Содержание

1. Определенный интеграл	3
1.1. Задача и определение	3
1.2. Свойства	5
1.3. Вычисление определенного интеграла	7
1.3.1. Интеграл с переменным верхним пределом	7
1.3.2. Методы интегрирования	8
1.4.2. Площадь в ПСК	9
1.4.3. Длина кривой дуги	9
1.4.4. Объемы тел	10
2. Несобственные интегралы	11
2.1 Определения	11
2.2 Свойства	14
2.3 Сходимость несобственных интегралов	15
3. Интегралы зависящие от параметра	18
4. Функция нескольких переменных (ФНП)	20
4.1. Определение	20
4.2. Производные функции двух переменных	21
4.3. Правила дифференцирования	23
4.4. Производная высших порядков	24
4.5. Дифференциалы	24
4.6. Формула Тейлора	26
4.7. Геометрия ФНП	27
4.7.1. Линии и поверхности уровня	27
4.7.2. Производная по направлению, Градиент	28

4.7.3. Касательная и нормаль к поверхности	30
4.7.4. Экстремумы ФНП $(\Phi_2\Pi)$	32
5. Интеграл ФНП	35
5.1. Общая схема интегрирования	35
5.2. Классификация интегралов	36
5.3. Двойной и тройной интегралы	36
5.4. Замена переменной в двойном и тройном интегралах	38
5.5. Криволинейные интегралы	40
5.6. Поверхностные интегралы	45
5.7. Связь поверхностных интегралов с другими	48
6. Теория поля	50
6.1. Определения	50
6.2. Геометрические характеристики полей	50
6.3. Дифференциальные характеристики	50
6.4. Интегральные характеристики. Теоремы теории поля	52
6.5 Механический смысл	52

1. Определенный интеграл

1.1. Задача и определение

Задача. Дана криволинейная фигура:

Надо найти ее площадь S

Произведем ее дробление на маленькие элементарные фигуры, площадь которых мы можем посчитать:

Уменьшаем дробление, чтобы свести погрешность к 0 (погрешность между истинной площадью и суммарной площадью прямоугольников)

Сведем задачу к простейшей в ДПСК:

- 1. Вводим разбиение отрезка [a;b] (a < b) точками $a < x_0 < \cdots < x_n < b$ $T = \{x_i\}_{i=0}^n$
- 2. Выбираем средние точки на частичных отрезках $[x_{i-1}, x_i]_{i=1}^n$ $\{\xi_i\}_{i=1}^n$ набор средних точек $\Delta x_i \stackrel{\text{обозн.}}{=} x_i x_{i-1}$ длина отрезка
- 3. Строим элементарные прямоугольники
- 4. Составляем сумму площадей всех таких прямоугольников:

$$\sigma_n = \sum_{i=1}^n \Delta x_i f(\xi_i)$$

- интегральная сумма Римана
- 5. Заменяя разбиение, выбор ξ_i при каждом n, получаем последовательность $\{\sigma_n\}$ При этом следим, чтобы ранг разбиения $\tau = \max_{1 \le i \le n} \Delta x_i \to 0$ при $n \to \infty$ Иначе получим неуничтожаемую погрешность
- 6. **Def.** Если существует конечный предел интегральной суммы и он не зависит от типа, ранга дробления и выбора средних точек, то он называется определенным интегралом

$$\lim_{n\to\infty,\ \tau\to 0} \sigma_n = \lim_{n\to\infty,\ \tau\to 0} \sum_{i=1}^n \Delta x_i f(\xi_i) \stackrel{\text{def}}{=} \int_a^b f(x) dx$$

Nota. Независимость от дробления и выбора средних точек существенна

$$Ex. \ \mathcal{D} = \begin{cases} 1, \ x \in [0, 1], x \notin \mathbb{Q} \\ 0, \ x \in [0, 1], x \in \mathbb{Q} \end{cases}$$

Сумма Римана для этой функции неопределенна, так как все зависит от выбора средних точек:

- если средние точки иррациональные, то сумма равна единице
- иначе сумма равна нулю

В обозначении определенного интеграла a и b называют нижним и верхним пределами интегрирования соответственно

Дифференциал dx имеет смысл Δx , понимается как б. м., то есть:

f(x)dx - площадь элементарных прямоугольников, тогда

$$\int_a^b f(x)dx$$
 - сумма этих прямоугольников

1.
$$\int_{a}^{a} f(x)dx \stackrel{\text{def}}{=} 0$$
2.
$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$$

Можно доказать, что определенный интеграл существует для всякой непрерывной на отрезке функции

Геом. смысл. Заметим в определении площадь подграфика функции $(f(x) \ge 0)$

Заметим, что для
$$f(x) \le 0$$
 $\int_a^b f(x) dx = -S$

1.2. Свойства

1. Линейность пределов \Longrightarrow линейность пределов

$$\lambda \int_{a}^{b} f(x)dx + \mu \int_{a}^{b} g(x)dx = \int_{a}^{b} (\lambda f(x) + \mu g(x))dx \quad (\lambda, \mu \in \mathbb{R})$$

2. Аддитивность (часто для кусочно-непрерывных функций с конечным числом точек разбивается на участки непрерывности)

$$\int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx = \int_{a}^{c} f(x)dx$$

Доказательства строятся на свойствах конечных сумм и пределов

3. Оценка определенного интеграла

f(x) непрерывна на [a;b] (имеет наимен. (m) и наибол. (M) значения). Тогда:

$$m(b-a) \le \int_a^b f(x)dx \le M(b-a)$$

□ Док-во:

По теореме Вейерштрасса 2 f(x) принимает наименьшее и наибольшее значения и для всякого x из [a;b]: m <= f(x) <= M

Так как все средние точки принадлежат [a;b], то

$$m \le f(\xi_i) \le M \quad \forall \xi_i$$

$$m\Delta_i \le f(\xi_i)\Delta_i \le M\Delta_i$$

$$m\sum_{i=1}^{n} \Delta x_i \le f(\xi_i)\sum_{i=1}^{n} \Delta x_i \le M\sum_{i=1}^{n} \Delta x_i$$

Предельный переход:

$$\lim_{n \to \infty, \ \tau \to 0} m \sum_{i=1}^{n} \Delta x_{i} \leq \int_{a}^{b} f(x) dx \leq \lim_{n \to \infty, \ \tau \to 0} M \sum_{i=1}^{n} \Delta x_{i}$$

$$m \lim_{n \to \infty, \ \tau \to 0} \sum_{i=1}^{n} \Delta x_{i} \leq \int_{a}^{b} f(x) dx \leq M \lim_{n \to \infty, \ \tau \to 0} \sum_{i=1}^{n} \Delta x_{i}$$

$$m(b-a) \leq \int_{a}^{b} f(x) dx \leq M(b-a)$$

4. Тh. Лагранжа о среднем (в интегральной форме)

$$f(x) \in C'_{[a,b]} \Longrightarrow \exists \xi \in (a,b) \ f'(\xi) = \frac{f(b) - f(a)}{b - a}$$
 Тогда найдется такая средняя точка, что

$$f(x) \in C_{[a,b]} \Longrightarrow \exists \xi \in (a,b) \ f(\xi)(b-a) = \int_a^b f(x)dx$$

$$m \le \frac{1}{b-a} \int_a^b f(x) dx \le M$$
 по свойству выше

По теореме Больцано-Коши f(x) непрерывна, поэтому пробегает все значения от m до M

Значит найдется такая точка
$$\xi$$
, что $f(\xi) = \frac{1}{b-a} \int_a^b f(x) dx$

5. Сравнение интегралов

$$f(x), g(x) \in C_{[a,b]} \quad \forall x \in [a,b] \quad f(x) \ge g(x)$$

Тогда
$$\int_a^b f(x)dx \ge \int_a^b g(x)dx$$

$$\int_{a}^{b} f(x)dx - \int_{a}^{b} g(x)dx = \int_{a}^{b} (f(x) - g(x))dx = \lim_{n \to \infty, \ \tau \to 0} \sum_{i=1}^{n} \underbrace{(f(\xi_{i}) - g(\xi_{i}))}_{\geq 0} \underbrace{\Delta x_{i}}_{\geq 0} \geq 0$$

6. Интеграл и модуль

$$\left| \int_{a}^{b} f(x) dx \right| \leq \int_{a}^{b} |f(x)| dx$$

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty, \ \tau \to 0} \sum_{i=1}^{n} f(\xi_{i}) \Delta x_{i} = \lim_{n \to \infty} \sigma_{n}$$

$$\int_{a}^{b} |f(x)| dx = \lim_{n \to \infty, \ \tau \to 0} \sum_{i=1}^{n} |f(\xi_{i})| \Delta x_{i}$$

$$\int_{a}^{|J(x)|ax} \int_{n\to\infty, \tau\to 0}^{\min} \sum_{i=1}^{|J(\zeta_{i})|\Delta x} |J(\zeta_{i})|\Delta x$$
Докажем, что $\lim_{n\to\infty} |\sigma_{n}| = |\lim_{n\to\infty} |\sigma_{n}|$

Так как определен $\int_a^b f(x)dx = \lim_{n \to \infty} \sigma_n = S \in \mathbb{R}$, то можно рассмотреть случаи

$$S > 0$$
: $\exists n_0 \ \forall n > n_0 \ \sigma_n > 0 \ ($ вблизи S $)$

$$\lim |\sigma_n| = |\lim \sigma_n|$$

$$\lim_{n\to\infty} |\sigma_n| = |\lim_{n\to\infty} \sigma_n|$$

$$S > 0: \quad \exists n_0 \ \forall n > n_0 \ \sigma_n < 0 \ (\text{вблизи } S)$$

$$\lim_{n\to\infty} |\sigma_n| = -\lim_{n\to\infty} \sigma_n = |\lim_{n\to\infty} \sigma_n|$$

$$S = 0: \lim_{n\to\infty} |\sigma_n| = |\lim_{n\to\infty} \sigma_n| = 0$$

$$\lim_{n \to \infty} |\sigma_n| = -\lim_{n \to \infty} \sigma_n = |\lim_{n \to \infty} \sigma_n$$

$$S = 0$$
: $\lim_{n \to \infty} |\sigma_n| = |\lim_{n \to \infty} |\sigma_n| = 0$

$$\left|\int_{a}^{b} f(x) dx\right| = \left|\lim_{n \to \infty} \sigma_{n}\right| = \lim_{n \to \infty} |\sigma_{n}| = \lim_{n \to \infty, \ \tau \to 0} \left|\sum_{i=1}^{n} f(\xi_{i}) \Delta x_{i}\right| \leq \lim_{n \to \infty, \ \tau \to 0} \sum_{i=1}^{n} |f(\xi_{i})| \Delta x_{i} \quad \text{(модуль суммы меньше или равен сумме модулей)}$$

Nota. Интеграл и разрыв

Изъятие из отрезка не более, чем счетного числа точек, не меняет значение интеграла, что позволяет считать интеграл на интервале

Nota. Сходимость интеграла - в определении интеграла подчеркивается, что это число. Если предел интегральных сумм не существует или бесконечен, говорят, что интеграл расходится

Nota. Вычисления

Определение дает способ вычисления и его можно упростить:

$$\forall i \; \Delta x_i = \Delta x, \quad \xi_i = \begin{bmatrix} x_{i-1} \\ x_i \end{bmatrix}$$
 - концы отрезка

Так вычисляют «неберущиеся интегралы»

Для функций, у которых первообразные выражаются в элементарных функциях используется не этот метод, а формула Ньютона-Лейбница

1.3. Вычисление определенного интеграла

1.3.1. Интеграл с переменным верхним пределом

Дана
$$f(x):[a;+\infty), f(x) \in C_{[a;+\infty)}$$

 $\forall x \in [a;+\infty)$ определен $\int_a^x f(x)dx$

Таким образом определена функция $S(x) = \int_{a}^{x} f(x) dx$ - переменная площадь

В общем случае обозначим $\Phi(x) = \int_a^x f(t)dt \quad tin[a,x]$

Итак, различают три объекта:

- 1. Семейство функций: $\int f(x)dx = F(x) + C$
- 2. Функция $\int_{a}^{x} f(t)dt = \Phi(x)$
- 3. Число $\int_a^b f(x)dx = \lambda \in \mathbb{R}$

Выявим связь между ними.

Тh. Об интеграле с переменным верхним пределом (Барроу)

$$f(x): [a; +\infty) \to \mathbb{R}$$
 $f(x) \in C_{[a; +\infty+]}$

Тогда
$$\Phi(x) = \int_a^x f(t)dt$$
 - первообразная для $f(x)$ - $\Phi(x) = F(x)$

Докажем по определению

$$\Phi'(x) = \lim_{\Delta x \to 0} \frac{\Delta \Phi}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Phi(x + \Delta x) - \Phi(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_a^{x + \Delta x} f(t) dt - \int_a^x f(t) dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_x^{x + \Delta x} f(t) dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_x^{x + \Delta x} f(t) dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_x^{x + \Delta x} f(t) dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_x^{x + \Delta x} f(t) dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_x^{x + \Delta x} f(t) dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_x^{x + \Delta x} f(t) dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_x^{x + \Delta x} f(t) dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_x^{x + \Delta x} f(t) dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_x^{x + \Delta x} f(t) dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_x^{x + \Delta x} f(t) dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_x^{x + \Delta x} f(t) dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_x^{x + \Delta x} f(t) dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_x^{x + \Delta x} f(t) dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_x^{x + \Delta x} f(t) dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_x^{x + \Delta x} f(t) dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_x^{x + \Delta x} f(t) dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_x^{x + \Delta x} f(t) dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_x^{x + \Delta x} f(t) dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_x^{x + \Delta x} f(t) dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_x^{x + \Delta x} f(t) dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_x^{x + \Delta x} f(t) dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_x^{x + \Delta x} f(t) dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_x^{x + \Delta x} f(t) dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_x^{x + \Delta x} f(t) dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_x^{x + \Delta x} f(t) dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_x^{x + \Delta x} f(t) dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_x^{x + \Delta x} f(t) dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_x^{x + \Delta x} f(t) dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_x^{x + \Delta x} f(t) dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_x^{x + \Delta x} f(t) dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_x^{x + \Delta x} f(t) dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_x^{x + \Delta x} f(t) dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_x^{x + \Delta x} f(t) dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_x^{x + \Delta x} f(t) dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_x^{x + \Delta x} f(t) dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_x^{x + \Delta x} f(t) dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_x^{x + \Delta x} f(t) dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_x^{x + \Delta x} f(t) dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_x^{x + \Delta x} f(t) dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_x^{x + \Delta x} f(t) dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_x^{x + \Delta x} f(t) dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_x^{x + \Delta x} f(t) dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_x^{x + \Delta x} f(t) dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_x$$

Th. Основная теорема математического анализа (формула Ньютона-Лейбница, N-L) $f(x) \in C_{[a:b]}, F(x)$ - какая-либо первообразная f(x)

$$\int_{a}^{b} f(x)dx = F(x)\Big|_{a}^{b} = F(b) - F(a)$$
Для $f(x)$ определена $\Phi(x) = \int_{a}^{x} f(t)dt = F(x) + C$
Найдем значения $\Phi(a)$ и $\Phi(b)$

$$\Phi(a) = F(a) + C = \int_{a}^{a} f(t)dt = 0 \Longrightarrow F(a) + C = 0 \Longrightarrow F(a) = -C$$

$$\Phi(b) = F(b) + C = F(b) - F(a) = \int_{a}^{b} f(t)dt$$

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

1.3.2. Методы интегрирования

1* Замена переменной в определенном интеграле

Th.
$$f(x) \in C_{[a;b]}$$
 $x = \varphi(t) \in C'_{[a;\beta]}, \varphi(\alpha) = a, \varphi(\beta) = b$
$$\int_a^b f(x) dx = \int_a^\beta f(\varphi(t)) \varphi'(t) dt$$
 N-L:
$$\int_a^b f(x) dx = F(x) \Big|_a^b$$
 Докажем, что $F(x) = F(\varphi(t))$ - первообразная для $f(\varphi(t)) \varphi'(t)$
$$\frac{dF(\varphi(t))}{dt} = F'(\varphi(t)) \varphi'(t)$$

$$\frac{dF(\varphi(t))}{d\varphi(t)} \frac{d\varphi(t)}{dt} = \frac{dF(x)}{dx} \varphi'(t) = f(x) \varphi'(t)$$

$$\Box$$

$$Ex. \int_0^{\frac{1}{2}} \frac{dx}{\sqrt{1-x^2}} = \begin{bmatrix} x = \sin t \\ x \uparrow_0^{\frac{\pi}{2}} t \uparrow_0^{\frac{\pi}{6}} \end{bmatrix} = \int_0^{\frac{\pi}{6}} \frac{dt}{\sqrt{1-\sin^2 t}} \cos t = \int_0^{\frac{\pi}{6}} \frac{dt}{|\cos t|} \cos t = \int_0^{\frac{\pi}{6}} dt = t \Big|_0^{\frac{\pi}{6}} = \frac{\pi}{6}$$
 Th. $u, v \in C'_{[a;b]}$ $uv\Big|_a^b = u(b)v(b) - u(a)v(a)$
$$Torдa: \int_a^b u dv = uv\Big|_a^b - \int_a^b v du$$

$$\Box$$
 $u(x)v(x)$ - первообразная для $u'(x)v(x) + v'(x)u(x)$ Мли $d(uv) = u dv + v du$
$$\Box$$
 По формуле N-L
$$\int_a^b (u dv + v du) = \int_a^b d(uv) = u(x)v(x)\Big|_a^b$$

$$\int_a^b u dv = uv\Big|_a^b - \int_a^b v du$$

$$Ex. \int_{1}^{e} \ln x dx = x \ln x \Big|_{1}^{e} - \int_{1}^{e} x d \ln x = e \ln e - 1 \ln 1 - \int_{1}^{e} dx = e - x \Big|_{1}^{e} = 1$$

Nota. Не всякий интеграл вида $\int_a^b f(x) dx$ является определенным

$$Ex.$$
 $\int_0^e \ln x dx = x \ln x \Big|_0^e - x \Big|_0^e = e \ln e - \underbrace{0 \ln 0}_{0 \cdot \infty} - e$ - несобственный интеграл (записи внезапно обрываются)

1.4.2. Площадь в ПСК

(записи внезапно обрываются)

$$\sigma_n = \frac{1}{2} \sum_{i=1}^n \rho^2(\varphi_i) \Delta \varphi_i$$

Ех. Кардиоида:

$$\rho = 1 + \cos \varphi$$

$$S = \frac{1}{2} \int_{-\pi}^{\pi} \rho^2(\varphi) \Delta \varphi = \int_0^{\pi} \rho^2(\varphi) \Delta \varphi = \int_0^{\pi} (1 + \cos \varphi)^2 \Delta \varphi = \int_0^{\pi} (1 + 2\cos \varphi + \cos^2 \varphi) \Delta \varphi = \varphi \Big|_0^{\pi} + \int_0^{\pi} \frac{1 + \cos 2\varphi}{2} \Delta \varphi = \pi + \frac{1}{2}\pi = \frac{3}{2}\pi$$

