Eléments d'une chaîne DVB-S2

8 juin 2012

Plan

- Principaux éléments d'une chaîne DVB-S2
- Codes LDPC
- Décodage itératif
- 4 Codes QC-LDPC

Plan

- 1 Principaux éléments d'une chaîne DVB-S2
- 2 Codes LDPC
- Décodage itératif
- 4 Codes QC-LDPC

Principaux éléments

Figure 1: Functional block diagram of the DVB-S.2 System

Trame "bande de base"

Figure 4: BBFRAME format at the output of the STREAM ADAPTER

Figure 5: Possible implementation of the PRBS encoder

Structure Trame Codée

Figure 6: format of data before bit interleaving (n_{ldbc} = 64 800 bits for normal FECFRAME, n_{ldbc} = 16 200 bits for short FECFRAME)

Codage de canal

Table 5a: coding parameters (for normal FECFRAME n_{idpc} = 64 800)

LDPC code	BCH Uncoded Block K _{bch}	BCH coded block N_{bch} LDPC Uncoded Block k_{ldpc}	BCH t-error correction	LDPC Coded Block n _{ldpc}
1/4	16 008	16 200	12	64 800
1/3	21 408	21 600	12	64 800
2/5	25 728	25 920	12	64 800
1/2	32 208	32 400	12	64 800
3/5	38 688	38 880	12	64 800
2/3	43 040	43 200	10	64 800
3/4	48 408	48 600	12	64 800
4/5	51 648	51 840	12	64 800
5/6	53 840	54 000	10	64 800
8/9	57 472	57 600	8	64 800
9/10	58 192	58 320	8	64 800

Table 5b: coding parameters (for short FECFRAME n_{ldpc} = 16 200)

LDPC Code identifier	BCH Uncoded Block K _{bch}	BCH coded block N_{bch} LDPC Uncoded Block k_{ldpc}	BCH t-error correction	Effective LDPC Rate k _{idpc} /16 200	LDPC Coded Block n _{idpc}
1/4	3 072	3 240	12	1/5	16 200
1/3	5 232	5 400	12	1/3	16 200
2/5	6 312	6 480	12	2/5	16 200
1/2	7 032	7 200	12	4/9	16 200
3/5	9 552	9 720	12	3/5	16 200
2/3	10 632	10 800	12	2/3	16 200
3/4	11 712	11 880	12	11/15	16 200
4/5	12 432	12 600	12	7/9	16 200
5/6	13 152	13 320	12	37/45	16 200
8/9	14 232	14 400	12	8/9	16 200
9/10	NA	NA	NA	NA	NA

Table 8: Bit Interleaver structure

Modulation	Rows (for n _{Idpc} = 64 800)	Rows (for n _{Idpc} = 16 200)	Columns
8PSK	21 600	5 400	3
16APSK	16 200	4 050	4
32APSK	12 960	3 240	5

Figure 7: Bit Interleaving scheme for 8PSK and normal FECFRAME length (all rates except 3/5)

(c) 16-APSK (d) 32-APSK

Table 9: optimum constellation radius ratio γ (linear channel) for 16APSK

Code rate	Modulation/coding spectral efficiency	γ
2/3	2,66	3,15
3/4	2,99	2,85
4/5	3,19	2,75
5/6	3,32	2,70
8/9	3,55	2,60
9/10	3,59	2,57

Table 10: optimum constellation radius ratios γ_1 and γ_2 (linear channel) for 32 APSK

Code rate	Modulation/coding spectral efficiency	γ ₁	γ ₂
3/4	3,74	2,84	5,27
4/5	3,99	2,72	4,87
5/6	4,15	2,64	4,64
8/9	4,43	2,54	4,33
9/10	4,49	2,53	4,30

Trame Couche Physique

Figure 13: Format of a "Physical Layer Frame" PLFRAME

Table 11: S = number of SLOTs (M = 90 symbols) per XFECFRAME

	n _{ldpc} = 64 800 (normal frame)		n _{idpc} = 16 200 (short frame)	
η _{MOD} (bit/s/Hz)	S	η % no-pilot	S	η % no-pilot
2	360	99,72	90	98,90
3	240	99,59	60	98,36
4	180	99,45	45	97,83
5	144	99,31	36	97,30

