

LAFF-On Programming for Correctness

Margaret E. Myers Robert A. van de Geijn

Release Date October 11, 2016

This is a work in progress

Copyright © 2016 by Margaret E. Myers and Robert A. van de Geijn.

10987654321

All rights reserved. No part of this book may be reproduced, stored, or transmitted in any manner without the written permission of the publisher. For information, contact any of the authors.

No warranties, express or implied, are made by the publisher, authors, and their employers that the programs contained in this volume are free of error. They should not be relied on as the sole basis to solve a problem whose incorrect solution could result in injury to person or property. If the programs are employed in such a manner, it is at the user's own risk and the publisher, authors, and their employers disclaim all liability for such misuse.

Trademarked names may be used in this book without the inclusion of a trademark symbol. These names are used in an editorial context only; no infringement of trademark is intended.

Library of Congress Cataloging-in-Publication Data not yet available Draft Edition, Fall 2016

This "Draft Edition" allows this material to be used while we sort out through what mechanism we will publish the book.

Contents

0.	Gett	ting Started	1
	0.1.	Opening Remarks	1
		0.1.1. Welcome to LAFF-On Programming for Correctness	1
		0.1.2. Outline	2
		0.1.3. What You Will Learn	3
	0.2.	How to LAFF-On	4
		0.2.1. Setting Up to LAFF	4
	0.3.	Software to LAFF-On	4
		0.3.1. Why MATLAB	4
		0.3.2. Installing MATLAB	4
		0.3.3. MATLAB Basics	4
	0.4.	Typesetting LAFF-On	6
		0.4.1. Typesetting mathematics	6
		0.4.2. Downloading TeXstudio	7
		0.4.3. Testing TeXstudio	7
		0.4.4. LATEX and TeX studio Primer	7
	0.5.	Enrichments	8
		0.5.1. The Origins of MATLAB	8
		0.5.2. The Origins of LATEX	8
	0.6.	Wrap Up	8
		0.6.1. Additional Homework	8
		0.6.2. Summary	8
1.	Intro	oduction	9
	1.1.	Opening Remarks	9
		1.1.1. Launch	9
		1.1.2. Outline Week 1	16
		1.1.3. What you should know	17
		1.1.4. What you will learn	8
	1.2.	A Farewell to Indices	9
		1.2.1. A motivating example: dot product	19
		1.2.2. A new notation for presenting algorithms	20
		1.2.3. Typesetting algorithms with FLAME notation and LATEX	22

		1.2.4.	Representing (FLAME) algorithms in code
	1.3.		tness of a Loop
		1.3.1.	Predicates as assertions about the state
		1.3.2.	Reasoning about the correctness of a loop (example)
		1.3.3.	Equivalent reasoning without the FLAME notation
		1.3.4.	Deriving a correct loop
	1.4.		ment
	1.5.		Jp
	1.5.	1.5.1.	Additional Exercises
		1.5.1.	Summary
2.			gorithms to be Correct 31
	2.1.		ng Remarks
			Launch
		2.1.2.	Outline Week 2
		2.1.3.	What you should know
		2.1.4.	What you will learn
	2.2.		ng Algorithms for APDOT
		2.2.1.	Goal-oriented programming
		2.2.2.	Step 1: Specifying the operation
		2.2.3.	Step 2: Deriving loop-invariants
		2.2.4.	Step 3: Determining the loop-guard
		2.2.5.	Step 4: Initialization
		2.2.6.	Step 5: Progressing through the vectors
		2.2.7.	Step 6: Determining the state after repartitioning
		2.2.8.	Step 7: Determining the state after moving the thick lines
		2.2.9.	Step 8: Determining the update
		2.2.10.	Final algorithm
			Typesetting a derivation
	2.3.		e Advanced Example
			Step 1: Specifying the operation
		2.3.2.	Step 2: Deriving loop-invariants
		2.3.3.	Step 3: Determining the loop-guard
		2.3.4.	Step 4: Initialization
		2.3.5.	Step 5: Progressing through the vectors
		2.3.6.	Step 6: Determining the state after repartitioning
		2.3.7.	Step 7: Determining the state after moving the thick lines
		2.3.7.	Step 8: Determining the update
		2.3.9.	
			$oldsymbol{arepsilon}$
			Typesetting the derivation
		2.5.11.	Other loop invariants
3.			Logic and Proofs 49
	3.1.	_	ng Remarks
		3.1.1.	Launch
		3.1.2.	Outline Week 3

	3.1.3.	What you should know
		What you will learn
3.2.		itions
	3.2.1.	Boolean functions
	3.2.2.	Basic logic operations
	3.2.3.	Propositions
	3.2.4.	The Basic Equivalences ("Laws of Equivalence")
	3.2.5.	Predicates
	3.2.6.	Specifications
	3.2.7.	Weaker/stronger predicates
3.3.	A Sim	ple Language
	3.3.1.	The weakest precondition
	3.3.2.	Properties of <i>wp</i>
	3.3.3.	skip
	3.3.4.	abort
	3.3.5.	Composition
	3.3.6.	Assignment
Answer	S	69
		Logic and Proofs

Preface

Acknowledgments

 $_{\text{Part}}3$

A Review of Logic and Proofs

- 3.1 Opening Remarks
- 3.1.1 Launch

3.1.2 Outline Week 3

3.1.	Openi	ng Remarks
	3.1.1.	Launch
	3.1.2.	Outline Week 3
	3.1.3.	What you should know
	3.1.4.	What you will learn
3.2.	Propo	sitions 53
	3.2.1.	Boolean functions
	3.2.2.	Basic logic operations
	3.2.3.	Propositions
	3.2.4.	The Basic Equivalences ("Laws of Equivalence")
	3.2.5.	Predicates
	3.2.6.	Specifications
	3.2.7.	Weaker/stronger predicates
3.3.	A Sim	ple Language
	3.3.1.	The weakest precondition
	3.3.2.	Properties of <i>wp</i>
	3.3.3.	skip
	3.3.4.	abort
	3.3.5.	Composition
	3.3.6.	Assignment

3.1.3 What you should know

3.1.4 What you will learn

This week introduces the reader to the systematic derivation of algorithms for linear algebra operations. Through a very simple example we illustrate the core ideas: We describe the notation we will use to express algorithms; we show how assertions can be used to establish correctness; and we propose a goal-oriented methodology for the derivation of algorithms. We also discuss how to incorporate an analysis of the cost into the algorithm. Finally, we show how to translate algorithms to code so that the correctness of the algorithm implies the correctness of the implementation.

Upon completion of this week, you should be able to

•

Track your progress in Appendix ??.

3.2. Propositions 53

		not	and	or	implies	equivalent
p	q	$\neg p$	$p \wedge q$	$p \lor q$	$p \Rightarrow q$	$p \Leftrightarrow q$
T	T	F	T	T	T	T
T	F	F	F	T	F	F
F	T	T	F	T	T	F
F	F	T	F	F	T	T

Figure 3.1: Truth table for the basic logic operations.

3.2 Propositions

3.2.1 Boolean functions

Notice: much of the below was inspired by "The Science of Programming" [?]

Definition 3.1 A Boolean variable is a variable that can take on the values true (T) or false (F).