Nota. Если фигура задана параметрическими уравнениями:

$$\begin{cases} x = x(t) \\ y = y(t) \end{cases} \quad \alpha \le t \le \beta$$

To площадь будет равна $S = \int_a^b y(x)dx = \int_\alpha^\beta y(t)x'(t)dt$

1.4.3. Длина кривой дуги

Пусть дуга AB задана уравнением y = f(x) $x \in [a; b]$

- 1. Производим дробление дуги на элементарные дуги точками $A=M_0 < M_1 < \cdots < B=M_n$ Здесь порядок M_i таков, что их абсциссы $a=x_0 < x_1 < \cdots < x_n=b$ $\Delta x_i > 0$
- 2. Стягиваем сумму элементарными хордами. Сумма длин этих хорд при уменьшении их длин будет приближать длину этой дуги

$$\Delta s_i = \sqrt{\Delta y_i^2 + \Delta x_i^2}$$

По **Th.** Лагранжа существует такая точка $\xi_i \in [x_{i-1}; x_i]$, что значение производной в этой точке равно наклону отрезка: $f'(\xi_i) = \frac{f(x_i) - f(x_{i-1})}{x_i - x_{i-1}}$

- 3. Интегральная сумма $\sigma_n = \sum_{i=1}^n \Delta s_i = \sum_{i=1}^n \sqrt{1 + (y'(\xi_i))^2} \Delta x_i$
- 4. Предельный переход $\lim_{\substack{n\to\infty\\ \tau\to 0}}\sigma_n=\int_a^b\sqrt{1+(y'(x))^2}dx=l_{\rm дуги}$

Nota. Очевидно потребовалась гладкость дуги, то есть спрямляемость. Только при этом условии $\Delta l_i \approx \Delta s_i$, и работает **Th.** Лагранжа

Параметрическое задание:

$$\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases} \quad t \in [\alpha; \beta]$$

$$\Delta s_i = \sqrt{(\Delta x_i)^2 + (\Delta y_i)^2} = \sqrt{(\varphi'(\theta_i)\Delta t)^2 + (\psi'(\theta_i)\Delta t)^2} = |\Delta t| \sqrt{(\varphi'(\theta_i))^2 + (\psi'(\theta_i))^2}$$

$$l = \int_{\alpha}^{\beta} \sqrt{(\varphi'(t))^2 + (\psi'(t))^2} |dt|$$

Ех. Длина эллипса

$$L=4l=4\int_0^{\frac{\pi}{2}}\sqrt{a^2\sin^2t+b^2\cos^2t}dt=4\int_0^{\frac{\pi}{2}}\sqrt{(a^2-b^2)\sin^2t+b^2}dt=4\int_0^{\frac{\pi}{2}}\sqrt{c^2\sin^2t+b^2}dt=4\int_0^{\frac{\pi}{2}}\sqrt{1+k^2\sin^2t}dt$$
 - эллиптический интеграл

1.4.4. Объемы тел

1* Объемы тел с известными площадями сечений

Для тела известна площадь сечения перпендикулярной Ox плоскости S(x)

Аналогично обычному дроблению
$$\lim_{\substack{n \to \infty \\ \tau \to 0}} \nu_n = \int_a^b S(x) dx = V_{\text{тела}}$$

Ex. Тело отсечено от I октанта плоскостью $\frac{x}{a} + \frac{y}{a} + \frac{z}{a} = 1$

$$S(x) = S_{DBC} = \frac{(a-x)^2}{2}$$
 Тогда $V = \int_0^a \frac{1}{2} (a-x)^2 dx = \frac{1}{2} \int_0^a (x-a)^2 dx = \frac{1}{2} \int_0^a (x-a)^2 d(x-a) = \frac{1}{6} (x-a)^3 \Big|_0^a = \frac{a^3}{6}$

Nota. Объем тела вращения (записи внезапно обрываются)

2. Несобственные интегралы

2.1 Определения

1* Интегралы на неограниченном промежутке

Геометрический смысл: пусть $f(x): [a; +\infty] \to \mathbb{R}, f(x) \in C_{[a; +\infty]}$

Тогда определенный интеграл имеет смысл - это площадь под графиком функции:

$$\int_{a}^{b} f(x)dx = S$$

Имеет ли смысл площадь неограниченной фигуры под графиком функции?

Предел функции $\Phi(b) = \int_a^b f(x) dx$ при $b \to +\infty$ может быть конечным или бесконечным

Def. 1. Определим несобственный интеграл первого рода (на неограниченном промежутке) (f(x) любого знака):

$$\int_{a}^{+\infty} f(x)dx = \lim_{b \to +\infty} \int_{a}^{b} f(x)dx$$

Nota. Если этот предел существует и конечен, то говорят, что интеграл сходится. В противном случае расходится

Def. 2. Функция определена на полуинтервале $[-\infty; b]$ и непрерывна. Тогда определен:

$$\int_{-\infty}^{b} f(x)dx = \lim_{a \to -\infty} \int_{a}^{b} f(x)dx$$

Def. 3.
$$\int_{-\infty}^{+\infty} f(x)dx = \int_{-\infty}^{c} f(x)dx + \int_{c}^{+\infty} f(x)dx$$

Nota. Этот интеграл сходится, если сходятся оба интеграла справа, и расходится, если расходится хотя бы один из них (в том числе если возникает неопределенность $\infty - \infty$)

Но по определению
$$\int_{-\infty}^{+\infty} f(x)dx$$
 расходится

Чтобы учесть обнуление интеграла в ситуации взаимного погашения площадей S_1 и S_2 (а это происходит тогда, когда левый и правый концы промежутка синхронно стремятся к $+\infty$) используют понятие интеграла в смысле главного значения (v.p. - от французского valeur principale):

$$v.p. \int_{-\infty}^{+\infty} f(x)dx = \lim_{\delta \to -\infty} \int_{-\delta}^{\delta} f(x)dx$$

Разложение по формуле Йьютона-Лейбница

$$Ex. \ \mathcal{Q}.$$

$$\int_{1}^{+\infty} \frac{dx}{x \ln x} = \int_{1}^{+\infty} \frac{d \ln x}{\ln x} = \int_{0}^{+\infty} \frac{dt}{t} = \ln t \Big|_{0}^{+\infty} = \ln \ln x \Big|_{1}^{+\infty} = \lim_{x \to +\infty} \ln \ln x - \lim_{x \to 1} \ln \ln x = \infty - \infty$$

- расходится

Заметим нарушение непрерывности функции $\frac{1}{x lnx}$ в x=1, что привело к $lnlnx \to -\infty$ при $x \to 1$

Это не интеграл первого рода, а комбинация интегралов первого и второго рода

2* Интеграл от неограниченной на отрезке функции

 $f(x):[a;b) \to \mathbb{R}$, где b - точка разрыва второго рода, а именно бесконечного

Def. 1. Интеграл второго рода (несобственный)

$$\int_{a}^{b} f(x)dx = \lim_{\beta \to b} \int_{a}^{\beta} f(x)dx$$

Этот интеграл сходится, если предел существует и конечен

Def. 2. Аналогично (a - точка бесконечного разрыва):

$$\int_{a}^{b} f(x)dx = \lim_{\alpha \to a} \int_{\alpha}^{b} f(x)dx$$

Def. 3. $c \in [a; b]$ - точка бесконечного разрыва:

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

Сходится, если оба интеграла сходятся

Ex. 1.

$$\int_{-1}^{1} \frac{dx}{x} = \int_{-1}^{0} \frac{dx}{x} + \int_{0}^{1} \frac{dx}{x} = \ln|x| \Big|_{-1}^{0} + \ln|x| \Big|_{0}^{1}$$

- интеграл расходится

Не заметили
$$\int_{-1}^{1} \frac{dx}{x} = \ln|x| \Big|_{-1}^{1} = 0$$
 ???

Ex. 2.

$$\int_{-1}^{1} \frac{dx}{x^2} = -\frac{dx}{x} \Big|_{-1}^{1} = -2$$

- неверно

$$\int_{-1}^{1} \frac{dx}{x^2} = \int_{-1}^{0} \frac{dx}{x^2} + \int_{0}^{1} \frac{dx}{x^2} = -\frac{dx}{x} \Big|_{-1}^{0} + -\frac{dx}{x} \Big|_{0}^{1}$$

- расходится

Nota. Если нет разбиения [a;b] по аддитивности, то неопределенности раскрываются

$$Ex. \int_{1}^{2} \frac{dx}{x^{2}-1} = \frac{1}{2} \int_{1}^{2} \left(\frac{1}{x-1} - \frac{1}{x+1}\right) dx = \frac{1}{2} (ln|x-1|-ln|x+1|) \Big|_{1}^{2} = \frac{1}{2} (ln|1-1|-ln|x+1|) \Big|_{1}^{2} = \infty, \text{ т. к. разбивается отрезок}$$

$$= \frac{1}{2} (ln|\frac{x-1}{x+1}) \Big|_{1}^{2} = \frac{1}{2} (ln\frac{1}{3} - ln(0)) = \infty - \text{теперь точно } \infty$$

2.2 Свойства

1) Линейность: $\int_a^{+\infty} (\lambda f(x) + \mu g(x)) dx = \lambda \int_a^{+\infty} f(x) dx + \mu \int_a^{+\infty} g(x) dx$ - если интегралы сходятся (иначе исследуем по определению через предел)

2) Аддитивность: $I=\int_a^{+\infty}f(x)dx=\int_a^cf(x)dx+\int_c^{+\infty}f(x)dx$ - отсечение любого конечного интеграла $\int_a^cf(x)dx$ не влияет на сходимость

3) Знаки интегралов:

$$\int_a^{+\infty} f(x)dx \ge \int_a^{+\infty} g(x)dx$$
 при $f(x) \le g(x)$ и интегралы сходятся В частности
$$\int_a^{+\infty} f(x)dx \ge 0$$
 при $f(x) \le 0$ на $[a; +\infty]$

Nota. Исследование интегралов двух функций используется для определения их сходимости

2.3 Сходимость несобственных интегралов

Задача: Часто нужно исследовать интеграл на сходимость без или до его вычисления (обычно приближенного для неберущихся интегралов)

Требуются признаки сходимости интегралов, часто использующие сравнение с эталонными интегралами (вычисляемые по формуле Ньютона-Лейбница)

2* Признак сравнения в неравенствах (далее только для интегралов $\int_a^{+\infty} f(x) dx$, для остальных аналогично)

$$f(x), g(x): [a; +\infty) \to \mathbb{R}^+$$
, непрерывны на $[a; +\infty)$ и $\forall x \in [a; +\infty) f(x) \le g(x)$ Тогда, если $\int_a^{+\infty} g(x) dx = I \in \mathbb{R}$, то $J = \int_a^{+\infty} f(x) dx$ сходится, причем $0 \le \int_a^{+\infty} f(x) dx \le \int_a^{+\infty} g(x) dx$

 $\int_a^{+\infty} g(x) dx$ Прежде чем использовать свойство ОИ и предельный переход в неравенства, нужно доказать, что интеграл $J = \lim_{b \to +\infty} \int_a^b f(x) dx$ сходится

Т. к. $f(x) \ge 0$, то $\int_a^b f(x) dx$ при $b \to \infty$ монотонно возрастающая функция При этом:

$$0 \le \int_a^b f(x)dx \le \int_a^b g(x)dx \le \lim_{b \to +\infty} \int_a^b g(x)dx = I \in \mathbb{R}$$

То $J(b) = \int_a^b f(x) dx$ ограничена и по признаку Вейерштрасса сходится Можно использовать предельный переход

$$0 \le \int_{a}^{b} f(x)dx \le \int_{a}^{b} g(x)dx \quad \left| \lim_{b \to +\infty} g(x) dx \right|$$

Nota. Можно аналогично сравнить функции отрицательного знака Если сходится $\int_{a}^{+\infty} g(x)dx$ при $g(x) \le f(x) \le 0$, то сходится $\int_{a}^{+\infty} f(x)dx$

Интегралы от функций разных знаков этим методов не сравниваются

 $f(x) \le g(x) \forall x \in [a; +\infty)$, но функции разных знаков, и нижняя площадь, т. е. $\int_{-v}^{v} |f(x)| dx$, больше верхней

$$1* f(x), g(x) \in C_{[a;+\infty)}, \ 0 \le f(x) \le g(x) \forall x \in [a;+\infty)$$
 $J = \int_a^{+\infty} f(x) dx$ расходится. Тогда $I = \int_a^{+\infty} g(x) dx$ расходится \Box Lab. (от противного)

Nota. Отметим, что если f(x) не является убывающей к нулю, т. е. б. м. на +∞, то $\int f(x)dx$ разойдется

Таким образом, если сравнить б. м. $\frac{f(x)}{g(x)}$, то можно исследовать их интегралы на сходимость

2* Предельный признак сравнения

$$f(x),g(x)\in C_{[a;+\infty)},\,f(x),g(x)>0$$

 $\exists\lim_{x\to+\infty}rac{f(x)}{g(x)}=k\in\mathbb{R}\{0\}.$ Тогда $I=\int_a^{+\infty}g(x)dx$ и $J=\int_a^{+\infty}f(x)dx$ одновременно сходятся или расходятся

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = k \iff \forall \varepsilon > 0 \exists \delta > 0 | \forall x > \delta | \frac{f(x)}{g(x)} - k | < \varepsilon$$

$$-\varepsilon + k < \frac{f(x)}{g(x)} < \varepsilon + k \quad \Big| *g(x) > 0$$

$$(k-\varepsilon)g(x) < f(x) < (\varepsilon+k)g(x)$$

Т. к. k > 0 $(\frac{f(x)}{g(x)} > 0)$ и ε - сколь угодно мало, то $k \pm \varepsilon$ - положительное и не близкое к нулю

OM:
$$\int_{a}^{b} (k - \varepsilon)g(x)dx < \int_{a}^{b} f(x)dx < \int_{a}^{b} (k + \varepsilon)g(x)dx$$
$$\lim_{b \to +\infty} : (k - \varepsilon) \int_{a}^{+\infty} g(x)dx < \int_{a}^{+\infty} f(x)dx < (k + \varepsilon) \int_{a}^{+\infty} g(x)dx$$

Если $I=\infty$ (но $k-\varepsilon\neq 0$), то по первому признаку (линейность) J расходится Если $I\in\mathbb{R}$ $(k+\varepsilon\neq\infty)$, то по первому признаку (линейность) J сходится

$$3^*$$
 Абсолютная сходимость
$$\int_a^{+\infty} |f(x)| dx = I \in \mathbb{R} \Longrightarrow \int_a^{+\infty} f(x) dx = J \in \mathbb{R}$$

Nota. Обратное неверно

□ ОИ и модуль:

$$\int_a^b f(x)dx \leq |\int_a^b f(x)dx| \leq \int_a^b |f(x)|dx$$
 Очевидно, что $0 \leq |\int_a^b f(x)dx| \leq \int_a^b |f(x)|dx \leq \lim_{b \to \infty} \int_a^b |f(x)|dx = I$
$$-I \leq \int_a^b f(x)dx \leq I$$

$$0 \le \lim_{b \to \infty} \left| \int_a^b f(x) dx \right| = \left| \lim_{b \to \infty} \int_a^b f(x) dx \right| \le \int_a^b \left| f(x) \right| dx = I$$

Nota. Если $I=\int_a^{+\infty}f(x)dx$ сходится, но $|\int_a^{+\infty}f(x)dx|$ расходится, то I называют условно сходящимся

$$Ex.\ I = \int_a^{+\infty} \frac{\sin x}{8x^2 + 3} dx$$

$$\int_a^{+\infty} |\frac{\sin x}{8x^2 + 3}| dx = \int_a^{+\infty} \frac{|\sin x|}{8x^2 + 3} dx$$
 синус ограничен $\leq \int_a^{+\infty} \frac{dx}{8x^2 + 3} dx = \frac{1}{k} \operatorname{arct} g \frac{x}{k} \Big|_1^{+\infty} \in \mathbb{R}$ В качестве эталонных интегралов удобно использовать:

I рода:
$$\int_a^{+\infty} \frac{dx}{x^n}$$

II рода:
$$\int_{a}^{b} \frac{dx}{(b-x)^n}$$

<u>Lab.</u> Исследовать на сходимость в зависимости от $n \in \mathbb{Z}(\mathbb{Q})$

3. Интегралы зависящие от параметра

Задача. Ех
$$(\alpha \neq 0)$$
. $\int_0^1 \cos\alpha x dx = \frac{1}{\alpha} \int_0^1 \cos\alpha x d\alpha x = \frac{1}{\alpha} \sin\alpha x \Big|_0^1 = \frac{\sin\alpha}{\alpha} = \phi(\alpha)$

$$J(\alpha) = \int_a^b f(x,\alpha) dx$$
 - интеграл, зависящий от параметра

 $f(x,\alpha)$ непрерывна в $a \le x \le b, \ c \le \alpha \le d$ и существует непрерывная производная f'_{α}

Тогда на
$$[c;d]$$
 определена $J_{\alpha}'(\alpha) = \left(\int_a^b f(x,\alpha)dx\right)_{\alpha}' = \int_a^b f_{\alpha}'dx$

Если последний интеграл берется лучше, чем исходный, то теорема полезна
$$\Box J_{\alpha}'(\alpha) = \lim_{\Delta\alpha \to 0} \frac{J(\alpha + \Delta\alpha) - J(\alpha)}{\Delta\alpha} = \lim_{\Delta\alpha \to 0} \frac{1}{\Delta\alpha} (\int_a^b f(x, \alpha + \Delta\alpha) dx - \int_a^b f(x, \alpha) dx) == \lim_{\Delta\alpha \to 0} \frac{1}{\Delta\alpha} (\int_a^b (f(x, \alpha + \Delta\alpha) - f(x, \alpha)) dx)$$

По теореме Лагранжа о среднем $\exists \xi \in [\alpha; \alpha + \Delta \alpha]$

$$= \lim_{\Delta\alpha \to 0} \int_{a}^{b} f(x, \xi) dx$$

$$= \lim_{\Delta \alpha \to 0} \int_{a}^{b} f(x, \xi) dx$$
Т. к. f'_{α} непрерывна, то $f'_{\alpha}(x, \xi) = \lim_{\xi \to \alpha} f'_{\alpha}(x, \xi) + \varepsilon = f'_{\alpha}(x, \alpha) + \varepsilon$

Таким образом
$$J_{\alpha}'(\alpha) = \lim_{\Delta \alpha \to 0} \int_a^b f_{\alpha}'(x,\alpha) dx + \lim_{\Delta \alpha \to 0} \int_a^b \varepsilon dx = \lim_{\Delta \alpha \to 0} \int_a^b f_{\alpha}'(x,\xi) dx$$

Теорема:
$$J'_{\alpha} = \left(\int_a^b f(x,\alpha)dx\right)'_{\alpha} = \int_a^b f'_{\alpha}(x,\alpha)dx$$

$$I(\alpha) = \int_0^{+\infty} e^{-x} \frac{\sin \alpha x}{x} dx \ I'_{\alpha}(\alpha) = \int_0^{+\infty} (e^{-x} \frac{\sin \alpha x}{x})'_{\alpha} dx = \int_0^{+\infty} e^{-x} \frac{1}{x} x \cos \alpha x dx = \int_0^{+\infty} e^{-x} \cos \alpha x dx$$

Из этого следует, что $I(\alpha) = \int_{+\infty}^{\infty} \frac{1}{a + \alpha^2} dx = arctg(\alpha) + C$ Так как $I(\alpha)$ - несобственный интеграл, это функция, а не семейство функций. Найдем C.

$$I(0) = \int_0^{+\infty} e^{-x} \frac{\sin 0 * x}{x} dx = 0 \Longrightarrow C = 0 \text{ Таким образом, } I(\alpha) = (\int_0^{+\infty} e^{-x} \frac{\sin \alpha x}{x} dx)'_{\alpha} = \operatorname{arctg}(\alpha)$$

