Nama : Latifah Nurfitriyani Kelas : Matematika E 2022

NIM: 22305141010

Materi Kalkulus mencakup di antaranya:

- Fungsi (fungsi aljabar, trigonometri, eksponensial, logaritma, komposisi fungsi)
- Limit Fungsi,
- Turunan Fungsi,
- Integral Tak Tentu,
- Integral Tentu dan Aplikasinya,
- Barisan dan Deret (kekonvergenan barisan dan deret).

EMT (bersama Maxima) dapat digunakan untuk melakukan semua perhitungan di dalam kalkulus, baik secara numerik maupun analitik (eksak).

Mendefinisikan Fungsi

Terdapat beberapa cara mendefinisikan fungsi pada EMT, yakni:

- Menggunakan format nama_fungsi := rumus fungsi (untuk fungsi numerik),
- Menggunakan format nama_fungsi &= rumus fungsi (untuk fungsi simbolik, namun dapat dihitung secara numerik),
- Menggunakan format nama_fungsi &&= rumus fungsi (untuk fungsi simbolik murni, tidak dapat dihitung langsung),
- Fungsi sebagai program EMT.

Setiap format harus diawali dengan perintah function (bukan sebagai ekspresi).

Berikut adalah adalah beberapa contoh cara mendefinisikan fungsi:

$$f(x) = 2x^2 + e^{\sin(x)}.$$

```
> function f(x) := 2*x^2+exp(sin(x)) // fungsi numerik
> f(0), f(1), f(pi)

1
4.31977682472
20.7392088022
```

```
> f(a) // tidak dapat dihitung nilainya
```

```
Variable or function a not found.

Error in:
f(a) // tidak dapat dihitung nilainya ...
```

Silahkan Anda plot kurva fungsi di atas!

```
> plot2d("2*x^2+exp(sin(x))",-5,5); plot2d(0,1,>points,style="ow",>add):
```


Berikutnya kita definisikan fungsi:

$$g(x) = \frac{\sqrt{x^2 - 3x}}{x + 1}$$

```
> function g(x) := sqrt(x^2-3*x)/(x+1)
> g(3)
  0
> g(0)
  0
> g(1) // kompleks, tidak dapat dihitung oleh fungsi numerik
  Floating point error!
  Error in sqrt
  Try "trace errors" to inspect local variables after errors.
 g:
     useglobal; return sqrt(x^2-3*x)/(x+1)
  Error in:
   g(1) // kompleks, tidak dapat dihitung oleh fungsi numerik ...
```

> plot2d("sqrt(x^2-3*x)/(x+1)",-5,5); plot2d(0,0,>points,style="ow",>add):

> f(g(5)) // komposisi fungsi

2.20920171961

0.950898070639

> function
$$h(x) := f(g(x))$$
 // definisi komposisi fungsi > $h(5)$ // sama dengan $f(g(5))$

2.20920171961

Silakan Anda plot kurva fungsi komposisi fungsi f dan g:

$$h(x) = f(g(x))$$

dan

$$u(x) = g(f(x))$$

bersama-sama kurva fungsi f dan g dalam satu bidang koordinat.

> plot2d("f(g(5))",-5,5); plot2d("g(f(5))",-5,5); plot2d(0,0,>points,style="ow",>add):

> f(0:10) // nilai-nilai f(1), f(2), ..., f(10)

[2, 5.43656, 14.7781, 40.1711, 109.196, 296.826, 806.858, 2193.27, 5961.92, 16206.2, 44052.9]

> fmap(0:10) // sama dengan f(0:10), berlaku untuk semua fungsi

[2, 5.43656, 14.7781, 40.1711, 109.196, 296.826, 806.858, 2193.27, 5961.92, 16206.2, 44052.9]

> gmap(200:210)

[0.987534, 0.987596, 0.987657, 0.987718, 0.987778, 0.987837, 0.987896, 0.987954, 0.988012, 0.988069, 0.988126]

Misalkan kita akan mendefinisikan fungsi

$$f(x) = \begin{cases} x^3 & x > 0\\ x^2 & x \le 0. \end{cases}$$

Fungsi tersebut tidak dapat didefinisikan sebagai fungsi numerik secara "inline" menggunakan format :=, melainkan didefinisikan sebagai program. Perhatikan, kata "map" digunakan agar fungsi dapat menerima vektor sebagai input, dan hasilnya berupa vektor. Jika tanpa kata "map" fungsinya hanya dapat menerima input satu nilai.

> function map f(x)

```
if x > 0 then return x^3
 else return x^2
 endif;
 endfunction
> f(1)
 1
> f(-2)
 4
> f(-5:5)
  [25, 16, 9, 4, 1, 0, 1, 8, 27, 64, 125]
> aspect(1.5); plot2d("f(x)",-5,5):
```


> function f(x) &= 2*E^x // fungsi simbolik

2 E

> \$f(a) // nilai fungsi secara simbolik

```
> f(E) // nilai fungsi berupa bilangan desimal
  30.308524483
> function g(x) &= 3*x + 1
                                 3 x + 1
> function h(x) \&= f(g(x)) // komposisi fungsi
                                  3 x + 1
                                2 E
```

> plot2d("h(x)",-1,1):

Bukalah buku Kalkulus. Cari dan pilih beberapa (paling sedikit 5 fungsi berbeda tipe/bentuk/jenis) fungsi dari buku tersebut, kemudian definisikan fungsi-fungsi tersebut dan komposisinya di EMT pada baris-baris perintah berikut (jika perlu tambahkan lagi). Untuk setiap fungsi, hitung beberapa nilainya, baik untuk satu nilai maupun vektor. Gambar grafik fungsi-fungsi tersebut dan komposisi-komposisi 2 fungsi.

Juga, carilah fungsi beberapa (dua) variabel. Lakukan hal sama seperti di atas.

1. Hitung nilai f(x) jika diketahui x = 2 dan x = 6

$$f(x) = x^2 + 4x - 8$$

Sertakan gambar dari grafik fungsi f(x)!

```
> function f(x) := x^2 + 4*x - 8
> f(2), f(6)
```

4 52

```
> plot2d("x^2 + 4*x - 8", -2, 2):
```


2. Hitunglah nilai f(-3), f(8), dan f(0) untuk fungsi berikut!

$$f(x) = \frac{x^3 + 12}{x - 1}$$

```
> function f(x) := (x^3+12)/(x-1)
> f(-3), f(8), f(0)
```

3.75 74.8571428571 -12

```
> plot2d("(x^3+12)/(x-1)",-2,2):
```



```
> function f(x) := sqrt(x)+4*x
> f(81)
```

333

```
> plot2d("sqrt(x)+4*x",-5,5):
```


4. Perhatikan fungsi di bawah ini!

$$f(x) = x^4 + 2x^2 - 5x + 12$$

Tentukan nilai f(9) + f(3)!

```
> function f(x) := x^4+2*x^2-5*x+12
```

> f(9), f(3), f(9) + f(3)

5. Diketahui suatu fungsi

$$f(x) = x^5 + 6$$

$$g(x) = x^2 - 8$$

Tentukan nilai fog(-4) dan gof(9)!

```
> function f(x) := x^5 + 6
> function g(x) := x^2 - 8
> f(g(-4)), g(f(9))
```

32774 3487493017

Perhitungan limit pada EMT dapat dilakukan dengan menggunakan fungsi Maxima, yakni "limit". Fungsi "limit" dapat digunakan untuk menghitung limit fungsi dalam bentuk ekspresi maupun fungsi yang sudah didefinisikan sebelumnya. Nilai limit dapat dihitung pada sebarang nilai atau pada tak hingga (-inf, minf, dan inf). Limit kiri dan limit kanan juga dapat dihitung, dengan cara memberi opsi "plus" atau "minus". Hasil limit dapat berupa nilai, "und" (tak definisi), "ind" (tak tentu namun terbatas), "infinity" (kompleks tak hingga).

Perhatikan beberapa contoh berikut. Perhatikan cara menampilkan perhitungan secara lengkap, tidak hanya menampilkan hasilnya saja.

>
$$\frac{(x^2-3*x)}{(x+1)}$$
, x, inf))

$$\lim_{x \to \infty} \frac{\sqrt{x^2 - 3x}}{x + 1} = 1$$

$$>$$
 \$limit((x^3-13*x^2+51*x-63)/(x^3-4*x^2-3*x+18),x,3)

$$-\frac{4}{5}$$

$$\lim_{x \to 3} \frac{x^3 - 13x^2 + 51x - 63}{x^3 - 4x^2 - 3x + 18} = -\frac{4}{5}$$

Fungsi tersebut diskontinu di titik x = 3. Berikut adalah grafik fungsinya.

> \$limit(cot(7*h)/cot(5*h),h,0)

$$\lim_{h \to 0} \frac{\cot(7h)}{\cot(5h)} = 1$$

Fungsi tersebut juga diskontinu (karena tidak terdefinisi) di x=0. Berikut adalah grafiknya.

> $\frac{((x/8)^{(1/3)-1)}}{(x-8),x,8)}$

$$\lim_{x \to 8} \frac{\frac{x^{\frac{1}{3}}}{2} - 1}{x - 8} = \frac{1}{24}$$

 $> plot2d("((x/8)^(1/3)-1)/(x-8)",-0.001,0.001); plot2d(8,1/24,>points,style="ow",>add):$

> \$showev('limit(1/(2*x-1),x,0))

$$\lim_{x \to 0} \frac{1}{2x - 1} = -1$$

> plot2d("1/(2*x-1)",-5,5); plot2d(0,-1,>points,style="ow",>add):

>
$$\frac{(x^2-3*x-10)}{(x-5),x,5}$$

$$\lim_{x \to 5} \frac{x^2 - 3x - 10}{x - 5} = 7$$

$$> plot2d("(x^2-3*x-10)/(x-5)",-5,5); plot2d(5,7,>points,style="ow",>add):$$

> \$showev('limit(sqrt(x^2+x)-x,x,inf))

$$\lim_{x \to \infty} \sqrt{x^2 + x} - x = \frac{1}{2}$$

> plot2d("sqrt(x^2+x)-x",-1,1); plot2d(0,1/2,>points,style="ow",>add):

> \$showev('limit(abs(x-1)/(x-1),x,1,minus))

$$\lim_{x \uparrow 1} \frac{|x-1|}{x-1} = -1$$

> plot2d("abs(x-1)/(x-1)",-5,5); plot2d(1,-1,>points,style="ow",>add):

> \$showev('limit(sin(x)/x,x,0))

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

> plot2d("sin(x)/x",-pi,pi); plot2d(0,1,>points,style="ow",>add):

> \$showev('limit(sin(x^3)/x,x,0))

$$\lim_{x \to 0} \frac{\sin x^3}{x} =$$

> $plot2d("sin(x^3)/x",-pi,pi); plot2d(0,0,>points,style="ow",>add):$

> \$showev('limit(log(x), x, minf))

$$\lim_{x \to -\infty} \log x = infinity$$

> \$showev('limit((-2)^x,x, inf))

$$\lim_{x \to \infty} \left(-2\right)^x = infinity$$

$$\lim_{t \uparrow 2} t - \sqrt{2 - t} = 2$$

$$\lim_{t\downarrow 2} t - \sqrt{2-t} = 2$$

$$\lim_{t\downarrow 5} t - \sqrt{2-t} = 5 - \sqrt{3}\,i$$

>
$$\frac{(x^2-9)}{(2*x^2-5*x-3),x,3)}$$

$$\lim_{x \to 3} \frac{x^2 - 9}{2x^2 - 5x - 3} =$$

$$2\left(\lim_{x\to 0}\frac{x\,\sin x}{1-\cos x}\right) = 4$$

Fungsi tersebut diskontinu di titik x=3. Berikut adalah grafik fungsinya.

