Equations différentielles linéaires d'ordre 1

Exercice 1 ★★

Soit a et b deux fonction impaires continues sur \mathbb{R} . Soit f une solution de l'équation différentielle y'+ay=b. Montrer que f est paire.

Exercice 2 ★★ Périodicité

Soient $T \in \mathbb{R}_+^*$, a et b deux fonctions continues et T-périodiques sur \mathbb{R} et f une solution de l'équation différentielle (E): y' + ay = b. Montrer que f est T-périodique si et seulement si f(0) = f(T).

Exercice 3 ★

Résoudre sur $]-\infty,-1[$,]-1,1[puis $]1,+\infty[$ l'équation différentielle

$$(1-x^2)y'-xy=1$$

Exercice 4 ★★

Soit $\alpha \in \mathbb{R}$.

- **1.** Résoudre sur \mathbb{R}_+^* l'équation différentielle $xy' \alpha y = 0$. Déterminer l'unique solution f vérifiant f(1) = 1.
- **2.** Résoudre sur \mathbb{R}_+^* l'équation différentielle $xy' \alpha y = f$. Déterminer l'unique solution g vérifiant g(1) = 0.
- **3.** On définit par récurrence une suite de fonctions (u_n) sur \mathbb{R}_+^* de la manière suivante :
 - $u_0 = f$;
 - pour tout $n\in\mathbb{N}$, u_{n+1} est l'unique solution de l'équation différentielle $xy'-\alpha y=u_n$ sur \mathbb{R}_+^* valant 0 en 1.

Remarque. On a donc $u_1 = g$.

Déterminer par récurrence u_n pour tout $n \in \mathbb{N}$.

Exercice 5 $\star\star\star\star$

Soit f une fonction de classe \mathcal{C}^1 sur \mathbb{R} telle que $\lim_{x\to +\infty} f(x) + f'(x) = 0$. Montrer que $\lim_{x\to +\infty} f(x) = 0$.

Equations différentielles linéaires d'ordre 2

Exercice 6 ★

- 1. Résoudre l'équation différentielle y'' (1 i)y' 2(1 + i)y = 0.
- **2.** Donner l'unique solution f vérifiant f(0) = f'(0) = 1.

Exercice 7 ***

Soit f une application de classe \mathcal{C}^2 de \mathbb{R} dans \mathbb{R} telle que $f + f'' \ge 0$. Montrer que

$$\forall x \in \mathbb{R}, f(x) + f(x + \pi) \ge 0$$

Exercice 8 ★★★

Mines MP 2010

Soit $q \in \mathcal{C}^0(\mathbb{R}_+, \mathbb{R}_+)$. On considère l'équation différentielle y'' + qy = 0. On suppose que q est non constamment nulle au voisinage de $+\infty$ et que l'on dispose d'une solution y strictement positive sur \mathbb{R}_+ et on pose $f = \frac{y'}{y}$.

- 1. Trouver une équation différentielle vérifiée par f.
- **2.** Montrer que f ne s'annule pas sur \mathbb{R}_+ .
- 3. Montrer que f est décroissante sur \mathbb{R}_+ puis qu'elle y est strictement positive.
- **4.** Montrer que q est intégrable sur \mathbb{R}_+ et que $\int_{[x,+\infty[}q = \mathcal{O}\left(\frac{1}{x}\right)$.

Exercice 9 ★

On considère l'équation différentielle dont on recherche les solutions à valeurs réelles

(E):
$$y'' - 4y' + 5y = e^{2x} \sin(x)$$

- 1. Résoudre l'équation différentielle homogène associée à (E).
- 2. Déterminer une solution particulière de (E).
- 3. Résoudre l'équation (E).
- **4.** Déterminer l'unique solution f de (\mathbf{E}) telle que f(0) = 1 et f'(0) = 2.

Exercice 10 ★★

Soient a, b et x_0 des réelles tels que $a^2 \neq b$ et $f: \mathbb{R} \to \mathbb{R}$ trois fois dérivable telle que

$$\begin{cases} f'' + af' + bf = 0 \\ f^{(3)}(x_0) = f(x_0) = 0 \end{cases}$$

Montrer que f est nulle sur \mathbb{R} .

