Polymorphic Typing (I)

Sjaak Smetsers

27 February 2025

Semantic Analysis

Semantic analysis is more than type checking

Happens between parsing and code generation

Builds/Uses a symbol table, mapping identifiers to their declaration

Semantic analysis may include

Type inference, Type checking

Strictness analysis

Uniqueness analysis

Reachability analysis

Dataflow analysis

Semantics

Syntax: Grammatical structure

Semantics: Meaning

Operational How the effect of a program is produced.

Natural Semantics

Structural Operational Semantics

Denotational What the effect of a program is.

Axiomatic Which properties a program has.

What is a Type?

A type is a description of a *set of values* (and a set of allowed operations on those values).

Examples

Int is the set of all integers

Float is the set of all floats

Bool is the set $\{true, false\}$

More examples

List Int is the set of all lists of integers

List is a *type constructor*: A mapping from types to types

Foo, in Java, is the set of all objects of class Foo

Int \rightarrow Int is the set of functions mapping an integer to an integer.

E.g., increment, decrement, and many others

Formal type systems

- Constitute the precise, mathematical characterisation of informal type systems (such as occur in the manuals of most typed languages.)
- Basis for type soundness theorems: 'any well-typed program cannot produce run-time errors (of some specified kind)'.
- Can decouple specification of typing aspects of a language from algorithmic concerns: the formal type system can define typing independently of particular implementations of type-checking algorithms.

Typing

```
Why?
    Safety
     Efficiency
    (Type driven) Development
What?
     Formally: Programs of type \tau compute values of type \tau
     Intuitively: prevents us from calculating 3 Volt + 2 Ampère
How?
    Type checking
    Type inference
```

λ -calculus: Syntax

$$\begin{array}{ccc}
M & ::= & x \\
& | & M_1 M_2 \\
& | & \lambda x.M
\end{array}$$

In Haskell

$$\lambda$$
-calculus: Semantics

Standard operational semantics

• β -reduction, based on substitution

$$(\lambda x.M)N \rightarrow_{\beta} M[x \mapsto N]$$

- Reduction strategy indicates redexes
- Gives rise to the notion of nomalization and laziness

λ -calculus: Ingredients for the Type System

Types

$$b \in B$$
 (base types) $\sigma := b \mid \sigma_1 \rightarrow \sigma_2$

Environments

 Γ : *Variables* $\rightarrow \sigma$ Example: $\Gamma = [\langle x, int \rangle, \langle y, bool \rangle]$ Notation: *x*:*int*, *y*:*bool*

Typing judgements

 $\Gamma \vdash M : \sigma$

this should be read as M has type σ in context Γ

Derivation Rules

Derivations (proofs) are trees made up from gluing together derivation rules

$$\begin{array}{c|cccc} \vdash A & \vdash B & \vdash C \\ \hline & \vdash D & \end{array}$$

A derivation rule can be read in two ways

Top-down: If we have proofs for *A*, *B* and *C* then we have a proof for *D* Bottom-up: To prove *D* we have to prove *A*, *B* and *C*

The Type System λ^{\rightarrow}

$$\frac{x:\sigma \in \Gamma}{\Gamma \vdash x:\sigma} \text{ (Variable)}$$

$$\frac{\Gamma \vdash M:\sigma \to \tau \qquad \Gamma \vdash N:\sigma}{\Gamma \vdash (MN):\tau} \text{ (\to-Elimination)}$$

$$\frac{\Gamma,x:\sigma \vdash M:\tau}{\Gamma \vdash (\lambda x.M):\sigma \to \tau} \text{ (\to-Introduction)}$$

 Γ , x: σ stands for " Γ extended by x: σ ". Formally:

$${y:t \mid y:t \in \Gamma, y \neq x} \cup {x:\sigma}$$

Syntax of SL

```
Expressions of the forms
                                                                      • \lambda x.e
e ::= x \text{ (variables)}
              \lambda x.e
                                                                      • True, False
               e_1e_2
              if e_c then e_t else e_e
                                                                  are called values.
              e_1 op e_2
              i (integers)
                                                                  Types are
             b (booleans)
                                                                  int, bool,
op ::= + | < | &&
                                                                  int \rightarrow int,
                                                                  int \rightarrow (int \rightarrow int),
                                                                  (int \rightarrow int) \rightarrow int,
\sigma ::= \sigma_1 \rightarrow \sigma_2
                                                                  (bool \rightarrow int) \rightarrow (int \rightarrow bool),
                                                                  . . .
```

