Handbuch | Messverstärker DAD 141.1

0. Inhaltsverzeichnis

0.	Inhaltsverzeichnis	2
1.	Sicherheitshinweise	5
2.	EG-Konformitätserklärung	6
3.	Einführung und Spezifikationen	7
4.	Kommunikation und Erste Schritte	8
4.1.	. Serielle Schnittstelle	8
4.2.	. Befehlssprache	8
4.3.	. Baudrate	8
4.4.	. Erste Schritte via RS422/485-Schnittstelle	8
4.5.	. Erste Schritte via Ethernet-Schnittstelle	9
4.6.	. Modbus TCP oder Modbus RTU	9
5.	Hardware und Verdrahtung	10
5.1.	. Gehäuse & Anschlüsse	10
5.2.	. Anschluss Wägezelle / Waage	10
5.3.	. Anschluss Wägezelle	10
5.4.	. Anschluss Versorgungsspannung	11
5.5.		
5.6.	. Anschluss Ethernet	11
5.7.	. Justage-Schalter	11
5.8.	. Logische Ein- & Ausgänge	12
5.9.	. Analoge Ausgänge	12
6.	Menü-Struktur des Tasten-Setup	13
7.	Setup über Panel-Tasten	14
7.1.	. Tasten	14
7.2.	. Anwendung der Tasten	14
7.3.	. Menü 1 – Nullpunkt	15
7.4.	. Menü 2 – Verstärkung	16
7.5.	. Menü 3 – Anzeige	16
7.6.	. Menü 4 – Filter- & Stillstand-Setup	17
7.7.	. Menü 5 – Analog-Ausgang	18
7.8.	. Menü 6 – Logische Eingänge	19
7.9.		
7.10		
7.11	1. Fehler-Code	23
8.	Beispiele	24
8.1.	. Beispiel 1 – Justage mit Gewichten	24
8.2.	Beispiel 2 – Justage mit mV/V-Werten	26

9.	Befehlssatz – Übersicht	28
10.	PROTOKOLL-BESCHREIBUNG BEFEHLE	30
10.1	Befehle zur System-Diagnose – ID, IH, IV, IS, SR, RS	30
	1.1. ID Geräte-Identifizierung [Index 0x202C]	
	1.2. IH Hardware-Version	
-	1.3. IV Firmware-Version	
-	1.5. SR Software-Reset des DAD 141.1	31
	1.6. RS Seriennummer des DAD 141.1 [Index 0x2034]	
10.2.	Justage-Befehle – CE, CM, CI, DS, DP, CZ, CG, ZT, FD, ZR, ZI, AZ, AG, CS, SU, RU	
	2.1. CE TAC-Zanierstand / Offnert Justage-Sequenz [Index 0x2204]	
	2.3. CI Minimum Anzeigewert [Index 0x220E]	31
	2.4. DS Ziffernsprung [Index 0x2216] 2.5. DP Komma-Position [Index 0x2214]	32 32
	2.6. CZ Justage Nullpunkt [Index 0x2214]	32
_	2.7. CG Justage Verstärkung [Index 0x2206]	
	2.8. ZT Automatischer Null-Nachlauf [Index 0x2122]	
10	2.10. ZR Nullstellbereich [Index 0x2220]	33
_	2.11. ZI Einschalt-Nullstellen AN / AUS [Index 0x221E]	
	2.12. AZ Absolute Nullpunkt-Justage (eCal) [Index 0x2202]	
10	2.14. CS Justage speichern [Index 0x2066]	34
	2.15. SU Anwender-Setup im EEPROM speichern 2.16. RU Anwender-Setup aus EEPROM laden	
	Stillstand – NR, NT	
	3.1. NR Stillstand-Bereich [Index 0x2112]	
-	3.2. NT Zeitdauer Stillstand [Index 0x2114]	
10.4	Digitale Filter – FM, FL, UR	
_	4.1. FM Filter-Modus [Index 0x2110]	
	4.2. FL Filter-Grenzfrequenz [Index 0x2106]	
	Tarieren und Nullstellen – SZ, RZ, ZN, ST, RT, TN, RW, TI	
	5.1. SZ Nullstellen [Index 0x2061]	
10	5.2. RZ Null Rücksetzen [Index 0x2061]	38
	5.3. ZN Null-Wert speichern [Index 0x2226]	
-	5.5. RT Tarierung deaktivieren [Index 0x2061]	39
	5.6. TN Tara-Wert speichern [Index 0x2224]	
-	5.7. TW Automatische Tarierung [Index 0x240A]	
10.6.	Befehle Datenausgabe – GG, GN, ON, GT, GS, GW, GA, GH, GM, RM, GO, GV	
	6.1. GG Brutto-Messwert abfragen [Index 0x2000 oder 0x2020]	
	6.2. GN Netto-Messwert abfragen [Index 0x2002 oder 0x2022]	40
	6.3. ON Netto-Messwert von Gerät 'n' abfragen	
	6.5. GS AD-Wandler-Wert abfragen [Index 0x202A]	40
	6.6. GW Datenstring "Netto/Brutto/Status" abfragen [Index 0x3300 oder 0x3500]	
	6.7. GA Mittelwert abfragen	
10	6.9. TH Triggerung Hold-Wert [Index 0x2061]	41
	6.10. GM Spitzenwert abfragen [Index 0x2080 oder 0x2082]	
10	6.12. GO Spitze–Spitze-Wert abfragen [Index 0x208C oder 0x208E]	41
10	6.13. GV Minimum-Wert abfragen [Index 0x2088 oder 0x208A]	41

10.7. Aut	omatische Ausgabe – SG, SN, SW, SA, SH, SM, SO, SV	42
10.7.1.	SG Brutto-Messwert dauersenden	42
10.7.2.	SN Netto-Messwert dauersenden	
10.7.3. 10.7.4.	SW Datenstring "Netto, Brutto und Status" dauersenden	
10.7.5.	SH Hold-Wert dauersenden	
10.7.6.	SM Spitzenwert dauersenden	42
10.7.7.	SO Spitze-Spitze-Wert dauersenden	
10.7.8.	SV Minimum-Wert dauersenden	
_	ik-Eingang Funktionen & Status – Al'n', IN	
10.8.1.	Al Funktion Eingang 'n' zuweisen [Index 0x2074 oder 0x2076]	
10.8.2.	IN Status Logik-Eingang abfragen [Index 0x210C]	
	ik-Ausgang 'n' - IO, OM, S'n', H'n', P'n', A'n', HT	
10.9.1. 10.9.2.	IO Logik-Ausgang – Abfrage / Setup [Index 0x210A]	
10.9.3.	A'n' Aktion für Grenzwert 'n' zuweisen [Index 0x2110]	45
10.9.4.	S'n' Grenzwert 'n' [Index 0x206C]	45
10.9.5.	H'n' Hysterese und Schaltlogik Grenzwert 'n' [Index 0x206A]	
10.9.6. 10.9.7.	P'n' Polarität der Schaltlogik [Index 0x2070]HT Haltezeitdauer Grenzwert-Überschreitung [Index 0x2408]	4b 46
	ehle Schnittstellen-Kommunikation – AD, NA, BR, DX, OP, CL, TD	
10.10. Dei	AD Geräteadresse	
10.10.1.	NA Netzwerk-Adresse TCP/IP [Index 0x300C]	
10.10.3.	BR Baudrate	47
10.10.4.	DX Betriebsart Halb-/ Voll-Duplex	
10.10.5. 10.10.6.	OP Geräte-Kommunikation	
10.10.7.	TD Verzögerungszeit Datenübertragung	
10.11. Ana	alog-Ausgang – AA, AH, AL, AM	
10.11.1.	AA Zuordnung Analog-Ausgang [Index 0x2100]	
10.11.2.	AH Analog-Ausgang 'High Level' [Index 0x2102]	49
10.11.3.	AL Analog-Ausgang 'Low Level' [Index 0x2104]	49
10.11.4.	AM Modus Analog-Ausgang Strom/Spannung [Index 0x2128]	
	tage- und Einstellwerte speichern - CS, WP, SS, AS, GI, PI	
10.12.1.	CS Justage speichern	
10.12.2. 10.12.3.	WP Einstell-Parameter sichern [Index 0x2066]	
10.12.4.	AS Parameter Analog-Ausgang sichern [Index 0x2066]	
10.12.5.	GI EEPROM-Image als Datei sichern	
10.12.6.	PI EEPROM-Image von Datei in DAD 141.1 laden	
	ehle für getriggerte Messungen – SD, MT, GA, TE, TR, TL, SA	
10.13.1.	SD Startverzögerung Messung [Index 0x211A oder 0x2412]	
10.13.2. 10.13.3.	MT Messzeit zur Mittelwertbildung [Index 0x210E oder 0x2410]	
10.13.4.	TE Trigger-Flanke [Index 0x2402 oder 0x211C]	
10.13.5.	TR Software-Triggerung der Mittelwertbildung [Index 0x2062]	
10.13.6. 10.13.7.	TL Triggerschwelle [Index 0x211E oder 0x2400]SA Automatisches Senden Mittelwert	52
10.13.7.	SA Automatiscries Senden Mittelwert	52
11. Einsa	tz in eichfähigen Anwendungen	53
	<u> </u>	
11.1. Zug	riff auf metrologische Daten und die Bereichsjustage	53
11.2. Sch	utz der metrologischen Daten und der Bereichsjustage	53
	-	
12. Justa	ge und Justage-Sequenz	54
13. Upda	tes – Firmware Download	55

PRODUKTHAFTUNG

Alle Rechte vorbehalten.

Kein Teil dieser Veröffentlichung darf ohne vorherige schriftliche Genehmigung durch die Hauch & Bach ApS kopiert, gespeichert oder in irgend einer Form oder mit irgend welchen Mitteln übertragen oder wieder-verwendet werden – sei es mechanisch, fotokopiertechnisch oder jegliche andere Form der Vervielfältigung und Archivierung.

Im Hinblick auf den Gebrauch der enthaltenen Information ist sich die Hauch & Bach ApS keinerlei Verstoßes gegen das Patentrecht bewußt. Trotz größter Sorgfalt bei der Erstellung dieses Handbuchs übernimmt Hauch & Bach keinerlei Verantwortung für Fehler oder Auslassungen in diesem Handbuch. Jegliche Haftungsansprüche für Schäden, die durch Gebrauch der in diesem Handbuch enthaltenen Information entstehen können, werden ausgeschlossen.

Der Inhalt dieses Handbuchs wird als richtig und zuverlässig betrachtet. Sollten jedoch Fehler jeglicher Art gefunden werden, dann ist die Hauch & Bach ApS um jeden Hinweis dankbar. Hauch & Bach kann allerdings keinerlei Haftung für direkte oder indirekte Schäden übernehmen, die durch den Gebrauch dieses Handbuchs entstehen können.

Hauch & Bach ApS bewahrt sich das Recht, dieses Handbuch jederzeit ohne vorherige Ankündigung zu überarbeiten und den Inhalt zu verändern.

Weder Hauch & Bach noch alle Vertriebspartner können von dem Käufer dieses Produktes oder Dritten haftbar gemacht werden für Schäden, Verluste, Kosten oder sonstige Ausgaben, die in Folge von Unfall, falscher Anwendung und Missbrauch dieses Produktes oder unbefugter Modifikation, Reparatur oder Veränderung am Produkt oder durch den Ausfall bei sachgemäßer Verwendung gemäß den Hauch & Bach Bedienungs- und Wartungsanleitungen angefallen sind.

Hauch & Bach kann nicht haftbar gemacht werden für Schäden oder Probleme, die durch die Anwendung von Zubehör oder anderen Verbrauchsgütern enstanden sind, die nicht als originale Hauch & Bach Produkte ausgewiesen sind.

Wichtig: Änderungen am Inhalt dieses Handbuchs ohne vorherige Ankündigung sind vorbehalten.

Copyright © 2012-2013 by Hauch & Bach ApS, DK-3540 Lynge, Femstykket 6, Denmark

1. Sicherheitshinweise

VORSICHT LESEN Sie diese Handbuch VOR dem Betrieb oder der Wartung des Gerätes. BEFOLGEN Sie die Anweisungen sorgfältig. Bewahren Sie dieses Handbuch als Nachschlagewerk sicher auf. ERLAUBEN SIE KEINER ungeschulten Person die Bedienung, Reinigung, Überprüfung, Reparatur oder Eingriff in dieses Gerät. TRENNEN Sie das Gerät IMMER vom Spannungsnetz bevor Reinigungs- oder Wartungsmaßnahmen ausgeführt werden. KONTAKTIEREN Sie **Hauch & Bach** für Information, Service und Ersatzteile.

WARNUNG ERLAUBEN SIE NUR BERECHTIGTEN PERSONEN DEN SERVICE AN DIESEM GERÄT. LASSEN SIE SORGFALT WALTEN BEIM PRÜFEN, TESTEN UND EINSTELLEN, WENN DAS GERÄT UNTER ELEKTRISCHER SPANNUNG STEHT. EINE MISSACHTUNG KANN ZU KÖRPERSCHÄDEN FÜHREN.

WARNUNG FÜR DAUERHAFTEN SCHUTZ GEGEN ELEKTRISCHE GEFAHREN DARF DAS GERÄT NUR AN EINEM SPANNUNGSVERSORGUNGSNETZ MIT FUNKTIONSFÄHIGER VERBINDUNG ZUR SCHUTZERDE BETRIEBEN WERDEN. ENTFERNEN SIE NIEMALS DIE VERBINDUNG ZUM SCHUTZKONTAKT/SCHUTZLEITER.

WARNUNG TRENNEN SIE ALLE VERBINDUNGEN ZUR SPANNUNGSVERSORGUNG BEVOR DIE SICHERUNG GEWECHSELT WIRD ODER SONSTIGE SERVICEARBEITEN AUSGEFÜHRT WERDEN.

WARNUNG VOR DEM ANSCHLIESSEN/TRENNEN VON INTERNEN ELEKTRISCHEN KOMPONENTEN ODER DEM VERBINDEN MIT ELEKTRISCHEN GERÄTEN TRENNEN SIE IMMER DIE SPANNUNGSVERSORGUNG UND WARTEN SIE FÜR MINDESTENS 30 (DREISSIG) SEKUNDEN BEVOR SIE DIESE MASSNAHMEN AUSFÜHREN. EIN NICHTBEACHTEN DIESER WARNUNG KANN ZU EINEM GERÄTESCHADEN ODER ZUR ZERSTÖRUNG DES GERÄTES ODER ZU KÖRPERSCHÄDEN FÜHREN.

VORSICHT ERGREIFEN SIE ALLE VORSICHTSMASSNAHMEN FÜR DEN UMGANG MIT ELEKTROSTATISCH EMPFINDLICHEN GERÄTEN.

2. EG-Konformitätserklärung

Monat/Jahr: month/year: 06/2013

Hersteller: Manufacturer: Hauch & Bach ApS

Anschrift: Address: Femstykket 6
DK-3540 Lynge

DK-3540 Lynge Dänemark / Denmark

Produktbezeichnung: Product name: DAD 141.1

Das bezeichnete Produkt stimmt mit folgenden Vorschriften der Europäischen Richtlinien überein: This product confirms with the following regulations of the Directives of the European Community

Richtlinie 2004/108/EG des Europäischen Parlaments und des Rates vom 15. Dezember 2004 zur Angleichung der Rechtsvorschriften der Mitgliedstaaten über die elektromagnetische Verträglichkeit und zur Aufhebung der Richtlinie 89/336/EWG **Directive 2004/108/EC** of the European Parliament and of the Council of 15th December 2004 on the approximation of the laws of the Member States relating to electromagnetic compatibility and repealing Directive 89/336/EEC

Diese Erklärung bescheinigt die Übereinstimmung mit den genannten Richtlinien, beinhaltet jedoch keine Zusicherung von Eigenschaften. This declaration certifies the conformity with the listed directives, but it is no promise of characteristics.

Richtlinie 2006/95/EG Niederspannungs-Richtlinie

Directive 2006/95/EC Low Voltage Directive

Folgende Normen werden zum Nachweis der Übereinstimmung mit den Richtlinien eingehalten: As a proof of conformity with the directives following standards are fulfilled:

OIML R-76-1 Nicht-Selbsttätig Waagen – Metrologische und technische Anforderungen (OIML R-76:2002 Teil 1)

Non-automatic weighing systems – Metrological and technical requirements (OIML R-76:2002 Part 1)

DIN EN Metrologische Aspekte nichtselbsttätiger Waagen; Deutsche Fassung EN 45501:1992

45501 Anhang B.3: Funktionsprüfungen unter Störeinflüssen

Anhang C: Verfahren für die Prüfung der Störfestigkeit gegen hochfrequente elektromagnetische Felder.

Michael Bach Managing Director

M. Buch

3. Einführung und Spezifikationen

Der digitale **All-In-One** Indikator DAD 141.1 ist ein universelles Gerät zur Gewichtserfassung, für Füll- oder "loss-in-weight" Prozesse und zur Kraftmessung mit Dehnungsmessstreifen-Sensoren. Das DAD141 ist für die Hutschienenmontage (TS35) konzipiert.

Als Qualitätsmerkmal und für eichamtliche Anwendungen ist das DAD141.1 nach OIML R-76 geprüft und erfüllt die MID E2 Anforderungen bzgl. der EMV.

Der Wägeindikator enthält alle Schnittstellen für die industrielle Wägetechnik, Steuerung und Registrierung, wie z.B. analogen Strom-oder Spannungsausgang (0/4 ... 20 mA, 0 ... 5V, 0 ... 10V,-5V ... +5 V und -10V ... +10 V), Ethernet, RS 422/485 und digitale Ein-/Ausgänge für die direkte Steuerung von Ventilen etc.

Das Gerät kann entweder durch die frontseitigen Tasten gesteuert werden, über die RS 422/485-Schnittstelle oder den Ethernet-Port. 2 digitale Eingänge und 3 digitale Ausgänge erlauben komplexe Steuerungsfunktionen. Die 3 digitalen Ausgänge lassen sich logisch mit den digitalen Eingängen verknüpfen, so dass die Steuerung der Ausgänge auch von extern erfolgen kann.

Das Gerät erlaubt Bus-Kommunikation und wird über einen einfachen ASCII-Befehlssatz programmiert. Theoretisch ist es möglich bis zu 256 Netzknoten im Bus zu betreiben; dazu muss der gleiche Typ RS485-Transceiver benutzt werden wie im DAD 141.1 eingebaut. Adressierbar sind 255 Geräte (Adressen 1 bis 255).

