Package 'LDJump'

July 13, 2017

July 13, 2017
Type Package
Title Estimating Variable Recombination Rates from Population Genetic Data
Version 0.1.1
Depends R (>= 2.10), adegenet (>= 2.0.1), ape, genetics (>= 1.3.8.1), Biostrings (>= 2.38.4), stepR, seqinr (>= 3.1-3), quantreg, vcfR (>= 1.5.0)
Author Philipp Hermann
Maintainer Philipp Hermann <philipp.hermann@jku.at></philipp.hermann@jku.at>
Description This package estimates variable recombination rates from population genetic data. It is a unix based program (with a necessary installation of LDhat), able to estimate the recombination map of sequences in fasta and vcf format. Sequences are divided in short segments of user defined length. The recombination rate is estimated for every segment with a regression model. This set of estimates is fed in a segmentation algorithm (SMUCE) to estimate the breakpoints of the recombination landscape.
License GPL-2
Encoding UTF-8
LazyData TRUE
RoxygenNote 6.0.1
<pre>BugReports https://github.com/PhHermann/LDJump/</pre>
SystemRequirements Unix Operating System, LDhat (Version 2.2)
NeedsCompilation no
R topics documented:
fgt_rrate_dpr 2 get_smuce 3 LDJump 4 list.quantile.regs 6 mod.full 7 summary_statistics 7 vcfR_to_fasta 9
Index 10

2 fgt_rrate_dpr

fgt_rrate_dpr

Four Gametes Test, R^2 and LD' Calculation

Description

This helper function calculates three summary statistics of the regression model. Here, the four gametes test, R^2, and LD' are calculated for each pair of sites and returned to its calling function (summary_statistics)

Usage

```
fgt_rrate_dpr(x, y, data1, data2)
```

Arguments

Х	Site 1
У	Site 2
data1	Data set to calculate the first two summary statistics
data2	Data set to calculate the four gametes test

Value

A vector is returned containing three values for:

fgt	An indicator value whether the four gametes test indicates a recombination event
R^2	for the pair of sites x and y using diseq, genotype
LD'	for the pair of sites x and y using diseq, genotype

Author(s)

```
Philipp Hermann <philipp.hermann@jku.at>
```

References

Gregory Warnes, with contributions from Gregor Gorjanc, Friedrich Leisch and Michael Man. (2013). genetics: Population Genetics. R package version 1.3.8.1.

See Also

```
LDJump, vcfR_to_fasta, summary_statistics, get_smuce, diseq, genotype
```

```
##### Do not run these examples
#####
##### In summary_statistics.R the function is called as follows
#####
##### helper = mapply(fgt_rrate_dpr, x = indices[,1], y = indices[,2], #####
#####
MoreArgs = list(data1 = g2dftemp, data2 = samp))
#####
```

get_smuce 3

get_smuce	Segmentation Algorithm to Estimate Breakpoints in the Recombination
	Мар

Description

First, the recombination rates per segment are computed based on the regression model (generalized additive models) as well as the bias correction. Consequently, we apply SMUCE (simultaneous multiscale change-point estimator) of Frick (2014) and Futschik et al. (2014) to estimate locations and breakpoints in the recombination map. Under a specific type-I error probability alpha the number of distinct segments with respect to the recombination rate is not overestimated.

Usage

```
get_smuce(help, segs, alpha, 11, quant = 0.35, rescale = F, constant)
```

Arguments

help	a matrix containing a set of summary statistics is calculated in the function summary_statistics. These values are used in the regression model to calculate the (constant) recombination rates.
segs	A (non-negative) integer which reflects the number of segments considered. It is calculated in the program based on the user-defined segLength.
alpha	A value from the interval (0,1) for the type-I error probability used in the segmentation algorithm. We recommend to use 0.05.
11	A (non-negative) integer which reflects the total sequence length of the sequences under study.
quant	A value between 0.1 and 0.5 with 0.05 distances in between which reflects the quantile used in the quantile regression. We recommend to use the 0.35 quantile.
rescale	an optional logical value: if \mathtt{TRUE} , it rescales the sequence length of the output of SMUCE to a range from 0 to 1.
constant	an optional locial value: by defaulf FALSE estimating variable recombination rates. If TRUE, the constant recombination rate for the full sequence is estimated.

Value

Author(s)

Philipp Hermann <philipp.hermann@jku.at>

References

Frick, K., Munk, A., and Sieling, H. (2014). Multiscale change-point inference. Journal of the Royal Statistical Society: Series B, 76(3), 495–580.

Futschik, A., Hotz, T., Munk, A., and Sieling, H. (2014). Multiscale DNA partitioning: Statistical evidence for segments. Bioinformatics, 30(16), 2255–2262.

4 LDJump

See Also

```
LDJump, vcfR_to_fasta, fgt_rrate_dpr, summary_statistics, smuceR, rq, gam
```

Examples

```
##### Do not run these examples #####
##### In LDJump.R the function is called as follows #####
##### get_smuce(help, segs, alpha,ll,list.quantile.regs) #####
```

LDJump

Estimate Variable Recomination Rates from Population Genetic Data

Description

This function estimates variable recombination rates from population genetic data. Therefore, a segmentation algorithm with specific segment lengths (seglength) and under a type-I error probability (alpha, α) is applied. The returned object can be plotted with the plot-function of the package stepR.

