AMENDMENTS TO THE CLAIMS

1. (currently amended) A process for the racemoselective preparation of silicon-bridged dialkyl-ansa-metallocenes of the formula (I)

$$R^2$$
 T
 R^3
 Si
 $M^1R^1_2X_{x-2}$ (I)

which comprises reacting a ligand starting compound of the formula (II)

with a transition metal dialkyl compound of the formula (III)

$$M^1X_xR^1_2*D_y$$
 (III),

where

- M¹ is an element of group 4, 5 or 6 of the Periodic Table of the Elements[[,]];
- R^1 are identical C_1 - C_{20} -alkyl or C_7 - C_{40} -arylalkyl radicals[[,]];
- X are identical or different halogens[[,]];

- R^2 are identical or different C_1 - C_{40} radicals[[,]];
- R^3 are identical or different C_1 - C_{40} radicals[[,]];
- is a divalent C₁-C₄₀ group which together with the cyclopentadienyl ring forms a further saturated or unsaturated ring system which has a ring size of from 5 to 12 atoms, where T may contain the heteroatoms Si, Ge, N, P, O or S in the ring system fused onto the cyclopentadienyl ring[[,]];
- M² is Li, Na, K, MgCl, MgBr, MgI, Mg or Ca[[,]];
- D is an uncharged Lewis base ligand[[,]];
- x is equal to the oxidation number of M¹ minus 2[[,]];
- y is from 0 to 2;

and

- p is 1 in the case of doubly positively charged metal ions or 2 in the case of singly positively charged metal ions or metal ion fragments.
- 2. (currently amended) AThe process as claimed in claim 1, wherein
 - T is a 1,3-butadiene-1,4-diyl group which may be unsubstituted or be substituted by from 1 to 4 radicals R⁴, where the two 1,3-butadiene-1,4-diyl groups may be different[[,]];
 - R^4 are identical or different C_1 - C_{20} radicals[[,]];
 - M¹ is titanium, zirconium or hafnium[[,]];
 - R¹ are identical C₁-C₅-alkyl or C₇-C₂₀-arylalkyl radicals[[,]]; and
 - X is halogen-and

R². R³. M². D. p. x and y are as defined in claim 1.

3. (currently amended) A<u>The</u> process as claimed in claim 1-or 2, wherein the transition metal dialkyl compound of the formula (III) is produced at above -30°C by combining a compound M¹X_{x+2} with from 2 to 2.5 equivalents of a compound R¹M³ in the presence of a ligand compound D, where

$$M^3$$
 is Li^+ , Na^+ , K^+ , $MgCl^+$, $MgBr^+$, MgI^+ , $\frac{1}{2}$ $[Mg^{++}]$ or $\frac{1}{2}$ $[Zn^{++}]$, and

the other variables are as defined in claim 1 or 2.

- 4. (currently amended) A<u>The</u> process as claimed in claim 1-or 2, wherein the ligand starting compound of the formula (II) or (V) is combined with the transition metal dialkyl compound of the formula (III) at above -30°C.
- 5. (currently amended) A<u>The</u> process as claimed in claim 4, wherein thea reaction mixture is maintained at from 30°C to 150°C for a period of at least 10 minutes after the reaction components have been combined.
- 6. (currently amended) A<u>The</u> process as claimed in any of claimsclaim 1-to 5, wherein the reaction is carried out in an organic solvent or solvent mixture which comprises at least 10% by volume of an ether.
- 7. (currently amended) A<u>The</u> process as claimed in any of claimsclaim 1 to 6, wherein thea racemoselectivity = (proportion of rac proportion of meso)/(proportion of rac + proportion of meso) is greater than zero.
- 8. (currently amended) The use of A process comprising utilizing a transition metal dialkyl compound of the formula (III):

$$M^1X_xR^1_2*D_v$$
 (III)

for the racemoselective preparation of silicon-bridged dialkyl-ansa-metallocenes of the formula (I):

$$R^2$$
 R^3
 Si
 $M^1R^1_2X_{x-2}$ (I)
 R^2

wherein

M¹ is an element of group 4, 5 or 6 of the Periodic Table of the Elements;

R¹ are identical C₁-C₂₀-alkyl or C₇-C₄₀-arylalkyl radicals;

X are identical or different halogens;

R² are identical or different C₁-C₄₀ radicals;

R³ are identical or different C₁-C₄₀ radicals;

D is an uncharged Lewis base ligand;

y is from 0 to 2;

T is a divalent C₁-C₄₀ group which together with the cyclopentadienyl ring forms a further saturated or unsaturated ring system which has a ring size of from 5 to 12 atoms, where T may contain the heteroatoms Si, Ge, N, P, O or S in the ring system fused onto the cyclopentadienyl ring; and

x is equal to the oxidation number of M^1 minus 2.

9. (new) The process as claimed in claim 2, wherein the transition metal dialkyl compound of the formula (III) is produced at above –30°C by combining a compound M¹X_{x+2} with from 2 to 2.5 equivalents of a compound R¹M³ in the presence of a ligand compound D, where

- 10. (new) The process as claimed in claim 2, wherein the ligand starting compound of the formula (II) is combined with the transition metal dialkyl compound of the formula (III) at above -30°C.
- 11. (new) The process as claimed in claim 10, wherein a reaction mixture is maintained at from 30°C to 150°C for a period of at least 10 minutes after the reaction components have been combined.