Sinkhorn Distributionally Robust Optimization

Jie Wang¹, Rui Gao², and Yao Xie¹

¹Georgia Institute of Technology

²The University of Texas at Austin

International Conference on Continuous Optimization (ICCOPT)

Decision-Making Under Uncertainty

Risk: $\mathscr{R}(\theta; \mathbb{P}) = \mathbb{E}_{\mathbb{P}}[f_{\theta}(z)]$

Optimal Risk : $\mathscr{R}(\Theta;\mathbb{P}) = \inf_{\theta \in \Theta} \ \mathbb{E}_{\mathbb{P}}[f_{\theta}(z)]$

Applications

 $Supply\ Chain\ Mgmt.$

Portfolio Mgmt.

Machine Learning

Data-driven Decision-Making

► Available Information:

Structual : \mathbb{P} is supported on $\Omega \subseteq \mathbb{R}^d$

Statistical: $\hat{x}_1, \dots, \hat{x}_n \sim \mathbb{P}$

Nominal Problem:

- Non-parametric estimators: $\hat{\mathbb{P}}_n = \frac{1}{n} \sum_{i=1}^n \delta_{\hat{x}_i}$.
- ▶ Kernel density estimators: $\hat{\mathbb{P}}_n = \frac{1}{n} \sum_{i=1}^n K(\hat{x}_i)$.

Wasserstein DRO

Definition: $\mathscr{P} = \{ \mathbb{P} : W(\mathbb{P}, \hat{\mathbb{P}}_n) \leq \rho \}.$

Contain each \mathbb{P} such that $W(\mathbb{P}, \hat{\mathbb{P}}_n) \leq \rho$

Worst-case risk : $\sup_{\mathbb{P}\in\mathscr{P}}\mathbb{E}_{\mathbb{P}}[f_{\boldsymbol{\theta}}(z)]$

Robust Optimal Risk : $\inf_{\theta \in \Theta} \sup_{\mathbb{P} \in \mathscr{P}} \mathbb{E}_{\mathbb{P}}[f_{\theta}(z)]$

Limitations of Wasserstein DRO

Worst-case distribution is discrete:

For WDRO with n-point nominal distribution, the worst-case distribution is supported on n+1 points¹.

► Tractability for limited scenarios:

Finite-dimensional convex reformulation is available if the objective is a pointwise maximum of finitely many concave functions².

► Some cases the same performance as SAA².

¹Rui Gao and Anton J. Kleywegt. "Distributionally Robust Stochastic Optimization with Wasserstein Distance". In: arXiv preprint arXiv:1604.02199 (Apr. 2016).

 $^{^2}$ Peyman Mohajerin Esfahani and Daniel Kuhn. "Data-driven distributionally robust optimization using the Wasserstein metric: performance guarantees and tractable reformulations". In:

Sinkhorn Distance

► Sinkhorn Distance [Cuturi 2013]:

$$W_{m{arepsilon}}(\mathbb{P},\mathbb{Q}) \, = \inf_{m{\gamma} \in \Gamma(\mathbb{P},\mathbb{Q})} \, ig\{ \mathbb{E}_{(X,Y) \sim m{\gamma}}[c(X,Y)] + m{arepsilon} H(m{\gamma} \, | \, \mathbb{P} \otimes m{
u}) ig\} \, .$$

▶ Relative Entropy between γ and $\mathbb{P} \otimes v$:

$$H(\gamma \mid \mathbb{P} \otimes v) = \int \log \left(\frac{\mathrm{d}\gamma(x,y)}{\mathrm{d}\mathbb{P}(x)\,\mathrm{d}v(y)} \right) \mathrm{d}\gamma(x,y).$$

Highlights of Sinkhorn Distance

Probability distance between distributions in \mathbb{R}^d using n samples:

	MMD	Wasserstein	Sinkhorn
Computation	O(n)	$\tilde{O}(n^3)$	$ ilde{O}(n^2)$ [Altschuler, Niles-Weed,
			and Rigollet 2017]
Sample Complexity	$O(n^{-1/2})$	$O(n^{-1/d})$	$O(e^{\kappa/arepsilon}n^{-1/2}arepsilon^{-\lfloor d/2 floor})$ [Genevay et al. 2019]

- Fast algorithms for implementation;
- Sharp sample complexity rate;
- ► Encourage stochastic optimal transport (helpful in some applications, e.g., domain adaptation [Courty, Flamary, and Tuia 2014]).

