PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-190451

(43) Date of publication of application: 21.07.1998

(51)Int.Cl.

H03L 7/093

(21)Application number: 08-348783

(71)Applicant: SONY CORP

(22) Date of filing:

26.12.1996

(72)Inventor: NISHIYAMA SEIICHI

(54) CHARGE PUMP CIRCUIT

5------

(57)Abstract:

PROBLEM TO BE SOLVED: To drastically reduce the power consumption of a PLL circuit.

SOLUTION: A current source I1 generates current of current I1 (=I0-I2) only in a period tn when it charges current to a capacitor CL. In the period tn, a switch circuit 200 is closed, current I0 (=I1+I2) is supplied to a transistor Q4, and the transistor Q4 drives a transistor Q2 through the current I0. A current mirror circuit that consists of transistors Q1 and Q2 returns drive current I0 back, further multiplies it n times and supplies it to the capacitor CL. Except the period tn, the circuit 200 is opened, current I2 is supplied only to a transistor Q3 and the current mirror circuit stops supplying of current to the capacitor CL.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-190451

(43)公開日 平成10年(1998) 7月21日

(51) Int.Cl.⁶

識別記号

H03L 7/093

FΙ

H03L 7/08

E

審査請求 未請求 請求項の数3 OL (全 9 頁)

(21)出廢番号

特顏平8-348783

(22)出顧日

平成8年(1996)12月26日

(71)出願人 000002185

ソニー株式会社

東京都品川区北品川6丁目7番35号

(72)発明者 西山 清一

東京都品川区北品川6丁目7番35号 ソニ

一株式会社内

(74)代理人 护理士 佐藤 隆久

(54)【発明の名称】 チャージポンプ回路

(57)【要約】

【課題】PLL回路の電力消費を大幅に少なくする。 【解決手段】電流源 I_1 は、コンデンサ C_L に電流をチャージする期間 t_n にだけ、電流 I_1 ($=I_0-I_2$) の電流を発生する。期間 t_n において、スイッチ回路 2 0 0 は閉じて、電流 I_0 ($=I_1+I_2$) をトランジスタQ4 に供給し、トランジスタQ4は、電流 I_0 によりトランジスタQ2を駆動する。トランジスタQ1,Q2が構成するカレントミラー回路は、駆動電流 I_0 を折り返し、さらに n倍してコンデンサ C_L に供給する。期間 t_n 以外には、スイッチ回路 2 0 0 は開き、電流 I_2 がトランジスタQ3 のみに供給され、上記カレントミラー回路は、コンデンサ C_L に対する電流の供給を停止する。

【特許請求の範囲】

【請求項1】位相差パルスに応じて、前記負荷への電流 供給の際、または、前記負荷から電流を受ける際に、第 1の電流値の駆動電流を流す駆動手段と、

前記駆動手段が流す前記第1の電流値の駆動電流に応じ て、前記負荷に所定の電流値の電流を供給する第1の電 流供給手段と、

前記位相差パルスに応じて、前記負荷への電流供給の際 に、前記駆動手段に前記第1の電流値の電流を供給し、 前記負荷への電流停止の際に、前記駆動手段に前記第1 10 の電流値よりも少ない第2の電流値の電流を供給する第 2の電流供給手段とを有するチャージボンプ回路。

【請求項2】前記第2の電流供給手段は、

前記第1の電流値と前記第2の電流値の差に等しい第3 の電流値の電流を発生する第1の電流発生手段と、

前記第2の電流値の電流を発生する第2の電流発生手段 と、

前記第2の電流発生手段が発生する第2の電流値の電流 を前記駆動手段に供給し、前記位相差パルスに応じて、 前記第1の電流供給手段の駆動時に、前記第1の電流発 20 生手段が発生する第3の電流値の電流を追加して前記取 動手段に供給する電流追加手段とを有する請求項1に記 載のチャージポンプ回路。

【請求項3】前記第2の電流供給手段は、

前記第1の電流値の電流を発生する第1の電流発生手段 と、

前記第2の電流値の電流を発生する第2の電流発生手段 ٦.

