

Lecture 3 **Optimization**

Recap: How to Learn in a Neural Network

Observation:

A neural network is a function of both its inputs and parameters.

Recap: How to Learn in a Neural Network

Define an error function

$$E(\theta) = \sum_{n} (f(\mathbf{x}_n; \theta) - t_n)^2)$$

and minimize by gradient descend

$$\theta \leftarrow \theta - \gamma \cdot \nabla_{\theta} E(\theta)$$

Outline

- Characterizing the error function
 - Local minima and plateaus
 - Local curvature and condition number
- Improving optimization
 - Initialization
 - Choice of non-linearities
 - Momentum
- Fast Implementations

Characterizing the Error Function: One Layer

$$E = \frac{1}{N} \sum_{n} \|y_n - t_n\|^2 + \lambda \|\mathbf{v}\|^2$$
 (1)

$$= \frac{1}{N} \sum (\mathbf{x}_n^\top \mathbf{v} - t_n)^\top (\mathbf{x}_n^\top \mathbf{v} - t_n) + \lambda ||\mathbf{v}||^2$$
 (2)

$$= \mathbf{v}^{\top} \quad \left[\frac{1}{N} \sum_{n} \mathbf{x}_{n} \mathbf{x}_{n}^{\top} + \lambda I \right] \quad \mathbf{v} + \text{linear} + \text{constant}$$
positive semi-definite (3)

Characterizing the Error Function: Two Layers

$$E = \frac{1}{N} \sum_{n} \|\mathbf{v}^{\top} W \mathbf{x} - t_{n}\|^{2} + \lambda (\|\mathbf{v}\|^{2} + \|W\|^{2})$$
 (4)

Example: N = 1, $x_1 = 1$, $t_1 = 1$, $\lambda = 0.1$

Characterizing the Error Function: Two Layers

$$E = \frac{1}{N} \sum_{n} \|\mathbf{v}^{\top} \tanh(W\mathbf{x}) - t_n\|^2 + \lambda(\|\mathbf{v}\|^2 + \|W\|^2)$$
 (5)

Example: N = 1, $x_1 = 1$, $t_1 = 1$, $\lambda = 0.1$

Initializing the Neural Network

Even for the simplest two-layer neural network, the error function is already non-convex. Therefore, initialization of the neural network is important.

Recommendation for neural networks with tanh non-linearities: Scale parameters such that neuron outputs have variance ≈ 1 initially (LeCun'98/12 "Efficient Backprop")

$$\theta \sim \mathcal{N}(0, \sigma^2)$$
 $\sigma^2 = \frac{1}{\#_{\text{input neurons}}}$ (6)

This initialization avoids saddle nodes and plateaus and also works well for ReLU non-linearities.

Initializing the Neural Network

Technique to reach good optima of the error function: layer-wise unsupervised pre-training (Hinton'06, Bengio'06, Vincent'08).

Example: Learning first-layer parameters on MNIST handwritten digits:

initialize with unsupervised pretraining

training on supervised task

Is Convexity Sufficient?

Answer: No. We must also verify that the function is well-conditioned.

Examples:

Well-conditioned functions are easier to optimize.

Quantifying "well-conditioned"

The error function of a neural network can be approximated locally by a quadratic function.

$$E(\theta) \approx E(\theta_0) + \underbrace{\frac{\partial E}{\partial \theta}\big|_{\theta_0}}_{\theta_0} \cdot (\theta - \theta_0) + \frac{1}{2}(\theta - \theta_0)^{\top} \underbrace{\frac{\partial^2 E}{\partial \theta \partial \theta^{\top}}\big|_{\theta_0}}_{\theta_0} \cdot (\theta - \theta_0)$$
 (7)

Gradient
g contains slope
information

Hessian

Contains curvature information

Idea: Look at the disbalance of curvature between different directions in the input space, by computing a ratio of eigenvalues.

$$\lambda_1, \lambda_2, ..., \lambda_d = \operatorname{eigval}(H)$$

$$_{\text{number}}^{\text{condition}} = \frac{\lambda_1}{\lambda_d}$$

Quantifying "well-conditioned"

The lower the condition number, the better.

