الم_وضوع رقم 13

التمرين رقم: 01

 $\left(A\,g^{\,+}+NO_3^{\,-}
ight)$ لدراسة حركية التحول الكيميائي البطيء والتام بين معدن النحاس Cu ومحلول نترات الفضة

الذي ينمذج بمعادلة التفاعل التالية : $aAg^+ + bCu = cAg + dCu^{2+}$ حيث: $aAg^+ + bCu = cAg + dCu^{2+}$ معاملات ستكيومترية، نغمر في اللحظة t=0 صفيحة من معدن النحاس النقي كتلتها m_0 في حوجلة عيارية تحتوي على محلول (S_0) لنترات الفضة حجمه $V_0 = 200m$ وتركيزه المولي $V_0 = 200m$

بناءا على النتائج التجريبية تمكنا من تمثيل المنحنى البياني $m_{Cu}=f\left(t\right)$ لتغيرات كتلة معدن النحاس المتبقي خلال الزمن، كما هو موضح في الشكل ـ 1 .

1 ـ كيف يظهر عمليا تطور الجملة الكيميائية ؟

ي عنه المعاملات الستوكيومترية a و b و c و b مع تحديد الثنائيتين $(Ox/\operatorname{Re} d)$ الداخلتين في التفاعل.

3_ أ_أنشئ جدولا لتقدم هذا التفاعل.

 $. x_{\text{max}}$ ب حدد المتفاعل المحد وقيمة التقدم الأعظمي

 $. C_0$ جـ احسب قيمة التركيز المولي

د ـ احسب الكتلة m لعدن النحاس النقي Cu الواجب استعمالها للحصول على مزيج ابتدائي ستكيومتري.

4 عند نهاية التفاعل جد قيمة كل من:

أ_ كتلة معدن الفضة Ag.

 (Cu^{2+}) ب-التركيز المولي لشوارد النحاس

. عرف زمن نصف التفاعل $t_{1/2}$ ، ثم عين قيمته بيانيا مع التعليل.

ثم، $v_{vol}\left(t\right) = -\frac{1}{V_0 M\left(Cu\right)} \times \frac{dm_{Cu}\left(t\right)}{dt}$: دبين أن عبارة السرعة الحجمية للتفاعل تكتب على الشكل والشكل 6

جد قيمتها عند اللحظتين $t_1 = 0$ و $t_2 = 56 \, \mathrm{min}$ عند اللحظتين

تعطى قيم الكتلة المولية الذرية التالية:

 $M(Ag)=108g.mol^{-1}$

 $M(Cu) = 63.5g.mol^{-1}$

G - 100

التمرين رقم: 02

نمزج عند درجة حرارة ثابتة في اللحظة t=0 حجما $V_1=100m$ من محلول ليود البوتاسيوم (K^++I^-) نمزج عند درجة حرارة ثابتة في اللحظة t=0 حجما $V_1=100m$ مع حجم $C_2=0,2m$ مع حجم $V_2=50m$ مع حجم $V_2=50m$ مع حجم $V_2=50m$ مع حجم الماء الأكسجيني (H_2O_2) تركيزه المولي (H_2O_2/I^-) مع حجم الما أن الثنائيتين (Ox/Red) المشاركتين هما: (I_2/I^-) و (H_2O_2/H_2O) المشاركتين هما: (Ox/Red) و (I_2/I^-) علما أن الثنائيتين (I_2/I^-) علما أن الثنائيتين أن الثنائيتين (I_2/I^-) علما أن الثنائيتين أن الثنائي علما أن ال

3. لتتبع التطور الحركي للتفاعل نأخذ منه عينة في لحظات مختلفة حجمها $V_0=15mL$ و نسكبها في بيشر يحتوي على ماء بارد و نشاء فيتلون المزيج باللون الأزرق ثم نعاير ثنائي اليود (I_2) المتشكل بواسطة محلول مائي يحتوي على ماء بارد و نشاء فيتلون المزيج باللون الأزرق ثم نعاير ثنائي اليود V_E المتشكل بواسطة محلول مائي لثيو كبريتات الصوديوم $(2Na^+ + S_2O_3^{-2})$ في المتركيز المولي V_E و نسجل الحجم V_E المتفاء اللون الأزرق.

