The 18th Pacific Rim International Conference on Artificial Intelligence

Span Labeling Approach for Vietnamese and Chinese Word Segmentation

Authors: Duc-Vu Nguyen, Linh-Bao Vo, Dang Van Thin Ngan Luu-Thuy Nguyen

Affiliations: University of Information Technology

Viet Nam National University Ho Chi Minh City

Outline			
1 Introduction			
2 Motivation			
3 The Proposed Framework			
4 Experiments			
5 Results and Analysis			
6 Conclusion			
7 Ending			

IntroductionWord segmentation: dividing a string of written language into its

1 Word segmentation: dividing a string of written language into its com-ponent words.

- Word segmentation: dividing a string of written language into its com-ponent words.
- The input of Vietnamese word segmentation (VWS) is the sequence of syllables delimited by space.

- **1** Word segmentation: dividing a string of written language into its com-ponent words.
- The input of Vietnamese word segmentation (VWS) is the sequence of syllables delimited by space.
- 3 The input of Chinese word segmentation (CWS) is the sequence of characters WITHOUT explicit delimiter.

- Word segmentation: dividing a string of written language into its com-ponent words.
- The input of Vietnamese word segmentation (VWS) is the sequence of syllables delimited by space.
- The input of Chinese word segmentation (CWS) is the sequence of characters WITHOUT explicit delimiter.
- 4 The use of a Vietnamese syllable and a Chinese character are similar.

- **1** Word segmentation: dividing a string of written language into its com-ponent words.
- The input of Vietnamese word segmentation (VWS) is the sequence of syllables delimited by space.
- The input of Chinese word segmentation (CWS) is the sequence of characters WITHOUT explicit delimiter.
- 4 The use of a Vietnamese syllable and a Chinese character are similar.
- **6** Vietnamese and Chinese have similar linguistic phenomena such as overlapping ambiguity

- Vietnamese example:
 - 1 Input: học sinh học sinh học
 - học_sinh: student
 - hoc: learn
 - sinh_hoc: biology
 - ② Output: [B]hoc_[E]sinh [S]hoc [B]sinh_[E]hoc (students learn biology) (correct)
 - [B]hoc_[E]sinh [B]hoc_[E]sinh [S]hoc (student student learn) (incorrect)

- 2 Chinese example:
 - ① 他 /从小/ 学/ 电脑/ 技术 (He learned computer techniques since childhood)
 - 从小/ 学: learn since childhood
 - ② 从/ 小学: from primary school
- Overlap ambiguity makes VWS and CWS challenging

Motivation 1 Most of VWS and CWS methods treat word segmentation as a token-based problem.

Motivation

- Most of VWS and CWS methods treat word segmentation as a token-based problem.
- 2 The intersection of VWS and CWS approaches leverage the context to model n-gram of token information.

Motivation

- Most of VWS and CWS methods treat word segmentation as a token-based problem.
- The intersection of VWS and CWS approaches leverage the context to model n-gram of token information.
- We get the inspiration of span representation in constituency parsing to propose our model.

Motivation

- Most of VWS and CWS methods treat word segmentation as a token-based problem.
- 2 The intersection of VWS and CWS approaches leverage the context to model n-gram of token information.
- We get the inspiration of span representation in constituency parsing to propose our model.
- 4 Its main idea is to model n-grams in the input sentence and score them.

The Proposed Framework for VWS

Word segmentation as span labeling task for Vietnamese and Chinese

- Input: a sequence of characters $\mathcal{X} = x_1 x_2 \dots x_n$ with the length of n.
- Output: a sequence of words $\mathcal{W} = w_1 w_2 \dots w_m$ with the length of m.
- Notations:
 - We use $x_i x_{i+1} \dots x_{i+k-1}$ to denote that the word w_j is constituted by k consecutive characters beginning at character x_i , where $1 \le k \le n$.
 - 2 We get the inspiration of span representation in constituency parsing 1 to use the span (i-1,i-1+k) representing the word constituted by k consecutive characters $x_{i}x_{i+1} \dots x_{i+k-1}$.

