A Fluid Introduction to Condensed Mathematics

Wannes Malfait

MOTIVATION

Problem: Algebra and topology clash:

 $id: \mathbb{R}_{discrete} o \mathbb{R}_{Euclidean}$

is epi + mono, but not iso

Solution?

MOTIVATION

Problem: Algebra and topology clash:

 $id: \mathbb{R}_{discrete} o \mathbb{R}_{Euclidean}$

is epi + mono, but not iso

Solution?

 \leadsto Condensed abelian groups

PRESHEAVES

Idea: Study better behaved objects.

PRESHEAVES

Idea: Study better behaved objects.

Definition

A presheaf on a topological space **X** is a functor

$$\mathcal{F}\colon\operatorname{\mathsf{Open}}(X)^{\operatorname{\mathsf{opp}}}\to\operatorname{\mathsf{Set}}/\operatorname{\mathsf{Rng}}/\operatorname{\mathsf{Ab}}/\dots$$

Notation:

- ▶ Elements of $\mathcal{F}(U)$ are called sections
- ▶ If $i: U \hookrightarrow V$ then $\mathcal{F}(i)$ is called the restriction map:

$$s \in \mathcal{F}(V) \mapsto s|_U \in \mathcal{F}(U).$$

3

SHEAVES

Example

We always have the presheaf given by

- $ightharpoonup \mathcal{F}(U) \mapsto Y$, and
- $ightharpoonup \mathcal{F}(f) \mapsto \mathrm{id}_{\mathsf{Y}}$

SHEAVES

Example

We always have the presheaf given by

- $ightharpoonup \mathcal{F}(U) \mapsto Y$, and
- $ightharpoonup \mathcal{F}(f) \mapsto \mathrm{id}_{Y}$

Problem:

- Want more structure
- Want global things to be defined locally

SHEAF CONDITIONS

For an open cover $\{U_i\}_{i\in I}$ of U:

▶ uniqueness/locality: If $s, t \in \mathcal{F}(U)$ are sections such that $s|_{U_i} = t|_{U_i}$ for all $i \in I$, then s = t.

SHEAF CONDITIONS

For an open cover $\{U_i\}_{i\in I}$ of U:

- ▶ uniqueness/locality: If $s, t \in \mathcal{F}(U)$ are sections such that $s|_{U_i} = t|_{U_i}$ for all $i \in I$, then s = t.
- ▶ gluing: If $\{s_i \in \mathcal{F}(U_i)\}_{i \in I}$ is a collection of sections such that

$$s_i|_{U_i\cap U_j}=s_j|_{U_i\cap U_j}$$
 for all $i,j,$

then there is a section $\mathbf{s} \in \mathcal{F}(U)$ such that $\mathbf{s}_i = \mathbf{s}|_{U_i}$ for all $i \in I$.

EXAMPLES

Typical examples are rings of functions:

- ightharpoonup Cont $(-,\mathbb{C})$
- $ightharpoonup C^{\infty}(-,\mathbb{C})$

EXAMPLES

Typical examples are rings of functions:

- ightharpoonup Cont $(-,\mathbb{C})$
- $ightharpoonup C^{\infty}(-,\mathbb{C})$

The constant functor $U \mapsto Y$ is not a sheaf! Sheaf conditions imply $\mathcal{F}(\emptyset) = \{*\}$

LIMITS AND COLIMITS

Proposition

Limits and colimits of presheaves can be computed section-wise, i.e. the functor $\mathcal{F} \mapsto \mathcal{F}(U)$ commutes with all limits and colimits.

LIMITS AND COLIMITS

Proposition

Limits and colimits of presheaves can be computed section-wise, i.e. the functor $\mathcal{F} \mapsto \mathcal{F}(U)$ commutes with all limits and colimits.

Example

$$(\mathcal{F} \times \mathcal{G})(U) = \mathcal{F}(U) \times \mathcal{G}(U)$$

SHEAFIFICATION

Can we do the same for sheaves?

SHEAFIFICATION

Can we do the same for sheaves?

