PHYSICS

Ganesh Kuwar Chhetri

Dept. of Physics, School of Science, Kathmandu University

Course Outline

- Poisson's Equation and Laplace's Equation
- Potential of a Uniformly charged spherical Shell
- Work Done to Move a Charge & Electric Potential Energy
- Problems
- Conductors & Insulators

Electric Potential

Electric Potential:

The potential energy per unit charge at a point in an electric field is called the electric potential V (or simply the potential) at that point.

$$V = \frac{U}{q}$$

- Electric potential is a scalar quantity.
- The SI unit of potential is the joules per coulomb which is defined as volt (V): 1 V = 1 J/C
- The electric potential at an arbitrary point P in an electric field equals the work required per unit charge to bring a positive test charge from infinity to that point.

$$V(\vec{r}) = V_{P} = W_{\text{(unit)}}$$

$$0 \to P$$

$$= -\int_{\infty}^{P} \vec{E} \cdot d\vec{l}$$

• Potential obeys the superposition principle: $V = V_1 + V_2 + ...$

The potential at any given point is the sum of the potentials due to all the source charges separately.

Expression for Electric Potential:

The electric potential of a point charge at a point P:

$$V(\vec{\mathbf{r}}) = \frac{1}{4\pi\varepsilon_0} \frac{q}{t}$$

The potential of collection of charges:

$$V(\vec{\mathbf{r}}) = \frac{1}{4\pi\varepsilon_0} \sum_{i=1}^n \frac{q_i}{\chi_i}$$

The potential for a continuous distribution of charges

$$V(\vec{\mathbf{r}}) = \frac{1}{4\pi\varepsilon_0} \int \frac{dq}{t}$$

In particular, the potential for a surface charge is

$$V(\vec{\mathbf{r}}) = \frac{1}{4\pi\varepsilon_0} \int \frac{\sigma(\mathbf{r}')}{\hbar} da'$$

Potential Difference:

The potential difference between points a and b is equal to the work per unit charge required to carry a charged particle from a and b:

$$V(b) - V(a) = W_{\text{(unit)}} = -\int_{a}^{b} \vec{E} \cdot d\vec{l}$$

Electric Potential

The Electric Field is the Gradient of a Scalar Potential

The potential difference between two points *a* and *b*:

$$V(b) - V(a) = -\int_{a}^{b} \vec{E} \cdot d\vec{l}$$
(1)

The fundamental theorem for gradients states that:

$$V(b) - V(a) = \int_{a}^{b} (\nabla V) \cdot d\vec{l} \qquad \dots (2)$$

So,
$$-\int_a^b \vec{E} \cdot d\vec{l} = \int_a^b (\nabla V) \cdot d\vec{l}$$

Since this is true for any points a and b, the integrands must be equal:

$$\therefore \vec{E} = -\nabla V$$

The expression for electric field in a region where potential: V = -kxy

$$\vec{E} = -\nabla V = -\left[\hat{i}\frac{\partial V}{\partial x} + \hat{j}\frac{\partial V}{\partial y} + \hat{k}\frac{\partial V}{\partial z}\right]$$

$$= -\left[\hat{i}\frac{\partial (-kxy)}{\partial x} + \hat{j}\frac{\partial (-kxy)}{\partial y} + \hat{k}\frac{\partial (-kxy)}{\partial z}\right]$$

$$= ky \hat{i} + kx \hat{j}$$

Poisson's Equation and

Laplace's Equation:

Gauss's law in differential form:

$$\nabla \cdot \vec{E} = \frac{1}{\varepsilon_0} \rho$$

The electric field can be written as the gradient of a scalar potential

i.e.
$$\vec{E} = -\nabla V$$

$$\therefore \qquad \nabla \cdot \vec{E} = \frac{1}{\varepsilon_0} \rho$$

$$\Rightarrow \nabla \cdot (-\nabla V) = \frac{1}{\varepsilon_0} \rho$$

$$\therefore \left[\nabla^2 V = -\frac{\rho}{\varepsilon_0} \right]$$

This is known as **Poisson's Equation.**

In regions where there is no charge, so that $\rho=0$, Poisson's equation reduces to Laplace's Equation

$$\nabla^2 V = 0$$

4

Electric Potential

Find the potential of a uniformly charged spherical shell of radius.