Usage

Arguments

seqName	A character string containing the path and the name of the sequence file in fasta of vcf format.
alpha	A value from the interval (0,1) for the type-I error probability α used in the segmentation algorithm. We recommend to use 0.05.
segLength	A integer value for the length of the segments, provided by the user. The devault value of 1000 is our recommended value (1kb). The number of resulting segments, based on the sequence length is calculated within the funtion.
pathLDhat	A character string containing the path to LDhat. This path and the installation of LDhat is necessary for the computation of the package.
format	A character string which can be either fasta or vcf. If fasta, the package will proceed with the computation of the recombination map. If vcf, the package will convert the data in vcf format to fasta format with the function vcfR_to_fasta and then proceed as in case fasta.
refName	An (optional) path to the reference sequence for the region of interest downloaded from e.g. http://phase3browser.1000genomes.org/index.html. Only to be used in case that format == "vcf".
start	An (optional) integer value which reflects the starting position of the sequences in bp. Only to be used in case that format == "vcf".
thth	A numeric value for θ used in the lookup tables of LDhat.
constant	an optional locial value: by defaulf FALSE estimating variable recombination rates. If TRUE, the constant recombination rate for the full sequence is estimated.

LDJump 5

Value

The following list is returned in the case of estimating variable recombination rates (constant == FALSE).

seq.full.cor The final estimate of the recombination map. Depiction with plot-function of stepR package. The (constant) estimates of the recombination rate per segment. pr.full.cor help A helper matrix containing the summary statistics per segment used in the regression model. alpha The type-I error probability α . The number of individuals (more precisely sequences) for which the recombinn nation map was estimated. 11 Total sequence length The number of segments by which the sequence is divided. Resulting form the segs

For constant recombination rate estimation across the whole sequences (constant == TRUE), we provide the same list except for seq.full.cor.

user-defined segment length (segLength).

Note

This function only works with unix and having LDhat (Auton and McVean (2007)) installed. Please properly check all paths to LDhat as well as the sequence files. The required lookup tables used by LDhat should be located in the path "pathToLDhat/LDhat-master/lk_files". Lookup tables are contained in LDhat, but we also provide several lookup tables here.

Author(s)

Philipp Hermann <philipp.hermann@jku.at>

References

Auton, A. and McVean, G. (2007). Recombination rate estimation in the presence of hotspots. Genome Research, 17(8), 1219–1227.

Frick, K., Munk, A., and Sieling, H. (2014). Multiscale change-point inference. Journal of the Royal Statistical Society: Series B, 76(3), 495–580.

Futschik, A., Hotz, T., Munk, A., and Sieling, H. (2014). Multiscale DNA partitioning: Statistical evidence for segments. Bioinformatics, 30(16), 2255–2262.

Jombart T. and Ahmed I. (2011) adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics. doi: 10.1093/bioinformatics/btr521

Knaus BJ and Grünwald NJ (2017). VCFR: a package to manipulate and visualize variant call format data in R. Molecular Ecology Resources, 17(1), pp. 44-53. ISSN 757, <URL:http://dx.doi.org/10.1111/1755-0998.12549>.

McVean, G. A. T., Myers, S. R., Hunt, S., Deloukas, P., Bentley, D. R., and Donnelly, P. (2004). The fine-scale structure of recombination rate variation in the human genome. Science, 304(5670), 581–584.

Paradis E., Claude J. & Strimmer K. 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20: 289-290.

The 1000 Genomes Project Consortium (2015). Aglobal reference for human genetic variation. Nature, 526(7571), 68–74.

6 list.quantile.regs

Wood, S.N. (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Statistical Society (B) 73(1):3-36

See Also

summary_statistics, vcfR_to_fasta, fgt_rrate_dpr, get_smuce, smuceR, rq,
qam, vcfR2DNAbin, diseq, genotype, readDNAStringSet

Examples

list.quantile.regs Quantile Regressions for Bias Correction

Description

This data set contains a list of quantile regression models (rq) for bias correction. In total nine regression models are saved in a list form, where we recommend to use the 0.35 for the correction.

Usage

```
data("list.quantile.regs")
```

Format

A list object of length 9, containing quantiles in sequences between 0.1 and 0.5 with 0.05 distances.

```
data(list.quantile.regs)
##### Do not run these examples #####
##### In get_smuce the function is called as follows #####
##### pr1 = predict(mod.full,help); pr1[is.na(pr1)] = -1/gam; #####
##### ind.q = which(seq(0.1, 0.5, by = 0.05) == quant) #####
##### pr.cor = predict(list.quantile.regs[[ind.q]], data.frame(x = pr1) #####
```

mod.full 7

mod.full	Regression model to Estimate (constant) Recombination Rates from
	Population Genetic Summary Statistics

Description

This data set contains a generalized additive regression model (gam) which estimates the constant recombination rate for a set of segments based on summary statistics.

