```
require(pacman)
## Loading required package: pacman
## Warning: package 'pacman' was built under R version 4.1.3
#Load packages
pacman::p_load(datasets, tseries)
pacman::p_load(rio)
pacman::p_load(MASS)
#Membaca Data
masterdata <- import("___.xlsx") head(masterdata)</pre>
##
     Penumpang
## 1
         45980
## 2
         36094
## 3
         44646
## 4
         39799
## 6
         48620
tail(masterdata)
##
       Penumpang
## 115
          130138
## 116
          95313
## 117
           89222
## 118
           96924
## 119
          105504
## 120
          116099
summary(masterdata)
##
      Penumpang
## Min.
          : 36094
## 1st Qu.: 57875
## Median : 70551
## Mean : 71218
## 3rd Qu.: 82537
## Max. : 130138
#Plot time series
tsdata <- ts(masterdata$Penumpang, frequency = 12, start = c(2010, 1))
tsdata
```

| ##           |      | Jan    | Feb    | Mar   | Apr   | May   | Jun   | Jul    | Aug   | Sep   | 0ct   |
|--------------|------|--------|--------|-------|-------|-------|-------|--------|-------|-------|-------|
| ##           | 2010 | 45980  | 36094  | 44646 | 39799 | 39363 | 48620 | 45032  | 38335 | 55997 | 50353 |
| ##           | 2011 | 48350  | 44405  | 54560 | 45742 | 50127 | 58210 | 52658  | 49643 | 63390 | 58000 |
| ##           | 2012 | 52029  | 50785  | 57386 | 52720 | 52604 | 59982 | 48206  | 57501 | 69700 | 64800 |
| ##           | 2013 | 75029  | 59691  | 61132 | 60353 | 64384 | 71637 | 55163  | 92622 | 84801 | 76940 |
| ##           | 2014 | 76063  | 66733  | 72501 | 68315 | 71341 | 71210 | 55537  | 80665 | 69489 | 98232 |
| ##           | 2015 | 70408  | 55608  | 67923 | 63127 | 62931 | 60985 | 63755  | 94383 | 82329 | 72086 |
| ##           | 2016 | 76998  | 67737  | 78994 | 73520 | 71163 | 64703 | 79797  | 53219 | 66131 | 72468 |
| ##           | 2017 | 76162  | 72852  | 77381 | 70694 | 69750 | 64102 | 88245  | 75571 | 76091 | 73603 |
| ##           | 2018 | 95096  | 76779  | 94044 | 84798 | 72560 | 85175 | 101424 | 86919 | 88481 | 78428 |
| ##           | 2019 | 95023  | 87859  | 99910 | 91459 | 76965 | 96241 | 130138 | 95313 | 89222 | 96924 |
| ##           |      | Nov    | Dec    |       |       |       |       |        |       |       |       |
| ##           | 2010 | 55043  | 61665  |       |       |       |       |        |       |       |       |
| ##           | 2011 | 52940  | 63347  |       |       |       |       |        |       |       |       |
| ##           | 2012 | 65061  | 68807  |       |       |       |       |        |       |       |       |
| ##           | 2013 | 74757  | 92658  |       |       |       |       |        |       |       |       |
| ##           | 2014 | 74874  | 83161  |       |       |       |       |        |       |       |       |
| ##           | 2015 | 63856  | 78991  |       |       |       |       |        |       |       |       |
| ##           | 2016 | 63731  | 93487  |       |       |       |       |        |       |       |       |
| ##           | 2017 | 86459  | 107000 |       |       |       |       |        |       |       |       |
| ##           | 2018 | 93862  | 112532 |       |       |       |       |        |       |       |       |
| ##           | 2019 | 105504 | 116099 |       |       |       |       |        |       |       |       |
| 7            |      |        |        |       |       |       |       |        |       |       |       |
| plot(tsdata) |      |        |        |       |       |       |       |        |       |       |       |



acf(tsdata)

# Series tsdata



pacf(tsdata)

