Equity Valuation

Overview

Dividend discount models (DDM)

Free cash flow models

Price/earnings ratios and relative valuation

Fundamental Value

$$PV = \sum_{t=0}^{\infty} \frac{CF_t}{(1+r)^t}$$

$$= \sum_{t=0}^{T} \frac{CF_t}{(1+r)^t} + \frac{P_T}{(1+r)^T}$$

- The fundamental value is the present value of the discounted future cash flows from holding the security
- Keys:
 - Forecast future cash flows (earnings/dividends/etc.)
 - Apply a sensible discount rate r

Dividend Discount Models (DDM)

$$V_0 = \sum_{t=0}^{\infty} \frac{E[D_t]}{(1+r_t)^t}$$

• The present value of the stream of dividends paid by the firm

Constant Growth DDM

 If we expect dividends to grow at a fixed rate forever and always, the value of the security can be expressed:

$$V_0 = \frac{D_0(1+g)}{r-g} = \frac{D_1}{r-g}$$

Multistage DDM

- Firms go through a life-cycle
 - Start-up
 - Rapidly growing
 - Slow down
 - Decline
- Growth rates change over time
- Can use a multistage DDM

Forecasting Earnings and Payouts

- Alternative method:
 - Forecast earnings growth and payouts instead of dividend growth
- Dividends = Earnings x payout ratio
 - Note: Earnings = Net Income
 - Or net income preferred dividends
 - Plowback rate = 1 payout ratio
- Possible assumption:
 - In steady state (when growth is assumed constant), the earnings yield equals the required return on equity

Free Cash Flow Method

Free Cash Flow Method

- Alternative to the DDM
 - Especially useful for firms that do not pay dividends
- Two approaches:
 - Find the value of the firm and subtract off debt
 - Use the free cash flow for the firm as the cash flow when calculating present value of the firm
 - Find the value of equity
 - Use the free cash flow for equity as the cash flow when calculating present value of equity

Free Cash Flow

- Approach 1 (Free Cash Flow for the Firm):
 - Find the PV of the firm's free cash flow and subtract off value of debt

PV of Equity = PV of Firm - Value of Debt

PV of Firm =
$$\sum_{t=0}^{\infty} \frac{FCFF}{(1+wacc)^t}$$

Free Cash Flow

Discount rate = WACC (weighted-average cost of capital)

$$WACC = \frac{\text{Value of Equity}}{\text{Value of Firm}} * \text{Cost of Equity} + \frac{\text{Value of Debt}}{\text{Value of Firm}} * \text{Cost of Debt} * (1 - t_C)$$

Value of Firm = Value of Equity + Value of Debt

Free Cash Flow for the Firm:

FCFF =After tax EBIT + (depreciation - capital expenditures) - Δ net working capital where after-tax EBIT = $(1-t_c)*EBIT$

where net working capital_t = current assets_t - current liabilities_t

and $\Delta \text{Net Working Capital}_t = \text{Net Working Capital}_t - \text{Net Working Capital}_{t-1}$

Free Cash Flow

- Approach 2:
 - Find the PV of the firm's free cash flow to equity
 - Discount rate = cost of equity

FCFE = FCFF-interest expense $\times (1 - t_c)$ + increases in debt

PV of Equity =
$$\sum_{t=0}^{\infty} \frac{FCFE}{(1 + \cos t \text{ of equity})^t}$$

Free Cash Flow (Expanded)

FCFF =EBIT*(1-t) + D - CX - Δ NOWC - Δ NOOLTA

where:

- D = depreciation
- CX = capital expenditures
- NOWC = Net operating working capital
- NOOLTA = Net operating other long-term assets

Forecasting Free Cash Flow

- More sophisticated free cash flow forecasting:
 - Forecast each period's free cash flow
 - Forecast the individual inputs like sales, asset intensity, leverage, depreciation, etc.
 - This will help catch possible issues with simple growth forecasts
 - Where is the additional cash flow coming from? Increased sales, decreased costs, etc.

