Lorenz Bung (lorenz.bung@gooplemail.com) Lea Weissenrieder (leanei 502@gmail.com)

Erweiterung der Analysis

Ksenia Fedosova, Nadine Große WS 22/23

Übungsblatt 1

Aufgabe 1. Sei P_0 das gleichseitige Dreieck mit Seitenlänge 1. Wir definieren die Polygone P_n rekursiv wie folgt: P_{n+1} entsteht aus P_n , indem jede Kante des Polygons gedrittelt wird, auf dem mitteleren Drittel ein gleichseitiges Dreieck mit Seitenlänge gleich dem mittleren Drittel gesetzt wird und dann dieses mittlere Drittel gelöscht wird.

Sei ℓ_n der Umfang des Polygons P_n und A_n der Flächeninhalt des Polygons P_n .

- (a) Bestimmen Sie ℓ_n und zeigen Sie, dass $\lim_{n\to\infty}\ell_n=\infty$ gilt.
- (b) Bestimmen Sie $A_n A_{n-1}$. Zeigen Sie, dass A_n für $n \to \infty$ konvergiert.

Aufgabe 2 (1+2.5+1.5). Sei γ : $t \in [0, \frac{\pi}{2}] \mapsto (\cos^2(t), 2\sin^2(t))^T$.

- (i) Skizzieren Sie γ .
- (ii) Berechnen Sie die Bogenlänge s(t), das ist die Länge der Kurve γ auf dem Intervall [0,t] (Also s(0)=0 und $s(\frac{\pi}{2})=L(\gamma)$).
- (iii) Die Funktion der Bogenlänge $s\colon [0,\frac{\pi}{2}]\to [0,L(\gamma)]$ ist ein Homöomorphismus. Warum? Ist es auch ein C^1 -Diffeomorphismus Begründen Sie?

Aufgabe 3 (2.5+2.5). Sei $f:[a,b]\to\mathbb{R}$ eine Funktion. Die Variation V(f) von f ist definiert als

$$V(f) := \sup_{\mathcal{Z}} \sum_{j=1}^{n} |f(x_j) - f(x_{j-1})|,$$

wobei das Supremum über alle Zerlegungen $\mathcal{Z} = (x_0 = a < x_1 < \ldots < x_n = b)$ des Intervalls [a, b] geht.

- (i) Beweisen Sie: Sei $\gamma \colon [a,b] \to \mathbb{R}^n$ eine parametrisierte Kurve; $\gamma(t) = (\gamma_1(t), \dots, \gamma_n(t))^T$ für $\gamma_i \colon [a,b] \to \mathbb{R}$. Dann ist γ genau dann rektifizierbar, falls alle γ_i beschränkte Variation haben, d.h. falls $V(\gamma_i) < \infty$ für alle $1 \le i \le n$ gilt.
- (ii) Zeigen Sie, dass die Funktion $f: [0,1] \to \mathbb{R}$

$$f(x) = \begin{cases} x \cos \frac{x}{n} & x \in (0, 1] \\ 0 & x = 0 \end{cases}$$

unbeschränkte Variation hat.

Nach (i) ist dann somit die Kurve $\gamma(t) = (t, f(t))^T$ mit f aus (ii) und $t \in [0, 1]$ nicht rektifizierbar.

Abgabe am Donnerstag 27.10.22 bis 14 Uhr

Aufgabe 1. Sei P_0 das gleichseitige Dreieck mit Seitenlänge 1. Wir definieren die Polygone P_n rekursiv wie folgt: P_{n+1} entsteht aus P_n , indem jede Kante des Polygons gedrittelt wird, auf dem mitteleren Drittel ein gleichseitiges Dreieck mit Seitenlänge gleich dem mittleren Drittel gesetzt wird und dann dieses mittlere Drittel gelöscht wird.

Sei ℓ_n der Umfang des Polygons P_n und A_n der Flächeninhalt des Polygons P_n .

(a) Bestimmen Sie ℓ_n und zeigen Sie, dass $\lim_{n\to\infty}\ell_n=\infty$ gilt.

In O. Shrift betragt der Umfang $6=3\cdot 1=0$. Nun wird in jeden Iterationsschrift ein Strecken abschnift durch neue Teilstrecken ersetzt, die insgeramt $\frac{4}{3}$ -mal so lang sind. Tür den n-ten Iterationsschrift erhalten wir also den Umfang $\ln 3\cdot \left(\frac{4}{3}\right)^n$.

Es gilt: $\lim_{h\to\infty} l_n = \lim_{h\to\infty} 3\cdot \left(\frac{4}{3}\right)^n = 3\cdot \lim_{h\to\infty} \left(\frac{3}{4}\right)^n$, and $\lim_{h\to\infty} \left(\frac{3}{4}\right)^n \to \infty$

(b) Bestimmen Sie $A_n - A_{n-1}$. Zeigen Sie, dass A_n für $n \to \infty$ konvergiert.

