程序代写代做 CS编程辅导

Foundations of Computer Science

WeChat: cstutorcs

Lecture 16: Statistics Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

Outline

程序代写代做 CS编程辅导

Random Variables ar

Linearity of Expectat

Expected Time to SuWeChat: cstutorcs

Standard Deviation and Signment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

https://tutorcs.com

2

Outline

程序代写代做 CS编程辅导

Random Variables ar

ar W. a. Sation

Linearity of Expectat!

Expected Time to SuWeChat: cstutorcs

Standard Deviation a Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

https://tutorcs.com

3

Random Variables

程序代写代做 CS编程辅导

Definition

An (integer) randon \square is a function from Ω to \mathbb{Z} . number value with every outcome. In other words, it ass

Random variables are \mathbb{R}^{\bullet} noted by X, Y, Z, \dots

We extend arithmetic to random variables in the natural way.

Definition

Assignment Project Exam Help Given random variables X, Y and integer k:

Email: tutorcs@163.com

$$X + Y : \omega \mapsto X(\omega) + Y(\omega)$$

 $XQ:.749389476(\omega).Y(\omega)$
 $X - k : \omega \mapsto X(\omega) - k$

X = k: $\omega \mapsto X(\omega) - k$ https://tutorcs.com

Example

程序代写代做 CS编程辅导

Random variable X: f**⊣**olling one die

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

$$X(i) = i$$

Example

WeChat: cstutorcs

Random variable X_s : sum of rolling two dice

 $\Omega = \{(1,1), (1,2), \dots, (6,6)\}$ Assignment Project Exam Help

$$X_s((1,1)) = 2$$

$$X_s((1,1)) = 2$$
 $X_s((1,1))$ tutors $X_s((1,1)) = 2$ $X_s((1,1))$ $X_s((1,1))$

OO: 749389476

Question

Is
$$X_s = X + X$$
? No. https://tutorcs.com

 $X_s = X + Y$ where X and Y are independent and identically distributed (i.i.d)

Expectation

程序代写代做 CS编程辅导

Definition

The **expected value** [Illed "expectation" or "average") of a random variable X [Illed "expectation" or "average")

Assignment Project Exam Help

NB

Email: tutorcs@163.com

Expectation is a truly universal concept; it is the basis of all decision making, of equivalent gains and losses, in all actions under risk. Historically, a truly universal concept of expected value arose long before the notion of probability.

6

程序代写代做 CS编程辅导

Example

The expected value \

🧃 📆 g one die is:

$$E(X) = \frac{1}{6} \cdot 1 + \frac{1}{6} \cdot 2 + \dots + \frac{1}{6} \cdot 6 = 3.5$$
We Chat: cstutorcs

Assignment Project Exam Help

Example

Email: tutorcs@163.com

The expected sum when rolling two dice is

$$E(X_s) = \frac{1}{36} \cdot 2 + \frac{2}{htggs} \cdot 3 + \frac{6}{tut \circ r \circ s} \cdot 7 + \dots + \frac{1}{36} \cdot 12 = 7$$

7

程序代写代做 CS编程辅导

Example

RW: 9.3.3 Buy one lottery ticket for \$1. The only prize is \$1M. Each ticket has probability $6 \cdot 10^{\circ}$ of winning.

$$\Omega = \{win, lose\}$$
 Assignment of Society Examples $E(X_L) = 6 \cdot 10^{-7} \cdot \$999 \cdot 999 \cdot 10^{-7} \cdot 10^{-7} \cdot \$999 \cdot 999 \cdot 10^{-7} \cdot 10^{-7$

QQ: 749389476

Outline

程序代写代做 CS编程辅导

Linearity of Expectat!

Expected Time to SuWeChat: cstutorcs

Standard Deviation a Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

Linearity of expectation

程序代写代做 CS编程辅导

Theorem (linearity Theorem (linearity Theorem value)

For any random varia and integer k:

$$E(X+Y) = E(X) + E(Y) \qquad E(k \cdot X) = k \cdot E(X)$$

WeChat: cstutorcs

Assignment Project Exam Help

Example

The expected sum when it is th

$$E(X_s) = \frac{QQ}{2}(X_s^4) + \frac{9389476}{2} = 3.5 + 3.5 = 7$$

https://tutorcs.com

程序代写代做 CS编程辅导

Example

 $E(S_n)$, where $S_n \stackrel{\text{def}}{=} \mathbb{H}_{EADS}$ in n tosses

• 'hard way' $E(S_n) = \sum_{k=0}^n \square S_n$

since there are Wesepathcesubfrectosses with k HEADS, and each sequence has the probability $\frac{1}{2^n}$ Assignment Project Exam Help

$$= \frac{1}{2^n} \sum_{k=1}^n \frac{n}{k} \binom{n-1}{k-1} k = \frac{n}{k} \sum_{k=1}^{n-1} \binom{n-1}{k-1} = \frac{n}{2} \cdot 2^{n-1} = \frac{n}{2}$$

