Endpoint Detection and Response (EDR) Extension

Suggested path forward.

02-03-2022

Update

2nd Track – "Longer Term Detection and Response Schema Extension" (LTDRSE?) - What problem? (subset of asset forensics, not including CASE?)

- Plausible EDR/NDR/XDR/MDR normalization for all threats, across all technologies?
 - Agent telemetry is not normalize-able across products in the same enterprise
 - Different *DR products detect the same mal-behaviors in using very different behaviors/indicators
 - Different *DR products expose detection at very different architectural loci (some at the controller, some at an analytics feed (from cloud), some from the agent.
 - Different *DR products consume response commands at different architectural loci (some at the controller, some at the agent) using different asset identifiers.
 - But almost all *DR products can map their detections into an ATT&CK identification, TTP vector. As Mitre demonstrated by focusing on attack behavior (TTPs), That approach is highly comparable across products,
 - ... but still highly variable across products for almost every attack.
 - Also, almost all *DR products have a mapping to some reconcilable Asset Identifier, also variable across products.

2nd Track – Proposed first normalizations?

- 1. I think we need both identification and behavior normalization, but maybe more (connectivity?)
- 2. Interacting with *DR at the right place for a specific product (controller, cloud, asset instrumentation, ...) => flexible discovery, registration, collection, correlation, analysis
- 3. Resilient asset identifier (tolerates normal operational dynamics)
 - Probably endpoint GUID or GUID tuple (e,g, Container GUID, Service GUID, ...) which can always be mapped to other proxies (e.g. IP current associated with an invariant GUID, generates a, IP trajectory over time)
 - The inverse mapping (e.g. IP-> GUID is not unique (multi-homing, load balancing (IPS), durable (temporally)), enough, not complete (progressive apps), provide no glue to dev/supply chain/context across invocations).
 - On AWS, ARNs solve all of these issues handily, and can always get at other proxies (IP, MAC SSID, other GUIDs) via logs.
 - Normalize for other platforms (cloud, premise, edge, ...)
 - Normalize across platforms (multi-cloud (see new NIST MCSWG) and ZT (see NCCoE use case 5))
 - *** Normalize across existing conventional tuple structures?
 - Ex. (IP, MAC, FQDN, SSID, NetBIOS/DN, (replicated for VMs and their movement)...) https://www.ibm.com/support/pages/individual-assets-merging-one-asset-many-ip-addresses-or-hostnames
 - VMware, Greg Frascadore (example for VM dynamics using crypto): https://patents.google.com/patent/US9098318B2/en
 - Microsoft (example for cloud (Azure) asset /abstraction mgmt): Define your naming convention Cloud Adoption Framework | Microsoft Docs
 - * the motivation for using GUIDs in all cloud platforms becomes clearer ... ©
- 4. Normalized detections (only unify-able at the attack level (different product TTPs -> same attack), so use ATT&CK? Or enhanced ATT&CK? Or ... (any other candidates/levels of normalization)?
- 5. Normalized response (ATT&CK TTP action mitigations (product))? Or D3FEND?

2nd Track

Suggestion 1: We should drive to a decision and scoping of a sub project, prior to engaging with external orgs, so that appropriate governance and rules of engagement are in place.

- Table discussions about collaboration until then?
- *Meeting with Mitre strategy folks Friday to setup an OASIS discussion, if you approve -

Suggestion2: Meeting with EDR and NDR teams to pick their brains, if you approve

- Would like to schedule exploratory discussion with Chris Kruegel, Lastline NDR, VMware They are facing this correlation challenge (integration) at both the behavior and identifier level (XDR x NDR over dynamic assets. Who else?
- Who else, especially who in OSS NDR/EDR?
 - Comodo widely used
 - GRR cloud scale
 - BlueSpawn academic
 - OSS XDR Challenge: "curated behavior feeds" Is ATT&CK an answer to this roadblock?
- NDR and XDR are seeing the projections same malware's behavior, in any attacked environment, but they see the endpoints and behaviors very differently (so do NDR competitors)

Update

- Any group feedback on the second track?
- 2nd Track What problem?
 - Plausible EDR/NDR/XDR/MDR normalization for all threats, across all technologies?
 - Agent telemetry is not normalize-able across products in the same enterprise
 - Different *DR products detect the same mal-behaviors in using very different behaviors/indicators
 - Different *DR products expose detection at very different architectural loci (some at the controller, some at an analytics feed (from cloud), some from the agent.
 - Different *DR products consume response commands at different architectural loci (some at the controller, some at the agent) using different asset identifiers.
 - But almost all *DR products map their detections into an ATT&CK identification, TTP vector.
 As Mitre demonstrated, this is highly comparable across products, but still highly variable for almost every attack.
 - Also, almost all *DR products have a mapping to some reconcilable Asset Identifier

2nd Track – Proposed first normalizations?

