6	l .	5	-> [5												
		5	-> (a/												
			->													
		5	->	A												
		A	->	a/	1											
		A	->	5/												
		14	->	H												
C-		_							1	0						
Q:						a	0	a	41	15						
		A	->	a	4											
			>			L										

Q 3. boolean valid = 1 int position=1 for i=0 to |out(2) |-1: boolean match = 0 for j = position to 121: ?7 out(2)[1]=2[1] position= jt1 match=1 b = 522 match the complexicity of the algorithm above is Ocnis and it could determine subvord n' is Onecu) or not. Since CTK algorithm is also having complexicity Och3), outcz) NL(la) 28 Och3).

