Claims

1. A composition comprising a synergistically effective active compound combination of anthranilamides of the formula (I)

in which

A¹ and A² independently of one another represent oxygen or sulfur,

X¹ represents N or CR¹⁰,

R¹ represents hydrogen or represents C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl or C₃-C₆-cycloalkyl, each of which is optionally mono- or polysubstituted, where the substituents independently of one another may be selected from the group consisting of R⁶, halogen, cyano, nitro, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₂-C₄-alkoxycarbonyl, C₁-C₄-alkylamino, C₂-C₈-dialkylamino, C₃-C₆-cycloalkylamino, (C₁-C₄-alkyl)-C₃-C₆-cycloalkylamino and R¹¹, represents hydrogen, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₃-C₆-cycloalkyl, C₁-C₆-alkyl, C₁-C₆-alkyl, C₁-C₆-alkyl, C₁-C₆-alkyl, C₁-C₆-alkynyl, C₂-C₆-cycloalkyl, C₁-C₆-alkyl, C₁-C₆-alk

represents hydrogen, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₃-C₆-cycloalkyl, C₁-C₄-alkoxy, C₁-C₄-alkylamino, C₂-C₈-dialkylamino, C₃-C₆-cycloalkylamino, C₂-C₆-alkoxycarbonyl or C₂-C₆-alkylcarbonyl,

represents hydrogen, R¹¹ or represents C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₃-C₆-cycloalkyl, each of which is optionally mono- or polysubstituted, where the substituents independently of one another may be selected from the group consisting of R⁶, halogen, cyano, nitro, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₂-C₆-alkoxycarbonyl, C₂-C₆-alkylcarbonyl, C₃-C₆-trialkylsilyl, R¹¹, phenyl, phenoxy and a 5- or 6-membered heteroaromatic ring, where each phenyl, phenoxy and 5- or 6-membered heteroaromatic ring may optionally be substituted and where the substituents independently of one another may be selected from one to three radicals W or one or more radicals R¹², or

 R^2 and R^3 may be attached to one another and form the ring M,

5

10

15

20

 \mathbb{R}^3

represents hydrogen, C1-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C3-C6-cycloalkyl, C1- R^4 C6-haloalkyl, C2-C6-haloalkenyl, C2-C6-haloalkynyl, C3-C6-halocycloalkyl, halogen, cyano, nitro, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄alkylsulfinyl, C_1 - C_4 -alkylsulfonyl, C_1 - C_4 -haloalkylthio, C_1 - C_4 -haloalkylsulfinyl, C_1 -C₄-haloalkylsulfonyl, C₁-C₄-alkylamino, C₂-C₈-dialkylamino, C₃-C₆-cycloalkylamino, C₃-C₆-trialkylsilyl or represents phenyl, benzyl or phenoxy, each of which is optionally mono- or polysubstituted, where the substituents independently of one another may be selected from the group consisting of C1-C4-alkyl, C2-C4-alkenyl, C2-C₄-alkynyl, C₃-C₆-cycloalkyl, C₁-C₄-haloalkyl, C₂-C₄-haloalkenyl, C₂-C₄-haloalkynyl, C₃-C₆-halocycloalkyl, halogen, cyano, nitro, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄alkylthio, C_1 - C_4 -alkylsulfinyl, C_1 - C_4 -alkylsulfonyl, C_1 - C_4 -alkylamino, C_2 - C_8 -C₃-C₆-(alkyl)cycloalkylamino, C2-C4-C₃-C₆-cycloalkylamino, dialkylamino, C2-C6-alkylaminocarbonyl, C3-C8-C2-C6-alkoxycarbonyl, alkylcarbonyl, dialkylaminocarbonyl and C3-C6-trialkylsilyl,

