Classification of Landslides

> Falls

involve <u>immediate separation</u> of the falling material from parent rock or soil mass

> Slide

moving material <u>remains in contact</u> and movement takes place along discrete shear surfaces

> Flows

material becomes <u>disaggregated</u> and movement occurs without necessarily forming discrete shear surfaces

Large landslides often change from one type to another as they progress

Slides

>Translational

≻Rotational

≻Compound

Geotechnical Classification of Landslides

> "First time slides" in low plasticity soils

Geotechnical Classification of Landslides

> "First time slides" in high plasticity soils

Progressive Failure: Failure does not occur on the whole surface at the same time

Geotechnical Classification of Landslides

- >"First time slides"
- Slides on Pre-existing Shears

Usually involve RESIDUAL strength

Shear surface exposed in a trial pit From Bromhead (1992)

Pore Water Pressure Conditions

- >Short-term failures
- Long-term failures
- >Intermediate-term failures

How long does it take to reach pore pressure equilibrium????

It depends!!

e.g.

- 10 days in Bangkok clay for 4m excavation depth
- 1 month in Mexico city clay for 4.5-8m excavation depth
- London Clay: ~ 50 years for 6-12m deep cuts
 - ~ 2000 years for 44m high cliffs at Warden Point

Limit Equilibrium

- A mechanism of collapse is assumed involving a failure surface that may be planar, curved or some combination of these
- ➤ A failure criterion (in terms of shear strength parameters, either total or effective) holds everywhere along the failure surface
- Only the global equilibrium of the rigid blocks of soil between the failure surfaces and the boundaries of the problem is considered
- The internal distribution within the blocks is not considered

Factor of Safety

Effective Stress Analysis

Shear strength at failure $B = c' + \sigma'$ tan ϕ'

Mobilised Shear strength $A = c'_m + \sigma' \tan \phi'_m$

$$c'_m = c'/F$$

tan $\phi'_m = \tan \phi'/F$

Factor of Safety

Total Stress Analysis

$$F=S_u/A$$

$$\tau_{\text{mob}} = S_{\text{u}} / F$$

Important Assumption:

FoS assumed to be constant along the slip surface

Factor of Safety

Other definitions

$$F = \frac{\sum Resisting forces}{\sum Disturbing forces}$$

Planar failure surfaces

$$F = \frac{\sum Resisting moments}{\sum Overturning moments}$$

Rotational failure surfaces

In most cases the FoS on shear strength is adopted

Objectives of Limit Equilibrium Analysis

Knowing the geometry of the slope i.e. H, β
FoS????

For a given FoS to design a slope

Back analysis of existing slopes

S,,??

c', \phi'??

Limit Equilibrium Procedures

- ➤ Methods for Planar Movements
- Methods for Rotational Movements
- Methods for Non-rotational Movements

Slides

- **≻**Translational
- **≻**Rotational
- ➤ Compound

Planar Movements

Applications

Elongated landslides, i.e. The ratio of depth to failure surface to length of failure zone is relatively small (D/L<10%)

Translational failures along a single plane failure surface parallel to slope surface

Additional Assumptions

- The slope is infinitely long
- The failure surface is parallel to the ground surface
- Uniform pwp conditions exist

Mobilised shear strength along the failure plane:

$$\tau_{\rm mob} = \frac{S}{L}$$

Resolving forces parallel to the slip surface

$$S = W \sin \beta$$

$$\tau_{\text{max}} = c' + \left(\frac{N'}{L}\right) tan \phi'$$

$$\tau_{\text{mob}} = \frac{S}{L}$$

$$N' = W \cos \beta - U$$

$$S = W \sin \beta$$

$$F = \frac{\tau_{\text{max}}}{\tau_{\text{mob}}} = \frac{c' + (\gamma Z \cos^2 \beta - u) \tan \phi'}{\gamma Z \sin \beta \cos \beta}$$

$$F = \frac{\tau_{\text{max}}}{\tau_{\text{mob}}} = \frac{c' + (\gamma Z \cos^2 \beta - u) \tan \phi'}{\gamma Z \sin \beta \cos \beta}$$

Special cases:

Dry cohesionless soil, c'=u=0

$$F = \frac{\tan \varphi'}{\tan \beta}$$

FoS is independent of the depth of the slip surface

Saturated, cohesionless soil, c'=0

$$F = \frac{\gamma'}{\gamma} \frac{\tan \phi'}{\tan \beta} \approx \frac{1}{2} \frac{\tan \phi'}{\tan \beta}$$

FoS is still independent of the depth of the slip surface, but it is approximately halved

Steady seepage parallel to the ground surface with phreatic surface at vertical height m×Z above the slip surface

$$u = \gamma_w \, m \, Z \cos^2 \! \beta$$

Good approximation for slopes with a thin layer of soil that has low strength in comparison to overlying materials.

