Turning Experimental Procedures into Machine-Readable Recipes

William Spitzer, Menghsuan Sam, Iveel Tsogsuren

Large scale manufacturing has been made more efficient with automation and machine procedures centuries ago. Scientific researches, however, still require scientists or technicians to perform the experiments due to the inherent variability and complexity. Battery research, in particular, includes large amount of hand-on experiments. In order to help automate the research, we attempt to create step-by-step machine readable procedures from experimental procedure sections of journal publications using common techniques in natural language processing. To achieve this goal, we built a pipeline process that contained several steps. First, it would take in a list of raw sentences from the experimental procedure text and label them using our custom tags to denote whether or not words were (A)ctions, (I)ngredients, (E)quipment, (PR)oducts, (P)roperties, (R)eferences, or (N)one. It would then group together words based on these labels, and separate out steps such that each step contains exactly one Action. Each step is ordered using a shift based dependency parser to connect the tagged groups with each other. Finally, it orders all of the steps based on keywords in the procedure so that each step follows chronologically from the previous step. The result is outputted as a list of dictionaries that represent each step, with details regarding what is needed to perform each step. In order to evaluate the performance of our model, we have built a small data set as our training data and development data.