

Bioconductor Hands-on Training Day:

Differential analysis of Hi-C data with diffHic

Hannah Coughlan

Hannah.Coughlan @wehi.edu.au 29th of November, 2018

Outline

1. Introduction

- Chromatin structure
- HiC library construction
- Analysis of HiC data

2. Tutorial: diffHic analysis of immune cell types

Resources

Lun and Smyth *BMC Bioinformatics* (2015) 16:258 DOI 10.1186/s12859-015-0683-0

SOFTWARE Open Access

diffHic: a Bioconductor package to detect differential genomic interactions in Hi-C data

Aaron T.L. Lun^{1,2} and Gordon K. Smyth^{1,3*}

User: Aaron Lun

Reputation: 21,160 I am a research associate in the field of computational biology at the Cancer Trusted Research UK Cambridge Institute in the United Kingdom. I am the author Status: Cambridge, United Kingdom and maintainer of the csaw, diffHic, InteractionSet, scran, cydar, beachmat, Location: Scholar ID: Google Scholar Page DropletUtils, chipseqDB and simpleSingleCell packages; a co-author and co-Last seen: 27 minutes ago maintainer of the scater, SingleCellExperiment and iSEE packages; a comaintainer of the edgeR package; a co-author of the TENxBrainData Joined: 4 years, 2 months ago i*******@qmail prackage; and an occasional contributor to the limma package. Email:

Home Install

Help

Developers

About

Home » Bioconductor 3.9 » Software Packages » diffHic (development version)

diffHic

platforms all rank 529 / 1636 posts 2 / 1 / 0.5 / 0 in Bioc 3.5 year build warnings updated before release

DOI: 10.18129/B9.bioc.diffHic

This is the development version of diffHic; for the stable release version, see diffHic.

Differential Analyis of Hi-C Data

Bioconductor version: Development (3.9)

Detects differential interactions across biological conditions in a Hi-C experiment. Methods are provided for read alignment and data pre-processing into interaction counts. Statistical analysis is based on edgeR and supports normalization and filtering. Several visualization options are also available.

Author: Aaron Lun [aut, cre], Gordon Smyth [aut]

Maintainer: Aaron Lun <infinite.monkeys.with.keyboards at gmail.com>

Citation (from within R, enter citation("diffHic")):

Lun ATL, Smyth GK (2015). "diffHic: a Bioconductor package to detect differential genomic interactions in Hi-C data." BMC Bioinformatics, 16, 258.

Installation

To install this package, start R and enter:

```
if (!requireNamespace("BiocManager", quietly = TRUE))
  install.packages("BiocManager")
BiocManager::install("diffHic", version = "3.9")
```

Documentation

To view documentation for the version of this package installed in your system, start R and enter:

browseVignettes("diffHic")

PDF	diffHic Vignette
PDF	diffHicUsersGuide.pdf
PDF	Reference Manual
Text	NEWS

Documentation »

Bioconductor

- Package <u>vignettes</u> and manuals.
- Workflows for learning and use.
- Course and conference material.
- Videos.
- Community <u>resources</u> and <u>tutorials</u>.

R / CRAN packages and documentation

Support »

Please read the <u>posting guide</u>. Post questions about Bioconductor to one of the following locations:

- <u>Support site</u> for questions about Bioconductor packages
- <u>Bioc-devel</u> mailing list for package developers

Introduction

Introduction

Chromosome

TADs
Topologically
associating domains

Loops Enhancer-promoter

Hi-C

<u>High-throughput</u> <u>chromosome</u> conformation capture

- The probability of contact between two loci should be governed by chance
- However, certain contacts occur far more often than expected by chance

Hi-C

*Hi*gh-throughput <u>c</u>hromosome conformation capture

diffHic pipeline starts here with fastq

DISCOVERIES FOR HUMANITY

Hi-C

<u>High-throughput</u> <u>chromosome</u> conformation capture

DISCOVERIES FOR HUMANITY

Hi-C

*Hi*gh-throughput <u>c</u>hromosome conformation capture

DISCOVERIES FOR HUMANITY

Hi-C

Limancer-promoter

Peak calling/interaction methods

HiCUPPS: compares to local background (Rao et al, Cell, 2014)

■ 0.2 Mb

HOMER: expected/observed (Heinz et al, Mol. Cell, 2010)

TAD finding methods

- DomainCaller (HMM): Models upstream/downstream interaction bias (Dixon et al, Nature, 2012)
- TADbit (Serra et al, bioRXiv, 2015)

