Problem 0.1:

(a) [DPV] 0.1(c): $f(n) = 100n + \log n, g(n) = n + (\log n)^2$

Solution.

C: f(n) = O(g(n)) and g(n) = O(f(n))

 $\log n$ and $(\log n)^2$ are both O(n), and can be ignored when comparing f(n) and g(n). Ignoring constant factors, both f(n) and g(n) are $\Theta(n)$, so f(n) = O(g(n)) and g(n) = O(f(n)).

(b) [DPV] 0.1(d): $f(n) = n \log n, g(n) = 10n \log 10n$

Solution.

C: f(n) = O(g(n)) and g(n) = O(f(n))

 $\log 10n = \log 10 + \log n$, and $\log 10$ can be ignored here. Ignoring constant factors, both f(n) and g(n) are $\Theta(n \log n)$, so f(n) = O(g(n)) and g(n) = O(f(n)).

(c) [DPV] 0.1(k): $f(n) = \sqrt{n}, g(n) = (\log n)^3$

Solution.

B: g(n) = O(f(n))

Taking the cube root of each f(n) and g(n) yields $n^{1/6}$ and $\log n$. Any positive power of n, including powers less than 1, will dominate $\log n$, so g(n) = O(f(n)).

(d) [DPV] $0.1(\ell)$: $f(n) = \sqrt{n}, g(n) = 5^{\log_2 n}$

Solution.

A: f(n) = O(g(n))

$$5^{\log_2 n} = \left(2^{\log_2 5}\right)^{\log_2 n} = \left(2^{\log_2 n}\right)^{\log_2 5} = n^{\log_2 5}.$$

Since $\log_2 5 > 1$ we have that $n^{\log_5 2} > n > n^{.5}$. Therefore, f(n) = O(g(n)).

Problem 6.2: Hotel stops with minimum penalty

(a) Define the entries of your table in words. E.g., T(i) or T(i,j) is ...

Solution.

T(i) is the minimum penalty obtainable for the trip from mile 0 to mile a_i , with the last stop at hotel i.

(b) State recurrence for entries of table in terms of smaller subproblems.

Solution.

Each entry T(i) is computed as the minimum over all previous hotels k of the minimum penalty to get to hotel k plus the penalty from hotel k to hotel i. $T(i) = \min_{k} \{T(k) + (200 - (a_i - a_k))^2 : 0 \le k \le i - 1\}$

(c) Write pseudocode for your algorithm to solve this problem.

Solution.

```
T(0) = 0 for i = 1 to n: T(i) = (200 - a_i)^2 prev(i) = NULL for k = 1 to i - 1: if \ T(i) > T(k) + (200 - (a_i - a_k))^2 \text{ then } T(i) = T(k) + (200 - (a_i - a_k))^2 prev(i) = k # T(n) is now the minimum penalty # Next, output the optimal sequence of hotels i = n output(i) while prev(i) \neq NULL: i = prev(i) output(i)
```

(d) Analyze the running time of your algorithm.

Solution.

Each entry in T(i) takes O(n) time to compute, since each is the minimum over up to n-1 expressions. There are n entries in T, so this algorithm takes $O(n^2)$ time.

Problem 6.3: Yuckdonald's

(a) Define the entries of your table in words. E.g., T(i) or T(i,j) is ...

Solution.

T(i) is the maximum profit from a valid subset of locations from $m_1, m_2, ...m_i$ that includes m_i .

(b) State recurrence for entries of table in terms of smaller subproblems.

Solution.

Each entry T(i) is computed as the profit from opening location i, plus the maximum profit from previous valid sets of locations at least k miles away from location i. $T(i) = p_i + \max_i \{T(j) : j < i, m_i \le m_i - k\}$

(c) Write pseudocode for your algorithm to solve this problem.

Solution.

```
T(0)=0 for i=1 to n: T(i)=p_i for j=1 to i-1:  \text{if } m_j \leq m_i - k \text{ then }   \text{if } T(i) < T(j) + p_i \text{ then }   T(i) = T(j) + p_i  return \max_i L(i)
```

(d) Analyze the running time of your algorithm.

Solution.

Each entry in T(i) takes O(n) time to compute, since each is the maximum over up to n-1 expressions. There are n entries in T, so this algorithm takes $O(n^2)$ time.