MOOC Statistique pour ingénieur Thème 3 : tests d'hypothèses, analyse de la variance

Vidéo 1 : Introduction aux tests d'hypothèses, vocabulaire, principe

Thierry Verdel

Mines Nancy

Sommaire

Objectif

Hypothèses simples et composites

Principe et vocabulaire

Test unilatéral vs test bilatéral

p-valeur

Jerzy Neyman (1894 - 1981)

Egon Pearson (1895 - 1980)

Sommaire

Objectif

Hypothèses simples et composites

Principe et vocabulaire

Test unilatéral vs test bilatéral

p-valeur

Objectif

- Valider ou rejeter une hypothèse
- Concernant une ou plusieurs populations
- A partir de résultats obtenus sur des échantillons

Exemples d'hypothèses

- le lot contient 5% de déchets
- les garçons sont plus grands que les filles en moyenne
- la dispersion des températures est plus grande à Paris qu'à Londres

Hypothèses simples

 \mathcal{H}_0 : le lot contient 5% de déchets

 \mathcal{H}_1 : le lot contient 10% de déchets

Hypothèses simples

 \mathcal{H}_0 : le lot contient moins de 5% de déchets

 \mathcal{H}_1 : le lot contient plus de 5% de déchets

Hypothèses composites

 \mathcal{H}_0 : le lot contient moins de 5% de déchets

 \mathcal{H}_1 : le lot contient plus de 5% de déchets

Hypothèse nulle

$$\mathcal{H}_0$$
: $\mu = 5$

$$\mathcal{H}_1: \mu \neq 5$$

Sommaire

Objectif

Hypothèses simples et composites

Principe et vocabulaire

Test unilatéral vs test bilatéral

p-valeur

$$\mathcal{H}_{o}: \mu = \mu_{0}$$

$$\mathcal{H}_1: \mu = \mu_1$$

$$\mathcal{H}_0$$
: $\mu = \mu_0$

$$\mathcal{H}_1: \mu = \mu_1$$

$$\mathcal{H}_0$$
: $\mu = \mu_0$

$$\mathcal{H}_{\scriptscriptstyle 1}$$
 : $\mu=\mu_1$

$$ar{x} < c \Rightarrow \mathcal{H}_0 \Rightarrow \mathcal{H}_1$$
 $ar{x} \geq c \Rightarrow \mathcal{H}_0$

$$\mathcal{H}_{o}: \mu = \mu_{0}$$

$$\mathcal{H}_1$$
: $\mu = \mu_1$

$$ar{x} < c \Rightarrow \mathcal{H}_0 \Rightarrow \mathcal{H}_1 \ ar{x} \geq c \Rightarrow \mathcal{H}_0$$

$$\mathcal{H}_{o}$$
: $\mu = \mu_{0}$

$$\mathcal{H}_1: \mu = \mu_1$$

$$\mathcal{H}_{o}$$
: $\mu = \mu_{0}$

$$\mathcal{H}_{\scriptscriptstyle 1}: \mu = \mu_1$$

$$\mathcal{H}_{o}$$
: $\mu = \mu_{0}$

$$\mathcal{H}_1: \mu = \mu_1$$

Sommaire

Objectif

Hypothèses simples et composites

Principe et vocabulaire

Test unilatéral vs test bilatéral

p-valeur

$$X \sim \mathcal{N}(\mu, \sigma^2)$$
 $ar{x}$

$$X \sim \mathcal{N}(\mu, \sigma^2)$$

$$\mathcal{H}_{0}: \mu = 0$$

$${\cal H}_0: \mu = 0$$

 ${\cal H}_1: \mu \neq 0$

$$X \sim \mathcal{N}(\mu, \sigma^2)$$

 $\mathcal{H}_0: \mu \leq 0$

 $\mathcal{H}_1: \mu > 0$

$$X \sim \mathcal{N}(\mu, \sigma^2)$$

$${\cal H}_0: \mu \le 0$$
 ${\cal H}_1: \mu > 0$

$$\mathcal{H}_1 : \mu > 0$$

test unilatéral à droite

Sommaire

Objectif

Hypothèses simples et composites

Principe et vocabulaire

Test unilatéral vs test bilatéral

p-valeur

p-valeur

$${\cal H}_0: \mu = 0$$

 ${\cal H}_1: \mu \neq 0$

$$\mathcal{H}_1: \mu \neq 0$$

p-valeur

$${\cal H}_0: \mu = 0$$

 ${\cal H}_1: \mu \neq 0$

$$\mathcal{H}_1: \mu \neq 0$$

 \bar{x}

p-valeur > 5%
$$\Rightarrow \mathcal{H}_0$$

p-valeur \leq 5% $\Rightarrow \mathcal{H}_1$

p-valeur

 ${\cal H}_0: \mu \le 0$ ${\cal H}_1: \mu > 0$