A/B compartment

 Partition chromosome by first PCA indicates A/B compartments (Lieberman-Aiden et al, 2009)

diffHic (Lun & Smyth, BMC Bioinformatics, 2015)

- Detects differential interactions (DIs) across biological conditions in a Hi-C experiment
- Statistical analysis uses edgeR (Robinson et al, Bioinformatics, 2010) (McCarthy et al, Nucleic Acids Research, 2012)

Available on

nchor1	Anchor2	Sample 1	Sample 2	Sample 3	Sample4
hr1:1-50kb	chr1:50-100kb	1	1	2	3
hr1:50-100kb	chr1:100-150kb	1	0	3	2
hr1:100-150kb	chr1:150-200kb	56	59	65	62
hr1:150-200kb	chr1:200-250kb	10	13	16	17
hr1:200-250kb	chr1:250-300kb	2	5	7	8
hr2:100-150kb	chr2:150-200kb	3	2	4	6
hr2:200-250kb	chr2:250-300kb	4	2	1	2
hr2:300-350kb	chr2:350-400kb	21	19	25	27

Outline

1. Introduction

- Chromatin structure
- HiC library construction
- Analysis of HiC data

2. diffHic analysis of immune cell types

T cell

2. Create the fragment library with genome and Mbol

3. Map reads to fragment library and quality control

4. Remove artefacts

5. Counting libraries into bins

HDF5

libraries

nchor1	Anchor2	Sample 1	Sample 2	Sample 3	Sample4
hr1:1-50kb	chr1:50-100kb	1	1	2	3
hr1:50-100kb	chr1:100-150kb	1	0	3	2
hr1:100-150kb	chr1:150-200kb	56	59	65	62
hr1:150-200kb	chr1:200-250kb	10	13	16	17
hr1:200-250kb	chr1:250-300kb	2	5	7	8
hr2:100-150kb	chr2:150-200kb	3	2	4	6
hr2:200-250kb	chr2:250-300kb	4	2	1	2
hr2:300-350kb	chr2:350-400kb	21	19	25	27
••					
• •	• • •				

1. Alignment to genome with bowtie: Pre-splitting alignment

5'

No restriction site:

Independently align each read with bowtie

Bam files need to be (PICARD/SAMtools):

- 1. Sorted by name
- 2. Fix mate information
- 3. Mark duplicate reads

With restriction site = chimeric read:

Refore alignment split the read at liga

Before alignment split the read at ligation junction (Cutadapt) then

Independently align each read with bowtie

2. Create the fragment library with genome and Mbol

- The resolution of Hi-C data is limited by the restriction sites
- Report the read alignment location in terms of the restriction fragment.
- Create library of fragments and map reads

```
> library(diffHic)
> library(BSgenome.Mmusculus.UCSC.mm10)
> hg.frag<-cutGenome(BSgenome.Mmusculus.UCSC.mm10,"GATC",4)</pre>
> hs.fraq
> GRanges object with 6684545 ranges and 0 metadata columns:
segnames ranges strand <Rle> <IRanges> <Rle>
[1] chr1 1-3000194 *
   chr1 3000191-3000816 *
   chr1 3000813-3001051 *
[4] chr1 3001048-3001122 *
[5] chr1 3001119-3001798 *
[6684541] chrun_JH584304 92982-97154 *
[6684542] chrun_JH584304 97151-108839 *
[6684543] chrun_JH584304 108836-109113 *
[6684544] chrun_JH584304 109110-114452 *
[6684545] chrun_JH584304 114449-114452 *
  ---- seginfo: 66 seguences from mm10 genome
```


2. Create the fragment library with genome and Mbol

- The resolution of Hi-C data is limited by the restriction sites
- Report the read alignment location in terms of the restriction fragment.
- Create library of fragments and map reads

```
> library(diffHic)
> library(BSgenome.Mmusculus.UCSC.mm10)
> hg.frag<-cutGenome(BSgenome.Mmusculus.UCSC.mm10,"GATC",4)</pre>
> hs.fraq
> GRanges object with 6684545 ranges and 0 metadata columns:
seqnames ranges strand <Rle> <IRanges> <Rle>
[1] chr1 1-3000194 *
   chr1 3000191-3000816 *
   chr1 3000813-3001051 *
[4] chr1 3001048-3001122 *
[5] chr1 3001119-3001798 *
[6684541] chrun_JH584304 92982-97154 *
[6684542] chrun_JH584304 97151-108839 *
[6684543] chrun_JH584304 108836-109113 *
[6684544] chrun_JH584304 109110-114452 *
[6684545] chrun_JH584304 114449-114452 *
----- seqinfo: 66 sequences from mm10 genome
> diagnostics <- preparePairs("aligned.bam", hs.param,</pre>
file="hdf5_file.h5", dedup=TRUE, minq=10, chim.dist=800)
```


