4 אלגברה ב' – סדנה

מרחבי מכפלה פנימית

הגדרות

: פונקציה אם היא נקראת מכפלה (י,·): $V \to \mathbb{C}$ פונקציה

לינארית ברכיב הראשון •

$$\langle \alpha \vec{u} + \vec{v}, \vec{w} \rangle = \alpha \langle \vec{u}, \vec{w} \rangle + \langle \vec{v}, \vec{w} \rangle$$

הרמיטיות

$$\langle \vec{u}, \vec{v} \rangle = \overline{\langle \vec{v}, \vec{u} \rangle}$$

חיוביות

$$\forall \vec{v} \in V, \vec{v} \neq \vec{0}, \qquad \langle \vec{v}, \vec{v} \rangle > 0$$

 $\langle \vec{u}, \vec{v} \rangle = 0$ אם (אורתוגונליים) אם ניצבים (אורתוגונליים) נקראים ליקו וקטורים

 $(i \neq j \ t \neq j$ לכל לכל וקטורים אם לכל לכל לכל לכל וקטורים לכל לכל ליסורים ליסורים

 $.\langle \vec{v}_i, \vec{v}_j \rangle = \delta_{ij} = \left\{\begin{matrix} 1 & i=j \\ i & i\neq j \end{matrix}\right.$ וקטורים אם נקראים אורתונורמליים אורתונו

תרגיל

: מתקיים ($\langle \vec{v}, \vec{v} \rangle = \|\vec{v}\|^2 = 1$) מתקיים לכל יחידה (\vec{v} , \vec{v} , \vec{v} וקטור יחידה

$$\langle \vec{u}, \vec{v} \rangle = \langle \underbrace{\langle \vec{u}, \vec{v} \rangle \vec{v}}_{P_{\vec{v}}(\vec{u})}, \vec{v} \rangle$$

פתרון:

: מלינאריות

$$\left\langle \langle \vec{u}, \vec{v} \rangle \vec{v}, \vec{v} \right\rangle = \langle \vec{u}, \vec{v} \rangle \underbrace{\langle \vec{v}, \vec{v} \rangle}_{1} = \langle \vec{u}, \vec{v} \rangle$$

 $.P_{\vec{v}}:V\longrightarrow sp\{\vec{v}\}:$ הגדרנו

באופן כללי:

$$\begin{split} W &= sp\{\overrightarrow{w}_1, \dots, \overrightarrow{w}_m\} \\ P_W(\overrightarrow{v}) &= \langle \overrightarrow{v}, \overrightarrow{w}_1 \rangle \overrightarrow{w}_1 + \langle \overrightarrow{v}, \overrightarrow{w}_2 \rangle \overrightarrow{w}_2 + \dots + \langle \overrightarrow{v}, \overrightarrow{w}_m \rangle \end{split}$$

תהליך גרהם-שמידט

 $1 \leq k \leq n$ כך שלכל $E = \{ \vec{e}_1, \ldots, \vec{e}_n \}$, ער היים בסיס איינ ל-א קיים בסיס לממייפ $B = \{ \vec{v}_1, \ldots, \vec{v}_n \}$ יהי היים $sp\{ \vec{e}_1, \ldots, \vec{e}_k \} = sp\{ \vec{v}_1, \ldots, \vec{v}_k \}$ מתקיים

: הוכחה

 $\cdot k$ הוכחה באינדוקציה על

$$ec{e}_1=rac{ec{v}_1}{\sqrt{\langle ec{v}_1,ec{v}_1
angle}}$$
 גבחר את $rac{ec{k}=1}{2}$

:אכן $\{ec{e}_1\}$ קבוצה איינ

$$\|\vec{e}_1\| = \langle \vec{e}_1, \vec{e}_1 \rangle = \left\langle \frac{\vec{v}_1}{\sqrt{\langle \vec{v}_1, \vec{v}_1 \rangle}}, \frac{\vec{v}_1}{\sqrt{\langle \vec{v}_1, \vec{v}_1 \rangle}} \right\rangle = \frac{1}{\langle \vec{v}_1, \vec{v}_1 \rangle} \langle \vec{v}_1, \vec{v}_1 \rangle = 1$$

