Лекция 2. Великая теорема Ферма для малых показателей

Теорема 1 (Ферма). Для любого n > 2 не существует отличных от нуля натуральных чисел x, y, z таких, что $x^n + y^n = z^n$.

1 Великая теорема Ферма при n=4

1.1 Доказательство при n = 4

Это самый простой случай теоремы, доказать его можно, не выходя за пределы натуральных чисел. Доказательство, которое в свое время придумал Пьер Ферма*, основано на изобретенном им методе «бесконечного спуска», в сущности, одном из видов индукции. В первую очередь, как это часто бывает, рассуждая по индукции, удобно перейти к более общему уравнению $x^4 + y^4 = z^2$. Шаг будет заключаться в следующем: пусть из всех решений данного уравнения некоторое (положительное, так как знаки переменных неважны) решение (x, y, z) имеет наименьший z. Если по этому решению можно построить другое, с меньшим z, то теорема будет доказана.

Утверждение 1. Числа x, y, z попарно взаимнопросты (пишут $\ll x, y, z \gg = 1$, где под записью $\ll a_1, \ldots, a_n \gg$ понимается максимальный из попарных наибольших общих делителей a_i и $a_j, 1 \leqslant i \neq j \leqslant n$).

Доказательство. Пусть какие-либо два числа из x, y, z делятся на простое число p. Тогда очевидно, что третье также делится на p. Тогда

$$\begin{split} x &= p\overline{x}, y = p\overline{y}, z = p\overline{z}, \\ p^4(\overline{x}^4 + \overline{y}^4) &= p^2\overline{z}^2, \\ p^2(\overline{x}^4 + \overline{y}^4) &= \overline{z}^2, \\ p \mid \overline{z}^2 \Rightarrow p \mid \overline{z} \Rightarrow \overline{z} = p\overline{\overline{z}}, \\ \overline{x}^4 + \overline{y}^4 &= \overline{\overline{z}}^2, \overline{\overline{z}} < z. \end{split}$$

Противоречие с минимальностью z.

Далее, (x^2,y^2,z) — пифагорова тройка. Число z обязательно нечётно, а среди x и y чётным без потери общности можно считать x. Тогда

$$x = 2x_1,$$

$$4x_1^2 = 2mn, y^2 = m^2 - n^2, z = m^2 + n^2,$$

$$y^2 \mod 4 = 1 \Rightarrow 2 \not\mid m, 2 \mid n \Rightarrow n = 2n_1,$$

$$x_1^2 = mn_1$$

^{*}Это одно их тех редких его доказательств, что были записаны и дошли до нас

Далее, если $p \mid \gcd(m, n)$, то $p \mid \gcd(x, y) = 1$, значит m и n взаимно просты,

поэтому m и n_1 тоже. Тогда $m=a^2, n_1=b^2$ для каких-то натуральных a,b. Из того, что $y^2=m^2-4n_1^2\Rightarrow y^2+4n_1^2=m^2$ следует, что $(y,m,2n_1)$ пифагорова тройка. Тогда для каких-то взаимно простых натуральных q и rвыполнено $m=q^2+r^2, 2n_1=2qr$. Итак, $n_1=qr$ и одновременно $n_1=b^2$. Так как q и r взаинопросты, то они должны являться полными квадратами: $q = t^2, r = s^2$. Итого,

$$m = q^2 + r^2, m = a^2, q = t^2, r = s^2,$$

 $a^2 = t^4 + s^4.$

Так как $a = \sqrt{m} \leqslant m \leqslant m^2 < z$, то тройка (t,s,a) даёт необходимое противоречие.

1.2 Роль случая n = 4 в общей задаче

Стоит отдельно отметить, что в общем случае теоремы Ферма, если n > 2, то либо $4 \mid n$, либо n имеет нечётный простой делитель. Если n = 4k, то соотношение $(x^k)^4 + (y^k)^4 = (z^k)^4$ противоречит только что проведённым рассуждениям. Аналогичное рассуждение полностью сводит задачу к рассмотрению только простых значений n.

Куммер в середине XIX века доказал теорему для широкого класса регулярных простых (предположительно их плотность в натуральном ряде не превосходит 40%, а в первой сотне нерегулярных простых только три: 37, 59, 67). Позже с помощью компьютера его доказательство было доработано для всех простых, не превосходящих 2521 (1954 г.), а позже 125,000 (1978 г.) и 4,000,000 (1993 г.). Однако полностью решить задачу используя машинные вычисления практически невозможно.

