感知机和罗吉斯特回归

Perceptrons and Logistic Regression

上次的内容

Classification: given inputs x predict labels (classes) y

Naïve Bayes

$$P(Y|F_{0,0}...F_{15,15}) \propto P(Y) \prod_{i,j} P(F_{i,j}|Y)$$

- Parameter estimation:
 - MLE, MAP, priors $P_{\mathsf{ML}}(x) = \frac{\mathsf{count}(x)}{\mathsf{total samples}}$
- Laplace smoothing $P_{LAP,k}(x) = \frac{c(x) + k}{N + k|X|}$
- Training set, held-out set, test set

线性判别器 Linear Classifiers

特征向量 Feature Vectors

f(x)# free : 2
YOUR_NAME : 0
MISSPELLED : 2
FROM_FRIEND : 0 Hello, **SPAM** Do you want free printr or cartriges? Why pay more when you can get them ABSOLUTELY FREE! Just PIXEL-7,12 : 1
PIXEL-7,13 : 0
...
NUM_LOOPS : 1

生物中的神经元

Very loose inspiration: human neurons

线性分类器 Linear Classifiers

- Inputs are feature values
- Each feature has a weight
- Sum is the activation (激活函数)

$$activation_w(x) = \sum_i w_i \cdot f_i(x) = w \cdot f(x)$$

- If the activation is:
 - Positive, output +1
 - Negative, output -1

权重向量 Weights

- 二分类: compare features to a weight vector
- Learning: figure out the weight vector from examples

Decision Rules

二分決策规则 Binary Decision Rule

- In the space of feature vectors
 - Examples are points
 - Any weight vector is a hyperplane (超平面)
 - One side corresponds to Y=+1
 - Other corresponds to Y=-1

 \overline{w}

BIAS : -3
free : 4
money : 2

二分决策规则

- In the space of feature vectors
 - Examples are points
 - Any weight vector is a hyperplane
 - One side corresponds to Y=+1
 - Other corresponds to Y=-1

w

BIAS : -3
free : 4
money : 2

二分决策规则

- In the space of feature vectors
 - Examples are points
 - Any weight vector is a hyperplane
 - One side corresponds to Y=+1
 - Other corresponds to Y=-1

w

BIAS free money:

Decision Boundary

x classified into positive class

 \boldsymbol{x} classified into negative class

更新权重向量 Weight Updates

学习: 二分感知机

- Start with weights = 0
- For each training instance:
 - Classify with current weights

■ If correct (i.e., y=y*), no change!

• If wrong: adjust the weight vector

学习:二分感知机

- Start with weights = 0
- For each training instance:
 - Classify with current weights

$$y = \begin{cases} +1 & \text{if } w \cdot f(x) \ge 0\\ -1 & \text{if } w \cdot f(x) < 0 \end{cases}$$

- If correct (i.e., y=y*), no change!
- If wrong: adjust the weight vector by adding or subtracting the feature vector. Subtract if y* is -1.

$$w = w + y^* \cdot f$$

Before: wfAfter: wf + y*ffff>=0 举例: 感知机

■ Separable Case (可分割的情况下)

多类判别规则 Multiclass Decision Rule

■ 多类别情况下:

A weight vector for each class:

$$w_y$$

Score (activation) of a class y:

$$w_y \cdot f(x)$$

Prediction highest score wins

$$y = \underset{y}{\operatorname{arg\,max}} \ w_y \cdot f(x)$$

机器学习:多分类感知机

- Start with all weights = 0
- Pick up training examples one by one
- Predict with current weights

$$y = \arg \max_{y} w_{y} \cdot f(x)$$

- If correct, no change!
- If wrong: lower score of wrong answer, raise score of right answer

$$w_y = w_y - f(x)$$
$$w_{y^*} = w_{y^*} + f(x)$$

举例:多分类感知机

```
"win the vote" [1 1 0 1 1]
```

"win the election" [1 1 0 0 1]

"win the game" [1 1 1 0 1]

w_{SPORTS} 1 -2 -2 BIAS : 1 0 1 win : 0 -1 0 game : 0 0 1 vote : 0 -1 -1 the : 0 -1 0

$w_{POLITICS}$						
	_			0	3	3
	BIAS	:	0	1		0
	win	:	0	1		0
	game	:	0	0		-1
	vote	:	0	1		1
	the	:	0	1		0

WTECH
0 0

BIAS : 0
win : 0
game : 0
vote : 0
the : 0

感知机的属性

- Separability 可分割: true if some parameters get the training set perfectly correct
- Convergence 收敛: if the training is separable, perceptron will eventually converge (binary case)
- Mistake Bound 误判率: the maximum number of mistakes (binary case) related to the *margin* or degree of separability

Separable

Non-Separable

感知机存在的问题

- Noise: if the data isn't separable, weights might thrash 难以收敛
 - Averaging weight vectors over time can help (averaged perceptron)
- Mediocre generalization 泛化学 习性不强: finds a "barely" separating solution

- Overtraining 易过拟合: test / held-out accuracy usually rises, then falls
 - Overtraining is a kind of overfitting

改进感知机模型

不可分割情况下: 肯定性的判别结果

不可分割情况下: 概率化的判别决策

How to get probabilistic decisions?

- Perceptron scoring: $z = w \cdot f(x)$
- If $z = w \cdot f(x)$ very positive \rightarrow want probability going to 1
- If $z = w \cdot f(x)$ very negative \rightarrow want probability going to 0

Sigmoid function

$$\phi(z) = \frac{1}{1 + e^{-z}}$$

A 1D Example

The Soft Max

$$P(\text{red}|x) = \frac{e^{w_{\text{red}} \cdot x}}{e^{w_{\text{red}} \cdot x} + e^{w_{\text{blue}} \cdot x}}$$

Best w?

■ Maximum likelihood estimation 最大似然估计:

$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)}|x^{(i)};w)$$

with:
$$P(y^{(i)} = +1|x^{(i)}; w) = \frac{1}{1 + e^{-w \cdot f(x^{(i)})}}$$
$$P(y^{(i)} = -1|x^{(i)}; w) = 1 - \frac{1}{1 + e^{-w \cdot f(x^{(i)})}}$$

= Logistic Regression 罗吉斯特回归

可分割情况: Deterministic Decision – Many Options

可分割情况: Probabilistic Decision – Clear Preference

多分类下的罗吉斯特回归

Recall Perceptron:

- ullet A weight vector for each class: w_y
- Score (activation) of a class y: $w_y \cdot f(x)$
- Prediction highest score wins $y = \arg\max_{y} w_y \cdot f(x)$

• How to make the scores into probabilities?

$$z_1,z_2,z_3 \to \frac{e^{z_1}}{e^{z_1}+e^{z_2}+e^{z_3}}, \frac{e^{z_2}}{e^{z_1}+e^{z_2}+e^{z_3}}, \frac{e^{z_3}}{e^{z_1}+e^{z_2}+e^{z_3}}, \frac{e^{z_3}}{e^{z_1}+e^{z_2}+e^{z_3}}$$
 original activations softmax activations

求解最优的 w?

■ Maximum likelihood estimation最大似然估计:

$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)}|x^{(i)};w)$$

with:
$$P(y^{(i)}|x^{(i)};w) = \frac{e^{w_{y^{(i)}} \cdot f(x^{(i)})}}{\sum_{y} e^{w_{y} \cdot f(x^{(i)})}}$$

= Multi-Class Logistic Regression 多分类情况下的罗吉斯特回归

下次课, 关于如何求解这个优化问题

Optimization

• i.e., how do we solve:

$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)}|x^{(i)};w)$$