Архитектура компьютеров и операционные системы | Операционные системы

Лабораторная работа № 3. Markdown

Акрур Имад НКАбд-06-24

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение:	7
	3.0.1 Контрольные вопросы для самопроверки	7
4	Выполнение лабораторной работы	9
	4.1 Цель второй лабораторной работы:	9
	4.2 Теоретическое введение:	9
	4.2.1Контрольные вопросы:	9
	4.2.2 Выполнение лабораторной работы:	11
	4.3 1. Написание отчёта в формате Markdown	18
	4.4 2. Генерация форматов PDF, DOCX и MD	19
	4.5 3. Отправка файлов в репозиторий	20
	4.6 Описание результатов выполнения заданий для самостоя-	
	тельной работы	20
	4.6.1 Создание отчета в соответствующем каталоге рабочего	
	пространства :	20
	4.7 выводы по результатам выполнения заданий: :	22
5	Выводы	23

Список иллюстраций

4.1 рисунок	1						•								11
4.2 рисунок	2														12
4.3 рисунок	3														13
4.4 рисунок	4														13
4.5 рисунок	5														14
4.6 рисунок	6														14
4.7 рисунок	7														15
4.8 рисунок	8														15
4.9 рисунок	9														15
4.10рисунок	10														16
4.11рисунок	11														16
4.12рисунок	12													•	17
4.13рисунок	13														17
4.14рисунок	14													•	17
4.15рисунок	15													•	17
4.16рисунок	16													•	18
4.17рисунок	17														18
4.18рисунок	18													•	18
4.19рисунок	23														19
4.20рисунок	24													•	19
4.21рисунок	25														20
4.22рисунок	26													•	20
4.23рисунок	19	•					•								21
4.24рисунок	20														21
4.25рисунок	21						•								21
4.26рисунок	22														22

Список таблиц

1 Цель работы

• Научиться оформлять отчёты с помощью легковесного языка разметки **Markdown**.

2 Задание

- Сделать отчёт по предыдущей лабораторной работе в формате Markdown.
- В качестве отчёта нужно предоставить отчёты в **3 форматах**: **pdf**, **docx** и **md** (в **архиве**, поскольку он должен содержать **скриншоты**, **Makefile** и т.д.)

3 Теоретическое введение:

3.0.1 Контрольные вопросы для самопроверки

1. Что такое Markdown?

Markdown — это легкий язык разметки, который позволяет форматировать текст с помощью простых символов, делая его легко читаемым и редактируемым.

2. Как в Markdown задается начертание шрифтов?

- *Курсив*: обрамление текста в одиночные звездочки или подчеркивания, например, *курсив* или _курсив_.
- **Жирный**: обрамление текста в двойные звездочки или подчеркивания, например, **жирный** или __жирный__.
- **Жирный курсив**: обрамление текста в три звездочки, например, ***жирный курсив***.

3. Как в Markdown оформляются списки?

- **Ненумерованный список**: используется звездочка, плюс или дефис:
 - Пункт 1
 - Пункт 2
- Нумерованный список: используются числа с точками:

- 1. Первый пункт
- 2. Второй пункт
- 4. Как в Markdown оформляются изображения и ссылки на них?
 - **Изображение**: ![Alt text](url_изображения)
 - **Ссылка:** [Текст ссылки](url_ссылки)
- 5. Как в Markdown оформляются математические формулы и ссылки на них?
 - Для отображения формул используйте знаки доллара:
 - Внутри строки: \$E=mc^2\$
 - На отдельной строке:

\$\$E=mc^2\$\$

4 Выполнение лабораторной работы

4.1 Цель второй лабораторной работы:

- Изучить идеологию и применение средств контроля версий.
- Освоить умения по работе с git.

4.2 Теоретическое введение:

4.2.1 Контрольные вопросы:

1. Что такое системы контроля версий (VCS) и для чего они предназначаются?

