CS F364: Design & Analysis of Algorithm

Greedy Algorithm Knapsack Problem

Dr. Kamlesh Tiwari

Assistant Professor, Department of CSIS, BITS Pilani, Pilani Campus, Rajasthan-333031 INDIA

Jan 29, 2021

(Campus @ BITS-Pilani Jan-May 2021)

http://ktiwari.in/algo

Activity Selection Problem

Activity Selection Problem:

- Consider a set $S = \{1, 2, 3, ..., n\}$ of n activities that can happen one activity at a time. Activity i takes place during interval $[s_i, f_i)$.
- Activity i and j are compatible if $[s_i, f_i)$ and $[s_i, f_i)$ do not overlap
- Select maximum size set of mutually comparable activities.

Consider following set of activity

									9		
Si	1	3	0	5	3	5	6	8	8 12	2	12
f_i	4	5	6	7	9	9	10	11	12	14	16

- {3,9,11} is a compatible activity
- {1,4,8,11} is larger compatible activity. In fact it is the largest
- Another largest compatible activity is {2, 4, 9, 11}

Design & Analysis of Algo. (BITS F364) M W F (3-4PM) o

Activity Selection Problem

Design & Analysis of Algo. (BITS F364)

Greedy Algorithm

- Strategy to solve constrained optimization problem
- Make sequence of choices [with] What looks best at the moment
- Incremental thus Efficient
- A greedy algorithm makes a locally optimal choice in the hope that the choice will lead to a globally optimal solution
- Caution: does NOT always yields optimal solutions
- Determine the problem has optimal substructure

Key ingredients

- Greedy-choice property: we can assemble a globally optimal solution by making locally optimal (greedy) choices.
- Optimal substructure: if an optimal solution to the problem contains within it optimal solutions to subproblems.

Design & Analysis of Algo. (BITS F364) M W F (3-4PM) online@BITS-Pilani

Activity Selection Problem

Assume that activities are in increasing order of their finishing time. If not, then sort it in $O(n \lg n)$ time.

```
Algorithm 1: Greedy-Activity-Selection(s, f)
n = length(s)
2 A = { 1 }
3 j = 1
4 for i = 2 to n do
     if s_i \geq f_j then
          A = A \cup \{i\}
8 return A
```

Knapsack Problem

- A thief robbing a store finds n items.
- The i^{th} item is worth v_i dollars and weighs w_i pounds. The thief wants to take as valuable a load as possible, but he can carry at most W pounds in his knapsack (consider v_i , w_i , and W as integer).
- Which items should he take?

Fractional knapsack problem:

He can take fraction of an items as well

0-1 knapsack problem:

He can either take complete items or leave

- Fractional knapsack problem can be solved with greedy but
- 0-1 knapsack problem needs Dynamic Programming

$$V(i, w) = max(V(i-1, w), V(i-1, w-w[i]) + P[i])$$

Design & Analysis of Algo. (BITS F364) M W F (3-4PM) onli

0-1 knapsack problem needs DP

Let knapsack can have 50kg

3 items of wt 10, 20, 30 of price Rs 60, 100 and 120 respectively

Lecture-06(Jan 29, 2021) 7/8

Thank You!

Thank you very much for your attention! (Reference¹) Queries ?

1 [1] Book - Introduction to Algorithm, By THOMAS H. CORMEN, CHARLES E. LEISERSON, RONALD L. RIVEST, CLIFFORD STEIN

Design & Analysis of Algo. (BITS F364) M W F (3-4PM) online@BITS-Pilani Lecture-06(Jan 29, 202