

CS-11xx:ArhCalc

Lecţia 6:

Aritmetica pentru calculator - II

G Stefănescu — Universitatea București

Arhitectura sistemelor de calcul, Sem.1 Octombrie 2016—Februarie 2017

După: D. Patterson and J. Hennessy, Computer Organisation and Design

Aritmetica pentru calculator

Cuprins:

- Numere (cu si fara semn)
- Adunare si scadere
- Operatii logice
- Unitatea aritmetica si logica
- Adunare rapida
- Inmultire
- Impartire
- Operatii cu numere reale
- Concluzii, diverse, etc.

Inmultire

Inmultire:

- Incepem cu metoda uzuală (școlară) de înmulțire:
- Primul operand este *deânmulţitul D* (1000), al doilea *înmulţitorul I* (1001), iar rezultatul se numeşte *produs P* (1001000).
- Remarcăm că produsul a două numere de mşi n biţi necesită m+n biţi. 00001000

 1001000
- Simplificat (în prezentul caz binar) algoritmul se reduce la:
 - pentru fiecare poziție 1 din înmulțitor plasăm în locul respectiv deânmulțitul, altfel punem 0;
 - adunăm numerele.
- Cum vom vedea, în hardware metoda este mult optimizată...

1000

1001

1000

0000

Prima metoda de inmultire (in hardware)

Prima metoda de inmultire:

- Folosim un *ALU* pe 64 biţi.
- Folosim regiştri de 64 biţi pentru D şi P; folosim un registru de 32 biţi pentru I.

- Când bitul 0 din înmulțitor este 1 se adună produsul (parțial) cu deânmulțitul (inițial produsul este 0).
- Se shiftează cu 1 bit deânmulțitul la *stînga*, iar înmulțitorul la *dreapta*.
- Se repetă ultimii doi paşi de 32 ori.

..Prima metoda de inmultire

Prima metoda de inmultire (cont.)

Figura conţine schema logică a algoritmului.

Multiplier0 este bitul 0 din înmulțitor.

..Prima metoda de inmultire

Exemplu (simplificat, pe 4 biţi):

- Fie *D*, *I*, *P* cei 3 regiştri pentru deânmulţit, înmulţitor şi produs.
- Ilustrăm cazul 2×3 ; Inițial D = 0000 0010, I = 0011, iar P = 0000 0000.
- Execuție (4 pași):

```
Pas 0: -Bitul 0 din I este 1: P := P + D = 0000 0010;

-Shift D (stânga), I (dreapta): D = 0000 0100, I = 0001;

Pas 1: -Bitul 0 din I este 1: P := P + D = 0000 0110;

-Shift D, I: D = 0000 1000, I = 0000;

Pas 2: -Bitul 0 din I este 0: nimic (P := P);

-Shift D, I: D = 0001 0000, I = 0000;

Pas 3: -Bitul 0 din I este 0: nimic (P := P);

-Shift D, I: D = 0010 0000, I = 0000.
```

• Rezultat: P := 0000 0110.

..Prima metoda de inmultire

Analiză:

- Cu 3 operații pe pas (adunare P + D, shift P, shift I) și 32 pași, avem aproximativ 100 cicluri de ceas pentru o înmulțire.
- Analize statistice arată că *adunarea şi scăderea* sunt de 5 până la 100 ori *mai frecvente* decât înmulţirea.
- Cu legea "Execută rapid operațiile frecvente", o implementare cu multiple cicluri de ceas pentru înmulțire este acceptabilă.
- Totuşi, dorim implementări ale înmulţirii *mai eficiente*...

A doua metoda de inmultire (in hardware)

A doua metoda:

- Anterior, jumătate din cei 64 biţi ai lui D erau mereu zero.
- Folosim acum un ALU pe 32 biţi.