Des Flacheninhalt des ersten hinzugefügten Dresechs beträgt $9_1 = \frac{\sqrt{3}}{4} \cdot \left(\frac{1}{3}\right)^2 = \frac{\sqrt{3}}{36}$.

Im ersten Schritt handelt es sich um 3 Dreieche, im 2. Schritt um 3.4=12 Dreieche

und in n-ten Schrift um 3.4 h Drejeche (also eine Vervierfachung in jadem Schrift).

Der Flacheninhalt der hintugefagten Dreseche mird in jedem Schritt um (7)2=3

Weiner. Insgeramt wied der luhalt also um 4.3= 4 bleiner, was zum luhalt von

 $a_{n} = \left(\frac{1}{3}\right)^{n} \cdot \frac{\sqrt{3}}{36} \quad fahre.$

Der gesamte Flächeninhalt An im n-ten Schrift ist damit

 $A_{N} = \sum_{i=0}^{N} q_{i} = \sum_{i=0}^{N} \left(\frac{4}{5}\right)^{i} \cdot \frac{\sqrt{3}}{36} = \frac{1 - \left(\frac{4}{5}\right)^{n+1}}{1 - \frac{4}{5}} \cdot \frac{\sqrt{3}}{36} = \left(1 - \left(\frac{4}{5}\right)^{n+1}\right) \cdot \frac{\sqrt{3}}{20}$ Solve

Für $n \rightarrow \infty$ ergibt sich $\lim_{n \rightarrow \infty} A_n = \lim_{n \rightarrow \infty} \left(1 - \left(\frac{4}{5}\right)^{n+1}\right) \cdot \frac{\sqrt{3}}{20} = \frac{\sqrt{3}}{20}$

Es ist $A_{n-1} = \left(1 - \left(\frac{4}{9}\right)^{n+1}\right) \cdot \frac{\sqrt{3}}{20} - \left(1 - \left(\frac{4}{5}\right)^{n}\right) \cdot \frac{\sqrt{3}}{20}$

 $= \frac{\sqrt{3}}{20} \cdot \left(\cancel{1} - \left(\frac{4}{9} \right)^{n+1} - \cancel{1} + \left(\frac{4}{5} \right)^{n} \right) = \frac{\sqrt{3}}{20} \cdot \left(\frac{4}{9} \right)^{n} \cdot \left(\cancel{1} - \frac{4}{9} \right) = \frac{\sqrt{3}}{204} \cdot \frac{\cancel{8}}{9} \cdot \left(\frac{4}{9} \right)^{n}$

 $= \frac{\sqrt{3}}{36} \left(\frac{4}{9}\right)^{4}.$

Aufgabe 2 (1+2.5+1.5). Sei γ : $t \in [0, \frac{\pi}{2}] \mapsto (\cos^2(t), 2\sin^2(t))^T$.

(i) Skizzieren Sie γ .

(ii) Berechnen Sie die Bogenlänge s(t), das ist die Länge der Kurve γ auf dem Intervall [0,t] (Also s(0)=0 und $s(\frac{\pi}{2})=L(\gamma)$).

S(t) ist (stacknesse) statig differenzierbar, also louven nir Lemma 1.1.3 vernanden:

$$S(t) = L(\gamma|_{\{0,t\}}) = \int_{0}^{\frac{\pi}{2}} |(\gamma|_{\{0,t\}})(x)| dx = \int_{0}^{t} |\gamma'(x)| dx \quad far \ t = \frac{\pi}{2}$$

$$= \int_{0}^{t} |(-2 \sin(x) \cos(x), 4 \sin(x) \cos(x))^{T}| dx$$

$$= \int_{0}^{t} ((-2 \sin(x) \cos(x))^{2} + (4 \sin(x) \cos(x))^{2})^{\frac{\pi}{2}} dx$$

$$= \int_{0}^{t} (4 \sin^{2}(x) \cos^{2}(x) + 16 \sin^{2}(x) \cos^{2}(x))^{\frac{\pi}{2}} dx$$

$$= \int_{0}^{t} (20 \sin^{2}(x) \cos^{2}(x))^{\frac{\pi}{2}} dx = \int_{0}^{t} |(20 \sin^{2}(x) \cos^{2}(x))^{\frac{\pi}{2}} dx$$

$$= \sqrt{20} \int_{0}^{t} \sin(x) \cos(x) dx = \sqrt{20} \cdot \left[-\frac{1}{2} \cos^{2}(x) \right]_{0}^{t} dx$$

$$= \sqrt{20} \cdot \left(-\frac{1}{2} \cos^{2}(t) - \left(-\frac{1}{2} \cos^{2}(0) \right) \right)$$

$$= \sqrt{20} \cdot (\cos^{2}(t) + \frac{\pi}{2}) = \frac{\sqrt{20}}{2} \cdot (1 - \cos^{2}(t)) = \frac{2\sqrt{5}}{2} \cdot (1 - \cos^{2}(t)) = \sqrt{5} \cdot (1 - \cos^{2}(t)).$$

(iii) Die Funktion der Bogenlänge $s\colon [0,\frac{\pi}{2}]\to [0,L(\gamma)]$ ist ein Homö
omorphismus. Warum? Ist es auch ein C^1 -Diffeomorphismus Begründen Sie?

Bew:
$$S: [0, \frac{\pi}{2}] \rightarrow [0, L(\gamma)]$$

 $t \mapsto \sqrt{s} (1 - \cos^2(t))$

Beh.: Die Funktion
$$u: [o, L(r)] \rightarrow [o, \frac{\pi}{2}]$$

 $t \mapsto arcos(\sqrt{\frac{-t}{r}} + 1)$

$$u(s(t)) = \arccos\left(\sqrt{\frac{-(\sqrt{s})(\Lambda - \cos^2(t))}{\sqrt{s}}} + \Lambda\right) = \arccos\left(\sqrt{-\Lambda - \cos^2(t)} + \Lambda\right)$$

$$= \arccos\left(\sqrt{\cos^2(t)}\right) = \arccos\left(\cos(t)\right) = t$$

S ist stetig, da cos stetig ist und die Verschiebungen/Vorfaktoren daran nichts ändern. Dasselbe gilt für u und den arcos.

- => s ist Homoomorphismus.
 - · 1st s ein C1-Diffeamarphismus?

Nein, betrachte
$$u'(t) = \frac{1}{\sqrt{\frac{t}{\sqrt{s}}}}$$
. Da $t \in [0, \sqrt{s}]$, Rann $t = 0$ sein

=) u ist in O nicht differenzierbar => s ist kein C1-Diffeomorphismus.

Aufgabe 3 (2.5+2.5). Sei $f:[a,b]\to\mathbb{R}$ eine Funktion. Die Variation V(f) von f ist definiert als

$$V(f) := \sup_{\mathcal{Z}} \sum_{j=1}^{n} |f(x_j) - f(x_{j-1})|,$$

wobei das Supremum über alle Zerlegungen $\mathcal{Z} = (x_0 = a < x_1 < \ldots < x_n = b)$ des Intervalls [a, b] geht.

(i) Beweisen Sie: Sei $\gamma \colon [a,b] \to \mathbb{R}^n$ eine parametrisierte Kurve; $\gamma(t) = (\gamma_1(t), \dots, \gamma_n(t))^T$ für $\gamma_i \colon [a,b] \to \mathbb{R}$. Dann ist γ genau dann rektifizierbar, falls alle γ_i beschränkte Variation haben, d.h. falls $V(\gamma_i) < \infty$ für alle $1 \le i \le n$ gilt.

$$\underline{Bew}: =$$
' Sei $\gamma(t)$ rektifizierbar, d.h. $\sup_{z} \mathcal{L}(z, \gamma_i) < \infty \ \forall i \in \{1, \dots, n\}$

$$= > \sup \mathcal{L}(Z, \gamma_i) \stackrel{\text{Def.A.A.}}{=} \sup \frac{\sum_{j=1}^{n} |\gamma_i(x_j) - \gamma_i(x_{j-1})|}{\sum_{j=1}^{n} |\gamma_i(x_j) - \gamma_i(x_{j-1})|} = \operatorname{Var}(\gamma_i)$$

$$\sup_{z} \sum_{j=1}^{n} |\gamma_{i}(x_{j}) - \gamma_{i}(x_{j-1})| < \infty \qquad \forall i : i \in \{1, ..., n\}$$

$$= \mathcal{L}(z, \gamma_{i})$$

$$\sum_{j=1}^{n} |\gamma_{i}(x_{j}) - \gamma_{i}(x_{j-1})| < \infty$$

(ii) Zeigen Sie, dass die Funktion $f: [0,1] \to \mathbb{R}$

$$f(x) = \begin{cases} x \cos \frac{\mathbf{Y}}{\mathbf{X}} & x \in (0, 1] \\ 0 & x = 0 \end{cases}$$

unbeschränkte Variation hat.

Bew: Sei Z eine Zerlegung mit $X_k = \frac{1}{k}$

$$= f(x_k) = \frac{1}{k} \cos(\pi k) \qquad \Rightarrow f(x_k) = \begin{cases} \frac{1}{k} & \text{für } k \text{ geracle} \\ \frac{1}{k} & \text{für } k \text{ ungerade} \end{cases}$$

$$(\text{dann ist } \cos(\pi k) = 1)$$

$$\sum_{n=1}^{\infty} |f(x_{2n}) - f(x_{2n-1})| = \sum_{n=1}^{\infty} \frac{1}{2n} + \frac{1}{2n-1} \geqslant \sum_{n=1}^{\infty} \frac{1}{2n} = \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n} = \infty$$

=>
$$V(f) = \sup_{z} \rho \sum_{j=a}^{n} |f(x_{j}) - f(x_{j-a})| = \infty$$

M