Lab11-Approximation Algorithm

Algorithm and Complexity (CS214), Xiaofeng Gao, Spring 2018.

* If there is any problem, please contact TA Xinyu Wu.

- * Name:Juncheng Wan Student ID:516021910620 Email: 578177149@qq.com
- 1. Write (I, sol, m, goal) for Max k-Cover and Minimum Bin Packing (refer Q2, Q3 below).

Solution. For Max k-Cover:

- (a) I is a universe $U = \{e_1, \dots, e_n\}$ of n elements, a collection of m subsets $S = \{S_1, \dots, S_m\}$ of U, and a positive integer k < m;
- (b) $sol(U, S, k) = \{Z_1, Z_2, \dots, Z_k | \forall Z_i, Z_i \subseteq S\};$
- (c) $m(U,Z) = |U \cap Z_1 \cap Z_2 \cap \cdots \cap Z_k|;$
- (d) goal = max.

For Minimum Bin Packing:

- (a) $I = F = \{a_1, a_2, \dots, a_n | \forall a_i, a_i \in (0, 1]\};$
- (b) $sol(F) = P = \{ \text{ a partition } \{F_i\}_{i=1}^k \text{ of } F \mid \forall i \neq j, F_i \cap F_j = \emptyset, \bigcup_{i=1}^k F_i = F \};$
- (c) m(F, P) = |P|;
- (d) goal = min.
- 2. Max k-Cover: Given a universe $U = \{e_1, \dots, e_n\}$ of n elements, a collection of m subsets $S = \{S_1, \dots, S_m\}$ of U, and a positive integer k < m. Our goal is to pick k subsets to maximize the number of covered elements. One greedy approach is shown in Algorithm 1.
 - (a) Denote opt as the max number of covered elements; γ_i as the number of elements covered by greedy after i iterations; $\beta_i = opt \gamma_i$. Show that $\gamma_i \gamma_{i-1} \ge \frac{\beta_{i-1}}{k}$;
 - (b) Prove that Algorithm 1 is an r-approximation where $r \leq 1 + \frac{1}{e-1}$, based on Problem 2a.

Algorithm 1: Greedy Max k-Cover

Input: $U, \{S_i\}_{i=1}^m, k$.

Output: k subsets from $\{S_i\}_{i=1}^m$.

- 1 $V \leftarrow U; W \leftarrow \emptyset;$
- 2 for i = 1 to k do
- 3 Pick S_j that covers max number in V.
- $4 \quad \boxed{V \leftarrow V \backslash S_j; W \leftarrow W \cup S_j;}$
- 5 return W;

Proof. For **Problem(2a)**, I prove by contradiction:

Assume that $\gamma_i - \gamma_{i-1} < \frac{\beta_{i-1}}{k}$.

Assume that $S^g = \{S_1^g, S_2^g, \dots S_k^g\}$ where S_i^g is the subset the greedy algorithm picks at *i*th loop, $S^* = \{S_1^*, S_2^*, \dots S_k^*\}$ where S_i^* is the subset the optimal condition picks at *i*th loop.

According to the knowledge of set theory, we have the following relationships:

$$\gamma_i - \gamma_{i-1} = |S_i^g \cap U| \tag{1}$$

$$|S_i^g \cap U| = \max_{1 \le t \le k} |S_t \cap (U - \gamma_{i-1})|$$
 (2)

$$\beta_{i-1} = opt - \gamma_{i-1} = |\cup_{i=1}^k S_k^* - \gamma_{i-1}|$$
(3)

$$\bigcup_{i=1}^{k} S_{k}^{*} - \gamma_{i-1} = \bigcup_{i=1}^{k} (S_{k}^{*} \cap (U - \gamma_{i-1}))$$

$$\tag{4}$$

Therefore, we can get that:

$$\gamma_i - \gamma_{i-1} < \frac{\beta_{i-1}}{k} \Longrightarrow |S_i^g \cap U| < \frac{1}{k} |S_i^g \cap U| \Longrightarrow$$
$$k \max_{1 < t < k} |S_t \cap (U - \gamma_{i-1})| < |\cup_{i=1}^k (S_k^* \cap (U - \gamma_{i-1}))|$$

However, it is obviously impossible. Therefore, $\gamma_i - \gamma_{i-1} \geq \frac{\beta_{i-1}}{k}$.

