

Notion d'impédance

- > En régime continu
- En régime alternatif

En régime continu (DC $\equiv f = 0$ Hz)

➤ Loi d'Ohm : relation courant — tension en régime continu

$$U = R I$$

La résistance est une "force" avec laquelle un conducteur s'oppose au passage du courant.

Georg OHM [1789 – 1854]

En régime alternatif (AC $\equiv f > 0$ Hz)

$$ightharpoonup$$
 Si $u(t) = A \sin(\omega t) = A e^{j\omega t}$ alors $\frac{du(t)}{dt} = j\omega A e^{j\omega t} = j\omega u(t)$

$$(e^u)' = u'e^u$$

- Linéarisation des relations courant-tension en notation complexe :
 - Résistance : $u = Z_R$ i avec $Z_R = R$
 - Capacitance : $i = C \frac{du}{dt} = C j\omega u \rightarrow u = Z_C i$ avec $Z_C = -j \frac{1}{\omega C}$
 - Inductance : $u = L \frac{di}{dt} = L j\omega i \rightarrow u = Z_L i$ avec $Z_L = L j\omega$
- > Loi d'Ohm généralisée

$$u = Z i$$

L'impédance complexe s'écrit :

$$Z = R + jX$$

- > R est la partie réelle dite résistive et X est la partie imaginaire dite réactive ou réactance.
 - Si X < 0, on parle d'impédance capacitive : sa tension en quadrature avance de $\pi/2$ sur le courant (le courant met un certain temps à s'établir dans une bobine) ;
 - Si X > 0, on parle d'impédance inductive : la tension en quadrature retard de $\pi/2$ sur le courant (au moment de la mise sous tension, un condensateur déchargé est parcouru par un courant très fort qui décroit ensuite).

En régime alternatif (AC $\equiv f > 0$ Hz)

EXERCICE 1

➤ Déterminer les impédances complexes des circuits suivants et leurs valeurs limites en basse et haute fréquence:

$$Z_{(a)} = Z_R + Z_C$$

$$= R + \left(-j\frac{1}{\omega C}\right)$$

$$= R - j\frac{1}{\omega C}$$

$$\left|Z_{(a)}\right| = \sqrt{R^2 + \left(\frac{1}{\omega C}\right)^2}$$

$$\lim_{\omega \to 0} \left| Z_{(a)} \right| = \frac{1}{\omega C} = |\mathbf{Z}_{C}|$$

$$\lim_{\omega \to \infty} |Z_{(a)}| = |\mathbf{Z}_{\mathbf{R}}|$$

$$Z_{(b)} = Z_L // Z_R$$

$$= \frac{Z_L Z_R}{Z_L + Z_R}$$

$$= \frac{RLj\omega}{R + Lj\omega}$$

$$= \frac{R}{1 + \frac{R}{Li\omega}}$$

$$Z_{(c)} = Z_C // (Z_R + Z_L)$$

$$= \frac{Z_C (Z_R + Z_L)}{Z_C + Z_L + Z_R}$$

$$= \frac{-j \frac{1}{\omega C} (R + Lj\omega)}{-j \frac{1}{\omega C} + Lj\omega + R}$$

$$= \frac{\frac{L}{C} - j \frac{R}{\omega C}}{R + j \left(L\omega - \frac{1}{\omega C}\right)}$$

En régime alternatif (AC $\equiv f > 0$ Hz)

EXERCICE 2

Montrer que pour un dipôle purement capacitif la tension est en quadrature avance de $\pi/2$ sur le courant. Faire de même pour un dipôle purement inductif (quadrature retard de - $\pi/2$ sur le courant).

dipôle capacitif

- ightharpoonup Loi des mailles : $u = u_c = \frac{q}{c}$ (1)
- ightharpoonup On a $i_C = \frac{dq}{dt} \Rightarrow dq = idt = I_{C,0} sin(\omega t + \varphi) dt$
- > On intègre : $q = -I_{C,0}cos(\omega t + \varphi) = I_{C,0}sin(\omega t \frac{\pi}{2} + \varphi)$ (2)
- Par substitution de (2) dans (1), on obtient $u_c = \frac{I_{C,0}}{c} sin\left(\omega t \frac{\pi}{2} + \varphi\right)$
- ightharpoonup finalement, $u_c = U_{C,0} \sin\left(\omega t \frac{\pi}{2} + \varphi\right)$

