

Mitrapark, Chabahil, Ktm

Roll No:

Student Name:.....

<u>Department of BIT & BCS</u> <u>Midterm Test-2074</u>

Program: BIT FM: 100
Subject: BCA PM: 50

Level: BIT 1st Semester (1st Batch) SET 'A' Time: 3 hrs.

Attempt All Questions (Group A) MCQ (1x30=30)

- 1. The first counting tool was the
 - a) Stepped Reckoned
 - b) Aba Zaba
 - c) Abacus
 - d) Punch Card
- 2. The first electronic computer was called
 - a) ENIAC
 - b) Apple IIe
 - c) EDVAC
 - d) UNIVAC
- 3. UNIVAC is
 - a) Universal Automatic Computer
 - b) Universal Array Computer
 - c) Unique Automatic Computer
 - d) Unvalued Automatic Computer
- 4. The basic operations performed by a computer are
 - a) Arithmetic operation
 - b) Logical operation
 - c) Storage and relative
 - d) All the above
- 5. What is the main difference between a mainframe and a super computer?
 - a) Super computer is much larger than mainframe computers
 - b) Super computers are much smaller than mainframe computers
 - Supercomputers are focused to execute few programs as fast as possible while mainframe uses its power to execute as many programs concurrently
 - d) Supercomputers are focused to execute as many programs as possible while mainframe uses its power to execute few programs as fast as possible.
- 6. The two kinds of main memory are:
 - a) Primary and secondary
 - b) Random and sequential
 - c) ROM and RAM
 - d) All of above
- 7. Which of the following is the first computer to use Stored Program Concept?

- a) UNIVAC
- b) ENIAC
- c) EDSAC
- d) None of above
- 8. The term gigabyte refers to
 - a) 1024 bytes
 - b) 1024 kilobytes
 - c) 1024 megabytes
 - d) 1024 gigabyte
- 9. A compiler is a translating program which
 - a) Translates instruction of a high level language into machine language
 - b) Translates entire source program into machine language program
 - c) It is not involved in program's execution
 - d) All of above
- 10. Which of the following is used as a primary storage device?
 - a) Floppy
 - b) Magnetic drum
 - c) Hard Disks
 - d) All of above
- 11. A register organized to allow to move left or right operations is called a _____
 - a) Counter
 - b) Loader
 - c) Adder
 - d) Shift register
- 12. A physical connection between the microprocessor memory and other parts of the microcomputer is known as
 - a) Path
 - b) Address bus
 - c) Route
 - d) All of the above
- 13. One millisecond is
 - a) 1 second
 - b) 10th of a seconds
 - c) 1000th of a seconds
 - d) 10000th of a seconds

14.	. Which of the following IC was used in third generation of			b)	Push down stack
	computers?			c)	Accumulators
	a)	LSI		d)	Cache
	b)	MSI	23.	The inst	ruction ADD R1, 45
	c)	SSI		a)	Finds the memory location 45 and adds that
	d)	Both a and b			content to that of R1and stores it in R1.
15.	CD-ROM	1 is a		b)	Adds 45 to the value of R1 and stores it in R1
	a)	Semiconductor memory		c)	Finds the memory location 45 and adds that
	b)	Memory register			content to that of R1
	c)	Magnetic memory		d)	None of the mentioned
	,	None of above	24.		ruction used to set the carry flag in a computer
16.	Instructi	ions and memory address are represented by		can be c	classified as
	a)	Character code		a)	Data transfer
	b)	Binary codes		b)	Process control
	c)	Binary word		c)	Logical
	d)	•			None of these
17.	Instructi	ion in computer languages consists of	25.	Binary c	code which gives an actual instruction is called
	a)	OPCODE		a)	Instruction code
	b)	OPERAND		b)	Logical code
	c)	None of above		c)	Function code
	,	Both A & B		-	Address
18.		ary storage memory is basically	26.		time, computer instructions are divided into
		Volatile memory		,	Function code
	_	Non-volatile memory		,	Instruction code
	c)	Backup memory		c)	Operand
	d)	None of the above		d)	Both A and C
19.		ower is switched OFF, it will lost its data, such	27.		coctal 36 to binary.
		memory is classified as		a)	110110
		Volatile storage		p)	100110
		Non-volatile storage		c)	110011
	c)	Impact storage	20	d)	011110
20	d)	Non-impact storage	28.	ine nex	adecimal equivalent of a binary 00100011 is
20.		device takes to read actual data is classified as			·
	a)	Transfer time		a)	21
	b)	Seek time		b)	20
	c)	Seek delay		c)	23
24	d)	Access delay	20	d)	30
21.		ics, fixed head discs, floppy discs and optical discs	29.		imal equivalent of binary 10111110 is
	all are ty	•		a)	190
		Serial access storage		b)	200
		Volatile access storage		c)	186
	c)	Non impact access storage	20	d)	198
	u)	Direct access storage	30.		the decimal number 3.375 to binary.
วา	In case o	of Zoro addross instruction mathed the energy de		a)	0101.1100
۷۷.	In case of, Zero-address instruction method the operands are stored in			b)	0011.1010
				c) d)	0011.0011 0011.0110
	aj	Registers		u)	0011.0110

