Vom lebenswichtigen Wasserspeicher zur lebensbedrohlichen Naturgefahr: Die Auswirkungen des Klimawandels auf die Cordillera Blanca

Gletscherrückgang – das tropische Eis schmilzt

- Cordillera Blanca (CB) hat bereits fast die Hälfte der Gletscherfläche verloren, aktuell sind noch weniger als 500km² vergletschert, in den 1960er Jahren waren es noch 723km²
- Prognostizierte Gletscherfläche für Ende des 21. Jahrhunderts liegt zwischen 7km² und 260km²

Warum nimmt die Gletschermasse ab?

- Klimawandelbedingte Temperatur- und Niederschlagsveränderungen führen zu Veränderungen der Gletschermassenbilanz
- Massenabnahme durch Veränderungen der Oberflächenalbedo: Schwarze Kohlepartikel entstehen durch Luftverschmutzung, deren Ablagerung am Gletschereis reduziert die Albedo und trägt zur Eis- und Schneeschmelze bei
- Klimawandelbedingte Zunahme an El Niño Southern Oscillaton-Phänomen:
 Während El Niño starke Ablation durch ungewöhnlich hohe Temperaturen

Peak Water

- Abschmelzen von Gletschern führt zu vorübergehenden Anstieg des Abflusses
- Irgendwann wird ein Kipppunkt (Peak Water genannt) erreicht, ab dem der Abfluss geringer wird, da das Volumen des Gletschereises weiter schrumpft
- Sobald die Gletscher (fast) vollständig geschmolzen sind, stabilisieren sich die Strömungsparameter langsam auf einem niedrigeren Niveau im Vergleich zu vor dem Beginn des Gletscherrückgangs

Was bedeutet das für den Rio Santa?

- Durch Verringerung der Gletscherzufuhr wird der durchschnittliche j\u00e4hrliche Abfluss des Rio Santa um etwa 10% sinken, in der Trockenzeit sogar um bis zu 30%
- Jährliche Schwankung im Abfluss wird etwa doppelt so groß sein wie vor dem Gletscherrückgang
- An mindestens sieben vergletscherten Zuflüssen des Rio Santa wurde der Peak Water bereits überschritten

Glacial Lake Outburst Floods (GLOFs)

- Klimawandelbedingter, erhöhter Schmelzwasserabfluss führt zu Bildung von moränengestauten Seen
- Auftauen des Permafrostes durch sich zurückziehende Gletscher führt zu Destabilisierung von steilen Gletschern und Felshängen
- Durch Überlaufen des Gletschersees oder plötzliche Fels- oder Eislawinen, die zu Verdrängungswellen führen, können GLOFs ausgelöst werden

Sozioökonomische Folgen

- Große Bedrohung durch GLOFs: Kann zu Verlust von Lebensgrundlagen (Geschäfte, Vieh, Anbauflächen) und Zerstörung von Infrastruktur (Straßen, Brücken, Häuser, Wassersystem) führen
- GLOF in Huaráz (1941): 1.800 Tote, Zerstörung von einem Drittel der Stadt
- Nach Erreichen des Peak Water: Geringeres Wasserangebot, führt zu Verschärfung von Wassernutzungskonflikten

Gletscherschmelze kann (kurzfristig) Chancen bieten:

- Zwischenzeitlich höhere Wasserverfügbarkeit (bevor der Peak Water erreicht wird) ermöglicht Ausbau von Wirtschaftszweigen (Tourismus, Bergbau)
- Hohe politische Aufmerksamkeit f\u00f6rdert die Umsetzung von politischen, wirtschaftlichen und sozialen Zielen in der Region

Adaptationsstrategien – Wie kann die lokale Bevölkerung mit dem Risikopotential umgehen?

Institutionelle Unterstützung

- Bereitstellung von Ressourcen
- Überwachung und Untersuchung der Gletscher und Gletscherseen
- Einführung eines effizienten Warnsystems
- Umsiedlung

Technische Anpassungsmaßnahmen

- Bau eines Dammes in Gletscherseen, um Moräne zu entlasten
- Installation eines Siphons, um Wasser aus den Gletscherseen abzulassen

Engagierte Einzelpersonen

Z.B. Saúl Luciano Lliuya, der den Energiekonzern RWE für die Mitverantwortlichkeit am Klimawandel verklagte und finanzielle Beteiligung an Schutzmaßnahmen für Huaraz gegen weitere GLOFs verlangt

Internationale Beteiligung

- Internationale Unterstützung bei der Finanzierung und Umsetzung von Adaptationsmaßnahmen
- Wissensaustausch von Adaptationsstrategien mit Expert*innen aus anderen Regionen