Системы контроля версий (VCS) — это инструменты для управления изменениями в коде и файлах проекта, позволяющие отслеживать историю изменений, работать с разными версиями и сотрудничать в команде.

2. Объясните понятия VCS: хранилище, commit, история, рабочая копия

- Хранилище repositorуместо, где хранятся все версии проекта.
- Commit зафиксированные изменения с комментарием, представляющие версию проекта.
 - История после довательность всех commit
- Рабочая копия working сорулокальная версия проекта, с которой работает разработчик.

3. Чем отличаются централизованные и децентрализованные VCS? Примеры.

- Централизованные VCS (например, SVN): одно центральное хранилище, доступное для всех.
- Децентрализованные VCS (например, Git): каждый пользователь имеет своё полное хранилище, с возможностью синхронизации.

4. Действия с VCS при единоличной работе с хранилищем.

- Инициализация репозитория.
- Добавление файлов и создание commit
- Проверка состояния (git status), просмотр истории (git log).

5. Порядок работы с общим хранилищем VCS.

- Клонирование репозитория.
- Создание ветки, внесение изменений.
- Commit изменений.
- Слияние с основной веткой через pull request.

6. Основные задачи, решаемые Git.

Управление версиями, создание веток, слияние изменений, разрешение конфликтов, работа с удалёнными репозиториями.

7. Команды Git: краткая характеристика.

- 'git init': создание репозитория.
- 'git clone': клонирование удалённого репозитория.
- 'git add': добавление файлов для отслеживания.
- 'git commit': фиксация изменений.
- 'git push': отправка изменений в удалённый репозиторий.
- 'git pull': получение изменений из удалённого репозитория.

8. Примеры работы с локальными и удалёнными репозиториями.

- Локальные : инициализация репозитория, создание commit , проверка состояния.
 - Удалённые: клонирование, отправка изменений (git push), получе-

ние обновлений (git pull).

4.2.2 Выполнение лабораторной работы:

4.2.2.1 Создание учетной записи на GitHub

Рис. 4.1: рисунок 1

в моем случае учетная запись уже существует, поэтому этот шаг был пропущен.

4.2.2.2 Базовая настройка Git:

1. Указание имени пользователя и email для создания коммитов в репозиториях. Эти данные будут добавляться к каждому коммиту, чтобы идентифицировать автора изменений.:

```
imadakrour@fedora:~ Q = x

imadakrour@fedora:~ git config --global user.name "imadakrour"
imadakrour@fedora:~ git config --global user.email "1032239342@pfur.ru"
imadakrour@fedora:~ git config --global core.quotepath false
imadakrour@fedora:~ git config --global init.defaultBranch master
imadakrour@fedora:~ git config --global core.autocrlf input
imadakrour@fedora:~ git config --global core.safecrlf warn
imadakrour@fedora:~ $
```

Рис. 4.2: рисунок 2

Эта последовательность команд настраивает имя пользователя, email, кодировку UTF-8, задает начальную ветку master, устанавливает обработку концов строк (autocrlf), и включает предупреждения о несоответствиях концов строк (safecrlf). Выполнение всех команд в одной строке позволяет быстрее закончить настройку и сразу перейти к работе с Git. Все параметры будут применены глобально для всех будущих репозиториев.

4.2.2.3 Создание SSH-ключа

Описание выполняемого задания:

Для безопасного подключения к репозиториям на GitHub, нужно сгенерировать SSH-ключи (публичный и приватный). Это позволит вам работать с репозиториями, не вводя каждый раз логин и пароль.

1. Генерация SSH-ключа:

Рис. 4.3: рисунок 3

Каталог ~/.ssh/ — это стандартное место для хранения SSH-ключей. Не изменяйте путь, если вы не хотите использовать другое место для хранения.

2. Копирование публичного ключа в буфер обмена:

Рис. 4.4: рисунок 4

Команда cat ~/.ssh/id_rsa.pub выводит содержимое публичного ключа, а команда xclip -sel clip копирует это содержимое в буфер обмена

Рис. 4.5: рисунок 5

Рис. 4.6: рисунок 6

вставить ключ на сайт GitHub.

