1 Ancora sul logaritmo complesso

Proposizione 1.1. Sia $\log: D \to \mathbb{C}$ una branca del logaritmo (D aperto connesso di \mathbb{C}) allora $\log \grave{e}$ olomorfa con $\log'(z) = \frac{1}{z}$ ($0 \notin D$)

Dimostrazione. $\log(exp(x))=z+c$ dunque $\log'(exp(z))exp'(z)=1$ da cui essendo exp'(z)=exp(z) si ha $\log'(exp(z))=\frac{1}{exp(z)}$

(Detto bene: fissato $z_0 \in D$, esiste $y_0 \in \mathbb{C}$ con $z_0 = exp(y_0)$.

Per continuità di exp, dato un intorno V di z_0 in D, esiste un intorno W di y_0 in \mathbb{C} con $exp(W) \subseteq V$.

Le uguaglianze di sopra sono verificate per $y \in W$ e $z \in Y$)

Osservazione 1. Nella proposizione abbiamo usato il seguente fatto:

Sia $f: D \to D'$ è olomorfa e bigettiva e $g: D' \to D$ è l'inversa di f.

Se $f'(z_0) \neq 0$ allora g è olomorfa in $f(z_0)$ e vale

$$g'(f(z_0)) = \frac{1}{f'(z_0)}$$

Infatti da $g \circ f = Id$ e dal teorema della funzione inversa (Analisi II) poichè $f'(z_0) = a + ib \neq 0$, $d_{f_{z_0}} = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$ è invertibile.

Per cui g è differenziabile in $f(z_0)$ e $d_{g_{f(z_0)}} = (d_{f_{z_0}})^{-1}$.

Infine si verifica facilmente che se $A = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$ con $a+ib \neq 0$ allora ha come inversa $\begin{pmatrix} c & -d \\ d & c \end{pmatrix}$ con $c+id = \frac{1}{a+ib}$

Proposizione 1.2. Sia D = B(0,1) e sia $\log : \{Re(z) > 0\} \to \mathbb{C}$ la branca principale. Allora $\forall z \in D$ vale $\log(1+z) = \sum (-1)^{n+1} \frac{z^n}{n}$

Dimostrazione. Siano $f, g: D \to C$ con $f(z) = \log(1+z)$ e $g(z) = \sum (-1)^{n+1} \frac{z^n}{n}$. Poichè il raggio di convergenza della serie data è 1, g è ben definita e analitica, dunque olomorfa e

$$g'(z) = \sum_{n \ge 1} (-1)^{n+1} n \frac{z^{n-1}}{n} = \sum_{n \ge 1} (-1)^{n+1} z^{n-1} = \sum_{n \ge 1} (-1)^n z^n = \sum_{n \ge 1} (-1)^n z^n = \frac{1}{1 - (-z)} = \frac{1}{1 + z}$$

Perciò se h = f - g si ha h'(z) = f'(z) - g'(z) = 0 per $z \in D$. Dunque $h' \equiv 0$ in D, dunque h è costante in D, h(z) = c ma h(0) = 0 da cui f = g **Proposizione 1.3.** Sia D aperto connesso di \mathbb{C} e $f: D \to \mathbb{C}$ analitica.

I seguenti fatti sono equivalenti

- (i) $\exists z_0 \in D \ con \ f^{(n)}(z_0) = 0 \ per \ ogni \ n \in \mathbb{N}$
- (ii) $\exists U \subseteq D \ aperto \ con \ f_{|U} \equiv 0$
- (iii) $f \equiv 0$

Dimostrazione.

- $(iii) \Rightarrow (i)$ ovvio
- $(i) \Rightarrow (ii)$ Per analicità $f(z) = \sum a_n(z z_0)$ per $z \in B(z_0, R)$ per qualche R > 0. Ora $a_n = \frac{f^{(n)}(z_0)}{n!}$ (vedi alla fine della dimostrazione). Dunque se $f^{(n)}(z_0) = 0$ allora $a_n = 0$ perciò $f \equiv 0$ su $B(z_0, R)$
- $(ii) \Rightarrow (iii)$ Sia $\Omega \subseteq D$

$$\Omega = \{ z \in D \, | \, \exists U \ni z \text{ aperto con } f_{|U} \equiv 0 \}$$

Essendo D connesso, basta provare che è aperto e chiuso.

 Ω è aperto per definizione, proviamo che è chiuso .

Sia $z \in D$ con $z = \lim z_n$ dove $z_n \in \Omega$

Ora $f^{(k)}(z_n) = 0$ per ogni $n, k \in \mathbb{N}$ (in quanto se $z_n \in W$ allora $f \equiv 0$ in un intorno di z_0 dunque $f^{(k)}(z_n) = 0$ per ogni $k \in \mathbb{N}$).

Ma $f^{(k)}$ è continua, dunque $f^{(k)}(z) = \lim_n f^{(k)}(z_n)$.

