HA-1 Theory - solution notes

If have any questions, please contact Shuana

Problems

https://github.com/Shuaynat/DSE-23-24/tree/main/02-home-assignments/ha-01-theory

Solutions

Playlist with recording:

https://www.youtube.com/playlist?list=PLyjahhN4Wdd99xaZOCZ99hNcLiM66QR9E

Problem 1 (2 points)

(a) H(X)-? (1 point)

$$H(X) = -\sum_i P(X=x_i) \log_2 P(X=x_i)$$

x_i	0	1	2	3
$P(X=x_i)$	$0,7^3=0,343$	$3*0, 3*0, 7^2 = 0,441$	$3*0,7*0,3^2=0,189$	$0,3^3=0,027$
$\log_2(P(X=x_i))$	-1,544	-1,181	-2,4	-5,2
$P(X=x_i)\log_2(P(X=x_i))$	-0,529	-0,521	-0,454	-0,141
$\ln(P(X=x_i))$	-1,07	-0,819	-1,667	-3,612
$P(X=x_i)\ln(P(X=x_i))$	-0,367	-0,361	-0,315	-0,097

Option 1: H(X) = 0.529 + 0.521 + 0.454 + 0.141 = 1.64 [bit]

Option 2: H(X) = 0.367 + 0.361 + 0.315 + 0.097 = 1.14 [nat]

(b) CE(B(n=3, p=0,3) || B(n=3, q=0,5)) - ? (1 point)

$$CE(P||Q) = -\sum_i P(X=x_i) \ln Q(X=x_i)$$

x_i	0	1	2	3
$P(X=x_i)$	$0,7^3=0,343$	$3*0, 3*0, 7^2 = 0,441$	$3*0,7*0,3^2=0,189$	$0,3^3=0,027$
$Q(X=x_i)$	$0,5^3=0,125$	$3*0,5^3=0,375$	$3*0,5^3=0,375$	$0,5^3=0,125$
$\ln(Q(X=x_i))$	-2,079	-0,981	-0,981	-2,079
$P(X=x_i)\ln(Q(X=x_i))$	-0,713	-0,432	-0,185	-0,056

CE(P||Q) = 0.713+0.432+0.185+0.056 = 1.387

Problem 2 (2 points)

HA-1 Theory - solution notes 1

х	0	5	10
$P(K_n=x)$	1/2	1/4	1/4
Net gain	0 - 1 = -1	5 - 1 = 4	10-1 = 9

Maximize long-term growth rate \Rightarrow consider Kelly criterion

$$0,5\ln(1-f)+0,25\ln(1+4f)+0,25\ln(1+9f)\to \max_f$$

f - fraction of wealth betted each round

$$f^*=0,42$$

Computation in WA

Omment on mistakes

- Note in this task the gain is equal to the value of K itself, so there is no need to calculate multipliers as inverse of probabilities.
- In logs have net return, not gross return

📚 Useful links

- Beautiful visualization ov Kelly Criterion: https://youtu.be/ FuuYSM7yOo
- Kelly 1956 paper: https://www.princeton.edu/~wbialek/rome/refs/kelly_56.pdf

Problem 3 (6 points)

	H=A	H=B	H=C
P(H=h,S=1)	0,1	0,2	0,3
P(H=h,S=2)	0,2	0,1	0,1
P(H=h)	0,3	0,3	0,4
Gain	10 3	10 3	$\frac{5}{2}$

(a) Optimal bet for each signal -? (2 points)

At the lecture showed, that expected return is maximized for the bet proportional to the marginal probabilities:

$$\mathrm{E}(\lnrac{V_1}{V_0}|S=s) = \sum_h P(h|S=s) \lnrac{V_0 b(h|S=s)rac{1}{p(h)}}{V_0}$$

$$\Rightarrow$$
 optimal bet : $b^*(h|S=s) = P(h|S=s)$

	H=A	H=B	H=C
P(H=h,S=1)	0,1	0,2	0,3
P(H=h,S=2)	0,2	0,1	0,1
$P(H=h S=1)=b^{st}(h S=1)$	$\frac{0,1}{0,6} = \frac{1}{6}$	$\frac{0,2}{0,6} = \frac{1}{3}$	$\frac{0.3}{0.6} = \frac{1}{2}$
$P(H=h S=2)=b^st(h S=2)$	$\frac{0.2}{0.4} = \frac{1}{2}$	$\frac{0,1}{0,4} = \frac{1}{4}$	$\frac{0,1}{0,4} = \frac{1}{4}$