- P folosește 64 biți, din care prima jumătate P [63-32] este pentru ieșirea Result din ALU. Inițial P=0.
- Când bitul 0 din înmulțitor este 1 se adună prima jumătate din produs cu deânmulțitul, i.e., P[63-32] = P[63-32] + D.
- Se shiftează cu 1 bit *la dreapta* atât înmulțitorul, cât și produsul (ultimul pe toți 64 biți).
- Se repetă ultimii doi paşi de 32 ori.

.A doua metoda de inmultire

A doua metoda de inmultire (cont.)

Figura conţine schema logică a algoritmului.

De notat că registrul Product este pe 64 biţi, adică 2 regiştri uzuali.

..A doua metoda de inmultire

Exemplu (simplificat, pe 4 biţi):

- Fie D, I, P ca mai sus.
- Ilustrăm cazul 2×3 ; Inițial D = 0010, I = 0011, iar P = 0000 0000.
- Execuție (4 pași):

```
P0: -Bitul 0 din I este 1: P = 0010\ 0000\ (P[63-32] := P[63-32] + D);

-Shift P, I cu 1 bit dreapta: P = 0001\ 0000\ , I = 0001;

P1: -Bitul 0 din I este 1: P = 0011\ 0000\ (P[63-32] := P[63-32] + D);

-Shift P, I: P = 0001\ 1000\ , I = 0000;

P2: -Bitul 0 din I este 0: nimic (P := P);

-Shift P, I: P = 0000\ 1100\ , I = 0000;

P3: -Bitul 0 din I este 0: nimic (P := P);

-Shift P, I: P = 0000\ 0110\ , I = 0000.
```

• Rezultat: $P := 0000 \ 0110$.

Metoda finala de inmultire (in hardware)

Metoda finala:

- Plasăm *I în jumătatea din dreapta a lui P*, care inițial era goală.
- Cum ambii regiştri *P,I* se shiftează sincron la dreapta cu 1 bit, nu se pierde nimic din *P* ori *I*.

- *P* foloseşte 64 biţi, din care prima jumătate P[63-32] este pentru ieşirea Result din ALU, iar a doua jumătate P[31-0] este pentru *I*. Iniţial P[63-32] = 0 şi P[31-0] = I.
- In rest, algorithmul este similar.

.. Metoda finala de inmultire

Metoda finala (cont.)

Figura conţine schema logică a algoritmului.

De notat că registrul Product este pe 64 biţi, initial având înmulţitorul în a 2-a jumătate.

.. Metoda finala de inmultire

Exemplu (simplificat, pe 4 biţi):

- Fie D, I, P ca mai sus; I se pune în P[31-0].
- Ilustrăm cazul 2×3 ; Inițial D = 0010, P = 0000 0011.
- Execuție (4 pași):

```
P0: -Bitul 0 din P este 1: P = 0010 0011 (P[63-32] := P[63-32] + D);
-Shift P 1 bit dreapta: P = 0001 0001;

P1: -Bitul 0 din P este 1: P = 0011 0001 (P[63-32] := P[63-32] + D);
-Shift P: P = 0001 1000

P2: -Bitul 0 din P este 0: nimic (P := P);
-Shift P: P = 0000 1100;

P3: -Bitul 0 din P este 0: nimic (P := P);
-Shift P: P = 0000 0110.
```

• Rezultat: P := 0000 0110.

Inmultire cu semn

Inmultire cu semn:

- Extensia la întregi *cu semn* este simplă:
 - se lucrează cu 31 biţi, deci folosim 31 de iterate, neglijând bitul de semn;
 - în final, semnul produsului este xor de semnele termenilor (i.e., "+" dacă termenii au acelaşi semn şi "-" dacă semele diferă).
- Algorithmul 3 (cel final), funcționează corect și pentru numere cu semn.

