Solutions for Test 3: Computational Linear Algebra

Problem 1 (points: 5)

Case 1: A is not invertible

A is not invertible \Rightarrow det(**A**) = 0 \Rightarrow rank(**A**) < n. Also we have, rank(**AB**) \leq rank(**A**) < $n \Rightarrow$ **AB** is not invertible \Rightarrow det(**AB**) = 0 = det(**A**)det(**B**) (\because det(**A**) = 0).

Case 2: A is invertible

Define $g: (\mathbb{R}^n)^n \to \mathbb{R}$, $g(\mathbf{B}) = g(\boldsymbol{b}_1, \boldsymbol{b}_2, ..., \boldsymbol{b}_n) = \frac{\det(\mathbf{A}\mathbf{B})}{\det(\mathbf{A})}$, where $\boldsymbol{b}_1, \boldsymbol{b}_2, ..., \boldsymbol{b}_n$ are the columns of \mathbf{B} . Note that $\mathbf{A}\mathbf{B} = [\mathbf{A}\boldsymbol{b}_1 \ \mathbf{A}\boldsymbol{b}_2 \ ... \ \mathbf{A}\boldsymbol{b}_n]$. We verify that g satisfies the three properties.

(1)
$$g(\mathbf{I}) = g(\mathbf{e}_1, \mathbf{e}_2, ..., \mathbf{e}_n) = \frac{\det(\mathbf{AI})}{\det(\mathbf{A})} = 1.$$

(2) For any $b_1,...,b_n,c_1 \in \mathbb{R}^n$ we have,

$$\begin{split} g(\boldsymbol{b}_1 + \boldsymbol{c}_1, \boldsymbol{b}_2, ..., \boldsymbol{b}_n) &= \frac{\det(\mathbf{A}(\boldsymbol{b}_1 + \boldsymbol{c}_1), \mathbf{A}\boldsymbol{b}_2, ..., \mathbf{A}\boldsymbol{b}_n)}{\det(\mathbf{A})} \\ &= \frac{1}{\det(\mathbf{A})}[\det(\mathbf{A}\boldsymbol{b}_1, \mathbf{A}\boldsymbol{b}_2, ..., \mathbf{A}\boldsymbol{b}_n) + \det(\mathbf{A}\boldsymbol{c}_1, \mathbf{A}\boldsymbol{b}_2, ..., \mathbf{A}\boldsymbol{b}_n)](\because \det \text{ is linear}) \\ &= g(\boldsymbol{b}_1, \boldsymbol{b}_2, ..., \boldsymbol{b}_n) + g(\boldsymbol{c}_1, \boldsymbol{b}_2, ..., \boldsymbol{b}_n). \end{split}$$

Also for any $\alpha \in \mathbb{R}$,

$$\begin{split} g(\alpha \boldsymbol{b}_1, \boldsymbol{b}_2,, \boldsymbol{b}_n) &= \frac{1}{\det(\mathbf{A})} \det(\alpha \mathbf{A} \boldsymbol{b}_1, \mathbf{A} \boldsymbol{b}_2, ..., \mathbf{A} \boldsymbol{b}_n) \\ &= \alpha \frac{1}{\det(\mathbf{A})} \det(\mathbf{A} \boldsymbol{b}_1, \mathbf{A} \boldsymbol{b}_2, ..., \mathbf{A} \boldsymbol{b}_n) (\because \det \text{ is linear in the first argument}) \\ &= \alpha \ g(\boldsymbol{b}_1, \boldsymbol{b}_2, ..., \boldsymbol{b}_n). \end{split}$$

 \Rightarrow *g* is linear in its first argument. Similarly *g* is linear in each of its argument.

(3) Suppose $\hat{\mathbf{B}} = [...b_j, ..., b_i, ...]$ is obtained by switching the *i*th and *j*th columns of **B**. Then,

$$\begin{split} g(\widehat{\mathbf{B}}) &= g(...\boldsymbol{b}_j,..,\boldsymbol{b}_i,..) = \frac{1}{\det(\mathbf{A})} \det(...,\mathbf{A}\boldsymbol{b}_j,..,\mathbf{A}\boldsymbol{b}_i,...) \\ &= -\frac{1}{\det(\mathbf{A})} \det(...,\mathbf{A}\boldsymbol{b}_i,..,\mathbf{A}\boldsymbol{b}_j,...) \; (\because \det \text{ is alternating}) \\ &= -\frac{1}{\det(\mathbf{A})} \det(\mathbf{A}\mathbf{B}) = -g(\mathbf{B}) \Rightarrow g \text{ is alternating}. \end{split}$$

