Обработка пропусков в данных, кодирование категориальных признаков, масштабирование данных.

Для данной лабораторной работы я использую набор данных индекса свободы человека по странам за 2018 год:

Контекст

Центральная цель Индекса свободы человека заключается в том, чтобы нарисовать широкую, но достаточно точную картину масштабов общей свободы в мире. Более широкая цель состоит в том, чтобы более тщательно изучить, что мы подразумеваем под свободой, и лучше понять ее связь с любым количеством других социально-экономических явлений.

Содержание

Индекс свободы человека измеряет экономические свободы, такие как свобода торговли или использования здоровых денег, и отражает степень, в которой люди свободны свободно пользоваться основными свободами, часто называемыми гражданскими свободами - свободой слова, религии, ассоциаций и собраний - в странах, участвующих в обзоре. Кроме того, он включает в себя показатели верховенства права, преступности и насилия, свободы передвижения и правовой дискриминации в отношении однополых отношений. Мы также включаем девять переменных, относящихся к свободам, специфичным для женщин, которые содержатся в различных категориях индекса.

Набор данных имеет следующие столбцы:

- year год
- ISO code буквенное обозначение страны
- countries страны
- region регион
- pf rol procedural процедурное правосудие
- pf_rol_civil гражданская справедливость
- pf_rol_criminal уголовное правосудие
- pf_rol верховенство права
- pf_ss_homicide убийству
- pf_ss_disappearances_disap исчезновение
- · ...

```
In [2]: import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

```
%matplotlib inline
sns.set(style="ticks")
```

Первичный анализ данных

```
In [17]:
         # читаем данные набора
           data = pd.read csv('JupyterNotebooks/data/hfi cc 2018.csv', sep=",")
In [18]:
           data.shape
          (1458, 123)
Out[18]:
In [19]:
           # типы данных столбцов
           data.dtypes
                                  int64
Out[19]: year
          ISO code
                                object
          countries
                                object
          region
                                object
          pf_rol_procedural float64
                                 . . .
          ef score
                                float64
          ef rank
                                float64
          hf score
                               float64
          hf rank
                               float64
          hf_quartile float64
          Length: 123, dtype: object
In [21]: # суммы пропусков по столбцам
           data.isnull().sum()
                                  0
Out[21]: year
          ISO code
                                  0
                                  0
          countries
                                  0
          region
                                578
          pf_rol_procedural
          ef score
                                8.0
                                 80
          ef_rank
          hf_score
                                 80
          hf_rank
                                 80
                                80
          hf quartile
          Length: 123, dtype: int64
In [29]:
          data.head()
             year ISO_code countries
                                       region pf_rol_procedural pf_rol_civil pf_rol_criminal
Out[29]:
                                       Eastern
          0 2016
                      ALB
                             Albania
                                                     6.661503
                                                               4.547244
                                                                             4.666508 5.2
                                       Europe
                                       Middle
                                       East &
          1 2016
                      DZA
                                                         NaN
                                                                   NaN
                                                                                 NaN 3.8
                              Algeria
                                        North
                                        Africa
                                         Sub-
          2 2016
                      AGO
                                      Saharan
                                                         NaN
                                                                                 NaN 3.4
                              Angola
                                                                   NaN
                                        Africa
                                         Latin
                                     America &
          3 2016
                                                                             4.343930 5.7
                      ARG
                           Argentina
                                                     7.098483
                                                               5.791960
                                          the
                                     Caribbean
          4 2016
                      ARM
                             Armenia Caucasus
                                                         NaN
                                                                   NaN
                                                                                 NaN 5.0
```

5 rows × 123 columns

```
In [30]: total_count = data.shape[0]
```

Обработка пропусков значений в наборе данных

Удалим те строки данных, в которых встречаются пустые столбцы:

```
In [22]: # Удаление строк, содержащих пустые значения data_new_2 = data.dropna(axis=0, how='any') (data.shape, data_new_2.shape)

Out[22]: ((1458, 123), (0, 123))
```

Итоговая сетка данных оказывается пустой, так как в каждой строке так или иначе встечаются пропуски данных. В таком случае попробуем заполнить пустые значения например нулями.

