Announcements:

- H/W 1 posted (due 9am Wed. 8/30 via Gradescope)
- Midterm etc. times posted to course website

Last time: Def'n of graph, Chromatic #, path/cycle, etc.

Today: Isomorphism classes, special graphs

Adjacency Matrix

Let G be a loopless graph

Write V(G) = {v,,-, vn}

Def 1.1.17

a) $v \in V(G)$ and $e \in E(G)$ are incident if v is an endpoint of e

b) The degree of VEV(6) is the degs
number of edges incident to v

c) The adjacency matrix A(G) is the nxn matrix where

ai; = number of edges w/ endpoints v; and v;

d) The incidence matrix M(G) is the n x m

matrix where

mi; = \$1 if v; is an endpoint of e;

0 otherwise

Def 1.1.20: An isomorphism from a graph G to a graph H consists of bisections

$$d: E(P) \rightarrow E(H)$$

 $f: \Lambda(P) \rightarrow \Lambda(H)$

such that if $e \in E(G)$ has endpoints U and V, $g(e) \in E(H)$ has endpoints f(N) and f(V). We write $G \cong H$.

Examples

$$f(w) = C$$

$$f(w) = C$$

endpoints of e_3 : V, W \leqslant_3 endpoints of e_i : b=f(v), a=f(w)

When we have a simple graph, the map of is implied

$$f(x) = V$$

$$f(n) = c$$

$$f(n) = \sigma$$

$$f(n) = \rho$$

so
$$g(uv) = f(u)f(v) = ba$$

etc.

Ex:

$$f(x) = g$$

$$f(x) = g$$

$$f(x) = g$$

so
$$g(uw) = f(u)f(w) = ac$$

not an isom.

Remark: $G \cong H$ if and only if
there exists a permutation or such
that applying or to both the rows
and columns of A(G) gives A(H)

Ex (cont.)

Pf sketch: If we have a permutation on V(G) = {V1, --, Vn} s.t. applying 5 to the rows and columns of A(G) gives A(H), then let f(vi) = Vo(i) where V(H) = {v', ..., v', } VHO in example

WHO

XHO

Then check that if $V_iV_i \in E(G)$, $g(V_iV_i) = f(V_i)f(V_i) + E(H)$ This holds since A(G) = A(A)

Prop 1.1.24: Isomorphism is an equivalence rel'h on (simple) graphs.

Reflexivity: $G \cong G$ (identity isom.)

Symmetry: If $G \cong H$, then $H \cong G$ (inverse of bijection f^{-1})

Transitivity: If $G \cong H$, $H \cong K$, then $G \cong K$ (compose bijections)

Pf (in simple case): see textbook

Def: An unlabelled graph is an isomorphism class of graphs

Special (unlabelled, simple) graphs:

Pn: path on n vertices

Cn: cycle on n vertices

Kn: complete graph on n vertices (every vertex is adjacent to every other vertex)

Kr,s: complete bipartite graph with parts of size r and s (= Ks,r)

(all vertices in opposite parts are adjacent)

Note: Kris is not a complete graph

Petersen graph!

5 = {a,b,c,d,e}

Idea for thought:

How can we describe this graph using subsets of a 5-element set?

(Book has the answer)

Next week! königsberg bridge problem