A Subspace Acceleration Method for Fixed Point Iterations

Neil N. Carlson Keith Miller

Modified Newton Methods: An Aside

Newton's method for f(x) = 0, $f : \mathbb{R}^m$

$$x_0$$
 given **for** $n = 0, 1, 2, .r$

Accelerated FP Correction: Motivation

Rewrite our iteration as

$$x_0$$
 given
for $n = 0, 1, 2, ...$ do
 $v_{n+1} = f(x_n)$ (Correction)
 $x_{n+1} = x_n - v_{n+1}$
end ftio

If we we free to coose V_{n+1} , how would we choose it? Pehaps as the stion of

$$0 = f(x_n - v_{n+1}) f(x_n) - Df(x_n) v_{n+1}.$$

FP iteration: Don't know $Df(x_n)$, so just approximate it by 1.

But if Df constant, we

The Accelerated FP Correction

To generate the correction v_{n+1} we have available:

The Accelerated FP Iteration