4.2.2.4 Создание рабочего пространства и репозитория курса на основе шаблона

Для правильной организации рабочих файлов и проектов в рамках курса необходимо создать рабочее пространство по определенной структуре. В этом шаге будет выполнено создание директории для предмета «Архитектура компьютера», а также будет продемонстрировано, как структурировать папки для лабораторных работ.

Описание выполняемого задания:

Создание структуры рабочего пространства :

Рис. 4.7: рисунок 7

Эта команда создаст нужные каталоги по иерархии. Опция -р создает промежуточные каталоги, если они еще не существуют

4.2.2.5 Сознание репозитория курса на основе шаблона

Рис. 4.8: рисунок 8

Рис. 4.9: рисунок 9

Рис. 4.10: рисунок 10

Рис. 4.11: рисунок 11

Эти действия создают новый репозиторий на основе предоставленного шаблона, который содержит структуру и необходимые файлы для работы по курсу.

Клонирование репозитория на локальный компьютер:

```
imadakrour@fedora:-/work/study/2024-2025/Apxarecrypa компьютера

| Radakrour@fedora:-/work/study/2024-2025/Apxarecrypa компьютера'
| Radakrour@fedora:-/work/study/2024-2025/Apxarecrypa komnьorepa'
| Radakrour@fedora:-/work/study/2024-2025/Apxarecrypa komnsorepa'
|
```

Рис. 4.12: рисунок 12

Команда git clone -recursive позволяет загрузить все файлы из удаленного репозитория в папку arch-pc.

Рис. 4.13: рисунок 13

Настройка каталога курса :

Рис. 4.14: рисунок 14

Удаление ненужного файла package.json :

Рис. 4.15: рисунок 15

Удаление лишних файлов помогает избежать путаницы и оставить только необходимые для курса файлы.

Создание файла COURSE с названием курса:

Рис. 4.16: рисунок 16

```
imadakrour@fedora:~/work/study/2024-2025/Архитектура компьютера/arch-pc/labs Q = x
imadakrour@fedora:~/work/study/2024-2025/Архитектура компьютера/arch-pc$ echo arch-pc > COURSE
imadakrour@fedora:~/work/study/2024-2025/Архитектура компьютера/arch-pc$ ls
imadakrour@fedora:~/work/study/2024-2025/Архитектура компьютера/arch-pc$ ls
CHANGELOG.md COURSE LICENSE prepare README.en.md README.md
config labs Makefile presentation README.git-flow.md template
imadakrour@fedora:~/work/study/2024-2025/Архитектура компьютера/arch-pc$ cd labs
imadakrour@fedora:~/work/study/2024-2025/Архитектура компьютера/arch-pc/labs$ ls
lab01 lab03 lab05 lab07 lab09 lab11 README.ru.md
lab02 lab04 lab06 lab08 lab10 README.md
```

Рис. 4.17: рисунок 17

Отправка изменений на сервер:

Рис. 4.18: рисунок 18

Эти команды добавляют изменения в локальный репозиторий, создают коммит с описанием и отправляют изменения в удаленный репозиторий на GitHub.

