Федеральное государственное автономное образовательное учреждение высшего образования Национальный исследовательский университет ИТМО

Факультет программной инженерии и компьютерной техники Направление подготовки 09.03.04 Программная инженерия Дисциплина «Компьютерные сети»

> Отчет по лабораторной работе №2 «Локальные сети»

> > Студент:

Митичев Иван Дмитриевич, группа P3316

Преподаватель:

Тропченко Андрей Александрович

Оглавление

Цель работы	2
Вариант по номеру студента в списке группы в ИСУ: 1	2
Этап 1. Построение сети с концентратором (hub)	3
Построение сети	3
Таблица маршрутизации	3
ARP-таблицы	4
Настройка компьютеров	4
ARP-таблицы после назначения IP-адресов	4
Анализ таблиц	5
Тестирование сети	6
Этап 2. Построение локальной сети с коммутатором (switch)	7
Построение сети	8
Таблица коммутации	8
Анализ таблиц	9
Тестирование сети	10
Этап 3. Многосегментная локальная сеть	11
Построение сети	11
Тестирование сети	12
Reiron	13

Цель работы

Целью данной лабораторной работы является изучение принципов настройки и функционирования локальных сетей, построенных с использованием концентраторов и коммутаторов, а также процессов передачи данных на основе стека протоколов TCP/IP, с использованием программы моделирования компьютерных сетей NetEmul.

Вариант по номеру студента в списке группы в ИСУ: 5

Don m	Количество компьютеров в		Класс	Примечания	
Вар-т	сети 1 (N1)	сети 2 (N2)	сети 3 (N ₃)	ІР-адресов	примечания
1	2	2	3	В	

Количество компьютеров в сети 1 (N₁): 2

Количество компьютеров в сети 1 (N2): 3

Количество компьютеров в сети 1 (N₃): 4

Класс ІР-адресов: С

Для класса С:

 $(192+H +O).(\Phi+H).(И+H).(\Phi+И)$

(192+16+10).(7+16).(4+16).(7+4)

Адрес IPv4: 218. 23.20.11

Для класса В:

(И+H+128).(О+H).(Ф+H).(Ф+И) (6+15+128).(9+15).(8+15).(8+6)

Адрес IPv4: 149.24.23.14

Этап 1. Построение сети с концентратором (hub)

Построение сети

Рис 1: Схема сети из двух компьютеров с концентратором

Таблица маршрутизации

Таблица маршрутизации содержит информацию:

- 1. Адрес назначения
- 2. Соответствующая адресу маска
- 3. Шлюз, обозначающий адрес маршрутизатора в сети, на который необходимо отправить пакет, следующий до указанного адреса назначения
- 4. Интерфейс, через который доступен шлюз
- 5. Метрика числовой показатель, задающий предпочтительность маршрута (чем меньше число, тем более предпочтителен маршрут)
- 6. Состояние источника Здесь у нас лежат дефолтные значения (до назначения IP адресов)

ARP-таблицы

ARP-таблицы также содержат информацию согласно названиям столбцов (MAC-адрес, IP-адрес, Тип записи, Имя интерфейса, TTL (до назначения IP-адресов) – агр-таблицы пустые. Так как заполняется она после каждого агр-запроса или ответа.

Мас-адрес	Ір-адрес	Тип записи	Имя адаптера	Время жизни

Рис 3: ARP-таблица до назначения IP-адресов

Настройка компьютеров

Address Resolution Protocol — протокол разрешения адресов.

Протокол ARP позволяет автоматически определить MAC-адрес компьютера по его IP-адресу. ARP-запрос получают все компьютеры в сети. Тот компьютер, который узнал в запросе свой IP-адрес подготавливает и отправляет ARP ответ.

После того как MAC-адрес получателя найден, он кэшируется на компьютеры отправителя в ARP-таблице для того, чтобы не запрашивать MAC-адрес каждый раз.

ARP-таблицы после назначения IP-адресов

ARP-таблицы также содержат информацию согласно названиям столбцов (MAC-адрес, IP-адрес, Тип записи, Имя интерфейса, TTL.

(до назначения IP-адресов) – ARP-таблицы пустые. Так как заполняется она после каждого ARP-запроса или ответа.