Solution:

• The potential for a surface charge is $V(\vec{r}) = \frac{1}{4\pi\epsilon_0} \int_{t}^{\sigma} da'$.

$$V(\vec{\mathbf{r}}) = \frac{1}{4\pi\varepsilon_0} \int \frac{\sigma}{\ell} da' \cdot$$

From the law of cosines,
$$t^2 = R^2 + z^2 - 2Rz\cos\theta'$$

An element of surface area on this sphere is $(R^2 \sin \theta' d\theta' d\phi')$

So,

$$V(z) = \frac{1}{4\pi\varepsilon_0} \left[\int \frac{\sigma}{\sqrt{R^2 + z^2 - 2Rz\cos\theta'}} (R^2 \sin\theta' d\theta' d\phi') \right]$$

$$= \frac{\sigma R^2}{4\pi\varepsilon_0} \left[\left\{ \int_0^{\pi} \frac{\sin\theta' d\theta'}{\sqrt{R^2 + z^2 - 2Rz\cos\theta'}} \right\} \left\{ \int_0^{2\pi} d\phi' \right\} \right]$$

$$= \frac{\sigma R^2}{4\pi\varepsilon_0} \left[\left\{ \frac{1}{Rz} \left(\sqrt{(R+z)^2} - \sqrt{(R-z)^2} \right) \right\} \left\{ 2\pi \right\} \right]$$

$$= \frac{\sigma R^2}{2\varepsilon_0} \left[\frac{1}{Rz} \left(\sqrt{(R+z)^2} - \sqrt{(R-z)^2} \right) \right]$$

$$\therefore V(z) = \frac{\sigma R}{2\varepsilon_0 z} \left[\sqrt{(R+z)^2} - \sqrt{(R-z)^2} \right]$$

Put
$$R^2 + z^2 - 2Rz\cos\theta' = t^2$$

$$\Rightarrow \sin\theta'd\theta' = \frac{1}{Rz}(t \ dt)$$
when $\theta'=0$, then $t = \sqrt{R^2 - z^2}$
when $\theta'=\pi$, then $t = \sqrt{R^2 + z^2}$

$$\Rightarrow \int_0^{\pi} \frac{\sin\theta'd\theta'}{\sqrt{R^2 + z^2 - 2Rz\cos\theta'}} = \frac{1}{Rz} \int_{\sqrt{R^2 + z^2}}^{\sqrt{R^2 + z^2}} \frac{(t \ dt)}{t}$$

$$= \frac{1}{Rz} \int_{\sqrt{R^2 - z^2}}^{\sqrt{R^2 + z^2}} dt$$

$$= \frac{1}{Rz} \left(\sqrt{(R+z)^2} - \sqrt{(R-z)^2} \right)$$

For points outside the sphere, z > R, and hence $\sqrt{(R-z)^2} = z - R$ $\therefore V_{out}(z) = \frac{R\sigma}{2\varepsilon_0 z} \Big[(R+z) - (z-R) \Big] = \frac{\sigma R^2}{\varepsilon_0 z}$ $= \frac{1}{4\pi\varepsilon_0} \frac{\sigma(4\pi R^2)}{z} = \frac{1}{4\pi\varepsilon_0} \frac{q}{z}$

and hence $\sqrt{(R-Z)^2} = R-z$ $\therefore V_{in}(z) = \frac{R\sigma}{2\varepsilon z} \Big[(R+z) - (R-z) \Big] = \frac{\sigma R}{\varepsilon}$ $= \frac{1}{4\pi\varepsilon_0} \frac{\sigma(4\pi R^2)}{R} = \frac{1}{4\pi\varepsilon_0} \frac{q}{R}$