Type Derivation Rules for SL^{\rightarrow}

$$\frac{b \in \{ \mathbf{True}, \mathbf{False} \}}{\Gamma \vdash b : bool} \quad \frac{i \in \{ \dots, -1, 0, 1, \dots \}}{\Gamma \vdash i : int} \quad (\mathbf{Int})$$

$$\frac{\Gamma \vdash e_1 : int \quad \Gamma \vdash e_2 : int}{\Gamma \vdash e_1 + e_2 : int} \quad (+)$$

$$\frac{\Gamma \vdash e_1 : bool \quad \Gamma \vdash e_2 : bool}{\Gamma \vdash e_1 \&\& e_2 : bool} \quad (\&\&)$$

$$\frac{\Gamma \vdash e_1 : int \quad \Gamma \vdash e_2 : int}{\Gamma \vdash e_1 \le e_2 : bool} \quad (\leq)$$

$$\frac{\Gamma \vdash e_c : bool \quad \Gamma \vdash e_t : \sigma \quad \Gamma \vdash e_e : \sigma}{\Gamma \vdash \mathbf{if} \ e_c \ \mathbf{then} \ e_t \ \mathbf{else} \ e_e : \sigma} \quad (\mathbf{If})$$

Type Derivation Rules for SL^{\rightarrow} (2)

$$\frac{x:\sigma \in \Gamma}{\Gamma \vdash x:\sigma} (Var)$$

$$\frac{\Gamma \vdash e_1 : \sigma \to \tau \qquad \Gamma \vdash e_2 : \sigma}{\Gamma \vdash e_1 e_2 : \tau} (App)$$

$$\frac{\Gamma, x:\sigma \vdash e : \tau}{\Gamma \vdash \lambda x e : \sigma \to \tau} (Abs)$$

Example

$$\frac{x : int \in \Gamma_{xy}}{\Gamma_{xy} \vdash x : int} \qquad \frac{y : int \in \Gamma_{xy}}{\Gamma_{xy} \vdash y : int} \qquad \frac{y : int \in x : int, y : int}{x : int, y : int} \qquad \frac{x : int \in \Gamma_{xy}}{\Gamma_{xy} \vdash x : int}$$

$$\frac{x : int, y : int \vdash \mathbf{if} \ x \le y \ \mathbf{then} \ x \ \mathbf{else} \ y : int}{x : int \vdash \lambda x . \lambda y . \mathbf{if} \ x \le y \ \mathbf{then} \ x \ \mathbf{else} \ y : int \rightarrow int}$$

$$\vdash \lambda x . \lambda y . \mathbf{if} \ x \le y \ \mathbf{then} \ x \ \mathbf{else} \ y : int \rightarrow int}$$

$$\frac{\Gamma, x: \sigma \vdash e : \tau}{\Gamma \vdash \lambda x. e : \sigma \to \tau} (Abs)$$

$$\frac{\Gamma \vdash e_c : bool \qquad \Gamma \vdash e_t : \sigma \qquad \Gamma \vdash e_e : \sigma}{\Gamma \vdash \text{ if } e_c \text{ then } e_t \text{ else } e_e : \sigma} (If)$$

$$\frac{\Gamma \vdash e_1 : int \qquad \Gamma \vdash e_2 : int}{\Gamma \vdash e_1 \le e_2 : bool} (\le) \qquad \frac{x : \sigma \in \Gamma}{\Gamma \vdash x : \sigma} (Var)$$

Common (Typing) Problems

Type checking

Given M and σ , is it the case that $\vdash M : \sigma$?

Type inference aka type reconstruction

Given M, is there a type σ such that $\vdash M : \sigma$?

Type inhabitation

Given σ , is there a term M such that $\vdash M : \sigma$?

Operational Semantics for SL (numbers)

$$\frac{e_1 \to e_1'}{e_1 + e_2 \to e_1' + e_2} (+ \textit{left}) \qquad \frac{e_2 \to e_2'}{v + e_2 \to v + e_2'} (+ \textit{right})$$

$$\frac{v_1 \in i \quad v_2 \in i \quad n = \llbracket v_1 \rrbracket + \llbracket v_2 \rrbracket \in \mathbb{Z}}{v_1 + v_2 \to \overline{n}} (+ \textit{eval})$$

We don't have rules for values.

$$\frac{?}{\text{True} \rightarrow ?} (True?) \qquad \qquad \frac{?}{i \rightarrow ?} (int?)$$

Operational Semantics for SL (if)

$$egin{aligned} e_c
ightharpoonup e_c
ightharpoonup e_c' \ \hline ext{if } e_c ext{ then } e_t ext{ else } e_e
ightharpoonup ext{if } False ext{ then } e_t ext{ else } e_e
ightharpoonup e_c \ \hline ext{if False then } e_t ext{ else } e_e
ightharpoonup e_e \ \hline ext{if False then } e_t ext{ else } e_e
ightharpoonup e_e \ \hline \end{aligned}$$

