DRIVING CURRENT VALUE ADJUSTING CIRCUIT FOR ORGANIC EL DRIVING CIRCUIT, ORGANIC EL DRIVING CIRCUIT AND ORGANIC EL DISPLAY DEVICE USING THE CIRCUIT

Publication number: JP2004054234 (A)

Also published as:

Publication date:

2004-02-19

3 JP3647443 (B2)

Inventor(s):

ABE SHINICHI +

Applicant(s):

ROHM CO LTD +

Classification: - international:

G09G3/20; G09G3/30; H01L51/50; H05B33/14;

G09G3/20; G09G3/30; H01L51/50; H05B33/14;

(IPC1-7): G09G3/20; G09G3/30; H05B33/14

- European:

Application number: JP20030135399 20030514

Priority number(s): JP20030135399 20030514; JP20020153501

20020528

Abstract of JP 2004054234 (A)

PROBLEM TO BE SOLVED: To provide a driving current value adjusting circuit for an organic EL driving circuit, by which brightness variations in a display screen among apparatus such as a portable telephone or a PHS is reduced and production efficiency is improved.; SOLUTION: A switching circuit receives data from a nonvolatile memory, to which data are written, and conducts ON/OFF operations and then, driving currents of terminal pins are respectively adjusted in accordance with the data. Therefore, the brightness variations is reduced by writing the data, which are required for the luminance adjustment to correct luminance dispersion or luminance irregularity, into the memory.; COPYRIGHT: (C)2004,JPO

Data supplied from the espacenet database — Worldwide

(19) 日本国特許庁(JP)

(12)公開特許公報(A)

(11)特許出願公開番号

特開2004-54234 (P2004-54234A)

(43) 公開日 平成16年2月19日(2004.2.19)

(51) Int.C1.7	FI			テーマコー	ド(参考)
GO9G 3/30	G09G	3/30	K	3K007	
GO9G 3/20	G09G	3/20 €	623B	5C080	
HO5B 33/14	G09G	•	623F		
	GO9G	•	623H		
	G09G	•	631K		
	審查請求	有 謂求項	の数 15 O L	(全 13 頁)	最終質に続く
(21) 出願番号	特願2003-135399 (P2003-135399)	(71) 出願人	000116024		
(22) 出願日	平成15年5月14日 (2003.5.14)	ローム株式会社			
(31) 優先權主張番号	特願2002-153501 (P2002-153501)	02-153501) 京都府京都市右京区西院溝崎町21番地			
(32) 優先日	平成14年5月28日 (2002.5.28)	(74) 代理人	100079555		
(33) 優先権主張国	日本国 (JP)		弁理士 梶山	」 佶是	
		(74) 代理人	100079957		
			弁理士 山本	富士男	
		(72) 発明者	阿部 真一		
				【西院溝崎町2〕	【番地 ローム
			株式会社内		
		ドターム (参	考) 3K007 AB		
			5C080 AA		
			EE:		1102 1103
			KK-	41	
451		<u> </u>			

(54) 【発明の名称】有機EL駆動回路の駆動電流値調整回路、有機EL駆動回路およびこれを用いる有機EL表示装置

(57)【要約】

【課題】携帯電話機、PHS等の装置ごとの表示画面の輝度はらつきあるいは輝度むらを低減でき、製造効率を向上させることができる有機EL駆動回路の駆動電流値調整回路を提供することにある。

【解決手段】この発明は、データの書込みが可能な不揮発性メモリからスイッチ回路がデータを受けてON/OFFすることで、このデータに応じて各端子ピンの駆動電流をされざれに調整することができる。そこで、輝度はらつきあるいは輝度むらを補正するための輝度調整に必要なデータを不揮発性メモリに対して書込めば、輝度はらつきあるいは輝度むらを低減できる。

【選択図】 図1

【特許請求の範囲】

【請求項1】

有機EL表示パネルの端子ピン駆動電流の駆動電流値を調整する有機EL駆動回路の駆動電流値調整回路において、

メモリに記憶されたデータを受けてON/OFFするスイッチ回路と、

前記有機EL表示パネルの端子ピンに対応して設けられての端子ピンを駆動するための電流あるいはその基礎となる電流を受けて、受けたこの電流の電流値と前記スイッチ回路のON/OFFとに応じて所定の電流値の電流を生成する電流値生成回路とを構え、前記メモリは、前記データが書込まれる不揮発性メモリあるいはある不揮発性メモリの前記データが書込まれる揮発性メモリであり、前記駆動電流値を前記所定の電流値の電流に応じて調整することを特徴とする有機EL駆動回路の駆動電流値調整回路。

【請求項2】

さらに、前記端子ピン駆動電流を発生する出力段電流源を有し、前記電流値生成回路は、前記出力段電流源を駆動するドライプ段に設けられた第1のカレントミラー回路を有し、この第1のカレントミラー回路は、入力側駆動トランジスタ1個に対してこれにカレントミラー接続された第1 あよび第2の出力側トランジスタを有し、この第2の出力側トランジスタは、前記スイッチ回路を介して前記第1の出力側トランジスタに並列に接続され、前記第1の出力側トランジスタの出力に前記所定の電流値を発生する請求項1記載の有機EL駆動回路の駆動電流値調整回路。