Resolving forces perpendicular to the slip surface

$$N' = W\cos\alpha - U - U_t \sin\alpha$$

Resolving forces parallel to the slip surface

$$S = W \sin\alpha + U_t \cos\alpha$$

$$N' = W \cos \alpha - U - U_{t} \sin \alpha \qquad \qquad \tau_{max} = c' + \left(\frac{N'}{L}\right) \tan \phi'$$

$$S = W \sin \alpha + U_{t} \cos \alpha \qquad \qquad \tau_{mob} = \frac{S}{L}$$

$$F = \frac{Lc' + (W\cos\alpha - U - U_{t}\sin\alpha)\tan\phi'}{W\sin\alpha + U_{t}\cos\alpha}$$

$$F = \frac{Lc' + (W\cos\alpha - U - U_t \sin\alpha)tan\phi'}{W\sin\alpha + U_t \cos\alpha}$$

Special cases:

▶ Dry cohesionless soil, c'=U=U_t=0

$$F = \frac{\tan \phi'}{\tan \alpha}$$

Slope reaches limiting equilibrium when α = ϕ '. Stability is independent of height, H, depending only on geometry and not scale.

$$F = \frac{Lc' + (W\cos\alpha - U - U_t \sin\alpha) \tan\phi'}{W\sin\alpha + U_t \cos\alpha}$$

Special cases:

➤ Total Stress Analysis

$$F = \frac{S_u L}{W \sin \alpha + U_t \cos \alpha}$$

$$F = \frac{Lc' + (W\cos\alpha - U - U_t \sin\alpha) tan\phi'}{W\sin\alpha + U_t \cos\alpha}$$

Special cases:

Water level in tension crack is Z_{wt} & pwp reduces linearly along the slip surface from γ_wz_{wt} at **b** to zero at **a**. U_t and U are given by:

$$\mathbf{U}_{t} = \frac{1}{2} \gamma_{w} \, \mathbf{Z}_{wt}^{2}$$

$$U = \frac{1}{2} \gamma_w Z_{wt} L$$

Planar Movements

- Only force equilibrium has been used to obtain the above solutions.
- For moment equilibrium to be satisfied the forces acting on the failing block must give no net moment.
- As the distribution of normal stress σ_n along the slip surface **ab** has not been considered the point of action of N' is unknown.
- Application of moment equilibrium would enable this to be determined.
- However, it would not affect the solutions obtained above.

Rotational Movements

Circular Arc (or $\phi_u=0$) Method

- The failure surface is assumed to be an arc of a circle
- The shear strength is defined by the undrained strength

Circular Arc (or $\phi_u=0$) Method

Circular Arc (or $\varphi_u=0$) Method

Resisting moment

$$M_R = SR = R \frac{S_u}{F} \sum dl = R \frac{S_u L}{F}$$

Disturbing moment

$$M_D = WX$$

Equating the above two equations and rearranging an expression for the FoS is obtained:

$$F = \frac{R S_u L}{W X}$$

Circular Arc (or $\phi_u=0$) Method

- The above result can also be obtained by applying the Upper Bound (unsafe) theorem of plasticity.
- Can include tension cracks at the crest of the slope

Circular Arc (or $\varphi_u=0$) Method

- The above result can also be obtained by applying the Upper Bound (unsafe) theorem of plasticity.
- Can include tension cracks at crest of slope
- Can deal with contained water at toe (i.e. if a canal or reservoir embankment)

Circular Arc (or $\phi_u=0$) Method

- The above result can also be obtained by applying the Upper Bound (unsafe) theorem of plasticity.
- Can include tension cracks at crest of slope
- Can deal with contained water at toe (i.e. if a canal or reservoir embankment)
- \triangleright Can include layered soils or soils in which S_u varies spatially.

