Cyclistic Case Study Sep21

Hezar K

2022-11-29

This is an analysis for Cyclistic Case Study for Google Data Analytics Course. This is an analysis for September 2021.

STEP ONE: INSTALL REQUIRED PACKAGES AND IMPORT DATA

Install the required packages. **Tidyverse** package to import and wrangling the data and **ggplot2** package for visualization of the data. **Lubridate** package for date parsing and **anytime** package for the datetime conversion.

- install.packages("tidyverse")
- install.packages("ggplot2")
- install.packages("lubridate")
- install.packages("anytime")

library(tidyverse)

```
## — Attaching packages -
                                                                 – tidyverse 1.3.2 <del>–</del>
## / ggplot2 3.4.0
                                   0.3.5
                        ✓ purrr
## ✓ tibble 3.1.8

✓ dplyr

                                   1.0.10
## ✔ tidyr
             1.2.1

✓ stringr 1.4.1

           2.1.3
                        ✓ forcats 0.5.2
## ✓ readr
## — Conflicts -
                                                           – tidyverse conflicts() —
## * dplyr::filter() masks stats::filter()
## * dplyr::lag()
                     masks stats::lag()
```

library(lubridate)

```
## Loading required package: timechange
##
## Attaching package: 'lubridate'
##
## The following objects are masked from 'package:base':
##
## date, intersect, setdiff, union
```

library(data.table)

```
##
## Attaching package: 'data.table'
##
##
   The following objects are masked from 'package:lubridate':
##
##
       hour, isoweek, mday, minute, month, quarter, second, wday, week,
##
       yday, year
##
## The following objects are masked from 'package:dplyr':
##
##
       between, first, last
##
## The following object is masked from 'package:purrr':
##
##
       transpose
```

```
library(ggplot2)
library(anytime)
```

Import data from local drive.

```
Sep21 <- read_csv("C:/Users/theby/Documents/202109-divvy-tripdata.csv")
```

```
## Rows: 756147 Columns: 13
## — Column specification
## Delimiter: ","
## chr (9): ride_id, rideable_type, started_at, ended_at, start_station_name, s...
## dbl (4): start_lat, start_lng, end_lat, end_lng
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
```

STEP TWO: EXAMINE THE DATA

Examine the dataframe for an overview of the data. Review column names, **colnames()**, dimensions of the dataframe by row and column, **dim()**, the first, **head()**, and the last, **tail()**, six rows in the dataframe, the summary, **summary()**, statistics on the columns of the dataframe, and review the data type structure of columns, **str()**.

```
View(Sep21)
 colnames (Sep21)
      [1] "ride_id"
                                   "rideable_type"
                                                            "started_at"
      [4] "ended_at"
                                   "start_station_name"
 ##
                                                            "start_station_id"
     [7] "end_station_name"
                                                            "start lat"
                                   "end station id"
 ## [10] "start lng"
                                   "end lat"
                                                            "end lng"
 ## [13] "member_casual"
 nrow(Sep21)
 ## [1] 756147
 dim(Sep21)
 ## [1] 756147
                      13
 head(Sep21)
 ## # A tibble: 6 × 13
 ##
       ride_id
                         ridea...¹ start...² ended...³ start...⁴ start...⁵ end_s...6 end_s...7 start...8
 ##
                         <chr>
                                 <chr>
                                           <chr>
                                                    <chr>
                                                              <chr>
                                                                       <chr>
                                                                                 <chr>
                                                                                            <dbl>
 ## 1 9DC7B962304CB... electr... 9/28/2... 9/28/2... <NA>
                                                              <NA>
                                                                       <NA>
                                                                                 <NA>
                                                                                             41.9
 ## 2 F930E2C6872D6... electr... 9/28/2... 9/28/2... <NA>
                                                              <NA>
                                                                       <NA>
                                                                                 <NA>
                                                                                              41.9
 ## 3 6EF72137900BB... electr... 9/28/2... 9/28/2... <NA>
                                                              <NA>
                                                                       <NA>
                                                                                 <NA>
                                                                                              41.8
 ## 4 78D1DE133B3DB... electr... 9/28/2... 9/28/2... <NA>
                                                              <NA>
                                                                       <NA>
                                                                                 <NA>
                                                                                              41.8
 ## 5 E03D4ACDCAEF6... electr... 9/28/2... 9/28/2... <NA>
                                                              <NA>
                                                                       <NA>
                                                                                 <NA>
                                                                                              41.9
 ## 6 346DE323A2677... electr... 9/28/2... 9/28/2... <NA>
                                                              <NA>
                                                                       <NA>
                                                                                 <NA>
                                                                                              41.9
 ## # ... with 4 more variables: start_lng <dbl>, end_lat <dbl>, end_lng <dbl>,
         member casual <chr>, and abbreviated variable names ¹rideable type,
         <sup>2</sup>started at, <sup>3</sup>ended at, <sup>4</sup>start station name, <sup>5</sup>start station id,
 ## #
         <sup>6</sup>end station name, <sup>7</sup>end station id, <sup>8</sup>start lat
 ## #
 tail(Sep21)
 ## # A tibble: 6 × 13
 ##
       ride id
                        ridea...¹ start...² ended...³ start...⁴ start...⁵ end s...⁶ end s...⁶ start...௧
 ##
                                <chr>
                                           <chr>
                                                   <chr>
                                                              <chr>
                                                                       <chr>
 ## 1 0A6AA3B1A1EC5... classi... 9/14/2... 9/14/2... Ellis ... KA1503... Shore ... TA1308...
                                                                                             41.8
 ## 2 FA66BCAB0D73D... classi... 9/22/2... 9/22/2... Ellis ... 584
                                                                                              41.7
                                                                       Stony ... KA1503...
 ## 3 1D44DEFB5D36C... classi... 9/25/2... 9/25/2... Ellis ... KA1503... Shore ... TA1308...
```