Operational Semantics for SL (lambda)

$$rac{e_f
ightarrow e_f'}{e_fe_a
ightarrow e_f'e_a}$$
 (App) $rac{e_f
ightarrow e_f'e_a}{(\lambda x.e_b)e_a
ightarrow e_b[x\mapsto e_a]}$ (Redex)

No rules for abstractions and variables.

$$\frac{?}{\lambda x.e \to ?} (Abs?) \qquad \frac{?}{x \to ?} (Var?)$$

Examples

- $(\lambda x. \lambda y. \mathbf{if} \ x \le y \mathbf{then} \ x \mathbf{else} \ y) 5 \ 7$ \rightarrow (λy .if $5 \le y$ then 5 else y)7 \rightarrow if 5 < 7 then 5 else 7 \rightarrow if True then 5 else 7 and we're stuck $(\lambda x. \lambda y. \mathbf{if} x + y \mathbf{then} x \mathbf{else} y) 5.7$ \rightarrow $(\lambda v.if 5 + v then 5 else v)7$
- \rightarrow if 5+7 then 5 else 7 \rightarrow if 12 then 5 else 7 and we're stuck

Type-safety: well-typed terms don't get stuck on non-values

Towards Polymorphism

Consider this program

$$(\lambda f. if (f True) then (f 5) else 7)(\lambda x. x)$$
 $\rightarrow \dots$
 $\rightarrow 5$

In a type derivation, which type do we give f?

$$\frac{f: bool \rightarrow bool \vdash \dots \qquad f: int \rightarrow int \vdash \dots}{\vdash (\lambda f. if (f \text{ True}) \text{ then } (f 5) \text{ else } 7)(\lambda x. x): int}$$

The problem

Semantically this program seems to be ok We cannot type it

Polymorphism

From the greek "poly" (many) "morphe" (form)

Polymorphic type system: one variable can have many types

The identity function $\lambda x.x$ has many types

```
\begin{array}{l} int \rightarrow int \\ bool \rightarrow bool \\ (int \rightarrow int) \rightarrow (int \rightarrow int) \\ (bool \rightarrow int \rightarrow bool) \rightarrow (bool \rightarrow int \rightarrow bool) \\ \dots \end{array}
```

But if we bind it to a variable, we must choose a single type

for any concrete type
$$au$$
, $\lambda x.x: au o au$
 $\lambda x.x: \forall lpha.lpha o lpha$

The Polymorphic Lambda Calculus λ_2 (aka *System F*)

Polymorphic types
$$b \in B \text{ (base types)}$$

$$\alpha \in V \text{ (type variables)}$$

$$\sigma ::= b \mid \alpha \mid \sigma \to \sigma \mid \forall \alpha.\sigma$$
Free type variables
$$\mathsf{TV}(b) = \emptyset$$

$$\mathsf{TV}(\alpha) = \{\alpha\}$$

$$\mathsf{TV}(\sigma \to \tau) = \mathsf{TV}(\sigma) \cup \mathsf{TV}(\tau)$$

$$\mathsf{TV}(\forall \alpha.\sigma) = \mathsf{TV}(\sigma) - \{\alpha\}$$

Free type variables in environments

$$\mathsf{TV}(\Gamma) = \bigcup_{x:\tau \in \Gamma} \mathsf{TV}(\tau)$$

λ_2 Derivation Rules

$$\frac{\Gamma \vdash M : \sigma \qquad \alpha \not\in \mathsf{TV}(\Gamma)}{\Gamma \vdash M : \forall \alpha. \sigma} (\forall \text{-Introduction})$$

$$\frac{\Gamma \vdash M : \forall \alpha. \sigma}{\Gamma \vdash M : \sigma[\alpha \mapsto \tau]} (\forall \text{-Elimination})$$

Does it solve our problem?

$$\frac{\Gamma_{\!f} \vdash \! f : \forall \alpha.\alpha \to \alpha}{\Gamma_{\!f} \vdash \! f : (\alpha \to \alpha)[\alpha \mapsto int]} \\ \vdots \\ \frac{\Gamma_{\!f} \vdash \! f : int \to int}{\Gamma_{\!f} \vdash \! f : int \to int} \quad \Gamma_{\!f} \vdash \! 5 : int} \\ \Gamma_{\!f} \vdash \! f \text{ True} : bool} \qquad \Gamma_{\!f} \vdash \! f : int}{\Gamma_{\!f} \vdash \! f : int} \qquad \Gamma_{\!f} \vdash \! 7 : int} \\ \frac{f : \forall \alpha.\alpha \to \alpha \vdash \text{if } (f \text{ True}) \text{ then } (f 5) \text{ else } 7 : int}}{\vdash \lambda f.\text{if } (f \text{ True}) \text{ then } (f 5) \text{ else } 7 : int}} \\ \vdash (\lambda f.\text{if } (f \text{ True}) \text{ then } (f 5) \text{ else } 7)(\lambda x.x) : int}$$