前記位相差パルスに応じて、前記第1の電流供給手段の 駆動時には、前記第1の電流発生手段が発生する第1の*30・

 $C_b = \tau_F \cdot g_a = \tau_F \cdot (q/KT) \cdot I_c$

ただし、Icはコレクタ電流である。

【0005】このため、負荷容量等に電流を供給し、チ ャージ動作を行うカレントミラー回路の電流倍率nを、 ポンプ動作を行うカレントミラー回路の電流倍率 n'ほ どには大きくすることができないので、負荷容量等に電 流を供給する、供給しないにかかわらずチャージ動作を 行うカレントミラー回路に常に流す電流値I。の電流 (電流 I。)の値が大きくなり、消費電力が増えてしま ì.

【0006】本発明は上述した従来技術の問題点に鑑み てなされたものであり、定常状態においては、負荷容量 に対して電流を供給する期間が、位相比較の周期と比べ て非常に短いことに着目し、負荷容量等に電流を供給す る期間だけ必要な電流値 1。をチャージ動作を行うカレ ントミラー回路に供給し、これ以外の期間は、比較的少 ない電流値 I2 をチャージ動作を行うカレントミラー回 路に供給すればよいチャージポンプ回路を提供すること を目的とする。また、本発明は、上述のようにチャージ *電流値の電流を前記駆動手段に供給し、前記第1の電流 供給手段の駆動停止時には、前記第2の電流発生手段が 発生する第2の電流値の電流を前記駆動手段に供給する 第3の電流供給手段とを有する請求項1に記載のチャー ジポンプ回路。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、PLL回路等にお いて用いられるチャージボンプ回路に関する。

[0002]

【従来の技術および発明が解決しようとする課題】発振 回路、あるいは、モーター制御等の分野において、位相 比較ループ(PLL)回路が広く用いられている。PL L回路においては、フィードバックされる信号と基準信 号とを位相比較して得た位相差信号に応じて、負荷容量 等に電荷(電流)を蓄え(ソース/チャージし)、ある いは、負荷容量等から電荷を取り去る(シンク/ポンプ する)チャージポンプ回路が用いられる。このチャージ ポンプ回路においては、通常、ポンプ動作はnpn形ト ランジスタから構成されるカレントミラー回路により、 チャージ動作はpnpトランジスタから構成されるカレ ントミラー回路により行われる。

【0003】しかしながら、通常、pnp形トランジス タのトランジョン周波数 f τ は、同一集積回路 (IC) 上に形成されるnpn形トランジスタのトランジョン周 波数 f ፣ よりも 1 桁程度低く、下式 1 に示す係数 τ ፣ の 値に、トランジョン周波数 f r に反比例する性質がある ため、ベース蓄積容量Cbが大きい。

【数1】

[0004]

... (1)

※より、電力消費を大幅に少なくすることができるチャー ジポンプ回路を提供することを目的とする。

[0007]

【課題を解決するための手段】上記目的を達成するため に、本発明に係るチャージポンプ回路は、位相差パルス に応じて、前記負荷への電流供給の際、または、前記負 荷から電流を受ける際に、第1の電流値の駆動電流を流 す駆動手段と、前記駆動手段が流す前記第1の電流値の 駆動電流に応じて、前記負荷に所定の電流値の電流を供 給する第1の電流供給手段と、前記位相差パルスに応じ て、前記負荷への電流供給の際に、前記駆動手段に前記 第1の電流値の電流を供給し、前記負荷への電流停止の 際に、前記駆動手段に前記第1の電流値よりも少ない第 2の電流値の電流を供給する第2の電流供給手段とを有 する。

【0008】好適には、前記第2の電流供給手段は、前 記第1の電流値と前記第2の電流値の差に等しい第3の 電流値の電流を発生する第1の電流発生手段と、前記第 動作を行うカレントミラー回路に電流を供給することに※50 2の電流値の電流を発生する第2の電流発生手段と、前 3

記第2の電流発生手段が発生する第2の電流値の電流を 前記駆動手段に供給し、前記位相差パルスに応じて、前 記負荷への電流供給の際に、前記第1の電流発生手段が 発生する第3の電流値の電流を追加して前記駆動手段に 供給する電流追加手段とを有する。

【0009】好適には、前記第2の電流供給手段は、前記第1の電流値の電流を発生する第1の電流発生手段と、前記第2の電流値の電流を発生する第2の電流発生手段と、前記位相差パルスに応じて、前記第1の電流供給手段の駆動時には、前記第1の電流発生手段が発生す 10 る第1の電流値の電流を前記駆動手段に供給し、前記第1の電流供給手段の駆動停止時には、前記第2の電流発生手段が発生する第2の電流値の電流を前記駆動手段に供給する第3の電流供給手段とを有する。

