RETI DI PETRI

Reti di Petri

- Sono in parte simili a macchine a stati finiti, ma nascono specificatamente per descrivere sistemi concorrenti
 - · cambiano sia il concetto di stato che di transizione...
 - lo stato non è più visto a livello di sistema ma come composizione di tanti stati parziali
 - le transizioni non operano più quindi su uno stato globale ma si limitano a variarne una parte
- Informazioni on line su Petri Nets:
- http://www.informatik.uni-hamburg.de/TGI/PetriNets/

Informalmente

Definizione di Rete di Petri

Una Rete di Petri è una 5-tuple [P,T;F,W,Mo]

- P l'insieme dei posti
- T l'insieme delle transizioni
- F relazione di flusso

$$F \subseteq (P \times T) \cup (T \times P)$$

W funzione che associa un peso ad ogni flusso

W:
$$F \rightarrow N - \{0\}$$

M₀ la marcatura iniziale

$$M_0: P \rightarrow N$$

 $Pre(a) = \{d \in (P \cup T) \mid \langle d, a \rangle \in F\} //preset$

Post(a) = $\{d \in (P \cup T) \mid \langle a, d \rangle \in F\}$ //postset

Comportamento dinamico

t∈T è abilitata in M se e solo se

$$\forall p \in Pre(t) M(p) >= W(< p, t>)$$

M[t> tèabilitata in M

lo **scatto** di un transizione t in una marcatura M produce una nuova marcatura M'

 $\forall p \in Pre(t) - Post(t)$ M'(p) = M(p) - W(< p, t>)

 $\forall p \in Post(t)-Pre(t)$ M'(p)=M(p)+ W(<t,p>)

 $\forall p \in Post(t) \cap Pre(t)$ M'(p)=M(p)-W(<p,t>)+W(<t,p>)

 $\forall p \in P - (Pre(t) \cup Post(t))$ M'(p) = M(p)

M [t > M' lo scatto di t in M produce M'

Un esempio: il produttore

Esempio: il consumatore e il buffer

Componiamo

Come evolve?

Scatta transizione produci

Scatta transizione deposita

Quali sono le transizioni abilitate?

Quale scelgo?

- E' il caso di non determinismo... non posso dire quale deve scattare
- tipico di sistemi concorrenti, dove non ho questo tipo di controllo globale...
- ATTENZIONE: se fosse stato necessario vuol dire semplicemente che la rete non era corretta,
 - cioe' posso, con modifiche alla rete, forzare un determinato comportamento

Stiamo sfruttando reti di petri

- Non molto ... la nostra è stata una traduzione automatica dagli automi a stati finiti
- Vediamo una versione alternativa...

Altre modifiche

 Cosa succede se aumentiamo il numero di token in PO o in CO?

Altre modifiche

· Possiamo modellare un buffer di capacità infinita?

Altre modifiche

• Cosa succede ad usare i pesi degli archi?

Quali sono le transizioni abilitate?

Cosa succede allo scatto?

Relazioni: Sequenza

• Una transizione t₁ è in sequenza con una transizione t₂ in una marcatura M se e solo se:

$$M[t_1 > \wedge \neg M[t_2 > \wedge M[t_1t_2 >$$

- \cdot t₁ è abilitata in M
- · t₂ NON è abilitata in M
- · t₂ viene abilitata dallo scatto di t₁ in M

Esempio: Sequenza

TO e T1 TO e T2 T3 e T2

Relazioni: conflitto

Due transizioni (t_1,t_2) sono in conflitto

- · Strutturale se e solo se:
 - $Pre(t_1) \cap Pre(t_2) \neq \emptyset$
- · Effettivo in una marcatura M se e solo se:

```
M [t_1 > \land M[t_2 > \land
\exists p \in Pre(t_1) \cap Pre(t_2) \mid
(M(p) < W(<p,t_1>) + W(<p,t_2>))
```

- t₁ e t₂ sono abilitate in M
- \cdot esiste un posto in ingresso ad entrambe che non ha abbastanza token per far scattare entrambe

Altra versione di conflitto

 Una versione leggermente rilassata di conflitto:

$$\mathsf{M} \ [\ \mathsf{t}_1 > \ \land \ \ \mathsf{M} \ [\ \mathsf{t}_2 > \ \land \ \neg \mathsf{M} \ [\mathsf{t}_1 \mathsf{t}_2 >$$

- · t₁ e t₂ sono abilitate in M
- t₁, t₂ non è sequenza ammissibile in M

· Può essere resa anche bi-direzionale

Esempio conflitto

T3 e T4 effettivo

T2 e T6 strutturale

Relazioni: concorrenza

Due transizioni (t_1,t_2) sono in concorrenza

· Strutturale se e solo se:

$$Pre(t_1) \cap Pre(t_2) = \emptyset$$

· Effettivo in una marcatura M se e solo se:

$$M [t_1 > \land M [t_2 > \land$$

 $\forall p \in Pre(t_1) \cap Pre(t_2)$

$$(M(p) \ge W() + W($$

- t₁ e t₂ sono abilitate in M
- · tutti i posti in ingresso ad entrambe hanno abbastanza token per far scattare entrambe

Esempio: Concorrenza

T0 e T3

T0 e T4

Insieme Raggiungibilità

 L'insieme di raggiungibilità di una rete a partire da una marcatura M è il più piccolo insieme di marcature tale che:

- · $M \in R(P/T, M)$
- · $(M' \in R(P/T, M) \land \exists t \in T M' [t > M")$
 - \rightarrow M" \in R(P/T, M)

Proprietà: limitatezza

 Una rete P/T con marcatura M si dice limitata se e solo se:

 $\exists k \in \mathbb{N} \ \forall M' \in \mathbb{R}(P/T, M) \ \forall p \in P \ M' (p) \le k$

cioè se è possibile fissare un limite al numero di gettoni della rete

Esempio di (il-)limitatezza

Con arco bidirezionale (abbreviazione di due archi senso opposto)
la rete non è limitata

Reti di Petri -> Automi

· Se la rete è limitata

· allora l'insieme di raggiungibilità è finito

- · allora è possibile definire un automa a stati finiti corrispondente
 - · gli stati sono le possibili marcature dell'insieme di raggiungibilità

Vitalità di una transizione

Una transizione t in una marcatura m è viva a

- · Grado 0:
 - non è abilitata in nessuna marcatura appartenente all'isnieme di raggiungibilità (è morta)
- · Grado 1:
 - · esiste almeno una marcatura raggiungibile in cui è abilitata
- · Grado 2:
 - per ogni numero n esiste almeno una sequenza ammissibile in cui la transizione scatta n volte

Vitalità di una transizione

- · Grado 3:
 - · esiste una sequenza di scatti ammissibile in cui scatta infinite volte
- · Grado 4:
 - in qualunque marcatura raggiungibile, esiste una sequenza ammissibile in cui scatta (e` viva)

Una rete è viva

se tutte le sue transizioni sono vive

Esempio grado vitalità

Capacità dei posti

- Una possibile estensione delle reti di Petri consiste nel fissare un massimo numero di token ammissibili in un posto
 - · si può forzare limitatezza

· E' una estensione propria? Aumenta potenza?

Carlo Bellettini e Mattia Monga - Ingegneria del Software - 2022-23

Simulazione capacità posti

