

Gazeta Matematică

Olimpiada Națională de Matematică Etapa Județeană și a Municipiului București, 14 martie 2015

SOLUŢII ŞI BAREME ORIENTATIVE - CLASA a V-a

Problema 1. Determinați toate numerele naturale de două cifre \overline{ab} , cu a < b, care sunt egale cu suma numerelor naturale cel putin egale cu a si cel mult egale cu b.

numerelor naturale cel puțin egale cu a și cel mult egale cu b .
Soluţie
Conform relației din enunț, avem $\overline{ab}=a+(a+1)++b$ și, cum $a+(a+1)++b\leq 1+2++9=45$, rezultă $a\leq 4$
Pentru $a=4$, rezultă $\overline{ab} \geq 45=1+2+\ldots+9$, deci ar trebui ca $a=1$ (și $b=9$), nu convine \ldots 1p
Dacă $a=3$ obținem $3+4+\ldots+(b-1)+b=\overline{3b}=30+b$. Scăzând b și adunând $1+2$ în ambii membri, rezultă $1+2+\ldots+(b-1)=32$, de unde $(b-1)\cdot b=64$, egalitate care nu se realizează pentru nicio valoare $b\in\{4,5,\ldots,9\}$
Dacă $a=2$, atunci $2+3+\ldots+(b-1)+b=\overline{2b}=20+b$. Scăzând b și adunând 1 în ambii membri, rezultă $1+2+\ldots+(b-1)=21$, de unde $(b-1)\cdot b=42$.
Cum $6 \cdot 7 = 42$, egalitatea are loc pentru $b = 7$, deci un număr care satisface condiția din enunț este $\overline{ab} = 27$
Pentru $a=1$ obținem $1+2++(b-1)+b=\overline{1b}=10+b,$ de unde $1+2++(b-1)=10$ sau $(b-1)\cdot b=20.$
Egalitatea precedentă se verifică pentru $b=5$, deci și $\overline{ab}=15$ satisface condiția din enunț $\mathbf{1p}$
Problema 2. La un concurs de matematică, la care participă 50 de elevi, se oferă spre rezolvare 3 probleme. Știind că fiecare elev a rezolvat cel puţin o problemă şi că numărul de soluţii corecte ale tuturor concurenţilor este 100, arătaţi că numărul celor care au rezolvat corect toate cele trei probleme este cel mult 25.
Soluție
Fie a, b, c numărul elevilor care au rezolvat corect exact una, două, respectiv trei probleme. Atunci $a+b+c=50$ și $a+2b+3c=100$
Problema 3. Mulțimea numerelor naturale nenule se împarte în submulțimi astfel:
$\{1,2\}$, $\{3,4,5\}$, $\{6,7,8,9\}$,

a) Primele 99 de submulțimi conțin 2+3+...+100=5049 de elemente 2p

a) Aflați cel mai mic element din cea de-a 100-a submulțime.b) Este 2015 cel mai mare element al unei astfel de submulțimi?

