Fast IGBT

International Rectifier

PRELIMINARY

CPV363M4F

IGBT SIP MODULE

Features

- Fully isolated printed circuit board mount package
- Switching-loss rating includes all "tail" losses
- HEXFRED[™] soft ultrafast diodes
- Optimized for medium operating (1 to 10 kHz)
 See Fig. 1 for Current vs. Frequency curve

Product Summary

Output Current in a Typical 5.0 kHz Motor Drive

11 A_{RMS} per phase (3.1 kW total) with $T_C = 90^{\circ}$ C, $T_J = 125^{\circ}$ C, Supply Voltage 360Vdc, Power Factor 0.8, Modulation Depth 115% (See Figure 1)

The IGBT technology is the key to International Rectifier's advanced line of IMS (Insulated Metal Substrate) Power Modules. These modules are more efficient than comparable bipolar transistor modules, while at the same time having the simpler gate-drive requirements of the familiar power MOSFET. This superior technology has now been coupled to a state of the art materials system that maximizes power throughput with low thermal resistance. This package is highly suited to motor drive applications and where space is at a premium.

Absolute Maximum Ratings

	Parameter	Max.	Units
V _{CES}	Collector-to-Emitter Voltage	600	V
I _C @ T _C = 25°C	Continuous Collector Current, each IGBT	16	
I _C @ T _C = 100°C	Continuous Collector Current, each IGBT	8.7	
I _{CM}	Pulsed Collector Current ①	50	Α
I _{LM}	Clamped Inductive Load Current ②	50	
I _F @ T _C = 100°C	Diode Continuous Forward Current	6.1	
I _{FM}	Diode Maximum Forward Current	50	
V_{GE}	Gate-to-Emitter Voltage	±20	V
V _{ISOL}	Isolation Voltage, any terminal to case, 1 minute	2500	V _{RMS}
P _D @ T _C = 25°C	Maximum Power Dissipation, each IGBT	36	W
P _D @ T _C = 100°C	Maximum Power Dissipation, each IGBT	14	
TJ	Operating Junction and	-40 to +150	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 sec.	300 (0.063 in. (1.6mm) from case)	
	Mounting torque, 6-32 or M3 screw.	5-7 lbf•in (0.55-0.8 N•m)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
R _{θJC} (IGBT)	Junction-to-Case, each IGBT, one IGBT in conduction		3.5	
R _{θJC} (DIODE)	Junction-to-Case, each diode, one diode in conduction		5.5	°C/W
R _{θCS} (MODULE)	Case-to-Sink, flat, greased surface	0.10		
Wt	Weight of module	20 (0.7)		g (oz)

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions		
V _{(BR)CES}	Collector-to-Emitter Breakdown Voltage3	600			V	$V_{GE} = 0V, I_{C} = 250\mu A$		
$\Delta V_{(BR)CES}/\Delta T_J$	Temperature Coeff. of Breakdown Voltage		0.69		V/°C	$V_{GE} = 0V$, $I_{C} = 1.0$ mA		
V _{CE(on)}	Collector-to-Emitter Saturation Voltage		1.37	1.5		I _C = 8.7A	V _{GE} = 15V	
			1.63		V	I _C = 16A	See Fig. 2, 5	
			1.37			$I_C = 8.7A, T_J = 150$ °C		
$V_{GE(th)}$	Gate Threshold Voltage	3.0		6.0		$V_{CE} = V_{GE}, I_{C} = 250 \mu A$		
$\Delta V_{GE(th)}\!/\!\Delta T_{J}$	Temperature Coeff. of Threshold Voltage		-11		mV/°C	$V_{CE} = V_{GE}$, $I_C = 250\mu A$		
g fe	Forward Transconductance 4	6.0	8.0		S	$V_{CE} = 100V, I_{C} = 8.7A$		
I _{CES}	Zero Gate Voltage Collector Current			250	μΑ	$V_{GE} = 0V, V_{CE} = 600V$		
				2500		$V_{GE} = 0V, V_{CE} = 600V,$	$T_J = 150$ °C	
V_{FM}	Diode Forward Voltage Drop		1.3	1.7	V	I _C = 12A	See Fig. 13	
			1.2	1.6		$I_C = 12A, T_J = 150$ °C		
I _{GES}	Gate-to-Emitter Leakage Current			±100	nA	$V_{GE} = \pm 20V$		

