Capítulo 1

Preliminares

En todo este trabajo hablaremos de foliaciones holomorfas del plano proyectivo complejo \mathbb{CP}^2 . El propósito de este capítulo es recordar algunas definiciones y resultados importantes.

1.1. Ecuaciones diferenciales y foliaciones.

Sea $U \subset \mathbb{C}^2$ un abierto y $F = (F_1, F_2) \colon U \to \mathbb{C}^2$ un campo vectorial holomorfo. La ecuación diferencial (autónoma) asociada a F se define como:

$$\frac{dx}{dt} = F_1(x, y)
\frac{dy}{dt} = F_2(x, y), \quad t \in \mathbb{C}.$$
(1.1)

Denotaremos por (\dot{x}, \dot{y}) a $(\frac{dx}{dt}, \frac{dy}{dt})$.

Una solución de esta ecuación diferencial es una curva parametrizada $\varphi \colon V \subset \mathbb{C} \to \mathbb{C}^2$ que satisface $\varphi(t) = F(\varphi(t)), \ \forall t \in V \subset \mathbb{C}$.

Un resultado fundamental en la teoría de ecuaciones diferenciales es el teorema de existencia y unicidad de soluciones y además. A continuación enunciamos este resultado:

Teorema 1. [1] Para cualquier ecuación diferencial (1.1) y todo punto $(x_0, y_0) \in U$ existe un disco $D_{\epsilon} \subset U$ centrado en (x_0, y_0) tal que la solución con condición inicial $(x, y) \in D_{\epsilon}$ existe y es única.

Más aún, la solución depende de manera holomorfa de la condición inicial, y si F depende de manera holomorfa de algunos otros parámetros, la solución también depende de manera holomorfa de estos parámetros.

A pesar de contar con el teorema de existencia y unicidad para ecuaciones diferenciales holomorfas, en principio, un campo vectorial puede ser muy complicado y las soluciones de la ecuación diferencial que determina pueden ser imposibles de escribir. Es por eso que con frecuencia buscamos cambios de coordenadas (continuos, diferenciables ó analíticos) que simplifiquen el campo vectorial.

Definición 1. Decimos que dos campos vectorials F y F' definidos en los conjuntos abiertos U y U' son analíticamente equivalentes si existe un biholomorfismo $H: U \to U'$ que cumple la siguiente relación:

$$\left(\frac{\partial H}{\partial x}\right)F(x) = F'(H(x)).$$
 (1.2)

Lo anterior quiere decir que la diferencial del biholomorfismo H lleva el vector F(x), anclado en el punto x, en el vector F'(H(x)) anclado en el punto H(x).

Es muy común que en los textos sobre foliaciones ó ecuaciones diferenciales en variedades analíticas de dimensión dos, se usen las palabras foliación, campo vectorial y 1-forma para referirse indistinguidamente al mismo objeto. Esta costumbre está justificada por los Teoremas (4) y (5). No es el propósito de esta tesis probar estos resultados, pero es bueno entender bien estos resultados para comprender como es que se relacionan estos objetos aparentemente distintos.

A un punto $x \in U$ tal que F(x) = (0,0) se le conoce como punto singular, denotaremos por Σ al conjunto de puntos singulares de F. Otro hecho importante de la teoría de ecuaciones diferenciales es que fuera de los lugares con puntos singulares, todas las ecuaciones diferenciales tienen el mismo comportamiento local.

Teorema 2. Todo campo vectorial F en una vecindad de un punto no singular, es analíticamente equivalente al campo vectorial constante F'(x) = (1,0).

Al teorema anterior se le conoce como el teorema de rectificación. Las soluciones del campo vectorial F' son x=t,y=cte, y como afirma el teorema, si no hay puntos singulares, localmente podemos escribir a las soluciones de esta manera; esto motiva la siguinte definición:

Definición 2. La foliación estándar del disco $B := \{(x,y) \in \mathbb{C}^2 \mid |x| < 1, |y| < 1\}$ es la partición de B por conjuntos $L_y = \{|x| < 1\} \times \{y\}$ que llamaremos hojas de la foliación, $i \in \mathbb{C}$

$$B = \bigsqcup_{|y| < 1} L_y. \tag{1.3}$$

En la mayor parte de este trabajo trabajaremos en \mathbb{CP}^2 , es por eso que necesitamos la siguiente definición:

Definición 3. Una foliación no singular \mathcal{F} en una dos variedad compleja M, es una partición de M en hojas L_{α} de tal forma que todo punto $x \in M$ tiene una vecindad B' y un biholomorfismo $H \colon B' \to B$ que manda las hojas locales $L_{\alpha} \cap B'$ de \mathcal{F} en las hojas de la foliación estandar.

Es decir, una foliación no singular en una dos variedad compleja M, es una partición de M que localmente se ve como la foliación estándar. El teorema (2) nos asegura que, todo campo vectorial holomorfo sin puntos singulares genera una foliación no singular.

Como en los puntos que no son singulares una ecuación diferencial tiene un comportamiento local sencillo, el verdadero interés es estudiar el comportamiento de una ecuación diferencial en una vecindad de un punto singular.

3

Definición 4. Una foliación singular holomorfa en una dos variedad compleja M es una foliación no singular en $M \setminus \Sigma$ donde Σ es un conjunto de puntos aislados al cual llamaremos el conjunto singular de la foliación.

Todo campo vectorial F en M, con conjunto singular Σ , define una foliación no singular \mathcal{F} en $M \setminus \Sigma$. Pero en principio, Σ puede ser un conjunto muy grande (por ejemplo, Σ puede ser toda una curva analítica). El siguiente resultado afirma que para foliaciones en dos variedades analiticas, siempre es posible encontrar un conjunto de puntos aislados $\Sigma' \subset \Sigma$ y una foliación no singular $\tilde{\mathcal{F}}$ de $M \setminus \Sigma'$ de tal forma que las hojas de $\tilde{\mathcal{F}}$ coincidan con las hojas de \mathcal{F} en $M \setminus \Sigma$.

Teorema 3. Sea F un campo vectorial en una dos variedad analítica M. Si Σ es el conjunto singular de F, entonces existe un conjunto de puntos aislados $\Sigma' \subset \Sigma$ y una foliación no singular $\tilde{\mathcal{F}}$ de $M \setminus \Sigma'$ cuya restricción a $M \setminus \Sigma$ coincide con la foliación generada por el campo vectorial F.

El teorema anterior básicamente dice que en las foliaciones singulares generadas por campos vectoriales holomorfos siempre podemos suponer que el conjunto singular Σ , es un conjunto de puntos aislados. El resultado recíproco también es cierto.

Teorema 4. Sea $\Sigma \subset M$ un conjunto aislado de puntos de la dos variedad analítica M, \mathcal{F} una foliación no singular en $\Sigma \setminus M$ que no se puede extender a ningún subconjunto de Σ .

Entonces, en una vecindad U de cada punto $a \in \Sigma$, la foliación \mathcal{F} está generada por un campo vectorial holomorfo F con conjunto singular $\Sigma \cap U$.

Así como definimos equivalencia analítica entre campos vectoriales, ahora damos la definición correspondiente para foliaciones.

Definición 5. Decimos que dos foliaciones \mathcal{F} y \mathcal{F}' definidas en las variedades M y M' son analíticamente equivalentes si existe un biholomorfismo $H \colon M \to M'$ que manda las hojas de \mathcal{F} en las hojas de \mathcal{F}' y el conjunto singular Σ de \mathcal{F} en el conjunto singular Σ' de $\tilde{\mathcal{F}}$.

El siguiente teorema relaciona campos vectoriales equivalentes con foliaciones equivalentes y foliaciones equivalentes con campos vectoriales "casi" equivalentes.

Teorema 5. Dos campos vectoriales F y F' analíticamente equivalentes generan foliaciones que son analíticamente equivalentes.

Reciprocamente, si las foliaciones \mathcal{F} y \mathcal{F}' que generan los campos vectoriales \mathcal{F} y \mathcal{F}' respectivamente, son analíticamente equivalentes, entonces existe una función holomorfa ρ que no se anula fuera del conjunto singular de \mathcal{F} y cumple:

$$\rho(x)\left(\frac{\partial H}{\partial x}\right)F(x) = F'(H(x)). \tag{1.4}$$

El teorema anterior nos dice que, cuando hablamos de foliaciones, ya no importa tanto el vector tangente si no todo el subespacio uno dimensional que es tangente a la hoja de la foliación (la multiplicación por la función ρ es lo que nos permite concluir esto). Una manera de codificar estos subespacios tangentes es usando 1-formas.

A todo campo vectorial $F = (F_1, F_2)$ le podemos asociar la 1-forma $F_1 dy - F_2 dx$. Observemos que nuestro campo vectorial anula a esta 1-forma, pero por la linealidad de la 1-forma también anula a todo el subespacio generado por el vector tangente. Así, el kernel de la 1-forma está formado por todos los subespacios tangentes a las soluciones de esta ecuación.

Una de las ventajas de usar 1-formas es que si tenemos una función holomorfa H entre dos variedades analíticas M y N, podemos "jalar" cualquier 1-forma ω en N a una 1-forma $H^*(\omega)$ en M. Esto lo podemos lograr usando la diferencial de H para empujar vectores tangentes a M en vectores tangentes a N y después evaluarlos en ω , i.e.:

$$H^*(\omega)(v) := \omega\left(\left(\frac{\partial H}{\partial x}\right)v\right), \ v \in TM.$$
 (1.5)

Nosotros vamos a jalar formas con los cambios de coordenadas (1.10) para poder mirar las foliaciones en la recta al infinito.

1.2. Holonomía local.

Una herramienta muy útil al estudiar una ecuación diferencial es el análisis del comportamiento de la dinámica transversal de sus soluciones. Esta dinámica la obtenemos estudiando el grupo de holonomía asociado a una hoja determinada de la foliación. A continuación veremos como asociar este grupo a una ecuación diferencial.

Una transversal a una hoja L de una foliación \mathcal{F} de M en el punto a, es la imagen de una función holomorfa $\tau \colon (\mathbb{C}, 0) \to (M, a)$ que corta de manera transversal a L.

Si en la foliación estándar (definición 2) tomamos dos transversales τ, τ' en los puntos A = (a,0) y A' = (a',0) de la hoja $L_0 = \{y = 0\}$, por continuidad, cualquier hoja L_α suficientemente cercana a L_0 sigue cortando a τ y τ' de manera transversal y por lo tanto la hoja L_α corta en un solo punto a τ y τ' (para fijar ideas, podemos pensar que las transversales son las rectas $\tau = \{x = a\}$ y $\tau = \{x = a'\}$).

Lo anterior, nos permite definir una función biyectiva $\Delta_{\tau,\tau'}$: $(\tau,A) \to (\tau',A')$ entre las dos transversales intercambia a los puntos con la misma coordenada y. Gracias a que las soluciones dependen de manera holomorfa de la condición inicial (teorema 1), la función anterior es un biholomorfismo.

Al biholomorfismo anterior lo llamaremos mapeo de correspondencia entre las transversales τ y τ' . Si tomamos una tercera transversal τ'' , los mapeos de correspondencia satisfacen la identidad:

$$\Delta_{\tau,\tau''} = \Delta_{\tau',\tau''} \circ \Delta_{\tau,\tau'}. \tag{1.6}$$

Para hacer esta construcción en una hoja L de cualquier foliación \mathcal{F} , necesitamos un camino $\gamma \colon [0,1] \to L$ que una a las dos transversales τ y τ' a L en los puntos a y a' respectivamente, i.e. $\gamma(0) = a, \gamma(1) = a'$.

