Objectives

 To modulate an LED on your PSoC 4 Pioneer Kit (CY8CKIT-042) using the fixed function PWM hardware.

Requirements	Details	
Hardware	CY8CKIT-042 PSoC 4 Pioneer Kit	
Software	PSoC Creator 2.2 SP1	
Firmware	Lab 2 Template	
Components used	PWM, Clock, Pin	

Block Diagram

Figure 1. Lab 2 Block Diagram

Theory

The goal of this lab is to learn the basics of the PSoC 4 fixed function Timer/Counter/PWM(TCPWM) components by implementing a PWM driven LED whose intensity varies over time. A project is created, components are placed and configured, pins are assigned, and code is written. The project is then programmed onto the development board and observed.

The LED is connected to P1[6], and is lit when the pin sinks current. This means that driving the pin output low turns the LED on. To control the pin's behavior, we will use a PWM component, which allows control of the dedicated TCPWM hardware using a configuration GUI and high level APIs. The PWM's compare value is incremented by the Cortex-M0 CPU at regular intervals, resulting in LED intensity that changes smoothly over time.

Procedure - Firmware

- Open the PSoC 4 Intro Lab Templates workspace by double-clicking on the "PSoC 4 Intro Lab Templates.cywrk" file in the Lab Templates directory. You will be presented with a workspace in PSoC Creator containing one template project for each of the labs after lab 1.
- 2) Set the Lab 2 template project as the active project by right-clicking on it in the Workspace Explorer, and clicking on the "Set As Active Project" option. This step is shown in Figure 2. This causes PSoC Creator to perform actions on this project instead of the other projects in the workspace. In its initial state, this project will blink the red LED at 1 Hz, as we implemented in the first lab.

Figure 2. PSoC Creator "Set As Active Project" Action

- 3) Open the project's schematic by double-clicking on the "TopDesign.cysch" file in the Workspace Explorer. Note that in this schematic, we've included off-chip annotation components to show how the red LED is connected to the pin.
- 4) Open the Pin_Red component customizer by double-clicking on the component in the schematic. Check the "HW Connection" checkbox to enable hardware control of the pin. Click the "OK" button to apply changes and close the customizer.
- 5) In the component catalog, under the "Digital -> Functions" category, select the "PWM (TCPWM mode)" component, and drag it into the schematic. Place it in the box labeled "Place PWM here." At this point, please ensure to correctly line up the "line" terminal with the "Pin Red" Pin Component.
- 6) In the component catalog, under the "System" category, select the Clock component, and drag it into the schematic. Place it such that its output is connected to the clock input of the PWM. The result is shown in Figure 3.

Figure 3. Schematic With PWM and Clock Placed

7) Open the PWM's component customizer by double-clicking on it. Select the PWM tab to edit PWM-specific behavior. Change the "Period" value to 1000, and the "Compare" value to 0. Press the "OK" button. The customizer window is shown in Figure 4.

Figure 4. PWM Configuration Window with Period and Compare Set

- 8) In the "Workspace Explorer", double-click the "main.c" file to open it in the code editor.
- 9) Replace the "Change1" line with the PWM start API, shown in Code 1.

Code 1. Lab 2 PWM Start API Code

```
PWM_1_Start();
```

10) Replace the "Change2" line with the PWM start API, shown in Code 2. The entire main.c should look like that shown in Figure 5.

Code 2. Lab 2 PWM Write Compare API Code

```
PWM 1 WriteCompare(PWMCompare);
```

Figure 5. Lab 2 Solution main.c

```
- 4 D X
Start Page TopDesign.cysch main.c
     #include <device.h>
     void main()
  4 - {
  5
          /* Place your initialization/startup code here (e.g. MyInst Start()) */
   6
         uint16 PWMCompare;
   7
         PWM 1 Start();
   8
          /* CyGlobalIntEnable; */ /* Uncomment this line to enable global interrupts. */
   9
  10
          for(;;)
 11
 12
              /* Place your application code here. */
              PWMCompare = PWMCompare + 1;
 13
              if( PWMCompare >= 1000 )
 14
                 PWMCompare = 0;
 15
 16
              PWM 1 WriteCompare (PWMCompare);
 17
              CyDelay(1);
 18
 19 - }
 20
 21 □ /* [] END OF FILE */
```


11) Press the "Program" button on the PSoC Creator toolbar to build the project and program your kit. At this point, your red LED should start displaying a sawtooth-shaped brightness waveform at 1 Hz.

Procedure – CY8CKIT-042 Hardware Setup

12) No hardware setup is required for this project. The red LED cathode is connected to P1[6] with a copper trace.

Conclusion

You have successfully implemented variable duty-cycle PWM drive of the red LED on your kit. This technique can be applied to a number of different transducers. The TCPWMs may also be used for many other purposes, such as motor control or precise timing and counting of digital signals.

Stretch Goals

- Implement a different brightness waveform.
 - We have implemented a sawtooth waveform by incrementing the compare value until it rolls over.
 - Try creating a triangle wave by incrementing to a limit, then decrementing back down to zero.
 - Try implementing a lookup table to create an arbitrary waveform like a sine wave.
- Drive multiple LEDs to create a combination of colors.
 - We are driving the red LED out of the tri-color array using P1[6]. The green LED is attached to P0[2]. The blue LED is attached to P0[3].
 - Add two more PWMs to control the other colors, and vary their compare values along with that of the red LED to mix the colors together.

Document Revision History

Revision	Ву	Description
01	MAXK	First Release