#### Series tsdata



```
#Cek kestasioneritasan Data
adf.test(tsdata)
##
## Augmented Dickey-Fuller Test
##
## data: tsdata
## Dickey-Fuller = -3.5351, Lag order = 4, p-value = 0.0421
## alternative hypothesis: stationary
#transformasi box-cox
library(TSA)
## Warning: package 'TSA' was built under R version 4.1.3
##
## Attaching package: 'TSA'
## The following objects are masked from 'package:stats':
##
       acf, arima
##
## The following object is masked from 'package:utils':
##
##
       tar
```

```
library(MASS)
library(car)
## Loading required package: carData
## Warning: package 'carData' was built under R version 4.1.3
BoxCox.ar(tsdata)
## Warning in arima\theta(x, \text{ order} = c(i, \theta L, \theta L), \text{ include.mean} = \text{demean}): possibl
## convergence problem: optim gave code = 1
## Warning in arima\theta(x, \text{ order} = c(i, \theta L, \theta L), \text{ include.mean} = \text{demean}): possibl
## convergence problem: optim gave code = 1
## Warning in arima\theta(x, \text{ order = } c(i, \theta L, \theta L), \text{ include.mean = demean}): possibl
## convergence problem: optim gave code = 1
## Warning in arima\theta(x, \text{ order} = c(i, \theta L, \theta L), \text{ include.mean} = \text{demean}): possibl
## convergence problem: optim gave code = 1
## Warning in arima0(x, order = c(i, 0L, 0L), include.mean = demean): possibl
## convergence problem: optim gave code = 1
## Warning in arima\theta(x, \text{ order} = c(i, \theta L, \theta L), \text{ include.mean} = \text{demean}): possibl
## convergence problem: optim gave code = 1
## Warning in arima\theta(x, order = c(i, \theta L), include.mean = demean): possibl
## convergence problem: optim gave code = 1
## Warning in arima0(x, order = c(i, 0L, 0L), include.mean = demean): possibl
## convergence problem: optim gave code = 1
## Warning in arima\theta(x, \text{ order} = c(i, \theta L, \theta L), \text{ include.mean} = \text{demean}): possibl
## convergence problem: optim gave code = 1
## Warning in arima0(x, order = c(i, 0L, 0L), include.mean = demean): possibl
## convergence problem: optim gave code = 1
## Warning in arima0(x, order = c(i, 0L, 0L), include.mean = demean): possibl
```

```
## convergence problem: optim gave code = 1
## Warning in arima0(x, order = c(i, 0L, 0L), include.mean = demean): possibl
## convergence problem: optim gave code = 1
## Warning in arima0(x, order = c(i, 0L, 0L), include.mean = demean): possibl
## convergence problem: optim gave code = 1
## Warning in arima0(x, order = c(i, 0L, 0L), include.mean = demean): possibl
## convergence problem: optim gave code = 1
## Warning in arima\theta(x, \text{ order} = c(i, \theta L, \theta L), \text{ include.mean} = \text{demean}): possibl
## convergence problem: optim gave code = 1
## Warning in arima\theta(x, \text{ order = } c(i, \theta L, \theta L), \text{ include.mean = demean}): possibl
## convergence problem: optim gave code = 1
## Warning in arima\theta(x, \text{ order} = c(i, \theta L, \theta L), \text{ include.mean} = \text{demean}): possibl
## convergence problem: optim gave code = 1
## Warning in arima\theta(x, \text{ order = } c(i, \theta L, \theta L), \text{ include.mean = demean}): possibl
## convergence problem: optim gave code = 1
## Warning in arima\theta(x, order = c(i, \theta L, \theta L), include.mean = demean): possibl
## convergence problem: optim gave code = 1
## Warning in arima\theta(x, \text{ order} = c(i, \theta L, \theta L), \text{ include.mean} = \text{demean}): possibl
## convergence problem: optim gave code = 1
## Warning in arima0(x, order = c(i, 0L, 0L), include.mean = demean): possibl
## convergence problem: optim gave code = 1
## Warning in arima\theta(x, \text{ order = } c(i, \theta L, \theta L), \text{ include.mean = demean}): possibl
## convergence problem: optim gave code = 1
## Warning in arima0(x, order = c(i, 0L, 0L), include.mean = demean): possibl
```

