TFE4101 KRETS- OG DIGITALTEKNIKK

Mer om Boolsk algebra og logisk design

Gajski:

•Kap. 3.5:

•Kap. 3.6:

•Kap. 3.7:

•Kap. 3.8

•Kap. 3.9:

•Kap. 3.10:

Kanonisk form

Standard form

Andre logiske operatorer

Digitale logiske porter (detaljer)

Utvidelse til multiple innganger og operatorer

Portimplementasjoner

• 3.10.1 Logiske nivå

3.10.2 Forplantningsforsinkelse

Kanoniske former

- Alle variable på ikke-komplements eller komplements form med i hvert ledd
- Sum av produkt eller produkt av sum

$$F_2 = \overline{x}\overline{y} + xyz = \overline{x}\overline{y}(\overline{z} + z) + xyz$$
$$= \overline{x}\overline{y}\overline{z} + \overline{x}\overline{y}z + xyz$$

$$F_2 = (x + \overline{y} + z)(x + \overline{y} + \overline{z})(\overline{x} + y + z)(\overline{x} + y + \overline{z})(\overline{x} + \overline{y} + z)$$

Kanoniske former

Minterm: produkt (AND) av <u>alle</u> variable på ikke-komplements eller komplements form

For hver kombinasjon av verdier på variablene angir tilhørende minterm hvordan vi kan få 1 ut.

index	X	У	Z	minterm	notasjon
0	0	0	0	$\overline{x} \overline{y} \overline{z}$	m_0
1	0	0	1	Σ∇Z	m_1
2	0	1	0	ΣyΣ	m_2
3	0	1	1	x y z	m_3
4	1	0	0	χÿ̄Z	m_4
5	1	0	1	χÿz	m ₅
6	1	1	0	ху Z	m_6
7	1	1	1	хуг	m_7

Mintermer for tre variable

Funksjoner beskrevet med mintermer

Funksjon definert ved sannhetstabell:

index	Х	у	Z	F_2	
0	0	0	0	1	
1	0	0	1	1	
2	0	1	0	0	Kombinacionar av vardiar på
3	0	1	1	0	Kombinasjoner av verdier på
4	1	0	0	0	variablene der funksjonen ska
5	1	0	1	0	ha verdien 1
6	1	1	0	0	
7	1	1	1	1	

Oppnås ved å liste de tilhørende 1-mintermer:

$$F_2 = \overline{X} \overline{y} \overline{z} + \overline{X} \overline{y} z + X y z = \Sigma(0,1,7)$$

TFE4101 Digitaltekn Forel. 4

Når variablene antar verdier tilsvarende en av de listede mintermer vil denne mintermen ta verdien 1 og følgelig vil funksjonen ta verdien 1

Kanoniske former

Maxterm: sum (OR) av <u>alle</u> variable på ikke-komplements eller komplements form

For hver kombinasjon av verdier på variablene angir tilhørende maxterm hvordan vi kan få 0 ut.

index	X	у	Z	maxterm	notasjon
0	0	0	0	x+y+z	M_0
1	0	0	1	x+y+ Z	M_1
2	0	1	0	x+ y +z	M_2
3	0	1	1	$X+\overline{y}+\overline{z}$	M_3
4	1	0	0	⊼+y+z	M_4
5	1	0	1	Z +y+ Z	M_5
6	1	1	0	X + y +z	M_6
7	1	1	1	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	M_7

Maxtermer for tre variable

Funksjoner beskrevet med maxtermer

Funksjon definert ved sannhetstabell:

index	Х	У	Z	F_2	
0	0	0	0	1	
1	0	0	1	1	
2	0	1	0	0	
3	0	1	1	0	← Kombinasjoner av verdier på
4	1	0	0	0	variablene der funksjonen skal
5	1	0	1	0	ha verdien 0
6	1	1	0	0	
7	1	1	1	1	

Oppnås ved å liste de tilhørende 0-maxtermer:

$$F_2 = (x+\overline{y}+z)(x+\overline{y}+\overline{z})(\overline{x}+y+z)(\overline{x}+y+\overline{z})(\overline{x}+\overline{y}+z) = \Pi(2,3,4,5,6)$$

TFE4101 Digitaltekn Forel. 4

Når variablene antar verdier tilsvarende en av de listede maxtermer vil denne maxtermen ta verdien 0 og følgelig vil funksjonen ta verdien 0

Gruppeoppgave

$$F_3 = x y + y \overline{z}$$

index	X	у	Z	F_3
0	0	0	0	
1	0	0	1	
2	0	1	0	
3	0	1	1	
4	1	0	0	
5	1	0	1	
6	1	1	0	
7	1	1	1	

