

L'esperienza sui Moti Oscillatori

- L'esperienza verte sul moto oscillatorio di un sistema massa-molla
- Si articola in 3 giornate:
 - Determinazione delle costanti elastiche delle molle
 - Metodo statico: legge di Hooke
 - Metodo dinamico: oscillatore armonico
 - Confronto
 - Determinazione dello smorzamento del sistema
 - + Utilizzo dell'oscilloscopio
 - Osservazione del fenomeno di risonanza dell'oscillatore

4 aprile

2 maggio oggi

Scopo dell'esperienza (parte 3)

- Osservare il fenomeno della risonanza nelle oscillazioni di un sistema smorzato e forzato
- Vogliamo misurarel'ampiezza di oscillazione per diverse frequenze/pulsazioni in un intorno della condizione di risonanza e costruire la curva "Lorentziana" sperimentale
- Vogliamo costruire la curva "Lorentziana" <u>attesa</u> in base ai parametri del sistema che abbiamno caratterizzato nella parte 2 dell'esperienza
- Vogliamo verificare l'accordo tra le due curve
- Bonus track: vogliamo osservare il fenomeno dei battimenti

Oscillatore forzato: strumenti

- L'attuatore converte un segnale elettrico in uno spostamento di un punto fisico
 - Ad un segnale sinusoidale corrisponde uno spostamento sinusoidale
- Lo montiamo capovolto sul nostro supporto e appendiamo la molla al suo estremo mobile
- I generatori in dotazione misurano la frequenza del segnale in uscita
 - Tuttavia chi ha imparato ad usare l'oscilloscopio può usare anche quello per misurare questo parametro.

Oscillatore forzato: setup

BNC maschio (cavi)

- Colleghiamo l'uscita del generatore di segnale all'attuatore con due cavetti rosso/blu con connettori "a banana" e un adattore BNC/banana
- (Se occorre) colleghiamo una seconda uscita del generatore all'oscilloscopio con un cavo coassiale BNC
- I connettori BNC si innestano "a baionetta": il connettore maschio (sul cavo) ha un ghiera che gira fino a percepire uno scatto che implica il bloccaggio in posizione
 - Connettori non bloccati in posizione possono dare contatti non affidabili o staccarsi

Equazione del moto smorzato

$$\frac{d^2x(t)}{dt^2} = -\omega_0^2x(t) - 2\gamma \frac{dx(t)}{dt}$$

Pulsazione propria dell'oscillatore

$$\omega_0^2 = \frac{k}{m}$$

Termine di smorzamento: nel nostro sistema dovuto ad attrito viscoso prop. a v $(C_2=0)$

$$2\gamma \equiv \frac{C_1}{m}$$

Equazione del moto smorzato e forzato

$$\frac{d^2x(t)}{dt^2} = -\omega_0^2x(t) - 2\gamma \frac{dx(t)}{dt} + \frac{F_0}{m}e^{i\omega_f t}$$

Pulsazione propria dell'oscillatore

$$\omega_0^2 = \frac{k}{m}$$

Termine di smorzamento: nel nostro sistema dovuto ad attrito viscoso prop. a v $(C_2=0)$ Forzante periodica con

pulsazione ω_f

$$2\gamma \equiv \frac{C_1}{m}$$

■ Equazione differenziale di secondo grando non omogenea

Soluzione dell'equazione del moto

- La soluzione generale è una combinazione lineare de:
 - La soluzione dell'equazione omogena associata

$$x_1(t) = A_0 e^{-\gamma t} \cos\left(\sqrt{\omega_0^2 - \gamma^2} t\right)$$

Una soluzione particolare del tipo:

$$x_2(t) = A_0 e^{i\omega_f t}$$

Ovvero:

$$x(t) = ax_1(t) + bx_2(t)$$

Forma della soluzione particolare

$$\frac{d^2x(t)}{dt^2} = -\omega_0^2x(t) - 2\gamma \frac{dx(t)}{dt} + \frac{F_0}{m}e^{i\omega_f t}$$

