Elb	Elbit Systems MICOM Z DASH Test Report					
REV	Δ	DESCRIPTION	SHEET EFFECTED	DATE	DRAWN	CHECKED
A				04.07.2013	M. Reuben	S. Cohen

EMC Laboratory

MICOM Z DASH

FCC ID Y05MICOM DS125W

Manufactured by

Elbit Systems Land and C41 Ltd.

Test Report

According to FCC Part 90 Requirements June 2013

	Fonction/Title	Name	Signature	Date
Prepared by:	Technical Writer	M. Reuben	Buller	04.07.2013
Checked by:	Test Engineer	O.Dror	A	03.07.2013
Approved By:	EMC Lab. Manager	S.Cohen		July 4, 2013
1/60 EMC/20020FC13085 05.06.2013				

Table of Contents

Para		Page No
1.	INTRODUCTION	5
2.	TEST SUMMARY AND SIGNATURES.	6
3.	E.U.T INFORMATION	7
4.	RF POWER OUTPUT – PART 2.1046	8
5.	AUDIO FREQUENCY RESPONSE – PART 2.1047	9
6.	MODULATION LIMITING – PART 2.1047	
7.	OCCUPIED BANDWIDTH – PART 2.1049	
8.	SPURIOUS EMISSIONS AT ANTENNA TERMINALS – PART 2.1051	
9.	CARRIER SUPPRESSION AT ANTENNA TERMINALS – PART 2.1051	
10.	FIELD STRENGTH OF SPURIOUS EMISSIONS – PART 2.1053	
_	FREQUENCY STABILITY – PART 2.1055	
11.		
12.	ABBREVIATIONS AND ACRONYMS	
13.	APPENDIX: RADIATED EMISSION FOR LAP-TOP AS PER PART 15.109	57
	List of Figures	
Figur	e No	Page No
Plot Oo Plot Oo Plot Oo Plot Oo Plot Oo	ccupied Bandwidth - AME/ 1 ccupied Bandwidth - AME/ 2 ccupied Bandwidth - AME/ 3 ccupied Bandwidth - AME/ 4 ccupied Bandwidth - AME/ 5 ccupied Bandwidth - AME/ 6 ccupied Bandwidth - AME/ 7	
	ccupied Bandwidth - AME/ 8ccupied Bandwidth - AME/ 9	
Plot O	ccupied Bandwidth - AME/ 10	21
	ccupied Bandwidth - AME/ 11ccupied Bandwidth - AME/ 12	
	ccupied Bandwidth - SSB/ 13	
	ccupied Bandwidth - SSB/ 14	
	ccupied Bandwidth - SSB/ 15	
	ccupied Bandwidth - SSB/ 16	
	ccupied Bandwidth - SSB/ 17ccupied Bandwidth - SSB/ 18	
	ccupied Bandwidth - SSB/ 19	
	ccupied Bandwidth - SSB/ 20	
Plot O	ccupied Bandwidth - SSB/ 21	27
	ccupied Bandwidth - SSB/ 22	
	ccupied Bandwidth - SSB/ 23	
	ccupied Bandwidth - SSB/ 24	
	ourious Emissions – Antenna Terminal – Tx 1.65 MHz P Max/ 1 ourious Emissions – Antenna Terminal – Tx 1.65 MHz P High/ 2	

MICOM Z DASH Test Report

Plot Spurious Emissions – Antenna Terminal – Tx 1.65 MHz P Medium/ 3	32
Plot Spurious Emissions – Antenna Terminal – Tx 1.65 MHz P Low/ 4	32
Plot Spurious Emissions – Antenna Terminal – Tx 16.5 MHz P Max/ 5	
Plot Spurious Emissions – Antenna Terminal – Tx 16.5 MHz P High/ 6	33
Plot Spurious Emissions – Antenna Terminal – Tx 16.5 MHz P Medium/ 7	34
Plot Spurious Emissions – Antenna Terminal – Tx 16.5 MHz P Low/ 8	
Plot Spurious Emissions – Antenna Terminal – Tx 27 MHz P Max/ 9	
Plot Spurious Emissions – Antenna Terminal – Tx 27 MHz P High/ 10	35
Plot Spurious Emissions – Antenna Terminal – Tx 27 MHz P Medium/ 11	36
Plot Spurious Emissions – Antenna Terminal – Tx 27 MHz P Low/ 12	
Plot Spurious Emissions – Antenna Terminal – Tx 1.65 MHz P Max/ 13	
Plot Spurious Emissions – Antenna Terminal – Tx 1.65 MHz P High/ 14	
Plot Spurious Emissions – Antenna Terminal – Tx 1.65 MHz P Medium/ 15	
Plot Spurious Emissions – Antenna Terminal – Tx 1.65 MHz P Low/ 16	38
Plot Spurious Emissions – Antenna Terminal – Tx 16.5 MHz P Max/ 17	
Plot Spurious Emissions - Antenna Terminal - Tx 16.5 MHz P High/ 18	39
Plot Spurious Emissions - Antenna Terminal - Tx 16.5 MHz P Medium/ 19	
Plot Spurious Emissions – Antenna Terminal – Tx 16.5 MHz P Low/ 20	
Plot Spurious Emissions – Antenna Terminal – Tx 27 MHz P Max/ 21	
Plot Spurious Emissions – Antenna Terminal – Tx 27 MHz P High/ 22	
Plot Spurious Emissions – Antenna Terminal – Tx 27 MHz P Medium/ 23	
Plot Spurious Emissions – Antenna Terminal – Tx 27 MHz P Low/ 24	
Plot Carrier Suppression – Antenna Terminal – Tx 1.65 MHz P Maximum/ 1	44
Plot Carrier Suppression – Antenna Terminal – Tx 1.65 MHz P High/ 2	44
Plot Carrier Suppression – Antenna Terminal – Tx 1.65 MHz P Medium/ 3	45
Plot Carrier Suppression – Antenna Terminal – Tx 1.65 MHz P Low/ 4	45
Plot Carrier Suppression – Antenna Terminal – Tx 16.5 MHz P Maximum/ 5	46
Plot Carrier Suppression – Antenna Terminal – Tx 16.5 MHz P High/ 6	46
Plot Carrier Suppression – Antenna Terminal – Tx 16.5 MHz P Medium/ 7	47
Plot Carrier Suppression – Antenna Terminal – Tx 16.5 MHz P Low/ 8	47
Plot Carrier Suppression – Antenna Terminal – Tx 29.9 MHz P Maximum/ 9	
Plot Carrier Suppression – Antenna Terminal – Tx 29.9 MHz P High/ 10	48
Plot Carrier Suppression – Antenna Terminal – Tx 29.9 MHz P Medium/ 11	49
Plot Carrier Suppression – Antenna Terminal – Tx 29.9 MHz P Low/ 12	
Setup Photograph/ 1	
Setup Photograph/ 2	
Setup Photograph/ 1	55
Photograph of Radiated Emission/ 1	
Photograph of Radiated Emission/ 2	58

