THIS IS GIT. IT TRACKS COLLABORATIVE WORK ON PROJECTS THROUGH A BEAUTIFUL DISTRIBUTED GRAPH THEORY TREE MODEL. COOL. HOU DO WE USE IT? NO IDEA. JUST MEMORIZE THESE SHELL COMMANDS AND TYPE THEM TO SYNC UP. IF YOU GET ERRORS, SAVE YOUR WORK ELSEWHERE, DELETE THE PROJECT, AND DOUNLOAD A FRESH COPY.

A very short introduction to Git and GitHub

Why?

- Keep a history of changes in a project.
- Revert to previous versions if needed.
- Work collaboratively.

The Basic Git Workflow

- 1. Modify a file in your local working directory.
- 2. Add changes to the staging area (or *index*)
- 3. Commit the changes

The **staging area** is a space where Git temporarily holds changes before they are committed. It acts as a middle step between modifying files and saving them to the repository history. This allows you to carefully choose which changes to commit, instead of committing everything at once.

When you commit, the changes from the staging area are saved as a **commit.** Git records a snapshot of the project at that point in time.

Restore a file from a previous commit

Local

Collaborating on the same project

- A remote repository is a version of your Git project stored on a hosting service like GitHub.
- It allows multiple people to collaborate on the same project by pushing and pulling changes.

Branches

- Isolate work → Keep feature
 development separate from the stable
 code = Try new ideas without
 breaking the project.
- Parallel and collaborative
 development → Multiple people can
 work on different branches at the
 same time then share and merge
 changes.

files to commit

staging area

your computer