Algorithmul Booth de inmultire

Algorithmul Booth:

- Inmulţirea cu grupuri de 0 din înmulţitor se reduce la shiftări.
- Observația lui Booth a fost că se poate face o *simplificare sim-ilară pentru grupurile de 1*:
 - un grup de k de 1, anume 11...1_{doi}, este egal cu diferența $2^k 1$;
 - o înmulțire cu un astfel de grup se reduce la -o adunare a deânmulțitului D (pentru bitul 1 din 2^k) și -o scădere a lui D (pentru -1);
 - exemplu: 0010×0110

P0:
$$11 = 2^2 - 1$$
, deci $0\underline{11}0 = \underline{100}0 - 0\underline{01}0$;
P1: $0010 \times 0\underline{11}0 = 0010 \times \underline{100}0 - 0010 \times 0\underline{01}0$

• Este performant (uzual, shiftările sunt mai rapide ca adunările).

.. Algorithmul Booth de inmultire

Algorithmul Booth:

• Clasificăm biţii astfel

Bit curent	Bit dreapta	Descriere	Exemplu
1	0	incepe un grup de 1	00001111000
1	1	mijloc de grup de 1	00001111000
0	1	sfarsit de grup de 1	000 <mark>01</mark> 111000
0	0	mijloc de grup de 0	00001111000

- P0: In funcție de biții "curent+dreapta" executăm următoarele:
 - 00: mijloc de grup de 0 nu facem operatii aritmetice;
 - 01: sfârşit de grup de 1 adunăm D in jumatarea stanga a lui P;
 - 10: inceput de grup de 1 scădem *D* in jumatarea stanga a lui *P*;
 - 11: mijloc de grup de 1 nu facem operatii aritmetice;
- P1: Ca anterior, shiftăm produsul *P* cu un bit la dreapta.

.. Algorithmul Booth de inmultire

Exemplu (simplificat, pe 4 biţi):

- Fie D, I, P ca mai sus; I se pune în P[31-0].
- Ilustrăm cazul 2×3 ; Se adaugă un *bit fictiv la deapta lui P*, inițial 0; Deci, inițial D = 0010, $P = 0000 \underline{0011}$ 0;
- Execuție (4 pași):

```
P0: -10, pozitii finale in P: P = 1110\ 0011\ 0\ (P[63-32] := P[63-32] - D);
-Shift P: P = 1111\ 0001\ 1;
P1: -11, finale: nici o operatie
-Shift P: P = 1111\ 1000\ 1;
P2: -01, finale: P = 0001\ 1000\ 1\ (P[63-32] := P[63-32] + D);
-Shift P: P = 0000\ 1100\ 0;
P3: -00, finale: nici o operatie
-Shift P cu 1 bit dreapta: P = 0000\ 0110\ 0.
```

• Rezultat: P := 0000 0110.

.. Algorithmul Booth de inmultire

Comentarii:

- Shift-ul la dreapta folosit în *P* este cel *arithmetic*, nu cel logic (anume cel în care se propagă bitul de semn).
- Algorithmul Booth funcționează corect atât pentru numere pozitive, cât și pentru *numere negative*.
- Se poate folosi pe *grupuri de biti* pentru a construi înmulțitoare rapide.

Slide 6.18

Inmultire in MIPS

Inmultire in MIPS:

- Există două instrucțiuni:
 - mult pentru înmultire de întregi cu semn şi
 - multu pentru înmultire fără semn.
- In MIPS se folosește *o pereche de 2 regiștri* pentru produs, numiți Hi și Lo.
- Pentru accesul la registri se folosesc instrucțiunile mflo (move from Low) și mfhi (move from High).
- Ambele versiuni *neglijează overflow-ul*, care poate fi detectat de software.