```
## convergence problem: optim gave code = 1
## Warning in arima0(x, order = c(i, 0L, 0L), include.mean = demean): possibl
## convergence problem: optim gave code = 1
## Warning in arima\theta(x, \text{ order} = c(i, \theta L, \theta L), \text{ include.mean} = \text{demean}): possibl
## convergence problem: optim gave code = 1
## Warning in arima\theta(x, \text{ order} = c(i, \theta L, \theta L), \text{ include.mean} = \text{demean}): possibl
## convergence problem: optim gave code = 1
## Warning in arima\theta(x, order = c(i, \theta L, \theta L), include.mean = demean): possibl
## convergence problem: optim gave code = 1
## Warning in arima\theta(x, \text{ order} = c(i, \theta L, \theta L), \text{ include.mean} = \text{demean}): possibl
## convergence problem: optim gave code = 1
## Warning in arima\theta(x, \text{ order} = c(i, \theta L, \theta L), \text{ include.mean} = \text{demean}): possibl
## convergence problem: optim gave code = 1
## Warning in arima0(x, order = c(i, 0L, 0L), include.mean = demean): possibl
## convergence problem: optim gave code = 1
## Warning in arima\theta(x, \text{ order} = c(i, \theta L, \theta L), \text{ include.mean} = \text{demean}): possibl
## convergence problem: optim gave code = 1
## Warning in arima\theta(x, order = c(i, \theta L, \theta L), include.mean = demean): possibl
## convergence problem: optim gave code = 1
## Warning in arima\theta(x, \text{ order} = c(i, \theta L, \theta L), \text{ include.mean} = \text{demean}): possibl
## convergence problem: optim gave code = 1
## Warning in arima0(x, order = c(i, 0L, 0L), include.mean = demean): possibl
## convergence problem: optim gave code = 1
## Warning in arima\theta(x, \text{ order} = c(i, \theta L, \theta L), \text{ include.mean} = \text{demean}): possibl
## convergence problem: optim gave code = 1
```

```
## Warning in arima0(x, order = c(i, 0L, 0L), include.mean = demean): possibl
## convergence problem: optim gave code = 1
## Warning in arima\theta(x, \text{ order} = c(i, \theta L, \theta L), \text{ include.mean} = \text{demean}): possibl
## convergence problem: optim gave code = 1
## Warning in arima\theta(x, order = c(i, \theta L, \theta L), include.mean = demean): possibl
## convergence problem: optim gave code = 1
## Warning in arima\theta(x, order = c(i, \theta L, \theta L), include.mean = demean): possibl
## convergence problem: optim gave code = 1
## Warning in arima\theta(x, \text{ order} = c(i, \theta L, \theta L), \text{ include.mean} = \text{demean}): possibl
## convergence problem: optim gave code = 1
## Warning in arima\theta(x, order = c(i, \theta L, \theta L), include.mean = demean): possibl
## convergence problem: optim gave code = 1
## Warning in arima\theta(x, \text{ order} = c(i, \theta L, \theta L), \text{ include.mean} = \text{demean}): possibl
## convergence problem: optim gave code = 1
## Warning in arima\theta(x, order = c(i, \theta L, \theta L), include.mean = demean): possibl
## convergence problem: optim gave code = 1
## Warning in arima\theta(x, \text{ order} = c(i, \theta L, \theta L), \text{ include.mean} = \text{demean}): possibl
## convergence problem: optim gave code = 1
## Warning in arima\theta(x, order = c(i, \theta L, \theta L), include.mean = demean): possibl
## convergence problem: optim gave code = 1
## Warning in arima0(x, order = c(i, 0L, 0L), include.mean = demean): possibl
## convergence problem: optim gave code = 1
## Warning in arima\theta(x, \text{ order} = c(i, \theta L, \theta L), \text{ include.mean} = \text{demean}): possibl
## convergence problem: optim gave code = 1
```

```
## Warning in arima0(x, order = c(i, 0L, 0L), include.mean = demean): possibl
e
## convergence problem: optim gave code = 1
```



