Introduction to Data Visualization

Data Visualization Course – Lecture 1

Dr. Muhammad Sajjad

R.A: Imran Nawar

Overview

- > Data
 - ➤ What is data?
 - ➤ Sources of data?
 - > Importance of data in the modern world.
- > Overview of data visualization
- > Importance of data visualization in data science
 - ➤ Why visualization matters in data science
- > Storytelling with data (Communicating Insights Effectively)
- > Common Types of Data Plots
 - Bar chart, line plot, scatter plot, histogram, box plot, pie chart.
- > Data Visualization Tools
 - ➤ Overview of Python libraries for data visualization
 - Matplotlib, Pandas, Seaborn, Plotly, Bokeh, Pygal, Folium.
- > Coding: Python environment and installing libraries.

What is Data?

- > Data is information in raw or unorganized form
- > A collection of facts, statistics, or information that can be analyzed, processed, and interpreted to derive meaningful insights.
- > It's the building block of insights and decisions
- > Data comes in various types:
 - Numbers
 - Text
 - Images
 - Speech
 - etc.

> Examples:

- > Yes, Yes, No, Yes, No, Yes, No, Yes
- **>** 42, 63, 96, 74, 56, 86
- None of the above data sets have any meaning until they are given a **CONTEXT** and **PROCESSED** into a useable form
- > Information is data that has been processed, organized, or structured in a way that makes it meaningful, valuable and useful.

Sources of Data

1. Primary sources:

- Surveys and questionnaires
- Experiments and observations

2. Secondary sources:

- Databases: Public or private data collections.
- Government databases (e.g., census data)
- Academic research publications
- Web scraping

3. Modern Data sources:

- **Big Data:** Vast datasets from varied sources.
 - User-generated content (social media, online reviews)
 - Business transactions (e-commerce, financial records)
 - Scientific experiments (large-scale research, simulations)
- Sensors and IoT devices (smart cities etc.)
- Surveillance systems (security cameras)
- Medical Data (electronic health records, medical imaging, etc.)

Importance of Data in the Modern World

Why Data Matters?

> Data-Driven Decision Making:

- Essential in businesses, healthcare, finance, etc.
- ➤ Helps make better decisions.

> Powering AI and Machine Learning:

- > Foundation for training models and making predictions.
- Enables automation in various applications.

> Innovation and Improvement:

- > Facilitates advancements in technology and science
- > Enables performance evaluation

> Enhancing Understanding:

- rovides insights into consumer behavior and market trends.
- > Helps solve complex challenges

Overview of Data Visualization

What is Data Visualization?

- > The graphical representation of information and data using visual elements such as charts, graphs, and maps.
- > Data visualization is not limited to just the graphical representation of data. While visual representations like charts, graphs, and plots are a key part of it, data visualization also involves:
 - ➤ Simplifies complex data: Organizes large datasets for easier understanding.
 - > Communicates insights: Reveals hidden trends, patterns, and correlations.
 - Facilitates decision-making: Aids in interpreting data for informed analysis.

> Purpose:

- ➤ Helps in understanding complex data through visual context.
- > Visualizing data allows people to see relationships, patterns, and trends in the information you're trying to communicate.

> Examples:

- > Charts: Bar charts, pie charts, etc.
- ➤ **Maps**: Geospatial data visualizations.
- > **Dashboards**: Interactive data summaries.

Recent trends:

- > Augmented and virtual reality (AR/VR) visualizations
- > Real-time and streaming data visualizations
- > AI-assisted data visualization tools

Importance of Data Visualization in Data Science

- 1. Trend Analysis: Identify patterns over time.
- 2. Outlier Detection: Easily spot anomalies.
- 3. **Insight Communication:** Simplifies complex data for stakeholders.
- 4. **Decision support:** Enabling quick and informed choices based on visual insights
- **5. Pattern recognition:** Identifying trends and anomalies that may be missed in raw data.

Example of an interactive dashboard:

Storytelling with Data: Communicating Insights Effectively

Definition:

- Data storytelling is the practice of creating a compelling narrative using data to convey insights clearly and effectively.
- It goes beyond mere visualization, aiming to make data meaningful and impactful.

Purpose:

- To make complex information accessible, understandable, and memorable to diverse audiences.
- To bridge the gap between data analysis and decision-making.

Key Elements:

- **Data**: The foundation of the story, providing factual content.
- **Visuals**: Graphical representations that helps illustrate the data.
- **Narrative**: The context and explanation that connects the data and visuals, providing meaning and insights.

The Importance of Data Storytelling

Why Data Storytelling Matters:

- Enhances Understanding: Transforms complex data into a narrative, making it easier to comprehend.
- Engages the Audience: Captivates and holds attention, making data more memorable.
- Bridges Data and Decision-Making: Makes complex information accessible, facilitating informed decisions.
- **Drives Action:** Encourages change by presenting insights in an impactful way.

