

Instituto Politécnico Nacional

Escuela Superior de Física y Mateáticas Licenciatura en Matemáticas Algoritmicas

Teoría de Grafos

Porfirio Damián Escamilla Huerta

Teoría de Grafos

Porfirio Damián Escamilla Huerta ${\bf Agosto~2022}$

${\rm \acute{I}ndice}$

1.	Noc	ciones de combinatoria
	1.1.	Algunas definiciones básicas
	1.2.	Principio de Inclusión-Exclusión
	1.3.	Conjunto potencia
	1.4.	Permutaciones
	1.5.	Coeficiente binomial
		1.5.1. Propiedades del coeficiente binomial
		1.5.2. Pascal
		1.5.3. Piramide de Pascal
	1.6.	Principio de Dirichlet (del palomar, de las cajas o de las pichoneras)

1. Nociones de combinatoria

1.1. Algunas definiciones básicas

Definición 1.1: Conjunto finito

Un conjunto X es finito si $\exists n \in \mathbb{N}$ tal que hay una función biyectiva $f: x \mapsto [n]$ o bien $x = \emptyset$

Definición 1.2: Cardinalidad

Si X es finito. definimos

$$|X| = \begin{cases} 0 \text{ si } x = \varnothing. \\ \text{Único } n \in \mathbb{N} \text{ tal que } \exists f : x \mapsto [n] biyectiva. \end{cases}$$

Teorema 1.1

Si X y Y son conjuntos disjuntos, con |X| = n y |Y| = m, entonces $|X \cup Y| = n + m$.

Demostración

Sean $f: x \mapsto [n]$ y $g: x \mapsto [m]$ ambas biyectivas, y sea $h: (X \cup Y) \mapsto [n+m]$ definida por

$$h(a) = \begin{cases} f(a) & \text{si } a \in X. \\ n + g(a) & \text{si } a \in Y. \end{cases}$$

TERMINAR...

Corolario 1.1

Si $X_1 \ldots X_n$ son conjuntos finitos disjuntos por pares, entonces

$$\left| \bigcup_{i=1}^{n} X_i \right| = \sum_{i=1}^{n} |X_i|$$

Demostración

Por inducción sobre n.

Para n=1 obvio.

Para n=2 Es la proposición anterior.

Supongamos que se cumple para n; y sean $X_1, \ldots, X_n, X_{n+1}$ conjuntos disjuntos por pares. Entonces

$$\left| \bigcup_{i=1}^{n+1} X_i \right| = \left| \bigcup_{i=1}^n X_i \cup X_{n+1} \right|$$

$$= \sum_{i=1}^n |X_i| + |X_{n+1}|$$

$$= \sum_{i=1}^{n+1} |X_i|$$

1.2. Principio de Inclusión-Exclusión

Teorema 1.2: Principio de inclusión-exclusión

Sean A y B conjuntos finitos, entonces

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Demostración

Los conjuntos $A \setminus B$, $B \setminus A$, $A \cap B$, son disjuntos por pares y $A \cup B = (A \setminus B) \cup (B \setminus A) \cup (A \cap B)$, entonces

$$\begin{split} |A \cup B| &= |(A \setminus B) \cup (B \setminus A) \cup (A \cap B)| \\ &= |A \setminus B| + |B \setminus A| + |A \cap B| \\ &= |A \setminus B| + |B \setminus A| + |A \cap B| + |A \cap B| - |A \cap B| \\ &= |A| + |B| - |A \cap B| \end{split}$$

Teorema 1.3: Principio de inclusión-exclusión generalizado

Sea A_1, \ldots, A_n conjuntos finitos. Entonces:

$$|A_1 \cup \dots \cup A_n| = \sum_{i=1}^n |A_i| - \sum_{i < j \le n} |A_i \cap A_j| + \sum_{i < j < k \le n} |A_i \cap A_j \cap A_k| \dots$$

$$+ (-1)^n \sum_{i_1 < \dots \le i_{n-1}} |A_{i_1} \cap \dots \cap A_{i_{n-1}}| + (-1)^{n+1} |A_1 \cap \dots \cap A_n|$$

Demostración I

nducción sobre n.

Para n=1 obvio.

Para n=2 Principio de inclusión-exclusión simple.

