Chapter 3. Clustering

Contents

- Supervised vs. Unsupervised Learning
- Word Vectors
- Hierarchical Clustering
- Drawing the Dendrogram
- Column Clustering

- 대규모 데이터 세트에서 유사항목을 가진 그룹을 자동으로 검출하는 군집기법 소개
- Supervised Learning (지도학습)
 - 학습데이터에 레이블이 있는 경우
 - Classification
 - 결과값이 고정
 - KNN, Support Vector Machine, Decision Tree
 - Prediction
 - 결과값이 데이터세트의 범위 내 어떠한 값도 가능
 - Regression
- Unsupervised Learning (비지도학습)
 - 학습데이터에 레이블이 없는 경우
 - Clustering
 - 분할 기반 군집 모델: k-means, k-medoids, DBSCAN 등
 - 계층적 군집 모델

Supervised learning

An example training set for four visual categories.

- 분류(Classification)와 군집(Clustering) 비교
 - 분류 모델에서는 레이블이 있으나,
 - 군집 모델에서는 레이블이 없음

2. Word Vectors

- 군집용 데이터 준비
 - 상위 블로거 100명의 집합
 - -블로그 단어 빈도의 일부분

	"china"	"kids"	"music"	"yahoo"
Gothamist	0	3	3	0
Giga0M	6	0	0	2
Quick Online Tips	0	2	2	22

- 피드 내 단어 수 세기
 - 거의 모든 블로그는 RSS feeds를 통해 온라인 에서 읽을 수 있음
 - RSS feeds
 - 간단한 XML 문서로, 블로그에 대한 정보 포함
 - Universal Feed Parser
 - 제목, 링크, 게시글을 RSS나 Atom feed을 통해 쉽 게 획득케 함
 - http://www.feedparser.org
 - RSS와 Atom feed는 제목과 엔트리 목록으로 구성
 - 각 엔트리는 summary나 description로 구성

```
import feedparser
import re
# Returns title and dictionary of word counts for an RSS feed
def getwordcounts(url):
 # Parse the feed
 d=feedparser.parse(url)
 wc={ }
 # Loop over all the entries
  for e in d.entries:
    if 'summary' in e: summary=e.summary
    else: summary=e.description
    # Extract a list of words
    words=getwords(e.title+' '+summary)
    for word in words:
     wc.setdefault(word,0)
     wc[word] += 1
  return d.feed.title, wc
def getwords(html):
 # Remove all the HTML tags
 txt=re.compile(r'<[^>]+>').sub('',html)
 # Split words by all non-alpha characters
 words=re.compile(r'[^A-Z^a-z]+').split(txt)
  # Convert to lowercase
  return [word.lower() for word in words if word!=""]
```

- 피드 목록
 - 직접 만들거나,
 - feedlist.txt 사용
 - 99개의 RSS URL 포함
 - 피드별로 루프를 돌고 데이터 세트를 생성하는 코드
 - generatefeedvector.py

```
apcount={}
wordcounts={}
feedlist=[line for line in file('feedlist.txt')]
for feedurl in feedlist:
  try:
    title, wc=getwordcounts (feedurl)
    wordcounts[title]=wc
    for word, count in wc.items():
      apcount.setdefault(word,0)
      if count>1:
        apcount[word]+=1
  except:
   print 'Failed to parse feed %s' % feedurl
wordlist=[]
for w,bc in apcount.items():
  frac=float(bc)/len(feedlist)
  if frac>0.1 and frac<0.5:
    wordlist.append(w)
out=file('blogdata1.txt','w')
out.write('Blog')
for word in wordlist: out.write('\t%s' % word)
out.write('\n')
for b,wc in wordcounts.items():
 blog = b.encode('utf-8')
  print blog
  out.write(blog)
  for word in wordlist:
    if word in wc: out.write('\t%d' % wc[word])
    else: out.write('\t0')
  out.write('\n')
```