DVB-S2 Scrambling

Figure 14: PL SCRAMBLING

Mise en forme par racine de cosinus surélevés

$$H(f) = 1$$
 for $|f| < f_N(1-\alpha)$

$$H(f) = \left\{ \frac{1}{2} + \frac{1}{2} \sin \frac{\pi}{2f_N} \left[\frac{f_N - |f|}{\alpha} \right] \right\}^{\frac{1}{2}}$$
 for $f_N(1 - \alpha)$

$$H(f)=0 \text{ for } \left|f\right|>f_N\left(1+\alpha\right),$$

 $\alpha = 0.2; 0.25; 0.35$

DVB-S2 Performances

Es/No [dB] Fig. 24. Comparison of BER curves for 16 APSK 3/4 and 32APSK 4/5 in

DVB-S2 Performances

Figure 7. Performance of LDPC+BCH Codes over AWGN Channel, N=64800 bits

Example comparison between DVB-S and DVB-S2 for TV broadcasting

Satellite EIRP (dBW)	5	1	53.7	
System	DVB-S	DVB-S2	DVB-S	DVB-S2
Modulation & coding	QPSK 2/3	QPSK 3/4	QPSK 7/8	8PSK 2/3
Symbol rate (Mbaud)	27.5 (α = 0.35)	$30.9 \ (\alpha = 0.0)$	27.5 (α = 0.35)	29.7 (α = 0.25)
C/N (in 27. 5 MHz) (dB)	5.1	5.1	7.8	7.8
Useful bitrate (Mbit/s)	33.8	46 (gain = 36%)	44.4	58.8 (gain = 32%)
Number of SDTV programmes	7 MPEG-2 15 AVC	10 MPEG-2 21 AVC	10 MPEG-2 20 AVC	13 MPEG-2 26 AVC
Number of HDTV programmes	1-2 MPEG-2 3 - 4 AVC	2 MPEG-2 5 AVC	2 MPEG-2 5 AVC	3 MPEG-2 6 AVC

(*) Source rate control may be directly applied to source(s) or locally at the GTW input or via network traffic control

Décodage itératif

Plan

- Codes LDPC

Décodage itératif

Introduction

- 1963 : Gallager, codes LDPC régulier, décodeur A et B
- 1981 : Tanner, codes définis sur les graphes.
- 1995 : MacKay, décodage par BP
- 2001 : Richardson et Urbanke, codes LDPC irréguliers et évolutions de densités.

Codes Low-Density Parity-Check (LDPC) Introduction

Définition

Principaux éléments d'une chaîne DVB-S2

$$\mathcal{C}_H = \{ \mathbf{c} \in GF(2)^{\times N} | H.\mathbf{c}^{\top} = \mathbf{0} \}$$

- H est la matrice de parité du code de taille $M \times N$,
- Si H de rang plein : R = K/N avec K = N M,
- Equations de parité : $\bigoplus_{j:h_{ii}\neq 0} c_j = 0, \ \forall i = 1 \dots M$,
- H est dîte à faible densité si

$$\frac{\text{éléments non nuls}}{N.M} \underset{N \mapsto +\infty}{\longrightarrow} 0$$

Représentation

Matrice de Parité

Graphe bipartite associé dît de Tanner

Graphe de Tanner

- Noeuds de variables : associés au bits du mot de codes,
- Noeuds de parité : associés au équations de parités,
- branches: lien entre noeuds de variables et noeuds de parité.
 Un noeud de variable n sera connecté au noeud de parité m si h_{mn} = 1 dans la matrice.

Codes LDPC: profils

Principaux éléments d'une chaîne DVB-S2

Codes LDPC réguliers

- Paramètres : (d_v, d_c) ,
- d_v : nombre de '1' par colonne,
- d_c: nombre de '1' par ligne,
- $R \ge 1 d_v/d_c$

Matrice de Parité $(2, d_c)$

Codes LDPC irréguliers

 $A R > 1 - \overline{d} / \overline{d}$

- non régulier : dégrés différents possible pour chaque noeud,

Plan

- Décodage itératif

Décodage par Propagation de croyance (Belief Propagation, BP)

Décodage itératif des codes LDPC

- Décodage par Maximum de vraisemblance : trop complexe,
- Mise en oeuvre d'un algorithme itératif de décodage : algorithme de propagation de croyances (Belief Propagation, BP) par mise à jour successive de "messages" (croyances) en sortie de noeud de variables et de parité,
- Hypothèses : entrelacement parfait
 - ⇒ les messages arrivant à un noeud de variable ou de parité sont considérés comme indépendants
 - ⇒ hypothèse d'**arbre local** qui permet un calcul explicite des messages (probabilités ou log-rapport de probabilités (LLR)) transitant sur les branches du graphe de Tanner associé,
- les messages transitant sur le graphe sont par nature "extrinsèques",
- Algorithme BP : algorithme itératif sous-optimal à relativement faible complexité.