..Inmultire in MIPS

Operatii de inmultire in MIPS:

Tip	Instructiune	Exemple	Semantica	Comentarii
A	multiply	mult \$s2,\$s3	Hi,Lo=\$s2+\$s3	produs cu semn pe 64 biti in Hi,Lo
A	multiply unsigned	multu \$s2,\$s3	Hi,Lo=\$s2+\$s3	produs fara semn pe 64 biti in Hi,Lo
A	move from Hi	mfhi \$s1	\$s1=Hi	se obtine o copie a lui Hi
A	move from Lo	mflo \$s1	\$s1=Lo	se obtine o copie a lui Lo

(Legenda: A = Instructiune aritmetica)

Aritmetica pentru calculator

Cuprins:

- Numere (cu si fara semn)
- Adunare si scadere
- Operatii logice
- Unitatea aritmetica si logica
- Adunare rapida
- Inmultire
- Impartire
- Operatii cu numere reale
- Concluzii, diverse, etc.

Impartire

Impartire:

 Metoda uzuală de împărţire se poate prezenta ca în exemplu.

	1001	Cat
Impartitor 1000	1001010	Deimpartit
	-1000	
	10	
	101	
	1010	

- Primul operand este *deâmpărţitul* $\frac{-1000}{10}$ Rest D (1001010), al doilea *împărţitorul I* (1000), iar rezultatul este dat de o pereche *cât C* (1001) şi *rest R* (10).
- Relația dintre mărimile de mai sus este $D = I \times C + R$.
- Metodă: Se află cifrele câtului rând pe rând, scăzând *I* din *D* (ca în exemplu) pentru fiecare cifră 1 obținută în *C*.

Slide 6.22

Prima metoda de impartire (in hardware)

Prima metoda de impartire:

- Folosim un *ALU* pe 64 biţi.
- Folosim regiştri de
 64 biţi pentru R şi
 I; folosim un registru de 32 biţi C.

- Iniţial R conţine D, împărţitorul I este în jumătatea stângă din registru (Divisor), iar C=0.
- Se scade I din R; dacă $R I \ge 0$, shiftăm C la stânga inserând 1; dacă R I < 0, restaurăm R (adunând I) și shiftăm C la stânga inserând 0. Apoi shiftăm I cu 1 bit la dreapta.
- Se repetă de 32 ori.

..Prima metoda de impartire

Prima metoda de impartire (cont.)

Figura conţine schema logică a algoritmului.

Remainder conţine iniţial deîmpărţitul.

Iniţial, registrul
Divisor conţine
împărţitorul în
jumătatea sa
stângă.

..Prima metoda de impartire

Exemplu

(pe 4 biţi):

Impărţim

7 la 2

		Г	Т	T
Pas	Instructiuni	Cat	Impartitor	Rest
0	valori initiale	0000	0010 0000	0000 0111
1:1	R=R-I	0000	0010 0000	<u>1</u> 110 0111
1:2b	R<0: R=R+I, sll Q, Q $_0$ =0	0000	0010 0000	0000 0111
1:3	shift I dreapta	0000	0001 0000	0000 0111
2:1	R=R-I	0000	0001 0000	<u>1</u> 111 0111
2:2b	R<0: R=R+I, sll Q, Q $_0$ =0	0000	0001 0000	0000 0111
2:3	shift I dreapta	0000	0000 1000	0000 0111
3:1	R=R-I	0000	0000 1000	<u>1</u> 111 1111
3:2b	R<0: R=R+I, sll Q, Q_0 =0	0000	0000 1000	0000 0111
3:3	shift I dreapta	0000	0000 0100	0000 0111
4:1	R=R-I	0000	0000 0100	<u>0</u> 000 0011
4:2a	$R>0$: sll Q, $Q_0=1$	0001	0000 0100	0000 0011
4:3	shift I dreapta	0001	0000 0010	0000 0011
5:1	R=R-I	0001	0000 0010	<u>0</u> 000 0001
5:2a	R>0: sll Q, Q $_0$ =1	0011	0000 0010	0000 0001
5:3	shift I dreapta	0011	0000 0001	0000 0001

..Prima metoda de impartire

Prima metoda (cont.)

