Pokemon Project

Data

— add description here

Feature extraction

Import the df and visualize the columns' name.

```
df <- read.csv("data.csv")</pre>
names(df)
   [1] "X."
                      "Name"
                                    "Type.1"
                                                  "Type.2"
                                                               "Total"
## [6] "HP"
                      "Attack"
                                    "Defense"
                                                  "Sp..Atk"
                                                               "Sp..Def"
## [11] "Speed"
                      "Generation" "Legendary"
Drop useless columns X., Name.
df <- df |>
    mutate(Legendary = as.integer(as.logical(Legendary))) |>
    select(-X., -Name)
Check that Tot is just a linear combination of other columns. If yes, drop it.
if (all((df$HP + df$Attack + df$Defense + df$SP..Attack + df$SP..Defense + df$Speed) == df$Total)) {
    df <- df |> select(-Total)
}
One-hot encoding from Type.1 and Type.2.
unique_types <- c(df$Type.1, df$Type.2) |> unique()
for (typ in unique_types) {
    if (typ == "") next
    df[typ] <- 0
    for (row in 1:nrow(df)) {
        has_type <- typ %in% df[row, c("Type.1", "Type.2")]
        if (has_type) {
            df[row, typ] <- 1
        }
    }
}
```

Encode Generation.

```
for (i in unique(df$Generation)) {
    # if (i == 1) next
    col_name <- paste0("gen_", i)</pre>
    df[col_name] <- 0</pre>
}
for (row in 1:nrow(df)) {
```

```
gen <- df[row, "Generation"]
# if (gen == 1) next
col_name <- paste0("gen_", gen)
df[row, col_name] <- 1
}</pre>
```

Drop the categorical columns that we don't need anymore and set Legendary to factor.

```
df <- df |>
    select(-Type.1, -Type.2, -Generation) |>
    mutate(Legendary = as.factor(ifelse(Legendary == 0, "No", "Yes")))

colnames(df)[c(1, 4, 5)] <- c("Hit_Point", "Special_Attack", "Special_Defense")

set.seed(123)

train_test_split <- function(df, perc_train = 0.7) {
    i_train <- sample(1:nrow(df), floor(0.7 * nrow(df)), F)
    list_out <- list(train = df[i_train, ], test = df[-i_train, ])
    return(list_out)
}

df_split <- train_test_split(df)

train <- df_split$train
test <- df_split$test

numerical_vars <- names(train)[1:6]</pre>
```

Categorical data

We start by checking the frequency of Characteristics across our Pokemon population in the training sample:

```
train %>%
    select(-numerical_vars, -Legendary, -gen_1, -gen_2, -gen_3, -gen_4, -gen_5, -gen_6) %>%
    summarise(across(everything(), sum, na.rm = TRUE)) %>%
    pivot_longer(cols = everything(), names_to = "Feature", values_to = "Total_Sum") %>%
    mutate(Percentage = (Total_Sum / sum(Total_Sum)) * 100) %>%
    select(Feature, Percentage) %>%
    kable()
```

Feature	Percentage
Grass	7.420495
Fire	5.418139
Water	11.660777
Bug	6.007067
Normal	7.891637
Poison	4.711425
Electric	4.240283
Ground	6.007067
Fairy	3.415783
Fighting	4.358068
Psychic	7.302709
Rock	4.711425
Ghost	3.651355
Ice	3.062426
Dragon	3.769140

Percentage
3.886926
4.122497
8.362780

```
train %>%
    select(-numerical_vars, -gen_1, -gen_2, -gen_3, -gen_4, -gen_5, -gen_6) |>
    pivot_longer(cols = !Legendary, names_to = "Feature", values_to = "value") |>
    filter(value != 0) |>
    group_by(Feature) |>
    summarise("% Legendary" = 100*mean(as.numeric(Legendary) - 1)) |>
    kable()
```

Feature	% Legendary
Bug	0.000000
Dark	6.060606
Dragon	34.375000
Electric	8.333333
Fairy	10.344828
Fighting	8.108108
Fire	15.217391
Flying	12.676056
Ghost	6.451613
Grass	1.587302
Ground	3.921569
Ice	7.692308
Normal	2.985075
Poison	0.000000
Psychic	22.580645
Rock	7.500000
Steel	14.285714
Water	4.040404

Check if the probability of having a Legendary is equal across generation to decide whether to keep the variable.

```
train %>%
    select(gen_1, gen_2, gen_3, gen_4, gen_5, gen_6) %>%
    summarise(across(everything(), sum, na.rm = TRUE)) %>%
    pivot_longer(cols = everything(), names_to = "Feature", values_to = "Sum") %>%
    mutate(Percentage = (Sum / nrow(train)) * 100) %>% # Use nrow(train) here
    select(Feature, Percentage) %>%
    kable()
```

Feature	Percentage
gen_1	20.357143
gen_2	13.750000
gen_3	20.535714
gen_4	14.464286
gen_5	21.250000
gen 6	9.642857

Feature Percentage

```
train %%
   select(gen_1, gen_2, gen_3, gen_4, gen_5, gen_6, Legendary) |>
   pivot_longer(cols = !Legendary, names_to = "Feature", values_to = "value") |>
   filter(value != 0) |>
   group_by(Feature) |>
   summarise("% Legendary" = 100*mean(as.numeric(Legendary) - 1)) |>
   kable()
```

Feature	% Legendary
gen_1	4.385965
gen_2	6.493506
gen_3	11.304348
gen_4	11.111111
gen_5	6.722689
gen_6	11.111111

Now we can drop Generation 1, so that it is the baseline:

```
train <- train %>%
    select(-gen_1)
```

Since it's not equally likely to find a legendary Pokemon in each generation, with odd generations presenting more datapoints, it is important to keep it.

