CHAPTER 1: Complex Numbers

SGS NOTES YEAR 12

Chapter One

Exercise 1A (Page 8) _

1(a) -1 (b) 1 (c) -i (d) i

(e)
$$i$$
 (f) -1 (g) 1 (h) 0

2(a)
$$-2i$$
 (b) $3-i$ **(c)** $1+i$ **(d)** $5+3i$ **(e)** $-3-2i$

3(a)
$$12-2i$$
 (b) $-6+2i$ **(c)** $1+5i$ **(d)** $7-11i$

4(a)
$$-5+4i$$
 (b) $5+5i$ **(c)** $14+5i$ **(d)** $-26+82i$

(e)
$$24 + 10i$$
 (f) $-5 - 12i$ (g) $2 + 11i$ (h) -4

(i) 28 - 96i

44

$$5(a) \ 5 \ (b) \ 17 \ (c) \ 29 \ (d) \ 65$$

6(a)
$$-i$$
 (b) $1-2i$ **(c)** $3+2i$ **(d)** $1-2i$ **(e)** $-1+3i$ **(f)** $-\frac{1}{5}+\frac{3}{5}i$

7(a)
$$-2-i$$
 (b) $4-3i$ (c) $3+7i$ (d) 3 (e) $-3+4i$

8(a)
$$6+2i$$
 (b) 18 (c) $19-22i$ (d) $8-i$ (e) $1+2i$

9(a)
$$22 + 19i$$
 (b) $6 + 15i$ (c) $4 - 2i$ (d) $2 - 3i$

10(a)
$$x = 3$$
 and $y = -2$ **(b)** $x = 2$ and $y = -1$

(c)
$$x = 6$$
 and $y = 2$ (d) $x = \frac{14}{5}$ and $y = \frac{3}{5}$

(e)
$$x = \frac{35}{2}$$
 and $y = -\frac{39}{2}$

11(a)
$$\frac{9}{10} - \frac{13}{10}i$$
 (b) 1 **(c)** $-\frac{8}{29}$ **(d)** $-4 - \frac{5}{2}i$

Exercise **1B** (Page 15) _____

1(a)
$$z=\pm 3i$$
 (b) $z=2\pm 4i$ (c) $z=-1\pm 2i$

(d)
$$z = 3 \pm i$$
 (e) $z = \frac{1}{2} \pm \frac{1}{4}i$ (f) $z = -\frac{3}{2} \pm 2i$

2(a)
$$(z-6i)(z+6i)$$
 (b) $(z-2\sqrt{2}i)(z+2\sqrt{2}i)$

(c)
$$(z-1-3i)(z-1+3i)$$
 (d) $(z+2-i)(z+2+i)$

(e)
$$(z-3+\sqrt{5}i)(z-3-\sqrt{5}i)$$
 (f) $(z+\frac{1}{2}-\frac{\sqrt{3}}{2}i)(z+\frac{1}{2}$

$$\frac{1}{2} + \frac{\sqrt{3}}{2}i$$
)
3(a) $z^2 + 2 = 0$ (b) $z^2 - 2z + 2 = 0$ (c) $z^2 + 2z + 5 = 0$

3(a)
$$z^2+2=0$$
 (b) $z^2-2z+2=0$ **(c)** $z^2+2z+5=0$

$$0 \quad \text{(d)} \ \ z^2 - 4z + 7 = 0$$

4(a)
$$\pm (1+i)$$
 (b) $\pm (2+i)$ (c) $\pm (-1+3i)$ (d) $\pm (6+i)$

i) (e)
$$\pm (2+3i)$$
 (f) $\pm (5-i)$ (g) $\pm (1-4i)$

(h) $\pm (5-4i)$

5(a)
$$\pm (1-2i)$$
 (b) $z = 2-i \text{ or } 1+i$

6(a)
$$\pm (1+3i)$$
 (b) $z=4+i \text{ or } 3-2i$

7(a)
$$z = 1 - i$$
 or i **(b)** $z = -3 + 2i$ or $-2i$ **(c)** $z = 1$

$$4+i \text{ or } 2-i \text{ (d) } z=-2+i \text{ or } \frac{1}{2}(3-i) \text{ (e) } z=$$

-5 + i or 3 - 2i (f) z = 3 + i or -1 - 3i

8(a) w = -1 (b) a = -6 and b = 13 (c) k = 8-iand the other root is 2 + 3i.

9 $z = \pm (2+i)$

10(a) $\cos \theta + i \sin \theta$ or $\cos \theta - i \sin \theta$

11(a)
$$z = -1$$
 or $\frac{1}{2} \pm \frac{\sqrt{3}}{2}i$ **(b)** $z = i$ or $\pm \frac{\sqrt{3}}{2} - \frac{1}{2}i$

12(a) $x = \omega$ satisfies the equation. (c) They are complex conjugates.

13(a) $\overline{\alpha}$

15(a)
$$\pm \frac{1}{\sqrt{2}}(1-i)$$
 (b) $\pm \sqrt{2}(1+2i)$ (c) $\pm (\sqrt{3}+i)$

(d) $\pm \sqrt{2}(3-2i)$

(e)
$$\pm \left(\sqrt{\sqrt{5}+1}-i\sqrt{\sqrt{5}-1}\right)$$

16(a)
$$-2 - i \pm \left(\sqrt{\sqrt{2} + 1} + i\sqrt{\sqrt{2} - 1}\right)$$

(b)
$$1 + i \pm \left(\sqrt{\sqrt{5} - 1} - i\sqrt{\sqrt{5} + 1}\right)$$

(c)
$$-1 + i\sqrt{3} \pm (\sqrt{2} - i\sqrt{6})$$

(d)
$$\frac{1}{2} \left(-1 + i \pm \left(\sqrt{\sqrt{13} + 2} - i \sqrt{\sqrt{13} - 2} \right) \right)$$

Exercise **1C** (Page 20) _

1(a)
$$(2,0)$$
 (b) $(0,1)$ (c) $(-3,5)$ (d) $(2,-2)$

(e)
$$(-5, -5)$$
 (f) $(-1, 2)$

2(a)
$$-3 + 0i = -3$$
 (b) $0 + 3i = 3i$ (c) $7 - 5i$

(d)
$$a + bi$$

(b) A square. (c) An anticlockwise rotation of 90° about the origin.

4(a)

CHAPTER 1: Complex Numbers

SGS NOTES YEAR 12

46 **CHAPTER 1: Complex Numbers**

9(a)
$$z_1 = 2 \operatorname{cis} \frac{\pi}{6}$$
 and $z_2 = 4 \operatorname{cis} \frac{\pi}{4}$ **(b)** $z_1 z_2 = 8 \operatorname{cis} \frac{5\pi}{12}$ and $\frac{z_2}{z_1} = 2 \operatorname{cis} \frac{\pi}{12}$

10
$$z_1 = 2 \operatorname{cis} \frac{5\pi}{6}, z_2 = \sqrt{2} \operatorname{cis}(-\frac{3\pi}{4}),$$

$$z_1 z_2 = 2\sqrt{2} \operatorname{cis} \frac{\pi}{12} \text{ and } \frac{z_2}{z_1} = \frac{\sqrt{2}}{2} \operatorname{cis} \frac{5\pi}{12}$$

11(a)
$$\frac{1}{2} \left((\sqrt{3} + 1) + i(\sqrt{3} - 1) \right)$$
 (b) $\sqrt{2} \operatorname{cis} \frac{\pi}{12}$ (c) $\frac{1}{2\sqrt{2}} (\sqrt{3} + 1)$

12(b)
$$2\sqrt{2} \operatorname{cis} \frac{\pi}{12}$$

13(a)
$$\sqrt{2}$$
 (b) $\frac{\pi}{4}$ (c) $1+i$

13(a)
$$\sqrt{2}$$
 (b) $\frac{\pi}{4}$ (c) $1+i$
20 $z+w=2\cos\left(\frac{\theta-\phi}{2}\right) \cos\left(\frac{\theta+\phi}{2}\right)$

21(c) The tangents at z_0 and z_1 to the circle with centre the origin meet at z_2 .

22(a) When Im(z) = 0.

Exercise **1E** (Page 32) _____

1(a)
$$7 + 4i$$
 (b) $-3 + 2i$ (c) $3 - 2i$

2(a)
$$-3+4i$$
 (b) $1+7i$ (c) $-4-3i$ (d) $-7+i$ 3 $-3+6i$

4(a) B represents 1+3i, C represents -1+2i**(b)** $-\sqrt{2} + 2\sqrt{2}i$

5(a)
$$4+3i$$
 (b) $-3+4i$ **(c)** $2+7i$

6(a)
$$-5 + 12i$$
 (b) $-3 - 4i$

8 E represents $w_2 - w_1$, F represents $i(w_2 - w_1)$, C represents $w_2 + i(w_2 - w_1)$ and D represents $w_1 + i(w_2 - w_1).$

9(a) Vectors BA and BC represent $z_1 - z_2$ and $z_3 - z_2$ respectively, and BA is the anticlockwise rotation of BC through 90° about B. So $z_1 - z_2 =$ $i(z_3 - z_2)$. Squaring both sides gives the result.

(b)
$$z_1 - z_2 + z_3$$

10(a)
$$2\omega i$$
 (b) $\frac{1}{2}\omega(1+2i)$

11
$$-2$$
 and $1 - \sqrt{3}i$

12(a) w = -4 + 3i or 4 - 3i **(b)** w = -1 + 7i or 7+i (c) $w = \frac{1}{2}(7+i)$ or $\frac{1}{2}(-1+7i)$

13(a) $1-5i,\ 7+3i$ **(b)** $3+6i,\ -3-2i$ **(c)** $\frac{7}{2}+\frac{5}{2}i,$ $\frac{1}{2} - \frac{3}{2}i$

14 -2+2i, 12i, 4

19(a) $z_1 = 2 \operatorname{cis} \frac{\pi}{2}, z_2 = 2 \operatorname{cis} \frac{\pi}{3}$ (c)(i) $\frac{5\pi}{12}$ (ii) $\frac{11\pi}{12}$

22(c) The sum of the squares of the diagonals of a parallelogram is equal to the sum of the squares of its sides.