List of Tables

Table No	Page No
Table 1: Test Instrumentation and Equipment	8
Table 2: Test Instrumentation and Equipment	
Table 3: Test Instrumentation and Equipment	
Table 4: Test Instrumentation and Equipment	
Table 5: Test Results	
Table 6: Test Instrumentation and Equipment	29
Table 7: Test Results	
Table 8: Test Instrumentation and Equipment	

Land and C4- Tadiran MICOM Z DASHTest Report Table 9: Test Results 43 Table 10: Test Instrumentation and Equipment 50 Table 11: Test Instrumentation and Equipment 53 Table 12: For Maximum Power 53 Table 13: For High Power 54 Table 14: For Medium Power 54 Table 15: For Low Power 54 Table 16: Limits for 15.109 Class B equipment 57 Table 17: Test Instrumentation and Equipment 57 Table 18: RX Mode 15.109 57

1. Introduction

1.1. Scope

This document describes the measurement procedures and tests for FCC part 90 of the Micom Z Dash, manufactured by Elbit Systems Land and C^4I Ltd.

1.2. Description of equipment Under Test

Equipment Under Test:	Micom Z Dash
FCCID	YO5MICOM DS125W
Manufacturer:	Elbit Systems Land and C ⁴ I - Ltd.
Serial Numbers:	MZ6789
Transmit Frequency Range	1.6 to 30 MHz in 10-Hz steps
Receiver Frequency Range	0.1 to 30 MHz in 10-Hz steps (0.1 to 1.6 MHz reduced performance)
Transmit Power	25, 62, 100, 125 W P.E.P and average
RF Impedance (antenna)	-50Ω for dipole and broadband -Internal automatic tuner for whip
Number of RF Channels	200 simplex or half duplex
Scanning	5 groups of 100 channels, guard channel
ALE	MIL-STD-188-141B, JITC certified
Mode of Operation:	USB, LSB, PILOT, AME
Services	-Analog voice -Digital voice (vocoder option) -50-4800 bps (internal modem option) COMSEC (option)
Date, Remote Control	RS-232C
GPS Receiver (optional)	Location, movement and time
Power Source	FRN8577 Rechargeable Lithium-Ion Battery (14.4 V, 230 WH)
Receiver operating frequency:	MHZ
Year of Manufacture:	2013

1.3. Applicant Information:

Applicant:	Elbit Systems Land and C ⁴ I - Ltd.
Applicant Address	26 Hashoftim St. P.O.B. 267, 58102 Holon, Israel
Telephone:	+972-3-5574476
FAX:	+972-3-5575320
The testing was observed by:	Samuel Cohen
Following applicant's personnel:	Samuel Cohen

1.4. Test Performance:

Date of reception for testing:	15/10/2009
Dates of testing	10.08.2011
Test Laboratory Location	Elbit Systems Land and C ⁴ I Ltd., EMC LAB, Hashoftim 26 Holon 58102 ISRAEL Tel: 972-3-5574476 Fax: 972-3-5575320
Applicable EMC Specification:	
Code of Federal Regulations	47, FCC Docket 89-103,Part 15: Radio Frequency Devices, Sections 15.109, 15.209, 15.231, & 15.207

2. Test Summary and Signatures.

Elbit Systems Land and C⁴I Ltd., EMC Laboratory has completed testing of E.U.T in accordance with the requirements of the FCC Part 90 Regulations for Class B equipment.

