

Tunable, Narrowband Filter for LWIR Hyperspectral Imaging

Contract No.: F33615-99-C-1427

Technical Monitor: Mr. Ray Haren

Air Force Research Laboratory

Sensors Directorate

Targeting Branch

Wright-Patterson Air Force Base

Dayton, OH

Presented by:
Ed Johnson, Ph.D..
President, Ion Optics

Ion Optics, Inc.
411 Waverly Oaks Rd.
Suite 144
Waltham, MA 02452
(781) 788-8777

Ion Optics, Inc.

Contributors

**A. Bodkin
J. Daly, M. Roderick
Ion Optics**

**R. Kerr, J. Noto,
Scientific Solutions
550 Middlesex St., Unit 210
North Chelmsford, MA 01863**

**A. Tuchman, AVI
138 Tappan St.
Brookline, MA**

*LWIR Hyperspectral Imaging
JAWS Symposium
June 16, 1999*

**M. Eisman, B. Karch, R. Haren
USAF Research Laboratory
Wright-Patterson AFB
Dayton, OH**

**A.J. Ratkowski, R. Lockwood,
E.R. Huppi
USAF Research Laboratory
Hanscom AFB
Lexington, MA**

Ion Optics, Inc.

Program Objectives

- Fabricate a prototype tunable filter based on liquid crystal-filled Fabry-Perot etalon (LCE).**
- Enable voltage-controlled, tunable, narrow-band filtering at LWIR wavelengths**
- Bandpass tunable at 60 Hz frame rates**
- Enable rapid scene characterization for camouflaged target, or chemical identification**
- Ability to build up Hyperspectral data cube with scanning software**

Digital IR Microcam Camera Set-up

- Digital 8-12 micron IR Microcam Camera mated with a IR filter wheel holder.
- Using existing F1, 33°x25°field of view lens

LWIR Hyperspectral Imaging
JAWS Symposium
June 16, 1999

Hyperspectral Liquid Crystal Etalon

LWIR Hyperspectral Imaging
JAWS Symposium
June 16, 1999

Potential Applications: Camouflage Penetration

LWIR Hyperspectral Imaging
JAWS Symposium
June 16, 1999

LWIR Comparison of Target & Background

Paint		Camo
U.S.	Foreign	Clutter
9.1-9.3	9.7-9.9	9.4-9.6
FWHM: 0.2 to 0.4 μ m		
From J. Cedarquist		

Phase I filter
passbands

ERIM data shows typical paint, tree canopy and camouflage spectra in the 8 to 12 um range. We selected filters to capture data around the SCUD spectral feature. This was compared to data from pictures on either side of the feature

LWIR Comparison of Camouflage Paints

FTIR spectrum of camouflage paints. Our measured data of several paint samples shows that the spectral features are actually much larger then those provided by ERIM

Potential Applications: Standoff Plume Detection

Fabry-Perot Etalon

Phase difference between two successive rays is the optical path plus the phase shift from two reflections

$$T_x = \left[1 - \frac{A}{1-R} \right]^2 \cdot \left[\frac{1}{1 + \left[\frac{4 \cdot R}{(1-R)^2} \right] \cdot \sin\left(\frac{2 \cdot \pi \cdot n(v) \cdot d \cdot \cos(\theta)}{\lambda_0} + \delta(\lambda)\right)^2} \right]$$

Where:

A = mirror absorption

R = mirror reflectivity

$n(v)$ = LC index of refraction, and is a function of applied voltage

d = LC thickness

λ_0 = free space wavelength of incident light

$\delta(\lambda)$ = phase shift on reflection

θ = incident angle of rays entering LC

LCE Transmission Model

LCE Transmission with 11.25 μm layer

Three runs at $n(v) = 1.572$, mid, and 1.857

**Transmission tuning range:
8.7 to 10.55 μm**

Bandpass: 0.1 μm FWHM

Free Spectral Range: 2.4 μm

Changing Gap Changes Interference Order, Bandpass

LCE Transmission with 5.75 um layer

**5.75 um gap, 3rd order
0.22 um bandpass**

LCE Transmission with 11.25 um layer

**11.25 um gap, 5th order
0.10 um bandpass**

**8.5 um gap, 4th order
0.13 um bandpass**

LWIR Hyperspectral Imaging
JAWS Symposium
June 16, 1999

Ion Optics, Inc.

Reflection phase is critical to LCE gap size

Wavelength (um)	Phase shift (deg)	Wavelength (um)	Phase shift (deg)
8	150.8551	9.6	176.7255
8.1	153.7042	9.7	177.7442
8.2	156.2353	9.8	178.7416
8.3	158.5013	9.9	179.7212
8.4	160.5476	10	180.6861
8.5	162.4122	10.1	181.6394
8.6	164.1258	10.2	182.5835
8.7	165.7132	10.3	183.5211
8.8	167.1947	10.4	184.4543
8.9	168.5868	10.5	185.3855
9	169.903	10.6	186.3166
9.1	171.1545	10.7	187.2498
9.2	172.3507	10.8	188.1869
9.3	173.4996	10.9	189.1298
9.4	174.608	11	190.0805
9.5	175.6816		

***Calculated from thin film
model of dielectric mirror.
Phase shift is a function of
wavelength.***

Apparent Index Vs. Incidence Angle

Plot of effective index of refraction of the LC, as the applied voltage causes the molecules to tilt. Note that the effective index also depends on the angle in which the light ray traverses the crystal.

System Issues

Filter before the lens

Bandpass peak shifts radial across FPA

System Issues

Filter after the lens

Bandpass widens depending on F#

System Design: Relay Reduces Stray Light

LWIR Hyperspectral Imaging
JAWS Symposium
June 16, 1999

LCE/camera System Model

Liquid Crystal Etalon

- Physical Diameter: 50.8 mm
- Clear Aperture: 45 mm
- Refractive Index: 1.57-1.86 μm
- Free Spectral Range: 2.4 μm
- Gap (LC thickness): 8.5 μm
- Tuning range: 8.7 to 10.7 μm
- Bandpass FWHM: 0.13 μm
- Resolution: 1.3%
- Finesse ≥ 20
- Mirror material: ZnSe

Task 2: IR Camera Trade-off

- *Model calculates MRTD at 200 ft. based on LCE properties and camera f#, FOV, spectral band pass, etc.*
- *Must determine system limitations with best available cameras*
- *Cameras to be considered: QWIP, HgCdTe, Microbolometer, BST*

LCE & Camera Test set-up

LWIR Hyperspectral Imaging
JAWS Symposium
June 16, 1999

Ion Optics, Inc.

Conclusions

- Rapidly tunable narrow band LWIR filter***
- Convert LWIR camera to Hyperspectral imager***
- Create Hyper-data cube with scanning software***
- Applications include chemical and target identification***
- Suitable for terrestrial and space born applications***
- Prototypes available in 2000***

LWIR Hyperspectral Imaging

JAWS Symposium

June 16, 1999

Ion Optics, Inc.