${\rm INFO~6105}$ Data Science Engineering Methods and Tools

Lecture 3
Sales of Child Car Seats

Ebrahim Nasrabadi nasrabadi@northeastern.edu

> College of Engineering Northeastern University

> > Fall 2019

Uncertainty in input data is a common challenging problem and we need to quantify uncertainty to make better business decisions.

Uncertainty in input data is a common challenging problem and we need to quantify uncertainty to make better business decisions.

Inventory Planning

- Demand is uncertain
- The optimal order quantity depends on the distribution of demand

Uncertainty in input data is a common challenging problem and we need to quantify uncertainty to make better business decisions.

Inventory Planning

- Demand is uncertain
- The optimal order quantity depends on the distribution of demand

Key question How to estimate accurately the distribution of demand?

Uncertainty in input data is a common challenging problem and we need to quantify uncertainty to make better business decisions.

Inventory Planning

- Demand is uncertain
- The optimal order quantity depends on the distribution of demand

Key question How to estimate accurately the distribution of demand? In reality, demand for a product is influenced by various factors, such as

- price
- product quality
- price of related products
- time of the year

- consumer's income,
- growth of population
- climatic conditions
- . . .

To predict demand, we analyze the historical data to understand the relationship between sales and factors that influence sales.

2 / 27

Consider a data set containing sales of child car seats at 400 different stores:

- Sales Unit sales (in thousands) at each location
- Price Price company charges for car seats at each site
- CompPrice Price charged by competitor at each location
- Income Community income level (in thousands of dollars)
- Advertising Local advertising budget for company at each location (in thousands of dollars)
- Population Population size in region (in thousands)
- ShelveLoc A factor with levels Bad, Medium, Good indicating the quality of the shelving location for the car seats at each site
- Age Average age of the local population
- Education Education level at each location
- Urban A factor with levels No and Yes to indicate whether the store is in an urban or rural location
- US A factor with levels No and Yes to indicate whether the store is in the US or not

Sales	CompPrice	Income	Advertising	Population	Price	ShelveLoc	Age	Education	Urban	US
9.50	138	73	11	276	120	Bad	42	17	Yes	Yes
11.22	111	48	16	260	83	Good	65	10	Yes	Yes
10.06	113	35	10	269	80	Medium	59	12	Yes	Yes
7.40	117	100	4	466	97	Medium	55	14	Yes	Yes
4.15	141	64	3	340	128	Bad	38	13	Yes	No
10.81	124	113	13	501	72	Bad	78	16	No	Yes
6.63	115	105	0	45	108	Medium	71	15	Yes	No
11.85	136	81	15	425	120	Good	67	10	Yes	Yes
6.54	132	110	0	108	124	Medium	76	10	No	No
4.69	132	113	0	131	124	Medium	76	17	No	Yes
9.01	121	78	9	150	100	Bad	26	10	No	Yes
11.96	117	94	4	503	94	Good	50	13	Yes	Yes
3.98	122	35	2	393	136	Medium	62	18	Yes	No
10.96	115	28	11	29	86	Good	53	18	Yes	Yes
11.17	107	117	11	148	118	Good	52	18	Yes	Yes

- We are interested to predict car seat sales on the basis of the other variables.
- We refer to the
 - ► Sales variable as target (also called response or output) variable
 - ▶ Price,, US variables as *predictors* (also called *features* or *inputs*).

- We are interested to predict car seat sales on the basis of the other variables.
- We refer to the
 - ► Sales variable as target (also called response or output) variable
 - ▶ Price,, US variables as predictors (also called features or inputs).
- Goal:
 - understand the relationship between sales and predictors
 - make predictions for sales

• Is there a relationship between predictors and sales?

- Is there a relationship between predictors and sales?
- ② How strong is the relationship between predictors and sales?

- Is there a relationship between predictors and sales?
- How strong is the relationship between predictors and sales?
- Which predictors contribute to sales? What predictors matter most?

- Is there a relationship between predictors and sales?
- How strong is the relationship between predictors and sales?
- Which predictors contribute to sales? What predictors matter most?
- How accurately can we estimate the effect of each predictor on sales?

