Министерство образования и науки Российской Федерации «МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ» (государственный университет)

ФАКУЛЬТЕТ АЭРОФИЗИКИ И КОСМИЧЕСКИХ ИССЛЕДОВАНИЙ КАФЕДРА ПРИКЛАДНОЙ МЕХАНИКИ

На правах рукописи УДК 532.546-3:536.42

Новиков Алексей Викторович

Математическое моделирование термогидродинамических процессов в пласте для определения структуры околоскважинной зоны

Выпускная квалификационная работа магистра
Направление подготовки 010922
«Фундаментальная и прикладная геофизика»

Заведующий кафедрой	к.т.н Негодяев С.С.
Научный руководитель	Торопов К.В.
Студент-дипломник	Новиков А.В.

Содержание

Введе	ние	3
Обозн	ачения	4
Глава	1. Основы механики и термодинамики насыщенных пори-	
СТЬ	іх сред	6
1.1	Кофигурации. Градиент деформации. Подходы Эйлера и Лагран-	
	жа описания движения сплошной среды	6
1.2	Тезоры деформаций. Уравнение совместности скоростей и де-	
	формаций	8
1.3	Пористость. Эффективная и истинная плотности. Закон сохра-	
	нения масс.	9
1.4	Напряжения. Законы сохранения импульса и момента импульса.	10
1.5	Закон сохранения энергии. Второе начало термодинамики	12
1.6	Определяющие уравнения	14
	2. Неизотермическая фильтрация флюида к несовершенм скважинам.	15
	3. Аналитические и численные методы решения задач зотермической фильтрации.	16
Списо	к использованных источников	17

Введение

Традиционно расчёт фильтрации флюидов в нефтегазоносных пластах проводят пренебрегая изменением температуры среды. Во-первых, потому, что изменения температуры при фильтрации крайне малы, и не оказывают сколько-нибудь заметного влияния на свойства среды. Во-вторых, для записи температурных данных необходимы высокоточные датчики, которые получили широкое распространение лишь в последнее десятилетие. В-третьих, при дополнительном расчёте теплопереноса возникает необходимость указания большого количества характеристик (как компонентов среды, так и задачи в целом), значения которых неизвестны, либо известны с весьма плохой точностью. В этой связи, модели неизотермической фильтрации при гидродинамическом моделировании месторождений остаются не у дел.

Тем не менее существует ряд задач, в которых привлечение термодинамики насыщенной пористой среды позволяет определить некоторые эксплуатационные характеристики пласта. Речь идет о измерении давления, дебита и температуры в стволе скважины и последующей совместной интерпретации этих данных на основе соответствующих моделей массо- и теплопереноса. Такие исследования носят название термогидродинамических, и подразделяются на два вида:

- измерение параметров вдоль ствола скважины;
- измерение параметров во времени на определённой глубине.

Обозначения

Здесь и далее будем обозначать индексом с заглавной буквой $A = \{F, G, S\}$ эффективные характеристики соответствующего континуума, со строчной $a = \{f, g, s\}$ – истинные характеристики.

Верхний индекс " θ " означает равновесную составляющую физической величины, в то время как "dis" – диссипативную составляющую.

Обозначения и операторы:

- \mathbb{E}^3 трёхмерное евклидово пространство,
- κ_A отсчётная конфигурация континуума A,
- $\chi(t)$ текущая конфигурация системы,
 - ∇_{κ} градиент в переменных \boldsymbol{X} ,
 - ∇ градиент в переменных x,
 - ⊗ тензорное умножение,
 - ε абсолютный антисимметричный тензор 3-го ранга Леви-Чивита,
 - $oldsymbol{n}$ вектор единичной нормали к поверхности,

Общие характеристики среды:

- ${m X}_A$ радиус-вектор материальной точки континуума A в отсчётной конфигурации,
 - $oldsymbol{x}$ радиус-вектор материальной точки в актуальной конфигурации,
 - v вектор скорости материальной точки континуума A,
- w_A в зависимости от контекста: либо дифузионная скорость (относительно центра масс среды), либо скорость движения флюида A относительно скелета S,
- ${m F}_A$ градиент деформаций (дисторсия) среды A,
- ϕ_A объёмная доля континуума A,
 - ϕ пористость среды,