dipôle inductif

- ightharpoonup On part de la relation caractéristique de la bobine : $u_L = L \frac{d \iota_L}{d t}$
- ightharpoonup On a $i_L = I_{L,0} sin(\omega t + \varphi)$ donc $u_L = L \frac{d}{dt} \Big(I_{L,0} sin(\omega t + \varphi) \Big)$
- $= LI_{L,0}cos(\omega t + \varphi) = LI_{L,0}sin\left(\omega t + \frac{\pi}{2} + \varphi\right)$
- > finalement, $u_L = U_{L,0} \sin \left(\omega t + \frac{\pi}{2} + \varphi\right)$

Filtrage passif du 1er ordre

- Introduction
- La fréquence de coupure
- Le diagramme de Bode
- Formes canoniques et gabarits usuels
- Condensateurs de découplage

Introduction au filtrage

- > Un filtre est un circuit électronique qui permet de :
 - d'éliminer ou d'affaiblir des fréquences (parasites indésirables);
 - d'isoler dans un signal complexe la ou les bandes de fréquences utiles.

- > Les **applications** sont nombreuses :
 - Alimentations électriques ;
 - Systèmes de télécommunication (radio, téléphone, télévision, etc.).
 - Systèmes d'acquisition et de traitement de signaux physiques (surveillance médicale, instrumentation scientifique, radars, etc.);
 - Acquisition de données analogiques filtre anti-repliement.

≻ Historique :

- 1920 1960 : filtres passifs RLC ;
- 1960 : filtres actifs à AOP ;
- 1970 : circuits intégrés (VLSI) ;
- 1980 : filtres numériques, DSP ;
- 1980 : filtres actifs à capacité commutée.

> Deux grandes familles :

- Les filtres numériques : réalisés à partir de structure intégrée micro programmable (DSP);
- Les filtres analogiques passifs : circuits RLC et actifs : consomment nécessairement une source d'alimentation.

Différents types de filtres

		Composants	Spécificités
Filtres numériques		Circuits logiques intégrés	 Signaux numérisés f limitée (< 100 MHz) Entièrement programmable
Filtres analogiques	Filtres passifs	 Circuits discrets RC, RL, RLC Composants piézoélectriques (Quartz) 	 f élevée Pas d'alimentation Le moins coûteux
	Filtres actifs	AOP avec condensateur(s) et/ou bobine(s)	 f limitée (< 1 MHz) Besoin d'une alimentation Plus précis Temps de réponse faible
	Filtres à capacité commutée	 AOP avec condensateur(s) et/ou bobine(s) et interrupteurs commandés MOS 	 f limitée (< qq. MHz) Besoin d'alimentation Fréquence programmable

La fonction de transfert (1/2)

> On définit la fonction de transfert (= transmittance) comme suit :

$$\underline{H}(j\omega) = \frac{\underline{V_s}(j\omega)}{\underline{V_e}(j\omega)}$$

- > La fonction de transfert permet d'étudier le comportement d'un filtre.
- On définit :
 - Le gain G [dB]

$$G = 20 \log(|\underline{H}(j\omega)|) = 20 \log(\sqrt{\left[\operatorname{Re}\left(\underline{H}(j\omega)\right)\right]^{2} + \left[\operatorname{Im}\left(\underline{H}(j\omega)\right)\right]^{2}})$$

- Il traduit l'atténuation ou l'amplification relative du signal de sortie
- La phase φ [rad]

$$\varphi = \operatorname{Arg}\left(\underline{H}(j\omega)\right) = tan^{-1}\left(\frac{\operatorname{Im}\left(\underline{H}(j\omega)\right)}{\operatorname{Re}\left(\underline{H}(j\omega)\right)}\right)$$

• Il exprime le déphasage entre la tension de sortie et la tension d'entrée

La fonction de transfert (2/2)

