Comment: Recall that the tangent function is $\tan \theta = \frac{\sin \theta}{\cos \theta}$. It's also the slope of the line passing through (0,0) and the point on the unit circle with angle θ .

Ex: Find the equation of the following line:

We know the equation is $y = m \times +2$, since 2 is the y-intercept. Now

tan $40^{\circ} = .839$, so the slope is M = .839. Thus the equation is $y = .839 \times + 2$.

Theorem. The grouph of the tangent

It is periodic with period 180°. It's an odd function, it has asymptotes at 180° n + 90° for every integer n.

The domain of tan θ is

... υ (-270°, -90°) υ (-90°, 90°) υ (95°, 270°) υ--

Ex: A ladder is leaning up against a wall. It reaches 10 ft up, and it makes an angle of 60° with the ground. How far away from the wall is the base of the ladder? (do this without finding the length of the ladder!)

$$tan 60^\circ = \frac{10}{x} , so$$

$$tan 60^{\circ} = \frac{10}{x}$$
, so $\frac{\sin 60^{\circ}}{\cos 60^{\circ}} = \frac{\sqrt{3/2}}{1/2} = \frac{10}{x}$

Then
$$\sqrt{3} = \frac{10}{x}$$
, and so $x = \frac{10}{\sqrt{3}} \approx 5.77$

Inverse Functions

Ex: What is 0?

We know that sin $\theta = \frac{\sqrt{3}}{2}$, so $\theta = 60^{\circ}$.

EX:

Here, $\sin \Psi = \frac{\sqrt{3}}{2}$, so $\Psi = 12^{\circ}$, since it's in the second quadrant.

Comment: Recall inverse functions from 111: if y = f(x), then f^{-1} is the function that takes in a y-value and outputs the x-value that f would take to that y-value.

 $E \times .$ If $y = f(x) = x^3$, then f(z) = 8, So $f^{-1}(8) = 2$. In general, $f^{-1}(y) = 3y$.

A function f is only invertible if it's one-to-one: for all a and b, if f(a) = f(b), then a = b. This just means that every output comes from

only one input.

Finally, the graph of an inverse function is the graph of the original function flipped over the line y=x.

Comment: We'd like to define inverses of the trig functions, but they're not one-to-one.

Ex: The function $f(x)=x^2$ isn't one-to-one (since, for example, $(-2)^2=2^2$).

But f is one-to-one on $[0,\infty)$, so it's invertible there. And on that domain, $f^{-1}(y) = \sqrt{y}$.

Comment: We can similarly restrict the domains of $\sin \theta$, $\cos \theta$, and $\tan \theta$ to make then invertible.

Def: Let \times be in [-1,1]. The arcsine of \times is arcsin(\times) = θ , where θ is the angle in $[-90^{\circ}, 90^{\circ}]$ such that $\sin \theta = \times$.

Def: Let x be in [-1,1]. The arccosine of x is $arccos(x) = \theta$, where θ is the angle in $[0^{\circ}, 180^{\circ}]$ such that $\cos \theta = x$.

Def: Let \times be in $(-\infty, \infty)$. The arctangent of \times is arctan $(\times) = \theta$, where θ is angle in $[-90^\circ, 90^\circ]$ such that $\tan \theta = \times$.

Comment: These functions take in distances

(or, in the case of arctan, slopes), and they

output one possible angle that could be fed

into their non-arc counterpart to get that

distance or slope.

 E_X : $arccos(\sqrt{3}/2) = 30^\circ$, since $\cos 30^\circ = \frac{\sqrt{3}}{2}$ and 30° is in $[0^\circ, 180^\circ]$.

arcsin $\left(-\frac{\sqrt{2}}{2}\right) = -\frac{45^{\circ}}{100}$, since $\sin\left(-\frac{\sqrt{2}}{2}\right) = -\frac{\sqrt{2}}{2}$ and $-\frac{45^{\circ}}{100}$ is in $\left[-\frac{90^{\circ}}{90^{\circ}}\right]$.

arctan $(3) = 0^{\circ}$, since $\tan 0^{\circ} = 0$ and 0° is in $\left[-\frac{90^{\circ}}{90^{\circ}}\right]$.

