Homework 2 - LL Parsing - Solution

Objectives

- 1. Demonstrate an ability to convert a grammar into an equivalent LL grammar.
- 2. Demonstrate an ability to produce an LR automata from a grammar.

LL Problems

(5 pts. each) For each of these grammars, convert it to an equivalent LL grammar or else assert that it is already LL.

Problems	Solutions		
S ::= x E z E E b E c	S ::= x E		
2 2 2 y E E ::= S a x a	Already LL		
S ::= x E x E y z E ::= a E b	S ::= x E S' z S' ::= y eps E ::= a E b		

LR Problem

Consider the following grammar:

```
1 S ::= (SS)
2 | * V
3 V ::= * V
4 | p
```

Part 1

(5 pts.) First, calculate the first and follow sets for the non-terminals of the grammar.

```
First(S) = { ( , * }
First(V) = { * , p }

Follow(S) = { ( , * , ) , $ }
Follow(V) = { ( , * , ) , $ }
```

Part 2

(30 pts.) Now, describe the LR automata for the grammar by listing the item sets (states) and filling out the action and goto tables.

States

```
0. S ::= . (SS)
  S ::= . * V
1. S ::= ( . S S )
  S ::= . ( S S )
  S ::= . * V
2. S ::= * . V
  V ::= . * V
  V ::= . p
3. S ::= (S.S)
  S ::= . ( S S )
  S ::= . * V
4. S ::= * V .
5. V ::= * . V
  V ::= . * V
  V ::= . p
6. V := p.
7. S ::= (S S .)
8. V ::= * V.
9. S ::= (SS).
```

Action

	р	*	()	\$
0		S	S		
1		\mathbf{S}	\mathbf{S}		
2	\mathbf{S}	\mathbf{S}			
3		\mathbf{S}	\mathbf{S}		
4		R2	R2	R2	R2
5	\mathbf{S}	\mathbf{S}			
6		R4	R4	R4	R4
7				\mathbf{S}	
8		R3	R3	R3	R4
9		R1	R1	R1	R1

Goto

	р	*	()	\$ S	V
0		2	1			
1		2	1		3	
2	6	5				4
3		2	1		7	
2 3 4						
5	6	5				8
6						
7 8				9		
8						
9						