Mitrapark, Chabahil, Ktm

<u>Department of BIT & BCS</u> Midterm Test-2074

Student Name	
Roll No:	

Program: BIT FM: 100
Subject: BCA PM: 50

Level: BIT 1st Semester (1ST Batch) **SET 'B'** Time: 3 hrs.

Attempt All Questions (Group A) MCQ (1x30=30)

- 1. UNIVAC is
 - a) Universal Automatic Computer
 - b) Universal Array Computer
 - c) Unique Automatic Computer
 - d) Unvalued Automatic Computer
- EDVAC stands for
 - a) Electronic Discrete Variable Automatic Calculator
 - b) Electronic Discrete Variable Automatic Computer
 - c) Electronic Data Variable Automatic Calculator
 - d) Electronic Data Variable Automatic Computer
- 3. Who invented the punch card?
 - a) Charles Babbage
 - b) Semen Korsakov
 - c) Herman Hollerith
 - d) Joseph Marie Jacquard
- 4. The basic operations performed by a computer are
 - a) Arithmetic operation
 - b) Logical operation
 - c) Storage and relative
 - d) All the above
- Specific type of memory that can be erased anytime is classified as
 - a) BROM
 - b) DROM
 - c) EPROM
 - d) EROM
- 6. When Type of memory which is used to read data but not to write on it is classified as
 - a) Random only memory
 - b) Read access memory
 - c) Read only memory
 - d) Random access memory
- 7. What is the main difference between a mainframe and a super computer?
 - a) Super computer is much larger than mainframe computers
 - b) Super computers are much smaller than mainframe computers

- Supercomputers are focused to execute few programs as fast as possible while mainframe uses its power to execute as many programs concurrently
- d) Supercomputers are focused to execute as many programs as possible while mainframe uses its power to execute few programs as fast as possible.
- 8. The ALU of a computer responds to the commands coming from
 - a) Primary memory
 - b) Control section
 - c) External memory
 - d) Cache memory
- 9. A compiler is a translating program which
 - a) Translates instruction of a high level language into machine language
 - b) Translates entire source program into machine language program
 - c) It is not involved in program's execution
 - d) All of above
- 10. Which of the following is used as a primary storage device?
 - a) Floppy
 - b) Magnetic drum
 - c) Hard Disks
 - d) All of above
- 11. The A byte consists of
 - a) One bit
 - b) Four bits
 - c) Eight bits
 - d) Sixteen bits
- 12. A register organized to allow to move left or right operations is called a _____
 - a) Counter
 - b) Loader
 - c) Adder
 - d) Shift register