#Print data transformasi boxcox

```
boxcox <- bcPower(tsdata, 0)
boxcox
##
                      Feb
                                                           Jun
                                                                    Jul
             Jan
                               Mar
                                        Apr
                                                  May
                                                                             Α
## 2010 10.73596 10.49388 10.70652 10.59160 10.58058 10.79179 10.71513 10.554
12
## 2011 10.78622 10.70111 10.90706 10.73077 10.82232 10.97181 10.87157 10.812
61
## 2012 10.85956 10.83536 10.95756 10.87275 10.87055 11.00180 10.78324 10.959
56
## 2013 11.22563 10.99694 11.02079 11.00797 11.07262 11.17937 10.91805 11.436
28
## 2014 11.23932 11.10845 11.19136 11.13188 11.17523 11.17339 10.92480 11.298
06
## 2015 11.16206 10.92608 11.12613 11.05290 11.04979 11.01838 11.06280 11.455
## 2016 11.25153 11.12339 11.27713 11.20531 11.17273 11.07756 11.28724 10.882
17
## 2017 11.24062 11.19619 11.25650 11.16612 11.15267 11.06823 11.38787 11.232
83
## 2018 11.46264 11.24869 11.45152 11.34803 11.19217 11.35246 11.52707 11.372
```

```
73
## 2019 11.46187 11.38349 11.51203 11.42365 11.25111 11.47461 11.77635 11.464
92
##
             Sep
                      0ct
                               Nov
                                        Dec
## 2010 10.93305 10.82681 10.91587 11.02947
## 2011 11.05706 10.96820 10.87691 11.05638
## 2012 11.15196 11.07906 11.08308 11.13906
## 2013 11.34806 11.25078 11.22200 11.43667
## 2014 11.14892 11.49509 11.22356 11.32853
## 2015 11.31848 11.18562 11.06439 11.27709
## 2016 11.09939 11.19090 11.06243 11.44558
## 2017 11.23969 11.20644 11.36743 11.58058
## 2018 11.39054 11.26994 11.44958 11.63099
## 2019 11.39888 11.48168 11.56650 11.66220
#diff 1
diff1 <- diff(boxcox, 1)</pre>
diff1
##
                              Feb
                                           Mar
                 Jan
                                                         Apr
                     -0.242079873
## 2010
                                   0.212638071
                                               -0.114922931 -0.011015498
## 2011 -0.243250287 -0.085114146
                                   0.205948938
                                               -0.176284100
                                                              0.091542872
## 2012 -0.196826294 -0.024200220
                                   0.122199336
                                               -0.084805481 -0.002202728
## 2013 0.086569222 -0.228693450
                                   0.023854205
                                               -0.012824804
                                                              0.064654499
## 2014 -0.197353351 -0.130862361
                                   0.082900772
                                               -0.059470993
                                                              0.043341835
## 2015 -0.166471595 -0.235979817
                                   0.200047635
                                               -0.073226140 -0.003109682
## 2016 -0.025554474 -0.128146888
                                   0.153739341
                                               -0.071814422 -0.032584458
## 2017 -0.204959739 -0.044432665
                                   0.060311286
                                               -0.090380569 -0.013443283
## 2018 -0.117941927 -0.213955742
                                   0.202831593
                                               -0.103490800 -0.155858152
## 2019 -0.169118658 -0.078385711
                                   0.128536524
                                               -0.088378996 -0.172540011
##
                 Jun
                                            Aug
                                                         Sep
## 2010
         0.211208680 -0.076661621 -0.161010031
                                                0.378934801 -0.106239918
## 2011 0.149497376 -0.100238987 -0.058960780
                                                 0.244448727 -0.088863110
## 2012 0.131252355 -0.218561023
                                   0.176318844
                                                 0.192397979 -0.072894714
## 2013 0.106746545 -0.261319262
                                   0.518234256
                                               -0.088219359 -0.097281438
## 2014 -0.001837939 -0.248583793
                                   0.373255311
                                               -0.149136309 0.346163561
## 2015 -0.031410956
                      0.044419680
                                  0.392313360 -0.136637557 -0.132863564
## 2016 -0.095165452
                      0.209678341 -0.405070434
                                               0.217222148
                                                              0.091507462
## 2017 -0.084441856
                      0.319641472 -0.155044425
                                                0.006857381 -0.033244207
## 2018
                      0.174601786 -0.154333099
                                                0.017811189 -0.120606833
       0.160294158
## 2019
         0.223504689
                      0.301739964 -0.311429213 -0.066038567 0.082799520
##
                 Nov
                              Dec
## 2010
       0.089056498
                      0.113601811
## 2011 -0.091283814
                      0.179468353
## 2012 0.004019688
                      0.055980193
## 2013 -0.028783044
                      0.214672442
## 2014 -0.271525327
                      0.104971787
## 2015 -0.121229302
                      0.212703374
## 2016 -0.128473985
                      0.383151289
## 2017 0.160984527
                      0.213158521
```

