----- 3 ------

Growth of Functions

3.1 Asymptotic notation

\Theta-notation: $f(n) = \Theta(g(n))$ g(n) is an asymptotically tight bound for f(n).

 $\Theta(g(n)) = \{f(n) | \text{ there exist positive constants } c_1,$ $c_2, \text{ and } n_0 \text{ such that}$ $0 \le c_1 \ g(n) \le f(n) \le c_2 \ g(n)$ for all $n \ge n_0\}$

Example: Prove that $3n^2 - 6n = \Theta(n^2)$. **Proof:** To do so, we have to determine c_1 , c_2 , and n_0 such that

$$c_1 n^2 \le 3n^2 - 6n \le c_2 n^2$$
, (for all $n \ge n_0$)

dividing which by n^2 yields

$$c_1 \le 3 - 6/n \le c_2$$
.

Clearly, by choosing c_1 =2, c_2 =3 and n_0 =6 we can verify that $3n^2$ - $6n = \Theta(n^2)$. Q.E.D

• $f(n) = \Theta(g(n))$ iff $g(n) = \Theta(f(n))$, Ex. $n^2 = \Theta(3n^2 - 6n)$

O-notation: f(n) = O(g(n)) g(n) is an asymptotically upper bound for f(n).

 $O(g(n))= \{f(n) | \text{ there exist positive constants } c$ and n_0 such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0\}$

- $\Theta(g(n)) \subseteq O(g(n))$
- $f(n) = \Theta(g(n))$ implies f(n) = O(g(n))
- $6n = O(n), 6n = O(n^2)$
- "The running time is $O(n^2)$ " means "the worst-case running time is $O(n^2)$."

Ω-notation: f(n) = Ω(g(n))g(n) is an asymptotically lower bound for f(n).

Ω(g(n))= {f(n)| there exists positive constants c and n_0 such that $0 \le cg(n) \le f(n)$ for all $n \ge n_0$ }

• $f(n) = \Theta(g(n))$ iff $(f(n) = O(g(n))) & (f(n) = \Omega(g(n)))$

o-notation: f(n) = o(g(n)) (little-oh of g of n)

o(g(n))= $\{f(n)|$ for any positive constant c, there exists a constant $n_0 > 0$ such that $0 \le f(n) < cg(n)$ for all $n \ge n_0\}$

- $2n = o(n^2)$, but $2n^2 \neq o(n^2)$.
- f(n) = o(g(n)) can also be defined as $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0.$

 ω -notation: $f(n) = \omega(g(n))$ (little-omega of g of n)

 $\omega(g(n)) = \{f(n) | \text{ for any positive constant } c, \text{ there}$ exists a constant $n_0 > 0$ such that $0 \le cg(n) < f(n)$ for all $n \ge n_0\}$

- $2n^2 = \omega(n)$, but $2n^2 \neq \omega(n^2)$.
- $f(n) = \omega(g(n))$ iff $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$.

Comparison of functions

- functions: ω Ω Θ O C real numbers: > \geq = \leq
- Transitivity, Reflexivity, Symmetry, Transpose Symmetry
- Any two real numbers can be compared. (trichotomy) But, not any two functions can be compared.

Example: f(n)=n and $g(n)=n^{1+\sin n}$

Homework: Problems 3-2, 3-3, 3-4.

Appendix A: Summation formulas

$$\sum_{k=1}^{n}(ca_{k}+b_{k})=c\sum_{k=1}^{n}a_{k}+\sum_{k=1}^{n}b_{k}$$

$$\sum_{k=1}^{n} k = \frac{1}{2} n(n+1) = \Theta(n^2) \qquad \sum_{k=0}^{n} x^k = (x^{n+1} - 1)/(x-1)$$

$$H_n = \sum_{k=1}^{n} \frac{1}{k} = \log_e n + O(1)$$
 (Harmonic series)

$$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x} (|x| < 1) \qquad \sum_{k=0}^{\infty} kx^k = \frac{x}{(1-x)^2} (|x| < 1)$$

$$\sum_{k=1}^{n-1} \frac{1}{k(k+1)} = \sum_{k=1}^{n-1} (\frac{1}{k} - \frac{1}{k+1}) = 1 - \frac{1}{n}$$

$$\lg \prod_{k=1}^{n} a_k = \sum_{k=1}^{n} \lg a_k$$