PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS
DEPARTAMENTO DE MATEMÁTICAS
PRIMER SEMESTRE DE 2016

$MAT1203 \star Algebra Lineal$

Solución y pauta de corrección de la Interrogación N° 3

1. [Texto, 4.6.27–28]

Sea A una matriz de $m \times n$.

- a) ¿Cuáles de los subespacios Fila A, Col A, Nul A, Fila A^T , Col A^T y Nul A^T están en \mathbb{R}^m y cuáles están en \mathbb{R}^n ? ¿Cuántos subespacios distintos hay en esta lista?
- b) Justifique las siguientes igualdades:
 - 1) dim Fila $A + \dim \text{Nul } A = n$ (número de columnas de A).
 - 2) dim Col A + dim Nul A^T = m (número de filas de A).

Solución:

a) Las filas de A (que son las columnas de A^T) son vectores de \mathbb{R}^n y las columnas de A (que son las filas de A^T) son vectores de \mathbb{R}^m .

Por su parte, Nul A es el conjunto de vectores \mathbf{x} tales que $A\mathbf{x} = \mathbf{0}$. Para que esto tenga sentido, se necesita que $\mathbf{x} \in \mathbb{R}^n$, por lo que Nul A está en \mathbb{R}^n (y análogamente Nul A^T está en \mathbb{R}^m).

Así:

- Fila $A = \operatorname{Col} A^T \subset \mathbb{R}^n$,
- $\operatorname{Col} A = \operatorname{Fila} A^T \subset \mathbb{R}^m$.
- Nul $A \subseteq \mathbb{R}^n$ y
- Nul $A^T \subset \mathbb{R}^m$;

por lo que entre los espacios indicados hay cuatro distintos.

b) La dimensión de Fila A corresponde a la cantidad de filas l.i. en A, que es igual al número de columnas pivote en A.

Por su parte, la dimensión de Nul A es igual al número de variables independientes en (x_1, x_2, \ldots, x_n) , o sea, el número de columnas que no son columnas pivote en A.

Como (# de cols. pivote en A)+(# de cols. que no son pivote en A) = (# de cols. de A), tenemos dim Fila A + dim Nul A = n.

Para probar que dim $\operatorname{Col} A + \dim \operatorname{Nul} A^T = m$, basta aplicar el resultado recién probado reemplazando A por A^T .

Puntaje:

- a) Por argumentar que Fila $A \subseteq \mathbb{R}^n$, 0,5 ptos.
 - Por argumentar que Nul $A \subseteq \mathbb{R}^n$, 0,5 ptos.
 - Por argumentar que Fila $A = \operatorname{Col} A^T$, 0,3 ptos.
 - Por argumentar que $\operatorname{Col} A \subseteq \mathbb{R}^m$, 0,5 ptos.
 - Por argumentar que Nul $A^T \subseteq \mathbb{R}^m$, 0,5 ptos.
 - Por argumentar que $\operatorname{Col} A = \operatorname{Fila} A^T$, 0,3 ptos.
 - Por concluir que hay 4 espacios distintos entre los 6 listados, 0,4 ptos.
- b) Por argumentar una de las dos igualdades, 2 puntos.
- c) Por argumentar la otra (partiendo de cero, o como lo hacemos aquí), 1 punto.

2. [Texto, 4.8, ejemplos 2 y 4, ejercicio 15]

- a) Encuentre todas las soluciones de la forma $y_k = r^k$, con $r \neq 0$, de la ecuación $y_{k+2} 2y_{k+1} 8y_k = 0$.
- b) Demuestre que las soluciones encontradas en a) son l.i.
- c) Indique la forma de la solución general de la ecuación $y_{k+2} 2y_{k+1} 8y_k = 0$.

Solución:

a) Supongamos que $y_k = r^k$ (con $r \neq 0$) es solución de la ecuación. Entonces, para todo $k \geq 0$, se tiene $r^{k+2} - 2r^{k+1} - 8r^k = 0$, por lo que $r^2 - 2r - 8 = 0$.

