ESCUELA DE ESTADÍSTICA PROGRAMA DE LA ASIGNATURA DISEÑO DE EXPERIMENTOS, SEMESTRE 02/2021

Actualización: 15-10-2021

PARTE I: INTRODUCCIÓN AL DOE - DISEÑOS COMPLETAMENTE ALEATORIZADOS CON UN SÓLO FACTOR DE TRATAMIENTOS

- 1.1. Introducción al diseño de experimentos: Conceptos básicos. Etapas y principios del diseño de experimentos. Estructura de un diseño experimental. ANOVA vs. Regresión **Lectura:** Capítulo 1 de notas de clase.
- 1.2. Repaso: Experimentos para comparar dos tratamientos. Muestras independientes y muestras pareadas (**Lectura**: Secciones 2.4 a 2.6 de Montgomery, D. C. (2013) "Design and analysis of experiments". 8th Edition. John Wiley & Sons).
- 1.3 Diseños completamente aleatorizados. Modelo de efectos fijos un factor. Validación de supuestos.
- 1.4. Inferencias para medias de tratamientos, comparaciones o pruebas múltiples: Tukey, LSD, Duncan, Dunnett. Contrastes de medias.
- 1.5. Diseño completamente aleatorizado de un solo factor efectos aleatorios.
- 1.6. **Lectura:** Potencia en diseños completamente aleatorizados (Sección 6.2 de Notas de Clase y explicación en diapositivas en Moodle).

PARTE II: DISEÑOS EN BLOQUES COMPLETOS

- 2.1. Diseños en bloques completos aleatorizados. **Lectura:** Eficiencia en un DBCA (Sección 7.5 de Notas de Clase, y páginas 25-28 diapositivas de clase de Diseño en)
- 2.2. Ejemplo diseños en bloques completos aleatorizados

Lectura (opcional): Diseños con dos factores de bloques (Diseños en cuadrados latinos, Sección 7.8 de Notas de Clase)

PARTE III: DISEÑOS COMPLETAMENTE ALEATORIZADOS CON TRATAMIENTOS FACTORIALES

- 3.1. Conceptos básicos. Diseños factoriales con dos factores de efectos fijos. Interacción de factores. Ejemplo.
- 3.2. Lectura: Diseños factoriales con tres factores. Diseño factorial general (documento en Moodle).
- 3.3. Modelo factorial de dos factores de efectos aleatorios.
- 3.4. Modelo factorial de dos factores de efectos mixtos.

PARTE IV: DISEÑOS FACTORIALES 2k

- 4.1. Diseños 2². Diseño 2^k general.
- 4.2. Diseño factorial no replicado
- 4.3. Ejemplos
- 4.4. Factoriales 2^k con punto al centro.
- 4.5. **Lectura:** Sección 9.9 de Notas de Clase: Factoriales 2^k en bloques.

PARTE V: DISEÑOS FACTORIALES FRACCIONADOS

- 5.1. Diseño factorial fracción 2^{k-1}. Resolución. Construcción de fracciones 2^{k-1}.
- 5.2. Diseño factorial fracción 2^{k-p}. Construcción del diseño 2^{k-p}.
- 5.3. Diseño factorial fraccionado saturado.
- 5.4 Ejemplo.

PARTE VI: OPTIMIZACIÓN DE PROCESOS

- 6.1 Concepto de optimización. Metodología de superficie de respuesta. Modelos de superficie de respuesta. Diseños de superficie de respuesta (relación modelo diseño, diseños de primer y segundo orden).
- 6.2. Técnicas de optimización. Escalamiento ascendente (descendente).

EVALUACIÓN

Se realizará un trabajo final, y tres pruebas a través de Moodle que se promediarán cada una con un taller. El promedio de estas tres pruebas con el correspondiente taller se hará a través de la siguiente regla:

0.7×(nota del taller)+0.3×nota de la prueba, si la prueba es ganada con una calificación mayor o igual a la del taller escrito.

0.6×(nota del taller)+0.4×nota de la prueba, si la prueba es ganada, pero con una calificación menor a la del taller.

0.4×(nota del taller)+0.6×nota de la prueba, si la prueba es perdida sin importar la nota del taller.

Las pruebas se resuelven de forma individual, pero los talleres y el trabajo final serán presentados en grupos (el mismo grupo de estudiantes para resolver talleres y el trabajo final), de 4 estudiantes.