Decidability

Type inference for $\lambda 2$ is undecidable

Let-polymorphism, a weak form of parametric polymorphism

Quantifiers can occur only on the top-level of types

Like this $\forall \alpha.(bool \rightarrow (\alpha \rightarrow \alpha) \rightarrow int)$

But not $bool \rightarrow (\forall \alpha.\alpha \rightarrow \alpha) \rightarrow int$

Type inference is decidable

But less programs can be typed

Haskell supports let-polymorphism

SL Now With Let-Polymorphism

Syntax

```
\lambda x.e
              if e_c then e_t else e_e
           e_1 op e_2
        i | True | False
        | (e_1, e_2) |  fst |  snd | [] | e_1 : e_2 |  null |  head |  tail
op ::= + | \le | \&\& i ::= (0 | 1 | 2 | ... | 9)[i]
```

Typing SL Types

Type Schemes

$$\Sigma ::= \forall \vec{\alpha}. \sigma$$

Environments $\Gamma: Variables \rightarrow \Sigma$

 $\Gamma \vdash E : \sigma$

Type Derivation Rules for SL (constants)

$$\frac{b \in \{ \textbf{True}, \textbf{False} \}}{\Gamma \vdash b : bool} \, (\textit{Bool}) \qquad \qquad \frac{i \in \{ \dots, -1, 0, 1, \dots \}}{\Gamma \vdash i : int} \, (\textit{Int})$$

$$\frac{\odot : \sigma_1 \rightarrow \sigma_2 \rightarrow \tau \quad \Gamma \vdash e_1 : \sigma_1 \quad \Gamma \vdash e_2 : \sigma_2}{\Gamma \vdash e_1 \odot e_2 : \tau} \, (\textit{Bin op})$$

$$\frac{\Gamma \vdash e_c : bool \quad \Gamma \vdash e_t : \sigma \quad \Gamma \vdash e_e : \sigma}{\Gamma \vdash if e_c \text{ then } e_t \text{ else } e_e : \sigma} \, (\textit{If})$$

Type Derivation Rules (tuples)

$$\frac{\Gamma \vdash e_1 : \sigma_1 \qquad \Gamma \vdash e_2 : \sigma_2}{\Gamma \vdash (e_1, e_2) : (\sigma_1, \sigma_2)} (Tuple)$$

$$\frac{\Gamma \vdash \mathbf{fst} : (\sigma_1, \sigma_2) \to \sigma_1}{\Gamma \vdash \mathbf{snd} : (\sigma_1, \sigma_2) \to \sigma_2} (Snd)$$

Type Derivation Rules for SL (lists)

$$\frac{\Gamma \vdash e_1 : \sigma \qquad \Gamma \vdash e_2 : [\sigma]}{\Gamma \vdash (e_1 : e_2) : [\sigma]} \qquad (Cons)$$

$$\frac{\Gamma \vdash null : [\sigma] \rightarrow bool}{\Gamma \vdash head : [\sigma] \rightarrow \sigma} \qquad (Head)$$

$$\frac{\Gamma \vdash head : [\sigma] \rightarrow [\sigma]}{\Gamma \vdash tail : [\sigma] \rightarrow [\sigma]} \qquad (Tail)$$

Type Derivation Rules for SL (functions, let)

$$\frac{\Gamma \vdash e_1 : \sigma \to \tau \qquad \Gamma \vdash e_2 : \sigma}{\Gamma \vdash e_1 e_2 : \tau} (App)$$

$$\frac{\Gamma, x : \sigma \vdash e : \tau}{\Gamma \vdash \lambda x . e : \sigma \to \tau} (Abs)$$

$$\frac{\Gamma, x : \sigma \vdash e_1 : \sigma \qquad \Gamma, x : \forall \vec{\alpha} . \sigma \vdash e_2 : \tau \qquad \alpha_i \not\in \mathsf{TV}(\Gamma)}{\Gamma \vdash \mathsf{let} \ x = e_1 \ \mathsf{in} \ e_2 : \tau} (Let)$$

$$\frac{x : \forall \vec{\alpha} . \sigma \in \Gamma}{\Gamma \vdash x : \sigma [\alpha_i \mapsto \tau_i]} (Var)$$

Examples

This expression still cannot be typed

```
(\f.if (f True) then (f 5) else 7)(\xspacex.x)
```

But this one can be typed

```
let f = \x.x in if (f True) then (f 5) else 7
```

Try it in Haskell

Try to make the type derivation

Bibliography

Henk Barendregt, Erik Barendsen. "Introduction to Lambda Calculus". 2000 Benjamin Pierce. "Types and Programming Languages". MIT Press, 2002

Coming Up Next

Present your parser
Algorithm for polymorphic type inference