iris-assignment-2

August 13, 2023

0.0.1 Iris Dataset classification using SVM, MLP and Random Forest classifier

```
[1]: import numpy as np
     import pandas as pd
     import matplotlib.pyplot as plt
[]: from sklearn.datasets import load_iris
     iris = load iris()
     df = pd.DataFrame(iris.data, columns = iris.feature_names)
     df.head()
[]: X = df.iloc[:][:]
     y = iris["target"]
     dict svm = {}
     dict_mlp = {}
     dict_rfr = {}
     RocAucSvm = {}
     RocAucMlp = {}
     RocAucRfr = {}
     print(X, y)
```

0.0.2 Used for ploting confusion matrix

0.0.3 SVM CLASSIFIER

```
[6]: def SVMClassifier(split, kernalValue = 'rbf', degreeValue = 3, gammaValue = __
     from sklearn.model_selection import train_test_split
      from sklearn.svm import SVC
      from sklearn.metrics import accuracy_score
      from sklearn.preprocessing import StandardScaler
      scaler = StandardScaler()
       scaler.fit(X)
      X_train, X_test, y_train, y_test = train_test_split(X,y, test_size = split, __
      ⇒random state=44)
      classifier = SVC(kernel = kernalValue, degree = degreeValue, gamma = 1

→gammaValue, max_iter = maxIter)
      classifier.fit(X_train, y_train)
      y_pred = classifier.predict(X_test)
      accuracy = accuracy_score(y_test, y_pred)
      if str(split) in dict svm:
        dict_svm[str(split)] = max(accuracy, dict_svm[str(split)])
        if str(split) == '0.3' and accuracy > dict_svm[str(split)]:
          RocAucSvm['max'] = {'y_test': y_test, 'y_pred': y_pred}
      else:
        dict_svm[str(split)] = accuracy
        if str(split) == '0.3':
          RocAucSvm['max'] = {'y_test': y_test, 'y_pred': y_pred}
      reports(y_test, y_pred)
```

```
[7]: #Train - Test split 70-30
SVMClassifier(0.3)
```

```
SVMClassifier(0.3, 'linear')
SVMClassifier(0.3, 'poly')
SVMClassifier(0.3, 'sigmoid', 3, 0.022)
```

Confusion Matrix :

Classification Evaluation :

	precision	recall	f1-score	support
0	1.00	1.00	1.00	17
1	0.93	1.00	0.96	13
2	1.00	0.93	0.97	15
accuracy			0.98	45
macro avg	0.98	0.98	0.98	45
weighted avg	0.98	0.98	0.98	45

	precision	recall	f1-score	support
0	1.00	1.00	1.00	17
1	0.93	1.00	0.96	13
2	1.00	0.93	0.97	15
accuracy			0.98	45
macro avg	0.98	0.98	0.98	45
weighted avg	0.98	0.98	0.98	45

	precision	recall	f1-score	support
0	1.00	1.00	1.00	17
1	0.93	1.00	0.96	13
2	1.00	0.93	0.97	15
accuracy			0.98	45
macro avg	0.98	0.98	0.98	45
weighted avg	0.98	0.98	0.98	45

Classification Evaluation :

	precision	recall	f1-score	support
0	0.94	1.00	0.97	17
1	0.48	1.00	0.65	13
2	0.00	0.00	0.00	15
accuracy			0.67	45
macro avg	0.48	0.67	0.54	45
weighted avg	0.50	0.67	0.55	45

```
[8]: #Train - Test split 60-40
SVMClassifier(0.4, 'rbf', 3, 'auto')
SVMClassifier(0.4, 'linear')
SVMClassifier(0.4, 'poly')
SVMClassifier(0.4, 'sigmoid', 3, 0.023) #wrost performance
```


	precision	recall	f1-score	support
0	1.00	1.00	1.00	22
1	0.85	1.00	0.92	17
2	1.00	0.86	0.92	21
accuracy			0.95	60
macro avg	0.95	0.95	0.95	60
weighted avg	0.96	0.95	0.95	60

	precision	recall	f1-score	support
0 1 2	1.00 0.89 1.00	1.00 1.00 0.90	1.00 0.94 0.95	22 17 21
accuracy			0.97	60
macro avg weighted avg	0.96 0.97	0.97 0.97	0.96 0.97	60 60
0				

	precision	recall	f1-score	support
0	1.00	1.00	1.00	22
1	0.94	1.00	0.97	17
2	1.00	0.95	0.98	21
accuracy			0.98	60
macro avg	0.98	0.98	0.98	60
weighted avg	0.98	0.98	0.98	60

Classification Evaluation :

support	f1-score	recall	precision	
22	0.98	1.00	0.96	0
17	0.63	1.00	0.46	1
21	0.00	0.00	0.00	2
60	0.65			accuracy
60	0.54	0.67	0.47	macro avg
60	0.54	0.65	0.48	weighted avg

```
[9]: #Train - Test split 50-50
SVMClassifier(0.5, 'rbf', 3, 'auto')
SVMClassifier(0.5, 'linear')
SVMClassifier(0.5, 'poly')
SVMClassifier(0.5, 'sigmoid', 3, 0.022) #wrost performance
```

Classification Evaluation :

	precision	recall	f1-score	support
0	1.00	1.00	1.00	26
1	0.85	1.00	0.92	22
2	1.00	0.85	0.92	27
accuracy			0.95	75
macro avg	0.95	0.95	0.95	75
weighted avg	0.95	0.95	0.95	75

	precision	recall	f1-score	support
0	1.00	1.00	1.00	26
1	0.88	1.00	0.94	22
2	1.00	0.89	0.94	27
accuracy			0.96	75
macro avg	0.96	0.96	0.96	75
•				
weighted avg	0.96	0.96	0.96	75

	precision	recall	f1-score	support
0	1.00	1.00	1.00	26
1	0.85	1.00	0.92	22
2	1.00	0.85	0.92	27
accuracy			0.95	75
macro avg	0.95	0.95	0.95	75
weighted avg	0.95	0.95	0.95	75

Classification Evaluation :

support	f1-score	recall	precision	
26	1.00	1.00	1.00	0
22	0.62	1.00	0.45	1
27	0.00	0.00	0.00	2
75	0.64			accuracy
75	0.54	0.67	0.48	macro avg
75	0.53	0.64	0.48	weighted avg

```
[10]: #Train - Test split 40-60
SVMClassifier(0.6, 'rbf', 3, 'auto')
SVMClassifier(0.6, 'linear')
SVMClassifier(0.6, 'poly')
SVMClassifier(0.6, 'sigmoid', 3, 0.015 ) #wrost performance
```


	precision	recall	f1-score	support
0	1.00	1.00	1.00	33
1	0.84	1.00	0.91	26
2	1.00	0.84	0.91	31
accuracy			0.94	90
macro avg	0.95	0.95	0.94	90
weighted avg	0.95	0.94	0.94	90

	precision	recall	f1-score	support
0	1.00	1.00	1.00	33
1	0.87	1.00	0.93	26
2	1.00	0.87	0.93	31
accuracy			0.96	90
macro avg	0.96	0.96	0.95	90
weighted avg	0.96	0.96	0.96	90

	precision	recall	f1-score	support
0	1.00	1.00	1.00	33
1	0.87	1.00	0.93	26
2	1.00	0.87	0.93	31
accuracy			0.96	90
macro avg	0.96	0.96	0.95	90
weighted avg	0.96	0.96	0.96	90

Classification Evaluation :

	precision	recall	f1-score	support
0	1.00	1.00	1.00	33
1	0.46	1.00	0.63	26
2	0.00	0.00	0.00	31
accuracy			0.66	90
macro avg	0.49	0.67	0.54	90
weighted avg	0.50	0.66	0.55	90

```
[11]: #Train - Test split 30-70
SVMClassifier(0.7, 'rbf', 3, 'auto')
SVMClassifier(0.7, 'linear')
SVMClassifier(0.7, 'poly')
SVMClassifier(0.7, 'sigmoid', 3, 2) #wrost performance
```

