

UNIVERSITA' DEGLI STUDI DEL SANNIO

Dipartimento di Ingegneria

Corso di Laurea Triennale in Ingegneria Elettronica per l'Automazione e le Telecomunicazioni

TESI DI LAUREA

MEMORIE NON VOLATILI DI NUOVA GENERAZIONE

RELATORE:

PROF. Giovanni Vito Persiano

Anno accødemico

2017-2018

LAUREANDÓ:

Antonio Di Vito

Mat. 862000193

OBIETTIVO DELLO STUDIO

NECESSITÀ DI NUOVE TECNOLOGIE DI MEMORIZZAZIONE A SEMICONDUTTORE PER I NUOVI SISTEMI DIGITALI

DISPOSITIVI CHE SFRUTTANO LA CAPACITÀ DI **NON VOLATILITÀ**DELL'INFORMAZIONE

- MINIATURIZZABILI
- VELOCI
- DURATURI
- BASSO CONSUMO
- BASSO COSTO

MEMORIE MAGGIORMENTE USATE OGGI

MEMORIA DI MASSA

DRAM

C FABBRICATO APPOSITAMENTE

▶ SCRITTURA

- 1. Abilitazione WL -> 1
- 2. Invio bit 1 (V_{DD}) o 0 (0V) tramite BL

▶ LEIIUKA

- 1. Precarica BL a $(V_{DD})/2$
- 2. Abilitazione WL gate
- Sense amplifier compara il valore contenuto scaricato sulla BL
 - ► REFRESH PERIODICO

FERROELECTRIC RAM

Capacità con materiale ferroelettrico

In grado di mantenere il verso della polarizzazione (0 o 1) indotta dalle piste

NON VOLATILITA'

Molecola di **Pb(Ti,Zi)0**₃

Atomo centrale di **Ti** o **Zi**

SCRITTURA E LETTURA FRAM

ISTERESI FERROELETTRICA

SMART COUNTER

	FRAM	EEPROM	Flash Memory	DRAM	SRAM
Memory Type	Non-volatile	Non-volatile	Non-volatile	Volatile	Volatile
Read Cycle	100ns	200ns	120ns	70ns	85 ns
Write Cycle	100ns	10ns	100ns	70ns	85ns
Power Consumption	1nJ	lnJ	2nJ	4nJ	3nJ.
Current to retain Data	Unnecessary	Unnecessary	Unnecessary	Necessary	Necessary
Internal Write Voltage	2V-5V	14V	9V	3.3V	3.3V
Cell Structure	1T-1C	• 2T	IT	1T-1C	6T,4T+R
Area/Cell	4	3	1	2	4 - 6

Zero Clock Cycle
 Write Latency

 Veloce campionamento Contatore
Elettronico
intelligente
con FRAM
(Cypress SemiC)

FRAM unisce:

- Non volatilità
 - Velocità
- Consumi contenuti soprattutto in scrittura

Il limite alla scalabilità la rende (attualmente) adatta solo ad applicazioni specifiche

4MB FRAM SPI 3V

MAGNETORESISTIVE RAM

Due layers
magnetoresistivi
polarizzati secondo il
campo magnetico
creato dagli impulsi di
corrente delle piste

L'informazione varia a seconda dell'orientazione degli spin dei portatori di carica dei due layer (parallelo o antiparallelo)

Spin rappresenta il momento angolare quantistico cui è sottoposto un elettrone

LETTURA E SCRITTURA MRAM

Il **bit** di informazione dipende dalla **resistenza** creata tra i layer grazie all'**effetto tunnel magnetoresistivo**

La corrente fatta scorrere
per leggere il bit
contenuto è
proporzionale all'inverso
dello stato resistivo
(parallelo bassa R,
antiparallelo alta R)

$$TMR = \frac{R_{ap} - R_p}{R_p}$$

Transistor abilitato per far fluire corrente verso il sense amplifier che valuta il bit conenuto a seconda dell'ampiezza di I_{Sense}

Cella selezionata prima con attivazione della WL, poi della BL: il campo magnetico polarizza i layer.

FORMA CELLA DI MEMORIA

Una forma **allungata** permette una **migliore polarizzazione**, quindi migliore capacità di memoria.