3. 계층적 군집화

- 가장 유사한 두 그룹을 계속 병합하는 방 식으로 그룹 계층 생성
- 그룹들은 한 개 항목으로 시작
 - 개별 블로그에 해당
- 모든 그룹 쌍 간의 거리 계산 후 병합하여 새로운 그룹 생성
- 이 과정을 한 개 그룹만 남을 때까지 반복

- 계층적 군집화
 - 항목들의 상대 위치가 유사도라 가정

계층적 군집화 실행 모습

계층적 군집화를 시각화한 계통도 (dendrogram)

cluster.py

- 블로그 데이터 세트를 군집화해서 블로그 계 층도 생성 → 주제별 그룹
- Readfile
 - 데이터 파일을 읽는 함수

Pearson

- 두 개의 숫자목록을 취해 그들간 상관점수 계산
- 많은 단어가 있으므로 피어슨 계수가 적합
- 두 항목이 유사할 수록 적은 거리 값을 갖게 하기 위해 마지막 코드에 1.0에서 피어슨 계수 값을 뺌

Bicluster

• 클러스터의 위치 정보 표현

Hcluster

- 군집에서 가장 유사한 쌍을 합쳐 한 개의 단일 군 집 만듦
- 새로운 군집용 데이터는 앞의 두 군집들에 대한 데 이터의 평균값
- 이 과정을 단 한 개의 군집만 남을 때까지 반복 수행
 - 시간이 많이 걸림
 - 계산한 상관계수 계산 값을 저장해 두고 재활용

Printclust

- 군집 트리를 재귀적으로 방문하고 파일시스템 계 층과 같이 출력하는 함수
- 큰 데이터 세트인 경우 보기 불편

```
>>> from clusters import *
>>> blognames, words, data = readfile('blogdata1.txt')
>>> clust = hcluster(data)
>>> printclust(clust, labels=blognames)
    SpikedHumor - Today's Videos and Pictures
      Dave Shea's mezzoblue
            GoFugYourself
            Cool Hunting
            Instapundit.com (v.2)
                The Full Feed from HuffingtonPost.com
                Wired Top Stories
                Eschaton
                    Wonkette: The D.C. Gossip
                    The Blotter
                      Boing Boing
                        The Superficial - Because You're Ugly
```

4. 계통도 출력

- 계통도
 - -해석이 훨씬 편리
 - 비교적 적은 공간에 많은 정보 담음
 - 그래픽(JPG)으로 저장
 - http://pythonware.com에서 파이썬 이미지 라이브 러리 다운로드 : p.382
 - 텍스트와 선이 들어간 이미지 쉽게 생성

Python Imaging Library (PIL)

• 다운로드

– http://www.pythonware.com/products/pil/

```
>>> from PIL import Image, ImageDraw
>>> img = Image.new('RGB', (200, 200), (255, 255, 255))
>>> draw = ImageDraw.Draw(img)
>>> draw.line((20, 50, 150, 80), fill=(255, 0, 0))
>>> draw.line((150, 150, 20, 200), fill=(0, 255, 0))
>>> draw.text((40, 80), 'Hello!', (0, 0, 0))
>>> img.save('test.jpg', 'JPEG')

Hello!
```

Cluster.py

- Getheight
 - 주어진 군집의 전체 높이 리턴하는 함수
 - 이미지의 전체 높이 결정하기 위해
- Getdepth
 - 최상위 루트의 깊이 리턴하는 함수
- Drawdendrogram
 - 최종 군집마다 높이 20픽셀과 고정된 폭을 가진 이 미지 생성
- Drawnode
 - 자식 노드들의 높이를 계산하여 자신이 어디에 위 치하는지 위치 계산
 - 선길이가 짧을수록 두 군집이 좀 더 유사함

• 블로그 군집 계통도

>>> drawdendrogram(clust, blognames, jpeg='blogclust.jpg')

5. 세로줄 군집화 (Column Clustering)

