Kapitel 1

Övningar

Ö1.1 (a) 1 (b)
$$\sqrt{14}$$
 (c) \sqrt{n} (d) $\sqrt{\frac{(2n+1)n(n+1)}{6}}$

Ö1.2 (a) 1 (b) 3 (c) 1 (d)
$$n$$

Ö1.5 (a)
$$\mathcal{D}f = \{x \in \mathbb{R}^2 \mid x_1 \neq x_2\}, \mathcal{R}f = \mathbb{R}$$
 (b) $\mathcal{D}f = \mathbb{R}^2, \mathcal{R}f = \mathbb{R}^+$ (c) $\mathcal{D}f = \mathbb{R}^2, \mathcal{R}f = (0, 1]$ (d) $\mathcal{D}f = \{x \in \mathbb{R}^2 \mid (x_1, x_2) \neq (0, 0)\}, \mathcal{R}f = \mathbb{R}^+$

Ö1.6 (a) En cirkel i origo med radie 1 (b) En cirkel i
$$(2,0)$$
 med radie 2 (c) En kvadrat med hörn i $(0,-1)$, $(1,0)$, $(0,1)$ och $(-1,0)$ (d) Punkten $(0,0)$

Ö1.7 Inre punkt, yttre punkt, randpunkt, öppen, sluten, begränsad:
(a)
$$(1,1)$$
, $(0,0)$, $(1,0)$, ja, nej, nej (b) $(1,0)$, $(0,1)$, $(0,0)$, nej, ja, ja
(c) $(3,0)$, $(\frac{3}{2},0)$, $(1,0)$, nej, nej (d) $(1,0)$, saknas, $(0,0)$, ja, nej, nej

Ö1.11 (a)
$$\frac{3}{5}$$
 (b) $\frac{-4}{5}$ (c) $\frac{16}{125}$ (d) $\frac{9}{125}$

Ö1.12 (a)
$$\frac{27}{8}$$
 (b) $-\frac{3}{20}$ (c) 18 (d) 84

Ö1.13 (a)
$$x_2$$
 (b) $-3 + 2x_1 + 2x_2 + 2x_3$ (c) $\begin{bmatrix} 2x_1 \\ x_2 \end{bmatrix}$ (d) $\begin{bmatrix} 1 + x_1 \\ 1 + x_2 \end{bmatrix}$

Ö1.14 (a)
$$\begin{bmatrix} \frac{\pi}{2} - x \\ 1 \end{bmatrix}$$
 (b) $\begin{bmatrix} x \\ 1 \end{bmatrix}$ (c) $\begin{bmatrix} 1 \\ 1 + x_1 \\ 1 + \mathbf{e}(x_1 + x_2 - 1) \end{bmatrix}$ (d) $\begin{bmatrix} 2x_2 - 1 \\ 2x_1 - 1 \end{bmatrix}$

Ö1.15 (a)
$$z = 1$$
 (b) $z = x$ (c) $z = 2x + 4y - 3$ (d) $z = \frac{3}{2} - \frac{1}{2}x - \frac{1}{2}y$

Ö1.16 (a)
$$6xz^2$$
 (b) 0 (c) $6x^2$ (d) 0

Ö1.20 (a) 0 (b)
$$2t(1-t^2)e^{-t^2}$$
 (c) $3t^2\cos(t^3)$ (d) e^t

(b)
$$\frac{\partial f}{\partial u} = 28(v-u), \frac{\partial f}{\partial v} = 14(2u-v)$$

(c)
$$\frac{\partial f}{\partial u} = 2\cos(2u - v), \frac{\partial f}{\partial v} = -\cos(2u - v)$$

(d)
$$\frac{\partial f}{\partial u} = v e^u$$
, $\frac{\partial f}{\partial v} = e^v$

Ö1.22 (a)
$$x_1^2 + x_2^2 - x_1 x_2$$
 (b) $\frac{1}{3} - x_1 - 4x_1 x_2 + x_1^2 + x_2^2 + x_3^2$ (c) $2 + 6x_1 + 2x_2 - 4x_1 x_2 - 2x_1^2 - x_2^2$ (d) $4 - 9x_1 + 9x_1^2 - x_2^2$

