Emission Sources - Maximum Allowable Emission Rates

Permit Number 8996 and PSDTX454M3

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities, sources, and related activities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Air Contaminants Data

Emission	Source Name (2)	Air Contaminant Name (3)	Emissio	n Rates (4)
Point No. (1)			lbs/hour	TPY (5)
7*	Kiln Line 1, Bypass Baghouse, and Coal Mill Baghouse	СО	1,939	3,556
		PM/PM ₁₀ (filterable)	24	104
		PM/PM ₁₀ (condensable)	353	103
		PM/PM ₁₀ (total)	377	207
		SO ₂ (1-hour)	2,600	
		SO ₂ (3-hour)	2,300	
		SO ₂ (24-hour)	1,900	
		SO ₂ (annual)		1,769
		TRS	15	18
		H ₂ SO ₄	180	20
		VOC	292	438
		Speciated Compounds	see Att	achment I
7*, 62*	Combined Kiln Lines 1 and 2	Compliance Period (6)	Tons/day	Total ton
	NO _x Emission Limits	November 1 through March 30	15.3	2,310
			F 2	1 1 10
		March 31 through October 31	5.3	1,140
		Annual (12-month rolling)		3,450
62*	Kiln Line 2.	Annual (12-month rolling)		3,450
62*	Kiln Line 2, Bypass Baghouse, and	Annual (12-month rolling) CO	1,939	3,450
62*		Annual (12-month rolling) CO PM/PM ₁₀ (filterable)	1,939 32	3,450
62*	Bypass Baghouse, and	Annual (12-month rolling) CO	1,939	3,450 3,556 138
62*	Bypass Baghouse, and	Annual (12-month rolling) CO PM/PM ₁₀ (filterable) PM/PM ₁₀ (condensable) PM/PM ₁₀ (total)	1,939 32 353	3,450 3,556 138 103
62*	Bypass Baghouse, and	Annual (12-month rolling) CO PM/PM ₁₀ (filterable) PM/PM ₁₀ (condensable) PM/PM ₁₀ (total) SO ₂ (1-hour)	1,939 32 353 385	3,450 3,556 138 103 241
62*	Bypass Baghouse, and	Annual (12-month rolling) CO PM/PM ₁₀ (filterable) PM/PM ₁₀ (condensable) PM/PM ₁₀ (total) SO ₂ (1-hour) SO ₂ (3-hour)	1,939 32 353 385 2,600 2,300	3,450 3,556 138 103 241
62*	Bypass Baghouse, and	Annual (12-month rolling) CO PM/PM ₁₀ (filterable) PM/PM ₁₀ (condensable) PM/PM ₁₀ (total) SO ₂ (1-hour)	1,939 32 353 385 2,600	3,450 3,556 138 103 241

Emission Sources - Maximum Allowable Emission Rates

		H ₂ SO ₄	180	20
		VOC	292	438
		Speciated Compounds	see	Attachment I
1A*	Primary (Upper Bench)	PM	0.28	0.25
	Limestone Crusher	PM ₁₀	0.13	0.12
1B*	Primary (Upper Bench)	PM	0.72	3.15
	Limestone Crusher	PM ₁₀	0.72	3.15
		CO	11.18	48.97
		NO _x	8.09	35.43
		SO ₂	1.08	4.73
		VOC	1.43	6.26
2*	Secondary Crusher Baghouse Stack	PM	0.77	1.69
	Bagnouse Stack	PM ₁₀	0.77	1.69
3*	Raw Material Transfer Point Baghouse Stack	PM	0.34	0.75
		PM ₁₀	0.34	0.75
4*	Conveyor Belt Transfer	PM	0.70	1.53
	Baghouse Stack	PM ₁₀	0.70	1.53
5*	Line No. 1 Raw Mill Feed	PM	0.93	2.03
	Bins Baghouse Stack No. 2	PM ₁₀	0.93	2.03
6*	Line No. 1 Raw Mill Feed	PM	0.93	2.03
	Bins Baghouse Stack No. 2	PM ₁₀	0.93	2.03
8*	Rotary Kiln Feed Silo Upper	PM	1.04	2.28
	Baghouse Stack	PM_{10}	1.04	2.28
9*	Rotary Kiln Feed Silo Lower	PM	0.87	1.91
	Baghouse Stack	PM ₁₀	0.87	1.91
11*	Waste Bypass Dust	PM	0.18	0.38
	Baghouse Stack	PM ₁₀	0.18	0.38
12*	Coal Handling Baghouse	PM	0.80	1.76
	Stack	PM ₁₀	0.80	1.76
13*	Coal Storage Bin Baghouse	PM	0.33	0.71
	Stack	PM ₁₀	0.33	0.71

