# DSBDA MINI PROJECT

# Ananlysis and visualization of global CO2 emissions

```
1 from google.colab import drive
```

2 drive.mount('/content/drive')

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force\_remount=True).

```
1 import numpy as np
```

- 2 import pandas as pd
- 3 import matplotlib.pyplot as plt
- 4 import seaborn as sns
- 5 %matplotlib inline

#### DATA PREPROCESSING

```
1 try:
2    df = pd.read_csv("/content/drive/MyDrive/Colab Notebooks/DSBDA/CO2 emission by countries.csv", encoding='utf-8')
3 except UnicodeDecodeError:
4    try:
5     df = pd.read_csv("/content/drive/MyDrive/Colab Notebooks/DSBDA/CO2 emission by countries.csv", encoding='latin1')
6    except UnicodeDecodeError:
7    df = pd.read_csv("/content/drive/MyDrive/Colab Notebooks/DSBDA/CO2 emission by countries.csv", encoding='ISO-8859-1')
```

1 df.head()

|   | Country     | Code | Calling Code | Year | CO2 emission | (Tons) | Population(2022) | Area     | % of World | Density(km2)       |
|---|-------------|------|--------------|------|--------------|--------|------------------|----------|------------|--------------------|
| 0 | Afghanistan | AF   | 93           | 1750 |              | 0.0    | 41128771.0       | 652230.0 | 0.40%      | 63/km²             |
| 1 | Afghanistan | AF   | 93           | 1751 |              | 0.0    | 41128771.0       | 652230.0 | 0.40%      | 63/km²             |
| 2 | Afghanistan | AF   | 93           | 1752 |              | 0.0    | 41128771.0       | 652230.0 | 0.40%      | 63/km²             |
| 3 | Afghanistan | AF   | 93           | 1753 |              | 0.0    | 41128771.0       | 652230.0 | 0.40%      | 63/km <sup>2</sup> |
| 4 | Afghanistan | AF   | 93           | 1754 |              | 0.0    | 41128771.0       | 652230.0 | 0.40%      | 63/km²             |

```
1 missing_values = df.isnull().sum()
```

2 print("Missing values:\n", missing\_values)

Missing values: 0 Country Code 2168 Calling Code 3523 0 Year CO2 emission (Tons) 0 Population(2022) 6504 4336 Area % of World 4336 Density(km2) 6504

1 print("Data types:\n", df.dtypes)

dtype: int64

Data types: object Country Code object Calling Code object int64 float64 CO2 emission (Tons) Population(2022) float64 float64 Area % of World object Density(km2) object dtype: object

1 print("Summary statistics:\n", df.describe())

| Summar | Summary statistics: |                     |                  |              |  |  |  |  |  |
|--------|---------------------|---------------------|------------------|--------------|--|--|--|--|--|
|        | Year                | CO2 emission (Tons) | Population(2022) | Area         |  |  |  |  |  |
| count  | 59620.000000        | 5.962000e+04        | 5.311600e+04     | 5.528400e+04 |  |  |  |  |  |
| mean   | 1885.000000         | 1.034774e+09        | 3.992260e+07     | 6.522073e+05 |  |  |  |  |  |
| std    | 78.231085           | 1.041652e+10        | 1.482365e+08     | 1.865483e+06 |  |  |  |  |  |
| min    | 1750.000000         | 0.000000e+00        | 1.131200e+04     | 2.100000e+01 |  |  |  |  |  |
| 25%    | 1817.000000         | 0.000000e+00        | 1.770414e+06     | 1.770450e+04 |  |  |  |  |  |
| 50%    | 1885.000000         | 0.000000e+00        | 8.673095e+06     | 1.103815e+05 |  |  |  |  |  |
| 75%    | 1953.000000         | 8.715092e+06        | 2.862920e+07     | 4.925730e+05 |  |  |  |  |  |
| max    | 2020.000000         | 4.170000e+11        | 1.425887e+09     | 1.709824e+07 |  |  |  |  |  |

1 df.isnull().sum()

| Country             | 0    |
|---------------------|------|
| Code                | 2168 |
| Calling Code        | 3523 |
| Year                | 0    |
| CO2 emission (Tons) | 0    |
| Population(2022)    | 6504 |
| Area                | 4336 |

% of World 6504 Density(km2) dtype: int64 1 df.shape (59620, 9)

1 # Drop rows with missing values 2 df.dropna(inplace=True)

1 df.isnull().sum()

Country 0 Code 0 Calling Code 0 CO2 emission (Tons) 0 Population(2022) 0 0 Area % of World 0 Density(km2) 0 dtype: int64