23(c) parallelogram (d) arg $\frac{w}{z} = \frac{\pi}{2}$, so $\frac{w}{z}$ is purely

26 Use the converse of the opposite angles of a cyclic quadrilateral.

48 CHAPTER 1: Complex Numbers

CHAPTER 1: Complex Numbers

(i)
$$\sqrt{5}+1$$
 and $\sqrt{5}-1$ $\sqrt{26}+3$ and $\sqrt{26}-3$ (ii) $2\sqrt{2}+1$ and $2\sqrt{2}-1$

(c)(i)
$$\left| |z_0| - r \right| \le |z| \le |z_0| + r$$

(ii) $\left| |z_0 - z_1| - r \right| \le |z - z_1| \le |z_0 - z_1| + r$
14(a)(i) $v \land$

(b) This is simply part (a) shifted left by 2.

(b)
$$15$$
 (c) $9 + 12i$

16(b)(i) |z+2|=2, centre -2, radius 2

(ii)
$$|z - (1+i)| = 1$$
, centre $1 + i$, radius 1

(iii)
$$|z-1|=1$$
, centre 1, radius 1

17(a) The line through 1 and i, omitting i.

(b) The circle with diameter joining 1 and i, omitting these two points.

20(a) straight line external to z_1 and z_2 (b) major arc (c) semi-circle (d) minor arc (e) straight line between z_1 and z_2

22(a) Angle in the alternate segment theorem: it is the arc taken anticlockwise from z_2 to z_1 of the circle tangent to $y = \text{Im}(z_1)$ and through z_2 .

23 The ellipse with eccentricity e, semi-major axis a and semi-minor axis b, where $b^2 = a^2(1 - e^2)$.

24(b) The locus is the perpendicular bisector of the line joining z_1 and z_2 .

CHAPTER 7: De Moivre's Theorem

Chapter Seven

Exercise **7A** (Page 45) ___

- 1(a) $cis 5\theta$ (b) $cis (-3\theta)$ (c) $cis 8\theta$ (d) $cis (-\theta)$
- (e) $cis 7\theta$ (f) $cis(-6\theta)$
- 2(a) $\cos 7\theta$ (b) $\cos(-5\theta)$
- 3(a) -1 (b) -i (c) $-\frac{\sqrt{3}}{2} + \frac{1}{2}i$ (d) $-\frac{1}{2} + \frac{\sqrt{3}}{2}i$
- (e) $\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i$ (f) $\frac{1}{2} + \frac{\sqrt{3}}{2}i$
- **4(a)** $\sqrt{2} \operatorname{cis} \frac{\pi}{4}$ **(b)** 256 + 256i**5(a)** $2 \operatorname{cis} \frac{\pi}{3}$ **(b)** $1024 - 1024\sqrt{3}i$
- **6(a)** 2, $\frac{5\pi}{6}$
- 7(a) $2 \operatorname{cis} \left(-\frac{\pi}{6}\right)$ (b) $128 \operatorname{cis} \frac{5\pi}{6}$ (c) $-64\sqrt{3} + 64i$ 8(a) $2 \operatorname{cis} \left(-\frac{2\pi}{3}\right)$ (b) $32 \operatorname{cis} \frac{2\pi}{3}$ (c) $-16 + 16\sqrt{3}i$
- **9(a)** $2 \operatorname{cis} \left(-\frac{\pi}{4}\right)$ **(b)** $2^{22}i$
- **12**(a)(i) 6 (ii) 3 (b) -64, 8i
- **13(b)** $n = 2, 6, 10, \dots$
- **15(b)** -2^{2n}

Exercise **7B** (Page 47) _

- **7(c)** b = 2, c = -1
- (d) No, since $\sin \frac{\pi}{10} = \sin \frac{9\pi}{10}$ and $\sin \frac{13\pi}{10} = \sin \frac{17\pi}{10}$ (e) $\sin \frac{\pi}{10} = \frac{\sqrt{5}-1}{4}$, $\sin \frac{3\pi}{10} = \frac{\sqrt{5}+1}{4}$ 8(b) $\theta = 0, \frac{\pi}{6}, \frac{5\pi}{6}, \pi, \frac{7\pi}{6}, \frac{11\pi}{6}$ 11(b) $z = \frac{1}{2} \pm \frac{\sqrt{3}}{2}i$ or $\frac{3}{5} \pm \frac{4}{5}i$

- **12(a)** $8(1-10s^2+24s^4-16s^6)$
- **(b)** $x = 2\sin\frac{n\pi}{8}$ for n = 1, 2, 3, 5, 6, 7

- Exercise **7C** (Page 52) $1 \text{(a) } 1, \ \text{cis} \ \frac{2\pi}{3} = -\frac{1}{2} + \frac{\sqrt{3}}{2} i, \ \text{cis} \ \frac{4\pi}{3} = -\frac{1}{2} \frac{\sqrt{3}}{2} i$
- (d)(i) 1 (ii) 0
- **2(a)** $z = \pm 1, \, \frac{1}{2} + \frac{\sqrt{3}}{2}i, \, \frac{1}{2} \frac{\sqrt{3}}{2}i, \, -\frac{1}{2} + \frac{\sqrt{3}}{2}i,$
- $-\frac{1}{2} \frac{\sqrt{3}}{2}i \quad \text{(e)} \quad (z^2 z + 1)(z^2 + z + 1)$ $3(a) \quad \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i, \quad \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}i, \quad -\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i, \quad -\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}i$ $(b) \quad (z^2 \sqrt{2}z + 1)(z^2 + \sqrt{2}z + 1)$ $4(a) \quad i, \quad -i, \quad \frac{\sqrt{3}}{2} + \frac{1}{2}i, \quad \frac{\sqrt{3}}{2} \frac{1}{2}i, \quad -\frac{\sqrt{3}}{2} + \frac{1}{2}i, \quad -\frac{\sqrt{3}}{2} \frac{1}{2}i$ $5(a) \quad \text{cis} \quad \left(-\frac{7\pi}{10}\right), \quad \text{cis} \quad \left(-\frac{3\pi}{10}\right), \quad \text{cis} \quad \frac{\pi}{10}, \quad \text{cis} \quad \frac{\pi}{2} = i, \quad \text{cis} \quad \frac{9\pi}{10}$

- **(b)** $\operatorname{cis}\left(-\frac{5\pi}{8}\right)$, $\operatorname{cis}\left(-\frac{\pi}{8}\right)$, $\operatorname{cis}\frac{3\pi}{8}$, $\operatorname{cis}\frac{7\pi}{8}$
- (c) $1 + \sqrt{3}i$, $-1 \sqrt{3}i$, $\sqrt{3} i$, $-\sqrt{3} + i$
- (d) $2 \operatorname{cis} \left(-\frac{17\pi}{20}\right), \ 2 \operatorname{cis} \left(-\frac{9\pi}{20}\right), \ 2 \operatorname{cis} \left(-\frac{\pi}{20}\right), \ 2 \operatorname{cis} \frac{7\pi}{20},$ $2 \operatorname{cis} \frac{3\pi}{4}$
- **6(a)** -1, $\cos \frac{\pi}{5}$, $\cos \left(-\frac{\pi}{5}\right)$, $\cos \frac{3\pi}{5}$, $\cos \left(-\frac{3\pi}{5}\right)$
- 7(a) 1, $\operatorname{cis}\left(\pm\frac{2\pi}{7}\right)$, $\operatorname{cis}\left(\pm\frac{4\pi}{7}\right)$, $\operatorname{cis}\left(\pm\frac{6\pi}{7}\right)$
- (c) $(z-1) \times (z^2 2\cos\frac{2\pi}{7}z + 1) \times$
- $(z^2 2\cos\frac{4\pi}{7}z + 1) \times (z^2 2\cos\frac{6\pi}{7}z + 1)$
- **8(a)(i)** 1, $cis \frac{2\pi}{5}$, $cis \left(-\frac{2\pi}{5}\right)$, $cis \frac{4\pi}{5}$, $cis \left(-\frac{4\pi}{5}\right)$

- **9(a)** cis $\frac{2k\pi}{9}$ for k = -4, -3, -2, -1, 0, 1, 2, 3, 413(a) 3, when k is a multiple of 3, 0 otherwise.
- **(b)** $(1+\omega)^n = \sum_{r=0}^n \binom{n}{r} \omega^r$ and
- $(1+\omega^2)^n = \sum_{r=0}^n \binom{n}{r} \omega^{2r}$
- **14(a)** The roots are $-i \cot \frac{(2k-1)\pi}{4\pi}$ for $k = 1, 2, 3, \ldots, 2n$.

Chapter Five

Exercise **5A** (Page 4) _

1(a)
$$(x-2)(x+1-\sqrt{3})(x+1+\sqrt{3})$$

(b)
$$(x-1)(x+2-\sqrt{2})(x+2+\sqrt{2})$$

(c)
$$(x-1)(x-1-\sqrt{5})(x-1+\sqrt{5})$$

- **2(a)** The coefficients of P(x) are real, so complex zeroes occur in conjugate pairs. **(b)** 6
- **3(a)** 1 + 2i; the coefficients of P(x) are real, so complex zeroes occur in conjugate pairs.
- (c) $P(x) = (x+2)(x^2-2x+5)$
- **4(a)** 3i; the coefficients of P(z) are real, so complex zeroes occur in conjugate pairs. **(b)** z^2+9
- (c) $P(z) = (2z+3)(z^2+9)$
- **5(b)** 0; the coefficients of P(z) are real, so complex zeroes occur in conjugate pairs.

