

线性代数

张神星 (合肥工业大学)

办公室: 翡翠科教楼 B1810 东

Email: zhangshenxing@hfut.edu.cn

课件地址: https://zhangshenxing.github.io

第二章 矩阵及其运算

- 1 矩阵的线性运算和乘法
- 2 矩阵的运算: 转置和行列式
- ③ 逆矩阵
- 4 分块矩阵
- 5 矩阵的初等变换
- 6 矩阵的秩

第一节 矩阵的线性运算和乘法

- 矩阵和线性变换
- 矩阵的线性运算
- 矩阵的乘法
- 矩阵的幂

我们已经在上一章知道了什么是矩阵和方阵. 分别用记号

- $M_{m \times n}(\mathbb{R})$ 表示 m 行 n 列实矩阵, 即元素都是实数的矩阵;
- $M_n(\mathbb{R})$ 表示 n 阶实方阵;
- $M_{m \times n}(\mathbb{C})$ 表示 m 行 n 列复矩阵;
- $M_n(\mathbb{C})$ 表示 n 阶复方阵.

不特别强调矩阵元素是实数还是复数时,就简单记作 $M_{m \times n}, M_n$.

元素全为零的矩阵为零矩阵 $\mathbf{O} \in M_{m \times n}$. 方阵中

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ & a_{22} & \cdots & a_{2n} \\ & & \ddots & \vdots \\ & & & a_{nn} \end{pmatrix}, \quad \begin{pmatrix} a_{11} & & & \\ a_{21} & a_{22} & & \\ \vdots & \vdots & \ddots & \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}, \quad \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & & \\ & & \ddots & & \\ & & & \lambda_n \end{pmatrix} \in M_n$$

分别为上三角阵, 下三角阵和对角阵. 为书写方便, 对角阵也可记作

$$\operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n).$$

$$\mathbf{E}_n = \operatorname{diag}(1, 1, \dots, 1) \in M_n$$

为单位阵.

只有一行的矩阵

$$(a_1, a_2, \dots, a_n) \in M_{1 \times n}$$

称为 n 维行矩阵或行向量. 只有一行的矩阵

$$\begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} \in M_{n \times 1}$$

称为 n 维列矩阵或列向量. 为了书写方便, 可以把列向量写成

$$(b_1,b_2,\ldots,b_n)^{\mathrm{T}}.$$

向量的加法和数乘

令 \mathbb{R}^n 表示所有 n 维列向量形成的集合. 例如 \mathbb{R}^2 就是平面直角坐标系里的点, 而 \mathbb{R}^3 则表示空间中的点.

类似于二维和三维向量的情形,我们可以在 \mathbb{R}^n 上定义加法和数乘:

- (1) $(a_1,\ldots,a_n)^{\mathrm{T}}+(b_1,\ldots,b_n)^{\mathrm{T}}=(a_1+b_1,\ldots,a_n+b_n)^{\mathrm{T}}$, 其中 $a_i,b_i\in\mathbb{R}$;
- (2) $\lambda(a_1,\ldots,a_n)^{\mathrm{T}}=(\lambda a_1,\ldots,\lambda a_n)^{\mathrm{T}}$, 其中 $a_i,\lambda\in\mathbb{R}$. 将上述 \mathbb{R} 均换成 \mathbb{C} , 则可以得到 \mathbb{C}^n 上的加法和数乘

线性变换和矩阵

定义

如果映射 $f: \mathbb{C}^n \to \mathbb{C}^m$ 满足

- (1) $f(\mathbf{u} + \mathbf{v}) = f(\mathbf{u}) + f(\mathbf{v}), \forall \mathbf{u}, \mathbf{v} \in \mathbb{C}^n$;
- (2) $f(\lambda \mathbf{u}) = \lambda f(\mathbf{u}), \forall \lambda \in \mathbb{C}, \mathbf{u} \in \mathbb{C}^n$,

称 f 是一个线性变换.

