Хакатон по метеорологии

Алексей Харламов Павел Остяков

#	Участник О	☑ Хакатон ^ Баллы
	10011000 (pavelostaaa, MrAxcel)	84489992
2	Антихайп (cszdr, vasyarv)	82909074
3	Classics(ivanicki-i, Amir14111)	80423665
4	kutcu	79701913
5	sal.vios	78750097
6	alexisonfireyar =	75905679
7	Ясонов Евгений	75734019
8	Антон Патрикеев	75606736
9	Aiaiai (karfly, illusionww)	74950292
10	Iviconun(FireSonics, mrk.andreev)	74761301

Задача

- Даны три города: Москва, Санкт-Петербург и Казань
- Каждый город разбит на квадраты
- Есть данные с любительских метеостанций и данные о качестве связи у пользователей
- Для каждого квадрата и часа нужно восстановить, шёл дождь или нет
- Тренировочные данные начало июля 2017. Тестовые июль-август 2017.

Что нужно было предсказать?

- Для каждого квадрата было известно precipitation количество мм осадков, выпавших на конец часа
- Tapret: precipitation > 0.25
- Бинарная классификация
- Метрика ROC AUC

Данные

- Порядка 30ГБ
- 2 типа: Пользовательские и Netatmo
- Поделены по времени(час)

Семплированные (по Москве 0.1% пользователей), обфусцированные данные из Аппметрики + практически сырые данные любительских метеостанций в Москве, Санкт-Петербурге и Казани.

Проблемы

- Квадраты распределены неравномерно
- Данные от пользователей очень шумные
- Много пропусков
- Данных мало

Пользовательские факторы

- Данные о сотовом сигнале (сила сигнала, тип, оператор)
- GPS данные (высота, скорость движения, точность определения)
- Координаты пользователя
- Модель телефона

Данные с любительских метеостанций

Метеоданные с шагом в 20 минут

- Координаты метеостанции
- Температура
- Скорость и направление ветра
- Влажность
- Количество осадков за последний час

Что сделали: факторы

- Базовые статистики для признаков(mean, var, min, max, etc.)
- 10 квантилей (0.1, 0.2, ...)
- Статистики для различных подвыборок ближайших метеостанций.
- Всего около 3000 факторов

Что сделали: модель

- Одна модель для всех городов.
- Catboost на дефолтных параметрах
- Получили 0.82 на лидерборде

Можно добавлять не просто

блажайшие, а брать равномерно

вокруг

лидерборде

Снова считаем различные статистики,

получаем ещё 4000 фичей и 0.842 на

Какие модели пробовали обучать?

- Линейные
- Метрические
- Нейронные сети
- Деревья
- Градиентный бустинг над решающими деревьями

Как и всегда, градиентный бустинг

сработал, а всё остальное нет

Microsoft LightGBM

Microsoft LightGBM

Microsoft LightGBM

Признаки внесшие наибольший вклад

- time_of_day
- netatmo_pressure_mbar
- netatmo_sum_rain_1h
- netatmo_sum_rain_24h
- netatmo humidity percent
- netatmo_temperature_c
- netatmo_wind_direction
- LocationSpeed

На чем обучали?

- Два процессора Intel xeon по 14 ядер
- 256 ГБ ОЗУ
- Время генерации фичей 2 часа
- Время обучения catboost 10 минут

Возможные улучшения

- Чистка данных
- Оптимизация ROC AUC directly
- Более явный учет информации с ближайших квадратов
- Больший упор на пользовательские признаки
- Явная дифференциация информации по операторам сотовой связи
- Стекинг, блендинг...
- Смена таргета (переход к задаче регрессии)

Ссылки

Воспроизводимый код - github.com/gamers5a/YandexMeteumSolution

Алексей Харламов - <u>axcel@me.com</u>

Павел Остяков - pavelosta@gmail.com