

EVENT PROBABILITIES

Why

Since one and only one outcome occurs, given a distribution on outcomes, we define the probability of a set of outcomes as the sum of their probabilities.

Definition

Suppose p is a distribution on a *finite* set of outcomes Ω . Given an event $E \subset \Omega$, the *probability of* E under p as the sum of the probabilities of the outcomes in E. The frequentist interpretation is clear—the probability of an event is the proportion of times any of its outcomes will occur in the long run.

Notation

It is common to define a function $P: \mathcal{P}(\Omega) \to \mathbf{R}$ by

$$P(A) = \sum_{a \in A} p(a)$$
 for all $A \subset \Omega$

We call this function P the event probability function (or the probability measure) associated with p. Since it depends on the sample space Ω and the distribution p, we occasionally denote this dependence by $P_{\Omega,p}$ or P_p .

It is tempting, and therefore common to write $P(\omega)$ when $\omega \in \Omega$ and one intends to denote $P(\{\omega\})$. Of course, this corresponds with $p(\omega)$. It is therefore easy to see that from P we can compute p, and vice versa.

Examples

Rolling a die. We consider the usual fair die model (see Outcome Probabilities). Here we have $\Omega = \{1, \dots, 6\}$ and a distribution $p: \Omega \to [0, 1]$ defined by

$$p(\omega) = 1/6$$
 for all $\omega \in \Omega$

Given the model, the probability of the event $E = \{2, 4, 6\}$ is

$$P(E) = \sum_{\omega \in E} p(\omega) = p(2) + p(4) + p(6) = 1/2.$$

Properties of event probabilities

The properties of p ensure that P satisfies

- 1. $P(A) \geq 0$ for all $A \subset \Omega$;
- 2. $P(\Omega) = 1$ (and $P(\emptyset) = 0$);
- 3. P(A) + P(B) for all $A, B \subset \Omega$ and $A \cap B = \emptyset$.

The last statement (3) follows from the more general identity

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

for $A, B \subset \Omega$, by using $\mathbf{P}(\emptyset) = 0$ of (2) above. These three conditions are sometimes called the *axioms of probability for finite sets*.

Do all such P satisfying (1)-(3) have a corresponding underlying probability distribution? The answer is easily seen to be yes. Suppose f: $\mathcal{P}(\Omega) \to \mathbf{R}$ satisfies (1)-(3). Define $q: \Omega \to \mathbf{R}$ by $q(\omega) = f(\{\omega\})$. If f satisfies the axioms, then q is a probability distribution. For this reason we call any function satisfying (i)-(iii) an event probability function (or a (finite) probability measure).

Other basic consequences

Probability by cases. Suppose A_1, \ldots, A_n partition Ω . Then for any $B \subset \Omega$,

$$P(B) = \sum_{i=1}^{n} P(A_i \cap B).$$

Some authors call this the *law of total probability*. This is easy to see by using the distributive laws of set algebra (see Set Unions and Intersections).

Monotonicity. If $A \subseteq B$, then $P(A) \leq P(B)$. This is easy to see by splitting B into $A \cap B$ and B - A, and applying (1) and (3).

Subadditivity. For $A, B \subset \Omega$, $P(A \cup B) \leq P(A) + P(B)$. This is easy to see from the more general identity in (3) above. This is sometimes referred to as a union bound, in reference to bounding the quantity $P(A \cup B)$.

