Anti-derivative of any polynomial over $(1+x^4)$?

Tony Ma 2020-12-30

What are eventually achieved

$$\begin{pmatrix} \int \frac{1}{x^4 + 1} dx \\ \int \frac{x}{x^4 + 1} dx \\ \int \frac{x}{x^4 + 1} dx \\ \int \frac{x^2}{x^4 + 1} dx \end{pmatrix} = \begin{pmatrix} \frac{1}{2\sqrt{2}} & \frac{1}{4\sqrt{2}} & \frac{1}{4\sqrt{2}} & -\frac{1}{4\sqrt{2}} \\ \frac{1}{2} & -\frac{1}{2} & 0 & 0 \\ \frac{1}{2\sqrt{2}} & \frac{1}{2\sqrt{2}} & -\frac{1}{4\sqrt{2}} & \frac{1}{4\sqrt{2}} \\ 0 & 0 & \frac{1}{4} & \frac{1}{4} \end{pmatrix} \begin{pmatrix} \arctan\left(\sqrt{2}x + 1\right) \\ \ln\left(x^2 + \sqrt{2}x + 1\right) \\ \ln\left(x^2 + \sqrt{2}x + 1\right) \end{pmatrix}$$

$$\begin{pmatrix} \int \frac{1}{(x^4 + 1)^2} dx \\ \int \frac{x}{(x^4 + 1)^2} dx \\ \int \frac{x^2}{(x^4 + 1)^2} dx \\ \int \frac{x^3}{(x^4 + 1)^2} dx \\ \int \frac{x^4}{(x^4 + 1)^2} dx \\ \int \frac{x^5}{(x^4 + 1)^2} dx \\ \end{pmatrix} = \begin{pmatrix} \frac{1}{3\sqrt{2}} & \frac{1}{16\sqrt{2}} & \frac{1}{16\sqrt{2}} & \frac{1}{16\sqrt{2}} & \frac{1}{8\sqrt{2}} & -\frac{1}{8} & -\frac{1}{8} \\ \frac{1}{8\sqrt{2}} & \frac{1}{16\sqrt{2}} & -\frac{1}{16\sqrt{2}} & 0 & 0 \\ \frac{1}{8\sqrt{2}} & \frac{1}{16\sqrt{2}} & -\frac{1}{16\sqrt{2}} & 0 & 0 \\ \frac{1}{8\sqrt{2}} & \frac{1}{16\sqrt{2}} & -\frac{1}{16\sqrt{2}} & 0 & 0 \\ \frac{1}{8\sqrt{2}} & -\frac{1}{8\sqrt{2}} & 0 & 0 \\ \frac{3}{8\sqrt{2}} & \frac{3}{8\sqrt{2}} & -\frac{3}{16\sqrt{2}} & \frac{3}{16\sqrt{2}} & -\frac{1}{8} & -\frac{1}{8} & \frac{1}{8} \\ 0 & 0 & \frac{1}{4} & \frac{1}{4} & \frac{1}{8\sqrt{2}} & -\frac{1}{8\sqrt{2}} & \frac{1}{8\sqrt{2}} \\ 0 & 0 & \frac{1}{4} & \frac{1}{4} & \frac{1}{8\sqrt{2}} & -\frac{1}{8\sqrt{2}} & \frac{1}{8\sqrt{2}} & \frac{1}{8\sqrt{2}} \\ \end{pmatrix}$$

$$\begin{pmatrix} \text{True to next page} \end{pmatrix}$$

(Turn to next page)

$$\begin{pmatrix} \int \frac{1}{(x^4+1)^3} dx \\ \int \frac{x}{(x^4+1)^3} dx \\ \int \frac{x^2}{(x^4+1)^3} dx \\ \int \frac{x^3}{(x^4+1)^3} dx \\ \int \frac{x^3}{(x^4+1)^3} dx \\ \int \frac{x^5}{(x^4+1)^3} dx \\ \int \frac{x^6}{(x^4+1)^3} dx \\ \int \frac{x^8}{(x^4+1)^3} dx \\ \int \frac{x^8}{(x^4+1)^3} dx \\ \int \frac{x^8}{(x^4+1)^3} dx \\ \int \frac{x^9}{(x^4+1)^3} dx \\ \int \frac{x^9}{(x^4+1)^3} dx \\ \int \frac{x^9}{(x^4+1)^3} dx \\ \int \frac{x^{10}}{(x^4+1)^3} dx \\ \int \frac{x^{10}}{(x^4+1)^3} dx \\ \int \frac{x^{10}}{(x^4+1)^3} dx \\ \int \frac{x^{10}}{(x^4+1)^3} dx \\ \end{pmatrix} = \begin{pmatrix} \frac{1}{64\sqrt{2}} \frac{21}{64\sqrt{2}} & \frac{21}{128\sqrt{2}} & \frac{21}{128\sqrt{2}} & 0 & 0 & -\frac{1}{8\sqrt{2}} & \frac{1}{8\sqrt{2}} & -\frac{1}{64} & -\frac{1}{64}$$

But do **not** forget the integration constant!