summary(Sep21)

```
##
     ride id
                      rideable_type
                                         started_at
                                                            ended at
##
   Length: 756147
                                        Length: 756147
                                                          Length: 756147
                     Lenath: 756147
   Class :character Class :character
##
                                       Class :character
                                                          Class : character
##
   Mode :character Mode :character
                                       Mode :character
                                                          Mode :character
##
##
##
##
##
   start station name start station id
                                       end station name
                                                          end station id
##
   Length:756147
                    Length:756147
                                       Length: 756147
                                                          Length: 756147
   Class :character Class :character
                                       Class :character
                                                          Class :character
##
##
   Mode :character Mode :character
                                      Mode :character
                                                         Mode :character
##
##
##
##
##
     start_lat
                    start_lng
                                      end lat
                                                     end lng
                  Min. :-87.84
                                  Min. :41.57
                                                  Min. :-87.87
##
   Min. :41.65
##
   1st Qu.:41.88
                  1st Qu.:-87.66
                                   1st Qu.:41.88
                                                  1st Qu.:-87.66
##
   Median :41.90
                  Median :-87.64
                                   Median :41.90
                                                  Median :-87.64
                                   Mean :41.90
##
   Mean :41.90
                  Mean :-87.65
                                                  Mean :-87.65
##
   3rd Qu.:41.93 3rd Qu.:-87.63
                                   3rd Qu.:41.93
                                                 3rd Qu.:-87.63
##
   Max. :42.07 Max. :-87.52
                                   Max. :42.17 Max. :-87.50
                                   NA's :595
                                                  NA's :595
##
##
   member casual
##
   Length: 756147
##
   Class :character
   Mode :character
##
##
##
##
##
```

