

5. अणूचे अंतरंग

- 1. द्रव्य म्हणजे काय ? 2. अणू म्हणजे काय ?
- 3. द्रव्याचा सर्वांत लहान घटक कोणता ?

आपण पाहिले की द्रव्य हे रेणूंचे बनलेले असते. रेणू हे अणूंपासून बनलेले असतात. म्हणजेच अणू हे द्रव्याचे सर्वांत लहान एकक आहे. सर्व भौतिक व रासायनिक बदलांमध्ये आपली रासायनिक ओळख कायम राखणारा मूलद्रव्याचा लहानात लहान कण म्हणजे अणू होय.

तक्ता 5.1 मध्ये काही पदार्थांची नावे व सूत्रे दिली आहेत. त्यावरून पदार्थाच्या लहानात लहान कणाची माहिती व पदार्थाचा प्रकार दर्शवणाऱ्या खुणा भरुन तक्ता पूर्ण करा.

पदार्थाचे नाव	सूत्र	पदार्थाचा लहानात लहान कण			पदार्थाचे प्रकार		
		अणू आहे (एक अणू	रेणू आहे	रेणूमधील अणू	रेणूमधील अणू	मूलद्रव्य	संयुग
		असलेला रेणू आहे)		एकाच प्रकारचे	अनेक प्रकारचे		
पाणी	H ₂ O		✓		✓		✓
ऑक्सीजन	O ₂		✓	✓		✓	
हेलिअम	Не	✓		✓		✓	
हायड्रोजन	H_2						
अमोनिआ	NH ₃						
नायट्रोजन	N ₂						
मिथेन	CH ₄						
अरगॉन	Ar						
निऑन	Ne						
क्लोरीन	Cl ₂						

5.1 पदार्थाचे प्रकार

आपण मागील इयत्तेत अभ्यासले की बऱ्याच पदार्थांचे लहानात लहान कण रेणू असतात. काही थोड्या पदार्थांच्या रेणूंमध्ये एकच अणू असतो. रेणू हे अणूंच्या रासायनिक संयोगाने तयार होतात. त्यावरून आपल्याला समजते की रासायनिक संयोगात भाग घेणारा मूलद्रव्याचा लहानात लहान कण म्हणजे अणू. अणूविषयी संकल्पना 2500 वर्षांहूनही जुनी आहे. पण काळाच्या ओघात ती विस्मृतीत गेली. आधुनिक काळात वैज्ञानिकांनी प्रयोगांच्या आधारे अणूचे स्वरूपच नव्हे तर अंतरंग स्पष्ट केले आहे. याची सुरुवात डाल्टनच्या अणुसिद्धांताने झाली.

माहित आहे का तुम्हांला?

- द्रव्याचे लहान कणांमध्ये विभाजन करायला एक मर्यादा असते, असे भारतीय तत्वज्ञ कणाद (ख्रिस्तपूर्व 6 वे शतक) यांनी सांगितले. द्रव्य ज्या अविभाज्य कणांचे बनलेले असते त्यांना कणाद मुनींनी परमाणू (म्हणजे लहानात लहान कण) असे नाव दिले. त्यांनी असेही मत मांडले की परमाणू अनाशवंत असतो.
- ग्रीक तत्ववेत्ता डेमोक्रिटस (ख्रिस्तपूर्व 5 वे शतक) यांनी असे प्रतिपादन केले की द्रव्य लहान कणांचे बनलेले असते व ह्या कणांना कापता येत नाही. द्रव्याच्या लहानात लहान कणाला डेमोक्रिटसने ॲटम असे नाव दिले. (ग्रीक भाषेत ॲटमॉस म्हणजे कापता न येणारा)

डाल्टनचा अणुसिद्धांत : इ.स. 1803 मध्ये ब्रिटिश वैज्ञानिक जॉन डाल्टन यांनी सुप्रसिद्ध अणुसिद्धांत मांडला. ह्या सिद्धांतानुसार द्रव्य अणूंचे बनलेले असते व अणू हे अविभाजनीय व अनाशवंत असतात. एका मूलद्रव्याचे सर्व अणू एकसमान असतात तर भिन्न मूलद्रव्यांचे अणू भिन्न असतात व त्यांचे वस्तुमान भिन्न असते.

5.2 डाल्टनचे अणुप्रारूप

- 1. एक भरीव चेंडू व एक बुंदीचा लाडू घ्या. त्या दोन्ही गोलांना हाताने दाब द्या. काय दिसले ?
- 2. भरीव चेंडू धारदार सुरीने काळजीपूर्वक कापा. काय दिसले ?

बुंदीच्या लाडवाला अंतर्गत संरचना असून तो त्याच्याहून लहान कण म्हणजे बुंदी एकमेकांना चिकटवून बनल्याचे समजते. मात्र भरीव चेंडूला ढोबळमानाने अंतर्गत संरचना काहीच नाही असे समजते. डाल्टनचे वर्णन केलेला अणु हा एखाद्या कडक, भरीव गोलाप्रमाणे काहीच संरचना नसलेला असा ठरतो. डाल्टनच्या अणुसिद्धांतानुसार अणूमध्ये वस्तुमानाचे वितरण सर्वत्र एकसमान असते. जे. जे. थॉमसन ह्या वैज्ञानिकाने अणूच्या आत असलेल्या ऋणप्रभारित कणांचा शोध लावला आणि डाल्टनच्या अणुसिद्धांताला धक्का बसला. थॉमसनने प्रयोग करून दाखवून दिले की अणूंच्या अंतरंगात असलेल्या ऋणप्रभारित कणांचे वस्तुमान हायड्रोजन अणूपेक्षा 1800 पट कमी असते. ह्या कणांना पढे इलेक्ट्रॉन असे नाव दिले गेले. सर्वसाधारण पदार्थ हे निसर्गतः विद्युतप्रभारदृष्ट्या उदासीन असतात. अर्थातच पदार्थांचे रेणू तसेच ते ज्यांच्या रासायनिक संयोगाने बनतात ते अणू विद्युतप्रभारदृष्ट्या उदासीन असतात.