Med mintermer:

$$F_3 =$$

Med maxtermer:

$$F_3 =$$

Kanoniske former

Index	Х	У	Z	F ₂
0	0	0	0	1
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	0
5	1	0	1	0
6	1	1	0	0
7	1	1	1	1

$$F_2(x, y, z) = \sum (0,1,7)$$

- Bytt Σ og Π
- List nummer som ikke er med i den originale listen

$$F_2(x, y, z) = \prod (2,3,4,5,6)$$

Kanoniske former

Х	у	Z	F ₂
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

$$F_2(x,y,z) = \sum (0,1,7)$$
 $F_2'(x,y,z) = \sum (2,3,4,5,6)$
(liste av 0-mintermer)

$$F_2(x, y, z) = \prod (2,3,4,5,6)$$

 $F_2'(x, y, z) = \prod (0,1,7)$
(liste av 1-maxtermer)

Standard form

Krever ikke alle variable i alle produkt/summer

Sum av produkt (Sum Of Product (SOP))

$$F_{1} = \underbrace{xy}_{prod} + \underbrace{x\overline{y}z}_{prod} + \underbrace{\overline{x}yz}_{prod}$$
 implikant sum av produkt (SOP)

Produkt av sum (Product Of Sum (POS))

$$\overline{F}_{1} = \underbrace{(\overline{x} + \overline{y})(\overline{x} + y + \overline{z})(x + \overline{y} + \overline{z})}_{sum} \underbrace{sum}_{produkt\ av\ sum\ (POS)}$$

Standard form

Reduser antall literaler ved algoritmisk mainpulasjon

$$F_1 = xyz + xy\overline{z} + x\overline{y}z + \overline{x}yz$$

distributivitet ab + cb = (a+c)b

komplement $1 = a + \overline{a}$

TFE4101 Digitaltekn Forel. 4

• #literaler redusert fra 12 til 6

Ikke-standard form

Antall literaler kan reduseres ytterligere

$$F_1 = xy + xz + yz$$

$$= x(y + z) + yz$$

$$= x (y + z)$$

$$= x (y + z)$$

$$= x (y + z)$$

$$= x (y$$

- #literaler redusert fra 6 til 5
- men (ofte) langsommere krets!

Logiske operatorer

- Med n variable kan det dannes 2^{2ⁿ} Boolske funksjoner
- 2 variable gir 16 Boolske funksjoner (Table 3.13)

		Funksjonsverdi for x,y=			or x,y=		
Navn	Symbol	00	01	10	11	Uttrykk	Kommentar
Zero		0	0	0	0	$F_0 = 0$	Binary constant 0
AND	x∙y	0	0	0	1	F ₁ =xy	x and y
XOR	х⊕у	0	1	1	0	$F_6 = x\overline{y} + \overline{x}y$	x or y but not both
OR	x+y	0	1	1	1	F ₇ =x+y	x or y
NOR	x↓y	1	0	0	0	$F_8 = \overline{x+y}$	Not-OR
Equiv.	х⊙у	1	0	0	1	$F_9 = xy + \overline{x}\overline{y}$	x equals y
Compl.	y'	1	0	1	0	$F_{10}=\overline{y}$	Not y
Compl.	x'	1	1	0	0	$F_{12}=\overline{X}$	Not x
NAND	x↑y	1	1	1	0	$F_{14} = \overline{xy}$	Not-AND
One		1	1	1	1	F ₁₅ =1	Binary constant 1

Basisbibliotek av porter

NAME	GRAPHIC SYMBOL	FUNCTIONAL EXPRESSION	COST (NUMBER OF TRANSISTORS)	GATE DELAY (NS)
Inverter	x>F	F = x'	2	1
Driver	x——F	F = x	4	2
AND	y——— F	F = xy	6	2.4
OR	y———— F	F = x + y	6	2.4
NAND	y — \longrightarrow F	F = (xy)'	4	1.4
NOR	$y \longrightarrow p$	F=(x+y)'	4	1.4
XOR	$y \longrightarrow F$	$F = x \oplus y$	14	4.2
XNOR	y \longrightarrow F	$F = x \odot y$	12	3.2

TFE4101 Digitaltekn Forel. 4

21

(Table 3.14)

Porter i CMOS teknologi

TFE4101 Digitaltekn Forel. 4

24

Tidsforsinkelse gjennom porter

Designmål:

- 1. Rask krets (kort forsinkelse c_i til c_{i+1})
- 2. Færrest mulig transistorer

TFE4101 Digitaltekn Forel. 4

8-bits full-adderer (bestående av 8 stk. 1-bits full-adderere i parallell)