Classification Evaluation :

	precision	recall	f1-score	support
0	1.00	1.00	1.00	40
1	0.84	0.97	0.90	32
2	0.96	0.82	0.89	33
accuracy			0.93	105
macro avg	0.93	0.93	0.93	105
weighted avg	0.94	0.93	0.93	105

Classification Evaluation :

	precision	recall	f1-score	support
0	1.00	1.00	1.00	40
1	0.84	1.00	0.91	32
2	1.00	0.82	0.90	33
accuracy			0.94	105
macro avg	0.95	0.94	0.94	105
weighted avg	0.95	0.94	0.94	105

Classification Evaluation :

	precision	recall	f1-score	support
0	1.00	1.00	1.00	40
1	0.72	0.97	0.83	32
2	0.95	0.64	0.76	33
accuracy			0.88	105
macro avg	0.89	0.87	0.86	105
weighted avg	0.90	0.88	0.87	105

Classification Evaluation :

	precision	recall	f1-score	support
0	0.00	0.00	0.00	40
1	0.30	1.00	0.47	32
2	0.00	0.00	0.00	33
accuracy			0.30	105
macro avg	0.10	0.33	0.16	105
weighted avg	0.09	0.30	0.14	105

0.0.4 split vs accuracy graph

```
[12]: x_points = [float(key) for key in dict_svm]
y_points = [i*100 for i in dict_svm.values()]
plt.plot(x_points, y_points)
plt.grid(True)
plt.show()
```


0.0.5 MLP Classifier

```
[13]: def MLPClassifier(split, hiddenLayerSize = [100, ], activationValue = 'relu',
       ⇔solverValue = 'adam'):
        from sklearn.model_selection import train_test_split
        from sklearn.neural network import MLPClassifier
        from sklearn.metrics import accuracy_score
       X_train, X_test, y_train, y_test = train_test_split(X,y,test_size = split,__
       →random_state=44)
        classifier = MLPClassifier(hidden_layer_sizes = hiddenLayerSize, activation = L
       activationValue, solver = solverValue, random_state = 1)
       classifier.fit(X_train, y_train)
       y_pred = classifier.predict(X_test)
        accuracy = accuracy_score(y_test, y_pred)
        if(str(split) in dict_mlp):
          dict_mlp[str(split)] = max(accuracy, dict_mlp[str(split)])
          if(str(split) == '0.3' and accuracy > dict_svm[str(split)]):
            RocAucMlp['max'] = {'y_test': y_test, 'y_pred': y_pred}
        else:
          dict_mlp[str(split)] = accuracy
          RocAucMlp['max'] = {'y_test': y_test, 'y_pred': y_pred}
```

reports(y_test, y_pred)

[14]: #Train - Test split 70-30 MLPClassifier(0.3, [30,])

/home/aqeel/.local/lib/python3.10/sitepackages/sklearn/neural_network/_multilayer_perceptron.py:691:
ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.
warnings.warn(

Confusion Matrix :

 ${\tt Classification}\ {\tt Evaluation}\ :$

	precision	recall	f1-score	support
0	1.00	1.00	1.00	17
1	1.00	1.00	1.00	13
2	1.00	1.00	1.00	15
accuracy			1.00	45
macro avg	1.00	1.00	1.00	45

weighted avg 1.00 1.00 1.00 45

[15]: #Train - Test split 60-40 MLPClassifier(0.4, [35,])

Confusion Matrix :

/home/aqeel/.local/lib/python3.10/sitepackages/sklearn/neural_network/_multilayer_perceptron.py:691:
ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and
the optimization hasn't converged yet.
 warnings.warn(

Classification Evaluation :

support	f1-score	recall	precision	
22	1.00	1.00	1.00	0
17	1.00	1.00	1.00	1
21	1.00	1.00	1.00	2
60	1.00			accuracy

macro	avg	1.00	1.00	1.00	60
weighted	avg	1.00	1.00	1.00	60

[16]: #Train - Test split 50-50 MLPClassifier(0.5, [35,])

Confusion Matrix:

/home/aqeel/.local/lib/python3.10/sitepackages/sklearn/neural_network/_multilayer_perceptron.py:691:
ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and
the optimization hasn't converged yet.
 warnings.warn(

 ${\tt Classification}\ {\tt Evaluation}\ :$

	precision	recall	f1-score	support
0	1.00	1.00	1.00	26
1	1.00	1.00	1.00	22
2	1.00	1.00	1.00	27

accuracy			1.00	75
macro avg	1.00	1.00	1.00	75
weighted avg	1.00	1.00	1.00	75

[17]: #Train - Test split 40-60 MLPClassifier(0.6, [45, 8])

Confusion Matrix :

/home/aqeel/.local/lib/python3.10/sitepackages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet. warnings.warn(

Confusion Matrix

Classification Evaluation :

support	f1-score	recall	precision	
0.0	4 00	4 00	4 00	_
33	1.00	1.00	1.00	0
26	1.00	1.00	1.00	1
31	1.00	1.00	1.00	2

accuracy			1.00	90
macro avg	1.00	1.00	1.00	90
weighted avg	1.00	1.00	1.00	90

[18]: #Train - Test split 30-70 MLPClassifier(0.7, [50, 10])

/home/aqeel/.local/lib/python3.10/site-

packages/sklearn/neural_network/_multilayer_perceptron.py:691:

ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.

warnings.warn(

Confusion Matrix :

Classification Evaluation :

F	orecision	recall	f1-score	support
0	1.00	1.00	1.00	40
1	1.00	1.00	1.00	32

2	1.00	1.00	1.00	33
accuracy			1.00	105
macro avg	1.00	1.00	1.00	105
weighted avg	1.00	1.00	1.00	105

0.0.6 split vs accuracy graph

```
[19]: x_points = [float(key) for key in dict_mlp]
y_points = [i*100 for i in dict_mlp.values()]
plt.plot(x_points, y_points)
plt.grid(True)
plt.show()
```


0.0.7 Random Forest Classifier

```
[20]: def randomForest(split, estimator = 100, criterionValue = 'gini', ):
    from sklearn.model_selection import train_test_split
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.metrics import accuracy_score
    from sklearn.preprocessing import StandardScaler
```

```
scaler = StandardScaler()
scaler.fit(X)
X_train, X_test, y_train, y_test = train_test_split(X,y, test_size = split, __
→random_state=44)
classifier = RandomForestClassifier(n_estimators = estimator, criterion = ___
⇔criterionValue)
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
if(str(split) in dict_rfr):
  dict_rfr[str(split)] = max(accuracy, dict_rfr[str(split)])
  if(str(split) == '0.3' and accuracy > dict_svm[str(split)]):
    RocAucRfr['max'] = {'y_test': y_test, 'y_pred': y_pred}
  dict_rfr[str(split)] = accuracy
  if(str(split) == '0.3'):
    RocAucRfr['max'] = {'y_test': y_test, 'y_pred': y_pred}
reports(y_test, y_pred)
```

[21]: randomForest(0.3)

Classification Evaluation :

	precision	recall	f1-score	support
0	1.00	1.00	1.00	17
1	0.93	1.00	0.96	13
2	1.00	0.93	0.97	15
accuracy			0.98	45
macro avg	0.98	0.98	0.98	45
weighted avg	0.98	0.98	0.98	45

[22]: randomForest(0.4)

Confusion Matrix :

Classification Evaluation :

precision recall f1-score support

0	1.00	1.00	1.00	22
1	0.89	1.00	0.94	17
2	1.00	0.90	0.95	21
accuracy			0.97	60
macro avg	0.96	0.97	0.96	60
weighted avg	0.97	0.97	0.97	60

[23]: randomForest(0.5)

Confusion Matrix :

 ${\tt Classification}\ {\tt Evaluation}\ :$

support	f1-score	recall	precision	
26	1.00	1.00	1.00	0
22	0.94	1.00	0.88	1
27	0.94	0.89	1.00	2
75	0.96			accuracy

macro avg 0.96 0.96 0.96 75 weighted avg 0.96 0.96 0.96 75

[24]: randomForest(0.6, 100, 'entropy')

Confusion Matrix :

