Assignment #2 Due on Thursday 1/31/2019

- 1. The following pseudo-code shows a variation of the merge sort algorithm where in each iteration, the list is divided into three sublists.
 - 1: **function** MERGE-SORT(A, p, r)
 - Return If $p \ge r$ 2:
 - $q_1 \leftarrow |(2*p+r)/3|$ 3:
 - $q_2 \leftarrow |(p+2*r)/3|$ 4:
 - $MERGE-SORT(A, p, q_1)$
 - $Merge-Sort(A, q_1 + 1, q_2)$ 6:
 - $Merge-Sort(A, q_2 + 1, r)$ 7:
 - $MERGE(A, p, q_1, q_2, r)$ 8:
 - 9: end function
 - (a) Write down the recurrence relation that represents the running time of the above algorithm.
 - (b) Solve the recurrence relation using the expansion of the recurrence tree.
 - (c) Solve the recurrence relation using the Master method.
 - (d) Compare the running time of the proposed algorithm to that of the regular merge sort algorithm shown on page 34 of the textbook.

Answer:

(a).
$$T(n) = 3T(n/3) + \theta(n)$$

(b). Recursive tree method:

Each level has a runtime of cn and there are totally d level(first leverl is 0) On level d, there are n T(1) adding together, therefore, we get $\frac{n}{3d-1} = 1$ \Rightarrow d=log₃ n + 1 \Rightarrow T(n) = c n d = cn(log₃ n + 1)= $\theta(nlog_3n) = \theta(nlog_3n)$

(c). Using master theory:

$$\begin{array}{ll} a=3,b=3,f(n)=\theta(n) & \Rightarrow \mathbf{n}^{log_ba}=\mathbf{n}^{log_33}=\mathbf{n} \\ \Rightarrow \mathbf{f}(\mathbf{n})=\theta(n^{log_ba}) & \mathrm{case} \ 2 \ \mathrm{hold} & \Rightarrow \mathbf{T}(\mathbf{n})=\theta(f(n)log_n)=\theta(nlogn) \end{array}$$

1

(d). Both algorithm has the same complexity

2. Use the recurrence tree expansion method to find a tight asymptotic bound to the following recurrence relation. For simplicity, assume that n is always a power of two and T(1) = 1.

$$T(n) = 2T(n/2) + n \lg n$$

Using recursive tree method:

following this pattern, we have total d levels (first level is 0)

for level 0, the non-recursive part is nlogn

for level 1, the non-recursive part for each of two subcase is $\frac{n}{2}log\frac{n}{2}$ (where the total runtime is $nlog\frac{n}{2}$)

for level 2, the non-recursive part for each of four subcase is $\frac{n}{4}log\frac{n}{4}$ (where the total runtime is: $nlog\frac{n}{4}$)

following this pattern, the total runtime is

$$T(n)=n(log \frac{n}{n}+.....+log \frac{n}{4}+log \frac{n}{2}+log n)=nlog \frac{n^(d+1)}{2^{(d+1)d/2}}$$
 and we know $d=log n+1$ by substituting d, we get $T(n)=\theta(nlog^2n)$

- 3. Solve the following recurrences using the Master theorem.
 - (a) $T(n) = 2T(n/8) + n \log n$
 - (b) $T(n) = 2T(n/4) + \sqrt{n}$
 - (c) T(n) = 9T(n/3) + n

answer:

(a).
$$a=2,b=8, f(n)=nlogn\Rightarrow n^{log_ba}=n^{log_82}\Rightarrow f(n)=\Omega(n^{log_82})$$
 $af(n/2)=2\cdot (n/8)\cdot log(n/8)\leq c\cdot f(n)=c\cdot nlogn,$ c can be $\frac{1}{2}$ therefore, case 3 hold, $T(n)=\theta(f(n))=\theta(nlogn)$

(b).
$$a=2,b=4,f(n)=\sqrt{n}\Rightarrow n^{log_ba}=n^{log_42}=n^{0.5}\Rightarrow f(n)=\theta(n^{0.5})\Rightarrow {\rm case \ 2\ hold}\Rightarrow T(n)=\theta(f(n)logn)=\theta(\sqrt{n}logn)$$

(c).
$$a=9,b=3,f(n)=n\Rightarrow n^{log_ba}=n^{log_39}=n^2\Rightarrow f(n)=O(n^{2-\epsilon})$$
 and ϵ can be 0.5 , therefore, case 1 hold. $T(n)=\theta(n^2)$

- 4. Suppose that we want to create a divide and conquer matrix multiplication algorithm for square matrices. Assuming that n is a power of three, the algorithm divides each matrix of A, B, and C into nine equi-sized matrices. Then, it performs some recursive calls to compute each submatrix of c.
 - (a) How many recursive calls need to be made so that the algorithm will have an asymptotic running time of $\Theta(n^3)$?
 - (b) What is the maximum number of recursive calls that can be made while having an asymptotic running time that is lower than that of Strassen's algorithm?

answer:

- (a) 27 calls.
- (b) 21 calls.

Note: You do not have to show an actual algorithm that works for this case. You just need to find the number of recursive calls for a hypothetical algorithm that divides the matrix into nine submarices.

- 5. Let X be a $kn \times n$ matrix and Y by an $n \times kn$ matrix, for some integer k.
 - (a) Describe an algorithm that computes the product XY using Strassen's algorithm as a subroutine, i.e., use it as a black-box without modifying it. Only describe your algorithm in words; pseudo-code is not required. Justify your answer, i.e., argue that your algorithm does compute XY correctly. Establish its running time.
 - (b) Repeat part (a) for computing the product YX.

answer:

(a). divide X to be k $n \times n$ size sub-matrix $[X_1, X_2, X_3....X_n]$, and do same thing to $Y[Y_1, Y_2, Y_3.....Y_n]^T$, and use strassen's algorithms to multiply two matrix.

The run time for strassen's algorithm is $\theta(n^{log_27})$

Because the matrix X has kn rows and Y has kn columns, the result matrix size is $kn \times kn$. Therefore, there are k^2 times of multiplication. The total runtime is $\theta(k^2n^{\log_27})$

(b). using the same idea to divide the two matrix. Because the result matrix has the size of $n \times n$, there are k times multiplication. Therefore, the runtime is $\theta(kn^{log_27})$