

Experimento 3: Deformação elástica de uma haste metálica

OBJETIVO

- ✓ Verificar a validade da Lei de Hooke para deformação por flexão de uma lâmina fina metálica;
- ✓ Construir um dinamômetro.

PREPARAÇÃO

Conceitos Básicos

Todo corpo isotrópico submetido a uma força externa, de compressão, de tração ou de cisalhamento, se deforma. Se esta força for retirada e o corpo isotrópico recuperar sua forma e dimensões iniciais então ele sofre uma deformação elástica, sendo esta uma deformação temporária. Mas, se a forma e as dimensões do corpo são alteradas no fim do processo, o corpo sofre deformação permanente, denominada de deformação plástica.

Dentro do limite elástico, há uma região de deformação onde a relação entre a força aplicada e a deformação do corpo é linear. Aplicando uma força F vertical na extremidade livre de uma haste metálica presa por uma de suas extremidades, essa promoverá uma flexão x, que dependerá do valor da força aplicada e da forma geométrica da haste. No limite linear de deformação, a relação entre F e x obedecerá a Lei de Hooke:

$$F = -kx \tag{1}$$

onde k é a constante de elasticidade do material. O sinal negativo significa que a força da mola é contrária à deformação.

É importante ressaltar que, dentro do limite elástico, a força aplicada poderá provocar também uma deformação não linear do corpo.

Questionário

Antes de começar as atividades práticas, discuta com seu grupo e responda as perguntas abaixo:

1 -	Em que condições pode-se dizer que uma mola obedece a Lei de Hooke?
2 -	Explique o que significa deformação elástica linear e não linear de um corpo?

Obs: Para compreender e responder a essa questão, leia o artigo de ARANHA et al. A lei de Hooke e as molas não-lineares, um estudo de caso. Revista Brasileira de Ensino de Física, vol. 38, nº 4, e4305 (2016). Disponível em: https://www.scielo.br/j/rbef/a/RBGtKVzKLY99WR8VPS98zLw/?format=pdf&lang=pt.

Referências

É recomendada a leitura das referências abaixo para uma revisão e compreensão da Segunda Lei de Newton aplicada a um objeto que pode sofrer deformação:

- ✓ HALLIDAY, RESNICK & WALKER, **Fundamentos de Física**, Vol. 2, 9ª edição, LTC. Capítulo 15.
- ✓ TIPLER P. A. **Mecânica, Oscilações e Ondas, Termodinâmica**, Vol. 1, 4ª edição, LTC. Capítulo 14.
- ✓ JEWETT JR, J.W. & SEAWAY, R. A. **Física para Cientistas e Engenheiro: Mecânica**. Vol. 1, 8ª edição CENGAGE Learning. Capítulo 6.
- ✓ ARANHA N, OLIVEIRA J M, BELLIO L O & BONVENTI W. A lei de Hooke e as molas nãolineares, um estudo de caso. Revista Brasileira de Ensino de Física, vol. 38, nº 4, e4305 (2016). Disponível em: https://www.scielo.br/j/rbef/a/RBGtKVzKLY99WR8VPS98zLw/?format=pdf&lang=pt. Acesso em 12 agosto 2021.

EXECUÇÃO

O material a ser utilizado para a realização deste procedimento experimental está listado abaixo:

- ✓ Uma haste metálica flexível, tipo serrinha para cortar metal, tamanho 12 polegadas do tipo Bi-Metal encontrada em lojas de materiais de construção;
- √ Água filtrada;
- ✓ Barbante;
- ✓ Trena;
- ✓ 2 palitos de churrasco;
- ✓ Pote plástico (usado para embalar sementes em supermercado) ou copo plástico;
- ✓ Fita crepe;
- ✓ Seringa (capacidade mínima de 10 ml);
- ✓ Tesoura;
- ✓ Objetos de 10 a 50g conhecidos, tais como pequenos pacotes de biscoito;
- ✓ Caixa de leite condensado de 200g;
- ✓ Software SciDAVIs instalado em um computador. Disponível para download em http://scidavis.sourceforge.net/. Um tutorial sobre este programa pode ser baixado em: http://hpc.ct.utfpr.edu.br/~rsilva/Tutorial SciDaVis.pdf.