From (1), (2) and (3), $g(\mathbf{B}) = \det(\mathbf{B}), \forall \mathbf{B} \in \mathcal{M}_n \Rightarrow \det(\mathbf{B}) = \det(\mathbf{A}\mathbf{B})/\det(\mathbf{A}).$

Problem 1 (Alternative solution)

Case 1: A is not invertible

A is not invertible \Rightarrow det(**A**) = 0 \Rightarrow rank(**A**) < n. Also we have, rank(**AB**) \leq rank(**A**) < $n \Rightarrow$ **AB** is not invertible \Rightarrow det(**AB**) = 0 = det(**A**)det(**B**) (\because det(**A**) = 0).

Case 2: A is invertible

Invertible matrices can be written as the product of Elementary matrices. Suppose $\bf A$ is an elementary operation of interchanging two rows. Then $\bf AB$ interchanges two rows of $\bf B$. Since the determinant function is alternating (property (3)), $\det(\bf AB) = -\det(\bf B)$. But also $\det(\bf A) = -1$ (by properties (1) and (3)). So we can write, $\det(\bf AB) = \det(\bf A)\det(\bf B)$. Now on extending this result to a general case where $\bf A = \bf E_n \bf E_{n-1} ... \bf E_2 \bf E_1$, where $\bf E_i$'s are elementary matrices.

$$det(\mathbf{AB}) = det(\mathbf{E}_n \mathbf{E}_{n-1} \dots \mathbf{E}_2 \mathbf{E}_1 \mathbf{B}) = det(\mathbf{E}_n(\mathbf{E}_{n-1} \dots \mathbf{E}_2 \mathbf{E}_1 \mathbf{B})). \tag{1}$$

Now by using the case when A was just a single elementary matrix, we can write (1) as,

$$\begin{split} \det(\mathbf{A}\mathbf{B}) &= \det(\mathbf{E}_n) \det(\mathbf{E}_{n-1}.....\mathbf{E}_2\mathbf{E}_1\mathbf{B}) \\ &= \det(\mathbf{E}_n) \det(\mathbf{E}_{n-1}).....\det(\mathbf{E}_2) \det(\mathbf{E}_1) \det(\mathbf{B}) \\ &= \det(\mathbf{E}_n) \det(\mathbf{E}_{n-1}).....\det(\mathbf{E}_3) \det(\mathbf{E}_2\mathbf{E}_1) \det(\mathbf{B}) \\ &= \det(\mathbf{E}_n\mathbf{E}_{n-1}.....\mathbf{E}_2\mathbf{E}_1) \det(\mathbf{B}) \\ &= \det(\mathbf{A}) \det(\mathbf{B}). \end{split}$$

Problem 2 (points: 5)

Let $\{v_1, v_2, ..., v_k\}$ and $\{w_1, w_2, ..., w_k\}$ be orthogonal bases of \mathbb{V} .

$$egin{aligned} arphi(oldsymbol{v}_1,..,oldsymbol{v}_n) &= \sum_{i=1}^k oldsymbol{v}_i^ op \mathbf{A} oldsymbol{v}_i &= \sum_{i=1}^k \left(\sum_{j=1}^k \langle oldsymbol{w}_j, oldsymbol{v}_i
angle oldsymbol{w}_j^ op \mathbf{A} oldsymbol{w}_l
ight) \\ &= \sum_{j=1}^k \sum_{l=1}^k \left(\sum_{i=1}^k \langle oldsymbol{w}_j, oldsymbol{v}_i
angle \langle oldsymbol{v}_i, oldsymbol{w}_l
angle oldsymbol{w}_j^ op \mathbf{A} oldsymbol{w}_l. \end{aligned}$$

