

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В.Ломоносова

Факультет вычислительной математики и кибернетики

Компьютерный практикум по учебному курсу «ВВЕДЕНИЕ В ЧИСЛЕННЫЕ МЕТОДЫ» ЗАДАНИЕ № 1 Вариант 1 – 1, 2 – 5

ОТЧЕТ

о выполненном задании

студента 205 учебной группы факультета ВМК МГУ Попова Алексея Павловича

Цель работы

Изучить методы решения СЛАУ с использованием классической реализации алгоритма Гаусса и алгоритма Гаусса с поиском главного элемента. Также рассмотреть варианты применения этого алгоритма для решения конкретных систем линейных алгебраических уравнений, исследовать возможность применения этих алгоритмов для нахождения обратной матрицы, нахождения определителя матрицы и ее числа обусловленности.

Постановка задачи

Дана система уравнений: $A \cdot x = f$ порядка $n \times n$, где $\det A \neq 0$. Необходимо написать программу, которая решает заданную систему линейных алгебраических уравнений с пользовательским параметром (n) где (n - размерность матрицы) при помощи классического алгоритма Гаусса и алгоритма Гаусса с выбором главного элемента. Также параллельно необходимо реализовать методы нахождения определителя матрицы заданной системы ($\det A$), её обращения (A^{-1}) и нахождения её числа обусловленности ($\operatorname{cond}(A)$).

Реализовать возможность задания матрицы системы в файл и вывода решения СЛАУ в файл, также предусмотреть возможность задания матрицы при помощи наперед заданной формулы.

Цели и задачи практической работы

Целью данной работы является изучение классической реализации алгоритма Гаусса и его реализации с поиском главного элемента.

Также были поставлены следующие задачи:

- 1. Решить СЛАУ методом Гаусса и методом Гаусса с поиском главного элемента;
- 2. Вычислить обратную матрицу;

- 3. Найти число обусловленности матрицы;
- 4. Вычислить обратную матрицу;
- 5. Исследовать вопрос вычислительной устойчивости метода Гаусса;

Решение поставленных задач реализовано программно (см. Приложение 1).

Алгоритмы решения задач

Решение СЛАУ методом Гаусса

Применяя равносильные матричные преобразования строк матрицы системы (Матрицы A, системы $A \cdot x = f$) она приводится к треугольному виду (в частности предложенный алгоритм приводит матрицу к треугольному виду с 1 на главной диагонали). В том числе необходимо делать соответствующие преобразования со столбом f (или, что проще, описать эти действия над матрицей $[A \mid f]$). Описанный выше этап алгоритма называется прямым ходом метода Гаусса. Теперь, для получения решений необходимо сделать так называемый, обратный ход метода Гаусса. Для этого, последовательно применяя равносильные матричные преобразования к матрице \hat{A} (где матрица \hat{A} - это матрица полученная после прямого хода метода Гаусса), и к столбцу \hat{f} , который получен из f применением соответственных преобразований для матрицы A (или в матричном виде, в терминах присоединенной матрицы $[\hat{A} | \hat{f}]$). Эти преобразования производятся начиная с последней строки матрицы \hat{A} , тем самым происходит непосредственное вычисление корней СЛАУ. После обратного хода метода Гаусса имеем: [I|x], где x - вектор решения исходной СЛАУ.

Решение СЛАУ методом Гаусса с выобром главного элемента

Опишем данный метод, обратив внимание на отличия от классической реализации метода Гаусса. В данной алгоритме на каждом шаге, при преобразовании строк производится выбор главного элемента $(a = \max a_{ij} \forall j = 1...n)$ и соответственно столбец, содержащий данный элемент (столбец с номером ј) меняется местами со столбцом имеющим номер і. Данное преобразование записывается в "карту преобразований". Далее производится итерация классического метода Гаусса. После окончания прямого хода, производится обратный ход метода Гаусса, и восстанавливается решение по "карте решений" (см. Приложение 1).

Вычисление обратной матрицы

Для решения данной задачи используется метод Гаусса с выбором главного элемента, но преобразования производятся с матрицей вида: $[A \mid I]$, следовательно, применяя к этой матрице метод Гаусса, мы получаем матриц вида: $[I \mid A^{-1}]$.

Вычисление числа обусловленности матрицы

Для решения этой задачи необходим алгоритм нахождения нормы матрицы. В силу того, что все матричные нормы эквивалентны, будем использовать бесконечную матричную норму. Также необходимо искать обратную матрицу, для этого воспользуется алгоритмом описанным выше. Имеем: $condA = |A|_{inf} \cdot |A^{-1}|_{inf}$. Вычисление бесконечной матричной нормы производится по схеме: вычисляем суммы модулей элементов в каждой строке, находим максимальную сумму из подсчитанных, это число является бесконечной матричной нормой.

Вычисление определителя матрицы

Для решения этой задачи, достаточно на каждом шаге алгоритма Гаусса с поиском главного члена, сохранять преобразования происходящие с определителем матрицы при применении матричных преобразований. В силу того, что в итоге мы получаем треугольную матрицу с 1 на диагонали (после прямого хода) произведение сохраненных изменений и будет $\det A$.

Описание программного решения данных задач

Программа содержит пакет ввода/вывода матриц из/в файл(-ла). Это позволяет существенно сократить время тестирования и отладки программы. Ввод подразумевает специальный формат, сначала необходимо ввести n - размер матрицы, и на следующих строка задать саму матрицу системы.

Также в программе реализован консольный интерфейс (см. Приложение 1) при помощи которого можно выбрать задачу, которую необходимо решить алгоритмически и формат входных значений для данного алгоритма (поддерживается ввод матрицы задаваемый формулой).

Вывод программы представляет из себя: численное решение поставленной задачи для конкретных входных данных.

Тестирование

В процессе тестирования реализованных алгоритмов собиралась статистическая информация, характеризующая работу алгоритма и производилось тестирование на заданных тестах. Все решение были проверены при помощи ресурса https://www.wolframalpha.com/ (см. Приложение 2).

Выводы

В результате проделанной работы были реализованы методы решения СЛАУ при помощи алгоритма Гаусса и алгоритма Гаусса с выбором главного элемента. Также было замечено, что метод теряет устойчивость по мере возрастания размеров матриц систем, подаваемых для решения, в программной реализации это проблема была решена увеличением типа данных использованного для вычислений и всевозможном сокращении потерь точности за счет сокращения вычислений, также с этой проблей вполне удачно справляется метод Гаусса с выбором главного элемента, который условно устойчив на матрицах с плохим числом обусловленности (cond(A)). В ходе работы был реализован алгоритм поиска числа

обусловленности матрицы и ее определителя. Также на основе построенных алгоритмов, как следствие был получен алгоритм обращения матрицы.