 $\underline{k+1}$ נניח עבור \underline{k} ונוכיח עבור

$$\vec{e}_k' = \vec{v}_k - P_{\underbrace{sp\{\vec{e}_1, \dots, \vec{e}_k\}}{W}}(\vec{v}_k)$$

 $\langle (\vec{v}_k, \vec{e}_j) = \langle \vec{u}, \vec{e}_k \rangle$ אז צריך לדרוש , $\vec{e}_k' = \vec{v}_k - \vec{u}$ איין נניח את אה! (איך הגדרנו את

לכן , $P_W(ec{v})=\sum_{i=1}^m (ec{v},ec{b}_i)ec{b}_i$ לכן איינ ל-W, איינ ל- $\{ec{b}_1,...,ec{b}_m\}$

$$\vec{e}_k' = \vec{v}_k - \sum_{i=1}^k \langle \vec{v}_k, \vec{e}_i \rangle \vec{e}_i$$

: ונגדיר

$$\vec{e}_k = \frac{\vec{e}_k'}{\sqrt{\langle \vec{e}_k', \vec{e}_k' \rangle}}$$

טענה

 $\displaystyle \min_{\overrightarrow{w} \in W} \| \overrightarrow{v} - \overrightarrow{w} \| = \| \overrightarrow{v} - P_W(\overrightarrow{v}) \|$ אזי $(W - \vec{w}) = \{ \vec{e}_1, \ldots, \vec{e}_n \}$ אינ ל $(W - \vec{w}) = \{ \vec{v}, \ldots, \vec{e}_n \}$ אינ ל $(V - P_W(\overrightarrow{v}), \overrightarrow{w}) = \{ \vec{v}, \overrightarrow{w} \}$ לכל כל ל $(V - P_W(\overrightarrow{v}), \overrightarrow{w}) = \{ \vec{v}, \overrightarrow{w} \}$

: הוכחה

 $\|ec{v} - \overrightarrow{w}\| \ge \|ec{v} - P_W(ec{v})\|$ יהא יהא $ec{w} \in W$ נראה יהא

: נעלה בריבוע

$$\begin{split} \|\vec{v} - \vec{w}\|^2 &= \|\vec{v} - P_W(\vec{v}) + P_W(\vec{v}) - \vec{w}\|^2 \\ &= \langle \vec{v} - P_W(\vec{v}) + P_W(\vec{v}) - \vec{w}, \vec{v} - P_W(\vec{v}) + P_W(\vec{v}) - \vec{w} \rangle \\ &= \langle \vec{v} - P_W(\vec{v}), \vec{v} - P_W(\vec{v}) \rangle + \underbrace{\left(\vec{v} - P_W(\vec{v}), \underbrace{P_W(\vec{v}) - \vec{w}}_{\in W} \right)}_{=0} \\ &+ \underbrace{\left(\underbrace{P_W(\vec{v}) - \vec{w}}_{\in W}, \vec{v} - P_W(\vec{v}) \right)}_{=0} + \langle P_W(\vec{v}) - \vec{w}, P_W(\vec{v}) - \vec{w} \rangle \\ &= \|\vec{v} - P_W(\vec{v})\|^2 + 0 + 0 + \|P_W(\vec{v}) - \vec{w}\|^2 \ge \|\vec{v} - P_W(\vec{v})\| \\ &= \min_{w \in V} \|\vec{v} - \vec{w}\| = \|\vec{v} - P_W(\vec{v})\| |\vec{v} - \vec{v}| \text{ for } \vec{w} = P_W(\vec{v}) \text{ for } \vec{w} =$$

