

Chapter 4 Stoichiometry

Edited by Dr. Katugampola

Copyright ©2019 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

1

Gasoline and Other Fuels

- Gasoline is a complex mixture of compounds, predominantly containing hydrocarbons
- Most of the hydrocarbon molecules in gasoline are alkanes
- E.g. methane (CH₄), ethane (C₂H₆), propane (C₃H₈)..etc.

pyright ©2019 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

2

Fundamentals of Stoichiometry

- Stoichiometry: A term used to describe quantitative relationships in chemistry
 - · A balanced chemical equation is needed

Copyright © 2019 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

5

Obtaining Ratios from a Balanced Chemical Equation

 $CH_4(g)$ + $2 O_2(g)$ \longrightarrow $CO_2(g)$ + $2 H_2O(\ell)$

• Mole ratios are obtained from the coefficients in the balanced chemical reaction $_{1\, mol\, CH_4\, :\, 2\, mol\, O_2}$

 $1 \operatorname{mol} \operatorname{CH}_4 : 1 \operatorname{mol} \operatorname{CO}_2$

 $1 \operatorname{mol} \operatorname{CH}_4 : 2 \operatorname{mol} \operatorname{H}_2\operatorname{O}$

 $2\,mol\,O_2:2\,mol\,H_2O$

• These ratios can be used in solving problems as fractions

 $\frac{1\,\mathrm{mol}\,\mathrm{CH_4}}{2\,\mathrm{mol}\,\mathrm{O_2}} \quad \frac{1\,\mathrm{mol}\,\mathrm{CH_4}}{1\,\mathrm{mol}\,\mathrm{CO_2}} \quad \frac{1\,\mathrm{mol}\,\mathrm{CH_4}}{2\,\mathrm{mol}\,\mathrm{H_2O}} \quad \frac{2\,\mathrm{mol}\,\mathrm{O_2}}{2\,\mathrm{mol}\,\mathrm{H_2O}} \quad \left(\mathrm{or}\frac{1\,\mathrm{mol}\,\mathrm{O_2}}{1\,\mathrm{mol}\,\mathrm{H_2O}}\right)$

Example Problem

1) In the combustion of methane, how many moles of O₂ are required if 6.75 mol of CH₄ is to be completely consumed?

Answer:

The balanced chemical equation:

$$\mathrm{CH_4}(g) + 2 \; \mathrm{O_2}(g) \to \mathrm{CO_2}(g) + 2 \; \mathrm{H_2O}(\ell)$$

The coefficients from this equation give us the ratio between $\mathrm{CH_4}$ and $\mathrm{O_2}$, which can be expressed in either of the following forms:

$$\frac{1\,\mathrm{mol}\,\mathrm{CH_4}}{2\,\mathrm{mol}\,\mathrm{O_2}}\mathrm{or}\,\frac{2\,\mathrm{mol}\,\mathrm{O_2}}{1\,\mathrm{mol}\,\mathrm{CH_4}}$$

To calculate the desired amount of ${\rm O_2}$ from the known amount of ${\rm CH_4}$, we should use the second form. This gives us the result needed:

$$6.75\, mol\, CH_4 \times \frac{2\, mol\, O_2}{1\, mol\, CH_4} = 13.5\, mol\, O_2$$

- This flow diagram illustrates the various steps involved in solving a typical reaction stoichiometry problem
 - · Similar to unit conversion
 - · Usually more than one conversion is necessary
 - Write all quantities with their complete units

They have given the mass of the one species and asked to find out the mass of the other species produced or consumed

Example Problem

2) How many grams of water can be produced if sufficient hydrogen reacts with 26.0 g of oxygen? (molar mass of oxygen is 32.0 g/mol and molar mass of water is 18.0 g/mol)

$$2~H_2(g) + O_2(g) \rightarrow 2~H_2O(g)$$

