MAT 1201 – MATHEMATICAL METHODS I Assignment 2

Instructions: Answer all the questions and summit solutions for 1, 2, 5, 7,8,9, 11,13, 15, 19,21 on or before 21st May, 2023

- 1. Find the scalar product of $\vec{a} = 2\vec{i} 3\vec{j} + 5\vec{k}$ and $\vec{b} = \vec{i} 3\vec{j} + \vec{k}$ and hence find the cosine of the angle between \vec{a} and \vec{b} .
- 2. If $\vec{a} = 10\vec{i} 3\vec{j} + 5\vec{k}$, $\vec{b} = 2\vec{i} + 6\vec{j} 3\vec{k}$ and $\vec{c} = \vec{i} + 10\vec{j} 2\vec{k}$, verify that $\vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} = \vec{a} \cdot (\vec{b} + \vec{c})$.
- 3. The resultant of two vectors \vec{a} and \vec{b} is perpendicular to \vec{a} . If $|\vec{b}| = \sqrt{2} |\vec{a}|$, show that the resultant of $2\vec{a}$ and \vec{b} is perpendicular to \vec{b} .
- 4. Let $\vec{a} = 2\vec{i} + 3\vec{j} 4\vec{k}$ and $\vec{b} = \vec{i} + \vec{j} + 2\vec{k}$. Find the component of \vec{a} on \vec{b} and the component of \vec{b} on \vec{b} .
- 5. Find the projection of $\vec{a} = 4\vec{i} + \vec{j}$ onto the vector $\vec{b} = 2\vec{i} + 3\vec{j}$.
- 6. Find the work done by a constant force $\vec{F} = 2\vec{i} + 4\vec{j}$ if its point of application to a block moves from $P_1(1,1)$ to $P_2(4,6)$. Assume that $|\vec{F}|$ is measured in newtons and the distance between P_1 and P_2 measured in meters.
- 7. If two vectors \vec{a} and \vec{b} are such that $|\vec{a} + \vec{b}| = |\vec{a} \vec{b}|$, find the angle between and \vec{a} and \vec{b} .
- 8. If the vectors \vec{a}, \vec{b} and \vec{c} are such that $\vec{a} + \vec{b} + \vec{c} = \mathbf{0}$. $|\vec{a}| = 3$, $|\vec{b}| = 5$, and $|\vec{c}| = 7$, find the abgle between \vec{a} and \vec{b} .
- 9. If \vec{u} and \vec{v} are unit vectors making an angle $\frac{\pi}{3}$ with each other, find $|\vec{u} \vec{v}|$.
- 10. Find the scalar m so that the vector $2\vec{i} + \vec{j} m\vec{k}$ is perpendicular to the sum of the vectors $\vec{i} \vec{j} + 2\vec{k}$ and $3\vec{i} + 2\vec{j} + \vec{k}$.
- 11. Find the value of λ such that the scalar product of the vectors $\vec{i} + \vec{j} + \vec{k}$ with unite vector parallel to the sum of the vectors $\lambda \vec{i} + 2\vec{j} + 3\vec{k}$ and $2veci + 4\vec{j} 5\vec{k}$.
- 12. Given two vectors \vec{a} and \vec{b} ($\vec{a} \neq 0$, $\vec{b} \neq 0$), show that
 - (a) if $\vec{a} + \vec{b}$ and $\vec{a} \vec{b}$ are perpendicular, then $|\vec{a}| = |\vec{b}|$;
 - (b) if $|\vec{a} + \vec{b}| = |\vec{a}\vec{b}|$, then \vec{a} and \vec{b} are perpendicular.
- 13. Find $\vec{a} \times \vec{b}$ in each of the following cases:
 - (a) $\vec{a} = \vec{i} \vec{j}, \ \vec{b} = 3\vec{j} + 5\vec{k}$
 - (b) $\vec{a} = 2\vec{i} + \vec{j}, \ \vec{b} = 4\vec{i} \vec{k}$

(c)
$$\vec{a} = \vec{i} - 3\vec{j} + \vec{k}, \ \vec{b} = 2\vec{i} + 4\vec{k}$$

(d)
$$\vec{a} = 2\vec{i} - \vec{j} + 2\vec{k}, \vec{b} = \vec{i} + 3\vec{j} - \vec{k}$$

(e)
$$\vec{a} = 8\vec{i} + \vec{j} - 6\vec{k}, \vec{b} = \vec{i} - 2\vec{j} + 10\vec{k}$$

- 14. If $P_1(2,1,3)$, $P_2(0,3,-1)$ and $P_3(-1,2,4)$, $\overrightarrow{P_1P_2} \times \overrightarrow{P_1P_3}$.
- 15. Find the volume of the parallelepiped whose three edge are $\vec{a}=3\vec{i}+\vec{j}+\vec{k}, \vec{b}=\vec{i}+4\vec{j}+\vec{k}, \vec{c}=\vec{i}+\vec{j}+5\vec{k}$.
- 16. Find the unit vector that is perpendicular to both $\vec{a} = -\vec{i} 2\vec{j} + 4\vec{k}$ and $\vec{b} = 4\vec{i} \vec{j}$.
- 17. Determine whether the four points P_1 (1, 1, -2), P_2 (4, 0, -3), P_3 (1, -5, 10) and P_4 (-7, 2, 4) lie in the same plane.

Determine whether the vectors
$$\vec{a}=4\vec{i}+6\vec{j},\ \vec{b}=-2\vec{i}+6\vec{j}-6\vec{k},$$
 and $vecc=\frac{5}{2}\vec{i}+3\vec{j}-\frac{1}{2}\vec{k}$ are coplanar.

- 18. Two vectors \vec{a} and \vec{b} lie in the xy-plane so that the angle between them is $\frac{2\pi}{3}$. If $|\vec{a}| = \sqrt{27}$ and $|\vec{b}| = 8$, find all posssible value of $\vec{a} \times \vec{b}$.
- 19. Determine λ such that the following vectors are coplanar:

$$\vec{a} = \vec{i} + \vec{j} + \vec{k}, \vec{b} = 2\vec{i} - 4\vec{k} \text{ and } \vec{c} = \vec{i} + \lambda \vec{j} + 3\vec{k}.$$

20. Find the constant a such that the vectors

$$2\vec{i} - \vec{j} + \vec{k}, \vec{i} + 2\vec{j} - 3\vec{k} \text{ and } 3\vec{i} + a\vec{j} + 5\vec{k}$$

are coplanar.

21. If
$$\vec{a}=\vec{i}+\vec{j}-\vec{k}, \vec{b}=\vec{i}-\vec{j}+\vec{k}$$
 and $\vec{c}=\vec{i}-\vec{j}-\vec{k},$ find the vector $\vec{a}\times\left(\vec{b}\times\vec{c}\right)$.