

SENIORSERTIFIKAAT-EKSAMEN/ NASIONALE SENIORSERTIFIKAAT-EKSAMEN

ELEKTRIESE TEGNOLOGIE: KRAGSTELSELS

2022

PUNTE: 200

TYD: 3 uur

Hierdie vraestel bestaan uit 18 bladsye en 'n 2 bladsy-formuleblad.

INSTRUKSIES EN INLIGTING

- 1. Hierdie vraestel bestaan uit SEWE vrae.
- 2. Beantwoord AL die vrae.
- 3. Sketse en diagramme moet groot, netjies en VOLLEDIG BENOEM wees.
- 4. Toon ALLE berekeninge en rond antwoorde korrek tot TWEE desimale plekke af.
- 5. Nommer die antwoorde korrek volgens die nommeringstelsel wat in hierdie vraestel gebruik is.
- 6. Jy mag 'n nieprogrammeerbare sakrekenaar gebruik.
- 7. Berekeninge moet die volgende insluit:
 - 7.1 Formules en manipulasies waar nodig
 - 7.2 Korrekte vervanging van waardes
 - 7.3 Korrekte antwoorde en relevante eenhede waar van toepassing
- 8. 'n Formuleblad is aan die einde van hierdie vraestel aangeheg.
- 9. Skryf netjies en leesbaar.

VRAAG 1: MEERVOUDIGEKEUSE-VRAE

Verskeie opsies word as moontlike antwoorde op die volgende vrae gegee. Kies die antwoord en skryf slegs die letter (A-D) langs die vraagnommers (1.1.1 tot 1.1.15) in die ANTWOORDEBOEK neer, bv. 1.16 D.

- 1.1 Die laag/lae van die vel wat deur 'n derdegraadse brandwond aangetas word, is ...
 - die buitenste laag. Α
 - В die tweede laag.
 - C al die lae van die vel.
 - D Geeneen van die bogenoemde nie

1.2 Die drywingsfaktor in 'n RLC-seriekring sal nalopend wees indien V_L ...

Α

- groter as V_C is. kleiner as V_C is. В
- C gelyk aan V_C is.
- D Geeneen van die bogenoemde nie

(1)

(1)

- 1.3 'n Kring het 'n weerstand van R ohm, 'n induktansie van L henry, 'n kapasitansie van C farad en is in serie verbind. Die arbeidsfaktor van die kring sal eenheidswaarde (1) bereik wanneer ...
 - X_L kleiner as X_C is. Α
 - X_L groter as X_C is. В
 - C $X_L = X_C$.

D R = 0. (1)

- 1.4 Watter EEN van die volgende toestande kom in 'n resonante parallelle RLCkring voor?
 - Α Die impedansie is minimum.
 - В Die impedansie is maksimum.
 - C Die totale stroomvloei is maksimum.
 - Die drywingsfaktor is nalopend.

(1)

- 1.5 Noem die tipe transformator wat direk na opwekking gebruik word met verwysing na opwekking en verspreiding van elektrisiteit:
 - Α Verlagingstransformator
 - Verhogingstransformator В
 - Outotransformator C
 - D Eenfasetransformator

(1)