The E.U.T was found to comply with the requirements of the FCC Part 90 Regulations given below

Test	Test Description	Section	PASS/FAIL
1	RF Power Output	2.1046	PASS
2	Audio Frequency Response	2.1047	PASS
3	Audio Low-Pass Filter Response	2.1047	N/A (1)
4	Modulation Limiting	2.1047	PASS
5	Occupied Bandwidth	2.1049	PASS
6	Carrier Suppression at Antenna Terminals	2.1051	PASS
7	Spurious Emissions at Antenna Terminals	2.1051	PASS
8	Field Strength of Spurious Emissions	2.1053	PASS
9	Frequency Stability	2.1055	PASS
10	Transient Frequency Behavior	90.214	N/A (2)

2.1. Footnotes for N/A's

- (1) The apparatus is not required to have a low-pass filter.
- (2) The apparatus does not operate in the required frequency range.

2.2. Test Conditions:

Indoor	Temperature	24 ⁰ C
Illuoor	Humidity	28%

Outdoor	Temperature	29 ⁰ C
	Humidity	47%

	Function/Title	Name	Signature	Date
Test performed by	Test Engineer	S. Kozliner/O.Dror	melility	03.07.2013
Test Report prepared by	Technical Writer	M. Reuben	Marker	04.07.2013
Test Report Approved by	EMC Lab. Manager	S. Cohen		04.07.2013

3. E.U.T Information

3.1. E.U.T description

The Micom-Z transceiver is a complete HF/SSB receiver-transmitter capable of receiving and transmitting voice, data, and continuous-wave (CW) telegraphy using upper-sideband (USB), lower-sideband (LSB), AME and pilot carrier modulation. High selectivity and a wide dynamic range ensure clear, undisturbed signal reception.

The transmit power can be selected by the operator for optimum transmission performance (125 W PEP for maximum range; 100 W, 60 W or 25 W to reduce interference to nearby stations, and decrease power dissipation).

3.2. Changes made to EUT

No changes were made.

4. RF Power Output – Part 2.1046

E.U.T: Micom Z Dash

 S/N:
 MZ6789

 Date:
 11.06.2013

 Standard
 90.205 (a)

Relative Humidity: 28%Ambient Temperature: 24^{0} C Air Pressure: 1010hPa

Testing Engineer: D. Oshri Date 11.06.2013

4.1. Test Results Summary & Conclusions

The E.U.T was found to comply with RF Power Output – Part 2.1046.

4.2. Measured Data

Measured at Dipole Antenna terminal. PEP using two tones.

Rated RF Output Power: 25 watts PEP, 44dBm

Measured using 400 Hz and 1800 Hz tones adjusted for rated RF output power.

Frequencies examined: 1.65 MHz, 16.5 MHz, & 29.9 MHz

Transmitting power: 25W, 62W, 100W & 125W

4.3. Test Instrumentation and Equipment

Table 1: Test Instrumentation and Equipment

Item	Model	Manufacturer	Next Date Calibration
Audio Analyzer	8903A	HP	23.12.2013
Power Reflection Meter	NAP	R&S	04.06.2014
Power Head	NAP Z-7	R&S	04.06.2014
Attenuator 30 dB	769-30	Narda	21.05.2015

4.4. Test Results

Data	Tx 1.65MHz		Tx 16.	Tx 16.5MHz		Tx 29.9MHz	
Rate	dBm	W	dBm	W	dBm	W	
Max (125W)	50.9	122.5	50.9	124	50.9	123.6	
High (100W)	50	99.6	50	100	50	101	
Med (62W)	47.8	60.7	47.9	61.2	48.1	64.3	
Low (25W)	43.3	21.5	43.5	22.5	44.2	26	

5. Audio Frequency Response – Part 2.1047

E.U.T Micom Z Dash

 S/N:
 MZ6789

 Date:
 10.06.2013

 Standard
 90.210 (a)

Relative Humidity: 28%Ambient Temperature: 24^{0} C Air Pressure: 1010hPa

Testing Engineer: S. Kozliner Date 10.06.2013

5.1. Test Results Summary & Conclusions

The E.U.T was found to be in compliance with Audio Frequency Response – Part 2.1047.

5.2. Test Instrumentation and Equipment

Table 2: Test Instrumentation and Equipment

Item	Model	Manufacturer	Next Date Calibration
Audio Analyzer	8903A	HP	23.12.2013
Spectrum Analyzer	8593E	HP	23.05.2013
Power Reflection Meter	NAP	R&S	04.06.2014
Power Head	NAP Z-7	R&S	04.06.2014

5.3. Test Results

Frequencies examined: 1.65 MHz, 16.5 MHz, and 29.9 MHz

Transmitting Power: 25W, 62W, 100W & 125W

	Frequency Response @ 1.65MHz [dB]			
Tx Power	25W	62W	100W	125W
Audio Freq [Hz]				
100	39.2	39	39.2	38.7
300	43.6	47.9	50.1	51.1
700	44	48	50.2	51.2
1000	44	48	50.1	51.2
2000	43.8	47.9	50.1	51.1
2200	43.8	47.9	50.1	51.1
3000	16	17	16.7	16.7
4200	16	17	16.7	16.7

39.025 48.175 48.35 48.325 48.225 48.225 16.6 16.6

	Frequency Response @ 16.5MHz [dB]			
Tx Power	25W	62W	100W	125W
Audio Freq [Hz]				
100	35.3	34.7	34.3	34.5
300	43.4	47.6	49.9	50.8
700	43.7	47.8	50	50.9
1000	43.7	47.8	50	50.9
2000	43.8	47.8	50	50.9
2200	43.7	47.9	50	51
3000	16.7	16.7	16.7	16.7
4200	16.7	16.7	16.7	16.7