【請求項3】

前記第2の出力側トランジスタと前記スイッチ回路とからなる直列回路が前記第1の出力側トランジスタに複数個並列に接続され、前記不揮発性メモリは、前記有機EL表示パネルの複数の端子ピンに対応する複数のステージを持つシフトレジスタ複数で構成され、前記複数のステージが前記直列回路の前記複数のスイッチ回路にそれぞれ対応し、前記複数のステージのそれぞれの出力が自己に対応するそれぞれのスイッチ回路に供給される請求項2記載の有機EL駆動回路の駆動電流値調整回路。

【請求項4】

前記第2の出力側トランジスタと前記スイッチ回路とからなる直列回路が前記第1の出力側トランジスタに複数個並列に接続され、前記メモリは、この駆動電流値調整回路の外部にある不揮発性メモリから前記データが転送されて書込まれる揮発性メモリであり、前記揮発性メモリにはプロセッサあるいはコントローラを介して前記データが書込まれ、前記揮発性メモリは、前記有機EL表示パネルの複数の端子ピンに対応する複数のステージを持つシフトレジスタ複数で構成され、前記複数のステージが前記直列回路の前記複数のスイッチ回路にせれ対応し、前記複数のステージのせれせれの出力が自己に対応するせれずれのスイッチ回路に供給される請求項2記載の有機EL駆動回路の駆動電流値調整回路。

【請求項5】

前記メモリは、この駆動電流値調整回路の外部にある不揮発性メモリから前記データが転送されて書込まれる揮発性メモリである請求項 1 記載の有機EL駆動回路の駆動電流値調整回路。

【請求項6】

請求項1から5項のいずれかの項記載の駆動電流値調整回路を有する有機EL駆動回路。 【請求項7】

さらに、前記ドライブ段として表示データを受けてある出力段電流源あるいは前記出力段電流源を駆動する駆動電流を発生する D / A 変換回路を有し、この D / A 変換回路が第 2 のカレントミラー回路で構成され、前記所定の電流値の電流は、この D / A 変換回路の前記第 2 カレントミラー回路の入力側トランプスタを駆動する電流とされる請求項 6 記載の有機 E L 駆動回路。

【請求項8】

さらに、前記第2のカレントミラー回路の入力側トランジスタが複数個パラレルに設けら

20

10

00

40

20

30

40

50

れ、これらの複数の入力側トランプスタの少なくとも1つに前記所定の電流値の電流が流されることで前記D/A変換回路の出力に前記ピン駆動駆動電流がピーク電流を生じる電流が発生し、前記複数の入力側トランプスタの少なくとも他の1つに前記所定の電流値の電流が分流されることで前記D/A変換回路の出力に前記ピン駆動駆動電流が定常状態の駆動電流になる電流が発生する請求項7記載の有機EL駆動回路。

【請求項9】

有機EL表示パネルと、

この有機EL表示パネルの端子ピンを電流駆動する出力段と、

この出力段の前記端子ピンに対する駆動電流値を調整する有機EL駆動回路の駆動電流値 調整回路とを有し、

前記電流値調整回路がメモリに記憶されたデータを受けてON/OFFするスイッチ回路と、前記有機EL表示パネルの端子ピンに対応して設けられての端子ピンを駆動するための電流あるいはその基礎となる電流を受けて、受けたこの電流の電流値と前記スイッチ回路のON/OFFとに応じて所定の電流値の電流を生成する電流値生成回路とを構え、前記メモリは、前記データが書込まれる不揮発性メモリあるいはある不揮発性メモリの前記データが書込まれる揮発性メモリであり、前記駆動電流値を前記所定の電流値の電流に応じて調整することを特徴とする有機EL表示装置。

【請求項10】

さちに、前記端子ピン駆動電流を発生する出力段電流源を有し、前記電流値生成回路は、前記出力段電流源を駆動するドライブ段に設けられた第1のカレントミラー回路を有し、この第1のカレントミラー回路は、入力側駆動トランジスタ1個に対してこれにカレントミラー接続された第1 および第2の出力側トランジスタを有し、この第2の出力側トランジスタは、前記スイッチ回路を介して前記第1の出力側トランジスタに並列に接続され、前記第1の出力側トランジスタの出力に前記所定の電流値を発生する請求項9記載の有機EL表示装置。

【請求項11】

前記第2の出力側トランジスタと前記スイッチ回路とからなる直列回路が前記第1の出力側トランジスタに複数個並列に接続され、前記不揮発性メモリは、前記有機EL表示パネルの複数の端子ピンに対応する複数のステージを持つシフトレジスタ複数で構成され、前記複数のステージが前記直列回路の前記複数のスイッチ回路にそれぞれ対応し、前記複数のステージのそれぞれの出力が自己に対応するそれぞれのスイッチ回路に供給される請求項10記載の有機EL表示装置。

