Systemtheorie und Regelungstechnik 1 – Abschlussklausur

Prof. Dr. Moritz Diehl, IMTEK, Universität Freiburg, und ESAT-STADIUS, KU Leuven March 17, 2014, 9:15-11:45, Freiburg, Georges-Koehler-Allee 082, Kinohörsaal

page	0	1	2	3	4	5	6	7	8	9
points on page (max)	0	7	9	9	9	5	4	7	5	0
points obtained										
intermediate sum										

Note:	Klausur eingesehen am:	Unterschrift des Prüfers:	
Nachname:	Vorname:	Matrikelnummer:	
Fach:	Studiengang:	Bachelor Master Lehramt Sonstiges	
Unterschrift:			

Füllen Sie bitte Ihren Namen und die anderen Angaben oben ein. Auf dieser und den folgenden 8 Seiten finden Sie 36 Fragen mit zusammen 55 Punkten. Geben Sie die Antworten direkt unter den Fragen an oder nutzen Sie bei Bedarf die Rückseite **desselben Blattes** für Ergebnisse, die in die Korrektur einfliessen sollen; verweisen Sie zudem direkt bei der Frage im Hauptteil auf die Rückseite. Sie können weißes Papier für Zwischenrechnungen verwenden, aber bitte geben Sie dieses Extrapapier nicht ab. Als Hilfsmittel sind neben Schreibmaterial und einem Taschenrechner auch zwei doppelseitige Blätter mit Formelsammlung und Notizen erlaubt; einige juristische Hinweise finden sich in einer Fußnote. Machen Sie bei den Multiple-Choice Fragen jeweils genau ein Kreuz bei der richtigen Antwort, wofür es einen Punkt gibt. Beantworten Sie zunächst die Ihnen einfach fallenden Fragen. Wenn Sie pro Punkt zwei Minuten Zeit rechnen, sind Sie nach einer Stunde und 50 Minuten fertig.

i...) der Behalzung interli zugefasserler Imstituter (Skript, Buch, Mobineton, ...) zu beeinhausen, wird die beterheide Trüdingsteitung im Fincht aussteinend (5,0) und dem Vermerk "Täuschung" bewertet. Als Versuch gilt bei schriftlichen Prüfungen und Studienleistungen bereits der Besitz nicht zugelassener Hilfsmittel während und nach der Ausgabe der Prüfungsaufgaben. Sollten Sie den ordnungsgemäßen Ablauf der Prüfung stören, werden Sie vom Prüfer/Aufsichtsführenden von der Fortsetzung der Prüfung ausgeschlossen. Die Prüfung wird mit "nicht ausreichend" (5,0) mit dem Vermerk "Störung" bewertet.

¹PRÜFUNGSUNFÄHIGKEIT: Durch den Antritt dieser Prüfung erklaren Sie sich für prüfungsfähig. Sollten Sie sich während der Prüfung nicht prüfungsfähig fühlen, können Sie aus gesundheitlichen Gründen auch während der Prüfung von dieser zurücktreten. Gemäß den Prüfungsordnungen sind Sie verpflichtet, die für den Rücktritt oder das Versäumnis geltend gemachten Gründe unverzüglich (innerhalb von 3 Tagen) dem Prüfungsamt durch ein Attest mit der Angabe der Symptome schriftlich anzuzeigen und glaubhaft zu machen. Weitere Informationen: https://www.tf.uni-freiburg.de/studium/pruefungen/pruefungsunfaehigkeit.html.
TÄUSCHUNG/STÖRUNG: Sofern Sie versuchen, während der Prüfung das Ergebnis ihrer Prüfungsleistung durch Täuschung (Abschreiben von Kommilitonen ...) oder Benutzung nicht zugelassener Hilfsmittel (Skript, Buch, Mobiltelefon, ...) zu beeinflussen, wird die betreffende Prüfungsleistung mit "nicht ausreichend"

1.	Ein LTI-System wird durch die Zustandsgleichung $\dot{x}=Ax-1$ mit $A=\begin{bmatrix} -1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & -3 \end{bmatrix},\ B=\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix},$ und $C=\begin{bmatrix} 2 & 0 & 0 \\ 1 & 1 \end{bmatrix}$	$+Bu, y = Cx$ beschrieben, $\Big]$.
	(a) Was ist das charakteristische Polynom $p_A(\lambda)$?	
	$p_A(\lambda) =$	
	(b) Ist das System stabil?	
	(a) Ja	(b) Nein
	(c) (*) Ist das System "steuerbar"? Begründen Sie.	
	(d) (*) Ist das System "beobachtbar"? Begründen Sie.	
2.	Ein LTI-System hat die Sprungantwort $h(t) = \cos(t)$ (und h	f(t) = 0 für $t < 0$). Was ist seine Impulsantwort $g(t)$?
		$ (c) \delta(t) - \sin(t) $ $ (d) \delta(t) + \sin(t)$
3.	Ein LTI-System hat die Impulsantwort $g(t)=(1+t)^{-2}$ für (a) Ja	
4.	Ein System ist durch die gewöhnliche Differentialgleichung und/oder zeitinvariant?	$g \ \ddot{y}(t) = \sin(t) \cdot u(t) \cdot y(t)$ beschrieben. Ist das System $linear$
	(a) nur linear	(b) nur zeitinvariant
	(c) linear und zeitinvariant	(d) keines von beiden
		points on page: 7

