

```
P(a < X < b) = \int_{a}^{b} f(x) dx = F(b) - F(a) \left[ by FTC \right]
Note: Continuous random variable.
                                                                   + We have a CDF
                                                                    Which has a derivative.
   Variance, Var(X)
 → Variance is a measure of how shread out the distribution is.

→ That is, on average, how far is x from the mean?
                Var(X) = E(X-EX) Z But if we do this, we would
  possible fix -
           Var(X) = E(|X-EX|) always get 0.

By linearity,

But absolute E(X-EX) = E(X)-E(EX)

Values are annoying = E(X)-E(X)

to deal with as they are = 0
                             not differentiable everywhere
               Var(x) = E(X-EX)2 we have changed the
   Standard fix:
       Standard deviation: SD(X) = \sqrt{Var(X)} (became)

Her compute \sqrt{constant} we changed the unit variate \sqrt{constant} So we changed it back

= E(X^2) - 2(EX)E(X) + \frac{c}{c}
= E(X^2) - (EX)^2 = E(X)
= E(X)^2 = E(X)
= E(X)^2 = E(X)
= E(X)^2 = E(X)
May of Computer
                               Squared first, Averagedfirst,
then the average the the square
```

Law of the unconscious Statisticism (LOTUS) $E(g(x)) = \int_{0}^{\infty} g(x) f_{X}(x) dx$ $X is a x.v.$ Whose PDF is $-\infty$	
$\left[E(g(x)) = \left(g(x) + (x) dx \right) \right]$	Ad to the ask of the
X harive	ment and medit to con
Whose PDFis -00	Al delblatteract
Known	
g(x) - function of X	* > 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Let u~unif(0,1). E(u)=1/2 ,E	$= (u^2) = \int_{0}^{1} u^2 f_u(u) du$
Var(u)=E(u2)-(Eu)2	= 1/3
= 1/3-1/4	= 1/3 \\ LOTUS
= 1/	
- 1/12	
Note: The uniform distribution is the simplest.	
imagine, because the PDF is a constant on some	
imagine, because the PDF is	a constant on some
interval o	bounded
and we have to now	some burning
inter	val here
(We cannot define a uniform distribution	
on the entire real	line)
Uniform is universal	
- Universality of the uniform mean	& that given a uniform,
we can create any distribution that we wants	
	(Alexan Tier the 11
Uniform is universal - Universality of the uniform means that given a uniform, we can create any distribution that we want. Let U ~ Unif (0,1), F be a CDF (Assume F is strictly increasing and	
then Let X = F-1(U). Then X ~ F. (Continuous function)	
5 will ham	
X has cl	OF F INVENCE
Let $U \sim Unif(0,1)$, F be a CDF (Assume F is strictly Increasing and Continuous function) Then Let $X = F^{-1}(U)$. Then $X \sim F$. (Continuous function) Swill ham inverse	

What this Days is we have CDF we are interested in, we take the inverse CDF, plug in the uniform and then we have Constructed a random draw from that distribution we're interested in, F.

Proof $P(X \le x) = P(F^{-1}(u) \le x)$ $= P(U \le F(x)) \left[F^{-1}(u) \le x \right]$

 $F(x) = P(U \leqslant F(x)) \begin{bmatrix} F^{-1}(u) \leqslant x \\ FF^{-1}(u) \leqslant F(x) \end{bmatrix}$ F(x) = F(x) Proportionality = F(x) $Constant | here i \leqslant 1$ $Constant | here i \leqslant 1$ Co