תרגיל

 $.\vec{v}=\vec{u}$ אז $\overrightarrow{w}\in V$ לכל לכל ל $\langle \vec{v},\overrightarrow{w}\rangle=\langle \vec{u},\overrightarrow{w}\rangle$, ממייפ, ע ממייפ, פתרון פתרון

ניצב לעצמו! מהעברת אגלים נקבל כי $\vec{v}-\vec{u}$ ניצב ל- \vec{w} לכל \vec{w} . בפרט $\vec{v}-\vec{u}$ ניצב לעצמו! מהעברת אגלים נקבל כי $\vec{v}-\vec{u}$, לכן מחיוביות לכן כלומר $\vec{v}=\vec{u}$, לכן מחיוביות לכן מחיוביות ליינים מחיובית ליינים מחיובית ליינים מחיובית מחיובית ליינים מחיובית ליינים מחיובית מחיובית ליינים מחיובית מחיובי

לבית

T=S אז $\langle S(\vec{u}), \vec{v} \rangle = \langle T(\vec{u}), \vec{v} \rangle$ - לינאריים $S,T:V \to V$ אם T=S- לרשוב האם $\vec{u} \in W$ לכל $\langle T(\vec{u}), \vec{u} \rangle = \langle S(\vec{u}), \vec{u} \rangle$

: נגדיר שונים, נגדיר מספרים $z_1,\dots,z_{n+1}\in\mathbb{C}$, $V=\mathbb{C}_n[x]$ יהא

$$\langle p(x), q(x) \rangle = \sum_{i=1}^{n+1} p(z_i) \overline{q(z_i)}$$

V מייפ על $\langle \cdot, \cdot \rangle$ מייפ על

: פתרון

<u>לינאריות ברכיב הראשון:</u>

$$\langle \alpha p(x) + q(x), r(x) \rangle = \sum_{i=1}^{n+1} (\alpha p(z_i) + q(z_i)) \overline{r(z_i)} = \alpha \sum_{i=1}^{n+1} p(z_i) \overline{r(z_i)} + \sum_{i=1}^{n+1} q(z_i) \overline{r(z_i)}$$
$$= \alpha \langle p(x), r(x) \rangle + \langle q(x), r(x) \rangle$$

<u>: הרמיטיות</u>

$$\langle p(x), q(x) \rangle = \sum_{i=1}^{n+1} p(z_i) \overline{q(z_i)} = \sum_{i=1}^{n+1} \overline{q(z_i)} \overline{p(z_i)} = \overline{\langle q(x), p(x) \rangle}$$

חיוביות:

$$\langle p(x), p(x) \rangle = \sum_{i=1}^{n+1} p(z_i) \overline{p(z_i)} = \sum_{i=1}^{n+1} |p(z_i)|^2 \stackrel{(*)}{\geq} 0$$

(*) כי כל המחוברים אי-שליליים

 $|p(z_i)|^2 = 0$ ואם הסכום הוא ואם הסכום הוא וא

$$i = 1, ..., n + 1$$
 לכן $p(z_i) = 0$ לכן

 $.p(x)\equiv 0 \Leftarrow$ נקודות ב-1 ממעלה שמתאפס ה-1 ממעלה פולינום ממעלה p(x)

תרגיל

:יהא $V=\mathbb{C}_2[x]$ ותהא

$$\langle p(x), q(x) \rangle = p(-1)q(-1) + p(0)q(0) + p(1)q(1)$$

V-מכפלה פנימית, מצאו בסיס איינ ל

פתרון:

נשים לב כי $\langle \cdot, \cdot \rangle$ מגודל המימד, לכן $\{(x-1)(x+1), x(x+1), x(x-1)\}$ מגודל המימד, לכן לב כי לב כי לנרמל.

