

Box
03C0 PATENT
CEDAR-44649

#5

January 30, 2001

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of: Rostyslav Stoika et al.
Serial No. 09/687,911
Filed: October 13, 2000
For: MODULATING ACTIVATION OF LYMPHOCYTES AND
SCREENING POTENTIAL IMMUNOMODULATING
AGENTS BY TARGETING PITUITARY TUMOR
TRANSFORMING GENE (PTTG) EXPRESSION AND/OR
FUNCTION
Examiner: Unknown
Unit: --

DECLARATION UNDER 37 C.F.R. § 1.821 (f) and (g)

Assistant Commissioner for Patents
Washington, D. C. 20231

Dear Sir:

I HEREBY CERTIFY THAT THIS CORRESPONDENCE IS BEING DEPOSITED WITH THE UNITED STATES POSTAL SERVICE AS FIRST CLASS MAIL IN AN ENVELOPE ADDRESSED TO THE ASSISTANT COMMISSIONER FOR PATENTS	
WASHINGTON, D. C. 20231, ON	January 30, 2001
BY	DATE
ANN WEISS	
January 30, 2001	
(DATE OF SIGNATURE)	

I, Nisan A. Steinberg, Ph.D., hereby state, as required by 37 C.F.R. § 1.821(f), that the content of the paper and computer readable copies of the enclosed sequence listing, submitted in accordance with 37 C.F.R. § 1.821(c) and (e), respectively, are to the best of my knowledge, the same, and are the same as the sequences disclosed in the application as filed.

I hereby also state, as required by 37 C.F.R. § 1.821(g), that to the best of my knowledge, the enclosed submission includes no new matter.

Respectfully submitted,

By:

Nisan A. Steinberg, Ph.D.
Registration No. 40,345

555 West Fifth Street
Los Angeles, California 90013-1010
Ofc: 213/ 896-6665
Fax: 213/896-6600

SEQUENCE LISTING

<110> Rostyslav Stoika (Inventor)
Gregory A. Horwitz (Inventor)
Xun Zhang (Inventor)
Shlomo Melmed (Inventor)

<120> MODULATING ACTIVATION OF LYMPHOCYTES AND
SCREENING POTENTIAL IMMUNOMODULATING AGENTS BY TARGETING
PITUITARY TUMOR TRANSFORMING GENE (PTTG) EXPRESSION AND/OR
FUNCTION

<130> CEDAR-44649

<140> 09/687,911
<141> 2000-10-13

<150> 09/569,956
<151> 2000-05-12

<150> 08/894,251
<151> 1999-07-23

<150> PCT/US86/21463
<151> 1997-11-21

<150> 60/031,338
<151> 1996-11-21

<160> 19

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 974
<212> DNA
<213> Rattus rattus

<400> 1
aattcggcac gagccaacct tgagcatctg atccctttgg cttcccttc ctatcgctga 60
gctggtaggc tggagacagt tggttgggtg ccaacatcaa caaacgattt ctgtagttta 120
gcgttatga ccctggcgtg aagatthaag gtctggatta agcctgttga ctctccagc 180
tacttctaaa ttttgtgca taggtgcct ggtctctgtt gctgcttagt tcttccagcc 240
ttcctcaatg ccagtttat aatatgcagg tctctcccct cagtaatcca ggatggctac 300
tctgatctt gttgataagg ataacgaaga gccaggcagc cggttggcat ctaaggatgg 360
attgaagctg ggctctggtg tcaaagcctt agatggaaa ttgcaggtt caacgccacg 420
agtccggaaa gtgttcggtg cccccaggctt gcctaaagcc agcaggaagg ctctggaaac 480
tgtcaacaga gttactgaaa agccagtgaa gagtagtaaa cccctgcaat cggaaacagcc 540
gactctgagt gtgaaaaaga tcaccgagaa gtctactaag acacaaggct ctgctcctgc 600
tcctgatgat gcctacccag aaatagaaaa gttttcccc ttgcatacctc tagattttga 660
gagttttgac ctgcctgaag agcaccagat ctcaacttctc cccttgaatg gagtgcctct 720

catgatcctg aatgaagaga gggggcttga gaagctgctg cacctggacc ccccttcccc 780
tctgcagaag cccttcctac cgtggaaatc tgatccgttgcgtctccctc ccagcgccct 840
ctccgctctg gatgttgaat tgccgcctgt ttgttacgat gcagatattt aaacgtctta 900
ctcccttata gtttatgtaa gttgtattaa taaagcattt gtgtgtaaaa aaaaaaaaaa 960
aaactcgaga gtac 974