Qusing the 'binomial identity'
$$\sum_{k=0}^{n} {n \choose k} = 2^n$$

• 'easy way'

$$E(S_n) = E(S_1^1 + \frac{1}{n} \text{ttps} \frac{1}{n}) \text{ for } S_{i=1...n}^{com} E(S_1^i) = nE(S_1) = n \cdot \frac{1}{2}$$

Note: $S_n \stackrel{\text{def}}{=} |\text{HEADS in } n \text{ tosses}|$ while each $S_1^i \stackrel{\text{def}}{=} |\text{HEADS in } 1 \text{ toss}|$

Observations

程序代写代做 CS编程辅导

Fact

If $X_1, X_2, ..., X_n$ are independent, identically distributed random variables, then $E(X_1 \ \ \ \ \ \ \ \ \ \ \ \) = nE(X_1) = nE(X_1)$.

NB

Assignment Project Exam Help

 $X_1 + X_2 + \ldots + X_n$ Find aik 1 tatores of different random variables.

QQ: 749389476

Exercises

程序代写代做 CS编程辅导

Exercise

You face a quiz cons true/false questions, and your plan is to guess the appearance question (randomly, with probability 0.5 of beiled appearance). There are no negative marks, and answering four or more questions correctly suffices to pass. What is the probability of passing and what is the expected score?

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

Exercises

Exercise

程序代写代做 CS编程辅导

RW: 9.3.7

An urn has m + n = 3 s, $m \ge 0$ red and $n \ge 0$ blue.

7 marbles selected at the without replacement.

What is the expected of red marbles drawn?

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

Outline

程序代写代做 CS编程辅导

Linearity of Expectat!

Expected Time to SuWe Shat: cstutorcs

Standard Deviation a Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

Example

程序代写代做 CS编程辅导

Find the average waiting time for the first HEAD, with no upper bound on the 'duration below for all possible sequences of tosses, regardless of times TAILS occur initially).

$$A = E(X_w) = \sum_{k=1}^{\infty} k \cdot P(X_w = k) = \sum_{k=1}^{\infty} k \frac{1}{2^k}$$

$$\text{Wechhat}_{2}^{2} \text{cstugores} ...$$

Assignment Project Exam Help

This can be evaluated by breaking the sum into a sequence of geometric progressions

Expected time to success

There is also a recursive 'trick' for solving the sum 程序代与代数 CS编程辅导

$$A = \sum_{k=1}^{\infty} \frac{k}{2^k} = \sum_{k=1}^{\infty} \frac{k-1}{2^k} = \frac{1}{2^k} = \frac{1}{2} \sum_{k=1}^{\infty} \frac{k-1}{2^{k-1}} + 1 = \frac{1}{2}A + 1$$
Now $A = \frac{A}{2} + 1$ and $A = \frac{A}{2} + 1$

NB

WeChat: cstutorcs

A much simpler but equally valid argument is that you expect 'half' Assignment Project Exam Help a HEAD in 1 toss, so you ought to get a 'whole' HEAD in 2 tosses.

Email: tutorcs@163.com

QQ: 749389476

Theorem

If the probability of sutpess is to the first of the probability of sutpess is the probability of subpess is the probability o

- The expected number of (indep.) trials before 1 success is $\frac{1}{\rho}$
- The expected number of (indep.) trials before k successes is $\frac{k}{p}$

Exercise

程序代写代做 CS编程辅导

Exercise

RW: 9.4.12 A die is replection tile that firsts 4 appears. What is the expected waiting time?

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

程序代写代做 CS编程辅导

To find an object \mathcal{X} in the probability of $\mathcal{X} \in \mathcal{L}$ be p, hence there is 1-p likelihood. Desire absent altogether. Find the expected number of \mathbf{P} is a specific point operations.

