SRAM Compiler Design Plan v0.2

RIOS Lab

2023-01

Memory Compiler (AI based)

Key Feature

- Advanced read / write assistant for advanced process node(beyond 7nm)
- First open-source high speed SRAM memory compiler

Challenge

- Mixed-signal (digital+analog) high speed design
- May need fast spice simulator

Main configuration of memory macro

- Number of words (w)
- Number of bits per word (b)
- Lower address decoder type (y)
- Number of banks (ba).

Parameters			YMUX = 4	YMUX = 8	YMUX = 16	YMUX = 32
Ma		Min	32	64	128	256
		Max	1024	2048	4096	8192
		Step	8	16	32	64
Bpw (b)	ba = 1	Min	1	1	1	1
		Max	64	32	16	8
		Step	1	1	1	1
	ba = 2	Min	2	2	2	2
		Max	128	64	32	16
		Step	1	1	1	1

OpenXRAM

OpenXRAM

• A set of various, parameterized lib generators.

Layout Generator(LEF/GDS)

 Generates an array of custom, pitch-matched lef cells and final GDSII file.

Schematic Generator & Netlister(CDL)

 Generates a spice or CDL netlist which can be used for both LVS and functional verification.

Function & Timing Model Generators(Lib/V)

 Generates behavior simulation, dynamic/static timing analysis and synthesis models.

	Pre- <u>C</u> harge	BE	Pre-Charge	Pre- <u>C</u> harge	BE	Pre-Charge
	Driver ARY		ARY	ARY	WL Dec & Driver	ARY
Ctrl	CMUX&SA Datapath		CMUX&SA Datapath	CMUX&SA Datapath	LCtrl	CMUX&SA Datapath
01%	Datapath CMUX&SA	LCtrl	Datapath CMUX&SA	Datapath CMUX&SA	LCtrl	Datapath CMUX&SA
	ARY	WL Dec & Driver	ARY	ARY	WL Dec & Driver	ARY

Design Stage

sram ip design guide-v0.1-202301

- 1 Introduction
- 2 IC design flow with EDA
- 2.1 Design flow
- 2.2 SPICE language
- 3 PDK and standard cell library
- 4 SRAM architecture
- 4.1 Simple architecture
- 4.2 Full typical architecture

5 SRAM timing

- 6 SRAM building block
- 6.1 Array
- 6.2 Decoder
- 6.2.1 WL decoder&driver
- 6.2.2 WL control (timing)
- 6.2.3 Pre-charge
- 6.2.4 Column mux
- 6.2.5 Pre-decoder
- 6.3 Read and write
- 6.3.1 Sense amp
- 6.3.2 Write driver
- 6.3.3 Datapath
- 6.4 Control
- 6.4.1 Control Unit
- 6.4.2 Timer
- 6.5 DFT (Optional)
- 7 Verification

Memory Compiler (Al based) Roadmap

EDA Design Flow

Design Flow

- Design with SPICE simulator
- Mixed-signal design flow
- Based on OpenLane
- Full custom design → Automation generator

High Performance Single Port SRAM Embedded Memory Macro

High performance Single Port SRAM Macro

- · 100 MHz operation
- 1-Clock cycle time
- · Pipelined read access timing
- 32/64Bit wide data buses
- Byte write enables
- Simple standard SRAM interface

High Yield and Reliability

· Built-in redundancy for enhanced yield

Standard Logic Process

- Skywater 0.13µm process with open PDK
- Logic design rules
- · Uses 4 metal layers
- Routing over macro possible in layers 5 or more

Power

- Single VDD voltage supply
- · Low power consumption

Basic PINs

Name	Valid	Туре	Description	
A[mA-1:0]	positive CLK edge	Input	addresses (A[0] = LSB)	
D[nD-1:0]	positive CLK edge	Input	data inputs (D[0] = LSB)	
CENb	positive CLK edge	Input	chip enable, active LOW	
CLK	clock	Input	clock	
Q[nD-1:0]	positive CLK edge	Output	data outputs, Q[0] = LSB	
WENb[nWEN-1:0]	positive CLK edge	Input	byte write enable, active LOW	
GWENb	positive CLK edge	Input	global write enable, active LOW	
VDDPE		Input	periphery power supply pin	
VDDCE		Input	core array power supply pin	
VSSPE		Input	periphery power ground pin	
VSSCE		Input	core array power ground pin	
EMA[2:0]	positive CLK edge	Input	extra margin adjustment, EMA[0] = LSB	
EMAW[1:0]	positive CLK edge	Input	extra margin adjustment write, EMAW[0] = LSB	

Multi-bank

	Pre-Charge	BS	Pre-Charge	Pre-Charge	BS	Pre-Charge
	ARY	WL Dec & Driver	ARY	ARY	WL Dec & Driver	ARY
Ctrl	CMUX&SA Datapath	LCtrl	CMUX&SA Datapath	CMUX&SA Datapath	LCtrl	CMUX&SA Datapath
01%	Datapath CMUX&SA	LCtrl	Datapath CMUX&SA	Datapath CMUX&SA	LCtrl	Datapath CMUX&SA
	ARY	WL Dec & Driver	ARY	ARY	WL Dec & Driver	ARY
	Pre-Charge	BS	Pre-Charge	Pre-Charge	BS	Pre-Charge

Multi-bank architecture to enhance performance

Timing

Read timing

Write timing

SRAM Base Architecture

Build Block

- Array
- Decoder
 - WL decoder & driver
 - WL control (timing)
 - Pre-charge
 - Column mux
 - · Pre-decoder
- Read and write
 - Sense amp
 - Write driver
 - Datapath
- Control
 - Control Unit
 - Timer
- DFT (Optional)

Industrial Level Layout

OpenXRAM layout (Multi-array, left) v.s. OpenRAM layout(Right)