Supongamos que el enunciado es cierto para n, y sean $A_1, \ldots, A_n, A_{n+1}$ conjuntos finitos, entonces

$$\begin{split} |A_1 \cup \dots \cup A_n \cup A_{n+1}| &= |(A_1 \cup \dots \cup A_n) \cup A_{n+1}| \\ &= |A_1 \cup \dots \cup A_n| + |A_{n+1}| - |(A_1 \cup \dots \cup A_n) \cap A_{n+1}| \\ &= |A_1 \cup \dots \cup A_n| + |A_{n+1}| - |(A_1 \cap A_{n+1}) \cup \dots \cup (A_n \cap A_{n+1})| \\ &= \sum_{i=1}^n |A_i| - \sum_{i < j \le n} |A_i \cap A_j| + \sum_{i < j < k \le n} |A_i \cap A_j \cap A_k| \cdots \\ &+ (-1)^n \sum_{i_1 < \dots \le i_{n-1}} |A_{i_1} \cap \dots \cap A_{i_{n-1}}| + (-1)^{n+1} |A_1 \cap \dots \cap A_n| \\ &+ |A_{n+1}| - \left(\sum_{i=1}^n |A_i \cap A_{n+1}| - \sum_{i < j \le n} |(A_i \cap A_{n+1}) \cap (A_j \cap A_{n+1})| + \dots \right. \\ &+ (1)^n \sum_{i_1 < \dots \le i_{n-1}} (A_{i_1} \cap A_{n+1}) \cap \dots \cap (A_{i_{n-1}} \cap A_{n+1}) + |(A_1 \cap A_{n+1}) \cap \dots \cap (A_n \cap A_{n+1})| \\ &= \sum_{i=1}^{n+1} |A_i| - \sum_{i < j \le n+1} |A_i \cap A_j| + \sum_{i < j < k \le n+1} |A_i \cap A_j \cap A_k| + \dots \\ &+ (-1)^{n+1} \sum_{i < j \le n+1} |A_{i_1} \cap \dots \cap A_{i_{n-1}}| + (-1)^{n+2} |A_1 \cap \dots \cap A_n| \end{split}$$

1.3. Conjunto potencia

Teorema 1.4

Si A y B son conjuntos finitos, entonces

$$|A \times B| = |A||B|$$

Demostración

Sea $n=|A|,\, m=|B|$ y $f:A\longmapsto [[n]],\, g:B\longmapsto [[m]]$ funciones biyectivas. Sea

$$h: (A \times B) \longmapsto [[nm]]$$

 $(a,b) \longrightarrow f(a) + (g(b) - 1)n$

 ${\bf TERMINAR...}$

Corolario 1.2

Si A_1, \ldots, A_n son conjuntos finitos, entonces

$$|A_1 \times \cdots \times A_n| = \prod_{i=1}^n |A_i|$$

Demostración

Por inducción sobre n Para n=1 fácil. Para n=2 es el teorema anterior. Supongamos para n y sean $A_1, \ldots, A_n, A_{n+1}$ conjuntos finitos, entonces

$$|A_1 \times \dots \times A_n \times A_{n+1}| = |(A_1 \times \dots \times A_n) \times A_{n+1}|$$

$$= |(A_1 \times \dots \times A_n)||A_{n+1}|$$

$$= \prod_{i=1}^n |A_i||A_{n+1}|$$

$$= \prod_{i=1}^{n+1} |A_i|$$

Definición 1.3: Conjunto potencia

Sea A un conjunto $\wp(A) = \{x | x \subseteq A\}$

Teorema 1.5

Sea A un conjunto finito, entonces

$$|\wp(A)|=2^{|A|}$$

Demostración

Supongamos que |A| = n, $A = \{a_1, a_2, \dots, a_n\}$, Notemos que la función

$$f: (\{0,1\} \times \{0,1\} \times \cdots \times \{0,1\}) \longmapsto \wp(A)$$

es biyectiva. Por lo tanto

$$|\wp(A)| = |\{0,1\} \times \{0,1\} \times \dots \times \{0,1\}| = 2^n$$

1.4. Permutaciones

Definición 1.4: Permutación

Sea A un conjunto finito tal que $A = \{a_1, a_2, \dots, a_n\}$

$$S_A = \{(a_{i_1}, a_{i_2}, \dots, a_{i_s}, \dots, a_{i_n}) | i_j \neq i_k \text{ si } j \neq k \}$$