 $> \verb|plot2d("2*x*sin(x)/(1-cos(x))",-pi,pi); plot2d(0,4,>points,style="ow",>add):$

> \$&showev('limit(cot(7*h)/cot(5*h),h,0))

$$\lim_{h \to 0} \frac{\cot(7h)}{\cot(5h)} = \frac{5}{7}$$

Fungsi tersebut juga diskontinu (karena tidak terdefinisi) di $\mathbf{x}=0$. Berikut adalah grafiknya.

> plot2d("cot(7*x)/cot(5*x)",-0.001,0.001); plot2d(0,5/7,>points,style="ow",>add):

>
$$\frac{(((x/8)^{(1/3)})-1)}{(x-8),x,8)}$$

$$\lim_{x \to 8} \frac{\frac{x^{\frac{1}{3}}}{2} - 1}{x - 8} = \frac{1}{2^{4}}$$

 $> plot2d("(((x/8)^(1/3))-1)/(x-8)",0,9); plot2d(8,1/24,>points,style="ow",>add):$

> \$&showev('limit(1/(2*x-1),x,0))

$$\lim_{r \to 0} \frac{1}{2r - 1} = -1$$

> plot2d("1/(2*x-1)",-1,1); plot2d(0,-1,>points,style="ow",>add):

>
$$\frac{(x^2-3*x-10)}{(x-5),x,5)}$$

$$\lim_{x \to 5} \frac{x^2 - 3x - 10}{x - 5} = 7$$

 $> plot2d("(x^2-3*x-10)/(x-5)",-1,1); plot2d(5,7,>points,style="ow",>add):$

> \$showev('limit(sqrt(x^2+x)-x,x,inf))

$$\lim_{x \to \infty} \sqrt{x^2 + x} - x = \frac{1}{2}$$

> plot2d("sqrt(x^2+x)-x",-1,1); plot2d(0,1/2,>points,style="ow",>add):

> \$showev('limit(abs(x-1)/(x-1),x,1,minus))

$$\lim_{x \uparrow 1} \frac{|x-1|}{x-1} = -1$$

> plot2d("abs(x-1)/(x-1)",-5,5); plot2d(1,-1,>points,style="ow",>add):

> \$showev('limit(sin(x)/x,x,0))

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

> plot2d("sin(x)/x",-pi,pi); plot2d(0,1,>points,style="ow",>add):

> \$showev('limit(sin(x^3)/x,x,0))

$$\lim_{x \to 0} \frac{\sin x^3}{x} =$$

> $plot2d("sin(x^3)/x",-pi,pi); plot2d(0,0,>points,style="ow",>add):$

> \$showev('limit(log(x), x, minf))

$$\lim_{x \to -\infty} \log x = infinity$$

> plot2d("log(x)",-pi,pi); plot2d(0,0,>points,style="ow",>add):

> \$showev('limit((-2)^x,x, inf))

$$\lim_{x \to \infty} (-2)^x = infinity$$

> \$showev('limit(t-sqrt(2-t),t,2,minus))

$$\lim_{t \uparrow 2} t - \sqrt{2 - t} = 2$$

$$\lim_{t\downarrow 5} t - \sqrt{2-t} = 5 - \sqrt{3}\,i$$

> plot2d("x-sqrt(2-x)",0,2):

> $\frac{(x^2-9)}{(2*x^2-5*x-3),x,3)}$

$$\lim_{x \to 3} \frac{x^2 - 9}{2x^2 - 5x - 3} = \frac{6}{7}$$

> \$showev('limit((1-cos(x))/x,x,0))

$$\lim_{x \to 0} \frac{1 - \cos x}{x} = 0$$

> plot2d("(1-cos(x))/x",-pi,pi); plot2d(0,0,>points,style="ow",>add):

$$\lim_{x \to 0} \frac{|x| + x^2}{x^2 - |x|} = -1$$

> $plot2d("(x^2+abs(x))/(x^2-abs(x))",-5,5); plot2d(0,-1,>points,style="ow",>add):$

> \$showev('limit((1+1/x)^x,x,inf))

$$\lim_{x \to \infty} \left(\frac{1}{x} + 1\right)^x = e$$

> plot2d("(1+1/x)^x",0,1000):

> \$showev('limit((1+k/x)^x,x,inf))

$$\lim_{x \to \infty} \left(\frac{k}{x} + 1\right)^x = e^k$$

> \$showev('limit((1+x)^(1/x),x,0))

$$\lim_{x \to 0} \left(x + 1 \right)^{\frac{1}{x}} = e$$

> plot2d("(1+x)^(1/x)",-5,5); plot2d(0,2.7,>points,style="ow",>add):

$$\lim_{x \to \infty} \left(\frac{x}{x+k} \right)^x = e^{-k}$$

$$\lim_{x \to 2} \frac{e^x - e^2}{x - 2} = e^2$$

 $> plot2d("(E^x-E^2)/(x-2)",-5,5); plot2d(0,2.98,>points,style="ow",>add):$

> \$showev('limit(sin(1/x),x,0))

$$\lim_{x \to 0} \sin\left(\frac{1}{x}\right) = ind$$

> \$showev('limit(sin(1/x),x,inf))

$$\lim_{x \to \infty} \sin\left(\frac{1}{x}\right) = 0$$

> plot2d("sin(1/x)",-5,5):

Bukalah buku Kalkulus. Cari dan pilih beberapa (paling sedikit 5 fungsi berbeda tipe/bentuk/jenis) fungsi dari buku tersebut, kemudian definisikan di EMT pada baris-baris perintah berikut (jika perlu tambahkan lagi). Untuk setiap fungsi, hitung nilai limit fungsi tersebut di beberapa nilai dan di tak hingga. Gambar grafik fungsi tersebut untuk mengkonfirmasi nilai-nilai limit tersebut.

1. Hitunglah nilai limit di bawah ini!

$$\lim_{x \to 5} (x - 4)$$

> \$showev('limit((x-4),x,5))

$$\lim_{x \to 5} x - 4 = 1$$

2. Hitunglah nilai dari limit berikut!

$$\lim_{x \to 3} (x^3 + 2)$$

> \$showev('limit((x^3+2),x,3))

$$\lim_{x \to 3} x^3 + 2 = 29$$

3. Hitunglah nilai limit berikut dan gambarlah grafiknya.

$$\lim_{t \to 1} \frac{t^4 - 2}{\sin(t - 5)}$$

> \$showev('limit((t^4-2)/sin(t-5),t,1))

$$\lim_{t \to 1} \frac{t^4 - 2}{\sin(t - 5)} = \frac{1}{\sin 4}$$

> $(plot2d("(x^4-2)/sin(x-5)", -5,5))$:

4. Tentukan nilai limit berikut.

$$\lim_{x \to -5} \frac{\sqrt{3+6x}}{(2x-5)^4}$$

> \$showev('limit((sqrt(3+6*x))/((2*x-5)^4),x,-5))

$$\lim_{x \to -5} \frac{\sqrt{6x+3}}{(2x-5)^4} = \frac{i}{625 \, 3^{\frac{5}{2}}}$$

5. Tentukan nilai limit berikut.

$$\lim_{x \to 0} \frac{(x - \cos(x))^3}{x^6}$$

> $\frac{((x-\cos(x))^3)}{(x^6),x,0)}$

$$\lim_{x \to 0} \frac{\left(x - \cos x\right)^3}{x^6} = -\infty$$

> $(plot2d("((x-cos(x))^3)/(x^6)",-5,5))$:

Definisi turunan:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Berikut adalah contoh-contoh menentukan turunan fungsi dengan menggunakan definisi turunan (limit).

> $\frac{((x+h)^2-x^2)}{h,h,0)}$ // turunan x^2

$$\lim_{h \to 0} \frac{(x+h)^2 - x^2}{h} = 2x$$

> p &= expand((x+h)^2-x^2)|simplify; \$p //pembilang dijabarkan dan disederhanakan

$$2 h x + h^2$$

> q &=ratsimp(p/h); \$q // ekspresi yang akan dihitung limitnya disederhanakan

> \$limit(q,h,0) // nilai limit sebagai turunan

2x

> \$showev('limit(((x+h)^n-x^n)/h,h,0)) // turunan x^n

$$\lim_{h \to 0} \frac{(x+h)^n - x^n}{h} = n \, x^{n-1}$$

Mengapa hasilnya seperti itu? Tuliskan atau tunjukkan bahwa hasil limit tersebut benar, sehingga benar turunan fungsinya benar. Tulis penjelasan Anda di komentar ini.

Sebagai petunjuk, gunakan sifat-sifat logaritma dan hasil limit pada bagian sebelumnya di atas.

PEMBUKTIAN

$$f'(x) = \lim_{h \to 0} \frac{(x+h)^n - x^n}{h}$$

$$= \lim_{h \to 0} \frac{\frac{d}{dh}((x+h)^n - x^n)}{\frac{d}{dh}(h)}$$

$$= \lim_{h \to 0} \frac{n(x+h)^{n-1}}{1}$$

$$= \lim_{h \to 0} n(x+h)^{n-1}$$

$$= nx^{n-1}$$

TERBUKTI

Jadi, terbukti benar bahwa

$$f'(x) = \lim_{h \to 0} \frac{(x+h)^n - x^n}{h} = nx^{n-1}$$

> \$showev('limit((sin(x+h)-sin(x))/h,h,0)) // turunan sin(x)

$$\lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h} = \cos x$$

Mengapa hasilnya seperti itu? Tuliskan atau tunjukkan bahwa hasil limit tersebut benar, sehingga benar turunan fungsinya benar. Tulis penjelasan Anda di komentar ini.

Sebagai petunjuk, ekspansikan $\sin(x+h)$ dengan menggunakan rumus jumlah dua sudut.

PEMBUKTIAN

$$f'(x) = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h}$$

$$= \lim_{h \to 0} \frac{\frac{d}{dh}(\sin(x+h) - \sin x)}{\frac{d}{dh}(h)}$$
$$= \lim_{h \to 0} \frac{\cos(x+h)}{1}$$
$$= \lim_{h \to 0} \cos(x+h)$$

Karena cos(x+h) kontinu di h = 0, maka:

$$= cosx$$

TERBUKTI

Jadi, terbukti benar bahwa

$$f'(x) = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h} = \cos x$$

>
$$\sinh((\log(x+h)-\log(x))/h,h,0))$$
 // turunan $\log(x)$

$$\lim_{h \to 0} \frac{\log(x+h) - \log x}{h} = \frac{1}{x}$$

Mengapa hasilnya seperti itu? Tuliskan atau tunjukkan bahwa hasil limit tersebut benar, sehingga benar turunan fungsinya benar. Tulis penjelasan Anda di komentar ini.

Sebagai petunjuk, gunakan sifat-sifat logaritma dan hasil limit pada bagian sebelumnya di atas.

PEMBUKTIAN

$$f'(x) = \lim_{h \to 0} \frac{\log(x+h) - \log x}{h}$$

$$= \lim_{h \to 0} \frac{\frac{d}{dh}(\log(x+h) - \log x)}{\frac{d}{dh}(h)}$$

$$= \lim_{h \to 0} \frac{\frac{1}{x+h}}{1}$$

$$= \lim_{h \to 0} \frac{1}{x+h}$$

$$= \frac{1}{x}$$

$$TERBUKTI$$

Jadi, terbukti benar bahwa

$$f'(x) = \lim_{h \to 0} \frac{\log(x+h) - \log x}{h} = \frac{1}{x}$$

> \$showev('limit((1/(x+h)-1/x)/h,h,0)) // turunan 1/x

$$\lim_{h \to 0} \frac{\frac{1}{x+h} - \frac{1}{x}}{h} = -\frac{1}{x^2}$$

> $\frac{(E^(x+h)-E^x)}{h,h,0}$ // turunan $f(x)=e^x$

Answering "Is x an integer?" with "integer"
Maxima is asking
Acceptable answers are: yes, y, Y, no, n, N, unknown, uk
Is x an integer?

