Les arbres

1 Les arbres

1.1 Introduction

Il n'existe pas qu'une façon linéaire de représenter les données, comme les listes, les tableaux, les dictionnaires, les piles et les files. Nous pouvons également structurer les données de façon hiérarchique.

1.2 Exemples de situations où l'on rencontre des arbres

• En biologie

• Les balises d'une page web

• Les dossiers d'un ordinateur

1.3 Définition

Définition 9.1

Un **arbre** est une structure de données constituée de nœuds, qui peuvent avoir des enfants (et qui sont aussi des nœuds)

Définition 9.2

Le sommet de l'arbre est appelé racine.

Définition 9.3

Un nœud qui ne possède pas d'enfant est appelé une feuille.

Définition 9.4

Les nœuds autres que la racine et les feuilles sont appelés nœuds internes.

Définition 9.5

Une **branche** est une suite finie de nœuds consécutifs de la racine vers une feuille.

Remarque

Un arbre a donc autant de feuilles que de branches!

Définition 9.6

l'arité d'un arbre est le nombre maximal d'enfants qu'un nœud peut avoir.

Définition 9.7

La taille d'un arbre est le nombre de nœuds qui le compose.

Définition 9.8

La **hauteur** d'un arbre est la profondeur à laquelle il faut descendre pour trouver la feuille la plus éloignée de la racine.

Exercice 9.1

On considère l'arbre ci-dessous.

Répondre aux questions suivantes :

- Nombre de nœuds?
- Nombre de racine? Laquelle?
- Nombre de feuilles? Lesquelles?
- Nombre de branches?
- Nombre de nœuds internes?
- Quel est son arité?
- Quelle est sa taille?
- Quelle est sa hauteur?

Remarque

En informatique, les arbres poussent vers le bas :-)

1.4 Représentation en Python d'un arbre, appelé aussiarborescence

1.4.1 Avec une classe

Pour représenter un arbre (une arborescence) en Python, on peut utiliser des objets, comme pour les listes chaînées.

L'objet de la classe contient deux attributs : un attribut valeur (dans lequel on stocke une valeur quelconque, appelée *étiquette* et un attribut fils dans lequel on stocke les fils sous la forme d'un tableau.

Exercice 9.2

Construire la classe Noeud. Pour les feuilles, on mettra [] pour le fils***

Exercice 9.3

Construire l'arbre donné en exemple plus haut.

Exercice 9.4

Construire l'arbre ci-dessous :

Exercice 9.5

Créer une fonction récursive represente(arbre,p=0) qui permet un affichage d'un arbre comme ceci :

Représentation possible d'un arbre. Les tirets indiquent la profondeur

1.4.2 Avec un dictionnaire

2 Les arbres binaires

2.1 Définition

Définition 9.9

Un arbre dont l'arité est 2 est un arbre binaire

Les arbres binaires sont donc des arbres ou chaque nœud peut donner 0,1 ou 2 enfants.

On distingue généralement à partir du nœud racine 2 sous-arbres disjoints : Le sous-arbre gauche de l'arbre binaire (SAG) et le sous-arbre droit de l'arbre binaire (SAD).

Remarque

The De ce fait, ces deux arbres ne sont pas identiques :

Exercice 9.6

Dessiner tous les arbres binaires possédant 3 nœuds.

Exercice 9.7

Dessiner tous les arbres binaires possédant 4 nœuds.

Exercice 9.8

Sachant qu'il y a 1 arbre binaire vide, 1 arbre binaire contenant 1 nœud, 2 arbres binaires contenant 2 nœuds, 5 arbres binaires contenant 3 nœuds et 14 arbres binaires contenant 4 nœuds, calculer le nombre d'arbres binaires contenant 5 nœuds.

⚠ On cherche seulement ici à les dénombrer.***

2.2 Représentation en Python d'un arbre binaire

2.2.1 Implémentation avec des classes

Pour représenter un arbre binaire en Python, on peut utiliser des objets.

L'objet de la classe contient trois attributs : un attribut valeur (dans lequel on stocke une valeur quelconque, appelée étiquette , un attribut fils droit et un attribut fils gauche.

Exercice 9.9

Construire la classe Noeud afin de pouvoir construire en python des arbres binaires. Pour les feuilles, on indiquera None pour le sous arbre droit et le sous arbre gauche.