1.6	Nadat drywingsfaktor-verbeteringkapasitors in parallel met 'n las gekoppel is, het die drywingsfaktor van 0,6 tot 0,9 verhoog. Indien die las dieselfde bly, sal die stroomvloei wat vanaf die toevoer getrek word		
	A B C D	toeneem. afneem. dieselfde bly. verdubbel.	(1)
1.7	Drywingsfaktor is die		
	A B	ware drywing wat deur die las verbruik word. drywing wat deur 'n suiwer induktiewe of suiwer kapasitiewe las verbruik word.	
	C D	produk van lynspanning en lynstroom. verhouding van ware drywing tot skyndrywing.	(1)
1.8	'n V	erkoelingsmetode wat vir 'n droë tipe transformator gebruik word, is	
	A B C D	geforseerde lug. geforseerde olie, geforseerde lug. geforseerde olie, geforseerde water. natuurlike olie.	(1)
1.9		oordrag van energie vanaf die primêre wikkeling na die sekondêre eling in transformators vind deur plaas.	
	A B C D	self-induksie 'n elektriese verbinding wedersydse induksie 'n optiese verbinding	(1)
1.10		minimum toelaatbare waarde vir 'n isolasieweerstandstoets tussen elinge is	
	A B C D	1 kΩ. 10 kΩ. 100 kΩ. 1 MΩ.	(1)
1.11	Die doel van 'n nulspanningsrelê is om		
	A B	'n motor in staat te stel om na 'n kragonderbreking outomaties aan te skakel. die spanning van 'n driefasemotor te verhoog.	
	C	te verhoed dat 'n motor outomaties aanskakel nadat 'n kragonderbreking herstel is.	
	D	die hoeveelheid stroom wat deur 'n motor getrek word, te monitor.	(1)

1.12	Die aansitdrukknop wat in 'n motorbeheerkring gebruik word, is		
	A B C D	normaal oop. oop-relêkontak. normaal toe. geslote-relêkontak.	(1)
1.13	is die masjientaal wat op 'n rekenaar geïnstalleer is of in 'n PLB beheerprogram ingeskryf is.		
	A B C D	Hardeware Sagteware Fermware Elektronika	(1)
1.14	Watter gedeelte van die PLB se aftastingsiklus voer die geprogrammeerde instruksies uit?		
	A B C D	Insetaftasting Prosesaftatsting Uitsetaftasting Hardeware-aftasting	(1)
1.15	'n Verstelbare spoedbeheerder waar die toevoerspanning wat op die mo toegepas word direk aan die frekwensie verwant is, word 'n genoem.		
	A B C D	V/Hz-drywer frekwensiedrywer vektordrywer Al die bogenoemde	(1) [15]

VRAAG 2: BEROEPSGESONDHEID EN VEILIGHEID

2.1	Verduidelik die term <i>masjinerie</i> met verwysing na die Wet op Beroepsgesondheid en Veiligheid, 1993 (Wet 85 van 1993).	(2)			
2.2	Verduidelik die term kritieke noodgeval met verwysing na noodgevalle.				
2.3	Noem TWEE stappe wat jy moet neem wanneer jy 'n brand in 'n elektriese werkswinkel ontdek.				
2.4	Noem die belangrikheid van die dra van 'n gesigmasker in die werkswinkel.	(2)			
2.5	Noem TWEE omgewingsoorwegings wanneer daar tydens die vervaardigingsproses van etskringborde met chemikalieë gewerk word.	(2) [10]			

VRAAG 3: RLC-KRINGE

- 3.1 Definieer fasordiagram met verwysing na RLC-kringe wat oor 'n wisselspanningstoevoer gekoppel is. (2)
- 3.2 FIGUUR 3.2 hieronder toon 'n RLC-seriekring wat uit 'n resistor met 'n weerstand van 10 Ω , 'n induktor met 'n induktiewe reaktansie van 14 Ω en 'n kapasitor met 'n kapasitiewe reaktansie van 8 Ω bestaan wat almal oor 'n wisselstroomtoevoer van 100 Hz verbind is.

