3.2 High-Level Specifications

Basic Concepts of Languages

- To define a language, we need words or strings, which are made up of symbols that consitute an alphabet
- Let W be an alphabet consisting of a set of symbols
 - ightharpoonup Example: $W = \{a, b, c\}$
 - ▶ Then strings/words over W are " ε ", "aab", "baabc", "ccccca", ...
 - " ε " is the empty string
 - W^* denotes the set of all finite strings over W and W^ω denotes the set of all infinite string over W
 - If x is a string over W, then |x| denotes the length of x
 - Example, |abc| = 3, $|\varepsilon| = 0$

3.2 High-Level Specifications

Basic Concepts of Languages

- To define a language, we need words or strings, which are made up of symbols that consitute an alphabet
- Let W be an alphabet consisting of a set of symbols
 - ightharpoonup Example: $W = \{a, b, c\}$
 - ▶ Then strings/words over W are " ε ", "aab", "baabc", "ccccca", ...
 - " ε " is the empty string
 - W^* denotes the set of all finite strings over W and W^ω denotes the set of all infinite string over W
 - If x is a string over W, then |x| denotes the length of x
 - Example, |abc| = 3, $|\varepsilon| = 0$
- A language is a set of (in)finite strings
- Examples
 - $ightharpoonup \mathcal{L}_1 := \{arepsilon, \mathsf{a}, \mathsf{b}, \mathsf{a}\mathsf{a}, \mathsf{a}\mathsf{b}\}$
 - $\mathcal{L}_2 := \{x \in \{a, b\}^* \mid |x| \leq 8\}$
- Since languages are sets of strings, new languages may be constructed by using operations on sets such as union, intersection, etc.
- Exmaples

Regular/ ω -Regular Expressions

- The four basic operations for constructing new languages from the existing ones are:
 - Union
 - Concatenation
 - ► Kleene star (finite repetition)
 - $ightharpoonup \omega$ operator (infinite repetition)
- Let us start with the simplest possible languages: those consisting of a single string that is either the null string or a string of length one
- The languages that are obtained by repeatedly applying the four basic operations on these simple languages are called ω-regular languages
- ω -Regular expressions are representations of ω -regular languages

Notation: Language Concepts

- Let W be a non-empty set
 - Finite sequences $W^* = \bigcup_{T \in \mathbb{Z}_{>0}} W^{[0;T[}$ where $\varepsilon = W^{[0;0[}$ is the empty word
 - Infinite sequences $W^{\omega} = W^{[0; \infty]}$
 - Finite and infinite sequences $W^{\infty} = W^{\omega} \cup W^*$
- Let $w_1 \in W^{[0;T_1[}, \ T_1 \in \mathbb{Z}_{\geq 0} \ \text{and} \ w_2 \in W^{[0;T_2[}, \ T_2 \in \mathbb{Z}_{\geq 0} \cup \{\infty\}$
 - ▶ The concatenation of w_1 with w_2 is denoted by w_1w_2 and defined by

$$w_1w_2(t) := \begin{cases} w_1(t) & \text{for } t \in [0; T_1[\\ w_2(t-T_1) & \text{for } t \in [T_1; T_1+T_2[\end{cases} \end{cases}$$

w₁ is a prefix of w₂, denoted by

$$w_1 \leq w_2$$

iff there exists $w_3 \in W^{[0;T_3[}, T_3 \in \mathbb{N} \cup \{\infty\} \text{ such that } w_1w_3=w_2.$ In symbols

$$(w_1 \preceq w_2) \iff (\exists_{w_3 \in W^{\infty}} w_1 w_3 = w_2)$$

• Let $W_1\subseteq W^*$ and $W_2\subseteq W^\infty$, then we extend the concatenation to sets by

$$W_1 W_2 = \{ w_1 w_2 \mid w_1 \in W_1 \land w_2 \in W_2 \}$$

• We use ε to denote the identity element of the concatenation operator, i.e., for any $w_1 \in W^*$ and $w_2 \in W^\infty$ we have

$$\varepsilon w_1 = w_1 = w_1 \varepsilon$$
 and $\varepsilon w_2 = w_2$

Example: Prefixes

Let
$$W = \{a, b, c\}$$
 and $w_1 \in W^*$ and $w_2 \in W^{\omega}$

$$w_1 = abbbbccc$$

 $w_2 = abaabbaaabbbaaaabbbb ...$

- $w_1' = ab$ is a prefix of w_1 and of w_2
- $w'_1 = abbbbccc$ is a prefix of w_1
- $w_1' = abbc$ is not a prefix of w_1
- $w_2' = w_2$ is not a prefix of w_2

Regular $/\omega$ -Regular Expression

• Syntax: Let W be a finite set (often referred to as alphabet). ω -regular expressions over W are build from symbols

$$\varnothing$$
 | ε | w | . | + | * | $^\omega$

in an inductive manner:

- ightharpoonup arnothing and arepsilon are ω -regular expressions.
- ▶ If $w \in W$, then w is an ω -regular expressions.
- ▶ If α and β are ω -regular expressions, then

$$\alpha.\beta, \quad \alpha+\beta, \quad \alpha^* \quad \text{and} \quad \ \alpha^\omega$$

are ω -regular expressions.

▶ A ω -regular expression over W that does not contain ω , is a regular expression over W.