Exercice 9.10

Construire l'arbre binaire suivant :

2.2.2 Représentation

Exercice 9.11

Réaliser ce type d'affichage d'arbre binaire :

>>> represente(a)

2.3 Cas particuliers

2.3.1 Arbre dégénéré ou filiforme

Définition 9.10

Un arbre dégénéré est un arbre dont les nœuds ne possèdent au plus un enfant.

2.3.2 Arbre localement complet

Définition 9.11

Un arbre localement complet est un arbre binaire dont chacun des nœuds possède soit deux enfants, soit aucun.

2.3.3 Arbre complet

Définition 9.12

C'est un arbre qui est localement complet et dont toutes les feuilles sont au niveau hiérarchique le plus bas.

Exercice 9.12

- Combien de nœuds au maximum comporte un arbre localement complet de hauteur h? Au minimum?
- Combien de nœuds comporte un arbre complet de hauteur h?

2.4 Notion de clé

À chaque nœud d'un arbre binaire, on associe une clé ("valeur" associée au nœud)

- Si on prend le nœud ayant pour clé A (le nœud racine de l'arbre) on a :
 - le sous-arbre gauche est composé du nœud ayant pour clé B, du nœud ayant pour clé C, du nœud ayant pour clé D et du nœud ayant pour clé E
 - le sous-arbre droit est composé du nœud ayant pour clé F, du nœud ayant pour clé
 G, du nœud ayant pour clé H, du nœud ayant pour clé I et du nœud ayant pour clé
 J
- si on prend le nœud ayant pour clé B on a :
 - le sous-arbre gauche est composé du nœud ayant pour clé C et du nœud ayant pour clé E
 - le sous-arbre droit est uniquement composé du nœud ayant pour clé D
- si on prend le noeud ayant pour clé G on a :

- le sous-arbre gauche est uniquement composé du noeud ayant pour clé I
- le sous-arbre droit est vide (NIL)

Remarque

Un arbre vide est noté NIL

Très important

Un sous-arbre (droite ou gauche) est un arbre (même s'il contient un seul nœud ou pas de nœud de tout (NIL)).

3 Algorithme des arbres binaires

Notations pour les algorithmes : Soit T un arbre :

T.racine est le nœud racine de l'arbre T

Soit un nœud x:

x.gauche correspond au sous-arbre gauche du nœud x

x.droit correspond au sous-arbre droit du nœud x

x.cle correspond à la clé du nœud x

3.1 Calcul de la taille d'un arbre

On considère de nouveau cet arbre :

Appliquer cet algorithme à l'arbre ci-dessus.

Exercice 9.13

Créer une fonction taille(a) qui renvoie le nombre de noeuds de l'arbre binaire a

```
1 VARIABLE
2 T: arbre
3 x : noeud
4 DEBUT;
5 Function TAILLE(T)
      if T \neq NIL then
         x \leftarrow T.racine
         renvoyer 1 + TAILLE(x.gauche) + TAILLE(x.droit)
8
      else
9
         renvoyer 0
10
      end
11
12 end
13 FIN
```

3.2 Calcul de la hauteur d'un arbre

Appliquer cet algorithme à l'arbre ci-dessus.

```
1 VARIABLE
2 T: arbre
\mathbf{3} \mathbf{x} : nœud
4 DEBUT
5 Function HAUTEUR(T)
       if T \neq NIL then
6
          x \leftarrow T.racine
7
          renvoyer 1 + \max(HAUTEUR(x.gauche), HAUTEUR(x.droit))
8
9
          renvoyer 0
10
       \quad \text{end} \quad
11
12 end
13 FIN
```

Exercice 9.14

Créer une fonction hauteur(a) qui renvoie la hauteur de l'arbre binaire a

3.3 Parcours d'un arbre binaire

On veut ici afficher les différentes valeurs de contenues dans tous les nœuds de l'arbre, par exemple une par ligne. L'ordre dans lequel est effectuée la lecture est donc très important.

3.3.1 Parcours infixe

Un parcours **infixe** fonctionne comme suit : On parcourt le sous arbre de gauche, puis on affiche sa racine, et enfin on parcourt le sous arbre droit.


```
1 VARIABLE
2 T: arbre
3 x : noeud
4 DEBUT
5 Function PARCOURS_ INF(T)
     if T \neq NIL then
6
         x \leftarrow T.racine
7
         PARCOURS_ INF(x.gauche)
8
         affiche x.cle
         PARCOURS\_INF(x.droit)
10
     end
11
12 end
```

Dans quel ordre a été parcouru cet arbre?