```
In [26]: # Заполнение всех пропущенных значений нулями data_new_3 = data.fillna(0) data_new_3.head()
```

[26]:		year	ISO_code	countries	region	pf_rol_procedural	pf_rol_civil	pf_rol_criminal	
	0	2016	ALB	Albania	Eastern Europe	6.661503	4.547244	4.666508	5.2
	1	2016	DZA	Algeria	Middle East & North Africa	0.000000	0.000000	0.000000	3.8
	2	2016	AGO	Angola	Sub- Saharan Africa	0.000000	0.000000	0.000000	3.4
	3	2016	ARG	Argentina	Latin America & the Caribbean	7.098483	5.791960	4.343930	5.7
	4	2016	ARM	Armenia	Caucasus & Central Asia	0.000000	0.000000	0.000000	5.0

5 rows × 123 columns

Out[

Это не очень корректно, так как и категориальные данных заполняются нулями.

Импьютация

Обработка числовых данных

```
In [31]: # Выберем числовые колонки с пропущенными значениями # Цикл по колонкам датасета num_cols = [] for col in data.columns:
```

```
# Количество пустых значений
temp_null_count = data[data[col].isnull()].shape[0]
dt = str(data[col].dtype)
if temp_null_count>0 and (dt=='float64' or dt=='int64'):
    num_cols.append(col)
    temp_perc = round((temp_null_count / total_count) * 100.0, 2)
    print('Колонка {}. Тип данных {}. Количество пустых значений {},
```

Колонка pf_rol_procedural. Тип данных float64. Количество пустых значений 578, 39.64%.

Колонка pf_rol_civil. Тип данных float64. Количество пустых значений 578, 39.64%.

Колонка pf_rol_criminal. Тип данных float64. Количество пустых значений 5 78, 39.64%.

Колонка pf_rol. Тип данных float64. Количество пустых значений 80, 5.49%. Колонка pf_ss_homicide. Тип данных float64. Количество пустых значений 8 0, 5.49%.

Колонка pf_ss_disappearances_disap. Тип данных float64. Количество пустых значений 89, 6.1%.

Колонка pf_ss_disappearances_violent. Тип данных float64. Количество пуст ых значений 80, 5.49%.

Колонка pf_ss_disappearances_organized. Тип данных float64. Количество пу стых значений 179, 12.28%.

Колонка pf_ss_disappearances_fatalities. Тип данных float64. Количество п устых значений 80, 5.49%.

Колонка pf_ss_disappearances_injuries. Тип данных float64. Количество пус тых значений 80, 5.49%.

Колонка pf_ss_disappearances. Тип данных float64. Количество пустых значе ний 80, 5.49%.

Колонка pf_ss_women_fgm. Тип данных float64. Количество пустых значений 1 72, 11.8%.

Колонка pf_ss_women_missing. Тип данных float64. Количество пустых значен ий 120, 8.23%.

Колонка pf_ss_women_inheritance_widows. Тип данных float64. Количество пу стых значений 541, 37.11%.

Колонка pf_ss_women_inheritance_daughters. Тип данных float64. Количество пустых значений 541, 37.11%.

Колонка pf_ss_women_inheritance. Тип данных float64. Количество пустых зн ачений 119, 8.16%.

Колонка pf_ss_women. Тип данных float64. Количество пустых значений 100, 6.86%.

Колонка pf_ss. Тип данных float64. Количество пустых значений 80, 5.49%. Колонка pf_movement_domestic. Тип данных float64. Количество пустых значений 98, 6.72%.

Колонка pf_movement_foreign. Тип данных float64. Количество пустых значен ий 98, 6.72%.

Колонка pf_movement_women. Тип данных float64. Количество пустых значений 141, 9.67%.

Колонка pf_movement. Тип данных float64. Количество пустых значений 80, 5.49%.

Колонка pf_religion_estop_establish. Тип данных float64. Количество пусты х значений 731, 50.14%.

Колонка pf_religion_estop_operate. Тип данных float64. Количество пустых значений 731, 50.14%.

Колонка pf_religion_estop. Тип данных float64. Количество пустых значений 329, 22.57%.

Колонка pf_religion_harassment. Тип данных float64. Количество пустых зна чений 94, 6.45%.

Колонка pf_religion_restrictions. Тип данных float64. Количество пустых з начений 94, 6.45%.

Колонка pf_religion. Тип данных float64. Количество пустых значений 90, 6.17%.

Колонка pf_association_association. Тип данных float64. Количество пустых значений 329, 22.57%.

Колонка pf_association_assembly. Тип данных float64. Количество пустых зн ачений 329, 22.57%.

Колонка pf_association_political_establish. Тип данных float64. Количеств о пустых значений 731, 50.14%.

Колонка pf_association_political_operate. Тип данных float64. Количество пустых значений 731, 50.14%.

Колонка pf_association_political. Тип данных float64. Количество пустых з начений 329, 22.57%.