תרגיל

 $(A^tA)_{ij}=\left\langle ec{v}_i,ec{v}_j
ight
angle$ אז מתקיים אם עמודות של מטריצה $ec{v}_1,\dots,ec{v}_n\in\mathbb{R}^n$ הראו כי אם פתרוו לא פורמלי:

$$\begin{pmatrix} - \ \vec{v}_1 - \\ - \ \vec{v}_2 - \\ \vdots \\ - \ \vec{v}_n - \end{pmatrix} \begin{pmatrix} | & | & | \\ \vec{v}_1 & \vec{v}_2 & \cdots & \vec{v}_n \\ | & | & | \end{pmatrix}$$

פתרון:

$$(A^t A)_{ij} = \sum_{k=1}^n (A^t)_{ik} (A)_{kj} = \sum_{k=1}^n (A)_{ki} (A)_{kj} = \sum_{k=1}^n (v_i)_k (v_j)_k = \langle \vec{v}_i, \vec{v}_k \rangle$$

$$\langle A,B \rangle = tr(B^tA)$$
 עם המייפ $V = M_2(\mathbb{R})$ יהא

$$.W=sp\left\{ egin{pmatrix} 0 & 1 \\ -1 & 2 \end{pmatrix}, egin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}
ight\}$$
יהא

 W^{\perp} מבאו את המרחק של $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ מ- W^{\perp} ומ

פתרון:

: למעשה

$$tr(B^t A) = \sum_{j=1}^n (B^t A)_{jj} = \sum_{i,j=1}^n (B^t)_{ji} A_{ij} = \sum_{i,j=1}^n (B)_{ij} (A)_{ji}$$

איזומורפיזם של מרחבים וקטוריים $\varphi\colon V \longrightarrow W$ אם

$$\langle \vec{v}_1, \vec{v}_2 \rangle = \langle \varphi(\vec{v}_1), \varphi(\vec{v}_2) \rangle$$

.Vאיינ ב- $\vec{v}_1,\ldots,\vec{v}_n$ אי ב- $\varphi(\vec{v}_1),\ldots,\varphi(\vec{v}_n)$ ואם ואס

$$.V$$
-לכן $\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$ בסיס איינ ל

: נמצא בסיס איינ ל-W באמצעות תהליך גרהם

$$\begin{split} \vec{v}_1 &= \begin{pmatrix} 0 & 1 \\ -1 & 2 \end{pmatrix} \\ \langle \vec{v}_1, \vec{v}_1 \rangle &= tr \left(\begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 2 \end{pmatrix} \right) \stackrel{(*)}{=} 0 \cdot 0 + 1 \cdot 1 + (-1) \cdot (-1) + 2 \cdot 2 = 6 \\ \\ \vec{e}_1 &= \frac{\vec{v}_1}{\sqrt{\langle \vec{v}_1, \vec{v}_1 \rangle}} = \frac{1}{\sqrt{6}} \begin{pmatrix} 0 & 1 \\ -1 & 2 \end{pmatrix} \\ \\ \vec{v}_2 &= \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix} \\ \\ \vec{e}_2' &= \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix} - \left(\begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}, \frac{1}{\sqrt{6}} \begin{pmatrix} 0 & 1 \\ -1 & 2 \end{pmatrix} \right) \frac{1}{\sqrt{6}} \begin{pmatrix} 0 & 1 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix} - \frac{1}{6} \cdot 6 \begin{pmatrix} 0 & 1 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \\ \\ \langle \vec{e}_2', \vec{e}_2' \rangle &= 1 \cdot 1 + 1 \cdot 1 + 1 \cdot 1 + 0 \cdot 0 = 3 \\ \\ \vec{e}_2 &= \frac{\vec{e}_2'}{\sqrt{\langle \vec{e}_2', \vec{e}_2' \rangle}} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \end{split}$$

:W-לכן בסיס איינ ל

$$\left\{ \underbrace{\frac{1}{\sqrt{6}} \begin{pmatrix} 0 & 1 \\ -1 & 2 \end{pmatrix}}_{\overrightarrow{w}_1}, \underbrace{\frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}}_{\overrightarrow{w}_2} \right\}$$

