Capítulo 4: Séries de Pagamentos e Amortização

Prof. Ana Isabel Castillo Pereda

May 16, 2025

Introdução

Introdução

Anualidades

Introdução

Anualidades

Tabela Price

Introdução

Anualidades

Tabela Price

Sistema de Amortização Constante (SAC)

Introdução

Anualidades

Tabela Price

Sistema de Amortização Constante (SAC)

Tabela de Amortização

Introdução

Anualidades

Tabela Price

Sistema de Amortização Constante (SAC)

Tabela de Amortização

Exercício Resolvido

Introdução

Anualidades

Tabela Price

Sistema de Amortização Constante (SAC)

Tabela de Amortização

Exercício Resolvido

Introdução

Anualidades

Tabela Price

Sistema de Amortização Constante (SAC)

Tabela de Amortização

Exercício Resolvido

Financiamentos e Séries Uniformes

Por que estudar séries de pagamentos?

- Finanças: Planejar financiamentos imobiliários ou pessoais.
- Engenharia: Avaliar custos de equipamentos ou projetos.
- Economia: Analisar o impacto de dívidas públicas ou privadas.

Financiamentos e Séries Uniformes

Por que estudar séries de pagamentos?

- Finanças: Planejar financiamentos imobiliários ou pessoais.
- Engenharia: Avaliar custos de equipamentos ou projetos.
- Economia: Analisar o impacto de dívidas públicas ou privadas.

Exemplos Reais

- Calcular parcelas de um financiamento de R\$200.000 para uma casa.
- Amortizar o custo de uma máquina industrial em 5 anos.
- Avaliar o pagamento de uma dívida governamental.

Introdução

Anualidades

Tabela Price

Sistema de Amortização Constante (SAC)

Tabela de Amortização

Exercício Resolvido

Anualidades

Fórmula do Valor Presente

$$VP = A \cdot \frac{1 - (1+i)^{-n}}{i}$$

Onde: $VP=\mbox{Valor}$ Presente, $A=\mbox{Pagamento}$ periódico, $i=\mbox{Taxa},\ n=\mbox{N\'umero}$ de períodos.

Anualidades

Fórmula do Valor Presente

$$VP = A \cdot \frac{1 - (1+i)^{-n}}{i}$$

Onde: VP = Valor Presente, A = Pagamento periódico, i = Taxa, n = Número de períodos.

Exemplo: Financiamento Imobiliário (Finanças)

Financiamento de R\$100.000 a 8% a.a. por 5 anos. Qual a parcela anual?

$$VP=100000,\quad i=0.08,\quad n=5$$

$$A=\frac{VP\cdot i}{1-(1+i)^{-n}}=\frac{100000\cdot 0.08}{1-(1+0.08)^{-5}}=25045.34~\text{R}\/\text{s}/\text{ano}$$

Introdução

Anualidades

Tabela Price

Sistema de Amortização Constante (SAC)

Tabela de Amortização

Exercício Resolvido

Tabela Price

Fórmula da Parcela

$$P = VP \cdot \frac{i \cdot (1+i)^n}{(1+i)^n - 1}$$

Onde: P = Parcela, VP = Valor Presente, i = Taxa, n = Periodos.

Tabela Price

Fórmula da Parcela

$$P = VP \cdot \frac{i \cdot (1+i)^n}{(1+i)^n - 1}$$

Onde: P = Parcela, VP = Valor Presente, i = Taxa, n = Períodos.

Exemplo: Empréstimo Pessoal (Finanças)

Empréstimo de R\$20.000 a 12% a.a. por 3 anos:

$$P = 20000 \cdot \frac{0.12 \cdot (1 + 0.12)^3}{(1 + 0.12)^3 - 1} = 8307.92 \text{ R}\slash/ano$$

Tabela Price

Fórmula da Parcela

$$P = VP \cdot \frac{i \cdot (1+i)^n}{(1+i)^n - 1}$$

Onde: P = Parcela, VP = Valor Presente, i = Taxa, n = Períodos.

Exemplo: Empréstimo Pessoal (Finanças)

Empréstimo de R\$20.000 a 12% a.a. por 3 anos:

$$P = 20000 \cdot \frac{0.12 \cdot (1 + 0.12)^3}{(1 + 0.12)^3 - 1} = 8307.92 \text{ R}\slash/ano$$

Característica

Parcelas fixas, com juros decrescentes e amortização crescente.

Introdução

Anualidades

Tabela Price

Sistema de Amortização Constante (SAC)

Tabela de Amortização

Exercício Resolvido

Sistema de Amortização Constante (SAC)

Conceito

- Amortização fixa: $A = \frac{VP}{n}$.
- Juros: $J_t = SD_{t-1} \cdot i$.
- Parcela: $P_t = A + J_t$.

Sistema de Amortização Constante (SAC)

Conceito

- Amortização fixa: $A = \frac{VP}{n}$.
- Juros: $J_t = SD_{t-1} \cdot i$.
- Parcela: $P_t = A + J_t$.

Exemplo: Comparação com Price (Engenharia) Empréstimo de R\$20.000 a 12% a.a. por 3 anos:

$$A = \frac{20000}{3} = 6666.67 \text{ R}$$

Ano 1:
$$J_1 = 20000 \cdot 0.12 = 2400$$
, $P_1 = 6666.67 + 2400 = 9066.67$ R\$.