R⁵ and R⁸ in each case independently of one another represent hydrogen, halogen or represent in each case optionally substituted C₁-C₄-alkyl, C₁-C₄-haloalkyl, R¹², G, J, -OJ, -OG, -S(O)_p-J, -S(O)_p-G, -S(O)_p-phenyl, where the substituents independently of one another may be selected from one to three radicals W or from the group consisting of R¹², C₁-C₁₀-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₁-C₄-alkoxy and C₁-C₄-alkylthio, where each substituent may be substituted by one or more substituents independently of one another selected from the group consisting of G, J, R⁶, halogen, cyano, nitro, amino, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulfinyl, C₁-C₄-alkylamino, C₂-C₈-dialkylamino, C₃-C₆-trialkylsilyl, phenyl and phenoxy, where each phenyl or phenoxy ring may optionally be substituted and where the substituents independently of one another may be selected from one to three radicals W or one or more radicals R¹²,

in each case independently of one another represents a 5- or 6-membered non-aromatic carbocyclic or heterocyclic ring which may optionally contain one or two ring members from the group consisting of C(=O), SO and S(=O)₂ and which may optionally be substituted by one to four substituents independently of one another selected from the group consisting of C₁-C₂-alkyl, halogen, cyano, nitro and C₁-C₂-alkoxy, or independently of one another represents C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₃-C₇-cycloalkyl, (cyano)-C₃-C₇-cycloalkyl, (C₁-C₄-alkyl)-C₃-C₆-cycloalkyl, (C₃-C₆-cycloalkyl) and (cycloalkyl)-alkyl may optionally be substituted by one or more halogen atoms,

15

5

10

20

25

30

G

	J	in each case independently of one another represents an optionally substituted 5- or
		6-membered heteroaromatic ring, where the substituents independently of one
		another may be selected from one to three radicals W or one or more radicals R ¹² ,
	R^6	independently of one another represents -C(=E ¹)R ¹⁹ , -LC(=E ¹)R ¹⁹ , -C(=E ¹)LR ¹⁹ ,
5		$-LC(=E^{1})LR^{19}$, $-OP(=Q)(OR^{19})_{2}$, $-SO_{2}LR^{18}$ or $-LSO_{2}LR^{19}$, where each E^{1}
•		independently of one another represents O, S, N-R ¹⁵ , N-OR ¹⁵ , N-N(R ¹⁵) ₂ , N-S=O, N-
		CN or N-NO ₂ ,
-	R^7	represents hydrogen, C ₁ -C ₄ -alkyl, C ₁ -C ₄ -haloalkyl, halogen, C ₁ -C ₄ -alkoxy, C ₁ -C ₄ -
		haloalkoxy, C ₁ -C ₄ -alkylthio, C ₁ -C ₄ -alkylsulfinyl, C ₁ -C ₄ -alkylsulfonyl, C ₁ -C ₄ -halo-
10		alkylthio, C ₁ -C ₄ -haloalkylsulfinyl, C ₁ -C ₄ -haloalkylsulfonyl,
	R ⁹	represents C ₁ -C ₄ -haloalkyl, C ₁ -C ₄ -haloalkoxy, C ₁ -C ₄ -haloalkylsulfinyl or halogen,
	R ¹⁰	represents hydrogen, C ₁ -C ₄ -alkyl, C ₁ -C ₄ -haloalkyl, halogen, cyano or C ₁ -C ₄ -
	,,	haloalkoxy,
	R11	in each case independently of one another represents in each case optionally mono-
15		to trisubstituted C ₁ -C ₆ -alkylthio, C ₁ -C ₆ -alkylsulfenyl, C ₁ -C ₆ -haloalkylthio, C ₁ -C ₆ -
		naloalkyisultenyi, phenyiuno of phenyisunonyi,
		independently of one another may be selected from the list W, $-S(O)_nN(R^{16})_2$,
		$-C(=O)R^{13}$, $-L(C=O)R^{14}$, $-S(C=O)LR^{14}$, $-C(=O)LR^{13}$, $-S(O)_nNR^{13}C(=O)R^{13}$,
-		$-S(O)_nNR^{13}C(=O)LR^{14} \text{ or } -S(O)_nNR^{13}S(O)_2LR^{14},$
20	L	in each case independently of one another represents O, NR ¹⁸ or S,
	R ¹²	in each case independently of one another represents -B(OR ¹⁷) ₂ , amino, SH,
		thiocyanato, C ₃ -C ₈ -trialkylsilyloxy, C ₁ -C ₄ -alkyl disulfides, -SF ₅ , -C(=E ¹)R ¹⁹ ,
		$-LC(=E^1)R^{19}$, $-C(=E^1)LR^{19}$, $-LC(=E^1)LR^{19}$, $-OP(=Q)(OR^{19})_2$, $-SO_2LR^{19}$ or $-LSO_2LR^{19}$,
	Q	represents O or S,
25	R^{13}	in each case independently of one another represents hydrogen or represents in each
		case optionally mono- or polysubstituted C ₁ -C ₆ -alkyl, C ₂ -C ₆ -alkenyl, C ₂ -C ₆ -alkynyl
		or C ₃ -C ₆ -cycloalkyl, where the substituents independently of one another may be
		selected from the group consisting of R ⁶ , halogen, cyano, nitro, hydroxyl, C ₁ -C ₄ -
	-	alkoxy, C ₁ -C ₄ -alkylsulfinyl, C ₁ -C ₄ -alkylsulfonyl, C ₁ -C ₄ -alkylamino, C ₂ -C ₈ -
30		dialkylamino, C ₃ -C ₆ -cycloalkylamino or (C ₁ -C ₄ -alkyl)-C ₃ -C ₆ -cycloalkylamino,
	R ¹⁴	in each case independently of one another represents in each case optionally mono-
		or polysubstituted C ₁ -C ₂₀ -alkyl, C ₂ -C ₂₀ -alkenyl, C ₂ -C ₂₀ -alkynyl or C ₃ -C ₆ -cycloalkyl,
		where the substituents independently of one another may be selected from the group
		consisting of R ⁶ , halogen, cyano, nitro, hydroxyl, C ₁ -C ₄ -alkoxy, C ₁ -C ₄ -alkylsulfinyl,
35		C_1 - C_4 -alkylsulfonyl, C_1 - C_4 -alkylamino, C_2 - C_8 -dialkylamino, C_3 - C_6 -cycloalkylamino
		and (C ₁ -C ₄ -alkyl)-C ₃ -C ₆ -cycloalkylamino or represent optionally substituted phenyl,