For points inside the sphere, z < R,

For points on the sphere, z = R,

$$\therefore V_{on}(R) = \frac{\sigma R}{\varepsilon_0} = \frac{1}{4\pi\varepsilon_0} \frac{\sigma(4\pi R^2)}{R}$$
$$= \frac{1}{4\pi\varepsilon_0} \frac{q}{R} = V_{in}(z)$$

Work and Energy in Electrostatics

The Work Done to Move a Charge

- Suppose we have a stationary configuration of source charges, and we want to move a test charge from a point a to point b [Figure W_{W} -I].
- At any point along the path, the electric force on Q is $\vec{F} = Q\vec{E}$ the force we exert, in opposition to this electrical force is $-Q\vec{E}$.
- The work done to move a test charge Q from a point a to point b is

$$W = \int_{a}^{b} \vec{F} \cdot d\vec{l} = \int_{a}^{b} \left(-Q\vec{E} \right) \cdot d\vec{l} = Q \left[-\int_{a}^{b} \vec{E} \cdot d\vec{l} \right]$$
$$= Q \left[V(b) - V(a) \right]$$
$$\therefore V(b) - V(a) = V(\vec{r}_{b}) - V(\vec{r}_{a}) = \frac{W}{Q}$$

Figure Ww-3

- The potential difference between points a and b is equal to the work per unit charge required to carry a charged particle from a and b.
- The work done to bring the charge Q from infinity to the point \vec{r} is

$$W = Q[V(\vec{r}) - V(\infty)]$$
$$\therefore W = QV(\vec{r})$$

The potential energy per unit charge at a point in an electric field is called the *Electric potential* at that point.

Work and Energy in Electrostatics

Electric Potential Energy

- Consider that three point charges q_1, q_2 and q_3 are lying at locations \vec{r}_1, \vec{r}_2 and \vec{r}_3 respectively.
- First of all, let us remove all the three charges to infinite distance from each other.
 - (i) Let us move the charge q_1 from infinity to its location \vec{r}_1 . The work done to move the charge q_1 from infinity to its location \vec{r}_1 is $W_1=0$.
 - (ii) Let us move the charge q_2 from infinity to its location \vec{r}_2 . The work done to move the charge q_2 from infinity to its location \vec{r}_2 is

$$W_2 = q_2 [V_1(\vec{r}_2)]$$
 where $V_1(\vec{r}_2)$ is the potential due to q_1 .

$$=q_2\left[\frac{1}{4\pi\varepsilon_0}\frac{q_1}{\iota_{12}}\right] \qquad \qquad =\frac{1}{4\pi\varepsilon_0}\frac{q_1q_2}{\iota_{12}}$$

(iii) Let us move the charge q_3 from infinity to its location \vec{r}_3 . The work done to move the charge q_3 from infinity to its location \vec{r}_3 is

$$W_3 = q_3 \left[V_{1,2}(\vec{r_3}) \right]$$
 where $V_{1,2}(\vec{r_3})$ is the potential due to carges q_1 and q_2 .

$$= q_3 \left[\frac{1}{4\pi\varepsilon_0} \frac{q_1}{\iota_{13}} + \frac{1}{4\pi\varepsilon_0} \frac{q_2}{\iota_{23}} \right] = \frac{1}{4\pi\varepsilon_0} \frac{q_1q_3}{\iota_{13}} + \frac{1}{4\pi\varepsilon_0} \frac{q_2q_3}{\iota_{23}}$$

Figure Ww-3

Electric Potential Energy

Electric Potential Energy

• Therefore, the total work necessary to assemble the first three charges is $W = W_1 + W_2 + W_3$ and is equal to the potential energy U.

$$\therefore U = W = 0 + \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{t_{12}} + \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_3}{t_{13}} + \frac{1}{4\pi\varepsilon_0} \frac{q_2 q_3}{t_{23}} = \frac{1}{4\pi\varepsilon_0} \left[\frac{q_1 q_2}{t_{12}} + \frac{q_1 q_3}{t_{13}} + \frac{q_2 q_3}{t_{23}} \right]$$

$$= \frac{1}{2} \times \frac{1}{4\pi\varepsilon_0} \sum_{i=1}^3 \sum_{\substack{j=1\\j\neq i}}^3 \frac{q_i q_j}{t_{ij}}$$