Emission Sources - Maximum Allowable Emission Rates

14*	Clinker Conveyor Transfer	PM	0.22	0.48
	Point Baghouse Stack	PM ₁₀	0.22	0.48
15* C	Clinker Conveyor Baghouse	PM	0.29	0.64
	Stack	PM ₁₀	0.29	0.64
16*	Gypsum Silo Baghouse	PM	0.12	0.27
	Stack	PM ₁₀	0.12	0.27
17*	Upper Clinker Silos	PM	0.45	0.99
Baghouse Stack	PM ₁₀	0.45	0.99	
18*	Gypsum Weigh Feeder	PM	0.16	0.36
Baghouse Stack	PM ₁₀	0.16	0.36	
19*	Clinker Feeder No. 7	PM	0.15	0.32
	Baghouse Stack	PM ₁₀	0.15	0.32
20*	Clinker Feeder No. 1	PM	0.15	0.32
	Baghouse Stack	PM ₁₀	0.15	0.32
21*	Clinker Feeder No. 6	PM	0.15	0.32
	Baghouse Stack	PM ₁₀	0.15	0.32
22*	Clinker Feeder No. 4	PM	0.15	0.32
	Baghouse Stack	PM ₁₀	0.15	0.32
23* & 29*	Finish Mill System No. 1 and	PM	13.62	59.68
	No. 2 Baghouse Stack	PM ₁₀	13.62	59.68
24*	Gypsum Weigh Feeder	PM	0.16	0.36
	Baghouse Stack	PM ₁₀	0.16	0.36
25*	Clinker Weigh Feeder No. 2	PM	0.15	0.32
	Baghouse Stack	PM ₁₀	0.15	0.32
26*	Clinker Weigh Feeder No. 5	PM	0.15	0.32
	Baghouse Stack	PM ₁₀	0.15	0.32
27*	Clinker Weigh Feeder No. 3	PM	0.15	0.32
	Baghouse Stack	PM ₁₀	0.15	0.32
28*	Clinker Weigh Feeder No. 8	PM	0.15	0.32
	Baghouse Stack	PM ₁₀	0.15	0.32
30*	Cement Silo No. 1 Discharge	PM	0.25	0.55
	Baghouse Stack	PM ₁₀	0.25	0.55

Emission Sources - Maximum Allowable Emission Rates

31*	Cement Silo No. 2 Discharge	PM	0.37	0.81
	Baghouse Stack	PM ₁₀	0.37	0.81
32*	Cement Silo No. 4 Discharge	PM	0.25	0.55
	Baghouse Stack	PM ₁₀	0.25	0.55
33*	Cement Silo No. 5 Discharge	PM	0.46	1.02
	Baghouse Stack	PM ₁₀	0.46	1.02
34*	Cement Silo No. 7 Discharge	PM	0.25	0.55
	Baghouse Stack	PM ₁₀	0.25	0.55
35*	Cement Silo No. 8 Discharge	PM	0.37	0.81
	Baghouse Stack	PM ₁₀	0.37	0.81
36*	Cement Silo No. 1 Filling	PM	1.14	2.49
	Baghouse Stack	PM ₁₀	1.14	2.49
37*	Cement Silo No. 7 Filling	PM	0.58	1.27
	Baghouse Stack	PM ₁₀	0.58	1.27
42*	Shale Crusher Discharge Baghouse Stack	PM	0.38	0.83
		PM ₁₀	0.38	0.83
43*	Line No. 2 Raw Mill Feed	PM	0.76	1.67
	Bins Baghouse Stack No. 1	PM ₁₀	0.76	1.67
44*	Raw Mill Discharge Airslide	PM	0.24	0.52
	Baghouse Stack	PM ₁₀	0.24	0.52
45*	Kiln Feed System No. 1	PM	0.29	0.62
	Baghouse Stack	PM ₁₀	0.29	0.62
46*	Blending Silo Upper	PM	0.24	0.52
	Baghouse Stack	PM ₁₀	0.24	0.52
47*	Blending Silo Lower	PM	0.48	1.04
	Baghouse Stack	PM ₁₀	0.48	1.04
48*	Kiln Feed System No. 2	PM	0.29	0.62
	Baghouse Stack	PM ₁₀	0.29	0.62
49*	Pan Conveyor Under Clinker	PM	0.28	0.61
	Cooler Baghouse Stack	PM ₁₀	0.28	0.61
50*	Dust Bin Baghouse Stack	PM	0.29	0.62
	Γ	PM ₁₀	0.29	0.62

