دورة سنة ٢٠٠٥ الاستثنائية

وزارة التربية والتعليم العالى المديرية العامة للتربية فرع العلوم العامة دائرة الامتحانات

مسابقة في مادة الرياضيات الاسم: المدة: أربع ساعات الرقم:

عدد المسائل: ستة

ملاحظة: يُسمح بإستعمال آلة حاسبة غير قابلة للبرمجة أو إختزان المعلومات أو رسم البيانات. يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة)

I-(1,5 pts.)

Dans le tableau suivant, une seule des réponses proposées à chaque question est correcte. Ecrire le numéro de chaque question et donner, en justifiant, la réponse qui lui correspond.

N°	Questions	Réponses			
		a	b	С	d
1	La solution particulière de l'équation différentielle $y' - \frac{1}{2}y = 0$, qui vérifie $y(-2) = 1$, est :	$y=-2e^{\frac{x}{2}}$	$y=e^{\frac{x}{2}+1}$	$y = 2\cos x - \sin x$	$y = \sqrt{x^2 - 3}$
2	$f(x) = 2\sin(\pi x + 2).$ La période de f est : $T =$	π	2	2 π	$\frac{\pi}{2}$
3	L'équation 2lnx = ln(2x) admet :	2 racines	Une racine unique	Aucune racine	3 racines
4	Si $f(x) = \ln -3x $, alors $f'(x) =$	$\frac{3}{x}$	$\frac{-3}{x}$	$\frac{1}{ x }$	$\frac{1}{x}$
5	$e^{\frac{1}{2}\ln 9} \times e^{-\ln \frac{1}{3}} =$	e^3	6	$e^{\frac{3}{2}}$	9
6	$\cos^2(\frac{1}{2}\arccos x) =$	$\frac{1+x}{2}$	$1+\frac{x}{2}$	$\frac{1}{2}x$	$(1+x)^2$

II-(2,5points)

Dans l'espace rapporté à un repère orthonormé direct (O; i, j, k), on donne :

le point A(2; -2; 0), le plan (P) d'équation x + y - 2z + 2 = 0

et la droite (d) définie par :
$$\begin{cases} x = t+1 \\ y = -2 \ t \\ z = -t +1 \end{cases}$$
 (t est un paramètre réel).

On désigne par H le projeté orthogonal du point A sur le plan (P).

- 1) a- Déterminer les coordonnées de B, point d'intersection de la droite (d) avec le plan (P).
 - b- Vérifier que A est un point de (d).
 - c- Ecrire une équation du plan (Q) contenant la droite (d) et perpendiculaire au plan (P) et en déduire un système d'équations paramétriques de la droite (BH) .
 - d- Calculer la distance de A à (P).
- 2) a- Calculer le sinus de l'angle ABH.
 - b- Calculer l'aire du triangle ABH.

III- (3points)

Dans un plan orienté, on donne un triangle équilatéral direct ABC de côté 4 cm.

On désigne par E et I les milieux respectifs de [AB] et [AC]. Soit S la similitude plane directe qui transforme A en E et E en C.

- 1) a- Déterminer le rapport et un angle de S.
 - b- Construire l'image par S de chacune des droites (AC) et (EI) et en déduire l'image de I par S.
- 2) Le plan est supposé rapporté à un repère orthonormé direct (A; u, v) où $u = \frac{1}{4}AB$.
 - a- Donner la forme complexe de S.
 - b- Trouver l'affixe du point W centre de S.
 - c- Démontrer que W est un point de [AC].
 - d- On désigne par J l'image de I par SoS, comparer WC et WJ.

IV- (3points)

Un porte-monnaie contient exactement :

quatre billets de 10 000 LL, deux billets de 50 000 LL et trois billets de 100 000 LL.

A- On tire simultanément et au hasard trois billets de ce porte-monnaie.

- 1) Quelle est la probabilité de l'événement E : « tirer trois billets de 100 000 LL. »?
- 2) Quelle est la probabilité de l'événement F: « tirer deux billets de 10 000 LL et un billet de 50 000 LL. » ?
- **B** On désire régler un achat de 100 000 LL. Pour cela on tire du porte-monnaie au hasard, **un à un**, et **sans remise**, des billets jusqu'à obtenir une somme égale au moins à 100 000 LL. On appelle X la variable aléatoire égale au nombre de billets qu'on a dû ainsi tirer du porte-monnaie.
 - 1) a- Calculer les probabilités suivantes : p(X = 1) et p(X = 2). b- Justifier que 6 est la valeur maximale de X .
 - 2) Quelle est la probabilité de tirer au moins trois billets pour régler l'achat de 100 000 LL?

