Documentação Técnica - Projeto Agricultura Vertical

Versão: 1.0

Data: 03/06/2025 **Autor:** André Ricartes

1. Introdução

O projeto **Agricultura Vertical** propõe um sistema IoT para cultivo hidropônico automatizado em ambientes urbanos, integrando sensores, microcontroladores e comunicação sem fio. A solução visa otimizar a produção de alimentos frescos com **90% menos água** que métodos tradicionais, reduzindo custos operacionais e impactos ambientais.

2. Objetivos

2.1 Objetivo Geral

Desenvolver um sistema modular de agricultura vertical com monitoramento automático de parâmetros críticos (pH, CE, temperatura, umidade) e controle remoto via IoT.

2.2 Objetivos Específicos

- Automatizar irrigação e nutrição das plantas.
- Transmitir dados via LoRa/433MHz para plataforma IoT.
- Reduzir custos de produção para pequenos produtores urbanos.

3. Arquitetura do Sistema

3.1 Diagrama de Blocos

Hardware	Função
ESP32	Processamento e conectividade Wi-Fi/LoRa
Sensores DS18B20/DHT11	Medição de temperatura e umidade
Sensor de pH/TDS	Monitoramento da solução nutritiva
Módulo LoRa	Comunicação de longo alcance (até 10km)
Software	Função
Plataforma IoT	Dashboard para visualização de dados
Firmware (C++)	Controle de sensores e atuadores

4. Implementação Técnica

4.1 Circuito Eletrônico

срр

// Exemplo de leitura do sensor DS18B20

#include <OneWire.h>

#include < Dallas Temperature.h>

#define ONE_WIRE_BUS 4

OneWire oneWire(ONE_WIRE_BUS);

DallasTemperature sensors(&oneWire);

```
void setup() {
  sensors.begin();
}

void loop() {
  sensors.requestTemperatures();
  float temp = sensors.getTempCByIndex(0);
}
```

4.2 Fluxo de Dados

- 1. Sensores → ESP32 (processamento) → LoRa → Plataforma IoT.
- 2. Alerta automático via app se pH < 5.5 ou CE > 2000 ppm.

5. Testes e Validação

5.1 Métricas de Desempenho

Parâmetro	Resultado
Precisão do pH	±0.2 unidades
Latência LoRa	< 2 segundos
Autonomia energética	30 dias (bateria 12V)

5.2 Casos de Uso Validados

- Cultivo de alface hidropônico: 18 dias até a colheita (vs. 30 dias no solo).
- Redução de **95% no uso de fertilizantes** via dosagem automatizada.

6. Manutenção e Evolução

6.1 Plano de Atualizações

• Integração com assistentes de voz (Alexa/Google Home).

• Algoritmo de machine learning para prever demandas nutricionais.

6.2 Custos Operacionais

Item	Custo Mensal (R\$)
Energia	15,00
Reposição de nutrientes	20,00

7. Impacto Sustentável

- **Economia de água:** 3.8 litros/kg de alimento vs. 40 litros na agricultura tradicional.
- Redução de CO₂: 1.2 ton/ano por sistema (evita transporte de alimentos).

8. Referências

- 1. BENKE, K. Future food-production systems: vertical farming. *Sustainability*, 2023
- 2. Projeto AgroConnect (BNDES) Caso de IoT em larga escala.
- 3. Modelo de fazenda vertical Pink Farms (São Paulo).

Nota: Para replicação completa do projeto, acesse o <u>repositório GitHub</u> com esquemas elétricos, código-fonte e manuais de montagem.