> Remarque sur le dB

• Par définition, le Bel compare la puissance de sortie à la puissance d'entrée, en appliquant la fonction log pour « mieux voir » cet effet en fonction des ordres de grandeur (puissances de 10) :

$$G = log\left(\frac{P_S}{P_e}\right) [B]$$

• En électronique, l'ordre de grandeur du Bel le plus adapté est le décibel (1 dB = $\frac{1}{10}$ B) :

$$G = 10 \log \left(\frac{P_S}{P_e}\right) [dB]$$

• Cependant, la plupart du temps, on ne connaît pas la puissance mais seulement la tension l'expression du gain peut être réarrangée afin de comparer un rapport de tensions comme suit :

$$G = 10 \log \left(\frac{P_S}{P_e}\right) = 10 \log \left(\frac{V_S \frac{V_S}{Z}}{V_e \frac{V_e}{Z}}\right) = 10 \log \left(\frac{V_S^2}{V_e^2}\right) = 10 [\log(V_S^2) - \log(V_e^2)] = 20 [\log(V_S) - \log(V_e)] = 20 \log\left(\frac{V_S}{V_e}\right)$$

> Remarque sur la phase

- $\varphi < 0$ traduit un retard du signal de sortie par rapport au signal d'entrée ;
- $\varphi > 0$ traduit une avance du signal de sortie par rapport au signal d'entrée ;

La fréquence de coupure (1/2)

 \triangleright La fréquence de coupure f_c d'un filtre est la fréquence pour laquelle la puissance de sortie est réduite de moitié, et donc pour laquelle :

$$G(f_c) = G_{max} - 3.01 dB$$

En effet, G
$$(f_c) = G_{max} - 10 \log \left(\frac{P_s}{P_e}\right) = G_{max} - 10 \log \left(\frac{1}{2}\right) = G_{max} - 3,01 dB$$

> En terme de de tensions, on a donc :

G
$$(f_c) = 20 \log(|\underline{H}(j\omega)|) = G_{max} - 3,01 dB$$

 $\Leftrightarrow \log(|\underline{H}(j\omega)|) = \frac{G_{max}}{20} - \frac{3,01}{20}$
 $\Leftrightarrow |\underline{H}(j\omega)| = 10^{\frac{G_{max}}{20} - \frac{3,01}{20}} = \frac{10^{\frac{G_{max}}{20}}}{10^{\frac{3,01}{20}}} \approx \frac{10^{\frac{G_{max}}{20}}}{0,707} \approx \frac{\max(\underline{H}(j\omega))}{0,707} = \frac{\max(\underline{H}(j\omega))}{\sqrt{2}}$

pour X > 0 si Y = log(X) alors $X = 10^{Y}$

- Dans la pratique, on utilise donc :
 - Pour déduire la fréquence de coupure d'un diagramme de Bode G $(f_c) = G_{max} 3.01 \ dB$
 - Pour calculer la fréquence de coupure :

$$\left|\underline{H}(j\omega)\right| = \frac{1}{\sqrt{2}}$$

On appelle bande passante, l'intervalle de fréquences pour lesquelles l'affaiblissement du signal est inférieur à une valeur spécifiée. On utilisera comme valeur limite la fréquence de coupure et on utilisera comme définition :

La fréquence de coupure (2/2)

EXEMPLE

Soit le circuit suivant (filtre passe-bas). Déterminer la fonction de transfert, son module, le gain maximal, la fréquence de coupure et la bande-passante.

$$|\underline{H}(j\omega)| = \left| \frac{1}{1 + jRC\omega} \right| = \frac{|1|}{|1 + jRC\omega|} = \frac{1}{\sqrt{1 + (RC\omega)^2}}$$

 \blacktriangleright À la fréquence de coupure, on a $\left| \underline{H}(j\omega) \right| = \frac{1}{\sqrt{2}}$

On a donc
$$\frac{1}{\sqrt{1+(RC\omega_c)^2}} = \frac{1}{\sqrt{2}} \Leftrightarrow 1+RC\omega_c = 2 \Leftrightarrow \omega_c = \frac{1}{RC}$$
 d'où $f_c = \frac{1}{2\pi RC}$

 \triangleright La bande passante est $]-\infty; f_c]$ donc $]-\infty; \frac{1}{2\pi RC}]$

Le diagramme de Bode (1/4)

- Le **diagramme de Bode** permet de représenter graphiquement le comportement fréquentiel d'un système (nature d'un filtre par exemple) à partir de sa fonction de transfert $H(j\omega)$.
- > Il comprend deux tracés en échelle semi-logarithmique :
 - Le **gain** en décibels (dB) : G = $20 log(|\underline{H}(j\omega)|)$
 - La **phase** (en rad ou en degré) : $\varphi = \operatorname{Arg}(\underline{H}(j\omega))$