- Is there a relationship between predictors and sales?
- How strong is the relationship between predictors and sales?
- Which predictors contribute to sales? What predictors matter most?
- How accurately can we estimate the effect of each predictor on sales? What is the degree to which price affects the sales (that is, price sensitivity)? How accurately can we predict this amount?
- **6** How accurately can we predict future sales?

- Is there a relationship between predictors and sales?
- How strong is the relationship between predictors and sales?
- Which predictors contribute to sales? What predictors matter most?
- How accurately can we estimate the effect of each predictor on sales? What is the degree to which price affects the sales (that is, price sensitivity)? How accurately can we predict this amount?
- **6** How accurately can we predict future sales?

- Is there a relationship between predictors and sales?
- How strong is the relationship between predictors and sales?
- Which predictors contribute to sales? What predictors matter most?
- How accurately can we estimate the effect of each predictor on sales? What is the degree to which price affects the sales (that is, price sensitivity)? How accurately can we predict this amount?
- How accurately can we predict future sales?

Linear regression can be used to answer each of these questions.

Consider a data set containing sales of child car seats at 400 different stores:

- Sales Unit sales (in thousands) at each location
- Price Price company charges for car seats at each site
- CompPrice Price charged by competitor at each location
- Income Community income level (in thousands of dollars)
- Advertising Local advertising budget for company at each location (in thousands of dollars)
- Population Population size in region (in thousands)
- ShelveLoc A factor with levels Bad, Medium, Good indicating the quality of the shelving location for the car seats at each site
- Age Average age of the local population
- Education Education level at each location
- Urban A factor with levels No and Yes to indicate whether the store is in an urban or rural location
- US A factor with levels No and Yes to indicate whether the store is in the US or not

- We are interested to predict car seat sales on the basis of the other variables.
- We refer to the
 - ► Sales variable as target (also called response or output) variable
 - ▶ Price,, US variables as *predictors* (also called *features* or *inputs*).

- We are interested to predict car seat sales on the basis of the other variables.
- We refer to the
 - ► Sales variable as target (also called response or output) variable
 - ▶ Price,, US variables as predictors (also called features or inputs).
- Goal:
 - understand the relationship between sales and predictors
 - make predictions for sales

• Is there a relationship between predictors and sales?

- Is there a relationship between predictors and sales?
- How strong is the relationship between predictors and sales?

- Is there a relationship between predictors and sales?
- How strong is the relationship between predictors and sales?
- Which predictors contribute to sales? What predictors matter most?

- Is there a relationship between predictors and sales?
- How strong is the relationship between predictors and sales?
- Which predictors contribute to sales? What predictors matter most?
- How accurately can we estimate the effect of each predictor on sales?

- Is there a relationship between predictors and sales?
- How strong is the relationship between predictors and sales?
- Which predictors contribute to sales? What predictors matter most?
- How accurately can we estimate the effect of each predictor on sales? What is the degree to which price affects the sales (that is, price sensitivity)? How accurately can we predict this amount?
- Mow accurately can we predict future sales?

- Is there a relationship between predictors and sales?
- How strong is the relationship between predictors and sales?
- Which predictors contribute to sales? What predictors matter most?
- How accurately can we estimate the effect of each predictor on sales? What is the degree to which price affects the sales (that is, price sensitivity)? How accurately can we predict this amount?
- Mow accurately can we predict future sales?

- Is there a relationship between predictors and sales?
- How strong is the relationship between predictors and sales?
- Which predictors contribute to sales? What predictors matter most?
- How accurately can we estimate the effect of each predictor on sales? What is the degree to which price affects the sales (that is, price sensitivity)? How accurately can we predict this amount?
- How accurately can we predict future sales?

Linear regression can be used to answer each of these questions.

