1(a) Proof. Fix any x where |x| < 1. First if x = 0. Since $e^0 = 1$ by Rudin 8.27. And $e^{\log y} = y$ for all positive y by Rudin 8.36. Therefore, $\log(1) = 0$. And it's clear that

$$0 = \sum_{k=1}^{\infty} (-1)^{k-1} \frac{0^k}{k}.$$

Thus, the equation is true in this case.

Now suppose $x \in (0,1)$. Then for any $t \in [1,1+x]$, $|1-t|=t-1 \le x < 1$. Therefore, by the formula for geometric series,

$$\frac{1}{t} = \frac{1}{1 - (1 - t)} = \sum_{k=0}^{\infty} (1 - t)^k.$$

Therefore,

$$\int_{1}^{1+x} \frac{1}{t} dt = \int_{1}^{1+x} \sum_{k=0}^{\infty} (1-t)^{k} dt.$$

Furthermore, note that the above infinite series has radius of convergence (0,2) as $|1-t| < 1 \implies 0 < t < 2$. Thus that by Rudin Theorem 8.1, $\sum_{k=0}^{\infty} (1-t)^k$ converges uniformly on [1, 1+x], as $[1, 1+x] \subsetneq (0,2)$. Hence, by Rudin Theorem 7.16,

$$\int_{1}^{1+x} \sum_{k=0}^{\infty} (1-t)^{k} dt = \sum_{k=0}^{\infty} \int_{1}^{1+x} (1-t)^{k} dt.$$

Combining the above results, and evaluating each integrals, we have

$$\int_{1}^{1+x} \frac{1}{t} dt = \sum_{k=0}^{\infty} \int_{1}^{1+x} (1-t)^{k} dt$$

$$= \sum_{k=0}^{\infty} \left[\frac{-(1-t)^{k+1}}{k+1} \right]_{1}^{1+x}$$

$$= \sum_{k=0}^{\infty} \frac{-(-x)^{k+1}}{k+1}$$

$$= \sum_{k=1}^{\infty} \frac{-(-x)^{k}}{k}$$

$$= \sum_{k=1}^{\infty} (-1)^{k-1} \frac{x^{k}}{k}.$$

And since Rudin 8.39, $\log(1+x) = \int_1^{1+x} \frac{1}{t} dt$, the equation is thus true in this case.

Now suppose $x \in (-1,0)$. Then again for any $t \in [1+x,1]$, $|1-t|=1-t \le -x < 1$. And the series $\sum_{k=0}^{\infty} (1-t)^k$ converges uniformly on [1+x,1], as $[1,1+x] \subsetneq (0,2)$. Therefore, the above decomposition applies still. This completes the proof.

1(b) Proof. We apply Rudin 8.2 (Abel's Theorem) here. First note that $\sum_{n=1}^{\infty} (-1)^{n-1} 1/n$ converges by the alternating series test. Therefore, by Rudin 8.2 and by results from (a),

$$\lim_{x \to 1^{-}} \log(1+x) = \lim_{x \to 1^{-}} \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{n}}{n} = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}.$$

And since e^x is and strictly increasing and continuous, then $\log(y)$, being the inverse of e^x , is also strictly increasing continuous. Therefore,

$$\lim_{x \to 1^{-}} \log(1+x) = \log(2).$$

This gives that

$$\log(2) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}.$$

2

Proof.

4 Proof.

5(a) Proof. **5(b)** Proof. **5(c)** Proof.

■