Limits: ok.

Colimits: not always a sheaf.

There is a solution:

SHEAFIFICATION

Can we do the same for sheaves?

- Limits: ok.
- Colimits: not always a sheaf.

There is a solution:

Theorem

The fully faithful inclusion $\iota \colon \mathbf{Sh}(X) \hookrightarrow \mathbf{PSh}(X)$ admits an exact left adjoint: sheafification.

Example

Sheafification of $U \mapsto Y$, is $U \mapsto Cont(U, Y_{discrete})$.

ABELIAN SHEAVES

Proposition

The category of abelian sheaves on a topological space X is abelian, and has enough injectives.

Example

If M is an injective object in \mathbf{Ab} , i.e. a divisible group, then for $x \in X$,

$$U \mapsto \begin{cases} M & x \in U \\ \{*\} & x \notin U \end{cases}$$

is an injective sheaf.

9

SHEAF COHOMOLOGY

$$0\,\longrightarrow\,\mathcal{F}\,\longrightarrow\,\mathcal{F}'\,\longrightarrow\,\mathcal{F}''\,\longrightarrow\,0$$

is exact, then globally we only get

$$0 \longrightarrow \mathcal{F}(X) \longrightarrow \mathcal{F}'(X) \longrightarrow \mathcal{F}''(X)$$

SHEAF COHOMOLOGY

lf

$$0 \, \longrightarrow \, \mathcal{F} \, \longrightarrow \, \mathcal{F}' \, \longrightarrow \, \mathcal{F}'' \, \longrightarrow \, 0$$

is exact, then globally we only get

$$0 \, \longrightarrow \, \mathcal{F}(X) \, \longrightarrow \, \mathcal{F}'(X) \, \longrightarrow \, \mathcal{F}''(X)$$

 \rightsquigarrow Right derived functors $H^i(X, -)$ of $\mathcal{F} \mapsto \mathcal{F}(X)$

Definition

The sheaf cohomology of X with coefficients A is $H^{i}(X, Cont(-, A))$.

COMPUTING HOMOLOGY

We have

$$0 \longrightarrow \mathsf{Cont}(-,\mathbb{Z}) \longrightarrow \mathsf{Cont}(-,\mathbb{R}) \longrightarrow \mathsf{Cont}(-,\mathbb{R}/\mathbb{Z}) \longrightarrow 0$$

since every map $U \subseteq S^1 \to S^1$ can be lifted locally to a map $U \to \mathbb{R}$.

But, there is no global lift of id: $S^1 \to S^1$ to $S^1 \to \mathbb{R}$. So $H^1(S^1, \mathbb{Z}) \neq 0$.

COMPUTING HOMOLOGY

We have

$$0 \longrightarrow \mathsf{Cont}(-,\mathbb{Z}) \longrightarrow \mathsf{Cont}(-,\mathbb{R}) \longrightarrow \mathsf{Cont}(-,\mathbb{R}/\mathbb{Z}) \longrightarrow 0$$

since every map $U \subseteq S^1 \to S^1$ can be lifted locally to a map $U \to \mathbb{R}$.

But, there is no global lift of id: $S^1 \to S^1$ to $S^1 \to \mathbb{R}$. So $H^1(S^1, \mathbb{Z}) \neq 0$.

Proposition

If **X** is a CW-complex:

$$H^{i}_{sheaf}(X,\mathbb{Z}) = H^{i}_{singular}(X,\mathbb{Z}).$$

SITES

- ▶ Need a slight abstraction of sheaves on a space.
- ▶ Want sheaves on categories, not just spaces.
- ► Crucial ingredient: coverings.

SITES

- Need a slight abstraction of sheaves on a space.
- ▶ Want sheaves on categories, not just spaces.
- Crucial ingredient: coverings.

 \leadsto Definition of a site \approx "Category + notion of coverings".

PROFINITE SETS

Definition

A profinite set is a compact, Hausdorff, totally disconnected space.

Example

A finite discrete space

PROFINITE SETS

Definition

A profinite set is a compact, Hausdorff, totally disconnected space.