Forecasting Free Cash Flow

- Many options (more art than science)
- One option: forecast sales growth, asset intensity, and profitability $FCFF_t = EBIAT_t \Delta NOA_t$

$$FCFF_t = EBIAT_t - (NOA_t - NOA_{t-1})$$

$$FCFF_t = \frac{EBIAT_t}{Sales_t} \times Sales_t - [\frac{NOA_t}{Sales_t} \times Sales_t - \frac{NOA_{t-1}}{Sales_{t-1}} \times Sales_{t-1}]$$

$$FCFF_t = p_t \times Sales_t - [a_t \times Sales_t - a_{t-1} \times Sales_{t-1}]$$

$$FCFF_t = p_t \times Sales_{t-1} \times (1 + g_t) - [a_t \times Sales_{t-1} \times (1 + g_t) - a_{t-1} \times Sales_{t-1}]$$

gt is sales growth, pt is profitability and at is asset

HW Problems

Forecasting Future Cash Flows

- Gather as much information as possible
 - Assess opportunities/threats, barriers to entry, R&D, new products, macroeconomic conditions, etc.
- Equity analysts have access to more information
 - They analyze all public information
 - Plus, they generate new information
 - Better access to management (e.g., earnings conference calls)
 - Analyst forecasts are especially useful in valuation

Negative Free Cash Flow Firms

- Issue #1: Taxes
- If the firm has negative earnings, the losses can be carried forward which will decrease future tax bills and increase future free cash flows

Negative Free Cash Flow Firms

- Issue #2: Forecasting future free cash flows
- Can't use expected growth rates
- We need to understand the cause of the negative free cash flows
 - If the firm is no longer going to be profitable, then it's value should be (less than) zero or at its salvage value
 - If the negative free cash flow is only in very recent periods:
 - · Normalize earnings or free cash flows (you can use average in recent past) to project into the future
 - If due to a temporary shock (e.g., if the firm paid off a portion of its debt, this may not occur again in the future), then remove the effect of the temporary shock and use the adjusted free cash flow going forward
 - If the negative free cash flow has persisted over a number of periods:
 - Estimate the transition from negative to positive free cash flow going forward
 - Analyst forecasted earnings can help
 - Further reading:
 http://people.stern.nyu.edu/adamodar/pdfiles/papers/HighGrow.pdf

Which Model?

Which growth pattern?

Stable Growth:

- Large, stable firms slowly growing with the economy
- Ford
- 2 Stage Growth Model:
 - Large firms growing fairly quickly (~3-12%)
 - Expect growth to slow or expect an increase in competition in the near future
 - Like if patents for main product will expire

3+ Stage Growth Model

- Firm is growing rapidly (~>12%)
- Don't foresee a significant increase in competition (high

Implementation

- Typically, we forecast future cash flows in the nearterm like 3-5 years
- We also forecast a terminal value for the firm at the end of the projected cash flow period
 - (1) Assume a stable growth rate and find the value of the growing perpetuity
 - (2) Use a multiple of the firm's projected earnings or sales at the end of the period.
 - For example, suppose the firm's P/E ratio and competitors P/E ratio is typically close to 14 and our projected earnings in 5 years is \$10. Then we can use a terminal value of $14 \times $10 = 140 .

Which Model Should We Use?

- Value the firm versus value equity?
 - Most of the time you'll value equity directly
 - Unless we expect the firm's leverage to change dramatically
 - Or we're missing information on leverage like interest expenses
- Dividend discount model vs. free cash flow models
 - Use DDM for firms that pay dividends and the dividends are close to FCFE (80-120%) for a number of periods
 - Otherwise use free cash flow
- Best approach: use all appropriate valuation methods and compare across

Hierarchy of Valuation

Most reliable:

- Balance sheet assets with fairly precise estimates of market value
 - E.g., real estate, cash, PP&E, long-term debt outstanding, etc.

