Package 'argo'

May 24, 2023

Type Package	
Title Accurate Estimation of Influenza Epidemics using Google Search	
Data	
Version 3.0.2	
Date 2023-05-23	
Author Shaoyang Ning, Shihao Yang, S. C. Kou	
Maintainer Shihao Yang <shihao.yang@isye.gatech.edu></shihao.yang@isye.gatech.edu>	
Description Augmented Regression with General Online data (ARGO) for accurate estimation of influenza epidemics in United States on national level, regional level and state level. It replicates the method introduced in paper Yang, S., Santillana, M. and Kou, S.C. (2015) <doi:10.1073 pnas.1515373112="">; Ning, S., Yang, S. and Kou, S.C. (2019) <doi:10.1038 s4019-41559-6="">; Yang, S., Ning, S. and Kou, S.C. (2021) <doi:10.1038 s41598-021-83084-5="">.</doi:10.1038></doi:10.1038></doi:10.1073>	415
License GPL-2	
Imports xts, glmnet, zoo, XML, xtable, Matrix, boot	
Suggests testthat	
Encoding UTF-8	
RoxygenNote 7.1.1	
NeedsCompilation no	
Repository CRAN	
Date/Publication 2023-05-24 11:20:14 UTC	
R topics documented:	
argo	
argo2	
argo2_main	
argox_main	
argo_main	
boot re	
gt.parser.pub.api	

2 argo

Index		1
	summary_argo	1
	plot_argo	
	parse_unrevised_ili	1.
	parse_gt_weekly	1:
	logit_inv	1
	logit	1
	load_reg_data	1
	load_data	1
	heatmap_cor	1
	heatmap_argo	1
	gt.parser.pub.web	1

argo

Construct ARGO object

Description

Wrapper for ARGO. The real work horse is glmnet package and/or linear model.

Usage

```
argo(
  data,
  exogen = xts::xts(NULL),
  N_lag = 1:52,
  N_training = 104,
  alpha = 1,
  use_all_previous = FALSE,
  mc.cores = 1,
  schedule = list()
)
```

data	response variable as xts, last element can be NA. If the response is later revised, it should be an xts that resembles upper triangular square matrix, with each column being the data available as of date of column name
exogen	exogenous predictors, default is NULL
N_lag	vector of the AR model lags used, if NULL then no AR lags will be used
N_training	number of training points, if use_all_previous is true, this is the least number of training points required
alpha	penalty between lasso and ridge, alpha=1 represents lasso, alpha=0 represents ridge, alpha=NA represents no penalty

argo2

use_all_previous

boolean variable indicating whether to use "all available data" (when TRUE) or

"a sliding window" (when FALSE) for training

mc.cores number of cores to compute argo in parallel

schedule list to specify prediction schedule. Default to have y_gap as 1, and forecast as

0, i.e., nowcasting with past week ILI available from CDC.

Details

This function takes the time series and exogenous variables (optional) as input, and produces outof-sample prediction for each time point.

Value

A list of following named objects

- · pred An xts object with the same index as input, which contains historical nowcast estimation
- coef A matrix contains historical coefficient values of the predictors.
- parm Parameter values passed to argo function.
- penalfac the value of lambda ratio selected by cross-validation, NULL if lamid is NULL or has only one level.
- penalregion the lambda ratios that has a cross validation error within one standard error of minimum cross validation error

References

Yang, S., Santillana, M., & Kou, S. C. (2015). Accurate estimation of influenza epidemics using Google search data via ARGO. Proceedings of the National Academy of Sciences. <doi:10.1073/pnas.1515373112>.

Examples

```
GFT_xts <- xts::xts(exp(matrix(rnorm(180), ncol=1)), order.by = Sys.Date() - (180:1))
randomx <- xts::xts(exp(matrix(rnorm(180*100), ncol=100)), order.by = Sys.Date() - (180:1))
argo_result1 <- argo(GFT_xts)
argo_result2 <- argo(GFT_xts, exogen = randomx)</pre>
```

argo2

ARGO second step

Description

Wrapper for ARGO second step. Best linear predictor / Bayesian posterior

Usage

```
argo2(truth, argo1.p, argo.nat.p)
```

4 argo2_main

Arguments

```
truth prediction target
argo1.p argo first step prediction
argo.nat.p argo national level prediction
```