对于线性变换 $f: \mathbb{C}^n \to \mathbb{C}^m$, 记

$$f\begin{pmatrix} 1\\0\\\vdots\\0 \end{pmatrix} = \begin{pmatrix} a_{11}\\a_{21}\\\vdots\\a_{m1} \end{pmatrix}, \quad f\begin{pmatrix} 0\\1\\\vdots\\0 \end{pmatrix} = \begin{pmatrix} a_{12}\\a_{22}\\\vdots\\a_{m2} \end{pmatrix}, \cdots, f\begin{pmatrix} 0\\0\\\vdots\\1 \end{pmatrix} = \begin{pmatrix} a_{1n}\\a_{2n}\\\vdots\\a_{mn} \end{pmatrix}$$

那么

$$f\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{pmatrix}.$$

它的系数形成了一个矩阵

$$\mathbf{A} = (a_{ij})_{m \times n} = \left(f \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, f \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \cdots, f \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix} \right) \in M_{m \times n}(\mathbb{C}).$$

线性变换 $f: \mathbb{C}^n \to \mathbb{C}^m$ 全体和 $M_{m \times n}(\mathbb{C})$ 之间是——对应的.

线性变换的例子: 旋转

如何用矩阵表示平面 \mathbb{R}^2 上的旋转? 设 $A(x_1,x_2)$ 是平面上的一个点, 沿着原点逆时针旋转角度 θ 变成 $B(y_1,y_2)$. 利用极坐标将 A 表示为

$$\begin{cases} x_1 = \rho \cos \alpha, \\ x_2 = \rho \sin \alpha, \end{cases}$$

那么

$$\begin{cases} y_1 = \rho \cos(\alpha + \theta) = \rho(\cos \alpha \cos \theta - \sin \alpha \sin \theta) = (\cos \theta)x_1 - (\sin \theta)x_2, \\ y_2 = \rho \sin(\alpha + \theta) = \rho(\cos \alpha \sin \theta + \sin \alpha \cos \theta) = (\sin \theta)x_1 + (\cos \theta)x_2. \end{cases}$$

因此上述旋转变换 🗹 对应的矩阵为

$$\mathbf{A} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \in M_2(\mathbb{R}).$$

线性变换的例子

•
$$\mathbf{A} = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$$
 表示各个分量分别放大 λ_i 倍的线性变换.

- $\mathbf{A} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ 表示平面中沿着直线 $x_1 = x_2$ 翻转.
- $\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$ 表示三维空间中沿着直线 $x_1 = x_2 = x_3$ 旋转 $\frac{2\pi}{3}$.
- $\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$ 表示什么线性变换?

给定两个线性变换 $f,g:\mathbb{C}^n\to\mathbb{C}^m$, 定义

$$(f+g)(\mathbf{u}) = f(\mathbf{u}) + g(\mathbf{u}).$$

由此得到对应的矩阵的加法:

定义

设 $\mathbf{A} = (a_{ij})_{m \times n}, \mathbf{B} = (b_{ij})_{m \times n}.$ 定义

$$\mathbf{A} + \mathbf{B} = (a_{ij} + b_{ij})_{m \times n}.$$

只有同型矩阵才能相加,即行列数都相同的矩阵.矩阵的加法满足通常数的加法的几条规律:

- (1) A + B = B + A;
- (2) (A + B) + C = A + (B + C);
- (3) A + O = A.

加法和行列式不交换

注意两个方阵的和的行列式 $|\mathbf{A}+\mathbf{B}|$ 一般不等于各自行列式的和 $|\mathbf{A}|+|\mathbf{B}|$.

例

设
$$\mathbf{A} = \begin{pmatrix} a_1 & c_1 & d_1 \\ a_2 & c_2 & d_2 \\ a_3 & c_3 & d_3 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} b_1 & c_1 & d_1 \\ b_2 & c_2 & d_2 \\ b_3 & c_3 & d_3 \end{pmatrix}, |\mathbf{A}| = 2, |\mathbf{B}| = 1. 计算 |\mathbf{A} + \mathbf{B}|.$$

