

Logika dla informatyków

Egzamin połówkowy 5 grudnia 2008

Za każde z poniższych zadań można otrzymać od -10 do 10 punktów. Osoba, która nie rozpoczeła rozwiazywać zadania, otrzymuje za to zadanie 0 punktów. Mniej niż -2 punkty otrzymuje osoba, która umieszcza w swoim rozwiązaniu odpowiedzi kompromitująco falszywe. Rozwiązania, w których nie ma odpowiedzi kompromitująco fałszywych, będą oceniane w skali od -2 do 10punktów.

Zadanie 1 Niech $\mathcal{F}(p_1,\ldots,p_k)$ oznacza zbiór formuł rachunku zdań zbudowanych ze zmiennych zdaniowych $\{p_1,\ldots,p_k\}$, spójników $\bot,\top,\neg,\lor,\land,\Rightarrow i\Leftrightarrow$ oraz nawiasów. Rozważmy dowolny nieskończony podzbiór $S \subseteq \mathcal{F}(p_1, \dots, p_k)$. Udowodnij, że w zbiorze S jest nieskończenie wiele wzajemnie równoważnych formuł.

Zadanie 2 Mówimy, że rodzina zbiorów $\{X_n\}_{n\in\mathbb{N}}$ jest zstępująca, jeśli $X_{n+1}\subseteq X_n$ dla wszystkich $n \in \mathbb{N}$. Dla każdej z poniższych inkluzji udowodnij, że jest ona prawdziwa dla wszystkich zstępujących rodzin zbiorów $\{A_n\}_{n\in\mathbb{N}}$ i $\{B_n\}_{n\in\mathbb{N}}$ lub wskaż takie zstępujące rodziny $\{A_n\}_{n\in\mathbb{N}}$ i $\{B_n\}_{n\in\mathbb{N}}$, dla których dana inkluzja nie zachodzi.

$$\bigcup_{n\in\mathbb{N}} (A_n \doteq B_n) \subseteq (\bigcup_{n\in\mathbb{N}} A_n) \doteq (\bigcup_{n\in\mathbb{N}} B_n)$$
 (1)

$$\bigcup_{n\in\mathbb{N}} (A_n \doteq B_n) \subseteq (\bigcup_{n\in\mathbb{N}} A_n) \doteq (\bigcup_{n\in\mathbb{N}} B_n)
\bigcup_{n\in\mathbb{N}} (A_n \doteq B_n) \supseteq (\bigcup_{n\in\mathbb{N}} A_n) \doteq (\bigcup_{n\in\mathbb{N}} B_n)$$
(2)

Zadanie 3 Niech $f:A\to B$ i $g:B\to A$ będą takimi funkcjami, że $gf=I_A,$ gdzie $I_A:A\to A$ jest funkcją identycznościową na zbiorze A.

(a) Udowodnij, że dla dowolnego zbioru $X \subseteq A$ zachodzą równości

$$f^{-1}(f(X)) = X \text{ oraz} \tag{1}$$

$$g(g^{-1}(X)) = X.$$
 (2)

(b) Czy dla dowolnego zbioru $Y\subseteq B$ i dla dowolnych funkcji f i g spełniających warunki zadania zachodzą równości

$$f(f^{-1}(Y)) = Y \text{ oraz} (3)$$

$$g^{-1}(g(Y)) = Y? (4)$$

Uzasadnij odpowiedzi.

Niech R_1 i R_2 będą takimi relacjami równoważności na A, że $R_1 \cap R_2 = I_A$ oraz $R_1R_2=A\times A$ (tutaj I_A jest relacją identyczności na zbiorze A). Dla $i\in\{1,2\}$ niech A/R_i będzie rodziną klas abstrakcji relacji R_i , tzn. $A/R_i = \{[a]_{R_i} \mid a \in A\}$. Udowodnij, że zbiór A jest równoliczny z produktem kartezjańskim $A/R_1 \times A/R_2$.