<210> 2
<211> 199
<212> PRT
<213> Rattus rattus

<400> 2
Met Ala Thr Leu Ile Phe Val Asp Lys Asp Asn Glu Glu Pro Gly Ser
1 5 10 15
Arg Leu Ala Ser Lys Asp Gly Leu Lys Leu Gly Ser Gly Val Lys Ala
20 25 30
Leu Asp Gly Lys Leu Gln Val Ser Thr Pro Arg Val Gly Lys Val Phe
35 40 45
Gly Ala Pro Gly Leu Pro Lys Ala Ser Arg Lys Ala Leu Gly Thr Val
50 55 60
Asn Arg Val Thr Glu Lys Pro Val Lys Ser Ser Lys Pro Leu Gln Ser
65 70 75 80
Lys Gln Pro Thr Leu Ser Val Lys Lys Ile Thr Glu Lys Ser Thr Lys
85 90 95
Thr Gln Gly Ser Ala Pro Ala Pro Asp Asp Ala Tyr Pro Glu Ile Glu
100 105 110
Lys Phe Phe Pro Phe Asp Pro Leu Asp Phe Glu Ser Phe Asp Leu Pro
115 120 125
Glu Glu His Gln Ile Ser Leu Leu Pro Leu Asn Gly Val Pro Leu Met
130 135 140
Ile Leu Asn Glu Glu Arg Gly Leu Glu Lys Leu Leu His Leu Asp Pro
145 150 155 160
Pro Ser Pro Leu Gln Lys Pro Phe Leu Pro Trp Glu Ser Asp Pro Leu
165 170 175
Pro Ser Pro Pro Ser Ala Leu Ser Ala Leu Asp Val Glu Leu Pro Pro
180 185 190
Val Cys Tyr Asp Ala Asp Ile
195

<210> 3
<211> 779
<212> DNA
<213> Homo sapiens

<400> 3
atggccgcga gttgtggttt aaaccaggag tgccgcgcgt ccgttacccg cgccctcaga 60
tgaatgcggc tgttaagacc tgcaataatc cagaatggct actctgtatct atgttgataa 120
ggaaaatgga gaaccaggca cccgtgttgt tgctaaggat gggctgaagc tggggtctgg 180
accttcaatc aaaggcttag atgggagatc tcaagttca acaccacgtt ttggcaaaac 240
gttcgatgcc ccaccagcct tacctaaagc tactagaaag gctttggaa ctgtcaacag 300
agctacagaa aagtctgtaa agaccaagg acccctcaaa caaaaacagc caagctttc 360
tgccaaaaag atgactgaga agactgttaa agcaaaaaagc tctgttccctg cctcagatga 420
tgcctatcca gaaatagaaa aattcttcc cttaaatcct ctagactttg agagtttga 480
cctgcctgaa gagcaccaga ttgcgcacct ccccttgagt ggagtgcctc tcatgatcct 540

tgacgaggag agagagcttg aaaagctgtt tcagctggc cccccttcac ctgtgaagat 600
gccctctcca ccatggaaat ccaatctgtt gcagtctcct tcaagcattc tgtcgaccct 660
ggatgttcaa ttgcacccctg tttgctgtga catagatatt taaaatttctt agtgcttcag 720
agtttgttgc tatttgttatt aataaagcat tcttaaacag ataaaaaaaaaaaaaaa 779

