# COT 6405 Introduction to Theory of Algorithms

Topic 14. Graph Algorithms

## **Elementary Graph Algorithms**

- How to represent a graph?
  - Adjacency lists
  - Adjacency matrix
- How to search a graph?
  - Breadth-first search
  - Depth-first search

## **Graph Variations**

#### Variations:

- A connected graph has a path from every vertex to every other
- In an undirected graph:
  - edge (u,v) = edge (v,u)
  - No self-loops
- In a directed graph:
  - Edge (u,v) goes from vertex u to vertex v, notated u→v

## **Graph Variations**

- More variations:
  - A weighted graph associates weights with either the edges or the vertices
    - E.g., a road map: edges weighted w/ distance
  - A multigraph allows multiple edges between the same vertices
    - E.g., the call graph in a program (a function can get called from multiple points in another function)

# Graph G = (V, E)

- A graph G = (V, E)
  - V = set of vertices, E = set of edges
- We will typically express running times in terms of |E| and |V| (often dropping the ||'s)
  - If  $|E| \approx |V|^2$ , the graph is dense
  - If |E| ≈ |V|, the graph is sparse
- If you know you are dealing with dense or sparse graphs, we different data structures
  - Dense graph → adjacency matrix
  - Sparse graph → adjacency lists

## 22.1 Representing Graphs

- Assume  $V = \{1, 2, ..., n\}$
- An adjacency matrix represents the graph as a n x n matrix A:

```
-A[i, j] = 1 if edge (i, j) \in E (or weight of edge)
= 0 if edge (i, j) \notin E
```

### • Example:



| Α | 1 | 2 | 3  | 4 |
|---|---|---|----|---|
| 1 |   |   |    |   |
| 2 |   |   |    |   |
| 3 |   |   | ?? |   |
| 4 |   |   |    |   |

## • Example:



| A | 1 | 2 | 3 | 4 |
|---|---|---|---|---|
| 1 | 0 | 1 | 1 | 0 |
| 2 | 0 | 0 | 1 | 0 |
| 3 | 0 | 0 | 0 | 0 |
| 4 | 0 | 0 | 1 | 0 |

- How much storage does the adjacency matrix require?
- A: O(V<sup>2</sup>)
- What is the minimum amount of storage needed by an adjacency matrix representation of an undirected graph with 4 vertices?
- A: 6 bits
  - Undirected graph → matrix is symmetric
  - No self-loops → don't need diagonal

- The adjacency matrix is a dense representation
  - Usually too much storage for large graphs
  - But efficient for small graphs



- E.g., planar graphs, in which no edges cross, have|E| = O(|V|) by Euler's formula
- For this reason the adjacency list is often a more appropriate representation

# Graphs: Adjacency List

- For each vertex v ∈ V, store a list of vertices adjacent to v
- The same example:

$$- Adj[1] = \{2, 3\}$$

$$- Adj[2] = {3}$$

$$- Adj[3] = {}$$

$$- Adj[4] = {3}$$



### Undirected





## Directed Graph





## **Graphs: Adjacency List**

- How much storage is required?
  - The degree of a vertex v = # incident edges
    - Two edges are called incident, if they share a vertex
    - Directed graphs have in-degree, out-degree
  - For directed graphs, # of items in adjacency lists is  $\Sigma$  out-degree(v) = |E| takes  $\Theta(V + E)$  storage
  - For undirected graphs, # items in adjacency lists is  $\Sigma$  degree(v) = 2 |E| also  $\Theta$ (V + E) storage
- So: Adjacency lists take O(V+E) storage

## **Graph Searching**

- Given: a graph G = (V, E), directed or undirected
- Goal: methodically explore every vertex and every edge
- Ultimately: build a tree on the graph
  - Pick a vertex as the root
  - Choose certain edges to produce a tree
  - Note: may build a forest if a graph is not connected

## Breadth-First Search (BFS)

- "Explore" a graph, turning it into a tree
  - One vertex at a time
  - Expand frontier of explored vertices across the breadth of the frontier
- Builds a tree over the graph
  - Pick a source vertex to be the root
  - Find ("discover") its children, then their children, etc.

