HMS 520: Introduction to Programming, Version Control and Data Wrangling

Final Project

Cassidy Chang, Yaz Ozten & Sinclair Carr

December 14, 2021 11:00am PST

Our data

- HIV mortality data from a range of studies worldwide
- Contains some variables directly related to HIV such as: CD4 cell count, probability of mortality in the study time period, time since last initiation of anti-retroviral therapy (ART), study period length
- Other variables such as: sex, region, country, age

- Data wrangling change variable names to be more readable, scale variables as necessary, create new variables
- Data analysis descriptive analyses; population-level associations between HIVrelated variables; predict time_since_art based on numeric variables
- Visualisation regression outputs, goodness-of-fit, PCA, tSNE

Descriptive Q Analysis

		GBD Superregions	
Characteristic	N = 9,334 ⁷	high	4,770 (51%)
Sex		other	1,390 (15%)
female	4,662 (50%)	ssa	3,174 (34%)
male	4,672 (50%)	Time since ART inititation in months	
Age groups		6	3,282 (35%)
15_25	1,866 (20%)	12	3,045 (33%)
25_35	1,866 (20%)	24	3,007 (32%)
35_45	1,866 (20%)	Conditional probability of HIV morta	lity 0.02 (0.00, 0.04)
45_55	1,866 (20%)	Unknown	20
55_100	1,870 (20%)	Average CD4 count	150 (100, 300)
		¹n (%); Median (IQR)	

Descriptive Q Analysis

Descriptive C Analysis

Clustering for prediction

- Unsupervised machine learning method
- Grouping of data into a certain number of categories based on characteristics
- Many types of clustering algorithm
- Clustering types used in this analysis: k-means, k-medoids, hierarchical agglomerative, model-based

Example: K-means

- Most commonly used clustering method
- Define: number of centroids (cluster centres)

Pseudo-code:

- 1. Initiatilalise k random centroids
- 2. For each data point, find nearest centroid, assign
- 3. Move each centroid to mean of points assigned to that centroid
- 4. Repeat until convergence

Other clustering methods

- K-medoids similar to K means, but different error measurement, uses datapoints as initial cluster centers
- Hierarchical agglomerative attempts to find hierarchies in data, uses a dissimilarity matrix, very slow!
- Model-based data assumed to be generated from a finite number of models, of which optimal model is chosen based on BIC

Cluster accuracy computation

Depends on orientation of data

Eg: True =
$$(1, 2, 3, 3, 3)$$

Pred = $(3, 2, 1, 1, 1)$

- Standard accuracy: 20%, fair accuracy: 80%
- Formation of bipartite graph
- Solved using Hungarian algorithm to compute accuracy

Clustering: Results & Conclusion

Mean k-means predictive accuracy is: 0.4288729

Mean k-medoids predictive accuracy is: 0.4933255

Mean agglomerative predictive accuracy is: 0.3514035

Mean model-based predictive accuracy is: 0.5170559>

- Reached above 50%
- Better to use supervised ML
- Yield higher accuracy with neural networks, support vector machines, ensemble methods

Visualisation with PCA

Visualization with tSNE

Time since ART initiation and HIV mortality

```
Model: logit_mortality ~ time_since_art + cd4_mid + sex +
age_group + study_length
```

- Assocation between time since initiation of ART and mortality of HIV
- Unadjusted and adjusted weighted least squares linear regression models
- Inclusion of random effects for study ID

Let's have a look at the outcome

Results

Results of unadjusted regression model

	Logit(Probability of Mortality)
	logit_mortality
time_since_art12	-0.198***
	(0.012)
time_since_art24	-0.233***
	(0.011)
Constant	-3.102***
	(0.009)
Observations	8,954
R^2	0.046
Adjusted R ²	0.046
Residual Std. Error	60.734 (df = 8951)
F Statistic	218.199^{***} (df = 2; 8951)
Note:	*p<0.1; ***p<0.05; ****p<0.01

Results of adjusted regression model

	Logit(Probability of Mortality)
	logit_mortality
time_since_art12	-0.287***
	(800.0)
time_since_art24	-0.258***
	(800.0)
cd4_mid	-0.001***
	(0.00002)
sexmale	-0.023***
	(0.007)
age_group25_35	-0.103***
	(0.012)
age_group35_45	-0.126***
	(0.012)
age_group45_55	-0.111***
	(0.014)
age_group55_100	-0.382***
	(0.013)

study_length	-0.033***
	(0.001)
Constant	-2.452***
	(0.013)
Observations	8,954
R^2	0.582
Adjusted R ²	0.581
Residual Std. Error	40.241 (df = 8944)
F Statistic	$1,382.183^{***}$ (df = 9; 8944)
Note:	*p<0.1; ***p<0.05; ****p<0.01

Forest Plot

AIC and BIC tests

$$AIC(M) = D(M) + 2 \times |M|$$

-7364.462

$$BIC(M) = D(M) + \log(n) \times |M|$$

-7314.763

Thank you for listening!

