Convolutional Neural Networks

Janghun Jo Computer Graphics Lab. jhjo432@postech.ac.kr

Contents

TODO

- quiz: CIFAR 10

- quiz: VGG 19

- quiz: Resnet

• CNN

- Training a CNN classifier on CIFAR-10

• VGG 19

- Implement
- Training

ResNet

- Implement
- Training

Convolutional Neural Networks

CIFAR-10 dataset

airplane

bird

cat

deer

dog

frog

horse

ship

truck

Image classification dataset

- 10 classes
- 32 x 32 image size, RGB images
- Training sample: 50,000
- Test sample: 10,000

Note: Image Normalization

Quiz1. Training a CNN classifier on CIFAR-10

- Steps)
 - Load and normalize the CIFAR 10 training and test datasets using torchvision
 - 1. Define a convolutional Neural Network
 - Convolution input channel: 3, output channel: 6, kernel_size: 5
 - Maxpoling size: 2, stride: 2
 - Convolution input channel: 6, output channel: 16, kernel_size: 5
 - Maxpoling size: 2, stride: 2
 - Fully connected layer in_features: 400, out_features: 120
 - Fully connected layer in_features: 120, out_features: 84
 - Fully connected layer in_features: 84, out_features: 10
 - Note: Apply ReLU activation function for hidden layers.
 - 2. Define a Loss function and optimizer
 - Cross-Entropy loss
 - SGD with learning rate 0.001 and momentum 0.9
 - 3. Train the network on the training data
 - Test the network on the test data

AlexNet [Krizhevskyet al. 2012]

- Successful CNN image classification model
 - Based on LeNet5 CNN design (Yann Lecun et al, 1989)
 - Computationally expensive, but feasible due to GPUs
 - Parallel computation
 - Winner of ILSVRC-2012 competition by a large margin,
 - ImageNet Large-Scale Visual Recognition Challenge
 - a top-5 error of 15.3%, more than 10.8 percentage points lower than that of the runner up.
 - Transfer to significant gains in a variety of domains

AlexNet [Krizhevskyet al. 2012]

Case Study: AlexNet

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons

[4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

Architecture

- 5 Conv + 3 fc layers, ReLU
- Dropout for fc layers
 - For regularization to deal with overfitting

Details/Retrospectives:

- first use of ReLU
- used Norm layers (not common anymore)
- heavy data augmentation
- dropout 0.5
- batch size 128
- SGD Momentum 0.9
- Learning rate 1e-2, reduced by 10 manually when val accuracy plateaus
- L2 weight decay 5e-4
- 7 CNN ensemble: 18.2% -> 15.4%

Common trend: Revolution of depth

ImageNet Classification top-5 error (%)

(Slides from Kaiming He's recent presentation)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. Deep Residual Learning for Image Recognition. CVPR 2016.

Proposed by Oxford VGG team in 2014 ILSVRC (2nd rank)

Comparison

- More deeper network than AlexNet
- More simple structure than GooleNet (1st rank) (covered later!)
- More computational budget than GooleNet (parameter & computation)

Filter

- Only 3 x 3 filter & 1 x 1 filter
 - Less parameter for same receptive field -> Regularization

- Receptive field
 - the region in the input space that a particular CNN's feature is looking at

- Stack of 3 filters(3x3) = 1 filter (7×7)
 - # of parameters
 - $-3-(3\times3)$ filter: $3 * (3^2 * C^2) = 27 * C^2$
 - $-1-(7\times7)$ filter: $(7^2 * C^2) = 49 * C^2$

• Configuration

- Image size : 224 * 224 * 3

- Stride: 1

- Padding: 1

- Max - pooling

• 2 x 2 window, 2 stride

- Filter size : 3×3 , 1×1

- Convolutional filters
 - Starting from 64, double after
 each max-pooling layer until 512
- In 3x3 filter, use 1 padding & 1 stric
 - Preserve spatial resolution (H * W size)

1 x 1 Convolution

- Increase non-linearity without affecting receptive field
- When input channels == output channels
 - Projection onto space of same dim
- Another perspective: Fully connected with weight sharing
 - Ex) Fully Convolutional Networks for Semantic Segmentation (Jonathan Long, et al) (cover later in Semantic Segmentation)
- Simple interpretation: Change the channel
 - Used in Inception network to reduce computational budget

1 x 1 Convolution

Quiz2. Training VGG-11 on CIFAR-10

• Steps)