■ Che forma deve avere $x_2(t)$ per essere soluzione? Calcolo le derivate

$$x_2(t) = A_0 e^{i\omega_f t} \qquad \frac{dx_2(t)}{dt} = i\omega_f A_0 e^{i\omega_f t} \qquad \frac{d^2 x_2(t)}{dt^2} = -\omega_f^2 A_0 e^{i\omega_f t}$$

■ E sostituisco:

$$-A_0\omega_f^2 e^{i\omega_f t} = -\omega_0^2 A_0 e^{i\omega_f t} - i2\gamma A_0 \omega_f e^{i\omega_f t} + \frac{F_0}{m} e^{i\omega_f t}$$

• Ottengo che $x_2(t)$ è soluzione se A_0 vale:

$$A_0 \left(\omega_f^2 - \omega_0^2 - i2\gamma \omega_f \right) + \frac{F_0}{m} = 0$$

$$A_0 = \frac{F_0/m}{(\omega_0^2 - \omega_f^2) + i2\gamma \omega_f}$$

Forma della soluzione particolare

$$x_{2}(t) = \frac{F_{0}/m}{(\omega_{0}^{2} - \omega_{f}^{2}) + 2i\gamma\omega_{f}} e^{i\omega_{f}t} \qquad x_{2}(t) = \frac{F_{0}/m}{\sqrt{\left(\omega_{0}^{2} - \omega_{f}^{2}\right)^{2} + 4\gamma^{2}\omega_{f}^{2}}} \cos(\omega_{f}t + \phi)$$

$$A(\omega_{f}) = \frac{F_{0}/m}{\sqrt{\left(\omega_{0}^{2} - \omega_{f}^{2}\right)^{2} + 4\gamma^{2}\omega_{f}^{2}}} \tan \phi = \frac{2\gamma\omega_{f}}{\omega_{0}^{2} - \omega_{f}^{2}}$$

La "Lorentziana"

$$A(\omega_f) = \frac{F_0/m}{\sqrt{\left(\omega_0^2 - \omega_f^2\right)^2 + 4\gamma^2 \omega_f^2}}$$
(forma esatta)

- Descrive l'ampiezza di oscillazione in funzione della pulsazione della forzante $\omega_{
 m f}$ in un intorno della pulsazione di risonanza $\omega_{
 m O}$
- lacksquare Cerchiamo una forma approssimata, assumendo $\omega_f \simeq \omega_0$
- Possiamo approssimare

$$\omega_0^2 - \omega_f^2 = (\omega_0 - \omega_f)(\omega_0 + \omega_f) \simeq 2\omega_0(\omega_0 - \omega_f)$$

$$\underline{\qquad \qquad }$$

$$\underline{\qquad \qquad }$$

■ E ottenere:

$$A(\omega_f) = \frac{F_0/m}{2\omega_0\sqrt{\left(\omega_0 - \omega_f\right)^2 + \gamma^2}}$$
(forma approssimata)

N.B.: È solo grazie allo smorzamento che la curva non presenta una divergenza per $\omega_f = \omega_0$!

La "Lorentziana"

$$A(\omega_f) = \frac{F_0/m}{2\omega_0\sqrt{\left(\omega_0 - \omega_f\right)^2 + \gamma^2}}$$

- Il centroide della curva è ω_0
- Il valore massimo è:

$$A_{max} = \frac{F_0}{2\omega_0 m\gamma}$$

■ Le pulsazioni per cui $A(\omega_f) = \frac{1}{2} A_{max}$ sono:

$$\omega_f = \omega_0 \pm \sqrt{3}\gamma$$

 Quindi la larghezza a metà altezza (FWHM) sarà:

$$\Delta\omega = 2\sqrt{3}\gamma$$

 Quindi sistemi più smorzati avranno una Lorentziana più bassa e larga e viceversa

La fase

$$x_2(t) = \frac{F_0/m}{\sqrt{\left(\omega_0^2 - \omega_f^2\right)^2 + 4\gamma^2 \omega_f^2}} \cos(\omega_f t + \phi)$$