Usage

```
data("mod.full")
```

Format

A list containing all information on the regression model such as the coefficients, residuals, among others as usually for generalized additive models (gam) saved as an R object.

References

Wood, S.N. (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Statistical Society (B) 73(1):3-36

Examples

```
data(mod.full)
##### Do not run these examples #####
##### In get_smuce the function is called as follows #####
##### pr1 = predict(mod.full,help) #####
```

```
summary_statistics Summary Statistics per Segment
```

Description

This function computes summary statistics for every segment of the sequence. Sequence files are generated within this function which are then used by LDhat and other packages to estimate all necessary parameters.

Usage

8 summary_statistics

Arguments

X	A integer control variable for the considered segment of the DNA sequence.
S	An XStringSet object which is read by readDNAStringSet
segs	A (non-negative) integer which reflects the number of segments considered. It is calculated in the program based on the user-defined segment length.
seqName	A character string containing the path and the name of the sequence file in fasta of vcf format.
nn	An integer which reflects the number of individuals (more precisely sequences) of the population to be analyzed. In case of diploid samples this is twice the number of individuals.
11	A (non-negative) integer which reflects the total sequence length of the sequences under study.
thth	A numeric value for θ used in the lookup tables of LDhat.
cor	A integer value which reflects the number of cores on which LDhat should be run. We recommend to keep here 1 core.
pathLDhat	A character string containing the path to LDhat. This path and the installation of LDhat is necessary for the computation of the package.

Value

This function returns a concatenated vector of two separately used vectors (scalars) of summary statistis as:

stats A vector of summary statistics. Returned with the value of hahe.

hahe The haplotype heterozygosity of the considered segment. Returned with stats.

Author(s)

Philipp Hermann <philipp.hermann@jku.at>

References

Auton, A. and McVean, G. (2007). Recombination rate estimation in the presence of hotspots. Genome Research, 17(8), 1219–1227.

Jombart T. and Ahmed I. (2011) adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics. doi: 10.1093/bioinformatics/btr521

McVean, G. A. T., Myers, S. R., Hunt, S., Deloukas, P., Bentley, D. R., and Donnelly, P. (2004). The fine-scale structure of recombination rate variation in the human genome. Science, 304(5670), 581–584.

Paradis E., Claude J. & Strimmer K. 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20: 289-290.

See Also

```
LDJump, vcfR_to_fasta, fgt_rrate_dpr, get_smuce, readDNAStringSet
```

vcfR_to_fasta 9

o fasta Format		
----------------	--	--

Description

This function enables to read vcfR files and convert them to necessary fasta files. Therefore, we recommend to provide a reference sequence from e.g. genome browser and the starting position. The default parameters are those of the vcfR package.

Usage

Arguments

seqName	A character string containing the path and the name of the sequence file in vcf format.
refName	An (optional) path to the reference sequence for the region of interest downloaded from e.g. http://phase3browser.1000genomes.org/index.html. Only to be used in case that $format = "vcf"$.
ext.ind	See package vcfR for details (vcfR2DNAbin, extract.indels)
cons	See package vcfR for details (vcfR2DNAbin, consensus)
ext.haps	See package vcfR for details (vcfR2DNAbin, extract.haps)
start	An (optional) integer value which reflects the starting position of the sequences in bp. Only to be used in case that format == "vcf".

Value

A print command provides information that the file is converted.

Author(s)

```
Philipp Hermann <philipp.hermann@jku.at>
```

References

Knaus BJ and Grünwald NJ (2017). VCFR: a package to manipulate and visualize variant call format data in R. Molecular Ecology Resources, 17(1), pp. 44-53. ISSN 757, <URL: http://dx.doi.org/10.1111/1755-0998.12549>.

See Also

```
LDJump, summary_statistics, fgt_rrate_dpr, get_smuce, vcfR2DNAbin
```

```
##### Do not run these examples #####
##### vcfR_to_fasta (seqName, refName, ext.ind = T, cons = F, #####
##### ext.haps = T, start = 1) #####
```

Index

```
*Topic datasets
    LDJump, 4
    list.quantile.regs, 6
    mod.full, 7
*Topic htest
    {\tt get\_smuce}, {\tt 3}
    LDJump, 4
*Topic list
    LDJump, 4
    list.quantile.regs,6
*Topic manip
    vcfR_to_fasta,9
*Topic methods
    fgt_rrate_dpr, 2
    get_smuce, 3
    LDJump, 4
    summary\_statistics, 7
*Topic models, regression
    LDJump, 4
    list.quantile.regs, 6
    mod.full, 7
diseq, 2, 6
fgt_rrate_dpr, 2, 4, 6, 8, 9
gam, 4, 6, 7
genotype, 2, 6
get_smuce, 2, 3, 6, 8, 9
LDJump, 2, 4, 4, 8, 9
list.quantile.regs, 6
mod.full, 7
readDNAStringSet, 6,8
rq, 4, 6
smuceR, 4, 6
summary\_statistics, 2, 4, 6, 7, 9
vcfR2DNAbin, 6,9
vcfR_to_fasta, 2, 4, 6, 8, 9
XStringSet, 8
```