p-adic Hodge theory: an introduction

Jared Weinstein

Boston University

March 29, 2022

Hodge theory: the big questions

- What sorts of *linear algebra objects* (cohomology theories)
 can be attached to manifolds, varieties over C, varieties over
 \(\overline{F}_p\), varieties over C_p, etc.?
- How do these cohomology theories interact? (Periods, comparison isomorphisms, Hodge structures...)
- How should we define Shimura varieties and their analogues (Rapoport-Zink spaces, local Shimura varieties, local shtuka spaces...) in terms of moduli of Hodge structures?
- How can Shimura varieties and their analogues help us with the Langlands program?

4 steps to *p*-adic Hodge theory

This talk builds up *p*-adic Hodge theory in four steps:

- The complex picture,
- ② The picture over a perfect field k of char. p,
- **1** The picture over \mathbf{C}_p ,
- The picture over a perfectoid space.

The ultimate goal is to understand the *p*-adic analogues of Shimura varieties, known as *local shtuka spaces*.

The complex picture: Hodge structures and Shimura varieties

A smooth manifold X has singular cohomology $H^i_{\rm sing}(X, {\bf Z})$ and de Rham cohomology $H^i_{\rm dR}(X)$, and these can be identified over ${\bf R}$ by integration.

But when X is also a projective variety over \mathbf{C} (or just Kähler), then $V = H^i_{\text{sing}}(X, \mathbf{Z})$ admits a Hodge structure (=Hodge decomposition of $V \otimes \mathbf{C}$), which we can describe with a homomorphism of real groups $\mu \colon \mathbf{C}^\times \to \operatorname{GL}(V)$.

Can generalize from GL(V) to G, a reductive group over \mathbf{Q} . Occasionally the conjugacy class of $\mu\colon C^\times\to G$ is a Hermitian symmetric domain, in which case we get a tower of Shimura varieties $Sh(G,\mu)$.

The complex picture: Elliptic curves

If
$$X=\mathbf{R}^2/\mathbf{Z}^2$$
, then $H^1_{\mathrm{sing}}(X,\mathbf{Z})\cong \mathbf{Z}^{\oplus 2}.$

A complex structure on X turns it into an elliptic curve, which has a unique-up-to-scalar $\omega \in H^{1,0}(X) \subset H^1_{dR}(X)$. The μ describing this Hodge structure is conjugate to $z \mapsto \operatorname{diag}(z, \overline{z})$.

Let $\gamma_1, \gamma_2 \in H_1(X, \mathbf{Z})$ be a basis; then the ratio $(\int_{\gamma_1} \omega : \int_{\gamma_2} \omega)$ determines a point of $\mathcal{H} = \mathbf{P}^1(\mathbf{C}) \backslash \mathbf{P}^1(\mathbf{R})$.

Conversely, a point $z \in \mathcal{H}$ determines an elliptic curve $\mathbf{C}/[z,1]$.

The complex picture: elliptic curves

The following are in bijection:

- ① Complex structures on $\mathbf{R}^2/\mathbf{Z}^2$,
- ② Elliptic curves E/\mathbf{C} with $\mathbf{Z}^2 \stackrel{\sim}{\to} H_1(E,\mathbf{Z})$,
- **1** Hodge structures on \mathbf{Z}^2 of type μ ,
- lacktriangle Points of \mathcal{H} .

The group $GL_2(\mathbf{Z})$ acts on everything, for instance in (2) by changing the basis.

For each congruence subgroup $\Gamma \subset GL_2(\mathbf{Z})$, get Shimura variety $Sh(GL_2, \mu)_{\Gamma} = \mathcal{H}/\Gamma$, a modular curve.

The picture over *k*: crystalline cohomology

Let k be a perfect field of characteristic p. Let W be its ring of Witt vectors. The Frobenius $\operatorname{Fr}_p \in \operatorname{Aut} k$ induces $\sigma \in \operatorname{Aut} W$.

Let X/k be smooth and proper. Can form its crystalline cohomology

$$H^{i}_{\operatorname{crys}}(X/W) := H^{i}_{\operatorname{dR}}(\tilde{X}/W),$$

where \tilde{X}/W is a smooth proper lift of k.

Loosely in analogy with $H_{\rm dR}^i$ of a real manifold. No Hodge filtration on $H_{\rm crys}^i(X/W)$ yet.