解

$$|\mathbf{A} + \mathbf{B}| = \begin{vmatrix} a_1 + b_1 & 2c_1 & 2d_1 \\ a_2 + b_2 & 2c_2 & 2d_2 \\ a_3 + b_3 & 2c_3 & 2d_3 \end{vmatrix} = \begin{vmatrix} a_1 & 2c_1 & 2d_1 \\ a_2 & 2c_2 & 2d_2 \\ a_3 & 2c_3 & 2d_3 \end{vmatrix} + \begin{vmatrix} b_1 & 2c_1 & 2d_1 \\ b_2 & 2c_2 & 2d_2 \\ b_3 & 2c_3 & 2d_3 \end{vmatrix}$$
$$= 4|\mathbf{A}| + 4|\mathbf{B}| = 12.$$

给定一个线性变换 $f: \mathbb{C}^n \to \mathbb{C}^m$ 和一个数 λ , 定义

$$(\lambda f)(\mathbf{u}) = \lambda(f(\mathbf{u})).$$

由此得到对应的矩阵的数乘:

定义

数 λ 和矩阵 $\mathbf{A} = (a_{ij})_{m \times n}$ 的数乘定义为

$$\lambda \mathbf{A} = (\lambda a_{ij})_{m \times n}.$$

列矩阵的加法和数乘就是其对应的列向量的加法和数乘. 数乘矩阵满足:

- (1) $(\lambda \mu) \mathbf{A} = \lambda(\mu \mathbf{A}) = \mu(\lambda \mathbf{A});$
- (2) $(\lambda + \mu)\mathbf{A} = \lambda \mathbf{A} + \mu \mathbf{A}$;
- (3) $\lambda(\mathbf{A} + \mathbf{B}) = \lambda \mathbf{A} + \lambda \mathbf{B}$;
- (4) $1 \cdot \mathbf{A} = \mathbf{A}, 0 \cdot \mathbf{A} = \mathbf{O}, \lambda \mathbf{O} = \mathbf{O}.$

-1 与 A 的数乘称为 A 的负矩阵

$$-\mathbf{A} = (-a_{ij})_{m \times n}.$$

那么矩阵的减法就是

$$\mathbf{A} - \mathbf{B} = \mathbf{A} + (-\mathbf{B}) = (a_{ij} - b_{ij})_{m \times n}.$$

想一想: $|\lambda \mathbf{A}| = \lambda |\mathbf{A}|$? × 如果 $\mathbf{A} \in M_n$, 则 $|\lambda \mathbf{A}| = \lambda^n |\mathbf{A}|$.

矩阵线性运算的应用: 图像处理

一张图片由一些像素构成, 上图包含 512×341 个像素. 在 RGB 颜色模式下, 每个像素包含红绿蓝三个通道, 每个通道为一个 $0\sim255$ 之间的数, 数值越高对应颜色越饱满. 如果三个通道相同, 图片就是一张灰色的图 (无色彩). 此时图片对应一个 512×341 的矩阵 $\bf A$.

想一想: 如何将这个图像变亮?

矩阵线性运算的应用: 图像处理

我们只需要增加每个元素的值, 例如

$$\mathbf{A} + \begin{pmatrix} 50 & 50 & \cdots & 50 \\ 50 & 50 & \cdots & 50 \\ \vdots & \vdots & \ddots & \vdots \\ 50 & 50 & \cdots & 50 \end{pmatrix}$$

1.5**A**.

矩阵线性运算的应用: 图像处理

如何让图像反色?


```
\begin{pmatrix} 255 & 255 & \cdots & 255 \\ 255 & 255 & \cdots & 255 \\ \vdots & \vdots & \ddots & \vdots \\ 255 & 255 & \cdots & 255 \end{pmatrix} -
```

 $-\mathbf{A}$.

线性变换的复合

给定两个矩阵 $\mathbf{A}=(a_{ij})_{m\times n}, \mathbf{B}=(b_{ij})_{n\times p},$ 其中 \mathbf{A} 的列数和 \mathbf{B} 的行数相等. 那么它们对应两个映射

$$\mathscr{L}_{\mathbf{A}}: \mathbb{C}^n \to \mathbb{C}^m, \quad \mathscr{L}_{\mathbf{B}}: \mathbb{C}^p \to \mathbb{C}^n.$$

它们的复合

$$\mathscr{L}_{\mathbf{A}} \circ \mathscr{L}_{\mathbf{B}} : \mathbb{C}^p \to \mathbb{C}^n \to \mathbb{C}^m$$

是否还是一个线性变换呢?如果是,对应的矩阵是什么?