Numerical data

```
# Numerical Variables
train %>%
    select(numerical_vars) %>%
    summary() %>%
    kable()
```

```
Hit Point
                Attack
                                Defense
                                                Special_Attack Special_Defense
                                                                                  Speed
Min.: 1.00
                Min. : 5.00
                                Min. : 5.00
                                                                 Min.: 20.00
                                                                                  Min.: 10.00
                                                Min. : 10.00
                1st Qu.: 55.00
1st Qu.: 54.00
                                1st Qu.: 50.00
                                                1st Qu.: 50.00
                                                                 1st Qu.: 53.00
                                                                                  1st Qu.: 45.75
Median:
                                Median:
                                                                 Median: 70.00
                                                                                  Median:
                Median:
                                                Median:
65.50
                75.00
                                                 65.00
                                                                                  65.00
                                70.00
                                                                 Mean: 71.79
Mean: 70.39
                Mean: 79.29
                                Mean: 73.81
                                                Mean: 72.60
                                                                                  Mean: 68.59
3rd Qu.: 84.00
                3rd Qu.:100.00
                                3rd Qu.: 90.00
                                                3rd Qu.: 94.25
                                                                 3rd Qu.: 87.00
                                                                                  3rd Qu.: 90.00
Max. :255.00
                                Max. :230.00
                                                 Max. :194.00
                Max. :190.00
                                                                 Max. :200.00
                                                                                  Max. :160.00
```

```
par(mfrow = c(2, 4), mar = c(3, 3, 3, 3))
lapply(numerical_vars, function(col_name) {
    hist(train[[col_name]], main = paste("Histogram of", col_name), xlab = "variable")
})
```

```
## [[1]]
## $breaks
```

```
[1]
         0 20 40 60 80 100 120 140 160 180 200 220 240 260
##
## $counts
         5 51 175 182 98 32
                                 6
                                     6
                                         2
                                                 0
                                                     0
                                                         2
   [1]
                                             1
##
## $density
   [1] 4.464286e-04 4.553571e-03 1.562500e-02 1.625000e-02 8.750000e-03
## [6] 2.857143e-03 5.357143e-04 5.357143e-04 1.785714e-04 8.928571e-05
## [11] 0.000000e+00 0.000000e+00 1.785714e-04
##
## $mids
  [1] 10 30 50 70 90 110 130 150 170 190 210 230 250
##
## $xname
## [1] "train[[col_name]]"
##
## $equidist
## [1] TRUE
##
## attr(,"class")
## [1] "histogram"
##
## [[2]]
## $breaks
         0 20 40 60 80 100 120 140 160 180 200
##
  [1]
## $counts
   [1] 11 49 119 146 112 58 43 16
                                         5
##
##
## $density
##
   [1] 9.821429e-04 4.375000e-03 1.062500e-02 1.303571e-02 1.000000e-02
##
   [6] 5.178571e-03 3.839286e-03 1.428571e-03 4.464286e-04 8.928571e-05
##
## $mids
##
   [1] 10 30 50 70 90 110 130 150 170 190
##
## $xname
## [1] "train[[col_name]]"
##
## $equidist
## [1] TRUE
##
## attr(,"class")
## [1] "histogram"
##
## [[3]]
## $breaks
         0 20 40 60 80 100 120 140 160 180 200 220 240
  [1]
##
## $counts
       11 57 149 154 104 49 22
                                     7
                                         2
                                             3
                                                 0
                                                     2
##
  [1]
##
## $density
## [1] 0.0009821429 0.0050892857 0.0133035714 0.0137500000 0.0092857143
```

```
## [6] 0.0043750000 0.0019642857 0.0006250000 0.0001785714 0.0002678571
## [11] 0.000000000 0.0001785714
##
## $mids
## [1] 10 30 50 70 90 110 130 150 170 190 210 230
##
## $xname
## [1] "train[[col_name]]"
##
## $equidist
## [1] TRUE
##
## attr(,"class")
## [1] "histogram"
##
## [[4]]
## $breaks
         0 20 40 60 80 100 120 140 160 180 200
##
## $counts
## [1] 10 84 153 128 88 47 29 14
                                         6
##
## $density
   [1] 8.928571e-04 7.500000e-03 1.366071e-02 1.142857e-02 7.857143e-03
##
## [6] 4.196429e-03 2.589286e-03 1.250000e-03 5.357143e-04 8.928571e-05
## $mids
## [1] 10 30 50 70 90 110 130 150 170 190
##
## $xname
## [1] "train[[col_name]]"
##
## $equidist
## [1] TRUE
## attr(,"class")
## [1] "histogram"
##
## [[5]]
## $breaks
## [1] 20 40 60 80 100 120 140 160 180 200
##
## $counts
## [1] 59 159 169 103 52 10
                                7
                                       1
## $density
## [1] 5.267857e-03 1.419643e-02 1.508929e-02 9.196429e-03 4.642857e-03
## [6] 8.928571e-04 6.250000e-04 0.000000e+00 8.928571e-05
##
## $mids
## [1] 30 50 70 90 110 130 150 170 190
##
## $xname
## [1] "train[[col_name]]"
```

```
##
## $equidist
## [1] TRUE
##
## attr(,"class")
## [1] "histogram"
## [[6]]
## $breaks
## [1] 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
## $counts
## [1] 18 42 49 72 73 70 51 59 50 36 18 10 4 7 1
##
## $density
## [1] 0.0032142857 0.0075000000 0.0087500000 0.0128571429 0.0130357143
## [6] 0.0125000000 0.0091071429 0.0105357143 0.0089285714 0.0064285714
## [11] 0.0032142857 0.0017857143 0.0007142857 0.0012500000 0.0001785714
##
## $mids
## [1] 15 25 35 45 55 65 75 85 95 105 115 125 135 145 155
## $xname
## [1] "train[[col_name]]"
##
## $equidist
## [1] TRUE
## attr(,"class")
## [1] "histogram"
par(mfrow = c(1, 1))
```

Histogram of Hit_Point

Histogram of Attack

Histogram of Defense stogram of Special_Attac

stogram of Special_Defer Histogram of Speed


```
cor_mat <- cor(train[numerical_vars])
print(cor_mat)</pre>
```

```
##
                   Hit_Point
                                Attack
                                           Defense Special_Attack Special_Defense
## Hit_Point
                   1.0000000 0.3890117 0.22626454
                                                        0.3025508
                                                                        0.3600523
## Attack
                   0.3890117 1.0000000 0.45833086
                                                        0.4189784
                                                                        0.2655658
## Defense
                   0.2262645 0.4583309 1.00000000
                                                        0.2245206
                                                                        0.4795059
## Special_Attack 0.3025508 0.4189784 0.22452059
                                                        1.0000000
                                                                        0.4970868
## Special_Defense 0.3600523 0.2655658 0.47950586
                                                                        1.0000000
                                                        0.4970868
                   0.1647429 0.3902713 0.00647584
                                                                        0.2862043
## Speed
                                                        0.4858104
##
                        Speed
## Hit_Point
                   0.16474292
## Attack
                   0.39027129
## Defense
                   0.00647584
## Special_Attack 0.48581040
## Special_Defense 0.28620434
## Speed
                   1.0000000
```

corrplot(cor_mat, method = "square", type = "upper", tl.col = "black", tl.srt = 45)


```
scaling params <- sapply(train[numerical vars], mean)</pre>
scaling_params_sd <- sapply(train[numerical_vars], sd)</pre>
train_std <- train</pre>
train_std[numerical_vars] <- sweep(train_std[numerical_vars], 2, scaling_params, "-")</pre>
train_std[numerical_vars] <- sweep(train_std[numerical_vars], 2, scaling_params_sd, "/")</pre>
# Apply the same scaling to test data
test_std <- test</pre>
test_std[numerical_vars] <- sweep(test_std[numerical_vars], 2, scaling_params, "-")</pre>
test_std[numerical_vars] <- sweep(test_std[numerical_vars], 2, scaling_params_sd, "/")</pre>
Checks
sapply(list(mean = mean, sd = sd), mapply, train_std |> select(numerical_vars))
                             mean sd
## Hit_Point
                     1.462889e-16 1
## Attack
                    -4.257643e-17 1
## Defense
                    -2.249584e-16 1
## Special_Attack
                     2.896194e-17 1
## Special_Defense 2.191568e-16 1
## Speed
                     4.330444e-17 1
sapply(list(mean = mean, sd = sd), mapply, test_std |> select(numerical_vars))
##
                            mean
                                         sd
```

-0.142726299 0.8682415

Hit_Point

```
## Attack
                   -0.029657333 0.9690458
## Defense
                    0.003810264 1.0290146
## Special Attack 0.022203552 1.0254181
## Special_Defense 0.014580900 1.1861049
## Speed
                    -0.036205070 1.0046306
cv seed <- list(</pre>
    c(7, 18, 21, 34, 50, 67, 71, 85, 90, 44, 62, 37, 12, 55, 28, 99, 46, 19, 38, 68, 23),
    c(9, 16, 11, 40, 51, 53, 45, 64, 39, 57, 69, 27, 72, 61, 36, 56, 75, 80, 66, 26, 32),
    c(18, 25, 48, 31, 42, 35, 63, 22, 20, 77, 24, 74, 49, 10, 16, 82, 33, 13, 14, 58, 60),
    c(39, 41, 17, 55, 59, 26, 65, 30, 79, 19, 73, 12, 27, 70, 50, 84, 76, 28, 20, 35, 37),
    c(61, 43, 33, 44, 52, 72, 31, 78, 57, 49, 22, 76, 56, 47, 35, 69, 66, 21, 62, 9, 36),
    c(24, 83, 75, 59, 32, 64, 60, 52, 25, 58, 48, 71, 40, 50, 54, 39, 53, 23, 15, 12, 20),
    c(45, 14, 37, 19, 80, 53, 28, 55, 41, 23, 51, 29, 64, 47, 67, 60, 22, 32, 49, 66, 68),
    c(63, 15, 48, 40, 26, 34, 77, 39, 61, 29, 52, 46, 69, 73, 16, 59, 79, 41, 17, 10, 54),
    c(62, 55, 77, 56, 24, 38, 81, 22, 18, 71, 48, 63, 60, 35, 45, 73, 49, 68, 32, 50, 28),
    c(84, 36, 29, 68, 16, 59, 14, 79, 25, 57, 71, 34, 53, 67, 40, 51, 15, 46, 69, 76, 33),
    99 # Last element with a single integer
)
extract_best_f <- function(fit) fit$results[which.max(fit$results$F), ]
grid search threshold <- function(fit) {</pre>
    best_given_threshold <- data.frame(matrix(ncol = 4, nrow = 0))</pre>
    colnames(best_given_threshold) <- c("alpha", "lambda", "prob_threshold", "F1")</pre>
    all_threhsolds \leftarrow seq(0.3, 0.5, 0.1)
    for (tr in all_threhsolds) {
        res <- thresholder(fit, tr, F, "all")</pre>
        best <- res[which.max(res$F1), ]
        best_given_threshold <- rbind(best_given_threshold, best)</pre>
    return(best_given_threshold)
}
extract_best_threshold_f <- function(grid_df) {</pre>
    grid_df [which.max(grid_df$F1), ]
}
Fitting a logistic elastic net. Grid search of optimal alpha and lambda. CV. Maximize F.
grid_ <- expand.grid(</pre>
    .alpha = seq(0, 1, by = 0.1),
    .lambda = 10^(-c(0, 1, 10, 100, 1000))
)
train_control_1 <- trainControl(</pre>
    method = "cv",
    number = 10,
    classProbs = TRUE,
    summaryFunction = prSummary,
    savePredictions = "all",
    seeds = cv seed
)
logistic_elnet_1 <- train(</pre>
    Legendary ~ .,
    data = train_std,
```

```
method = "glmnet",
   family = "binomial",
   metric = "F",
   tuneGrid = grid_,
   trControl = train_control_1,
   intercept = FALSE
print(logistic_elnet_1$bestTune)
     alpha lambda
## 13
      0.2 1e-10
print(extract_best_f(logistic_elnet_1))
                        AUC Precision
     alpha lambda
                                         Recall
                                                       F
                                                              AUCSD PrecisionSD
                0 0.9738336 0.9581359 0.9651207 0.9613257 0.00643858 0.02575424
## 11
       0.2
       RecallSD
##
                       FSD
## 11 0.02177563 0.01621389
best_f_1 <- grid_search_threshold(logistic_elnet_1)</pre>
print(best_f_1)
##
     alpha lambda prob_threshold Sensitivity Specificity Pos Pred Value
                                   0.9748115
## 6
       0.1
                Ω
                             0.3
                                                  0.415
                                                             0.9495121
                                   0.9670814
## 61
       0.1
                0
                             0.4
                                                  0.485
                                                             0.9545761
## 11
       0.2
                0
                             0.5
                                   0.9651207
                                                  0.525
                                                             0.9581359
##
     Neg Pred Value Precision
                                Recall
                                              F1 Prevalence Detection Rate
## 6
          0.5614286 0.9495121 0.9748115 0.9617127 0.9179107
                                                                 0.8947254
## 61
          0.5714286 0.9545761 0.9670814 0.9604477 0.9179107
                                                                 0.8875815
## 11
          0.5680952 0.9581359 0.9651207 0.9613257 0.9179107
                                                                 0.8857957
     Detection Prevalence Balanced Accuracy Accuracy
##
                                                         Kappa
## 6
                ## 61
                                  0.7260407 0.9268091 0.4612282 0.4520814
                0.9304432
## 11
                0.9250860
                                 0.7450603 0.9285948 0.4877420 0.4901207
##
          Dist.
## 6 0.5895266
## 61 0.5204559
## 11 0.4805918
print(extract_best_threshold_f(best_f_1))
    alpha lambda prob_threshold Sensitivity Specificity Pos Pred Value
                                0.9748115
## 6 0.1
              0
                            0.3
                                                 0.415
                                                            0.9495121
   Neg Pred Value Precision
                                Recall
                                             F1 Prevalence Detection Rate
         0.5614286 0.9495121 0.9748115 0.9617127 0.9179107
                                                                0.8947254
    Detection Prevalence Balanced Accuracy Accuracy
                                                        Kappa
               0.9429454
                                0.6949057 0.9285948 0.4221007 0.3898115
## 6
##
         Dist
## 6 0.5895266
plot(logistic_elnet_1)
```


