EE2302 Foundations of Information Engineering

Assignment 6 (Solution)

1.

87	37		
1	0	87	а
0	1	37	b
1	-2	13	c = a - 2b
-2	5	11	d = b - 2c = -2a + 5b
3	-7	2	e = c - d = 3a - 7b
-17	40	1	f = d - 5e = -17a + 40b

$$x = (3)(87)(-17) + (4)(37)(40) \pmod{37 \times 87} = 1483.$$

2.
$$\begin{aligned} M_1 &= 12 \times 13 = 156, \ \alpha_1 \equiv 156^{-1} \ (\text{mod } 7) = 4 \\ M_2 &= 7 \times 13 = 91, \ \alpha_2 \equiv 91^{-1} \ (\text{mod } 12) = 7 \\ M_3 &= 7 \times 12 = 84, \ \alpha_3 \equiv 84^{-1} \ (\text{mod } 13) = 11 \\ M &= 7 \times 12 \times 13 = 1092 \\ x &= 5(156)(4) + 2(91)(7) + 8(84)(11) \ (\text{mod } 1092) = 866 \end{aligned}$$

3.

(a)
$$c = m^e \mod N = 16^3 \mod 55$$

 $16^2 \equiv 36 \mod 55$
 $16^2 \times 16 \mod 55 = 36 \times 16 \mod 55 = 26 \mod 55$.

(b)
$$N = p \times q$$
 $55 = 5 \times 11$.
 $\phi(N) = (p-1)(q-1) = 4 \times 10 = 40$.
 $ed \equiv 1 \mod 40$
 $3d \equiv 1 \mod 40 \implies d = -13 = 27$.
 $m = c^d \mod n = 21^{27} \mod 55 = 21^{16} \times 21^8 \times 21^2 \times 21 \mod 55$
 $= 1 \times 1 \times 1 \times 21 \mod 55 = 21 \mod 55$

 $(21^2 \equiv 1 \mod 55, 21^4 \equiv 1 \mod 55, 21^8 \equiv 1 \mod 55, 21^{16} \equiv 1 \mod 55)$

- 4.
- a) a and m are co-primes, so that a^{-1} exists.
- b) $\phi(26) = 12$
- c) There are 12 possible values for a and 26 possible values for b. Therefore, the number of possible keys is $12 \times 26 = 312$.
- d) For a = 15, it can be shown that $a^{-1} \equiv 7 \mod 26$.

$$15x + 6 = 21 \pmod{26}$$

$$x = 7(21 - 6) \pmod{26}$$

 $= 105 \mod 26$

= 1