We will denote the set of all Boolean values $\mathbb{B} = \{T, F\}$.

Definition 3.2 A Boolean function $f : \mathbb{B}^k \to \mathbb{B}$ maps a vector $x \in \mathbb{B}^k$ to a value in \mathbb{B} .

In other words, it is a function that takes as input Boolean values and produces as output T or F.

3.2.2 Basic logic operations

We will use the symbols \neg , \wedge , \vee , \Rightarrow , and \Leftrightarrow to denote the logical "not", "and", "or", "implies", and "is equivalent" operations. In Figure 3.1 a truth table that summarizes all the basic operations is summarized. Below we discuss each individual operation. *truth table* define these operation:

Negation (not). The "not" operation maps a boolean to a boolean, $\neg : \mathbb{B} \to \mathbb{B}$. Given boolean $p, \neg p$ evaluates to F if p is originally T, and F otherwise

Conjunction (and). The "and" operation maps two boolean to a boolean, $\neg : \mathbb{B} \times \mathbb{B} \to \mathbb{B}$. Given boolean p and q, the expression $p \wedge q$ evaluates to T if and only if both p and q are true.

Disjunction (or).

Implication (implies).

Equivalence (equivalent).

3.2.3 Propositions

In an algebra course you will have been introduced to algebraic expression. For example, if $x \in \mathbb{Z}$ then 2x + 1 is an algebraic expression. It consists of a variable (x), constants (2 and 1), algebraic operations (multiplication and addition), and rules by which these are composed.

Propositions are expressions that evaluate to T or F. The set of all propositions is defined by the following rules:

- 1. *T* and *F* are propositions.
- 2. Sometimes we will use an identifier to denote an expression that evaluates to *T* or *F*. An identifier is a proposition.
- 3. If E is a proposition, so is $\neg E$.
- 4. If E1 and E2 are propositions, so are
 - $(E1 \wedge E2)$,
 - $(E1 \lor E2)$,
 - (E1 \Rightarrow E2), and
 - $(E1 \Leftrightarrow E2)$.

Notice that subexpressions in a proposition themselves can be algebraic expressions. For example

$$(((2x+1) > 4) \lor (y < 1) \land (p \lor q)),$$

where x and y are integers, and p and q are boolean variables, is a proposition. It has algebraic expressions as subexpressions, but evaluates to T or F.

Example 3.3 Examples of propositions:

$$F \quad (\neg F) \quad (p \land r) \quad ((p1 \land r1) \lor (p2 \Rightarrow r2))$$

To avoid the unnecessary extra parentheses, there is a *precedence order* in which operations are evaluated:

- First negate: $\neg p \land q$ is the same as $(\neg p) \land q$.
- Second, evaluate \wedge : $\neg p \wedge q \Rightarrow r$ is the same as $((\neg p) \wedge q) \Rightarrow r$. Third, evaluate \vee : $\neg p \wedge q \vee r \Rightarrow s$ is the same as $(((\neg b) \wedge c) \vee r) \Rightarrow s$.
- Fourth, evaluate \Rightarrow : $t \Leftrightarrow \neg p \land q \lor r \Rightarrow s$ is the same as $t \Leftrightarrow ((((\neg b) \land c) \lor r) \Rightarrow s)$.
- Last evaluate \Leftrightarrow .

We will throw in extra parentheses if we think it makes the proposition clearer! So should you!

Exercise of precedence of operations here.

3.2. Propositions 55

3.2.4 The Basic Equivalences ("Laws of Equivalence")

Definition 3.4 A tautology is a proposition (statement) that always evaluates to true.

In Figure 3.2 we provide a set of tautologies that are known as the *Basic Equivalences* (*Laws of Equivalence*). These laws will be our principal tools for manipulating propositions, for example, as part of a proof. Each of these can be easily proved, for example by using a truth table:

E1	E2	(E1 ∧ E2)	(E2∧E1)	$(E1 \wedge E2) \Leftrightarrow (E2 \wedge E1)$
T	T	T	T	T
T	F	F	F	T
F	T	F	F	T
T	F	F	F	T

You should learn them and their names well.

Homework 3.2.4.1 Use the Basic Equivalences to prove the following. (Do NOT use the weakening/strengthening laws given in Figure 3.3, which we will discuss later.)

- 1. $(b \land (b \Rightarrow c)) \Rightarrow c$.
- 2. $p \land q \Rightarrow p$
- 3. $p \Rightarrow p \lor r$
- 4. $p \land q \Rightarrow p \lor r$
- 5. $((x \land y) \Rightarrow z) \Leftrightarrow (x \Rightarrow (y \Rightarrow z))$

SEE ANSWER

Exercises 2–4 will become powerful weapons as we prove programs correct. Together we will call them the *Weakening/Strengthening Laws*. They are summarized in Figure 3.3. These form a second set of useful tautologies.

Homework 3.2.4.2 In Figure 3.3 we present three Weakening/Strengening Laws. This exercise shows that if you only decide to remember one, it should be the last one.

- 1. Show that $(E1 \land E2) \Rightarrow E1$ is a special case of $(E1 \land E2) \Rightarrow (E1 \land E3)$.
- 2. Show that E1 \Rightarrow (E1 \vee E3) is a special case of (E1 \wedge E2) \Rightarrow (E1 \wedge E3).

SEE ANSWER

What you will find later is that it is $(E1 \land E2) \Rightarrow (E1 \land E3)$ becomes our tool of choice in many proofs.

Homework 3.2.4.3 Prove the *counterpositive*: $(p \Rightarrow q) \Leftrightarrow (\neg q \Rightarrow \neg p)$.

SEE ANSWER

Let E1, E2, and E3 be any propositions whatsoever. Then

Commutativity:	$(E1 \land E2) \Leftrightarrow (E2 \land E1)$
	$(E1 \lor E2) \Leftrightarrow (E2 \lor E1)$
	$(E1 \Leftrightarrow E2) \Leftrightarrow (E2 \Leftrightarrow E1)$
Associativity:	$E1 \ \land (E2 \ \land E3) \Leftrightarrow (E1 \ \land E2) \land E3$
	$E1 \lor (E2 \lor E3) \Leftrightarrow (E1 \lor E2) \lor E3$
Distributivity:	$E1 \ \land (E2 \ \lor E3 \) \Leftrightarrow (E1 \ \land E2 \) \lor (E1 \ \land E3 \)$
	$E1 \lor (E2 \land E3) \Leftrightarrow (E1 \lor E2) \land (E1 \lor E3)$
De Morgan:	$\neg(E1 \land E2) \Leftrightarrow (\neg E1 \lor \neg E2)$
	$\neg(E1 \lor E2) \Leftrightarrow (\neg E1 \land \neg E2)$
Negation:	$\neg(\neg E1) \Leftrightarrow E1$
Excluded Middle:	$E1 \lor \neg E1 \Leftrightarrow T$
Contradiction:	$E1 \land \neg E1 \Leftrightarrow F$
Implication:	$(E1 \Rightarrow E2) \Leftrightarrow (\neg E1 \lor E2)$
Equality:	$(E1 \lor E2) \Leftrightarrow (E1 \Rightarrow E2) \land (E2 \rightarrow E1)$
∨-simplification:	$E1 \lor E1 \Leftrightarrow E1$
	$E1 \lor T \Leftrightarrow T$
	$E1 \lor F \Leftrightarrow E1$
	$E1 \lor (E1 \land E2) \Leftrightarrow E1$
∧-simplification:	$E1 \wedge E1 \Leftrightarrow E1$
	$E1 \land T \Leftrightarrow E1 \ E1 \land F \Leftrightarrow F \ E1 \land (E1 \lor E2) \Leftrightarrow E1$
Identity:	E1 ⇔E1

Figure 3.2: Basic equivalences.

