

Test Report

FCC ID.: MTi160623E003

Date of issue: Jul. 12, 2016

Sample Description: PIN PAD

Model(s): G3

Applicant: Shenzhen Xinguodu Technology Co., Ltd.

Address: 17/A, Jinsong Building Tairan Industry And Trading

Garden, Shenzhen, China

Date of Test: Jun. 23, 2016 to Jul. 11, 2016

- Page 2 of 15 -

Report No.: MTi160623E003

Table of Contents

1. (General description	. 5
	Feature of equipment under test (EUT)	
	Test Configuration of EUT	
2.1	EUT operation mode	. 6
2.2	Test conditions	. 6
2.3	Testing site	. 6
2.4	Ancillary equipment list	. 6
2.5	Measurement uncertainty	. 6
3. L	ist of test equipment	. 7
4 . 7	Test Result	. 8
4.1	Conducted emission	. 8
4.2	Antenna requirement	11
	20dB emission bandwidth	
4.4	Radiated emission	13
4.5	Frequency stability	15

- Page 3 of 15 - Report No.: MTi160623E003

TEST RESULT CERTIFICAT	TION
Applicant's name:	Shenzhen Xinguodu Technology Co., Ltd.
Address:	17/A, Jinsong Building Tairan Industry And Trading Garden, Shenzhen, China
Manufacture's Name:	Shenzhen Xinguodu Technology Co., Ltd.
Address:	17/A, Jinsong Building Tairan Industry And Trading Garden, Shenzhen, China
Product description	
Product name:	PIN PAD
Trademark:	NEXGO
Model name:	G3
Standards:	FCC Part 15.225
Test Procedure:	ANSI C63.10-2013

This device described above has been tested by Shenzhen Toby Technology Co., Ltd. and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

Tested by:	David Cl	ien	
	David Chen	Jul. 11, 2016	
Reviewed by:	(en cho	~	
	Leon Chen	Jul. 11, 2016	
Approved by:	Jun (iu.	
	Ares Liu	Jul. 11, 2016	

- Page 4 of 15 - Report No.: MTi160623E003

SUMMARY OF TEST RESULT

Item	FCC Part No.	Description of Test	Result
1	15.203	Antenna requirement	Pass
2	15.207	AC power line conducted emission	Pass
3	15.35 b)	20dB bandwidth	Pass
4	15.225	Radiated emission	Pass
5	15.225	Frequency stability	Pass

- Page 5 of 15 - Report No.: MTi160623E003

1. General description

1.1 Feature of equipment under test (EUT)

Product name:	PIN PAD
Model name:	G3
Operating frequency:	13.56MHz
Modulation type:	subcarrier load modulation
Power supply:	DC 5V from adapter
Adapter information:	Model: ADS-6MA-06 05050EPCU Input: 100-240V 50/60Hz Max. 0.3A Output: 5V 1A
Antenna designation:	Loop antenna (Antenna Gain: 0dBi)

- Page 6 of 15 - Report No.: MTi160623E003

2. Test Configuration of EUT

2.1 EUT operation mode

During testing, the EUT is operated in a keeping TX mode.

2.2 Test conditions

During the measurement the environmental conditions were within the listed ranges:

- Temperature: 20°C~30°C - Humidity: 30%~70%

- Atmospheric pressure: 98kPa~101kPa

2.3 Testing site

Test Site	Shenzhen Toby Technology Co., Ltd.
Test Site Location	1 A/F., Bldg.6, Yusheng Industrial Zone The National Road No.107 Xixiang Section 467, Shenzhen, Guangdong, China
FCC Registration No.:	811562
CNAS Registration No.:	CNAS L5813

2.4 Ancillary equipment list

Equipment	Model	S/N	Manufacturer
1	1	1	1

2.5 Measurement uncertainty

Measurement Uncertainty for a Level of Confidence of 95 %, U=2xUc(y)

RF frequency	1 x 10-7
RF power, conducted	± 1 dB
Conducted emission(150kHz~30MHz)	± 2.5 dB
Radiated emission(30MHz~1GHz)	± 4.2 dB
Radiated emission (above 1GHz)	± 4.3 dB
Temperature	±1 degree
Humidity	± 5 %

- Page 7 of 15 - Report No.: MTi160623E003

3. List of test equipment

For AC power line conducted emission:

Equipment	Manufacturer	Model	Serial No.	Calibration Due
LISN	R&S	ENV216	101313	2016.12.06
LISN	SCHWARZBECK	NNLK 8129	8129245	2016.12.25
Pulse Limiter	SCHWARZBECK	VTSD 9561F	9716	2016.12.25
Test Cable	N/A	N/A	C01	2016.12.06
EMI Test Receiver	R&S	ESCI	101160	2016.12.06

For Radiated emission:

Equipment	Manufacturer	Model	Serial No.	Calibration Due
Log-Bicon Antenna	MESS-ELEKTRO NIK	VULB 9160	3058	2016.12.11
Horn Antenna	Schwarzbeck	BBHA 9120D	631	2016.12.05
Horn Antenna	Schwarzbeck	BBHA 9170	373	2016.12.05
Loop Antenna	Schwarzbeck	FMZB 1519 B	00005	2016.12.05
Test Cable	United Microwave	57793	1m	2016.12.05
Test Cable	United Microwave	A30A30-5006	10M	2016.12.05
Microwave Pre_amplifier	Agilent	8449B	3008A01714	2016.12.05
Pre-Amplifier	Anritsu	MH648A	M09961	2016.12.05
EMI Test Receiver	R&S	ESCI-7	101318	2016.12.05
Spctrum analyzer	Agient	E4470B	MY41441082	2017.06.01

Note: the calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

- Page 8 of 15 - Report No.: MTi160623E003

4. Test Result

4.1 Conducted emission

4.1.1 Limit

Frequency	Limit			
(MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56	56 50 46		
0.5-5	56	46		
5-30	60	50		

Note: Decreases with the logarithm of the frequency from 0.15MHz to 0.5MHz.

4.1.2 Test method

- 1. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.
- 2. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- 3. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 4. LISN is at least 80 cm from nearest part of EUT chassis.
- 5. The resolution bandwidth of EMI test receiver is set at 9kHz.

