数季电路与逻辑设计

Digital circuit and logic design

● 第三章 集成门电路与触发器

主讲教师 于俊清

■提纲

数字集成电路的分类

半导体器件的开关特性

门电路

触发器

■门电路

简单逻辑门电路

TTL集成逻辑门电路

典型TTL与非门 常用的集成TTL门电路

两种特殊的门电路

CMOS集成逻辑门电路

MOS晶体管的静态开关特性

CMOS集成门电路

正逻辑和负逻辑

■ 集电极开路与非门(OCI门)

可以直接这样"线与"吗?

数字电路 与逻辑设计

■ 集电极开路与非门(OC门)

- 输出端可以直接连接的特殊逻辑门
- 🏚 能够实现"线与",满足实际应用的需要
- TTL与非门电路的推拉式输出级改为三极管集电极开路输出,即成为"集电极开路与非门"

■ 集电极开路与非门(OCI门)

■ 集电极开路门结构

负载电阻和电源需选择恰当

既保证输出的高电平符合要求

又能使流过T₄的电流不至于过大

集电极开路与非门只有在外接负载电阻和电源后才能正常工作

■ 集电极开路门

"线与"逻辑

- 只要有一个门输出为低电平,输出F便为低电平

仅当两个门的输出均为高电平时,输出F才为高电平

0

逻辑功能

74

两个与非门输出相"与"

"线与"逻辑

由输出端引线连接实现的

三态输出门

三态输出门 (Three State, 简称TS门)

工作状态

- 输出高电平
- 输出低电平

禁止状态

高阻状态(相当于开路)

三态输出门

三态输出门 (Three State, 简称TS门)

工作状态

- 输出高电平

输出低电平

禁止状态

高阻状态(相当于开路)

三态输出门原理

当EN=1时(高电平)

二极管D3反偏,电路为一般与非门

输出 $F = \overline{AB}$

EN	输入端		输出端L
	Α	В	割山地に
1	0	0	1
	0	1 4	1
	1	0	1
	1	1	0

EN=1(高电平3.6V)

三态输出门原理

当EN=0时(低电平)

 T_1 有一个输入为低, T_2 有 T_4 截止

D3导通, T3的基极电压1.0V

T3和D4截止

F 被悬空,即处于高阻状态

EN=0(低电平0.3V)

三态输出门原理

当EN=0时(低电平)

EN	输入端		输出端L
	Α	В	制山地口
1	0	0	1
	0	1	1
	1	0	1
	1-/	1	0
· ·	X	X	高阻

EN=0(低电平0.3V)

三态输出门

高电平使能

$$F = Z$$
 $|_{EN=0}$ 高阻状态

三态与非门(TS)

三态输出门应用

主要应用

总线数据传送

- 可用于单向数据传送
- 可用于双向数据传送

三态门构成单向总线

三态输出门应用

总线传送

EN=1时

G₁工作

 G_2 处于高阻状态

数据D₁被取反后送至总线

三态门构成的双向总线

三态输出门应用

总线传送

EN=0时

 G_2 工作

G₁处于高阻状态

总线上的数据被取反后送到数据端D₂

实现数据的分时双向传送

三态门构成的双向总线

数季电路与逻辑设计

Digital circuit and logic design

● 谢谢,祝学习快乐!

主讲教师 于俊清