Цель работы

Изучить классические итерационные методы используемые для численного решения СЛАУ на примере метода верхней релаксации. Также изучить скорость сходимости этих методов в зависимости от выбора итерационного параметра w.

Постановка задачи

Дана система уравнений: $A \cdot x = f$ порядка $n \times n$, где $\det A \neq 0$.

Необходимо написать программу, которая решает заданную систему линейных алгебраических уравнений с пользовательским параметром (n) где (n - размерность матрицы) при помощи метода верхней релаксации (в частности при w=1 - метод верхней ралаксации превращается в классический метод Зейделя.

$$(D + A^{(-)}) \cdot (x^{k+1} - x^k) + A \cdot x^k = f,$$

где $D, A^{(-)}$ - диагональная и нижняя треугольная матрицы соответственно, k - номер текущей итерации алгоритма.

Эта формула путем несложных преобразований сводится к более понятному виду:

$$(D + w \cdot A^{(-)}) \cdot \frac{(x^{k+1} - x^k)}{w} + A \cdot x^k = f.$$

Реализовать возможность задания матрицы системы в файл и вывода решения СЛАУ в файл, также предусмотреть возможность задания матрицы при помощи наперед заданной формулы.

Цели и задачи практической работы

1. Используя итерационные методы решить СЛАУ (например: метод Зейделя или метод верхней/нижней релаксации);

- 2. Разработать критерий остановки итерационного процесса, гарантирующий получение приближенного решения исходной системы СЛАУ с наперед заданной точностью;
- 3. Изучить скорость сходимости итераций к точному решению задачи в зависимости от итерационного параметра w;

Решение поставленных задач реализовано программно (см. Приложение 3).

Алгоритмы решения

Решение СЛАУ методом верхенй релаксации

Данный метод позволяет при помощи последовательного приближения получить решение системы алгебраических уравнений вида $A \cdot x = f$ порядка $n \times n$, где $\det A \neq 0$ и $A = A^* > 0$. Данный метод верхней релаксации является представителем стационарных одношаговых итерационных методов линейной алгебры и записывается в виде:

$$(D + w \cdot A^{(-)}) \cdot \frac{(x^{k+1} - x^k)}{w} + A \cdot x^k = f$$

Но можно записать итерационную формулу в более понятном виде:

$$a_{ii} \cdot x_i^{k+1} = -w \cdot \sum_{j=1}^{i-1} a_{ij} \cdot x_j^{k+1} + (1-w) \cdot a_{ii} \cdot x_i^k - w \cdot \sum_{j=i+1}^n a_{ij} \cdot x_j^k$$

Эта формула позволяет осуществить итерационный переход метода верхней релаксации. Посредствам последовательного приближения можно получить ответ с наперед заданной точностью.

Критерий остановки метода верхней релаксации

Как критерий остановки метода релаксации удобно использовать невязку: $|A\cdot x^k-f|_1<\varepsilon$. Для доказательства этого факта достаточно показать, что справедливы следующие вложения:

$$\lim_{k \to \inf} |A \cdot x^k - f|_1 = 0 \Leftrightarrow \lim_{k \to \inf} |x^k - x|_1 = 0,$$

где: k - номер итерации, а x - точное решение.

Скорость сходимости в зависимости от w

Необходимое условие сходимости данного итерационного алгоритма:

0 < w < 2. Скорость сходимости метода верхней релаксации определяется параметром w, но подбор оптимального значения этого параметра нетривиальная задача, и поэтому мы не будем освещать ее в контексте данной задачи, а лишь напишем формулу, полученную эмпирическким путем:

$$w_{opt} = \frac{2}{1 + \sqrt{1 - \rho^2 \cdot (D^{-1} \cdot (A^{(+)} + A^{(-)}))}},$$

где $D, A^{(-)}, A^{(+)}$ - диагональная, нижняя треугольная, верхняя треугольная матрицы соответственно, а ρ - спектральный радиус матрицы A. Также в процессе решения задачи были получены статистические данные описывающие зависимость количества итераций алгоритма от значения w (см. Приложение 4).

Описание программного решения данной задачи

Программа содержит пакет ввода/вывода матриц из/в файл(-ла). Это позволяет существенно сократить время тестирования и отладки программы. Ввод подразумевает специальный формат, сначала необходимо ввести n - размер матрицы, и на следующих строка задать саму матрицу системы.

Также в программе реализован консольный интерфейс (см. Приложение 3) при помощи которого можно выбрать способ ввода информации и задать файлы ввода/вывода.

Вывод программы представляет из себя: численное решение поставленной задачи для конкретных входных данных.

Тестирование

В процессе тестирования реализованных алгоритмов собиралась статистическая информация, характеризующая работу алгоритма и производилось тестирование на заданных тестах. Производилась прогонка каждой тестовой матриц на наборах значений $0.05 \le w \le 1.95$ с шагом step = 0.05. Все решение были проверены при помощи ресурса https://www.wolframalpha.com/ (см. Приложение 4).

Выводы

Метод верхней релаксации позволяет находить решение СЛАУ с наперед заданной точностью. Также одним из преимуществ данного метода является то, что нет необходимости производить преобразования матрицы, а работа производится только с векторами. В том числе, данный метод является итерационным, что позволяет варьировать число итераций для решения СЛАУ в зависимости от класса решаемой задачи. Немаловажно, что в процессе решения данной задачи была получена статистика по выбору начального параметра итерационного алгоритма и количество итераций с заданным параметром (см. Приложение 4), и непосредственно был