أ. لماذا تبرد العينات مباشرة بعد فصلها عن المزيج و ما هي العوامل الحركية التي تبرز خلال هذه العملية.

بـ معادلة تفاعل المعايرة هي: $S_2O_3^{-2} + I_2 = 2I^- + S_4O_6^{-2}$ ، أنشئ جدولا لتقدم تفاعل المعايرة.

 $x(t) = 5C_3V_E$ جـ بين أن تقدم التفاعل (1) يعطى بالعلاقة التالية:

4. بالاعتماد على النتائج التجريبية تمكنا من رسم المنحنى البياني x = f(t) الموضح في الشكل x = f(t) بالاعتماد على البيان جد:

 $t_{1/2}$ لـ زمن نصف التفاعل

 $t=10 \mathrm{min}$ ب سرعة اختفاء شوارد اليود I^{-} افي اللحظة

جـ ـ حجم محلول ثيو كبريتات الصوديوم السابق اللازم لبلوغ التكافؤ من أجل عينة مأخوذة من الوسط التفاعلي عند اللحظة $t=5 \min$

 $-(K^+ + I^-)$ عين المتفاعل المحد، ثم استنتج التركيز المولي لحلول يود البوتاسيوم -5

التمرين رقم:03

محلول حمض النمل لا لون له، يتفاعل مع ثنائي البروم وفق المعادلة التالية:

$$HCOOH_{(aq)} + Br_{2(aq)} = 2Br_{(aq)}^{-} + 2H_{(aq)}^{+} + CO_{2(g)}$$

لون ثنائي البروم Br_2 أحمر مسمر، بينما لون حمض البروم $H^+ + Br^-$ شفاف. نمزج في اللحظة Er_2 حجما $V_1 = 50m$ من محلول حمض $V_2 = 50m$ من محلول حمض $V_1 = 50m$ من محلول حمض $V_2 = 3 \times 10^{-2} \, mol.$

نحو البكالوريا الموضوع رقم 13_______الصفحة 2 من 8.

t = 0ا. أحسب تراكيز المتفاعلات في المزيج عند اللحظة

2 أنجز جدول تقدم التفاعل.

 $[Br_2](t) = 0.012 - 0.416 \times V_{CO_2}(t)$ المتالية: $V_{CO_2}(t) = 0.012 - 0.416 \times V_{CO_2}(t)$ المتالية: $V_{CO_2}(t) = 0.012 - 0.416 \times V_{CO_2}(t)$ المتالي المروم عند لحظة $V_{CO_2}(t) = 0.012 - 0.416 \times V_{CO_2}(t)$ المتشكل عند نفس اللحظة ومقدرا بـ (L).

نقيس حجم غاز الـ CO_2 المتشكل في لحظات مختلفة t فنحصل على النتائج التالية: 4

t(s)	0	50	100	150	200	250	300	350	400
$V_{CO_2}(mL)$	0	4,56	8,5	11,76	14,5	16,80	18,72	20,40	21,7
$[Br_2](mmol.L^{-1})$									

أـ أكمل الجدول السابق.

$$. \begin{cases} 1cm \to 50s \\ 1cm \to 10^{-3} mol.L^{-1} \end{cases}$$
. سلم الرسم على ورق ميليمتري المنحنى البياني $\left[Br_2\right] = f\left(t\right)$ سلم الرسم على ورق ميليمتري المنحنى البياني المنحنى البياني $\left[Br_2\right] = f\left(t\right)$

جــ احسب سرعة اختفاء Br_2 عند اللحظة t=50s ، و استنتج سرعة تشكل Br^- في نفس اللحظة. دـ احسب حجم غاز الـ CO_2 المتشكل عند لحظة اختفاء لون محلول ثنائي البروم.

