Announcements

- Happy Spooky Day!
- Homework
 - Homework 9 is posted and due on Monday (only 4 problems, but do not delay starting them)
 - Homework 10 is going to be super short (like 1 or 2 problems) and will be due a
 week from Friday
 - Homework 11 will be due after Thanksgiving
- Test 2 will be on November 12, take-home portion will be due on the 14th
- Online schedule has been updated to reflect all the above
- Reminder: Grade reports posted to WISE Dropbox
- Read the rest of Chapter 5 by Friday

ELECTROMAGNETICS

WILLAMETTE UNIVERSITY

Ampere's Law will only be useful to us when there is sufficient symmetry to pull B out of the integral. So we need some methods to understand when we might have the needed symmetry.

For the case of an infinitely long wire, can \vec{B} point radially (i.e., in the \hat{s} direction)? Can you explain WHY?

- A. Yes
- B. No

Ampere's Law will only be useful to us when there is sufficient symmetry to pull B out of the integral. So we need some methods to understand when we might have the needed symmetry.

For the case of an infinitely long wire, can \vec{B} point radially (i.e., in the \hat{s} direction)? Can you explain WHY?

- A. Yes
- B. No

Continuing to refine our arguments, for an infinitely long straight wire, can $\vec{\mathbf{B}}$ depend on z or ϕ ? Why?

- A. Yes
- B. No

Continuing to refine our arguments, for an infinitely long straight wire, can $\vec{\mathbf{B}}$ depend on z or ϕ ? Why?

- A. Yes
- B. No

WILLAMETTE UNIVERSITY ELECTROMAGNETICS

And finally, for an infinitely long straight wire, can $\vec{\mathbf{B}}$ have a component in the $\hat{\mathbf{z}}$ direction? Why?

- A. Yes
- B. No

WILLAMETTE UNIVERSITY ELECTROMAGNETICS

A. Yes

B. No

So our arguments got us a functional form of

$$\vec{\mathbf{B}}(\vec{r}) = B(s)\hat{\phi}$$

For the case of an infinitely long thick wire of radius a, is this functional form still correct?

- A. Yes
- B. Only inside the wire (s < a)
- C. Only outside the wire (s > a)
- D. No

So our arguments got us a functional form of

$$\vec{\mathbf{B}}(\vec{r}) = B(s)\hat{\phi}$$

For the case of an infinitely long *thick* wire of radius *a*, is this functional form still correct?

- A. Yes
- B. Only inside the wire (s < a)
- C. Only outside the wire (s > a)
- D. No

An infinite solenoid with surface current density \vec{K} is oriented along the z-axis. To use Ampere's Law, we need to argue what we know $\vec{B}(\vec{r})$ should depend on and in what direction it should point.

For this solenoid, $\vec{\mathbf{B}}(\vec{r}) =$

- A. $B(z)\hat{z}$
- B. $B(z)\hat{\phi}$
- C. $B(s)\hat{z}$
- D. $B(s)\hat{\phi}$

An infinite solenoid with surface current density \vec{K} is oriented along the z-axis. To use Ampere's Law, we need to argue what we know $\vec{B}(\vec{r})$ should depend on and in what direction it should point.

For this solenoid, $\vec{\mathbf{B}}(\vec{r}) =$

- A. $B(z)\hat{z}$
- B. $B(z)\hat{\phi}$
- C. $B(s)\hat{z}$
- D. $B(s)\hat{\phi}$

What do you expect $\vec{\mathbf{B}}(\vec{r})$ to look like for the infinite current sheet to the left?

- A. $B(y)\hat{y}$
- B. $B(z)\hat{\boldsymbol{y}}$
 - C. $B(y)\hat{z}$
 - D. $B(z)\hat{z}$

What do you expect $\vec{\mathbf{B}}(\vec{r})$ to look like for the infinite current sheet to the left?

- A. $B(y)\hat{y}$
- B. $B(z)\hat{y}$
- C. $B(y)\hat{z}$
- D. $B(z)\hat{z}$

Suppose you drew the Amperian loop shown as a dashed line to the left. What would Ampere's Law tell you about the z-component of the magnetic field outside the current sheet?

- A. B_z is constant outside the sheet
- B. B_z is 0 outside the sheet
- C. B_z is not constant outside the sheet
- D. It tells you nothing about B_z .

Suppose you drew the Amperian loop shown as a dashed line to the left. What would Ampere's Law tell you about the z-component of the magnetic field outside the current sheet?

- A. B_z is constant outside the sheet
- B. B_z is 0 outside the sheet
- C. B_z is not constant outside the sheet
- D. It tells you nothing about B_z .