• Semantics: Every ω -regular expression α over W induces a set

$$\mathcal{L}(\alpha) \subseteq W^{\infty}$$

defined by

$$\triangleright$$
 $\mathcal{L}(\varnothing) = \varnothing$

$$ightharpoonup \mathcal{L}(w) = \{w\}$$

$$\mathcal{L}(\alpha + \beta) = \mathcal{L}(\alpha) \cup \mathcal{L}(\beta)$$

$$\mathcal{L}(\alpha^*) = \mathcal{L}(\alpha)^*$$

$$\mathcal{L}(\alpha^{\omega}) = \mathcal{L}(\alpha)^{\omega}$$

Regular/ ω -Regular Expression

Language	ω -Regular expression
ε	ε
$\{0, 1\}$	0 + 1
{0, 10}	0 + 10
$\{110\}^*\{0,1\}$	$(110)^*(0+1)$
$\{1\}^*\{10\}$	1*10
$\{10, 111, 11000\}^*$	$(10+111+11000)^*$

Regular/ ω -Regular Expression

Language	ω -Regular expression
ε	ε
$\{0, 1\}$	0 + 1
$\{0, 10\}$	0 + 10
$\{110\}^*\{0,1\}$	$(110)^*(0+1)$
$\{1\}^*\{10\}$	1*10
$\{10, 111, 11000\}^*$	$(10+111+11000)^*$

- For ω -regular expressions r and s over W, corresponding to the languages \mathcal{L}_r and \mathcal{L}_s , respectively, each of the following are ω -regular expressions over W, corresponding to the languages next to it
 - ightharpoonup (rs) corresponding to $\mathcal{L}_r\mathcal{L}_s$
 - (r+s) corresponding to $\mathcal{L}_r \cup \mathcal{L}_s$
 - (r^*) corresponding to \mathcal{L}_r^*
 - $ightharpoonup (r^{\omega})$ corresponding to $\mathcal{L}_r{}^{\omega}$
- Simplifying ω -regular expressions
 - ▶ $1^*(1+\varepsilon) = 1^*$
 - 1*1* = 1*
 - $ightharpoonup 1^*1^\omega = 1^\omega$
 - $0^* + 1^* = 1^* + 0^*$

$$lpha$$
 ::= \varnothing | $arepsilon$ | A | $lpha_1 + lpha_2$ | $lpha_1.lpha_2$ | $lpha^*$ | concatenation

$$lpha ::= arnothing \mid arepsilon \mid A \mid lpha_1 + lpha_2 \mid lpha_1.lpha_2 \mid lpha^*$$
 Kleene star

$$lpha ::= arnothing \mid arepsilon \mid A \mid lpha_1 + lpha_2 \mid lpha_1.lpha_2 \mid lpha^*$$
 $lpha \mapsto \mathcal{L}(lpha) \subseteq W^*$ language of finite words

- \mathcal{L} is the language of all finite strings of 0s and 1s that have even length. What is the regular expression corresponding to \mathcal{L} ?
- Answer:
 - $(00+01+10+11)^*$

- \mathcal{L} is the language of all finite strings of 0s and 1s that have even length. What is the regular expression corresponding to \mathcal{L} ?
- Answer:
 - $(00+01+10+11)^*$

- \mathcal{L} is the language of all finite strings of 0s and 1s that have odd length. What is the regular expression corresponding to \mathcal{L} ?
- Answer:
 - ▶ 0 or 1 followed by even length string
 - $(0+1)(00+01+10+11)^*$

• \mathcal{L} is the language of all finite strings of 0s and 1s that have at least one 1. What is the regular expression corresponding to \mathcal{L} ?

- \mathcal{L} is the language of all finite strings of 0s and 1s that have at least one 1. What is the regular expression corresponding to \mathcal{L} ?
- Possible answers:
 - ightharpoonup 0*1(0+1)*
 - (0+1)*1(0+1)*
 - (0+1)*10*

- \mathcal{L} is the language of all finite strings of 0s and 1s that have at least one 1. What is the regular expression corresponding to \mathcal{L} ?
- Possible answers:
 - ightharpoonup 0*1(0+1)*
 - (0+1)*1(0+1)*
 - (0+1)*10*

• \mathcal{L} is the language of all finite strings of 0s and 1s that have a length of less than or equal 6. What is the regular expression corresponding to \mathcal{L} ?

- \mathcal{L} is the language of all finite strings of 0s and 1s that have at least one 1. What is the regular expression corresponding to \mathcal{L} ?
- Possible answers:
 - ightharpoonup 0*1(0+1)*
 - (0+1)*1(0+1)*
 - (0+1)*10*

- \mathcal{L} is the language of all finite strings of 0s and 1s that have a length of less than or equal 6. What is the regular expression corresponding to \mathcal{L} ?
- Answer:
 - ▶ $(0+1+\varepsilon)^6$

- \mathcal{L} is the language of all finite strings of 0s and 1s that have at least one 1. What is the regular expression corresponding to \mathcal{L} ?
- Possible answers:
 - ightharpoonup 0*1(0+1)*
 - (0+1)*1(0+1)*
 - (0+1)*10*

- L is the language of all finite strings of 0s and 1s that have a length of less than or equal 6. What is the regular expression corresponding to L?
- Answer:
 - ▶ $(0+1+\varepsilon)^6$

• \mathcal{L} is the language of all strings of 0s and 1s that ends with 1 and does not contain the substring 00. What is the regular expression corresponding to \mathcal{L} ?

- \mathcal{L} is the language of all finite strings of 0s and 1s that have at least one 1. What is the regular expression corresponding to \mathcal{L} ?
- Possible answers:
 - ightharpoonup 0*1(0+1)*
 - (0+1)*1(0+1)*
 - (0+1)*10*

- L is the language of all finite strings of 0s and 1s that have a length of less than or equal 6. What is the regular expression corresponding to L?
- Answer:
 - ▶ $(0+1+\varepsilon)^6$

- \mathcal{L} is the language of all strings of 0s and 1s that ends with 1 and does not contain the substring 00. What is the regular expression corresponding to \mathcal{L} ?
- Answer:
 - (1+01)*(1+01)

$$\alpha$$
 ::= \emptyset | ε | A | $\alpha_1 + \alpha_2$ | $\alpha_1 \cdot \alpha_2$ | α^*

