Embeddable Framework for Syntax-Safe Source Code Generation

Kotelnikov Evgenii

Saint-Petersburg State University, Faculty of Applied Mathematics and Control Processes

8 March, 2012

Source Code Generation

Simplest example

Others

- ► Source-to-source compilers, preprocessors
- ▶ Parser and lexer generators
- ▶ Generally, any application involving XML, JSON, etc.

Approaches to Source Code Generation

Code templates

- Naturally suited for any input language
- ► Embedded in every programming language
- ▶ Hard to provide syntactical correctness
- ▶ Mix the logic and syntactical issues of produced language

Approaches to Source Code Generation

Source code generation framework

- ► Each input language requires it's own framework
- ▶ Tedious and error-prone to implement
- ► Easier to provide syntactical correctness
- ▶ Isolates concerns of concrete syntax

Existing solutions

Restricted to

- ➤ Set of supported input languages

 (System.CodeDOM, JavaGen, ORM systems)
- ➤ Set of target programming languages (System.CodeDOM, qretty, ASF+SDF)

Objective

Design and implementation of a translator

- ► Takes arbitrary syntax description
- Produce implementation of source code generation framework
- ► That guarantees syntactical correctness
- ▶ In unrestricted set of target programming languages

Design concept

Transsormation to a formal model

Design concept

Language definition

▶ Is given as context-free grammar

Source code generation framework

- Set of algebraic data types definitions
- ▶ Printer function

Transformation

- ▶ To every non-terminal T associate type $\tau(T)$
- Relations between non-terminals are mapped to correspondent relations between types

Implementation

Problem

In order to produce SCGF implementation, syngen should itself use SCGF for target programming language.

Solution

Implement syngen in Lisp programming language.

Bootstrapping of syngen

Examples of syngen definitions

JSON

```
value : (nothing) "null"
      | (btrue) "true"
      | (bfalse) "false"
      string
      | integer
      | (array) "[" . value^", "* . "]"
      | (object) "{" . entry^", "* . "}"
entry : string . ":" value ;
Usage
pr(object(entry("name", string("John Doe")),
```

entry("age", integer(32))

entry("children", array(string("Bob"),

string("Alisa")))))

Examples of syngen definitions

Python-like programming language

```
{ : . ":\n" . ;
}::;
$(:."(".;
$) : . ")" ;
id : /[a-zA-Z ][a-zA-Z 0-9]*/ :
unit : stmnt+ :
_ stmnt \
    : "def" id $( id^", "* $) { stmnt+ }
    | "return" expr
    | (var) id "=" expr
    | "if" expr { stmnt+ }
expr : (ref) id
    | (int) integer
     | (op) expr op expr
     | (call) id $( expr^", "* $)
op : (equal) "=="
   | (plus)
   | (minus) "-"
   | (mult) "*"
```

Thank you for attention

Kotelnikov Evgenii

St. Petersburg State University

evgenii.kotelnikov@student.spbu.ru

http://apmath.spbu.ru/users/students/kotelnikov/