Combinatorial Ideas in Inequalities

Alex Song

January 3, 2022

1 2019 ISL C2 – Construction

You are given a set of n blocks, each weighing at least 1; their total weight is 2n. Prove that for every real number r with $0 \le r \le 2n - 2$ you can choose a subset of the blocks whose total weight is at least r but at most r + 2.

2 2015 ISL A1 – Induction

Suppose that a sequence a_1, a_2, \ldots of positive real numbers satisfies

$$a_{k+1} \ge \frac{ka_k}{a_k^2 + (k-1)}$$

for every positive integer k. Prove that $a_1 + a_2 + \ldots + a_n \ge n$ for every $n \ge 2$.

3 2019 TOT Fall Advanced P5 – sums and bounding

An increasing sequence of positive numbers $\ldots, a_{-1}, a_0, a_1, \ldots$ is given. For each positive integer k, let

$$b_k = \left\lceil \max_{i \in \mathbb{Z}} \frac{a_i + a_{i+1} + \dots + a_{i+k-1}}{a_{i+k-1}} \right\rceil.$$

Prove that either $b_k = k$ for all k, or the sequence b_k is eventually constant.

Solution sketch: Assume $b_k \neq k$ for some k. Then $b_k \leq k-1$, hence for all i, $a_i + a_{i+1} + \cdots + a_{i+k-1} \leq (k-1)a_{i+k-1}$. Hence $(k-1)a_i \leq (k-2)a_{i+k-1}$ for all i. Now we have, for all i,

$$\sum_{j=-\infty}^{i} a_j \le (k-1) \sum_{j=-\infty}^{0} a_{i-j(k-1)} \le (k-1) \sum_{j=-\infty}^{0} \left(\frac{k-1}{k-2}\right)^j a_i < (k-1)(k-2)a_i,$$

hence the sequence b is bounded above by (k-1)(k-2), and since it is discrete and non-decreasing, it is eventually constant.

4 Recommended Problems

These problems are roughly in order of difficulty and equally distributed in difficulty relative to the later sections.

1. Let the sequence $\{a_n\}$ be defined recursively as follows:

$$a_1 = 1, a_2 = 1, a_{n+2} = a_{n+1} + \frac{1}{a_n}, n = 1, 2, \dots$$

Prove that $a_{180} > 19$.

- 2. Define the sequence of real numbers $x_1, x_2, \ldots, x_{2021}$, such that x_1 is any real number and $x_n = 1 x_1 x_2 \cdots x_{n-1}$ for all n > 1. Show that $x_{2021} > \frac{2021}{2022}$.
- 3. Fix a positive integer k, and let a_1, a_2, \ldots, a_k be a sequence of nonnegative integers such that for any i, j with $i + j \le k$, we have that $a_i + a_j \le a_{i+j} \le a_i + a_j + 1$. Classify all such sequences.
- 4. Let a_0, a_1, \ldots be an arbitary infinite sequence of positive numbers. Show that the inequality $1 + a_n > \frac{n+1}{n} a_{n-1}$ holds for infinitely many positive integers n.
- 5. A sequence of real numbers a_1, a_2, \ldots satisfies the relation

$$a_n = -\max_{i_1 + i_2 + \dots + i_k = n} (a_{i_1} + a_{i_2} + \dots + a_{i_k})$$
 for all $n > 2017$.

Then, prove that this sequence is bounded.

6. Let a_1, a_2, a_3, \ldots be a sequence of positive real numbers, and s be a positive integer, such that

$$a_n = \max\{a_k + a_{n-k} \mid 1 \le k \le n-1\}$$
 for all $n > s$.

Prove there exist positive integers $\ell \leq s$ and N, such that

$$a_n = a_\ell + a_{n-\ell}$$
 for all $n \ge N$.

5 Easier Problems (IMO 0-1,4 level)

1. Let $a_0 < a_1 < a_2 \dots$ be an infinite sequence of positive integers. Prove that there exists a unique integer n > 1 such that

$$a_n < \frac{a_0 + a_1 + a_2 + \dots + a_n}{n} \le a_{n+1}.$$

- 2. Let n be an positive integer. Find the smallest integer k with the following property; Given any real numbers a_1, \dots, a_d such that $a_1 + a_2 + \dots + a_d = n$ and $0 \le a_i \le 1$ for $i = 1, 2, \dots, d$, it is possible to partition these numbers into k groups (some of which may be empty) such that the sum of the numbers in each group is at most 1.
- 3. Let a_1, \ldots, a_{2020} be a sequence of real numbers such that $a_1 = 2^{-2019}$, and $a_{n-1}^2 a_n = a_n a_{n-1}$. Prove that $a_{2020} < \frac{1}{2^{2019} 1}$.
- 4. Let a_1, a_2, \ldots, a_n be a sequence of real numbers, and let m be a fixed positive integer less than n. We say an index k with $1 \le k \le n$ is good if there exists some ℓ with $1 \le \ell \le m$ such that $a_k + a_{k+1} + \ldots + a_{k+\ell-1} \ge 0$, where the indices are taken modulo n. Let T be the set of all good indices. Prove that $\sum_{k \in T} a_k \ge 0$.