str(Sep21)

```
## spc tbl [756,147 \times 13] (S3: spec tbl df/tbl df/tbl/data.frame)
                        : chr [1:756147] "9DC7B962304CBFD8" "F930E2C6872D6B32" "6EF72137900BB910" "78D1DE133B3DBF
##
   $ ride_id
55"
##
   $ rideable type
                       : chr [1:756147] "electric bike" "electric bike" "electric bike" ...
                        : chr [1:756147] "9/28/2021 16:07" "9/28/2021 14:24" "9/28/2021 0:20" "9/28/2021 14:51" .
   $ started_at
                        : chr [1:756147] "9/28/2021 16:09" "9/28/2021 14:40" "9/28/2021 0:23" "9/28/2021 15:00" .
##
   $ ended at
##
    $ start_station_name: chr [1:756147] NA NA NA NA ...
    $ start_station_id : chr [1:756147] NA NA NA NA ...
##
##
   $ end station name : chr [1:756147] NA NA NA NA ...
   $ end_station_id : chr [1:756147] NA NA NA NA ...
##
##
   $ start_lat
                       : num [1:756147] 41.9 41.9 41.8 41.8 41.9 ...
##
                       : num [1:756147] -87.7 -87.6 -87.7 -87.7 -87.7 ...
    $ start_lng
                        : num [1:756147] 41.9 42 41.8 41.8 41.9 ...
##
    $ end lat
                        : num [1:756147] -87.7 -87.7 -87.7 -87.7 ...
##
    $ end lng
                       : chr [1:756147] "casual" "casual" "casual" "...
##
    $ member casual
##
    - attr(*, "spec")=
##
    .. cols(
##
     .. ride_id = col_character(),
##
         rideable_type = col_character(),
     . .
##
         started_at = col_character(),
     . .
##
          ended_at = col_character(),
##
         start station name = col_character(),
     . .
##
          start_station_id = col_character(),
     . .
##
          end_station_name = col_character(),
##
          end_station_id = col_character(),
     . .
##
          start lat = col double(),
     . .
##
          start lng = col double(),
     . .
##
          end lat = col double(),
     . .
##
          end lng = col double(),
     . .
##
          member_casual = col_character()
     . .
##
     ..)
    - attr(*, "problems")=<externalptr>
```

Columns started_at and ended_at need to be convert from character data type to date data type. Str() syntax confirms changes.

```
Sep21$started_at <- mdy_hm(Sep21$started_at)
Sep21$ended_at <- mdy_hm(Sep21$ended_at)
str(Sep21)</pre>
```

```
## spc_tbl_[756,147 \times 13] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
                       : chr [1:756147] "9DC7B962304CBFD8" "F930E2C6872D6B32" "6EF72137900BB910" "78D1DE133B3DBF
## $ ride_id
55" ...
                       : chr [1:756147] "electric bike" "electric bike" "electric bike" ...
## $ rideable_type
                       : POSIXct[1:756147], format: "2021-09-28 16:07:00" "2021-09-28 14:24:00" ...
##
   $ started at
                       : POSIXct[1:756147], format: "2021-09-28 16:09:00" "2021-09-28 14:40:00" ...
##
    $ ended at
##
   $ start station name: chr [1:756147] NA NA NA NA ...
## $ start_station_id : chr [1:756147] NA NA NA NA ...
## $ end station name : chr [1:756147] NA NA NA NA ...
## $ end_station_id : chr [1:756147] NA NA NA NA ...
## $ start_lat
                     : num [1:756147] 41.9 41.9 41.8 41.8 41.9 ..
##
    $ start_lng
                       : num [1:756147] -87.7 -87.6 -87.7 -87.7 -87.7 ...
##
    $ end_lat
                       : num [1:756147] 41.9 42 41.8 41.8 41.9 ...
##
    $ end_lng
                       : num [1:756147] -87.7 -87.7 -87.7 -87.7 ...
                       : chr [1:756147] "casual" "casual" "casual" "casual" ...
##
    $ member casual
    - attr(*, "spec")=
##
##
     .. cols(
##
         ride_id = col_character(),
     . .
         rideable_type = col_character(),
##
     . .
##
         started_at = col_character(),
     . .
##
         ended at = col character(),
     . .
##
         start station name = col character(),
     . .
##
         start station id = col character(),
     . .
##
         end_station_name = col_character(),
     . .
##
         end station id = col character(),
     . .
##
          start lat = col double(),
     . .
##
          start lng = col double(),
##
         end lat = col double(),
     . .
##
         end lng = col double(),
     . .
##
         member_casual = col_character()
     . .
##
     ..)
##
    - attr(*, "problems")=<externalptr>
```