Weakening/
$$(E1 \land E2) \Rightarrow E1$$

Strengthening: $E1 \Rightarrow (E1 \lor E2)$
 $(E1 \land E2) \Rightarrow (E2 \lor E3)$

Figure 3.3: Weaking/strengthening laws.

3.2. Propositions 57

3.2.5 Predicates

Homework 3.2.5.4 Let us consider a one dimensional array b(1:n) (using Matlab notation), where $1 \le n$. Let j and k be two integer variables satisfying $1 \le j \le k \le n$. By b(j:k) we mean the subarray of b consisting of $b(j), b(j+1), \ldots b(k)$. The segment b(j:k) is empty if j > k. Translate the following sentences into predicates.

- 1. All elements of b(j:k) equal zero.
- 2. No value of b(j:k) is zero.
- 3. Some values of b(j:k) are zero.
- 4. All zeros in b(1:n) are in subarray b(j:k).
- 5. Some zeros in b(1:n) are in subarray b(j:k).
- 6. Those values in b(1:n) that are not in b(j:k) are in b(j:k).
- 7. It is not the case that all zeros of b(1:n) are in b(j:k).
- 8. If b(1:n) contains a zero, then so does b(j:k).
- 9. It is not the case that all zeros of b(1:n) are in b(j:k).
- 10. Either b(1:j) or b(j:k) contains a zero (or both).
- 11. The values of b(j:k) are in ascending order.
- 12. The segment b(j:k) contains at least two zeros.
- 13. Every element of b(1:j) is less than x and every value of b(j+1:k) exceeds x.

SEE ANSWER

3.2.6 Specifications

Homework 3.2.6.5 Formalize the following English specifications. Be sure to introduce necessary restrictions. Use min(x, y) and max(x, y) to denote the minimum and maximum of x and y, respectively.

- 1. Calculate the sum of elements b(j:k).
- 2. Find the maximum value of b(j:k).
- 3. Find the index of a maximum value of b(j:k).
- 4. Store in array c(1:n) a sorted (in ascending order) permutation of b(1:n). Use the predicate perm(b,c,n) to denote that b(1:n) is a permutation of c(1:n). Use the predicate ascending (b,n) to indicate that the elements of b(1:n) are in ascending order.
- 5. Calculate the greatest power of 2 that is not greater than n.
- 6. Count how many zeros b(1:n) has.
- 7. Suppose we have an array of integers b(1:n). Each of its subsegments b(i:j) has a sum. Find the largest such sum. Use the symbol $S_{i,j}$ for $\sum_{k=i}^{j} b(k)$.
- 8. Assume that array b(1:n) is sorted. Find the highest index of an element in b that equals x. Be sure to take care of the case where x is not in array b.

SEE ANSWER

3.2.7 Weaker/stronger predicates

In our discussion, the notion of one predicate being "stronger" or "weaker" than another predicate will play an important role in reasoning about code.

Consider the code segment

```
{P: x = 5}
y:=x+1
{R: y > 3}
```

This code segment evaluates to T because executing y := x + 1 in a state where x = 5 will complete (in a finite amount of time) in a state in which y > 3 is T.

Notice that there are many other states such that executing y := x + 1 leaves you in a state where y > 3: $\{P : x = 4\}, \{P : x = 3\}$ etc. Indeed, any time $x \ge 3$ it is the case that y := x + 1 leaves you in a state where y > 3. We can indicate this with

```
{P: x = 5}
{x \ge 3}
y:=x+1
{R: y > 3}
```

So, it now merely suffices to determine whether x = 5 means $x \ge 3$, because then we know that the code segment is correct. Clearly, $(x = 5) \Rightarrow (x > 3)$ in this case, so

$${P: x = 5}$$

 $y:=x+1$
 ${R: y > 3}$

is correct.

When two predicates p and q have the property that $p \Rightarrow q$, the predicate q is said to be weaker (less restrictive) than predicate p. Equivalently, p is said to be stronger (more restrictive) than q.

How do we most systematically show that $x \ge 3$ is weaker than x = 5 using what we have learned before?

$$(x = 5) \Rightarrow (x \ge 3)$$

 $\Leftrightarrow < \text{algebra} >$
 $(x = 5) \Rightarrow (x \ge 6) \lor (x = 5) \lor (x = 4)$
 $\Leftrightarrow < \text{Weakening/strengthening law (twice)} >$
 T

Here we employ the "weakening/strengthening laws" from Figure 3.3.

Homework 3.2.7.6 For each of the following, if applicable, determine which predicate is the weaker predicate:

- 1. 0 < x < 10 and 1 < x < 5.
- 2. $x = 5 \land y = 4$ and y = 4.
- 3. $x < 5 \lor y = 3$ and $x = 5 \land y = 4$.
- 4. *T* and *F*.
- 5. $(\forall i | 5 \le i \le 10 : b(i+1) < b(i))$ and $(\forall i | 7 \le i \le 10 : b(i+1) < b(i))$
- 6. $x \le 1$ and $x \ge 5$.

SEE ANSWER

3.3 A Simple Language

3.3.1 The weakest precondition

We are now going to define a simple language that will allow us to very precisely reason about program correctness.

Consider a Hoare triple

$${P}y := x + 1{y > 5}.$$

For what values of x, specified by predicate P, will executing y := x + 1 complete in a state where y > 5? Some possible answers:

• P: x = 5. Clearly, y will end up equaling y = 6 and hence $\{y > 5\}$ holds after y := x + 1 is executed. In other words, the predicate $\{x = 5\}y := x + 1\{y > 5\}$ evaluates to T. It is a correct code segment.

• $P: x \ge 5$. Clearly, y will end up satisfying $\{y > 5\}$. Again, the predicate $\{x = 5\}y := x + 1\{y > 5\}$ evaluates to T. It is a correct code segment.

The real question is

"What is the set of all states (of relevant variables) such that executions of y := x + 1 results in a state where y > 5?

Let us look at this question more generally: Consider the command *S* and let us assume that we would like to check whether the code segment

{*P*}
S
{*R*}

is correct. Now, what if we had a magic function, wp(command, R) that gives us a predicate that describes all conditions under which S completes in a state where R is true. We then know that

P S R

is correct (T) only if

 $\{P\}$ $\{wp(S,R)\}$ S $\{R\}$

is correct. Now, what does this mean? If P is true, it better imply that wp(S,R) is true, because no computation happens between $\{P\}$ and $\{wp(S,R)\}$. What this means is that the code segment is correct if and only if

$$P \Rightarrow wp(S,R)$$
.