Ö1.24 (a) 4 (b) 0 (c)
$$-55296$$
 (d) -1

Ö1.25 (a)
$$\begin{bmatrix} 3 & 2 \end{bmatrix}$$
 (b) $\begin{bmatrix} 2x+y & 2y+x \end{bmatrix}$ (c) $\begin{bmatrix} 3x^2+h^2 & 0 \end{bmatrix}$ (d) $\begin{bmatrix} 0 & \frac{\sin(y+h)-\sin(y-h)}{2h} \end{bmatrix}$

Kapitel 2

Övningar

Ö2.2 (a) 1 (b)
$$\frac{6}{5}$$
 (c) $\frac{2}{1+e}$ (d) $\frac{2\cos(1)}{\sin(1)+\cos(1)}$

Ö2.5 (a)
$$\begin{bmatrix} 1 & 1 \end{bmatrix}^{\top}$$
 (b) $\begin{bmatrix} 1 & -1 \end{bmatrix}^{\top}$ (c) $\begin{bmatrix} \frac{5}{4} & \frac{1}{4} \end{bmatrix}^{\top}$ (d) $\begin{bmatrix} -1 & \frac{1}{2} \end{bmatrix}^{\top}$

Ö2.6 (a) Ja,
$$y = \sqrt{4 - x^2}$$
 (b) Ja, $y = \sqrt{4 - x^2}$ (c) Nej (d) Ja, $y = -\sqrt{4 - x^2}$

Ö2.8 (a)
$$\begin{bmatrix} \frac{1}{6} & \frac{1}{2} \\ \frac{1}{6} & -\frac{1}{2} \end{bmatrix}$$
 (b) $\begin{bmatrix} \frac{1}{2} & 0 \\ -\frac{1}{2} & 1 \end{bmatrix}$ (c) $\begin{bmatrix} \frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{3} & -\frac{1}{6} \end{bmatrix}$ (d) $\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{bmatrix}$

Ö2.9 Låt
$$\hat{v} = v/|v|$$
.

(a)
$$\nabla f(1,1) = (\cos(1), -\cos(1)), D_{\hat{v}}(1,1) = \frac{\cos(1)}{\sqrt{5}}$$

(b)
$$\nabla f(-1,0,2) = (1,-1,1), D_{\hat{v}}(-1,0,2) = 1$$

(c)
$$\nabla f(-1,0,2) = (1,-1,1), D_{\hat{v}}(-1,0,2) = 0$$

(d)
$$\nabla f(7,2) = (14, -24), D_{\hat{v}}(7,2) = -5\sqrt{2}$$

Ö2.10 (a)
$$7 \text{ och } -7$$
 (b) $2 \text{ och } -2$ (c) $\sqrt{3} \text{ och } -\sqrt{3}$ (d) $2\sqrt{3} \text{ och } -2\sqrt{3}$

Ö2.11 (a)
$$x - y = 2$$
 (b) $x + 3y + 2z = 0$ (c) $2x - z = -1$ (d) $6x + 3y + 2z = 18$

Ö2.12 (a)
$$\begin{bmatrix} 10 & 5 & 0 & 0 & 2 \end{bmatrix}^{\top}$$
 (b) $\begin{bmatrix} 0 & 2 & 3 & 1 \end{bmatrix}^{\top}$ (c) $\begin{bmatrix} 0 & 1 & -1 & 3 \end{bmatrix}^{\top}$ (d) $\begin{bmatrix} 2 & 0 & 2 \end{bmatrix}^{\top}$

Ö2.13 (a)
$$\frac{r}{|r|^2}$$
 (b) $-\frac{r}{|r|^3}$ (c) $\frac{r}{|r|}$ (d) $-\frac{r}{|r|}e^{-|r|}$

Ö2.15 (a) 1 och 0 (b) 1 och
$$-\frac{1}{8}$$
 (c) 0 och -2 (d) 3 och $\frac{3}{28}$.