References

Shaoyang Ning, Shihao Yang, S. C. Kou. Accurate Regional Influenza Epidemics Tracking Using Internet Search Data. Scientific Reports

Examples

```
truth <- xts::xts(exp(matrix(rnorm(180*10), ncol=10)), order.by = Sys.Date() - (180:1))
argo1.p <- xts::xts(exp(matrix(rnorm(180*10), ncol=10)), order.by = Sys.Date() - (180:1))
argo.nat.p <- xts::xts(exp(matrix(rnorm(180*10), ncol=10)), order.by = Sys.Date() - (180:1))
argo2result <- argo2(truth, argo1.p, argo.nat.p)</pre>
```

argo2_main

main function for argo2

Description

main function that reproduce the results in ARGO2 paper

Usage

```
argo2_main(
  gt.folder,
  ili.folder,
  population.file,
  gft.file,
  save.folder = NULL
)
```

Arguments

gt.folder folder with Google Trends files, which should be thousands of csv file such as
"US-MA_fever cough.csv" or "US-NY_cold or flu.csv"

ili.folder folder with ILINet data files: "ILINet_nat.csv" and "ILINet_regional.csv"

population.file file path to population csv file

gft.file file path to Google Flu Trends csv file

save.folder output folder to save graphics. If NULL then do not output graphics.

argox_main 5

References

Shaoyang Ning, Shihao Yang, S. C. Kou. Accurate Regional Influenza Epidemics Tracking Using Internet Search Data. Scientific Reports

Examples

```
## Not run:
download.file("https://scholar.harvard.edu/files/syang/files/gt2016-10-24.zip",
file.path(tempdir(), "gt2016-10-24.zip"))
unzip(file.path(tempdir(), "gt2016-10-24.zip"), exdir = tempdir())
gt.folder <- file.path(tempdir(), "2016-10-19")
argo2_main(
   gt.folder=gt.folder,
   ili.folder=system.file("regiondata", "ili20161121", package = "argo"),
   population.file=system.file("regiondata", "Population.csv", package = "argo"),
   gft.file=system.file("regiondata", "GFT.txt", package = "argo")
)

## End(Not run)</pre>
```

argox_main

main function for argox

Description

Main function that reproduce the results in ARGOX paper. The datasets are available at Harvard Dataverse <doi:10.7910/DVN/2IVDGK>.

Usage

```
argox_main(
  gt.folder,
  ili.folder,
  population.file,
  gft.file,
  mix,
  save.folder = NULL,
  NCORES = 8
)
```

```
gt.folder folder with Google Trends files, which should be thousands of csv file such as "US-MA_fever cough.csv" or "US-NY_cold or flu.csv" folder with ILINet data files: "ILINet_nat.csv" and "ILINet_regional.csv"
```

6 argo_main

population.file

file path to population csv file

gft.file file path to Google Flu Trends csv file

mix the weighted avarage mixing of raw state-level Google Trends data. Set to be 0

for stand-alone model. Set to be 1/3 for spatial-pooling model.

save.folder output folder to save graphics. If NULL then do not output graphics.

NCORES number of parallel cpu cores to be used.

References

Yang, S., Ning, S. & Kou, S.C. Use Internet search data to accurately track state level influenza epidemics. Sci Rep 11, 4023 (2021)

argo_main

main function for argo

Description

main function that reproduce the results in ARGO paper

Usage

```
argo_main(save.folder = NULL)
```

Arguments

save.folder

output folder to save graphics. If NULL then do not output graphics.

Examples

argo_main()

```
bootstrap_relative_efficiency
```

bootstrap relative efficiency confidence interval

Description

This function is used to reproduce the ARGO bootstrap confidence interval

Usage

```
bootstrap_relative_efficiency(
  pred_data,
  model_good,
  model_bench,
  l = 50,
  N = 10000,
  truth = "CDC.data",
  sim = "geom",
  conf = 0.95,
  type = c("mse", "mape", "mae", "mspe", "rmse", "rmspe")
)
```

Arguments

pred_data	A matrix that contains the truth vector and the predictions. It can be data.frame or xts object
model_good	The model to evaluate, must be in the column names of pred_data
model_bench	The model to compare to, must be in the column names of pred_data
1	stationary bootstrap mean block length
N	number of bootstrap samples
truth	the column name of the truth
sim	simulation method, pass to boot::tsboot
conf	confidence level
type	Must be one of "mse" (mean square error), "mape" (mean absolute percentage error), or "mae" (mean absolute error)