线性变换的复合

设 $\mathbf{x} = (x_1, \dots, x_p)^{\mathrm{T}} \in \mathbb{C}^p$, 那么

$$\mathbf{y} = (y_1, \dots, y_n)^{\mathrm{T}} = \mathscr{L}_{\mathbf{B}}(x) \in \mathbb{C}^n$$
 满足 $y_k = \sum_{j=1}^p b_{kj} x_j$.

$$\mathbf{z} = (z_1, \dots, z_m)^{\mathrm{T}} = \mathscr{L}_{\mathbf{A}}(y) \in \mathbb{C}^n$$

满足

$$z_i = \sum_{k=1}^n a_{ik} y_k = \sum_{k=1}^n a_{ik} \sum_{j=1}^p b_{kj} x_j = \sum_{j=1}^p \left(\sum_{k=1}^n a_{ik} b_{kj}\right) x_j.$$

所以 $\mathcal{L}_{A} \circ \mathcal{L}_{B}$ 是线性变换, 且对应的矩阵为

$$\mathbf{C} = (c_{ij})_{m \times p}, \qquad c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

我们把它定义为矩阵的乘法 C = AB.

矩阵乘法的定义

定义

设 $\mathbf{A} = (a_{ij})_{m \times n}, \mathbf{B} = (b_{ij})_{n \times p}.$ 定义矩阵的乘法为 $\mathbf{C} = \mathbf{AB} = (c_{ij})_{m \times p}$, 其中

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

只有第一个矩阵的列数等于第二个矩阵的行数才能相乘

$$\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} =? \times .$$

行向量与列向量的乘法

设 $\mathbf{A} = (a_1, \dots, a_n)$ 是 n 维行向量, $\mathbf{B} = (b_1, \dots, b_n)^{\mathrm{T}}$ 是 n 维列向量. $\mathbf{AB}, \mathbf{BA} = ?$

$$\mathbf{AB} = \sum_{i=1}^{n} a_i b_i, \qquad \mathbf{BA} = (b_i a_j)_{n \times n} \in M_n.$$

对于矩阵 $\mathbf{A} = (a_{ij})_{m \times n}, \mathbf{B} = (b_{ij})_{n \times p}.$ **AB** 的 (i,j) 元其实就是 **A** 第 i 行对应的行向量和 **B** 第 j 列对应的列向量相乘得到的数 (1 阶方阵):

$$\begin{pmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \\ \vdots \\ \mathbf{u}_m \end{pmatrix} (\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_p) = \begin{pmatrix} \mathbf{u}_1 \mathbf{v}_1 & \mathbf{u}_1 \mathbf{v}_2 & \cdots & \mathbf{u}_1 \mathbf{v}_p \\ \mathbf{u}_2 \mathbf{v}_1 & \mathbf{u}_2 \mathbf{v}_2 & \cdots & \mathbf{u}_2 \mathbf{v}_p \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{u}_m \mathbf{v}_1 & \mathbf{u}_m \mathbf{v}_2 & \cdots & \mathbf{u}_m \mathbf{v}_p \end{pmatrix}.$$

例: 矩阵乘法的计算

例

求矩阵
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 0 & -1 \\ 2 & 1 & 4 & 0 \end{pmatrix}$$
 与 $\mathbf{B} = \begin{pmatrix} 2 & 0 & 1 \\ -2 & 3 & 1 \\ 1 & 5 & 0 \\ 1 & -3 & 4 \end{pmatrix}$ 的乘积 \mathbf{AB} .