Teorema 1.6

Si A es un conjunto finito y |A| = n, entonces $|S_A| = n!$

Demostración

Sea $A = \{a_1, a_2, \dots, a_n\}$, procedamos por inducción sobre n. Nuestra base de inducción es $|S_0| = |S_1| = 1$. Ahora, supongamos que para S_n se cumple $|S_n| = n!$. S_{n+1} tiene posiciones n+1, por lo que hay n+1 nuevas posibilidades, entonces

$$|S_{n+1}| = n + 1|S_n| = (n+1)!$$

1.5. Coeficiente binomial

Definición 1.5: Coeficiente binomia

Dados $K, n \in \mathbb{N} \cup \{0\}$ con $k \leq n$, se define

$$\binom{n}{k} = |\{x \in \wp(A)||x| = k\}| \text{ donde } |A| = n$$

Teorema 1.7

El número de k combinaciones en n objetos es

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Demostración

TERMINAR

Teorema 1.8: Teorema del binomio (Binomio de Newton)

Para cualesquiera números a y b, y para cualquier número natural n, tenemos

$$(a+b)^n = \sum_{i=1}^n \binom{n}{i} a^i b^{n-i}$$

Un caso especial de esto es

$$(1+a)^n = \sum_{i=0}^n a^i$$

Demostración

TERMINAR...

Corolario 1.3

Para cualquier número natural n, tenemos

$$\sum_{i=0}^{n} \binom{n}{i} = 2^n$$

1.5.1. Propiedades del coeficiente binomial

Propiedad 1.1: (a)

$$\binom{n}{0} = 1$$

Demostración (a)

 ${\bf TERMINAR...TERMINAR...}$

Propiedad 1.2: (b)

$$\binom{n}{1} = n = \binom{n}{n-1}$$

Demostración (b)

TERMINAR...

Propiedad 1.3: (c)

$$\binom{n}{2} = 1 + 2 + \dots + n$$

Demostración (c)

 ${\bf TERMINAR...}$

Propiedad 1.4: (d)

$$\binom{n}{k} = \binom{n}{n-k}$$

Demostración (d)

 ${\bf TERMINAR...}$

1.5.2. Pascal

Teorema 1.9: Fórmula de Pascal

Para cualesquiera n y k con $0 \le k \le n$ se tiene

$$\binom{n+1}{k+1} = \binom{n}{k+1} + \binom{n}{k}$$

Demostración

 ${\bf TERMINAR...}$

1.5.3. Piramide de Pascal

$$\begin{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} & \begin{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \\ \begin{pmatrix} 1 \\ 1 \end{pmatrix} & \begin{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \begin{pmatrix} 2 \\ 0 \end{pmatrix} & \begin{pmatrix} \begin{pmatrix} 3 \\ 1 \end{pmatrix} & \begin{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} & \begin{pmatrix} 3 \\ 2 \end{pmatrix} & \begin{pmatrix} 3 \\ 3 \end{pmatrix} \\ \begin{pmatrix} 4 \\ 1 \end{pmatrix} & \begin{pmatrix} 4 \\ 2 \end{pmatrix} & \begin{pmatrix} 4 \\ 3 \end{pmatrix} & \begin{pmatrix} 4 \\ 2 \end{pmatrix} \end{pmatrix}$$

$$\binom{n+1}{k} \qquad \binom{n+1}{n} \qquad \binom{n+1}{k+1} \qquad \binom{n+2}{k+2}$$

1.6. Principio de Dirichlet (del palomar, de las cajas o de las pichoneras)

Teorema 1.10: Principio del palomar

Si A y B son conjuntos finitos y |A|>|B| entonces ninguna función $f:A\longmapsto B$ puede ser inyectiva inyectiva.

Demostración

TERMINAR...

Teorema 1.11: Principio del palomar generalizado

Si A y B son conjuntos finitos y |A|>k|B| entonces $\forall f:A\longmapsto B$ $\exists b\in B$ tal que $|\{a\in A|f(a)=b\}|=b.$

Demostración

TERMINAR...

2. Teoría de grafos

2.1. Conceptos básicos

Definición 2.1: Grafo

Un grafo es una terna ordenada (V, E, φ) tal que:

V Es un conjunto de vértices tal que $V \neq \emptyset$.

E Es un conjunto de aristas tales que $E \cap V \neq \emptyset$.

 $\varphi \ \text{ Es una función tal que } \varphi: E \longmapsto \{A \subset V | 0 \leq |A| \leq 2\}.$

Definición 2.2: Incidencia

Sea $G = (V, E, \varphi)$ un grafo. Si $v \in V$ y $e \in E$, entonces decimos que v incide en e y e incide en v si $v \in \varphi(e)$.

