Name = Manoj Kumar

Batch = 1st September Batch

course = Data science Placement guarantee Course

Email = manojkumarrajput9990@gmail.com

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
warnings.simplefilter(action='ignore', category=UserWarning)
```

Imported all the libraries which we need to use for this task

Part 1: Basic Data Exploration and Manipulation

```
In [2]: data = pd.read_csv("C:\\Users\\msgme\\Downloads\\Assignmnet_dataset.csv")
In [5]: data.info()
      <class 'pandas.core.frame.DataFrame'>
      RangeIndex: 4000 entries, 0 to 3999
      Data columns (total 8 columns):
           Column
                          Non-Null Count Dtype
       --- -----
                           _____
       a
          CustomerID
                          4000 non-null
                                           int64
       1
           Name
                          3340 non-null
                                           object
                         3944 non-null
2939 non-null
       2
           Age
                                           float64
       3
          Gender
                                           object
                          3328 non-null
       4
          City
                                           object
           PurchaseAmount 3900 non-null
                                           float64
           PurchaseDate
                         4000 non-null
                                           object
           ProductCategory 3366 non-null
                                           object
      dtypes: float64(2), int64(1), object(5)
      memory usage: 250.1+ KB
       data.head()
In [7]:
```

Out[7]:	Cus	stomerID	Name	Age	Gend	der	City Pur	chaseAmount	Purch	naseDate	ProductCat
	0	8270	Jane Smith	46.0	Fem	ale Ang	Los eles	648.27	20	21-09-12 00:00:00	
	1	1860	NaN	30.0	N	aN Hous	ston	185.30	20	20-06-30 00:00:00	Gro
	2	6390	Jane Smith	38.0	М	ale	New York	564.92	20	21-11-16 00:00:00	Home
	3	6191	John Doe	75.0	Fem	ale Hous	ston	981.52	20	21-11-11 00:00:00	
	4	6734	NaN	38.0	N	aN Chic	ago	523.13	20	20-09-04 00:00:00	Home
	4										•
In [9]:	data.t	ail()									
Out[9]:		Customer	ID N	lame	Age	Gender	City	PurchaseAm	ount	PurchaseD	ate Produ
	3995										
	3333	93	4/	Chris nson	64.0	NaN	Houston		NaN	2023-04	
	3996		Joh		64.0	NaN Female	Houston New York	5.	NaN 27.92	2023-04):00)-20
		65	92	nson John			New			2023-04 00:00 2023-09	0:00 0-20 0:00 -10
	3996	65 27	92 224	John Doe John	23.0	Female	New York	27	27.92	2023-04 00:00 2023-09 00:00 2020-11	0:00 0-20 0:00 -10 0:00
	3996 3997	65 27 43	92 24 43 V	John Doe John Doe Emily	23.061.025.0	Female NaN	New York NaN	2. 72	27.92 23.12	2023-04 00:00 2023-09 00:00 2020-11 00:00 2022-08	0:00 0-20 0:00 -10 0:00 3-02 0:00 3-25
	3996 3997 3998	65 27 43	92 24 43 V	John Doe John Doe Emily White	23.061.025.0	Female NaN	New York NaN Phoenix	2. 72	27.92 23.12 21.52	2023-04 00:00 2023-09 00:00 2020-11 00:00 2022-08 00:00	0:00 0-20 0:00 -10 0:00 3-02 0:00 3-25

Out[11]:		CustomerID	Age	PurchaseAmount
	count	4000.000000	3944.000000	3900.000000
	mean	5482.300250	47.774341	505.700428
	std	2573.310642	18.834296	287.535960
	min	1001.000000	-1.000000	10.250000
	25%	3255.000000	32.000000	255.895000
	50%	5492.500000	48.000000	506.750000
	75%	7704.000000	64.000000	759.177500
	max	9996.000000	79.000000	999.930000

1. Data Cleaning:

```
In [13]: missing_values= data.isnull().sum()
         print(missing_values)
                               0
        CustomerID
        Name
                             660
        Age
                              56
        Gender
                            1061
        City
                            672
                            100
        PurchaseAmount
        PurchaseDate
                              0
        ProductCategory
                            634
        dtype: int64
In [15]: print(missing_values[missing_values > 0])
                             660
        Name
                             56
        Age
        Gender
                            1061
        City
                             672
        PurchaseAmount
                             100
        ProductCategory
                            634
        dtype: int64
In [17]: num_columns = ['CustomerID', 'Age', 'PurchaseAmount']
         plt.figure(figsize=(10,8))
         data[num_columns].hist(bins=20, figsize=(12, 8), layout=(3, 3))
         plt.show()
```

<Figure size 1000x800 with 0 Axes>