• For a system of *n* - point charges, we have

$$U = \frac{1}{2} \times \frac{1}{4\pi\varepsilon_0} \sum_{i=1}^{n} \sum_{\substack{j=1 \ j\neq i}}^{n} \frac{q_i q_j}{t_{ij}}$$

$$= \frac{1}{2} \sum_{i=1}^{n} q_i \left(\frac{1}{4\pi\varepsilon_0} \sum_{\substack{j=1 \ j\neq i}}^{n} \frac{q_j}{t_{ij}} \right)$$

$$\therefore U = \frac{1}{2} \sum_{i=1}^{n} q_i V(\vec{\mathbf{r}}_i)$$
where $V(\vec{\mathbf{r}}_i) = \frac{1}{4\pi\varepsilon_0} \sum_{\substack{j=1 \ j\neq i}}^{n} \frac{q_j}{t_{ij}}$ is the potential at point $\vec{\mathbf{r}}_i$ (the postion of \mathbf{q}_i) due to all other charges.

Electric Potential Energy

The Energy of Continuous Charge Distribution

• The total work necessary to assemble the n - point charges is given by

where $V(\vec{\mathbf{r}}_i)$ is the potential at point $\vec{\mathbf{r}}_i$ (the postion of \mathbf{q}_i) due to all other charges.

• For a volume charge density ρ , Eq. (1) becomes

$$W = \frac{1}{2} \int \rho \ V d\tau$$

$$= \frac{1}{2} \int \left(\varepsilon_0 \nabla \cdot \vec{E} \right) \ V d\tau$$

$$= \frac{\varepsilon_0}{2} \int V (\nabla \cdot \vec{E}) \ d\tau$$

$$= \frac{\varepsilon_0}{2} \left[-\int (\nabla V) \cdot \vec{E} \ d\tau + \int \nabla \cdot (V \vec{E}) \ d\tau \right]$$

$$= \frac{\varepsilon_0}{2} \left[\int \vec{E} \cdot \vec{E} \ d\tau + \oint_S (V \vec{E}) \cdot d\vec{a} \right]$$

$$= \frac{\varepsilon_0}{2} \left[\int E^2 d\tau + \oint_S (V \vec{E}) \cdot d\vec{a} \right]$$

$$= \frac{\varepsilon_0}{2} \left[\int E^2 d\tau + \oint_S (V \vec{E}) \cdot d\vec{a} \right]$$

$$= \frac{\varepsilon_0}{2} \left[\int E^2 d\tau + \oint_S (V \vec{E}) \cdot d\vec{a} \right]$$

$$= \frac{\varepsilon_0}{2} \left[\int E^2 d\tau + \oint_S (V \vec{E}) \cdot d\vec{a} \right]$$

When the integration is taken over all space, the surface integral goes to zero.

$$W = \frac{\varepsilon_0}{2} \int_{\text{all space}} E^2 d\tau = \int_{\text{all space}} u_E \ d\tau$$

where
$$u_E = \frac{\mathcal{E}_0}{2} E^2$$

Energy Density

Work and Energy in Electrostatics

Notes:

• The work done to move a charge Q from point a to point b: W = Q[V(b) - V(a)]

- The work done to move a charge Q from ∞ to point b: W = Q[V(a)]
- The energy of a continuous charge distribution:

$$W = \frac{\mathcal{E}_0}{2} \int_{all \text{ space}} E^2 d\tau = \int_{all \text{ space}} u_E \ d\tau$$

Energy density, $u_E = \frac{\varepsilon_0}{2} E^2 \rightarrow \text{energy per unit volume} \left[\text{Unit of } u_E \rightarrow Jm^{-3} \right]$

• The electrostatic potential energy of configurations of three charges q_1, q_2 and q_3 at locations $\vec{r_1}$, $\vec{r_2}$ and $\vec{r_3}$ respectively:

$$U = \frac{1}{4\pi\varepsilon_0} \left[\frac{q_1 q_2}{t_{12}} + \frac{q_1 q_3}{t_{13}} + \frac{q_2 q_3}{t_{23}} \right]$$

Problem

Notes:

- (a) Three charges are situated at the corners of a square (side), as shown in Figure P_p -1. How much work does it take to bring in another charge, +q, from far away and place it in the fourth corner?
- (b) How much work does it take to assemble the whole configuration of four charges?

