MA161- Fall2009- FINAL EXAM

Steetin

2

(1) The domain of the function $f(x) = \sqrt{\ln(x+5)}$ is:

(a)
$$[0,\infty)$$
 $f_{\infty}(x+5) = 0$
(b) $[-5,\infty)$ $f_{\infty}(x+5) = 0$
(c) $[5,\infty)$ $f_{\infty}(x+5) = 0$
(d) $[-4,\infty)$ $f_{\infty}(x+5) = 0$
 $f_{\infty}(x+5) = 0$

(2) Let $f(x) = \sqrt[3]{2-x}$. Which of the following is $f^{-1}(x)$?

(3) If $f(x) = \begin{cases} x^2 + 9 & \text{for } x \leq 1 \\ 12x - ax^2 & \text{for } x > 1 \end{cases}$ determine all values of a so that f(x) is continuous at all values of x.

(a)
$$a = 0$$

$$\lim_{X \to 1^{-}} f(X) = \lim_{X \to 1^{-}} \chi^{2} + q = 10$$

(b)
$$a = 1$$
 $\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} |2x - ax^2| = |2 - a|$

(c)
$$a = 2$$

(d) $a = 3$
 $\lim_{X \to 1^{-}} f(X) = \lim_{X \to 1^{+}} f(X) \to 10 = 12-4$

(e) There are no such values of a

(4) If $f(x) = x^2 \tan x$, the slope of the tangent line at $(\frac{\pi}{3}, f(\frac{\pi}{3}))$ is:

(a)
$$\frac{4\pi^{2} + 6\sqrt{3}\pi}{27}$$
 $f(x) = 2x \tan x + x \sec x$
(b) $\frac{4\pi^{2} + 6\sqrt{3}\pi}{9}$ $f'(\frac{11}{3}) = \frac{2\pi}{3} \tan \frac{\pi}{3} + \frac{(\pi)^{2}}{3} (\sec \frac{\pi}{3})^{2}$
(c) $\frac{2\sqrt{3}\pi^{2} + 2\sqrt{3}\pi}{9}$ $= 2\pi (\sqrt{3}) + \frac{\pi^{2}}{9} (2)^{2}$
(d) $\frac{8\pi}{3}$ $= 2\pi (\sqrt{3}) + \frac{\pi^{2}}{9} (2)^{2}$
(e) $\frac{4\pi\sqrt{3}}{3}$ $= 2\sqrt{3}\pi + 4\pi^{2}$
 $= 6\sqrt{3}\pi + 4\pi^{2}$

(5) If
$$f(x) = \frac{x^3 - 2x}{x^2 + 1}$$
, then $f'(2) =$

(a)
$$34/25$$
(b) $66/25$
(c) $5/2$

(c)
$$5/2$$

(d) $1/5$ $f'(2) = \frac{(10)(5) - (4)(4)}{25}$

(e)
$$-2/25$$
 = $\frac{34}{25}$

(6) If
$$f(x) = e^{4x}$$
, evaluate $\lim_{h \to 0} \frac{f(3+h) - f(3)}{h}$. = $\lim_{h \to 0} \frac{e^{12+4h}}{h}$ | 12

(a) e^{12} | = $\lim_{h \to 0} \frac{e^{12}(e^{4h} - 1)}{h}$ | $\lim_{h \to 0} \frac{e^$

(7) The function $f(x) = \frac{x^2 + 1}{x^3 + 8}$ has:

- (a) no vertical or horizontal asymptotes
- (b) 1 vertical and 1 horizontal asymptote
- (c) 2 vertical and 1 horizontal asymptote
- (d) 1 vertical and 2 horizontal asymptotes
- (e) 1 vertical and no horizontal asymptotes

Vertical asymptotes; $\chi^3 + 8 = 0 \implies \chi = -2$ \implies one vertical asymptote, $\chi = -2$

horizontal asymptote: $\lim_{X \to \pm \infty} \frac{x^2 + 1}{x^3 + 8} = 0$ $\Rightarrow y = 0$ is the only horizontal asymptote

(8) A particle moves on a line with velocity $v(t) = t - \ln(t^2 + 1)$. What is its maximum velocity on the interval $0 \le t \le 2$?

(a)
$$1 - \ln 2$$

$$v'(t) = 1 - \frac{2t}{t^2+1} = \frac{t+1-2t}{t^2+1} = \frac{(t-1)^2}{t^2+1}$$

(d)
$$\ln 2 - 1$$

 $(c)^2 - \ln 5$

(e)
$$\ln 5 - 2$$

$$v(0) = 0 - \ln(1) = 0$$

 $v(1) = 1 - \ln 2 = 0$ which is
 $v(2) = 2 - \ln 5 = 0$ larger?

