2 Неприводимость многочленов. Основная теорема арифметики для многочленов

Опр Пусть $P \in F[x]$ и deg P > 0. Многочлен P называется неприводимым над полем F, если из условия P = QR, где $Q,R \in F[x]$, следует, что deg Q = 0 или deg P = 0.

Иначе, P неприводим над полем F, если deg P > 0 и P не преставим в виде произведения двух многочленов меньших степеней, \in F[x]

Утверждение

Пусть Р неприводим над полем F. B*C \vdots P; B,C,F \in F[x], тогда B \vdots P, или C \vdots P.

\blacktriangle

Пусть

 \Longrightarrow НОД(B,D) = 1 \Longrightarrow \exists $u_1, v_1 : Bu_1 + Pv_1 = 1$ \exists $u_2, v_2 : Cu_2 + Pv_2 = 1$ Перемножим:

 $\mathrm{BC}u_1u_2 + \mathrm{BP}u_1v_2 + \mathrm{C}u_2v_1\mathrm{P} + v_1v_2P^2 = 1 \Longrightarrow 1 \ \vdots \ \mathrm{P}$, но $\deg \mathrm{P} > 0$. Противоречие. \blacksquare

Теорема 2 (Основная теорема арифметики для многочленов)

Пусть A - ненулевой многочлен из кольца F[x]. Тогда

- 1 Найдутся $\alpha \in \mathcal{F}^*$ и неприводимые многочлены $P_1...P_n \in \mathcal{F}[\mathbf{x}]$: $\mathcal{A} = \alpha P_1 * P_2 * ... * P_n$
- 2 Если, кроме того,

 $A = \alpha P_1 * P_2 * ... * P_n = \beta Q_1 * Q_2 * ... * Q_m$, где Q_i и P_i неприводимые многочлены над F, то m = n и $\exists \sigma : \{1, 2, ... n\} - > \{1, 2, ... n\} : P_i \sim Q_{\sigma(i)}$

1. Если $A={\rm const},$ то $A=\alpha\in F^*.$ Пусть ${\rm deg}A>0.$ Докажем индукцией по степени A. База:

Если A неприводим над F, то A=P и все доказано. Если A приводим над F, то A=QR, deg Q, deg R< deg A. $\Longrightarrow \kappa \ Q$ и R применимо предположение индукции.

- 2. Индукция по n.
 - 1 Если n=0, то $A=\alpha \Longrightarrow m=0$
 - 2 Пусть утверждение доказано для многоченов разлагающихся в произведение менее п неприводимых многочленов.

Пусть А = $\alpha P_1 * P_2 * ... * P_n = \beta Q_1 * Q_2 * ... * Q_m$, где Q_i и P_i неприводимые многочлены над F

n >= 1. $Q_1,Q_2,...,Q_m$ кратны $P_n\Longrightarrow\exists\gamma:Q_j$ кратно $P_n\Longrightarrow Q_j=\gamma*P_n$ (ассоциат) $\alpha P_1*P_2*...*P_n=\beta\gamma Q_1*Q_2*Q_j^2...*Q_m*P_n$. $(Q_j^2=$ пропуск этого элемента) \Longrightarrow (делится на P_n)

 $\alpha P_1*P_2*...*P_{n-1}=\beta\gamma Q_1*Q_2*Q_j^2...*Q_m$ => по предположению индукции n - 1 = m - 1 => n = m

По предположению индукции $\exists \sigma: \{1,2,...n-1\} -> \{1,2,...n-1\}: P_i \sim Q_{\sigma(i)}$ Положим $\sigma(i)=$ ј $\sigma: \{1,2,...n\} -> \{1,2,...n\}$ - биекция. $P_n \sim Q_{\sigma(n)}=Q_j$

Следствие

Пусть $\mathbf{A} \in \mathbf{F}[\mathbf{x}]$ и $\mathbf{A} = \alpha P_1^{k_1} * P_2^{k_2} * \dots * P_n^{k_n}$, где $P_i \not\sim P_j, i \neq j$, тогда любой делитель многочлена A имеет вид:

$${
m D}=\gamma P_1{}^{m_1}P_2{}^{m_2}...P_n{}^{m_n},$$
 где $0<=m_i<=k_i$

Пусть A кратно D и A = DQ. D и Q содержат в качестве неприводимых многочленов только $P_1,...P_n.$ D = $\gamma P_1^{m_1} P_2^{m_2}...P_n^{m_n}$ Q = $\gamma' P_1^{l_1} P_2^{l_2}...P_n^{l_n}$. DQ = $\alpha P_1^{k_1} P_2^{k_2}...P_n^{k_n} = \gamma \gamma' P_1^{m_1+l_1} P_2^{m_2+l_2}...P_n^{m_n+l_n}$, $k_i = l_i + m_i \Longrightarrow 0 <= m_i <= k_i$