Emission Sources - Maximum Allowable Emission Rates

51*	Clinker Silo No. 1 Discharge	PM	0.07	0.15
	Baghouse Stack (North)	PM ₁₀	0.07	0.15
52*	Clinker Silo No. 1 Discharge	PM	0.07	0.15
	Baghouse Stack (South)	PM ₁₀	0.07	0.15
53*	Slag/Gypsum Bins and Belt	PM	0.76	1.67
	Discharge Baghouse Stack	PM ₁₀	0.76	1.67
54*	Clinker Silo No. 2 Discharge	PM	0.07	0.15
	Baghouse Stack (North)	PM ₁₀	0.07	0.15
55*	Clinker Silo No. 2 Discharge	PM	0.07	0.15
	Baghouse Stack (South)	PM ₁₀	0.07	0.15
56*	Clinker Silo Feeder	PM	0.76	1.67
	Baghouse Stack	PM ₁₀	0.76	1.67
57*	Clinker Conveyor Transfer	PM	0.24	0.52
	Point Baghouse Stack	PM ₁₀	0.24	0.52
58*	Belt-Air-Slide Transfer Point	PM	0.38	0.83
	1 Baghouse Stack	PM ₁₀	0.38	0.83
59*	Belt-Air-Slide Transfer Point	PM	0.48	1.04
	2 Baghouse Stack	PM ₁₀	0.48	1.04
60*	Bulk Loading 1 Baghouse	PM	0.52	1.15
	Stack	PM ₁₀	0.52	1.15
61*	Truck Loadout- 1 Baghouse	PM	0.01	0.02
	Stack	PM ₁₀	0.01	0.02
63*	Rail Loadout- 1 Baghouse	PM	0.01	0.02
	Stack	PM ₁₀	0.01	0.02
64*	Coal Mill Conveyor	PM	0.24	0.52
	Baghouse Stack	PM_{10}	0.24	0.52
65*	Truck Loadout- 2 Baghouse	PM	0.01	0.02
	Stack	PM ₁₀	0.01	0.02
66*	SKS & Cement Mill	PM	14.11	61.79
	Baghouse Stack	PM ₁₀	14.11	61.79
67*	Cement Silo Filling	PM	0.29	0.64
	Baghouse Stack (North)	PM ₁₀	0.29	0.64

Emission Sources - Maximum Allowable Emission Rates

68*	Cement Silo Filling Baghouse Stack (South)	PM	0.16	0.35
		PM ₁₀	0.16	0.35
69*	Truck/Rail Loadout	PM	0.19	0.41
	Baghouse	PM ₁₀	0.19	0.41
70*	Truck/Rail Loadout	PM	0.19	0.41
	Baghouse (North)	PM ₁₀	0.19	0.41
71*	Air-Slide Conveyor	PM	0.48	1.04
	Baghouse Stack	PM ₁₀	0.48	1.04
72*	Pulverized Coal Bin	PM	0.02	0.05
	Baghouse Stack	PM ₁₀	0.02	0.05
73*	Pulverized Coal Bin CO	PM	<0.01	<0.01
	Analyzer Baghouse Stack	PM ₁₀	<0.01	<0.01
74*	Scrubber (Reagent-Feed)	PM	0.17	0.38
	System 1- Line 1	PM ₁₀	0.17	0.38
75A*	Primary (Lower Bench) Limestone Crusher	PM	0.28	0.25
		PM ₁₀	0.13	0.12
75B*	Primary (Lower Bench)	PM	0.39	1.71
	Limestone Crusher Engine	PM ₁₀	0.39	1.71
		СО	8.23	36.05
		NO _x	6.64	29.08
		SO ₂	0.90	3.94
		VOC	0.94	4.12
76*	Cooling Tower	PM	2.05	8.98
		PM ₁₀	2.05	8.98
77*	Line 1 Kiln Dust Bin	PM	0.48	2.1
	Baghouse Stack	PM ₁₀	0.48	2.1
78*	Line 2 Dust Bin Baghouse	PM	0.48	2.1
	Stack	PM ₁₀	0.48	2.1
79*	Line No. 2 Raw Mill Feed	PM	0.27	0.59
	Bins Baghouse Stack No. 2	PM ₁₀	0.27	0.59
80*	Line No. 1 Raw Mill Feed	PM	0.27	0.59
	Bins Baghouse Stack No. 3	PM ₁₀	0.27	0.59