Definición 2.3: Extremos de una arista

Sea $e \in E$, entonces a los elementos de $\varphi(e)$ los llamamos los extremos de e.

Definición 2.4: Vértices adyacentes

Sean $u, v \in V$ decimos que u y v son advacentes si $\exists e \in E$ tal que $\varphi(e) = \{u, v\}$.

Definición 2.5: Aristas adyacentes

Sean $e, e' \in E$ decimos que $e \ y \ e'$ son adyacentes si $\varphi(e) \cap \varphi(e') \neq \emptyset$.

Definición 2.6: Bucle (Loop)

Sea $e \in E$, e es un bucle si $|\varphi(e)| = 1$.

Definición 2.7: Aristas múltiples

Sea $e \in E$, e es una arista múltiple si $\exists e' \in E$ con $e \neq e'$ tal que $\varphi(e) = \varphi(e')$. De lo contrario es una arista simple.

Definición 2.8: Grafo simple

Un grafo es simple si no tiene bucles ni asistas múltiples. Sea $G = (V, E, \varphi)$ un grafo simple, satisface:

$$\varphi: E \longmapsto \{A \subseteq V | |A| = 2\}, \ \varphi \text{ es inyectiva}$$

Definición 2.9: Isomorfismo

Un isomorfismo entre las gráficas $G=(V,E,\varphi)$ y $G'=(V',E',\varphi)$ es un par de funciones ψ_V y ψ_E :

$$\begin{array}{l} \psi_V: V \longmapsto V' \\ \psi_E: E \longmapsto E' \end{array} \right\} \text{Ambas biyectivas}$$

tales que $\forall e \in E$, si $\varphi(e) = \{u, v\}$, entonces $\varphi(\psi_E(e)) = \{\psi_V(u), \psi_V(v)\}$

2.2. Clases especiales de grafos

Definición 2.10: Grafos K_n

Sea $n \in \mathbb{N}$, se denota K_n a los grafos simples con n vértices, cualesquiera dos de ellos adyacentes.

El grafo K_n tiene $\binom{n}{2}$ aristas.

Cuadro 1: Grafos K_n

Definición 2.11: Grafos T_r

Sea $n \in \mathbb{N}$ y $G = (V, E, \varphi)$ con $e_i \in E$, se denota T_n a los grafos simples con n vértices, con aristas de la forma:

$$E = \{e_i | \varphi(e_i) = \{v_i, v_{i+1}\} \text{ con } 1 \le i \le n-1\}$$

El grafo T_n tiene n-1 aristas.

 T_4 T_5

Cuadro 2: Grafos T_n

Definición 2.12: Grafos C.

Sea $n \in \mathbb{N}$ tal que $3 \le n$, y $G = (V, E, \varphi)$ con $e_i \in E$, se denota C_n a los grafos simples con n vértices, con aristas de la forma:

$$E = \left\{ e_i \middle| \begin{array}{l} \varphi(e_i) = \{v_i, v_{i+1}\} & \text{con } 1 \le i < n \\ \varphi(e_i) = \{v_i, v_1\} & \text{con } i = n \end{array} \right\}$$

El grafo C_n tiene n aristas.

Cuadro 3: Grafos C_n

Definición 2.13: Grafos S_i

Sea $n \in \mathbb{N}$ y $G = (V, E, \varphi)$ con $e_i \in E$, se denota S_n a los grafos simples con n+1 vértices, con aristas de la forma:

$$E = \{e_i | \varphi(e_i) = \{v_0, v_i\} \text{ con } 1 \le i \le n\}$$

El grafo S_n tiene n aristas.

 S_1 S_2 S_3

 S_4 S_5

Definición 2.14: Grafos W_n

Sea $n \in \mathbb{N}$ y $G = (V, E, \varphi)$ con $e_i \in E$, se denota W_n a los grafos simples con n+1 vértices, con aristas de la forma:

$$E = \{e_i | \varphi(e_i) = \{v_0, v_i\} \text{ con } 1 \le i \le n\} \cup \left\{e_i \middle| \begin{array}{l} \varphi(e_i) = \{v_i, v_{i+1}\} & \text{ con } 1 \le i < n \\ \varphi(e_i) = \{v_i, v_1\} & \text{ con } i = n \end{array} \right\}$$

El grafo W_n tiene 2n aristas.

Cuadro 5: Grafos ${\cal W}_n$