1 df.describe()

|       | Year         | CO2 emission (Tons) | Population(2022) | Area         |
|-------|--------------|---------------------|------------------|--------------|
| count | 48509.000000 | 4.850900e+04        | 4.850900e+04     | 4.850900e+04 |
| mean  | 1885.000000  | 1.160748e+09        | 4.186199e+07     | 6.328071e+05 |
| std   | 78.231235    | 1.125903e+10        | 1.545682e+08     | 1.551563e+06 |
| min   | 1750.000000  | 0.000000e+00        | 1.131200e+04     | 2.100000e+01 |
| 25%   | 1817.000000  | 0.000000e+00        | 2.305825e+06     | 2.633800e+04 |
| 50%   | 1885.000000  | 0.000000e+00        | 9.038309e+06     | 1.303730e+05 |
| 75%   | 1953.000000  | 1.660158e+07        | 3.054758e+07     | 5.516950e+05 |
| max   | 2020.000000  | 4.170000e+11        | 1.425887e+09     | 9.984670e+06 |

1 df.shape

(48509, 9)

1 #Fill the Null values

2 df['Population(2022)'].fillna(df['Population(2022)'].mean(), inplace=True)

3 df['Area'].fillna(df['Area'].mean(), inplace=True)

# LABEL ENCODING & DATA TRANSFORMATION

1 # Select columns of a specific data type

2 numeric\_columns = df.select\_dtypes(include=['float64', 'int64'])

3 categorical\_columns = df.select\_dtypes(include=['object'])

1 numeric\_columns

| Year | CO2 emission (Tons)                                                      | Population(2022)                                                                                                                                                                                                                           | Area                                                                                                                                                                                                                                                                                                                                                         |
|------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1750 | 0.0                                                                      | 41128771.0                                                                                                                                                                                                                                 | 652230.0                                                                                                                                                                                                                                                                                                                                                     |
| 1751 | 0.0                                                                      | 41128771.0                                                                                                                                                                                                                                 | 652230.0                                                                                                                                                                                                                                                                                                                                                     |
| 1752 | 0.0                                                                      | 41128771.0                                                                                                                                                                                                                                 | 652230.0                                                                                                                                                                                                                                                                                                                                                     |
| 1753 | 0.0                                                                      | 41128771.0                                                                                                                                                                                                                                 | 652230.0                                                                                                                                                                                                                                                                                                                                                     |
| 1754 | 0.0                                                                      | 41128771.0                                                                                                                                                                                                                                 | 652230.0                                                                                                                                                                                                                                                                                                                                                     |
|      |                                                                          |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                              |
| 2016 | 736467042.0                                                              | 16320537.0                                                                                                                                                                                                                                 | 390757.0                                                                                                                                                                                                                                                                                                                                                     |
| 2017 | 746048675.0                                                              | 16320537.0                                                                                                                                                                                                                                 | 390757.0                                                                                                                                                                                                                                                                                                                                                     |
| 2018 | 757903042.0                                                              | 16320537.0                                                                                                                                                                                                                                 | 390757.0                                                                                                                                                                                                                                                                                                                                                     |
| 2019 | 768852126.0                                                              | 16320537.0                                                                                                                                                                                                                                 | 390757.0                                                                                                                                                                                                                                                                                                                                                     |
| 2020 | 779383468.0                                                              | 16320537.0                                                                                                                                                                                                                                 | 390757.0                                                                                                                                                                                                                                                                                                                                                     |
|      | 1750<br>1751<br>1752<br>1753<br>1754<br><br>2016<br>2017<br>2018<br>2019 | 1750       0.0         1751       0.0         1752       0.0         1753       0.0         1754       0.0             2016       736467042.0         2017       746048675.0         2018       757903042.0         2019       768852126.0 | 1751       0.0       41128771.0         1752       0.0       41128771.0         1753       0.0       41128771.0         1754       0.0       41128771.0              2016       736467042.0       16320537.0         2017       746048675.0       16320537.0         2018       757903042.0       16320537.0         2019       768852126.0       16320537.0 |