Use assume!
Error in:

 $\frac{(E^(x+h)-E^x)}{h,h,0}$ // turunan $f(x)=e^x$...

Maxima bermasalah dengan limit:

$$\lim_{h \to 0} \frac{e^{x+h} - e^x}{h}.$$

Oleh karena itu diperlukan trik khusus agar hasilnya benar.

> \$showev('limit((E^h-1)/h,h,0))

$$\lim_{h \to 0} \frac{e^h - 1}{h} = 1$$

> \$showev('factor(E^(x+h)-E^x))

$$factor\left(e^{x+h} - e^x\right) = \left(e^h - 1\right) e^x$$

> \$showev('limit(factor((E^(x+h)-E^x)/h),h,0)) // turunan f(x)=e^x

$$\left(\lim_{h \to 0} \frac{e^h - 1}{h}\right) e^x = e^x$$

> \$showev('limit(f(x),x,0))

$$\lim_{x \to 0} x^x = 1$$

```
> function y := x^x
> plot2d("x^x",-5,5):
```


>
$$\frac{(f(x+h)-f(x))}{h,h,0}$$
 // turunan $f(x)=x^x$

$$\lim_{h \to 0} \frac{(x+h)^{x+h} - x^x}{h} = infinity$$

Di sini Maxima juga bermasalah terkait limit:

$$\lim_{h \to 0} \frac{(x+h)^{x+h} - x^x}{h}.$$

Dalam hal ini diperlukan asumsi nilai x.

> &assume(x>0);
$$showev('limit((f(x+h)-f(x))/h,h,0))$$
 // turunan f(x)=x^x

$$\lim_{h \to 0} \frac{(x+h)^{x+h} - x^x}{h} = x^x (\log x + 1)$$

Mengapa hasilnya seperti itu? Tuliskan atau tunjukkan bahwa hasil limit tersebut benar, sehingga benar turunan fungsinya benar. Tulis penjelasan Anda di komentar ini.

> &forget(x>0) // jangan lupa, lupakan asumsi untuk kembali ke semula

[x > 0]

> &forget(x<0)

[x < 0]

> &facts()

[]

$$\lim_{h \to 0} \frac{\arcsin(x+h) - \arcsin x}{h} = \frac{1}{\sqrt{1-x^2}}$$

Mengapa hasilnya seperti itu? Tuliskan atau tunjukkan bahwa hasil limit tersebut benar, sehingga benar turunan fungsinya benar. Tulis penjelasan Anda di komentar ini.

> \$showev('limit((tan(x+h)-tan(x))/h,h,0)) // turunan tan(x)

$$\lim_{h \to 0} \frac{\tan(x+h) - \tan x}{h} = \frac{1}{\cos^2 x}$$

Mengapa hasilnya seperti itu? Tuliskan atau tunjukkan bahwa hasil limit tersebut benar, sehingga benar turunan fungsinya benar. Tulis penjelasan Anda di komentar ini.

> function
$$f(x) &= \sinh(x) // \text{ definisikan } f(x) = \sinh(x)$$

sinh(x)

> function
$$df(x) &= limit((f(x+h)-f(x))/h,h,0); $df(x) // df(x) = f'(x)$$

$$\frac{e^{-x} (e^{2x} + 1)}{2}$$

Hasilnya adalah cosh(x), karena

$$\frac{e^x + e^{-x}}{2} = \cosh(x).$$

> plot2d(["f(x)","df(x)"],-pi,pi,color=[blue,red]):

> function $f(x) &= \sin(3*x^5+7)^2$

$$2 5$$
 $\sin (3 x + 7)$

Apakah perbedaan diff dan diffc?

$$\frac{d}{dx}\sin^2(3x^5+7) = 30x^4\cos(3x^5+7)\sin(3x^5+7)$$

$$>$$
 \$% with x=3

$$\% at \left(\frac{d}{dx} \sin^2 \left(3x^5 + 7 \right), x = 3 \right) = 2430 \cos 736 \sin 736$$

> \$float(%)

% at
$$\left(\frac{d^{1.0}}{dx^{1.0}}\sin^2\left(3.0x^5+7.0\right), x=3.0\right) = 1198.728637211748$$

> plot2d(f,0,3.1):

> function $f(x) \&=5*\cos(2*x)-2*x*\sin(2*x)$ // mendifinisikan fungsi f

 $5 \cos(2 x) - 2 x \sin(2 x)$

> function df(x) &= diff(f(x),x) // fd(x) = f'(x)

$$-12 \sin(2 x) - 4 x \cos(2 x)$$

```
> $'f(1)=f(1), $float(f(1)), $'f(2)=f(2), $float(f(2)) // nilai f(1) dan f(2)
```

-0.2410081230863468

```
> xp=solve("df(x)",1,2,0) // solusi f'(x)=0 pada interval [1, 2]
```

1.35822987384

> df(xp), f(xp) // cek bahwa f'(xp)=0 dan nilai ekstrim di titik tersebut

0 -5.67530133759 > plot2d(["f(x)","df(x)"],0,2*pi,color=[blue,red]): //grafik fungsi dan turunannya

Bukalah buku Kalkulus. Cari dan pilih beberapa (paling sedikit 5 fungsi berbeda tipe/bentuk/jenis) fungsi dari buku tersebut, kemudian definisikan di EMT pada baris-baris perintah berikut (jika perlu tambahkan lagi). Untuk setiap fungsi, tentukan turunannya dengan menggunakan definisi turunan (limit), menggunakan perintah diff, dan secara manual (langkah demi langkah yang dihitung dengan Maxima) seperti contoh-contoh di atas. Gambar grafik fungsi asli dan fungsi turunannya pada sumbu koordinat yang sama.

Contoh 1

> \$showev('limit(((x+h)^n-x^n)/h,h,0)) // turunan x^n

$$\lim_{h \to 0} \frac{(x+h)^n - x^n}{h} = n \, x^{n-1}$$

Pembuktian

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Untuk

$$f(x) = x^n, f(x+h) = (x+h)^n$$
$$\frac{d}{dx}x^n = \lim_{h \to 0} \frac{(x+h)^n - x^n}{h}$$

Dengan

$$(a+b)^n = \sum_{k=0}^n a^k b^{n-k}$$

maka

$$= \lim_{h \to 0} \frac{\left(x^n + \frac{n}{1!}x^{n-1}h + \frac{n(n-1)}{2!}x^{n-2}h^2 + \frac{n(n-1)(n-2)}{3!}x^{n-3}h^3 + \ldots\right) - x^n}{h}$$

$$= \lim_{h \to 0} \frac{n \cdot x^{n-1}h + \frac{n(n-1)}{2!}x^{n-2}h^2 + \frac{n(n-1)(n-2)}{3!}x^{n-3}h^3 + \ldots}{h}$$

$$= \lim_{h \to 0} n \cdot x^{n-1} + \frac{n(n-1)}{2!} \cdot x^{n-2}h + \frac{n(n-1)(n-2)}{3!} \cdot x^{n-3}h^2 + \ldots$$

$$= n \cdot x^{n-1} + 0 + 0 + \ldots + 0$$

$$= n \cdot x^{n-1}$$

Jadi, terbukti benar bahwa

$$f'(x^n) = n.x^{n-1}$$

> plot2d(["x^2","2*x^(2-1)"],color=[blue,red]): //grafik fungsi dan turunannya

Contoh 2

> function
$$f(x) \&= \sin(x)$$
; $f(x) // mendifinisikan fungsi f$

 $\sin x$

> function
$$df(x) \&=diff(f(x),x); \&df(x) // df(x) = f'(x)$$

 $\cos x$

Pembuktian

$$f'(x) = \lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h}$$

$$sin(a+b) = sin(a)cos(a) + cos(a)sin(b)$$

$$= \lim_{h \to 0} \frac{\sin(x) cos(h) + cos(x) sin(h) - sin(x)}{h}$$

$$= \lim_{h \to 0} sinx. \frac{cos(h) - 1}{h} + \lim_{h \to 0} cos(x). \frac{sin(h)}{h}$$
$$= sin(x).0 + cos(x).1$$

$$= cos(x)$$

Jadi, terbukti benar bahwa

$$f'(sin(x)) = cos(x)$$

Visualisasi Grafik

> plot2d(["f(x)","df(x)"],color=[blue,red]): //grafik fungsi dan turunannya

Contoh 3

$$f(x) = log(x)$$

> \$showev('limit((log(x+h)-log(x))/h,h,0)) // turunan log(x)

$$\lim_{h \to 0} \frac{\log(x+h) - \log x}{h} = \frac{1}{x}$$

Pembuktian

$$f'(x) = \lim_{h \to 0} \frac{\log(x+h) - \log x}{h}$$

$$= \lim_{h \to 0} \frac{\frac{d}{dh}(\log(x+h) - \log x)}{\frac{d}{dh}(h)}$$

$$= \lim_{h \to 0} \frac{\frac{1}{x+h}}{1}$$

$$= \lim_{h \to 0} \frac{1}{x+h}$$

$$= \frac{1}{x}$$

Jadi, terbukti benar bahwa

$$f'(x) = \lim_{h \to 0} \frac{\log(x+h) - \log x}{h} = \frac{1}{x}$$

> plot2d(["log(x)","1/x"],color=[blue,red]): //grafik fungsi dan turunannya

Contoh 4

> function
$$f(x) &= x^2+1; $f(x)$$

$$x^2 + 1$$

> function
$$g(x) &= x+5; $g(x)$$

$$x+5$$

$$\frac{d}{dx}\left((x+5)^2+1\right) = 2(x+5)$$

Visualisasi Grafik

> plot2d(["f(x)","g(x)","2*(x+5)"],color=[blue,red,green]): //grafik fungsi dan turunannya

Contoh 5

$$f(x) = \frac{2x - 5}{x + 2}$$

>
$$\frac{((2*(x+h)-5)}{((x+h)+2)} - \frac{(2*x-5)}{(x+2)}/h,h,0)}{(x+h)+2}$$

$$\lim_{h \to 0} \frac{\frac{2(x+h)-5}{x+h+2} - \frac{2x-5}{x+2}}{h} = \frac{9}{x^2 + 4x + 4}$$

> p &= expand(
$$(2*(x+h)-5)/((x+h) + 2) - (2*x-5)/(x+2)$$
)|simplify; \$p //pembilang dij

$$\frac{2x}{x+h+2} + \frac{2h}{x+h+2} - \frac{5}{x+h+2} - \frac{2x}{x+2} + \frac{5}{x+2}$$

> q &=ratsimp(p/h); \$q // ekspresi yang akan dihitung limitnya disederhanakan

$$\frac{9}{x^2 + (h+4) \ x + 2 \ h + 4}$$

> \$limit(q,h,0) // nilai limit sebagai turunan

$$\frac{9}{x^2 + 4x + 4}$$

Visualisasi Grafik

EMT dapat digunakan untuk menghitung integral, baik integral tak tentu maupun integral tentu. Untuk integral tak tentu (simbolik) sudah tentu EMT menggunakan Maxima, sedangkan untuk perhitungan integral tentu EMT sudah menyediakan beberapa fungsi yang mengimplementasikan algoritma kuadratur (perhitungan integral tentu menggunakan metode numerik).

Pada notebook ini akan ditunjukkan perhitungan integral tentu dengan menggunakan Teorema Dasar Kalkulus:

$$\int_a^b f(x) \ dx = F(b) - F(a), \quad \text{dengan } F'(x) = f(x).$$

Fungsi untuk menentukan integral adalah integrate. Fungsi ini dapat digunakan untuk menentukan, baik integral tentu maupun tak tentu (jika fungsinya memiliki antiderivatif). Untuk perhitungan integral tentu fungsi integrate menggunakan metode numerik (kecuali fungsinya tidak integrabel, kita tidak akan menggunakan metode ini).