Упражнение 1. Если бы теорема Ферма была бы неверна и $x^n + y^n = z^n$, TO |x|, |y|, |z| > n.

Это упражнение иллюстрирует, что компьютерный поиск контрпримера требовал бы проведения операций с числами порядка n^n , что для даже для n порядка 125,000 представляет вычислительно сложную задачу.

2 Числа Эйзенштейна

2.1Норма и обратимые элементы

Для решения задачи при n=3 необходимо исследовать структуру кольца $\mathbb{Z}[\omega]^*$ — так называемых чисел Эйзенштейна.

Упражнение 2. Пусть $\xi \neq 1$ — любой нетривиальный корень из единицы степени p (p — простое), тогда

$$x^{p} + y^{p} = (x + y)(x + \xi y) \dots (x + \xi^{p-1}y).$$

Таким образом, в кольце $\mathbb{Z}[\omega]$ выражение x^3+y^3 раскладывается на линейные множители, что значительно облегчает анализ.

Стоит напомнить, что в общем случае $\mathbb{Z}[\xi_p]$ не является факториальным кольцом и основная теорема арифметики в нем не выполнена (первый такой пример при p=23), что в свое время помешало Ламе построить доказательство для общего случая. Для некоторых простых можно доказать теорему из других соображений, в частности, Софи Жермен сделала это в случае, если p и 2p+1 одновременно простые* и $p \not\mid xyz$. Надо заметить, что случай $p \mid xyz$ сильно сложнее для анализа даже при p=3 (в доказательстве существенно используется то обстоятельство, что 3 — не простое число в $\mathbb{Z}[\omega]$).

Упражнение 3 (сложное). Найти разложения на простые множители 5 в $\mathbb{Z}[\xi_5]$ и p в $\mathbb{Z}[\xi_p]^{\dagger}$.

Итак, $\mathbb{Z}[\omega] = \{a+b\omega \mid a,b \in \mathbb{Z}\}$, так как $\omega^2 = -1-\omega$ (более строго, здесь сказано, что этот набор чисел является кольцом и что все числа такого вида лежат в $\mathbb{Z}[\omega]$, которое по определению есть минимальное кольцо, содержащее \mathbb{Z} и ω). Невероятно удобная и естественная визуализация чисел Эйзенштейна — изображение их на комплексной плоскости, где они формируют полное замощение правильными треугольниками.

Определение 1. Нормой числа $z=a+b\omega$ называется $N(z)=a^2-ab+b^2$. Легко убедиться, что $N(z)=a^2+ab(\omega^2+\omega)+b^2\omega^3=(a+b\omega)(a+b\omega^2)=(a+b\omega)(a+b\overline{\omega})=z\overline{z}$, то есть N(z) — это квадрат привычной комплексной нормы.

Удобное свойство такой нормы — мультипликативность. В самом деле, очевидно, что $\forall a,b \in \mathbb{Z}[\omega] \to N(ab) = N(a)N(b)$. Стоит отметить, что это ни в коем случае не является аксимой нормы, и в других кольцах это свойство может не быть выполнено.

При исследовании евклидового кольца первоочередная задача заключается в описании его мультипликативной группы ведь основная теорема арифметики верна с точностью до умножения на обратимые элементы.

Утверждение 2.
$$a \in \mathbb{Z}[\omega]$$
 — обратим $\Leftrightarrow N(a) = 1$.

Доказательство. $N(a)=1\Rightarrow a\overline{a}=1\Rightarrow \overline{a}$ — обратный к a элемент.

Если ab=1, то $ab\overline{ab}=1\Rightarrow N(a)N(b)=1$. Произведение двух целых положительных чисел равно 1 тогда и только тогда, когда каждой из них равно 1, то есть N(a)=1.

$$N(a + b\omega) = 1 \Leftrightarrow a^2 - ab + b^2 = 1,$$

 $4a^2 - 4ab + 4b^2 = 4,$
 $(2a - b)^2 + 3b^2 = 4.$

^{*}Такие простые в честь неё названы простыми Софи Жермен.

 $^{^{\}dagger} {\rm B}$ нефакториальных кольцах за определение простого берется свойство $p \mid ab \Rightarrow p \mid a$ или $p \mid b.$

Далее очевидно, что задача сводится к перебору целых значений b от -1 до 1. При фиксированном значении b для a существует не более двух возможных значений.

