

# Self-Cleaning Boudouard Reactor for Full Oxygen Recovery from Carbon Dioxide

- Presenter: Janelle Coutts, Ph.D., Engineering Services Contract, Kennedy Space Center, FL
- Paul E. Hintze, Ph.D. and Anthony C. Muscatello, Ph.D., Applied Science Branch, NASA Kennedy Space Center
- Tracy L. Gibson, Ph.D., James G. Captain, Griffin M. Lunn, Robert W. Devor, Ph.D., Brint Bauer, and Steve Parks, Engineering Services Contract, Kennedy Space Center, FL



## Outline

- Importance of oxygen recovery from carbon dioxide
- Self-cleaning reactor designs at KSC
- Results
- Future Work



# O<sub>2</sub> Recovery from CO<sub>2</sub>

- Only 50% of O<sub>2</sub> can recovered from respiratory CO<sub>2</sub> on the ISS
- Sabatier reactor makes CH<sub>4</sub> and H<sub>2</sub>O
- CH<sub>4</sub> is vented, losing H<sub>2</sub>
- H<sub>2</sub>O from cargo limits H<sub>2</sub> availability to 50% recovery
- RFP seeks at least 75% recovery
- Deep space missions (Moon, Mars moons, Mars surface, asteroids, etc.) need closer to 100% recovery



## **Bosch Reaction**

- Bosch Reaction:  $CO_2 + H_2 \rightarrow C_{(s)} + 2 H_2O (\rightarrow 2 H_2 + O_2)$
- RWGS:  $CO_2 + H_2 \rightarrow CO + H_2O (\rightarrow H_2 + \frac{1}{2}O_2)$
- Boudouard: 2 CO → C<sub>(s)</sub> + CO<sub>2</sub> (Fe catalyst, H<sub>2</sub> enhancer)
- Need a method to remove C from catalyst as it forms





## **Design Concepts**

- Criteria: Expected Durability, catalyst surface area, mechanical interface, ease of use/fabrication, ability to evaluate design variations in same reactor.
- Did not seek to choose the best catalyst
- Most concepts centered around a catalyst that was either a brush or springs
- Others included planetary gears (like a pencil sharpener), ball bearings



# **Brush Design Concepts**

- Catalytic brush with mechanism for carbon removal
- Variations included the number of brushes and method of carbon removal









# **Spring Design Concepts**

 Catalytic springs with different mechanisms that compress/release springs to remove

carbon









# Initial design

- Spinning carbon steel spiral brush with brass rods
- Stainless steel reactor body







# **Initial Design**

- Tested steel wool reactor for comparison
- Tested 1" and 2" ID reactors

Wrapped Collected carbon in HEPA<sup>Reactor</sup>

Flow filter bag as it was Controller (1 of 3)

generated



Carbon Collector





## Methods

- CO, H<sub>2</sub>, N<sub>2</sub> fed into reactor
- Reactor temperature 500-600 °C
- Carbon collected and weighed

#### **Parameters for Each Reactor**

|                           | 1" REACTOR | 2" REACTOR |
|---------------------------|------------|------------|
| REACTOR VOLUME, ML        | 76         | 300        |
| CATALYST MASS, G          | 1.31       | 11.82      |
| H <sub>2</sub> FLOW, SCCM | 232        | 909        |
| CO FLOW, SCCM             | 232        | 909        |
| N <sub>2</sub> FLOW, SCCM | 52         | 202        |

#### **Reactor Schematic**





## Methods

- Product Gas quantified with GC
- A total carbon balance was used with the GC data to calculate CO<sub>2</sub> yield

$$yield = \frac{mol\ CO_2\ produced}{0.5 \times mol\ CO\ in}$$





## Results

- 1" reactor ran for 12 h
  - Reached 51% CO<sub>2</sub> yield,
    collected 27% of C in filter bag
    (5.5g in filter bag, 20.5 g total)
  - Found to be damaged upon disassembly

- 2" reactor run for 37 h before failure
  - Reached 73% conversion, collected 25% of C in filter bag
  - Equivalent to 1 crew  $CO_2 \rightarrow O_2/day$
  - Multiple modules + RWGS can recover
    ALL the O<sub>2</sub> on ISS





## Results: 1 inch reactor

- After 12 hours of test time, the reactor jammed
- Brush bristles had become knotted and brush was starting to fall apart
- Some carbon still in reactor







## Results: 2 inch reactor

- Pressure inside the reactor began to increase after 27 hours, and reactor was stopped after 37 hours due to the pressure increase
- Reactor x-rayed to determine cause







# Carbon Analysis

- Carbon analysis with SEM/EDA indicated iron was present
- Source is likely the brush





Secondary electron, left, and backscatter electron, right, images of carbon collected from the two inch reactor. The bright spots in the right image are iron



### **Future Work**

- New design: Catalytic wall with non-catalytic scraper
- Using pipe inserts as catalyst so it will protect the reactor wall
- Different inserts could be made of different catalysts





# Acknowledgments

 NASA Kennedy Space Center Innovation Fund for funding