Ö2.16 (a)
$$(0,0)$$
 min (b) $(-\frac{1}{2},0)$ sadel (c) $(0,0)$ max (d) $(0,0)$ max

Ö2.17 (a) 1 (b)
$$\frac{1}{4}$$
 (c) 7 (d) $\frac{5}{4}$

Ö2.18 (a)
$$(1,1)$$
 min (b) $(0,0)$ sadel och $(1/6,1/12)$ min

(c)
$$(0,0,0)$$
 sadel och $(8,16,0)$ min

(d)
$$(1,2)$$
 sadel, $(2,1)$ min, $(-1,-2)$ sadel och $(-2,-1)$ max

Ö2.19 (a)
$$(0,0,1)$$
 (b) $(1,1,1)$ (c) $(0,0,1)$ (d) $(2,2,1)$ och $(-2,-2,1)$

Ö2.20 (a) 2 (b)
$$\sqrt{2}$$
 (c) $\sqrt{10} + 1$ (d) $\sqrt{2}$

Ö2.21 (a)
$$4\sqrt{2}/9$$
 (b) \sqrt{n} (c) $\frac{4\sqrt{5}}{125}$ (d) 84375

Ö2.23 (a)
$$\frac{1}{12\sqrt{3}}S^2$$
 (b) $\frac{1}{16}S^2$ (c) $(\frac{S}{6})^{3/2}$ (d) $\frac{1}{6}(\frac{2S}{3+\sqrt{3}})^{3/2}$

Ö2.24 (a)
$$(0,0)$$
 (b) $(0,\frac{1}{2})$ (c) $(1,0)$ (d) $(0,\frac{1}{2},0)$

Ö2.25 (a)
$$\frac{5}{18}$$
 (b) $\frac{1}{2}$ (c) $\frac{1}{4}$ (d) $\frac{1}{3}$

Kapitel 3

Övningar

Ö3.1 (a) 1 (b) 0 (c) 1 (d) $\frac{1}{4}$

Ö3.2 (a) $\frac{1}{4}$ (b) $\frac{8}{15}(2\sqrt{2}-1)$ (c) $\frac{2}{3}$ (d) $\ln(\frac{9}{8})$

Ö3.3 (a) $\frac{4}{3}$ (b) $\frac{1}{12}$ (c) π (d) $\frac{1}{16}(1+3e^4)$

Ö3.4 (a) $\frac{1}{24}$ (b) $\frac{31}{8}$ (c) 0 (d) $\frac{1}{8}$

Ö3.6 (a) 0 (b) 0 (c) $\frac{1}{6}(e^9 - 1)$ (d) $\frac{1}{3}\ln(9)$

Ö3.7 (a) 0 (b) $\frac{1}{8}$ (c) $\frac{15}{2}$ (d) 49

Ö3.8 (a) $\frac{3\pi}{2}$ (b) 272 (c) $\frac{15\pi}{4}$ (d) $\pi(1 - \exp(-R^2))$

Ö3.9 (a) $\frac{2\pi}{3}$ (b) $\frac{2}{3}$ (c) $\frac{32}{9}$ (d) $\frac{256}{9}$

Ö3.10 (a) 0 (b) $\frac{1}{3}$ (c) $\ln(2) - 1$ (d) $\ln(2)$

Ö3.11 (a) 27 (b) $\frac{1}{24}$ (c) $\frac{9\pi}{8}$ (d) $\frac{1}{24}$

Ö3.12 (a) $\frac{1}{6}$ (b) $\frac{1}{60}$ (c) $\frac{1}{120}$ (d) $\frac{1}{20}$

Ö3.13 (a) $\frac{1}{8}$ (b) $\frac{\pi}{2}$ (c) 19 (d) $\frac{128\pi}{15}$

Ö3.14 (a) $\frac{4\pi}{3}R^3$ (b) $\frac{148\pi}{3}$ (c) $\frac{4\pi}{5}$ (d) 0

Ö3.15 (a) $\frac{4\pi}{3}$ (b) 8π (c) $\frac{4\pi}{3}(4-\frac{5}{\sqrt{2}})$ (d) $\frac{8\pi}{3}(2-\sqrt{2})$

Ö3.16 (a) 8 (b) $\frac{1}{4}(2-\sqrt{2})\pi$ (c) $\frac{12}{5}\pi$ (d) $\frac{\pi}{8}$