Fitting a logistic elastic net. Grid search of optimal alpha and lambda. SMOTE CV. Maximize F.

```
train_control_2 <- trainControl(</pre>
    method = "cv",
    number = 10,
    sampling = "smote",
classProbs = TRUE,
    summaryFunction = prSummary,
    savePredictions = "all",
    seed = cv_seed
)
logistic_elnet_2 <- train(</pre>
    Legendary ~ .,
    data = train_std,
    method = "glmnet",
    family = "binomial",
    metric = "F",
    tuneGrid = grid_,
    trControl = train_control_2,
    intercept = FALSE
print(logistic_elnet_2$bestTune)
```

```
## alpha lambda
## 25 0.4 1
```

```
print(extract_best_f(logistic_elnet_2))
     alpha lambda AUC Precision Recall
                                              F AUCSD PrecisionSD RecallSD
      0.4
             1 0 0.9179107
                                  1 0.9571795
                                                    0 0.008648344
## 25
##
             FSD
## 25 0.004694285
best_f_2 <- grid_search_threshold(logistic_elnet_2)</pre>
print(best_f_2)
     alpha lambda prob_threshold Sensitivity Specificity Pos Pred Value
## 4
       0.0
              0.1
                             0.3
                                  0.9494344
                                                  0.820
                                                             0.9841490
## 15
       0.2
              1.0
                             0.4
                                   1.0000000
                                                  0.200
                                                             0.9332614
## 31
       0.6
              0.0
                             0.5
                                  0.9338235
                                                  0.775
                                                             0.9797338
     Neg Pred Value Precision
                                Recall
                                              F1 Prevalence Detection Rate
          0.6049206 0.9841490 0.9494344 0.9662289 0.9179107
                                                                 0.8714764
## 4
          1.0000000 0.9332614 1.0000000 0.9653466 0.9179107
## 15
                                                                 0.9179107
                                                                 0.8571873
          0.5292063 0.9797338 0.9338235 0.9559835 0.9179107
## 31
     Detection Prevalence Balanced Accuracy Accuracy
                                                         Kappa
                0.8858271
                                 0.8847172 0.9392151 0.6538622 0.7694344
## 4
## 15
                0.9839912
                                 0.6000000 0.9339195 0.2580870 0.2000000
## 31
                0.8750792
                                 0.8544118 0.9213847 0.5794151 0.7088235
##
          Dist
## 4 0.2090055
## 15 0.8000000
## 31 0.2511665
print(extract_best_threshold_f(best_f_2))
    alpha lambda prob_threshold Sensitivity Specificity Pos Pred Value
                                 0.9494344
## 4
        0
             0.1
                            0.3
                                                  0.82
    Neg Pred Value Precision
                                             F1 Prevalence Detection Rate
                               Recall
         0.8714764
    Detection Prevalence Balanced Accuracy Accuracy
##
## 4
               0.8858271
                                0.8847172 0.9392151 0.6538622 0.7694344
##
         Dist
## 4 0.2090055
plot(logistic_elnet_2)
```


Fitting a logistic elastic net. Grid search of optimal alpha and lambda. Upsampling CV. Maximize F.

```
train_control_3 <- trainControl(</pre>
    method = "cv",
    number = 10,
    sampling = "up",
    classProbs = TRUE,
    summaryFunction = prSummary,
    savePredictions = "all",
    seed = cv_seed
logistic_elnet_3 <- train(</pre>
    Legendary ~ .,
    data = train_std,
    method = "glmnet",
    family = "binomial",
    metric = "F",
    tuneGrid = grid_,
    trControl = train_control_3,
    intercept = FALSE
print(logistic_elnet_3$bestTune)
```

```
## alpha lambda
## 25 0.4 1
```

```
print(extract_best_f(logistic_elnet_3))
      alpha lambda AUC Precision Recall
                                                F AUCSD PrecisionSD RecallSD
      0.4
                1 0 0.9179375 1 0.9571954
                                                      0 0.008346938
## 25
##
             FSD
## 25 0.00453091
best_f_3 <- grid_search_threshold(logistic_elnet_3)</pre>
print(best_f_3)
      alpha lambda prob_threshold Sensitivity Specificity Pos Pred Value
## 5
       0.0
                1
                              0.3
                                    0.9941931
                                                    0.345
                                                               0.9447972
## 10
        0.1
                1
                              0.4
                                    0.9495098
                                                    0.735
                                                               0.9765073
## 41
       0.8
                0
                              0.5
                                    0.9182881
                                                    0.840
                                                               0.9837622
                                              F1 Prevalence Detection Rate
      Neg Pred Value Precision
                                 Recall
           0.8981481 0.9447972 0.9941931 0.9687647 0.9179375
                                                                   0.9126116
## 5
## 10
           0.6153571 0.9765073 0.9495098 0.9623554 0.9179375
                                                                   0.8715636
           0.5237202 0.9837622 0.9182881 0.9490746 0.9179375
                                                                   0.8427928
## 41
      Detection Prevalence Balanced Accuracy Accuracy
                                                           Kappa
## 5
                 0.9661620
                                  0.6695965 0.9411238 0.4401238 0.3391931
## 10
                 0.8929967
                                   0.8422549 0.9321930 0.6056858 0.6845098
## 41
                 0.8569845
                                  0.8791440 0.9106636 0.5779141 0.7582881
##
           Dist
## 5 0.6551158
## 10 0.2819127
## 41 0.2087669
print(extract_best_threshold_f(best_f_3))
     alpha lambda prob_threshold Sensitivity Specificity Pos Pred Value
                                   0.9941931
                                                   0.345
## 5
        0
               1
                             0.3
   Neg Pred Value Precision
                                               F1 Prevalence Detection Rate
                                 Recall
          0.8981481 0.9447972 0.9941931 0.9687647 0.9179375
                                                                  0.9126116
    Detection Prevalence Balanced Accuracy Accuracy
##
                                                          Kappa
## 5
                 0.966162
                                 0.6695965 0.9411238 0.4401238 0.3391931
##
          Dist
## 5 0.6551158
plot(logistic_elnet_3)
```