Рис 4: ARP-таблица PC1 после назначения IP-адресов

Рис 5: ARP-таблица РС2 после назначения IP-адресов

Журналы устройств – для отслеживания протекающих в них процессов (последовательности и содержания передаваемых пакетов и кадров):

Рис 6: Журналы РС1 и РС2

Анализ таблиц

ARP-таблицы стали заполнены записями по каждому компьютеру в сети. (наглядно видно в Рис. 5 и Рис. 6)

Рис 7: Таблица маршрутизации РС1 после назначения ІР-адресов

Рис 8: Таблица маршрутизации РС2 после назначения ІР-адресов

Тестирование сети

Использование UDP:

Рис 9.1: Журналы PC1 и PC2 в момент использования протокола UDP

Первым отправляется Ethernet-пакет с кадром ARP-запроса в ожидании получения ответа от узла получателя. Если ответ приходит, то отправляем Ethernet-пакет с IP-пакетом, а с ним и сегмент данных по UDP.

ARP-запрос и ответ содержит в себе IP- и MAC-адреса отправителя и цели. Ethernet-пакет обладает информацией о MAC-адресе отправителя и получателя сообщения.

Использование ТСР:

Рис 9.2: Журналы РС1 и РС2 в момент использования протокола ТСР

Этап 2. Построение локальной сети с коммутатором (switch)

Построение сети

Рис 10: Схема сети из трех компьютеров с коммутатором

Таблица коммутации

Рис 11: Таблица коммутации

Поля таблицы:

- 1. МАС-адрес
- 2. Порт
- 3. Тип записи
- 4. TTL (измеряется в секундах, время жизни одной записи = 300)

Заполнение таблицы происходит тогда, когда один из компьютеров отправляет через коммутатор запрос и при этом компьютера-отправителя нет в таблице коммутации. Как только компьютер добавляется в таблицу, начинает отсчитываться время жизни данного соединения.

В отличие от хаба, который протягивает трафик с одного онлайн-узла на все остальные, коммутатор передает данные только непосредственно получателю.

Таблица коммутации будет построена полностью, если все компьютеры, которые подключены к данному коммутатору хотя бы один запрос за 300 секунд с момента появления в таблице первой записи. Поэтому максимальное количество строк в таблице равняется количеству подключенных к коммутатору компьютеров.

Анализ таблиц

Таблицы изменились аналогичным образом, как и при передаче через концентратор (см. этап 1):

Рис 12: Таблица маршрутизации РС1 после назначения ІР-адресов

Рис 13: Таблица маршрутизации РС2 после назначения ІР-адресов

Рис 13.2: Таблица маршрутизации РС3 после назначения ІР-адресов

Появились новые записи в ARP-таблице после отправки ARP-запросов:

Рис 14: ARP-таблица РС1 после назначения IP-адресов

Рис 15: ARP-таблица РС2 после назначения IP-адресов

Рис 15.2: ARP-таблица РС3 после назначения IP-адресов

Тестирование сети

Использование UDP:

Рис 16: Журналы PC1, Switch, PC2 и PC3 в момент использования UDP протокола (из PC1 в PC2)

При передаче по UDP содержимое и последовательность пакетов аналогичны с передачей через концентратор.

Использование ТСР:

Рис 17: Журналы PC1, Switch, PC2 и PC3 в момент использования TCP протокола (из PC1 в PC2)

При передаче по ТСР содержимое и последовательность пакетов аналогичны с передачей через концентратор.

Этап 3. Много сегментная локальная сеть

Построение сети

Рис 18: Много сегментная схема сети

Содержимое ARP-таблиц и таблицы маршрутизации почти не изменилось.

В таблице коммутации появилось больше записей, которые относятся к одному порту, но при этом с разными МАС-адресами. Такое происходит из-за того, что коммутаторы объединены с другими коммутаторами или концентраторами, которые объединяют несколько компьютеров.

Топология "кольцо" невозможна в данной сети, так как концентратор не может получать и передавать одновременно более одного сообщения. Если его заменить на коммутатор, то произойдет зацикливание сообщения с ответом на запрос о соединении.

Тестирование сети

Передача сообщения между РС1 и РС7.

Использование UDP:

Рис 19: Журналы PC1, HUB1, SWITCH1 и PC9 в момент использования UDP протокола

Использование ТСР:

Рис 20: Журналы PC1, HUB1, SWITCH1 и PC9 в момент использования TCP протокола

При передаче и UDP, и TCP вся последовательность действий схожа с вышеупомянутой.

Вывод

В ходе выполнения лабораторной работы я изучил три типа локальных сетей: с концентратором, с коммутатором и много сегментную. Это позволило мне понять общий принцип взаимодействия узлов в сети. Я узнал, что в коммутаторах используются таблицы коммутации, в которых хранится соответствие между узлами и портами. Благодаря этому коммутатор передаёт сообщения только нужному узлу, а не всем подключённым, в отличие от концентратора.