解

$$\begin{pmatrix} 1 & 2 & 0 & -1 \\ 2 & 1 & 4 & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 & 1 \\ -2 & 3 & 1 \\ 1 & 5 & 0 \\ 1 & -3 & 4 \end{pmatrix} = \begin{pmatrix} -3 & 9 & -1 \\ 6 & 23 & 3 \end{pmatrix}.$$

设线性方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m, \end{cases}$$

的系数矩阵为 A. 如果我们令

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in M_{n \times 1}, \qquad \mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix} \in M_{m \times 1},$$

那么上述方程等价于矩阵方程 Ax = b. 对应的齐次方程为 Ax = 0.

矩阵乘法满足如下性质:

- (1) (AB)C = A(BC);
- (2) $\lambda(\mathbf{AB}) = (\lambda \mathbf{A})\mathbf{B} = \mathbf{A}(\lambda \mathbf{B});$
- (3) A(B+C) = AB + AC;
- (4) 如果 $\mathbf{A} \in M_{m \times n}$, 则 $\mathbf{E}_m \mathbf{A} = \mathbf{A} \mathbf{E}_n = \mathbf{A}$.
- (5) 如果 $\mathbf{A} \in M_{m \times n}$, 则 $\mathbf{O}_{p \times m} \mathbf{A} = \mathbf{O}_{p \times n}$, $\mathbf{AO}_{n \times p} = \mathbf{O}_{m \times p}$.

矩阵乘法无交换律和消去律

矩阵的乘法不能随意交换顺序. 一般称 AB 为 A 左乘 B 或者 B 右乘 A. 如果 AB = BA, 则称 A, B 是可交换的. 此时 A, B 必为同阶方阵. 例如

$$\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 2 & 5 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$

矩阵乘法也没有消去律: AB = O 推不出 A = O 或 B = O. 例如

$$\begin{pmatrix} 2 & 4 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & -2 \\ -1 & 1 \end{pmatrix} = \mathbf{O}_2.$$

由此可知: AC = BC 推不出 A = B.

设 \mathbf{A}, \mathbf{B} 为 n > 1 阶方阵. 则 $\mathbf{A} + \mathbf{AB} = ($ \mathbf{C})

(A)
$$A(1 + B)$$

(B)
$$(\mathbf{E} + \mathbf{B})\mathbf{A}$$
 (C) $\mathbf{A}(\mathbf{E} + \mathbf{B})$

(C)
$$\mathbf{A}(\mathbf{E} + \mathbf{B})$$

(D) 以上都不对

例: 与给定矩阵可交换

例

求与矩阵
$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 \\ & 0 & 1 \\ & & 0 \end{pmatrix}$$
 可交换的所有矩阵.

解

设
$$\mathbf{B} = (a_{ij})_{3\times 3}$$
 与 \mathbf{A} 可交换, 则

$$\mathbf{AB} = \begin{pmatrix} a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ 0 & 0 & 0 \end{pmatrix} = \mathbf{BA} = \begin{pmatrix} 0 & a_{11} & a_{12} \\ 0 & a_{21} & a_{22} \\ 0 & a_{31} & a_{32} \end{pmatrix}.$$

$$a_{11} = a_{21} = a_{31} = a_{32} = 0, \quad a_{11} = a_{22} = a_{33}, \quad a_{23} = a_{12},$$

$$\mathfrak{P} \mathbf{B} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ & a_{11} & a_{12} \\ & & a_{11} \end{pmatrix}.$$

矩阵乘法的应用:图像校正

某位同学拍身份证照片拍成了下图的样子, 如何能否修复好呢?

以左下角为原点, 通过测量发现 A 坐标为 (521,88), B 坐标为 (19,311). 经过查询知道身份证长宽比为 85.6:54. 令 A'=(427,0), B'=(270,0). 我们希望

找到一个线性变换, 将 A, B 变为 A', B'.

矩阵乘法的应用:图像校正

设该线性变换对应的矩阵为 $\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, 那么

$$\mathbf{A} \begin{pmatrix} 521 & 19 \\ 88 & 311 \end{pmatrix} = \begin{pmatrix} 427 & 0 \\ 0 & 270 \end{pmatrix}, \qquad \mathbb{P} \qquad \begin{cases} 521a + 66b = 42 \\ 19a + 311b = 0, \\ 511c + 88d = 0, \\ 19c + 311d = 27 \end{cases}$$

解得
$$\mathbf{A} = \begin{pmatrix} 0.828 & -0.051 \\ -0.148 & 0.877 \end{pmatrix}$$
.