## **Breadth-First Search**

- We associate vertices with "colors" to guide the algorithm
  - White vertices have not been discovered
    - All vertices start out white
  - Grey vertices are discovered but not fully explored
    - They may be adjacent to white vertices
  - Black vertices are discovered and fully explored
    - They are adjacent only to black and gray vertices
- Explore vertices by scanning adjacency list of grey vertices

## **Breadth-First Search**

```
BFS(G, s) {
    initialize vertices;
    Q = \{s\};
                         // Q is a queue; initialize to s
    while (Q not empty) {
        u = Dequeue(Q);
        for each v \in G.adj[u] {
            if (v.color == WHITE)
                 v.color = GREY;
                 v.d = u.d + 1; What does v.d represent?
                                  What does v.p represent?
                 v.p = u;
                 Enqueue(Q, v);
        u.color = BLACK;
```

## BFS: Initialization all nodes WHITE



# Breadth-First Search: enqueue s





# dequeue s; s is done; enqueue w and r





# dequeue w, enqueue t and x





## dequeue r, enqueue v





## dequeue t, enqueue u





# dequeue x, no enqueue





## dequeue v, no enqueue





## dequeue u, no enqueue





## dequeue y, no enqueue



Q: Ø

## BFS: The Code Again

```
BFS(G, s) {
    initialize vertices;
    Q = \{s\};
    while (Q not empty) {
        u = Dequeue(Q);
        for each v \in G.adj[u] {
             if (v.color == WHITE)
                 v.color = GREY;
                 v.d = u.d + 1;
                 v.p = u;
                 Enqueue (Q, v);
                               What will be the running time?
        u.color = BLACK;
```

## Time analysis

- The total running time of BFS is O(V + E)
- Proof:
  - Each vertex is dequeued at most once. Thus, total time devoted to queue operations is O(V).
  - For each vertex, the corresponding adjacency list is scanned at most once. Since the sum of the lengths of all the adjacency lists is  $\Theta(E)$ , the total time spent in scanning adjacency lists is O(E).

29

Thus, the total running time is O(V+E)

10/17/2018

## BFS: The Code Again

```
BFS(G, s) {
    initialize vertices;
    Q = \{s\};
    while (Q not empty) {
         u = Dequeue(Q);
         for each v \in G.adj[u] {
             if (v.color == WHITE)
                 v.color = GREY;
                 v.d = u.d + 1; What will be the storage cost
                                   in addition to storing the graph?
                 v.p = u;
                 Enqueue(Q, v);
                                     Total space used: O(V)
         u.color = BLACK;
```

## Breadth-First Search: Properties

- BFS calculates the shortest-path distance to the source node
  - Shortest-path distance  $\delta(s,v)$  = minimum number of edges from s to v, or  $\infty$  if v not reachable from s
- BFS builds breadth-first tree, in which paths to root represent shortest paths in G
  - Thus, we can use BFS to calculate a shortest path from one vertex to another in O(V+E) time

## Depth-First Search

- Depth-first search is another strategy for exploring a graph
  - Explore "deeper" in the graph whenever possible
  - Edges are explored out of the most recently discovered vertex v that still has unexplored edges
    - Timestamp to help us remember who is "new"
  - When all of v's edges have been explored,
     backtrack to the vertex from which v was discovered

## Depth-First Search: The Code

```
DFS(G)
 for each vertex u \in G.V
    u.color = WHITE
    u.\pi = NIL
 time = 0
 for each vertex u \in G.V
   if (u.color == WHITE)
      DFS_Visit(G, u)
```

```
DFS_Visit(G, u)
   time = time + 1
   u.d = time
   u.color = GREY
   for each v \in G.Adi[u]
    if (v.color == WHITE)
       v.\pi = u
       DFS_Visit(G, v)
   u.color = BLACK
   time = time + 1
   u.f = time
```