4.1.3 Test Result

- Page 9 of 15 - Report No.: MTi160623E003

Tempera	ture:	22°C			Relati	ve		51%			
Pressure:		101k	Pa		Polari	zation	:	L			
Test volta	age:	AC 1	20V/60	Hz .	Test n	node:		Transn	nitting		
100.0 dBu	v			·							_
90											1
80											1
70											
_							FCCP	Part15 ClassB	AC Conduction(QP)		
60											1
50 ×	_						FCCPa	nt15 Class8 A	Conduction(AVG)		
40		mily.	v								
40	mound	worken things	Mangally Mily	lapolica MANA Codepus	Marchine	m/mympune	Maryanine	religion to be stated	hadronia patriordina materiale	Mynn	peak
30		1			2. 2. 100				20 Miles (1990)		
523	-www.	men man	engangement promise	What have been and	more	and the same of	*********	****	Marine and the second	approximation of	AVG
20											1
10											ļ
											1
0.0											1
0.0		0.5			(MHz)		5	5		30.00] 00
		0.5			(MHz)		5	5		30.00] 00
			Correct	Magaura	(MHz)		5	5		30.00	00
	Freq.	0.5 Reading Level	Correct	Measure- ment	(MHz)	Over	5	5		30.00	00
0.150	Freq.	Reading					Detector	Commer	nt .	30.00	00
0.150		Reading Level	Factor	ment	Limit	Over			it .	30.00] DO
0.150 No. Mk.	MHz	Reading Level dBuV	Factor dB	ment dBuV	Limit dBuV 65.51	Over	Detector		ıt.	30.00	00
0.150 No. Mk.	MHz 0.1590	Reading Level dBuV 7.26	Factor dB 30.02	ment dBuV 37.28	Limit dBuV 65.51 55.51	Over dB -28.23	Detector QP		it.	30.00	00
0.150 No. Mk.	MHz 0.1590 0.1590	Reading Level dBuV 7.26 -1.30	dB 30.02 30.02	ment dBuV 37.28 28.72	Limit dBuV 65.51 55.51 56.70	Over dB -28.23 -26.79	Detector QP AVG		nt .	30.00	00
0.150 No. Mk.	MHz 0.1590 0.1590 0.4598	Reading Level dBuV 7.26 -1.30 9.91	Factor dB 30.02 30.02 30.02	ment dBuV 37.28 28.72 39.93	Limit dBuV 65.51 55.51 56.70 46.70	Over dB -28.23 -26.79 -16.77	Detector QP AVG QP		nt .	30.00	J 00
0.150 No. Mk. 1 2 3 4 *	MHz 0.1590 0.1590 0.4598 0.4598	Reading Level dBuV 7.26 -1.30 9.91 0.91	Factor dB 30.02 30.02 30.02 30.02	ment dBuV 37.28 28.72 39.93 30.93	Limit dBuV 65.51 55.51 56.70 46.70 56.00	Over dB -28.23 -26.79 -16.77 -15.77	Detector QP AVG QP AVG		it.	30.00	00
0.150 No. Mk. 1 2 3 4 *	MHz 0.1590 0.1590 0.4598 0.4598 0.8879	Reading Level dBuV 7.26 -1.30 9.91 0.91 2.59	Factor dB 30.02 30.02 30.02 30.02 30.02	ment dBuV 37.28 28.72 39.93 30.93 32.61	Limit dBuV 65.51 55.51 56.70 46.70 46.00	Over dB -28.23 -26.79 -16.77 -15.77 -23.39	Detector QP AVG QP AVG		ıt.	30.00	000
0.150 No. Mk. 1 2 3 4 * 5 6	MHz 0.1590 0.1590 0.4598 0.4598 0.8879 0.8879	Reading Level dBuV 7.26 -1.30 9.91 0.91 2.59 -2.84	Factor dB 30.02 30.02 30.02 30.02 30.02 30.02	ment dBuV 37.28 28.72 39.93 30.93 32.61 27.18	Limit dBuV 65.51 55.51 56.70 46.70 56.00 46.00	Over dB -28.23 -26.79 -16.77 -15.77 -23.39 -18.82	Detector QP AVG QP AVG QP AVG		nt .	30.00	000
0.150 No. Mk. 1 2 3 4 5 6 7	MHz 0.1590 0.1590 0.4598 0.4598 0.8879 0.8879	Reading Level dBuV 7.26 -1.30 9.91 0.91 2.59 -2.84 0.64	Factor dB 30.02 30.02 30.02 30.02 30.02 30.02 30.02 30.02	ment dBuV 37.28 28.72 39.93 30.93 32.61 27.18 30.66	Limit dBuV 65.51 55.51 56.70 46.70 56.00 46.00 46.00	Over dB -28.23 -26.79 -16.77 -15.77 -23.39 -18.82 -25.34	Detector QP AVG QP AVG AVG QP AVG		nt .	30.00	000
0.150 No. Mk. 1 2 3 4 * 5 6 7	MHz 0.1590 0.1590 0.4598 0.4598 0.8879 0.8879 1.2741	Reading Level dBuV 7.26 -1.30 9.91 0.91 2.59 -2.84 0.64 -3.54	Factor dB 30.02 30.02 30.02 30.02 30.02 30.02 30.02 30.02	ment dBuV 37.28 28.72 39.93 30.93 32.61 27.18 30.66 26.48	Limit dBuV 65.51 55.51 56.70 46.70 56.00 46.00 56.00 56.00	Over d8 -28.23 -26.79 -16.77 -15.77 -23.39 -18.82 -25.34 -19.52	Detector QP AVG QP AVG QP AVG AVG		at .	30.00	000
0.150 No. Mk. 1 2 3 4 * 5 6 7 8 9	MHz 0.1590 0.1590 0.4598 0.4598 0.8879 0.8879 1.2741 1.2741 1.5477	Reading Level dBuV 7.26 -1.30 9.91 0.91 2.59 -2.84 0.64 -3.54 0.71	Factor dB 30.02 30.02 30.02 30.02 30.02 30.02 30.02 30.02 30.02 30.02	ment dBuV 37.28 28.72 39.93 30.93 32.61 27.18 30.66 26.48 30.73	Limit dBuV 65.51 55.51 56.70 46.70 56.00 46.00 56.00 46.00 46.00	Over dB -28.23 -26.79 -16.77 -15.77 -23.39 -18.82 -25.34 -19.52 -25.27	Detector QP AVG QP AVG QP AVG QP AVG QP AVG		nt .	30.00	000