34.7 47.925 48.1 48.125 48.15 16.7 16.7

	Frequency Response @ 29.9MHz [dB]					
Tx Power	25W	62W	100W	125W		
Audio Freq [Hz]					ave	
100	31.3	31.4	31.1	31.2	31	
300	43.5	47.7	49.5	49.6	47.	
700	43.7	47.9	49.7	49.7	47	
1000	43.7	47.9	49.7	49.7	47	
2000	43.7	47.8	49.7	49.7	47.	
2200	43.7	47.9	49.7	49.7	47	
3000	16.7	16.7	16.7	16.7	16	
4200	16.7	16.7	16.7	16.7	16	

31.25 47.575 47.75 47.75 47.725 47.725 16.7

6. Modulation Limiting – Part 2.1047

E.U.T Micom Z Dash

S/N: MZ6789 Date: 16.06.2013

 $\begin{array}{ccc} \text{Standard} & \text{N/A} \\ \text{Relative Humidity:} & 28\% \\ \text{Ambient Temperature:} & 24^{0}\text{C} \\ \text{Air Pressure:} & 1010\text{hPa} \end{array}$

Testing Engineer: S. Kozliner Date 16.06.2013

6.1. Test Results Summary & Conclusions

The E.U.T was found to be in compliance with Modulation Limiting – Part 2.1047

6.2. Test Instrumentation and Equipment

Table 3: Test Instrumentation and Equipment

Item	Model	Manufacturer	Next Date Calibration
Audio Analyzer	8903A	HP	23.12.2013
Power Reflection Meter	NAP	R&S	04.06.2014
Power Head	NAP Z-7	R&S	04.06.2014
Attenuator 30 dB	769-30	Narda	21.05.2015

6.3. Test Results

Frequencies examined: 3 MHz, 15 MHz, and 25 MHz

Transmitting Power: 25W, 62W, 100W & 125W

The test results are as shown below.

	Modulation Limiting @ 3MHz [dBm]			
Tx Power	25W	62W	100W	125W
Audio Level [dBv]				
0	43.8	47.9	49.9	50.9
-4	43.8	47.9	49.9	50.9
-8	43.6	47.8	49.9	50.9
-12	42.9	47.5	49.8	50.8
-16	42.4	47.2	49.7	50.6
-20	41.9	47	48.9	50
-24	41.3	45.2	44.9	44.9
-28	39.8	40.3	40.1	40.2
-32	35.5	35	35	35

	Modulation Limiting @ 15MHz [dBm]			
Tx Power	25W	62W	100W	125W
Audio Level [dBv]				
0	44	47.9	50.1	51
-4	44	47.9	50.1	51
-8	43.8	47.9	50	51
-12	43.3	47.6	49.9	50.8
-16	42.9	47.4	49.7	50.7
-20	42.4	46.9	48.5	50
-24	41.9	43.9	44.2	43.8
-28	39.8	39.2	39.4	39.2
-32	34	33.8	34.1	33.7

	Modulation Limiting @ 25MHz [dBm]				
Tx Power	25W	62W	100W	125W	
Audio Level [dBv]					
0	43.7	47.8	49.9	50.5	
-4	43.7	47.8	49.9	50.5	
-8	43.6	47.7	49.8	50.5	
-12	43.1	47.5	49.6	50	
-16	42.7	47.1	49	49.1	
-20	42.2	44.4	44.6	44.5	
-24	40.1	40	40	39.9	
-28	35	34.7	34.6	34.6	
-32	29.8	29.1	29	28.8	

1. Power Maximum

2. Power High

3. Power Medium

4. Power Low

7. Occupied Bandwidth – Part 2.1049

E.U.T Micom Z Dash

 S/N:
 MZ6789

 Date:
 17.06.2013

 Standard
 90.210 (a)

Relative Humidity: 28%
Ambient Temperature: 24°C
Air Pressure: 1010hPa

Testing Engineer: D. Oshri Date 17.06.2013

7.1. Test Results Summary & Conclusions

The E.U.T was found to be in compliance with Occupied Bandwidth – Part 2.1049

7.2. Test Instrumentation and Equipment

Table 4: Test Instrumentation and Equipment

Item	Model	Manufacturer	Next Date of Calibration
Spectrum Analyzer	E7405A	Agilent	09.11.2013
Attenuator 30 dB	769-30	Narda	21.05.2015
Audio Analyzer	8903A	HP	23.12.2013

7.3. Test Results

Frequencies examined: 1.65 MHz, 16.5 MHz, 29.9 MHz

Transmitting Power: 25W, 62W, 100W & 125W

Table 5: Test Results

Mode of Operation	Frequency (MHz)	Power	Compliance Y/N
Mode of Operation			
AME	1.65	Maximum	Y
	1.65	High	Y
	1.65	Medium	Y
	1.65	Low	Y
	15.6	Maximum	Y
	15.6	High	Y
AME	15.6	Medium	Y
	15.6	Low	Y
	29.9	Maximum	Y
	29.9	High	Y
	29.9	Medium	Y
	29.9	Low	Y
	1.65	Maximum	Y
	1.65	High	Y
	1.65	Medium	Y
	1.65	Low	Y
	15.6	Maximum	Y
CCD	15.6	High	Y
SSB	15.6	Medium	Y
	15.6	Low	Y
	29.9	Maximum	Y
	29.9	High	Y
	29.9	Medium	Y
	29.9	Low	Y