अंतरंगात ऋणप्रभारित इलेक्ट्रॉन असूनही अणू विद्युतप्रभारदृष्ट्या उदासीन कसा ? थॉमसनने अणुसंरचनेचे प्लम पुडिंग प्रारूप मांडून ह्या अडचणीतून मार्ग काढला. थॉमसनचे प्लम पुडिंग अणुप्रारूप: अणुसंरचनेचे पहिले प्रारूप म्हणजे थॉमसन यांनी सन 1904 मध्ये मांडलेले प्लम पुडिंग प्रारूप होय. ह्या प्रारूपानुसार अणूमध्ये सर्वत्र धनप्रभार पसरलेला असतो व त्यामध्ये ऋणप्रभारित इलेक्ट्रॉन जडवलेले असतात. पसरलेल्या धनप्रभाराचे संतुलन इलेक्ट्रॉनांवरील ऋणप्रभारामुळे होते. त्यामुळे अणू विद्युतप्रभारदृष्ट्या उदासीन होतो.

5.3 थॉमसनचे प्लम पुडिंग अणुप्रारूप

जरा डोके चालवा.

थॉमसनच्या प्रारूपानुसार अणूच्या वस्तुमानाचे वितरण कसे असेल असे तुम्हाला वाटते ? हे वितरण डाल्टनच्या अणुसिद्धांताप्रमाणे सर्वत्र समान की असमान ?

माहित आहे का तुम्हांला?

प्लम पुडिंग किंवा प्लम केक हा गोड खाद्यपदार्थ ख्रिसमस ह्या सणात बनवतात. पूर्वी पाश्चात्य देशांत ह्या पदार्थात प्लम ह्या फळाचे सुकवलेले तुकडे घालत. हल्ली प्लमऐवजी बेदाणे किंवा खजूर वापरतात.

- 1. तुम्ही स्ट्रायकरने सोंगटीवर धरलेला नेम चुकला तर स्ट्रायकर कोणत्या दिशेने जाईल ?
- 2. नेम बरोबर लागला तर स्ट्रायकर कोणत्या दिशेला जाईल ? सरळ पुढे की बाजूच्या अथवा उलट दिशेला ?

रूदरफोर्डचे केंद्रकीय अणूप्रारूप (1911)

अर्नेस्ट रूदरफोर्ड यांनी त्यांच्या सुप्रसिद्ध विकीरण प्रयोगाने अणूच्या अंतरंगाचा वेध घेतला व सन 1911 मध्ये अणूचे केंद्रकीय प्रारूप मांडले.

रूदरफोर्ड यांनी सोन्याचा अतिशय पातळ पत्रा (जाडी: $10^{-4} \mathrm{mm}$) घेऊन त्यावर किरणोत्सारी मूलद्रव्यातून उत्सर्जित होणाऱ्या धनप्रभारित α – कणांचा मारा केला. सोन्याच्या पत्र्याभोवती लावलेल्या प्रतिदीप्तीमान पडदा लावून त्यांनी α – कणांच्या मार्गांचा वेध घेतला. (आकृती 5.4) जर अणूंमध्ये धनप्रभारित वस्तुमानाचे वितरण सर्वत्र एकसमान असेल तर धन प्रभारित α – कणांचे पत्र्यावरून परावर्तन होईल अशी अपेक्षा होती. अनपेक्षितपणे बहुसंख्य α –कण पत्र्यातून आरपार सरळ गेले, काही थोड्या α – कणांचे मूळ मार्गापासून लहान कोनामधून विचलन झाले, आणखी थोड्या α – कणांचे मोठ्या कोनातून विचलन झाले आणि आश्चर्य म्हणजे 20000 पैकी एक α –कण मूळ मार्गाच्या उलट दिशेने उसळला.

5.4 : रूदरफोर्डचा विकीरण प्रयोग

मोठ्या संख्येने आरपार गेलेले α – कण असे दर्शवतात की त्यांच्या वाटेत कोणताच अडथळा नव्हता. याचा अर्थ सोन्याच्या स्थायुरूप पत्र्यामधील अणूंच्या आत बरीचशी जागा मोकळीच असली पाहिजे. ज्या थोड्या α – कणांचे लहान किंवा मोठ्या कोनातून विचलन झाले त्यांच्या वाटेत अडथळा आला. याचा अर्थ अडथळ्यास कारण असलेला अणूचा धनप्रभारित व जड भाग अणूच्या मध्यभागी होता. यावरून रूदरफोर्डने पुढीलप्रमाणे अणूचे केंद्रकीय प्रारूप मांडले.

5.5 रूदरफोर्डचे केंद्रकीय अणुप्रारूप

- . अणुच्या केंद्रभागी धनप्रभारित केंद्रक असते.
- 2. केंद्रकात अणूचे जवळजवळ सर्व वस्तुमान एकवटलेले असते. 3. केंद्रकाभोवती इलेक्ट्रॉन नावाचे ऋणप्रभारित कण परिभ्रमण करीत असतात. 4.सर्व इलेक्ट्रॉनांवरील एकत्रित ऋणप्रभार हा केंद्रकावरील धनप्रभाराएवढा असल्याने विजातीय प्रभारांचे संतुलन होऊन अणू हा विद्युतदृष्ट्या उदासीन असतो. 5. परिभ्रमण करणारे इलेक्ट्रॉन व अणुकेंद्रक ह्यांच्या दरम्यान पोकळी असते.

जरा डोके चालवा

- 1. अणूला अंतर्गत संरचना आहे हे कोणत्या शोधामुळे लक्षात आले ?
- 2. डाल्टनच्या अणुसिद्धांतामधील भरीव अणू व थॉमसनच्या प्रारूपातील भरीव अणू यांच्यात फरक काय ?
- 3. थॉमसनच्या अणुप्रारूपातील धनप्रभाराचे वितरण व रूदरफोर्डच्या अणुप्रारूपातील धनप्रभाराचे वितरण यातील फरक स्पष्ट करा.
- 4. थॉमसन व रूदरफोर्ड यांच्या अणुप्रारूपांमध्ये इलेक्ट्रॉनांच्या स्थितीसंबंधात काय वेगळेपणा आहे ?
- 5. डाल्टन व थॉमसनच्या अणूप्रारूपात नसलेली कोणती गोष्ट रूदरफोर्डच्या अणूप्रारूपात आहे ?