Колонка pf_association_prof_establish. Тип данных float64. Количество пус тых значений 731, 50.14%.

Колонка pf_association_prof_operate. Тип данных float64. Количество пусты х значений 731, 50.14%.

Колонка pf_association_prof. Тип данных float64. Количество пустых значен ий 329, 22.57%.

Колонка pf_association_sport_establish. Тип данных float64. Количество пу стых значений 731, 50.14%.

Колонка pf_association_sport_operate. Тип данных float64. Количество пуст ых значений 731, 50.14%.

Колонка pf_association_sport. Тип данных float64. Количество пустых значе ний 329, 22.57%.

Колонка pf_association. Тип данных float64. Количество пустых значений 329, 22.57%.

Колонка pf_expression_killed. Тип данных float64. Количество пустых значе ний 80, 5.49%.

Колонка pf_expression_jailed. Тип данных float64. Количество пустых значе ний 80, 5.49%.

Колонка pf_expression_influence. Тип данных float64. Количество пустых зн ачений 80, 5.49%.

Колонка pf_expression_control. Тип данных float64. Количество пустых знач ений 80, 5.49%.

Колонка pf_expression_cable. Тип данных float64. Количество пустых значен ий 335, 22.98%.

Колонка pf_expression_newspapers. Тип данных float64. Количество пустых з начений 335, 22.98%.

Колонка pf_expression_internet. Тип данных float64. Количество пустых зна чений 329, 22.57%.

Колонка pf_expression. Тип данных float64. Количество пустых значений 80, 5.49%.

Колонка pf_identity_legal. Тип данных float64. Количество пустых значений 1253, 85.94%.

Колонка pf_identity_parental_marriage. Тип данных float64. Количество пус тых значений 535, 36.69%.

Колонка pf_identity_parental_divorce. Тип данных float64. Количество пуст ых значений 535, 36.69%.

Колонка pf_identity_parental. Тип данных float64. Количество пустых значе ний 100, 6.86%.

Колонка pf_identity_sex_male. Тип данных float64. Количество пустых значе ний 83, 5.69%.

Колонка pf_identity_sex_female. Тип данных float64. Количество пустых зна чений 80, 5.49%.

Колонка pf_identity_sex. Тип данных float64. Количество пустых значений 8 0, 5.49%.

Колонка pf_identity_divorce. Тип данных float64. Количество пустых значен ий 873, 59.88%.

Колонка pf_identity. Тип данных float64. Количество пустых значений 80, 5.49%.

Колонка pf_score. Тип данных float64. Количество пустых значений 80, 5.4 9%.

Колонка pf_rank. Тип данных float64. Количество пустых значений 80, 5.4 9%.

Колонка ef_government_consumption. Тип данных float64. Количество пустых значений 66, 4.53%.

Колонка ef_government_transfers. Тип данных float64. Количество пустых зн ачений 160, 10.97%.

Колонка ef_government_enterprises. Тип данных float64. Количество пустых значений 104, 7.13%.

Колонка ef_government_tax_income. Тип данных float64. Количество пустых з начений 124, 8.5%.

Колонка ef_government_tax_payroll. Тип данных float64. Количество пустых значений 193, 13.24%.

Колонка ef_government_tax. Тип данных float64. Количество пустых значений 124, 8.5%.

Колонка ef_government. Тип данных float64. Количество пустых значений 80, 5.49%.

Колонка ef_legal_judicial. Тип данных float64. Количество пустых значений 167, 11.45%.

Колонка ef_legal_courts. Тип данных float64. Количество пустых значений 8 0, 5.49%.

Колонка ef_legal_protection. Тип данных float64. Количество пустых значен ий 169, 11.59%.

Колонка ef_legal_military. Тип данных float64. Количество пустых значений 80, 5.49%.

Колонка ef_legal_integrity. Тип данных float64. Количество пустых значени й 277, 19.0%.

Колонка ef_legal_enforcement. Тип данных float64. Количество пустых значе ний 90, 6.17%.

Колонка ef_legal_restrictions. Тип данных float64. Количество пустых знач ений 100, 6.86%.

Колонка ef_legal_police. Тип данных float64. Количество пустых значений 1 69, 11.59%.

Колонка ef_legal_crime. Тип данных float64. Количество пустых значений 16 9, 11.59%.

Колонка ef_legal_gender. Тип данных float64. Количество пустых значений 2 4, 1.65%.

Колонка ef_legal. Тип данных float64. Количество пустых значений 80, 5.4 9%.

Колонка ef_money_growth. Тип данных float64. Количество пустых значений 7 0, 4.8%.

Колонка ef_money_sd. Тип данных float64. Количество пустых значений 72,

Колонка ef_money_inflation. Тип данных float64. Количество пустых значени й 72, 4.94%.