- Page 10 of 15 -

Report No.: MTi160623E003

Temperature: Pressure: Test voltage:		24°C	24°C 101kPa AC 120V/60Hz		Polarization: Test mode:			57% N Transmitting		
		101k					:			
		AC 1								
100.0 dBu\	,									
90										
80										
70	140						5000			
60	_						FCCPart15 ClassB AC Conduction(QP)			
50							FCCPa	rt15 ClassB AC Conduction(AVG)		
30		J.X								
40	my	March March	Mary Allen		NX			sometiment of the second of th	h.uhm. da	
30		MAN W	Na July Market All His All	drown NAPILLA	A THINH WALL	photography	in-adelegan/lifemaly	18/1-10/10-10-10/10-10-10-10-10-10-10-10-10-10-10-10-10-1	peak	
	remains	more	indicate and the state of	of a complete many and a	Marketon Com	wardon	-	and the second s	AVG	
20										
10										
0.0										
0.150		0.5			(MHz)		5		30.000	
						-				
No Mic	From	Reading	Correct	Measure-	Limit					
No. Mk.	Freq.	Level	Factor	ment	Limit	Over	Detector	Comment		
	MHz	Level dBuV	Factor dB	ment dBuV	dBuV	dB	Detector	Comment		
No. Mk.		Level	Factor	ment	dBuV 56.58	dB -22.24	QP	Comment		
1	MHz 0.4663	dBuV 4.32	Factor dB 30.02	ment dBuV 34.34	dBuV 56.58 46.58	dB		Comment		
1 2 *	MHz 0.4663 0.4663	dBuV 4.32 -2.65	ds 30.02 30.02	ment dBuV 34.34 27.37	dBuV 56.58 46.58 56.00	dB -22.24 -19.21	QP AVG	Comment		
1 2 * 3	MHz 0.4663 0.4663 0.8397	dBuV 4.32 -2.65 -0.53	Factor dB 30.02 30.02 30.02	ment dBuV 34.34 27.37 29.49	dBuV 56.58 46.58 56.00 46.00	dB -22.24 -19.21 -26.51	QP AVG QP	Comment		
1 2 * 3 4	MHz 0.4663 0.4663 0.8397 0.8397	dBuV 4.32 -2.65 -0.53 -4.10	Factor d3 30.02 30.02 30.02 30.02	ment dBuV 34.34 27.37 29.49 25.92	dBuV 56.58 46.58 56.00 46.00 56.00	dB -22.24 -19.21 -26.51 -20.08	QP AVG QP AVG	Comment		
1 2 * 3 4 5	MHz 0.4663 0.4663 0.8397 0.8397 1.2971	Level dBuV 4.32 -2.65 -0.53 -4.10 -1.09	Factor dB 30.02 30.02 30.02 30.02 30.02	ment dBuV 34.34 27.37 29.49 25.92 28.93	dBuV 56.58 46.58 56.00 46.00 56.00	dB -22.24 -19.21 -26.51 -20.08 -27.07	QP AVG QP AVG QP	Comment		
1 2 * 3 4 5	MHz 0.4663 0.4663 0.8397 0.8397 1.2971	Level dBuV 4.32 -2.65 -0.53 -4.10 -1.09 -4.34	Factor dB 30.02 30.02 30.02 30.02 30.02 30.02	ment dBuV 34.34 27.37 29.49 25.92 28.93 25.68	dBuV 56.58 46.58 56.00 46.00 56.00 56.00	dB -22.24 -19.21 -26.51 -20.08 -27.07 -20.32	QP AVG QP AVG QP AVG	Comment		
1 2 * 3 4 5 6 7	MHz 0.4663 0.4663 0.8397 0.8397 1.2971 1.2971	Level dBuV 4.32 -2.65 -0.53 -4.10 -1.09 -4.34 -1.26	Factor dB 30.02 30.02 30.02 30.02 30.02 30.02 30.02 30.02	ment dBuV 34.34 27.37 29.49 25.92 28.93 25.68 28.76	dBuV 56.58 46.58 56.00 46.00 56.00 46.00 46.00	dB -22.24 -19.21 -26.51 -20.08 -27.07 -20.32 -27.24	QP AVG QP AVG QP AVG QP	Comment		
1 2 * 3 4 5 6 7 8	MHz 0.4663 0.4663 0.8397 0.8397 1.2971 1.2971 1.7564	Level dBuV 4.32 -2.65 -0.53 -4.10 -1.09 -4.34 -1.26 -4.40	Factor d3 30.02 30.02 30.02 30.02 30.02 30.02 30.02	ment dBuV 34.34 27.37 29.49 25.92 28.93 25.68 28.76 25.62	dBuV 56.58 46.58 56.00 46.00 56.00 46.00 56.00 56.00	dB -22.24 -19.21 -26.51 -20.08 -27.07 -20.32 -27.24 -20.38	QP AVG QP AVG QP AVG AVG	Comment		
1 2 * 3 4 5 6 7 8	MHz 0.4663 0.4663 0.8397 0.8397 1.2971 1.7564 1.7564 1.9633	Level dBuV 4.32 -2.65 -0.53 -4.10 -1.09 -4.34 -1.26 -4.40 -1.35	Factor dB 30.02 30.02 30.02 30.02 30.02 30.02 30.02 30.02 30.02 30.02	ment dBuV 34.34 27.37 29.49 25.92 28.93 25.68 28.76 25.62 28.67	dBuV 56.58 46.58 56.00 46.00 56.00 46.00 56.00 46.00	dB -22.24 -19.21 -26.51 -20.08 -27.07 -20.32 -27.24 -20.38 -27.33	QP AVG QP AVG QP AVG QP AVG QP AVG	Comment		

