Examples

Example

Input/Output Bit Streams

n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
IN	1	1	0	1	1	0	0	1	1	1	0	1	1	0	1	0	0	1	1	1	1	0	1	1	1
OUT	1	1	0	1	1	0	0	1	1	1	1	1	1	0	1	0	0	1	1	0	1	0	0	1	1

By definition:

BER
$$\approx \frac{\text{\# of errors}}{\text{\# of bit pairs}} = \frac{3}{25} = 12\%$$

Using our formula:

BER =
$$P_{e0}$$
 x [IN = 0] + P_{e1} x [IN = 1] = $\frac{1}{8}$ x $\frac{8}{25}$ + $\frac{2}{17}$ X $\frac{17}{25}$ = $\frac{3}{25}$

Intuition

- Since P[IN=0]+P[IN=1]=1,
 - The BER is a weighted average of P_{e0} and P_{e1}
 - The BER is between P_{e0} and P_{e1}
 - If IN=0 is more likely, the BER is closer to P_{e0}
 - If IN=1 is more likely, the BER is closer to P_{e1}
 - If IN=0 and 1 are equally likely, BER = $\frac{1}{2}(P_{e0} + P_{e1})$
 - If $P_{e0} = P_{e1}$, BER = $P_{e0} = P_{e1}$.

Example BER Calculation

Question: What is the BER for the Binary Channel above?

Solution: 0.2<BER<0.3

BER=
$$P_{e0} \cdot P[IN=0] + P_{e1} \cdot P[IN=1]$$

=0.2×0.6 + 0.3×0.4
=0.12+0.12
=0.24

What we need to know to predict BER

- In order to predict the BER, we need to know
 - P[IN=0] (we can find P[IN=1] = 1 P[IN=0])
 - P_{e0}
 - P_{e1}
- Usually, the transmitter determines P[IN=0]
 - e.g. P[IN=0] = P[IN=1] = 0.5
- P_{e0} and P_{e1} depend on
 - the transmit levels (r_{min}, r_{max})
 - the "size" of the noise

Summary

Noise is one of the critical and fundamental concepts in communications. Without noise, there would be no difficulty in communication! We started our analysis by considering only input/output bits using a simple binary channel model.

We use probability to get a formula for BER

$$BER=P_{e0} \cdot P[IN=0] + P_{e1} \cdot P[IN=1]$$

Usually, the transmitter controls P[IN=0] and P[IN=1]
e.g. P[IN=0] = P[IN=1] = 0.5