Como el intervalo [0,1] es compacto, lo podemos cubrir con un número finito de abiertos U_j de tal forma que en cada U_j la foliación es equivalente a la foliación estándar. En cada uno de estos abiertos U_j podemos poner transversales auxiliares τ_j y obtener un mapeo de correspondencia entre transversales consecutivas. Si componemos todos estos mapeos, al final obtenemos un biholomorfismo Δ_{γ} entre las transversales τ y τ' . A este biholomorfismo lo llamaremos mapeo de correspondencia a lo largo del camino γ .

Usando la identidad (1.6), es fácil ver que esta mapeo no depende de las transversales intermedias que se usaron para construirlo y más aun, no depende del camino sino de la clase de homotopía del camino.

Si los puntos $a, a' \in L$ por los cuales pasan las transversales τ y τ' son distintos, reparametrizando las transversales, siempre es posible encontrar coordenadas de tal forma que el mapeo de correspondencia se vea como la identidad, es por eso que vamos a considerar caminos cerrados y usaremos una sola transversal τ .

Definición 6. Sea $a \in L$, τ una transversal a L por el punto a y $\gamma \in \pi_1(L, a)$ un camino cerrado. El mapeo de holonomía $\Delta_{\gamma} : (\tau, a) \to (\tau, a)$ es el mapeo de correspondencia a lo largo del camino cerrado γ .

Con las construcciones anteriores, por cada elemento γ del grupo fundamental de la hoja L obtenemos un biholomorfismo Δ_{γ} . Al grupo formado por todos estos biholomorfismos lo llamaremos grupo de holonomía de la foliación \mathcal{F} a lo largo de la hoja L.

Ejemplo 1. La ecuación diferencial lineal

$$\dot{x} = \lambda_1 x
\dot{y} = \lambda_2 y$$
(1.7)

tiene por solución a

$$x(t) = c_1 e^{\lambda_1 t} y(t) = c_2 e^{\lambda_2 t}, \quad c_1, c_2 \in \mathbb{C}.$$
 (1.8)

Vamos a calcular el grupo de holonomía asociado a la hoja $L = \{y = 0\} \setminus \{0\}$ y la transversal $\{x = 1\}$.

Un generador del grupo fundamental de L es el lazo $\gamma = \{|x| = 1\}$. Si consideramos el segmento de recta $\{t\frac{2\pi i}{\lambda_1} \mid t \in [0,1]\} \subset \mathbb{C}$, su imagen bajo la solución con condición inicial (1,0) coincide con el lazo γ , y su imagen bajo cualquier otra solución que tenga condición inicial en la recta $\{x=1\}$ termina de nuevo en esta transversal pues, $x(\frac{2\pi i}{\lambda_1}) = c_1 e^{2\pi i}$ y si la condición inicial está en la transversal, entonces $c_1 = 1$ y así, $x(\frac{2\pi i}{\lambda_1}) = 1$. Por lo tanto, el mapeo de holonomía es:

$$y \mapsto e^{2\pi i \frac{\lambda_2}{\lambda_1}} y. \tag{1.9}$$

1.3. Holonomía Global.

La transformación de holonomía que se definió en el sección anterior es un concepto local, la transformación de holonomía fija un punto (la intersección de la transversal τ con la hoja L a la cual se le esta calculando el grupo de holonomía) y la transformación sólo está definida en una vecindad de ese punto.

Sería agradable poder, en algunos casos, definir esta transformación de manera global, es decir, en toda la transversal τ . Para definir la transformación de holonomía (local), usabamos las hojas de la foliación para movernos de una transveral τ a otra transversal τ' , pero para poder hacer esto, necesitabamos que la transversal τ a la hoja L siguierá cortando de manera transversal a hojas suficientemente cercanas a L. Por lo tanto, si queremos

definir una transformación de holonomía global vamos a necesitar una curva analítica que sea transversal a todas las hojas de la foliación.

Además, vamos a necesitar que, cuando nos movamos de un punto x a un punto y en una misma hoja L, la transversal a L en el punto x sea analíticamente equivalente a la tansversal a L en el punto y. Es por eso que hacemos la siguiente definición.

Definición 7. Sea E una dos variedad analítica y $\Pi \colon E \to B$ un haz fibrado con fibra F. Diremos que una foliación \mathcal{F} de E es transversal a las fibras de (E,Π) si:

- 1. Para todo $p \in E$, la hoja L_p de \mathcal{F} a $F_{\Pi(p)}$.
- 2. Si L es una hoja de $\mathcal F$ entonces $\Pi\colon L\to B$ es una aplicación cubriente.

Si tenemos que la foliación \mathcal{F} es transversal a las fibras de (E,Π) podemos, por cada elemento $[\gamma]$ del grupo fundamental $\pi_1(B,b)$ del espacio base B, asociar un biholomorfismo de la fibra $\varphi_{[\gamma]} \colon F \to F$ de la siguiente manera.

Si $\gamma \colon [0,1] \to B$ es una lazo tal que $\gamma(0) = \gamma(1) = b$ y $y \in \Pi^{-1}(b) = F$, sea L_y la hoja de \mathcal{F} que pasa por el punto y, entonces, como $\Pi \colon L \to B$ es una aplicación cubriente, podemos levantar a γ a una única curva $\tilde{\gamma} \colon [0,1] \to L_y$ tal que, $\tilde{\gamma}(0) = y$ y $\Pi \circ \tilde{\gamma} = \gamma$. Esto quiere decir que $\Pi(\tilde{\gamma}(1)) = \gamma(1) = b$ y por lo tanto $\tilde{\gamma}(1) \in \Pi^{-1}(b) = F$.

Así, para un punto $y \in \Pi^{-1}(b)$ podemos definir $\varphi_{\gamma}(y) = \tilde{\gamma}(1)$. Como el punto final de $\tilde{\gamma}$ sólo depende de la clase de homotopía de γ , la asociación anterior asigna a cada elemento $[\gamma] \in \pi_1(B,b)$ una transformación $\varphi_{[\gamma]} \colon F \to F$.

Gracias a que las soluciones de una ecuación diferencial dependen de manera analítica de las condiciones iniciales (Teorema 1), $\varphi_{[\gamma]}$ es una transformación analítica y es un biholomorfismo ya que $\varphi_{[\gamma^{-1}]}$ es una inversa analítica de φ_{γ} .

Definición 8. Sea \mathcal{F} una foliación transversal a las fibras de (E,Π,B) . Si $[\gamma] \in \pi_1(B,b)$ y $F = \Pi^{-1}(b)$, llamaremos transformación de holonomía global asociada a $[\gamma]$, a la transformación $\varphi_{[\gamma]} \colon F \to F$ construida arriba.

Si tenemos una separatriz L de la foliación \mathcal{F} , y $p \in \overline{L}$ es un punto singular de \mathcal{F} , podemos obtener la transformación de holonomía local asociada a L, al restringir, a una vecindad $V \subset F$ suficientemente pequeña de $L \cap F$, la transformación de holonomía global asociada a un lazo γ que rodeé a $\Pi(p)$.

Esto se debe a que el lazo γ se levanta a L como un lazo $\tilde{\gamma}$ que rodea al punto singular p en la separatriz L. Y la transformación de holonomía local, también puede construirse levantando un lazo de L a curvas en hojas de \mathcal{F} suficientemente cercanas a L. Es precisamente la imposibilidad de levantar lazos de L a cualquier hoja de \mathcal{F} lo que hace a la holonomía de la sección anterior, una transformación local.

Lo anterior nos permite heredar algunas propiedades de la transformación de holonomía local a la transformación de holonomía global. Por ejemplo, si la transformación de holonomía local tiene orden finito, entonces la transformación de holonomía global también tiene orden finito y los ordenes de ambas coinciden.

Una observación muy importante y que utilizaremos más adelante es que, si la fibra F del haz fibrado (E,Π,B) es compacta, entonces en la definición (7), la primera condición implica la segunda (ver [3]).

1.4. El plano proyectico complejo \mathbb{CP}^2 .

El espacio proyectivo complejo \mathbb{CP}^n es el conjunto de todos los subespacios uno dimensionales de $\mathbb{C}^{n+1}\setminus\{0\}$. Si en este conjunto consideramos la relación de equivalencia $x\sim y$ sí y sólo sí $x=\lambda y, \lambda\in\mathbb{C}\setminus\{0\}$, entonces $\mathbb{CP}^n=\mathbb{C}^{n+1}\setminus\{0\}/\sim$.

En el caso en que n=2 obtenemos el plano proyectivo complejo, y en el caso n=1 obtenemos la recta proyectiva compleja que es nada más y nada menos que una esfera.

Denotaremos por $[x_0:y_0:z_0]$ a la clase de (x_0,y_0,z_0) *i.e.* $[x_0:y_0:z_0]:=\{(x,y,z)\in\mathbb{C}^3\setminus\{0\}\mid\exists\lambda\in\mathbb{C},(x_0,y_0,z_0)=\lambda(x,y,z)\}$. A esta manera de denotar los puntos de \mathbb{CP}^2 se le conoce como coordendas homogéneas.

Con la topología cociente, \mathbb{CP}^2 tiene una estructura natural de variedad compleja dada por las siguientes cartas: los abiertos que usaremos son $U_x = \{[x:y:z] \mid x \neq 0\}, U_y = \{[x:y:z] \mid y \neq 0\}, U_z = \{[x:y:z] \mid z \neq 0\}$ y los homemorfismos son:

$$\psi_{x} \colon \quad U_{x} \quad \to \quad \mathbb{C}^{2}$$

$$[x:y:z] \quad \mapsto \quad (\frac{y}{x}, \frac{z}{x})$$

$$\psi_{y} \colon \quad U_{y} \quad \to \quad \mathbb{C}^{2}$$

$$[x:y:z] \quad \mapsto \quad (\frac{x}{y}, \frac{z}{y})$$

$$\psi_{z} \colon \quad U_{z} \quad \to \quad \mathbb{C}^{2}$$

$$[x:y:z] \quad \mapsto \quad (\frac{x}{z}, \frac{y}{z})$$

Podemos pensar al mapeo ψ_z como si a cada punto [x:y:z] de $U_z\subset\mathbb{CP}^2$ lo mandaramos al representante $(\frac{x}{z},\frac{y}{z},1)$, a esta carta solo le falta cubrir a las clases [x:y:0]. Si nos quedamos solamente con las primeras dos coordenadas [x:y], estos puntos forman un \mathbb{CP}^1 , que como ya hemos mencionado es una esfera.

Así, podemos pensar a \mathbb{CP}^2 como un plano complejo \mathbb{C}^2 al cual, le hemos pegado una recta provectiva, la recta al infinito.

La mayoría del tiempo trabajaremos en las coordenadas $\psi_z(U_z) = \mathbb{C}^2$, pero a veces necesitaremos ir a las otras dos cartas para ver el comportamiento de algunas cosas que pasan en la recta al infinito.

Los cambios de coordenadas de $\psi_x(U_x)$ a $\psi_z(U_z)$ y de $\psi_y(U_y)$ a $\psi_z(U_z)$ están dados por:

$$\psi_z \circ \psi_x^{-1}(u, v) = (\frac{1}{u}, \frac{v}{u})
\psi_z \circ \psi_y^{-1}(u, v) = (\frac{u}{v}, \frac{1}{v}).$$
(1.10)

1.5. El teorema de linealización de Poinacaré.

Como mencionamos anteriormente, un problema fundamental de la teoría de ecuaciones diferenciales es simplificar, mediante un cambio de coordenadas, un campo vectorial F. Si este campo vectorial tiene parte lineal, una pregunta natural es cuando este campo vectorial es analíticamente equivalente a su parte lineal. El teorema de linealización de Poincaré nos dice bajo que condiciones un campo vectorial es analíticamente equivalente a su parte lineal.

