Machine Learning in Scientific Computing CECAM/CSM/IRTG SCHOOL 2018

Lecture 3.1.1

Information Theory

Information

What is Information?

Defining Information

- Probability Theory
- Randomness = genuine new information

How much Information?

Answer: "How random?"

LITERATURE:

Massimiliano Tomassoli: Information Theory for Machine Learning May 2016, https://github.com/mtomassoli/papers/blob/master/inftheory.pdf

Axioms of Information

Random Information

- Random variable X
- Distribution p(x)

Information

• I(x) – Information contained in observation of x

Axioms of Information

Axioms

- I(x) = f(p(x)) for some f
 - Information should only depend on distribution
- $p(x) < p(y) \Rightarrow f(p(x)) > f(p(y))$
 - Strictly decreasing
 - Rarer events should carry more information
- f(1) = 0
 - Certain events carry no (new) information
- x, y independent $\Rightarrow I((x, y)) = I(x) + I(y)$
 - Information should add up
 - Independent experiments yield "totally new information"

Solution

Solution:

$$f(p) = -\log p = \log \frac{1}{p}$$

Proving the properties:

$$I(x) = \log \frac{1}{p(x)}$$

$$p(x) < p(y) \Rightarrow \log \frac{1}{p(x)} > \log \frac{1}{p(y)}$$

•
$$\log 1 = 0$$

•
$$x, y$$
 independent $\Rightarrow \log \frac{1}{p(x,y)} = \log \frac{1}{p(x)p(y)}$
= $\log \frac{1}{p(x)} + \log \frac{1}{p(x)}$

btw: the solution is unique (up to basis)

Summary so far...

Probability

- Independent events: Product of probabilities
- Number between 0 and 1

Information

- Information is additive
 - More info: larger value
 - No information = 0
- Information of event = negative logarithm of prob.
 - $I(x) = -\log p(x) = \log \frac{1}{p(x)}$
 - Usually: base 2 (measured in bits)

Entropy

Entropy

Entropy: How random?

$$H(X) = \sum_{i=1}^{n} p(x_i) \log_2 \frac{1}{p(x_i)}$$

$$= -\sum_{i=1}^{n} p(x_i) \log_2 p(x_i)$$

$$= \mathbb{E}_{x \sim p} \big[I_p(x) \big]$$

Examples

$$H = -\sum_{i=1}^{n} \frac{1}{n} \log \frac{1}{n} = \log n$$

$$H = 0$$

Entropy

Definition: Entropy

$$H(X) = -\sum_{i=1}^{n} p(x_i) \log_2 p(x_i) \quad \text{mean} \\ \text{neg log prob}$$

$$=\sum_{i=1}^{n} p(x_i)I(x_i)$$

$$= \mathbb{E}_{x \sim \mathbf{p}(x)} \big(I(x) \big)$$

mean

expected information

Coding Theory

Entropy

- Minimum number of bits required to transmit information about event x
 - We draw events i.i.d.
 - We send each outcome separately
 - After being asked for the answer
 - (Certain outcomes: no answer required)
- Coding theorem:
 - m(x) = message about x optimally encoded in bits

•
$$H(X) \le \mathbb{E}_{x \sim p(x)} \left(\operatorname{length}(m(x)) \right) < H(X) + 1$$

Random variable X distributed according to p(x)

Constructing a code

- Huffman algorithm
- Optimal for single events send in bits
 - Multiple symbols: Overhead up to one bit each
 - Optimality reached with "arithmetic coding"

Bit-Coding

Coding of Symbols

- Number of bits $\leq \log \frac{1}{p(x)} + 1$
- Information = code length (up to one bit)
- Entropy = expected code length (up to one bit)

More Equations for Entropy

ADDITIONAL LITERATURE:

David McKay: Information Theory, Inference, and Learning Algorithms Cambridge University Press, 2003. http://www.inference.org.uk/itprnn/book.pdf

Joint Entropy

Joint Entropy

$$H(X,Y) = -\sum_{i=1}^{n_x} \sum_{j=1}^{n_y} p(x_i, y_j) \log_2 p(x_i, y_j)$$

• Simply the entropy of the joint distribution p(x, y)