Exercice 11

1. Résoudre sur \mathbb{R} l'équation différentielle

$$(1+t^2)y'' + 4ty' + 2y = 0$$

2. Résoudre ensuite sur \mathbb{R} l'équation différentielle

$$(1+t^2)y'' + 4ty' + 2y = \frac{1}{1+t^2}$$

Exercice 12 ★★

Résoudre sur $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ l'équation différentielle $y'' + y = \tan t$.

Exercice 13 ★★★

1. Déterminer les vecteurs propres de l'endomorphisme

$$\varphi : \left\{ \begin{array}{ccc} \mathcal{C}^{\infty}(\mathbb{R}_{+}^{*}) & \longrightarrow & \mathcal{C}^{\infty}(\mathbb{R}_{+}^{*}) \\ y & \longmapsto & (x \mapsto xy'(x)) \end{array} \right.$$

2. Résoudre sur ℝ^{*} l'équation différentielle

$$x^2y'' + xy' - \alpha^2y = 0$$

Exercice 14 ★★

On étudie l'équation différentielle $(t^2 + 1)y'' - 2y = t$.

- 1. Déterminer une solution polynomiale non nulle ϕ de l'équation homogène associée.
- 2. Résoudre l'équation homogène en procédant au changement de fonction inconnue $y(t) = \varphi(t)z(t)$.
- **3.** Exprimer la solution générale de l'équation étudiée.

Exercice 15 ***

ENS MP 2010

Soient q une application continue périodique non identiquement nulle de $\mathbb R$ dans $\mathbb R_+$ et f une solution de l'équation différentielle y''+qy=0. Montrer que f s'annule une infinité de fois sur $\mathbb R_+$.

Exercice 16 ***

Soit $f \in \mathcal{C}^0(\mathbb{R})$ une fonction 2π -périodique. Montrer que l'équation différentielle y'' + y = f admet des solutions 2π -périodiques si et seulement si

$$\int_0^{2\pi} f(t) \cos t \, dt = \int_0^{2\pi} f(t) \sin t \, dt = 0$$

Exercice 17 ***

TPE-EIVP MP 2018

Soient a et b deux fonctions définies et continues sur [0,1] et à valeurs dans \mathbb{R} . Soit (E) l'équation différentielle : y'' + a(t)y' + b(t)y = 0.

- 1. On considère f une fonction solution de (E) sur [0,1] s'annulant une infinité de fois. Montrer qu'il existe $x \in [0,1]$ tel que f(x) = f'(x) = 0
- 2. Déterminer toutes les solutions de (E) s'annulant une infinité de fois sur [0, 1].

Exercice 18 ★★

- **1.** Soit $n \in \mathbb{N}$. Résoudre l'équation différentielle $y'' + y = \cos(nt)$.
- 2. Soit $\sum a_n$ une série absolument convergente. Résoudre l'équation différentielle

$$y'' + y = \sum_{n \in \mathbb{N}} a_n \cos(nt)$$

Exercice 19 CCP MP

- **1.** Montrer qu'il existe une solution h de l'équation xy'' + y' + y = 0 développable en série entière et vérifiant h(0) = 1.
- **2.** Montrer que *h* ne s'annule qu'une fois sur]0, 2[.

Exercice 20

CCINP MP 2024

On considère les équations différentielles :

(E):
$$x^2y'' + 4xy' + (2 - x^2)y = 1$$

(H):
$$x^2y'' + 4xy' + (2 - x^2)y = 0$$

On note $I =]0, +\infty[$, $S_I(E)$ l'ensemble des solutions de l'équation (E) sur I et $S_I(H)$ l'ensemble des solutions de l'équation (H) sur I.

- 1. Donner, en justifiant, la dimension de l'espace vectoriel $S_I(H)$.
- **2.** Démontrer qu'il existe une unique solution f de (E) sur I développable en série entière sur \mathbb{R} .

Vérifier que pour tout $x \in I$, $f(x) = \frac{\operatorname{ch} x - 1}{x^2}$.

- 3. On note pour $x \in I$, $g(x) = -\frac{1}{x^2}$ et $h(x) = \frac{\sinh x}{x^2}$. On admet dans cette question que $g \in S_I(E)$ et $h \in S_I(H)$.

 Donner, sans calculs, l'ensemble $S_I(E)$.
- **4.** Quelle est la dimension de l'espace vectoriel $S_{\mathbb{R}}(H)$ des solutions de (H) sur \mathbb{R} ?