35

where the substituents independently of one another may be selected from one to three radicals W or one or more radicals R¹², in each case independently of one another represents hydrogen or represents in each R^{15} case optionally mono- or polysubstituted C1-C6-haloalkyl or C1-C6-alkyl, where the substituents independently of one another may be selected from the group consisting 5 of cyano, nitro, hydroxyl, C1-C4-alkoxy, C1-C4-haloalkoxy, C1-C4-alkylthio, C1-C4alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulfinyl, C2-C6-C₁-C₄-alkylamino, C2-C8-dialkylamino, C₁-C₄-haloalkylsulfonyl, alkoxycarbonyl, C2-C6-alkylcarbonyl, C3-C6-trialkylsilyl and optionally substituted phenyl, where the substituents independently of one another may be selected from 10 one to three radicals W or one or more radicals R12, or N(R15)2 represents a cycle which forms the ring M, represents C₁-C₁₂-alkyl or C₁-C₁₂-haloalkyl, or N(R¹⁶)₂ represents a cycle which R^{16} forms the ring M, in each case independently of one another represents hydrogen or C1-C4-alkyl, or R^{17} 15 B(OR¹⁷)₂ represents a ring in which the two oxygen atoms are attached via a chain having two to three carbon atoms which are optionally substituted by one or two substituents independently of one another selected from the group consisting of methyl and C2-C6-alkoxycarbonyl, in each case independently of one another represents hydrogen, C₁-C₆-alkyl or C₁-C₆- R^{18} 20 haloalkyl, or N(R¹³)(R¹⁸) represents a cycle which forms the ring M, in each case independently of one another represents hydrogen or represents in each R^{19} case mono- or polysubstituted C1-C6-alkyl, where the substituents independently of one another may be selected from the group consisting of cyano, nitro, hydroxyl, C_1 - C_4 -alkoxy, C_1 - C_4 -haloalkoxy, C_1 - C_4 -alkylthio, C_1 - C_4 -alkylsulfinyl, C_1 - C_4 -alkylsulfinyl, 25 alkylsulfonyl, C1-C4-haloalkylthio, C1-C4-haloalkylsulfinyl, C1-C4-haloalkylsulfonyl, C₁-C₄-alkylamino, C₂-C₈-dialkylamino, CO₂H, C₂-C₆-alkoxycarbonyl, C₂-C₆alkylcarbonyl, C3-C6-trialkylsilyl and optionally substituted phenyl, where the substituents independently of one another may be selected from one to three radicals W, C1-C6-haloalkyl, C3-C6-cycloalkyl or phenyl or pyridyl, each of which is 30 optionally mono- to trisubstituted by W, in each case represents an optionally mono- to tetrasubstituted ring which, in addition M to the nitrogen atom attached to the substituent pair R¹³ and R¹⁸, (R¹⁵)₂ or (R¹⁶)₂, contains two to six carbon atoms and optionally additionally a further nitrogen,

