Machine Learning in Python

Outline

- Foundational Machine Learning Concepts
- Machine Learning!
 - Decision Trees
 - Decision Tree Exercise
 - Random Forests
- Questions

What is Machine Learning (ML)?

- Computers "learning" from data
- "Machine learning is an application of artificial intelligence (AI) that provides systems the ability to automatically learn and improve from experience without being explicitly programmed."
 - https://expertsystem.com/machine-learning-definition/

Why use Machine Learning?

- You don't have to explicitly program something
 - ML is powered by data not instructions
- When problems are much too complex to be explicitly programmed
- When the environment changes over time

Traditional Programs vs. Machine Learning

Applications of Machine Learning

Stephen King 13 mutual friends

Al vs. ML vs. DL

Artificial Intelligence

Any technique which enables computers to mimic human behavior.

Machine Learning

Subset of AI techniques which use statistical methods to enable machines to improve with experiences.

Deep Learning

Subset of ML which make the computation of multi-layer neural networks feasible.

https://rapidminer.com/blog/artificial-intelligence-machine-learning-deep-learning/

ML Terminology

- Training Data: the examples that the system uses to learn
- Features: The input "variables"
- Labels: The value(s) you're trying to predict given the features
- Algorithm: The model that is trained and used to predict the label(s)

ML Process

Machine Learning Process at High Level

HOLDOUT STRATEGY TRAIN VALIDATION TEST VALIDATION METRIC COMPUTE METRIC ON TRAIN A MODEL **VALIDATION SET TEST METRIC** (can compare with

Split your data

Types of ML

Types of Machine Learning

- Supervised Learning
 - Labeled Training Data ("right" answer)
 - Predict outcome
 - Ex: Classification, Regression
- Unsupervised Learning
 - Unlabeled Training Data (no "right" answer, or "right" answer is unknown)
 - Find structure and patterns in data
 - Ex: Clustering, Anomaly Detection
- Reinforcement Learning
 - Machine Agent explores environment
 - Learning is based on rewards and punishments

Common ML Tasks

- Supervised:
 - Classification
 - Regression

- Unsupervised:
 - Clustering
 - Anomaly Detection
 - Association Rule Learning

Common Supervised ML Tasks: Classification vs. Regression

Common Unsupervised ML Tasks: Clustering

Common Unsupervised ML Tasks: Anomaly Detection

Common Unsupervised ML Tasks: Association Rule Mining

ID	Items			
1	{Bread, Milk}			
2	{Bread, Diapers, Beer, Eggs}			market basket
3	{Milk, Diapers, Beer, Cola}			transactions
4	{Bread, Milk, Diapers, Beer}			
5	{Bread, Milk, Diapers, Cola}			
•••				
{Diapers, Beer}		Example of a frequent item	set	
${Diapers} \rightarrow {Beer}$		Example of an association re	ule	

Decision Trees

Decision Trees

- Series of Q's
- Versatile: Classification or Regression
- Powerful: Can fix complex datasets
- "White-box"
- Few assumptions about training data
- Backbone of Random Forests

ENGINEERING FLOW CHART

reddit.com/r/thegrandtour/comments/5yl6el/engineers flow chart/

Ensemble Learning

- A group of predictors
 - AKA training more than one model and combing the predictions of them

Random Forests (RF)

- Each decision tree in the RF:
 - has random subset of features
 - uses random set of the training data points
- Final prediction is a majority vote for the predicted class

Random Forest Simplified

https://medium.com/@williamkoehrsen/random-forest-simple-explanation-377895a60d2d

Further Resources

- Online Classes:
 - o <u>Coursera</u>
- Books:
 - <u>Data Science for Business Foster Provost and Tom Fawcett</u>
 - Hands-On Machine Learning with Scikit-Learn and TensorFlow Aurélien Géro
- Internet:
 - o Youtube: Siraj Raval
- Classes at OSU (have prereqs):
 - CSE 5243: Introduction to Data Mining (3 cr hrs)
 - o CSE 3521: Survey of Artificial Intelligence I: Basic Techniques (3 cr hrs)
 - CSE 5523: Machine Learning and Statistical Pattern Recognition (3 cr hrs)
 - CSE 5524: Computer Vision for Human-Computer Interaction (3 cr hrs)
 - CSE 5526: Introduction to Neural Networks (3 cr hrs)
- Projects:
 - Kaggle

Questions?

• Any Questions?

- Leo Glowacki
- Message me on Slack!
- o <u>www.LeoGlowacki.com</u>