> \$showev('integrate(x^n,x))

Answering "Is n equal to -1?" with "no"

> \$showev('integrate(1/(1+x),x))

$$\int \frac{1}{x+1} \, dx = \log\left(x+1\right)$$

$$\int \frac{1}{x^2 + 1} \, dx = \arctan x$$

> \$showev('integrate(1/sqrt(1-x^2),x))

$$\int \frac{1}{\sqrt{1-x^2}} \, dx = \arcsin x$$

> \$showev('integrate(sin(x),x,0,pi))

$$\int_0^\pi \sin x \, dx = 2$$

> plot2d("sin(x)",0,2*pi):

> \$showev('integrate(sin(x),x,a,b))

$$\int_{a}^{b} \sin x \, dx = \cos a - \cos b$$

> \$showev('integrate(x^n,x,a,b))

Answering "Is n positive, negative or zero?" with "positive"

$$\int_{a}^{b} x^{n} dx = \frac{b^{n+1}}{n+1} - \frac{a^{n+1}}{n+1}$$

$$\int x^2 \sqrt{2x+1} \, dx = \frac{(2x+1)^{\frac{7}{2}}}{28} - \frac{(2x+1)^{\frac{5}{2}}}{10} + \frac{(2x+1)^{\frac{3}{2}}}{12}$$

> \$showev('integrate(x^2*sqrt(2*x+1),x,0,2))

$$\int_0^2 x^2 \sqrt{2x+1} \, dx = \frac{25^{\frac{5}{2}}}{21} - \frac{2}{105}$$

> \$ratsimp(%)

$$\int_0^2 x^2 \sqrt{2x+1} \, dx = \frac{25^{\frac{7}{2}} - 2}{105}$$

> \$showev('integrate((sin(sqrt(x)+a)*E^sqrt(x))/sqrt(x),x,0,pi^2))

$$\int_0^{\pi^2} \frac{\sin(\sqrt{x} + a) e^{\sqrt{x}}}{\sqrt{x}} dx = (-e^{\pi} - 1) \sin a + (e^{\pi} + 1) \cos a$$

> \$factor(%)

$$\int_0^{\pi^2} \frac{\sin(\sqrt{x} + a) e^{\sqrt{x}}}{\sqrt{x}} dx = (-e^{\pi} - 1) (\sin a - \cos a)$$

> function map $f(x) \&= E^{(-x^2)}$

> \$showev('integrate(f(x),x))

$$\int e^{-x^2} dx = \frac{\sqrt{\pi} \operatorname{erf}(x)}{2}$$

Fungsi f tidak memiliki antiturunan, integralnya masih memuat integral lain.

$$erf(x) = \int \frac{e^{-x^2}}{\sqrt{\pi}} dx.$$

Kita tidak dapat menggunakan teorema Dasar kalkulus untuk menghitung integral tentu fungsi tersebut jika semua batasnya berhingga. Dalam hal ini dapat digunakan metode numerik (rumus kuadratur).

Misalkan kita akan menghitung:

$$\int_0^{\pi} e^{-x^2} dx$$

> x=0:0.1:pi-0.1; plot2d(x,f(x+0.1),>bar); plot2d("f(x)",0,pi,>add):

Integral tentu

$$\int_0^{\pi} e^{-x^2} dx$$

dapat dihampiri dengan jumlah luas persegi-persegi panjang di bawah kurva y=f(x) tersebut. Langkah-langkahnya adalah sebagai berikut.

```
> t &= makelist(a,a,0,pi-0.1,0.1); // t sebagai list untuk menyimpan nilai-nilai x
> fx &= makelist(f(t[i]+0.1),i,1,length(t)); // simpan nilai-nilai f(x)
> // jangan menggunakan x sebagai list, kecuali Anda pakar Maxima!
```

Hasilnya adalah:

$$\int_0^{\pi} e^{-x^2} dx = 0.8362196102528469$$

Jumlah tersebut diperoleh dari hasil kali lebar sub-subinterval (=0.1) dan jumlah nilai-nilai f(x) untuk x = 0.1, 0.2, 0.3, ..., 3.2.

```
> 0.1*sum(f(x+0.1)) // cek langsung dengan perhitungan numerik EMT
```

0.836219610253

Untuk mendapatkan nilai integral tentu yang mendekati nilai sebenarnya, lebar sub-intervalnya dapat diperkecil lagi, sehingga daerah di bawah kurva tertutup semuanya, misalnya dapat digunakan lebar subinterval 0.001. (Silakan dicoba!)

Meskipun Maxima tidak dapat menghitung integral tentu fungsi tersebut untuk batas-batas yang berhingga, namun integral tersebut dapat dihitung secara eksak jika batas-batasnya tak hingga. Ini adalah salah satu keajaiban di dalam matematika, yang terbatas tidak dapat dihitung secara eksak, namun yang tak hingga malah dapat dihitung secara eksak.

> \$showev('integrate(f(x),x,0,inf))

$$\int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$$

Tunjukkan kebenaran hasil di atas!

Berikut adalah contoh lain fungsi yang tidak memiliki antiderivatif, sehingga integral tentunya hanya dapat dihitung dengan metode numerik.

> function f(x) &= x^x

X

х

$$\int_0^1 x^x \, dx = \int_0^1 x^x \, dx$$

```
> x=0:0.1:1-0.01; plot2d(x,f(x+0.01),>bar); plot2d("f(x)",0,1,>add):
```


Maxima gagal menghitung integral tentu tersebut secara langsung menggunakan perintah integrate. Berikut kita lakukan seperti contoh sebelumnya untuk mendapat hasil atau pendekatan nilai integral tentu tersebut.

```
> t &= makelist(a,a,0,1-0.01,0.01);
> fx &= makelist(f(t[i]+0.01),i,1,length(t));
```

$$\int_0^1 x^x \, dx = 0.7834935879025506$$

Apakah hasil tersebut cukup baik? perhatikan gambarnya.

> function
$$f(x) \&= \sin(3*x^5+7)^2$$

$$2 5$$
 $\sin (3 x + 7)$

0.542581176074

```
0
4/5
1 4/5
1 1 4/5
1
- (((6 gamma_incomplete(-, 6 I) + 6 gamma_incomplete(-, - 6 I)))
5
5
5

4/5
1
sin(14) + (6 I gamma_incomplete(-, 6 I)
5
4/5
- 6 I gamma_incomplete(-, - 6 I)) cos(14)) sin(--) - 60)/120
```

> &float(%)

> \$showev('integrate(x*exp(-x),x,0,1)) // Integral tentu (eksak)

$$\int_0^1 x e^{-x} dx = 1 - 2e^{-1}$$

Aplikasi Integral Tentu

```
> plot2d("x^3-x",-0.1,1.1); plot2d("-x^2",>add); ...
>b=solve("x^3-x+x^2",0.5); x=linspace(0,b,200); xi=flipx(x); ...
>plot2d(x|xi,x^3-x|-xi^2,>filled,style="|",fillcolor=1,>add): // Plot daerah antara 2 kurva
```


> a=solve("x^3-x+x^2",0), b=solve("x^3-x+x^2",1) // absis titik-titik potong kedua kurva

0.0758191713542

Hasil tersebut akan kita bandingkan dengan perhitungan secara analitik.

> a &= solve(
$$(-x^2)-(x^3-x)$$
,x); \$a // menentukan absis titik potong kedua kurva secara eksak

$$x = \frac{-\sqrt{5} - 1}{2}, x = \frac{\sqrt{5} - 1}{2}, x = 0$$

$$\int_0^{\frac{\sqrt{5}-1}{2}} -x^3 - x^2 + x \, dx = \frac{13 - 5^{\frac{3}{2}}}{24}$$

$$\int_{0.0}^{0.6180339887498949} -1.0 x^3 - 1.0 x^2 + x \, dx = 0.07581917135421037$$

Hitunglah panjang kurva berikut ini dan luas daerah di dalam kurva tersebut.

$$\gamma(t) = (r(t)\cos(t), r(t)\sin(t))$$

dengan

$$r(t) = 1 + \frac{\sin(3t)}{2}, \quad 0 \le t \le 2\pi.$$

- > t=linspace(0,2pi,1000); r=1+sin(3*t)/2; x=r*cos(t); y=r*sin(t); ...
- > plot2d(x,y,>filled,fillcolor=red,style="/",r=1.5): // Kita gambar kurvanya terlebih dahulu

> function r(t) &=
$$1+\sin(3*t)/2$$
; \$'r(t)=r(t)

$$r\left(t\right) = \frac{\sin\left(3\,t\right)}{2} + 1$$

> function
$$fx(t) &= r(t)*cos(t): $'fx(t)=fx(t)$$

$$fx(t) = \cos t \left(\frac{\sin(3t)}{2} + 1 \right)$$

> function fy(t) &=
$$r(t)*sin(t)$$
; $fy(t)=fy(t)$

$$fy(t) = \sin t \left(\frac{\sin(3t)}{2} + 1 \right)$$

$$ds(t) = \frac{\sqrt{4\cos(6t) + 4\sin(3t) + 9}}{2}$$

$$\frac{\int_0^{2\pi} \sqrt{4\cos(6x) + 4\sin(3x) + 9} \, dx}{2}$$

Maxima gagal melakukan perhitungan eksak integral tersebut.

Berikut kita hitung integralnya secara umerik dengan perintah EMT.

9.0749467823

Spiral Logaritmik

$$x = e^{ax}\cos x, \ y = e^{ax}\sin x.$$

```
> a=0.1; plot2d("exp(a*x)*cos(x)","exp(a*x)*sin(x)",r=2,xmin=0,xmax=2*pi):
```


> &kill(a) // hapus expresi a

> function
$$fx(t) \&= exp(a*t)*cos(t); $'fx(t)=fx(t)$$

$$fx(t) = e^{at} \cos t$$

> function fy(t) &=
$$\exp(a*t)*\sin(t)$$
; $fy(t)=fy(t)$

$$fy(t) = e^{at} \sin t$$

$$df(t) = \sqrt{a^2 + 1} e^{at}$$

$$\sqrt{a^2 + 1} \left(\frac{e^{2\pi a}}{a} - \frac{1}{a} \right)$$

Soal:

Tunjukkan bahwa keliling lingkaran dengan jari-jari r adalah K=2.pi.r.

Berikut adalah contoh menghitung panjang parabola.

> plot2d("x^2",xmin=-1,xmax=1):

> \$showev('integrate(sqrt(1+diff(x^2,x)^2),x,-1,1))

$$\int_{-1}^{1} \sqrt{4x^2 + 1} \, dx = \frac{\sinh 2 + 2\sqrt{5}}{2}$$

> \$float(%)

$$\int_{-1.0}^{1.0} \sqrt{4.0 \, x^2 + 1.0} \, dx = 2.957885715089195$$

```
> x=-1:0.2:1; y=x^2; plot2d(x,y); ...
> plot2d(x,y,points=1,style="o#",add=1):
```


Panjang tersebut dapat dihampiri dengan menggunakan jumlah panjang ruas-ruas garis yang menghubungkan titik-titik pada parabola tersebut.

2.95191957027

Hasilnya mendekati panjang yang dihitung secara eksak. Untuk mendapatkan hampiran yang cukup akurat, jarak antar titik dapat diperkecil, misalnya 0.1, 0.05, 0.01, dan seterusnya. Cobalah Anda ulangi perhitungannya dengan nilai-nilai tersebut.