This magic function is known as the weakest precondition so that command S completes in a state described by predicate R.

Notice

- Any P such that $\{P\}S\{R\}$ is T is a precondition so that command S completes in a state described by predicate R.
- If Q satisfies $P \Rightarrow Q$ then Q is weaker: It is *less* restrictive than predicate Q.
- The *least* restrictive predicate Q such that $\{Q\}S\{R\}$ is T describes the set of *all* states in which statement S can be executed so that it completes (in a finite amout of time) in a state where R is T.
- The wp is the function that takes the command S and the postcondition R, and returns a predicate that describes the set of all states such that executing S completes (in a finite amount of time) in a state that satisfies the postcondition R.

It will take a bit of practice to fully understand and appreciate this. In the next subsections, we actually use *wp* to define a simple language.

Homework 3.3.1.7 For each of the below code segments, determine the weakest precondition (by examination):

- 1. $wp("y := x 1", y \le 1) =$
- 2. $wp("x := x 1", x \le 1) =$
- 3. $wp("\alpha := \alpha + b(i)", \alpha = \sum_{k=0}^{i-1} b(k)) =$

SEE ANSWER

3.3.2 Properties of *wp*

We keep repeating this, but let's once again consider

and its interpretation:

wp(S,R) notes the weakest predicate so that execution of S started in a state that satisfies this predicate is guaranteed to terminate in a finite amount of time in a state that satisfies R.

Another way of saying this is

wp(S,R) notes the set of states so that if the execution of S is started in any of these states, it is guaranteed to terminate in a finite amount of time in a state such that R is *true*.

Try to internalize these interpretations.

We will now reason that for a language with reasonable semantics, the wp operator should obey the following properties. Afterwards, we will take them as axioms.

Law of Excluded Miracle. What if the predicate R is the state described by F (false)? Let's plug this into the second interpretation:

wp(S,F) notes the set of states so that if the execution of S is started in any of these states, it is guaranteed to terminate in a finite amount of time in a state such that *false* is *true*.

Now, obviously there is no state that has this property. The predicate that describes "no states" is F (false). We conclude that

$$wp(S,F) = F$$

for all reasonably defined commands S. This is known as the Law of Excluded Miracle.

Law Distributivity of Conjunction. Next, let us consider an arbitrary command S and postconditions Q and R. Then

$$wp(S,Q) \wedge wp(S,R) = wp(S,Q \wedge R)$$

Why is this?

Remember that $wp(S,Q) \land wp(S,R)$ describes a set of states s. If s satisfies $wp(S,Q) \land wp(S,R)$ then it satisfies wp(S,Q) and hence it has the property that if s is executed with state s then it will complete in a state where s is true. Similarly, s also satisfies s is true. Thus, s has the property that if s is executed with state s then it will complete in a state where s is true. Thus, s has the property that if s is executed with state s then it will complete in a state where s and s are true. This shows that s also satisfies s s has the property that if s is executed with state s then it will complete in a state where s and s are true. This shows that s also satisfies s has the property that if s is executed with state s then it will complete in a state where s and s are true.

Now, if s satisfies $wp(S, Q \land R)$ then it has the property that if S is executed with state s then it will complete in a state where $Q \land R$ is true. But that means it completes in a state where Q is true and hence s also satisfies wp(S,Q). Similarly, we can argue that it also satisfies wp(S,R). We conclude that it satisfies $wp(S,Q) \land wp(S,R)$.

Law of Monotonicity. The Law of Monotonicity is given by

If
$$Q \Rightarrow R$$
 then $wp(S,Q) \Rightarrow wp(S,R)$.

Here is the way we will reason that a statement S in a reasonable language has this property.

• The definition of wp means the following Hoare triple (annotated code segment) evaluates to true (is correct):

$$\{wp(S,Q)\}
S
\{Q\}$$

• The fact that $Q \Rightarrow R$ means that the following annotated code segment is also correct:

$$\begin{cases} wp(S,Q) \\ S \\ \{Q\} \\ \{R\} \end{cases}$$

• Hence the Hoare triple

$$\{ wp(S,Q) \}$$

$$S$$

$$\{R\}$$

evaluates to T.

- But a Hoare triple only evaluates to *true* if its precondition implies the weakest precondition.
- Hence $\{wp(S,Q) \Rightarrow wp(S,R)\}.$

Law of Distributivity of Disjunction. Finally, we discuss Distributivity of Disjunction

$$(wp(S,Q) \lor wp(S,R)) \Rightarrow wp(S,Q \lor R)$$

The following exercise prepares us for the reasoning behind this axiom:

Homework 3.3.2.8 Prove that

$$((p \Rightarrow r) \land (q \Rightarrow r)) \Leftrightarrow ((p \lor q) \Rightarrow r)$$

SEE ANSWER

Here is the way we will reason that a statement S in a reasonable language obeys Distributivity of Disjunction:

• The definition of wp means the following Hoare triple (annotated code segment) evaluates to true (is correct):

$$\{wp(S,Q)\}$$

$$S$$

$$\{Q\}$$

• We know from the Weakening/Strengthening Laws that $Q \Rightarrow Q \lor R$ and hence

$$\{wp(S,Q)\}$$

$$S$$

$$\{Q\}$$

$$\{Q \lor R\}$$

• Hence we conclude that the Hoare triple

$$\{wp(S,Q)\}$$

$$S$$

$$\{Q \lor R\}$$

evaluates to T.

- But a Hoare triple only evaluates to *true* if its precondition implies the weakest precondition.
- Hence,

$$wp(S,Q) \Rightarrow wp(S,Q \vee R).$$

• Similarly, we can conclude that

$$wp(S,R) \Rightarrow wp(S,Q \vee R).$$

• In other words,

$$(wp(S,Q) \Rightarrow wp(S,Q \lor R)) \land (wp(S,R) \Rightarrow wp(S,Q \lor R))$$

• By the last homework, this is equivalent to

$$(wp(S,Q) \lor wp(S,R) \Rightarrow wp(S,Q \lor R)).$$

We take this property to now be an axiom.

3.3.3 skip

Let us consider the command **skip**, which simply doesn't do anything:

```
{P:?} skip {R:x>4}
```

From what state P will the command **skip** finish (in a finite amount of time) in a state where x > 4 is T? Obviously, x > 4 better be true before the **skip** command is executed. Reasoning through this, it becomes clear that.

$$wp(\mathbf{skip}, R) = R$$

for any predicate R: The set of all states such that executing **skip** completes (in a finite amount of time) in a state where R is true is described by the predicate R.

Homework 3.3.3.9 Prove that **skip** command satisfies the Laws of Excluded Micacle, Distributivity of Conjunction, Monotonicity, and Distributed Disjunction.

SEE ANSWER

3.3.4 abort

Let us consider the command **abort**, which stops the execution of the program:

```
{P} abort {R : x > 4}
```

From what state P will the command **abort** finish (in a finite amount of time) in a state where x > 4 is T? Obviously, it never reaches the point in the program where we would want R: x > 4 to be T. Thus, no matter what state the variables are in before **abort**, it will never reach the point in the program where the postcondition R is to be T. This means

$$wp(\mathbf{abort}, R) = F$$

for any predicate R: The set of all states such that executing **abort** completes (in a finite amount of time) in a state where R is true is described by the predicate F, the most restrictive predicate of all.

