

2.2 正项级数敛散性的判别

p 级数的敛散性 例 1 级数 $\sum_{n=1}^{\infty} \frac{1}{2n-1}$, $u_n = \frac{1}{2n-1} > \frac{1}{2n}$, 而 $\sum_{n=1}^{\infty} \frac{1}{2n}$ 发散, 故原 例3 讨论 p 级数 $\sum_{n=1}^{\infty} \frac{1}{n^n}$, p > 0 的敛散性.

c > 0 使得 $u_n \le cv_n$, 对所有 n,

II 当 $\sum_{n=0}^{\infty} v_n$ 收敛时,则有 $\sum_{n=0}^{\infty} u_n$ 也收敛;

② 当 $\sum_{n=1}^{\infty} u_n$ 发散时,则有 $\sum_{n=1}^{\infty} v_n$ 也发散.

注

较.

△ 7/28 ♥

 $\frac{1}{(2+a)} + \frac{1}{(22+a)} + \frac{1}{(23+a)} + \ldots + \frac{1}{(2n+a)} + \ldots$

解 因为 $0 < u_n = \frac{1}{(2^n + a)} < \frac{1}{2^n}$. 而 $\sum_{n=0}^{\infty} \frac{1}{2n}$ 收敛, 故原级数收敛.

第二节・正項級数 ▷ 正項級数敛散性的判別

例 2 若 a > 0. 证明下面级数收敛

级数发散.

因此由积分检验法得,级数 $\sum\limits_{n=1}^{\infty} \frac{1}{n^p} \left\{ \begin{array}{l} \exists p > 1$ 时,收敛 $\exists p \leq 1$ 时,发散.

移到分母, $\frac{1}{r^{p-1}(1-r)}|_{1}^{\infty}=0+\frac{1}{1-r}$, 积分收敛.

■ 当 p < 1 时, 指数 (-p+1) 为正值, 积分发散</p> \blacksquare 当 p=1 时, 已知 $\int_1^\infty \frac{1}{x} dx = \ln x \Big|_1^\infty = \infty$ 发散

定理 2 (比较判别法) 对于两个正项级数 $\sum\limits_{n=0}^{\infty}u_{n}$ 和 $\sum\limits_{n=0}^{\infty}v_{n}$,若有

比较判别法: 将要判定的级数与已知收敛或发散的级数作比

解法1 当 p > 0 时, $u_n = \frac{1}{n^2} = f(n)$, 而 $f(x) = \frac{1}{n^2} > 0$ 且在区间

■ 当 p > 1 时, 指数 (-p+1) 为负值。所以分子的 x^{-p+1} 可以

∆ 8/28 V

弱级数发散、强级数发散、强级数收敛、弱级数收敛、

第二节·正项级数 ▷ 正项级数敛散性的判别

 $[1, \infty]$ 连续递减. $\int_{1}^{\infty} \frac{1}{x^{p}} dx = \frac{x^{-p+1}}{-p+1} \Big|_{\infty}^{\infty}.$

解法 2 当 $p \le 1$ 时; 因为对一切 $n \in \mathbb{N}^+$, 有 $\frac{1}{n} \ge \frac{1}{n}$. 而调和级数 $\sum_{i=1}^{\infty} \frac{1}{2i}$ 发散.

由比较判别法可知
$$p$$
 级数 $\sum\limits_{n=1}^{\infty} \frac{1}{n^p}$ 发散. 当 $p>1$ 时; 因为当

所以、
$$\frac{1}{n^p} = \int_{n-1}^n \frac{1}{n^p} dx \le \int_{n-1}^n \frac{1}{x^p} dx$$
$$= \frac{1}{p-1} \left[\frac{1}{(n-1)^{p-1}} - \frac{1}{n^{p-1}} \right] (n=2,3,\cdots)$$

$$n-1 \le x \le n$$
 时, 有 $\frac{1}{n^n} \le \frac{1}{n^n}$.