Classification Evaluation :

	precision	recall	f1-score	support
0	1.00	1.00	1.00	33
1	0.81	1.00	0.90	26
2	1.00	0.81	0.89	31
accuracy			0.93	90
macro avg	0.94	0.94	0.93	90
weighted avg	0.95	0.93	0.93	90

[25]: randomForest(0.7, 120)

Confusion Matrix :

Classification Evaluation :

	precision	recall	f1-score	support
0	1.00	1.00	1.00	40
1	0.86	0.97	0.91	32
2	0.97	0.85	0.90	33
accuracy			0.94	105
macro avg	0.94	0.94	0.94	105
weighted avg	0.95	0.94	0.94	105

0.0.8 split vs accuracy graph

```
[26]: x_points = [float(key) for key in dict_rfr]
y_points = [i*100 for i in dict_rfr.values()]
plt.plot(x_points, y_points)
plt.grid(True)
plt.show()
```


0.0.9 ROC curve and ROC_AUC score for all the classifier having maximum accuracy when train test split 70-30.

```
[27]: from sklearn import metrics
                     def auc roc():
                                    fpr1, tpr1, _1 = metrics.roc_curve(RocAucSvm['max']['y_test'],_
                          →RocAucSvm['max']['y_pred'], pos_label=1)
                                    fpr2, tpr2, _2 = metrics.roc_curve(RocAucMlp['max']['y_test'],__
                           Graph 
                                    fpr3, tpr3, 3 = metrics.roc curve(RocAucRfr['max']['y test'],
                          →RocAucRfr['max']['y_pred'], pos_label=1)
                                    plt.plot(fpr1, tpr1, linestyle='--', linewidth=2, color='orange', __

→marker='o', markersize=6, label='SVM')
                                    plt.plot(fpr2, tpr2, linestyle='dotted', linewidth=2, color='green', u

→marker='s', markersize=6, label='MLP')
                                    plt.plot(fpr3, tpr3, linestyle=':', linewidth=2, color='blue', marker='^', __
                          →markersize=6, label='Random Forest')
                                    plt.title('ROC curve')
                                    # x label
                                    plt.xlabel('False Positive Rate')
                                     # y label
```

```
plt.ylabel('True Positive rate')

plt.legend(loc='best')
 plt.savefig('ROC',dpi=300)
 plt.show()
auc_roc()
```


ionosphere-assignment-2

August 13, 2023

0.0.1 IONOSPHERE Dataset classification using SVM, MLP and Random Forest classifier

0.0.2 Pre Preprocessing

```
[]: from sklearn.preprocessing import LabelEncoder
    X = df.iloc[:, 0:-1]
     y = df.iloc[:, -1]
     le = LabelEncoder()
     encoded = le.fit_transform(df['column_ai'])
     df.drop("column_ai", axis=1, inplace=True)
     df["column_ai"] = encoded
     y = df["column_ai"]
     dict_svm = {}
     dict_mlp = {}
     dict_rfr = {}
     RocAucSvm = {}
     RocAucMlp = {}
     RocAucRfr = {}
     y.info(), X.info()
     y.value_counts()
```

0.0.3 Used for ploting confusion matrix

```
[34]: def plot(y_test, y_pred):
       from sklearn.metrics import confusion_matrix
       import seaborn as sns
       print("Confusion Matrix : ")
       cf_matrix = confusion_matrix(y_test, y_pred)
       group_names = ['True Pos', 'False Pos', 'False Neg', 'True neg']
       group_counts = ["{0:0.0f}".format(value) for value in
                      cf matrix.flatten()]
       group_percentages = ["{0:.2%}".format(value) for value in
                          cf_matrix.flatten()/np.sum(cf_matrix)]
       labels = [f''(v1)\n(v2)\n(v3)'' for v1, v2, v3 in
                 zip(group_names,group_counts,group_percentages)]
       labels = np.asarray(labels).reshape(2,2)
       plt.figure(figsize=(6, 4))
       sns.heatmap(cf_matrix, annot=labels, fmt='', cmap='Blues',__
       sxticklabels=['Good', 'Bad'], yticklabels=['Good', 'Bad'])
       plt.xlabel('Predicted')
       plt.ylabel('Actual')
       plt.title('Confusion Matrix')
       plt.show()
```

0.0.4 SVM CLASSIFIER

```
[36]: def SVMClassifier(split, kernalValue = 'rbf', degreeValue = 3, gammaValue = "scale', maxIter = -1):
    from sklearn.model_selection import train_test_split
    from sklearn.svm import SVC
    from sklearn.metrics import accuracy_score
    from sklearn.preprocessing import StandardScaler
    scaler = StandardScaler()
    X_train, X_test, y_train, y_test = train_test_split(X,y,test_size = split, "scaler.fit_transform(X_train))
    scaler.fit_transform(X_train)
    scaler.transform(X_test)
    classifier = SVC(kernel = kernalValue, degree = degreeValue, gamma = "sgammaValue, max_iter = maxIter)
```

```
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)

if str(split) in dict_svm:
    dict_svm[str(split)] = max(accuracy, dict_svm[str(split)])
    if str(split) == '0.3' and accuracy > dict_svm[str(split)]:
        RocAucSvm['max'] = {'y_test': y_test, 'y_pred': y_pred}
else:
    dict_svm[str(split)] = accuracy
    if str(split) == '0.3':
        RocAucSvm['max'] = {'y_test': y_test, 'y_pred': y_pred}
reports(y_test, y_pred)
```

```
[37]: #Train - Test split 70-30

SVMClassifier(0.3, 'rbf', 3, 0.42)

SVMClassifier(0.3, 'linear', 3, 0.1)

SVMClassifier(0.3, 'poly', 5, )

SVMClassifier(0.3, 'sigmoid', 3, 0.01)
```

Confusion Matrix:

l f1-score suppor	f1-scor	recall	precision	
0.91 3	0.9	0.94	0.88	0
0.96 7	0.9	0.95	0.97	1
0.94 10	0.9			accuracy
0.93 10	0.9	0.94	0.93	macro avg
0.94 10	0.9	0.94	0.95	weighted avg

Confusion Matrix :

Confusion Matrix

	precision	recall	f1-score	support
0	0.90	0.56	0.69	32
1	0.84	0.97	0.90	74
accuracy			0.85	106
macro avg	0.87	0.77	0.80	106
weighted avg	0.86	0.85	0.84	106

Confusion Matrix :

Classification Evaluation :

	precision	recall	f1-score	support
0	0.79	0.72	0.75	32
1	0.88	0.92	0.90	74
			0.00	100
accuracy			0.86	106
macro avg	0.84	0.82	0.83	106
weighted avg	0.86	0.86	0.86	106

Classification Evaluation :

	precision	recall	f1-score	support
0	0.95	0.59	0.73	32
1	0.85	0.99	0.91	74
accuracy			0.87	106
macro avg	0.90	0.79	0.82	106
weighted avg	0.88	0.87	0.86	106

```
[38]: #Train - Test split 60-40

SVMClassifier(0.4, 'rbf', 3, 0.31)

SVMClassifier(0.4, 'linear', 3, 0.01)

SVMClassifier(0.4, 'poly', 5, )

SVMClassifier(0.4, 'sigmoid', 3, 0.01)
```


	precision	recall	f1-score	support
0	0.90	0.92	0.91	48
1	0.96	0.95	0.95	93
accuracy			0.94	141
macro avg	0.93	0.93	0.93	141
weighted avg	0.94	0.94	0.94	141

	precision	recall	f1-score	support
0	0.86	0.67	0.75	48
1	0.85	0.95	0.89	93
accuracy			0.85	141
macro avg	0.86	0.81	0.82	141
weighted avg	0.85	0.85	0.85	141

	precision	recall	f1-score	support
0	0.92	0.73	0.81	48
1	0.87	0.97	0.92	93
accuracy			0.89	141
macro avg	0.90	0.85	0.87	141
weighted avg	0.89	0.89	0.88	141