Here I am not going to deduce $\int \frac{\dots}{x^4+1} dx$, but only write some **very brief** steps for finding $\int \frac{x^n}{(x^4+1)^2} dx$ and yet even briefer steps for $\int \frac{x^n}{(x^4+1)^3} dx$.

Also, although I did not yet find any, it is possible that some negative signs may not be printed out (I believe it should be fine after zooming in; just occasional problem, maybe with some pdf viewers, I am not sure, but it's better to be more careful) after this .tex file is compiled. Better copy the source file to use these matrices more accurately.

Some thoughts and questions for myself

Why for these three things eventually can I summarize the anti-derivatives into linear combinations(?) of 4n elementary(?) functions, with a 'coefficient matrix' of $4n \times 4n$? It is nice to see square matrices, giving rise of inverse matrix (for some non-square matrix why can't us define the inverse matrix as well?), but I do not quite understand how and why things can be successfully done (um... interesting). Also, these functions are defined for all $x \in \mathbb{R}$, but I do not think that I will always be so lucky. These results, though are not very tidy and not even known whether are simplest (can I use less functions?), may worth appreciation.

Also, now I can only feel how matrices may work and trust online calculators for the way inverse matrix helps finding the solution set to a system of simultaneous equations (also, interestingly we are getting invertible matrices!), but I should be more familiar with such linear algebra for deeper understanding.

$$\int \frac{P(x)}{(1+x^4)^2} dx$$

0.1 Manipulating some matrices...

$$A := \begin{pmatrix} 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & -\sqrt{2} & 1 & \sqrt{2} & 1 & -2\sqrt{2} & 1 & 2\sqrt{2} \\ -\sqrt{2} & 1 & \sqrt{2} & 1 & -2\sqrt{2} & 4 & 2\sqrt{2} & 4 \\ 1 & 0 & 1 & 0 & 4 & -2\sqrt{2} & 4 & 2\sqrt{2} \\ 0 & 1 & 0 & 1 & -2\sqrt{2} & 1 & 2\sqrt{2} & 1 \\ 1 & -\sqrt{2} & 1 & \sqrt{2} & 1 & 0 & 1 & 0 \\ -\sqrt{2} & 1 & \sqrt{2} & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$A^{-1} = \begin{pmatrix} \frac{3\sqrt{2}}{16} & 0 & \frac{-\sqrt{2}}{16} & 0 & \frac{\sqrt{2}}{16} & 0 & \frac{-3\sqrt{2}}{16} & \frac{1}{2} \\ \frac{3}{8} & \frac{-\sqrt{2}}{16} & -\frac{1}{8} & \frac{\sqrt{2}}{16} & \frac{1}{8} & \frac{-3\sqrt{2}}{16} & \frac{1}{2} \\ \frac{3}{8} & \frac{\sqrt{2}}{16} & 0 & \frac{\sqrt{2}}{16} & 0 & \frac{-\sqrt{2}}{16} & 0 & \frac{3\sqrt{2}}{16} & \frac{1}{2} \\ \frac{3}{8} & \frac{\sqrt{2}}{16} & 0 & \frac{\sqrt{2}}{16} & 0 & \frac{-\sqrt{2}}{16} & 0 & \frac{3\sqrt{2}}{16} & \frac{1}{2} \\ \frac{3}{8} & \frac{\sqrt{2}}{16} & -\frac{1}{8} & \frac{-\sqrt{2}}{16} & \frac{1}{8} & \frac{3\sqrt{2}}{16} & \frac{1}{8} & \frac{-3\sqrt{2}}{16} \\ \frac{3}{8} & \frac{\sqrt{2}}{16} & \frac{-1}{8} & -\frac{-\sqrt{2}}{16} & \frac{1}{8} & \frac{3\sqrt{2}}{16} & \frac{1}{8} & \frac{-3\sqrt{2}}{16} \\ \frac{3}{8} & \frac{\sqrt{2}}{16} & -\frac{1}{8} & -\frac{\sqrt{2}}{16} & \frac{1}{8} & \frac{3\sqrt{2}}{16} & \frac{1}{8} & \frac{-3\sqrt{2}}{16} \\ \frac{3}{8} & \frac{\sqrt{2}}{16} & \frac{-1}{8} & -\frac{\sqrt{2}}{16} & \frac{1}{8} & \frac{3\sqrt{2}}{16} & \frac{1}{8} & \frac{-3\sqrt{2}}{16} \\ \frac{1}{8} & -\frac{\sqrt{2}}{8} & \frac{1}{8} & 0 & \frac{1}{8} & \frac{\sqrt{2}}{8} & \frac{1}{8} & 0 & \frac{-1}{8} \\ \frac{1}{8} & \frac{\sqrt{2}}{8} & \frac{1}{8} & 0 & \frac{-1}{8} & \frac{\sqrt{2}}{8} & \frac{-1}{8} & 0 \end{pmatrix}$$

(That is, $(B_1|B_2|B_3|B_4|\cdots|B_8) = I_8$)