Somewhat reliable:

- Cash flow from assets already in place
 - E.g., no-growth value of the firm or value
- Uncertainty due to competition or other threats to these profits

Least reliable:

Discount Rates

Discount rate

- For now, we'll use the CAPM model to estimate discount rates
 - Later in the semester we'll learn other models to estimate the discount rate

$$E[r] = r_f + \beta \times (E[r_m] - r_f)$$

• Example: what is the discount rate of GOOGL (beta = 0.98)? Assume the market risk premium (E[rm] – rf) is 6% and the risk-free rate is 0.25%.

$$E[r] = 0.25\% + 0.98 \times (6\%) = 6.13\%$$

CAPM

Cost of equity:

$$E[r_E] = r_f + \beta^E (E[r_{mkt}] - r_f)$$

Cost of debt:

$$E[r_D] = r_f + \beta^D (E[r_{mkt}] - r_f)$$

- Betas capture the covariance between asset returns and the market index
 - Insight: investors demand higher returns on assets that covary more with the market

Leveraged Beta

$$WACC = \frac{\text{Value of Equity}}{\text{Value of Firm}} * \text{Cost of Equity} + \frac{\text{Value of Debt}}{\text{Value of Firm}} * \text{Cost of Debt} * (1 - t_C)$$

The amount of leverage will affect the beta of equity $\beta^U = \beta^E \frac{E}{D+E} + \beta^D \frac{D}{D+E}$

$$\beta^U = \beta^E \frac{D}{D+E} + \beta^D \frac{D}{D+E}$$

$$\beta^E > \beta^U > \beta^D$$

• Rearranging:
$$\beta^U + \frac{D}{E}(\beta^U - \beta^D)$$

- Equity beta is increasing in leverage
- If leverage is forecasted to increase, need to adjust

Example

Unlevered Beta	0.5
Risk-free	3%
Market return	10%
Tax-Rate	0.35

De bt	Equ ity	Debt +Equity	Equity Beta	Debt Beta	Cost of Equity	Cost of Debt (pre-tax)	WACC (pre-tax)	WACC (after-tax)
0	3	3	0.500	0	6.50%	3.00%	6.50%	6.50%
0.2	2.8	3	0.534	0.02	6.74%	3.14%	6.50%	6.43%
0.4	2.6	3	0.571	0.04	7.00%	3.28%	6.50%	6.35%
0.6	2.4	3	0.610	0.06	7.27%	3.42%	6.50%	6.26%
0.8	2.2	3	0.653	0.08	7.57%	3.56%	6.50%	6.17%
1	2	3	0.700	0.1	7.90%	3.70%	6.50%	6.07%
1.2	1.8	3	0.753	0.12	8.27%	3.84%	6.50%	5.96%
1.4	1.6	3	0.815	0.14	8.71%	3.98%	6.50%	5.85%
1.6	1.4	3	0.889	0.16	9.22%	4.12%	6.50%	5.73%
1.8	1.2	3	0.980	0.18	9.86%	4.26%	6.50%	5.61%

Equity Beta

Debt-to-Equity Ratio (D/E)

Implementation

- Forecast future leverage ratios and adjust discount rates accordingly
- Discount rate can vary over time:
 - Discount rate for year 1 may be different from discount rate for year 3
 - Using numbers from previous example:
 - If today the firm's D/E ratio is 0 and in one year it is 2, then:
 - The first year discount rate should be 6.50% and the second year it should be 5.47%

Other Discount Rate Considerations

$$E[r_i] = r_{f,t} + \beta_{i,t} (E[r_{m,t}] - r_{f,t})$$

- Will the risk-free rate change in the future?
- Will the market risk-premium change in the future?
- Will the firm's unlevered beta change in the future?