Ö3.17 (a) $\frac{\pi}{3}$ (b) 64 (c) 1024 (d) $\frac{\pi}{24}$

Ö3.18 (a) 8π (b) 0 (c) $\frac{24\pi}{5}$ (d) $\frac{24\pi}{15}$

Ö3.19 (a) 0 (b) $\frac{1}{2}$ (c) $\frac{1}{3}$ (d) $\frac{1}{2}$

 $\ddot{\textbf{O3.20}} \ \ (a) \ (\tfrac{7a}{12}, \tfrac{7a}{12}, \tfrac{7a}{12}) \qquad (b) \ (\tfrac{5a}{9}, \tfrac{a}{2}, \tfrac{a}{2}) \qquad (c) \ (\tfrac{a}{2}, \tfrac{a}{2}, \tfrac{a}{2}) \qquad (d) \ (\tfrac{2a}{3}, \tfrac{2a}{3}, \tfrac{a}{2})$

Ö3.21 (a) $\frac{1}{2}\pi\varrho hR^4$ (b) $\varrho hR\pi(\frac{R^3}{4}+\frac{Rh^2}{3})$ (c) $\varrho hR\pi(\frac{R^3}{4}+\frac{Rh^2}{3})$ (d) $\frac{3}{2}\pi\varrho hR^4$

Ö3.22 (a) $\frac{2}{3}\varrho L^5$ (b) $\frac{2}{3}\varrho L^5$ (c) $\frac{2}{3}\varrho L^5$ (d) $\frac{1}{6}\varrho L^5$

Ö3.23 (a) divergent
$$+\infty$$
 (b) divergent $+\infty$ (c) konvergent $\frac{\mathrm{e}-\mathrm{e}^{-1}}{2}$ (d) konvergent 2π

Ö3.24 (a)
$$p < 1$$
 (b) $p > 1$ (c) alla p (d) inga p

Ö3.25 (a)
$$2\pi$$
 (b) 4π (c) π^2 (d) 2π

Kapitel 4

Övningar

Ö4.1 (a)
$$(t, \sqrt{4-t^2})$$
 (b) $(\sqrt{4-t^2}, t)$ (c) $(2\cos(t), 2\sin(t))$ (d) $(\sqrt{t}, \sqrt{4-t})$

Ö4.3 (a)
$$x = -2t, y = 1, z = \frac{1}{2}\pi + t, t \in \mathbb{R}$$
 (b) $x = 1, y = t, z = 2t, t \in \mathbb{R}$ (c) $x = 1 + t, y = 3 + 2t, t \in \mathbb{R}$ (d) $x = -1, y = 4t, z = \pi^2 + 2\pi t, t \in \mathbb{R}$

Ö4.4 (a)
$$x=t, y=\frac{1}{2}t+\frac{1}{2}, t\in\mathbb{R}$$
 (b) $x=t, y=1-t, z=2t-1, t\in\mathbb{R}$ (c) $x=t, y=1, z=0, t\in\mathbb{R}$ (d) $x=t, y=3t+2, t\in\mathbb{R}$

Ö4.5 (a)
$$2\pi\sqrt{a^2+b^2}$$
 (b) $\mathrm{e}-\mathrm{e}^{-1}$ (c) $\frac{1}{27}(13^{3/2}-8)$ (d) $\frac{14}{3}$

Ö4.6 (a)
$$2\pi + \frac{2}{3}$$
 (b) $\frac{5}{2}\sqrt{42}$ (c) $\frac{5\sqrt{5}-1}{6} + 2$ (d) $\frac{5}{8}$

Ö4.7 (a)
$$-\frac{2}{3}$$
 (b) $\frac{27}{28}$ (c) $-mg$ (d) 2π

Ö4.8 (a)
$$\frac{1}{2}$$
 (b) $\frac{3}{2}$ (c) $\frac{3}{2}$ (d) 0

Ö4.9 (a) 63 (b)
$$-\frac{5}{2}$$
 (c) 17 (d) 24

Ö4.10 (a)
$$x + y + z = 1$$
 (b) $2x - 3z = 2$ (c) $x - y = 1$ (d) $z = 0$

Ö4.12 (a)
$$x = 1$$
 (b) $x + y + z = \sqrt{3}$ (c) $z = 1$ (d) $x - y + \sqrt{2}z = 2$

Ö4.13 (a)
$$x + 2y - 2z = -3$$
 (b) $-x + 2z = 1$ (c) $-4y + z + 3 = 0$ (d) $x - z = 0$