By evaluating $A^{-1}B_i$ where $i=1,2,\cdots,8$, and transpose each, we get, in ascending order of i, we get:

$$\begin{pmatrix} \frac{3\sqrt{2}}{16} & \frac{3}{8} & \frac{-3\sqrt{2}}{16} & \frac{3}{8} & \frac{\sqrt{2}}{8} & \frac{1}{8} & \frac{-\sqrt{2}}{8} & \frac{1}{8} \end{pmatrix}$$

$$\begin{pmatrix} 0 & \frac{-\sqrt{2}}{16} & 0 & \frac{\sqrt{2}}{16} & \frac{-1}{8} & -\frac{\sqrt{2}}{8} & \frac{-1}{8} & \frac{\sqrt{2}}{8} \end{pmatrix}$$

$$\begin{pmatrix} \frac{-\sqrt{2}}{16} & \frac{-1}{8} & \frac{\sqrt{2}}{16} & \frac{-1}{8} & 0 & \frac{1}{8} & 0 & \frac{1}{8} \end{pmatrix}$$

$$\begin{pmatrix} 0 & \frac{\sqrt{2}}{16} & 0 & \frac{-\sqrt{2}}{16} & \frac{1}{8} & 0 & \frac{1}{8} & 0 \end{pmatrix}$$

$$\begin{pmatrix} \frac{\sqrt{2}}{16} & \frac{1}{8} & \frac{-\sqrt{2}}{16} & \frac{1}{8} & -\frac{\sqrt{2}}{8} & \frac{-1}{8} & \frac{\sqrt{2}}{8} & \frac{-1}{8} \end{pmatrix}$$

$$\begin{pmatrix} 0 & \frac{-3\sqrt{2}}{16} & 0 & \frac{3\sqrt{2}}{16} & \frac{1}{8} & \frac{\sqrt{2}}{8} & \frac{1}{8} & -\frac{\sqrt{2}}{8} \end{pmatrix}$$

$$\begin{pmatrix} 0 & \frac{-3\sqrt{2}}{16} & \frac{1}{8} & \frac{3\sqrt{2}}{16} & \frac{1}{8} & 0 & \frac{-1}{8} & 0 & \frac{-1}{8} \end{pmatrix}$$

$$\begin{pmatrix} \frac{-3\sqrt{2}}{16} & \frac{1}{8} & \frac{3\sqrt{2}}{16} & \frac{1}{8} & 0 & \frac{-1}{8} & 0 & \frac{-1}{8} & 0 \end{pmatrix}$$

Then if we combine them in one single 8×8 matrix, we get:

$$M := \begin{pmatrix} \frac{3\sqrt{2}}{16} & \frac{3}{8} & \frac{-3\sqrt{2}}{16} & \frac{3}{8} & \frac{\sqrt{2}}{8} & \frac{1}{8} & \frac{-\sqrt{2}}{8} & \frac{1}{8} \\ 0 & \frac{-\sqrt{2}}{16} & 0 & \frac{\sqrt{2}}{16} & \frac{-1}{8} & \frac{-\sqrt{2}}{8} & \frac{-1}{8} & \frac{\sqrt{2}}{8} \\ \frac{-\sqrt{2}}{16} & \frac{-1}{8} & \frac{\sqrt{2}}{16} & \frac{-1}{8} & 0 & \frac{1}{8} & 0 & \frac{1}{8} \\ 0 & \frac{\sqrt{2}}{16} & 0 & \frac{-\sqrt{2}}{16} & \frac{1}{8} & 0 & \frac{1}{8} & 0 \\ \frac{\sqrt{2}}{16} & \frac{1}{8} & \frac{-\sqrt{2}}{16} & \frac{1}{8} & \frac{-\sqrt{2}}{8} & \frac{-1}{8} & \frac{\sqrt{2}}{8} & \frac{-1}{8} \\ 0 & \frac{-3\sqrt{2}}{16} & 0 & \frac{3\sqrt{2}}{16} & \frac{1}{8} & \frac{\sqrt{2}}{8} & \frac{1}{8} & \frac{-\sqrt{2}}{8} \\ \frac{-3\sqrt{2}}{16} & \frac{1}{8} & \frac{3\sqrt{2}}{16} & \frac{1}{8} & 0 & \frac{-1}{8} & 0 & \frac{-1}{8} \\ \frac{1}{2} & \frac{3\sqrt{2}}{16} & \frac{1}{2} & \frac{-3\sqrt{2}}{16} & \frac{-1}{8} & 0 & \frac{-1}{8} & 0 \end{pmatrix}$$