```
In [19]: plt.figure(figsize=(8, 5))
    sns.heatmap(data[num_columns].corr(), annot=True, cmap='coolwarm', fmt='.2f')
    plt.title("Correlation Heatmap")
    plt.show()
```



```
In [21]: property_ty = ['Gender']
    for colmn in property_ty:
        plt.figure(figsize=(8, 5))
        sns.countplot(y=data[colmn], order=data[colmn].value_counts().index, palette='v
        plt.title(f"Distribution of {colmn}")
        plt.show()
```



```
In [23]: property_ty = ['City']
         for colmn in property_ty:
             plt.figure(figsize=(8, 5))
             sns.countplot(y=data[colmn], order=data[colmn].value_counts().index, palette='v
             plt.title(f"Distribution of {colmn}")
             plt.show()
```



```
In [25]: property_ty = ['ProductCategory']
    for colmn in property_ty:
        plt.figure(figsize=(8, 5))
        sns.countplot(y=data[colmn], order=data[colmn].value_counts().index, palette='v
        plt.title(f"Distribution of {colmn}")
        plt.show()
```


Handling missing values

Filling missing Name, Gender, City, and ProductCategory with 'Unknown'

```
In [29]: data['Name'].fillna('Unknown', inplace=True)
  data['Gender'].fillna('Unknown', inplace=True)
  data['City'].fillna('Unknown', inplace=True)
  data['ProductCategory'].fillna('Unknown', inplace=True)
```

Filling missing Age with the median

```
In [33]: data['Age'].fillna(data['Age'].median(), inplace=True)
```

Filling missing PurchaseAmount with the mean

```
In [37]: data['PurchaseAmount'].fillna(data['PurchaseAmount'].mean(), inplace=True)
In [39]: missing_values= data.isnull().sum()
    print(missing_values)
```

```
CustomerID 0
Name 0
Age 0
Gender 0
City 0
PurchaseAmount 0
PurchaseDate 0
ProductCategory 0
dtype: int64
```

Converting PurchaseDate to datetime format

```
In [43]: data['PurchaseDate'] = pd.to_datetime(data['PurchaseDate'], errors='coerce')
```

Keeping only the date and removing the time component

Removinhg duplicates from CustomerID and PurchaseDate columns

```
Customers in New York:
      CustomerID
                         Name
                                  City
2
           6390
                  Jane Smith New York
6
           1466 Jane Smith New York
                     Unknown New York
8
           6578
           9666 Jane Smith New York
21
22
           3558 Emily White New York
            . . .
                         . . .
                                   . . .
           2812 Emily White New York
3656
3664
           4340
                    John Doe New York
3742
           1991 Emily White New York
3764
           8876 Alex Brown New York
3911
           3153 Emily White New York
[203 rows x 3 columns]
```

3: Total Purchase Amount

```
In [69]: total purchase_amount = data['PurchaseAmount'].sum()
In [71]: print("\nTotal Purchase Amount:", total purchase amount)
        Total Purchase Amount: 651161.903274359
```

4: Total Customer Count

```
In [75]:
         data['CustomerID'].sum()
Out[75]: 7148171
In [77]:
         total_unique_customers = data['CustomerID'].nunique()
In [79]: print("\nTotal Unique Customers:", total_unique_customers)
        Total Unique Customers: 1295
```

5: Average Purchase Amount

```
In [83]: average_purchase_amount = data['PurchaseAmount'].mean()
In [85]: print("\nAverage Purchase Amount:", average_purchase_amount)
```

Average Purchase Amount: 502.8277245361845

Part 2: Intermediate Analysis and Aggregation

1. Purchase Analysis by Product Category

```
In [89]: total purchase by category = data.groupby('ProductCategory')['PurchaseAmount'].sum(
         avg_age_by_category = data.groupby('ProductCategory')['Age'].mean()
In [91]: print("\nTotal Purchase by Product Category:\n", total_purchase_by_category)
         print("\nAverage Age by Product Category:\n", avg_age_by_category)
```

```
Total Purchase by Product Category:
```

ProductCategory

Automobile 117086.672569
Electronics 98657.482141
Fashion 103634.552141
Groceries 103681.531713
Home Decor 107606.572997
Misc 10470.680000
Unknown 110024.411713

Name: PurchaseAmount, dtype: float64

Average Age by Product Category:

ProductCategory

Automobile 47.839286
Electronics 47.690355
Fashion 47.251185
Groceries 48.046729
Home Decor 47.652174
Misc 52.681818
Unknown 47.736364
Name: Age, dtype: float64

2. Recent Purchase Analysis

