Electromagnetismo aplicado TB069 Guía de ejercicios de repaso

Ejercicio 1

Obtenga la expresión del campo eléctrico y del potencial en todo el espacio generado por un hilo infinito con distribución lineal de carga ρ_l .

Ejercicio 2

Obtenga la expresión del campo eléctrico y del potencial en todo el espacio generado por una superficie plana infinita con distribución superficial de carga ρ_s .

Ejercicio 3

Obtenga la expresión del campo eléctrico y del potencial en todo el espacio generado por un cilindro de radio a:

- 1) Con distribución superficial de carga ρ_s .
- 2) Con distribución volumétrica de carga ρ_v .

Ejercicio 4

Obtenga la expresión del campo eléctrico y del potencial en todo el espacio generado por una esfera de radio a:

- 1) Con distribución superficial de carga ρ_s .
- 2) Con distribución volumétrica de carga ρ_v .

Ejercicio 5

Obtenga la capacidad para las siguientes geometrías:

- 1) Cascarón esférico conductor de radio a rodeado de un cascarón esférico conductor de radio b, concéntrico y con un dieléctrico de permitividad relativa ε_r entre ambos cascarones.
- 2) Cilindro conductor de radio a rodeado de un cilindro conductor de radio b, concéntricos, de longitud l y con un dieléctrico de permitividad relativa ε_r entre ambos cilindros.
- 3) Dos placas conductoras paralelas circulares de radio a, separadas por una distancia d y con un dieléctrico de permitividad relativa ε_r entre ambas placas.

Ejercicio 6

Considere un cilindro conductor infinito de radio a inmerso en dos diferentes medios según se muestra en la figura. Si el conductor tiene una densidad superficial de carga ρ_s , determine el campo eléctrico y el vector de desplazamiento en todo el espacio.

Ejercicio 7

Un capacitor de placas paralelas de área A, separadas a una distancia d y con un dieléctrico de permitividad relativa ε_{r1} entre sus placas está conectado a una batería. Si aumenta la distancia d, determine si la energía almacenada por el capacitor aumenta o disminuye en las siguientes situaciones:

- 1) Se mantiene la batería conectada y aumenta d.
- 2) Se desconecta la batería y aumenta d

Ejercicio 8

Obtenga la expresión del campo magnético generado por un hilo conductor recto e infinito.

Ejercicio 9

Obtenga la expresión del campo magnético generado por un conductor recto infinito de radio a:

- 1) Con densidad de corriente uniforme J.
- 2) Con densidad de corriente superficial J_s .

Ejercicio 10

Obtenga la autoinductancia para las siguientes geometrías:

- 1) Espira cuadrada de lado a.
- 2) Espira circular de radio a.
- 3) Selenoide de radio a, longitud l y N espiras, en cuyo interior se tiene un material con permeabilidad margética μ .
- 4) Toroide de radio a, sección circular de radio b y N espiras, en cuyo interior se tiene un material con permeabilidad magnética μ .

Ejercicio 11

Un hilo conductor por el que circula una corriente I_1 es paralelo al plano de una espira rectangular por la que circula una corriente I_2 .

- Obtenga el módulo, dirección y sentido de la fuerza que actúa sobre la espira y sobre el hilo conductor.
- Obtenga el torque sobre la espira.

