

Design III

Remise 3

présenté à

Philippe Giguère, Dominique Grenier, Denis Laurendeau

 $\begin{array}{c} \operatorname{par} \\ \operatorname{\acute{E}quipe} 7 - \operatorname{Zi\grave{e}re} \end{array}$

matricule	nom	signature
111 114 478	Garvin, Sébastien	
111 040 128	Kedzierski, Xavier	
111 066 466	Magnan, Charles-Olivier	
111 071 384	Provencher, Jean-Michel	
111 073 630	Bourque, Emile	
111 075 478	Sylvain, Matthieu	
111 074 361	Brown, Jérémy	
907 196 009	Garneau, Laurent	

Université Laval 3 avril 2016

Historique des versions				
version	date	description		
1.0	24 janvier 2016	Création du document		
2.0	31 janvier 2016	Remise 1		
3.0	28 février 2016	Remise 2		
4.0	3 avril 2016	Remise 3		

Table des matières

PI	an d'intégration
Vi	sion
3.1	Localisation des iles et des trésors
3.2	Localisation du robot
3.3	Phases d'alignement du robot
	3.3.1 Capture du trésor
	3.3.2 Dépôt du trésor
	3.3.3 Recharge du condensateur
\mathbf{Sc}	hémas Électroniques
4.1	Station de recharge
4.2	Circuit de charge et de décharge du condensateur
4.3	Circuit de connections pour les moteurs
	4.3.1 Connections moteurs et pont en H
	4.3.2 Connections sur l'Arduino
	Circuit d'alimentation

Chapitre 1

Diagrammes

1.1 Diagramme des fonctionnalités

Chapitre 2
Plan d'intégration

Chapitre 3

Vision

3.1 Localisation des iles et des trésors

Le processus de localisation des îles est effectué une seule fois, au tout début de la routine. Pour localiser les îles, chacune des quatre couleurs est filtrée et placée dans un masque afin d'effectuer un traitement individuel. Ensuite, le système compare les contours des formes filtrées avec les formes géométriques en mémoire. De ce fait, celui-ci est en mesure d'identifier la forme qui possède le plus haut taux de compatibilité avec celles en mémoire.

Pour ce qui est de la localisation des trésors, un processus similaire est utilisé. L'image est filtrée avec la couleur des trésor, puis les formes détectées sont retenues ou non dépendamment de l'aire de celles-ci.

3.2 Localisation du robot

3.3 Phases d'alignement du robot

Tout d'abord, il est important de spécifier que la station de base gère les déplacements principaux du robot alors que le robot gère lui-même les phases d'alignements. Ceci dit, lorsque le robot est dirigé vers une position cible, la station de base lui indiquera quelle type d'alignement il doit effectuer. Il y a une phase d'alignement unique pour la capture d'un trésor, le dépôt de celui-ci sur l'île cible ainsi que pour l'amarrage du robot avec la station de recharge.

Les phases d'alignement regroupent plusieurs petites étapes. Tout commence avec le changement de l'orientation de la caméra embarquée. Celle-ci possède plusieurs positions prédéfinies, ce qui facilite grandement le déroulement du processus d'alignement.

3.3.1 Capture du trésor

Pour la capture du trésor, la caméra est placée en "position trésor" afin d'identifier le trésor et évaluer la distance le séparant du robot. Encore une fois, connaissant la position du préhenseur sur le robot, le robot calcule les ajustements nécessaires et les commandes appropriées sont envoyés. Une fois la commande de déplacement vertical effectuée, l'électroaimant sera activé et le robot reculera afin de valider que le trésor a bel et bien été capturé. La phase de préhension de trésor se termine donc et la station de base reprendra le contrôle du robot. **AJOUTER IMAGE**

3.3.2 Dépôt du trésor

Pour le dépôt du trésor, la caméra se positionnera face à la surface de jeu et analysera la position de l'île cible pour calculer le déplacement vertical et horizontal à effectuer. Une fois ces ajustements calculés, des commandes de déplacements sont envoyés. Finalement, une fois l'alignement terminé, le système valide la position de l'île cible par rapport à la zone de dépôt sécuritaire déterminée par des tests. Le trésor est soit déposé ou un autre alignement est effectué. **AJOUTER IMAGE**

3.3.3 Recharge du condensateur

La phase d'alignement avec la station de recharge est une étape cruciale dans le déroulement de la routine. En effet, un mauvais alignement aura comme conséquence un plus long temps de recharge ou aucune recharge dans le pire des cas. Il est donc indispensable que le robot soit parfaitement aligné avec la station de recharge afin que la recharge à induction soit optimale, mais aussi afin que le code Manchester soit transmis avec succès par le système LED à LED. A COMPLETER

Chapitre 4

Schémas Électroniques

4.1 Station de recharge

FIGURE 4.1 – Schéma électrique de la station de recharge

FIGURE 4.2 – Schéma électrique de la charge et la décharge du condensateur

- 4.2 Circuit de charge et de décharge du condensateur
- 4.3 Circuit de connections pour les moteurs
- 4.3.1 Connections moteurs et pont en H
- 4.3.2 Connections sur l'Arduino
- 4.4 Circuit d'alimentation

Figure 4.3 – Schéma électrique du circuit de connections des moteurs

Bibliographie

- [1] ETH Zurich, An LED-to-LED Visible Light Communication System with Software-Based Synchronization, [En ligne], http://people.inf.ethz.ch/schmist/papers/OWC12Slides.pdf, Page consultée le 27 janvier 2016
- [2] Robotshop, Arduino Mega 2560 Microcontroller, [En ligne], http://www.robotshop.com/ca/en/arduino-mega-2560-microcontroller-rev3.html, Page consultée le 30 janvier 2016
- [3] HobbyKing.com, Turnigy 4500mAh 6S 30C Lipo Pack, [En ligne], http://www.hobbyking.com/hobbyking/store/__10284__Turnigy_4500mAh_6S_30C_Lipo_Pack.html, Page consultée le 30 janvier 2016
- [4] ebay.ca, DC-DC Step-down Buck Converter Adjustable Power 4V-38V to 1.25V-36V 5A Voltmeter, [En ligne], http://www.ebay.ca/itm/171445007919?_trksid=p2057872.m2749.12649&ssPageName=STRK%3AMEBIDX%3AIT, Page consulté le 30 janvier 2016
- [5] Robotshop.com, *Grove Electromagnet*, [En ligne], http://www.robotshop.com/ca/en/grove-electromagnet.html, Page consultée le 30 janvier 2016