Circular Arc (or $\varphi_u=0$) Method

- The above result can also be obtained by applying the Upper Bound (unsafe) theorem of plasticity.
- Can include tension cracks at crest of slope
- Can deal with contained water at toe (i.e. if a canal or reservoir embankment)
- ➤ Can include layered soils or soils in which S_u varies spatially.
- A search must be made for the most critical slip surface (i.e. one with lowest factor of safety)

Critical Slip Surface

Step 1: Choose a centre of rotation and consider a series of

slip surfaces of different radii

Critical Slip Surface

Step 1: Choose a centre of rotation and consider a series of slip surfaces of different radii Step 2: Plot the FoS against the radius Factor of Safety Critical circle for a specific centre Radius

Critical Slip Surface

Step 3: Repeat steps 1 and 2 for an array of centres

Step 4: Draw contours of FoS to locate the overall worst critical circle

Statically determinate problems

 \triangleright For planar slip surfaces, the resultant direction of $\sum \Delta P$ is known

$$\Delta S = \Delta C + \Delta P sin \phi_m'$$

 \triangleright For total stress analysis using circular slip surfaces the resultant direction of $\Sigma\Delta P$, passes through the centre of the slip surface

Effective Stress analysis

△C forces act circumferentially at a constant radius R

$$M_{\Delta C} = R \sum \! \Delta C = R \sum \! c' \, dI/F$$

$$\Delta P = dl \left(\frac{\sigma_n - u}{\cos \phi_m'} \right)$$

$$\phi_{m}' = \arctan\left(\frac{\tan \phi'}{F}\right)$$

$$\Delta S = \Delta C + \Delta P sin \phi'_{m}$$

Magnitude, direction and line of action of the resultant force **ΣΔP** is unknown

The problem is statically indeterminate

Effective Stress analysis

- For effective stress analysis using circular slip surfaces, an <u>additional</u> assumption is needed to render the problem statically determinate
- Several different alternatives available
 - Log-spiral method
 - Friction circle method
 - Method of Slices

- ➤ This is essentially a numerical approach in which the sliding soil mass is divided into 'n' slices
- Equilibrium is then applied to each slice in turn
- The method is formulated so that the factor of safety is calculated for a known slope geometry

Known:

- ➤ Geometry of the slope
- >Bulk unit weight, γ , and strength parameters, c' and φ' (or S_{II}) for the soil

<u>Unknown</u> :	Number
•Magnitude N (or N')	n
 Magnitude of shear force, S 	n
Magnitude of inter-slice force, E (or E')	n-1
 Magnitude of interslice force, X 	n-1
 Point of application (i.e. line of action) of N (or N') 	n
 Point of application (i.e. line of action) of E (or E') 	n-1
•Factor of safety, F	1

Total unknown $\sum = 6n-2$

Total unknown: $\sum = 6n-2$

Equations:

- Force equilibrium (2 per slice)
- Moment equilibrium (1 per slice)
- Failure criterion, (1 per slice)

Total number of equations: $\sum = 4n$

STATICALLY INDETERMINATE

2n

n

n

Total unknown: $\sum = 6n-2$

Total number of equations: $\Sigma = 4n$

2n-2 additional independent assumptions are needed

- There are many (infinite?) different combinations of assumptions that can be made
- Consequently numerous methods of slices have been developed
- Some methods actually make too many assumptions (i.e. more than 2n-2) and, consequently- either do not satisfy all 3 equations of equilibrium or have to iterate to obtain a consistent solution.

Assumptions: Number

Neglects the inter-slice forces (i.e. X=E=0):

- •Magnitude of inter-slice force, E (E=0) n-1
- •Magnitude of inter-slice force, X (X=0) n-1

The normal force, N acts through the centre of the base of the slice:

Point of application (i.e. line of action) of N

Total number of assumptions: $\Sigma = 3n-2$

- Consequently there are n more assumptions than required
- > Only the moment and one force equilibrium equation considered
- Therefore force equilibrium is not fully satisfied.

$$M_{R} = R \sum S_{i} = \frac{R}{F} \sum \left[c'_{i} l_{i} + \left(N_{i} - U_{i}\right) tan \phi'_{i}\right]$$

Disturbing moment

$$M_{D} = \sum W_{i} x_{i}$$

Equating the above two equations and rearranging an expression for the FoS is obtained:

$$F = R \frac{\sum [c'_i l_i + (N_i - U_i) tan \phi'_i]}{\sum W_i x_i}$$

$$F = R \frac{\sum \left[c_i' l_i + \left(N_i - U_i\right) tan\phi_i'\right]}{\sum W_i x_i}$$