Addisjon av binære tall: 987(x) + 123(y)

X _i ·	+ y _i +	C _{i+1}	S _i	
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

		512	256	128	64	32	16	8	4	2	1
X		1	1	1	1	0	1	1	0	1	1
у					1	1	1	1	0	1	1
С	1	1	1	1	1	1	1	0	1	1	0
х+у	1	0	0	0	1	0	1	0	1	1	0
	S ₁₀	s_9	S ₈	S ₇	s_6	S ₅	S_4	s_3	s_2	s ₁	s_0

Designmål:

- 1. Rask krets (kort forsinkelse c_i til c_{i+1})
- 2. Færrest mulig transistorer

$$s_i(x_i, y_i, c_i) = \sum (1,2,4,7)$$

Ordner

Distributiv

X _i +	- y _i -	C _{i+1}	S _i	
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$s_{i} = \overline{x}_{i} \overline{y}_{i} c_{i} + \overline{x}_{i} y_{i} \overline{c}_{i} + x_{i} \overline{y}_{i} \overline{c}_{i} + x_{i} y_{i} c_{i}$$

$$= \overline{x}_{i} y_{i} \overline{c}_{i} + x_{i} \overline{y}_{i} \overline{c}_{i} + \overline{x}_{i} \overline{y}_{i} c_{i} + x_{i} y_{i} c_{i}$$

$$= (\overline{x}_{i} y_{i} + x_{i} \overline{y}_{i}) \overline{c}_{i} + (\overline{x}_{i} \overline{y}_{i} + x_{i} y_{i}) c_{i}$$

$$= (x_{i} \oplus y_{i}) \overline{c}_{i} + (x_{i} \oplus y_{i}) c_{i}$$

$$= (x_{i} \oplus y_{i}) \overline{c}_{i} + (\overline{x}_{i} \oplus y_{i}) c_{i}$$

$$= (x_{i} \oplus y_{i}) \oplus c_{i}$$

Designmål:

- 1. Rask krets (kort forsinkelse c_i til c_{i+1})
- 2. Færrest mulig transistorer

$$c_{i+1}(x_i, y_i, c_i) = \sum (3,5,6,7)$$

$x_i + y_i + c_i$			C _{i+1}	S _i
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$C_{i+1} = F_1 = X_i Y_i + (X_i + Y_i) C_i$$

Har allerede:

$$s_i = (x_i \oplus y_i) \oplus c_i$$

 $= x_i y_i + (x_i \oplus y_i) C_i$

$$\begin{split} c_{i+1} &= \overline{x}_i y_i c_i + x_i \overline{y}_i c_i + x_i y_i \overline{c}_i + x_i y_i c_i \\ &= x_i y_i \overline{c}_i + x_i y_i c_i + \overline{x}_i y_i c_i + x_i \overline{y}_i c_i \\ &= x_i y_i \left(c_i + \overline{c}_i \right) + \left(\overline{x}_i y_i + x_i \overline{y}_i \right) c_i \end{split} \qquad \begin{array}{l} Ordner \\ Distributiv \\ \end{array}$$

$$s_i = (x_i \oplus y_i) \oplus c_i$$

$$C_{i+1} = X_i Y_i + (X_i \oplus Y_i) C_i$$

Antall transistorer: 46

Inn-ut sti	Forsinkelse (ns)
c _i til c _{i+1}	4.8
c _i til s _i	4.2
x _i ,y _i til c _{i+1}	9.0
x _i ,y _i til s _i	8.4

Bruker langsomme AND, OR og XOR

Gruppeoppgave Beregn forsinkelse gjennom 8-bits FA

Bruk av raskere porter: NAND og NOR

$$C_{i+1} = x_i y_i + (x_i + y_i) C_i$$
$$= \overline{x_i y_i + (x_i + y_i) C_i}$$
$$= \overline{x_i y_i} \bullet (\overline{x_i + y_i) C_i}$$

3 NAND + 1 OR

$$s_{i} = (x_{i} \oplus y_{i})\overline{c_{i}} + (x_{i} \odot y_{i})c_{i}$$

$$= (\overline{x_{i}} \odot \overline{y_{i}})\overline{c_{i}} + (x_{i} \odot y_{i})c_{i}$$

$$= (x_{i} \odot y_{i}) \odot c_{i}$$

$$= (NAND + 2 OR)$$

Har:

$$x_{i} \odot y_{i} = x_{i}y_{i} + \overline{x}_{i}\overline{y}_{i}$$

 $= \overline{x_{i}}\overline{y}_{i} \bullet \overline{\overline{x}_{i}}\overline{y}_{i}$
 $= \overline{x_{i}}\overline{y}_{i} \bullet (x_{i}+y_{i})$
2 NAND + 1 OR