Así, r = 4 o r = -2, por lo que las soluciones buscadas son $y_k = 4^k$ e $y_k = (-2)^k$.

b) Supongamos que una combinación lineal de las señales $y_k = 4^k$ y $z_k = (-2)^k$ da como resultado la señal nula: $\alpha y_k + \beta z_k = 0$.

Esto quiere decir que, para todo $k \ge 0$, $\alpha 4^k + \beta (-2)^k = 0$.

En particular, esto debe ser cierto para k=1 y k=2, o sea:

$$4\alpha - 2\beta = 0, \qquad 16\alpha + 4\beta = 0.$$

Pero los únicos valores de α y β que satisfacen esto son $\alpha = \beta = 0$, por lo que las señales $y_k = 4^k$ y $z_k = (-2)^k$ son l.i.

Note que el proceso realizado es equivalente a probar que la matriz de Casorati correspondiente a k=0

$$\begin{vmatrix} y_0 & z_0 \\ y_1 & z_1 \end{vmatrix} = \begin{vmatrix} 4^0 & (-2)^0 \\ 4^1 & (-2)^1 \end{vmatrix} = \begin{vmatrix} 1 & 1 \\ 4 & -2 \end{vmatrix} - 6 \neq 0$$

(también puede ser la matriz de Casorati correspondiente a k=1):

$$\begin{vmatrix} y_1 & z_1 \\ y_2 & z_2 \end{vmatrix} = \begin{vmatrix} 4^1 & (-2)^1 \\ 4^2 & (-2)^2 \end{vmatrix} = \begin{vmatrix} 4 & -2 \\ 16 & 4 \end{vmatrix} = 48 \neq 0.$$

c) La forma general de la solución de la ecuación es

$$y_k = \alpha \cdot 4^k + \beta \cdot (-2)^k.$$

Puntaje:

- a) Por llegar a la ecuación $r^2 2r 8 = 0$, 1 punto.
 - \bullet Por resolver la ecuación, 0,5 puntos.
 - Por llegar a que las soluciones buscadas son $y_k = 4^k$ e $y_k = (-2)^k$, 0,5 puntos.
- b) Una demostración correcta de independencia lineal (usando alguna matriz de Casorati, o dando un argumento directo) recibe 2 puntos. No se asigna puntaje intermedio.
- c) Por escribir correctamente la forma de la solución general, 2 puntos.

3. [Texto, 6.1.20b]

Sean $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$. Demuestre que

$$||\mathbf{u} + \mathbf{v}||^2 + ||\mathbf{u} - \mathbf{v}||^2 = 2 ||\mathbf{u}||^2 + 2 ||\mathbf{v}||^2$$
.

Solución:

$$||\mathbf{u} + \mathbf{v}||^2 + ||\mathbf{u} - \mathbf{v}||^2 = (\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} + \mathbf{v}) + (\mathbf{u} - \mathbf{v}) \cdot (\mathbf{u} - \mathbf{v})$$

$$= [\mathbf{u} \cdot \mathbf{u} + 2\mathbf{u} \cdot \mathbf{v} + \mathbf{v} \cdot \mathbf{v}] + [\mathbf{u} \cdot \mathbf{u} - 2\mathbf{u} \cdot \mathbf{v} + \mathbf{v} \cdot \mathbf{v}]$$

$$= 2\mathbf{u} \cdot \mathbf{u} + 2\mathbf{v} \cdot \mathbf{v} = 2||\mathbf{u}||^2 + 2||\mathbf{v}||^2.$$

Puntaje:

- Si se cometen errores menores al aplicar las propiedades de la norma o el producto punto, se descuentan entre 0,5 y un punto.
- Si se hace una demostración correcta, usando alguno de los siguientes esquemas, se asigna puntaje completo (6 puntos), menos lo que se descuente por el acápite anterior:
 - partir de uno de los lados de la igualdad y llegar al otro; o
 - partir de uno de ellos, llegar a una expresión simplificada, y después llegar a la misma expresión simplificada partiendo del otro lado; o
 - partir de la igualdad dada y reducirla a una igualdad evidente usando explícitamente pasos reversibles, o sea de la forma ...si y solo si
- Si la demostración parte de la igualdad dada y la transforma en una igualdad evidente (pero no usando explícitamente pasos reversibles), se asignan 2 puntos, menos lo que se descuente por el primer acápite.