For **Problem(2b)**, I prove as follws:

$$\gamma_i - \gamma_{i-1} \ge \frac{\beta_{i-1}}{k} \Longrightarrow k\gamma_i - (k-1)\gamma_{i-1} \ge opt \Longrightarrow \frac{opt - \gamma_i}{opt - \gamma_{i-1}} \le \frac{k-1}{k} \Longrightarrow \frac{opt - \gamma_k}{opt - \gamma_0} \le (\frac{k-1}{k})^k \Longrightarrow 1 - \frac{1}{r} \le (\frac{k-1}{k})^k \Longrightarrow r \le \frac{1}{1 - (1 - \frac{1}{k})^k}$$

Becasue $(1 - \frac{1}{k})^k \le \lim_{k \to \infty} (1 - \frac{1}{k})^k = e^{-1}$, therefore:

$$r \le \frac{1}{1 - (1 - \frac{1}{k})^k} \le \frac{1}{1 - (1 - e^{-1})} = 1 + \frac{1}{e - 1}$$

- 3. **Minimum Bin Packing:** Given a finite rational set $F = \{a_i\}_{i=1}^n$, where $a_i \in (0,1]$. We need to find a partition $\{F_i\}_{i=1}^k$ of F with no intersection and $\bigcup_{i=1}^k F_i = F$ with minimum k. The numbers in F_i are put into a bin, and the sum of numbers in each bin is at most 1. An idea to design a sequential algorithm is that for each number a_i , if a_i can fit into the last open bin then assign a_i to this bin, or else we open a new bin and assign a_i to it. Note that $\{a_i\}_{i=1}^n$ are NOT sorted in this algorithm.
 - (a) Show that the approximation ratio of the algorithm by the idea above is at most r=2.

Proof. Set s the number of bins the sequential algorithm use, t the optimal number of bins.

Because $r = \frac{s}{t}$. I prove $r \leq 2$ by giving the uper bound of s and the lower bound of t. Set there are s bins generated by sequential algorithm sequentially and the sums of numbers in each bin are b_1, b_2, \dots, b_s . Set there are t bins generated by optiaml solution sequentially and the sums of members in each bin are c_1, c_2, \dots, c_t . Besides, set d_1, d_2, \dots, d_{s-1} are the immediate incompatiale number after each bin b_1, b_2, \dots, b_{s-1} . According to the sequential algorithm, we have the following inequations:

$$b_2 \ge d_1 > 1 - b_1$$

 $b_3 \ge d_2 > 1 - b_2$
...
 $b_s > d_{s-1} > 1 - b_{s-1}$

Therefore, for any adjacent b_i, b_{i+1} ($\forall i \in \{1, 2, \dots, s-1\}$), $b_i + b_{i+1} > 1$. If we sum two columns of the inequations above directly, we can only have:

$$s < 2\sum_{i=1}^{s} b_i + (1 - b_1 - b_s)$$

$$= 2\sum_{i=1}^{n} a_i + (1 - b_1 - b_s)$$

$$= 2\sum_{i=1}^{t} c_i + (1 - b_1 - b_s)$$

We are forced to discuss it by two situations $(1 - b_1 - b_s \ge 0 \text{ and } 1 - b_1 - b_s < 0)$. However, we have the following relationship:

$$\sum_{i=1}^{t} c_i = t + \sum_{i=1}^{t} (c_i - 1)$$

I want to prove $r \leq 2$ by the equations above. However, I spend a lot of time to proving it and the situation $1 - b_1 - b_s \geq 0$ is hard to deal (the situation $1 - b_1 - b_s < 0$ is obvious to prove).

However, I think I misunderstand the question. If what the question means is that number a_i is not put into the last bin immediately. Instead, if what the question means is that we can try the number a_j after a_i to test if a_j fits the last bin, I think I can prove it.

In fact, it is obvious that for all the selected bins, at most one bin is less than $\frac{1}{2}$. Assume that $b_p < \frac{1}{2}$, $b_p + b_{p+1}$ or $b_{p-1} + b_p$ is larger than 1 according to the analysis above. And other b_i is all larger than $\frac{1}{2}$. Therefore, we always have $s < 2\sum_{i=1}^n a_i \le 2\sum_{i=1}^t c_i \le 2t$ because $\forall c_i \in (0,1]$. And we finish the proof. Note that in the finite rational set F, we can only have < instead of \le .

(b) (Optional Subquestion with Bonus) Give an input instance to show the tightness of r=2.