- ω -regular expressions
 - ightharpoonup = regular expressions + ω -operator (represented as α^{ω})
- Kleene star: finite reptition
- ω -operator: infinite repetition

$$\text{for } \mathcal{L} \subseteq W^* \text{:}$$

$$\mathcal{L}^{\omega} \stackrel{\text{def}}{=} \{ w_1 w_2 w_3 \dots \mid w_i \in \mathcal{L} \text{ for all } i \geq 1 \}$$

$$\text{note: } \mathcal{L}^{\omega} \subseteq W^{\omega} \text{ if } \varepsilon \notin \mathcal{L}$$

syntax of ω -regular expressions over alphabet W:

$$\gamma = \alpha_1.\beta_1^{\omega} + \ldots + \alpha_1.\beta_n^{\omega}$$

where α_i , β_i are regular expressions over W such that $\varepsilon \notin \mathcal{L}(\beta_i)$

syntax of ω -regular expressions over alphabet W:

$$\gamma = \alpha_1.\beta_1^{\omega} + \ldots + \alpha_1.\beta_n^{\omega}$$

where α_i , β_i are regular expressions over W such that $\varepsilon \notin \mathcal{L}(\beta_i)$

• The language generated by γ is given by:

$$\mathcal{L}_{\omega}(\gamma) \stackrel{\mathsf{def}}{=} \bigcup_{1 \leq i \leq n} \mathcal{L}(\alpha_i) \mathcal{L}(\beta_i)^{\omega} \subseteq W^{\omega}$$

syntax of ω -regular expressions over alphabet W:

$$\gamma = \alpha_1.\beta_1^{\omega} + \ldots + \alpha_1.\beta_n^{\omega}$$

where α_i , β_i are regular expressions over W such that $\varepsilon \notin \mathcal{L}(\beta_i)$

• The language generated by γ is given by:

$$\mathcal{L}_{\omega}(\gamma) \stackrel{\mathsf{def}}{=} \bigcup_{1 \leq i \leq n} \mathcal{L}(\alpha_i) \mathcal{L}(\beta_i)^{\omega} \subseteq W^{\omega}$$

• A language $\mathcal L$ is called ω -regular iff there exists an ω -regular expression γ such that $\mathcal L = \mathcal L_\omega(\gamma)$

- What is the language represented by $(A^*B)^{\omega}$?
 - ► Set of all infinite words over $W = \{A, B\}$ containing infinitely many Bs (Why not infinitely many As?)

- What is the language represented by $(A^*B)^{\omega}$?
 - ▶ Set of all infinite words over $W = \{A, B\}$ containing infinitely many Bs (Why not infinitely many As?)

- What is the language represented by $(A^*B)^{\omega} + (B^*A)^{\omega}$?
 - ▶ Set of all infinite words over $W = \{A, B\}$ containing infinitely many As and infinitely many Bs
 - ▶ This is equivalent to W^{ω}

 ω -Regular Expressions – Examples

- Let $W = \{A, B\}$
- What ist the ω -regular expression for the set of all infinite words over W containing only finitely many As?
- Answer: $(A+B)^*B^\omega$

 ω -Regular Expressions – Examples

- Let $W = \{A, B\}$
- What ist the ω -regular expression for the set of all infinite words over W containing only finitely many As?
- Answer: $(A+B)^*B^\omega$
- Let $W = \{A, B\}$
- What ist the ω-regular expression for the set of all infinite words over W where A is immediately followed by B?
- Answer: $(B^*AB)^*B^\omega + (B^*AB)^\omega$

 ω -Regular Expressions – Examples

- Let $W = \{A, B\}$
- What ist the ω -regular expression for the set of all infinite words over W containing only finitely many As?
- Answer: $(A+B)^*B^\omega$
- Let $W = \{A, B\}$
- What ist the ω -regular expression for the set of all infinite words over W where A is immediately followed by B?
- Answer: $(B^*AB)^*B^{\omega} + (B^*AB)^{\omega}$
- Let $W = \{A, B\}$
- What is the ω -regular expression for the set of all infinite words over W where each A is followed eventually by B?
- Answer: $(B^*A^+B)^*B^{\omega} + (B^*A^+B)^{\omega}$
- This is equivalent to $(A^*B)^{\omega}$
- Remember that $\alpha^+ = \alpha \alpha^*$

Recognizing Regular Languages

- What kind of machine is needed to recognize a regular language?
 - How much memory is required?
- \mathcal{L} is the language of all strings of 0s and 1s that ends with 1 and does not contain the substring 00. What is the regular expression corresponding to \mathcal{L} ?
- $(1+01)^*(1+01)$

Definition: Nondeterministic Finite Automaton

A nondeterministic finite automaton (NFA) \mathcal{A} is a tuple $(Q, \Sigma, \delta, Q_0, F)$ where

- Q is a finite set of states
- ullet Σ is an alphabet
- $\delta \colon Q \times \Sigma \to 2^Q \ (\delta \colon Q \times \Sigma \rightrightarrows Q)$ is a transition function
- $Q_0 \subseteq Q$ is a set of initial states
- $F \subseteq Q$ is a set of accepting states

Example: NFA

- $Q = \{q_0, q_1, q_2\}$
- $\Sigma = \{A, B\}$
- $\delta(q_0, A) = \{q_0\}, \ \delta(q_0, B) = \{q_0, q_1\}, \ \delta(q_1, A) = \{q_2\}, \ \delta(q_1, B) = \{q_2\}$
- $Q_0 = \{q_0\}$
- $F = \{q_2\}$

Definition: Accepted Language of an NFA

- Let $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ be an NFA and $w = A_1, A_2, \dots, A_n \in \Sigma^*$ a finite word. A run for w in \mathcal{A} is a finite sequence of states q_0, q_1, \dots, q_n such that
 - $ightharpoonup q_0 \in Q_0$
 - $q_{i+1} \in \delta(q_i, A_{i+1})$ for all $0 \le i < n$
- Run q_0, q_1, \ldots, q_n is called accepting if $q_n \in F$. A finite word $w \in \Sigma^*$ is called accepted by \mathcal{A} if there exists an accepting run for w. The accepted language of \mathcal{A} , denoted by $\mathcal{L}(\mathcal{A})$, is the set of finite words accepted by \mathcal{A} , i.e.

$$\mathcal{L}(\mathcal{A}) = \{ w \in \Sigma^* \mid \text{there exists an accepting run for } w \text{ in } \mathcal{A} \}$$

Example: Accepted Language

- $\mathcal{L}(A)$ is defined by the regular expression $(A+B)^*B(A+B)$
- Word over $\{A, B\}$ where the last but one symbol is B

Definition: Equivalence of NFAs

• Let \mathcal{A} and \mathcal{A}' be NFAs with the same alphabet. \mathcal{A} and \mathcal{A}' are called equivalent if $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}')$.