Fitting a logistic elastic net. Grid search of optimal alpha and lambda. Downsampling CV. Maximize F.

```
train_control_4 <- trainControl(</pre>
    method = "cv",
    number = 10,
    sampling = "down",
    classProbs = TRUE,
    summaryFunction = prSummary,
    savePredictions = "all",
    seed = cv_seed
logistic_elnet_4 <- train(</pre>
    Legendary ~ .,
    data = train_std,
    method = "glmnet",
    family = "binomial",
    metric = "F",
    tuneGrid = grid_,
    trControl = train_control_4,
    intercept = FALSE
print(logistic_elnet_4$bestTune)
```

```
## alpha lambda
## 25 0.4 1
```

```
print(extract_best_f(logistic_elnet_4))
      alpha lambda AUC Precision Recall
                                                F AUCSD PrecisionSD RecallSD
      0.4
             1 0 0.9178839 1 0.9571637
                                                      0 0.008939504
## 25
##
              FSD
## 25 0.004852104
best_f_4 <- grid_search_threshold(logistic_elnet_4)</pre>
print(best_f_4)
      alpha lambda prob_threshold Sensitivity Specificity Pos Pred Value
## 5
       0.0
                 1
                              0.3
                                    0.9824284
                                                    0.430
                                                               0.9514584
## 10
        0.1
                 1
                              0.4
                                    0.9454374
                                                    0.855
                                                               0.9860753
## 1
       0.0
                 0
                              0.5
                                    0.8111991
                                                    0.930
                                                               0.9932806
                                               F1 Prevalence Detection Rate
      Neg Pred Value Precision
                                  Recall
           0.7533333 0.9514584 0.9824284 0.9665062 0.9178839
                                                                   0.9017464
## 5
## 10
           0.5978571 0.9860753 0.9454374 0.9650965 0.9178839
                                                                   0.8678480
## 1
           0.3267460 0.9932806 0.8111991 0.8909693 0.9178839
                                                                   0.7446850
      Detection Prevalence Balanced Accuracy Accuracy
                                                           Kappa
## 5
                 0.9481146
                                  0.7062142 0.9374943 0.4785062 0.4124284
## 10
                 0.8803167
                                   0.9002187 0.9374954 0.6610394 0.8004374
## 1
                 0.7500422
                                   0.8705995 0.8214440 0.4035186 0.7411991
##
           Dist
## 5 0.5706289
## 10 0.1785268
## 1 0.2345798
print(extract_best_threshold_f(best_f_4))
     alpha lambda prob_threshold Sensitivity Specificity Pos Pred Value
                                   0.9824284
## 5
        0
               1
                             0.3
                                                    0.43
    Neg Pred Value Precision
                                               F1 Prevalence Detection Rate
                                 Recall
          0.7533333 0.9514584 0.9824284 0.9665062 0.9178839
                                                                  0.9017464
    Detection Prevalence Balanced Accuracy Accuracy
##
## 5
                0.9481146
                                 0.7062142 0.9374943 0.4785062 0.4124284
##
          Dist
## 5 0.5706289
plot(logistic_elnet_4)
```


Prediction

```
get_prediction <- function(fit, type = "raw") {</pre>
    predict(fit, type = type, newdata = test_std |> select(-Legendary))
get_accuracy <- function(fit) {</pre>
    y <- test_std$Legendary
    y_hat <- predict(fit, type = "raw", newdata = test_std |>
        select(-Legendary))
    return(mean(y == y_hat))
}
y_hat <- get_prediction(logistic_elnet_1)</pre>
confusionMatrix(y_hat, test$Legendary)
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction No Yes
##
          No 215
##
          Yes
                6 10
##
                  Accuracy : 0.9375
##
                     95% CI: (0.899, 0.9646)
##
##
       No Information Rate: 0.9208
```

```
##
       P-Value [Acc > NIR] : 0.2041
##
##
                      Kappa : 0.538
##
##
    Mcnemar's Test P-Value: 0.6056
##
               Sensitivity: 0.9729
##
##
                Specificity: 0.5263
##
            Pos Pred Value: 0.9598
##
            Neg Pred Value: 0.6250
##
                 Prevalence: 0.9208
##
            Detection Rate: 0.8958
##
      Detection Prevalence: 0.9333
         Balanced Accuracy: 0.7496
##
##
##
          'Positive' Class : No
lapply(list(logistic_elnet_1, logistic_elnet_2, logistic_elnet_3, logistic_elnet_4), get_accuracy)
## [[1]]
## [1] 0.9375
## [[2]]
## [1] 0.9208333
##
## [[3]]
## [1] 0.9208333
##
## [[4]]
## [1] 0.9208333
get_prediction(logistic_elnet_1)
get_prediction_thresh <- function(best_f, trainControl) {</pre>
    best <- extract_best_threshold_f(best_f)</pre>
    alpha <- best$alpha
    lambda <- best$lambda
    tr <- best$prob_threshold</pre>
    grid_ <- data.frame(.alpha = alpha, .lambda = lambda)</pre>
    fit <- train(</pre>
        Legendary ~ .,
        data = train_std,
        method = "glmnet",
        family = "binomial",
        metric = "F",
        tuneGrid = grid_,
        trControl = trainControl,
        intercept = FALSE
    )
    probs <- get_prediction(fit, "prob")[, 2]</pre>
    y_hat <- as.factor(ifelse(probs > tr, "Yes", "No"))
    attr(y hat, "threshold") <- tr</pre>
    attr(y_hat, "alpha") <- alpha</pre>
    attr(y_hat, "lambda") <- lambda</pre>
    return(y_hat)
```

```
get_accuracy_thresh <- function(y_hat) {</pre>
  return(mean(test_std$Legendary == y_hat))
get_prediction_thresh(best_f_3, train_control_3)
  ##
  ## [73] Yes Yes No Yes Yes No Yes Yes Yes Yes Yes Yes No Yes No Yes No
 ## [163] Yes Yes Yes Yes Yes No Yes No Yes Yes No No No Yes No Yes Yes
## [235] No Yes Yes Yes Yes
## attr(,"threshold")
## [1] 0.3
## attr(,"alpha")
## [1] 0
## attr(,"lambda")
## [1] 1
## Levels: No Yes
get_prediction_thresh(best_f_1, train_control_1) |> get_accuracy_thresh()
## [1] 0.9
get_prediction_thresh(best_f_2, train_control_2) |> get_accuracy_thresh()
## [1] 0.6875
get_prediction_thresh(best_f_3, train_control_3) |> get_accuracy_thresh()
## [1] 0.2458333
get_prediction_thresh(best_f_4, train_control_4) |> get_accuracy_thresh()
## [1] 0.2
get_confusion_matrix <- function(y_hat) {</pre>
  confusionMatrix(y_hat, as.factor(test_std$Legendary))
get_prediction_thresh(best_f_1, train_control_1) |> get_confusion_matrix()
## Confusion Matrix and Statistics
##
##
       Reference
## Prediction No Yes
##
     No 205
##
     Yes 16 11
##
##
         Accuracy: 0.9
```

```
95% CI: (0.8549, 0.9349)
##
##
       No Information Rate: 0.9208
       P-Value [Acc > NIR] : 0.9024
##
##
##
                     Kappa: 0.4248
##
##
   Mcnemar's Test P-Value: 0.1530
##
##
               Sensitivity: 0.9276
##
               Specificity: 0.5789
##
            Pos Pred Value: 0.9624
            Neg Pred Value: 0.4074
##
                Prevalence: 0.9208
##
##
            Detection Rate: 0.8542
##
      Detection Prevalence: 0.8875
##
         Balanced Accuracy: 0.7533
##
##
          'Positive' Class : No
##
get_prediction_thresh(best_f_2, train_control_2) |> get_confusion_matrix()
## Confusion Matrix and Statistics
##
            Reference
##
## Prediction No Yes
         No 146
##
##
         Yes 75 19
##
                  Accuracy: 0.6875
##
##
                    95% CI: (0.6247, 0.7456)
##
       No Information Rate: 0.9208
##
       P-Value [Acc > NIR] : 1
##
##
                     Kappa: 0.2356
##
   Mcnemar's Test P-Value : <2e-16
##
##
##
               Sensitivity: 0.6606
##
               Specificity: 1.0000
            Pos Pred Value: 1.0000
##
            Neg Pred Value: 0.2021
##
##
                Prevalence: 0.9208
            Detection Rate: 0.6083
##
     Detection Prevalence: 0.6083
##
##
         Balanced Accuracy: 0.8303
##
##
          'Positive' Class : No
get_prediction_thresh(best_f_3, train_control_3) |> get_confusion_matrix()
## Confusion Matrix and Statistics
##
##
             Reference
```

```
## Prediction No Yes
               40
##
          No
                    0
          Yes 181 19
##
##
##
                  Accuracy: 0.2458
##
                    95% CI: (0.1927, 0.3053)
##
       No Information Rate: 0.9208
       P-Value [Acc > NIR] : 1
##
##
##
                     Kappa: 0.0338
##
    Mcnemar's Test P-Value : <2e-16
##
##
##
               Sensitivity: 0.1810
##
               Specificity: 1.0000
##
            Pos Pred Value: 1.0000
##
            Neg Pred Value: 0.0950
                Prevalence: 0.9208
##
            Detection Rate: 0.1667
##
      Detection Prevalence: 0.1667
##
##
         Balanced Accuracy: 0.5905
##
##
          'Positive' Class : No
##
get_prediction_thresh(best_f_4, train_control_4) |> get_confusion_matrix()
## Confusion Matrix and Statistics
##
             Reference
##
## Prediction No Yes
               29
##
          No
##
          Yes 192 19
##
##
                  Accuracy: 0.2
##
                    95% CI: (0.1513, 0.2563)
##
       No Information Rate: 0.9208
##
       P-Value [Acc > NIR] : 1
##
##
                     Kappa: 0.0234
##
    Mcnemar's Test P-Value : <2e-16
##
##
               Sensitivity: 0.13122
##
               Specificity: 1.00000
##
            Pos Pred Value : 1.00000
##
##
            Neg Pred Value: 0.09005
##
                Prevalence: 0.92083
##
            Detection Rate: 0.12083
##
      Detection Prevalence: 0.12083
##
         Balanced Accuracy: 0.56561
##
##
          'Positive' Class : No
##
```

```
f1_elnet <- data.frame()
for (fit in list(logistic_elnet_1, logistic_elnet_2, logistic_elnet_3, logistic_elnet_4)) {
    if (nrow(f1_elnet) == 0) {
        f1_elnet <- extract_best_f(fit)
    } else {
        f1_elnet <- rbind(f1_elnet, extract_best_f(fit))
    }
}
rownames(f1_elnet) <- c("Default-Case", "SMOTE", "Up-sampling", "Down-sampling")
f1_elnet[1:6] |>
        select(-AUC) |>
        kable()
```