(You may want to de-rationalize, that is, for example, change $\frac{3\sqrt{2}}{16}$ to $\frac{3}{8\sqrt{2}}$, but it is up to you.) It turns out that, $M = (A^{-1})^T$ (copying A^{-1} here)

$$= \begin{pmatrix} \frac{3\sqrt{2}}{16} & 0 & \frac{-\sqrt{2}}{16} & 0 & \frac{\sqrt{2}}{16} & 0 & \frac{-3\sqrt{2}}{16} & \frac{1}{2} \\ \frac{3}{8} & \frac{-\sqrt{2}}{16} & \frac{-1}{8} & \frac{\sqrt{2}}{16} & \frac{1}{8} & \frac{-3\sqrt{2}}{16} & \frac{1}{8} & \frac{3\sqrt{2}}{16} \\ \frac{-3\sqrt{2}}{16} & 0 & \frac{\sqrt{2}}{16} & 0 & \frac{-\sqrt{2}}{16} & 0 & \frac{3\sqrt{2}}{16} & \frac{1}{2} \\ \frac{3}{8} & \frac{\sqrt{2}}{16} & \frac{-1}{8} & \frac{-\sqrt{2}}{16} & \frac{1}{8} & \frac{3\sqrt{2}}{16} & \frac{1}{8} & \frac{-3\sqrt{2}}{16} \\ \frac{\sqrt{2}}{8} & \frac{-1}{8} & 0 & \frac{1}{8} & \frac{-\sqrt{2}}{8} & \frac{1}{8} & 0 & \frac{-1}{8} \\ \frac{1}{8} & \frac{-\sqrt{2}}{8} & \frac{1}{8} & 0 & \frac{-1}{8} & \frac{\sqrt{2}}{8} & \frac{1}{8} & 0 & \frac{-1}{8} \\ \frac{1}{8} & \frac{\sqrt{2}}{8} & \frac{1}{8} & 0 & \frac{-1}{8} & \frac{\sqrt{2}}{8} & \frac{1}{8} & 0 & \frac{-1}{8} \\ \frac{1}{8} & \frac{\sqrt{2}}{8} & \frac{1}{8} & 0 & \frac{-1}{8} & \frac{-\sqrt{2}}{8} & \frac{-1}{8} & 0 \end{pmatrix}$$

Anyway, now we can say that:

$$\begin{pmatrix} \frac{1}{(x^4+1)^2} \\ \frac{x}{(x^4+1)^2} \\ \frac{x^2}{(x^4+1)^2} \\ \frac{x^3}{(x^4+1)^2} \\ \frac{x^5}{(x^4+1)^2} \\ \frac{x^6}{(x^4+1)^2} \\ \frac{x^6}{(x^4+1)^2} \\ \frac{x^7}{(x^4+1)^2} \end{pmatrix} = M \cdot \begin{pmatrix} \frac{x}{x^2+\sqrt{2}x+1} \\ \frac{x}{x^2-\sqrt{2}x+1} \\ \frac{x}{x^2-\sqrt{2}x+1} \\ \frac{x}{x^2-\sqrt{2}x+1} \end{pmatrix}^2 \\ \begin{pmatrix} \frac{x}{(x^2+\sqrt{2}x+1)^2} \\ \frac{x}{(x^2+\sqrt{2}x+1)^2} \\ \frac{x}{(x^2+\sqrt{2}x+1)^2} \end{pmatrix} \\ \begin{pmatrix} \int \frac{1}{(x^4+1)^2} dx \\ \int \frac{x}{(x^4+1)^2} dx \\ \int \frac{x^2}{(x^4+1)^2} dx \\ \int \frac{x^3}{(x^4+1)^2} dx \\ \int \frac{x^3}{(x^4+1)^2} dx \\ \int \frac{x^5}{(x^4+1)^2} dx \\ \end{pmatrix} = M \cdot \begin{pmatrix} \int \frac{x}{x^2-\sqrt{2}x+1} dx \\ \int \frac{1}{x^2-\sqrt{2}x+1} dx \\ \int \frac{1}{x^2-\sqrt{2}x+1} dx \\ \int \frac{1}{x^2-\sqrt{2}x+1} dx \\ \end{pmatrix} \\ \int \frac{1}{(x^2+\sqrt{2}x+1)^2} dx \\ \int \frac{x}{(x^2+\sqrt{2}x+1)^2} dx \\ \int \frac{1}{(x^2+\sqrt{2}x+1)^2} dx \\ \int \frac{1}{(x^2+\sqrt{2}x+1)^2} dx \\ \int \frac{1}{(x^2+\sqrt{2}x+1)^2} dx \\ \int \frac{1}{(x^2-\sqrt{2}x+1)^2} dx \\ \int \frac{1}{(x^2-\sqrt{2}x+1)^2} dx \\ \int \frac{1}{(x^2-\sqrt{2}x+1)^2} dx \\ \int \frac{1}{(x^2-\sqrt{2}x+1)^2} dx \\ \end{pmatrix}$$