- 1. Interacting with *DR at the right place for a specific product (controller, cloud, asset instrumentation, ...)
- 2. Resilient asset identifier (tolerates normal operational dynamics)
 - Probably endpoint GUID or GUID tuple (e,g, Container GUID, Service GUID, ...) which can always be mapped to other proxies (e.g. IP current associated with an invariant GUID, generates a, IP trajectory over time)
 - The inverse mapping (e.g. IP-> GUID is not unique (multi-homing, load balancing (IPS), durable (temporally)), enough, not complete (progressive apps), provide no glue to dev/supply chain/context across innvocations).
 - On AWS, ARNs solve all of these issues handily, and can always get at other proxies (IP, MAC SSID, other GUIDs) via logs.
 - Normalize for other platforms (cloud, premise, edge, ...)
 - Normalize across platforms (multi-cloud (see new NIST MCSWG) and ZT (see NCCoE use case 5))
- Normalized detections (only unify-able at the attack level (different product TTPs -> same attack), so use ATT&CK? Or enhanced ATT&CK? Or ...
- 4. Normalized response (ATT&CK TTP action mitigations (product))? Or D3FEND?

2nd Track – proposed next steps

- Meeting with Mitre strategy folks Friday to setup an OASIS discussion, if you approve
- Meeting with EDR and NDR teams to pick their brains, if you approve

Or, ... is this the right time for this group to grapple with this?

- EO EDR mandate
- EO modernization mandate (for infra, apps and cyber)

• ...

Restatement of Recommendation from last Update

- Two parallel tracks
 - 1. Continue to do what can be done with existing mapping approach
 - Has hard limits requiring additional parallel mechanisms
 - Enhanced by interacting with EDR systems, beyond just instrumented endpoints.
 - Can happen fast and needs a plan
 - 2. Investigate the potential of leveraging existing models to extend the normalization of EDR/XDR consumption
 - More general enablement of normalized EDR consumption for more use cases
 - Requires analysis, debate and design
 - I'd like to lead or co-lead this effort

Update - Dennis

- Suggestion 1: Make sure we design to interact with EDR systems, not solely with instrumented EDR endpoints
 - Strong contextual, detection, analysis, explain-ability and action consistency within an EDR system.
 - Working on how we extend (information architecture) to incorporate the EDR system view.
- Suggestion 2: I believe that we need models to expand use cases significantly
 - Rationale follows...

EDR Normalization Challenge

Det Heuristics ML Inf modules ID Tagging Grouping

...

Consistent under 1
Vendor/Deployment,
mutually opaque across
Vendors/Deployments

Normalized at the interface to the OS abstractions

EDR/XDR Normalization Challenge

Context, heuristics, ML training, ML inference, grouping, management topology... are effectively silo'd

Comparability, explainablility, and interpretability are only possible across consistent underlying attributes/relationships.

Hunting, analysis, planning, actions at scale ... all need context that is not unifyable across vendors.

*Communicating Indicators and Actions may be normalizeable, but may not be enough for effective EDR operation

Stix-Shifter:

Highlights the limits of model-less normalization xEDRs

CarbonBlack

STIX Property

hashes.MD5

hashes, SHA-256

hashes.SHA-256

binary_ref

x_unique_id

binary_ref

parent_ref

x_unique_id

device_os

device timestamp

device_group_id

process terminated

x-cbcloud

c-cbcloud

c-cbcloud

c-cbcloud

c-cbcloud

-chcloud

-chcloud

command line

Distributing IOCs, fielding simple alerts and taking simple action may work fine, if aimed at the EDR as a system ... and if Stix-Shifter mappings are expanded consistently.

