FORMULAIRE BEP METIERS DE L'ELECTROTECHNIQUE

Formules inscrites au référentiel Formules fournies aux candidats pendant l'épreuve EP1

Lois Générales en continu

Lois Générales en alternatif

Lois sur le magnétisme et l'électromagnétisme

Energie:

Puissance:

$$W = P t$$

$$P = U I$$

$$W_1^{\dagger} V_2^{\dagger} A$$

Loi de Joule:

$$W = R I^2 t$$

$$U = R I$$

$$V \downarrow \Omega A$$

Résistivité, résistance :

$$R = \rho L/s$$

$$\Omega \mid \Omega.m \mid m \mid m^2$$

$$R_{\theta} = R_0 (1 + a \theta)$$

$$\Omega$$
 Ω

Association de résistances :

groupement série

$$Req = R1 + R2 + R3$$

groupement parallèle

1/Req = 1/R1+1/R2+1/R3

Association de condensateurs : groupement série

$$1/Ceq = 1/C1+1/C2+1/C3$$

groupement paralléle

$$C_{eq} = C_1 + C_2 + C_3$$

Loi des noeuds : Loi des mailles :

$$\Sigma I = 0$$

$$\Sigma U = 0$$

Générateurs : Récepteurs:

$$U = E - r I \qquad U = E + r I$$

$$V \mid V \mid \Omega \mid A \mid V \mid V \mid \Omega \mid A \mid$$

Fonction sinusoïdale:

$$u = \hat{U} \sin(\omega t + \phi)$$

Dipôle purement résistif :

$$Z = R$$

$$\Omega \mid \Omega$$

Dipôle purement $| Z = L \cdot \omega|$ inductif:

$$Z = L \cdot \omega$$

$$\Omega \mid H \mid rad.s^{-1}$$

capacitif:

Dipôle purement
$$Z = 1 / C. \omega$$
 capacitif : $\Omega \mid F \mid rad$ S^{-1}

Circuits monophasés:

$$S = U I P = U I \cos \varphi$$

$$VA \mid V \mid A \mid W \mid V \mid A \mid$$

Circuits triphasés :

$$P = U I \sqrt{3} \cos \varphi$$

$$W \mid V \mid A \mid$$

Relations, P, Q, S:

$$S = \sqrt{P^2 + Q^2}$$

$$VA \mid W \mid VAR$$

$$Q = P tang \varphi$$

$$\sin \varphi = Q/S$$

$$\cos \varphi = P/S$$

Loi de Laplace:

$$F = B \mid L \sin \alpha$$

$$N \mid T \mid A \mid m$$

Loi de Lenz:

$$E = \Delta \phi / \Delta t$$

$$V \mid Wb \mid s$$

Lois sur les machines électromagnétiques

Rendement:

$$\eta = Pu / Pa$$

$$\frac{1}{2} W \frac{1}{2} W$$

Loi de mécanique :

$$P = T \cdot \Omega$$

$$W \mid N.m \mid rad.s^{-1}$$

Moteurs asynchrones:

$$f = p n_s$$
 $g = (n_s - n) / n_s$
 Hz $tr.s^{-1}$ $tr.s^{-1}$

Génératrices à courant continu :

Moteurs à courant continu :

Transformateur:

Rapport de transformation
$$m = Ns / Np$$

$$m = Ns / Np$$

$$m = Us0 / Up$$