

SRM Institute of Science and Technology College of Engineering and Technology

DEPARTMENT OF MATHEMATICS

Set B

Slot C1

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu Academic Year: 2022-23 (ODD)

Test: CLAT-1 Course Code & Title: 18MAB302T- Discrete Mathematics for Engineers

Duration: 50 minutes Max. Marks: 25

Date: 9.9.2022

Course Articulation Matrix:

Year & Sem: III &V

At the end of this course, learners will be able to:			Program Outcomes (PO)											
Course Outcomes (CO)		Learning Bloom's Level	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Apply the concepts of set theory and its operations in data structures and mathematical modeling languages	4	3	3										
CO2	Solve problems using counting techniques and understanding the basics of number theory	4	3	3										
CO3	Comprehend and validate the logical arguments using concepts of inference theory	4	3	3										
CO4	Inculcate the curiosity for applying the concepts of algebraic structures to coding theory	4	3	3										
CO5	Apply graph theory techniques to solve wide variety of real world problems	4	3	3										
CO6	Acquire knowledge in mathematical reasoning, combinatorial analysis and discrete structures	4	3	3										

	Part - A							
	$(5 \times 1 = 5 \text{ Marks})$,			•	1		
Q.	Answer with choice variable	Marks	BL	CO	PO	PI		
No 1	a) Inverse law	1	1	1	2	Code 1.2.1		
2	d) 2 ^{mn}	1	1	1	2	1.2.1		
3	c) $(A \cap B) \cup (A \cap U) = A$	1	2	1	2	1.2.1		
4	d) {{1,2}, {3,4}, {5}}	1	2	1	2	1.2.1		
5	d) 16	1	2	1	2	1.2.1		
Part B (2*4= 8 marks)								
6	$M_{RUS} = \begin{pmatrix} 1 & 0 - 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix} \qquad M_{RNS} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} $ (4m)	4	3	1	2	1.2.1		
	$M_{p-1} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix} \qquad M_{R_1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix} $ (1m)							

7	Jor All a EA, (a,a) ER I. R is Replexive (1m) If (a,b) E R then (bp) ER I. R is Symmetric (1m) (2,3) ER and (3,1) ER But (2,1) & R: R is Not Franchitive (1m) So R is Not an equivalence (1m)	4	3	1	2	1.2.1
	Relation					
	Part – C		1			
	(1 x 12 = 12 Marks)					
8a	If $f(x_1)$ & $f(x_2)$ are both odd Then $2x_1-1=2x_2-1\Rightarrow x_1=x_2$ then $2x_1-1=2x_2-1\Rightarrow x_1=x_2$ then $2x_1-1=2x_2-1\Rightarrow x_1=x_2$ then $-2x_1=-2x_2\Rightarrow x_1=x_2$ the $-2x_1=-2x_2\Rightarrow x_1=x_2$ then $2x_1-1=x_2$ then $2x_$	6	4	1	2	1.2.1

8b		6	4	1	2	1.2.1
R = {	(0,07(0,2) (0,5) (0,10) (0,11)					
10.15	(2,2) (2,5)(2,10) (2,11) (2,15)					
(0)115	(5,10) (5,11)(5,15) (10,10) (10,11)					
(5,5)	(5, 10) (3) (15, 15) 2					
(10,15	(m,11) (11,15) (15,15) } (1m)					
For all	a EA, (a,a) ER.					
: R i	s Reflexive					
	12 and (6,9) E/2.					
701 (ab) El ana (s) Antisymmetric (sm)					
=>	a = b !. k 13 m (1 (3 m)					
	. 0 11 11010					
5) (4)	sa Pantial Order Relation (1m)					
:. R						
p /	5 mase Diagram					
	(1m)					
1	10					
1	5					
1	2					
•	0					1.2.1
9	compute till W4 (2m) (Pigi) WE	12	4	1	2	1.2.1
	(P,9;) WE					
K P						
2 1,	4 11 10 10 0					
	(4,3) (4,4) (0001)					
	2 (2,2) /1 0 1 1					
2. 2	0100					
	0001					
	(1011/(2m)					
2 1,4) 4 (1,4)(4,4) (1011)					
3/	0001					
	(1 0 1 1/(2M)					
A. 1,31	4 1,3,4 (1,1)(1,3)(14) (10 1)					
7. 7	(3,1) (3,3)(34) (0100)					
	(1 0 11/2m)					
- A	12(1,3)(1,4)(2,2)(3,1)(3,3)					
R = 30	17(1,3)(1,4)(2,2)(3,1)(3,3) 3,4)(4,1)(4,3)(4,4) 3 (2M)					