Switching Characteristics @ $T_J = 25$ °C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units		Condition	ns
Q_g	Total Gate Charge (turn-on)		54	82		$I_{C} = 8.7A$		
Q _{ge}	Gate - Emitter Charge (turn-on)		8.1	12	nC	$V_{CC} = 400V$		
Q_{gc}	Gate - Collector Charge (turn-on)		21	32		$V_{GE} = 15V$	See	Fig. 8
t _{d(on)}	Turn-On Delay Time		39			$T_J = 25^{\circ}C$		
t _r	Rise Time		16		ns	$I_{\rm C} = 8.7A, V_{\rm C}$	_{CC} = 480V	
t _{d(off)}	Turn-Off Delay Time		220	330		V_{GE} = 15V, R_G = 22 Ω		
t _f	Fall Time		160	240		Energy losses include "tail" and		
Eon	Turn-On Switching Loss		0.30			diode revers	se recovery	/.
E _{off}	Turn-Off Switching Loss		0.55		mJ	See Fig. 9,	10, 11, 18	
E _{ts}	Total Switching Loss		0.85	1.3				
t _{d(on)}	Turn-On Delay Time		37			$T_J = 150^{\circ}C$,	See F	ig. 9, 10, 11, 18
t _r	Rise Time		16		ns	$I_C = 8.7A, V_C$	_{CC} = 480V	
t _{d(off)}	Turn-Off Delay Time		400			$V_{GE} = 15V$,	$R_G = 22\Omega$	
t _f	Fall Time		290			Energy losses include "tail" and		
E _{ts}	Total Switching Loss		1.57		mJ	diode reverse recovery.		
C _{ies}	Input Capacitance		1100			$V_{GE} = 0V$		
Coes	Output Capacitance		74		pF	$V_{CC} = 30V$	S	ee Fig. 7
Cres	Reverse Transfer Capacitance		14			f = 1.0MHz		
t _{rr}	Diode Reverse Recovery Time		42	60	ns	$T_J = 25^{\circ}C$	See Fig.	
			80	120		$T_J = 125$ °C	14	$I_{F} = 12A$
I _{rr}	Diode Peak Reverse Recovery Charge		3.5	6.0	Α	$T_J = 25^{\circ}C$	See Fig.	
			5.6	10		T _J = 125°C	15	$V_{R} = 200V$
Q _{rr}	Diode Reverse Recovery Charge		80	180	nC	T _J = 25°C	See Fig.	
			220	600		T _J = 125°C	16	di/dt =200Aµs
di _{(rec)M} /dt	Diode Peak Rate of Fall of Recovery		180		A/µs	$T_J = 25^{\circ}C$	See Fig.	
	During t _b		116			T _J = 125°C	17	

Fig. 1 - Typical Load Current vs. Frequency (Load Current = I_{RMS} of fundamental)

Fig. 2 - Typical Output Characteristics

Fig. 3 - Typical Transfer Characteristics

Fig. 4 - Maximum Collector Current vs. Case Temperature

Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature

Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage

Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage

Fig. 9 - Typical Switching Losses vs. Gate Resistance

Fig. 10 - Typical Switching Losses vs. Junction Temperature

Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current

Fig. 12 - Turn-Off SOA

Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current

Fig. 14 - Typical Reverse Recovery vs. dif/dt

Fig. 16 - Typical Stored Charge vs. dif/dt

Fig. 15 - Typical Recovery Current vs. dif/dt

Fig. 17 - Typical $di_{(rec)M}/dt$ vs. di_f/dt

Fig. 18a - Test Circuit for Measurement of I_{LM} , E_{on} , $E_{off(diode)}$, t_{rr} , Q_{rr} , I_{rr} , $t_{d(on)}$, t_r , $t_{d(off)}$, t_f

 $\label{eq:Fig. 18b} \textbf{Fig. 18b} \textbf{ -} \textbf{Test Waveforms for Circuit of Fig. 18a, Defining} \\ \textbf{E}_{\text{off}}, \textbf{t}_{\text{d(off)}}, \textbf{t}_{\text{f}}$

Fig. 18c - Test Waveforms for Circuit of Fig. 18a, Defining $E_{on},\,t_{d(on)},\,t_{r}$

Figure 18e. Macro Waveforms for Figure 18a's Test Circuit

Figure 19. Clamped Inductive Load Test
Circuit

Figure 20. Pulsed Collector Current Test Circuit

Notes:

- ① Repetitive rating: V_{GE}=20V; pulse width limited by maximum junction temperature (figure 20)
- ③ Pulse width ≤ $80\mu s$; duty factor ≤ 0.1%.
- 4 Pulse width 5.0µs, single shot.

Case Outline — IMS-2

International TOR Rectifier

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590

IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111

IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086
IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371

http://www.irf.com/ Data and specifications subject to change without notice. 1/97