 $.t_{1/2}$ هــجـبين أنه عند اللحظة $[Br_2](t_{1/2})=rac{\left[Br_2
ight]_0}{2}:t=t_{1/2}$ عند اللحظة $.V_M=24L.mol^{-1}$. لغازات الحجم المولى للغازات

تصحيح المـــوضوع رقم 13

التمرين رقم: 01

اً ـ يظهر عمليا تطور الجملة الكيميائية: بالاختفاء التدريجي للون الأحمر الميز لمعدن النحاس Cu وتوضع مادة رمادية مميزة لمعدن الفضة Ag.

2ـ قيمة المعاملات الستكيومترية a و b و c و b ، مع تحديد الثنائيتين (Ox/Red) الداخلتين في التفاعل: (Cu^{2+}/Cu) المعادلة النصفية للأكسدة: $Cu = Cu^{2+} + 2e^{-}$ الثنائية (Ox/Red) المعادلة النصفية للأ

$$(Ag^+/Ag)$$
 الموافقة: $(Ag^++1e^-=Ag) imes 2$ الثنائية: $(Ag^++1e^-=Ag) imes 2$

$$d=1$$
 و $c=2$ و $b=1$ و $a=2$ و اذن $a=2$ و اذن $a=2$ و $b=1$ و $a=2$ و ادن $a=2$ و ادن

التفاعل	معادلة	$2Ag^+ + Cu = 2Ag + Cu^{2+}$						
الحالة	التقدم	mol عمية المادة ب						
الابتدائية	x = 0	n_{01}	n_{02}	0	0			
الانتقالية	x(t)	$n_{01}-2x\left(t\right)$	$n_{02}-x(t)$	2x(t)	x(t)			
النهائية	$\mathcal{X}_{ ext{max}}$	$n_{01} - 2x_{\text{max}}$	$n_{02} - x_{\text{max}}$	$2x_{\text{max}}$	X max			

 $m_f\left(Cu\right)=127\times 10^{-2}g\neq 0$ بـ المتفاعل المحد: من البيان $m_{Cu}=f\left(t\right)$ وعند نهاية التفاعل نقرأ: $m_{Cu}=f\left(t\right)$ وبـما أن التحول الكيميائي تام فإن شوارد الفضة $m_{Cu}=f\left(t\right)$ هي المتفاعل المحد.

 $n_f\left(Cu
ight.
ight)$ = $n_{02}-x_{
m max}$: لدينا من جدول تقدم التفاعل عند الحالة النهائية: $x_{
m max}$: لدينا من جدول تقدم التفاعل عند الحالة النهائية:

$$x_{\max} = \frac{m_0 - m_f\left(Cu\right)}{M\left(Cu\right)}$$
 اِذَن: $n = \frac{m}{M\left(Cu\right)}$ ومنه: $x_{\max} = n_{02} - n_f\left(Cu\right)$

$$m_0 = 4 \times 63, 5 \times 10^{-2} = 254 \times 10^{-2} \, g$$
 نقرأ: $t = 0$ عند اللحظة ومن البيان ومن

$$x_{\text{max}} = \frac{(254 - 127) \times 10^{-2}}{63.5} = 2 \times 10^{-2} \text{mol}$$
 إذن:

 C_0 جـ حساب قيمة التركيز المولى

 $C_0 V_0 = 2x_{
m max}$ ومنه: ومنه: $n_{01} - 2x_{
m max} = 0$ نعلم أن شوارد الفضة $\left(A\,g^{\,+}
ight)$ مي المتفاعل المحد أي:

$$C_0 = \frac{2 \times 2 \times 10^{-2}}{200 \times 10^{-3}} = 0,2 mol.L^{-1}$$
نت $C_0 = \frac{2x_{\text{max}}}{V_0}$ إذن:

د ـ حساب الكتلة m لعدن النحاس Cu الواجب استعمالها للحصول على مزيج ابتدائي ستكيومتري:

$$\frac{m'_0}{M(Cu)} = x_{\text{max}}$$
 ومنه: $n_{02} - x_{\text{max}} = 0$ ومنه: يجب أن يتحقق: $n_{02} - x_{\text{max}} = 0$

$$.m'_0 = 2 \times 10^{-2} \times 63,5 = 1,27g$$
 يَدْن: $m'_0 = x_{\text{max}}.M(Cu)$ يَدْن:

4 عند نهاية التفاعل نجد قيمة كل من:

أ_كتلة معدن الفضة Ag:

 $n_f\left(Ag\right) = 2x_{
m max}$:لدينا من جدول تقدم التفاعل عند الحالة النهائية

 $\frac{m_f(Ag)}{M(Ag)} = 2x_{\text{max}}$: ونعلم أن: $n_f(Ag) = \frac{m_f(Ag)}{M(Ag)}$ $m_f(Ag) = 2 \times 2 \times 10^{-2} \times 108 = 4,32g$ يَدْن: $m_f(Ag) = 2x_{\text{max}}M(Ag)$ (Cu^{2+}) ب-التركيز المولي لشوارد النحاس $n_f\left(Cu^{2+}
ight) = \left[Cu^{2+}
ight]_f V_0$: ونعلم أن $n_f\left(Cu^{2+}
ight) = x_{
m max}$ الدينا من جدول تقدم التفاعل عند الحالة النهائية: $\left[Cu^{2+}\right]_{f} = \frac{2 \times 10^{-2}}{200 \times 10^{-3}} = 0,1 mol.L^{-1}:$ ق. $\left[Cu^{2+}\right]_{f} = \frac{x_{\text{max}}}{V_{0}}$ افن: $\left[Cu^{2+}\right]_{f} V_{0} = x_{\text{max}}:$: $t_{1/2}$ عريف زمن نصف التفاعل 5 $x\left(t_{1/2}
ight)=rac{x_{ ext{max}}}{2}$ ونكتب: $x_{ ext{max}}$ ونكتب: هو الزمن الضروري لبلوغ تقدم التفاعل إلى نصف تقدمه الأعظمي : تعيين قيمة $t_{1/2}$ بيانيا مع التعليل $n_{C_{\prime\prime}}(t) = n_{02} - x(t)$ لدينا من جدول تقدم التفاعل عند الحالة الانتقالية: $n_{Cu}\left(t_{1/2}\right) = n_{02} - \frac{x_{\max}}{2}$: ومنه $x\left(t_{1/2}\right) = \frac{x_{\max}}{2}$: ولدينا $n_{Cu}\left(t_{1/2}\right) = n_{02} - x\left(t_{1/2}\right)$ نجد $t = t_{1/2}$ لما $x_{\max}=n_{02}-n_f$ (Cu) ولـما n_f (Cu) ولـما ومنه: n_f (Cu) ولـما ومنه: ولـما ومنه: (خي الحالة النهائية ومنه: $t=t_f$ $n = \frac{m}{M(Cu)}$: أي: $n_{Cu}(t_{1/2}) = \frac{n_{02} + n_f(Cu)}{2}$ وعليه: $n_{Cu}(t_{1/2}) = n_{02} - \frac{\left(n_{02} - n_f(Cu)\right)}{2}$ $m_{Cu}(t_{1/2}) = \frac{m_0 + m_f(Cu)}{2}$: وبالتالي: $\frac{m_{Cu}(t_{1/2})}{M(Cu)} = \frac{m_0 + m_f(Cu)}{2M(Cu)}$. $m_{Cu}(t_{1/2}) = \frac{(254+127)\times 10^{-2}}{2} = 190,5\times 10^{-2}g$ تـع: $t_{1/2} = 6,8 \mathrm{min}$. وبالإسقاط نجد: $m_{Cu}\left(t_{1/2}
ight) = 190,5 imes 10^{-2} g$ وبالإسقاط نجد $v_{vol}(t) = -\frac{1}{V_{vol}(Cu)} \times \frac{dm_{Cu}(t)}{dt}$ نبين أن عبارة السرعة الحجمية للتفاعل تكتب على الشكل -5 $v_{vol}(t) = \frac{1}{V} \times \frac{dx(t)}{dt}$:نعلم أن $x\left(t\right)=n_{02}-n_{Cu}\left(t\right)$ ولدينا من جدول تقدم التفاعل عند الحالة الانتقالية: $n_{Cu}\left(t\right)=n_{02}-x\left(t\right)$ $v_{vol}\left(t\right) = -\frac{1}{V} imes rac{dn_{Cu}\left(t\right)}{dt}$: وبالتعويض في عبارة $v_{vol}\left(t\right)$ وبعد الاشتقاق نجد $v_{vol}\left(t\right) = -\frac{1}{V_{O}M\left(Cu\right)} \times \frac{dm_{Cu}\left(t\right)}{dt}$: ونعلم أن $n_{Cu}\left(t\right) = \frac{m_{Cu}\left(t\right)}{M\left(Cu\right)}$: ونعلم أن $t_1 = 0$ عند اللحظة

