

Signals and Systems FFT Algorithm and Its Applications

Student: Ali Abbasi (ID: 9531503)

Course Instructors: Dr. M Mehrjoo, Dr. M Shahraki

Course Number: 20 14 255

Faculty of Electrical and Computer Engineering, University of Sistan and Baluchestan, Zahedan, Iran

Discrete Fourier Transform Computational Complexity

$$\begin{cases} F[n] = \sum_{k=< N>} f[k] e^{-j\frac{2\pi}{N}nk}, (n = 0 : N - 1) \\ W = e^{-j\frac{2\pi}{N}} \end{cases} \to F[n] = \sum_{n=< N>} f[k] W^{nk}$$

$$\begin{bmatrix} f[0] \\ f[1] \\ f[2] \\ f[3] \\ \vdots \\ f[N-1] \end{bmatrix} \times \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & W & W^2 & W^3 & \cdots W^{N-1} \\ 1 & W^2 & W^4 & W^6 & \cdots W^{N-2} \\ 1 & W^3 & W^6 & W^9 & \cdots W^{N-3} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 W^{N-1} W^{N-2} W^{N-3} \cdots & W \end{bmatrix} = \begin{bmatrix} F[0] \\ F[1] \\ F[2] \\ F[3] \\ \vdots \\ F[N-1] \end{bmatrix}$$

 $O(n^2)$

Fast Fourier Transform (FFT) Algorithm

$$F[n] = \sum_{k=< N>} f[k] W_N^{nk}$$

$$= \sum_{m=0}^{\frac{N}{2}-1} f[2m] W_N^{2mn} + \sum_{m=0}^{\frac{N}{2}-1} f[2m+1] W_N^{(2m+1)n}$$

$$= \sum_{m=0}^{\frac{N}{2}-1} f[2m] W_{\frac{N}{2}}^{mn} + W_N^m \sum_{m=0}^{\frac{N}{2}-1} f[2m+1] W_{\frac{N}{2}}^{mn}$$

$$= G[n] + W_N^m H[n]$$

 \rightarrow Sum of 2 $\frac{N}{2}$ point DFTs (divide and conquer)

 $O(n\log_2 n)$

Time Complexity Graph

For 10 seconds of an audio at 44 kHz sampling rate $O(n^2) \rightarrow 10^{11}$ multiplications $O(n \log_2 n) \rightarrow 10^6$ multiplications

FPGA and ASICs

FFT Applications

- 1. Electrocardiography (ECG)
- 2. Magnetic Resonance Imaging (MRI)
- 3. Edge detection in image processing
- 4. Orthogonal Frequency Division Multiplexing (OFDM)
- 5. JPEG and MPEG/MP3 encoding and decoding

FFT and ECG

FFT and MRI

FFT and Edge Detection

FFT and OFDM

Frequency-Time Representative of an OFDM signal

FFT and OFDM (cont.)

FFT and JPEG

Picture Source: "The Scientist and Engineer's Guide to Digital Signal Processing, copyright ©1997-1998 by Steven W. Smith. For more information visit the book's website at: www.DSPguide.com"