Classification Evaluation :

	precision	recall	f1-score	support
0	0.93	0.56	0.70	48
1	0.81	0.98	0.89	93
accuracy			0.84	141
macro avg	0.87	0.77	0.79	141
weighted avg	0.85	0.84	0.82	141

```
[39]: #Train - Test split 50-50

SVMClassifier(0.5, 'rbf', 3, 0.18)

SVMClassifier(0.5, 'linear', 3, )

SVMClassifier(0.5, 'poly', 4, )

SVMClassifier(0.5, 'sigmoid', 3, 0.09) #wrost performance
```


support	f1-score	recall	precision	
64	0.91	0.89	0.93	0
112	0.95	0.96	0.94	1
176	0.94			accuracy
176	0.93	0.93	0.94	macro avg
176	0.94	0.94	0.94	weighted avg

	precision	recall	f1-score	support
0	0.93	0.62	0.75	64
1	0.82	0.97	0.89	112
accuracy			0.85	176
macro avg	0.87	0.80	0.82	176
weighted avg	0.86	0.85	0.84	176

	precision	recall	f1-score	support
0	0.92	0.72	0.81	64
1	0.86	0.96	0.91	112
accuracy			0.88	176
macro avg	0.89	0.84	0.86	176
weighted avg	0.88	0.88	0.87	176

Classification Evaluation :

	precision	recall	f1-score	support
0	0.91	0.64	0.75	64
1	0.82	0.96	0.89	112
accuracy			0.85	176
macro avg	0.87	0.80	0.82	176
weighted avg	0.86	0.85	0.84	176

```
[40]: #Train - Test split 40-60

SVMClassifier(0.6, 'rbf', 3, 0.51)

SVMClassifier(0.6, 'linear', 3, )

SVMClassifier(0.6, 'poly', 2, 0.14)

SVMClassifier(0.6, 'sigmoid', 3,) #wrost performance
```


	precision	recall	f1-score	support
0	0.88	0.96	0.92	79
1	0.98	0.92	0.95	132
accuracy			0.94	211
macro avg	0.93	0.94	0.94	211
weighted avg	0.94	0.94	0.94	211

	precision	recall	f1-score	support
0	0.90	0.66	0.76	79
1	0.82	0.95	0.88	132
accuracy			0.84	211
macro avg	0.86	0.81	0.82	211
weighted avg	0.85	0.84	0.84	211

	precision	recall	f1-score	support
0	0.92	0.72	0.81	79
1	0.85	0.96	0.90	132
accuracy			0.87	211
macro avg	0.89	0.84	0.86	211
weighted avg	0.88	0.87	0.87	211

Classification Evaluation :

	precision	recall	f1-score	support
0	0.98	0.61	0.75	79
1	0.81	0.99	0.89	132
			0.05	044
accuracy			0.85	211
macro avg	0.89	0.80	0.82	211
weighted avg	0.87	0.85	0.84	211

```
[41]: #Train - Test split 30-70

SVMClassifier(0.7, 'rbf', 3, 0.64)

SVMClassifier(0.7, 'linear')

SVMClassifier(0.7, 'poly', 2,)

SVMClassifier(0.7, 'sigmoid') #wrost performance
```


	precision	recall	f1-score	support
0	0.88	0.97	0.92	91
1	0.98	0.92	0.95	155
accuracy			0.94	246
macro avg	0.93	0.94	0.94	246
weighted avg	0.94	0.94	0.94	246

	precision	recall	f1-score	support
0	0.90	0.58	0.71	91
1	0.80	0.96	0.87	155
accuracy			0.82	246
macro avg	0.85	0.77	0.79	246
weighted avg	0.83	0.82	0.81	246

	precision	recall	f1-score	support
0	1.00	0.45	0.62	91
1	0.76	1.00	0.86	155
accuracy			0.80	246
macro avg	0.88	0.73	0.74	246
weighted avg	0.85	0.80	0.77	246

Classification Evaluation :

	precision	recall	f1-score	support
0	0.86	0.67	0.75	91
1	0.83	0.94	0.88	155
accuracy			0.84	246
macro avg	0.84	0.80	0.82	246
weighted avg	0.84	0.84	0.83	246

0.0.5 split vs accuracy graph

```
[42]: x_points = [float(key) for key in dict_svm]
y_points = [i*100 for i in dict_svm.values()]
plt.plot(x_points, y_points)
plt.grid(True)
plt.show()
```


0.0.6 MLP Classifier

```
[43]: def MLPClassifier(split, hiddenLayerSize = [100, ], activationValue = 'relu',
       ⇔solverValue = 'adam'):
        from sklearn.model_selection import train_test_split
        from sklearn.neural_network import MLPClassifier
        from sklearn.metrics import accuracy_score
        from sklearn.preprocessing import StandardScaler
        scaler = StandardScaler()
       X_train, X_test, y_train, y_test = train_test_split(X,y,test_size = split,_
       →random_state=44)
        scaler.fit_transform(X_train)
        scaler.transform(X_test)
        classifier = MLPClassifier(hidden_layer_sizes = hiddenLayerSize, activation = __
       activationValue, solver = solverValue, random_state = 1)
        classifier.fit(X_train, y_train)
       y_pred = classifier.predict(X_test)
        accuracy = accuracy_score(y_test, y_pred)
        if(str(split) in dict_mlp):
          dict_mlp[str(split)] = max(accuracy, dict_mlp[str(split)])
          if(str(split) == '0.3' and accuracy > dict_svm[str(split)]):
            RocAucMlp['max'] = {'y_test': y_test, 'y_pred': y_pred}
```

```
else:
    dict_mlp[str(split)] = accuracy
    RocAucMlp['max'] = {'y_test': y_test, 'y_pred': y_pred}
reports(y_test, y_pred)
```

```
[44]: #Train - Test split 70-30
MLPClassifier(0.3, [80, 20])
```

/home/aqeel/.local/lib/python3.10/sitepackages/sklearn/neural_network/_multilayer_perceptron.py:691:
ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and
the optimization hasn't converged yet.
 warnings.warn(

Confusion Matrix :

	precision	recall	f1-score	support
0	1.00	0.81	0.90	32
1	0.93	1.00	0.96	74

accuracy			0.94	106
macro avg	0.96	0.91	0.93	106
weighted avg	0.95	0.94	0.94	106

```
[45]: #Train - Test split 60-40
MLPClassifier(0.4, [80, 15])
```

/home/aqeel/.local/lib/python3.10/sitepackages/sklearn/neural_network/_multilayer_perceptron.py:691:

ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.

warnings.warn(

Confusion Matrix :

support	f1-score	recall	precision	
48	0.91	0.88	0.95	0
93	0.96	0.98	0.94	1

accuracy			0.94	141
macro avg	0.95	0.93	0.94	141
weighted avg	0.94	0.94	0.94	141

[46]: #Train - Test split 50-50 MLPClassifier(0.5, [80, 15])

> /home/aqeel/.local/lib/python3.10/sitepackages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.

warnings.warn(

Confusion Matrix :

support	f1-score	recall	precision	
64	0.88	0.83	0.95	0
112	0.94	0.97	0.91	1

accuracy			0.92	176
macro avg	0.93	0.90	0.91	176
weighted avg	0.92	0.92	0.92	176

[47]: #Train - Test split 40-60 MLPClassifier(0.6, [80, 46])

> /home/aqeel/.local/lib/python3.10/sitepackages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.

warnings.warn(

Confusion Matrix :

	precision	recall	f1-score	support
0	0.93	0.81	0.86	79
1	0.89	0.96	0.93	132

accuracy			0.91	211
macro avg	0.91	0.89	0.90	211
weighted avg	0.91	0.91	0.90	211

[48]: #Train - Test split 30-70 MLPClassifier(0.7, [50, 22])

Confusion Matrix :