(c)(i)
$$P(z) = (2z-1)(z-3-i)(z-3+i)$$

(ii)
$$P(z) = (2z - 1)(z^2 - 6z + 10)$$

6(a) The coefficients of Q(x) are real, so complex zeroes occur in conjugate pairs. **(b)** $3+\sqrt{5},$ $3-\sqrt{5}$

(c)(i)
$$(x-2i)(x+2i)(x-3-\sqrt{5})(x-3+\sqrt{5})$$

(ii)
$$(x^2+4)(x-3-\sqrt{5})(x-3+\sqrt{5})$$

(iii)
$$(x^2+4)(x^2-6x+4)$$

- **7(a)** $x = 1 \pm 3i, 3 \text{ or } -2$ **(b)** $x = 1 \pm i \text{ or } 2 \pm i$
- 8(a) a = 3 (b) b = 1
- (c) $(x^2 6x + 10)(x^2 6x + 13)$
- **9**(**b**) k = 3
- **10(b)** m = 7, n = -4
- 11(a) -7-4i (b)(i) -7+4i (ii) 2x-7
- **12(b)** $P(z) = \frac{1}{2}(z^4 2)(2z^4 1)$ so one root is $z = \sqrt[4]{2}$. (c) $\sqrt[4]{2}, \frac{1}{\sqrt[4]{2}}, -\sqrt[4]{2}, -\frac{1}{\sqrt[4]{2}},$

and $i\sqrt[4]{2}$, $\frac{1}{\sqrt[4]{2}}i$, $-i\sqrt[4]{2}$, $-\frac{1}{\sqrt[4]{2}}i$

- 13(a) P(x) has minimum value B, when x = 0. Since B > 0, it follows that P(x) > 0 for all real values of x. (b) -ic, -id; the coefficients of P(x) are real, so complex zeroes occur in conjugate pairs.
- 14(a) They form a conjugate pair, since P(x) has real coefficients.

15(a) The minimum stationary point is at x = 1. f(1) = k - 2 > 0. Hence the graph of f(x) has

only one x-intercept which lies to the left of the maximum stationary point at x = -1.

(b) f(x) has real coefficients (d) -14, $7 \pm 12i$

Exercise **5B** (Page 10) ___

- 1(a)(ii) 3 is a double zero of P(x) (b) 3, 3, -2
- (c) $P(x) = (x-3)^2(x+2)$
- **2(a)(ii)** -1 is a triple zero of P(x)
- **(b)** -1, -1, -1, -5 **(c)** $P(x) = (x+1)^3(x+5)$
- **3**(a) -3 and 3 (b) 3 (c) -6
- **4(a)** $\frac{5}{2}$ and -5 **(b)** -5 **(c)** 10
- **5(a)** -2 **(b)** $\frac{3}{2}$, $P(x) = (x+2)^2(2x-3)$
- **6(a)** $\frac{1}{2}$ **(b)** 2, $P(x) = (2x-1)^3(x-2)$
- **7(b)** $x = 3, -\frac{1}{2} + \frac{\sqrt{3}}{2}i, -\frac{1}{2} \frac{\sqrt{3}}{2}i$
- 8(a) k = 27 or -5
- **(b)** When k = 27, $P(x) = (x-3)^2(x+3)$
- and when k = -5, $P(x) = (x+1)^2(x-5)$.
- 9 a = 1, b = -3, c = 2
- **10(a)** -3 **(b)** c = -54 **(c)** $P(x) = (x+3)^3(x-2)$
- **11(a)** b = -5 and c = 8
- **(b)** $x = \frac{1}{2}(3 \sqrt{5})$ or $\frac{1}{2}(3 + \sqrt{5})$
- 12 The Fundamental Theorem of Algebra only applies to polynomials of degree ≥ 1 .
- **15** Hint: consider P(x) P'(x)
- **16(b)(ii)** m < 0 (iii) $x = -\sqrt{-\frac{m}{2}}$ or $\sqrt{-\frac{m}{2}}$
- **19**(a) HINT: $x^2 = -(2px + q)$
- (b) Hint: $P'(\alpha) = 0$.
- **20(b)** $(z-\alpha)^2(z-\overline{\alpha})^2$ is a factor. **(c)** HINT: Begin by writing: $P(z) = (z-2\operatorname{Re}(\alpha)+|\alpha|^2)^2 \times Q(z)$

Exercise **5C** (Page 17) _____

- 1(a) $\pm 3i$ (b) $2 \pm 3i$ (c) $Q(x) = x^2 4x + 13$
- **2(a)** $-4\pm 2i$ **(b)** $-2\pm i$ **(c)** $Q(x) = 4x^2 + 16x + 20$
- 3 $8P(\frac{x}{2}) = x^3 20x + 24$
- 4 $x^3 2x^2 7x + 1 = 0$
- **5**(a) 4 (b) 4 (c) 16 (d) 72 (e) 224
- **6(a)** $x^3 3x^2 + 1 = 0$ **(b)** $x^3 6x^2 + 9x 1 = 0$
- **7(a)(i)** $27x^4 + 18x^3 3x^2 + 4x 1 = 0$
- (ii) $x^4 4x^3 + 3x^2 18x 27 = 0$
- **(b)(i)** $x^4 + 14x^3 + 71x^2 + 160x + 135 = 0$
- (ii) $x^4 14x^3 + 71x^2 160x + 135 = 0$
- 8(a) $x^3 + 2mx^2 + m^2x n^2 = 0$
- **(b)** $n^2x^3 m^2x^2 2mx 1 = 0$
- **9(a)** $4 + 2\sqrt{3}$ **(b)** $x^4 8x^2 + 4 = 0$
- (c) $x = \sqrt{3}, -\sqrt{3}, -2 + \sqrt{3} \text{ or } -2 \sqrt{3}$
- **10(a)** $x^4 5x^2 + 6 = 0$ **(b)** $x = -3 \pm \sqrt{2}$ or $-3 \pm \sqrt{3}$
- **11(a)(i)** -4 (ii) 3 (b)(i) $2x^3 + 32x^2 + 163x + 262 = 0$

21

CHAPTER 5: Polynomials

$$\begin{array}{ll} \text{(ii)} & 2x^3+24x^2+27x-162=0 \\ \textbf{12(a)} & \text{Use the sum of roots.} \\ \textbf{13(a)(i)} & 8 & \textbf{(ii)} & 6 & \textbf{(c)} & 3, \ 1+i, \ 1-i \\ \textbf{14(a)(i)} & -p & \textbf{(ii)} & -r & \textbf{(c)(ii)} & P(0)=-8, \ P(1)=2 \\ \textbf{19(a)} & \text{Replace } x \text{ with } -\frac{p}{x+1} \text{ to get} \\ rx^3+(3r-pq)x^2+(p^3-2pq+3r)x+(r-pq)=0 \\ \textbf{20(a)(i)} & -\frac{1}{2}n(n+1) & \textbf{(ii)} & (-1)^n \ n! \end{array}$$

48 CHAPTER 3: Conics SGS Notes Year 12

Appendix — Conic Grids

Parabola:

Ellipse:

CHAPTER 3: Conics

50 CHAPTER 3: Conics SGS NOTES YEAR 12

Hyperbola:

Chapter Three

Exercise **3A** (Page 3) __

CHAPTER 3: Conics

1(b) Both points are equidistant from d and S.

 $\begin{array}{l} \textbf{2(b)} \ \ \text{In both cases} \ \frac{PS}{PQ} = \frac{1}{2}. \\ \textbf{3(b)} \ \ \text{In both cases} \ \frac{PS}{PQ} = 2. \end{array}$

5(c) They are the same: PS + PS' = 16 units.

(d) $\frac{PS'}{PQ'} = \frac{PS}{PQ} = \frac{1}{2}$, always.

Exercise **3B** (Page 7) _

1(b) $x_1(y-b) = y_1(x-a)$

2(a) 3x - y = 4 **(b)** x + 2y = 6 **(c)** x + 4y = -9

(d) 2y - 2x = 5

3(a) $C=(-1,2), r=\sqrt{5}$ (b) $C=(3,0), r=2\sqrt{2}$

(c) C = (-3, -2), r = 4 (d) $C = (\frac{1}{2}, -\frac{3}{2}), r = \frac{1}{\sqrt{2}}$

4(a) $(x+1)^2 + (y-1)^2 = 2$

(b) $(x-2)^2 + (y+1)^2 = 10$

(c) $(x-3)^2 + (y-4)^2 = 13$

(d) $(x+3)^2 + (y+3)^2 = 20$

5(a) x(x+2) + y(y-2) = 0

(b) (x-5)(x+1) + y(y+2) = 0

(c) (x-1)(x-5) + (y-7)(y+1) = 0

(d) (x+5)(x+1) + (y+7)(y-1) = 0

6(a) $x \times r \cos \theta + y \times r \sin \theta = r^2$ **(b)** $x_1 x + y_1 y = r^2$.

7(a) 3x + 4y = 25 **(b)** x + y = 2 **(c)** $y\sqrt{3} - x = 4$

(d) x + 7y = -50

8 $x^2 + (y-2)^2 = 10$ or $(x-4)^2 + (y+2)^2 = 10$

9 $(x+1)^2 + (y-3)^2 = 20$

10(b)(i) $(b+mh-k)^2 = r^2(m^2+1)$

12(b) $\frac{b^2-r^2}{m^2+1}$ (c) b^2-r^2 (d) The product of intercepts of intersecting secants is constant.

13(a) $\frac{\sin \theta - \sin \phi}{\cos \theta - \cos \phi}$ (c) Angles in the same segment are equal.

14(a) $PA^2 = x_0^2 + y_0^2 - r^2$ **(b)** Tangents to a circle from an external point are equal.

