1 Congruences

1.1 Introduction to Congruences

1. **Introduction:** Suppose you wished to find $x, y \in \mathbb{Z}$ satisfying $2x^2 - 8y = 11$. There is no solution because no matter what, $2x^2 - 8y$ is even and 11 is odd. What if even/odd does not work... what else might? $3x^2 - 15y = 8$, 3 divides the left side but not the right. If even/odd or divided by 3 works, there is no guarantee that it works $3x^2 - 15y = 9$. The idea of modular arithmetic

formalizes all of this.

- 2. **Definition and Equivalencies:** For $a, b, m \in \mathbb{Z}$ with $m \geq 2$ we write $a \equiv b \mod m$ which is read as "a and b are congruent modulo m." to mean that $m \mid (a b)$. A few notes on this,
 - Equivalent to saying $m \mid (b-a)$.
 - Equivalent to saying $\exists c \in \mathbb{Z}$ such that mc = a b or $\exists x \in \mathbb{Z}$ such that mc = b a (definition of divisibility).
 - Equivalent to saying that if we divide a and b by m, the remainders are the same.

Ex. $8 \equiv 18 \mod 5$ in fact $8 \equiv 18 \equiv 3 \equiv -2 \equiv 23 \equiv \cdots \mod 5$. Here with remainder 3. Also note $5 \mid (18 - 8)$ and $5 \mid (8 - 18)$.

Even/odd is the same as m=2.

CS Note. In computer science we often define mod(a, m) = remainder when a/m = a%m. It is not uncommon to see $a = b \mod m$ or $a \equiv_m b$ (strongly discouraged).

Moving forward, please use $a \equiv b \mod m$.

3. Properties:

- (a) **Theorem.** Congruence acts like an equals sign in the following sense:
 - (i) $a \equiv a \mod m$ (Reflexive).
 - (ii) if $a \equiv b \mod m$ then $b \equiv a \mod m$ (Symmetric).
 - (iii) If $a \equiv b \mod m$ and $b \equiv c \mod m$ then $a \equiv c \mod m$ (Transitivity).

Proof. $a \equiv b \mod m \implies \exists x \text{ such that } a-b=mx, b \equiv c \mod m \implies \exists y \text{ such that } b-c=my.$ Then a-c=(a-b)+(b-c)=mx+my=m(x+y) so $m \mid (a-c)$ so $a \equiv c \mod m$.

(iv) If $a \equiv b \mod m$ and $c \equiv \mod m$ then $a \pm c \equiv b \pm d \mod m$.

- i.e. If we know $x\equiv y \mod 5$ we can conclude $x+7\equiv y+7 \mod 5$ and also $x+7\equiv y+12 \mod 5$.
- (v) If $a\equiv b \mod m$ and $c\equiv d \mod m$ then $ac\equiv bd \mod m$ i.e. If we know $x\equiv y \mod 5$ then we can conclude $17x\equiv 17y \mod 5$ but we can also conclude $17x\equiv 12y \mod 5$
- (vi) If $a \equiv b \mod m$ and $k \in \mathbb{Z}, k \geq 1$ then $a^k \equiv b^k \mod m$. (Note: we can *not* use different powers!)
- (b) **Division Issues.** First everything must be an integer, so does $2 \equiv 8 \mod 6 \implies \frac{2}{3} \equiv \frac{8}{3} \mod 6$ this is garbage because $\frac{2}{3}, \frac{8}{3} \notin \mathbb{Z}$. However, is $2 \equiv 8 \mod 6 \implies \frac{2}{2} \equiv \frac{8}{2} \mod 6$ true? No! because $1 \equiv 4 \mod 6$ is not true. The point is even if division makes both sides integers there is no guarantee that the congruence is preserved!

Theorem. Suppose we have $ac \equiv bc \mod m$ then $a \equiv b \mod m/\gcd(m,c)$. In other words we may cancel an integer from both sides provided we divide the modulus by the gcd of the modulus and the integer we're canceling.

Proof. Suppose $ac \equiv bc \mod m$, $\exists k \in \mathbb{Z}$ with mk = ac - bc. So mk = c(b-a),

$$\frac{m}{\gcd(c,m)}k = \frac{c}{\gcd(c,m)}(a-b)$$

Note that from a previous theorem we know that:

$$\gcd\left(\frac{m}{\gcd(c,m)}, \frac{c}{\gcd(c,m)}\right) = 1$$

Then the above statement says that $\frac{m}{\gcd(c,m)}\Big|\frac{c}{\gcd(c,m)}(a-b)$ which implies $\frac{m}{\gcd(c,m)}\Big|a-b$. Therefore, $a\equiv b \mod \frac{m}{\gcd(c,m)}$.