Linear Regression

SUMMARY OUTPUT in R

```
Call:
lm(formula = Sales ~ ., data = Carseats)
Residuals:
   Min
           10 Median
                          30
                                Max
-2.8692 -0.6908 0.0211 0.6636 3.4115
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
               5.6606231 0.6034487 9.380 < 2e-16 ***
(Intercept)
               0.0928153 0.0041477 22.378 < 2e-16 ***
CompPrice
               Income
Advertising
              0.1230951 0.0111237 11.066 < 2e-16 ***
Population
              0.0002079 0.0003705
                                    0.561 0.575
Price
              -0.0953579 0.0026711 -35.700 < 2e-16 ***
ShelveLocGood
               4.8501827 0.1531100 31.678 < 2e-16 ***
ShelveLocMedium 1.9567148 0.1261056 15.516 < 2e-16 ***
              -0.0460452 0.0031817 -14.472 < 2e-16 ***
Age
              -0.0211018 0.0197205 -1.070 0.285
Education
UrbanYes
              0.1228864 0.1129761 1.088 0.277
IISYes
              -0.1840928 0.1498423 -1.229 0.220
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.019 on 388 degrees of freedom
Multiple R-squared: 0.8734, Adjusted R-squared: 0.8698
```

F-statistic: 243.4 on 11 and 388 DF, p-value: < 2.2e-16

Linear Regression

SUMMARY OUTPUT in Excel

Regression Sto	atistics				
Multiple R 0.93096584					
R Square	0.8666974				
Adjusted R Square	0.8632706				
Standard Error	1.04427131				
Observations	400				
ANOVA					
	df	SS	MS	F	Significance F
Regression	10	2758.069202	275.8069202	252.9172607	2.1457E-163
Residual	389	424.2054957	1.09050256		
Total	399	3182.274698			
	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	2.99117944	0.630540793	4.743831753	2.94955E-06	1.751485123
CompPrice	0.09255237	0.004250367	21.77514872	2.5798E-69	0.084195802
Income	0.01615272	0.001889343	8.549386868	2.86354E-16	0.012438122
Advertising	0.12036692	0.011383601	10.57371215	3.87637E-23	0.097985836
Population	0.00029046	0.000379208	0.765975791	0.444155237	-0.00045509
Price	-0.0952477	0.002737379	-34.7952211	1.6832E-121	-0.100629614
Age	-0.0468605	0.00325562	-14.39373328	5.86807E-38	-0.053261339
Education	-0.020948	0.020210801	-1.036476421	0.300623799	-0.060684093
Urban_encoded	0.14120929	0.115711175	1.22036005	0.223067678	-0.086288254
US_encoded	-0.1293475	0.153069318	-0.845025443	0.398616061	-0.430294157
ShelveLoc_encoded	2.41157374	0.078399038	30.76024662	3.2204E-106	2.257434878

• Multiple R. This is the *correlation coefficient*. It tells you how strong the linear relationship is. It is the square root of r squared

- Multiple R. This is the *correlation coefficient*. It tells you how strong the linear relationship is. It is the square root of r squared
- R squared. This is r^2 , the Coefficient of Determination. It tells you the percentage of the response variable variation that is explained by a linear model.

- Multiple R. This is the *correlation coefficient*. It tells you how strong the linear relationship is. It is the square root of r squared
- R squared. This is r^2 , the Coefficient of Determination. It tells you the percentage of the response variable variation that is explained by a linear model.
- Adjusted R square. The adjusted R-square adjusts for the number of predictors in a model. It is used to compare two models with different number of predictors.

- Multiple R. This is the *correlation coefficient*. It tells you how strong the linear relationship is. It is the square root of r squared
- R squared. This is r^2 , the Coefficient of Determination. It tells you the percentage of the response variable variation that is explained by a linear model.
- Adjusted R square. The adjusted R-square adjusts for the number of predictors in a model. It is used to compare two models with different number of predictors.
- Standard Error of the regression: An estimate of the standard deviation of the error term ϵ .

