4.2 Alcohols, haloalkanes and analysis

4.2.1 Alcohols

Definitions

•	Term	Definition
	Dehydration	A water molecule is removed from the starting material

- Alcohol structure
 - Functional group = -OH (hydroxyl group)
 - Has polar and non-polar parts
 - The O-H bond is **polar** (oxygen is more electronegative than hydrogen)
 - The side chain is **non-polar**
 - o so alcohol can mix with both polar and non-polar liquids
- Alcohol properties
 - Less volatile + higher melting point than alkanes
 - o Induced dipole-dipole interactions between the non-polar side chains
 - Strong hydrogen bonds + permanent dipole-dipole interactions between alcohol molecules hold them together (stronger than London forces)
 - o Extra heat energy is required to break the strong hydrogen bonds

- Greater water solubility than alkenes
 - o Alkanes are non-polar so they cannot form hydrogen bonds with water
 - o O-H bond in alcohol is polar and forms hydrogen bond with water

- Longer carbon chain = less miscible in water
- More -OH groups = more miscible in water
- Classifying alcohols
 - Primary: -OH group attached to a carbon atom attached to 2 hydrogen atoms + 1 alkyl group
 - Secondary: -OH group attached to a carbon atom attached to 1 hydrogen atom + 2 alkyl groups
 - Tertiary: -OH group attached to a carbon atom attached to no hydrogen atoms + 3 alkyl groups
- (Complete) combustion of alcohols
 - Alcohol + oxygen → carbon dioxide + water
 - Exothermic reaction
 - o A large quantity of energy released in the form of heat
 - o Burn with a clear blue flame
 - More carbon atoms in the alcohol chain = more heat energy released per mole
 - Alcohols undergo complete combustion more often due to the oxygen atom in the molecule
- · Oxidation of alcohols
 - Heat with an oxidising agent ([O])

- Normally acidified dichromate (VI) (Cr₂O₇²⁻ / H⁺)
- o e.g. acidified potassium dichromate (VI) (K₂Cr₂O₇ / H₂SO₄)
- Observations
 - o Cr will be reduced
 - Reaction mixture turn from orange (Cr⁶⁺ in Cr₂O₇²⁻) to green (Cr³⁺)
- Oxidation of primary alcohols
 - Gentle heating + distil = aldehyde formed
 - Aldehyde distilled out of the reaction mixture as it forms to prevent any further reaction (distil)
 - o Acidified dichromate (VI) ions change colour from orange to green

- Heated strongly + reflux + excess of acidified potassium dichromate (VI) = carboxylic acid
 - o Reflux = ensure that all aldehyde formed initially also oxidised to carboxylic acid
 - Excess of oxidising agent = ensure that all alcohol is oxidised

- Oxidation of secondary alcohols
 - Oxidised to ketones with an oxidising agent (acidified dichromate (VI) ions)
 - Ketones cannot be further oxidised
 - Heated under **reflux** with the oxidising agent to ensure that the reaction goes to completion

Propan-2-ol

Propanone

- Oxidation of tertiary alcohols
 - Do not undergo oxidation reactions
 - Acidified dichromate (VI) ions remain orange when added to a tertiary alcohol
- Dehydration of alcohols
 - Heated under reflux with acid catalyst (e.g. concentrated H₂SO₄ / H₃PO₄)
 - Product = an alkene
 - Type = elimination reaction

- EthanolSubstitution reaction of alcohols
 - Alcohols react with halide ions to form haloalkanes
 - Heated under reflux with concentrated acid catalyst & halide ion e.g. H₂SO₄ + NaBr

Ethylene

- Acid need to be concentrated to minimise back reactions
- · Used to produce hydrogen halide in situ when carrying out chemical reactions

