Ant Colony Optimization on ker transformation Adult Ant -> [5995] -> [lanva] > [pupa] 1 mobile if (Egg=fertilized) Ogramobile Queen acild: female; by workers 1 food-> solid 3 seeds 3 Food - Leguid 1 prices pieces of child=mall; prey Ants Colony Soldier Ants male fem 1) protect the Queen and Colonies Quem female Drone @Attack every colony werkers Donly and in the 3 Gillect heavy Glony that can lay foods eggs Previonances > 1) Antis easily communicate with @ Chemical figural and used by ants for communication intre emironment prevomanes in danger (to other arts)
3 antis rulease prevomanes. a detect phenomenes through their antennas. 3) ants leaves pheromones on the soil. that can detect / tollowed by another ants.

@ Aco Ps insplined by social behaviour of real
ants. (a) A(0 is basically inspired by pheromones based Ant communication
The techniques to routing and load Balancing
Aco can be applied to continue
probleme a proof of Aco Algorithm
initialize Aco parameters
De Ant Solution construction 3 Position Sach ant in the starting mode. 3 Position Sach ant in the starting mode by applying
a sach am
(un compute the fitners value.
(hen Gupdate the best solution. (a) update the best solution. (a) update the best solution. (b) update the best solution.
@ Pisplay the best result.

1) mitialize Aco parameters :-Population Size (K) = 20; [1, total no. of artificial nt or agents] MaxT = 200; [1, maximum no. of iterations] tau = 0.5; [1, Pheromones initial value] Alpin = 1; [1 phenomones 2 xponential Beta = 1; [1. Pheromone to heuristic weight] Tho = 0.005; [1. pheromone evagoration rate] (2) Solution Construction of Current I terration = 1 to maximum number of iteration 1st Start wiln main last Current Iterations = 1 to MaxT Current Starations = 200 3 Position Sach ant in the starting nucle Pij > ant more from node i lå node j. K) no. of ant. ket ant mare from node i to node j willi probability [transition probability] $(7^{\alpha}_{ij})(n^{\beta}_{ij})$ probability

Eze allowed: (Tij) (nij) [annon]

lij -> probability of moving hom node i to node j (3) Tig > total pheromone deposit by ant on path ij n'ij > value of palh ij [n=4] (population size). (k) population 5) Repeat a untill and build the best solution, then compute the fitness value. @ update me best solution. (A () Compare lue Best solution with each ant solution 94 (Art (3) Solution < Best Solution) consider Ant (3) Best solution Ant (K) population Size) k = 1, 2, 3, 4, 5: ... 20. Apply offline pheromene update. phenomone hids are updated when all completed the Cost/Solution.

o for [Best] solution => increase level of pheromones makes. 3 for [worst] sidulin => decreax level of pheromones phenomene updating equation: Tij (I-P) Tij + Em 1 Tij > to tal pheromones

deporit by kin

deporit by kin

ant on path ij

or path ij on both 1j. てはそ(いりてはもからは ATK = { \frac{Q}{Lk}} otherwise OTij= Lx L > pach length Constant (Q=1) used. in OTij 8 Display the Best Solution loop will repeat untill maximum no. of iterations (eg> 200) after that it will display best solution. (optimal solution).