- Calculatorul nu poate "vedea" în avans dacă împarţitorul este mai mic şi trebuie să testeze acest lucru scăzând *I* din *R*.
- După scădere, se compară rezultatul cu zero, testând bitul de semn.
- Dacă rezultatul este negativ, se revine la *R*-ul anterior, adunând la loc *I*.
- De notat ca avem nevoie de n + 1 iterații pentru a obține rezultatul corect pentru n biți.

A 2-a metoda de impartire

A 2-a metoda:

- Ca anterior, se poate folosi doar un *ALU pe 32 biti*, căci doar jumătate din *I* conține informație utilă.
- Acum, *R se shiftează la stânga* spre a se alinia cu *I*.
- Algoritmul nu poate produce un 1 în prima fază, căci rezultatul are fi prea lung pentru *C* (i.e., sunt *n* + 1 iterații). Soluție: Se *permută operațiile de shift și scădere*, eliminând o iterată.
- Câtul final este în C, iar restul este în jumătatea stângă a lui R.
- Detaliile se omit se vor incorpora în următoarea versiune (finală).

Metoda finala de impartire (in hardware)

Metoda finala:

- Plasăm *C* în jumătatea din dreapta a lui *R*.
- Cum ambii regiştri *R*, *C* se shiftează sincron cu 1 la stânga, nu se pierde nimic din *R* ori *C*.

- *R* foloseşte 64 biţi, din care prima jumătate P[63-32] este pentru ieşirea Result din ALU. In a doua jumătate P[31-0], în final va fi *C*. Iniţial P[63-0] conţine *D*.
- Detalii în schema logică care urmează.

.. Metoda finala de inmultire

Metoda finala (cont.)

Figura conţine schema logică a algoritmului.

De notat că registrul *R* (Remainder) este pe 64 biți.

Initial R conţine deâmpărţitul; în final, R[63-32] conţine restul, iar R[31-0] conţine câtul.

.. Metoda finala de inmultire

Exemplu (simplificat, pe 4 biţi): Impărţim 7 la 2

Pas	Instructiuni	Impartitor	Rest
0	valori initiale	0010	0000 0111
0:1	shift R 1 bit stânga	0010	0000 1110
1:2	R=R-I	0010	1110 1110
1:3b	$R<0$: $R=R+I$, sll R , $R_0=0$	0010	0001 1100
2:2	R=R-I	0010	1111 1100
2:3b	R<0: R=R+I, sll R, R ₀ =0	0010	0011 1000
3:2	R=R-I	0010	0001 1000
3:3a	$R>0$: sll R , $R_0=1$	0010	0011 0001
4:2	R=R-I	0010	0001 0001
4:3a	$R>0$: sll R , $R_0=1$	0010	0010 0011
	shift R[63-31] 1 bit dreapta	0010	0001 0011

Impartire in MIPS

Impartire in MIPS:

- Există două instrucțiuni:
 - div pentru împărțire de întregi cu semn şi
 - divu pentru împărţire fără semn.
- Se folosesc aceeași 2 regiștri Hi, Lo și pentru împărțire; inițial, ei conțin deîmparțitul, iar în final rezultatele (cât, rest).
- Ambele versiuni neglijează overflow-ul.

..Impartire in MIPS

Operatii de impartire in MIPS:

Tip	Instructiune	Exemple	Semantica	Comentarii
A	divide	div \$s2,\$s3	Lo=\$s2/\$s3	Lo contine catul;
			Hi=	Hi contine restul
			\$s2 mod \$s3	
A	divide un-	div \$s2,\$s3	Lo=\$s2/\$s3	Lo contine catul;
	signed		Hi=	Hi contine restul
			\$s2 mod \$s3	

(Legenda: A = Instructiune aritmetica)

Aritmetica pentru calculator

Cuprins:

- Numere (cu si fara semn)
- Adunare si scadere
- Operatii logice
- Unitatea aritmetica si logica
- Adunare rapida
- Inmultire
- Impartire
- Operatii cu numere reale
- Concluzii, diverse, etc.

