Inguaggi Formali e Traduttori

<u>2.6 Pumping lemma per i linguaggi regolari</u>

- Sommario
- Linguaggi non regolari
- Pumping lemma per linguaggi regolari
- Esempio: a^kb^k non è regolare
- Pumping lemma: dimostrazione (1/3)
- Pumping lemma: dimostrazione (2/3)
- Pumping lemma: dimostrazione (3/3)
- Esempio: a^kb^m con k ≤ m non è regolare
- Esempio: a^k con k primo non è regolare
- Esercizi e quesiti

È proibito condividere e divulgare in qualsiasi forma i materiali didattici caricati sulla piattaforma e le lezioni svolte in videoconferenza: ogni azione che viola questa norma sarà denunciata agli organi di Ateneo e perseguita a termini di legge.

Sommario

Per dimostrare che un linguaggio **è regolare**, basta esibire un automa a stati finiti (DFA, NFA o ε -NFA) che lo riconosce, oppure una espressione regolare che lo genera. L'incapacità di trovare siffatto automa o siffatta espressione non è una dimostrazione del fatto che il linguaggio non è regolare.

In questa lezione rispondiamo alle seguenti domande:

- 1. Esistono linguaggi **non** regolari?
- 2. Se sì, come dimostro che un linguaggio **non** è regolare?

Linguaggi non regolari

ullet Cerchiamo una proprietà $oldsymbol{P}$ soddisfatta da tutti i linguaggi regolari:

$$L \text{ regolare} \Rightarrow L \text{ soddisfa } P$$

ullet Se troviamo un linguaggio L che non soddisfa P, allora per contrapposizione possiamo concludere che L non è regolare:

L non soddisfa $P \Rightarrow L$ non è regolare

Pumping lemma per linguaggi regolari

Teorema

Per ogni linguaggio regolare L esiste $n \in \mathbb{N}$ tale che, per ogni $w \in L$ con $|w| \geq n$, esistono x, y e z tali che w = xyz e inoltre:

- 1. $y \neq \varepsilon$
- $2. |xy| \leq n$
- 3. $xy^kz\in L$ per ogni $k\geq 0$.

In prosa

- ullet Ogni stringa w "sufficientemente lunga" ($|w| \geq n$) di un linguaggio regolare $L \ldots$
- ... contiene una sottostringa non vuota $(y \neq \varepsilon)$...
- ... e "non troppo distante" dall'inizio di w ($|xy| \leq n$) ...
- ullet ... che può essere eliminata (k=0) o replicata a piacere (k>0) ...
- ullet ... consentendoci di trovare altre stringhe di L ($xy^kz\in L$)

Dimostriamo che $L=\{a^kb^k\mid k\geq 0\}$ non è regolare facendo vedere che per L il pumping lemma non vale.

Dimostriamo che $L=\{a^kb^k\mid k\geq 0\}$ non e regolare facendo vedere che per L il pumping lemma non vale.

Supponiamo, per assurdo, che esista n con le proprietà enunciate nella slide 4.

Dimostriamo che $L=\{a^kb^k\mid k\geq 0\}$ non è regolare facendo vedere che per L il pumping lemma non vale.

Supponiamo, per assurdo, che esista n con le proprietà enunciate nella slide 4.

Considero la stringa $w=a^nb^n$, che è in L e ba la proprietà $|w|=2n\geq n$.

Dimostriamo che $L=\{a^kb^k\mid k\geq 0\}$ non è regolare facendo vedere che per L il pumping lemma non vale.

Supponiamo, per assurdo, che esista n con le proprietà enunciate nella slide 4.

Considero la stringa $w=a^nb^n$, che è in L e ha la proprietà $|w|=2n\geq n$.

Devono esistere x, y e z tali che w = xyz e che soddisfano le condizioni 1–3 della slide 4.

Dimostriamo che $L=\{a^kb^k\mid k\geq 0\}$ non è regolare facendo vedere che per L il pumping lemma non vale.

