$\sqrt{n}\mapsto \Theta(n)$ Magic States 'Distillation' Using Quantum LDPC Codes.

David Ponarovsky

August 15, 2024

1 The Construction.

Let x_0 be a codeword of C_X/C_Z^\perp , Denote by $w \in \mathbb{F}_2^n$ the binary string presents Z-generator that anti commute with the X-generator corresponds to x_0 . Let $\mathcal{X} = \{x_0, x_1, ... x_{k'}\} \in \mathbb{F}_2^n$ be a subset of a base for the code C_X/C_Z^\perp . Such (span \mathcal{X}/x_0) $|_w$ is Triorthogonalcode. Let us denote by \mathcal{X}' the base $\{y_1, y_2, ..., y_{k'}\} \in \mathbb{F}_2^n$ defined such: $y_i = x_j + x_0$.

Denote by E the circuit that encodes the logical ith bit to y_i , by $T^{(w)}$ the application of T gates on the qubits for which w act non trivial, means $T^{(w)}$ is a tensor product of T's and identity where on the ith qubit $T^{(w)}$ apply T if w_i is 1 and identity otherwise. And finally by D denote the gate that decode binary strings in \mathbb{F}_2^n back into the logical space.

2 Proof of Theorem 1.

Claim 2.1. There exists family of quantum codes Q such the codes span \mathcal{X}' chosen respect to them has a positive rate. Furthermore:

$$|\rho(Q) - \rho(\operatorname{span} \mathcal{X}')| = o(1)$$

Proof. \Box

Claim 2.2. Let $|\mathcal{X}'\rangle \propto \sum_{x \in span \ \mathcal{X}'} |x\rangle$. Then $T^{(w)} |\mathcal{X}'\rangle \propto \sum_{x \in span \ i} x$