DAD 141.1 - Technische Daten	
Eichklasse	
EG-Bauartzulassung OIML R76	10 000 Teile
A/D-Wandler-Typ	Delta-Sigma, ± 24 bit
Analoger Eingangsbereich	-15 mV bis +15 mV (± 3 mV/V bei 5 V DC Speisung)
Minimum- Eingangssignal	0,2 μV/e (eichfähig); 0,05 μV/d (nicht eichfähig)
Linearität	< 0.001 % FS
T (F: 0	auf Nullpunkt: < ±4 ppm/°C (typisch < ±2 ppm/°C)
Temperatur-Einfluss	auf Verstärkung: < ±8 ppm/°C (typisch < ±4 ppm/°C)
AAZ" II .	5 V DC; > 50 Ω (bis zu 6 Wägezellen à 350 Ω oder 18 Wägezellen à 1100 Ω
Wägezellenspeisung	parallelgeschaltet); 6-Leiter-Technik
Wandlungsrate	bis zu 600 Werte / s
Auflösung extern	bis zu ±600 000 d bei ±3 mV/V Eingangssignal
Justage & Wägefunktionen	J. J
Justage	elektronische Justage ohne Testgewicht (eCal) oder Justage mit Testgewicht(en)
Digitale Tiefpaß-Filter	FIR-Filter 2,519,7 Hz oder IIR-Filter 0,2518 Hz; programmierbar in jeweils 8 Schritten
Wägefunktionen	Nullsetzen, Brutto, Tarieren, Netto, Filter, etc.
Anwendungs-Modi	Nicht-selbstätige Waage (NSW) oder getriggerte Messungen (Kontrollwaage)
Schnittstellen	serielle RS422/485 und Ethernet
Setup & Justage	über Front-Tasten, mit Software "DOP 4" (Windows) oder mit Smartphone App AnDOP (Android)
Anzeige	5,08 mm LED, grün, 6-stellig, 7 Segment ,8 Status-LED grün, hoher Kontrast d. Spectralfilter
Front-Tastatur	4 Tasten, Ø 3mm, für Setup / Justage, Nullstellen oder Tarieren
Spannungsversorgung	,
DC-Versorgungsspannung	1030 V DC, 14 W; Schutz gegen Überspannung und Verpolung
Umgebungsbedingungen	
Gebrauchstemperatur	-15 °C bis +55 °C bei maximal 85% RH, nicht-kondensierend
Lagerungstemperatur	-30 °C bis +70 °C
Gehäuse & Schutzart	aus Polyamid; fur DIN-Hutschiene TS35; Schutzart IP40
Abmessungen & Gewicht	105 x 120 x 22,5 mm (L x H x B); Gewicht ca. 170 g
EMV	EN61326 gemäß MID E2 für Industriebereiche (in voller Übereinstimmung mit 2004/22/EC)
Vibrationsfestigkeit	2,5G im Betrieb; 5G bei Lagerung
Serielle Schnittstelle	RS422/485, Halb-/Voll-Duplex, 9600 115200 Baud (8N1)
Protokoll & Adressbereich	ASCII; Adressbereich 1 31
Modbus RTU	Binäres Datenprotokoll
Ethernet-Schnittstelle	RJ45; 10/100 Mbit/s, galvanisch isoliert
Ethernet TCP/IP - Protokoll / Port	ASCII-Protokoll, TCP Port 23 Modbus TCP/IP (Port 502)
Modbus TCP - Protokoll / Port	Eingebettet in TCP/IP-Pakete, binäres Datenprotokoll, TCP Port 502
IP-Adresse	Einstellung via serielle Schnittstelle oder Front-Tasten – Werkseinstellung: 192.168.0.100
Ausgang Strom	020 mA oder 420 mA (Last ≤ 500 Ω) oder
Ausgang Spannung	0+5 V; 0+10 V; -5 +5 V; -10 +10 V (Last > 2 kΩ); galvanisch isoliert
Digitaler Eingang	2 opto-isolierte Eingange (1030 V) mit gemeinsamer Masse, < 3 mA
Digitaler Ausgang	3 opto-isolierte Ausgänge (Halbleiter-Relais) mit gemeinsamer Masse, < 30 V AC/DC, 0,5 A

4. Kommunikation und Erste Schritte

4.1. Serielle Schnittstelle

Die Kommunikation mit dem Wäge-Indikator DAD 141.1 erfolgt über die serielle RS422/485-Schnittstelle. Das Datenformat hat die bekannte 8/N/1 Struktur (8 Datenbits, keine Parität, 1 Stoppbit). Verfügbare Baudraten der RS422/485-Schnittstelle sind: 9600, 19200, 38400, 57600 oder 115200 Baud.

Werkseinstellung: 115200 baud

4.2. Befehlssprache

Der Befehlsstruktur des DAD 141.1 basiert auf einem einfachen ASCII-Format (2 Buchstaben). Dies ermöglicht dem Benutzer einfache Programmierung des Indikators, Ergebnisse abzufragen oder Parameter zu prüfen.

<u>Beispiel:</u> DAD 141.1 ist über die RS 485-Schnittstelle mit PC / SPS verbunden. Sie möchten Geräteidentifikation, Firmware-Version oder Nettogewicht abfragen.

Anmerkung: In diesem Handbuch bedeuten: "_" Leerstelle in der Befehlsfolge und "→" Eingabetaste (CR); das Senden eines Linefeed (LF) ist nicht erforderlich und wird ggf. vom Gerät ignoriert.

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
ID←	D:1410	Identität des aktiven Gerätes
IV←l	V:0101	Firmware-Version des aktiven Gerätes
		Aktuelles Nettogewicht mit Vorzeichen /
GN←	N+123.45	Komma (.); Kommaposition per Befehl DP
		einstellen

4.3. Baudrate

Die Einstellung der Baudrate erfolgt mit dem Befehl BR, siehe Kapitel 10.10.3.

Werkseinstellung: 115200 baud

4.4. Erste Schritte via RS422/485-Schnittstelle

Hierzu werden benötigt:

- PC oderr SPS mit einer RS422/485-Schnittstelle
- Eine Wägezelle / Waage mit Prüfgewichten oder ein Wägezellen-Simulator
- Ein 12-24 VDC Netzteil, welches pro DAD 141.1 incl. angeschlossener Wägezellen einen Strom von 200mA liefert.
- Ein oder mehrere DAD 141.1
- Eine geeignete ASCII Kommunikations-Software **

Beachten Sie die elektrischen Anschlüsse, welche in Kapitel 5.x beschrieben sind.

**

Sie können einfach zwischen PC und dem DAD 141.1 mit Programmen wie Procomm, Telemate, Kermit, HyperTerminal oder HTerm usw. kommunizieren.

Zusätzlich steht die leistungsfähige Software **DOP 4** mit grafischer Benutzeroberfläche und Oszilloskop-Funktion für die Betriebssysteme Windows XP / Vista / 7 / 8 zur Verfügung.

Hinweis:

Ein Firmware-Update kann mittels der Software **H&B Programmer 3.0** (oder höher) erfolgen. Der Download erfolgt über RS485 mit 115200 Baud oder Ethernet-Schnittstelle.

4.5. Erste Schritte via Ethernet-Schnittstelle

Hierzu werden benötigt:

- PC oder SPS mit Ethernet-Schnittstelle
- Eine Wägezelle / Waage mit Prüfgewichten oder ein Wägezellen-Simulator
- Ein 12-24 VDC Netzteil, welches pro DAD 141.1 incl. angeschlossener Wägezellen einen Strom von 200mA liefert.
- Ein oder mehrere DAD 141.1 in einem Netzwerk (LAN)
- Ethernet TCP/IP, Protokoll ASCII, TCP Port 23
- Modbus TCP, eingebettet in TCP/IP-Pakete, binäres Datenprotokoll, TCP Port 502

Die Werkseinstellung der TCP/IP-Adresse des DAD 141.1 ist **192.168.0.100**. Sie können die Adresse im Menü 8.6 (Kapitel 7.10) über Frontbedienung ändern oder mit dem Befehl **NA** (Netzwerk-Adresse).

Wenn das/die DAD 141.1 in einem LAN (Local Area Network) angeschlossen sind, das zusätzlich einen Zugang per WLAN (wireless local area network) bietet, stellen wir Ihnen auf Anfrage gerne die Smartphone App "AnDOP" für Android-Geräte zur Verfügung.

Diese 'State of the Art'-Software bietet Ihnen interessante Möglichkeiten per Smartphone wie:

- Messwertanzeige Brutto, Netto und Mittelwert
- Justage durchführen
- Änderungen des Setup
- Datenaufzeichnung Standard und für getriggerte Messung
- Grafische Darstellung der Messdaten im Diagramm.

4.6. Modbus TCP oder Modbus RTU

Das DAD 141.1 unterstützt beide Versionen, Modbus RTU (via RS422/485 Schnittstelle) und Modbus TCP (via Ethernet Schnittstelle).

- Modbus TCP, eingebettet in TCP/IP-Pakete, binäres Datenprotokoll, TCP Port 502
- Modbus RTU (binäres Datenprotokoll).

Die Modbus-Kommunikation ist in dem Handbuch "Technical Manual Modbus Communication" beschrieben. In diesem Handbuch finden Sie zu den einzelnen Befehlen den entsprechenden Modbus-Index. Sofern bei einem Befehl kein Index angegeben ist steht dieser Befehl für die Nutzung im Modbus nicht zur Verfügung.

5. Hardware und Verdrahtung

5.1. Gehäuse & Anschlüsse

Waagendaten für die Eichbehörde Grünes 'M': Bauartzulassung OIML R76

5.2. Anschluss Wägezelle / Waage

	Lo	ad (cell	≥ 5	Ω		Lo	lsol gic i	inp	Lo	gic	ol	ut -	Ana	Isol.	outp.
±	:3m	V/V	5Vd	c≤1	00m	Α	2n	nA 3	80V	l ≤0,	5A 3	0Vac	/dc	20n	ηA ±	10Vi
+ Exc	+ Sen	+ Inp	⊢Shld.	l Inp	Sen	- Exc	季 0	착	C	\ 0	1	2	7	o Com	/+ Vout	+ lout
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

DAD 141.1	Wägezellen-	Funktion
Klemme	anschluss	FUIIKUOII
1	+ Exc	+ Speisung Wägezelle
2	+ Sen	+ Sense Wägezelle
3	+ Inp	+ Signal Wägezelle
4	Shld.	Schirm Wägezelle
5	– Inp	 Signal Wägezelle
6	– Sen	 Sense Wägezelle
7	– Exc	 Speisung Wägezelle

5.3. Anschluss Wägezelle

Der Anschluss von Wägezelle(n) oder Waage sollte sorgfältig durch Fachpersonal vor der Inbetriebnahme erfolgen, damit Schäden an Indikator oder Wägezellen vermieden werden. Der gesamte Eingangswiderstand der Wägezellen sollte \geq 50 Ω (Ohm) sein.

Bei Einsatz von Wägezelle(n) / Waage mit 4-Leiter-Kabel müssen die Klemmen '1 mit 2' und '6 mit 7' gebrückt (kurzgeschlossen) werden.

Anmerkung: Bitte 4-Leiter-Kabel einer Wägezelle nicht kürzen, da das Kabel Teil der Werkskalibrierung ist (Signal & Temperaturkompensation).

5.4. Anschluss Versorgungsspannung

DAD 1411 Klemme	Power Supply	Funktion
18	+	Versorgungsspannung 1224 V DC
19	+	Versorgungsspannung 1224 V DC
20	0	Gemeinsame Masse / 0 V DC
21	0	Gemeinsame Masse / 0 V DC
22	Shld.	Masse Chassis

Je nach Erdungskonzept der Anlage/Waage kann/muss Klemme 20 oder 21 mit Klemme 22 verbunden werden. Die Klemmen 4 (Schirm Wägezelle) und 22 (Masse Chassis) sind intern verbunden.

Hinweis: Das Netzteil muss 200mA pro DAD 141.1 liefern können.

5.5. Anschluss serielle Schnittstelle RS 422/485

Der RS 422/485-Port kann zur Kommunikation mit PC oder SPS genutzt werden.

Die Schnittstelle unterstützt zwei Protokolle:

- ASCII (Zeichen) und
- Modbus RTU (binäre Daten).

DAD 141.1	RS	Funktion
Klemme	422/485	Fullktion
23	Rx +	+ Empfang Daten
24	Rx -	- Empfang Daten
25	Tx -	- Sende Daten
26	Tx +	+ Sende Daten
27	Gnd	Signalerde RS422/485

5.6. Anschluss Ethernet

Die Ethernet-Schnittstelle (29), RJ45-Buchse, dient zur Kommunikation in einem lokalen Netzwerk (LAN) mit 10/100 Mbit/s.

Die Ethernet-Schnittstelle unterstützt:

- Ethernet TCP/IP, ASCII-Protokoll, TCP Port 23
- Modbus TCP, eingebettet in TCP/IP-Pakete, binäres Datenprotokoll, TCP Port 502.

Die Standard-IP-Adresse ist **192.168.0.100** ; diese kann durch den Benutzer geändert werden.

5.7. Justage-Schalter

Setup oder Änderungen der Justage können nur bei geöffnetem Schalter (Klemmen 28) durchgeführt werden. Bei Veränderungen wird der Wert des TAC-Zählers um 1 erhöht.

Bei eichpflichtigem Einsatz müssen die beiden Kontakte per Jumper gebrückt und versiegelt sein. Ein beschädigtes Siegel zeigt unerlaubte Änderungen der Justage an.

Geschützte Befehle siehe nächste Seite.

Traceable Access Code (TAC) - geschützte Justage-Befehle

Bei geschlossenem Justage-Schalter (Jumper steckt) werden die folgenden Befehle nicht ausgeführt:

- Justage Null
- Justage Verstärkung
- Justage Null Absolut (in mV/V)
- Justage Verstärkung Absolut (in mV/V)
- Justage Minimum
- Justage Maximum
- Null-Nachführung (Zero Tracking)
- Null-Stellbereich (Zero Range)
- Ziffernschritt Anzeige
- Position Dezimalpunkt
- Justage speichern
- Werkseinstellung
- Tara-Wert im EEPROM speichern
- Null-Wert im EEPROM speichern
- Einschalt-Null @ Versorgangsspannung 'Ein'

5.8. Logische Ein- & Ausgänge

Das DAD 141.1 bietet 2 isolierte Logik-Eingänge und 3 isolierte Logik-Ausgänge.

Den beiden Logik- Eingängen kann z.B. die Funktion 'Nullsetzen' oder 'Tarieren' zugeordnet werden, siehe Kapitel 10.8.1.

Die 3 Ausgänge arbeiten als Grenzwert-Schalter mit Hysterese, Schaltverhalten usw. Als Bezugssignal können z.B. Nettogewicht, Spitzen- oder Mittelwert etc. verwendet werden, siehe Kapitel 10.9.x.

DAD 141.1	Logik Ein-	
Klemme	/ Ausgang	Funktion
8	0	'High' Logik-Eingang 0
9	1	'High' Logik-Eingang 1
10	С	'Low' Logik-Eingang 0/1
11	0	'High' Logik-Ausgang 0
12	1	'High' Logik-Ausgang 1
13	2	'High' Logik-Ausgang 2
14	С	'Low' Logik-Ausgang 0/1/2

5.9. Analoge Ausgänge

Das DAD 141.1 verfügt über 2 getrennte analoge Ausgänge für Strom und Spannung. Für ihre Anwendung können Sie einen aus sechs Modi wählen:

- 4 bis 20mA / 0 bis 20mA 0 bis +5V / 0 bis +10V
- -5 bis +5V / -10 bis +10V.

DAD 141.1	Analog-	Funktion
Klemme	Ausgänge	1 diliktion
15	0 Com	Signalerde Analogausgang
16	+/- Vout	Spannungsausgang
17	+ lout	Stromausgang

6. Menü-Struktur des Tasten-Setup

Zum Setup-Menü gelangen Sie durch drücken der UP- oder DOWN	igen Sie durch drücken	ı der UP- oder DOWN-Ta	-Taste des DAD 141.1 für > 3 Sekunden. Für eine neue Justage muss Jumper (Kontakte 28) entfernt werden.	3 Sekunden. Für eine	neue Justage muss Ju	mper (Kontakte 28) entfe	nt werden.
1. Null	2. Verstärkung	3. Anzeige	4. Filter & Stillstand	5. Analog-Ausgang 6. Eingang 0/1	6. Eingang 0/1	7. Ausgang 0/1/2	8. Kommunikation
1. Null-Nachführung	1. Anzeigewert 'n'	1. Anzeigegrenze 'n'	1. Grenzfrequenz des	1. Gewichtswerf 'n'	x.1. Zuordnung eines	x.1.1 Gewichtswert 'n'	1. Auswahl Baudrate
Ein- / Ausschalten.	äquivalent zum	für obere / untere	À	äquivalent zum	logischen Einganges	in Digit für	serielle Schnittstelle
2. Justage Nullpunkt	Justagegewicht	Anzeige-Über- /	einstellen.	Minimum-Wert des	für eine spez. Funktion,	Schaltpunkt 'n'	2. Auswahl RS422 für
auf Basis des aktuellen	oder mV/V-Wert.	Unterschreitung	Mode IIR FIR	Analogausganges,	wie z.B. TARA-Taste.	einstellen.	Point to Point - Kommunik.
Eingangssignales	Gilt für 2.2 oder 2.3	Auflösung der Digital-	1.1 18Hz 19,7Hz	z.B. für 4mA.		x.1.2 Schall-Logik für	oder RS485 für
(Gewicht / Vorlast).	2. Justage Verstärkung	anzeige in 'd' (1, 2, 5, 10,	1.2 8Hz 9,8Hz 2	Gewichtswert 'n'		Grenzwert 'n' ÖFFNEN/	ein Netzwerk.
3. Justage Nullpunkt	per Gewicht - liest das	20, 50, 100) einstellen.	1.3 4Hz 6,5Hz	äquivalent zum		SCHLIESSEN einstellen.	Auswahl Geräle-
elektronisch per	aktuelle Eingangs-	3. Dezimalpunkt-Position	1.4 3Hz 4,9Hz	Maximum-Wert des		x.2. Schalthysterese (±)	adresse für RS485
mV/V-Setup.	signal ein.	der Anzeige einstellen.	1.5 2Hz 3,9Hz	Analogausgang,		in Digit für	Netzwerk (0 für P2P).
4.1 Tara-Wert bei	3. Justage Verstärkung		1.6 1Hz 3,2Hz	z.B. für 20 mA.		Grenzwert 'n'	4. Automatisches Senden bei
Betriebsspannung 'AUS'	per mV/V-Eingabe.		1.7 0,5Hz 2,8Hz 3	3. Zuordnung des		einstellen.	Betriebsspannung 'AN'
im EEPROM speichern.	 Anzeige des aktuellen 		1.8 0,25Hz 2,5Hz	Analogausganges,		x.3. Zuordnung für	z.B. Brutto, Netto etc.
4.2 Null-Wert bei	mV/V-Signales.		2. IIR oder FIR Filter-	z.B. Bruttogewicht.		Grenzwert 'n',	5. Verzögerungszeit für
Betriebsspannung 'AUS'	5. Anzeige der aktuellen		Modus einstellen.	4. Wahl des Modus		z.B. Nettogewicht	Datensenden einstellen
im EEPROM speichern.	Firmware-Version.		3. Mittelwertbildung	Analog-Ausgang,		einstellen.	0 255 Millsekunden
4.3 Einschalt-Null bei	6. Anzeige des aktuellen		der Datenausgabe	z.B. 4 - 20mA oder		x.4. Test Logik-Ausgang	(je nach SPS erforderlich)
Betriebsspannung 'AN'	Eichzähler-Standes.		von 0 (jeder Wert)	0 – 10V.		ÖFFNEN/SCHLIESSEN 6.x IP-Adresse des	6.x IP-Adresse des
Ein- / Ausschalten.			bis 7 (über 128 Werte).	5. Test-Signal für Strom-		mit den Tasten	Ethernet-Interface
4.4 Nullstell-Bereich und			4.1 Stillstand-Bereich	oder Spannungs-Ausgang		UP-/DOWN	in Dezimalnotation
Null-Stellen einstellen.			einstellen von	einstellen (gilt für gewählten		3. Haltezeit für alle drei	eingeben, z.B.
			1 bis 65 535 d.	Modus in 5.4);		Grenzwerte einstellen.	192.168.0.100
			4.2 Stillstand-Zeit	z.B. 004.000 für 4 mA.		Während der Haltezeit	7. Modbus Parity-Check
			einstellen von	Bereich der Testsignale:		muss der Grenzwert	no - odd - even
			1 bis 65 535 ms.	'4_20': 3,9 bis 20,1 mA		dauerhaft überschritten	8. Protokoll RS422/485
				'0_20': -0,1 bis 20,1 mA		sein bevor der Ausgang	SER = ASCII
				'0_5': -0,1 bis +5,1 V		schaltet.	RTU = binäre Daten
				'0_10': -0,1 bis +10,1 V			9. Anwender-Setup
				'-5_5': -5,1 bis +5,1 V			STORE = speichern
				'-10_10': -10,1 bis +10,1 V			RECALL = laden

7. Setup über Panel-Tasten

7.1. Tasten

NULL-Taste: mit ihr kann ein Nullstellen der Waage im Waagenmodus "Stillstand" innerhalb der gültigen Grenzen erfolgen oder der Tarawert gelöscht werden.