- La fase di cui parliamo è la fase tra la forzante e lo spostamento del sistema
- Alla risonanza vale $\pi/2$

$$\tan \phi = \frac{2\gamma \omega_f}{\omega_0^2 - \omega_f^2}$$

$$\phi = \omega \Delta t$$

Le condizioni di risonanza

In condizioni di risonanza:

- La forzante trasferisce la massima accelerazione alla massa sempre quando la massa possiede la massima velocità (sono sfasate di π/2)
- Ad ogni ciclo viene trasferita un po' di energia dalla forzante alla massa
- L'unica sottrazione di energia al moto è dovuta dall'attrito
- Senza attrito l'ampiezza di oscillazione $A(\omega)$ andrebbe all'infinito per $\omega_f = \omega_0$

Regimi di oscillazione

Come abbiamo visto, la soluzione generale dell'equazione del moto è:

$$x(t) = aA_0e^{-\gamma t}\cos\left(\sqrt{\omega_0^2 - \gamma^2}\right) + b\frac{F_0/m}{\sqrt{\left(\omega_0^2 - \omega_f^2\right)^2 + 4\gamma^2\omega_f^2}}\cos(\omega_f t + \phi)$$
Soluzione dell'omogena associata
Termine decrescente nel tempo
Interamente determinata
$$dall'oscillatore senza forzante$$
Soluzione particolare
Termine costante nel tempo

- A regime il primo termine è nullo e il sistema oscilla con $\omega = \omega_f$
- Quando inserisco una forzante su un sistema in movimento il primo termine non scompare all'istante, ma si smorza con il suo tempo caratteristico. Nel transiente il moto è composto da entrambi i termini.
- Cambiare (velocemente) la frequenza della forzante equivale a due operazioni <u>simultanee</u>:
 - 1. disinserire la vecchia forzante: il sistema dissipa energia con la sua pulsazione propria (primo termine)
 - 2. inserire la nuova forzante (secondo termine)
- Ottengo quindi dei battimenti finchè il sistema non ha dissipato l'energia immagazzinata precedentemente

Battimenti

- lacktriangle Si intende la sovrapposizione (somma) di due frequenze prossime, nel nostro caso ω_0 e ω_f
- Il moto risultante può essere descritto dal prodotto di una frequenza portante pari a $\omega_p = |\omega_0' + \omega_f|/2$ e una frequenza modulante pari a $\omega_m = |\omega_0' \omega_f|/2$
 - Per prosferesi

$$\sin(\omega_1 t) + \sin(\omega_2 t) = 2\cosigg(rac{\omega_1 - \omega_2}{2} tigg)\sinigg(rac{\omega_1 + \omega_2}{2} tigg)$$

- Ai fini della costruzione della Lorentziana i battimenti sono "d'intralcio"
 - Ad ogni spostamento della frequenza della forzante devo attendere che si smorzino
- Tuttavia in almeno un caso proviamo a "misurarli":
 - Calcoliamo ω_p e ω_m a partire da ω_0 ' e ω_f
 - Misuriamo ω_p e ω_m dalla serie di dati che mostra i battimenti
 - Stimiamo le incertezze e confrontiamo i valori

$$\omega_0' = \sqrt{\omega_0^2 - \gamma^2}$$

La scelta del sistema

- Dopo la parte 2 dell'esperienza avete caratterizzato configurazioni dell'oscillatore diverse per massa, molla e disco di smorzamento.
- Come scegliere quella adatta per la Lorentziana?
- Vogliamo un'attrito quanto più possibile proporzionale a v
- Vogliamo una $f_0 > 1$ Hz
- Vogliamo uno smorzamento sufficentemente grande per garantire che:
 - Abbiamo gli strumenti adatti: In base alla risoluzione e stabilità in frequenza del generatore di impulsi possiamo effettuare almeno 5 misure distinte all'interno della FWHM= $2\sqrt{3}\gamma$ (in ω !)
 - Abbiamo il tempo ncessario: Il tempo di attesa per lo smorzamento dei battimenti (almeno 3τ , meglio 4 o 5) ci permette di fare almeno 10 misure in un'ora circa
- lacksquare Attenzione a non mischiare f ed $oldsymbol{\omega}$

