Notion d'espace affine

 ${\mathcal E}$ désigne un espace affine de dimension finie et de direction E .

Exercice 1 Soit V une partie non vide de \mathcal{E} .

Montrer que \mathcal{V} est un sous-espace affine si et seulement si pour tout couple (A,B) de points distincts de \mathcal{V} , la droite (AB) est incluse dans \mathcal{V} .

(**⇐**) ok

$$(\Rightarrow)$$
 Soit $A \in \mathcal{V}$ et $F = \{\overrightarrow{AM} / M \in \mathcal{V}\}$. On a $\mathcal{V} = A + F$.

Montrons que F est un sous-espace vectoriel.

 $F \subset E$, $\vec{o} = \overrightarrow{AA} \in F$.

Soit $\vec{u} \in F$. On peut écrire $\vec{u} = \overrightarrow{AM}$ avec $M \in \mathcal{V}$.

Si $\vec{u} = \vec{o}$ alors $\forall \lambda \in \mathbb{R}$, $\lambda \vec{u} = \vec{o} \in F$.

Si $\vec{u} \neq \vec{o}$ alors, la droite (AM) est incluse dans \mathcal{V} et donc $\forall \lambda \in \mathbb{R}$, $\lambda \vec{u} \in F$.

Soit $\vec{u}, \vec{v} \in F$. On peut écrire $\vec{u} = \overrightarrow{AM}, \vec{v} = \overrightarrow{AN}$ avec $M, N \in \mathcal{V}$.

Si $\vec{u} = \vec{o}$ ou $\vec{v} = \vec{o}$ alors $\vec{u} + \vec{v} \in F$.

Sinon, considérons I le milieu du segment [MN].

Le point I appartient à la droite (MN) dont $I \in \mathcal{V}$.

Comme $\vec{u} + \vec{v} = 2\overrightarrow{AI}$, on a $\vec{u} + \vec{v} \in F$.

Finalement F est un sous-espace vectoriel et $\mathcal V$ un sous-espace affine.

Exercice 2 Soit V une partie non vide de E. Montrer que, si tout barycentre de points de V est encore dans V, alors V est un sous-espace affine.

Soit $A \in \mathcal{V}$ et $F = \left\{\overrightarrow{AM} / A, M \in \mathcal{V}\right\}$. Il suffit de montrer que F est un sous-espace vectoriel de E. $\vec{o} \in F$.

Soit $\vec{u} \in F$ et $\lambda \in \mathbb{R}$. $\exists M \in \mathcal{V}$ tel que $\overrightarrow{AM} = \vec{u}$.

Pour $N = \text{bar}((A, 1 - \lambda), (M, \lambda)) \in \mathcal{V}$ on a $\overrightarrow{AN} = \lambda \overrightarrow{AM} = \lambda \overrightarrow{u}$ donc $\lambda . \overrightarrow{u} \in F$

Pour $P = \text{bar}((A, -1), (M, 1), (N, 1)) \in \mathcal{V}$ on a $\overrightarrow{AP} = \overrightarrow{AM} + \overrightarrow{AN} = \overrightarrow{u} + \overrightarrow{v}$ donc $\overrightarrow{u} + \overrightarrow{v} \in F$. Soit $\overrightarrow{u}, \overrightarrow{v} \in F$.

Exercice 3 Soit A,B et C trois points non alignés de \mathcal{E} et $\alpha,\beta,\gamma\in\mathbb{R}^*$ tel que les barycentres G,G_1,G_2 et G_3 de

$$((A,\alpha),(B,\beta),(C,\gamma)),((A,-\alpha),(B,\beta),(C,\gamma)),$$

$$((A,\alpha),(B,-\beta),(C,\gamma))$$
, et $((A,\alpha),(B,\beta),(C,-\gamma))$ existent.

a) Montrer que les droites $(AG_1), (BG_2), (CG_3)$ concourent en G.

b) Montrer que les droites (G_2G_3) , (G_3G_1) , (G_1G_2) passent respectivement par A,B,C.

$$\text{a) On } -\alpha \overrightarrow{G_1 A} + \beta \overrightarrow{G_1 B} + \gamma \overrightarrow{G_1 C} = \overrightarrow{o} \ \text{ donc } (-\alpha + \beta + \gamma) \overrightarrow{G_1 G} + 2\alpha \overrightarrow{A G} = \overrightarrow{o} \ \text{ donc } G \in (A \ G_1) \ .$$

De même $G \in (BG_2)$ et $G \in (CG_3)$.

$$\text{b) } 2\alpha\overline{G_2A} = \left(\alpha\overline{G_2A} - \beta\overline{G_2B} + \gamma\overline{G_2C}\right) + \left(\alpha\overline{G_2A} + \beta\overline{G_2B} - \gamma\overline{G_2C}\right) = \overrightarrow{o} + (\alpha + \beta - \gamma)\overline{G_2G_3} \text{ donc } A \in (G_2G_3) \text{ . De } \\ \text{même } B \in (G_3G_1) \text{ et } C \in (G_1G_2) \text{ .}$$

Application affine

 ${\mathcal E}$ désigne un espace affine de dimension finie et de direction E.

