Reaction Engineering International

Advanced Computer Simulations Of Military Incinerators

Martin Denison, Chris Montgomery, Adel Sarofim, Brooke Sadler, Mike Bockelie,

Reaction Engineering International

Fred Gouldin (Cornell), Joe Bozzelli (NJIT), Dick Magee (Carmagen Eng.)

23rd Army Sciences Conference, November 29, 2004, Orlando, FL USA

Funding Provided Under DOD-Army SBIR Phase II/II+ Program Contract #DAAD19-01-C-0050 Program Manager Dr. Robert Shaw (ARO)

Outline

- → Technical objectives of SBIR project
- → Chemical kinetic mechanism development for agent destruction
- → Equipment model development
- → Applications of models

REACTEN ENGINEERING INTERNATIONAL

maintaining the data needed, and c including suggestions for reducing	election of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar OMB control number.	ion of information. Send comments arters Services, Directorate for Information	regarding this burden estimate or mation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington		
1. REPORT DATE 00 DEC 2004		2. REPORT TYPE N/A		3. DATES COVE	ERED		
4. TITLE AND SUBTITLE					5a. CONTRACT NUMBER		
Advanced Computer Simulations Of Military Incinerators				5b. GRANT NUMBER			
					5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER			
					5e. TASK NUMBER		
					5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Reaction Engineering International				8. PERFORMING ORGANIZATION REPORT NUMBER			
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)			
					11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited					
	OTES 36, Proceedings for Orlando, Florida.,	-			November - 2		
14. ABSTRACT							
15. SUBJECT TERMS							
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER OF PAGES	19a. NAME OF				
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	- ABSTRACT UU	11	RESPONSIBLE PERSON		

Report Documentation Page

Form Approved OMB No. 0704-0188

SBIR Phase II Technical Tasks

- → Develop Chemistry Models for CWA
 - effort guided by Advisory Panel
 - use computational chemistry methods
 - ◆ simulants & agents
 - ◆ detailed chemical kinetic mechanisms
 - » complete description of CWA decomposition
 - » include PICs, NOx
 - » use relevant, publicly available data
- → Develop Furnace / Equipment Models
 - ◆ Incinerators: furnaces + afterburners
 - ◆ Pollution Abatement System (PAS)
 - benchmark with available data
- → Develop Incinerator Simulator Tool Software

REACTEDN ENGINEERING

3

Chemistry Models for CWA's

	Agent	Structure	Mechanism	A	F
	GB	CH ₃ 0 	LLNL w/ Bozzelli-REI GB rate + P & F	A	1]
	VX	O ∥ /i-C₃H ₇ C H -O.P.S-C H -N	Bozzelli-REI		(
		C ₂ H ₅ -O-P-S-C ₂ H ₄ -N <i>i</i> -C ₃ H ₇			
	HD	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Bozzelli-REI	<i>></i>	
	Н	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Bozzelli-REI	A	1
	HT	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Bozzelli-REI		,
4			-	-	

- Reliable test data not available
- Developed using computational chemistry methods
 - > 100+ species
 - > 500-1200 reactions
- Benchmarked with known rate constants for comparable molecules
- Reviewed by expert Advisory Panel

Chemical Kinetic Mechanism for H/HD/HT

- No test data available rates from computational chemistry
- Kinetics for thickeners and impurities included
- → HD detailed mechanism:
 - ◆ 109 species, 477 reactions
 - Couples to
 - » Leeds sulfur mechanism
 - » Cl chemistry of Procaccini, Ho, Bozzelli, et al
- → H modeled by 6-specie blend
 - ♦ 5 species for impurities
 - ◆ Add-on to HD mechanism
 - ◆ 143 species, 548 reactions
- → HT modeled by 5-specie blend
 - 4 species for impurities
 - ◆ Add-on to H/HD mechanism
 - ◆ 165 total species, 657 total reactions
- → Improvements to S-H-O chemistry

6

Dominant destruction pathway: HCl elimination from HD

 $k = 1.85 \times 10^{13} e^{(-58.75/RT)} \text{ sec}^{-1}$

Impact of SBIR Project on Chem Demil Program

- JACADS DAL VX event (RIM 57)
 - Models used to convince regulators to modify DAL clearance criterion
 - Resulted in significant cost savings
- Fate of phosphorus when processing organophosphorus agent
 - Analysis used in negotiations with regulators
 - Obtain "credit" for PFS emissions removal
 - Replace surrogate trial burn with agent trial burn
 - Eliminate requirement for high temperature test
- RIM-65 MPF evaluation for processing undrained mustard projectiles (with solid heels)
 - ◆ Analysis to assist TOCDF & ANCDF in negotiations with regulators to modify incinerator operation
- SBIR Phase II plus
 - HT mustard chemical kinetic mechanism
 - Improved understanding of mercury issues
 HD TC processing

 - ◆ CMS burner evaluation
- Potentially -> extend models to non-incineration thermal treatment

Ramifications of Hg Removal Modeling

- Predicts increased Hg capture when:
 - increase CI/Hg ratio in munitions
 - ◆ decrease cooling rate in PAS
- → Hg⁰ capture in PAS can be increased by
 - Increasing CI/Hg ratio
 - » e.g. add chlorocarbons used in trial burns
 - Decreasing cooling rate in quench tower
 - » control of quench flow rate or droplet size
- Control of mercury removal in PAS influences waste handling strategies
 - ◆ High Hg removal efficiency
 - → waste stream contaminated by Hg⁰ is restricted to brine wastes
 - ◆ Low Hg removal efficiency
 - → carbon in the PFS is also contaminated by Hg⁰.

REACTEDN ENGINEERING

15

Processing Partially Drained TCs in MPF

- Motivation:
 - Many mustard ton containers can not be fully drained
 - What level of solid heel in ton containers can be processed in MPF in a "reasonable time"?
 - Use wash-out process or incineration?

Feed Cycle (Process) Time Partially Drained Ton Container With Solid Heel

- Peak Vaporization Rate
- 2.5" heel < 600 lb/hr
- 14" heel < 1100 lb/hr
- If all processing in Zone 1 (no overlap) will have long furnace residence time
- Opportunity to increase throughput if overlap zone 1 & 2 processing

CMS Burner Recommendations From Previous Work

- Higher temperature alumina-based refractory
- → Lower and/or consistent feed rates
- → Controls improvements
- → Burner modifications

Partial listing of issues raised in one or more of the following studies:

- ·MicroEnergy Systems, July, 2000
- ·CR&E, May, 2002
- ·WDC, May, 2004

CMS Burner - Deposition Modeling Plan View Gas Temp, K Soo Gas Velocity, ft/s Recirculation Regions

Value of Project to CMA

- → Demonstrate reliability and performance of existing processes and equipment
- → Assess
 - ◆ trouble shooting / problem solving
 - ◆ proposed design changes
 - ◆ process operation options & optimization
- → Assist Site Operators & Support Contractors

REACTEN ENGINEERING INTERNATIONAL

Path Forward

- → Opportunities exist to apply modeling tools throughout the Chem Demil Program
- → Baseline sites (TOCDF, ANCDF, UMCDF, PBCDF)
 - optimize processing
 - assistance with troubleshooting
- Non-baseline sites (where thermal treatment is required)
 - ◆ metal parts, dunnage, carbon

 \sqrt{n}

Acknowledgements

- → The authors would like to acknowledge the contributions of
 - ◆ Dr. Charlie Westbrook (LLNL)
 - ◆ Dr. Wing Tsang (NIST)
 - ◆ Alfred G. Webster (CR&E)
 - ◆ Dave Hoecke (Enercon Systems)
 - ◆ Kevin Gildner, Dr. Dick Ward, Cheryl Maggio (CMA)
 - ◆ Washington Demilitarization Company
 - Washington Group
 - ◆ International and EG&G, Inc.

REACTEN ENGINEERING