Team Raspberry - Image Classification

Kristian Wahlroos IIkka Vähämaa Sean Lang

December 15th, 2017

Overview

Methods

Parametrization

Final System

Results

Data representation

- ► Treat every image as a 3D-tensor (RGB)
 - ▶ Repeat the value of grayscale images three times
 - Colorized are handled as the original tensors
- Original data has 14 labels, we used 15
 - Extra one for the unclassified images
 - One-hot encoded labels

Data processing

- ▶ Read images in batches of size 2000
 - Helps to avoid filling the RAM
- ▶ Normalize the pixel values between [0.0, 1.0]
- For every batch augmenting the data
 - Provided by Keras
 - Centerify, shear, zoom, rotate and flip
 - To get more variation and samples from classes with few labels

Class weights 1/2

Classes are very unbalanced

Figure: Class distribution

- ▶ We tackled this problem by custom weights per class
 - ► Giving them at training phase

Class weight function

$$S(c_i; \lambda) = \ln \left(\lambda \frac{\sum_c |c|}{|c_i|} \right)$$

$$W(c_i; \lambda) = \max(S(c_i; \lambda), 1)$$

Network topology

- One network that outputs 15 classes
- Four convolution layers all followed by max pooling
 - ▶ Filters 16, 32, 32, 64
 - ► Kernel size 3x3
 - ▶ Max pool size 2x2
 - ReLU as activation function
- After pooling flattening via dropout to dense layer with sigmoid activation
 - Dropout value: 0.4
- Very simple network

Loss function 1/2

- Categorical crossentropy wouldn't work as one image can be in many classes
- ▶ Binary crossentropy was suggested in many forum posts
 - Still not viable solution when there are many overlapping categories
 - Loss is too forgiving for giving 0 labels

Loss function 2/2

- Solution: "custom" loss function BP-MLL*
 - Actually taken directly from the paper [1][†]
 - Designed for multi-label problems
 - Implementation for Keras can be found from internet
 - Punishes more from just giving 0 labels

$$E = \sum_{i=1}^{m} \frac{1}{|Y_i||\bar{Y}_i|} \sum_{(k,l) \in Y_i \times \bar{Y}_i} \exp(-(c_k^i - c_l^i))$$

[†][1] Multilabel Neural Networks with Applications to Functional Genomics and Text Categorization, 2006

^{*}Backpropagation for Multilabel Learning

Validation

- ▶ Per batch, 10% of the data is randomly selected
- ▶ This subset is left out from the training phase
- Validated against in the final step
- ▶ With F1-score, we also inspected
 - Binary accuracy
 - Categorical accuracy
 - ► Hamming loss
 - Micro averaged precision score

Parametrization

Parameterization Tweaks

- 1. "Default"
- 2. Increased deeply-connected layers
- Adagrad optimizer
- 4. Nadam optimizer
- 5. More convolutions
- 6. Even more convolutions
- 7. Reverse convolution triangle
- 8. Learning Rate Adjustments
 - 8.1 lr=0.0005
 - 8.2 lr=0.000333
 - 8.3 lr=0.002
 - 8.4 lr=0.005
- 9. Activation Functions
 - 9.1 Leaky ReLU ($\alpha = 0.3$)
 - 9.2 tanh

Parametrization results

Table: Parameter Tryouts

Model n.	F1	HL^\ddagger
1	0.462	0.125
2	0.452	0.128
3	0.459	0.125
4	0.469	0.123
5	0.462	0.124
6	0.462	0.126
7	0.463	0.125
8.1	0.464	0.124
8.2	0.457	0.126
8.3	0.465	0.124
8.4	0.457	0.125
9.1	0.083	0.796
9.2	0.378	0.184

[‡]Hamming Loss

Final System

Hyper-parameters of the final system

- Same as described in Methods section
- ▶ 1 epoch
- BP_MLL_Loss
- ► RMSprop optimizer (learning rate of 0.002 [twice default])

▶ Needs some fancy plots here

Sample Output

```
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
     0 0
         0 0 0
               0
                 1 0 0
                 1
       0
         0
           0
             0
               0
                   0
     0 0
         0 0 0 0
                 1 0
                     0 0 0
     0 0
         000010000
0 0 0 0 0 0 0 0 0 1 0 0 0 0
     0 0 0 0 0 0
                 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
```

. . .

Confusion Matrix

▶ Always predicts same result for each label on every picture

Figure: Soemthing