 $v_{vol}(t_1) = -\frac{1}{200 \times 10^{-3} \times 63.5} \times \frac{(31,75 - 254) \times 10^{-2}}{16 - 0} = 1,1 \times 10^{-2} \text{ mol } L^{-1}.\text{min}^{-1}$

 $t_2 = 56 \min$ عند اللحظة

$$v_{vol}(t_2) = -\frac{1}{200 \times 10^{-3} \times 63.5} \times \frac{(127 - 127) \times 10^{-2}}{60 - 52} = 0$$

نلاحظ أن: قيمة السرعة الحجمية للتفاعل تكون أعظمية في بداية التفاعل وتنعدم في نهايته.

التمرين رقم: 02

 $\overline{(I_2/I^-)}$ المشادلة التفاعل (1) علما أن الثنائيتين $Ox/\mathrm{Re}d$ المشاركتين هما: H_2O_2/H_2O_3 و H_2O_2/H_2O_3

 $2I^{-} = I_{2} + 2e^{-}$ المعادلة النصفية للأكسدة

 $H_2O_2 + 2H^+ + 2e^- = 2H_2O$ المعادلة النصفية للإرجاع

 $2I^- + H_2O_2 + 2H^+ = I_2 + 2H_2O$ معادلة التفاعل:

2 جدول تقدم التفاعل:

التفاعل	معادلة	$2I^- + H_2O_2 + 2H^+ = I_2 + 2H_2O$						
التقدم الحالة		كمية المادة بـ mol .						
الابتدائية	x = 0	n_{01}	n_{02}	بوفرة	0	بوفرة		
<u>الانتقالي</u> ت x(t)		$n_{01}-2x(t)$	$n_{02}-x(t)$	بوفرة	x(t)	بوفرة		
النهائية	$\mathcal{X}_{ ext{max}}$	$n_{01} - 2x_{\text{max}}$ $n_{02} - x_{\text{max}}$		بوفرة	x max	بوفر <i>ة</i>		

3ـ أـ تبرد العينات لتوقيف التفاعل، و العوامل الحركية التي تبرزها هذه العملية هي درجة الحرارة و تركيز المتفاعلات.

ب-جدول تقدم تفاعل المعايرة.

