Introduction to Computability Theory

Lecture4: Non Regular Languages

Lecture Slide Reference: UC San Diego

Lecture Outline

- 1. Motivate the Pumping Lemma.
- 2. Present and demonstrate the **pumping** concept.
- 3. Present and prove the **Pumping Lemma**.
- 4. Use the pumping lemma to prove some languages are not regular.

Introduction and Motivation

In this lecture we ask: Are all languages regular?

The answer is negative.

The simplest example is the language

$$B = \left\{ a^n b^n \mid n \ge 0 \right\}$$

Try to think about this language.

Introduction and Motivation

If we try to find a DFA that recognizes the language $B = \left\{a^n b^n \mid n \geq 0\right\}$, it seems that we need an infinite number of states, to "remember" how many a-s we saw so far.

Note: This is not a proof!

Perhaps a DFA recognizing B exists, but we are not clever enough to find it?

Introduction and Motivation

The **Pumping Lemma** is the formal tool we use to prove that the language B (as well as many other languages) is not regular.

What is Pumping?

Consider the following NFA, denoted by N:

It accepts all words of the form (0 U 1)(01)*

6

What is Pumping?

Consider now the word $110 \in L(N)$.

Pumping means that the word 110 can be divided into two parts: 1 and 10, such that for any $i \ge 0$, the word $1(10)^i \in L(n)$.

We say that the word 110 can be **pumped**.

For i = 0 this is called **down pumping**.

For i > 1 this is called *up pumping*.

What is Pumping?

A more general description would be:

A word $w \in L$, can be pumped if w = xy and for each $i \ge 0$, it holds that $xy^i \in L$

Note: the formal definition is a little more complex than this one.

The Pumping Lemma

Let A be a regular language. There exists a number p such that for every $w \in A$, if $|w| \ge p$ then w may be divided into three parts w = xyz, satisfying:

- 1. for each $i \ge 0$, it holds that $xy^iz \in A$.
- 2. |y| > 0.
- 3. $|xy| \leq p$.

Note: Without req. 2 the Theorem is **trivial**.

Let D be a DFA recognizing A and let p be the number of states of D. If A has no words whose length is at least p, the theorem holds **vacuously**. Let $w \in A$ be an arbitrary word such that $|w| \ge p$. Denote the symbols of w by $w = w_0, w_2, ..., w_m$ where $m = |w| \ge p$.

Assume that $q_0, q_1, ..., q_p, ..., q_m$ is the sequence of states that D goes through while computing with input w. For each k, $0 \le k < m$, $\delta(q_k, w_k) = q_{k+1}$. Since $w \in A$, $q_m \in F_D$.

Since the sequence $q_0, q_1, ..., q_p$ contains p+1 states and since the number of states of D is p, that there exist two indices $0 \le i < j \le p$, such that $q_j = q_i$.

Denote
$$x = w_1 w_2 ... w_{i-1}$$
, $y = w_i w_{i+1} ... w_{j-1}$ and $z = w_j w_{j+1} ... w_m$.

Note: Under this definition |y| > 0 and $|xy| \le p$.

By this definition, the computation of D on $x = w_1 w_2 ... w_{i-1}$ starting from q_0 , ends at q_i .

By this definition, the computation of D on $z=w_jw_{j+1}...w_m$, starting from q_j , ends at q_m which is an accepting state.

The computation of D on $\mathcal{Y}=w_iw_{i+1}...w_{j-1}$ starting from q_i , ends at q_j . Since $q_i=q_j$, this computation starts and ends at the same state.

Since it is a circular computation, it can repeat itself k times for any $k \ge 0$.

In other words: for each $i \ge 0$, $xy^iz \in A$. Q.E.D.

Illustration of Pumping

FIGURE **1.72**

Example showing how the strings x, y, and z affect M