Decentralized exchanges (DEX)

Prepared by Kirill Sizov

Financial exchange

Order book

EtherDelta

Place order

Fill order

DEX based on orderbook

Pros

- No KYC/AML.
- No fees paid to the exchange.

Cons

- Gas fees for deposit, withdraw, trade creation/cancel
- High latency.
- Not so decentralized.

Automated Market Maker (AMM)

Liquidity pool

Why do we need DEX?

Liquidity providers

- Want to provide money to traders to earn fees.
- But have to trust someone to manage their money.

Traders

- Want to buy coins.
- But struggle to find a trusted source to buy.

Uniswap

Constant Product

- Invariant formula: $x \cdot y = k$
 - $\circ x$ quantity of Token A.
 - $\circ y$ quantity of Token B.
 - \circ k constant value.

Mint

When liquidity providers (LPs) supply assets to a pool, they receive LP tokens in return.

The formula for minting LP tokens is:

$$received_{LP} = \min(rac{deposited_A}{total_A}, rac{deposited_B}{total_B}) \cdot total_{LP}$$

Burn

LPs can retrieve their share of the pool's assets by burning their LP tokens.

The formula for burning LP tokens and retrieving assets is:

- $ullet received_A = rac{burned_{LP}}{total_{LP}} \cdot total_A \ ullet received_B = rac{burned_{LP}}{total_{LP}} \cdot total_B$

Pricing

$$\bullet \ (x+dx)(y-dy)=k=xy$$

$$ullet \ y-dy=rac{xy}{x+dx}$$

•
$$dy = rac{y \cdot dx}{x + dx}$$

$$egin{aligned} ullet y - dy &= rac{xy}{x+dx} \ ullet dy &= rac{y \cdot dx}{x+dx} \ ullet \lim_{dx o 0} rac{dy}{dx} &= rac{y}{x} \end{aligned}$$

Pricing with fee

- Trading fee = 0.3%
- $(x + 0.997 \cdot dx)(y dy) = k = xy$
- $ullet \ dy = rac{y \cdot 0.997 \cdot dx}{x + 0.997 \cdot dx}$
- $\sqrt{k} = \sqrt{xy}$ grows after each trade.
- $\sqrt{k_2} \sqrt{k_1}$ represents growth of liquidity between two points in time.

Expected slippage

The expected increase or decrease in price based on the trading volume and available liquidity.

Unexpected slippage

Slippage protection

Configures a slippage protection threshold to prevent unacceptable slippage.

Sandwich attack

Manipulation where an attacker places buy and sell orders around a victim's transaction to artificially inflate the price and then sell at a profit.

Curve

Stableswap invariant

Stableswap invariant

•
$$\chi(x+y) + xy = \chi D + \frac{D^2}{4}$$

- The multiplier χ will magnify the low slippage portion of the equation.
- $\chi=rac{Axy}{(rac{D}{2})^2}$ ideally the the curve is linear when pools are equally balanced.
- Final formula: $4A(x+y)+D=4DA+rac{D^3}{4xy}$

Uniswap V3

Impermanent loss

Impermanent loss

Concentrated liquidity

Virtual liquidity

Virtual reserves

$$x \cdot y = L^2$$

Real reserves

$$(x+rac{L}{\sqrt{p_b}})(y+L\sqrt{p_a})=L^2$$

Math behind

$$ullet (x+rac{L}{\sqrt{p_b}})(y+L\sqrt{p_a})=L^2$$

$$ullet \ y = rac{L^2}{x + rac{L}{\sqrt{p_b}}} - L \sqrt{p_a}$$

$$ullet \ price = -rac{dy}{dx} = rac{L^2}{(x+rac{L}{\sqrt{p_b}})^2} = rac{L^2}{L^4} \cdot (y+L\sqrt{p_a})^2 = rac{(y+L\sqrt{p_a})^2}{L^2}$$

ullet Check cases when x=0 and y=0

General scheme

Can AMM price deviate from "real market" price?

Arbitrage

- Prices are synchronized by arbitrageurs.
- Arbitrage is exploiting price discrepancies across different DEXes for profit.

DEX price as price oracle?