разработан пакет функций (см. Приложение 3), который осуществляет решение СЛАУ методом верхней релаксации.

```
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <unistd.h>
#include <math.h>
long double eps = 0.0000000001;
           simple gaus front(long double **A, long double *f, int n);
void
void
           gaus reverse(long double **A, long double *f, int n);
           mainelem gaus(long double **A, long double *f, int n);
void
long double ** rev matrix gaus(long double **A, int n, long double *det);
long double cond num(long double **A, long double **B, int n);
           swap line(long double **A, long double *f, int f 1, int f 2, int n);
void
           swap stb(long\ double\ **A\ ,\ int\ f\ 1\ ,\ int\ f\ 2\ ,\ int\ n\ );
void
          read matrix system(const char *file name, long double ***MATRIX, long double
int
**STB );
          read matrix(const char *file name, long double ***MATRIX);
int
           write matrix(const char *file name, long double **A, long double *f, int n);
void
           write solution(const char *file name, long double *f, int n);
void
long double ** copy of matrix(long double **res, long double **sen, int n);
           make matrix( const char *file name , int mode );
void
           free mem(long double **A, long double *f, int n);
void
int
main(int argc, char **argv)
{
  //
  //its only for use this packet of meth
  if (argc == 2) {
    printf( "arg1 : input file\n" );
    printf( "arg2 : output file\n" );
    printf("arg3: task [1, 2, 3, 4, 5, 6] \n");
    printf("I - solve by simple gaus\n");
    printf("2 - solve by mainelem gaus\n");
    printf("3 - find A^-1 \mid n");
    printf("4 - find ObNum \n");
    printf("5 - find det \ n");
    printf("6 - make matrix by formula and write it to file arg1, and arg4 is task [1 - 5]");
    return 0;
  }
  int task = 0;
  sscanf(argv[3], "%d", &task);
  if (task == 6) {
    sscanf( argv[4], "%d", &task );
     if (task >= 3 && task <= 5)
```

```
make matrix(argv[1], 1);
  } else {
    make matrix(argv[1], 0);
unlink( argv[2]);
if (task == 1) {
  long\ double\ **A = NULL, *f = NULL;
  int size = read matrix system( argv[1] , &A , &f);
  simple gaus front(A, f, size);
  gaus reverse(A, f, size);
  write solution(argv[2], f, size);
  free mem(A, f, size);
  return 0;
if (task == 2) {
  long\ double\ **A = NULL, *f = NULL;
  int size = read matrix system( argv[1] , &A , &f);
  mainelem gaus(A, f, size);
  write solution(argv[2], f, size);
  free mem(A, f, size);
  return 0;
if (task == 3)  {
  long\ double\ **A = NULL;
  long double det;
  int \ size = read \ matrix(\ argv[1], \&A);
  long double **B = rev \ matrix \ gaus(A, size, \&det);
  write matrix(argv[2], B, NULL, size);
 free mem(A, NULL, size);
  free mem(B, NULL, size);
  return 0;
if (task == 4)  {
  long\ double\ **A = NULL;
  long double det;
  int size = read matrix( argv[1], &A);
  long double **B = rev_matrix_gaus( A , size , &det );
  long\ double\ ob = cond\ num(A, B, size);
  FILE *out = fopen(argv[2], "a");
  fprintf( out , "ObNum: %Lf\n" , ob );
 fclose(out);
  free mem(A, NULL, size);
 free mem(B, NULL, size);
  return 0;
if (task == 5)
  long\ double\ **A = NULL;
```

```
long double det;
    int size = read matrix( argv[1], &A);
    long double **B = rev \ matrix \ gaus(A, size, \&det);
    FILE *out = fopen(argv[2], "a");
    fprintf( out , "Det: %Lf\n" , det );
    fclose(out);
    free mem(A, NULL, size);
    free mem(B, NULL, size);
    return 0;
  //=============
  return 0;
void
simple gaus front(long double **A, long double *f, int n)
  printf("GAUS FRONT WAS STARTED\n");
  //the list to the top go
  for (int i = 0; i < n; i++) { //string iterator
    //find non zero string and mode matrix
    int num non zero = i;
    for (; num non zero < n; num non zero++) { //find not zero elem in stb
       if (fabsl(A[num non zero][i]) > eps)
         break:
    if (i!= num non zero) { //if not zero elem in set position
       swap line(A, f, i, num non zero, n);
    //devide string
    for (int j = i + 1; j < n; j++) { //stb iterator}
       A[i][j] /= A[i][i]; //take main num
    f[i] /= A[i][i];
    A[i][i] = 1;
    //=============
    //reduse matrix with round result
    for ( int k = i + 1; k < n; k++) { //dec of the string to zero start number
      for (int p = i + 1; p < n; p++)
         A[k][p] = A[i][p] * A[k][i];
      f[k] = f[i] * A[k][i];
```

```
A/k/[i] = 0;
  //============
  printf( "GAUS FRONT WAS FINISHED\n" );
void
gaus reverse(long double **A, long double *f, int n)
  printf("GAUS REVERSE WAS STARTED\n");
  //the list to go the end
  for (int i = n - 1; i \ge 0; i - 1) { //set in the last point in matrix
    for (int j = i - 1; j >= 0; j--)
      f[j] = A[j][i] * f[i];
      A[j][i] = 0;
  printf( "GAUS REVERSE WAS FINISHED\n" );
void
mainelem gaus(long double **A, long double *f, int n)
  printf("MAINELEM GAUS WAS STARTED\n");
  //map of stb location for allocate start position
  int *map of stb location = (int *) malloc( n * sizeof( *map of stb location ) );
  for (int i = 0; i < n; i++) {
    map \ of \ stb \ location[i] = i;
  //=============
  //only gaus
  for (int i = 0; i < n; i++) { //string iterator
    //find max element
    int num of max = i; //num of max stb
    long\ double\ max = fabsl(A[i][i]);
    for (int j = i + 1; j < n; j++) { //find max elem in string
       if(fabsl(A[i][j]) > max)
         max = fabsl(A[i][j]);
         num \ of \ max = j;
    }
```

```
if (i!= num of max) {//if not zero elem in set position
       swap stb(A, i, num \ of \ max, n);
       int dop = map of stb location[i];
       map of stb location[i] = map of stb location[num of max];
       map\ of\ stb\ location[num\ of\ max] = dop;
    //devide string
    for (int j = i + 1; j < n; j++) { //stb iterator}
       A[i][j] /= A[i][i]; //take main num
    f[i] /= A[i][i];
    A[i][i] = 1;
    //reduse matrix with round result
    for ( int k = i + 1; k < n; k++) { //dec of the string to zero start number
      for (int p = i + 1; p < n; p++) {
         A[k][p] = A[i][p] * A[k][i];
      f[k] = f[i] * A[k][i];
      A[k][i] = 0;
  //make finish deal
  gaus reverse (A, f, n); //start reverse gaus to make a solution
  long double *ask = (long double *) malloc( n * sizeof( *ask ) );
  for (int i = 0; i < n; i++) { //get start allocate base on start map
    ask[map\ of\ stb\ location[i]] = f[i];
  for (int i = 0; i < n; i++) { //copy the solution
    f[i] = ask[i];
  free( ask ); //free mem
  free(map of stb location); //free mem
  printf( "MAINELEM GAUS WAS FINISHED\n" );
long double **
rev matrix gaus(long double **A, int n, long double *det)
  printf("REV MATRIX WAS STARTED\n");
  *det = 1; //its only fo calc determ
```

```
long double **copy of A = copy of matrix(A, NULL, n);
//map of stb location for allocate start position
int *map of stb location = (int *) malloc( n * sizeof( *map of stb location ) );
for (int i = 0; i < n; i++) {
  map \ of \ stb \ location[i] = i;
long double **B = (long double **) calloc( n , sizeof( *B ) );
for(int i = 0; i < n; i++) {
  B[i] = (long double *) calloc(n, sizeof(**B));
//==============
//only gaus