- Load and normalize the CIFAR 10 training and test datasets using torchvision

- 1. Define a convolutional Neural Network

Note: Apply ReLU activation function for hidden lay

- 2. Define a Loss function and optimizer

Cross-Entropy loss

SGD with learning rate 0.01 and momentum 0.9

- 3. Train the network on the training data

- Test the network on the test data

(a) Linear convolution layer

(b) Mlpconv layer

Main Points

- The MLP as convolution
- 1x1 Conv to reduce number of channel
- Global avgpool in last layer (Drop fully connected layers)

Implementation

```
nn.Conv2d(3, 192, kernel_size=5, stride=1, padding=2),
nn.ReLU(inplace=True),
nn.Conv2d(192, 160, kernel_size=1, stride=1, padding=0),
nn.ReLU(inplace=True),
nn.Conv2d(160, 96, kernel_size=1, stride=1, padding=0),
nn.ReLU(inplace=True),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
nn.Dropout(0.5),
```


Figure 4: Visualization of the feature maps from the last mlpconv layer. Only top 10% activations in the feature maps are shown. The categories corresponding to the feature maps are: 1. airplane, 2. automobile, 3. bird, 4. cat, 5. deer, 6. dog, 7. frog, 8. horse, 9. ship, 10. truck. Feature maps corresponding to the ground truth of the input images are highlighted. The left panel and right panel are just different examplars.

GoogLeNet [Szegedy et al., 2014]

GoogLeNet [Szegedyet al., 2014]

- Network in network: inception modules
- Auxiliary classifiers to facilitate training
- The winner of ILSVRC 2014 classification task

Uses 12x fewer parameters than AlexNet

Used 9 Inception modules in the whole architecture

- 22 layer network: 27 layers if pooling layers are counted No use of fully connected layers! They use average

pool instead

(Save huge number of parameters)

Many size of kernels (1x1, 3x3, 5x5, 7x7)

GoogLeNet [Szegedyet al., 2014]

Revolution of Depth

AlexNet, 8 layers (ILSVRC 2012)

VGG, 19 layers (ILSVRC 2014)

ResNet, 152 layers (ILSVRC 2015)

- 2-3 weeks of training on 8-GPU machine
- Running faster than a VGGNet
 - even though it has 8x more layers

(Slides from Kaiming He's recent presentation)

Simply stacking layers?

- "Overly deep" plain nets have higher training error
- A general phenomenon, observed in many datasets

Simply stacking layers?

- "Overly deep" plain nets have higher training error
- A general phenomenon, observed in many datasets

- Residual learning
 - Main idea: make it easy to learn the identity mapping!

Very smooth backward propagations by preconditioning

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer			
conv1	112×112	7×7, 64, stride 2							
	56×56	3×3 max pool, stride 2							
conv2_x		$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times2$	$\left[\begin{array}{c} 3 \times 3, 64 \\ 3 \times 3, 64 \end{array}\right] \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$ \begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3 $	$ \begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3 $			
conv3_x	28×28	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$	$ \left[\begin{array}{c} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{array}\right] \times 4 $	$ \left[\begin{array}{c} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{array} \right] \times 4 $	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$			
conv4_x	14×14	$\left[\begin{array}{c}3\times3,256\\3\times3,256\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times6$	$ \begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6 $	$ \begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23 $	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$			
conv5_x	7×7	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times3$	$ \left[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array}\right] \times 3 $	$ \left[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array}\right] \times 3 $	$ \begin{bmatrix} 1 \times 1,512 \\ 3 \times 3,512 \\ 1 \times 1,2048 \end{bmatrix} \times 3 $			
	1×1	average pool, 1000-d fc, softmax							
FLOPs		1.8×10^{9}	3.6×10^9	3.8×10^{9}	7.6×10^9	11.3×10 ⁹			

method	top-5 err. (test)
VGG [41] (ILSVRC'14)	7.32
GoogLeNet [44] (ILSVRC'14)	6.66
VGG [41] (v5)	6.8
PReLU-net [13]	4.94
BN-inception [16]	4.82
ResNet (ILSVRC'15)	3.57