Semantic inconsistencies that will interfere with xEDR sense making, decision support and action:

xEDR attrib relationships xEDR attrib representations Opaque unjoinable IDs

Normalizing the consumption of EDR capability, via the Stix-Shifter mapping approach won't work, due to limitations in what products expose (attributes, reps, analytics, inf, train, ...mgmt).

CrowdStrike Trend objectFilePath (XDR-ish source domain is multipar mail_message_delivery time Data Source Field parent_directory_re hashes.SHA-1 parentFilePath parent directory re srcFilePath parent directory r process name hashes.SHA-1 process_md5 file name file_sha1 process_sha256 ipv4-add value ipv4-add endpointle value parent_sha256 ipv4-add value objectlp ipv4-add value objectlps ipv6-add value ipv6-add value endpointle ipv6-add objectlps inv6-add source_ip process guid network-traffi network-traffic protocols process_cmdline network-traffic src port parent name network-traffi protocols parent name network-traffic network-traffic protocols parent name network-traffi dst_port network-traffi protocol network-traffic obiectlp network-traffi objectlp network-traffi objectPor obiectPort network-traffi source_ip command line obiectCmd binary_ref pbiectFileHashSha binary_ref obiectFilePath process binary_ref processFilePath device timestamp parentFilePath device group ic

Ref. https://github.com/opencybersecurityalliance/stix-shifter/tree/develop/adapter-guide

hashes.MD5

hashes.MD5

command line

parent_re

binary_ref

parent ref

command lin

machine domai

detection ic

technique_id

ioc value

ioc_value

ioc value

ioc value

ioc_value

ioc value

ioc value

ioc value

ip_refs hostname

ip_refs

os version

process_re

registry_ref network_re

file ref

file ref

parent process

c-oca-asse

c-oca-asset

scenario

hashes.SHA-256

hashes.SHA-256

parent sha256

sha256_ioc quarantined file sha25

md5_ioc parent_md! external ip

filename

parent process graph id

parent md5

parent cmdline

parent cmdline

machine_doma

detection io

scenario

technique

tactic id

technique_id

last_seen

config id base

config id build

product_type

mac_addres

os version

platform name

display name

domain_ioc

sha256 ioc

quarantined file sha256

config id platforn

product type desc

system product name

We need a model... probably two models

Malware behavior: invariant across EDR/XDRs (good normalization candidate)