【請求項12】

前記第2の出力側トランジスタと前記スイッチ回路とからなる直列回路が前記第1の出力側トランジスタに複数個並列に接続され、前記メモリは、この駆動電流値調整回路の外部にある不揮発性メモリから前記データが転送されて書込まれる揮発性メモリであり、前記揮発性メモリにはプロセッサあるいはコントローラを介して前記データが書込まれ、前記揮発性メモリは、前記有機EL表示パネルの複数の端子ピンに対応する複数のステージを持つシフトレジスタ複数で構成され、前記複数のステージが前記直列回路の前記複数のスイッチ回路にされがれがあし、前記複数のステージのされぞれの出力が自己に対応するされぞれのスイッチ回路に供給される請求項10記載の有機EL表示装置。

【請求項13】

さらに、前記ドライプ段として表示データを受けて前記出力段電流源を駆動する駆動電流を発生するD/A変換回路を有し、このD/A変換回路が第2のカレントミラー回路で構成され、前記所定の電流値の電流は、このD/A変換回路の前記第2カレントミラー回路の入力側トランプスタを駆動する電流とされる請求項10記載の有機EL表示装置。

【請求項14】

さらに、前記第2のカレントミラー回路の入力側トランジスタが複数個パラレルに設けられ、これらの複数の入力側トランジスタの少なくとも1つに前記所定の電流値の電流が流されることで前記D/A変換回路の出力にピーク電流が発生し、前記複数の入力側トラン

20

40

50

ジスタの少なくとも他の1つに前記所定の電流値の電流が分流されることで前記 D / A 変換回路の出力に前記じン駆動駆動電流が定常状態の駆動電流になる電流が発生する請求項1 8 記載の有機 E L 表示装置。

【請求項15】

前記メモリは、この駆動電流値調整回路の外部にある不揮発性メモリから前記データが転送されて書込まれる揮発性メモリである請求項9記載の有機EL表示装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

この発明は、有機EL駆動回路の駆動電流値調整回路、有機EL駆動回路およびこれを用いる有機EL表示装置に関し、詳しくは、携帯電話機、PHS等の装置ごとの表示画面の輝度はらつきあるいは輝度むらを低減でき、製造効率を向上させることができ、特に、高輝度カラー表示に適した有機EL表示装置に関する。

[0002]

【従来の技術】

有機EL表示装置は、自発光による高輝度表示が可能であることから、小画面での表示に適し、携帯電話機、PHS、DVDプレーヤ、PDA(携帯端末装置)等に搭載される次世代表示装置として現在注目されている。この有機EL表示装置には、液晶表示装置のように電圧駆動を行うと、輝度はらっきが大きくなり、かっ、R(赤)、G(緑)、B(青)に感度差があることから制御が難しくなる問題点がある。

せこで、最近では、電流駆動のドライバを用いた有機EL表示装置が提案されている。例えば、特開平10-112391号などでは、電流駆動により輝度ばらっきの問題を解決する技術が記載されている。

[0003]

携帯電話機、PHS用の有機EL表示装置の有機EL表示パネルでは、カラムラインの数 が 3 9 6 個(1 3 2 × 3)の 端子ピン、ローラインが 1 6 2 個の 端子ピンを持っものが提 案され、カラムライン、ローラインの端子ピンはこれ以上に増加する傾向にある。 このような有機EL表示パネルの電流駆動回路の出力段は、アクディプマトリックス型で も単純マトリックス型のものでも端子ピン対応に電流源の駆動回路、例えば、カレントミ ラー回路による出力回路が設けられている。そのドライブ段は、例えば、特願2002-8 2 6 6 2 号 (特願 2 0 0 1 - 8 6 9 6 7 号 2 特願 2 0 0 1 - 8 9 6 2 1 9 号 の 国内 優先 出願. 対応US出願10. 102. 671号) のように端子ピン対応に多数の出力側トラ ンプスタを有するパラレル駆動のカレントミラー回路(基準電流分配回路)を有していて 、 入力 段 と な る そ の 手 前 の 基 準 電 流 発 生 回 路 か ら 基 準 電 流 を 受 け て 端 子 ピ ン 対 応 に 多 数 の ミラー電流を発生することで基準電流を端子ピン対応に分配して出力回路を駆動する。あ るいは端子ピン対応に分配されたこのミラー電流をさらにk倍(kは2以上の整数)の電 流に増幅して出力回路を駆動する。そして、そのk倍電流増幅回路には、端子ピン対応に D/A変換回路を設けたこの出願人の特願2002-33719号の出願がある。これは カラム側の端子ピン対応にD/A変換回路が表示データを受けてこの表示データを端子 ピン対応にA/D変換してカラム方向の駆動電流を同時に生成する。

[0004]