Quiz 3. Implement a CNN with Residual Block on CIFAR-10

- Steps)
 - Load and normalize the CIFAR 10 training and test datasets using torchvision
 - 1. Define a convolutional Neural Network
 - Convolution input channel: 3, output channel: 64, kernel_size: 3
 - Residual block hidden channel: 256, kernel_size: 3
 - Maxpoling size: 2, stride: 2
 - Residual block hidden channel: 256, kernel size: 3
 - Maxpoling size: 2, stride: 2
 - Fully connected layer in_features: 4096, out_features: 120
 - Fully connected layer in_features: 120, out_features: 84
 - Fully connected layer in_features: 84, out_features: 10
 - Note
 - Apply ReLU activation function for hidden layers.
 - Residual block have same number of input channels and output channels.
 - 2. Define a Loss function and optimizer
 - Cross-Entropy loss
 - Adam optimizer with learning rate 0.001
 - 3. Train the network on the training data
 - Test the network on the test data

Residual net

DenseNet (2017)

DenseNet (2017)

Layers	Output Size	DenseNet- $121(k = 32)$	DenseNet-169(k=32)	DenseNet-201 $(k = 32)$	DenseNet-161 $(k = 48)$		
Convolution	112 × 112	7×7 conv, stride 2					
Pooling	56 × 56	3×3 max pool, stride 2					
Dense Block	56 × 56	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 3 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 6 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 6$		
(1)	30 × 30	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 6}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$		
Transition Layer	56 × 56	$1 \times 1 \text{ conv}$					
(1)	28×28	2×2 average pool, stride 2					
Dense Block	28 × 28	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 12$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 12 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 12$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 12 \end{bmatrix}$		
(2)	20 ^ 20	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{-12}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{-12}$		
Transition Layer	28×28	$1 \times 1 \text{ conv}$					
(2)	14×14	2×2 average pool, stride 2					
Dense Block	14 × 14	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 24 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 32 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 48 \end{bmatrix} \times 48$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 36 \end{bmatrix}$		
(3)	14 / 14	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} ^{32}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{3}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$		
Transition Layer	14×14	$1 \times 1 \text{ conv}$					
(3)	7 × 7	2×2 average pool, stride 2					
Dense Block	7 × 7	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 16$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 32 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 32 \end{bmatrix} \times 32$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 24 \end{bmatrix}$		
(4)	/ ^ /	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{-10}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} ^{32}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{32}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{24}$		
Classification	1×1	7×7 global average pool					
Layer		1000D fully-connected, softmax					

Table 1. DenseNet architectures for ImageNet. The growth rate for the first 3 networks is k = 32, and k = 48 for DenseNet-161. Note that each "conv" layer shown in the table corresponds the sequence BN-ReLU-Conv.

DenseNet (2017)

Method	Depth	Params	C10	C10+	C100	C100+	SVHN
Network in Network [22]	-	-	10.41	8.81	35.68	-	2.35
All-CNN [31]	_	-	9.08	7.25	-	33.71	-
Deeply Supervised Net [20]	-	-	9.69	7.97	-	34.57	1.92
Highway Network [33]	_	-	-	7.72	-	32.39	-
FractalNet [17]	21	38.6M	10.18	5.22	35.34	23.30	2.01
with Dropout/Drop-path	21	38.6M	7.33	4.60	28.20	23.73	1.87
ResNet [11]	110	1.7M	-	6.61	-	-	-
ResNet (reported by [13])	110	1.7M	13.63	6.41	44.74	27.22	2.01
ResNet with Stochastic Depth [13]	110	1.7M	11.66	5.23	37.80	24.58	1.75
	1202	10.2M	-	4.91	-	-	-
Wide ResNet [41]	16	11.0M	-	4.81	-	22.07	-
	28	36.5M	-	4.17	-	20.50	-
with Dropout	16	2.7M	-	-	-	-	1.64
ResNet (pre-activation) [12]	164	1.7M	11.26*	5.46	35.58*	24.33	-
	1001	10.2M	10.56*	4.62	33.47*	22.71	-
DenseNet $(k = 12)$	40	1.0M	7.00	5.24	27.55	24.42	1.79
DenseNet $(k = 12)$	100	7.0 M	5.77	4.10	23.79	20.20	1.67
DenseNet $(k=24)$	100	27.2M	5.83	3.74	23.42	19.25	1.59
DenseNet-BC $(k = 12)$	100	0.8M	5.92	4.51	24.15	22.27	1.76
DenseNet-BC $(k=24)$	250	15.3M	5.19	3.62	19.64	17.60	1.74
DenseNet-BC $(k = 40)$	190	25.6M	-	3.46	-	17.18	-