Koordinat Kartesius

Berikut diberikan contoh perhitungan panjang kurva menggunakan koordinat Kartesius. Kita akan hitung panjang kurva dengan persamaan implisit:

$$x^3 + y^3 - 3xy = 0.$$

$$> z \&= x^3+y^3-3*x*y; $z$$

$$y^3 - 3xy + x^3$$

> plot2d(z,r=2,level=0,n=100):

Kita tertarik pada kurva di kuadran pertama.

> plot2d(z,a=0,b=2,c=0,d=2,level=[-10;0],n=100,contourwidth=3,style="/"):

Kita selesaikan persamaannya untuk x.

$$\left[x = \frac{3l}{l^3 + 1}, x = 0\right]$$

$$\left[x = \frac{3l}{l^3 + 1}, x = 0\right]$$

Kita gunakan solusi tersebut untuk mendefinisikan fungsi dengan Maxima.

$$f\left(l\right) = \frac{3\,l}{l^3 + 1}$$

Fungsi tersebut juga dapat digunaka untuk menggambar kurvanya. Ingat, bahwa fungsi tersebut adalah nilai x dan nilai $y=l^*x$, yakni x=f(l) dan $y=l^*f(l)$.

> plot2d(&f(x),&x*f(x),xmin=-0.5,xmax=2,a=0,b=2,c=0,d=2,r=1.5):

Elemen panjang kurva adalah:

$$ds = \sqrt{f'(l)^2 + (lf'(l) + f(l))^2}.$$

> function $ds(1) &= ratsimp(sqrt(diff(f(1),1)^2+diff(1*f(1),1)^2)); $'ds(1)=ds(1)$

$$ds(l) = \frac{\sqrt{9 \, l^8 + 36 \, l^6 - 36 \, l^5 - 36 \, l^3 + 36 \, l^2 + 9}}{\sqrt{l^{12} + 4 \, l^9 + 6 \, l^6 + 4 \, l^3 + 1}}$$

> \$integrate(ds(1),1,0,1)

$$\int_0^1 \frac{\sqrt{9 \, l^8 + 36 \, l^6 - 36 \, l^5 - 36 \, l^3 + 36 \, l^2 + 9}}{\sqrt{l^{12} + 4 \, l^9 + 6 \, l^6 + 4 \, l^3 + 1}} \, dl$$

Integral tersebut tidak dapat dihitung secara eksak menggunakan Maxima. Kita hitung integral etrsebut secara numerik dengan Euler. Karena kurva simetris, kita hitung untuk nilai variabel integrasi dari 0 sampai 1, kemudian hasilnya dikalikan 2.

> 2*integrate("ds(x)",0,1)

4.91748872168

> 2*romberg(&ds(x),0,1)// perintah Euler lain untuk menghitung nilai hampiran integral yang sama

4.91748872168

Perhitungan di datas dapat dilakukan untuk sebarang fungsi x dan y dengan mendefinisikan fungsi EMT, misalnya kita beri nama panjangkurva. Fungsi ini selalu memanggil Maxima untuk menurunkan fungsi yang diberikan.

```
> function panjangkurva(fx,fy,a,b) ...

ds=mxm("sqrt(diff(@fx,x)^2+diff(@fy,x)^2)");
  return romberg(ds,a,b);
  endfunction

> panjangkurva("x","x^2",-1,1) // cek untuk menghitung panjang kurva parabola sebelumnya
2.95788571509
```

Bandingkan dengan nilai eksak di atas.

```
> 2*panjangkurva(mxm("f(x)"),mxm("x*f(x)"),0,1) // cek contoh terakhir, bandingkan hasilnya!
```

4.91748872168

Kita hitung panjang spiral Archimides berikut ini dengan fungsi tersebut.

> plot2d("x*cos(x)","x*sin(x)",xmin=0,xmax=2*pi,square=1):

> panjangkurva("x*cos(x)","x*sin(x)",0,2*pi)

Berikut kita definisikan fungsi yang sama namun dengan Maxima, untuk perhitungan eksak.

done

> function
$$ds(fx,fy)$$
 &&= $sqrt(diff(fx,x)^2+diff(fy,x)^2)$

$$2 2$$
sqrt(diff (fy, x) + diff (fx, x))

> sol &= ds(x*cos(x),x*sin(x)); \$sol // Kita gunakan untuk menghitung panjang kurva terakhir di atas

$$\sqrt{\left(\cos x - x\,\sin x\right)^2 + \left(\sin x + x\,\cos x\right)^2}$$

> \$sol | trigreduce | expand, \$integrate(%,x,0,2*pi), %()

$$\frac{\sinh (2\pi) + 2\pi \sqrt{4\pi^2 + 1}}{2}$$

$$\frac{\mathrm{asinh} \; (2 \, \pi) + 2 \, \pi \, \sqrt{4 \, \pi^2 + 1}}{2}$$

21.2562941482

Hasilnya sama dengan perhitungan menggunakan fungsi EMT.

Berikut adalah contoh lain penggunaan fungsi Maxima tersebut.

> plot2d("3*x^2-1","3*x^3-1",xmin=-1/sqrt(3),xmax=1/sqrt(3),square=1):

$$3x\sqrt{9x^2+4}$$

$$1.154700538379252 \, sol = 1.154700538379252 \, sol$$

$$r (t - sin(t))$$

$$r (1 - cos(t))$$

Berikut kita gambar sikloid untuk r=1.

```
> ex &= x-sin(x); ey &= 1-cos(x); aspect(1);
> plot2d(ex,ey,xmin=0,xmax=4pi,square=1); ...
> plot2d("2+cos(x)","1+sin(x)",xmin=0,xmax=2pi,>add,color=blue); ...
> plot2d([2,ex(2)],[1,ey(2)],color=red,>add); ...
> plot2d(ex(2),ey(2),>points,>add,color=red); ...
> plot2d("2pi+cos(x)","1+sin(x)",xmin=0,xmax=2pi,>add,color=blue); ...
> plot2d([2pi,ex(2pi)],[1,ey(2pi)],color=red,>add); ...
> plot2d(ex(2pi),ey(2pi),>points,>add,color=red):
```


Berikut dihitung panjang lintasan untuk 1 putaran penuh. (Jangan salah menduga bahwa panjang lintasan 1 putaran penuh sama dengan keliling lingkaran!)

$$\sqrt{\sin^2 x + \cos^2 x - 2\cos x + 1} = \sqrt{2 - 2\cos x}$$

> ds &= trigsimp(ds); \$ds

$$\sqrt{2-2\cos x}$$

> \$showev('integrate(ds,x,0,2*pi)) // hitung panjang sikloid satu putaran penuh

$$\int_0^{2\pi} \sqrt{2 - 2\cos x} \, dx = 8$$

> integrate(mxm("ds"),0,2*pi) // hitung secara numerik

8

> romberg(mxm("ds"),0,2*pi) // cara lain hitung secara numerik

Perhatikan, seperti terlihat pada gambar, panjang sikloid lebih besar daripada keliling lingkarannya, yakni:

 2π .

Kurvatur (Kelengkungan) Kurva

Aslinya, kelengkungan kurva diferensiabel (yakni, kurva mulus yang tidak lancip) di titik P didefinisikan melalui lingkaran oskulasi (yaitu, lingkaran yang melalui titik P dan terbaik memperkirakan, paling banyak menyinggung kurva di sekitar P). Pusat dan radius kelengkungan kurva di P adalah pusat dan radius lingkaran oskulasi. Kelengkungan adalah kebalikan dari radius kelengkungan:

$$\kappa = \frac{1}{R}$$

dengan R adalah radius kelengkungan. (Setiap lingkaran memiliki kelengkungan ini pada setiap titiknya, dapat diartikan, setiap lingkaran berputar 2pi sejauh 2piR.)

Definisi ini sulit dimanipulasi dan dinyatakan ke dalam rumus untuk kurva umum. Oleh karena itu digunakan definisi lain yang ekivalen.

Definisi Kurvatur dengan Fungsi Parametrik Panjang Kurva

Setiap kurva diferensiabel dapat dinyatakan dengan persamaan parametrik terhadap panjang kurva s:

$$\gamma(s) = (x(s), \ y(s)),$$

dengan x dan y adalah fungsi riil yang diferensiabel, yang memenuhi:

$$\|\gamma'(s)\| = \sqrt{x'(s)^2 + y'(s)^2} = 1.$$

Ini berarti bahwa vektor singgung

$$\mathbf{T}(s) = (x'(s), \ y'(s))$$

memiliki norm 1 dan merupakan vektor singgung satuan.

Apabila kurvanya memiliki turunan kedua, artinya turunan kedua x dan y ada, maka T'(s) ada. Vektor ini merupakan normal kurva yang arahnya menuju pusat kurvatur, norm-nya merupakan nilai kurvatur (kelengkungan):

$$\mathbf{T}(s) = \gamma'(s),$$

$$\mathbf{T}^{2}(s) = 1 \text{ (konstanta)} \Rightarrow \mathbf{T}'(s) \cdot \mathbf{T}(s) = 0$$

$$\kappa(s) = \|\mathbf{T}'(s)\| = \|\gamma''(s)\| = \sqrt{x''(s)^{2} + y''(s)^{2}}.$$

Nilai

$$R(s) = \frac{1}{\kappa(s)}$$

disebut jari-jari (radius) kelengkungan kurva.

Bilangan riil

$$k(s) = \pm \kappa(s)$$

disebut nilai kelengkungan bertanda.

Contoh:

Akan ditentukan kurvatur lingkaran

$$x = r \cos t, \ y = r \sin t.$$

```
> fx &= r*cos(t); fy &=r*sin(t);
> &assume(t>0,r>0); s &=integrate(sqrt(diff(fx,t)^2+diff(fy,t)^2),t,0,t); s // elemen panjang kurva,
```

r t

```
> &kill(s); fx &= r*cos(s/r); fy &=r*sin(s/r); // definisi ulang persamaan parametrik terhadap s den
> k &= trigsimp(sqrt(diff(fx,s,2)^2+diff(fy,s,2)^2)); $k // nilai kurvatur lingkaran dengan mengguna
```

Untuk representasi parametrik umum, misalkan

$$x = x(t), \ y = y(t)$$

merupakan persamaan parametrik untuk kurva bidang yang terdiferensialkan dua kali. Kurvatur untuk kurva tersebut didefinisikan sebagai

$$\kappa = \frac{d\phi}{ds} = \frac{\frac{d\phi}{dt}}{\frac{ds}{dt}} \quad (\phi \text{ adalah sudut kemiringan garis singgung dan } s \text{ adalah panjang kurva})$$

$$= \frac{\frac{d\phi}{dt}}{\sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2}} = \frac{\frac{d\phi}{dt}}{\sqrt{x'(t)^2 + y'(t)^2}}.$$

Selanjutnya, pembilang pada persamaan di atas dapat dicari sebagai berikut.

$$\sec^{2} \phi \frac{d\phi}{dt} = \frac{d}{dt} (\tan \phi) = \frac{d}{dt} \left(\frac{dy}{dx} \right) = \frac{d}{dt} \left(\frac{dy/dt}{dx/dt} \right) = \frac{d}{dt} \left(\frac{y'(t)}{x'(t)} \right) = \frac{x'(t)y''(t) - x''(t)y'(t)}{x'(t)^{2}}.$$

$$\frac{d\phi}{dt} = \frac{1}{\sec^{2} \phi} \frac{x'(t)y''(t) - x''(t)y'(t)}{x'(t)^{2}}$$

$$= \frac{1}{1 + \tan^{2} \phi} \frac{x'(t)y''(t) - x''(t)y'(t)}{x'(t)^{2}}$$

$$= \frac{1}{1 + \left(\frac{y'(t)}{x'(t)}\right)^{2}} \frac{x'(t)y''(t) - x''(t)y'(t)}{x'(t)^{2}}$$

$$= \frac{x'(t)y''(t) - x''(t)y'(t)}{x'(t)^{2} + y'(t)^{2}}.$$

Jadi, rumus kurvatur untuk kurva parametrik

$$x = x(t), \ y = y(t)$$

adalah

$$\kappa(t) = \frac{x'(t)y''(t) - x''(t)y'(t)}{(x'(t)^2 + y'(t)^2)^{3/2}}.$$

Jika kurvanya dinyatakan dengan persamaan parametrik pada koordinat kutub

$$x = r(\theta)\cos\theta, \ y = r(\theta)\sin\theta,$$

maka rumus kurvaturnya adalah

$$\kappa(\theta) = \frac{r(\theta)^2 + 2r'(\theta)^2 - r(\theta)r''(\theta)}{(r'(\theta)^2 + r'(\theta)^2)^{3/2}}.$$

(Silakan Anda turunkan rumus tersebut!)

