EE2026 Digital Design

BOOLEAN FUNCTION MINIMIZATION

Massimo ALIOTO

Dept of Electrical and Computer Engineering

Email: massimo.alioto@nus.edu.sg

Get to know the latest silicon system breakthroughs from our labs in 1-minute video demos

Outline

- Gate-level design and Boolean function minimization
- Karnaugh maps (K-maps)
- Boolean function simplification using K-maps
- Considerations on gate-level implementation

EE2026 Digital Design Prof. Massimo Alioto Page 2

Gate-Level Design with Minimum Complexity

- Minimize Boolean function before gate-level design is crucial
 - Lower cost (fit smaller FPGA), faster (fewer gate delays), lower power (fewer gates)
 - Reduce Boolean function to its minimal form
- Definition of simplified Boolean Function (recap)
 - 1) Minimal number of terms, 2) minimal number of literals in each term

- Impact on gate-level implementation
 - 1) Minimal gat`e count,2) minimal fan-in in each logic gate (gate complexity)

Karnaugh Maps (K-Maps)

- K-map is a diagram that consists of a number of squares, each representing one SOP minterm (or POS maxterm) of a Boolean function
 - The SOP form (POS) can be expressed as a sum of minterms (maxterms) in the map
 - n-variable Boolean function has maximum 2ⁿ minterms (maxterms)

EE2026 Digital Design Prof. Massimo Alioto Page 4

Convert Truth table → **K-map**

- K-map is a two-dimensional representation of the truth table
 - Each row of in truth table corresponds to one square in the k-map
 - If the term in a row is a minterm of the function (F=1), place a "1" in the corresponding square of the K-map, otherwise (maxterm), place a "0"
 - Equivalent to truth table (just rearranged)

Α	В	F	В		4
0	0	0 -	A	<u> </u>	1
0	1	0 .	0	0	0
1	0	1 \			,
1	1	1	1	1	1

Three- and Four-Variable K-Maps

In K-maps, any two adjacent squares differ by only one literal ("logically adjacent"), same in first-last row and column

Four-variable K-map

				•
CD AB	00	01	11	10
00	0000	0001	0011	0010
01	0100	0101	0111	0110
11	1100	1101	1111	1110
10	1000	1001	1011	1010
_			1	

. CD		•		
AB	00	01	11	10
00	m_0	m_1	m_3	m_2
01	m_4	m_5	<i>m</i> ₇	m_6
11	m ₁₂	m ₁₃	<i>m</i> ₁₅	m ₁₄
10	m ₈	m_9	<i>m</i> ₁₁	m ₁₀

Boolean Functions (Canonical) ↔ K-map

- Practice: represent function in canonical form through K-map
 - SOP: just place a "1" in squares representing its minterms

$$F = \overline{AB} + AB + A\overline{B}$$

Write the Boolean expression from the K-map

$$F = ?$$

in SOP: write F as sum of the minterms (squares with "1")

$$\mathbf{F} = \overline{A}B + A\overline{B}$$

Boolean Functions (Canonical) ↔ K-map

Represent the following function on K-map:

$$F = \overline{A}BC + AB\overline{C} + \overline{A}\overline{B}C + \overline{A}\overline{B}\overline{C}$$

BC A	00	01	11	10
0	1	1	1	0
1	0	0	0	1

$$\begin{split} F &= \bar{A}B\bar{C}D + \bar{A}\bar{B}CD + AB\bar{C}\bar{D} + \bar{A}\bar{B}C\bar{D} \\ &+ A\bar{B}C\bar{D} + A\bar{B}CD + A\bar{B}\bar{C}D + \bar{A}\bar{B}\bar{C}\bar{D} \end{split}$$

1112 02 1 112 02 1				
CD AB	00	01	11	10
00	1	0	1	1
01	0	1	0	0
11	1	0	0	0
10	0	1	1	1

Write the Boolean expression for the function in K-map:

BC	00	01	11	10
0	1	0	0	0
1	0	1	0	0

$$F = ?$$
 $F = \overline{A} \cdot \overline{B} \cdot \overline{C} + A \cdot \overline{B} \cdot C$

C D				
AB	00	01	11	10
00	0	1	0	0
01	0	0	0	1
11	0	1	0	0
10	0	0	0	0

$$F = ? F = \overline{ABCD} + \overline{ABCD} + AB\overline{CD}$$

Boolean Functions ↔ K-map

- Practice: represent function in non-canonical form through K-map
 - No need to expand products to minterms (sums to maxterms)
 - Just identify (groups of) squares corresponding to each term

$$F = \overline{A}B + AB\overline{C} + \overline{A}B\overline{C}$$

$$\overline{A}B = \overline{A}B(C + \overline{C}) = \overline{A}BC + \overline{A}B\overline{C}$$

$$BC$$

$$A \quad 00 \quad 01 \quad 11 \quad 10$$

$$0 \quad 0 \quad 1 \quad 1 \quad 1$$

$$1 \quad 0 \quad 0 \quad 0 \quad 1$$

Or
$$\overline{A}B \rightarrow 01$$
, $C = 0$ or 1

or just fill the truth table and derive the K-map

$$F = A + \bar{A}\bar{B}CD + B\bar{C}\bar{D}$$

CD AB	00	01	11	10
00	0	0	1	0
01	1	0	0	0
11	1	1	1	1
10	1	1	1	1

• Observation: 2 adjacent squares differ by one literal \rightarrow simplified into 1