Estimating Dividend Growth Rates

Estimating Dividend Growth Rates

- How can we estimate g?
 - Firm's that reinvest more of their current earnings will have higher future earnings and dividends

 $g = ROE \times b$

- g = growth rate in dividends
- ROE = Firm's return on equity

Estimating Dividend Growth Rates

• The plowback rate (b) is the fraction of earnings reinvested in the firm

$$b = \frac{\text{Net Income- Dividends}}{\text{Net Income}}$$

$$b = 1 - \frac{Dividends}{Net Income}$$

$$b = 1 - Payout ratio$$

Where does this formula come from?

• Essentially, we are assuming that dividends will grow at the same rate as the book value of equity

$$g = ROE \times b$$

$$ROE \times b = \frac{Net\ Income}{Equity} \times \frac{Reinvested\ Earnings}{Net\ Income} = \frac{Reinvested\ Earnings}{Equity}$$

Example

ROE

- Microsoft's Annual Net Income = \$39.24B
- Microsoft's Shareholder's Equity = \$102.33B

Plowback ratio

- Microsoft's most recent annual EPS = \$5.03
- Microsoft's annual dividend per share = \$0.46/qtr x 4 qtrs. = \$1.84
- Discount rate = 5.28%

Example

Valuing Growth

Present Value of Growth Opportunities

$$Price = \frac{E_1}{r} + PVGO$$

- (E1/r) captures the value if the firm paid out all of it's earnings each period and earnings never grew (No-growth)
 - If earnings and dividends were equal to E1 forever
 - Value of assets already in place
- PVGO captures added value from growth opportunities

Example

- Microsoft's Projected Earnings This Year = \$5.23/share
- Discount rate = 5.28%
- Current Market Price = \$136.31
- What is Microsoft's PVGO?
 - Calculate the no-growth value (E1/r)
 - Find the difference

Example

$$Price = \frac{E_1}{r} + PVGO$$

Price-to-Earnings

Price-to-earnings

Price-earnings ratio is commonly used in stock valuation analysis

• Forward: P0/E1

Trailing: P0/E0

What determines a stock's price-to-earnings ratio?

P/E and Growth Opportunities

- Captures fairly well a firm's growth opportunities
 - High growth firms will have higher P/E

$$\frac{P_0}{E_1} = \frac{\frac{E_1}{r} + PVGO}{E_1} = \frac{1}{r} (1 + \frac{PVGO}{\frac{E_1}{r}})$$

Ratio of growth opportunities to value of assets already in place

Breaking Down P/E

$$\frac{P_0}{E_1} = \frac{\frac{D_1}{r-g}}{E_1} = \frac{\frac{(1-b)E_1}{r-g}}{E_1} = \frac{1-b}{r-g} = \frac{1-b}{r-(ROE \times b)}$$

- This comes from the dividend growth model
 - P/E is increasing in ROE
 - Plowback ratio is ambiguous
 - If ROE>r, the P/E is increasing in the plowback ratio

P/E

Growth rate (g)

Assume r=10%

ROE/b	0	.25	.50	.75
5%	0	1.25%	2.5%	3.75%
10%	0	2.5%	5.0%	7.5%
15%	0	3.75%	7.5%	11.25%

$$g = ROE \times b$$

-	1	-
כן	/	H.
1	/	

ROE/b	0	.25	.50	.75
5%	10	8.57	6.67	4
10%	10	10	10	10
15%	10	12	20	-

$$\frac{P_0}{E_1} = \frac{1-b}{r-g}$$

Want firm to reinvest as long as ROE>r

P/E

$$\frac{P_0}{E_1} = \frac{1-b}{r-g}$$

- P/E is decreasing in the discount rate r, therefore:
 - P/E is lower the greater the firm's beta
 - P/E is lower the greater the risk-free rate
 - P/E is lower the greater the market excess return $r = E[r_i] = r_f + \beta_i (E[r_m] r_f)$
 - · CAPM:

Trailing P/E and nominal 10-year Treasury yield

P/E has increased since 2009 while interest rates have stayed low

Trailing P/E multiple and nominal 10-year Treasury yield

PEG Ratio

PEG Ratio

- Wall Street rule of thumb: growth rate (g) is roughly equal to the P/E ratio
 - This should only be true in certain circumstances
- PEG Ratio = (P/E ratio)/Growth
- If PEG ratio less than 1, seen as a signal stock is underpriced

PEG Ratio

• "If the P/E ratio of Coca Cola is 15, you'd expect the company to be growing at about 15% per year, etc. But if the P/E ratio is less than the growth rate, you may have found yourself a bargain." - Peter Lynch in *One Up on Wall Street*.