Solution. Assume that there are 4m rational numbers:

$$a_i = \begin{cases} \frac{1}{2} & \text{i is odd} \\ \frac{1}{2m} & \text{i is even} \end{cases}$$

In this case, we have $s=2m,\,t=m+1.$ Thus, $\lim_{m\to\infty}r=\lim_{m\to\infty}\frac{2m}{m+1}=2.$

Note that this set is infinite rational set and what the question is interested in is finite set. However, this instance shows that the r of finite set can be infinitely close to 2, which proves the tightness of r = 2.

4. Consider the Revised Greedy Knapsack Algorithm (refer Greedy Knapsack in Slide17).

Algorithm 2: Revised Greedy Knapsack

```
Input: X with n items; b; \{p_i\}_{i=1}^n; \{a_i\}_{i=1}^n; \epsilon > 0.
    Output: val(Y): The total value of Y where Y \subseteq X such that \sum_{x_i \in Y} a_i \leq b.
 1 Y_0 \leftarrow GreedyKnapsack(X, b, \{p_i\}_{i=1}^n, \{a_i\}_{i=1}^n); h \leftarrow \epsilon \cdot val(Y_0);
 2 Set I_h \leftarrow \{i \mid 1 \leq i \leq n, p_i \leq h\}, and reorder them as I_h = \{1, 2, \dots, m\} \ (m \leq n),
      where \{\frac{p_i}{a_i}\}_{i=1}^m is nonincreasing; temp \leftarrow 0; currenttemp \leftarrow val(Y_0);
 3 foreach I \subseteq \{m+1, m+2, \cdots, n\} such that |I| \leq \frac{2}{\epsilon} do
         if \sum_{i \in I} a_i > b then temp \leftarrow 0;
         else if \sum_{i=1}^{m} a_i \leq b - \sum_{i \in I} a_i then temp \leftarrow \sum_{i=1}^{m} p_i + \sum_{i \in I} p_i;
 6
         else Find max k s.t. \sum_{i=1}^k a_i \le b - \sum_{i \in I} a_i < \sum_{i=1}^{k+1} a_i and
          temp \leftarrow \sum_{i=1}^{k} p_i + \sum_{i \in I} p_i;
 9
         if current temp < temp then current temp \leftarrow temp and update Y;
10
11
12 return val(Y) \leftarrow currenttemp;
```

(a) Time complexity: $O(f(n, \epsilon)) = O(n^{2 + [\frac{2}{\epsilon}]})$. (Sort: $O(n \log n)$).

Proof. I prove it line by line.

Line1: the time complexity of Greedy Knapsack is O(nlogn).

Line2: the time complexity of reorder by using sort is O(nlogn) as the hint is.

Line3-11: if
$$\left[\frac{2}{\epsilon}\right] \leq (n-m)$$
, the iterations of the for loop is $\binom{n-m}{1} + \binom{n-m}{2} + \cdots + \binom{n-m}{\left[\frac{2}{\epsilon}\right]} = O(n^{\left[\frac{2}{\epsilon}\right]})$; if $\left[\frac{2}{\epsilon}\right] > (n-m)$, the iterations of the for loop is $\binom{n-m}{1} + \binom{n-m}{2} + \cdots + \binom{n-m}{n-m} = O(2^n)$.

In the for loop: line4 costs O(1); line6 costs O(n) to calculate $\sum_{i=1} ma_i$; line8 costs $O(n^2)$ to try n times and each time to calculate the sum costs O(n); line10 costs O(1). Line12 to get the val(Y) costs O(n).

Therefore, if $\left[\frac{2}{\epsilon}\right] \leq (n-m)$, we have the total time complexity as follows:

$$O(nlogn + nlogn + {\binom{n-m}{1}} + {\binom{n-m}{2}} + \dots + {\binom{n-m}{\lfloor \frac{2}{\epsilon} \rfloor}})(1 + n + n^2 + 1) + n)$$

$$= O(nlogn + n^2({\binom{n-m}{1}} + {\binom{n-m}{2}} + \dots + {\binom{n-m}{\lfloor \frac{2}{\epsilon} \rfloor}}))$$

$$= O(n^{2 + \lfloor \frac{2}{\epsilon} \rfloor})$$

If $\left[\frac{2}{\epsilon}\right] > (n-m)$, the total time complexity is $O(n^2 2^n)$.

Note that I think what the question is interested in is when $\left[\frac{2}{\epsilon}\right] \leq (n-m)$.

(b) The approximation ratio is $1 + \epsilon$ when $\epsilon < 1$, then is it a log-APX? an APX? a PTAS? an FPTAS?

Solution. PTAS. Because the approximation ratio is $1 + \epsilon$ when $\epsilon < 1$ and the time complexity is not proportional to ϵ (ϵ appears on the exponent).