Contoh:

Lingkaran dengan pusat (0,0) dan jari-jari r dapat dinyatakan dengan persamaan parametrik

$$x = r \cos t, \ y = r \sin t.$$

Nilai kelengkungan lingkaran tersebut adalah

$$\kappa(t) = \frac{x'(t)y''(t) - x''(t)y'(t)}{(x'(t)^2 + y'(t)^2)^{3/2}} = \frac{r^2}{r^3} = \frac{1}{r}.$$

Hasil cocok dengan definisi kurvatur suatu kelengkungan.

Kurva

$$y = f(x)$$

dapat dinyatakan ke dalam persamaan parametrik

$$x = t$$
, $y = f(t)$, dengan $x'(t) = 1$, $x''(t) = 0$,

sehingga kurvaturnya adalah

$$\kappa(t) = \frac{y''(t)}{(1 + y'(t)^2)^{3/2}}.$$

Contoh:

Akan ditentukan kurvatur parabola

$$y = ax^2 + bx + c.$$

> function
$$f(x) &= a*x^2+b*x+c; $y=f(x)$$

$$y = ax^2 + bx + c$$

$$k(x) = \frac{2}{\left((2x+1)^2+1\right)^{\frac{3}{2}}}$$

> function f(x) &= x^2+x+1; \$y=f(x) // akan kita plot kelengkungan parabola untuk a=b=c=1

$$y = x^2 + x + 1$$

> function $k(x) &= (diff(f(x),x,2))/(1+diff(f(x),x)^2)^(3/2); $'k(x)=k(x) // kelengkungan parabola$

$$k(x) = \frac{2}{\left(\left(2x+1\right)^2+1\right)^{\frac{3}{2}}}$$

Berikut kita gambar parabola tersebut beserta kurva kelengkungan, kurva jari-jari kelengkungan dan salah satu lingkaran oskulasi di titik puncak parabola. Perhatikan, puncak parabola dan jari-jari lingkaran oskulasi di puncak parabola adalah

$$(-1/2, 3/4), 1/k(2) = 1/2,$$

```
> plot2d(["f(x)", "k(x)"],-2,1, color=[blue,red]); plot2d("1/k(x)",-1.5,1,color=green,>add); ... > plot2d("-1/2+1/k(-1/2)*cos(x)","5/4+1/k(-1/2)*sin(x)",xmin=0,xmax=2pi,>add,color=blue):
```


Untuk kurva yang dinyatakan dengan fungsi implisit

$$F(x,y) = 0$$

dengan turunan-turunan parsial

$$F_x = \frac{\partial F}{\partial x}, \ F_y = \frac{\partial F}{\partial y}, \ F_{xy} = \frac{\partial}{\partial y} \left(\frac{\partial F}{\partial x} \right), \ F_{xx} = \frac{\partial}{\partial x} \left(\frac{\partial F}{\partial x} \right), \ F_{yy} = \frac{\partial}{\partial y} \left(\frac{\partial F}{\partial y} \right),$$

berlaku

$$F_x dx + F_y dy = 0$$
 atau $\frac{dy}{dx} = -\frac{F_x}{F_y}$,

sehingga kurvaturnya adalah

$$\kappa = \frac{F_y^2 F_{xx} - 2F_x F_y F_{xy} + F_x^2 F_{yy}}{\left(F_x^2 + F_y^2\right)^{3/2}}.$$

(Silakan Anda turunkan sendiri!)

Contoh 1:

Parabola

$$y = ax^2 + bx + c$$

dapat dinyatakan ke dalam persamaan implisit

$$ax^2 + bx + c - y = 0.$$

> function
$$F(x,y) \&=a*x^2+b*x+c-y$$
; $F(x,y)$

$$-y + ax^2 + bx + c$$

> Fx &= diff(
$$F(x,y),x$$
), Fxx &=diff($F(x,y),x,2$), Fy &=diff($F(x,y),y$), Fxy &=diff(diff($F(x,y),x$), y), Fxx &=diff($F(x,y),x$), Fxx &=diff($F(x,y),x$)

> function k(x) &= $(Fy^2*Fxx-2*Fx*Fy*Fxy+Fx^2*Fyy)/(Fx^2+Fy^2)^(3/2)$; \$'k(x)=k(x) // kurvatur parabo

$$k(x) = \frac{2a}{\left((2ax+b)^2+1\right)^{\frac{3}{2}}}$$

Hasilnya sama dengan sebelumnya yang menggunakan persamaan parabola biasa. Latihan

- Bukalah buku Kalkulus.
- Cari dan pilih beberapa (paling sedikit 5 fungsi berbeda tipe/bentuk/jenis) fungsi dari buku tersebut, kemudian definisikan di EMT pada baris-baris perintah berikut (jika perlu tambahkan lagi).
- Untuk setiap fungsi, tentukan anti turunannya (jika ada), hitunglah integral tentu dengan batas-batas yang menarik (Anda tentukan sendiri), seperti contoh-contoh tersebut.
- Lakukan hal yang sama untuk fungsi-fungsi yang tidak dapat diintegralkan (cari sedikitnya 3 fungsi).
- Gambar grafik fungsi dan daerah integrasinya pada sumbu koordinat yang sama.
- Gunakan integral tentu untuk mencari luas daerah yang dibatasi oleh dua kurva yang berpotongan di dua titik. (Cari dan gambar kedua kurva dan arsir (warnai) daerah yang dibatasi oleh keduanya.)
- Gunakan integral tentu untuk menghitung volume benda putar kurva y=f(x) yang diputar mengelilingi sumbu x dari x=a sampai x=b, yakni

$$V = \int_a^b \pi(f(x))^2 dx.$$

(Pilih fungsinya dan gambar kurva dan benda putar yang dihasilkan. Anda dapat mencari contoh-contoh bagaimana cara menggambar benda hasil perputaran suatu kurva.)

- Gunakan integral tentu untuk menghitung panjang kurva y=f(x) dari x=a sampai x=b dengan menggunakan rumus:

$$S = \int_{a}^{b} \sqrt{1 + (f'(x))^2} \ dx.$$

(Pilih fungsi dan gambar kurvanya.)

- Apabila fungsi dinyatakan dalam koordinat kutub x=f(r,t), y=g(r,t), r=h(t), x=a bersesuaian dengan t=t0 dan x=b bersesuaian dengan t=t1, maka rumus di atas akan menjadi:

$$S = \int_{t_0}^{t_1} \sqrt{x'(t)^2 + y'(t)^2} dt.$$

- Pilih beberapa kurva menarik (selain lingkaran dan parabola) dari buku kalkulus. Nyatakan setiap kurva tersebut dalam bentuk:
 - a. koordinat Kartesius (persamaan y=f(x))
 - b. koordinat kutub (r=r(theta))
 - c. persamaan parametrik x=x(t), y=y(t)
 - d. persamaan implit F(x,y)=0
- Tentukan kurvatur masing-masing kurva dengan menggunakan keempat representasi tersebut (hasilnya harus sama).
- Gambarlah kurva asli, kurva kurvatur, kurva jari-jari lingkaran oskulasi, dan salah satu lingkaran oskulasinya.
 - 1. Tentukan panjang kurva dan volume benda putar kurva y=f(x) yang

diputar mengelilingi sumbu x dari x=0 sampai x=4

$$f(x) = x^3$$

> function $f(x)&=x^3; f(x)$

$$\pi \int_{0}^{4} x^{6} dx = \frac{16384 \pi}{7}$$

turunan fungsi f(x)

> function
$$df(x) &= limit((f(x+h)-f(x))/h,h,0); &df(x) // df(x) = f'(x)$$

$$3x^2$$

panjang kurva

$$\int_0^4 \sqrt{9x^4 + 1} \, dx = \int_0^4 \sqrt{9x^4 + 1} \, dx$$

grafik benda putar mengelilingi sumbu-x

2. Tentukan panjang kurva dan volume benda putar kurva y=f(x) yang

diputar mengelilingi sumbu x dari x=-1 sampai x=2

$$f(x) = 3x^2 + 2x + 1$$

volume benda putar

> function
$$f(x)&=3*x^2+2*x+1$$
; $f(x)$

$$3x^2 + 2x + 1$$

> \$showev('integrate(pi*(f(x))^2,x,-1,2))

$$\pi \int_{-1}^{2} (3x^2 + 2x + 1)^2 dx = \frac{717\pi}{5}$$

menentukan turunan fungsi f(x)

> function
$$df(x) \&= limit((f(x+h)-f(x))/h,h,0); \&df(x) // df(x) = f'(x)$$

$$6x + 2$$

menentukan panjang kurva

$$\int_{-1}^{2} \sqrt{(6x+2)^2 + 1} \, dx = \frac{\sinh 14 + 14\sqrt{197}}{12} + \frac{\sinh 4 + 4\sqrt{17}}{12}$$

menggambar plot benda putar mengelilingi sumbu-x

> plot3d("3x^2+2x+1",2,-1,2,rotate=2):

3. Integral tentu dengan batas [-1,1] dari fungsi berikut

$$f(x) = x^2 + 8x - 9$$

> function map $f(x) &= (x^2+8*x-9); $f(x)$

$$x^2 + 8x - 9$$

mencari nilai dari integral tentu fungsi f(x) dengan batas [-1,1]

> \$showev('integrate(f(x), x, -1, 1))

$$\int_{-1}^{1} x^2 + 8x - 9 \, dx = -\frac{52}{3}$$

4. Tentukan panjang kurva dan volume benda putar kurva y=f(x) yang diputar mengelilingi sumbu x dari x=0 sampai x=2

$$f(x) = 4x^2 + 1$$

$$\pi \int_0^2 (x^2 + 8x - 9)^2 dx = \frac{1006 \pi}{15}$$

> function
$$df(x) &= limit((f(x+h)-f(x))/h,h,0); $df(x) // df(x) = f'(x)$$

$$2x + 8$$

menentukan pangjang kurva

$$\int_0^2 \sqrt{(2x+8)^2 + 1} \, dx = \frac{\sinh 12 + 12\sqrt{145}}{4} - \frac{\sinh 8 + 8\sqrt{65}}{4}$$

menggambar plot

5. Tentukan integral fungsi berikut.

$$f(x) = \frac{\sqrt{2x}}{x} + \frac{3}{x^5}$$

$$\frac{\sqrt{2}}{\sqrt{x}} + \frac{3}{x^5}$$

> $\frac{(((sqrt(2*x))/x) + (3/x^5)),x))}{}$

$$\int \frac{\sqrt{2}}{\sqrt{x}} + \frac{3}{x^5} dx = 2^{\frac{3}{2}} \sqrt{x} - \frac{3}{4x^4}$$

> x=0:0.1:5-0.1; plot2d(x,f(x+0.1),>bar); plot2d("f(x)",0,5,>add):

(Catatan: bagian ini belum lengkap. Anda dapat membaca contoh-contoh pengguanaan EMT dan Maxima untuk menghitung limit barisan, rumus jumlah parsial suatu deret, jumlah tak hingga suatu deret konvergen, dan sebagainya. Anda dapat mengeksplor contoh-contoh di EMT atau perbagai panduan penggunaan Maxima di software Maxima atau dari Internet.)