Alcohols can be converted to Alkyl Halides with HX acids

•
$$HBr$$

Br + H_2O
 $R-OH$ + NaX
 H_2SO_4
 $R-X$ + $NaHSO_4$ + H_2O

4.2.2 Haloalkanes

Definitions

	Term	Definition
	Nucleophile	An atom or group of atoms which is attracted to an electron-deficient centre or atom, where it donates a pair of electrons to form a new covalent bond
	Nucleophilic substitution	A reaction in which a nucleophile is attracted to an electron-deficient centre or atom, where it donates a pair of electrons to form a new covalent bond
	Hydrolysis	A reaction with water that breaks a chemical compound into two compounds, the H and OH in a water molecule becomes incorporated into the two compounds

• Reactivity of haloalkanes

- Reactivity: alkenes > haloalkanes > alkanes
- Halogen atoms are more electronegative than carbon atoms so the carbon-halogen bond is polar
- δ+ on carbon can attract nucleophiles (contain a lone pair of electrons)
- The nucleophile replaces the halogen atom
- A new compound with a different functional group is formed
- · Hydrolysis mechanism
 - Nucleophilic substitution
 - OH- normally from NaOH
 - OH⁻ (nucleophile) approaches the carbon atom attached to the halogen from the opposite side of halogen to minimise repulsion
 - A lone pair on OH attracted & donated to δ+ carbon atom
 - New bond formed between oxygen atom of OH and the carbon atom
 - Carbon-halogen bond breaks by heterolytic fission
 - · Alcohol + halide ion formed

- Trend in reaction rates of hydrolysis of primary haloalkanes
 - C-F has the greatest bond enthalpy (strongest), C-I has the lowest bond enthalpy (weakest)
 - o Going down the table = larger halogen atom = longer bond = bond becomes weaker
 - Rate: iodoalkanes > bromoalkanes > chloroalkanes > fluoroalkanes
 - Increases as strength of carbon-halogen bond decreases
 - Less energy is needed to break the carbon-halogen bond to start the reaction so the activation energy is lower

- Measuring rate of hydrolysis
 - Set up 3 test tubes of 1 cm³ ethanol and couple drops of 1-chlorobutane / bromobutane / iodobutane
 - Put the test tubes + a test tube with silver nitrate in water bath at 60°C
 - Allow them to reach constant temperature (60°C)
 - Add 1 cm³ of silver nitrate to each test tube quickly + start stop watch
 - Observe time taken for precipitate to form
 - Chlorine = white, bromine = cream, iodine = yellow
 - Speed: iodobutane > bromobutane > chlorobutane
- CFCs
 - Shorthand for chlorofluorocarbons
 - Compounds containing carbon with chlorine and fluorine atoms attached
- Uses of CFCs
 - CFCs are non-flammable and not very toxic so they have a lot of uses
 - o Refrigerants
 - Propellants for aerosols
 - Generating foamed plastics
 - Solvents for dry cleaning and for general degreasing purposes
- Problems associated with CFCs
 - Global warming
 - Breakdown of ozone layers in the atmosphere
- Ozone layer
 - Ozone continually formed and broken down by the action of UV radiation
 - Initially very high energy UV breaks oxygen molecules into oxygen radicals: O₂→ 2O
 - A steady state then set up where rate of ozone formation is the same as the rate of ozone

being broken down: $O_2 + O \rightleftharpoons O_3$

- Equilibrium disturbed by human activities e.g. production and use of CFCs
- How CFCs break down ozone
 - CFCs remain stable until they reach the stratosphere
 - In the stratosphere UV breaks carbon-halogen bond by homolytic fission to form radicals (initiates the breakdown of ozone)
 - Photodissociation (Initiation): e.g. CF₂Cl₂→ CF₂Cl• + Cl•
 - Chlorine radical formed is a very reactive intermediate and can react with an ozone molecule
 - Propagation step 1: $Cl \cdot + O_3 \rightarrow ClO \cdot + O_2$
 - o Propagation step 2: ClO• + O→ Cl• + O2
 - (Overall: $O_3 + O \rightarrow 2O_2$)
 - There is a significant amount of O₃ and free oxygen atoms in the upper atmosphere for reaction
 - Chlorine radical can go on in chain reaction to break down other ozone molecules
- How nitrogen oxide break down ozone
 - Reaction with NO
 - o Initiation: NO → N• + O•
 - Propagation step 1: N• + $O_3 \rightarrow \bullet NO + O_2$
 - Propagation step 2: \bullet NO + O \rightarrow N \bullet + O₂
 - Overall: $O_3 + O \rightarrow 2O_2$
 - Reaction with NO₂