Exercice 21 CCINP MP 2024

On considère l'équation différentielle (E): $4xy'' - 2y' + 9x^2y = 0$.

- Déterminer les solutions développables en séries entières et préciser leurs domaines de définition.
- **2.** Résoudre l'équation différentielle sur \mathbb{R}_+^* . On pourra utiliser la méthode de Lagrange : on pose y = hz avec h une solution particulière de l'équation différentielle sur \mathbb{R}_+^* et z une fonction quelconque.
- 3. En procédant au changement de variable $x = t^{2/3}$, retrouver le résultat de la question précédente.

Systèmes différentiels

Exercice 22 ★★

CCINP (ou CCP) MP 2019

Résoudre, à l'aide de matrices, le système différentiel suivant :

$$\begin{cases} x' = 3x + 6y \\ y' = -3x - 6y \\ z' = -3x - 6y - 5z \end{cases}$$

Exercice 23 ***

Résoudre le système différentiel
$$\begin{cases} x' = x - z \\ y' = x + y + z \\ z' = -x - y + z \end{cases}$$

Exercice 24 ★★

CCINP (ou CCP) PSI 2021

Soit le système différentiel Y'(t) = A(t)Y(t) avec $A(t) = \begin{pmatrix} 1 - 3t & -2t \\ 4t & 1 + 3t \end{pmatrix}$.

- **1.** Donner les valeurs propres de A(t).
- **2.** En déduire qu'il existe P indépendant de t telle que $P^{-1}A(t)P$ soit diagonale.
- 3. Résoudre le système différentiel.

Exercice 25 ★★

TPE-EIVP MP 2014

Résoudre le système différentiel suivant :

$$\begin{cases} x'(t) = 9x(t) - 5y(t) + 2t \\ y'(t) = 10x(t) - 6y(t) + e^t \end{cases}$$

Exercice 26 ★★

Résoudre le problème de Cauchy
$$\begin{cases} x' = -x + 2y \\ y' = -2x + 3y \\ x(0) = 1 \\ y(0) = -1 \end{cases}$$

Exercice 27 ★★

Saint-Cyr PSI 2019

Soit la matrice
$$A = \begin{pmatrix} 3 & 0 & -1 \\ -1 & 2 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$
.

- 1. Montrer que A est semblable à T = $\begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$. Donner une matrice inversible P telle que A = PTP⁻¹.
- 2. Trouver les solutions du système différentiel X'(t) = AX(t), avec $X(t) = \begin{pmatrix} f(t) \\ g(t) \\ h(t) \end{pmatrix}$

Exercice 28 ★★

On pose A = $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Soit \mathcal{S} l'ensemble des fonctions X : $\mathbb{R} \to \mathcal{M}_{2,1}(\mathbb{R})$ de classe \mathcal{C}^1 et telles que

$$\forall t \in \mathbb{R}, \ X'(t) = AX(t)$$

- 1. Montrer que V : $t \mapsto \begin{pmatrix} \cos t \\ -\sin t \end{pmatrix}$ appartient à \mathcal{S} .
- **2. a.** Soit $X \in \mathcal{S}$. Montrer que $AX \in \mathcal{S}$.
 - **b.** En déduire une base de S.
- **3.** a. Soit $X \in S$. Montrer que X est bornée sur \mathbb{R} .
 - **b.** Soient $P \in \mathcal{M}_2(\mathbb{R})$ inversible et $M \in \mathcal{M}_2(\mathbb{R})$ telles que $A = PMP^{-1}$. Soit $Y : \mathbb{R} \mapsto \mathcal{M}_{2,1}(\mathbb{R})$ de classe \mathcal{C}^1 sur \mathbb{R} et telle que Y' = MY. Montrer que Y est bornée sur \mathbb{R} .
- **4.** On introduit sur $\mathcal{M}_{2,1}(\mathbb{R})$ le produit scalaire défini par $(X \mid Z) = X^TZ$ et on note $\|\cdot\|$ la norme euclidienne associée.

