银行家算法解决死锁

♦ 有三类资源A(17)、B(5)、C(20)。有5个进程P₁—P₅。T₀时刻系统状态如下:

	最大需求	已分配				
P ₁	5 5 9	2 1 2				
P ₂	5 3 6	4 0 2				
P ₃	4 0 11	4 0 5				
P ₄	4 2 5	2 0 4				
P ₅	4 2 4	3 1 4				

?????:

(1)T₀时刻是否为安全状态,给出安全系列。

(2)T₀时刻, P₂: Request(0,3,4), 能否分配, 为什么?

(3)在(2)的基础上P₄: Request(2,0,1), 能否分配, 为什么? (4)在(3)的基础上P₄: Request(0,2,0), 能否分配, 为什么?

	最大进程			最大进程 已分配			需求			可利用		
	Α	В	С	Α	В	С	Α	В	С	Α	В	С
P1	5	5	9	2	1	2	3	4	7	2	3	3
P2	5	3	6	4	0	2	1	3	4			
Р3	4	0	11	4	0	5	0	0	6			
P4	4	2	5	2	0	4	2	2	1			
P5	4	2	4	3	1	4	1	1	0			

		最大进程			已分配			总计		
	Α	В	С	Α	В	С	Α	В	С	
P4	2	3	3	2	0	4	4	3	7	
P2	4	3	7	4	0	2	8	3	9	
Р3	8	3	9	4	0	5	12	3	14	
P5	12	3	14	3	1	4	15	4	18	
P1	15	4	18	2	1	2	17	5	20	

- (1) TO 此刻是安全状态,安全序列为: P4, P2, P3, P5, P1
- (2) T0 时刻, T2: Request2 (0,3,4) 不能完成分配

Request2(0,3,4)≤Need2(1,3,4)成立

Request2(0,3,4)≤Available(2,3,3)不成立, **故不能分配**

(3) 在 (2) 的基础上 P4: Request4(2,0,1)≤Need4(2,2,1)成立

Request4(2,0,1)≤Available(2,3,3)成立

		最大进程			已分配		需求		
	Α	В	С	Α	В	С	Α	В	С
P1	5	5	9	2	1	2	3	4	7
P2	5	3	6	4	0	2	1	3	4
Р3	4	0	11	4	0	5	0	0	6
P4	4	2	5	4	0	5	0	2	0
P5	4	2	4	3	1	4	1	1	0

A,B,C 可利用的资源(Available)还剩 0, 3, 2

根据银行家算法可以得出结论:存在安全序列: P4, P2, P3, P5, P1。 所以**可以分配**

(4) 在 (3) 的基础上 P1: Request(0,2,0)<Need(3,4,7)成立 Request(0,2,0)<Available(0,3,2)成立

		最大进程			已分配		需求		
	Α	B	С	Α	В	С	Α	В	С
P1	5	5	9	2	3	2	3	2	7
P2	5	3	6	4	0	2	1	3	4
Р3	4	0	11	4	0	5	0	0	6
P4	4	2	5	2	0	1	2	2	4
P5	4	2	4	3	1	4	1	1	0

A,B,C 可利用的资源(Available) 0, 1, 2

这时可利用资源不能满足进程分配完成,系统处于不安全状态,找不到合适的安全序列,所以无法分配