《高等数学》《工科数学分析基础》和《微积分》A 卷参考答案 (B 卷与 A 卷题目相同,顺序不同)

-. 1.
$$\frac{1}{2(1+t)^2}$$
, $3 + \frac{\ln 2}{8}$ 2. $\frac{1}{3}$, 3 3. $\frac{-e^y}{xe^y+1}dx$, $2e^2$ 4. $\frac{3}{2}$, $\frac{1}{4}$ 5. $2\ln 2$, $\frac{2019!}{2^{2017}2017}$

 \bot BDCBC

三、解:
$$\lim_{x\to 0} \left[\frac{(1+x)^{\frac{1}{x}}}{e} \right]^{\frac{1}{2x}} = \lim_{x\to 0} e^{\frac{\ln(1+x)^{\frac{1}{x}}-1}{2x}} = e^{\lim_{x\to 0} \frac{1}{x} \ln(1+x)-1}$$

$$= e^{\lim_{x\to 0} \frac{\ln(1+x)-x}{2x^2}} = e^{\lim_{x\to 0} \frac{x-\frac{1}{2}x^2+o(x^2)-x}{2x^2}} = e^{-\frac{1}{4}}.$$
(B 卷为 $\lim_{x\to 0} \left[\frac{(1+x)^{\frac{1}{x}}}{e} \right]^{\frac{1}{3x}}, e^{-\frac{1}{6}}$)

五、证明: 由题知, g(1) = g(2) = 0,从而g(x)在[1,2] 上满足罗尔中值定理的条件,必存在 $c \in (1,2)$ s.t. g'(c) = 0.4 分

又
$$g'(x) = 2(x-1)f(x) + (x-1)^2 f'(x)$$
, 显然 $g'(1) = 0$6分

故g'(x) 在[1,c]上满足罗尔中值定理的条件,

必存在
$$\xi \in (1,c) \subset (1,2)$$
 使 $g''(\xi) = 0$10 分

六、解: 构造 f(x) = aln(a+x) - (a+x)lna,显然f(0) = 0.3 分 $f'(x) = \frac{a}{a+x} - lna.$

因
$$x>0$$
, $a>e$, 故 $f'(x)<1-ln\ e=0$6分

所以f(x)在 $(e,+\infty)$ 上单调减,f(x) < f(0),

即
$$aln(a+x) < (a+x)lna$$

也即
$$(a+x)^a < a^{a+x}$$
.10 分

七、1. 证明: 构造 $F(x) = f_n(x) - 1$, 显然g(x) 在[$\frac{1}{2}$,1]连续,

$$F\left(\frac{1}{2}\right) = f_n\left(\frac{1}{2}\right) - 1 = \frac{\frac{1}{2} - \frac{1}{2^{n+1}}}{1 - \frac{1}{2}} - 1 = -\frac{1}{2^n} < 0, \qquad \dots 2 \ \%$$

$$F(1) = f_n(1) - 1 = n - 1 > 0.$$

由零点定理知, $\exists x_n \in (\frac{1}{2}, 1)$ 使得 $F(x_n) = 0$,

又因为
$$f_n'(x) = 1 + 2x + \dots + nx^{n-1} > 0$$
, 5分

故 $f_n(x)$ 严格单调增, $f_n(x) = 1$ 在 $(\frac{1}{2},1)$ 的根 x_n 是唯一的.

2. 由于
$$f_n(x) < f_{n+1}(x)$$
, 故 $f_{n+1}(x_{n+1}) = 1 = f_n(x_n) < f_{n+1}(x_n)$.

而 $f_{n+1}(x)$ 严格单调增的,从而 $x_{n+1} < x_n$,即 $\{x_n\}$ 单调减,

而 $x_n > \frac{1}{2}$, $\{x_n\}$ 有下界. 由单调有界原理知 $\lim_{n\to\infty} x_n$ 存在, 设为a. ...8 分

由于
$$f_n(x_n) = x_n^n + x_n^{n-1} + \dots + x_n = \frac{x_n - x_n^{n+1}}{1 - x_n} = 1$$
,

两端同时令 $n \to \infty$ 取极限, $x_n < 1$, $\lim_{n \to \infty} x_n^{n+1} = 0$,

于是 $\frac{a}{1-a} = 1$, 即 $a = \frac{1}{2}$.

.....10分