Emission Sources - Maximum Allowable Emission Rates

81*	Clinker Silo De-Dusting	PM	0.66	1.45
	Baghouse Stack No. 1	PM ₁₀	0.66	1.45
82*	Clinker Silo De-Dusting	PM	0.22	0.48
	Baghouse Stack No. 2	PM ₁₀	0.22	0.48
83*	Clinker Silo De-Dusting	PM	0.22	0.48
	Baghouse Stack No. 3	PM ₁₀	0.22	0.48
84*	Raw Material Handling	PM	0.54	1.18
	Baghouse Stack No. 1	PM ₁₀	0.54	1.18
85*	Raw Material Handling	PM	0.27	0.59
	Baghouse Stack No. 2	PM ₁₀	0.27	0.59
ROADS	Plant-Wide Roads (7)	PM	15.44	67.59
		PM ₁₀	7.72	33.82
PLANTFUG	Plant-Wide Fugitives (7)	PM	5.94	15.12
		PM ₁₀	2.90	7.43
MSSFUG1	Inherently Low Emitting (ILE) Planned Maintenance Activities (7)	NO _x	0.03	0.02
		СО	0.34	0.04
		SO ₂	<0.01	<0.01
		VOC	68.07	0.06
		PM	14.69	0.41
		PM ₁₀	6.93	0.16
		PM _{2.5}	1.06	0.03
MSSFUG2	Non-ILE Planned	PM	6.17	1.78
	Maintenance Activities (Vacuum truck loading and	PM ₁₀	3.19	1.24
	unloading) (7)	PM _{2.5}	0.67	0.45
				1

- (1) Emission point identification either specific equipment designation or emission point number from plot plan.
- (2) Specific point source name. For fugitive sources, use area name or fugitive source name.
- (3) PM particulate matter emissions, as defined in Title 30 Texas Administrative Code (TAC) § 101.1, including PM_{10} and $PM_{2.5}$
 - PM_{10} particulate matter emissions equal to or less than 10 microns in diameter, including $PM_{2.5}$
 - $\mbox{PM}_{2.5}~$ direct particulate matter emissions equal to or less than 2.5 microns in diameter
 - NO_x total oxides of nitrogen, collectively expressed (calculated) as nitrogen dioxide
 - SO₂ sulfur dioxide CO - carbon monoxide
 - VOC volatile organic compounds as defined in Title 30 TAC § 101.1

Emission Sources - Maximum Allowable Emission Rates

TRS - total reduced sulfur

H₂SO₄ - sulfuric acid

HF - hydrogen fluoride

- (4) Planned maintenance, startup, and shutdown (MSS) emissions are included.
- (5) Compliance with annual emission limits (tons per year) is based on a 12-month rolling period.
- (6) Demonstration of compliance with 30-day rolling limit begins on first day of stated period. The control period for the March 31 limit effectively begins on March 1. Reference: 30 TAC § 117.3123.
- (7) Emission rate is an estimate and is enforceable through compliance with the applicable special conditions and permit representations.

Date:	October 15, 2014

Emission Sources - Maximum Allowable Emission Rates

Attachment I

Emission Point	Source Name (2)	Air Contaminant	Emiss	ion Rates
No. (1)		Name (3)	lbs/hour	TPY (4)
7*	Kiln Line 1,	Aluminum	0.12	0.46
	Bypass Baghouse, and	Ammonia	2.01	7.69
	Coal Mill Baghouse	Ammonium Chloride	3.86	14.78
		Arsenic	3.53E-03	0.01
		Barium	0.09	0.34
		Benzaldehyde	0.45	1.72
		Benzene	6.30	24.12
		Benzo(a)pyrene	2.61E-05	9.99E-05
		Beryllium	1.32E-04	5.04E-04
		Boron	0.01	0.04
		Cadmium	4.41E-04	1.69E-03
		Chromium	0.03	0.11
		Copper (fume)	1.06	4.06
		Ethyl Toluene	1.69	6.47
		Ethylbenzene	1.04	3.98
		Fluorene	3.81E-03	0.01
		Fluoride (as HF)	0.18	0.69
		Hydrogen Chloride	1.94	7.43
		Iron	0.17	0.65
		Lead	0.02	0.08
		Manganese (fumes)	0.01	0.04
		Mercury	0.01	0.04
		Methyl Indene	2.02	7.74
		Methyl Mercaptan	0.46	1.76
		Methyl Styrene	0.01	0.04
		Methylene Chloride	0.10	0.38
		Naphthalene	0.34	1.30
		Nickel	0.01	0.04
		OCDD	4.01E-07	1.54E-06
		OCDF	8.33E-08	3.20E-07
		Pentadiene (all isomers)	1.23	4.71
		Phenathrene	0.08	0.31
		Selenium	0.04	0.15
		Silver	5.00E-04	1.91E-03

