MATH2111 Tutorial 8

T1A&T1B QUAN Xueyang T1C&T2A SHEN Yinan T2B&T2C ZHANG Fa

1 Null Spaces and Column Spaces

1. **Definition (Null Space)**. The null space of an $m \times n$ matrix A, written as Nul A, is the set of all solutions of the homogeneous equation $A\mathbf{x} = \mathbf{0}$. In set notation,

Nul
$$A = \{ \mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n \text{ and } A\mathbf{x} = \mathbf{0} \}$$

- 2. **Theorem**. The null space of an $m \times n$ matrix A is a subspace of \mathbb{R}^n .
- 3. **Definition (Column Space)**. The column space of an $m \times n$ matrix A, written as Col A, is the set of all linear combinations of the columns of A. If $A = \begin{bmatrix} \mathbf{a}_1 & \cdots & \mathbf{a}_n \end{bmatrix}$, then

$$\operatorname{Col} A = \operatorname{Span} \left\{ \mathbf{a}_1, \dots, \mathbf{a}_n \right\}$$

4. **Theorem**. The column space of an $m \times n$ matrix A is a subspace of \mathbb{R}^m .

2 Kernel and Range

- 1. **Definition** (**Linear Transformation**). A linear transformation T from a vector space V into a vector space W is a rule that assigns to each vector \mathbf{x} in V a unique vector $T(\mathbf{x})$ in W, such that for all \mathbf{u} , \mathbf{v} in V and all scalars c,
 - (a) $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$
 - (b) $T(c\mathbf{u}) = cT(\mathbf{u})$
- 2. **Definition** (Kernel and Range). For a linear transformation $T: V \to W$,
 - (a) the kernel of T is defined as

$$\ker T = \{ \mathbf{v} \in V \mid T(\mathbf{v}) = \mathbf{0} \}$$

(b) the range (image) of T is defined as

range
$$T = \{ \mathbf{w} \in W \mid \mathbf{w} = T(\mathbf{v}) \text{ for some } \mathbf{v} \in V \}$$

- 3. **Theorem**. Let $T: V \to W$ be any linear transformation.
 - (a) ker T, range T are both vector subspaces (of V, W respectively)
 - (b) T is injective(one-to-one) iff ker $T = \{0\}$
 - (c) T is surjective(onto) iff range T = W

3 **Basis**

- 1. **Theorem**. An indexed set $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ of two or more vectors, with $\mathbf{v}_1 \neq 0$, is linearly dependent if and only if some v_i (with j > 1) is a linear combination of the preceding vectors, v_1, \ldots, v_{i-1} .
- 2. **Definition** (Basis). Let H be a subspace of a vector space V. An indexed set of vectors B = 0 $\{\mathbf{b}_1,\ldots,\mathbf{b}_p\}$ in V is a basis for H if
 - (a) B is a linearly independent set, and
 - (b) the subspace spanned by B coincides with H. that is,

$$H = \operatorname{Span} \left\{ \mathbf{b}_1, \dots, \mathbf{b}_p \right\}$$

- 3. **Fact**. $\{\mathbf{v}_1, \dots \mathbf{v}_p\}$ is a basis for \mathbb{R}^n if and only if:

(1)
$$p = n$$
 (i.e. the set has exactly n vectors), and (2) $\det \begin{bmatrix} | & | & | \\ \mathbf{v}_1 & \dots & \mathbf{v}_n \\ | & | & | \end{bmatrix} \neq 0$.

- 4. Theorem (The Spanning Set Theorem). Let $S = \{v_1, \dots, v_p\}$ be a set in V, and let $H = \{v_1, \dots, v_p\}$ Span $\{\mathbf{v}_1,\ldots,\mathbf{v}_p\}$.
 - (a) If one of the vectors in S, say \mathbf{v}_k , is a linear combination of the remaining vectors in S, then the set formed from S by removing \mathbf{v}_k still spans H.
 - (b) If $H \neq \{0\}$, some subset of S is a basis for H.
- 5. **Theorem (casting-out algorithm)**. The pivot columns of a matrix A form a basis for Col A.

4 Exercises

- 1. Determine whether the following is a subspace or not.
- $(1) \{ (1+a, b, a+b) \mid a, b \in \mathbb{R} \},\$
- $(2) \{ (1+a,b,1+a+b) \mid a,b \in \mathbb{R} \},\$
- $(3) \{ (a, 3b, a + 2b, 2b a) \mid a, b \in \mathbb{R} \}$

2. Determine the null space of the following matrix:

$$A = \left(\begin{array}{rrrr} 1 & 3 & 2 & 8 \\ 2 & 7 & 2 & 3 \end{array}\right)$$

if col(A) is subspace of \mathbb{R}^k , what is k?

3. What is the base of the range for the above given matrix?

$$A = \left(\begin{array}{rrrr} 1 & 3 & 2 & 8 \\ 2 & 7 & 2 & 3 \end{array}\right)$$

4. (1) Is $\left\{ \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 3\\2\\1 \end{pmatrix} \right\}$ basis for \mathbb{R}^3 ? (2) $S_1 = \left\{ 1, x, x^2 \right\}$ is a basis of \mathbb{P}_2 . Is $S_2 = \left\{ 1, x+1, (x+1)^2 \right\}$ also a basis of \mathbb{P}_2 ?

- 5. (1) Is $\left\{ \begin{pmatrix} \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} \\ 0 \end{pmatrix}, \begin{pmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$ linearly independent? (2) Suppose nonzero vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ are orthogonal to each other, namely, $\mathbf{v}_i^{\mathsf{T}} \mathbf{v}_j = 0$ holds for any $i \neq j, i, j = 1, \dots, n$. Prove $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ are linearly independent.