Performance Benchmark for MotorBike Case (1000 Steps)

OpenFOAM Performance Evaluation

October 26, 2024

Decomposer and Distributor

For this case, the following settings were used in the decomposeParDict:

• Decomposer: hierarchical for the first 4 tests, scotch for the next 4 tests

• Distributor: ptscotch

Benchmark Results

The following table summarizes the benchmark results for the motorBike case with 1000 time steps, using different core counts. The real, user, and sys times are measured for each run:

Number of Cores	Decomposer	Real Time (s)	User Time (s)	System Time (s)	Speedup	Efficiency
1	hierarchical	19.717	19.186	0.240	_	_
2	hierarchical	13.757	26.631	0.791	1.43	0.715
4	hierarchical	12.824	49.726	0.889	1.54	0.385
6	hierarchical	15.553	1:30.964	1.128	1.27	0.211
8	hierarchical	13.924	1:48.001	1.548	1.42	0.177
1	scotch	19.491	19.231	0.210	_	_
2	scotch	13.021	25.113	0.826	1.50	0.75
4	scotch	11.928	46.048	1.001	1.63	0.41
6	scotch	15.526	1:30.603	1.300	1.25	0.208
8	scotch	13.541	1:45.021	1.477	1.44	0.18

Speedup and Efficiency

The general formulas used for calculating speedup and efficiency are as follows:

$$Speedup = \frac{Time \ on \ 1 \ core}{Time \ on \ N \ cores}$$

$$Efficiency = \frac{Speedup}{Number of Cores}$$