¹[1] Stern et al. "A Minimal Span-Based Neural Constituency Parser". 2017.

Word segmentation as span labeling task for Vietnamese and Chinese (continue)

 \bullet Formally, the problem of our $\operatorname{SPANSEG}$ for VWS and CWS can be formalized as:

$$\hat{\mathcal{Y}}_{\mathsf{novlp}} = \operatorname{SpanPostProcessing}(\hat{\mathcal{Y}})$$

 $SpanPostProcessing(\hat{\mathcal{Y}}) \ solely \ is \ an \ algorithm \ for \ producing \ the \ word \ segmentation \ boundary \ guaranteeing \ non-overlapping \ between \ every \ two \ spans.$

Word segmentation as span labeling task for Vietnamese and Chinese (continue)

• The $\hat{\mathcal{Y}}$ is the set of predicted spans as follows:

$$\hat{\mathcal{Y}} = \left\{ (\textit{I},\textit{r}) \text{ for } 0 \leq \textit{I} \leq \textit{n} - 1 \text{ and } \textit{I} < \textit{r} \leq \textit{n} \right.$$
 and $\operatorname{SCORER}(\mathcal{X},\textit{I},\textit{r}) > 0.5
ight\}$

where n is the length of the input sentence. The l and r denote left and right boundary indexes of the specific span. The $\operatorname{SCORER}(\mathcal{X}, l, r)$ is the scoring module for the span (l, r) of sentence \mathcal{X} . The output of $\operatorname{SCORER}(\mathcal{X}, l, r)$ has a value in the range of 0 to 1. We choose the sigmoid function as the activation function at the last layer of $\operatorname{SCORER}(\mathcal{X}, l, r)$ module.

Decoding Algorithm for Predicted Span

- \bullet Our algorithm named ${\rm SPAnPostProcessing}$ deals with overlapping ambiguity and missing spans from prediced spans.
 - Keeping the spans with the highest score and eliminate the remainder among overlapping spans.
 - 2 Adding the missing word boundary based on all predicted spans (i-1,i-1+k) with k=1 to single words to deal with the missing word boundary problem.

```
Algorithm 1 SPANPOSTPROCESSING
Require:
     The input sentence X with the length of n;
     The scoring module SCORER(·) for any span (l, r) in \mathcal{X}, where 0 \le l \le n-1 and l < r \le n;
     The set of predicted spans \hat{Y}, sorted in ascending order.
Ensure:
     The list of valid predicted spans \hat{S}, satisfying non-overlapping between every two spans.
1: \hat{S}_{novip} = [(0, 0)]
                                            > The list of predicted spans without overlapping ambiguity.
2: \hat{S} = \Pi
                                                                      > The final list of valid predicted spans.
3: for \hat{y} in \hat{V} do \triangleright The \hat{y}[0] is the left boundary and \hat{y}[1] is the right boundary of each span \hat{y}.
                                                                                  b Check for missing boundary.
         if \hat{S}_{novip}[-1][1] < \hat{y}[0] then
              \hat{S}_{\text{novlp}}.append ((\hat{S}_{\text{novlp}}[-1][1], \hat{y}[0]))
5:

    Add the missing span to S<sub>novlp</sub>

          end if
         if \hat{S}_{novip}[-1][0] \le \hat{y}[0] < \hat{S}_{novip}[-1][1] then
                                                                           > Check for overlapping ambiguity.
8:
              if SCORER(\mathcal{X}, \hat{S}_{novlp}[-1][0], \hat{S}_{novlp}[-1][1]) < SCORER(\mathcal{X}, \hat{y}[0], \hat{y}[1]) then
9:
                   \hat{S}_{novip}.pop() > Remove the span causing overlapping with the lower score than \hat{y}.
10:
                   \hat{S}_{\text{novlp.}}append((\hat{y}[0], \hat{y}[1]))

    Add the span û to Ŝ<sub>nordn</sub>.

11:
              end if
12:
          else
13:
              \hat{S}_{novlp}.append((\hat{y}[0], \hat{y}[1]))
                                                                                       \triangleright Add the span \hat{u} to \hat{S}_{reads}.
14:
          end if
15: end for
16: if \hat{S}_{novlp}[-1][1] < n then
                                                                                  b Check for missing boundary.
         S_{\text{novlp.}}append ((\ddot{S}_{\text{novlp}}[-1][1], n))
                                                                                \triangleright Add the missing span to \hat{S}_{novlp}
18: end if
19: for i, \hat{y} in enumerate(\hat{S}_{novlp}) do
                                                        \triangleright The \hat{y}[0] is the left boundary and \hat{y}[1] is the right
     boundary of each span \hat{y}, and i is the index of \hat{y} in list \hat{S}_{nowln}.
20:
          if 0 < i and \hat{S}_{novin}[i-1][1] < \hat{y}[0] then
                                                                                  b Check for missing boundary.
              missed\_boundaries = [\hat{S}_{novlp}[i-1][1]]
21:
              for bound in range (\hat{S}_{nonin}[i-1][1], \hat{y}[0]) do
23:
                   if SCORER(X, bound, bound + 1) > 0.5 then
                                                                                         > Check for single word.
24.
                        missed\ boundaries.append(bound + 1)
25.
                   end if
26.
              end for
27:
              missed\_boundaries.append(\hat{y}[0])
28:
              for j in range (len(missed\_boundaries) - 1) do
                   \hat{S}.append((missed boundaries[j], missed boundaries[j+1]))
                                                                                                            > Add the
     missing span to \hat{S}
30:
              end for
31:
         end if
32:
         \hat{S}.append(\hat{y}[0], \hat{y}[1])
                                                                          \triangleright Add the non-overlapping span to \hat{S}
33: end for
```