ت التفاعل	معادل	$2S_2O_3^{-2} + I_2 = 2I^- + S_4O_6^{-2}$					
الحالة	التقدم	.1					
الابتدائية	x = 0	C_3V_E	$n'(I_2)$	0	0		
التكافؤ	\mathcal{X}_{E}	$C_3V_E-2x_E$	$n'(I_2)-x_E$	$2x_E$	x_{E}		

 $.x\left(t\right) = 5C_{3}V_{E}$ بالعلاقة التالية: $.x\left(t\right) = 5C_{3}V_{E}$

عند التكافؤ يكون المزيج ستكيومتري أي: $\frac{n'(I_2)}{2} = \frac{C_3 V_E}{2}$ ، حيث (I_2) عند التكافؤ يكون المزيج ستكيومتري أي: $\frac{n'(I_2)}{2} = \frac{C_3 V_E}{2}$ المعادة ذات الحجم 15mL .

من جدول تقدم التفاعل(1) نجد: $n(I_2)=x(t)$ ، حيث $n(I_2)=x(t)$ نجد: $n(I_2)$ في الوسط التفاعلي ذو الحجم 150mL .

$$.x\left(t\right)=5C_{3}V_{E}$$
 إذن: $x\left(t\right)=10n'\left(I_{2}\right)=10\frac{C_{3}V_{E}}{2}$ ومنه: $n\left(I_{2}\right)=10n'\left(I_{2}\right)$

 $t_{1/2}$ زمن نصف التفاعل 4

 $x\left(t_{1/2}\right)=rac{5}{2}=2,5 m\ mol\ :$ اذن: $x_{\max}=5 m\ mol\ :$ بالقراءة البيانية $x\left(t_{1/2}\right)=rac{5}{2}=3,5 min\ .$ نجد: $t_{1/2}=3,5 min$

 $t=10 \mathrm{min}$ ب سرعة اختفاء شوارد اليود $\left(I^{-}\right)$ في اللحظة

بالاشتقاق بالنسبة للزمن
$$v_{I^{-}}(t) = n_{01} - 2x(t)$$
 بالاشتقاق بالنسبة للزمن $v_{I^{-}}(t) = -\frac{dn_{I^{-}}(t)}{dt}$

$$v_{I^{-}}(t) = -\left(-2\frac{dx\left(t\right)}{dt}\right) = 2\frac{dx\left(t\right)}{dt}$$
 :فجد $\frac{dn_{I^{-}}(t)}{dt} = -2\frac{dx\left(t\right)}{dt}$

 $t = 10 \min$ حساب قيمتها عند اللحظة

$$v_{I^{-}}(10 \,\mathrm{min}) = 2 \frac{dx(t)}{dt} \bigg|_{t=10 \,\mathrm{min}} = 2 \times \frac{(5-4,3) \times 10^{-3}}{15-10} = 1,4 \times 10^{-4} \, mol. \, min^{-1}$$

جـ حجم محلول ثيو كبريتات الصوديوم السابق اللازم لبلوغ التكافؤ من أجل عينة مأخوذة من الوسط التفاعلي

$$x=3,1m\ mol$$
 عند $V_E=rac{x\left(t
ight)}{5C_3}$ عند $x\left(t
ight)=5C_3V_E$ يكون $x\left(t
ight)=5C_3V_E$ إذن: $V_E=rac{3,1}{5 imes0.1}=6,2mL$

 $(K^+ + I^-)$ محلول يود البوتاسيوم المتنتاج التركيز المولي و المحد، ثم استنتاج التركيز المولي و C_1

$$\begin{split} n_f\left(H_2O_2\right) &= n_{02} - x_{\max} = C_2V_2 - x_{\max} \text{ . It is all if } &\text{ limit} \quad \text{ or } n_f\left(H_2O_2\right) = n_{02} - x_{\max} = C_2V_2 - x_{\max} \text{ . } \\ n_f\left(H_2O_2\right) &\neq 0 \text{ . } \\ n_f\left(H_2O_2\right) &= C_2V_2 - x_{\max} = 0, 2 \times 50 \times 10^{-3} - 5 \times 10^{-3} = 5m \ mol \text{ . } \\ n_f\left(I^-\right) &= 0, 1 \times 10^{-3} + 10^{-3}$$