Soluție

b) 2015 este cel mai mare element al celei de-a n -a submulțimi dacă $2+3++(n+1)=2015$. 1 Adunând 1 în ambii membri rezultă $(n+1)(n+2)=2\cdot 2016=4032$. 2 Cum 63 · 64 = 4032, rezultă că 2015 este cel mai mare element al celei de-a 62-a submulțimi	L \ +1/17 E4 -	1	_ :																1) 201	_
Cum 63 · 64 = 4032, rezultă că 2015 este cel mai mare element al celei de-a 62-a submulțimi	*																	•	•	
Problema 4. a) Arătați că ultimele trei cifre ale numărului 1038^2 sunt egale cu 4. b) Arătați că există o infinitate de pătrate perfecte ale căror ultime trei cifre sunt egale cu 4. c) Demonstrați că nu există pătrate perfecte care să aibă ultimele patru cifre egale cu 4. Soluție a) $1038^2 = 1077444$ 1 b) Ridicând la pătrat un număr ale cărui ultime trei cifre sunt 038 se obține un număr care se termin cu trei cifre de 4, după cum se vede din înmulțirea de mai jos 1 $ \begin{array}{cccccccccccccccccccccccccccccccccc$																				
b) Arătați că există o infinitate de pătrate perfecte ale căror ultime trei cifre sunt egale cu 4. c) Demonstrați că nu există pătrate perfecte care să aibă ultimele patru cifre egale cu 4. Soluție a) $1038^2 = 1077444$	Cum $63 \cdot 64$	=403	52, re	ezult	a ca	20.	15 est	e cel	maı	ma	re e	leme	ent al	cele	ı de-	a 62-	·a sı	ıbmu.	lţımı	1p
a) $1038^2 = 1077444$	b) Arătați c	ă exis	tă o	infir	nitat	e de	pătr	ate p	erfe	cte a	ale c	čăro	r ultir	ne ti	rei ci	fre s	unt	egale		
a) $1038^2 = 1077444$	Solutie																			
b) Ridicând la pătrat un număr ale cărui ultime trei cifre sunt 038 se obține un număr care se termin cu trei cifre de 4, după cum se vede din înmulțirea de mai jos	=	07744	14																	1n
cu trei cifre de 4, după cum se vede din înmulțirea de mai jos																				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																				
$ \frac{\dots \dots \dots 0 3 8}{\dots \dots \dots 1 4} $ $ \frac{\dots \dots \dots 0 3 8}{\dots \dots \dots 1 4} $ $ \frac{\dots \dots \dots 1 4}{\dots \dots \dots 1 4} $ $ \frac{1}{\dots \dots \dots 1 4} $ Sunt o infinitate de numere care se termină în 038, deci sunt o infinitate de pătrate perfecte terminate cu trei cifre de 4		, -																		_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								•••	•••	3	0	$\frac{\circ}{4}$								
Sunt o infinitate de numere care se termină în 038, deci sunt o infinitate de pătrate perfecte terminat cu trei cifre de 4																				
cu trei cifre de 4										4	4	4	•							
plus, a^2 are forma $10000k + 4444$, $k \in \mathbb{N}$, deci $4b^2 = a^2 = 4 (2500k + 1111)$, de unde rezultă că ultimel două cifre ale lui b^2 sunt egale cu 1										,						_		_		
două cifre ale lui b^2 sunt egale cu 1 1 Ultima cifră a lui b este 1 sau 9 1 Analizând înmulţirile m 9 × m 9 × m 9 × m 9																				
Ultima cifră a lui b este 1 sau 9 Analizând înmulţirile n 1 × m 9 × n 1 / n 1 / m 9 m 1 m 9 m																				
Analizând înmulţirile				_																_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ultima cifră			te 1	sau	9									• • • •					1p
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1, 1	$_{ m rile}$																	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Analizând î	ımuıţı				1	×									m	9	×		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Analizând î	_			n	1	/ \													
	Analizând î				$n \\ n$	1	/\						• • •	• • •	• • • •	m	9			
	Analizând î				$n \over n$	1 1										$\frac{m}{p}$	9			
rezultă că u este ultima cifră a lui 2n jar u este ultima cifră a lui 2n deci sunt cifra pare.	Analizând î				$n \\ n \\ n \\ n$	1										$egin{array}{c} m \ p \ p \end{array}$	9			
102 and 0 a a core intima chia a full 216 , fail a core intima chia a full $2D$, uccl built chie date 1	Analizând î				$egin{array}{c} n \\ n \\ \hline n \\ n \\ u \end{array}$	1										$egin{array}{c} m \\ p \\ p \\ \hline v \end{array}$	9 1 1			
		e ultin	 	 	$\frac{n}{n}$ $\frac{n}{u}$ a lui	$\frac{1}{1}$ $\frac{1}{1}$, iar 1						$\frac{\dots}{\dots}$ lui $2p$	 	 i sur	$\frac{p}{v}$	1 re p	are .		_