- Multiple R. This is the *correlation coefficient*. It tells you how strong the linear relationship is. It is the square root of r squared
- R squared. This is r^2 , the Coefficient of Determination. It tells you the percentage of the response variable variation that is explained by a linear model.
- Adjusted R square. The adjusted R-square adjusts for the number of predictors in a model. It is used to compare two models with different number of predictors.
- Standard Error of the regression: An estimate of the standard deviation of the error term ϵ .
- Observations. Number of observations in the sample.

• Regression Sum of Squares:

$$(\hat{y}_1 - \bar{y})^2 + (\hat{y}_2 - \bar{y})^2 + \ldots + (\hat{y}_n - \bar{y})^2 = \sum_{i=1}^n (\hat{y}_i - \bar{y})^2 = 2758$$

• Regression Sum of Squares:

$$(\hat{y}_1 - \bar{y})^2 + (\hat{y}_2 - \bar{y})^2 + \ldots + (\hat{y}_n - \bar{y})^2 = \sum_{i=1}^n (\hat{y}_i - \bar{y})^2 = 2758$$

• Residual Sum of Squares:

$$(y_1 - \hat{y}_1)^2 + (y_2 - \hat{y}_2)^2 + \dots + (y_n - \hat{y}_n)^2 = \sum_{i=1}^n (y_i - \hat{y}_i)^2 = 424$$

• Regression Sum of Squares:

$$(\hat{y}_1 - \bar{y})^2 + (\hat{y}_2 - \bar{y})^2 + \ldots + (\hat{y}_n - \bar{y})^2 = \sum_{i=1}^n (\hat{y}_i - \bar{y})^2 = 2758$$

• Residual Sum of Squares:

$$(y_1 - \hat{y}_1)^2 + (y_2 - \hat{y}_2)^2 + \ldots + (y_n - \hat{y}_n)^2 = \sum_{i=1}^n (y_i - \hat{y}_i)^2 = 424$$

• Total Sum of Squares:

$$(y_1 - \bar{y})^2 + (y_2 - \bar{y})^2 + \dots + (y_n - \bar{y})^2 = \sum_{i=1}^n (y_i - \bar{y})^2 = 3182$$

Linear Regression in Excel

• Regression Sum of Squares:

$$(\hat{y}_1 - \bar{y})^2 + (\hat{y}_2 - \bar{y})^2 + \ldots + (\hat{y}_n - \bar{y})^2 = \sum_{i=1}^n (\hat{y}_i - \bar{y})^2 = 2758$$

• Residual Sum of Squares:

$$(y_1 - \hat{y}_1)^2 + (y_2 - \hat{y}_2)^2 + \dots + (y_n - \hat{y}_n)^2 = \sum_{i=1}^n (y_i - \hat{y}_i)^2 = 424$$

• Total Sum of Squares:

$$(y_1 - \bar{y})^2 + (y_2 - \bar{y})^2 + \dots + (y_n - \bar{y})^2 = \sum_{i=1}^n (y_i - \bar{y})^2 = 3182$$

Linear Regression in Excel

• Regression Sum of Squares:

$$(\hat{y}_1 - \bar{y})^2 + (\hat{y}_2 - \bar{y})^2 + \ldots + (\hat{y}_n - \bar{y})^2 = \sum_{i=1}^n (\hat{y}_i - \bar{y})^2 = 2758$$

• Residual Sum of Squares:

$$(y_1 - \hat{y}_1)^2 + (y_2 - \hat{y}_2)^2 + \ldots + (y_n - \hat{y}_n)^2 = \sum_{i=1}^n (y_i - \hat{y}_i)^2 = 424$$

• Total Sum of Squares:

$$(y_1 - \bar{y})^2 + (y_2 - \bar{y})^2 + \ldots + (y_n - \bar{y})^2 = \sum_{i=1}^n (y_i - \bar{y})^2 = 3182$$

Note: Total Sum of Squares = Regression Sum of Squares: + Residual Sum of Squares

• F: Overall F test for the null hypothesis:

 H_0 : There is no relationship between predictors and the response versus the *alternative hypothesis*

 H_A : There is some relationship between predictors and the response

• F: Overall F test for the null hypothesis:

 H_0 : There is no relationship between predictors and the response versus the *alternative hypothesis*

 H_A : There is some relationship between predictors and the response

• F: Overall F test for the null hypothesis:

 H_0 : There is no relationship between predictors and the response versus the *alternative hypothesis*

 H_A : There is some relationship between predictors and the response

Mathematically, this corresponds to testing

$$H_0: \beta_1 = \beta_2 = \ldots = \beta_m = 0$$

 H_A : at least one β_j is non-zero.