Create new columns as for date, month, day, year, day_of_week, and ride_length in seconds.

```
Sep21$date <- as.Date(Sep21$started_at)
Sep21$month <- format(as.Date(Sep21$date), "%m")
Sep21$day <- format(as.Date(Sep21$date), "%d")
Sep21$year <- format(as.Date(Sep21$date), "%Y")
Sep21$day_of_week <- format(as.Date(Sep21$date), "%A")
Sep21$ride_length <- difftime(Sep21$ended_at,Sep21$started_at)</pre>
```

Convert ride_length column to numeric in order to run calculations on the data. First, check to see if the data type is numeric, and then convert if needed.

```
is.numeric(Sep21$ride_length)
```

```
## [1] FALSE
```

Recheck ride_length data type.

```
Sep21$ride_length <- as.numeric(as.character(Sep21$ride_length))
is.numeric(Sep21$ride_length)</pre>
```

```
## [1] TRUE
```

STEP THREE: CLEAN DATA

na.omit() will remove all NA from the dataframe.

```
Sep21 <- na.omit(Sep21)</pre>
```

Remove rows with the ride_id column character length is not 16. This will remove all the scientific ride ids that we noticed while examining the data.

```
Sep21 <- subset(Sep21, nchar(as.character(ride_id)) == 16)</pre>
```

Remove rows with the ride_length less than 1 minute.

```
Sep21 <- subset (Sep21, ride_length > "1")
```

STEP FOUR: ANALYZE DATA

Analyze the dataframe by find the mean, median, max (maximum), and min (minimum) of ride length.

```
mean(Sep21$ride_length)
 ## [1] 1220.063
 median(Sep21$ride_length)
 ## [1] 720
 max(Sep21$ride_length)
 ## [1] 1971540
 min(Sep21$ride_length)
 ## [1] 60
Run a statistical summary of the ride_length.
 summary(Sep21$ride_length)
 ##
       Min. 1st Qu.
                     Median
                                Mean 3rd Qu.
                                                 Max.
 ##
                420
                         720
                                 1220
                                         1320 1971540
Compare the members and casual users
 aggregate(Sep21$ride_length ~ Sep21$member_casual, FUN = mean)
      Sep21$member_casual Sep21$ride_length
 ##
 ## 1
                    casual
                                    1694.3577
                                    795.1189
 ## 2
                    member
 aggregate(Sep21$ride_length ~ Sep21$member_casual, FUN = median)
 ##
      {\tt Sep21\$member\_casual \ Sep21\$ride\_length}
 ## 1
                    casual
 ## 2
                    member
 aggregate(Sep21$ride_length ~ Sep21$member_casual, FUN = max)
      Sep21$member_casual Sep21$ride_length
 ## 1
                    casual
                                      1971540
 ## 2
                                        79080
                    member
 aggregate(Sep21$ride_length ~ Sep21$member_casual, FUN = min)
 ##
      Sep21$member_casual Sep21$ride_length
 ## 1
                    casual
 ## 2
                    member
                                           60
Aggregate the average ride length by each day of the week for members and users.
 aggregate(Sep21$ride_length ~ Sep21$member_casual + Sep21$day_of_week, FUN = mean)
```

```
##
      Sep21$member_casual Sep21$day_of_week Sep21$ride_length
## 1
                                    Friday
                                                  1613.8917
                   casual
## 2
                   member
                                     Friday
                                                     793.1627
## 3
                   casual
                                    Monday
                                                    1819.5377
## 4
                                    Monday
                   member
                                                     793.5597
## 5
                                                    1847.2365
                   casual
                                   Saturday
## 6
                   member
                                   Saturday
                                                     894.7852
## 7
                                                    2028.5730
                   casual
                                    Sunday
## 8
                   member
                                     Sunday
                                                     932.3564
## 9
                   casual
                                   Thursday
                                                    1415.7015
## 10
                                                    748.3163
                   member
                                   Thursday
## 11
                   casual
                                    Tuesday
                                                    1338.2738
## 12
                   member
                                    Tuesday
                                                     714.7550
## 13
                   casual
                                  Wednesday
                                                    1404.7182
## 14
                                                    745.5974
                   member
                                  Wednesday
```