FIGUUR 3.2: RLC-SERIEKRING

Gegee:

 $\begin{array}{lll} R & = & 10 \ \Omega \\ X_C & = & 8 \ \Omega \\ X_L & = & 14 \ \Omega \\ V_R & = & 150 \ V \\ V_L & = & 180 \ V \\ V_C & = & 90 \ V \\ f & = & 100 \ Hz \end{array}$

- 3.2.1 Bereken die totale toevoerspanning wat op die kring toegepas word. (3)
- 3.2.2 Bespreek of die drywingsfaktor voorlopend of nalopend is. (3)

3.3 Verwys na FIGUUR 3.3 hieronder en beantwoord die vrae wat volg.

FIGUUR 3.3: PARALLELLE RLC-KRING

Gegee:

 $I_C = 4 A$ $I_L = 6 A$ $I_R = 4 A$

3.3.1 Bereken die totale stroomvloei. (3)

3.3.2 Bereken die fasehoek. (3)

3.3.3 Teken die fasordiagram vir FIGUUR 3.3. (4)

3.3.4 Motiveer met 'n rede of die kring oorwegend kapasitief of induktief is. (2)

3.4 Verwys na FIGUUR 3.4 hieronder en beantwoord die vrae wat volg.

FIGUUR 3.4: RESONANTE RLC-KRING

- 3.4.1 Bereken die kwaliteitsfaktor van die kring.
- 3.4.2 Bereken die bandwydte. (3)
- 3.4.3 Bereken die waarde van die kapasitor. (3)
- 3.4.4 Definieer die term *selektiwiteit* met verwysing na resonante kringe. (2)
- 3.5 Verwys na FIGUUR 3.5 hieronder en beantwoord die vrae wat volg.

FIGUUR 3.5: STROOMVLOEI, SPANNING EN DRYWINGGOLFVORMS

- 3.5.1 Verklaar met 'n rede die tipe komponent wat die golfvorm in FIGUUR 3.5 (A) veroorsaak.
- 3.5.2 Identifiseer die komponent waaroor die drywing in FIGUUR 3.5 **(B)** versprei word. Motiveer jou antwoord.

Kopiereg voorbehou Blaai om asseblief

(2) **[35]**

(2)

(3)

VRAAG 4: DRIEFASE-WS-OPWEKKING

4.1 Verwys na FIGUUR 4.1 hieronder en beantwoord die vrae wat volg.

FIGUUR 4.1: DRIEFASEGOLFVORM

- 4.1.1 Skryf die tipiese lynspanningswaarde van 'n driefasetoevoer vir die verbruiker neer. (1)
- 4.1.2 Skryf die standaard internasionale kleurkode vir L_1 , L_2 en L_3 neer. (3)
- 4.1.3 Teken 'n fasordiagram vir die golfvorms in FIGUUR 4.1. (5)
- 4.2 Noem die DRIE netwerkstadiums van die nasionale kragnetwerk in die KORREKTE volgorde. (3)
- 4.3 Verklaar hoe die volgende in 'n ster-gekoppelde stelsel gemeet word:
 - 4.3.1 Lynspanning (1)
 - 4.3.2 Fasespanning (1)
- 4.4 Verduidelik *reaktiewe drywing* in 'n WS-stelsel. (2)

4.5 'n Driefasegenerator verskaf krag aan 'n ster-gekoppelde las. Die fasespanning van die las is 230 V met 'n lynstroom van 35 ampère. Die fasehoek is 18°.

Gegee:

 $V_f = 230 \text{ V}$ $I_L = 35 \text{ A}$ $\theta = 18^0$

Bereken die volgende:

- 4.5.1 Die lynspanning (3)
- 4.5.2 Skyndrywing (3)
- 4.5.3 Reaktiewe drywing (3)
- 4.5.4 Ware drywing (3)
- 4.6 Verwys na FIGUUR 4.6 hieronder en beantwoord die vrae wat volg. Die lesings op die wattmeters is $W_1 = 960 \text{ W}$ en $W_2 = 870 \text{ W}$.

FIGUUR 4.6: TWEEWATTMETERMETODE

Gegee:

 $W_1 = 960 W$ $W_2 = 870 W$

4.6.1 Identifiseer die volgende spoele:

- (a) Spoel 1 van \mathbf{W}_1 (1)
- (b) Spoel 2 van \mathbf{W}_2 (1)
- 4.6.2 Noem TWEE voordele van die gebruik van hierdie wattmetermetode. (2)
- 4.6.3 Bereken die totale drywing van die stelsel.

