Definición de proceso:

- Es un programa en ejecución.
- Sinónimos para nosotros: tarea, job, proceso.

Diferencias entre un programa y un proceso:

Programa:

- Estático.
- No tiene un program counter (posición de la instrucción que se ejecuta).
- Existe desde que se edita hasta que se borra.

Proceso:

- Dinámico.
- Tiene program counter.
- Su ciclo de vida comprende desde que se lo dispara hasta que termina.

Modelo de proceso:

- Multiprogramación de 4 procesos.
- Modelo conceptual de 4 procesos secuenciales e independientes entre sí.
- Sólo un proceso está activo en cualquier instante (si tenemos una sola CPU).

ANOTACION: El program counter es uno y los procesos tienen distintos valores en el.

Componentes de un proceso:

- Proceso: entidad de abstracción.
- Para poder ejecutarse dicho proceso, debe incluir como mínimo:
 - Sección de código (texto).

- Sección de datos (variables globales)
- Stack(s) (datos temporales: parámetros, variables temporales y direcciones de return).
 - Todo proceso cuenta con 1 o más stacks.
 - En general: modo usuario (1 pila) y modo kernel (más de una pila) para dichos procesos.
 - Las pilas se crean automáticamente y su tamaño se ajusta en run-time.
 - Está formado por stack frames que son empujados (pushed- al llamar una rutina), y se retiran (poppedcuando se retorna de la rutina).
 - El stack frame tiene los parámetros de la rutina (variables locales), y datos necesarios para recuperar el stack frame anterior (PC y el valor del stack pointer en el momento del llamado).

Atributos del proceso:

- o Identificador del proceso, y del proceso padre.
- o Identificador del usuario que lo "disparó".
- Si hay una estructura de grupos, grupo que lo disparó.
- En ambientes multiusuario, desde que terminal y quién lo ejecutó.

Process Control Block (PCB):

- o Es una estructura de datos asociada al proceso.
- Existe una PCB por proceso.
- o Tiene referencias a memoria.
- Es lo primero que se crea cuando se crea un proceso y lo último que se borra cuando termina.
- El PCB lo podemos pensar como un gran registro en el que se guardan los atributos anteriormente mencionados, también guarda punteros y direcciones de memoría relacionadas al proceso.
- o Información asociada a cada proceso:
 - PID, PPID, etc.
 - Valores de los registros de la CPU (PC, AC, etc).
 - Planificación (estado, prioridad y tiempo consumido del proceso, etc).
 - Ubicación (donde está el proceso) en memoria.
 - Accounting (cantidades, cuanta memoria ocupó, cuanta entrada salida ocupó).
 - Entrada / salida (estado, pendientes, etc).

Administración de procesos	Administración de memoria	Administración de archivos
Registros	Apuntador a la información	Directorio raíz
Contador del programa	del segmento de texto	Directorio de trabajo
Palabra de estado del programa	Apuntador a la información	Descripciones de archivos
Apuntador de la pila	del segmento de datos	ID de usuario
Estado del proceso	Apuntador a la información	ID de grupo
Prioridad	del segmento de pila	2000 ASSOCIATION 100 P. 100 C.
Parámetros de planificación	2000.000.000.000.000.000.000.000.000.00	
ID del proceso		
Proceso padre		
Grupo de procesos		
Señales		
Tiempo de inicio del proceso		
Tiempo utilizado de la CPU		
Tiempo de la CPU utilizado por el hijo		
Hora de la siguiente alarma		

¿Qué es el espacio de direcciones de un proceso?

- Conjunto de direcciones de memoría que ocupa dicho el proceso.
 - Stack, código, datos.
- No incluye su PCB o tablas asociadas.
- Un proceso en modo usuario puede acceder SÓLO a su espacio de direcciones (limitado).
- En modo kernel, se puede acceder a estructuras internas (PCB del proceso por ej) o a espacios de direcciones de otros procesos (rompe el límite).

Contexto del proceso:

- Incluye toda la información (esta en la PCB) que el SO necesita mantener para administrar el proceso, y en consecuente, el CPU pueda ejecutarlo correctamente.
- Son parte del contexto: los registros de CPU, inclusive el contador de programa (PC), prioridades del proceso, si tiene E/S pendientes, etc.
- Cambio de contexto (Context Switch):
 - Se produce cuando la CPU cambia de un proceso a otro.
 - Se DEBE resguardar el contexto del proceso anterior, que pasa a esperar para volver a ejecutarse después en la CPU. En PCB, otros quedan en el Stack.
 - Se debe cargar el contexto del nuevo proceso y comenzar desde la instrucción siguiente a la última ejecutada en dicho contexto.
 - Es tiempo NO productivo de CPU (la CPU debe estar optimizada para no sufrir tanto consumo de ciclos).
 - El tiempo que consume dicho cambio depende del soporte del Hardware.
- 1. Resguardo contexto del que se a.
- 2. Cargo contexto del entrante.
- 3. Paso a modo usuario
- 4. Retomo ejecución desde la instrucción siguiente.

Datos sobre el kernel del S.O:

Conjunto de modulos de software.

Se ejecuta en el procesador como cualquier otro proceso (NO ES UN PROCESO).

Tiene varios enfoques de diseño:

Kernel como entidad independiente:

- Kernel que se ejecuta fuera de todo proceso.
- Arquitectura (diseño) usada por los primeros S.O.
- Cuando un proceso es interrumpido o realiza una System Call, el contexto del proceso se salva y el control se pasa al kernel del sistema.
- Genera una carga de tiempo no productivo en el CPU.
- Es un modelo sencillo.
- Tiene su propia región de memoría.
- Tiene su propio stack.
- Una vez finalizada su actividad, devuelve el control al proceso (o a otro proceso diferente).
- Como importante:
 - El kernel si bien se parece a un proceso, NO es un proceso.
 - Se ejecuta como entidad independiente en modo privilegiado.

Kernel "dentro" de todos los procesos:

- El código del kernel se encuentra dentro del espacio de direcciones de cada proceso.
- El kernel se ejecuta en el MISMO contexto que algún proceso de usuario (no genera cambios de contexto, más rápido y eficiente).
- El kernel se puede ver como una colección de rutinas que el proceso utiliza.
- A no confundirse, no se repite en muchos espacios de memoría, sino que los procesos conocen donde se encuentra el kernel.
- Usa una pila de usuario, y otra para el modo kernel.
- Dentro de un proceso se encuentra el código del programa (usuario), y el código de los módulos del kernel (privilegio)
- El código del kernel se comparte por todos los procesos (como una libreria).
- Cada interrupción (incluyendo llamadas al sistema), son atendidas en el contexto del proceso que se encuentra en ejecución.

- Constante cambio entre modo usuario y modo kernel.
- Desventaja:
 - Le limito el espacio al proceso. De las 2^32 direcciones las parto a la mitad. Si un proceso ocupa más, se aclara en el compilador.