Example

Definition: Synchronous Product of NFAs

• For NFA $\mathcal{A}_i = (Q_i, \Sigma, \delta_i, Q_{0,i}, F_i)$ with i = 1, 2, the product automaton $\mathcal{A}_1 \otimes \mathcal{A}_2 = (Q_1 \times Q_2, \Sigma, \delta, Q_{0,1} \times Q_{0,2}, F_1 \times F_2)$, where δ is defined by

$$\frac{q_1 \stackrel{A}{\rightarrow}_1 \ q_1' \land q_2 \stackrel{A}{\rightarrow}_2 \ q_2'}{\langle q_1, q_2 \rangle \stackrel{A}{\rightarrow} \langle q_1', q_2' \rangle}$$

Fact

$$\mathcal{L}(\mathcal{A}_1\otimes\mathcal{A}_2)=\mathcal{L}(A_1)\cap\mathcal{L}(\mathcal{A}_2)$$

Example: Synchronous Product of NFAs

Recognizing Regular Languages

- Klenee's Theorem: A language $\mathcal L$ is regular if and only if there is a nondeterministic finite automaton recognizing it
- If \mathcal{L}_1 and \mathcal{L}_2 are regular languages in Σ^* then $\mathcal{L}_1 \cup \mathcal{L}_2, \mathcal{L}_1 \cap \mathcal{L}_2, \mathcal{L}_1 \mathcal{L}_2, \Sigma^* \setminus \mathcal{L}_1$ are all regular languages

Definition: Deterministic Finite Automaton (DFA)

- Let $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ be an NFA. \mathcal{A} is called deterministic if
 - ▶ $|Q_0| \le 1$ ▶ $|\delta(q,A)| \le 1$ for all states $q \in Q$ and all symbols $A \in \Sigma$
- Determination of a DFA from an NFA by powerset construction
- DFA ${\cal A}$ is called total if $|Q_0|=1$ and $|\delta(q,A)|=1$ for all states $q\in Q$ and all symbols $A\in \Sigma$

From NFA to DFA

ullet If a language ${\cal L}$ is recognized by an NFA, then there exists a DFA recognizing the same language

Exercise 5: NFA

Exercise 1

Give the NFAs of the following languages.

- 1. $\mathcal{L}(((a+b)^*c)^*+a)$
- 2. $\mathcal{L}((a^+b^*c)^+)$

Exercise 2

Consider the following NFA:

Give the regular expression that generates the language of the NFA.

Useful Notations

NFA $A = (Q, \Sigma, \delta, Q_0, F)$ over the alphabet $\Sigma = 2^{AP}$, where AP is a set of atomic propostions!

Notation: symbolic notation for the labels of transition

If Φ is a propositional formula over AP then $q \xrightarrow{\Phi} p$ stands for the set of transitions $q \xrightarrow{A} p$ where $A \subseteq 2^{AP}$ such that $A \models \Phi$.

Example

If $AP = \{a, b, c\}$, then

$$q \xrightarrow{a \land \neg b} p \triangleq \{q \xrightarrow{A} p \mid A = \{a, c\} \text{ or } A = \{a\}\}$$
$$q \xrightarrow{\text{true}} p \triangleq \{q \xrightarrow{A} p \mid A \subseteq 2^{AP}\}$$

Propositional formulae over set AP can be inductively rewritten as

$$\Phi$$
 ::= true | a | $\Phi_1 \wedge \Phi_2$ | $\neg \Phi$

where $a \in AP$.

ω -Regular Properties

Definition: ω -regular property

E is called an ω -regular property iff there exists an ω -regular expression γ over $\Sigma=2^{AP}$ such that $E=\mathcal{L}_{\omega}(\gamma)$

Example

Examples for
$$AP = \{a, b\}$$

- "always $a \lor \neg b$ " $(\varnothing + \{a\} + \{a,b\})^{\omega}$
- Recall that the alphabet is $2^{AP} = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$

Another example

Examples for $AP = \{a, b\}$

- "infinitely often a" $\left(\left(\varnothing+\{b\}\right)^*.\left(\{a\}+\{a,b\}\right)\right)^\omega$
- "from some moment on a" $\left(2^{AP}\right)^*.\left(\{a\}+\{a,b\}\right)^\omega$ where $2^{AP}\hat{=}\varnothing+\{a\}+\{b\}+\{a,b\}$

ω -Regular Properties: Using Symbolic Notation

Again, $AP = \{a, b\}$

• "always $a \lor \neg b$ "

$$(a \vee \neg b)^{\omega} \triangleq (\varnothing + \{a\} + \{a,b\})^{\omega}$$

"infinitely often a"

$$\left(\left(\neg a\right)^*.a\right)^{\omega} \ \hat{=} \ \left(\left(\varnothing + \{b\}\right)^*.\left(\{a\} + \{a,b\}\right)\right)^{\omega}$$

"from some moment on a"

$$true^*.a^{\omega}$$

• "whenever a then b will hold somewhen later"

$$((\neg a)^*.a.\mathsf{true}^*.b)^*.(\neg a)^\omega + ((\neg a)^*.a.\mathsf{true}^*.b)^\omega$$

ω -Automata

- Recall that regular languages were recognized by nondeterministic finite automata (NFA) (which was shown to be equivalent to DFA)
- How do we recognize ω -regular languages (i.e. languages described by ω -regular expressions)?
 - Use an ω -automata (which are acceptors for infinite words)
 - ► These are called Nondeterministic Büchi Automata (NBA)

