0.1 Todo: [The Kuznetsov Trace Formula]

The Kuznetsov trace formula is an analog of the Petersson trace formula for weight zero Maass forms. From $\ref{thm:point}$, $\mathcal{L}(N,\chi)$ admits an orthonormal basis of Maass forms for the point spectrum (these forms are generally not Hecke-Maass eigenforms because they need not be Hecke normalized or even cuspidal in the case of the discrete spectrum). However, by $\ref{thm:point}$? we make take this orthonormal basis to consist of Hecke-Maass eigenforms and the constant function. Denote this basis by $\{u_j\}_{j\geq 0}$ with $u_0(z)=1$ and let u_j be of type ν_j for $j\geq 1$. In particular, $\{u_j\}_{j\geq 1}$ is an orthonormal basis of Hecke-Maass eigenforms and each such form admits a Fourier series at the $\mathfrak a$ cusp given by

$$(u_j|\sigma_{\mathfrak{a}})(z) = \sum_{n \neq 0} a_{j,\mathfrak{a}}(n) \sqrt{y} K_{\nu_j}(2\pi ny) e^{2\pi i nx}.$$

The Kuznetsov trace formula is an equation relating the Fourier coefficients $a_{j,\mathfrak{a}}(n)$ and $a_{j,\mathfrak{b}}(n)$ of the basis $\{u_j\}_{j\geq 1}$ for two cusps \mathfrak{a} and \mathfrak{b} of $\Gamma_0(N)\backslash\mathbb{H}$ to a sum of integral transforms involving test functions and Salié sums. Similar to the Petersson trace formula, we will compute the inner product of two Poincaré series $P_{n,\chi,\mathfrak{a}}(z,\psi)(z)$ and $P_{m,\chi,\mathfrak{b}}(z,\varphi)(z)$ in two different ways. The first will be geometric in nature while the second will be spectral. We first need to compute the Fourier series of such a Poincaré series. Although we will not need it explicitly, we will work over any congruence subgroup:

Proposition 0.1.1. Let $m \geq 1$, χ be Dirichlet character with conductor dividing the level, \mathfrak{a} and \mathfrak{b} be cusps of $\Gamma \backslash \mathbb{H}$, and $\psi(y)$ be a smooth function such that $\psi(y) \ll_{\varepsilon} y^{1+\varepsilon}$ as $y \to 0$. The Fourier series of $P_{m,\chi,\mathfrak{a}}(z,\psi)$ on $\Gamma \backslash \mathbb{H}$ at the \mathfrak{b} cusp is given by

$$(P_{m,\chi,\mathfrak{a}}|\sigma_{\mathfrak{b}})(z,\psi) = \sum_{t \in \mathbb{Z}} \left(\delta_{\mathfrak{a},\mathfrak{b}} \delta_{m,t} \psi(\operatorname{Im}(z)) + \sum_{c \in \mathcal{C}_{\mathfrak{a},\mathfrak{b}}} \psi(y,m,t,c) S_{\chi,\mathfrak{a},\mathfrak{b}}(m,t,c) \right) e^{2\pi i t z},$$

where $\psi(y, m, t, c)$ is the integral transform given by

$$\psi(y, m, t, c) = \int_{\operatorname{Im}(z)=y} \psi\left(\frac{y}{|cz|^2}\right) e^{-\frac{2\pi i m}{c^2 z} - 2\pi i t z} dz.$$

Proof. From the cocycle condition and ??, we have

$$(P_{m,\chi,\mathfrak{a}}|\sigma_{\mathfrak{b}})(z,\psi) = \delta_{\mathfrak{a},\mathfrak{b}}\psi(\operatorname{Im}(z))e^{2\pi imz} + \sum_{\substack{c \in \mathcal{C}_{\mathfrak{a},\mathfrak{b}},d \in \mathbb{Z} \\ d \pmod{c} \in \mathcal{D}_{\mathfrak{a},\mathfrak{b}}(c)}} \overline{\chi}(d)\psi\left(\frac{\operatorname{Im}(z)}{|cz+d|^2}\right)e^{2\pi im\left(\frac{a}{c} - \frac{1}{c^2z+cd}\right)},$$

where a and b are chosen such that $\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = 1$ and we have used the fact that

$$\frac{a}{c} - \frac{1}{c^2 z + cd} = \frac{az + b}{cz + d}.$$

Summing over all pairs (c, d) with $c \in \mathcal{C}_{\mathfrak{a},\mathfrak{b}}$, $d \in \mathbb{Z}$, and $d \in \mathcal{D}_{\mathfrak{a},\mathfrak{b}}(c)$ is the same as summing over all triples (c, ℓ, r) with $c \in \mathcal{C}_{\mathfrak{a},\mathfrak{b}}$, $\ell \in \mathbb{Z}$, and r taken modulo c with $r \in \mathcal{D}_{\mathfrak{a},\mathfrak{b}}(c)$. Indeed, this is seen by writing $d = c\ell + r$. Moreover, since ad - bc = 1 we have $a(c\ell + r) - bc = 1$ which further implies that

 $ar \equiv 1 \pmod{c}$. So we may take a to be the inverse for r modulo c. Then

$$\sum_{\substack{c \in \mathcal{C}_{\mathbf{a},\mathbf{b}}, d \in \mathbb{Z} \\ d \pmod{c} \in \mathcal{D}_{\mathbf{a},\mathbf{b}}(c)}} \overline{\chi}(d)\psi\left(\frac{\operatorname{Im}(z)}{|cz+d|^2}\right) e^{2\pi i m \left(\frac{a}{c} - \frac{1}{c^2z+cd}\right)} = \sum_{\substack{(c,\ell,r)}} \overline{\chi}(c\ell+r)\psi\left(\frac{\operatorname{Im}(z)}{|cz+c\ell+r|^2}\right) e^{2\pi i m \left(\frac{a}{c} - \frac{1}{c^2z+c^2\ell+cr}\right)}$$

$$= \sum_{\substack{(c,\ell,r)}} \overline{\chi}(r)\psi\left(\frac{\operatorname{Im}(z)}{|cz+c\ell+r|^2}\right) e^{2\pi i m \left(\frac{a}{c} - \frac{1}{c^2z+c^2\ell+cr}\right)}$$

$$= \sum_{\substack{c \in \mathcal{C}_{\mathbf{a},\mathbf{b}} \\ r \in \mathcal{D}_{\mathbf{a},\mathbf{b}}(c)}} \overline{\chi}(r)\psi\left(\frac{\operatorname{Im}(z)}{|cz+c\ell+r|^2}\right) e^{2\pi i m \left(\frac{a}{c} - \frac{1}{c^2z+c^2\ell+cr}\right)}$$