Homework 3.3.4.10 Prove that **abort** command satisfies the Laws of Excluded Micacle, Distributivity of Conjunction, Monotonicity, and Distributed Disjunction.

SEE ANSWER

3.3.5 Composition

Obviously, a program that consists of a single statement, S, is not a very interesting program. Consider the program that consists of two arbitrary statements

 S_0 S_1 $\{R\}$

which we can also write as S_0 ; S_1 . We would like to determine

$$wp("S_0; S_1'', R)$$

Let us think about this, working backwards. The states from which executing S_1 leaves one in a state where R is true is given by $wp(S_1,R)$. Thus, over executing S_0 one must be in a state where $wp(S_1,R)$ is T. The predicate that describes the states from which executing S_0 leaves one in a state wher $wp(S_1R)$ is T is described by $wp(S_0, wp(S_1,R))$. In other words, only the following assertions make the code segment S_0 ; S_1 complete (in a finite amount of time) in a state where R is T:

$$\{wp(S_0, wp(S_1, R))\}\$$

 S_0
 $\{wp(S_1, R)\}$
 S_1
 $\{R\}$

Thus

$$wp("S_0; S_1'', R) = wp(S_0; wp(S_1, R))$$

Homework 3.3.5.11 Prove that composition of statements satisfies the Laws of Excluded Micacle, Distributivity of Conjunction, Monotonicity, and Distributed Disjunction.

SEE ANSWER

3.3.6 Assignment

Consider again the code segment

$${P: x = 5}$$

 $y:= x + 1$
 ${R: y > 3}$

While it is easy to argue that if x = 5 then then the assignment y := x + 1 leaves one in a state where y > 3. The question we must answer is who to describe *all* states such that executing y := x + 1 leaves us in a state where y > 3 holds. More importantly, we need to expose a systematic way of taking an arbitrary postcondition, and transforming it into the weakest precondition for an arbitrary assignment.

Going back to our example, notice that after the assignment R: y > 3. The expression x + 1 was just assigned to y. Thus, only if (x + 1) > 3 before the assignment will the assignment leave the program in a state where y > 3.

This example leads us to the definition

$$wp("x := e", R) = R_e^x$$

where R_e^x equals the predicate R with all *free* occurrences of variable x replaced by the expression (e). We will refer to this as the *textual substitution* of variable x by expression e. The parentheses are needed to makes sure that the order of operations is properly preserved. What we mean by a free occurrence of a variable will become clear shortly. Thus,

$$wp("\underbrace{y := x + 1}", \underbrace{y > 3}) = \underbrace{((x + 1) > 3)} = (x + 1 > 3) = (x > 2).$$

 $y := e$ R

Homework 3.3.6.12 For each of the below code segments, determing the weakest precondition:

- 1. wp(i := i + 1, i = j)
- 2. wp(i := i+1; j := j+i, i=j)
- 3. wp(i := 2i + 1; j := j + i, i = j)
- 4. wp(j := j + i; i := 2i + 1, i = j)
- 5. $wp("t := i; i := j; j := t", i = \widehat{1} \land j = \widehat{j})$
- 6. $wp("i = 0; s := 0", 0 \le i < n \land s = (\sum j | 0 \le j < i : b(j)))$
- 7. $wp(s := s + b(i); i = i + 1, 0 < i < n \land s = (\sum j | 0 \le j < i : b(j))) =$

SEE ANSWER

Now, consider the following problem:

$$wp("i := 0", (\forall i | 0 \le i < 5 : b(i) = 0))$$

A naive evaluation would yield

$$(\forall i | 0 \le i < 5 : b(i) = 0)_0^i = (\forall 0 | 0 \le 0 < 5 : b(0) = 0)$$

which is obviously nonsense. The problem here is that in the predicate the i is a "bound variable" of the quantification. If one replaced it with, for example, j, then

$$wp("i := 0", (\forall i | 0 \le i < 5 : b(i) = 0)) = (\forall j | 0 \le j < 5 : b(j) = 0)_0^i$$

= $(\forall j | 0 \le 0 < 5 : b(j) = 0)$

which does makes sense. The point: If a variable that is bound to a quantification in *R* appears in the assignment, then the bound variable should be replaced with something that does not appear in the assignment before performance the textual substitution.

We are now in a position to revisit how the weakest precondition can be used to prove a code segment correct. Consider an array b(1:n), $0 \le n$, a scalar variable α , and the code segment

$$\{P: \ 0 \le n \land \alpha = 0\}
S: \ k := 0
 \{R: \ 0 \le k \le n \land \alpha = (\sum i | 1 \le i \le k : b(i))\}$$

This code segment may be part of a program that sums the entries in array b(i). Is this code segment correct? To determine this, we must check that

$$P \Rightarrow wp(S,R)$$
.

The proof that this holds is given by

$$P \Rightarrow wp(S,R)$$

$$\Leftrightarrow < \text{Instantiate } P, S, \text{ and } R >$$

$$(0 \le n) \land (\alpha = 0)) \Rightarrow wp(\text{``}k := 0\text{'''}, 0 \le k \le n \land \alpha = (\sum i | 1 \le i \le k : b(i)))$$

$$\Leftrightarrow < \text{definition of } := >$$

$$((0 \le n) \land (\alpha = 0)) \Rightarrow (0 \le k \le n \land \alpha = (\sum i | 1 \le i \le k : b(i))_0^k$$

$$\Leftrightarrow < \text{definition of } R_e^k >$$

$$((0 \le n) \land (\alpha = 0)) \Rightarrow (0 \le 0 \le n \land \alpha = (\sum i | 1 \le i \le 0 : b(i)))$$

$$\Leftrightarrow < \text{Summation over empty range, poperty of } \le >$$

$$((0 \le n) \land (\alpha = 0)) \Rightarrow ((0 \le n) \land (\alpha = 0))$$

$$\Leftrightarrow$$

$$T$$

This, the code segment is correct.

Homework 3.3.6.13 Consider an array b(1:n), $1 \le n$, a scalar variable α , and the code segment

$$\{P: \ 0 \le k < n \land \alpha = (\sum i | 1 \le i \le k : b(i))\}
 S_0: \ k := k + 1
 S_1: \ \alpha := \alpha + b(k)
 \{R: \ 0 \le k \le n \land \alpha = (\sum i | 1 \le i \le k : b(i))\}$$

This code segment may be part of a program that sums the entries in array b(i). Prove this code segment correct.

SEE ANSWER

Answers

Week 3: Review of Logic and Proofs

Homework 3.2.4.1 Use the Basic Equivalences to prove the following. (Do NOT use the weakening/strengthening laws given in Figure 3.3, which we will discuss later.)

1.
$$(b \land (b \Rightarrow c)) \Rightarrow c$$
.