- Initiation: $NO_2 \rightarrow NO \bullet + O \bullet$
- Propagation step 1: $NO \cdot + O_3 \rightarrow NO_2 \cdot + O_2$
- Propagation step 2: $NO_2 \bullet + O \rightarrow NO \bullet + O_2$
- Overall: $O_3 + O \rightarrow 2O_2$
- Alternatives for CFCs
 - Replace the C-Cl bond with stronger C-F bond
 - Hydrochlorofluorocarbons (HCFCs) or hydrofluorocarbons (HFCs) can be used
 - o Still volatile, non-toxic and non-flammable
 - Still damage the ozone layer
 - Replace the C-Cl bond with a C-H bond
 - Use hydrocarbons
 - The C-H bond is much weaker and the molecules don't persist until they reach the upper atmosphere
 - o They are very flammable

4.2.3 Organic synthesis

Definitions

	Term	Definition
•	Fractional distillation	The separation of components in a liquid mixture by their different boiling points into fractions with different compositions
	Drying agent	An anhydrous solid that readily absorbs water from the mixture to become hydrated

Quickfit apparatus set

1-Pear shaped flask, 2-Stopper, 3-Round bottom flask, 4-Stillhead, 5-Liebig condenser,

- · Heating under reflux
 - To prepare organic solid without boiling off solvent, reactants or products
 - Water bath can be used rather than Bunsen if can be carried out below 100°C
 - Heating mantle can be used for flammable liquids
 - Anti-bumping granules added to liquid so it boils smoothly
 - o Otherwise large bubbles will form at bottom so the glassware vibrate / jump
 - Glass joints greased lightly so apparatus comes apart easily after experiment
 - Condensers should be clamped loosely as the outer jacket is very fragile + kept in upright position
 - Never put stopper in top-closed system or pressure would build up and the apparatus would explode
 - Rubber tubing used to connect the inlet of condenser to tap and outlet to the sink (water always enters the condenser at the bottom and leaves at the top)

Distillation

- Separates a pure liquid from impurities
- · Flask clamped by neck
- Still head connected to the flask
- Condenser connected to rubber tubing for water (water enters at the bottom)
- Flask used to collect the distillate so the apparatus is not airtight
- Heat the mixture gently (make sure the temperature doesn't reach the boiling point of the less volatile compound)
- Purifying organic products using a separating funnel
 - When there are two layers inside the collection flask: one organic layer, one aqueous / water layer
 - Ensure tap of the separating funnel is closed
 - Pour in mixture and place a stopper in the top of the funnel + invert to mix the contents
 - Allow layers to settle
 - Can't tell the layers: add water to the mixture, the layer that increase in volume is the aqueous layer
 - Place conical flask under the separating funnel
 - Remove stopper + open the tap until whole lower layer has left the funnel
 - If the top layer is accidentally poured then pour the content in the first conical flask back into the separating funnel and restart
 - · Repeat this several times until the bottom layer is almost completely removed
- Redistillation
 - Organic compounds may have relatively close boiling points so the sample may still have some impurities left over
 - Carry out a second distillation (or more)
 - Only collect product with the exact boiling point of the target compound
 - Try to not overheat the mixture
 - Narrower boiling point range = purer product
- Drying an organic product