16 $(x-5)^2 + (y+5)^2 = 37$

Exercise 3C (Page 16)

1(a) $\frac{3}{5}$

(b) (3,0) and (-3,0)

(c) $x = \frac{25}{3}$ and $x = -\frac{25}{3}$ (f) $(\frac{5}{2}, 2\sqrt{3})$

2(b) $x = 2\cos\theta, \ y = \frac{4}{3}\sin\theta$

 $\begin{array}{ll} {\bf 4(b)} \ \ \frac{x^2}{25}+\frac{y^2}{9}=1 & {\bf (c)} \ \frac{4}{5} \\ {\bf 5(a)} \ SB=a & {\bf (b)(i)} \ \frac{x^2}{10}+y^2=1 & {\bf (ii)} \ \frac{x^2}{25}+\frac{y^2}{9}=1 \\ {\bf 6} \ \frac{x^2}{36}+\frac{y^2}{20}=1 \end{array}$

9(a) 3x - 4y = 12 **(b)** 5x + 8y + 4 = 0

15(b) $S'P = 2(5 + 2\sqrt{3})$

17(a) $\frac{b}{a} \to 1^-$ and the ellipse becomes more circu-(b) $\frac{b}{a} \to 0^+$ and the ellipse becomes long and slender.

18(a) $-3 + i\sqrt{5}$

19(a) $\lambda < 2$ (b) The length of the major axis increases from $2\sqrt{3}$ to $2\sqrt{2}$, while the length of the minor axis starts at 2 and approaches zero. (c) When $\lambda = 2$, b = 0, so the ellipse has collapsed onto the interval joining $(-\sqrt{2},0)$ and $(\sqrt{2},0)$.

21 All three coalesce at x = a.

22(b)(ii) In the limit, $y^2 = -4x$ is obtained. This is a parabola with focal length 1.

(c) A parabola with focal length f is obtained.

Exercise **3D** (Page 20) _

4(b) $A = \left(\frac{a^2 - b^2}{a}\cos\theta, 0\right), B = \left(0, \frac{b^2 - a^2}{b}\sin\theta\right)$ 7(a) $\frac{a}{b} = \frac{1}{e^2} = \frac{1}{2}(\sqrt{5} + 1)$ — the golden ratio.
(b) $e = \frac{1}{\sqrt{2}}$ 8(a) $\frac{b^2(ac - x_1)}{acy_1}$ 9(a) $\frac{x_1x_2}{a^2} + \frac{y_1y}{b^2} = 1$

52 CHAPTER 3: Conics SGS NOTES YEAR 12

10(b) $R = \left(\frac{a}{e}, \frac{b\sin\theta}{e\cos\theta}\right)$

11(d) Only if $y_1 = 0$, since $|e^2x_1| < ae$.

12(b)
$$\frac{ab}{\sqrt{b^2\cos^2\theta + a^2\sin^2\theta}}$$

(c) $R = (a\sin\theta, -b\cos\theta), R' = (-a\sin\theta, b\cos\theta)$

(d) $|\triangle RPR'| = ab$

15(a) Q is outside the ellipse except when Q = P.

(b) $\triangle SUP \equiv \triangle S^*UP$ so $S'P + PS^* = S'P + PS$. If the line passed through any other point Q, the distance would be greater than this.

16(a) Matching sides, $\triangle STP \equiv \triangle RTP$

(b)
$$S'P + PR = S'P + PS = 2a$$
,

since $\triangle STP \equiv \triangle RTP$.

(c) $\triangle S'RS \parallel \triangle OTS$ so OT = a.

17 Let TS intersect the auxiliary circle again at T^* . By symmetry in the circle, $ST^* = S'T'$. So $ST \times S'T' = ST \times ST^* = AS \times SA'$ (intersecting chords)

Exercise **3E** (Page 31)

1(a)
$$e = \frac{3}{2}$$
, $S = (3,0)$,

$$S' = (-3, 0),$$

$$d: x = \frac{4}{3},$$

$$a \cdot x = \frac{3}{3}$$

$$d': x = \frac{4}{3}$$
 (b) $y = \frac{\sqrt{5}}{2}x, y = -\frac{\sqrt{5}}{2}x$

(e)
$$(2\sqrt{2}, \sqrt{5})$$

$$\doteqdot (2{\cdot}83, 2{\cdot}24)$$

2(a)
$$S = (2\sqrt{2}, 0),$$

$$S = (-2\sqrt{2}, 0),$$

$$d: x = \sqrt{2},$$

$$d: x = -\sqrt{2}$$

$$a \cdot x = \sqrt{2}$$

(b)
$$y = x, y = -x$$

(d)
$$(2\sqrt{2}, -2)$$

 $= (2 \cdot 28, -2)$

$$= (2.28, -2)$$

3(a)
$$e = \frac{5}{4}$$
, $S = (5,0)$, $S' = (-5,0)$,

$$d: x = \frac{16}{5}$$

$$a \cdot x - \frac{1}{5}$$

$$d': x = -\frac{16}{5}$$

(b)
$$y = \frac{3}{4}x$$
, $y = -\frac{3}{4}x$

(d)
$$x = 4 \sec \theta$$
, and

 $y = 3 \tan \theta$

(e)
$$(8, -3\sqrt{3})$$

4(a)
$$\left(-\frac{2}{\sqrt{3}},1\right)$$
 (b) $x^2 - \frac{y^2}{3} = 1$ (c) 2
5(a) $\frac{x^2}{4} - \frac{y^2}{12} = 1$ (b) $\frac{x^2}{25} - \frac{y^2}{200} = 1$

5(a)
$$\frac{x^2}{4} - \frac{y^2}{12} = 1$$
 (b) $\frac{x^2}{25} - \frac{y^2}{200} = 1$

7(a)
$$4x - 9y = 36$$

15(b) It collapses onto the asymptotes: $\frac{y^2}{r^2} = e^2 - 1.$

16(b) Since z is closer to 2 than -2, the left branch is omitted. Thus arg(z) is in the fourth and first quadrants between the asymptotes.

17(b)(ii) In the limit, $y^2 = 4x$ is obtained. This is a parabola with focal length 1.

(c) A parabola with focal length f is obtained.

Exercise **3F** (Page 36) _

2(b)
$$e = \sqrt{2}$$
 (c) $e = \frac{1}{2}(1 + \sqrt{5})$, the golden ratio.

4(b)
$$x = \frac{4}{3}, \ x = -\frac{4}{3}, \ y = \frac{\sqrt{5}}{2}x, \ y = -\frac{\sqrt{5}}{2}x$$
11(a) $2b|\sec\theta|$ **(b)** $OT = \frac{a}{|\sec\theta|}$

11(a)
$$2b|\sec\theta|$$
 (b) $OT = \frac{a}{|\sec\theta|}$

$$\begin{array}{ll} {\bf 17(c)} \;\; (-b,0) \\ {\bf 18(a)} \;\; \frac{a^2}{x_0} \end{array}$$

18(a)
$$\frac{a^2}{r_0}$$

21(a) It is the hyperbola $\frac{x^2}{c^2\cos^2\theta} - \frac{y^2}{c^2\sin^2\theta} = 1$ with eccentricity $e = \sec \theta$ and the same foci as the ellipse.

(b) It is the ellipse $\frac{x^2}{c^2 \sec^2 \theta} + \frac{y^2}{c^2 \tan^2 \theta} = 1$ with eccentricity $e = \cos \theta$ and the same foci as the hyperbola.

Exercise **3G** (Page 44)

4(b)
$$Q\left(-\frac{c}{t^3}, -ct^3\right)$$
 (d) $Q \equiv R$

5(a) p and q have opposite sign.

6(c) Q is the result of reflecting P in y = x.

9(b)
$$Q = (3ct, -\frac{c}{t}), Q' = (-ct, \frac{3c}{t})$$

10(a) x + pqy = c(p+q)

13(b) $\left(\frac{c}{2t^3}(t^4-1), \frac{c}{t}\right)$

Chapter Eight

Exercise **8A** (Page 60)

CHAPTER 8: Graphs

5(a) It could be a vertical shift of two down or a reflection in the x-axis. (b) It could be a shift left by $\frac{\pi}{2}$ or a reflection in the x-axis or a reflection in the y-axis.

9(b) The converse is not true. For example, a primitive of $3x^2$ is $x^3 + 1$ which is neither even nor odd. (c) The converse is true in this case.

SGS NOTES YEAR 12

98 CHAPTER 8: Graphs

$$\mathbf{4(b)(i)} \ \ y = \begin{cases} 2 & \text{for } x < -1 \\ -2x & \text{for } -1 \leq x < 1 \\ -2 & \text{for } x \geq 1 \end{cases}$$

$$\mathbf{(ii)} \ \ y = \begin{cases} 3 - 2x & \text{for } x < 1 \\ 1 & \text{for } 1 \leq x < 2 \\ 2x - 3 & \text{for } x \geq 2 \end{cases}$$

Both odd: f(x) = x, $g(x) = \sin x$.

Both even: $f(x) = x^2$, $g(x) = \cos x$.

Odd and even: $f(x)=x,\,g(x)=\cos x.$ (c) When $g(x)=-f(x),\,h(x)\equiv 0$ which is even.

11 2

Exercise **8C** (Page 68) _____

4(a)

(b)

(c)

(d)

(e)

(**f**)

5(a)

(b)

6

8(a)

9(a) x = -2, -1, 1, 2

(c)(i) y = 1

(ii)
$$\left(\frac{\pm 4}{\sqrt{10}}, -\frac{9}{16}\right)$$

(d) $-\frac{9}{16} < b < 1$

11 y = h(x) has a hole at the origin.

12(a)

(b)

(c)

(d)

13(a)

(b) $y = \cos 5x$

Exercise **8D** (Page 72)

8(b) |y| = |f(x)| and |y| = |f(|x|)|**(e)** Yes: |y| = f(|x|) and |y| = |f(|x|)| are the same if $f(|x|) \ge 0$, for example $f(x) = e^x - 1$.

(**f**)

10(a) Either (2,0) is a minimum of f(x), or n is even and f(x) changes sign across x = 2.