- 블로그 데이터 세트
 - 가로줄: 블로그, 세로줄: 단어
- 이전 함수 그대로 사용
 - 세로줄이 가로줄이 되도록 전체 데이터 세트 회전
 - 특정 단어가 각 블로그에서 몇 회 출현했는가

```
def rotatematrix(data):
   newdata=[]
   for i in range(len(data[0])):
     newrow=[data[j][i] for j in range(len(data))]
     newdata.append(newrow)
   return newdata
```

```
>>> blognames, words, data = readfile('blogdata1.txt')
>>> rdata = rotatematrix(data)
>>> wordclust = hcluster(rdata)
>>> drawdendrogram(wordclust, labels=words, jpeg='wordclust.jpg')
```


- 변수에 비해 항목들이 훨씬 더 많은 경우
 - 의미없는 군집들이 증가
 - 블로그보다 단어가 더 많음
 - 단어 군집화보다 블로그 군집화에서 더 의미있는 패 턴 볼 수 있음

6. K-평균 군집화

- 계층적 군집화 기법
 - 결과를 트리 형태로 표현
 - 데이터를 뚜렷한 그룹으로 나누지 못함
 - 많은 계산 필요 : 큰 데이터 세트에서는 느림
- K-means Clustering
 - 사전에 생성할 군집의 개수(k) 지정
 - 무작위로 선정된 k개의 중심점 선정
 - 이 점에서 가장 근접한 항목들을 할당
 - 할당 후 할당된 노드들의 평균위치로 중심점 이동
 - 할당이 더 이상 없을 때까지 재할당 수행

• 2개의 군집을 가진 K평균 군집화 과정

Cluster.py

- Kcluster
 - 각 변수의 허용범위 내에서 군집들을 무작위로 생성 - 리턴 결과는 매번 달라짐
 - 매 반복마다 가로줄을 중심점 중의 하나에 할당
 - 중심점 데이터를 모든 할당점들의 평균값으로 갱신
 - 이전과 할당이 동일하면 이 과정 종료
 - K개의 목록 리턴
 - 계층적 군집화에 비해 빠르게 동작

- Kclust에 각 군집의 ID 목록이 담김
- K 값을 변경하여 실행해 볼 것

```
>>> kclust = kcluster(data, k=10)
Iteration 0
Iteration 1
Iteration 2
Iteration 3
>>> [blognames[r] for r in kclust[0]]
['Eschaton', 'Wonkette: The D.C. Gossip', 'Joho the Blog', 'Power Line', '
Michelle Malkin', 'Gothamist', 'Boing Boing', 'Crooks and Liars', 'Think P
rogress', 'Little Green Footballs', 'Instapundit.com (v.2)', 'NewsBusters.
org - Exposing Liberal Media Bias', 'The Daily Dish | By Andrew Sullivan',
'Gawker', 'Talking Points Memo']
>>> [blognames[r] for r in kclust[1]]
['Mashable!', 'we make money not art', 'ReadWriteWeb', 'Stepcase Lifehack'
, 'Giga Omni Media, Inc.', 'ScienceBlogs : Combined Feed', 'Lifehacker', '
SimpleBits', 'Micro Persuasion', 'MAKE Magazine', 'blog maverick', 'Techdi
rt', '456 Berea Street', 'Pharyngula', 'MetaFilter', 'ongoing', 'Oilman',
"Joi Ito's Web", 'plasticbaq.org', 'WWdN: In Exile']
```

7. 선호도 군집

- 소셜 네트워크 사이트
 - 사람들이 자발적으로 공헌한 대량의 데이터가 발생
 - Zebo 사이트 : http://www.zebo.com
 - 가진 물건 목록이나 가지고 싶은 물건 목록 구축
 - 선호도 정보로 활용 가능
- 데이터 얻기와 준비
 - Zebo 사이트에서 페이지 다운로드 받아 파싱 후 데이 터 세트 추출하거나,
 - 다운로드
 - http://kiwitobes.com/clusters/zebo.txt