Span Scoring for Word Segmenation

• We have the left $\mathbf{r}_i^{\text{left}}$ and right $\mathbf{r}_i^{\text{right}}$ boundary representations of token x_i as following:

$$\mathbf{r}_{i}^{\text{left}} = \text{MLP}^{\text{left}}(\mathbf{f}_{i-1} \oplus \mathbf{b}_{i})$$

$$\mathbf{r}_{i}^{\text{right}} = \text{MLP}^{\text{right}}(\mathbf{f}_{i} \oplus \mathbf{b}_{i+1})$$
(3)

• Finally, inspired by², given the input sentence \mathcal{X} , the span scoring module $SCORER(\cdot)$ for span (I, r) in our SPANSEG model is computed by using a biaffine operation over the left boundary representation of token x_I and the right boundary representation of token x_r as following:

$$SCORER(\mathcal{X}, l, r) = sigmoid\left(\begin{bmatrix} \mathbf{r}_{l}^{left} \\ 1 \end{bmatrix}^{T} \mathbf{W} \mathbf{r}_{r}^{right} \right)$$
where $\mathbf{W} \in \mathbb{R}^{d \times d}$.

• To sum up, the Scorer (\mathcal{X}, l, r) gives us a score to predict whether a span (l, r) is a word.

²[2] Zhang et al. "Fast and Accurate Neural CRF Constituency Parsing". 2020.

Statistics of the Vietnamese treebank dataset for word segmentation

Table 1: We provide the number of sentences, characters, syllables, words, character types, syllable types, word types. We also compute the out-of-vocabulary (OOV) rate as the percentage of unseen words in the development and test set.

VTB						
Train	Dev	Test				
74,889	500	2,120				
6,779,116	55,476	307,932				
2,176,398	17,429	96,560				
1,722,271	13,165	66,346				
155	117	121				
17,840	1,785	2,025				
41,355	2,227	3,730				
-	2.2	1.6				
	74,889 6,779,116 2,176,398 1,722,271 155 17,840	Train Dev 74,889 500 6,779,116 55,476 2,176,398 17,429 1,722,271 13,165 155 117 17,840 1,785 41,355 2,227				

Statistics of five Chinese benchmark dataset for word segmentation

Table 2: We provide the number of sentences, characters, words, character types, word types. We also compute the out-of-vocabulary (OOV) rate as the percentage of unseen words in the test set.