其部分和

$$S_n = \left[1 - \frac{1}{2^{p-1}}\right] + \left[\frac{1}{2^{p-1}} - \frac{1}{3^{p-1}}\right] + \dots + \left[\frac{1}{n^{p-1}} - \frac{1}{(n+1)^{p-1}}\right]$$
$$= 1 - \frac{1}{(n+1)^{p-1}}$$

p 级数 $\sum_{n=1}^{\infty} \frac{1}{n}$ 和调和级数 $\sum_{n=1}^{\infty} \frac{1}{n}$ 是两个常用的比较级数.若存在

因为
$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \left(1 - \frac{1}{(n+1)^{p-1}}\right) = 1$$
. 强级数收敛,故当 $_p > 1$ 时,由比较判别法知 $_p$ 级数收敛.

结论 关于 p 级数

考虑级数 $\sum_{n=1}^{\infty} \left| \frac{1}{(n-1)^{p-1}} - \frac{1}{n^{p-1}} \right|$

$$\sum_{n=1}^{\infty} \frac{1}{n^p} \begin{cases} \frac{\exists p > 1 \text{ th, 收敛}}{\exists p < 1 \text{ th, 发散}}.$$

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$
 发散;

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$
 发散

$$\prod_{n=1}^{\infty} \frac{1}{n^2}$$
 收敛

■ $u_n \ge \frac{1}{n}$, 则 $\sum_{n=1}^{\infty} u_n$ 发散;

2
$$u_n \leq \frac{1}{n}$$
, 若 $p > 1$, 则 $\sum_{n=1}^{\infty} u_n$ 收敛.

 $N \in \mathbb{N}^+$ $\forall t - t \Pi n > N$

注 结论与等比级数 $\sum_{n=1}^{\infty}aq^n$ 相反. 当 |q|<1 时, 级数收敛, 反之 发散.

第二节・正項級数 ▶ 正项级数敛散性的判别

判别下列级数的敛散性 (1) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+1)}}$; (2) $\sum_{n=1}^{\infty} \frac{1}{(n+1)(n+4)}$.

 \mathbf{R} (1) $u_n = \frac{1}{\sqrt{n(n+1)}} > \frac{1}{\sqrt{(n+1)^2}} = \frac{1}{n+1}$.

而 $\sum_{n=1}^{\infty} \frac{1}{n+1} = \sum_{k=0}^{\infty} \frac{1}{k}$ 发散.比较判别法得, 原级数发散.

(2) $u_n = \frac{1}{(n+1)(n+4)} < \frac{1}{n+n} = \frac{1}{n^2}$.

而级数 $\sum_{n=2}^{\infty} \frac{1}{n^2}$ 收敛, 故原级数收敛.

定理 3 (比较判别法的极限形式) 设 $\sum_{n=0}^{\infty} u_n$ 和 $\sum_{n=0}^{\infty} v_n$ 都为正项级

数,且有 $\lim_{n\to\infty}\frac{u_n}{v}=l$. ■ 若 $0 < l < +\infty$, 两个级数同时收敛或发散;

② 若 l=0, 则 $\sum_{n=0}^{\infty} v_n$ 收敛时, $\sum_{n=0}^{\infty} u_n$ 也收敛;

3 若 $l=+\infty$,则 $\sum_{n=0}^{\infty}v_{n}$ 发散时, $\sum_{n=0}^{\infty}u_{n}$ 也发散.

第二节・正項級数 ▷ 正項級数敛散性的判別

因 $\sum_{n=2}^{\infty} \frac{1}{n^2}$ 收敛, 故原级数收敛.

 $\lim_{n \to \infty} \frac{\ln(1 + 1/n^2)}{1/n^2} = \lim_{n \to \infty} \ln\left(1 + \frac{1}{n^2}\right)^{n^2} = \ln e = 1.$

例5 判别下列级数的敛散性,

级数 $\sum_{n=1}^{\infty} \frac{1}{n^2}$ 收敛, 故原级数收敛. (2) $u_n = 2^n \sin \frac{\pi}{\epsilon_n} \le 2^n \cdot \frac{\pi}{\epsilon_n} = \pi \left(\frac{2}{\epsilon}\right)^n$

而 $\sum_{n=1}^{\infty} \pi \left(\frac{2}{\epsilon}\right)^n$ 收敛, 故原级数收敛.

