Teoria da Computação FCT-UNL 2023-2024

Problem Set 3

Autómatos Finitos Deterministas

- 1. Para cada uma das linguagens abaixo descreva um AFD que a reconhece através do seu diagrama de estados e de uma definição formal:
 - (a) $L = \{0^{2n} \mid n \in \mathbb{N}\}$
 - (b) $L = \{(01)^n \mid n \in \mathbb{N}\}$
 - (c) A linguagem L das strings sobre $\{0,1\}$ que contêm pelos menos dois 0s e pelo menos um 1.
 - (d) A linguagem L das strings sobre $\{0,1\}$ que contêm exactamente dois 0s e pelo menos dois 1s.
 - (e) A linguagem L das strings sobre $\{0,1\}$ com um número par de 0s e um número ímpar de 1s.
 - (f) A linguagem L das strings sobre $\{0,1\}$ que não contêm a substring 010.
 - (g) A linguagem L das strings sobre $\{0,1\}$ com um número par de 0s e em que cada 0 é sempre seguido de pelo menos um 1.
 - (h) A linguagem L das strings sobre $\{0\}$ com tamanho divisível por 2 ou por 3.
 - (i) A linguagem L das strings sobre $\{A,C,G,T\}$ que contêm pelo menos uma ocorrência da substring ACT.
 - (j) $L = \emptyset$
 - (k) $L = \{\varepsilon\}$
 - (1) $L = \{0, 1\}^* \setminus \{\varepsilon\}$
- 2. Para cada um dos AFDs que construiu nas alíneas (a)–(g) do Exercício 1, descreva a sequência de estados percorridos no input 0100110 e diga se esta string é aceite ou não.
- 3. Seja L uma linguagem regular. Quando é que temos $\varepsilon \in L$?
- 4. Para cada uma das linguagens L abaixo descreva um AFD que a reconhece através do seu diagrama de estados. Sugestão: Primeiro construa um AFD que reconhece o complemento \overline{L} e depois converta-o para um AFD que reconhece L.
 - (a) A linguagem L sobre $\{a, b\}$ cujas strings não contêm a substring ab.

- (b) $L = \{a, b\}^* \setminus \{a^m b^n \mid m, n \in \mathbb{N}\}$
- (c) $L = \{a, b\}^* \setminus (\{a\}^* \cup \{b\}^*)$
- (d) A linguagem L sobre $\{a, b\}$ cujas strings não contêm exactamente dois as.
- 5. Sejam L_1 e L_2 linguagens regulares sobre o mesmo alfabeto Σ . Mostre que $L_1 \cap L_2$ também é regular.
- 6. Dada uma string $w = w_1 w_2 \dots w_n \in \Sigma^*$ definimos o seu reverso $\operatorname{rev}(w) = w_n w_{n-1} \dots w_2 w_1$. Para uma linguagem $L \subseteq \Sigma^*$, definimos $\operatorname{rev}(L) = \{\operatorname{rev}(w) \mid w \in L\}$. Mostre que se L é regular então $\operatorname{rev}(L)$ também é regular.
- 7. Seja $L_n = \{0^k \mid k \text{ \'e m\'ultiplo de } n\}$. Mostre que $L_n \text{ \'e regular para qualquer } n \in \mathbb{N}^+$.
- 8. Para uma linguagem $L \subseteq \Sigma^*$ definimos a operação

$$\mathsf{noPrefix}(L) = \{ w \in L \mid \mathsf{nenhum} \mathsf{ prefixo} \mathsf{ próprio} \mathsf{ de } w \mathsf{ pertence} \mathsf{ a } L \}.$$

Mostre que se L é regular então no $\mathsf{Prefix}(L)$ também é regular.

9. Para duas linguagens A e B definimos

$$A/B = \{ w \mid wx \in A \text{ para algum } x \in B \}.$$

Mostre que se A é regular e B é uma linguagem qualquer, então A/B também é regular.