CS 179: LECTURE 17

CONVOLUTIONAL NETS IN CUDNN

LAST TIME

- Motivation for convolutional neural nets
- Forward and backwards propagation algorithms for convolutional neural nets (at a high level)
- Foreshadowing to how we will use cuDNN to do it

TODAY

- Understanding cuDNN's internal representations for convolutions and pooling objects
- Implementing convolutional nets using cuDNN

REPRESENTING CONVOLUTIONS

- Adding on to tensors and their descriptors, we now also have cudnnFilterDescriptor_t (to describe a conv kernel/filter) and cudnnConvolutionDescriptor_t (to describe an actual convolution)
- We also have a cudnnPoolingDescriptor_t to represent a pooling operation (max pool, mean pool, etc.)
- These have their own constructors, accessors, mutators, and destructors

CONVOLUTIONAL FILTERS

- cudnnFilterDescriptor t
 - Allocate by calling cudnnCreateFilterDescriptor (cudnnFilterDescriptor t *filterDesc)
 - Free by calling cudnnDestroyFilterDescriptor (cudnnFilterDescriptor t filterDesc)
 - We will be using 4D filters only
 - The filter itself is just an array of numbers on the device

CONVOLUTIONAL FILTERS

- cudnnFilterDescriptor t
 - Set by calling cudnnSetFilter4dDescriptor (cudnnFilterDescriptor_t filterDesc, cudnnDataType_t datatype, cudnnTensorFormat_t format, int k, int c, int h, int w)
 - Use TENSOR_FORMAT_NCHW for format parameter
 - \blacksquare k = # of output channels, \Box = # of input channels

CONVOLUTIONAL FILTERS

- cudnnFilterDescriptor t
 - Get contents by calling cudnnGetFilter4dDescriptor (cudnnFilterDescriptor_t filterDesc, cudnnDataType_t *datatype, cudnnTensorFormat_t *format, int *k, int *c, int *h, int *w)
 - As usual, this function returns by setting pointers to output parameters

- cudnnConvolutionDescriptor t
 - Allocate with cudnnCreateConvolutionDescriptor (cudnnConvolutionDescriptor_t *convDesc)
 - Free with cudnnDestroyConvolutionDescriptor (cudnnConvolutionDescriptor t convDesc)
 - We will be considering 2D convolutions only

- cudnnConvolutionDescriptor t

- cudnnConvolutionDescriptor t
 - pad_h and pad_w are respectively the number of rows and columns of zeros to pad the input with – use 0 for both
 - lacktriangleq u and v are respectively the vertical and horizontal stride of the convolution (to downsample w/o pooling) use 1 for both
 - Use 1 for both dilation_h and dilation_w (don't worry about what dilation means)

- cudnnConvolutionDescriptor_t
 - cudnnConvolutionMode_t is an enum saying whether to
 do a convolution or cross-correlation. For this set, use
 CUDNN CONVOLUTION for the mode argument.
 - cudnnDataType_t is an enum indicating the kind of data
 being used (float, double, int, long int, etc.). For this set, use
 CUDNN_DATA_FLOAT for the computeType argument.

- cudnnConvolutionDescriptor t

- Given descriptors for an input and the filter we want to convolve it with, we can get the shape of the output via cudnnGetConvolution2dForwardOutputDim(cudnnConvolutionDescriptor_t convDesc, cudnnTensorDescriptor_t inputTensorDesc, cudnnFilterDescriptor_t filterDesc, int *n, int *c, int *h, int *w)
- As usual, n, c, h, and w are set by reference as outputs

USING THESE IN A CONV NET

- All of cuDNN's functions for forwards and backwards passes in conv nets will extensively use these descriptor types
- This is why we are establishing them up front
- One more aside before discussing the actual functions for doing the forward and backward passes...

CONVOLUTION ALGORITHMS

- There are many ways to perform convolutions!
 - Do it explicitly
 - Turn it into a matrix multiplication
 - Use FFT to transform into frequency domain, multiply pointwise, and inverse FFT back
- cuDNN lets you choose the algorithm you want to use for all operations in the forward and backward passes

CONVOLUTION ALGORITHMS

- Different algorithms are better suited for different situations!
 - Most important factor: amount of global memory available for intermediate computations (workspace)
- Tradeoff b/w time and space complexity faster algorithms tend to need more space for intermediate computations
- cuDNN lets you specify preferences, and it gives you an algorithm that best matches your preferences

CONVOLUTION ALGORITHMS

- The choice of algorithm is represented via the enums cudnnConvolution<type>Preference_t and cudnnConvolution<type>Algo_t, and cudnnConvolution<type>AlgoPerf_t, where <type> is one of Fwd, BwdFilter, and BwdData
- Feel free to look at NVIDIA docs for these types and related functions, but we will be handling them for you in HW6

FORWARD PASS: CONVOLUTION

- The forward pass for a conv layer with input $\mathbf{X}^{(\ell-1)}$, filter $\mathbf{K}^{(\ell)}$, and bias $b^{(\ell)}$ is $\mathbf{Z}^{(\ell)} = \mathbf{K}^{(\ell)} \otimes \mathbf{X}^{(\ell-1)} + b^{(\ell)}$
- In HW6, we will give you code that deals with the bias term
- Your job will be to perform the convolution $K^{(\ell)} \otimes X^{(\ell-1)}$ using cudnnConvolutionForward() see next slide for a description of how to call this function

FORWARD PASS: CONVOLUTION

cudnnConvolutionForward(cudnnHandle t handle, void *alpha, cudnnTensorDescriptor t xDesc, void *x, cudnnFilterDescriptor t kDesc, void *k, cudnnConvolutionDescriptor t convDesc, cudnnConvolutionFwdAlgo t algo, void *workSpace, size t workSpaceBytes, void *beta, cudnnTensorDescriptor t yDesc, void *y)

FORWARD PASS: CONVOLUTION

- This function sets the contents of the output tensor y to alpha[0] * conv(k, x) + beta[0] * y
- The convolution algorithm, workspace, and size of the workspace will be supplied to you in HW6 (unnecessary complication for you to consider for this set)
- With alpha[0] = 1 and beta[0] = 0, this is exactly what you need to call!

BACKWARD PASS: CONVOLUTION

- With the neural net architecture given, we will have:
 - The output of the convolution $\mathbf{Z}^{(\ell)} = \mathbf{K}^{(\ell)} \otimes \mathbf{X}^{(\ell-1)} + b^{(\ell)}$
 - The gradient $\nabla_{\mathbf{Z}^{(\ell)}}[J]$ with respect to the output of the convolution (propagated backwards from the next layer)
- We want to find the gradients with respect to:
 - The filter $\mathbf{K}^{(\ell)}$ and the bias $b^{(\ell)}$ to do gradient descent
 - The input data $\mathbf{X}^{(\ell-1)}$ to propagate backwards

BACKWARD PASS: CONVOLUTION

- Key to argument names
 - x is the input data $\mathbf{X}^{(\ell-1)}$
 - k is the filter $\mathbf{K}^{(\ell-1)}$
 - dz is the gradient $\nabla_{\mathbf{Z}^{(\ell)}}[J]$ with respect to the output $\mathbf{Z}^{(\ell)}$
 - dx is the gradient $\nabla_{\mathbf{X}^{(\ell-1)}}[J]$ with respect to input data $\mathbf{X}^{(\ell-1)}$
 - dk is the gradient $\nabla_{\mathbf{K}^{(\ell)}}[J]$ with respect to the filter $\mathbf{K}^{(\ell)}$
 - db is the gradient $\nabla_{b^{(\ell)}}[J]$ with respect to the bias $b^{(\ell)}$

BACKWARD PASS: CONVOLUTION

- Key to argument names
 - As always, the alpha and beta arguments are pointers to mixing parameters
 - If we are using a buffer out to accumulate the results of
 performing an operation op on an input buffer in, we have
 out = alpha[0] * op(in) + beta[0] * out

GRADIENT WRT BIAS

- cudnnConvolutionBackwardBias(
 cudnnHandle_t handle,
 void *alpha,
 cudnnTensorDescriptor_t dzDesc, void *dz,
 cudnnConvolutionDescriptor_t convDesc,
 void *beta,
 cudnnTensorDescriptor t dbDesc, void *db)
- We will handle this for you in HW6