例6 判别下列级数的敛散性

(1) $\sum_{n=1}^{\infty} \sin \frac{1}{n}$;

解 (1) 当 $n \ge 2$ 时, $u_n = \frac{1}{n} \le \frac{1}{2}$ (或 $\le \frac{1}{2n}$),

(1) $\sum_{n=1}^{\infty} \frac{1}{n^n}$

(2) 设有一收敛级数 $\sum_{n=1}^{\infty} \frac{1}{n^2}$, 取 $v_n = \frac{1}{n^2}$,

 $\lim_{n\to\infty}\frac{\sin 1/n}{1/n}=1$.因 $\sum_{n=1}^{\infty}\frac{1}{n}$ 发散, 故原级数发散.

解 (1) 设有一发散级数 $\sum_{n=1}^{\infty} \frac{1}{n}$, 取 $v_n = \frac{1}{n}$,

(2) $\sum_{n=1}^{\infty} 2^n \sin \frac{\pi}{5n}$

(2) $\sum_{n=1}^{\infty} \ln \left(1 + \frac{1}{n^2}\right)$.

2.3 比值/根值判别法

定理 4 (比值判别法) 如果正项级数 $\sum_{n=0}^{\infty} u_n$ 满足 $\lim_{n\to\infty} \frac{a_{n+1}}{u} = l$, 则有

■ 若 l < 1. 则级数收敛:
</p>

② 若 l > 1(或 ∞) 时,则级数发散;

若 l=1. 则级数可能收敛也可能发散.

注 比值判别法的优点:不必找参考级数

第二节·正項級數 ▷ 比值/根值判别法

例7 判别级数的敛散性,

(1)
$$\sum_{n=1}^{\infty} \frac{1}{(n-1)!}$$
;

(2)
$$\sum_{n=1}^{\infty} \frac{n!}{10^n}$$
.

解 (1)
$$\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \lim_{n\to\infty} \frac{(n-1)!}{n!} = \lim_{n\to\infty} \frac{1}{n} = 0 < 1$$
 级数收敛.

(2)
$$\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \lim_{n\to\infty} \frac{(n+1)!}{10^{n+1}} \cdot \frac{10^n}{n!} = \lim_{n\to\infty} \frac{n+1}{10} = \infty$$
 级数发散.

例 8 判别级数的敛散性
$$\sum_{n=1}^{\infty} \frac{2^n \cdot n!}{n^n}$$
.

$$\begin{split} \lim_{n \to \infty} \frac{u_{n+1}}{u_n} &= \lim_{n \to \infty} \frac{2^{n+1} \cdot (n+1)!}{(n+1)^{(n+1)}} \cdot \frac{n^n}{2^n \cdot n!} \\ &= 2 \lim_{n \to \infty} \left(\frac{n}{n+1}\right)^n = 2 \lim_{n \to \infty} \left(\frac{n+1-1}{n+1}\right)^n \\ &= 2 \lim_{n \to \infty} (1 + \frac{-1}{n+1})^n = 2 \lim_{n \to \infty} \frac{-1}{n+1} \cdot n \\ &= 2 \lim_{n \to \infty} \frac{-n}{n+1} = 2e^{-1} = \frac{2}{-} < 1. \end{split}$$

所以级数收敛

第二节・正項級数 ▷ 比值/根值判别法

A 19/28 ♥

第二节・正項級数 ▷ 比值/根值判别法

△ 20/28 ♥

A 18/28 ♥

例 9 判別级数 $\sum_{n}^{\infty} nr^n (r > 0)$ 的敛散性.