La soglia di inversione del campo magnetico (quindi la robustezza del sistema) è proporzionale all'allungamento della forma della cella.

CENTRALINA AUTO (ECU)

Need	eFLASH	eSRAM	eDRAM	MRAM	
Low Cost	More steps	Large 6T cell	More steps	Yes	
Byte Addressable	No	Yes	Yes	Yes	
Low Latency	No	Yes	Yes	Yes	
Persistent	Yes	No	No	Yes	
CMOS Compatible	High Voltage	Yes	No	Yes	
Scalable	No	High Leakage	Yes	Yes	
Low Energy	No	No	No	Yes	

Transmission
Control

Racing Engine
Management

Event Recorder

Anti-Pinch Window
Trap

Arbags

Steering Control

Control

Control

Flectric Brakes

Nessuna necessità di **bank swap** ECU con memoria MRAM SPI (MRA16A) ed EBI (MR2xH50) (Everspin)

CENTRALINA AUTO (ECU)

- 16 bit di dati con interfaccia SPI seriale
- Clock: 40 MHz
- Durata ciclo lettura totale (C-R): 1ms circa
- HW delay (tempo dell'SPI per trasferire 16bit di dati da un nuovo buffer): 387ns
- **SW delay** (tempo del programma per inizializzare nuovi dati): **612ns**

- 32 bit di dati con interfaccia EBI parallela
- Clock: 66 MHz
- Durata ciclo lettura totale (C-R): 104ns
- HW delay: 44ns
- SW delay: 60ns

PHASECHANGE RAM

Cella di memoria con materiale a cambiamento di fase, cambiando RI attraverso una puntina (heater) comandata dalla WL (bottom electrode)

R del materiale PC variabile:

- alta R se amorfo;
- Bassa R se cristallino

BJT dispositive di accesso: maggiore corrente per la modifica dello stato, tempi accesso ridotti

LETTURA E SCRITTURA PCRAM

Caratteristica I-V V_{th} rappresenta tensione limite per lo switch tra gli stati: lontano da tale valore la cella è robusta nel mantenimento dello stato

LETTURA

WL posta a 0V, **BL** posta a V_{DD},

passaggio di corrente

attraverso la **R**:

ampiezza corrente

variabile

SCRITTURA

BL inattiva,
WL a due tensioni:

- SET: da amorfo a cristallino, impulso di ampiezza intermedia per un periodo maggiore;
- RESET: viceversa, impulso con ampiezza maggiore ma per breve tempo

PROPRIETA' MATERIALE PC

Un materiale phase-change deve avere:

- R differente di vari ordini di grandezza per memoria robusta
- Temperature di scrittura diverse da quella di funzionamento
- Cambio fase quantificabile in ns

Derivati calcogenici GST: $Ge_2Sb_2Te_5$

CHECKPOINTING HPS

	SRAM	DRAM	NAND flash	PCRAM	HDD
Cell size	$> 100F^2$	$6 - 8F^2$	$4 - 6F^2$	$4 - 40F^2$	2
Read time	$\sim 10ns$	$\sim 10ns$	$5\mu s - 50\mu s$	10ns - 100ns	$\sim 4ms$
Write time	$\sim 10ns$	$\sim 10ns$	2-3ms	100 - 1000ns	$\sim 4ms$
Standby power	Cell leakage	Refresh power	Zero	Zero	$\sim 1W$
Endurance	10^{18}	10^{15}	10^{5}	$10^8 - 10^{12}$	10^{15}
Non-volatility	No	No	Yes	Yes	Yes

Checkpoint degli stati per aggirare i crash negli High Performance Systems

Riduzione tempi latenza degli HD usando Hybrid PCRAM per checkpoint di ogni nodo

Through Silicon Via

Dong et al., HP Labs, Pennsylvania

CHECKPOINTING HPS

2012

2013

2014

2015

2016

2017

2011

Ogni banco ha 4 mat (cella + logica) collegati tramite address generator e multiplexer che permettono riduzione di carico sul bus di sistema, quindi per diminuire la latenza nell'accesso alla **PCRAM**

Design 3D proposto permette riduzione di checkpoint overheading nettamente inferiore rispetto alle soluzioni attuali