Sea $F(x) = Ax + V_2(x) + \cdots + V_m(x) + \cdots$ donde $A = (\frac{\partial F}{\partial x})(0)$ es la parte lineal del campo vectorial en el origen y los V_i son campos vectoriales homogéneos de grado i. Una manera de atacar el problema de linealización es intentar eliminar el término V_2 mediante un biholomorfismo H_2 , una vez logrado esto procedemos a eliminar el término V_3 con un biholomorfismo H_3 y así sucesivamente.

Si los valores propios de A son λ_1, λ_2 , al querer eliminar a los campos V_i siempre tendremos que dividir por números de la forma $\lambda_j - \alpha_1 \lambda_1 - \alpha_2 \lambda_2$, $\alpha_1, \alpha_2 \in \mathbb{N}$, $\alpha_1 + \alpha_2 > 1$. Es por eso que hacemos la siguiente definición.

Definición 9. Diremos que la pareja $\lambda = (\lambda_1, \lambda_2) \in \mathbb{C}^2$ es resonante si existen números naturales $\alpha_1, \alpha_2, \alpha_1 + \alpha_2 > 1$ tales que:

$$\lambda_j = \alpha_1 \lambda_1 + \alpha_2 \lambda_2. \tag{1.11}$$

Si los valores propios de A son no resonantes entonces podemos eliminar cualquier término no lineal de F mediante un biholomorfismo pero, si queremos eliminar todos los términos no lineales de un jalón, tendremos que componer una infinidad de biholomorfismos y el resultado no siempre será un biholomorfismo sino simplemente una serie de potencias formal. Esto se debe a que los números $\lambda_j - \alpha_1 \lambda_1 - \alpha_2 \lambda_2$ pueden ser muy pequeños y en consecuencia, al dividir por ellos, podemos afectar la convergecia de la serie de potencias que linealiza (de manera formal) al campo vectorial. Es por eso que si queremos que la serie de potencias converja, tenemos que pedir algo adicional a los valores propios de A.

Definición 10. Sean $\lambda_1, \lambda_2 \in \mathbb{C}$, si la cerradura convexa del conjunto $\{\lambda_1, \lambda_2\} \subset \mathbb{C}$ no contiene al origen, diremos que $\lambda = (\lambda_1, \lambda_2)$ está en el dominio de Poincaré. En caso contrario, diremos que λ está en el dominio de Siegel.

Si pensamos a los número complejos λ_1, λ_2 como vectores en \mathbb{R}^2 , estar en el dominio de Siegel se traduce a que λ_1 y λ_2 sean linealmente dependientes y de sentidos opuestos.

Con las dos definiciones anteriores podemos enunciar el teorema de linealización de Poincaré.

Teorema 6. Si los valores propios de la parte lineal del campo vectorial F son no resonantes y están en el dominio de Poincaré, entonces F es analíticamente equivalente a su parte lineal.

Ejemplo 2. Si los valores propios de la parte lineal de un campo vectorial F son iguales y distintos de cero, entonces el campo vectorial F es analíticamente equivalente a su parte lineal. Esto se debe a que si $\lambda_1 = \lambda_2$ entonces la ecuación (1.11) solo tiene solución con $\alpha_1 = 1$ y $\alpha_2 = 0$ y en consecuencia la pareja (λ_1, λ_2) es no resonante. Además como los valores propios coinciden, su cerradura convexa es un único punto $\lambda_1 \neq 0$.

1.6. Explosión de singularidades.

En la sección anterior enunciamos bajo que condiciones un campo vectorial, con parte lineal, es analíticamente equivalente a su parte lineal pero, ¿y si nuestro campo vectorial no tiene parte lineal? Cuando esto sucede, una técnica muy utilizada es la explosión de singularidades. A continuación describimos este proceso.

Intuitivamente, si un campo vectorial no tiene parte lineal en el origen, el campo vectorial aplasta todos los subespacios 1-dimensionales que salen del origen. Es por eso que vamos a intentar "separar" a estos subespacios 1-dimensionales.

Consideremos la proyección canónica de $p: \mathbb{C}^2 \setminus \{0\} \to \mathbb{CP}^1$. Esta proyección asocia a cada punto $(x,y) \in \mathbb{C}^2 \setminus \{0\}$ su clase de equivalencia $[x:y] \in \mathbb{CP}^1$, o lo que es lo mismo, p envía a todo un subespacio 1-dimensional menos el origen en un solo punto de \mathbb{CP}^1 .

La gráfica de está función $\operatorname{graf}(p)$ es un subconjunto del producto $\mathbb{C}^2 \times \mathbb{CP}^1$ y está determinada por los puntos de la forma ((x,y),[x:y]). En esta gráfica, todos los subespacios 1-dimensionales de \mathbb{C}^2 ya están "separados" pues a subespacios 1-dimensional distintos de \mathbb{C}^2 les corresponden puntos distintos en \mathbb{CP}^1 .

La proyección $\Pi \colon \mathbb{C}^2 \times \mathbb{CP}^1 \to \mathbb{C}^2$ es una función biyectiva entre $\operatorname{graf}(p)$ y $\mathbb{C}^2 \setminus \{0\}$ y además la imagen inversa del origen es $\operatorname{el\ divisor\ excepcional\ } E := \Pi^{-1}(0) = \{0\} \times \mathbb{CP}^1 \simeq \mathbb{CP}^1$. Si con una transformación queremos alterar la parte lineal de un campo vectorial, no podemos utilizar transformaciones analíticas invertibles, ya que éstas preservan la parte lineal del campo vectorial.

Observemos que si $M := graf(p) \cup E$, entonces, $\Pi \colon M \to \mathbb{C}^2$ es una función biyectiva entre $M \setminus E$ y $\mathbb{C}^2 \setminus \{0\}$, la imagen inversa del origen es toda una curva y además, en M ya están "separados" los subespacios 1-dimensionales de \mathbb{C}^2 .

Por todo lo anterior, la pareja (M,Π) es un buen candidato para desingularizar un campo vectorial. Pero todo el proceso de desingularización lo debemos llevar acabo de manera analítica, es por eso que debemos darle a M una estructura de variedad analítica y mostrar que con esa estructura, Π es una función analítica.

Si usamos la carta $u=\frac{w}{z}$ de \mathbb{CP}^1 , M que da descrita por los puntos que satisfacen $u=\frac{y}{x}\Rightarrow y=ux$ (esta última ecuación también inculye a los puntos de E).

En estas coordenadas la función $\varphi((x,y),[z:w])=(x,\frac{w}{z})=(x,u)$ restringida a M es una carta de M. Como en los puntos de M se cumple que y=ux la función inversa de esta carta es $\varphi^{-1}(x,u)=((x,ux),u)=((x,ux),[z:w])$.

De manera análoga, en la otra carta de \mathbb{CP}^1 , $v = \frac{x}{y}$, M queda descrita por x = vy y la función $\phi((x,y),[z:w]) = (y,\frac{w}{x}) = (y,v)$ es otra carta de M cuya inversa es $\phi^{-1}(y,v) = ((vy,y),v)$

Como las cartas ((x, y), u) y ((x, y), v) cubren a todo $\mathbb{C}^2 \times \mathbb{CP}^1$, las cartas (x, u) y (y, v) cubren a M y el cambio de coordenadas de (x, u) a (y, v) está dado por:

$$\phi \circ \varphi^{-1}(x, u) = (ux, \frac{1}{u}). \tag{1.12}$$

Las dos cartas anteriores hacen de M una dos variedad analítica y en la carta (x, u) la proyección $\Pi: M \to \mathbb{C}^2$ adquiere la forma $\Pi(x, u) = (x, ux)$ ya que en esta carta y = ux. Mientras que en la otra carta, $\Pi(y, v) = (vy, y)$.

Lo anterior prueba que, con la estructura analítica que le hemos dado a M, Π es una función analítica y entonces podemos usarla para jalar 1-formas en \mathbb{C}^2 (y en consecuencia foliaciones y campos vectoriales) a M.

Si tenemos una 1-forma ω con punto singular aislado en el origen, esta 1-forma define una foliación no singular \mathcal{F} en $\mathbb{C}^2 \setminus \{0\}$. Así, $\Pi^*(\omega)$ define una foliación no singular $\Pi^*(\mathcal{F})$ en $M \setminus E$. Pero gracias al Teorema (3) podemos extender a $\Pi^*(\mathcal{F})$ a todo M como una foliación singular con puntos singulares aislados en el divisor excepcional E. Al proceso anterior se le conoce como explosión de la 1-forma ω ó explosión de la foliación \mathcal{F} . A esta técnica de explosión de singularidades también se le conoce como desingularización.

Ejemplo 3. Haremos el blow-up de la 1-forma $\omega = x \, dy - \lambda y \, dx, \lambda \in \mathbb{C}$ en la carta (x, u).

$$\Pi^*(\omega) = x d(ux) - \lambda ux dx = x(u dx + x du) - \lambda ux dx = x(x du - (\lambda - 1)u dx).$$

 $\Pi^*(\omega)$ define una foliación no singular en $M \setminus E$ y como en esta carta $E = \{x = 0\}$, la función x no se anula en $M \setminus E$ y así, podemos multiplicar a la 1-forma $\Pi^*(\omega)$ por x para así obtener una nueva 1-forma $\omega_1 = x du - (\lambda - 1)u dx$ que define la misma foliación que $\Pi^*(\omega)$ en $M \setminus E$ pero tiene singularidades aisladas en el divisor excepcional E.

Un caso particular del ejemplo anterior que utilizaremos más adelante es cuando $\lambda = 1$. En este caso $\Pi^*(\omega) = x^2 du$, pero en $M \setminus E$ la función x^2 tampoco se anula y por lo tanto podemos multiplicar por ella para así obtener la 1-forma $\omega_1 = du$.

Esta 1-forma no tiene puntos singulares y las hojas de la foliación que determina quedan descritas por u=cte. Usando la otra carta $(y,v),\ v=\frac{x}{y}$ podemos ver que, en la parte de M que la carta (x,u) no nos permite ver, tampoco hay puntos singulares. Es decir, al explotar la foliación generada por $\omega=x\,dy-y\,dx$ obtenemos una foliación en M sin puntos singulares.

En este caso particualar, $\lambda=1$, el campo vectorial que se corresponde con la 1-forma $\omega=x\,dy-y\,dx$ es el campo vectorial radial:

$$\begin{aligned}
\dot{x} &= x \\
\dot{y} &= y.
\end{aligned} \tag{1.13}$$

Una observación muy importante es que todo el proceso de desingularización puede llevarse acabo de manera local (solo hay que restringir toda la construcción a una vecindad del origen ($\mathbb{C}^2, 0$)). Si tenemos una foliación \mathcal{F} con un número finito de singularidades Σ en una dos variedad analítica M, la observación anterior nos permite hacer una explosión local en cada uno de los puntos singulares para así obtener una nueva variedad M' y una función holomorfa $\Pi \colon M' \to M$ que satisface las siguientes propiedades:

- 1. Si $p \in \Sigma$ entonces $\Pi^{-1}(p) := E_p \simeq \mathbb{CP}^1$.
- 2. Π es un biholomorfimso entre $M' \setminus \bigcup_{p \in \Sigma} E_p$ y $M \setminus \Sigma$.