<210> 4
<211> 202
<212> PRT
<213> Homo sapiens

<400> 4
Met Ala Thr Leu Ile Tyr Val Asp Lys Glu Asn Gly Glu Pro Gly Thr
1 5 10 15
Arg Val Val Ala Lys Asp Gly Leu Lys Leu Gly Ser Gly Pro Ser Ile
20 25 30
Lys Ala Leu Asp Gly Arg Ser Gln Val Ser Thr Pro Arg Phe Gly Lys
35 40 45
Thr Phe Asp Ala Pro Pro Ala Leu Pro Lys Ala Thr Arg Lys Ala Leu
50 55 60
Gly Thr Val Asn Arg Ala Thr Glu Lys Ser Val Lys Thr Lys Gly Pro
65 70 75 80
Leu Lys Gln Lys Gln Pro Ser Phe Ser Ala Lys Lys Met Thr Glu Lys
85 90 95
Thr Val Lys Ala Lys Ser Ser Val Pro Ala Ser Asp Asp Ala Tyr Pro
100 105 110
Glu Ile Glu Lys Phe Phe Pro Phe Asn Pro Leu Asp Phe Glu Ser Phe
115 120 125
Asp Leu Pro Glu Glu His Gln Ile Ala His Leu Pro Leu Ser Gly Val
130 135 140
Pro Leu Met Ile Leu Asp Glu Glu Arg Glu Leu Glu Lys Leu Phe Gln
145 150 155 160
Leu Gly Pro Pro Ser Pro Val Lys Met Pro Ser Pro Pro Trp Glu Ser
165 170 175
Asn Leu Leu Gln Ser Pro Ser Ser Ile Leu Ser Thr Leu Asp Val Glu
180 185 190
Leu Pro Pro Val Cys Cys Asp Ile Asp Ile
195 200

<210> 5
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide.

<400> 5
gatgctctcc gcactctggg aatccaatct g 31

<210> 6
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
 <223> Synthetic oligonucleotide.

 <400> 6
 ttcacaagg tt gggggcgcc cagctgaaac ag 32

 <210> 7
 <211> 32
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> Synthetic oligonucleotide specific to pCI-neo
 plasmid. vector.

 <400> 7
 ggcttagatg ta cttaatacga ctcactatag gc 32

 <210> 8
 <211> 31
 <212> DNA
 <213> Homo sapiens

 <400> 8
 ctatgtcaca gcaa acagg gt ggcaattcaa c 31

 <210> 9
 <211> 56
 <212> PRT
 <213> Homo sapiens

 <400> 9
 Met Ile Leu Asp Glu Glu Arg Glu Leu Glu Lys Leu Phe Gln Leu Gly
 1 5 10 15
 Pro Pro Ser Pro Val Lys Met Pro Ser Pro Pro Trp Glu Ser Asn Leu
 20 25 30
 Leu Gln Ser Pro Ser Ser Ile Leu Ser Thr Leu Asp Val Glu Leu Pro
 35 40 45
 Pro Val Cys Cys Asp Ile Asp Ile
 50 55

<210> 10
 <211> 168
 <212> DNA
 <213> Homo sapiens

<400> 10
 atgatccctg acgaggagag agagcttgaa aagctgtttc agctggggcc cccttcacct 60
 gtgaagatgc cctctccacc atggaaatcc aatctgttgc agtctccttc aagcattctg 120
 tcgaccctgg atgttgaatt gccacctgtt tgctgtgaca tagatatt 168

<210> 11
 <211> 16
 <212> DNA

<213> Artificial Sequence

<220>

<223> Anchored primer sequence.

<400> 11

aagctttttt tttttg

16

<210> 12

<211> 13

<212> DNA

<213> Artificial Sequence

<220>

<223> Arbitrary primer sequence.

<400> 12

aagcttgctg ctc

13

<210> 13

<211> 16

<212> DNA

<213> Artificial Sequence

<220>

<223> n = a, g, or c; Anchored primer sequence.

<400> 13

aagctttttt tttttn

16

<210> 14

<211> 194

<212> PRT

<213> Mus musculus

<400> 14

Met Ala Thr Leu Ile Phe Val Asp Lys Asp Asn Glu Glu Pro Gly Arg
1 5 10 15

Arg Leu Ala Ser Lys Asp Gly Leu Lys Leu Gly Thr Gly Val Lys Ala
20 25 30

Leu Asp Gly Lys Leu Gln Val Ser Thr Pro Arg Val Gly Lys Val Phe
35 40 45

Asn Ala Pro Ala Val Pro Lys Ala Ser Arg Lys Ala Leu Gly Thr Val
50 55 60

Asn Arg Val Ala Glu Lys Pro Met Lys Thr Gly Lys Pro Leu Gln Pro
65 70 75 80

Lys Gln Pro Thr Leu Thr Gly Lys Lys Ile Thr Glu Lys Ser Thr Lys
85 90 95

Thr Gln Ser Ser Val Pro Ala Pro Asp Asp Ala Tyr Pro Glu Ile Glu
100 105 110

Lys Phe Phe Pro Phe Asn Pro Leu Asp Phe Asp Leu Pro Glu Glu His
115 120 125

Gln Ile Ser Leu Leu Pro Leu Asn Gly Val Pro Leu Ile Thr Leu Asn
130 135 140

Glu Glu Arg Gly Leu Glu Lys Leu Leu His Leu Gly Pro Pro Ser Pro

145 150 155 160
Leu Lys Thr Pro Phe Leu Ser Trp Glu Ser Asp Pro Lys Pro Pro Ser
 165 170 175
Ala Leu Ser Thr Leu Asp Val Glu Leu Pro Pro Val Cys Tyr Asp Ala
 180 185 190
Asp Ile