ところで、有機EL表示装置では、カラム側(陽極側)の1ラインが電流吐出し側となり、ロー側(陰極走直側)が電流吸い込み側(シンク側)となって、ロー側の走直に応じてカラム側の電流駆動回路からの電流が有機EL索子(以下EL索子)の陽極側に出力される。そのため、カラム側(EL案子の陽極側)の駆動電流が表示輝度に直接影響する。そこで、前記の特願2002-82662号においては、基準電流発生回路の基準電流をレーサトリミングの駆動電流調整回路を用いて製造工程において、駆動電流を調整している。

図4は、そのカラムライン電流駆動回路のドライプ段を中心とするプロック図である。 20は、カラムライン電流駆動回路である。このカラムライン電流駆動回路 20は、基準電

流反転回路21、レーサトリミングの駆動電流値調整回路22、駆動電流生成回路(前記の駆動電流分配回路)23、 k 倍駆動電流生成回路82、 N 倍出力のカレントミラー出力回路832からなる。なお、91は、前段に設けられた4ピットD/Aコンパータであり、D1~D4がそのデータ入力端子である。

[0005]

n個の各k倍駆動電流生成回路82は、スイッチングコントローラ92により制御されて、有機EL素子を駆動するためのピーク電流の発生、表示データの設定等がなされる。 なお、図中、4は、電圧15Vの電源であり、+VDDは、電圧3Vの電源ラインであって、7は、その電源、92は、スイッチングコントロール回路、そして5は、コントローラである。

[0006]

また、トランジスタQ1とトランジスタQ2と、トランジスタQ3とQ4、Q5、そしてトランジスタQ6とトランジスタQ7とは、それぞれカレントミラー回路を構成する入力側と出力側のトランジスタである。

トランジスタQ6とトランジスタQ7のエミッタ側には、それぞれ抵抗R61~R6nと抵抗Rc1~Rcnの直列回路が設けられている。H61~H6n. Hc1~Hcnは、それぞれこれら抵抗に並列に接続されたレーサトリミング用のヒューズであって、IC製造工程でこれらヒューズが選択的に遮断される。このことで駆動電流値調整回路22で生成される駆動電流mI(トランジスタQ7のコレクタ出力電流)が調整される。

[0007]

【発明が解決しようとする課題】

このような駆動電流調整回路22により入力側トランジスタ1個に対して多数(n個)の出力側トランジスタを有するカレントミラー回路で構成される駆動電流分配回路23の入力側トランジスタの駆動電流を調整する。これにより、各出力トランジスタの駆動電流を調整して製品ごとの輝度ばらっきを抑えている。

特に、特願2002-82662号では、1個の入力側トランジスタを1個の出力トランジスタに対して中央に配置することで、製品ごとの輝度はらっきに加えて、各製品のR、G、B間の輝度の相違を調整して製品ごとの輝度むら抑えている。

しかし、1対nのカレントミラー回路のnの数が多くなると、その出力側トランジスタの位置、特に、中央位置と両端の位置とにおける出力電流の差が大きくなり、それが k 倍駆動電流生成回路 8 2、N倍出力のカレントミラー出力回路 8 4 等を経て増幅されるので、最終出力段では端子ピン駆動電流が端子ピンの位置に応じて大きな差となって現れてくる。この差が輝度のばらつきあるいは輝度むらを生じ、それが問題となる。

[0008]

このような出力端子ピンの位置に応じた輝度の差を低減するために、各出力端子ピン対応に駆動電流調整回路を設けて個別に調整することが考えられるが、そのようにすると、製品出荷のテスト段階でレーザトリミングにより調整する箇所が非常に多くなり、製品製造のスループットが低下する。しかも、回路規模も大きくならざるを得ない。

この発明の目的は、このような従来技術の問題点を解決するものであって、携帯電話機、 PHS等の装置ごとの表示画面の輝度ばらっきあるいは輝度むらを低減でき、製造効率を 向上させることができる有機EL駆動回路の駆動電流値調整回路を提供することにある。 10

20

30

40

この発明の他の目的は、表示画面の輝度は5つきあるいは輝度むちを低減でき、 製造効率を向上させることができる有機EL駆動回路および有機EL表示装置を提供することにある。

[0009]

【課題を解決するための手段】

このような目的を達成するためのこの発明の特徴は、有機EL表示パネルの端子ピン駆動電流の駆動電流値を調整する有機EL駆動回路の駆動電流値調整回路において、

メモリに記憶されたデータを受けてON/OFFするスイッチ回路と、前記有機EL表示パネルの端子ピンに対応して設けられての端子ピンを駆動するための電流あるいはその基礎となる電流を受けて、受けたこの電流の電流値と前記スイッチ回路のON/OFFとに応じて所定の電流値の電流を生成する電流値生成回路とを構え、前記のメモリが、前記データが書込まれる不揮発性メモリの前記データが書込まれる揮発性メモリであり、前記駆動電流値を前記所定の電流値の電流に応じて調整するものである。

[0010]