Answer: We will use an "equivalence style" of proof, in which we show that the proposition reduces to T via a sequences of equivalences:

$$(b \land (b \Rightarrow c)) \Rightarrow c$$

$$\Leftrightarrow < \text{Implication} >$$

$$(b \land (\neg b \lor c)) \Rightarrow c$$

$$\Leftrightarrow < \text{Distribution} >$$

$$((b \land \neg b) \lor (b \land c)) \Rightarrow c$$

$$\Leftrightarrow < \text{Contradiction} >$$

$$(F \lor (b \land c)) \Rightarrow c$$

$$\Leftrightarrow < \lor \text{-simplification} >$$

$$(b \land c) \Rightarrow c$$

Now, at this point it would be nice to say "well, dah, of course b and c implies c." But we don't have that as a law. So we have to go on

$$(b \land c) \Rightarrow c$$

$$\Leftrightarrow < \text{Implication} >$$

$$\neg (b \land c) \lor c$$

$$\Leftrightarrow < \text{De Morgan's} >$$

$$(\neg b \lor \neg c) \lor c$$

$$\Leftrightarrow < \text{Associativity} >$$

$$\neg b \lor (\neg c \lor c)$$

$$\Leftrightarrow < \text{Excluded middle} >$$

$$\neg b \lor T$$

$$\Leftrightarrow < \lor \text{-simplification} >$$

$$T$$

2.
$$p \land q \Rightarrow p$$

Answer: Now, we noticed that in the last proof there was a point at which we would have liked to have said "well, dah, of course b and c implies c." This exercise shows that particular insight in isolation. Again, we use an "equivalence style" of proof:

$$p \land q \Rightarrow p$$

$$\Leftrightarrow < \text{Implication} >$$

$$\neg (p \land q) \lor p$$

$$\Leftrightarrow < \text{De Morgan's} >$$

$$(\neg p \lor \neg q) \lor p$$

$$\Leftrightarrow < \text{Commutivity/Associativity} >$$

$$\neg q \lor (\neg p \lor p)$$

$$\Leftrightarrow < \text{Excluded middle} >$$

$$\neg q \lor T$$

$$\Leftrightarrow < \lor \text{-simplification} >$$

$$T$$

3.
$$p \Rightarrow p \lor r$$

Answer: Here is another one of those "well, dah" problems. Let's prove it:

$$p \Rightarrow p \lor r$$

$$\Leftrightarrow < \text{Implication} >$$

$$\neg p \lor (p \lor r)$$

$$\Leftrightarrow < \text{Associativity} >$$

$$(\neg p \lor p) \lor r$$

$$\Leftrightarrow < \text{Excluded middle} >$$

$$T \lor r$$

$$\Leftrightarrow < \lor \text{-simplification} >$$

$$T$$

4. $p \land q \Rightarrow p \lor r$ **Answer:** This one generalized the last two results.

```
p \land q \Rightarrow p \lor r
\Leftrightarrow < \text{Implication} >
\neg (p \land q) \lor (p \lor r)
\Leftrightarrow < \text{De Morgan's} >
(\neg p \lor \neq q) \lor (p \lor r)
\Leftrightarrow < \text{Commutivity/Associativity} >
\neg q \lor (\neg p \lor p) \lor r
\Leftrightarrow < \text{Excluded middle} >
\neg q \lor T \lor r
\Leftrightarrow < \lor \text{-simplification (twice)} >
T
```

5. $((x \land y) \Rightarrow z) \Leftrightarrow (x \Rightarrow (y \Rightarrow z))$

Answer: The strategy is to reduce both sides of the equivalence to the same expression

$$((x \land y) \Rightarrow z) \Leftrightarrow (x \Rightarrow (y \Rightarrow z))$$

$$\Leftrightarrow < \text{Implication, twice} >$$

$$(\neg(x \land y) \lor z) \Leftrightarrow (\neg x \lor (y \Rightarrow z))$$

$$\Leftrightarrow < \text{De Morgan's, Implication} >$$

$$(\neq x \lor \neg y \lor z) \Leftrightarrow (\neg x \lor \neg y \lor z)$$

$$\Leftrightarrow < \text{Identity} >$$

$$T$$

BACK TO TEXT

Homework 3.2.4.2 In Figure 3.3 we present three Weakening/Strengening Laws. This exercise shows that if you only decide to remember one, it should be the last one.

1. Show that $(E1 \land E2) \Rightarrow E1$ is a special case of $(E1 \land E2) \Rightarrow (E1 \land E3)$.

Answer: $(E1 \land E2) \Rightarrow (E1 \land E3)$ is *true* for all expressions E1, E2, and E3. If you choose E3 = F then you get $(E1 \land E2) \Rightarrow E1$

2. Show that E1 \Rightarrow (E1 \vee E3) is a special case of (E1 \wedge E2) \Rightarrow (E1 \wedge E3).

Answer: $(E1 \land E2) \Rightarrow (E1 \land E3)$ is *true* for all expressions E1, E2, and E3. If you choose E2 = T then you get $E1 \Rightarrow (E1 \lor E3)$

BACK TO TEXT

Homework 3.2.4.3 Prove the *counterpositive*: $(p \Rightarrow q) \Leftrightarrow (\neg q \Rightarrow \neg p)$.

Answer: Start from the more complicated side: it is often easier to simplify.

$$\neg q \Rightarrow \neg p
\Leftrightarrow < \text{implication} >
 \neg(\neg q) \lor \neg p
\Leftrightarrow < \text{negation} >
 q \lor \neg p
\Leftrightarrow < \text{commutativity} >
 \neg p \lor q
\Leftrightarrow < \text{implication} >
 p \Rightarrow q$$

BACK TO TEXT

Homework 3.2.5.4 Let us consider a one dimensional array b(1:n) (using Matlab notation), where $1 \le n$. Let j and k be two integer variables satisfying $1 \le j \le k \le n$. By b(j:k) we mean the subarray of b consisting of $b(j), b(j+1), \dots b(k)$. The segment b(j:k) is empty if j > k.

Translate the following sentences into predicates.

1. All elements of b(j:k) equal zero.

Answer:

$$(\forall i | j \le i \le k : b(i) = 0)$$

2. No value of b(j:k) is zero.

Answer:

$$(\forall i | j \le i \le k : b(i) \ne 0)$$

or

$$\neq (\exists i | j \le i \le k : b(i) = 0)$$

(You can use De Morgan's Law to show the equivalence of these statements.)

3. Some values of b(j:k) are zero.

Answer:

$$\neq (\forall i | j \le i \le k : b(i) \ne 0)$$

or

$$(\exists i | j \le i \le k : b(i) = 0)$$

(You can use De Morgan's Law to show the equivalence of these statements. Notice that here we use "at least one" to mean some. Is that really meant?)

4. All zeros in b(1:n) are in subarray b(j:k).

Answer:

$$(\forall i | 1 \le i \le n : b(i) = 0 \Rightarrow (j \le i \le k))$$

or

$$(\forall i | 1 \le i < j \lor k < i \le n : b(i) \ne 0)$$

5. Some zeros in b(1:n) are in subarray b(j:k).

Answer:

$$(\exists i | k < i < j : b(i) = 0)$$

6. Those values in b(1:n) that are not in b(j:k) are in b(j:k).

Answer:

$$(\forall i | 1 \le i \le n : \neg (\exists m | j \le m \le k : b(i) = b(m)) \Rightarrow (\exists m | j \le m \le k : b(i) = b(m)))$$

which, if you think about it, reduces to F unless j:k is empty.