वर्तुळाकार कक्षेत परिभ्रमण करणाऱ्या विद्युतप्रभारित वस्तूची ऊर्जा कमी होते असा भौतिकशास्त्रातील प्रस्थापित नियम आहे. ह्या नियमानुसार रूदरफोर्डने मांडलेल्या प्रारूपातील अणू अस्थायी ठरतो. मात्र प्रत्यक्षात किरणोत्सारी अणू सोडून इतर सर्व अणूंना स्थायीभाव असतो. रूदरफोर्डच्या अणुप्रारूपातील ही त्रुटी नील्स बोर यांनी सन 1913 मध्ये मांडलेल्या अणुप्रारूपाने दूर झाली. बोरचे स्थायी कक्षा अणुप्रारूप (1913)

सन 1913 मध्ये डॅनिश वैज्ञानिक नील्स बोर यांनी स्थायी कक्षा अणुप्रारूप मांडून अणूचा स्थायीभाव स्पष्ट केला. बोरच्या अणुप्रारूपाची महत्त्वाची आधारतत्वे पढीलप्रमाणे आहेत.

(i) अणूच्या केंद्रकाभोवती परिभ्रमण करणारे इलेक्ट्रॉन केंद्रकापासून विशिष्ट अंतरावर असणाऱ्या समकेंद्री वर्त्तळाकार कक्षांमध्ये असतात.

- (ii) विशिष्ट कक्षेत असताना इलेक्ट्रॉनची ऊर्जा स्थिर असते.
- (iii) इलेक्ट्रॉन आतील कक्षेतून बाहेरील कक्षेत उडी मारताना फरकाइतक्या ऊर्जेचे शोषण करतो, तर बाहेरील कक्षेतून आतील कक्षेत उडी मारताना फरकाइतकी ऊर्जा उत्सर्जित करतो.

माहित आहे का तुम्हांला?

घरातील गॅसच्या शेगडीच्या निळ्या ज्योतीमध्ये मिठाचे (सोडिअम क्लोराइडचे) कण टाकल्यावर त्या क्षणी त्या जागी पिवळी ठिणगी दिसते. पाण्यात सोडिअम धातूचा तुकडा टाकला असता तो पेटून पिवळी ज्योत दिसते. रस्त्यावरील सोडिअम व्हेपर दिव्यांमधूनही त्याच पिवळ्या रंगाचा प्रकाश येतो. ह्या सर्व उदाहरणांमध्ये सोडिअम अणूमधील इलेक्ट्रॉन ऊर्जा शोषून बाहेरील कक्षेमध्ये जातो व पुन्हा आतील कक्षेमध्ये उडी मारून परत येताना ती ऊर्जा उत्सर्जित करतो. सोडिअम अणूच्या या दोन कक्षांच्या ऊर्जा पातळीतील फरक ठराविक असतात. हा फरक पिवळ्या प्रकाशाच्या ऊर्जेइतका असतो. महणून वरील तिन्ही उदाहरणांमध्ये तोच विशिष्ट पिवळा प्रकाश बाहेर पडल्याचे दिसते.

5.6: बोरचे स्थायी कक्षा अणुप्रारूप

बोरच्या अणुप्रारूपानंतर आणखी काही अणुप्रारूपे मांडली गेली. त्यानंतर उदयाला आलेल्या पुंजयांत्रिकी (quantum mechanics) ह्या नवीन विज्ञानशाखेमध्ये अणुसंरचनेचा सखोल अभ्यास करण्यात आला. या सर्वांमधून अणुसंरचनेविषयी सर्वमान्य झालेली काही मूलभूत तत्त्वे पुढीलप्रमाणे आहेत.

अणुची संरचना

केंद्रक व केंद्रकाबाहेरील भाग यांचा मिळून अणू बनतो. यांच्यामध्ये तीन प्रकारच्या अवअणुकणांचा समावेश असतो.

केंद्रक

अणूचे केंद्रक धनप्रभारित असते. अणूचे जवळजवळ सर्व वस्तुमान केंद्रकात एकवटलेले असते. केंद्रकामध्ये दोन प्रकारचे अवअणुकण असतात. एकत्रितपणे त्यांना न्युक्लिऑन म्हणतात. प्रोटॉन व न्यूट्रॉन हे न्यूक्लिऑनचे दोन प्रकार आहेत.

प्रोटॉन (p)

प्रोटॉन हा अणुकेंद्रकात असणारा धनप्रभारित अवअणुकण असून केंद्रकावरील धनप्रभार हा त्याच्यातील प्रोटॉनांमुळे असतो. प्रोटॉनचा निर्देश 'p' ह्या संज्ञेने करतात. प्रत्येक प्रोटॉनवरील धनप्रभार +1e एवढा असतो. (1e = 1.6 × 10⁻¹⁹ कूलॉम) त्यामुळे केंद्रकावरील एकूण धनप्रभार 'e' ह्या एककामध्ये व्यक्त केल्यास त्याचे परिमाण केंद्रकातील प्रोटॉनसंख्येएवढे असते. अणूच्या केंद्रकातील प्रोटॉनसंख्या म्हणजे त्या मूलद्रव्याचा अणूअंक असून तो 'Z' ह्या संज्ञेने दर्शवतात. एका प्रोटॉनचे वस्तुमान सुमारे 1u (unified mass) इतके असते (1 डाल्टन म्हणजे 1 u =1.66 ×10⁻²⁷kg) (हायड्रोजनच्या एका अणूचे वजनसुध्दा सुमारे 1 u इतके आहे.)

न्यूट्रॉन (n)

न्यूट्रॉन हा विद्युतप्रभारदृष्ट्या उदासीन असलेला अवअणुकण असून त्याचा निर्देश 'n' ह्या संज्ञेने करतात. केंद्रकातील न्यूट्रॉन संख्येसाठी 'n' ही संज्ञा वापरतात.

1 u इतके अणुवस्तुमान असलेल्या हायड्रोजनचा अपवाद वगळता सर्व मूलद्रव्यांच्या अणुकेंद्रकांमध्ये न्यूट्रॉन असतात. एका न्यूट्रॉनचे वस्तुमान सुमारे 1 u इतके आहे, म्हणजेच जवळजवळ प्रोटॉनच्या वस्तुमानाइतकेच आहे.

केंद्रकाबाहेरील भाग

अणूच्या संरचनेत केंद्रकाबाहेरील भागात परिभ्रमण करणारे इलेक्ट्रॉन आणि केंद्रक व इलेक्ट्रॉन यांच्या दरम्यान असलेली पोकळी यांचा समावेश होतो.