Example

A finite discrete space

Proposition

A limit of profinite sets is profinite. In particular, products of profinite sets are again profinite.

Definition

A condensed set is a sheaf on the site of profinite sets with coverings given by finite families of jointly surjective maps.

Definition

A condensed set* is a sheaf on the site of profinite sets with coverings given by finite families of jointly surjective maps.

Definition

A condensed set* is a sheaf on the site of profinite sets with coverings given by finite families of jointly surjective maps.

Proposition

Condensed abelian groups form an abelian category, and limits and colimits can be computed section-wise.

Definition

A condensed set* is a sheaf on the site of profinite sets with coverings given by finite families of jointly surjective maps.

Proposition

Condensed abelian groups form an abelian category, and limits and colimits can be computed section-wise.

For a topological space X, the associated condensed set \underline{X} is given by Cont(-,X).

THE MOTIVATING PROBLEM

Recall that

 $id: \mathbb{R}_{discrete} o \mathbb{R}_{Euclidean}$

was both a monomorphism and an epimorphism but not an isomorphism.

THE MOTIVATING PROBLEM

Recall that

$$id: \mathbb{R}_{discrete} \rightarrow \mathbb{R}_{Euclidean}$$

was both a monomorphism and an epimorphism but not an isomorphism.

Claim: As condensed abelian groups, the map:

$$\underline{\mathsf{id}} \colon \underline{\mathbb{R}_{\mathsf{discrete}}} \to \underline{\mathbb{R}_{\mathsf{Euclidean}}}$$

is no longer an epimorphism.

THE CANTOR SET

Enough to show:

$$\mathsf{Cont}(S, \mathbb{R}_{\mathsf{discrete}}) \subsetneq \mathsf{Cont}(S, \mathbb{R}_{\mathsf{Euclidean}})$$

for some profinite set S.

THE CANTOR SET

Enough to show:

$$\mathsf{Cont}(S, \mathbb{R}_{\mathsf{discrete}}) \subsetneq \mathsf{Cont}(S, \mathbb{R}_{\mathsf{Euclidean}})$$

for some profinite set S.

Let $S \subset \mathbb{R}_{\text{Euclidean}}$ be the cantor set. $S \cong \prod_{n \in \mathbb{N}} \{0,1\}$, so S is profinite. Hence:

$$\mathsf{Cont}(S, \mathbb{R}_{\mathsf{discrete}}) \subsetneq \mathsf{Cont}(S, \mathbb{R}_{\mathsf{Euclidean}})$$

CONDENSED COHOMOLOGY

For a condensed set T, let $\mathbb{Z}[T]$ be the sheafification of $S \mapsto \mathbb{Z}[T(S)]$.

Definition

The cohomology of X with coefficients A is

$$H^{i}(X,A) = \operatorname{Ext}^{i}(\mathbb{Z}[\underline{X}],\underline{A})$$

CONDENSED COHOMOLOGY

For a condensed set T, let $\mathbb{Z}[T]$ be the sheafification of $S \mapsto \mathbb{Z}[T(S)]$.

Definition

The cohomology of X with coefficients A is

$$H^{i}(X,A) = \operatorname{Ext}^{i}(\mathbb{Z}[\underline{X}],\underline{A})$$

Theorem ([Sch19], Theorem 3.2)

Let S be a compact Hausdorff space. Then

$$H^{i}_{cond}(X,A) \cong H^{i}_{sheaf}(X,A)$$

REFERENCES

Condensed mathematics: The internal hom of condensed sets and condensed abelian groups and a prismatic construction of the real numbers, 2021.

Dustin Clausen and Peter Scholze.

Masterclass in condensed mathematics.

https://www.math.ku.dk/english/calendar/events/condensed-mathematics/, November 2020.

Peter Scholze.

Lectures on condensed mathematics.

https://www.math.uni-bonn.de/people/scholze/Condensed.pdf, 2019.

The Stacks Project Authors.
The stacks project.

https://stacks.math.columbia.edu/,2023.