Week 3 Homework - Summer 2020

(!) This is a preview of the published version of the quiz

Started: May 9 at 4:18pm

Quiz Instructions

Question 1 1 pts

(Lesson 3.1: Solving a Differential Equation.) Suppose that $f(x)=e^{2x}$. We know that if h is small, then

$$f'(x) \approx rac{f(x+h)-f(x)}{h}$$
.

Using this expression with h=0.01, find an approximate value for f'(1).

- a. 1
- ob. 2.72
- c. 7.38
- d. 14.93

Question 2 1 pts

(Lesson 3.1: Solving a Differential Equation.) Suppose that $f(x) = e^{2x}$. What is the actual value of f'(1)?

- a. 1
- \bigcirc b. epprox 2.72
- \bigcirc c. $e^2 pprox 7.39$
- \odot d. $2e^2pprox 14.78$
- e. 14.93

Question 3 1 pts

(Lesson 3.1: Solving a Differential Equation.) Consider the differential equation f'(x) = (x+1)f(x) with f(0) = 1. What is the exact formula for f(x)?

- \bigcirc a. $f(x)=e^x$
- \bigcirc b. $f(x)=e^{2x}$
- $^{ extstyle }$ c. $f(x)=\exp\Bigl\{rac{x^2}{2}+x\Bigr\}$
- \bigcirc d. $f(x) = \expig\{x^2 + 2xig\}$

Question 4 1 pts

(Lesson 3.1: Solving Differential Equations.) Consider the differential equation f'(x)=(x+1)f(x) with f(0)=1. Solve for f(0.20) using Euler's approximation method with increment h=0.01 for $x\in[0,0.20]$.

- \bigcirc a. f(0.20)pprox 0.0
- \odot b. f(0.20)pprox 1.0
- \bigcirc c. f(0.20)pprox 1.24
- \bigcirc d. f(0.20)pprox 2.49

Question 5 1 pts

(Lesson 3.2: Monte Carlo Integration.) Suppose that we want to use Monte Carlo integration to approximate $I=\int_1^3\frac{1}{1+x}\,dx$. If U_1,U_2,\ldots,U_n are i.i.d. Unif(0,1)'s, what's a good approximation \bar{I}_n for I?

- \bigcirc a. $\frac{1}{n} \sum_{i=1}^{n} \frac{1}{1+U_i}$
- \bigcirc b. $rac{2}{n}\sum_{i=1}^{n}rac{1}{1+U_{i}}$
- \bigcirc c. $\frac{1}{n}\sum_{i=1}^{n}\frac{1}{1+2U_{i}}$
- \bigcirc d. $\frac{2}{n}\sum_{i=1}^{n} \frac{1}{1+2U_{i}}$
- \bigcirc e. $rac{1}{n}\sum_{i=1}^{n}rac{1}{1+3U_{i}}$

Question 6 1 pts

(Lesson 3.2: Monte Carlo Integration.) Again suppose that we want to use Monte Carlo integration to approximate $I=\int_1^3\frac{1}{1+x}\,dx$. You may have recently discovered that the MC estimator is of the form $\bar{I}_n=\frac{1}{n}\sum_{i=1}^n\frac{1}{1+U_i}$.

Estimate the integral I by calculating \bar{I}_n with the following 4 uniforms:

$$U_1 = 0.3 \qquad U_2 = 0.9 \qquad U_3 = 0.2 \qquad U_4 = 0.7$$

- a. 0
- O b. 0.2
- o. 0.321
- d. 0.679
- e. 0.8

Question 7	1 pts
(Lesson 3.2: Monte Carlo Integration.) Yet again suppose that we want to use I Carlo integration to approximate $I=\int_1^3 rac{1}{1+x}dx$. What is the <i>exact</i> value of I ?	
a. 0.197	
o b. 0.693	
od. 2.773	

Question 8 1 pts

(Lesson 3.3: Making Some π .) Inscribe a circle in a unit square and toss n=1000 random darts at the square. Suppose that 760 of those darts land in the circle. Using the technology developed in class, what is the resulting estimate for π ?

a. π b. 4.0 (UGA answer)
c. 3.2
d. 3.04
e. 3.12

Question 9 1 pts

(Lesson 3.3: Making Some π .) Now suppose that we can somehow toss n random darts into a unit *cube*. Further, suppose that we've inscribed a *sphere* with radius 1/2 inside the cube. Let \hat{p}_n be the proportion of the n darts that actually fall within the sphere. Give a Monte Carlo scheme to estimate π .