$$= \sum_{\substack{c \in \mathcal{C}_{\mathbf{a},\mathbf{b}} \\ r \in \mathcal{D}_{\mathbf{a},\mathbf{b}}(c)}} \overline{\chi}(r)\sum_{\ell \in \mathbb{Z}} \psi\left(\frac{\operatorname{Im}(z)}{|cz+c\ell+r|^2}\right) e^{2\pi i m \left(\frac{a}{c} - \frac{1}{c^2z+c^2\ell+cr}\right)},$$

where on the right-hand side it is understood that we are summing over all triples (c, ℓ, r) with the prescribed properties and the second line holds since χ has conductor diving the level and $d \in \mathcal{D}_{\mathfrak{a},\mathfrak{b}}(c)$ is determined modulo c. Now let

$$I_{c,r}(z,\psi) = \sum_{\ell \in \mathbb{Z}} \psi\left(\frac{\operatorname{Im}(z)}{|cz + c\ell + r|^2}\right) e^{2\pi i m\left(\frac{a}{c} - \frac{1}{c^2 z + c^2 \ell + cr}\right)}.$$

We apply the Poisson summation formula to $I_{c,r}(z,\psi)$. This is allowed since the summands are absolutely integrable by ??, as they exhibit polynomial decay of order $\sigma > 1$ because $\psi(y) \ll_{\varepsilon} y^{1+\varepsilon}$ as $y \to 0$, and $I_{c,r}(z,\psi)$ is holomorphic because $(P_{m,\chi,\mathfrak{a}}|\sigma_{\mathfrak{b}})(z,\psi)$ is. By the identity theorem it suffices to apply the Poisson summation formula for z = iy with y > 0. So let f(x) be given by

$$f(x) = \psi\left(\frac{y}{|cx + r + icy|^2}\right)e^{2\pi im\left(\frac{a}{c} - \frac{1}{c^2x + cr + ic^2y}\right)}.$$

As we have just noted, f(x) is absolutely integrable on \mathbb{R} . We compute the Fourier transform:

$$\hat{f}(t) = \int_{-\infty}^{\infty} f(x)e^{-2\pi itx} dx = \int_{-\infty}^{\infty} \psi\left(\frac{y}{|cx+r+icy|^2}\right) e^{2\pi im\left(\frac{a}{c} - \frac{1}{c^2x+cr+ic^2y}\right)} e^{-2\pi itx} dx.$$

Complexify the integral to get

$$\int_{\mathrm{Im}(z)=0} \psi\left(\frac{y}{|cz+r+icy|^2}\right) e^{2\pi i m\left(\frac{a}{c}-\frac{1}{c^2z+cr+ic^2y}\right)} e^{-2\pi i t z} dz.$$

Now make the change of variables $z \to z - \frac{r}{c} - iy$ to obtain

$$e^{2\pi i m \frac{a}{c} + 2\pi i t \frac{r}{c} - 2\pi t y} \int_{\text{Im}(z) = y} \psi\left(\frac{y}{|cz|^2}\right) e^{-\frac{2\pi i m}{c^2 z} - 2\pi i t z} dz.$$

As the remaining integral is $\psi(y, m, t, c)$, it follows that

$$\hat{f}(t) = \psi(y, m, t, c)e^{2\pi i m \frac{a}{c} + 2\pi i t \frac{r}{c} - 2\pi t y}$$

By the Poisson summation formula and the identity theorem, we have

$$I_{c,r}(z,\psi) = \sum_{t \in \mathbb{Z}} (\psi(y,m,t,c)e^{2\pi i m\frac{a}{c} + 2\pi i t\frac{r}{c}})e^{2\pi i tz},$$

for all $z \in \mathbb{H}$. Substituting this back into the Eisenstein series gives a form of the Fourier series:

$$(P_{m,\chi,\mathfrak{a}}|\sigma_{\mathfrak{b}})(z,\psi) = \delta_{\mathfrak{a},\mathfrak{b}}\psi(\operatorname{Im}(z))e^{2\pi imz} + \sum_{\substack{c \in \mathcal{C}_{\mathfrak{a},\mathfrak{b}} \\ r \in \mathcal{D}_{\mathfrak{a},\mathfrak{b}}}} \overline{\chi}(r) \sum_{t \in \mathbb{Z}} \psi(y,m,t,c)e^{2\pi im\frac{a}{c} + 2\pi it\frac{r}{c}}e^{2\pi itz}$$

$$= \sum_{t \in \mathbb{Z}} \left(\delta_{\mathfrak{a},\mathfrak{b}}\delta_{m,t}\psi(\operatorname{Im}(z)) + \sum_{\substack{c \in \mathcal{C}_{\mathfrak{a},\mathfrak{b}} \\ r \in \mathcal{D}_{\mathfrak{a},\mathfrak{b}}}} \overline{\chi}(r)\psi(y,m,t,c)e^{2\pi im\frac{a}{c} + 2\pi it\frac{r}{c}} \right) e^{2\pi itz}$$

$$= \sum_{t \in \mathbb{Z}} \left(\delta_{\mathfrak{a},\mathfrak{b}}\delta_{m,t}\psi(\operatorname{Im}(z)) + \sum_{c \in \mathcal{C}_{\mathfrak{a},\mathfrak{b}}} \psi(y,m,t,c) \sum_{r \in \mathcal{D}_{\mathfrak{a},\mathfrak{b}}} \overline{\chi}(r)e^{2\pi im\frac{a}{c} + 2\pi it\frac{r}{c}} \right) e^{2\pi itz}$$

We will simplify the innermost sum. Since a is the inverse for r modulo c, the innermost sum above becomes

$$\sum_{r \in \mathcal{D}_{\mathfrak{a},\mathfrak{b}}} \overline{\chi}(r) e^{2\pi i m \frac{a}{c} + 2\pi i t \frac{r}{c}} = \sum_{r \in \mathcal{D}_{\mathfrak{a},\mathfrak{b}}} \overline{\chi}(\overline{a}) e^{2\pi i m \frac{a}{c} + 2\pi i t \frac{\overline{a}}{c}} = \sum_{r \in \mathcal{D}_{\mathfrak{a},\mathfrak{b}}} \chi(a) e^{\frac{2\pi i (am + \overline{a}t)}{c}} = S_{\chi,\mathfrak{a},\mathfrak{b}}(m,t,c).$$