Emission Sources - Maximum Allowable Emission Rates

•	· ·			
		Styrene	1.38	5.28
		Thallium	1.65E-03	0.01
		Toluene	9.83	37.63
		Total HpCDD	1.69E-07	6.50E-07
		Total HpCDF	5.45E-08	2.10E-07
		Total HxCDD	7.26E-08	2.80E-07
		TotalHxCDF	7.36E-08	2.80E-07
		Total PeCDD	5.41E-06	2.07E-06
		Total PeCDF	5.82E-08	2.20E-07
		Total TCDD	9.26E-09	4.00E-08
		Total TCDF	2.27E-07	8.70E-07
		Xylenes	4.85	18.57
		Zinc	0.07	0.27
62*	Kiln Line 2,	Aluminum	0.12	0.46
	Bypass Baghouse, and	Ammonia	2.01	7.69
	Coal Mill Baghouse	Ammonium Chloride	3.86	14.78
		Arsenic	3.53E-03	0.01
		Barium	0.09	0.34
		Benzaldehyde	0.45	1.72
		Benzene	6.30	24.12
		Benzo(a)pyrene	2.61E-05	9.99E-05
		Beryllium	1.32E-04	5.04E-04
		Boron	0.01	0.04
		Cadmium	4.41E-04	1.69E-03
		Chromium	0.03	0.11
		Copper (fume)	1.06	4.06
		Ethyl Toluene	1.69	6.47
		Ethylbenzene	1.04	3.98
		Fluorene	3.81E-03	0.01
		Fluoride (as HF)	0.18	0.69
		Hydrogen Chloride	1.94	7.43
		Iron	0.17	0.65
		Lead	0.02	0.08
		Manganese (fumes)	0.01	0.04
		Mercury	0.01	0.04
		Methyl Indene	2.02	7.74
		Methyl Mercaptan	0.46	1.76
1		Methyl Styrene	0.01	0.04

Emission Sources - Maximum Allowable Emission Rates

1			1
	Methylene Chloride	0.10	0.38
	Naphthalene	0.34	1.30
	Nickel	0.01	0.04
	OCDD	4.01E-07	1.54E-06
	OCDF	8.33E-08	3.20E-07
	Pentadiene (all isomers)	1.23	4.71
	Phenathrene	0.08	0.31
	Selenium	0.04	0.15
	Silver	5.00E-04	1.91E-03
	Styrene	1.38	5.28
	Thallium	1.65E-03	0.01
	Toluene	9.83	37.63
	Total HpCDD	1.69E-07	6.50E-07
	Total HpCDF	5.45E-08	2.10E-07
	Total HxCDD	7.26E-08	2.80E-07
	TotalHxCDF	7.36E-08	2.80E-07
	Total PeCDD	5.41E-06	2.07E-06
	Total PeCDF	5.82E-08	2.20E-07
	Total TCDD	9.26E-09	4.00E-08
	Total TCDF	2.27E-07	8.70E-07
	Xylenes	4.85	18.57
	Zinc	0.07	0.27

Date: October 15, 2014

OCDD Octachlorodibenzo- p-dioxin OCDF Octachlorodibenzofuran Heptachlorodibenzo- p-dioxin HpCCD . Heptachlorodibenzofuran HpCDF Hexachlorodibenzo- p-dioxin HxCDD Hexachlorodibenzofuran HxCDF Pentachlorodibenzo- p-dioxin PeCDD Pentachlorodibenzofuran PeCDF Tetrachlorodibenzo- p-dioxin TCDD TCDF Tetrachlorodibenzofuran