Exercice 9.15

Créer une fonction parcours_infixe(a) qui effectue un parcours infixe de l'arbre binaire a

3.3.2 Parcours de l'arbre ordre préfixe

Un parcours **prefixe** fonctionne comme suit : On affiche la racine et on parcourt les sous arbres.


```
1 VARIABLE
2 T: arbre
3 x : nœud
4 DEBUT
5 Function PARCOURS_ PREFIXE(T)
     if T \neq NIL then
        x \leftarrow T.racine
        affiche x.cle
8
         PARCOURS_ PREFIXE(x.gauche)
9
        PARCOURS_ PREFIXE(x.droit)
10
     end
11
12 end
```

Dans quel ordre a été parcouru cet arbre?

• Exercice 9.16

Créer une fonction parcours_prefixe(a) qui effectue un parcours prefixe de l'arbre binaire a

3.3.3 Parcours d'un arbre ordre suffixe

Un parcours **postfixe** fonctionne comme suit : on parcourt les sous arbres et on affiche sa racine.


```
1 VARIABLE
2 T: arbre
3 x:nœud
4 DEBUT
5 Function PARCOURS_ SUFFIXE(T)
     if T \neq NIL then
6
        x \leftarrow T.racine
7
        PARCOURS_ SUFFIXE(x.gauche)
8
        PARCOURS_ SUFFIXE(x.droit)
        afiche x.cle
10
     end
11
12 end
```

Dans quel ordre a été parcouru cet arbre?

Exercice 9.17

Créer une fonction parcours_suffixe(a) qui effectue un parcours prefixe de l'arbre binaire a

3.3.4 Parcourir un arbre en largeur d'abord


```
1 VARIABLE
2 T: arbre
3 Tg: arbre
4 Td: arbre x: nœud
5 f : file
6 DEBUT
7 Vider f # la file est vide
8 Function PARCOURS_ LARGEUR(T)
       enfiler(T.racine,f)
       f non vide x \leftarrow d\acute{e}filer(f)
10
       afficher x.cle
11
       if x.gauche \neq NIL then
12
          Tg \leftarrow x.gauche
13
          enfiler(Tg.racine,f)
14
       end
15
       if x.droit \neq NIL then
16
          Td \leftarrow x.droite
17
          enfiler(Td.racine,f)
18
       end
19
20 end
```

Dans quel ordre a été parcouru cet arbre?

Remarque

- Cet algorithme utilise une file FIFO
- Cet algorithme n'est pas récursif.

Exercice 9.18

Créer une fonction **parcours_largeur(a)** qui effectue un parcours en largeur d'abord de l'arbre binaire a

4 Les arbres binaires de recherche

Un arbre binaire de recherche est un cas particulier des arbres binaires qui doit satisfaire en plus deux conditions :

 $\bullet\,$ Les clés de tous les nœuds du sous-arbre gauche d'un nœud X son inférieures ou égales à la clé de X

• Les clés de tous les nœuds du sous-arbre droit d'un nœud X sont strictement supérieures à la clé de X.

5 Algorithmes sur les arbres binaires

5.1 Parcourir un arbre

Il existe plusieurs façons de parcourir un arbre!

5.2 Recherche d'une clé dans un arbre binaire de recherche


```
1 VARIABLE
2 T: arbre
3 cle : clé
4 x:nœud
5 DEBUT
6 Vider f # la file est vide
7 Function RECHERCHER_ CLE(T, cle)
      if T = NIL then
         retouner Faux
9
      else
10
         x \leftarrow T.racine
11
         if x = cle then
12
            retourner Vrai
13
         end
14
         if x < cle then
15
            retourner RECHERCHER_ CLE (cle,x.droit)
16
         else
17
            retourner RECHERCHER_ CLE (cle,x.gauche)
18
         end
19
      end
20
21 end
```

Pour rechercher une clé dans un arbre binaire de recherche, on peut d'abord la comparer avec la racine. Si la clé est présente à la racine, on renvoie Vrai. Si la clé est inférieure à la racine, on cherche la clé dans le sous-arbre de gauche. Si la clé est supérieure à la racine, on cherche alors dans le sous-arbre de droite. Si la clé n'a pas été trouvée, on retourne Faux.

5.3 Insertion d'une clé dans un arbre binaire de recherche