Algorithms & Data Structures I: Hash Table Open Addressing

Today's Topics

- Hash Tables recall
- Motivation
- Open Addressing Hashing
- Insert
- Search
- Clustering Problem
- Probing Strategies
- Analysis

Dictionary (Map in C++)

Dictionary is an:

 Abstract Data Type (ADT) maintaining items, where each item is a pair<key, value>

Examples:

- 1. *Phonebook*. Keys are names, and their corresponding items are phone numbers
- 2. *Real dictionary*. Keys are english words, and their corresponding items are dictionary-entries

item = Lkey, value>
HTCkey

Motivation

Dictionaries:

- Built into most modern programming languages (Python, C++, Ruby, Go, JavaScript, Java, . . .)
- Very powerful concept
- Use in web development fundamentals such as DNS system
- Use in cryptography

Hashing:

- Password storage
- File modification detector
- Digital signatures

Operations to support

Insert(item): Add item to the data structure

K 6 Z

Delete(item): Delete item from the data structure

WP4

Search(item): return item with key if exists

Assumption: items have unique keys

Hashing. Hash functions

Definitions:

- Universe U. A set of all possible keys
- Hash function. A function that map keys to one of m possible values. m is a capacity of hash table
- Collision

Keys a,b such that: a != b and h(a) == h(b)

Open Addressing

Concept:

- Direct access table without chaining.
 All items are stored in table
- One item per slot

How to deal with collisions?

1. Hash function specifies order of slots to find a place for a key, not just one slot

Figure 1: Open Addressing Table

Open Addressing Hashing in Details

Open Addressing Hashing

Hash function

- h: U x {0, ..., m 1} -> {0, ..., m-1}
 function from 2 arguments: key and number of attempt to find a place for a key
- { h(k, 0), h(k, 1), ..., h(k, m 1) } must be a permutation of 0, 1, ..., m-1
 - Means If I keep trying h(k, i) for increasing i, I will eventually hit all slots of the table.

Insert

Insert(key) value): Keep probing until an empty slot is found. Insert item into that slot.

Insert Pseudocode

```
void Insert(key, value):
    for i = 0 to m - 1:
        if (Table[h(key, i)] == None):
            Table[h(key, i)] = value
            Rehash() # means there is no an empty slot for insert
```

Search

Search(key): Keep probing until you found a slot with the key or find an empty slot—return success or failure respectively.

Search Pseudocode

```
bool Search (key):
  for i = 0 to m - 1:
      if (Table[h(key, i)] == None):
          return False
       else if (Table[h(key, i)] == Key):
           return Table[h(key, i)]
     return False
              e/seil table [b(k,i)=='peleteMe"
                   Coytinue
```

Deley (\(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\)

Delete

- Can't just find item and remove it from its slot
- Replace item with special flag: "DeleteMe", which Insert treats as None but Search doesn't

Probing Strategies. Linear Probing

Linear Probing:

h(k, i) = (h'(k) + i) mod m
 where h'(k) is ordinary hash function

Problems:

- 1. Clustering—cluster: consecutive group of occupied slots as clusters become longer, it gets more likely to grow further
- 2. Can be shown that for 0.01 < α < 0.99 say, clusters of size $\Theta(\log n)$

Probing Strategies. Double Hashing

Double Hashing:

- h(k, i) = (h1(k) +i *)h2(k)) mod m
 where h1(k) and h2(k) are ordinary hash functions
- Hit all slots (permutation) if h2(k) is relatively prime to m for all k
- e.g. $m = 2^r$, make h2(k) always odd

Simple uniform Hashing: Assumption

Analysis We use open addressing to insert n items into table of size m. Under the uniform hashing assumption the next operation has expected cost of less or equal to $1/(1-\alpha)$, where is $\alpha = n/m$ (< 1)

Example: $\alpha = 90\% \Rightarrow 10$ expected probes

Open Addressing vs. Chaining

Open Addressing: no pointers needed, better memory usage

Chaining: less sensitive to hash functions and the load factor α (OA degrades past 70% or so and in any event cannot support values larger than 1)

Your questions!