Ех. Гамма-функция

$$\Gamma(\alpha) = \int_0^{+\infty} x^{\alpha - 1} e^{-x} dx \quad (\alpha > 0)$$

Исследуем на сходимость:

$$\Gamma(\alpha) = \int_0^{+\infty} x^{\alpha - 1} e^{-x} dx = \int_0^1 x^{\alpha - 1} e^{-x} dx + \int_1^{+\infty} x^{\alpha - 1} e^{-x} dx$$

На отрезке [0;1] $e^{(-x)} \in [0;1]$. Тогда $0 \le \int_0^1 x^{\alpha-1} e^{-x} dx \le \int_0^1 x^{\alpha-1} dx \Longrightarrow$ интеграл сходится

$$\int_{1}^{+\infty} x^{\alpha-1} e^{-x} dx \le \int_{1}^{+\infty} x^{n} e^{-x} dx$$
 - по частям, появятся $x^{k} e^{-x} \Big|_{1}^{+\infty} \to 0$ и $\int_{1}^{+\infty} e^{-x} dx$ сходится

Найдем формулу для
$$\Gamma(\alpha)$$
:
$$\alpha \in \mathbb{N} \quad \Gamma(1) = \int_0^{+\infty} e^{-x} dx = -e^{-x} \Big|_0^{+\infty} = 1$$

$$\Gamma(\alpha) = \int_0^{+\infty} x^{\alpha-1} e^{-x} dx = -\int_0^{+\infty} x^{\alpha-1} de^{-x} = -x^{\alpha-1} e^{-x} \Big|_1^{+\infty} + \int_0^{+\infty} x^{\alpha-2} (\alpha-1) e^{-x} dx = (\alpha-1) \Gamma(\alpha-1) = (\alpha-1)! \Gamma(1) = (\alpha-1)!$$

 $\Gamma(n+1) = n!$

<u>Lab.</u> Посмотреть, как обобщается понятие факториала на вещественные числа:

4. Функция нескольких переменных (ФНП)

4.1. Определение

Nota. Дадим определение ФНП

 $\forall M(x,y)\exists!z\in\mathbb{R}:z=f(x,y)\Longleftrightarrow z=f(x,y)$ - функция двух переменных

Def. Окрестность точки
$$M_0(x_0,y_0)$$
 $U_{\delta}(M_0)=\{(x,y)\in Oxy: (x-x_0)^2+(y-y_0)^2<\delta^2,\delta>0$ - радиус $\bigcup_{\delta}^{o}(M_0)$ - выколотая

Nota. $\Delta x=x-x_0, \Delta y=y-y_0,$ одновременное стремление $\Delta x, \Delta y\to 0$ можно заменить $\Delta=\sqrt{(x-x_0)^2+(y-y_0)^2}\to 0$

Def.
$$\lim_{M\to M_0} z(x,y) = L \in \mathbb{R} \iff \forall \varepsilon > 0 \exists \delta > 0 (\delta = \delta(\varepsilon)) | \forall M \in \overset{\circ}{U}_{\delta} (M_0) | z(x,y) - L | < \varepsilon$$
 M_0 - точка сгущения и $x_0, y_0 \in \mathbb{R}$ (здесь)

Nota. На плоскости Oxy возможно стремление $M \to M_0$ по разным путям F(x,y) = 0 (уравнение кривой)

При этом значение предела вдоль разных путей могут отличаться (аналог односторонних пределов)

Предел в определении - предел в общем смысле: его существование и значение не зависит от пути

Def. z = f(x, y) называется непрерывной в точке $M(x_0, y_0)$, если $z = f(x_0, y_0) = \lim_{M \to M_0} z(x, y)$ z непрерывна на D, если z непрерывна $\forall (x, y) \in D$

Nota. Справедливы теоремы Вейерштрасса и Больцано-Коши для функции, непрерывной в заданной области

z=f(x,y)непрерывна на $\overline{D}=D\cup\Gamma_{\!\!D},$ где \overline{D} - закрытая область, D - открытая область, $\Gamma_{\!\!D}$ - граница

Th. W1. z = f(x, y) ограничена на \overline{D}

Th. W2. \exists наибольшее и наименьшее $z \in \overline{D}$

Th. B-C1. на границе Γ_D z принимает значения разных знаков $\Longrightarrow \exists M \in \overline{D}: z(M) = 0$

Th. B-C1. z(x,y) принимает все значения от $z_{\text{наим}}$ до $z_{\text{наиб}}$

4.2. Производные функции двух переменных

Путям l_1, l_2 соответствуют кривые L_1, L_2 на поверхности z = f(x, y).

Пользуясь геометрическим смыслом производной, заметим, что касательные к L_1, L_2 могут быть различными.

Поэтому для определения производной выберем координатные направления x = const и y = const

$$z = f(x = c, y)$$
 $\frac{\partial z}{\partial y} \stackrel{def}{=} \lim_{\Delta y \to 0} \frac{\Delta_y z}{\Delta y}$, где $\Delta_y z = z(x, y + \Delta y) - z(x, y)$

Определили частную производную z по y

<u>Lab.</u> Дать определение $\frac{\partial z}{\partial z}$

Nota. $\Delta_y z = z(x, y + \Delta y) - z(x, y)$ и $\Delta_y z$ называют частным приращением

Def. Полное приращение $\Delta z \stackrel{def}{=} z(x + \Delta x, y + \Delta y) - z(x, y)$

Nota. $\Delta z \neq \Delta_x z + \Delta_y z !!!!$

Обозн.:
$$\frac{\partial z}{\partial x} = z'_x = z_x$$
, $\frac{\partial z}{\partial y} = z'_y = z_y$

Как определить функцию, дифференцируемую в точке?

По аналогии $\Delta z = A\Delta x + B\Delta y + \alpha \Delta x + \beta \Delta y$, где $A, B \in \mathbb{R}$, α, β - б. м.

Дифференциал

Th.
$$z: D \to \mathbb{R}, \ D \subset \mathbb{R}^2, \ \exists$$
 непрерывные $\frac{\partial z}{\partial x}, \ \frac{\partial z}{\partial u}$

Тогда функция представима $\Delta z = Adx + Bdy + \alpha \Delta x + \beta \Delta y$, где $A, B \in \mathbb{R}, \alpha, \beta = \delta$. м.

$$\Box \quad \Delta z = z(x + \Delta x, y + \Delta y) - z(x, y) = z(x + \Delta x, y + \Delta y) - z(x + \Delta x, y) + z(x + \Delta x, y) - z(x, y)$$

По теореме Лагранжа:

$$z(x + \Delta x, y + \Delta y) - z(x + \Delta x, y) = z'_{v}(\eta)\Delta y$$

$$z(x + \Delta x, y) - z(x, y) = z'_{x}(\xi)\Delta x$$

По теореме о представлении функции ее пределом:

$$z'_{x}(\xi) = \lim_{\xi \to x(\Delta x \to 0)} z'_{x}(\xi) + \alpha$$

$$z_y'(\eta) = \lim_{\eta \to y} z_y'(\eta) + \beta$$

Так как
$$z_x'(\xi), z_y'(\eta)$$
 непрерывны, то $\lim_{\xi \to x} z_x'(\xi) = \frac{\partial z}{\partial x}, \lim_{\eta \to y} z_y'(\eta) = \frac{\partial z}{\partial y}$

Тогда
$$\Delta z = \left(\frac{\partial z}{\partial x} + \alpha\right) \Delta x + \left(\frac{\partial z}{\partial y} + \beta\right) \Delta y = \Delta z = \frac{\partial z}{\partial x} \Delta x + \frac{\partial z}{\partial y} \Delta y + \alpha \Delta x + \beta \Delta y$$

Заметим, что $\alpha \Delta x$ и $\beta \Delta y$ - б. м. порядка выше, чем $\Delta \rho = \sqrt{(\Delta x)^2 + (\Delta y)^2} \Longleftrightarrow$

$$1 = \sqrt{\left(\frac{\Delta x}{\Delta \rho}\right)^2 + \left(\frac{\Delta y}{\Delta \rho}\right)^2} \quad |\frac{\Delta x}{\Delta \rho}| \le 1, |\frac{\Delta y}{\Delta \rho}| \le 1$$

Сравним
$$\frac{\alpha \Delta x}{\Delta \rho} = 6$$
. м. огр. $\stackrel{\Delta \rho \to 0}{\to} 0, \frac{\beta \Delta y}{\Delta \rho} \stackrel{\Delta \rho \to 0}{\to} 0$

Функция, приращение которой представимо $\Delta z = \frac{\partial z}{\partial x} \Delta x + \frac{\partial z}{\partial y} \Delta y + o(\Delta \rho)$, называется дифференцируемой в точке (x, y), линейная часть приращения называется полным дифференциалом

Обозначение:
$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$$

$$Ex. \ z = 3xy^2 + 4\cos xy$$

$$\frac{\partial z}{\partial z} = 3u^2 - 4\sin xu \cdot u$$

$$\frac{\partial z}{\partial x} \stackrel{y=const}{=} 3y^2 - 4sinxy \cdot y$$

$$\frac{\partial z}{\partial y} \stackrel{x=const}{=} 6xy - 4sinxy \cdot x$$

$$dz = (3y^2 - 4y\sin xy)dx + (6xy - 4x\sin xy)dy$$

4.3. Правила дифференцирования

Nota. При нахождении $\frac{\partial z}{\partial x_i}$ (x_i - какая-либо переменная) дифференцирование проводится по правилам для функции одной переменной $(x_i \neq x_i \text{ считаются константами})$

Выпишем более сложные правила

1* Сложная функция

Mem.
$$(f(q(x)))' = f'(q(x)) \cdot q'(x)$$

Def. Сложная функция двух переменных: z = z(u, v), u = u(x, y), v = v(x, y)Формула: Найдем $frac\partial z(u,v)\partial x$ и $frac\partial z(u,v)\partial y$

 $\begin{array}{l} \mathbf{Th.} \ z=z(u,v), \ u(x,y), v(x,y) \ \text{непрерывно дифференцируемы по } x,y \\ \mathbf{T} \text{огда} \ \frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x} \ \frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y} \end{array}$

 \Box z дифференцируема $\Longleftrightarrow \Delta z = \frac{\partial z}{\partial u} \Delta u + \frac{\partial z}{\partial v} \Delta v + \alpha \Delta u + \beta \Delta v$

Зададим приращение Δx (представление Δz не должно измениться)

Зададим приращение
$$\Delta x$$
 (представление Δx)
$$\Delta_x z = \frac{\partial z}{\partial u} \Delta_x u + \frac{\partial z}{\partial v} \Delta_x v + \alpha \Delta_x u + \beta \Delta_x + v \quad | \cdot \Delta x$$

$$\frac{\Delta_x z}{\Delta x} = \frac{\partial z}{\partial u} \frac{\Delta_x u}{\Delta x} + \frac{\partial z}{\partial v} \frac{\Delta_x v}{\Delta x} + \alpha \frac{\Delta_x u}{\Delta x} + \beta \frac{\Delta_x v}{\Delta x} \quad | \cdot \Delta x$$
По теореме Лагранжа: $\frac{\partial u}{\partial x} (\xi) \xrightarrow{\Delta x \to 0} \frac{\partial u}{\partial x}$
В пределе: $\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial x}$

В пределе:
$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial x}$$

Аналогично для $\frac{\partial z}{\partial u}$

Nota. Интересен случай z = z(x, u, v), где u = u(x), v = v(x)

Здесь z является функцией одной переменной x

Обобщая правило на случай трех переменных, можем записать формулу полной производной, которая имеет смысл

$$\frac{dz}{dx} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial x} + \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x} = \frac{\partial z}{\partial x} + \frac{\partial z}{\partial u} \cdot \frac{du}{dx} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dx}$$

Ex. Пусть w=w(x,y,z) - функция координат x=x(t),y=y(t),z=z(t) - функции времени w явно не зависит от времени, тогда $\frac{dw}{dt} = w_x'v_x + w_y'v_y + w_z'v_z$, где v_x - проекция скорости

Если
$$w=w(x,y,z,t)$$
, то $\frac{dw}{dt}=\frac{\partial w}{\partial t}w_x'v_x+w_y'v_y+w_z'v_z$

 ${f 2}^*$ Неявная функция одной переменной: пусть F(x,y(x))=0 - неявное задание y=y(x)

Найдем
$$dF = \frac{\partial F}{\partial x}dx + \frac{\partial F}{\partial y}dy = 0$$

Отсюда
$$\frac{dy}{dx} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial u}}$$

4.4. Производная высших порядков

Nota. Пусть z=z(x,y) дифференцируема и $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$ также дифференцируемы, при этом в общем случае $\frac{\partial z}{\partial x}=f(x,y), \frac{\partial z}{\partial y}=g(x,y)$

Тогда определены вторые частные производные

$$\begin{aligned} \mathbf{Def.} & \ \frac{\partial^2 z}{\partial x^2} \stackrel{def}{=} \frac{\partial}{\partial x} \frac{\partial z}{\partial x} \\ \frac{\partial^2 z}{\partial y^2} &= \frac{\partial}{\partial y} \frac{\partial z}{\partial y} - \text{чистые производные} \\ \frac{\partial^2 z}{\partial x \partial y} &= \frac{\partial}{\partial y} \frac{\partial z}{\partial x} \\ \frac{\partial^2 z}{\partial y \partial x} &= \frac{\partial}{\partial x} \frac{\partial z}{\partial y} - \text{смешанные производныe} \end{aligned}$$

Th. z=z(x,y), функции $z(x,y),z_x',z_y',z_{xy}'',z_{yx}''$ определены и непрерывны в $\stackrel{\circ}{U}(M(x,y))$ Тогда $z_{xy}''=z_{yx}''$

□ Введем вспомогательную величину

$$\Phi = (z(x + \Delta x, y + \Delta y) - z(x + \Delta x, y)) - (z(x, y + \Delta y) - z(x, y))$$

Обозначим $\phi(x) = z(x, y + \Delta y) - z(x, y)$

Тогда $\Phi = \phi(x + \Delta x) - \phi(x)$ - дифференцируема, непрерывна, как комбинация

По теореме Лагранжа $\phi(x+\Delta x)-\phi(x)=\phi'(\xi)\Delta x=(z_x'(\xi,y+\Delta y)-z_x'(\xi,y))\Delta x$, где $\xi\in(x;x+\Delta x)$

Здесь z_x' дифференцируема также на $[y, y + \Delta y]$

Тогда по теореме Лагранжа $\exists \eta \in (y,y+\Delta y) \mid z_x'(\xi,y+\Delta y)-z_x'(\xi,y)=z_{xy}''(\xi,\eta)\Delta y$

Таким образом $\Phi = z_{xy}''(\xi,\eta)\Delta x\Delta y$

Перегруппируем Ф, далее аналогично для $z_{yx}^{\prime\prime}$

Тогда $z_{xy}''(\xi,\eta)\Delta x\Delta y=\Phi=z_{yx}''(\xi',\eta')\Delta x\Delta y$

4.5. Дифференциалы

Mem.~1.~ Полный дифференциал (1-ого порядка) функции z=z(x,y) $dz=\frac{\partial z}{\partial x}dx+\frac{\partial z}{\partial y}dy$ - сумма частных дифференциалов

Mem. 2. Инвариантность формы первого дифференциала функции одной переменной $dy(x)=y'(x)dx\stackrel{x=\phi(t)}{=}y'(t)dt$

Тh. Инвариантность полного дифференциала первого порядка.

$$z = z(u, v), \quad u = u(x, y), \quad v = v(x, y) - \text{дифференциалы}$$
 Тогда $dz = \frac{\partial z}{\partial u} du + \frac{\partial z}{\partial v} dv = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$
$$\Box \quad dz = \frac{\partial z}{\partial u} \left(\frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy \right) + \frac{\partial z}{\partial v} \left(\frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy \right) = \left(\frac{\partial z}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial x} \right) dx + \left(\frac{\partial z}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial y} \right) dy = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$$

Mem. $d^2u(x) \stackrel{def}{=} d(du(x)) = u''(x)dx^2 \neq u''(t)dt^2$

Def: z = z(x,y) - дифференцируема и $dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$ - дифференцируемая функция

Тогда второй полный дифференциал:

$$d^2z \stackrel{def}{=} d(dz)$$

Формула:
$$d^2z = d\left(\frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy\right) = (z'_xdx + z'_ydy)'_xdx + (z'_xdx + z'_ydy)'_ydy = (z'_xdx)'_xdx + (z'_ydy)'_xdx + (z'_ydy)'_ydy = (z'_xdx)'_ydy + (z'_ydy)'_ydy = (z'_x)'_x(dx)^2 + (z'_y)'_xdxdy + (z'_x)'_ydydx + (z'_y)'_y(dy)^2 = \frac{\partial^2 z}{\partial x^2}(dx)^2 + 2\frac{\partial^2 z}{\partial x\partial y}dxdy + \frac{\partial^2 z}{\partial y^2}(dy)^2$$

Nota: Заметим формальное сходство с биномом Ньютона: $a^2 + 2ab + b^2 = (a+b)^2$ Введем условное обозначение $\frac{\partial^2}{\partial x^2} + 2\frac{\partial^2}{\partial x \partial u} + \frac{\partial^2}{\partial u^2} = \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial u}\right)^2$

Тогда $d^2z = \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial u}\right)^2 z$, здесь $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial u}\right)^2$ - оператор второго полного дифференцирования $d^n z = \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial u}\right)^n z$ - дифференциал *n*-ого порядка

$$Nota$$
: Можно ли утверждать, что $d^2z(x,y) = \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y}\right)^2 z \stackrel{x=x(u,v),y=y(u,v)}{=} \left(\frac{\partial}{\partial u} + \frac{\partial}{\partial v}\right)^2 z$???