このように、この発明にあっては、データの書込みが可能な不揮発性メモリから供給されるデータに従ってスイッチ回路がON/OFFすることで、このデータに応じて各端子ピンの駆動電流をせれせれに調整することができる。せこで、輝度はらつきあるいは輝度むらを補正するための輝度調整に必要なデータを不揮発性メモリに対して書込めば、輝度はらっきあるいは輝度むらを低減できる。

例えば、製品出荷のテスト段階で駆動電流を調整する箇所が端子ピン数に対応して非常に多くなっていても、製品として組み立てられた装置の表示画面の輝度ばらつき、輝度むらに応じて所定のデータを不揮発性メモリに書込み、それを記憶するだけで製品出荷のテスト段階で簡単に輝度調整をすることができる。

せの結果、製品製造のスループットを向上させることができ、携帯電話機、PHS等の装置ごとの表示画面の輝度はちっきあるいは輝度むちを低減でき、製造効率を上げることができる。

[0011]

【実施例】

図1において、20は、有機EL駆動回路のカラムドライバであって、各端子ピンに対応して設けられる、図4のk倍駆動電流生成回路82とN個のN倍出力のカレントミラー出力回路83に対応する回路プロックである。

10は、図4のk倍駆動電流生成回路82にD/A変換回路を設けた回路に相当するものであって、そのときどきの表示データ対応する駆動電流を生成する。11は、そのD/A変換回路、12は駆動電流値調整回路、13はカレントミラー電流出力回路、14はピーク電流生成回路、15はコントロール回路、16はレジスタ、17は不揮発性メモリ、そして、18は、定電流源である。この定電流源18は、図4の駆動電流分配回路23における各端子ピン対応に設けられたトランジスタQnの出力電流(電流値IO=mI)を定電流源として表したものである。

D/A 変換回路11は、Nチャネルの入力側トランジスタTNのとこの入力側トランジスタTNのに並列に接続されたカレントミラーのNチャネルの入力側トランジスタTNPを有している。そして、Nチャネルの出力側トランジスタTNb~TNn-1がこれら入力側トランジスタTNOとトランジスタTNPに対してカレントミラー接続されている。

[0012]

トランジスタTNのとトランジスタTNPは、チャネル幅(ゲート幅)の比が1:9に設定されていて、トランジスタTNののソースは、抵抗Rのを介してグランドGNDに接続され、トランジスタTNPのソースは、抵抗RPの、スイッチ回路SWPのを介してグランドGNDに接続されている。

なお、前記のチャネル幅(ゲート幅)の比1:9は、同一形状のMOS1個に対してペア 性のよいMOS9個をパラレルに接続して構成してもよい。 10

20

40

30

2個の入力側トランプスタTNAと入力側トランプスタTNPは、入力端子11Aに接続されて、この入力端子11Aを介して駆動電流値調整回路12から調整された電流値IPの電流を受ける。

[0013]

駆動電流値調整回路12は、定電流源18から電流値IO(=mI)の電流を受けて、自己の端子ピンに対応する調整した電流値IPの駆動電流をD/A変換回路11の入力端子11 a に加え、その入力側カレントミラートランジスタTN a に送出する。入力側トランジスタTN a にこの電流IPが駆動電流として流れ、スイッチ回路SWP a がOFFとはっている初期には、D/A変換回路11の出力端子11 b に表示データに応じた出力電流IAが発生する。また、この後、スイッチ回路SWP a がONVとなると、入力側のトランジスタTN a とていりとにこの駆動電流IPが分流して流れる。このときには、D/A変換回路11の出力端子11 b には表示データに応じた出力電流I a として定常状態の駆動電流IP a /10が発生し、ピーク電流IP a の1/10の電流が流れる。

抵抗R b ~ R n - 1 は、出力側トランジスタTNb~TNn- 1 のソースとトランジスタTPb~TFn- 1 のドレインとの間に挿入された抵抗である。これによりD/A変換回路11の電流ペアリング精度を向上させることができる。

なお、トランジスタTFb~TFn-1のゲートは、jピットの表示データが入力される入力端子do~dn-1に接続され、レジスタ16から表示データを受ける。トランジスタTFb~TFn-1のソースはグランドGNDに接続されている。

[0014]

カレントミラー電流出力回路13は、図4のカレントミラー電流出力回路83に対応する回路であって、駆動レベルシフト回路13のと出力段カレントミラー回路136とからなる。

さて、前記の駆動電流値調整回路12は、NチャネルのMOSトランジスタTF1、TF2からなるカレントミラー駆動回路12のと、これにより駆動されるPチャネルのトランジスタTF3~TF7からなるカレントミラー調整回路126と、不揮発性メモリ17とから構成されている。

カレントミラー駆動回路12のは、その入力側トランジスタTF1が定電流源18にそのドレインが接続されていて、定電流源18から電流値IO(=mI)の電流を受ける。このトランジスタのソース側は、抵抗R1を介してグランドGNDに接続されいる。カレントミラー駆動回路12の出力側トランジスタTF2は、チャネル幅(ゲート幅)の比がトランジスタTF1に対してP倍(Pは2以上の整数)に設定されていて、そのドレイン側がカレントミラー調整回路126の入力側トランジスタTF3のドレインに接続され、そのソース側が抵抗R2を介してグランドGNDに接続されいる。