Décodage itératif

00000

Codes Low-Density Parity-Check (LDPC)

Décodage par Propagation de croyance

Mise à jour des noeuds de variables

les messages considérés sont des LLR $v = \log(\frac{p(c=0|\{z\})}{p(c=1|\{z\})})$

$$v_m^{(l)} = u_0 + \sum_{k=1, k \neq m}^{i} u_k^{(l-1)}, \forall m = 1 \dots i$$

 $u_0 = \log(\frac{\rho(x=0|y)}{\rho(x=1|y)}) = \log(\frac{\rho(y|x=0)}{\rho(y|x=1)})$

Décodage par Propagation de croyance

Principaux éléments d'une chaîne DVB-S2

Mise à jour des noeuds de parité

les messages considérés sont des LLR $u = log(\frac{p(c'=0|\{z'\})}{p(c'=1|\{z'\})})$

$$anh rac{u_k^{(l)}}{2} = \prod_{m=1, m
eq k}^j anh rac{v_m^{(l)}}{2}, \, orall k = 1 \dots j$$

Décodage par Propagation de croyance

Décodage et décision

$$v_{\text{app},n} = u_0 + \sum_{k=1}^{i} u_k^{(L)}, \forall n = 1 \dots N$$

$$\hat{\textit{m}}_{\textit{n}} = \frac{1 - \text{sign}(\textit{v}_{\text{app},\textit{n}})}{2}, \forall \textit{n} = 1 \dots \textit{N}$$

Messages initiaux pour différents canaux

- BEC: $u_0 \in \{+\infty, -\infty, 0\}$,
- BSC: $u_0 = (-1)^{y[n]} \log(\frac{1-p}{p}),$
- Gaussien : $u_0 = \frac{2}{\sigma_h^2} y[n]$,

Décodage itératif

Codes Low-Density Parity-Check (LDPC)

Algorithme BP simplifié: Min-Sum

$$u_k^{(l)} = \left[\prod_{m=1, m \neq k}^{j} \operatorname{sign}(v_m^{(l)})\right] \left[\min_{m \neq k} (|v_m^{(l)}|)\right], \forall k = 1 \dots j$$

Algorithme Min-Sum atténué

$$u_k^{(l)} = \alpha_k^{(l)} \left| \prod_{m=1, m \neq k}^{j} \operatorname{sign}(v_m^{(l)}) \right| \left[\min_{m \neq k} (|v_m^{(l)}|) \right], \forall k = 1 \dots j$$

 $0 < \alpha < 1$ est un facteur d'atténuation, éventuellement variable.

Algorithme Min-Sum avec offset

$$u_k^{(l)} = \left[\prod_{m=1, m \neq k}^{j} \operatorname{sign}(v_m^{(l)}) \right] \left[\max \left\{ \min_{m \neq k} (|v_m^{(l)}|) - \beta, 0 \right\} \right], \forall k = 1 \dots j$$

 $0 < \alpha < 1$ est un facteur d'atténuation, éventuellement variable.

Plan

- Principaux éléments d'une chaîne DVB-S2
- Codes LDPC
- Décodage itératif
- 4 Codes QC-LDPC

Codes Quasi-cycliques : définitions et propriétés

Définitions

- chaque mot de code de taille N = n x L comportent n sections de L bits.
- 2 toute permutation circulaire des mots de codes restreinte à la longueur d'une section est un mot de code.

Représentation

 Matrice polynomiale : ces matrices peuvent être représentées par une matrice dîte polynomiale dont les éléments sont des polynômes associés à la matrice de permutation,

$$P = \begin{pmatrix} 0 & 1 & 0 & \cdots & \cdots & 0 \\ 0 & 0 & 1 & 0 & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \ddots & \vdots \\ \vdots & & & \ddots & \ddots & \ddots & \vdots \\ \vdots & & & & \ddots & 1 & 0 \\ 0 & & & & & 0 & 1 \\ 1 & 0 & \cdots & \cdots & \cdots & 0 \end{pmatrix}$$

Codes Quasi-cycliques : définitions et propriétés

Exemple:

$$H = \begin{pmatrix} I + P^2 & I + P^4 & I & 0 \\ I + P & P + P^3 & 0 & I \end{pmatrix}$$

Définitions

- Matrice de base : on peut associer à la matrice H une matrice de base H_B dont les éléments sont le nombre de monômes à chaque éléments non nul de taille L x L,
- Ordre de lift/extension/expansion : on dît que H est obtenue par extension ou "lifting" de H_B d'ordre L.

$$H_B = \begin{pmatrix} 2 & 2 & 1 & 0 \\ 2 & 2 & 0 & 1 \end{pmatrix}$$

Codes Quasi-cycliques : définitions et propriétés

Représentation par protographes

- on peut associer un graphe de Tanner à H_B qui représente la description synthétique des connections de H,
- le graphe résultant est appelé protographe (projected-graph),

Représentation du graphe projeté (protographe)

Codes Quasi-cycliques : intérêts pratiques

- le codage peut être réalisé de manière linéaire en temps car la matrice génératrice peut être réalisée à l'aide de simples registres à décalage,
- representation de H simplifiée par utilisation conjointe de la matrice de base et des polynômes associés à l'extension,
- le décodage peut-être réalisé de manière fortement parallélisée
 codes ayant en général un très bon compromis complexité/performance
 - ⇒ de facto, le type de codes utilisés dans les standards