Deception Detection

Final Project - NLP & the Web

Sebastian Lembcke

Danu Caus

Nambiar Shruti Surendrakumar

Nana Baah

Outline

- Introduction
- Dataset and Preprocessing
- Software Setup
- Feature Extractors
- Evaluation Results
- Data analytics and visualizations
- GUI Demo
- Conclusion and Future Work

Introduction

- Analyze how linguistic properties of statements can be utilized to infer if they are truthful or deceptive
- Find common syntactical patterns in lies and truths
- Determine which topics people tend to lie about and which terms are used for this purpose.

Dataset and Preprocessing

Dataset - 7 Truths 7 Lies

- Crowdsourced deception dataset consisting of short open domain truths and lies from 512 users.
- Preprocessed with python script (extract sentence and label, shuffling, 50/50 split)

101_m_t_2, Male, 50, 'Associates degree', Taiwan, 'Today is memorial day.', truth

Today is memorial day. truth

Software Setup

- Main pipeline with UIMAframework and ClearTK library
- Separate VocabularyAugmentation project usingWordNet dictionary and MITJWI API
- GUI with Java Servlet
 Technology
- Data Analysis using LIWC
- Visualizations using the PythonScattertext tool

Feature Extractors

Lexical Extractor

Readability Scores Syntax Features Other Features

Vocabulary built from dataset by tokenizing statements.

Extractor counts the number of words labelled as truth/lie

Flesch Kincaid Readability

Metric

Smog Grade Readability Metric

Syntactic complexity measures: number of characters and syllables Uses Stanford CFG Parser

Extract features based on part-of-speech tags, dependency types and grammar representation tree Exaggeration extractor

First person pronoun extractor

Negation extractor

Syntax based Features

- From parser data extract
 psycholinguistic features
- When lying, people often
 make use of more cognitively
 complex constructions
- Select best performing features

Input	I made a continental breakfast for my roommates today.
Part-of-speech tagged sentence	I/PRP made/VBD a/DT continental/JJ breakfast/NN for/IN my/PRP\$ roommates/NNS today/NN ./.
Parsed Tree	(S (NP (PRP I)) (VP (VBD made) (NP (DT a) (JJ continental) (NN breakfast)) (PP (IN for) (NP (PRP\$ my) (NNS roommates))) (NP-TMP (NN today))) ())
Dependency Information	DepParseInfo{depParents={1=2, 2=0, 3=5, 4=5, 5=2, 6=8, 7=8, 8=2, 9=2, 10=2}, depLabels={1=nsubj, 2=root, 3=det, 4=amod, 5=dobj, 6=case, 7=nmod:poss, 8=nmod:for, 9=nmod:tmod, 10=punct}}

Table: Sample Input-Output when using the Stanford NLP Parser

Index	Syntax Feature Type	F1 Score
1	Number of Prepositions	0.56891
2	List dependency present	0.56714
3	Number of Conjunctions	0.56647
4	Discourse elements present	0.56647
5	Number of Adverbs	0.56597
6	Number of Verbs	0.56556
7	Exclusion words present	0.56530
8	Number of Adjectives	0.56529
9	Number of Nouns	0.56384
Combined 1-4	Top 4 features	0.56849

Table: Syntactic Features and corresponding F1 scores

Evaluation Results

Best Feature Extractor Set		
Lexical Extractor		
Syntax Features Extractor (parsed tree, number of prepositions, presence of lists of items, number of conjunctions, presence of discourse elements)		
Readability Scores Extractor (Flesch Kincaid score, Smog grade, number of characters and number of syllables)		
First person pronoun extractor		
Negation Extractor		
Exaggeration Extractor		

2	Scenario/ Metric	Baseline	Best Feature Set without vocabulary augmentation	Best Feature Set with vocabulary augmentation
8	Precision	0.5617701290719115	0.5606936416184971	0.5633314054366686
	Recall	0.544047619047619	0.5773809523809523	0.5797619047619048
	F1 score	0.552766858179619	0.5689149560117301	0.5714285714285715
	Accuracy	0.5611275964391691	0.5637982195845698	0.5664688427299703

Linguistic Inquiry and Word Count (LIWC)

LIWC variables are percentages of total word within a text

Variables	Lie	Truth
Emotional Tone	50.70	99.00
Function Words (Negation)	1.59	0.89
Affect (Positive Emotion)	2.56	12.80
Affect (Negative Emotion)	1.22	1.07
Social	5.81	5.33
Certainty (Certain)	1.77	10.75

Scattertext Tool (Python Pre/Post-processing)

GUI Demo

https://deceptiondetection.herokuapp.com/GUI

Conclusion and Future Work

- Increase data quality
- Improve vocabulary augmentation (i.e. word2vec)

References

- Veronica Perez-Rosas and Rada Mihalcea, Experiments in Open Domain Deception Detection, in Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP 2015), Lisbon, Portugal,
 September 2015, http://web.eecs.umich.edu/~mihalcea/papers/perezrosas.emnlp15.pdf
- Open Domain Deception Detection Dataset
 https://web.eecs.umich.edu/~mihalcea/downloads.html#OpenDeception
- Linguistic Inquiry and Word Count http://liwc.wpengine.com/
- Wordnet Database Files (A lexical database of English which records semantic relationships between words)
 https://wordnet.princeton.edu
- Stanford Core NLP Parser https://nlp.stanford.edu/software/lex-parser.shtml

Thank You!