So at last, we obtain our desired Fourier series:

$$(P_{m,\chi,\mathfrak{a}}|\sigma_{\mathfrak{b}})(z) = \sum_{t \in \mathbb{Z}} \left(\delta_{\mathfrak{a},\mathfrak{b}} \delta_{m,t} \psi(\operatorname{Im}(z)) + \sum_{c \in \mathcal{C}_{\mathfrak{a},\mathfrak{b}}} \psi(y,m,t,c) S_{\chi,\mathfrak{a},\mathfrak{b}}(m,t,c) \right) e^{2\pi i t z}.$$

We can now derive the first half of the Kuznetsov trace formula by computing the inner product between $P_{n,\chi,\mathfrak{a}}(z,\psi)$ and $P_{m,\chi,\mathfrak{b}}(z,\varphi)$:

$$\begin{split} \langle P_{n,\chi,\mathfrak{a}}(\cdot,\psi),P_{m,\chi,\mathfrak{b}}(\cdot,\varphi)\rangle &= \frac{1}{V_{\Gamma_{0}(N)}} \int_{\mathcal{F}_{\Gamma_{0}(N)}} P_{n,\chi,\mathfrak{a}}(z,\psi) \overline{P_{m,\chi,\mathfrak{b}}(z,\varphi)} \, d\mu \\ &= \frac{1}{V_{\Gamma_{0}(N)}} \int_{\mathcal{F}_{\Gamma_{0}(N)}} \sum_{\gamma \in \Gamma_{\mathfrak{b}} \backslash \Gamma_{0}(N)} \chi(\gamma) P_{n,\chi,\mathfrak{a}}(z,\psi) \overline{\varphi(\operatorname{Im}(\sigma_{\mathfrak{b}}^{-1}\gamma z))} e^{-2\pi i m \overline{\sigma_{\mathfrak{b}}^{-1}\gamma z}} \, d\mu \\ &= \frac{1}{V_{\Gamma_{0}(N)}} \int_{\mathcal{F}_{\Gamma_{0}(N)}} \sum_{\gamma \in \Gamma_{\mathfrak{b}} \backslash \Gamma_{0}(N)} P_{n,\chi,\mathfrak{a}}(\gamma z,\psi) \overline{\varphi(\operatorname{Im}(\sigma_{\mathfrak{b}}^{-1}\gamma z))} e^{-2\pi i m \overline{\sigma_{\mathfrak{b}}^{-1}\gamma z}} \, d\mu \\ &= \frac{1}{V_{\Gamma_{0}(N)}} \int_{\mathcal{F}_{\sigma_{\mathfrak{b}}^{-1}\Gamma_{0}(N)\sigma_{\mathfrak{b}}}} \sum_{\gamma \in \Gamma_{\mathfrak{b}} \backslash \Gamma_{0}(N)} P_{n,\chi,\mathfrak{a}}(\gamma \sigma_{\mathfrak{b}}z,\psi) \overline{\varphi(\operatorname{Im}(\sigma_{\mathfrak{b}}^{-1}\gamma \sigma_{\mathfrak{b}}z))} e^{-2\pi i m \overline{\sigma_{\mathfrak{b}}^{-1}\gamma \sigma_{\mathfrak{b}}z}} \, d\mu \\ &= \frac{1}{V_{\Gamma_{0}(N)}} \int_{\mathcal{F}_{\sigma_{\mathfrak{b}}^{-1}\Gamma_{0}(N)\sigma_{\mathfrak{b}}} \sum_{\gamma \in \Gamma_{\infty} \backslash \sigma_{\mathfrak{b}}^{-1}\Gamma_{0}(N)\sigma_{\mathfrak{b}}^{-1}} P_{n,\chi,\mathfrak{a}}(\sigma_{\mathfrak{b}}\gamma z,\psi) \overline{\varphi(\operatorname{Im}(\gamma z))} e^{-2\pi i m \overline{\gamma z}} \, d\mu \\ &= \frac{1}{V_{\Gamma_{0}(N)}} \int_{\Gamma_{\infty} \backslash \mathbb{H}} (P_{n,\chi,\mathfrak{a}}|\sigma_{\mathfrak{b}})(z,\psi) \overline{\varphi(\operatorname{Im}(z))} e^{-2\pi i m \overline{z}} \, d\mu, \end{split}$$

where in the third line we have used the automorphy of $P_{n,\chi,\mathfrak{a}}(z,\psi)$, in the forth and fifth lines we have made the change of variables $z \to \sigma_{\mathfrak{b}}z$ and $\gamma \to \sigma_{\mathfrak{b}}\gamma\sigma_{\mathfrak{b}}^{-1}$ respectively, and in the sixth line we have unfolded. Now substitute in the Fourier series of $P_{n,\chi,\mathfrak{a}}(z,\psi)$ at the \mathfrak{b} cusp to obtain

$$\frac{1}{V_{\Gamma_0(N)}} \int_{\Gamma_\infty \backslash \mathbb{H}} \sum_{t \in \mathbb{Z}} \left(\delta_{\mathfrak{a}, \mathfrak{b}} \delta_{n, t} \psi(\operatorname{Im}(z)) + \sum_{c \in \mathcal{C}_{\mathfrak{a}, \mathfrak{b}}} \psi(y, n, t, c) S_{\chi, \mathfrak{a}, \mathfrak{b}}(n, t, c) \right) \overline{\varphi(\operatorname{Im}(z))} e^{2\pi i t z - 2\pi i m \overline{z}} d\mu,$$

which is equivalent to

$$\frac{1}{V_{\Gamma_0(N)}} \int_0^\infty \int_0^1 \sum_{t \geq 1} \left(\delta_{\mathfrak{a},\mathfrak{b}} \delta_{n,t} \psi(y) + \sum_{c \in \mathcal{C}_{\mathfrak{a},\mathfrak{b}}} \psi(y,n,t,c) S_{\chi,\mathfrak{a},\mathfrak{b}}(n,t,c) \right) \overline{\varphi(y)} e^{2\pi i (t-m)x} e^{-2\pi (t+m)y} \, \frac{dx \, dy}{y^2}.$$

By the dominated convergence theorem, we can interchange the sum and the two integrals. Then ?? implies that the inner integral cuts off all of the terms except the diagonal t = m. This leaves

$$\frac{1}{V_{\Gamma_0(N)}} \int_0^\infty \left(\delta_{\mathfrak{a},\mathfrak{b}} \delta_{n,m} \psi(y) + \sum_{c \in \mathcal{C}_{\mathfrak{a},\mathfrak{b}}} \psi(y,n,m,c) S_{\chi,\mathfrak{a},\mathfrak{b}}(n,m,c) \right) \overline{\varphi(y)} e^{-4\pi m y} \, \frac{dy}{y^2}.$$

