QUESTION NUMBER 1

NUMERICAL DIFFERENTIATION AND INTEGRATION

OUTPUT

FIRST DERIVATIVE OF sin(t) USING gradient

cos(t)

SECOND DERIVATIVE OF sin(t) USING gradient

-sin(t)

FIRST DERIVATIVE OF cos(t) USING gradient

-sin(t)

SECOND DERIVATIVE OF cos(t) USING gradient

-cos(t)

FIRST DERIVATIVE OF sinh(t) USING gradient

cosh(t)

SECOND DERIVATIVE OF sinh(t) USING gradient

```
sinh(t)
FIRST DERIVATIVE OF cosh(t) USING gradient
sinh(t)
SECOND DERIVATIVE OF cosh(t) USING gradient
cosh(t)
FIRST DERIVATIVE OF sin(t) USING diff
cos(t)
SECOND DERIVATIVE OF sin(t) USING diff
-sin(t)
FIRST DERIVATIVE OF cos(t) USING diff
-sin(t)
SECOND DERIVATIVE OF cos(t) USING diff
-cos(t)
```

FIRST DERIVATIVE OF sinh(t) USING diff cosh(t)

SECOND DERIVATIVE OF sinh(t) USING diff sinh(t)

FIRST DERIVATIVE OF cosh(t) USING diff sinh(t)

SECOND DERIVATIVE OF cosh(t) USING diff cosh(t)

Figure1

Figure2

QUESTION NUMBER 2

NUMERICAL DIFFERENTIATION AND INTEGRATION

OUTPUT

INTEGRATING f(t) = t FROM 0 TO 2

INTEGRATION USING integral FUNCTION 2.0000

INTEGRATION USING TRAPEZOIDAL NUMERICAL INTEGRATION 2

INTEGRATING $f(t) = 4t.^2 + 3$ FROM -4 TO 0

INTEGRATION USING integral FUNCTION 97.3333

INTEGRATION USING TRAPEZOIDAL NUMERICAL INTEGRATION 100

INTEGRATING $f(t) = t.^2 FROM - 2 T0 2$

INTEGRATION USING integral FUNCTION 5.3333

INTEGRATION USING TRAPEZOIDAL NUMERICAL INTEGRATION 6

INTEGRATING $f(x) = 1/\sqrt{2*pi} \exp(-x.^2/2)$ FROM 0 T0 INFINITY

INTEGRATION USING integral FUNCTION 0.5000

INTEGRATION USING TRAPEZOIDAL NUMERICAL INTEGRATION $0.5000\,$

QUESTION NUMBER 3

NUMERICAL DIFFERENTIATION AND INTEGRATION

OUTPUT

DOUBLE INTEGRATION USING integral 2 FUNCTION

$$f(x,y) = xy$$
, $0 < x < 2$, $0 < y < 3$
9.0000

$$f(x,y,z) = x.^2+y.^2+z.^2$$
, -1

TRIPLE INTEGRATION USING integral3 FUNCTION

8.0000

QUESTION NUMBER 4

NUMERICAL DIFFERENTIATION AND INTEGRATION

OUTPUT

INTEGRATING A POLYNOMIAL USING polyint FUNCTION

INTEGRAL OF $P(x) = 3x^4-4x^2+10x-25 \text{ WRT x FROM } -1 \text{ to } 3$

49.0667

DIFFRENTIATING A POLYNOMIAL USING polyder FUNCTION

DIFFERENTIAL OF $P(x) = 3x^4_4x^2+10x-25$

12 0 -8 10

DIFFERENTIAL, OF $P(x) = 3x^5-2x^3+x+5$

15 0 -6 0 1

DIFFERENTIAL OF $P(x) = (x^4-2x^3+11)*(x^2-10X+15)$

-6 60 -140 90 22 -110

EXPERIMENT NO 8 QUESTION NUMBER 1 SOLUTION OF ORDINARY DIFFERENTIAL EQUATION

OUTPUT

Equation 1: Dy = y*xSolution without initial condition $C1*exp(x^2/2)$ Solution with initial condition, y(0) = 1 $exp(x^2/2)$ Equation 2: Dx + 2*x = 0Solution with initial condition, x(0) = 1exp(-2*t)

