EEE3002 Microprocessors Tutorial 2 (2014 Sem 1)

- 1) Convert the following decimal numbers into IEEE 754 single-precision format and write your answers in hexadecimal form.
 - a) 0.1743129
 - b) -31.5
 - c) 8E-39
- 2) Add the following 8-bit binary number pairs using 8-bit addition (result stored in eight bits only) and comment on whether there is an overflow if they were both unsigned numbers or they were both signed numbers.
 - a) 0011 1111 and 1101 0011
 - b) 0111 1111 and 0111 0011
 - c) 1000 1111 and 1101 0011
- 3) How many modes does the ARM7TDMI processor have? Name the modes also. How many states does it have?
- 4) What are the standard use of register r13, r14 and r15?
- 5) If the ARM processor encounters an undefined instruction, from what address will it begin fetching instructions after it changes to Undefined mode? What about a reset?
- 6) How many stages does the ARM7TDMI pipeline have? Name them.
- 7) Explain the current program state if the CPSR had the value 0x700000D3

EE3002 Microprocessors Tutorial 2 Solutions

- 1) This question can be solved using the following steps if it is a NORMAL number
 - Step 1, determine the sign bit (0: positive numbers and 1: negative numbers)
 - Step 2, determine the exponent and stored it as an 8-bit number in excess 127 format.
 - Step 3, determine the mantissa, should be between 1 and 2, then subtract 1 to store the remainder in binary fraction format.
 - Step 4, put everything together.
 - a) 0.1743129

Step 1: Compute Sign Bit

0.1743129 is positive, hence sign bit, S, is 0

Step 2: Compute Exponent

floor(
$$\log_2 0.1743129$$
) = floor (-2.52) = -3

Exponent = -3

Since exponent in IEEE 754 is excess 127 form or 127 - 3 = 124

 $124 = 0111 \ 1100B$

Step 3: Compute Mantissa

 $0.1743129 \times 2^3 = 1.3945032$ (between 1 and 2)

Convert 0.3945032 (subtract 1) into 23 bit binary fraction

 $round(0.3945032 \times 2^{23}) = 3309333$

Convert 3309333 into hexadecimal first

3309333 = 0x327F15 = 011001001111111100010101B (23 bits binary fraction)

Step 4

Putting everything together

L	S	Ε	Е	Е	Е	Е	Е	Е	Е	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F
	0	0	1	1	1	1	1	0	0	0	1	1	0	0	1	0	0	1	1	1	1	1	1	1	0	0	0	1	0	1	0	1
I		3	3			I	3			3	3			2	2			7	7			F	7]	l			5	5	

b) -31.5

Step 1: Compute Sign Bit

-31.5 is negative, hence sign bit, S, is 1

Step 2: Compute Exponent

 $floor(log_2(31.5)) = floor(4.977) = 4$

Exponent = 4

Since exponent in IEEE 754 is excess 127 form or 127 + 4 = 131

131 = 10000011B

Step 3: Compute Mantissa

 $31.5 \times 2^{-4} = 1.96875$ (between 1 and 2)

Convert 0.96875 (after subtract 1) into 23 bit binary fraction

round $(0.96875 \times 2^{23}) = 8126464$

Convert 8126464 into hexadecimal first

 $8126464 = 0x7C0000 = 111\ 1100\ 0000\ 0000\ 0000\ 0000B$ (23 bits binary fraction)

Step 4

Putting everything together

	S	Е	Ε	Е	Е	Е	Е	Е	Е	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F
Ī	1	1	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		(7)				1			I	7			(7)			()			()			()			()	

c) 8E-39

The number is smaller than the smallest magnitude that can be represented by a normal IEEE 754 number, hence it must be a subnormal number.

Step 1: Compute Sign Bit

Positive, hence sign bit, S, is 0

Step 2: Compute Exponent

IEEE 754 Exponent = 0 for subnormal numbers

Step 3: Compute Mantissa

$$8E-39/2^{-126} = 0.680564734$$
 (less than 1)

Convert 0.680564734 into 23 bit binary fraction

round
$$(0.680564734 \times 2^{23}) = 5708991$$

Convert 5708991 into hexadecimal first

5708991 = 0x571CBF = 101 0111 0001 1100 1011 1111B (23 bits binary fraction)

Step 4

Putting everything together

S	Е	Е	Е	Е	Е	Е	Е	Е	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F
0	0	0	0	0	0	0	0	0	1	0	1	0	1	1	1	0	0	0	1	1	1	0	0	1	0	1	1	1	1	1	1
	0				()			5	5			-	7]				(7)			F	3			F	7	

Unsigned numbers : Overflow Signed numbers : No Overflow

The Carry flag, C, can be used to indicate Unsigned Overflow.

	Binary	Unsigned	Signed
b)	0111 1111B	127	127
+	0111 0011B	+ 115	+ 115
	$1111\ 0010B,\ C=0$	242(correct)	- 14 (wrong)

Unsigned numbers : No Overflow

Signed numbers : Overflow

The Carry flag, C, cannot be used to indicate signed Overflow. A separate flag, V, is used to indicate sign overflow. V will be set to 1 in this case.

	Binary	Unsigned	Signed
c)	1000 1111B	143	- 113
+	1101 0011B	+ 211	- 45
	0110 0010B, C=1	98(wrong)	98 (wrong)

Both Unsigned and Signed Overflow. C = V = 1. The overflow flag, V, will be set if there is a carry out of Bit 7 but not from Bit 6 (Part c) or if there is a carry out of Bit 6 but not from Bit 7 (Part b). The same principle can be extended to higher word length, a 32-bit addition, the sign bit will be Bit 31 instead of Bit 7, and the largest signed magnitude bit will be Bit 30 instead of Bit 6.

3) ARM7TDMI has 7 processor modes, namely Supervisor, FIQ, IRQ, Abort, Undef, System and User.

ARM7TDMI has two states: ARM state (32-bit instruction) and THUMB state (16-bit instruction).

- 4) R13: Stack Pointer which holds the address of the stack in memory
 - R14: Link Register which is used as subroutine return address link register.
 - R15: Program Counter which contains the address of the instruction being fetched (not executed).
- 5) For Undef exception, the address of the instruction is 0x00000004 For Reset exception, the address of the instruction is 0x00000000
- 6) The ARM7TDMI has a 3-stage pipelined architecture, the 3 stages are FETCH, DECODE and EXECUTE
- 7) CPSR is the Current Program Status Register which is of the form shown below:

 $0x700000D3 = 0111\ 0000\ 0000\ 0000\ 0000\ 0000\ 1101\ 0011B$

Hence flags N = 0, Z = 1, C = 1, V = 1 are all set.

I and F is set to 1 means interrupts (IRQ) and fast interrupts (FIQ) are disabled T = 0, means it is in ARM state

Mode bits = 10011, means the mode is in Supervisor Mode.