for (int i = 0; i < n; i++) { //string iterator
  //find max element
  int num of max = i; //num of max stb
  long\ double\ max = fabsl(A[i][i]);
  for (int j = i + 1; j < n; j++) { //find max elem in string
     if(fabsl(A[i][j]) > max)
       max = fabsl(A[i][j]);
       num \ of \ max = j;
  if (i!= num of max) { //if not zero elem in set position
     *det *= -1; //its only fo calc determ
     swap stb(A, i, num \ of \ max, n);
     int dop = map \ of \ stb \ location[i];
     map of stb location[i] = map of stb location[num of max];
     map\ of\ stb\ location[num\ of\ max] = dop;
  //devide string
  *det *= A[i][i]; //its only fo calc determ
  for (int j = i + 1; j < n; j++)  { //stb iterator
     A[i][j] /= A[i][i]; //take main num
  for (int j = 0; j < n; j++) {
     B[i][j] /= A[i][i];
  A[i][i] = 1;
  //==============
  //reduse matrix with round result
  for ( int k = i + 1; k < n; k++) { //dec of the string to zero start number
```

```
for (int p = i + 1; p < n; p++)
         A[k][p] = A[i][p] * A[k][i];
       for (int p = 0; p < n; p++) {
         B[k][p] = B[i][p] * A[k][i];
       A[k][i] = 0;
  //=============
  //the list to go the end reverse go
  for ( int i = n - 1; i \ge 0; i = 0) { //set in the last point in matrix
    for (int j = i - 1; j >= 0; j --) {
      for (int p = 0; p < n; p++) {
         B[j][p] = A[j][i] * B[i][p];
       A[j][i] = 0;
  //make finish deal
  long\ double\ **ask = (long\ double\ **)\ malloc(\ n\ *sizeof(\ *ask\ )\ ); //swap string to male a
  for ( int i = 0; i < n; i++) { //get start allocate base on start map
    ask[map\ of\ stb\ location[i]] = B[i];
  for (int i = 0; i < n; i++) { //copy the solution
    B[i] = ask[i];
  free( ask ); //free mem
  free(map of stb location); //free mem
  //===========
  A = copy \ of \ matrix(copy \ of \ A, A, n);
  free mem(copy of A, NULL, n);
  printf("REV MATRIX WAS FINISHED\n");
  return B;
long double
cond num(long double **A, long double **B, int n)
  long\ double\ ob = 0;
  long double *mas A = (long double *) calloc(n, size of(*mas A)); //mass of string sum in
matrix A
```

```
long double *mas B = (long double *) calloc(n, size of (*mas B)); //mass of string sum in
matrix B = A^{-1}
  //
  //only find string sum of both matrix
  for(int i = 0; i < n; i++) {
    for(int j = 0; j < n; j++) {
       mas A[i] += fabsl(A[i][j]);
       mas \ B[i] += fabsl(B[i][j]);
  //===========
  //only find max sum of string of both matrix
  long double norma A = mas A[0]; //inf norma
  long double norma B = mas \ B[0]; //inf norma
  for (int i = 1; i < n; i++) {
     if (mas A[i] > norma A) {
       norma \ A = mas \ A[i];
     if (mas B[i] > norma B) {
       norma \ B = mas \ B[i];
  ob = norma \ A * norma \ B;
  free(mas A);
  free(mas B);
  return ob;
swap line(long double **A, long double *f, int f 1, int f 2, int n) //swap system line
  long double dop;
  for (int p = f \mid 1; p < n; p++) { //swap string of matrix
    dop = A[f \ 1][p];
    A[f_1][p] = A[f_2][p];
    A[f \ 2][p] = dop;
  if (f) {
    dop = f[f \ 1]; //swap string of f stb
    f[f 1] = f[f 2];
    f[f_2] = dop;
void
swap stb(long\ double\ **A\ ,\ intf\ 1\ ,\ intf\ 2\ ,\ int\ n\ )\ //swap\ A\ stb
```

```
long double dop;
 for (int p = 0; p < n; p++) { //swap stb of matrix
    dop = A[p][f \ 1];
    A[p][f \ 1] = A[p][f \ 2];
    A[p][f\ 2] = dop;
read matrix system(const char *file name, long double ***MATRIX, long double **STB)
  //allocate size of matrix
  long\ double\ **A = *MATRIX;
  long\ double\ *f = *STB;
  FILE *in = fopen(file name, "r");
  int n;
  fscanf( in , "%d", &n );
  printf("SIZE:: %d\n", n);
  //==============
  //get memory
  A = (long \ double \ **) \ malloc(n \ *sizeof(*A));
  for (int i = 0; i < n; i++) {
    A[i] = (long double *) malloc (n * sizeof(**A));
  f = (long\ double\ *)\ malloc\ (n\ *sizeof(\ *f)\ );
  //==============
  //read matrix from file with file name
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < n; j++) {
      fscanf( in , "%Lf" , &A[i][j] );
    fscanf( in , "%Lf" , &f[i] );
  fclose(in);
  //=============
  printf( "MATRIX OF SYSTEM WAS READED\n" );
  *MATRIX = A;
  *STB = f;
  return n;
read matrix(const char *file name, long double ***MATRIX)
```

```
//allocate size of matrix
  long\ double\ **A = *MATRIX;
  FILE *in = fopen(file name, "r");
  int n;
  fscanf(in, "%d", &n);
  printf("SIZE:: %d\n", n);
  //============
  //get memory
  A = (long \ double \ **) \ malloc(n \ *sizeof(*A));
  for (int i = 0; i < n; i++) {
    A[i] = (long double *) malloc (n * sizeof(**A));
  //read matrix from file with file name
 for (int i = 0; i < n; i++) {
    for (int j = 0; j < n; j++)
      fscanf( in , "%Lf" , &A[i][j] );
  fclose(in);
  //=============
  printf( "MATRIX WAS READED\n" );
  *MATRIX = A;
  return n:
void
write matrix(const\ char\ *file\ name\ ,\ long\ double\ **A\ ,\ long\ double\ *f\ ,\ int\ n\ )
  //
  //write matrix in file with file name
  FILE *out = fopen(file name, "a");
 fprintf( out , "NEW MATRIX\n" );
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < n; j++)
      fprintf( out , "%Lf " , A[i][j] );
    if (f) {
      fprintf( out , " | %Lf\n" , f[i] );
    } else {
      fprintf( out , "\n" );
  fprintf( out , "END MATRIX\n" );
 fclose( out );
```

```
printf("MATRIX WRITE IN FILE: %s\n", file name);
  //=============
void
write solution(const char *file name, long double *f, int n)
  //
  //write solution only in file
  FILE *out = fopen(file name, "a");
  fprintf( out , "SOLUTION\n");
  for(int \ i = 0 \ ; \ i < n \ ; \ i++) \ \{
    fprintf(out, "x %d = \%0.15Lf(n", i + 1, f[i]);
  fclose( out );
long double **
copy \ of \ matrix(long \ double \ **A \ , long \ double \ **B \ , int \ n \ ) //its \ only \ copy \ matrix for \ save from
algo
  //
  //copy
  if (!B) {
     B = (long \ double \ **) \ calloc(n, sizeof(*B));
    for(int i = 0; i < n; i++) {
       B[i] = (long \ double \ *) \ calloc(n, sizeof(**B));
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < n; j++) {
       B[i][j] = A[i][j];
  return B;
make matrix(const char *file name, int mode)//gen matrix: mode 1 - only matrix; 0 - full
system
{
  //gen matrix
  int n = 30, m = 20:
  FILE *out = fopen(file name, "w");
  fprintf(out, "%d\n", n);
```

```
for (int i = 1; i \le n; i++) {
                    for (int j = 1; j \le n; j++) {
                                 if(i!=j)
                                          fprintf(out, "%Lf", (long double) (i + j) / (long double) (n + m));
                                         \textit{fprintf(out, "%Lf", (long double) } n + (m * m) + ((long double) j / m) + 
 double) i/n);
                      if (mode == 0) {
                              fprintf(out, "%Lf\n", (long double) m * i + n);
                      } else {
                              fprintf(out, "\n");
          fclose(out);
           //===========
 void
free mem(long double **A, long double *f, int n)
           //
           //free memory after use matrix
           for(int i = 0; i < n; i++) {
                    free( A[i] );
          free(A);
         free(f);
           //============
```