Beautiful Soup

- 웹 페이지를 파싱하고 구조적 표현을 생성하는 라이브러리
- 유형, ID, 속성으로 페이지 요소에 접근 가능
 - 내용을 문자열로 얻음
- 다운로드
 - http://crummy.com/software/BeautifulSoup

```
C:\WINDOWS\system32\cmd.exe
C:\temp\BeautifulSoup.tar\BeautifulSoup-3.1.0.1python setup.py install
running install
running build
running build_py
creating build
creating build₩lib
copying BeautifulSoup.py -> build\lib
copying BeautifulSoupTests.py -> build₩lib
running build_scripts
creating build\scripts-2.6
copying testall.sh -> build\scripts-2.6
copying to3.sh -> build\scripts-2.6
running install_lib
copying build\lib\BeautifulSoup.py -> C:\Python26\Lib\site-packages
copying build\lib\BeautifulSoupTests.py -> C:\Python26\Lib\site-packages
byte-compiling C:\Python26\Lib\site-packages\BeautifulSoup.py to BeautifulSoup.p
byte-compiling C:\Python26\Lib\site-packages\BeautifulSoupTests.py to BeautifulS
oupTests.pyc
running install_scripts
copying build\scripts-2.6\testall.sh -> C:\Python26\Scripts
copying build\scripts-2.6\to3.sh -> C:\Python26\Scripts
running install_egg_info
Writing C:\Python26\Lib\site-packages\BeautifulSoup-3.1.0.1-py2.6.egg-info
```

- 수프(soup)

- Beautiful Soup가 웹 페이지를 표현하는 방식
- 예) 'a'와 같은 태그 유형으로 수프 호출
 - 해당 유형을 가진 객체 목록 리턴

```
>>> import urllib2
>>> from bs4 import BeautifulSoup
>>> c = urllib2.urlopen('http://www.daegu.ac.kr/')
>>> soup = BeautifulSoup(c.read())
>>> frames = soup('frame')
>>> len(frames)
2
>>> frames[1]
<frame frameborder="NO" name="mainFrame" scrolling="YES" src="http://www.daegu.ac.kr/web/index/index.asp" title="메인콘텐츠">
<!--frame name="mainFrame" src="/index_sugang.htm" frameborder="NO" scrolling="YES"-->
</frame>
>>> frames[1]['src']
u'http://www.daegu.ac.kr/web/index/index/index.asp'
```

- 거리 지표 결정
 - 피어슨 상관 지표
 - 값들이 실제 단어 출현 횟수인 블로그 데이터 세트 에서 잘 동작
 - 타니모토 계수(Tanimoto coefficient)
 - 두 집합 간의 유사도를 측정하는 지표
 - 두 항목을 원하는 사람간의 중첩도를 측정하는 지표 로 활용

$$T = \frac{N_c}{(N_a + N_b - N_c)}$$

 N_a 는 A에 있는 항목 수, N_b 는 B에 있는 항목 수, 그리고 N_c 는 교집합 C에 있는 항목 수

Example

```
A = { car, train, aircraft, ship }
B = { car, motorcycle, train }
```

$$T = \frac{N_c}{(N_a + N_b - N_c)}$$

 N_a 는 A에 있는 항목 수, N_b 는 B에 있는 항목 수, 그리고 N_c 는 교집합 C에 있는 항목 수

교집합 (는 {car, train }

타니모토 계수는 2/(4+3-2) = 2/5 = 0.4

```
def tanamoto(v1, v2):
    c1, c2, shr=0, 0, 0

    for i in range(len(v1)):
        if v1[i]!=0: c1+=1 # in v1
        if v2[i]!=0: c2+=1 # in v2
        if v1[i]!=0 and v2[i]!=0: shr+=1 # in both
    return 1.0-(float(shr)/(c1+c2-shr))
```

• 결과 군집화

-동일한 함수 사용

```
>>> wants, people, data = readfile('zebo.txt')
>>> wants
['bike', 'clothes', 'dvd player', 'phone', 'cell phone', 'dog', 'xbox 360', 'b
oyfriend', 'watch', 'laptop', 'love', '<b>car</b>', 'shoes', 'jeans', 'money',
'ps3', 'psp', 'puppy', 'house and lot', 'tv', 'family', 'food', 'house', 'hors
e', 'mobile', 'cds', 'playstation 3', 'mp3 player', 'ipod', 'digital camera',
'mansion', 'cellphone', 'computer', 'job', 'friends']
>>> people
['UO', 'U1', 'U2', 'U3', 'U4', 'U5', 'U6', 'U7', 'U8', 'U9', 'U10', 'U11', 'U1
2', 'U13', 'U14', 'U15', 'U16', 'U17', 'U18', 'U19', 'U20', 'U21', 'U22', 'U23'
```