But there is one new bit of structure: The relative Frobenius $X \to X^{(p)} = X \times_{k,\operatorname{Fr}_p} k$ induces a σ -linear endomorphism F of $H^i_{\operatorname{crys}}(X/W)$.

The picture over k: H^1 and Dieudonné modules

A Dieudonné module is a finite free W-module D together with σ -linear and σ^{-1} -linear endomorphisms F, V satisfying FV = p.

Dieudonné-Manin classification $(k = \overline{k})$: each D decomposes into irreducibles D_{λ} with "slope" $\lambda \in \mathbf{Q} \cap [0,1]$. Here $\lambda = p$ -adic valuation of eigenvalue of F.

Fontaine: There's an anti-equivalence $\mathcal{G} \mapsto D(\mathcal{G})$ between p-divisible groups over k and Dieudonné modules.

Also if A/k is an ab. var. then $H^1_{\operatorname{crys}}(A/W) \cong D(A[p^{\infty}])$.

Examples:
$$D(\mathbf{Q}_p/\mathbf{Z}_p) = D_0$$
, $D(\mu_{p^{\infty}}) = D_1$, $H^1_{\text{crys}}(E/W) \cong D_0 \oplus D_1$ (ordinary), $H^1_{\text{crys}}(E/W) \cong D_{1/2}$ (supersingular).

The picture over k: isocrystals and G-structure

Let $K_0 = W[1/p]$. An *isocrystal* is a fin. dim. K_0 -vector space with σ -linear automorphism F.

Isom. classes of isocrystals correspond to elements of $GL_n(K_0)$ up to σ -conjugacy: $b \sim x^{\sigma}bx^{-1}$.

For $\lambda = m/n$, the isocrystal D_{λ} corresponds to

$$b = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & & & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ p^m & & \cdots & 0 \end{pmatrix} \in \mathsf{GL}_n(\mathcal{K}_0).$$

For a reductive G/\mathbb{Q}_p , Kottwitz introduced a notion of "G-isocrystal". Isom. classes of these $\cong B(G) := G(K_0)$ up to σ -conjugacy.

The picture over *C*: moduli of *p*-divisible groups

Let C/\mathbf{Q}_p be a complete algebraically closed field with ring of integers \mathcal{O}_C and residue field k.

How to classify *p*-divisible groups $\mathcal{G}/\mathcal{O}_C$? Here are 3 invariants of \mathcal{G} :

- The Tate module $T = T_p \mathcal{G}$, a free \mathbf{Z}_p -module of rank $n = \operatorname{height}(\mathcal{G})$.
- ② The Lie algebra Lie \mathcal{G} , a C-vector space of dimension $d = \dim(\mathcal{G})$,
- **3** The special fiber \mathcal{G}_k , which corresponds to a Dieudonné module, in turn corresponding to $b \in B(GL_n)$.

How are these all related?

The picture over *C*: moduli of *p*-divisible groups

Let \mathcal{G} be a p-divisible group over \mathcal{O}_C .

Theorem (Fargues, the Hodge-Tate exact sequence)

There is a natural short exact sequence

$$0 \to \mathsf{Lie}\, \mathcal{G} \otimes \mathit{C}(1) \to \mathit{T}_{\mathit{p}} \mathcal{G} \otimes_{\mathbf{Z}_{\mathit{p}}} \mathit{C} \to (\mathsf{Lie}\, \mathcal{G}^*)^* \otimes \mathit{C} \to 0$$

Letting $T = T_p \mathcal{G}$ and $W = \text{Lie } G \otimes C(1)$, we have a pair (T, W) with rank $\mathbf{Z}_p T = n$, $\dim_C W = d$ and $W \subset T \otimes C$.

Theorem (Scholze-W., 2012)

The functor $\mathcal{G} \mapsto (T, W)$ is an equivalence of categories.

Question: given (T, W), how to read off \mathcal{G}_k ?

The picture over C: p-divisible groups with (n, d) = (2, 1)

As an example, consider $\mathcal{G}/\mathcal{O}_{\mathcal{C}}$ with height 2 and dimension 1. Choose $\mathbf{Z}_p^2 \cong \mathcal{T}$. Such \mathcal{G} are in bijection with $W \in \mathbf{P}^1(\mathcal{C})$. Some will have $D(\mathcal{G}_k) = D_{1/2}$ (basic case) and the rest will have $D(\mathcal{G}_k) = D_0 \oplus D_1$.