4 2 2 -1 1 4 4 3 -1 2 6 8 5 -3 4 12

33-246

SOLUTION 1

SOLUTION 2

NEW MATRIX

-0.600000 0.100000 0.300000 -0.200000 1.000000 0.500000 -0.500000 0.000000 -1.000000 1.500000 -0.500000 0.000000 -0.800000 0.300000 -0.100000 0.400000 END MATRIX

Cond: 60.000000 Det: 10.000000

4

25-838

43-919

23-5-67

18-7012

SOLUTION 1

x 2 = 2.0000000000000000

x 3 = 1.0000000000000000

SOLUTION 2

x 1 = 3.0000000000000000

x 2 = 2.0000000000000000

x 3 = 1.0000000000000000

NEW MATRIX

-1.719577 1.222222 -0.656085 0.862434

-0.650794 0.333333 -0.269841 0.507937

-0.989418 0.555556 -0.402116 0.560847

-0.074074 0.111111 -0.185185 0.074074

END MATRIX

Cond: 80.285714 Det: -189.000000

 $\{\{2, 5, -8, 3\}, \{4, 3, -9, 1\}, \{2, 3, -5, -6\}, \{1, 8, -7, 0\}\} * \{a, b, c, d\} = \{8, 9, 7, 12\}$

Входная интерпретация:
$$\begin{bmatrix} 2 & 5 & -8 & 3 \\ 4 & 3 & -9 & 1 \\ 2 & 3 & -5 & -6 \\ 1 & 8 & -7 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 5 & -8 & 3 \\ 4 & 3 & -9 & 1 \\ 2 & 3 & -5 & -6 \\ 1 & 8 & -7 & 0 \end{bmatrix}^{-1} \text{ (matrix inverse)} = \begin{bmatrix} 2 & 5 & -8 & 3 \\ 4 & 3 & -9 & 1 \\ 2 & 3 & -5 & -6 \\ 1 & 8 & -7 & 0 \end{bmatrix} \cdot \{a, b, c, d\} = \{8, 9, 7, 12\}$$

 $\{2\alpha+5b-8c+3d, 4\alpha+3b-9c+d, 2\alpha+3b-5c-6d, \alpha+8b-7c\} = \{8, 9, 7, 12\}$

Решение:

a=3 , b=2 , c=1 , d=0

3 2-103 -12-14 0-125

SOLUTION 1

SOLUTION 2

NEW MATRIX

0.750000 0.500000 0.250000 0.500000 1.000000 0.500000 0.250000 0.500000 0.750000 END MATRIX

Cond: 8.000000 Det: 4.000000

$$\{\{2, -1, 0\}, \{-1, 2, -1\}, \{0, -1, 2\}\} * \{a, b, c\} = \{3, 4, 5\}$$

$$A_{ij} = \frac{i+j}{m+n}, i \neq j$$

$$A_{ij} = n + m^2 + \frac{j}{m} + \frac{i}{n}, i = j \,\forall i, j = 1...n$$

$$b_i = 20 \cdot i + 30$$

SOLUTION 1

x 1 = 0.094220856385308

x 2 = 0.139664640363886

 \bar{x} 3 = 0.185099268187903

x = 0.230524742405332

 $x^{-}5 = 0.275941065140727$

x 6 = 0.321348240336259

 $x_7 = 0.366746270219767$

x 8 = 0.412135156596181

 $x_9 = 0.457514904037024$

x 10 = 0.502885514450388

 \bar{x} 11 = 0.548246989321968

 $x_12 = 0.593599333851879$

x 13 = 0.638942549628852

 $x^{-}14 = 0.684276637819734$

 \bar{x} 15 = 0.729601604252472

x 16 = 0.774917450196826

x 17 = 0.820224176501179

 $x \ 18 = 0.865521789620556$

 \bar{x} 19 = 0.910810290506128

 $x^{20} = 0.956089679688203$

 $\bar{x}^{2}1 = 1.001359964248124$

 $x_22 = 1.046621144818862$

 $x_2 = 1.091873221613033$

 $x_24 = 1.137116202337544$

 $x_25 = 1.182350087307552$

 $x_26 = 1.227574876418363$

 $x_27 = 1.272790578001696$

 $x_2 = 1.317997192055276$

 $x_29 = 1.363194718157486$

 $x_30 = 1.408383165264102$

SOLUTION 2

x 1 = 0.094220856385308

x 2 = 0.139664640363886

 $x_3 = 0.185099268187903$

 $x_4 = 0.230524742405332$

 $x_5 = 0.275941065140727$

```
x 6 = 0.321348240336259
x 7 = 0.366746270219767
x 8 = 0.412135156596181
x 9 = 0.457514904037024
x 10 = 0.502885514450388
x 11 = 0.548246989321968
x 12 = 0.593599333851879
x 13 = 0.638942549628852
x 14 = 0.684276637819734
x 15 = 0.729601604252472
x 16 = 0.774917450196826
x 17 = 0.820224176501179
x 18 = 0.865521789620556
x 19 = 0.910810290506128
x 20 = 0.956089679688203
x 21 = 1.001359964248124
x 22 = 1.046621144818862
x 23 = 1.091873221613033
x 24 = 1.137116202337544
x 25 = 1.182350087307552
x 26 = 1.227574876418363
x 27 = 1.272790578001696
x 28 = 1.317997192055276
x 29 = 1.363194718157486
x 30 = 1.408383165264102
```