Упражнение 4. Перебрав варианты, показать, что обратимыми в кольце чисел Эйзенштейна являются элементы $1, -1, \omega, -\omega, 1+\omega, -1-\omega$.

Если записать эти элементы в другом виде, то можно увидеть, что все они представляют собой степени числа $1+\omega$, которое является примитивным корнем степени шесть из единицы. Это также означает, что мультипликативная группа кольца чисел Эйзенштейна изоморфна \mathbb{Z}_6 .

2.2 Число λ

Дальнейшее исследование коснется важного числа $\lambda = 1 - \omega$. Первое наблюдение состоит в том, что $N(\lambda) = 3$.

Утверждение 3. Если норма числа $p \in \mathbb{Z}[\omega]$ — простое число, то само число p тоже простое.

Доказательство. Если p равно произведению двух неразложимых необратимых элементов a и b, то N(p) = N(a)N(b), то есть какая-то из норм равна 1, а в этом случае или a или b — обратимый элемент, как было показано ранее*.

Более того, тот факт, что норма числа λ равна 3, автоматически означает, что $3=\lambda\overline{\lambda}=(1-\omega)(2+\omega)$ в этом кольце не является простым числом. Это обстоятельство помогает разобрать важный случай $3\mid xyz$, который в общем случае $(n\mid xyz)$ представляет наибольшую трудность (в частности, как было сказано выше, Софи Жермен удалось доказать вариант теоремы для обширного класса простых, но только при $n\not\mid xyz$). С точки зрения делимости, λ , как и любое другое простое число, имеет ровно 12 делителей — 6 обратимых и 6 ассоциированных.

Естественным образом, решение уравнения Ферма (доказательство отсутствия решений) в числах Эйзенштейна автоматически решает задачу и в целых числах. Используя внутренние симметрии кольца, можно заметить, что домножение x, y или z на любой корень из единицы третьей степени (и даже шестой, так от этого меняется только знак соответсвующего слагаемого) не меняет множество решений. Так, например, если одно из чисел $x+y, x+y\omega, x+y\omega^2$ делится на какое-то число q, то без потери общности можно считать, что это число x+y, так как в противном случае, домножая x и y на нужную степень ω , можно получить тройку, все еще являющуюся решением уравнения Ферма и удовлетворяющую нужному свойству.

Утверждение 4. Пусть $x \in \mathbb{Z}[\omega], \lambda /\!\!/ x$. Тогда $x^3 \equiv \pm 1 \pmod 9$.

^{*} В этом доказательстве использована как основная теорема арифметики, так и мультипликативность нормы, поэтому в произвольном кольце оно не проходит. Более того, можно убедиться, что в произвольном кольце утверждение неверно.

Упражнение 5.

- (1) В $\mathbb{Z}[\omega]$ существует ровно 3 класса вычетов по модулю λ : $\{0,1,-1\}$.
- (2) В $\mathbb{Z}[\omega]$ существует ровно N(p) классов вычетов по модулю p.

 $\ \ \, \mathcal{A}$ оказательство. Если x не кратен λ , то $x=r\lambda\pm 1$. Тогда

$$x^3 = r^3 \lambda^3 \pm 3r^2 \lambda^2 + 3r\lambda \pm 1$$
.

Учитывая, что $3\lambda^2\equiv 0\pmod 9$, необходимо показать, что $r^3\lambda^3+3r\lambda$ делится на 9.

$$r^{3}\lambda^{3} + 3r\lambda = 3r\lambda - 3r^{3}\lambda\omega = 3\lambda(r - r^{3}\omega).$$

В свою очередь r=0,1 или $-1\pmod{\lambda}$. Если $\lambda\mid r$, то при вынесении r выражение перед скобками делится на 9. Иначе $r=q\lambda\pm 1$, в этом случае $r^2=q^2\lambda^2\pm 2q\lambda+1$. Тогда $\lambda\mid (r^2-1)$, то есть $r^2=\lambda s+1$. Итого,

$$3\lambda r(1 - r^2\omega) = 3\lambda r(1 - \omega - \lambda s\omega) = 3\lambda r(\lambda - \lambda s\omega) = 3\lambda^2(1 - s\omega) \equiv 0 \pmod{9}$$

Замечание. Геометрический смысл утверждения заключается в том, что числа, кратные λ , но не кратные λ^2 , в кубе не могут попасть на расстояние меньше 3 от чисел, кратных λ^4 .

