Lab sheet N°9: Classification (1)

Exercise 1:

Instance	a1	a2	а3	Target Class
1	Т	Т	1.0	+
2	Т	Т	6.0	+
3	Т	F	5.0	-
4	F	F	4.0	+
5	F	Т	7.0	-
6	F	Т	3.0	-
7	F	F	8.0	-
8	T	F	7.0	+
9	F	Т	5.0	-

Consider the training examples shown in the table for a binary classification problem.

- **1.** What is the entropy of this collection of training examples with respect to the class attribute?
- 2. What are the information gains of a1 and a2 relative to these training examples?
- **3.** For a3, which is a continuous attribute, compute the information gain for every possible split.
- 4. What is the best split (among a1, a2, and a3) according to the information gain?
- **5.** What is the best split (between a1 and a2) according to the misclassification error rate?
- 6. What is the best split (between a1 and a2) according to the Gini index?

Exercise 2:

Consider the following data set for a binary class problem.

Α	В	Class Label
Т	F	+
Т	Т	+
Т	Т	+
Т	F	-
Т	Т	+
F	F	-
F	F	-
F	F	-
Т	Т	-
Т	F	-

- **1.** Calculate the information gain when splitting on A and B. Which attribute would the decision tree induction algorithm choose?
- 2. Calculate the gain in the Gini index when splitting on A and B. Which attribute would the decision tree induction algorithm choose?
- 3. In the lecture, we have shown that entropy and the Gini index are both monotonically increasing in the range [0, 0.5] and they are both monotonically decreasing in the range [0.5, 1]. Is it possible that information gain and the gain in the Gini index favor different attributes? Explain.

Exercise 3 (For students):

Consider splitting a parent node P into two child nodes, C1 and C2, using some attribute test condition. The composition of labeled training instances at every node is summarized in the table below.

	Р	C1	C2
Class 0	7	3	4
Class 1	3	0	3

- 1. Calculate the Gini index and misclassification error rate of the parent node P.
- **2.** Calculate the weighted Gini index of the child nodes. Would you consider this attribute test condition if Gini is used as the impurity measure?
- 3. Calculate the weighted misclassification rate of the child nodes. Would you consider this attribute test condition if the misclassification rate is used as the impurity measure?

Exercise 4 (for students):

Show that the entropy of a node never increases after splitting it into smaller successor nodes.

Indication: Jensen's inequality can be used without proof.