	MS	R	PK	U	AS	5	City	U	СТВ		B6	
	Train	Test	Train	Test	Train	Test	Train	Test	Train	Dev	Test	
# sentences	86,918	3,985	19,054	1,944	708,953	14,429	53,019	1,492	23,420	2,079	2,79	
# characters	4,050,469	184,355	1,826,448	172,733	8,368,050	197,681	2,403,354	67,689	1,055,583	100,316	134,14	
# words	2,368,391	106,873	1,109,947	104,372	5,449,581	122,610	1,455,630	40,936	641,368	59,955	81,57	
# character types	5,140	2,838	4,675	2,918	5,948	3,578	4,806	2,642	4,243	2,648	2,91	
# word types	88,104	12,923	55,303	13,148	140,009	18,757	68,928	8,989	42,246	9,811	12,27	
OOV Rate	-	2.7	-	5.8	-	4.3	-	7.2	-	5.4	5	

Main Result on the VWS dataset

Table 3: Performance (F-score) comparison between SPANSEG (with different configurations) and previous state-of-the-art models on the test set of VTB dataset. The initial word boundary tags (TAG) were predicted by RDRsegmenter [3].

	VTB				
	Р	R	F	Roov	
vnTokenizer [4]	96.98	97.69	97.33	-	
JVnSegmenter-Maxent [5]	96.60	97.40	97.00	-	
JVnSegmenter-CRFs [5]	96.63	97.49	97.06	-	
DongDu [6]	96.35	97.46	96.90	-	
UETsegmenter [7]	97.51	98.23	97.87	-	
RDRsegmenter [3]	97.46	98.35	97.90	-	
UITsegmenter [8]	97.81	98.57	98.19	-	
BiLSTM-CRF	97.42	97.84	97.63	72.47	
SPANSEG	97.58	97.94	97.76	74.65	
BiLSTM-CRF (XLM-R)	97.69	97.99	97.84	72.66	
SPANSEG (XLM-R)	97.75	98.16	97.95	70.01	
BiLSTM-CRF (TAG)	97.91	98.28	98.10	69.16	
SPANSEG (TAG)	97.67	98.28	97.97	65.94	
BiLSTM-CRF (TAG+XLM-R)	97.94	98.44	98.19	68.87	
SPANSEG (TAG+XLM-R)	98.21	98.41	98.31	72.28	

Main Result on the CWS datasets

Table 4: Performance (F-score) comparison between SPANSEG (BERT and ZEN) and previous state-of-the-art models on the test set of five Chinese benchmark datasets. The symbol [★] denotes the methods learning from data annotated through different segmentation criteria, which means that the labeled training data are different from the rest.

	M	SR	Pł	(U	А	S	CityU		CTB6	
	F	Roov								
Chen et al. [9]	97.40	-	96.50	-	-	-	-	-	96.00	-
Xu and Sun [10]	96.30	-	96.10	-	-	-	-	-	95.80	-
Zhang et al. [11]	97.70	-	95.70	-	-	-	-	-	95.95	-
Chen et al. [12] [★]	96.04	71.60	94.32	72.64	94.75	75.34	95.55	81.40	-	-
Wang and Xu [13]	98.00	-	96.50	-	-	-	-	-	-	-
Zhou et al. [14]	97.80	-	96.00	-	-	-	-	-	96.20	-
Ma et al. [15]	98.10	80.00	96.10	78.80	96.20	70.70	97.20	87.50	96.70	85.40
Gong et al. [16]	97.78	64.20	96.15	69.88	95.22	77.33	96.22	73.58	-	-
Higashiyama et al. [17]	97.80	-	-	-	-	-	-	-	96.40	-
Qiu et al. [18] [★]	98.05	78.92	96.41	78.91	96.44	76.39	96.91	86.91	-	-
WMSeg (BERT-CRF) [19]	98.28	86.67	96.51	86.76	96.58	78.48	97.80	87.57	97.16	88.00
WMSeg (ZEN-CRF) [19]	98.40	84.87	96.53	85.36	96.62	79.64	97.93	90.15	97.25	88.46
MetaSeg [20] [★]	98.50	-	96.92	-	97.01	-	98.20	-	97.89	-
SPANSEG (BERT)	98.31	85.32	96.56	85.53	96.62	79.36	97.74	87.45	97.25	87.91
SpanSeg (ZEN)	98.35	85.66	96.35	83.66	96.52	78.43	97.96	90.11	97.17	87.76