Interchanging the integral and the remaining sum by the dominated convergence theorem again, we arrive at

$$\langle P_{n,\chi,\mathfrak{a}}(\cdot,\psi), P_{m,\chi,\mathfrak{b}}(\cdot,\varphi) \rangle = \delta_{\mathfrak{a},\mathfrak{b}} \delta_{n,m}(\psi,\varphi)_{n,m} + \sum_{c \in \mathcal{C}_{\mathfrak{a},\mathfrak{b}}} S_{\chi,\mathfrak{a},\mathfrak{b}}(n,m,c) V(n,m,c,\psi,\varphi),$$

where we have set

$$(\psi,\varphi)_{n,m} = \frac{1}{V_{\Gamma_0(N)}} \int_0^\infty \psi(y) \overline{\varphi(y)} e^{-2\pi(n+m)y} \frac{dy}{y^2},$$

and

$$V(n,m,c;\psi,\varphi) = \frac{1}{V_{\Gamma_0(N)}} \int_0^\infty \int_{\mathrm{Im}(z)=y} \psi\left(\frac{y}{|cz|^2}\right) \overline{\varphi(y)} e^{-\frac{2\pi i m}{c^2 z} - 2\pi i n z - 4\pi m y} \frac{dz \, dy}{y^2}.$$

This is the first half of the Kuznetsov trace formula. For the second half, ?? gives

$$P_{n,\chi,\mathfrak{a}}(\cdot,\psi) = \sum_{j\geq 0} \langle P_{n,\chi,\mathfrak{a}}(\cdot,\psi), u_j \rangle u_j(z) + \sum_{\mathfrak{a}} \frac{1}{4\pi} \int_{-\infty}^{\infty} \left\langle P_{n,\chi,\mathfrak{a}}(\cdot,\psi), E_{\mathfrak{a}}\left(\cdot, \frac{1}{2} + ir\right) \right\rangle E_{\mathfrak{a}}\left(z, \frac{1}{2} + ir\right) dr,$$

and

$$P_{m,\chi,\mathfrak{a}}(\cdot,\varphi) = \sum_{j\geq 0} \langle P_{m,\chi,\mathfrak{a}}(\cdot,\varphi), u_j \rangle u_j(z) + \sum_{\mathfrak{a}} \frac{1}{4\pi} \int_{-\infty}^{\infty} \left\langle P_{m,\chi,\mathfrak{a}}(\cdot,\varphi), E_{\mathfrak{a}}\left(\cdot, \frac{1}{2} + ir\right) \right\rangle E_{\mathfrak{a}}\left(z, \frac{1}{2} + ir\right) dr.$$

By orthonormality, it follows that

$$\begin{split} \langle P_{n,\chi,\mathfrak{a}}(\cdot,\psi), P_{m,\chi,\mathfrak{a}}(\cdot,\varphi) \rangle &= \sum_{j} \langle P_{n,\chi,\mathfrak{a}}(\cdot,\psi), u_{j} \rangle \overline{\langle P_{m,\chi,\mathfrak{a}}(\cdot,\varphi), u_{j} \rangle} \\ &+ \sum_{\mathfrak{a}} \frac{1}{4\pi} \int_{-\infty}^{\infty} \left\langle P_{n,\chi,\mathfrak{a}}(\cdot,\psi), E_{\mathfrak{a}}\left(\cdot,\frac{1}{2} + ir\right) \right\rangle \overline{\left\langle P_{m,\chi,\mathfrak{a}}(\cdot,\varphi), E_{\mathfrak{a}}\left(\cdot,\frac{1}{2} + ir\right) \right\rangle} \, dr. \end{split}$$

Now we must simplify the remaining inner products. Let $f \in \mathcal{L}(N,\chi)$ with Fourier series

$$f(z) = a^{+}(0)y^{\frac{1}{2}+\nu} + a^{-}(0)y^{\frac{1}{2}-\nu} + \sum_{n\neq 0} a(n)\sqrt{y}K_{\nu}(2\pi|n|y)e^{2\pi inx}.$$

By unfolding the integral in the Petersson inner product and cutting off everything except the diagonal using ?? exactly as in the case for $\langle P_{n,\chi,\mathfrak{a}}(\cdot,\psi), P_{m,\chi,\mathfrak{a}}(\cdot,\varphi)\rangle$, we see that

$$\langle P_{n,\chi,\mathfrak{a}}(\cdot,\psi),f\rangle = \frac{1}{V_{\Gamma}} \int_0^\infty \overline{a(n)\sqrt{y}K_{\nu}(2\pi ny)} \psi(y)e^{-4\pi ny} \frac{dy}{y^2}.$$

Now set

$$\omega_{\nu}(n,\psi) = \frac{1}{V_{\Gamma}} \int_{0}^{\infty} \sqrt{y} K_{\nu}(2\pi |n|y) \overline{\psi(y)} e^{-4\pi my} \frac{dy}{y^{2}}.$$

Then it follows from the Fourier series of cusp forms and Eisenstein series that

$$\langle P_{n,\chi,\mathfrak{a}}(\cdot,\psi), u_j \rangle = \overline{a_j(n)\omega_{\nu_j}(n,\psi)},$$

for $j \ge 1$ and

$$\left\langle P_{n,\chi,\mathfrak{a}}(\cdot,\psi), E_{\mathfrak{a}}\left(\cdot,\frac{1}{2}+ir\right)\right\rangle = \overline{\tau_{\mathfrak{a}}\left(n,\frac{1}{2}+ir\right)\omega_{ir}(n,\psi)}.$$

In particular, $\langle P_{n,\chi,\mathfrak{a}}(\cdot,\psi),u_0\rangle=0$. So we obtain

$$\begin{split} \langle P_{n,\chi,\mathfrak{a}}(\cdot,\psi), P_{m,\chi,\mathfrak{a}}(\cdot,\varphi) \rangle &= \sum_{j \geq 1} \overline{a_j(n)} a_j(m) \overline{\omega(n,\psi)} \omega(m,\varphi) \\ &+ \sum_{\mathfrak{a}} \frac{1}{4\pi} \int_{-\infty}^{\infty} \overline{\tau_{\mathfrak{a}}\left(n,\frac{1}{2} + ir\right)} \tau_{\mathfrak{a}}\left(m,\frac{1}{2} + ir\right) \overline{\omega(n,\psi)} \omega(m,\varphi) \, dr. \end{split}$$