Hendrik Wade BODE [1905 – 1982]

- $ilde{}$ Les diagrammes de Bode sont représentés en fonction de la pulsation ω en rad \cdot s ou de la fréquence f en Hz ;
- On rappelle que :

$$\omega = 2\pi f$$

Le diagramme de Bode (2/4)

EXEMPLE 1

$$\underline{H}(j\omega) = \frac{1}{1 + j\frac{\omega}{\omega_0}}$$

$$\left| \underline{H}(j\omega) \right| = \frac{1}{\sqrt{1 + \left(\frac{\omega}{\omega_0}\right)^2}}$$

$$\lim_{\omega \to 0} \left| \underline{H}(j\omega) \right| = 1 \quad \text{donc } G(0) = 20 \log \left(\left| \underline{H}(j\omega) \right| \right) = 20 \log(1) = \mathbf{0} \, d\mathbf{B}$$

$$\left| \underline{H}(j\omega) \right| = \frac{1}{\sqrt{1 + \left(\frac{\omega}{\omega}\right)^2}}$$
 $\lim_{\omega \to \omega_0} \left| \underline{H}(j\omega) \right| = \frac{1}{\sqrt{1 + (1)^2}} = \frac{1}{\sqrt{2}}$ donc $G(\omega_0) = 20 \log(1) - 10 \log(2) = -3$, 01 dB

$$\lim_{\omega \to \infty} \left| \underline{H}(j\omega) \right| = \frac{1}{\sqrt{\left(\frac{\omega}{\omega_0}\right)^2}} = \frac{\omega_0}{\omega} \quad \text{donc } "G(+\infty)" = 20 \log\left(\left|\underline{H}(j\omega)\right|\right) = 20 \log\left(\frac{\omega_0}{\omega}\right) = 20 \log(\omega_0) - 20 \log(\omega)$$

$$\Rightarrow \text{droite de pente -20 dB / decade en représentation semi-log}$$

G [dB] = 20 log ($\underline{H}(j\omega)$)

 G_{max} G_{max} - 3 dB

tracé exact

gabarit = tracé asymptotique

f [Hz]

$$f_c = \frac{1}{2\pi RC}$$

Le diagramme de Bode (3/4)

$$\underline{H}(j\omega) = \frac{1}{1 + j\frac{\omega}{\omega_0}}$$

$$\varphi = \operatorname{Arg}\left(\underline{H}(j\omega)\right) = \operatorname{Arg}(1) - \operatorname{Arg}\left(1 + \frac{\omega}{\omega_0}\right) \qquad \lim_{\omega \to 0} \varphi = \lim_{\omega \to$$

$$\lim_{\omega \to 0} \varphi = \lim_{\omega \to 0} -tan^{-1} \left(\frac{\omega}{\omega_0}\right) = 0 \quad \operatorname{donc} \varphi(0) = \mathbf{0} \text{ rad}$$

$$\lim_{\omega \to \omega_0} \varphi = \lim_{\omega \to \omega_0} -tan^{-1}(1) = -\frac{\pi}{4} \quad \operatorname{donc} \varphi(\omega_0) = -\frac{\pi}{4} \operatorname{rad}$$

$$\lim_{\omega \to \infty} \varphi = \lim_{\omega \to \infty} -tan^{-1} \left(\frac{\omega}{\omega_0}\right) = -\frac{\pi}{2} \quad \operatorname{donc} "\varphi(+\infty)" = -\frac{\pi}{2} \operatorname{rad}$$

Le diagramme de Bode (4/4)

EXEMPLE 2

 \triangleright Soit le circuit suivant où R = 10 $k\Omega$ et C = 80 nF

- 1/ Déterminer la fonction de transfert et la fréquence de coupure.
- 2/ Tracer les gabarit du diagramme de Bode.
- R u_s 3/ En déduire l'expression de la tension de sortie u_s si u_e = 8.6 sin (1664 π t).

 4/ Existe t'il une fréquence à laquelle la tension moyenne soit diminuée d'un facteur 3.