Comment on mistakes

- Need to calculate optimal portion to bet on each horse (3 fractions, not 1 unique fraction that to be put in the bet in general)
- Explicit maximization of Kelly criterion was acceptable for this task, but in general, usage of the trick from lecture is more elegant way to solve the problem

(b) H(W|S)-? (2 points)

$$H(W|S) = -\sum_{h,s} P(H=h,S=s) \ln P(H=h|S=s)$$

$$H(W|S) = -(0, 1\ln(1/6) + 0, 2\ln(1/3) + 0, 3\ln(1/2) + 0, 2\ln(1/2) + 0, 1\ln(1/4) + 0, 1\ln(1/4) + 0, 1\ln(1/4) = 1,023$$

(c)
$$r^{LT}-?$$
 (2 points)

$$r^{LT} = \mathrm{E}(\ln rac{V_1}{V_0}) = \sum_{h,s} P(h,s) \ln b(h|s) - \sum_{h,s} P(h,s) \ln(P(h)) = -\sum_{h} \ln(P(h)) \sum_{s} P(h,s) - (-\sum_{h,s} P(h,s) \ln b(h|s)) = \sum_{h} \ln(P(h)) \sum_{s} P(h,s) - (-\sum_{h,s} P(h,s) \ln b(h|s)) = \sum_{h} \ln(P(h)) \sum_{s} P(h,s) - (-\sum_{h} P(h,s) \ln b(h|s)) = \sum_{h} \ln(P(h)) \sum_{s} P(h,s) - (-\sum_{h} P(h,s) \ln b(h|s)) = \sum_{h} \ln(P(h)) \sum_{s} P(h,s) - (-\sum_{h} P(h,s) \ln b(h|s)) = \sum_{h} \ln(P(h)) \sum_{s} P(h,s) - (-\sum_{h} P(h,s) \ln b(h|s)) = \sum_{h} \ln(P(h)) \sum_{s} P(h,s) - (-\sum_{h} P(h,s) \ln b(h|s)) = \sum_{h} \ln(P(h)) \sum_{s} P(h,s) - (-\sum_{h} P(h,s) \ln b(h|s)) = \sum_{h} \ln(P(h)) \sum_{s} P(h,s) - (-\sum_{h} P(h,s) \ln b(h|s)) = \sum_{h} \ln(P(h)) \sum_{s} P(h,s) - (-\sum_{h} P(h,s) \ln b(h|s)) = \sum_{h} \ln(P(h)) \sum_{s} P(h,s) - (-\sum_{h} P(h,s) \ln b(h|s)) = \sum_{h} \ln(P(h)) \sum_{s} P(h,s) - (-\sum_{h} P(h,s) \ln b(h|s)) = \sum_{h} \ln(P(h)) \sum_{s} P(h,s) - (-\sum_{h} P(h,s) \ln b(h|s)) = \sum_{h} \ln(P(h)) \sum_{s} P(h,s) - (-\sum_{h} P(h,s) \ln b(h|s)) = \sum_{h} \ln(P(h)) \sum_{s} P(h,s) - (-\sum_{h} P(h,s) \ln b(h|s)) = \sum_{h} \ln(P(h)) \sum_{s} P(h,s) - (-\sum_{h} P(h,s) \ln b(h|s)) = \sum_{h} \ln(P(h)) \sum_{s} P(h,s) = \sum_{h} P($$

$$H(W) = -\sum_{h} P(h) \ln P(h) = -(0, 3 \ln(0, 3) + 0, 3 \ln(0, 3) + 0, 4 \ln(0, 4)) = 1,089$$

$$\Rightarrow r^{LT} = 1,089 - 1,023 = 0,066$$

Comment on mistakes

• In calculating the "entropy of horse" have log of the marginal probability, not the probability of the intersection