Need to model all randomness with sigma points

- We now apply sigma-point approach of propagating statistics through a nonlinear function to the state-estimation problem
- These sigma-points must jointly model *all* randomness:
 - □ Uncertainty of the state
 - □ Uncertainty of process noise
 - □ Uncertainty of sensor noise
- lacksquare So we first define an augmented random vector x_k^a that combines these random factors at time index k

Step 1a: State estimate time update (1)

■ First, form augmented prior state estimate, covariance: $\hat{x}_{k-1}^{a,+} = \left[(\hat{x}_{k-1}^+)^T, \bar{w}, \bar{v} \right]^T \text{ and } \Sigma_{\tilde{x},k-1}^{a,+} = \operatorname{diag} \left(\Sigma_{\tilde{x},k-1}^+, \Sigma_{\widetilde{w}}, \Sigma_{\tilde{v}} \right)$ These factors are used to generate the p+1 augmented sigma points

$$\mathcal{X}_{k-1}^{a,+} = \left\{ \hat{x}_{k-1}^{a,+}, \ \hat{x}_{k-1}^{a,+} + \gamma \sqrt{\Sigma_{\tilde{x},k-1}^{a,+}}, \ \hat{x}_{k-1}^{a,+} - \gamma \sqrt{\Sigma_{\tilde{x},k-1}^{a,+}} \right\}$$

Can be organized in convenient matrix form:

3.5.3: Deriving the six sigma-point-Kalman-filter steps

Step 1a: State estimate time update (2)

■ Split augmented sigma points $\mathcal{X}_{k-1}^{a,+}$ into state portion $\mathcal{X}_{k-1}^{x,+}$, process-noise portion $\mathcal{X}_{k-1}^{w,+}$, and sensor-noise portion \mathcal{X}_k^{v}

Step 1a: State estimate time update (3)

- $\mathcal{X}_{k-1}^{x,+}$ Evaluate state equation using all pairs of $\mathcal{X}_{k-1,i}^{x,+}$ and $\mathcal{X}_{k-1,i}^{\dot{w},+}$ (where subscript idenotes that the ith vector is being extracted from the original set), yielding the prediction sigma points $\mathcal{X}_{k,i}^{x,-}$
 - That is, compute $\mathcal{X}_{k,i}^{x,-} = f(\dot{\mathcal{X}}_{k-1,i}^{x,+}, u_{k-1}, \mathcal{X}_{k-1,i}^{w,+})$

Step 1a-b: State estimate time update (4)

Finally, present state prediction is computed as

$$\hat{x}_{k}^{-} = \mathbb{E}[f(x_{k-1}, u_{k-1}, w_{k-1}) \mid \mathbb{Y}_{k-1}] \times \sum_{i=0}^{p} \alpha_{i}^{(m)} f(\mathcal{X}_{k-1,i}^{x,+}, u_{k-1}, \mathcal{X}_{k-1,i}^{w,+})]$$

 $=\sum_{k=0}^\infty \alpha_i^{(\mathrm{m})}\mathcal{X}_{k,i}^{x,-}=\left[\mathcal{X}_k^{x,-}\right]\left[\alpha^{(\mathrm{m})}\right] \quad \blacksquare \quad \text{Can compute with simple matrix multiply}$

Then, covariance estimate is computed as

$$\begin{split} \boldsymbol{\Sigma}_{\tilde{\boldsymbol{x}},k}^{-} &= \sum\nolimits_{i=0}^{p} \alpha_{i}^{(\mathrm{c})} \big(\mathcal{X}_{k,i}^{x,-} - \hat{\boldsymbol{x}}_{k}^{-} \big) \big(\mathcal{X}_{k,i}^{x,-} - \hat{\boldsymbol{x}}_{k}^{-} \big)^{T} \\ &= \big[\mathcal{X}_{k}^{x,-} - \hat{\boldsymbol{x}}_{k}^{-} \big] \big[\mathrm{diag}(\boldsymbol{\alpha}^{(\mathrm{c})}) \big] \big[\mathcal{X}_{k}^{x,-} - \hat{\boldsymbol{x}}_{k}^{-} \big]^{T} \end{split}$$

Step 1c: Estimate system output y_k

- \blacksquare Output y_k estimated by evaluating model output equation using sigma points describing state and sensor noise
- First, compute points $\mathcal{Y}_{k,i} = h(\mathcal{X}_{k,i}^{x,-}, u_k, \mathcal{X}_{k-1,i}^{v,+})$

Output estimate is then

$$\hat{y}_k = \mathbb{E}\left[h(x_k, u_k, v_k) \mid \mathbb{Y}_{k-1}\right]$$

$$\approx \sum_{i=0}^p \alpha_i^{(m)} h(\mathcal{X}_{k,i}^{x,-}, u_k, \mathcal{X}_{k-1,i}^{v,+}) = \sum_{i=0}^p \alpha_i^{(m)} \mathcal{Y}_{k,i}$$

Can be computed with simple matrix multiplication, as was done when calculating $\hat{x}_k^$ at end of Step 1a

Step 2a: Estimator gain matrix L_k

lacktriangle To find L_k , must first compute required covariance matrices

$$\Sigma_{\tilde{y},k} = \sum_{i=0}^{p} \alpha_i^{(c)} (\mathcal{Y}_{k,i} - \hat{y}_k) (\mathcal{Y}_{k,i} - \hat{y}_k)^T$$

$$\Sigma_{\tilde{x}\tilde{y},k}^{-} = \sum_{i=0}^{p} \alpha_{i}^{(c)} (\mathcal{X}_{k,i}^{x,-} - \hat{x}_{k}^{-}) (\mathcal{Y}_{k,i} - \hat{y}_{k})^{T}$$

- These depend on sigma-point matrices $\mathcal{X}_k^{x,-}$ and \mathcal{Y}_k , already computed in Steps 1b and 1c, as well as \hat{x}_k^- and \hat{y}_k , already computed in Steps 1a and 1c
- The summations can be performed using matrix multiplies, as we did in Step 1b
- Then, we simply compute $L_k = \Sigma_{\tilde{x}\tilde{y},k}^- \Sigma_{\tilde{y},k}^{-1}$

Dr. Gregory L. Plett

University of Colorado Colorado Springs

Battery State-of-Charge (SOC) Estimation | Cell SOC estimation using a sigma-point Kalman filter

7 of 9

3.5.3: Deriving the six sigma-point-Kalman-filter steps

Step 2b-c: State, covariance measurement update

■ Then the state estimate is computed as

$$\hat{x}_{k}^{+} = \hat{x}_{k}^{-} + L_{k}(y_{k} - \hat{y}_{k})$$

■ Finally, the estimation-error covariance matrix is calculated directly from the optimal formulation:

$$\Sigma_{\tilde{x},k}^{+} = \Sigma_{\tilde{x},k}^{-} - L_k \Sigma_{\tilde{y},k} L_k^T$$

Dr. Gregory L. Plet

niversity of Colorado Colorado Spring

Battery State-of-Charge (SOC) Estimation | Cell SOC estimation using a sigma-point Kalman filter

8 of 9

3.5.3: Deriving the six sigma-point-Kalman-filter steps

Summary

- SPKF uses sigma-point method to propagate uncertainty of input RV to output of model's (possibly) nonlinear state and output equations
- Applying this procedure to generic-probabilistic-inference solution yields all six SPKF steps
- Matrices and vectors are convenient way to store all the sigma points and to compute means and covariances from the sigma points
- SPKF is now derived!