Measures of Center (part 1)

Gaston Sanchez

Creative Commons Attribution Share-Alike 4.0 International CC BY-SA

Descriptive Statistics

- 1 Frequency Tables
- 2 Charts & Graphics
- 3 Numeric Summaries

Measures of Center

Looking for a "middle value"

Measures of center

Middle or Central Value

Is there a "representative" value around which all values concentrate?

Meaning of Middle Value

Mean: Average

Median: Middle point

We'll focus on these 2

Mode: Most common

Average or Mean

Average

Average or mean value

When we talk about the Average we refer to the arithmetic mean

10

Toy Example

num	Weight oz	Carbs	Acidity	Shape
1	5	20.0	medium	round
2	6	24.3	high	oval
3	7	25.0	medium	round
4	7	25.5	low	square
5	6	24.7	medium	round
6	8	26.1	low	round
7	6	25.2	high	square
8	9	23.7	high	oval
9	10	21.0	low	round
10	8	27.4	medium	oval

Finding the Average

weights: 5, 6, 6, 6, 7, 7, 8, 8, 9, 10

$$Avg = \frac{5+6+6+6+7+7+8+8+9+10}{10}$$

$$Avg = 7.2$$

Average Formula

sum of all values

Avg =
$$\frac{x_1 + x_2 + x_3 + \dots + x_n}{n}$$
n

number of values

Average Formula: "X-bar"

$$\overline{X} = \frac{X_1 + X_2 + X_3 + \dots + X_n}{n}$$

number of entries

Average Formula (summation notation)

$$\overline{X} = \frac{\sum_{i=1}^{n} X_{i}}{n}$$
number of entries

Average (summation notation)

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

equivalently

$$\overline{X} = \sum_{i=1}^{n} \frac{X_i}{n}$$

Very Important Property (VIP)

Average Formula

sum of entries

Avg =
$$\frac{x_1 + x_2 + x_3 + \dots + x_n}{n}$$
n
number of entries

Very Important Property (VIP)

$$\sum_{i=1}^{n} (x_i - ?) = 0$$

Very Important Property (VIP)

$$\sum_{i=1}^{n} (x_i - \overline{x}) = 0$$

The average causes the sum of all deviations to be exactly zero

Very Important Property (VIP)

$$\sum_{i=1}^{n} (x_i - \overline{x}) = 0$$
Th So what? of all o

Gaston Sanchez

About the average

some data values

1 2

7 8 12

About the average

some data values

where is the balancing point?

About the average

the average!!!

Gaston Sanchez 25

Median

Median

The median is the midpoint or central value of an ordered distribution

At least half of the values must be less than or equal to the median, the other half must be greater than or equal to the median

27

How to find the Median?

Order values from smallest to largest

Determine number of values: n

2

num	Weight oz	Carbs	Acidity	Shape
1	5	20.0	medium	round
2	6	24.3	high	oval
3	7	25.0	medium	round
4	7	25.5	low	square
5	6	24.7	medium	round
6	8	26.1	low	round
7	6	25.2	high	square
8	9	23.7	high	oval
9	10	21.0	low	round
10	8	27.4	medium	oval

Finding the Median

Apple weight values

5, 6, 7, 7, 6, 8, 6, 9, 10, 8

Oder values from smallest to largest

5, 6, 6, 6, 7, 7, 8, 8, 9, 10

How many values?

n = 10 (even)

Finding the Median (even number of values)

$$M_{0.5} = \frac{\text{sum of middle two values}}{2}$$

$$position \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10$$

$$5, \ 6, \ 6, \ 6, \ 7, \ 7, \ 8, \ 8, \ 9, \ 10$$

$$middle \ two \ values \ \uparrow \ \uparrow$$

Median =
$$(7 + 7) / 2 = 7$$

What the median does

position 1 2 3 4 5
$$| 6 7 8 9 10$$

5, 6, 6, 6, 7, $| 7, 8, 8, 9, 10$
lower half $M = 7$ upper half

32

Finding the Median (odd number of values)

Let's remove one observation

Oder values from smallest to largest 5, 6, 6, 6, 7, 7, 8, 9, 10

How many values?

$$n = 9 \pmod{9}$$

Finding the Median (odd number of values)

Median = 7

Algebra Reminder

Notation Review

Symbol	Meaning		
n	number of individuals		
X _i	value of individual i		
Σ	summation		
x^2	square value		
x	absolute value		

Summation reminder

\(\sigma''\)

(upper-case)

5 observations x_1, x_2, x_3, x_4, x_5

$$x_1 + x_2 + x_3 + x_4 + x_5$$

sum of all values

$$\sum_{i=1}^{5} x_i = x_1 + x_2 + x_3 + x_4 + x_5$$

$$\sum_{i=1}^{5} |\mathbf{x}_{i}| = |\mathbf{x}_{1}| + |\mathbf{x}_{2}| + |\mathbf{x}_{3}| + |\mathbf{x}_{4}| + |\mathbf{x}_{5}|$$

sum of absolute values

$$\sum_{i=1}^{5} x_i^2 = x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2$$

sum of square values

Summation properties

$$\sum_{i=1}^{5} a = a + a + a + a + a + a = 5a$$
constant
In general:

$$\sum_{i=1}^{n} a = na$$

Summation properties

$$\sum_{i=1}^{5} 3 = 3 + 3 + 3 + 3 + 3 = 5(3)$$
constant

$$\sum_{i=1}^{5} 3 = 15$$

Summation properties

$$\sum_{i=1}^{n} (x_i + a) = \sum_{i=1}^{n} x_i + \sum_{i=1}^{n} a$$

$$\sum_{i=1}^{n} x_i^2 \qquad ? \qquad \left(\sum_{i=1}^{n} x_i\right)^2$$

equal or different?

$$\left(\sum_{i=1}^{5} x_{i}\right)^{2} = \left(x_{1} + x_{2} + x_{3} + x_{4} + x_{5}\right)^{2}$$

square sum of values

$$\sum_{i=1}^{5} x_i^2 = x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2$$

$$\left(\sum_{i=1}^{5} x_i\right)^2 = \left(x_1 + x_2 + x_3 + x_4 + x_5\right)^2$$