## 2018 0.179644612 0.181412007 ## 2019 0.084821701 0.095694409 plot(diff1)



acf(diff1,lag.max = 100)

## Series diff1



pacf(diff1,lag.max=100)

# Series diff1



adf.test(diff1)

```
## Warning in adf.test(diff1): p-value smaller than printed p-value
##
## Augmented Dickey-Fuller Test
## data: diff1
## Dickey-Fuller = -6.6756, Lag order = 4, p-value = 0.01
## alternative hypothesis: stationary
#diff 12
diff12 <- diff(boxcox, 12)
diff12
##
                   Jan
                                 Feb
                                               Mar
                                                              Apr
                                                                             May
## 2011
         0.0502597026
                        0.2072254292
                                      0.2005362959
                                                     0.1391751267
                                                                   0.2417334963
## 2012
         0.0733350335
                        0.1342489597
                                      0.0504993576
                                                     0.1419779772
                                                                   0.0482323774
## 2013
         0.3660734500
                        0.1615802199
                                      0.0632350895
                                                     0.1352157661
                                                                   0.2020729926
## 2014
         0.0136872388
                        0.1115183279
                                      0.1705648942
                                                     0.1239187055
                                                                   0.1026060422
## 2015 -0.0772550512 -0.1823725074 -0.0652256442 -0.0789807915 -0.1254323091
## 2016
         0.0894725544
                        0.1973054836
                                      0.1509971896
                                                     0.1524089078
                                                                   0.1229341323
## 2017 -0.0109167968
                        0.0727974265 -0.0206306278 -0.0391967744 -0.0200555997
## 2018
         0.2220242570
                        0.0525011793
                                      0.1950214854
                                                     0.1819112539
                                                                   0.0394963851
                        0.1348020915
## 2019 -0.0007679401
                                                     0.0756188268
                                                                   0.0589369673
                                      0.0605070229
##
                   Jun
                                 Jul
                                                              Sep
                                                                             0ct
                                               Aug
## 2011
         0.1800221924
                        0.1564448257
                                      0.2584940766
                                                     0.1240080024
                                                                   0.1413848102
## 2012
         0.0299873559 -0.0883346792
                                      0.1469449453
                                                     0.0948941975
                                                                   0.1108625928
## 2013
         0.1775671831
                                      0.4767243555
                        0.1348089440
                                                     0.1961070174
                                                                   0.1717202940
## 2014 -0.0059784423
                        0.0067570266 -0.1382219183 -0.1991388685
                                                                   0.2443061305
## 2015 -0.1550053257
                        0.1379981470
                                      0.1570561961
                                                     0.1695549483 -0.3094721772
## 2016
         0.0591796360
                        0.2244382974
                                     -0.5729454967 -0.2190857917
                                                                   0.0052852344
## 2017 -0.0093320036
                        0.1006311272
                                      0.3506571363
                                                     0.1402923691
                                                                   0.0155407007
## 2018
         0.2842323989
                        0.1391927126
                                      0.1399040388
                                                     0.1508578473
                                                                   0.0634952207
## 2019
         0.1221474988
                        0.2492856763
                                      0.0921895622 0.0083398062
                                                                   0.2117461598
##
                   Nov
                                 Dec
## 2011 -0.0389555012
                       0.0269110407
## 2012
         0.2061660946
                        0.0826779343
## 2013
         0.1389175620
                        0.2976098115
## 2014
         0.0015638474 -0.1081368075
## 2015 -0.1591761524 -0.0514445660
## 2016 -0.0019594479
                        0.1684884673
## 2017
         0.3049992127
                        0.1350064453
## 2018
         0.0821553053
                        0.0504087912
## 2019
         0.1169232484
                        0.0312056498
plot(diff12)
```



