Übungsblatt 11 zur Algebra I

Abgabe bis 1. Juli 2013, 17:00 Uhr

Aufgabe 1. Wirkung der galoisschen Gruppe

Seien x_1, \ldots, x_n die Nullstellen eines normierten separablen Polynoms f(X) mit rationalen Koeffizienten.

- a) Seien σ und τ Symmetrien der Nullstellen. Zeige, dass $\sigma \cdot (\tau \cdot x_i) = (\sigma \circ \tau) \cdot x_i$ für alle $i = 1, \ldots, n$.
- b) Sei σ eine Symmetrie der Nullstellen und seien $z, w \in \mathbb{Q}(x_1, \dots, x_n)$. Zeige: $\sigma \cdot (z+w) = \sigma \cdot z + \sigma \cdot w$ und $\sigma \cdot (zw) = (\sigma \cdot z) \cdot (\sigma \cdot w)$.
- c) Zeige, dass genau dann eine Symmetrie σ der Nullstellen mit $x_2 = \sigma \cdot x_1$ existiert, wenn x_1 und x_2 zueinander galoissch konjugiert sind.

Aufgabe 2. Abstrakte Beispiele für Galoisgruppen

- a) Sei f(X) ein normiertes separables quadratisches Polynom mit rationalen Koeffizienten. Berechne die Galoisgruppe der Nullstellen von f(X) in Abhängigkeit der Diskriminante von f(X).
- b) Sei f(X) ein normiertes irreduzibles Polynom vom Grad 3 mit rationalen Koeffizienten und Nullstellen x_1, x_2, x_3 . Sei x_1 kein primitives Element zu $\mathbb{Q}(x_1, x_2, x_3)$. Zeige, dass die Galoisgruppe der Nullstellen genau sechs Elemente enthält.

Aufgabe 3. Manchmal sind alle Symmetrien gerade

- a) Zeige, dass die Menge A_n der geraden Permutationen in n Ziffern eine Untergruppe der S_n ist.
- b) Zeige, dass die Galoisgruppe der Nullstellen eines normierten separables Polynoms f(X) mit rationalen Koeffizienten genau dann vollständig in der alternierenden Gruppe A_n enthalten ist, wenn die Diskriminante von f(X) eine Quadratwurzel in den rationalen Zahlen besitzt.

Aufgabe 4. Grad primitiver Elemente

Sei f(X) ein normiertes separables Polynom vom Grad n und t ein primitives Element seiner Nullstellen.

- a) Zeige, dass jedes weitere primitive Element t' denselben Grad wie t hat.
- b) Zeige, dass der Grad von t höchstens n! ist.
- c) Zeige, dass der Grad von t sogar ein Teiler von n! ist.

Aufgabe 5. Galoissche Resolventen

- a) Wieso ist das Konzept der galoisschen Resolvente nur für separable Polynome definiert worden?
- b) Finde eine galoissche Resolvente für das Polynom $f(X) = X^2 + X + 1$.
- c) Seien x_1, \ldots, x_n die Nullstellen eines normierten separablen Polynoms f(X) mit rationalen Koeffizienten. Sei C eine natürliche Zahl mit

$$n \cdot \left| \frac{x_i - x_j}{x_k - x_\ell} \right| \le C$$

für alle $i, j, k, \ell \in \{1, \dots, n\}$ mit $k \neq \ell$. Zeige, dass

$$V(X_1, \dots, X_n) := X_1 + C X_2 + C^2 X_3 + \dots + C^{n-1} X_n$$

eine galoissche Resolvente für f(X) ist.