Anlysis I: Practical complexity

Table 5: Statistics of model size (MB) and inference time (minute) of WMSEG [19] and our SPANSEG dealing with the training set of the AS dataset on Chinese. We use the same batch size as the work of Tian et al. [19]. The inference time is done by using Tesla P100-PCIE GPU with memory size of 16,280 MiB via Google Colaboratory.

MSeg			
IVIJE	SpanSeg	WMSeg	SpanSeg
704	397	1,150	872
28	15	46	32
			70. 30. 3,200

Anlysis II: Error statistics of the overlapping ambiguity problem involving three consecutive tokens on VWS dataset

Table 6: The symbols ✓ and ✗ denote predicting correctly and incorrectly, respectively.

BiLSTM-CRF	SpanSog	Configuration						
DIEST WE CIVI	Spanseg	Defalut	XLM-R	TAG	TAG+XLM-R			
Х	Х	15	5	19	7			
√	X	7	0	4	0			
Х	1	7	0	18	1			

Anlysis III: Error statistics of the overlapping ambiguity problem involving three consecutive tokens on five Chinese benchmark datasets

Table 7: The symbols ✓ and ✗ denote predicting correctly and incorrectly, respectively.

WMSeg [19]	SpanSeg	MSR	PKU	AS	CityU	CTB6
X	X	14	13	12	2	3
√	Х	2	2	2	1	2
Х	✓	2	1	5	0	0

This paper proposes a span labeling approach, namely SPANSEG, for VWS. Straightforwardly, our approach encodes the n-gram information by using span representations.

- This paper proposes a span labeling approach, namely SPANSEG, for VWS. Straightforwardly, our approach encodes the n-gram information by using span representations.
- 2 The experimental results on VWS show that our SPANSEG is better than BiLSTM-CRF when utilizing the predicted word boundary and contextual information with the state-of-the-art F-score of 98.31%.

- 1 This paper proposes a span labeling approach, namely SPANSEG, for VWS. Straightforwardly, our approach encodes the n-gram information by using span representations.
- The experimental results on VWS show that our SPANSEG is better than BiLSTM-CRF when utilizing the predicted word boundary and contextual information with the state-of-the-art F-score of 98.31%.

- f 1 This paper proposes a span labeling approach, namely SPANSEG, for VWS. Straightforwardly, our approach encodes the n-gram information by using span representations.
- 2 The experimental results on VWS show that our SPANSEG is better than BiLSTM-CRF when utilizing the predicted word boundary and contextual information with the state-of-the-art F-score of 98.31%.
- $\textbf{3} \ \, \text{On CWS, our SPANSEG achieves competitive or higher F-scores } \\ \text{through experimental results, fewer parameters, and faster inference } \\ \text{time than the previous state-of-the-art method, WMSEG.}$
- 4 For the future work, we will explore the architecture of BERT for span representations for word segmentation to reduce time complexity caused by biaffine operation.

Thank you for your time!