Supponiamo, per assurdo, che esista n con le proprietà enunciate nella slide 4.

Considero la stringa $w=a^nb^n$, che è in De ha la proprietà $|w|=2n\geq n$.

Devono esistere x, y e z tali che w = xyz e che soddisfano le condizioni 1–3 della slide 4.

Dalla condizione 2 sappiamo che $m{x}$ e $m{y}$ sono composte di sole a.

Dimostriamo che $L=\{a^kb^k\mid k\geq 0\}$ non è regolare facendo vedere che per L il pumping lemma non vale.

Supponiamo, per assurdo, che esista n con le proprietà enunciate nella slide 4.

Considero la stringa $w=a^nb^n$, che è in L e ha la proprietà $|w|=2n\geq n$.

Devono esistere x, y e z tali che w = xyz e che soddisfano le condizioni 1–3 della slide 4.

Dalla condizione 2 sappiamo che \boldsymbol{y} e \boldsymbol{y} sono composte di sole a.

Dalla condizione 1 sappiamo che $oldsymbol{y}$ contiene almeno una a.

Dimostriamo che $L=\{a^kb^k\mid k\geq 0\}$ non è regolare facendo vedere che per L il pumping lemma non vale.

Supponiamo, per assurdo, che esista n con le proprietà enunciate nella slide 4.

Considero la stringa $w=a^nb^n$, che è in L e ha la proprietà $|w|=2n\geq n$.

Devono esistere x, y e z tali che w = xyz e che soddisfano le condizioni 1–3 della slide 4.

Dalla condizione 2 sappiamo che $x \in y$ sono composte di sole a.

Dalla condizione 1 sappiamo che $oldsymbol{y}$ contiene almeno una a.

Dalla condizione 3 sappiamo che $xz \in L$.

Dimostriamo che $L=\{a^kb^k\mid k\geq 0\}$ non è regolare facendo vedere che per L il pumping lemma non vale.

Supponiamo, per assurdo, che esista n con le proprietà enunciate nella slide 4.

Considero la stringa $w = a^n b^n$, che è in L e ha la proprietà $|w| = 2n \ge n$.

Devono esistere x, y e z tali che w = xyz e che soddisfano le condizioni 1–3 della slide 4.

Dalla condizione 2 sappiamo che x e y sono composte di sole a.

Dalla condizione 1 sappiamo che \boldsymbol{y} contiene almeno una a.

Dalla condizione 3 sappiamo che $xz \in L$.

Ma ora in $oldsymbol{xz}$ ci sono più b che a, il che contraddice la definizione di $oldsymbol{L}$.

Pumping lemma: dimostrazione (1/3)

Sia $m{L}$ un linguaggio regolare.

Dunque esiste un DFA $A=(Q,\Sigma,\delta,q_0,F)$ tale ch ${}^{\mathbf{e}}\,L=L(A).$

Poniamo n=|Q|, ovvero n è il numero di stati di un DFA che riconosce L.

Prendiamo $w \in L$ tale che $|w| \geq n$. Deve essere $w = a_1 a_2 \cdots a_m$ con $m \geq n$.

Se rappresentiamo il cammino fatto da $m{A}$ per riconoscere $m{w}$ come segue

notiamo che questo cammino passa attraverso m+1 stati.

Siccome $m \ge n$ abbiamo m+1>n. Ovvero, gli stati attraversati non possono essere tutti distinti, perché l'automa ne ha solo n.

Pumping lemma: dimostrazione (2/3)

Deduciamo che il cammino fatto da \boldsymbol{A} può essere rappresentato così

dove $q_i = q_j$ e i < j.

Possiamo supporre, senza perdere in generalità, che $q_i = q_i$ sia il **primo** stato che si ripete in questo cammino (ce ne possono essere tanti). cammino (ce ne possono essere tanti).