La variedad M' se puede construir explotando un punto $p_1 \in \Sigma$, obteniendo así una variedad M_1 , un divisor E_{p_1} y un mapeo $\Pi_1 \colon M_1 \to M$. Como Π_1 es un biholomorfismo entre $M_1 \setminus E_{p_1}$ y $M \setminus \{p_1\}$, alguna vecindad de otro punto $p_2 \in \Sigma \setminus \{p_1\}$ se mapea de manera biholomorfa a la nueva variedad M_1 . Así, podemos aplicar el procedimiento anterior al punto $\Pi_1^{-1}(p_2)$ para obtener otra variedad M_2 , otro divisor E_{p_2} y otro mapeo $\Pi_2 \colon M_2 \to M_1$ que es un biholomorfismo entre $M_2 \setminus E_{p_2}$ y $M_1 \setminus \{\Pi_1^{-1}(p_2)\}$.

Si repetimos este procedimiento con todos los puntos restantes de Σ , como Σ es un conjunto finito, al final obtendremos una variedad M_n , un divisor E_{p_n} y un mapeo $\Pi_n \colon M_n \to M_{n-1}$ que es un biholomorfismo entre $M_n \setminus E_{p_n}$ y $M_{n-1} \setminus \{\Pi_{n-1}^{-1}(p_n)\}$. Si llamamos M' a M_n y Π a $\Pi_1 \circ \cdots \circ \Pi_n$, la variedad M' y el mapeo Π satisfacen las propiedades deseadas.

1.7. El grado de una foliación dicrítica en \mathbb{CP}^2 .

Dada una foliación holomorfa del plano proyectivo complejo \mathbb{CP}^2 se tiene que, como consecuencia del teorema de Chow (el cual afirma que todo subconjunto analítico de una variedad proyectiva es algebraico, ver [2]), ésta es generada, en cualquier carta afín, por un campo vectorial polinomial [1, p. 477].

Si en esta carta afín, la foliación esta generada por el campo vectorial:

$$\dot{x} = p_1(x, y) + \dots + p_n(x, y)
\dot{y} = q_1(x, y) + \dots + q_n(x, y).$$
(1.14)

Donde los p_k, q_k son polinomios homogéneos de grado k. Para obtener un campo vectorial que genere a la foliación cerca de la recta al infinito tenemos que usar los cambios de coordenadas (1.10). Por ejemplo, si $x = \frac{1}{u}$ y $y = \frac{v}{u}$ obtenemos el campo:

$$\dot{u} = \frac{1}{u^{n+1}} p_n(1, v) + \dots + \frac{1}{u^2} p_1(1, v)$$

$$\dot{v} = \frac{1}{u_{n+2}} (v p_n(1, v) - q_n(1, v)) + \dots + \frac{1}{u^3} (v p_1(1, v) - q_1(1, v)).$$
(1.15)

Si llamamos $h_{k+1} = yp_k(x,y) - xq_k(x,y)$ podemos escribir la ecuación anterior como:

$$\dot{u} = \frac{1}{u^{n+1}} p_n(1, v) + \dots + \frac{1}{u^2} p_1(1, v)$$

$$\dot{v} = \frac{1}{u_{n+2}} h_{n+1}(1, v) + \dots + \frac{1}{u^3} h_2(1, v).$$
(1.16)

En esta carta, la recta al infinito queda descrita por $\{u=0\}$ y entonces, antes de obtener la expresión final del campo vectorial cerca del infinito, podemos multiplicar por una potencia de u adecuada para eliminar los polos. Así, tenemos dos casos distintos:

1. Si $h_{n+1} \neq 0$, entonces diremos que la foliación es no dicrítica y así, podemos multiplicar por u^{n+2} para obtener el campo vectorial:

$$\dot{u} = up_n(1, v) + \dots + u^n p_1(1, v)
\dot{v} = h_{n+1}(1, v) + uh_n(1, v) + \dots + u^{n-1}h_2(1, v).$$
(1.17)

Observemos que en este caso, al hacer el cambio de coordenadas, el grado de los polinomios que definen la foliación en la nueva carta, es uno más que el grado de los polinomios que definen la foliación en la carta inicial. Además, la recta al infinito $\{u=0\}$ es invariante y tiene singularidades en los puntos $(0,v_j)$ donde v_j es una raíz del polinomio $h_{n+1}(1,v)$.

2. Si $h_{n+1} \equiv 0$, diremos que la foliación es dicrítica y entonces basta multiplicar por u^{n+1} para obtener:

$$\dot{u} = p_n(1, v) + \dots + u^{n-1} p_1(1, v)
\dot{v} = h_n(1, v) + \dots + u^{n-2} h_2(1, v).$$
(1.18)

En este caso volvemos a obtener un campo vectorial polinomial del mismo grado que el campo vectorial original pero ahora, la recta al infinito ya no es invariante pero hay tangencias en la raíces de $p_n(1, v)$ y estas tangencias son puntos singulares en las raíces comunes de $p_n(1, v)$ y $h_n(1, v)$.

En el caso dícritico, el polinomio h_{n+1} se anula y esto se traduce a que

$$yp_n(x,y) = xq_n(x,y). (1.19)$$

Si analizamos con cuidado esta expresión, podemos concluir que el polinomio p_n no tiene monomios de la forma ay^n y el polinomio q_n no tiene monomios de la forma bx^n .

Esto se debe a que si el monomio ay^n aparece en el polinomio p_n , entonces en el polinomio yp_n aparece el monomio ay^{n+1} . De la igualdad (1.19) tenemos que el monomio ay^{n+1} también debe aparecer en el polinomio xq_n . Pero en todos los monomios de q_n la máxima potencia de y que puede aparecer es es y^n . Por lo tanto, en el polinomio xq_n no aparecen monomios de la forma ay^{n+1} y en consecuencia, el polinomio p_n no tiene monomios de la forma ay^n . Un razonamiento similar nos permite concluir que el polinomio q_n no tiene monomios de la forma bx^n .

Como el polinomio p_n es homogéneo de grado n y no hay monomios de la forma ay^n , todos los monomios de p_n tienen una potencia de x y por la misma razón, todos los monomios del polinomio q_n tienen una potencia de y. Así, podemos excribir a p_n y q_n como

$$p_n(x,y) = xf(x,y)$$

$$q_n(x,y) = yg(x,y).$$
(1.20)

Y además, los polinomios f y g son homogéneos de grado n-1. Si insertamos estas dos últimas igualdades en (1.19) obtenemos:

$$xyf(x,y) = xyg(x,y) (1.21)$$

Y entonces, al cancelar el factor xy de ambos lados,

$$f(x,y) = g(x,y) \tag{1.22}$$

Todo lo anterior quiere decir que, una foliación dicrítica siempre la podemos escribir de la forma:

$$\dot{x} = p_1(x, y) + \dots + p_d(x, y) + xg(x, y)
\dot{y} = q_1(x, y) + \dots + q_d(x, y) + yg(x, y).$$
(1.23)

Con g(x,y) un polinomio homogéneo de grado d.

En el caso de una foliación no dicrítica, vimos que el grado de los polinomios que definen a la foliación no son invariantes bajo cambios de coordenadas. Es por eso que si queremos asociar un grado a una foliación de \mathbb{CP}^2 debemos encontrar otra manera de mirar a una foliación de \mathbb{CP}^2 .

Si en \mathbb{C}^3 consideramos una 1-forma $\Omega = A dx + B dy + C dz$, donde $A, B, C \in \mathbb{C}[x, y, z]$ son polinomios homogéneos de grado d+1, el conjunto $\{\Omega = 0\}$ define una distribución de planos en \mathbb{C}^3 . Podemos pensar que Ω asocia a un punto (x_0, y_0, z_0) el $kernel(A(x_0, y_0, z_0)x + B(x_0, y_0, z_0)y + C(x_0, y_0, z_0)z)$.

Si queremos que Ω , al proyectar en la carta afín de \mathbb{CP}^2 , z=1 siga asociando a cada punto $[x_0:y_0:z_0]$ ya no un plano sino una recta, más nos vale que el plano original contenga a la dirección determinada por $[x_0:y_0:z_0]$. Pues por ejemplo, si Ω asocia al punto (0,0,1) el plano x+z=0, al proyectar en el plano z=1, el plano x+z=0 se proyecta en la recta x=-1 y esta recta ni siquiera pasa por el punto (0,0) que es el representante de la clase [0:0:1] en el plano z=1.

Una manera de evitar lo anterior es pedir que:

$$xA(x, y, z) + yB(x, y, z) + zC(x, y, z) = 0 \ \forall x, y, z \in \mathbb{C}^3.$$
 (1.24)

Lo anterior es equivalente a pedir que la distribución de planos que define $\{\Omega=0\}$ contenga al campo vectorial radial:

$$V = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} + z \frac{\partial}{\partial z}.$$
 (1.25)

Así, cualquier 1-forma $\Omega = A dx + B dy + C dz$ con coeficientes polinomiales homogéneos de grado d+1 que satisface (1.24), define una foliación de \mathbb{CP}^2 que en la carta afín z=1 adquiere la forma:

$$\omega = A(x, y, 1) dx + B(x, y, 1) dy. \tag{1.26}$$

El coeficiente C desparece por que sí z=1, entonces dz=0.

Recíprocamente, si en una carta afín de \mathbb{CP}^2 una foliación esta generada por la 1-forma $\omega = p(x,y) \, dx + q(x,y) \, dy$ con $p,q \in \mathbb{C}[x,y]$ polinomios de grado d, entonces podemos levantar ω a una 1-forma Ω de \mathbb{C}^3 con coeficientes polinomiales homogéneos que satisface la identidad (1.24). En efecto, si escogemos los coeficientes A y B como:

$$A(x, y, z) = z^{d+1} p(\frac{x}{z}, \frac{y}{z})$$
 (1.27)

$$B(x, y, z) = z^{d+1} q(\frac{x}{z}, \frac{y}{z}).$$
 (1.28)

Entonces, la identidad (1.24) obliga a que:

$$C(x, y, z) = z^{-1}(xA(x, y, z) + yB(x, y, z)).$$
(1.29)

es decir, para obtener a los polinomios homogéneos A y B de los polinomios p y q respectivamente, homogeneizamos a los polinomios p y q y después los multulicamos por z.

Una observación muy importante y que nos va a permitir definir el grado de una foliación en \mathbb{CP}^2 es que, el grado de una 1-forma polinomial Ω de \mathbb{C}^3 es invariante bajo transformaciones del grupo general lineal $GL(3,\mathbb{C})$ y en consecuencia es invariante bajo el grupo de transformaciones proyectivas $PGL(3,\mathbb{C})$ de \mathbb{CP}^2 .

Definición 11. Sea \mathcal{F} una foliación de \mathbb{CP}^2 . Si en coordenadas homogéneas esta foliación está generada por la 1-forma $\Omega = A dx + B dy + C dz$ con coeficientes polinomiales homogéneos de grado d+1 diremos que la foliación \mathcal{F} tiene grado d.

Un resultado que será muy importante, es que toda foliación de grado d tiene, contando multuplicidades, d^2+d+1 puntos singulares. Es por eso que apesar de que la foliación esté generada, en coordenadas homogéneas, por una 1-forma de grado d+1 diremos que la foliación tiene grado d. Cabe mencionar que algunos autores no hacen esta convención y definen el grado de una foliación como el grado de la 1-forma que genera a la foliación en coordenadas homogéneas.