0.2 Some results beforehand

0.2.1 Definition of some functions to be utilized

$$f_1(x) = \arctan\left(\sqrt{2}x + 1\right)$$

$$f_2(x) = -f_1(-x) = \arctan\left(\sqrt{2}x - 1\right)$$

$$f_3(x) = \ln\left(x^2 + \sqrt{2}x + 1\right)$$

$$f_4(x) = -f_3(x) = \ln\left(x^2 - \sqrt{2}x + 1\right)$$

$$f_5(x) = \frac{x}{x^2 + \sqrt{2}x + 1}$$

$$f_6(x) = -f_5(-x) = \frac{x}{x^2 - \sqrt{2}x + 1}$$

$$f_7(x) = \frac{1}{x^2 + \sqrt{2}x + 1}$$

$$f_8(x) = f_7(-x) = \frac{1}{x^2 - \sqrt{2}x + 1}$$

0.2.2 Some anti-derivatives results to be used

$$\int \frac{x}{x^2 + \sqrt{2}x + 1} dx = -f_1(x) + \frac{1}{2}f_3(x) + C$$

$$\int \frac{1}{x^2 + \sqrt{2}x + 1} dx = \sqrt{2}f_1(x) + C$$

$$\int \frac{x}{x^2 - \sqrt{2}x + 1} dx = f_2(x) + \frac{1}{2}f_4(x) + C$$

$$\int \frac{1}{x^2 - \sqrt{2}x + 1} dx = \sqrt{2}f_2(x) + C$$

$$\int \frac{x}{(x^2 + \sqrt{2}x + 1)^2} dx = -f_1(x) - \frac{1}{\sqrt{2}}f_5(x) - f_7(x) + C$$

$$\int \frac{1}{(x^2 + \sqrt{2}x + 1)^2} dx = \sqrt{2}f_1(x) + f_5(x) + \frac{1}{\sqrt{2}}f_7(x) + C$$

$$\int \frac{x}{(x^2 - \sqrt{2}x + 1)^2} dx = f_2(x) + \frac{1}{\sqrt{2}}f_6(x) - f_8(x) + C$$

$$\int \frac{1}{(x^2 - \sqrt{2}x + 1)^2} dx = \sqrt{2}f_2(x) + f_6(x) - \frac{1}{\sqrt{2}}f_8(x) + C$$

0.3 Driving to conclusion

Temporarily forgetting about integration constant,

$$\begin{pmatrix} \int \frac{x}{x^2 + \sqrt{2}x + 1} dx \\ \int \frac{1}{x^2 + \sqrt{2}x + 1} dx \\ \int \frac{1}{x^2 - \sqrt{2}x + 1} dx \\ \int \frac{1}{x^2 - \sqrt{2}x + 1} dx \\ \int \frac{1}{x^2 - \sqrt{2}x + 1} dx \\ \int \frac{1}{(x^2 + \sqrt{2}x + 1)^2} dx \\ \int \frac{1}{(x^2 + \sqrt{2}x + 1)^2} dx \\ \int \frac{1}{(x^2 - \sqrt{2}x + 1)^2} dx \\ \end{pmatrix} = \begin{pmatrix} -f_1(x) + \frac{1}{2}f_3(x) \\ \sqrt{2}f_2(x) \\ -f_2(x) + \frac{1}{2}f_4(x) \\ \sqrt{2}f_2(x) - f_7(x) \\ \sqrt{2}f_2(x) - f_8(x) \\ \sqrt{2}f_2(x) + f_6(x) - \frac{1}{2}f_8(x) \end{pmatrix} = \begin{pmatrix} -1 & 0 & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & \frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & \sqrt{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & -\frac{1}{\sqrt{2}} & 0 & -1 & 0 \\ \sqrt{2} & 0 & 0 & 0 & 1 & 0 & \frac{1}{\sqrt{2}} & 0 & -1 \\ 0 & \sqrt{2} & 0 & 0 & 0 & 1 & 0 & -\frac{1}{\sqrt{2}} \end{pmatrix} \cdot \begin{pmatrix} f_1(x) \\ f_2(x) \\ f_3(x) \\ f_4(x) \\ f_5(x) \\ f_6(x) \\ f_8(x) \end{pmatrix}$$

$$\begin{pmatrix} \int \frac{1}{(x^4+1)^2} dx \\ \int \frac{1}{(x^4+1)^2}$$

REMINDER: Do not forget integration constant in practice.

0.4 An example

Let's say we are going to find:

$$\int \frac{x^6 + x^4 + 1}{(x^4 + 1)^2} dx.$$

0.4.1 Using the above result

Consider the purple matrix, we sum up the first, fifth and seventh row (**only here I tranposed it to a column matrix** since otherwise I cannot display the whole row):

$$\begin{pmatrix} \frac{3\sqrt{2}}{16} + \frac{\sqrt{2}}{16} + \frac{3\sqrt{2}}{16} \\ \frac{3\sqrt{2}}{16} + \frac{\sqrt{2}}{16} + \frac{3\sqrt{2}}{16} \\ \frac{3\sqrt{2}}{32} + \frac{\sqrt{2}}{32} + \frac{-3\sqrt{2}}{32} \\ \frac{-3\sqrt{2}}{32} + \frac{-\sqrt{2}}{32} + \frac{3\sqrt{2}}{32} \\ 0 + 0 + \frac{-1}{8} \\ 0 + 0 + \frac{-1}{8} \\ \frac{-\sqrt{2}}{16} + \frac{\sqrt{2}}{16} + \frac{-\sqrt{2}}{16} \\ \frac{\sqrt{2}}{16} + \frac{-\sqrt{2}}{16} + \frac{\sqrt{2}}{16} \end{pmatrix}$$

