

Commercial Fertilizer

- Materials
- Blending
- Application

References

 The Mid-Atlantic Nutrient Management Handbook

Chapter 8. Commercial Fertilizers

Fertilizer Materials

- Dry Materials
- Liquid Materials
- Classified into four categories:
 - 1. Ammoniated Dry Granular
 - 2. Dry Bulk Blend
 - 3. Clear Liquid Solutions
 - 4. Liquid Suspensions

Fertilizer Analysis

Expressed as percentages

```
    N = % nitrogen
    P = % P<sub>2</sub>O<sub>5</sub> Phosphate
    K = % K<sub>2</sub>O Potassium (potash)
```

 $N-P_2O_5-K_2O-S$ (sulfur)

Ammoniated Dry Granular

- Ammonia reacted with phosphoric acid
- Potash and fillers added (usually coarse limestone)
- Mixture dried and granulated
- The result is a granule that contains a percentage of each nutrient
- Ammoniated fertilizer usually more expensive than dry bulk blends

Ammoniated Dry Granular

10-10-10 Ammoniated fertilizer

10% nitrogen

10% phosphate

10% potash

- Produced by blending various dry materials
- Custom blending to meet exact nutrient needs of the crop
- Common dry nitrogen materials ammonium sulfate 21-0-0-24s UREA 46-0-0

- Common Dry Phosphate materials
 diammonium phosphate (DAP) 18-46-0
 concentrated superphosphate 0-46-0
 (triple superphosphate)
- Common Dry Potassium materials muriate of potash (potash) 0-0-60 potassium sulfate 0-0-50-18 potassium-magnesium sulfate 22-22-11 (sul-po-mag or k-mag)

- Dry micronutrients
- Liquid micronutrients

Boron

Zinc

Manganese

- Important to match particle size and density
- Reduces segregation during transport to the field
- Larger particle and less dense materials tend to move to the top of the load
- Similar particles improve uniformity during application
 - more dense particles throw farther

Clear Liquids

Cold mix process superphosphoric acid is neutralized by anhydrous ammonia creates a base material 10-34-0 commonly used as a starter additional nitrogen or potash may be added for a complete fertilizer

Clear Liquids

Hot mix process

 aqua ammonia reacted with phosphoric
 acid (generates considerable heat)

 water (filler), potash, and additional
 nitrogen added to mix

Clear Liquids

Hot mix process common liquid materials aqua ammonia 20-0-0 phosphoric acid water potash 0-0-60 28%-32% UAN nitrogen solution micronutrients

Liquid Suspensions

- High analysis versus clear liquids is limited
- Clay is added during the hot mix process
- Clay provides a surface for the fertilizer salts to form on
- Nutrients are held in "suspension"
- Suspensions allow for less material per acre (higher analysis)
- Flexibility Allows for more acres per load
- Agitation necessary to prevent settling of clay

- Plant Food vs. Material
- Plant food is the actual plant available nutrients in the material
- Material is simply that the material
- Two formulas needed for basic calculations
- 1.) plant food (lbs.) = pounds of material x percent (%) nutrient in fertilizer

Material Plant food 100 lbs. UREA (46-0-0) 46 lbs. N 100 x 46% (.46)

100 lbs. DAP (18-46-0)

18 lbs. N

46 lbs. P₂O₅

100 x 18% (.18)

100 x 46% (.46)

```
Material Plant food 50 lbs. Potash (0-0-60) 30 lbs. K_2O 50 x 60% (.60) 600 lbs. UAN 30% (30-0-0) 600 lbs. N 2000 x 30% (.30)
```

```
2.) fertilizer material (lbs.) =
plant food : percent (%) nutrient in fertilizer
       UREA (46-0-0) Material Plant food
   80 plant food lbs. N 173.9 lbs. (80-0-0)
             80 \div 46\% (.46)
       DAP (18-46-0) 130.4 lbs. (23-60-0)
   60 plant food lbs. P
             60 \div 46\% (.46)
    also get N from DAP 130 \times 18\% = 23.4 \text{ lbs. N}
```