alpha	lambda	Precision	Recall	F
0.2	0	0.9581359	0.9651207	0.9613257
0.4	1	0.9179107	1.0000000	0.9571795
0.4	1	0.9179375	1.0000000	0.9571954
0.4	1	0.9178839	1.0000000	0.9571637
	0.2 0.4 0.4	0.2 0 0.4 1 0.4 1	0.2 0 0.9581359 0.4 1 0.9179107 0.4 1 0.9179375	0.2 0 0.9581359 0.9651207 0.4 1 0.9179107 1.0000000 0.4 1 0.9179375 1.0000000

```
f1_elnet_thresh <- data.frame()
for (best in list(best_f_1, best_f_2, best_f_3, best_f_4)) {
    ext <- extract_best_threshold_f(best)
    if (nrow(f1_elnet_thresh) == 0) {
        f1_elnet_thresh <- ext
    } else {
        f1_elnet_thresh <- rbind(f1_elnet_thresh, ext)
    }
}
rownames(f1_elnet_thresh) <- c("Default-Case", "SMOTE", "Up-sampling", "Down-sampling")
f1_elnet_thresh |>
    mutate(F = F1) |>
    select(alpha, lambda, prob_threshold, Precision, Recall, F) |>
    kable()
```

	alpha	lambda	$prob_threshold$	Precision	Recall	F
Default-Case	0.1	0.0	0.3	0.9495121	0.9748115	0.9617127
SMOTE	0.0	0.1	0.3	0.9841490	0.9494344	0.9662289
Up-sampling	0.0	1.0	0.3	0.9447972	0.9941931	0.9687647
Down-sampling	0.0	1.0	0.3	0.9514584	0.9824284	0.9665062

— add description here

Feature extraction

Import the df and visualize the columns' name.

```
df <- read.csv("data.csv")
names(df)
## [1] "Y " "Name" "Type 1" "Type 2" "Total"</pre>
```

```
## [1] "X." "Name" "Type.1" "Type.2" "Total" ## [6] "HP" "Attack" "Defense" "Sp..Atk" "Sp..Def" ## [11] "Speed" "Generation" "Legendary"
```

Drop useless columns X., Name.

```
df <- df |>
    mutate(Legendary = as.integer(as.logical(Legendary))) |>
    select(-X., -Name)
```

Check that Tot is just a linear combination of other columns. If yes, drop it.

```
if (all((df$HP + df$Attack + df$Defense + df$SP..Attack + df$SP..Defense + df$Speed) == df$Total)) {
    df <- df |> select(-Total)
}
```

One-hot encoding from Type.1 and Type.2.

```
unique_types <- c(df$Type.1, df$Type.2) |> unique()

for (typ in unique_types) {
    if (typ == "") next
    df[typ] <- 0
    for (row in 1:nrow(df)) {
        has_type <- typ %in% df[row, c("Type.1", "Type.2")]
        if (has_type) {
            df[row, typ] <- 1
        }
    }
}</pre>
```

Encode Generation.

```
for (i in unique(df$Generation)) {
    # if (i == 1) next
    col_name <- pasteO("gen_", i)
    df[col_name] <- 0
}

for (row in 1:nrow(df)) {
    gen <- df[row, "Generation"]
    # if (gen == 1) next
    col_name <- pasteO("gen_", gen)
    df[row, col_name] <- 1
}</pre>
```

Drop the categorical columns that we don't need anymore and set Legendary to factor.

```
df <- df |>
    select(-Type.1, -Type.2, -Generation) |>
    mutate(Legendary = as.factor(ifelse(Legendary == 0, "No", "Yes")))

colnames(df)[c(1, 4, 5)] <- c("Hit_Point", "Special_Attack", "Special_Defense")

set.seed(123)
train_test_split <- function(df, perc_train = 0.7) {
    i_train <- sample(1:nrow(df), floor(0.7 * nrow(df)), F)
    list_out <- list(train = df[i_train,], test = df[-i_train,])
    return(list_out)
}

df_split <- train_test_split(df)</pre>
```

```
train <- df_split$train
test <- df_split$test

numerical_vars <- names(train)[1:6]</pre>
```

Categorical data

We start by checking the frequency of Characteristics across our Pokemon population in the training sample:

```
train %>%
    select(-numerical_vars, -Legendary, -gen_1, -gen_2, -gen_3, -gen_4, -gen_5, -gen_6) %>%
    summarise(across(everything(), sum, na.rm = TRUE)) %>%
    pivot_longer(cols = everything(), names_to = "Feature", values_to = "Total_Sum") %>%
    mutate(Percentage = (Total_Sum / sum(Total_Sum)) * 100) %>%
    select(Feature, Percentage) %>%
    kable()
```

Feature	Percentage
Grass	7.420495
Fire	5.418139
Water	11.660777
Bug	6.007067
Normal	7.891637
Poison	4.711425
Electric	4.240283
Ground	6.007067
Fairy	3.415783
Fighting	4.358068
Psychic	7.302709
Rock	4.711425
Ghost	3.651355
Ice	3.062426
Dragon	3.769140
Dark	3.886926
Steel	4.122497
Flying	8.362780

Check if the probability of having a Legendary is equal across generation to decide whether to keep the variable.

```
train %>%
    select(gen_1, gen_2, gen_3, gen_4, gen_5, gen_6) %>%
    summarise(across(everything(), sum, na.rm = TRUE)) %>%
    pivot_longer(cols = everything(), names_to = "Feature", values_to = "Sum") %>%
    mutate(Percentage = (Sum / nrow(train)) * 100) %>% # Use nrow(train) here
    select(Feature, Percentage) %>%
    kable()
```

Feature	Percentage
gen_1	20.357143
gen_2	13.750000
gen 3	20.535714

Feature	Percentage
gen_4	14.464286
gen_5	21.250000
gen_6	9.642857

Now we can drop Generation 1, so that it is the baseline:

```
train <- train %>%
select(-gen_1)
```

Since it's not equally likely to find a legendary Pokemon in each generation, with odd generations presenting more datapoints, it is important to keep it.