Initial Access	Execution	Persistence	Privilege Escalation	Defense Evasion	Credential Access	Discovery	Lateral Movement	Collection	Command and Control	Exfiltration	Impact
Drive-by Compromise		Scheduled Task	(i) (ii) (ii) (iii) (iii)	Binary Padding	Network	k Sniffing	AppleScript	Audio Capture	Commonly Used Port	Automated Exfiltration	Data Destruction
Exploit Public-Facing	Laun	unchetl Access Token		Manipulation	Account Manipulation	Account Discovery	Application Deployment	Automated Collection	Communication Through	Data Compressed	Data Encrypted for Impact
Application	Local Job S	Scheduling	Bypass User A	ccount Control Bash History		Аррисавон унивом	Software	Clipboard Data	Removable Media	Data Encrypted	Defacement
External Remote Services	LSASS	Driver	Extra Window N	Memory Injection	Brute Force	Discovery	Distributed Component	Data from Information	Connection Proxy	Data Transfer Cise Limits	Disk Content Wipe
Hardware Additions	Tr	ар	Process	Injection	Credential Dumping	Browser Bookmark	Object Model	Repositories	Custom Command and	Exfiltration Over Other	Disk Structure Wipe
Replication Through	AnnieScrint		DLL Search Order Hijacking		Credentials in Files	Discovery	Exploita on of	Data from Local System	Cantrol Protocol	Network Medium	Endpoint Denial of Service
rvemovable Medie	CMSTP	lm	age File Execution Options Inject	ion	Credentials in Registry	Domain Trust Discovery	Remote Services	Data from Network	Custom Cryptographic	Exfiltration over command	Firmware Corruption
Spearphishing Attachment	Command-Line Interface		Plist Modification		Exploitation for	File and Directory Discovery	Logon Scripts	Shared Drive	Protocol	and Control Channel	Inhibit System Recovery
Coearnhishing Link	Compiled HTML File		Valid Accounts		Credential Access	Network Service Scanning	Pass the Nath	Data from Removable Media	Data Encoding	Exfiltration Over Atemative	Network Denial of Service
Spearphishing via Service	Oentrol Panel Items	Accessibili	ty Features	BITS Jobs	Forced Authentication	Network Share Discovery	Pass the Tilket	Data Staged	Data Obfuscation	Protocol	Resource Hijacking
Supply Chain Compromise	Dynamic Data Exchange		ert DLLs	Clear Command History	Hooking	Password Policy Discovery	Remote Deskipp Protecti	Email Collection	Domain Fronting	Exfiltration O er	Runtime Data Manipulation
Trusted Relationship	Execution through API	Appin	it DLLs	CMSTP	Input Capture	Peripheral Device Discovery	Remote File Copy	Input Capture	Domain Generation	Physical Med um	Service Stop
Valid Accounts	Execution through		n Shimming	Code Signing	Input Prompt	Permission Groups Discovery	Remote Seniess	Man in the Browser	Algorithms	Scheduled Transfer	Stored Data Manipulation
	Module Load		lijacking	Omphat HTML File	Kerberoasting	Process Discovery	Replication Through	Screen Capture	Fallback Channels	/	Transmitted Data
	Exploitation for	File System Com	issiane Weaknes	Component Firmware	Keychain	Query Discovery	Removable	Video Capture	Multiband Communication	/	Manipulation
	Client Execution	Hoo	oking	Component Object Model	LLMNR/NB1 NS Poisoning	Remote System Discovery	Shared Webroot		Multi-hop Proxy		
	Graphical User Interface		Daemon	Hijacking	and Relay	Security Software Discovery	SSH Hijarking		Multilayer Encryption		
	InstallUtil	New S		Control Panel Items	Password Filter DLL	System Information	Taint Shared Content		Multi-Stage Channels		
	Mshta		erception	DCShadow	Private Keys	Discovery	Third-pagy Software]	Port Knocking		
	PowerShell		lonitors	Deobfuscate/Decode Files	Securityd Memory	vstern Network	Window Admin Shares	1	Remote Access Tools		
	Regsvcs/Regasm		rmissions Weakness	or Information	Two-Factor Authentication	Configuration Discovery	Mindows Remote		Remete File Copy		
	Regsvr32		nd Setgid	Disabling Security Tools	Interception	System Network	Management	J	Standard Application Layer		
	Rundl32	Startu		DLL Side-Loading		Connections Discovery			Protocol	1	
	Scripting		Shell	Execution Guardrails		System Owner/User Discovery	1		Standard Cryptographic Protocol		
	Service Execution	.bash_profile and .bashrc	Exploitation for Privilege Escalation	Exploitation for Defense Evasion		System Service Discovery	4				
	Signed Binary Proxy Execution	Account Manipulation	0	File Deletion			4		Standard Non-Application Layer Protocol		
		Authentication Package	SID-History Injection			System Time Discovery	4				
	Signed Script Proxy Execution	BITS Jobs Bootkit	Sudo	File Permissions Modification		Virtualization/Sandbox Evasion	1		Uncommonly Used Port		
			Sudo Caching			Evasion	J		Web Service		
	Source Source	Browser Extensions	-	File System Logical Offsets	1						
	Space after Filename	Change Default File Association		Gatekeeper Bypass Group Policy Modification	1						
	Third-party Software Trusted Developer Utilities	Component Firmware	-	Hidden Files and Directories	-						
	Trusted Developer Utilities	Component Firmware	J	Hidden Hearn	-						

Representative malware behavior and detection is only visible at the EDR/XDR system level. Not in endpoint telemetry. Consider "action profile detection" vs "HMM detection" or "Kalman detection" ... completely different (inconsistent) X EDRs

Different EDR/XDR tools observe, detect and respond very differently

Ref. https://attackevals.mitre-engenuity.org/enterprise/carbanak fin7/

Carbon Black

No clear basis for interpretability, explain-ability or actionability across different EDR/XDR tools at the telemetry or detection (largely cloud based) level.

Normalizing at the TTP level (via mapping) makes these semantic and action discontinuities clear.