## **Variables**

- $u.\pi$  stores the predecessor of vertex u
- The first timestamp *u.d* records when *u* is first discovered (and grayed)
- The second timestamp u.f records when the search finishes examining u's adjacency list (and blackens v).
- These timestamps are used in many graph algorithms and are generally helpful in reasoning about the behavior of depth-first search

# DFS Example: time = 0



# DFS Example: time = 1







**GREEDY:** Always to go with white nodes if possible



No where to go



GREEDY: Always to go with white nodes if possible Based on timestamp, 2 is the newest at this moment



No where to go

# DFS Example: time = 7 and 8





















#### Depth-First Search: running time

- Running time:  $O(|V|^2)$  because call DFS\_Visit on each vertex, and the loop over Adj[] can run as many as |V| times.
- BUT, there is actually a tighter bound.

#### DFS: running time (cont'd)

- How many times will DFS\_Visit() actually be called?
  - The loops on lines 1–3 and lines 5–7 of DFS take time Θ(V), exclusive of the time to execute the calls to DFS-VISIT.
  - DFS-VISIT is called exactly once for each vertex v
  - During an execution of DFS-VISIT(v), the loop on lines 4–7 is executed |Adj[v]| times.
  - $-\sum_{v\in V}|Adj[v]|=\Theta(E)$
  - Total running time is  $\Theta(V+E)$

10/17/2018

#### DFS: Different Types of edges

- DFS introduces an important distinction among edges in the original graph:
  - Tree edge: Edge (u, v) is a tree edge if v was first discovered by exploring edge (u, v)

## DFS Example: Tree edges



Tree edges

#### DFS: Different Types of edges

- DFS introduces an important distinction among edges in the original graph:
  - Tree edge: encounter new vertex
  - Back edge: from descendent to ancestor



Tree edges Back edges

#### DFS: Different Types of edges

- DFS introduces an important distinction among edges in the original graph:
  - Tree edge: encounter new vertex
  - Back edge: from descendent to ancestor
  - Forward edge: from ancestor to descendent
    - Not a tree edge, though

## DFS Example: Forward edges



Tree edges Back edges Forward edges

#### DFS: Different Types of edges

- DFS introduces an important distinction among edges in the original graph:
  - Tree edge: encounter new vertex
  - Back edge: from descendent to ancestor
  - Forward edge: from ancestor to descendent
  - Cross edge: between subtrees



Tree edges Back edges Forward edges Cross edges

#### DFS: Different Types of edges

- DFS introduces an important distinction among edges in the original graph:
  - Tree edge: encounter new vertex
  - Back edge: from a descendent to an ancestor
  - Forward edge: from an ancestor to a descendent
  - Cross edge: between a tree or subtrees
- Note: tree & back edges are important
  - most algorithms don't distinguish forward & cross

#### Directed Acyclic Graphs

 A directed acyclic graph (DAG) is a directed graph with no directed cycles:



#### **DFS** and **DAGs**

- A directed graph G is acyclic i.f.f. a DFS of G yields no back edges
  - If G is acyclic: no back edges
  - If G has a cycle, there must exist a back edge
- How would you modify the DFS code to detect cycles?
  - Detect back edges
  - edge (u, v) is a back edge if and only if d[v] < d[u] < f[u] < f[v]
    - u is the descendent
    - v is the ancestor

#### Run DFS to find whether a graph has a cycle

```
DFS(G)
   for each vertex u \in G.V
      u.color = WHITE
      u.\pi = NIL
   time = 0
   for each vertex u \in G.V
      if (u.color == WHITE)
         DFS Visit(G, u)
```

```
DFS Visit(G, u)
  time = time + 1
  u.d = time
  u.color = GREY
  for each v \in G.Adj[u]
       if (v.color == WHITE)
          \mathbf{v}.\pi = \mathbf{u}
          DFS Visit(G, v)
   u.color = BLACK
   time = time + 1
   u.f = time
```

#### **DFS and Cycles**

- What will be the running time?
- A: O(V+E)
- We can actually determine if cycles exist in O(V) time:
  - In an undirected acyclic tree,  $|E| \le |V| 1$
  - So, count the number of edges:
    - if ever see |V| distinct edges, we must have seen a back edge along the way