Ö4.14 (a)
$$8\pi$$
 (b) $3\sqrt{14}$ (c) $\sqrt{14}\pi$ (d) $\frac{2}{3}(2\sqrt{2}-1)\pi$

Ö4.15 (a)
$$4\pi$$
 (b) $\frac{8}{3}\pi$ (c) 0 (d) $\frac{4}{3}\pi$

Ö4.16 (a)
$$2\pi$$
 (b) 0 (c) $\frac{1}{2}\pi$ (d) $\frac{1}{2}\pi$

Ö4.17 (a) 0 (b)
$$\pi$$
 (c) 0 (d) $\frac{5}{3}\pi$

Ö4.18 (a)
$$\frac{3}{4}$$
 (b) 45 (c) $\frac{33}{2}$ (d) 33

Ö4.19 (a)
$$(yz, xz, xy)$$
 (b) $3||r||r$ (c) $(\sin(y), x\cos(y), 0)$ (d) $(\frac{y}{z}, \frac{x}{z}, -\frac{xy}{z^2})$

Ö4.20 (a)
$$\nabla \cdot \mathbf{F} = 0$$
, $\nabla \times \mathbf{F} = \mathbf{0}$, $\phi = xyz$

(b)
$$\nabla \cdot \mathbf{F} = 0$$
, $\nabla \times \mathbf{F} = \mathbf{0}$, $\phi = xy + yz + zx$

(c)
$$\nabla \cdot \mathbf{F} = 0$$
, $\nabla \times \mathbf{F} = -2x\mathbf{e}_z$, potential finns ej.

(d)
$$\nabla \cdot \mathbf{F} = 2yz + 2$$
, $\nabla \times \mathbf{F} = \mathbf{0}$, $\phi = x^2yz + z^2$

Ö4.21 (a)
$$\Delta f = 4$$
 (b) $\Delta f = 0$ (c) $\Delta f = \frac{1}{\sqrt{x^2 + y^2}}$ (d) $\Delta f = 2(y^2 z^2 + x^2 z^2 + x^2 y^2)$