Nondeterministic Büchi Automata (NBA):

- syntax as for NFA (non-deterministic finite automata)
- semantics: language of infinite words

Nondeterministic Büchi Automata (NBA)

Definition: NBA $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$

- Q finite set of states
- Σ alphabet
- $\delta \colon Q \times \Sigma \to 2^Q$ transition relation
- $Q_0 \subseteq Q$ set of initial states
- $F \subseteq Q$ set of final states, also called accepting states

run for a word
$$A_0A_1A_2\ldots\in \Sigma^\omega$$
:

state sequence
$$\pi=q_0q_1q_2...$$
 where $q_0\in Q_0$ and $q_{i+1}\in \delta(q_i,A_i)$ for $i>0$

run π is accepting if there exists infinitely many $i \in \mathbb{N} : q_i \in F$

A word is accepted if an accepting state is visited infinitely often

Nondeterministic Büchi Automata (NBA)

Definition: NBA $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$

- Q finite set of states
- Σ alphabet
- $\delta \colon Q \times \Sigma \to 2^Q$ transition relation
- $Q_0 \subseteq Q$ set of initial states
- $F \subseteq Q$ set of final states, also called accepting states
- A word is accepted if an accept state is visited infinitely often

accepted language
$$\mathcal{L}_{\omega}(\mathcal{A}) \subseteq \Sigma^{\omega}$$
 is given by:

$$\mathcal{L}_{\omega}(\mathcal{A}) \stackrel{\text{def}}{=} \text{set of infinite words over } \Sigma$$
 that have an accepting run in \mathcal{A}

Notations

NBA with state space $\{q_0,q_1\}$

 q_0 initial state q_1 accept state alphabet $\Sigma = \{A, B\}$

nonfinal state

final state (alternative notation)

NBA – Examples

accepted language:

set of all infinite words that contain infinitely many A's

 $(B^*.A)^{\omega}$

accepted language:

" every B is preceded by a positive even number of A's"

$$((A.A)^{+}.B)^{\omega} + ((A.A)^{+}.B)^{*}.A^{\omega}$$

$$AABAABAAB...$$
 accepted words

Recall: NBA
$$\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$$

- Q finite set of states
- Σ alphabet \rightarrow here: $\Sigma = 2^{AP}$
- $\delta \colon Q \times \Sigma \to 2^Q$ transition relation
- $Q_0 \subseteq Q$ set of initial states
- $F \subseteq Q$ set of final states, also called accepting states

accepted language $\mathcal{L}_{\omega}(\mathcal{A})\subseteq \mathbf{\Sigma}^{\omega}$ is given by:

 $\mathcal{L}_{\omega}(\mathcal{A}) \stackrel{\text{def}}{=} \mathsf{set} \ \mathsf{of} \ \mathsf{infinite} \ \mathsf{words} \ \mathsf{over} \ \Sigma$ that have an accepting run in \mathcal{A}

set of atomic propositions $AP = \{a, b\}$

"infinitely often
$$a$$
 and always $a \lor b$ "
$$\stackrel{\hat{=}}{=} ((a \lor b)^*.a)^{\omega}$$

$$\stackrel{\equiv}{=} ((\neg a \land b)^*.a)^{\omega}$$

$$\stackrel{\equiv}{=} (b^*.a)^{\omega}$$

"eventually
$$a$$
" $\hat{=} (\neg a)^* a (\text{true})^{\omega}$

"infinitely often a"
$$\left(\left(\neg a\right)^*.a\right)^{\omega}$$

"eventually always a" $(true)^*.(a)^{\omega}$

"everytime *a* is true then *b* has to be true eventually"

Claim

For each NBA \mathcal{A} there is an ω -regular expression γ with $\mathcal{L}_{\omega}(\mathcal{A}) = \mathcal{L}_{\omega}(\gamma)$.

Proof

Let \mathcal{A} be an NBA $(Q, \Sigma, \delta, Q_0, F)$ and $q, p \in Q$. Let $\mathcal{A}_{q,p}$ be the NFA $(Q, \Sigma, \delta, q, \{p\})$. Then

$$\mathcal{L}_{\omega}(\mathcal{A}) = \bigcup_{q \in Q_0} \bigcup_{p \in F} \mathcal{L}(\mathcal{A}_{q,p}) (\mathcal{L}(\mathcal{A}_{p,p}) \setminus \{\varepsilon\})^{\omega}$$

is ω -regular as $\mathcal{L}(\mathcal{A}_{q,p})$ and $\mathcal{L}(\mathcal{A}_{p,p})\setminus\{\varepsilon\}$ are regular.

$$\mathcal{L}_{\omega}(A) = L_{12}(L'_{22})^{\omega} \cup L_{22}(L'_{22})^{\omega}$$

$$L_{12} = \mathcal{L}(A_{12})$$

$$L_{22} = \mathcal{L}(A_{22})$$

$$L'_{22} = \mathcal{L}(A_{22}) \setminus \{\varepsilon\}$$

$$L_{12} \triangleq A.(B.A + A.A.A)^*$$

$$L_{22} = (B.A + A.A.A)^*$$

NFA A_{22}

$$\mathcal{L}_{\omega}(\mathcal{A}) = L_{12}(L'_{22})^{\omega} \cup L_{22}(L'_{22})^{\omega}$$

$$L_{12} = \mathcal{L}(\mathcal{A}_{12})$$

$$L_{22} = \mathcal{L}(\mathcal{A}_{22})$$

$$L'_{22} = \mathcal{L}(\mathcal{A}_{12}) \setminus \{\varepsilon\}$$

$$L'_{22} \triangleq (B.A + A.A.A)^+$$

$$\begin{array}{c}
 & \longrightarrow \\
 & \longrightarrow \\
 & A \\
 & \longrightarrow \\
 & A \\$$

$$L_{22} \triangleq (B.A + A.A.A)^*$$

 $\mathsf{NFA}\ \mathcal{A}_{22}$

$$\mathcal{L}_{\omega}(\mathcal{A}) = L_{12}(L'_{22})^{\omega} \cup L_{22}(L'_{22})^{\omega}$$

$$L_{12} = \mathcal{L}(\mathcal{A}_{12})$$

$$L_{22} = \mathcal{L}(\mathcal{A}_{22})$$

$$L'_{22} = \mathcal{L}(\mathcal{A}_{12}) \setminus \{\varepsilon\}$$

language of A:

$$A.(B.A + A.A.A)^{\omega} + (B.A + A.A.A)^{\omega}$$
$$= (A + \varepsilon).(B.A + A.A.A)^{\omega}$$