Value

A vector of point estimate and corresponding bootstrap confidence interval

8 boot_re

Examples

```
GFT_xts = xts::xts(exp(matrix(rnorm(1000), ncol=5)), order.by = Sys.Date() - (200:1))
names(GFT_xts) <- paste0("col", 1:ncol(GFT_xts))
names(GFT_xts)[1] <- "CDC.data"
bootstrap_relative_efficiency(
   pred_data = GFT_xts,
   model_good = "col2",
   model_bench = "col3",
   truth="CDC.data",
   N = 100
)</pre>
```

boot_re

wrapper for bootstrap relative efficiency confidence interval

Description

This function is used to wrap the bootstrap_relative_efficiency, taking vectorized arguments.

Usage

```
boot_re(
   pred_data,
   period.all,
   model_good,
   bench.all,
   type,
   truth = "CDC.data",
   l = 50,
   N = 10000,
   sim = "geom",
   conf = 0.95
)
```

pred_data	A matrix that contains the truth vector and the predictions. It can be data.frame or xts object
period.all	vector of the periods to evaluate relative efficiency
model_good	The model to evaluate, must be in the column names of pred_data
bench.all	vector of the models to compare to, must be in the column names of pred_data
type	Must be one of "mse" (mean square error), "mape" (mean absolute percentage error), or "mae" (mean absolute error)
truth	the column name of the truth
1	stationary bootstrap mean block length

gt.parser.pub.api 9

N	number of bootstrap samples
sim	simulation method, pass to boot::tsboot
conf	confidence level

Value

A vector of point estimate and corresponding bootstrap confidence interval

Examples

gt.parser.pub.api

Parsing each Google Trends file downloaded from Google Trends API

Description

Parsing each Google Trends file downloaded from Google Trends API

Usage

```
gt.parser.pub.api(gt.folder, f)
```

```
gt.folder folder that contains Google Trends file
f filename for Google Trends file
```

10 heatmap_argo

gt.parser.pub.web

Parsing each Google Trends file downloaded from website

Description

Parsing each Google Trends file downloaded from website

Usage

```
gt.parser.pub.web(gt.folder, f)
```

Arguments

gt.folder folder that contains Google Trends file
f filename for Google Trends file

heatmap_argo

Heatmap plot of ARGO coefficients applied on CDC's ILI data

Description

Heatmap plot of ARGO coefficients applied on CDC's ILI data

Usage

```
heatmap_argo(argo_coef, lim = 0.1, na.grey = TRUE, scale = 1)
```

Arguments

argo_coef The coefficient matrix

1im the limit to truncate for large coefficients for better presentation

na.grey whether to plot grey for NA values

scale margin scale

Value

a graph on the default plot window

```
cor_coef <- matrix(runif(100, -1, 1), ncol=10)
colnames(cor_coef) <- as.character(Sys.Date() - 10:1)
rownames(cor_coef) <- paste0("row", 1:10)
pdf(file.path(tempdir(), "heatmap_argo.pdf"), height=11,width=12)
heatmap_argo(cor_coef)
dev.off()</pre>
```

heatmap_cor 11

heatmap_cor

Heatmap plot of correlation matrix

Description

Heatmap plot of correlation matrix

Usage

```
heatmap_cor(cor_heat, lim = 1)
```

Arguments

cor_heat The coefficient matrix to draw heatmap

lim the limit to truncate for large coefficients for better presentation

Value

a graph on the default plot window

Examples

```
cor_coef <- matrix(runif(100, -1, 1), ncol=10)
colnames(cor_coef) <- paste0("col", 1:10)
rownames(cor_coef) <- paste0("row", 1:10)
heatmap_cor(cor_coef)</pre>
```

load_data

Parsing of raw data

Description

Data related to the PNAS paper. Accessed on Nov 14, 2015.

Usage

```
load_data(type = "extdata", ili.weighted = TRUE)
```

Arguments

type the type of the data to be loaded. If type=="extdata" it loads the data to repro-

duce the PNAS paper, and if type=="athdata" it loads the data to reproduce

the CID(?) paper.

ili.weighted logical indicator to specify whether to load weighted ILI or not, if FALSE un-

weighted ILI is loaded.