sulfur or oxygen atom, where the substituents independently of one another may be

5

10

15

20

25

30

selected from the group consisting of C_1 - C_2 -alkyl, halogen, cyano, nitro and C_1 - C_2 -alkoxy,

in each case independently of one another represents C₁-C₄-alkyl, C₂-C₄-alkenyl, C₂-C₄-alkynyl, C₃-C₆-cycloalkyl, C₁-C₄-haloalkyl, C₂-C₄-haloalkenyl, C₂-C₄-haloalkynyl, C₃-C₆-halocycloalkyl, halogen, cyano, nitro, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁-C₄-alkylamino, C₂-C₈-dialkylamino, C₃-C₆-cycloalkylamino, (C₁-C₄-alkyl)-C₃-C₆-cycloalkylamino, C₂-C₄-alkylcarbonyl, C₂-C₆-alkoxycarbonyl, CO₂H, C₂-C₆-alkylaminocarbonyl, C₃-C₈-dialkylaminocarbonyl or C₃-C₆-trialkylsilyl,

n in each case independently of one another represents 0 or 1,

p in each case independently of one another represents 0, 1 or 2,

where, if (a) R⁵ represents hydrogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₂-C₆-haloalkenyl, C₂-C₆-haloalkynyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio or halogen and (b) R⁸ represents hydrogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₂-C₆-haloalkenyl, C₂-C₆-haloalkynyl, C₁-C₄-haloalkylthio, halogen, C₂-C₄-alkylcarbonyl, C₂-C₆-alkoxycarbonyl, C₂-C₆-alkylaminocarbonyl or C₃-C₈ dialkylaminocarbonyl, (c) at least one substituent selected from the group consisting of R⁶, R¹¹ and R¹² if present and (d) if R¹² is not present, at least one of the radicals R⁶ and R¹¹ is different from C₂-C₆-alkylcarbonyl, C₂-C₆-alkoxycarbonyl, C₂-C₆-alkylaminocarbonyl and C₃-C₈-dialkylaminocarbonyl, and where the compound of the general formula (I) may also be an N-oxide or salt,

and at least one insecticidally active compound from groups 2 below, selected from

A) benzoylureas, preferably

(2-1) chlorfluazuron (known from DE-A 28 18 830)

and/or

(2-2) diflubenzuron (known from DE-A 21 23 236)

and/or

(2-3) lufenuron (known from EP-A 0 179 022)

and/or

(2-4) teflubenzuron (known from EP-A 0 052 833)

and/or

5

10

15

(2-5) triflumuron (known from DE-A 26 01 780)

and/or

(2-6) novaluron (known from US 4,980,376)

and/or

(2-7) hexaflumuron (known from EP-A 0 071 279)

and/or

(2-8) bistrifluoron (DBI-3204) (known from WO 98/00394)

and/or

(2-22) flufenoxuron (known from EP-A 0 161 019)

$$F$$
 N
 N
 N
 CI
 CF_3

and/or

B) macrolides, preferably

(2-9) emamectin (known from EP-A 0 089 202)

and/or

5

15

C) diacylhydrazines, preferably

(2-10) methoxyfenozide (known from EP-A 0 639 559)

10 and/or

(2-11) tebufenozide (known from EP-A-339 854)

and/or

(2-12) halofenozide (known from EP-A 0 228 564)

and/or

(2-13) chromafenozide (ANS-118) (known from EP-A 0 496 342)

and/or

(2-14) Trichogramma spp. (known from The Pesticide Manual, 11th Edition, 1997, p. 1236) and/or

