Notes on Boundary Representation

Birk Tjelmeland

April 18, 2023

1 Definitions

1.1 Spaces

We define a space S of n dimensions as a pure manifold of n dimensions A space S is a set of points of n dimensions with the following requierments:

• For any point $P_A \in \mathcal{S}$ and an arbitrary small distance d there exists

TODO: replace all of this stuff with a good external definition of a space with the properties we require. Metric space? Manifold?

A space S in n > 0 dimensions can be segmented into two parts by a subspace $\mathcal{B} < S$ of n-1 dimensions. A subspace $\mathcal{B} < S$ has a mapping $\sigma_{\mathcal{B}} : \mathcal{B} \to S$ that maps any point $P \in \mathcal{B}$ to a point $\sigma_{\mathcal{B}}(P) \in S$. For any point $P \in S$ and a subspace $\mathcal{B} < S$ we say that P can either be on the inside of \mathcal{B} , on the outside of \mathcal{B} . A space S in zero dimensions has a single subspace $\mathcal{B} = S$. Two distinct spaces S_A and S_B are either disjoint or they intersect. We say that two distinct spaces S_A and S_B intersect if there exists at least one point P in S_A that also exists in S_B . For two spaces S_A and S_B that intersect we define their intersection $S_A \cap S_B$ as the subspace \mathcal{B} such that for each point P in \mathcal{B} a coresponding point exists in both S_A and S_B . If the two spaces do not intersect we define their intersection as $S_A \cap S_B = \emptyset$.

A path P in a space S is a set of points an TODO: fix this definition. The endpoints of a path P TODO: depends on definition of path. A crossing $C_{\mathcal{B}}(P)$ of a path P through a subspace $\mathcal{B} < \mathcal{S}$ is a subpath of P that starts with a point on the outside of \mathcal{B} and ends with a point on the inside of \mathcal{B} and where all other points of $C_{\mathcal{B}}(P)$ is in \mathcal{B} . The crossing endpoints of a crossing $C_{\mathcal{B}}(P)$ are the endpoints of the subpath of $C_{\mathcal{B}}(P)$ that only contains points in \mathcal{B} .

A space in zero dimensions is called a *point*, space in one dimension is called a *curve*, while a space in two dimension is called a *surface*. In three dimensions we are usually only interested in the space \mathbb{R}^3 .

1.2 Regions

A region R of a space S is defined by a set of faces F(R). We write $R \subset S$. A face $f \in R(R)$ of a region $R \subset S$ is a region in the subspace S. A region partitions a space into two parts such that a point $P \in S$ is either *inside* or

outside R. We say that a path P crosses a region R if the path crosses the space S of R in such a way that at least on of the crossing endpoints of $C_S(P)$ are in R.

Definition 1.1 (Region). A region R is a set of faces F(R) that partitions a space S into two parts such that for any point $P \in S$, P is either inside or outside of R. A region has the following invariants:

- 1. A face $f \in F(R)$ of a region $R \subset \mathcal{S}$ is a region in a subspace $\mathcal{B} < \mathcal{S}$.
- 2. For any two points P_A and P_B and a region R, then $P_A \in R$ and $P_B \notin R$ if and only if all the first and last crossing of all paths between P_A and P_B through the faces of R is an *inside-out* crossing.

TODO: what are the invariants of a region?

If we We say that any path All faces a For all faces f in a region R of the subspace \mathcal{B} we require We write $P \in R$ if a point $P \in \mathcal{S}$ is inside R. We write the *empty region* as \varnothing . This region has no faces and contains no points. A connected region is a region R such that for any two points $P_a, P_b \in R$ there is a path from P_a to P_b entierly inside of R.

The intersection $R_A \cap R_B$ of two regions R_A and R_B is the region such that

$$\forall P \in R_A. \ P \in R_B \iff P \in (R_A \cap R_B).$$

If we have $R_A \cap R_B \neq \emptyset$ then we say that the regions R_A and R_B intersect.

Lemma 1.1. Given two regions R_A and R_B of the same space \mathcal{S} , the intersection $R_A \cap R_B$ is a region of the space \mathcal{S} .

Lemma 1.2. Given two regions R_A and R_B of the two spaces \mathcal{S}_A and \mathcal{S}_B , respectively, the intersection $R_A \cap R_B$ is a region of the space $\mathcal{S}_B \cap \mathcal{S}_B$.

Theorem 1.1. The intersection $R_A \cap R_B$ of the two regions

We say that two regions R_A and R_B connect

Given two regions R_A and R_B they can either be disjoint, they can intersect or they can connect. Given two regions R_A and R_B we define $R_A \cap R_B$ as their intersection. For two regions R_A and R_B of the same space \mathcal{S} we define their intersection $R_A \cap R_B$ as a the set of disjoint regions of \mathcal{S} such that $\forall P \in R_A$. $P \in R_B \iff (\exists R_C \in R_A \cap R_B. P \in R_C)$. For two regions R_A and R_A of seperate spaces \mathcal{S}_A and \mathcal{S}_B we define the intersection $R_A \cap R_B$ as a region in the subspace $\mathcal{S}_A \cap \mathcal{S}_B$. The region $R_A \cap R_B$ We say that two regions R_A and R_B intersect if $R_A \cap R_B \neq \emptyset$ We say that two regions R_A and R_B are disjoint if $R_A \cap R_B = \emptyset$ and $\forall f_A \in F(R_A), f_B \in F(R_B). f_A \cap f_B = \emptyset$. We say that two regions R_A and R_B connect if $R_A \cap R_B = \emptyset$, for all faces $f_A \in F(R_A)$ there exists at most one face $f_B \in F(R_B)$ such that $f_A = f_B$ and no other faces of R_B intersect with f_A , and there exists at least one pair of faces $f_A \in F(R_A)$ and $f_B \in F(R_B)$ such that $f_A = f_B$.

Figure 1: A drawing of a 2 dimensional region R_1 and a 3 dimensional region R_2 , both with two cells, c_1 and c_2 .

A face $f \in F(R)$ is a region in a subspace $\mathcal{B} < \mathcal{S}$. For a region R we require that $\forall f_a, f_b \in F(R). f_a \cap f_b = \emptyset$.

A region R in a space S is defined by a set of cells C(R). A point P is said to be *inside* a region R if it is inside an odd number of cells of R.

A cell c consists of a set of faces F(c). A face f is a region R_f in a subspace of S. We call the faces of the cells in R_f edges. A cell has two constraints: The first is that each edge e of each face f_a is shared with exactly one other face f_b . The second is that for each face f_a there exists no other face f_b such that the subspaces of f_a and f_b has an intersection that crosses both f_a and f_b . We say that an intersection I crosses a region R if it intersects with any edges in R. Alternatively we also say that an intersection I crosses a region R

Given a cell c of a region R in a space S and an intersection of S, I, we can compute the intersection of R and I, known as R_I .

A face f is a region R_f in an subspace \mathcal{B} of \mathcal{S} . The edges of a face f is the

A cell c also segments a space in the same way as its coresponding region, but it has some additional constraints. A cell consists of a set of with the requirment that for each edge of a face

2 Topological regions

- 3 Planar geometry
- 3.1 Representation of lines and planes
- 3.2 Intersections of lines and planes
- 4 NURBS geometry