This is the second half of the Kuznetsov trace formula. Equating the first and second halves we get the **Kuznetsov trace formula**:

$$\delta_{n,m}(\psi,\varphi) + \sum_{\substack{c \geq 1 \\ c \equiv 0 \pmod{N}}} \frac{1}{c} S_{\chi}(n,m,c) V(n,m,c,\psi,\varphi) = \sum_{j \geq 1} \overline{a_{j}(n)} a_{j}(m) \overline{\omega(n,\psi)} \omega(m,\varphi)$$

$$+ \sum_{\mathfrak{a}} \frac{1}{4\pi} \int_{-\infty}^{\infty} \overline{\tau_{\mathfrak{a}}\left(n,\frac{1}{2} + ir\right)} \overline{\tau_{\mathfrak{a}}\left(m,\frac{1}{2} + ir\right)} \overline{\omega(n,\psi)} \omega(m,\varphi) dr.$$

The left-hand side is called the **geometric side** and the right-hand side is called the **spectral side**. We collect our work as a theorem:

Theorem 0.1.1 (Kuznetsov trace formula). Let $\{u_j\}_{j\geq 1}$ be an orthonormal basis of Hecke-Maass eigenforms for $\mathcal{L}(N,\chi)$ of types ν_j with Fourier coefficients $a_j(n)$. Then for any positive integers $n, m \geq 1$, we have

$$\delta_{n,m}(\psi,\varphi) + \sum_{\substack{c \geq 1 \\ c \equiv 0 \pmod{N}}} \frac{1}{c} S_{\chi}(n,m,c) V(n,m,c,\psi,\varphi) = \sum_{j \geq 1} \overline{a_{j}(n)} a_{j}(m) \overline{\omega(n,\psi)} \omega(m,\varphi)$$

$$+ \sum_{\mathfrak{a}} \frac{1}{4\pi} \int_{-\infty}^{\infty} \overline{\tau_{\mathfrak{a}}\left(n,\frac{1}{2} + ir\right)} \overline{\tau_{\mathfrak{a}}\left(m,\frac{1}{2} + ir\right)} \overline{\omega(n,\psi)} \omega(m,\varphi) dr.$$

0.2 Todo: [Cyclotomic Number Fields]

Let ω be a primitive *n*-th root of unity. We call $\mathbb{Q}(\omega)$ the *n*-th **cyclotomic field**. Note that $\mathbb{Q}(\omega)$ is independent of the choice of primitive root ω since $\mathbb{Q}(\omega)$ contains all *n*-th roots of unity. As ω is a root of x^n-1 , we see that $\mathbb{Q}(\omega)/\mathbb{Q}$ is a finite extension of degree at most n. In particular, $\mathbb{Q}(\omega)$ is a number field. More generally, we say that a number field K is **cyclotomic** if K is the n-th cyclotomic field for some $n \geq 1$. That is, $K = \mathbb{Q}(\omega)$ for some primitive n-th root of unity ω . In any case, our aim is to study the structure of cyclotomic number fields $\mathbb{Q}(\omega)$. Our first step is to compute the degree of $\mathbb{Q}(\omega)$ which is the

degree of the minimal polynomial of ω over \mathbb{Q} . Accordingly, we define the *n*-th **cyclotomic polynomial** $\Phi_n(x)$ by

$$\Phi_n(x) = \prod_{k \in (\mathbb{Z}/n\mathbb{Z})^*} (x - \omega^k).$$

That is, $\Phi_n(x)$ is the polynomial whose roots are the primitive *n*-th roots of unity. It is clearly monic, of degree $\varphi(n)$, and divides $x^n - 1$. As every *n*-th root of unity is a primitive *d*-th root of unity for some $d \mid n$, we also find that

$$x^n - 1 = \prod_{d|n} \Phi_d(x). \tag{1}$$

Clearly $\Phi_1(x) = x - 1$ and $\Phi_2(x) = x + 1$. When n = p for a prime p, Equation (1) implies

$$\Phi_p(x) = \frac{x^p - 1}{x - 1} = x^{p-1} + x^{p-2} + \dots + 1.$$

More generally, writing $n = p^k$ and inducting on k using Equation (1) gives

$$\Phi_{p^k}(x) = \frac{x^{p^k} - 1}{x^{p^{k-1}} - 1} = \frac{x^{p^k} - 1}{x^{p^{k-1}} - 1} = x^{p^{k-1}(p-1)} + x^{p^{k-1}(p-2)} + \dots + 1.$$
 (2)

Observe from Equation (2) that $\Phi_{p^k}(x)$ has coefficients in \mathbb{Z} . This is true for a general cyclotomic polynomial $\Phi_n(x)$ in addition to irreducibility over \mathbb{Z} as the following proposition shows:

Proposition 0.2.1. $\Phi_n(x)$ has coefficients in and is irreducible over \mathbb{Z} .

Proof. We first show $\Phi_n(x)$ has coefficients in \mathbb{Z} and we will argue by induction. The claim is true for n=1 since $\Phi_1(x)=x-1$. So assume by induction that it is true for all $1 \leq d < n$. In view of Equation (1), we have

$$x^{n} - 1 = \Phi_{n}(x) \prod_{\substack{d \mid n \\ d < n}} \Phi_{d}(x),$$

and $\prod_{\substack{d|n\\d < n}} \Phi_d(x)$ has coefficients in \mathbb{Z} . Therefore $\prod_{\substack{d|n\\d < n}} \Phi_d(x)$ divides $x^n - 1$ in $\mathbb{Q}[x]$ and hence in $\mathbb{Z}[x]$ as well by Gauss's lemma. Thus $\Phi_n(x)$ has coefficients in \mathbb{Z} as desired. We now show $\Phi_n(x)$ is irreducible over \mathbb{Z} . So suppose

$$\Phi_n(x) = f(x)g(x),$$

for monic polynomials $f(x), g(x) \in \mathbb{Z}[x]$ (recall $\Phi_n(x)$ is monic) with f(x) irreducible. Then it suffices to show $f(x) = \Phi_n(x)$. Now let ω be a root of f(x). Then ω is also a root of $\Phi_n(x)$ and necessarily a primitive n-th roots of unity. Since f(x) is monic and irreducible it is necessarily the minimal polynomial of ω over \mathbb{Q} . Now let p be any prime not dividing p. Then ω^p is also a primitive p-th root of unity and hence a root of either f(x) or g(x). Suppose ω^p is a root of g(x). Then ω is a root of $g(x^p)$, and since f(x) is the minimal polynomial of ω over \mathbb{Q} , f(x) divides $g(x^p)$ in $\mathbb{Q}[x]$. By Gauss's lemma, it follows that f(x) divides $g(x^p)$ in $\mathbb{Z}[x]$ too. Therefore

