Applying competition models for perceptual bistability to perceptual grouping problems

Sara Steele, on Shpiro et. al. (2009) "Balance between noise and adaptation in competition models of perceptual bistability."

Competition firing rate models

Shpiro et. al. (2009)

Competition firing rate models

$$\begin{cases} \dot{u}_{1} &= -u_{1} + f(-\beta u_{2} - \gamma a_{1} + I_{1} + n_{1}) \\ \tau_{a} \dot{a}_{1} &= -a_{1} + u_{1} \\ \dot{n}_{1} &= \frac{-n_{1}}{\tau_{n}} + \sigma \sqrt{\frac{2}{\tau_{n}}} \eta(t) \\ \dot{u}_{2} &= -u_{2} + f(-\beta u_{1} - \gamma a_{2} + I_{2} + n_{2}) \\ \tau_{a} \dot{a}_{2} &= -a_{2} + u_{2} \\ \dot{n}_{2} &= \frac{-n_{2}}{\tau_{n}} + \sigma \sqrt{\frac{2}{\tau_{n}}} \eta(t) \end{cases}$$

Shpiro et. al. (2009)

Competition firing rate models

$$\begin{cases} \dot{u}_{1} &= -u_{1} + f(-\beta u_{2} - \gamma a_{1} + I_{1} + n_{1}) \\ \tau_{a} \dot{a}_{1} &= -a_{1} + u_{1} \\ \dot{n}_{1} &= \frac{-n_{1}}{\tau_{n}} + \sigma \sqrt{\frac{2}{\tau_{n}}} \eta(t) \\ \dot{u}_{2} &= -u_{2} + f(-\beta u_{1} - \gamma a_{2} + I_{2} + n_{2}) \\ \tau_{a} \dot{a}_{2} &= -a_{2} + u_{2} \\ \dot{n}_{2} &= \frac{-n_{2}}{\tau_{n}} + \sigma \sqrt{\frac{2}{\tau_{n}}} \eta(t) \end{cases}$$

$$f(x) = 1/(1 + exp((x - \theta)/k))$$

 $k = 0.1, \theta = 0, \beta = 1$
 $\tau_a = 2000, \tau_n = 100$

Shpiro et. al. (2009)

Typical output

Bifurcations

Stimuli with bistable grouping

From Pressnitzer & Hupe 2006

$$DF = 2 st$$
 $DF = 11 st$ $DF = 5 st$

$$DF = 2 st$$
 $DF = 11 st$ $DF = 5 st$

$$DF = 2 st$$
 $DF = 11 st$ $DF = 5 st$

$$DF = 2 st$$
 $DF = 11 st$ $DF = 5 st$

$$DF = 2 st$$
 $DF = 11 st$ $DF = 5 st$

integrated

stimuli: van Noorden, 1975

$$DF = 2 st$$
 $DF = 11 st$ $DF = 5 st$

stimuli: van Noorden, 1975

Dieke, et. al.

low noise + weak adaptation

mean = 8.21

mean = 7.56

less ambiguous = faster buildup

high adaptation, low noise

high adaptation, low noise

Unequal currents

first percepts (high A, low N)

durations of non-first grouped percepts k=8.75 theta=0.371

violates Hupe & Pressnitzer, 2012

Conclusions

- Competition model can give realistic-looking buildup curves, but only if noise is high and adaptation is low, supporting the attractor-model for these kinds of stimuli
- The weaker the mechanism for alternation (noise + adaptation), the longer buildup takes to get to steady state
- Oscillation-based regimes give rise to buildup curves with damped oscillations

Future directions

- How should I set the value of the initial conditions? Buildup only occurs for ambiguous stimuli. Perhaps a2(0) is better than u1(0)
- Can we explain the source of the noise? Is this noise fixed or can its strength be modulated internally?
- What role does adaptation in peripheral neural channels play in causing the first percept to be more likely to be grouped and longer than later percept epochs?

other talks in Nphys

• newton raphson parameter estimation using maximum likelihood