- S насыщенность среды нефтью (жидкой фазой),
- ρ плотность массы,
- q_A объёмная интенсивность перехода массы вещества в континуум A, Характеристики напряжённого состояния:
 - t вектор напряжений,
 - σ тензор напряжений Коши,
 - \boldsymbol{b} плотность массовых сил,
 - $oldsymbol{b}^{int}$ объёмная сила взаимодействия континуумов,

Термические характеристики:

- θ температура среды,
- *r* плотность внешних источников,
- r^{int} скорогсть объёмного теплообмена между континумами,
- h_A поверхностный приток тепла,
 - ${m q}$ вектор теплового потока,
 - e плотность полной энергии,
 - u плотность внутренней энергии,
 - η плотность энтропии,
 - ψ плотность свободной энергии,
 - δ диссипация энергии,

Глава 1

Основы механики и термодинамики насыщенных пористых сред

Насыщенная пористая среда — совокупность твёрдого деформируемого скелета и флюида, насыщающего этот скелет. Под флюидом понимается смесь жидкостей и газов, способная перемещаться внутри порового пространства скелета. Для описания совместного движения скелета и флюида используется гипотеза суперпозиции континуумов, которая предполагает что в каждой точке пространства находится и скелет, и флюид.

Флюид, в свою очередь, может быть многофазным и многокомпонентным. Здесь и далее будем отождествлять понятие компоненты с химическим веществом, входящим в состав флюида. Фазой будем называть термодинамически равновесное состояние вещества, качественно отличное от других равновесных состояний того же вещества.

Подробное изложение законов сохранения, построение определяющих соотношений для таких систем можно найти в [2,4–6]. Вопросы динамики многофазных сред описаны в [7].

Здесь и далее, для простоты, будем рассматривать флюид, состоящий из двух компонент, которые могут находится в двух фазах (жидкой и газообразной) – бинарную смесь. В данной главе будут представлены законы сохранения, основные определяющие соотношения такой системы. Как результат будут получены математические модели процессов массо- и теплопереноса в пористых средах.

1.1 Кофигурации. Градиент деформации. Подходы Эйлера и Лагранжа описания движения сплошной среды.

Материальная точка или элементарный объём – объём сплошной среды, пренебрежимо малый по сравнению с размерами рассматриваемой задачи, но, при том, достаточный для того чтобы можно было проводить по нему осреднение. Дальнейшее рассмотрение будет проводится именно для таких объёмов.

Обозначим $\kappa_A \in \mathbb{E}^3$ – область, которую занимают частицы скелета (A=S)

или флюида (A=F, G) в момент времени t=0. Область κ_A в дальнейшем будем называть *отсчётной (начальной) конфигурацией* скелета или флюида соответственно. Область $\chi(t) \in \mathbb{E}^3$, занятую в момент времени t>0 частицами скелета и флюида, назовём *актуальной* или *текущей конфигурацией*. Отображения $\kappa_A \to \chi(t)$ будем называть деформацией концинуума A.

Здесь и далее предполагается, что области κ_A , $\chi(t)$ – регулярны, отображения $\kappa_A \to \chi(t)$ – кусочно-гомеоморфны и дифференцируемы. Тогда существуют взаимнооднозначные дифференцируемые связи:

$$\boldsymbol{x} = \boldsymbol{x}(\boldsymbol{X}_A, t), \quad t > 0, \quad \boldsymbol{x} \in \chi(t), \quad \boldsymbol{X}_A \in \kappa_A,$$
 (1.1)

которые называются *законами движения* материальных точек скелета и флюида.

Возмём дифференциал от (1.1):

$$d\mathbf{x} = d\mathbf{X}_A \cdot (\nabla_{\kappa} \otimes \mathbf{x}) = d\mathbf{X} \cdot \mathbf{F}_A^T = \mathbf{F}_A \cdot d\mathbf{X},$$
$$\mathbf{F}_A(\mathbf{X}, t) = [\nabla_{\kappa} \otimes \mathbf{x}(\mathbf{X}_A, t)]^T, \tag{1.2}$$

где \mathbf{F}_A — тензор второго ранга, называемый градиентом деформации (дисторсией) континуума А.