Sinkhorn DRO

► Sinkhorn DRO:

$$\begin{split} &\inf_{\boldsymbol{\theta}} \sup_{\mathbb{P} \in \mathbb{B}_{\boldsymbol{\rho}, \boldsymbol{\varepsilon}}(\widehat{\mathbb{P}})} \, \mathbb{E}_{\boldsymbol{z} \sim \mathbb{P}}[f_{\boldsymbol{\theta}}(\boldsymbol{z})], \\ &\text{where } \mathbb{B}_{\boldsymbol{\rho}, \boldsymbol{\varepsilon}}(\widehat{\mathbb{P}}) = \big\{\mathbb{P}: \, \mathit{W}_{\boldsymbol{\varepsilon}}(\widehat{\mathbb{P}}, \mathbb{P}) \leq \boldsymbol{\rho} \big\}. \end{split}$$

where $\mu = \hat{\mathbb{P}}$ and ν is a measure independent of \mathbb{P} .

Ambiguity set for Wasserstein DRO

Ambiguity set for Sinkhorn DRO

Sinkhorn DRO

Sinkhorn DRO:

$$\begin{split} &\inf_{\theta} \sup_{\mathbb{P} \in \mathbb{B}_{\rho, \varepsilon}(\widehat{\mathbb{P}})} \ \mathbb{E}_{\mathbf{z} \sim \mathbb{P}}[f_{\theta}(z)], \\ \text{where } \mathbb{B}_{\rho, \varepsilon}(\widehat{\mathbb{P}}) = \big\{\mathbb{P}: \ W_{\varepsilon}(\widehat{\mathbb{P}}, \mathbb{P}) \leq \rho \big\}. \end{split}$$

where $\mu = \hat{\mathbb{P}}$ and v is a measure independent of \mathbb{P} .

- ► Outline:
 - Duality Formulation for Sinkhorn DRO
 - Optimization Algorithm
 - Numerical Results

Tractable Formulation

Assume that

- (I) $v\{z: 0 \le c(x,z) < \infty\} = 1$ for $\widehat{\mathbb{P}}$ -almost every x;
- (II) The integral $\int e^{-c(x,z)/\varepsilon} dv(z) < \infty$ for $\widehat{\mathbb{P}}$ -almost every x;
- (III) Ω is a measurable space, and the function $f: \Omega \to \mathbb{R} \cup \{\infty\}$ is measurable.

Consider the primal of the worst-risk evaluation problem:

$$V_P = \sup_{\mathbb{P} \in \mathbb{B}_{\rho, \varepsilon}(\widehat{\mathbb{P}})} \ \mathbb{E}_{z \sim \mathbb{P}}[f(z)], \quad \text{where } \mathbb{B}_{\rho, \varepsilon}(\widehat{\mathbb{P}}) = \big\{ \mathbb{P}: \ W_{\varepsilon}(\widehat{\mathbb{P}}, \mathbb{P}) \leq \rho \big\}. \qquad \text{(Sinkhorn DRO)}$$

It admits the strong dual reformulation:

$$V_{\mathrm{D}} = \inf_{\lambda>0} \ \lambda \overline{
ho} + \lambda \varepsilon \int_{\Omega} \log \left(\mathbb{E}_{\mathbb{Q}_{x}} \left[e^{f(z)/(\lambda \varepsilon)}
ight] \right) d\widehat{\mathbb{P}}(x),$$

where

$$\overline{\rho} = \rho + \varepsilon \int_{\Omega} \log \left(\int_{\Omega} e^{-c(x,z)/\varepsilon} \, \mathrm{d} v(z) \right) \, \mathrm{d} \widehat{\mathbb{P}}(x),$$
$$\mathrm{d} \mathbb{Q}_{x}(z) = \frac{e^{-c(x,z)/\varepsilon}}{\int_{\Omega} e^{-c(x,u)/\varepsilon} \, \mathrm{d} v(u)} \, \mathrm{d} v(z).$$