Sistema de Amortização Constante (SAC)

Conceito

- Amortização fixa: $A = \frac{VP}{n}$.
- Juros: $J_t = SD_{t-1} \cdot i$.
- Parcela: $P_t = A + J_t$.

Exemplo: Comparação com Price (Engenharia)

Empréstimo de R\$20.000 a 12% a.a. por 3 anos:

$$A = \frac{20000}{3} = 6666.67 \text{ R}$$
\$

Ano 1:
$$J_1 = 20000 \cdot 0.12 = 2400$$
, $P_1 = 6666.67 + 2400 = 9066.67$ R\$.

Característica

Parcelas decrescentes, com amortização constante.

Introdução

Anualidades

Tabela Price

Sistema de Amortização Constante (SAC)

Tabela de Amortização

Exercício Resolvido

Tabela de Amortização: Price vs. SAC

Comparação

Empréstimo de R\$20.000 a 12% a.a. por 3 anos.

Tabela de Amortização: Price vs. SAC

Comparação

Empréstimo de R\$20.000 a 12% a.a. por 3 anos.

Ano	Parcela Price (R\$)	Saldo Price (R\$)	Parcela SAC (R\$)	Saldo SAC (R\$)
0	-	20000.00	-	20000.00
1	8307.92	14191.91	9066.67	13333.33
2	8307.92	7587.79	8266.67	6666.67
3	8307.92	0.00	7466.67	0.00

Table: Comparação entre Tabela Price e SAC para R\$20.000 a 12% a.a.

Tabela de Amortização: Price vs. SAC

Comparação

Empréstimo de R\$20.000 a 12% a.a. por 3 anos.

Ano	Parcela Price (R\$)	Saldo Price (R\$)	Parcela SAC (R\$)	Saldo SAC (R\$)
0	-	20000.00	-	20000.00
1	8307.92	14191.91	9066.67	13333.33
2	8307.92	7587.79	8266.67	6666.67
3	8307.92	0.00	7466.67	0.00

Table: Comparação entre Tabela Price e SAC para R\$20.000 a 12% a.a.

Introdução

Anualidades

Tabela Price

Sistema de Amortização Constante (SAC)

Tabela de Amortização

Exercício Resolvido

Exercício Resolvido

Problema

Calcule as parcelas de um empréstimo de R\$50.000 a 10% a.a. por 3 anos, usando Tabela Price.

Exercício Resolvido

Problema

Calcule as parcelas de um empréstimo de R\$50.000 a 10% a.a. por 3 anos, usando Tabela Price.

Solução

$$P = 50000 \cdot \frac{0.10 \cdot (1 + 0.10)^3}{(1 + 0.10)^3 - 1}$$

$$P = 50000 \cdot \frac{0.10 \cdot 1.331}{1.331 - 1} = 50000 \cdot 0.402114 = 20105.70 \text{ R\$/ano}$$

Exercício Resolvido

Problema

Calcule as parcelas de um empréstimo de R\$50.000 a 10% a.a. por 3 anos, usando Tabela Price.

Solução

$$P = 50000 \cdot \frac{0.10 \cdot (1 + 0.10)^3}{(1 + 0.10)^3 - 1}$$

$$P = 50000 \cdot \frac{0.10 \cdot 1.331}{1.331 - 1} = 50000 \cdot 0.402114 = 20105.70 \text{ R\$/ano}$$

Tabela de Amortização:

Ano	Parcela (R\$)	Juros (R\$)	Amortização (R\$)	Saldo (R\$)
0	-	-	-	50000.00
1	20105.70	5000.00	15105.70	34894.30
2	20105.70	3489.43	16616.27	18278.03
3	20105.70	1827.80	18277.90	0.00

14 / 16

Introdução

Anualidades

Tabela Price

Sistema de Amortização Constante (SAC)

Tabela de Amortização

Exercício Resolvido

Conclusão e Recursos

Resumo

- Anualidades: Calculam o valor presente de séries uniformes.
- Tabela Price: Parcelas fixas, juros decrescentes.
- SAC: Parcelas decrescentes, amortização constante.

Conclusão e Recursos

Resumo

- Anualidades: Calculam o valor presente de séries uniformes.
- Tabela Price: Parcelas fixas, juros decrescentes.
- SAC: Parcelas decrescentes, amortização constante.

Recursos Adicionais

- Livro: Matemática Financeira José Dutra Vieira Sobrinho
- Site: B3 Bolsa do Brasil
- Calculadora: Tesouro Direto
- Voltar ao Sumário

Conclusão e Recursos

Resumo

- Anualidades: Calculam o valor presente de séries uniformes.
- Tabela Price: Parcelas fixas, juros decrescentes.
- SAC: Parcelas decrescentes, amortização constante.

Recursos Adicionais

- Livro: Matemática Financeira José Dutra Vieira Sobrinho
- Site: B3 Bolsa do Brasil
- Calculadora: Tesouro Direto
- Voltar ao Sumário

Para Refletir

Em que situações o SAC é mais vantajoso que a Tabela Price?