Heт, нельзя $(d^2z$ не инвариантен при замене)

Покажем, что не выполняется в простом случае: z = z(x, y) = z(x(t), y(t)) - параметризация. Геометрически, это выбор пути в области D от точки $M_0(x_0, y_0)$ до точки M(x, y)

$$d(dz) \stackrel{z-\Phi_1\Pi}{=} (dz)_t'dt = \left(\frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy\right)_t'dt \stackrel{dx(t) = \frac{dx}{dt}}{=} t(\frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt})_t'dt^2 = \left(\frac{\partial z}{\partial x}\frac{dx}{dt}\right)_t'dt^2 + \left(\frac{\partial z}{\partial y}\right)_t'dt^2 = \left(\left(\frac{\partial z}{\partial x}\right)_t'\frac{dx}{dt} + \frac{\partial z}{\partial x}\left(\frac{dx}{dt}\right)_t'\right)dt^2 + \left(\left(\frac{\partial z}{\partial y}\right)_t'\frac{dy}{dt} + \frac{\partial z}{\partial y}\left(\frac{dy}{dt}\right)_t'\right)dt^2 = \left(\frac{\partial^2 z}{\partial x^2}\left(\frac{dx}{dt}\right)^2 + \frac{\partial z}{\partial x}\frac{d^2x}{dt^2}\right)dt^2 + \left(\frac{\partial^2 z}{\partial x\partial y}\frac{dy}{dt}\frac{dx}{dt} + \frac{\partial^2 z}{\partial y\partial x}\frac{dx}{dt}\frac{dy}{dt}\right)dt^2 = \frac{\partial^2 z}{\partial x^2}dx^2 + \frac{\partial z}{\partial x}d^2x + \frac{\partial^2 z}{\partial y^2}dy^2 + \frac{\partial z}{\partial y}d^2y + \frac{\partial z}{\partial x}\frac{dy}{dt}dydx = \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y}\right)^2z\frac{\partial z}{\partial x}d^2x + \frac{\partial z}{\partial y}d^2y$$

$$\begin{cases} x = mt + x_0 \\ y = nt + y_0 \end{cases}$$
- линейная параметризация

<u>Lab.</u> Дать инвариантность при линейной параметризации

Причем, это свойство верно для d^nz , то есть если $\begin{cases} x=mt+x_0\\ y=nt+y_0 \end{cases}$ (например), то $d^n z \stackrel{z=z(t)}{=} z^{(n)}(t)dt$

4.6. Формула Тейлора

$$Mem.\ f(x)=f(x_0)+rac{f'(x_0)}{1!}(x-x_0)+\cdots+rac{f^{(n)}(x_0)}{n!}(x-x_0)^n+iggl[o((x-x_0)^n)-\Pi eaho \ f^{(n+1)}(\xi) \ (n+1)!}(x-x_0)^{n+1}-\Pi a$$
гранжа В дифференциалах:
$$f(x)=f(x_0)+rac{df(x_0)}{1!}+rac{d^2f(x_0)}{2!}+\cdots+rac{d^nf(x_0)}{n!}+ o c t a t o k$$
 Формула Тейлора для $z=z(x,y)$ в окрестности $M_0(x_0,y_0)$ (как раньше $\Delta \rho=\sqrt{(\Delta x)^2+(\Delta y)^2}$) $z(M=\stackrel{o}{U}(M_0))=z(M_0)+rac{dz(M_0)}{1!}+\cdots+rac{d^nz(M_0)}{n!}+o((\Delta \rho)^n)$

Nota. Формула выше верна, если z = z(x, y) - непрерывна со своими частными производными до n+1 порядка включительно в некоторой окрестности $U_{\delta}(M_0(x_0,y_0))$, где $M(x,y) \in U_{\delta}(M_0)$

Для линейной параметризации форма дифференциала сохраняется
$$d^2z=(\frac{\partial}{\partial x}dx+\frac{\partial}{\partial y}dy)^2z\stackrel{\text{инвариант}}{=}z_t^{(n)}dt^n$$

Введем функцию: $z(x(t),y(t))\stackrel{\text{обозн}}{=} \varphi(t)$ - (n+1) раз дифференцируема (композиция (n+1)дифференцируемых и линейных функций)

Заметим, что $x = x_0 + \Delta xt \stackrel{t_0=0}{=} x_0$, $y = y_0 + \Delta yt \stackrel{t_0=0}{=} y_0$

$$M \stackrel{t \to t_0 = 0}{\longrightarrow} M_0$$

To ects $z(M_0) = z(x_0, y_0) = z(x(t_0), y(t_0)) = \varphi(t_0) = \varphi(0)$

Таким образом $\varphi(t)$ как функция одной переменной может быть разложена в окрестности $t_0 = 0$ по формуле Маклорена

$$\varphi(t) = \varphi(0) + \frac{d\varphi(0)}{1!} \Delta t + \dots + \frac{d^n \varphi(0)}{n!} \Delta t^n + o((\Delta t)^n)$$

Вернемся к z(x, y) ($\Delta t = t - t_0 = 1$):

$$z(x,y) = z(M) = z(M_0) + \frac{dz(M_0)}{1!} + \frac{d^2z(M_0)}{2!} + \dots + \frac{d^nz(M_0)}{n!} + r_n(x,y)$$

где
$$r_n(x,y) = r_n(t) \stackrel{\text{Лагр.}}{=} \frac{\varphi^{(n+1)}(\theta \Delta t)}{(n+1)!} \Delta t = \frac{\varphi^{(n+1)}(\theta \Delta t)}{(n+1)!}$$
 $r_n(x,y)$ должен быть б. м. по отношению к $(\Delta \rho)^n$, то есть $r_n(x,y) = o((\Delta \rho)^n)$

 $(r_n(t)\stackrel{n\to\infty}{\to},$ если $\varphi(t)$ нужное число раз дифференцируема $\mathit{Rightarrow}$ ограничена, $r_n(t)$ огр. б. м.)

Nota. В дальнейшем для исследования z(x,y) на экстремум достаточно разложения по формуле Тейлора до 2-ого порядка включительно. Покажем сходимость $r_n(x,y) \stackrel{(\Delta \rho)^n \to 0}{\to} 0$ на примере $r_2(x,y) = \frac{d^3z(M_{\text{сред.}})}{3!}$ $r_2(x,y) = \frac{1}{3!} (\frac{\partial}{\partial x} \Delta x + \frac{\partial}{\partial y} \Delta y)^3 z = \frac{1}{3!} (\frac{\partial^3z}{\partial x^3} (\Delta x)^3 + 3\frac{\partial^3z}{\partial x^2 \partial y} (\Delta x)^2 \Delta y + 3\frac{\partial^3z}{\partial x \partial y^2} (\Delta y)^2 \Delta x \frac{\partial^3z}{\partial y^3} (\Delta y)^3)$ Вообще говоря, значения частных производных берутся в различных средних точках $r_2(x,y) = \frac{1}{3!} (z_{xxx}(\mu_1)(\Delta x)^3 + 3z_{xxy}(\mu_2)(\Delta x)^2 \Delta y + z_{xyy}(\mu_3)(\Delta y)^2 \Delta x + 3z_{yyy}(\mu_4)(\Delta y)^3) = \Big|$ вынесем $(\Delta \rho)^3$ $= \frac{(\Delta \rho)^3}{3!} (\text{огран.} \cdot \frac{(\Delta x)^3}{(\Delta \rho)^3} + \text{огран.} \cdot \frac{(\Delta x)^2 \Delta y}{(\Delta \rho)^3} + \text{огран.} \cdot \frac{(\Delta y)^3}{(\Delta \rho)^3} + \text{огран.} \cdot \frac{(\Delta y)^3}{(\Delta \rho)^3})$ $= \frac{(\Delta x)^3}{(\Delta \rho)^3} = \frac{(\Delta x)^3}{\sqrt{(\Delta x)^2 + (\Delta y)^2}^3} \xrightarrow{\Delta x \to 0} 0$, то есть дробь и выражение выше ограничены $\frac{r_2(x,y)}{(\Delta \rho)^2} = \frac{1}{3!} \frac{(\Delta \rho)^3 \cdot \text{огр.}}{(\Delta \rho)^2} = \frac{1}{3!} \Delta \rho \cdot \text{огр.} \xrightarrow{\Delta \rho \to 0} 0$

4.7. Геометрия ФНП

4.7.1. Линии и поверхности уровня

Положим z=const. В сечении плоскостью z=c образуется кривая l с уравнением $\begin{cases} z=c \\ \varphi(x,y)=0 \leftarrow \text{ уравнение } l \end{cases}$ Кривая l с уравнением z(x,y)=c называется линией уровня $\Phi_2\Pi$ z=z(x,y)

Def. Поверхность уровня \mathcal{P} - это поверхность с уровнем u(x,y,z)=c

Физ. смысл: Пусть $u:\mathbb{R}^3 \to \mathbb{R}$ (значения функции u(x,y,z) - скаляры). Тогда говорят, что в \mathbb{R}^3 задано скалярное поле. Например, поле температур, давления, плотности и т. д.

Тогда u=c - поверхности постоянных температур, давления и т. п. (изотермические, изобарные, эквипотенциальные)

Ex. Конус -
$$z = -\sqrt{x^2 + y^2}$$

Линии уровня z = c:

1.
$$c > 0$$
 Ø

2.
$$c = 0$$
 $x = y = 0$ – точка $(0, 0)$

2.
$$c = 0$$
 $x = y = 0$ точка $(0,0)$
3. $c < 0$ $-|c| = -\sqrt{x^2 + y^2}$ $c^2 = x^2 + y^2$

4.7.2. Производная по направлению, Градиент

Задача. Дано скалярное поле u = u(x, y, z) (напр. давления). Как меняется давление при перемещении в заданном направлении?

Это задача о нахождении скорости изменения u(x,y,z) в заданном направлении \overrightarrow{s}

Это задача о нахождении скорости изменения
$$u(x, y, z)$$
 в заданном направлении s Из $M_0(x_0, y_0, z_0)$ движемся в $M(x, y, z)$ в направлении \overrightarrow{s} , $x = x_0 + \Delta x$, $y = y_0 + \Delta y$, $z = z_0 + \Delta z$ $\Delta s = \sqrt{(\Delta x)^2 + (\Delta y)^2 + (\Delta z)^2}$ $\left| \cdot \frac{1}{\Delta s} \right|$

$$\Delta s = \sqrt{(\Delta x)^2 + (\Delta y)^2 + (\Delta z)^2} \quad \left| \cdot \frac{1}{\Delta s} \right|$$

$$1 = \sqrt{\left(\frac{\Delta x}{\Delta s}\right)^2 + \left(\frac{\Delta y}{\Delta s}\right)^2 + \left(\frac{\Delta z}{\Delta s}\right)^2}$$

$$(\frac{\Delta x}{\Delta s}, \frac{\Delta y}{\Delta s}, \frac{\Delta z}{\Delta s}) = (\cos \alpha, \cos \beta, \cos \gamma) = \overrightarrow{s^0}$$

Потребуем, чтобы u(x,y,z) имела непрерывность u_x,u_y,u_z в D

To есть u(x, y, z) дифференцируема и

$$\Delta u = du + o(\Delta s) = u_x \Delta x + u_y \Delta y + u_z \Delta x + o(\Delta s) \quad \bigg| \cdot \frac{1}{\Delta s}$$

$$\frac{\Delta u}{\Delta s} = u_x \cos \alpha + u_y \cos \beta + u_z \cos \gamma + \frac{o(\Delta s)}{\Delta s} - \text{предельный переход}$$

$$\frac{\partial u}{\partial s} = \frac{\partial u}{\partial x} \cos \alpha + \frac{\partial u}{\partial y} \cos \beta + \frac{\partial u}{\partial z} \cos \gamma$$

$$Nota.$$
 Изначально $\Delta u = du + ($ б. м. $)\Delta x + ($ б. м. $)\Delta y + ($ б. м. $)\Delta z$ $\bigg| \cdot \frac{1}{\Delta s}$

$$\frac{\Delta u}{\Delta s} = \frac{du}{\Delta s} + (\text{б. M.}) \cos \alpha, \text{ (б. M.)} \cos \alpha \rightarrow 0$$

Def.
$$\frac{\partial u}{\partial s} = \frac{\partial u}{\partial x} \cos \alpha + \frac{\partial u}{\partial y} \cos \beta + \frac{\partial u}{\partial z} \cos \gamma$$

где α, β, γ - направления \overrightarrow{s} , называют производной функции u=u(x,y,z) в направлении \overrightarrow{s}

Nota. Производная в определении - число, но $\frac{\partial u}{\partial s}$ - вектор скорости

Nota. Заметим, что если \overrightarrow{i} , \overrightarrow{j} , \overrightarrow{k} - декартовы орты, то $\frac{\partial u}{\partial i} = \frac{\partial u}{\partial x} 1 + \frac{\partial u}{\partial y} 0 + \frac{\partial u}{\partial z} 0 = \frac{\partial u}{\partial x}$

и аналогично в других направлениях: $\frac{\partial u}{\partial j} = \frac{\partial u}{\partial y}, \frac{\partial u}{\partial k} = \frac{\partial u}{\partial z}$

Составим вектор $\frac{\partial u}{\partial x}\overrightarrow{i} + \frac{\partial u}{\partial y}\overrightarrow{j} + \frac{\partial u}{\partial z}\overrightarrow{k} \stackrel{\text{обозн}}{=} \overrightarrow{\nabla} u$

 $\overrightarrow{\nabla}$ - набла-оператор (оператор Гамильтона); $\overrightarrow{\nabla} = (\frac{\partial}{\partial x}; \frac{\partial}{\partial y}; \frac{\partial}{\partial z})$ - условный вектор

Def. \overrightarrow{grad} $u \stackrel{def}{=} \overrightarrow{\nabla} u$ - называют градиентом функции u(x,y,z) Свойства градиентов:

Th. 1.
$$\frac{\partial u}{\partial s} = \text{np.} \overrightarrow{s} \overrightarrow{\nabla} u$$

Th. 2. $\overrightarrow{\forall} u$ - направление наибольшего значения $\frac{\partial u}{\partial s}$

Th. 3.
$$\overrightarrow{s} \perp \overrightarrow{\nabla} u \Longrightarrow \frac{\partial u}{\partial s} = 0$$

Th. 4. u = u(x, y), u = c - линии уровня l. Тогда $\overrightarrow{\nabla} u \perp l$ Доказательства:

1.
$$\frac{\partial u}{\partial s} = (\frac{\partial}{\partial x}; \frac{\partial}{\partial y}; \frac{\partial}{\partial z}) \cdot \overrightarrow{s^0} = \overrightarrow{\nabla} u \overrightarrow{s^0} = |\overrightarrow{\nabla} u| |\overrightarrow{s^0}| \cos(\overrightarrow{\nabla} u, \overrightarrow{s^0}) = |\overrightarrow{\nabla} u| \cos(\overrightarrow{\nabla} u, \overrightarrow{s^0}) = \text{np.} \overrightarrow{s} \overrightarrow{\nabla} u$$

- 2. $\frac{\partial u}{\partial s} = |\overrightarrow{\nabla} u| \cos \varphi \dots \underline{\text{Lab.}}$
- 3. <u>Lab.</u>
- 4. u=c уравнение $l_{\rm np}$ в плоскости Oxy, то есть u(x,y)=c, можем рассмотреть как неявную функцию u(x,y(x))-c=0

Производная неявной функции: $\frac{dy}{dx} = -\frac{u_x}{u_y} = k_l$ - угловой коэффициент касательной к l

 $\overrightarrow{\nabla} u = (u_x, u_y)$ $\frac{u_y}{u_x} = k_{\text{град.}}$ - наклон вектора градиента. Очевидно $k_l \cdot k_{\text{град.}} = -1 \Longrightarrow \overrightarrow{\nabla} u \perp l$

Nota. Итак, в теоремах сказано

 $\mathbf{1}^*$ В любом заданном направлении \overrightarrow{s} производная $\frac{\partial u}{\partial s}|_M$ равна проекции градиента в M

2-3* В направлении $\overrightarrow{\forall} u$ производная $\frac{\partial u}{\partial s}$ наибольшая по модулю, а в направлении $\overrightarrow{s} \perp \overrightarrow{\forall} u$

$$\frac{\partial u}{\partial s} = 0$$

 4^* Градиент \bot линиям уровня. Прямая, содержащая $\overrightarrow{\nabla} u$ (т. е. перпендикулярная касательной к l), называется нормалью к l а тогда $\overrightarrow{\nabla} u$ - вектор нормали

4.7.3. Касательная и нормаль к поверхности

Будем исследовать поверхность π с уравнением F(x, y, z(x, y)) = 0 (неявное задание)

Def. Прямая τ называется касательной прямой к поверхности π в точке P(x, y, z), если эта прямая касается какой-либо кривой, лежащей на π и проходящей через P

Nota. Кривая получается (обычно) сечением π какой-либо плоскостью

Nota. В одной точке может быть множество касательных, но необязательно

Nota. Договоримся различать два типа точек поверхности: обыкновенные и особые

Def. Поверхность π задана F(x, y, z(x, y)) = 0. Точка M называется обыкновенной, если существуют все $\frac{\partial F}{\partial x}$, $\frac{\partial F}{\partial u}$, $\frac{\partial F}{\partial z}$, они непрерывны и не все равны нулю

Def. Точка M называется особой, если $\frac{\partial F}{\partial x} = \frac{\partial F}{\partial y} = \frac{\partial F}{\partial z} = 0$ или хотя бы одна не существует

Th. Все касательные прямые к π в обыкновенной точке M_0 лежат в одной плоскости $\Box d\overrightarrow{s}$ - направляющий вектор касательной au, проведенной к кривой l в некоторой секущей плоскости

 \overrightarrow{ds} - вектор малых приращений, то есть $\overrightarrow{ds}=(dx,dy,dz)$ \overrightarrow{dp} - проекция \overrightarrow{ds} на Oxy, то есть $\overrightarrow{dp}=(dx,dy)$

Кривую l можно задать параметрическими уравнениями $\begin{cases} x = \varphi(t) \\ y = \xi(t) \\ z = \theta(t) \end{cases}$

Прямая τ имеет уравнение

$$\frac{x - x_0}{dx} = \frac{y - y_0}{dy} = \frac{z - z_0}{dz}$$

При отходе от M_0 на малое расстояние по поверхности (точнее по кривой l) задаем приращение $dt \neq 0$

Домножим уравнение на dt

$$\frac{x - x_0}{\frac{dx}{dt}} = \frac{y - y_0}{\frac{dy}{dt}} = \frac{z - z_0}{\frac{dz}{dt}}$$

Из условия обыкновенности точки M_0 следует дифференцируемость функции F. Кроме того, уравнение можно преобразовать к виду F(x(t),y(t),z(t))=0, где x(t),y(t),z(t) - тоже дифференцируемы в точке M_0

Запишем F'_t , как вложенную:

$$F'_t = \frac{\partial F}{\partial x}\frac{dx}{dt} + \frac{\partial F}{\partial y}\frac{dy}{dt} + \frac{\partial F}{\partial z}\frac{dz}{dt} = 0$$

Или
$$(\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial z}) \cdot (\frac{dx}{dt}, \frac{dy}{dt}, \frac{dz}{dt}) = 0$$

Таким образом, $\overrightarrow{N} \cdot \frac{d\overrightarrow{s}}{dt} = 0$. То есть $\overrightarrow{N} \perp \frac{d\overrightarrow{s}}{dt}$, при том, что $d\overrightarrow{s}$ выбран произвольно (кривая l - кривая произвольного сечения)

Итак, вектор $\overrightarrow{N} \perp$ любой касательной τ к поверхности π в точке M_0 . Следовательно все касательные лежат в плоскости κ такой, что $\overrightarrow{N} \perp \kappa$

Def. Плоскость κ (содержащая все касательные прямые τ к π в точке M_0) называется касательной плоскостью к π в M_0

Def. Прямая в направлении \overrightarrow{N} через точку M_0 называется нормалью к π в M_0

$$\overrightarrow{N}$$
 - вектор нормали к поверхности в точке
Уравнение (π) $F(x,y,z)=0, \overrightarrow{N}=(\frac{\partial F}{\partial x},\frac{\partial F}{\partial y},\frac{\partial F}{\partial z}), \ M_0(x_0,y_0,z_0)\in\pi,\kappa,n$

Касательная плоскость
$$(\kappa)$$
 $\frac{\partial F}{\partial x}(x-x_0) + \frac{\partial F}{\partial y}(y-y_0) + \frac{\partial F}{\partial z}(z-z_0) = 0$ Нормаль (n) $\frac{x-x_0}{\frac{\partial F}{\partial x}} = \frac{y-y_0}{\frac{\partial F}{\partial y}} = \frac{z-z_0}{\frac{\partial F}{\partial z}}$

Нормаль
$$(n)$$
 $\frac{x-x_0}{\frac{\partial F}{\partial x}} = \frac{y-y_0}{\frac{\partial F}{\partial y}} = \frac{z-z_0}{\frac{\partial F}{\partial z}}$

Nota. Получим вектор нормали в случае явного задания π z = z(x, y)

Пересечем π в точке M_0 плоскостями $x = x_0, y = y_0$.

