Advanced Section #1: SVMs, logistic regression and neural networks CS 209B: Data Science

Javier Zazo Pavlos Protopapas

javier.zazo.ruiz@gmail.com

Lecture Outline

Classifying Linear Separable Data

Classifying Linear Non-Separable Data

Introduction to convex optimization

Dual problem of the SVC

Extension to Non-linear Boundaries

Relationship to Logistic Regression

Classifying Linear Separable Data

Decision Boundaries Revisited

- ► Goal: find *decision boundaries* to separate classes.
- ► Multiple decision boundaries:
 - Linear separable data \rightarrow Hard margin classifier.
 - Linear non-separable data \rightarrow SVCs.
 - Non-linear boundaries \rightarrow SVMs.
- ightharpoonup Logistic regression ightharpoonup Kernel Logistic Regression.
- ► Motivation for NN.

Hyperplanes

► Hyperplane equation:

$$f(x) = \beta_0 + \beta^T x = 0.$$

- ▶ Normal vector: β .
- ► Halfspaces: $f(x) \leq 0$.
- ightharpoonup Given N pair data points:

$$(x_1,y_1),\ldots,(x_N,y_N)$$

▶ Binary classification: $y_i \in \{-1, 1\}$

► Separable classes:

$$y_i(\beta_0 + \beta^T x_i) \ge 0$$

Maximizing Margins

- ► We establish a geometric principle to classify data.
- ightharpoonup Distance between x and hyperplane:

$$D(x) = \frac{\beta_0 + \beta^T x}{\|\beta\|}.$$

- ▶ Unsigned distances: $|D(x_i)| = y_i D(x_i) \ge M$.
- ► Maximum margin classifier:

$$\max_{M,\beta_0,\beta} M$$
s.t.
$$\frac{1}{\|\beta\|} y_i(\beta_0 + \beta^T x_i) \ge M, \quad \forall i.$$
 (1)

Maximum Margin Classifier

▶ We transform the previous problem into

$$\min_{\beta_0,\beta} \quad \|\beta\|
\text{s.t.} \quad y_i(\beta_0 + \beta^T x_i) \ge 1, \quad \forall i.$$
(2)

- ▶ Both problems can be solved using specific solvers.
- ▶ They become unfeasible if the data is non-separable.

Classifying Linear Non-Separable Data

The Margin/Error Trade-Off

- ▶ With every decision boundary, bias-variance trade-off.
- ► The maximum margin classifier:
 - Low bias but **very high variance**.
- ▶ Generalization to linear non-separable boundaries.

Support Vector Classifier (SVC)

- ► Classes overlap in the input space.
- ► Maximize the margin but relax the constraints.
- Use of slack variables $\xi = (\xi_1, \dots, \xi_N)$:

$$\min_{\beta_0, \beta, \xi_i \ge 0} \quad \|\beta\|$$
s.t.
$$y_i(\beta_0 + \beta^T x_i) \ge 1 - \xi_i, \quad \forall i$$

$$\sum_{i=1}^N \xi_i \le C,$$

- ightharpoonup C limits the amount of violation of the constraints.
 - Margin violation: points inside the margin.
 - Misclassification: points on the wrong side of the boundary.

Moving the constraint to the objective

▶ Remove $\sum_i \xi_i \leq C$ and put it in the objective:

$$\min_{\beta_0, \beta, \xi_i \ge 0} \quad \frac{1}{2} \|\beta\|^2 + \lambda \sum_{i=1}^N \xi_i$$

s.t.
$$y_i (\beta_0 + \beta^T x_i) \ge 1 - \xi_i, \quad \forall i.$$

- ► Tuning SVCs:
 - small $\lambda \to \text{large margin}$
 - large $\lambda \to \text{narrow margins}$
 - $-\lambda = \infty$ produces the hard margin solution

Bias-variance trade-off examples

Lower to higher tuning parameter λ .

Introduction to convex optimization

Introduction to optimization

▶ Unconstrained optimization \rightarrow minimize in Euclidean space:

$$\min_{x \in \mathbb{R}^n} \quad f(x). \tag{3}$$

▶ Constrained optimization → minimization respect to $X \subset \mathbb{R}^n$:

$$\min_{x \in X} \quad f(x). \tag{4}$$

► Convexity can be defined on sets and functions:

Unconstrained optimization

▶ Necessary condition for point x^* be optimal:

$$\nabla_x f(x^*) = 0.$$

► Convex: condition is both necessary and sufficient.