Note. Don't think division, think cancelation when dealing with modulo.

Ex. If we know that $4x \equiv 8y \mod 50$ then we can conclude that $x \equiv 2y \mod 50/\gcd(50,4)$ and so $x \equiv 2y \mod 25$ (think *cancel* the 4).

Corollary. If $ac \equiv bc \mod m$ and $\gcd(c, m) = 1$ then $a \equiv b \mod m$. **Ex.** $15x \equiv 20y \mod 27$, note that $\gcd(5, 27) = 1$ so we may cancel the 5. So $3x \equiv 4y \mod 27$.

4. Residue Classes:

(a) **Introduction:** Suppose we are working mod m = 5. We know $0 \equiv 5 \equiv 10 \equiv -5 \equiv \cdots \mod 5$, we also know $1 \equiv 6 \equiv 11 \equiv -4 \equiv \cdots \mod 5$, all

of \mathbb{Z} fall into one out of m=5 classes.

$$\left\{ \begin{array}{l} \{\cdots, -15, -10, -5, 0, 5, 10, 15, \cdots \} \\ \{\cdots, -16, -9, -4, 1, 6, 11, 16, \cdots \} \\ \{\cdots, -13, -8, -3, 2, 7, 12, 17, \cdots \} \\ \{\cdots, -12, -7, -2, 3, 8, 13, 18, \cdots \} \\ \{\cdots, -11, -6, -1, 4, 9, 14, 19, \dots \} \end{array} \right.$$

- (b) **Definition.** For a given $m \geq 2$ there are m congruence classes.
- (c) **Definition.** From each we may pick a representative of the class so those would be m representatives.

Ex. $m = 5 : \{0, 1, 2, 3, 4\}$ (the obvious one) or you could use $m = 5 : \{0, 2, 4, 6, 8\}$ (all even) or $m = 5 : \{0, 2, 4, 8, 16\}$ (all powers of 2, except 0).

Ex. $m = 5 : \{0, 1, 2, 3, 4\}$ (the obvious one) or you could use $m = 5 : \{0, 2, 4, 6, 8\}$ (all even) or $m = 5 : \{0, 2, 4, 8, 16\}$ (all powers of 2, except 0).

(d) **Definition.** The set of representatives $\{0, \dots, m-1\}$ = the complete set of least non-negative residues.

In \mathbb{R} , $17^x = 48246319 \implies x = \log_1 7(48246319)$. Now consider $\mathbb{Z} \mod 100$, $6^x \equiv 88 \mod 100$ is *significantly* harder to solve (the discrete logarithm problem).

(e) **Definition.** A complete set of residues (CSOR) $\mod m$ is a set of m integers, no two of which are congruent $\mod m$.

Ex. m = 5: here are 3 CSORs: $\{0, 1, 2, 3, 4\}, \{0, 2, 4, 6, 8\}, \{0, 2, 4, 8, 16\},$ and more!

(f) **Theorem.** A subset S of \mathbb{Z} is a CSOR mod m if and only if every integer is congruent to exactly one element in S.

Ex. m = 4: $S = \{0, 9, 14, 3\}$ some observations:

- m=4 of them.
- No two are congruent to each other.
- Any $a \in \mathbb{Z}$ is congruent to exactly one of these.
- (g) **Theorem.** If $\{r_1, r_2, \dots, r_m\}$ is a CSOR mod m and if $a, b \in \mathbb{Z}$ with gcd(a, m) = 1 then $\{ar_1 + b, ar_2 + b, \dots, ar_m + b\}$ if also a CSOR mod m.

Proof. We will show that no two are congruent mod m. Suppose $ar_i + b \equiv ar_j + b \mod m$ with $i \neq j$. Then $ar_i \equiv ar_j \mod m \implies r_i \equiv r_j \mod m$ because $\gcd(a, m) = 1$. Contradiction because the r_i, r_j came from a CSOR mod m.

Ex. $\{0,1,2,3,4\}$ CSOR mod 5. Pick $a=9,b=42, \{0\cdot 9+42, 1\cdot 9+42, 2\cdot 9+42, 3\cdot 9+42, 4\cdot 9+42\}$ is also a CSOR mod 5.