For
$$j=l$$
,
$$\sum_{i=1}^{k} \langle \boldsymbol{w}_{j}, \boldsymbol{v}_{i} \rangle \langle \boldsymbol{v}_{i}, \boldsymbol{w}_{l} \rangle = \sum_{i=1}^{k} \langle \boldsymbol{w}_{j}, \boldsymbol{v}_{i} \rangle^{2} = \|\boldsymbol{w}_{j}\|^{2} = 1.$$
 For $j \neq l$,
$$\sum_{i=1}^{k} \langle \boldsymbol{w}_{j}, \boldsymbol{v}_{i} \rangle \langle \boldsymbol{v}_{i}, \boldsymbol{w}_{l} \rangle = \boldsymbol{w}_{j}^{\top} (\sum_{i=1}^{k} \boldsymbol{v}_{i} \boldsymbol{v}_{i}^{\top}) \boldsymbol{w}_{l} = \boldsymbol{w}_{j}^{\top} \boldsymbol{w}_{l} = 0.$$
 Hence, $\varphi(\boldsymbol{v}_{1}, ..., \boldsymbol{v}_{n}) = \sum_{j=1}^{k} \boldsymbol{w}_{j}^{\top} \mathbf{A} \boldsymbol{w}_{j} = \varphi(\boldsymbol{w}_{1}, ..., \boldsymbol{w}_{n}).$

Problem 3 (points: 10)

Define $f: \mathcal{M}_n \times \mathcal{M}_n \to \mathbb{R}$ by $f(\mathbf{X}, \mathbf{Y}) = \operatorname{trace}(\mathbf{X}^{\top} \mathbf{Y})$. We will show that f is an inner product on \mathcal{M}_n .

- (1) $f(\mathbf{X}, \mathbf{X}) = \operatorname{trace}(\mathbf{X}^{\top}\mathbf{X}) = \sum_{i=1}^{i=n} \boldsymbol{x}_i^{\top}\boldsymbol{x}_i = \sum_{i=1}^{i=n} \|\boldsymbol{x}_i\|_2^2$, where $\boldsymbol{x}_1, ..., \boldsymbol{x}_n$ are the columns of \mathbf{X} . Thus $f(\mathbf{X}, \mathbf{X}) \geq 0, \forall \mathbf{X}$ and $f(\mathbf{X}, \mathbf{X}) = 0$ if and only if $\|\boldsymbol{x}_i\|_2^2 = 0 \ \forall i, i.e., \mathbf{X} = 0$.
- (2) For any $\mathbf{X}, \mathbf{Y} \in \mathcal{M}_n$, $f(\mathbf{X}, \mathbf{Y}) = \operatorname{trace}(\mathbf{X}^{\top} \mathbf{Y}) = \sum_{i=1}^{i=n} \mathbf{x}_i^{\top} \mathbf{y}_i = \sum_{i=1}^{i=n} \mathbf{y}_i^{\top} \mathbf{x}_i = \operatorname{trace}(\mathbf{Y}^{\top} \mathbf{X}) \Rightarrow f(\mathbf{X}, \mathbf{Y}) = f(\mathbf{Y}, \mathbf{X}).$
- (3) For any fixed $\mathbf{A} \in \mathcal{M}_n$, $f(\mathbf{A}, \mathbf{X})$ is linear in \mathbf{X} , since, $f(\mathbf{A}^{\top}(\alpha \mathbf{X}_1 + \beta \mathbf{X}_2)) = \operatorname{trace}(\alpha \mathbf{A}^{\top} \mathbf{X}_1 + \beta \mathbf{A}^{\top} \mathbf{X}_2) = \alpha \operatorname{trace}(\mathbf{A}^{\top} \mathbf{X}_1) + \beta \operatorname{trace}(\mathbf{A}^{\top} \mathbf{X}_2) = \alpha f(\mathbf{A}, \mathbf{X}_1) + \beta f(\mathbf{A}, \mathbf{X}_2)$.

From (1), (2) and (3) $f(\mathbf{X}, \mathbf{Y}) = \operatorname{trace}(\mathbf{X}^{\top} \mathbf{Y})$ is an inner product on \mathcal{M}_n . Hence $g(\mathbf{X}) := \sqrt{f(\mathbf{x}, \mathbf{x})} = (\operatorname{trace}(\mathbf{X}^{\top} \mathbf{X}))^{1/2}$ is a valid norm on \mathcal{M}_n .