$$\left(\int \frac{x^6 + x^4 + 1}{(x^4 + 1)^2} dx\right) = \left(\frac{7}{8\sqrt{2}} \quad \frac{7}{8\sqrt{2}} \quad \frac{1}{16\sqrt{2}} \quad -\frac{1}{16\sqrt{2}} \quad -\frac{1}{8} \quad -\frac{1}{8} \quad -\frac{1}{8\sqrt{2}} \quad \frac{1}{8\sqrt{2}}\right) \cdot \begin{pmatrix} \arctan\left(\sqrt{2}x + 1\right) \\ \ln\left(x^2 + \sqrt{2}x + 1\right) \\ \ln\left(x^2 - \sqrt{2}x + 1\right) \\ \ln\left(x^2 - \sqrt{2}x + 1\right) \\ \frac{x}{x^2 + \sqrt{2}x + 1} \\ \frac{x}{x^2 - \sqrt{2}x + 1} \\ \frac{1}{x^2 + \sqrt{2}x + 1} \\ \frac{1}{x^2 - \sqrt{2}x + 1} \end{pmatrix} + (C)$$

$$\int \frac{x^6 + x^4 + 1}{(x^4 + 1)^2} dx = \frac{7}{8\sqrt{2}} \cdot \arctan\left(\sqrt{2}x + 1\right) + \frac{7}{8\sqrt{2}} \cdot \arctan\left(\sqrt{2}x - 1\right) \\ + \frac{1}{16\sqrt{2}} \cdot \ln\left(x^2 + \sqrt{2}x + 1\right) - \frac{1}{16\sqrt{2}} \cdot \ln\left(x^2 - \sqrt{2}x + 1\right)$$

0.4.1.1 Verifying

$$\frac{d}{dx}\left(\frac{1}{16\sqrt{2}}\left(-\frac{2\sqrt{2}x}{x^2+\sqrt{2}x+1} - \frac{2\sqrt{2}x}{x^2-\sqrt{2}x+1} - \frac{2}{x^2+\sqrt{2}x+1} + \frac{2}{x^2-\sqrt{2}x+1}\right)\right) = \frac{d}{dx}\left(\frac{-x^3}{4(x^4+1)}\right)$$

$$\frac{d}{dx}\left(14\arctan\left(\sqrt{2}x+1\right) + 14\arctan\left(\sqrt{2}x-1\right) + \ln\left(x^2+\sqrt{2}x+1\right) - \ln\left(x^2-\sqrt{2}x+1\right)\right) = \frac{4\sqrt{2}(3x^2+4)}{x^4+1}$$

$$\therefore \frac{d}{dx}\left(\cdots+C\right) = \frac{-3x^2(x^4+1) + x^3(4x^3)}{4(x^4+1)^2} + \frac{3x^2+4}{4(x^4+1)} = \frac{-3x^6-3x^2+4x^6+3x^6+4x^4+3x^2+4}{4(x^4+1)^2} = \frac{x^6+x^4+1}{(x^4+1)^2}.$$

0.4.1.1.1 Actually I computed by Microsoft mathsolver

Refer to here and here.

By the way, it is wise to realize that for such a long anti-derivative like above, relying on any calculator is ridiculous. Instead, use *Microsoft mathsolver* after chopping it into several parts and input by typing.

0.4.1.2 Simplify the anti-derivative a little bit

$$\int \frac{x^6 + x^4 + 1}{(x^4 + 1)^2} dx = \frac{7}{8\sqrt{2}} \arctan\left(\sqrt{2}x + 1\right) + \frac{7}{8\sqrt{2}} \arctan\left(\sqrt{2}x - 1\right) + \frac{1}{16\sqrt{2}} \ln\left(x^2 + \sqrt{2}x + 1\right) - \frac{1}{16\sqrt{2}} \ln\left(x^2 - \sqrt{2}x + 1\right) - \frac{x^3}{4(x^4 + 1)} + C$$

0.4.2 Alternative method (kind of)

I know that:

$$\int \frac{1}{x^4 + 1} dx = \frac{1}{2\sqrt{2}} \arctan\left(\sqrt{2}x + 1\right) + \frac{1}{2\sqrt{2}} \arctan\left(\sqrt{2}x - 1\right) + \frac{1}{4\sqrt{2}} \ln\left(x^2 + \sqrt{2}x + 1\right) - \frac{1}{4\sqrt{2}} \ln\left(x^2 - \sqrt{2}x + 1\right) + C$$

$$\int \frac{x^2}{x^4 + 1} dx = \frac{1}{2\sqrt{2}} \arctan\left(\sqrt{2}x + 1\right) + \frac{1}{2\sqrt{2}} \arctan\left(\sqrt{2}x - 1\right) - \frac{1}{4\sqrt{2}} \ln\left(x^2 + \sqrt{2}x + 1\right) + \frac{1}{4\sqrt{2}} \ln\left(x^2 - \sqrt{2}x + 1\right) + C$$

$$\therefore \int \frac{x^6 + x^4 + 1}{(x^4 + 1)^2} dx = \int \frac{x^6}{(x^4 + 1)^2} dx + \int \frac{1}{x^4 + 1} dx = \left(-\frac{1}{4} \cdot \frac{x^3}{x^4 + 1} + \frac{3}{4} \int \frac{x^2}{x^4 + 1} dx\right) + \int \frac{1}{x^4 + 1} dx$$

$$= -\frac{1}{4} \cdot \frac{x^3}{x^4 + 1} + \frac{7}{8\sqrt{2}} \arctan\left(\sqrt{2}x + 1\right) + \frac{7}{8\sqrt{2}} \arctan\left(\sqrt{2}x - 1\right)$$

$$+ \frac{1}{16\sqrt{2}} \ln\left(x^2 + \sqrt{2}x + 1\right) - \frac{1}{16\sqrt{2}} \ln\left(x^2 - \sqrt{2}x + 1\right) + C$$

Which you can see it is same as the one we just done.