Ö4.22 (a) 0 (b) 22 (c) 11 (d)
$$\frac{7}{2}$$

Ö4.23 (a)
$$\pi$$
 (b) 0 (c) 2π (d) 0

Ö4.24 (a) 0 (b)
$$\frac{1}{2}\pi$$
 (c) 0 (d) $\frac{5}{3}\pi$

Ö4.25 (a)
$$\frac{4}{3}$$
 (b) 0 (c) $\frac{44\pi}{15}$ (d) 1

Kapitel 5

Övningar

Ö5.1 —

Ö5.4 —

```
Ö5.5 (a) \mathcal{V} = \{(1,0,0), (1,4,0), (2,1,0), (3,1,0), (2,1,1)\}
                \mathcal{K} = \{(1,4,3,5), (2,3,4,5), (1,3,2,5)\}
           (b) \mathcal{V} = \{(-1, -1, 0), (0, 0, 0), (1, 1, 0), (0, 1, 0), (0, 0, 1)\}
                \mathcal{K} = \{(2,3,4,5), (1,2,4,5)\}
           (c) V = \{(10, 10, 0), (11, 11, 0), (11, 12, 0), (12, 10, 0), (11, 11, 1)\}
                \mathcal{K} = \{(1,4,2,5), (2,4,3,5), (1,2,3,5)\}
           (d) \mathcal{V} = \{(-1,0,0), (0,0,0), (1,0,0), (-\frac{1}{2},1,0), (\frac{1}{2},1,0), (0,2,0), (0,1,1)\}
                \mathcal{K} = \{(1, 2, 4, 7), (2, 3, 5, 7), (2, 5, 4, 7), (4, 5, 6, 7)\}
  Ö5.6 (a) \{(1,2,5), (1,3,5), (1,4,5), (2,3,4), (1,3,4), (2,4,5), (3,4,5), \dots \}
                           \ldots, (1,2,3), (2,3,5)
           (b) \{(1,2,5), (1,4,5), (1,2,4), (2,3,4), (2,4,5), (3,4,5), \dots \}
                           \dots, (2,3,5)
           (c) \{(1,2,5),(1,3,5),(1,4,5),(1,2,4),(2,3,4),(2,4,5),(3,4,5),\ldots\}
                           \ldots, (1,2,3), (2,3,5)
           (d) \{(4,5,7),(2,3,7),(4,6,7),(1,2,4),(2,5,7),(1,2,7),(2,4,5),\ldots\}
                           \ldots, (1,4,7), (4,5,6), (5,6,7), (2,4,7), (3,5,7), (2,3,5)
  Ö5.7 (a) 9 (b) 81 (c) 48 (d) 32
  Ö5.8 (a) 25
                        (b) 289 (c) 165 (d) 105
  Ö5.9 (a) (0,0.5,1,0.5,1,1.5,1,1.5,2) (b) (0,0,0,0,0.25,0.5,0,0.5,1)
           (c) (0, 0.5, 1, -0.5, 0, 0.5, -1, -0.5, 0) (d) (0, 0.25, 1, 0.25, 0.5, 1.25, 1, 1.25, 2)
Ö5.10 (a) (0, 0.5, 1, 0.5, 1, 1.5, 1, 1.5, 2, 0.5, 1, 1.5, 1, 1.5, 2, \dots)
                           \ldots, 1.5, 2, 2.5, 1, 1.5, 2, 1.5, 2, 2.5, 2, 2.5, 3)
           (b) (0,0,0,0,0,0,0,0,0,0,0,0,0.125,0.25,\dots)
                           \dots, 0, 0.25, 0.5, 0, 0, 0, 0, 0.25, 0.5, 0, 0.5, 1)
           (c) (0, 0.5, 1, -0.5, 0, 0.5, -1, -0.5, 0, 0.5, 1, 1.5, 0, 0.5, 1, \dots)
                           \dots, -0.5, 0, 0.5, 1, 1.5, 2, 0.5, 1, 1.5, 0, 0.5, 1
           (d) (0, 0.25, 1, 0.25, 0.5, 1.25, 1, 1.25, 2, 0.25, 0.5, 1.25, 0.5, 0.75, 1.5, \dots)
                           \dots, 1.25, 1.5, 2.25, 1, 1.25, 2, 1.25, 1.5, 2.25, 2, 2.25, 3)
\mathbf{\ddot{O}5.11} \hspace{0.2cm} \textbf{(a)} \begin{bmatrix} \hat{x}_1 & \hat{x}_2 \end{bmatrix}^\top \hspace{0.2cm} \textbf{(b)} \begin{bmatrix} 1 - \hat{x}_2 & 1 - \hat{x}_1 \end{bmatrix}^\top \hspace{0.2cm} \textbf{(c)} \begin{bmatrix} \hat{x}_1 & 2 - 2\hat{x}_1 - \hat{x}_2 \end{bmatrix}^\top \hspace{0.2cm} \textbf{(d)} \begin{bmatrix} 1 + \hat{x}_2 & 2 - 2\hat{x}_1 - \hat{x}_2 \end{bmatrix}^\top
 \ddot{\mathbf{05.12}} \ \ (a) \begin{bmatrix} \hat{x}_1 & \hat{x}_2 & \hat{x}_3 \end{bmatrix}^\top \quad \  \  (b) \begin{bmatrix} 1 - \hat{x}_2 & 1 - \hat{x}_1 - \hat{x}_3 & \hat{x}_3 \end{bmatrix}^\top \quad \  \  (c) \begin{bmatrix} \hat{x}_1 + \hat{x}_3 & 2 - 2\hat{x}_1 - \hat{x}_2 - \hat{x}_3 & \hat{x}_3 \end{bmatrix}^\top 
           (d) \begin{bmatrix} 1 + \hat{x}_2 & 2 - 2\hat{x}_1 - \hat{x}_2 - \hat{x}_3 & \hat{x}_3 \end{bmatrix}^{\top}
Ö5.13 (a) \lambda_1=\lambda_2=\lambda_3=\frac{1}{3} (b) \lambda_1=0,\,\lambda_2=1,\,\lambda_3=0 (c) \lambda_1=0,\,\lambda_2=\frac{1}{2},\,\lambda_3=\frac{1}{2} (d) \lambda_1=\frac{6}{10},\,\lambda_2=\frac{1}{10},\,\lambda_3=\frac{3}{10}
Ö5.14 (a) \frac{1}{2}x_1 (b) 1 (c) \begin{bmatrix} -\frac{1}{4} & -\frac{1}{2} \end{bmatrix}^{\top} (d) \begin{bmatrix} -\frac{1}{2} & 0 \end{bmatrix}^{\top}
Ö5.15 (a) Ja (b) Nej (c) Ja (d) Ja
Ö5.16 (a) \frac{1}{6} (b) \frac{1}{12} (c) \frac{1}{24} (d) \frac{1}{2}
```