Для градиента деформаций \mathbf{F}_A справедлива *теорема Коши о полярном* разложении, которая позволяет представить деформацию элемента $d\mathbf{X}_A$ как комбинацию растяжения (сжатия) и вращения как жесткого целого:

$$\boldsymbol{F}_A = \boldsymbol{R}_A \cdot \boldsymbol{U}_A = \boldsymbol{V}_A \cdot \boldsymbol{R}_A, \tag{1.3}$$

где \mathbf{R}_A – ортогональный тензор второго ранга, называемый *тензором поворо-* ma, \mathbf{U}_A , \mathbf{V}_A – симметричные положительной определённые тензоры второго ранга, называемые *правым и левым тензорами растяжения*. Разложение (1.19) единственно.

Частной производной закона движения (1.1) по времени является *вектор скорости материальной точки*:

$$\boldsymbol{v}_{A}(\boldsymbol{X}_{A},t) \equiv \dot{\boldsymbol{x}}(\boldsymbol{X}_{A},t) = \left. \frac{\partial \boldsymbol{x}(\boldsymbol{X},t)}{\partial t} \right|_{\boldsymbol{X}_{A}}.$$
 (1.4)

Здесь и далее точкой будем обозначать материальную производную по времени (при постоянном X_A).

Описание характристик материальной точки функциями от $oldsymbol{X}_A$ носит на-

звание материального или лагранжевого описания среды, а радиус-вектор \mathbf{X}_A носит название материальной или лагранжевой переменной. Если же характеристики представляются функциями \boldsymbol{x} , то такой подход называется пространственным или эйлеровым описанием среды, переменная \boldsymbol{x} – пространственной или эйлеровой переменной.

1.2 Тезоры деформаций. Уравнение совместности скоростей и деформаций.

Для того чтобы охарактеризовать деформации континуума вводятся специальные меры — mензоры конечных деформаций. Наиболее употребительными являются mensoph Коши-Грина E_A и Альманзи A_A :

$$\boldsymbol{E}_{A} = \frac{1}{2} \left(\boldsymbol{F}_{A}^{T} \cdot \boldsymbol{F}_{A} - \boldsymbol{I} \right) \tag{1.5}$$

$$\boldsymbol{A}_{A} = \frac{1}{2} \left(\boldsymbol{I} - \boldsymbol{F}_{A}^{-1T} \cdot \boldsymbol{F}_{A}^{-1} \right). \tag{1.6}$$

Представляя градиент деформаций (1.2) через вектор перемещений $\boldsymbol{u}_A = \boldsymbol{x}_A - \boldsymbol{X}_A$, подставляя в (1.5) и пренебрегая членами второго порядка малости, получим тензор малых деформаций \boldsymbol{e}_A :

$$\boldsymbol{e}_{A} = \frac{1}{2} \left((\nabla \otimes \boldsymbol{u}) + (\nabla \otimes \boldsymbol{u})^{T} \right), \tag{1.7}$$

где в принятых допущениях: $\nabla_{\kappa} \simeq \nabla$.

Величины $\mathbf{F}_A(\mathbf{X}_A,t)$ и $\mathbf{v}_A(\mathbf{X}_A,t)$ являются первыми производными отображения $\kappa_A \to \chi(t)$. Предполагая отображение (1.1) кусочно дважды непрерывнодифференцируемым, получим соотношение:

$$\dot{\boldsymbol{F}}_A = (\nabla_{\kappa} \otimes \boldsymbol{v}_A)^T, \tag{1.8}$$

называемое уравнением совместности скоростей и деформаций.

1.3 Пористость. Эффективная и истинная плотности. Закон сохранения масс.

Для описания доли пустот в твёрдом скелете используется скалярная величина $\phi(\boldsymbol{x},t)$ – nopucmocmb, определяемая выражением:

$$\phi(\boldsymbol{x},t) = \frac{1}{V(\boldsymbol{x},t)} \int_{V(\boldsymbol{x})} \tilde{\varphi}(\boldsymbol{z},t) dV, \qquad (1.9)$$

где интеграл берётся по элементарному объёму $V(\boldsymbol{x}),\, \tilde{\varphi}(\boldsymbol{z},t)$ – индикаторная функция скелета.