IOCs and "actions" mask these fundamental differences, for all but the simplest actions and indications. Supply Chain and Ransomware exploits are much more complex, and often with little or know prior knowledge when it matters most (during hunting, anomaly and behavioral recognition).

FireEye

Needed to support EDR/XDR use cases (hunting, analysis mitigation planning, ...

^{*} This is far less of a problem for detection and response over exactly 1 EDR/XDR solution per enterprise.

Inconsistencies across EDR/XDR break OODA; for a single EDR/XDR this is far less of a problem

Recommendation

- Two parallel tracks
 - 1. Continue to do what can be done with existing mapping approach
 - Has hard limits requiring additional parallel mechanisms
 - Enhanced by interacting with EDR systems, beyond just instrumented endpoints.
 - Can happen fast
 - 2. Investigate the potential of leveraging existing models to extend the normalization of EDR/XDR consumption
 - More general enablement of normalized EDR consumption for more use cases
 - Requires analysis, debate and design
 - 3. 1. and 2. above are highly complementary, probably mutually necessary to cultivate sustainable communities of interest, and to influence the market.
 - So, I'd like to still proceed on the expanded analysis proposed in the last meeting

Previous work follows ...

EDR Now

- Mitre key EDR components
 - https://heimdalsecurity.com/blog/what-is-edr-endpoint-detection-and-response/
 - Endpoint data Collection
 - Data Analysis and Forensics
 - Threat Hunting Chasing and resolving inconsistencies, indicators, outliers
 - Automated response to block malicious activity
- Gartner primary EDR capabilities
 - https://www.gartner.com/reviews/market/endpoint-detection-and-response-solutions
 - Detect Security Incidents
 - Contain Incident at the endpoint
 - Investigate security incidents
 - Provide remediation guidance
 - File-based and file-less threats

*Forrester EDR -> XDR:

From Adapt or Die: EDR is Dead, Forrester – Crowdstrike, PAN, Trend ... April 28, 2021

- In XDR the endpoint becomes the correlation anchor, across sensing modalities, business context, and security tooling – consolidating related alerts across its data lake into a single incident.
- In XDR, all offerings support automated RCA (in EDR: Trend, Kaspersky).
 Extends detection to entire attack lifecycle.
- In XDR, responses are analytics triggered workflows, adaptively triggering (risk or criteria) captive playbooks. Risk-based triggers, policy structure/logic and orchestration are offering specific and externally opaque.
- In XDR, beyond endpoint telemetry, includes network, platform, user, device, ... in one place. (for analysis, ML training, pivoting, ...). Hunting, causal analysis, mitigation planning, ... are all more accessible without cobbling across tools.

*Current XDR design drivers

- In modern attacks, coherent telemetry across all endpoints is necessary (workstations, servers, mobile devices, cloud assets, ...)
- Cloud hosted data lake, analytics, training require cloud hosting for elasticity and pervasive availability, despite enterprise compromise.
- Many enterprise will augment with, or rely on MDR to gain security analyst, hunting, mitigation planning expertise.

EDR Tools Now - Open Source

- *Wazuh OSSEC ++
- *OSSEC LIDS (xEndpoint), MW & RK detection, Automatable Actions, FIM, Inventory
- *TheHive Cortex IP, URL, domain, hashes, files, containment integration
- OSQuery very generic host monitoring (configuration, performance, infrastructure health), + FIM, YARA (file artifacts) scanning, anomaly detection, process auditing, log settings, ...
- *GRR YARA, APIs, search and collect: files, reg, procs, mem cap, CPU, network, context ... all OSs, massive scale, full API, full cloud enablement/leveraging
- MIG logs, files, memory, network, auditing, vulnerability mgmt, ... eroding forensics
- Volatility digital forensics & incident response, EDR ++ (forensic dimension)
- Complementary Open Source (NDRish)
 - NESSUS –
 - SNORT –
 - Ethercap –
 - Infection Monkey (Guardicore)

^{*} Multi-endpoint enabled comparison, analytics, behavior, detection. Querying individual endpoints severely limits EDR utility for these OS EDR tools.