(3) **[35]**

VRAAG 5: DRIEFASETRANSFORMATORS

- 5.1 Noem TWEE tipes transformatorkernkonstruksies wat in driefasetransformators gebruik word. (2)
- 5.2 Verduidelik waarom diëlektriese olie in 'n transformator gebruik word. (2)
- 5.3 Noem waar die Buchholz-relê in 'n olieverkoelde transformator geleë is. (2)
- 5.4 Teken 'n driefase-delta-ster-verlagingstransformatoreenheid deur drie identiese enkelfasetransformators te gebruik. (7)
- 5.5 'n 10 kVA-driefasetransformator het 'n koperverlies van 300 W en 'r kernverlies van 50 W. Die stelsel werk teen 'n drywingsfaktor (d.f.) van 0,8.

Gegee:

koperverlies = 300 W kernverlies = 50 W d.f. = 0,8 S = 10 kVA

Bereken die volgende:

- 5.5.1 Uitsetdrywing (3)
- 5.5.2 Rendement (3)

5.6 FIGUUR 5.6 hieronder toon 'n driefase-delta-ster-transformator.

FIGUUR 5.6: DRIEFASETRANSFORMATOR

Gegee:

 $V_{L1} = 6 \text{ kV}$ $I_{L1} = 2 \text{ A}$ $V_{f2} = 240 \text{ V}$ P = 18 kW

Bereken die volgende:

5.6.1 Aanslag van die transformator (skyndrywing)

5.6.2 Drywingsfaktor van die las

5.6.3 Primêre fasespanning

(2)

5.6.4 Windingsverhouding

(3)

[30]

(2)

(3)

VRAAG 6: DRIEFASEMOTORS EN -AANSITTERS

- 6.1 Noem TWEE kontinuïteitstoetse wat op 'n driefasemotor uitgevoer kan word. (2)
- 6.2 Verduidelik die term *neutralisering* ('cogging') met verwysing na induksiemotors. (2)
- 6.3 Noem TWEE voordele van kourotor-tipe induksiemotors bo draadwikkelingen sleepring-induksiemotors. (2)
- 6.4 Noem TWEE toepassings van kourotor-induksiemotors waar konstante spoed en wringkraglewering noodsaaklik is.
- 6.5 Benoem punte **A**, **B** en **C** op die kenkromme in FIGUUR 6.5 hieronder.

FIGUUR 6.5: SPOED-VS-WRINGKRAGKENKROMME

6.6 Onderskei tussen *sinchrone spoed* en *rotorspoed*. (2)

6.7 Die rotor van 'n driefase-induksiemotor met 3 poolpare per fase roteer teen 950 r/min wanneer dit aan 'n 380 V-/50 Hz-toevoer verbind is.

Gegee:

 $V_L = 380 V$

f = 50 Hz

 $n_r = 950 \text{ r/min}$

p = 3

Bereken die volgende:

6.7.1 Sinchrone spoed van die motor (3)

6.7.2 Persentasie glip (3)

6.8 Die insetdrywing na 'n driefasemotor is 5 kW. Die verliese is bereken op 600 W.

6.8.1 Noem TWEE tipes verliese, behalwe koperverliese, wat die rendement van 'n induksiemotor beïnvloed. (2)

6.8.2 Bereken die rendement van die motor. (3)

6.8.3 Bereken die uitsetdrywing van die motor. (3)

6.9 Die kring in FIGUUR 6.9 hieronder word gebruik om TWEE driefasemotors te beheer. Beantwoord die vrae wat volg.

FIGUUR 6.9: OUTOMATIESE SEKWENSIËLE AANSITTER-BEHEERKRING

6.9.1 Identifiseer komponent T. (1)
6.9.2 Verduidelik die doel daarvan om TWEE oorbelastingseenhede in die kring te hê. (2)
6.9.3 Identifiseer die fout in die kring. (1)
6.9.4 Beskryf hoe hierdie fout die werking van die kring beïnvloed. (4)
[35]