- Page 11 of 15 - Report No.: MTi160623E003

4.2 Antenna requirement

4.2.1 Requirement defined in FCC 15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

4.2.2 EUT antenna description

The radio antenna of EUT is an internal permanently attached antenna, the maximum gain is 0dBi. So the antenna meets the requirement of this part.

- Page 12 of 15 - Report No.: MTi160623E003

4.3 20dB emission bandwidth

4.3.1 Test method

Set Spectrum Analyzer centre Frequency= Fundamental Frequency, RBW=10kHz, VBW= 10 kHz, Span= 200kHz

Allow the trace to stabilize, measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission.

4.3.2 Test result

- Page 13 of 15 - Report No.: MTi160623E003

4.4 Radiated emission

4.4.1 Limit

The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters.

Within the bands 13.410-13.553 MHz and 13.567-13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.

Within the bands 13.110-13.410 MHz and 13.710-14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.

The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in §15.209, the field strength of emissions from intentional radiators shall not exceed the following:

Frequency (MHz)	Field strength µV/m	Field strength dBµV/m	Detector	Measurement distance	
1.705-30	/	69.54	QP		
30-88	100	40	QP		
88-216	150	43.5	QP		
216-960	200	46	QP	3m	
960-1000	500	46	QP		
Above 1000	500	54	AV		
Above 1000	5000	74	PK		

Note: the measurement distance is 30m for 1.705MHz to 30MHz, 3m for above 30MHz.

4.4.2 Test method

The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground; the table was rotated 360 degrees to determine the position of the highest radiation.

For test frequency up to 30MHz, a loop antenna is used, the enter of the loop antenna is 1m above the ground.

For test frequency above 30MHz, he Test antenna shall vary between 1m and 4m, both Horizontal and Vertical polarization are set to make measurement.

For the actual test configuration, please see the test setup photo.

4.4.3 Test Result

- Page 14 of 15 - Report No.: MTi160623E003

Frequency	Ant. Polarization	Emission level	Limits	Detector	Result
(MHz)	H/V	dBµV/m	dBμV/m		
13.56	1	84.2	124	Peak	
13.56	1	83.8	124	QP	
13.553	1	46.2	69.54	QP	
13.567	1	51.4	69.54	QP	
13.41	/	30.1	69.54	QP	
13.71	1	28.6	69.54	QP	
13.11	/	29.3	69.54	QP	Pass
14.01	/	28.5	69.54	QP	
27.12	/	39.9	69.54	QP	
40.68	V	36.5	40	QP	
40.68	Н	30.3	40	QP	
54.24	V	33.9	40	QP	
54.24	Н	27.1	40	QP	

Remark:

- 1, Performed pretest to three orthogonal axes (x, y, z axis), the worst case emissions (X axis) were reported.
- 2, other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

- Page 15 of 15 - Report No.: MTi160623E003

4.5 Frequency stability

4.5.1 Limit

The frequency tolerance of the carrier signal shall be maintained within ±0.01% of the operating frequency over a temperature variation of -20 degrees to + 50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

4.5.2 Test Result

Voltage (VAC)	Temp. (°C)	Frequency (MHz)	Deviation (%)	Limit (%)
120	-20	13.560833	0.0061%	
120	-10	13.560786	0.0058%	
120	0	13.560788	0.0058%	
120	10	13.560708	0.0052%	
120	20	13.560665	0.0049%	+/-0.01%
120	30	13.560632	0.0047%	
120	40	13.56073	0.0054%	
120	50	13.560701	0.0052%	
138	20	13.560848	0.0063%	
102	20	13.560759	0.0056%	

----END OF REPORT----