1/ On a
$$\underline{H}(j\omega) = \frac{\underline{u_S}(j\omega)}{\underline{u_e}(j\omega)} = \frac{Z_R}{\underline{u_e}(j\omega)} = \frac{Z_R}{Z_R + Z_C} = \frac{R}{R - j\frac{1}{\omega C}} = \frac{1}{1 + \frac{-j\frac{1}{\omega C}}{R}} = \frac{1}{1 + \frac{1}{j\frac{\omega}{RC}}}$$

3/ $\omega = 1664 \pi = 5.2 \text{ k rad/s}$

dono $u = 1664 \pi = 5.2 \text{ k rad/s}$

La fréquence de coupure est $f_c = \frac{1}{2\pi RC} = \frac{1}{2\pi \cdot 10 \cdot 10^3 \cdot 80 \cdot 10^{-9}} = 198,9$ Hz

3/
$$\omega = 1664 \pi = 5.2 \text{ k rad/s}$$

d'où f = 832 Hz >> f_c
donc $u_s = u_e$ = 8.6 sin $(1664 \pi t)$

 $4/ < u_e > = < 8.6 \sin(1664 \pi t) > = 0$ donc la tension moyenne ne peut pas être dimir facteur 3.

Formes canoniques et gabarits usuels

Condensateur de découplage

But : Rendre les sources de tension idéales (tension DC constante délivrée aux charges et suppression des parasites AC)

- > Principalement deux types :
 - Condensateur de découplage général
 - Proche de la source
 - Puisque $C = \frac{Q}{V}$, on a $Q = C \cdot V$
 - → ils jouent un rôle de réservoir
 - Condensateurs de découplage locaux
 - Puisque $Z_C = \frac{1}{iC\omega}$, les bruits parasites (hautes fréquences) sont renvoyés à la masse ;
 - Ils jouent un rôle de filtre passe-bas.
 - → Plus la fréquence à filtrer est haute et plus C est petit

3

Filtrage passif du 2nd ordre

- Ordre d'un filtre
- Méthode de séparation des bandes
- Filtres passe-bas et passe-haut du 2nd ordre
- > Filtres passe-bande et coupe-bande
- Filtre passe-tout

Ordre d'un filtre

> On distingue l'ordre d'un filtre par la pente du gain en fonction de la fréquence : la pente est de « n fois ± 20 dB / décade » où n est l'ordre du filtre.

On peut augmenter l'ordre d'un filtre en mettant en série des filtres du 1er ordre.

Exemple pour un filtre du 2nd ordre : le signal de sortie du premier filtre du 1^{er} ordre est injecté dans le second filtre du 1^{er} ordre et l'atténuation sera de deux fois 20 dB / décade soit 40 dB / décade.

- > Bien souvent l'ordre du filtre correspond au nombre de condensateur ou d'inductance.
- L'augmentation de l'ordre du filtre augmente la précision (atténuation plus forte après la fréquence de coupure) au détriment de la taille du circuit et sa puissance consommée.
- ➤ La fréquence telle que l'atténuation est de -3 dB varie avec l'ordre du filtre :

Méthode de séparation des bandes (1/2)

➤ La fonction de transfert d'un groupement de plusieurs quadripôles est le produit des fonctions de transfert de chaque quadripôle : les gains et les phases des filtres en cascade s'ajoutent.

Remarque: La fonction de transfert d'un quadripôle se définit à vide ($i_s = 0$). Lorsque l'on associe un quadripôle en série, sa fonction de transfert peut être modifiée par le fait qu'il n'est plus à vide, sauf si :

- l'impédance de sortie du premier quadripôle peut être considérée comme nulle;
- l'impédance d'entrée du quadripôle suivant peut être considérée comme infinie ;
- > Afin de tracer le diagramme de Bode d'une fonction de transfert complexe :
 - (1) On exprime cette dernière comme étant le produit de fonctions de transfert élémentaires ;
 - (2) On superpose les diagrammes de Bode des fonctions de transfert élémentaires.

