Cartesian closed categories

Mario Román

<2018-07-01 Sun 11:30>

A **cartesian closed category** $\mathbb C$ can be defined as a category having a right adjoint of the unique functor to the terminal category $*: \mathbb C \to \mathbb 1$, a right adjoint of the diagonal functor $\Delta: \mathbb C \to \mathbb C \times \mathbb C$, and a right adjoint of $-\times A: \mathbb C \to \mathbb C$ for each $A \in \mathbb C$. These three adjoints correspond to the existence of a *terminal* object, binary *products* and *exponentials*.

These three rules match the three introduction rules for the simply typed lambda calculus. We interpret C as a context Γ and each morphism $a\colon C\to A$ as a term $\Gamma\vdash a\colon A$.

$$\frac{\Gamma \vdash a : A \qquad \Gamma \vdash b : B}{\Gamma \vdash \langle a, b \rangle : A \times B} \qquad \frac{\Gamma, a : A \vdash b : B}{\Gamma \vdash \langle \lambda a. b \rangle : A \to B}$$

Now, we should discuss if $\beta\text{-equivalence}$ corresponds to the equality between morphisms.