• Improves Retention: Helps people remember data through compelling stories.

Real-World Example:

Hans Rosling's TED Talk: Link

- Lecture, "The Best Stats You've Ever Seen"
- Used animated bubbles to show global health trends over time.
- Made complex demographic data engaging and understandable.

Principles of Good Data Storytelling

> Clarity: Make the message easy to understand

> **Simplicity:** Avoid unnecessary complexity

➤ **Relevance:** Focus on what matters to the audience

Steps in Data Storytelling:

- 1. Collect Data: Gather relevant data points
- 2. Analyze Data: Identify key insights
- 3. Visualize Insights: Use visual aids to convey the story

Data Storytelling vs. Data Visualization

Data Visualization:

- Graphical representation of data (charts, graphs, maps)
- Aims to present information efficiently and clearly.
- Enables quick grasp of patterns and trends

Data Story Telling:

- Uses narratives, context, and visuals to communicate insights.
- Aims to engage audience emotionally and make data memorable
- Follows a narrative structure (beginning, middle, end)

> Key Difference:

- ➤ Data visualization is a tool used within data storytelling.
- Data storytelling goes beyond to create a compelling narrative

Applications of Data Storytelling

Decision-Making

• Presenting data in a narrative format, enabling decision makers to easily grasp the significance of the data and understand its implications.

Business & Advocacy

- Marketing: Communicates product value
- Sales: Demonstrates service impact
- Advocacy: Illustrates cause importance

Education & Training

- Engages students and participants
- Improves grasp of key insights
- Enhances information retention

Case Studies

1. Facebook Stock Growth

Growth of Facebook stock price over a five-year interval and comparison with other tech stocks.

- (a) The Facebook stock price rose from around \$25/share in mid-2012 to \$150/share in mid-2017, an increase of almost 450%.
- (b) The prices of other large tech companies did not rise comparably over the same time period. Price increases ranged from around 90% to almost 240%. Data source: Yahoo! Finance.

Case Studies

2. Homeless in America

- 1. Visualization: Map of the US with color-based density indicators
- 2. Impact: Quickly shows where homelessness is most acute across the country
- 3. Benefit: Simplifies complex data for easy understanding without technical expertise

Common Types of Data Plots

Creating data plots is an essential step of exploratory data analysis

Bar Chart

- Use Case: Comparing quantities across categories.
- · Example: Sales data across different regions.
- Features:
 - Easy to compare different categories side by side.
 - Useful for categorical data.

Line Plot

- Use Case: Show trends over time.
- Example: Stock price changes over a month.
- Features:
 - · Illustrates continuous data and trends.
 - · Ideal for time series data.

Common Types of Data Plots

Scatter Plot

- Use Case: Show relationships between two variables
- Example: Height vs. weight in a population.

• Features:

- Helps identify correlations, patterns, and outliers.
- · Useful for regression analysis.

Histogram

- Use Case: Display the frequency distribution of a variable.
- Example: Showing the frequency distribution of test scores in a class

• Features:

- Provides insight into the spread and shape of data distribution.
- Helps identify patterns such as skewness or normality.

Common Types of Data Plots

Box Plot (box-and-whisker plot)

- **Use Case:** Display the distribution and outliers of data.
- A box plot is a data plot type that shows a set of five descriptive statistics of the data: the minimum and maximum values (excluding the outliers), the median, and the first and third quartiles. Optionally, it can also show the mean value.
- Interquartile Range (IQR): The distance between the first and third quartiles (Q3 Q1), representing the spread of the middle 50% of the data.
- Outliers: Data points that fall significantly outside the IQR (typically more than 1.5 times the IQR from Q1 or Q3).
- **Example:** Distribution of salaries in a company.

Pie Chart

- **Use Case:** Show proportions within a whole.
- A pie chart is a type of data visualization represented by a circle divided into sectors, where each sector corresponds to a certain category of the categorical data, and the angle of each sector reflects the proportion of that category as a part of the whole
- Example: Market share of companies.

The pie chart shows the distribution of New York market share by **value** of different computer companies in 2005.

Data Visualization Tools

Overview of Python Libraries for Data Visualization

> Python has become a dominant language in data science, offering a rich ecosystem of visualization libraries.

1. Matplotlib

- Matplotlib is the grandfather of python visualization packages.
- Foundation for many other libraries.
- It is extremely powerful but with that power comes complexity.
- Best for creating publication-quality static visualizations.
- Example: Line plots, bar charts.

2. Pandas

- Built-in plotting functions based on Matplotlib.
- Features:
 - Convenient for quick visualizations directly from DataFrames.
 - Ideal for simple, exploratory plots.
- · Use Case: Rapid, straightforward plotting.
- Example: Quick plots from Dataframes.