Наряду с пористостью введём понятия объёмных долей флюидов в объёме среды ϕ_F , ϕ_G . Для них справедливо соотношение: $\phi_F + \phi_G = \phi_S$, где $\phi_S \equiv \phi$. Насыщенностью пористой среды флюидом A называется величина:

$$S_A = \frac{\phi_A}{\phi}, \quad 0 \le S_A \le 1, \quad S_F + S_G = 1.$$
 (1.10)

Здесь и далее будем считать: $S \equiv S_F$, $1 - S = S_G$.

Масса пористого насыщенного тела β равна:

$$m(\beta) = \int_{\chi(\beta,t)} \rho(\boldsymbol{x},t)dV = \sum_{A=\{F,G,S\}} \int_{\chi(\beta,t)} \rho_A(\boldsymbol{x},t)dV, \qquad (1.11)$$

$$\rho_A(\boldsymbol{x},t) = \phi_A(\boldsymbol{x},t)\rho_a(\boldsymbol{x},t), \quad A = \{F,G,S\}, \tag{1.12}$$

где $\rho(\boldsymbol{x},t)$, $\rho_A(\boldsymbol{x},t)$ — $ocpe \partial h \ddot{e} h h b le$ (эффективные) плотности насыщенной пористой среды и континуума A, $\rho_a(\boldsymbol{x},t)$ — ucmuhh b le плотности континуума A.

В предположении, что обмен массой между континуумами отсутствует, запишем локальный закон сохранения массы континуума в форме Лагранжа:

$$\rho_{\kappa_A} = \rho_A \left| \det \mathbf{F}_A \right|, \quad A = \{F, G, S\}, \tag{1.13}$$

где ρ_{κ_A} , ρ_A — плотности массы континуума A в отсчётной и актуальной конфигурациях.

Взяв материальную производную от интегралов в (1.11), получим локальное уравнение баланса массы континуума A в форме Эйлера:

$$\dot{\rho}_A + \rho_A \nabla \cdot \boldsymbol{v}_A = 0, \quad A = \{F, G, S\}, \tag{1.14}$$

или в дивергентной форме:

$$\frac{\partial \rho_A}{\partial t}\Big|_{x} + \nabla \cdot (\rho_A v_A) = 0, \quad A = \{F, G, S\}.$$
 (1.15)

Выражения (1.13), (1.14), (1.15) справедливы при отсутствии химических (фазовых) превращений. В противном случае необходимо писать в правой части соответствующие интенсивности переходов q_A :

$$\frac{\partial \rho_A}{\partial t}\Big|_{\boldsymbol{x}} + \nabla \cdot (\rho_A \boldsymbol{v}_A) = q_A, \quad A = \{F, G, S\}.$$
 (1.16)

1.4 Напряжения. Законы сохранения импульса и момента импульса.

Cuny, действующую континуум A в объёме тела β , представим в виде суммы объёмных массовых сил, объёмных сил взаимодействия континуумов и контактных сил:

$$\boldsymbol{f}_{A} = \boldsymbol{f}_{A}^{b} + \boldsymbol{f}_{A}^{int} + \boldsymbol{f}_{A}^{c} = \int_{\chi(\beta,t)} \rho_{A} \boldsymbol{b}_{A} dV + \int_{\chi(\beta,t)} \boldsymbol{b}_{A}^{int} dV + \oint_{\partial \chi(\beta,t)} \boldsymbol{t}_{A} dS, \quad (1.17)$$

где $\boldsymbol{b}_A(\boldsymbol{x},t)$ – плотность внешней массовой силы, \boldsymbol{b}_A^{int} – плотность сил, действующих на континуум A со стороны остальных континуумов в элементарном объёме, \boldsymbol{t}_A – контактная сила, действующая на континуум A из вне области χ со стороны того же континуума.