• Example 1: $f_1(x) = ax^2 + bx + c$ with a > 0.

$$- \frac{d}{dx}f(x) = 2ax + b = 0 \to \boxed{x^* = \frac{-b}{2a}}.$$

► Example 2: $f_2(x) = x^T A x + 2b^T x + c$ and A > 0:

$$- \nabla_x f_2(x) = 2Ax + 2b = 0 \to \boxed{x^* = -A^{-1}b.}$$

Constrained optimization

▶ **Primal problem**: constrained problem in standard form:

$$\min_{x \in \mathbb{R}^n} f(x)$$
s.t. $g_i(x) \le 0$ $i \in \{1, \dots, m\}$
 $h_j(x) = 0$ $j \in \{1, \dots, p\}$.

- ▶ Convex if f(x), $g_i(x)$ are convex, and $h_j(x)$ are affine.
- ightharpoonup Slater's condition \rightarrow establishes strong duality.
- ► Duality theory provides:
 - Optimality analysis.
 - Algorithmic tools.
 - Theoretical insights.

Dual problem formulation

1. Construct the Lagrangian:

$$L(x, \lambda, \nu) = f(x) + \sum_{i} \lambda_{i} g_{i}(x) + \sum_{j} \nu_{j} h_{j}(x).$$

2. **Dual function**: the minimum of the Lagrangian over x:

$$q(\lambda, \nu) = \min_{x} L(x, \lambda, \nu).$$

3. **Dual problem**: maximization of the dual function over $\lambda_i \geq 0$:

$$\max_{\lambda \in \mathbb{R}^m, \nu \mathbb{R}^p} q(\lambda, \nu)$$
s.t. $\lambda_i \ge 0 \quad \forall i$. (5)

Necessary conditions for optimality

Karush-Kuhn-Tucker (KKT) conditions:

▶ The minimization w.r.t. x of the Lagrangian is an unconstrained problem (step 2). Therefore,

$$\nabla_x L(x^*, \lambda, \nu) = 0 \tag{6}$$

is necessary for any candidate solution x^* .

► Feasibility is also required:

$$g_i(x^*) \le 0 \quad \forall i$$
 (7a)
 $h_j(x^*) = 0 \quad \forall j$ (7b)
 $\lambda_i^* \ge 0 \quad \forall i$ (7c)

$$\nu_i^* \in \mathbb{R} \quad \forall j,$$
 (7d)

► These equations define a system to recover primal variables.

Dual problem of the SVC

Motivation for the dual problem

- ▶ Primal problem: linear classifier that should
 - maximize the distance between the points and the decision boundary (maximize margin).
 - misclassify as few points as possible.

$$\min_{\beta_0, \beta, \xi_i \ge 0} \quad \frac{1}{2} \|\beta\|^2 + \lambda \sum_{i=1}^{N} \xi_i$$

s.t.
$$y_i (\beta_0 + \beta^T x_i) \ge 1 - \xi_i, \quad \forall i.$$

- ▶ Dual problem:
 - Allows for efficient computations (used in solvers).
 - Allows a natural derivation of kernel methods.
- ► Consideration: SVC is a convex problem.
 - Strong duality holds.

Derivation of the dual problem

► Standard SVC:

$$\min_{\beta_0, \beta, \xi_i \ge 0} \quad \frac{1}{2} \|\beta\|^2 + \lambda \sum_{i=1}^N \xi_i$$
s.t.
$$y_i (\beta_0 + \beta^T x_i) \ge 1 - \xi_i, \quad \forall i \in \{1, \dots, N\}.$$

► Lagrangian (it's a long expression):

$$L(\beta, \xi, \alpha, \mu) = f(\beta, \xi) + \sum_{i} \alpha_{i} g_{i}(\beta, \xi) + \mu_{i} \xi_{i}$$

▶ First order condition: gradient with respect to β , β_0 and ξ

$$\beta = \sum_{i=1}^{N} \alpha_i y_i x_i, \qquad 0 = \sum_{i=1}^{N} \alpha_i y_i, \qquad \alpha_i = \lambda - \mu_i, \quad \forall i.$$

 \blacktriangleright With feasibility \rightarrow the system of equations can be solved exactly.