12 load_data

Details

Parse and load CDC's ILI data, Google Flu Trend data, Google Correlate data trained with ILI as of 2010, Google Correlate data trained with ILI as of 2009, Google Trend data with search terms identified from Google Correlate (2010 version).

Each week ends on the Saturday indicated in the xts object

Google Correlate data is standardized by Google, and we rescale it to 0 - 100 during parsing. Google Trends data is in the scale of 0 - 100.

Value

A list of following named xts objects if type=="extdata"

- GC10 Google Correlate trained with ILI available as of 2010. Google Correlate has been deprecated by Google as of Dec 2019 and is no longer publicly available.
- GC09 Google Correlate trained with ILI available as of 2009.
- GT Google Trends data for search queries identified using Google Correlate. Not directly available online, you have to manually input query terms at https://trends.google.com/ trends/
- CDC CDC's ILI dataset. Available online at https://gis.cdc.gov/grasp/fluview/fluportaldashboard. html
- GFT Google Flu Trend (historical predictions).

A list of following named xts objects if type=="athdata"

- GT Google Trends data for search queries identified. Not directly available online, you have to manually input query terms at https://trends.google.com/trends/
- CDC CDC's ILI dataset. Available online at https://gis.cdc.gov/grasp/fluview/fluportaldashboard.
 html
- ili_idx the indexing information that includes the week number and year number, the date
 of ending Saturday, and the season number Available online at https://www.cdc.gov/flu/
 weekly/
- ATH Athenahealth data that includes the proportion of "Flu Visit", "ILI Visit", and "Unspecified Viral or ILI Visit" compared to total number of visit to the Athenahealth partner healthcare providers.
- ili_unrevised Historical unrevised ILI activity level. The unrevised ILI published on week ZZ of season XXXX-YYYY is available at www.cdc.gov/flu/weekly/weeklyarchivesXXXX-YYYY/data/senAllreg or .htm. For example, original ILI report for week 7 of season 2015-2016 is available at https://www.cdc.gov/flu/weekly/weeklyarchives2015-2016/data/senAllregt07.html, and original ILI report for week 50 of season 2012-2013 is available at https://www.cdc.gov/flu/weekly/weeklyarchives2012-2013/data/senAllregt50.htm

References

Yang, S., Santillana, M., & Kou, S. C. (2015). Accurate estimation of influenza epidemics using Google search data via ARGO. Proceedings of the National Academy of Sciences. <doi:10.1073/pnas.1515373112>.

load_reg_data 13

Examples

```
system.file("extdata", "correlate-Influenza_like_Illness_h1n1_CDC_.csv", package = "argo")
system.file("extdata", "correlate-Influenza_like_Illness_CDC_.csv", package = "argo")
system.file("extdata", "GFT.csv", package = "argo")
system.file("extdata", "ILINet.csv", package = "argo")
load_data()
```

load_reg_data

Parsing of raw data for regional ILI estimation

Description

Parsing of raw data for regional ILI estimation

Usage

```
load_reg_data(
   gt.folder,
   ili.folder,
   population.file,
   gft.file,
   gt.parser = gt.parser.pub.web
)
```

Arguments

References

Shaoyang Ning, Shihao Yang, S. C. Kou. Accurate Regional Influenza Epidemics Tracking Using Internet Search Data. Scientific Reports

```
download.file("https://scholar.harvard.edu/files/syang/files/gt2016-10-24.zip",
file.path(tempdir(), "gt2016-10-24.zip"))
unzip(file.path(tempdir(), "gt2016-10-24.zip"), exdir = tempdir())
gt.folder <- file.path(tempdir(), "2016-10-19")</pre>
```

logit_inv

```
data_parsed <- load_reg_data(
   gt.folder=gt.folder,
   ili.folder=system.file("regiondata", "ili20161121", package = "argo"),
   population.file=system.file("regiondata", "Population.csv", package = "argo"),
   gft.file=system.file("regiondata", "GFT.txt", package = "argo")
)</pre>
```

logit

logit function

Description

logit function

Usage

logit(x)

Arguments

Χ

numeric value for logit transformation

Examples

logit(0.5)

logit_inv

inverse logit function

Description

inverse logit function

Usage

```
logit_inv(x)
```

Arguments

Х

numeric value for inverse logit transformation

```
logit_inv(0)
```

parse_gt_weekly 15

parse_gt_weekly

Parsing of Google Trends data

Description

Parsing of Google Trends data

Usage

```
parse_gt_weekly(folder)
```

Arguments

folder

folder with weekly Google Trends file

References

Yang, S., Santillana, M., & Kou, S. C. (2015). Accurate estimation of influenza epidemics using Google search data via ARGO. Proceedings of the National Academy of Sciences. <doi:10.1073/pnas.1515373112>.