4. [Texto, 5.1.26]

Sea A una matriz de $n \times n$ tal que A^2 es la matriz $\mathbf{0}$.

- a) Demuestre que 0 es un valor propio de A.
- b) Demuestre que A no tiene otros valores propios.

Solución:

- a) Sea $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{x} \neq \mathbf{0}$. Si $A\mathbf{x} = \mathbf{0}$ entonces \mathbf{x} es un vector propio con valor propio 0.
 - Si no, $\mathbf{y} = A\mathbf{x} \neq \mathbf{0}$ es tal que $A\mathbf{y} = A(A\mathbf{x}) = A^2\mathbf{x} = \mathbf{0}$, por lo que en este caso \mathbf{y} es un vector propio con valor propio 0.
- b) Supongamos que A tiene un valor propio $\lambda \neq 0$. Así, existe $\mathbf{u} \in \mathbb{R}^n$, $\mathbf{u} \neq \mathbf{0}$ tal que $A\mathbf{u} = \lambda \mathbf{u}$. Pero entonces $A^2\mathbf{u} = A(A\mathbf{u}) = A(\lambda \mathbf{u}) = \lambda(A\mathbf{u}) = \lambda^2\mathbf{u} \neq \mathbf{0}$, lo que contradice la hipótesis de que A^2 es la matriz $\mathbf{0}$.

Puntaje:

- a) Por una demostración correcta, 3 puntos. Si no consideran el caso en que $\mathbf{x} \neq \mathbf{0}$ y $\mathbf{y} = A\mathbf{x} = \mathbf{0}$ (o sea, si dicen queo \mathbf{y} es un vector propio sin discriminar si es $\mathbf{0}$ o no, 2 puntos.
- b) Por una demostración correcta, 3 puntos.

5. a) [Texto, **5.3.13**]

La siguiente matriz tiene a 1 como valor propio. De ser posible, diagonalícela; en caso contrario indique por qué no es diagonalizable:

$$A = \left[\begin{array}{rrr} 2 & 2 & -1 \\ 1 & 3 & -1 \\ -1 & -2 & 2 \end{array} \right].$$

b) [Texto, 5.4.16]

Sea
$$A = \begin{bmatrix} 2 & 3 \\ 3 & 2 \end{bmatrix}$$
, y defina $T : \mathbb{R}^2 \to \mathbb{R}^2$ por $T(\mathbf{x}) = A\mathbf{x}$.

Determine una base \mathcal{B} para \mathbb{R}^2 con la propiedad de que $[T]_{\mathcal{B}}$ es diagonal.

Solución:

a) El polinomio característico de A es

$$\det(A - \lambda I) = \begin{vmatrix} 2 - \lambda & 2 & -1 \\ 1 & 3 - \lambda & -1 \\ -1 & -2 & 2 - \lambda \end{vmatrix} = 5 - 11\lambda + 7\lambda^2 - \lambda^3 = (5 - \lambda)(1 - \lambda)^2.$$

Así, $\lambda=1$ (con multiplicidad 2) y $\lambda=5$ (con multiplicidad 1) son los valores propios de A.

Para saber si A es o no diagonalizable, debemos verificar si la dimensión de cada espacio propio es igual a la multiplicidad algebraica del valor propio correspondiente.

Como la multiplicidad del valor propio $\lambda=5$ es 1, la única posibilidad de que A no sea diagonalizable es que la dimensión del espacio propio correspondiente a $\lambda=1$ sea 1.

Así, buscamos los vectores propios correspondientes a $\lambda=1$. Para ello, resolvemos la ecuación $A\mathbf{x}=\mathbf{x}$ o —equivalentemente—

$$\begin{bmatrix} 1 & 2 & -1 \\ 1 & 2 & -1 \\ -1 & -2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

La matriz ampliada escalonada es $\begin{bmatrix} 1 & 2 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$, por lo que el sistema queda

equivalente a $x_1 = x_3 - 2x_2$.