Use V'(t) to determine behavior of V. $V'(t) = \frac{(t-1)^2}{t^2+1} > 0$ for all $t \neq 1$.

Therefore V is increasing on [0,2] and V(2) is max value.

(9) Assume that
$$f$$
 and g are differentiable functions defined on $(-\infty, \infty)$, $f(0) = 6$, $f'(0) = 10$, $f(2) = 5$, $f'(2) = 4$, $g(0) = 2$, and $g'(0) = 3$. Let $h(x) = f(g(x))$. What is $h'(0)$?

What is
$$h'(0)$$
?
(a) 4
$$h'(x) = f'(g(x)) \cdot g'(x)$$

(b) 8
$$h'(0) = f'(g(0)) \cdot g'(0)$$

(c) 10 =
$$f'(2) \cdot 3$$

(10) Assume that y is defined implicitly as a differentiable function of x by the equation $2x^3 + x^2y - xy^3 = 2$. Find $\frac{dy}{dx}$ at (1,1).

$$\frac{(a) \frac{-3}{2}}{(b) \frac{7}{2}} \qquad \frac{d}{dx} \rightarrow 6x^{2} + (2x)(y) + (x^{2})(\frac{dy}{dx}) - [(1)(y^{3}) + (x)(3y^{2})(\frac{dy}{dx})]$$

(c) 0
$$(1,1) \rightarrow 6 + 2 + \frac{dy}{dx} - [1 + 3\frac{dy}{dx}] = 0$$
 = 0

$$\Rightarrow \frac{dy}{dx} = \frac{7}{2}$$

(11) Evaluate
$$\lim_{x\to 0} \frac{\cos(2x)-1}{x^2}$$
. $=\frac{1-1}{0}$

(b)
$$-1$$
 $\stackrel{\circ}{=}$ $\lim_{X \to 0} \frac{-2 \sin(2x)}{2x}$

(c) 0
(d) 1
$$\stackrel{\circ}{=}$$
 lim $\frac{-4\cos(2x)}{2}$

(e) 2 =
$$-\frac{4}{2}$$

(12) Water is withdrawn at the constant rate of 2 ft³ / min from a cone-shaped reservoir which has its vertex down. The diameter of the top of the tank measures 4 feet and the height of the tank is 8 feet. How fast is the water level falling when the depth of the water in the reservoir is 2 feet? (Recall that the volume of a cone of height h and radius r is $V = \frac{\pi}{3}r^2h$).

(a)
$$\frac{2}{\pi}$$
 ft/min

(b) $\frac{6}{\pi}$ ft/min

(c) $\frac{4}{\pi}$ ft/min

water
$$\frac{2}{1}$$
 Know: $\frac{dV}{dt} = -2 \frac{ft^3}{min}$
level $\frac{dV}{dt} = -2 \frac{ft^3}{min}$
 $\frac{dV}{dt} = -2 \frac{ft^3}{min}$

(d) $\frac{8}{\pi}$ ft/min

$$V = \frac{16}{\pi} \text{ ft/min}$$

$$V = \frac{11}{3} \text{ r}^2 \text{h} \quad \text{and} \quad r = \frac{1}{4} \text{h}$$

$$V(h) = \frac{11}{3} \left(\frac{h}{4}\right)^2 \text{h} = \frac{11}{48} \text{h}^3 \implies \frac{dV}{dt} = \frac{11}{16} \text{h}^2 \frac{dh}{dt}$$

$$-2 = \frac{\pi}{16} z^{2} \frac{dh}{dt} \rightarrow \frac{dh}{dt} = (-2)\left(\frac{16}{4\pi t}\right) = -\frac{8}{\pi}$$

$$|\frac{dh}{dt}| = \frac{8}{\pi} \frac{ft}{min}$$

(13) At the beginning of an experiment a colony has N bacteria. Two hours later it has 4N bacteria. How many hours, measured from the beginning, does it take for the colony to have 10N bacteria?