Cond: 1.122125

Det:

110325917572457787218673158659283956826977968095736743379364988875 58459459371008.000000

```
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <unistd.h>
#include <math.h>
long double w = 0.8;
void
           relax method(long double **A, long double *f, long double eps, int n);
void
           one iteraton (long double **A, long double *f, long double *x k, long double
*x k 1, int n);
long double
              accuracy of solve KOSHI(long double *x \ k, long double *x \ k \ 1, int n);
long double
              accuracy of solve MATRIX( long double **A, long double *f, long double *x k
, int n );
          read matrix system(const char *file name, long double ***MATRIX, long double
int
**STB );
void
           write matrix(const char *file name, long double **A, long double *f, int n);
           write solution(const char *file name, long double *f, int n);
void
void
           make matrix( const char *file name , int mode );
void
           free mem(long double **A, long double *f, int n);
int
main(int argc, char **argv)
  //
  //its only for use this packet of meth
  if (argc == 2) {
    printf( "arg1 : input file\n" );
    printf( "arg2 : output file\n" );
    printf( "arg3 : accuracy\n" );
    printf("arg4: matrix in file <1>, matrix by fomula <2>\n");
    return 0;
  long double eps;
  sscanf( argv[3], "%Lf", &eps );
  int task;
  sscanf( argv[4] , "%d" , &task );
  unlink(argv[2]);
  if (task == 1)
     long double **A = NULL, *f = NULL;
     int \ size = read \ matrix \ system(\ argv[1], \&A, \&f);
    relax method(A, f, eps, size);
    write solution(argv[2], f, size);
    free mem(A, f, size);
    return 0;
```

```
if (task == 2) 
    long double **A = NULL, *f = NULL;
    make matrix(argv[1], 0);
    int size = read_matrix_system( argv[1] , &A , &f);
    relax method(A, f, eps, size);
    write solution(argv[2], f, size);
    free mem(A, f, size);
    return 0;
  if (task == 3)  {
    long\ double\ **A = NULL, *f = NULL;
    w = 0.05;
    for (; w < 1.97; w += 0.05)
       int \ size = read \ matrix \ system(\ argv[1], \&A, \&f);
      printf("W = \%Lf", w);
      relax method(A, f, eps, size);
      free mem(A, f, size);
      A = NULL; f = NULL;
  return 0;
void
relax method (long double **A, long double *f, long double eps, int n)
  long double x = (long double *) malloc (n * sizeof( x k));
  long double x k l = (long double *) malloc (n * sizeof( x k l ));
  for ( int i = 0; i < n; i++) { //initialized start value
    x k/i = 1;
  //
  //make next iteration of algo
  int k = 0;
  while (1) {
    if (accuracy of solve MATRIX(A, f, x k, n) < eps) { // accuracy of solve KOSHI(x k)
(x \ k \ 1, n) < eps
       break:
    one iteraton(A, f, x k, x k l, n);
    k++:
  //==============
  //copy of solution in f
  for (int i = 0; i < n; i++) {
    f[i] = x_k[i];
```

```
printf("COUNT\ IT:: \%d\n", k);
 free(x k);
 free(x_k 1);
one iteraton(long double **A, long double *f, long double *x k, long double *x k l, int n)
  //iteration
  long double q = 1 - (1/w); //its koef of k i
  for (int i = 0; i < n; i++) {
    x \ k \ 1/i/ = f/i/;
    for (int j = 0; j < i; j++) {
       x_k_1[i] = A[i][j] * x_k_1[j];
    x_k_1[i] = q *A[i][i] *x_k[i];
    for (int j = i + 1; j < n; j++)
       x \ k \ l[i] = A[i][j] * x \ k[j];
    x \ k \ 1/i/ *= w;
    x \ k \ 1[i] /= A[i][i];
  for (int i = 0; i < n; i++) {
    long double dop;
    dop = x \ k[i];
    x \ k[i] = x \ k \ l[i];
    x \ k \ l[i] = dop;
  //really now i+i is x k and i is x k 1
  //=============
long double
accuracy of solve KOSHI(long double *x \ k, long double *x \ k \ 1, int n)
{
  //
  //calc norma of solve
  long\ double\ norma=0;
  for (int i = 0; i < n; i++) {
    norma += fabsl(x k[i] - x k l[i]);
  //=============
  return norma;
```

long double

```
accuracy of solve MATRIX(long double **A, long double *f, long double *x k, int n)
  //
  //calc norma of solve
  long double *Ax = (long double *) calloc(n, sizeof(*Ax));
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < n; j++) {
      Ax[i] += A[i][j] *x k[j];
  long\ double\ norma=0;
  for (int i = 0; i < n; i++) {
    norma += fabsl(f[i] - Ax[i]);
  free(Ax);
  //============
  return norma;
int
read matrix system(const char *file name, long double ***MATRIX, long double **STB)
  //
  //allocate size of matrix
  long\ double\ **A = *MATRIX;
  long double *f = *STB;
  FILE *in = fopen(file name, "r");
  int n;
  fscanf( in , "%d" , &n );
  // printf("SIZE :: %d n", n);
  //=============
  //get memory
  A = (long \ double \ **) \ malloc(n \ *sizeof(*A));
  for (int i = 0; i < n; i++) {
    A[i] = (long double *) malloc (n * sizeof(**A));
  f = (long\ double\ *)\ malloc\ (n\ *sizeof(\ *f)\ );
  //==============
  //read matrix from file with file name
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < n; j++) {
      fscanf( in , "%Lf" , &A[i][j] );
    fscanf( in , "%Lf" , &f[i] );
  fclose(in);
```

```
// printf( "MATRIX OF SYSTEM WAS READED\n" );
  *MATRIX = A:
  *STB = f;
  return n;
void
write matrix(const\ char\ *file\ name\ ,\ long\ double\ **A\ ,\ long\ double\ *f\ ,\ int\ n\ )
  //
  //write matrix in file with file name
  FILE *out = fopen(file name, "a");
  fprintf( out , "NEW MATRIX\n" );
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < n; j++)
      fprintf( out , "%Lf " , A[i][j] );
    if (f) {
      fprintf( out , "| %Lf\n" , f[i] );
    } else {
      fprintf( out , "\n" );
  fprintf( out , "END MATRIX\n" );
  fclose(out);
  printf("MATRIX WRITE IN FILE: %s\n", file name);
}
write solution(const char *file name, long double *f, int n)
{
  //write solution only in file
  FILE *out = fopen(file name, "a");
  fprintf( out , "SOLUTION\n");
  for(int i = 0; i < n; i++) 
    fprintf(out, "x %d = \%0.15Lf(n", i + 1, f[i]);
  fclose(out);
  //=============
void
make matrix(const char *file name, int mode)//gen matrix: mode 1 - only matrix; 0 - full
system
{
```

```
//gen matrix
           int n = 30, m = 20;
          FILE *out = fopen(file_name, "w");
         fprintf(out, "%d\n", n);
         for (int i = 1; i \le n; i++) {
                   for (int j = 1; j \le n; j++) {
                               if(i!=j)
                                       fprintf(out, "%Lf", (long double) (i + j) / (long double) (n + m));
                                       fprintf(out, "%Lf", (long double) n + (m * m) + ((long double) j / m) + ((lo
 double) i/n);
                     if (mode == 0) {
                             fprintf(out, "%Lf\n", (long double) m * i + n);
                            fprintf( out , "\n" );
         fclose(out);
free mem(long double **A, long double *f, int n)
          //free memory after use matrix
         for(int i = 0; i < n; i++) 
                  free( A[i] );
         free(A);
         free(f);
          //==============
```