Barisan dapat didefinisikan dengan beberapa cara di dalam EMT, di antaranya:

- dengan cara yang sama seperti mendefinisikan vektor dengan elemen-elemen beraturan (menggunakan titik dua ":");
- menggunakan perintah "sequence" dan rumus barisan (suku ke -n);
- menggunakan perintah "iterate" atau "niterate";
- menggunakan fungsi Maxima "create_list" atau "makelist" untuk menghasilkan barisan simbolik;
- menggunakan fungsi biasa yang inputnya vektor atau barisan;
- menggunakan fungsi rekursif.

EMT menyediakan beberapa perintah (fungsi) terkait barisan, yakni:

- sum: menghitung jumlah semua elemen suatu barisan
- cumsum: jumlah kumulatif suatu barisan
- differences: selisih antar elemen-elemen berturutan

EMT juga dapat digunakan untuk menghitung jumlah deret berhingga maupun deret tak hingga, dengan menggunakan perintah (fungsi) "sum". Perhitungan dapat dilakukan secara numerik maupun simbolik dan eksak.

Berikut adalah beberapa contoh perhitungan barisan dan deret menggunakan EMT.

> 1:10 // barisan sederhana

[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29]

EMT menyediakan fungsi iterate("g(x)", x0, n) untuk melakukan iterasi

$$x_{k+1} = g(x_k), \ x_0 = x_0, k = 1, 2, 3, ..., n.$$

Berikut ini disajikan contoh-contoh penggunaan iterasi dan rekursi dengan EMT. Contoh pertama menunjukkan pertumbuhan dari nilai awal 1000 dengan laju pertambahan 5%, selama 10 periode.

```
> q=1.05; iterate("x*q",1000,n=10)'
```

1000

1050

1102.5

1157.63

1215.51

1276.28

1340.1

1407.1

1477.46

1551.33

1628.89

Contoh berikutnya memperlihatkan bahaya menabung di bank pada masa sekarang! Dengan bunga tabungan sebesar 6% per tahun atau 0.5% per bulan dipotong pajak 20%, dan biaya administrasi 10000 per bulan, tabungan sebesar 1 juta tanpa diambil selama sekitar 10 tahunan akan habis diambil oleh bank!

```
> r=0.005; plot2d(iterate("(1+0.8*r)*x-10000",1000000,n=130)):
```


Silakan Anda coba-coba, dengan tabungan minimal berapa agar tidak akan habis diambil oleh bank dengan ketentuan bunga dan biaya administrasi seperti di atas.

Berikut adalah perhitungan minimal tabungan agar aman di bank dengan bunga sebesar r
 dan biaya administrasi a, pajak bunga 20%.

```
> $solve(0.8*r*A-a,A), $% with [r=0.005, a=10]
```

$$[A = 2500.0]$$

Berikut didefinisikan fungsi untuk menghitung saldo tabungan, kemudian dilakukan iterasi.

```
> function saldo(x,r,a) := round((1+0.8*r)*x-a,2);
> iterate({{"saldo",0.005,10}},1000,n=6)
```

```
[1000, 994, 987.98, 981.93, 975.86, 969.76, 963.64]
```

```
> iterate({{\"saldo",0.005,10}},2000,n=6)
```

```
[2000, 1998, 1995.99, 1993.97, 1991.95, 1989.92, 1987.88]
```

```
> iterate({{"saldo",0.005,10}},2500,n=6)
```

```
[2500, 2500, 2500, 2500, 2500, 2500, 2500]
```

Tabungan senilai 2,5 juta akan aman dan tidak akan berubah nilai (jika tidak ada penarikan), sedangkan jika tabungan awal kurang dari 2,5 juta, lama kelamaan akan berkurang meskipun tidak pernah dilakukan penarikan uang tabungan.

```
> iterate({{"saldo",0.005,10}},3000,n=6)
```

```
[3000, 3002, 3004.01, 3006.03, 3008.05, 3010.08, 3012.12]
```

Tabungan yang lebih dari 2,5 juta baru akan bertambah jika tidak ada penarikan.

Untuk barisan yang lebih kompleks dapat digunakan fungsi "sequence()". Fungsi ini menghitung nilainilai x[n] dari semua nilai sebelumnya, x[1],...,x[n-1] yang diketahui. Berikut adalah contoh barisan Fibonacci.

berikut adalah conton barisah Fibonacci.

$$x_n = x_{n-1} + x_{n-2}, \quad x_1 = 1, \quad x_2 = 1$$

```
> sequence(x[n-1]+x[n-2], [1,1],15)
```

```
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610]
```

Barisan Fibonacci memiliki banyak sifat menarik, salah satunya adalah akar pangkat ke-n suku ke-n akan konvergen ke pecahan emas:

$$\frac{\sqrt{5}+1}{2} = 1.618033988749895$$

> plot2d(sequence("x[n-1]+x[n-2]",[1,1],250)^(1/(1:250))):

Barisan yang sama juga dapat dihasilkan dengan menggunakan loop.

```
> x=ones(500); for k=3 to 500; x[k]=x[k-1]+x[k-2]; end;
```

Rekursi dapat dilakukan dengan menggunakan rumus yang tergantung pada semua elemen sebelumnya. Pada contoh berikut, elemen ke-n merupakan jumlah (n-1) elemen sebelumnya, dimulai dengan 1 (elemen ke-1). Jelas, nilai elemen ke-n adalah $2^{(n-2)}$, untuk n=2, 4, 5, ...

Selain menggunakan ekspresi dalam x dan n, kita juga dapat menggunakan fungsi.

Pada contoh berikut, digunakan iterasi

$$x_n = A \cdot x_{n-1},$$

dengan A suatu matriks 2x2, dan setiap x[n] merupakan matriks/vektor 2x1.

```
> A=[1,1;1,2]; function suku(x,n) := A.x[,n-1]
> sequence("suku",[1;1],6)
```

Real 2×6 matrix

1	2	5	13	
1	3	8	21	

Hasil yang sama juga dapat diperoleh dengan menggunakan fungsi perpangkatan matriks "matrix-power()". Cara ini lebih cepat, karena hanya menggunakan perkalian matriks sebanyak log_2(n).

$$x_n = A.x_{n-1} = A^2.x_{n-2} = A^3.x_{n-3} = \dots = A^{n-1}.x_1.$$

> sequence("matrixpower(A,n).[1;1]",1,6)

Real 2 x 6 matrix

 1
 5
 13
 34
 ..

 1
 8
 21
 55
 ..

Spiral Theodorus (spiral segitiga siku-siku) dapat digambar secara rekursif. Rumus rekursifnya adalah:

$$x_n = \left(1 + \frac{i}{\sqrt{n-1}}\right) x_{n-1}, \quad x_1 = 1,$$

yang menghasilkan barisan bilangan kompleks.

```
> function g(n) := 1+I/sqrt(n)
```

Rekursinya dapat dijalankan sebanyak 17 untuk menghasilkan barisan 17 bilangan kompleks, kemudian digambar bilangan-bilangan kompleksnya.

```
> x=sequence("g(n-1)*x[n-1]",1,17); plot2d(x,r=3.5); textbox(latex("Spiral\ Theodorus"),0.4):
```


Selanjutnya dihubungan titik $\boldsymbol{0}$ dengan titik-titik kompleks tersebut menggunakan loop.

```
> for i=1:cols(x); plot2d([0,x[i]],>add); end:
```


Spiral tersebut juga dapat didefinisikan menggunakan fungsi rekursif, yang tidak memmerlukan indeks dan bilangan kompleks. Dalam hal ini diigunakan vektor kolom pada bidang.

```
> function gstep (v) ...

w=[-v[2];v[1]];
```

return v+w/norm(w);

endfunction

Jika dilakukan iterasi 16 kali dimulai dari [1;0] akan didapatkan matriks yang memuat vektor-vektor dari setiap iterasi.

```
> x=iterate("gstep",[1;0],16); plot2d(x[1],x[2],r=3.5,>points):
```


Terkadang kita ingin melakukan iterasi sampai konvergen. Apabila iterasinya tidak konvergen setelah ditunggu lama, Anda dapat menghentikannya dengan menekan tombol [ESC].

```
> iterate("cos(x)",1) // iterasi x(n+1)=cos(x(n)), dengan x(0)=1.
```

0.739085133216

Iterasi tersebut konvergen ke penyelesaian persamaan

$$x = \cos(x)$$
.

Iterasi ini juga dapat dilakukan pada interval, hasilnya adalah barisan interval yang memuat akar tersebut.

```
> hasil := iterate("cos(x)",~1,2~) //iterasi x(n+1)=cos(x(n)), dengan interval awal (1, 2)
```

~0.739085133211,0.7390851332133~

Jika interval hasil tersebut sedikit diperlebar, akan terlihat bahwa interval tersebut memuat akar persamaan $x=\cos(x)$.

```
> h=expand(hasil,100), cos(h) << h</pre>
```

```
~0.73908513309,0.73908513333~
1
```

Iterasi juga dapat digunakan pada fungsi yang didefinisikan.

```
> function f(x) := (x+2/x)/2
```

Iterasi x(n+1)=f(x(n)) akan konvergen ke akar kuadrat 2.

```
> iterate("f",2), sqrt(2)
```

- 1.41421356237 1.41421356237
- Jika pada perintah iterate diberikan tambahan parameter n, maka hasil iterasinya akan ditampilkan mulai dari iterasi pertama sampai ke-n.

```
> iterate("f",2,5)
```

Untuk iterasi ini tidak dapat dilakukan terhadap interval.

```
> niterate("f",~1,2~,5)
```

$$[~1,2^{\circ},~1,2^{\circ},~1,2^{\circ},~1,2^{\circ},~1,2^{\circ},~1,2^{\circ}]$$

Perhatikan, hasil iterasinya sama dengan interval awal. Alasannya adalah perhitungan dengan interval bersifat terlalu longgar. Untuk meingkatkan perhitungan pada ekspresi dapat digunakan pembagian intervalnya, menggunakan fungsi ieval().

```
> function s(x) := ieval("(x+2/x)/2",x,10)
```

Selanjutnya dapat dilakukan iterasi hingga diperoleh hasil optimal, dan intervalnya tidak semakin mengecil. Hasilnya berupa interval yang memuat akar persamaan:

$$x = \frac{1}{2} \left(x + \frac{2}{x} \right).$$

Satu-satunya solusi adalah

$$x = \sqrt{2}$$
.

> iterate("s",~1,2~)

~1.41421356236,1.41421356239~

Fungsi "iterate()" juga dapat bekerja pada vektor. Berikut adalah contoh fungsi vektor, yang menghasilkan rata-rata aritmetika dan rata-rata geometri.

$$(a_{n+1}, b_{n+1}) = \left(\frac{a_n + b_n}{2}, \sqrt{a_n b_n}\right)$$

Iterasi ke-n disimpan pada vektor kolom x[n].