- 5. Fast Arithmetic Fast Exponentiation. Suppose we wished to calculate $2^{503} \equiv a \mod 5$, a = 0, 1, 2, 3, 4 but which one? Warning: Do not reduce exponent mod 5! $2^{503} \equiv 2^x \mod 5$.
 - (a) Look for patterns: $2^1=2 \mod 5$, $2^2\equiv 4 \mod 5$, $2^3\equiv 3 \mod 5$, $2^4\equiv 1 \mod 5$, $2^5\equiv 2 \mod 5$. This last one is a repeat, so it repeats every 4. Note 503=4(125)+1 so

$$2^{503} \equiv (2^4)^{503} 2^3$$

 $\equiv (1)^{125} 2^3 \mod 5$
 $\equiv (1)8 \mod 5$
 $\equiv 3 \mod 5$

(b) Use binary expansions. Suppose we want $3^{81} \equiv a \mod 5$. $3^1 \equiv 3$, $3^2 \equiv 4$, $3^4 \equiv 1$, $3^8 \equiv 1$, $3^{16} \equiv 1$, $3^{32} \equiv 1$, $3^{64} \equiv 1$. Then 81 = 64 + 16 + 1 so

$$3^{81} = 3^{64}3^{16}3^{1}$$

 $\equiv 1 \cdot 1 \cdot 3$
 $\equiv 4 \mod 5$

1.2 Solving Linear Congruences

1. **Introduction:** The idea is that we would ideally like to solve "equations" like $3x^2 + x \equiv 5 \mod 72$, $8^x \equiv 12 \mod 5$, etc... So let's go back to basics. **Definition:** A linear congruence has the form $ax \equiv b \mod m$. We would like to find all possible solutions, whatever that means.

Process:

- (a) Do solutions exist?
- (b) If so, can we find just one?
- (c) Can we find more?
- (d) When are they "different"
- 2. **Do Solutions Exist:** To say that $ax \equiv b \mod m$ has a solution means, $\exists x$ such that $ax \equiv b \mod m$ which in turn means $\exists x, \exists y$ such that ax + my = b $(ax \equiv b \mod m \implies m \mid (ax b) \implies my = ax b \implies ax my = b)$. This means that b is a linear combination of a, m.

Recall: {Linear combination of a, m} = { multiples of gcd(a, m)}.

Thus, b is a linear combination of a, m when $b = \text{multiple of } \gcd(a, m)$, so $ax \equiv b \mod m$ has solution(s) if and only if $\gcd(a, m) \mid b$.

Ex. $2x \equiv 8 \mod 18$ has solutions, because $\gcd(2,18)=2 \mid 8$.

 $6x \equiv 8 \mod 36$ does not, because $\gcd(6,36)=6 \nmid 8$.

3. Finding One Solution: We would like to solve ax + my = b, with b as a multiple of gcd(a, m). Well, we can solve ax' + my' = gcd(a, m)! But how? With the Euclidean Algorithm. Use the Euclidean Algorithm to solve $ax' + my' = \gcd(a, m)$ then multiple both sides to get b on the right. **Ex.** Consider $4x \equiv 6 \mod 50$. We have $\gcd(4,50)=2 \mid 6$ so solutions exist. First we use the Euclidean Algorithm to solve:

$$4x' + 50y' = 2$$

This gives us
$$4\underbrace{(-12)}_{x'} + 50\underbrace{(1)}_{y'} = 2$$
, we want to get a 6 on the right hand side so multiple by 3. So then we get $4\underbrace{(-36)}_{x} + 50\underbrace{(3)}_{y} = 6$, so $4(-36) \equiv 6 \mod 50$.

Typically, we will use the least non-negative residue (add until you get a nonnegative). So here the solution is $x_0 = (-36) + 50 = 14$.

4. Finding All Solutions: Suppose we have our one solution, $x_0 \implies ax_0 \equiv$ $b \mod m$. Suppose now x is another, this implies $ax \equiv b \mod m$. So we subtract the second from the first

$$a(x) - a(x_0) \equiv b - b \mod m$$

 $a(x - x_0) \equiv 0 \mod m$
 $x - x_0 \equiv 0 \mod \frac{m}{\gcd(a, m)}$

So.

$$x = x_0 + k \left(\frac{m}{\gcd(a, m)} \right)$$

Warning! Solutions must look like this but are all things which look like this actually solutions?

