Национальный исследовательский университет ИТМО Прикладная математика и информатика

Методы оптимизации

Отчет по лабораторной работе №4 "Изучение алгоритмов метода Ньютона и его модификаций, в том числе квазиньютоновских методов"

Выполнили:

Михайлов Максим Загребина Мария Кулагин Ярослав

Команда:

 $\forall \bar{R} \in \mathscr{R}^n : \mathbf{R}(\bar{R}) \in \mathscr{R}$

(KaMa3)

Группа: М3237

1 Цель

- 1. Разработать программы для безусловной минимизации функций многих переменных
- 2. Реализовать метод Ньютона
 - классический
 - с одномерным поиском
 - с направлением спуска
- 3. Продемонстрировать работу методов на 2-3 функциях, исследовать влияние выбора начального приближения на результат
- 4. Исследовать работу методов на двух функциях с заданным начальным приближением
 - $f(x) = x_1^2 + x_2^2 1.2x_1x_2, \ x^0 = (4,1)^T$
 - $f(x) = 100(x_2 x_1^2)^2 + (1 x_1)^2, \ x^0 = (-1.2, 1)^T$
- 5. Реализовать метод Давидона-Флетчера-Пауэлла и метод Пауэлла и сравнить с наилучшим методом Ньютона

2 Ход работы

2.1 Метод Ньютона

$$\varepsilon = 10^{(} - 5)$$

$$f_1 = 108x^2 + 116y^2 + 80xy + 43x + 33y - 211$$

$$f_2 = \sin(x) + \cos(y) + 0.3y^2 + 0.3x^2 + 0.1y$$

Классический метод Ньютона

Количество итераций

Начальная точка	f_1	f_2
$(0.1,\!0.1)$	2	5
(1,1)	2	-
(2,2)	2	-
(3,3)	2	-
(10,10)	2	-

Метод Ньютона с одномерным поиском

Количество итераций

Начальная точка	f_1	f_2
$(0.1,\!0.1)$	2	5
(1,1)	2	5
(2,2)	2	6
(3,3)	2	5
$(10,\!10)$	2	5

Метод Ньютона с направлением спуска

Количество итераций

Начальная точка	f_1	f_2
(0.1, 0.1)	3	5
(1,1)	3	5
(2,2)	3	6
(3,3)	3	5
(10,10)	3	6

Классический метод Ньютона не всегда находит точку минимума на сложных функциях. Выбор начального приближения влияет на количество итераций методов.

2.2 Исследование на заданных функциях

$$f_1 = x_1^2 + x_2^2 - 1.2x_1x_2, \ x^0 = (4,1)^T$$

$$f_2 = 100(x_2 - x_1^2)^2 + (1 - x_1)^2, \ x^0 = (-1.2, 1)^T$$

Количество итераций

Метод	f_1	f_2
Классический	2	7
Одномерный поиск	2	13
С направлением спуска	2	13

По результатам измерений на данных функциях наилучший метод Ньютона - классический. По сравнению с методом наискорейшего спуска из 2-ой лабораторной работы, методы используют меньшее число итераций.

2.3 Квазиньютоновские методы

$$f_1 = 100(x_2 - x_1^2)^2 + (1 - x_1)^2, \ x^0 = (-1.2, 1)^T$$

$$f_2 = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2)$$

$$f_3 = (x_1 + 10x_2)^2 + 5(x_3 - x_4)^2 + (x_2 - 2x_3)^4 + 10(x_1 - x_4)^4$$

$$f_4 = 100 - \frac{2}{1 + (\frac{x_1 - 1}{2})^2 + (\frac{x_2 - 1}{3})^2} - \frac{1}{1 + (\frac{x_1 - 2}{2})^2 + (\frac{x_2 - 1}{3})^2}$$

Классический метод Ньютона

Количество итераций

Начальная точка	f_1	f_2	f_3	f_4
(0.1, 0.1)	8	8	-	
(1,1)	8	8	_	
(-2,2)	8	8	-	
(3,-3)	8	8	-	
(-5,-5)	8	8	-	

Метод Бройдена-Флетчера-Шено

Количество итераций

Начальная точка	f_1	f_2	f_3	f_4
$(0.1,\!0.1)$	5	11	161	
(1,1)	5	11	161	
(-2,2)	5	11	161	
(3,-3)	5	11	161	
(-5, -5)	5	11	161	

Метод Пауэлла

Количество итераций

Начальная точка	f_1	f_2	f_3	f_4
(0.1, 0.1)	6	11	1001	
(1,1)	6	11	1001	
(-2,2)	6	11	1001	
(3,-3)	6	11	1001	
(-5,-5)	6	11	1001	

- 3 Выводы
- 4 Исходный код