Figure1

Figure2

QUESTION NUMBER 2

SOLUTION OF ORDINARY DIFFERENTIAL EQUATION

OUTPUT

Equation 1:

$$D2y + 8*Dy + 2*y = cos(x)$$

Solution with initial condition, y(0)=0,y'(0)=1

$$(14^{(1/2)} * \exp(x*(14^{(1/2)} - 4))*(7*14^{(1/2)} - 27))/(28*(8*14^{(1/2)} - 31)) - (14^{(1/2)} * \exp(4*x + 14^{(1/2)} * x)* \exp(-x*(14^{(1/2)} + 4))*(\sin(x) + \cos(x)*(14^{(1/2)} + 4)))/(28*((14^{(1/2)} + 4)^2 + 1)) + (14^{(1/2)} * \exp(4*x - 14^{(1/2)} * x)* \exp(x*(14^{(1/2)} - 4))*(\sin(x) - \cos(x)*(14^{(1/2)} - 4)))/(28*((14^{(1/2)} - 4)^2 + 1)) + (14^{(1/2)} * \exp(-x*(14^{(1/2)} + 4))*(393*14^{(1/2)} - 1531))/(28*(8*14^{(1/2)} - 31)^2*(8*14^{(1/2)} + 31))$$

Equation 2:

$$D2x + 2*Dx + 2*x = exp(-t)$$

Solution without initial condition

$$\exp(-t) + C6*\exp(-t)*\cos(t) - C7*\exp(-t)*\sin(t)$$

QUESTION NUMBER 3

SOLUTION OF ORDINARY DIFFERENTIAL EQUATION

OUTPUT

INPUT SIGNAL, V =

5

EQUATION FOR CURRENT IS

$$I(t)/3 + diff(I(t), t) == 0$$

symbolic function inputs: t

WITH INITIAL CONDITION

I(0) == 5/3

TRANSIENT CURRENT FOR RC CIRCUIT FOR 5V DC INPUT

(5*exp(-t/3))/3

INPUT SIGNAL, V = 5*exp(-t)

EQUATION FOR CURRENT IS

$$I(t)/3 + diff(I(t), t) == -(5*exp(-t))/3$$

symbolic function inputs: t

WITH INITIAL CONDITION

I(0) == 5/3

TRANSIENT CURRENT FOR RC CIRCUIT FOR INPUT 5exp(-t)U(t)

(5*exp(-t/3)*exp(-(2*t)/3))/2 - (5*exp(-t/3))/6

QUESTION NUMBER 4

SOLUTION OF ORDINARY DIFFERENTIAL EQUATION

OUTPUT

R =

1

L =

1.0000e-03

C =

1.0000e-06

INPUT SIGNAL,

V =

5

EQUATION FOR CURRENT IS

100000000*I(t) + 1000*diff(I(t), t) + diff(I(t), t, t) == 0

symbolic function inputs: t

WITH INITIAL CONDITION

$$[I(0) == 0, subs(diff(I(t), t), t, 0) == 5]$$

TRANSIENT CURRENT FOR RLC CIRCUIT FOR 5V DC INPUT

 $(3999^{(1/2)}*exp(-500*t)*sin(500*3999^{(1/2)}*t))/399900$

INPUT SIGNAL, V = 5*exp(-t)

EQUATION FOR CURRENT IS

1000000000*I(t) + 1000*diff(I(t), t) + diff(I(t), t, t) == -5000*exp(-t)symbolic function inputs: t

WITH INITIAL CONDITION

[I(0) == 0, subs(diff(I(t), t), t, 0) == 5]

TRANSIENT CURRENT FOR RLC CIRCUIT FOR INPUT 5exp(-t)U(t)

 $(5000*exp(-500*t)*cos(500*3999^{(1/2)*t}))/999999001 + \\ (1000498001*3999^{(1/2)}*exp(-500*t)*sin(500*3999^{(1/2)*t}))/399899600499900 + \\ (10*3999^{(1/2)}*exp(-t)*cos(500*3999^{(1/2)}*t)*(499*sin(500*3999^{(1/2)}*t) - \\ 500*3999^{(1/2)}*cos(500*3999^{(1/2)}*t)))/3998996004999 - (10*3999^{(1/2)}*exp(-t)*sin(500*3999^{(1/2)}*t)*(499*cos(500*3999^{(1/2)}*t) + \\ 500*3999^{(1/2)}*sin(500*3999^{(1/2)}*t)))/3998996004999$

QUESTION NUMBER 5

SOLUTION OF ORDINARY DIFFERENTIAL EQUATION

OUTPUT

Equation 1:

Dx=x+2*y-z

Equation 2:

Dy=x+z

Equation 3:

$$Dz=4*x-4*y+5*z$$

Solution with initial condition, x(0)=1,y(0)=2,z(0)=3

 $\mathbf{x} =$

$$6*exp(2*t) - (5*exp(3*t))/2 - (5*exp(t))/2$$

y =

$$(5*exp(3*t))/2 - 3*exp(2*t) + (5*exp(t))/2$$

z =

$$10*\exp(3*t) - 12*\exp(2*t) + 5*\exp(t)$$