Overview of Python Libraries for Data Visualization

3. Seaborn

Visualization library based on Matplotlib.

• Features:

- Leverages matplotlib for beautiful, minimal-code charts.
- It's default styles and color palettes are more modern and visually appealing.
- It also has the goal of making more complicated plots simpler to create.
- Specialized in statistical visualizations.
- Example: Heatmaps, pair plots.

4. Plotly

• Overview: Creates interactive, web-based visualizations.

• Features:

- Supports diverse chart types and maps.
- Ideal for dashboards and web applications.
- Handles real-time data and complex interactivity.
- Example: 3D plots, interactive dashboards.

MN Capital Budget - 2014 (Plotly)

Overview of Python Libraries for Data Visualization

5. Bokeh

- Overview: Python library for interactive plots and applications.
- Use Case: Web-based visualizations and large datasets.
- **Features:** Supports streaming and real-time data.
- **Example:** Interactive web-based visualizations.

6. Pygal:

- Overview: Python library for creating SVG charts.
- **Features:** Generates interactive, high-quality vector graphics.
- **Use Case**: Ideal for producing visually appealing and scalable charts.
- **Example:** Interactive and customizable charts for web applications.

Overview of Python Libraries for Data Visualization

7. Folium

- Overview: Python library for interactive maps.
- Backend: Utilizes Leaflet.js (a popular JavaScript library for interactive maps).
- Use Case: Geospatial data visualization.
- **Features**: Specializes in creating interactive, mobile-friendly maps.
- Example: Visualizing geographic data interactively.

Coding: Python Environment Setup

To get started with data visualization in Python, follow these steps:

- **1. Install Python:** Download and install the latest version of Python from python.org.
- 2. Set up a virtual environment (optional but recommended):

```
python -m venv data_viz_env
data_viz_env\Scripts\activate
```

- 3. Set up a coding environment:
 - **Jupyter Notebook:** Ideal for interactive coding.
 - VS Code / PyCharm: Full featured IDEs.
- 4. Install essential libraries:

```
pip install numpy pandas matplotlib seaborn plotly
```

5. Verify installations:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
print("All libraries imported successfully!")
```

```
- D X
 Windows PowerShell
(base) PS D:\Data Visualization> python -m venv data_viz_env
(base) PS D:\Data Visualization> data_viz_env\Scripts\activate
 (data_viz_env) (base) PS D:\Data Visualization> pip install numpy p
andas matplotlib seaborn plotly
Collecting numpy
  Obtaining dependency information for numpy from https://files.pyt
honhosted.org/packages/94/7a/4c00332a3ca79702bbc86228afd0e84e6f91b4
7222ec8cdf00677dd16481/numpy-2.1.1-cp311-cp311-win_amd64.whl.metada
  Downloading numpy-2.1.1-cp311-cp311-win_amd64.whl.metadata (59 kB
                                         ---- 59.7/59.7 kB 198.0 kB
   eta 0:00:00
Collecting pandas
  Obtaining dependency information for pandas from https://files.py
thonhosted.org/packages/ab/63/966db1321a0ad55df1d1fe51505d2cdae191b
84c907974873817b0a6e849/pandas-2.2.2-cp311-cp311-win_amd64.whl.meta
successfully installed contourpy-1.3.0 cycler-0.12.1 fonttools-4.53.1
kiwisolver-1.4.6 matplotlib-3.9.2 numpy-2.1.1 packaging-24.1 pandas-2.
2.2 pillow-10.4.0 plotly-5.24.0 pyparsing-3.1.4 python-dateutil-2.9.0.
ost0 pytz-2024.1 seaborn-0.13.2 six-1.16.0 tenacity-9.0.0 tzdata-2024
 notice] A new release of pip is available: 23.2.1 -> 24.2
 otice To update, run: python.exe -m pip install --upgrade pip
 data_viz_env) (base) PS D:\Data Visualization> python
Python 3.11.5 | packaged by Anaconda, Inc. | (main, Sep 11 2023, 13:26
:23) [MSC v.1916 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import numpy as np
>>> import pandas as pd
>>> import matplotlib.pyplot as plt
>>> import seaborn as sns
>>> import plotly.express as px
>>> print("All libraries imported successfully!")
All libraries imported successfully!
```

Summary and Next Steps

>Key Takeaways:

- ➤ Understanding the types and sources of data.
- Recognizing the importance of data visualization in data science.
- >Understanding how storytelling with data enhances communication and decision-making.
- Familiarity with common types of plots and their applications.
 - ➤ Bar, line, scatter, histogram, box, pie charts.
- ➤ Introduction to essential Python libraries for data visualization.
 - ➤ Matplotlib, Pandas, Seaborn, Plotly, Bokeh, etc.

➤ Next Lecture: Visualizing Numeric and Categorical Data.

Thank You