MATEMÁTICA BÁSICA

Noções iniciais de Conjuntos – parte 2

REUNIÃO DE CONJUNTOS

Dados dois conjuntos A e B, chama-se reunião de A e B o conjunto formado pelos elementos que pertencem a A ou B.

$$A \cup B = \{x / x \in A \text{ ou } x \in B\}$$

Exemplos

PROPRIEDADES DA REUNIÃO

Sendo A, B e C conjuntos quaisquer, valem as seguintes propriedades:

- 1) $A \cup A = A$ (idempotente)
- 2) $A \cup \emptyset = A$ (elemento neutro)
- 3) $A \cup B = B \cup A$ (comutativa)
- 4) $(A \cup B) \cup C = A \cup (B \cup C)$ (associativa)

INTERSEÇÃO DE CONJUNTOS

Dados dois conjuntos A e B, chama-se interseção de A e B o conjunto formado pelos elementos que pertencem a A e a B

$$A \cap B = \{x \mid x \in A \in x \in B\}$$

Exemplo

PROPRIEDADES DA INTERSEÇÃO

Sendo A, B e C conjuntos quaisquer, valem as seguintes propriedades:

- 1) $A \cap A = A$ (idempotente)
- 2) $A \cap U = A$ (elemento neutro)
- 3) $A \cap B = B \cap A$ (comutativa)
- 4) $(A \cap B) \cap C = A \cap (B \cap C)$ (associativa)

CONJUNTOS DISTINTOS

Quando A∩B = Ø, isto é, quando os conjuntos A e B não têm nenhum elemento comum, A e B são denominados conjuntos disjuntos.

PROPRIEDADES

Sendo A, B e C conjuntos quaisquer, valem as seguintes propriedades que inter-relacionam a reunião e a interseção de conjuntos:

- 1) $A \cup (A \cap B) = A$
- 2) $A \cap (A \cup B) = A$
- 3) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- 4) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$