5. Let a_0 be an irrational number such that $0 < a_0 < \frac{1}{2}$. Define $a_n = \min\{2a_{n-1}, 1 - 2a_{n-1}\}$ for $n \ge 1$. Can it happen that $a_n > \frac{7}{40}$ for all n? Let n be a positive integer, and consider a sequence a_1, a_2, \dots, a_n of positive integers. Extend it periodically to an infinite sequence a_1, a_2, \dots by defining $a_{n+i} = a_i$ for all $i \ge 1$. If

$$a_1 \le a_2 \le \dots \le a_n \le a_1 + n$$

and

$$a_{a_i} \le n + i - 1$$
 for $i = 1, 2, \dots, n$,

prove that

$$a_1 + \dots + a_n \le n^2$$
.

6. Let n be a positive integer. Find the number of permutations $a_1, a_2, \ldots a_n$ of the sequence $1, 2, \ldots, n$ satisfying

$$a_1 \le 2a_2 \le 3a_3 \le \dots \le na_n$$

.

6 Medium Problems (IMO 1,4-2,5 level)

1. Let $n \geq 3$ be a positive integer and let (a_1, a_2, \ldots, a_n) be a strictly increasing sequence of n positive real numbers with sum equal to 2. Let X be a subset of $\{1, 2, \ldots, n\}$ such that the value of

$$\left| 1 - \sum_{i \in X} a_i \right|$$

is minimised. Prove that there exists a strictly increasing sequence of n positive real numbers (b_1, b_2, \ldots, b_n) with sum equal to 2 such that

$$\sum_{i \in X} b_i = 1.$$

2. For a sequence x_1, x_2, \ldots, x_n of real numbers, we define its *price* as

$$\max_{1 \le i \le n} |x_1 + \dots + x_i|.$$

Given n real numbers, Dave and George want to arrange them into a sequence with a low price. Diligent Dave checks all possible ways and finds the minimum possible price D. Greedy George, on the other hand, chooses x_1 such that $|x_1|$ is as small as possible; among the remaining numbers, he chooses x_2 such that $|x_1 + x_2|$ is as small as possible, and so on. Thus, in the i-th step he chooses x_i among the remaining numbers so as to minimise the value of $|x_1 + x_2 + \cdots x_i|$. In each step, if several numbers provide the same value, George chooses one at random. Finally he gets a sequence with price G.

Find the least possible constant c such that for every positive integer n, for every collection of n real numbers, and for every possible sequence that George might obtain, the resulting values satisfy the inequality $G \leq cD$.

- 3. We have 2^m sheets of paper, with the number 1 written on each of them. We perform the following operation. In every step we choose two distinct sheets; if the numbers on the two sheets are a and b, then we erase these numbers and write the number a + b on both sheets. Prove that after $m2^{m-1}$ steps, the sum of the numbers on all the sheets is at least 4^m .
- 4. A sequence $x_1, x_2, ...$ is defined by $x_1 = 1$ and $x_{2k} = -x_k, x_{2k-1} = (-1)^{k+1}x_k$ for all $k \ge 1$. Prove that $\forall n \ge 1, x_1 + x_2 + ... + x_n \ge 0$.
- 5. For each positive integer n, the Bank of Cape Town issues coins of denomination $\frac{1}{n}$. Given a finite collection of such coins (of not necessarily different denominations) with total value at most most $99 + \frac{1}{2}$, prove that it is possible to split this collection into 100 or fewer groups, such that each group has total value at most 1.

- 6. Given an integer $n \ge 2$ and real numbers x_1, x_2, \ldots, x_n in the interval [0, 1], prove that there exist real numbers a_0, a_1, \ldots, a_n satisfying the following conditions:
 - $a_0 + a_n = 0$
 - $|a_i| \le 1$, for i = 0, 1, ..., n
 - $|a_i a_{i-1}| = x_i$, for i = 1, 2, ..., n.
- 7. Suppose that a sequence $\{a_n\}$ of integers has the following property: for all sufficiently large n, a_n equals the number of indices i, $1 \le i < n$, such that $a_i + i \ge n$. Find the maximum possible number of integers which occur infinitely many times in this sequence.
- 8. Let a_0, a_1, a_2, \ldots be a sequence of real numbers such that $a_0 = 0, a_1 = 1$, and for every $n \ge 2$ there exists $1 \ge k \ge n$ satisfying

$$a_n = \frac{a_{n-1} + \dots + a_{n-k}}{k}.$$

Find the maximum possible value of $a_{2018} - a_{2017}$.