4.3 1. Написание отчёта в формате Markdown

Сначала я создал файл под названием report.md в текстовом редакторе. Этот файл содержит весь материал для лабораторной работы №2, оформленный в формате Markdown

```
Preport.md

Voorbistudy/2024-2025/Архотектура коминистера/аrch-pc/labs/labs03/report

Save 

×

**report.md

Voorbistudy/2024-2025/Архотектура коминистера/аrch-pc/labs/labs03/report

Save 

×

**Veorbistudy/2024-2025/Архотектура коминистера/аrch-pc/labs/labs03/report

Save 

×

**Xeyea HeoSxoдимо создать рабочее пространство по определенной структуре. В этом шаге будет выполнено создание директории для предмета «Архитектура компъютера», а также будет продемонструновать, как структурировать папки для лабораторных работ.

236 •*Описание выполняемого задания:**

237 •*Описание выполняемого задания:**

238 •*Coздание структуры рабочего пространства :**

239 •*Описание выполняемого задания:**

239 •*Описание выполняемого задания:**

230 •*Описание выполняемого задания:**

231 •*Создание структуры рабочего пространства :**

232 •*Описание выполняемого задания:**

233 •*Coздание структуры рабочего пространства :**

234 •*If рисунок 7] (/home/imadakrour/Pictures/labs3/image10.png) {*fig:08** width=70%}

244 •***** Сознание репозитория курса на основе шаблона

245 •*If рисунок 8] (/home/imadakrour/Pictures/labs3/image10.png) {*fig:08** width=70%}

246 •*If рисунок 10] (/home/imadakrour/Pictures/labs3/image10.png) {*fig:01** width=70%}

252 •*If рисунок 11] (/home/imadakrour/Pictures/labs3/image12.png) {*fig:01** width=70%}

253 •*One **Control **Index** **Index
```

Рис. 4.19: рисунок 23

4.4 2. Генерация форматов PDF, DOCX и MD

Когда файл Markdown был готов, я с помощью команды make сгенерировал отчёт в трёх форматах: Markdown (.md), PDF (.pdf) и Word (.docx).

Рис. 4.20: рисунок 24

4.5 3. Отправка файлов в репозиторий

После создания файлов я зафиксировал изменения и отправил их в свой Git-репозиторий.

Рис. 4.21: рисунок 25

Рис. 4.22: рисунок 26

4.6 Описание результатов выполнения заданий для самостоятельной работы

4.6.1 Создание отчета в соответствующем каталоге рабочего пространства:

Описание задания:

Данное задание включает в себя создание отчета о выполнении лабораторной работы, копирование предыдущих отчетов и загрузку файлов на GitHub.

Рис. 4.23: рисунок 19

Я скопировал файл отчета из lab01 в lab01/report, а файл отчета из lab02 в lab02/report, используя команду ср. Сначала я перешел в каталог с файлами отчета с помощью команды сd, а затем выполнил команду для копирования всех файлов

```
imadakrour@fedora:-/work/atudy/2024-2025/Apsartextyps xommasteps/arch-pc/labs/lab02/report git add .
madakrour@fedora:-/work/atudy/2024-2025/Apsartextyps xommasteps/arch-pc/labs/lab02/reports git add .
madakrour@fedora:-/work/atudy/2024-2025/Apsartextyps xommasteps/arch-pc/labs/lab02/reports git commit -am "adding tab02 report"
faatter_docener_ladding_tab02 report.
delives mode 1004c4 labs/lab02/report/nol_xabpy mana_orver_docx
delives mode 1004c4 labs/lab02/report/nol_xabpy mana_orver_docx
create mode 1004c4 labs/lab02/report/sgttpub.com
create: mode 1004c4 labs/lab02/report/nol_xabpy
create: mode 1004c4 labs/lab02/report/sgttpub.com
create: mode 1004c4 labs/lab02/report/sgttpub.com
create: mode 1004c4 labs/lab02/reportsgttpub.com
cr
```

Рис. 4.24: рисунок 20

После копирования файлов я выполнил команды для отправки их на **GitHub**

Рис. 4.25: рисунок 21

Рис. 4.26: рисунок 22

Затем я сделал скриншот в GitHub, чтобы показать, что файлы были обновлены и теперь отображаются в репозито

4.7 выводы по результатам выполнения заданий: :

Выполнение задания помогло закрепить навыки работы с системами контроля версий, организацией файлов в рабочем пространстве, а также загрузкой проектов на GitHub. Эти навыки важны для поддержания эффективной командной работы, обеспечения безопасности данных и удобства доступа к прошлым версиям проектов.

5 Выводы

• к концу лабораторной работы этой лабораторной работе мы узнали, как использовать markdown для создания pdf-файлов быстрее и эффективнее.