इलेक्ट्रॉन (e^-)

इलेक्ट्रॉन हा ऋणप्रभारित अवअणुकण असून त्याचा निर्देश 'e' ह्या संज्ञेने करतात. प्रत्येक इलेक्ट्रॉनवर एक एकक ऋणप्रभार (-1e) असतो. इलेक्ट्रॉनचे वस्तुमान हायड्रोजन अणूच्या वस्तूमानापेक्षा 1800 पटीने कमी आहे. त्यामुळे इलेक्ट्रॉनचे वस्तुमान नगण्य मानता येते.

अणूच्या केंद्रकाबाहेरील भागातील इलेक्ट्रॉन हे केंद्रकाभोवती असलेल्या वेगवेगळ्या कक्षांमध्ये परिभ्रमण करतात. भ्रमणकक्षेचे स्वरूप त्रिमित असल्याने 'कक्षा' ह्या पदाऐवजी 'कवच' (shell) हे पद वापरतात. इलेक्ट्रॉनची ऊर्जा तो ज्या कवचात असतो त्यावरून ठरते.

अणुकेंद्रकाबाहेरील इलेक्ट्रॉनांची संख्या केंद्रकामधील प्रोटॉनसंख्येइतकीच (Z) असते. त्यामुळे विद्युतप्रभारांचे संतुलन होऊन अणू विद्युतदृष्ट्या उदासीन असतो.

- 1. अणूत किती प्रकारचे अवअणुकण आढळतात ?
- 2. कोणते अवअणुकण प्रभारयुक्त आहेत ?
- 3. केंद्रकांत कोणते अवअणुकण आहेत ?
- 4. केंद्रकाभोवती परिभ्रमण करणारे इलेक्ट्रॉन कोठे असतात ?

इलेक्ट्रॉनचे वस्तुमान नगण्य असल्याने अणूचे वस्तुमान प्रामुख्याने त्याच्या केंद्रकातील प्रोटॉन व न्यूट्रॉन यांच्यामुळे असते. अणूमधील प्रोटॉन व न्यूट्रॉन यांची एकत्रित संख्या म्हणजे त्या मूलद्रव्याचा अणुवस्तुमानांक होय. अणुवस्तुमानांक 'A' ह्या संज्ञेने दर्शवितात. अणुसंज्ञा, अणुअंक व अणुवस्तुमानांक हे एकत्रितपणे चिन्हांकित संकेतरूपात दर्शविण्याची पद्धत पुढे दिली आहे.

 $_{Z}^{A}$ संज्ञा उदा. $_{6}^{12}$ C ह्या चिन्हांकित संकेताचा अर्थ कार्बनचा अणुअंक म्हणजेच प्रोटॉनसंख्या 6 व कार्बनचा अणुवस्तुमानांक 12 आहे. यावरून हे सुद्धा समजते की कार्बनच्या केंद्रकात (12-6) म्हणजे 6 न्यूट्रॉन आहेत.

जरा डोके चालवा

- ऑक्सीजनची संज्ञा 'O' असून त्याच्या केंद्रकात 8 प्रोटॉन व 8 न्यूट्रॉन असतात. यावरून ऑक्सीजनचा अणुअंक (Z) व अणुवस्तुमानांक (A) ठरवा, तसेच त्यांची चिन्हांकित संकेताने मांडणी करा.
- 2. कार्बनचा अणुअंक 6 आहे. कार्बनच्या अणूत किती इलेक्ट्रॉन असतील?
- 3. सोडिअमच्या अणूत 11 इलेक्ट्रॉन आहेत. सोडिअमचा अणुअंक किती ?
- 4. मॅग्नेशिअमचा अणुअंक व अणुवस्तुमानांक अनुक्रमे 12 व 24 आहे. चिन्हांकित संकेतामध्ये तुम्ही ते कसे दर्शवाल ?
- 5. कॅल्शिअमचा अणुअंक व अणुवस्तुमानांक अनुक्रमे 20 व 40 आहे. यावरून कॅल्शिअमच्या केंद्रकात किती न्यूट्रॉन असतील ते काढा.

इलेक्ट्रॉन वितरण : बोरच्या अणुप्रारूपानुसार इलेक्ट्रॉन स्थायी कवचांमध्ये परिभ्रमण करतात. या कवचांना विशिष्ट ऊर्जा असते. अणुकेंद्रकाच्या सर्वात जवळ असलेल्या कवचाला पहिले कवच, त्यानंतरच्या कवचाला दुसरे कवच म्हणतात. कवचांच्या क्रमांकासाठी 'n' ही संज्ञा वापरतात. $n=1,2,3,4,\ldots$ या क्रमांकानुसार कवचांना K,L,M,N,\ldots ह्या संज्ञांनी संबोधण्यात येते. प्रत्येक कवचात जास्तीत जास्त ' $2n^2$ ' या सूत्राने मिळालेल्या संख्येइतके इलेक्ट्रॉन असू शकतात. 'n' चे मूल्य वाढते तशी त्या कवचातील इलेक्ट्रॉनची ऊर्जा वाढते.

तक्ता पूर्ण करा

कवच		कवचाची इलेक्ट्रॉन धारकता			
संज्ञा	n	सूत्र : 2 n ²	इलेक्ट्रॉन संख्या		
K	1	$2 \times (1)^2$			
L					
M					
N					

वरील तक्त्यांवरून कवचातील जास्तीत जास्त इलेक्ट्रॉनांची संख्या लिहा : K कवच : ..., L कवच :

..., M कवच : ..., N कवच : ...

- 1. अणूची संरचना व सूर्यमाला यांच्यात साधर्म्य आहे. सूर्यमालेतील ग्रह सूर्याभोवती गुरूत्वीय बलामुळे फिरतात. अणुसंरचनेत कोणते बल कार्यरत असेल ?
- 2. केंद्रकात अनेक धनप्रभारित प्रोटॉन एकत्र असतात. केंद्रकातील न्यूट्रॉन्सचे एक कार्य काय असेल असे तुम्हांला वाटते ?