【0010】本発明に係るチャージボンプ回路は、例えば、負荷に対して電流をチャージする動作に特徴を有する。駆動手段は、例えば、差動動作を行う2つのトランジスタから構成される。駆動手段の2つのトランジスタの一方は、2つの信号の位相差を示す位相差パルスの論理値に応じて、負荷に対して電流をチャージする期間に 20は、第2の電流供給手段から供給され、駆動に必要な第1の電流値の駆動電流を第1の電流供給手段(チャージ動作を行うカレントミラー回路)に供給する。また、駆動手段の2つのトランジスタの他方は、上記位相差パルスの論理値に応じて、負荷に対して電流をチャージしない期間には、第2の電流供給手段から供給され、第1の電流値よりも少ない値の第2の電流値の電流を流す。

【0011】第1の電流供給手段は、例えば、上述のように、2個のpnp形のトランジスタから構成されるチャージ動作用のカレントミラー回路であって、駆動手段 30が供給する駆動電流を折り返し、n倍して負荷に供給する。

【0012】第2の電流供給手段において、第1の電流発生手段は、チャージ動作用のカレントミラー回路が負荷に電流をチャージする期間だけ、チャージ期間中の第1の電流値と、チャージしない期間中の第2の電流値との差に等しい第3の電流値(=第1の電流値-第2の電流値)の電流を発生する。第2の電流発生手段は、チャージ動作用のカレントミラー回路が負荷に電流をチャージしない期間であるか否かにかかわらず、常に、チャージしない期間中の第2の電流値の電流を発生する。

【0013】電流追加手段は、チャージ動作用のカレントミラー回路が負荷に電流をチャージしない期間には、駆動手段の2つのトランジスタの他方に、比較的小さい値の第2の電流値の電流を供給し、負荷に電流をチャージする期間には、駆動手段の2つのトランジスタの一方に、カレントミラー回路の駆動に要する比較的大きい値の第1の電流値の電流を供給する。

【0014】このように、負荷に電流をチャージするか 否かに応じて、駆動手段に供給する電流値を制御するこ 50 とにより、電流追加手段は、全期間の大部分を占め、負荷に電流をチャージしない期間には小さい電流値を駆動手段に供給し、全期間に僅かな割合しか占めず、負荷に電流をチャージする期間にだけ、大きい電流値を駆動手段に供給することにより、カレントミラー回路の駆動に

【0015】なお、負荷に電流を供給する場合には、駆動手段に第1の電流値の電流を供給し、負荷に電流を供給しない場合には、駆動手段に第2の電流値の電流を供給するように第2の電流供給手段を構成しても、同様な電力の節約が可能である。また、本発明に係るチャージボンプ回路は、各構成部分のトランジスタの極性を反対にすることにより、負荷から電流をボンプする動作に応用することができる。

[0016]

【発明の実施の形態】

必要な電力を大きく節約する。

第1 実施形態

以下、本発明の第1の実施形態を説明する。図1は、PLL(phase locked loop)回路1の構成を示す図である。図1に示すように、PLL回路1は、基準信号発振回路(OSC)100、分周器102、位相比較回路110、チャージボンプ回路12、ローバスフィルタ(LPF)130、電圧制御発振回路(VCO)132、分周器134およびコンデンサCLを有し、例えば、集積回路として構成される。

【0017】チャージポンプ回路12は、第1のスイッチ回路120、電流源122、124、第2のスイッチ回路126、ダイオード128、pnpトランジスタQ1、Q2およびnpnトランジスタQ10から構成される。PLL回路1は、これらの構成部分により、基準信号Refに位相同期したクロック信号を生成する。

【0018】<u>PLL回路1の構成部分</u>

PLL回路1において、基準信号発振回路100は、例えば、安定な水晶発振回路であって、所定の周波数の基準クロック信号を発生して分周器102に対して出力する。分周器102は、基準信号発振回路100から入力された基準クロック信号を分周して、基準信号Refを生成して位相比較回路110に対して出力する。