9. Find all positive integers n such that the following statement holds: Suppose real numbers $a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n$ satisfy $|a_k| + |b_k| = 1$ for all $k = 1, \ldots, n$. Then there exists $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n$, each of which is either -1 or 1, such that

$$\left| \sum_{i=1}^{n} \varepsilon_i a_i \right| + \left| \sum_{i=1}^{n} \varepsilon_i b_i \right| \le 1.$$

10. Prove that for n > 1 and real numbers a_0, a_1, \ldots, a_n, k with $a_1 = a_{n-1} = 0$,

$$|a_0| - |a_n| \le \sum_{i=0}^{n-2} |a_i - ka_{i+1} - a_{i+2}|.$$

7 Hard Problems (IMO 2,5-3,6)

1. Let $n \geq 2$ be a positive integer and a_1, a_2, \ldots, a_n be real numbers such that

$$a_1 + a_2 + \dots + a_n = 0.$$

Define the set A by

$$A = \{(i, j) | 1 \le i < j \le n, |a_i - a_j| \ge 1\}$$

Prove that, if A is not empty, then

$$\sum_{(i,j)\in A} a_i a_j < 0.$$

- 2. The sequence a_1, a_2, \ldots of integers satisfies the conditions:
 - $1 \le a_j \le 2015$ for all $j \ge 1$,
 - $k + a_k \neq \ell + a_\ell$ for all $1 \leq k < \ell$.

Prove that there exist two positive integers b and N for which

$$\left| \sum_{j=m+1}^{n} (a_j - b) \right| \le 1007^2$$

for all integers m and n such that $n > m \ge N$.

- 3. Let $f: \mathbb{N} \to \mathbb{N}$ be a function, and let f^m be f applied m times. Suppose that for every $n \in \mathbb{N}$ there exists a $k \in \mathbb{N}$ such that $f^{2k}(n) = n + k$, and let k_n be the smallest such k. Prove that the sequence k_1, k_2, \ldots is unbounded.
- 4. Let $x_0, x_1, \ldots, x_{n_0-1}$ be integers, and let d_1, d_2, \ldots, d_k be positive integers with $n_0 = d_1 > d_2 > \cdots > d_k$ and $\gcd(d_1, d_2, \ldots, d_k) = 1$. For every integer $n \ge n_0$, define

$$x_n = \left\lfloor \frac{x_{n-d_1} + x_{n-d_2} + \dots + x_{n-d_k}}{k} \right\rfloor.$$

Show that the sequence $\{x_n\}$ is eventually constant.

5. Find all functions $f: \mathbb{Z}^2 \to [0,1]$ such that for any integers x and y,

$$f(x,y) = \frac{f(x-1,y) + f(x,y-1)}{2}.$$

8 Very Hard Problems (IMO 3-6+)

1. Suppose that s_1, s_2, s_3, \ldots is a strictly increasing sequence of positive integers such that the subsequences

$$s_{s_1}, s_{s_2}, s_{s_3}, \dots$$
 and $s_{s_1+1}, s_{s_2+1}, s_{s_3+1}, \dots$

are both arithmetic progressions. Prove that the sequence s_1, s_2, s_3, \ldots is itself an arithmetic progression.

2. For any finite sets X and Y of positive integers, denote by $f_X(k)$ the k^{th} smallest positive integer not in X, and let

$$X * Y = X \cup \{f_X(y) : y \in Y\}.$$

Let A be a set of a > 0 positive integers and let B be a set of b > 0 positive integers. Prove that if A * B = B * A, then

$$\underbrace{A*(A*\cdots(A*(A*A))\cdots)}_{\text{A appears }b \text{ times}} = \underbrace{B*(B*\cdots(B*(B*B))\cdots)}_{\text{B appears }a \text{ times}}.$$

3. For any two different real numbers x and y, we define D(x,y) to be the unique integer d satisfying $2^d \leq |x-y| < 2^{d+1}$. Given a set of reals \mathcal{F} , and an element $x \in \mathcal{F}$, we say that the scales of x in \mathcal{F} are the values of D(x,y) for $y \in \mathcal{F}$ with $x \neq y$. Let k be a given positive integer. Suppose that each member x of \mathcal{F} has at most k different scales in \mathcal{F} (note that these scales may depend on x). What is the maximum possible size of \mathcal{F} ?