मूलद्रव्यांचे इलेक्ट्रॉन संरूपण : आपण पाहिले की K, L, M, N या कवचांमध्ये अनुक्रमे जास्तीत जास्त, 2, 8, 18, 32.... इलेक्ट्रॉन सामावू शकतात. हीच कवचांची कमालधारकता होय. कवचांच्या कमालधारकतेनुसार अणूमधील इलेक्ट्रॉनांचे कवचांमध्ये वितरण होते. एखाद्या मूलद्रव्याच्या अणूमधील इलेक्ट्रॉनांची कवचिनहाय मांडणी म्हणजे त्या मूलद्रव्याचे इलेक्ट्रॉन संरूपण होय. प्रत्येक इलेक्ट्रॉनकडे तो ज्या कवचात असतो त्यानुसार निश्चित अशी ऊर्जा असते. पहिल्या कवचातील (K कवच) इलेक्ट्रॉनांची ऊर्जा सर्वांत

कमी असते. त्यापुढील कवचामधील इलेक्ट्रॉनची ऊर्जा कवचक्रमांकाप्रमाणे वाढत जाते. मूलद्रव्याच्या अणूचे इलेक्ट्रॉन संरूपण असे असते की त्यायोगे सर्व इलेक्ट्रॉनांची एकत्रित ऊर्जा कमीत कमी असते. अणूतील इलेक्ट्रॉन कवचांच्या कमाल धारकतेप्रमाणे तसेच ऊर्जेच्या चढत्या क्रमानुसार असलेल्या कवचांमध्ये स्थान मिळवतात. आता आपण काही मूलद्रव्यांच्या अणूंचे इलेक्ट्रॉन संरूपण पाहू. (तक्ता 5.7) या तक्त्यामधील 1 ते 3 ओळी भरून दिलेल्या आहेत. त्याप्रमाणे उरलेला तक्ता तुम्ही भरावयाचा आहे.

			कवचातील इलेक्ट्रॉन वितरण				
मूलद्रव्य संज्ञा		amedia and a rivers	कवचसंज्ञा (कमाल धारकता)				संख्या स्वरूपात इलेक्ट्रॉन संरूपण
मूलद्रव्य	स्तरा।	ज्ञा अणूतील इलेक्ट्रॉन संख्या -		L	M	N	सिख्या स्परूपात इतप्रदूति सरूपण
			(2)	(8)	(18)	(32)	
हायड्रोजन	Н	1	1				1
हेलियम	Не	2	2				2
लिथियम	Li	3	2	1			2, 1
कार्बन	С	6					
नायट्रोजन	N	7					
ऑक्सिजन	О	8					
फ्लुओरिन	F	9					
निऑन	Ne	10					
सोडिअम	Na	11					
क्लोरिन	Cl	17					
अरगॉन	Ar	18					
ब्रोमीन	Br	35					

5.7 काही मूलद्रव्यांचे संरूपण

संख्या स्वरूपातील इलेक्ट्रॉन संरूपण स्वल्पविरामांनी विलग केलेल्या अंकांनी दर्शवितात. यातील अंक ऊर्जेच्या चढत्या क्रमाने असलेल्या कवचांमधील इलेक्ट्रॉन संख्या दाखिवतात. उदाहरणार्थ, सोडिअमचे इलेक्ट्रॉन संरूपण 2,8,1 आहे. याचा अर्थ सोडिअम अणूमध्ये 'K' कवचात 2, 'L' कवचात 8 व 'M' कवचात 1 याप्रमाणे एकूण 11 इलेक्ट्रॉन वितरित केलेले असतात. अणूचे इलेक्ट्रॉन संरूपण आकृती 5.8 प्रमाणे कवचांच्या रेखाटनानेसुद्धा दाखिवतात.

संयुजा (Valency) व इलेक्ट्रॉन संरूपण (Electronic configuration): संयुजा म्हणजे एका अणूने तयार केलेल्या रासायनिक बंधांची संख्या हे आपण मागील पाठात पाहिले. आपण हेही पाहिले की साधारणपणे मूलद्रव्याची संयुजा त्याच्या विविध संयुगांमध्ये स्थिर असते.

पुढील रेणुसूत्रांचा उपयोग करून H, Cl, O, S, N, C, Br, I, Na यांच्या संयुजा ठरवा.

रेणुसूत्रे - H₂, HCl, H₂O, H₂S, NH₃, CH₄, HBr, HI, NaH.

5.8 : इलेक्ट्रॉन संरूपणाचे रेखाटन

जरा डोके चालवा

- 1. विविध अणूंमधील इलेक्ट्रॉन ज्यांच्यामध्ये सामावलेले असतात त्या कवचांच्या संज्ञा कोणत्या आहेत ?
- 2. सर्वात आतील कवचाची संज्ञा व क्रमांक काय आहे ?
- 3. फ्लुओरीन अणूमधील इलेक्ट्रॉन ज्या कवचांमध्ये वितरित झालेले असतात त्यांच्या संज्ञा लिहा.
- 4. फ्लुओरीन अणूमधील सर्वांत बाहेरचे म्हणजे बाह्यतम कवच कोणते ?
- 5. सोडिअम अणूमधील बाह्यतम कवच कोणते ?
- 6. हायड्रोजन अणूमधील बाह्यतम कवच कोणते ?

मूलद्रव्याची संयुजा, संयुगांमधील रासायनिक बंध यांच्यासंबंधी संकल्पना इलेक्ट्रॉन संरूपणामुळे स्पष्ट होतात.अणू आपल्या बाह्यतम कवचातील इलेक्ट्रॉन वापरून रासायनिक बंध तयार करतो. अणूंची संयुजा त्याच्या बाह्यतम कवचाच्या इलेक्ट्रॉन संरूपणावरून ठरते. त्यामुळे बाह्यतम कवचाला संयुजा कवच म्हणतात. तसेच बाह्यतम कवचातील इलेक्ट्रॉन म्हणजे संयुजा इलेक्ट्रॉन होत.