• F: Overall F test for the null hypothesis:

 H_0 : There is no relationship between predictors and the response versus the *alternative hypothesis*

 H_A : There is some relationship between predictors and the response

Mathematically, this corresponds to testing

$$H_0: \beta_1 = \beta_2 = \ldots = \beta_m = 0$$

 H_A : at least one β_j is non-zero.

This hypothesis test is performed by computing the F-statistic:

$$F = \frac{(TSS - RSS)/m}{RSS/(n - m - 1)}$$

where

RSS =
$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
 TSS = $\sum_{i=1}^{n} (y_i - \bar{y}_i)^2$

This hypothesis test is performed by computing the F-statistic:

$$F = \frac{(TSS - RSS)/m}{RSS/(n - m - 1)}$$

where

RSS =
$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
 TSS = $\sum_{i=1}^{n} (y_i - \bar{y}_i)^2$

If the linear model assumptions are correct, one can show that

$$E\left[\mathrm{RSS}/(n-m-1)\right] = \sigma^2$$

and that, provided H_0 is true,

$$E[(TSS - RSS)/m] = \sigma^2$$

◆ロト ◆団ト ◆注ト ◆注ト 注 りへで

- Hence, when there is no relationship between the response and predictors, one would expect the F-statistic to take on a value close to 1.
- On the other hand, if H_A is true, then $E[(TSS RSS)/m] > \sigma^2$, so we expect F to be greater than 1.

- Hence, when there is no relationship between the response and predictors, one would expect the F-statistic to take on a value close to 1.
- On the other hand, if H_A is true, then $E[(TSS RSS)/m] > \sigma^2$, so we expect F to be greater than 1.

p-value

p-value: the probability of observing any value equal to F-statistic or larger assuming there is no relationship between predictors and the response.

p-value

p-value: the probability of observing any value equal to F-statistic or larger assuming there is no relationship between predictors and the response.

- A small p-value (typically ≤ 0.05) indicates strong evidence against the null hypothesis, so you reject the null hypothesis (data are unlikely with a true null)
- \bullet A large p-value (typically >0.05) indicates weak evidence against the null hypothesis, so you fail to reject the null hypothesis (data are likely with a true null)

Questions

- Is there a relationship between predictors and sales?
- How strong is the relationship between predictors and sales?
- Which predictors contribute to sales? What predictors matter most?
- How accurately can we estimate the effect of each predictor on sales? What is the degree to which price affects the sales (that is, price sensitivity)? How accurately can we predict this amount?
- **6** How accurately can we predict future sales?

Questions

- Is there a relationship between predictors and sales?
- We will be the relationship between predictors and sales?
- Which predictors contribute to sales? What predictors matter most?
- How accurately can we estimate the effect of each predictor on sales? What is the degree to which price affects the sales (that is, price sensitivity)? How accurately can we predict this amount?
- How accurately can we predict future sales?

Linear regression can be used to answer each of these questions.

Question Is there a relationship between predictors and sales?

Question Is there a relationship between predictors and sales?

This question can be answered by testing the hypothesis

 $H_0: \beta_{\text{CompPrice}} = \beta_{\text{Income}} = \ldots = \beta_{\text{US}} = 0$

 H_A : at least one β_j is non-zero.

Question Is there a relationship between predictors and sales?

This question can be answered by testing the hypothesis

$$H_0: \beta_{\text{CompPrice}} = \beta_{\text{Income}} = \ldots = \beta_{\text{US}} = 0$$

 H_A : at least one β_j is non-zero.

- The F-statistic can be used to determine whether or not we should reject this null hypothesis.
- The p-value corresponding to the F-statistic is very low, indicating clear evidence of a relationship between predictors and sales.