> function g(x) := [(x[1]+x[2])/2; sqrt(x[1]*x[2])]

Iterasi dengan menggunakan fungsi tersebut akan konvergen ke rata-rata aritmetika dan geometri dari nilai-nilai awal.

```
> iterate("g",[1;5])
```

2.60401

Hasil tersebut konvergen agak cepat, seperti kita cek sebagai berikut.

```
> iterate("g",[1;5],4)
```

```
      1
      3
      2.61803
      2.60403
      2.60401

      5
      2.23607
      2.59002
      2.60399
      2.60401
```

Iterasi pada interval dapat dilakukan dan stabil, namun tidak menunjukkan bahwa limitnya pada batasbatas yang dihitung.

```
> iterate("g",[~1~;~5~],4)
```

```
Interval 2 x 5 matrix
```

```
~0.999999999999778,1.0000000000000022~ ...
~4.99999999999911,5.0000000000000089~ ...
```

Iterasi berikut konvergen sangat lambat.

$$x_{n+1} = \sqrt{x_n}.$$

> iterate("sqrt(x)",2,10)

Kekonvergenan iterasi tersebut dapat dipercepatdengan percepatan Steffenson:

> steffenson("sqrt(x)",2,10)

[1.04888, 1.00028, 1, 1]

Iterasi menggunakan Loop yang ditulis Langsung

Berikut adalah beberapa contoh penggunaan loop untuk melakukan iterasi yang ditulis langsung pada baris perintah.

```
> x=2; repeat x=(x+2/x)/2; until x^2=2; end; x,
```

1.41421356237

Penggabungan matriks menggunakan tanda "|" dapat digunakan untuk menyimpan semua hasil iterasi.

```
> v=[1]; for i=2 to 8; v=v|(v[i-1]*i); end; v,
```

```
[1, 2, 6, 24, 120, 720, 5040, 40320]
```

hasil iterasi juga dapat disimpan pada vektor yang sudah ada.

```
> v=ones(1,100); for i=2 to cols(v); v[i]=v[i-1]*i; end; ...
>plot2d(v,logplot=1); textbox(latex(&log(n)),x=0.5):
```



```
> A =[0.5,0.2;0.7,0.1]; b=[2;2]; ...
> x=[1;1]; repeat xnew=A.x-b; until all(xnew~=x); x=xnew; end; ...
> x,
```

-7.09677 -7.74194 Fungsi atau program juga dapat menggunakan iterasi dan dapat digunakan untuk melakukan iterasi. Berikut adalah beberapa contoh iterasi di dalam fungsi.

Contoh berikut adalah suatu fungsi untuk menghitung berapa lama suatu iterasi konvergen. Nilai fungsi tersebut adalah hasil akhir iterasi dan banyak iterasi sampai konvergen.

```
> function map hiter(f$,x0) ...

x=x0;
maxiter=0;
repeat
   xnew=f$(x);
maxiter=maxiter+1;
until xnew~=x;
```

Misalnya, berikut adalah iterasi untuk mendapatkan hampiran akar kuadrat 2, cukup cepat, konvergen pada iterasi ke-5, jika dimulai dari hampiran awal 2.

```
> hiter("(x+2/x)/2",2)
```

x=xnew;

return maxiter;
endfunction

end;

Karena fungsinya didefinisikan menggunakan "map". maka nilai awalnya dapat berupa vektor.

```
> x=1.5:0.1:10; hasil=hiter("(x+2/x)/2",x); ...
> plot2d(x,hasil):
```


Dari gambar di atas terlihat bahwa kekonvergenan iterasinya semakin lambat, untuk nilai awal semakin besar, namun penambahnnya tidak kontinu. Kita dapat menemukan kapan maksimum iterasinya bertambah.

> hasil[1:10]

[4, 5, 5, 5, 5, 6, 6, 6, 6]

> x[nonzeros(differences(hasil))]

[1.5, 2, 3.4, 6.6]

maksimum iterasi sampai konvergen meningkat pada saat nilai awalnya 1.5, 2, 3.4, dan 6.6. Contoh berikutnya adalah metode Newton pada polinomial kompleks berderajat 3.

> p &= x^3-1 ; newton &= x-p/diff(p,x); \$newton

$$x - \frac{x^3 - 1}{3x^2}$$

Selanjutnya didefinisikan fungsi untuk melakukan iterasi (aslinya 10 kali).

```
> function iterasi(f$,x,n=10) ...
```

```
loop 1 to n; x=f$(x); end;
return x;
endfunction
```

Kita mulai dengan menentukan titik-titik grid pada bidang kompleksnya.

```
> r=1.5; x=linspace(-r,r,501); Z=x+I*x'; W=iterasi(newton,Z);
```

Berikut adalah akar-akar polinomial di atas.

```
> z=&solve(p)()
```

```
[ -0.5+0.866025i, -0.5-0.866025i, 1+0i ]
```

Untuk menggambar hasil iterasinya, dihitung jarak dari hasil iterasi ke-10 ke masing-masing akar, kemudian digunakan untuk menghitung warna yang akan digambar, yang menunjukkan limit untuk masing-masing nilai awal.

Fungsi plotrgb() menggunakan jendela gambar terkini untuk menggambar warna RGB sebagai matriks.

```
> C=rgb(max(abs(W-z[1]),1),max(abs(W-z[2]),1),max(abs(W-z[3]),1)); ...
> plot2d(none,-r,r,-r,r); plotrgb(C):
```


Seperti sudah dibahas sebelumnya, untuk menghasilkan barisan ekspresi simbolik dengan Maxima dapat digunakan fungsi makelist().

> &powerdisp:true // untuk menampilkan deret pangkat mulai dari suku berpangkat terkecil

true

> deret &= makelist(taylor(exp(x),x,0,k),k,1,3); \$deret // barisan deret Taylor untuk e^x

$$\left[1+x, 1+x+\frac{x^2}{2}, 1+x+\frac{x^2}{2}+\frac{x^3}{6}\right]$$

Untuk mengubah barisan deret tersebut menjadi vektor string di EMT digunakan fungsi mxm2str(). Selanjutnya, vektor string/ekspresi hasilnya dapat digambar seperti menggambar vektor eskpresi pada EMT.

- > plot2d("exp(x)",0,3); // plot fungsi aslinya, e^x
- > plot2d(mxm2str("deret"), >add, color=4:6): // plot ketiga deret taylor hampiran fungsi tersebut

Selain cara di atas dapat juga dengan cara menggunakan indeks pada vektor/list yang dihasilkan.

> \$deret[3]

$$1 + x + \frac{x^2}{2} + \frac{x^3}{6}$$

> plot2d(["exp(x)",&deret[1],&deret[2],&deret[3]],0,3,color=1:4):

>\$sum(sin(k*x)/k,k,1,5)

$$\sin x + \frac{\sin(2x)}{2} + \frac{\sin(3x)}{3} + \frac{\sin(4x)}{4} + \frac{\sin(5x)}{5}$$

Berikut adalah cara menggambar kurva

$$y = \sin(x) + \frac{\sin 3x}{3} + \frac{\sin 5x}{5} + \dots$$

> plot2d(&sum(sin((2*k+1)*x)/(2*k+1),k,0,20),0,2pi):

Hal serupa juga dapat dilakukan dengan menggunakan matriks, misalkan kita akan menggambar kurva

$$y = \sum_{k=1}^{100} \frac{\sin(kx)}{k}, \quad 0 \le x \le 2\pi.$$

```
> x=linspace(0,2pi,1000); k=1:100; y=sum(sin(k*x')/k)'; plot2d(x,y):
```


Terdapat cara menarik untuk menghasilkan barisan dengan ekspresi Maxima. Perintah mxmtable() berguna untuk menampilkan dan menggambar barisan dan menghasilkan barisan sebagai vektor kolom. Sebagai contoh berikut adalah barisan turunan ke-n $x \hat{\ } x$ di x=1.

```
> mxmtable("diffat(x^x,x=1,n)","n",1,8,frac=1);
```

1

2

3

8

10

54

-42

944

> \$'sum(k, k, 1, n) = factor(ev(sum(k, k, 1, n),simpsum=true)) // simpsum:menghitung deret secara si

$$\sum_{k=1}^{n} k = \frac{n \left(1+n\right)}{2}$$

$$>$$
 \$'sum(1/(3^k+k), k, 0, inf) = factor(ev(sum(1/(3^k+k), k, 0, inf), simpsum=true))

$$\sum_{k=0}^{\infty} \frac{1}{k+3^k} = \sum_{k=0}^{\infty} \frac{1}{k+3^k}$$

Di sini masih gagal, hasilnya tidak dihitung.

$$>$$
 \$'sum(1/x^2, x, 1, inf)= ev(sum(1/x^2, x, 1, inf),simpsum=true) // ev: menghitung nilai ekspresi

$$\sum_{x=1}^{\infty} \frac{1}{x^2} = \frac{\pi^2}{6}$$

$$> \frac{(-1)^{(k-1)/k}}{k}$$
, k, 1, inf) = factor(ev(sum((-1)^(x-1)/x, x, 1, inf), simpsum=true))

$$\sum_{k=1}^{\infty} \frac{(-1)^{-1+k}}{k} = -\sum_{x=1}^{\infty} \frac{(-1)^x}{x}$$

Di sini masih gagal, hasilnya tidak dihitung.

$$>$$
 \$'sum((-1)^k/(2*k-1), k, 1, inf) = factor(ev(sum((-1)^k/(2*k-1), k, 1, inf), simpsum=true))

$$\sum_{k=1}^{\infty} \frac{(-1)^k}{-1+2k} = \sum_{k=1}^{\infty} \frac{(-1)^k}{-1+2k}$$

> \$ev(sum(1/n!, n, 0, inf),simpsum=true)

$$\sum_{n=0}^{\infty} \frac{1}{n!}$$

Di sini masih gagal, hasilnya tidak dihitung, harusnya hasilnya e.

> &assume(abs(x)<1);
$$\$$
'sum(a*x^k, k, 0, inf)=ev(sum(a*x^k, k, 0, inf),simpsum=true), &forget(abs(x)<1)

$$a\sum_{k=0}^{\infty} x^k = \frac{a}{1-x}$$

Deret geometri tak hingga, dengan asumsi rasional antara -1 dan 1.

$$>$$
 \$'sum(x^k/k!,k,0,inf)=ev(sum(x^k/k!,k,0,inf),simpsum=true)

$$\sum_{k=0}^{\infty} \frac{x^k}{k!} = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$

> \$limit(sum(x^k/k!,k,0,n),n,inf)

$$\lim_{n \to \infty} \sum_{k=0}^{n} \frac{x^k}{k!}$$

> function d(n) &= $sum(1/(k^2-k),k,2,n)$; \$'d(n)=d(n)

$$d(n) = \sum_{k=2}^{n} \frac{1}{-k+k^2}$$

> \$d(10)=ev(d(10),simpsum=true)

$$\sum_{k=2}^{10} \frac{1}{-k+k^2} = \frac{9}{10}$$

> \$d(100)=ev(d(100),simpsum=true)

$$\sum_{k=2}^{100} \frac{1}{-k+k^2} = \frac{99}{100}$$

Deret Taylor

Deret Taylor suatu fungsi f yang diferensiabel sampai tak hingga di sekitar x=a adalah:

$$f(x) = \sum_{k=0}^{\infty} \frac{(x-a)^k f^{(k)}(a)}{k!}.$$

> \$'e^x =taylor(exp(x),x,0,10) // deret Taylor e^x di sekitar x=0, sampai suku ke-11

$$e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \frac{x^5}{120} + \frac{x^6}{720} + \frac{x^7}{5040} + \frac{x^8}{40320} + \frac{x^9}{362880} + \frac{x^{10}}{3628800}$$

> \$'log(x)=taylor(log(x),x,1,10)// deret log(x) di sekitar x=1

$$\log x = -1 - \frac{(-1+x)^2}{2} + \frac{(-1+x)^3}{3} - \frac{(-1+x)^4}{4} + \frac{(-1+x)^5}{5} - \frac{(-1+x)^6}{6} + \frac{(-1+x)^7}{7} - \frac{(-1+x)^8}{8} + \frac{(-1+x)^9}{9} - \frac{(-1+x)^{10}}{10} + \frac{(-1+x$$