BRIGHT SPOT ANALYSIS

KAVYA BEHERAJ

MARCH 14, 2018

BACKGROUND

The Student Success Network is a community of **50 nonprofit organizations** in NYC committed to using data to improve student **social-emotional learning**.

The Research Alliance for New York City Schools

Better Evidence for Better Schools

The Research Alliance is a center housed at NYU that conducts **rigorous**, **applied research** on NYC public schools. They prepared this analysis for our Network.

THE CRISP DATA MINING PROCESS

-> 01	1	BUSINESS UNDERSTANDING	Understand the problem to be solved.
		DATA UNDERSTANDING	Understand the strengths and limitations of the data.
03		DATA PREPARATION	Manipulate and convert the data into forms that yield better results.
	1	MODELING	Apply data mining techniques to capture regularities in the data.
	1	MODELING	· · · · · · · · · · · · · · · · · · ·

SOCIAL-EMOTIONAL LEARNING (SEL)

SEL consists of mindsets, behaviors, and skills a person needs to succeed

We measure SEL in students using a 53-item survey that members administer twice a year

PRE-SURVEY (baseline)

Administered at the start of the school year

POST-SURVEY (change)

Administered at the end of the school year

~5000 baseline surveys and ~5000 post-surveys from students in 5th grade to college at 210 sites were included in this bright spot analysis

BUSINESS UNDERSTANDING

What practices affect **growth** in student social-emotional learning?

What can we **generalize** about the practices and characteristics of sites that **grew** more than their peers in SEL?

MODELING

We used a K-means procedure to cluster our data.

- 1. Started with a **hypothesis:** a student's post-survey SEL score has something to do with their baseline SEL score -- where they started -- and their age group.
- 2. Reshaped the data and chose 5 random points as initial centers.
- 3. Created clusters by identifying the data points closest to the initial centers.
- 4. Recalculated the centers by finding the *centroids* of the clusters created in step 3.
- 5. Ran the clusters through several **statistical tests** to determine their quality.
- **6. Repeated steps** until we landed on the correct number and quality of clusters.

MODELING

We landed on 4 clusters:

MODELING

We applied a multilevel statistical model to determine which sites deviated farther from their cluster estimate in the post-survey.

Why? Our data has hierarchy:

- Student \rightarrow Site \rightarrow Organization \rightarrow NYC
- The SEL scores of students within a site should be *more similar* to their peers in the same site and *more different* from students in another site. This is good for comparison.
- However, *all* SSN members operate within NYC, which gives them a lot in common.

DEPLOYMENT

We found **10 sites** that deviated significantly from their cluster. Not every SEL cluster had a bright spot site, and some sites repeated.

Then, we interviewed people at those sites using an interview protocol to uncover **practices**.

The people then shared their practices on a **panel** at a Network-wide event.

Each circle represents an organization with a bright spot site.