acf(diff12, lag.max = 100)

## Series diff12



pacf(diff12,lag.max=100)

#### Series diff12



```
adf.test(diff12)
##
## Augmented Dickey-Fuller Test
##
## data: diff12
## Dickey-Fuller = -3.1647, Lag order = 4, p-value = 0.0974
## alternative hypothesis: stationary
##Estimasi Model
library(astsa)
## Warning: package 'astsa' was built under R version 4.1.3
Imasima <- arima(boxcox, order = c(0,1,1), seasonal = list(order = c(0,1,1),
period = 12), include.mean = FALSE)
Imasima
##
## Call:
## arima(x = boxcox, order = c(0, 1, 1), seasonal = list(order = c(0, 1, 1),
period = 12),
       include.mean = FALSE)
##
##
## Coefficients:
##
             ma1
                     sma1
##
         -0.7919
                  -0.4352
## s.e. 0.0603
                   0.1064
```

```
##
## sigma^2 estimated as 0.01533: log likelihood = 69.92, aic = -135.84
sarima(tsdata, 0,1,1, 0,1,1, 12)
## initial value 9.413054
## iter
          2 value 9.218819
## iter
          3 value 9.182209
## iter
          4 value 9.144682
          5 value 9.133233
## iter
          6 value 9.132268
## iter
## iter
          7 value 9.131821
## iter
          8 value 9.131492
## iter
          9 value 9.131487
## iter
          9 value 9.131487
          9 value 9.131487
## iter
## final value 9.131487
## converged
## initial value 9.142397
## iter
          2 value 9.141501
## iter
          3 value 9.141477
## iter
          4 value 9.141469
          4 value 9.141469
## iter
## iter
          4 value 9.141469
## final value 9.141469
## converged
```



```
## $fit
##
## Call:
## arima(x = xdata, order = c(p, d, q), seasonal = list(order = c(P, D, Q), p
eriod = S),
       include.mean = !no.constant, transform.pars = trans, fixed = fixed, op
tim.control = list(trace = trc,
           REPORT = 1, reltol = tol))
##
## Coefficients:
##
             ma1
                      sma1
         -0.8016
##
                 -0.4134
## s.e.
          0.0590
                   0.1003
##
## sigma^2 estimated as 84456877: log likelihood = -1129.96, aic = 2265.93
##
## $degrees_of_freedom
## [1] 105
##
## $ttable
##
        Estimate
                     SE t.value p.value
         -0.8016 0.0590 -13.5807
## ma1
                                    0e+00
## sma1 -0.4134 0.1003 -4.1212
                                    1e-04
##
## $AIC
## [1] 21.17689
##
## $AICc
## [1] 21.17797
##
## $BIC
## [1] 21.25183
library(lmtest)
## Warning: package 'lmtest' was built under R version 4.1.3
## Loading required package: zoo
## Warning: package 'zoo' was built under R version 4.1.3
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
       as.Date, as.Date.numeric
##
#tes coef
coeftest(Imasima)
```

```
##
## z test of coefficients:
##
        Estimate Std. Error z value Pr(>|z|)
##
## ma1 -0.791906  0.060322 -13.1280 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Uji white noise residual
Box.test(Imasima$residuals,type = "Ljung")
##
## Box-Ljung test
## data: Imasima$residuals
## X-squared = 0.039957, df = 1, p-value = 0.8416
#Uji Normalitas residual
ks.test(Imasima$residuals,"pnorm",mean=0, sd=sd(Imasima$residuals))
## One-sample Kolmogorov-Smirnov test
##
## data: Imasima$residuals
## D = 0.10395, p-value = 0.1495
## alternative hypothesis: two-sided
#Forecasting
library(forecast)
library(sarima)
forecasting <- forecast(boxcox, model = Imasima, h = 12)</pre>
forecasting
plot(forecasting, main = "Plot Forecasting")
```