(2-15) Verticillium lecanii (known from The Pesticide Manual, 11th Edition, 1997, p. 1266) and/or

(2-16) fipronil (known from EP-A 0 295 117)

$$F_3C$$
 CI
 N
 CN
 CF_3
 CI
 NH_2
 II
 O

and/or

(2-17) ethiprole (known from DE-A 196 53 417)

$$\mathsf{F_3C} \longrightarrow \begin{matrix} \mathsf{CI} & \mathsf{N} & \mathsf{CN} \\ \mathsf{N} & \mathsf{S} & \mathsf{C_2H_5} \\ \mathsf{CI} & \mathsf{NH_2} & \mathsf{O} \end{matrix}$$

10 and/or

5

(2-18) cyromazine (known from DE-A 27 36 876)

$$H_2N$$
 N
 N
 N
 N
 N
 N
 N

and/or

(2-19) azadirachtin (known from The Pesticide Manual, 11th Edition, 1997, p. 59)

15 and/or

(2-20) diofenolan known from DE-A 26 55 910)

and/or

(2-21) indoxacarb (known from WO 92/11249)

2. The composition as claimed in claim 1 comprising at least one active compound from the group of the anthranilamides of the formula (I-1) in which

in which

R² represents hydrogen or C₁-C₆-alkyl,

R³ represents C₁-C₆-alkyl which is optionally substituted by one R⁶,

R⁴ represents C₁-C₄-alkyl, C₁-C₂-haloalkyl, C₁-C₂-haloalkoxy or halogen,

R⁵ represents hydrogen, C₁-C₄-alkyl, C₁-C₂-haloalkyl, C₁-C₂-haloalkoxy or halogen,

represents $-C(=E^2)R^{19}$, $-LC(=E^2)R^{19}$, $-C(=E^2)LR^{19}$ or $-LC(=E^2)LR^{19}$, where each E^2 independently of one another represents O, S, N-R¹⁵, N-OR¹⁵, N-N(R¹⁵)₂, and each L independently of one another represents O or NR¹⁸,

R⁷ represents C₁-C₄-haloalkyl or halogen,

R⁹ represents C₁-C₂-haloalkyl, C₁-C₂-haloalkoxy, S(O)_p-C₁-C₂-haloalkyl or halogen,

in each case independently of one another represents hydrogen or represents in each case optionally substituted C_1 - C_6 -haloalkyl or C_1 - C_6 -alkyl, where the substituents independently of one another may be selected from the group consisting of cyano, C_1 - C_4 -alkoxy, C_1 - C_4 -haloalkoxy, C_1 - C_4 -alkylthio, C_1 - C_4 -alkylsulfinyl, C_1 - C_4 -haloalkylsulfonyl, C_1 - C_4 -haloalkylthio, C_1 - C_4 -haloalkylsulfinyl, and C_1 - C_4 -haloalkylsulfonyl,

20 R¹⁸ in each case represents hydrogen or C₁-C₄-alkyl,

R¹⁹ in each case independently of one another represents hydrogen or C₁-C₆-alkyl,

p independently of one another represents 0, 1, 2.

10

5

- 3. The composition as claimed in claim 1 or 2 comprising at least one active compound of group 2 selected from
 - (2-5) triflumuron
 - (2-22) flufenoxuron
- 5 (2-9) emamectin
 - (2-10) methoxyfenozide
 - (2-16) fipronil
 - (2-17) ethiprole
 - (2-21) indoxacarb.

- 4. The composition as claimed in claim 1, 2 or 3 comprising anthranilamides of the formula (I) and at least one active compound from group 2 in a ratio of 200:1 to 1:200.
- 5. The use of a synergistically effective mixture as defined in claim 1, 2, 3 or 4 for controlling animal pests.
 - 6. A process for preparing pesticides, characterized in that a synergistically effective mixture as defined in claim 1, 2, 3 or 4 is mixed with extenders and/or surfactants.
- A method for controlling animal pests, characterized in that synergistically effective mixtures as defined in claim 1, 2, 3 or 4 are allowed to act on animal pests and/or their habitat.