Exercice 4 Soit f une application affine de \mathcal{E} dans lui-même et (A,B) un couple de points distincts de \mathcal{E} . Montrer que si A et B sont des points fixes de f alors la droite (AB) est invariante par f.

$$f(A) = A$$
 et $f(B) = B \Rightarrow \overrightarrow{f}(\overrightarrow{AB}) = \overrightarrow{f(A)}f(\overrightarrow{B}) = \overrightarrow{AB}$.

Pour tout point $M = A + \lambda . \overrightarrow{AB}$ de la droite (AB) on a alors f(M) = M.

Exercice 5 Soit A, B, C, D quatre points non coplanaires d'un espace affine \mathcal{E} de dimension 3. Montrer qu'il existe une unique application affine envoyant A, B, C, D sur B, C, D, A et déterminer un point invariant de celle-ci.

$$(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD})$$
 est une base de E .

Il existe une unique application linéaire φ l'envoyant sur $(\overrightarrow{BC}, \overrightarrow{BD}, \overrightarrow{BA})$ et puisqu'une application affine est caractérisée par l'image d'un point et sa partie linéaire, l'application affine cherchée existe et est unique. L'isobarycentre des points A, B, C, D est invariant.

Exercice 6 Soit $f: \mathcal{E} \to \mathcal{E}$ une application affine telle qu'il existe $n \in \mathbb{N}^*$ pour lequel $f^n = \operatorname{Id}_{\mathcal{E}}$. Montrer que f admet un point invariant.

Soit $\Omega\in\mathcal{E}$. Considérons l'isobarycentre G des points $\Omega,f(\Omega),\dots,f^{n-1}(\Omega)$.

f(G) est l'isobarycentre des points $f(\Omega), f^2(\Omega), \dots, f^n(\Omega) = \Omega$ donc f(G) = G.

Ainsi f possède un point fixe.

Applications affines usuelles

 ${\mathcal E}$ désigne un espace affine de dimension finie et de direction E .

Exercice 7 Soit \vec{u} un vecteur de E et A un point de \mathcal{E} . Décrire la transformation $t_{\vec{u}} \circ s_A$.

Posons
$$B=A+\frac{1}{2}\vec{u}$$
 . On a $t_{\vec{u}}=s_{\scriptscriptstyle B}\circ s_{\scriptscriptstyle A}$ donc $t_{\vec{u}}\circ s_{\scriptscriptstyle A}=s_{\scriptscriptstyle B}$.

Exercice 8 Soit H et H' deux homothéties de centres O et O' et de rapports λ et λ' . Décrire la transformation $H' \circ H$

$$\overrightarrow{H'\circ H}=\lambda\lambda'\operatorname{Id}_{E}.$$

Si $\lambda\lambda'\neq 1$ alors $H'\circ H$ est une homothétie de rapport $\lambda\lambda'$ et de centre Ω caractérisé par : $(H'\circ H)(\Omega)=\Omega$ soit $\overrightarrow{O'\Omega}=\lambda'\overrightarrow{O'O}+\lambda\lambda'\overrightarrow{O\Omega}$ qui donne $\overrightarrow{O'\Omega}=\frac{\lambda'(1-\lambda)}{1-\lambda\lambda'}\overrightarrow{O'O}$.

Si $\lambda\lambda'=1$ alors $H'\circ H$ est une translation de vecteur $\vec{u}=\overrightarrow{OO''}$ avec $O''=H'(H(O))=H'(O)=O'+\lambda'\overrightarrow{O'O}$ et donc $\vec{u}=(1-\lambda')\overrightarrow{OO'}$.

Exercice 9 Soit f une transformation affine et h une homothétie de centre O et de rapport λ . Préciser l'application $f \circ h \circ f^{-1}$.

 $f \circ h \circ f^{-1}$ est une application affine de partie linéaire λ Id qui fixe le point f(O). Que $\lambda = 1$ ou non, $f \circ h \circ f^{-1}$ est l'homothétie de centre f(O) et de rapport λ .

Exercice 10 Déterminer toutes les applications affines $f: \mathcal{E} \to \mathcal{E}$ commutant avec toutes les translations.

Les translations sont solutions. Montrons que ce sont les seules.

Si f commutent avec les translations alors pour tout $\vec{u} \in E$, $(t_{\vec{u}} \circ f)(A) = (f \circ t_{\vec{u}})(A)$ donne

 $f(A+\vec{u}) = f(A) + \vec{u}$. Par suite $\vec{f}(\vec{u}) = \vec{u}$ puis $\vec{f} = \mathrm{Id}_E$. Ainsi f est une translation.

Exercice 11 Montrer que l'ensemble G formé par la réunion des translations et des symétries centrales de \mathcal{E} , muni du produit de composition des applications, forme un groupe.

Considérons $L: GA(\mathcal{E}) \to GL(E)$ définie par $L(f) = \vec{f}$.