Theorem

$$H(X,Y) = H(X) + H(Y)$$

$$\Leftrightarrow p(x,y) = p(x)p(y)$$

Additive iff independent

Attention: Do not mix up with $H(p_1, p_2)$ for cross-entropy

Conditional Entropy

Conditional Entropy

$$H(X|Y) = -\sum_{i=1}^{n_x} \sum_{j=1}^{n_y} p(x_i|y_j) \log_2 p(x_i|y_j)$$

• Simply the entropy of the conditional distribution p(x|y)

Conditional Entropy

Marginal Entropy

$$H(X) = -\sum_{i=1}^{n_x} p(x_i) \log_2 p(x_i)$$

$$= -\sum_{i=1}^{n_x} \left(\sum_{j=1}^{n_y} p(x_i, y_j)\right) \left(\log_2 \sum_{j=1}^{n_y} p(x_i, y_j)\right)$$

• Simply the entropy of the marginal distribution p(x)

Conditional Entropy

Theorem: Chain Rule

$$H(X,Y) = H(X|Y) + H(Y)$$

= $H(Y|X) + H(X)$

"Divergences":

Comparing Probability Distributions

Cross Entropy

Situation

• Two different distributions p_1 , p_2 on the same probability space

Definition: Cross Entropy

$$H(p_{1}, p_{2}) = -\sum_{i=1}^{n} p_{1}(x) \log_{2} p_{2}(x)$$
$$= \mathbb{E}_{x \sim p_{1}} [I_{p_{2}}(x)]$$

Idea

• Coding events $x \sim p_1$ with codes optimized for p_2

Kullback-Leibler Divergence

Kullback-Leibler Divergence

$$KL(p_1 \parallel p_2) = \sum_{i=1}^{n} p_1(x) \log_2 \frac{p_1(x)}{p_2(x)}$$
$$= H(p_1, p_2) - H(p_1, p_1)$$
$$= H(p_1, p_2) - H(p_1)$$

Idea

- Measure coding efficiency p_1 using p_2 -codes
- Compare with opimum for p_1
- Price to pay for coding in p_2 rather than p_1
- Measures how far distribution p_2 is from p_1

KL and JS Divergences

Kullback-Leibler Divergence

- Distance ≥ 0
- Zero distance means same distribution
- Not symmetric:

$$KL(p_1 \parallel p_2)$$
 different from $KL(p_2 \parallel p_1)$

"Almost a metric"

Jensen-Shannon Divergence

- Symmetrized version
- $JSD(p_1 \parallel p_2) := \frac{1}{2}KL(p_1 \parallel p_2) + \frac{1}{2}KL(p_2 \parallel p_1)$

Mutual Information

Mutual Information

$$I(X;Y) = H(X) + H(Y) - H(X,Y)$$

 Entropy of the marginal distributions minus that of the joint distribution

Mutual Information

Alternative Formulas

$$I(X;Y) = H(X) + H(Y) - H(X,Y)$$

$$= H(X) - H(X|Y)$$

$$= H(Y) - H(Y|X)$$

$$= -\sum_{i=1}^{n_x} \sum_{j=1}^{n_y} p(x_i, y_j) \log_2 \left(\frac{p(x_i, y_j)}{p(x_i)p(y_j)}\right)$$

$$= KL\left(p(x_i, y_j) \parallel p(x_i)p(y_j)\right)$$

Computing Mutual Information

Joint Histogram

- Compute H(X), H(Y), H(X, Y)
- Costly: $O(|\Omega_X| \times |\Omega_Y|)$ (exponential in dim (Ω))

Alternatives

Parametric Distributions

- Closed-Form Expressions for Gaussians etc.
- $H(\mathcal{N}_{\mu,\Sigma}) = \frac{1}{2} \ln \left((2\pi e)^d \det(\Sigma) \right)$

Approximations

- Nearest-neighbors-methods
- Lower-bounds by "variational Bayes"
 - Build a neural network that predicts X from Y or vice versa
 - Least-squares fit
 - Entropy of Gaussian error (Covariance of errors) gives an upper bound of H(X, Y) (joint Histogram, negative contrib.)