В сечении получим кривые с касательными векторами

Вектор нормали к π в M_0 $\overrightarrow{n} = \overrightarrow{m} \times \overrightarrow{p}$

Найдем \overrightarrow{m} , \overrightarrow{p}

B сечении $x = x_0$

картинка

Введем вектор $\overrightarrow{dp}||\overrightarrow{p}$

$$\overrightarrow{dp} = (0, dy, \frac{\partial z}{\partial y} dy) = (0, 1, \frac{\partial z}{\partial y}) dy$$

Аналогично найдем \overrightarrow{m} в сечении $y=y_0$

$$\overrightarrow{m}||\overrightarrow{dm} = (dx, 0, \frac{\partial z}{\partial x}dx) = (1, 0, \frac{\partial z}{\partial x})dx$$

Так как модуль \overrightarrow{n} не важен, а только направление, то будем искать $\overrightarrow{n} = (1, 0, \frac{\partial z}{\partial x}) \times (0, 1, \frac{\partial z}{\partial u})$

$$\overrightarrow{n} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 1 & 0 & \frac{\partial z}{\partial x} \\ 0 & 1 & \frac{\partial z}{\partial y} \end{vmatrix} = \overrightarrow{i} \left(-\frac{\partial z}{\partial x} \right) - \overrightarrow{j} \frac{\partial z}{\partial y} + \overrightarrow{k} =$$

$$= \left(-\frac{\partial z}{\partial x}; -\frac{\partial z}{\partial y}; 1 \right)$$

Тогда уравнение κ :

$$z - z_0 = \frac{\partial z}{\partial x}(x - x_0) + \frac{\partial z}{\partial y}(y - y_0) = dz$$

Уравнение нормали n: $\frac{x-x_0}{-\frac{\partial z}{\partial x}} = \frac{y-y_0}{-\frac{\partial z}{\partial y}} = \frac{z-z_0}{1}$

Nota. Последние уравнения можно получить проще, если свести уравнение z=f(x,y) к уравнению z-f(x,y)=F(x,y,z)=0

<u>Lab.</u> Вывести уравнение κ и n, пользуясь предыдущем замечанием

Nota. Если найти $\overrightarrow{n} = \overrightarrow{p} \times \overrightarrow{m} = -(\overrightarrow{m} \times \overrightarrow{p})$, то получим также вектор нормали, но обращенный в противоположную сторону

Будем говорить, что $\overrightarrow{n^+}$ - положительный вектор нормали, если угол $\angle \gamma = \angle(\overrightarrow{n^+}, Oz) \in [0; \frac{pi}{2})$ $\overrightarrow{n^-}$ - отрицательный, если угол $\angle \gamma = \angle(\overrightarrow{n^-}, Oz) \in (\frac{\pi}{2}; \pi)$

Соответственно этому верхней стороной π называется та, к которой вектор нормали положительный

Нижней стороне соответствует \overrightarrow{n}

Если $\overrightarrow{n} \perp Oz$, то это боковая сторона

4.7.4. Экстремумы ФНП ($\Phi_2\Pi$)

Def. Точка $M_0(x_0, y_0)$ называется точкой максимума (минимума) функции z = z(x, y), если $\forall M \in U_\delta(M_0) \quad z(M_0) \geq z(M)$ (для минимума $z(M_0) \leq z(M)$)

Nota. То же, что
$$z(M) - z(M_0) = z - z_0 = \Delta z \le 0 \text{ (max)}, \quad \Delta z \ge 0 \text{ (min)}$$

Мет. Для ФОП формулировали Н. условие экстремума (Ферма), из этого условия получали точки, подозрительные на экстремум : критические - $f'(x_0) = 0$ или $\nexists f'(x_0)$ (для острого экстремума); стационарные - $\exists f'(x_0) = 0$ (частный случай критич.)

Далее при помощи достаточных условий (признаков) проверяем наличие экстремума в критических точках

Nota. Все термины переносятся на Φ НП

Н. У. и Д. У аналогично

Th. H. условие экстремума (гладкого):

 $z=z(x,y):\mathbb{R}^2 o\mathbb{R};\quad z_0$ - точка гладкого экстремума, то есть $\exists \frac{\partial z}{\partial x},\frac{\partial z}{\partial y}$ в M_0 и $\forall M\in U_\delta(M_0)\ z_0\leq z(M)$ или $z_0\geq z(M)$

Тогда
$$\begin{cases} \frac{\partial z}{\partial x}|_{M_0} = 0\\ \frac{\partial z}{\partial y}|_{M_0} = 0 \end{cases}$$

 \Box Аналогично лемме Ферма в сечениях $x = x_0, y = y_0$

Для существования острого экстремума нужно рассмотреть не существования или бесконечность $\frac{\partial z}{\partial x}$ или $\frac{\partial z}{\partial y}$

Если же функция трижды дифференцируема исследования на характер экстремума можно проводить с помощью вторых производных

Th. Д. условие (гладкого) экстремума

Пусть z=z(x,y) непрерывна в окрестности x_0 (критическая точка $\frac{\partial z}{\partial x}|_{M_0}=0, \frac{\partial z}{\partial y}|_{M_0}=0$) вместе со своими первыми и вторыми производными (можно потребовать трижды дифференцируемость)

Тогда, если
$$\frac{\partial^2 z}{\partial x^2} \stackrel{\text{обозн}}{=} A$$
, $\frac{\partial^2 z}{\partial x \partial y} \stackrel{\text{обозн}}{=} B$, $\frac{\partial^2 z}{\partial y^2} \stackrel{\text{обозн}}{=} C$, то

- 1. $AC B^2 > 0, A > 0 \Longrightarrow M_0$ точка минимума
- 2. $AC B^2 > 0, A < 0 \Longrightarrow M_0$ точка максимума 3. $AC B^2 < 0$ в точке M_0 нет экстремума
- 4. $AC B^2 = 0 \Longrightarrow$ нельзя утверждать наличие или отсутствие экстремума в точке (требуются дополнительные исследования)
- \square Функция z дважды дифференцируема, тогда ($z_0 = z(M_0)$)

$$\Delta z = z - z_0 = \frac{dz}{1!} |_{M_0} + \frac{d^2z}{2!} |_{M_0} + o((\Delta \rho)^2) \quad \Delta \rho = \sqrt{(\Delta x)^2 + (\Delta y)^2} = \sqrt{(dx)^2 + (dy)^2}, \ dx = \Delta \rho \cos \alpha, dy = \Delta \rho \sin \alpha$$

$$o((\Delta \rho)^2) = \lambda(\Delta \rho)^3$$

Заметим, что
$$dz|_{M_0}=0$$
, так как M_0 - критическая
$$d^2z=(\frac{\partial}{\partial x}+\frac{\partial}{\partial y})^2z=(\frac{\partial^2}{\partial x^2}+2\frac{\partial^2}{\partial x\partial y}+\frac{\partial^2}{\partial y^2})z=\frac{\partial^2z}{\partial x^2}(dx)^2+2\frac{\partial^2z}{\partial x\partial y}dxdy+\frac{\partial^2z}{\partial y^2}(dy)^2=A(dx)^2+2Bdxdy+C(dy)^2=A(\Delta\rho)^2\cos^2\alpha+2B(\Delta\rho)^2\cos\alpha\sin\alpha+C(\Delta\rho)^2\sin^2\alpha$$

Tогда
$$\Delta z = \frac{1}{2} (\Delta \rho)^2 (A \cos^2 \alpha + 2B \cos \alpha \sin \alpha + C \sin^2 \alpha + 2\lambda \Delta \rho)$$

Далее рассмотрим отдельно случаи
$$A \neq 0$$
 и $A = 0$
$$A \neq 0: A\cos^2\alpha + 2B\cos\alpha\sin\alpha + C\sin^2\alpha = \frac{A^2\cos^2\alpha + 2AB\cos\alpha\sin\alpha + B^2\sin^2\alpha + (AC - B^2)\sin^2\alpha}{A} = \frac{(A\cos\alpha + B\sin\alpha)^2 + (AC - B^2)\sin^2\alpha}{A}$$

1)
 $\Box AC-B^2>0 (A>0)$: Числитель неотрицательный и не равен нулю (иначе $\sin\alpha=0,$ то тогда $A\cos\alpha\neq 0$)

Итак, числитель и знаменатель больше нуля. Обозначим всю дробь за $k^2 > 0$

Вернемся к
$$\Delta z = \frac{1}{2} (\Delta \rho)^2 (k^2 + 2\lambda \Delta \rho)$$

Устремим $\Delta \rho \to 0$, начиная с какого-то $\delta \ \forall M \in U_{\delta}(M_0) \ k^2 + \lambda \Delta \rho > 0$

То есть $\Delta z>0$ в $U_{\delta}(M_0)\Longrightarrow M_0$ - точка минимума (локально в $U_{\delta}(M_0)$)

2)
$$\Box AC - B^2 > 0 (A < 0)$$
, тогда $\Delta z = \frac{1}{2} (\Delta \rho)^2 (-k^2 + 2\lambda \Delta \rho) < 0$ при достаточно малом $\Delta \rho$

3)

$$\exists AC-B^2<0 (A>0),$$
тогда фиксируем направления $\alpha=0\Longrightarrow\sin\alpha=0$

$$\Delta z = \frac{1}{2} (\Delta \rho)^2 (A + 2\lambda \Delta \rho) > 0$$

$$tg\alpha = -\frac{A}{B} \Longrightarrow \frac{(AC - B^2)\sin^2\alpha}{A} = -k^2, \Delta z = \frac{(\Delta\rho)^2}{2}(-k^2 + 2\lambda\Delta\rho) < 0$$

Вдоль разных путей $\alpha=0,\ tg\alpha=-\frac{A}{B},$ разный знак $\Delta z\Longrightarrow$ нет экстремума

Nota. Можно аналогично рассмотреть A < 0

4) A=0, вернемся к выражению $\Delta z=\frac{1}{2}(\Delta\rho)^2(\sin\alpha(2B\cos\alpha+C\sin\alpha)+2\lambda\Delta\rho)$

Пусть α беск. мал, тогда $\sin \alpha \approx 0$, $C \sin \alpha \approx 0$, $2B \cos \alpha \approx 2B$. Тогда знак $\sin \alpha \cdot 2B$ зависит от α То есть Δz колеблется вместе с α по знаку \Longrightarrow нет экстремума

Можно доказать при $A\neq 0,$ например, выбрав $tg\alpha = -\frac{A}{B},$ что знак Δz зависит от α

5. Интеграл ФНП

5.1. Общая схема интегрирования

Постановка задачи.

 \overline{B} некоторой области Ω (дуга кривой, участок поверхности, тело и т. д.) распределена или действует непрерывно некоторая функция скалярная g или векторная \overline{G} , то есть определены g(M) или \overline{G} $\forall M \in \Omega$

Ex. Область Ω - дуга кривой l: y = y(x)

Скалярная функция g(M) - плотность в точке M

 $\mathit{Ex.}$ Область Ω - трубка в \mathbb{R}^3

Векторная величина $\overrightarrow{G}(M)$ - скорость жидкой частицы, движущейся по трубке

Из всех векторов \overrightarrow{v} (для всех $M \in \Omega$) складывается «поле жидких скоростей»

Ex. Область Ω - кривая, по которой движется точка M под действием силы $\overrightarrow{G}(M)$

Задача интегрирования - найти суммарное содержание скалярной величины или действие векторной величины в области Ω

<u>Схема</u> Величины g(M) и $\overrightarrow{G}(M)$, меняясь от точки к точке заменяются на квазипостоянные на малых (элементарных) участках $d\omega$

Так как g(M) или $\overrightarrow{G}(M)$ должны быть непрерывны на Ω , то на малом участке $d\omega$ их изменение незначительно и значение функции можно считать почти постоянным, приняв за это значение какое-либо среднее $g_{\text{ср.}}(M)$, $\overrightarrow{G_{\text{cp.}}}(M)$

Тогда элементарное содержание g(M) в $d\omega$ будет отличаться от среднего содержания, то есть $g_{\rm cp}.d\omega$ на б. м. большего порядка

 $\mathit{Ex.}$ Проиллюстрируем на примере $\int_a^b f(x) dx$

S - площадь по наибольшей границе, σ - площадь по наименьшей границе, $S_{
m rpan.}$ - «истинная» площадь

T. K. f(x) Hend. $\forall x \in [a, b]$, to $\Delta f \stackrel{\Delta x \to 0}{\to} 0$

Для простоты рассмотрим монотонно возрастающую f(x)

Хотим доказать, что $S-S_{\mathrm{трап.}}$ - б. м. большего порядка, чем $S_{\mathrm{трап.}}$ или S

$$0 \le S - S_{\text{трап.}} \le dx \Delta y$$

Сравним
$$\frac{dx\Delta y}{S} = \frac{dx\Delta y}{dxf(x+\Delta x)} = \frac{\Delta y}{\text{огр.}} \xrightarrow{\Delta x \to 0} 0$$
 таким образом $S - S_{\text{трап.}} = 0(S_{\text{трап.}})$

Смысл интеграла в случае векторной функции $\overrightarrow{G}(M)$

Будем интегрировать только скалярные выражения вида $\overrightarrow{G}(M) \cdot d\overrightarrow{\omega}$ - скал. произведение векторов, где $d\overrightarrow{\omega}$ - ориентированный элемент $d\omega$

Ex. Сила $\overrightarrow{F}(M)$ перемещает точку M вдоль плоской кривой l. При этом сила совершает работу по перемещению (работа A - скалярная величина)

Известна формула для $\overrightarrow{F} = const$ и перемещения \overrightarrow{s} по прямой: $A = \overrightarrow{F} \cdot \overrightarrow{s}$

Разобьем дугу на элементы $dl \approx ds$ и ориентируем их (зададим направление перемещению ds)

 $dl=ds+o(dl),\ d\overrightarrow{s}$ - вектор элем. перемещения, как правило, ds направлен согласовано с Ox Элемент работы $dA=\overrightarrow{F}\cdot d\overrightarrow{s}=(F_x,F_y)\cdot (dx,dy)\stackrel{\text{обозн.}}{=}(P,Q)\cdot (dx,dy)=Pdx+Qdy$ - скаляр. Вся работа равна $A=\int dA$

Nota. Ориентированный участок поверхности $d\overrightarrow{\sigma}$ - это размер участка $d\sigma$, умноженный на вектор нормали к участку \overrightarrow{n} , то есть $d\overrightarrow{\sigma} = \overrightarrow{n} d\sigma$

Итак. Схема интегрирования:

 1^* Дробление области Ω на элементы $d\omega$ 2^* Выбор постоянного значения функции на $d\omega$, то есть $g_{\rm cp.}$ или $\overrightarrow{G_{\rm cp.}}$ 3^* Составление подынтегрального выражения $g_{\rm cp.}d\omega$ или $\overrightarrow{G_{\rm cp.}}d\overrightarrow{\omega}$ 4^* «Суммирование» элементарных величин $\int gd\omega$ или $\int \overrightarrow{G}d\overrightarrow{\omega}$

5.2. Классификация интегралов

1* По размерности Ω

n=1: * прямая (опред. интеграл \int_a^b) n=2: * плоскость (двойной интеграл \iint_D)

* кривая (криволинейный интеграл \int_A^B)

* поверхность, не криволинейная (поверхностный интеграл \iint_{c})

$$n = 3$$
: * пространство \mathbb{R}^3 (тройной \iiint_V или \iiint_T)

2^* По виду функции

скалярная g(M)

 $\emph{n}=1$: определенный, криволинейный I рода

n=2: двойной, поверхн. І рода

n=3: тройной

векторная $\overrightarrow{G}(M)$

криволин. II рода (интегралы в проекциях)

поверхн. II рода

5.3. Двойной и тройной интегралы

Nota. Дадим строгое определение

Def.
$$z = z(x, y)$$
 $z : D \subset \mathbb{R}^2 \to \mathbb{R}$

- 1) Дробление на $[x_{i-1},x_i]$ длиной Δx
- 2) Выбор средней точки $M_i(\xi_i, \eta_i)$, по значению $z(M_i)$ строим элемент. параллелепипед объемом $v_i = z(M_i)\Delta x_i \Delta y_i \approx V_{\text{малого цилиндра}}$
- 3) Интеграл суммы

$$v_i = \sum_{i=1}^n v_i = \sum z(M_i) \Delta x_i \Delta y_i$$

4) Если $\exists \lim v_n \in \mathbb{R}$, не зависящий от типа дробления и т.д. при $n \to \infty$ и $\tau =$

 $\max \Delta x_i, \Delta y_i \to 0, \text{ то } \lim_{n \to \infty} v_n \stackrel{def}{=} \iint_D z(x,y) dx dy$ - двойной интеграл от z(x,y) на области D

Mem.
$$\int_a^b f(x)dx$$

 $f(x): [a, b] \to \mathbb{R}^+$

1) Дробление на элементы P_i прямыми $x=const,\,y=const,\,S_{P_i}=\Delta x_i\Delta y_i$ (дали $dx,\,dy$)

2) Выбор $\xi_i \in [x_{i-1}, x_i]$, площадь элементарных прямоугольников $f(\xi_i) \Delta x_i \approx S_{\text{полоски}}$

3) Интеграл суммы $\sigma_n = \sum_{i=1}^n f(\xi_i) \Delta x_i$

$$4) \lim_{n \to \infty} \sigma_n = \int_a^b f(x) dx$$

Nota. Об области D

В простейшем случае рассматривают выпуклую, односвязную \mathbb{R}^2 -область

а) Выпуклость:

 $\exists M_1, M_2 \in D \mid \overline{M_1 M_2} \notin D$ - не выпуклая

 $\forall M_1, M_2 \in D \mid \overline{M_1 M_2} \in D$ - выпуклая

б) Связность:

 $D = D' \cup D''$ - не связная: $\exists M_1, M_2 \in D \mid M_1M_2 \notin D$

D - связная: $\forall M_1, M_2 \in D \mid M_1M_2 \in D$

Обычно область - открытая, дальше будем рассматривать в том числе области с границей.