/home/aqeel/.local/lib/python3.10/sitepackages/sklearn/neural_network/_multilayer_perceptron.py:691:
ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and
the optimization hasn't converged yet.
 warnings.warn(

p	recision	recall	f1-score	support
0	0.96	0.77	0.85	91
1	0.88	0.98	0.93	155

accuracy			0.90	246
macro avg	0.92	0.87	0.89	246
weighted avg	0.91	0.90	0.90	246

0.0.7 split vs accuracy graph

```
[49]: x_points = [float(key) for key in dict_mlp]
y_points = [i*100 for i in dict_mlp.values()]
plt.plot(x_points, y_points)
plt.grid(True)
plt.show()
```



```
[50]: def randomForest(split, estimator = 100, criterionValue = 'gini', ):
    from sklearn.model_selection import train_test_split
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.metrics import accuracy_score
    from sklearn.preprocessing import StandardScaler
    scaler = StandardScaler()
    X_train, X_test, y_train, y_test = train_test_split(X,y,test_size = split,u)
    random_state=44)
```

```
scaler.fit_transform(X_train)
scaler.transform(X_test)
classifier = RandomForestClassifier(n_estimators = estimator, criterion =_{\sqcup}
⇔criterionValue)
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
if(str(split) in dict_rfr):
  dict_rfr[str(split)] = max(accuracy, dict_rfr[str(split)])
  if(str(split) == '0.3' and accuracy > dict_svm[str(split)]):
    RocAucRfr['max'] = {'y_test': y_test, 'y_pred': y_pred}
else:
  dict_rfr[str(split)] = accuracy
  if(str(split) == '0.3'):
    RocAucRfr['max'] = {'y_test': y_test, 'y_pred': y_pred}
reports(y_test, y_pred)
```

```
[51]: randomForest(0.3, 170) randomForest(0.3, 205, 'entropy')
```

Classification Evaluation :

	precision	recall	f1-score	support
0	0.79	0.84	0.82	32
1	0.93	0.91	0.92	74
accuracy			0.89	106
macro avg	0.86	0.87	0.87	106
weighted avg	0.89	0.89	0.89	106

Confusion Matrix :

	precision	recall	f1-score	support
0	0.87	0.81	0.84	32
1	0.92	0.95	0.93	74
accuracy			0.91	106
macro avg	0.89	0.88	0.89	106

weighted avg 0.90 0.91 0.90 106

[52]: randomForest(0.4, 70) randomForest(0.4, 80, 'entropy')

Confusion Matrix :

Classification Evaluation :

	precision	recall	f1-score	support
0	0.86	0.88	0.87	48
1	0.93	0.92	0.93	93
accuracy			0.91	141
macro avg	0.90	0.90	0.90	141
weighted avg	0.91	0.91	0.91	141

port
48
93
141
141
141

```
[53]: randomForest(0.5, 66) randomForest(0.5, 140, 'entropy')
```


	precision	recall	f1-score	support
0	0.89	0.86	0.87	64
1	0.92	0.94	0.93	112
accuracy			0.91	176
macro avg	0.90	0.90	0.90	176
weighted avg	0.91	0.91	0.91	176

precision	recall	f1-score	support
0.89	0.84	0.86	64
0.91	0.94	0.93	112
		0.90	176
0.90 0.90	0.89 0.90	0.89 0.90	176 176
	0.89 0.91 0.90	0.89 0.84 0.91 0.94 0.90 0.89	0.89 0.84 0.86 0.91 0.94 0.93 0.90 0.89 0.89

```
[54]: randomForest(0.6, )
randomForest(0.6, 100, 'entropy')
```


	precision	recall	f1-score	support
0	0.87	0.87	0.87	79
1	0.92	0.92	0.92	132
accuracy			0.91	211
macro avg	0.90	0.90	0.90	211
weighted avg	0.91	0.91	0.91	211

Classification Evaluation :

	precision	recall	f1-score	support
0	0.88	0.86	0.87	79
1	0.92	0.93	0.92	132
accuracy			0.91	211
macro avg	0.90	0.90	0.90	211
weighted avg	0.90	0.91	0.90	211

```
[55]: randomForest(0.7, 120) randomForest(0.4, 80, 'entropy')
```


	precision	recall	f1-score	support
0	0.90	0.86	0.88	91
1	0.92	0.94	0.93	155
accuracy			0.91	246
macro avg	0.91	0.90	0.90	246
weighted avg	0.91	0.91	0.91	246

Classification Evaluation :

	precision	recall	f1-score	support
0	0.85	0.85	0.85	48
1	0.92	0.92	0.92	93
accuracy			0.90	141
macro avg	0.89	0.89	0.89	141
weighted avg	0.90	0.90	0.90	141

0.0.8 split vs accuracy graph

```
[56]: x_points = [float(key) for key in dict_rfr]
y_points = [i*100 for i in dict_rfr.values()]
plt.plot(x_points, y_points)
plt.grid(True)
plt.show()
```


0.0.9 ROC curve and ROC_AUC score for all the classifier having maximum accuracy when train test split 70-30.

```
[57]: from sklearn import metrics
      def auc_roc():
          fpr1, tpr1, _1 = metrics.roc_curve(RocAucSvm['max']['y_test'],__
       →RocAucSvm['max']['y_pred'], pos_label=1)
          fpr2, tpr2, _2 = metrics.roc_curve(RocAucMlp['max']['y_test'],__
       GROCAucMlp['max']['y_pred'], pos_label=1)
          fpr3, tpr3, _3 = metrics.roc_curve(RocAucRfr['max']['y_test'],__
       →RocAucRfr['max']['y_pred'], pos_label=1)
          plt.plot(fpr1, tpr1, linestyle='--',color='orange', label='SVM')
          plt.plot(fpr2, tpr2, linestyle='--',color='green', label='MLP')
          plt.plot(fpr3, tpr3, linestyle='--', color='blue', label= 'Random Forest')
          plt.title('ROC curve')
          # x label
          plt.xlabel('False Positive Rate')
          # y label
          plt.ylabel('True Positive rate')
          plt.legend(loc='best')
```

```
plt.savefig('ROC',dpi=300)
  plt.show()
auc_roc()
```


0.0.10 Using PCA on Random Forest Classifiers

```
[58]: # Standardizing the data (ionosphere dataset is already standardized)
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_std = scaler.fit_transform(X)
print(X_std)

# Performing PCA
from sklearn.decomposition import PCA

number_of_components = 10 # Number of components to retain (your choice)
pca = PCA(n_components=number_of_components)
transformed_data = pca.fit_transform(X)
```

```
print(transformed_data.shape)
## choose train-test split or hyperparameters accordingly
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
import seaborn as sns
X_train, X_test, y_train, y_test = train_test_split(transformed_data, y,_
 →test_size=0.7, random_state=42)
rfc = RandomForestClassifier(n_estimators=100, criterion='gini') # most_
 ⇒suitable hyperparameters
rfc.fit(X_train, y_train)
y_pred = rfc.predict(X_test)
print('----
print(
  'Classification report of Random Forest Classifier after PCA (' + \sqcup

str(number_of_components) + ' components taken): ')
print('-----')
print(classification_report(y_test, y_pred))
print("Confusion Matrix for the same: ")
cf_matrix = confusion_matrix(y_test, y_pred)
group_names = ['True Pos', 'False Pos', 'False Neg', 'True neg']
group_counts = ["{0:0.0f}".format(value) for value in
               cf_matrix.flatten()]
group_percentages = ["{0:.2%}".format(value) for value in
                    cf_matrix.flatten() / np.sum(cf_matrix)]
labels = [f''(v1)\n\{v2\}\n\{v3\}'' for v1, v2, v3 in
          zip(group_names, group_counts, group_percentages)]
labels = np.asarray(labels).reshape(2, 2)
plt.figure(figsize=(6, 4))
print(sns.heatmap(cf_matrix, annot=labels, fmt='', cmap='Blues',_
 →xticklabels=['Benign', 'Malignant'],
                 yticklabels=['Benign', 'Malignant']))
[[ 0.34843328  0.
                          0.71237237 ... -1.05505394 -0.3122206
 -0.999594831
 [ 0.34843328  0.
                         0.72164805 ... -0.11521328 -0.93260505
 -0.08328554
 [ 0.34843328 0.
                         0.72164805 ... -0.46409249 0.40444328
 -0.84859079]
 [ 0.34843328  0.
                          0.61502805 ... 0.01601615 1.10669878
 -0.04330004]
                          0.53267371 ... -0.06586087 1.00526528
 [ 0.34843328  0.
```

-0.37828012]

[0.34843328 0.