अणूच्या संयुजेचा संबंध अणूमधील संयुजा इलेक्ट्रॉनांच्या संख्येशी असल्याचे दिसून येते. प्रथम हेलिअम व निऑन ह्या मूलद्रव्यांकडे पाहू. ह्या दोन्ही वायुरूप मूलद्रव्यांचे अणू इतर कोणत्याही अणूबरोबर संयोग पावत नाहीत. ही मूलद्रव्ये रासायनिक दृष्ट्या निष्क्रीय आहेत. म्हणजेच त्यांची संयुजा 'शून्य' आहे. हेलिअमच्या अणूत दोन इलेक्ट्रॉन असतात व ते 'K' ह्या

पहिल्या कवचात सामावलेले असतात. पहा तक्ता 5.7 हेलिअममध्ये इलेक्ट्रॉन असलेले फक्त एकच 'K' कवच आहे व तेच बाह्यतम कवचस्ध्दा आहे. 'K' कवचाची इलेक्ट्रॉन धारकता $(2n^2)$ ही 'दोन' आहे म्हणजेच हेलिअमचे बाह्यतम कवच पूर्ण भरलेले असते. ह्यालाच हेलिअममध्ये इलेक्ट्रॉन द्विक असते असे म्हणतात. निऑन ह्या निष्क्रीय वायूच्या इलेक्ट्रॉन संरूपणात 'K' व 'L' ही दोन कवचे असून 'L' हे संयुजा कवच आहे. 'L' कवचाची इलेक्ट्रॉन धारकता 'आठ' आहे व तक्ता 5.7 वरून दिसते की निऑनचे संयुजा कवच पूर्ण भरलेले आहे. ह्यालाच निऑनमध्ये इलेक्ट्रॉन अष्टक आहे असे म्हणतात. K, L a M ह्या कवचांमध्ये इलेक्ट्रॉन असलेला निष्क्रीय वायू म्हणजे अरगॉन होय. M ह्या कवचाची इलेक्ट्रॉन धारकता $2 \times 3^2 = 18$ आहे. परंतु अरगॉनमध्ये M ह्या संयुजा कवचात फक्त 8 इलेक्ट्रॉन आहेत (पहा तक्ता 5.7) याचा अर्थ निष्क्रीय वायूंच्या संयुजा कवचात आठ इलेक्ट्रॉन असतात, म्हणजेच संयुजा कवचात इलेक्ट्रॉन अष्टक असते. इलेक्ट्रॉन अष्टक (किंवा द्विक) पूर्ण असते तेव्हा संयुजा शून्य असते.

निष्क्रीय वायू सोडून इतर मूलद्रव्यांचे इलेक्ट्रॉन संरूपण पाहता (तक्ता 5.7) असे दिसते की त्यांच्यामध्ये इलेक्ट्रॉन अष्टक स्थिती नाही किंवा त्यांची इलेक्ट्रॉन अष्टके अपूर्ण आहेत. हायड्रोजनच्या बाबतीत असे म्हणता येईल की हायड्रोजनचे इलेक्ट्रॉन द्विक अपूर्ण आहे.

निष्क्रीय वायू वगळता इतर सर्व मूलद्रव्यांच्या अणूंमध्ये इतर अणूंबरोबर संयोग पावण्याची प्रवृत्ती असते. म्हणजेच त्यांची संयुजा शून्य नसते. हायड्रोजनच्या संयोगाने तयार झालेल्या रेणूंच्या सूत्रांवरून (उदा. H_2 , HCl) हायड्रोजनची संयुजा 'एक' असल्याचे तुम्ही पाहिले आहेच, हायड्रोजनच्या इलेक्ट्रॉन संरूपणावरून दिसते की हायड्रोजनमध्ये एक इलेक्ट्रॉन 'K' ह्या कवचात आहे म्हणजे हायड्रोजनमध्ये 'पूर्ण द्विक' स्थितीपेक्षा एक इलेक्ट्रॉन कमी आहे.

ही 'एक' संख्या हायड्रोजन च्या संयुजेशी जुळते. सोडिअमच्या 2, 8, 1 ह्या संरूपणावरून समजते की सोडिअमच्या संयुजा कवचात 'एक' इलेक्ट्रॉन आहे आणि NaCl, NaH अशा रेणुसूत्रांवरून समजते की सोडिअमची संयुजा 'एक' आहे. याचा अर्थ असा आहे की, मूलद्रव्यांची संयुजा व त्यांच्या संयुजा कवचातील इलेक्ट्रॉन संख्या यात काहीतरी संबंध आहे.

पुढील तक्त्यात (5.9) काही मूलद्रव्यांपासून बनलेल्या संयुगांची रेणुसूत्रे दिली आहेत. त्यावरून ठरिवलेली त्या त्या मूलद्रव्यांची संयुजा, त्या त्या मूलद्रव्याचे इलेक्ट्रॉन संरूपण व त्याची संयुजा इलेक्ट्रॉन संख्या रिकाम्या जागी लिहा.

अ.	मूलद्रव्याची	संयुगाचे रेणुसूत्र	मूलद्रव्याची	मूलद्रव्याचे	मूलद्रव्यातील संयुजा	8 – x
क्र	संज्ञा		संयुजा	इलेक्ट्रॉन संरूपण	इलेक्ट्रॉन संख्या X	$(x \ge 4 करिता)$
1	Н	HC1	1	1	1	
2	Cl	HC1	1	2, 8, 7	7	8-7 = 1
3	Ne	संयुग नाही	0			
4	F	HF				
5	Na	NaH				
6	Mg	MgCl ₂				
7	С	CH ₄				
8	Al	AlCl ₃				

जरा डोके चालवा.

तक्ता क्र. 5.9 मध्ये चौथ्या स्तंभात तुम्ही संयुगाच्या रेणुसूत्रावरून शोधलेली मूलद्रव्याची संयुजा लिहिली आहे.

- 1. जेव्हा मूलद्रव्यातील संयुजा इलेक्ट्रॉन संख्या, x चे मूल्य 4 किंवा 4 पेक्षा कमी असेल तेव्हा x चे मूल्य मूलद्रव्याच्या संयुजेशी जुळते का ?
- 2. जेव्हा 'x' चे मूल्य 4 किंवा 4 पेक्षा अधिक असेल तेव्हा '(8-x)' चे मूल्य मूलद्रव्याच्या संयुजेशी जुळते का ? या मूलद्रव्याचे इलेक्ट्रॉन अष्टक पूर्ण होण्यासाठी किती इलेक्ट्रॉन कमी आहेत ?

यावरून तुमच्या लक्षात येईल, की मूलद्रव्यांची संयुजा व मूलद्रव्याचे इलेक्ट्रॉन संरूपण यांच्यात साधारणपणे पृढील संबंध असतो.

