Natural Language Processing & Word Embeddings

LATEST S	UBMISSION	GRADE
----------	-----------	-------

100%

1.	Suppose you learn a word embedding for a vocabulary of 10000 words. T should be 10000 dimensional, so as to capture the full range of variation words.		1/1 point
	○ True		
	False		
	Correct The dimension of word vectors is usually smaller than the size of the sizes for word vectors ranges between 50 and 400.	vocabulary. Most common	
2.	What is t-SNE?		1 / 1 point
	A linear transformation that allows us to solve analogies on word vector	s	
	A non-linear dimensionality reduction technique		
	A supervised learning algorithm for learning word embeddings		
	An open-source sequence modeling library		
	✓ Correct Yes		
 Suppose you download a pre-trained word embedding which has been trained on a huge corpus of text. You then use this word embedding to train an RNN for a language task of recognizing if someone is happy from a short snippet of text, using a small training set. 			1/1 point
	x (input text)	y (happy?)	
	I'm feeling wonderful today!	1	
	,	0	
	Really enjoying this!	1	
	Then even if the word "ecstatic" does not appear in your small training reasonably be expected to recognize "I'm ecstatic" as deserving a label		
	TrueFalse		
	Correct Yes, word vectors empower your model with an incredible ability to "ecstatic would contain a positive/happy connotation which will prot classified the sentence as a "1".		

4.	Which of these equations do you think should hold for a good word embedding? (Check all that apply)	1 / 1 point
	$ ightharpoons e_{boy} - e_{girl} pprox e_{brother} - e_{sister}$	
	✓ Correct Yes!	
	$igsqcup e_{boy} - e_{girl} pprox e_{sister} - e_{brother}$	
	$igsim e_{boy} - e_{brother} pprox e_{girl} - e_{sister}$	
	✓ Correct Yes!	
	$igsqcup e_{boy} - e_{brother} pprox e_{sister} - e_{girl}$	
5.	Let E be an embedding matrix, and let o_{1234} be a one-hot vector corresponding to word 1234. Then to get the embedding of word 1234, why don't we call $E*o_{1234}$ in Python?	1/1 point
	It is computationally wasteful.	
	$igcup$ The correct formula is E^T*o_{1234} .	
	This doesn't handle unknown words (<unk>).</unk>	
	None of the above: calling the Python snippet as described above is fine.	
	 Correct Yes, the element-wise multiplication will be extremely inefficient. 	
6.	When learning word embeddings, we create an artificial task of estimating $P(target \mid context)$. It is okay if we do poorly on this artificial prediction task; the more important by-product of this task is that we learn a useful set of word embeddings.	1 / 1 point
	True	
	○ False	
	✓ Correct	
7.	In the word2vec algorithm, you estimate $P(t\mid c)$, where t is the target word and c is a context word. How are t and c chosen from the training set? Pick the best answer.	1/1 point
	$\bigcirc \ c$ is a sequence of several words immediately before $t.$	
	$\bigcirc \ c$ is the sequence of all the words in the sentence before $t.$	
	igcup c is the one word that comes immediately before $t.$	
	igodesign c and t are chosen to be nearby words.	
	✓ Correct	

_	
8.	Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings.
	The word2vec model uses the following softmax function:

1/1 point

$$P(t \mid c) = \frac{e^{\theta_t^T e_c}}{\sum_{t'=1}^{10000} e^{\theta_t^T e_c}}$$

Which of these statements are correct? Check all that apply.

lacksquare $heta_t$ and e_c are both 500 dimensional vectors.

✓ Correct

 $ec{ec{ec{v}}}$ $heta_t$ and $heta_c$ are both trained with an optimization algorithm such as Adam or gradient descent.

✓ Correct

Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The GloVe model minimizes this objective:

 $\min \sum_{i=1}^{10,000} \sum_{j=1}^{10,000} f(X_{ij}) (\theta_i^T e_j + b_i + b_j' - log X_{ij})^2$

Which of these statements are correct? Check all that apply.

 Θ_i and e_i should be initialized randomly at the beginning of training.

✓ Correct

 $igwedge X_{ij}$ is the number of times word j appears in the context of word i.

✓ Correct

lacksquare The weighting function f(.) must satisfy f(0)=0.

✓ Correct

The weighting function helps prevent learning only from extremely common word pairs. It is not necessary that it satisfies this function.

10. You have trained word embeddings using a text dataset of m_1 words. You are considering using these word embeddings for a language task, for which you have a separate labeled dataset of m_2 words. Keeping in mind that using word embeddings is a form of transfer learning, under which of these circumstance would you expect the word embeddings to be helpful?

(a) $m_1 >> m_2$

 \bigcirc $m_1 \ll m_2$

✓ Correct

1 / 1 point

1/1 poin