Chapter 37 Couple de variables aléatoires réelles

Exercice 1 (37.0)

Soit X et Y deux variables aléatoires telles que $Y = X^2$ et que la loi de X soit donnée par le tableau

$\overline{x_i}$	-2	-1	0	1	2
$p(X = x_i)$	$\frac{1}{6}$	$\frac{1}{4}$	$\frac{1}{6}$	$\frac{1}{4}$	$\frac{1}{6}$

- **1.** Donner la loi du couple (X, Y).
- 2. Déterminer la loi de Y.
- **3.** *X* et *Y* sont-elles indépendantes ?
- **4.** Calculer cov(X, Y). Conclusion ?

Exercice 2 (37.0)

Une urne contient 4 boules numérotées de 1 à 4. On y prélève deux boules sans remise. On définit les variables aléatoires *X* et *Y* égales respectivement au plus petit et au plus grand des deux numéro obtenus.

- **1.** Déterminer la loi du couple (X, Y).
- **2.** En déduire les lois marginales de X et de Y. Calculer E(X), E(Y), V(X), V(Y).
- 3. Les variables aléatoires X et Y sont-elles indépendantes? Calculer Cov(X, Y).
- **4.** On pose Z = Y X. Calculer E(Z) et V(Z). Déterminer ensuite la loi de Z.

Exercice 3 (37.0)

Soient $n \in \mathbb{N}^*$ et $a \in \mathbb{R}$. On définit, pour $(i, j) \in [[1, n]]^2$, les réels $p_{i,j}$ par $p_{i,j} = a \cdot i \cdot j$.

- **1.** Déterminer a pour que la loi du coupe (X,Y) soit donnée par la distribution de probabilité $(p_{i,j})_{(i,j)\in[1,n]^2}$.
- 2. Déterminer les lois marginales de X et de Y. Ces variables aléatoires sont-elles indépendantes?
- **3.** En déduire E(XY) et Cov(X, Y).
- **4.** On pose Z = X + Y. Calculer l'espérance et la variance de Z.

Exercice 4 (37.0)

On a *n* boites numérotées de 1 à *n*. La boite *k* contient *k* boules numérotées de 1 à *k*. On choisit au hasard une boite puis une boule dans cette boite. Soit *X* le numéro de la boite et *Y* le numéro de la boule.

- **1.** Déterminer la loi du couple (X, Y).
- **2.** Calculer P(X = Y).
- **3.** Déterminer la loi de Y et E(Y).

Exercice 5 (37.0)

On lance un dé cubique honnête, soit X le résultat obtenu. Si X est divisible par 3, on extrait en une fois 3 boules d'une urne U_1 contenant 3 boules blanches et 5 boules noires. Sinon, on extrait en une fois X boules d'une urne U_2 contenant 2 boules blanches et 3 boules noires.

Soit Y le nombre aléatoire de boules blanches obtenues. Déterminer la loi de Y, son espérance et sa variance.

Exercice 6 (37.0)

**

On admet la convention $\binom{n}{j} = 0$ si $j \notin [0, n]$.

1. Soit n et m deux entiers naturels, et f la fonction polynôme définie pour tout réel x par

$$f(x) = (1+x)^n (1+x)^m = (1+x)^{n+m}$$
.

- (a) Développer f(x) deux deux façons différentes, en utilisant la formule du binôme.
- (b) En déduire que, pour tous entiers naturels n et m, on a

$$\forall k \in [0, n+m], \sum_{i=0}^{k} \binom{n}{i} \binom{m}{k-i} = \binom{n+m}{k}.$$

Cette formule est connue sous le nom de formule de Vandermonde.

2. Démontrer le théorème de stabilité de la somme de deux lois binomiales indépendantes, c'est-à-dire que, si X et Y sont deux variables *indépendantes* suivant respectivement une loi binomiale $\mathcal{B}(m, p)$ et $\mathcal{B}(n, p)$, alors

$$X + Y \rightsquigarrow \mathcal{B}(n + m, p)$$
.

Exercice 7 (37.0)

On effectue une succession infinie de lancers d'une pièce équilibrée. À chaque lancer, à partir du deuxième, si le côté obtenu est différent du côté obtenu au lancer précédent, on gagne 1 euro. Pour tout $n \ge 2$, on définit la variable aléatoire X_n égale au gain total à l'issue des n premiers lancers.

- 1. Déterminer les lois de X_2 et de X_3 , puis calculer leurs espérances.
- **2.** Soit $n \ge 2$. Justifier que X_n prend ses valeurs dans $\{0, \dots, n-1\}$. Calculer $P(X_n = 0)$ et $P(X_n = n-1)$.
- **3.** Pour tout $n \ge 2$ et tout $k \in \{0, ..., n\}$, montrer

$$P(X_{n+1} = k) = \frac{1}{2}P(X_n = k) + \frac{1}{2}P(X_n = k - 1).$$

4. On note, pour tout $n \ge 2$, $Q_n : \mathbb{R} \to \mathbb{R}$ l'application définie par

$$\forall s \in \mathbb{R}, Q_n(s) = \sum_{k=0}^{n-1} P(X_n = k) s^k.$$

- (a) Soit $n \ge 2$. Calculer $Q_n(1)$ et montrer que $Q_n'(1) = E(X_n)$. Exprimer $V(X_n)$ à l'aide de la fonction Q_n .
- (b) Montrer, pour tout $n \ge 2$ et tout $s \in \mathbb{R}$,

$$Q_{n+1}(s) = \frac{1+s}{2}Q_n(s).$$

- (c) En déduire une expression de $Q_n(s)$ en fonction de n et de s.
- **5.** Calculer alors, pour tout $n \ge 2$, l'espérance et la variance de X_n .

Exercice 8 (37.0) Nombre de sommets isolés dans un graphe aléatoire (X-ENS)

Pour chaque $n \in \mathbb{N}^{\star}$, on se donne un réel $p_n \in]0,1[$. On considère le graphe aléatoire non orienté Γ_n , de sommets $1,\ldots,n$, tel que, si pour tout (i,j) tel que $1 \le i < j \le n$, $X_{i,j}$ est la variable indicatrice de l'événement « $\{i,j\}$ est une arête de Γ_n », alors les $X_{i,j}$ sont indépendantes et suivent toutes la loi de Bernoulli de paramètre p_n .

On note alors Y_n la variable aléatoire qui donne le nombre de sommets isolés (reliés à aucun autre).

- **1.** Soit X une variable aléatoire finie à valeurs dans \mathbb{R}_+ . Montrer que $P(X > 0) \ge \frac{E(X)^2}{E(X^2)}$.
- **2.** On suppose que $\frac{\ln n}{n} = o(p_n)$. Montrer que $P(Y_n > 0) \xrightarrow[n \to +\infty]{} 0$.
- **3.** On suppose que $p_n = o\left(\frac{\ln n}{n}\right)$. Montrer que $P(Y_n > 0) \xrightarrow[n \to +\infty]{} 1$.