(a)
$$\frac{\ln 5N}{\ln 2}$$
 $P(t) = P(\delta)e^{kt}$ $P(\delta) = N$
(b) $\frac{N \ln 5}{2 \ln 2}$ $P(z) = Ne^{kz} = 4N$ $\Rightarrow e^{kz} = 4$

(d)
$$4\frac{\ln N}{\ln 2}$$
 Therefore $P(t) = Ne^{\frac{\ln N}{2}}$

(e)
$$\frac{\ln 10}{\ln 2}$$
 Solve $10N = Ne^{\left(\frac{\ln 4}{2}\right)}t$ for t .
 $\Rightarrow 10 = e^{\left(\frac{\ln 4}{2}\right)}t \Rightarrow \ln 0 = \frac{\ln 4}{2}$. t

$$\Rightarrow t = 2 \frac{\ln 10}{\ln 4} = \frac{\ln 10}{\ln 4}$$

$$= \frac{\ln 10}{\ln 4} = \frac{\ln 10}{\ln 4}$$

$$= \frac{\ln 10}{\ln 4} = \frac{\ln 10}{\ln 4}$$

(14) The approximate value of $(16.32)^{\frac{1}{4}}$ given by linear approximation is equal to

(a) 2.01 Let
$$f(x) = x^{\frac{1}{4}}$$
 and $a = 16$
(b) 2.10 $L(x) = f(16) + f'(16)(x-16)$
(c) 2.02 $f'(x) = \frac{1}{4}x^{\frac{3}{4}}$ $f'(16) = \frac{1}{4}(16) = \frac{3}{32}$
(d) 2.20

(e) 2.06
$$L(X) = 2 + \frac{1}{32}(X-16)$$

$$L((6.32)) = 2 + \frac{1}{32}(16.32-16)$$

$$= 2 + \frac{1}{32}(0a32)$$

$$= 2 + 0.01$$

(15) Find the critical numbers of $f(x) = e^x \sin x$ for $0 \le x \le 2\pi$.

(a)
$$\pi/4$$
 and $5\pi/4$

(b)
$$3\pi/4$$
 and $7\pi/4$

(c)
$$\pi/4$$
 and $3\pi/4$

(d)
$$\pi/4$$
 and $7\pi/4$

(e) $\pi/4$ and $\pi/2$

$$f'(x) = e^{x} \sin x + e^{x} \cos^{x}$$

$$= e^{x} (\sin x + \cos x)$$

$$f(x) = 0 \rightarrow sin x + cos x = 0$$

 $\Rightarrow sin x = -cos x$

$$\rightarrow$$
 $shx = -\cos x$

$$\rightarrow \frac{\sin x}{\cos x} = -1$$

$$\Rightarrow \frac{\sin x}{\cos x} = -1$$

$$\Rightarrow \tan x = -1$$

$$\Rightarrow x = \frac{3\pi}{4} \text{ and } \frac{3\pi}{4}$$

$$\frac{3\pi}{4}$$

$$\frac{7\pi}{4}$$

$$\frac{3\pi}{4}$$

$$\frac{3\pi}{2}$$

$$2\pi$$

$$\sqrt{4}$$

$$\sqrt{4}$$

(16) Compute
$$\int_{1}^{4} (\sqrt{x} - \frac{1}{\sqrt{x}}) dx = \int_{1}^{4} \left(\frac{1}{\chi} - \frac{1}{\chi} \right) d\chi$$

(a)
$$2\sqrt{2} - 10/3$$

(b)
$$\sqrt{2} - 1/3$$

(c)
$$\sqrt{2} + 4/3$$

(d)
$$2\sqrt{2} + 14/3$$

$$= \left(\frac{2}{3} \times \frac{3}{2} - 2 \times \frac{1}{2}\right) | f$$

$$= \left(\frac{2}{3}, \frac{3}{4^2} - 2 \cdot \frac{4}{2}\right) - \left(\frac{2}{3}, \frac{3}{1^2} - 2 \cdot \frac{4}{2}\right)$$

$$= \frac{2}{3} \cdot 8 - 2 \cdot 2 - \left(\frac{2}{3} - 2\right)$$

$$=\frac{16}{3}-4-\frac{2}{3}+2$$

$$=\frac{14}{3}-2$$

$$=\frac{14}{3}-\frac{6}{3}$$

$$=\frac{8}{3}$$

- (17) Evaluate $\frac{d}{dx} \left(\int_0^{2x} \arctan t \, dt \right)$ at $x = \frac{1}{2}$.
 - (a) $\pi/3$ (b) 1 $\frac{d}{dx} \left(\int_{6}^{2x} \arctan t dt \right) = \left(\arctan 2x \right) \left(2 \right)$
 - $(c) \pi/4$ $(d) \pi/2 \qquad \text{of } X = \frac{1}{2} \longrightarrow \left(\text{arctan } 1 \right) \left(2 \right) = \frac{\pi}{4} \left(2 \right) = \frac{\pi}{2}$
 - (e) 2

(18) A certain function f(x) satisfies f''(x) = 2 - 3x. We also know that f'(0) = -1 and f(0) = 1. Compute f(2).