13.		al connection between the microprocessor	22.		of, Zero-address instruction method the operands			
	memory	and other parts of the microcomputer is known		are stor	ed in			
	as			a)	3			
	a)	Path		b)	Push down stack			
	b)	Address bus		c)	Accumulators			
	c)	Route		d)	Cache			
	d)	All of the above	23.	The inst	ruction ADD R1, 45			
14.	One mill	isecond is		a)	Finds the memory location 45 and adds that			
	a)	1 second			content to that of R1and stores it in R1.			
	b)	10th of a seconds		b)	Adds 45 to the value of R1 and stores it in R1			
	c)	1000th of a seconds		c)	Finds the memory location 45 and adds that			
	d)	10000th of a seconds			content to that of R1			
15.	The mai	n electronic component used in first generation		d)	None of the mentioned			
	computers was		24.	The con	trol unit of computer			
	a)	Transistors		a)	Performs ALU operations on the data			
	b)	Vacuum Tubes and Valves		b)	Controls the operation of the output devices			
	c)	Integrated Circuits		c)	Both (a) and (b)			
	d)	None of above		d)	Directs the other unit of computers			
16.	Instructi	ons and memory address are represented by	25.	A basic i	instruction that can be interpreted by a computer			
	a)	Character code		generall	ly has			
	b)	Binary codes		a)	An operand and an address			
	c)	Binary word		b)	A decoder and an accumulator			
	d)	Parity bit		c)	Sequence register and decoder			
17.	CD-ROM	l is a		d)	None of these			
	a)	Semiconductor memory	26.	Binary c	ode which gives an actual instruction is called			
	b)	Memory register		a)	Instruction code			
	c)	Magnetic memory		b)	Logical code			
	d)	None of above		c)	Function code			
18.	Seconda	ry storage memory is basically		d)	Address			
	a)	Volatile memory						
	b)	Non-volatile memory	27.		binary 10101010 to octal.			
	c)	Backup memory		a)	2068			
	d)	None of the above		b)	5228			
19.	-	ower is switched OFF, it will lost its data, such		c)	2558			
		nemory is classified as		d)				
	a)	Volatile storage	28.	The hex	adecimal equivalent of a binary 10001100 is			
	b)	Non-volatile storage			_			
	c)	Impact storage		a)				
	d)	Non-impact storage		b)				
20.		instruction format, address of any data location is		c)	8616			
	said to b			d)				
	a)	Function code	29.	Convert	octal 377 to binary.			
	b)	Instruction code		a)	11101101			
	c)	Operand		b)	01111011			
	d)	Logical code		c)	10110111			
21.	. Hard discs, fixed head discs, floppy discs and optical discs			d)				
	all are types of		30.	Convert	the decimal number 6.75 to binary.			
		Serial access storage		a)				
	b)	3		b)				
	c)	Non impact access storage		c)	0110.0110			
	d)	Direct access storage		d)	0110.1010			
	THE END							

BIT – BCA SFT "A"

GROUP 'B'

Long Questions $(2 \times 20 = 40)$

Attempt all questions:

- 1. What is an instruction format and on what basis the instruction sets are differentiated. Explain the term addressing mode and different types of addressing modes with examples.
- 2. Describe the term storage device and explain the four basic types of storage devices with example. Explain in detail the difference between RAM and ROM along with its classification.

GROUP 'C'

Short Question $(6 \times 5 = 30)$

Attempt all questions:

- 3. Define the term Computer. Explain the structural components of CPU with diagram.
- 4. What do you mean by stack? Explain the register stack organization in detail.
- 5. Explain the difference between RAM and ROM in brief.
- 6. Explain basic four logical micro-operation in detail with figure.
- 7. Evaluate the following instruction X=(A+B)*(C+D) with the help of two address and three address instruction.
- 8. Convert (1101101101)₂ to equivalent octal, hexadecimal and decimal number system.

THE END

BIT – BCA

SET "B"

GROUP 'B'

Long Questions $(2 \times 20 = 40)$

Attempt all questions:

- 1. What do you mean by the term stack and explain types of stack organization in detail? Explain the general register organization in detail with figure.
- 2. Define CPU and explain the various basic components of CPU and operations performed by CPU in brief. Explain the various types of instruction types with example.

GROUP 'C'

Short Question $(6 \times 5 = 30)$

Attempt all questions:

- 3. What do you mean by the term data? Explain the various types of data with example.
- 4. What do you mean by storage device? Explain the secondary storage devices with example.
- 5. Explain the difference between Volatile and Non-volatile memory.
- 6. Explain shift micro operation in detail.
- 7. Explain the different types of instruction on the basis of number of addresses of instruction.
- 8. Evaluate the following instruction X=(A+B)*(C+D) with the help of two address and three address instruction.

THE END