If the element is in the list, then the number of comparisons averages to $\frac{1}{n}(1+\ldots+n)$, it absent we need n comparisons. The first case has probability on the recent $\frac{1}{n}$ amplifies $\frac{1}{n}$ $\frac{$

these we find

Email: tutorcs@163.com
$$E_n = p \frac{1 + \ldots + n}{n} + \frac{(1 - p)n}{QQ} = \frac{p}{38} \frac{n+1}{470} + (1-p)n = (1 - \frac{p}{2})n + \frac{p}{2}$$

As one would expect hings easing redeads to a lower E_n .

Success vs Expected value

程序代写代做 CS编程辅导

Question

Does high probability is success lead to a high expected value?

Generally, no.

WeChat: cstutorcs

Example

Assignment Project Exam Help

Buying more tickets in the lottery increases whire chances of winning, but the expected value of winnings decreases.

QQ: 749389476

程序代写代做 CS编程辅导

Example

Roulette (outcomes $0, 1, \dots, 36$). Win: $35 \times \text{bet}$

WeChat: cstutorcs

Strategy 1: Bet \$1 on a single number

• Probability of winning: Assignment Project Exam Help

• Expected winning $\frac{1}{37}$. (\$19) $\frac{2}{37}$ (\$19) $\frac{2}{37}$

QQ: 749389476

Example

程序代写代做 CS编程辅导

Roulette (outcomes (1, 1)). Win: 35 \times bet

Strategy 2: Place \$ 24 numbers, selected from among 0 to 36.

- Probability of winningiag7cstwoocs
- Expected winnings:
 - If one of the numbers comes up, with \$35 from the bet on that number and lose \$23 from the bets on the remaining numbers, thus collecting \$12.

 This happens with probability $\rho = \frac{24}{37}$.
 - With probability $q = \frac{13}{37}$ none of the numbers appear, leading to loss of \$2\frac{1}{4}ttps://tutorcs.com

So expected winnings are:

$$p \cdot \$12 - q \cdot \$24 = \$12\frac{24}{37} - \$24\frac{13}{37} = -\$\frac{24}{37} \approx -65c = 24 \times -2.7c$$

Gambler's ruin

程序代写代做 CS编程辅导

Many so-called 'winn strategy do somethin they provide a scheme for frequent relatively moderate very big loss.

It turns out (it is a formall theorem) that there can be no system that converts an 'unfair' game into a 'fair' one. In the language of decision theory, 'unfair' sentences a game whose individual bets have negative expectation Email: tutorcs@163.com

It can be easily checked that any individual bets on roulette, on lottery tickets or on job about 80% and commercially offered game have negative expected value.

Outline

程序代写代做 CS编程辅导

Random Variables ar

in the state of th

Linearity of Expectat

Expected Time to SuWeChat: cstutorcs

Standard Deviation and Signment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

Standard Deviation and Variance

Definition

程序代写代做 CS编程辅导

For random variable in the pected value (or: mean) $\mu = E(X)$, the standard deviates as

 $\mathbb{E}[X] = \mathbb{E}[X + \mathbb{E}((X - \mu)^2)]$

and the variance of WeChat: cstutorcs

Assignment Project Exam Help

Standard deviation and variable measure how spread out the values of a random variable are smaller σ^2 the more confident we can be that $X(\omega)$ is close to E(X), for a randomly selected ω .

https://tutorcs.com

NB

The variance can be calculated as $E((X - \mu)^2) = E(X^2) - \mu^2$

程序代写代做 CS编程辅导

Example

Random variable X_d

📜 f a rolled die

WeChat:Eastylorc3.5

$$E(X_d^2) = \frac{1}{6} \cdot 1 + \frac{1}{6} \cdot 4 + \frac{1}{6} \cdot 9 + \frac{1}{6} \cdot 16 + \frac{1}{6} \cdot 25 + \frac{1}{6} \cdot 36 = \frac{91}{6}$$
Email: 6utorcs @ 163.com

Hence,
$$\sigma^2 = \frac{QQ}{c} (\chi_d^{49}) = \frac{389476}{12} = \frac{35}{12}$$
 $\rightarrow \sigma \approx 1.71$ https://tutorcs.com

25

Exercises

程序代写代做 CS编程辅导

Exercises

RW: 9.5.10 (Supp) The endent experiments are performed.

P(1st experiment such 20.7

P(2nd experiment succeeds) = 0.2

Random variable X colorishatte assistation successful experiments.

- **Assignment Project Exam Help a** Expected value of X?
- Probability of exactly one success! 63.com
- © Probability of at Qoos ₹49389476ss?
- Variance of X? https://tutorcs.com