$$g(x^p) = f(x)h(x),$$

for a monic polynomial $h(x) \in \mathbb{Z}[x]$. Reducing this factorization modulo p, we obtain

$$\overline{g}(x^p) \equiv \overline{g}(x)^p \equiv \overline{f}(x)\overline{h}(x) \pmod{p},$$

where the first congruence holds since $\overline{g}(x^p) = \overline{g}(x)^p$ in $\mathbb{F}_p[x]$ (recall Fermat's little theorem and that the characteristic of \mathbb{F}_p is p). As $p \geq 2$, this equivalence shows that $\overline{f}(x)$ and $\overline{h}(x)$ must have a common factor.

In other words, $\overline{g}(x^p)$ has a multiple root and therefore $\overline{g}(x)$ does as well. Reducing the factorization for $\Phi_n(x)$ modulo p gives

$$\overline{\Phi_n}(x) \equiv \overline{f}(x)\overline{g}(x) \pmod{p}.$$

Then $\overline{\Phi_n}(x)$ has a multiple root since $\overline{g}(x)$ does. Since $\overline{\Phi_n}(x)$ divides x^n-1 (because $\Phi_n(x)$ does and x^n-1 is itself reduced modulo p), it follows that x^n-1 has a multiple root over \mathbb{F}_p . This is impossible since x^n-1 has n distinct roots as p does not divide n (recall that the derivative of x^n-1 is nx^{n-1} which is relatively prime to p). It follows that ω^p cannot be a root of g(x) and is therefore a root of f(x). Now let $k \in (\mathbb{Z}/n\mathbb{Z})^*$ and write $k = p_1p_2\cdots p_k$ as a product of primes not dividing n. Then $\omega^k = \omega^{p_1p_2\cdots p_k}$ is a root of f(x) and hence every primitive n-th root of unity is a root of f(x). Thus $f(x) = \Phi_n(x)$ which proves $\Phi_n(x)$ is irreducible over \mathbb{Z} .

Since $\Phi_n(x)$ is monic, Proposition 0.2.1 implies that $\Phi_n(x)$ is the minimal polynomial of ω over \mathbb{Q} and hence of every primitive n-th root of unity over \mathbb{Q} . It follows that the degree of $\mathbb{Q}(\omega)$ is $\varphi(n)$ because this is the degree of $\Phi_n(x)$. This implies $\mathbb{Q}(\omega)$ is the splitting field of $\Phi_n(x)$ over \mathbb{Q} because if one primitive n-th root of unity belongs to a field then they all do (as they are powers of each other). In particular, $\mathbb{Q}(\omega)/\mathbb{Q}$ is normal and hence Galois. Moreover, every primitive n-root of unity is an algebraic integer since $\Phi_n(x)$ also has coefficients in \mathbb{Z} by Proposition 0.2.1. We now turn to the question of the ring of integers of $\mathbb{Q}(\omega)$. For convenience write $\mathcal{O}_{\omega} = \mathcal{O}_{\mathbb{Q}(\omega)}$ and set

$$\mathfrak{p}_{\omega} = (1 - \omega)\mathcal{O}_{\omega}.$$

We will first prove a useful lemma which shows that \mathfrak{p}_{ω} is a prime of $\mathbb{Q}(\omega)$ and more in the case n is a prime power:

Lemma 0.2.1. Let $\mathbb{Q}(\omega)$ be the cyclotomic number field generated by a primitive p^e -th root of unity ω with for some prime p and $e \geq 1$. Then

$$p\mathcal{O}_{\omega} = \mathfrak{p}_{\omega}^{\varphi(p^e)}.$$

In particular, \mathfrak{p}_{ω} is a prime above p with $f_p(\mathfrak{p}_{\omega}) = 1$. Moreover, $1, \omega, \ldots, \omega^{\varphi(p^e)-1}$ is a basis for $\mathbb{Q}(\omega)/\mathbb{Q}$ with

$$d_{\mathbb{O}(\omega)/\mathbb{O}}(1,\omega,\ldots,\omega^{\varphi(p^e)-1}) = \pm p^{\varphi(p^e)e-p^{e-1}}$$

Proof. In view of the definition of $\Phi_{p^e}(x)$ and Equation (2), we have

$$x^{p^{e-1}(p-1)} + x^{p^{e-1}(p-2)} + \dots + 1 = \prod_{k \in (\mathbb{Z}/p^e\mathbb{Z})^*} (x - \omega^k).$$

Setting x = 1 gives

$$p = \prod_{k \in (\mathbb{Z}/p^e\mathbb{Z})^*} (1 - \omega^k).$$

In the case e=1, ω is a primitive p-th root of unity. Then $N_{\mathbb{Q}(\omega)/\mathbb{Q}}(1-\omega)=p$ by $\ref{eq:position}$ since $\mathbb{Q}(\omega)/\mathbb{Q}$ is Galois. In any case, the factors $1-\omega^k$ are clearly algebraic integers because ω is (as a consequence of Proposition 0.2.1). Then

$$\varepsilon_k = \frac{1 - \omega^k}{1 - \omega} = \omega^{k-1} + \omega^{k-2} + \dots + 1,$$

is also an algebraic integer and satisfies $1 - \omega^k = \varepsilon_k (1 - \omega)$. Moreover,

$$\varepsilon_k^{-1} = \frac{1 - \omega}{1 - \omega^k} = \frac{1 - \omega^{k\overline{k}}}{1 - \omega^k} = \omega^{k(\overline{k} - 1)} + \omega^{k(\overline{k} - 2)} + \dots + 1,$$

is also an algebraic integer. This means ε_k is a unit in \mathcal{O}_{ω} . So upon setting $\varepsilon = \prod_{k \in (\mathbb{Z}/p^e\mathbb{Z})^*} \varepsilon_k$, we conclude that