and
$$f(0) = 1$$
. Compute $f(2)$.
$$(a)_{-1} + (x)_{-1} = 2 - 3x$$

(b) -3
$$\rightarrow f'(x) = 2x - \frac{3}{2}x^2 + C$$

(c) 3
$$f'(0) = -1 = 0 - 0 + C \rightarrow C = -1$$

(d) 1
$$\longrightarrow f(x) = 2x - \frac{3}{2}x^2 - ($$

(e) -2
$$f(x) = x^2 - \frac{3}{2} \cdot \frac{1}{3} x^3 - x + C_1$$

$$f(0) = 1 = 0 - 0 - 0 + 4 \rightarrow 4 = 1$$

$$f(x) = x^{2} - \frac{1}{2}x^{3} - x + 1$$

$$f(z) = 4 - 4 - 2 + 1 = -1$$

(20) The derivative of a function f is given by $f'(x) = (x-1)^2(x-2)^3(x-3)$. Which of the following are correct?

of the following are correct:

I) f(2) is a local maximum and f(3) is a local minimum of f(x).

II) f(x) is increasing on the interval (1,3).

III) f(x) is decreasing on $(-\infty,1)$ and increasing on $(1,\infty)$.

(a) only I is correct	-6	P 1		2 3		d
(b) only I and III are correct	(X-1) (X-2)3	+ 0	3 +	+ 0 +	<u> </u>	
(c) only II is correct	X-3	Non-marked distribution.		• C	and the second s	
(d) only II and III are correct	+1/X)	+	+	Econologica - Service - Se		
(e) only III is correct	+	Inc	The	der	Inc	
			beal	mago	Total min	

$$\frac{x^2}{2} + \frac{y^2}{8} = 1$$
and $y^2 = 8 - 4x^2$

(21) A rectangle is centered at the origin, its sides are parallel to the axes and all of its vertices lie on the curve $4x^2+y^2=8$. What is the maximum area of such rectangle?

vertices lie on the curve
$$4x^2+y^2=8$$
. What is the maximum area of such rectangle?

(a) 4

(b) 8

(c) $4\sqrt{2}$

(d) $2\sqrt{2}$

One of rectangle $= A = (2 \times \sqrt{2\sqrt{8-4\chi^2}})$, $0 \le x \le \sqrt{2}$

(e) 2
$$A(x) = 4x\sqrt{8-4x^2}$$

$$= 4\sqrt{8-4x^2} + 4x\left(\frac{-8x}{2\sqrt{8-4x^2}}\right)$$

$$= 8(8-4x^2) - 32x^2 = 64 - 64x^2$$

$$= 2\sqrt{8-4x^2}$$

$$A(1) = 4.\sqrt{8-4} = 4\sqrt{4} = 8$$

$$C^{1} = 3x^{2}$$

(22) Compute $\int_{0}^{1} \frac{3x^{2}}{\sqrt{x^{3}+1}} dx$

(a)
$$3\sqrt{2} - 3$$

$$\int_0^1 (x^3 + 1)^{-1/2} (3x^2) dx = x$$

(b)
$$2(\sqrt{3}-1)$$

and
$$u(0) = 1$$
 and $u(1) = 2$

$$(d)$$
 $2(\sqrt{2}-1)$

(e)
$$6\sqrt{3}-4$$

$$= 2\sqrt{2} - 2\sqrt{1}$$

$$= 2\sqrt{2} - 2$$

$$= 2(\sqrt{2} - 1)$$

(23) On what intervals is the graph of $f(x) = x^4 + 4x^3 - 18x^2 - 6x$ concave downward?

$$f'(x) = 4x^3 + 12x^2 - 36x - 6$$

(b) on
$$(-\infty, -3)$$
 and $(1, \infty)$

(c) only on
$$(-\infty, 11)$$

$$= |2(\chi^2 + 2\chi - 3)$$

(d) only on
$$(3, \infty)$$

(e) on
$$(-3, 1)$$

12 X+3

F1/4)

$$= 12(x+3)(x-1)$$
$$= 0 \rightarrow x = -3,1$$

(24) The figure below illustrates the graph of the derivative of a differentiable function f which is defined in (-4,4). We can conclude that f(x) achieves local maxima and minima at the following points:

(a) local maxima at -3 and 2 and local minima at -1 and 3

down

- (b) local maxima at -1 and 3 and local minima at -3 and 2
- (c) local maxima at -1 and 3 and local minimum at 2
- (d) local maxima at -3 and 2 and local minimum at -1
- (e) local maximum at a point between -3 and -1 and a local minimum at 0.

(25) The graph of the function $f(x) = -\frac{1}{3}x^3 - \frac{1}{2}x^2 + 2x + 2$ looks mostly like