(b) n is odd and f(x) has a maximum at (2,0).

(c) n is odd and f(x) changes sign across x = 2.

(ii) A horizontal plane through the apex yields a solitary point at the origin. A vertical plane through the apex yields a pair of perpendicular lines through the origin.

13 When $f(x) \leq 0$ for all x in the natural domain. 15(b) $1 < x \leq 2$

SGS NOTES YEAR 12

(e) $\sinh x = \frac{e^x - e^{-x}}{2}$

Exercise **8I** (Page 93) _____

- 1(a) y' + 1 (b) y + xy' (c) 2x 2yy'
- (d) $3y^2y' + 3y + 3xy'$ (e) $y^{-1}y'$ (f) e^yy'
- (g) y'(2x+3y)+y(2+3y') (h) $3(x+y)^2(1+y')$
- (i) $4(x^2+y^2)(x+yy')$

2(a)
$$y = \sqrt{x^2 - 9}$$
 or $y = -\sqrt{x^2 - 9}$

(b)
$$y = \sqrt{4 - x^2}$$
 or $y = -\sqrt{4 - x^2}$

(c)
$$y = 1 + \sqrt{1 - x^2}$$
 or $y = 1 - \sqrt{1 - x^2}$

(d)
$$y = -x + \sqrt{1 - x^2}$$
 or $y = -x - \sqrt{1 - x^2}$

- 3(a) $y' = -\frac{x}{y}$, (-6,0), (6,0) (b) $y' = \frac{x}{y}$, (-4,0),
- (4,0) (c) $y' = \frac{x-y}{x-2y}$, (-2,-1), (2,1) (d) y' =
- $\frac{3x^2+y^2}{2y(2-x)}$, (0,0)
- **(b)** none **(c)** $(-\sqrt{2}, -\sqrt{2}),$ **4(a)** (0,-6), (0,6) $(\sqrt{2},\sqrt{2})$ (d) none
- **5(a)** $\frac{5}{4}$ **(b)** $\frac{1}{4}$ **(c)** 0 **(d)** $-\frac{1}{4}$ **(e)** $\frac{1}{2}$ **(f)** $\frac{13}{48}$
- **6(a)** y = x + 4 **(b)** 10x 7y = 1 **(c)** x 2y 5 = 0
- (d) y = 3x + 2 (e) y = 12x 23 (f) y = 2x 3
- 7(a) 4x 7y + 19 = 0 (b) The denominator of y'is never zero. (d) 1
- **8(b)** y = 1 x

- **10**(a) $x \le -1 \text{ or } x \ge 1$
- (**b**) no
- (d) $y = 0, y = x\sqrt{3}$
- (f) no

- **11**(a) $-1 \le x \le 1$
- **(b)** (-1,0), (0,0), (1,0)
- (c) The relations is even in both x and y.
- (g) $(\frac{1}{\sqrt{2}}, \frac{1}{2})$

- **12(a)** (0,0) **(b)(ii)** $(\frac{3}{2},\frac{3}{2})$ (g) (c)(ii) $(\sqrt[3]{2}, \sqrt[3]{4})$ (d)(iii) 0(e)(i) $(0,0), (\sqrt[3]{4}, \sqrt[3]{2})$
- (ii) The curve crosses itself. (f)(ii) x+y+1=0

Appendix — Table of Standard Integrals

Here is a table of standard integrals. A similar table is supplied on the last page of each examination paper.

STANDARD INTEGRALS

$$\int x^n \, dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} \, dx = \ln x, \quad x > 0$$

$$\int e^{ax} \, dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} \, dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} \, dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} \, dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} \, dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$

NOTE: $\ln x = \log_e x$, x > 0

97

Chapter Two

Exercise **2A** (Page 53) ____

1(a)
$$\frac{1}{2}\sin 2x + C$$
 (b) $3\tan \frac{x}{3} + C$

(c)
$$\frac{1}{5} \tan^{-1}(\frac{x}{5}) + C$$
 (d) $\sin^{-1}(\frac{x}{2}) + C$

(e)
$$\log (x + \sqrt{x^2 + 3}) + C$$

(f)
$$\log (x + \sqrt{x^2 - 5}) + C$$

2(a)
$$2(e^2-1)$$
 (b) $\frac{1}{2}$ (c) $\frac{\pi}{8}$ (d) $\frac{7}{2}$

(f)
$$\log \left(x + \sqrt{x^2 - 5} \right) + C$$

2(a) $2(e^2 - 1)$ (b) $\frac{1}{2}$ (c) $\frac{\pi}{8}$ (d) $\frac{\pi}{4}$
(e) $\log \left(\frac{3 + \sqrt{5}}{1 + \sqrt{5}} \right) = \log \left(\frac{1 + \sqrt{5}}{2} \right)$ (f) $2 \log 3$

3(a)
$$-\frac{1}{2}\log(1-x^2) + C$$
 (b) $\log(x+\tan x) + C$

(c)
$$\frac{1}{3}\log(1+\sin 3x)+C$$

4(a)
$$\frac{1}{3} \log 2$$
 (b) $\frac{1}{2} \log \left(\frac{e^2 + 1}{2} \right)$ **(c)** $\log 2$

5(a)
$$\frac{\pi}{3\sqrt{3}}$$
 (b) $\frac{\pi}{18}$ (c) $\frac{1}{2}\log\left(\frac{\sqrt{2}+1}{\sqrt{2}-1}\right) = \log(\sqrt{2}+1)$

(d)
$$\frac{1}{\sqrt{5}} \log \left(\frac{15 + 7\sqrt{5}}{5 + \sqrt{5}} \right) = \frac{1}{\sqrt{5}} \log(2 + \sqrt{5})$$

(d)
$$\frac{1}{\sqrt{5}} \log \left(\frac{15+7\sqrt{5}}{5+\sqrt{5}} \right) = \frac{1}{\sqrt{5}} \log(2+\sqrt{5})$$

6(a) $x + \log(x-1) + C$ (b) $x - 2\log(x+1) + C$

(c)
$$x + 2\log(x - 1) + C$$

7(a)
$$1 - \log 4$$
 (b) $1 - \frac{1}{4} \log 5$ **(c)** $\pi - 1$

8(a)
$$\frac{\pi}{3} - \frac{1}{2}$$
 (b) $\frac{\pi}{4} + \log 2$ (c) $\frac{1}{4}(\pi - \log 4)$

(d)
$$\frac{\pi}{8} + \frac{1}{2} \log 2$$

(d)
$$\frac{\pi}{8} + \frac{1}{2} \log 2$$

10(a) $\frac{x^3}{3} - \frac{x^2}{2} + x - \log(x+1) + C$
(b) $\frac{1}{2} \left(x^2 - \log(x^2+1) \right) + C$

(b)
$$\frac{1}{2} (x^2 - \log(x^2 + 1)) + C$$

(c)(i)
$$\frac{x^3}{3} + \frac{x^2}{2} + x + \log(x - 1) + C$$

$$\begin{array}{l} \text{(c)(i)} \ \frac{x^3}{3} + \frac{x^2}{2} + x + \log(x-1) + C \\ \text{(ii)} \ \frac{x^3}{3} - x + \tan^{-1}x + C \\ \end{array} \\ \text{(iii)} \ \frac{x}{3} - x + \tan^{-1}x + C \\ \end{array}$$

(iv)
$$\frac{1}{3}(2x-8)\sqrt{2+x}+C$$
 (v) $-\frac{2}{3}(2+x)\sqrt{1-x}+C$

(vi)
$$\frac{1}{2}x^2 - 2\log(x^2 + 4) + C$$

11(a)
$$\log(e+e^{-1})$$
 (b) $\frac{1}{2}\log\left(\frac{e^2+1}{2}\right)$ **(c)** $\frac{\pi}{12}+\log 2$

12(a)
$$\frac{1}{2}x^2 + \log(x+1) + C$$
 (b) $\frac{1}{3}x^3 + 3\log(x-2) + C$

(c)
$$x + \log(1 + x^2) + C$$

13
$$2\log(1+\sqrt{x})+C$$

Exercise **2B** (Page 57) _____

1(a)(i)
$$-\frac{1}{2}\log(1-x^2)+C$$
 (ii) $\log(1+\sin x)+C$

(iii)
$$\log(\log x) + C$$
 (b)(i) $\frac{1}{2} (\log(e^2 + 1) - \log 2)$

(ii)
$$\frac{1}{3} \log 2$$
 (iii) $\frac{1}{2} \log 3$

2(a)(i)
$$2e^{x^3}+C$$
 (ii) $e^{\tan x}+C$ (iii) $-e^{\frac{1}{x}}+C$

(b)(i)
$$\frac{1}{2}(e-1)$$
 (ii) $e-1$ **(iii)** $2e(e-1)$

3(a)
$$\frac{1}{5}(x^2+1)^5+C$$
 (b) $\frac{1}{7}(1+x^3)^7+C$

(c)
$$-\frac{2}{1+x^3} + C$$
 (d) $\frac{1}{2(x^2-3)^4} + C$

(e)
$$\sqrt{x^2 - 2} + C$$
 (f) $\frac{1}{2}\sqrt{1 + x^4} + C$

4(a)
$$\frac{-1}{2\sin^2 x} + C$$
 (b) $\frac{2}{1+\tan x} + C$ (c) $\frac{1}{3}(\log x)^3 + C$ (d) $2\sin\sqrt{x} + C$ (e) $\frac{1}{2}\tan^{-1}x^2 + C$

(d)
$$2\sin\sqrt{x} + C$$
 (e) $\frac{1}{2}\tan^{-1}x^2 + C$

(f)
$$\sin^{-1} x^3 + C$$

5(a)
$$\frac{7}{4}$$
 (b) $2 - \sqrt{3}$ (c) $3(\sqrt{3} - \sqrt{2})$

(d)
$$\frac{1}{5}$$
 (e) $\frac{1}{3}$ (f) 2

6(a)
$$-\frac{1}{42}$$
 (b) Begin by writing $x = (x - 1) + 1$.