Méthode de séparation des bandes (2/2)

EXEMPLE

> Tracer l'allure des diagramme de Bode de la fonction de transfert $\underline{H}(j\omega) = \frac{3\ 000(1+j10^{-4}\omega)}{j\omega(1+0,02j\omega)}$

$$\text{ On a } \underline{H}(j\omega) = \frac{3\ 000(1+j10^{-4}\omega)}{j\omega(1+0,02j\omega)} = \frac{3\ 000}{j\omega} \left(1+j10^{-4}\omega\right) \frac{1}{(1+0,02j\omega)} = \frac{1}{j\frac{\omega}{3\ 000}} \left(1+j\frac{\omega}{10\ 000}\right) \frac{1}{\left(1+j\frac{\omega}{200}\right)} = \frac{1}{j\frac{\omega}{\omega_1}} \left(1+j\frac{\omega}{\omega_2}\right) \frac{1}{\left(1+j\frac{\omega}{\omega_3}\right)} = \underline{H_1}(j\omega) \,\underline{H_2}(j\omega) \,\underline{H_3}(j\omega)$$
 avec $\omega_1 = 3\ 000\ rad\cdot s^{-1}$, $\omega_2 = 10\ k\ rad\cdot s^{-1}$ et $\omega_3 = 200\ rad\cdot s^{-1}$

soit
$$f_1 = \frac{3\,000}{2\pi} \approx 480$$
 Hz, $f_2 = \frac{10\,000}{2\pi} \approx 1\,600$ Hz et $f_3 = \frac{200}{2\pi} \approx 30$ Hz

Diagramme de Bode en Gain

Diagramme de Bode en Phase

Passe-bas et Passe-haut du 2nd ordre (1/5)

Passe-bas et Passe-haut du 2nd ordre (2/5)

EXEMPLE

- > Soit le circuit RLC suivant où la sortie est ouverte sur C de pulsation de coupure $\omega_c = \frac{1}{\sqrt{LC}}$
- ➤ Montrer que la pente du diagramme de Bode en gain est de 40 dB / décade.
- \blacktriangleright La fonction de transfert s'écrit $\underline{H}(j\omega) = \frac{\underline{u_s}(j\omega)}{\underline{u_e}(j\omega)}$

$$= (Z_L + Z_R) // Z_C = \frac{Z_C}{Z_L + Z_R + Z_C} = \frac{1}{1 + \frac{Z_L}{Z_C} + \frac{Z_R}{Z_C}} = \frac{1}{1 - LC\omega^2 + jRC\omega}$$

$$|\underline{H}(j\omega)| = \left|\frac{1}{1 - LC\omega^2 + jRC\omega}\right| = \frac{|1|}{|1 - LC\omega^2 + jRC\omega|} = \frac{1}{\sqrt{(1 - LC\omega^2)^2 + (RC\omega)^2}} = \frac{1}{\sqrt{\left(1 - \left(\frac{\omega}{\omega_c}\right)^2\right)^2 + (RC\omega)^2}}$$

- > On a $\lim_{\omega \to 0} \left| \underline{H}(j\omega) \right| = 1$ donc $G(0) = 20 \log \left(\left| \underline{H}(j\omega) \right| \right) = 20 \log (1) = \mathbf{0} \ d\mathbf{B}$

donc "
$$G(+\infty)$$
" = 20 $log(|\underline{H}(j\omega)|) = 20 log((\frac{\omega_0}{\omega})^2) = 40 log(\omega_0) - 40 log(\omega)$

Passe-bas et Passe-haut du 2nd ordre (3/5)

On pose
$$x = \frac{\omega}{\omega_c}$$
 pulsation réduite et $m = \frac{RC\omega_c}{2} = \frac{R}{2}\sqrt{\frac{C}{L}}$ facteur d'amortissement

 \triangleright Simplifier l'écriture de la fonction de transfert et déterminer le gain et la phase dans le cas où $m \ge 1$ puis pour 0 < m < 1.

$$\underbrace{H(j\omega) = \frac{1}{1 - LC\omega^2 + jRC\omega}} = \frac{1}{1 + \left(j\frac{\omega}{\omega_c}\right)^2 + 2mj\frac{\omega}{\omega_c}} = \frac{1}{1 + 2mjx + (jx)^2}$$

<u>Rq</u>: Le dénominateur $1 + 2mjx + (jx)^2$ est caractéristique des fonctions de transfert du 2nd ordre, c'est un polynôme du 2nd degré de variable įΧ.