Resolving forces perpendicular to base of slice

$$N_i = W_i \cos \alpha_i$$

and noting that $x_i = R \sin \alpha_i$

- Conventional method is the only one that allows the FoS to be calculated directly (i.e. non-iterative solution)
- Force equilibrium is not fully satisfied
- ➤ Yields conservative results due to inconsistent calculation of effective stresses at the base of the slices
- Accurate only when the central angle of the arc forming the slip circle is relatively small

Bishop Simplified Method of Slices

Assumptions: Number

Neglects inter-slice shear forces (i.e. X=0):

- •Magnitude of inter-slice force, X (X=0) n-1

 The normal force, N acts through the centre of the base of the slice:
- Point of application (i.e. line of action) of N

Total number of assumptions: $\Sigma = 2n-1$

- Consequently there is 1 more assumption than required -one constraint cannot be satisfied
- This usually manifests itself as failure to satisfy horizontal equilibrium in one slice. The error is usually small- acceptable

Bishop Simplified Method of Slices

The equation for the factor of safety is derived in a similar way to that for the conventional method

$$F = R \frac{\sum [c'_i l_i + (N_i - U_i) tan \phi'_i]}{\sum W_i x_i}$$

Resolving forces vertically:

$$N_i \cos \alpha + S_i \sin \alpha_i - W_i = 0$$

$$N_{i} = \frac{W_{i} - \frac{\sin \alpha_{i}}{F} (c'_{i} l_{i} - U_{i} \tan \phi'_{i})}{\cos \alpha_{i} + \frac{\sin \alpha_{i} \tan \phi'_{i}}{F}}$$

Bishop Simplified Method of Slices

$$F = \frac{1}{\sum W_{i} \sin \alpha_{i}} \sum \frac{c_{i}' l_{i} \cos \alpha_{i} + (W_{i} - U_{i} \cos \alpha_{i}) \tan \phi_{i}'}{\cos \alpha_{i} + \frac{\sin \alpha_{i} \tan \phi_{i}'}{F}}$$

- ➤ An initial value of F is assumed and used to evaluate the right hand side of the above equation and thus determine a new value of F
- The procedure is then repeated with this new value of F
- This continues until successive changes in the value of F are small.

Methods of Slices for Rotational Slides

	Conventional Method	Bishop Simplified Method
Assumptions	 inter-slice shear forces =0 inter-slice normal forces=0 The normal force, N acts through the centre of the base of the slice 	 inter-slice shear forces =0 The normal force, N acts through the centre of the base of the slice
Equilibrium Equations used	 Moment equilibrium Force equilibrium perpendicular to the slip surface. 	 Moment equilibrium Force equilibrium in the vertical direction

Slope Stability analysis

- Planar movements
- Rotational movements
 - Circular Arc method (total stress analysis)
 - Method of slices

Stability Charts

- Limit equilibrium solutions involve time consuming and repetitive calculations
- For simple problems one can use a corpus of established solutions in the form of stability charts
- These charts rely on dimensionless relationships that exist between the FoS and other parameters that describe the slope geometry, shear strength and pore water pressures
- They provide the *minimum* FoS and thus eliminate the need to search for a critical slip surface.

Taylor (1948)- based on Circular Arc method

- Su is constant with depth
- There are no tension cracks
- ➤ No water pressures act on the slope

D: ratio of the depth of the homogenous layer to the height of the slope, H

- •Firm base is located at a short distance below the level **c**
- Critical circle tangential to firm base

Slope circle

 Critical circle passes through the toe c of the slope

Toe circle

Foundation circle

- Base failure
- The centre of the foundation circle is located on a vertical line that passes through the midpoint of the slope.

Independent variables:

- ➤ Height H
- Slope angle β
- Mobilised strength Su/F
- Unit weight γ
- Depth factor D

Dimensionless Stability number

$$N = \frac{S_u}{F_{\gamma}H} = f(\beta, D)$$

 β >53°, failure occurs along a toe circle β <53°, the type of failure depends on the value of the depth factor D

$$N = \frac{S_u}{F \gamma H}$$

 β =20°, H=8m, γ =19kN/m³, Su=40kPa,

$$F = \frac{S_u}{N \gamma H}$$

N=0.18, so F=1.46

$$N = \frac{S_u}{F\gamma H}$$

 β =20°, H=8m, γ =19kN/m³, Su=40kPa, D=1.5

$$F = \frac{S_u}{N \gamma H}$$

N=0.15, so F=1.75

$$N = \frac{S_u}{F\gamma H}$$