

#### Tratamiento de Señales

Version 2023-2

### Segmentación por Umbralización Método de Otsu

[ Capítulo 8 ]

Dr. José Ramón Iglesias

DSP-ASIC BUILDER GROUP Director Semillero TRIAC Ingenieria Electronica Universidad Popular del Cesar

 Umbralización: técnica de segmentación empleada cuando hay una clara diferencia entre los objetos a extraer y el fondo.





## Segmentación por Umbral

La imagen es segmentada a partir de un umbral: los tonos de gris mayores que un umbral pertenecen a la región segmentada, mientras que el resto pertenece al fondo.



#### **Imágenes binarias**

#### Umbralización (Binariazación)

Es el proceso de convertir una imagen de niveles de gris o una imagen a color, en una imagen a blanco y negro, donde

- Los píxeles negros corresponde al fondo (no interesan)
- Los píxeles blancos corresponde al objeto (región de interés)

El proceso de umbralización puede ser global o local.

#### Umbralización global

Un único umbral  $\mu$  es asignado a toda la imagen.

$$I_{Bin}(m,n) = \begin{cases} 0 & \text{si} \quad I(m,n) < \mu \\ 1 & \text{si} \quad I(m,n) > \mu \end{cases}$$



Como determinar el umbral?

El histograma puede utilizarse para diferenciar el fondo y el objeto por sus niveles de gris.



Ejemplo. El método de **Otsu** calcula el umbral  $\mu$  que minimiza la varianza (**V**) **intraclase** de los píxeles blancos y negros.



#### ret,thresh = cv2.threshold(img, umbral, valorMax , tipo)

Los parámetros son los siguientes:

1.img es la imagen gris que va a ser analizada

2.umbral es el valor indicado a analizar en cada píxel

3.valorMax Valor que se coloca a un píxel si sobrepasa el umbral

4.tipo se elige un tipo de umbralización

La función devuelve:

1.thresh imagen binarizada

2.ret valor del umbral





#### Umbralización local

Se determina un umbral para cada píxel dependiendo de su vecindario.

Por ejemplo, el **método de Bernsen** sobre el vecindario  $N_{(2w+1) imes (2w+1)}$ centrado en el píxel I(m,n):

$$N_{(2w+1)\times(2w+1)} = \begin{bmatrix} I(m-w,n-w) & \cdots & I(m-w,n) & \cdots & I(m-w,n+w) \\ \vdots & & \vdots & & \vdots \\ I(m,n-w) & \cdots & I(m,n) & \cdots & I(m,n+w) \\ \vdots & & \vdots & & \vdots \\ I(m+w,n-w) & \cdots & I(m+w,n) & \cdots & I(m+w,n+w) \end{bmatrix}$$

#### Calcula

Promedio

$$\mathbf{p}(m,n) = \frac{\left[F_{\max}(m,n) + F_{\min}(m,n)\right]}{2} \quad \mathbf{v}(m,n) = F_{\max}(m,n) - F_{\min}(m,n)$$

Varianza

$$\mathbf{v}(m,n) = \mathbf{F}_{\max}(m,n) - \mathbf{F}_{\min}(m,n)$$

$$\text{donde } \mathbf{F}_{\max} = \max \left\{ N_{(2w+1) \times (2w+1)} \right\} \quad \text{y} \quad \mathbf{F}_{\min} = \min \left\{ N_{(2w+1) \times (2w+1)} \right\}$$

La umbralización local se realiza como

$$I_{Bin}(m,n) = \begin{cases} 1, & \text{si } I(m,n) < \mathbf{p}(m,n) \ y \ \mathbf{v}(m,n) > v^* \\ 0, & \text{en otro caso} \end{cases}$$

donde  $v^*$  es la varianza óptima intra-clase de Otsu.

#### Ejemplo.



#### Método de Niblack

Para cada píxel I(m,n) de la imagen el umbral es determinado como

$$\mu(m,n) = \mathbf{m} \operatorname{ed}(m,n) + w \cdot \operatorname{std}(m,n)$$

donde

med(m,n): es el promedio de los píxeles de la ventana de  $(2M+1)\times(2N+1)$ , centrada en (m,n)

$$\mathbf{med}(m,n) = \frac{1}{MN} \sum_{i=m-M}^{m+M} \sum_{j=n-N}^{n+M} I(i,j)$$

std(m,n): es la desviación estándar de los píxeles de la ventana de  $(2M+1)\times(2N+1)$ , centrada en (m,n)

$$std(m,n) = \sqrt{\frac{1}{MN} \sum_{i=m-M}^{m+M} \sum_{j=n-N}^{n+M} [I(i,j) - med(i,j)]^{2}}$$

w: es el peso que puede configurarse según sea el caso.