Sort the days of the week in order.

```
Sep21$day_of_week <- ordered(Sep21$day_of_week, levels=c("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday",
"Friday", "Saturday"))</pre>
```

Assign the aggregate the average ride length by each day of the week for members and users to x.

```
x <- aggregate(Sep21$ride_length ~ Sep21$member_casual + Sep21$day_of_week, FUN = mean)
head(x)</pre>
```

```
##
     Sep21$member_casual Sep21$day_of_week Sep21$ride_length
## 1
                  casual
                                    Sunday
                                                    2028.5730
## 2
                  member
                                     Sunday
                                                     932.3564
## 3
                  casual
                                     Monday
                                                    1819.5377
## 4
                  member
                                    Monday
                                                     793.5597
## 5
                                   Tuesday
                  casual
                                                    1338.2738
## 6
                  member
                                   Tuesday
                                                     714.7550
```

Find the average ride length of member riders and casual riders per day and assign it to y.

```
## # A tibble: 6 × 4
##
     member casual weekday number of rides average duration
##
    <chr>
                    <int>
                                      <int>
## 1 casual
                                      57107
                                                        2029.
                         1
## 2 casual
                         2
                                      34570
                                                        1820.
## 3 casual
                         3
                                      24192
                                                        1338.
## 4 casual
                         4
                                      35022
                                                        1405.
## 5 casual
                                      39358
                                                        1416.
## 6 casual
                         6
                                      39183
                                                        1614.
```

Analyze the dataframe to find the frequency of member riders, casual riders, classic bikes, docked bikes, and electric bikes.

```
table(Sep21$member_casual)
```

```
##
## casual member
## 291343 325178
```

```
table(Sep21$rideable_type)
```

```
## classic_bike docked_bike electric_bike
## 457692 35198 123631
```

STEP FIVE: VISUALIZATION

Display full digits instead of scientific number.

```
options(scipen=999)
```

Plot the number of rides by user type during the week.

```
Sep21 %>%
  mutate(day_of_week) %>%
  group_by(member_casual,day_of_week) %>%
  summarise(number_of_rides = n(), average_duration = mean(ride_length), .groups = 'drop') %>%
  arrange(member_casual, day_of_week) %>%
  ggplot(aes(x = day_of_week, y = number_of_rides, fill = member_casual)) +
  geom_col(position = "dodge")+
labs(x = "Day of Week",
    y= "Number of Rides",
    title= "Days of the Week")
```


Plot the duration of the ride by user type during the week.

Days of the Week vs Average Duration

Create new dataframe for plots for weekday trends vs weekend trends.

```
mc<- as.data.frame(table(Sep21$day_of_week,Sep21$member_casual))</pre>
```

Rename columns

```
mc<-rename(mc, day_of_week = Var1, member_casual = Var2)
head(mc)</pre>
```

```
##
     day_of_week member_casual Freq
## 1
          Sunday
                        casual 57107
## 2
          Monday
                        casual 34570
         Tuesday
## 3
                        casual 24192
## 4
       Wednesday
                        casual 35022
## 5
        Thursday
                         casual 39358
                        casual 39183
## 6
          Friday
```

Weekday trends (Monday through Friday).

Weekdays Trends 40000 40000 20000 Monday Tuesday Tuesday Thursday Thursday Friday Thursday Friday

Weekend trends (Sunday and Saturday).

Create dataframe for member and casual riders vs ride type

```
rt<- as.data.frame(table(Sep21$rideable_type,Sep21$member_casual))
```

Rename columns.

```
rt<-rename(rt, rideable_type = Var1, member_casual = Var2)
head(rt)
```

```
##
     rideable_type member_casual
## 1 classic bike
                         casual 193740
## 2
      docked bike
                         casual 35198
## 3 electric_bike
                         casual 62405
## 4 classic_bike
                         member 263952
## 5
      docked bike
                         member
## 6 electric_bike
                         member 61226
```

Plot for bike user vs bike type.

Riders and Ride Types

STEP SIX: EXPORT ANALYZED DATA

Save the analyzed data as a new file. fwrite(Sep21, "Sep21.csv")