Computing the Hessian in Practice?

$$E(\theta) = E(\theta_0) + \underbrace{\frac{\partial E}{\partial \theta}\big|_{\theta_0}}_{\theta_0} \cdot (\theta - \theta_0) + \frac{1}{2}(\theta - \theta_0)^{\top} \underbrace{\frac{\partial^2 E}{\partial \theta \partial \theta^{\top}}\big|_{\theta_0}}_{\theta_0} \cdot (\theta - \theta_0)$$
(8)

Gradient

can be computed with back-prop

Hessian

hard to compute and very large for fully connected networks

Example:

For most practical tasks, we don't need to evaluate the Hessian and the condition number. We only need to apply a set of recommendations and tricks that keep the condition number low.

Improving Conditioning of the Error Function

Example: The linear model

$$y = \mathbf{x}^{\top} \mathbf{v}$$

$$E = \mathbf{v}^{\top} \left[\frac{1}{N} \sum_{n} \mathbf{x}_{n} \mathbf{x}_{n}^{\top} + \lambda I \right] \mathbf{v} + \text{linear} + \text{constant}$$
 (9)

H Hessian of the error function

Hessian (and condition number) are influenced by the mean and covariance of the data. The closer the mean is to zero, and the closer the covariance is to the identity, the lower the condition number.

Data Normalization to Improve Conditioning

Data pre-processing before training:

(image from LeCun'98/12)

Approximation of the Hessian

General formula for the Hessian of a neural network (size: | heta| imes | heta|)

$$H = \frac{\partial^2 E}{\partial \theta^2} = \frac{\partial F}{\partial \theta}^{\top} \frac{\partial^2 E}{\partial F^2} \frac{\partial F}{\partial \theta} + \frac{\partial E}{\partial F} \frac{\partial^2 F}{\partial \theta^2}$$

Hessian between weights of a single neuron (mean square error case):

$$[H_k]_{jj'} = \frac{\partial^2 E}{\partial w_{jk} w_{j'k}} = \mathbb{E}\left[\underbrace{a_j a_{j'} \delta_k^2}\right] + \mathbb{E}\left[\underbrace{a_j \cdot \frac{\partial \delta_k}{\partial w_{j'k}} \cdot (y - t)}_{\text{complicated}}\right]$$
similar to complicated the simple linear model

Improving Conditioning of Higher-Layers

To improve conditioning, not only the input data should be normalized, but also the representations built from this data at each layer. This can be done by carefully choosing the activation function.

hyperbolic tangent

activations approx. centered at $0 \rightarrow$ low condition number

Limitation of tanh

The tanh non-linearity works well initially, but after some training steps, it might no longer work as expected as the input distribution will drift to negative or positive values.

Remark: If the input of tanh is centered but skewed, the output of tanh will not be centered. This happens a lot in practice, e.g. when the problem representation needs to be sparse.

Comparing Non-Linearities

Further Improving the Hessian

Batch Normalization [loffe'15]

Advantage: Decorrelates gradients between different layers. \to Improve cross-layer parts of the Hessian.

Observation: Useful to train very deep networks efficiently.

(Stochastic) Gradient Descent

Objective to Minimize:

$$E(\theta) = \frac{1}{N} \sum_{n=1}^{N} E^{(n)}(\theta)$$

Batch GD:

while True:

$$\theta \leftarrow \theta - \gamma \frac{\partial}{\partial \theta} \frac{1}{N} \sum_{n=1}^{N} E^{(n)}$$

$$O(N)$$

Stochastic GD (SGD):

while True:

$$n \leftarrow \mathsf{random}(1, N)$$

$$\theta \leftarrow \theta - \gamma \frac{\partial E^{(n)}}{\partial \theta}$$

$$O(1)$$

GD vs. SGD

Batch GD:

while True:

$$\theta \leftarrow \theta - \gamma \frac{\partial}{\partial \theta} \frac{1}{N} \sum_{n=1}^{N} E^{(n)}$$

Stochastic GD (SGD):

while True:

$$n \leftarrow \text{random}(1, N)$$

$$\theta \leftarrow \theta - \gamma \frac{\partial E^{(n)}}{\partial \theta}$$

use a decreasing schedule

$$\gamma^{(1)}, \gamma^{(2)}, ..., \gamma^{(T)}$$

Conditions for SGD convergence:

$$\sum_{t=1}^{\infty} \gamma^{(t)} \to \infty \qquad \lim_{t \to \infty} = 0$$

Which SGD learning schedule to choose?