Question How strong is the relationship between predictors and sales?

Question How strong is the relationship between predictors and sales?

- This question can be answered by R-squared that tells us the percentage of variability in the response that is explained by the predictors.
- The predictors explain almost 93 % of the variance in sales.

Question How accurately can we estimate the effect of each predictor on sales?

Question How accurately can we estimate the effect of each predictor on sales?

This question can be answered by the standard errors of coefficients to construct confidence intervals for each coefficient.

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 90.0%	Upper 90.0%
Intercept	2.99117944	0.630540793	4.743831753	2.94955E-06	1.751485123	4.23087375	1.95155628	4.03080259
CompPrice	0.09255237	0.004250367	21.77514872	2.5798E-69	0.084195802	0.10090893	0.08554445	0.09956029
Income	0.01615272	0.001889343	8.549386868	2.86354E-16	0.012438122	0.01986733	0.01303761	0.01926783
Advertising	0.12036692	0.011383601	10.57371215	3.87637E-23	0.097985836	0.142748	0.10159786	0.13913597
Population	0.00029046	0.000379208	0.765975791	0.444155237	-0.00045509	0.00103602	-0.0003348	0.0009157
Price	-0.0952477	0.002737379	-34.7952211	1.6832E-121	-0.100629614	-0.0898658	-0.099761	-0.0907344
Age	-0.0468605	0.00325562	-14.39373328	5.86807E-38	-0.053261339	-0.0404597	-0.0522283	-0.0414927
Education	-0.020948	0.020210801	-1.036476421	0.300623799	-0.060684093	0.01878805	-0.0542712	0.01237515
Urban_encoded	0.14120929	0.115711175	1.22036005	0.223067678	-0.086288254	0.36870684	-0.049573	0.33199159
US_encoded	-0.1293475	0.153069318	-0.845025443	0.398616061	-0.430294157	0.17159922	-0.3817251	0.12303019
ShelveLoc_encoded	2.41157374	0.078399038	30.76024662	3.2204E-106	2.257434878	2.56571261	2.28231096	2.54083652

Question Which predictors contribute to sales?

Question Which predictors contribute to sales?

• To answer this question, we can examine the p-values associated with each predictor's t-statistic.

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 90.0%	Upper 90.0%
Intercept	2.99117944	0.630540793	4.743831753	2.94955E-06	1.751485123	4.23087375	1.95155628	4.03080259
CompPrice	0.09255237	0.004250367	21.77514872	2.5798E-69	0.084195802	0.10090893	0.08554445	0.09956029
Income	0.01615272	0.001889343	8.549386868	2.86354E-16	0.012438122	0.01986733	0.01303761	0.01926783
Advertising	0.12036692	0.011383601	10.57371215	3.87637E-23	0.097985836	0.142748	0.10159786	0.13913597
Population	0.00029046	0.000379208	0.765975791	0.444155237	-0.00045509	0.00103602	-0.0003348	0.0009157
Price	-0.0952477	0.002737379	-34.7952211	1.6832E-121	-0.100629614	-0.0898658	-0.099761	-0.0907344
Age	-0.0468605	0.00325562	-14.39373328	5.86807E-38	-0.053261339	-0.0404597	-0.0522283	-0.0414927
Education	-0.020948	0.020210801	-1.036476421	0.300623799	-0.060684093	0.01878805	-0.0542712	0.01237515
Urban_encoded	0.14120929	0.115711175	1.22036005	0.223067678	-0.086288254	0.36870684	-0.049573	0.33199159
US_encoded	-0.1293475	0.153069318	-0.845025443	0.398616061	-0.430294157	0.17159922	-0.3817251	0.12303019
ShelveLoc_encoded	2.41157374	0.078399038	30.76024662	3.2204E-106	2.257434878	2.56571261	2.28231096	2.54083652

Question Which predictors contribute to sales?

• To answer this question, we can examine the p-values associated with each predictor's t-statistic.