Ö5.17 (a)
$$x_1 + x_2$$
 (b) 0 (c) $x_1 - x_2$ (d) $x_1 + x_2$

Ö5.18 (a)
$$x_1 + x_2 + x_3$$
 (b) 0 (c) $x_1 - x_2 + x_3$ (d) $x_1 + x_2 + x_3$

Ö5.19 (a)
$$x$$
 (b) $x - \frac{1}{6}$ (c) $\frac{9x}{10} - \frac{1}{5}$ (d) $\frac{4x}{5} - \frac{1}{5}$

Ö5.20 (a)
$$x$$
 (b) $\frac{1}{3}$ (c) $\frac{3x}{5}$ (d) $\frac{1}{5}$

Ö5.21 (a)
$$x$$
 (b) $x - \frac{1}{6}$ (c) $\frac{9x}{10} - \frac{1}{5}$ (d) $\frac{4x}{5} - \frac{1}{5}$

Ö5.22 (a)
$$30\frac{2}{3}$$
 (b) $69\frac{1}{3}$ (c) $1\frac{1}{3}$ (d) $177\frac{1}{3}$

Ö5.23 (a)
$$30\frac{2}{3}$$
 (b) $61\frac{1}{3}$ (c) $1\frac{1}{3}$ (d) $132\frac{2}{3}$

Ö5.24 (a) 78 (b)
$$355\frac{1}{2}$$
 (c) 27 (d) 444

Ö5.25 (a) 78 (b)
$$372\frac{15}{16}$$
 (c) 27 (d) $392\frac{1}{4}$

Kapitel 6

Övningar

Ö6.1 (a) 0 (b)
$$-4$$
 (c) $2\pi^2 \sin(\pi x) \sin(\pi y)$ (d) $2x(1-x) + 2y(1-y)$)

Ö6.2 (a) 0 (b)
$$x^2 + y^2 - 4$$
 (c) $x^4 - y^4 - 3x^2 + 3y^2 - 4xy$ (d) $-10 - 10xy + 3y^2 - 3x^2$

Ö6.3 —

Ö6.4 —

Ö6.5 (a)
$$x^2$$
 (b) $-\sin(x)$ (c) $-x$ (d) x

Ö6.6 (a)
$$a(u,v)=\int_{\Omega}\nabla u\cdot\nabla v\,\mathrm{d}x$$
, $L(v)=\int_{\Omega}v\,\mathrm{d}x$

(b)
$$a(u, v) = \int_{\Omega}^{\pi} \nabla u \cdot \nabla v \, dx$$
, $L(v) = \int_{\Omega}^{\pi} v \, dx + \int_{\Gamma_R} v \, ds$

(c)
$$a(u,v) = \int_{\Omega} \nabla u \cdot \nabla v \, dx + \int_{\Gamma_R} uv \, ds, L(v) = \int_{\Omega} v \, dx + \int_{\Gamma_R} xv \, ds$$

(d) $a(u,v) = \int_{\Omega} \nabla u \cdot \nabla v \, dx + \int_{\Gamma_R} 10uv \, ds, L(v) = \int_{\Omega} v \, dx + \int_{\Gamma_R} x^2 v \, ds$

(d)
$$a(u, v) = \int_{\Omega} \nabla u \cdot \nabla v \, dx + \int_{\Gamma_R} 10uv \, ds, L(v) = \int_{\Omega} v \, dx + \int_{\Gamma_R} x^2 v \, ds$$

Ö6.7 Hitta $u_h \in V_{h,0}$ sådan att $a(u_h,v) = L(v)$ för alla testfunktioner $v \in V_{h,0}$ med a och L enligt facit till Övning 6.6 ovan.