Dual problem of SVCs

► Substituting on the primal problem we obtain the dual:

$$\max_{0 \le \alpha_i \le \lambda} \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} y_i y_j \alpha_i \alpha_j x_i^T x_j$$
s.t.
$$\sum_{i=1}^{N} \alpha_i y_i = 0.$$

- ► Sequential Minimal Optimization (SMO) solves the problem very efficiently.
- ▶ Only support vectors have $\alpha_i \neq 0$.
- ► At test time, we use

$$y_{\text{test}} \leftarrow \text{sign}[\beta_0 + \beta^T x_{\text{test}}].$$

Extension to Non-linear Boundaries

Transforming the Data

► Training a polynomial model is just training a linear model on data with transformed predictors:

$$\phi: \mathbb{R} \to \mathbb{R}^4$$
$$\phi(x) = (x^0, x^1, x^2, x^3)$$

 $ightharpoonup \mathbb{R}$ is the *input space*; \mathbb{R}^4 is the *feature space*.

SVC with Non-Linear Decision Boundaries

Generalization:

1. Apply transform $\phi: \mathbb{R}^J \to \mathbb{R}^{J'}$ on training data

$$x_n \mapsto \phi(x_n)$$

where typically J' is much larger than J.

2. Train an SVC on the transformed data

$$\{(\phi(x_1), y_1), \ldots, (\phi(x_N), y_N)\}$$

► XOR example:

$$\phi(x) = (x_1, x_2, x_1 x_2)$$

Training in the feature space

▶ We can train the SVC in the feature space:

$$\max_{0 \le \alpha_i \le \lambda} \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} y_i y_j \alpha_i \alpha_j \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$$
s.t.
$$\sum_{i=1}^{N} \alpha_i y_i = 0.$$

- ▶ Designing $\phi(x)$ can be hard \rightarrow (maybe not with NN).
- ightharpoonup Computing ϕ explicitly can be costly.
- We are only interested in computing $\phi(x_i)^T \phi(x_j)$.

Definition of Kernel

The *inner product* between two vectors is a measure of the similarity of the two vectors.

Definition

Given a transformation $\phi : \mathbb{R}^J \to \mathbb{R}^{J'}$, from input space \mathbb{R}^J to feature space $\mathbb{R}^{J'}$, the function $K : \mathbb{R}^J \times \mathbb{R}^J \to \mathbb{R}$ defined by

$$K(x_i, x_j) = \phi(x_i)^T \phi(x_j), \quad x_i, x_j \in \mathbb{R}^J$$

is called the *kernel function* of ϕ .

Generally, **kernel function** may refer to any function $K: \mathbb{R}^J \times \mathbb{R}^J \to \mathbb{R}$ that measure the similarity of vectors in \mathbb{R}^J , without explicitly defining a transform ϕ .

Kernel Trick

► For a choice of kernel $K(x_i, x_j) = \phi(x_i)^T \phi(x_j)$,

$$\max_{0 \le \alpha_i \le \lambda} \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} y_i y_j \alpha_i \alpha_j K(x_i, x_j)$$
s.t.
$$\sum_{i=1}^{N} \alpha_i y_i = 0.$$

without computing the mappings $\phi(x_i)$, $\phi(x_i)$.

▶ This way of training a SVC in feature space without explicitly using the mapping ϕ is called **the kernel trick**.

Kernel Functions

Common kernel functions include:

► Polynomial Kernel

$$K(x_1, x_2) = (x_1^{\mathsf{T}} x_2 + 1)^d$$

where d is a hyperparameter

► Radial Basis Function Kernel

$$K(x_1, x_2) = \exp\left\{-\frac{\|x_1 - x_2\|^2}{2\sigma^2}\right\}$$

where σ is a hyperparameter

► Sigmoid Kernel

$$K(x_1, x_2) = \tanh(\kappa x_1^{\mathsf{T}} x_2 + \theta)$$

where κ and θ are hyperparameters.