Добавим к определению
$$\iint_{\partial D}$$
 - граница D $z(x,y)dxdy$

Геометрический смысл: В определении при $z(x,y) \ge 0$ интегральная сумма $v_n = \sum_{i=1}^n v_i$ была суммой объемов элементарных параллеленинедов и приближала объем подповерхности

Тогда
$$\iint_D z(x,y) dx dy \stackrel{z\geq 0}{=} V_{\text{цилиндра с осн. }D}$$
, а при $z=1$ $\iint_D dx dy = S_D$

Вычисление: По геометрическому смыслу - найти $\int_D z(x,y) dx dy$ значит найти объем подповерхности

Можно найти $S(x) = \int_{y_1(x)}^{y_2(x)} z(x=c,y) dy$ - площадь поперечного сечения

Найдем V как объем тела с известными площадями сечений

$$V = \int_{a}^{b} S(x)dx = \int_{a}^{b} \left(\int_{y_{1}(x)}^{y_{2}(x)} z(x = c, y)dy \right) dx$$

Nota. Кратный

Если найдена первообразная для z(x=c,y) (обозн. F(x,y(x))), то по формуле N-L:

$$\int_{y_1(x)}^{y_2(x)} z(x=c,y)dy = F(x,y(x)) \Big|_{y_1(x)}^{y_2(x)} = F(x,y_2(x)) - F(x,y_1(x))$$

Тогда
$$\int_a^b \overline{(F(x,y_2)-F(x,y_1))} \, dx$$
 - обычный определенный интеграл

Пределы интегрирования во внутреннем интеграле - функции, во внешнем - точки

? Можно вычислить V, рассекая тело сечениями y = const. Верно ли, что $\int_a^b \left(\int_{y_1(x)}^{y_2(x)} z(x,y) dy \right) dx = const$

$$\int_{\alpha}^{\beta} \left(\int_{x_1(y)}^{x_2(y)} z(x,y) dx \right) dy?$$

Верно, V не зависит от порядка сечения

Таким образом, двойной интеграл $\iint_D z(x,y) dx dy = \int_a^b \int_{y_1}^{y_2} z(x,y) dy dx = \int_\alpha^\beta \int_{x_1}^{x_2} z(x,y) dx dy$

Но при другом порядке интегрирования область D может оказаться неправильной

Def. При проходе области D в направлении $Oy \uparrow$ граница области (верхняя) меняет аналитическое задание. Такая область называется направильной в направлении Oy

Выгодно выбирать правильное направление, чтобы не делить интеграл по аддитивности

$$Ex. \iint_{D} xydxdy, \ D: x^{2} + y^{2} \le 1$$

$$\iint_{D} xydxdy = \int_{-1}^{1} \left(\int_{y_{1} = -\sqrt{1 - x^{2}}}^{y_{2} = \sqrt{1 - x^{2}}} xydy \right) dx = \int_{-1}^{1} \left(\frac{x}{2} y^{2} \Big|_{y_{1} = -\sqrt{1 - x^{2}}}^{y_{2} = \sqrt{1 - x^{2}}} \right) dx = \int_{-1}^{1} \left(\frac{x}{2} ((1 - x^{2}) - (1 - x^{2})) dx \right) dx = 0$$

Def. Тройной интеграл

$$T \subset \mathbb{R}^3 \xrightarrow{\Gamma} \mathbb{R}$$

- 1) дробление на элементы объема dv = dxdydz
- 2) Вычисление среднего содержания u(x,y,z) в dv: $u(\xi_i,\eta_i,\zeta_i)dv$
- 3) Интегральная сумма $\sigma_n = \Sigma u(M_i) dv$

4)
$$\lim_{n\to\infty,\tau=\max dv\to 0} \stackrel{def}{=} \iiint_T u(x,y,z)dxdydz$$

Геометрический смысл. Только при u=1 $\iiint_T dx dy dz = V_T$

Физический смысл. u(x,y,z) - плотность в каждой точке T

$$\iiint_T u(x,y,z)dxdydz = m_T - \text{Macca}$$

Вычисление.
$$\iint_T u(x,y,z) dx dy dz \stackrel{\text{кратный}}{=} \int_a^b \int_{y_1(x)}^{y_2(x)} \int_{z_1(x,y)}^{z_2(x,y)} u(x,y,z) dz dy dx$$

5.4. Замена переменной в двойном и тройном интегралах

Проблема.
$$S = \iint_D dx dy$$
 Если $S_{D'} = \int_0^{2\pi} d\varphi \int_0^R d\rho = \iint_{D'} d\rho d\varphi$ - то это не площадь круга, а площадь прямоугольника S в распрямленных координатах

Введем Δs_i - площадь кольцевого сектора в полярных координатах, а $\Delta s_i'$ - площадь прямоугольника, причем $\Delta s_i \neq \Delta s_i'$

Nota. Будем искать поправочный коэффициент так, чтобы $\Delta s_i \approx$ коэфф. $\Delta s_i'$ Дроблению будем подвергать область D' в распрямленной системе координат

Введем новые криволинейные координаты: $\begin{cases} x = \varphi(u,v) \\ y = \psi(u,v) \end{cases}$, где функции $\varphi(u,v), \psi(u,v)$ непре-

рывно дифференцируемы по обоим аргументам

Исходно область D в Oxy

картинка

Заменим криволинейный параллелограмм на обычный, стянув вершины хордами (погрешность в площади - малая более высокого порядка, чем площадь)

$$A(x_A, y_A) = (\varphi(u, v), \psi(u, v))$$

$$B(x_{B}, y_{B}) = (\varphi(u, v + \Delta v), \psi(u, v + \Delta v))$$

$$C(x_{C}, y_{C}) = (\varphi(u + \Delta u, v + \Delta v), \psi(u + \Delta u, v + \Delta v))$$

$$D(x_{D}, y_{D}) = (\varphi(u + \Delta u, v), \psi(u + \Delta u, v))$$

$$S_{ABCD} = |\overrightarrow{ABAD}| = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ x_{B} - x_{A} & y_{B} - y_{A} & 0 \\ x_{D} - x_{A} & y_{D} - y_{A} & 0 \end{vmatrix} = |\overrightarrow{k}| \begin{vmatrix} x_{B} - x_{A} & y_{B} - y_{A} \\ x_{D} - x_{A} & y_{D} - y_{A} \end{vmatrix}$$

$$x_{B} - x_{A} = \varphi(u, v + \Delta v) - \varphi(u, v) = \Delta_{v} \varphi \approx \frac{\partial \varphi}{\partial v} \Delta v$$

$$y_{B} - y_{A} = \psi(u, v + \Delta v) - \psi(u, v) = \Delta_{v} \psi \approx \frac{\partial \psi}{\partial v} \Delta v$$

$$x_{D} - x_{A} = \varphi(u + \Delta u, v) - \psi(u, v) = \Delta_{u} \varphi \approx \frac{\partial \varphi}{\partial u} \Delta u$$

$$y_{D} - y_{A} = \psi(u + \Delta u, v) - \psi(u, v) = \Delta_{u} \psi \approx \frac{\partial \psi}{\partial u} \Delta u$$

$$|\overrightarrow{k}| \begin{vmatrix} x_{B} - x_{A} & y_{B} - y_{A} \\ x_{D} - x_{A} & y_{D} - y_{A} \end{vmatrix} = \left| \frac{\partial \varphi}{\partial v} \Delta v & \frac{\partial \psi}{\partial v} \Delta v \\ \frac{\partial \varphi}{\partial u} \Delta u & \frac{\partial \psi}{\partial u} \Delta u & \frac{\partial \psi}{\partial u} \Delta u \end{vmatrix} = \left| \frac{\partial \varphi}{\partial v} & \frac{\partial \psi}{\partial u} \Delta u & \frac{\partial \psi}{\partial u} \Delta u & \frac{\partial \psi}{\partial u} & \frac{\partial \psi$$

Nota. В пределе это точное равенство:

$$|J| = \lim_{\Delta x \to 0} \frac{\Delta s}{\Delta s'}$$

(легко понять, если считать частные приращения по теореме Лагранжа $\Delta_u \varphi = \frac{\partial \varphi}{\partial u}(\xi, \eta) \Delta u \to \frac{\partial \varphi}{\partial u}(u, v) \Delta u$)

Def. Определитель
$$J = \begin{vmatrix} \frac{\partial x_1}{\partial \xi_1} & \cdots & \frac{\partial x_1}{\partial \xi_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial x_n}{\partial \xi_1} & \cdots & \frac{\partial x_n}{\partial \xi_n} \end{vmatrix}$$
, где $\begin{cases} x_1 = f_1(\xi_1, \dots, \xi_n) \\ \dots \\ x_n = f_n(\xi_1, \dots, \xi_n) \end{cases}$ - преобразование координат $Ox_i \to O\xi_i(f_k \in C_D^1)$

называется определителем Якоби или якобиан

Построение интеграла.

- 1. Дробление D' в распрямленной Ouv
- 2. Выбор средней точки, поиск значения $f(\xi_i, \eta_i)$ Значение величины на элементе $f(\xi_i, \eta_i)|J|dudv$
- 3. Интегральная сумма $\sigma_n = \sum f(\xi_i, \eta_i) |J| du dv$
- 4. В пределе интеграл $\iint_D f(x,y) dx dy = \iint_{D'} f(u,v) |J| du dv$

Якобианы в ПСК, ЦСК, СфСК

1.
$$\Pi$$
CK:
$$\begin{cases} x = \rho \cos \varphi & \frac{\partial x}{\partial \rho} = \cos \varphi & \frac{\partial x}{\partial \varphi} = -\rho \sin \varphi \\ y = \rho \sin \varphi & \frac{\partial y}{\partial \rho} = \sin \varphi & \frac{\partial y}{\partial \varphi} = \rho \cos \varphi \end{cases}$$

$$J = \begin{vmatrix} \cos \varphi & -\rho \sin \varphi \\ \sin \varphi & \rho \cos \varphi \end{vmatrix} = \rho \begin{vmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{vmatrix} = \rho$$
2. Π CK:
$$\begin{cases} x = \rho \cos \varphi \\ y = \rho \sin \varphi \end{cases} \qquad J = \begin{vmatrix} \cos \varphi & -\rho \sin \varphi & 0 \\ \sin \varphi & \rho \cos \varphi & 0 \\ 0 & 0 & 1 \end{vmatrix} = \rho$$

3. СфСК - Lab.

$$Ex. \ T: \frac{x^2+y^2=z^2}{x^2+y^2=z}$$
 Конус в ЦСК: $\rho=z,z>0$ Параболоид в ЦСК: $\rho=\sqrt{z},z>0$
$$V_T=\iiint_T dx dy dz=\iiint_{T'} \rho d\rho d\phi dz=\int_0^{2\pi} d\phi \int_0^1 d\rho \int_{z_1=\rho^2}^{z_2=\rho} \rho dz=2\pi \int_0^1 \rho z\Big|_{z_1=\rho^2}^{z_2=\rho} d\rho=2\pi \int_0^1 (\rho^2-\rho^3) d\rho=2\pi (\frac{\rho^3}{3}-\frac{\rho^4}{4})\Big|_0^1=2\pi (\frac{1}{3}-\frac{1}{4})=\frac{\pi}{6}$$

$$\underline{\text{Lab. }}T: \frac{x^2+y^2+z^2=1}{\sqrt{x^2+y^2}=z} \text{ - мороженка, считать в СфСК}$$

5.5. Криволинейные интегралы

I рода. Область интегрирования - кривая $l = \widetilde{AB}$ (дуга) (начнем с плоской дуги)

На l действует скалярная функция f(x,y) (физ. смысл - плотность, то есть имеем неоднородный кривой стержень)

Задача в нахождении «суммарной» величины f(x,y), то есть интеграла: «складываем» элементы $f_{\rm cp}(x,y)dl$

Обозн. Получаем
$$\int_{l} f(x,y) dl = \int_{AB} f(x,y) dl$$

Nota. В строгом определении интегральная сумма строится так:

 $M_{i-1}M_i$ - элементарная дуга

 Δl_i - длина элемента

 Δs_i - длина стягивающей дуги

 $\Delta l_i \approx \Delta s_i$

 $M_{\mathrm{cp.}}(\xi_i,\eta_i)$ - ср. точка элемента

$$\sigma_n = \sum_{i=1}^n f(\xi_i, \eta_i) \Delta s_i$$

II рода. Задача (вычисление работы силы вдоль пути)

Вдоль пути \overrightarrow{AB} действует сила $\overrightarrow{F} = (P(x,y),Q(x,y))$

Найдем элементарную работу $dA = \overrightarrow{F}_{\text{ср.}} d\overrightarrow{s}$, где $d\overrightarrow{s}$ - элементарное приращение $d\overrightarrow{s} = (dx, dy) = (\cos \alpha ds, \sin \alpha ds)$

 $\overrightarrow{F}_{\text{cp.}}$ - значение силы на эл. участке в какой-либо его точке

Тогда. $dA = (P(x, y), Q(x, y)) \cdot (dx, dy) = P(x, y)dx + Q(x, y)dy$

$$A = \int_{AB} dA = \int_{AB} P dx + Q dy$$
 - интеграл II рода (в проекциях)

Nota. В проекциях, потому что $F_x = P, F_y = Q,$ таким образом скалярное произведение записано в проекциях

При этом часто рассматривают по отдельности

$$\int_{AB} f(x,y) dx$$
 и $\int_{AB} g(x,y) dy$

Nota. Связь интегралов I и II рода

$$\int_{L} P dx + Q dy = \int_{L} (P, Q)(dx, dy) = \int_{L} (P, Q)(\cos \alpha, \cos \beta) \underbrace{ds}_{\approx dl} = \int_{L} (P \cos \alpha + Q \cos \beta) dl$$

Обозначим $\overrightarrow{\tau} = (\cos \alpha, \cos \beta)$

По теореме Лагранжа $\exists (\xi, \eta) \in$ элементарной дуге, касательная которой параллельна ds Тогда $d\overrightarrow{s} = \overrightarrow{\tau} ds \approx \overrightarrow{\tau} dl$, где $\overrightarrow{\tau}$ - единичный вектор, касательной в (ξ, η)

Тогда
$$ds = \tau ds \approx \tau dt$$
, где τ - единичный вектор, касательной Тогда $\int_{L} P dx + Q dy \stackrel{\text{пред. в вект. форме}}{=} \int_{L} \overrightarrow{F} \overrightarrow{\tau} dl = \int_{L} \overrightarrow{F} \underbrace{\overrightarrow{dl}}_{\text{ориент. эл. дуги}}$

Свойства:

Nota. Свойства, не зависящие от прохода дуги, аналогичны свойствам определенного интеграла

Направление обхода.

I рода
$$\int_{AB} f(x,y)dl = \int_{BA} f(x,y)dl \qquad \qquad \int_{AB} Pdx + Qdy = -\int_{BA} Pdx + Qdy$$

Def. Часто рассматривают замкнутую дугу, называемую контур. Тогда интегралы обозначаются

$$\oint_{K} f dl \, \bowtie \, \oint_{K} P dx + Q dy.$$

Если K (контур) обходят против ч. с., то обозн. \oint_{V^+}

Вычисление. (Сведение к $\int_a^b dx$ или $\int_{\alpha}^{\beta} dy$ или $\int_{\tau}^T dt)$

1) Параметризация дуги L:

$$\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases} \quad \varphi, \psi \in C^1_{[\tau, T]}$$

$$A(x_A, y_A) = (\varphi(\tau), \psi(\tau))$$

$$B(x_B, y_B) = (\varphi(T), \psi(T))$$

При этом задании $L-y=y(x), x\in [a,b]$ или $x=x(y), y\in [\alpha,\beta]$ - частные случаи параметризации

I рода
$$\int_{L} f(x,y) dl \stackrel{dl = \sqrt{\varphi_t'^2 + \psi_t'^2} |dt|}{=} \int_{T} f(t) \sqrt{\varphi_t'^2 + \psi_t'^2} |dt|$$

$$\int_{\tau}^{T} f(t) \sqrt{\varphi_t'^2 + \psi_t'^2} |dt|$$

$$\int_{\tau}^{T} f(t) (P\varphi' + Q\varphi_t) dt|$$

 $\mathit{Ex.}$ Дуга L - отрезок прямой от A(1,1) до B(3,5)

$$1) \int_{AB} (x+y)dl = \begin{bmatrix} AB: \frac{x-1}{2} = \frac{y-1}{4} \\ \text{или}y = 2x-1, x \in [1,3] \\ f(x,y) = x+2x-1 = 3x-1 \\ dl = \sqrt{1+y'^2}dx = \sqrt{5}dx \end{bmatrix} = \int_1^3 (3x-1)\sqrt{5}dx = \sqrt{5}(\frac{3x^2}{2}-x)\Big|_1^3 = \sqrt{5}(12-2) = \int_1^3 (3x-1)\sqrt{5}dx = \sqrt{5}(\frac{3x^2}{2}-x)\Big|_1^3 = \sqrt{5$$

 $10\sqrt{5}$

2)
$$\int_{AB} (x+y)dx + (x+y)dy = \begin{bmatrix} x \uparrow_1^3, y \uparrow_1^5 \\ y = 2x - 1, x = \frac{y+1}{2} \\ dx = dx, dy = dy \end{bmatrix} = \int_1^3 (x+2x-1)dx + \int_1^5 (\frac{y+1}{2} + y)dy = \int_1^3 (x+2x-1)dx + \int_1^5 (\frac{y+1}{2} + y)dx + \int_1^5 (\frac{y+1}{2} + y)dy = \int_1^3 (x+2x-1)dx + \int_1^5 (\frac{y+1}{2} + y)dx + \int_1^5 (\frac{y+1}{2} +$$

$$\left(\frac{3x^2}{2} - x\right)\Big|_1^3 + \frac{1}{2}\left(\frac{3y^2}{2} + y\right)\Big|_1^5 = 10 + 20 = 30$$

Th. Формула Грина

 $D \subset \mathbb{R}^2$ - npab. $\uparrow Ox, \uparrow Oy$

 $\Gamma_{\!D}$ - гладкая замкнутая кривая

В области D действует $\overrightarrow{F} = (P(x,y),Q(x,y))$ - непрерывные дифференциалы

Тогда
$$\iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx dy = \oint_{K^{+}} P dx + Q dy$$

$$\Box \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx dy = \iint_{D} \frac{\partial Q}{\partial x} dx dy - \iint_{D} \frac{\partial P}{\partial y} dx dy = \int_{\alpha}^{\beta} dy \int_{x=x_{1}(y)}^{x=x_{2}(y)} \frac{\partial Q}{\partial x} dx - \int_{a}^{b} dx \int_{y=y_{1}(x)}^{y=y_{2}(x)} \frac{\partial P}{\partial y} dy = \int_{x=x_{1}(y)}^{\beta} \left(Q(x,y)\Big|_{x=x_{1}(y)}^{x=x_{2}(y)}\right) dy - \int_{x=x_{1}(y)}^{b} \left(P(x,y)\Big|_{y=y_{1}(x)}^{y=y_{2}(x)}\right) dx = 0$$

$$\int_{\alpha}^{\beta} (Q(x,y)|_{x=x_{1}(y)}) dy = \int_{a}^{\beta} (P(x,y_{1}(x))) dx = \int_{a}^{\beta} (Q(x_{2}(y),y) - Q(x_{1}(y),y)) dy - \int_{a}^{\beta} (P(x,y_{2}(x)) - P(x,y_{1}(x))) dx = \int_{NST} Qdy - \int_{NMT} Qdy - \int_{NM$$

$$\int_{MTS}^{a} Pdx + \int_{MNS} Pdx = \underbrace{\int_{NST} Qdy + \int_{TMN}^{a} Qdy}_{\oint_{K^{+}} Qdy} + \underbrace{\int_{STM} Qdy + \int_{MNS} Qdy}_{\oint_{K^{+}} Pdx} = \oint_{K^{+}} Pdx + Qdy$$

Следствие. $S_D = \frac{1}{2} \oint_{\mathcal{V}} x dy - y dx$

$$\frac{\partial P}{\partial y} = \frac{\partial}{\partial y}(-\frac{y}{2}) = -\frac{1}{2}, \frac{\partial Q}{\partial x} = \frac{\partial}{\partial x}(\frac{x}{2}) = \frac{1}{2}$$

Формула Грина:
$$\iint_D (\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}) dx dy = \iint_D (\frac{1}{2} - (\frac{1}{2})) dx dy = \iint_D dx dy = S_D \stackrel{\Phi. \ \Gammap.}{=} \oint_{K^+} (-\frac{y}{2}) dx + \frac{x}{2} dy$$

√ НЗП - Интеграл, не зависящий от пути интегрирования.