Si tenemos una foliación dada por la 1-forma $\Omega = A dx + B dy + C dz$ entonces podemos escribir a A y a B de la siguiente manera:

$$A = a_{d+1} + a_d z + \dots + a_1 z^d + a_0 z^{d+1}$$

$$B = b_{d+1} + b_d z + \dots + b_1 z^d + b_0 z^{d+1}.$$
(1.30)

Donde los $a_k, b_k \in \mathbb{C}[x,y]$ son polinomios homogéneos de grado k. Entonces tenemos que:

$$xA + yB = (xa_{d+1} + yb_{d+1}) + (xa_d + yb_d)z + \dots + (xa_1 + yb_1)z^d + (xa_0 + yb_0)z^{d+1}.$$
(1.31)

Y de la indentidad (1.24) tenemos que -zC = xA + yB. Es decir que z divide al polinomio xA + yB y en consecuencia tenemos que:

$$xa_{d+1} + yb_{d+1} \equiv 0 (1.32)$$

Razonando de manera análoga a como hicimos con la ecuación (1.19) y suponiendo que alguno de los polinomios a_{d+1}, b_{d+1} no es idénticamente cero, podemos concluir que:

$$a_{d+1} = -yg(x, y)$$

 $b_{d+1} = xg(x, y).$ (1.33)

Con g(x,y) un polinomio homogéneo de grado d.

Si miramos a la foliación en la carta z=1 obtenemos la 1-forma $\omega=A(x,y,1)\,dx+B(x,y,1)\,dy$, y si usamos las ecuaciones (1.30) y (1.33) obtenemos que ω adquiere la forma:

$$\omega = (a_0 + a_1 \cdots + a_d - yq) dx + (b_0 + b_1 + \cdots + b_d + xq) dy. \tag{1.34}$$

Esta 1-forma genera la misma foliación que el campo vectorial:

$$\dot{x} = b_0 + b_1 + \dots + b_d + xg
\dot{y} = -a_0 - a_1 + \dots - a_d + yg.$$
(1.35)

Podemos resumir lo anterior en el siguiente Lema:

Lema 1. Sea \mathcal{F} una foliación de grado d en \mathbb{CP}^2 . Entonces en cualquier carta afín \mathcal{F} está generada por un campo vectorial de la forma:

$$\dot{x} = b_0 + b_1 + \dots + b_d + xg
\dot{y} = a_0 + a_1 + \dots + a_d + yg.$$
(1.36)

Donde $a_k, b_k \in \mathbb{C}[x, y]$ son polinomios homgéneos de grado k y $g \in \mathbb{C}[x, y]$ es un polinomio homogéneo de grado d o g(x,y) es el polinomio cero.

Es fácil convencerse, usando la expresión (1.16), que el caso no dicrítico se da cuando $g(x,y) \equiv 0$ y el caso dicrítico se da cuando g(x,y) no se anula idénticamente.

Como mencionamos anteriormente, podemos pensar que toda foliación en una dos variedad compleja M sólo tiene singularidades aisladas, y en caso de que M sea compacta, sólo hay un número finito de ellas. Así, como \mathbb{CP}^2 es compacto, cualquier foliación de él tiene un número finito de singularidades y esto nos permite que siempre podamos tomar una carta afín en la cual la recta al infinito no tenga singularidades. Vamos a usar esta observación en la prueba del siguiente Teorema:

Teorema 7. Sea \mathcal{F} una foliación de grado d. Entonces, contando multiplicidades, \mathcal{F} tiene $d^2 + d + 1$ puntos singulares.

Demostración. Si escogemos una carta afín en la cual la recta al infinito no tenga puntos singulares, en esta carta afín el campo vectorial que genera a la foliación adquiere la forma:

$$\dot{x} = b_0 + b_1 + \dots + b_d + xg$$

 $\dot{y} = a_0 + a_1 + \dots + a_d + ya$

Las dos curvas algebraicas que definen esta ecuación son de grado d+1 así que, por el Teorema de Bézout, estas dos curvas se intersecan, contando multiplicidades, en d^2+2d+1 puntos singulares. Cualquiera de estos puntos de intersección que esté en nuestra carta afín va a ser un punto singular de la foliación, pero los puntos de intersección de estas dos curvas en la recta al infinito, gracias a la manera en que escogimos nuestras coordenadas, no son puntos singulares de la foliación. Por lo tanto, para probar el Teorema basta demostrar que las dos curvas algebraicas que definen la ecuación se intersecan d veces en la recta al infinito.

Para ver en que puntos la curva $\{A=a_0+\cdots+a_d+yg=0\}$ interseca a la recta al infintio tenemos que homogeneizar al polinomio A y después evaluar en z=0. Si homogeneizamos al polinomio A obtenemos el polinomio $a_0z^d+\cdots+a_dz+yg$, y al evaluar en z=0 vemos que esta curva corta a la recta al infinito en el punto [1:0:0] y en los puntos determinados por las raíces del polinomio g. De manera análoga la curva $\{B=b_0+b_1+\cdots+b_d+xg\}$ corta a la recta al infinito en los puntos [0:1:0] y en los puntos determinados por las raíces de g. Como g es un polinomio de grado g, las dos curvas se interesecan g veces en la recta al infinito.

Capítulo 2

Introducción

Dada una foliación holomorfa del plano proyectivo complejo \mathbb{CP}^2 se tiene que, como consecuencia del teorema de Chow (el cual afirma que todo subconjunto analítico de una variedad proyectiva es algebraico, ver [2]), ésta es generada, en cualquier carta afín, por un campo vectorial polinomial [1, p. 477]. A dicho campo vectorial es posible asignarle un grado que no depende de la carta afín que usemos para mirar el campo vectorial y esto nos permite asociarle un grado a cada foliación de \mathbb{CP}^2 .

2.1. El problema de Poincaré

El problema de Poincaré para foliaciones de \mathbb{CP}^2 consiste en acotar, dada una foliación, el grado de una posible solución algebraica en términos del grado de la foliación.

Ejemplo 4. Consideremos la familia de ecuaciones diferenciales en \mathbb{CP}^2 a un parámetro $\lambda \in \mathbb{R}$ siguiente:

$$\dot{x} = x$$
$$\dot{y} = \lambda y.$$

O lo que es lo mismo, la foliación generada por la 1-forma $x\,dy - \lambda y\,dx$.

En el ejemplo anterior si λ es un número irracional, la foliacion definida por la ecuación diferencial sólo tiene tres hojas algebraicas invariantes, los dos ejes coordenados y la recta al infinito. En efecto, si existiera una hoja algebraica de grado n, el teorema de Bézout nos asegura que esta hoja interseca a la recta x=1 en n puntos, pero la holonomía asociada a la separatriz y=0 y la transversal x=1 es $z\mapsto e^{2\pi i\lambda}z$ (1), y como λ es irracional, la órbita de cada punto es infinita, pero por construcción de la holonomía, la órbita de un punto z está contenida en la intersección de la hoja de la foliación \mathcal{L}_z que pasa por z con la transversal x=1.

Por otro lado, si $\lambda=\frac{p}{q}$, entonces $H=\frac{y^q}{x^p}$ es una primera integral meromorfa ya que $dH=q\frac{y^{q-1}}{x^p}\,dy-p\frac{y^q}{x^{p+1}}\,dx=\frac{y^{q-1}}{x^{p+1}}(qx\,dy-py\,dx)$ y así, todas las hojas $y^q-cx^p=0$ son algebraicas.

La ecuación del ejemplo es linear y eso hace que el grado de la foliación que genera sea uno. Sin embargo, es fácil ver que no importa que número natural k demos, siempre hay algún parámetro λ para el cual se cumplen las siguientes dos propiedades:

- 1. La foliación correspondiente a ese parámetro \mathcal{F}_{λ} tiene una primera integral racional y por lo tanto todas sus hojas son algebraicas.
- 2. El grado de las hojas de la foliación es mayor que k.

En efecto, basta tomar $\lambda = \frac{1}{n}$ con n > k pues así las hojas de la foliación corresponden a $y^n - cx = 0$.

El ejemplo anterior muestra que si no ponemos algunas condiciones más restrictivas a la foliación, no podemos, en general, acotar el grado de las soluciones algebraicas.

Si suponemos que la foliación no tiene singularidades dicríticas ¿generalizadas? o que alguna separatriz algebraica es suave, es posible acotar el grado de las separatrices [1]. Nosotros haremos la siguiente definición:

Definición 12. Sea $(\mathcal{F}_s)_{s\in S}$ una familia de foliaciones de \mathbb{CP}^2 donde S es una variedad holomorfa tal que los coeficientes de la ecuación que definen a cada foliación de la familia, en una carta afín fija, dependen de manera holomorfa de $s\in S$. Decimos que la familia tiene singularidades de tipo analítico fijo si:

- 1. Las singularidades de \mathcal{F}_s , $s \in S$, se pueden escribir como $sing(\mathcal{F}_s) = \{p_1(s), \dots, p_k(s)\}$, donde las funciones $s \in S \mapsto p_j(s)$ son holomorfas.
- 2. Para cada $j \in \{1, ..., k\}$ y $s_1, s_2 \in S$, existen una vecindadades U_1, U_2 de $p_j(s_1)$ y $p_j(s_2)$ respectivamente, de tal forma que las foliaciones $\mathcal{F}_{s_1}, \mathcal{F}_{s_2}$ son analíticamente equivalentes en estas vecindades.

Si además se cumple que para toda $s \in S$, las singularidades de \mathcal{F}_{λ} tienen dos valores propios distintos de cero, diremos que la familia tiene singularidades no degeneradas.

Uno de los propósitos de esta tesis es probar el siguiente resultado:

TEOREMA PRINCIPAL. Para d=2,3,4, existen familias de foliaciones de \mathbb{CP}^2 , digamos $(\mathcal{F}^d_{\alpha})_{\alpha\in\overline{\mathbb{C}}}$, de grado d que cumplen:

- 1. Existe un subconjunto finito de parámetros $A^d \subset \overline{\mathbb{C}}$ tal que la familia restringida, $(\mathcal{F}^d_{\alpha})_{\alpha \in \overline{\mathbb{C}} \setminus A^d}$ tiene singularidades no degeneradas de tipo analítico fijo.
- 2. Existe un subconjunto denso y numerable $E \subset \overline{\mathbb{C}}$, tal que para cualquier $\alpha \in E$, la foliación \mathcal{F}^d_{α} tiene una primera integral racional $F_{\alpha} = \frac{P_{\alpha}}{Q_{\alpha}}$ de grado d_{α} y se satisface que para cualquier k > 0, el conjunto $\{\alpha \in E; d_{\alpha} \leq k\}$ es finito. Esto nos dice que para todo natural k, hay una infinidad de parámetros $\alpha \in E$ cuya foliación correspondiente \mathcal{F}^d_{α} tiene primera integral racional de grado mayor que k y es por lo tanto un contraejemplo al problema de Poincaré.

Capítulo 3

La familia de grado 4.

El primer contraejemplo al problema de Poincaré que abordaremos es una familia de ecuaciones diferenciales de grado 4. Cada ecuación de esta familia deja fijo a un conjunto de 9 rectas que se intersecan en 12 puntos.

3.1. La configuración.

De aquí en adelante, denotaremos por $j = e^{\frac{2\pi i}{3}}$.

