Titanic Survival Prediction Project Report

Project Overview

This project aims to predict passenger survival on the Titanic using machine learning algorithms. The analysis compares Logistic Regression and Support Vector Machine (SVM) models.

Dataset Description

- Source: Titanic passenger dataset (891 records)
- **Target Variable**: Survival (0 = No, 1 = Yes)
- **Features**: 12 features including passenger class, age, gender, fare, etc.

Data Preprocessing

Handling Missing Values

- Age: Filled with median values based on passenger class and gender
- Embarked: Filled with mode value
- Cabin: Dropped due to excessive missing values

Feature Engineering

- Created new features: FamilySize, IsAlone, AgeGroup
- Encoded categorical variables: Sex, Embarked, Title
- Scaled numerical features for SVM compatibility

Exploratory Data Analysis

Key Findings

1. Overall Survival Rate: 38.38% of passengers survived

2. Gender Disparity:

Female survival rate: 74.20%Male survival rate: 18.89%

3. Class Impact:

1st Class: 62.96% survival2nd Class: 47.28% survival3rd Class: 24.24% survival

4. Age Factor: Children had higher survival rates than adults

Visualizations

![EDA Visualizations](images/eda_summary.png)

Key Insights from Visualizations:

- Strong correlation between survival and gender/passenger class

- Higher fare passengers had better survival chances
- Moderate family size (2-4) correlated with higher survival

Model Performance

Baseline Models

After Hyperparameter Tuning

Performance Improvement

- Logistic Regression: +1.68% accuracy improvement
- SVM: +2.24% accuracy improvement

Key Findings

Most Important Features

- 1. **Gender**: Strongest predictor of survival
- 2. Passenger Class: Higher classes had priority
- 3. Fare: Indicator of socioeconomic status
- 4. Title: Reflects age and social status

Model Comparison

- SVM performed slightly better after tuning
- Logistic Regression offers better interpretability
- Both models achieved >80% accuracy

Conclusion

The analysis successfully predicted Titanic survival with over 84% accuracy using tuned SVM.

The project demonstrates:

- Effective data preprocessing and feature engineering
- Comprehensive model evaluation and optimization
- Clear insights into factors affecting survival

Recommendations

1. Use SVM for highest accuracy requirements

- 2. Use Logistic Regression when interpretability is important
- 3. Consider ensemble methods for potential further improvement

Project Code: titanicsurvivalprediction.ipynb

Web App: app.py