From ω -Regular Expressions to NBA

Claim

For each ω -regular expression

$$\gamma = \alpha_1.\beta_1^{\omega} + \ldots + \alpha_n.\beta_n^{\omega}$$

there exists an NBA \mathcal{A} with $\mathcal{L}_{\omega}(\mathcal{A}) = \mathcal{L}_{\omega}(\gamma)$.

Proof

Consider NFA A_i for α_i and B_i for β_i .

- construct NBA \mathcal{B}_i^{ω} for β_i^{ω}
- construct NBA C_i for $\alpha_i.\beta_i^{\omega}$
- construct NBA for $\bigcup_{1 \le i \le n} \mathcal{L}_{\omega}(\mathcal{C}_i)$

Equivalence of $\omega\text{-Regular}$ Expressions and NBA

Summary: equivalence of ω -regular expressions and NBA

- For each NBA \mathcal{A} there exists an ω -regular expression γ with $\mathcal{L}_{\omega}(\mathcal{A}) = \mathcal{L}_{\omega}(\gamma)$
- For each ω -regular expression γ there exists an \mathcal{A} with $\mathcal{L}_{\omega}(\mathcal{A}) = \mathcal{L}_{\omega}(\gamma)$

Exercise

Depict an NBA for the language described by the ω -regular expression

$$(ab+c)^*((aa+b)c)^{\omega}+(a^*c)^{\omega}.$$

Simplification of Regular Expressions

Here are a few laws that can be used to simplify regular expressions: for regular expressions α , β , and γ

$$\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$$

$$\alpha + \beta = \beta + \alpha$$

$$\alpha + \emptyset = \alpha$$

$$\alpha + \alpha = \alpha$$

$$\alpha(\beta\gamma) = (\alpha\beta)\gamma$$

$$\varepsilon\alpha = \alpha\varepsilon = \alpha$$

$$\alpha(\beta + \gamma) = \alpha\beta + \alpha\gamma$$

$$(\alpha + \beta)\gamma = \alpha\gamma + \beta\gamma$$

$$\emptyset\alpha = \alpha\emptyset = \emptyset$$

$$\varepsilon + \alpha\alpha^* = \alpha^*$$

$$\varepsilon + \alpha^*\alpha = \alpha^*$$

 $(\alpha\beta)^*\alpha = \alpha(\beta\alpha)^*$ $(\alpha^*\beta)^*\alpha^* = (\alpha + \beta)^*$ $\alpha^*(\beta\alpha^*)^* = (\alpha + \beta)^*$ $(\varepsilon + \alpha)^* = \alpha^*$ $\alpha\alpha^* = \alpha^*\alpha$ $(\alpha^*\beta)^* = \varepsilon + (\alpha + \beta)^*\beta$

Exercise 6: NBA

Question 1

Consider the following NBA A_1 and A_2 over the alphabet $\Sigma = \{a, b, c\}$:

Find ω -regular expressions for the languages accepted by \mathcal{A}_1 and \mathcal{A}_2 .

Question 2

Consider the NFA A_1 and A_2 :

Construct an NBA for the language $\mathcal{L}(\mathcal{A}_1)\mathcal{L}(\mathcal{A}_2)^{\omega}$.

3.3 Linear Temporal Logic

Recap: Propositional Formulas

- Syntax: Let AP be a finite set of atomic propositions. We use ¬, ∨ construct propositional formulas. The set of propositional formulas over AP is defined inductively by the rules:
 - ▶ If $p \in AP$, then p is a propositional formula;
 - If φ and ψ are propositional formulas, then

$$\neg \varphi$$
 and $\varphi \lor \psi$

are propositional formulas.

- Semantics: A set $P \subseteq AP$ satisfies a propositional formula ψ , if (P,ψ) is an element of the satisfaction relation \models , which is defined as follows. Let $p \in AP$ and φ, ψ be two propositional formulas
 - $P \models p$ iff $p \in P$;
 - $P \models \neg \varphi$ iff $P \not\models \varphi$;
 - $P \models \varphi \lor \psi$ iff $P \models \varphi$ or $P \models \psi$ holds.

Abbreviations

- true := $\neg p \lor p$ (for some $p \in AP$)
- $\varphi \to \psi := \neg \varphi \lor \psi$
- $\varphi \wedge \psi := \neg (\neg \varphi \vee \neg \psi)$

Examples

- Let $AP = \{a, b, c\}$, then $\{a, b, c\} \models a$
 - $\{a,b\} \models a$

- $\varnothing \models \neg c$
- $\{a\} \models a \land \neg b$

Definition: Linear Temporal Logic (Syntax)

Let AP be a finite set of atomic propositions, i.e., a finite set of boolean variables. We use \neg , \lor , \bigcirc and U to denote the logic and modal operators. The set of linear temporal logic (LTL) formulas on AP is defined inductively by the rules

- If $p \in AP$, then p is an LTL formula;
- If φ and ψ are LTL formulas, then

$$\neg \varphi$$
, $\bigcirc \varphi$, $\varphi \lor \psi$ and $\varphi \mathsf{U} \psi$

are LTL formulas.

