

Newton's Metode

Anta at vi vil lose

$$x^{2} + 2y = 2$$

 $x^{3} + 5xy = 1$

$$x^{2} + 2y = 2$$
 $(x^{2} + 2y - 2) = 0$
 $x^{3} + 5xy = 1$ $(x^{3} + 5xy - 1) = 0$

Derson vi definuer en aub. F: R2-1 R2, ved F(K,y) = (x22y-2, x3+5xy-1), så er dutte igjen ekvivatent med å finne nullpunktene til F.

Newton i en variabel:

f: R- R, vil finne nullpunkter yester. / for g. Gjett at Xo es et millipunit.

$$\frac{f'(\chi_0)(\chi-\chi_0) = -f(\chi_0)}{\chi-\chi_0 = -\frac{f(\chi_0)}{f'(\chi_0)}}$$

$$X-X_0 = -\frac{f(x_0)}{f'(x_0)}$$

Newton i flee variable

F: R1 - Rh ønske å fenne nullpunkt for F.

- · Get on losning to. Tx F
- .. Finn linearseingen til Fi To, og finn mullpunktet til TxF - happer at dutte er en bedse tilnæming.

$$T_{\ell_{k}}F(\vec{z}) = F(\vec{k}) + F'(\vec{k}) (\vec{z} - \vec{k}) .$$

$$V_{k}e_{0} = F(\vec{k}) + F'(\vec{k}) (\vec{z} - \vec{k}) = 0$$

$$F'(\vec{k}) = F'(\vec{k})(x - \vec{k}) = F'(\vec{k}) - F(\vec{k})$$

on vaiabll

on variable
$$\chi = \zeta - \frac{f(\zeta)}{f'(\zeta)}$$

$$\chi = \chi - \frac{f(\zeta)}{f'(\zeta)}$$
Seffer
$$\chi = \chi - \frac{f(\zeta)}{\chi_{n-1}} - \frac{f'(\zeta_{n-1})}{\chi_{n-1}} - \frac{f'(\zeta_{n-1})}{\chi_{n-1}} - \frac{f'(\zeta_{n-1})}{\chi_{n-1}} = \frac{\chi_{n-1}}{\chi_{n-1}} = \frac{\chi_{n-1}}{\chi_{n-1}} - \frac{\chi_{n-1}}{\chi_{n-1}} = \frac{\chi_{n-1}}{\chi_{n-1$$

- Det er slik at . Derson vi gjelter godt nok forste gang så konvergere dute mot en lasning
 - · Deson forskellen mullom & ogk, er liten nok konvergee dit \$2C,

Eks;
$$F(V_1Y) = \begin{pmatrix} \chi^2 + 2y - 2 \\ \chi^3 + 5xy - 1 \end{pmatrix}$$
 Why $X_0 = \begin{pmatrix} 1/1 \end{pmatrix}$.
 $F'(\chi_1Y) = \begin{pmatrix} 2x & 2 \\ 3\chi^2 + 5y & 5\chi \end{pmatrix}$ Lag for - lookher i MATLABB.

Inverse funkcjonsteorem

Husk fra R; f: R-1, R

y= x X= ₹\Q

So at det for how y base fras en x s.c. f(x)=y,

Kan luge funksjonen k=g(g),
som til hver y tilorden den entydze k'en s.c.
f(r)=y. Vi kaller g den jewesse funksjonen til f
og vi ser at g(f(xi)=x for alle x,

Teorem: La $f:(a,b) \rightarrow \mathbb{R}$ vose divivebos mid tontinuerlige partielledurivete og anta at $f'(c) \neq 0$ for en $c \in (a,b)$. Da fres $(a',b') \ni c$ s.a. $f:(a',b') \rightarrow \mathbb{R}$ es injektiv og (c,d) = f(a',b')Da fres derivebos $g:(c,d) \rightarrow (a',b')$ Sa. $g \circ f = id$. Vidve g'(f(x)) = f'(x), B=F(A)

69
69F= Ed.

DF: Med en omegn on et punkt to, mene vi en ågen mengde som inneholde to.

Teorem (onwendt finkspisterren)

Anta at $A \subset \mathbb{R}^n$ es en apen mengch og at $f:A \to 1\mathbb{R}^n$ er deriverbox med kontinuetlige partiellebrete. (difficients) La $K \circ E A$ og anta at F'(K) er invertibul. Du fins en driverbox $G: V \to U$ on $K \circ G$ en apen ornigh $V \circ M \circ G$ og en apen ornigh $V \circ M \circ G$ og et $G: V \to U$ s.a. G(F(K)) = X for all $X \in U$. Vidue er G'(F(K)) = F'(K).

Skal ikke bevise det. S G(F(A) = X

Kennlegel

G'oF · F' = id

Eks. La $f(x_1y) = (3x^2 + y), 5 + 2xy$ Vis at \vec{F} er rigektiv pe en 2 ten omega om (1,1), alloc hoven inves 6, $\vec{F}'(x_1y) = \begin{pmatrix} 6x & 1 \\ 2y & 2x \end{pmatrix}$ and $(\vec{F}'(1,1)) = 12 - 2 = 10$, $\vec{F}'(1,1) = \begin{pmatrix} 6 & 1 \\ 2 & 2 \end{pmatrix}$ sá \vec{F}' er invehibel i (1,1).

Implisate fukégonsteorem

 \mathbb{R}^{n+1} . Gitt en mengde $f(x_1,...,x_n,y)=0$, de f er en deinserbar funkejon, onsker vi å læse $y=g(x_1,...,x_n)$, dus. $f(x_1,...,x_n,g(x_1,...,x_n))=0$.

Implisite fulcégonsteorem: Anta at $A \subset \mathbb{R}^{n+1}$ er en cipen mengel og anta at $f: A \to \mathbb{R}$ er en diverboi funksjon med klent. Partielleduiveite. Anta at $f(\mathcal{E}_0, y_0) = 0$ og at $\exists y (\mathcal{E}_0, y_0) \neq 0$. Da fins en omen V om \mathcal{E}_0 og en divrebox $g: V \to \mathbb{R}$, s.a. $f(\mathcal{E}_0, g(\mathcal{E})) = 0$ for alle $X \in V$.

Vidue has vi at

durned has G en inves H(Z,y)

i noshiten ou ((10,0)-

So at
$$\mathcal{H}(\vec{x},y) = (\vec{x}, \tilde{g}(\vec{x},y))$$
.
Da kan vi sette $g(\vec{x}) = \tilde{g}(\vec{x},0)$.

Til slut
$$f(\vec{x}, g(\vec{x})) = 0.$$

$$\frac{\partial}{\partial x_{j}} (f(\vec{x}, g(\vec{x}))) = 0$$

$$\frac{\partial}{\partial x_{j}} (\vec{x}, g(\vec{x})) + \frac{\partial}{\partial y} (x, g(x)) \cdot \frac{\partial y}{\partial x_{j}} (x) = 0.$$