0.41400137 ... -0.12281796 0.9738619

-0.16248675]]

(351, 10)

Classification report of Random Forest Classifier after PCA (10 components taken):

procision	rocall	f1-gcoro	gunnort

	precision	recall	f1-score	support
0	0.90	0.81	0.85	90
1	0.90	0.95	0.92	156
accuracy			0.90	246
macro avg	0.90	0.88	0.89	246
weighted avg	0.90	0.90	0.90	246

Confusion Matrix for the same: Axes(0.125,0.11;0.62x0.77)

0.0.11 Using PCA on Support Vector Machines

[59]: # Performing PCA

from sklearn.decomposition import PCA

```
number_of_components = 12 # Number of components to retain (your choice)
pca = PCA(n_components=number_of_components)
transformed_data = pca.fit_transform(X)
print(transformed_data.shape)
## choose train-test split or hyperparameters accordingly
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import classification report
from sklearn.metrics import confusion_matrix
import seaborn as sns
X_train, X_test, y_train, y_test = train_test_split(transformed_data, y,_

→test_size=0.3, random_state=42)
rfc = SVC(gamma='scale', kernel='rbf', degree=3) # most suitable_
 ⇔hyperparameters
rfc.fit(X_train, y_train)
y_pred = rfc.predict(X_test)
print('-----')
print(
  'Classification report of Random Forest Classifier after PCA (' +_{\sqcup}
 →str(number_of_components) + ' components taken): ')
print('-----')
print(classification_report(y_test, y_pred))
print("Confusion Matrix for the same: ")
cf_matrix = confusion_matrix(y_test, y_pred)
group_names = ['True Pos', 'False Pos', 'False Neg', 'True neg']
group_counts = ["{0:0.0f}".format(value) for value in
              cf_matrix.flatten()]
group_percentages = ["{0:.2%}".format(value) for value in
                   cf_matrix.flatten() / np.sum(cf_matrix)]
labels = [f''(v1)\n(v2)\n(v3)" for v1, v2, v3 in
         zip(group_names, group_counts, group_percentages)]
labels = np.asarray(labels).reshape(2, 2)
plt.figure(figsize=(6, 4))
print(sns.heatmap(cf_matrix, annot=labels, fmt='', cmap='Blues',__
 ⇔xticklabels=['Benign', 'Malignant'],
           yticklabels=['Benign', 'Malignant']))
       -----
Classification report of Random Forest Classifier after PCA (12 components
```

precision recall f1-score support

0	1.00	0.92	0.96	39
1	0.96	1.00	0.98	67
accuracy			0.97	106
macro avg	0.98	0.96	0.97	106
weighted avg	0.97	0.97	0.97	106

Confusion Matrix for the same: Axes(0.125,0.11;0.62x0.77)

0.0.12 Using PCA on Multi Layer Perceptron

```
[60]: # Performing PCA
from sklearn.decomposition import PCA

number_of_components = 12  # Number of components to retain (your choice)
pca = PCA(n_components=number_of_components)
transformed_data = pca.fit_transform(X)
print(transformed_data.shape)

## choose train-test split or hyperparameters accordingly
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
```

```
import seaborn as sns
X_train, X_test, y_train, y_test = train_test_split(transformed_data, y,_

state=42)

state=42)

state=42)

rfc = SVC(gamma='scale', kernel='rbf', degree=3) # most suitable_
→hyperparameters
rfc.fit(X_train, y_train)
y_pred = rfc.predict(X_test)
print('-----')
print(
 'Classification report of Random Forest Classifier after PCA (' + \sqcup
str(number_of_components) + ' components taken): ')
print('-----')
print(classification_report(y_test, y_pred))
print("Confusion Matrix for the same: ")
cf_matrix = confusion_matrix(y_test, y_pred)
group_names = ['True Pos', 'False Pos', 'False Neg', 'True neg']
group_counts = ["{0:0.0f}".format(value) for value in
              cf_matrix.flatten()]
group_percentages = ["{0:.2%}".format(value) for value in
                  cf_matrix.flatten() / np.sum(cf_matrix)]
labels = [f''\{v1\}\n\{v2\}\n\{v3\}''] for v1, v2, v3 in
        zip(group_names, group_counts, group_percentages)]
labels = np.asarray(labels).reshape(2, 2)
plt.figure(figsize=(6, 4))
print(sns.heatmap(cf_matrix, annot=labels, fmt='', cmap='Blues',__
⇔xticklabels=['Benign', 'Malignant'],
                yticklabels=['Benign', 'Malignant']))
```

(351, 12)

Classification report of Random Forest Classifier after PCA (12 components taken):

	precision	recall	f1-score	support	
0	1.00	0.92	0.96	39	
1	0.96	1.00	0.98	67	
accuracy			0.97	106	
macro avg	0.98	0.96	0.97	106	
weighted avg	0.97	0.97	0.97	106	

Confusion Matrix for the same: Axes(0.125,0.11;0.62x0.77)

[]:

ncer-wisconsin-diagnostic-data-set

August 13, 2023

0.0.1 Breast Cancer Wisconsin (Diagnostic) Dataset classification using SVM, MLP and Random Forest classifier

```
[29]: import numpy as np
  import pandas as pd
  import matplotlib.pyplot as plt

[ ]: url = 'https://raw.githubusercontent.com/Aqeel-0/phone.html/master/data.csv'
  df = pd.read_csv(url)
  df.head()
```

0.0.2 Pre Preprocessing

```
[]: from sklearn.preprocessing import LabelEncoder
    X = df.drop(['id', 'diagnosis', 'Unnamed: 32'], axis=1)
    X.info()
    le = LabelEncoder()
    encoded = le.fit_transform(df['diagnosis'])
    df.drop("diagnosis", axis=1, inplace=True)
    df["diagnosis"] = encoded
    y = df["diagnosis"]
    y.info()
    dict_svm = {}
    dict_nlp = {}
    dict_rfr = {}
    RocAucSvm = {}
    RocAucRfr = {}
```

0.0.3 Used for ploting confusion matrix

```
[32]: def plot(y_test, y_pred):
    from sklearn.metrics import confusion_matrix
    import seaborn as sns
    from sklearn.metrics import roc_curve
    from sklearn.metrics import auc
```

```
print("Confusion Matrix : ")
cf_matrix = confusion_matrix(y_test, y_pred)
group_names = ['True Pos', 'False Pos', 'False Neg', 'True neg']
group_counts = ["{0:0.0f}".format(value) for value in
               cf_matrix.flatten()]
group percentages = ["{0:.2%}".format(value) for value in
                   cf_matrix.flatten()/np.sum(cf_matrix)]
labels = [f''\{v1\}\n\{v2\}\n\{v3\}''] for v1, v2, v3 in
          zip(group_names,group_counts,group_percentages)]
labels = np.asarray(labels).reshape(2,2)
plt.figure(figsize=(6, 4))
sns.heatmap(cf_matrix, annot=labels, fmt='', cmap='Blues',__
exticklabels=['Benign', 'Malignant'], yticklabels=['Benign', 'Malignant'])
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.title('Confusion Matrix')
plt.show()
```

0.0.4 SVMClassifier

```
[34]: def SVMClassifier(split, kernalValue = 'rbf', degreeValue = 3, gammaValue = __
       ⇔'scale', maxIter = -1):
       from sklearn.model_selection import train_test_split
        from sklearn.svm import SVC
        from sklearn.metrics import accuracy_score
        from sklearn.preprocessing import StandardScaler
        scaler = StandardScaler()
       X_train, X_test, y_train, y_test = train_test_split(X,y,test_size = split,_
       →random_state=44)
        scaler.fit_transform(X_train)
        scaler.transform(X_test)
        classifier = SVC(kernel = kernalValue, degree = degreeValue, gamma = L

→gammaValue, max_iter = maxIter)
        classifier.fit(X train, y train)
        y_pred = classifier.predict(X_test)
        accuracy = accuracy_score(y_test, y_pred)
```

```
if str(split) in dict_svm:
    dict_svm[str(split)] = max(accuracy, dict_svm[str(split)])
    if str(split) == '0.3' and accuracy > dict_svm[str(split)]:
        RocAucSvm['max'] = {'y_test': y_test, 'y_pred': y_pred}
else:
    dict_svm[str(split)] = accuracy
    if str(split) == '0.3':
        RocAucSvm['max'] = {'y_test': y_test, 'y_pred': y_pred}
reports(y_test, y_pred)
```

```
[35]: #Train - Test split 70-30

SVMClassifier(0.3, 'rbf', 3)

SVMClassifier(0.3, 'linear', 3,)

SVMClassifier(0.3, 'poly', 2, )

SVMClassifier(0.3, 'sigmoid', 3, 0.01)
```


