

Future Computing Architectures

Agenda for today

- 09:00 09:30: Recap
- 09:30 10:30: Lab Assignment-l
- 10:45 11:15: Future Computing Architectures
- 11:15 12:30: Assignment Time
- 12:30 12:45: Wrap up

SOA

Service –oriented architectures (SOAs) are way of developing distributed systems where system components are stand-alone services, executing on geographically distributed servers

Components of SOA

Loosely-coupled reusable software component Encapsulates discrete functionalities Distributed and programmatically accessed

- Messages
 - **Exchange of information**
- Meta-data

Service description Service interface Service metadata

SOA considerations?

- Computational penalties
- Extra layers
- Higher communication latency
- Supporting native applications
- Service granularity (reusability or performance)
- Fault tolerance (partial or full failure)
- Service agreements (performance and cost)
- Governance (how to manage and orchestrate)

Ubiquitous Cloud

On-demand self service

Unilaterally provision computing capabilities without requiring human interactions

Broad network access

Available over the network Heterogenous thin or thick client platforms (mobile phones, laptops)

Resource pooling

Compute resources serve multiple users Multi-tenant model

Metering capability

Rapid elasticity

Scale out
Scale in

Cloud service models

- Software-as-a-Service
- Platform-as-a-Service
- Infrastructure-as-a-Service

Loss of Control

Cloud deployment models

Public Cloud

Available to all Example: AWS, GCP

Private Cloud

On-premise

Example: OpenStack

Hybrid Cloud
 Private + Public
 E.g. Rackspace Cloud

Shared by organisations with similar goals Example: salesforce

Virtualization

- Create a software-based-or virtual-representation of applications, servers, storage and networks to reduce IT expenses while boosting efficiency and agility.
- Hardware-level virtualization
 Virtual Machines (VMs)
- OS-level virtualization
 Containers (Dockers, Lxc containers)
- Serverless
 function based invocations

Architecting in a Cloud Environment

Quality attributes that are different in a cloud

Security

Performance

Availability

Deployment view

Deployment view:

Describes the environment into which the system will be deployed, and the dependencies that the system has on elements of it

Concerns

Runtime platform, Specification of hardware or hosting, network requirements Physical constraints

Models and views

Runtime platform models, Network models Technology-dependent models

Problems and pitfalls

Unproven technology,
Unsuitable / missing Service Level agreements
Ignoring inter-site complexities
Disaster recovery environment

Deployment View: Runtime and Network Models

Information view

, manipulates, manages

latency ality

els (BPMN, Petri nets, ...) ship models, ...

complexity, distributed DB

Multiple concurrent updaters ...

Agenda for today

- 09:00 09:30: Recap
- 09:30 10:30: You work on Lab Assignment-I
- 10:45 11:15: Future Computing Architectures
- 11:15 12:30: Assignment Time
- 12:30 12:45: Wrap up

Utrecht University

Cloud versus Edge

Typical Concerns: Mobile Edge Systems: Energy Usage, Network Connectivity, Constrained Resources

Utrecht University

Quantum Edge Model

Classical resources

Based on von Neumann architectures: typically Cloud, Edge resources with shared memory

Quantum resources

Superposition and entanglement

NISQ: Noisy Intermediate Scale Quantum Computers

FTQC: Fault-tolerant Quantum Computers

Characteristics	Classical Computing	Quantum Computing
Computing units	Calculates using bit levels 0 and 1	Calculates with Qubits, represents 0 and 1 simultaneously
Computing Capacity	Capability increased linearly with number of transistors	Capability increases exponentially with Qubits
Error rates	Low error rates, operate at room temperature	High error rate, some quantum systems need to be ultra cold

Edge systems

What does an Edge System look like?

Edge is an open source and decentralised system

Edge is an open source and decentralised system

Edge systems need input from its users.

Stakeholders

End users and customers Prosumers Developers

Stakeholders

End users and customers Prosumers Developers

Roles

Masses create requirements
Prosumers and developers create value
Core provides a set of services

Stakeholders

End users and customers Prosumers Developers

Roles

Masses create requirements
Prosumers and developers create value
Core provides a set of services

Edge is an open source and decentralised system?

Roles are interchangeable?

Is CORE permeable?

How should we architect the core?

Edge systems considerations

Requirements

Unknown? Desires of a community

- System development
 Incremental changes
 Context-aware development
- Resources

 Grow with use (i.e. resources at every level)
- Manageability
 Developers are volunteers

Edge is an open source and decentralised system?

- Core

 Kernel of the system
- PeripheryServices built on top of core

- CoreKernel of the system
- PeripheryServices built on top of core

What is Core in your assignment?

Core:

Quality attributes for periphery Should be modular and multilayered Highly reliable Robust to errors

Core is the backbone of Edge system!

Core:

Quality attributes for periphery Should be modular and multilayered Highly reliable Robust to errors

Core is the backbone of Edge system!

A stable Core provides services to peripheral developers

Core:

Quality attributes for periphery Should be modular and multilayered Highly reliable Robust to errors

Conditions

- Organized and up-to-date documentation
- Core services should be easily discoverable
- Appropriate monitoring
- Adequate response to peripheral requests

Core is the backbone of Edge system!

A stable Core provides services to peripheral developers

Edge perspectives

 Managerial attention on inclusion of periphery for system development

 Crowd governance, Core versus Periphery tradeoff analysis

Proactive and reactive enforcement models

- Requirement forums for periphery
- Architecture consideration for open systems and open content
- Distributed testing, automated and asynchronous delivery

Agenda for today

- 09:00 09:30: Recap
- 09:30 10:30: Lab Assignment-l
- 10:45 11:15: Future Computing Architectures
- 11:15 12:30: Assignment Time
- 12:30 12:45: Wrap up

For Next Time

 Lab-Session Assignment –I Deadline : 10th March 11:59 CET time

The information in this presentation has been compiled with the utmost care, but no rights can be derived from its contents.