3 Великая теорема Ферма при n=3

${f 3.1}$ Основная теорема арифметики в ${\Bbb Z}[\omega]$

Утверждение 5. $\pm x^3 \pm y^3 \pm z^3 \neq 0$ при $\lambda \not\mid xyz$.

Доказательство. Если ни одно из чисел x,y,z не делится на λ , то их кубы дают остаток ± 1 по модулю 9, а значит их сумма не сравнима с 0 по модулю 9, то есть не равна 0.

Далее можно считать, что $\ll x,y,z\gg=1$, значит ровно одно число делится на λ . Исследовать этот случай можно методом «бесконечного спуска», рассмотрев более общее уравнение $\varepsilon_1 x^3 + \varepsilon_2 y^3 + \varepsilon_3 z^3 = 0$, где $\varepsilon_1, \varepsilon_2, \varepsilon_3$ — произвольные обратимые, $xyz \neq 0$, $\ll x,y,z\gg=1$, $\lambda \mid xyz$. Первое ключевое рассуждение заключается в следующем утверждении.

Утверждение 6. $\lambda^2 \mid xyz$.

 $\ensuremath{\mathcal{A}}$ оказательство. Пусть без потери общности $z=-\lambda \overline{z}$. Тогда

$$\varepsilon_1 x^3 + \varepsilon_2 y^3 = \varepsilon_3 \lambda^3 \overline{z}^3, \lambda \not | \overline{z}.$$

Тогда по модулю 9 левая часть есть $\pm \varepsilon_1 \pm \varepsilon_2$, а правая не равна 0 и делится на λ^3 , но не на λ^4 . По предыдущим утверждениям это противоречие.

Прежде чем предпринять следующий шаг, необходимо внести ясность в вопрос об основной теореме арифметики в кольце чисел Эйзенштейна. Так как норма уже была введена, осталось только привести правило деления с остатком, согласующееся с нормой в смысле определения евклидового кольца.

Утверждение 7. Если $z_1,z_2\in\mathbb{Z}[\omega],$ то $\exists \beta,\gamma\in\mathbb{Z}[\omega]\colon z_1=z_2\beta+\gamma,$ причём $N(\gamma)< N(z_2)^*.$

Доказательство. $\frac{z_1}{z_2}=\frac{a+b\omega}{c+d\omega}=\alpha+\beta\omega, \alpha, \beta\in\mathbb{R}.$ Пусть r,s являются округлёнными до ближайшего целого числами $\alpha,\beta.$ Тогда для числа $\gamma/z_2=(\alpha-r)+(\beta-s)\omega$ верно, что $|\alpha-r|,|\beta-s|\leqslant 0.5$ (здесь число γ неявно определено через числа $\alpha,\beta,r,s,z_2)$). В таком случае, сообразно с формулой для нормы, получается

$$N(\frac{\gamma}{z_2}) \leqslant |\alpha - r|^2 + |\alpha - r||\beta - s| + |\beta - r|^2 \leqslant \frac{3}{4} \Rightarrow N(\gamma) < N(z_2).$$

Итого $z_1 = z_2(r+s\omega) + \gamma$, $N(\gamma) < N(z_2)$. γ будет числом Эйзенштейна, так как все остальные числа в равенстве лежат в $\mathbb{Z}[\omega]$.

Упражнение 6 (сложное). Найти норму в кольце $\mathbb{Z}[\xi_5]$.

3.2 Доказательство при n = 3

Теперь, автоматически получив основную теорему арифметики для кольца чисел Эйзенштейна, можно сформулировать второе ключевое утверждение, которое по сути является шагом метода «бесконечного спуска».

Утверждение 8. Если $\varepsilon_1 x^3 + \varepsilon_2 y^3 = \varepsilon_3 \lambda^{3k} z^3, k \geqslant 2$, причём $\lambda \not\mid z$, то существуют числа $\overline{x}, \overline{y}, \overline{z}, \sigma_1, \sigma_2, \sigma_3$, являющиеся решенем уравнения $\overline{\sigma}_1 \overline{x}^3 + \overline{\sigma}_2 \overline{y}^3 = \overline{\sigma}^3 \lambda^{3k-3} \overline{z}^3$, причём $\lambda \not\mid \overline{z}$.