Numerical data

```
# Numerical Variables
train %>%
    select(numerical_vars) %>%
    summary() %>%
    kable()
```

Hit_Point	Attack	Defense	Special_Attack	Special_Defense	Speed
Min.: 1.00	Min.: 5.00	Min.: 5.00	Min.: 10.00	Min.: 20.00	Min.: 10.00
1st Qu.: 54.00	1st Qu.: 55.00	1st Qu.: 50.00	1st Qu.: 50.00	1st Qu.: 53.00	1st Qu.: 45.75
Median : 65.50	Median : 75.00	Median : 70.00	Median : 65.00	Median : 70.00	Median : 65.00
Mean: 70.39	Mean: 79.29	Mean: 73.81	Mean: 72.60	Mean: 71.79	Mean: 68.59
3rd Qu.: 84.00	3rd Qu.:100.00	3rd Qu.: 90.00	3rd Qu.: 94.25	3rd Qu.: 87.00	3rd Qu.: 90.00
Max.:255.00	Max.:190.00	Max.:230.00	Max.:194.00	Max.:200.00	Max.:160.00

```
par(mfrow = c(2, 4), mar = c(3, 3, 3, 3))
lapply(numerical_vars, function(col_name) {
    hist(train[[col_name]], main = paste("Histogram of", col_name), xlab = "variable")
})
## [[1]]
## $breaks
            20 40 60 80 100 120 140 160 180 200 220 240 260
##
   [1]
##
## $counts
   [1]
          5 51 175 182 98 32
                                          2
                                                          2
##
                                  6
                                      6
##
## $density
   [1] 4.464286e-04 4.553571e-03 1.562500e-02 1.625000e-02 8.750000e-03
    [6] 2.857143e-03 5.357143e-04 5.357143e-04 1.785714e-04 8.928571e-05
## [11] 0.000000e+00 0.000000e+00 1.785714e-04
##
## $mids
##
   [1] 10 30 50 70 90 110 130 150 170 190 210 230 250
##
## $xname
## [1] "train[[col_name]]"
```

```
##
## $equidist
## [1] TRUE
##
## attr(,"class")
## [1] "histogram"
## [[2]]
## $breaks
## [1]
         0 20 40 60 80 100 120 140 160 180 200
## $counts
## [1] 11 49 119 146 112 58 43 16 5
##
## $density
## [1] 9.821429e-04 4.375000e-03 1.062500e-02 1.303571e-02 1.000000e-02
## [6] 5.178571e-03 3.839286e-03 1.428571e-03 4.464286e-04 8.928571e-05
##
## $mids
## [1] 10 30 50 70 90 110 130 150 170 190
##
## $xname
## [1] "train[[col_name]]"
## $equidist
## [1] TRUE
##
## attr(,"class")
## [1] "histogram"
##
## [[3]]
## $breaks
## [1]
         0 20 40 60 80 100 120 140 160 180 200 220 240
##
## $counts
## [1] 11 57 149 154 104 49 22
                                   7 2 3 0
##
## $density
## [1] 0.0009821429 0.0050892857 0.0133035714 0.0137500000 0.0092857143
## [6] 0.0043750000 0.0019642857 0.0006250000 0.0001785714 0.0002678571
## [11] 0.000000000 0.0001785714
##
## $mids
## [1] 10 30 50 70 90 110 130 150 170 190 210 230
## $xname
## [1] "train[[col_name]]"
##
## $equidist
## [1] TRUE
##
## attr(,"class")
## [1] "histogram"
##
```

```
## [[4]]
## $breaks
         0 20 40 60 80 100 120 140 160 180 200
  [1]
##
## $counts
## [1] 10 84 153 128 88 47 29 14
## $density
   [1] 8.928571e-04 7.500000e-03 1.366071e-02 1.142857e-02 7.857143e-03
## [6] 4.196429e-03 2.589286e-03 1.250000e-03 5.357143e-04 8.928571e-05
##
## $mids
## [1] 10 30 50 70 90 110 130 150 170 190
##
## $xname
## [1] "train[[col_name]]"
##
## $equidist
## [1] TRUE
## attr(,"class")
## [1] "histogram"
##
## [[5]]
## $breaks
## [1] 20 40 60 80 100 120 140 160 180 200
##
## $counts
## [1] 59 159 169 103 52 10
                               7 0
##
## $density
## [1] 5.267857e-03 1.419643e-02 1.508929e-02 9.196429e-03 4.642857e-03
## [6] 8.928571e-04 6.250000e-04 0.000000e+00 8.928571e-05
##
## $mids
## [1] 30 50 70 90 110 130 150 170 190
##
## $xname
## [1] "train[[col_name]]"
##
## $equidist
## [1] TRUE
## attr(,"class")
## [1] "histogram"
##
## [[6]]
## $breaks
## [1] 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
## $counts
## [1] 18 42 49 72 73 70 51 59 50 36 18 10 4 7 1
##
## $density
```

```
[1] 0.0032142857 0.0075000000 0.0087500000 0.0128571429 0.0130357143
   [6] 0.0125000000 0.0091071429 0.0105357143 0.0089285714 0.0064285714
  [11] 0.0032142857 0.0017857143 0.0007142857 0.0012500000 0.0001785714
##
## $mids
##
    [1]
        15 25 35 45
                        55
                            65 75 85 95 105 115 125 135 145 155
##
## $xname
## [1] "train[[col_name]]"
##
## $equidist
## [1] TRUE
## attr(,"class")
## [1] "histogram"
par(mfrow = c(1, 1))
```

Histogram of Hit_Point

Histogram of Attack

Histogram of Defense stogram of Special_Attac

stogram of Special_Defer Histogram of Speed


```
cor_mat <- cor(train[numerical_vars])
print(cor_mat)</pre>
```

##		<pre>Hit_Point</pre>	Attack	Defense	Special_Attack	Special_Defense
##	Hit_Point	1.0000000	0.3890117	0.22626454	0.3025508	0.3600523
##	Attack	0.3890117	1.0000000	0.45833086	0.4189784	0.2655658
##	Defense	0.2262645	0.4583309	1.00000000	0.2245206	0.4795059
##	Special_Attack	0.3025508	0.4189784	0.22452059	1.0000000	0.4970868
##	Special_Defense	0.3600523	0.2655658	0.47950586	0.4970868	1.0000000

```
0.1647429 0.3902713 0.00647584
## Speed
                                                       0.4858104
                                                                        0.2862043
##
                        Speed
## Hit Point
                   0.16474292
## Attack
                   0.39027129
## Defense
                   0.00647584
## Special_Attack 0.48581040
## Special_Defense 0.28620434
                   1.0000000
## Speed
corrplot(cor_mat, method = "square", type = "upper", tl.col = "black", tl.srt = 45)
```



```
scaling_params <- sapply(train[numerical_vars], mean)
scaling_params_sd <- sapply(train[numerical_vars], sd)

train_std <- train
train_std[numerical_vars] <- sweep(train_std[numerical_vars], 2, scaling_params, "-")
train_std[numerical_vars] <- sweep(train_std[numerical_vars], 2, scaling_params_sd, "/")

# Apply the same scaling to test data
test_std <- test
test_std[numerical_vars] <- sweep(test_std[numerical_vars], 2, scaling_params, "-")
test_std[numerical_vars] <- sweep(test_std[numerical_vars], 2, scaling_params_sd, "/")</pre>
```

sapply(list(mean = mean, sd = sd), mapply, train_std |> select(numerical_vars))