Así, una base para este espacio propio está dado por las elecciones $(x_2, x_3) = (1,0)$ y $(x_2, x_3) = (0,1)$, que corresponde a los vectores propios (-2,1,0) y (1,0,1). Así, la dimensión de este espacio propio es 2, por lo que la matriz A es diagonalizable.

Para el valor propio $\lambda=5,$ debemos resolver el sistema

$$\begin{bmatrix} -3 & 2 & -1 \\ 1 & -2 & -1 \\ -1 & -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

La matriz ampliada escalonada es $\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$, por lo que el sistema queda

equivalente a $x_1 = x_2 = -x_3$.

Así, un vector propio correspondiente a $\lambda = 5$ es (-1, -1, 1).

De todo lo anterior llegamos a que la matriz A puede ser diagonalizada como sigue:

$$A = \begin{bmatrix} -2 & 1 & -1 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{bmatrix} \begin{bmatrix} -2 & 1 & -1 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \end{bmatrix}^{-1}.$$

b) Buscamos una base de \mathbb{R}^2 formada por vectores propios de A. El polinomio característico de A es

$$\det(A - \lambda I) = \begin{vmatrix} 2 - \lambda & 3 \\ 3 & 2 - \lambda \end{vmatrix} = (2 - \lambda)^2 - 9 = \lambda^2 - 4\lambda - 5 = (\lambda - 5)(\lambda + 1).$$

Así. los valores propios son -1 y 5, por lo que buscamos vectores propios correspondientes a estos valores propios:

■ Para $\lambda = -1$,

$$\left[\begin{array}{cc} 3 & 3 \\ 3 & 3 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{c} 0 \\ 0 \end{array}\right]$$

tiene por solución $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

• Para $\lambda = 5$,

$$\begin{bmatrix} -3 & 3 \\ 3 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

tiene por solución $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

Así, una posible base que cumple con las condiciones pedidas es $\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$ (y en realidad cualquier base formada por ponderados de estos vectores).

Puntaje:

- a) Por calcular y factorizar correctamente el polinomio característico: 0,5 puntos.
 - Por indicar que la condición para que A sea diagonalizable es que la dimensión del espacio propio correspondiente a $\lambda = 1$ sea 2 (o, equivalentemente, que haya dos vectores propios l.i. correspondientes a $\lambda = 1$): 0,5 puntos.
 - Por encontrar dos vectores propios l.i. correspondientes a $\lambda = 1$ (que no necesariamente deben ser los aquí mostrados): 1 punto (0,5 por cada vector).
 - \blacksquare Por encontrar un vector propio correspondiente a $\lambda=5\colon 0,5$ puntos.
 - Por escribir A correctamente en la forma $A = PDP^{-1}$: 0,5 puntos.

- b) $\,\,$ $\,$ Por calcular y factorizar correctamente el polinomio característico: 0,5 puntos.
 - \bullet Por encontrar un vector propio correspondiente a $\lambda=5{:}$ 1 punto.
 - Por encontrar un vector propio correspondiente a $\lambda = -1$: 1 punto.
 - Por escribir la base encontrada (no es necesario diagonalizar la matriz): 0,5 puntos.

6. [Texto, 4.5.33]

Se sabe que todo conjunto linealmente independiente $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ de \mathbb{R}^n puede ser expandido a una base de \mathbb{R}^n . Una forma de lograr esto es considerar la matriz

$$A = \left[\mathbf{v}_1 \mathbf{v}_2 \dots \mathbf{v}_k \mathbf{e}_1 \mathbf{e}_2 \dots \mathbf{e}_n \right],$$

donde $\mathbf{e}_1 \mathbf{e}_2 \dots \mathbf{e}_n$ son (en orden) las columnas de la matriz identidad; las columnas pivote de A forman una base de \mathbb{R}^n .