(6)

VRAAG 7: PROGRAMMEERBARE LOGIKABEHEERDERS (PLB's)

- 7.1 Verduidelik die funksie van die sentrale verwerkingseenheid (SVE) met verwysing na die hardeware van 'n PLB. (3)
- 7.2 Noem EEN voordeel van sagte bedradingstelsels. (1)
- 7.3 Beantwoord die volgende vrae met verwysing na tydskakelaars in PLB-programmering.
 - 7.3.1 Noem die doel van 'n tydskakelaarfunksie. (2)
 - 7.3.2 Verduidelik die verskil tussen 'n *AAN-vertraag-tydskakelaar* en 'n *AF-vertraag-tydskakelaar*. (4)
- 7.4 Beantwoord die volgende vrae met verwysing na sensors as insettoestelle van 'n PLB.
 - 7.4.1 Noem TWEE tipes sensors behalve 'n ligsensor. (2)
 - 7.4.2 Noem TWEE toepassings van 'n ligsensor. (2)
- 7.5 FIGUUR 7.5 hieronder toon die beheerkring van 'n direk-op-lyn(DOL)-aansitter. Ontwerp 'n PLB-leerlogikaprogram wat dieselfde funksie sal verrig.

FIGUUR 7.5: BEHEERKRING VAN 'N DIREK-OP-LYN(DOL)-AANSITTER

- 7.6 Beantwoord die volgende vrae met verwysing na regeneratiewe remming.
 - 7.6.1 Beskryf regeneratiewe energie.

(3)

7.6.2 Maak 'n lys van DRIE toepassings waar regeneratiewe remming gebruik word.

(3)

- 7.7 Beantwoord die volgende vrae met verwysing na verstelbare spoedbeheerders (VSB's).
 - 7.7.1 Noem TWEE hoofonderdele van die VSB, behalwe die omkeerder.
 - (2)
 - 7.7.2 Noem TWEE voordele van die gebruik van VSB's met pompe, waaiers en ander toerusting.

(2)

7.8 FIGUUR 7.8 hieronder toon die omkeerderstadium van 'n VSB wat **IGBT-transistors** halfgeleierskakelaars aebruik driefaseas om 'n deltagekoppelde motor aan te dryf. Beantwoord die vrae wat volg.

FIGUUR 7.8: OMKEERSTADIUM VAN 'N VSB

- 7.8.1 Identifiseer die skakelaars wat gebruik word om elke fase van die motor te bekrag.
 - (2)
- Verduidelik hoe die frekwensie na die motor beheer word.
- 7.8.3 Verduidelik hoe die GS wat aan die omkeerstadium verskaf word, vir fase 1 na WS verander word.

(5) [40]

(3)