$$:$$
 $(K^+ + I^-)$ لحلول يود البوتاسيوم C_1 لحلول يود البوتاسيوم التركيز المولي

$$C_{1} = \frac{2 \times 5 \times 10^{-3}}{100 \times 10^{-3}} = 0,1 \\ mol \ .L^{-1} : \textbf{2}. \ \ \vdots \ C_{1} = \frac{2x_{\max}}{V_{1}} : \textbf{2} = 2x_{\max} : \textbf{2} = 0,1 \\ max : \textbf{2} = 0$$
 ومنه: $n_{01} - 2x_{\max} = 0$

التمرين رقم: 03 - تراكيز المتفاعلات في المزيج عند اللحظة t=0:

$$\left[HCOOH\right]_{0} = \frac{C_{2}.V_{2}}{V_{1} + V_{2}} = 15 \times 10^{-3} \, mol.L^{-1} \, \text{g} \, \left[Br_{2}\right]_{0} = \frac{C_{1}.V_{1}}{V_{1} + V_{2}} = 12 \times 10^{-3} \, mol.L^{-1}$$

2_حدول تقدم التفاعل:

التقدم	$HCOOH_{(aq)} + Br_{2(aq)} = 2Br_{(aq)}^{-} + 2H_{(aq)}^{+} + CO_{2(g)}$								
x = 0	n_{02}	n_{01}	0	0	0				
x(t)	$n_{02} - x$	$n_{01} - x$	2x	2x	X				
$x_{\rm max}$	$n_{02} - x_{\text{max}}$	$n_{01} - x_{\text{max}}$	$2x_{\text{max}}$	$2x_{\text{max}}$	x_{max}				

$$[Br_2]_t = 0.012 - 0.416 \times V_{CO}$$
 3. - تبيان أن:

$$n\left(Br_{2}\right)=n_{01}-n\left(CO_{2}\right)$$
 :من جدول التقدم لدينا:
$$n\left(Br_{2}\right)=n_{01}-x\left(t\right)$$
 ومنه: $n\left(CO_{2}\right)=x\left(t\right)$

$$n\left(CO_{2}\right) = \frac{V_{CO_{2}}}{V_{m}} \text{ i.s. } \left[Br_{2}\right] = \frac{n_{01}}{V_{T}} - \frac{n\left(CO_{2}\right)}{V_{T}} \text{ i.s. } V_{T} = V_{1} + V_{2} = 0.1L$$
 بالقسمة على حجم المزيج
$$\left[Br_{2}\right] = \frac{n_{01}}{V_{T}} - \frac{V_{CO_{2}}}{V_{T}V_{m}} = 0.012 - 0.416. V_{CO_{2}} \text{ ealso} \left[Br_{2}\right] = \frac{n_{01}}{V_{T}} - \frac{n\left(CO_{2}\right)}{V_{T}} \text{ ealso}$$
 فإن:

4أ إكمال الحدول:

								•	
t(s)	0	50	100	150	200	250	300	350	400
$V_{{\scriptscriptstyle CO}_2}(mL)$	0	4,56	8,5	11,76	14,5	16,80	18,72	20,40	21,7
$[Br_2].10^{-3} (mol L^{-1})$	12	10,10	8,46	7,10	5,96	5,01	4,21	3,51	2,97