Comment: To find these, Iraw a circle and Iraw a point with the proper x-value / y-value / slope.

Ex: Find arccos (-1/2).

-1/2 is the x-coordinate of the point we're trying to find.

Now remember that arccos only gives angles in [0°, 180°]. Therefore, we want the top point, and it has an angle of 120° by a reference angle argument.

EX: Find O.

we're trying to find an angle given coordinates, so we'll use arcsin or arccos. But arccos gives angles in [0,180°], which θ is not. But arcsin outputs angles in [-90°, 90°], which θ is. So $\theta = \arcsin(-.82) = -55.1°$ by a calculator.

Ex: Find 0.

ban $\theta = \frac{3}{4}$, so $\arctan\left(\frac{3}{4}\right) = \theta$ since θ is in $\left[-90^{\circ}, 90^{\circ}\right]$. And $\arctan\left(\frac{3}{4}\right) = 36.9^{\circ}$, so $\theta = 36.9^{\circ}$.

Recap: - sin and cos give the

y- and x-coordinates of a

point on the unit circle

with a certain angle. In

right triangles, they give ratios

of side lengths.

- 0°, 30°, 45°, 60°, 90°, and any angle with one of those as a reference angle are called special angles, and we can find the values of sin and cos of these angles exactly.

- The graphs of sin and cos are waves.

- The tengent function is $\tan \theta = \frac{\sin \theta}{\cos \theta}$ and gives the slope of a line passing through (0,0) and a point on the omit circle with angle θ .

- The inverse trig fonctions take in distances / slopes and output one possible angle that their non-arc counterpart would send to that distance /slope.

Chapter 3: Trig in More Depth

Radian S

Comment: Degrees work fine for measuring angles, but the choice of 360° as a full circle is arbitrary. Is there a better angle measure we could choose?

Prop: A circle with radius r has area Trr2 and circumference 2 Tr.

Prop: An arc of a circle with radius r that is θ degrees has arc length $\left(\frac{\theta}{360^{\circ}}\right)\left(2\pi r\right)$.

don't use
this

(150°)
(2Tr)
(360°)

Def: Let θ be an angle. The radian measure of θ is equal to the arc length of an arc with angle θ in the unit circle.

Ex: $360^{\circ} = 2\pi$ in radians, since the arc with angle 360° in the unit circle is the whole unit circle, and so has arc length 2π (since r=1).

Comment: Technically, radians have no unit. So we write $\theta = 360^{\circ}$ but $\theta = 2\pi$, not $\theta = 2\pi$ radians. Because of this, if you don't see a degree symbol, you should always assume that an angle is in radians.

EX:	Legrees	radians
	360°	2π
	1800	11
	900	17/2
	45°	11/4
	60°	T/3 { don't get these T/6 } confused!
	300	T/3 { don't get these T/6 \ confused!
	o°	

Theorem: If θ is measured in degrees, then the radian measure of θ is $(\theta)(\frac{\pi}{1800})$. If θ is measured in radians, then the degree measure of θ is $(\theta)(\frac{1300}{11})$.

Ex: What is 120° in radians?

 $|+'s|(20°)(\frac{\pi}{180°}) = \frac{2}{3} \cdot \pi = \frac{2\pi}{3}$

Ex: What is 5 radians in degrees?

(1's $(5)(\frac{180^{\circ}}{\pi}) = \frac{900^{\circ}}{\pi} = 286.5^{\circ}$.

Ex: Find all the quantities listed, with exact answers whenever possible

C25 (
$$T/3$$
)

Sin ($T/2$)

Sin ($3T/4$)

Lan ($3T/2$)

C25 ($-T/6$)

Sin ($35T/6$)

Arcsin ($1/2$)

Arctan ($-\sqrt{3}$)

Arctan ($-\sqrt{3}$)