Cas 1: $m \ge 1$ (décomposable)

On applique la méthode de séparation des bandes : on cherche à exprimer $H(j\omega)$ sous la forme d'un produit de deux fonctions élémentaires :

$$\underline{H}(j\omega) = \frac{1}{1+2mjx+(jx)^2} = \frac{1}{1+\frac{jx}{a}} \cdot \frac{1}{1+\frac{jx}{b}}$$

On résout en identifiant les dénominateurs : $1 + 2mjx + (jx)^2 = \left(1 + \frac{jx}{a}\right) \cdot \left(1 + \frac{jx}{b}\right)$

$$\Leftrightarrow 1 + 2mjx + (jx)^2 = 1 + jx\left(\frac{1}{a} + \frac{1}{b}\right) + \frac{(jx)^2}{ab}$$

$$\Rightarrow \frac{1}{a} + \frac{1}{b} = 2m$$

$$\Rightarrow a^2 - 2ma + 1 = 0$$

$$\Delta = b^2 - 4ac = 4m^2 - 4a^2 = 4(m^2 - a^2) > 0$$

$$\Rightarrow a + 2mjx + (jx)^2 = 1 + jx\left(\frac{1}{a} + \frac{1}{b}\right) + \frac{(jx)^2}{ab}$$

$$a_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{2ma - \sqrt{4m^2 - 4a^2}}{a^2} = \frac{ma - \sqrt{m^2 - a^2}}{a^2} = m - \sqrt{m^2 - 1}$$

$$a_2 = m + \sqrt{m^2 - 1}$$
On peut vérifier que $a_1 a_2 = 1$. Ces deux solutions correspondence respectivement à a et b.

On peut vérifier que $a_1 a_2 = 1$. Ces deux solutions correspondent respectivement à a et b.

Passe-bas et Passe-haut du 2nd ordre (4/5)

> Par séparation des bandes, le diagramme de Bode s'obtient par superposition des deux gabarits d'ordre 1 :

> Le diagramme de Bode présente alors deux cassures.

Passe-bas et Passe-haut du 2nd ordre (5/5)

- \triangleright Cas 2: 0 < m < 1 (non décomposable)
- ➤ Le dénominateur de la fonction de transfert n'est pas factorisable et il faut donc calculer le gain et la phase directement : [...]
- > On trouve:
 - Gain:

$$G = -20 \log((1 - x^2)^2 + (2mx)^2)$$

Phase :

$$\varphi = -\tan^{-1}\left(\frac{2mx}{1-x^2}\right)$$

- ightharpoonup Pour $0 < m < \frac{1}{\sqrt{2}}$
 - il apparait un phénomène de résonnance au voyage de $x \approx 1$ ($\omega \approx \omega_c$) et l'amplitude de u_s devient supérieure à celle de u_e
- ightharpoonup Pour $m \ge 1/\sqrt{2}$
 - Pas de phénomène de résonnance et la courbe de gain reste en dessous des asymptotes
- Cas particulier pour $m=\frac{1}{\sqrt{2}}\approx 0,707$ conduisant à un écart de -3 dB entre le point de cassure des asymptotes et la courbe réelle : réponse dite de Butterworth.

Filtres passe-bande et coupe-bande (1/4)

- \triangleright Un filtre **passe-bande** est un filtre qui ne laisse passer qu'une bande ou intervalle de fréquences comprises entre une fréquence de coupure basse $f_{C,L}$ et une fréquence de coupure haute $f_{C,H}$.
 - Il permet donc d'atténuer les fréquences à l'extérieur de la bande passante.
 - On peut obtenir un tel filtre en mettant en série un filtre passe-haut et un filtre passe-bas.

- \triangleright Un filtre **coupe-bande** est un filtre qui empêche le passage d'une bande ou intervalle de fréquences comprises entre une fréquence de coupure basse $f_{C,L}$ et une fréquence de coupure haute $f_{C,H}$.
 - Il permet donc d'atténuer les fréquences à l'intérieur de la bande passante.
 - On peut obtenir un tel filtre en mettant en parallèle un filtre passe-haut et un filtre passe-bas.

 \triangleright Dans les deux cas, on définit la fréquence centrale f_C comme suit :

$$f_c = \sqrt{f_{c,L} \cdot f_{c,H}}$$

Filtres passe-bande et coupe-bande (2/4)

Filtres passe-bande et coupe-bande (3/4)

On appelle facteur de qualité Q la grandeur sans unité du taux d'amortissement d'un filtre. Il est défini comme étant le rapport entre la fréquence centrale et la bande passante du filtre à 3 dB :

$$Q = \frac{f_c}{\Delta f} = \frac{\sqrt{f_{c,L} \cdot f_{c,H}}}{f_{c,H} - f_{c,L}}$$

> Plus Q est élevé, plus la bande passante est petite, plus la résonnance est « piquée » et donc plus le filtre est sélectif.