Start: 1.6257 MHz Res BW: 100 Hz 6/17/2013 16:23:34

Vid BW: 100 Hz

Stop: 1.6757 MHz Sweep: 26.93 ms

N9020A

Plot Occupied Bandwidth - AME/ 1

Occupied Bandwidth: One Tone AME Modulation (1500Hz),

Fc=1.65MHz

Start: 1.6257 MHz
Res BW: 100 Hz
Vid BV

6/16/2013 12:49:30

Vid BW: 100 Hz

Stop: 1.6757 MHz Sweep: 26.93 ms

N9020A

Plot Occupied Bandwidth - AME/ 2

Start: 1.6257 MHz Res BW: 100 Hz 6/16/2013 12:52:32

Vid BW: 100 Hz

Stop: 1.6757 MHz Sweep: 26.93 ms

N9020A

Plot Occupied Bandwidth - AME/3

Occupied Bandwidth: One Tone AME Modulation (1500Hz),

Fc=1.65MHz

Start: 1.6257 MHz Res BW: 100 Hz 6/16/2013 12:54:51

Vid BW: 100 Hz

Stop: 1.6757 MHz Sweep: 26.93 ms N9020A

Plot Occupied Bandwidth - AME/4

Start: 16.4750 MHz Res BW: 100 Hz 6/16/2013 13:56:09

Vid BW: 100 Hz

Stop: 16.5250 MHz Sweep: 26.93 ms

N9020A

Plot Occupied Bandwidth - AME/ 5

Occupied Bandwidth: One Tone AME Modulation (1500Hz),

Fc=16.5MHz

Tx=16.5MHz P=Low

Start: 16.4750 MHz Res BW: 100 Hz 6/16/2013 13:38:37

Vid BW: 100 Hz

Stop: 16.5250 MHz Sweep: 26.93 ms

N9020A

Plot Occupied Bandwidth - AME/6

Start: 16.4750 MHz Res BW: 100 Hz 6/16/2013 13:48:58

Vid BW: 100 Hz

Stop: 16.5250 MHz Sweep: 26.93 ms

N9020A

Plot Occupied Bandwidth - AME/7

Occupied Bandwidth: One Tone AME Modulation (1500Hz),

Fc=16.5MHz

Res BW: 100 Hz 6/16/2013 16:58:06

Vid BW: 100 Hz

Stop: 16.5257 MHz Sweep: 26.93 ms

N9020A

Plot Occupied Bandwidth - AME/8

Tx=29.9MHz P=Low

Start: 29.8750 MHz Res BW: 100 Hz 6/16/2013 14:04:05

Vid BW: 100 Hz

Stop: 29.9250 MHz Sweep: 26.93 ms

N9020A

Plot Occupied Bandwidth - AME/9

Occupied Bandwidth: One Tone AME Modulation (1500Hz), Fc=29.9MHz

Start: 29.8757 MHz Res BW: 100 Hz 6/16/2013 14:11:26

Vid BW: 100 Hz

Stop: 29.9257 MHz Sweep: 26.93 ms N9020A

Res BW: 100 Hz 6/16/2013 17:02:15

Vid BW: 100 Hz

Stop: 29.9257 MHz Sweep: 26.93 ms

N9020A

Plot Occupied Bandwidth - AME/11

Occupied Bandwidth: One Tone AME Modulation (1500Hz), Fc=29.9MHz

Start: 29.8757 MHz Res BW: 100 Hz 6/16/2013 17:04:38

Vid BW: 100 Hz

Stop: 29.9257 MHz Sweep: 26.93 ms N9020A

Plot Occupied Bandwidth - AME/ 12

Plot Occupied Bandwidth - SSB/ 14

Plot Occupied Bandwidth - SSB/15

Vid BW: 100 Hz

Sweep: 26.93 ms

N9020A

Res BW: 100 Hz

6/13/2013 12:08:55

Plot Occupied Bandwidth - SSB/16

Plot Occupied Bandwidth - SSB/ 18

Plot Occupied Bandwidth - SSB/ 20

Plot Occupied Bandwidth - SSB/ 22

Plot Occupied Bandwidth - SSB/ 24

8. Spurious Emissions at Antenna Terminals – Part 2.1051

E.U.T Micom Z Dash

 S/N:
 MZ6789

 Date:
 03.07.2013

 Standard
 90.210 (a) (3)

Relative Humidity: 28%
Ambient Temperature: 24°C
Air Pressure: 1010hPa

Testing Engineer: S. Kozliner Date 03.07.2013

8.1. Test Results Summary & Conclusions

The E.U.T was found to be in compliance with the Spurious Emissions at Antenna Terminals – Part 2.1051

8.2. Test Instrumentation and Equipment

Table 6: Test Instrumentation and Equipment

Item	Model	Manufacturer	Next Date of Calibration
Spectrum Analyzer	E7405A	Agilent	09.11.2013
Attenuator 30 dB	769-30	Narda	21.05.2015
Audio Analyzer	8903A	HP	23.12.2013

8.3. Test Results

Frequencies examined: 1.65 MHz, 16.5 MHz, and 27 MHz

Frequency range: 0.01 - 30 MHz & 30 - 300 MHz

All emissions were measured using the following input criteria:

- Two Tone Modulation 400 Hz and 1800 Hz
- Input level set to 10dB above the level required for Max PEP 125 Watts