GRADIENT WRT FILTER

cudnnConvolutionBackwardFilter(cudnnHandle t handle, void *alpha, cudnnTensorDescriptor t xDesc, void *x, cudnnTensorDescriptor t dzDesc, void *dz, cudnnConvolutionDescriptor t convDesc, cudnnConvolutionBwdFilterAlgo t algo, void *workSpace, size t workSpaceBytes, void *beta, cudnnFilterDescriptor t dkDesc, void *dk)

GRADIENT WRT INPUT DATA

cudnnConvolutionBackwardData(cudnnHandle t handle, void *alpha, cudnnFilterDescriptor t kDesc, void *k, cudnnTensorDescriptor t dzDesc, void *dz, cudnnConvolutionDescriptor t convDesc, cudnnConvolutionBwdDataAlgo t algo, void *workSpace, size t workSpaceBytes, void *beta, cudnnTensorDescriptor t dxDesc, void *dx)

- cudnnPoolingDescriptor t
 - Allocate with cudnnCreatePoolingDescriptor (cudnnPoolingDescriptor t *poolingDesc)
 - Free with cudnnDestroyPoolingDescriptor (cudnnPoolingDescriptor t poolingDesc)
 - We will only be using 2D pooling operations in HW6

- cudnnPoolingDescriptor t
 - Set with cudnnSetPooling2dDescriptor(cudnnPoolingDescriptor_t poolingDesc, cudnnPoolingMode_t poolingMode, cudnnNanPropagation_t nanProp, int windowHeight, int windowWidth, int verticalPad, int horizontalPad, int verticalStride, int horizontalStride)

- cudnnPoolingDescriptor t
 - cudnnPoolingMode_t is an enum specifying the kind of
 pooling to do, i.e. max (CUDNN_POOLING_MAX) or average
 (CUDNN_POOLING_AVERAGE_COUNT_INCLUDE_PADDING or
 CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING)
 - For nanProp, use CUDNN_PROPAGATE_NAN
 - Use 0 for horizontal and vertical padding
 - Make the strides equal to the window dimensions

- cudnnPoolingDescriptor t
 - Get with cudnnSetPooling2dDescriptor (cudnnPoolingDescriptor_t *poolingDesc, cudnnPoolingMode_t *poolingMode, cudnnNanPropagation_t *nanProp, int *windowHeight, int *windowWidth, int *verticalPad, int *horizontalPad, int *verticalStride, int *horizontalStride)

- We can get the output shape of a pooling operation on some input using the function
 - cudnnGetPooling2dForwardOutputDim(
 cudnnPoolingDescriptor_t poolingDesc,
 cudnnTensorDescriptor_t inputDesc,
 int *n, int *c, int *h, int *w)
 - n, c, h, and w are output parameters to be set by reference

- To perform a pooling operation in the forward direction, use
 - cudnnPoolingForward(
 cudnnHandle_t handle,
 cudnnPoolingDescriptor_t poolingDesc,
 void *alpha,
 cudnnTensorDescriptor_t xDesc, void *x,
 void *beta,
 cudnnTensorDescriptor t zDesc, void *z)

- To differentiate with respect to a pooling operation, use
 - cudnnPoolingBackward(
 cudnnHandle_t handle,
 cudnnPoolingDescriptor_t poolingDesc,
 void *alpha,
 cudnnTensorDescriptor_t zDesc, void *z,
 cudnnTensorDescriptor_t dzDesc, void *dz,
 void *beta,
 cudnnTensorDescriptor_t dxDesc, void *dx)

- Here, x is the input to the pooling operation, dx is its gradient, z is the output of the pooling operation, and dz is its gradient
- alpha and beta are pointers to mixing parameters as usual
- In all cases, the last buffer given as an argument is the output array

SUMMARY

- Today, we discussed how to use cuDNN to
 - Perform convolutions
 - Backpropagate gradients with respect to convolutions
 - Perform pooling operations and backpropagate their gradients
- For HW6, these slides should be a good alternative reference to the NVIDIA docs.