Il cammino fatto da A può allora essere rappresentato anche così:

Pumping lemma: dimostrazione (3/3)

Ora definiamo le stringhe x, y e z come segue:

- $ullet x = a_1 a_2 \cdots a_i$
- $ullet \ y = a_{i+1}a_{i+2}\cdots a_j$
- $ullet z = a_{j+1}a_{j+2}\cdots a_m$

Notiamo che

- $1.\ y
 eq arepsilon,$ in quanto i < j dunque in y c'é almeno un simbolo (l'automa é deterministico e non ha arepsilon-transizioni)
- 12. $|xy| \le n$ in quanto $q_i = q_j$ è il primo stato che si ripete e quindi gli stati da q_0 a q_j sono al massimo n+1, attraversati leggendo al massimo n simboli di w
 - 3. $xy^kz\in L$ per ogni $k\geq 0$ in quanto tutti i cammini etichettati con xy^kz portano l'automa da q_0 (lo stato inziale) a q_m (uno stato finale)

e questo conclude la dimostrazione.

Esempio: akbm con k ≤ m non è regolare

Dimostriamo che $L=\{a^kb^m\mid 0\leq k\leq m\}$ non è regolare facendo vedere che per L il pumping lemma non vale.

Supponiamo, per assurdo, che esista ${m n}$ con le proprietà enunciate nella slide 4.

Considero la stringa $w=a^nb^n$, che è in L e ha la proprietà $|w|=2n\geq n$.

Devono esistere x, y e z tali che w = xyz e che soddisfano le condizioni 1–3 della slide 4.

Dalla condizione 2 sappiamo che $oldsymbol{x}$ e $oldsymbol{y}$ sono composte di sole a.

Dalla condizione ${\bf 1}$ sappiamo che ${m y}$ contiene almeno una a.

Dalla condizione 3 sappiamo che $xyyz \in L$.

Ma ora in xyyz ci sono più a che b, il che contraddice la definizione di L.

Esempio: a^k con k primo non è regolare

Dimostriamo che $L = \{a^k \mid k \text{ primo}\}$ non è regolare facendo vedere che per L il pumping lemma non vale.

Supponiamo, per assurdo, che esista n con le proprietà enunciate nella slide 4.

Consideriamo la stringa $w=a^p$ dove p è un numero primo $p\geq n+2$. Siamo sempre in grado di trovare p con questa proprietà in quanto esistono infiniti numeri primi. Inoltre, la stringa w è in L e ha la proprietà $|w|\geq n$.

Devono esistere $x, y \in z$ tali che w = xyz e che soddisfano le condizioni 1–3 della slide 4.

Definiamo m=|y|, da cui segue che |xz|=p-m. Dalle condizioni 1 e 2 sappiamo che $1 \le m \le n$. Dalla condizione 3 sappiamo che $xy^{p-m}z \in L$. Tuttavia

$$|xy^{p-m}z| = |xz| + (p-m)|y| = p-m + (p-m)m = (p-m)(m+1)$$

e ora concludiamo che $|xy^{p-m}z|$ non è primo in quanto:

- da $1 \leq m$ deduco $2 \leq m+1$, e
- da $m \le n$ e $p \ge n+2$ deduco $p-m \ge 2$.

Esercizi e quesiti

Linguaggi non regolari

Dimostrare che i seguenti linguaggi non sono regolari:

```
1. \{0^{k^2} \mid k \geq 1\}

2. \{0^k 10^k \mid k \geq 1\}

3. \{0^k 1^{2k} \mid k \geq 1\}

4. \{ww \mid w \in \{0, 1\}^*\}

5. \{ww^R \mid w \in \{0, 1\}^*\}

6. \{0^k 1^m \mid k \neq m\} (suggerimento: usare una proprietà di chiusura)
```

Proprietà di linguaggi

- 1. Se L_i con $i \in \mathbb{N}$ è una famiglia **infinita** di linguaggi regolari, cosa si può dire di $\bigcup_{i \in \mathbb{N}} L_i$? È sempre un linguaggio regolare?