 Br_2 = f(t)ب رسم المنحنى البياني

t = 50s عند اللحظة عند الحظة عند الحظة

يمثل معامل
$$\left. \frac{d Br_2}{dt} \right|_{t=50s}$$
 :عيث: $v_{Br_2} t = -\frac{dn Br_2}{dt} = -V_T \frac{d Br_2}{dt}$

t=50s توجيه المماس للمنحنى $\left[Br_{2}\right]=f\left(t
ight)$ عند اللحظة

$$\frac{d Br_2}{dt} \bigg|_{t=50.5} = \frac{11.6 - 4.8 \times 10^{-3}}{0 - 200} = -3.4 \times 10^{-5} \, mol.L^{-1}.s^{-1}$$
 حيث:

$$v_{Br_2} = -0.1 \times -3.4 \times 10^{-5} = 3.4 \times 10^{-6} \text{ mol.s}^{-1}$$
اِذَن:

استنتاج سرعة تشكل Br^- في نفس اللحظة:

$$\begin{cases} n\left(Br_{2}\right) = n_{01} - x\left(t\right) \\ n\left(Br^{-}\right) = 2x\left(t\right) \end{cases}$$
من جدول التقدم لدينا:

$$n\left(Br_{2}\right) = n_{01} - \frac{n\left(Br^{-}\right)}{2}$$
ومنه:

$$vig(Br^-ig) = 2 imes vig(Br_2ig)$$
 و بالاشتقاق بالنسبة للزمن نجد: $\frac{dnig(Br^-ig)}{dt} = -2\frac{dnig(Br_2ig)}{dt}$ و عنه: $vig(Br^-ig) = v_{Br_2} = 2 imes 3,4 imes 10^{-6} mol.s^{-1} = 6,8 imes 10^{-6} mol.s^{-1}$ إذن:

 $:V_{f}\left(CO_{2}\right)$ د۔ حساب

 $n_{01}=x_{\max}$ اختفاء لون محلول ثنائي البروم يعني أنه هو المتفاعل المحد أي: $n_f\left(Br_2\right)=n_{01}-x_{\max}=0$ إذن: $n_f\left(CO_2\right)=\frac{V_f\left(CO_2\right)}{V_m}=n_{01}\left(Br_2\right)$ ومنه: $n_f\left(CO_2\right)=x_{\max}$ اذن: $N_f\left(CO_2\right)=x_{\max}=0$ ومنه: $N_f\left(CO_2\right)=x_{\max}=0$ إذن: $N_f\left(CO_2\right)=x_{\max}=0$ ومنه: $N_f\left(CO_2\right)=x_{\max}=0$

$$= [Br_2](t_{1/2}) = \frac{[Br_2]_0}{2}$$
 هـ تبيان أن

$$n_{Br_2}\left(t_{1/2}\right)=n_{01}-x(t_{1/2})=n_{01}-rac{x_{ ext{max}}}{2}=rac{2\,n_{01}-x_{ ext{max}}}{2}$$
 نجد: $t=t_{1/2}$ نجد اللحظة اللحظة عند اللحظة الماء عند اللحظة عند اللحظة عند اللحظة عند اللحظة عند اللحظة الماء عند اللحظة عند

$$n_{01}-x_{\max}=0$$
 ومنه: $n_{01}-x_{\max}=0$ و بما أن ثنائي البروم و $n_{Br_2}\left(t_{1/2}\right)=\frac{n_{01}+\left(n_{01}-x_{\max}\right)}{2}$

$$\left[Br_{2}
ight]\!\left(t_{1/2}
ight)\!=\!rac{\left[Br_{2}
ight]_{0}}{2}$$
 : وعليه: $\left[Br_{2}
ight]\!\left(t_{1/2}
ight)V_{T}=\!rac{\left[Br_{2}
ight]_{0}V_{T}}{2}$ إذن: $n_{Br_{2}}\!\left(t_{1/2}
ight)\!=\!rac{n_{01}}{2}$

 $:t_{1/2}$ استنتاج قيمة زمن نصف التفاعل

$$t_{1/2} = 200s$$
 : ومن البيان نقرأ $\left[Br_2\right]\left(t_{1/2}\right) = \frac{\left[Br_2\right]_0}{2} = \frac{12\times10^{-3}}{2} = 6mmol.L^{-1}$