48509 rows × 4 columns

1 categorical\_columns

|       | Country     | Code | Calling Code | % of World | Density(km2)       |
|-------|-------------|------|--------------|------------|--------------------|
| 0     | Afghanistan | AF   | 93           | 0.40%      | 63/km <sup>2</sup> |
| 1     | Afghanistan | AF   | 93           | 0.40%      | 63/km <sup>2</sup> |
| 2     | Afghanistan | AF   | 93           | 0.40%      | 63/km <sup>2</sup> |
| 3     | Afghanistan | AF   | 93           | 0.40%      | 63/km <sup>2</sup> |
| 4     | Afghanistan | AF   | 93           | 0.40%      | 63/km <sup>2</sup> |
|       |             |      |              |            |                    |
| 59615 | Zimbabwe    | ZW   | 263          | 0.30%      | 42/km <sup>2</sup> |
| 59616 | Zimbabwe    | ZW   | 263          | 0.30%      | 42/km <sup>2</sup> |
| 59617 | Zimbabwe    | ZW   | 263          | 0.30%      | 42/km <sup>2</sup> |
| 59618 | Zimbabwe    | ZW   | 263          | 0.30%      | 42/km <sup>2</sup> |
| 59619 | Zimbabwe    | ZW   | 263          | 0.30%      | 42/km <sup>2</sup> |

48509 rows × 5 columns

1 from sklearn.preprocessing import LabelEncoder

1 label\_encoder = LabelEncoder()

1 df['Country\_Encoded'] = label\_encoder.fit\_transform(df['Country'])

1 df.head()

|   | Country     | Code | Calling<br>Code | Year | CO2 emission<br>(Tons) | Population(2022) | Area     | % of<br>World | Density(km2) | Country_Encoded |
|---|-------------|------|-----------------|------|------------------------|------------------|----------|---------------|--------------|-----------------|
| 0 | Afghanistan | AF   | 93              | 1750 | 0.0                    | 41128771.0       | 652230.0 | 0.40%         | 63/km²       | 0               |
| 1 | Afghanistan | AF   | 93              | 1751 | 0.0                    | 41128771.0       | 652230.0 | 0.40%         | 63/km²       | 0               |
| 2 | Afghanistan | AF   | 93              | 1752 | 0.0                    | 41128771.0       | 652230.0 | 0.40%         | 63/km²       | 0               |
| 3 | Afghanistan | AF   | 93              | 1753 | 0.0                    | 41128771.0       | 652230.0 | 0.40%         | 63/km²       | 0               |
| 4 | Afghanistan | AF   | 93              | 1754 | 0.0                    | 41128771.0       | 652230.0 | 0.40%         | 63/km²       | 0               |

1 unique\_sum = df['Country'].nunique()
2 print("Sum of unique values in 'Country' column:", unique\_sum)

Sum of unique values in 'Country' column: 179

1 # Drop the 'Code' column from the DataFrame

2 df.drop(columns=['Code'], inplace=True)

1 df.head()

|   | Country       | Calling<br>Code | Year | CO2 emission<br>(Tons) | Population(2022) | Area     | % of<br>World | Density(km2)       | Country_Encoded |
|---|---------------|-----------------|------|------------------------|------------------|----------|---------------|--------------------|-----------------|
| ( | Afghanistan   | 93              | 1750 | 0.0                    | 41128771.0       | 652230.0 | 0.40%         | 63/km <sup>2</sup> | 0               |
| 1 | . Afghanistan | 93              | 1751 | 0.0                    | 41128771.0       | 652230.0 | 0.40%         | 63/km <sup>2</sup> | 0               |
| 2 | Afghanistan   | 93              | 1752 | 0.0                    | 41128771.0       | 652230.0 | 0.40%         | 63/km <sup>2</sup> | 0               |
| 3 | Afghanistan   | 93              | 1753 | 0.0                    | 41128771.0       | 652230.0 | 0.40%         | 63/km²             | 0               |
| 4 | Afghanistan   | 93              | 1754 | 0.0                    | 41128771.0       | 652230.0 | 0.40%         | 63/km <sup>2</sup> | 0               |

1 df['Calling Code'] = pd.to\_numeric(df['Calling Code'], errors='coerce')

2 df['% of World'] = pd.to\_numeric(df['% of World'].str.rstrip('%'), errors='coerce')

3 df['Density(km2)'] = pd.to\_numeric(df['Density(km2)'].str.replace('/km²', ''), errors='coerce')

