Universidade Federal do Maranhão

Minimização de Autômatos Finitos

Katarina Ires Núbia Valvan Alves Freitas Pedro Lucas Cardoso Correa

SUMÁRIO

- 3. INTRODUÇÃO
- 5. COMENTÁRIO INICIAIS
- 6. MÉTODO DE MINIMIZAÇÃO DE ESTADOS
- 7. ESTADOS INACESSÍVEIS
- 9. ESTADOS INÚTEIS
- 11. EQUIVALÊNCIA ENTRE ESTADOS
- 19. ETAPAS PARA MINIMIZAÇÃO DE ESTADOS
- 20. DENTIFICAÇÃO DOS PARES DE ESTADOS EQUIVALENTE ALGORITMO

Introdução

• Considere a palavra w = abababab. Em termos de processamento, qual dos autômatos abaixo é mais eficiente?

• Os dois possuem a mesma eficiência, já que o processamento depende do tamanho da palavra e não do tamanho do autômato. Então por que minimizar?

Introdução

- Autômatos são maquinas reconhecedoras de palavras sobre uma linguagem, formados por uma quíntupla M={Q, Σ, δ, q0, qf};
- O processo de minimização visa unificar os estados equivalentes de um autômato, tornando o autômato final mínimo e único. Toda linguagem regular possui um autômato finito determinístico, mínimo e único que a reconhece;
- Minimizar um AFD não o torna mais eficiente, pois o tempo de processamento não depende do número de estados, muito menos do autômato de reconhecimento considerado, mas sim do tamanho da palavra a ser testada, ou seja, qualquer autômato finito determinístico que reconheça a linguagem terá a mesma eficiência;
- Um AFD M é dito ser mínimo para a linguagem L(M) se nenhum AFD para L(M) contém menor número de estados que M.

Comentários Iniciais

- Foi demonstrado que esse resultado é válido apenas para a classe das linguagens regulares;
- Possibilita a construção de reconhecedores sintáticos extremamente compactos e eficientes;
- É possível automatizar a minimização de autômatos finitos;
- Autômato finito mínimo é único para cada linguagem regular, possibilitando a elaboração de novos métodos no estudo de linguagens formais.

Método de Minimização de Estados

- Partimos do pressuposto de que o autômato a ser minimizado é determinístico. Não possui transições com cadeia vazia;
- Os estados devem ser alcançáveis a partir do estado inicial;
- Agrupamento e fusão de estados equivalentes.

Estados Inacessíveis

- Um estado *qi* é dito inacessível se não existe no autômato qualquer caminho, formado por transições válidas, que leve do estado inicial até *qi*;
- Estados inacessíveis não contribuem para o poder de reconhecimento do autômato, já que nenhuma cadeia w ∈ Σ* pode levar o autômato do estado inicial até esses estados.

Estados Inacessíveis

Algoritmo para eliminação de estados inacessíveis:

Duas marcas para cada estado: acessível e finalizado; o método inicia com todos os estados em branco

- 1. Marque o estado inicial como acessível (mas não como finalizado);
- 2. Enquanto houver um estado qi marcado como acessível mas não finalizado:
 - \circ Para cada estado qj ainda não marcado, tal que haja uma transição qi'a qj, marque qj como acessível
 - \circ Quando todos os estados vizinhos de qi tiverem sido inspecionados, marque qi como finalizado.
- 3. Elimine todos os estados não marcados

Estados Inúteis

- Um estado qi é dito inútil se não existe no autômato qualquer caminho, formado por transições válidas, que leve de qi até algum estado de aceitação;
- Nenhuma cadeia $w \in \Sigma *$ conduz o autômato de um estado inútil até um dos estados finais;

Estados Inúteis

• Algoritmo para eliminação de estados inúteis:

Duas marcas para cada estado: útil e finalizado; o método inicia com todos os estados em branco