```
In [95]: latest_date = data['PurchaseDate'].max()
    recent_purchases = data[data['PurchaseDate'] >= (latest_date - pd.Timedelta(days=30)
In [97]: print("\nRecent Purchases (Last 30 Days):\n", recent_purchases)
```

Recent	Purchases	(Last 30 Days):					
	CustomerID	Name	Age	Gender	City	PurchaseAmount	\
23	8849	Chris Johnson	28.0	Unknown	Unknown	915.55	-
77	3062	Emily White	43.0	Unknown	Houston	75.75	
177	1202	Emily White	73.0	Unknown	Los Angeles	786.08	
303	8806	Alex Brown	49.0	Unknown	Houston	436.41	
386	8253	John Doe	24.0	Female	Los Angeles	935.73	
543	6029	John Doe	68.0	Male	New York	19.46	
569	5468	Jane Smith	60.0	Unknown	New York	494.38	
588	4324	Unknown	58.0	Unknown	Houston	664.42	
608	5784	Emily White	75.0	Unknown	New York	564.36	
693	2887	Emily White	18.0	Male	Phoenix	172.01	
791	9837	Emily White	24.0	Other	Phoenix	963.35	
865	2970	Alex Brown	58.0	Unknown	Los Angeles	850.25	
896	4756	Unknown	21.0	Unknown	Chicago	286.05	
900	7898	Emily White	29.0	Female	Houston	918.46	
912	1827	Chris Johnson	56.0	Unknown	Phoenix	407.90	
1001	5873	Unknown	67.0	Male	Unknown	87.09	
1104	9340	Emily White	55.0	Female	Houston	165.07	
1461	8014	Unknown	18.0	Male	Los Angeles	886.43	
1517	1158	Emily White	76.0	Male	Houston	473.61	
2066	9706	Jane Smith	38.0	Male	Chicago	746.79	
2392	1948	Jane Smith	36.0	Unknown	New York	44.65	
2830	2588	Alex Brown	78.0	Other	Unknown	908.55	
2912	9418	John Doe	23.0	Male	Unknown	489.58	
2932	4220	Chris Johnson	45.0	Male	Phoenix	836.62	
3030	8763	John Doe	72.0	Female	Los Angeles	184.31	
3152	7696	Jane Smith	60.0	Other	Unknown	65.65	
3217	2104	Emily White	36.0	Male	Los Angeles	924.24	
3664	4340	John Doe	68.0	Unknown	New York	486.43	
		D 1 16 1					
		ProductCategory Automobile					
23	2023-12-22						
77 177	2023-12-09 2023-12-08	Home Deco					
177		Unknow Fashio					
303 386	2023-12-16	Electronic					
	2023-12-13	Automobile					
543 569	2023-12-31						
588	2023-12-24 2023-12-17	Mis					
	2023-12-17	Grocerie					
608 693	2023-12-28						
791	2023-12-28	Grocerie					
865	2023-12-04	Grocerie					
896	2023-12-03	Fashio					
900	2023-12-23	Automobil					
912	2023-12-30	Automobile					
1001	2023-12-10	Unknow					
1104	2023-12-27	Fashio					
1461	2023-12-27	Unknowi					
1517	2023-12-07	Electronic					
2066	2023-12-19	Fashio					
2392	2023-12-00	Unknowi					
2830	2023-12-29	Automobile					
2912	2023-12-20	Automobile					
2022	2023-12-14	Coossis	-				

2023-12-21

Groceries

2932

```
3030
      2023-12-15
                        Unknown
3152
      2023-12-11
                        Unknown
3217
      2023-12-12
                      Groceries
3664
      2023-12-18
                     Home Decor
```

3. Gender-Based Purchase Analysis

