Završni ispit

1. srpnja 2009.

Ime i Prezime: Matični broj:

Napomena: Zadatke obavezno predati s rješenjima nakon završetka testa.

1. zadatak (4 boda)

Zadan je skalarni sustav:

$$x_{k+1} = x_k + w_k,$$
$$y_k = x_k + v_k,$$

gdje su procesni i mjerni šum $(w_k i v_k)$ bijeli i nekorelirani šumovi nepoznatih varijanci (Q i R). Stoga je za estimaciju stanja korišteno ustaljeno (podoptimalno) pojačanje K_{∞} .

Izrazite ustaljenu vrijednost P_{∞}^- kao funkciju ustaljenog Kalmanova pojačanja K_{∞} i stvarnih vrijednosti Q i R.

Naputak: Koristite prvi oblik izraza za P_k^+ diskretnog Kalmanova filtra.

$$P_{\infty}^{-}=\mathrm{a}) \ \frac{RK_{\infty}^{2}+Q}{2K_{\infty}-K_{\infty}^{2}}, \ \mathrm{b}) \ \frac{QK_{\infty}^{2}+R}{2K_{\infty}-K_{\infty}^{2}}, \ \mathrm{c}) \ \frac{RK_{\infty}^{2}+Q}{2-K_{\infty}}, \ \mathrm{d}) \ \frac{RK_{\infty}^{2}-Q}{2K_{\infty}+K_{\infty}^{2}}, \ \mathrm{e}) \ \frac{RK_{\infty}+Q}{2-K_{\infty}}.$$

2. zadatak (6 bodova)

Razmotrimo skalarni sustav sa sljedećom jednadžbom mjerenja:

$$y_k = x_k^2 + v_k.$$

U koraku k, unaprijedna (a priori) estimacija stanja je $x_k^-=1$. Stvarno stanje je $x_k=5$, a mjerenje iznosi $y_k=25$. Unaprijedna (a priori) varijanca pogreške estimacije iznosi $P_k^-=1$, a varijanca mjernog šuma iznosi $R_k=4$.

Iterativnim EKF algoritmom odredite \hat{x}_{k+1}^+ i \hat{x}_{k+2}^+ .

(3 boda)
$$\hat{x}_{k,1}^+$$
 = a) 2.3, b) 4.8, c) 3.4, d) 7, e) 6.1.

$$(2 \ boda) \ \hat{x}_{k,2}^{+} = a) \ 1.2, b) \ 4.3, c) \ 3.6, d) \ 5.2, e) \ 7.2$$
.

(1 bod) Poboljšava li se naknadna (a posteriori) estimacija stanja? a) Da. b) Ne.

3. zadatak (5 bodova)

Radioaktivna masa ima vrijeme poluraspada τ sekundi. U svakom koraku uzorkovanja, broj emitiranih čestica x jednak je polovici broja čestica emitiranih u prethodnom koraku. Međutim, u tom procesu postoji određena pogreška uzrokovana pozadinskom radijacijom, koju možemo modelirati šumom w_k nulte očekivane vrijednosti i varijance Q_k ($w_k \sim N(0,Q_k)$). U svakom koraku uzorkovanja, dvama različitim instrumentima je određen broj emitiranih čestica y. Pogreška koju instrumenti prilikom mjerenja rade može se opisati slučajnom varijablom srednje vrijednosti nula i jedinične varijance.

Početna je nesigurnost broja radioaktivnih čestica slučajna varijabla varijance 4 i srednje vrijednosti nula.

Koristeći informacijski filtar izračunajte a priori i a posteriori informacijsku matricu u koracima k=1 i k=2. Uzmite da je $Q_0=Q_1=2$.

(2 boda)
$$\mathcal{I}_{1}^{-} = a$$
) 0.2, b) $\frac{1}{2}$, c) $\frac{1}{3}$. $\mathcal{I}_{1}^{+} = a$) $\frac{1}{6}$, b) $\frac{7}{3}$, c) $\frac{4}{3}$. (3 boda) $\mathcal{I}_{2}^{-} = a$) $\frac{28}{59}$, b) $\frac{36}{56}$, c) $\frac{36}{53}$. $\mathcal{I}_{2}^{+} = a$) 2, b) $\frac{146}{59}$, c) $\frac{171}{56}$.