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 90.0%	Upper 90.0%
Intercept	2.99117944	0.630540793	4.743831753	2.94955E-06	1.751485123	4.23087375	1.95155628	4.03080259
CompPrice	0.09255237	0.004250367	21.77514872	2.5798E-69	0.084195802	0.10090893	0.08554445	0.09956029
Income	0.01615272	0.001889343	8.549386868	2.86354E-16	0.012438122	0.01986733	0.01303761	0.01926783
Advertising	0.12036692	0.011383601	10.57371215	3.87637E-23	0.097985836	0.142748	0.10159786	0.13913597
Population	0.00029046	0.000379208	0.765975791	0.444155237	-0.00045509	0.00103602	-0.0003348	0.0009157
Price	-0.0952477	0.002737379	-34.7952211	1.6832E-121	-0.100629614	-0.0898658	-0.099761	-0.0907344
Age	-0.0468605	0.00325562	-14.39373328	5.86807E-38	-0.053261339	-0.0404597	-0.0522283	-0.0414927
Education	-0.020948	0.020210801	-1.036476421	0.300623799	-0.060684093	0.01878805	-0.0542712	0.01237515
Urban_encoded	0.14120929	0.115711175	1.22036005	0.223067678	-0.086288254	0.36870684	-0.049573	0.33199159
US_encoded	-0.1293475	0.153069318	-0.845025443	0.398616061	-0.430294157	0.17159922	-0.3817251	0.12303019
ShelveLoc_encoded	2.41157374	0.078399038	30.76024662	3.2204E-106	2.257434878	2.56571261	2.28231096	2.54083652

- The p-values for CompPrice, Income, Advertising, Price, Age, and ShelveLoc are low, but the p-value for Population, Education, Urban, US is not.
- This suggests that only CompPrice, Income, Advertising, Price, Age, and ShelveLoc.

Question How accurately can we predict future sales?

Question How accurately can we predict future sales?

This question can be answered by the assumption that sales is a random variable with normal distribution.

• Sales is random variable:

Sales
$$\sim N(13.64192 - 0.05307 \times Price, 2.525987)$$

Question How accurately can we predict future sales?

This question can be answered by the assumption that sales is a random variable with normal distribution.

• Sales is random variable:

Sales
$$\sim N(13.64192 - 0.05307 \times Price, 2.525987)$$

• The expected value of **Sales** is

$$E(Sales) = 13.64192 - 0.05307 \times Price.$$

Question How accurately can we predict future sales?

This question can be answered by the assumption that sales is a random variable with normal distribution.

• Sales is random variable:

Sales
$$\sim N(13.64192 - 0.05307 \times Price, 2.525987)$$

• The expected value of **Sales** is

$$E(Sales) = 13.64192 - 0.05307 \times Price.$$

• 95% confidence interval is given by

$$\begin{split} &(13.64192 - 0.05307 \times \mathbf{Price} - 2 \times 2.525987, \\ &13.64192 - 0.05307 \times \mathbf{Price} + 2 \times 2.525987) \\ &= (8.589946 - 0.05307 \times \mathbf{Price}, 18.69389 - 0.05307 \times \mathbf{Price}) \end{split}$$

Sales	CompPrice	Income	Advertising	Population	Price	ShelveLoc	Age	Education	Urban	US
9.50	138	73	11	276	120	Bad	42	17	Yes	Yes
11.22	111	48	16	260	83	Good	65	10	Yes	Yes
10.06	113	35	10	269	80	Medium	59	12	Yes	Yes
7.40	117	100	4	466	97	Medium	55	14	Yes	Yes
4.15	141	64	3	340	128	Bad	38	13	Yes	No
10.81	124	113	13	501	72	Bad	78	16	No	Yes
6.63	115	105	0	45	108	Medium	71	15	Yes	No
11.85	136	81	15	425	120	Good	67	10	Yes	Yes
6.54	132	110	0	108	124	Medium	76	10	No	No
4.69	132	113	0	131	124	Medium	76	17	No	Yes
9.01	121	78	9	150	100	Bad	26	10	No	Yes
11.96	117	94	4	503	94	Good	50	13	Yes	Yes
3.98	122	35	2	393	136	Medium	62	18	Yes	No
10.96	115	28	11	29	86	Good	53	18	Yes	Yes
11.17	107	117	11	148	118	Good	52	18	Yes	Yes