これにより、出力側トランプスタTケ2には、P×IOの電流が流れ、この電流でトランプスタTケ3が駆動される。その結果、出力側トランプスタTケ4からは、P×IOのミラー電流が出力される。

[0015]

ここで、カレントミラー接続のトランジスタTF8~TF7は、ソース側が電源ライン+ VDDに接続され、出力側トランジスタTF4は、ドレイン側がD/A変換回路11の入 力端子11のに接続されている。また、出力側トランジスタTF5~TF7は、それれの ドレインがトランジスタTF4のドレインにそれぞれスイッチ回路SW1~SW3を介し て接続されて、トランジスタTF4に対してそれぞれがパラレル接続される。これらトラ ンジスタTF5~TF7は、出力側トランジスタTF4から出力されるP×IOのミラー 電流値を補正する電流値補正回路となっている。

例えば、6ピットの階調においてやの1LSB(分解能)により表現するD/A変換回路 11の出力側の電流値は、1μA以下の電流精度が要求される。このような要求に応える ためには、例えば、トランジスタTF3に対してトランジスタTF5~TF7のチャネル 幅(ケート幅)の比は、1/10. 1/20. 1/40になるように設定される。 10

20

30

40

[0016]

せこで、3つのスイッチ回路SW1~SW3を選択的にONすることで、あるいは全てをONすることで、P×IOの電流値にP×IO/10. P×IO/20. P×IO/40の組み合わせ分の電流を付加してD/A変換回路11の駆動電流を加算調整することができる。ここで調整された駆動電流が増幅されて、端子ピンを駆動する電流としてD/A変換回路11を経てカレントミラー電流出力回路13から出力されるので、端子ピン駆動電流値がこの駆動電流値調整回路12により調整可能になる。なお、加算調整であるので、調整前の電流値P×IOを駆動電流値のばらつきの下限あるいはその近傍(例えば3σ値)に設定しておく。このことで、端子ピン対応に出力される駆動電流値を揃える調整ができる。

10

ここでは、3つのスイッチ回路SW1~SW3のON/OFFの選択は、不揮発性メモリ17の所定の領域に記憶された3ピットのデータに従って行われる。例えば、3ピットのデータが"010"のときには、ピット"1"に対応するスイッチ回路SW2がONになり、ピット"0"に対応する位置のスイッチ回路SW1. SW3がOFFとなる。この不揮発性メモリ17に記憶されるデータは、MPU19から設定される。なお、不揮発性メモリ17は、3×ハピット(ただし、nは、1個のドライバICのカラムラインの総端子ピン数)か、これ以上の記憶容量のものであって、3ピットごとの各領域がそれぞれの端子ピンに対応して割り当てられている。

[0017]

せこで、MPU19は、各端子ピン対応に輝度調整する3ピットのデータを生成して、合計で3×nピットを不揮発性メモリ17に記憶する。この3nピットのデータは、MPU19からデータDATとしてクロックCLKとともに不揮発性メモリ17に供給される。このことで、水平走査方向の画素対応に輝度調整ができる。

20

なお、各端子ピン対応の3ピットのデータは、表示された画面の輝度を測定して各端子ピンの垂直走査方向の画素の平均値として生成され、総計で3mピットのアータ DATがまですれる。このとき、輝度調整が不要な端子ピンのアータは、「000°である。せこで、各端子ピットのデータは、垂直走査ライを調整を加えば、不揮発性メモリ15の容を生成すればよい。ここで、垂直走査ライははマトンで不揮発性メモリ15に記憶しておき、垂直走査に対応して輝度むらを解消することをで配置されたすべてのピクセル回路4の輝度に対応して輝度むらを解消でで不揮状で配置されたすべてのピクセル回路4の輝度に対応して輝度もちを解消で応じた準度補正データでのお度不揮発性メモリ15から読出して輝度むら補正する駆動電流を生成するものである。

[0018]

このような輝度調整は、製品が組み立てられた状態で製品の表示画面を観察して目視により輝度の異なるところの画素について前記のデータDATを生成していくことでも表示画面の輝度調整は可能である。生成されたこの3nピットのデータ入力と書込みは、製品出荷のテスト段階でMPU19を介して行えばよい。これにより表示画面の輝度むらおよび製品ごとの輝度ばらつきの調整ができる。ここで、不揮発性メモリ17としては、FRAM、MRAM、EEPROM等を用いることができる。また、前記は、スイッチ回路SW1~SW3が3個の場合を例にしているが、スイッチ回路は1個であってもよい。あるいは3個以上であってもよい。したがって、輝度調整するためのデータのピット数は、1ピット以上であればよい。

[0019]

次に、カレントミラー電流出力回路13について説明する。

駆動レベルシフト回路13のは、D/A変換回路11の出力を出力段カレントミラー回路136に伝達するための回路であって、NチャネルのMOSFETトランジスタTNVからなる。そのゲートはパイアスラインVbに接続され、ソース側がD/A変換回路11の