- 원하는 소유물의 군집

>>> clust = hcluster(data, distance=tanamoto)
>>> drawdendrogram(clust, wants)

8. 2차원으로 데이터 보기

다차원 비례 축소법 (multidimensional scaling)

- 다차원 데이터 세트에 대한 2차원 표현을 찾 는데 사용
- 모든 항목 쌍의 차이값을 구하고 이 값과 항목 간 거리가 일치하도록 도표 만듦

• 블로그 데이터 세트의 경우 피어슨 상관 지표를 사용하여 항목간 비교 수행

Table 3-2. Sample distance matrix

	А	В	C	D
Α	0.0	0.2	0.8	0.7
В	0.2	0.0	0.9	0.8
C	0.8	0.9	0.0	0.1
D	0.7	0.8	0.1	0.0

1. 모든 항목을 2차원 도표 안에 임의로 위치

- 2. 모든 항목 간 현재 거리를 실제 거리(제곱차의 합)를 사용하여 계산
- 3. 모든 항목 쌍에 대해 목표 거리를 현재 거리와 비교하고 오류 값 계산
- 4. 오류 값을 줄이는 방향으로 항목 위치 조정
 - 모든 항목은 밀고 당기는 다른 모든 항목들의 조합 에 의해 이동
- 5. 항목을 움직여도 오류 값이 줄어들지 않을 때 까지 이 과정 반복

- Cluster.py
 - Scaledown
 - 데이터 벡터를 입력으로 받아 두 개의 세로줄 리턴 - 세로줄: 2차원 도표 안에서 항목들의 X, Y 좌표 값
 - Draw2d
 - 위의 결과를 PIL을 이용해서 모든 항목들의 라벨들을 새로운 좌표축에 출력

```
>>> blognames, words, data = readfile('blogdata.txt')
>>> coords = scaledown(data)
4544.95881636
3548.40985742
3467.64057261
3422.73085624
```

>>> draw2d(coords, blognames, jpeg='blogs2d.jpg')

```
| March | Marc
```

9. 군집 가능한 다른 것들

• 생각해 보기

Classification: Linear Regression

References

- Hackeling, Gavin (2014). **Mastering Machine Learning with scikit-learn**. Packt Publishing.
- HKUST Prof. Kim's Lectures
 - http://hunkim.github.io/ml/
- Andrew Ng's ML class
 - https://class.coursera.org/ml-003/lecture
 - http://www.holehouse.org/mlclass/ (note)
- Convolutional Neural Networks for Visual Recognition.
 - http://cs231n.github.io/
- Tensorflow
 - https://www.tensorflow.org
 - https://github.com/aymericdamien/TensorFlow-Examples

Training data set

Training data and test data

Training set

 Composed of past observations of explanatory variables and their corresponding response variables

Test set

 Similar collection of observations that is used to evaluate the performance of the model

Types of supervised learning

- Predicting final exam score based on time spent
 - regression
- Pass/non-pass based on time spent
 - binary classification
- Letter grade (A, B, C, D and F) based on time spent
 - multi-label classification

Predicting final exam score based on time spent

Pass/non-pass based on time spent

x (hours)	y (pass/fail)	
10	Р	
9	Р	Binary Classification
3	F	Dinary Classification
2	F	

Letter grade (A, B, ...) based on time spent

x (hours)	y (grade)	
10	Α	
9	В	Multi-label Classification
3	D	Multi-laber Classification
2	F	

Predicting exam score: Regression

Regression

x	Υ
1	1
2	2
3	3

data

presentation

(Linear) Hypothesis

$$\frac{H(x)}{$$
가설} = $Wx + b$

Which hypothesis is better?