mean sd

Checks

```
## Hit Point
                    1.462889e-16 1
## Attack
                    -4.257643e-17 1
## Defense
                    -2.249584e-16 1
## Special_Attack
                    2.896194e-17 1
## Special Defense 2.191568e-16 1
                    4.330444e-17 1
## Speed
sapply(list(mean = mean, sd = sd), mapply, test_std |> select(numerical_vars))
##
                            mean
## Hit Point
                    -0.142726299 0.8682415
## Attack
                    -0.029657333 0.9690458
## Defense
                    0.003810264 1.0290146
## Special_Attack
                    0.022203552 1.0254181
## Special_Defense 0.014580900 1.1861049
## Speed
                    -0.036205070 1.0046306
cv seed <- list(</pre>
    c(7, 18, 21, 34, 50, 67, 71, 85, 90, 44, 62, 37, 12, 55, 28, 99, 46, 19, 38, 68, 23),
    c(9, 16, 11, 40, 51, 53, 45, 64, 39, 57, 69, 27, 72, 61, 36, 56, 75, 80, 66, 26, 32),
    c(18, 25, 48, 31, 42, 35, 63, 22, 20, 77, 24, 74, 49, 10, 16, 82, 33, 13, 14, 58, 60),
    c(39, 41, 17, 55, 59, 26, 65, 30, 79, 19, 73, 12, 27, 70, 50, 84, 76, 28, 20, 35, 37),
    c(61, 43, 33, 44, 52, 72, 31, 78, 57, 49, 22, 76, 56, 47, 35, 69, 66, 21, 62, 9, 36),
    c(24, 83, 75, 59, 32, 64, 60, 52, 25, 58, 48, 71, 40, 50, 54, 39, 53, 23, 15, 12, 20),
    c(45, 14, 37, 19, 80, 53, 28, 55, 41, 23, 51, 29, 64, 47, 67, 60, 22, 32, 49, 66, 68),
    c(63, 15, 48, 40, 26, 34, 77, 39, 61, 29, 52, 46, 69, 73, 16, 59, 79, 41, 17, 10, 54),
    c(62, 55, 77, 56, 24, 38, 81, 22, 18, 71, 48, 63, 60, 35, 45, 73, 49, 68, 32, 50, 28),
    c(84, 36, 29, 68, 16, 59, 14, 79, 25, 57, 71, 34, 53, 67, 40, 51, 15, 46, 69, 76, 33),
    99 # Last element with a single integer
)
extract_best_f <- function(fit) fit$results[which.max(fit$results$F), ]</pre>
grid_search_threshold <- function(fit) {</pre>
    best_given_threshold <- data.frame(matrix(ncol = 4, nrow = 0))</pre>
    colnames(best_given_threshold) <- c("alpha", "lambda", "prob_threshold", "F1")</pre>
    all_threhsolds \leftarrow seq(0.3, 0.8, 0.1)
    for (tr in all_threhsolds) {
        res <- thresholder(fit, tr, F, "F1")
        best <- res[which.max(res$F1), ]</pre>
        best_given_threshold <- rbind(best_given_threshold, best)</pre>
    }
    return(best_given_threshold)
}
extract_best_threshold_f <- function(grid_df) {</pre>
    grid_df [which.max(grid_df$F1), ]
Fitting a logistic elastic net. Grid search of optimal alpha and lambda. CV. Maximize F.
grid_ <- expand.grid(</pre>
    .alpha = seq(0, 1, by = 0.1),
    .lambda = 10^(-c(0, 1, 10, 100, 1000))
)
train_control_1 <- trainControl(</pre>
    method = "cv",
```

```
number = 10,
    classProbs = TRUE,
   summaryFunction = prSummary,
   savePredictions = "all",
   seeds = cv_seed
)
logistic_elnet_1 <- train(</pre>
   Legendary ~ .,
   data = train_std,
   method = "glmnet",
   family = "binomial",
   metric = "F",
   tuneGrid = grid_,
   trControl = train_control_1,
   intercept = FALSE
)
print(logistic_elnet_1$bestTune)
##
     alpha lambda
## 13 0.2 1e-10
print(extract_best_f(logistic_elnet_1))
      alpha lambda
                     AUC Precision
                                         Recall
                                                        F
                                                               AUCSD PrecisionSD
##
                0 0.9738336 0.9581359 0.9651207 0.9613257 0.00643858 0.02575424
## 11 0.2
##
       RecallSD
## 11 0.02177563 0.01621389
best_f_1 <- grid_search_threshold(logistic_elnet_1)</pre>
print(best_f_1)
##
      alpha lambda prob_threshold
                       0.3 0.9617127
## 6
        0.1
              0
## 61
        0.1
                0
                             0.4 0.9604477
## 11
        0.2
                 0
                             0.5 0.9613257
                              0.6 0.9639693
## 1
        0.0
                 0
## 111
        0.2
                 0
                              0.7 0.9536440
                 0
                              0.8 0.9480063
## 112
       0.2
print(extract_best_threshold_f(best_f_1))
## alpha lambda prob_threshold
## 1
        0
                            0.6 0.9639693
plot(logistic_elnet_1)
```


Fitting a logistic elastic net. Grid search of optimal alpha and lambda. SMOTE CV. Maximize F.

```
train_control_2 <- trainControl(</pre>
    method = "cv",
    number = 10,
    sampling = "smote",
classProbs = TRUE,
    summaryFunction = prSummary,
    savePredictions = "all",
    seed = cv_seed
)
logistic_elnet_2 <- train(</pre>
    Legendary ~ .,
    data = train_std,
    method = "glmnet",
    family = "binomial",
    metric = "F",
    tuneGrid = grid_,
    trControl = train_control_2,
    intercept = FALSE
print(logistic_elnet_2$bestTune)
```

```
## alpha lambda
## 25 0.4 1
```

```
print(extract_best_f(logistic_elnet_2))
##
      alpha lambda AUC Precision Recall
                                                   F AUCSD PrecisionSD RecallSD
                                                         0 0.008648344
## 25
                      0 0.9179107
                                        1 0.9571795
##
               FSD
## 25 0.004694285
best_f_2 <- grid_search_threshold(logistic_elnet_2)</pre>
print(best_f_2)
      alpha lambda prob_threshold
##
        0.0
                0.1
## 4
                                0.3 0.9662289
## 15
        0.2
                1.0
                                0.4 0.9653466
## 31
        0.6
                0.0
                                0.5 0.9559835
  41
        0.8
                0.0
                                0.6 0.9514466
                0.0
## 36
        0.7
                                0.7 0.9472411
## 51
        1.0
                0.0
                                0.8 0.9350926
print(extract_best_threshold_f(best_f_2))
     alpha lambda prob_threshold
## 4
              0.1
                              0.3 0.9662289
plot(logistic_elnet_2)
```


Fitting a logistic elastic net. Grid search of optimal alpha and lambda. Upsampling CV. Maximize F.

```
train_control_3 <- trainControl(</pre>
   method = "cv",
   number = 10,
   sampling = "up",
   classProbs = TRUE,
   summaryFunction = prSummary,
   savePredictions = "all",
   seed = cv seed
)
logistic_elnet_3 <- train(</pre>
   Legendary ~ .,
   data = train_std,
   method = "glmnet",
   family = "binomial",
   metric = "F",
   tuneGrid = grid_,
   trControl = train_control_3,
   intercept = FALSE
)
print(logistic_elnet_3$bestTune)
##
     alpha lambda
## 25 0.4
print(extract_best_f(logistic_elnet_3))
                                          F AUCSD PrecisionSD RecallSD
     alpha lambda AUC Precision Recall
##
## 25 0.00453091
best_f_3 <- grid_search_threshold(logistic_elnet_3)</pre>
print(best_f_3)
     alpha lambda prob_threshold
                         0.3 0.9687647
## 5
       0.0
             1
## 10
      0.1
              1
                          0.4 0.9623554
## 41 0.8
             0
                          0.5 0.9490746
## 11
       0.2
             0
                         0.6 0.9480656
## 26
       0.5
                         0.7 0.9460062
             0
       0.7 0
## 36
                          0.8 0.9370288
print(extract_best_threshold_f(best_f_3))
## alpha lambda prob_threshold
## 5
       0
                          0.3 0.9687647
plot(logistic_elnet_3)
```


Fitting a logistic elastic net. Grid search of optimal alpha and lambda. Downsampling CV. Maximize F.

```
train_control_4 <- trainControl(</pre>
    method = "cv",
    number = 10,
    sampling = "down",
    classProbs = TRUE,
    summaryFunction = prSummary,
    savePredictions = "all",
    seed = cv_seed
logistic_elnet_4 <- train(</pre>
    Legendary ~ .,
    data = train_std,
    method = "glmnet",
    family = "binomial",
    metric = "F",
    tuneGrid = grid_,
    trControl = train_control_4,
    intercept = FALSE
print(logistic_elnet_4$bestTune)
```

```
## alpha lambda
## 25 0.4 1
```

```
print(extract_best_f(logistic_elnet_4))
      alpha lambda AUC Precision Recall
                                                 F AUCSD PrecisionSD RecallSD
       0.4
                     0 0.9178839
                                       1 0.9571637
                                                        0 0.008939504
## 25
                 1
##
              FSD
## 25 0.004852104
best_f_4 <- grid_search_threshold(logistic_elnet_4)</pre>
print(best_f_4)
       alpha lambda prob_threshold
##
## 5
         0.0
                  1
                                0.3 0.9665062
         0.1
                                0.4 0.9650965
## 10
                  1
## 1
         0.0
                  0
                                0.5 0.8909693
## 51
         1.0
                  0
                                0.6 0.8899894
                                0.7 0.8851691
## 511
         1.0
                  0
## 512
         1.0
                                0.8 0.8803295
print(extract_best_threshold_f(best_f_4))
     alpha lambda prob_threshold
## 5
                              0.3 0.9665062
plot(logistic_elnet_4)
```