In fact \mathcal{G}_k is basic if and only if $W \in \mathcal{H} = \mathbf{P}^1(C) \backslash \mathbf{P}^1(\mathbf{Q}_p)$ (Drinfeld's upper half-plane).

Example of a local Shimura variety: Let $\mathcal{M}^{\mathrm{Dr}}$ classify triples $(\mathcal{G}, \alpha, \iota)$, where $\mathcal{G}/\mathcal{O}_{\mathcal{C}}$ is a p-divisible group, $\alpha \colon \mathbf{Z}_p^{\oplus 2} \overset{\sim}{\to} \mathcal{T}_p \mathcal{G}$, and $\iota \colon D_{1/2}[1/p] \cong D(\mathcal{G}_k)[1/p]$ is an isomorphism of isocrystals.

 $\mathcal{M}^{\mathrm{Dr}}$ is the *Drinfeld tower*, it is a pro-étale torsor over \mathcal{H} with group D^{\times} , where $D = \mathrm{End}\,D_{1/2}[1/p]$ is the quaternion algebra over \mathbf{Q}_p . The map $\mathcal{M}^{\mathrm{Dr}} \to \mathcal{H}$ is equivariant for the action of $\mathrm{GL}_2(\mathbf{Q}_p)$.

The picture over C: A_{inf} and related rings

How to determine $D(\mathcal{G}_k)$ from (T, W) in general?

To answer, we need rings larger than C. Construction (Fontaine):

$$\mathcal{O}_{C^{\flat}} := \varprojlim_{\mathsf{Fr}_{p}} \mathcal{O}_{C}/p,$$

a perfect valuation ring in char p, with pseudo-uniformizer $p^{\flat}=(p,p^{1/p},p^{1/p^2},\dots)$. The projection $\mathcal{O}_{C^{\flat}}\to\mathcal{O}_C/p$ induces a surjection

$$\theta \colon W(\mathcal{O}_{C^{\flat}}) \to \mathcal{O}_{C}.$$

Let $A_{\inf} = W(\mathcal{O}_{C^{\flat}})$, a 2-dimensional local ring with endomorphism φ induced by Fr_p .

The picture over C: A_{inf} and related rings

We have \mathcal{O}_C , its tilt $\mathcal{O}_{C^{\flat}}$, and $A_{\inf} = W(\mathcal{O}_{C^{\flat}})$. This 2-d ring has 3 obvious 1-d quotients:

 $x_{C^{\flat}}$ $A_{\inf} \to \mathcal{O}_{C^{\flat}}$, kernel gen'd by p. Complete local ring $= W(C^{\flat})$.

 x_{K_0} $A_{\inf} \to W(k)$, kernel gen'd by [x] for $x \in \max$. ideal of $\mathcal{O}_{C^{\flat}}$.

 $x_C \theta: A_{inf} \to \mathcal{O}_C$, kernel generated by

$$\xi = \frac{[\varepsilon] - 1}{[\varepsilon^{1/p}] - 1}, \ \varepsilon = (1, \zeta_p, \zeta_{p^2}, \dots) \in \mathcal{O}_{C^b}$$

Regarding the last quotient, we will also need the completion:

$$B_{\mathsf{dR}}^+ := \varprojlim A_{\mathsf{inf}}[1/p]/\xi^n$$

This is a DVR with fraction field $B_{dR} = B_{dR}^{+}[1/\xi]$.

The picture over C: A_{inf} and related rings

The picture over C: The p-adic $2\pi i$ (interlude)

The map
$$A_{\inf} \stackrel{\theta}{\to} \mathcal{O}_C$$
 has kernel $\xi = ([\varepsilon] - 1)/([\varepsilon^{1/p}] - 1)$, and $B_{\mathrm{dR}}^+ = (A_{\inf})_{\hat{\xi}}$.

Periods of varieties over C lie in B_{dR} . The simplest example is the element

$$t = \log[\varepsilon] = ([\varepsilon] - 1) - \frac{1}{2}([\varepsilon] - 1)^2 + \dots \in B_{\mathsf{dR}}^+$$

Then t is the period of the formal multiplicative group; note that $Gal(\overline{\mathbf{Q}}_p/\mathbf{Q}_p)$ acts on t through the cyclotomic character.

The picture over *C*: Breuil-Kisin-Fargues modules

When we upgrade from k to C, Dieudonné modules become Breuil-Kisin-Fargues (BKF) modules.