【0019】位相比較回路110は、分周器134から入力されるクロック信号VCOの位相と、分周器102から入力される基準信号Refの位相とを比較して、位相誤差パルスU、Dを生成し、チャージボンプ回路12のスイッチ回路120、126に対して出力する。

【0020】チャージポンプ回路12において、スイッチ回路120は、位相差パルスUが論理値1の場合に閉じて、電流源122が発生する電流をトランジスタQ2に対して供給する。スイッチ回路126は、位相差パルスUが論理値1の場合に閉じて、電流源124が発生する電流をダイオード128に対して供給する。

0 【0021】トランジスタQ2とトランジスタQ1と

は、カレントミラー回路を構成し、トランジスタQ2に 供給される電流を折り返してn倍し、負荷コンデンサC ι に対して供給 (チャージ/ソース) する。 ダイオード 128とトランジスタQ10とは、カレントミラー回路 を構成し、ダイオード128に供給される電流を折り返 してn倍し、負荷コンデンサCL から供給させる (ポン プ/シンクする)。

【0022】ローパスフィルタ130は、コンデンサC L の端子に現れる電圧信号△Vをフィルタリングし、電 圧制御発振回路132に対して出力する。電圧制御発振 10 回路132は、ローパスフィルタ130の出力電圧信号 の値に応じた周波数のクロック信号を生成して外部に出 力するとともに、分周器134に対して出力する。分周 器134は、電圧制御発振回路132から入力されるク ロック信号を分周してクロック信号VCOを生成し、位 相比較回路110に対して出力する。

【0023】<u>PLL回路1の動作</u>

以下、PLL回路1の動作を説明する。位相比較回路1 10は、分周器134から入力されるクロック信号VC 〇の位相と、分周器102から入力される基準信号Re 20 れる。 fの位相とを比較し、位相パルスU、Dを生成する。

【0024】基準信号Refとクロック信号VCOとの 位相が合っていないと、チャージポンプ回路12は、位 相パルスU、Dに応じてコンデンサC』に対して電流を 供給 (チャージ/ソース) したり、コンデンサCL から 電流を供給させたり(ポンプ/シンクしたり)する。

【0025】基準信号Refとクロック信号VCOとの 位相が合うと、理想的には、チャージポンプ回路12 は、位相パルスU、Dは、クロック信号VCOおよび基 ス幅taで同時に同じ論理値1となり、これ以外の期間 は論理値Oとなる。従って、基準信号Refとクロック 信号VCOとの位相が合っている場合には、コンデンサ CL にチャージされたり、コンデンサCL からポンプさ れたりする電流の合計値は0になる。

【0026】コンデンサC」に対してチャージ/ポンプ されたりする電流の合計値が0になると、分周器102 が出力する基準信号Refの位相と、分周器134が出 力するクロック信号VCOの位相とが一致し、電圧制御 発振回路132が発生するクロック信号の位相は、基準 40 信号発振回路100が発生する基準クロック信号の位相 と一致する。

【0027】 チャージポンプ回路12の実際

以下、図2を参照して、チャージポンプ回路12の実際 の回路を説明する。図2は、図1に示したPLL回路1 のチャージポンプ回路12として実際に用いられるチャ ージポンプ回路14の構成を示す図である。なお、図2 においては、図示および以下の説明の簡略化のために、 コンデンサCL に電流をチャージするチャージ部分と、

スタQ10のみが示してある。

【0028】図2に示すように、チャージポンプ回路1 4においては、チャージポンプ回路12におけるスイッ チ回路120として、npn形のトランジスタQ3、Q 4が用いられ、トランジスタQ4は、トランジスタQ2 に位相差パルスに応じて電流 I。を流し、トランジスタ Q1, Q2が構成するカレントミラー回路は、電流 I。 を折り返し、n倍した電流n I。をコンデンサCL にチ ャージする。なお、チャージポンプ回路14のポンプ部 分も、同様の回路(図示せず)によりトランジスタQ1 Oを介してコンデンサCL から電流n'I。'(=n I 。)をポンプする。

【0029】 第2 実施形態

以下、本発明の第2の実施形態を説明する。 図3は、図 2に示したチャージボンプ回路14のチャージ部分に流 れる電流の変化を示す図である。チャージポンプ回路1 4においては、基準信号Refの周期(tref)の内、 コンデンサCL にチャージを行う期間(tn)を除く大 部分の期間で定常的に電流Ⅰ。がトランジスタQ3に流

