MATH 484 QUIZ 07 Graphical Dual Method

Name	Sec

- min f(y,z) = 6y + z 2subj to $g_1(y,z) = 3y - 2z \le 12 = b_1$ $g_2(y,z) = 2y + 5z \ge -20 = b_2$ $g_3(y,z) = -y - 6z \ge -12 = b_3$ $g_4(y,z) = -y + 2z \le 4 = b_4$
- 1. Solve the given LP by the graphical dual method. Specifically, complete these steps:
- a) Put all constraints in the form $g \ge b$. Subsequent instructions refer to the adjusted constraint functions g_i
- b) Graph the boundaries of the constraints and mark the feasible set. Label the boundaries according to which slack variable is zero (si = gi bi).
- c) At each extreme point of the feasible set (i.e., at each intersection of two constraint boundaries si = 0 and sj = 0), solve for the real numbers yi and yj such that gradient(f) = yi*gradient(gi) + yj*gradient(gj).
- d) The extreme point at which the solution yi and yj are non-negative is the minimum. Document min(f) and argmin(f)