 $L \text{ est un morphisme de groupes et } \left\{ \operatorname{Id}_E, -\operatorname{Id}_E \right\} \text{ est un sous-groupe de } GL(E) \text{ donc } G = L^{-1}(\left\{ \operatorname{Id}_E, -\operatorname{Id}_E \right\}) \text{ est un sous-groupe de } GA(\mathcal{E}) \,.$

Exercice 12 Soit f une application affine de \mathcal{E} dans lui-même qui transforme toute droite vectorielle en une droite parallèle. Montrer que f est une translation ou une homothétie.

Soit f une solution du problème posé. Montrons : $\exists \lambda \in \mathbb{R}$ tel que $\vec{f} = \lambda \operatorname{Id}$.

Soit \vec{u} un vecteur non nul, A un point de \mathcal{E} et \mathcal{D} la droite $\mathcal{D} = A + Vect(\vec{u})$.

On a $f(\mathcal{D}) = f(A) + \text{Vect}(\vec{u})$.

Or $f(A + \vec{u}) = f(A) + \vec{f}(\vec{u}) \in f(\mathcal{D})$ donc $\vec{f}(\vec{u})$ est colinéaire à \vec{u} i.e. $\exists \lambda \in \mathbb{R}$ tel que $\vec{f}(\vec{u}) = \lambda . \vec{u}$.

Montrons que ce $\,\lambda\,$ ne dépend pas de $\,\vec{u}\,$.

Soit $\mathcal{B} = (\vec{e}_1, ..., \vec{e}_n)$ une base de E.

 $\forall 1 \leq i \leq n, \exists \lambda_i \in \mathbb{R} \text{ tel que } \vec{f}(\vec{e}_i) = \lambda_i \vec{e}_i.$

 $\forall 1 \leq i \neq j \leq n, \exists \lambda \in \mathbb{R} \text{ tel que } f(\vec{e_i} + \vec{e_j}) = \lambda(\vec{e_i} + \vec{e_j}).$

Or la famille (\vec{e}_i, \vec{e}_j) est libre donc $\lambda = \lambda_i = \lambda_j$.

Ainsi $\lambda_1 = \dots = \lambda_n = \lambda$ et $\vec{f} = \lambda \operatorname{Id}$.

Exercice 13 On note \mathcal{HT} le groupe des homothéties-translations de $\mathcal E$.

Montrer que si G est un sous-groupe commutatif de \mathcal{HT} alors G n'est que constitué que de translations ou d'homothéties de même centre.

Si G n'est constitué que de translation : ok

Sinon soit H une homothétie h de centre O et de rapport $\lambda \neq 1$ appartenant à G.

Soit t une translation de vecteur \vec{u} appartenant à G.

 $H \circ t = t \circ H$ donne en $O: \lambda \vec{u} = \vec{u}$ d'où $\vec{u} = \vec{0}$ et $t = \operatorname{Id}_E$ qui est une homothétie de centre O.

Soit H' une homothétie appartenant à G.

 $H \circ H' = H' \circ H$ donne en O: H(H'(O)) = H'(O). Or O est le seul point fixe de H donc H'(O) = O et par suite H' est une homothétie de centre O.

Finalement les éléments de G sont tous des homothéties de centre O.

Projection et symétrie affine

Exercice 14 On munit un espace affine \mathcal{E} de dimension 3 d'un repère $\mathcal{R} = (0; \vec{i}, \vec{j}, \vec{k})$.

- a) Donner l'expression analytique de la projection sur \mathcal{P} : x+y+z=1 parallèlement à
- $D = \text{Vect}(\vec{i} + \vec{j} \vec{k})$.
- b) Donner l'expression analytique de la symétrie par rapport à $\mathcal{P}: x+z=1$ selon
- $D = \text{Vect}(\vec{i} + \vec{j})$.
- c) Donner l'expression de la projection affine sur $\P: x+y+z=1$ selon la direction

 $Vect(\vec{u}(1,2,-2))$.

a) Notons
$$f$$
 la transformation étudiée. Soit $M \begin{vmatrix} x \\ y \\ z \end{vmatrix}$ et $M' \begin{vmatrix} x' \\ y' \\ z' \end{vmatrix} = f(M)$.
$$M' \in \mathcal{P} \text{ donc } x' + y' + z' = 1.$$

$$\overline{MM'} \in \text{Vect}(\vec{i} + \vec{j} - \vec{k}) \text{ donc il existe } \lambda \in \mathbb{R} \text{ tel que } \overline{MM'} = \lambda(\vec{i} + \vec{j} - \vec{k}) \text{ ce qui donne } \begin{cases} x' = x + \lambda \\ y' = y + \lambda \\ z' = z - \lambda \end{cases}$$
 Sachant $x' + y' + z' = 1$, on obtient : $\lambda = 1 - (x + y + z)$ et finalement :
$$\begin{cases} x' = -y - z + 1 \\ y' = -x - z + 1 \\ z' = x + y + 2z - 1 \end{cases}$$
 b) Notons f la transformation étudiée. Soit $M \begin{vmatrix} x \\ y \\ z \end{vmatrix}$ et $M' \begin{vmatrix} x' \\ y' \\ z \end{vmatrix} = f(M)$.
$$m[M, M'] \in \mathcal{P} \text{ donc } \frac{x + x'}{2} + \frac{z + z'}{2} = 1.$$

