Break-even analysis

From the following particulars, calculate:

- (i) Break-even point in terms of sales value and in units.
- (ii) Number of units that must be sold to earn a profit of Rs. 90,000.

		7
Fixed Factory Overheads Cost		60,000
Fixed Selling Overheads Cost	1121 270	12,000
Variable Manufacturing Cost per unit		12
Variable Selling Cost per unit		3
Selling Price per unit		24

Solution:

(i) Break-even point =
$$\frac{\text{Fixed Cost}}{\text{Selling Price per unit- Variable Cost per unit}}$$

$$\text{Variable Cost per unit} = ₹ 12 + 3 = ₹ 15$$

$$\text{Total Fixed Cost} = ₹ 60,000 + 12,000 = ₹ 72,000$$

$$\text{B.E.P.} = \frac{72,000}{24 - 15} = 8,000 \text{ units}$$

$$\text{B.E.P. (in sales values)} = 8,000 \times 24 = ₹ 1,92,000$$
(ii) Number of units that must be sold to earn profit of ₹90,000
$$= \frac{\text{Fixed Cost + Profit}}{\text{Selling Price per unit - Variable Cost per unit}}$$

$$= \frac{72,000 + 90,000}{24 - 15} = \frac{1,62,000}{9} = 18,000 \text{ units.}$$

Beta company sells blouses in Washington, USA. Blouses are imported from Pakistan and are sold to customers in Washington at a profit. Salespersons are paid basic salary plus a decent commission of \$14 on each sale made by them. Selling price and expense data is given below:

\$	80.00	
-		
\$	36.00	
	14.00	
\$	50.00	
-		
\$ 1	60,000	
3	300,000	
1	140,000	
\$ 6	500,000	
	\$ 1 3 1	

Required:

- 1. Compute the break-even point in units and in dollars using the information given above.
- 2. What would be net operating income or loss if company sells 18,500 blouses in a year?
- 3. If the manager is paid a commission of \$6 blouse (in addition to the salesperson's commission), what will be the effect on company's break-even point?

Solution:

- (1) Calculation of break-even point:
- a. Equation method:

$$SP = VC + FC$$

\$80 = \$50 + \$600,000

\$80 - \$50 = \$600,000

\$30 = \$600,000

Q = \$600,000/\$30

Q = 20,000 blouses

20,000 blouses × \$80.00 per blouse = \$1,600,000

b. Contribution margin method:

Break-even point = Fixed expenses/Contribution margin per unit

- = \$600,000/\$30*
- = 20,000 blouses

20,000 blouses × \$80.00 per blouse = \$1,600,000

Contribution margin per unit *\$80 – \$50 (SP-VC)= \$30

2) Net operating income or loss if 18,500 blouses are sold in a year

Sales (18,500 blouses × \$80) Less variable expenses (18,500 blouses × \$50)	\$1,480,000	
		925,000
Contribution margin Less fixed expenses	\$	555,000 600,000
Net operating loss	\$	(45,000)

An alternative and simpler approach is given below:

Break-even sales	20,000 blouses
Actual sales	18,500 blouses
Sales short of break-even	1,500 blouses

Net operating loss = Sales short of break-even × Contribution margin per unit

= 1,500 blouses × \$30

= \$45,000

3) Break-even point if manager is also paid a commission of \$6 per blouse sold:

The payment of a commission of \$6 to manager will increase variable expenses and decrease contribution margin. Now the variable expenses will be \$56 (\$50 + \$6) per unit and contribution margin will be \$24 (\$80 - \$56) per unit.

a. Equation method:

$$Sp = VC + FC$$

 $$80 = $56 + $600,000$
 $$80 - $56 = $600,000$
 $$24 = $600,000$
 $Q = $600,000/$24$
 $Q = 25,000 \text{ blouses}$
 $25,000 \text{ blouses} \times $80.00 \text{ per blouse} = $2,000,000$

b. Contribution margin method:

Break-even point in units = Fixed expenses/Contribution margin per unit

\$600,000/\$24*

25,000 blouses

25,000 blouses × \$80.00 per blouse = \$2,000,000

*\$80 - \$56 = \$24