1 df.head()

|   | Country     | Calling<br>Code | Year | CO2 emission<br>(Tons) | Population(2022) | Area     | % of<br>World | Density(km2) | Country_Encoded |
|---|-------------|-----------------|------|------------------------|------------------|----------|---------------|--------------|-----------------|
| 0 | Afghanistan | 93.0            | 1750 | 0.0                    | 41128771.0       | 652230.0 | 0.4           | 63.0         | 0               |
| 1 | Afghanistan | 93.0            | 1751 | 0.0                    | 41128771.0       | 652230.0 | 0.4           | 63.0         | 0               |
| 2 | Afghanistan | 93.0            | 1752 | 0.0                    | 41128771.0       | 652230.0 | 0.4           | 63.0         | 0               |
| 3 | Afghanistan | 93.0            | 1753 | 0.0                    | 41128771.0       | 652230.0 | 0.4           | 63.0         | 0               |
| 4 | Afghanistan | 93.0            | 1754 | 0.0                    | 41128771.0       | 652230.0 | 0.4           | 63.0         | 0               |

1 df.dtypes

| Country             | object  |  |  |
|---------------------|---------|--|--|
| Calling Code        | float64 |  |  |
| Year                | int64   |  |  |
| CO2 emission (Tons) | float64 |  |  |
| Population(2022)    | float64 |  |  |
| Area                | float64 |  |  |
| % of World          | float64 |  |  |
| Density(km2)        | float64 |  |  |

1

# DATA VISUALIZATION

```
1 #Bar plot to visualize top 10 emitters:
2 plt.figure(figsize=(10, 6))
3 sns.histplot(df['CO2 emission (Tons)'], bins=20, kde=True)
4 plt.title('Distribution of CO2 Emissions')
5 plt.xlabel('CO2 Emissions')
6 plt.ylabel('Frequency')
7 plt.show()
8
```



```
1 #Line plot to visualize trend of CO2 emissions over years:
2 plt.figure(figsize=(10, 6))
3 top_10_emitters = df.groupby('Country')['CO2 emission (Tons)'].sum().nlargest(10)
4 top_10_emitters.plot(kind='bar', color='skyblue')
5 plt.title('Top 10 CO2 Emitters')
6 plt.xlabel('Country')
7 plt.ylabel('Total CO2 Emissions')
8 plt.xticks(rotation=45, ha='right')
9 plt.show()
```



```
1 #Scatter plot to visualize relationship between CO2 emissions and population:
2 plt.figure(figsize=(12, 6))
3 sns.lineplot(data=df, x='Year', y='CO2 emission (Tons)', estimator='sum')
4 plt.title('Trend of CO2 emissions over time')
5 plt.xlabel('Year')
6 plt.ylabel('CO2 Emissions')
7 plt.show()
```



```
1 #Box plot to visualize distribution of CO2 emissions by country:
2 plt.figure(figsize=(10, 6))
3 sns.scatterplot(data=df, x='Population(2022)', y='CO2 emission (Tons)')
4 plt.title('CO2 Emissions vs. Population')
5 plt.xlabel('Population (2022)')
6 plt.ylabel('CO2 Emissions (Tons)')
7 plt.show()
8
```



```
1 #Box plot to visualize distribution of CO2 emissions by country:
2 plt.figure(figsize=(10, 3))
3 sns.boxplot(data=df, x='Country', y='CO2 emission (Tons)')
4 plt.title('Distribution of CO2 Emissions by Country')
5 plt.xlabel('Country')
6 plt.ylabel('CO2 Emissions (Tons)')
7 plt.xticks(rotation=90)
8 plt.show()
9
```



```
1 # Calculate correlation matrix
2 correlation_matrix = df[['CO2 emission (Tons)', 'Population(2022)', 'Area', 'Density(km2)']].corr()
3
4 # Visualize correlation matrix as a heatmap
5 plt.figure(figsize=(10, 8))
6 sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f")
7 plt.title('Correlation Matrix')
8 plt.show()
9
```



```
1 # Total CO2 emissions by country(First 5)
2 total_emissions_by_country = df.groupby('Country')['CO2 emission (Tons)'].sum()
3 print(total_emissions_by_country[:5])
4
5 # Average CO2 emissions by year(First 5)
6 average_emissions_by_year = df.groupby('Year')['CO2 emission (Tons)'].mean()
7 print(average_emissions_by_year[:5])
8
9 # Total CO2 emissions by year(First 5)
10 total_emissions_by_year = df.groupby('Year')['CO2 emission (Tons)'].sum()
11 print(total_emissions_by_year[:5])
12
Country
Afghanistan 3.754106e+09
```