''ज्या मूलद्रव्यात संयुजा इलेक्ट्रॉन संख्या चार किंवा त्यापेक्षा कमी असते त्या मूलद्रव्याची संयुजा त्यातील संयुजा इलेक्ट्रॉन संख्येएवढी असते. याउलट, ज्या मूलद्रव्यात चार किंवा त्याहून अधिक इलेक्ट्रॉन असतात तेव्हा अष्टक पूर्ण होण्यासाठी जितके इलेक्ट्रॉन कमी असतात, ती उणीवेची संख्या म्हणजे त्या मूलद्रव्याची संयुजा असते.''

- 1. मूलद्रव्याचा अणुअंक (Z) म्हणजे काय ?
- 2. पुढे काही मूलद्रव्यांचे अणुअंक (Z) दिले आहेत. त्या मूलद्रव्यांच्या बाह्यतमकक्षेत प्रत्येकी किती इलेक्ट्रॉन आहेत ते लिहा.

मूलद्रव्य	Н	C	Li	О	N
Z	1	6	3	8	7
बाह्यतम कक्षेतील इलेक्ट्रॉन संख्या					

3. पुढे काही मूलद्रव्यांची इलेक्ट्रॉन संख्या दिली आहे. त्यावरून त्या त्या मूलद्रव्याचे इलेक्ट्रॉन संरूपण, संयुजा इलेक्ट्रॉन संख्या व संयुजा लिहा.

मूलद्रव्य	Na	С	Mg	Cl
इलेक्ट्रॉन संख्या	11	6	12	17
इलेक्ट्रॉन संरूपण				
संयुजा इलेक्ट्रॉन संख्या				
संयुजा				

- 4. अणुक्रमांक व अणुवस्तुमानांक नेहमी पूर्णांकातच का असतात ?
- 5. सल्फरमध्ये 16 प्रोटॉन व 16 न्यूट्रॉन असतात तर त्याचा अणुअंक व अणुवस्तुमानांक किती असेल ?

समस्थानिके (Isotopes) : मूलद्रव्यांचा अणुअंक हा मूलद्रव्याचा मूलभूत गुणधर्म व त्याची रासायनिक ओळख आहे. निसर्गातील काही मूलद्रव्यांमध्ये अणुअंक समान परंतु अणुवस्तुमानांक मात्र विभिन्न असे अणू असतात. एकाच मूलद्रव्याच्या अशा भिन्न अणुवस्तूमानांक असलेल्या अणूंना समस्थानिके म्हणतात. उदा. कार्बन. कार्बनची तीन समस्थानिके आहेत. ती म्हणजे उदा. C-12, C-13, C-14 समस्थानिकांचा अणुवस्तुमानांक ^{12}C , ^{13}C व ^{14}C ह्या पध्दतीनेही दर्शवितात. समस्थानिकांची प्रोटॉन संख्या समान असते परंतु न्यूट्रॉन संख्या भिन्न असते.

समस्थानिके	अणुवस्तुमानांक A	प्रोटॉन संख्या Z (अणुअंक)	न्यूट्रॉन संख्या $n = A - Z$
¹² C	12	6	6
¹³ C	13	6	7
¹⁴ C	14	6	8

हायड्रोजनची एकूण तीन समस्थानिके आहेत, त्यांना हायड्रोजन, ड्युटेरिअम व ट्रीटिअम अशी स्वतंत्र नावे आहे. त्यांचे अणुवस्तुमानांक शोधा. जड पाणी (Heavy water) म्हणजे काय ती माहिती इंटरनेटवरून मिळवा.

तक्ता पूर्ण करा

समस्थानिके	प्रोटॉन संख्या	न्यूट्रॉन संख्या
¹ H		
1	1	1
	1	2
³⁵ Cl		
³⁷ Cl		

समस्थानिकांचे उपयोग: काही मूलद्रव्यांची समस्थानिक किरणोत्सारी असतात. त्यांचा उपयोग विविध क्षेत्रांत केला जातो. उदा. औद्योगिक क्षेत्र, कृषी क्षेत्र, वैद्यक क्षेत्र, संशोधन क्षेत्र.

- 1. युरेनिअम 235 चा उपयोग केंद्रकीय विखंडन व वीजनिर्मितीसाठी होतो.
- 2. कॅन्सरसारख्या प्राणघातक आजारांवरील वैद्यकीय उपचारांमध्ये काही मूलद्रव्यांच्या किरणोत्सारी समस्थानिकांचा उपयोग होतो. उदा. कोबाल्ट 60.
- 3. गॉयटर या थायरॉईड ग्रंथींच्या आजारावरील उपचारांमध्ये आयोडिन -131 चा उपयोग होतो.
- 4. किरणोत्सारी मूलद्रव्यांच्या समस्थानिकांचा उपयोग जिमनीखालून गेलेल्या नळांमधील चीरा शोधण्यासाठी होतो. उदा. सोडिअम-24.
- 5. अन्नपदार्थांचे सूक्ष्म जीवाणूपासून परिरक्षण करण्यासाठी किरणोत्सारी मूलद्रव्यांचा उपयोग होतो.
- 6. C-14 ह्या किरणोत्सारी समस्थानिकाचा उपयोग जीवाश्मांचे वय ठरविण्यासाठी होतो.

अण्भट्टी (Nuclear Reactor) : अणुऊर्जेच्या वापराने मोठ्याप्रमाणावर वीजनिर्मिती करण्याचे संयत्र म्हणजे अणुभट्टी (आकृती 5.10 पहा). अणुभट्टीमध्ये अणुइंधनावर केंद्रकीय अभिक्रिया घडवून आणतात व अणूमधील केंद्रकीय ऊर्जा मुक्त करतात. संबंधित केंद्रकीय अभिक्रिया समजून घेण्यासाठी युरेनिअम - 235 ह्या अणुइंधनाचे उदाहरण घेऊ. मंद गतीच्या न्यूट्रॉनांचा मारा केला असता युरेनिअम - 235 ह्या समस्थानिकाच्या केंद्रकाचे विखंडन होऊन क्रिप्टॉन — 92 व बेरिअम — 141 ह्या वेगळ्या मूलद्रव्यांची केंद्रके व 2 ते 3 न्यूट्रॉन निर्माण होतात. ह्या न्यूट्रॉनांची गती कमी केल्यावर ते आणखी U - 235 केंद्रकांचे विखंडन घडवतात. अशा प्रकारे केंद्रकीय विखंडनाची शृंखला अभिक्रिया होते (आकृती 5.11 पहा) यामध्ये केंद्रकातून मोठ्या प्रमाणात केंद्रकीय ऊर्जा म्हणजेच अणुऊर्जा मुक्त होते. संभाव्य विस्फोट टाळण्यासाठी शुंखला अभिक्रिया नियंत्रित ठेवतात.

