6. AUTHOR(S)						
			•		5d. PROJECT N	JMBER
	•		•		2362	
					5e. TASK NUMB	FR
					MALC A!	
					MIGH	
					5f. WORK UNIT I	NUMBER
7 DEDECIDADA	C ODCANIZATION NAME	(0) AND 1555				
	G ORGANIZATION NAME				8. PERFORMING REPORT	ORGANIZATION
Air Force Rese	earch Laboratory (AFM	C)				Ì
AFRL/PRS			• .		j	
5 Pollux Drive	•					
	CA 93524-7048	•				
Luwaius Arb	CA 95524-7048				· .	
					1	İ
9. SPONSORING	G / MONITORING AGENC	Y NAME(S) AND ADDRE	99/E9\	······································	40 0001100	
		· · · · · · · · · · · · · · · · · · ·	.33(E3)		10. SPONSOR/M ACRONYM(S)	ONITOR'S
Air Force Rese	earch Laboratory (AFM	C)				
AFRL/PRS	and Dadoratory (ATM	<i>C)</i>				
					11. SPONSOR/M	ONITOR'S
5 Pollux Drive					NUMBER(S)	
Edwards AFB	CA 93524-7048					
12. DISTRIBUTE	ON / AVAILABILITY STAT	EMENT			······································	
					÷	
Approved for p	oublic release; distribution	on unlimited.				
•	,				!	
12 CHDDI EACH	ITADY NOTES	······································				,
13. SUPPLEMEN	VIARY NOTES					
			•		i	İ
14 4007040-					i	İ
14. ABSTRACT						
					1	
					1	:
				•	1	İ
				•		
						,
15. SUBJECT TEI	DMC	<u> </u>				
io. Gubucui IEI	กพอ					
•						
16. SECURITY CL	ASSIFICATION OF:		17. LIMITATION	18. NUMBE	D 100 NAME O	F DECDONOLD F
			OF ABSTRACT	OF PAGES		F RESPONSIBLE
				OI FAGES		
a. REPORT	b. ABSTRACT	c. THIS PAGE	-		Leilani Rich	
	J. ADOTTACT	U. IRIS PAGE	1		19b. TELEPH	ONE NUMBER

REPORT DOCUMENTATION PAGE

2. REPORT TYPE

Technical Papers

4. TITLE AND SUBTITLE

6. AUTHOR(S)

Unclassified

Unclassified

Unclassified

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

36 separate vers one enclosed

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18

(include area code)

(661) 275-5015

Form Approved

OMB No. 0704-0188

3. DATES COVERED (From - To)

5c. PROGRAM ELEMENT NUMBER

5a. CONTRACT NUMBER

5b. GRANT NUMBER

TP-FY99-0144 62

~ Spreadheet

MEMORANDUM FOR PRS (Contractor/In-House Publication)

FROM: PROI (TI) (STINFO)

15 June 1999

SUBJECT: Authorization for Release of Technical Information, Control Number: AFRL-PR-ED-TP-FY99-0144

Tim Miller, "Mixed-Mode Fracture in a Rubbery Particulate Matrix"

6th Annual International Conference on Composites
Yu/Graphs

(Public Release)

Mixed-Mode Fracture in a Rubbery Particulate Composite

Timothy C. Miller Air Force Research Laboratory Sixth Annual International Conference on Composites Orlando, Florida June/July 1999 Engineering

₽Ę.

20021119 130

Outline of Presentation

- Introduction
- ► What is the problem?
- ► How do we solve the problem?
- Experimental Procedure
- ► Procedure Followed
- ► Difficulties Encountered
- Results
- ► Crack Initiation Toughness Results
- ► Kink Angle Results
- ► Crack Growth Results
- Conclusions and Recommendations for Future Work

P.

Problem Statement

Reasons for Examining Mixed-Mode Cracking

■ Damage During Manufacture or Handling May Cause Cracks That Are Later Subjected to Mixed-Mode Loading

Cracks Near or at Interfaces Are Inherently Mixed-Mode Cracks

Analysis of Mixed-Mode Cracking is Substantially More Complicated Than for Mode I Cracks

Method of Solution

- Test Various Mixed-Mode Specimens
- ► Measure Load at Initiation
- ► Measure Crack Length (Simplified Manner) Versus Time
- ► Measure Kink Angle
- Use Finite Elements and Experimental Load Measurements to Determine Fracture Parameters at Initiation of Growth
- Use Crack Length Versus Time to Determine Simplified Crack **Growth Model**
- Use Kink Angle Measurements to Determine if Available Theories Can Adequately Predict Growth Direction

Specimen Geometry for Mixed-Mode Testing

Crack Angles Used Are 0 (Mode I), 15, 30, 45, and 60 Degrees

Sample Finite Element Mesh for Computational Models

Displacement Boundary Conditions Are Used, Crack Orientation Shown Here is 30 Degrees

Modeling Mixed-Mode Crack Growth Using a Simplified Approach

Simplified Geometry Can Be Used to Analyze Crack Growth Rates Successfully

Difficulties Encountered

■ Large Deformations Make In-Situ Determination of Kink Angles Difficult

■ Mixed-Mode Inititation Toughness Locus is Linked to Micromechanisms That Are Poorly Understood

■ Linear Elasticity May Not Be Valid

Crack in a Propellant Specimen Shortly After Initiation of Crack Growth

Large Deformations Make Kink Angle Determination Ambiguous

Ligament Bridging Near the Crack Tip in a Rubbery Composite Specimen

Mechanisms Such as Ligament Bridging May Account for Shape of Mixed-Mode Failure Locus in a Rubbery Particulate Composite

Experimental and Computed Moiré Fringes and Crack Opening Displacements for a Rubbery Particulate Composite

Good Agreement Shows That Linear Elastic Fracture Mechanics Works Well

THE STATE OF THE S

Results

- Results for Initiation Toughness Show That Elliptical Curve Fit Works Well
- Results for Kink Angle Determinations Show More Deviation From Theory Than Expected
- Use of Simplified Approach to Predict Crack Growth Rate Works

Ne.

Elliptical Failure Locus for Initiation of Crack Growth

Unlike the Failure Locus for Metals, the Mode I Fracture Toughness is Higher Than its Mode II Counterpart

$$\left[\frac{K_{I}}{K_{IC}}\right]^{2} + \left[\frac{K_{II}}{K_{IIC}}\right]^{2} = 1$$

Kink Angles Plotted as a Function of Crack Orientation Angle

Experimental Results Show Some Deviation From Existing Theories

- max tensile stress theory
- max energy release rate theory
- ▲ max strain energy density theory
- * propellant experiments

Mixed-Mode Experiments as a Function Effective Crack Growth Rate for the of Stress Intensity

Use of Simplified Approach Shows Agreement Even With Different Levels of Mode Mixity

$$\frac{da_{eff}}{J_t} = CK_I^m$$

Conclusions

- properties, high elongations, and complicated failure mechanisms, they can be studied, for a given nominal strain rate, using linear Although rubbery particulate composites have viscoelastic elastic fracture mechanics.
- The complex stress intensity factor failure locus is elliptical.
- The kink angles match available theories best at higher levels of mixity. The best theory appears to be Strain Energy Density Theory, but all of the theories made similar predictions.
- A simplified approach that uses an equivalent mode I crack can be used to predict the crack growth rate for mixed-mode cracks