50

40

50

出力端子116に接続されている。 せしてドレイン側が出力段カレントミラー回路186の入力端子18cに接続されている。

これにより D / A 変換回路11の表示データに応じた出力電流 I のに対して入力端子18 こに駆動電流 I のを発生することができる。

出力段カレントミラー回路186は、PチャネルMOSFETトランジスタTPu、TPWと、出力段カレントミラー回路を構成するPチャネルMOSFETトランジスタTP×スタTP×と、TPYとを有している。出力段カレントミラー回路186のトランジスタTP×とトランジスタTP×のゲート幅比は1:Nであり、これらトランジスタのソースは、電源ライン+VDDではなく、これより高い電圧、例えば、+15V程度の電源ライン+Vっては接続され、出力側トランジスタTP×は、カラム側の端子ピン9に接続され、駆動時にはN×Iaの駆動電流を流して端子ピン9を駆動する。この端子ピン9とグランドGNDとの間には、有機EL素子8が接続されている。なお、図中のVcもパイアスラインである

[0020]

ここで、入力側トランジスタTNPと抵抗RPの、スイッチ回路SWPのとは、ビーク電流生成回路14を構成していて、スイッチ回路SWPのは、駆動初期の一定期間七Pだけコントロール回路15からコントロール信号CONTを受けけることなく、OFFにされ、一定期間七P後にCONTを受けてONになる。

駆動開始時点では、スイッチ回路SWPのがコントロール回路15からコントロール信号 CONTを受けていないので、入力側トランプスタTNのに電流IPが流れて、do~lー1の各入力端子に設定されたデータに対応する倍数、例えばMの電流値M×IP(IPの)が生成されてD/A変換回路11の出力端子116にピーク電流Iの=M×IPを発生する。そして、ピーク電流発生期間七Pだけずれてコントロール信号CONTが発生してスイッチ回路SWPのがONになると、入力側トランプスタTNAに流れる電流が入力側トランプスタTNPに分流されて、これらトランプスタのゲート幅比1:9に従って入力側トランプスタTNAにIP/10が流れ、入力側トランプスタTNPに9×IP/10の電流が流れる。その結果、出力端子116にピーク電流値IPの1/10の電流が発生する。

なお、ピークの期間もPは、容量性負荷となる特性を持つ有機EL素子4がピーク電流で初期充電されればよいので、必ずしもピークの開始時点が駆動開始と一致していなくてもよい。

[0021]

図2は、不揮発性メモリ17をシフトレジスタ構成とした具体例の説明図である。

171は、3個並列に設けられたN段のシフトレジスタである。このシフトレジスタ171は、データをラッチする不揮発性ラッチのフリップフロップ17a、フリップフロップ17b、フリップフロップ17nをN個の端子ピン9の数に対応してN段数従属接続して構成され、各フリップフロップ17a~17nは、それぞれ3個(3ピット)パラレに配置した不揮発性メモリである。

3×nピットの輝度調整のためのデータDAT(輝度調整のトリミングデータ)は、フリップフロップ170から3ピットパラレルでピットシリアルに入力されてMPU19からのクロックCLKに応じて各段にシフトされ、フリップフロップ170~17mにそれでれ輝度調整データとして記憶される。

各段の3個のフリップフロップの反転側出力*Q(図面ではQオーババー)は、3個バラレルのインバータ170を介して各端子ピンに対応する駆動電流値調整回路12のスイッチ回路SW1~SW3に出力されて、各端子ピンに対応にこれらスイッチ回路を選択的にON/OFFする。これにより各端子ピンの輝度を調整して製品ごとの輝度ばらっきを低減しあるいは表示画面の輝度むらを低減する輝度調整をする。

[0022]

図3は、不揮発性メモリ17を揮発性メモリとした具体例の説明図である。

図3のシフトレプスタ172は、3個パラレルに配置したN段のシフトレプスタであるが

20

30

40

50

、フリップフロップ172a. フリップフロップ172b. フリップフロップ172n は、データをラッチする揮発性ラッチのメモリである。

フリップフロップ172のに入力される、トリミングデータDAT(輝度調整データ)は、MPU19ではなく、コントロール回路15からピットシリアルの3ピットパラレルに出力される。同時に、フリップフロップ172の~172mは、コントロール回路15からのクロックCLKを受けてこれに応じて輝度調整データを記憶する。

この場合のトリミングデータDATは、コントロール回路15に設けられた不揮発性メモリ15のに記憶されることになる。そして、MPU19が電源スイッチSWがONされたときに、制御信号Sを発生してコントロール回路15にクロックCLKとトリミングデータDATを発生させてトリミングデータDATをシフトレジスタ172に書込む。

[0023]

なお、不揮発性メモリ15のに記憶されるトリミングデータ DAT (輝度調整データ)は、外部 からキーボード 等を介してMPU19に入力されたデータに応じてMPU19から書込まれる。