a) Utilice el método descrito para ampliar los siguientes vectores a una base para \mathbb{R}^4 :

$$\mathbf{v}_1 = \begin{bmatrix} 3 \\ 2 \\ 3 \\ 1 \end{bmatrix}, \qquad \mathbf{v}_2 = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 1 \end{bmatrix}, \qquad \mathbf{v}_3 = \begin{bmatrix} 5 \\ 1 \\ 3 \\ 1 \end{bmatrix}.$$

b) Explique por qué funciona en general el método: ¿por qué están los vectores originales $\mathbf{v}_1, \dots \mathbf{v}_k$ incluidos en la base encontrada para Col A? ¿Por qué es Col $A = \mathbb{R}^n$?

Solución:

a) La matriz A construida como se indica es

$$A = \left[\begin{array}{ccccccc} 3 & 1 & 5 & 1 & 0 & 0 & 0 \\ 2 & 2 & 1 & 0 & 1 & 0 & 0 \\ 3 & 3 & 3 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 \end{array} \right].$$

Tras realizar eliminación Gaussiana sobre la matriz, obtenemos

$$A \sim \begin{bmatrix} 1 & 1/3 & 5/3 & 1/3 & 0 & 0 & 0 \\ 0 & 1 & -7/4 & -1/2 & 3/4 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 2/3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & -3 \end{bmatrix}.$$

Como las columnas pivote son la 1^a, la 2^a, la 3^a y la 6^a, la base que nos entrega el método es

$$\mathcal{B} = \{\mathbf{v}_1.\mathbf{v}_2, \mathbf{v}_3, \mathbf{e}_3\} = \left\{ \begin{bmatrix} 3\\2\\3\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\3\\1 \end{bmatrix}, \begin{bmatrix} 5\\1\\3\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix} \right\}.$$

- b) Si alguno de los k vectores originales no fuera columna pivote de A, la matriz de $n \times k$ formada por esos vectores tendría menos de k pivotes y por lo tanto los k vectores columna serían linealmente dependientes. Así, todos los vectores originales están en el conjunto entregado por este método.
 - Por otra parte, Col A es el espacio generado por las columnas de A; como las columnas de A contienen a $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n$, que forman un generador de \mathbb{R}^n , se tiene que todo elemento de \mathbb{R}^n es combinación lineal de las columnas de A.

Puntaje:

- a) Por escribir correctamente la matriz A, 1 punto.
 - Por escalonar correctamente la matriz (llegando a una forma escalonada o a la forma escalonada reducida), 1 punto.
 - Por identificar correctamente las columnas pivote, 0,5 puntos.
 - Por escribir correctamente la base que entrega el método, 0,5 puntos.
- b) Por dar una BUENA explicación de por qué están los vectores originales incluidos en la base encontrada, 1,5 puntos.
 - Por dar una BUENA explicación de por qué $\operatorname{Col} A = \mathbb{R}^n$, 1,5 puntos.

- 7. Sean A y B dos matrices de $n \times n$ tales que AB = BA.
 - a) Demuestre que, si $B\mathbf{v} \neq \mathbf{0}$ y \mathbf{v} es vector propio de A con valor propio asociado λ , entonces $B\mathbf{v}$ también es vector propio de A con valor propio asociado λ .
 - b) Demuestre que si \mathbf{u} es cualquier vector propio de A perteneciente a un espacio propio de dimensión 1, entonces \mathbf{u} es vector propio de B.

Solución:

- a) Si $B\mathbf{v} \neq \mathbf{0}$ y \mathbf{v} es vector propio de A con valor propio asociado λ , entonces $A(B\mathbf{v}) = AB\mathbf{v} = B(A\mathbf{v}) = B(\lambda\mathbf{v}) = \lambda(B\mathbf{v})$, por lo que $B\mathbf{v}$ es vector propio de A con valor propio asociado λ .
- b) Sea **u** cualquier vector propio de A perteneciente a un espacio propio de dimensión 1, con valor propio asociado λ .