#### Ejemplo. Umbralización difícil



Histograma



No se sabe donde colocar el umbral!

Método de Otsu

#### Umbrales de Niblack



#### Umbralización de Niblack



# Modelo de color



Imagen de entrada



Piel detectada



Probabilidad de piel



Rostro

# Modelo de fondo



Video de entrada



Primer plano



Modelo de fondo



Objetos

### Dependencia del valor umbral:

$$T = T(f(x, y), p(x, y), x, y)$$

Global, local o dinámico.





Necesidad de definir un valor umbral T.

$$g(x,y) = \begin{cases} 1 \Leftrightarrow f(x,y) > T \\ 0 \Leftrightarrow f(x,y) \le T \end{cases} \qquad g(x,y) = \begin{cases} 1 \Leftrightarrow f(x,y) < T \\ 0 \Leftrightarrow f(x,y) \ge T \end{cases}$$





 La mayoría de las técnicas de umbralización se basan en estadísticas sobre el histograma

unidimensional.

Para localizar
 umbrales es
 posible también
 usar otro tipo de
 procedimientos.



- Procedimientos paramétricos: la distribución de los niveles de gris de una clase de objeto lleva a encontrar los umbrales.
- Procedimientos no paramétricos: los umbrales se obtienen de forma óptima de acuerdo a algún criterio.

## Método de Otsu

### Ventajas:

- Buena respuesta del método frente a la mayoría en situaciones del mundo real (imágenes ruidosas, con histogramas planos, mal iluminadas...).
- Automatismo: no precisa de supervisión humana, preprocesamiento de la imagen y otro tipo de información acerca de la misma.

#### Desventajas:

 A medida que el número de clases en la imagen aumenta, el método necesita mucho más tiempo para seleccionar un umbral multinivel adeacuado.

## Método de Otsu

### • Descripción:

- Partimos de una imagen en niveles de gris con N píxels y L posibles niveles diferentes.
- Probabilidad de ocurrencia del nivel de gris i en la imagen:  $p_i = \frac{f_i}{N}$

 $fi \rightarrow$  Frecuencia de repetición del nivel de gris *i-ésimo* con i = 1, 2, ..., L.

# Método de Otsu Umbralización de 2 niveles

### • Descripción:

— En el caso particular de umbralización en dos niveles (binarización), los píxels se dividen en dos clases → C1 y C2, con niveles de gris [1,2,...,t] y [t+1,t+2,...,L] respectivamente, donde las distribuciones de probabilidad de ambas clases son:

son: 
$$C_{1}: \frac{p_{1}}{\omega_{1}(t)}, \dots, \frac{p_{t}}{\omega_{1}(t)}$$

$$C_{2}: \frac{p_{t+1}}{\omega_{2}(t)}, \frac{p_{t+2}}{\omega_{2}(t)}, \dots, \frac{p_{L}}{\omega_{2}(t)}$$

$$\omega_{1}(t) = \sum_{i=1}^{L} p_{i}$$

$$\omega_{2}(t) = \sum_{i=t+1}^{L} p_{i}$$

# Método de Otsu Umbralización de 2 niveles

### • Descripción:

 Las medias para cada una de las clases se definen como:

$$\mu_1 = \sum_{i=1}^{t} \frac{i \cdot p_i}{\omega_1(t)}$$
  $\mu_2 = \sum_{i=t+1}^{L} \frac{i \cdot p_i}{\omega_2(t)}$ 

La intensidad media total de la imagen se define, siendo fácil demostrar así mismo:

$$\omega_1.\mu_1 + \omega_2.\mu_2 = \mu_T$$
  
$$\omega_1 + \omega_2 = 1$$

# Método de Otsu Umbralización de 2 niveles

### Descripción:

 Haciendo uso de un análisis discriminante, Otsu definió la varianza entre clases de una imagen umbralizada como:

$$\sigma_B^2 = \omega_1 \cdot (\mu_1 - \mu_T)^2 + \omega_2 \cdot (\mu_2 - \mu_T)^2$$

La idea es ahora encontrar el umbral, t, que maximice la varianza (Otsu demostró que este era el umbral óptimo):

$$t^* = \underset{t}{Max} \{\sigma_B^2(t)\}$$
 Donde:  $1 \le t \le L$ 

Método para estimar heta de manera automática

(Método de Otsu)































**Ejemplos** 

#### • Ejemplo:

 Consideremos la siguiente imagen con los siguientes parámetros que la definen.



