

Växelström

ELGA17

Kursansvarig: Mahdi Mohajeri

Deltagande: Alex Slånmark, Sanchir Tumentsetseg

VT 2024

Uppgift 1

a)

Tabell 1

Uppmätt toppvärdet	14.072V
Beräknat toppvärdet	14.142V

Beräknat toppvärde: $10V * \sqrt{2} = 14.1421V$

b)

Tabell 2

Spänning	Över R1	Över parallellkopplingen av R2 och R3	Över spänningskälla V1	
Uppmätt	12.021V	2.007V	14.047V	

Kommentar: Spänningen verkar vara rimlig då marginalen är bara 19 mV. Lite felmarginal.

c)

Tabell 3

Ström	Genom R1	Genom R2	Genom R3
Uppmätt	10.7mA	3.57mA	7.14mA

Kommentar: Ström Lagen verkar vara korrekt då det bara är resistorer mellan.

Uppgift 2

Tabell 4

Spänning	Över R1	Över parallellkopplingen av C1 och R3	Över spänningskälla
Uppmätt	9.85V	772 mV	10V

Kommentar: Spänningen blir lite mer än vad spänningskällan ger ut eftersom att vi har en kondensator som ger ut lite spänning.

Uppgift 3

Tabell 5

Ström	Genom R1	Genom R2	Genom C2
Uppmätt	9.08mA	7.68mA	4.84mA

Kommentar: Samma som i uppgift 2 ger kondensatorn ut lite ström så därför får vi lite mer ström i C2 än vad vi skulle ha utan kondensatorn.

Uppgift 4

tabell 6:

	V1(rms)	α	ω	V(R-)	V(C-)	X(C)	Z	θ	I(RMS)	β	α – β
Uppmäta	16mA	25		6.4V	10.2V				16.0mA		
Beräknat			314 rad /s			637 Ω	752 Ω	-57.9 °	15.9mA	82.9°	-57.9°

$$\omega = F * 2\pi = 50 * 2\pi = 100\pi = 314 \, rad/s$$

$$X_c = \frac{1}{2\pi^* F^* C} = \frac{1}{314^* 5^* 10^{-6}} = 637\Omega$$

$$|Z| = 400 + 637 = \sqrt{400^2 + 637^2} = 752\Omega$$

 $\theta = arctan(\frac{637}{400}) = -57.9^{\circ}$ Vinkeln är negativ på grund av att i impedans triangeln går

kondensator sidan neråt vilket gör vilken negativ.

$$I_{RMS} = \frac{V_{RMS}}{|Z|} = \frac{12V < 25^{\circ}}{752\Omega < -57.9^{\circ}} = 15.9 mA < 82.9^{\circ}$$

 $\alpha - \beta = 25^{\circ} - 82.9^{\circ} = -57.9^{\circ}$

Kommentarer:

Spänningen ligger före i fas på grund av att α är större än β .

Uppgift 5

Tabell 7:

	V1	α	ω	V(R-)	V(L-)	X(L)	Z	θ	I(RMS)	β	α - β
Uppmäta	12V	25 [°]		11.2V	4.4V				27.9mA		
Beräknat			314			157 Ω	430 Ω	21.4°	27.9mA	3. 57°	21. 43°

$$\begin{split} \omega &= 50 * 2\pi = 100\pi = 314 \, rad/s \\ X_L &= \omega * L = 314 * 500 * 10^{-3} = 157\Omega < 90^{\circ} \\ |Z| &= 400 < 0^{\circ} + 157 < 90^{\circ} = \sqrt{400^2 + 157^2} = 429.7\Omega < 21.43^{\circ} \\ \alpha - \beta &= 25^{\circ} - 3.57^{\circ} = 21.43^{\circ} \\ I_{RMS} &= \frac{U_{RMS}}{|Z|} = \frac{12 < 25^{\circ}}{429.7\Omega < 21.43^{\circ}} = 27.9 \, mA < 3.57^{\circ} \end{split}$$

Kommentar: Spännings en ligger före i fas då $\alpha > \beta$.

Uppgift 6

tabell 8:

	Spänning	Ström	Effekt
Uppmätt	229.998V	229.998mA	52.900W
Beräknad	230V	230mA	52.9W

Ohms lag
$$U=R*I\Rightarrow i_{rms}=\frac{V_{rms}}{R}=\frac{230}{1000}=0.23A$$

Det avläses ur kretsen att $U_{rms}=230V$
 $Effekten P=U*I=230*0.23=52.9W$

Uppgift 7

FALL 1: tabell 9:

R	5Ω(10%)	25Ω(50%)	40Ω(80%)	50Ω(100%)
Ström	45.999A	9.2A	5.75A	4.6A
Effekt	10.580kW	2.116kW	1.322kW	1.058kW
Effektfaktorn	1	1	1	1

Kommentar: Effekten ökar medan strömmen minskar.

Effektfaktorn är konstant på grund av att det bara finns reaktiv effekt vilket gör att effektfaktorn inte ändras. PF = 1. Det finns ingen induktans eller konduktans. Strömmen minskar på grund av den ökande resistensen. Enligt ohms lag om resistansen ökar blir strömmen mindre. $\frac{U}{\Omega}=I$

FALL 2: tabell 10:

L	20 mH(10%)	100 mH(50%)	160 mH(80%)	200mH(100%)
Ström	4.564A	3.891A	3.239A	2.859
Effekt	1.041kW	757.156W	524.495W	408.598W
Effektfaktorn	0.99215	0.84598	0.70412	0.62148

Kommentar: Högre induktans leder till mer reaktiv effekt. Detta resulterar i en större vinkel mellan den faktiska effekten och den totala effekten, vilket sänker effektfaktorn. Högre induktans minskar också den aktiva effekten eftersom den reaktiva effekten ökar. Detta leder till minskad ström eftersom den induktiva reaktansen ökar med ökad induktans.

tabell 11:

L	100 mH(50%)	Beräknat
Ström	3.891A	3.9A
Effekt	757.156W	764.72W
Effektfaktorn	0.84598	0.86673

Beräkningar:

$$\begin{split} X_L &= 2\pi * f * L = 2\pi * 50 * 100 * 10^{-3} = 31.42\Omega \\ R &= 50\Omega \\ Z &= \sqrt{R^2 + (X_L)^2} = 59.05 \\ I_{RMS} &= \frac{V_{RMS}}{Z} = 3.895A \\ Arccos(\frac{R}{Z}) &= \theta = 32.14^{\circ} \\ cos(\theta) &= Effektfaktorn = 0.84598 \\ Effekt &= P = V_{rms} * I_{rms} * cos(\theta) = 764.72W \end{split}$$

tabell 12:

С	2. 5μ <i>F</i> (10%)	12. 5μ <i>F</i> (50%)	20μ <i>F</i> (80%)	25μ <i>F</i> (100%)
Ström	2.719A	2.221A	1.944A	1.827A
Effekt	408.598W	408.598W	408.598W	408.598W
Effektfaktorn	0.65337	0.79976	0.91376	0.97226

Kommentar: Strömmen minskar, när kapacitansen ändras då ökar effektfaktorn men effekten är konstant.