	$\gamma^{(t)}=1$	$\gamma^{(t)} = t^{(-1)}$	$\gamma^{(t)} = \mathrm{e}^{-t}$
$\sum_{t=1}^{\infty} \gamma^{(t)} \to \infty$	✓	✓	X
$\lim_{t\to\infty}=0$	X	✓	√

GD vs. SGD Convergence

Insight: Phase 2 is not relevant, because the model already starts overfitting before reaching it. \rightarrow SGD is the method of choice for most practical purposes.

Momentum

Idea: Choose the update direction as a weighted average of previous updates.

Image from Bishop'95

Accelerates convergence along direction of low curvature.

Momentum can help to overcome a poorly conditioned neural network.

Momentum

Update the direction of descent as:

and update the neural network parameters following this direction:

$$\theta^{(t)} = \theta^{(t-1)} + \Delta^{(t)}$$

The Adam Algorithm

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details, and for a slightly more efficient (but less clear) order of computation. g_t^2 indicates the elementwise square $g_t \odot g_t$. Good default settings for the tested machine learning problems are $\alpha=0.001$, $\beta_1=0.9$, $\beta_2=0.999$ and $\epsilon=10^{-8}$. All operations on vectors are element-wise. With β_1^t and β_2^t we denote β_1 and β_2 to the power t.

```
Require: \alpha: Stepsize
Require: \beta_1, \beta_2 \in [0,1): Exponential decay rates for the moment estimates
Require: f(\theta): Stochastic objective function with parameters \theta
Require: \theta_0: Initial parameter vector
   m_0 \leftarrow 0 (Initialize 1st moment vector)
   v_0 \leftarrow 0 (Initialize 2<sup>nd</sup> moment vector)
   t \leftarrow 0 (Initialize timestep)
   while \theta_t not converged do
       t \leftarrow t + 1
       g_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1}) (Get gradients w.r.t. stochastic objective at timestep t)
       m_t \leftarrow \beta_1 \cdot m_{t-1} + (1-\beta_1) \cdot g_t (Update biased first moment estimate) v_t \leftarrow \beta_2 \cdot v_{t-1} + (1-\beta_2) \cdot g_t^2 (Update biased second raw moment estimate)
       \widehat{m}_t \leftarrow m_t/(1-\beta_1^t) (Compute bias-corrected first moment estimate)
       \hat{v}_t \leftarrow v_t/(1-\beta_2^t) (Compute bias-corrected second raw moment estimate)
       \theta_t \leftarrow \theta_{t-1} - \alpha \cdot \widehat{m}_t / (\sqrt{\widehat{v}_t} + \epsilon) (Update parameters)
   end while
   return \theta_t (Resulting parameters)
```

from Kingma'15

Neural Network Training Time

Part 2: Scaling Deep Nets to Big Data

Step 1: Systemize Computations

Per-neuron forward computations

$$\forall_j: a_j = gig(\sum_i a_i w_{ij} + b_jig)$$

Whole-layer computation

$$a^{(l+1)} = g\left(W^{(l,l+1)} \cdot a^{(l)} + b^{(l+1)}\right)$$
matrix-vector
products (e.g.
numpy.dot)

element-wise application of nonlinearity

Step 2: Mini-Batches

Idea: Take advantage of fast matrix-matrix multiplications by feeding several examples at a time to the neural network.

Example for layer with weight matrix: $W^{(l)} \in \mathbb{R}^{d \times d}$

Pure SGD (propagate 1 data point)

$$\mathbf{a}^{(l)}, \mathbf{a}^{(l+1)} \in \mathbb{R}^d \quad \mathbf{a}^{(l+1)} = g(W^{(l)}\mathbf{a}^{(l)} + \mathbf{b}^l)$$

$$O(d^2)$$
 computations

Mini-batch SGD (propagate *m* data points)

$$A^{(l)}, A^{(l+1)} \in \mathbb{R}^{d \times m}$$
 $A^{(l+1)} = g(W^{(l)}A^{(l)} + b^{l})$ $m \approx d \Rightarrow \boxed{O(d^{2.4})} < O(md^{2})$ computations

Step 2: How to Choose Mini-Batch Size?

