L13 Advanced DNA Assembly

Instructor: Prof. K. Solomon Ph.D.
Assistant Professor
Agricultural & Biological Engineering
Laboratory for Renewable
Resources Engineering

Fall 2018

Recall						
Mechanism	Assembly Method	Pros	Cons			
Digestion + Ligation	Biobricks	ScalableAutomatableRobustOnly 4 REs	Needs formatting Fixed scar Can't add between parts			
	Golden Gate/MoClo	Simple one-potScarlessEfficientUp to 10 parts assembled	Needs formatting Unique overhangs must be designed			
Polymerization + Anneal	Gibson CBA	No internal formattingUp to 5 parts assembledscarless	- Long primers - expensive			
	SLIC	- Cheaper than CBA	- Less efficient			
	SOEing/CPEC	- Cheaper than CBA	- Less efficient/challenging			
Recombination	Gateway	FastUp to 4 parts assembledefficient	- Limited vector choices			

This lecture....

- PCR Review
- Site Directed mutagenesis
- Practice

Polymerase Chain Rxn (PCR)

GTCA - https://youtu.be/ID6KY1QBR5s

PCR amplifies DNA

• Exploits double stranded nature of DNA

• Fixed Watson-Crick pairing rules allow each strand to serve as a template for replication

PCR requires 5 components

- DNA template
 Molecule to be replicated
- 2. dNTPs
 Building blocks of DNA + energy for replication
- DNA polymerase
 Enzyme that replicates in 5' → 3' direction only. Adds dNTPs to 3' OH of existing deoxyribose group
- 2x Primers
 Single stranded DNA that is complementary to region to be amplified Targets sequence for replication
- 5. Buffer components (e.g. Mg²⁺) Cofactors needed for enzyme activity

6

PCR amplification relies on temp stability of DNA polymerase 1. Initialization (~94-98 °C for 305 - 2 min) Activates DNA polymerase and melts DNA polymerase and melts DNA 2. Denaturation (~94-98 °C for 5 - 30 s) First part of the cycle 3. Annealing (~50-68 °C for 5 - 30 s) First part of the cycle Anneal temp set by primer melt temperature 4. Elongation (72°C for 15s - 60 s/ kb) Coples DNA. Makes 2 molecules (cycle) 5. Return to Step 2 20-40x

How do we pick b/n codon alternatives?

- Each codon specified by a unique tRNA
- Organisms have codon bias dictated by tRNA abundance
 - Proteins with more abundant codons/tRNAs are translated @ higher rates

Codon	Human	Drosophila	E. coli	wikipedia.com
Arginine: AGA AGG CGA CGC CGG CGU	22 % 23 % 10 % 22 % 14 % 9 %	10% 6% 8% 49% 9% 18%	1 % 1 % 4 % 39 % 4 % 49%	http://www.blackwellpu blishing.com/ridley/
Total number of arginine codons	2403	506	149	
Total number of genes	195	46	149	13

Codon optimization essential for expression

- · Many rare codons give poor expression
- Using only abundant codons might starve endogenous protein synthesis
- Proteins w/ multiple domains need to fold them independently for function
 - Less common codons might separate domains to introduce "translational pausing" for proper folding
- Metrics such as codon adaptation index (CAI) capture the codon bias and provide targets for optimization

Moving proteins b/n organisms typically requires codon optimization for proper expression

1.4

PCR is NOT error proof

- Nucleotide addition frequently erroneous and must be corrected
 - Taq = 2.28 x 10⁻⁵ mutations/bp amplified → 68.4% of 1 kb product will have at least one mutation after 30 cycles
 - High-fidelity Phusion = 4.4 x 10⁻⁷ mutations/bp amplified → 1.3% of 1 kb product will have at least one mutation after 30 cycles

All PCR-based modifications should be sequence verified

Next time

· Genome Engineering

16