El ejemplo de grado 4 es una familia de ecuaciones que dejan invariante a 9 rectas, a saber: $\{x=1\}, \{x=j\}, \{x=j^2\}, \{y=1\}, \{y=j\}, \{y=j^2\}, \{y=x\}, \{y=jx\}, \{y=j^2x\}.$

Estas 9 rectas se intersectan en 12 puntos los cuales son (1,1), (1,j), $(1,j^2)$, (j,1), (j,j), (j,j^2) , $(j^2,1)$, (j^2,j) , (j^2,j^2) , [0:0:1], [0:1:0] y [1:0:0].

Denotemos por \mathcal{L} al conjunto de las 9 rectas, por \mathcal{P} al conjunto de los 12 puntos y por $\mathcal{C} = (\mathcal{L}, \mathcal{P})$ a la configuración de las 9 rectas y los 12 puntos.

Observemos que la configuración cumple las siguientes tres propiedades:

- 1. Cada recta tiene 4 puntos de la configuración.
- 2. Por cada punto de la configuración pasan 3 rectas de la configuración
- 3. Si 3 puntos de \mathcal{P} no están en una recta de la configuración, entonces no están alineados.

A continuación probaremos que, módulo transformaciones proyectivas, ésta es la única configuración de 9 rectas y 12 puntos que satisfacen los tres propiedades anteriores. Esta proposición y sus dos corolarios serán de gran utilidad en el futuro, pues para muchas cuentas bastará hacer un cálculo en un lugar particular de \mathbb{CP}^2 y después usar alguna transformación proyectiva para argumentar que el cálculo es válido en otros lugares de \mathbb{CP}^2 .

Sea $\mathcal{C}' = (\mathcal{L}', \mathcal{P}')$ una configuración de 9 rectas y 12 puntos que satisfacen las tres propiedades de arriba. Es importante recordar que los 12 puntos son las intersecciones de las nueve rectas.

Lema 2. \mathcal{P}' puede ser dividido en cuatro conjuntos, \mathcal{P}_1 , \mathcal{P}_2 , \mathcal{P}_3 , \mathcal{P}_4 , tales que:

- 1. Cada \mathcal{P}_i tiene tres elementos de \mathcal{P}' .
- 2. $\mathcal{P}_i \cap \mathcal{P}_k = \emptyset$ si $i \neq j$
- 3. Los tres puntos en cada P_i no son colineales.

Demostración. Sea $p_1 \in \mathcal{P}'$, entonces, por la propiedad 2 de la configuración, hay tres rectas $l_1, l_2, l_3 \in \mathcal{L}'$, que pasan por p_1 . Por la propiedad 1, cada una de estas rectas tiene tres puntos de \mathcal{P}' distintos de p_1 . Por lo tanto, de los doce puntos de \mathcal{P}' , nueve están unidos a p_1 con una recta de \mathcal{L}' . Así, la recta que une a los dos puntos restantes, $p_2, p_3 \in \mathcal{P}'$ no es una recta de la configuración y entonces, por la propiedad 3, p_1, p_2, p_3 , no son colineales. Llamemos $\mathcal{P}_1 = \{p_1, p_2, p_3\}$.

Ahora, si l_4 , l_5 , $l_6 \in \mathcal{L}'$ son las tres rectas que pasan por p_2 , entonces, por el teorema de Bézout, $\{l_1, l_2, l_3\}$ intersecta a $\{l_4, l_5, l_6\}$ en nueve puntos de \mathcal{P}' , y como ninguno de ellos puede ser p_1 ó p_3 , concluímos que deben ser los mismos nueve que descartamos al elegir a p_2 y a p_3 . Es decir, si a p_2 le asociamos otros dos puntos de \mathcal{P}' como a p_1 , los puntos que le corresponden son p_1 y p_3 .

Por lo tanto, la construcción anterior parte a \mathcal{P}' en cuatro conjuntos con las propiedades deseadas.

En el caso particular en que $\mathcal{P}' = \mathcal{P}$ los conjuntos \mathcal{P}_i son: $\mathcal{P}_1 = \{(0,0), [1:0:0][0:1:0]\}, \mathcal{P}_2 = \{(1,1), (j,j^2), (j^2,j)\}, \mathcal{P}_3 = \{(1,j), (j,1), (j^2,j^2)\}$ y $\mathcal{P}_4 = \{(1,j^2), (j,j), (j^2,1)\}.$

Proposición 1. Sean C', $\mathcal{P}_i = \{p_1, p_2, p_3\}$ como en el lema 2. Entonces existe un automorfismo T de \mathbb{CP}^2 tal que T(C') = C (i.e. $T(\mathcal{L}') = \mathcal{L}$, $T(\mathcal{P}') = \mathcal{P}$) y además $T(\mathcal{P}_i) = \{[1 : 0 : 0], [0 : 1 : 0]; [0 : 0 : 1]\}$

Demostración. Como los puntos de \mathcal{P}_i no son colineales, podemos encontrar coordenadas de tal forma que: $p_1 = [0:0:1]$ $p_2 = [0:1:0]$ $p_3 = [1:0:0]$. En estas coordenadas y en la carta afín z = 1, las retas por $p_2 = [0:1:0]$ son de la forma $x = a_1$, $x = a_2$, $x = a_3$ y las que pasan por $p_3 = [1:0:0]$ son de la forma $y = b_1$, $y = b_2$, $y = b_3$. Así, las tres rectas restantes (las que pasan por $p_1 = [0:0:1]$) tienen la forma $y = \alpha x$, $y = \beta x$, $y = \gamma x$ y los nueve puntos restantes de \mathcal{P}' son (a_1,b_1) (a_1,b_2) (a_1,b_3) (a_2,b_1) (a_2,b_2) (a_2,b_3) (a_3,b_1) (a_3,b_2) (a_3,b_3)

Reordenando los índices, podemos suponer que $(a_i,b_i) \in \{y=\alpha x\},\ i=1,2,3.\ i.e.\ \frac{b_i}{a_i}=\alpha\ i=1,2,3.$

Supongamos que (a_1, b_2) está en la recta $\{y = \beta x\}$, veamos que otros puntos de \mathcal{P}' están en $\{y = \beta x\}$. Notemos primero que estos puntos no pueden tener en su primera entrada a a_1 y en la segunda entrada no pueden tener a b_2 , como además, (a_3, b_3) ya está en $\{y = \alpha x\}$, las únicas posibilidades son: (a_2, b_3) , (a_2, b_1) y (a_3, b_1) . Pero (a_2, b_3) y (a_2, b_1) no pueden estar ambos en $\{y = \beta x\}$, así que forzosamente, $(a_3, b_1) \in \{y = \beta x\}$. De manera análoga, (a_2, b_1) y (a_3, b_1) no pueden estar ambos en $\{y = \beta x\}$ y entonces $(a_2, b_3) \in \{y = \beta x\}$.

Por lo tanto, (a_1, b_1) , (a_2, b_2) , $(a_3, b_3) \in \{y = \alpha x\}$. (a_1, b_2) , (a_2, b_3) , $(a_3, b_1) \in \{y = \beta x\}$. (a_1, b_3) , (a_2, b_1) , $(a_3, b_2) \in \{y = \gamma x\}$.

Y entonces, tenemos las siguintes relaciones:

$$\frac{b_1}{a_1} = \frac{b_2}{a_2} = \frac{b_3}{a_3} = \alpha, \quad \frac{b_2}{a_1} = \frac{b_3}{a_2} = \frac{b_1}{a_3} = \beta, \quad \frac{b_3}{a_1} = \frac{b_1}{a_2} = \frac{b_2}{a_3} = \gamma.$$

Lo anterior implica que $\alpha^3 = \beta^3 = \gamma^3$ y así, $\frac{\beta}{\alpha}$ y $\frac{\gamma}{\alpha}$ son raíces cúbicas distintas de la unidad, digamos j y j^2 respectivamente.

Por último, veamos que $(a_1,a_2,a_3)=a_1(1,j,j^2)$ y $(b_1,b_2,b_3)=\alpha a_1(1,j,j^2)$:

$$a_1j=a_1rac{eta}{lpha}=a_1rac{rac{b_2}{a_1}}{rac{b_2}{a_2}}=a_2, \ \ a_1j^2=a_1rac{\gamma}{lpha}=a_1rac{rac{b_3}{a_1}}{rac{b_3}{a_3}}=a_3.$$

Y como $\frac{b_i}{a_i} = \alpha \ i = 1, 2, 3$

$$b_1 = \alpha a_1, \ b_2 = \alpha a_2 = \alpha a_1 j, \ b_3 = \alpha a_3 = \alpha a_1 j^2.$$

Y así, finalmente, $T([x:y:x])=[a_1^{-1}x:(\alpha a_1)^{-1}y:z]$ cumple las condiciones de la proposición.

De la proposición anterior se siguen los siguientes dos corolarios:

Corolario 1. Dados dos conjuntos $\mathcal{P}_i \neq \mathcal{P}_k$, existe un automorfismo S de \mathbb{CP}^2 tal que $S(\mathcal{C}') = \mathcal{C}'$ y $S(\mathcal{P}_i) = \mathcal{P}_k$.

Demostración. Por la proposición 1, existen dos automorfismos R, T de \mathbb{CP}^2 tales que, $R(\mathcal{C}') = \mathcal{C} = T(\mathcal{C}')$ y $R(\mathcal{P}_i) = \{[1:0:0], [0:1:0], [0:0:1]\} = T(\mathcal{P}_k)$. Entonces, el automorfismo buscado es: $S = T^{-1} \circ R$.

Corolario 2. Dados $p_i, p_j \in \mathcal{P}'$ existe un automorfismo S de \mathbb{CP}^2 tal que $S(\mathcal{C}') = \mathcal{C}'$ y $S(p_i) = p_j$.

Demostración. Primero, observemos que en la transformación que encontramos en la proposición 1, podemos escoger las imágenes de los puntos de P_i como queramos. Entonces, basta que en la proposición 1 tomemos R, T de tal manera que $R(p_i) = T(p_j) = [1:0:0]$ y entonces $S = T^{-1} \circ R$ es el automorfismo que necesitamos.