因为

$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \frac{(n+1)r^{n+1}}{nr^n}$$

$$= r \lim_{n \to \infty} \frac{n+1}{n} = r.$$

当 0 < r < 1 时, 级数 $\sum_{n}^{\infty} nr^n$ 收敛;

当
$$r > 1$$
 时, 级数 $\sum_{n=1}^{\infty} nr^n$ 发散;

当
$$r=1$$
 时, 级数 $\sum_{n=1}^{\infty} n$ 发散. (7.1 例 1)

第二节·正項級數 ▷ 比值/根值判别法

(1) $\sum_{n=1}^{\infty} \frac{1}{n^n}$;

 $\lim_{n\to\infty} \sqrt[n]{u_n} = \rho$, 则有

若 ρ < 1. 则级数收敛:
</p>

対 若 ρ > 1 时、则级数发散:

3 若 $\rho = 1$. 则级数可能收敛也可能发散.

定理 5 (根值判别法) 如果正项级数 $\sum_{n=0}^{\infty} u_n$ 满足

和比值判别法标准一样。当级数诵项含有阶乘或者幂函数。比 值判别法. 若含有幂指函数, 根值判别法.

例 10 判别级数的敛散性:

(1) $\sum_{n=1}^{\infty} n \cdot \tan \frac{\pi}{2^{n+1}}$; (2) $\sum_{n=1}^{\infty} \frac{n \cos^2 \frac{n\pi}{3}}{2^n}$.

 \mathbf{R} (1) $\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \frac{(n+1)\tan\frac{n}{2n+2}}{n\tan\frac{\pi}{2n+2}}$

 $=\lim_{n\to\infty} \frac{\frac{\pi}{2^{n+2}}}{\frac{\pi}{2^{n+2}}} = \frac{1}{2} < 1$ 级数收敛. (2) $u_n = \frac{n \cos^2 \frac{n\pi}{3}}{2n} \le \frac{n}{2n} = v_n$.

 $\lim_{n \to \infty} \frac{v_{n+1}}{v_n} = \lim_{n \to \infty} \frac{n+1}{2^{n+1}} \cdot \frac{2^n}{n} = \frac{1}{2} < 1.$ ∑ v_n 收敛 故原级数收敛.

例11 判别级数的敛散性

(2) $\sum_{n=1}^{\infty} \left(\frac{n}{2n-1}\right)^{2n-1}$.

(1) $\lim_{n\to\infty} \sqrt[n]{u_n} = \lim_{n\to\infty} \sqrt[n]{1/n^n} = \lim_{n\to\infty} \frac{1}{n} = 0 < 1$ 级数收敛.

(2) $\lim_{n\to\infty} \sqrt[n]{u_n} = \lim_{n\to\infty} \left(\frac{n}{2n-1}\right)^{\frac{2n-1}{n}}$ $=\lim_{n\to\infty} \left(\frac{n}{2n-1}\right)^{2-\frac{1}{n}} = \frac{1}{0} < 1$ 级数收敛.

2.4 内容小结

内容小结

■ 基本收敛定理:

正项级数 $\sum\limits_{n=1}^{\infty}u_{n}$ 收敛 \Leftrightarrow 部分和数列 $\{S_{n}\}$ 有界.

- p > 1 级数 $\sum_{n=1}^{\infty} \frac{1}{n^p}$ 收敛, 反之发散;
- p 级数 $\sum_{n=1}^{\infty} \frac{1}{n^p}$, 和调和级数 $\sum_{n=1}^{\infty} \frac{1}{n}$ 是两个常用的比较级数. 对 $-t\Pi n > N$.
 - $\mathbf{1}$ $u_n \geq \frac{1}{n}$, 则 $\sum_{n=1}^{\infty} u_n$ 发散;
 - $u_n \leq \frac{1}{n^p}$,若 p > 1,则 $\sum_{n=1}^{\infty} u_n$ 收敛.

第二节・正項級数

第二节・正項級数 ▶

内容小结

判别正项级数敛散性的方法与步骤:

- 1 必要条件 $\lim_{n\to\infty} u_n = 0$. 不满足 ⇒ 发散
- ② 满足 = $\begin{cases} & \text{比值判别法: } \lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \rho \\ & \text{根值判别法: } \lim_{n \to \infty} \sqrt[n]{u_n} = \rho \end{cases}$ $\rho < 1$ 收敛; $\rho > 1$ 发散.

本节完!

第二节·正项级数 ▷ 内容小结

第二节・正項級数