Soit $b: \mathbb{R} \to \mathbb{R}$ continue et intégrable sur \mathbb{R} . Soit $X: \mathbb{R} \to \mathcal{M}_{2,1}(\mathbb{R})$ de classe \mathcal{C}^1 et telle que

$$\forall t \in \mathbb{R}, \ X'(t) = (A + b(t)I_2)X(t)$$

Soit $f: t \mapsto \|X(t)\|^2$. Montrer que f est de classe \mathcal{C}^1 sur \mathbb{R} et vérifie

$$\forall t \in \mathbb{R}, \ f'(t) = 2b(t)f(t)$$

5. Montrer que la fonction X de la question précédente est bornée.

Exercice 29

CCINP (ou CCP) MP 2017

1. Soit $u, v : [a, b] \to \mathbb{R}_+$ continues. On suppose qu'il existe C une constante positive telle que

$$\forall t \in [a, b], \ u(t) \le C + \int_a^t u(s)v(s) \ ds$$

a. On pose

$$f(t) = \frac{C + \int_a^t u(s)v(s) ds}{\exp\left(\int_a^t v(s) ds\right)}$$

Calculer f(a), puis montrer que f est décroissante.

b. En déduire que

$$\forall t \in [a, b], \ u(t) \le C \exp\left(\int_a^t v(s) \ ds\right)$$

- **2.** Soit A: $\mathbb{R}_+ \to \mathcal{M}_n(\mathbb{R})$ une fonction continue. Soit $x: \mathbb{R}_+ \to \mathbb{R}^n$ une solution de l'équation différentielle (E): x'(t) = A(t)x(t). On considère une norme euclidienne $\|\cdot\|$ sur \mathbb{R}^n ainsi que la norme $\|\cdot\|$ de $\mathcal{M}_n(\mathbb{R})$ subordonnée à la norme $\|\cdot\|$.
 - **a.** On pose $g(t) = \|x(t)\|^2$ pour $t \in \mathbb{R}_+$. Montrer que $g'(t) \le 2g(t) \cdot \||A(t)||$ pour tout $t \in \mathbb{R}_+$.
 - **b.** On suppose que $\int_0^{+\infty} |||A(s)||| ds$ converge. Montrer que les solutions de l'équation différentielle (E) sont bornées sur \mathbb{R}_+ .

Changement de variable

Exercice 30 ★★

On s'intéresse à l'équation différentielle

(E):
$$x^2y'' - xy' - 3y = x^4$$

- **1. a.** Montrer que f est une solution de (E) sur \mathbb{R}_+^* si et seulement si $g: t \mapsto f(e^t)$ est solution sur \mathbb{R} d'une équation différentielle à coefficients constants à déterminer.
 - **b.** En déduire les solutions de (E) sur \mathbb{R}_+^* .
- **2. a.** Montrer que f est une solution de (E) sur \mathbb{R}_{-}^{*} si et seulement si g: $t \mapsto f(-e^{t})$ est solution sur \mathbb{R} d'une équation différentielle à coefficients constants à déterminer.
 - **b.** En déduire les solutions de (E) sur \mathbb{R}_{-}^{*} .
- **3.** Déterminer les solutions de (E) sur \mathbb{R} .

Exercice 31

CCINP (ou CCP) MP 2013

On se donne l'équation différentielle $4x^2y'' - 8xy' + 9y = x^2 + 1$.

- 1. Trouver une solution polynomiale de degré 2 à l'équation.
- **2.** Résoudre l'équation sur \mathbb{R}_+^* . On pourra poser $x = e^t$.
- **3.** Résoudre l'équation sur \mathbb{R}^* .

Problèmes de raccord

Exercice 32 ★★

Problème de raccordement

Résoudre sur \mathbb{R} l'équation différentielle $x^2y' - y = 0$.

Exercice 33 ★★

Résoudre sur \mathbb{R} l'équation différentielle $y' \sin x - y \cos x + 1 = 0$.

Exercice 34 ★★

Raccordement

Résoudre sur \mathbb{R} l'équation différentielle xy' - y = x.

Exercice 35 ★★

Raccordement

On considère l'équation différentielle (E) : $xy'' - y' - x^3y = 0$.

- 1. Résoudre (E) sur \mathbb{R}_+^* en effectuant le changement de variable $t=x^2$.
- **2.** En déduire les solutions sur \mathbb{R}_{-}^{*} .
- **3.** Résoudre (E) sur \mathbb{R} .

Exercice 36 ★★

Problème de raccord

Résoudre sur \mathbb{R} de l'équation différentielle (E) : $ty' + (1-t)y = e^{2t}$.