References I

- [1] Mitchell Stern, Jacob Andreas, and Dan Klein. "A Minimal Span-Based Neural Constituency Parser". In: *Proceedings of ACL*. 2017, pp. 818–827.
- [2] Yu Zhang, Houquan Zhou, and Zhenghua Li. "Fast and Accurate Neural CRF Constituency Parsing". In: *Proceedings of IJCAI*. 2020, pp. 4046–4053.
- [3] Dat Quoc Nguyen et al. "A Fast and Accurate Vietnamese Word Segmenter". In: *Proceedings of LREC*. 2018, pp. 2582–2587.
- [4] Hong-Phuong Le et al. "A Hybrid Approach to Word Segmentation of Vietnamese Texts". In: Language and Automata Theory and Applications. Springer Berlin Heidelberg, 2008, pp. 240–249.
- [5] Cam-Tu Nguyen et al. "Vietnamese Word Segmentation with CRFs and SVMs: An Investigation". In: *Proceedings of PACLIC*. Tsinghua University Press, 2006, pp. 215–222.

References II

- [6] T. A. Luu and K. Yamamoto. Úng dụng phương pháp Pointwise vào bài toán tách từ cho tiếng Việt. 2012. URL:

 http://www.vietlex.com/xu-li-ngon-ngu/117-Ung_dung_phuong_pha
 p_Pointwise_vao_bai_toan_tach_tu_cho_tieng_Viet.
- [7] T. P. Nguyen and A. C. Le. "A hybrid approach to Vietnamese word segmentation". In: *Proceeding of IEEE-RIVF*. 2016, pp. 114–119.
- [8] Duc-Vu Nguyen et al. "Vietnamese Word Segmentation with SVM: Ambiguity Reduction and Suffix Capture". In: *Proceedings of PACLING*. 2019, pp. 400–413.
- [9] Xinchi Chen et al. "Long Short-Term Memory Neural Networks for Chinese Word Segmentation". In: Proceedings of EMNLP. 2015, pp. 1197–1206.
- [10] Jingjing Xu and Xu Sun. "Dependency-based Gated Recursive Neural Network for Chinese Word Segmentation". In: *Proceedings of ACL*). 2016, pp. 567–572.

References III

- [11] Meishan Zhang, Yue Zhang, and Guohong Fu. "Transition-Based Neural Word Segmentation". In: Proceedings of ACL. 2016, pp. 421–431.
- [12] Xinchi Chen et al. "Adversarial Multi-Criteria Learning for Chinese Word Segmentation". In: *Proceedings of ACL*. 2017, pp. 1193–1203.
- [13] Chunqi Wang and Bo Xu. "Convolutional Neural Network with Word Embeddings for Chinese Word Segmentation". In: *Proceedings of IJCNLP*. 2017, pp. 163–172.
- [14] Hao Zhou et al. "Word-Context Character Embeddings for Chinese Word Segmentation". In: *Proceedings of EMNLP*. 2017, pp. 760–766.
- [15] Ji Ma, Kuzman Ganchev, and David Weiss. "State-of-the-art Chinese Word Segmentation with Bi-LSTMs". In: *Proceedings of EMNLP*. 2018, pp. 4902–4908.

References IV

- [16] Jingjing Gong et al. "Switch-LSTMs for Multi-Criteria Chinese Word Segmentation". In: *Proceedings of AAAI*. 2019, pp. 6457–6464.
- [17] Shohei Higashiyama et al. "Incorporating Word Attention into Character-Based Word Segmentation". In: *Proceedings of NAACL*. 2019, pp. 2699–2709.
- [18] Xipeng Qiu et al. "A Concise Model for Multi-Criteria Chinese Word Segmentation with Transformer Encoder". In: Findings of EMNLP. 2020, pp. 2887–2897.
- [19] Yuanhe Tian et al. "Improving Chinese Word Segmentation with Wordhood Memory Networks". In: *Proceedings of ACL*. 2020, pp. 8274–8285.
- [20] Zhen Ke et al. "Pre-training with Meta Learning for Chinese Word Segmentation". In: *Proceedings of NAACL*. 2021, pp. 5514–5523.