Note Title 11/24/2022

ROUINNESJ

a ~ [(xi+1-xi)2+ (f(xn)-f(xi))21

$$f'(x_i) = \underbrace{f(x_{i+1}) - f(x_i)}_{X_{i+1} - X_i}$$

 $G(x_{i+1}) - f(x_i) = f'(x_i)(x_{i+1} - x_i)$

$$\alpha \approx (x_{i+1}-x_i)^2 + (g'(x_i))^2(x_{i+1}-x_i)^2 = (x_{i+1}-x_i). [1+(g'(x_i))^2]$$

$$D = \sum_{i=1}^{n} \frac{1}{1+j'(x_i)^{2'}} \cdot (x_{i+1} - x_i) \approx \int_{1}^{\infty} \frac{1}{1+j'(x_i)^{2'}} dx$$

(a)
$$y = \frac{1}{3}(x^2+2)^{\frac{3}{2}}$$
; $x \in (93)$

y'= f. 2 (x2+2) = x. (x2+2)

D= \int \left[1 + \left(x\overline{x}^2+2\overline{z}^2\right) \, dx = \int \overline{1} + x\overline{z}^2+2x^2\dx $= \int \sqrt{(1+x^2)^2} dx = \int 1+x^2 dx = \left[x + \frac{x^2}{3}\right]_0^3 = 3+9=12i$

OBSAH POVECHU ROTATATAT PLOCHY
$y = f(\alpha)$
OBVOS REUHU: 0=2TT
DUZRA KEIVET: $D = \int 1 + (\int (u))^2 dx$
DUZRA KRIVET: D= (11+14)
$\frac{1}{2}$
BSAH FONECHU: (OBVOS KENHU) X (DLIEN KLIVE)
$ S = 2\pi \int_{-1}^{6} f(x) \sqrt{17} f'(x) ^{2} dx$