【0030】基準信号Refとクロック信号VCOとの 位相が合っている場合、コンデンサCLにチャージを行 うごく短い期間(t_n << t_{ref})で、トランジスタQ 4, Q2に電流 I。が流れ、さらに、トランジスタQ1 に電流 n I。(=1 m A 以上)が流れ、チャージポンプ 回路14のチャージ部分に流れる合計の電流値は (n+ 1) I。となる。従って、トランジスタQ3に流れる電 流 I。の電流値を小さくすることにより、チャージポン プ回路14の消費電力を大幅に削減することができる。 準信号Refの周期(tref)よりもはるかに短いパル 30 ここで、ポンプ動作を行うトランジスタQ10はnpn 形であり、電流倍率 n'の値を充分に大きくすることが できるので、トランジスタQ10の駆動に必要な電流 I 。'の値を小さくすることができる。

> 【0031】一方、チャージ動作を行うトランジスタQ 1はpnp形であるため、上述のように、電流倍率nの 値を大きくすることができず、トランジスタQ1の駆動 に必要な電流 I。の値が大きくなる。しかしながら、ト ランジスタQ1を駆動する電流 I。の値を単純に小さく すると、トランジスタQ1は、コンデンサCL に対して 充分なチャージ電流を供給することができなくなってし まう。

> 【0032】第2の実施形態として以下に示すチャージ ポンプ回路は、コンデンサC1 に電流をチャージする期 間には、コンデンサCLに充分な電流値の電流を供給 し、これ以外の期間に、チャージポンプ回路のチャージ 部分に定常的に流れる電流値を削減することにより、消 費電力を大幅に節減可能なように構成されている。

【0033】 <u>チャー</u>ジポンプ回路 20の構成

図4は、第2の実施形態における本発明に係るチャージ コンデンサCιから電流をポンプするnpn形トランジ 50 ポンプ回路20の構成を示す図である。なお、図4にお 7

いては、チャージボンプ回路20の構成部分の内、チャージボンプ回路14と同じものには同一の符号が付してあり、図示および以下の説明の簡略化のために、チャージボンプ回路20のチャージ部分と、ボンプ部分のトランジスタQ10のみが示されている。

【0034】図4に示すように、チャージボンプ回路20は、pnphランジスタQ1、Q2、npnhランジスタQ3、Q4、 $スイッチ回路200、電流源<math>I_1$, I_2 およびトランジスタQ10から構成される。つまり、チャージボンプ回路20は、チャージボンプ回路14(図2)の電流源 I_0 を電流源 I_1 , I_2 に分割し、スイッチ回路200を付加した構成を採り、PLL回路1(図1)において、チャージボンプ回路12に置換されて用いられる。

【0035】電流源 12

電流源 I 2 は、電流値 I 2 (I 2 < I 。) の電流を常に 発生する。

電流源 11

電流源 I_1 は、基準信号Refの周期 t_{ref} において、PLL回路1(図1)の位相比較回路 1 1 0 から入力さ 20 れる位相差パルス U が論理値 1 をとり、トランジスタQ 1 がコンデンサ C_L に電流をチャージする期間(t_n ; 図3)に、電流源 I_2 とともにトランジスタQ4に供給する電流値 I_1 ($I_1 = I_0 - I_2$)を発生する。

【0036】スイッチ回路200

スイッチ回路200は、位相差パルスUが論理値1をとり、トランジスタQ1がコンデンサCL に電流をチャージする期間(tm)にのみ閉じて、電流源Inが発生する電流Inに、電流源I2が発生する電流Inに、電流源I2が発生する電流Inに、電流源I2が発生する電流Inに、電流値I。(=In+I2)の電流をトランジ 30スタQ4に供給し、これ以外の場合には開いて、電流値I2の電流をトランジスタQ3に供給する。

【0037】<u>トランジスタQ3, Q4</u>

トランジスタQ3,Q4、差動回路を構成し、これらのトランジスタQの内、トランジスタQ3は、位相差パルスUが論理値0をとり、トランジスタQ1がコンデンサCLに電流をチャージしない期間には、電流源 I_1 から供給される電流 I_1 を流す。トランジスタQ4は、位相差パルス I_1 が高理値 I_2 をり、トランジスタQIがコンデンサCLに電流をチャージする期間(I_1 には、電流 I_2 から供給される電流 I_3 を流し、トランジスタQIに保給する。