EDR Tools Now - Commercial

Gartner EPP MQ Leaders

- Microsoft Defender for Endpoint
- Crowdstrike Falcon
- Trend Micro Apex One XDR for Cloud (Cloud One)
- SentinelOne Singularity
- McAfee MVISION EDR
- Sophos Intercept-X
- 13 non-Leaders

Very different models, semantics, actions, integrations, positioning

But EDR queries, results and semantics are highly balkanized

- Different EDR interaction models: Structured API model, Query, Analyzers (which the refer artifacts), inter-endpoint...
- Different property/attribute/value naming and representations not too bad at the OS, but diverges as synthetic artifacts get referenced
- Semantics can be wildly different:
 - Different detection approaches have different SNR, meaning and mitigation contexts (nw detection of any anomaly only informs network mitigation; ep detection may not know about any nw mitigations (.g. virtual patching))
 - Virtual patching at an upstream firewall, is not comparable to actual patching of a discovered vulnerability.
- Example: See STIX Shifter

Example: Cortext 2

Cortex 2 API: https://github.com/TheHive-Project/CortexDocs/blob/master/api/api-guide.md#analyzer-model

API Guide This guide applies only to Cortex 2 and newer. It is not applicable to Cortex Table of Contents Introduction Request & Response Formats Authentication Organization APIs Organization Model o Create Update o Delete Obtain Details List Users List Enabled Analyzers User APIs User Model List All List Users within an Organization o Create Update o Get Details o Set a Password Change a password Set and Renew an API Key o Get an API Key Revoke an API Key Job APIs o Job Model List and Search Get Details o Get Details and Report Wait and Get Job Report Get Artifacts o Delete Analyzer APIs Analyzer Model List and Search Get Details Get By Type Update

- Not artifact centric. Stimulate analyzers that the touch whatever observables they need to.
- Heavily focused on the process of orchestrating EDR across roles and controlling access to the observables.
- Enables analysis, detection and response across endpoints.
- Many internally defined abstractions (orgs, users, jobs, analyzers, ...). Conventional EDR is embedded.
- There is a file analyzer.

Example: Microsoft Defender for Endpoint

Defender for Endpoint API: https://docs.microsoft.com/en-us/microsoft-365/security/defender-endpoint/ti-

indicator?view=o365-worldwide

∨ Microsoft Defender for Endpoint APIs Schema
Supported Microsoft Defender for Endpoint
APIs
Common REST API error codes
Advanced Hunting
> Alert
> Assessments of vulnerabilities and secure
configurations
> Automated Investigation
> Domain
> File
> Indicators
> IP
> Machine
> Machine Action
> Recommendation
> Remediation activity
> Score
> Software
> User
> Vulnerability
> How to use APIs - Samples
> Raw data streaming API
> SIEM integration
> Partners & APIs
> Role-based access control

Property	Туре	Description
d	String	Identity of the Indicator entity.
ndicatorValue	String	The value of the Indicator.
indicatorType	Enum	Type of the indicator. Possible values are: "FileSha1", "FileSha256", "FileMd5", "CertificateThumbprint", "IpAddress", "DomainName" and "Url".
application	String	The application associated with the indicator.
action	Enum	The action that will be taken if the indicator will be discovered in the organization. Possible values are: "Warn", "Block", "Audit", "Alert", "AlertAndBlock", "BlockAndRemediate" and "Allowed".
externalID	String	ld the customer can submit in the request for custom correlation.
sourceType	Enum	"User" in case the Indicator created by a user (for example, from the portal), "AadApp" in case it submitted using automated application via the API.
createdBySource	string	The name of the user/application that submitted the indicator.
createdBy	String	Unique identity of the user/application that submitted the indicator.
lastUpdatedBy	String	Identity of the user/application that last updated the indicator.
creationTimeDateTimeUtc	DateTimeOffset	The date and time when the indicator was created.
expirationTime	DateTimeOffset	The expiration time of the indicator.
lastUpdateTime	DateTimeOffset	The last time the indicator was updated.
severity	Enum	The severity of the indicator. possible values are: "Informational", "Low", "Medium" and "High".
title	String	Indicator title.
description	String	Description of the indicator.
recommended Actions	String	Recommended actions for the indicator.
rbacGroupNames	List of strings	RBAC device group names where the indicator is exposed and active. Empty list in case it exposed to all devices.
rbacGrouplds	List of strings	RBAC device group ID's where the indicator is exposed and active. Empty list in case it exposed to all devices.
generateAlert	Enum	True if alert generation is required, False if this indicator should not generate an alert.