PEG Ratio in the wild

 https://www.cnbc.com/video/2018/08/28/nowis-a-good-opportunity-to-get-involved-withchinese-internet-stocks-says-alphaone-capitalsniles.html

Around 1:45 minute mark

PEG Ratio Example

Assume:

- Risk-free rate = 10%
- Market excess return = market risk premium =
 E[rm] rf = 10%
- Stock beta = 1
- Firm's ROE = 20%
- Plowback ratio = .4
- What is this firm's PEG Ratio?
 - Calculate the appropriate discount rate r

Answer

$$\frac{P}{E} = \frac{1-b}{r-g} \quad r = r_f + \beta(r_m - r_f) \qquad g = ROE \times b$$

$$r = 10\% + 1(10\%) = 20\% \quad g = 20\% \times .4 = 8\%$$

$$\frac{P}{E} = \frac{1 - .4}{20\% - 20\% \times .4} = 5$$

$$PEG = \frac{\frac{P}{E}}{g} = \frac{5}{8}$$

PEG Ratio Example

- Assume:
 - Risk-free rate = 1%
 - Market excess return = 10%
 - Stock beta = 1
 - Firm's ROE = 20%
 - Plowback ratio = .4
- What is this firm's PEG Ratio?

Answer

$$\frac{P}{E} = \frac{1-b}{r-g} \qquad r = r_f + \beta(r_m - r_f) \qquad g = ROE \times b$$

Relative PEG Ratio

- PEG ratio can be above or below one without being under or overpriced the 1.0 cut-off for undervaluation is hard to justify
- The PEG ratio may be more useful in a relative sense.
- Roughly, the PEG ratio tells us the price per unit of growth
- "Twitter has a lower PEG ratio than any of its peers. Twitter is currently sitting at a PEG of 1.18 when Facebook has 1.48, Google has 1.4, and LinkedIn at 1.55."
- Seeking Alpha, "Twitter: Undervalued And Poised For An Acquisition"
 10/23/2015

Relative Valuation

Relative Valuation

 P/E can be compared across similar firms to examine relative valuation

- Other comparative value approaches:
 - Price-to-book ratio
 - Price-to-cash flow ratio
 - Price-to-sales ratio
 - Especially useful for start-up companies
 - Less likely to have positive earnings
 - Enterprise value-to-earnings (or cash flow or

Relative Valuation

PE Ratio (TTM) Benchmarks		
Benchmarks		
Adobe Inc	5	3.30
Activision Blizzard Inc	2	3.31
Cadence Design Systems Inc	4	5.22
PE Ratio (TTM) Range, Past 5 Years		
	16.29 Jan 30	2015
PE Ratio (TTM) Range, Past 5 Years Minimum Maximum	16.29 Jan 30 3	

Ycharts.com

Enterprise Value

P/E affected by Leverage

- P/E can be affected by leverage
 - Debt affects P/E in a variety of ways
 - Increasing debt leads to a greater interest expense, a greater tax shield, a greater cost of equity, leverages earnings growth
 - Usually P/E is decreasing in leverage
- Can use Enterprise Value to EBITDA as relative valuation multiple
 - Financing won't affect comparisons unlike P/E ratio

Enterprise Value

- Enterprise value:
 - Market capitalization
 - + debt
 - cash and cash equivalents
 - + minority interest
 - + preferred shares
- Market capitalization = share price x number of shares outstanding

Next Class

Equity valuation analysis