1	0.94	0.94	0.94	63
accuracy			0.95	171
macro avg	0.95	0.95	0.95	171
weighted avg	0.95	0.95	0.95	171

Confusion Matrix :

 ${\tt Classification}\ {\tt Evaluation}\ :$

	precision	recall	f1-score	support
0	0.96	0.98	0.97	108
1	0.97	0.94	0.95	63
accuracy			0.96	171
macro avg	0.97	0.96	0.96	171
weighted avg	0.96	0.96	0.96	171

	precision	recall	f1-score	support
0	0.95	0.96	0.96	108
1	0.94	0.92	0.93	63
accuracy			0.95	171
macro avg	0.94	0.94	0.94	171
weighted avg	0.95	0.95	0.95	171

Classification Evaluation :

	precision	recall	f1-score	support
0	0.63	1.00	0.77	108
1	0.00	0.00	0.00	63
accuracy			0.63	171
macro avg	0.32	0.50	0.39	171
weighted avg	0.40	0.63	0.49	171

```
[36]: #Train - Test split 60-40
SVMClassifier(0.4, 'rbf', 3,)
SVMClassifier(0.4, 'linear', 3,)
SVMClassifier(0.4, 'poly', 5, )
SVMClassifier(0.4, 'sigmoid', 3, 0.1)
```


	precision	recall	f1-score	support
0	0.93	0.97	0.95	143
1	0.94	0.88	0.91	85
accuracy			0.93	228
macro avg	0.93	0.92	0.93	228
weighted avg	0.93	0.93	0.93	228

	precision	recall	f1-score	support
0	0.96	0.94	0.95	143
1	0.91	0.94	0.92	85
accuracy			0.94	228
macro avg	0.94	0.94	0.94	228
weighted avg	0.94	0.94	0.94	228

	precision	recall	f1-score	support
0	0.91	0.97	0.94	143
1	0.94	0.85	0.89	85
accuracy			0.92	228
macro avg	0.92	0.91	0.91	228
weighted avg	0.92	0.92	0.92	228

support	f1-score	recall	precision	
143	0.77	1.00	0.63	0
85	0.00	0.00	0.00	1
228	0.63			accuracy
228	0.39	0.50	0.31	macro avg
228	0.48	0.63	0.39	weighted avg

```
[37]: #Train - Test split 50-50

SVMClassifier(0.5, 'rbf', 3,)

SVMClassifier(0.5, 'linear', 3, )

SVMClassifier(0.5, 'poly', 4, )

SVMClassifier(0.5, 'sigmoid', 3, 0.3) #wrost performance
```


	precision	recall	f1-score	support
0	0.92	0.96	0.94	181
1	0.93	0.86	0.89	104
accuracy			0.92	285
macro avg	0.92	0.91	0.92	285
weighted avg	0.92	0.92	0.92	285

	precision	recall	f1-score	support
0	0.98	0.95	0.96	181
1	0.92	0.96	0.94	104
accuracy			0.95	285
macro avg	0.95	0.96	0.95	285
weighted avg	0.96	0.95	0.95	285

	precision	recall	f1-score	support
0	0.91	0.96	0.94	181
1	0.93	0.84	0.88	104
accuracy			0.92	285
macro avg	0.92	0.90	0.91	285
weighted avg	0.92	0.92	0.91	285

	precision	recall	f1-score	support
0	0.64	1.00	0.78	181
1	0.00	0.00	0.00	104
accuracy			0.64	285
macro avg	0.32	0.50	0.39	285
weighted avg	0.40	0.64	0.49	285

```
[38]: #Train - Test split 40-60

SVMClassifier(0.6, 'rbf', 3,)

SVMClassifier(0.6, 'linear', 3, )

SVMClassifier(0.6, 'poly', 2, 0.14)

SVMClassifier(0.6, 'sigmoid', 3, 0.2) #wrost performance
```


	precision	recall	f1-score	support
	_			
0	0.91	0.97	0.94	219
1	0.94	0.83	0.88	123
accuracy			0.92	342
macro avg	0.93	0.90	0.91	342
weighted avg	0.92	0.92	0.92	342

	precision	recall	f1-score	support
0	0.96	0.96	0.96	219
1	0.93	0.93	0.93	123
accuracy			0.95	342
macro avg	0.95	0.95	0.95	342
weighted avg	0.95	0.95	0.95	342

	precision	recall	f1-score	support
0	0.98	0.94	0.96	219
1	0.89	0.97	0.93	123
accuracy			0.95	342
macro avg	0.94	0.95	0.94	342
weighted avg	0.95	0.95	0.95	342

	precision	recall	f1-score	support
0	0.64	1.00	0.78	219
1	0.00	0.00	0.00	123
accuracy			0.64	342
macro avg	0.32	0.50	0.39	342
weighted avg	0.41	0.64	0.50	342

```
[39]: #Train - Test split 30-70

SVMClassifier(0.7, 'rbf', 3,)

SVMClassifier(0.7, 'linear')

SVMClassifier(0.7, 'poly', 2,)

SVMClassifier(0.7, 'sigmoid', 3, 0.2) #wrost performance
```


	precision	recall	f1-score	support
0	0.92	0.98	0.95	259
1	0.95	0.85	0.90	140
accuracy			0.93	399
macro avg	0.94	0.91	0.92	399
weighted avg	0.93	0.93	0.93	399

	precision	recall	f1-score	support
0	0.96	0.94	0.95	259
1	0.90	0.94	0.92	140
accuracy			0.94	399
macro avg	0.93	0.94	0.93	399
weighted avg	0.94	0.94	0.94	399

	precision	recall	f1-score	support
0	0.92	0.98	0.95	259
1	0.96	0.84	0.89	140
accuracy			0.93	399
macro avg	0.94	0.91	0.92	399
weighted avg	0.93	0.93	0.93	399

Classification Evaluation :

	precision	recall	f1-score	support
0	0.65	1.00	0.79	259
1	0.00	0.00	0.00	140
accuracy			0.65	399
macro avg	0.32	0.50	0.39	399
weighted avg	0.42	0.65	0.51	399

0.0.5 split vs accuracy graph

```
[40]: x_points = [float(key) for key in dict_svm]
y_points = [i*100 for i in dict_svm.values()]
plt.plot(x_points, y_points)
plt.grid(True)
plt.show()
```


0.0.6 MLP Classifier

```
[41]: def MLPClassifier(split, hiddenLayerSize = [100, ], activationValue = 'relu',
       ⇔solverValue = 'adam'):
        from sklearn.model_selection import train_test_split
        from sklearn.neural_network import MLPClassifier
        from sklearn.metrics import accuracy_score
        from sklearn.preprocessing import StandardScaler
        scaler = StandardScaler()
       X_train, X_test, y_train, y_test = train_test_split(X,y,test_size = split,_
       →random_state=44)
        scaler.fit_transform(X_train)
        scaler.transform(X_test)
        classifier = MLPClassifier(hidden_layer_sizes = hiddenLayerSize, activation = __
       activationValue, solver = solverValue, random_state = 1)
        classifier.fit(X_train, y_train)
       y_pred = classifier.predict(X_test)
        accuracy = accuracy_score(y_test, y_pred)
        if(str(split) in dict_mlp):
          dict_mlp[str(split)] = max(accuracy, dict_mlp[str(split)])
          if(str(split) == '0.3' and accuracy > dict_svm[str(split)]):
            RocAucMlp['max'] = {'y_test': y_test, 'y_pred': y_pred}
```

```
else:
    dict_mlp[str(split)] = accuracy
    RocAucMlp['max'] = {'y_test': y_test, 'y_pred': y_pred}
reports(y_test, y_pred)
```