A BKF module is a finite free A_{inf} -module M together with an isomorphism $\varphi_M \colon (\varphi^*M)[\xi^{-1}] \stackrel{\sim}{\to} M[\xi^{-1}]$.

At the special points $x_{C^{\flat}}, x_{K_0}, x_C \in \operatorname{Spec} A_{\inf}$, we get from (M, φ_M) the following data:

- At the completion of $x_{C^{\flat}}$, we get a φ -module N over $W(C^{\flat})$, and these are in equivalence with free finite rank \mathbf{Z}_{ρ} -modules T, via $N \mapsto N^{\varphi=1}$ and $T \mapsto T \otimes W(C^{\flat})$.
- ② At x_{K_0} , we get a φ -module over K_0 , which is the same as an isocrystal.
- **3** At x_C , we have a B_{dR}^+ -lattice $\Xi \subset T \otimes_{\mathbf{Z}_p} B_{dR}$, measuring the failure of φ to be an isomorphism at this point.

The picture over C: Breuil-Kisin-Fargues modules

A BKF module is a finite free A_{inf} -module M together with an isomorphism $\varphi_M \colon (\varphi^*M)[\xi^{-1}] \stackrel{\sim}{\to} M[\xi^{-1}]$.

Theorem (Fargues)

The following categories are equivalent.

- Pairs (T, Ξ) , where T is a finite free \mathbb{Z}_p -module and $\Xi \subset T \otimes_{\mathbb{Z}_p} B_{dR}$ is a B_{dR}^+ -lattice.
- BKF modules.

When we restrict to those Ξ for which this condition holds:

$$T \otimes_{\mathbf{Z}_{\rho}} B_{\mathsf{dR}}^+ \subset \Xi \subset \xi^{-1}(T \otimes_{\mathbf{Z}_{\rho}} B_{\mathsf{dR}}^+),$$

so that Ξ corresponds to a C-subspace of $T \otimes_{\mathbf{Z}_p} C(-1)$, the category becomes equivalent to the category of p-divisible groups over \mathcal{O}_C .

The picture over C: some moduli spaces of shtukas

By the theory of elementary divisors, $\operatorname{GL}_n(B_{\mathrm{dR}}^+)$ -orbits of lattices $\Xi \subset B_{\mathrm{dR}}^{\oplus n}$ are in bijection with tuples $k_1 \ge \cdots \ge k_n$, which are in turn in bijection with conjugacy classes of cocharacters $\mu \colon \mathbf{G}_m \to \operatorname{GL}_n$, via $\mu(t) = \operatorname{diag}(t^{k_1}, \ldots, t^{k_n})$.

Now let μ be a cocharacter and $b \in B(GL_n)$. We can now define the moduli space of shtukas $Sht(GL_n, b, \mu)$, at least on the level of C-points. They are:

BKF modules where the Ξ is of type μ , and the isocrystal is D(b).

There's a period morphism $\operatorname{Sht}(\operatorname{GL}_n,b,\mu) \to \operatorname{Gr}_{\operatorname{GL}_n,\mu}$ recording the Ξ ; here $\operatorname{Gr}_{\operatorname{GL}_n,\mu}$ is the B_{dR}^+ -affine Grassmannian.

The picture over C: contact with integral p-adic Hodge theory

Looking beyond p-divisible groups, we have the following "master comparison theorem":

Theorem (Bhatt-Morrow-Scholze)

Let $X/\mathcal{O}_{\mathcal{C}}$ be smooth and proper. There is a perfect complex of A_{inf} -modules $R\Gamma_{A_{\text{inf}}}(X)$, equipped with a φ -linear map $R\Gamma_{A_{\text{inf}}}(X)$ inducing a quasi-isomorphism

$$R\Gamma_{A_{\inf}}(X)[1/\xi] \stackrel{\sim}{\to} R\Gamma_{A_{\inf}}[1/\varphi(\xi)].$$

It specializes to the following cohomology theories:

- 2 At x_C , $R\Gamma_{A_{inf}}(X) \otimes_{A_{inf}} \mathcal{O}_C \cong R\Gamma_{dR}(X/\mathcal{O}_C)$.
- **3** Near $x_{C^{\flat}}$, $R\Gamma_{A_{\inf}}(X) \cong R\Gamma_{\operatorname{\acute{e}t}}(X, \mathbf{Z}_p) \otimes A_{\inf}$ as φ -modules.