Quantitative: variables whose values representing counts or measurements. A quantitative variable is either

Quantitative: variables whose values representing counts or measurements. A quantitative variable is either

• Discrete (distinct, separate values): number of bedrooms

Quantitative: variables whose values representing counts or measurements. A quantitative variable is either

- Discrete (distinct, separate values): number of bedrooms
- Continuos: price, lot size

Quantitative: variables whose values representing counts or measurements. A quantitative variable is either

- Discrete (distinct, separate values): number of bedrooms
- Continuos: price, lot size

Qualitative: variables whose values can be placed into nonnumeric categories. A qualitative variable is either

Quantitative: variables whose values representing counts or measurements. A quantitative variable is either

- Discrete (distinct, separate values): number of bedrooms
- Continuos: price, lot size

Qualitative: variables whose values can be placed into nonnumeric categories. A qualitative variable is either

• Binary: Is a US Store?

- Quantitative: variables whose values representing counts or measurements. A quantitative variable is either
 - Discrete (distinct, separate values): number of bedrooms
 - Continuos: price, lot size
- Qualitative: variables whose values can be placed into nonnumeric categories. A qualitative variable is either
 - Binary: Is a US Store?
 - Nominal: City

- Quantitative: variables whose values representing counts or measurements. A quantitative variable is either
 - Discrete (distinct, separate values): number of bedrooms
 - Continuos: price, lot size
- Qualitative: variables whose values can be placed into nonnumeric categories. A qualitative variable is either
 - Binary: Is a US Store?
 - Nominal: City
 - Ordinal: ShelveLoc (Bad, Medium, Good)

Binary Variables

Question: How do we represent qualitative variables with two levels?

We simply create an indicator or dummy variable that takes on two possible numerical values.

Binary Variables

Question: How do we represent qualitative variables with two levels?

We simply create an indicator or dummy variable that takes on two possible numerical values.

Examples:

• Is a US store?

$$x = \begin{cases} 1 & \text{if Yes} \\ 0 & \text{Otherwise} \end{cases}$$

• Is an Urban store?

$$x = \begin{cases} 1 & \text{if Yes} \\ 0 & \text{Otherwise} \end{cases}$$

Nominal Variables

Question: How do we represent qualitative variables with more than two levels?

When a qualitative predictor has more than two levels, a single dummy variable cannot represent all possible values. In this situation, we can create additional dummy variables.

Nominal Variables

Question: How do we represent qualitative variables with more than two levels?

When a qualitative predictor has more than two levels, a single dummy variable cannot represent all possible values. In this situation, we can create additional dummy variables.

Example:

• CITY with three levels: Seattle, Bellevue, Kirkland

$$x_{\text{Seattle}} = \begin{cases} 1 & \text{if Seattle} \\ 0 & \text{Otherwise} \end{cases} \qquad x_{\text{Bellevue}} = \begin{cases} 1 & \text{if Bellevue} \\ 0 & \text{Otherwise} \end{cases}$$

Nominal Variables

Question: How do we represent qualitative variables with more than two levels?

When a qualitative predictor has more than two levels, a single dummy variable cannot represent all possible values. In this situation, we can create additional dummy variables.

Example:

• CITY with three levels: Seattle, Bellevue, Kirkland

$$x_{\text{Seattle}} = \begin{cases} 1 & \text{if Seattle} \\ 0 & \text{Otherwise} \end{cases} \qquad x_{\text{Bellevue}} = \begin{cases} 1 & \text{if Bellevue} \\ 0 & \text{Otherwise} \end{cases}$$

Note: Only K-1 dummies can (in general) be included, where K is the number of categories of the qualitative variable.

E. Nasrabadi (NEU) INFO 6105 Fall 2019 27 / 27