Для объёмных сил взаимодействия предполагатся:

$$\boldsymbol{b}_F^{int} + \boldsymbol{b}_G^{int} + \boldsymbol{b}_S^{int} = 0. \tag{1.18}$$

Сила \mathbf{t}_A называется вектором парциальных напряжений континуума A, задаётся на поверхности и является функцией координат и ориентации поверхности(постулат Kowu): $\mathbf{t}_A = \mathbf{t}_A(\mathbf{x}, \mathbf{n})$. Для вектора \mathbf{t}_A справедлива фундаметальная теорема Kowu:

$$\boldsymbol{t}_A(\boldsymbol{x}, \boldsymbol{n}) = \boldsymbol{\sigma}_A(\boldsymbol{x}) \cdot \boldsymbol{n}, \tag{1.19}$$

где тензор σ_A называется mензором эффективных (nарциальных) наnряжений Kоши для континуума A. Для тензора σ_A справедливо выражение:

$$\boldsymbol{\sigma}_A(\boldsymbol{x},t) = \phi_A(\boldsymbol{x},t)\boldsymbol{\sigma}_a(\boldsymbol{x},t), \qquad (1.20)$$

где $\sigma_a(x,t)$ – тензор истинных напряжений Коши для континуума A.

Используя (1.19) и теорему Гаусса-Остроградского запишем *законы со*хранения импульса и момента импульса для континуума A в виде:

$$\int_{\chi(\beta,t)} \left(\frac{\partial (\rho_A \boldsymbol{v}_A)}{\partial t} + \nabla \cdot \left(\boldsymbol{v}_A \otimes \rho_A \boldsymbol{v}_A - \boldsymbol{\sigma}_A^T \right) - \rho_A \boldsymbol{b}_A - \boldsymbol{b}_A^{int} \right) dV = 0, \tag{1.21}$$

$$\int_{\chi(\beta,t)} \left[\boldsymbol{r} \times \left(\frac{\partial (\rho_A \boldsymbol{v}_A)}{\partial t} + \nabla \cdot \left(\boldsymbol{v}_A \otimes \rho_A \boldsymbol{v}_A - \boldsymbol{\sigma}_A^T \right) - \rho_A \boldsymbol{b}_A - \boldsymbol{b}_A^{int} \right) + \boldsymbol{\varepsilon} : \boldsymbol{\sigma}_A \right] dV = 0,$$
(1.22)

где ε – тензор Леви-Чивита. Подставляя (1.21) в (1.22) получим:

$$\boldsymbol{\sigma}_A = \boldsymbol{\sigma}_A^T. \tag{1.23}$$

Для выполнения закона сохранения момента импульса (1.22) необходимо и достаточно выполнения (1.23).

Выражения (1.21), (1.22) справедливы, если можно пренебречь вкладом квадрата пульсаций скорости в действующую силу и момент силы. В противном случае в законах сохранения необходимо записывать пульсационные и моментные напряжения.

Используя (1.16), запишем закон сохранения для континуума A в виде:

$$\rho_A \dot{\boldsymbol{v}}_A + q_A \boldsymbol{v}_A - \nabla \cdot \boldsymbol{\sigma}_A = \rho_A \boldsymbol{b}_A + \boldsymbol{b}_A^{int}. \tag{1.24}$$

Выражение (1.24) называется уравнением движения континуума A.

Сила взаимодействия, тензор напряжений и объёмная доля представляются в виде:

$$\boldsymbol{b}_{A}^{int} = \boldsymbol{b}_{A}^{0} + \boldsymbol{b}_{A}^{dis}, \quad \boldsymbol{\sigma}_{A} = \boldsymbol{\sigma}_{A}^{0} + \boldsymbol{\sigma}_{A}^{dis}, \quad \phi_{A} = \phi_{A}^{0} + \phi_{A}^{dis}, \quad A = \{F, G, S\}, \quad (1.25)$$

где \boldsymbol{b}_{A}^{0} , $\boldsymbol{\sigma}_{A}^{0}$, ϕ_{A}^{0} и \boldsymbol{b}_{A}^{dis} , $\boldsymbol{\sigma}_{A}^{dis}$, ϕ_{A}^{dis} – равновесные и диссипативные значения силы взаимодействия, тензора напряжений и объёмной доли. При этом имеем: $\boldsymbol{b}_{A}^{0} = \boldsymbol{\sigma}_{a} \cdot \nabla(\phi_{A})$. Для \boldsymbol{b}_{A}^{dis} формулируются определяющие соотношения, которые приводят к закону Дарси.

