

Решение проблемы с округлением в СС с чётным основанием

Суть решения — использовать неклассические правила округления:

- Случайное округление: используется датчик случайных чисел при принятии решения о том, в большую или меньшую сторону следует округлять.
- Банковское округление (к ближайшему чётному): $3,5 \approx 4$, но $2,5 \approx 2$.
- **К ближайшему нечётному**: $3.5 \approx 3$, но $2.5 \approx 3$. Аналогично: $4.3_{(6)} \approx 5_{(6)}$.
- **Чередующееся**: направление округления меняется на противоположное при каждой операции округления (необходимо «помнить» о предыдущем округлении).

Примечание. Каждое из правил можно применять как полностью универсально, так и комбинировано с классическим правилом округления, дополняя его лишь при округлении пограничных значений.

Пример округления

Number, NS(2)	Math	To odd	To even	Random Coin test	Striped
10,1	11	11	10	11	10
00,1	01	01	00	01	01
01,0	01	01	01	01	01
10,0	10	10	10	10	10
11,0	11	11	11	11	11
00,1	01	01	00	00	00
01,1	10	01	10	01	10
00,0	00	00	00	00	00
Sum					
1011	1101	1100	1010	1011	1011

Пример округления (2)

Number, NS(3)	Math	To odd	To even	Random Coin test	Striped
2.1	2.0	10.0	2.0	10.0	2.0
0.2	1.0	1.0	0.0	1.0	1.0
1.0	1.0	1.0	1.0	1.0	1.0
2.0	2.0	2.0	2.0	2.0	2.0
10.0	10.0	10.0	10.0	10.0	10.0
0.1	0.0	1.0	0.0	0.0	0.0
1.2	2.0	1.0	2.0	1.0	2.0
0.0	0.0	0.0	0.0	0.0	0.0
Sum					
102.01	102	110	101	102	102

Алфавит и его подмножества

Алфавит – конечное множество различных знаков (букв), символов, для которых определена операция конкатенации (присоединения символа к символу или цепочке символов).

Знак (буква) – любой элемент алфавита (элемент x алфавита X, где $x \in X$).

Слово - конечная последовательность знаков (букв) алфавита.

Словарь (словарный запас) - множество различных слов над алфавитом.

Кодирование (модуляция) данных — процесс преобразования символов алфавита X в символы алфавита Y.

Декодирование (демодуляция) — процесс, обратный кодированию.

Символ — наименьшая единица данных, рассматриваемая как единое целое при кодировании/декодировании.

Кодовое слово – последовательность символов из алфавита Y, однозначно обозначающая конкретный символ алфавита X.

Средняя длина кодового слова – это величина, которая вычисляется как взвешенная вероятностями сумма длин всех кодовых слов.

$$L = \sum_{i=1}^{N} p_i * l_i$$

Если все кодовые слова имеют одинаковую длину, то код называется **равномерным** (фиксированной длины). Если встречаются слова разной длины, то – **неравномерным** (переменной длины).