課題 Markov 不等式·Chebyshev 不等式

名前:松島完忠 学籍番号:t211d070 日付:6月27日

演習 175 離散確率変数による Markov 不等式

確率変数 $x \in \{\pm 1\}$ を考える。P[x = +1] = P[x = -1] = 0.5とする。

1.E[|x|] = 1になることを数学的に証明する。

$$E[|x|] = P[x = +1] \cdot |1| + P[x = -1] \cdot |-1|$$

$$P[x = +1] = P[x = -1] = 0.5$$
であることから

$$= 0.5 \cdot 1 + 0.5 \cdot 1 = 1$$

したがって、E[|x|] = 1となる

 $2.P[|x| \ge a] = 1[a \le 1]$ になることを数学的に証明する。

右辺=
$$\begin{cases} 1 & if & a \leq 1 \\ 0 & if & a > 1 \end{cases}$$

(i) a ≤ 1の場合

$$(左辺) = P[|x| \ge 1] = P[|x| = 1] = P[|x = 1] + P[x = -1] = 1.0 = (右辺)$$

(ii)a>1 の場合

$$(左辺)=P[x>1]=0=(右辺)$$

したがって、 $P[|x| \ge a] = 1[a \le 1]$ となる

 $3.a\epsilon\{0,1.5\}$ に対して、 $P[|x| \ge a$ および、 $\frac{E[|x|]}{a}$ を重ねてプロットして比較する。

 $P[|x| \ge a$ および、 $\frac{E[|x|]}{a}$ をプロットしたものを図 1 に示す。図 1 より,等確率で ± 1 の値をとる離散確率変数 x に対し, $a \in (0,1.5]$ の範囲では,マルコフ不等式が満たされていることを確認した。また,a=1 のとき,マルコフ不等式において等号が成立していることを確認した。

図1: 離散確率変数に対する Markov 不等式

演習 180 連続一様分布における Markov 不等式

確率変数 $x \sim U(-1, +1)$ とする。

1.E[|x|] = 0.5になることを数学的に証明する。

U(−1,+1)の確率密度関数は

$$p(x) = \begin{cases} 0.5 & \text{if } x \in [-1, +1] \\ 0 & \text{if } x \notin [-1, +1] \end{cases}$$

である。よって、

$$E[|x|] = \int p(x)|x|dx = \int_{-1}^{0} -p(x)xdx + \int_{0}^{1} p(x)xdx = 0.25 + 0.25 = 0.5$$

また、数値計算を計算した結果 [[x]] = 0.5004459706572796 という結果になった。

よって、E[|x|] = 0.5は正しいといえる。

 $2.P[|x| \ge a] = \max \{0,1-a\}$ になることを数学的に証明し、適当なaを使って数値計算して確認する。

if a > 1 のとき、 $x \in [-1, +1]$ より

$$P[|x| \ge 1] = 0 = \max\{0, 1 - a\} = 右辺$$

if $a \le 1$ $0 \ge 3$

 $P[|x| \ge a] = P[|x| \le 1] - a = 1 - a = \max\{0, 1 - a\} = \angle \pi \mathcal{U}$

a=0.5 のとき $P[|x| \ge 0.5] = 0.5, a=2$ のとき $P[|x| \ge 2] = 0$

よって、 $P[|x| \ge a] = \max\{0,1-a\}$ は成り立つ。

 $3.a\epsilon\{0.1,0.2,\dots,1.4,1.5\}$ に対して、 $P[|x| \ge a]$ および、 $\frac{E[|x|]}{a}$ を重ねてプロットする

 $P[|x| \ge a$ および、 $\frac{E[|x|]}{a}$ をプロットしたものを図 2 に示す。図 2 より、確率変数 $x \sim U(-1, +1)$ とする x に対し、 $a \in (0, 1.5]$ の範囲では、マルコフ不等式が満たされて いることを確認した.

図 2:連続一様分布における Markov 不等式

[演習 190] 正規分布における Markov 不等式

1. E[|x|] を数値計算によって求める。計算した結果、

E[|x|] = 0.3990430483646986 という結果を求められた。

 $2.a\epsilon\{0.1,0.2,...,1.4,1.5\}$ に対して、 $P[|x|] \ge a$]を数値計算で求め、 $\frac{E[|x|]}{a}$ を重ねてプロットする.

 $P[|x| \ge a$ および、 $\frac{E[|x|]}{a}$ をプロットしたものを図 3 に示す。図 3 より、確率変数 $x \sim N(0, 0.5^2)$ に対し、 $a \in \{0.1, 0.2, \dots, 1.4, 1.5\}$ の範囲では、マルコフ不等式が満たされていることを確認した.