V- (3points)

Dans le plan complexe rapporté à un repère orthonormé direct (O; u, v), on associe à tout point M d'affixe z, le point M' d'affixe z' tel que $z' = f(z) = z^2 - (3-i)z + 4-3i$. On pose z = x + iy et z' = x' + iy'.

- 1) Déterminer les points M tels que f(z) = 0.
- 2) Calculer x' et y' en fonction de x et y.
- 3) a- Démontrer que , lorsque M' décrit l'axe des ordonnées, le point M décrit la courbe (C) d'équation $x^2 y^2 3x y + 4 = 0$.
 - b- Déterminer la nature de (C) et préciser son centre I.
 - c- Déterminer les sommets, les foyers, les asymptotes et les directrices de (C).
 - d- Tracer la courbe (C).
 - e- Ecrire une équation de la tangente (T) et une équation de la normale (N) à la courbe (C) au point E(2;1).

VI- (7points)

Soit f la fonction définie, sur] $\frac{1}{e}$; + ∞ [, par $f(x) = \frac{x}{1 + \ln x}$ et l'on désigne par (C) sa courbe représentative dans un repère orthonormé (O; \overrightarrow{i} , \overrightarrow{j}); (unité: 2 cm).

A-1) Calculer
$$\lim_{x \to \frac{1}{e}} f(x)$$
, $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to +\infty} \frac{f(x)}{x}$.

- 2) Calculer f '(x) et dresser le tableau de variations de f.
- 3) a- Démontrer que la courbe (C) admet un point d'inflexion W d'abscisse e. b- Ecrire une équation de la tangente (d) à (C) au point W.
- 4) Etudier suivant les valeurs de x, la position relative de (C) et de la droite (D) d'équation y = x.
- 5) Tracer (d), (D) et (C).

B- Soit l'intervalle I = [1; e].

- 1) a- Démontrer que f(I) est inclus dans I.
 - b- Etudier le signe de f '(x) $-\frac{1}{4}$ et en déduire que, pour tout x de I, $0 \le f$ '(x) $\le \frac{1}{4}$.
 - c- Démontrer que, pour tout x de I, on a : $|f(x) 1| \le \frac{1}{4} |x 1|$.
- 2) Soit (U_n) la suite définie par :

$$U_0 = 2$$
 et pour tout $n \ge 0$, $U_{n+1} = f(U_n)$.

- a- Démontrer par récurrence sur n que U_n appartient à I.
- b- Démontrer que $\left| U_{n+1} 1 \right| \le \frac{1}{4} \left| U_n 1 \right|$.
- $\text{c- D\'emontrer que } \left| \left. U_n \right. 1 \right| \leq \frac{1}{4^n} \text{ et en } \text{ d\'eduire la limite de } \left. U_n \right. \text{ lorsque n tend vers} + \infty \,.$

S.G-MATHS

2ème Session 2005

QI	Eléments de réponses		N
1	$y' - \frac{1}{2}y = 0$; $y = Ce^{\frac{x}{2}}$, $y(-2) = Ce^{-1} = 1$; $C = e$; $y = e^{\frac{x}{2}+1}$	b	
2	$T = \frac{2\pi}{\pi} = 2$	b	
3	$2\ln x = \ln 2x$; $2\ln x = \ln 2 + \ln x$; $\ln x = \ln 2$; $x = 2$	b	2
4	$f'(x) = \frac{-3}{-3x} = \frac{1}{x}$	d	3
5	$e^{\ln\sqrt{9}} \times e^{\ln 3} = 3 \times 3 = 9$	d	
6	$\cos^2(\frac{1}{2}\arccos x) = \frac{1 + \cos(\arccos x)}{2} = \frac{1 + x}{2}. \text{ (ou en prenant } x = 0)$	c	

QII	Eléments de réponses	
1.a	t+1-2t+2t-2+2=0; $t=-1$; $B(0;2;2)$.	
1.b	Pour $t = 1$; $A(2; -2; 0)$ est un point de (d).	
1.c	Une équation de (Q) est donnée par : \overrightarrow{AM} . $(\overrightarrow{N}_P \Box \overrightarrow{V}_d) = 0$; $\begin{vmatrix} x - 2 & y + 2 & z \\ 1 & 1 & -2 \\ 1 & -2 & -1 \end{vmatrix} = 0$; $5x + y + 3z - 8 = 0$. $\begin{cases} x = \frac{-5}{4}m + \frac{5}{2} \\ y = \frac{13m}{4} - \frac{9}{2} \\ z = m \end{cases}$	1 ½
1.d	$d(A;(P)) = \frac{ 2-2+2 }{\sqrt{1+1+4}} = \frac{2}{\sqrt{6}}$	
2.a	$\sin A \hat{B} H = \frac{AH}{AB} = \frac{2/\sqrt{6}}{\sqrt{24}} = \frac{1}{6}$	
2.b	Aire(ABH) = $\frac{1}{2}$ AB×AH sin B Â H = $\frac{1}{2}$ AB×AH cos A B̂ H cos A B̂ H = $\sqrt{1 - \frac{1}{36}} = \frac{\sqrt{35}}{6}$ Aire(ABH) = $\frac{1}{2} \times 2\sqrt{6} \times \frac{2}{\sqrt{6}} \times \frac{\sqrt{35}}{6} = \frac{\sqrt{35}}{3}$ u ² •OU : Aire (ABH) = $\frac{1}{2} \parallel \overrightarrow{AB} \wedge \overrightarrow{AH} \parallel$, en cherchant les coordonnées de H.	