We would like $ax \equiv b \mod m$.

$$ax \equiv a\left(x_0 + k\left(\frac{m}{\gcd(a, m)}\right)\right) \mod m$$

$$ax \equiv \underbrace{ax_0}_{b} + \underbrace{k\left(\frac{m}{\gcd(a, m)}\right)}_{\text{lcm}} \mod m$$

$$ax \equiv b + k \text{lcm}(a, m) \mod m$$

 $ax \equiv b \mod m$

Therefore all solutions can be gained by doing, $x = x_0 + k\left(\frac{m}{\gcd(a,m)}\right), \forall k \in \mathbb{Z}.$

Lastly, when are they unique mod m?

Consider that two of them with k_1 and k_2 are identical mod m when:

$$x_0 + k_1 \left(\frac{m}{\gcd(a, m)}\right) \equiv x_0 + k_2 \left(\frac{m}{\gcd(a, m)}\right) \mod m$$
$$k_1 \left(\frac{m}{\gcd(a, m)}\right) \equiv k_2 \left(\frac{m}{\gcd(a, m)}\right) \mod m$$
$$k_1 \equiv k_2 \mod \frac{m}{m/\gcd(a, m)}$$
$$k_1 \equiv k_2 \mod \gcd(a, m)$$

Therefore, it follows that solutions will be congruent mod m when k-values are congruent mod $\gcd(a,m)$. So solutions are not congruent mod m by ensuring that the k-values are not congruent mod $\gcd(a,m)$. This can be done using $k=0,1,2,\cdots,\gcd(a,m)-1$.

5. **Summary Theorem:** The linear congruence $ax \equiv b \mod m$ has solutions if and only if $gcd(a, m) \mid b$. If it has solutions then it has gcd(a, m) unique solutions mod m. If x_0 is one of those then all are

$$x = x_0 + k \cdot \frac{m}{\gcd(a, m)}$$
, for $k = 0, 1, 2, \dots, \gcd(a, m) - 1$

Ex. $20x \equiv 15 \mod 65$, $\gcd(20,65)=5 \mid 15$ so $\exists 5$ incongruent solutions mod 65. The Euclidean Algorithm gives us a solution $x_0 \equiv 56 \mod 65$. So all solutions are then

$$x \equiv 56 + k \cdot \frac{65}{\gcd(20, 65)} \mod m$$
, for $k = 0, 1, 2, 3, 4$

$$x \equiv 56 + 13k \mod 65, k = 0, 1, 2, 3, 4$$

That is $x \equiv 56, 4, 17, 30, 43 \mod 65$.

Note: If gcd(a, m) = 1 there exists only one solution mod m.

1.3 The Chinese Remainder Theorem

- 1. Introduction:
- 2. Lemma:
- 3. The Chinese Remainder Theorem:

1.4 Factoring Using Pollard's Rho Method

1.5 Problems

- 1. Calculate the least positive residues modulo 47 of each of the following with justification:
 - (a) 2^{543}
 - (b) 32^{932}
 - (c) 46³²⁷³⁴⁹²⁸⁷³²³
- 2. Exhibit a complete set of residues mod 17 composed entirely of multiples of 3.
- 3. Show that if $a, b, m \in \mathbb{Z}$ with m > 0 and if $a \equiv b \mod m$ then $\gcd(a, m) = \gcd(b, m)$.
- 4. Suppose p is prime and $x \in \mathbb{Z}$ satisfies $x^2 \equiv x \mod p$. Prove that $x \equiv 0 \mod p$ or $x \equiv 1 \mod p$. Show with a counterexample that this fails if p is not prime.
- 5. Show that if n is an odd positive integer or if n is a positive integer divisible by 4 that:

$$1^3 + 2^3 + \dots + (n-1)^3 \equiv 0 \mod n$$

- 6. Find all solutions (mod the given value) to each of the following.
 - (a) $10x \equiv 25 \mod 75$
 - (b) $9x \equiv 8 \mod 12$
- 7. Solve each of the following linear congruences using inverses.
 - (a) $3x \equiv 5 \mod 17$
 - (b) $10x \equiv 3 \mod 11$
- 8. What could the prime factorization of m look like so that $6x \equiv 10 \mod m$ has at least one solution? Explain.
- 9. Use the Chinese Remainder Theorem to solve:

A troop of monkeys has a store of bananas. When they arrange them into 7 piles, none remain. When they arrange them into 10 piles there are 3 left over. When they arrange them into 11 piles there are 2 left over. What is the smallest positive number of bananas they can have? What is the second smallest positive number?

10. Solve the system of linear congruences:

$$2x + 1 \equiv 3 \mod 10$$

$$x + 2 \equiv 7 \mod 9$$

$$4x \equiv 1 \mod 7$$