For light-tailed distribution $\widehat{\mathbb{P}}$, it holds that $V_P = V_D < \infty$:

$$\begin{split} V_{\mathrm{P}} &= \sup_{\mathbb{P}} \; \left\{ \mathbb{E}_{z \sim \mathbb{P}}[f(z)] : \; W_{\varepsilon}(\widehat{\mathbb{P}}, \mathbb{P}) \leq \rho \right\} \\ V_{\mathrm{D}} &= \inf_{\lambda > 0} \; \lambda \overline{\rho} + \lambda \varepsilon \int_{\Omega} \log \left(\mathbb{E}_{\mathbb{Q}_{x}} \left[e^{f(z)/(\lambda \varepsilon)} \right] \right) \, \mathrm{d}\widehat{\mathbb{P}}(x) \end{split}$$

General procedure for showing the strong duality:

- ▶ First show the weak duality result $V_P \le V_D$.
- ▶ Show the existence of dual minimizer (take the limit of Lebesgue integration)
- ▶ Show optimality conditions for the dual problem.
- ► Construct a primal feasible solution $\tilde{\mathbb{P}}$ that is optimal, e.g., for $\lambda^* > 0$,

$$d\widetilde{\mathbb{P}} = \int \frac{e^{f(z)/(\lambda^* \varepsilon)} d\mathbb{Q}_x(z)}{\mathbb{E}_{\mathbb{Q}_x}[e^{f(z)/(\lambda^* \varepsilon)}]} d\widehat{\mathbb{P}}(x) \implies V_{\mathrm{P}} \ge \mathbb{E}_{z \sim \widetilde{\mathbb{P}}}[f(z)] = V_{\mathrm{D}}$$

For light-tailed distribution $\widehat{\mathbb{P}}$, it holds that $V_P = V_D < \infty$:

$$\begin{split} V_{\mathrm{P}} &= \sup_{\mathbb{P}} \; \left\{ \mathbb{E}_{z \sim \mathbb{P}}[f(z)] : \; W_{\varepsilon}(\widehat{\mathbb{P}}, \mathbb{P}) \leq \rho \right\} \\ V_{\mathrm{D}} &= \inf_{\lambda > 0} \; \lambda \overline{\rho} + \lambda \varepsilon \int_{\Omega} \log \left(\mathbb{E}_{\mathbb{Q}_{x}} \left[e^{f(z)/(\lambda \varepsilon)} \right] \right) \, \mathrm{d}\widehat{\mathbb{P}}(x) \end{split}$$

General procedure for showing the strong duality:

- ▶ First show the weak duality result $V_P \le V_D$.
- ► Show the existence of dual minimizer (take the limit of Lebesgue integration)
- ▶ Show optimality conditions for the dual problem.
- ▶ Construct a primal feasible solution $\tilde{\mathbb{P}}$ that is optimal, e.g., for $\lambda^* > 0$,

$$d\widetilde{\mathbb{P}} = \int \frac{e^{f(z)/(\lambda^* \varepsilon)} d\mathbb{Q}_x(z)}{\mathbb{E}_{\mathbb{Q}_x}[e^{f(z)/(\lambda^* \varepsilon)}]} d\widehat{\mathbb{P}}(x) \implies V_{\mathbf{P}} \ge \mathbb{E}_{z \sim \widetilde{\mathbb{P}}}[f(z)] = V_{\mathbf{D}}.$$

For light-tailed distribution $\widehat{\mathbb{P}}$, it holds that $V_P = V_D < \infty$:

$$\begin{split} V_{\mathrm{P}} &= \sup_{\mathbb{P}} \; \left\{ \mathbb{E}_{z \sim \mathbb{P}}[f(z)] : \; W_{\varepsilon}(\widehat{\mathbb{P}}, \mathbb{P}) \leq \rho \right\} \\ V_{\mathrm{D}} &= \inf_{\lambda > 0} \; \lambda \overline{\rho} + \lambda \varepsilon \int_{\Omega} \log \left(\mathbb{E}_{\mathbb{Q}_{x}} \left[e^{f(z)/(\lambda \varepsilon)} \right] \right) \, \mathrm{d}\widehat{\mathbb{P}}(x) \end{split}$$

