Tuesday Reading Assessment: Unit 4, AC Generators

Prof. Jordan C. Hanson

April 13, 2020

1 Memory Bank

- $\epsilon = -N\Delta\phi_m/\Delta t$... Faraday's Law
- $\phi_m = \vec{B} \cdot \vec{A} = BA\cos(\theta)$... Definition of magnetic flux
- $\epsilon(t) = \epsilon_0 \sin(\omega t)$... AC voltage generated by generator.
- $P_{max} = V_{max}^2/R$... Max power of an AC generator.
- $P_{ave} = \frac{1}{2} P_{max}$... Average power of an AC generator.

2 AC Generators

1. Consider Fig. 1. Suppose that the angle between the area vector and the magnetic field is $\theta = \omega t$. (a) Show that

$$\phi(t) = BA\cos(\omega t) \tag{1}$$

(b) Given Eq. 1, it turns out that the voltage generated in the loop is proportional to $\sin(\omega t)$ and ω itself. That is,

$$\epsilon(t) = BA\omega\sin(\omega t) \tag{2}$$

What is the voltage at a time t=1/240 seconds, $\omega=120\pi$ Hz, B=0.1 T, and A=0.01 m²? (c) At what time is the voltage zero?

Figure 1: A schematic of the concept of an AC generator.

2. Suppose the AC generator in Fig. 1 has $V_0 = 12$ V so that $\epsilon(t) = V_0 \sin(\omega t)$. If the AC generator pushes current through a resistance $R = 50\Omega$, what is the average power generated?