Ora tutte le derivate di f si annullano in z_0 dunque $z \in \Omega$ (ripercorrere la dimostrazione $(i) \Rightarrow (ii)$)

Osservazione 2. Nella dimostrazione abbiamo usato che se f è analitica anche f' lo è e se $f(z) = \sum a_n z^n$ allora $f'(z) = \sum_{n\geq 1} a_n n z^{n-1}$.

Da cui f' è analitica, dunque derivabile.

Iterando otteniamo che f è derivabile infinite volte e $f^{(n)}(z_0) = a_n n!$

Osservazione 3. L'enunciato della proposizione è falso se si suppone f C^{∞} .

Consideriamo la funzione

$$f: \mathbb{C} \to \mathbb{C}$$
 $f(a+ib) = \begin{cases} e^{-\frac{1}{a}} & \text{se } a > 0 \\ 0 & \text{se } a \le 0 \end{cases}$

Ora f è C^{∞} si annulla in $\{Re(z) \leq 0\}$ dunque su un aperto di $\mathbb C$ ma non è nulla su $\mathbb C$ (l'insieme Ω sopra definito non è chiuso)

Corollario 1.4. Sia D aperto connesso di \mathbb{C} e siano $f, g: D \to \mathbb{C}$ analitiche.

- Se f = g su un aperto $U \subseteq D$ allora f = g su D
- Se $\exists z_0 \in D \ con \ f^{(n)}(z_0) = g^{(n)}(z_0) \ per \ ogni \ n \in \mathbb{Z} \ allora \ f = g \ su \ D$

Dimostrazione. Basta applicare il teorema precedente a h = f - g

Corollario 1.5. L'anello delle funzioni analitiche su D (aperto connesso di \mathbb{C}) è un dominio di integrità

Dimostrazione. Se $f,g:\,D\to\mathbb{C}$ sono tali che $fg\equiv 0$ allora siano:

$$A = \{z \, | \, f(z) = 0\} \quad B = \{z \, vert \, g(z) = 0\}$$

Allora $D=A\cup B$, essendo A,B chiusi allora umo di essi ha parte interna non vuota (ex), supponiamo $A^\circ\neq 0$ da cui $f\equiv 0$ su un aperto e dunque su D

2 Zeri di funzioni analitiche

Definizione 2.1. Sia $f: D \to \mathbb{C}$ analitica con $f \not\equiv 0$.

 $\forall z_0 \in D \text{ definiamo}$

$$ord_{z_0}(f) = \min\{n \in \mathbb{N} \mid f^{(n)}(z_0) \neq 0\}$$

Osservazione 4. Poichè la funziono non è identicamente nulla, l'insieme di cui cerchiamo il minimo è non vuoto

Osservazione 5. $f(z_0) = 0 \Rightarrow ord_{z_0}(f) \ge 1$

Definizione 2.2. Uno zero z_0 di f si dice semplice se $ord_{z_0}(f) = 1$ Uno zero z_0 di f si dice semplice se $ord_{z_0}(f) > 1$

Osservazione 6. Se $f(z) = \sum a_n(z-z_0)$, poichè $f^{(n)}(z_0) = n!a_n$ allora

$$ord_{z_0}(f) = \min\{n \in \mathbb{N} \mid a_n \neq 0\}$$

Proposizione 2.1. $f: D \to C$ con D aperto connesso di \mathbb{C} .

Allora si ha

$$f(z) = (z - z_0)^{ord_{z_0}(f)}g(z)$$

 $con g: D \to \mathbb{C}$ analitico e $con g(z) \neq 0$ in un intorno di z_0

Dimostrazione. Sia $k = ord_{z_0}(f)$.

In un intorno di z_0 si ha

$$f(z) = \sum a_n (z - z_0)^n = \sum_{n \ge k} a_n (z - z_0)^n = (z - z_0)^k \sum_{n \ge k} a_n (z - z_0)^{n-k} = (z - z_0)^k \sum_{n \ge k} a_{n+k} (z - z_0)^n$$

Sia $g(z) = \sum a_{n+k}(z-z_0)^n$, la serie di potenze che definisce g ha lo stesso raggio di convergenza di f

In particolare $\exists U$ intorno di z_0 tale che $f(z) = (z - z_0)^k g(z)$.

Ora $g(z_0) = a_k \neq 0$, dunque esiste un intorno di z_0 con g non identicamente nulla nell'intorno

Corollario 2.2. Sia $f: D \to \mathbb{C}$ (D aperto connesso di \mathbb{C}) e $f \not\equiv 0$ Allora $C = \{z \in D \mid f(z) = 0\}$ è discreto e chiuso in D

Dimostrazione. Sia $z_0 \in C$ con $k = ord_{z_0}(f)$ allora in un intorno U di z_0 si ha

$$f(z) = (x - x_0)^k g(z)$$

e tale che $g(z) \neq 0$ per $z \in U$

Se $z \in U \setminus \{z_0\}$ allora $C \cap U = \{z_0\}$ dunque è discreto.

C è chiuso essendo pre-immagine di $\{0\}$ mediante una funzione continua

3 1-forme differenziali complesse

 \mathbb{C} può essere visto come un \mathbb{R} -spazio vettoriale di dimensione 2 con base $\{1, i\}$.