Analizamos dos casos:

- 1) $B\mathbf{u} = \mathbf{0}$. De ser así, \mathbf{u} es vector propio de B con valor propio asociado 0.
- 2) $B\mathbf{u} \neq \mathbf{0}$. En este caso, por (a), $B\mathbf{u}$ también es vector propio de A con valor propio asociado λ .

Pero el espacio propio de A correspondiente al valor propio λ es uni-dimensional, por lo que $B\mathbf{u} = \alpha \mathbf{u}$ para algún $\alpha \neq 0$, de donde se deduce que \mathbf{u} es vector propio de B con valor propio asociado α .

Puntaje:

- a) Por una demostración correcta, 3 puntos.
- b) Por una demostración correcta, 3 puntos. Si no consideran aparte el caso en que $B\mathbf{u} = \mathbf{0}$, 2 puntos.

- 8. En cada caso, determine si la afirmación es VERDADERA o FALSA, y justifique su respuesta (el indicar correctamente si es V o F sin una justificación adecuada no tiene puntos):
 - a) Si W es un subespacio de \mathbb{R}^n , entonces $(W^{\perp})^{\perp} = W$.
 - b) Si \mathbf{v}_1 y \mathbf{v}_2 son dos vectores propios linealmente independientes de A, entonces corresponden a distintos valores propios.
 - c) Si A es de $m \times n$ y A es uno a uno, entonces el rango de A es m.

Solución:

a) VERDADERO

Si $\mathbf{x} \in W$, $\mathbf{x} \perp \mathbf{y}$ para todo $\mathbf{y} \in W^{\perp}$, por lo que $\mathbf{x} \in (W^{\perp})^{\perp}$.

Así, hemos probado que $W \subseteq (W^{\perp})^{\perp}$, por lo que W es un subespacio de $(W^{\perp})^{\perp}$. Sea ahora dim W = k. Por ser W subespacio de \mathbb{R}^n , podemos expresar W como Fila A (donde A es una matriz de $k \times n$), y por lo tanto $W^{\perp} = \text{Nul } A$.

Pero entonces dim $W^{\perp} = \dim(\operatorname{Nul} A) = n - \dim(\operatorname{Fila} A) = n - k$. Aplicando nuevamente esta misma propiedad, esta vez a W^{\perp} en lugar de a W, obtenemos $\dim((W^{\perp})^{\perp}) = n - (n - k) = k$.

De aquí concluimos que W es un subespacio de $(W^{\perp})^{\perp}$ que tiene su misma dimensión, por lo que (ver por ejemplo el problema 4.5.26) $W = (W^{\perp})^{\perp}$.

b) FALSO

Sea A la matriz identidad de $n \times n$. Todo vector no nulo de \mathbb{R}^n es vector propio de A con valor propio 1; en particular, si elegimos dos vectores l.i. cualesquiera, ambos serán vectores propios l.i. correspondientes al mismo valor propio.

Otra forma de justificar la afirmación es dar un contraejemplo específico, por ejemplo $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $\mathbf{v}_1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ y $\mathbf{v}_2 = \begin{bmatrix} -1 & 4 \end{bmatrix}$. Aquí tenemos dos vectores propios con valor propio 1 que son l.i.

c) FALSO

Considérese la matriz $A = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Al actuar sobre un vector $\mathbf{x} = \begin{bmatrix} c \\ 0 \end{bmatrix}$, se obtiene como resultado $A\mathbf{x} = \begin{bmatrix} c \\ 0 \end{bmatrix}$, por lo que A es uno a uno $(A \begin{bmatrix} c_1 \end{bmatrix} = A \begin{bmatrix} c_2 \end{bmatrix} \rightarrow c_1 = c_2)$. Pero el rango de A es 1 = n, no m = 2.

Puntaje:

- a) Por probar que W es un subespacio de $(W^{\perp})^{\perp}$, 1 punto. Por probar que en realidad ambos espacios son iguales, 1 punto.
- b) Por dar un buen contraejemplo (específico o genérico, como los mostrados en la solución), 2 puntos.
- c) Por dar un buen contraejemplo, 2 puntos.