.)

:Ga

حاشیه ی فاز برای این سیستم، ۷۶ درجه میباشد و این سیستم حاشیه ی بهره ی Infinit دارد (Gm = Inf) و به ازای هرمقدار از بهره، پایدار میماند.(در قسمت Δ هم به همین نتیجه رسیدیم.)

هیچکدام از سیستمها، پهنای باند ندارند. چراکه یا به -۱۸۰ نمیرسند یا در بینهایت به -۱۸۰ میرسند و پهنای باند برایشان تعریف نمیشود.

 t_p همانطور که از شکل نیز میبینیم، نمودار آبی رنگ(مربوط به G_b)، از دو سیستم دیگر، تخمین بهتری میباشد. چراکه در عین t_p کم، اورشوت معقولی دارد.(حدود ۲۰٪) (نمودار قرمز رنگ(مربوط به G_c) اورشوت ندارد اما t_p حدود ۷۰ ثانیه میباشد.)

خروجی هر سیستم با حضور نویز سفید جمع پذیر:

قابلیت کنترل کنندهها در حذف اغتشاشات، یکسان است.

از آنجایی که شیب نمودار اندازه در فرکانسهای پایین \cdot مباشد، میتوان فهمید که قطبی در مبدا ندارد. همچنین نمودار زاویه کمی بالا آمده و شیب مثبت کمی دارد و میفهمیم که یک صفر در حدود \cdot داریم. سپس دو بار شیب نمودار منفی تر شده که میتوان نتیجه گرفت دو قطب در حدود \cdot داریم. و در آخر چون نمودار فاز به زاویهای همگرا نمیشود، متوجه میشویم که یک تاخیر(\cdot در سیستم ضرب شده؛ که شیب نمودار فاز در فرکانسهای بزرگ، اندازه \cdot \cdot را بهمان میدهد.

همچنین برای بهره داریم:

$$\log_{10}|G(s)| = \log_{10}k \longrightarrow 20\log k = 5 \longrightarrow k = 10^{0.25} \approx 1.78$$

$$C_{7(5)} = \frac{1.78(s+1)}{(\frac{5}{3.5}+1)(\frac{5}{5}+1)}e^{-0.055}$$

اگر تابع بدست آمده را در متلب بکشیم میبینیم که با تقریب بسیار خوبی به جواب میرسیم.

