# Predicting Best Time to Shoot Some Curls

Matias Gonzalez



#### **About Me**

- I love surfing, skating and snowboarding
- I can solve a Rubik's cube in less than 2 minutes
- Originally from El Salvador
- Went to Florida State



#### **Motivation**

- Have you ever been next to a beautiful beach but as soon as you take out your phone and you notice your subscription to Surfline has expired?
- How are you going to know when it's the best time to surf?
- The goal of this project is to predict at what time will waves be at their highest.

|                                                                                                                                                                                       | Feature Name        | % NaN's per column |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------|
|                                                                                                                                                                                       | latitude            | 0                  |
| EDA                                                                                                                                                                                   | longitude           | 0                  |
| I will be favoring using latitude and longitude over country code since it complete                                                                                                   | sea_surface_temp    | 39.6               |
|                                                                                                                                                                                       | country_code        | 93.7               |
|                                                                                                                                                                                       | wind_speed          | 95.9               |
| 2. I will have to drop wind_speed, swell_height, wave_direction and swell_speed, from the data, since there are way too many NaNs meaning it is mostly incomplete or not precise data | wind_direction_true | 0                  |
|                                                                                                                                                                                       | amt_pressure_tend   | 74.1               |
|                                                                                                                                                                                       | air_temp            | 5.5                |
| 3. I can ignore the other date columns and only use the                                                                                                                               | sea_level_pressure  | 7.3                |
| timestamp                                                                                                                                                                             | wave_direcion       | 100                |
| 4. Since I am trying to predict wave_height this will be the biggest contributor to row dropping.                                                                                     | wave_height         | 89.9               |
|                                                                                                                                                                                       | wave_speed          | 97.5               |
|                                                                                                                                                                                       | swell_height        | 98.8               |
|                                                                                                                                                                                       | swell_speed         | 100                |
|                                                                                                                                                                                       | timestamp           | 0                  |

# **EDA**



- 0.2 - 0.1

> - 0.0 - -0.1 - -0.2

- -0.3 - -0.4

- -0.5

# **EDA**



# **EDA**



#### Results

- I was very determined to use a neural network to make my predictions due to the sheer amount of data I was working with.
- I decided to use a sequential model with the basic 3 layers.
- I got a score of 0.185, which is pretty high. This means our model is usually around 18.5 percent incorrect.
- I had a pretty low dropout rate for regularization which could have been tuned higher in order to account for specialization.

## Conclusions and Next Steps

- One major stepback in this project was the amount of error present in the dataset.
- Looking back at my steps I would have liked to have kept the wind\_speed column.
- Even though we were going to lose a lot of data we had enough data to simply drop around 96 percent of it.
- It would have probably been beneficial to the project as a whole as it would have probably diminished our run times.

### Questions?

Matias Gonzalez



matiasgonzalezrivera@gmail.com

https://www.linkedin.com/in/matiasgonzalezrivera/

https://github.com/matiasgonz

## Appendix

My biggest note is Chris suggested I change datasets and I should have listened, this was very difficult to work with due to its sheer size and our time limitation when running it.

Look into monte Carlo augmentation in order to work with wind\_speed.

# Appendix

hour latitude longitude imma\_version attm\_count

country\_code

wind\_speed

visibility

visibility\_indicator

present\_weather

sea\_level\_pressure characteristic\_of\_ppp

amt\_pressure\_tend

wbt\_indicator

wetbulb\_temp

dpt\_indicator

dewpoint\_temp

past\_weather

wind\_direction\_indicator

wind\_direction\_true wind\_speed\_indicator

year

day

month

**Feature Name** 

- FLOAT FLOAT INT INT INT
- time\_indicator latlong\_indicator INT
  - INT
  - INT
  - INT
- ship\_course ship\_speed national\_source\_indicator
- INT id\_indicator callsign
  - STR

INT

INT

FLOAT

INT

INT

INT

INT

INT

INT

INT

FLOAT

**FLOAT** 

FLOAT

FLOAT

STR INT

**Data Type** 

INT

INT

INT

FLOAT

| sec  |
|------|
| ada  |
| nigl |
| trim |
| nco  |
| exte |
| land |
| sou  |
| uni  |
| rele |
| rele |
| rele |
| inte |
| tim  |

INT

INT

INT

STR

INT

STR

STR

STR

INT

INT

INT

INT

FLOAT

STR

INT

FLOAT

FLOAT

sst\_measurement\_method

sea\_surface\_temp

total\_cloud\_amount

lower\_cloud\_amount

cloud\_height\_indicator

lower\_cloud\_type

middle\_cloud\_type

high\_cloud\_type

wave\_direction

wave\_period

wave\_height

swell\_period

swell\_height

deck

source\_id

dup\_status

dup\_check

track\_check

pressure\_bias

wave\_period\_indicator

swell\_period\_indicator

platform\_type

box\_system\_indicator

ten\_degree\_box\_number

one\_degree\_box\_number

swell\_direction

cloud\_height

| second_country_code      | INT |
|--------------------------|-----|
| adaptive_qc_flags        | STR |
| nightday_flag            | INT |
| trimming_flags           | STR |
| ncdc_qc_flags            | STR |
| external                 | INT |
| landlocked_flag          | INT |
| source_exclusion_flags   | INT |
| unique_report_id         | STR |
| release_no_primary       | INT |
| release_no_secondary     | INT |
| release_no_tertiary      | INT |
| intermediate_reject_flag | INT |
| timestamp                | OBJ |