Method	Return Type	Description
List MachineActions	Machine Action	List Machine Action entities.
Get MachineAction	Machine Action	Get a single Machine Action entity.
Collect investigation package	Machine Action	Collect investigation package from a machine.
Get investigation package SAS URI	Machine Action	Get URI for downloading the investigation package.
Isolate machine	Machine Action	Isolate machine from network.
Release machine from isolation	Machine Action	Release machine from Isolation.
Restrict app execution	Machine Action	Restrict application execution.
Remove app restriction	Machine Action	Remove application execution restriction.
Run antivirus scan	Machine Action	Run an AV scan using Windows Defender (when applicable).
Offboard machine	Machine Action	Offboard machine from Microsoft Defender for Endpoint.
Stop and quarantine file	Machine Action	Stop execution of a file on a machine and delete it.
Run live response	Machine Action	Runs a sequence of live response commands on a device
Get live response result	URL entity	Retrieves specific live response command result download link by its index.
Cancel machine action	Machine Action	Cancel an active machine action.

- Very artifact centric...
- Unique abstractions (e.g. "investigation package")
- Deep integration of opaque analytics, correlation, policy driven actions.

EDR, NDR, XDR, and MDR are converging.

- *Gartner labels the market for technology in this convergence EPP subsuming EDR.
 - Endpoint and network convergence is accelerating. All attacks exhibit both. Detect++
 - By 2032 YE, cloud delivered EPP will exceed 95% of deployments
 - By 2025 50% of EDR users will be using managed detection and response
 - By 2025 60% of EDR solutions will include data from multiple security control sources, such as Identity, CASB and DLP
- Question: Do we address this rapidly consolidating EPP space, which includes EDR, NDR, XDR, MDR? Or focus on the evaporating conventional EDR space?
- Concern: Directly interacting with endpoints, about files processes, hashes, simple indicators ... does not seem to be the center of EDR-EPP detection or action.

OASIS OpenC2-ap-edr

openc2-ap-edr - Defining Actions, Targets, Specifiers and Options that are consistent with the version 1.0 of the OpenC2 Language Specification in the context of command and control of <u>various</u> endpoint detection and response technologies.

https://github.com/oasis-tcs/openc2-ap-edr

Q: How much of this scope, do we envision covering?

Q: If not all, how do we describe the subset we will cover?

Assumption: Schema extension must be a semantic and context cover of the scope we embrace.

Utility of Mitre ATT&CK is growing

- Comparing EDR, NDR, XDR, MDR detection coverage
- Bridging endpoint and network observed behaviors and state
- Normalizing results (via mappings) across EDR, NDR, XDR, MDR offerings
- Augmentation with Detection and Mitigation alternatives for same Procedure
- TTPs across layers of abstraction:
 - Enterprise OS, Cloud, Network, Container,
 - Mobile,
 - ICS
- ...and across endpoints

Big Question

Question: Should we be integrating the schema at EDR system abstractions, rather than endpoint EDR instrumentation tool?

- Would leverage higher level functionality.
- Would leverage pre-existing policy orchestration and automation.
- Would leverage real-time in-line controls.

Appendix

Suggestions

- Make sure we design to interact with EDR systems, not solely with instrumented EDR endpoints
 - Strong contextual, detection, analysis, explain-ability and action consistency within an EDR system.
 - Working on how we extend (information architecture) to incorporate the EDR system view.

EDR Normalization Challenge

Det Heuristics ML Inf modules ID Tagging Grouping

...

Consistent under 1
Vendor/Deployment,
mutually opaque across
Vendors/Deployments

Normalized at the interface to the OS abstractions

EDR/XDR Normalization Challenge

Context, heuristics, ML training, ML inference, grouping, management topology... are effectively silo'd

Comparability, explainablility, and interpretability are only possible across consistent underlying attributes/relationships.

Hunting, analysis, planning, actions at scale ... all need context that is not unifyable across vendors.