Колонка ef_money_currency. Тип данных float64. Количество пустых значений 80, 5.49%.

Колонка ef_money. Тип данных float64. Количество пустых значений 82, 5.6 29

Колонка ef_trade_tariffs_revenue. Тип данных float64. Количество пустых з начений 169, 11.59%.

Колонка ef_trade_tariffs_mean. Тип данных float64. Количество пустых знач ений 92, 6.31%.

Колонка ef_trade_tariffs_sd. Тип данных float64. Количество пустых значен ий 91, 6.24%.

Колонка ef_trade_tariffs. Тип данных float64. Количество пустых значений 85, 5.83%.

Колонка ef_trade_regulatory_nontariff. Тип данных float64. Количество пус тых значений 170, 11.66%.

Колонка ef_trade_regulatory_compliance. Тип данных float64. Количество пу стых значений 90, 6.17%.

Колонка ef_trade_regulatory. Тип данных float64. Количество пустых значен ий 84, 5.76%.

Колонка ef_trade_black. Тип данных float64. Количество пустых значений 8 7, 5.97%.

Колонка ef_trade_movement_foreign. Тип данных float64. Количество пустых значений 164, 11.25%.

Колонка ef_trade_movement_capital. Тип данных float64. Количество пустых значений 89, 6.1%.

Колонка ef_trade_movement_visit. Тип данных float64. Количество пустых зн ачений 85, 5.83%.

Колонка ef_trade_movement. Тип данных float64. Количество пустых значений 80, 5.49%.

Колонка ef_trade. Тип данных float64. Количество пустых значений 81, 5.5 62

Колонка ef_regulation_credit_ownership. Тип данных float64. Количество пу стых значений 172, 11.8%.

Колонка ef_regulation_credit_private. Тип данных float64. Количество пуст ых значений 72, 4.94%.

Колонка ef_regulation_credit_interest. Тип данных float64. Количество пус тых значений 100, 6.86%.

Колонка ef_regulation_credit. Тип данных float64. Количество пустых значе ний 80, 5.49%.

Колонка ef_regulation_labor_minwage. Тип данных float64. Количество пусты х значений 91, 6.24%.

Колонка ef_regulation_labor_firing. Тип данных float64. Количество пустых значений 171, 11.73%.

Колонка ef_regulation_labor_bargain. Тип данных float64. Количество пусты х значений 170, 11.66%.

Колонка ef_regulation_labor_hours. Тип данных float64. Количество пустых значений 88, 6.04%.

Колонка ef_regulation_labor_dismissal. Тип данных float64. Количество пус тых значений 110, 7.54%.

Колонка ef_regulation_labor_conscription. Тип данных float64. Количество пустых значений 81, 5.56%.

Колонка ef_regulation_labor. Тип данных float64. Количество пустых значен ий 84, 5.76%.

Колонка ef_regulation_business_adm. Тип данных float64. Количество пустых значений 169, 11.59%.

Колонка ef_regulation_business_bureaucracy. Тип данных float64. Количеств о пустых значений 102, 7.0%.

Колонка ef_regulation_business_start. Тип данных float64. Количество пуст ых значений 90, 6.17%.

Колонка ef_regulation_business_bribes. Тип данных float64. Количество пус тых значений 175, 12.0%.

Колонка ef_regulation_business_licensing. Тип данных float64. Количество пустых значений 101, 6.93%.

Колонка ef_regulation_business_compliance. Тип данных float64. Количество пустых значений 90, 6.17%.

Колонка ef_regulation_business. Тип данных float64. Количество пустых зна чений 84, 5.76%.

Колонка ef_regulation. Тип данных float64. Количество пустых значений 80, 5.49%.

Колонка ef_score. Тип данных float64. Количество пустых значений 80, 5.4 9%

Колонка ef_rank. Тип данных float64. Количество пустых значений 80, 5.4 9%

Колонка hf_score. Тип данных float64. Количество пустых значений 80, 5.4 9%.

Колонка hf_rank. Тип данных float64. Количество пустых значений 80, 5.4 9%

Колонка hf_quartile. Тип данных float64. Количество пустых значений 80, 5.49%.

In [32]: # Фильтр по колонкам с пропущенными значениями data_num = data[num_cols] data_num

Out[32]:		pf_rol_procedural	pf_rol_civil	pf_rol_criminal	pf_rol	pf_ss_homicide	pf_ss_disapp
	0	6.661503	4.547244	4.666508	5.291752	8.920429	
	1	NaN	NaN	NaN	3.819566	9.456254	
	2	NaN	NaN	NaN	3.451814	8.060260	
	3	7.098483	5.791960	4.343930	5.744791	7.622974	
	4	NaN	NaN	NaN	5.003205	8.808750	
	1453	3.000000	3.781688	2.369239	3.100000	0.000000	
	1454	6.666667	4.349101	5.694847	5.600000	9.496239	
	1455	NaN	NaN	NaN	NaN	NaN	
	1456	4.800000	4.578003	3.688652	4.400000	7.878084	
	1457	2.700000	3.991582	4.327660	3.700000	7.981019	