Hint:

(a)
$$W_4 = qV$$

$$= (+q) \left[\frac{1}{4\pi\varepsilon_0} \left\{ \frac{-q}{a} + \frac{q}{a\sqrt{2}} + \frac{-q}{a} \right\} \right]$$

$$= \frac{1}{4\pi\varepsilon_0} \frac{q^2}{a} \left[-2 + \frac{1}{\sqrt{2}} \right]$$

$$V = \frac{1}{4\pi\varepsilon_0} \left(\frac{q_1}{r_{14}} + \frac{q_2}{r_{24}} + \frac{q_3}{r_{34}} \right)$$

$$W = U = \frac{1}{4\pi\varepsilon_0} \left[\frac{q_1q_2}{r_{12}} + \frac{q_1q_3}{r_{13}} + \frac{q_1q_4}{r_{14}} + \frac{q_2q_3}{r_{23}} + \frac{q_2q_4}{r_{24}} + \frac{q_3q_4}{r_{34}} \right]$$

(b)
$$W = \frac{1}{4\pi\varepsilon_0} \left[\frac{-q^2}{a} + \frac{q^2}{a\sqrt{2}} + \frac{-q^2}{a} + \frac{-q^2}{a} + \frac{q^2}{a\sqrt{2}} + \frac{-q^2}{a} \right]$$
$$= 2\frac{1}{4\pi\varepsilon_0} \frac{q^2}{a} \left[-2 + \frac{1}{\sqrt{2}} \right]$$

Problem

Notes:

(a) Find the energy of a uniformly charged spherical shell of total charge q and radius R.

Solution:

For a uniformly charged spherical shell

Inside

$$E = 0$$

Outside

$$E = \frac{1}{4\pi\varepsilon_0} \frac{\mathbf{q}}{r^2}$$

Therefore

$$W_{tot} = \frac{\varepsilon_0}{2} \int_{all \text{ space}} E^2 d\tau = \frac{\varepsilon_0}{2} \int_{outside} \left[\frac{1}{4\pi\varepsilon_0} \frac{q}{r^2} \right]^2 \left(r^2 \sin\theta dr d\theta d\phi \right)$$

$$= \frac{\varepsilon_0}{2} \frac{1}{\left(4\pi\varepsilon_0 \right)^2} q^2 \left[\left\{ \int_R^{\infty} \frac{1}{r^2} dr \right\} \left\{ \int_0^{\pi} \sin\theta d\theta \right\} \left\{ \int_0^{2\pi} d\phi \right\} \right]$$

$$= \frac{\varepsilon_0}{2} \frac{1}{\left(4\pi\varepsilon_0 \right)^2} q^2 (2) (2\pi) \left[\int_R^{\infty} \frac{1}{r^2} dr \right]$$

$$\therefore W_{tot} = \frac{1}{4\pi\varepsilon_0} \frac{q^2}{2R}$$

Problem

Notes:

(a) Find the energy stored in a uniformly charged solid sphere of radius R and charge q.

For a uniformly charged solid sphere of radius R:

Inside
$$E_{\rm in} = \frac{1}{4\pi\varepsilon_0} \frac{qr}{R^3}$$

Outside
$$E_{\text{out}} = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2}$$