【0038】 トランジスタQ1, Q2

トランジスタQ1, Q2は、コンデンサ C_L にチャージ電流 (nI_o)を供給するカレントミラー回路を構成し、位相差パルスUが論理値1をとり、トランジスタQ1がコンデンサ C_L に電流をチャージする期間 (t_n) に、トランジスタQ4からトランジスタQ2に供給される電流 I_o を折り返し、さらにn倍してコンデンサ C_L に供給する。

【0039】ポンプ部分

チャージポンプ回路 20のポンプ部分は、チャージ部分と同様の回路(図示せず)により、トランジスタQ 10を介してコンデンサ C_L から電流 n' I_o ' (= n I_o) をポンプする。

【0040】チャージポンプ回路20の動作

以下、図5を参照して、チャージポンプ回路20の動作を説明する。図5は、図4に示したチャージポンプ回路20のチャージ部分に流れる合計電流を示す図である。

電流源 I_2 は、電流値 I_2 の電流を常に発生し、電流源 I_1 は、位相差パルス I_2 が論理値 I_3 をり、コンデンサ I_4 に電流をチャージする期間(I_4 の間にだけ、電流値 I_4 (I_4)の電流を発生する。

【0041】 コンデンサCL に電流をチャージする場合の動作

基準信号Refとクロック信号VCOとの位相が合い、位相差パルスUが論理値1をとり、トランジスタQ1がコンデンサ C_L に電流をチャージする期間において、スイッチ回路200は、電流源 I_1 , I_2 が発生する合計電流値 I_0 (= I_1+I_2)の電流をトランジスタQ4に供給する。トランジスタQ4は、電流源 I_1 , I_2 がスイッチ回路200を介して供給する合計電流値 I_0 の電流を流し、トランジスタQ2に供給する。

【0043】 <u>コンデンサCL</u> に電流をチャージしない場合の動作

基準信号Refとクロック信号VCOとの位相が合い、位相差パルスUが論理値0をとり、トランジスタQ1がコンデンサ C_L に電流をチャージしない期間において、スイッチ回路200は開き、電流源 I_2 は電流値 I_2 の電流をトランジスタQ3に供給する。トランジスタQ3は、電流源 I_1 から供給される電流 I_1 を流し、トランジスタQ4は、電流を流さない。

【0044】トランジスタQ2には、トランジスタQ4から電流が供給されないので、トランジスタQ1、Q2が構成するカレントミラー回路は、コンデンサ C_L に対する電流の供給を停止する。チャージボンプ回路20のボンプ部分も、この場合、トランジスタQ10を介したコンデンサ C_L への電流供給を停止する。従って、この場合、図5に示すように、チャージボンプ回路20のチャージ部分に流れる電流値は I_2 となる。

0 【0045】以上説明したように、チャージポンプ回路

Q

20のチャージ部分に流れる電流は、基準信号Refの周期の大部分の割合を占めるコンデンサ C_L に電流を供給しない期間には I_2 (I_0)となり、基準信号Refの周期のごく僅かの割合しか占めないコンデンサ I_0 に電流を供給する期間(I_0)にのみ I_0 となる。従って、チャージボンプ回路 I_0 0のコンデンサ I_0 1に対する電流供給能力は全く低下しないにもかかわらず、チャージボンプ回路 I_0 4(図 I_0 2)に比べて、消費電力が大幅に減少する。

【0046】第3実施形態

以下、第3の実施形態として、第2の実施形態に示した チャージポンプ回路20(図4)の実際の回路を説明する。

【0047】 チャージポンプ回路22の構成

図6は、図4に示したチャージボンプ回路の実際の回路 (チャージボンプ回路22)の構成を示す図である。なお、図6においては、図示および以下の説明の簡略化のために、トランジスタQ10以外のボンプ部分は省略されており、図6に示したチャージボンプ回路22の各構成部分のうち、図2に示したチャージボンプ回路20の構成部分と同じものには同一の符号を付してある。