Advantages:

(1) Largest speed up in terms of matrix multiplications

mpprox d

Disadvantages:

- (1) Multiplication might not fit in memory
- (2) If gradients are correlated, same direction as pure SGD
- (3) Layers have different size

Step 2: How to Choose Mini-Batch Size?

	pure SGD	medium mini-batch	largest batch $(M = N) = GD$		
avoid redundant gradient computations	1	1	X		
speed-up from matrix-matrix multiplications	X	√	✓		

Step 3: Prune Irrelevant Computations

Example: Prune long-range interactions in images or text, or other types of sequential data.

$$\mathbf{a} = \underbrace{\mathbf{W}^{\top}\mathbf{x}}_{} = \underbrace{\mathbf{W}_{A}^{\top}\mathbf{x}_{A} + \mathbf{W}_{B}^{\top}\mathbf{x}_{B}}_{}$$

$$8 \times 4 = 32 \qquad 2 \times (2 \times 4) = 16$$
computations computations

Step 3: Avoid Computational Bottlenecks

- Lower layers detect simple features at exact locations.
- Higher layers detect complex features at approximate locations.
- Layers progressively replace spatial information with semantic information
 keep dimensionality and number of connections low at each layer.

Step 3: GoogleNet Example

type	patch size/ stride	output size	output filters	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	#5×5	pool proj	params	ops
convolution	7×7/2	112×112	64	1							2.7K	34M
max pool	3×3/2	56×56	64	0								
convolution	3×3/1	56×56	192	2		64	192				112K	360M
max pool	3×3/2	28×28	192	0								
inception (3a)		28×28	256	2	64	96	128	16	32	32	159K	128M
inception (3b)		28×28	480	2	128	128	192	32	96	64	380K	304M
max pool	3×3/2	14×14	480	0								
inception (4a)		14×14	512	2	192	96	208	16	48	64	364K	73M
inception (4b)		14×14	512	2	160	112	224	24	64	64	437K	88M
inception (4c)		14×14	512	2	128	128	256	24	64	64	463K	100M
inception (4d)		14×14	528	2	112	144	288	32	64	64	580K	119M
inception (4e)		14×14	832	2	256	160	320	32	128	128	840K	170M
max pool	3×3/2	7×7	832	0								
inception (5a)		7×7	832	2	256	160	320	32	128	128	1072K	54M
inception (5b)		7×7	1024	2	384	192	384	48	128	128	1388K	71M
avg pool	7×7/1	1×1	1024	0								
dropout (40%)		1×1	1024	0								
linear		1×1	1000	1							1000K	1M
softmax		1×1	1000	0								

Szegedy '14

 ${\sf GoogLeNet}\ incarnation\ of\ the\ Inception\ architecture$

Step 3: SchNet Example

SchNet: neural network that predicts molecular properties, and where each layer models an exchange of local information in the molecular graph [Schütt'17].

SchNet handles arbitrary large molecules by modeling local atomic interaction in a small neighborheood, thereby keeping the dimensionality low.

Step 4: Map Neural Network to Hardware

In order for the training procedure to match the hardware specifications (e.g. CPU cache, GPU block size) optimally, neural network computations (e.g. matrix multiplications) must be decomposed into blocks of appropriate size.

These hardware-specific optimizations are already built in most fast neural network libraries (e.g. PyTorch, Tensorflow, cuDNN, ...).

Step 5: Distributed Training

Example: Google's DistBelief Architecture [Dean'12]

Each model replica trains on its own data, and synchronizes the model parameters it has learned with other replica via a dedicated parameter server.

Step 5: Distributed Training

Combining data-parallelism and model-parallelism

see also Krizhevsky'14: One weird trick for parallelizing convolutional neural networks

Summary

- Optimization of neural networks is harder than linear models, because of (1) non-convexity and (2) conditioning issues.
- Therefore, we must carefully choose the initialization, the structure of the model (e.g. non-linearities), and if necessary add momentum to gradient descent.
- Neural networks principal goal is to enable the transformation of large datasets into complex highly predictive models.
- To achieve this, it is important to make sure they can be trained as quickly as possible (e.g., mini-batches, layered structure, avoiding bottlenecks, matching the hardware, distributed architectures).

