

Symbol

 $\mathbf{V}_{\mathrm{DSS}}$

 V_{DGR}

 $\mathbf{V}_{\mathrm{gss}}$

 $V_{\underline{\mathsf{GSM}}}$

I_{D25}

I_{DM}

 \mathbf{I}_{A} \mathbf{E}_{AS}

 T_{μ}

 $\mathbf{T}_{\mathbf{L}}$

T_{SOLD}

 $\boldsymbol{R}_{\text{DS(on)}}$

dv/dt

Polar3™ HiPerFET™ **Power MOSFET**

IXFL210N30P3

(Electrically Isolated Tab)

N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Rectifier

Test Conditions

Continuous

Transient

 $T_{c} = 25^{\circ}C$

 $T_{c} = 25^{\circ}C$

 $T_{c} = 25^{\circ}C$

 $T_{c} = 25^{\circ}C$

T₁ = 25°C to 150°C

 $T_J = 25^{\circ}C$ to 150°C, $R_{GS} = 1M\Omega$

 $I_{S} \leq I_{DM}, V_{DD} \leq V_{DSS}, T_{J} \leq 150^{\circ}C$

 $T_{c} = 25$ °C, Pulse Width Limited by T_{JM}

Maximum Lead Temperature for Soldering

1.6 mm (0.062in.) from Case for 10s

Maximum Ratings

300

300

±20

±30

108

550

105

4

35

520

150

300

260

-55 ... +150

-55 ... +150

V _{DSS}	=	300V
I _{D25}	=	108A
R _{DS(on)}	≤	16m Ω
t _{rr}	≤	250ns

٧

٧

٧

Α

Α

Α

J

V/ns

W

٥С

°C

٥С

٥С

°C

1.5 mA

 $16 \text{ m}\Omega$

G = Gate	D	= Drain
S = Source		

Features

- · Silicon Chip on Direct-Copper-Bond Substrate
- High Power Dissipation
- Isolated Mounting Surface
- 2500V~ Electrical Isolation
- Dynamic dv/dt Rating
- Avalanche Rated
- Fast Intrinsic Rectifier
- Low R_{DS(on)}
- Low Drain-to-Tab Capacitance
- Low Package Inductance

Advantages

- · Easy to Mount
- Space Savings

F _c	Mounting Force		40120	/ 927		N/lb
V _{ISOL}	50/60 Hz, RMS $I_{ISOL} \leq 1 \text{ mA}$	t = 1 min t = 1 s		2500 3000		V~ V~
Weight				8		g
Symbol Test Conditions						
Symbol				cteristic		
•	Test Conditions Unless Otherwise S		Chara Min.	cteristic Typ.	Values Max.	
•		Specified)				V
$T_{\rm J} = 25^{\circ} C$	Unless Otherwise S	Specified) nA	Min.			
$\frac{(T_J = 25^{\circ}C)}{BV_{DSS}}$	Unless Otherwise S $V_{GS} = 0V, I_D = 3m$	Specified) nA BmA	Min. 300		Max.	V

Note 2, $T_1 = 125^{\circ}C$

Applications

- DC-DC Converters
- Battery Chargers
- Switch-Mode and Resonant-Mode **Power Supplies**
- Uninterrupted Power Supplies
- AC Motor Drives
- High Speed Power Switching **Applications**

 $V_{GS} = 10V$, $I_D = 105A$, Note 1

•			racteristic Values		
$(T_J = 25^{\circ}C)$	Unless Otherwise Specified)	Min.	Тур.	Max.	
g_{fs}	$V_{DS} = 10V, I_{D} = 60A, Note 1$	60	100	S	
C _{iss}			16.2	nF	
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		2550	pF	
C _{rss}			42	pF	
R_{g_i}	Gate Input Resistance		1.0	Ω	
t _{d(on)}	Resistive Switching Times		46	ns	
t _r	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{DSS}$		25	ns	
$\mathbf{t}_{d(off)}$	1		94	ns	
t _f	$R_{\rm g} = 1\Omega \text{ (External)}$		13	ns	
$Q_{g(on)}$			268	nC	
\mathbf{Q}_{gs}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{DSS}$		80	nC	
\mathbf{Q}_{gd}			72	nC	
R _{thJC}				0.24 °C/W	
R _{thCS}			0.15	°C/W	

ISOPLUS264 (IXFL) OUTLINE = Gate 2,4 = Drain 3 = Source MILLIMETERS INCHES SYM 4.83 .190 5.21 A1 .102 2.59 3.00 .118 1.40 A2 .046 .055 1.17 .045 .055 1.14 1.40 Ь ь1 .087 .102 2.21 2.59 **b**2 .111 .126 2.82 3.20 .020 .029 0.51 0.74 1.020 1.040 25.91 26.42 D 19.56 .770 .799 20.29 .215 .780 19.81 20.83 820 L1 .080. .102 2.03 2.59 Q .210 .235 5.33 5.97 12.45 Q1 490 .513 13.03 3.81 4.57 .150 .180 3.30 R1 130 2.54 .100 s .668 890 16.97 17.53 .801 .821 20.34 20.85 U .065 .080 1.65 2.03

Source-Drain Diode

Symbol	Test Conditions	Characteristic Values			
$(T_J = 25^{\circ}C)$	Jnless Otherwise Specified)	Min.	Тур.	Max.	
I _s	$V_{GS} = 0V$			210	Α
I _{sm}	Repetitive, Pulse Width Limited by $\mathrm{T}_{_{\mathrm{JM}}}$			840	Α
V _{SD}	$I_F = 100A, V_{GS} = 0V, Note 1$			1.5	V
$\left\{ egin{array}{c} \mathbf{t}_{rr} \\ \mathbf{Q}_{RM} \\ \mathbf{I}_{RM} \end{array} \right\}$	$I_F = 105A$, -di/dt = 100A/ μ s $V_R = 100V$, $V_{GS} = 0V$		4.1 28	250	ns μC Α

Notes:

- 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.
- 2. Part must be heatsunk for high-temp $I_{\mbox{\scriptsize DSS}}$ measurement.

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 13. Maximum Transient Thermal Impedance

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.