7(a)
$$\frac{2}{15}(3x-2)(1+x)\sqrt{1+x}+C$$

(b)
$$2(\sqrt{x} - \log(1 + \sqrt{x})) + C$$

(c)
$$4\left(x^{\frac{1}{4}} - \frac{1}{2}\sqrt{x} + \frac{1}{3}x^{\frac{3}{4}} - \log(1 + x^{\frac{1}{4}})\right) + C$$

(d)
$$\tan^{-1} \sqrt{e^{2x} - 1} + C$$

8(a)
$$\frac{1}{9}$$
 (b) $\frac{128}{15}$ (c) $4 + 10 \log \frac{5}{7}$ (d) $\frac{\pi}{12}$

9(a)
$$2 \tan^{-1} \left(\sqrt{x} \right) + C$$
 (b) $\frac{2}{3} (x-2) \sqrt{x+1} + C$

10(a)
$$\frac{x}{\sqrt{1+x^2}} + C$$
 (b) $2\sin^{-1}\frac{x}{2} - \frac{1}{2}x\sqrt{4-x^2} + C$

(c)
$$-\frac{\sqrt{25-x^2}}{25x} + C$$
 (d) $-\frac{1}{x}\sqrt{1+x^2} + C$

11(a)
$$\frac{2}{3}$$
 (b) Begin by writing $x^3 = x(x^2 + 1) - x$.

13(b) Begin by writing
$$x^2 = 1 - (1 - x^2)$$
.

14(a)
$$\tan^{-1}\sqrt{x^2-1}+C_1$$
 (b) $\tan^{-1}\sqrt{x^2-1}+C_2$ 15(a) $\frac{\sqrt{3}}{8}-\frac{\sqrt{\epsilon(4+\epsilon)}}{4(2+\epsilon)}$ (b) $\frac{\sqrt{3}}{8}$

15(a)
$$\frac{\sqrt{3}}{8} - \frac{\sqrt{\epsilon(4+\epsilon)}}{4(2+\epsilon)}$$
 (b) $\frac{\sqrt{3}}{8}$

Exercise **2C** (Page 64) ___

Exercise **2C** (Page 64)

1(a)
$$\frac{1}{x-1} - \frac{1}{x+1}$$
 (b) $\frac{1}{3(x-4)} - \frac{1}{3(x-1)}$ (c) $\frac{2}{x-3} + \frac{2}{x+3}$ (d) $\frac{2}{x-2} - \frac{1}{x-1}$ (e) $\frac{1}{5(x-2)} + \frac{4}{5(x+3)}$ (f) $\frac{1}{x-1} + \frac{2-x}{x^2+3}$
2(a) $\ln(x-4) - \ln(x-2) + C$

2(a)
$$\ln(x-4) - \ln(x-2) + C$$

(b)
$$2\ln(x+1) - 2\ln(x+3) + C$$

(c)
$$4\log(x-2) - \log(x-1) + C$$

(d)
$$3\log(x-1) - \log(x+3) + C$$

(e)
$$\log(x+1) + \log(2x+3) + C$$

(f)
$$2\log(x+1) + 3\log(2x-3) + C$$

3(a)
$$\frac{1}{4} \log \frac{3}{2}$$
 (b) $\log 2$ **(c)** $\log \frac{14}{3}$ **(d)** $\frac{1}{2} \log 2$

4(a)
$$\log(x-2) - 2\tan^{-1}x + C$$

(b)
$$\log(2x+1) - \frac{1}{2}\log(x^2+3) + C$$

(c)
$$\tan^{-1} x + 3\log x - \log(x^2 + 1) + C$$

5(a)
$$\frac{\pi}{4} - \log \frac{3}{2}$$
 (b) $\pi + \log 2$ **(c)** $\log 4 - \frac{3}{2} \log 3$

6(a)
$$5\log(x-1) + 7\log(x-2) - 12\log(2x-3) + C$$

(b)
$$\frac{3}{2}\log(x) - 5\log(x-2) + \frac{7}{2}\log(x-4) + C$$

7(a)
$$\frac{5}{3} \log 3 - \log 2$$
 (b) $2 \log 3 - 8 \log 2$

8(a)(i)
$$A=2, B=1, C=-3$$

(ii)
$$2x + \log(x - 1) - 3\log(x + 2) + C$$

(b)(i)
$$x + \log(x - 2) - 2\log(x + 1) + C$$

(ii)
$$3x + 2\log(x+4) + \log(x-5) + C$$

9(a)(i)
$$A=1,\,B=-1,\,C=2,\,D=-1$$

(ii)
$$\log 3 + \log 2 - \frac{1}{2}$$
 (b) $12 + \log 2$

10(a)(i)
$$A = 12, B = 2$$

(ii)
$$3x + 12\log(x-2) - \frac{2}{x-2} + C$$

(b)(i)
$$A = 23$$
, $B = 10$, $C = -23$, $D = 13$

(b)(i)
$$A=23,\,B=10,\,C=-23,\,D=13$$
 (ii) $23\log\left(\frac{x-1}{x-2}\right)-\frac{10}{x-1}-\frac{13}{x-2}+C$

12(a)
$$A = 0$$
, $B = 1$, $C = 0$, $D = 2$

13(a)
$$x + \log(x - 1) - \log(x + 1) + C$$

(b)
$$x + 2\log(x - 1) - \log x + C$$

(c)
$$x - \tan^{-1} x + \log x - \frac{1}{2} \log(x^2 + 1) + C$$

(d)
$$x + 9\log(x - 3) - 4\log(x - 2) + C$$

SGS NOTES YEAR 12

98 CHAPTER 2: Integration

(e) $\frac{1}{2}x^2 - x + 5\log(x) - 4\log(x+1) + C$ (f) $\frac{1}{3}x^3 + \frac{3}{2}x^2 + 7x + 16\log(x-2) - \log(x-1) + C$

Exercise **2D** (Page 68) _

1(a)
$$\frac{1}{3} \tan^{-1} \frac{x}{3} + C$$
 (b) $\log(x + \sqrt{9 + x^2}) + C$

(c)
$$\sin^{-1} \frac{x}{3} + C$$
 (d) $\log(x + \sqrt{x^2 - 9}) + C$

(e)
$$\frac{1}{6} \left(\log(x-3) - \log(x+3) \right) + C$$

(f)
$$\frac{1}{6} \left(\log(3+x) - \log(3-x) \right) + C$$

2(a)
$$\tan^{-1}(x+2) + C$$
 (b) $\frac{1}{4}\tan^{-1}\left(\frac{x-2}{4}\right) + C$

(c)
$$\log(x-3+\sqrt{x^2-6x+13})+C$$

(d)
$$\log(x+4+\sqrt{x^2+8x+12})+C$$

(e)
$$\sin^{-1} \frac{x-4}{5} + C$$

(f)
$$\frac{1}{2}\log\left(x+1+\sqrt{x^2+2x+\frac{3}{2}}\right)+C$$

3(a)
$$\frac{\pi}{8}$$
 (b) π (c) $\frac{\pi}{6}$ (d) $\frac{\pi}{2}$ (e) $\log 3$ (f) $\log 3$

4(a)
$$\log(x^2 + 2x + 2) - \tan^{-1}(x+1) + C$$

(b)
$$\frac{1}{2}\log(x^2+2x+10) - \frac{1}{3}\tan^{-1}\frac{x+1}{3} + C$$

(c)
$$\sqrt{(x+1)^2+9} - \log\left(x+1+\sqrt{(x+1)^2+9}\right)$$

(d)
$$\sqrt{x^2 - 2x - 4} + 4\log\left(x - 1 + \sqrt{x^2 - 2x - 4}\right)$$

(e)
$$-\sqrt{6x-x^2}+3\sin^{-1}\frac{x-3}{3}+C$$

(f)
$$-\sqrt{4-2x-x^2}+2\sin^{-1}\frac{x+1}{\sqrt{5}}+C$$

(f)
$$-\sqrt{4-2x-x^2} + 2\sin^{-1}\frac{x+1}{\sqrt{5}} + C$$

5(a) $\frac{1}{2}\log 2 + \frac{\pi}{8}$ (b) $\frac{1}{4}(3\pi - \log 4)$ (c) $\log 2 - \frac{\pi}{4}$

(d)
$$2 - \sqrt{3} - \frac{\pi}{6}$$
 (e) $3\log(3 + 2\sqrt{2}) - 4\sqrt{2}$

(f)
$$\log \left(1 + \sqrt{\frac{2}{3}}\right) + \sqrt{6} - 1$$

6(a)
$$\sqrt{x^2 - 1} - \log\left(x + \sqrt{x^2 - 1}\right) + C$$

(b)
$$\sin^{-1} x - \sqrt{1 - x^2} + C$$

(b)
$$\sin^{-1} x - \sqrt{1 - x^2} + C$$

(c) $\sqrt{6 + x - x^2} + \frac{5}{2} \sin^{-1} \frac{2x - 1}{5} + C$

7(a)
$$\frac{\pi}{3} + \sqrt{3} - 2$$
 (b) $3\sin^{-1}\frac{1}{3}$

(c)
$$2\sqrt{2} - \sqrt{3} + \log\left(\frac{2+\sqrt{3}}{3+2\sqrt{2}}\right)$$

8(a) $\frac{x}{\sqrt{4x-x^2}}$ is undefined at $x = 0$.

Exercise **2E** (Page 72).