Table 7: Test Results

Frequency (MHz)	Frequency Range	Power	Difference bet 1 & 2 (dB)	Compliance Y/N
1.65	0.01 – 30 MHz	Maximum	69.73	Y
1.65		High	71.05	Y
1.65		Medium	71.19	Y
1.65		Low	66.65	Y
16.5		Maximum	70.92	Y
16.5		High	71.88	Y
16.5		Medium	72.11	Y
16.5		Low	70.91	Y
27		Maximum	66.09	Y
27		High	67.20	Y
27		Medium	68.70	Y
27		Low	68.41	Y
1.65	30 – 300 MHz	Maximum		Y
1.65		High		Y
1.65		Medium		Y
1.65		Low		Y
16.5		Maximum		Y
16.5		High		Y
16.5		Medium		Y
16.5		Low		Y
27		Maximum		Y
27		High		Y
27		Medium		Y
27		Low		Y

Plot Spurious Emissions – Antenna Terminal – Tx 1.65 MHz P Max/ 1

Plot Spurious Emissions - Antenna Terminal - Tx 1.65 MHz P High/ 2

Plot Spurious Emissions - Antenna Terminal - Tx 1.65 MHz P Medium/ 3

Plot Spurious Emissions - Antenna Terminal - Tx 1.65 MHz P Low/ 4

Plot Spurious Emissions – Antenna Terminal – Tx 16.5 MHz P Max/ 5

Plot Spurious Emissions - Antenna Terminal - Tx 16.5 MHz P High/6

Plot Spurious Emissions - Antenna Terminal - Tx 16.5 MHz P Medium/7

Plot Spurious Emissions - Antenna Terminal - Tx 16.5 MHz P Low/8

Plot Spurious Emissions - Antenna Terminal - Tx 27 MHz P Max/ 9

Plot Spurious Emissions - Antenna Terminal - Tx 27 MHz P High/ 10

Plot Spurious Emissions - Antenna Terminal - Tx 27 MHz P Medium/ 11

Plot Spurious Emissions - Antenna Terminal - Tx 27 MHz P Low/ 12

Plot Spurious Emissions - Antenna Terminal - Tx 1.65 MHz P Max/ 13

Plot Spurious Emissions - Antenna Terminal - Tx 1.65 MHz P High/ 14

Plot Spurious Emissions - Antenna Terminal - Tx 1.65 MHz P Medium/ 15

Plot Spurious Emissions – Antenna Terminal – Tx 1.65 MHz P Low/ 16

Plot Spurious Emissions - Antenna Terminal - Tx 16.5 MHz P Max/ 17

Plot Spurious Emissions - Antenna Terminal - Tx 16.5 MHz P High/18

Plot Spurious Emissions - Antenna Terminal - Tx 16.5 MHz P Medium/ 19

Plot Spurious Emissions - Antenna Terminal - Tx 16.5 MHz P Low/ 20

Plot Spurious Emissions – Antenna Terminal – Tx 27 MHz P Max/ 21

Plot Spurious Emissions – Antenna Terminal – Tx 27 MHz P High/ 22

Plot Spurious Emissions – Antenna Terminal – Tx 27 MHz P Medium/ 23

Plot Spurious Emissions - Antenna Terminal - Tx 27 MHz P Low/ 24

9. Carrier Suppression at Antenna Terminals – Part 2.1051

E.U.T Micom Z Dash

 S/N:
 MZ6789

 Date:
 12.06.2013

 Standard
 90.210 (a)

Relative Humidity: 28% Ambient Temperature: 24°C Air Pressure: 1010hPa

Testing Engineer: S. Kozliner Date 12.06.2013

9.1. Test Results Summary & Conclusions

The E.U.T was found to be in compliance with Carrier Suppression at Antenna Terminals – Part 2.1051

9.2. Test Instrumentation and Equipment

Table 8: Test Instrumentation and Equipment

Item	Model	Manufacturer	Next Date of Calibration
Spectrum Analyzer	E7405A	Agilent	09.11.2013
Attenuator 30 dB	769-30	Narda	21.05.2015
Audio Analyzer	8903A	HP	23.12.2013

9.3. Test Results

Frequencies examined: 1.65 MHz, 16.5 MHz, & 29.9 MHz

Transmitting Power: 25W, 62W, 100W & 125W

All emissions were measured using the following input criteria:

- Two Tone Modulation 400 Hz and 1800 Hz
- Input level set to 10dB above the level required for Max PEP 125 Watts

Table 9: Test Results

Frequency (MHz)	Power	Suppression	Limit (dB)	Compliance Y/N
1.65	Maximum	72.99	60	Y
1.65	High	87.56	60	Y
1.65	Medium	69.46	60	Y
1.65	Low	77.46	60	Y
16.5	Maximum	66.10	60	Y
16.5	High	69.47	60	Y
16.5	Medium	68.87	60	Y
16.5	Low	64.23	60	Y
29.9	Maximum	65.54	60	Y
29.9	High	66.95	60	Y
29.9	Medium	61.24	60	Y
29.9	Low	63.85	60	Y