Exercice 37 ★★

Mines MP

Résoudre sur \mathbb{R}_+^*

$$x \ln(x)y' - (3\ln(x) + 1)y = 0$$

Wronskien

Exercice 38 ***

CCP MP 2017

On considère l'équation différentielle suivante sur \mathbb{R}_+^*

(E):
$$x'' + 2\frac{x'}{t} + x = 0$$

- **1.** Montrer que φ_1 : $t \mapsto \frac{\sin t}{t}$ est solution de (E).
- 2. A l'aide du wronskien, chercher une autre solution de (E).

Exercice 39 ***

Soient q une fonction continue et intégrable sur \mathbb{R}_+ . On considère l'équation différentielle (E) : y'' + qy = 0.

- 1. Soit f une solution bornée de (E) sur \mathbb{R}_+ . Montrer que f' admet une limite en $+\infty$ puis déterminer la valeur de cette limite.
- 2. Soient f et g deux solutions bornées de (E) sur \mathbb{R}_+ . Étudier le wronskien w = fg' f'g des solutions f et g. En déduire que f et g sont liées. Que peut-on en conclure?

Exercice 40 ★★★

Zéros entrelacés

- **1.** Soient p et q deux fonctions continues sur \mathbb{R} telles que $p \le q$ sur \mathbb{R} . Soient u et v deux fonctions de classe C^2 telles que u'' + pu = 0 et v'' + qv = 0. On suppose que u s'annule en des réels a et b avec a < b mais qu'elle ne s'annule pas sur a.
 - **a.** On pose W = u'v uv'. Déterminer W'.
 - **b.** En déduire que v s'annule sur [a, b].
- **2.** Application. Soient r une fonction continue sur \mathbb{R} , f de classe \mathcal{C}^2 sur \mathbb{R} telle que f'' + rf = 0 et $M \in \mathbb{R}_+^*$.
 - **a.** On suppose $r \ge M^2$. Montrer que tout intervalle fermé de longueur $\frac{\pi}{M}$ contient au moins un zéro de f.
 - **b.** On suppose $r \leq \mathrm{M}^2$. On suppose que f s'annule en des réels a et b tels que a < b mais qu'elle ne s'annule pas sur]a, b[. Montrer que $b a \geq \frac{\pi}{\mathrm{M}}$.

Divers

Exercice 41 ★★★

Equation fonctionnelle de l'exponentielle matricielle

Déterminer les applications M : $\mathbb{R} \to \mathcal{M}_n(\mathbb{R})$ dérivables en 0 vérifiant :

$$\forall (s,t) \in \mathbb{R}^2, \ M(s+t) = M(s)M(t)$$

Exercice 42 ★★★

Banque Mines-Ponts MP 2019

Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que tr(A) > 0, et $x : \mathbb{R} \to \mathcal{M}_{n,1}(\mathbb{R})$ de classe \mathcal{C}^1 , telle que $\forall t \in \mathbb{R}, \ x'(t) = Ax(t)$ et $\lim_{t \to +\infty} x(t) = 0$.

Montrer qu'il existe une forme linéaire non nulle ℓ , telle que $\forall t \in \mathbb{R}, \ \ell(x(t)) = 0$.

Exercice 43 ***

Soit $A \in \mathcal{M}_n(\mathbb{R})$ antisymétrique. Montrer que les solutions du système différentiel X' = AX sont toutes bornées.

Exercice 44 ★★

Soit $\alpha \in \mathbb{R}$. On cherche l'ensemble S_{α} des fonctions f de \mathbb{R} dans \mathbb{R} de classe \mathcal{C}^1 vérifiant $f'(x) = -f(\alpha - x)$ pour tout $x \in \mathbb{R}$.

- **1.** Montrer qu'une telle fonction est de classe \mathcal{C}^2 .
- 2. Montrer que les éléments de S_{α} sont solutions d'une équation différentielle linéaire d'ordre 2.
- 3. Conclure.

Exercice 45 ★★

Déterminer les fonctions f dérivables sur $\mathbb R$ vérifiant

$$\forall x \in \mathbb{R}, \ f'(x) = f(-x)$$

Exercice 46 ★★

Déterminer les fonctions f dérivables sur $\mathbb R$ vérifiant

$$\forall x \in \mathbb{R}, \ f'(x) = -f(-x)$$