Nota operativa

- \blacksquare Prima di fare misure, calcoliamo ω_0 e FWHM del sistema presscelto con le relative incertezze
- Mettiamo in funzione il sistema e iniziamo osservando approssimativamente la pulsazione di risonanza
 - Se è molto diversa da quella che calcolata chiediamoci perchè
- Scegliamo l'ampiezza della forzante che terremo poi costante, in modo che:
 - Sia abbastanza grande da avere oscillazioni osservabili fino a distanza ~FWHM dal centro
 - Non sia troppo grande da mandare le spire della molla "a battuta" durante la risonanza
- Misuriamo l'ampiezza di oscillazione per ~ 10 frequenze di cui almeno 5 all'interno di ±FWHM/2 dal centro
- Ogni misura ha un'incertezza associata sia in frequenza/pulsazione che in ampiezza
 - Come stimarle? Sono le stesse per tutte le misure?

Analisi dati

- A partire dai parametri del sistema possiamo calcolare la Lorentziana attesa
- Non conosciamo F₀ perché dipende dal guadagno dell'attuatore che non conosco
- La normalizziamo ai dati sperimentali:

$$N = \text{costante di normalizzazione}$$

$$L = Lorentziana \qquad D = curva \text{ misurata}$$

$$\sum_{J=k}^{h} L(v_j) = N \cdot \sum_{J=k}^{h} D(v_j)$$

- Tracciamo in grafico le due Lorentziane: sperimentale e attesa
- Facciamo un test del χ^2 , tenendo conto delle incertezze

Frequenza	Ampiezza	Ampiezza calcolata
f_0	D _o	L_0
f_1	D_1	L ₁
f _i	D_i	L_{i}
f ₁₀	D ₁₀	L ₁₀
	D_sum	L_{sum}

Almeno 10 punti, non necessariamente equispaziati: meglio se più fitti vicino al centroide

Backup

Come passiamo dalla notazione complessa a quella reale per x₂(t)

$$x_2(t) = \frac{F_o / m}{\left(\omega_o^2 - \omega_f^2\right) + 2i\gamma\omega_f} e^{i\omega_f t}$$

Per un numero complesso

$$|a+ib| = \sqrt{(a+ib)(a-ib)} = \sqrt{a^2 + b^2}$$

quindi

$$|x_{2}(t)| = \left| \frac{F_{o}/m}{\omega_{o}^{2} - \omega_{f}^{2} + 2i\gamma\omega_{f}} \right| = \frac{F_{o}}{m} \left| \frac{\omega_{o}^{2} - \omega_{f}^{2} - 2i\gamma\omega}{\left(\omega_{o}^{2} - \omega_{f}^{2}\right)^{2} + \left(2\gamma\omega_{f}\right)^{2}} \right| = \frac{F_{o}}{m} \sqrt{\frac{\left(\omega_{o}^{2} - \omega_{f}^{2}\right) + \left(2\gamma\omega_{f}\right)^{2}}{\left(\left(\omega_{o}^{2} - \omega_{f}^{2}\right)^{2} + \left(2\gamma\omega_{f}\right)^{2}\right)^{2}}}$$

$$\left|x_{2}(t)\right| = \frac{F_{o}/m}{\sqrt{\left(\omega_{o}^{2} - \omega_{f}^{2}\right)^{2} + 4\gamma^{2}\omega_{f}^{2}}} \qquad \tan \varphi = \frac{b}{a} = -\frac{2\gamma\omega_{f}}{\omega_{o}^{2} - \omega_{f}^{2}}$$

$$x_2(t) = \frac{F_o / m}{\sqrt{\left(\omega_o^2 - \omega_f^2\right)^2 + 4\gamma^2 \omega_f^2}} \cos\left(\omega_f t + \varphi\right)$$