Examples

```
download.file("https://scholar.harvard.edu/files/syang/files/gt2016-10-24.zip",
file.path(tempdir(), "gt2016-10-24.zip"))
unzip(file.path(tempdir(), "gt2016-10-24.zip"), exdir = tempdir())
gt.folder <- file.path(tempdir(), "2016-10-19")
parsed_data <- parse_gt_weekly(gt.folder)</pre>
```

parse_unrevised_ili

Parsing of unrevised ili from online source

Description

Parsing of unrevised ili from online source

Usage

```
parse_unrevised_ili(type = "extdata", ili.weighted = TRUE)
```

Arguments

type the type of data folder to parse ili.weighted indicator to use weighted ILI or not

plot_argo

References

Yang, S., Santillana, M., & Kou, S. C. (2015). Accurate estimation of influenza epidemics using Google search data via ARGO. Proceedings of the National Academy of Sciences. <doi:10.1073/pnas.1515373112>.

Examples

```
parse_unrevised_ili()
```

plot_argo

Time series plot of ARGO applied on CDC's ILI data

Description

This function is used to reproduce the ARGO plot.

Usage

```
plot_argo(GFT_xts, GC_GT_cut_date, model_names, legend_names, zoom_periods)
```

Arguments

```
GFT_xts dataframe with all predicted values
GC_GT_cut_date cutting date for switching datasets
model_names name of predicting models
legend_names legend for predicting models
zoom_periods vector of periods to zoom into
```

Value

a graph on the default plot window

```
GFT_xts = xts::xts(exp(matrix(rnorm(1000), ncol=5)), order.by = Sys.Date() - (200:1))
names(GFT_xts) <- paste0("col", 1:ncol(GFT_xts))
names(GFT_xts)[1] <- "CDC.data"
zoom_periods = c()
for (i in 0:5){
   zoom_periods = c(
   zoom_periods,
   paste0(zoo::index(GFT_xts)[i*30+1], "/", zoo::index(GFT_xts)[i*30+30])
   )
}</pre>
```

summary_argo 17

```
plot_argo(
   GFT_xts = GFT_xts,
   GC_GT_cut_date = zoo::index(GFT_xts)[50],
   model_names = colnames(GFT_xts)[-1],
   legend_names = paste0(colnames(GFT_xts)[-1], "legend"),
   zoom_periods = zoom_periods
)
```

summary_argo

performance summary of ARGO applied on CDC's ILI data

Description

performance summary of ARGO applied on CDC's ILI data

Usage

```
summary_argo(
  GFT_xts,
  model_names,
  legend_names,
  periods,
  whole_period = "2009-03/2015-10"
)
```

Arguments

```
GFT_xts dataframe with all predicted values
model_names name of predicting models
legend_names legend for predicting models
periods vector of periods to zoom into
whole_period the whole period duration
```

Value

A list of summary tables for the input periods, including RMSE, MAE, MAPE, corr

References

Yang, S., Santillana, M., & Kou, S. C. (2015). Accurate estimation of influenza epidemics using Google search data via ARGO. Proceedings of the National Academy of Sciences. <doi:10.1073/pnas.1515373112>. Shaoyang Ning, Shihao Yang, S. C. Kou. Accurate Regional Influenza Epidemics Tracking Using Internet Search Data. Scientific Reports

18 summary_argo

Index

```
argo, 2
argo2, 3
argo2_main, 4
argo_main, 6
argox_main, 5
boot_re, 8
bootstrap_relative_efficiency, 7
gt.parser.pub.api,9
\mathsf{gt.parser.pub.web}, 10
heatmap_argo, 10
heatmap_cor, 11
load_data, 11
load_reg_data, 13
logit, 14
{\tt logit\_inv}, {\tt 14}
parse_gt_weekly, 15
parse_unrevised_ili, 15
plot_argo, 16
summary_argo, 17
```