1(a)
$$e^x(x-1) + C$$
 (b) $-e^{-x}(x+1) + C$

(c)
$$\frac{1}{9}e^{3x}(3x+2) + C$$
 (d) $x\sin x + \cos x + C$

(e)
$$-\frac{1}{2}(x-1)\cos 2x + \frac{1}{4}\sin 2x + C$$

(f)
$$(2x-3)\tan x + 2\log(\cos x) + C$$

2(a)
$$\pi$$
 (b) $\frac{\pi}{2} - 1$ (c) $\frac{\pi}{4} - \frac{1}{2} \log 2$ (d) $\frac{1}{4} (e^2 + 1)$

(e) e^{-1} (f) $1 + e^{-2}$

3(a)
$$x(\log x - 1) + C$$
 (b) $2x(\log x - 1) + C$

(c)
$$x \cos^{-1} x - \sqrt{1 - x^2} + C$$

4(a)
$$\frac{\pi}{4} - \frac{1}{2} \log 2$$
 (b) 1 (c) $\frac{1}{2}$

$$\mathbf{5(a)} \ \ \frac{1}{4} x^2 (2 \log x - 1) + C \quad \ \ \mathbf{(b)} \ \ \frac{1}{9} x^3 (3 \log x - 1) + C$$

(c)
$$-\frac{1}{x}(\log x + 1) + C$$

6(a)
$$(2-2x+x^2)e^x+C$$

(b)
$$x^2 \sin x + 2x \cos x - 2 \sin x + C$$

(c)
$$x(\log x)^2 - 2x \log x + 2x + C$$

7(a)
$$-\frac{1}{42}$$
 (b) $\frac{4}{15}(1+\sqrt{2}\,)$ (c) $\frac{128}{15}$

8(a)
$$\frac{1}{2}e^{x}(\cos x + \sin x) + C$$

(b)
$$-\frac{1}{2}e^{-x}(\cos x + \sin x) + C$$

9(a)
$$\frac{1}{5}(e^{\pi}-2)$$
 (b) $\frac{1}{5}(e^{\frac{\pi}{4}}+2)$

10(a)
$$\frac{1}{2\sqrt{3}}(\pi-\sqrt{3})$$
 (b) $\frac{\sqrt{3}\pi}{2}$ **(c)** $\pi-2$

12(a)
$$\frac{1}{2} \left(x \sqrt{a^2 - x^2} + a^2 \sin^{-1}(\frac{x}{a}) \right) + C$$

(b)
$$x \log(x + \sqrt{x^2 + a^2}) - \sqrt{x^2 + a^2} + C$$

(c)
$$x \log(x + \sqrt{x^2 - a^2}) - \sqrt{x^2 - a^2} + C$$

13(a)
$$\frac{1}{4}x^2(2\log x - 1) + C$$

(b)
$$\frac{1}{4}x^2 \left(2(\log x)^2 - 2\log x + 1\right) + C$$

15(a)
$$\frac{1}{32} (\sin 4x - 4x \cos 4x + 8x \cos 2x - 4 \sin 2x) + C$$

(b)
$$\frac{1}{18}(3x\sin 3x + \cos 3x + 9x\sin x + 9\cos x) + C$$

(c)
$$\frac{1}{4}e^x(\sin 3x - 3\cos 3x + 5\sin x - 5\cos x) + C$$

16(a)
$$\frac{1}{48}(3\sqrt{3}-\pi)$$
 (b) $\frac{1}{12}(\pi+2\log 2-2)$

Exercise **2F** (Page 78) _

1(a) $\sin x + C$ (b) $-\cos x + C$ (c) $-\log(\cos x) + C$

(d)
$$\log(\sin x) + C$$

2(a)
$$\frac{1}{3}\sin^3 x + C$$
 (b) $-\frac{1}{3}\cos^3 x + C$

(c)
$$\frac{1}{3}\cos^3 x - \cos x + C$$
 (d) $\sin x - \frac{1}{3}\sin^3 x + C$

(e)
$$\frac{1}{5}\sin^5 x - \frac{2}{3}\sin^3 x + \sin x + C$$

(f)
$$\frac{1}{4}\sin^4 x - \frac{1}{6}\sin^6 x + C$$

3(a)
$$\frac{\pi}{4}$$
 (b) $\frac{\pi}{12}$ **(c)** $\frac{\pi}{8}$

4(a)
$$\tan x + C$$
 (b) $\tan x - x + C$

(c)
$$\frac{1}{3} \tan^3 x + \tan x + C$$
 (d) $\frac{1}{3} \tan^3 x - \tan x + x + C$

5(a)
$$\sqrt{2}-1$$
 (b) $\frac{1}{27}(8\sqrt{3}-9)$ **(c)** $\frac{1}{2}(1-\log 2)$

(d)
$$\frac{4}{3}$$
 (e) $\frac{1}{3}(2-\sqrt{2})$ (f) $\frac{58}{15}$

6(a)
$$\frac{1}{4}$$
 (b) $\frac{1}{24}$ (c) $\frac{9}{64}$ (d) $\frac{53}{480}$ (e) $\frac{4}{15}$ (f) $\frac{7}{60\sqrt{2}}$

7(a)
$$\frac{1}{32}(\sin 4x + 8\sin 2x + 12x) + C$$

(b)
$$\frac{1}{32}(\sin 4x - 8\sin 2x + 12x) + C$$

(c)
$$\frac{1}{1024}(24x - 8\sin 4x + \sin 8x) + C$$

9(a) 1 (b)
$$\frac{1}{3} \log 2$$
 (c) $\frac{\pi}{4}$

10(a)
$$\frac{\pi}{4}$$
 (b) $\frac{2}{15}(1 + sqrt2)$ **(c)** $\frac{\pi}{16}$

11(a)
$$\frac{1}{2}\sin^2 x + C_1$$
 (b) $-\frac{1}{4}\cos 2x + C_2$

13(a)
$$\frac{1}{2} \left(\sec x \tan x - \log(\sec x + \tan x) \right) + C$$

(b)
$$\frac{1}{2} \left(\sec x \tan x + \log(\sec x + \tan x) \right) + C$$

(c)
$$\sec x \tan x (2 \sec^2 x + 3) + 3 \log(\sec x + \tan x) + C$$

14(a)
$$\frac{1}{2}$$
 (b) $\frac{4}{3}$ **(c)** $\frac{1}{2}$ **(d)** $\frac{\sqrt{3}}{4}$

15(a)
$$-\frac{1}{8}\cos 4x - \frac{1}{4}\cos 2x + C$$

(b)
$$-\frac{1}{8}\cos 4x + \frac{1}{4}\cos 2x + C$$

(c)
$$\frac{1}{16}\sin 8x + \frac{1}{8}\sin 4x + C$$

16(a)
$$\frac{1}{4}$$
 (b) $\frac{1}{6}$ **(c)** $\frac{3}{8}$

17(a)
$$\tan \frac{x}{2} + C$$
 (b) $\log \left(\frac{\tan \frac{x}{2}}{1 + \tan \frac{x}{2}} \right) + C$

(c)
$$\frac{1}{5} \log \left(\frac{1 + 2 \tan \frac{x}{2}}{2 - \tan \frac{x}{2}} \right) + C$$

18
$$x \sec x - \log(\sec x + \tan x) + C$$

20 $\frac{1}{2} \sin 3\theta + \sin^3 \theta + C$

Exercise **2G** (Page 83) _____

CHAPTER 2: Integration

3(b)
$$\frac{1}{2}(e^2-1)$$

4(b)
$$\frac{8}{15}$$

6(b)
$$\left(\frac{\pi}{2}\right)^6 - 30\left(\frac{\pi}{2}\right)^4 + 360\left(\frac{\pi}{2}\right)^2 - 720$$

7(b)
$$I_0 = 1$$
, $I_4 = \frac{128}{315}$

8(b)
$$u_4 = \frac{243}{1540}$$

9(b)
$$J_2 = -\frac{1}{2}x\sqrt{1-x^2} + \frac{1}{2}\sin^{-1}x + C$$

12(d)
$$\frac{1}{15} (14\sqrt{2} - 16)$$

13(d)
$$\frac{1}{9} \left((1+x^2)^4 + \frac{8}{7}(1+x^2)^3 + \frac{48}{35}(1+x^2)^2 \right)$$

$$+\frac{192}{105}(1+x^2)+\frac{384}{105}$$

14(d)
$$J_n = \frac{2n}{2n+3} J_{n-1}$$

15(d)
$$I_5 = \frac{1}{4} (2 \ln 2 - 1)$$

(f)
$$\frac{1}{2}\log(2+\sqrt{5})$$

2(a)
$$\sqrt{1+x^2}+C$$
 (b) $\tan^{-1}x+\frac{1}{2}\ln(1+x^2)+C$

(c)
$$-\frac{1}{5}\cos^5 x + C$$
 (d) $\log\left(\frac{2x+1}{x+1}\right) + C$

(c)
$$-\frac{1}{5}\cos^5 x + C$$
 (d) $\log\left(\frac{2x+1}{x+1}\right) + C$ (e) $\frac{1}{4}x^4\log x - \frac{1}{16}x^4 + C$ (f) $\frac{1}{6}\cos^3 2x - \frac{1}{2}\cos 2x + C$

(g)
$$\frac{1}{4} \tan^{-1} \frac{x+3}{4} + C$$
 (h) $x \sin 3x + \frac{1}{3} \cos 3x + C$

(i)
$$\frac{2}{2}(x-8)\sqrt{4+x}+C$$

4(a)
$$A=-\frac{2}{3}$$
, $B=\frac{2}{3}$, $C=-\frac{1}{3}$ 6 $\frac{1}{\sqrt{2}}+\frac{1}{2}\log(1+\sqrt{2})$

6
$$\frac{1}{\sqrt{2}} + \frac{1}{2}\log(1+\sqrt{2})$$

8(a)
$$A=0,\,B=-2,\,C=0,\,D=2$$
 (b) $\frac{\pi}{2}-1$

10
$$\frac{1}{2}a^2\sin^{-1}\frac{x}{a} + \frac{1}{2}x\sqrt{a^2 - x^2} + C$$

11(b)
$$\frac{1}{10}(\pi + \log \frac{27}{16})$$

12(a)
$$P = 2, Q = -1$$

(b)
$$2x - \log(3\sin x + 2\cos x - 1) + C$$

14(b)
$$6 - 2e$$

Exercise **2I** (Page 93) _____

1(a)
$$0$$
 (b) 0

2(a)
$$\frac{1}{132}$$
 (b) $\frac{16}{105}$ **(c)** $\frac{\pi^2}{4}$

6(a) The integrand is undefined at x = 1.