L = 
$$4 \rightarrow [0,85,171,255]$$
  
f1 = 10, f2 = 20  
f3 = 30, f4 = 40  
N = 100 (10x10)

 A continuación se calcula la varianza entre clases de la imagen para todo valor de umbral posible (4 en nuestro caso).

#### Ejemplo:

— Por ejemplo, comenzamos para t = 85:



$$\mathbf{C}_1 \leftrightarrow [0.85]$$
  
 $\mathbf{C}_2 \leftrightarrow [171.255]$ 

$$p_1 = \frac{f_1}{N} = \frac{10}{100} = \frac{1}{10}$$

$$\omega_1(t=2) = \sum_{i=1}^t p_i = \frac{1}{10} + \frac{1}{5} = \frac{3}{10}$$

$$p_2 = \frac{f_2}{N} = \frac{20}{100} = \frac{1}{5}$$

$$p_3 = \frac{f_3}{N} = \frac{30}{100} = \frac{3}{10}$$

$$\omega_2(t=2) = \sum_{i=t+1}^L p_i = \frac{3}{10} + \frac{4}{10} = \frac{7}{10}$$

$$p_4 = \frac{f_4}{N} = \frac{40}{100} = \frac{4}{10}$$

#### Ejemplo:

— Por ejemplo, comenzamos para t = 85:



$$\boldsymbol{c}_{1}:\frac{p_{1}}{\omega_{1}(t=2)},\frac{p_{2}}{\omega_{1}(t=2)}=\{\frac{1}{3},\frac{2}{3}\}$$

$$\boldsymbol{c}_{2}:\frac{p_{3}}{\omega_{2}(t=2)},\frac{p_{4}}{\omega_{2}(t=2)}=\{\frac{3}{7},\frac{4}{7}\}$$

$$\mu_1 = \sum_{i=1}^{t} \frac{ip_i}{\omega_1(t=2)} = \frac{1}{3} + 2 \times \frac{2}{3} = \frac{5}{3}$$

$$\mu_2 = \sum_{i=t+1}^{L} \frac{ip_i}{\omega_2(t=2)} = 3 \times \frac{3}{7} + 4 \times \frac{4}{7} = \frac{25}{7}$$

#### • Ejemplo:

— Por ejemplo, comenzamos para t = 85:



$$\mu_T = \omega_1(t=2)\mu_1 + \omega_2(t=2)\mu_2 = 3$$

$$\sigma_B^2 = \omega_1(t=2)(\mu_1 - \mu_T)^2 + \omega_2(t=2)(\mu_2 - \mu_T)^2 \approx 0.7619$$

– Resultando para el resto de umbrales:

$$\sigma_B^2(t=1) = 0.4444$$
  
 $\sigma_B^2(t=3) = 0.6667$ 

#### Ejemplo:

– En consecuencia, el umbral óptimo según Otsu para este caso sería t = 85, resultando la imagen umbralizada con este valor (la mayor varianza entre clases se obtiene con dicho umbral):



#### · Generalización:

— En este caso, al existir M clases, existirán M-1 umbrales distintos, generalizando el caso particular anteriormente descrito. Por tanto, en este caso habremos de obtener el conjunto multinivel que maximice la varianza entre clases de la forma:

$$\left\{t_1^*, t_2^*, \dots, t_{M-1}^*\right\} = \underset{t_1, t_2, \dots, t_{M-1}}{Max} \left\{\sigma_B^2(t_1, t_2, \dots, t_{M-1})\right\}$$

$$1 \leq t_1 < \dots < t_{M-1} < L$$
 Donde: 
$$\omega_k = \sum_{i \in C_k} p_i \quad \mu_k = \sum_{i \in C_k} \frac{i.p_i}{\omega_k}$$

$$\sigma_B^2 = \sum_{k=1}^M \omega_k . (\mu_k - \mu_T)^2$$

- Ejemplo (2 niveles):
  - Binarización mediante umbral subjetivo t = 45.



### • Ejemplo (2 niveles):

— Binarización mediante umbral óptimo según el método de Otsu de t = 79.





## • Ejemplo (2 niveles):

 Repetimos la binarización con el mismo umbral subjetivo habiendo añadido ruido blanco gaussiano a la imagen original con una densidad de 0.2:





#### • Ejemplo (2 niveles):

— Ahora el umbral óptimo de Otsu para la imagen con ruido blanco gaussiano es de t = 133:





## Bibliografía relacionada

- Nobuyuki Otsu, "A threshold selection method from gray-level histogram", IEEE Transactions on System Man Cybernetics, Vol. SMC-9, No. 1, 1979.
- Digital Image Processing Second Edition,
   Rafael C. González Richard E. Woods,
   capítulo 10.