Stime promettenti per quest tecnologia col passare degli anni

		DRAM		Floating-		-Gate [3]	FaDAM	MDAM	DCM
		Stand-Alone [1]	Embedded [2]	SRAM [2]	NOR	NAND	FeRAM	MRAM	PCM
Architettura di cella		1T1C	1T1C	6T	1T	1T	1T	1(2)T1C	1T1R
Feature size F (nm)	2007	68	90	65	90	90	180	90	65
	2022	12	25	13	18	18	65	22	18
Area di Cella (F²)	2007	6	12	140	10	5	22	20	4,8
	2022	6	12	140	10	5	12	16	4,7
Tempo Accesso in Lettura	2007	< 10 ns	1 ns	0,3 ns	10 ns	50 ns	45 ns [4]	20 ns [7]	60 ns [9]
	2022	< 10 ns	0.2 ns	70 ps	2 ns	10 ns	< 20 ns [5]	< 0,5 ns	< 60 ns
T	2007	< 10 ns	0,7 ns	0,3 ns	1 s	1 ms	10 ns [6]	20 ns [7]	50÷120 ns [9]
Tempo Accesso in Scrittura	2022	< 10 ns	0,2 ns	70 ps	1 s	1 ms	1 ns [J]	< 0,5 ns [8]	< 50 ns
T F 0	2007	[F]	[F]	[F]	10 ms	0,1 ms	[F]	[F]	[F]
Tempo Fase Cancellazione	2022	[F]	[F]	[F]	10 ms	0,1 ms	[F]	[F]	[F]
Tempo Ritenzione Dati	2007	64 ms	64 ms	[B]	> 10 anni	> 10 anni	> 10 anni	> 10 anni	> 10 anni
	2022	64 ms	64 ms	[B]	> 10 anni	> 10 anni	> 10 anni	> 10 anni	> 10 anni
Endurance	2007	> 3X10 ¹⁶	> 3X10 ¹⁶	> 3X1016	> 105	> 105	10 ¹⁴	> 3X1016	10 ⁸
	2022	> 3X10 ¹⁶	> 3X10 ¹⁶	> 3X10 ¹⁶	> 105	> 10 ⁵	> 1016	> 1016	10 ¹⁵
norgio Foco di Coritturo (1/bit)	2007	5 X 10 ⁻¹⁵ [A]	5 X 10 ⁻¹⁵	7 X 10 ⁻¹⁶	> 10 ⁻¹⁴ [C]	> 10 ⁻¹⁴ [C]	3 X 10 ⁻¹⁴ [D]	7 X 10 ⁻¹¹ [1]	5 X 10 ⁻¹² [E]
Energia Fase di Scrittura (J/bit)	2022	2 X 10 ⁻¹⁵ [A]	2 X 10 ⁻¹⁵	2 X 10 ⁻¹⁷	> 10 ⁻¹⁵ [C]	> 10 ⁻¹⁵ [C]	5 X 10 ⁻¹⁵ [D]	2 X 10 ⁻¹¹ [1]	< 10 ⁻¹³ [E]

Più miniaturizzabile

Tempi Scrittura-Lettura simmetrici ed elevata endurance

Note: [A] Energia stimata come $0.5*C*V^2$, con C = 25fF e V = 0.65V;0.35V per il 2007 ed il 2022;

[B] Le SRAM conservano i dati sino a che sono alimentate, nonché non hanno bisogno di operazioni di refreshing come nel caso delle DRAM;

- [C] E' proprio il limite inferiore che caratterizza l'"Effetto Fowler-Nordheim" utilizzato per le fasi di scrittura/cancellazione;
- [D] Energia stimata come $0.5^*p^*A^*V$, con $\rho = 10.9\mu C/cm^2$; $30\mu C/cm^2$ e V = 1.5V; 0.7V e $A = 0.33\mu m^2$; $0.069\mu m^2$ rispettivamente per il 2007 ed il 2022;
- [E] Energia stimata come $0.5 \times 1^2 \times R \times t_w$, con I = $235\mu A;13\mu A$ e R = $3.54k\Omega;35.4k\Omega$ e t_w = 50ns;<50ns rispettivamente per il 2007 ed il 2022;
- [F] Non sono necessarie operazioni di cancellazione per le DRAM, SRAM, FeRAM, MRAM e PCM;

Minore energia

GRAZIE PER L'ATTENZIONE