(b)
$$2(1-\sqrt{1-a})$$
 (c) 2

7(a) The interval is unbounded.

(b)
$$\frac{1}{2} \tan^{-1} \left(\frac{N}{2} \right)$$
 (c) $\frac{\pi}{4}$

9(a)
$$\frac{\pi}{4}$$
 (b) 0 **(c)** $1 - \frac{\pi}{4}$

10(b)
$$\frac{\pi^2}{4}$$

11(a)
$$2\sqrt{2}$$
 (b) 4 (c) $\frac{\pi}{2}$ (d) $\frac{\pi}{2}$ (e) $1 + \frac{\pi}{2}$ (f) e

12(a) 1 (b)
$$\frac{\pi}{2}$$
 (c) $\frac{3\pi}{4}$ (d) $\frac{1}{2}$ (e) 1 (f) $\frac{\pi}{2}$

20(b)
$$u_n = -\frac{n}{2}u_{n-1}$$
 (c) $\frac{3}{4}$

18 CHAPTER 10: Further Extension 1

Chapter Ten

Exercise **10A** (Page 2) ____

15(a) Converse of angles in a semi-circle at X, Y and Z.

20 Let D be the foot of the perpendicular from A to BC, then use trigonometry in $\triangle OAD$.

Exercise **10B** (Page 8)

- 1 Begin with LHS RHS.
- **2** Begin with LHS RHS.
- **4(a)** Begin with $(a-b)^2 \ge 0$ and put $a = \sqrt{x}$ and $b = \sqrt{y}$. **(b)** Use part (a) three times.
- 5(a) Begin with $(p-q)^2 \ge 0$.
- (b) Use part (a) three times and add.
- (c) Begin with $(p+q+r)^2$ and use part (b).
- **6(a)** Use Question 4(b) with $p = a^2$ and so on.
- (b) Use Question 4(b) with p = ab and so on.
- (c) Use parts (a) and (b).
- 7(a) See Question 4(a).
- (b) See Question 4(b).
- (c) Use part (b).
- (d) Use part (c) and put $a^3 = x$ and so on.
- (e) Expand and then used part (d). A more sophisticated approach is to use part (a) and in the first bracket put $a^2 = 1$ and $b^2 = x$, and so on.
- 8(a) See Question 4(a).
- (b)(i) Expand the LHS and use part (a).
- (c)(i) The triangle inequality: the length of any side is between the sum of the other two and the difference of the other two.
- (ii) Begin with LHS RHS and use part (i).
- **9(a)** Use Question 7(a) and divide by ab.
- (b) Expand the LHS and use part (a).
- (c)(i) Begin with Question 7(a) and multiply by (a+b).
- (ii) Add part (i) and use part (a).
- (iii) Begin with part (ii) and replace a^3 with $\frac{a}{b}$.
- **10(a)** Replace a^2 with $a^2 + b^2$ and so on.
- (b) Use part (a) and put $a^2 = w$ and so on.
- 11(a) Begin with Question 7(a) and put $a^2 = \frac{1}{x}$ and so on.
- (b) Begin with Question 7(a) and put $a^2 = \frac{1}{x^2}$ and so on.
- 13(c) When z = kw, with k > 0, or when either z = 0 or w = 0.

15(b)(i)
$$x > 1 + \sqrt{2}$$
 or $x < 1 - \sqrt{2}$

$$\begin{array}{ll} {\bf 17(d)} & I_5 = \frac{1}{4} \left(2 \ln 2 - 1 \right) \\ {\bf 19(a)} & \frac{1 + x^{4n + 2}}{1 + x^2} \end{array}$$

Exercise **10C** (Page 13) ____

- 1(a) $|\triangle OAB| = \frac{1}{4}$ sq. units, 3 sq. units
- (b)(ii) $|\triangle OGH| = (2 \sqrt{3})$ sq. units,
- $12(2-\sqrt{3})$ sq. units
- **2(a)** $(1 e^{-1})$ sq. units **(b)(i)** $\frac{1}{2}(1 + e^{-1})$ sq. units
- (ii) $e^{-\frac{1}{2}}$ sq. units
- 3(a) $\frac{\pi}{36}(4+\sqrt{3})$
- **4(a)** $\frac{3}{4}$ and $\frac{2}{3}$ square units.
- **6(b)** It diverges to infinity.
- **7(c)** $(\frac{a+2b}{3}, \frac{\ln a+2\ln b}{3})$

- **10(a)** (0,1) is a maximum turning point, (10,0) is a minimum turning point.
- **(b)** $y \to \infty$ as $x \to \infty$, and $y \to 0$ as $x \to -\infty$.

- **11(c)** When z = kw, with k < 0, or when either z = 0 or w = 0.
- **12(a)(i)** $6^6 = 46656, 3 \times 5^6 = 46875$
- (ii) $5 \times 6^6 = 233280, 2 \times 7^6 = 235298$
- **13(f)** 0.693
- **16(c)** n = 9
- **18(b)** In part (a), put $f(x) = x^{-2}$, a = (n-1) and b = n.

(b)(i) $\frac{9\pi}{14}$ **(ii)** $\frac{3\pi}{5}$

(b) $\frac{8\pi}{15}$

(b)(i) $\frac{32\pi}{5}$

(b) $\frac{128\pi}{5}$

Chapter Six

CHAPTER 6: Volumes

Exercise **6A** (Page 27) _____

2(a)

3(a)

4(a)

6(a)
$$2\pi$$
 (b) $\frac{48\pi}{5}$ (c) $\frac{7\pi}{10}$

7 4π

8 $\frac{32\pi}{3}$

10(a)
$$\frac{8\pi}{3}$$
 (b) $\frac{224\pi}{15}$ **(c)** 8π

14(a)
$$\frac{32\pi a^3}{15}$$
 (b) $\frac{112\pi a^3}{15}$ (c)

16(a)

17(b) $288\pi^2$

19(a)
$$\frac{4}{3}\pi ab^2$$
 (b) $2\pi^2 ab^2$ (c) $2\pi^2 abc$

20(a)
$$AD = \frac{9}{5}, CD = \frac{16}{5}$$
 (c) $\frac{92\pi}{15}$ cm³

20(a)
$$AD = \frac{9}{5}$$
, $CD = \frac{16}{5}$ (c) $\frac{92\pi}{15}$ cm³
23(a) $\frac{1}{\sqrt{2}}(x - x^2)$ (b) $\delta V = \frac{\pi}{\sqrt{2}}(x - x^2)^2 \delta x$
(c) $V' = \frac{\pi}{\sqrt{2}}(x - x^2)^2$

Exercise 6B (Page 32) _

1(a)

2(a)

3(a) $\frac{128\pi}{3}$ (b) $\frac{3888\pi}{5}$ 4(a) $\frac{3\pi}{5}$ (b) $\frac{9\pi}{14}$ 5(a) $\frac{8\pi}{3}$ (b) 8π 6(a) $\frac{256\pi}{3}$ (b) 8π

9(a)

CHAPTER 6: Volumes

SGS NOTES YEAR 12

11 2π

42

- 12 8π

- 114 $\frac{1}{15}$ 115(a) $\frac{4}{3}\pi ab^2$ (b) $2\pi^2 ab^2$ (c) $2\pi^2 abc$ 116(a) $\frac{32\pi a^3}{15}$ (b) $\frac{112\pi a^3}{15}$ (c) $\frac{128\pi a^3}{15}$ 21(b) $V = \lim_{\delta x \to 0} \sum_{x=0}^{\infty} \pi (2x^2 x^4)(2x + \delta x) \, \delta x$

$$\begin{aligned} & \textbf{22(a)} \ \, \big(x - \frac{1}{2} \delta x \big), \, \big(x + \frac{1}{2} \delta x \big) \\ & \textbf{(c)} \ \, V = \lim_{\delta x \to 0} \sum_{x=0}^{x=2} 2 \pi x (2x - x^2) \, \delta x \quad \textbf{(d)} \ \, \frac{8 \pi}{3} \end{aligned}$$

Exercise **6C** (Page 36) _____

 $1.126\,\mathrm{m}^3$

2(a) $\frac{y^2\sqrt{3}}{144}$ m²

- **8** $\frac{9}{280}$
- **11(b)** $\frac{1}{3}\pi abh$
- **13** 128 ml
- **14(b)** $56 \,\mathrm{m}^3$

$$\begin{array}{lll} {\bf 15(b)} \ \ 45\frac{2}{3} \, {\rm m}^3 \\ {\bf 16(a)} \ \ 4(r^2-y^2) & {\bf (b)} \ \ \frac{16}{3} r^3 \\ {\bf 18(a)} \ \ a^2-x^2 & {\bf (b)} \ \ \frac{4}{3} a^3 \\ {\bf 19(a)} \ \ \frac{\sqrt{3}}{2} a & {\bf (b)} \ \frac{ax}{b} & {\bf (e)} \ \frac{1}{12} a^2 b (5+2\sqrt{3}) \, {\rm m}^3 \\ {\bf 20(a)(ii)} \ \ \pi(1-e^{-R^2}) & {\bf (c)(i)} \ \ R\sqrt{2} & {\bf (ii)} \ \ \pi(1-e^{-2R^2}) \\ {\bf (d)} \ \ \pi(1-e^{-R^2}) \leq 4I^2 \leq \pi(1-e^{-2R^2}) & {\bf (e)} \ \frac{\sqrt{\pi}}{2} \end{array}$$

(b) $4(36-x^2)$ **(c)** 1152