٥.	linear und/oder zeitinvariant?	arstending $y(t) = \int_0^t g(\tau) u(t-\tau) d\tau$ beschileben. Ist das System
	(a) nur linear	(b) nur zeitinvariant
	(c) linear und zeitinvariant	(d) keines von beiden
6.	Ein System in Eingangs-Ausgangsform ist durch die Dars linear und/oder zeitinvariant?	stellung $y(t)=\int_0^\infty g(\tau)\exp(u(t-\tau))\mathrm{d}\tau$ beschrieben. Ist das System
	(a) nur linear	(b) nur zeitinvariant
	(c) linear und zeitinvariant	(d) keines von beiden
7.	Welche Transferfunktion $G(s)$ hat das LTI-System $\dot{x}_1(t)$	$= -x_1(t) + u(t), \dot{x}_2(t) = -x_2(t) + 2x_1(t), y(t) = x_2(t) + u(t)?$
	(a) $\frac{s^2 + 2s + 2}{s^2 + 2s + 1}$ (b) $\frac{s^2 + 2s + 3}{s^2 + s}$	(c) $\frac{s^2+2s+2}{s^2+s}$ (d) $\frac{s^2+2s+3}{s^2+2s+1}$
8.	Welches System wird durch die Übertragungsfunktion G $(a) \qquad 3y = 2\ddot{u} + \dot{u} + u \qquad (b) \qquad 2\ddot{y} + \dot{y} + y = 3$	
0		
9.	Hintereinanderschaltung von $G_1(s) = \frac{5}{s+2}$ und $G_2(s) = \frac{5}{s+2}$	
	(a) $\frac{5}{s^3+2s^2+s+2}$ (b) $\frac{5s^2+s+7}{s^3+2s^2+s+2}$	$(c) \qquad \frac{6}{s^2+s+3} \qquad (d) \qquad \frac{s+2}{5s^2+5}$
10.	Ist die folgende Aussage richtig oder falsch? "Eine Totze	eit ändert den Bode-Amplitudenplot eines Systems nicht".
	(a) Richtig	(b) Falsch
11.	Ist die folgende Aussage richtig oder falsch? "Bei einem	LTI System ist der Amplitudenverlauf immer monoton fallend".
	(a) Richtig	(b) Falsch
12.	Ist die folgende Aussage richtig oder falsch? "Ein Syste mehr als -180 Grad beträgt".	em ist stabil, wenn beim 0dB-Durchgang der Amplitude seine Phase
	(a) Richtig	(b) Falsch
13.	Ist die folgende Aussage richtig oder falsch? "Ein Syster gemacht werden".	m, das steuerbar ist, kann durch Zustandsfeedback auch immer stabi
	(a) Richtig	(b) Falsch
		points on page: 9

	Die Obertragungsfunktion G	$\dot{x}(s)$ eines SISO Systems $\dot{x}=$	$Fx + Gu, y = \pi x$ ist geg	geben durch:
	(a) $H(sI-G)^{-1}F$	(b) $H(G - sI)^{-1}F$	(c) $H(sI-F)^{-1}G$	$(d) \qquad H(F-sI)^{-1}G$
15.	Der Bode-Phasenplot eines I	Differentiationssgliedes ist kons	stant und hat den folgenden Wer	t:
	(a) 90 Grad	(b) 0 Grad	(c)90 Grad	(d)180 Grad
16.	Der Bode-Phasenplot eines I	PT1-Gliedes $G(s) = \frac{1}{1+Ts}$ ist f	ür hohe Frequenzen konstant un	d hat den folgenden Wert:
	(a) 90 Grad	(b) 0 Grad	(c)90 Grad	(d)180 Grad
17.	Der Bode-Amplitudenplot ei	nes PT1-Gliedes $G(s) = \frac{1}{1+Ts}$	ist für niedrige Frequenzen kon	stant und hat den folgenden Wert
	(a)20 dB	(b) 0 dB	(c) 20 dB	(d) 40 dB
18.	Der Bode-Amplitudenplot ei Dekade = dB/Dek):	ines PT2-Gliedes $G(s) = \frac{1}{1+2T}$	$\frac{1}{(s+T^2s^2)}$ hat für hohe Frequenzen	die folgende Steigung (in dB pro
	(a) -1 dB/Dek	(b) -20 dB/Dek	(c) -40 dB/Dek	(d)60 dB/Dek
19.	Betrachten Sie die offene Ko feedback). Was ist der Stead	ette $G_0(s) = \frac{s+19}{s+1}$ und den dar y-State Fehler des geschlossene	raus resultierenden geschlossenden Kreises?	en Kreis (mit negativem Einheits
	(a) 5%	(b) 6%	(c) 10%	(d) 19%
				$u_{\rm ss}$ einstellt.
	$y_{ m ss} =$			
	(b) Linearisieren Sie das S	ystem im Punkt $(u_{\rm ss},y_{\rm ss})$, um ϵ d $\Delta u(t)=u(t)-u_{\rm ss}$ zu erhalt	eine lineare Differentialgleichun een.	1
	(b) Linearisieren Sie das S			1
	(b) Linearisieren Sie das S $\Delta y(t) = y(t) - y_{\rm ss} \ {\rm un}$ $\Delta \dot{y}(t) =$		en.	g in den Variablen
	(b) Linearisieren Sie das S $\Delta y(t) = y(t) - y_{\rm ss} \ {\rm un}$ $\Delta \dot{y}(t) =$	d $\Delta u(t)=u(t)-u_{\mathrm{ss}}$ zu erhalt	en.	g in den Variablen