Prediction

```
get_prediction <- function(fit, type = "raw") {</pre>
    predict(fit, type = type, newdata = test_std |> select(-Legendary))
get_accuracy <- function(fit) {</pre>
    y <- test_std$Legendary
    y_hat <- predict(fit, type = "raw", newdata = test_std |>
        select(-Legendary))
    return(mean(y == y_hat))
lapply(list(logistic_elnet_1, logistic_elnet_2, logistic_elnet_3, logistic_elnet_4), get_accuracy)
## [[1]]
## [1] 0.9375
##
## [[2]]
## [1] 0.9208333
## [[3]]
## [1] 0.9208333
## [[4]]
## [1] 0.9208333
get_prediction_thresh <- function(best_f, trainControl) {</pre>
    best <- extract_best_threshold_f(best_f)</pre>
    alpha <- best$alpha</pre>
    lambda <- best$lambda</pre>
    tr <- best$prob_threshold</pre>
    grid_ <- data.frame(.alpha = alpha, .lambda = lambda)</pre>
    fit <- train(
        Legendary ~ .,
        data = train_std,
        method = "glmnet",
        family = "binomial",
        metric = "F",
        tuneGrid = grid_,
        trControl = trainControl,
        intercept = FALSE
    )
    probs <- get_prediction(fit, "prob")[, 2]</pre>
    y_hat <- as.factor(ifelse(probs > tr, "Yes", "No"))
    attr(y_hat, "threshold") <- tr</pre>
    attr(y_hat, "alpha") <- alpha</pre>
    attr(y_hat, "lambda") <- lambda</pre>
    return(y_hat)
get_accuracy_thresh <- function(y_hat) {</pre>
    return(mean(test_std$Legendary == y_hat))
```

```
get_prediction_thresh(best_f_1, train_control_1) |> get_accuracy_thresh()
## [1] 0.925
get_prediction_thresh(best_f_2, train_control_2) |> get_accuracy_thresh()
## [1] 0.6875
get_prediction_thresh(best_f_3, train_control_3) |> get_accuracy_thresh()
## [1] 0.2458333
get_prediction_thresh(best_f_4, train_control_4) |> get_accuracy_thresh()
## [1] 0.2
get_confusion_matrix <- function(y_hat) {</pre>
    confusionMatrix(y_hat, as.factor(test_std$Legendary))
get_prediction_thresh(best_f_1, train_control_1) |> get_confusion_matrix()
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction No Yes
         No 219 16
##
##
         Yes
              2 3
##
##
                  Accuracy: 0.925
##
                    95% CI: (0.8841, 0.9549)
      No Information Rate: 0.9208
##
##
       P-Value [Acc > NIR] : 0.465702
##
##
                     Kappa: 0.2244
##
##
   Mcnemar's Test P-Value: 0.002183
##
              Sensitivity: 0.9910
##
              Specificity: 0.1579
##
##
            Pos Pred Value: 0.9319
##
            Neg Pred Value: 0.6000
##
               Prevalence: 0.9208
            Detection Rate: 0.9125
##
##
      Detection Prevalence: 0.9792
##
         Balanced Accuracy: 0.5744
##
##
          'Positive' Class : No
get_prediction_thresh(best_f_2, train_control_2) |> get_confusion_matrix()
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction No Yes
##
         No 146
          Yes 75 19
##
```

```
##
##
                  Accuracy : 0.6875
##
                    95% CI: (0.6247, 0.7456)
##
       No Information Rate: 0.9208
##
       P-Value [Acc > NIR] : 1
##
##
                     Kappa: 0.2356
##
##
   Mcnemar's Test P-Value : <2e-16
##
##
               Sensitivity: 0.6606
##
               Specificity: 1.0000
            Pos Pred Value: 1.0000
##
            Neg Pred Value: 0.2021
##
##
                Prevalence: 0.9208
##
            Detection Rate: 0.6083
##
      Detection Prevalence: 0.6083
##
         Balanced Accuracy: 0.8303
##
##
          'Positive' Class : No
##
get_prediction_thresh(best_f_3, train_control_3) |> get_confusion_matrix()
## Confusion Matrix and Statistics
##
             Reference
##
## Prediction No Yes
##
          Nο
               40
          Yes 181 19
##
##
##
                  Accuracy : 0.2458
##
                    95% CI: (0.1927, 0.3053)
##
       No Information Rate: 0.9208
       P-Value [Acc > NIR] : 1
##
##
##
                     Kappa: 0.0338
##
##
   Mcnemar's Test P-Value : <2e-16
##
##
               Sensitivity: 0.1810
##
               Specificity: 1.0000
            Pos Pred Value: 1.0000
##
            Neg Pred Value: 0.0950
##
                Prevalence: 0.9208
##
##
            Detection Rate: 0.1667
##
      Detection Prevalence: 0.1667
##
         Balanced Accuracy: 0.5905
##
##
          'Positive' Class : No
get_prediction_thresh(best_f_4, train_control_4) |> get_confusion_matrix()
```

 $\ensuremath{\mbox{\#\#}}$ Confusion Matrix and Statistics

```
##
##
             Reference
## Prediction No Yes
               29
##
          No
##
          Yes 192 19
##
##
                  Accuracy: 0.2
                    95% CI: (0.1513, 0.2563)
##
##
       No Information Rate: 0.9208
##
       P-Value [Acc > NIR] : 1
##
##
                     Kappa: 0.0234
##
   Mcnemar's Test P-Value : <2e-16
##
##
##
               Sensitivity: 0.13122
##
               Specificity: 1.00000
##
            Pos Pred Value: 1.00000
##
            Neg Pred Value: 0.09005
##
                Prevalence: 0.92083
##
            Detection Rate: 0.12083
##
      Detection Prevalence: 0.12083
##
         Balanced Accuracy: 0.56561
##
##
          'Positive' Class : No
# install.packages("PRROC")
# library(PRROC)
# plot_precision_recall <- function(true_labels, pred_model1, pred_model2, #red_model3) {</pre>
     pr_model1 <- pr.curve(scores.class0 = logistic_elnet_1, weights.class0 = test$Legendary, curve = T
#
     pr_model2 <- pr.curve(scores.class0 = pred_model2, weights.class0 = rue_labels, curve = TRUE)</pre>
#
     pr_model3 <- pr.curve(scores.class0 = pred_model3, weights.class0 = rue_labels, curve = TRUE)
#
     plot(pr_model1, main = "Precision-Recall Curve Comparison", col = #1f7764", lwd = 2)
#
     lines(pr_model2, col = "darkableue", lwd = 2)
#
     lines(pr\_model3, col = "#66b3ff", lwd = 2)
#
     legend("bottomright",
#
        legend = c("Model 1", "Model 2", "Model 3"),
         col = c("#1f77b4", "darkableue", "#66b3ff"), lwd = 2
#
#
# }
# plot_precision_recall(test$Legendary, logistic_elnet_1, xgb_model2, rf_model4)
\#\#\#\mathrm{test}
library(yardstick)
bind_cols(train_std, predict(logistic_elnet_1, type = "prob")) %>%
    pr_curve(truth = Legendary, No) |>
    ggplot(aes(x = recall, y = precision)) +
    geom_path() +
    labs(
```

```
title = "Precision-Recall Curve for Different Models",
    x = "Recall", y = "Precision"
) +
theme_bw()
```

Precision-Recall Curve for Different Models


```
bind_cols(train_std, predict(logistic_elnet_1, type = "prob")) |>
    roc_curve(truth = Legendary, No) |>
    ggplot(aes(1 - specificity, y = sensitivity)) +
    labs(
        title = "ROC Curve for Different Models",
        x = "1 - Specificity", y = "Sensitivity"
    ) +
    geom_path() +
    geom_abline(lty = 3) +
    theme_bw()
```



```
\#\#\#{\rm train}
```

```
library(yardstick)
bind_cols(test_std, predict(logistic_elnet_1, newdata = test_std |> select(-Legendary), type = "prob"))
    pr_curve(truth = Legendary, No) |>
    autoplot()
```



```
# ggplot(aes(x = recall, y = precision)) +
# geom_path() +
# labs(title = "Precision-Recall Curve for Different Models",
# x = "Recall", y = "Precision") +
# theme_bw()

bind_cols(test_std, predict(logistic_elnet_1, newdata = test_std |> select(-Legendary), type = "prob"))
    roc_curve(truth = Legendary, No) |>
    autoplot()
```



```
# ggplot(aes(1 - specificity, y = sensitivity)) +
# labs(title = "ROC Curve for Different Models",
# x = "1 - Specificity", y = "Sensitivity") +
# geom_path() +
# geom_abline(lty = 3) +
# theme_bw()
```