Homework 18 sample solution

Due 11/18/16

November 15, 2016

The algorithm below is a reduction that uses the solution to the Bander-snatch (BS) problem to solve the JubJub (JJ) problem. You may assume that this reduction is correct.

```
Input: data: array of positive integers
Input: n: size of data
Output: JubJub(data)

1 Algorithm: JubJubReduction

2 cap = max(data)

3 for i = 1 to n do

4 | x = min(data)

5 | if x > cap then

6 | return false

7 | end

8 | Bandersnatch(data)

9 end

10 return true
```

Suppose we know that BS has a worst-case complexity that is bounded above by O(B(n)) and below by $\Omega(b(n))$, while the worst-case complexity of JJ is known to be O(J(n)) and $\Omega(j(n))$, where B(n), b(n), J(n), and j(n) are all $\Omega(n^{10})$. Answer the following questions about the JubJubReduction algorithm.

- 1. What is the worst-case time complexity of JubJubReduction? JubJubReduction takes O(nB(n)) time. The call to Bandersnatch in line
 - 8, takes O(B(n)) time, which dominates the $\Theta(n)$ complexity for line 4 and $\Theta(1)$ complexity for lines 5 and 6. Since each iteration of the for loop takes O(B(n)), the total time for the for loop is O(nB(n)), which dominates the $\Theta(n)$ complexity of line 2 and $\Theta(1)$ complexity of line 10.
- 2. Which of the following four statements must be true based on JubJubReduction? Please justify your answer.
 - (a) BS is O(J(n)/n).
 (b) BS is Ω(j(n)/n).
 (c) JJ is O(nB(n)).

(d) JJ is $\Omega(nb(n))$.

The correct statements are b and c. JJ must be O(nB(n)) because Jub-JubReduction is an O(nB(n)) algorithm that solves JJ; the optimum algorithm cannot be any worse than this. BS must be $\Omega(j(n)/n)$ because if it were less than j(n)/n, JubJubReduction would be an algorithm that solves JJ in less than j(n) time, which is impossible based on the complexity of JJ.