$$p = \varepsilon (1 - \omega)^{\varphi(p^e)},$$

and therefore

$$p\mathcal{O}_{\omega} = \mathfrak{p}_{\omega}^{\varphi(p^e)}.$$

Since the degree of $\mathbb{Q}(\omega)$ is $\varphi(p^e)$, the fundamental equality implies that \mathfrak{p}_{ω} is prime (otherwise any prime factor has ramification index at least $\varphi(p^e)$) and that $f_p(\mathfrak{p}_{\omega}) = 1$. This proves the first two statements. For the last two statements, $1, \omega, \ldots, \omega^{\varphi(p^e)-1}$ is a basis for $\mathbb{Q}(\omega)/\mathbb{Q}$ since ω is a primitive element for $\mathbb{Q}(\omega)/\mathbb{Q}$. Now let $\omega_1, \ldots, \omega_{\varphi(p^e)}$ be the conjugates of ω with $\omega_1 = \omega$. Then

$$\Phi_{p^e}(x) = \prod_{1 \le i \le \varphi(p^e)} (x - \omega_i).$$

Now ?? and ?? (since $\mathbb{Q}(\omega)/\mathbb{Q}$ is Galois) give the first and last equalities in the following chain respectively:

$$d(1,\lambda,\ldots,\lambda^{\varphi(p^e)}) = \pm \prod_{\substack{1 \le i,j \le \varphi(p^e)\\i \ne j}} (\omega_i - \omega_j)^2 = \pm \prod_{\substack{1 \le i \le \varphi(p^e)}} \Phi'_{p^e}(\omega_i) = \pm \operatorname{N}_{\mathbb{Q}(\omega)/\mathbb{Q}}(\Phi'_{p^e}(\omega)).$$

It remains to show $N_{\mathbb{Q}(\omega)/\mathbb{Q}}(\Phi'_{p^e}(\omega)) = \pm p^{p^{(e-1)(ep-e-1)}}$. To this end, Equation (2) implies

$$(x^{p^{e-1}} - 1)\Phi_{p^e}(x) = x^{p^e} - 1,$$

and differentiating gives

$$(p^{e-1} - 1) x^{p^{e-1} - 1} \Phi_{p^e}(x) + (x^{p^{e-1}} - 1) \Phi'_{p^e}(x) = p^e x^{p^e - 1}.$$

Now set $x = \omega$ and let $\xi = \omega^{p^{e-1}}$ to obtain

$$(\xi - 1) \Phi_{n^e}'(\omega) = p^e \omega^{-1},$$

where ξ is a primitive p-th root of unity. As $N_{\mathbb{Q}(\xi)/\mathbb{Q}}(1-\xi)=p$ from our previous work, we compute

$$\begin{split} \mathbf{N}_{\mathbb{Q}(\omega)/\mathbb{Q}}(1-\xi) &= \prod_{k \in (\mathbb{Z}/p^e\mathbb{Z})^*} (1-\xi^k) \\ &= \omega^{p+2p+\dots+(p^{e-1}-1)p} \left(\prod_{k \in (\mathbb{Z}/p\mathbb{Z})^*} (1-\xi^k)\right)^{p^{e-1}} \\ &= \omega^{\frac{p^n(p^{n-1}-1)}{2}} \left(\prod_{k \in (\mathbb{Z}/p\mathbb{Z})^*} (1-\xi^k)\right)^{p^{e-1}} \\ &= \left(\prod_{k \in (\mathbb{Z}/p\mathbb{Z})^*} (1-\xi^k)\right)^{p^{e-1}} \\ &= \mathbf{N}_{\mathbb{Q}(\xi)/\mathbb{Q}} (1-\xi)^{p^{e-1}} \\ &= p^{p^{e-1}}, \end{split}$$

where the first and second to last equalities follow by ?? since $\mathbb{Q}(\omega)/\mathbb{Q}$ and $\mathbb{Q}(\xi)/\mathbb{Q}$ are Galois. Thus $N_{\mathbb{Q}(\omega)/\mathbb{Q}}(\xi-1)=\pm p^{p^{e^{-1}}}$. Our previous identity is equivalent to

$$\Phi'_{p^e}(\omega) = \frac{p^e \omega^{-1}}{(\xi - 1)},$$

and multiplicativity of the norm together with ?? give

$$N_{\mathbb{Q}(\omega)/\mathbb{Q}}(\Phi'_{p^e}(\omega)) = \frac{p^{\varphi(p^e)e} N_{\mathbb{Q}(\omega)/\mathbb{Q}}(\omega^{-1})}{N_{\mathbb{Q}(\omega)/\mathbb{Q}}(\xi - 1)} = \pm p^{\varphi(p^e)e - p^{e - 1}}.$$

This completes the proof.

With Lemma 0.2.1 we can prove \mathcal{O}_{ω} is monogenic in full generality:

Proposition 0.2.2. Let $\mathbb{Q}(\omega)$ be the cyclotomic number field generated by a primitive n-th root of unity ω . Then $\mathbb{Q}(\omega)$ is monogenic where

$$\mathcal{O}_{\omega} = \mathbb{Z}[\omega].$$

Proof. The claim is trivial when n=1 so assume $n \geq 2$. We will now prove the claim when $n=p^e$ for a prime p and $e \geq 1$. By Lemma 0.2.1, $1, \omega, \ldots, \omega^{\varphi(p^e)-1}$ is a basis for $\mathbb{Q}(\omega)/\mathbb{Q}$ and

$$d_{\mathbb{Q}(\omega)/\mathbb{Q}}(1,\omega,\ldots,\omega^{\varphi(p^e)-1}) = \pm p^{\varphi(p^e)e-p^{e-1}}.$$

Then ?? implies

$$p^{\varphi(p^e)e-p^{e-1}}\mathcal{O}_{\omega} \subseteq \mathbb{Z}[\omega] \subseteq \mathcal{O}_{\omega}.$$

Moreover, $\mathbb{F}_{\mathfrak{p}_{\omega}} \cong \mathbb{F}_p$ since \mathfrak{p}_{ω} is a prime above p with $f_p(\mathfrak{p}_{\omega}) = 1$ by Lemma 0.2.1. Therefore $\mathcal{O}_{\omega} = \mathbb{Z} + \mathfrak{p}_{\omega}$ which implies

$$\mathcal{O}_{\omega} = \mathbb{Z}[\omega] + \mathfrak{p}_{\omega}.$$

Multiplying by $1 - \omega$ gives $\mathfrak{p}_{\omega} = (1 - \omega)\mathbb{Z}[\omega] + \mathfrak{p}_{\omega}^2$. Combining with the previous identity results in

$$\mathcal{O}_{\omega} = \mathbb{Z}[\omega] + \mathfrak{p}_{\omega}^2,$$

because $(1 - \omega)\mathbb{Z}[\omega] \subseteq \mathbb{Z}[\omega]$. Iterating this procedure gives