General procedure for showing the strong duality:

- ▶ First show the weak duality result $V_P \le V_D$.
- ► Show the existence of dual minimizer (take the limit of Lebesgue integration)
- ▶ Show optimality conditions for the dual problem.
- ▶ Construct a primal feasible solution $\tilde{\mathbb{P}}$ that is optimal, e.g., for $\lambda^* > 0$,

$$d\widetilde{\mathbb{P}} = \int \frac{e^{f(z)/(\lambda^* \varepsilon)} d\mathbb{Q}_x(z)}{\mathbb{E}_{\mathbb{Q}_x}[e^{f(z)/(\lambda^* \varepsilon)}]} d\widehat{\mathbb{P}}(x) \implies V_{\mathbf{P}} \ge \mathbb{E}_{z \sim \widetilde{\mathbb{P}}}[f(z)] = V_{\mathbf{D}}$$

For light-tailed distribution $\widehat{\mathbb{P}}$, it holds that $V_P = V_D < \infty$:

$$\begin{split} V_{\mathrm{P}} &= \sup_{\mathbb{P}} \; \left\{ \mathbb{E}_{z \sim \mathbb{P}}[f(z)] : \; W_{\varepsilon}(\widehat{\mathbb{P}}, \mathbb{P}) \leq \rho \right\} \\ V_{\mathrm{D}} &= \inf_{\lambda > 0} \; \lambda \overline{\rho} + \lambda \varepsilon \int_{\Omega} \log \left(\mathbb{E}_{\mathbb{Q}_{x}} \left[e^{f(z)/(\lambda \varepsilon)} \right] \right) \, \mathrm{d}\widehat{\mathbb{P}}(x) \end{split}$$

General procedure for showing the strong duality:

- ▶ First show the weak duality result $V_P \leq V_D$.
- ► Show the existence of dual minimizer (take the limit of Lebesgue integration)
- ▶ Show optimality conditions for the dual problem.
- ► Construct a primal feasible solution $\tilde{\mathbb{P}}$ that is optimal, e.g., for $\lambda^* > 0$,

$$d\widetilde{\mathbb{P}} = \int \frac{e^{f(z)/(\lambda^* \varepsilon)} d\mathbb{Q}_x(z)}{\mathbb{E}_{\mathbb{Q}_{-\nu}}[e^{f(z)/(\lambda^* \varepsilon)}]} d\widehat{\mathbb{P}}(x) \implies V_{\mathrm{P}} \geq \mathbb{E}_{z \sim \widetilde{\mathbb{P}}}[f(z)] = V_{\mathrm{D}}.$$

Worst-case distribution $\tilde{\mathbb{P}}$ support on whole space, while W-DRO is discrete.

Connection of Sinkhorn DRO with Wasserstein DRO

When $\varepsilon \to 0$, the dual objective of Sinkhorn DRO converges into

$$\lambda \rho + \int \ \mathrm{ess\text{-}sup}_{\nu} \ \left(f(\cdot) - \lambda \, c(x, \cdot) \right) \mathrm{d}\widehat{\mathbb{P}}(x).$$

When $supp(v) = \Omega$,

Connection of Sinkhorn DRO with KL DRO

Upper bound of Sinkhorn DRO:

$$egin{aligned} V_{\mathrm{D}} & riangleq \inf_{\lambda > 0} \; \lambda \overline{
ho} + \lambda \, arepsilon \int_{\Omega} \log \left(\mathbb{E}_{\mathbb{Q}_x} \left[e^{f(y)/(\lambda \, arepsilon)}
ight]
ight) \, \mathrm{d}\widehat{\mathbb{P}}(x) \ & \leq \inf_{\lambda > 0} \; \lambda \, \overline{
ho} + \lambda \, arepsilon \log \left(\mathbb{E}_{\mathbb{P}^0} \left[e^{f(y)/(\lambda \, arepsilon)}
ight]
ight) \end{aligned}$$