この場合、図2と同様にコントロール回路15は、MPU19であってもよい。また、輝度調整データを記憶する揮発性メモリは、このようなシフトレジスタに限定されるものではなく、RAM等の揮発性メモリであってよい。

ところで、有機EL表示装置では、前記したように、ロー側の走査に応じてカラム側の電流駆動回路から電流が出力される。したかって、図1の有機EL素子8は、端子ピン9とプランドGNDとの間に接続されているが、実際には、有機EL素子8は、ローライン走査回路を介してグランドGNDに接続される。

[0024]

以上説明してきたが、前記したようにスイッチ回路8W1~8W3は、複数でっても、また、1個であってもよいので、明細書および特許請求の範囲におけるスイッチ回路をON /OFFするためのデータは、1ピットだけの場合も含まれる。

実施例では、駆動電流値調整回路12を設けているので、従来のレーザトリミングの駆動電流値調整回路22を設けなくてもよいが、レーザトリミングの駆動電流値調整回路22を設けなくなる、基準電流を全体的に調整するものとして設けることができる。また、レーザトリミングの駆動電流値調整回路が別に設けられていてもこの発明では差し支えがない。この発明の端子ピン対応の輝度調整は、R、G、Bの全体的な発度調整も併せ持っているので、R、G、Bを含めた全体的な基準電流調整回路とでの発明の基準電流調整回路とが重複して設けられていても問題はない。もちろん、駆動電流値調整回路12でだけでR、G、Bに対応する輝度調整と、さらに全体的な輝度調整とをするようにしてもよい。

[0025]

また、駆動電流値調整回路12の位置は、基準電流を発生する基準電流発生回路(入力段あるいは初段)と有機ELパネルの端子ピンを電流駆動する出力段までの間において、各出力端子ピン対応の駆動電流が流れる箇所であれば、どの位置に配置されてもよい。また、表示データを受けるD/A変換回路も同様であって、入力段(あるいは初段)と出力段の間に配置されていればよい。

また、この電流駆動回路は、白黒表示のものでもよいので、R. G. B されぞれに対応して設けられていなくてもよい。

なお、実施例では、MOSFETトランジスタを主体として構成しているが、バイポーラトランジスタを主体としても構成してもよいことはもちろんである。また、実施例のNチャンネル型トランジスタ(あるいはNPN型)は、Pチャンネル型(あるいはPNP型)トランジスタに、Pチャンネル型トランジスタは、Nチャンネル(あるいはNPN型)トランジスタに置き換えることができる。

[0026]

【発明の効果】

以上説明してきたように、この発明にあっては、データの書込みが可能な不揮発性メモリ

から供給されるデータに従ってスイッチ回路をON/OFFすることで、各端子ピンの駆動電流をされぞれに調整するようにしているので、製品出荷のテスト段階で駆動電流を調整する箇所がピン数に対応して非常に多くなっていても、データを不揮発性メモリに書込み、記憶するだけで簡単に輝度調整をすることができ、製品製造のスループットを向上させることができる。

その結果、携帯電話機、PHS等の装置ごとの表示画面の輝度はよっきを低減でき、製造効率を上げることができる。

【図面の簡単な説明】

- 【図1】図1は、この発明の有機EL駆動回路を適用した一実施例のカラムドライバを中心とするプロック図である。
- 【図2】図2は、不揮発性メモリをシフトレジスタ構成とした具体例の説明図である。
- 【図3】図3は、図2の不揮発性メモリを揮発性メモリのシフトレジスタ構成とした具体 例の説明図である。
- 【図4】図4は、この発明の先行技術のカラムライン電流駆動回路のドライブ段を中心とするプロック図である。

【符号の説明】

- 4. 7 電源、5. 15 コントローラ、
- 8 有機EL素子、10 カラムドライバ、
- 11 D/A变换回路、110、入力端子、116 出力端子、
- 9 ピン、13ム 駆動レベルシフト回路、
- 1 2 駆動電流値調整回路、1 2 な、1 2 b、2 2 カレントミラー回路、
- 136 出力段カレントミラー回路、
- 14 ピーク電流生成回路、
- 15 コントロール回路、16 レプスタ、
- 17 不揮発性メモリ、170~17m フリップフロップ、
- 18 定電流源(カレントミラー電流出力回路)、
- 19 インパータ、20 カラムライン電流駆動回路、
- 21 基準電流反転回路、
- 22 レーザトリミングの駆動電流値調整回路、
- 23 駆動電流生成回路、82 k倍駆動電流生成回路、
- 84 N倍出力のカレントミラー出力回路、
- $Tr1 \sim Tr7$. $TPa \sim TPn-1$. $TNa \sim TNn-1$ $F \supset YZ > 3$.

10

20

フロントページの続き

(51) Int. CI. 7

FΙ

テーマコード(参考)

G 0 9 G 3/20 6 3 1 V G 0 9 G 3/20 6 4 1 D G 0 9 G 3/20 6 4 2 A H 0 5 B 33/14 A