Доказательство. По модулю 9 данное уравнение обращается в сравнение $\pm \varepsilon_1 \pm \varepsilon_2 \equiv 0 \pmod{9}$, что конечно, заменяется обычным равенством, то есть $\varepsilon_1 = \pm \varepsilon_2$. Итак,

$$\pm \varepsilon_2 x^3 + \varepsilon_2 y^3 = \varepsilon_3 \lambda^{3k} z^3.$$

Далее, поделив на ε_2 и меняя при необходимости знак x, получаем

$$x^{3} + y^{3} = u\lambda^{3k}z^{3},$$

$$(x+y)(x+y\omega)(x+y\omega^{2}) = u\lambda^{3k}z^{3},$$

$$(x+y) - (x-y\omega) = y\lambda, (x+y) - (x+y\omega^{2}) = y\lambda(1+\omega)$$

^{*}Вообще говоря, норма нулевого элемента евклидового кольца не определена (для примера можно рассмотреть кольцо многочленов, которое тоже является евклидовым с нормой, равной степени многочлена). Но, работая с кольцами, аналогичными числам Эйзенштейна, как правило оставляют за нулевым элементом нулевую норму

Во-первых, невозможна ситуация, когда $\lambda^2 \mid (x+y,x+y\omega)$, так как в этом случае $\lambda^2 \mid y\lambda \Rightarrow \lambda \mid y$, но в то же время $\lambda \mid z$, противоречие. Аналогично, наибольший общий делитель любой другой пары скобок не делится на λ^2 .

Во-вторых, в разложении $(x+y,x+y\omega)$ не существует никаких простых множителей, кроме λ . Если $p\mid (x+y,x+y\omega)$, то $p\mid y\lambda\Rightarrow p\mid y$. Однако, $p\mid (\omega(x+y)-(x+y\omega))=-x\omega\Rightarrow p\mid x$, что невозможно, так как (x,y)=1. Так как $x+y\equiv x+y\omega\equiv x+y\omega^2\pmod{\lambda}$, то $\ll x,y,z\gg\in\{1,\lambda\}$.

Однако, так как правая часть уравнения делится на λ , то и левая тоже, значит каждая скобка делится на λ . Более того, в одну скобку λ входит в степени $3k-2\geqslant 4$, а в остальные в степени 1. Без потери общности $\lambda^{3k-2}\mid (x+y).$

$$\begin{aligned} x+y &= \alpha \lambda^{3k-2}, x+y\omega = \beta \lambda, x+y\omega^2 = \gamma \lambda, \\ &\ll \alpha, \beta, \gamma \gg = 1, \\ &\alpha \beta \gamma = uz^3, \end{aligned}$$

По основной теореме арифметики:

$$x + y = \lambda^{3k-2}\alpha = \sigma_1 \lambda^{3k-2} \overline{x}^3,$$

$$x + y\omega = \lambda \beta = \sigma_2 \lambda \overline{y}^3,$$

$$x + y\omega^2 = \lambda \gamma = \sigma_3 \lambda \overline{z}^3.$$

Сложив с коэффициентами $1, \omega, \omega^2$, получаем 0 в левой, части, то есть

$$0 = \sigma_1 \lambda^{3k-2} \overline{x}^3 + \sigma_2 \omega \lambda \overline{y}^3 + \sigma_3 \omega^2 \lambda \overline{z}^3,$$
$$\overline{\sigma}_1 \lambda^{3k-3} \overline{x}^3 = \overline{\sigma}_2 \overline{y}^3 + \overline{\sigma}_3 \overline{z}^3,$$
$$\ll \overline{x}, \overline{y}, \overline{z} \gg = 1.$$

Что в точности и нужно доказать.

Таким образом, если существует решение уравнения Ферма со степенью вхождения λ , равной k, то по доказанному можно за k-1 шаг перейти к решению со степенью 1, а таких решений нет.

4 Великая теорема Ферма при n=5

4.1 План доказательства при n = 5

Первый важный вопрос уже фигурировал раньше в виде упражнения 6. Далее, необходимо немного исследовать структуру кольца $\mathbb{Z}[\xi_5].$

Упражнение 7 (сложное). Найти мультипликативную группу $\mathbb{Z}[\xi_5]$. Сперва может быть полезно найти обратимые из $\mathbb{Z}[\xi_5] \cap \mathbb{R}$.

Упражнение 8. Обобщить прием, использованный в утверждении 8, то есть найти способ скомбинировать уравнения

$$x + y = \alpha_1 \lambda^q,$$

$$x + y \xi = \alpha_2 \lambda,$$

$$\dots,$$

чтобы снизить степень делимости на λ . Найти, чему в этом случае равняется λ и найти разложение числа 5 на простые множители.

Упражнение 9. Доказать теорему Ферма при n=5.