Filtres passe-bande et coupe-bande (4/4)

EXEMPLE

- \triangleright Proposer un filtre qui ne laisse passer que les fréquences comprises entre 100 Hz et 500 Hz en utilisant que des résistances de 10 k Ω .
- > Calculer le facteur de qualité.

- \triangleright On souhaite mettre au point un filtre passe-bande de fréquences de coupure $f_{C,L}=100$ Hz et $f_{C,H}=500$ Hz.
- Pour le passe-bas : $f_{C,L}=\frac{1}{2\pi R_1C_1} \Leftrightarrow 2\pi R_1C_1f_{C,L}=1 \Leftrightarrow C_1=\frac{1}{2\pi R_1f_{C,L}}$

$$\frac{\text{A.N.}}{C_1} = \frac{1}{2\pi \cdot 10^4 \cdot 100} = 1,59 \cdot 10^{-7} = 15,9 \,\mu\text{F}$$

• Pour le passe-haut : $f_{C,H}=\frac{1}{2\pi R_2C_2} \Leftrightarrow 2\pi R_2C_2f_{C,H}=1 \Leftrightarrow C_2=\frac{1}{2\pi R_2f_{C,H}}$

$$C_2 = \frac{1}{2\pi \cdot 10^4 \cdot 500} = 3,18 \cdot 10^{-7} = 31,8 \,\mu F$$

> On a
$$Q = \frac{f_c}{\Delta f} = \frac{\sqrt{f_{c,L} \cdot f_{c,H}}}{f_{c,H} - f_{c,L}} = \frac{\sqrt{100 \cdot 500}}{500 - 100} = \frac{\sqrt{50000}}{400} = \frac{223.6}{400} = \mathbf{0,56}$$

Introduction au filtrage actif

- Défauts des filtres passifs
- Filtrage actif

Défauts des filtres passifs

- Les filtres passifs n'utilisant que composants passifs : R, L et/ou C et sont sujet à quelques limitations :
 - (1) l'impédance du circuit abaisse la tension de sortie : $v_s < v_e$;
 - (2) le filtre ne peut qu'atténuer un signal et pas l'amplifier : $G \le 0$;
 - (3) Les caractéristiques du filtres dépendent fortement de la charge du circuit.

$\left \begin{array}{c c c c c c c c c c c c c c c c c c c $	2 10	100 1000	0 000
G [dB] -120 -40 -20 -6 -3 0 3	6 20	40 12	20

atténuation

amplification

Défauts des filtres passifs

- Remarque sur l'effet de la charge
- = Que se passe t'il si l'on branche une composante à grande impédance en sortie du filtre ?
- On commence par remarquer que C et R_L sont en parallèle :

On reconnait le filtre passe-bas passif d'ordre 1, la fréquence de coupure est $f_C = \frac{1}{2\pi R_{eq}C} = \frac{1}{2\pi \frac{R}{R} \frac{R}{R_L}C}$

Rq: il en est de même pour un filtre passe-haut

→ La charge modifie la fréquence de coupure du filtre!

 f_c sans

$$Z_{eq} = R_{eq} = R // R_L = \frac{R R_L}{R + R_L}$$

Cas arbitraire où $R=10~k\Omega$ et C=100~nF:

f [Hz]

Filtrage actif

Afin de palier à ces trois désagréments, on ajoute un composant actif, la plupart du temps un AOP à un filtre passif et l'on obtient un filtre actif.

EXEMPLE

Filtre passe-bas actif

AOP amplificateur

Gain

de l'amplificateur

- > Les propriétés du filtre restent inchangées mais il est maintenant possible de modifier le gain de la bande passante :
- On peut alors modifier le gain du filtre facilement :

$$A_{v} = 1 + \frac{R_2}{R_1}$$

$$G = 20 \log(|\underline{H}(j\omega)|) = 20 \log\left(\left(1 + \frac{R_2}{R_1}\right) \cdot \frac{1}{1 + j\frac{\omega}{\omega_0}}\right) = 20 \log\left(1 + \frac{R_2}{R_1}\right) + 20 \log(\text{filtre Passe} - \text{bas passif})$$

…et multiplier les gains en branchant en série des amplificateurs puisque leurs gains sont multiplicatifs.