```
In [35]:
            # Гистограмма по признакам
            for col in data num:
                plt.hist(data[col], 50)
                plt.xlabel(col)
                plt.show()
           50
           40
           30
           20
           10
            0
                                             6
                                 pf_rol_procedural
           60
           50
           40
           30
           20
           10
            0
                                    pf_rol_civil
           60
           50
           40
           30
           20
           10
```

pf_rol_criminal

Обработка категориальных данных

msg: Пропусков значений в категориальных данных не обнаруженно

Попробуем вручную удалить некоторые данные:

```
In [46]: # читаем данные набора
data2 = pd.read_csv('JupyterNotebooks/data/hfi_cc_2018_3.csv', sep=",")

for col in data2.columns:
    # Количество пустых значений
    temp_null_count = data2[data2[col].isnull()].shape[0]
    dt = str(data2[col].dtype)
    if temp_null_count>0 and (dt=='object'):
        cat_cols.append(col)
```

```
temp_perc = round((temp_null_count / total_count) * 100.0, 2)
    print('Колонка {}. Тип данных {}. Количество пустых значений {},

if len(cat_cols) == 0:
    print("msg: Пропусков значений в категориальных данных не обнаруженно
```

Колонка ISO_code. Тип данных object. Количество пустых значений 6, 0.41%. Колонка region. Тип данных object. Количество пустых значений 2, 0.14%.

Именно в этом случае можно просто удалить строки с пропушенными данными:

В случае взятого мною набора данных такой способ более подходит: просто выбираем признаки которые в далнейшем хотим отследить, проверить зависимости и тп, и удаляем строки, у которых у этих признаков значения не установленны.

Масштабирование данных

Термины "масштабирование" и "нормализация" часто используются как синонимы. Масштабирование предполагает изменение диапазона измерения величины, а нормализация - изменение распределения этой величины.

```
In [63]: from sklearn.preprocessing import MinMaxScaler, StandardScaler, Normalize
```

Масштабирование МиниМакс

```
In [76]: sc1 = MinMaxScaler()
    sc1_data = sc1.fit_transform(data2[['pf_rol_criminal']])
In [65]: plt.hist(data2['pf_rol_criminal'], 50)
    plt.show()
```



```
In [75]: plt.hist(sc1_data, 50)
   plt.show()
```


Масштабирование на основе Z-оценки

```
In [77]: sc2 = StandardScaler()
    sc2_data = sc2.fit_transform(data2[['pf_rol_criminal']])
In [78]: plt.hist(sc2_data, 50)
    plt.show()
```