- \bigcirc a. $\hat{\pi}_n = 2\hat{p}_n$
- \bigcirc b. $\hat{\pi}_n = rac{4}{3}\hat{p}_n$
- \bigcirc c. $\hat{\pi}_n = 4\hat{p}_n$
- \bigcirc d. $\hat{\pi}_n = 6\hat{p}_n$

Question 10 1 pts

(Lesson 3.4: Single-Server Queue.) Consider a single-server Q with *LIFO* (*last*-infirst-out) services. Suppose that three customers show up at times 5, 6, and 8, and that they all have service times of 4. When does customer 2 leave the system?

- (a. 3
- O b. 9
- Oc. 13
- Od. 17
- o e. 19

Question 11 1 pts

(Lesson 3.5: (s, S) Inventory Model.) Consider our numerical example from the lesson. What would the third day's total revenues have been if we had used a (4,10) policy instead of a (3,10)?

- \bigcirc a. $\mathbf{-22}$
- \bigcirc b. -13
- o. 44
- od. 45

e. 80

Question 12	1 pts
(Lesson 3.6: Simulating Random Variables.) If U is a Unif(0,1) random numbers the distribution of $-0.5 \ell n(U)$?	er, what
a. Who knows?	
○ b. Exp(2)	
c. Exp(1/2)	
\bigcirc d. Exp (-2)	
\bigcirc e. Exp $(-1/2)$	

Question 13 1 pts

(Lesson 3.6: Simulating Random Variables.) If U_1 and U_2 are i.i.d. Unif(0,1) random variables, what is the distribution of U_1+U_2 ? Hints: (i) I may have mentioned this in class at some point; (ii) You may be able to reason this out by looking at the distribution of the sum of two dice tosses; or (iii) You can use something like Excel to simulate U_1+U_2 many times and make a histogram of the results.

a.	Ur	IIT(U,	2

- b. Normal
- c. Exponential
- od. Triangular

Question 14 1 pts

(Lesson 3.7: Spreadsheet Simulation.) I stole this problem from the Banks, Carson, Nelson and Nicol text (5th edition). Expenses for Joey's college attendance next year are as follows (in \$):
Tuition = 8400 Dormitory = 5400 Meals \sim Unif(900,1350) Entertainment \sim Unif(600,1200) Transportation \sim Unif(200,600) Books \sim Unif(400,800)
Here are the income streams the student has for next year: Scholarship = 3000 Parents = 4000 Waiting Tables \sim Unif($3000,5000$) Library Job \sim Unif($2000,3000$)
Use Monte Carlo simulation to estimate the expected value of the loan that will be needed to enable Joey to go to college next year.
○ a. \$2500
○ b. \$3250
○ c. \$3325
○ d. \$3450
○ e. \$4000

Question 15	1 pts
(Lesson 4.1: Steps in a Simulation Study.) Which steps are regarded as essen a successful simulation study? (There may be more than one correct answer.)	
a. Problem formulation	

□ b. Model validation	
c. Model verification	
d. Experimental design	
□ e. Output analysis	
f. Attendance at a Justin Bieber concert	

Question 16	1 pts
(Lesson 4.1: Steps in a Simulation Study.) Suppose that I have modelled the a calls to a call center as a Poisson process. What do I have to carry out in order determine if that's indeed a reasonable model assumption?	•
a. Problem formulation	
○ b. Model validation	
c. Model verification	
d. Attend a Justin Bieber concert	

Question 17	1 pts
(Lesson 4.2: Some Useful Definitions.) Which of the following times could be regarded as events? (There may be more than one correct answer.)	
a. Customers arrive at Justin's concert venue	
□ b. Justin forgets a lyric	
c. Justin sings the wrong note	
d. Angry customers depart the venue	
e. A customer is 11 years old	

Question 18	1 pts
(Lesson 4.2: Some Useful Definitions.) TRUE or FALSE? Custo activities because these are typically explicitly specified in the s	_
○ True	
○ False	
Question 19	1 pts
(Lesson 4.3: Time-Advance Mechanisms.) TRUE or FALSE? To time is a variable.	he simulation clock
○ True	
○ False	
Question 20	1 pts
(Lesson 4.3: Time-Advance Mechanisms.) TRUE or FALSE? To time always equals real time.	he simulation clock
○ True	
○ False	

Question 21

1 pts

always moves forward.	? In this class, time
○ True	
○ False	
Question 22	1 pts
advance mechanism is used primarily in continuous-time moinvolving differential equations. True	
○ False	

(Lesson 4.3: Time-Advance Mechanisms.) TRUE or FALSE? A next-event time-advance mechanism is typically used in queueing models involving customer arrivals, services, and departures.

