MATH2790 - Tutorials

Justin Bornais

May 19, 2023

1 (2.3) Linear 1st Order DE

Reminder of standard form: y' + P(x)y = f(x) where P(x) and f(x) are continuous. In many real life applications, P(x) or f(x) may be piecewise continuous.

Piecewise Linear DEs P(x) or f(x) is piecewise continuous on I.

Example Solve the IVP:
$$\frac{dy}{dx} + y = f(x)$$
, $y(0) = 1$ where $f(x) = \begin{cases} 1 & 0 \le x \le 1 \\ -1 & x > 1 \end{cases}$

Solution For
$$0 \le x \le 1$$
, the DE is $\frac{dy}{dx} + y = 1$ $I.F. = e^{\int P(x)dx} = e^{\int 1dx} = e^x$ Multiply the equation by I.F: $e^xy' + e^xy = e^x \Rightarrow \frac{d}{dx}\left(e^xy\right) = e^x$ $\int \frac{d}{dx}(e^xy)dx = \int e^xdx$ $e^xy = e^x + C_1 \Rightarrow y = \frac{e^x}{e^x} + \frac{C_1}{e^x} \Rightarrow y = 1 + C_1e^{-x}, \ 0 \le x \le 1$

For
$$x > 1$$
, the DE is $\frac{dy}{dx} + y = -1$

 $I.F. = e^{\int P(x)dx} = e^x$ (it's the same as the above case since P(x) remains unchanged) Multiply the equation by I.F: $e^xy' + e^xy = -e^x \Rightarrow \frac{d}{dx}(e^xy) = -e^x$

$$\int \frac{d}{dx} (e^x y) dx = \int -e^x dx$$

$$e^x y = -e^x + C_2 \Rightarrow y = \frac{-e^x}{e^x} + \frac{C_2}{e^x} \Rightarrow y = -1 + \frac{C_2}{e^x}, x > 1$$

Thus
$$y = \begin{cases} 1 + C_1 e^{-x} & 0 \le x \le 1 \\ -1 + C_2 e^{-x} & x > 1 \end{cases}$$
 $y(0) = 1 \Rightarrow 1 = 1 + C_1 e^{-0} \Rightarrow 1 = 1 + C_1 \Rightarrow C_1 = 0$

Thus
$$y = \begin{cases} 1 + C_1 e^{-x} & 0 \le x \le 1 \\ -1 + C_2 e^{-x} & x > 1 \end{cases}$$
 $y(0) = 1 \Rightarrow 1 = 1 + C_1 e^{-0} \Rightarrow 1 = 1 + C_1 \Rightarrow C_1 = 0$
So $y = \begin{cases} 1 & 0 \le x \le 1 \\ -1 + C_2 e^{-x} & x > 1 \end{cases}$ For y to be the solution, we need y to be continuous at $x = 1$.

$$y(1) = \lim_{x \to 1^{-}} y = \lim +x \to 1^{+}$$

$$1 = \lim_{x \to 1^{-}} 1 = \lim_{x \to 1^{+}} (-1 + C_{2}e^{-x}) \Rightarrow 1 = 1 = -1 + C_{2}e^{-1} \Rightarrow 2 = C_{2}e^{-1} \Rightarrow C_{2} = 2e^{-1} \Rightarrow C_{3} = 2e^{-1} \Rightarrow C_{4} = 2e^{-1} \Rightarrow C_{5} = 2e^{-1}$$

 $\begin{array}{ll}
g(1) = \lim_{x \to 1^{-}} y = \lim_{x \to 1^{-}} x + 1 \\
1 = \lim_{x \to 1^{-}} 1 = \lim_{x \to 1^{+}} (-1 + C_{2}e^{-x}) \Rightarrow 1 = 1 = -1 + C_{2}e^{-1} \Rightarrow 2 = C_{2}e^{-1} \Rightarrow C_{2} = 2e
\end{array}$ Thus the solution of the IVP is $y = \begin{cases} 1 & 0 \le x \le 1 \\ -1 + 2e^{1-x} & x > 1 \end{cases}$

1.0.1 Example 1.1 #19

Verify that $\ln \frac{2x-1}{x-1} = t$ is an implicit solution of the DE $\frac{dx}{dt} = (x-1)(2x-1)$

$$\begin{array}{l} \textbf{Solution} \quad \text{Differentiate each term w.r.t.} \ t. \\ \frac{1}{\frac{2x-1}{x-1}} \cdot \frac{(2x')(x-1)-(2x-1)x'}{(x-1)^2} = 1 \Rightarrow \frac{1}{2x-1} \cdot \frac{(2x')(x-1)-(2x-1)(x')}{x-1} = 1 \\ x' \left[2x-2-2x+1 \right] = (2x-1)(x-1) \Rightarrow x' = (x-1)(1-2x) \to DE \\ \text{Now we will find one explicit solution: } \ln \frac{2x-1}{x-1} = t \Rightarrow \frac{2x-1}{x-1} = e^t \Rightarrow 2x-1 = e^t(x-1) \Rightarrow 2x-1 = xe^t - e^t \Rightarrow 2x - xe^t = -e^t + 1 \Rightarrow x = \frac{-e^t+1}{2-e^t} \end{array}$$

2 Solutions by Homogeneous Substitutions

Reminder: Mdx + Ndy = 0 is a homogeneous equation if both M and N are homogeneous functions of the same degree (that is, $f(tx, ty) = t^a f(x, y)$ with a degree of a). To solve a homogeneous equation, choose one of the following:

- Let y = ux and $dy = udx + xdu \rightarrow$ separable equation in x and $u \rightarrow$ solve and replace $u = \frac{y}{x}$.
- Let x = vy and $dx = vdy + ydv \rightarrow$ separable equation in v and $y \rightarrow$ solve and replace $v = \frac{x}{y}$.

Homoegeneous equations can have a singular solution.

2.0.1 Example

 $\ln\left(\frac{x^2}{|x^4+y^4|^{\frac{1}{4}}}\right) = C$

Solve the DE using appropriate substitution: $(x^4 + 2y^4)dx - xy^3dy = 0$

 $\begin{array}{ll} \textbf{Solution} & \text{Both } M \text{ and } N \text{ are homogeneous of degree 4, thus the given DE is homogeneous.} \\ \text{Let } y = ux \text{ and } dy = udx + xdu \Rightarrow (x^4 + 2u^4x^4)dx - xu^3x^3(udx + xdu) = 0 \\ x^4dx + 2u^4x^4dx - u^4x^4dx - u^3x^5du = 0 \\ x^4dx + u^4x^4dx = u^3x^4du \\ x^4dx(1 + u^4) = u^3x^5du \\ \frac{x^4}{x^5}dx = \frac{u^3}{1+u^4}du \rightarrow \text{separable if } x \neq 0 \text{ and if } 1 + u^4 \neq 0. \\ \ln|x| = \frac{1}{4}\ln|1 + u^4| + C \\ \text{Replace } u = \frac{y}{x} \colon \ln|x| = \frac{1}{4}\ln|1 + \frac{y^4}{x^4}| + C \\ \ln|x| = \frac{1}{4}\ln\left|\frac{x^4 + y^4}{x^4}\right| + C \\ \ln|x| = \frac{1}{4}\ln|x^4 + y^4| - \frac{1}{4}\ln x^4 + C \\ \ln|x| = \frac{1}{4}\ln|x^4 + y^4| - \ln|x^4|^{\frac{1}{4}} + C \\ 2\ln|x| = \ln|x^4 + y^4|^{\frac{1}{4}} + C \\ \ln|x| = \ln|x^4 + y^4|^{\frac{1}{4}} + C \\ \ln|x| = \ln|x^4 + y^4|^{\frac{1}{4}} + C \\ \ln|x|^2 - \ln|x^4 + y^4|^{\frac{1}{4}} + C \\ \end{array}$

3 Midterm Review

The midterm is on June 15th (11:30 AM - 12:50 PM) in the Education Building, room 1101. It covers:

- Chapter 1 (1.1, 1.2)
 - Find interval of existence of solution, or
 - Find a region where an IVP has a unique solution (no solving the equation). Take y' = f(x, y) and check that f and $\frac{\partial f}{\partial u}$ are continuous on the region containing (x_0, y_0)
 - * An example: take $\sqrt{x^2-4}y'=x^5y^2\Rightarrow y'=\frac{x^5y^2}{x^2-4}\Rightarrow y'=f$ is continuous when $x^2+4>0\Rightarrow x>2$ or x<-2
 - x>2 or x<-2* Also $\frac{\partial f}{\partial y}=\frac{x^5(2y)}{\sqrt{x^2-4}},$ also continuous when x>2 or x<-2
 - * Can use region $\{(x,y)| -5 \le x \le -2, -3 \le y \le 3\}$
- Chapter 2 (2.2-2.5)
 - You may be given separable equations: $\frac{dy}{dx} = g(x) \cdot h(y)$
 - Might be given a linear equation: y' + P(x)y = f(x)
 - If a question provides an implicit solution and says to find an explicit solution, then simplify this implicit solution to get explicit.
 - Singular solutions \rightarrow need to check for singular solutions, in the form $\int \frac{d(\text{dependent})}{...(=0)}$
 - * $\frac{dy}{dx} = \frac{y-1}{x} \Rightarrow \int \frac{dy}{y-1} = \int \frac{dx}{x}$ since $x \neq 0$ then x is not a solution.
 - * If y = 1 then substitue in original equation and check if it satisfies or not.
- Chapter 3 (3.1) (Models)
 - Think about growth/decay, cooling/warming, mixture and circuits.
- Chapter 4 (4.1 and 4.2)
 - Think about $W = \begin{bmatrix} f_1 & f_2 & f_3 \\ f_1' & f_2' & f_3' \\ f_1'' & f_2'' & f_3'' \end{bmatrix}$. If $W \neq 0$ for all x in $I \Rightarrow$ L.I. Otherwise, L.D.
 - Think about reduction of order: $y_2 = uy_1$ and homogeneous linear DEs $\Rightarrow u = \int \frac{e^{\int -P(x)dx}}{y_1^2} dx$
 - Exact equations Mdx + Ndy = 0 If $M_y = N_x$ then it is exact.
 - * To solve, $\frac{\partial f}{\partial x} = M$ and $\frac{\partial f}{\partial y} = N$ and the solution is f(x,y) = C
 - * The I.F. to make it exact is either $\mu = e^{\int \frac{M_y N_x}{N} dx}$ with no y or $\mu = e^{\int \frac{N_x M_y}{M} dy}$ with no x.
 - Solve a DE by using appropriate substitution:
 - * Homogeneous DE: Mdx + Ndy = 0 (M and N are homogeneous of the same degree) \Rightarrow Let y = ux, dy = udx + xdu or let x = vy, dx = vdy + ydv, and make them separable.
 - * Bernoulli's Equation: $y' + f(x)y = f(x)y^n$, $n \in R$, $n \neq 0$ and $n \neq 1 \Rightarrow$ Let $u = y^{1-n}$, $u' + (1-n)P(x)u = (1-n)f(x) \Rightarrow$ a linear equation.
 - * Linear Substitution: $y' = f(Ax + By + C) \Rightarrow \text{Let } u = Ax + By + C \Rightarrow \text{separable equation}.$

4 (4.4) Method of Undetermined Coefficients

	g(x)	y_p
	3	A
	$x^3 - 4$	$Ax^3 + Bx^2 + Cx + D$
	e^{2x}	Ae^{2x}
	$\cos 3x$	$A\cos 3x + B\sin 3x$
	$\sin 3x$	$A\cos 3x + B\sin 3x$
	$3 + e^{2x}$	$A + Be^{2x}$
	xe^{3x}	$(Ax+B)e^{3x}$
	$x\sin 5x$	$(Ax+B)\cos 5x + (Cx+D)\sin 5x$
11		

To solve a nonhomogeneous equation:

- 1. Solve associated homoegenous equation and get y_c (4.3).
- 2. Find y_p .
 - You have $a_n, a_{n-1}, \ldots, a_1, a_0$ as constants.
 - g(x) is a constant, polynomial, e^{kx} , $\sin kx$, $\cos kx$, their sum, difference or product.
 - g(x) cannot be $\ln x$, $\tan x$, etc.
- 3. The solution of nonhomogeneous equation is $y = y_c + y_p$

4.0.1 Example 2 (Example 1 in Lecture Notes)

Solve the DE: $y'' - 9y = 2e^{3x}$

Solution The homogeneous DE is y'' - 9y = 0. The auxiliary equation is $m^2 - 9 = 0 \Rightarrow m^2 = 9 \Rightarrow m = \pm 3$ Then $y_c = c_1 e^{3x} + c_2 e^{-x}$ Let $y_p = Ae^{3x}$, $y_p' = 3Ae^{3x}$, $y_p'' = 9Ae^{3x} \Rightarrow 9Ae^{3x} - 9Ae^{3x} = 2e^{3x} \Rightarrow 0 = 2e^{3x}$

Case 1: There is no duplication of y_p with any term of y_c . The y_p will be a linear combination of the linearly independent functions generated by repeated differentiation of g(x).

Case 2: If any term in y_{p_i} duplicates with any term of y_c , then we multiply y_{p_i} by x^n where n is the smallest power that removes the duplication.

$$\begin{array}{ll} \textbf{Redo Example 2} & y_c = c_1 e^{3x} + c_2 e^{-3x} \\ \textbf{Let } y_p = (Ae^{3x})x = Axe^{3x} \\ y_p' = Ae^{3x} + Ax3e^{3x} = Ae^{3x} + 3Axe^{3x} & y_p'' = 3Ae^{3x} + 3Ae^{3x} + 3Ax3e^{3x} = 6Ae^{3x} + 9Axe^{3x} \\ \textbf{The solution is } y = y_c = +y_p - c_1 e^{3x} + c_2 e^{-3x} + \frac{1}{3}xe^{3x} \text{ (notice no } c \text{ terms for } y_p) \\ \end{array}$$

4.0.2 Example 3

Solve
$$y''' + 2y'' = 2x + 5 - e^{-2x}$$

Solution The associated homogeneous equation is y'''+2y''=0The auxiliary equation is $m^3+2m^2=0\Rightarrow m^2(m+2)=0\Rightarrow m=0,0,-2$ So $y_c=c_1e^{0x}+c_2xe^{0x}+c^3e^{-2x}\Rightarrow y_c=c_1+c_2x+c_3e^{-2x}$

Let
$$y_p = Ax^3 + Bx^2 + Cxe^{-2x}$$

 $y_p' = 3Ax^2 + 2Bx + Ce^{-2x} - 2Cxe^{-2x}$
 $y_p'' = 6Ax - 2B - 2Ce^{-2x} - 2Ce^{-2x} - 2Cx(-2e^{-2x}) = 6Ax + 2B - 4Ce^{-2x} + 4Cxe^{-2x}$
 $y_p''' = 6A - 4Ce^{-2x}(-2) + 4Ce^{-2x} + 4Cx(-2e^{-2x}) = 6A + 12Ce^{-2x} - 8Cxe^{-2x}$

Substitute into original DE: $6A + 12Ce^{-2x} - 8Cxe^{-2x} + 12Ax + 4B - 8Ce^{-2x} + 8Cxe^{-2x} = 2x + 5 - e^{-2x}$ $\Rightarrow 6A + 4Ce^{-2x} + 12Ax + 4B = 2x + 5 - e^{-2x}$

Complete coefficients of x: $12A = 2 \Rightarrow A = \frac{2}{12} = \frac{1}{6}$

Constants:
$$6A + 4B = 5 \Rightarrow 6(\frac{1}{6}) + 4B = 5 \Rightarrow 4B = 4 \Rightarrow B = 1$$

 e^{-2x} : $12C - 8C = -1 \Rightarrow 4C = -1 \Rightarrow C = \frac{-1}{4}$ So $y_p = \frac{1}{6}x^3 + x^2 - \frac{1}{4}e^{-2x}$

Thus the solution is $y = y_c + y_p = c_1 + c_2 x + c_3 e^{-2x} + \frac{1}{6} x^3 + x^2 - \frac{1}{4} e^{-2x}$

4.0.3 Example 4

Suppose the method of undetermined coefficients is to be used to solve the DE: $y'' - 10y' + 25y = 2e^{-5x} + xe^{5x}$ and $y_c = c_1e^{5x} + c_2e^{5x}$. Write an appropriate form of y_p (do not solve for coefficients).

Solution $y_p = Ae^{-5x} + (Bx + C)e^{5x}x^2$ is proper form. Note: $Bx^3 + Cx^2$ was the original form, but x^2 was factored out.

4.0.4 Example 5

Suppose the DE $y^{(5)} + 49y''' = x^2 \cos 7x + 4x^2$ has to be solved by the method of undetermined coefficients. Write the appropriate form of y_p (do not solve for coefficients).

Solution
$$y_p = [(Ax^2 + Bx + C)\cos 7x + (Dx^2 + Ex + F)\sin 7x]x + (\cos x^2 + Hx + I)x^3$$

Note: $y_{p_1} = (Ax^2 + Bx + C)\cos 7x + (Dx^2 + Ex + F)\sin 7x$ and $y_{p_2} = \cos x^2 + Hx + I$

Now, for y_c : the auxiliary equation is $m^5 + 49m^3 = 0 \Rightarrow m^3(m^2 + 49) = 0$ Thus $m = 0, 0, 0, \pm 7i$ Thus $y_c = c_1 + c_2 x + c_3 x^2 + c_4 \cos 7x + c_5 \sin 7x$ (for c_4 , $e^{0x} = 1$).

Thus,
$$y_p = (Ax^3 + Bx^2 + Cx)\cos 7x + (Dx^3 + Ex^2 + Fx)\sin 7x + Gx^5 + Hx^4 + Ix^3$$