

4 A sensitiveTriacs

Datasheet - production data

Features

- MCU direct gate drive
- 4 quadrants Triac
- ECOPACK®2 compliant component

Applications

- · Motor control circuits
- Small home appliances
- Fan speed controller
- Pump and valve drive
- Mahjong machines
- Lighting dimmers

Description

Sensitive Triacs are intended in general purpose applications where high surge current capability is required. These Triacs feature a gate current capability sensitivities of 5 mA or 10 mA depending on the quadrant.

Table 1. Device summary

Symbol	Value	Unit
I _{T(rms)}	4	А
V_{DRM}, V_{RRM}	600	V
V_{DSM}, V_{RSM}	700	V
I _{GT}	5 / 10 ⁽¹⁾	mA

1. Quadrant I,II,III = 5 mA, quadrant IV = 10 mA.

Characteristics T405Q-600

1 Characteristics

Table 2. Absolute maximum ratings ($T_j = 25$ °C unless otherwise stated)

Symbol	Parameter		Value	Unit	
I _{T(rms)}	On-state rms current (full sine wave)	T _c = 110 °C	4	Α	
l	Non repetitive surge peak on-state currer	nt (full cycle,	$t_p = 20 \text{ ms}$	35	Α
I _{TSM}	T_j initial = 25 °C)		$t_p = 16.7 \text{ ms}$	38	
l ² t	I ² t value for fusing	$t_p = 10 \text{ ms}$	6	A ² s	
dI/dt	Critical rate of rise of on-state current $I_G = 2 \times I_{GT}$, $t_r \le 100 \text{ ns}$	F = 100 Hz	50	A/µs	
I_{GM}	Peak gate current	t _p = 20 μs	T _j = 125 °C	4	Α
P _{G(AV)}	Average gate power dissipation	T _j = 125 °C	0.5	W	
T _{stg} T _j	Storage junction temperature range Operating junction temperature range	- 40 to + 150 - 40 to + 125	°C		
V _{DSM} , V _{RSM}	Non repetitive surge peak off-state voltage	ie	t _p = 10 ms	700	V

Table 3. Electrical characteristics ($T_j = 25$ °C, unless otherwise stated)

Symbol	Test conditions	Quadrant	Value		Unit
Symbol	rest conditions	Quadrant		T405Q	Onit
I _{GT} ⁽¹⁾	$V_D = 12 \text{ V}, R_L = 30 \Omega$	I - II - III IV	Max.	5 10	mA
V _{GT}	$V_D = 12 \text{ V}, R_L = 30 \Omega$	All	Max.	1.3	V
V_{GD}	$V_D = V_{DRM}$, $R_L = 3.3 \text{ k} \Omega$, $T_j = 125 \text{ °C}$	All	Min.	0.2	V
I _H ⁽²⁾	I _T = 100 mA		Max.	10	mA
I.	I _G = 1.2 I _{GT}	I - III - IV	Max.	10	mA
IL	IG = 1.2 IGT	II	Max.	15	шд
dV/dt (2)	V _D = 67% V _{DRM} , gate open	T _j = 125 °C	Min.	10	V/µs
(dl/dt)c (2)	$(dV/dt)c = 2 V/\mu s$	T _j = 125 °C	Min.	1.8	A/ms

^{1.} Minimum I_{GT} is guaranteed at 5% of I_{GT} max.

^{2.} For both polarities of A2 referenced to A1

T405Q-600 Characteristics

Table 4. Static characteristics

Symbol	Test condi	Value	Unit		
V _{TM} ⁽¹⁾	$I_{TM} = 5 \text{ A}, t_p = 380 \mu\text{s}$	T _j = 25 °C	Max.	1.5	V
V _{t0} (1)	Threshold voltage	T _j = 125 °C	Max.	0.85	V
R _d ⁽¹⁾	Dynamic resistance	T _j = 125 °C	Max.	100	mΩ
I _{DRM}	V - V	T _j = 25 °C	Max.	5	μΑ
I _{RRM}	$V_{DRM} = V_{RRM}$	T _j = 125 °C	iviax.	1	mA

^{1.} For both polarities of A2 referenced to A1

Table 5. Thermal resistance

Symbol	Par	Value	Unit		
R _{th(j-c)}	Junction to case (AC)			3	°C/W
D	R _{th(j-a)} Junction to ambient	$S^{(1)} = 0.5 \text{ cm}^2$	DPAK	70	°C/W
►th(j-a)			IPAK	100	°C/W

^{1.} S = Copper surface under tab.

Characteristics T405Q-600

Figure 2. RMS on-state current versus case temperature IT(RMS)(A) 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 T_C(°C) 0.0 0

Figure 3. Relative variation of thermal impedance versus pulse duration

K=[Zth/Rth]

1.E-00

1.E-01

1.E-03

1.E-03

1.E-03

1.E-03

1.E-03

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

Figure 6. Non-repetitive surge peak on-state

T405Q-600 Characteristics

Figure 9. Relative variation of critical rate of decrease of main current versus junction temperature

(dl/dt)c [Tj] / (dl/dt)c [Tj specified]

(dl/dt)c [Tj] /

Figure 11. DPAK thermal resistance junction to ambient versus copper surface under tab (printed circuit board FR4, copper thickness: 35 µm)

Package information T405Q-600

2 **Package information**

- Epoxy meets UL94, V0
- Lead-free package
- Recommended torque: 0.4 to 0.6 N·m

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

2.1 **DPAK** package information

Figure 12. DPAK package outline

Note:

This package drawing may slightly differ from the physical package. However, all the specified dimensions are guaranteed.