Relationship to Logistic Regression

SVCs via Loss + Penalty

 \blacktriangleright General structure for *classification* and *regression*:

$$\min_{\beta} \quad J(X, y, \beta) + \lambda P(\beta),$$

- $J(X, y, \beta)$ is a general loss function.
- $P(\beta)$ is a general regularizer.
- ► SVCs take a similar form as well:

$$\min_{\beta,\beta_0} \sum_{i=1}^{N} \max[0, 1 - y_i(\beta_0 + \beta^T x_i)] + \lambda \|\beta\|^2,$$

$$y_i(\beta_0 + \beta^T x) \ge 1 - \xi_i \to \xi_i = 1 - y_i(\beta_0 + \beta^T x) \ge 0$$

 $\to \xi_i = \max[0, 1 - y_i(\beta_0 + \beta^T x)].$

SVMs via Loss + Penalty

We can extend SVCs to incorporate feature maps ϕ :

$$\min_{\beta,\beta_0} \sum_{i=1}^{N} \max[0, 1 - y_i(\beta_0 + \beta^T \phi(x_i))] + \lambda \|\beta\|^2.$$

Notice that from KKT condition, $\beta = \sum_{j=1}^{N} y_j \alpha_j \phi(x_j)$:

$$\min_{\beta,\beta_0} \sum_{i=1}^{N} \max[0, 1 - y_i(\beta_0 + \sum_{j=1}^{N} y_j \alpha_j \phi(x_j)^T \phi(x_i))] + \lambda \|\beta\|^2.$$

and introducing kernel $K(x_i, x_j) = \phi(x_i)^T \phi(x_j)$

$$\min_{\beta,\beta_0} \sum_{i=1}^{N} \max[0, 1 - y_i(\beta_0 + \sum_{j=1}^{N} y_j \alpha_j K(x_i, x_j))] + \lambda \|\mathbf{K}^{1/2} \boldsymbol{\alpha}\|^2.$$

SVMs via Loss + Penalty and Kernels

► General cost function for SVMs:

$$\max[0, 1 - yf(x)] + \lambda \|\mathbf{K}^{1/2}\alpha\|^2$$

with

$$f(\mathbf{x}) = \beta_0 + \sum_{j=1}^{N} \alpha_j K(\mathbf{x}, x_j)$$

- ▶ Our training variables are now β_0 and α_i .
- ▶ We perform classification as usual:

$$y_{\text{test}} \leftarrow \text{sign}[f(x)].$$

Logistic regression

- Given training data $x_i \in \mathbb{R}^p$, $y_i \in \{1, 0\}$.
- ightharpoonup Probabilities \rightarrow based on the logistic function:

$$p = P(y = 1|x) = \frac{1}{1 + e^{-(\beta_0 + \beta^T x)}},$$

ightharpoonup Likelihood ightharpoonup Bernoulli distribution:

$$J_l(X, y, \beta) = \prod_{i=1}^N P(y = y_i | x) = \prod_{i=1}^N p^{y_i} (1 - p)^{1 - y_i}$$

 \blacktriangleright Objective \rightarrow maximum log-likelihood:

$$\max_{\beta_0,\beta} \log(J_l(X, y, \beta)) \iff \min_{\beta_0,\beta} -\sum_{i=1}^{N} \left[y_i \log(1 + e^{-(\beta_0 + \beta^T x_i)}) + (1 - y_i) \log(1 + e^{(\beta_0 + \beta^T x_i)}) \right]$$

Kernel Logistic Regression (KLR)

- ▶ Logistic regression \rightarrow loss function + penalization.
- \blacktriangleright We incorporate f(x) based on kernels:

$$\min_{\beta_0, \alpha_i} -\sum_{i=1}^{N} \left[y_i \log(1 + e^{-f(x_i)}) + (1 - y_i) \log(1 + e^{f(x_i)}) \right] + P(\alpha),$$

$$f(x) = \beta_0 + \sum_{j=1}^{N} \alpha_j K(x, x_j).$$

Comparison between SVMs and KLR

- ► Classification performance is very similar.
- ▶ KLR provides estimates of class probabilities.
- ► KLR generalizes naturally to M-class classification.
- ► KLR converges to the maximum margin classifier.
- ► KLR is computationally more expensive, $O(N^3)$ vs. $O(N^2m)$.
- ▶ In SVMs many α_i are zero \rightarrow data compression.
- ▶ In KLR all α_i are typically non-zero.

Logistic regression as Neural Network

- ▶ Logistic regression constitutes a NN of a single neuron.
- ▶ Sigmoid function: $\sigma(z) = 1/(1 + \exp(-z))$.