Abbreviations

- true := $\neg p \lor p$ (for some $p \in AP$)
- $\varphi \to \psi := \neg \varphi \lor \psi$
- $\varphi \wedge \psi := \neg (\neg \varphi \vee \neg \psi)$

Naming

- O is the next operator
- U is the until operator

- $\Diamond \varphi := \mathsf{true} \mathsf{U} \varphi$
- $\Box \varphi := \neg \Diamond \neg \varphi$

- \(\rightarrow\) is the eventually/finally operator
- □ is the always/globally operator

Examples

- Let $AP = \{a, b\}$, then $(a \lor b) \cup (\neg a)$ is an LTL formula
 - $U(\neg a)$ is not an LTL formula

- a∩b is not an LTL formula
- $a \sqcap b$ is not an LTL formula

LTL formulas stand for properties of sequences

Let φ be an LTL formula over $AP = \{a, b\}$ and $w : [0; \infty] \Rightarrow AP$. The figure shows the intuitive idea behind "w satisfies φ ".

Definition: LTL Semantics over Infinite Sequences

Let φ be an LTL formula over AP and $w:[0;\infty[\rightrightarrows AP]$. We say that w satisfies φ at time $t\in\mathbb{N}$, denoted by

$$w, t \models \varphi$$

if (w, t, φ) is an element of the satisfaction relation \models . Let $p \in AP$ and φ , ψ be LTL formulas over AP, then satisfaction relation is defined inductively by

- $w, t \models p$ iff $p \in w(t)$;
- $w, t \models \neg \varphi$ iff $w, t \not\models \varphi$;
- $\bullet \ \, w,t\models\varphi\vee\psi \quad {\rm iff} \quad \, w,t\models\varphi \ {\rm or} \ w,t\models\psi \ {\rm holds};$
- $w, t \models \bigcirc \varphi$ iff $w, t + 1 \models \varphi$;
- $w, t \models \varphi \cup \psi$ iff $\exists_{t' \in [t; \infty[} (w, t' \models \psi) \text{ and } \forall_{t'' \in [t; t']} (w, t'' \models \varphi).$

We say that w satisfies φ if w satisfies φ at time t=0 and

$$w \models \varphi$$
 is used for $w, 0 \models \varphi$.

The set of all satisfying sequences is denoted by

$$P(\varphi) = \{ w : [0; \infty[\Rightarrow AP \mid w \models \varphi \}.$$

Example: LTL Semantics

Let $AP = \{a, b, c\}$ and

$$w = \{a,b\}\{a,c\}\{b\}\{c\}\{a\}^{\omega}$$

Are the following statements true?

- w |= a
- $w, 2 \models a$
- $w \not\models c$
- $w \not\models \bigcirc c$
- $w \models bUc$
- $w \models cUb$
- $w, 2 \models cUa$

Exercise 7: Derived Symbol Semantics

Consider the following LTL formulas φ over AP, with $p \in AP$

- 1. $\varphi = \Diamond p$;
- 2. $\varphi = \Box p$;
- 3. $\varphi = \Diamond \Box p$;
- 4. $\varphi = \Box \diamondsuit p$.

Provide the conditions on a sequence w such that $w \in P(\varphi)$.

Example: Printer Specifications

Atomic propositions

- j_i job $i \in \{1,2\}$ submitted;
- p_i job $i \in \{1, 2\}$ printed.

Specification

• Two jobs are not printed at the same time

$$\Box \neg (p_1 \wedge p_2)$$

· Every job is eventually printed

$$\square\left((j_1\to\diamondsuit p_1)\wedge(j_2\to\diamondsuit p_2)\right)$$

Example: Robot Task Planning

Description

A robot moves in a factory environment. The robot should move parts from the stockroom to the two stations, while avoiding obstacles.

- $\square \diamondsuit stockroom \land \square \diamondsuit station_1 \land \square \diamondsuit station_2$
- $\square \diamondsuit \neg s1_occupied \land \square \diamondsuit \neg s2_occupied$
- $\Box(s1_occupied \implies \bigcirc \neg station_1)$
- $\square(s2_occupied \implies \bigcirc \neg station_2)$
- $\Box(station_1 \implies \neg s1_occupied)$
- $\Box(station_2 \implies \neg s2_occupied)$

Example: Automatic Transmission Controller

A Simulink model of an automatic transmission system.

- Inputs: Throttle, brake
- Outputs: RPM, gear, speed

X. Jin et al., HSCC, 2013.

Some specifications

- The velocity and RPM are always below some thresholds: $\square(\operatorname{speed}_{\leq 200} \wedge \operatorname{RPM}_{\leq 4500})$
- Whenever the system shifts to gear 2, it dwells in gear 2 for at least one time step: $\Box ((\neg g2 \land \bigcirc g2) \rightarrow \bigcirc \bigcirc g2)$

Examples

Exercise

Consider the system *S* over the set of atomic propositions $AP = \{a, b, c\}$:

Decide for each of the LTL formulae φ_i below, whether $S \models \varphi_i$ holds. Justify your answers! If $S \models \varphi_i$, provide a state path (a.k.a. state run) $\pi = x_0x_1x_2...$ such that $\operatorname{trace}(\pi) \models \varphi_i$, where $\operatorname{trace}(\pi) := y(x_0)y(x_1)...$:

- 1. $\varphi_a = \Diamond \Box c$
- 2. $\varphi_b = \Box \diamondsuit c$
- 3. $\varphi_c = \bigcirc \neg c \rightarrow \bigcirc \bigcirc c$
- 4. $\varphi_d = \square a$

- 5. $\varphi_e = aU \square (b \vee c)$
- 6. $\varphi_f = (\bigcirc \bigcirc b) \cup (b \vee c)$

Question1

Prove the following equivalence or provide a counterexample that illustrates that the formula on the left and the formula on the right are not equivalent.

