

Towards an IFC-Modelica tool facilitating model complexity selection for building energy simulation

Glenn Reynders^{1,2}, Ando Andriamamonjy^{1,3}, Ralf Klein³, Dirk Saelens^{1,2}

1 KU Leuven, Department of Civil Engineering, Building Physics Section,
Kasteelpark Arenberg 40 – box 2447, BE-3001 Heverlee, Belgium
2 EnergyVille, Thor Park 8310, BE-3600 Genk, Belgium
3 KU Leuven, Technology Cluster Construction, Technology Campus Ghent, Gebroeders De Smetstraat 1,
BE-9000 Ghent, Belgium

simulation tools

Context: Building Information Model to Building Energy Simulation (BIM to BES)

and formats

Gap: Level Of Complexity (LOC)

Possible Levels of Complexity (LOC) of a Building Energy Simulation model.

- (A) simplified configuration focusing on the building envelop,
- **(B)** HVAC zones modelled separately, can be used for HVAC design,
- **(C)** detailed model to assess the building performance at the detailed design.

Goals:

- Improve the existing IFC to Modelica, BIM to BES methodology (Ifc2Modelica [1]) to generate four levels of complexity.
- Apply the toolchain on a real life case study (IEA EBC Annex 58 Fraunhofer IBP TwinHouse case).

^[1] Andriamamonjy, A., Klein, R. & Saelens, D. (2016). IFC-assisted building energy performance simulation implementation. Development of a python package. In: *Proceedings of the 3rd IBPSA-England Conference, Newcastle, 12th-14th September 2016, 1094*. 2016.

Methodology: A summary of Ifc2Modelica

Modelica model generation process with Ifc2Modelica

Methodology: Topology generation

Four spaces, two zones example case IFC structure of the example model

Methodology: Topology generation

IFC structure of the example model

Generated PYTHON based topology

Methodology: Mapping process

Library template

Methodology: Levels of complexity (LOC) generation

Modelica model generation process with Ifc2Modelica

Methodology: Levels of complexity (LOC) generation LOC 1 and LOC2

LOC1: Normal topology generated by Ifc2Modelica (Example of use: final building design assessment) space having the same type,
characteristics and azimuth are merged.
The characteristics are lumped and
associated to the merged component

Methodology: Levels of complexity (LOC) generation

LOC 3 and LOC4

LOC 4:

LOC3: LOC2 + Space (IfcSpace) related to the same zone (IfcZone) are merged into one zone. (Example of use: Zoning process during the HVAC design)

LOC4: LOC3 + Spaces (IfcSpace) on the same floor are merged into an unique zone.(Example of use: Assess the average performance of the building envelop)

Application: Case study, Fraunhofer IBP TwinHouse

Test case located in Holzkirchen, Germany. (a) Actual building, (b): BIM model of the test facility and representation of the HVAC equipment involved during the experiment. (c): Space and zone partition

Application: Results (Energy use and simulation time)

Comparison of the total energy use for heating and simulation time for the different levels of complexity

Application: Results (Temperature profile)

Indoor temperature profiles for the living room, bathroom and kitchen obtained for the different levels of complexity (LOC1-

Conclusions

- IFC2Modelica is a successful Python implementation of a (semi)automated BIM2SIM approach using IFC2x4
- IFC2Modelica allows to extract models with different levels of complexity from a BIM model
- The application was tested on the Annex58 Twin House experiment to show the influence on the simulation time and the accuracy of the results