- There may be water left in the organic product
- Add organic liquid to conical flask
- Add some drying agent with spatula + swirl the contents
 - o e.g. CaCl₂ for drying hydrocarbons, CaSO₄ / MgSO₄ for general drying
- Put a stopper on to prevent product from evaporating away
- Leave for about 10 minutes
- If the solid stuck in a lump water is still present so add more drying agent until it becomes a fine powder
- After all the water is absorbed the organic mixture can be separated by filtration / simply decanting the liquid
- Synthetic routes

- · Predicting properties of organic compounds
 - Find all functional groups
 - Find the properties and reactions for each functional group

4.2.4 Analytical technique

Definitions

•	Term	Definition
	Fragmentation	The process in mass spectrometry that causes a positive ion to split into smaller pieces, one of which is a positive fragment ion
	Fragment ions	Ions formed from the breakdown of the molecular ion in a mass spectrometer

- Vibrations in bonds
 - Bonds vibrate at a particular frequency
 - o Stretch: moving along the line between atoms so the distance between them changes
 - o Bend: results in change in bond angle
 - Bonds only absorb radiation with the same frequency as the natural frequency of the bond

- The frequency of the light depends on bond strength, bond length and atomic masses at both ends of the bond
- o Most bonds absorb at a frequency of 300 4000 cm⁻¹, i.e. IR radiation
- Absorbing IR radiation causes covalent bonds to absorb energy and vibrate more
- · Greenhouse effect
 - Most of the Sun's radiation is **short wave** and is relatively unaffected by atmospheric gases
 - They pass through the atmosphere to the Earth's surface and some is reflected as long wave radiation
 - C=O, O-H and C-H bonds absorb radiation in the IR range which causes bond in gas molecules to vibrate
 - o e.g. CO₂, H₂O and CH₄ molecules
 - The vibrating bonds eventually re-emit the energy as radiation that increases the temperature of the atmosphere close to the Earth's surface
 - This creates incentives to reduce CO₂ emission to reduce global warming
- Infrared spectroscopy
 - Determine the functional groups present
 - Sample placed in IR spectrometer
 - IR radiation beams with wavenumber 200-4000 cm⁻¹ is passed through the sample
 - Molecules absorb some IR + emerging beam is analysed to identify frequencies absorbed
 - IR spectroscopy is usually connected to a computer that plots a graph of transmittance against wavenumber
 - The computer uses the fingerprint region to identify the compound
 - Fingerprint region: region below 1500 cm⁻¹ with unique peaks to identify particular molecule
 - All organic compounds produce a peak 2850-3100 from C-H bond
 - Look at other peaks to identify other bonds present
- Uses of IR spectroscopy in real life
 - Remote sensors analyse IR spectra of vehicle emissions to detect pollutants
 - IR-based breathalysers pass beams of IR through breathed out gas + detect IR absorbance
 - o Detecting C-O bonds in alcohol molecules
 - O-H bond is present in water vapour breathed out so it is not used
 - o Blood test taken if the result suggests that the person is too drunk to drive safely
- Mass spectroscopy
 - Used to analyse gaseous samples
 - · Consists of 4 basic regions

- Some molecular ions break down into smaller fragments by fragmentation
- Analysing the structure from a mass spectrum
 - M_r = the m/z value of the **rightmost peak**
 - There might be a small peak after M⁺ peak called the M+1 peak due to the presence of carbon-13 isotope
 - Other peaks are due to fragment ions
- Common m/z values for fragment ions

m/z value Ion (remember to include the + charge)
--

	15	CH ₃ ⁺
	29	CH ₃ CH ₂ ⁺
	31	CH ₂ OH⁺
•	41	C ₃ H ₅ , C ₂ H ₃ N
	43	CH ₃ CH ₂ CH ₂ ⁺ / CH ₃ CO / C ₃ H ₇
	45	CH ₃ CH ₂ O ⁺
	49	CH ₃ CH ₂ CH ₂ ⁺

- Identifying the organic compound
 - Elemental analysis: empirical formula
 - Mass spectrometry: determine molecular mass + identify sections of the molecule
 - IR spectrometry: identify bonds + functional groups present