Therefore,

$$\begin{split} W_{tot} &= \frac{\mathcal{E}_0}{2} \int_{\text{all space}} E^2 d\tau &= \frac{\mathcal{E}_0}{2} \int_{\text{all space}} E^2 \left(r^2 \sin \theta dr d\theta d\phi \right) \\ &= \frac{\mathcal{E}_0}{2} \left[\left\{ \int_0^\infty E^2 r^2 dr \right\} \left\{ \int_0^\pi \sin \theta d\theta \right\} \left\{ \int_0^{2\pi} d\phi \right\} \right] \\ &= \frac{\mathcal{E}_0}{2} \left(4\pi \right) \left[\int_0^R (E_{\text{in}})^2 r^2 dr + \int_R^\infty (E_{\text{out}})^2 r^2 dr \right] \\ &= 2\pi \mathcal{E}_0 \left[\int_0^R \left(\frac{1}{4\pi \mathcal{E}_0} \frac{qr}{R^3} \right)^2 r^2 dr + \int_R^\infty \left(\frac{1}{4\pi \mathcal{E}_0} \frac{q}{r^2} \right)^2 r^2 dr \right] \\ &= 2\pi \mathcal{E}_0 \left(\frac{1}{4\pi \mathcal{E}_0} q \right)^2 \left[\frac{1}{R^6} \int_0^R r^4 dr + \int_R^\infty \frac{1}{r^2} dr \right] = \frac{1}{4\pi \mathcal{E}_0} \frac{q^2}{2} \left[\frac{1}{R^6} \frac{R^5}{5} + \frac{1}{R} \right] \end{split}$$

$$\therefore W_{tot} = \frac{6}{5} \left[\frac{1}{4\pi\varepsilon_0} \frac{q^2}{2R} \right]$$

Conductors and Insulators

Conductors

- **Conductors** are substances, which contain large numbers of essentially free charge carriers.
- The charge carriers are free to wander throughout the conducting material; they respond to almost infinitesimal electric fields, and they continue to move as long as they experience a field.

Insulators

- **Insulators** (Dielectrics) are substances in which all charged particles are bound rather strongly to constituent molecules.
- The charged particles may shift their positions slightly in response to an electric field, but they do not leave the vicinity of their molecules.

Perfect Conductor

- A **Perfect** conductor is a material containing an *unlimited* supply of completely free charges.
- In real life there are no perfect conductors, but many substances come amazingly close.

Basic Electrostatic Properties

• Electric field E = 0, inside a conductor

• Volume charge density $\rho = 0$ inside a conductor

From Gauss's law:
$$\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$$

 $\vec{E} = 0$ inside a conductor $\Rightarrow \rho = 0$ inside a conductor.

- Any net charge resides on the surface.
- $ec{E}$ is perpendicular to the surface, just outside a conductor.
- A conductor is an equipotential.

For any two points within (or at the surface of) a given conductor, $V(a)-V(b)=-\int_{a}^{b} \vec{E} \cdot d\vec{l} = 0$

$$\Rightarrow V(a) = V(b)$$

Questions

Notes:

• If E and V are electric field and electric potential at the midpoint of two equal and opposite point charges, then $E \neq 0$, V = 0.

• A thin spherical conducting shell of radius R has a charge q.Another charge Q is placed at the centre of the shell. The electrostatic potential at a point p at a distance from the centre of the shell is

$$V = V_1 + V_2 = \frac{1}{4\pi\varepsilon_0} \frac{Q}{R/2} + \frac{1}{4\pi\varepsilon_0} \frac{q}{R}$$

• The work done in displacing a charge 2C through 0.5m on an equipotential surface is zero.

• The electrostatic potential energy of configuration of four charges +q,-2q,-q and +2q placed at four corners A, B, C and D of a square of side a is -1 $5a^2$

 $U = -\frac{1}{4\pi\varepsilon_0} \left[\frac{5q^2}{a\sqrt{2}} \right].$

• The electrostatic potential energy of configuration of three charges +2e,-e and -2e placed at three corners A, B and C of a equilateral triangle of side ' I' is

$$U = -\frac{e^2}{\pi \varepsilon_0 l}$$

Text Books & References

- I. David J. Griffith, Introduction to Electrodynamics
- 2. R.A. Serway and J.W. Jewett, Physics for Scientist and Engineers with Modern Physics
- 3. Halliday and Resnick, Fundamental of Physics
- 4. D. Halliday, R. Resnick, and K. Krane, Physics, Volume 2, Fourth Edition

