Unit 3: Foundations for inference

3. Hypothesis tests

GOVT 3990 - Spring 2017

Cornell University

1. Use hypothesis tests to make decisions about population parameters

Hypothesis testing framework:

- 1. Set the hypotheses.
- 2. Check assumptions and conditions.
- 3. Calculate a test statistic and a p-value.
- 4. Make a decision, and interpret it in context of the research question.

Announcements

Midterm 1: Feb 24, Wed

- ► Preparation
 - Come to class with questions on Monday
 - Sample MT posted on course website
- ► Rules
 - Bring a calculator + cheat sheet (one sheet, both sides, typed or handwritten, must be prepared by you) + writing utensil
 - We'll provide tables

Hypothesis testing for a population mean

- 1. Set the hypotheses
 - H_0 : μ = null value
 - $H_{\rm A}:\mu<{
 m or}>{
 m or}
 eq null\ value$
- 2. Check assumptions and conditions
 - Independence: random sample/assignment, 10% condition when sampling without replacement
 - Sample size / skew: $n \ge 30$ (or larger if sample is skewed), no extreme skew
- 3. Calculate a test statistic and a p-value (draw a picture!)

$$Z = \frac{\bar{x} - \mu}{SE}$$
, where $SE = \frac{s}{\sqrt{n}}$

- 4. Make a decision, and interpret it in context of the research question
 - If p-value $< \alpha$, reject H_0 , data provide evidence for H_A
 - If p-value $> \alpha$, do not reject H_0 , data do not provide evidence for H_{Δ}

Application exercise: 3.2 Hypothesis testing for a single mean

See course website for details.

4

Your turn

Which of the following is the correct interpretation of the p-value from App Ex 3.2?

- (a) The probability that average GPA of Duke students has changed since 2001.
- (b) The probability that average GPA of Duke students has not changed since 2001.
- (c) The probability that average GPA of Duke students has not changed since 2001, if in fact a random sample of 63 Duke students this year have an average GPA of 3.58 or higher.
- (d) The probability that a random sample of 63 Duke students have an average GPA of 3.58 or higher, if in fact the average GPA has not changed since 2001.
- (e) The probability that a random sample of 63 Duke students have an average GPA of 3.58 or higher or 3.16 or lower, if in fact the average GPA has not changed since 2001.

Common misconceptions about hypothesis testing

- 1. P-value is the probability that the null hypothesis is true A p-value is the probability of getting a sample that results in a test statistic as or more extreme than what you actually observed (and in favor of the null hypothesis) if in fact the null hypothesis is correct. It is a conditional probability, conditioned on the null hypothesis being correct.
- 2. A high p-value confirms the null hypothesis.

 A high p-value means the data do not provide convincing evidence for the alternative hypothesis and hence that the null hypothesis can't be rejected.
- 3. A low p-value confirms the alternative hypothesis.

 A low p-value means the data provide convincing evidence for the alternative hypothesis, but not necessarily that it is confirmed.

2. Hypothesis tests and confidence intervals at equivalent significance/confidence levels should agree

95% confidence level is equivalent to two sided HT with $\alpha = 0.05$

95% confidence level is equivalent to one sided HT with $\alpha=0.025$

Э

Your turn

What is the confidence level for a confidence interval that is equivalent to a two-sided hypothesis test at the 1% significance level? *Hint: Draw a picture and mark the confidence level in the center.*

- (a) 0.80
- (b) 0.90
- (c) 0.95
- (d) 0.98
- (e) 0.99

Your turn

What is the confidence level for a confidence interval that is equivalent to a one-sided hypothesis test at the 1% significance level? *Hint: Draw a picture and mark the confidence level in the center.*

- (a) 0.80
- (b) 0.90
- (c) 0.95
- (d) 0.98
- (e) 0.99

9

Your turn

A 95% confidence interval for the average normal body temperature of humans is found to be (98.1 F, 98.4 F). Which of the following is true?

- (a) The hypothesis H_0 : $\mu = 98.2$ would be rejected at $\alpha = 0.05$ in favor of H_A : $\mu \neq 98.2$.
- (b) The hypothesis H_0 : $\mu = 98.2$ would be rejected at $\alpha = 0.025$ in favor of H_A : $\mu > 98.2$.
- (c) The hypothesis H_0 : $\mu = 98$ would be rejected using a 90% confidence interval.
- (d) The hypothesis H_0 : $\mu = 98.2$ would be rejected using a 99% confidence interval.

3. Results that are statistically significant are not necessarily practically significant

Your turn

All else held equal, will p-value be lower if n = 100 or n = 10,000?

- (a) n = 100
- (b) n = 10,000

10

4. Hypothesis tests are prone to decision errors

- ▶ A *Type 1 Error* is rejecting the null hypothesis when H_0 is true: α
 - For those cases where H₀ is actually true, we do not want to incorrectly reject it more than 5% of those times
 - Increasing α increases the Type 1 error rate, hence we prefer to small values of α
- ▶ A *Type 2 Error* is failing to reject the null hypothesis when H_A is true: β
- Power is the probability of correctly rejecting H₀, and hence the complement of the probability of a Type 2 Error:
 1 − β

Summary of main ideas

12

- 1. Use hypothesis tests to make decisions about population parameters
- 2. Hypothesis tests and confidence intervals at equivalent significance/confidence levels should agree
- 3. Results that are statistically significant are not necessarily practically significant
- 4. Hypothesis tests are prone to decision errors

13