0.5 Another example

We want to find:

$$\int \frac{x^4 - x^6 + x^8}{(1 + x^4)^2} dx.$$

0.5.1 Solution

By polynomial division $(x^8 - x^6 + x^4) \div (x^8 + 2x^4 + 1) = 1 \cdots (-x^6 - x^4 - 1),$

$$\int \frac{x^8 - x^6 + x^4}{(x^4 + 1)^2} dx = \int \frac{x^8 + 2x^4 + 1}{(x^4 + 1)^2} dx - \int \frac{x^6 + x^4 + 1}{(x^4 + 1)^2} dx = \int dx - \cdots$$

$$= x - \frac{7}{8\sqrt{2}} \arctan\left(\sqrt{2}x + 1\right) - \frac{7}{8\sqrt{2}} \arctan\left(\sqrt{2}x - 1\right)$$

$$- \frac{1}{16\sqrt{2}} \ln\left(x^2 + \sqrt{2}x + 1\right) + \frac{1}{16\sqrt{2}} \ln\left(x^2 - \sqrt{2}x + 1\right) + \frac{x^3}{4(x^4 + 1)} + C.$$

0.5.2 Remark

Things like $\int \frac{x^9}{(1+x^4)^2} dx$ can also be handled by using polynomial division to reduce the numerator to a polynomial with degree < 8.

$$\int \frac{P(x)}{(1+x^4)^3} dx$$

Reusing $f_1(x)$ to $f_8(x)$ and adding some more functions:

$$f_1(x) = \arctan\left(\sqrt{2}x + 1\right)$$

$$f_2(x) = -f_1(-x) = \arctan\left(\sqrt{2}x - 1\right)$$

$$f_3(x) = \ln\left(x^2 + \sqrt{2}x + 1\right)$$

$$f_4(x) = -f_3(x) = \ln\left(x^2 - \sqrt{2}x + 1\right)$$

$$f_5(x) = \frac{x}{x^2 + \sqrt{2}x + 1}$$

$$f_6(x) = -f_5(-x) = \frac{x}{x^2 - \sqrt{2}x + 1}$$

$$f_7(x) = \frac{1}{x^2 + \sqrt{2}x + 1}$$

$$f_8(x) = f_7(-x) = \frac{1}{x^2 - \sqrt{2}x + 1}$$

$$f_9(x) = \frac{x}{(x^2 + \sqrt{2}x + 1)^2}$$

$$f_{10}(x) = -f_9(-x) = \frac{x}{(x^2 - \sqrt{2}x + 1)^2}$$

$$f_{11}(x) = \frac{1}{(x^2 + \sqrt{2}x + 1)^2}$$

$$f_{12}(x) = f_{11}(-x) = \frac{1}{(x^2 - \sqrt{2}x + 1)^2}$$

Some extended results to be used:

$$\int \frac{x}{x^2 + \sqrt{2}x + 1} dx = -f_1(x) + \frac{1}{2} f_3(x) + C$$

$$\int \frac{1}{x^2 + \sqrt{2}x + 1} dx = \sqrt{2} f_1(x) + C$$

$$\int \frac{x}{x^2 - \sqrt{2}x + 1} dx = f_2(x) + \frac{1}{2} f_4(x) + C$$

$$\int \frac{1}{x^2 - \sqrt{2}x + 1} dx = \sqrt{2} f_2(x) + C$$

$$\int \frac{1}{(x^2 + \sqrt{2}x + 1)^2} dx = -f_1(x) - \frac{1}{\sqrt{2}} f_5(x) - f_7(x) + C$$

$$\int \frac{1}{(x^2 + \sqrt{2}x + 1)^2} dx = \sqrt{2} f_1(x) + f_5(x) + \frac{1}{\sqrt{2}} f_7(x) + C$$

$$\int \frac{1}{(x^2 - \sqrt{2}x + 1)^2} dx = f_2(x) + \frac{1}{\sqrt{2}} f_6(x) - f_8(x) + C$$

$$\int \frac{1}{(x^2 - \sqrt{2}x + 1)^2} dx = \sqrt{2} f_2(x) + f_6(x) - \frac{1}{\sqrt{2}} f_8(x) + C$$

$$\int \frac{1}{(x^2 + \sqrt{2}x + 1)^3} dx = -\frac{3}{2} f_1(x) - \frac{3}{2\sqrt{2}} f_5(x) - \frac{3}{4} f_7(x) - \frac{1}{2\sqrt{2}} f_9(x) - \frac{1}{2} f_{11}(x) + C$$

$$\int \frac{1}{(x^2 + \sqrt{2}x + 1)^3} dx = \frac{3}{\sqrt{2}} f_1(x) + \frac{3}{2} f_5(x) + \frac{3}{2\sqrt{2}} f_7(x) + \frac{1}{2} f_9(x) + \frac{1}{2\sqrt{2}} f_{11}(x) + C$$

$$\int \frac{x}{(x^2 - \sqrt{2}x + 1)^3} dx = \frac{3}{2} f_2(x) + \frac{3}{2\sqrt{2}} f_6(x) - \frac{3}{4} f_8(x) + \frac{1}{2} f_{10}(x) - \frac{1}{2} f_{12}(x) + C$$

$$\int \frac{1}{(x^2 - \sqrt{2}x + 1)^3} dx = \frac{3}{\sqrt{2}} f_2(x) + \frac{3}{2} f_6(x) - \frac{3}{2\sqrt{2}} f_8(x) + \frac{1}{2} f_{10}(x) - \frac{1}{2\sqrt{2}} f_{12}(x) + C$$

$$\int \frac{1}{(x^2 - \sqrt{2}x + 1)^3} dx = \frac{3}{\sqrt{2}} f_2(x) + \frac{3}{2} f_6(x) - \frac{3}{2\sqrt{2}} f_8(x) + \frac{1}{2} f_{10}(x) - \frac{1}{2\sqrt{2}} f_{12}(x) + C$$

$$\begin{cases} \int \frac{1}{(x^2+1)^3} dx \\ \int \frac{1}{(x^2+1)^3}$$

REMINDER: Do not forget integration constant in practice.

0.6 An example to verify the above result

We are going to find:

$$\int \frac{1 - x^{12}}{(1 - x)(1 + x^4)^3} dx.$$

By summing up all rows of the above purple matrix to 'substitute' it back in the equation,

$$\left(\frac{29\sqrt{2}-28}{64} \quad \frac{29\sqrt{2}+28}{64} \quad \frac{1}{4} \quad \frac{1}{4} \quad \frac{3\sqrt{2}-3}{64} \quad \frac{-3\sqrt{2}-3}{64} \quad \frac{-\sqrt{2}+4}{64} \quad \frac{\sqrt{2}+4}{64} \quad \frac{-\sqrt{2}}{64} \quad \frac{\sqrt{2}}{64} \quad \frac{\sqrt{2}}{64} \quad \frac{\sqrt{2}}{64} \right) \cdot \left(\frac{x}{x^2+\sqrt{2}x+1}\right) \left(\frac{x}{x$$

Eventually, we are able to get:

$$\int \frac{x^{11} + x^{10} + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1}{(1 + x^4)^3} dx$$

$$= \frac{29\sqrt{2} - 28}{64} \arctan\left(\sqrt{2}x + 1\right) + \frac{29\sqrt{2} + 28}{64} \arctan\left(\sqrt{2}x - 1\right) + \frac{1}{4}\ln\left(x^2 + \sqrt{2}x + 1\right) + \frac{1}{4}\ln\left(x^2 - \sqrt{2}x + 1\right)$$

$$+ \frac{3\sqrt{2} - 3}{64} \cdot \frac{x}{x^2 + \sqrt{2}x + 1} - \frac{3\sqrt{2} + 3}{64} \cdot \frac{x}{x^2 - \sqrt{2}x + 1} - \frac{\sqrt{2} - 4}{64} \cdot \frac{1}{x^2 + \sqrt{2}x + 1} + \frac{\sqrt{2} + 4}{64} \cdot \frac{1}{x^2 - \sqrt{2}x + 1}$$

$$- \frac{\sqrt{2}}{64} \cdot \frac{x}{(x^2 + \sqrt{2}x + 1)^2} + \frac{\sqrt{2}}{64} \cdot \frac{x}{(x^2 - \sqrt{2}x + 1)^2} - \frac{\sqrt{2}}{64} \cdot \frac{1}{(x^2 + \sqrt{2}x + 1)^2} + \frac{\sqrt{2}}{64} \cdot \frac{1}{(x^2 - \sqrt{2}x + 1)^2} + C$$

After all, it would be nice if somebody could tell me whether this anti-derivative can be simplified or not. By the way, please be reminded that for $\int \frac{1-x^{12}}{(1-x)(1+x^4)^3} dx$, the integrand is **not** defined at x=1. That is to say, by the way, the integration constant is not rigorously meaningful when you consider an open set $\subseteq \mathbb{R}$ which is not an interval. If we restrict our attention to $\mathbb{R} \setminus \{0\}$, we should further restrict our attention to any interval $\subseteq \mathbb{R} \setminus \{0\}$ in order that any two anti-derivatives must differ from a constant function.

Concluding remarks

Till now I think that

$$\int \frac{P(x)}{(1+x^4)^n} dx$$

in general, while $n \in \mathbb{N}$, is not so practical. For n=2 and n=3, I already spent a few hours on each, and also relied heavily on calculators or apps. However, the general one, if realized, would be exciting.