$$\mathcal{O}_{\omega} = \mathbb{Z}[\omega] + \mathfrak{p}_{\omega}^t,$$

for any $t \ge 1$. Taking $t = \varphi(p^e)(\varphi(p^e)e - p^{e-1})$ shows

$$\mathcal{O}_{\omega} = \mathbb{Z}[\omega] + p^{\varphi(p^e)e - p^{e-1}} \mathcal{O}_{\omega} = \mathbb{Z}[\omega],$$

because $p\mathcal{O}_{\omega} = \mathfrak{p}_{\omega}^{\varphi(p^e)}$ by Lemma 0.2.1 and that $p^{\varphi(p^e)e-p^{e-1}}\mathcal{O}_{\omega} \subseteq \mathbb{Z}[\omega]$. This proves the claim in the case n is a prime power. For the general case, let $n = p_1^{e_1} \cdots p_r^{e_r}$ be the prime factorization of n. Then $\omega_i = \omega^{\frac{n}{p_i^{e_i}}}$ is a primitive $p_i^{e_i}$ -th root of unity for $1 \le i \le r$ and $\omega = \omega_1 \cdots \omega_r$. This factorization of ω implies

$$\mathbb{Q}(\omega) = \mathbb{Q}(\omega_1) \cdots \mathbb{Q}(\omega_r).$$

In addition, since $p_1^{e_1}, \ldots, p_r^{e_r}$ are pairwise relatively prime we have

$$\mathbb{Q}(\omega_1)\cdots\mathbb{Q}(\omega_{i-1})\cap\mathbb{Q}(\zeta_i)=\mathbb{Q},$$

for all i. Todo: [xxx]

0.3 The Ideal Norm

Let us now prove some properties about the ideal norm. We first show that it respects localization:

Proposition 0.3.1. Let \mathcal{O}/\mathcal{O} be a Dedekind extension of separable extension L/K and let $D \subseteq \mathcal{O} - \{0\}$ be a multiplicative subset. Then for any fractional ideal \mathfrak{F} of \mathcal{O} , we have

$$N_{\mathcal{O}D^{-1}/\mathcal{O}D^{-1}}(\mathfrak{F}D^{-1}) = N_{\mathcal{O}/\mathcal{O}}(\mathfrak{F})D^{-1}.$$

Proof. Since the ideal norm is multiplicative, it suffices to prove the claim in the case of a prime \mathfrak{P} of \mathcal{O} . Then we must show

$$N_{\mathcal{O}D^{-1}/\mathcal{O}D^{-1}}(\mathfrak{P}D^{-1}) = N_{\mathcal{O}/\mathcal{O}}(\mathfrak{P})D^{-1}.$$

This is immediate from ?? and the definition of the ideal norm.

The ideal norm is also compatible with the field trace:

Proposition 0.3.2. Let \mathcal{O}/\mathcal{O} be a Dedekind extension of degree n separable extension L/K. Then for any $\lambda \in \mathcal{O}$, we have

$$N_{\mathcal{O}/\mathcal{O}}(\lambda\mathcal{O}) = N_{L/K}(\lambda)\mathcal{O}.$$

Proof. In light of Proposition 0.3.1, it suffices to assume \mathcal{O}/\mathcal{O} is a local Dedekind extension. Therefore \mathcal{O} is a discrete valuation ring, \mathcal{O} is a principal ideal domain, and \mathcal{O}/\mathcal{O} admits an integral basis $\alpha_1, \ldots, \alpha_n$ making \mathcal{O} a free \mathcal{O} -module of rank n. Let \mathfrak{p} be the unique prime of \mathcal{O} and π be a uniformizer so that $\mathfrak{p} = \pi \mathcal{O}$. Since the ideal norm and the field norm are both multiplicative and \mathcal{O} and \mathcal{O} are both unique factorization domains, we may assume that λ is prime. Then $\lambda \mathcal{O} = \mathfrak{P}$ for some prime \mathfrak{P} of \mathcal{O} . So on the one hand,

$$N_{\mathcal{O}/\mathcal{O}}(\lambda\mathcal{O}) = \mathfrak{p}^{f_{\mathfrak{p}}(\mathfrak{P})}.$$

As \mathcal{O} is a discrete valuation ring, we have the prime factorization $N_{L/K}(\lambda) = \mu \pi^f$. So on the other hand,

$$N_{L/K}(\lambda)\mathcal{O} = \mathfrak{p}^f$$
.

It now suffices to show that $f = f_{\mathfrak{p}}(\mathfrak{P})$. Todo: [xxx]

The different and discriminant and related to each other via the ideal norm. In particular, the ideal norm of the different is the discriminant:

Proposition 0.3.3. Let \mathcal{O}/\mathcal{O} be a Dedekind extension of a degree n separable extension L/K. Then

$$\mathfrak{d}_{\mathcal{O}/\mathcal{O}} = \mathrm{N}_{\mathcal{O}/\mathcal{O}}(\mathfrak{D}_{\mathcal{O}}/\mathcal{O}).$$

Proof. In view of ??, we may assume \mathcal{O}/\mathcal{O} is a local Dedekind extension. Therefore \mathcal{O} is a discrete valuation ring, \mathcal{O} is a principal ideal domain, and \mathcal{O}/\mathcal{O} admits an integral basis $\alpha_1, \ldots, \alpha_n$ making \mathcal{O} a free \mathcal{O} -module of rank n. Then $\mathfrak{d}_{\mathcal{O}/\mathcal{O}}$ is a principal integral ideal where

$$\mathfrak{d}_{\mathcal{O}/\mathcal{O}} = d_{\mathcal{O}}(\mathcal{O})\mathcal{O}.$$

As \mathcal{O} is a principal ideal domain, every fractional ideal is also principal. So on the one hand, $\mathfrak{C}_{\mathcal{O}/\mathcal{O}} = \lambda \mathcal{O}$ for some nonzero $\lambda \in L$ and $\lambda \alpha_1, \ldots, \lambda \alpha_n$ is a basis of L/K contained in $\mathfrak{C}_{\mathcal{O}/\mathcal{O}}$. Moreover,

$$d_{L/K}(\lambda \alpha_1, \dots, \lambda \alpha_n) = N_{L/K}(\lambda)^2 d_{L/K}(\alpha_1, \dots, \alpha_n),$$

by ?? and that base change matrix from $\alpha_1, \ldots, \alpha_n$ to $\lambda \alpha_1, \ldots, \lambda \alpha_n$ is the multiplication by λ map. Todo: [xxx]