$$\overline{MM'} \in \text{Vect}(\vec{i} + \vec{j}) \text{ donc il existe } \lambda \in \mathbb{R} \text{ tel que } \overline{MM'} = \lambda \vec{i} \text{ ce qui donne } \begin{cases} x' = x + \lambda \\ y' = y + \lambda \\ z' = z \end{cases}$$
 Sachant $x + x' + z + z' = 2$, on obtient : $\lambda = 2 - 2x - 2z$ et finalement :
$$\begin{cases} x' = -x - 2z + 2 \\ y' = -2x + y - 2z + 2 \end{cases}$$
 co
$$\begin{cases} x' = 2x + y + z - 1 \\ y' = 2x + 3y + 2z - 2 \\ z' = -2x - 2y - z + 2 \end{cases}$$

Exercice 15 On munit un espace affine \mathcal{E} de dimension 3 d'un repère $\mathcal{R} = (O; \vec{i}, \vec{j}, \vec{k})$.

Déterminer la nature et les éléments caractéristiques de l'application $f: \mathcal{E} \to \mathcal{E}$ d'expression

Déterminer la nature et les éléments caractéristiques de l'application $f: \mathcal{E} \to \mathcal{E}$ d'expression analytique :

analytique.
a)
$$\begin{cases} x' = -y - z + 1 \\ y' = -2x - y - 2z + 2 \\ z' = x + y + 2z - 1 \end{cases}$$
b)
$$\begin{cases} 2x' = x - z + 1 \\ 2y' = x + 2y + z - 1 \\ 2z' = -x + z + 1 \end{cases}$$
c)
$$\begin{cases} x' = -y + z + 3 \\ y' = -x + z + 3 \\ z' = -x - y + 2z + 3 \end{cases}$$

a) f est une application affine car l'expression analytique est du type $X^\prime = AX + B$.

Les points invariants par f sont les points du plan x + y + z = 1.

On a $A^2 = \text{Id donc } \vec{f}$ est une symétrie vectorielle selon la direction $\ker(\vec{f} + \text{Id}) = \operatorname{Vect}(\vec{i} + 2\vec{j} + \vec{k})$.

Par suite f est la symétrie par rapport au plan déquation x+y+z=1 et selon $\text{Vect}(\vec{i}+2\vec{j}-\vec{k})$.

b) f est une application affine car l'expression analytique est du type $\,X' = AX + B\,$.

Les points invariants par f sont les points du plan x+z=1.

On a $A^2 = A$ donc \vec{f} est une projection vectorielle selon la direction $\ker(\vec{f}) = \operatorname{Vect}(\vec{i} - \vec{j} + \vec{k})$.

Par suite f est la projection sur le plan déquation x+z=1 et selon la direction $Vect(\vec{i}-\vec{j}+\vec{k})$. 3x+3y-2z=0 .

c) Projection sur \Rightarrow : x + y - z = 3 selon $\vec{u}(1,1,1)$

Exercice 16 A quelle condition une translation et une symétrie affine commutent-elle ?

Soit t une translation de vecteur \vec{u} et s une symétrie par rapport à $\mathcal{V}=A+F$ et parallèlement à G. $\vec{t}\circ\vec{s}=\vec{s}=\vec{s}\circ\vec{t}$ et $(t\circ s)(A)=(s\circ t)(A)\Leftrightarrow A+\vec{u}=A+s(\vec{u})$.

Donc t et s commutent ssi $\vec{u} \in F$.

Exercice 17 Soit $f: \mathcal{E} \to \mathcal{E}$ une application affine. Etablir:

- a) f est une projection si et seulement si $f \circ f = f$.
- b) f est une symétrie si et seulement si $f \circ f = \mathrm{Id}_{\varepsilon}$.

a) Si f est une projection affine alors $f \circ f = f$.

Inversement si $f \circ f = f$ alors $\vec{f} \circ \vec{f} = \vec{f}$. Par suite $F = \operatorname{Im} \vec{f}$ et $G = \ker \vec{f}$ sont des sous-espaces vectoriels supplémentaires dans E et \vec{f} est la projection vectorielle sur F selon la direction G.

Soit A un point de \mathcal{E} , on a f(f(A)) = f(A) donc f(A) est un point fixe de f.

Posons $\mathcal{V} = f(A) + F$. f apparaît comme la projection sur \mathcal{V} selon la direction G car prend même valeur en f(A) et a même partie linéaire que cette transformation.

b) Si f est une symétrie affine alors $f \circ f = \mathrm{Id}_{\varepsilon}$.