Суммируя (1.24) по всем континуумам $A = \{F, G, S\}$, получим:

$$\rho_A \dot{\boldsymbol{v}} + \nabla \cdot \left(\sum_A \left(\boldsymbol{w}_A \otimes \rho_A \boldsymbol{w}_A \right) - \boldsymbol{\sigma} \right) = \rho \boldsymbol{b}, \tag{1.26}$$

$$\rho = \sum_{A} \rho_{A}, \quad \rho \boldsymbol{v} = \sum_{A} \rho_{A} \boldsymbol{v}_{A}, \quad \rho \boldsymbol{b} = \sum_{A} \rho_{A} \boldsymbol{b}_{A}$$
 (1.27)

$$\boldsymbol{w}_A = \boldsymbol{v} - \boldsymbol{v}_A, \quad \sum_A \rho_A \boldsymbol{w}_A = 0, \quad \boldsymbol{\sigma} = \sum_A \boldsymbol{\sigma}_A,$$
 (1.28)

где ρ – плотность среды, $\rho \boldsymbol{v}$ – среднемассовая (барицентрическая) скорость, \boldsymbol{w}_A – относительные (диффузионные) скорости континуума $A, \, \boldsymbol{\sigma}$ – тензор полных напряжений среды.

1.5 Закон сохранения энергии. Второе начало термодинамики.

Для описание теплопереноса в рассматриваемой системе воспользуемся гипотезой о локальном термодинамическом равновесии, которая предполагает, что внутри каждого элементарного объёма среды все континуумы находятся в состоянии термодинамического равновесия. Считается, что при малых скоростях движения флюидов и высокой теплопроводности, использование гипотезы оправдано. В таком случае можно ввести понятие температуры $\theta(\boldsymbol{x},t)$ для материальной точки \boldsymbol{x} в момент времени t.

Запишем скорость подвода тепла к континууму A в объёме тела β :

$$Q_A = \int_{\chi(\beta,t)} (\rho_A r_A + r_A^{int}) dV + \oint_{\partial \chi(\beta,t)} h_A dS, \qquad (1.29)$$

гле r_A – плотность внешних (по отношению к континууму A) объёмных источников тепла, h_A – поверхностный приток тепла, r_A^{int} – скорость объёмного теплообмена.

Величины r_A^{int} , h_A во многом аналогичны характеристикам напряженного состояния \boldsymbol{b}_A^{int} , \boldsymbol{t}_A . Для r_A^{int} справедливо соотношение:

$$r_F^{int} + r_G^{int} + r_S^{int} = 0, (1.30)$$

а для h_A справедлива фундаментальная теорема Фурье-Стокса:

$$h_A(\boldsymbol{x}, \boldsymbol{n}) = \boldsymbol{q}_A(\boldsymbol{x}) \cdot \boldsymbol{n}, \tag{1.31}$$

где $oldsymbol{q}_A(oldsymbol{x})$ – вектор теплового потока.

Запишем закон баланса энергии в виде:

$$\frac{d}{dt} \int_{\chi(\beta,t)} \rho e dV = \sum_{A} \left[\int_{\chi(\beta,t)} (\rho_{A} \boldsymbol{b}_{A} \cdot \boldsymbol{v}_{A}) dV + \oint_{\partial \chi(\beta,t)} (\boldsymbol{t}_{A} \cdot \boldsymbol{v}_{A}) dS \right] + \int_{\chi(\beta,t)} (\nabla \cdot \boldsymbol{q} + \rho r) dV$$
(1.32)

$$\rho e = \sum_{A} \rho_A e_A, \quad e_A = u_A + \frac{\boldsymbol{v}_A \cdot \boldsymbol{v}_A}{2}, \quad \boldsymbol{q} = \sum_{A} \boldsymbol{q}_A, \tag{1.33}$$

$$\rho r = \sum_{A} \rho_{A} r_{A}, \quad A = \{F, G, S\},$$
(1.34)

где e_A – *плотность полной энергии* системы, u_A – *плотность внутренней энергии*. В выражении (1.32) слева стоит материальная производная от полной энергии тела β – внутренней и кинетической, справа стоит мощность внешних сил и суммарная скорость подвода тепла.