Para a realização do experimento, visando a coleta de dados, assista o vídeo com as orientações disponível em https://youtu.be/stNxinVudXY e proceda da seguinte forma:

- 3 Fixe a haste metálica no tampo de uma mesa ou armário, utilizando aproximadamente 10cm do seu comprimento total. Utilize vários pedaços de fita crepe para garantir que ela não se descole. Caso isso continue ocorrendo, apoie algum objeto pesado sobre a serrinha.
- 4 Para a montagem do suporte, corte três pedaços de barbante de aproximadamente 30 cm cada. Faça três furos equidistantes na borda do pote de plástico (ou copo descartável) com auxílio de um prego. Se aquecer o prego no fogão, o furo será feito com facilidade. Neste caso, use um alicate para segurar o prego e evitar queimaduras.
- 5 Preda os três pedaços de barbante ao pote (ou copo). Corte um pedaço de barbante de aproximadamente 20 cm para prender a outra ponta de cada um dos os três barbantes ao suporte de madeira.
- 6 Afine a ponta de um palito de churrasco e utilize-o como ponteiro, prendendo com fita crepe na extremidade da serrinha.
- 7 Prenda o corpo da trena no chão com fita crepe e estique-a até a altura do ponteiro. Deixe-a travada nesta posição. Em seguida, utilize outro palito de churrasco para fixar a ponta da fita-escala da trena de modo que seja possível fazer a leitura da elongação da mola.
- 8 Com o sistema (serrinha + pote pendurado + apontador) em equilíbrio, meça a posição inicial do ponteiro x_0 .
- 9 Para medir a elongação x_n sofrida da mola, vá adicionando água, de 10 em 10ml, com auxílio da seringa. Anote no mínimo 10 valores de x_n na tabela abaixo.
- 10 Os procedimentos descritos nos passos 8 e 9 deverão ser repetidos três vezes e os valores anotados na tabela abaixo.

Pontos	Medição 1 da posição	Medição 2	Medição 3 da posição	Média das posições (mm)	Elongação (x _n -x _o) (mm)	Peso (N)
Xo	da posição	da posição	da posição	posições (IIIII)	(An A0) (IIIII)	
X ₁						
X ₂						
X ₃						
X ₄						
X ₅						
X ₆						
x ₇						
X ₈						
X ₉						
X ₁₀						

11 - Retire toda a água do pote (ou copo) e em seguida meça a posição de equilíbrio do sistema. Depois, adicione o "objeto 1" de massa conhecida (entre 10 e 30g) e meça a

nova	posição	de	equilíbrio.	Determine	também	a	elongação	da	mola	(x_{1f})	-	X _{1i}).
Deter	mine as i	ncer	tezas. Ano	te os valores	abaixo:							

Posição inicial $x_{1i} = \underline{\hspace{1cm}} \pm \underline{\hspace{1cm}} mm$ Posição final $x_{1f} = \underline{\hspace{1cm}} \pm \underline{\hspace{1cm}} mm$ Elongação da mola $e_1 = \underline{\hspace{1cm}} \pm \underline{\hspace{1cm}} mm$ Massa (declarada na embalagem) do objeto utilizado $m_1 = \underline{\hspace{1cm}} g$

12 - Retire o objeto 1 e meça a posição inicial. Adicione o "objeto 2" de massa conhecida (entre 30 e 50g) e meça a nova posição de equilíbrio. Determine também a elongação da mola $(x_{2f} - x_{2i})$. Determine as incertezas. Anote os valores abaixo:

Posição inicial $x_{2i}=$ _____ \pm ____mm Posição final $x_{2f}=$ _____ \pm ___mm Elongação da mola $e_2=$ _____ \pm ___mm Massa (declarada na embalagem) do objeto utilizado $m_2=$ _____ g

13 - Retire o objeto 2 e meça a posição inicial. Adicione o a caixa de leite condensado, de 200g, cuja massa é de (208,0±0,5)g e meça a nova posição de equilíbrio. Determine também a elongação da mola (x_{LMf} – x_{LMi}). Determine as incertezas. Anote os valores abaixo:

Posição inicial $x_{2i} =$ _____ \pm ____mm Posição final $x_{2f} =$ _____ \pm ____mm Elongação da mola $e_{LM} =$ ____ \pm ____mm Massa da caixa de leite condensado $m_3 =$ (208,0 \pm 0,5)g