[42]: #Train - Test split 70-30 MLPClassifier(0.3, [100, 60,])

Confusion Matrix :

 ${\tt Classification}\ {\tt Evaluation}\ :$

	precision	recall	f1-score	support
0	0.96	0.99	0.98	108
1	0.98	0.94	0.96	63
accuracy			0.97	171
macro avg	0.97	0.96	0.97	171
weighted avg	0.97	0.97	0.97	171

[43]: #Train - Test split 60-40 MLPClassifier(0.4, [100, 66,])

Confusion Matrix :

Classification Evaluation :

	precision	recall	f1-score	support
0	0.93	1.00	0.97	143
1	1.00	0.88	0.94	85
accuracy			0.96	228
macro avg	0.97	0.94	0.95	228
weighted avg	0.96	0.96	0.96	228

Classification Evaluation :

	precision	recall	f1-score	support
0	0.94	0.99	0.96	181
1	0.98	0.88	0.93	104
			0.05	005
accuracy			0.95	285
macro avg	0.96	0.94	0.95	285
weighted avg	0.95	0.95	0.95	285

```
[45]: #Train - Test split 40-60
MLPClassifier(0.6, [150, 50])
```

Classification Evaluation :

	precision	recall	f1-score	support
0	0.93	1.00	0.96	219
1	1.00	0.87	0.93	123
accuracy			0.95	342
macro avg	0.97	0.93	0.95	342
weighted avg	0.96	0.95	0.95	342

```
[46]: #Train - Test split 30-70
MLPClassifier(0.7, [100, 80])
```

/home/aqeel/.local/lib/python3.10/sitepackages/sklearn/neural_network/_multilayer_perceptron.py:691:
ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and
the optimization hasn't converged yet.
 warnings.warn(

Classification Evaluation :

	precision	recall	f1-score	support
0	0.95	0.98	0.96	259
1	0.95	0.91	0.93	140
accuracy			0.95	399
macro avg	0.95	0.94	0.95	399
weighted avg	0.95	0.95	0.95	399

0.0.7 split vs accuracy graph

```
[47]: x_points = [float(key) for key in dict_mlp]
y_points = [i*100 for i in dict_mlp.values()]
plt.plot(x_points, y_points)
plt.grid(True)
plt.show()
```


0.0.8 Random Forest Classifier

```
[48]: def randomForest(split, estimator = 100, criterionValue = 'gini', ):
        from sklearn.model_selection import train_test_split
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.metrics import accuracy_score
        from sklearn.preprocessing import StandardScaler
        scaler = StandardScaler()
        X_train, X_test, y_train, y_test = train_test_split(X,y,test_size = split,__
       →random_state=44)
        scaler.fit_transform(X_train)
        scaler.transform(X_test)
        classifier = RandomForestClassifier(n_estimators = estimator, criterion = ___
       ⇔criterionValue)
        classifier.fit(X_train, y_train)
        y_pred = classifier.predict(X_test)
        accuracy = accuracy_score(y_test, y_pred)
        if(str(split) in dict rfr):
          dict_rfr[str(split)] = max(accuracy, dict_rfr[str(split)])
          if(str(split) == '0.3' and accuracy > dict_svm[str(split)]):
            RocAucRfr['max'] = {'y_test': y_test, 'y_pred': y_pred}
```

```
else:
    dict_rfr[str(split)] = accuracy
    if(str(split) == '0.3'):
        RocAucRfr['max'] = {'y_test': y_test, 'y_pred': y_pred}

reports(y_test, y_pred)
```

[49]: randomForest(0.3)

Confusion Matrix:

 ${\tt Classification}\ {\tt Evaluation}\ :$

	precision	recall	f1-score	support
0	0.97	0.96	0.97	108
1	0.94	0.95	0.94	63
accuracy			0.96	171
macro avg	0.95	0.96	0.96	171
weighted avg	0.96	0.96	0.96	171

[50]: randomForest(0.4, 100,)

Confusion Matrix:

Classification Evaluation :

<u>-</u>		- -
0 0.97 0.96	0.96	143
1 0.93 0.95	0.94	85
accuracy	0.96	228
macro avg 0.95 0.96	0.95	228
weighted avg 0.96 0.96	0.96	228

[51]: randomForest(0.5)

Classification Evaluation :

precision	recall	f1-score	support
0.97	0.96	0.97	181
0.93	0.95	0.94	104
		0.96	285
0.95 0.96	0.96 0.96	0.95 0.96	285 285
	0.97 0.93 0.95	0.97 0.96 0.93 0.95 0.95 0.96	0.97 0.96 0.97 0.93 0.95 0.94 0.95 0.96 0.95

[52]: randomForest(0.6, 100, 'entropy')

Classification Evaluation :

	precision	recall	f1-score	support
0 1	0.98 0.96	0.98 0.96	0.98 0.96	219 123
accuracy macro avg weighted avg	0.97 0.97	0.97 0.97	0.97 0.97 0.97	342 342 342

[53]: randomForest(0.7, 120)

Classification Evaluation :

	precision	recall	f1-score	support
0	0.97	0.97	0.97	259
1	0.95	0.95	0.95	140
accuracy			0.96	399
macro avg	0.96	0.96	0.96	399
weighted avg	0.96	0.96	0.96	399

0.0.9 split vs accuracy graph

```
[54]: x_points = [float(key) for key in dict_rfr]
y_points = [i*100 for i in dict_rfr.values()]
plt.plot(x_points, y_points)
plt.grid(True)
plt.show()
```


0.0.10 ROC curve and ROC_AUC score for all the classifier having maximum accuracy when train test split 70-30.

```
[55]: from sklearn import metrics
      def auc_roc():
          fpr1, tpr1, _1 = metrics.roc_curve(RocAucSvm['max']['y_test'],__
       →RocAucSvm['max']['y_pred'], pos_label=1)
          fpr2, tpr2, _2 = metrics.roc_curve(RocAucMlp['max']['y_test'],__
       GROCAucMlp['max']['y_pred'], pos_label=1)
          fpr3, tpr3, _3 = metrics.roc_curve(RocAucRfr['max']['y_test'],__
       →RocAucRfr['max']['y_pred'], pos_label=1)
          plt.plot(fpr1, tpr1, linestyle='--',color='orange', label='SVM')
          plt.plot(fpr2, tpr2, linestyle='--',color='green', label='MLP')
          plt.plot(fpr3, tpr3, linestyle='--', color='blue', label= 'Random Forest')
          plt.title('ROC curve')
          # x label
          plt.xlabel('False Positive Rate')
          # y label
          plt.ylabel('True Positive rate')
          plt.legend(loc='best')
```

```
plt.savefig('ROC',dpi=300)
  plt.show()
auc_roc()
```


0.0.11 Using PCA

```
[56]: # from sklearn.datasets import load_breast_cancer
    # dataset = load_breast_cancer()
    # X = pd.DataFrame(data=dataset.data, columns=dataset.feature_names)
    # y = dataset.target
    # print(X)

# Standardizing the data (breast cancer dataset is already standardized)
    ## from sklearn.preprocessing import StandardScaler
    ## scaler = StandardScaler()
    ## X_std = scaler.fit_transform(X)
    ## print(X_std)
```

```
# Performing PCA
from sklearn.decomposition import PCA
number_of_components = 10  # Number of components to retain (your choice)
pca = PCA(n_components=number_of_components)
transformed_data = pca.fit_transform(X)
print(transformed_data.shape)
## choose train-test split or hyperparameters accordingly
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size = 0.3,__
 →random_state=42)
rfc = RandomForestClassifier()
rfc.fit(X_train,y_train)
y_pred = rfc.predict(X_test)
print(classification_report(y_test,y_pred))
```

(569, 10)

, ,	precision	recall	f1-score	support
0	0.96	0.99	0.98	108
1	0.98	0.94	0.96	63
accuracy			0.97	171
macro avg	0.97	0.96	0.97	171
weighted avg	0.97	0.97	0.97	171

[]: