# STA547: HW4 \*

# Zhiling Gu $^\dagger$

# Contents

| 1 | Nadaraya-Watson Estimator Asymptotic Behaviour |
|---|------------------------------------------------|
|   | 1.1 Bias                                       |
|   | 1.2 Variance                                   |
| 2 | Bivariate smoothing                            |
| 3 | Presmoothing                                   |
|   | 3.1 The influence of Presmoothing on FPCA      |
|   | 3.2 The first derivative curve                 |

<sup>\*</sup>Instructor: Xiongtao Dai, Iowa State University

 $<sup>^\</sup>dagger I$  discussed with Haihan YU about this homework.

### 1 Nadaraya-Watson Estimator Asymptotic Behaviour

Consider the univariate nonparametric regression setting where we have a sample  $(X_i, Y_i)$ , i = 1, ..., n, which satisfies  $Y_i = \mu(X_i) + \epsilon_i$ , and the error variance  $\text{var}(\epsilon_i) \equiv \sigma^2 > 0$  is a constant. Assume the density of  $X_i$  is positive, continuous, and supported on [0,1]. The kernel  $K(\cdot)$  is a symmetric continuous denction supported on [-1,1] with  $\int_{-1}^{1} K^2(x) dx < \infty$ . The regression function  $\mu$  is assumed to be twice differentiable with a bounded second derivative. Derive the asymptotic bias and variance for the Nadaraya-Watson estimator at a left boundary point  $x_0 = ch$ , where  $c \in [0,1)$ , as  $h \to 0$  and  $nh \to \infty$ . [For example, c = 0 implies  $x_0 = 0$ , so only design points falling within [0,h] will be utilized.

Proof. Recall the definition of Nadaraya Watson (NW) estimator:

$$\widehat{\mu}_{NW}(X_0) = \frac{\sum_{i=1}^{n} K_h(X_i - X_0) Y_i}{\sum_{j=1}^{n} K_h(X_j - X_0)}, X_0 \in [a, b]$$

where  $K_h$  is a kernel with a bandwidth h. The denominator is a weighting term with sum 1.  $K_h(\cdot) = \frac{1}{h}K(\frac{\cdot}{h})$ . The  $K(\cdot)$  is ususally a symmetric pdf. Our objective here is to find the bias and variance of  $\widehat{\mu}_{NW}(X_0)$  at  $X_0 = a = 0, X_0 \to 0, h \to 0, nh \to \infty$ .

Refer to Fan, J. and Gijbels, I.  $(1996)^1$ . Consider p = 1, 2, and  $q \ge 0$ 

$$E\left(\sum_{i=1}^{n} \left[K_{h}\left(X_{i}-x_{0}\right)\right]^{p} \left(X_{i}-x_{0}\right)^{q}\right) = nE\left(\left[K_{h}\left(X_{i}-x_{0}\right)\right]^{p} \left(X_{i}-x_{0}\right)^{q}\right)$$

$$= n\int_{0}^{x_{0}+h} \left[\frac{1}{h}K\left(\frac{x-x_{0}}{h}\right)\right]^{p} \left(x-x_{0}\right)^{q} f(x) dx$$

$$= nh^{1-p+1} \int_{-c}^{1} \left[K(u)\right]^{p} (uh)^{q} du, \ 0 \leq X_{i} \leq 1, 0 \leq c \leq 1$$

$$= nh^{q-p+1} \int_{-c}^{1} u^{q} \left[K(u)\right]^{p} f\left(x_{0}+uh\right) du, \text{ Change of variable}$$

$$= nh^{q-p+1} \int_{-c}^{1} u^{q} \left[K(u)\right]^{p} du \left(f\left(x_{0}\right)+o(1)\right) \text{ by taylor expansion}$$

$$\operatorname{Var}\left(\sum_{i=1}^{n} K_{h} (X_{i} - x_{0})^{p} (X_{i} - x_{0})^{q}\right) \leq \sum_{i=1}^{n} E\left(\left[K_{h} (X_{i} - x_{0})\right]^{2p} (X_{i} - x_{0})^{2q}\right)$$

$$= nh^{2q-2p+1} \int_{-c}^{1} u^{2q} [K(u)]^{2p} f(x_{0} + uh) du = O\left(nh^{2q-2p+1}\right)$$

By Chebyshev's inequality, we have any random variable X satisfies  $X = E(X) + O(\sqrt{Var(X)})$ . Apply this to  $\sum_{i=1}^{n} K_h (X_i - x_0)^p (X_i - x_0)^q$ , we have

$$\sum_{i=1}^{n} K_h (X_i - x_0)^p (X_i - x_0)^q = nh^{q-p+1} \int_{-c}^{1} u^q [K(u)]^p du (f(x_0) + o(1)) + O_p(\sqrt{nh^{2q-2p+1}})$$

$$= nh^{q-p+1} f(x_0) \int_{-c}^{1} u^q [K(u)]^p du (1 + o(1) + O_p(1/\sqrt{nh}))$$

$$= nh^{q-p+1} f(x_0) \int_{-c}^{1} u^q [K(u)]^p du (1 + o_p(1))$$

<sup>&</sup>lt;sup>1</sup>Local Polynomial Modelling and Its Applications. Chapman and Hall, London.

#### 1.1 Bias

$$Bias(\widehat{\mu}_{NW}(x_0)) = E(\widehat{\mu}_{NW}(x_0)) - \mu(x_0)$$

$$= E\left(\frac{\sum_{i=1}^n K_h(X_i - x_0)Y_i}{\sum_{j=1}^n K_h(X_j - x_0)}\right) - \mu(x_0)$$

$$= \frac{\sum_{i=1}^n K_h(X_i - x_0)[E(Y_i) - \mu(x_0)]}{\sum_{j=1}^n K_h(X_j - x_0)}$$

$$= \frac{\sum_{i=1}^n K_h(X_i - x_0)[\mu(X_i) - \mu(x_0)]}{\sum_{j=1}^n K_h(X_j - x_0)}$$

$$= \frac{\sum_{i=1}^n K_h(X_i - x_0)(\mu'(x_0)(X_i - x_0) + O((X_i - x_0)^2))}{\sum_{j=1}^n K_h(X_j)}$$

$$= \frac{\sum_{i=1}^n K_h(X_i - x_0)\mu'(x_0)(X_i - x_0)}{\sum_{j=1}^n K_h(X_j)} + O((X_i - x_0)^2)$$

Apply the lemma twice in the denominator and nominator

$$= \frac{\mu'(x_0)nhf(x_0)\int_{-c}^{1} u[K(u)]du(1+o_p(1))}{nf(x_0)\int_{-c}^{1} udu(1+o_p(1))} + O(h^2)$$

$$= \frac{\mu'(x_0)h\int_{-c}^{1} u[K(u)]du(1+o_p(1))}{\int_{-c}^{1} udu} + O(h^2)$$

$$= \frac{\mu'(x_0)h\int_{-c}^{1} u[K(u)]du}{\int_{-c}^{1} udu} + o_p(h) \quad \Box$$

#### 1.2 Variance

$$\begin{split} Var(\widehat{\mu}_{NW}(x_0)) &= E(\widehat{\mu}_{NW}(x_0) - \mu(x_0))^2 \\ &= E\left(\frac{\sum_{i=1}^n K_h(X_i - x_0)Y_i}{\sum_{j=1}^n K_h(X_j - x_0)} - \mu(x_0)\right)^2 \\ &= E\left(\frac{\sum_{i=1}^n K_h(X_i - x_0)(\mu(X_i) + \epsilon_i - \mu(x_0))}{\sum_{j=1}^n K_h(X_j - x_0)}\right)^2 \\ &= E\left(\frac{\sum_{i=1}^n K_h(X_i - x_0)(\mu'(x_0)(X_i - x_0) + O(X_i - x_0)^2 + \epsilon_i)}{\sum_{j=1}^n K_h(X_j - x_0)}\right)^2 \\ &= E\left(\frac{\sum_{i=1}^n K_h(X_i - x_0)(\mu'(x_0)(X_i - x_0) + O(h^2) + \epsilon_i)}{\sum_{j=1}^n K_h(X_j - x_0)}\right)^2 \\ &= \frac{1}{\left(\sum_{j=1}^n K_h(X_j - x_0)\right)^2}\left\{(\sum_{i=1}^n K_h(X_i - x_0)(X_i - x_0))^2\mu'(x_0)^2 + (\sum_{i=1}^n K_h(X_i - x_0)(X_i - x_0))O(h^2) + (\sum_{i=1}^n K_h(X_i - x_0))^2\sigma^2\right\} \\ &= \frac{1}{(nf(x_0)\int_{-c}^1 [K(u)]du(1 + o_p(1)))^2}\left\{(nhf(x_0)\int_{-c}^1 u[K(u)]du(1 + o_p(1))^2\mu'(x_0)^2 + nhf(x_0)\int_{-c}^1 u[K(u)]du(1 + o_p(1))O(h^2) + nh^{-1}f(x_0)\int_{-c}^1 [K(u)]^2du(1 + o_p(1))\sigma^2\right\} \\ &= o_p(h^2) + \frac{\sigma^2}{nh}\frac{\int_{-c}^1 [K(u)]^2du}{(\int_{-c}^1 [K(u)]du^2} \quad \Box \end{split}$$

## 2 Bivariate smoothing

```
1 library (SemiPar)
  data("scallop")
  library(locfit)
  dv \leftarrow c(1, 2, 3)
  hv \leftarrow c(1,2,3)
  n <- nrow(scallop)
  png("q2.png", width = 1500, height = 1500, units = "px", pointsize = 30)
9
  par (mfrow = c(3,3))
  for (deg in dv) {
10
     for(h in hv) {
11
       \texttt{res} \; \longleftarrow \; \texttt{locfit(tot.catch$^{\sim}$ lp(latitude, longitude, deg=1, h=h), scallop, ev=lfgrid(mg=m))}
12
       plot(res, type = 'persp', main=paste0('h = ',h, ' degree = ', deg), theta=180, phi=50 )
13
14
15
16 dev.off()
```



Note from the graph that, the increase in bandwidth and the increase in degree both drive the approximation to be smooth.

Check the design dot

# 3 Presmoothing

### 3.1 The influence of Presmoothing on FPCA



In this question, local polynomial is applied with degree 2 and bandwidth 10. This choice is based on the similarity of the original data and smoothed data, along with the data precision of T which is observation per difference of 7.

#### 3.2 The first derivative curve



Note the choice of bandwidth is essential when estimating the derivative compared to the smoothing on the original data.

```
# 3.1 Presmoothing
  data <- read.table("yeast.txt", skip = 4)</pre>
3 X <- as.matrix(data)
  T <- as.numeric(substr(names(data), 6, 8))</pre>
5
  png("q3a.png", width = 1500, height = 1500, units = "px", pointsize = 30)
6
  par (mfrow = c(3,2))
7
  # original data & smoothing
8
  matplot(T, t(X), type = 'l', main = "Original data")
9
  smooth.X = apply(X, 1, function(y) {
    res=locfit(y \tilde{} lp(T, deg = 2, h = 10), ev=lfgrid(mg=m))
12
    predict(res, newdata=T)
13
14
  matplot(T, (smooth.X), type = '1', main = "Smoothed data, deg = 2, h = 10")
15
16
17
  # fpca
18
  fpca <- function(T, X) {</pre>
19
    mu <- colMeans(X, na.rm = TRUE) # In case missing data points in original datasets
20
    G <- cov(X, use = 'complete.obs') # In case missing data points in original datasets
    eig <- eigen(G)
    n <- nrow(X)
23
    m <- ncol(X)
24
    lam <- eig$values * diff(range(T)) / m</pre>
25
    phi <- eig$vectors / sqrt(diff(range(T) / m))</pre>
26
    Xcenter <- X - matrix(mu, nrow=n, ncol=m, byrow=TRUE)</pre>
27
    xi <- Xcenter %*% phi * diff(range(T)) / m
28
    list(mu=mu, G=G, phi=phi, lam=lam, xi=xi)
29
30
31
32 orig.res <- fpca(T, (X))
33 smooth.res <- fpca(T, t(smooth.X))</pre>
```

```
35 orig.mu <- orig.res$mu
36 smooth.mu<- smooth.res$mu
38 plot(T, orig.mu, type = 'l', main="Mean function of original data")
39 plot(T, smooth.mu, type = '1', main="Mean function with presmoothing")
matplot(T, orig.res$phi[, 1:3], type='1', main='The first three eigenfunctions of original data')
matplot(T, smooth.res$phi[, 1:3], type='l', main='The first three eigenfunctions with presmoothing')
42 dev.off()
43
44 # 3.2 first derivative
45 png("q3b.png", width = 1500, height = 1500, units = "px", pointsize = 30)
46 par(mfrow = c(3,1))
47 deriv.X = apply(X, 1, function(y) {
48 res=locfit(y ~ lp(T, deg = 2, h = 10), deriv=1, ev=lfgrid(mg=m))
49
  predict(res, newdata=T)
50 })
matplot(T, deriv.X, type = '1', main= 'Estimated derivative curve, deg = 2, h = 10')
52 deriv.res= fpca(T, t(deriv.X))
53 deriv.mu=deriv.res$mu
plot(T, deriv.mu, type = 'l', main='mean function of derivatives')
matplot(T, deriv.res$phi[, 1:3], type='1', main='The first three eigenfunctions of derivative curves
     ′)
56 dev.off()
```