Def. $P,Q:D\subset\mathbb{R}^2\to\mathbb{R},$ непрерывно дифференцируемы по 2-м переменным

 $\widetilde{AB} \subset D \quad \forall M, N \in D$

Параметризация $\stackrel{\smile}{AB}$: $\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}$ - φ, ψ - непр. дифф (кусочно)

$$Nota.$$
 Обозначают $\int_A^B Pdx + Qdy$ или $\int_{(x_2,y_2)}^{(x_1,y_1)} Pdx + Qdy$

Тh. Об интеграле НЗП

В условиях def

I.
$$\int_{AB} Pdx + Qdy$$
 - инт. НЗП

II.
$$\oint_K Pdx + Qdy = 0 \quad \forall K \subset D$$

III.
$$\frac{\partial \hat{P}}{\partial y} = \frac{\partial Q}{\partial x} \ \forall M(x, y) \in D$$

IV.
$$\exists \Phi(x,y) \mid d\Phi = P(x,y)dx + Q(x,y)dy$$
 в обл. D

IV.
$$\exists \Phi(x,y) \mid d\Phi = P(x,y)dx + Q(x,y)dy$$
 в обл. D Причем $\Phi(x,y) = \int_{(x_0,y_0)}^{(x_1,y_1)} Pdx + Qdy$, где $(x_0,y_0), (x_1,y_1) \in D$

Тогда $I \Longleftrightarrow II \Longleftrightarrow III \Longleftrightarrow IV$

$$\Box I \Longleftrightarrow II$$

Рассмотрим
$$\int_{AMB} - \int_{ANB} = \int_{AMB} + \int_{BNA} = \oint_K = 0 \forall K \subset D$$

Поскольку
$$\int_{AMB} + \int_{BNA} = 0$$
, то $\int_{AMB} - \int_{ANB} = 0$

II \iff III

От противного
$$\exists M_0(x_0, y_0) \in D \mid \frac{\partial P}{\partial y} \Big|_{M_0} \neq \frac{\partial Q}{\partial x} \Big|_{M_0} \Longleftrightarrow \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}\right) \Big|_{M_0} \neq 0$$

Для определенности
$$\Box (\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x})\Big|_{M_0} > 0$$

Тогда
$$\exists \delta > 0 \mid (\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}) \Big|_{M_0}^{\sigma} > \delta > 0$$

Выберем малую окрестность в точке M_0 $(U(M_0))$ и обозначим ее контур Γ

Так как
$$P$$
 и Q непр. дифф., $\left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}\right)\Big|_{M_0} > 0$ в $U(M_0)$

Формула Грина:
$$\iint_{U(M_0)} (\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}) dx dy > \iint_{U(M_0)} \delta dx dy = \delta S_{U(M_0)} > 0$$

С другой стороны
$$\iint_{U(M_0)} (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) dx dy = \oint_{\Gamma^+} P dx + Q dy = 0$$

$$= \frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y} \forall M \in D$$

Тогда
$$\forall D' \subset D$$

$$\iint_{D'} (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) dx dy = 0 = \oint_{\Gamma_{D'}} P dx + Q dy \forall \Gamma_{D'} \subset D$$

$$III \iff IV$$

$$\implies \frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y} \implies \exists \Phi(x, y)$$

Так как доказано
$$I \Longleftrightarrow III$$
, то докажем $I \Longrightarrow IV$
$$\int_{AM} Pdx + Qdy = \int_{A(x_0,y_0)}^{M(x,y)} Pdx + Qdy - \text{H3}\Pi \ \forall A,M \in D$$

Обозн.
$$\int_{A(x_0,y_0)}^{M(x,y)} P dx + Q dy - \Phi(x,y)$$
Докажем, что $d\Phi = P dx + Q dy$
Так как $d\Phi(x,y) = \frac{\partial \Phi}{\partial x} dx - \frac{\partial \Phi}{\partial y} dy$, то нужно доказать $\frac{\partial \Phi}{\partial x} = P(x,y), \frac{\partial \Phi}{\partial y} = Q(x,y)$

$$\frac{\partial \Phi}{\partial x} = \lim_{\Delta x \to 0} \frac{\Delta_x \Phi}{\Delta x} = [\text{задали приращение вдоль } MM_1] = \lim_{\Delta x \to 0} \frac{\Phi(x + \Delta x, y) - \Phi(x, y)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_{A}^{M_1} P dx + Q dy - \int_{A}^{M} P dx + Q dy}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_{A}^{M} + \int_{M}^{M_1} - \int_{A}^{M}}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_{A}^{M_1} H^{3\Pi}}{\Delta x} \lim_{\Delta x \to 0} \frac{\int_{(x,y)}^{(x+\Delta x,y)} P dx}{\Delta x} = \lim_{\Delta x \to 0} P(\xi,y) = P(x,y)$$

Аналогично $\frac{\partial \Phi}{\partial y} = Q(x,y)$

$$\frac{\partial \Phi}{\partial x} = \frac{\partial \Phi}{\partial x} + \frac{\partial \Phi}{\partial x} = \frac{\partial \Phi}{\partial y}$$
Известно $P = \frac{\partial \Phi}{\partial x}, Q = \frac{\partial \Phi}{\partial y}$

$$Tогда \frac{\partial Q}{\partial x} = \frac{\partial^2 \Phi}{\partial x \partial y} = \frac{\partial^2 \Phi}{\partial y \partial x} = \frac{\partial P}{\partial y}$$

Nota. Φ - первообразная для Pdx + Qdy:

Th. Ньютона-Лейбница

Выполнены условия th об интеграле НЗП

Тогда
$$\int_A^B P dx + Q dy = \Phi(B) - \Phi(A)$$

$$\Box \int_A^B P dx + Q dy \stackrel{\exists \Phi \mid d\Phi = P dx + Q dy}{=} \int_A^B d\Phi(x,y) \stackrel{\text{параметр.} AB}{=} \int_\alpha^\beta d\Phi(t) = \Phi(t) \Big|_\alpha^\beta = \Phi(\beta) - \Phi(\alpha) = \Phi(B) - \Phi(A)$$

Применение

$$Ex.$$
 $\int_{AB} (4 - \frac{y^2}{x^2}) dx + \frac{2y}{x} dy$
Проверим НЗП: $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$: $\frac{\partial P}{\partial y} = -\frac{2y}{x^2}$, $\frac{\partial Q}{\partial x} - \frac{2y}{x^2} \iff \hat{I}$ С \ddot{I} Найдем первообразную $\Phi(x,y)$ на все случаи жизни: $\Phi(x,y) = \int_{M_0(x_0,y_0)}^{M(x,y)} Pdx + Qdy$ Выберем путь (самый удобный) $\Phi(x,y) = \int_{M_0}^{N} + \int_{N}^{M} \int_{M_0(x_0,y_0)}^{N} y=0, x_0=1, dy=0 \int_{(1,0)}^{(x,0)} 4dx = 4x \Big|_{(1,0)}^{(x,0)} = 4x-4$

$$\int_{N}^{M} dx = 0 \int_{(x,0)}^{(x,y)} \frac{2y}{x} dy = \frac{y^{2}}{x} \Big|_{(x,0)}^{(x,y)} = \frac{y^{2}}{x}$$

$$\Phi(x,y) = 4x - 4 + \frac{y^{2}}{x} + C = 4x + \frac{y^{2}}{x} + C$$
Проверим:
$$\frac{\partial \Phi}{\partial x} = 4 - \frac{y^{2}}{x^{2}} = P, \ \frac{\partial \Phi}{\partial y} = \frac{2y}{x} = Q$$
Теперь можем искать
$$\int_{AB} \forall A, B \in D \text{ по N-L}$$

$$\Box A(1,1), B(2,2)$$

$$\int_{AB} P dx + Q dy = \Phi \Big|_{A}^{B} = \frac{y^{2}}{x} + 4x \Big|_{(1,1)}^{(2,2)} = \frac{4}{2} + 8 - 1 - 4 = 5$$

Nota. Функция Ф ищется в тех случаях, когда $\int_A^B Pdx + Qdy = \int_A^B (P,Q)(dx,dy) = A$ - работа силы, которая не зависит от пути

(Ех. работа силы тяжести не зависит от пути, а силы трения - зависит)

$$Ex.\ \overrightarrow{F}=(P,Q)=(0,-mg)$$

$$\Phi(x,y)=\int_{O}^{M}0dx-mgdy=-\int_{0}^{y}mgdy=-mgy$$
- потенциал гравитационного поля (или силы тяжести)

5.6. Поверхностные интегралы

1* Поверхностные интегралы I рода (по участку поверхности)

Задача. Масса поверхности

u = u(x, y, z) - плотность (физ. смысл)

Элементарная масса: $dm = u_{\rm cp.}(\xi,\eta,\zeta)d\sigma,\ d\sigma$ - элемент поверхности

$$M = \iint_{S} dm = \iint_{S} u(x, y, z)$$
 - пов. инт. I рода

Def. 1) Дробление S на элементы $\Delta \sigma_k$ коорд. плоскостями $x=x_i,y=y_i$

- 2) Ср. точка (ξ_k, η_k, ζ_k)
- 3) Инт. сумма $v_n = \sum_{k=1}^n u(\xi_k, \eta_k, \zeta_k) \Delta \sigma_k$

4)
$$\iint_{S} u(x, y, z) \Delta \sigma = \lim_{\substack{n \to \infty \\ \tau = \max \Delta \sigma_k \to 0}} \nu_n$$

Свойства: Смена обхода поверхности S не меняет знака интеграла: $\iint_{S^+} u d\sigma = \iint_{S^-} u d\sigma$ Вычисление

Mem. Вычисление $\int_L f(x,y)dl$

1) Параметризация
$$L$$

$$\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases} t \in [\alpha, \beta]$$

2)
$$dl = \sqrt{\varphi'^2(t) + \psi'^2(t)} |dt|$$
3) $f(x,y) = \tilde{f}(t)$

$$\iint_L f(x,y) dl = \int_{\alpha}^{\beta} \tilde{f}(t) \sqrt{\varphi'^2(t) + \psi'^2(t)} |dt|$$
Поверхностный
$$\iint_S u(x,y,z) d\sigma$$

1) Параметризация S: самая частая - $z = z(x, y), (x, y) \in D$ - пределы интегрирования

2)
$$d\sigma = \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} |dxdy|$$
, но т. к. в двойном интеграле договорились, что $dxdy > 0$ (площадь), модуль можно не ставить (область D проходится в направлении против часовой стрелки)

3) $u(x, y, z) = \tilde{u}(x, y, z(x, y)) = \tilde{u}(x, y)$ $\iint_{S} u(x, y, z) d\sigma = \iint_{S^{\perp}} \tilde{u}(x, y) \sqrt{1 + z_{x}'^{2} + z_{y}'^{2}} dx dy$

Ex. S:
$$x^2 + y^2 = z^2$$
, $z = 0$, $z = 1$
 $u(x, y, z) = z$

$$\sqrt{2}2\pi \frac{\rho^3}{3}\Big|_0^1 = \frac{2\sqrt{2}\pi}{3}$$
2* II рода

Задача Поток

Будем говорить о потоке вектора $\overrightarrow{F}=(P,Q,R)$ через площадку S в направлении нормали $\overrightarrow{n^+}$ или $\overrightarrow{n^-}$

Если задано поле жидких скоростей, то потоком называют количество жидкости, протекающей через S за время Δt

В простой ситуации поток $\Pi = FS(\overrightarrow{F} \perp S, \overrightarrow{F} = const)$

В общем случаем \overrightarrow{F} - переменная, S - искривленная и $\angle \overrightarrow{F}, S \neq \frac{\pi}{2}$

Переходим к вычислению элементарного потока $d\Pi$

 $d\sigma$ - малый элемент поверхности (почти плоский)

В пределах $d\sigma$ \overrightarrow{F} меняется мало, за среднее берем $\overrightarrow{F}=(P,Q,R)$, где P=P(x,y,z),Q=Q(x,y,z),R(x,y,z)

Разберемся с наклоном: если площадка перпендикулярна, то $d\Pi = Fd\sigma$, но в нашем случае высота цилиндра равна пр. $\overrightarrow{n}\overrightarrow{F} = (\overrightarrow{n}, \overrightarrow{F}) = F\cos\varphi$, где \overrightarrow{n} - единичный вектор нормали, φ - угол между нормалью и потоком, $d\Pi = (\overrightarrow{F}, \overrightarrow{n})d\sigma = F_n d\sigma$

Пусть $\overrightarrow{n} = (\cos \alpha, \cos \beta, \cos \gamma)$, тогда $d\Pi = (\overrightarrow{F}, (\cos \alpha, \cos \beta, \cos \gamma))d\sigma = (P\cos \alpha, Q\cos \beta, R\cos \gamma)d\sigma$ Итак, $\Pi = \iint_{S^{\overrightarrow{n}}} d\Pi = \iint_{S^{\overrightarrow{n}}} F_n d\sigma = \iint_{S^{\overrightarrow{n}}} (\overrightarrow{F}, \overrightarrow{n})d\sigma = \iint_{S^{\overrightarrow{n}}} (P\cos \alpha + Q\cos \beta + R\cos \gamma)d\sigma$

Но, еще нет координатной записи подынтегрального выражения

Спроектируем $d\sigma$ на координатные плоскости

Сначала разрежем поверхность S на элементы плоскостями x = const, y = const (уточним форму $d\sigma$). Т. к. $d\sigma$ мал, то можно считать его плоским параллелограммом

Тогда $\cos \gamma d\sigma = \pm dxdy$ (γ - угол между нормалью и осью Oz)

Нашли последнее слагаемое $\iint_{S^{\frac{1}{p}}} R\cos\gamma d\sigma$ в исходном интеграле (I рода, т. к. по участку $d\sigma$)

Найдем $\iint_{S^{\overrightarrow{n}}} Q\cos\beta d\sigma$, разобьем поверхность на участки $d\sigma$ плоскостями x=const,y=constАналогично $\cos \beta d\sigma = \pm dxdz$

Тогда в $\iint_{\mathbb{R}^2} P \cos \alpha d\sigma = \pm dy dz$

Окончательно, поток $\Pi = \iint_{S_{n}^{+}} \pm P dy dz \pm Q dx dz \pm R dx dy = \iint_{S_{n}^{+}} (P \cos \alpha + Q \cos \beta + R \cos \gamma) d\sigma$ связь интегралов I и II рода

Nota. Формулу интеграла можно получить еще так: $(\overrightarrow{F}, \overrightarrow{n})d\sigma = \overrightarrow{F}\overrightarrow{n}d\sigma = \overrightarrow{F}\overrightarrow{d\sigma}$, где $\overrightarrow{d\sigma} = \overrightarrow{F}\overrightarrow{d\sigma}$ $(\pm dydz, \pm dxdz, \pm dxdy)$

Def. Математическое.

Определим
$$I = \iint_{S^{\frac{-1}{n}}} f(x, y, z) dxdy$$

$$I = \lim_{\substack{n \to \infty \\ \tau = \max \Delta s_k \to 0}} \sum_{k=1}^{n} f(\xi_k, \eta_k, \zeta_k) \Delta s_k \ (\Delta s_k = \Delta x \Delta y \text{ - любого знака, согласованного с обходом})$$

Свойства: Меняет знак при смене обхода с \overrightarrow{n}^+ на \overrightarrow{n}^-

Вычисление

1) Параметризация
$$S$$
 для $\iint R dx dy$ $z=z(x,y)$, для $\iint Q dx dz$ $y=y(x,z)$, для $\iint P dy dz$ $x=x(y,z)$

Пределы интегрирования $D_{xy} = \text{пр.}_{Oxy}S$ и т. д.

- 2) $dxdy \rightarrow \pm dxdy$, если обход D_{xy} в направлении против часовой стрелки
- 3) $R(x, y, z) = R(x, y, z(x, y)), \dots$

Разберем пример поверхностного интеграла:
$$Ex. S_1: x^2 + y^2 = 1, S_2: z = 0, S_3: z = 1$$

$$S = \bigcup_{i=1}^{3} S_i$$
 - цилиндр

$$\overrightarrow{F}=(P,Q,R)=(x,y,z)$$

$$\iint_{S_{\mathrm{BHeiiih.}}} xdydz+ydxdz+zdxdy=\iint_{S_1}+\iint_{S_2}+\iint_{S_3}$$
 Так как проекции S_2 на Oxz и Oyz - отрезки, то $dxdz=0$, $dydz=0$

$$\iint_{S_2} x dy dz + y dx dz + z dx dy = \iint_{S_2} z dx dy = 0$$

$$\iint_{S_3} z dx dy \stackrel{z|_{S_3}=1}{=} \iint_{S_3} dx dy \stackrel{c "+ \text{ tak } \text{ Kak } n_3 \uparrow \uparrow Oz}{=} \iint_{D_{xy}} dx dy = \pi$$

5.7. Связь поверхностных интегралов с другими

$$S_1: z=z_1(x,y), \ S_3: z=z_3(x,y), \ S_2: f(x,y)=0$$
 (проекция на Oxy - кривая) $S=\bigcup_{i=1}^3 S_i$ - замкнута! и ограничивает тело T

$$P = P(x, y, z), Q = Q(x, y, z), R = R(x, y, z)$$
 - непр. дифф., действуют в области $\Omega \supset T$ Тогда $\iint_{S} Pdydz + Qdxdz + Rdxdy = \iiint_{T} (\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z})dxdydz$

$$\oint_{K} Pdx + Qdy = \iint_{D_{xy}} \left(\frac{\partial Q}{\partial x} - \frac{\partial Q}{\partial y}\right) dxdy$$

Вычислим почленно
$$\iiint_T (\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}) dv$$

$$\iiint_{T} \left(\frac{\partial R(x,y,z)}{\partial z} dz \right) dx dy = \iint_{D_{xy}} R(x,y,z) \Big|_{z=z_{1}(x,y)}^{z=z_{3}(x,y)} dx dy = \iint_{D_{xy}} \left(R(x,y,z_{3}(x,y)) - R(x,y,z_{1}(x,y)) \right) dx dy = \iint_{D_{xy}} R(x,y,z_{3}) dx dy - \iint_{D_{xy}} R(x,y,z_{1}(x,y)) dx dy = \iint_{S_{3}} R(x,y,z) dx dy + \iint_{S_{1}} R(x,y,z) dx dy + \iint_{S_{2}} R(x,y,z) dx dy = \iint_{S_{2}} R(x,y,z) dx dy = \iint_{S_{2}} R(x,y,z) dx dy + \iint_{S_{2}} R(x,y,z) dx dy = \iint_{S_{2}} R(x,y,z) dx dy + \iint_{S_{2}} R(x,y,z) dx dy = \iint_{S_{2}} R(x,y,z) dx dy + \iint_{S_{2}} R(x,y,z) dx dy = \iint_{S_{2}} R(x,y,z) dx dy + \iint_{S_{2}} R(x,y,z) dx dy = \iint_{S_{2}} R(x,y,z) dx dy + \iint_{S_{2}} R(x,y,z) dx dy + \iint_{S_{2}} R(x,y,z) dx dy = \iint_{S_{2}} R(x,y,z) dx dy + \iint_{S_{2}} R(x,y,z) dx dy = \iint_{S_{2}} R(x,y,z) dx dy + \iint_{S_{2}} R(x,y,z) dx dy + \iint_{S_{2}} R(x,y,z) dx dy = \iint_{S_{2}} R(x,y,z) dx dy + \iint_{S_{2}} R(x,y,z) dx dy + \iint_{S_{2}} R(x,y,z) dx dy + \iint_{S_{2}} R(x,y,z) dx dy = \iint_{S_{2}} R(x,y,z) dx dy + \iint_{S_{2}} R(x,y,z) dx dy +$$

$$\iint_{S_{ ext{BHeimh.}}} Rdxdy$$

Аналогично остальные члены:
$$\iiint_T \frac{\partial Q}{\partial y} dx dy dz = \iint_{S_{\text{внешн.}}} Q dx dz, \iiint_T \frac{\partial P}{\partial y} dx dy dz = \iint_{S_{\text{внешн.}}} P dx dz$$

$$Nota.$$
 Если $\iint_{S_{\text{BHVTD}}}$, то $\iint_{S} = - \iiint_{T}$

Nota. С учетом связи поверхностных интегралов $\iiint_T (\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial u} + \frac{\partial R}{\partial z}) dv = \iint_C (P\cos\alpha + Q\cos\beta + Q\cos\beta + Q\cos\beta) dv$ $R\cos y)dv$

Th. Стокса

Пусть S: z = z(x,y) - незамкнутая поверхность, L - контур, на которую она опирается

$$\pi p_{Oxy} L = K_{xy}, \quad \pi p_{Oxy} S = D_{xy}$$

В области $\Omega\supset S$ действуют функции P,Q,R - непр. дифф.

