Movie Recommendation System

using

Collaborative Filtering

By: Abdullah Khaled

Content

1	Introduction	01
	Methodology	02
	Exploratory Data Analysis (EDA)	03
	Model Training and Evaluation	04
	Recommendations	05
	Conclusion	06
	References	07
	Questions and Discussion	08

Introduction

Project Overview

- Objective: To develop a recommendation system using the MovieLens 100k dataset.
- Dataset: Contains 100,000 ratings (1-5) from 943 users on 1682 movies.

Importance

- **User Experience:** Enhance user experience by recommending movies tailored to individual preferences.
- **Business Value:** Increase user engagement and retention by providing personalized content.

Methodology

Steps Involved

- 1. Data Loading: Load the MovieLens 100k dataset.
- 2. Exploratory Data Analysis (EDA): Understand the dataset through statistical analysis and visualizations.
- 3. **Hyperparameter Tuning:** Perform grid search to find the best hyperparameters for the SVD model.
- 4. Model Training: Train the SVD model using the best hyperparameters.
- 5. Predictions: Predict ratings for unseen movies for a given user.
- 6. Recommendations: Recommend the top-rated movies.
- 7. Visualization: Visualize the top recommended movies with their predicted ratings.

Dataset Information

943

1682

Users

Movies

100,000

1-5

Ratings

Rating Scale

Model Training and Evaluation

Hyperparameter Tuning

Algorithm: Singular Value Decomposition (SVD)

Parameter Grid:

n_epochs: [5, 10]

• lr_all: [0.002, 0.005]

reg_all: [0.4, 0.6]

Best Parameters:

• n_epochs: **10**

• lr_all: 0.005

• reg_all: **0.4**

Model Training and Evaluation

- Train the Model: Using the best parameters on the entire dataset.
- Evaluation Metrics: RMSE (Root Mean Squared Error), MAE (Mean Absolute Error)
- Best RMSE Score: 0.9412

Recommendations

Predicting Ratings:

- User ID: 196
- **Predict Ratings:** For all movies that the user has not rated.

Recommendations

Conclusion

Summary

- Effective Recommendation System: Built using the MovieLens 100k dataset.
- **Personalized Recommendations:** Enhances user experience by providing tailored movie recommendations.
- Visualization: Helps in understanding the recommendations better.

Future Work

- **Incorporate More Features:** Use additional features like movie genres, user demographics for better recommendations.
- Scalability: Apply the model to larger datasets like MovieLens 1M or 20M.
- **Real-time Recommendations:** Implement real-time recommendation systems for dynamic user interactions.

References

Notebook: click here

Resources:

- Real Python: <u>click here</u>
- Google developers: <u>click here</u>

QUESTIONS?

THANK YOU!

Abdullah Khaled

Data Analyst | Machine Learning Engineer

- +20 1557504902
- dev.abdullah.khaled@gmail.com
- Beni Suef, Egypt