|          | Point Forecast <dbl></dbl> | Lo 80<br><dbl></dbl> | Hi 80<br><dbl></dbl> | Lo 95<br><dbl></dbl> | Hi 95    |
|----------|----------------------------|----------------------|----------------------|----------------------|----------|
| Jan 2020 | 11.58865                   | 11.42998             | 11.74732             | 11.34599             | 11.83131 |
| Feb 2020 | 11.47403                   | 11.31197             | 11.63610             | 11.22617             | 11.72189 |
| Mar 2020 | 11.61544                   | 11.45004             | 11.78084             | 11.36249             | 11.86839 |
| Apr 2020 | 11.52468                   | 11.35602             | 11.69334             | 11.26674             | 11.78262 |
| May 2020 | 11.38659                   | 11.21473             | 11.55845             | 11.12375             | 11.64943 |
| Jun 2020 | 11.53897                   | 11.36396             | 11.71397             | 11.27132             | 11.80661 |
| Jul 2020 | 11.79349                   | 11.61540             | 11.97158             | 11.52112             | 12.06585 |
| Aug 2020 | 11.55762                   | 11.37649             | 11.73874             | 11.28061             | 11.83463 |
| Sep 2020 | 11.53180                   | 11.34769             | 11.71592             | 11.25023             | 11.81338 |
| Oct 2020 | 11.54938                   | 11.36233             | 11.73643             | 11.26331             | 11.83544 |

| Description: df [12 x 5] |                            |                      |                      |                      |                      |
|--------------------------|----------------------------|----------------------|----------------------|----------------------|----------------------|
|                          | Point Forecast <dbl></dbl> | Lo 80<br><dbl></dbl> | Hi 80<br><dbl></dbl> | Lo 95<br><dbl></dbl> | Hi 95<br><dbl></dbl> |
| Nov 2020                 | 11.64770                   | 11.45776             | 11.83764             | 11.35721             | 11.93819             |
| Dec 2020                 | 11.79332                   | 11.60053             | 11.98611             | 11.49848             | 12.08817             |

11-12 of 12 rows Previous 1 2 Next



```
#MAPE
tsdata.fitted <- fitted(Imasima)</pre>
nilaimape <- mean(abs(tsdata-(tsdata.fitted))/(tsdata))*100</pre>
nilaimape
## [1] 99.9834
#uji residual
t.test(Imasima$residuals, mu = 0, alternative = "two.sided")
## One Sample t-test
## data: Imasima$residuals
## t = -0.22795, df = 119, p-value = 0.8201
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -0.02366969 0.01878252
## sample estimates:
      mean of x
## -0.002443587
#Kesimpulan
print(Imasima)
##
## Call:
## arima(x = boxcox, order = c(0, 1, 1), seasonal = list(order = c(0, 1, 1),
period = 12),
##
       include.mean = FALSE)
##
## Coefficients:
             ma1
                      sma1
         -0.7919
##
                   -0.4352
## s.e.
          0.0603
                   0.1064
## sigma^2 estimated as 0.01533: log likelihood = 69.92, aic = -135.84
```