521a + 88b = 427

19c + 311d = 270.

矩阵幂的定义

定义

设A为n阶方阵,定义A的幂

$$\mathbf{A}^0 = \mathbf{E}_n, \quad \mathbf{A}^k = \underbrace{\mathbf{A} \cdot \mathbf{A} \cdot \cdots \cdot \mathbf{A}}_{k \ \uparrow}.$$

矩阵幂满足如下性质 (k, ℓ) 为正整数):

- (1) $\mathbf{A}^{k+\ell} = \mathbf{A}^k \cdot \mathbf{A}^\ell$;
- (2) $\mathbf{A}^{k\ell} = (\mathbf{A}^k)^{\ell}$.

注意 $(\mathbf{AB})^k$ 一般不等于 $\mathbf{A}^k \cdot \mathbf{B}^k$. 想一想下面的等式成立吗?

$$(\mathbf{A} - \mathbf{B})(\mathbf{A} + \mathbf{B}) = \mathbf{A}^2 - \mathbf{B}^2?$$

$$(\mathbf{A} + \mathbf{B})^2 = \mathbf{A}^2 + 2\mathbf{A}\mathbf{B} + \mathbf{B}^2?$$

例

设 $\mathbf{A} = \operatorname{diag}(\lambda_1, \cdots, \lambda_n)$. 求 \mathbf{A}^k .

解

$$\mathbf{A}^2 = \mathbf{A} \cdot \mathbf{A} = \operatorname{diag}(\lambda_1^2, \cdots, \lambda_n^2),$$

$$\mathbf{A}^3 = \mathbf{A} \cdot \mathbf{A}^2 = \operatorname{diag}(\lambda_1^3, \cdots, \lambda_n^3),$$

递推下去可知

$$\mathbf{A}^k = \operatorname{diag}(\lambda_1^k, \cdots, \lambda_n^k).$$

例

设
$$\mathbf{A} = \begin{pmatrix} \lambda & 1 & 0 \\ & \lambda & 1 \\ & & \lambda \end{pmatrix}$$
. 求 \mathbf{A}^k

解

$$\mathbf{A}^2 = \begin{pmatrix} \lambda & 1 & 0 \\ & \lambda & 1 \\ & & \lambda \end{pmatrix} \begin{pmatrix} \lambda & 1 & 0 \\ & \lambda & 1 \\ & & \lambda \end{pmatrix} = \begin{pmatrix} \lambda^2 & 2\lambda & 1 \\ & \lambda^2 & 2\lambda \\ & & \lambda^2 \end{pmatrix}$$

续解

$$\mathbf{A}^2 = \begin{pmatrix} \lambda & 1 & 0 \\ & \lambda & 1 \\ & & \lambda \end{pmatrix} \begin{pmatrix} \lambda^2 & 2\lambda & 1 \\ & \lambda^2 & 2\lambda \\ & & \lambda^2 \end{pmatrix} = \begin{pmatrix} \lambda^3 & 3\lambda^2 & 3\lambda \\ & \lambda^3 & 3\lambda^2 \\ & & \lambda^3 \end{pmatrix}.$$

归纳可知

$$\mathbf{A}^{k} = \begin{pmatrix} \lambda^{k} & k\lambda^{k-1} & \frac{k(k-1)}{2}\lambda^{k-2} \\ & \lambda^{k} & k\lambda^{k-1} \\ & & \lambda^{k} \end{pmatrix}.$$

另解

设
$$\mathbf{N} = \begin{pmatrix} 0 & 1 & 0 \\ & 0 & 1 \\ & & 0 \end{pmatrix}$$
,则 $\mathbf{N}^2 = \begin{pmatrix} 0 & 0 & 1 \\ & 0 & 0 \\ & & 0 \end{pmatrix}$,凡 $^3 = \mathbf{O}$. 由于 $\mathbf{A} = \lambda \mathbf{E} + \mathbf{N}$ 且 \mathbf{E} 和 \mathbf{N}