TARA-Taste: mit ihr kann die Waage im Waagenmodus "Stillstand" tariert werden.

UP-/DOWN-Tasten: werden für die Menü-Einstellung benötigt.

7.2. Anwendung der Tasten

Drücken Sie die UP- oder DOWN-Tastefür mehr als 3 Sekunden um ins Setup-Menü zu gelangen. Verwenden sie diese Tasten zur Auswahl der Menüpunkte 1 bis 8 und um in einem Untermenü einzelne Zeichen einzustellen oder eine Auswahl zu treffen.

Anmerkung: Um die Justage zu ändern – Menü 1, 2 und 3 – muss der Justage-Jumper (28) entfernt werden. Der TAC-Zähler erhöht sich bei Speicherung um 1.

Über die NULL-Taste gelangt man im Menü X zu den verschiedenen Unter-Menüs. Die Selektion erfolgt mittels der UP-/ DOWN-Tasten. Die gewählte Einstellung wird über die NULL-Taste gespeichert.

TARA-Taste zum Verlassen von Menü X oder dem/den Untermenüs von X.

Verlassen mit: 1x TARA-Taste = zurück zu Menü X.1 – Ebene 1
2x TARA-Taste = zurück zu Menü X.

Zum Verlassen der Menüs nochmals die TARA-Taste drücken

					im Menü 7.0.1.1 den Wert 001000 einstellen
X			Menü X	Auswahl über UP-/DOWN-Tasten	X
				Aktivieren über NULL-Taste	X
				Verlassen mit TARA-Taste	
	X.1		Menü X – Untermenü-Ebene 1	Aktivieren über NULL-Taste	X
				Auswahl über UP-/DOWN-Tasten	
				Zurück mit NULL-Taste	\
				Verlassen mit TARA-Taste	
		X.1.1	Menü X – Untermenü-Ebene 2	Aktivieren über NULL-Taste	
				Auswahl über UP-/DOWN-Tasten	
				Aktivieren über NULL-Taste	//
				Verlassen mit TARA-Taste	N
			X.1.1.1 Menü X – Ebene 3	Aktivieren über NULL-Taste	
				Auswahl über UP-/DOWN-Tasten	X S
				Aktivieren über NULL-Taste	X 🔑
				Benutze UP-/DOWN-Tasten für einzelne Stellen	001000
				Benutze TARA-Taste für die nächste Stelle	XXXXXX
				Zurück mit NULL-Taste	$\mathbf{A} \times \mathbf{A}$
				Springe zurück: 1x TARA-Taste zu X.1 Ebene 1	X 💙 X
				oder 2x TARA-Taste zu Menü X	

7.3. Menü 1 – Nullpunkt

Anmerkung: Aktivieren neue Justage mit 1x Power OFF/ON!

1. Null-Setup (Menü 1.1 bis 1.4) TAC geschützt – siehe Kapit							
	1.1		Automatische Null-Nachführung - Ein / Aus (Befehl: ZT) Einstellungen: 0 255d				
			- Aus @ 00000 Ein @ 00001 oder höher (max. 00255)				
			- Einstellung 00001 setzt die Null-Nachführung auf ±0,5d.				
			- Einstellung 00002 bis zu 00255 setzt die Null-Nachführung auf ±1d bis zu ±127,5d, unabhängig von Dezimalpunktposition.				
	1.2		 Justage Nullpunkt - gravimetrisch mit Gewicht / Last (Befehl: CZ) Display zeigt das aktuelle Eingangssignal in mV/V. Drücke NULL-Taste zur Speicherung von Null. 				
			Anmerkung: Waage sollte/muss unbelastet sein.				
	1.3		Justage Nullpunkt - elektronisch per mV/V-Wert (Befehl: AZ)				
			- Benutze die UP/DOWN- & TARA-Tasten zur Einstellung des mV/V-Wertes bei dem Null angezeigt werden soll.				
			- Drücke NULL-Taste zur Speicherung der neuen Verstärkung.				
	1.4		NULL & TARA Funktion				
		1.4.1	Speichern des TARA-Wertes im EEPROM: ON / OFF (Befehl: TN)				
		1.4.1	- ON: speichern im EEPROM @ Betriebsspannung OFF				
			- OFF: löschen @ Betriebsspannung OFF				
		1.4.2	Speichern des NULL-Wertes im EEPROM: ON / OFF (Befehl: ZN)				
			- ON: speichern im EEPROM @ Betriebsspannung OFF				
			- OFF: löschen @ Betriebsspannung OFF				
		1.4.3	Einschalt-NULL @ Betriebsspannung ON: ON / OFF (Befehl: ZI)				
		1.4.5	- ON: Einschalt-Null ausführen @ Betriebsspannung ON				
			- Bereich ist ±10% des Wertes von Max				
			2000 2000 (2000)				
		1.4.4	NULL-Bereich (Incremete) (Befehl: ZR) - Definiert den Nullstell-Bereich in Ziffernschritten (d).				
			Die Einstellung ist unabhängig vom Setup des Dezimalpunktes.				
			- Aus @ 00000, kein Nullstellen möglich - Ein @ 00001 oder höher (max. 999999)				
			In einer eichpflichtigen Applikation ist der Standard-Wert ± 2%				
			von Max. Der Setup für eine Waage mit 3.000e ist z.B.: - Max (CM) = 1 500 kg				
			 Ziffernschritt (SZ) = 0,5 kg Nullstell-Bereich (ZR) von ± 2% = ± 30 kg, also ± 60d 				
			Trunsten-Dereich (ZIV) von ± 2/0 - ± 30 kg, disu ± 000				

7.4. Menü 2 – Verstärkung

Anmerkung: Aktivieren neue Justage mit 1x Power OFF/ON!

2.	Verstärkung (Menü 2.1 bis 2.4) TAC geschützt – siehe Kapitel 10.2.1						
	2.1		Justagewert bzw. –gewicht eingeben (Befehl: CG) - Stellt den Anzeigewert äquivalent zum Justagegewicht oder zum mV/V-Wert (Kalibrierdaten Wägezelle(n)) ein.				
	2.2		Justage Verstärkung - gravimetrisch per Gewicht / Last				
	- Display zeigt das aktuelle Eingangssignal in mV/V						
			 Justagegewicht äquivalent zum Justagewert (2.1) auflegen Drücke NULL-Taste zur Speicherung der neuen Verstärkung 				
	2.3		Justage Verstärkung - elektronisch per mV/V-Wert (Befehl: AG)				
			- Benutze die UP/DOWN- & TARA-Tasten zur Einstellung des mV/V- Wertes bei dem der Justagewert angezeigt werden soll.				
			- Drücke NULL-Taste zur Speicherung der neuen Verstärkung.				
	2.4		Anzeige des aktuellen mV/V-Signales				
			- Zeigt das momentane mV/V-Signal der Wägezelle(n)/Waage an.				
	2.5		Anzeige des aktuellen Firmware-Version, z.B. 1.10 (Befehl: IV)				
			- Display zeigt die aktuelle Firmware-Version an.				
	2.6		Anzeige des aktuellen Eichzähler (TAC), z.B. 34 (Befehl: CE)				
			- Zeigt den aktuellen Wert des Eichzählers an.				

7.5. Menü 3 – Anzeige

Anmerkung: Aktivieren neue Justage mit 1x Power OFF/ON!

3.			Anzeige-Setup (Menü 3.1 bis 3.3) TAC geschützt – siehe Kapitel 10.2.1
	3.1		Anzeigegrenzen - obere / untere Grenze (Befehle: CM / CI)
		3.1.0	Überschreitung Anzeigegrenze (maximaler Wert +999999) Benutze die UP/DOWN- & TARA-Tasten zur Einstellung des maximalen Anzeigewertes, über dem die Anzeige eine Überschreitung anzeigt (alle Striche oben in der Anzeige).
		3.1.U	Unterschreitung Anzeigegrenze (maximaler Wert -999999) Benutze die UP/DOWN- & TARA-Tasten zur Einstellung des minimalen Anzeigewertes, unterhalb dem die Anzeige eine Unterschreitung anzeigt (alle Striche unten in der Anzeige).
	3.2		Auflösung Digitalanzeige - in Digits [d] (Befehl: DS) Wähle als Schrittweite/Auflösung 1, 2, 5, 10, 20, 50, 100, 200, 500
	3.3		Dezimalpunkt-Position in der Anzeige (Befehl: DP) Wähle Position aus: 0, 0.0, 0.00, 0.000, 0.0000

7.6. Menü 4 – Filter- & Stillstand-Setup

4			D	Digitalfilter- & Stillstand-Setup (Menü 4.1 bis 4.4)				
	4.1		Ε	instellung Tiefpassfilter-G	(Befehl: FL)			
			-	Einstellungen: 0 - 8 über	UP/DOWN-Tasten			
		4.1.x	G	renzfrequenz:				
				IIR-Mode	FIR-Mode			
		4.1.0		ohne Digitalfilter	ohne Digitalfilter			
		4.1.1		18 Hz	19.7 Hz			
		4.1.2		8 Hz	9.8 Hz			
		4.1.3		4 Hz	6.5 Hz			
		4.1.4		3 Hz	4.9 Hz			
		4.1.5		2 Hz	3.9 Hz			
		4.1.6		1 Hz	3.2 Hz			
		4.1.7		0.5 Hz	2.8 Hz			
		4.1.8		0.25 Hz	2.5 Hz			
	4.2		Digitalfilter-Mode - IIR oder FIR			(Befehl: FM)		
			-	Wähle IIR oder FIR				
	4.2				(Defelicus)			
	4.3		A	usgaberate & Mittelwert	bilaung	(Befehl: UR)		
		4.3.x	N	Nittelwerte (von 1 bis zu 1	128 Messwerten)			
		4.3.0	·					
		4.3.1		1 – Mittelwert über 2 M	esswerte			
		4.3.2		2 - Mittelwert über 4 Me	esswerte			
		4.3.3		3 - Mittelwert über 8 Me	esswerte			
		4.3.4		4 - Mittelwert über 16 M	lesswerte			
		4.3.5		5 - Mittelwert über 32 M	lesswerte			
		4.3.6		6 - Mittelwert über 64 M	lesswerte			
		4.3.7		7 - Mittelwert über 128	Messwerte			
	4.4		٧	Vaagen-Stillstand				
4.4.1 Stillstand-Bereich (Werte von 1 bis 65 535 d)					•	•		
				Gewicht-Änderungen im	eingestellten Berei	ch werden als		
				"stabil" angesehen.				
		4.4.2	C.	tillstand-Zeit (Werte von	1 his 65 525 ms)	(Befehl: NT)		
		+. +. ∠	3	· ·	•	•		
				Zeitspanne für die Stillst	•	maib der		
	Gewichtsänderungen als "stabil" gelten.							

7.7. Menü 5 – Analog-Ausgang

5			Setup Analog-Ausgang (Meni	ü 5.1 bis 5.5)					
	5.1		Gewichtswert für minimum		(Befehl: AL)				
			- Setup des Gewichtswertes	für Minimum Ausgang					
			000kg						
			Minimum 0kg oder mit 600	Okg Vorlast					
			- Ausgang Mode 4 20mA:	0kg = 4mA - Setup	00000				
				600kg = 4mA - Setup	00600				
			- Ausgang Mode 0 20mA:	0kg = 0mA - Setup	00000				
				600kg = 0mA - Setup	00600				
	5.2		Gewichtswert für maximum	Analog-Ausgang	(Befehl: AH)				
			- Setup des Gewichtswertes		-				
			Beispiele für Waage 0 3	000kg					
			Maximum 3 000kg	J					
			- Ausgang Mode 4 20mA:	3 000kg = 20mA - Set	tup 03000				
			- Ausgang Mode 0 20mA:	<u>-</u>	•				
			3 3	Ü	•				
	5.3		Zuordnung Analog-Ausgang		(Befehl: AA)				
	0.0				(Determinal)				
			gros – Analogausgang folgt	dem Bruttowert					
		gros – Analogausgang folgt dem Bruttowert net - Analogausgang folgt dem Nettowert							
			PEA - Analogausgang folgt dem Maximum-Wert						
	AUEr - Analogausgang folgt dem Maximum-wert AUEr - Analogausgang folgt dem Mittelwert								
			HoLd - Analogausgang folgt PP - Analogausgang folgt de						
			dem Anzeigewert sgeschaltet - OFF						
			or maiogaasgang ist aas	sgesenance on					
	5.4		Modi Analog-Ausgang		(Befehl: AM)				
	J. -		Would Allaiog-Ausgalig		(Deleili. Alvi)				
			4_20	4 20mA					
			0 20	0 20mA					
			0 5	0 +5V					
			0_3	0 +10V					
			-5_5	-5 +5V					
			- 10 _ 10	-10 +10V					
			- 10 _ 10	-10 +10V					
	5.5		Test-Signal für Strom- oder S	nannungsausgang sin	stallan				
	3.5		1 Cat-aignal ful attolli- ouel a	parinungsausgang em	SCHOIL				
			Das Test-Signal, unabhängi	yom Messsignal hez	ieht sich auf				
			den in 5.4 gewählten Modu						
			z.B. 004.000 für 4mA. Erlau						
			Negative Werte werden üb	•					
			Status-LED) eingestellt.		(
			, 3						

7.8. Menü 6 – Logische Eingänge

6		Setup logische Eingänge (Menü 6.0 bis 6.1)				
6.0		Logik-Eingang "0" (Befehl: Al'n' - n=0)				
	6.0.1	Funktionen (wähle eine Funktion mit den UP/DOWN-Tasten aus) 00 - Eingang "0" hat keine Funktion 01 - Eingang "0" funktioniert wie die NULL-Taste 02 - Eingang "0" funktioniert wie die TARA-Taste 03 - Eingang "0" funktioniert wie die UP-Taste 04 - Eingang "0" funktioniert wie die DOWN-Taste 05 - Eingang "0" startet als Trigger-Funktion eine Messung (Mittelwert) 06 - Eingang "0" schaltet die Anzeige auf Mittelwert um 07 - Eingang "0" schaltet die Anzeige auf Maximum-Wert um 08 - Eingang "0" löscht den Maximum-Wert 09 - Eingang "0" schaltet die Anzeige auf Speicherwert um 10 - Eingang "0" schaltet die Anzeige auf Spitze-Spitze-Wert um 11 - Eingang "0" schaltet die Anzeige auf Minimum-Wert um 12 - Eingang "0" sperrt die 4 Bedientasten der Frontplatte 13 - Eingang "0" speichert den momentanen Gewichtswert (Hold) 14 - Eingang "0" tariert die Anzeige und löscht alle anderen Werte				
		15 - Eingang "0" schaltet die Anzeige aus				
6.1		Logik-Eingang "1" (Befehl: Al'n' - n=1)				
	6.1.1	Funktionen (wähle eine Funktion mit den UP/DOWN-Tasten aus) 00 - Eingang "1" hat keine Funktion 01 - Eingang "1" funktioniert wie die NULL-Taste 02 - Eingang "1" funktioniert wie die TARA-Taste 03 - Eingang "1" funktioniert wie die UP-Taste 04 - Eingang "1" funktioniert wie die DOWN-Taste 05 - Eingang "1" startet als Trigger-Funktion eine Messung (Mittelwert) 06 - Eingang "1" schaltet die Anzeige auf Mittelwert um 07 - Eingang "1" schaltet die Anzeige auf Maximum-Wert um 08 - Eingang "1" löscht den Maximum-Wert 09 - Eingang "1" schaltet die Anzeige auf Speicherwert um 10 - Eingang "1" schaltet die Anzeige auf Spitze-Spitze-Wert um 11 - Eingang "1" schaltet die Anzeige auf Minimum-Wert um 12 - Eingang "1" sperrt die 4 Bedientasten der Frontplatte 13 - Eingang "1" speichert den momentanen Gewichtswert (Hold) 14 - Eingang "1" tariert die Anzeige und löscht alle anderen Werte 15 - Eingang "1" schaltet die Anzeige aus				

7.9. Menü 7 – Logik-Ausgänge

		Setup Logik-Ausgänge (Menü 7.0 bis 7.2)					
7.0		Logik-Ausgang "0"					
	7.0.1	Grenzwert "0"					
		7.0.1.1 Gewichtswert für Schaltpunkt einstellen (Befehl: S'n' – n=0 Wertebereich +/- 999999					
		7.0.1.2 Schaltlogik Grenzwert "0" festlegen: ON oder OFF Einstellung über UP/DOWN-Tasten für "on" / "oFF" (Befehl: P'n' – n=0)					
	7.0.2	Schalthysterese Grenzwert "0" festlegen: (± 'n') (Befehl: H'n' – n=0) Wertebereich +/- 9999					
	7.0.3	Zuordnung für Grenzwert "0" (Befehl: A'n' – n=0					
		gros - Brutto net - Netto PEA – Maximum-Wert AUEr - Mittelwert HoLd – Hold-Wert PP – Spitze-Spitze-Wert UALL – Minimum-Wert Error – Fehlermeldung bei Fehler 4 oder 5 oFF – Grenzwert ist nicht aktiv					
	7.0.4	Test Logik-Ausgang "0" (mit den UP/DOWN-Tasten) Öffnen/Schließen via Fronttasten					
		7.0.4.0 Ausgang ist OFF (geöffnet) 7.0.4.1 Ausgang ist ON (geschlossen)					
7.1		Logik-Ausgang "1" (Befehle: S'n', P'n', H'n', A'n' - n=1 wie Menü 7.0 – aber für Logik-Ausgang "1"					
7.2		Logik-Ausgang "2" (Befehle: S'n', P'n', H'n', A'n' – n=2 wie Menü 7.0 – aber für Logik-Ausgang "2"					
7.3		Hold Time (Haltezeit) für <u>alle</u> Logik-Ausgänge 0, 1 und 2 Der Wertebereich ist von 0 bis 65 535 ms (Befehle: HT					
		Das Messsignal muss den Grenzwert dauerhaft für die eingestellte Haltezeit überschreiten, damit ein Schaltvorgang stattfindet.					