- 7. It is not the case that all zeros of b(1:n) are in b(j:k).
- 8. If b(1:n) contains a zero, then so does b(j:k).
- 9. It is not the case that all zeros of b(1:n) are in b(i:k).
- 10. Either b(1:j) or b(j:k) contains a zero (or both).
- 11. The values of b(j:k) are in ascending order.
- 12. The segment b(j:k) contains at least two zeros.
- 13. Every element of b(1:j) is less than x and every value of b(j+1:k) exceeds x.

BACK TO TEXT

Homework 3.2.6.5 Formalize the following English specifications. Be sure to introduce necessary restrictions. Use min(x, y) and max(x, y) to denote the minimum and maximum of x and y, respectively.

1. Calculate the sum of elements b(j:k).

Answer: We will assume that the result of the sum is stored in variable α .

$$\alpha = \left(\sum i | j \le i \le k : b(i)\right)$$

What if j:k is empty? This should return zero, which this properly captures.

2. Find the maximum value of b(j:k).

Answer: We will assume that the result of the max is stored in variable α .

$$(\exists i | j \le i \le k : \alpha = b(i)) \land (\forall i | j \le i \le k : b(i) \le \alpha)$$

What if j : k is empty? Then the \exists clause evaluates to F and hence the whole thing evaluates to false. This means that the program should not complete.

3. Find the index of a maximum value of b(j:k).

Answer: We will assume that the index of the value in b(j : k) were the maximum is stored is computed in variable m.

$$(j \le m \le k) \land (\forall i | j \le i \le k : b(i) \le b(m))$$

What if j:k is empty? Then the $(j \le m \le k)$ clause evaluates to F and hence the whole thing evaluates to false. This means that the program should not complete.

4. Store in array c(1:n) a sorted (in ascending order) permutation of b(1:n). Use the predicate perm(b,c,n) to denote that b(1:n) is a permutation of c(1:n). Use the predicate ascending (b,n) to indicate that the elements of b(1:n) are in ascending order.

Answer:

$$\operatorname{perm}(b, c, n) \land (\forall i | 1 < i \le n : c(i - 1) \le c(i))$$

What if 1:n is empty? Then perm(b,c,0) should evaluate to T (an empty array is a permutation of an empty array) and the \forall is defined as T when the range is empty. This makes sense.

5. Calculate the greatest power of 2 that is not greater than n.

Answer: We will assume that n is a positive integer and that the result is returned in α .

$$1 \le n \land (\exists i | 0 \le i : \alpha = 2^i) \land \alpha \le n \land \ne (\exists i | 0 \le i : \alpha \le 2^i \le n)$$

6. Count how many zeros b(1:n) has.

Answer: For this we introduce a new quantifier:

$$(\mathbb{N}i|i\in S:P(i))$$

returns the number of elements in set S for which the predicate P(i) is T.

$$\alpha = (\mathbb{N}i|1 \le i \le n : b(i) = 0)$$

7. Suppose we have an array of integers b(1:n). Each of its subsegments b(i:j) has a sum. Find the largest such sum. Use the symbol $S_{i,j}$ for $\sum_{k=i}^{j} b(k)$.

Answer:

$$(\exists i, j | 1 \le i, j \le n : \alpha = S(i, j)) \land \neg (\exists i, j | 1 \le i, j \le n : \alpha < S(i, j))$$

or

$$(\exists i, j | 1 \le i, j \le n : \alpha = S(i, j)) \land (\forall i, j | 1 \le i, j \le n : \alpha \ge S(i, j))$$

8. Assume that array b(1:n) is sorted. Find the highest index of an element in b that equals x. Be sure to take care of the case where x is not in array b.

Answer: We will assume that *m* contains the desired index

$$1 \le m \le n + 1 \land (\forall i | m < i \le n : b(m) < b(i))$$

Now

BACK TO TEXT

Homework 3.2.7.6 For each of the following, if applicable, determine which predicate is the weaker predicate:

1. $0 \le x \le 10$ and $1 \le x < 5$.

Answer: By examination, $0 \le x \le 10$ is weaker. Proof:

$$(1 \le x < 5) \Rightarrow (0 \le x \le 10)$$

$$\Leftrightarrow < \text{algebra} >$$

$$(1 \le x < 5) \Rightarrow (0 = x \lor 1 \le x < 5 \lor 5 \le x \le 10)$$

$$\Leftrightarrow < \text{weakening/strengening law} >$$

$$T$$

2. $x = 5 \land y = 4$ and y = 4.

Answer: By examination, y = 4 is weaker. Proof:

$$(x = 5 \land y = 4) \Rightarrow (y = 4)$$

 \Leftrightarrow < weakening/strengening law >

3. $x \le 5 \lor y = 3$ and $x = 5 \land y = 4$.

Answer: By examination, $x \le 5 \lor y = 3$ is weaker. Proof:

$$(x = 5 \land y = 4) \Rightarrow (x \le 5 \lor y = 3)$$

 $\Leftrightarrow < \text{algebra} >$
 $(x = 5 \land y = 4) \Rightarrow (x < 5 \lor x = 5 \lor y = 3)$
 $\Leftrightarrow < \text{weakening/strengening law} >$
 T

4. *T* and *F*. **Answer:** By examination, *T* is weaker. Proof:

$$F\Rightarrow T$$
 $\Leftrightarrow < \land \text{-simplication} >$
 $F \land T \Rightarrow T$
 $\Leftrightarrow < \text{weakening/strengening law} >$
 T

5. $(\forall i | 5 \le i \le 10 : b(i+1) < b(i))$ and $(\forall i | 7 \le i \le 10 : b(i+1) < b(i))$ **Answer:** By examination, $(\forall i | 5 \le i \le 10 : b(i+1) < b(i))$ is weaker. Proof:

$$(\forall i | 5 \le i \le 10 : b(i+1) < b(i)) \Rightarrow (\forall i | 7 \le i \le 10 : b(i+1) < b(i))$$

$$\Leftrightarrow < \text{split range} >$$

$$(\forall i | 5 \le i \le 6 : b(i+1) < b(i)) \land (\forall i | 7 \le i \le 10 : b(i+1) < b(i)) \Rightarrow (\forall i | 7 \le i \le 10 : b(i+1) < b(i))$$

$$\Leftrightarrow < \text{weakening/strengening law} >$$

$$T$$

6. $x \le 1$ and $x \ge 5$.

Answer: Neither of these implies the other, so neither is weaker than the other.

