Exercise 1.1.1

Suppose for $a_1,a_2\in A$, $\sigma(a_1)=\sigma(a_2)$. Then since τ is well defined $\tau\circ\sigma(a_1)=\tau\circ\sigma(a_2)$. Then since $\tau\circ\sigma$ is injective, then $a_1=a_2$.

So, σ is injective.

Exercise 1.1.2

(i)

No, it's not transitive. Consider x=1,y=4,z=7. $x\sim y$ because ||x-y||=3. $y\sim z$ since ||y-z||=3. However, $x\sim z$ since ||x-z||=6>3

(ii)

No, it's not reflective, Consider x=1, $x\nsim x$ because ||x-x||=0<3

(iii)

Yes, it's reflective, for $x\in\mathbb{N}$, $x\sim x$ since itself have same digit in the 1's place. It's symmetric, for $x,y\in\mathbb{N}$, $x\sim y$ means x and y (i.e. y and x) have same digit in the 1's place, so $y\sim x$. It's also transitive, for $x,y,z\in\mathbb{N}$, if $x\sim y$ and $y\sim z$, that means that x and y have the same digit in the 1's place, and y and y have the same digit in the 1's place. So, $y\sim z$

(iv)

No, it's not symmetric, consider x=2,y=1. $x\sim y$ since $x\geq y$. but $y\nsim x$ since y< x.

Exercise 1.2.3

Reflective: $x \sim_f x$ since f(x) = f(x)

f(z)=f(x) and thus $z \in [x]$. So $f-1(f(x)) \subset [x]$.

Thus, [x]=f–1(f(x))Symmetrical: if $x\sim_f y$ then f(x)=f(y), then f(y)=f(x), and so that $y\sim_f x$.

Transitive: if $x\sim_f y$ and $y\sim_f z$, then f(x)=f(y) and f(y)=f(z), and then f(x)=f(z) and so $x\sim_f z$

So the \sim_f is an equivalence relation.

We will first show for any $x \in X$ that $[x] \subset f^{-1}(f(x))$

According to definition, the $f^{-1}(f(x))=f^{-1}(\{f(x)\})=\{a\in X|f(a)\in \{f(x)\}\}$. It's obvious that $x\in f^{-1}(f(x))$. Also, for any $y\in [x]$, f(y)=f(x) and $f(y)\in \{f(x)\}$ so that $y\in f^{-1}(f(x))$. So $[x]\subset f^{-1}(f(x))$

Conversely, for any $z\in f^{-1}(f(x))$, $f(z)\in\{f(x)\}$ which means f(z)=f(x) and thus $z\in[x]$. So $f^{-1}(f(x))\subset[x]$.

Thus, $[x]=f^{-1}(f(x))$

Exercise 1.2.3

Because the definition $X/\sim=\{[x]|x\in X\}$, that means for any $S\in X/\sim$, we could find $x\in X$ that [x]=S. Thus, since $\pi(x)=[x]$ for all $x\in X$, for any $S\in X/\sim$, we could find $x\in X$ so that [x]=S, thus there exist $x\in X$ that $\pi(x)=[x]=S$, thus π is surjective.

If $x,y\in X$, and $x\sim y$. Then for $z\in [x]$, $x\sim z$, since the relation is transitive, $y\sim z$, so $z\in [y]$, that means $[x]\subset [y]$. Converse is also true, and that means [x]=[y]. Therefore, $\pi(x)=[y]=[y]=\pi(y)$, and thus $x\sim_\pi y$

Conversely, if $x,y\in X$ and $x\sim_\pi y$, then $\pi(x)=\pi(y)$ and since $\pi(x)=[x]$ and $\pi(y)=[y]$, [x]=[y]. That means $y\in[y]$ and thus $y\in[x]$, and thus $x\sim y$.

Thus, for $x,y\in X$, $x\sim y$ if and only if $x\sim_\pi y$, which means the \sim_π is exactly \sim

Exercise 1.3.1

$$\sigma=\begin{pmatrix}1&4&2\end{pmatrix}\begin{pmatrix}5&7&8\end{pmatrix}$$
 $\sigma^{-1}=\begin{pmatrix}2&4&1\end{pmatrix}\begin{pmatrix}8&7&5\end{pmatrix}$ (Same as example 1.3.8)

These followed the quick method used in Example 1.3.7

$$\begin{split} \sigma^2 &= \sigma \circ \sigma = \begin{pmatrix} 1 & 4 & 2 \end{pmatrix} \begin{pmatrix} 5 & 7 & 8 \end{pmatrix} \begin{pmatrix} 1 & 4 & 2 \end{pmatrix} \begin{pmatrix} 5 & 7 & 8 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 4 \end{pmatrix} \begin{pmatrix} 5 & 8 & 7 \end{pmatrix} \\ \sigma^3 &= \sigma^2 \circ \sigma = \begin{pmatrix} 1 & 2 & 4 \end{pmatrix} \begin{pmatrix} 5 & 8 & 7 \end{pmatrix} \begin{pmatrix} 1 & 4 & 2 \end{pmatrix} \begin{pmatrix} 5 & 7 & 8 \end{pmatrix} = \mathrm{id} \end{split}$$

Exercise 1.3.2

These followed the quick method used in Example 1.3.7

$$\sigma\circ\tau=\begin{pmatrix}3&4&8\end{pmatrix}\begin{pmatrix}5&7&6&9\end{pmatrix}\begin{pmatrix}1&9&3&5\end{pmatrix}\begin{pmatrix}2&7&4\end{pmatrix}=\begin{pmatrix}1&5\end{pmatrix}\begin{pmatrix}2&6&9&4\end{pmatrix}\begin{pmatrix}3&7&8\end{pmatrix}$$

$$\tau \circ \sigma = \begin{pmatrix} 1 & 9 & 3 & 5 \end{pmatrix} \begin{pmatrix} 2 & 7 & 4 \end{pmatrix} \begin{pmatrix} 3 & 4 & 8 \end{pmatrix} \begin{pmatrix} 5 & 7 & 6 & 9 \end{pmatrix} = \begin{pmatrix} 1 & 9 \end{pmatrix} \begin{pmatrix} 2 & 7 & 6 & 3 \end{pmatrix} \begin{pmatrix} 4 & 8 & 5 \end{pmatrix}$$