Study Guide for PHYS135B Module 2, Spring 2022

Dr. Jordan Hanson - Whittier College Dept. of Physics and Astronomy March 22, 2022

Instructions: Work each problem *before* checking your answer with the key (to follow on Moodle).

1 Memory Bank

- 1. $V = (4/3)\pi r^3$... The volume of a sphere.
- 2. $m = \rho V$... The relationship between mass m, density ρ , and volume V.
- 3. $\vec{F} = k \frac{q_1 q_2}{r^2} \hat{r}$... Coulomb Force
- 4. $k = 9 \times 10^9 \text{ N C}^{-2} \text{ m}^2 \dots \text{ Remember } k = 1/(4\pi\epsilon_0).$
- 5. $q_e = 1.6 \times 10^{-19} \; \mathrm{C} \ldots \; \mathrm{Charge} \; \mathrm{of} \; \mathrm{an} \; \mathrm{electron/proton}$
- 6. Atomic mass: the number of grams per mole of a substance
- 7. $N_A = 6.03 \times 10^{23}$... Avagadro's number
- 8. $\vec{F} = q\vec{E}$... Electric field and charge
- 9. $\vec{E}(z) = \frac{\sigma}{\epsilon_0} \hat{z}$... Electric field of two oppositely charge planes each with charge density σ
- 10. $\epsilon_0 \approx 8.85 \times 10^{-12} \text{ F/m}$
- 11. $U = q\Delta V$... Potential energy and voltage
- 12. 1 eV: an electron-Volt is the amount of energy one electron gains through 1 V.
- 13. $V(r) = k \frac{q}{r}$... Voltage of a point charge
- 14. $\vec{E} = -\frac{\Delta V}{\Delta x}$... E-field is the slope or change in voltage with respect to distance
- 15. $V(x) = -Ex + V_0$... Voltage is linear between two charge planes
- 16. $Q = C\Delta V$... Definition of capacitance
- 17. $C = \frac{\epsilon_0 A}{d}$... Capacitance of a parallel plate capacitor
- 18. $C_{tot}^{-1} = C_1^{-1} + C_2^{-1}$... Adding two capacitors in series.
- 19. $C_{tot} = C_1 + C_2$... Adding two capacitors in parallel.
- 20. $i(t) = \Delta Q/\Delta t$... Definition of current.
- 21. $v_d = i/(nqA)$... Charge drift velocity in a current i in a conductor with number density n and area A.
- 22. $R_{tot}^{-1} = R_1^{-1} + R_2^{-1}$... Adding two resistors in parallel.
- 23. $R_{tot} = R_1 + R_2$... Adding two resistors in series.
- 24. $\Delta V = IR_{\rm tot}$... Ohm's Law
- 25. P = IV ... Relationship between power, current, and voltage.
- 26. $V_{\rm C}(t) = \epsilon_1 \left(1 \exp(-t/\tau)\right)$... voltage across the capacitor in an RC series circuit. The time constant is $\tau = RC$.
- 27. $i(t) = \frac{\epsilon_1}{R} \exp(-t/\tau)$... Current in an RC series circuit.
- 28. $i_{\rm in} = i_{\rm out}$... Kirchhoff's junction rule.
- 29. $\epsilon_1 + \epsilon_2 + \epsilon_3 + \dots = 0$... Kirchhoff's loop rule.

Figure 1: The classic Millikan oil drop experiment was a measurement of the charge of an electron.

2 Electric Charge and Electric Fields

- 1. (a) Two charges exert $F_{\rm C} = 5.00$ N of force on each other. What will $F_{\rm C}$ be if the distance between them triples?
 - (b) If one charge is 1 nC, and the other is 2 nC, what is the distance between them if $F_{\rm C} = 5.00$ N?
- 2. The classic Millikan oil drop experiment was the first to measure accurately the electron charge. Oil drops were suspended against the gravitational force by a vertical electric field. (See Fig. 1.) The drops have radius $1.0\mu m$, and a density of 920 kg/m³. (a) Find the weight of the drop. (b) If the drop has a single excess electron, find the electric field strength needed to balance its weight.
- 3. Suppose two positive, identical charges are located a distance d apart. (a) Sketch the electric field below. (b) Sketch the electric field if instead one of the charges is negative.

3 Potential Energy and Voltage

- 1. What is the electric field across an 10.00 nm thick human nerve cell membrane if (a) the voltage across it is 50 mV? You may assume a uniform electric field. (b) Suppose this cell membrane is part of a nerve cell. How much energy would an electron gain if dropped through the 50 mV voltage and accelerated across the cell freely? Express your anser in electron-Volts (eV).
- 2. Think back to the PhET simulations of parallel lines of charge. Suppose a parallel plate capacitor is formed from a positive plate and a negative plate of charge. The plates' areas A are the same, and the plates' charges $(\pm Q)$, and charge densities $(\pm Q/A = \pm \sigma)$ are the same as well. (a) Write the expression for the electric field between the plates. (b) Suppose Q = 1 nC, and A = 10 mm². What is the value of the electric field between the plates? (c) Suppose 0 volts corresponds to the location of the negative plate. Draw the voltage as a function of distance between the plates. (d) What is the voltage near the positive plate, if the plates are are separated by a distance d = 1 mm?

4 Capacitors

- 1. What is the capacitance of the capacitor in the previous problem?
- 2. (a) Consider the same capacitor again, and suppose a second identical capacitor is connected *in parallel* with it. What is the total capacitance? (b) How much charge would the pair of capacitors store if the voltage across them was 5 volts?
- 3. How much energy in Joules would this charge have if it was all put to work?

5 Current, Resistance, and DC Circuits

1. Three identical resistors R are connected in parallel, and powered by an adjustable voltage source. The voltage and total current measurements are shown below. Determine the value of R.

Figure 2: A graph of voltage versus current.

2. (a) Using the PHeT tool for DC circuit construction, design a circuit in which a battery with fixed voltage lights a bulb, but the bulb brightness can be dimmed or brightened. Hint: use other components in series with the bulb. Draw your design below. (b) Now make a parallel circuit in which two bulbs can be brightened or dimmed independently, and use switches to turn them on or off independently. Draw your design below.

Figure 3: A DC circuit with three resistors.

3. Figure 3 shows a combination of series and parallel resistors and a battery. (a) Find the total resistance. (b) What is the IR voltage decrease in R_1 ? (c) Find the current I_2 through R_2 . (d) What power is dissipated by R_2 ?