TFE4101 Digitaltekn Forel. 4

Totalt 6 NAND + 2 OR (pga gjenbruk)

Antall transistorer: 36

Inn-ut sti	Forsinkelse (ns)
c _i til c _{i+1}	2.8
c _i til s _i	3.8
x _i ,y _i til c _{i+1}	5.2
x _i ,y _i til s _i	7.2

For sinkelse x_0 til c_{7+1} = $2,4 + 16 \times 1,4 = 24,8$ ns

Porter med mer enn 2 innganger

- AND og OR er assosiativ → direkte utvidbar
- NAND og NOR er ikke assosiativ

$$x=0$$
 $y=1$ $z=1$

NAND:
$$(x\uparrow y)\uparrow z=(0\uparrow 1)\uparrow 1=1\uparrow 1=0$$

 $x\uparrow (y\uparrow z)=0\uparrow (1\uparrow 1)=0\uparrow 0=1$

NOR:
$$(x\downarrow y)\downarrow z=(0\downarrow 1)\downarrow 1=0\downarrow 1=0$$

 $x\downarrow (y\downarrow z)=0\downarrow (1\downarrow 1)=0\downarrow 0=1$

- Definerer:
 - NAND(x,y,z,...) = (xyz...)
 - NOR(x,y,z,...) = (x+y+z...)'

Porter med multiple innganger

NAME	GRAPHIC SYMBOL	FUNCTIONAL EXPRESSION	COST (NUMBER OF TRANSISTORS)	GATE DELAY (NS)	
3-input AND	$z = \sum_{z} F$	F = xyz	8	2.8	
4-input AND	y	F = xyzw	10	3.2	
3-input OR	$y = \sum_{z} -F$	F = x + y + z	8	2.8	
4-input OR	$\frac{\mathbf{w}}{\mathbf{x}}$	F = x + y + z + w	10	3.2	
3-input NAND	y = 0	F = (xyz)'	6	1.8	
4-input NAND	X = F	F = (xyzw)'	8	2.2	
3-input NOR	$z = \sum_{z} c - F$	F = (x + y + z)'	6	1.8	
4-input NOR	₩ Ş D-F	F = (x + y + z + w)'	8	2.2 (Table	3.15)

Design av 1-bits full-adderer

TFE4101 Digitaltekn Forel. 4 Antall transistorer: 56

Inn-ut sti	Forsinkelse (ns)
c _i til c _{i+1}	3.2
c _i til s _i	5.0
x _i ,y _i til c _{i+1}	4.2
x _i ,y _i til s _i	5.0

Porter med multiple operatorer

NAME	GRAPHIC SYMBOL	FUNCTIONAL EXPRESSION	COST (NUMBER OF TRANSISTORS)	GATE DELAY (NS)
2-wide, 2-input AOI	x - y - F	F = (wx + yz)'	8	2.0
3-wide, 2-input AOI		F = (uv + wx + yz)'	12	2.4
2-wide, 3-input AOI	v v v v v v v v v v	F = (uvw + xyz)'	12	2.2
2-wide, 2-input OAI	x y z	F = ((w+x)(y+z))'	8	2.0
3-wide, 2-input OAI	<i>u</i> − − − − − − − − − − − − − − − − − − −	F = ((u + v)(w + x)(y + z))'	12	2.2
2-wide, 3-input OAI	u v v x y z	F = ((u + v + w)(x + y + z))'	12	2.4

TFE4101 Digitaltekn Forel. 4

58

(Table 3.16)

Design av 1-bits full-adderer

(Figure 3.5)

Antall transistorer: 46

Inn-ut sti	Forsinkelse
	(ns)
c _i til c _{i+1}	3.4
c _i til s _i	4.4
x _i ,y _i til c _{i+1}	3.4
x _i ,y _i til s _i	4.4

Oppgave: Varslingsalarm i bil

- Varsling (V) hvis
 - Motor (M) går og Dør (D) er åpen
 - eller hvis Dør (D) er åpen og Brekket (B) er av
 - eller hvis Motor (M) er av og Brekket (B) er av
- V = 1 betyr at varslingsalarm er <u>aktiv</u>
- M = 1 betyr at motor går
- D = 1 betyr at dør er åpen
- B = 1 betyr at brekk er <u>av</u>
- 1. Sett opp funksjonen for V
- 2. Lag sannhetstabell for funksjonen
- 3. Skriv funksjonen som sum av mintermer
- 4. Bruk algebraisk manipulasjon til å forenkle funksjonen
- 5. Tegn kretsskjema for funksjonen i 4.