See attached plots

Plot Carrier Suppression - Antenna Terminal - Tx 1.65 MHz P Maximum/ 1

Plot Carrier Suppression – Antenna Terminal – Tx 1.65 MHz P High/ 2

Plot Carrier Suppression - Antenna Terminal - Tx 1.65 MHz P Medium/ 3

Plot Carrier Suppression – Antenna Terminal – Tx 1.65 MHz P Low/ 4

Plot Carrier Suppression - Antenna Terminal - Tx 16.5 MHz P Maximum/ 5

Plot Carrier Suppression – Antenna Terminal – Tx 16.5 MHz P High/6

Plot Carrier Suppression - Antenna Terminal - Tx 16.5 MHz P Medium/ 7

Plot Carrier Suppression – Antenna Terminal – Tx 16.5 MHz P Low/8

Plot Carrier Suppression - Antenna Terminal - Tx 29.9 MHz P Maximum/ 9

Plot Carrier Suppression – Antenna Terminal – Tx 29.9 MHz P High/ 10

Plot Carrier Suppression - Antenna Terminal - Tx 29.9 MHz P Medium/ 11

Plot Carrier Suppression – Antenna Terminal – Tx 29.9 MHz P Low/ 12

10. Field Strength of Spurious Emissions – Part 2.1053

E.U.T Micom Z Dash

 S/N:
 MZ6789

 Date:
 09.06.2013

 Standard
 90.210 (a) (3)

Relative Humidity: 28%Ambient Temperature: 24^{0} C Air Pressure: 1010hPa

Testing Engineer: S. Kozliner Date 09.06.2013

10.1. Test Results Summary & Conclusions

The E.U.T was found to be in compliance with Field Strength of Spurious Emissions – Part 2.1053.

10.2. Test Instrumentation and Equipment

Table 10: Test Instrumentation and Equipment

= · · · · · · · · · · · · · · · · ·					
Item	Model	Manufacturer	Next Date of Calibration		
Spectrum Analyzer	E7405A	Agilent	09.11.2013		
Attenuator 30 dB	769-30	Narda	21.05.2015		
Audio Analyzer	8903A	HP	23.12.2013		
Antenna	BTA-L	FRANKONIA	N.P.C.R.		
Loop Antenna	HFH2-Z2	R&S	03.04.2013		

10.3. Test Results

Frequencies examined: 1.65 MHz, 16.5 MHz, and 29.9 MHz

Transmitting Power: 25W, 62W, 100W & 125W

All emissions were at least 30 dB below the specified limit.

10.4. Setup Photographs for Field Strength of Spurious Radiation

Setup Photograph/ 1

MICOM Z DASH Test Report

Setup Photograph/ 2

11. Frequency Stability – Part 2.1055

E.U.T Micom Z Dash

 S/N:
 MZ6789

 Date:
 18.06.2013

 Standard
 90.213 (a)

Relative Humidity: 28%Ambient Temperature: 24^{0} C Air Pressure: 1010hPa

Testing Engineer: D. Oshri Date 18.06.2013

11.1. Test Results Summary & Conclusions

The E.U.T was found in compliance with Frequency Stability – Part 2.1055

11.2. Test Instrumentation and Equipment

Table 11: Test Instrumentation and Equipment

Item	Model	Manufacturer	Next Date of Calibration
Spectrum Analyzer	E7405A	Agilent	09.11.2013
Attenuator 30 dB	769-30	Narda	21.05.2015
Audio Analyzer	8903A	HP	23.12.2013
Antenna	BTA-L	FRANKONIA	N.P.C.R.
Loop Antenna	HFH2-Z2	R&S	03.04.2013

11.3. Test Results

Frequencies examined: 1.65 MHz, 16.5 MHz & 29.9 MHz

Transmitting Power: 25W, 62W, 100W & 125W

Table 12: For Maximum Power

For Maximum Power						
Test Condition	Frequency [MHz]	Frequency Drift [Hz]				
+50°C, 13.8VDC	15.599997	3				
+40°C, 13.8VDC	15.599996	4				
+30°C, 13.8VDC	15.599994	6				
+20°C, 15.87VDC	15.599993	7				
+20°C, 11.73VDC	15.599993	7				
+20°C, 13.8VDC	15.599993	7				
+10°C, 13.8VDC	15.599994	6				
0°C, 13.8VDC	15.599994	6				
-10°C , 13.8VDC	15.599996	4				
-20°C , 13.8VDC	15.599997	3				
-30°C, 13.8VDC	15.599998	2				

Table 13: For High Power

For High Power					
Test Condition	Frequency [MHz]	Frequency Drift [Hz]			
+50°C, 13.8VDC	15.599997	3			
+40°C, 13.8VDC	15.599996	4			
+30°C, 13.8VDC	15.599994	6			
+20°C, 15.87VDC	15.599993	7			
+20°C, 11.73VDC	15.599993	7			
+20°C, 13.8VDC	15.599993	7			
+10°C, 13.8VDC	15.599994	6			
0°C, 13.8VDC	15.599994	6			
-10°C , 13.8VDC	15.599996	4			
-20°C, 13.8VDC	15.599997	3			
-30°C, 13.8VDC	15.599998	2			

Table 14: For Medium Power

For Medium Power					
Test Condition	Frequency Drift [Hz]				
+50°C, 13.8VDC	15.599997	3			
+40°C, 13.8VDC	15.599996	4			
+30°C, 13.8VDC	15.599994	6			
+20°C, 15.87VDC	15.599993	7			
+20°C, 11.73VDC	15.599993	7			
+20°C, 13.8VDC	15.599993	7			
+10°C, 13.8VDC	15.599994	6			
0°C, 13.8VDC	15.599994	6			
-10°C , 13.8VDC	15.599996	4			
-20°C , 13.8VDC	15.599997	3			
-30°C, 13.8VDC	15.599998	2			