可交换, 因此

$$\mathbf{A}^{k} = \lambda^{k} \mathbf{E} + \mathbf{C}_{k}^{1} \lambda^{k-1} \mathbf{N} + \mathbf{C}_{k}^{2} \lambda^{k-2} \mathbf{N}^{2}$$

$$= \begin{pmatrix} \lambda^{k} & k \lambda^{k-1} & \frac{k(k-1)}{2} \lambda^{k-2} \\ \lambda^{k} & k \lambda^{k-1} \\ & & \lambda^{k} \end{pmatrix}.$$

例

设
$$\mathbf{A} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
. 求 \mathbf{A}^k .

解

注意到 \mathbf{A} 对应平面 \mathbb{R}^2 上的线性变换是逆时针旋转 θ , 所以 \mathbf{A}^k 就是逆时针旋转 $n\theta$, 对应的矩阵为

$$\mathbf{A}^k = \begin{pmatrix} \cos k\theta & -\sin k\theta \\ \sin k\theta & \cos k\theta \end{pmatrix}.$$

例

设
$$\mathbf{A} = (1, 2, 3), \mathbf{B} = \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix}. 求 (\mathbf{B}\mathbf{A})^k.$$

解

注意到 AB = 3, 因此

$$(\mathbf{B}\mathbf{A})^k = \mathbf{B}(\mathbf{A}\mathbf{B})^{k-1}\mathbf{A} = \mathbf{B}\cdots 3^{k-1}\cdot \mathbf{A} = 3^{k-1}\mathbf{B}\mathbf{A} = \begin{pmatrix} -3^{k-1} & -2\cdot 3^{k-1} & -3^k \\ 2\cdot 3^{k-1} & 4\cdot 3^{k-1} & 2\cdot 3^k \\ 0 & 0 & 0 \end{pmatrix}.$$

例: 矩阵的幂

练习

设
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{pmatrix}$$
. 求 \mathbf{A}^k .

答案

注意到
$$\mathbf{A} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} (1,2,3)$$
, 因此 $\mathbf{A}^k = 14^{k-1} \mathbf{A}$.

想一想: $A^2 = E$ 能推出 A = E 或 -E 吗?

矩阵幂的应用: 换乘

网上订票系统里记录了所有能直飞的航班线路. 对于不能直达的城市, 该怎么确定是否有换乘方案呢? 例如 4 个城市之间的航线如图所示:

邻接矩阵中 $a_{ij} = 1$ 表示从 i 到 j 有直飞航线.

矩阵幂的应用: 换乘

那么 A^2 的 (i,j) 元

$$b_{ij} = \sum_{k=1}^{4} a_{ik} a_{kj}$$

就是从 i 到 j 换乘一次的方案数. 例如从 $(1) \Longrightarrow (3)$:

$$\mathbf{A}^2 = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 1 \end{pmatrix}.$$

由于 $b_{23} = 1$,因此可通过 $2 \implies 1 \implies 3$ 换乘一次到达. 想一想: 如何从3到达4?

第二节 矩阵的运算: 转置和行列式

- 矩阵的转置
- 方阵的行列式

上一章我们已经说过, 如果 $\mathbf{A} = (a_{ij})_{m \times n}$, 称

$$\mathbf{A}^{\mathrm{T}} = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{pmatrix}$$

为矩阵 A 的转置, 它是 $n \times m$ 矩阵. 例如行向量的转置是列向量, 方阵的转置还是方阵, 上三角阵的转置是下三角阵. 矩阵的转置满足如下性质:

- (1) $(A^{T})^{T} = A;$
- (2) $(A + B)^{T} = A^{T} + B^{T}$;
- (3) $(\lambda \mathbf{A})^{\mathrm{T}} = \lambda \mathbf{A}^{\mathrm{T}};$
- $(4) (\mathbf{A}\mathbf{B})^{\mathrm{T}} = \mathbf{B}^{\mathrm{T}}\mathbf{A}^{\mathrm{T}}.$

例如

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix},$$

两边取转置得到

$$(b_1, b_2, b_3) \begin{pmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{pmatrix} = (c_1, c_2, c_3).$$

矩阵转置与乘法

例

设
$$\mathbf{A} = \begin{pmatrix} a & -b & -c & -d \\ b & a & -d & c \\ c & d & a & -b \\ d & -c & b & a \end{pmatrix}$$
, 求 $|\mathbf{A}|$.