- 1. Marque todos os estados de aceitação como estados úteis (mas não como finalizados)
- 2. Enquanto houver um estado qi marcado como útil mas não finalizado:
 - \circ Para cada estado qj ainda não marcado, tal que haja uma transição qj ' a qi , marque qj como útil
 - Quando todos os estados satisfazendo a condição (a) tiverem sido inspecionados,
 marque qi como finalizado.
- 3. Elimine todos os estados não marcados

- Definição: Dois estados q1, q2 são ditos k-indistinguíveis (denotado por $q1 \equiv k q2$) se e apenas se não houver cadeia x, $|x| \le k$, que permita distinguir q1 de q2.
- De acordo com a definição acima, para quaisquer pares de estados qi, $qj \in Q$, valem:
 - $q_i \equiv 0$ q_j se e somente se ambos forem de aceitação ou nenhum for de aceitação:
 - $qi \equiv 0 \ qj \Leftrightarrow (qi, qj \in F \lor qi, qj \in Q F).$
 - $\circ qi \equiv k qj$ se e somente se:
 - $\blacksquare qi \equiv k-1 qj;$

- Teorema: Seja $M = (Q, \Sigma, \delta, q0, F)$ um AFD com n estados, e considere dois estados quaisquer q1, q2 de M. Então, $q1 \equiv q2$ se e somente se $q1 \equiv n-2$ q2.
 - \circ (n-2) indistinguibilidade.
- Ideia da demonstração:
 - $q = q \Rightarrow q \equiv n 2q = m 2q$
 - - Trivial se o autômato tiver estados que são somente de aceitação ou de rejeição.
 - Assumindo que a função de transição $\delta:Q \times \Sigma'Q$ seja total.

- Consideremos agora o caso mais geral em que há tanto estados finais como nãofinais em M.
- \circ De acordo com o critério \equiv 0 , o conjunto Q pode ser particionado inicialmente em dois grandes grupos:
 - lacktriangle O primeiro formado pelos estados finais (F)
 - O segundo pelos estados não finais (Q F)
 - Trata-se, portanto, do primeiro de uma série de sucessivos refinamentos do o objetivo de determinar as classes de equivalências de estados de *M*.

- Executa-se, em seguida, para cada um dos dois subconjuntos obtidos através de ≡
 0 , seu particionamento através de relações ≡ i , i = 1, 2, 3, etc.
- Como M possui n estados, sendo alguns finais e outros não, o maior subconjunto de Q criado através de $\equiv 0$ possui no máximo n 1 estados, portanto, haverá no máximo n 2 refinamentos sucessivos de $\equiv 0$ gerando conjuntos de classes de equivalência, distintas umas das outras.

- \circ Para completar a demonstração, basta provar que cada um dos n-2 particionamentos distintos sucessivos (no máximo) refere-se ao uso correspondente de cadeias de comprimento 1, 2, ..., n-2, para efetuar o teste de distinguibilidade do par de estados.
 - Consequentemente, não há possibilidade de ocorrer um novo particionamento distinto dos anteriores para cadeias de comprimento k se os particionamentos obtidos para cadeias de comprimento k - 1 e k - 2 se mostrarem idênticos.
- Para provar essa afirmação, considere-se o conjunto de todas as classes de equivalência de M que satisfazem simultaneamente às relações $\equiv k$ e $\equiv k+1$. Nesse caso, essas mesmas classes de equivalência satisfazem a $\equiv k+2$, $\equiv k+3$ e assim sucessivamente.

Considere-se, por exemplo, uma situação hipotética em que:
i.a relação ≡ k particiona um certo conjunto Q em três subconjuntos Q0, Q1 e Q2;
ii.a relação ≡ k + 1 preserva o particionamento da relação ≡ k inalterado;
iii.a relação ≡ k + 2 produz uma partição diferente, digamos Q0, R, S e Q2, com R ∪ S = Q1, R ∩ S = Ø : ≡ k : Q0, Q1, Q2 // ≡ k+1 : Q0, Q1, Q2 // ≡ k+2 : Q0, R, S, Q2.

