- En un determinado proceso industrial se verifica la calidad de unas puertas lógicas. Los chips pasan a través de tres sensores que determinan el estado de los mismos. Si al menos dos sensores detectan defectos en las mismas serán desechadas.
 - a. Escribir la tabla de verdad de la función de salida del detector de piezas defectuosas.
 - b. Simplificar la función lógica usando el método de Karnaugh.
 - c. Representa el diagrama lógico final del circuito desde logic.ly
 - d. ¿Cómo se podría implementar utilizando solo puertas lógicas **NAND**? Halla la fórmula.

A) TABLA DE VERDAD:

- Hay tres sensores con su estado (Con defecto: 1 Sin defecto: 0):
 - o A, B, Y C.
- Y la F es 1 si al menos dos de los sensores es 1

Α	В	С	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

B) SIMPLIFICACION DE LA FUNCIÓN

ΑE

		00	01	11	10
С	0	0	0	1	0
	1	0	1	1	1

ABC	ABC	ABC
110	011	101
111	111	111
AB	вс	AC

F = AB + BC + AC

C) REPRESENTACION LOGICA EN LOGIC.LY

D) IMPLEMENTACION NAND

F = AB + BC + AC -> DOBLE NEGACION EN TODO -> F = AB · BC · AC

2. Queremos que una máquina expendedora de bebidas suministre una botella de agua cuando está pulsada la opción A, una de limonada cuando está pulsada la opción B y una bebida isotónica cuando están pulsadas ambas opciones. Por otra parte, también dispone de dos sensores C y D. El primero nos indica activándose si se ha echado la moneda correspondiente, y el segundo se activa cuando no hay botellas o latas disponibles. Si se cumplen las condiciones de suministro, un motor deberá abrir una trampilla que da acceso a la bebida.

Se pide diseñar un circuito lógico que controle el motor de apertura solucionando las siguientes cuestiones:

- a. Obtener la tabla de verdad y su función lógica.
- b. Simplificar la ecuación utilizando el método apropiado.
- c. Representar el diagrama lógico del circuito.
- d. ¿Cómo se podría implementar utilizando solo puertas lógicas NAND? Halla la fórmula.

A) TABLA DE VERDAD:

- · Hay Cuatro sensores:
 - o A, B, C, Y D
- Y la F es 1 si :
 - o D no esta en 1
 - o C esta en 1
 - o A / B esta en 1 junto a C en 1

Α	В	С	D	F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	0

B) SIMPLIFICACION DE LA FUNCIÓN

ΑB

		00	01	11	10
	00	0	0	0	0
CD	01	0	0	0	0
	11	0	0	0	0
	10	0	1	1	1

ABCD	ABCD
0110	1110
1110	1010

F = BCD' + ACD'

C) REPRESENTACION LOGICA EN LOGIC.LY

D) IMPLEMENTACION NAND

F = BCD' + ACD' -> DOBLE NEGACION EN TODO -> F = BCD * ACD

- 3. Diseñe un circuito digital de control, que compare a la entrada dos palabras binarias de 2 bits (ab y cd), de manera que cuando la combinación binaria formada por los bits ab, sea mayor que la combinación binaria formada por los bits cd, la salida sea 1.
 - a. Calcule la función lógica de salida.
 - b. **Simplificar** la función lógica mediante el método de Karnaugh.
 - c. Implementar el circuito con puertas lógicas.
 - d. ¿Cómo se podría implementar utilizando solo puertas lógicas **NAND**? Halla la fórmula.

A) TABLA DE VERDAD:

- · Hay Cuatro sensores:
 - o A, B, C, Y D
- Y la F es 1 si :
 - o AB EN BINARIO > CD EN BINARIO

Α	В	> < =	С	D	F
0	0	=	0	0	0
0	0	<	0	1	0
0	0	<	1	0	0
0	0	<	1	1	0
0	1	>	0	0	1
0	1	=	0	1	0
0	1	<	1	0	0
0	1	<	1	1	0
1	0	>	0	0	1
1	0	>	0	1	1
1	0	=	1	0	0
1	0	<	1	1	0
1	1	>	0	0	1
1	1	>	0	1	1
1	1	>	1	0	1
1	1	= [1/	1	7 0
			٦	-	

B) SIMPLIFICACION DE LA FUNCIÓN

		467			
		00	01	11	10
	00	0	1	1	1

CD	01	0	0	1	1
	11	0	0	0	0
	10	0	0	1	0

ABCD	ABCD	ABCD
1100	0100	1100
1101	1100	1110
1000		
1001		
AC'	BC'D'	ABD'

F = AC' + BC'D' + ABD'

C) REPRESENTACION LOGICA EN LOGIC.LY

D) IMPLEMENTACION NAND

F = F = AC' + BC'D' + ABD' -> DOBLE NEGACION EN TODO -> F = AC + BCD + ABD