Ö6.8 (a)
$$-\frac{1}{2}$$
 (b) $\frac{1}{6}$ (c) 1 (d) $\frac{1}{8}$

Ö6.9 a) 0 (b)
$$\frac{2}{3}$$
 (c) 1 (d) $\frac{1}{24}$

Ö6.10 (a)
$$-\frac{1}{2}$$
 (b) $\frac{1}{2}$ (c) 0 (d) 1

Ö6.11 (a) 0 (b)
$$\frac{1}{27}$$
 (c) 0 (d) $\frac{1}{6}$

Ö6.12 (a)
$$\frac{1}{6}$$
 (b) $-\frac{1}{6}$ (c) $\frac{1}{2}$ (d) 0

Ö6.13 (a)
$$\frac{1}{60}$$
 (b) $\frac{1}{120}$ (c) $\frac{1}{60}$ (d) $\frac{1}{120}$

- **Ö6.14** Hitta $u_h \in V_{h,0}$ sådan att $a(u,v) = \int_{\Omega} fv \, \mathrm{d}x$ för alla $v \in V_{h,0}$ där (a) $a(u, v) = \int_{\Omega} \nabla u \cdot \nabla v \, dx$ (b) $a(u, v) = \int_{\Omega} \nabla u \cdot \nabla v + cuv \, dx$ (c) $a(u,v) = \int_{\Omega} \kappa \nabla u \cdot \nabla v + \beta \cdot \nabla u v \, dx$ (d) $a(u,v) = \int_{\Omega} \kappa \nabla u \cdot \nabla v + \nabla \cdot (\beta u) v \, dx$
- (c) $-\nabla \cdot (\kappa \nabla u) = f i \Omega$, $\kappa \partial_n u + \gamma u = 0$ på Γ (d) $-\nabla \cdot (\nabla u) = f i \Omega$, $\partial_n u + u = 1$ på Γ
- **Ö6.16** (a) $-\frac{1}{6}$ (b) $\frac{1}{12}$ (c) $\frac{1}{12}$ (d) $\frac{1}{12}$
- Ö6.17 (a) $(I-0.01M^{-1}A)^kU_0$ (b) $(I+0.1M^{-1}A)^{-k}U_0$ (c) $((I+0.1M^{-1}A)^{-1}(I-0.1M^{-1}A))^kU_0$ (d) $(I-0.1M^{-1}A+0.005(M^{-1}A)^2)^kU_0$
- **Ö6.18** (a) $(I-0.1M^{-1}A)U_0+0.1M^{-1}b(t_0)$ (b) $(I+0.1M^{-1}A)^{-1}(U_0+0.1M^{-1}b(t_1))$ (c) $(I+0.05M^{-1}A)^{-1}((I-0.05M^{-1}A)U_0+0.1M^{-1}b(t_{1/2}))$ (d) $U_0 + 0.05(f(0, U_0) + f(0.1, U_0 + 0.1f(0, U_0)))$, där $f(t, U) = -M^{-1}AU + 0.1f(0, U_0)$
- **Ö6.19** (a) $\frac{1}{60}$ (b) $\frac{1}{24}$ (c) 0 (d) 24
- **Ö6.20** (a) $-\frac{1}{2}$ (b) $\frac{2}{3}$ (c) 0 (d) $\frac{5}{6}$
- **Ö6.22** (a) $\frac{1}{3}$ (b) $\frac{1}{8}$ (c) $\frac{1}{12}$ (d) $\frac{1}{6}$
- **Ö6.23** (a) $-\frac{1}{8}$ (b) $-\frac{1}{6}$ (c) 0 (d) $-\frac{3}{8}$
- **Ö6.25** (a) $\int_{\Omega} \nabla \delta u \cdot \nabla v \, dx + \lambda \int_{\Omega} (3u^2 1) \delta u v \, dx$
 - (b) $\int_{\Omega} \kappa \nabla \delta u \cdot \nabla v \, dx + \lambda \int_{\Omega} 2u \delta u v \, dx$
 - (c) $\int_{\Omega} \kappa(u) \nabla \delta u \cdot \nabla v \, dx + \int_{\Omega} \kappa'(u) \delta u \nabla u \cdot \nabla v \, dx \lambda p \int_{\Omega} u^{p-1} \delta u v \, dx$ (d) $\int_{\Omega} \nabla \delta u \cdot \nabla v \, dx \lambda \int_{\Omega} e^{\lambda u} \delta u v \, dx$