QIII	Eléments de réponses	N
1.a	S(A) = E et S(E) = C, k = $\frac{EC}{AE} = \frac{(4\sqrt{3})/2}{4/2} = \sqrt{3}$ et $\alpha = (\overrightarrow{AE}, \overrightarrow{EC}) = \frac{\pi}{2}$	1
1.b	L'image de (AC) est la droite (L) passant par E et perpendiculaire C à (AC). L'image de (EI) est la droite (L') passant par C et perpendiculaire à (EI). L'image de I sera le point d'intersection des deux droites (L) et (L').	2
2.a	$\begin{split} z_A &= 0 \text{ et } z_E = 2 \\ z' &= i\sqrt{3}z + b \text{ avec } S(A) = E \text{ ; } b = 2 \text{ donc } z' = = i\sqrt{3}z + 2 \\ \bullet \text{ OU : } z_C &= 2 + 2i\sqrt{3} \text{ ; } z' = az + b \text{ avec } \begin{cases} 2 = 0 + b \\ 2 + 2i\sqrt{3} = 2a + b \end{cases} \text{, } b = 2 \text{ et } a = i\sqrt{3} \end{split}$	1
2.b	$z_W = i\sqrt{3} \ z_W + 2 \ ; z_W = \frac{1}{2} + i\frac{\sqrt{3}}{2} \ .$	1/2
2.c	$\frac{z_W - z_A}{z_C - z_A} = \frac{1}{4}.$ $\overrightarrow{AC} = 4\overrightarrow{AW} \text{donc W est un point de [AC] et W est le milieu de [AI].}$	1/2
2.d	S o S est la similitude plane de centre W, d'angle π et de rapport 3, c'est donc une homothétie de centre W et de rapport -3 . $\overrightarrow{WJ} = -3 \overrightarrow{WI} = 3 \overrightarrow{WA}$; $\overrightarrow{WC} = -3 \overrightarrow{WA}$; $\overrightarrow{WJ} = WC$.	1

QIV	Eléments de réponses	
	$P(E) = \frac{C_3^3}{C_9^3} = \frac{1}{84}$	1
A.2	$P(F) = \frac{C_4^2 \times C_2^1}{C_9^3} = \frac{12}{84} = \frac{1}{7}$	1
B.1.a	$P(X = 1) = P(\text{tirer un billet de } 100\ 000) = \frac{3}{9}$ $P(X = 2) = P(10\ 000\ ,\ 100\ 000) + P(\ 50\ 000\ ,\ 100\ 000) + P(50\ 000\ ,\ 50\ 000)$ $= \frac{4}{9} \times \frac{3}{8} + \frac{2}{9} \times \frac{1}{8} + \frac{2}{9} \times \frac{3}{8} = \frac{20}{72} = \frac{5}{18}$	2
B.1.b	Le nombre de tirages est maximal lorsqu'on obtient dans les cinq premiers tirages : 4 billets de 10 000 et 1 billet de 50 000 , ce qui justifie que la valeur maximale de X est 6.	1
B.2	p(tirer au moins 3 billets) = $1 - [p(X=1) + p(X=2)] = 1 - [\frac{3}{9} + \frac{5}{18}] = \frac{7}{18}$.	1