Afghanistan 3.754106e+09 Albania 9.250246e+09 Algeria 9.582024e+10 Andorra 2.360722e+08 Angola 1.143158e+10

```
1750
             52237.586592
            104475.173184
   1751
   1752
            156733.229050
   1753
            208991.284916
   1754
            261269.810056
   Name: CO2 emission (Tons), dtype: float64
   Year
   1750
             9350528.0
   1751
            18701056.0
   1752
            28055248.0
   1753
            37409440.0
   1754
            46767296.0
   Name: CO2 emission (Tons), dtype: float64
1
   # Total CO2 emissions by country
   total_emissions_by_country = df.groupby("Country")["CO2 emission (Tons)"].sum().sort_values(ascending=False)
3
   # Average CO2 emissions per capita by country
   df["CO2_emission_per_capita"] = df["CO2 emission (Tons)"] / df["Population(2022)"]
   average_emissions_per_capita = df.groupby("Country")["C02_emission_per_capita"].mean().sort_values(ascending=False)
   print(average_emissions_per_capita)
   Country
                      336.819255
   United Kingdom
                      250.196083
   Belgium
                      234.607068
   Germany
   United States
                      208.000489
   Estonia
                      176.211194
   Niger
                        0.130255
   Ethiopia
                        0.127935
   Chad
                        0.101320
   Burundi
                        0.077897
   Puerto Rico
                        0.023932
   Name: CO2_emission_per_capita, Length: 179, dtype: float64
  BUILDING PREDICTION MODEL
   !pip install scikit-learn
   Requirement already satisfied: scikit-learn in /usr/local/lib/python3.10/dist-packages (1.2.2)
   Requirement already satisfied: numpy>=1.17.3 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (1.25.2)
   Requirement already satisfied: scipy>=1.3.2 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (1.11.4)
   Requirement already satisfied: joblib>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (1.4.0)
   Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (3.4.0)
1 from sklearn.model_selection import train_test_split
2 from sklearn.linear_model import LinearRegression
3 from sklearn.metrics import mean_squared_error
4 import matplotlib.pyplot as plt
1 print(df.head())
           Country Calling Code Year CO2 emission (Tons) Population(2022) \
   0 Afghanistan
                            93.0 1750
                                                         0.0
                                                                     41128771.0
      Afghanistan
                            93.0 1751
                                                         0.0
                                                                     41128771.0
   2 Afghanistan
                            93.0 1752
                                                         0.0
                                                                     41128771.0
                            93.0 1753
                                                         0.0
                                                                     41128771.0
   3 Afghanistan
   4 Afghanistan
                            93.0 1754
                                                         0.0
                                                                     41128771.0
           Area % of World Density(km2) Country_Encoded \
      652230.0
                        0.4
                                     63.0
                                                          0
                                     63.0
      652230.0
                        0.4
                                                          0
   1
   2 652230.0
                        0.4
                                     63.0
                                                          0
   3 652230.0
                        0.4
                                     63.0
                                                          0
   4 652230.0
                        0.4
                                     63.0
                                                          0
       CO2_emission_per_capita
   0
                           0.0
   1
                           0.0
   2
                           0.0
                           0.0
   4
                           0.0
1 print(df['Country_Encoded'].nunique())
   179
1 print(numeric_columns.corr())
                                 Year CO2 emission (Tons) Population(2022) \
                                                   0.134150
                         1.000000e+00
                                                                 -7.233739e-15
   CO2 emission (Tons) 1.341501e-01
                                                   1.000000
                                                                 1.611472e-01
   Population(2022)
                        -7.233739e-15
                                                   0.161147
                                                                  1.000000e+00
                        -1.120522e-14
                                                   0.262216
                                                                  5.254822e-01
                                 Area
                        -1.120522e-14
   CO2 emission (Tons) 2.622159e-01
   Population(2022)
                         5.254822e-01
                         1.000000e+00
   Area
```

Name: CO2 emission (Tons), dtype: float64

Year

```
2 y = df["CO2 emission (Tons)"]

1 # Plot Year against CO2 emission (Tons)
2 plt.scatter(X['Year'], y)
3 plt.xlabel('Year')
4 plt.ylabel('CO2 emission (Tons)')
5 plt.title('Year vs CO2 emission (Tons)')
6 plt.show()
```

1 X = df[["Year", "Population(2022)"]]



```
1 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
2
3 # Train a linear regression model
4 model = LinearRegression()
5 model.fit(X_train, y_train)

v LinearRegression
LinearRegression()

1 y_pred = model.predict(X_test)

1 y_pred

array([-6.18290346e+08, 7.61704583e+08, 2.57100939e+09, ..., 3.60970282e+09, 2.77131983e+08, 6.82118759e+08])

1 mse = mean_squared_error(y_test, y_pred)
2 print("Mean Squared Error:", mse)
```

Mean Squared Error: 1.923505065747443e+20