2020-02-05

Meet the 8051

- Some iterations of the 8051 have included ROM/RAM, some don't
- Upon powering on, the 8051 will fetch the first instruction from the ROM

Special Function Registerstt

Memory bank switching

• Some 8051s have an additional 128 bytes of RAM which can be accessed using a "indirect address" syntax, where the requested address is placed in a spare register and prepend the register name with an @ to access the memory address

2020-02-06

Interface to RAM/ROM

- Address bus (16 bit in our case)
- Data bus (8 bit in our case)
- Control signals
 - Chip Enable (CE) must be activated to use any operation
 - Output Enable (OE) must be activated to read data from address onto data bus
 - Write (WR) must be activated to write data on data bus to address
 - Control signals are sometimes "active-low", meaning that you connect them to ground to make them active
- In order to drive address and data bus, we sacrifice two IO ports to communicate with the chip
 - If we weren't using external ROM/RAM, we would be able to use it for GPIO
 - We can actually use one port for both the data bus and half of the address bus by multiplexing the bus and using a latch to save the lower address byte while the data is read
- External Access (EA) is an active low signal that communicates to the 8051 that the program should be found on external memory

ROM vs RAM usage by 8051

• Program Store Enable (PSEN) is an active low signal that gets activated when the 8051 is fetching some instruction data

 \bullet Write (WR) and Read (RD) are active low signals that get activated when the 8051 is attempting to write or read to external RAM