QV	Eléments de réponses			
1	$z' = 0 \text{ pour } z^2 - (3 - i) z + 4 - 3i = 0 $; $\Delta = -8 + 6i = (1 + 3i)^2$ $z_1 = \frac{3 - i + 1 + 3i}{2} = 2 + i \text{ et } z_2 = \frac{3 - i - 1 - 3i}{2} = 1 - 2i$			1
2	$x' + iy' = x^2 - y^2 - (3)$	(3-i)(x+iy) + 4 - 3i; x'= x	$x^2-y^2-3x-y+4$ et y'=2xy-3y+x-3	1
3.a	$pour x' = 0 on a x^2 -$	$y^2 - 3x - y + 4 = 0$;	$x^2-y^2-3x-y+4$ et $y'=2xy-3y+x-3$	1/2
3.b	3 . 1 . 3 . 1			1
	Par translation de ve	ecteur $\overrightarrow{OI}(\frac{3}{2}, -\frac{1}{2})$ l'équation	on devient $Y^2 - X^2 = 2$; $a = b = \sqrt{2}$,	
	$c^2 = 2a^2 = 4$; $c = 2$.			
		Dans (I, \vec{i}, \vec{j})	Dans (O, \vec{i}, \vec{j})	
3.c	Sommets	$A(0,\sqrt{2}); A'(0,-\sqrt{2})$	$A(\frac{3}{2},\sqrt{2}-\frac{1}{2}); A'(\frac{3}{2},-\sqrt{2}-\frac{1}{2})$	1
3.C	Foyers	F(0,2); F'(0,-2)	$F(\frac{3}{2}, \frac{3}{2}) \; ; \; F'(\frac{3}{2}, -\frac{5}{2})$	
	Asymptotes	Y = X ou $Y = -X$	y = x - 2 ou y = -x + 1	
	Directrices	$Y = \frac{a^2}{c} = 1$ ou $Y = -1$	$y = x - 2 \text{ou} y = -x + 1$ $y = \frac{1}{2} \text{ou} y = -\frac{3}{2}$	
3.d		O O	1 2 3 4 X	1/2
3.e	2x-2yy'-3-y'=0; (N): $y = -3x + 7$.	$y' = \frac{2x-3}{1+2y}$; $y'_E = \frac{1}{3}$. (T)	$y-1=\frac{1}{3}(x-2)$ ou $y=\frac{1}{3}x+\frac{1}{3}$	1

QVI	Eléments de réponses	
A.1	$\lim_{\substack{x \to \frac{1}{e}}} f(x) = \frac{1}{0^{+}} = +\infty \; ; \; \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{1}{\frac{1}{x}} = +\infty \; ; \; \lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{1}{1 + \ln x} = 0$	1 1/2
A.2	$f'(x) = \frac{\ln x + 1 - 1}{(1 + \ln x)^2} = \frac{\ln x}{(1 + \ln x)^2}. \qquad \frac{x}{f'(x)} \frac{1/e}{-} \frac{1}{0} + \infty$	1 1/2

A.3.a	$f''(x) = \frac{-\ln x + 1}{x(1 + \ln x)^3}. f''(x) s'annule pour x = e$		
	en changeant de signe , donc (C) admet un point d'inflexion W(e; $\frac{e}{2}$).		
A.3.b	$y - \frac{e}{2} = f'(e)(x - e)$; $y = \frac{1}{4}x + \frac{e}{4}$.		
A.4	$f(x) - x = \frac{x}{1 + \ln x} - x = \frac{-x \ln x}{1 + \ln x}. \bullet (C) \text{ rencontre } (D) \text{ au point } (1;1)$		
	• (C) est au-dessus de (D) pour $\frac{1}{e} < x < 1$; (C) est au-dessous de (D) pour $x > 1$.	1	
A.5	La droite d'équation $x = 1/e$ est une asymptote à (C) L'axe des abscisses est une direction asymptotique à (C) en $+\infty$	2	
B.1.a	f est strictement croissante sur I ; $f(I) = [f(1) ; f(e)] = [1; \frac{e}{2}]$ donc $f(I) \subset I$.	1	
B.1.b			
	Or $f'(x) \ge 0$ sur $[1; e]$, d'où $0 \le f'(x) \le \frac{1}{4}$. D'après l'inégalité des accroissements finis, on a $ f(x) - f(1) \le k x-1 $		
B.1.c	où k est le maximum de $ f'(x) $ sur $[1; e]$, d'où $ f(x)-1 \le \frac{1}{4} x-1 $.		
B.2.a			
B.2.b	1 1		
B.2.c	$\begin{split} & U_o-1 =1 \le \frac{1}{4^0} \\ &\text{On suppose que } U_n-1 \le \frac{1}{4^n} \text{ et on prouve que } U_{n+1}-1 \le \frac{1}{4^{n+1}} . \\ & U_{n+1}-1 \le \frac{1}{4} U_n-1 \le \frac{1}{4} \times \frac{1}{4^n} , \text{donc } U_{n+1}-1 \le \frac{1}{4^{n+1}} . \end{split}$	1 1/2	
	$ U_n-1 \le \frac{1}{4^n}$ avec $\lim \frac{1}{4^n} = 0$, donc $\lim U_n = 1$.		