T405Q-600 Package information

Table 6. DPAK package mechanical data

				nsions		
Ref.		Millimeters			Inches ⁽¹⁾	
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	2.18		2.40	0.0858		0.0945
A1	0.90		1.10	0.0354		0.0433
A2	0.03		0.23	0.0012		0.0091
b	0.64		0.90	0.0252		0.0354
b4	4.95		5.46	0.1949		0.2150
С	0.46		0.61	0.0181		0.0240
c2	0.46		0.60	0.0181		0.0236
D	5.97		6.22	0.2350		0.2449
D1	4.95		5.60	0.1949		0.2204
E	6.35		6.73	0.2500		0.2650
E1	4.32		5.50	0.1701		0.2165
е		2.286			0.0900	
e1	4.40		4.70	0.1732		0.1850
Н	9.35		10.40	0.3681		0.4094
L	1.00		1.78	0.0394		0.0701
L2		1.27			0.0500	
L4	0.60		1.02	0.0236		0.0402
V2	-8°		8°	-8°		8°

^{1.} Inch dimensions are only for reference

Figure 13. Footprint (dimensions in mm, drawing not in scale)

Package information T405Q-600

2.2 IPAK package information

 $\begin{bmatrix} E \\ b4 \\ \end{bmatrix}$ $\begin{bmatrix} C2 \\ V \end{bmatrix}$ $\begin{bmatrix} L1 \\ \end{bmatrix}$ $\begin{bmatrix} E \\ b4 \\ \end{bmatrix}$ $\begin{bmatrix} D \\ \end{bmatrix}$ $\begin{bmatrix} E \\ V \end{bmatrix}$ $\begin{bmatrix} D \\ \end{bmatrix}$ $\begin{bmatrix} D \\ \end{bmatrix}$ $\begin{bmatrix} E \\ \end{bmatrix}$ $\begin{bmatrix} D \\ \end{bmatrix}$ $\begin{bmatrix} D \\ \end{bmatrix}$ $\begin{bmatrix} E \\ \end{bmatrix}$ $\begin{bmatrix} D \\ \end{bmatrix}$ $\begin{bmatrix} D \\ \end{bmatrix}$ $\begin{bmatrix} E \\ \end{bmatrix}$ $\begin{bmatrix} D \\ \end{bmatrix}$ $\begin{bmatrix} D \\ \end{bmatrix}$ $\begin{bmatrix} E \\ \end{bmatrix}$ $\begin{bmatrix} D \\ \end{bmatrix}$ $\begin{bmatrix} D \\ \end{bmatrix}$ $\begin{bmatrix} E \\ \end{bmatrix}$ $\begin{bmatrix} D \\ \end{bmatrix}$

Figure 14. IPAK package outline

Note:

This package drawing may slightly differ from the physical package. However, all the specified dimensions are guaranteed.

T405Q-600 Package information

Table 7. IPAK package mechanical data

			Dime	ensions		
Ref.		Millimeters			Inches ⁽¹⁾	
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	2.20		2.40	0.0866		0.0945
A1	0.90		1.10	0.0354		0.0433
b	0.64		0.90	0.0252		0.0354
b2			0.95			0.0374
b4	5.20		5.43	0.2047		0.2138
С	0.45		0.60	0.0177		0.0236
c2	0.46		0.60	0.0181		0.0236
D	6		6.20	0.2362		0.2441
E	6.40		6.65	0.2520		0.2618
е		2.28			0.0898	
e1	4.40		4.60	0.1732		0.1811
Н		16.10			0.6339	
L	9		9.60	0.3543		0.3780
L1	0.8		1.20	0.0315		0.0472
L2		0.80	1.25		0.0315	0.0492
V1		10°			10°	

^{1.} Inch dimensions are only for reference

Ordering information T405Q-600

3 Ordering information

Figure 15. Order information scheme

Table 8. Product selector

Part Number	Voltage	Sensitivity	Туре	Package
T405Q-600B-TR	600 V	5 / 10 mA	Sensitive	DPAK
T405Q-600H	600 V	5 / 10 mA	Sensitive	IPAK

Table 9. Ordering information

Order code	Marking	Package	Weight	Base qty	Delivery mode
T405Q-600B-TR	T405Q 600	DPAK	0.3 g	2500	Tape and reel
T405Q-600H	T405Q 600	IPAK	0.4 g	75	Tube

T405Q-600 Revision history

4 Revision history

Table 10. Document revision history

Date	Revision	Changes
July-2002	1	First issue.
29-May-2014	2	Updated DPAK and IPAK package information and reformatted to current standard.
25-Sep-2015	3	Updated Features in cover page. Updated Table 3 and Section 2: Package information.
11-Feb-2016	4	Updated DPAK package information and reformatted to current standard. Added V _{DSM} parameter.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

577