7.10. Menü 8 – Daten-Schnittstellen

		Setup Schnittstellen (Menü 8.1 bis 8.9)				
		Setup Schinttstellen (Menu 6.1 bis 6.5)				
8.1		Baudrate für COM-Port RS 422/485 (mit UP/DOWN-Tasten wählen)	(Befehl: BR)			
		9600 Baud 19200 Baud				
		38400 Baud				
		57600 Baud				
		115200 Baud				
8.2		Auswahl RS 422 oder RS 485 (mit UP/DOWN-Tasten)				
		 422 = RS 422 Interface für einzelnes DAD 141.1 485 = RS 485 Interface für mehrere DAD 141.1 in einem Bus 				
8.3		Setup Geräte-Adresse des COM-Port (RS 422/485)	(Befehl: AD)			
		- Geräteadresse für Busbetrieb wählbar: 001 255				
		- Geräteadresse für eine Point to Point Applikation: 000				
		- Werkseinstellung: 000				
8.4		Zuordnung Automatisches Senden (mit UP/DOWN-Tasten wählen)				
		gros – Brutto	(Befehl: SG)			
		net – Netto	(Befehl: SN)			
		AUEr – Mittelwert	(Befehl: SA)			
		SAP – A/D-Wandler-Wert				
		ALL – Datenstring mit Brutto, Netto und Status	(Befehl: SW)			
		PEA – Maximum-Wert	(Befehl: SM)			
		HoLd – Hold-Wert	(Befehl: SH)			
		UALL – Minimum-Wert	(Befehl: SV)			
		PP – Spitze-Spitze-Wert	(Befehl: SO)			
		oFF – kein automatisches Senden				
8.5		Verzögerung TX für Datensenden @ COM-Port (je nach SPS erforderli	ch) (Befehl: TD)			
		- Verzögerungszeit von 000 255 Milli-Sekunden (ms)				
8.6		IP-Adresse des Ethernet-Interface (Befehl: NA				
0.0		IP-Adresse des Ethernet-Interface	(Befehl: NA)			
0.0			(Befehl: NA)			
0.0		 IP-Adresse des Ethernet-Interface in Dezimalschreibweise pro 3 Zeichen Werkseinstellung: 192.168.0.100 	(Befehl: NA)			
0.0	8.6.x	- in Dezimalschreibweise pro 3 Zeichen	(Befehl: NA)			
0.0	8.6.x 8.6.1	 in Dezimalschreibweise pro 3 Zeichen Werkseinstellung: 192.168.0.100 	(Befehl: NA)			
0.0		 in Dezimalschreibweise pro 3 Zeichen Werkseinstellung: 192.168.0.100 Beispiel für die Werkseinstellung - AAA.BBB.CCC.DDD 	(Befehl: NA)			
0.0	8.6.1	 in Dezimalschreibweise pro 3 Zeichen Werkseinstellung: 192.168.0.100 Beispiel für die Werkseinstellung - AAA.BBB.CCC.DDD AAA 000192 	(Befehl: NA)			

Menu 8 – Data Schnittstellen / Fortsetzung

8		Setup Schnittstellen (Menü 8.1 bis 8.9)
	8.7	Parity Check für Modbus RTU (per UP-/DOWN- Tasten)
		No – no parity
		o – odd parity
		e – even parity
	8.8	Protokoll-Selektion Serielle Schnittstelle (per UP-/DOWN- Tasten)
		SER – ASCII Protokoll
		RTU – Binäres Datenprotokoll
		Anmerkung:
		Nach Änderung des Protokolles muss das DAD 141 aus-/eingeschaltet werden.
		, g
	8.9	Anwender-Setup SPEICHERN / LADEN (per UP-/DOWN- Tasten) (Befehle: SU / RU)
		STORE – Setup im EEPROM speichern
		RECALL – Setup aus dem EEPROM laden
		Anmerkung:
		Nach einem RECALL muss das DAD 141 zur Aktivierung des Setup aus- und wieder eingeschaltet werden.
		emgeschaftet werden.

7.11. Fehler-Code

Err 1	NULL-Taste ist nicht aktiviert (Kapitel 7.3 / Menü 1.1)
Err 2	Außerhalb Null-Stellbereich. (Sie versuchen Null zu setzen außerhalb von ± 2% des maximalen Anzeigewertes)
Err 3	Nicht verfügbar
Err 4	Eingang überschritten, maximal ± 3.3mV/V erlaubt
Err 5	Fehler im Wägezellen-Anschluss
Err 6	Messwert außerhalb des Bereiches
	Display overload – siehe Menü 3.1o
	Display underload – siehe Menü 3.1U
	NULL oder TARA nicht während Waagenstillstand ausgeführt - ist nicht zulässig. Setup Waagen-Stillstand überprüfen und ggf. korrigieren – Kapitel 7.6 / Menü 4.4.

8. Beispiele

8.1. Beispiel 1 – Justage mit Gewichten

Tank oder Silo auf 3 Beinen: 3 Wägezellen je 1000kg; Wägezellen-Signal @ 1000kg = 2 mV/V.

Totlast Tank / Silo beträgt 600kg. Wägebereich ist 1 500kg, Ziffernschritt 0,5kg.

Es wird angenommen, dass die 3 Wägezellen am DAD 141.1 angeschlossen sind und das Gerät eingeschaltet ist. Maximaler und minimaler Anzeigewert, Ziffernschritt und Dezimalpunktposition werden vor bzw. mit der Justage festgelegt (siehe Menü 3).

Für dieses Beispiel betragen der max. Anzeigewert 1600,0kg, der min. Anzeigewert -200,0kg und die Ziffernschritte 0,5 kg.

Bitte beachten Sie, dass alle Parameter in den Menüs 1.1 bis 1.3, 2.1 bis 2.3 und 3.1 bis 3.3 nur nach entfernen des Jumpers auf dem Justage-Schalter (28) geändert werden können.

a Eine Waagen-Justage mit Gewichten kann nur im Waagenzustand "Stillstand" erfolgreich ausgeführt werden.

Zur Vorbereitung der Justage ist eine Überprüfung der Geräteeinstellungen im Menü 4 erforderderlich.

Empfehlungen für die Einstellungen lauten wie folgt:

- Menu 4.1: Grenzfreguenz auswählen 4.1.7 = 0.5Hz
- Menu 4.2: IIR-Filter auswählen
- Menu 4.4.1: Stillstandsbereich auf 2 einstellen; das bedeutet hier 0,2kg
- Menu 4.4.2: Stillstandszeit auf 1000 setzen; das entspricht 1 000ms oder 1s.

Im Falle einer Outdoor-Applikation oder Indoor mit mechanischen Schwingungen am Boden/Fundament müssen Sie ggf. die Einstellungen der Stillstandskriterien korrigieren.

- b Im Menü 3.2 wird der Ziffernschritt mit den **UP/DOWN** und **NULL**-Tasten eingestellt. Die Anzeige zeigt den aktuellen Ziffernschritt, z.B. 1. Jetzt kann der Wert mit den **UP/DOWN**-Tasten auf 5 gesetzt werden. Mit der **NULL**-Taste wird der Wert gespeichert und der Menüpunkt verlassen. Ein Ziffernschritt von 5d ist jetzt eingestellt, was in Verbindung mit der Kommaposition einen Ziffernschritt von 0,5kg bedeutet.
- c Im Menü 3.3 wird die Kommaposition mit den **UP/DOWN** und **NULL**-Tasten eingestellt. Die Anzeige zeigt die aktuelle Kommaposition, z.B. 0.0. Jetzt stellen Sie die Kommaposition mit den **UP/DOWN**-Tasten ein; in diesem Beispiel ändern wir nichts. Mit der **NULL**-Taste wird der Wert gespeichert und der Menüpunkt verlassen. Als Kommaposition ist 0.0 eingestellt, welches eine Gewichtsanzeige von z.B. 498,5kg ergibt.
- **d** Wir wechseln mittels der **UP/DOWN** und **NULL**-Tasten ins Menü 1.2. In der Anzeige steht der aktuelle mV/V-Wert, z.B. 0.4107. <u>Stellen Sie sicher, dass Tank/Silo leer ist</u> oder sich auf dem Füllstand befindet entsprechend dem Anzeigewert 0kg. Mittels **NULL**-Taste wird als Anzeigewert 0000,0kg übernommen. Jetzt ist der Nullpunkt (NULL) justiert. Sie verlassen diesen Menüpunkt mit der **NULL**-Taste.
- e Wir wechseln mittels der UP/DOWN und NULL-Tasten ins Menü 2.1. Hier stellen Sie die Anzeige auf das echte Justagegewicht ein. Für dieses Beispiel Justagegewicht 750kg stellen Sie die Anzeige auf 750.0 ein. Mit den UP/DOWN und TARA-Tasten stellen Sie jede Ziffer der 6-stelligen Anzeige auf den Wert 00750.0 ein. Mit der NULL-Taste den Wert speichern und zum Verlassen des Menüpunktes nochmals die NULL-Taste drücken.
- f Wir wechseln mittels der UP/DOWN und NULL-Tasten ins Menü 2.2. Legen Sie jetzt das Justagegewicht von 750kg auf. Die Anzeige zeigt das aktuelle Messsignal in mV/V, z.B. 0.9087. Drücken Sie jetzt die NULL-Taste für den Anzeigewert 750,0kg. Die gravimetrische Justage ist damit beendet. Verlassen Sie diesen Menüpunkt mit der NULL-Taste.

g Der letzte Schritt für dieses Beispiel sind die Anzeige-Grenzen. Wir wechseln mittels der UP/DOWN und NULL-Tasten ins Menü 3.1 (Über-/Unterschreitung). Mit NULL-Tasten zur Einstellung Überschreitung (3.1.0) oder zusätzlich mit UP-Taste zur Einstellung Unterschreitung (3.1.U). Die Anzeige zeigt in beiden Fällen 099999.9. Mit den UP/DOWN und TARA-Tasten stellen Sie jede Ziffer der 6-stelligen Anzeige auf den Wert 01600.0 für Überschreitung und für Unterschreitung den Wert 00200.0 ein. Als Vorgabe ist der Wert für Unterschreitung immer negativ, angezeigt durch die '-' LED in der Anzeige (linke untere Ecke).
Verlassen Sie diesen Menüpunkt mit der NULL-Taste.

Die Überschreitung wurde auf 1600.0 eingestellt, wobei ab Gewichtswerten von >1600,0kg alle oberen LED-Segmente der 6-stelligen Anzeige leuchten.

Die Unterschreitung wurde auf -200.0 eingestellt, wobei bei Gewichtswerten von <-200.0kg alle unteren LED-Segmente der 6-stelligen Anzeige leuchten.

Drücken Sie nun die TARA-Taste zwei- oder drei-mal, und das DAD 141.1 ist zurück im Wägebetrieb.

Die Justage ist durchgeführt und alle Einstellungen sind gespeichert.

Anmerkung

Nach der Justage können Sie die Filter-Einstellungen wieder an Ihre Anwendung anpassen. Als Daumenregel können Sie die Zeit für die Anzeige des echten Gewichtes (Kraft) mit 1/Grenzfrequenz kalkulieren.

Beispiele:

- fcut = 0,5Hz bedeutet ca. 2 Sekunden Zeitbedarf bis zum echten Gewichtswert. Der angezeigte Gewichtswert steigt während dieser Zeit stetig an.
- fcut = 8Hz bedeutet ca. 0,125 Sekunden Zeitbedarf bis zum echten Gewichtswert. Der angezeigte Gewichtswert steigt auch während dieser Zeit stetig an; allerdings für das Auge kaum wahrzunehmen.

8.2. Beispiel 2 – Justage mit mV/V-Werten

Tank oder Silo auf 3 Beinen: 3 Wägezellen je 1000kg; Wägezellen-Signal @ 1000kg = 2 mV/V.

Totlast Tank / Silo beträgt 600kg. Wägebereich ist 1 500kg, Ziffernschritt 0,5kg.

Es wird angenommen, dass die 3 Wägezellen am DAD 141.1 angeschlossen sind und das Gerät eingeschaltet ist. Maximaler und minimaler Anzeigewert, Ziffernschritt und Dezimalpunktposition werden vor bzw. mit der Justage festgelegt (siehe Menü 3).

Für dieses Beispiel betragen der max. Anzeigewert 1600,0kg, der min. Anzeigewert -200,0kg und die Ziffernschritte 0,5 kg.

Bitte beachten Sie, dass alle Parameter in den Menüs 1.1 bis 1.3, 2.1 bis 2.3 und 3.1 bis 3.3 nur nach entfernen des Jumpers auf dem Justage-Schalter (28) geändert werden können.

a Eine elektronische Waagen-Justage muss keine Rücksicht auf den Waagenzustand "Stillstand" nehmen.

Wir empfehlen trotzdem Einstellungen wie folgt:

- Menu 4.1: Grenzfrequenz auswählen 4.1.7 = 0.5Hz
- Menu 4.2: IIR-Filter auswählen
- Menu 4.4.1: Stillstandsbereich auf 2 einstellen; das bedeutet hier 0,2kg
- Menu 4.4.2: Stillstandszeit auf 1000 setzen; das entspricht 1 000ms oder 1s.
- b Im Menü 3.2 wird der Ziffernschritt mit den **UP/DOWN** und **NULL**-Tasten eingestellt. Die Anzeige zeigt den aktuellen Ziffernschritt, z.B. 1. Jetzt kann der Wert mit den **UP/DOWN**-Tasten auf 5 gesetzt werden. Mit der **NULL**-Taste wird der Wert gespeichert und der Menüpunkt verlassen. Ein Ziffernschritt von 5d ist jetzt eingestellt, was in Verbindung mit der Kommaposition einen Ziffernschritt von 0,5kg bedeutet.
- c Im Menü 3.3 wird die Kommaposition mit den **UP/DOWN** und **NULL**-Tasten eingestellt. Die Anzeige zeigt die aktuelle Kommaposition, z.B. 0.0. Jetzt stellen Sie die Kommaposition mit den **UP/DOWN**-Tasten ein; in diesem Beispiel ändern wir nichts. Mit der **NULL**-Taste wird der Wert gespeichert und der Menüpunkt verlassen. Als Kommaposition ist 0.0 eingestellt, welches eine Gewichtsanzeige von z.B. 498,5kg ergibt.
- **d** Wir wechseln mittels der **UP/DOWN** und **NULL**-Tasten ins Menü 1.3. In der Anzeige steht der aktuelle mV/V-Wert, z.B. 0.4107. <u>Stellen Sie sicher, dass Tank/Silo leer ist</u> oder sich auf dem Füllstand befindet entsprechend dem Anzeigewert 0kg. Mittels **NULL**-Taste wird als Anzeige 0000,0kg übernommen. Jetzt ist der Nullpunkt (NULL) justiert. Sie verlassen diesen Menüpunkt mit der **NULL**-Taste.
 - Möchten Sie einen absoluten Null(punkt) 00.0000mV/V definieren, dann nutzen Sie dazu die **NULL**-Taste und zusätzlich die **UP/DOWN** und **TARA**-Tasten etc. So lässt sich einfach erkennen wenn/ob der Waagen-Nullpunkt driftet oder sich die Vorlast ändert.
- e Wir wechseln mittels der UP/DOWN und NULL-Tasten ins Menü 2.1. Wir stellen den Anzeigewert auf die Summenlast der Wägezellen ein. In diesem Beispiel wir haben 3 Wägezellen zu je 1000kg stellen wir den Anzeigewert auf 3000.0. Mit den UP/DOWN und TARA-Tasten stellen Sie jede Ziffer der 6-stelligen Anzeige auf 03000.0. Mit der NULL-Taste den Wert speichern und zum verlassen des Menüpunktes nochmals die NULL-Taste drücken.
- f Wir wechseln mittels der UP/DOWN und NULL-Tasten ins Menü 2.3. Die Anzeige steht auf 00.000mV/V. Das Summensignal der Wägenzellen bei 3000kg ist z.B. 2.0123mV/V ((Signal #1 + Signal #2 + Signal #3) / 3). Mit den UP/DOWN und TARA-Tasten stellen Sie jede Ziffer der 6-stelligen Anzeige auf 02.0123 ein. Drücken Sie jetzt die NULL-Taste für den Anzeigewert 3000.0kg. Die elektronische Justage ist damit fertig. Verlassen Sie diesen Menüpunkt mit der NULL-Taste.

Für eine mV/V-Einstellung konform zum Beispiel mit 1500kg Wägebereich müssen wir nur 01.0062 eingeben – das sind 50% des mV/V-Wertes @ 3000kg.

g Der letzte Schritt für dieses Beispiel sind die Anzeige-Grenzen.

Wir wechseln mittels der **UP/DOWN** und **NULL**-Tasten ins Menü 3.1 (Über-/Unterschreitung). Mit **NULL**-Tasten zur Einstellung Überschreitung (3.1.0) oder zusätzlich mit **UP**-Taste zur Einstellung Unterschreitung (3.1.U). Die Anzeige zeigt in beiden Fällen 099999.9.

Mit den **UP/DOWN u**nd **TARA**-Tasten stellen Sie jede Ziffer der 6-stelligen Anzeige auf den Wert 01600.0 für Überschreitung und für Unterschreitung den Wert 00200.0 ein. Als Vorgabe ist der Wert für Unterschreitung immer negative, angezeigt durch die '-' LED in der Anzeige (linke untere Ecke). Verlassen Sie diesen Menüpunkt mit der **NULL**-Taste.

Die Überschreitung wurde auf 1600.0 eingestellt, wobei ab Gewichtswerten von >1600,0kg alle oberen LED-Segmente der 6-stelligen Anzeige leuchten.

Die Unterschreitung wurde auf -200.0 eingestellt, wobei bei Gewichtswerten von <-200.0kg alle unteren LED-Segmente der 6-stelligen Anzeige leuchten.

Drücken Sie nun die TARA-Taste zwei- oder drei-mal, und das DAD 141.1 ist zurück im Wägebetrieb.

Die Justage ist durchgeführt und alle Einstellungen sind gespeichert.

Anmerkung

Nach der Justage können Sie die Filter-Einstellungen wieder an Ihre Anwendung anpassen. Als Daumenregel können Sie die Zeit für die Anzeige des echten Gewichtes (Kraft) mit 1/Grenzfrequenz kalkulieren.

Beispiele:

- fcut = 0,5Hz bedeutet ca. 2 Sekunden Zeitbedarf bis zum echten Gewichtswert. Der angezeigte Gewichtswert steigt während dieser Zeit stetig an.
- fcut = 8Hz bedeutet ca. 0,125 Sekunden Zeitbedarf bis zum echten Gewichtswert. Der angezeigte Gewichtswert steigt auch während dieser Zeit stetig an; allerdings für das Auge kaum wahrzunehmen.

Praktischer Hinweis

Es ist auch ein Mix zwischen gravimetrischer & elektronischer Justage möglich. Für Silos / Tanks kann eine reine gravimetrische Justage zu einem Problem führen wenn die aufzubringende Last z.B. 50 t betragen muss. In diesem Fall empfehlen wir den Nullpunkt gravimetrisch und den Wägebereich elektronisch (Mittelwert der mV/V-Werte der Wägezellen) einzustellen.

