Lab 5: Proof by Contraposition

Mathematics for Computer Science

จงใช้การพิสูจน์โดยการแย้งสลับที่ (proof by contradiction) พิสูจน์ข้อความต่อไปนี้

1. กำหนด x , $y \in R$ ถ้า x + y < 100 แล้ว x < 35 หรือ y < 65

2. กำหนด $x \in R$ ถ้า $x + \sqrt{2}$ เป็นจำนวนตรรกยะแล้ว x เป็นจำนวนอตรรกยะ

3. กำหนด $n \in \mathbb{Z}$ ถ้า n^2 หารด้วย 3 ลงตัวแล้ว n จะหารด้วย 3 ลงตัว

4. กำหนด $a,b\in Z$ ถ้า $a^2(b^2-2b)$ เป็นจำนวนเต็มคี่แล้ว a และ b เป็นจำนวนเต็มคี่

5. กำหนด $a,b,c\in Z$ ถ้า bc หารด้วย a ไม่ลงตัวแล้ว b จะหารด้วย a ไม่ลงตัว

6. กำหนด $x \in R$ ถ้า $x^2 + 5x < 0$ แล้ว x < 0

7. กำหนด $a,b\in Z$ ถ้า a+b และ ab เป็นจำนวนเต็มคู่ แล้ว a และ b เป็นจำนวนเต็มคู่

8. กำหนด $a,b\in Z$ ถ้า $a^2(b+3)$ เป็นเลขคู่แล้ว a เป็นเลขคู่ หรือ b เป็นเลขคี่

9. หาก n เป็นกำลังเลขสองของจำนวนเต็ม แล้ว $n\ mod\ 4$ จะเท่ากับ 0 หรือ 1 <u>คำแนะนำ</u> กำหนด $n=k^2$ แล้วแยกกรณี $k\ mod\ 4$

10. ให้พิสูจน์ประพจน์ "ถ้า n เป็นจำนวนเต็มคู่ แล้ว 3n-5 เป็นจำนวนเต็มคี่" โดย

10.1 พิสูจน์โดยตรง (direct proof)

10.2 พิสูจน์โดยหาข้อขัดแย้ง (proof by contradiction)

10.3 พิสูจน์โดยการแย้งสลับที่ (proof by contraposition)

(1) ท่านนด \times , γ \in R กับ χ + γ < 100 แล้ว \times < 35 หรือ γ < 65 $\rho \rightarrow (q \vee r)$ สมมุติ $x \ge 35$ และ $y \ge 65$ $\sim (q \vee r) \equiv \sim q \wedge \sim r$.. X + Y > 35 + 65 :- X + Y > 100 (2.) กินนด × ∈ R ถ้า × + √2 เป็นจน. ดารรกยะแล้ว × เป็นจน. ดารรกยะ สมมุติ × เป็น จน. ธารรกยะ $\Re X = \underline{M} ; M, N \in I$ $X + \sqrt{2} = \underline{m} + \sqrt{2}$ โดยนิยาม จน. สรรกยะ + จน.อสรรกยะ = จน.อสรรกยะ : x + 12 112 94. 2003319= ~p 3 กำหนด $n \in I$ กำ n^2 หารดีวย 3 ลงตัว เหลือ nन= भारतीय उ तालीं P(bugi) (q 4a) ลิลมดี ก พรดิวย 3 ลงตัว โดย 3/ก 4(เหตุ) 20 n = 3k $n^2 = (3k)^2 = 9k^2$ $= 3(3k^2)$

1:3k2 € I

: 3 /n2 p(4n)

ብ በግ ክ ክ ል በ ይ ፤ ጠ ል በ ($b^{2}-2b$) $b^{2}-2b$) $b^{2}-2b$ ($b^{2}-2b$) ($b^{2}-2b$

: $9k_1^2 k_2^2 - 8k_1^2 k_2 \in I$: $a^2(b^2-2b)$ is $a_1.66126 \sim p$

Thereon $a, b, c \in I$ in bc within bThereon $a, b, c \in I$ in bc within bThereon $a, b, c \in I$ in bc within bTherefore a bTherefore aTherefore aTherefo

∴ kc e I ∴ albc ~p

6 ninha XER ñi
$$x^2+5x$$
 < 0 has $x < 0$

ลีมมชิ
$$\times > 0$$
 ~q
$$\therefore \text{ ยกพิลังลองทั้งสองฝั่ง } \times^{1} > 0$$

$$\therefore X^{1} + 5X \geqslant 0 \qquad \sim \rho$$

7 กำหนด a, b
$$\in$$
 I กำ a+b และ ab เป็นาน. เดิมคู่แลือ a, b เป็นาน. เดิมคู่แลือ a, b เป็นาน. เดิมคู่แลือ a, b เป็นาน. เดิมคู่

$$\begin{array}{ll}
\sqrt{392} & a = 2k, & b = 2k_1 + 1 \\
\therefore & a + b = 2k_1 + (2k_2 + 1) \\
& = 2k_1 + 2k_2 + 1 \\
& = 2(k_1 + k_1) + 1
\end{array}$$

引電
$$a = 2k_1 + 1$$
 $b = 2k_2 + 1$
∴ $ab = (2k_1 + 1)(2k_2 + 1)$
 $= 4k_1k_2 + 2k_1 + 2k_2 + 1$
 $= 2(2k_1k_2 + k_1 + k_2) + 1$
∴ $a + b$ いるこ ab いれるれ、かみが ~p

 \mathfrak{J} กำหนด $a,b \in I$ กัก $\mathfrak{a}^{2}(b+3)$ เป็นเลงคู่ แล้ว a เป็นเลงคู่ หรือ b เป็นเลงคุ่ หรือ b

(9) หาก ก เป็นเลงกำลังสองของจน. เติม แล้ว ก mod 4 จะเท่ากับ 0 โปยนิยาม $\exists k, \in \mathcal{I}$ ชา้จัง $n = k^2$ ชา้อ 1

กรณี 1 ก=0 (mod 4)

กรณี 2 $n \equiv 1 \pmod{4}$

$$k_1^2 = 4k_1 + 1$$

 $n \mod 4 = 0, 1$

กรณี 1 จะได้ 4 หาร ก แล้ว เหลือเศษ 0 กรณี 1 จะได้ 4 หาร ก แล้ว เหลือเศษ 1 10 ให้พัฐจน์ ประพจน์ "ถ้า ก เป็นจน. เต็มคู่ แล้ว 2ก-3 เป็นจน. เต็มคั่ "
โทย (0.1) direct proof
ใน ก เป็นจน, เต็มคุ่
โดยจิ๋ยาม ปิน ∈ I ที่ชั่ว ก = 2k
3n-s = 3(2k)-5
= 6k-6+1
= 2(3k-3)+1
∴ 3k-3 ∈ I
∴ 3n-5 เป็นจน. เต็มคื่

10.3 proof by contraposition

สมหติ 3n-5 เป็นจน เต็มคุ่ 3n = 2k+5 3n = 2(k+2)+1 3n = 2(k+2)+1