【0048】図6に示すように、チャージボンプ回路2 2は、電流源 Ia、pnpトランジスタQ1,Q2,Q 7,Q8、npnトランジスタQ3~Q6,Q10~Q 12およびダイオードD1,D2から構成され、PLL 回路1(図1)においてチャージボンプ回路12に置換されて用いられる。

【0049】つまり、チャージボンプ回路22は、チャージボンプ回路20(図4)の電流源 I_1 , I_2 および 30 スイッチ回路200を、電流源 I_a 、トランジスタQ5~Q8,Q11,Q12およびダイオードD1,D2で置き換えた構成を採り、チャージボンプ回路22における電流源 I_a 、トランジスタQ5~Q8,Q11,Q12およびダイオードD1,D2が、チャージボンプ回路20における電流源 I_1 , I_2 およびスイッチ回路200と同じ動作を行う。

【0050】電流源 Ia は、電流値 Ia の電流を発生する。トランジスタQ7, Q8のエミッタ同士は接続され、トランジスタQ7, Q8のエミッタは電流源 Ia を 40 介して正電源に接続され、トランジスタQ7, Q8のコレクタは、それぞれダイオードD1, D2のカソードに接続され、ダイオードD1, D2を介してトランジスタQ11(1サイズ), Q12(n"サイズ)のコレクタおよびベースに接続されており、トランジスタQ7, Q8および電流源 Ia は、ECLの差動回路を構成する。トランジスタQ7のベースには、PLL回路1(図1)の位相比較回路110から入力される位相差パルスUの非反転信号が入力され、トランジスタQ8のベースには、位相差パルスUの反転信号が入力される。 50

10

【0051】トランジスタQ11(1サイズ)およびトランジスタQ6(n'サイズ)は、トランジスタQ7の電流を折り返し、n'倍してトランジスタQ3,Q4のエミッタに供給するカレントミラー回路を構成する。トランジスタQ12(n"サイズ)およびトランジスタQ5(1サイズ)は、トランジスタQ8の電流を折り返して1/n"倍してトランジスタQ3,Q4のエミッタに供給するカレントミラー回路を構成する。

【0052】 チャージボンプ回路22の動作

10 電流源 I a は、電流値 I a の電流をトランジスタQ7, Q8に供給する。

【0053】 <u>コンデンサCL</u> に電流をチャージする場合の動作

PLL回路1(図1)の位相比較回路110から入力される位相差パルスUの非反転信号が論理値1となり、トランジスタQ1を介してコンデンサCLに電流を供給する場合において、トランジスタQ3、Q8はON状態、トランジスタQ4、Q7はOFF状態となる。

【0054】トランジスタQ7は、ダイオードD1を介してトランジスタQ11に電流 Iaを供給する。トランジスタQ11、Q6が構成するカレントミラー回路は、トランジスタQ8が供給する電流を折り返し、n'倍して電流値n'Ia (=チャージボンプ回路20における I。)の電流をトランジスタQ4のエミッタに供給する。

【0055】トランジスタQ4は、トランジスタQ12,Q5が構成するカレントミラー回路が供給する電流値n' Ia(= I。)の駆動電流を、トランジスタQ1,Q2が構成するカレントミラー回路に供給する。トランジスタQ1,Q2が構成するカレントミラー回路は、トランジスタQ4から供給される電流n' Ia(= チャージボンプ回路20におけるn I。)を、コンデンサ C_L に供給する。

【0056】<u>コンデンサCL に電流をチャージしない場合の動作</u>

PLL回路1(図1)の位相比較回路110から入力される位相差パルスUの非反転信号が論理値0となり、トランジスタQ1がコンデンサCLに電流を供給しない場合において、トランジスタQ3,Q8はON状態、トランジスタQ4,Q7はOFF状態となる。

【0057】トランジスタQ8は、ダイオードD2を介してトランジスタQ12に電流 I_a を供給する。トランジスタQ12、Q5が構成するカレントミラー回路は、トランジスタQ8が供給する電流を折り返し、1/n"倍して、電流値 I_a/n ($=I_2$)の電流をトランジスタQ3のエミッタに供給する。トランジスタQ3は、トランジスタQ12、Q5が構成するカレントミラー回路が供給する電流値 I_a/n (=チャージボンプ回路20における I_2)の電流を流す。

50 【0058】図7は、チャージポンプ回路22(図6)