9. Befehlssatz – Übersicht

Befehl	Kurzbeschreibung	Parameterwerte	Seite
			1
AA	Zuordnung Analog-Ausgang	0 bis 8	49
AD	Kommunikation: Netzwerkadresse	0255	47
AG	Absolute Verstärkungs-Justage (eCal)	± 32000	34
AH	Analog-Ausgang 'High Level'	-999999 bis 999999	49
Al'n'	Funktion Eingang 'n' zuweisen	0 bis 15	43
AL	Analog-Ausgang 'Low Level'	-999999 bis 999999	49
AM	Modus Analog-Ausgang Strom/Spannung	0 bis 5	49
A'n'	Aktion für Grenzwert 'n' zuweisen	1 bis 8	45
AS	Parameter Analog-Ausgang sichern	Keiner	50
AZ	Absolute Nullpunkt-Justage (eCal)	± 32000	34
	7 isobiate Tranparint Gastage (GGal)		
BR	Kommunikation: Baudrate	9600115200 baud	47
DIX	Noninalikation. Baddiate	3000110200 bada	77
CE	Justage: TAC-Zähler, eichpflichtige Parameter öffnen (CE "TAC")	065535	31
CG	Justage: Verstärkung/Messbereich bei Last > Null justieren	1999999	32
CI	Justage: Min. Anzeigewert des Systems	_9999990	31
CL	Kommunikation: Verbindung zu einem / allen Geräte schliessen	Keiner	47
CM	Justage: Maximaler Anzeigewert des Systems	1999999	31
CS	Justage: Maximaler Anzeigewert des Systems Justagedaten (CM, DS, DP, CZ, CG, u.a) in EEPROM sichern		34, 50
CZ		Keiner	
UZ.	Justage: System-Nullpunkt justieren – Waage ohne Last	Keiner	32
DD	Luctores Designator what day Americas Appelo day Nochharras actallan	0.5	20
DP DS	Justage: Dezimalpunkt der Anzeige; Anzahl der Nachkommastellen	05	32
	Justage: Ziffernschrittweite der Anzeige	1, 2, 5, 10,, 500	32
DX	Kommunikation: Halb-Duplex (0) oder Voll-Duplex (1)	0 oder 1	47
FD	Werkseinstellungen in EEPROM laden (TAC gesichert)	Keiner	33
FM	Digitalfilter: Auswahl Filtermode IIR (0) oder FIR (1)	0 oder 1	36
FL	Digitalfilter: Einstellung der Filter-Grenzfrequenz	08	36
GA	Datenausgabe: Aktuellen getriggerten Messwert lesen	Keiner	41, 51
GG	Datenausgabe: Aktuellen Brutto-Messwert lesen	Keiner	40
GH	Datenausgabe: Aktuellen Hold-Wert lesen	Keiner	41
GI	EEPROM-Inhalt des DAD 141.1 als Image-Datei sichern	Keiner	50
GN	Datenausgabe: Aktuellen Netto-Messwert lesen	Keiner	40
GM	Datenausgabe: Aktuellen Spitzenwert (Maximum) lesen	Keiner	41
GO	Datenausgabe: Aktuellen Spitze-Spitze-Wert lesen	Keiner	41
GS	Datenausgabe: Aktuellen A/D-Wandler-Wert lesen	Keiner	40
GT	Datenausgabe: Aktuellen Tarawert lesen	Keiner	40
GV	Datenausgabe: Aktuellen Minimum-Wert lesen	Keiner	41
GW	Datenausgabe: Aktuellen Datenstring "Netto/Brutto/Status" lesen	Keiner	40
GW	Dateriausgabe. Aktuelien Dateristring "Netto/Brutto/Status Tesen	Keinei	40
H'n'	Hysterese für Schaltpunkt H0 (S0) oder H1 (S1) oder H2 (S2)	-9999+9999	45
HT	Triggerfunktion: Haltezeitdauer für Schaltpunktüberschreitung	065535 ms	46
111	Triggeriunktion. Haitezeitdader für Schaitpunktuberschreitung	000000 1118	40
ID	Information zum Gerät: Geräte-Identifizierung	Keiner	30
IH	Information zum Gerät: Hardware-Version	Keiner	30
IN	Digitaleingabe: Logischer Eingangs-Status	0, 1	43
IO	Digitalausgabe: Logischer Ausgangs-Status	00000011	44
IS	Information zum Gerät: Status – Kein Stillstand	Keiner	30
IV	Information zum Gerät: Status – Kein Stillstand Information zum Gerät: Firmware-Version	Keiner	30
1 V	miomation Zum Gerat. I imware-version	IVEILIEI	30
MT	Triggerfunktion: Messzeit für die Mittelwertbildung	03000 ms	51
	magarianitatin moodzoit idi dio mittorromanidang	55555 HIS	
NA	Netzwerk-Adresse <aaa.bbb.ccc.ddd></aaa.bbb.ccc.ddd>	z.B. 192.168.0.100	47
NR	Stillstandsbereich	065535 d	35
NT	Stillstandszeit	065535 ms	35

Befehl	Kurzbeschreibung	Parameterwerte	Seite
OM	Steuerung von Logik-Ausgang 'n'	binär	44
ON	Netto-Messwert von Gerät 'n' abfragen	0255	40
OP	Kommunikation: Gerät xxx öffnen	0255	47
PI	Gesicherte Image-Datei in EEPROM des DAD 141.1 laden	Keiner	50
P'n'	Polarität der Schaltpunkte S'n', n= 0, 1 oder 2: Ein- / Aus-Schalten	0 oder 1	46
RM	Aktuellen Spitzenwert (Maximum) löschen	Keiner	41
RS	Information zum Gerät: Seriennummer auslesen	Keiner	31
RT	Waagenbetrieb: Tara zurücksetzen und zur Bruttoanzeige wechseln	Keiner	39
RZ	Waagenbetrieb: Nullpunkt auf Justagewert zurücksetzen	Keiner	38
SA	Datenausgabe: Automatische Ausgabe des getriggerten Messwertes	Keiner	42, 52
SD	Triggerfunktion: Startverzögerungszeit zwischen Trigger und Messung	0 3000 ms	51
SG	Datenausgabe: Automatische Ausgabe des Brutto-Messwertes	Keiner	42
SH	Datenausgabe: Automatische Ausgabe des Hold-Wertes	Keiner	42
SM	Datenausgabe: Automatische Ausgabe des Spitzenwertes (Maximum)	Keiner	42
SN	Datenausgabe: Automatische Ausgabe des Netto-Messwertes	Keiner	42
S'n'	Grenzwert 'n': S0, S1 und S2 einstellen/abfragen	-999999+999999	45
SO	Datenausgabe: Automatische Ausgabe des Spitze-Spitze-Wertes	Keiner	42
SR	Firmware zurücksetzen (Warmstart)	Keiner	31
SS	Schaltpunkt-Setup (S'n', H'n', P'n', A'n') in EEPROM sichern	Keiner	50
ST	Waagenbetrieb: Tarieren und zur Nettoanzeige wechseln	Keiner	38
SV	Datenausgabe: Automatische Ausgabe des Minumum-Wertes	Keiner	42
SW	Datenausgabe: Automatische Ausgabe des Datenstrings "Netto/Brutto/Status"	Keiner	42
SZ	Waagenbetrieb: Nullstellung	Keiner	38
TD	Kommunikation: Übertragungs-Verzögerungszeit	0255 ms	48
TE	Triggerfunktion: Trigger auf steigende (1) oder fallende (0) Flanke	0 oder 1	51
TH	Triggerung Hold-Wert	Keiner	41
TI	Triggerfunktion: Mittelungszeit für das automatische Tarieren	065535 ms	39
TL	Triggerfunktion: Triggerschwelle	0999999 d	52
TN	Tara-Wert im EEPROM speichern @ Ausschalten	0 oder 1	39
TR	Triggerfunktion: Software-Trigger zum Start des Messzyklus	Keiner	51
TW	Triggerfunktion: Fenster für das automatische Tarieren	065535 d	39
UR	Digitalfilter: Anzahl der zu mittelnden Messwerte 2 ^{UR} (1 128)	$07 (=2^0 \text{ bis } 2^7)$	37
WP	Einstellungen (FL, NR, NT, AD, BR, DX) in EEPORM sichern	Keiner	50
ZI	Justage: Einschalt-Nullstellen Ein / AUS	0 oder 1	33
ZN	Null-Wert im EEPROM speichern @ Ausschalten	0 oder 1	38
ZR	Justage: Nullstellbereich	0999999 d	33
ZT	Justage: Nullpunkt-Nachführung Ausschalten (0), Einschalten (1 255)	0255 d	33
	Neue Befehle		
SU	Anwender-Setup incl. Justage im EEPROM speichern	Keiner	34
RU	Anwender-Setup aus EEPROM laden	Keiner	34

10. PROTOKOLL-BESCHREIBUNG BEFEHLE

Zur besseren Übersichtlichkeit sind die Befehle in Gruppen unterteilt und werden nachfolgend ausführlich beschrieben. Jeder Befehl muss mit CR (Eingabetaste) abgeschlossen werden, in den Tabellen als "—" dargestellt.

Zu jedem Befehl wird ein verfügbarer Modbus-Index in eckigen Klammern [Index 0xNNNN] dargestellt. Eine Beschreibung zum Modbus finden Sie in Handbuch "Technical Manual Modbus Communication". Sofern kein Index dargestellt ist existiert dieser Befehl nicht in der Modbus-Kommunikation.

10.1. Befehle zur System-Diagnose – ID, IH, IV, IS, SR, RS

Mit diesen Befehlen können von einem DAD 141.1 der Typ, Firmware-Version oder Geräte-Status abgefragt werden. Die Befehlseingabe erfolgt ohne Parameter.

10.1.1. ID Geräte-Identifizierung

[Index 0x202C]

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet
ID⊢	D:1410

Dieser Code informiert über den Typ des aktuell aufgerufenen Gerätes. Diese Identifizierung ist nützlich bei Betrieb mehrerer verschiedener Geräte an einem Bus.

10.1.2. IH Hardware-Version

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet
II II-	H:14100101FFFFFFFFFFFF

Dieser Code informiert über die Hardware-Version des aktuell aufgerufenen Gerätes.

10.1.3. IV Firmware-Version

[Index 0x202E]

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet
IV←	V:0101

Dieser Code informiert über die Firmware-Version des aktuell aufgerufenen Gerätes.

10.1.4. IS Geräte-Status

[Index 0x2030]

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet
IS←	S:067000 (example)

Die Antwort auf diese Abfrage besteht aus zwei 3-stelligen Dezimalzahlen (001 und 000), die gemäß der folgenden Tabelle decodiert werden:

	Linker 3-digit-Wert		Rechter 3-digit-Wert
1	Waage in Ruhe	1	(nicht benutzt)
2	Nullpunkt korrigiert	2	(nicht benutzt)
3	Tarierung aktiv	3	(nicht benutzt)
4	(nicht benutzt)	4	(nicht benutzt)
8	(nicht benutzt)	8	(nicht benutzt)
16	(nicht benutzt)	16	(nicht benutzt)
32	(Grenzwert-) Ausgang 0 aktiv	32	(nicht benutzt)
64	(Grenzwert-) Ausgang 1 aktiv	64	(nicht benutzt)
128	(Grenzwert-) Ausgang 2 aktiv	128	(nicht benutzt)

Am Beispiel dekodiert man die Antwort S:067000 (binär 01000011) wie folgt:

- Waage in Ruhe (stabil) [2⁰ = 1, LSB]
- Nullpunkt korrigiert [2¹ = 2]
- Tarierung nicht aktiv [= 0]

- Grenzwert 0 nicht aktiv [= 0]
- Grenzwert 1 aktiv [2⁶ = 64]
- Grenzwert 2 nicht aktiv [= 0]

Anmerkung: Nicht benutzte Bit sind beim DAD 141.1 auf "0" gesetzt.

10.1.5. SR Software-Reset des DAD 141.1

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet
SR←	OK

Dieser Befehl führt einen "Warmstart" durch; er hat prinzipiell die gleiche Wirkung wie das Aus-/ Einschalten der Versorgungsspannung. Das DAD 141.1 ist nach ca. 15 sec wieder im Messmodus.

10.1.6. RS Seriennummer des DAD 141.1 [Index 0x2034]

Abfrage der Seriennummer des angeschlossenen Gerätes; die Antwort erfolgt im Format S+12345678.

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
RS←	S+00147301	Seriennummer: 0147301

10.2. Justage-Befehle – CE, CM, CI, DS, DP, CZ, CG, ZT, FD, ZR, ZI, AZ, AG, CS, SU, RU

10.2.1. CE TAC-Zählerstand / Öffnen Justage-Sequenz [Index 0x2204]

Mit diesem Befehl wird der TAC-Zähler (TAC = Traceable Access Code) abgefragt oder Änderungen zur Justage freigeschaltet.

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
CE←	E+00017 (Beispiel)	Abfrage: aktueller TAC-Zählerstand ist 17
CE 17←	OK	Justage freigeschaltet

Dieser Befehl (Beispiel CE17) muss <u>vor</u> Verwendung jedes einzelnen Justage-Befehls wie CE, CM, CI, DS, DP, CZ, CG, ZT, FD, ZR, ZI, AZ, AG oder CS gesendet werden. Für eichamtliche Anwendungen dient dieser Eichzähler zur Kontrolle von Manipulation an der Waage. Nach jeder Justage-Änderung wird der TAC-Zähler um 1 erhöht.

10.2.2. CM Maximum Anzeigewert

[Index 0x220C]

Mit diesem Befehl wird der max. Anzeigewert festgelegt, der Wertebereich beträgt 1 bis 999 999.

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
CM←	M+050000	Abfrage: CM = 50000 d
CE←	E+00017 (Beispiel)	Abfrage: aktueller TAC-Zählerstand ist 17
CE 17 ←	OK	Justage freigeschaltet
CM 30000←	OK	Setup: CM = 30000 d

Bei Überschreitung des maximalen Anzeigewertes CM wechselt die Anzeige/Ausgabe auf "ooooooo".

Anmerkung: Der Bereich, in dem die Waage nullgesetzt (SZ) werden kann oder in dem die automatische Nullpunktkorrektur (ZT) aktiv ist, beträgt ± 2% des CM-Wertes. Bei nicht-eichpflichtigen Anwendungen können mit den erweiterten Einstellungen für ZT (siehe 10.2.8) und/oder ZR (siehe 10.2.10) dieses Verhalten verändert werden.

Werkseinstellung: CM = 010009

10.2.3. Cl Minimum Anzeigewert

[Index 0x220E]

Mit diesem Befehl wird der min. Anzeigewert festgelegt, der Wertebereich beträgt - 999 999 bis 0.

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
CI←	I-010009	Abfrage: CI = -10009 d
CE←	E+00017 (Beispiel)	Abfrage: aktueller TAC-Zählerstand ist 17
CE 17 ←	OK	Justage freigeschaltet
CI –100←	OK	Setup: CI = −100 d

Bei Unerschreitung des minimalen Anzeigewertes CI wechselt die Anzeige/Ausgabe auf "uuuuuuu".

Anmerkung: In bipolaren Anwendungen (z.B. Kraft- oder Drehmomentmessungen) legt dieser Parameter den max. Anzeigewert für die negativen Messwerte fest.

Werkseinstellung: CI = -010009

10.2.4. DS Ziffernsprung

[Index 0x2216]

Mit diesem Befehl wird der Ziffernsprung des Anzeige-/Ausgabewertes festgelegt. Der Wertebereich beträgt 1, 2, 5, 10, 20, 50, 100, 200 und 500.

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
DS⊷	S+00002	Abfrage: Ziffernsprung 2
CE←	E+00017 (Beispiel)	Abfrage: aktueller TAC-Zählerstand ist 17
CE 17←	OK	Justage freigeschaltet
DS 50⊷	OK	Setup: DS = 50

Eichfähige Anwendungen erlauben bis zu 10 000 Ziffernschritte. Der Ziffernsprung muss entsprechend angepasst sein.

Werkseinstellung: DS = 00001

10.2.5. DP Komma-Position

[Index 0x2214]

Mit diesem Befehl wird die Kommaposition des Anzeige-/Ausgabewertes festgelegt. Der Wertebereich ist 0, 1, 2, 3, 4, 5. Anzeige-/Ausgabewert mit einer Nachkommastelle: DP = 1.

Werkseinstellung: DP = 00000

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
DP←	P+00003	Abfrage: 3 Nachkommastelle
CE←	E+00017 (Beispiel)	Abfrage: aktueller TAC-Zählerstand ist 17
CE 17← ¹	OK	Justage freigeschaltet
DP 0⊢	OK	Setup: DP = 0 (ohne Komma)

10.2.6. CZ Justage Nullpunkt

[Index 0x2212]

Mit diesem Befehl wird der Referenz-Nullpunkt für alle Messungen eingestellt, auch bei Vorlast/Tara.

Werkseinstellung: ca. 0 mV/V Eingangssignal.

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
CE	E+00017 (Beispiel)	Abfrage: aktueller TAC-Zählerstand ist 17
CE 17← ¹	OK	Justage freigeschaltet
CZ←	OK	Nullpunkt übernommen

10.2.7. CG Justage Verstärkung

Index 0x2206 1

Mit diesem Befehl wird die Verstärkung bzw. der Messbereich für alle Messungen eingestellt. Der Wertebereich ist 1 bis 999 999.

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
CG←	G+10000	Abfrage: Justagewert = 10000 d
CE←	E+00017 (example)	Abfrage: aktueller TAC-Zählerstand ist 17
CE 17← ¹	OK	Justage freigeschaltet
CG 15000⊷	OK	Setup: Messbereich = 15000 d

Zur Justage liefert ein Messsignal entsprechend dem Messbereichsendwert die beste Systemgenauigkeit. Idealerweise entspricht es ca. dem max. Anzeigewert CM. Empfohlen wird eine Auslastung von mindestens 20%, das entspricht ca. 0,4 mV/V. Ist das Justagegewicht nur ca. 1% des max. Anzeigewertes CM, dann antwortet das DAD 141.1 mit einer Fehlermeldung ("ERR").

Werkseinstellung: 10000 = 2.000 mV/V Eingangssignal.

10.2.8. ZT Automatischer Null-Nachlauf

Index 0x2122

Mit diesem Befehl wird die Automatik zur Null-Korrektur eingestellt.

ZT = 0: Null-Nachlauf ist nicht aktiv

ZT = 1 oder höher: Null-Nachlauf ist aktiv

Die automatische Null-Nachlauf arbeitet unabhängig von der Kommaposition, d.h. der Wert wird in Incrementen (d) angegeben. Der Wertebereich ist 0 bis 255.

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
ZT←	Z:001	Antwort: ZT = 1 (aktiv)
CE	E+00017 (Beispiel)	Abfrage: aktueller TAC-Zählerstand ist 17
CE 17←	OK	Justage freigeschaltet
ZT 0⊢	OK	Setup: ZT = 0 (nicht aktiv)

ZT = aktiv: Die Null-Nachführung wird nur ausgeführt bei Änderungen im Bereich \pm ZT-Setup mit einer Rate von 0,4 d/s [d = Incremet].

Werkseinstellung: ZT = 1 [aktiv]

10.2.9. FD Reset auf Werkseinstellungen

Index 0x2066

Mit diesem Befehl werden alle Geräteeinstellung des DAD 141.1 wieder auf die Werkseinstellungen zurückgesetzt. Die Werkseinstellungen werden ins EEPROM geschrieben und der TAC-Zähler um +1 erhöht.

Achtung: Alle Einstellungen <u>und die Justage</u> werden bei Ausführung von FD mit den Werkseinstellungen überschrieben! Der Anwender-Setup – Befehl **SU** – wird hierdurch nicht überschrieben.

Master (PC / SF	PS) sendet Sla	ive (DAD 141.1) antwortet	Bedeutung
CE←		E+00017 (example)	Abfrage: aktueller TAC-Zählerstand ist 17
CE 17	1	OK	Justage freigeschaltet
FD⊢		OK	Werkseinstellung aktiviert

10.2.10. ZR Nullstellbereich

[Index 0x2220]

Nullstellbereich manuell einstellen – innerhalb dieses Bereiches, angegeben in Incrementen (d), kann die Waage auf Null gesetzt werden. Führt man den Befehl ZR ohne weitere Parameter aus, dann wird der aktuelle Wert ausgegeben. Der Wertebereich ist von 0 bis 999 999. Bei ZR = 0 ist die Funktion Nullstellen deaktiviert.

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Podoutung
Master (PC / 3P3) Seridet	Slave (DAD 141.1) alliworter	Bedeutung
ZR←	R+002000	Abfrage: ZR = 2000 d
CE←	E+00017 (Beispiel)	Abfrage: aktueller TAC-Zählerstand ist 17
CE 17←	OK	Justage freigeschaltet
ZR 100⊷	OK	Setup: Nullstellbereich = 100 d

Werkseinstellung: ZR = 0

10.2.11. ZI Einschalt-Nullstellen AN / AUS

[Index 0x221E]

Bei Einschalten der Versorgungsspannung kann ein automatisches Nullstellen erfolgen. Zulässige Werte sind 0 (Aus) oder 1 (An).