К сожалению матрицы из варианта не подходят для тестирования данного алгоритма, поэтому были сгенерированы другие матрицы.

Test 1

```
2-103
-12-14
0 - 125
SOLUTION
x 1 = 5.499999999958773
x 2 = 7.999999999952658
x 3 = 6.499999999972818
EPS = 0.00000000001
W = 0.050000 \ COUNT \ IT :: 1686
W = 0.100000 COUNT IT :: 822
W = 0.150000 \ COUNT \ IT :: 533
W = 0.200000 \ COUNT \ IT :: 389
W = 0.250000 \ COUNT \ IT :: 302
W = 0.300000 \ COUNT \ IT :: 245
W = 0.350000 \ COUNT \ IT :: 203
W = 0.400000 \ COUNT \ IT :: 172
W = 0.450000 \ COUNT \ IT :: 148
W = 0.500000 \ COUNT \ IT :: 128
W = 0.550000 \ COUNT \ IT :: 112
W = 0.600000 \ COUNT \ IT :: 99
W = 0.650000 \ COUNT \ IT :: 88
W = 0.700000 \ COUNT \ IT :: 78
W = 0.750000 \ COUNT \ IT :: 69
W = 0.800000 COUNT IT :: 62
W = 0.850000 \ COUNT \ IT :: 55
W = 0.900000 \ COUNT \ IT :: 49
W = 0.950000 \ COUNT \ IT :: 43
W = 1.0000000 COUNT IT :: 37
W = 1.050000 \ COUNT \ IT :: 32
W = 1.100000 \ COUNT \ IT :: 27
W = 1.150000 \ COUNT \ IT :: 22
W = 1.200000 \ COUNT \ IT :: 17
W = 1.250000 \ COUNT \ IT :: 20
W = 1.300000 \ COUNT \ IT :: 22
```

 $W = 1.350000 \ COUNT \ IT :: 25$

3

```
W = 1.400000 \ COUNT \ IT :: 28
W = 1.450000 \ COUNT \ IT :: 33
W = 1.500000 \ COUNT \ IT :: 37
W = 1.550000 \ COUNT \ IT :: 44
W = 1.600000 \ COUNT \ IT :: 50
W = 1.650000 \ COUNT \ IT :: 61
W = 1.700000 \ COUNT \ IT :: 74
W = 1.750000 \ COUNT \ IT :: 90
W = 1.800000 \ COUNT \ IT :: 115
W = 1.850000 \ COUNT \ IT :: 159
W = 1.900000 \ COUNT \ IT :: 243
W = 1.950000 \ COUNT \ IT :: 496
\{\{2, -1, 0\}, \{-1, 2, -1\}, \{0, -1, 2\}\} * \{a, b, c\} = \{3, 4, 5\}
                                      Test 2
3
21 41 50 1
41 546 346 2
50 346 349 3
SOLUTION
x = 0.039263343491183
x 2 = -0.003141863684024
x 3 = 0.006085723954520
EPS = 0.00000000001
W = 0.050000 \ COUNT \ IT :: 2731
W = 0.100000 \ COUNT \ IT :: 1331
W = 0.150000 \ COUNT \ IT :: 905
W = 0.200000 \ COUNT \ IT :: 675
W = 0.250000 \ COUNT \ IT :: 532
W = 0.300000 \ COUNT \ IT :: 435
W = 0.350000 \ COUNT \ IT :: 365
W = 0.400000 \ COUNT \ IT :: 312
W = 0.450000 \ COUNT \ IT :: 270
W = 0.500000 \ COUNT \ IT :: 236
W = 0.550000 \ COUNT \ IT :: 208
W = 0.600000 \ COUNT \ IT :: 184
W = 0.650000 \ COUNT \ IT :: 164
W = 0.700000 \ COUNT \ IT :: 146
W = 0.750000 \ COUNT \ IT :: 131
W = 0.800000 \ COUNT \ IT :: 117
W = 0.850000 \ COUNT \ IT :: 105
```

```
W = 0.9000000 COUNT IT :: 94
W = 0.950000 \ COUNT \ IT :: 83
W = 1.0000000 COUNT IT :: 74
W = 1.050000 \ COUNT \ IT :: 65
W = 1.100000 \ COUNT \ IT :: 56
W = 1.150000 \ COUNT \ IT :: 47
W = 1.2000000 COUNT IT :: 34
W = 1.250000 \ COUNT \ IT :: 35
W = 1.300000 \ COUNT \ IT :: 38
W = 1.350000 \ COUNT \ IT :: 41
W = 1.400000 \ COUNT \ IT :: 46
W = 1.450000 \ COUNT \ IT :: 50
W = 1.500000 \ COUNT \ IT :: 58
W = 1.550000 \ COUNT \ IT :: 66
W = 1.600000 \ COUNT \ IT :: 78
W = 1.650000 \ COUNT \ IT :: 92
W = 1.700000 \ COUNT \ IT :: 110
W = 1.750000 \ COUNT \ IT :: 134
W = 1.800000 \ COUNT \ IT :: 173
W = 1.850000 \ COUNT \ IT :: 234
W = 1.9000000 COUNT IT :: 363
W = 1.950000 \ COUNT \ IT :: 744
\{\{21, 41, 50\}, \{41, 546, 346\}, \{50, 346, 349\}\} * \{a, b, c\} = \{1, 2, 3\}
                                     Test 3
3
15442 4971 218 4
4971 3325 -249 44
218 -249 83 7
(8)
SOLUTION
x = -0.060171272229531
x 2 = 0.156502484984923
x 3 = 0.711885013340776
EPS = 0.00000000001
W = 0.050000 \ COUNT \ IT :: 8913
W = 0.100000 \ COUNT \ IT :: 4335
W = 0.150000 \ COUNT \ IT :: 2809
W = 0.200000 \ COUNT \ IT :: 2045
W = 0.250000 \ COUNT \ IT :: 1587
W = 0.300000 \ COUNT \ IT :: 1281
W = 0.350000 \ COUNT \ IT :: 1061
```

```
W = 0.400000 \ COUNT \ IT :: 896
W = 0.450000 \ COUNT \ IT :: 767
W = 0.500000 \ COUNT \ IT :: 663
W = 0.550000 \ COUNT \ IT :: 576
W = 0.600000 \ COUNT \ IT :: 500
W = 0.650000 \ COUNT \ IT :: 426
W = 0.700000 \ COUNT \ IT :: 386
W = 0.750000 \ COUNT \ IT :: 360
W = 0.800000 \ COUNT \ IT :: 330
W = 0.850000 \ COUNT \ IT :: 301
W = 0.900000 \ COUNT \ IT :: 274
W = 0.950000 \ COUNT \ IT :: 249
W = 1.0000000 COUNT IT :: 226
W = 1.050000 \ COUNT \ IT :: 205
W = 1.1000000 COUNT IT :: 185
W = 1.150000 \ COUNT \ IT :: 167
W = 1.200000 \ COUNT \ IT :: 150
W = 1.250000 \ COUNT \ IT :: 133
W = 1.300000 \ COUNT \ IT :: 118
W = 1.350000 \ COUNT \ IT :: 102
W = 1.400000 \ COUNT \ IT :: 87
W = 1.450000 \ COUNT \ IT :: 71
W = 1.500000 \ COUNT \ IT :: 56
W = 1.550000 \ COUNT \ IT :: 65
W = 1.600000 \ COUNT \ IT :: 75
W = 1.650000 \ COUNT \ IT :: 89
W = 1.700000 \ COUNT \ IT :: 107
W = 1.750000 \ COUNT \ IT :: 133
W = 1.800000 \ COUNT \ IT :: 171
W = 1.850000 \ COUNT \ IT :: 235
W = 1.9000000 COUNT IT :: 362
W = 1.950000 \ COUNT \ IT :: 743
```