Inversement, si $f \circ f = \operatorname{Id}_{\mathcal{E}}$ alors $\vec{f} \circ \vec{f} = \operatorname{Id}_{\mathcal{E}}$. Par suite $F = \ker(\vec{f} - \operatorname{Id}_{\mathcal{E}})$ et $G = \ker(\vec{f} + \operatorname{Id}_{\mathcal{E}})$ sont des sousespaces vectoriels supplémentaires dans E et \vec{f} est la symétrie vectorielle par rapport à F selon la direction G.

Soit A un point de \mathcal{E} , on a f(f(A)) = A.

Posons I le milieu du segment d'extrémités A et f(A). I est un point fixe de f.

Posons $\mathcal{V}=I+F$. f apparaît comme la symétrie par rapport à \mathcal{V} selon la direction G car prend même valeur en I et a même partie linéaire que cette transformation.

Exercice 18 Soit f une transformation affine telle que $\vec{f} \circ \vec{f} = \operatorname{Id}_E$.

Montrer qu'il existe un unique couple (t,s) formé d'une translation et d'une symétrie tel que $f=t\circ s=s\circ t$.

Unicité : Si $f = t \circ s = s \circ t$ alors $f \circ f = t \circ t$ ce qui détermine t puis s de manière unique.

Existence : Puisque $\vec{f} \circ \vec{f} = \operatorname{Id}_E$, $F = \ker(\vec{f} - \operatorname{Id})$ et $G = \ker(\vec{f} + \operatorname{Id})$ sont supplémentaires et \vec{f} est la symétrie par rapport à F parallèlement à G. Soit $O \in \mathcal{E}$, O' = f(O), $\overrightarrow{OO'} = \vec{u} + \vec{v}$ avec $\vec{u} \in F$ et $\vec{v} \in G$.

Posons $A=O+\frac{1}{2}\vec{v}$, $\mathcal{V}=A+F$, s la symétrie par rapport à \mathcal{V} et t la translation de vecteur \vec{u} .

On a $t\circ s=s\circ t$, $\vec{f}=\vec{t}\circ \vec{s}$ et $(t\circ s)(O)=A+\frac{1}{2}\vec{v}+\vec{u}=O+\overrightarrow{OO'}=O'=f(O)$ donc $f=t\circ s=s\circ t$. et s l'application $f\circ t^{-1}$ de sorte que $f=s\circ t$.

Isométries du plan

Exercice 19 Montrer que toute isométrie du plan \mathcal{P} qui échange deux points distincts est involutive.

Soit f une isométrie échangeant deux points distincts A et B.

 f^2 est un déplacement car composée de deux déplacement ou de deux antidéplacement.

A et B sont points fixes de f^2 car(f(f(A)) = f(B) = A et f(f(B)) = B.

Par suite $f^2 = \operatorname{Id}_{\mathcal{D}}$.

Exercice 20 Soit r et r' deux rotations du plan $\mathcal P$ distinctes de Id .

Montrer qu'il existe 3 réflexions s, s', s'' telles que : $r = s'' \circ s$ et $r' = s' \circ s''$.

Décrire $r' \circ r$. Lorsqu'il s'agit d'une rotation donner une construction de son centre.

Notons O et O' les centres de r et r'.

Soit s'' la réflexion par rapport à une droite passant par O et O'. Considérons $f = s'' \circ r$.

f est un antidéplacement du plan qui garde fixe le point O , c'est donc un réflexion s par rapport à une droite $\mathcal D$ passant O . Ainsi $r=s''\circ s$.

De même, $r'\circ s''$ est une réflexion s' par rapport à une droite \mathcal{D}' passant par O'. $r'\circ r=s'\circ s''\circ s''\circ s=s'\circ s$.

Si \mathcal{D} et \mathcal{D}' sont parallèles alors $r' \circ r$ est une translation.

Sinon, $r' \circ r$ est une rotation dont le centre est l'intersection des droites \mathcal{D} et \mathcal{D}' .

Connaissant les rotations r et r', on peut construire \mathcal{D} et \mathcal{D}' puis le centre de $r' \circ r$.

Exercice 21 Etudier à quelle condition une réflexion et une translation du plan \mathcal{P} commutent.

Soit σ la réflexion par rapport à la droite $\mathcal{D} = A + D$ et t la translation de vecteur \vec{u} .

On a $\sigma \circ t = t \circ \sigma$ si et seulement si pour tout point $M \in \mathcal{P}, \sigma(M + \vec{u}) = \sigma(M) + \vec{u}$ soit $\vec{\sigma}(\vec{u}) = \vec{u}$.

Or les vecteurs fixes de la réflexion vectorielle $\vec{\sigma}$ sont les vecteurs de D .

Par suite σ et t commutent si et seulement si $\vec{u} \in D$.

Exercice 22 Soit $A_1, ..., A_n$ des points du plan.

Montrer que l'existence de B_1, \dots, B_n tels que $A_i = m \big[B_i, B_{i+1} \big]$ (avec $B_{n+1} = B_1$) est équivalente à l'existence d'un point fixe pour une certaine composée de symétries centrales.

Discuter l'existence et l'unicité des points B_i et en donner une construction géométrique.

Soit s_i la symétrie de centre A_i .