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
Z⊬	Z:001	Abfrage: ZI = 1 (An)
CE+1	E+00017 (example)	Abfrage: aktueller TAC-Zählerstand ist 17
CE 17←	OK	Justage freigeschaltet
ZI 0←	ОК	Setup: Einschalt-Null Aus

Werkseinstellung: ZI = 0

10.2.12. AZ Absolute Nullpunkt-Justage (eCal) [Index 0x2202]

Mit diesem Befehl wird der absolute Nullpunkt für alle Messungen in mV/V eingestellt. Zulässige Werte sind \pm 32 000 (= \pm 3.2000 mV/V).

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
AZ←	Z+0.0796	Abfrage: Null @ 0,0796 mV/V
CE←	E+00017 (example)	Abfrage: aktueller TAC-Zählerstand ist 17
CE 17← ¹	OK	Justage freigeschaltet
AZ_00500⊷	OK	Neu: Null @ 0.0500 mV/V

Werkseinstellung: 00000d @ 0,0000mV/V Eingangssignal.

10.2.13. AG Absolute Verstärkungs-Justage (eCal) [Index 0x2200]

Mit diesem Befehl wird die absolute Verstärkung (oder der Messbereich) für alle Messungen in mV/V eingestellt. Zulässige Werte sind ± 32 000 (= ± 3.2000 mV/V).

Die Einstellung erfolgt als Datenstring mit absoluter Verstärkung und absolutem Justagewert, z.B. 'AG +011200 +005000' – siehe nachstehende Tabelle.

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
AG←	G+0.1868	Abfrage:
		Absolute Verstärkung = 0,1868 mV/V
CG←	G+10000	Abfrage:
		Absoluter Justagewert = 10000 d
CE←	E+00017 (Beispiel)	Abfrage: aktueller TAC-Zählerstand ist 17
CE 17← ¹	OK	Justage freigeschaltet
AG_+011200_+005000⊷	OK	Neu: Messbereich 5 000d @ 1.12 mV/V

Werkseinstellung: 20 000d @ 2,0000mV/V Eingangssignal.

10.2.14. CS Justage speichern

[Index 0x2066]

Dieser Befehl speichert alle Justagedaten netzausfallsicher im EEPROM und der TAC-Zähler erhöht sich um 1.

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
CE←	E+00017 (example)	Abfrage: aktueller TAC-Zählerstand ist 17
CE 17← ¹	OK	Justage freigeschaltet
CS⊢	OK	Justage im EEPROM gespeichert

CS sichert alle Parameter, die mit den Befehlen CM, CI, DS, DP, CZ, CG, ZT, FD, ZR, ZI, AZ und AG eingestellt wurden. Der Befehl bewirkt eine Meldung "ERR", wenn zuvor <u>keine</u> Justage-Sequenz mit CE XXXXX geöffnet wurde.

10.2.15. SU Anwender-Setup im EEPROM speichern

Dieser Befehl speichert alle Setup-Daten incl. Justage netzausfallsicher im EEPROM. Der Anwender-Setup enthält bei Auslieferung zunächst die Werkseinstellungen (gemäß Befehl FD).

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
CE←	E+00017 (example)	Abfrage: aktueller TAC-Zählerstand ist 17
CE 17←	ок	Setup im EEPROM freigeschaltet
SU⊢	OK	Anwender-Setup im EEPROM
		gespeichert

10.2.16. RU Anwender-Setup aus EEPROM laden

Der mit SU gespeicherte Anwender-Setup incl. der Justage-Daten wird aus dem EEPROM geladen; der TAC-Zähler erhöht sich um +1. Zur Aktivierung muss der Befehl SR (Warmstart) ausgeführt werden oder das DAD141 aus- und wieder eingeschaltet werden.

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
CE-	E+00017 (example)	Abfrage: aktueller TAC-Zählerstand ist 17
CE 17←	OK	Setup aus EEPROM laden freigeschaltet
RU⊢	OK	Anwender-Setup aus EEPROM lesen
SR←	OK	Anwender-Setup aktivieren

10.3. Stillstand - NR, NT

Über den (Waagen-) Stillstand lassen sich bestimmte Funktionen in Phasen der Instabilität des Sensorsignales sperren. Das Messsignal gilt als "stabil" (d.h. "Waage in Ruhe"), wenn sich während der Zeit NT das Messsignal innerhalb des Stillstandsbereiches NR befindet.

Bei Stillstand ist das entsprechende Bit im Gerätestatus IS gesetzt.

Die folgenden Befehle können ausschließlich im Waagen-Stillstand ausgeführt werden:

Sofern das Messsignal <u>nicht</u> "stabil" ist antwortet das DAD 141.1 mit "ERR" (Error = Fehler). Abhilfe kann hier ggf. eine Veränderung der Einstellungen von NR, NT sowie der Filtereinstellungen schaffen.

10.3.1. NR Stillstand-Bereich

[Index 0x2112]

Mit diesem Befehl wird der Stillstand-Bereich definiert; zulässige Werte sind von 1 bis 65535.

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung	
NR←	R+00010	Abfrage: NR = 10 d	
NR 2⊢	ОК	Setup: NR = 2 d	
WP←	ОК	Wert im EEPROM gespeichert	

Beispiel: Bei NR = 2 darf sich der Messwert innerhalb der Zeitdauer NT um max. ± 2 d ändern, dann gilt für das System "Waage in Ruhe".

Werkseinstellung: $NR = 1 = \pm 1d$

10.3.2. NT Zeitdauer Stillstand

[Index 0x2114]

Mit diesem Befehl wird die Zeitdauer (in Millisekunden) für den Stillstand definiert; zulässige Werte sind von 1 bis 65535.

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung	
NT←	T+01000	Request: NT = 1000 ms	
NT 500⊷	OK	Setup: NT = 500 ms	
WP←	OK	Wert im EEPROM gespeichert	

Bei NT = 500 darf sich der Messwert über 500ms um den eingestellten Wert für NR, z.B. ± 2d, nicht ändern, dann gilt für das System "Waage in Ruhe".

Werkseinstellung: NT = 1000 [ms]

[&]quot;Justage Nullpunkt" (CZ)

[&]quot;Justage Verstärkung" (CG)

[&]quot;Nullsetzen" (SZ) und

[&]quot;Tarieren" (ST).

10.4. Digitale Filter – FM, FL, UR

Mit digitalen Signalfiltern lassen sich elektrische/mechanische Störungen auf das Messergebnis im industriellen Umfeld reduzieren. Mit den Befehlen **FM** und **FL** werden die Filter definiert, der Befehl **UR** dient zur Mittelwertbildung von bis zu 128 Messwerten. Bitte beachten Sie, dass diese Filter direkt hinter dem AD-Wandler aktiv sind und somit Wirkung auf alle Einstellungen des Wäge-/Messbetriebes haben.

10.4.1. FM Filter-Modus

[Index 0x2110]

Mit diesem Befehl wird der Filtermodus eingestellt; zulässige Einstellungen sind "0" für IIR-Filter und "1" für FIR-Filter.

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung	
FM⊷	M+00000	Abfrage: FM = 0 (IIR-Filter)	
FM 1←	ОК	Setup: FM = 1 (FIR-Filter)	
WP←	ОК	Wert im EEPROM gespeichert	

Das digitale IIR-Filter arbeitet als Tießpassfilter 2. Ordnung mit Gauß-Charakteristik. Die Filterdämpfung beträgt 40dB/Dekade (12 dB/Oktave). Vgl. auch Tabelle 'Mode 0'.

Das digitale FIR-Filter arbeitet als Tiefpassfilter mit schneller Antwort; Dämpfung siehe Tabelle 'Mode 1'.

Werkseinstellung: FM = 0 (IIR filter)

10.4.2. FL Filter-Grenzfrequenz

[Index 0x2106]

Mit diesem Befehl wird die 3dB-Filtergrenzfrequenz eingestellt.

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung	
FL←	F+00003	Abfrage: FL = 3 (4 Hz)	
FL 7←	OK	Setup: FL = 7 (0.5 Hz)	
WP←	OK	Wert im EEPROM gespeichert	

Zulässige Werte sind 0 bis 8 (siehe nachstehende Tabellen 'Mode 0' und 'Mode 1').

Werkseinstellung: FL = 3.

Mode 0 (IIR-Filter) Einstellungen / Charakteristic

FL	Einschwingzeit auf 0,1% (ms)	3dB Grenzfrequenz (Hz)	Dämpfung @300Hz (dB)	Ausgaberate * (Messwerte/s)
0	-	- **		600
1	55	18	57	600
2	122	8	78	600
3	242	4	96	600
4	322	3	104	600
5	482	2	114	600
6	963	1	132	600
7	1923	0.5	149	600
8	3847	0.25	164	600

^{**} FIR-Vorfilter 18 Hz

^{*} Ausgaberate = 600/2^{UR} Messwerte/s

Mode 1 (FIR-Filter) Einstellungen / Charakteristic

FL	Einschwingzeit		20 dB	40 dB	Dämpfung	Stoppband	Ausgaberate
	auf 0,1%		Dämpfung bei				max.
		frequenz	Frequenz	Frequenz	Stoppband	4	
	(ms)	(Hz)	(Hz)	(Hz)	(dB)	(Hz)	(Werte/s)
0	-	- **					600
1	47	19.7	48	64	>90	>80	600
2	93	9.8	24	32	>90	>40	300
3	140	6.5	16	21	>90	>26	200
4	187	4.9	12	16	>90	>20	150
5	233	3.9	10	13	>90	>16	120
6	280	3.2	8	11	>90	>13	100
7	327	2.8	7	9	>90	>11	85.7
8	373	2.5	6	8	>90	>10	75

^{**} FIR-Vorfilter 18 Hz

Achtung: Bei FIR-Filterung ist die Ausgaberate abhängig vom eingestellten Filter FL; sie wird automatisch vom DAD 141.1 angepasst (siehe vorstehende Tabelle Spalte "Ausgaberate").

10.4.3. UR Mittelwertbildung & Ausgaberate [Index 0x2120]

In Abhängigkeit von Filtermodus und Filtergrenzfrequenz wird ein Mittelwert für die Messdatenanzeige/ausgabe gebildet. Zulässige Werte liegen im Bereich 0 bis 7 (siehe nachstehende Tabelle). Der Mittelwert wird über 2^{UR} Messwerte gebildet.

DAD 141.1 bietet folgende Mittelwerte an:

UR	0	1	2	3	4	5	6	7
Mittelwert über 2 ^{UR} Werte	1	2	4	8	16	32	64	128

Check / Einstellung der Mittelwertbildung:

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
UR←	U+00003	Abfrage: Mittelwert über 8 Einzelwerte
UR 7←	OK	Setup: Mittelwert über 128 Einzelwerte
WP←	OK	Wert im EEPROM gespeichert

Werkseinstellung: 0 (keine Mittelwertbildung, 600 Messwerte/sec)

Anmerkung zu Mode 1

Abhängigkeit Ausgaberate - Mittelwertbildung UR - Filter FL

UR		Ausgaberate Messwerte/s							
	FL0	FL1	FL2	FL3	FL4	FL5	FL6	FL7	FL8
		19.7 Hz	9.8 Hz	6.5 Hz	4.9 Hz	3.9 Hz	3.2 Hz	2.8 Hz	2.5 Hz
0	600	600	300	200	150	120	100	85.7	75
1	300	300	150	100	75	60	50	42.85	37.5
2	150	150	75	50	37,5	30	25	21.42	18.75
3	75	75	37.5	25	18.75	15	12.5	10.71	9.38
4	37.5	37.5	18.75	12.5	9.38	7.5	6.25	5.36	4.69
5	18.75	18.75	9.38	6.25	4.69	3.75	3.13	2.68	2.34
6	9.38	9.38	4.69	3.13	2.34	1.88	1.56	1.34	1.17
7	4.69	4.69	2.34	1.56	1.17	0.94	0.78	0.67	0.59

10.5. Tarieren und Nullstellen – SZ, RZ, ZN, ST, RT, TN, RW, TI

Diese Befehle erlauben ein Nullstellen oder Tarieren des Messwertes sowie deren Zurücknahme. Der bei der Justage eingestellte Nullpunkt CZ (oder AZ) bleibt stets der physikalische Nullpunkt des Systems. Der durch Nullstellen oder Tarieren neue "aktuelle wirksame" Nullpunkt ist die Basis für den angezeigten Netto-Messwert.

Der "aktuell wirksame" Nullpunkt wird ggf. bei aktiver Nullnachführung ständig geändert. Die Befehle Nullstellen oder Tarieren können nur im Waagenzustand "in Ruhe" ausgeführt werden; ansonsten wird der Befehl von Gerät mit einer Fehlermeldung quittiert.

Ein Nullstellen mit dem Befehl SZ ist <u>nur</u> in Abhängigkeit der eingestellten Werte für die Befehle NR, NT, ZR und ggf. auch der Filter erfolgreich auszuführen. Im Falle ZR = 0 ist das Nullstellen deaktiviert, der Befehl SZ wird nicht ausgeführt. Es gibt auch keine Fehlermeldung.

Siehe auch Kapitel 11 - eichamtliche Anwendungen.

10.5.1. SZ Nullstellen

[Index 0x2061]

Mit diesem Befehl wir der neue "aktuelle" Nullpunkt als Basis für alle weiteren Wägeoperationen festgelegt. Automatische Null-Nachführung, ein weiterer Befehl SZ oder der Befehl RZ ändern den neuen "aktuellen" Nullpunkt.

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
SZ←	OK	Nullsetzen ausgeführt

Der Befehl SZ wird <u>nicht</u> ausgeführt (DAD 141.1 antwortet mit ERR) wenn der neue "aktuelle" Nullpunkt mehr als ± ZR Incremente vom "wahren" Nullpunkt bei der Justage abweicht. Der Befehl SZ wird ebenfalls bei nicht eingehaltenen Stillstandbedingungen ausgeführt (Befehle NR und NT). Bei Waagen-Stillstand wird im Geräte-Status das entsprechende Bit angezeigt, der Befehl SZ vom Gerät akzeptiert und die Datenausgabe mit OK quittiert. Falls das "Stillstands-Bit" nicht aktiv ist, wird der SZ-Befehl vom DAD 141.1 zurückgewiesen und mit einer Fehlermeldung (ERR) beantwortet.

10.5.2. RZ Null Rücksetzen

[Index 0x2061]

Mit diesem Befehl wird die Nullstell-Funktion deaktiviert; der Nullpunkt entspricht jetzt wieder dem physikalischen Nullpunkt [CZ] des Systems.

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
RZ←	OK	Nullpunkt CZ aktiv

Das DAD 141.1 antwortet auf diesen Befehl mit OK oder ERR. Wurde OK quittiert, ist das Status-Bit (Abfrage IS) zurückgesetzt ("0").

10.5.3. ZN Null-Wert speichern

[Index 0x2226]

Dieser Befehl speichert den aktuellen Nullwert des DAD 141.1 beim Ausschalten im EEPROM. Zulässige Werte sind 0 (AUS) und 1 (AN).

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
ZN←	Z:000	Null @ Ausschalten: AUS
ZN_1	OK	Setup: Null @ Ausschalten: AN

10.5.4. ST Tarieren

[Index 0x2061]

Dieser Befehl aktiviert die Netto-Wägung und speichert das aktuelle Gewicht als Tara. Das Messsignal muss hierbei innerhalb der Grenzen NR (Stillstandsbereich) und NT (Stillstandszeit) "stabil" sein. Der Befehl wird nur im System-Status "Waage in Ruhe" ausgeführt.

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
ST←	OK	Tarierung ausgeführt / Netto-Wägung

Wird der Befehl vom DAD 141.1 mit OK quittiert ist das Status-Bit "Tarierung aktiv" (Abfrage IS) gesetzt ("1"). Falls das "Waage in Ruhe"-Bit nicht gesetzt ist, führt das DAD 141.1 den Befehl nicht aus und antwortet mit ERR (Fehler).

10.5.5. RT Tarierung deaktivieren

[Index 0x2061]

Dieser Befehl deaktiviert die Tarier-Funktion, d.h. es wird auf Brutto-Messwertausgabe zurückgestellt.

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
RT←	OK	Tarieren deaktiviert / Brutto-Wägung

Das DAD 141.1 antwortet mit dem Befehl RT entweder mit OK oder ERR. Wurde OK quittiert, ist das Status-Bit (Abfrage IS) zurückgesetzt "0".

10.5.6. TN Tara-Wert speichern

Index 0x2224 1

Dieser Befehl speichert den aktuellen Tarawert des DAD 141.1 beim Ausschalten im EEPROM. Zulässige Werte sind 0 (AUS) und 1 (AN).

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
TN⊢	T:000	Tara @ Ausschalten: AUS
TN_1	OK	Setup: Tara @ Ausschalten: AN

10.5.7. TW Automatische Tarierung

Index 0x240A

Dieser Befehl definiert ein Messfenster für die automatische Tarierung. Die Einstellung von TW = 100 bedeutet, das das System einen neuen Tara-Wert berechnet wenn der gemittelte Netto-Wert innerhalb eines 100d-Fensters um den bisherigen Netto-Nullwert liegt. Der neue Tarawert wird dabei über die Zeitperiode TI (siehe unten) bestimmt. Sofern der gemittelte Nettowert außerhalb des Fensters liegt bleibt der letzte Tara-Wert gültig. Zulässige Werte sind 0...65535d.

Werkseinstellung: TW = 0 [= automatisch Tarierung "Aus"]

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
T₩-	W+00000	Abfrage: TW = 0 d
TW 100⊷	OK	Setup: TW = 100 d

10.5.8. TI Zeitperiode automatische Tarierung [Index 0x240C]

Mit diesem Befehl wird die Mittelungszeit für eine automatische Tarierung festgelegt. Während dieser Zeitperiode berechnet das System einen neuen gemittelten Tara-Wert.

Zulässige Werte sind 0...65535 ms.

Werkseinstellung: TI = 0 ms [= automatisch Tarierung "Aus"].

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
T⊬	T+00000	Request: TI = 0 ms
TI 200⊷	OK	Setup: TI = 200 ms

Anmerkung zu TW / TI:

Eine automatische Tarierung wird nur ausgeführt wenn für beide Befehle gültige Werte eingestellt sind. Ist einer der Werte oder sind beide auf "0" eingestellt, wird diese Funktion nicht ausgeführt.

10.6. Befehle Datenausgabe – GG, GN, ON, GT, GS, GW, GA, GH, GM, RM, GO, GV

Die nachfolgenden Befehle beschreiben wie die Werte Brutto, Netto, Tara, AD-Wandler etc. vom DAD 141.1 ausgegeben werden.

10.6.1. GG Brutto-Messwert abfragen

[Index 0x2000 oder 0x2020]

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
GG←	G+001.100	Brutto-Wert: 1.100 d

10.6.2. GN Netto-Messwert abfragen

[Index 0x2002 oder 0x2022]

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
GN⊢	N+001.000	Netto-Wert: 1.000 d

10.6.3. ON Netto-Messwert von Gerät 'n' abfragen

Dieser Befehl dient zum schnellen Zugriff auf den Netto-Werte von DAD 141.1 Nr. 'n' in einem RS 485-Netzwerk, ohne irgendwelche weiteren Befehle wie Öffnen (OP) oder Schließen (CL) zu verwenden.

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
ON3←	N+001.000	Netto-Wert von # 3: 1.000 d

10.6.4. GT Tara-Wert abfragen

[Index 0x2118]

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
GT←	T+000.100	Tara-Wert: 100 d

10.6.5. GS AD-Wandler-Wert abfragen

[Index 0x202A]

Dieser Befehl fragt den aktuellen AD-Wandler-Wert ab. Diese Info kann während der Entwicklung oder bei einer Justage nützlich sein.

