Introduction to CV Projects

- Preparation
- Image Filtering and Hybrid Images
- Local Feature Match
- Scene Recognition with Bag of Words
- Face Detection with a Sliding Window
- Fish Detection with Deep Learning

Project 0: Prepare for requirements

配置环境: 推荐使用VS Code + Anaconda

Python3.x

Jupyter-notebook

Pytorch >= 1.2

scikit-image

scikit-learn

.

Project 1: Image Filtering and Hybrid Images

目的:

对不同图像分别进行高通和低通滤波, 再混合图片

操作关键点:

- 1. 编写my_filter()函数,并利用滤波器对图片进行滤波
- 2. 在part1部分对图像进行高低通滤波
- 3. 在part2部分进行图像的融合

代码: proj1/code/student.py

- my_imfilter()
 利用滤波函数操作图像
- 2. gen_hybrid_image() 生成高低通分量滤除图片 图像融合

Project 1: Image Filtering and Hybrid Images

Project 1: Image Filtering and Hybrid Images

Project 2: Local Feature Match

目的:

SIFT特征的具体细节理解和简单的距离计算操作关键点:

- 1. Harris兴趣点提取
 - 1.1 实现Harris角点检测算法(NMS)
 - 1.2 输入image(不一定是灰度图),返回一组角点坐标
- 2. 特征描述
 - 2.1 实现SIFT算法的特征描述部分(高斯模糊去噪、Norm)
 - 2.2 使用角点作为SIFT的关键点
 - 3.3 (optional: 你也可以使用DOG)
- 3. 特征匹配
 - 4.1 欧式距离
 - 4.2 任意两点进行特征间的距离计算,
 - 4.3 不正确匹配点去除: 阈值、最近距离与次近距离的比值。

代码位置:

- 1. DoG关键点提取或者Harris关键点提取 Proj2/code/student.py /get_interest_points()
- 2. 关键点方向确定。
 Proj2/code/student.py / get_features()
- 3. 特征描述
 Proj2/code/student.py / get_features()
- 4. 特征匹配 Proj2/code/student.py / match_features()

Project 2: Local Feature Match

Matches: 155
91.0 total good matches, 58 total bad matches.
61.07382550335571% precision
64% accuracy (top 100)
Vizualizing...

Project 2: Local Feature Match

第一张图某点

第二张图前两个匹配点

Project 3: Scene recognition with bag of words

目的:

场景识别。特征提取+分类器构建和使用

操作关键点:

- 1. 图像词袋特征表示
 - 1.1 tiny特征
 - 1.2 BOW特征(SIFT or HoG)

词袋构建:将从训练集获取的特征进行k-means聚类。K的取值决定了后续的效果

- 2. 分类器构建
 - 2.1 KNN classifier
 - 2.2 SVM

代码: proj3/code/student.py

- 1. get_tiny_images()
- 2. Build_vocabulary() 包括图片的sift特征提取和词袋构建
- 3. get_bags_of_words() 根据词袋获取测试图片的直方图特征表示
- 4. SVM_classify()
- 5. Nearest_neighbor_classify()

Project 3: Scene recognition with bag of words

具体操作步骤

- 1. Tiny + Nearest Neighbor
- 2. Bags of SIFT + Nearest Neighbor
- 3. Bags of SIFT + SVM

3.1 Bags of SIFT

- 3.1.1 提取训练集中每个图片的SIFT特征—可能不同的图片提取出来的sift特征个数不同
- 3.1.2 将训练集中的所有图片的SIFT特征进行KMeans聚类,每个类即可以认为是一个bag。假设K=500
- 3.1.3 统计训练集每张图片的SIFT特征落在不同bag的次数——每张图片的特征表示为500x1
 - ——利用Nearest 来判断某个SIFT特征的归类

3.2 SVM训练

推荐使用sklearn.svm.LinearSVC

Tiny + KNN

scene classification results visualization

Accuracy (mean of diagonal of confusion matrix) is 0.227

BOW + SVM

目的:

基于HOG和多尺度滑动窗口实现人脸检测算法。

操作关键点:

- 1. 分类器训练
 - 1.1 正负样本的HoG特征获取

正样本: 人脸图片

负样本: 不包含脸的背景图

- 1.2 图片HoG特征计算
- 2. 多尺度窗口滑动
 - 2.1 从图像中滑动取出预选框
 - 2.2 可能需要对图像进行缩放,简历尺 度金字塔

- 1. 提取正负样本
- 2. 训练
- 3. 评估训练成果
- 4. 挖掘难样本
- 5. 在测试集上运行并可视化结果

具体操作步骤

- 1. 提取训练图片的HoG特征。
- 2. 利用训练图片的HoG特征训练分类器。比如前面提到的SVM分类器
- 3. 计算测试图片的HoG特征图。按照step滑动窗口,利用分类器筛选出人脸窗口
- 4. 对HoG特征图降采样,按照step滑动窗口,筛选出人脸窗口,并按照降采样的尺度还原到原图。
- 5. 利用NMS移除重叠候选框
- 6. 下一张图

代码 proj4/code/student.py

- 1. get_positive_features() 加载正类样本和计算这些样本的特征。正负类样本路径在文件中都有
- 2. get_random_negative_features() 随即加载负样本并计算这些样本特征
- 3. train_classifier() 利用SVM训练线型分类器
- 4. mine hard negs() 提取false-positive prediction.特征
- 5. run_detector() 测试图多尺度寻找人脸,并且利用NMS移除部分候选框。

查看分类器训练结果

Accuracy = 98.267% True Positive rate = 97.795% False Positive rate = 1.100% True Negative rate = 98.900% False Negative rate = 2.205%

图片以及未经过NMS的候选框

可视化HOG特征

visualize_hog(svm, feature_params)

0.7scale的图片

原尺寸的图片

查看模型效果

在额外的图片上测试 (optional)

Project 5: Fish Detection with Deep Learning

目的:

基于YOLOv3-tiny模型实现 ② 检测算法。熟悉深度学习在目标检测上的应用方式。

操作关键点:

1. 数据集划分 **图片和标注已经提供**,编写代码 进行**训练集**和**验证集**的划分

2. 编写训练阶段的代码

代码:

一共有两处,全部在 proj5.ipynb中

Project 5: Fish Detection with Deep Learning

Data Preprocess

You should code this part first

Train your model!

You are required to complete the DL project training steps (get data batch from dataloader, forward, compute the loss comments.

Project 5: Fish Detection with Deep Learning

```
---- Training Model ----
Epoch:46, Step1/1, loss:0.24913674592971802
---- Training Model ----
Epoch:47, Step1/1, loss:0.2667277157306671
---- Training Model ----
Epoch:48, Step1/1, loss:0.2737748920917511
---- Training Model ----
Epoch:49, Step1/1, loss:0.29579898715019226
---- Training Model ----
Epoch:50, Step1/1, loss:0.5155555605888367
```


Thank You!