TOTAAL: 200

7.8.2

FORMULEBLAD

RLC-KRINGE FORMULE	DRIEFASE-WS-OPWEKKING
$P = V \times I \times Cos \theta$	STER STER
$X_L = 2\pi fL$	$V_1 = \sqrt{3} V_f$
	$V_f = I_f \times Z_f$
$X_{C} = \frac{1}{2\pi fC}$	I _L = I _f
$f_r = \frac{1}{2\pi\sqrt{LC}}$ OF $f_r = \frac{f_1 + f_2}{2}$	DELTA
$BW = \frac{f_{\Gamma}}{Q} \qquad \qquad \mathbf{OF} \qquad BW = f_2 - f_1$	$V_L = V_f$
SERIE	$V_f = I_f \times Z_f$
$V_R = IR$	$I_L = \sqrt{3} I_f$
$V_L = IX_L$	DRYWING
$V_C = IX_C$	$S(P_{skyn}) = \sqrt{3} \times V_L \times I_L$
$I_{T} = \frac{V_{T}}{Z}$ OF $I_{T} = I_{R} = I_{C} = I_{L}$	$Q(P_r) = \sqrt{3} \times V_L \times I_L \times Sin \ \theta$
$\int_{0}^{1} \frac{1}{Z} = \frac{1}$	$P = \sqrt{3} \times V_{L} \times I_{L} \times Cos \ \theta$
$Z = \sqrt{R^2 + (X_L - X_C)^2}$	$\cos \theta = \frac{P}{S}$
$V_{T} = \sqrt{V_{R}^{2} + (V_{L} - V_{C})^{2}}$ OF $V_{T} = IZ$	RENDEMENT
$\cos \theta = \frac{R}{Z}$ OF $\cos \theta = \frac{V_R}{V_T}$	$\eta = \frac{P_{uit}}{P_{in}} \times 100$
$Q = \frac{X_L}{R} = \frac{X_C}{R} = \frac{V_L}{V_T} = \frac{V_C}{V_T} = \frac{1}{R} \sqrt{\frac{L}{C}}$	TWEEWATTMETERMETODE
PARALLEL	$P_T = P_1 + P_2$
$V_T = V_R = V_C = V_L$	
$I_R = \frac{V_T}{R}$	$\tan \theta = \sqrt{3} \left(\frac{P_1 - P_2}{P_1 + P_2} \right)$
$I_{C} = \frac{V_{T}}{X_{C}}$	DRIEWATTMETERMETODE
$I_{L} = \frac{V_{T}}{X_{L}}$	$P_T = P_1 + P_2 + P_3$
$I_{T} = \sqrt{I_{R}^{2} + (I_{L} - I_{C})^{2}}$	
$Z = \frac{V_T}{I_T}$	
$\cos \theta = \frac{I_R}{I_T}$	
$Q = \frac{R}{X_L} = \frac{R}{X_C}$	

DRIEFASETRANSFORMATORS	DRIEFASEMOTORS EN -AANSITTERS
STER	STER
$V_1 = \sqrt{3} V_f$	$V_L = \sqrt{3} V_f$
$I_L = I_f$	$I_L = I_f$
DELTA	DELTA
$V_L = V_f$	$V_L = V_f$
$I_{L} = \sqrt{3} I_{f}$	$I_{L} = \sqrt{3} I_{f}$
DRYWING	DRYWING
$S(P_{skyn}) = \sqrt{3} \times V_L \times I_L$	$S(P_{skyn}) = \sqrt{3} \times V_L \times I_L$
$Q(P_r) = \sqrt{3} \times V_L \times I_L \times Sin \ \theta$	$Q(P_r) = \sqrt{3} \times V_L \times I_L \times Sin \ \theta$
$P = \sqrt{3} \times V_{L} \times I_{L} \times Cos \ \theta$	$P = \sqrt{3} \times V_{L} \times I_{L} \times Cos \theta$
$\cos \theta = \frac{P}{S}$	$P = \sqrt{3} \times V_{L} \times I_{L} \times Cos \ \theta \times \eta$
$\frac{V_{f(1)}}{V_{f(2)}} = \frac{N_1}{N_2} = \frac{I_{f(2)}}{I_{f(1)}}$	$\cos \theta = \frac{P}{S}$
Windingsverhouding: TR = $\frac{N_1}{N_2}$	RENDEMENT
$\eta = \frac{P_{uit}}{P_{uit} + verliese} \times 100$	$\eta = \frac{P_{in} - \text{verliese}}{P_{in}} \times 100$
	$\eta = \frac{P_{uit}}{P_{in}} \times 100$
	$n_s = \frac{60 \times f}{p}$
	Per Eenheid Glip = $\frac{n_s - n_r}{n_s}$
	$\% \text{ Glip} = \frac{n_s - n_r}{n_s} \times 100$
	Clin = n n

Glip = $n_s - n_r$