Table 15: For Low Power

For Low Power						
Test Condition	Test Condition Frequency [MHz]					
+50°C, 13.8VDC	15.599997	3				
+40°C, 13.8VDC	15.599996	4				
+30°C, 13.8VDC	15.599994	6				
+20°C , 15.87VDC	15.599993	7				
+20°C , 11.73VDC	15.599993	7				
+20°C, 13.8VDC	15.599993	7				
+10°C, 13.8VDC	15.599994	6				
0°C, 13.8VDC	15.599994	6				
-10°C , 13.8VDC	15.599996	4				
-20°C , 13.8VDC	15.599997	3				
-30°C , 13.8VDC	15.599998	2				

11.4. Setup Photographs for Frequency Stability

Setup Photograph/ 1

12. Abbreviations and Acronyms

The following abbreviations and acronyms are applicable in this document

BW Bandwidth

R.BW Resolution Bandwidth

V.BW Video Bandwidth

db Decibel

EMI Electromagnetic interference

E.U.T Equipment under test

LISN Line impedance stabilization network

S/N Serial number

QP Quasi peak

PK Peak

13. Appendix: Radiated Emission for Lap-top as per Part 15.109

E.U.T: Micom Z Dash

S/N: MZ6789 Date: 18.06.2013

Relative Humidity: 28%Ambient Temperature: 24^{0} C Air Pressure: 1010hPa

Testing Engineer: S. Kozliner Date 18.06.2013

13.1. Test Results Summary & Conclusions

The E.U.T was found to comply with 15.109.

13.2. Limits of Radiated Interference Field Strength according 15.109

The test unit shall meet the limits of Table 7.c for Class B equipment.

Table 16: Limits for 15.109 Class B equipment

Frequency Range (MHz)	Quasi-peak Limits (dBµV/m)
30 - 88	40
88 - 216	43
216 - 960	46
960 - 2000	54

13.3. Test Instrumentation and Equipment

Table 17: Test Instrumentation and Equipment

Tubie 17. Test Instrumentation and Equipment						
Item	Model	Manufacturer	Next Date Calibration			
Spectrum Analyzer	8593E	HP	23.05.2013			
Double Ridge Guide Antenna(1-18GHz)	DRG-118/A	ARA	09.12.2013			
Broadband Antenna(30-1000MHz)	BTA-L	FRANKONIA	28.07.2013			
Low Noise Amplifier (0-1GHz)	AM-1300-N	MITEQ	02.04.2013			
Low Noise Amplifier (1-4GHz)	AMM 003N	Avantek	02.04.2013			
Low Noise Amplifier (2-18GHz)	PE 2-38	Planar	06.08.2013			

13.4. Test Results

Table 18: RX Mode 15.109

1 0000 100 1011 112 0000 101107							
Polarization	Frequency (MHz)	Mode Of Operation	Limit dBµV/m	Margin (dB)	Polarity Ver/Hor	Height (m)	Pass/ Fail
Vertical	30 - 1000	RX		Plot	1		Pass
Horizontal	30 - 1000	KA		Plot	2		Pass

13.5. Test Procedure

See paragraph 14.4

MICOM Z DASH Test Report

Photograph of Radiated Emission/ 1

Photograph of Radiated Emission/ 2

Test Results Plot No 1

FCC 30-1000 MHz RX VER

Test & EUT General Information			Receiver Setting
EUT Name:	Micom Z Dash	Spect. Analyzer	Hewlett Packard 7405A DC Coupling
S/N:	1	Ref. Level:	90 dBμV
Date of Test:	18.06.2013	RBW:	120 kHz
Test Engineer:	SHIMON KOZLINER	VBW:	1000 kHz
Antenna:	Frankonia gray BTA-L_B 3m	Sweep Time:	Auto [151.88 ms]
Polarization:	Vertical	Pre Amplifier	LNA 10k-1GHz 30dB

TEST REMARKS: Tuesday, June 18, 2013 5:26:38 PM

Rx Mode Connected To Laptop

MAXIMUM RESULT DEVIATION:

Detect all peaks above 6 dB below the limit line with a maximum of 6 peaks.

Nr	Frequency	PK MaxHold	QP Value	QP Limit	Result	Angle	Height	H/V
	(MHz)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$		(degrees)	(m)	
1	456.754	45.3	44.1	46		0	1.3	V

Test Results Plot No 2

FCC 30-1000 MHz RX HOR

Test & EU	T General Information	Receiver Setting		
EUT Name:	Micom Z Dash	Spect. Analyzer	Hewlett Packard 7405A DC Coupling	
S/N:	1	Ref. Level:	90 dBμV	
Date of Test:	18.06.2013	RBW:	120 kHz	
Test Engineer:	SHIMON KOZLINER	VBW:	1000 kHz	
Antenna:	Frankonia gray BTA-L_B 3m	Sweep Time:	Auto [151.88 ms]	
Polarization:	Horizontal	Pre Amplifier	LNA 10k-1GHz 30dB	

TEST REMARKS: Tuesday, June 18, 2013 5:31:13 PM

Rx Mode Connected To Laptop

MAXIMUM RESULT DEVIATION:

Detect all peaks above 6 dB below the limit line with a maximum of 6 peaks. None