Assignment 1: Minimum Spanning Trees

Due: 2nd week (submission through moodle before sessional class)

Minimum Spanning Tree (MST): Given a weighted undirected graph, a minimum spanning tree is tree of minimum weight that connects all the vertices.

Second Best Minimum Spanning Tree (SBMST): Second-best minimum spanning tree is a spanning tree of minimum weight that has at least one edge that is not in the (best) minimum spanning tree.

Input: First line and second line of input file will contain the number of vertices, n and number of edges, m respectively followed by m lines each containing source, destination and weight of an edge.

For example:

6

9

124

131

143

2 3 4

2 4 4

3 4 2

3 6 4 4 6 6

562

Section B1

Implement Prim's algorithm for finding minimum spanning tree of a graph. Start from vertex 1 and whenever there is a choice of vertices, pick the vertex with smallest number. Use the graph data structures and heap you implemented during CSE204. Your algorithm should run in time $O(E \lg V)$.

Output: Weight of MST as well as the edges in the MST. Sample output for the input above is

- 13
- 3 4
- 12
- 3 6
- 5 6
- 13

Section A1

a) Implement Prim's algorithm for finding minimum spanning tree of a graph. Start from vertex 1 and whenever there is a choice of vertices, pick the vertex with smallest number. Use the graph data structures and heap you implemented during CSE204. Your algorithm should run in time O(ElgV).

b) Implement an algorithm to find a second best minimum spanning tree of the given graph.
Output: Weight of MST and SBMST as well as the edges in MST and SBMST. Sample output for the input above is
1 3 3 4 1 2 3 6 5 6 13
1 3 3 4 2 4 3 6 5 6 13
Section B2 a) Implement Prim's algorithm for finding minimum spanning tree of a graph. Start from vertex 1 and whenever there is a choice of vertices, pick the vertex with smallest number. Use the graph data structures and heap you implemented during CSE204. Your algorithm should run in time $O(E gV)$.
b) Implement an algorithm to find a second best minimum spanning tree of the given graph.
Output: Weight of MST and SBMST as well as the edges in MST and SBMST. Sample output for the input above is
13 34 12 36 56 13
1 3 3 4 2 4 3 6 5 6 13
Section A2

- structures you implemented during CSE204. Your algorithm should run in time O($\it E lg V$).
- b) Implement an algorithm to find a second best minimum spanning tree of the given graph.

Output: Weight of MST and SBMST as well as the edges in MST and SBMST. Sample output for the input above is

- 13
- 3 4
- 5 6
- 12
- 3 6
- 13
- 13
- 3 4
- 5 6
- 2 4
- 3 6
- 13