

planetmath.org

Math for the people, by the people.

A.1.4 Coproduct types

Canonical name A14CoproductTypes
Date of creation 2013-11-09 4:51:41
Last modified on 2013-11-09 4:51:41

Owner PMBookProject (1000683) Last modified by PMBookProject (1000683)

Numerical id 1

Author PMBookProject (1000683)

Entry type Application Classification msc 03B15 We introduce primitive constants c_+ , c_{inl} , and c_{inr} . We write A+B instead of $c_+(A,B)$, $\mathsf{inl}(a)$ instead of $c_{\mathsf{inl}}(a)$, and $\mathsf{inr}(a)$ instead of $c_{\mathsf{inr}}(a)$:

- if $A, B : \mathcal{U}_n$ then $A + B : \mathcal{U}_n$
- moreover, inl : $A \rightarrow A + B$ and inr : $B \rightarrow A + B$

If we have A and B as above, $C: A+B \to \mathcal{U}_m$, $d: \prod_{(x:A)} C(\mathsf{inl}(x))$, and $e: \prod_{(y:B)} C(\mathsf{inr}(y))$, then we can introduce a defined constant $f: \prod_{(z:A+B)} C(z)$ with the defining equations

$$f(\mathsf{inl}(x)) \equiv d(x)$$
 and $f(\mathsf{inr}(y)) \equiv e(y)$.