【0059】また、図7に示すように、チャージボンプ 10 回路22において、コンデンサCLに電流をチャージしない場合(OFF動作時)には、チャージ部分のQ3に流れる電流値はI。/n" [=I0./n'n"]となり、トランジスタQ7, Q8等から構成される差動回路に流れる電流I1。を考慮すると、チャージボンプ回路22のチャージ部分に流れる電流値は(1/n'n"+1/n') I0. となる。

【0060】具体例を挙げる。例えば、n', n''=5 とした場合、コンデンサ C_L に電流をチャージしない期間にチャージボンプ回路22のチャージ部分に流れる電 20 流値は、($1/5+1/5\times5$) $I_0=6/25\times I_0=0$. 24 I_0 となり、チャージボンプ回路14のチャージ部分の消費電力が24%にまで減少する。一方、コンデンサ C_L に電流をチャージする期間の基準信号Refの周期 I_0 に電流をチャージする期間の電流増加は、基準信号Refとクロック信号VCOとの位相が合った後の定常時には問題にならない。

【0061】以上説明したように、チャージボンプ回路 22によれば、定常時のPLL回路の消費電源を大幅に 30 削減することができる。また、例えば、チャージボンプ 回路22を、携帯電話機等に応用すると、連続待ち受け 時間 (電波を正常に受信可能な状態で移動した場合の平均的な待ち受け時間)、および、連続通話時間(最大パワーで送信し、パワーセンス機能をOFF状態にした場合の通話時間)のいずれをも長くすることができるので、特に有効である。

【0062】変形例

チャージボンプ回路22のチャージ部分の構成は、ボンプ部分に応用可能である。図8は、チャージボンプ回路 4022(図6)のチャージ部分の構成をポンプ部分に応用したデータ受信装置24の構成を示す図である。なお、図8においては、図示の簡略化のために、チャージ部分を省略してある。

【0063】図8に示すように、データ受信装置24のポンプ部分は、チャージポンプ回路22のチャージ部分のトランジスタQ1~Q8、Q11、Q12の反対極性

12

のトランジスタQ1'~Q8',Q11',Q12'、電流源I。およびダイオードD1,D2から構成される。データ受信装置24によれば、チャージポンプ回路22と同様な動作により、ポンプ部分の消費電力を軽減することができる。

[0064]

【発明の効果】以上説明したように、本発明に係るチャージボンプ回路においては、定常状態において、位相比較の周期において大きな割合を占める負荷容量に対して電流を供給しない期間には、負荷容量に対して電流をチャージするカレントミラー回路に少ない電流値 I 2 を供給し、位相比較の周期においてごくわずかな割合しか占めない負荷容量に対して電流を供給する期間にのみ、駆動に必要な大きい電流 I。を上記カレントミラー回路に供給すればよい。また、本発明に係るチャージボンプ回路によれば、上述のようにチャージ動作を行うカレントミラー回路に電流を供給することにより、電力消費を大幅に少なくすることができる。

【図面の簡単な説明】

【図1】PLL(phase locked loop) 回路の構成を示す 図である。

【図2】図1に示したPLL回路のチャージポンプ回路 として実際に用いられる構成を示す図である。

【図3】図2に示したチャージボンプ回路のチャージ部分に流れる電流の変化を示す図である。

【図4】第2の実施形態における本発明に係るチャージ ポンプ回路の構成を示す図である。

【図5】図4に示したチャージボンプ回路のチャージ部 分に流れる合計電流を示す図である。

【図6】図4に示したチャージポンプ回路の実際の回路 を示す図である。

【図7】チャージボンプ回路(図6)のトランジスタQ1~Q3に流れる電流の電流値を示す図である。

【図8】チャージポンプ回路(図6)のチャージ部分の 構成をポンプ部分に応用した場合の構成を示す図であ る。

【符号の説明】

1…PLL回路、100…基準信号発振回路、102…分周器、110…位相比較回路、130…ローパスフィルタ、132…電圧制御発振回路、134…分周器、12,14,20,22,24…チャージポンプ回路、120,126,200…スイッチ回路、122,124…電流源、128…ダイオード、Q1~Q8,Q10~Q12(Q1'~Q8',Q10'~Q12')…トランジスタ、D1,D2…ダイオード、CL…負荷コンデンサ、I。,I1,I2,I。…電流源。