- Variable that is common remains
- Variable that changes is eliminated
- Check using Boolean manipulations

$$F = \overline{A}B + AB + \overline{A}\overline{B}$$

$$= \overline{A} + AB$$

$$= \overline{A} + B$$

Three-variables:

Group adjacent cells where only one variable changes, so that it can be eliminated

Four-variables:

$$F = \bar{A}\bar{B}\bar{C}\bar{D} + \bar{A}\bar{B}CD + \bar{A}B\bar{C}D + \bar{A}BCD + AB\bar{C}D + A\bar{B}\bar{C}\bar{D} + A\bar{B}CD$$

$$\downarrow \qquad \qquad \downarrow$$

$$F = \bar{B}\bar{C}\bar{D} + BD + CD$$

$$F = \bar{A}\bar{B}\bar{C}\bar{D} + \bar{A}\bar{B}C\bar{D} + \bar{A}B\bar{C}D + \bar{A}BCD + AB\bar{C}D + A\bar{B}\bar{C}\bar{D} + A\bar{B}C\bar{D}$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$F = \bar{B}\bar{D} + BD$$

Four-variables:

Grouping rules:

- Group the squares that only contains "1"
- Groups must be either horizontal or vertical (diagonal is invalid)
- Group size is always 2ⁿ, that is, 2, 4, 8, ...
- \circ Group should be as large as possible (contains as many as squares with "1" as possible)
- Each square with "1" must be part of a group if possible
- Simplified term retains those variables that don't change value
- Variables that change value in the group are eliminated

Invalid Groupings

Squares in the group are not in power of two

two variable change value

not horizontal or vertical

Don't-Care Conditions

- So far, all combination of input variables assumed to be valid
 - n-variable Boolean function $\rightarrow 2^n$ input combinations to be considered
- In practical cases, some variable combinations never appear
 - Example: BCD code (0...9 valid, 10...15 invalid)
 - Example: not all processor words point at existing instructions

Invalid input values are called don't-care conditions

- Marked with "X" or "-" in K-map
- For minimization, X can take either "1" or "0"
 - Can choose freely, based on pure convenience for simplification purposes
 - Each d.c.c. is set independently from all others

Binary-Coded Decimal (BCD)

Decimal Symbol	BCD Digit
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

Minimization with Don't-Care Conditions: SOP

- Choose value that allows to expand groups of squares as much as possible
 - Do not do it otherwise (it adds further terms, more complex)

*Treat X = 1 and group the squares as usual

Assume X = 1

Minimization with K-Maps: POS

- Dual procedure compared to SOP (swap 0-1, swap products with sums)
 - Group the squares that only contains "0"
 - Form an OR term (sum) for each group, instead of a product
 - Value "1", instead of "0", represent complement of the variable
 - Follow similar grouping rules that we discovered in SOP

maxterm-input correspondence: complement literals if 1

- No way to know if SOP is simpler than POS upfront (or vice versa)
- → Need to implement both and compare terms and literals

- Some terminology
 - Implicant, prime implicant and essential implicant
- Implicant of a Boolean function
 - Each product term in SOP is called an implicant of the function

Example 2

How many implicants?

- Prime implicant
 - Implicant that cannot be combined with another term to eliminate a variable
 - Graphically: it cannot be enclosed within a larger square/rectangle in K-map

non-prime implicant (already contained in AB or BC)

$$F = AB + ABC + BC$$
prime implicants

Example 2

 \overline{ABD} , \overline{ABD} and \overline{ABD}

are implicants, but not prime implicants (can be grouped into larger groups of 4)

 \overline{AD} and \overline{AB} are essential prime implicants

graphically: prime implicant grouping cannot be expanded further (but could overlap with other prime implicants)

- Essential prime implicant
 - Prime implicant that is not included in any other prime implicant

Both $\overline{x_1}$ and x_2x_3 are essential prime implicants

Prime implicant (not an essential prime implicant, already covered by the other two implicants)

Essential prime implicants: $\overline{A}D$ and $B\overline{D}$

graphically: essential prime implicant is needed to cover some 1 (i.e., it does not completely overlap with other implicants)

 $B\overline{D}$

- Resulting systematic procedure for K-map minimization in SOP form
 - Finding all prime implicants of the function
 - Select essential prime implicants (expand groups as much as possible)
 - Find a minimal subset of these prime implicants that covers all of the minterms of the function

one essential prime implicant

all implicants including **two** essential prime implicant

all implicants including **two** essential prime implicant