*Communicating Indicators and Actions may be normalizeable, but may not be enough for effective EDR operation

Stix-Shifter:

Highlights the limits of model-less normalization xEDRs

Distributing IOCs, fielding simple alerts and taking simple action may work fine, if aimed at the EDR as a system ... and if Stix-Shifter mappings are expanded consistently.

Semantic inconsistencies that will interfere with xEDR sense making, decision support and action:

xEDR attrib relationships xEDR attrib representations Opaque unjoinable IDs

Normalizing the consumption of EDR capability, via the Stix-Shifter mapping approach won't work, due to limitations in what products expose (attributes, reps, analytics, inf, train, ...mgmt).

CarbonBlack STIX Property Data Source Field process name hashes.MD5 process_md5 hashes, SHA-256 process_sha256 process_path hashes.SHA-256 parent_sha256 creator user ref process start time binary_ref x_unique_id process guid process_cmdline parent name binary_ref parent name parent_ref parent name parent_pid parent_guid x_unique_id command line parent_cmdline x-cbcloud c-cbcloud device_os device timestamp device timestamp c-cbcloud c-cbcloud device_group_id device group ic c-cbcloud process terminated process terminated -chcloud c-chcloud netconn count c-cbcloud

Trend

(XDR-ish

process

CrowdStrike objectFilePath hashes.MD5 source domain hashes.SHA-256 hashes.SHA-256 hashes.MD5 mail_message_recipien is multipar mail_message_delivery time command line hashes.SHA-1 parent_directory_re hashes.SHA-1 parent_re parentFilePath parent directory resrcFilePath binary_ref parent directory re hashes.SHA-1 parent ref file name command lin file_sha1 ipv4-add value ipv4-add endpointle value ipv4-add value objectlp ipv4-add value objectlps machine domai detection ic ipv6-add value scenario ipv6-add value endpointle ipv6-add obiectlps inv6-add source_ip technique_id network-traffi network-traffic protocols network-traffic src port network-traffi protocols network-traffic network-traffic protocols network-traffic dst_port ioc value network-traffi protocols network-traffic obiectlp network-traffi objectlp ioc_value network-traffi objectPor ioc value obiectPort ioc value network-traffi source_ip ioc_value ioc value -crowdstrike ioc value command line obiectCmd ioc value binary_ref pbiectFileHashSha binary_ref obiectFilePath c-oca-asse ip refs hostname c-oca-asset binary_ref processFilePath ip_refs parentFilePath os version process_re registry re network_re file ref file ref parent process

parent sha256

sha256 ioc guarantined file sha25

md5 ioc

external ip

filename

parent process graph id

parent md5

parent cmdline

parent cmdline

machine_doma

detection io

scenario

technique

tactic id

technique_id

last_seen

config id base

config id build

product_type

site name system product name

mac_addres

os version

platform name

display name

domain_ioc

sha256 ioc

quarantined file sha256

config id platforn

product type desc

We need a model... probably two models

Inconsistencies across EDR/XDR break OODA

Recommendation

- Two parallel tracks
 - 1. Continue to do what can be done with existing mapping approach
 - Has hard limits requiring additional parallel mechanisms
 - Enhanced by interacting with EDR systems, beyond just instrumented endpoints.
 - Can happen fast
 - 2. Investigate the potential of leveraging existing models to extend the normalization of EDR/XDR consumption
 - More general enablement of normalized EDR consumption for more use cases
 - Requires analysis, debate and design
 - 3. 1. and 2. above are highly complementary, probably mutually necessary to cultivate sustainable communities of interest, and to influence the market.
 - So, I'd like to still proceed on the expanded analysis proposed in the last meeting

EDR Normalization Objectives Expressed in PACE Meeting

- Normalizing Response to EDR Detections (detection and action) across uniform deployments of any EDR
 - Possible with OpenC2, but actionable context will need to communicated using another or additional functionality.
 - May require talking to EDR systems (managers)
- Normalizing Response to EDR Detections (detection and action) across heterogeneous deployments of arbitrary EDRs
 - Far harder, due to balkanized/fragmented and inconsistent model, analytics, ML, tagging, grouping, system topology, data domains (training) ...
 - Certainly requires talking to managers.
- Liberating the market from the walled gardens of proprietary EDR
 - Requires models of Telemetry, Mal behavior and Mitigation options