Используя (1.16), (1.24) получим *приведённое уравнение баланса энергии* в виде:

$$\sum_{A} \left[\rho_{A} \dot{u}_{A} + q_{A} \left(u_{A} - \frac{\boldsymbol{v}_{A} \cdot \boldsymbol{v}_{A}}{2} \right) \right] = \sum_{A} \left[\boldsymbol{b}_{A}^{int} \cdot \boldsymbol{w}_{A} + \boldsymbol{\sigma}_{A} : (\nabla \otimes \boldsymbol{v}_{A}) \right] + \nabla \cdot \boldsymbol{q} + \rho r,$$

$$(1.35)$$

где ${m w}_A$ — скорость материальной точки континуума A относительно скелета S.

Для формулировки второго начала термодинамики введём понятие плотности энтропии континуума $A - \eta_A$. Введение понятия энтропии позволяет верным образом учесть направление термодиначеских процессов, а также ввести понятие ноебратимых процессов. Между тем второе начало термодинамики будет использовано далее для построения определяющих соотношений насыщенной пористой среды.

Запишем второе начало термодинамики в интегральном виде:

$$\frac{d}{dt} \int_{\chi(\beta,t)} \sum_{A} \rho_{A} \eta_{A} dV \ge \int_{\chi(\beta,t)} \frac{\rho r}{\theta} dV + \oint_{\partial \chi(\beta,t)} \frac{\boldsymbol{q} \cdot \boldsymbol{n}}{\theta} dS. \tag{1.36}$$

Преобразуем (1.36) и запишем в дифференциальном виде:

$$\theta \sum_{A} \left[\rho_{A} \dot{\eta}_{A} + q_{A} \eta_{A} \right] - \nabla \cdot \boldsymbol{q} - \rho r + \frac{\boldsymbol{q} \cdot \nabla \theta}{\theta} \ge 0, \tag{1.37}$$

$$\delta_M = \theta \sum_A \left[\rho_A \dot{\eta}_A + q_A \eta_A \right] - \nabla \cdot \boldsymbol{q} - \rho r, \quad \delta_T = \frac{\boldsymbol{q} \cdot \nabla \theta}{\theta}, \quad (1.38)$$

$$\delta_M + \delta_T \ge 0, \tag{1.39}$$

где δ_M имеет смысл механической (внутренней) диссипации, а δ_T – термической диссипации, связанной с теплопроводностью среды.

Запишем (1.37) через плотность свобоной энергии $\psi_A = u_A - \theta \eta_A$. Для этого воспользуемся (1.8), (1.35), (1.25), получим:

$$-\sum_{A} \left[\rho_{A} \left(\dot{\psi}_{A} + \eta_{A} \dot{\theta} \right) + q_{A} \left(\psi_{A} - \frac{\boldsymbol{v}_{A} \cdot \boldsymbol{v}_{A}}{2} \right) + \boldsymbol{\sigma}_{a} : \left(\nabla \otimes \phi_{A}^{0} \boldsymbol{w}_{A} \right) \right] + \left(\boldsymbol{\sigma} \cdot \boldsymbol{F}_{S}^{-1T} \right) : \dot{\boldsymbol{F}}_{S} + \delta_{f} + \delta_{T} \geq 0 \quad (1.40)$$

$$\boldsymbol{\sigma} = \sum_{A} \boldsymbol{\sigma}_{A}, \quad \delta_{f} = \sum_{A} \left[\boldsymbol{\sigma}_{A}^{dis} : (\nabla \otimes \boldsymbol{w}_{A}) + \boldsymbol{b}_{A}^{dis} \cdot \boldsymbol{w}_{A} \right],$$
 (1.41)

где σ — тензор полных напряжений среды, δ_f — диссипация фильтрации. Выражение (1.41) носит название — вторая форма приведённого неравенства Клаузиуса-Дюгема.