3.2. La Familia de Grado 4.

Como ya habíamos mencionado, la familia de grado 4 deja invariantes a todas las rectas de C. Usando la invarianza de las rectas $\{x=1\}, \{x=j\}, \{x=j^2\}, \{y=1\}, \{y=j\}, \{y=j^2\}, \{y=j^2\}, \{y=j^2\}, \{y=j^2x\}$ obtenemos un campo vectorial de la forma:

$$\dot{x} = (x^3 - 1)(a_0 + a_{10}x + a_{01}y + a_{20}x^2 + a_{11}xy + a_{02}y^2)$$
$$\dot{y} = (y^3 - 1)(b_0 + b_{10}x + b_{01}y + b_{20}x^2 + b_{11}xy + b_{02}y^2).$$

Como el origen es punto singular, $a_0 = b_0 = 0$. Y como la foliación es de grado cuatro, la parte homogénea de grado cinco de \dot{x} y \dot{y} son de la forma xg(x,y) y yg(x,y) respectivamente. Así:

$$\dot{x} = \dots + a_{20}x^5 + a_{11}x^4y + a_{02}x^5y^2 = \dots + x(a_{20}x^4 + a_{11}x^3y + a_{02}x^2y^2)$$
$$\dot{y} = \dots + b_{20}x^2y^3 + b_{11}xy^4 + b_{02}y^5 = \dots + y(b_{20}x^2y^2 + b_{11}xy^3 + b_{02}y^4).$$

Por lo tanto, $a_{20}=a_{11}=b_{11}=b_{02}=0$ y $a_{02}=b_{20}=b$. Usando lo anterior, nuestra ecuación adquiere la forma:

$$\dot{x} = (x^3 - 1)(a_{10}x + a_{01}y + by^2)$$
$$\dot{y} = (y^3 - 1)(b_{10}x + b_{01}y + bx^2).$$

Ahora usaremos la invarinza de las tres rectas restantes. Si y=x:

$$1 = \frac{dy}{dx} = \frac{b_{10}x + b_{01}x + bx^{2}}{a_{10}x + a_{01}x + bx^{2}}$$

$$\Rightarrow (a_{10} + a_{01})x = (b_{10} + b_{01})x$$

$$\Rightarrow a_{10} + a_{01} = b_{10} + b_{01}.$$
(1)

De manera análoga, en y = jx:

$$j = \frac{dy}{dx} = \frac{(b_{10} + b_{01}j)x + bx^2}{(a_{10} + a_{01}j)x + bj^2x^2}$$

$$\Rightarrow a_{10}j + a_{01}j^2 = b_{10} + b_{01}j. \tag{2}$$

Por último, al evaluar en $y = i^2x$ obtenemos:

$$a_{10}j^2 + a_{01}j = b_{10} + b_{01}j^2. (3)$$

Sumando (1), (2), (3) y recordando que $1 + j + j^2 = 0$:

$$(1+j+j^2)(a_{10}+a_{01}) = 3b_{10} + (1+j+j^2)b_{01}$$

 $\Rightarrow b_{10} = 0.$

Y sustituyendo en (1), $b_{01} = a_{10} + a_{01}$, e insertando esto en (2):

$$a_{10}j + a_{01}j^2 = (a_{10} + a_{01})j$$

 $\Rightarrow a_{01}j^2 = a_{01}j$
 $\Rightarrow a_{01} = 0.$

23

Y de (1) nuevamente:

$$a_{10} = b_{01} = a$$
.

Usando todo lo anterior la ecuación se ve como:

$$\dot{x} = (x^3 - 1)(ax + by^2)$$
$$\dot{y} = (y^3 - 1)(ay + bx^2).$$

Y al dividir por a y hacer $\alpha = -\frac{b}{a}$:

$$\dot{x} = (x^3 - 1)(x - \alpha y^2)
\dot{y} = (y^3 - 1)(y - \alpha x^2).$$
(3.1)

O sí a=0:

$$\dot{x} = (x^3 - 1)y^2
\dot{y} = (y^3 - 1)x^2.$$
(3.2)

A la foliación generada por la ecuación (3.1) la denotaremos por \mathcal{F}^4_{α} y a la que es generada por (3.2) la denotaremos \mathcal{F}^4_{∞} .

Terminaremos esta sección con un lema que nos facilitará muchos cálculos en el futuro:

Lema 3. Sea S un automorfismo de \mathbb{CP}^2 tal que $S(\mathcal{C}) = \mathcal{C}$, entonces $S^*(\mathcal{F}^4_{\alpha}) = \mathcal{F}^4_{\beta}$ para alguna $\beta \in \overline{\mathbb{C}}$.

Demostración. Como el grado de la foliación no depende de la carta, $S^*(\mathcal{F}^4_{\alpha})$ también es una foliación de grado cuatro que deja invariantes a las nueve rectas de la configuración y por lo tanto se puede escribir como los campos vectoriales (3.1) ó (3.2).

3.3. Los puntos singulares de \mathcal{F}_{α}^4 .

En esta sección estudiaremos los puntos de singulares \mathcal{F}_{α}^4 . Por la construcción, cada ecuación de la familia es de grado cuatro y por lo tanto tiene 21 puntos singulares contando multiplicidades. Veremos que si $\alpha \notin \{1, j, j^2, \infty\}$ entonces los 21 puntos son distintos y entonces son no degenerados mientras que si $\alpha \in \{1, j, j^2, \infty\}$ solo los 12 puntos de \mathcal{P} son puntos singulares, de esos 12 puntos, 9 son no degenerados y los tres restantes están en uno de los subconjuntos \mathcal{P}_i del lema 1.

Primero, obervemos que los 12 puntos de \mathcal{P} son puntos singulares de \mathcal{F}_{α}^4 , ya que por cada uno de ellos pasan 3 rectas invariantes de la foliación. Como cada recta de \mathcal{L} tiene 4 puntos de \mathcal{P} , cada recta tiene al menos 4 puntos singulares, pero por cada recta de \mathcal{L} tenemos un punto singular más:

La tabla anterior muestra 4 puntos singulares de 6 rectas de la configuración. En las rectas y =cte, el quinto punto singular es [1:0:0] y en las que x =cte, el quinto punto es [0:1:0]. En total, llevamos 17 puntos singulares.

	$(1,\alpha)$	$(j, \alpha j^2)$	$(j^2, \alpha j)$	
$y = j^2$	$(1,j^2)$	(j, j^2)	(j^2, j^2)	$(\alpha j, j^2)$
y=j	(1,j)	(j, j)	(j^2, j)	$(\alpha j^2, j)$
y=1	(1,1)	(j, 1)	$(j^2, 1)$	$(\alpha,1)$
	x = 1	x = j	$x = j^2$	

Cuadro 3.1: Algunos puntos singulares de \mathcal{F}_{α}^4 .

En las tres rectas restantes, el quinto punto singular es $(\frac{1}{\alpha}, \frac{1}{\alpha}) \in \{y = x\}, (\frac{j}{\alpha}, \frac{j^2}{\alpha}) \in \{y = jx\}$ y $(\frac{j^2}{\alpha}, \frac{j}{\alpha}) \in \{y = j^2x\}$. Si a estos 20 puntos le añadimos el origen, que también es punto singular, tenemos los 21 puntos singulares de \mathcal{F}^4_{α} .

Observemos que si $\alpha \notin \{1, j, j^2, \infty\}$, los 21 puntos singulares son distintos y por lo tanto no degenerados. Así, la parte lineal del campo vectorial en estos puntos tiene dos valores propios (λ_1, λ_1) distintos de cero.

Por cada punto de \mathcal{P} pasan tres rectas invariantes de \mathcal{F}_{α}^4 , entonces, en estos puntos tenemos que $\lambda_1 = \lambda_2$. Por lo tanto, en estos puntos singulares no hay resonancias y los valores propios están en el dominio de Poincaré. Entonces, por el teorema de linealización de Poincaré, la ecuación es linealizable en una vecindad de cada uno de estos doce puntos.

Lo anterior quiere decir que, en una vecindad del punto singular y utlizando coordenadas adecuadas, la ecuación se lee como $\lambda(u\frac{\partial}{\partial u}+v\frac{\partial}{\partial v})$ y entonces, $\frac{v}{u}$ es una primera integral meromorfa de la ecuación en una vecindad de cada punto de \mathcal{P} .

Denotemos por $q_i(\alpha)$ i=1,...,9 a los otros nueve puntos singulares. La parte lineal del campo que representa a \mathcal{F}^4_{α} en el punto singular $(1,\alpha)$ es:

$$\begin{pmatrix} 3(1-\alpha^3) & 0\\ -2\alpha(\alpha^3-1) & \alpha^3-1 \end{pmatrix}$$

Así, en este punto, $\lambda_1 = -3\lambda_2$. Haciendo un cálculo similar, podemos ver que en los otros ocho puntos singulares los valores propios de la parte lineal cumplen esta misma relación, pero también podemos usar una transformación proyectiva que lleve la recta de la configuración donde se encuentra el punto singular en cuestión y que además fije a la configuración ya que el lema 3 nos asegura que la nueva foliación también pertenece a la familia de grado cuatro.

Por ejemplo, si $q_i(\alpha)$ está en la recta $\{x=j\}$ ó $\{x=j^2\}$ las transformaciones proyectivas $(x,y) \to (j^2x,y)$ y $(x,y) \to (jx,y)$ respectivamente cumplen lo deseado.

Si $q_i(\alpha)$ está en una recta de la configuración que pasa por (0,0), a las transformaciones anteriores les anteponemos una transformación como las del corolario 2, que intercambie (0,0) con [0:1:0] y fije a la configuración, y si $q_i(\alpha)$ está en una recta de la configuración $\{y=cte\}$, hacemos lo mismo pero ahora intercambiando a los puntos [1:0:0] y [0:1:0].

25

Como los valores propios en cada uno de estos nueve puntos cumplen $\lambda_1 = -3\lambda_2$, los valores propios están el dominio de Siegel y por ende, no podemos usar el teorema de linealización de Poincaré. Sin embargo, la ecuación también es linealizable en una vecindad de estos puntos. Para ver esto primero haremos unas definiciones que utilizaremos a lo largo de este capítulo:

Notación 1.

- 1. Llamemos M a la variedad que obtenemos de explotar y resolver los 12 puntos singulares de \mathcal{P} y denotemos por $\Pi \colon M \to \mathbb{CP}^2$ al mapeo que resuelve las singularidades.
- 2. $\tilde{\mathcal{F}}_{\alpha}$ será la foliación en M inducida por \mathcal{F}_{α}^{4} , i.e. $\Pi^{*}(\mathcal{F}_{\alpha}^{4}) = \tilde{\mathcal{F}}_{\alpha}$.
- 3. D_i va a ser el divisor asociado a $p_i \in \mathcal{P}$ i = 1, ..., 12. $D_i = \Pi^{-1}(p_i)$.
- 4. Para cada $l_i \in \mathcal{L}$ denotaremos por $\tilde{l}_i = \overline{\Pi^{-1}(l_i \setminus \{p_{i1}, p_{i2}, p_{i3}, p_{i4}\})}$, donde $p_{ik} k = 1, ..., 4$ son los cuatro puntos de \mathcal{P} que están en l_i .

Ahora sí, como los 12 puntos singulares de \mathcal{P} son radiales, al explotar no obtenemos nuevos puntos singulares en los divisores, así, $\tilde{\mathcal{F}}_{\alpha}$ solo tiene un punto singular en \tilde{l}_i , a saber $\Pi^{-1}(q_i(\alpha)) = q_i(\alpha)$. Por lo tanto, $\tilde{l}_i \setminus q_i(\alpha)$, es una hoja de $\tilde{\mathcal{F}}_{\alpha}$ que es biholomorfa a \mathbb{C} y entonces la holonomia de esta hoja es la identidad y por un teorema de Mattei Moussu CITA!!! $\tilde{\mathcal{F}}_{\alpha}$ es linealizable en una vecindad de $q_i(\alpha)$.

Como Π es un biholomorfismo en una vecindad de $q_i(\alpha)$, \mathcal{F}^4_{α} también es linealizable en una vecindad de este punto y en coordenadas adecuadas se ve como $3u\frac{\partial}{\partial u} - v\frac{\partial}{\partial v}$ y por lo tanto, v^3u es una primera integral en una vecindad de $q_i(\alpha)$.

Podemos resumir todo lo anterior en la siguiente proposicion:

Proposición 2. Si $\alpha \notin \{1, j, j^2, \infty\}$ entonces los 21 puntos singulares de \mathcal{F}^4_{α} son no degenerados. Los 12 puntos de \mathcal{P} son radiales con primera integral meromorfa local $\frac{v}{u} = \text{cte}$. Los otros 9 puntos singulares son de tipo silla y tienen una primera integral holomorfa local de la forma $v^3u = \text{cte}$.

En el otro caso, cuando $\alpha \in \{1, j, j^2, \infty\}$ los 9 puntos singulares que no están en \mathcal{P} degeneran en 3 puntos.