 $\{\{15442, 4971, 218\}, \{4971, 3325, -249\}, \{218, -249, 83\}\} * \{a, b, c\} = \{4, 44, 7\}$

$$A_{ij} = \frac{i+j}{m+n}, i \neq j$$

$$A_{ij} = n + m^2 + \frac{j}{m} + \frac{i}{n}, i = j \,\forall i, j = 1...n$$

$$b_i = 20 \cdot i + 30$$

$$SOLUTION$$

 $x = 0.094220856385316$

- x 2 = 0.139664640363894
- x = 0.185099268187910
- x = 0.230524742405339
- x = 0.275941065140733
- x 6 = 0.321348240336265
- x 7 = 0.366746270219772
- x 8 = 0.412135156596186
- x 9 = 0.457514904037029
- x 10 = 0.502885514450393
- x 11 = 0.548246989321973
- x 12 = 0.593599333851883
- x 13 = 0.638942549628855
- x 14 = 0.684276637819737
- x 15 = 0.729601604252475
- x 16 = 0.774917450196829
- x 17 = 0.820224176501182
- x 18 = 0.865521789620558
- x 19 = 0.910810290506130
- x 20 = 0.956089679688205
- x 21 = 1.001359964248125
- x 22 = 1.046621144818863
- x 23 = 1.091873221613034
- x 24 = 1.137116202337544
- x 25 = 1.182350087307551
- x 26 = 1.227574876418362
- x 27 = 1.272790578001693
- x 28 = 1.317997192055272
- x 29 = 1.363194718157481
- x 30 = 1.408383165264096

EPS = 0.0000000001

- $W = 0.050000 \ COUNT \ IT :: 617$
- $W = 0.100000 \ COUNT \ IT :: 301$
- $W = 0.150000 \ COUNT \ IT :: 195$
- $W = 0.200000 \ COUNT \ IT :: 142$
- $W = 0.250000 \ COUNT \ IT :: 110$
- $W = 0.300000 \ COUNT \ IT :: 89$
- $W = 0.350000 \ COUNT \ IT :: 74$
- $W = 0.400000 \ COUNT \ IT :: 62$
- $W = 0.450000 \ COUNT \ IT :: 53$
- $W = 0.500000 \ COUNT \ IT :: 46$
- $W = 0.550000 \ COUNT \ IT :: 40$
- $W = 0.600000 \ COUNT \ IT :: 35$
- $W = 0.650000 \ COUNT \ IT :: 31$

- $W = 0.700000 \ COUNT \ IT :: 27$
- $W = 0.750000 \ COUNT \ IT :: 23$
- $W = 0.800000 \ COUNT \ IT :: 20$
- $W = 0.850000 \ COUNT \ IT :: 17$
- $W = 0.900000 \ COUNT \ IT :: 14$
- $W = 0.950000 \ COUNT \ IT :: 11$
- $W = 1.000000 \ COUNT \ IT :: 7$
- $W = 1.050000 \ COUNT \ IT :: 12$
- $W = 1.100000 \ COUNT \ IT :: 15$
- $W = 1.150000 \ COUNT \ IT :: 18$
- $W = 1.200000 \ COUNT \ IT :: 21$
- $W = 1.250000 \ COUNT \ IT :: 24$
- $W = 1.300000 \ COUNT \ IT :: 27$
- $W = 1.350000 \ COUNT \ IT :: 31$
- $W = 1.400000 \ COUNT \ IT :: 35$
- $W = 1.450000 \ COUNT \ IT :: 41$
- $W = 1.500000 \ COUNT \ IT :: 47$
- $W = 1.550000 \ COUNT \ IT :: 54$
- W = 1.6000000 COUNT IT :: 63
- $W = 1.650000 \ COUNT \ IT :: 74$
- $W = 1.700000 \ COUNT \ IT :: 90$
- $W = 1.750000 \ COUNT \ IT :: 111$
- $W = 1.800000 \ COUNT \ IT :: 144$
- $W = 1.850000 \ COUNT \ IT :: 197$
- $W = 1.900000 \ COUNT \ IT :: 305$
- $W = 1.950000 \ COUNT \ IT :: 626$