- Evaluación 1 (15%): Sobre las partes I, y II. Comprende una prueba escrita (cuestionario Moodle) y un taller a resolver con R y a entregar como tarea en la plataforma Moodle.
- Evaluación 2 (21%): Sobre parte III. Comprende una prueba escrita (cuestionario Moodle) y un taller a resolver con R y a entregar como tarea en la plataforma Moodle.
- Evaluación 3: (24%): Sobre partes IV, V, VI. Comprende una prueba escrita (cuestionario Moodle) y un taller a resolver con R y a entregar como tarea en la plataforma Moodle
- Trabajo final: Planeación y ejecución de un DOE (40%). Esta actividad es grupal por los mismos integrantes de grupos para talleres y consiste en la planeación y ejecución de uno de los siguientes experimentos (el grupo decide cuál realizar).
- a) Experimento para estudiar y comparar factores que afectan la cantidad de espuma creada mientras se sirve una cerveza
- b) Experimento para estudiar y comparar factores que afectan la altura de crecimiento (esta respuesta está relacionada con la textura del producto) de un tipo de ponqué o torta casera.
- c) Experimento para estudiar y comparar factores que afectan la eficiencia del calentamiento de los alimentos dentro de un microondas.
- d) Experimento para estudiar y comparar la habilidad de productos caseros (incluyendo posibles mezclas de productos y pre tratamientos) para el lavado de prendas, para remover manchas de uno o dos tipos de manchas en distintos tipos de tejidos.
- e) Experimento para estudiar y comparar factores que determinen el rendimiento en la cantidad de "crispetas" que se obtienen de una cantidad predeterminada de maíz pira, y el sabor (en una escala de valoración de gusto que el grupo debe definir).
- f) Experimento para estudiar y comparar factores para obtener burbujas de jabón lo más grandes y/o que duren el mayor tiempo posible antes de estallar.
 - El experimento elegido debe involucrar mínimo tres factores y todos de efectos fijos. Tenga en cuenta que, si se involucran más de tres factores, el tipo de experimentos más recomendados son los que corresponden a los de la parte IV y V del curso. La evaluación se hará en dos fases, cada una evaluada con un peso del 20%: La primera consiste en la formulación del plan experimental, el cual deberá ser presentado por escrito el 15 de diciembre entre las 00:00h hasta las 8:00h (am) del mismo día, a través de la actividad evaluativa que se creará en Moodle para tal fin. No se aceptan entregas fuera de horario ni por otro medio distinto a la plataforma Moodle, quienes incumplan esto tendrán una nota de 0.0. Los resultados finales de la ejecución del experimento, evidencia de su ejecución con sus respectivos análisis estadísticos y conclusiones, serán presentados a través de un informe escrito y un video subido en youtube. El informe escrito deberá ser subido a la plataforma Moodle a través de la actividad que se creará para tal fin el 2 de febrero de 2022, entre las 00:00h y las 8:00h (am) del mismo día. No se aceptan entregas fuera de horario ni por otro medio distinto a la plataforma Moodle, quienes incumplan esto tendrán una nota de 0.0. Dentro del informe se debe indicar el link para acceder al video y en éste deben participar todos los integrantes, la finalidad es ilustrar cómo fue todo el proceso de experimentación y su duración deberá ser entre 15 y 20 min.

OBSERVACIÓN: para los informes escritos de talleres y trabajo final, deberán cumplir con las condiciones de la plantilla de informes que se publicará en la página Moodle del curso.

PROGRAMACIÓN

Mes	LU	MA	MIÉ.	JU	VI	Sem. No.	ítem tema	Observaciones
Octubre	4	5	6	7	8	1	1.1, 1.2	
	11	12	13	14	15	2	1.3	
	18	19	20	21	22	3	1.3 (cont.), 1.4	Publicación taller 1
	25	26	27	28	29	4	1.5, 1.6, 2.1	Lecturas obligatorias: Sección 6.2 y Sección 7.5 de Notas de Clase
Noviembre	1	2	3	4	5	5	2.2, 3.1	
	8	9	10	11	12	6	3.1 (cont.), 3.2	Prueba 1. Lectura obligatoria: Doc. En Moodle Diseño factorial general
	15	16	17	18	19	7	3.3, 3.4	Entrega taller 1, publicación taller 2
	22	23	24	25	26	8	4.1, 4.2	
Diciembre	Nov-29	Nov-30	1	2	3	9	4.3, 4.4, 4.5	Prueba 2. Lectura obligatoria: Sección 9.9 de Notas de Clase
	6	7	8	9	10	10	5.1, 5.2	Entrega taller 2
	13	14	15	16	17	11	5.3, 5.4	Publicación taller 3, entrega parte I trabajo final
Vacaciones colectivas del 20 de diciembre 2021 al 7 de enero 2022								
Enero	10	11	12	13	14	12	6.1	
	17	18	19	20	21	13	6.2	
	24	25	26	27	28	14		Entrega taller 3, prueba 3
Febrero	Ene-31	1	2	3	4	15		Entrega parte II trabajo final
	7	8	9	10	11	16	·	

Fechas importantes

• Publicación taller 1: Octubre 22

• Prueba 1: Noviembre 12

• Entrega taller 1: Noviembre 16

Publicación taller 2: Noviembre 16

Prueba 2: Diciembre 3

Entrega taller 2: Diciembre 6

• Publicación taller 3: Diciembre 13

• Entrega I trabajo final: Diciembre 15

• Entrega taller 3: enero 24

• Prueba 3: enero 26

• Entrega II trabajo final febrero 2

VERSIÓN R Y LIBRERÍAS

Se trabajará con la versión R 4.1.1 y las siguientes librerías

agricolae;

AlgDesign

car

crossdes

daewr

DoE.base

FrF2

GAD

gmodels

lawstat

<mark>leaps</mark>

Ime4

ImerTest

<u>Ismeans</u>

MASS

multcomp

outliers

pid

<mark>rsm</mark>, plot3D

HORARIO DE ATENCIÓN

Cada semana solo habrá atención de 2 horas en el horario de 2:00pm-4:00pm, en las siguientes fechas

- Octubre 11, 20, 25,
- Noviembre 3, 8, 17, 22, 29
- Diciembre 6, 13
- Enero 12, 17, 24, 31

BIBLIOGRAFÍA

Además de las notas de clase, se recomiendan los siguientes textos

- Dean, A., Voss, D., and Draguljic, D. (2017). Design and Analysis of Experiments, 2nd Edition. Springer.
- Gutiérrez, Pulido H. y de la Vara Salazar, R. (2012). Análisis y diseño de experimentos. 3a edición, McGraw-Hill
- Kuehl, R.O. (2001). "Diseño de Experimentos". Thompson Learning.
- Kutner, M. H., Nachtsheim, C. J., Neter, J., and Li, W. (2005). (2005). "Applied Linear Statistical Models". 5th Edition. Irwing.
- Montgomery, D. C. (2020) "Design and analysis of experiments". 10th Edition. John Wiley & Sons.