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
GS←	S+125785	ADC sample value = 125785 d

Für Service-Zwecke kann es ggf. hilfreich sein, die GS-Werte für "keine Last" / "Null" und "Justage-Last" zu notieren. So kann z.B. die Langzeit-Nullpunktstabilität kontrolliert werden.

10.6.6. GW Datenstring "Netto/Brutto/Status" abfragen [Index 0x3300 oder 0x3500]

Dieser Befehl veranlasst die Ausgabe von Nettowert, Bruttowert, Status und Checksumme. Dezimalpunkte werden in diesem Datenstring <u>nicht</u> angezeigt. Die Ausgabe erfolgt im Format **W**+00100+01100010F. Die ersten beiden Blöcke geben die Netto-/Bruttowerte wieder und die nächsten beiden Hex-Zeichen den Waagenstatus. Die beiden letzten Hex-Zeichen enthalten die Checksumme des Datenstrings ohne die beiden Zeichen der Checksumme selber.

W	+00100	+01100	0	1	0F
Startzeichen kennzeichnet die GW-Antwort	Nettogewicht ohne Dezimalpunkt	Bruttogewicht ohne Dezimalpunkt	1. Status-Bit	2. Status-Bit	Checksumme

Die Status-Bit bedeuten:

1. Wert	Beschreibung	2. Wert	Beschreibung
1	Nicht benutzt	1	"Waage in Ruhe"
2	Ausgang 0 aktiv	2	Nullstellen aktiv
4	Ausgang 1 aktiv	4	Tarieren aktiv
8	Ausgang 2 aktiv	8	Nicht benutzt

Berechnung der Checksumme:

- a. Addition aller ASCII-Zeichen des Datenstrings ohne Checksumme selber.
- b. Konvertierung der Summe in einem Hexadezimalwert
- c. Addiere 1 zu diesem Wert
- d. Nutze nur die beiden letzten Werte
- e. Umwandlung des hex-Wertes in einen ASCII-Wert ergibt "0F"

10.6.7. GA Mittelwert abfragen

[Index 0x2008 oder 0x2028]

Dieser Befehl zeigt als Messergebnis den Mittelwert einer getriggerten Messung an. Der Messwert wurde über die definierte Messzeit MT gemittelt. Die Trigger-Befehle finden Sie in Kapitel 10.13.

Maste	r (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
	GA←	A+001.100	Abfrage: GA = 1100 g

Hinweis: Um Fehlern vorzubeugen ist das Datenregister GA zu Beginn einer getriggerten Messung mit dem Wert 99999 beschrieben. Der Mittelwert einer getriggerten Messung kann erst nach Ablauf der Messzeit MT ausglesen werden, sofern keine neue getriggerte Messung gestartet ist. Siehe hierzu auch den Befehl SA (Kapitel 10.7.4), der ein automatischens Senden jedes berechneten Mittelwertes ausführt.

10.6.8. GH Hold-Wert abfragen

[Index 0x2084 oder 0x2086]

Dieser Befehl fragt den Momentan-Wert ab. Erfolgt per Terminal-Eingabe direkt oder über externe Steuerung an einem der digitalem Eingänge.

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
GH←	H+001.800	Hold-Wert: 1800 d

10.6.9. TH Triggerung Hold-Wert

[Index 0x2061]

Dieser Befehlt speichert den letzten Hold-Wert GH. Der Wert bleibt bis zur nächsten Abfrage "eingefroren" und wird erst beim Ausschalten gelöscht.

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
T₩	ОК	Speichert Hold-Wert

10.6.10. GM Spitzenwert abfragen

[Index 0x2080 oder 0x2082]

Dieser Befehl fragt den Spitzenwert während der Messung ab.

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
GM←	M+051.100	Spitzenwert: 51100 d

10.6.11. RM Spitzenwert zurücksetzen

[Index 0x2061]

Der Befehl RM löscht den gespeicherten Spitzenwert.

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
RM←	OK	Spitzenwert löschen

10.6.12. GO Spitze-Spitze-Wert abfragen

Index 0x208C oder 0x208E

Der Befehl Spitze-Spitze-Wert GO fragt die Differenz "Maximum – Minimum" während einer Messung ab.

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
G0 /	O+091.100	Spitze-Spitze-Wert: 91100 d

10.6.13. GV Minimum-Wert abfragen

[Index 0x2088 oder 0x208A]

Der Befehl GV fragt den Minimum-Wert während einer Messung ab.

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
GV←	V+000.100	Minimum-Wert: 100 d

10.7. Automatische Ausgabe - SG, SN, SW, SA, SH, SM, SO, SV

Mit den folgenden Befehlen wird z.B. der Brutto- oder Nettowert etc. kontinuierlich ausgegeben. Die Datenausgabe wird erst mit einem neuen vom DAD 141.1 akzeptierten Befehl gestoppt. Die automatische Ausgaberate ist u.a. von der eingestellten Baudrate abhängig; so lassen sich ca. 1000 Werte pro Sekunde bei 115200 Baud übertragen.

10.7.1. SG Brutto-Messwert dauersenden

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
SG←	G+001.100	Dauersenden Brutto-Messwert: 1.100 d

10.7.2. SN Netto-Messwert dauersenden

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
SN⊢	N+001.000	Dauersenden Netto-Messwert: 1.000 d

10.7.3. SW Datenstring "Netto, Brutto und Status" dauersenden

Dieser Befehl veranlasst die Ausgabe von Nettowert, Bruttowert, Status und Checksumme. Dezimalpunkte werden in diesem Datenstring <u>nicht</u> angezeigt. Die Ausgabe erfolgt im Format **W+00100+01100010F**.

Weitere detaillierte Informationen finden Sie beim Befehl GW (Kapitel 10.6.6).

10.7.4. SA Mittelwert dauersenden

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
SA←	OK	Dauersenden Mittelwert

Dieser Befehl sendet permanent als Messergebnis den Mittelwert einer getriggerten Messung an. Der Messwert wurde über die definierte Messzeit MT gemittelt. Die Trigger-Befehle finden Sie in Kapitel 10.13.

10.7.5. SH Hold-Wert dauersenden

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
SH-	H+001.100	Dauersenden Hold-Wert: 1.100 d

10.7.6. SM Spitzenwert dauersenden

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
SM⊷	M+001.100	Dauersenden Spitzenwert: 1.100 d

10.7.7. SO Spitze-Spitze-Wert dauersenden

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
so⊢	O+001.100	Dauersenden Spitze-Spitze-wert: 1.100 d

10.7.8. SV Minimum-Wert dauersenden

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
SV←	V+000.100	Dauersenden Minimum-Wert: 100 d

10.8. Logik-Eingang Funktionen & Status - Al'n', IN

10.8.1. Al Funktion Eingang 'n' zuweisen

[Index 0x2074 oder 0x2076]

Dier Befehl fragt den Eingang ab bzw. stellt die Funktion für den digitalen Eingang 'n' ein.

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
AI_1←	I1:+00000	Abfrage Eingang 1: keine Funktion
Al_1_10 -	OK	Setup Eingang 1 auf Funktion 10 (Spitze-
		Spitze-Wert) akzeptiert
AI 1←	I1:+00010	Eingang 1:
AI_I	11.400010	Anzeige auf 'Spitze-Spitze-Wert'

Den beiden logischen Eingänge 'n' können die nachfolgenden Funktionen zugewiesen werden. Die eingestellte Funktion wird ausgeführt, wenn an Eingang 'n' ein digitales Signal (high-Pegel) von SPS oder Taster oder Lichtschranke etc. anliegt; Dauer mindestens ≥ 1ms.

- 00 Eingang "n" hat keine Funktion
- 01 Eingang "n" arbeitet wie NULL-Taste
- 02 Eingang "n" arbeitet wie Tara-Taste
- 03 Eingang "n" arbeitet wie Hoch-Taste
- 04 Eingang "n" arbeitet wie Runter-Taste
- 05 Eingang "n" führt eine Triggerung aus (Kontrollwaage)
- 06 Eingang "n" zeigt den Mittelwert an
- 07 Eingang "n" zeigt den Spitzenwert an
- 08 Eingang "n" löscht den Spitzenwert
- 09 Eingang "n" zeigt den Hold-Wert an
- 10 Eingang "n" zeigt den Spitze-Spitze-Wert an
- 11 Eingang "n" zeigt den Minimum-Wert an
- 12 Eingang "n" Front-Tasten sind abgeschaltet
- 13 Eingang "n" speichert den aktuellen Hold-Wert
- 14 Eingang "n" tariert die Anzeige und löscht alle anderen Werte
- 15 Eingang "n" schaltet die Anzeige aus

10.8.2. IN Status Logik-Eingang abfragen

[Index 0x210C]

Dieser Befehl zeigt den Status der beiden Digital-Eingänge an.

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
IN←	1:0000	Abfrage: Eingang 0 und 1 inaktiv
IN←	I:0001	Abfrage: Eingang 0 aktiv
IN←	I:0010	Abfrage: Eingang 1 aktiv
IN←I	I:0011	Abfrage: Eingang 0 und 1 aktiv

Die Status-Antwort erfolgt in Form eines 4-Digit-Code; es bedeuten 0 = 'falsch' und 1 = 'wahr' (Eingänge sind aktiv 'high'). Das LSB (least significant bit) korrespondiert mit Eingang 0.

10.9. Logik-Ausgang 'n' - IO, OM, S'n', H'n', P'n', A'n', HT

Das DAD 141.1 besitzt serienmässig 3 unabhängige digitale Logik-Ausgänge. Die Einstellungen der Grenzwerte (S'n') wird im Verlaufe dieses Kapitels beschrieben.

PC / SPS können den Status der Ein- und Ausgänge abgefragen. Die Logikeingänge erlauben damit eine Status-Überwachung anderer Geräte bzw. Zustände. Die Logik-Ausgänge lassen sich entweder der internen Grenzwertüberwachung des Messsignales oder der externen Steuerung zuordnen.

Jedem Logik-Ausgang kann ein unabhängiger Grenzwert (S'n') zugewiesen werden mit individueller Einstellung von Hysterese / Polarität (H'n', P'n') und Funktionszuweisung (A'n' – Funktion des Ausganges).

10.9.1. IO Logik-Ausgang – Abfrage / Setup [Index 0x210A]

Mit diesem Befehl wird der Status der Logik-Ausgänge abgefragt oder eingestellt. Die Abfrage-Rückmeldung erfolgt in Form eines vierstelligen Bitmap-Code, 0 = 'falsch' und 1 = 'wahr' (Open-Drain MOSFETs); das LSB (least significant bit) entspricht dem Ausgang 0 usw.

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
IO⊢	IO:0001	Ausgang 0 ist 'high'
IO⊢	IO:0101	Ausgang 0 und 2 sind 'high'
IO⊢	IO:0111	Ausgang 0, 1 und 2 sind 'high'

Mit diesem Befehl kann aber auch der Status der Logik-Ausgänge eingestellt werden (sofern mit dem **OM**-Befehl freigegeben), unabhängig vom Status des jeweiligen Ausganges gemäss der Grenzwert-Einstellung. Bei der Einstellung IO 0001 ist Ausgang 0 aktiviert (MOSFET durchgeschaltet).

Liegt die Freigabe per OM-Befehl vor, so kann die externe Steuerung den Ausgang gemäß dem 4-stelligen Code steuern.

Einstellungen

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
IO_010⊷	OK	Setup: Ausgang 1 ist 'high'
IO_011 ←	ОК	Setup: Ausgang 0 und 1 sind 'high'
IO_111 ←	OK	Setup: Ausgang 0, 1 und 2 sind 'high'

Je nach Einstellung des **OM**-Befehles können die Logik-Ausgänge entweder per Befehl **IO** gesetzt werden oder direkt über die angeschlossene Steuerung.

Werkseinstellung: IO=0000

10.9.2. OM Steuerung von Logik-Ausgang 'n' - Abfrage /Setup [Index 0x2116]

Die Logik-Ausgänge sind von PC / SPS steuerbar (im Gegensatz zu den intern eingestellten Grenzwerten), wenn sie vom OM-Befehl über den entsprechenden 4-stelligen Code aktiviert wurden.

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
OMH	OM:0001	Ausgang 0 freigeschaltet
OMH	OM:0101	Ausgang 0 und 2 freigeschaltet
OM	OM:0111	Ausgang 0, 1 und 2 freigeschaltet

Durch ein gesetztes Bit ("1") im 4-stelligen Code, in Verbindung mit der entsprechenden Freigabe über den Befehl IO, wird die externe Steuerung des Ausganges freigeschaltet. Ist das Bit auf "0" gesetzt, folgt der Ausgang den Einstellungen für den zugewiesenen Grenzwert in Abhängigkeit der Messsignale.

Ausgang 0 entspricht dem LSB (least significant bit).

Einstellungen

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
OM_010 -	OK	Ausgang 1 ist freigeschaltet
OM_ 011←	ОК	Ausgang 0 und 1 sind freigeschaltet
OM_111←	OK	Ausgang 0, 1 und 2 sind freigeschaltet

Hinweis: Nach Freigabe der externen Steuerung wird die Status-Abfrage der Ausgänge nicht mehr durch die Grenzwert-Einstellungen bestimmt. Nach Ausführung von OM_0000 ist die Freigabe wieder erloschen.

Werkseinstellung: OM=0000

10.9.3. A'n' Aktion für Grenzwert 'n' zuweisen [Index 0x2068]

Dieser Befehl behandelt die Aktion der logischen Ausgänge: abfragen oder einstellen

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
A1←	A1:+00000	Abfrage: Ausgang 1 folgt Brutto-Wert
A2←	A2:+00002	Abfrage: Ausgang 2 folgt Spitzen-Wert
A1_1← ¹	OK	Setup: Ausgang 1 folgt Netto-Wert
A1← ¹	A1:+00001	Abfrage: Ausgang 1 folgt Netto-Wert

Folgende Aktionen für Ausgang 'n' sind wählbar:

- 0 Brutto-Wert
- 1 Netto-Wert
- 2 Spitzen-Wert (Maximum)
- 3 Mittelwert
- 4 Hold-Wert
- 5 Spitze-Spitze-Wert
- 6 Minimum-Wert
- 7 Fehler 4 oder 5
- 8 Ausgang abschalten (inaktiv)

10.9.4. S'n' Grenzwert 'n'

[Index 0x206C]

Mit diesem Befehl werden die 3 Grenzwerte S0, S1 and S2 abgefragt oder eingestellt. Der Wertebereich ist +/- 999 999.

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
S1 ←	S1:+01500	Abfrage: Grenzwert S1 = 1500 d
S1 3000 └	OK	Setup: Grenzwert S1 = 3000 d

Werkseinstellungen: S'0' = 1 000 d, S'1' = 5 000 d, S'2' = 9 999 d

10.9.5. H'n' Hysterese und Schaltlogik Grenzwert 'n'

[Index 0x206A]

Die gewünschte Schaltlogik wird mittels des numerischen Hysterese-Wertes und der Polarität (Kapitel 10.9.6) eingestellt. Der Ausgang 'n' kann als "Schließer" oder "Öffner" arbeiten.

Beispiele für das Schaltverhalten eines Grenzwertes 2.000 kg:

Polarität = 0 [Aus/OFF]

Polarität = 1 [Ein/ON]

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
H1 ←	H1:+00000	Abfrage: Hysterese Grenzwert S1
H1_100⊢	OK	Setup: Hysterese Grenzwert S1 auf 100d

Zulässige Hysterese-Werte sind von -9 999 d bis +9 999 d mit einer Schrittweite von 1, unabhängig vom Dezimalpunkt.

10.9.6. P'n' Polarität der Schaltlogik

[Index 0x2070]

Über diesen Befehl wird die Schaltlogik der 3 Grenzwerte S0, S1 und S2 eingestellt.

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
P0←	P0:+00000	Abfrage: Polarität von S0 ist "0"
P0_1 ←	ОК	Setup: Polarität von S0 ist "1"
P1_1 ←	ОК	Setup: Polarität von S1 ist "1"
P1← ¹	P:+00001	Abfrage: Polarität von S1 ist "1"

Der Wertebereich ist 0 [Aus] oder 1 [Ein].

Zur weiteren Information oder zum besseren Verstandnis siehe auch Beispiele im Kapitel 10.9.5.

Anmerkung: Alle Änderungen der Grenzwert-Einstellungen müssen im EEPROM mit dem Befehl SS netzausfallsicher gespeichert werden, siehe Kapitel 10.12.

10.9.7. HT Haltezeitdauer Grenzwert-Überschreitung [Index 0x2408]

Mit diesem Befehl wird die Haltezeitdauer für eine Grenzwert-Überschreitung eingestellt. Der Messwert muß den Schaltpunktwert für mindestens diese Zeitdauer permanent überschritten haben, bevor ein Schaltereignis ausgelöst werden kann.

Anmerkung: Diese Einstellung ist für alle 3 Grenzwerte gültig.

Der Wertebereich ist 0 bis 65 535 ms.

Werkseinstellung: HT = 0 ms.

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
HT←	H+00000	Abfrage: HT = 0 ms
HT 200⊢	ОК	Setup: HT = 200 ms

Hinweis: Alle Änderungen / Einstellungen im Kapitel 10.9 werden mit dem Befehl SS im EEPROM dauerhaft gespeichert, siehe Kapitel 10.12.2.

10.10. Befehle Schnittstellen-Kommunikation - AD, NA, BR, DX, OP, CL, TD

10.10.1. AD Geräteadresse

Mit dem Befehl AD kann eine Geräteadresse im Wertebereich von 0 bis 255 eingestellt werden..

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
AD⊷	A:000	Abfrage: Adresse 0 (= Werkseinstellung)
AD_49⊷	OK	Setup: Adresse 49

Bei Adresse "0" ist das Gerät an der Schnittstelle immer aktiv, ohne das ein "OP"-Befehl erfolgen muss.

ACHTUNG: Nach Adressänderung muß zuerst die Änderung gespeichert (Befehl WP) und anschließend ein Geräte-Neustart durchgeführt werden.

10.10.2. NA Netzwerk-Adresse TCP/IP [Index 0x300C]

Mit dem Befehl NA wird die Adresse vom Ethernet-Port des DAD 141.1 abgefragt oder eingestellt. Zur Änderung muss die Adresse gemäß nachstehender Tabelle eingegeben werden.

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
NA←	A:192.168.000.100	Aktuelle TCP/IP Adresse
NA 192.168.11.90 니	OK	Setup: TCP/IP-Adresse auf 192.168.11.90

Werkseinstellung der TCP/IP-Adresse: 192.168.0.100.

10.10.3. BR Baudrate

Es können folgende Baudraten eingestellt werden: 9600, 19200, 38400, 57600 und 115200 Baud.

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
BR←	B 115200	Abfrage: 115200 Baud
BR_9600 ←	OK	Setup: 9600 Baud

Werkseinstellung: 115200 baud

ACHTUNG: Nach Ändern der Baudrate muß zuerst die Änderung gespeichert (Befehl WP) und anschließend ein Geräte-Neustart durchgeführt werden.

10.10.4. DX Betriebsart Halb-/ Voll-Duplex

Mit diesem Befehl wird der Betrieb der seriellen Schnittstelle auf Halb-Duplex oder Voll-Duplex eingestellt. Die zulässigen Einstellungen sind 0 (für Halb-Duplex) und 1 (für Voll-Duplex).

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
DX←	X:001	Abfrage: DX = 1 (full duplex, factory default)
DX 0←	OK	Setup: DX = 0 (half duplex)

Halb-Duplex-Betrieb wählt man bei Nutzung der 2-Leiter RS485-Schnittstelle.

Hinweis: Automatische Messwertausgabe (Abschnitt 10.7, z.B. "SN", "SG", "SW" etc.) ist nur im Voll-Duplex-Betrieb möglich.