True

False

Question 24 1 pts

(Lesson 4.3: Time-Advance Mechanisms.) TRUE or FALSE? The future events list contains all known upcoming events, including arrival times, departure times, and machine breakdown times.

○ False	
Question 25	1 pts
(Lesson 4.3: Time-Advance Mechanisms.) TRUE or Fundated any time an event occurs.	ALSE? The FEL can be
○ True	
○ False	
Question 26	1 pts
(Lesson 4.3: Time-Advance Mechanisms.) TRUE or F	ALSE? It is possible for the
Question 26 (Lesson 4.3: Time-Advance Mechanisms.) TRUE or F system state to change between consecutive event tir	ALSE? It is possible for the
(Lesson 4.3: Time-Advance Mechanisms.) TRUE or F system state to change between consecutive event tir	ALSE? It is possible for the
(Lesson 4.3: Time-Advance Mechanisms.) TRUE or F system state to change between consecutive event tir	ALSE? It is possible for the
(Lesson 4.3: Time-Advance Mechanisms.) TRUE or F system state to change between consecutive event tir True False	ALSE? It is possible for the nes. 1 pts

Question 28	1 pts
(Lesson 4.3: Time-Advance Mechanisms.) TRUE or FALSE? When a new e occurs, the simulation may update the chronological order of the FEL's even inserting new events, deleting events, moving them around, or even doing n	its by
○ True	
○ False	
Question 29	1 pts
(Lesson 4.3: Time-Advance Mechanisms.) TRUE or FALSE? Almost every of event computer simulation language maintains a FEL somewhere.	liscrete-
○ True	
○ False	
Question 30	1 pts
(Lesson 4.3: Time-Advance Mechanisms.) TRUE or FALSE? In Arena, you a responsible for maintaining the language's FEL.	are
○ True	
○ False	
Question 31	1 pts

(Lesson 4.4: Two Modeling Approaches.) Which is gener modeling approach — Event-Scheduling or Process-Inter	•
a. Event-Scheduling	
b. Process-Interaction	
Question 32	1 pts
Question 32 (Lesson 4.4: Two Modeling Approaches.) Which is the machine Arena — Event-Scheduling or Process-Interaction?	<u> </u>
(Lesson 4.4: Two Modeling Approaches.) Which is the m	<u> </u>
(Lesson 4.4: Two Modeling Approaches.) Which is the machine Arena — Event-Scheduling or Process-Interaction?	<u> </u>
(Lesson 4.4: Two Modeling Approaches.) Which is the machine Arena — Event-Scheduling or Process-Interaction?	·

(Lesson 4.4: Two Modeling Approaches.) TRUE or FALSE? A simulation language incorporating the P-I approach considers the events that a generic customer undergoes as it passes through the system, and then automatically does the bookkeeping to keep track of how all such customers interact with each other.

Question 34 1 pts

(Lesson 4.5: Simulation Languages.) How many simulation languages are there?

False

a. Just a few.			
o b. 5-10.			
c. 10-50.			
d. >>50.			

Question 35	1 pts
(Lesson 4.5: Simulation Languages.) Where can you learn about simulation languages? (There may be more than one correct answer.)	
□ a. Right here, right now!	
□ b. Simulation language textbooks	
c. The Winter Simulation Conference	
☐ d. Vendor short courses	
e. The Justin Bieber School of Hard Knox. (Nice spelling, Justin.)	

Question 36	1 pts
(Lesson 4.5: Simulation Languages.) When selecting a simulation language, where the characteristics do you have to take into consideration?	nat
○ a. Cost	
○ b. Ease of use	
c. Modeling "world view" (e.g., event-scheduling or process-interaction)	
d. Random variate generation capabilities	
e. Output analysis capabilities	
f. All of the above	

Not saved	Submit Quiz