Si B_1, \ldots, B_n est solution du problème posé alors $B_2 = s_1(B_1), \ldots, B_n = s_{n-1}(B_{n-1})$ et $B_1 = (s_n \circ \ldots \circ s_1)(B_1)$. Inversement ok.

Si n est impair, la composée $s_n \circ ... \circ s_1$ est une symétrie centrale et par suite B_1 existe et est unique.

En déterminer le milieu d'un point et de son image par cette composée, on construit B_1 .

Si n est pair, la composée est une translation de vecteur $2(\overrightarrow{A_1A_2} + \cdots + \overrightarrow{A_{n-1}A_n})$.

Si ce dernier n'est pas nul, il n'y a pas de solution au problème posé.

Si ce vecteur est nul, n'importe quel point convient.

Exercice 23 On munit le plan d'un repère orthonormé direct $\mathcal{R} = (0; \vec{i}, \vec{j})$.

Déterminer la nature et les éléments caractéristiques de l'application $f: \mathcal{P} \to \mathcal{P}$ d'expression analytique :

a)
$$\begin{cases} x' = \frac{3}{5}x - \frac{4}{5}y + 4 \\ y' = \frac{4}{5}x + \frac{3}{5}y - 2 \end{cases}$$

b)
$$\begin{cases} x' = -y + 1 \\ y' = -x + 2 \end{cases}$$

- a) Rotation de centre $\Omega \begin{vmatrix} 4 \\ 3 \end{vmatrix}$ et d'angle $\arccos 3/5 \quad [2\pi]$.
- b) Symétrie glissée par rapport à la droite $\mathcal{D}: 2x+2y-3=0$ et de vecteur $\vec{u} \begin{vmatrix} -1/2 \\ 1/2 \end{vmatrix}$.

Exercice 24 Déterminer le groupe des isométries du plan \mathcal{P} laissant globalement invariant :

- a) Un carré.
- b) Un rectangle non carré.
- c) Un cercle.
- a) Soit (ABCD) un carré.

Soit f une isométrie du plan \mathcal{P} conservant les sommets du carré ABCD.

Nécessairement f garde fixe le centre O du rectangle (isobarycentre des points A, B, C, D).

Si f est un déplacement, alors selon que f(A) = A, B, C ou D, on a $f = \operatorname{Id}, r_{O,\pi/2}, r_{O,\pi} = s_O$ ou $r_{O,3\pi/2}$.

Si f est un antidéplacement alors selon que f(A) = A, B, C ou D, on a $f = s_{(AC)}, s_{\mathcal{D}}, s_{(BD)}$ ou $s_{\mathcal{D}}$ avec \mathcal{D}_1 et

 \mathcal{D}_2 les médiatrices respectives des segments [AB] et [AD].

Inversement les isométries proposées laissent invariant le carré (ABCD)

b) Soit (ABCD) un rectangle non carré.

Soit f une isométrie du plan \mathcal{P} conservant les sommets du rectangle (ABCD).

Nécessairement f garde fixe le centre O du rectangle (isobarycentre des points A, B, C, D).

Si f est un déplacement, alors selon que f(A)=A ou C, on a $f=\mathrm{Id}$ ou $r_{0,\pi}=s_0$.

Comme (ABCD) n'est pas carré, les cas f(A) = B et f(A) = D sont impossibles..

Si f est un antidéplacement alors selon que f(A)=B ou D, on a $f=s_{\mathcal{D}_{\!\!1}}$ ou $s_{\mathcal{D}_{\!\!2}}$ avec $\mathcal{D}_{\!\!1}$ et $\mathcal{D}_{\!\!2}$ les médiatrices respectives des segments [AB] et [AD].

Comme ABCD n'est pas carré, f(A) = A ou f(A) = C sont impossibles.

Inversement les isométries proposées laissent invariant le rectangle (ABCD)

c) Soit C un cercle de centre O et de rayon R > 0.

Soit f une isométrie du plan laissant globalement invariant $\mathcal C$.

Soit A et B deux points diamétralement opposés de ce cercle, on a AB = 2R.

Leurs images A' et B' par l'isométrie f sont des points de C tels que A'B' = AB = 2R, ce sont donc deux points diamétralement opposés du cercle $\mathcal C$. Par suite le milieu du segment $\begin{bmatrix} A'B' \end{bmatrix}$ est O et on en déduit que O est point fixe de f.

Par suite f est soit une rotation de centre O, soit une réflexion par rapport à un axe passant par O. Inversement de telles transformations conservent le cercle c.

Exercice 25 Déterminer le groupe des isométries du plan \mathcal{P} laissant globalement invariant la réunion de deux droites parallèles distinctes du plan.

Soit \mathcal{D} et \mathcal{D}' deux droites parallèles distinctes.

Soit f une isométrie laissant globalement invariant $\mathcal{D} \cup \mathcal{D}'$.

Soit A un point de \mathcal{D} et Δ la perpendiculaire à \mathcal{D} passant pas A.

 Δ coupe \mathcal{D}' en un point A'.

