HOMEWORK PROBLEMS 08, ANLY 561, FALL 2017 DUE 11/10/17 BY MIDNIGHT

Readings: §5.9, 6.1, 6.2, 6.3 of Goodfellow, Bengio, and Courville. For more on the primal-dual method, read §11.7 of Boyd and Vandenberghe.

Exercises:

1. For any fixed nonzero $\mathbf{v} \in \mathbb{R}^n$ and any fixed $b \in \mathbb{R}$, the set of points $\mathbf{x} \in \mathbb{R}^n$ satisfying

$$\mathbf{v}^T\mathbf{x} - b = 0$$

is called an **affine hyperplane** of dimension n-1 in \mathbb{R}^n . Let $\mathbf{y} \in \mathbb{R}^n$ and find the solution \mathbf{x}^* (in terms of \mathbf{v} , b, and \mathbf{y}) to the program

$$\min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{y} - \mathbf{x}\|_2^2 \text{ subject to } \mathbf{v}^T \mathbf{x} - b = 0.$$

This \mathbf{x}^* is called the **projection** of \mathbf{y} onto the affine hyperplane determined by \mathbf{v} and b.

- 2. Use the code from Lecture 03 Part IX (Support Vector Machines and Duality) to generate a dataset $\{\mathbf{x}^{(i)}\}_{i=0}^{19} \subset \mathbb{R}^2$ with labels $\{y^{(i)}\}_{i=0}^{19} \in \{-1,1\}$ such that $\mathbf{x}^{(i)}$ is drawn uniformly from the unit disc centered at (-2,-2) and $y^{(i)}=-1$ for $i=0,\ldots,9$, and $x^{(i)}$ is drawn uniformly from the unit disc centered at (2,2) and $y^{(i)}=+1$ for $i=10,\ldots,19$.
 - (a) Code up a Phase I method to find an interior point for the (3D) program

$$\min_{\mathbf{v} \in \mathbb{R}^2, b \in \mathbb{R}} \frac{1}{2} \|\mathbf{v}\|^2 \text{ subject to } h_i(\mathbf{v}, b) \le 0$$

where $h_i(\mathbf{v}, b) = 1 - y^{(i)}(\mathbf{v}^T x^{(i)} - b)$. That is, use the log barrier method to solve the 4D program

$$\min_{\mathbf{v}\in\mathbb{R}^2,b\in\mathbb{R},z\in\mathbb{R}}\widetilde{f}(\mathbf{v},b,z) \text{ subject to } \widetilde{h}_i(\mathbf{v},b,z)\leq 0$$

where $\widetilde{f}(\mathbf{v},b,z)=z$ and $\widetilde{h}_i(\mathbf{v},b,z)=1-y^{(i)}(\mathbf{v}^Tx^{(i)}-b)-z$, but stop as soon as you find an iterate $(\mathbf{v}^{(k)},b^{(k)},z^{(k)})$ such that $z^{(k)}<0$ (which then implies that $(\mathbf{v}^{(k)},b^{(k)})$ is an interior point). Initialize the Phase I method with the data $\mathbf{v}^{(0)}=(-20,20),\ b^{(0)}=10$, and determine $z^{(0)}$ (in your code) such that $(\mathbf{v}^{(0)},b^{(0)},z^{(0)})$ is an interior point of the 4D convex program.

- (b) Use the $(\mathbf{v}^{(k)}, b^{(k)})$ from part (a) to initialize Phase II for your generated data. That is, use this interior point to initialize the log barrier method for the 3D program. Use 3 centering steps, M = 10, and 5 iterations in the outer loop with 2 inner loop iterations each. For each backtracking step, use Newton search directions, $\alpha = 0.1$, and $\beta = 0.5$.
- (c) Use the $(\mathbf{v}^{(k)}, b^{(k)})$ from part (a) to initialize the primal-dual algorithm. Take 10 steps with $\nu = 10$.
- (d) Compare the answers you get from parts (b) and (c), and provide a simultaneous plot of your data, the separating line corresponding to the interior point $(\mathbf{v}^{(k)}, b^{(k)})$ from part (a), and the two separating lines from parts (b) and (c).