<210> 15
<211> 945
<212> DNA
<213> Mus musculus

<400> 15
tcttgaacctt gttatgttagc aggaggccaa atttgagcat cctctggct tctctttata 60
gcagagattg taggctggag acagtttga tgggtgccaa cataaaactga tttctgttaag 120
agttgagtgtt tttatgaccc tggcgtgcag atttaggatc tggattaagc ctgttgactt 180
ctccagctac ttataaattt ttgtgcatacg gtgcctggg taaagcttgg tctctgttac 240
tgcgttagttt ttccagccgt ctcaatgccaa atattcaggc tctctccctt agagtaatcc 300
agaatggcta ctcttatctt tggtgataag gataatgaag aaccggcccg ccgtttggca 360
tctaaggatg gggtgaagct gggcactgggt gtcaaggcct tagatggaa attgcagggtt 420
tcaacgccttc gagtcggcaa agtgttcaat gctccagccg tgcctaaagc cagcagaaag 480
gctttgggaa cagtcAACAG agttgccgaa aagcctatga agactggcaa acccctccaa 540
ccaaaacacgc cgacccctgac tggggaaaaag atcacccgaga agtctactaa gacacaaaagc 600
tctgttcctg ctcctgatga tgcctaccca gaaatagaaaa agttctccc ttcaatcct 660
ctagattttg acctgcctga ggagcaccag attcacttc tcccctgaa tggcgtgcct 720
ctcatcaccc tgaatgaaga gagagggctg gagaagctgc tgcacatctggg ccccccttagc 780
cctctgaaga cacccttct atcatggaa tctgatccgc tgtactctcc tcccagtgc 840
ctctccactc tggatgttga attgcccctt gttgttacg atgcagatat ttaaacttct 900
tacttcttgc tagttctgt atgtatgttga tattaataaa gcatt 945

<210> 16
<211> 56
<212> PRT
<213> Rattus rattus

<400> 16
Met Ile Leu Asn Glu Glu Arg Gly Leu Glu Lys Leu Leu His Leu Asp
1 5 10 15
Pro Pro Ser Pro Leu Gln Lys Pro Phe Leu Pro Trp Glu Ser Asp Pro
20 25 30
Leu Pro Ser Pro Pro Ser Ala Leu Ser Ala Leu Asp Val Glu Leu Pro
35 40 45
Pro Val Cys Tyr Asp Ala Asp Ile
50 55

<210> 17
<211> 56
<212> PRT
<213> Mus musculus

<400> 17
Ile Thr Leu Asn Glu Glu Arg Gly Leu Glu Lys Leu Leu His Leu Gly

1 5 10 15
Pro Pro Ser Pro Leu Lys Thr Pro Phe Leu Ser Trp Glu Ser Asp Pro
20 25 30
Leu Tyr Ser Pro Pro Ser Ala Leu Ser Thr Leu Asp Val Glu Leu Pro
35 40 45
Pro Val Cys Tyr Asp Ala Asp Ile
50 55

<210> 18
<211> 168
<212> DNA
<213> Rattus rattus

<400> 18
atgatcctga atgaagagag ggggcttgag aagctgctgc acctggaccc cccttcccct 60
ctgcagaagc ctttctacc gtggaaatct gatccgttgc cgtctctcc cagcgccctc 120
tccgctctgg atgtgaatt gccgcctgtt tgttacgatg cagatatt 168

<210> 19
<211> 168
<212> DNA
<213> Mus musculus

<400> 19
atcacccctga atgaagagag agggctggag aagctgctgc atctggcccc cccttagccct 60
ctgaagacac ctttctatc atggaaatct gatccgttgt actctctcc cagtgcctc 120
tccactctgg atgtgaatt gccgcctgtt tgttacgatg cagatatt 168