Тогда
$$\oint_{L^+} P dx + Q dy + R dz = \iint_{S^+} \left(\left(\frac{\partial R}{\partial y} - \frac{\partial \widetilde{Q}}{\partial z} \right) \cos \alpha + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) \cos \alpha + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \cos \gamma \right) d\sigma$$

Найдем слагаемое
$$\oint_L P(x,y,z)dx \stackrel{\text{на }L \;:\; z=z(x,y)}{=} \oint_{K_{xy}^+} \tilde{P}(x,y,z(x,y))dx = \oint_{K_{xy}} \tilde{P}dx + \tilde{Q}dy =$$

$$\iint_{D_{xy}} (\frac{\partial \tilde{Q}}{\partial x} - \frac{\partial \tilde{P}}{\partial y}) dx dy = -\iint_{D_{xy}} \frac{\partial \tilde{P}(x,y)}{\partial y} dx dy = -\iint_{S^+} \frac{\partial P(x,y,z)}{\partial y} dx dy = -\iint_{S^+} (\frac{\partial P}{\partial y} + \frac{\partial P}{\partial z} \frac{\partial z}{\partial y}) dx dy = -\iint_{S^+} (\frac{\partial P}{\partial y} + \frac{\partial P}{\partial z} \frac{\partial z}{\partial y}) dx dy = -\iint_{S^+} (\frac{\partial P}{\partial y} + \frac{\partial P}{\partial z} \frac{\partial z}{\partial y}) dx dy = -\iint_{S^+} (\frac{\partial P}{\partial y} + \frac{\partial P}{\partial z} \frac{\partial z}{\partial y}) dx dy = -\iint_{S^+} (\frac{\partial P}{\partial y} + \frac{\partial P}{\partial z} \frac{\partial z}{\partial y}) dx dy = -\iint_{S^+} (\frac{\partial P}{\partial y} + \frac{\partial P}{\partial z} \frac{\partial z}{\partial y}) dx dy = -\iint_{S^+} (\frac{\partial P}{\partial y} + \frac{\partial P}{\partial z} \frac{\partial z}{\partial y}) dx dy = -\iint_{S^+} (\frac{\partial P}{\partial y} + \frac{\partial P}{\partial z} \frac{\partial z}{\partial y}) dx dy = -\iint_{S^+} (\frac{\partial P}{\partial y} + \frac{\partial P}{\partial z} \frac{\partial z}{\partial y}) dx dy = -\iint_{S^+} (\frac{\partial P}{\partial y} + \frac{\partial P}{\partial z} \frac{\partial z}{\partial y}) dx dy = -\iint_{S^+} (\frac{\partial P}{\partial y} + \frac{\partial P}{\partial z} \frac{\partial z}{\partial y}) dx dy = -\iint_{S^+} (\frac{\partial P}{\partial y} + \frac{\partial P}{\partial z} \frac{\partial z}{\partial y}) dx dy = -\iint_{S^+} (\frac{\partial P}{\partial y} + \frac{\partial P}{\partial z} \frac{\partial z}{\partial y}) dx dy = -\iint_{S^+} (\frac{\partial P}{\partial y} + \frac{\partial P}{\partial z} \frac{\partial z}{\partial y}) dx dy = -\iint_{S^+} (\frac{\partial P}{\partial y} + \frac{\partial P}{\partial z} \frac{\partial z}{\partial y}) dx dy = -\iint_{S^+} (\frac{\partial P}{\partial y} + \frac{\partial P}{\partial z} \frac{\partial z}{\partial y}) dx dy = -\iint_{S^+} (\frac{\partial P}{\partial y} + \frac{\partial P}{\partial z} \frac{\partial z}{\partial y}) dx dy = -\iint_{S^+} (\frac{\partial P}{\partial y} + \frac{\partial P}{\partial z} \frac{\partial z}{\partial y}) dx dy = -\iint_{S^+} (\frac{\partial P}{\partial y} + \frac{\partial P}{\partial z} \frac{\partial z}{\partial y}) dx dy = -\iint_{S^+} (\frac{\partial P}{\partial y} + \frac{\partial P}{\partial z} \frac{\partial z}{\partial y}) dx dy = -\iint_{S^+} (\frac{\partial P}{\partial y} + \frac{\partial P}{\partial z} \frac{\partial z}{\partial y}) dx dy = -\iint_{S^+} (\frac{\partial P}{\partial y} + \frac{\partial P}{\partial z} \frac{\partial z}{\partial y}) dx dy = -\iint_{S^+} (\frac{\partial P}{\partial y} + \frac{\partial P}{\partial z} \frac{\partial z}{\partial y}) dx dy = -\iint_{S^+} (\frac{\partial P}{\partial y} + \frac{\partial P}{\partial z} \frac{\partial z}{\partial y}) dx dy = -\iint_{S^+} (\frac{\partial P}{\partial y} + \frac{\partial P}{\partial z} \frac{\partial z}{\partial y}) dx dy = -\iint_{S^+} (\frac{\partial P}{\partial y} + \frac{\partial P}{\partial z} \frac{\partial z}{\partial y}) dx dy = -\iint_{S^+} (\frac{\partial P}{\partial y} + \frac{\partial P}{\partial z} \frac{\partial z}{\partial y}) dx dy = -\iint_{S^+} (\frac{\partial P}{\partial y} + \frac{\partial P}{\partial z} \frac{\partial z}{\partial y}) dx dy = -\iint_{S^+} (\frac{\partial P}{\partial y} + \frac{\partial P}{\partial z} \frac{\partial z}{\partial y}) dx dy = -\iint_{S^+} (\frac{\partial P}{\partial y} + \frac{\partial P}{\partial z} \frac{\partial z}{\partial y}) dx dy = -\iint_{S^+} (\frac{\partial P}{\partial y} + \frac{\partial P}{\partial z} \frac{\partial z}{\partial y}) dx dy = -\iint_{S^+} (\frac{\partial P}{\partial y} + \frac{\partial P}{\partial z} \frac{\partial z}{\partial y}) dx dy dx dy = -\iint_{S^+} (\frac{\partial P}{\partial y} + \frac{\partial P}{\partial y} \frac{\partial z}{\partial y}) dx dy dx dy dx dy dx dy dx dy dx dy$$

$$-\iint_{S^{+}} \left(\frac{\partial P}{\partial y} \cos \gamma + \frac{\partial P}{\partial z} (-\cos \beta)\right) d\sigma$$

$$\overrightarrow{n} = \left(\frac{-\frac{\partial z}{\partial x}}{\sqrt{1 + z_{x}'^{2} + z_{y}'^{2}}}\right)$$

$$\cos \gamma = \frac{1}{\sqrt{1 + z_{x}'^{2} + z_{y}'^{2}}}$$

Аналогично $\oint_L Q dy = \iint_{S^+} (\frac{\partial Q}{\partial x} \cos \beta - \frac{\partial Q}{\partial z} \cos \alpha) d\sigma$, $\oint_L R dz = \iint_{S^+} (\frac{\partial R}{\partial y} \cos \alpha - \frac{\partial R}{\partial x} \cos \beta) d\sigma$ Остается сложить интегралы

Ex. 1.
$$(P, Q, R) = (x, y, z)$$

В Ех. пункте 5.6. (вычисление поверхностного):

$$\iint_{S_{\text{внешн}}} x dy dz + y dx dz + z dx dy = \iiint_{T} (\frac{\partial x}{\partial x} + \frac{\partial y}{\partial y} + \frac{\partial z}{\partial z}) dv = 3V_{\text{цил.}}$$

$$Ex.\ 2.\ {\rm Te}\ {\rm жe}\ P,Q,R$$

$$\oint_{L} Pdx + Qdy + Rdz = \iint_{S} (\underbrace{(\frac{\partial z}{\partial y} - \frac{\partial y}{\partial z})}_{=} \cos \alpha + 0 + 0) d\sigma$$

6. Теория поля

6.1. Определения

Def. 1. $\Omega \supset \mathbb{R}^n$ Функция $u:\Omega \to \mathbb{R}$ называется скалярным полем в Ω

Def. 2. Функция $\overrightarrow{F} = (F_1(\overrightarrow{x}), \dots, F_n(\overrightarrow{x})) : \Omega \to \mathbb{R}^n$ называется векторным полем

Nota. Далее будем рассматривать функции в \mathbb{R}^3 , то есть u=u(x,y,z) и $\overrightarrow{F}=(P(x,y,z),Q(x,y,z),R(x,y,z))$

Nota. Функции u и \overrightarrow{F} могут зависеть от вренмени t. Тогда эти поля называются нестационарными. В противном случае стационарными

6.2. Геометрические характеристики полей

u = u(x, y, z): l - линии уровня u = const

 $\overrightarrow{F}=(P,Q,R)$: w - векторная линия, в каждой точке w вектор \overrightarrow{F} - касательная к w Векторная трубка - совокупность непересекающихся векторных линий

Nota. Отыскание векторных линий

Возьмем $\overrightarrow{\tau}$ - элементарный касательный вектор, $\overrightarrow{\tau}=(dx,dy,dz)$

Определение векторной линии: $\overrightarrow{\tau}||\overrightarrow{F}| \frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R}$ - система ДУ

Ex. $\overrightarrow{F}=\overrightarrow{y}$ $\overrightarrow{i}-\overrightarrow{x}$ \overrightarrow{j} , $M_0(1,0)$ - ищем векторную линию $w\ni M_0$

Задача Коши:

$$\begin{cases} \frac{dx}{y} = -\frac{dy}{x} \\ y(1) = 0 \end{cases} \iff \begin{cases} xdx = -ydy \\ y(1) = 0 \end{cases} \iff \begin{cases} x^2 = -y^2 + C \\ y(1) = 0 \implies C = +1 \end{cases} \iff x^2 + y^2 = 1$$

6.3. Дифференциальные характеристики

Mem. $\overrightarrow{\forall} u = \overrightarrow{grad}u = (\frac{\partial u}{\partial x}; \frac{u}{\partial y}; \frac{\partial u}{\partial z})$ - градиент скалярного поля $\overrightarrow{\nabla} = (\frac{\partial}{\partial x}; \frac{\partial}{\partial y}; \frac{\partial}{\partial z})$ - набла-оператор

$$Nota$$
. Для $\overrightarrow{\nabla}$ определены действия: $\overrightarrow{\nabla} \cdot \overrightarrow{a} = \frac{\partial a_1}{\partial x} + \frac{\partial a_2}{\partial y} + \frac{\partial a_3}{\partial z}$ $\overrightarrow{\nabla} \overrightarrow{a} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{j} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ a_1 & a_2 & a_3 \end{vmatrix}$

Причем
$$\overrightarrow{\nabla} \cdot \overrightarrow{\nabla} = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} = \Delta$$
 - лапласиан $\overrightarrow{\nabla} \overrightarrow{\nabla} = 0$

$$Nota.\ \Delta u = rac{\partial^2 u}{\partial x^2} + rac{\partial^2 u}{\partial u^2} + rac{\partial^2 u}{\partial z^2} = 0$$
 – уравнение, определяющее гармоническую

часть волнового уравнения матфизики

функцию u(x, y, z), уравнение Лапласа

Def. 1. Дивергенция поля (divergence - расхождение) $div\overrightarrow{F} \stackrel{def}{=} \overrightarrow{\nabla} \cdot \overrightarrow{F}$

Def. 2. Вихрь (ротор) поля $rot \overrightarrow{F}_{def} \xrightarrow{\overrightarrow{F}} \overrightarrow{F}$

Def. 3. Если $rot \overrightarrow{F} = 0$, то \overrightarrow{F} называется безвихревым полем

Def. 4. Если $\overrightarrow{div}\overrightarrow{F} = 0$, то \overrightarrow{F} называется соленоидальным

Nota. Безвихревое поле имеет незамкнутые векторные линии, а вихревое - замкнутые

Th. 1. Свойство безвихревого поля $rot \overrightarrow{F} = 0 \Longleftrightarrow \exists u(x, y, z) \mid \overrightarrow{\nabla} u = \overrightarrow{F}$

$$\begin{array}{l}
\overrightarrow{rot} \overrightarrow{F} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{j} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) \overrightarrow{i} + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) \overrightarrow{j} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \overrightarrow{k} = 0 \\
\iff \begin{cases}
\frac{\partial R}{\partial y} = \frac{\partial Q}{\partial z} \\ \frac{\partial P}{\partial z} = \frac{\partial R}{\partial x} \\ \frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}
\end{cases}$$

Рассмотрим $u=u(x,y,z)\mid \frac{\partial u}{\partial x}=P, \frac{\partial u}{\partial y}=Q, \frac{\partial u}{\partial z}=R$ - удовлетворяет системе равенств

$$\overrightarrow{F} = (P, Q, R) = (\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial z}) = \overrightarrow{\nabla} u$$

$$\overrightarrow{F} = \overrightarrow{\nabla} u$$
 - дана $rot \overrightarrow{F} = \overrightarrow{\nabla} \overrightarrow{F} = \overrightarrow{\nabla} (\overrightarrow{\nabla} u) = (\overrightarrow{\nabla} \overrightarrow{\nabla}) u = 0$

Nota. Доказали, что если векторное поле является градиентом какого-то скалярного, то его вихрь равен нулю: $rot \overrightarrow{qradu} = 0$

Def. $\overrightarrow{F} = \overrightarrow{\nabla} u$ Поле u(x, y, z) называется потенциалом поля \overrightarrow{F} Таким образом, доказано, что безвихревое поле потенциально

Th. 2. Свойство соленоидального поля
$$div(rot\overrightarrow{F}) = 0$$

$$\Box div(rot\overrightarrow{F}) = div\overrightarrow{a} = \overrightarrow{\nabla} \overrightarrow{a} = \overrightarrow{\nabla} (\overrightarrow{\nabla} \overrightarrow{F}) = (\overrightarrow{\nabla} \overrightarrow{\nabla}) \cdot \overrightarrow{F} = 0$$

6.4. Интегральные характеристики. Теоремы теории поля

$$Mem.\ 1)\ \Pi$$
оток поля $\overrightarrow{F}:\Pi=\iint_S \overrightarrow{F}d\overrightarrow{sigma}$

$$\mathbf{Def.}$$
 2) Циркуляция поля $\overrightarrow{F}:\Gamma=\oint_{I}Pdx+Qdy+Rdz$

Nota. Запишем **Th.** -мы на векторном языке

$$\begin{split} & \int_{S} P dy dz + Q dx dz + R dx dy = \iint_{T} (\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}) dx dy dz \\ & \iint_{S} (P, Q, R) (dy dx, dx dz, dx dy) = \iint_{S} (P, Q, R) (\cos \alpha d\sigma, \cos \beta d\sigma, \cos \gamma d\sigma) = \iint_{S} \overrightarrow{F} \overrightarrow{n} d\sigma = \iint_{S} \overrightarrow{F} d\overrightarrow{\sigma} \\ & \iint_{T} (\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}) dx dy dz = \iint_{T} (\overrightarrow{\nabla} \overrightarrow{F}) = \iint_{T} div \overrightarrow{F} \\ & \iint_{S} \overrightarrow{F} d\overrightarrow{\sigma} = \iint_{T} div \overrightarrow{F} \end{split}$$

$$2^*$$
 Стокса
 $Pdx + Qdy + Rdz = \overrightarrow{F}d\overrightarrow{l}$

$$\oint_{L} \overrightarrow{F}d\overrightarrow{l} = \iint_{S} rot \overrightarrow{F} \overrightarrow{n} d\sigma = \iint_{S} rot \overrightarrow{F} d\overrightarrow{\sigma}$$

3* Th. о потенциале

$$\forall L \oint_{L} \overrightarrow{F} d\overrightarrow{l} = 0 \Longleftrightarrow rot\overrightarrow{F} = 0 \Longleftrightarrow \exists u(x,y,z) \mid \overrightarrow{\nabla} = \overrightarrow{F}$$
 (см. **Th.** интеграла НЗП)

$$Ex. \overrightarrow{F} = x\overrightarrow{i} + xy\overrightarrow{j}, L: x = y, x = -y, x = 1$$
 По формуле Грина (Стокса)
$$\oint_{L} \overrightarrow{F} d\overrightarrow{l} = \iint_{D} (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) dx dy = \iint_{D} y dx dy \quad rot \overrightarrow{F} \neq 0$$

$$\oint_{L} x dx + xy dy = \int_{L_{1}} + \int_{L_{2}} + \int_{L_{3}} = \int_{0}^{1} (x + x^{2}) dx + \int_{-1}^{1} y dy - \int_{0}^{1} (x + x^{2}) dx = \int_{-1}^{1} y dy = 0$$

6.5. Механический смысл

1* Дивергенция

Гаусс-Остроградский: $\iiint_T div \overrightarrow{F} dv = \Pi$

 $\mathbf{Th.}$ о среднем: $\exists M_1 \in T \mid \iiint_T div \overrightarrow{F} dv = div \overrightarrow{F} \Big|_{M_1} \cdot V_T = \Pi$

 $div\overrightarrow{F}\Big|_{M_1}=rac{\Pi}{V_T},$ точка M_0,S и T выбраны произвольно

 $\exists V_T \to 0$, тогда $div \overrightarrow{F}\Big|_{M_1 \to M_0} = \lim_{V_T \to 0} \frac{\Pi}{V_T}$ - поток через границу бесконечно малого объема с центром M_0 , отнесенный к V_T - мощность источника в M_0

Таким образом, дивергенция поля - мощность источников

Nota. Смысл утверждения $div(rot\overrightarrow{F})=0$ - поле вихря свободно от источников

Nota. Утверждение $rot(\overrightarrow{gradu}) = 0$ - поле потенциалов свободно от вихрей

2* Ротор Стокс $\iint_{S} rot \overrightarrow{F} d\overrightarrow{\sigma} = \Gamma$

Th. о среднем: $\exists M_1 : \iint_S rot \overrightarrow{F} d\overrightarrow{\sigma} = rot \overrightarrow{F} \Big|_{M_1} \cdot S = \Gamma$

 $rot\overrightarrow{F}\Big|_{M_1}=rac{\Gamma}{S},$ будем стягивать S к точке $M_0\Longrightarrow rot\overrightarrow{F}\Big|_{M_0}=\lim_{S\to 0}rac{\Gamma}{S}$ - циркуляция по б.м. контуру с центром M_0