

Nanjing University of Posts and Telecommunications

电工电子实验报告

课程名称:	电工电子实验
实验项目:	周期信号的频谱分析

 学院:
 贝尔英才学院

 班级:
 少号:

 学号:

 姓名:

学 期: __2021-2022 学年第_二_学期

周期信号的频谱分析

一、 实验目的

- 1. 了解和掌握周期信号频谱分析的基本概念。
- 2. 掌握用软件进行频谱分析的基本方法。
- 3. 理解周期信号时域参数变化对其谐波分量的影响及变化趋势。

二、预习要求

- 1.复习周期信号频谱分析的基本概念。
- 2.准备好数据表格。

三、 实验原理

1.实验原理

由《信号与系统》课程可知,一个非正弦周期信号,运用傅氏级数总可分解为直流分量与许多正弦分量之线性叠加。这些正弦分量的频率必定是基波频率的整数(n)倍,称之为谐波分量。各谐波分量的振幅和相位不尽相同,取决于原周期信号的波形。周期信号的频谱分为幅度谱、相位谱和功率谱3种,分别是信号各频率分量的振幅、初相和功率按频率由低到高排列构成的谱线图。

周期信号为 f(t),展开为三角形式的傅氏级数时,其中:

$$f(t) = a_0 + \sum_{n=1}^{\infty} A_n \cos(n\omega_1 t + \phi_n)$$

$$A_n = \sqrt{a_n^2 + b_n^2}$$

$$\phi_n = \arctan(\frac{-b_n}{a_n})$$

$$a_0 = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) dt$$

$$a_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \cos n\omega_1 t dt \qquad (n = 1, 2, \dots)$$

$$b_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \sin n\omega_1 t dt \qquad (n = 1, 2, \dots)$$

式中通常讲的频谱一般是指幅度谱,即 a_0 和 A_n 对于一个正、负峰值均为 V的矩形周期信号 f(t),展开为傅氏级数时,其中:

$$a_0 = \frac{V(2\tau - T)}{T}$$

$$A_n = \frac{2V}{n\pi} \sin(\frac{n\omega_1 \tau}{2}) \qquad (n = 1, 2, \dots)$$

式中,V为矩形脉冲的峰值; τ 为矩形脉冲的脉宽:T为矩形脉冲的周期: ω_1 为矩形脉冲的角频率。

运用仿真软件中的 Fourier (傅氏)分析可以非常方便、直观地得到周期信号的单边频谱图。

在信号发生器参数设置窗口中按表 2-1 的要求改变信号的波形和占空比, 并重复以上步骤。

四、实验任务

- 1.根据表 2-1 给定的波形及参数测量各谐波分量的幅度值。
- 2.根据所测数据绘制每一波形的谱线图。
- 3.测试方法自定。

表 2-1

波形及参数测量各谐波分量的幅度值

W 2 1	从											
波形占空比	f/kHz											
	0	10	20	30	40	50	60	70	80	90	100	
矩形波 10%	-4.02	1.92	1.83	1.69	1.50	1.27	1.02	0.76	0.50	0.26	0.05	
矩形波 30%	-2.03	5.11	3.04	0.71	0.88	1.27	0.67	0.22	0.74	0.61	0.06	
矩形波 50%	0	6.37	0	2.12	0	1.27	0	0.91	0	0.71	0	
正弦波 50%	0	5.00	0	0	0	0	0	0	0	0	0	
三角波 50%	0	4.05	0	0.45	0	0.16	0	0.08	0	0.05	0	
三角波 70%	0	3.90	1.15	0.16	0.18	0.19	0.08	0.03	0.07	0.05	0	
三角波 90%	0	3.48	1.65	1.01	0.67	0.45	0.30	0.18	0.10	0.04	0	
n=	0	1	2	3	4	5	6	7	8	9	10	

表(1)

矩形波 10% 图 (1)

矩形波 30% 图 (2)

矩形波 50% 图 (3)

正弦波 50% 图 (4)

三角波 50% 图 (5)

三角波 70% 图 (6)

图 (7)

五. 实验总结

经过本次实验我理解了周期信号频谱分析的基本概念。学会了用 multisim 软件进行频谱分析。同时理解了周期信号时域参数变化对其谐波分量的影响及变

化趋势。