1.6 Определяющие уравнения.

Глава 2. Неизотермическая фильтрация флюида к несовершенным скважинам.

Глава 3. Аналитические и численные методы решения задач неизотермической фильтрации.

Список литературы

- [1] Чарный И.А. Подземная гидрогазодинамика. М.–Ижевск: НИЦ «Регулярная и хаотическая динамика», Институт компьютерных исследований, 2006. 436 стр.
- [2] Басниев К.С., Кочина И.Н., Максимов В.М. Подземная гидромеханика: Учебник для вузов. М.: Недра, 1993. 416 с.: ил
- [3] Розенберг М.Д., Кундин С.А. Многофазная многокомпонентная фильтрация при добыче нефти и газа. М., «Недра», 1976. 335 с.
- [4] Кондауров В.И., Фортов В.Е. Основы термомеханики конденсированной среды. М.: Издательство МФТИ, 2002. 336 с.
- [5] Кондауров В.И. Механика и термодинамика насыщенной пористой среды: Учебное пособие. М.: МФТИ, 2007. 310 с.
- [6] Чекалюк Э.Б. Термодинамика нефтяного пласта. М.: Недра, 1965. 238 с.
- [7] Нигматулин Р.И. Динамика многофазных сред. Ч. І. М.: Наука. Гл. ред. физ-мат. лит. 1987-464 с.
- [8] Петров И.Б., Лобанов А.И. Лекции по вычислительной математике: Учебное пособие М.: Интернет-Университет Информационных Технологий; БИНОМ.Лаборатория знаний, 2013.-523 с.: ил., табл. (Серия «Основы информационных технологий»)
- [9] Каневская Р.Д. Математическое моделирование гидродинамических процессов разработки месторождений углеводородов. Москва-Ижевск: Институт компьютерных исследований, 2003, 128 стр.
- [10] Chen Zhangxin, Guanren Huan, and Yuanle Ma. Computational Methods for Multiphase Flows in Porous Media. Philadelphia: Society for Industrial and Applied Mathematics, 2006.
- [11] LeVeque R.J. Finite volume methods for Hyperbolic problems. Cambridge University Press, 2002.

- [12] Марченко Н.А. [и др.] / Иерархия явно-неявных разностных схем для решения задачи многофазной фильтрации // Препринты ИПМ им. Келдыша. 2008. № 97. 17 с. URL: http://library.keldysh.ru/preprint.asp?id=2008-97
- [13] Рамазанов А.Ш. Теоретические основы термогидродинамических методов исследования нефтяных пластов. Автореф. дис. докт. техн. наук. Уфа, 2004.
- [14] Рамазанов А.Ш., Паршин А.В. Температурное поле в нефтеводонасыщенном пласте с учётом разгазирования нефти // Электронный научный журнал «Нефтегазовое дело». 2006. №1. URL: http://ogbus.ru/authors/Ramazanov/Ramazanov_1.pdf
- [15] Ramazanov A.Sh., Valiullin R.A., Sadretdinov A.A., Shako V.V., Pimenov V.P., Fedorov V.N., Belov K.V. Thermal Modeling for Characterization of Near Wellbore Zone and Zonal Allocation. SPE 136256, Moscow: SPE Russian Oil and Gas Conference and Exhibition, 2010.
- [16] Валиуллин Р.А., Рамазанов А.Ш., Хабиров Т.Р., Садретдинов А.А., Шако В.В., Сидорова М.В., Котляр Л.А., Федоров В.Н., Салимгареева Э.М. Интерпретация термогидродинамических исследований при испытании скважины на основе численного симулятора. SPE-176589-RU, Российская нефтегазовая техническая конференция SPE, 26-28 октября, 2015, Москва, Россия.
- [17] Оливье Узе, Дидье Витура, Оле Фьярэ. Анализ динамических потоков. КАППА выпуск v4.10.01 - Октябрь 2008.
- [18] Posvyanskii D.V., Gaidukov L.A., Tukhvatullina R.R. Estimating Bottom Hole Damage Zone Parameters Based on Mathematical Model of Thermohydrodynamic Processes // ECMOR XIV. 2014.