Now to prove the second part, let $\mathbf{A} \in \mathcal{M}_n$ be fixed. For all $\mathbf{X} \in \mathcal{M}_n$, we get, $|\operatorname{trace}(\mathbf{A}\mathbf{X})| = |\operatorname{trace}((\mathbf{A}^\top)^\top\mathbf{X})| = |\langle \mathbf{A}^\top, \mathbf{X} \rangle| \le \|\mathbf{A}^\top\| \|\mathbf{X}\|$ (Cauchy Schwarz). Take $c = \|\mathbf{A}^\top\| = \sqrt{\operatorname{trace}(\mathbf{A}^\top\mathbf{A})}$ to get the result.

Problem 4 (points: 10)

Proving the first part,

(a) Suppose there exists $v_1, v_2, ..., v_n \in \mathbb{R}^n$ such that $\mathbf{A}_{ij} = \mathbf{v}_i^\top \mathbf{v}_j$, we have to show that eigenvalues of the symmetric matrix \mathbf{A} are non negative.

$$m{x}^{ op}\mathbf{A}m{x} = \sum_{i,j} \mathbf{A}_{ij} m{x}_i m{x}_j = \sum_{i,j} m{x}_i m{x}_j m{v}_i^{ op} m{v}_j$$
, where $m{x}_i$ is the i th element of $m{x}$. Define $m{y} = \sum_i m{x}_i m{v}_i$, then, $0 \leq m{y}^{ op} m{y} = \sum_{i,j} m{x}_i m{x}_j m{v}_i^{ op} m{v}_j = m{x}^{ op} \mathbf{A} m{x}$. Hence $m{x}^{ op} \mathbf{A} m{x} \geq 0 \ \forall m{x}$.

(b) Suppose the eigen values of the symmetric matrix \mathbf{A} are non-negative, we have to show that there exists $v_1, v_2, ..., v_n \in \mathbb{R}^n$ such that $\mathbf{A}_{ij} = v_i^\top v_j$.

Since the matrix \mathbf{A} is symmetric, by spectral decomposition, we get, $\mathbf{A} = \sum_i \lambda_i \boldsymbol{x}_i \boldsymbol{x}_i^{\top}$. Define, $\boldsymbol{y}_i = \sqrt{\lambda_i} \boldsymbol{x}_i$ ($\lambda_i' s$ are non negative). Then, $\mathbf{A} = \sum_i \boldsymbol{y}_i \boldsymbol{y}_i^{\top}$. Define \mathbf{B} to be the matrix whose columns are \boldsymbol{y}_i , then $\mathbf{A} = \mathbf{B}^{\top} \mathbf{B}$. Let $\boldsymbol{v}_1, \boldsymbol{v}_2, ..., \boldsymbol{v}_n$ be the rows of \mathbf{B} , then by definition of matrix multiplication, $\mathbf{A}_{ij} = \boldsymbol{v}_i^{\top} \boldsymbol{v}_j$.

Proving the second part,

Since \mathbf{A} and \mathbf{B} have non-negative eigenvalues, by the above result in (b), there exist $u_1, \dots, u_n \in \mathbb{R}^n$ and $v_1, \dots, v_n \in \mathbb{R}^n$ such that $\mathbf{A}_{ij} = \boldsymbol{u}_i^{\top} \boldsymbol{u}_j$ and $\mathbf{B}_{ij} = \boldsymbol{v}_i^{\top} \boldsymbol{v}_j$.

Let C be defined as $C_{ij} = A_{ij}B_{ij}$.

We claim that for all $x = (x_1, ..., x_n) \in \mathbb{R}^n$, $x^\top \mathbf{C} x \ge 0$. From this, we can conclude that the eigenvalues of \mathbf{C} are non-negative. Indeed,

$$\boldsymbol{x}^{\top} \mathbf{C} \boldsymbol{x} = \sum_{ij} x_i x_j \mathbf{C}_{ij} = \sum_{ij} x_i x_j (\boldsymbol{u}_i^{\top} \boldsymbol{u}_j) (\boldsymbol{v}_i^{\top} \boldsymbol{v}_j) = \langle \mathbf{X}, \mathbf{X} \rangle \geqslant 0,$$

where $\mathbf{X} = \sum_i x_i \boldsymbol{u}_i \boldsymbol{v}_i^{\top}$ and $\langle \mathbf{X}, \mathbf{Y} \rangle = \operatorname{trace}(\mathbf{X}^{\top} \mathbf{Y})$ is the inner-product in problem 3.