10.10.5. OP Geräte-Kommunikation

Dieser Befehl fragt die aktuelle Busadresse des korrespondierenden Gerätes ab. Wird der Befehl mit einem Parameter gesendet, dann wird die Geräteadresse entsprechend dem Parameter angesprochen.

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
OP←	O:003	Abfrage: Gerät #3 aktiv
OP_14←	OK	Setup: Gerät #14 ansprechen

Jeder OP-Befehl impliziert einen CL-Befehl für alle nicht adressierten Geräte. Hierdurch werden Adressierungs-Strukturen vereinfacht und die Gesamtleistung im Bus verbessert.

10.10.6. CL Kommunikation schließen

Kommunikation zu den DAD 141.1 im Bus wird geschlossen.

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
CL←	OK	Setup: Kommunikation geschlossen

10.10.7. TD Verzögerungszeit Datenübertragung

In einigen Halb-Duplex-Anwendungen, speziell mit SPS, kann eine kleine Verzögerungszeit für die sehr schnellen Antworten des DAD 141.1 erforderlich sein. Es sind Werte von 0 bis 255 ms eingestellbar.

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
TD⊷	T+00000	Abfrage: 0 d – keine Verzögerung
TD_200⊷	OK	Setup: 200 d – 200 ms Verzögerung

Werkseinstellung: 0 ms.

10.11. Analog-Ausgang - AA, AH, AL, AM

Hinweis:

Die nachfolgenden Einstellungen werden mit dem Befehl **AS** (Kapitel 10.12.3) im EEPROM netzausfallsicher gespeichert.

10.11.1. AA Zuordnung Analog-Ausgang [Index 0x2100]

Mit diesem Befehl wird die Zuordnung des Analog-Ausganges eingestellt. Zulässige Werte sind 0 ... 8.

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
AA←l	A+00001	Abfrage: Zuordnung Brutto-Wert
AA_2←	OK	Setup: Zuordnung Spitzen-Wert eingestellt

Folgende Zuordnung ist möglich:

- 0 Analog-Ausgang folgt Brutto-Wert
- 1 Analog-Ausgang folgt Netto-Wert
- 2 Analog-Ausgang folgt Spitzenwert
- 3 Analog-Ausgang folgt Mittelwert
- 4 Analog-Ausgang folgt Hold-Wert
- 5 Analog-Ausgang folgt Spitze-Spitze-Wert
- 6 Analog-Ausgang folgt Minimum-Wert
- 7 Analog-Ausgang folgt **Anzeige**-Wert
- 8 Analog-Ausgang ist abgeschaltet

10.11.2. AH Analog-Ausgang 'High Level' [Index 0x2102]

Abfrage / Einstellung des 'High Level'. Zulässige Werte sind -999 999d ... +999 999d, unabhängig vom Dezimalpunkt.

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
AH⊷	H+010000	Abfrage: High Level = 10 000d
AH_30000⊷	OK	Setup: High level = 30 000d

10.11.3. AL Analog-Ausgang 'Low Level' [Index 0x2104]

Abfrage / Einstellung des 'Low Level'. Zulässige Werte sind -999 999d ... +999 999d unabhängig vom Dezimalpunkt.

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
AL←	L+000000	Abfrage: Low Level = 0d
AL_600←	OK	Setup: Low Level = 600d

10.11.4. AM Modus Analog-Ausgang Strom/Spannung [Index 0x2128]

Abfrage / Setup des Modus Analog-Ausgang. Zulässige Werte sind 0 ... 5.

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
AM⊷	M:000	Abfrage: Stromausgang 4 to 20mA
AM_3←	OK	Setup: Spannungsausgang 0 to +10V

Folgende Auswahl des Analog-Ausganges ist möglich:

0	4 to 20mA
1	0 to 20mA
2	0 to +5V
3	0 to +10V
4	-5 to +5V
5	-10V to +10V

10.12. Justage- und Einstellwerte speichern - CS, WP, SS, AS, GI, PI

Die Justage- und Einstellparameter können in 4 Gruppen unterteilt werden:

- Justage: CM, DS, DP, CZ, CG, ZT, IZ, FD, etc. werden mit CS im EEPROM gespeichert
- Setup: FL, FM, NR, NT, BR, AD, DX, etc. werden mit WP im EEPROM gespeichert
- Grenzwerte: S'n', H'n', P'n', A'n', IO, OM, HT werden mit SS im EEPROM gespeichert
- Analog-Ausgang: AA, AH, AL, AM werden mit AS im EEPROM gespeichert

Hinweis: Neue Justage-Daten können nur mit bekannten TAC-Zählerstand und der Ausführung des Befehls CS ins EEPROM geschrieben werden. Mehr Info hierzu im Kapitel 10.2, Befehle **CE** und **CS**.

10.12.1. CS Justage speichern

Dieser Befehl speichert alle Justagedaten netzausfallsicher im EEPROM und der TAC-Zähler erhöht sich um 1.

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
CE←	E+00017 (example)	Abfrage: aktueller TAC-Zählerstand ist 17
CE 17←	OK	Justage freigeschaltet
CS⊢	OK	Justage im EEPROM gespeichert

10.12.2. WP Einstell-Parameter sichern [Index 0x2066]

Mit diesem Befehl werden die Einstellungen zur digitalen Signalfilterung (FL, FM, UR), dem Stillstandsbereich (NR, NT), die Kommunikationseinstellungen (AD, BR, DX) und die Trigger-Parameter (SD, MT, GA, TE, TR, TL) gesichert.

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
WP←	OK	Setup im EEPROM gespeichert
WP←	ERR	Fehler

10.12.3. SS Grenzwert-Parameter sichern [Index 0x2066]

Mit diesem Befehl werden die Einstellungen der Schaltpunkte (S'n'), der Schaltpunkt-Hysterese (H'n'), der Polarität (P'n'), der Aktion (A'n') sowie Verhalten der Logik-Ausgänge (IO, OM) gesichert.

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
SS⊢	OK	Parameter Grenzwert gespeichert
SS⊢	ERR	Fehler

10.12.4. AS Parameter Analog-Ausgang sichern [Index 0x2066]

Mit diesem Befehl werden die Einstellungen der Aktion (AA), der 'Low'-Pegel (AL), der 'High'-Pegel (AH) und der Modus Analog-Ausgang (AM) gesichert.

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
AS⊢	OK	Parameter Analog-Ausgang gesichert
AS←	ERR	Fehler

10.12.5. GI EEPROM-Image als Datei sichern

Mit diesem Befehl wird eine Kopie des EEPROM-Inhalts aus dem DAD 141.1 als Image-Datei gesichert. Diese Image-Datei ist im Hexadezimal-Format (Intel) und enthält alle Einstellungen außer den Justagedaten. Die gesicherte Image-Datei kann in ein typgleiches DAD 141.1 mit identischer Firmware und identischem Firmware-Revisionsstand geladen werden.

10.12.6. PI EEPROM-Image von Datei in DAD 141.1 laden

Mit diesem Befehl wird eine zuvor gesicherte Kopie des EEPROM-Inhalts (siehe Befehl "GI") in ein typgleiches DAD 141.1 mit identischer Firmware und identischem Firmware-Revisionsstand geladen.

Achtung: Das Ziel-DAD 141.1 muss <u>zwingend</u> die <u>gleiche Firmware und Revisionsnummer</u> haben wie das Quell-DAD 141.1.

10.13. Befehle für getriggerte Messungen – SD, MT, GA, TE, TR, TL, SA

Achtung: Alle nachfolgenden Einstellungen müssen mit dem Befehl **WP** (Write Parameter) vor dem Ausschalten netzausfallsicher gespeichert werden; siehe Kapitel 10.12.

Hinweis: Das Zeitdiagramm einer typischen Kontrollwägung mit Erklärungen siehe nächste Seite.

10.13.1. SD Startverzögerung Messung

[Index 0x211A oder 0x2412]

Mit diesem Befehl wird eine Zeitverzögerung ab dem Triggerzeitpunkt bis zum Messzyklus-Beginn eingestellt. Der zulässige Wertebereich reicht von 0ms bis 500ms.

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
SD⊢	S+00100	Abfrage: SD = 100ms
SD 200⊢	OK	Setup: SD = 200ms

Werkseinstellung: SD = 0ms

10.13.2. MT Messzeit zur Mittelwertbildung

[Index 0x210E oder 0x2410]

Mit diesem Befehl wird die Messzeit zur Mittelwertbildung eingestellt. Der zulässige Wertebereich reicht von 0ms bis 3000ms.

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
MT←	M+00100	Abfrage: MT = 100ms
MT 500⊷	OK	Setup: MT = 500ms

Achtung: Die Einstellung MT = 0 bedeutet, dass die Triggerfunktion und Mittelwertbildung ausgeschaltet sind.

Werkseinstellung: MT = 0 [= keine Triggerfunktion]

10.13.3. GA Berechneter Mittelwert

[Index 0x2008 oder 0x2028]

Mit diesem Befehl wird das Ergebnis der Mittelwertbildung ausgelesen. Der Mittelwert wurde gemäß der eingestellten Messzeit integriert.

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
GA←	A+001.100	Abfrage: Mittelwert GA = 1.100g

Achtung: Beim Start eines Messzyklus hat das Register GA den Wert 99999 gespeichert, um Fehler beim Auslesen der Daten zu vermeiden. Erst nach Ablauf der eingestellten Messzeit MT steht das Ergebnis so lange im Register GA, bis ein neuer Messzyklus gestartet wird.

10.13.4. TE Trigger-Flanke

[Index 0x2402 oder 0x211C]

Mit diesem Befehl wird die Triggerflanke eingestellt. Zulässige Einstellwerte sind 0 für abfallende Signalflanke und 1 für ansteigende Signalflanke. Dieser Befehl kann NUR in Verbindung mit einer Triggerung über einen der beiden Digitaleingänge angewendet werden.

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
TE←¹	E:001	Abfrage: TE = 1 (steigende Flanke)
TE 0 [⊷]	OK	Setup: TE = 0 (fallende Flanke)

Werkseinstellung: TE = 0 [= falling edge]

10.13.5. TR Software-Triggerung der Mittelwertbildung [Index 0x2062]

Mit diesem Befehl wird ein Messzyklus gestartet. Dieser Befehl arbeitet vergleichbar wie ein Hardware-Startsignal über Digitaleingang 0 oder 1.

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
TR←	ОК	Software-Trigger ausgelöst

10.13.6. TL Triggerschwelle

[Index 0x211E oder 0x2400]

Mit diesem Befehl wird einer Triggerschwelle für eine Messignal-gesteuerte Triggerung eingestellt. Der zulässige Wertebereich reicht von 0 bis 99999.

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
TĿ	T+99999	Abfrage: TL = 99999
TL 1000⊷	OK	Setup: TL = 1000

Im Beispiel würde unter Berücksichtigung der Trigger-Befehle (SD, TL) ein Messzyklus automatisch bei Überschreiten von 1.000d (z.B. 100,0 g) gestartet.

Werkseinstellung: TL = 99999 [= Triggerschwelle deaktiviert]

Anmerkung: Alle Triggermöglichkeiten stehen <u>immer gleichzeitig</u> in als ODER-Logik zur Verfügung. Bei Verwendung des Software-Triggers (Befehl TR) oder des Hardware-Triggers (Digitaleingang 0/1) sollte zuvor die Triggerschwelle TL auf den Maximalwert gesetzt werden (TL = 99999), quasi deaktiviert.

Abbildung: Typisches Zeitdiagramm für einen Messzyklus bei einer Kontrollwaage

10.13.7. SA Automatisches Senden Mittelwert

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
SA←	OK	Auto-Transmit: Mittelwert

Dieser Befehl liefert laufend den letzten Mittelwert, siehe auch Kapitel 10.7.4.

11. Einsatz in eichfähigen Anwendungen

Der Wäge-Indikator DAD 141.1 besitzt eine Bauartzulassungen für die Eichklasse III mit 10000 Teilen gemäß OIML R76 für NSW (Nicht-Selbsttätige Waagen) – DK 0199-R76-422. Das Mindestmesssignal pro Eichwert beträgt 0,25µV.

Das DAD 141.1 erfüllt weiterhin die metrologischen Daten/Eigenschaften für den Einsatz in Selbsttätigen Waagen (SWE, SWA, SWT); dies wird mit den 'Evaluation Certificates' (Beurteilungs-Zertifikat) gemäß OIML R51 (SWE – selbsttätige Waage für Einzelwägung), R61 (SWA – selbsttätige Waage zum Abwägen) und R107 (SWT – selbsttätige Waage zum Totalisieren) durch DELTA (Danish Electronics, Light & Accoustics) bestätigt.

Weitere technischen Informationen entnehmen Sie bitte der Bauartzulassung oder den Evaluation Certificates.

11.1. Zugriff auf metrologische Daten und die Bereichsjustage

Der Zugriff auf die Konfiguration und die Justagefunktion wird mittels eines rückverfolgbaren Codes (TAC = Traceable Access Code) gewährt, welcher als nicht-flüchtige Zahl automatisch bei jedem Beenden der Justagefunktion um 1 erhöht wird. Der Nachweis kann mittels dem B efehl CE eingesehen werden, welcher mit dem Status CExxxxx beantwortet wird. Der Code wird bis zu 65535 erhöht.

11.2. Schutz der metrologischen Daten und der Bereichsjustage

Der Zugriff auf die Konfiguration und die Justagefunktion ist durch einen Code (TAC) geschützt.

Setup oder Änderungen der Justage können nur bei geöffnetem Schalter (Klemmen 28) durchgeführt werden. Bei Veränderungen wird der Wert des TAC-Zählers entsprechend um 1 erhöht. Bei eichpflichtigem Einsatz müssen die beiden Kontakte per Jumper gebrückt und versiegelt sein. Ein beschädigtes Siegel zeigt eine unerlaubte Änderungen der Justage an.

12. Justage und Justage-Sequenz

Die Justage des DAD 141.1 ist nur möglich, wenn vor jedem Befehl der Befehl 'CE 17' (Beispiel – 17 = aktueller TAC-Wert) ausgeführt wurde (siehe Kapitel 9.2).

Befehl CE: Justage-Sequenz öffnen – Antwort ist der aktuelle TAC-Zählerstand
 Befehl CM: Justage Maximum-Anzeigewert – Setup des max. Anzeigewertes
 Befehl CI: Justage Minimum-Anzeigewert – Setup des min. Anzeigewertes
 Befehl DS: Justage Ziffernschrittweite – Setup der Ziffernsprünge in d
 Befehl DP: Justage Dezimalpunkt – Setup Position Dezimalpunkt

Befehl CZ: Justage Null – Setup Null

Befehl CG: Justage Verstärkung – Setup Verstärkung
 Befehl ZT: automatische Null-Nachführung Ein / Aus
 Befehl ZR: ggfs. Null-Stellbereich manuell festlegen
 Befehl ZI: ggfs. Einschalt-Nullstellbereich festlegen

Befehl FD: ggfs. DAD 141.1 auf die Werkseinstellungen zurücksetzen

Befehl CS: Justage-Daten im EEPROM sichern (danach TAC-Zählerstand plus 1)

Vorbereitung der Justage:

- Überprüfen, ob der Max-Wert der Anzeige ausreichend hoch eingestellt ist (siehe Kap. 9.2: Befehl CM)
- Überprüfen, ob die Stillstandsbedingungen sinnvoll festgelegt sind (Kapitel 10.3: z.B. NR = 1, NT = 1000)
- Die Signalfilterung auf IIR-Filter mit Grenzfrequenz 0,5 Hz einstellen (siehe Kapitel 10.4: FM = 0, FL = 7)

Beispiel: Setup von Nullpunkt, Verstärkung und Dezimalpunkt

Das ausgesuchte Testgewicht hat den angenommenen Wert 5000 (Incremente). Das könnten 500 g, 5 kg oder auch 5000 kg sein. Wir justieren mit 500 g. Die Kommastelle wird mit dem Befehl DP eingestellt, hier 1 Nachkommastelle. Ein Messergebnis von 500 g wird als 500,0 ausgegeben.

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung	
CE	E+00017 (Beispiel)	Abfrage: TAC-Zählerstand = 17	
Nullpunkt justieren; Waage / \$	Sensor muß ohne Last sein!		
CE 17← ¹	ОК	Justage-Sequenz aktiv	
CZ←	ОК	System-Nullpunkt übernehmen	
Messbereich justieren: Zuerst Prüfgewicht (hier 500 g) auflegen!			
CE 17← ¹	ОК	Justage-Sequenz aktiv	
CG 5000←	ОК	System-Verstärkung 5000 übernehmen	
CG←	G+05000	Abfrage: Verstärkung 5000 d	
Position Dezimalpunkt festlegen: eine Nachkommastelle			
CE 17← ¹	ОК	Justage-Sequenz aktiv	
DP 1←	ОК	Position Dezimalpunkt = 0000.0	
Justagedaten speichern			
CE 17← ¹	ОК	Justage-Sequenz aktiv	
CS-1	ОК	Justagedaten im EEPROM gesichert	
Eichzähler (TAC) prüfen			
CE+	E+000018	Abfrage: TAC-Zählerstand = 18	

Nullpunkt, Verstärkung und Nachkommastelle wurden aktualisiert und netzausfallsicher im EEPROM gesichert. Der Eichzähler (TAC) wird dabei automatisch um 1 erhöht.

13. Updates - Firmware Download

Zur Durchführung eines Fimware-Updates muss das DAD 141.1 entweder über die serielle Schnittstelle RS 422/485 oder den Ethernet-Port an einen Windows-PC angeschlossen sein.

Der Download wird mit Hilfe der Software "**H&B Programmer 3.0**" (oder höher) und dem Firmware-File durchgeführt.

Firmware-Update für DAD 141.1:

Zunächst müssen alle benötigten Files (HBProgrammerX.exe, HBProgrammerX.conf, Firmware) in einem Verzeichnis gespeichert sein. Die Firmware für das DAD 141.1 liegt z.B. in einem File mit dem Namen DAD141.181.v.x.yy.hbf vor.

- DAD 141.1 einschalten
- Starten des "HB-Programmer"
- Per Drag & Drop den File "DAD141.181. v.x.yy.hbf" in das Programmfenster ziehen (grauer Bereich).
- "Program"-Taste drücken.
- Download in Arbeit (proceed). Das Ende wird durch "Programming OK" angezeigt.
- DAD 141.1 ausschalten und nach ein paar Sekunden wieder einschalten
- Jetzt mit einem Terminal-Program oder der DOP 4-Software ein "Factory Reset" (Werkseinstellung)
 des DAD 141.1 über den Befehl FD ausführen; siehe Kapitel 10.2.9.

Achtung: Der Befehl FD ist TAC-geschützt.

FD Reset auf Werkseinstellungen

Mit diesem Befehl werden alle Geräteeinstellung des DAD 141.1 wieder auf die Werkseinstellungen zurückgesetzt. Die Werkseinstellungen werden ins EEPROM geschrieben und der TAC-Zähler um 1 erhöht.

Hinweise:

Alle Einstellungen <u>und die Justagedaten</u> werden bei Ausführung des Befehls **FD** mit den Werkseinstellungen überschrieben!

Der ebenfalls im EEPROM mit den Befehl **SU** gespeicherte 'Anwender-Setup' wird <u>nicht</u> überschrieben und bleibt somit erhalten.

Master (PC / SPS) sendet	Slave (DAD 141.1) antwortet	Bedeutung
CEH	E+00017 (Beispiel)	Abfrage: TAC-Zähler = 17
CE 17←	OK	Sequenz aktivieren
FD⊷	OK	Auf Werkseinstellung zurückgesetzt