Cost function (= Loss function)

Cost function

$$\frac{(H(x^{(1)}) - y^{(1)})^2 + (H(x^{(2)}) - y^{(2)})^2 + (H(x^{(3)}) - y^{(3)})^2}{3}$$

$$cost = \frac{1}{m} \sum_{i=1}^{m} (H(x^{(i)}) - y^{(i)})^{2}$$

m: 학습데이터의 개수

Cost function

$$cost = \frac{1}{m} \sum_{i=1}^{m} (H(x^{(i)}) - y^{(i)})^{2}$$

$$H(x) = Wx + b$$

$$cost(W, b) = \frac{1}{m} \sum_{i=1}^{m} (H(x^{(i)}) - y^{(i)})^2$$

$$\underset{W,b}{\operatorname{minimize}} \cos t(W,b)$$

Cost 함수의 값을 최소화하는 W, b를 구하는 것이 학습의 목표

An introduction to scikit-learn

Scikit-learn

- Open source machine learning libraries for Python
 - NumPy
 - support efficient operations on large arrays and multidimensional matrices
 - Matplotlib
 - provides visualization tools
 - SciPy
 - provides modules for scientific computing

- Wraps some popular implementations of machine learning algorithms
 - such as LIBSVM and LIBLINEAR
- Licensed under the permissive BSD license
 - scikit-learn can be used in commercial applications without restrictions

Installing scikit-learn

Python

- https://www.python.org/downloads/

Scikit-learn

- http://scikit-learn.org/stable/install.html
- 설치
 - Python2.7용(32bit) 5개 실행파일 설치 후,
 - pip install six
 - pip install python-dateutil
 - pip install pyparsing

```
- - X
 관리자: C:₩windows₩system32₩cmd.exe - python
C:\Users\Administrator\pip install scikit-learn
Collecting scikit-learn
 Downloading scikit_learn-0.17.1-cp27-cp27m-win32.whl (3.1MB)
   Installing collected packages: scikit-learn
Successfully installed scikit-learn-0.17.1
C:\Users\Administrator\python
Enthought Canopy Python 2.7.11 | 32-bit | (default, Jun 11 2016, 11:34:14) [MSC
v.1500 32 bit (Intel)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import sklearn
>>> sklearn.__version
'0.17.1'
```

Installing pandas and matplotlib

Pandas

- Open source library that provides data structures and analysis tools for Python
- http://pandas.pydata.org/getpandas.html

Matplotlib

- library used to easily create plots, histograms, and other charts with Python
- http://matplotlib.org/downloads.html

Lab with scikit-learn

- Simple linear regression
 - Ex) Write a program with scikit-learn
 - predict the price of a pizza given its size

 Training data 	X	Y
Training instance	Diameter (in inches)	Price (in dollars)
1	6	7
2	8	9
3	10	13
4	14	17.5
5	18	18

 visualize our training data by plotting it on a graph using matplotlib:

```
import matplotlib.pyplot as plt

X = [[6], [8], [10], [14], [18]]
Y = [[7], [9], [13], [17.5], [18]]

plt.figure()
plt.title('Pizza price plotted against diameter')
plt.xlabel('Diameter in inches')
plt.ylabel('Price in dollars')
plt.plot(X, Y, 'k.')
plt.axis([0, 25, 0, 25])
plt.grid(True)
plt.show()
```

 pizza-price predictor program using linear regression

sklearn2.py

```
from sklearn.linear_model import LinearRegression

# training data
X = [[6], [8], [10], [14], [18]]
Y = [[7], [9], [13], [17.5], [18]]

# create and fit the model
model = LinearRegression()
model.fit(X, Y)

# predict
print '12" pizza should cost: $%.2f' % model.predict([12])
```

```
12" pizza should cost: $13.68
```

- sklearn.linear_model.LinearRegression class is an estimator
 - Estimators predict a value based on the observed data
- In scikit-learn, all estimators implement the fit() and predict() methods
 - fit() method is used to learn the parameters of a model
 - predict() method is used to predict the value of a response variable for an explanatory variable using the learned parameters