 \mathbb{P}^0 : kernel density estimate based on $\widehat{\mathbb{P}}$:

$$d\mathbb{P}^0(z) = \int_{\mathcal{X}} d\mathbb{Q}_x(z) d\widehat{\mathbb{P}}(x).$$

Connection of Sinkhorn DRO with SAA

When $\overline{\rho} = 0$, Sinkhorn becomes SAA:

$$V_{\mathbf{P}} = \mathbb{E}_{z \sim \mathbb{P}^0}[f(z)]$$

 \mathbb{P}^0 : kernel density estimate based on $\widehat{\mathbb{P}}$:

$$d\mathbb{P}^0(z) = \int_{\mathcal{X}} d\mathbb{Q}_x(z) d\widehat{\mathbb{P}}(x).$$

Choice of Hyper-parameters $(oldsymbol{arepsilon},\overline{oldsymbol{ ho}})$

lacktriangle First choose arepsilon to optimize the hold-out performance for

$$\operatorname{argmin}_{\theta} \int \mathbb{E}_{z \sim \mathbb{Q}_x}[f(z)] \, d\widehat{\mathbb{P}}(x), \quad d\mathbb{Q}_x(z) \propto e^{-c(\hat{x}_i, z)/\varepsilon} \, d\nu(z).$$

lacktriangle For fixed arepsilon, choose $\overline{
ho}$ to optimize the hold-out performance for

$$\operatorname{argmin}_{\theta} \sup_{\mathbb{P}} \ \left\{ \mathbb{E}_{z \sim \mathbb{P}}[f_{\theta}(z)] : \quad W_{\varepsilon}(\widehat{\mathbb{P}}, \mathbb{P}) \leq \rho \right\}.$$

Optimization Algorithm for Sinkhorn DRO

Based on strong duality,

$$\begin{split} & \min_{\theta \in \Theta} \sup_{\mathbb{P}} \; \left\{ \mathbb{E}_{z \sim \mathbb{P}}[f_{\theta}(z)] : \quad W_{\varepsilon}(\widehat{\mathbb{P}}, \mathbb{P}) \leq \rho \right\} \\ & = \min_{\theta \in \Theta, \lambda \geq 0} \lambda \overline{\rho} + \frac{1}{n} \sum_{i=1}^{n} \lambda \varepsilon \log \left(\mathbb{E}_{\mathbb{Q}_{\hat{x}_i}} \left[e^{f_{\theta}(z)/(\lambda \varepsilon)} \right] \right) \end{split}$$

► Solve the Monte-Carlo approximated formulation³:

$$\min_{\theta \in \Theta, \lambda \geq 0} \lambda \overline{\rho} + \frac{1}{n} \sum_{i=1}^{n} \lambda \varepsilon \log \left(\frac{1}{m} \sum_{j=1}^{m} e^{f_{\theta}(z_{i,j})/(\lambda \varepsilon)} \right),$$

where $\{z_{i,j}\}_j$ are i.i.d. samples generated from $\mathbb{Q}_{\hat{x}_i}$.

³Alexander Shapiro, Darinka Dentcheva, and Andrzej Ruszczyński. *Lectures on stochastic programming: modeling and theory.* SIAM, 2014.

Optimization Algorithm for Sinkhorn DRO: Biased Gradient Update

Based on strong duality:

$$\min_{\theta \in \Theta} \ \left\{ \sup_{\mathbb{P}} \ \mathbb{E}_{z \sim \mathbb{P}}[f_{\theta}(z)] - \lambda W_{\varepsilon}(\widehat{\mathbb{P}}, \mathbb{P}) \right\} = \min_{\theta \in \Theta} \ \left\{ F(\theta) := \frac{1}{n} \sum_{i=1}^{n} \lambda \varepsilon \log \left(\mathbb{E}_{\mathbb{Q}_{\hat{x}_i}}[e^{f_{\theta}(z)/\lambda \varepsilon}] \right) \right\}.$$

- ▶ Biased gradient update: for each iteration *t*,
 - ► Construct a subgradient estimate⁴ of $F(\theta_t)$, denoted as $v(\theta_t)$;
 - Update $\theta_{t+1} = \mathsf{Proximal}_{\theta_t} (\gamma_t v(\theta_t))$.