נשים לב כי
$$P_W\begin{pmatrix}1&1\\1&0\end{pmatrix}=\begin{pmatrix}1&1\\1&0\end{pmatrix}$$
, ולכן המרחק הוא 0 ולכן המרחק הוא 0 וא ($P_W\begin{pmatrix}1&1\\1&0\end{pmatrix}\in W$), והמרחק מ- W^\perp הוא W^\perp הוא W^\perp והמרחק מ- W^\perp והמרחק מ- W^\perp ווא הוא W^\perp ווא המרחק מ- W^\perp ווא הוא W^\perp ווא המרחק מ- W^\perp ווא הוא W^\perp ווא המרחק מ- W^\perp ווא מ-

$$P_W(\vec{v}) = \langle \vec{v}, \vec{w}_1 \rangle \vec{w}_1 + \langle \vec{v}, \vec{w}_2 \rangle \vec{w}_2 + \cdots$$
בכל מקרה,

חלק 2

 $.W^{\perp}$ מצאו את המרחק של $\begin{pmatrix} 1 & 3 \\ -1 & 4 \end{pmatrix}$ מ-Wומ

פתרון:

$$P_{W}\begin{pmatrix} 1 & 3 \\ -1 & 4 \end{pmatrix} = \left(\begin{pmatrix} 1 & 3 \\ -1 & 4 \end{pmatrix}, \frac{1}{\sqrt{6}} \begin{pmatrix} 0 & 1 \\ -1 & 2 \end{pmatrix} \right) \frac{1}{\sqrt{6}} \begin{pmatrix} 0 & 1 \\ -1 & 2 \end{pmatrix} + \left(\begin{pmatrix} 1 & 3 \\ -1 & 4 \end{pmatrix}, \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \right) \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$
$$= \frac{1}{6} \cdot 12 \begin{pmatrix} 0 & 1 \\ -1 & 2 \end{pmatrix} + \frac{1}{3} \cdot 3 \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 2 \\ -2 & 4 \end{pmatrix} + \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 3 \\ -1 & 4 \end{pmatrix}$$

הערה

ואכן הנוסחה שמצאנו W^\perp במקביל ל- W^\perp . ואכן הנוסחה שמצאנו דרך נוספת להגדיר את בתור הטלה על

$$P_W(\vec{v}) = \sum_{i=1}^k \langle \vec{v}, \vec{w}_i \rangle \vec{w}_i$$

.(כל המקדמים מתאפסים). עוכל $\overrightarrow{w}\in W^\perp$ וכל , $\langle \overrightarrow{w}_i, \overrightarrow{w}_j
angle = \delta_{ij}$ ל-0 שולחת כל לעצמו מאיינ

הערה

. מאוד ייפשוטה לחישוביי, לכן רוצים יילעבודיי איתה תמיד. המייפ הסטנדרטית ב- \mathbb{R}^n

כאשר יש מייפ אחרת, מה זה בסיס איינ ביחס אליה?

בסיס שבקידוד שלו (במעבר לוקטורי קואורדינטות) התמונה של איברי הבסיס אייג ביחס למייפ יהסטנדרטיתיי: אם $\{ec{v}_1, \dots, ec{v}_n\}$ איינ אז יהסטנדרטיתיי: אם

$$\left\langle \sum_{\underline{i=1}}^{n} \alpha_{i} \vec{v}_{i}, \sum_{\underline{i=1}}^{n} \beta_{i} \vec{v}_{i} \right\rangle = \sum_{\underline{i=1}}^{n} \alpha_{i} \beta_{i} \\
\begin{bmatrix} \alpha_{1} \\ \alpha_{2} \\ \vdots \\ \alpha_{n} \end{bmatrix} \begin{bmatrix} \beta_{1} \\ \beta_{2} \\ \vdots \\ \beta_{n} \end{bmatrix} = \sum_{\underline{i=1}}^{n} \alpha_{i} \beta_{i}$$