```
In [101...
          total purchase by gender = data.groupby('Gender')['PurchaseAmount'].sum()
In [103...
          print("\nTotal Purchase by Gender:\n", total_purchase_by_gender)
         Total Purchase by Gender:
          Gender
         Female
                    153989.623426
         Male
                    176721.202569
         Other
                    156279,662997
         Unknown
                    164171.414282
         Name: PurchaseAmount, dtype: float64
          4. Age-Based Purchase Segmentation
In [107...
          def age_group(age):
               if age < 30:
                   return 'Below 30'
               elif 30 <= age < 40:</pre>
                   return '30-40'
               elif 40 <= age < 50:
                   return '40-50'
               else:
                   return '50+'
In [109...
          data['AgeGroup'] = data['Age'].apply(age_group)
          total_purchase_by_age_group = data.groupby('AgeGroup')['PurchaseAmount'].sum()
In [111...
          print("\nTotal Purchase by Age Group:\n", total_purchase_by_age_group)
         Total Purchase by Age Group:
          AgeGroup
         30-40
                     103970.981713
         40-50
                     108606.292997
         50+
                     305804.595995
         Below 30
                     132780.032569
         Name: PurchaseAmount, dtype: float64
          5. Top Transactions
          top_transactions = data.nlargest(5, 'PurchaseAmount')[['CustomerID', 'Name', 'Produ
In [113...
In [115...
          print("\nTop 5 Transactions:\n", top transactions)
```

Top 5 Transactions:

	CustomerID	Name	ProductCategory	PurchaseAmount
2100	4489	Unknown	Electronics	999.46
3627	3890	John Doe	Misc	999.16
7	5426	Chris Johnson	Home Decor	998.86
1900	9648	Jane Smith	Groceries	998.29
905	1814	Emily White	Electronics	997.72

Part 3: Advanced Analysis and Insights

1. Purchase Trend Analysis

```
In [117... plt.figure(figsize=(12,6))
    data.groupby('PurchaseDate')['PurchaseAmount'].sum().plot()
    plt.xlabel('Date')
    plt.ylabel('Total Purchase Amount')
    plt.title('Purchase Trend Over Time')
    plt.xticks(rotation=45)
    plt.show()
```


2. City-Based Purchase Comparison

```
In [119... avg_purchase_by_city = data.groupby('City')['PurchaseAmount'].mean()
highest_avg_city = avg_purchase_by_city.idxmax()

In [121... print("\nCity with Highest Average Purchase Amount:", highest_avg_city)
City with Highest Average Purchase Amount: Chicago

In [123... sns.histplot(data['PurchaseAmount'], kde=True)
plt.title('Histogram with Normal Distribution Curve')
plt.show()
```

Histogram with Normal Distribution Curve


```
In [125... plt.figure(figsize=(10, 8))
    sns.boxplot(data=data[num_columns])
    plt.title('Boxplot before removing Outliers')
    plt.xticks(rotation=45)
    plt.show()
```


as you can see there is no outliers in the data.

```
In [127...
           data['ProductCategory']
Out[127...
                       Unknown
           1
                     Groceries
           2
                    Home Decor
           3
                       Unknown
                    Home Decor
                       . . .
           3925
                       Fashion
           3936
                     Groceries
                    Automobile
           3938
           3941
                       Fashion
           3948
                    Home Decor
           Name: ProductCategory, Length: 1295, dtype: object
           4. Product Category Comparison (Statistical Analysis)
```

import seaborn as sns
from scipy import stats

In [135...

Got the unique product categories

Created a list of data groups, excluding empty categories

And Checked if there are at least two groups to perform ANOVA

```
In [133...
          num_groups = len(categories)
          print("Unique Product Categories:", categories)
          print("Number of Groups:", num_groups)
         Unique Product Categories: ['Unknown' 'Groceries' 'Home Decor' 'Fashion' 'Electronic
         s' 'Automobile'
          'Misc']
         Number of Groups: 7
In [147...
          data_groups = [data[data['ProductCategory'] == cat]['PurchaseAmount'] for cat in ca
          if len(data_groups) > 1:
In [151...
              anova_result = stats.f_oneway(*data_groups)
              print("ANOVA Test Result:", anova_result)
          else:
              print("Not enough data groups for ANOVA analysis")
```

ANOVA Test Result: F_onewayResult(statistic=0.5468369579646548, pvalue=0.77271933786 86309)

Got the result as "statistic=0.5468369579646548, pvalue=0.7727193378686309"

F- Statistic is 0.547 this value is the ratio in the groups and ratio between the groups.

This indicates that there can be significant difference between the groups.

P-Value is 0.773 the P-Value is a crucial measure used to access whether the results of this

test are statistically significant. It represents the likelihood that the observed outcomes occurred purely by chance.

If the P-Value is smaller than the chosen threshold (usually 0.05), we can reject the null hypothesis

and can say there is a statistically significant difference between the groups.

If P-Value is 0.05 or higher, we cannot reject null hypothesis and can say there is

no statistically significant difference between the groups.

P-Value is 0.773, which much higher than the usual significance level of 0.05, so we

fail to reject the null hypothesis, it means there is no strong evidence to suggest a

statistically significant difference in "PurchaseAmount" between the "ProductCategory" groups in the data

There is not a strong evidence that means PurchaseAmount are different across the product categories.

I am really sorry as did not have that time to visulize this in power BI as i got this project yesterday

evening so i did not have time to visulize it in power BI , if i will get time than forsure i can create

vizulization in Power BI as well.

In []:]:	
In []:]:	