3. Map reads to fragment library and quality control

- preparePairs: converts the read position into an index (x2), pointing to the matching restriction fragment in hg.frag.
- The fragments to which the reads mapped are referred to as "anchors"

```
> diagnostics <- preparePairs("aligned.bam", hs.param,</pre>
file="hdf5_file.h5", dedup=TRUE, minq=10, chim.dist=800)
> diagnostics
$pairs
                 marked filtered mapped
         total
         7068675 103594 1532760
                                  5460120
$same.id
         dangling self.circle
         423612
                  138248
$singles [1]
$chimeras
                                  invalid
         total
                 mapped
                         multi
         2495159 1725927 1040908 68231
```


4. Remove artefacts

- prunePairs: removes read pairs that we suspect are additional artefacts.
- Max.frag = offsite cleavage
- min.inward/min.outward = remove read pairs based on insert size and on the strand orientation

4. Remove artefacts

- If different pieces of DNA were DNA randomly ligated together would expect to observe equal proportions of all strand orientations (+/+, -/-, +/- and -/+)
- Spikes indicate self circles and dangling ends

```
min.inward<- 1000
min.outward<- 16000

llinsert <- log2(diags$insert + 1L)
intra <- !is.na(llinsert)
......

plot(0,0,type="n", xlim=c(xmin, xmax), ylim=c(0, ymax),xlab=expression(log[2]~"[insert size (bp)]"), ylab="Frequency (millions)")</pre>
```


5. Counting libraries into bins

diffHic pipeline

Anchor1	Anchor2	Sample 1	Sample 2	Sample 3	Sample4
chr1:1-50kb	chr1:50-100kb	1	1	2	3
chr1:50-100kb	chr1:100-150kb	1	0	3	2
chr1:100-150kb	chr1:150-200kb	56	59	65	62
chr1:150-200kb	chr1:200-250kb	10	13	16	17
chr1:200-250kb	chr1:250-300kb	2	5	7	8
chr2:100-150kb	chr2:150-200kb	3	2	4	6
chr2:200-250kb	chr2:250-300kb	4	2	1	2
chr2:300-350kb	chr2:350-400kb	21	19	25	27
					• • •

6. Filtering of low interactions

- Many different strategies to remove uninteresting interactions
- We will use filterDirect function
- Threshold: median abundance across inter-chromosomal bin pairs

7. Normalisation

- Hi-C data contains complex and systematic biases:
 - Fragment length
 - GC content
 - Mappability
- However, these cancel out for a differential analysis
- But we may observe abundance-dependent trended biases
- Non-linear normalisation

library(csaw)
data.offs <- normOffsets(data, type="loess")
head(assay(data.offs,2))</pre>

8. Sample clustering

HiC MDS plot, 50000

9. Variation between replicates

dispersion <- estimateDisp(y, design,robust=TRUE)
BCV <- sqrt(dispersion\$common.dispersion)
BCV
plotBCV(dispersion, ylim=c(0.034,0.08))
fit <- glmQLFit(dispersion, design, robust=TRUE)
plotQLDisp(fit)</pre>

10. Differential analysis with edgeR

- Define the contrasts
- Perform the test
- Cluster the adjacent DIs

Exercise: Differential interactions between CD4+ T cells and granulocytes

10. Visualisation

- Plaid plots can be used to visualize read pairs in the interaction space (Lieberman-Aiden et al, Science, 2009).
- Rotated plaid plots can also be used BUT only for local interactions.
- Sushi package
 - Phanstiel. DH,
 (2015). Sushi: Tools for
 visualizing genomics data.
 R package version 1.16.0.
 - Tools for visualizing genomic data including Hi-

Exercise: Plot a similar DI (chr12) from the CD4+ T versus Grans

Analysis at 1 Mbp

Exercise: Perform the differential analysis with the bin.size=1 Mbp data

Conclusions

Differential analysis is powerful for analysis Hi-C data ...

.....especially when combined with other types of genomic data

Use diffHic for HiC if you have replicates!

Acknowledgements

Smyth lab (Bioinformatics division)

Gordon SmythAaron Lun (now Cambridge)

Alexandra Garnham Connie Li Wai Suen

Allan lab (Molecular Immunology division)

Tim Johanson Rhys Allan Nadia Iannarella Stephen Nutt