Para $\alpha = 1$:

$$(1,\alpha),(\alpha,1),(\frac{1}{\alpha},\frac{1}{\alpha})\to(1,1).$$

$$(j,\alpha j^2),(\alpha j,j^2),(\frac{j}{\alpha},\frac{j^2}{\alpha})\to(j,j^2).$$

$$(j^2,\alpha j),(\alpha j^2,j),(\frac{j^2}{\alpha},\frac{j}{\alpha})\to(j^2,j).$$

Para $\alpha = j$:

$$(1,\alpha), (\alpha j^2, j), (\frac{j}{\alpha}, \frac{j^2}{\alpha}) \to (1, j).$$

$$(\alpha, 1), (j, \alpha j^2), (\frac{j^2}{\alpha}, \frac{j}{\alpha}) \to (j, 1).$$

$$(\alpha j, j^2), (j^2, \alpha j), (\frac{1}{\alpha}, \frac{1}{\alpha}) \rightarrow (j^2, j).$$

Para $\alpha = j^2$:

$$(1,\alpha),(\alpha j,j^2),(\frac{j^2}{\alpha},\frac{j}{\alpha})\to(1,j^2).$$

$$(\alpha j^2, j), (j, \alpha j^2), (\frac{1}{\alpha}, \frac{1}{\alpha}) \rightarrow (j, j).$$

$$(\alpha,1),(j^2,\alpha j),(\frac{j}{\alpha},\frac{j^2}{\alpha})\to (j^2,j).$$

Para $\alpha = \infty$:

$$(1, \alpha), (j, \alpha j^2), (j^2, \alpha j) \to [0:1:0].$$

$$(\alpha, 1), (\alpha j^2, j), (\alpha j, j^2) \to [1:0:0].$$

$$(\frac{1}{\alpha}, \frac{1}{\alpha}), (\frac{j}{\alpha}, \frac{j^2}{\alpha}), (\frac{j^2}{\alpha}, \frac{j}{\alpha}) \to (0, 0).$$

Por lo tanto, si $\alpha \in \{1, j, j^2, \infty\}$, \mathcal{F}^4_{α} tiene 12 puntos singulares, a saber, los 12 puntos de \mathcal{P} . Y el análogo a la proposición 2 es la siguiente proposición:

Proposición 3. Si $\alpha \in \{1, j, j^2, \infty\}$ las singularidades de \mathcal{F}^4_{α} son los 12 puntos de \mathcal{P} , 9 de ellos son de tipo radial y los otros 3 están contenidos en alguno de los conjuntos \mathcal{P}_i de la proposición 1. Además, la foliación tiene una primera integral racional $H_{\alpha} = \frac{P_{\alpha}}{Q_{\alpha}}$ donde P_{α} y Q_{α} son producto de 3 líneas de \mathcal{L} . Estas líneas las podemos escoger de la siguiente manera, si $p_1, p_2, p_3 \in P_i$ son las singularidades de \mathcal{F}^4_{α} que no son de tipo radial, sean l_1, l_2, l_3 , las rectas de \mathcal{L} que pasan por alguno de estos 3 puntos y l_4, l_5, l_6 , rectas de \mathcal{L} que pasan por algun otro de esos 3 puntos, entonces $H_{\alpha} = \frac{l_1 l_2 l_3}{l_4 l_5 l_6}$.

Demostración. La única parte de la proposición que falta demostrar es que \mathcal{F}^4_{α} tiene una primera integral racional. Primero observemos que si S es una transformación proyectiva como las del corolario 1, por el lema 3, $S^*(\mathcal{F}^4_{\alpha}) = \mathcal{F}^4_{\beta}$ y además $\beta \in \{1, j, j^2, \infty\}$ pues en caso contrario $S^*(\mathcal{F}^4_{\alpha})$ tendría 21 puntos singulares mientras que \mathcal{F}^4_{α} tiene solamente 12 puntos singulares.

Por la observación anterior, basta encontrar una primera integral para \mathcal{F}^4_{∞} y después jalar esta integral a las demás foliaciones.

Sea $H_{\infty} = \frac{y^3-1}{x^3-1} = \frac{(y-1)(y-j)(y-j^2)}{(x-1)(x-j)(x-j^2)} = \frac{P}{Q}$. Entonces, $\frac{dH}{H} = \frac{dP}{P} - \frac{dQ}{Q} = \frac{3y^2dy}{y^3-1} - \frac{3x^2dx}{x^3-1} = \frac{3}{(y^3-1)(x^3-1)}(x^3-1)y^2dy - (y^3-1)x^2dx$. Por lo tanto, H_{∞} es una primera integral de \mathcal{F}_{∞}^4 y así, $H_{\infty} - 1$ y $\frac{1}{H_{\infty}} - 1$ también son primeras integrales de \mathcal{F}_{∞}^4 :

$$H_{\infty} = \frac{(y-1)(y-j)(y-j^2)}{(x-1)(x-j)(x-j^2)}$$

$$H_{\infty} - 1 = \frac{(y-x)(y-jx)(y-j^2x)}{(x-1)(x-j)(x-j^2)}$$

$$\frac{1}{H_{\infty}} - 1 = \frac{(y-x)(y-jx)(y-j^2x)}{(y-1)(y-j)(y-j^2)}$$

En la primera de las integrales los puntos que se escogieron son [1:0:0] y [0:1:0], en la segunda se escogieron (0,0) y [0:1:0] y en la última (0,0) [1:0:0].

Con la proposición 2 podemos probar que la familia de grado cuatro cumple el primer inciso del teorema principal .

En efecto, el conjunto A^4 que le quitaremos a $\overline{\mathbb{C}}$ para que la familia tenga singularidades no degeneradas de tipo analítico fijo es $A^4 = \{1, j, j^2, \infty\}$. La tabla 3.1 muestra que las singularidades de \mathcal{F}^4_{α} se pueden escribir como funciones holomorfas $p_j : \overline{\mathbb{C}} \setminus A^4 \to \mathbb{CP}^2$ y las primeras integrales que se obtuvieron en la proposición 2 muestran que los puntos singulares $p_j(s), p_j(t)$ son localmente analíticamente equivalentes.

3.4. La transversalidad de las distintas foliaciones.

La siguiente porposición nos brinda información de como se intersectan hojas de distintas foliaciones de M que son inducidas por $(\mathcal{F}^4_{\alpha})_{\alpha \in \overline{\mathbb{C}}}$ y $\Pi \colon M \to \mathbb{CP}^2$, pero antes, recordemos parte de la notación que se usó antes de la proposición 2.

- 1. Llamemos M a la variedad que obtenemos de explotar y resolver los 12 puntos singulares de \mathcal{P} y denotemos por $\Pi \colon M \to \mathbb{CP}^2$ al mapeo que resuelve las singularidades.
- 2. $\tilde{\mathcal{F}}_{\alpha}$ será la foliación en M inducida por $\mathcal{F}_{\alpha}^4, \ i.e. \ \Pi^*(\mathcal{F}_{\alpha}^4) = \tilde{\mathcal{F}}_{\alpha}$.
- 3. D_i va a ser el divisor asociado a $p_i \in \mathcal{P}$ i = 1, ..., 12. $D_i = \Pi^{-1}(p_i)$.
- 4. Para cada $l_j \in \mathcal{L}$ denotaremos por $\tilde{l}_i = \overline{\Pi^{-1}(l_i \setminus \{p_{i1}, p_{i2}, p_{i3}, p_{i4}\})}$, donde $p_{ik} k = 1, ..., 4$ son los cuatro puntos de \mathcal{P} que están en l_i .

Proposición 4. Si $\alpha \neq \beta$ entonces, $\tilde{\mathcal{F}}_{\alpha}$ y $\tilde{\mathcal{F}}_{\beta}$ son transversales afuera del conjunto $\tilde{\mathcal{L}} = \tilde{l}_1 \cup \cdots \cup \tilde{l}_9$.

Demostración. Supongamos que $\alpha, \beta \neq \infty$. Primero probaremos que $\tilde{\mathcal{F}}_{\alpha}, \tilde{\mathcal{F}}_{\beta}$ son transversales afuera del conjunto $\mathcal{L} \cup D_1 \cup \cdots \cup D_{12}$. Como Π es un biholomorfismo fuera de $D_1 \cup \cdots \cup D_{12}$, basta demostrar que $\mathcal{F}_{\alpha}^4, \mathcal{F}_{\beta}^4$ son transversales afuera del conjunto $l_1, \cup \ldots \cup l_9$. Si usamos los campos vectoriales que generan a las foliaciones y calculamos su determinante obtenemos:

$$P_{\alpha}Q_{\beta} - P_{\beta}Q_{\alpha} = (\beta - \alpha)(x^3 - 1)(y^3 - 1)(y^3 - x^3).$$

Todavía nos hace falta probar que son transversales en la recta al infinito. Si usamos el corolario 1 podemos encontrar un automorfismo S de \mathbb{CP}^2 que mande a los puntos [1:0:0], [0:1:0] a otros dos puntos de \mathcal{P} pero que estén en la parte finita y por lo tanto la recta al infinito ahora está en la parte finita. Como las transformaciones que fijan a la configuración cumplen $S^*(\mathcal{F}^4_\alpha) = \mathcal{F}^4_\gamma$, el cálculo anterior muestra que las foliaciones también son transversalen en la recta al infinito.

Resta ver que $\tilde{\mathcal{F}}_{\alpha}$, $\tilde{\mathcal{F}}_{\beta}$ también son transversales en $D_1 \cup \cdots \cup D_{12} \setminus \tilde{\mathcal{L}}$. Como por cada punto $p_i \in \mathcal{P}$ tenemos un divisor D_i , si usamos el corolario 2 sólo tenemos que ver que $\tilde{\mathcal{F}}_{\alpha}$, $\tilde{\mathcal{F}}_{\beta}$ son transversales en uno de los doce divisores, usemos $D_1 = \Pi^{-1}(p_1 = (0,0))$. Si explotamos el origen usando el mapeo $\Pi(u,x) = (x,ux)$, las tres rectas de \mathcal{L} que pasan por el origen $(y=x,y=jx,y=j^2x)$ se transforman en las rectas $u=1,u=j,u=j^2$, el divisor D_1 queda descrito por x=0 y el campo vectorial que genera a $\tilde{\mathcal{F}}_{\alpha}$ en esta carta es:

$$\dot{u} = \alpha(u^3 - 1) + xh_1(u, x)$$

 $\dot{x} = 1 + xh_2(u, x).$

donde h_1 y h_2 son polinomios. Por lo tanto, en el divisor, las pendientes de $\tilde{\mathcal{F}}_{\alpha}$, $\tilde{\mathcal{F}}_{\beta}$ son $\frac{du}{dx} = \alpha(u^3 - 1)$ y $\frac{du}{dx} = \beta(u^3 - 1)$ respectivamente y entonces las foliaciones son transversales en $D_1 \setminus \tilde{\mathcal{L}}$. FALTA EL CACHITO QUE NO SE VE EN ESTA CARTA Y EL CASO INFINITO, PERO LA IDEA ES LA MISMA.

La foliación \mathcal{F}_{∞}^4 tiene por primera integral a $H = \frac{y^3-1}{x^3-1}$ (proposición 3), así, las hojas de la foliación quedan descritas por y^3-1

Bibliografía

- [1] Yu. S. Ilyashenko, S. Yakovenko, *Lectures on analytic differential equations*, American Mathematical Society.
- $[2]\,$ D. Mumford, $Algebraic\ geometry,$ Springer-Verlag.
- [3] C. Camacho, A. Lins Neto, Teoria geométrica das folheações,