• **fit()** method of LinearRegression learns the parameters of the following model

$$y = \alpha + \beta x$$

How to minimize cost

Hypothesis and Cost

$$H(x) = Wx + b$$

$$cost(W,b)=rac{1}{m}\sum_{i=1}^m(H(x^{(i)})-y^{(i)})^2$$
 cost를 최소화하는 W, b 찾기

• Simplified hypothesis

$$H(x) = Wx \ \leftarrow$$
 문제를 간략화 하기 위해 b를 생략

$$cost(W) = \frac{1}{m} \sum_{i=1}^{m} (Wx^{(i)} - y^{(i)})^2$$

What cost(W) looks like?

$$cost(W) = \frac{1}{m} \sum_{i=1}^{m} (Wx^{(i)} - y^{(i)})^2$$

×	Υ
1	1
2	2
3	3

• W=1, cost(W)=?

$$((1 * 1 - 1)^2 + (1 * 2 - 2)^2 + (1 * 3 - 3)^2) / 3 = 0$$

What cost(W) looks like?

$$cost(W) = \frac{1}{m} \sum_{i=1}^{m} (Wx^{(i)} - y^{(i)})^2$$

×	Υ
1	1
2	2
3	3

$$\frac{1}{3}((1*1-1)^2 + (1*2-2)^2 + (1*3-3)^2)$$

• W=0, cost(W)=4.67

$$\frac{1}{3}((0*1-1)^2 + (0*2-2)^2 + (0*3-3)^2)$$

How to minimize cost?

- W=I, cost(W)=0
- W=0, cost(W)=4.67
- W=2, cost(W)=4.67

$$cost(W) = \frac{1}{m} \sum_{i=1}^{m} (Wx^{(i)} - y^{(i)})^2$$

Gradient descent algorithm

- 경사를 따라 내려가는 알고리즘
- Minimize cost function
- Gradient descent is used many minimization problems
- For a given cost function, cost (W, b), it will find W, b
 to minimize cost
- It can be applied to more general function:
 - cost (w1, w2, ...)

How it works?

How would you find the lowest point?

How it works?

- Start with initial guesses
 - Start at 0.0 (or any other value)
 - Keeping changing W and b a little bit to try and reduce cost(W, b)
- Each time you change the parameters, you select the gradient which reduces cost(W, b) the most possible
- Repeat
- Do so until you converge to a local minimum
- Has an interesting property
 - Where you start can determine which minimum you end up

Formal definition

$$cost(W) = \frac{1}{m} \sum_{i=1}^{m} (Wx^{(i)} - y^{(i)})^2$$

$$cost(W) = \frac{1}{2m} \sum_{i=1}^{m} (Wx^{(i)} - y^{(i)})^{2}$$

- 미분을 쉽게 적용하기 위해 cost함수를 2로 나눔
- 1/m을 최소화하는 것이나 1/2m을 최소화하는 것이나 동일하기 때문

$$cost(W) = \frac{1}{2m} \sum_{i=1}^{m} (Wx^{(i)} - y^{(i)})^2$$

$$W := W - \alpha \frac{\partial}{\partial W} cost(W)$$

Learning rate, constant 즉. W의 이동속도 또는 변화속도 cost(W)함수를 미분한 결과

• cost(W) 함수를 미분하는 절차

$$W := W - \alpha \frac{\partial}{\partial W} \frac{1}{2m} \sum_{i=1}^{m} (Wx^{(i)} - y^{(i)})^2$$

$$W := W - \alpha \frac{1}{2m} \sum_{i=1}^{m} 2(Wx^{(i)} - y^{(i)})x^{(i)}$$

$$W := W - \alpha \frac{1}{m} \sum_{i=1}^{m} (Wx^{(i)} - y^{(i)})x^{(i)}$$

W 학습 알고리즘 → Gradient descent algorithm

Derivative Calculator

http://www.derivative-calculator.net/

Linear regression이 제대로 동작하지 않는 경우

From: http://www.holehouse.org/mlclass,

Convex function

 Linear regression이 제대로 적용되려면 cost 함수가 convex function이 되는지를 확인해야 함

From: http://www.holehouse.org/mlclass/