The picture over a perfectoid space

To actually define a moduli space like $\operatorname{Sht}(G,b,\mu)$ or $\operatorname{Gr}_{G,\mu}$, need to be able to work in families, not just over C.

When μ is minuscule, $\mathrm{Gr}_{G,\mu}$ is a flag variety, and the finite layers of $\mathrm{Sht}(G,b,\mu)$, being étale over $\mathrm{Gr}_{G,\mu}$ (via Gross-Hopkins period map), are rigid-analytic spaces (Scholze). These are the *local Shimura varieties*. They encompass all Rapoport-Zink spaces.

But in general, $Gr_{G,\mu}$ is not a rigid-analytic variety. What is it?

The picture over a perfectoid space:perfectoid rings

Let R be a perfectoid algebra. This means:

- R is a topological ring,
- ② R admits an open subring R_0 whose topology is generated by a single element $\varpi \in R_0 \cap R^{\times}$,
- **1** ϖ^p divides p, and Frobenius induces an isomorphism $R^{\circ}/\varpi \xrightarrow{\sim} R^{\circ}/\varpi^p$.

Examples: $\mathbf{Q}_p^{\mathrm{cycl},\hat{}}$, \mathbf{C}_p , $\mathbf{F}_p((t^{1/p^\infty}))$, $K\langle T^{1/p^\infty}\rangle$ for any perfectoid field K.

The picture over a perfectoid space: tilting and B_{dR}^+

For a perfectoid ring R, we have define $R^{\flat \circ} = \varprojlim_{x \mapsto x^p} R/\varpi$, and then if $\varpi^{\flat} = (\varpi, \varpi^{1/p}, \ldots, \ldots) \in R^{\flat \circ}$, then $R^{\flat} = R^{\flat \circ}[1/\varpi^{\flat}]$ is a perfectoid ring of characteristic p.

There is a natural map $W(R^{\circ \flat}) \to R^{\circ}$, whose kernel is generated by a single element ξ . Define $B^+_{dR}(R)$ to be the ξ -adic completion of $W(R^{\circ \flat})[1/p]$.

Thus it seems that B_{dR}^+ , $Gr_{G,\mu}$, $Sht_{G,b,\mu}$, etc., should be defined as functors on perfectoid rings / perfectoid spaces.

The picture over a perfectoid space: some sheaves on Perf

Let Perf be the category of perfectoid spaces in char. p, with its pro-étale topology (akin to schemes with the étale topology). We consider the following (contravariant) sheaves on Perf:

- Let Spd \mathbf{Q}_p be the sheaf whose value on $S = \operatorname{Spa} R$ is the set of untilts R^{\sharp}/\mathbf{Q}_p .
- Let $B_{\mathrm{dR}}^+ \to \mathrm{Spd}\, \mathbf{Q}_p$ be the sheaf whose fiber over R^{\sharp} is $B_{\mathrm{dR}}^+(R^{\sharp}).$
- Let $\operatorname{Gr}_{\operatorname{GL}_n,\leq \mu} \to \operatorname{Spd} \mathbf{Q}_p$ be the sheaf whose fiber over R^{\sharp} is the set of $B^+_{\operatorname{dR}}(R^{\sharp})$ -lattices Ξ in $B^{\oplus n}_{\operatorname{dR}}$ that are everywhere bounded by μ .

The picture over a perfectoid space: Diamonds

An algebraic space is a functor on Sch (with its étale topology) of the form X/R, where X is a scheme and $R \subset X \times X$ is an étale equivalence relation.

A diamond is a functor on Perf (with its pro-étale topology) of the form X/R, where X is in Perf and $R \subset X \times X$ is a pro-étale equivalence relation.

Example: Spd $\mathbf{Q}_p = (\operatorname{Spa} \mathbf{Q}_p^{\operatorname{cycl},\flat})/\mathbf{Z}_p^{\times}$.

Theorem (Scholze)

The sheaves $Gr_{GL_n,\leq \mu}$ and $Sht_{G,b,\mu}$ are [locally spatial] diamonds.

Sources

For Hodge theory and Shimura varieties: Milne, Introduction to Shimura Varieties.

For Dieudonné theory: Katz, Crystalline cohomology, Dieudonné modules, and Jacobi sums

For perfectoid spaces, diamonds, and "shtukas with one leg": Scholze, Weinstein, Berkeley Lectures on p-adic geometry.