Virgula mobila

Virgula mobila: (engl. *floating-point*, pe scurt fp)

- Numerele *reale* pot fi reprezentate cu virgulă (engl. punct), e.g., $\pi = 3.141592..._{zece}$.
- Pentru numere mari/mici folosim o *reprezentare normalizată*, inmulţind cu puteri ale bazei, e.g. $0.000000001 = 1.0_{\text{zece}} \times 10^{-9}$, $315576000 = 3.15576 \times 10^{9}$.
- Similar, în calculatoare folosim baza 2 și *reprezentarea în vir-gulă mobilă*

$$1.xxxxxxxxx_{\text{doi}} \times 2^{yyyy}$$

Secvența xxxxxxxx se numește mantisă (significand), iar yyyy exponent.

• Virgula de sus este *mobilă*, căci, folosind exponenți, o putem muta standard după prima cifră semnificativă.

Virgula mobila, in calculator

Virgula mobila, in calculator:

Reprezentarea MIPS în virgulă mobilă folosește 1 bit de semn,
 8 pentru exponent, și 23 pentru mantisă

31	3029282726252423	22212019181716151413121110 9 8 7 6 5 4 3 2 1 0
S	exponent	mantisa

- Numerele reprezentate variază (aproximativ) între $2.0_{\text{zece}} \times 10^{-38}$ și $2.0_{\text{zece}} \times 10^{38}$. Dacă se depășesc limitele, apare *overflow*.
- Reprezentarea de sus este reprezentare de *precizie simplă* (*sin-gle precision*).

Virgula mobila, in calculator

Virgula mobila, in calculator (cont.)

• Pentru precizie mai mare, folosim *precizie dublă* (*double precision*), anume reprezentarea pe 2 regiştri cu *1 bit de semn, 11 pentru exponent, și 52 pentru mantisă*

31	3029282726252423222120	19181716151413121110 9 8 7 6 5 4 3 2 1 0
S	exponent	mantisa

```
31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0 ... mantisa (continuare)
```

- Numerele reprezentate variază (aproximativ) între $2.0_{\text{zece}} \times 10^{-308}$ şi $2.0_{\text{zece}} \times 10^{308}$, dar marele câştig nu este intervalul, ci acurateţea spotită (mai multe cifre semnificative).
- Formatele de mai sus sunt standardizate, i.e., parte din *IEEE* 754 floating-point standard.

Standardul IEEE 754

IEEE 754:

- O problemă apare cu reprezentarea exponenţilor pozitivi/negativi. Convenţia este că
 - 00...0_{doi} este "cel mai negativ" exponent, iar
 - 11...1_{doi} este "cel mai pozitiv" exponent;

Folosim o *notație polarizată* (*biased notation*), anume valoarea reală se obține adunând un număr de *polarizare* (*bias*).

• Formula generală este

```
(semn, exp, mantisa)

\mapsto (-1)^{semn} \times (1 + mantisa) \times 2^{exp-polarizare}
```

• Pentru IEEE 754 de simplă precizie, numărul de polarizare este 127; pentru dublă precizie 1023.

..Standardul IEEE 754

Exemple: Reprezentare IEEE 754 pentru -0.75_{zece} în simplă şi dublă precizie:

• In simplă precizie:

$$-0.75_{\text{zece}} = -3/4_{\text{zece}} = -11/2^{2}_{\text{doi}} = -0.11_{\text{doi}}$$
$$= -1.1 \times 2^{-1} = (-1)^{1} \times (1+.1) \times 2^{126-127},$$

deci (semn, exp, mantisa) = (1, 126, .1) şi reprezentarea este:

3	1 3 () 2 !	92	82	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	1		1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1 8 biti																	2	3]	oi	ti									-		

..Standardul IEEE 754

Exemple (cont.)