अणुभट्टीमध्ये शृंखला अभिक्रिया नियंत्रित करण्यासाठी न्यूट्रॉन्सचा वेग व संख्या कमी करण्याची आवश्यकता असते. त्यासाठी पुढील गोष्टींचा वापर केला जातो.

5.10 अणुभट्टी : भाभा अणुसंशोधन केंद्र, मुंबई

5.11 युरेनिअम – 235 चे विखंडन

- 1. संचलक / मंदक (Moderator) : न्यूट्रॉन्सचा वेग कमी करण्यासाठी ग्रॅफाईट किंवा जड पाणी यांचा संचलक किंवा मंदक म्हणून वापर केला जातो.
- 2. नियंत्रक (Controller) : न्यूट्रॉन शोषून घेऊन त्यांची संख्या कमी करण्यासाठी बोरॉन, कॅडिमिअम, बेरिलिअम इत्यादींच्या कांड्या नियंत्रक म्हणून वापरतात.

विखंडन प्रक्रियेत निर्माण झालेली उष्णता पाण्याचा शीतक (coolant) म्हणून वापर करून बाजूला काढली जाते. त्या उष्णतेने पाण्याची वाफ करून वाफेच्या साहाय्याने टर्बाइन्स चालविले जातात व वीजनिर्मिती होते. भारतामध्ये आठ ठिकाणच्या अणुवीजनिर्मिती केंद्रांमध्ये एकूण बावीस अणुभट्ट्या कार्यान्वित आहेत. 'अप्सरा' ही मुंबईच्या भाभा अणुसंशोधन केंद्रात 4 ऑगस्ट 1956 रोजी कार्यान्वित झालेली भारतातील पहिली अणुभट्टी आहे. भारतात थोरिअम- 232 ह्या मूलद्रव्याचे साठे मोठ्या प्रमाणात असल्याने भारतीय वैज्ञानिकांनी पुढील काळासाठी Th - 232 पासून U- 233 ह्या समस्थानिकाच्या निर्मितीवर आधारित अणुभट्ट्यांची योजना विकसित केली आहे.

जोड माहिती संप्रेषण तंत्रज्ञानाची :

www.youtube.com वरून अणुभट्टीच्या कार्याची सविस्तर माहिती व्हिडिओद्वारे मिळवा व ती वर्गात सर्वांना दाखवा.

स्वाध्याय

1. खालील प्रश्नांची उत्तरे लिहा.

- अ. थॉमसन व रूदरफोर्ड यांच्या अणुप्रारूपांत कोणता फरक आहे ?
- आ. मूलद्रव्यांची संयुजा म्हणजे काय ? संयुजा इलेक्ट्रॉन संख्या व संयुजा यांच्यातील संबंध काय ते लिहा.
- इ. अणुवस्तुमानांक म्हणजे काय ? कार्बनचा अणुअंक 6 तर अणुवस्तुमानांक 12 आहे. हे कसे ते स्पष्ट करा.
- ई. अवअणुकण म्हणजे काय? विद्युतप्रभार, वस्तुमान व स्थान ह्या संदर्भात तीन अवअणुकणांची थोडक्यात माहिती लिहा.

2. शास्त्रीय कारणे लिहा.

- अ. अणूचे सगळे वस्तुमान केंद्रकात एकवटलेले असते.
- आ. अणू विद्युतदृष्ट्या उदासीन असतो.
- इ. अणुवस्तुमानांक पूर्णांकात असते.
- ई. परिभ्रमण करणारे प्रभारित इलेक्ट्रॉन असूनही सामान्यपणे अणूंना स्थायीभाव असतो.

3. व्याख्या लिहा.

- अ. अणू ब. समस्थानिके क. अणुअंक
- ड. अणुवस्तुमानांक इ. अणुभट्टीतील मंदक

4. सुबक व नामनिर्देशित आकृती काढा.

- अ. रूदरफोर्डचा विकीरण प्रयोग
- आ. थॉमसनचे अणुप्रारूप
- इ. मॅग्नेशिअमच्या (अणुअंक 12) इलेक्ट्रॉन संरूपणाचे रेखाटन
- ई. अरगॉनच्या (अणुअंक 18) इलेक्ट्रॉन संरूपणाचे रेखाटन

5. रिकाम्या जागा भरा.

- अ. इलेक्ट्रॉन, प्रोटॉन, न्यूट्रॉन हे अणूमध्ये असणारेआहेत.
- आ. इलेक्ट्रॉनवरप्रभार असतो.

- इ. अणुकेंद्रकापासून सर्वांत जवळचे इलेक्ट्रॉन कवचहे आहे.
- ई. मॅग्नेशिअमचे इलेक्ट्रॉन संरूपण 2, 8, 2 आहे. यावरून असे समजते की मॅग्नेशिअमचे संयुजा कवचहे आहे.
- उ. H_2O ह्या रेणुसूत्रानुसार हायड्रोजनची संयुजा 1 आहे. त्यामुळे Fe_2O_3 ह्या सूत्रानुसार Fe ची संयुजा ठरते.

6. जोड्या जुळवा.

'अ' गट

'ब' गट

अ. प्रोटॉन

i. ऋणप्रभारित

आ. इलेक्ट्रॉन

ii. उदासीन

इ. न्यूट्रॉन

iii. धनप्रभारित

7. दिलेल्या माहितीवरून शोधून काढा.

माहिती	शोधा
23 11	न्यूट्रॉन संख्या
¹⁴ ₆ C	अणुवस्तुमानांक
³⁷ Cl	प्रोटॉन संख्या

उपक्रम -

जुन्या सी.डी., फुगे, गोट्या इत्यादी वस्तूंचा वापर करून अणूची प्रारूपे स्पष्ट करा.

