BACK TO SCHOOL: MOLECULAR BIOLOGY

Evolution and the Natural World

Lecture 2

21/09/2021

Vasili Pankratov

QUICK RECAP

What are genes?

Can one see chromosomes and DNA?

Can one see chromosomes and DNA?

Light microscopy

Electoron microscopy

https://docwithpen.org/2015/07/28/science-marvels-1/

Electoron microscopy

Wikimedia: DNA Under electron microscope Image 3576B-PH.jpg

Can one see nucleotides and genes?

Can one see nucleotides and genes?

 To know the nucleotide sequence of a DNA we run some chemical reaction to discriminate between nucleotides – this is DNA sequencing Genes are inforamtion units:

fhfdhsgenesdshareyknlik ervbkcwordsqadsfintersp ersedpermwithiuertrando merfgsequencesfhgpoofl etterskiyvwwithxcnvpnof spacesgherthndsfhsdqr

Can one see nucleotides and genes?

 To know the nucleotide sequence of a DNA we run some chemical reaction to discriminate between nucleotides – this is DNA sequencing Genes are inforamtion units:

fhfdhsgenesdshareyknlik ervbkcwordsqadsfintersp ersedpermwithiuertrando merfgsequencesfhgpoofl etterskiyvwwithxcnvpnof spacesgherthndsfhsdqr

25% AaBb25% aabb25% Aabb25% aaBb

50% AaBb 50% aabb

aBb x% AaBb abb x% aabb y% Aabb y% aaBb

No linkage

Complete linkage

Incomplete linkage

Recombination (crossing over)

MOLECULAR BIOLOGY (MB)

Molecular mechanisms of inheritance

The central dogma of MB

- Replication DNA copying, ensures that daughter cells (including gametes) get the same DNA
- Transcription + translation gene expression. These are the two steps needed to synthesize a protein ecoded by a gene.

DNA replication – the basis of inheritance

https://www.news-medical.net/life-sciences/ Mechanism-of-DNA-Synthesis.aspx

- Happens via a semiconservative mechanism
- The main enzyme is DNApolymerase
- Is very precises but not perfect – mutations may happen

Genes code for proteins

- Proteins are polymers of amino acids
- Proteins do most of the work in the body, most importantly, enzymes are proteins

Why can proteins do different stuff?

 Each protein has a specific 3D structure, defined by its' AA sequence, which determines protein's properties

Protein 3D structure

- Proteins' 3D structure is the key to their functions
- The 3D structure depend on the amino acid sequence
- But it also depends on conditions like pH and temperature and it may change as a result of chemical modifications

Enzymes

- Every type of compound (sugars, lipids, nucleotides etc.) are synthesized with the help of enzymes (each reaction needs its enzyme)
- The chemical composition of a cell depends on the enzymes it contains

Protein synthesis (Translation)

- Ribosome the place and the enzyme
- Messenger RNA the source of info about the amino acid sequence
- Codon information unit
- Transport RNA adapter between mRNA and each amino acid

mRNA to protein decoding

Key:

```
Ala = Alanine (A)
Arg = Arginine (R)
Asn = Asparagine (N)
Asp = Aspartate (D)
Cvs = Cysteine (C)
GIn = Glutamine (Q)
Glu = Glutamate (E)
Gly = Glycine (G)
   = Histidine (H)
     Isoleucine (1)
    = Leucine (L)
Lvs = Lysine (K)
Met = Methionine (M)
Phe = Phenylalanine (F)
Pro = Proline (P)
Ser = Serine (S)
Thr = Threonine (T)
Trp = Tryptophan (W)
Tyr = Tyrosine (Y)
```

Val = Valine (V)

- Genetic code is a "dictionary" to translate RNA nucleotide sequence into protein amino acid sequence
- It is redundand and (almost) universal

MRNA vaccines

RNA synthesis (Transcription)

- RNA polymerase the enzyme
- Complementarity the rule for going from DNA to RNA
- DNA template strand the source of info about the nucleotide sequence

https://www.khanacademy.org/science/biology/gene-expression-central-dogma/transcription-of-dna-into-rna/a/stages-of-transcription

Controlling gene expression

Gene expression differs between cell types, stages of the cell cycle, organismal life stage and depending on various conditions

Controlling transcription

- Promoter is a DNA sequence where RNA polymerase binds – it «marks» the start of the gene
- Promoters control transcription initiation

Controlling transcription

- Regulatory proteins
 (RPs) that bind to
 promoters can either
 activate or repress
 transcription of a given
 gene
- Transcription is mostly regulated by synthesizing / destroying / modifying RPs

Summary: the central dogma

- Genes are chromosomal regions that code for proteins ("one gene – one protein")
- Some DNA sequences provide instructions on when, where and how much of a protein to produce – regulatory sequences (like promoters)

Genes to phenotype: simple case

Purple pigment

No purple pigment

Genes to phenotype: simple case

Purple pigment

No purple pigment Colorless compound Inactive enzyme

Genes to phenotype: simple case

Purple pigment

No purple pigment Colorless compound

Inactive enzyme **◄····** Nonfunctional allele (a)

Mutation in the protein-coding part: incorrect AA sequence Mutation in the promoter – no transcription happening

Genotype to phenotype

https://embryology.med.unsw.edu.au/embryology/index.php/ Embryonic_Development

- Development is the link between genotype and phenotype
- RPs control the time, place and levels of other proteins' expression
- This controls the cellular and organismal processes incl. development

Summary

- Proteins do most of the work in the cell/organism including being enzymes
- The function of a protein depends on its amino acid sequence
- This sequence is defined by the nucleotide sequence of a gene and is decoded during transcription and translation
- The genetic code is a rule how to convert nucleotide sequence into amino acid sequence

Summary

 Interaction between regulatory sequences and regulatory proteins controls most of the processes in the cells and organisms by controlling the concentration of other proteins through time and space