o Admitindo-se, por hipótese, que Q1 seja particionado em duas novas classes de equivalência R, S, isso significa que existem q1, q2 \in Q1 tais que q1 $\not\equiv$ k+2 q2. Mas para que isso fosse verdade, seria necessário, de acordo com a definição, que:

- i. $q1 \not\equiv k+1 q2$, ou
- ii. $\delta(q1, a) \not\equiv k+1 \delta(q2, a)$ para algum $a \in \Sigma$.
- A condição i é falsa, pois de acordo com a hipótese original, q1, $q2 \in Q1$ e portanto $q1 \equiv k+1$ q2.
- A condição ii também é falsa, pois se $q1 \equiv k+1$ q2 então $\delta(q1, a) \equiv k$ $\delta(q2, a)$, como por hipótese, as partições produzidas pelas relações $\equiv k$ e $\equiv k+1$ são idênticas, então $\delta(q1, a) \equiv k+1$ $\delta(q2, a)$.

- Fica, portanto, demonstrado que:
 - Na hipótese de serem obtidos dois conjuntos idênticos de classes de equivalência para k e k + 1, não haverá mais necessidade de se analisar a equivalência de tais classes para valores maiores do que k.
 - Para um autômato finito com n estados, haverá no máximo n 1 conjuntos distintos de classes de equivalência ($\equiv 0$ e os demais n 2), cada qual associado a cadeias de comprimento 0 até n 2, não havendo, portanto, necessidade de se examinar a equivalência de tais classes para cadeias de comprimento superior a n 2.

Etapas para Minimização de Estados

- Remoção dos estados inacessíveis e inúteis;
- Identificação dos pares de estados equivalentes entre si;
- Agrupamentos dos estados em classes de equivalência, cada uma identificada pelo seu representante;
- Criação de um novo AFD mínimo:
 - Novos estados correspondem aos representantes das classes de equivalências do AFD original;
 - Novas transições são obtidas do AFD original, substituindo a referência aos estados originais pelos respectivos representantes.

Identificação dos Pares de Estados Equivalentes - Algoritmo

- Entrada: um AFD $M = (Q, \Sigma, \delta, q0, F)$
- Saída: Uma partição Q0,Q1, ..., QK do conjunto Q de estados, de tal forma que seus elementos correspondem às mais amplas classes de equivalências de estados existentes em Q.
 - Divide-se o conjunto original de estados de M nos dois subconjuntos que compõem sua partição inicial:
 - Subconjunto dos estados finais;
 - Subconjunto dos estados não finais;
 - Justificativa: Em um AFD, um estado final, qualquer que seja ele, é sempre distinguível de um estado não final (já que a cadeia vazia os distingue).
 - Essa partição inicial corresponde, portanto, ao resultado da aplicação da relação

 \equiv 0 ao conjunto Q.

Identificação dos Pares de Estados Equivalentes - Algoritmo

- Para cada um dos subconjuntos obtidos em (1), refiná-los em novas partições, segundo o critério:
 - Dois estados qi, qj de um mesmo subconjunto Qi, obtido de uma partição prévia do conjunto Q de estados, são equivalentes se e somente se:
 - qi e qj têm transições definidas sobre o mesmo conjunto de símbolos $S \subseteq \Sigma$, e
 - Para cada um desses símbolos a ∈ S:
 - $\circ \delta (qi, a) = \delta qj, a ou$
 - $\circ \delta(qi, a) \neq \delta(qj, a) \text{ mas } \delta(qi, a) \text{ e } \delta(qj, a) \text{ são equivalentes.}$
 - \circ Caso contrário, qi e qj não são equivalentes e devem, portanto, ensejar uma partição de Qi .

Identificação dos Pares de Estados Equivalentes - Algoritmo

• Representações dos casos que satisfazem à condição 2b do algoritmo:

Transições com as mesmas entradas para estados idênticos

Transições com as mesmas entradas para estados equivalentes

Transições com as mesmas entradas para estados idênticos e equivalentes