ANÁLISE DE DADOS

Parte 1 – Relação linear entre força e elongação

- 14 Calcule o valor de cada elongação sofrida pela mola (x_n-x_0) após a adição de porções de água de 10 ml. Anote os valores na última coluna da tabela acima. Mantenha o valor em milímetros.
- 15 Sabendo que a densidade da água filtrada é de 1g/ml, cada 10ml tem massa de 10g. Transforme o valor para kg e em seguida utilize o valor da aceleração da gravidade de (9,79±0,08)m/s² para calcular o peso de cada porção de água adicionada ao pote. Anote os valores na última coluna da tabela acima.
- 16 Utilize os 5 primeiros valores (da tabela acima) de <u>peso</u> versus <u>elongação</u> para determinar a constante elástica da mola. Leve os valores para o programa SciDAVIs, plote o gráfico, faça o ajuste linear e obtenha o valor do coeficiente angular da reta e de sua respectiva incerteza. O grupo deve compreender que este é o valor da constante elástica mola.

Constante elástica (5 pontos) $k_5 = \pm N/mm$

resposta.

17 - De posse do valor de k₅ e da elongação sofrida pela mola relativa ao "objeto 1", determine o <u>peso do mesmo</u> e em seguida sua <u>massa</u> . Não esqueça de transformar o valor da massa para grama. Determine as respectivas incertezas. Faça o mesmo para o "objeto 2" e para a "caixa de leite moça".
Peso do objeto 1 = ±N Massa do objeto 1 medida com a haste = ± g Massa do objeto 1 declarada na embalagem = ± g
Peso do objeto 2 = ±N Massa do objeto 2 medida com a haste = ± g Massa do objeto 2 declarada na embalagem = ± g
Peso da caixa de leite condensado = $_$ \pm $_$ N Massa da caixa de leite condensado medido com a haste = $_$ \pm $_$ _ g Massa da caixa de leite condensado = $(208,5\pm0,5)$ g
Parte 2 – Relação não linear entre força e elongação
18 - Utilize agora todos os valores de <u>peso</u> versus <u>elongação</u> para determinar a constante elástica da mola. Leve os valores para o programa SciDAVIs, plote o gráfico, faça o ajuste linear e obtenha o valor do coeficiente angular da reta e de sua respectiva incerteza.
Constante elástica (10 pontos) k ₁₀ = ±N/mm
19 - De posse do valor de k₀ e da elongação sofrida pela mola relativa à caixa de leite moça, determine o <u>peso da caixa</u> e em seguida sua <u>massa</u> . Não esqueça de transformar o valor da massa para grama. Determine as respectivas incertezas.
Peso da caixa de leite condensado = $_$ \pm $_$ N Massa da caixa de leite condensado medido com a haste = $_$ \pm $_$ _ g Massa da caixa de leite condensado = $(208,5\pm0,5)$ g
DISCUSSÕES E CONCLUSÕES
20 - Compare o valor da massa medida no item 17 (obtidos com a mola de "constante elástica" k ₅), com o valor declarado na embalagem do "objeto 1", "objeto 2" e da "caixa de leite condensado" (m=208,0±0,5)g. Note que, dependendo da embalagem dos dois objetos, pode haver um acréscimo de algumas gramas (entre 1 e 3 g) no valor final da massa. Levando-se em consideração as respectivas incertezas e esse possível pequeno
revalido-se em consideração as respectivas incertezas e esse possivei bedueno

acréscimo na massa final dos objetos, é possível dizer que são iguais? Explique sua

_	Com base nos resultados obtidos da comparação acima, é possível utilizar a serrinha metálica como um dinamômetro? Caso afirmativo, qual seria a faixa de valores de força (neste caso força peso) em que ele poderia ser utilizado? Explique sua resposta.
-	Compare o valor da massa medida no item 19 (obtidos com a mola de "constante elástica" k_{10}), com o valor da caixa de leite condensado (208,0±0,5)g. Levando-se em consideração as respectivas incertezas, é possível dizer que são iguais? Explique sua resposta.
	Obri Dava vernon deviera questão, case posessávio Joia pougamento e artigo de ADANUA et al. A Joi de Hooke
	Obs: Para responder essa questão, caso necessário, leia novamente o artigo de ARANHA et al. A lei de Hooke e as molas não-lineares, um estudo de caso. Revista Brasileira de Ensino de Física, vol. 38, n° 4, e4305 (2016). Disponível em: https://www.scielo.br/j/rbef/a/RBGtKVzKLY99WR8VPS98zLw/?format=pdf⟨=pt.
-	É possível dizer que a haste metálica (serrinha) obedece a Lei de Hooke?
-	Escreva um breve relato da execução do experimento e das dificuldades encontradas pelo grupo na realização das atividades.