400 lbs of ammonium sulfate per acre Ammonium sulfate 21-0-0-24s

How much nitrogen per acre? (plant food)

How much sulfur per acre? (plant food)

Nitrogen 84 lbs plant food per acre 400 x 21% = 84 lbs

Sulfur 96 lbs plant food per acre $400 \times 24\% = 96$ lbs

250 lbs of Urea to acre (46-0-0) 200 lbs of Potash to acre (0-0-60)

How much nitrogen per acre? (plant food)

How much potash per acre? (plant food)

Nitrogen 115 lbs plant food per acre 250 x 46% = 115 lbs N

Potash 120 lbs plant food per acre $200 \times 60\% = 120 \text{ lbs } \text{K}_2\text{O}$

Need 100 lbs plant food per acre of nitrogen

Using: Urea 46-0-0

Ammonium Sulfate 21-0-0-24

How much material per acre of urea?

How much material per acre of ammonium sulfate?

```
Material:
```

```
Urea 217.4 lbs/acre
(100 / 46% = 217.39)
```

Ammonium Sulfate – 476.2 lbs/ac (100/21%=476.2)

Need 120 lbs plant food per acre of phosphate

Using DAP 18-46-0

How much material per acre of DAP?

Material DAP 260.8 lbs per acre 120 / 46% = 260.8

DAP 18-46-0 (also get nitrogen)

How much nitrogen per acre? (plant food)

Material DAP 260.8 lbs per acre 120 / 46% = 260.8

DAP 18-46-0 (also get nitrogen)

How much nitrogen per acre? (plant food)

Material DAP 260.8 lbs per acre $260.8 \times 18\% = 46.9 \text{ lbs/ac N}$

Nitrogen on corn - need 80 lbs plant food per acre

Using 30% nitrogen

Weight of 30% is 10.84 lbs per gallon

How many gallons per acre of 30%?

24.6 gallons per acre of 30% nitrogen

```
80 / 30% = 266.6 lbs
266.6 / 10.84 = 24.6 gallons
```

- 8 acre pasture field
- Nutrient recommendation 90-70-170

DAP (18-46-0)

UREA (46-0-0)

Potash (0-0-60)

How many total pounds does the spreader truck need and what is the rate per acre?

(hint: begin with phosphorus)

```
(90-70-170)
DAP (18-46-0)
70 (P) \div 46\% = 152 lbs./ac DAP
152 \times 18\% = 27.3 \text{ lbs. N}
           27.3-70-0
Need balance of nitrogen
                                  90-27.3 = 62.7
UREA (46-0-0)
62.7 \text{ (N)} \div 46\% = 136 \text{ lbs./ac UREA}
           90-70-0
Potash (0-0-60)
170 \text{ (K)} \div 60\% = 283 \text{ lbs./ac Potash}
```

152 lbs. DAP + 136 lbs. UREA + 283 lbs. Potash

```
571 lbs./ac = rate per acre
571 lbs./ac x 8 acres = 4568 total lbs. Mixed and put on truck for application
```

- Formula to find out analysis of material being applied:
- Analysis of material = (pounds of plant food \div rate per acre) x 100 90 (N) \div 571 = .157 .157 x 100 = 15.7% 70 (P₂O₅) \div 571 = .123 .123 x 100 = 12.3% 170 (K₂O) \div 571 = .297 .297 x 100 = 29.7%

- Applicator will be applying 571 lbs./ac of a 15.7-12.3-29.7
- Plant food 90-70-170

Fertilizer Application

- Terragators (liquid and dry)
- Rogators
- Nurse trucks and trailers (liquid)
- Tender trucks and trailers (dry)
- Dry trucks

VADCR

Robert Waring robert.waring@dcr.virginia.gov 804-443-3162