BACK TO TEXT

Homework 3.3.1.7 For each of the below code segments, determine the weakest precondition (by examination):

1.
$$wp("y := x - 1", y \le 1) = (x \le 2)$$

2.
$$wp("x := x - 1", x \le 1) = (x \le 2)$$

3.
$$wp(\alpha) := \alpha + b(i), \alpha = \sum_{k=0}^{i-1} b(k) = \alpha = \sum_{k=0}^{i-1} b(k) + b(i) = \alpha = \sum_{k=0}^{i} b(k)$$

BACK TO TEXT

Homework 3.3.2.8 Prove that

$$((p \Rightarrow r) \land (q \Rightarrow r)) \Leftrightarrow ((p \lor q) \Rightarrow r)$$

Answer:

$$(p \Rightarrow r) \land (q \Rightarrow r)$$

$$\Leftrightarrow < \text{Implication} >$$

$$(\neg p \lor r) \land (\neg q \lor r)$$

$$\Leftrightarrow < \text{Distributivity of} >$$

$$(\neg p \land \neg q) \lor r$$

$$\Leftrightarrow < \text{De Morgan's} >$$

$$\neg (p \lor q) \lor r$$

$$\Leftrightarrow < \text{Implication} >$$

$$p \lor q \Rightarrow r$$

BACK TO TEXT

Homework 3.3.3.9 Prove that **skip** command satisfies the Laws of Excluded Micacle, Distributivity of Conjunction, Monotonicity, and Distributed Disjunction.

Answer:

Excluded Miracle: Since $wp(\mathbf{skip}, R) = R$ clearly $wp(\mathbf{skip}, F) = F$.

Distributivity of Conjunction: $wp(\mathbf{skip}, Q) \land wp(\mathbf{skip}, R) = Q \land R = wp(\mathbf{skip}, Q \land R).$

Monotonicity: Assume $Q \Rightarrow R$. Since $wp(\mathbf{skip}, Q) = Q$ and $wp(\mathbf{skip}, R) = R$ clearly $wp(\mathbf{skip}, Q) \Rightarrow wp(\mathbf{skip}, R)$.

Distributivity of Disjunction: $wp(\mathbf{skip}, Q) \lor wp(\mathbf{skip}, R) = Q \lor R = wp(\mathbf{skip}, Q \lor R)$. Hence $wp(\mathbf{skip}, Q) \lor wp(\mathbf{skip}, R) \Rightarrow wp(\mathbf{skip}, Q \lor R)$

BACK TO TEXT

Homework 3.3.4.10 Prove that **abort** command satisfies the Laws of Excluded Micacle, Distributivity of Conjunction, Monotonicity, and Distributed Disjunction.

Answer:

Excluded Miracle: Since $wp(\mathbf{abort}, R) = F$ clearly $wp(\mathbf{abort}, F) = F$.

Distributivity of Conjunction: $wp(\mathbf{abort}, Q) \wedge wp(\mathbf{abort}, R) = F \wedge F = F = wp(\mathbf{abort}, Q \wedge R)$.

Monotonicity: Assume $Q \Rightarrow R$. Since $wp(\mathbf{abort}, Q) = F$ clearly $wp(\mathbf{abort}, Q) \Rightarrow wp(\mathbf{abort}, R)$ (independent of the fact that $Q \Rightarrow R$ for this command).

Distributivity of Disjunction: $wp(\mathbf{abort}, Q) \lor wp(\mathbf{abort}, R) = F \lor F = F$. Hence $wp(\mathbf{abort}, Q) \lor wp(\mathbf{abort}, R) \Rightarrow wp(\mathbf{abort}, Q \lor R)$.

BACK TO TEXT

Homework 3.3.5.11 Prove that composition of statements satisfies the Laws of Excluded Micacle, Distributivity of Conjunction, Monotonicity, and Distributed Disjunction.

Answer:

Excluded Miracle: $wp("S_0, S_1'', F) = wp(S_0, wp(S_1, F)) = wp(S_0, F) = F.$

Distributivity of Conjunction: $wp(``S_0, S_1'', Q) \land wp(``S_0, S_1'', R) = wp(S_0, wp(S_1, Q)) \land wp(S_0, wp(S_1, R)) = wp(S_0, wp(S_1, Q \land R)) = wp(``S_0, S_1'', Q \land R).$

Monotonicity: Assume $Q \Rightarrow R$. Then $wp("S_0, S_1'', Q) = wp(S_0, wp(S_1, Q)) \Rightarrow wp(S_0, wp(S_1, Q)) = wp("S_0, S_1'', Q) \Rightarrow R$.

Distributivity of Disjunction: $wp("S_0, S_1'', Q) \lor wp("S_0, S_1'', R) = wp(S_0, wp(S_1, Q)) \lor wp(S_0, wp(S_1, R)) \Rightarrow wp(S_0, wp(S_1, Q) \lor wp(S_1, R)) \Rightarrow wp(S_0, w$

BACK TO TEXT

Homework 3.3.6.12 For each of the below code segments, determing the weakest precondition:

1.
$$wp(i := i + 1, i = j) = ((i + 1) = j) = (i = j)$$

2.
$$wp(i := i+1; j := j+i, i=j)$$

Answer:
$$= wp("i := i + 1", wp("j := j + 1", i = j))$$

 $= wp("i := i + 1", i = j + 1)$
 $= ((i + 1) = (j + 1)) = (i = j)$

3.
$$wp(i := 2i + 1; j := j + i, i = j)$$

Answer: =
$$wp("i := 2i + 1", wp("j := j + 1", i = j))$$

= $wp("i := 2i + 1", i = j + 1)$
= $((2i + 1) = (j + 1)) = (2i = j)$

4.
$$wp(j := j + i; i := 2i + 1, i = j)$$

Answer: $= wp("j := j + i", wp("i := 2i + 1", i = j))$
 $= wp("j := j + i", (2i + 1) = (j + 1))$
 $= ((2i + 1) = ((j + i) + 1))$
 $= (2i = (j + i)) = (i = j)$

5. $wp("t := i; i := j; j := t", i = \widehat{1} \land j = \widehat{j})$

Answer: =
$$wp("t := i", wp("i := j", wp("j := t", i = \widehat{i} \land j = \widehat{j})))$$

= $wp("t := i", wp("i := j", i = \widehat{i} \land t = \widehat{j}))$
= $wp("t := i", i = \widehat{j} \land t = \widehat{j})$
= $(i = \widehat{j} \land i = \widehat{j})$

6.
$$wp("i = 0; s := 0", 0 \le i < n \land s = (\sum j | 0 \le j < i : b(j)))$$

Answer:
$$= wp("i = 0", wp("s := 0", 0 \le i < n \land s = (\sum j | 0 \le j < i : b(j))))$$

 $= wp("i = 0", 0 \le i < n \land 0 = (\sum j | 0 \le j < i : b(j)))$
 $= (0 \le 0 < n \land 0 = (\sum j | 0 \le j < 0 : b(j)))$
 $= (T \land 0 = 0) = T$

7.
$$wp(s := s + b(i); i = i + 1, 0 < i < n \land s = (\sum j | 0 \le j < i : b(j))) =$$

BACK TO TEXT

Homework 3.3.6.13 Consider an array b(1:n), $1 \le n$, a scalar variable α , and the code segment

```
  \{P: \ 0 \le k < n \land \alpha = (\sum i | 1 \le i \le k : b(i))\} 

  S_0: \ k := k + 1 

  S_1: \ \alpha := \alpha + b(k) 

  \{R: \ 0 \le k \le n \land \alpha = (\sum i | 1 \le i \le k : b(i))\}
```

This code segment may be part of a program that sums the entries in array b(i). Prove this code segment correct.

BACK TO TEXT

Bibliography