•
$$\Diamond \Box \varphi_1 \land \Diamond \Box \varphi_2 = \Diamond (\Box \varphi_1 \land \Box \varphi_2)$$

Question 2 Provide an NBA for each of the following LTL formula where $\Sigma = \{a, b\}$:

- $\Box(a \lor \neg \bigcirc b)$
- $\bigcirc\bigcirc(a \lor \Diamond \Box b)$

Question3

Consider an elevator that services 3 floors numbered 1 through 3. There is an elevator door at each floor with a call-button and an indicator light that signals whether or not the elevator has been called. We use the following propositions to reason about the system.

- $open_i$: the door on floor i is unlocked, $i \in \{1, 2, 3\}$
- floor_i: the cabin is located on floor i (not moving), $i \in \{1, 2, 3\}$
- req_i : the *i*th floor is requested, $i \in \{1, 2, 3\}$

State the LTL formulae for the following informal properties.

- The doors are "safe", i.e., a floor door is never open if the cabin is not present at a given floor
- A requested floor will be served sometime.
- Again and again the lift returns to floor 1.
- When the top floor is requested, the lift serves it immediately and does not stop on the way there.

Definition: Satisfaction, Realizability of LTL Formulas

- Let $S = (X, X_0, U, Y, F, H)$ be a system.
- Let φ be an LTL formula over AP.
- Let $L: Y \Rightarrow AP$ be a strict map (the labeling function).

Every element of the behavior $y \in \mathcal{B}(S)$ induces a sequence $w \in (2^{AP})^{\infty}$

$$w(t)=L(y(t)).$$

 $P(\varphi)$ is a property over 2^{AP} . We use L to define a property $P_L(\varphi)$ over Y:

• If $P(\varphi) \subseteq (2^{AP})^{\omega}$, then

$$P_L(\varphi) = \{ y \in (Y)^\omega \mid L(y) \in P(\varphi) \}$$

We say that y satisfies φ if $y \in P_L(\varphi)$.

We say that

- S satisfies φ (under L), if S satisfies $P_L(\varphi)$;
- φ is realizable on S (under L), if $P_L(\varphi)$ is realizable on S.

Examples of labeling functions

- Robot task planning
 - Consider a "unicycle" robot. The state alphabet $X = \mathbb{R}^3$ is given by the position (x_1, x_2) and orientation $x_3 = \theta$ of the mobile robot.
 - Some atomic propositions are given by AP = {stockroom, station₁, station₂, ...}. We define

$$stockroom = \begin{cases} 1 & \text{if the position } (x_1, x_2) \text{ is at the stockroom coordinates} \\ 0 & \text{otherwise.} \end{cases}$$

- ▶ We use the labeling function L to map from $x = (x_1, x_2, x_3)$ to the atomic propositions stockroom, station₁, station₂. The labeling function contains stockroom ∈ L(x) if the robot is at the stockroom coordinates.
- Automatic transimission controller
 - Outputs $X = \{\text{gear, velocity, RPM, } \ldots \}$
 - Atomic propositions $AP = \{\text{speed}_{<200}, \text{RPM}_{<4500}, g1, g2, \ldots\}$
 - Labeling function (speed $_{\leq 200} \in L(x)$) \iff velocity ≤ 200

Signal Temporal Logic (STL)

From LTL to STL:

Extension of LTL with real-time and real-valued constraints

LTL (Linear Temporal Logic)

 \Box ($a \Longrightarrow \diamondsuit b$)
Boolean predicates (atomic propositions), discrete-time

MITL (Metric Interval Temporal Logic)

 $\Box(a \Longrightarrow \Diamond_{[0.0.5s]} b)$

Boolean predicates, real-time

STL (Signal Temporal logic)

 $\Box(x(t)>0\implies \diamondsuit_{[0,0.5s]}y(t)>0)$

Predicates over real values, real-time

STL Semantics

The satisfaction of a formula φ by a signal $\mathbf{x}=(x_1,\ldots,x_n)$ at time t is

$$\begin{array}{lll} (\mathbf{x},t) \models \mu & \Leftrightarrow & f(x_1[t],\ldots,x_n[t]) > 0 \\ (\mathbf{x},t) \models \varphi \wedge \psi & \Leftrightarrow & (x,t) \models \varphi \wedge (x,t) \models \psi \\ (\mathbf{x},t) \models \neg \varphi & \Leftrightarrow & \neg ((x,t) \models \varphi) \\ (\mathbf{x},t) \models \varphi \; \mathcal{U}_{[a,b]} \; \psi & \Leftrightarrow & \exists t' \in [t+a,t+b] \; \text{such that} \; (x,t') \models \psi \wedge \\ & \forall t'' \in [t,t'], \; (x,t'') \models \varphi \} \end{array}$$

Similar to LTL, the eventually and always operator can be derived from the above four operators.

 μ is predicate obtained after evaluation of function $f: \mathbb{R}^n \longleftarrow \mathbb{R}$ defined as:

$$\mu = \text{True}$$
 if $f(x) \ge 0$
 $\mu = \text{False}$ if $f(x) < 0$

STL Example

Robust STL symantics

$$egin{aligned}
ho^{\mu}(m{x},t) &:= h(m{x}(t)) \
ho^{-\phi}(m{x},t) &:= -
ho^{\phi}(m{x},t) \
ho^{\phi_1 \wedge \phi_2}(m{x},t) &:= \min\left(
ho^{\phi_1}(m{x},t),
ho^{\phi_2}(m{x},t)
ight) \
ho^{F_{[a,b]}\phi}(m{x},t) &:= \max_{t_1 \in [t+a,t+b]}
ho^{\phi}(m{x},t_1) \
ho^{G_{[a,b]}\phi}(m{x},t) &:= \min_{t_1 \in [t+a,t+b]}
ho^{\phi}(m{x},t_1). \end{aligned}$$

Distance to violation/satisfaction

$$\mathbf{G}_{[50,100]}(x(t) < 3)$$

- 4 Verification for Autonomous Systems
- 4.1 Checking Regular Safety Properties (Finite

Systems)

- 4.2 Checking ω -Regular Properties (Finite Sys-
- tems)
- 4.3 Barrier Certificates (Infinite Systems)