Estimators	Convex (Possibly Nonsmooth)			Nonconvex Smooth		
	Iteration	Per-iteration cost	Total Cost	Iteration	Per-iteration cost	Total Cost
L-SGD	$O(\delta^{-2})$	$O(\delta^{-1})$	$O(\delta^{-3})$	$O(\delta^{-4})$	$O(\delta^{-2})$	$O(\delta^{-6})$
V-MLMC	$O(\delta^{-1})$	$\widetilde{O}(\delta^{-1})$	$\widetilde{O}(\delta^{-2})$	$O(\delta^{-2})$	$\widetilde{O}(\delta^{-2})$	$\widetilde{O}(\delta^{-4})$
RT-MLMC	$\widetilde{O}(\delta^{-2})$	O(1)	$\widetilde{O}(\delta^{-2})$	$\widetilde{O}(\delta^{-4})$	O(1)	$\widetilde{O}(\delta^{-4})$

⁴Yifan Hu, Xin Chen, and Niao He. "On the Bias-Variance-Cost Tradeoff of Stochastic Optimization". In: *Advances in Neural Information Processing Systems*. Dec. 2021.

Numerical Results

Newsvendor problem:

$$\min_{\beta} \mathbb{E}_{\mathbb{P}_*} [k\beta - u \min{\{\beta, \zeta\}}], \quad k = 5, u = 7.$$

 $\mathbb{P}_* \sim \exp(1/s)$ with $s \in \{0.25, 0.5, 0.75\}$. Access to n = 20 samples.

Numerical Results

Newsvendor problem:

$$\min_{\beta} \ \mathbb{E}_{\mathbb{P}_*} \big[k\beta - u \min\{\beta, \zeta\} \big], \quad k = 5, u = 7.$$

 $\mathbb{P}_* \sim \exp(1/s)$ with $s \in \{1,2,4\}$. Access to n = 20 samples.

Numerical Results

Portfolio Optimization:

$$\begin{split} &\inf_{x} \quad \mathbb{E}_{\mathbb{P}_{*}}\left[-\langle x,\zeta\rangle\right] + \rho \cdot \mathbb{P}_{*}\text{-}\mathsf{CVaR}_{\alpha}(-\langle x,\zeta\rangle) \\ &\mathsf{s.t.} \quad x \in \mathscr{X} = \{x \in \mathbb{R}^{D}_{+} : \ x^{\mathsf{T}}\mathbf{1} = 1\}. \end{split}$$

Dimension $D \in \{10, 20, 50\}$ with sample size n = 20.

Numerical Simulation Results

Semi-supervised Learning:

- ► Train classifiers based on data with labels and without labels;
- ► Two performance measures:
 - Training error for data without labels;
 - ► Testing error.

	SAA	Sinkhorn	Wasserstein	KL-divergence
	.20 ± .068	.12 ± .068	.17 ± .073	$.19 \pm .038$
Breast Cancer	$.19 \pm .073$	$.11\pm.067$	$.17 \pm .075$	$.19 \pm .073$
	$.28\pm.082$	$.25 \pm .091$	$.27\pm.077$	$.26\pm.078$
Magic	$.28\pm.064$	$.25 \pm .074$	$.27\pm.058$	$.27\pm.066$
	$.25\pm.057$	$.22\pm.063$	$.23\pm.073$	$.25\pm.037$
QSAR Bio	$.25\pm.062$	$.22 \pm .065$	$.23\pm.079$	$.25\pm.042$
	.19±.038	.14±.046	.16±.036	.18±.034
Spambase	$.19 \pm .032$	$.14\pm.036$	$.16 \pm .028$	$.18 \pm .042$

Take Home Message

Sinkhorn DRO is a great notion of DRO models:

- ▶ Inherit geometric properties from optimal transport;
- Absolutely continuous worst-case distribution thanks to entropic regularization;
- Improve the out-of-sample performance of Wasserstein DRO;
- Optimization by Monte Carlo approximation and first order method;
- ▶ More applications in operations research with Sinkhorn DRO can be explored!

Sinkhorn Distributionally Robust Optimization

(Submitted to Operations Research – INFORMS PUBs)

Online Available: arxiv.org/abs/2109.11926