Soit Δ' l'image de Δ par f. Comme une isométrie préserve l'orthogonalité, Δ' est une droite parallèle à Δ coupant $\mathcal D$ et $\mathcal D'$ en des points B et B'.

Deux cas sont alors possibles : f envoie A sur B ou f envoie A sur B'.

Si f(A) = B alors f(A') = B'. Introduisons D la médiatrice du segment [AB].

Si f est déplacement alors $s_D \circ f$ est un antidéplacement qui laisse fixe A et A' à savoir $s_{(AA')}$.

Par suite $f = s_D \circ s_{(AA')}$ puis f est une translation de vecteur \overrightarrow{AB} .

Si f est un antidéplacement alors $s_{\scriptscriptstyle D}\circ f$ est un déplacement qui laisse fixe A et A' à savoir Id .

Par suite $f = s_D$.

Si f(A) = B' alors f(A') = B.

Introduisons D' la droite parallèle à \mathcal{D} et \mathcal{D}' qui se situe à égale distance de celles-ci.

 $s_{\mathcal{D}'} \circ f$ est une isométrie laissant invariante \mathcal{D} et \mathcal{D}' et qui envoie A sur B.

On est alors ramené au cas précédent.

Résumons: f est

-soit une translation de vecteur \vec{u} nul ou directeur de \mathcal{D} et \mathcal{D}' ,

-soit une réflexion par rapport à une droite perpendiculaire à \mathcal{D} et \mathcal{D}' ,

-soit une symétrie glissée par rapport à la droite D' intermédiaire à \mathcal{D} et \mathcal{D}' .

-soit une symétrie de centre situé sur la droite D'.

Inversement les transformations décrites ci-dessus sont solutions.

Similitudes du plan

Exercice 26 Soit ABC un triangle non aplati du plan \mathcal{P} .

On désigne par S_1, S_2, S_3 les similitudes directes du plan \mathcal{P} de centres respectifs A, B, C telles

que
$$S_1(B) = C$$
, $S_2(C) = A$ et $S_3(A) = B$.

Décrire les composées $S_3 \circ S_2 \circ S_1$ et $S_1 \circ S_2 \circ S_3$.

 $S_3 \circ S_2 \circ S_1$ et $S_1 \circ S_2 \circ S_3$ sont des similitudes de rapport 1 et d'angle π par composition.

 $S_3 \circ S_2 \circ S_1$ laisse fixe le point B, c'est la symétrie de centre B.

 $S_1 \circ S_2 \circ S_3$ envoie le point C sur A, c'est la symétrie de centre I = m[AC]

Exercice 27 Soit AOB un triangle non aplati rectangle en $A, B' \in]O, A]$ et A' le projeté orthogonal de B' sur (OB).

Montrer: OB' + AB < OB + A'B'.

Nous allons exploiter le fait que les triangles AOB et A'OB' sont semblables.

Notons
$$\alpha$$
 l'angle en O de ces triangles : $\frac{A'B'}{OB'} = \sin \alpha = \frac{AB}{OB}$.

$$OB + A'B' - OB' - AB = (OB - OB')(1 - AB/OB) > 0$$
.

Exercice 28 Soit OAB et OA'B' deux triangles directement semblables. Soit I, J les milieux respectifs de A'B, AB' et H, H' les projections orthogonales de O sur (AB), (A', B').

Montrer : $(IJ) \perp (HH')$.

$$2\overrightarrow{IJ} = \overrightarrow{BA} + \overrightarrow{A'B'}$$
 donc $2\overrightarrow{IJ}.\overrightarrow{HH'} = \overrightarrow{BA}.\overrightarrow{OH'} + \overrightarrow{A'B'}.\overrightarrow{HO}$

Notons $s = \lambda . r_{\theta}$ la partie linéaire associée à la similitude transformant OAB en OA'B'.

$$\overrightarrow{BA}.\overrightarrow{OH'} + \overrightarrow{A'B'}.\overrightarrow{HO} = \overrightarrow{BA}.s(\overrightarrow{OH}) + s(\overrightarrow{AB}).\overrightarrow{HO} = -\lambda \overrightarrow{AB}.r_{\theta}(\overrightarrow{OH}) - \lambda r_{\theta}(\overrightarrow{AB}).\overrightarrow{OH}$$

$$\text{donc } \overrightarrow{BA}.\overrightarrow{OH'} + \overrightarrow{A'B'}.\overrightarrow{HO} = -\lambda \overrightarrow{AB}. \left(r_{\theta}(\overrightarrow{OH}) + r_{-\theta}(\overrightarrow{OH})\right) = -2\lambda \cos \theta. \overrightarrow{AB}.\overrightarrow{OH} = 0$$
 puis la conclusion.

Exercice 29 On munit \mathcal{P} d'un repère orthonormé direct $\mathcal{R} = (O; \vec{i}, \vec{j})$.

Soit A, B, C trois points du plan \mathcal{P} d'affixes a, b, c telles que |a| = |b| = |c|.

Montrer que (ABC) est équilatéral si et seulement si a+b+c=0.