Bild 1: Ein Bode-Diagramm: ²

Bild 2: Und vier Nyquist-Diagramme:

²Bildquelle: Üb. 3, HS12 Regelsysteme, M. Morari

Bild 3: Ein Nyquist-Diagramm:

Bild 4: Eine Sprungantwort:

Betrachten Sie das System mit dem Nyquist-Diagramm aus Bild 3, und entscheiden Sie, ob es das Nyquist Stabilitätskriterium erfüllt und wenn ja, mit welcher Amplituden- und Phasenreserve.

30. Welche Amplitudenreserve hat das System aus Bild 3 (in etwa)?

31. Welche Phasenreserve hat das System aus Bild 3 (in etwa)?

(a) keine	(b) 5 Grad	(c) 30 Grad	(d) 90 Grad
-----------	------------	-------------	-------------

32. Betrachten Sie das System mit der Sprungantwort aus Bild 4. Welcher Übertragungsfunktion G(s) entspricht es in etwa?

33. Skizzieren Sie das Bode-Diagramm des folgenden Systems: G(s) =

points on page: 5

34. Betrachten Sie das folgende System in Regelungsnormalform mit

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 3 & 1 & 2 \end{bmatrix} \quad \text{und} \quad B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.$$

Finden Sie (durch Rechnung auf Papier) eine Matrix K, so dass die Closed-Loop Systemmatrix $A_{\rm CL}=A-BK$ die drei (stabilen) Eigenwerte -1, -2 und -3 hat.

4

points on page: 4

35.	Betrachten Sie ein einfaches mechanisches System wie z.B. die Geschwindigkeit eines Rotors, das $u(t)$ beschrieben wird. Wenn man den Zeitverlauf von $u(t)$ und $y(t)$ messen kann, dann sollte man $\dot{y}(t)$ schätzen können. Bringen Sie das System in Zustandsform $\dot{x}=Ax+Bu,\ y=Cx$ mit Zustangeben Sie die allgemeine Formel für einen einen (Luenberger-)Beobachter an, der den unbekanntsschätzt. Wählen Sie zwei geignete Zahlen in der Matrix $L=(L_1,L_2)^{\top}$ und zeigen Sie Stabilität der Stabilität	n auch die (ndsvektor a en Zustand	Geschwindig $x = (y, \dot{y})^{\top}, \ x(t) \text{ durch } x$	gkeit und
	A =		1	
	B =		1	
	C =		1	
	$\dot{\hat{x}} =$		1	
	L =		1	
	Begründung der Wahl von L_1 und L_2 und Beweis der Stabilität des Beobachters:			
			1+1	
		points on 1	page: 7	

36.	Modellieren Sie die Temperatur $T(t)$ [K] und Wassermenge $m(t)$ [kg] in einem Waschbecken, der konstanten Temperatur $T_{\rm h}$ mit variabler Massenflussrate $u(t)$ [kg/s] einlaufen lassen. Neben den Wasserhahn gebe es auch einen Ausfluss, da der Stöpsel offen ist. Der Ausfluss habe die M wobei k_1 eine positive Konstante mit Einheit $\sqrt{\rm kg}/\rm s$ ist. Die Wärmekapazität des Wassers sei C gebe es Wärmeverluste an die Umgebung mit Wärmeverlustleistung $k_2Cm(t)(T(t)-T_0)$, wobe k_2 die Einheit 1/s habe und T_0 die Umgebungstemperatur ist. Skizzieren Sie das System, und find Differentialgleichung der Form $\dot{x}=f(x,u)$ mit $x=(m,T)^{\rm T}$. Tipp: verwenden Sie die Masse Energieerhaltung. Sie dürfen bei der Herleitung annehmen, dass die Masse $m(t)$ immer strikt positive Skizze mit Beschriftungen (Zustände und Zu- und Abflüsse):	dem Zufluss $u(t)$ de assenflussrate $k_1\sqrt{n}$ mit Einheit $\frac{\mathrm{J}}{\mathrm{kg}\cdot\mathrm{K}}$, un ei die positive Konst den Sie eine gewöhnlenerhaltung und Wär	$\frac{\text{urch}}{n(t)}$, d es cante liche
		2	
	Raum für Zwischenrechnungen und insbesondere die Wärme-Energieerhaltungsgleichung:		
		1	
	$\dot{m}(t)=$		
	$\dot{T}(t) =$	1	
	р	oints on page: 5	

Leeres Blatt für Zwischenrechnungen