図 3:正規分布における Markov 不等式

3.[発展問題] $P[|x| \ge a$ は,標準正規分布の累積分布関数 を使って,次のように表されることを数学的に証明する。

$$P[|x| \ge a] = P[x \le -a] + P[x \ge a] = P\left[Z \le \frac{-a}{0.5}\right] + P\left[Z \ge \frac{a}{0.5}\right]$$
$$= P[Z \le -2a] + P[Z \ge 2a] = 2P[Z \le -2a] = 2\Phi(-2a)$$

よって, $P[|x| \ge a] = 2\phi(-2a)$

作成したプログラム

演習 175,演習 180,演習 190 を解くにあたって作成したプログラムを図 4,図 5、図 6 に示す。なお、python を用いてプログラムの作成を行った。

1	import numpy as np
2	import matplotlib.pyplot as plt
3	import scipy.stats as norm
4	import matplotlib.ticker as ticker
5	
6	LHS=[]
7	RHS=[]
8	X=[]
9	
10	a = 0.0
11	fig = plt.figure()
12	ax=fig.add_subplot(111,xlim=(0,1.5),ylim=(0,1.2))
13	
14	while a<=1.5:
15	a = a+10** (-2)
16	RHS. append (1. 0/a)
17	X. append (a)
18	if a<=1.0:
19	LHS. append (1)
20	else:
21	LHS. append (0)
22	
23	
24	ax. set_xlabel('Threshold')

	25	ax.set_ylabel('Probability')
**	26	plt.plot(X, LHS, color="red")
	27	plt.plot(X, RHS)

図 4:演習 175 の作成プログラム

1	import numpy as np
2	import matplotlib.pyplot as plt
3	import scipy.stats as norm
4	import matplotlib.ticker as ticker
5	
6	def E(N, e):
7	n=N
8	S=[]
9	E=[]
10	ecount=0
11	Ebar = []
12	std = 0
13	
14	while True:
15	for i in range(5):
16	S=stats.uniform.rvs(loc=-1,scale=1,size=n)
17	t = 0
18	for x in S:
19	t=t+np. abs (x)

20	E. append (float (t) /float (n))
21	else:
22	std = np. std(E)
23	if(std <e):< th=""></e):<>
24	break
25	else:
26	n=n*10
27	E. clear ()
28	ecount=ecount+1
29	continue
30	
31	return np. average (E)
32	
33	
34	LHS=[]
35	RHS=[]
36	X=[]
37	E=E (10, 10** (-3))
38	
39	a = 0.0
40	fig = plt.figure()
41	ax=fig. add_subplot(111, xlim=(0, 1.5), ylim=(0, 1.0))
42	
43	while a<=1.5:

```
44
          a = a+0.1
          X. append (a)
45
          RHS. append (0. 5/a)
46
          LHS. append (max ([0, 1-a]))
47
48
49
     print(E)
     ax.set_xlabel('Threshold')
50
     ax. set_ylabel('Probability')
51
     plt.plot(X, LHS, color="red", marker="o")
52
     plt.plot(X, RHS, marker="o")
53
```

図 5:演習 180 の作成プログラム

1	import numpy as np
2	from scipy import stats
3	import matplotlib.pyplot as plt
4	import scipy.stats
5	import matplotlib.ticker as ticker
6	
7	def E(N, e):
8	n=N
9	S=[]
10	E=[]
11	ecount=0
12	Ebar = []

13	std = 0
14	
15	while True:
16	for i in range(5):
17	S=stats.norm.rvs(loc=0, scale=0.5, size=n)
18	t = 0
19	for x in S:
20	t=t+np. abs (x)
21	E. append (float (t) /float (n))
22	else:
23	std = np. std(E)
24	if(std <e):< td=""></e):<>
25	break
26	else:
27	n=n*10
28	E. clear ()
29	ecount=ecount+1
30	continue
31	
32	return np. average (E)
33	
34	
35	LHS=[]
36	RHS=[]

```
37
      X=[]
      E=E (10, 10** (-3))
38
39
40
      a = 0.0
     fig = plt.figure()
41
      ax=fig. add\_subplot(111, xlim=(0, 1.5), ylim=(0, 1.0), xlabel='Threshold',
42
      ylabel='Probability')
43
44
      while a \le 1.5:
45
          a = a+0.1
46
          X. append (a)
47
          RHS. append (E/a)
48
          LHS. append (2*scipy. stats. norm. cdf(-2*a))
49
50
      print(E)
51
      plt.plot(X, LHS, color="red", marker="o", label="LHS")
52
      plt.plot(X, RHS, marker="o", label="RHS")
53
54
      ax. legend()
```

図 6:演習 190 の作成プログラム