• In dublă precizie,

$$-0.75_{\text{zece}} = (-1)^1 \times (1+.1) \times 2^{1022-1023}$$

deci (semn, exp, mantisa) = (1, 1022, .1) și reprezentarea este:

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	1	1	1	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	11 biti																		20	b	it.	i									

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	32 biti																														

Adunare in virgula mobila

Adunare: Ilustrăm algorithmul pe cazul zecimal, cu 4 cifre după virgulă, cu adunarea $9.999 \times 10^1 + 1.610 \times 10^{-1}$.

- Pas1: Se aliniază virgula la numărul cu exponentul mai mic spre a obtine același exponent $1.610 \times 10^{-1} = 0.01610 \times 10^1 = 0.016 \times 10^1$.
- Pas2: Se adună mantisele 9.999 + 0.016 = 10.015.
- Pas3: Se normalizează suma obținută (pot apare situații de overflow ori underflow la exponent) $10.015 \times 1^1 = 1.0015 \times 10^2$.
- Pas4: Se rotunjeşte rezultatul $1.0015 \times 10^2 = 1.002 \times 10^2$.

..Adunare in virgula mobila

1. Compare the exponents of the two numbers. Shift the smaller number to the right until its exponent would match the larger exponent

Start

Adunare in virgula mobila (cont.)

Figura conţine schema logică a algoritmului de adunare în virgulă mobilă.

(De notat că rotunjirea poate necesita încă o normalizare.)

..Adunare in virgula mobila

Adunare (cont.)

Figura conţine shema hardware pentru adunare în virgula mobilă.

CS-11xx / Arhitectura sistemelor de calcul, Sem.1 / G Stefanescu

Inmultire in virgula mobila

Inmultire: Ilustrăm algorithmul pe cazul zecimal, cu 4 cifre după virgulă, cu inmulțirea $(1.110 \times 10^{10}) \times (9.200 \times 10^{-5})$.

- Pas1: Exponentul rezultatului este suma exponenților 10+(-5)=5 (Cu reprezentarea polarizată, (10+127)+(-5+127)) -127=5+127!)
- Pas2: Inmulţim mantisele $1.110 \times 9.200 = 10.212000$, deci 10.212×10^5 .
- Normalizăm rezultatul $10.212 \times 10^5 = 1.0212 \times 10^6$.
- Rotunjim rezultatul $1.0212 \times 10^6 = 1.021 \times 10^6$.
- Calculăm semnul (produsul semnelor) și obținem produsul $+1.021 \times 10^6$.

..Inmultire fp

Inmultire in virgula

mobila (cont.)

Figura conţine schema logică a algoritmului de înmulţire în virgulă mobilă.

Suport MIPS pentru virgula mobila

Suport MIPS:

- MPIS are suport pentru reprezentarea IEEE 754, cu operații de simplă și dublă precizie:
 - adunare: add.s/add.d;
 - scădere: sub.s/sub.d;
 - *înmulțire*: mult.s/mult.d;
 - împărțire: div.s/div.d;
 - comparaţie: c.x.s/c.x.d, unde x este: eq (egal) / neq (ne-egal) / lt (mai mic) / le (mai mic ori egal) / gt (mai mare) / gt (mai mare ori egal)
 - salt condiționat: bclt (la adevăr) / bclf (la fals).

Suport MIPS pentru virgula mobila

Suport MIPS (cont.)

- Există regiştrii în virgulă mobilă speciali, notați \$f0,\$f1,...,\$f31.
- Există operații de incărcare/memorare speciale pentru regiştrii de tip \$f, anume: lwcl (incărcare) / swcl (memorare).
- In dublă precizie, se folosesc perechi de regiştri alăturaţi, adresa fiind a celui par.

Aritmetica pentru calculator

Cuprins:

- Numere (cu si fara semn)
- Adunare si scadere
- Operatii logice
- Unitatea aritmetica si logica
- Adunare rapida
- Inmultire
- Impartire
- Operatii cu numere reale
- Concluzii, diverse, etc.

Concluzii, diverse, etc.

A se insera...