Fissando questa base si ha $End_{\mathbb{R}}(\mathbb{C}) \cong M(2,2,\mathbb{R})$ (con $End_{\mathbb{R}}(\mathbb{C})$ indichiamo l'insieme degli endomorfismi di \mathbb{C} che sono \mathbb{R} -lineari).

L'isomorfismo è dato da

$$\psi \to \begin{pmatrix} Re(\psi(1)) & Re(\psi(i)) \\ Im(\psi(1)) & Im(\psi(i)) \end{pmatrix}$$

Notiamo che

$$dx: \mathbb{C} \to \mathbb{C} \quad dx(a+ib) = a$$

$$dy: \mathbb{C} \to \mathbb{C} \quad dy(a+ib) = b$$

è una base di $End_{\mathbb{R}}(\mathbb{C})$ inteso come \mathbb{C} -spazio vettoriale

Definizione 3.1. Sia D un aperto di \mathbb{C} una 1-forma differenziale complessa su D è una funzione $\omega: D \to End_{\mathbb{R}}(\mathbb{C})$ continua (rispetto alla topologia di $M(2,2,\mathbb{R}) \cong \mathbb{R}^4$)

Osservazione 7. Più concretamente una 1-forma differenziale complessa ω su D corrisponde a 2 funzioni $P,Q:D\to\mathbb{C}$ tali che

$$\omega(z) = P(z)dx + Q(z)dy = Pdx + Qdy$$

Osservazione~8. La continuità di ω deriva da quella di P e Q Infatti se

$$P(z) = a(z) + ib(z) e Q(z) = c(z) + id(z)$$

$$\omega(z)(1) = P(z)dx(1) + Q(z)dy(1) = P(z) = a(z) = ib(z)$$

$$\omega(z)(i) = P(z)dx(i) + Q(z)dy(i) = Q(z) = c(z) = id(z)$$

dunque

$$\omega(z) = \begin{pmatrix} a(z) & c(z) \\ b(z) & d(z) \end{pmatrix}$$

da cui ω è continua se e solo se a, b, c, d lo sono, se e solo se P, Q lo sono

Esempio 3.1. Se $f: D \to \mathbb{C}$ è C^1 allora df è una 1-forma differenziale complessa, data da

$$\mathrm{d}f = \begin{pmatrix} \frac{\partial Re(f)}{\partial u} & \frac{\partial Re(f)}{\partial v} \\ \frac{\partial Im(f)}{\partial u} & \frac{\partial Im(f)}{\partial v} \end{pmatrix}$$

Osservazione 9. Un'altra base utile di $End_{\mathbb{R}}(\mathbb{C})$ è data da

$$dz = dx + idy$$

$$d\overline{z} = dx - idy$$

(è una base in quanto $dx = \frac{dz + d\overline{z}}{2}$ e $dy = \frac{dz - d\overline{z}}{2i} = -i\frac{dz - d\overline{z}}{2}$) Ora se f è differenziabile allora

$$df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy =$$

$$= \frac{\partial f}{\partial x} \left(\frac{dz + d\overline{z}}{2} \right) + \frac{\partial f}{\partial y} \left(-\frac{i}{2} (dz - d\overline{z}) \right) =$$

$$= \frac{1}{2} \left(\frac{\partial f}{\partial x} - \frac{\partial f}{\partial y} \right) dz + \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right) d\overline{z}$$

Definizione 3.2. Sia f differenziabile

$$\frac{\partial f}{\partial z} = \frac{1}{2} \left(\frac{\partial f}{\partial x} - \frac{\partial f}{\partial y} \right)$$

$$\frac{\partial f}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right)$$

Perciò risulta per costruzione

$$\mathrm{d}f = \frac{\partial f}{\partial z} \mathrm{d}z + \frac{\partial f}{\partial \overline{z}} \mathrm{d}\overline{z}$$

Osservazione 10. f è olomorfa $\Leftrightarrow df$ è \mathbb{C} -lineare dunque

$$f$$
 olomorfa \Leftrightarrow $\frac{\partial f}{\partial y} = \mathrm{d}f(i) = i\mathrm{d}f(1) = i\frac{\partial f}{\partial x} \Leftrightarrow \frac{\partial f}{\partial x} = -i\frac{\partial f}{\partial y} \Leftrightarrow \frac{\partial f}{\partial z} = 0$

Osservazione 11. Assumendo f olomorfa

$$\frac{\partial f}{\partial x}(z) = \mathrm{d}f_z(1) = f'(z)$$

$$\frac{\partial f}{\partial y}(z) = \mathrm{d}f_z(i) = i\mathrm{d}f_z(1) = if'(z)$$

Perciò

$$\frac{\partial f}{\partial z} = f'(z)$$

Corollario 3.2. Se $f \ \dot{e} \ olomorfa \ df = f' dz$

Dimostrazione. $df = \frac{\partial f}{\partial z}dz + \frac{\partial f}{\partial \overline{z}}d\overline{z} = f'dz + 0$