Posons
$$R = |a| = |b| = |c|$$
, $a = Re^{i\alpha}$, $b = Re^{i\beta}$, $c = Re^{i\gamma}$.

Si
$$a+b+c=0$$
 alors $1+e^{i(\beta-\alpha)}+e^{i(\gamma-\alpha)}=0$.

$$\text{Par \'egalit\'e des parties imaginaires}: \ \beta-\alpha=\alpha-\gamma \quad \left[2\pi\right] \text{ ou } \ \beta-\alpha=\pi-(\alpha-\gamma) \quad \left[2\pi\right].$$

Dans le premier cas, l'égalité des parties réelles donne $\cos(\beta - \alpha) = \cos(\alpha - \gamma) = -\frac{1}{2}$.

Dans le second cas, l'égalité des parties réelles donne 1 = 0. Ce cas est donc impossible.

Finalement on obtient
$$\beta - \alpha = \alpha - \gamma = \pm \frac{2\pi}{3}$$
 [2 π].

On obtient alors
$$(b = ja \text{ et } c = j^2 a)$$
 ou $(b = j^2 a \text{ et } c = ja)$.

Par suite (ABC) est un triangle équilatéral.

Inversement si (ABC) est un triangle équilatéral.

Les points A, B, C se situent à égale distance de O et O est donc le centre du cercle circonscrit. Comme (ABC) est équilatéral, O est aussi le centre de gravité de (ABC) et par suite a+b+c=0.

Exercice 30 a) Soit f une similitude du plan \mathcal{P} et Γ une conique de foyer f, de directrice \mathcal{D} et d'excentricité e. Justifier que $f(\Gamma)$ est une conique dont on précisera foyer, directrice et excentricité.

b) A quelle(s) condition(s) deux coniques sont-elles directement semblables ?

a) $\Gamma = \{ M \in \mathcal{P} / MF = ed(M, \mathcal{D}) \}$.

$$f(\Gamma) = \{f(M)/MF = ed(M, \mathcal{D})\} = \{M'/f^{-1}(M')F = ed(f^{-1}(M'), \mathcal{D})\}.$$

Posons F' = f(F) et $\mathcal{D}' = f(\mathcal{D})$.

En notant λ le rapport de la similitude f, on a $M'F' = \lambda f^{-1}(M')F$ et $d(M', \mathcal{D}') = \lambda d(f^{-1}(M'), \mathcal{D})$

donc $f(\Gamma) = \{ M' \in \mathcal{P} / M'F' = ed(M', \mathcal{D}) \}$.

Ainsi $f(\Gamma)$ est la conique de foyer F', de directrice \mathcal{D}' et d'excentricité e.

b) Par la question précédente, l'égalité de l'excentricité est nécessaire. Voyons que cette condition suffit.

Considérons Γ, Γ' deux coniques de foyers F, F', de directrices $\mathcal{D}, \mathcal{D}'$ et de même excentricité e.

Posons H, H' les projetés de F, F' sur $\mathcal{D}, \mathcal{D}'$.

Nous savons qu'il existe une similitude directe f qui envoie F sur F' d'une part, et H sur H' d'autre part.

Puisque \mathcal{D} est la perpendiculaire en H à la droite (FH), l'image de \mathcal{D} par f est la perpendiculaire en H' à la droite (F'H') à savoir \mathcal{D}' .

Par suite f transforme Γ en Γ' .

Isométries de l'espace

Exercice 31 On munit l'espace affine \mathcal{E} d'un repère orthonormé direct $\mathcal{R} = (O; \vec{i}, \vec{j}, \vec{k})$.

Décrire l'application $f: \mathcal{E} \to \mathcal{E}$ d'expression analytique :

a)
$$\begin{cases} x' = \frac{1}{3}(-2x - y + 2z) + 1 \\ y' = \frac{1}{3}(2x - 2y + z) + 1 \\ z' = \frac{1}{3}(x + 2y + 2z) + 3 \end{cases}$$
 b)
$$\begin{cases} x' = \frac{1}{3}(-2x - 2y + z - 5) \\ y' = \frac{1}{3}(-2x + y - 2z - 2) \\ z' = \frac{1}{3}(x - 2y - 2z + 1) \end{cases}$$

- a) f est le vissage d'axe dirigé et orienté par $\vec{v}(1,1,3)$, d'angle $\arccos(-5/6)$ et de vecteur \vec{v} .
- b) f est le retournement autour de la droite déquations : $\begin{cases} x-z+1=0\\ y+2z=0 \end{cases}.$

Exercice 32 Déterminer les déplacements et les réflexions de \mathcal{E} laissant globalement invariante une sphère donnée.

Soit S une sphère de centre O et de rayon R.

L'image de la sphère S par une isométrie f est une sphère de centre f(O) et de rayon R.

L'isométrie f laisse invariante la sphère S si et seulement si f(O) = O.

Les déplacements laissant fixe le point O sont les rotations dont l'axe passe par O.

Les réflexions laissant fixe le point O sont celles dont le plan passe par O.