这题当然可以直接硬算,不过我们可以利用一点小技巧:

$$\mathbf{A}\mathbf{A}^{\mathrm{T}} = \begin{pmatrix} a & -b & -c & -d \\ b & a & -d & c \\ c & d & a & -b \\ d & -c & b & a \end{pmatrix} \begin{pmatrix} a & b & c & d \\ -b & a & d & -c \\ -c & -d & a & b \\ -d & c & -b & a \end{pmatrix} = (a^2 + b^2 + c^2 + d^2) \mathbf{E}.$$

因此
$$|\mathbf{A}| = (a^2 + b^2 + c^2 + d^2)^2$$
 (因为一定有 a^4 项).

对称阵和反对称阵

定义

- 如果方阵 A 满足 A^T = A, 称 A 为对称阵;
- 如果 $\mathbf{A}^{\mathrm{T}} = -\mathbf{A}$, 称 \mathbf{A} 为反对称阵.

例如
$$\begin{pmatrix} 12 & 6 & 1 \\ 6 & 8 & 0 \\ 1 & 0 & 6 \end{pmatrix}$$
 是对称阵. 对角矩阵都是对称阵. 例如 $\begin{pmatrix} 0 & 6 & 1 \\ -6 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}$ 是反对称阵. 反对称阵的对角线均为 0 .

对称阵和反对称阵

例

证明: 如果 A, B, AB 都是对称阵, 则 AB = BA.

证明

由题设可知 $\mathbf{A}^{\mathrm{T}} = \mathbf{A}, \mathbf{B}^{\mathrm{T}} = \mathbf{B},$

$$\mathbf{A}\mathbf{B} = (\mathbf{A}\mathbf{B})^{\mathrm{T}} = \mathbf{B}^{\mathrm{T}}\mathbf{A}^{\mathrm{T}} = \mathbf{B}\mathbf{A}.$$

想一想: 如果 A, B, AB 中有一个对称阵和两个反对称阵呢?

练习

设 A 是 n 阶方阵, (A) 一定是对称阵?

(A) $\mathbf{A}^{\mathrm{T}}\mathbf{A}$

(B) $\mathbf{A} - \mathbf{A}^{\mathrm{T}}$

(C) \mathbf{A}^2

(D) $\mathbf{A}^{\mathrm{T}} - \mathbf{A}$

一般地, 如果 $\mathbf{A} \in M_{m \times n}$, $\mathbf{A} \mathbf{A}^{\mathrm{T}}$ 是 m 阶对称阵, $\mathbf{A}^{\mathrm{T}} \mathbf{A}$ 是 n 阶对称阵.

任一方阵可表为对称阵与反对称阵之和

例

证明: 任一方阵均可写成一对称阵和一反对称阵之和.

证明

$$\mathbf{A} = \frac{\mathbf{A} + \mathbf{A}^{\mathrm{T}}}{2} + \frac{\mathbf{A} - \mathbf{A}^{\mathrm{T}}}{2}.$$

想一想: 如果函数 f(x) 的定义域关于原点对称, 那么 f(x) 一定可以表示成一个偶函数和一个奇函数之和.

方阵的行列式

方阵的行列式我们已在上一章详细研究过. 如果方阵 \mathbf{A} 的行列式 $|\mathbf{A}|=0$, 称 \mathbf{A} 为退化矩阵, 否则称为非退化矩阵. 行列式满足如下性质:

- (1) $|{\bf A}^{\rm T}| = |{\bf A}|;$
- (2) $|\lambda \mathbf{A}| = \lambda^n |\mathbf{A}|$, 其中 $\mathbf{A} \in n$ 阶方阵;
- (3) $|AB| = |A| \cdot |B| = |BA|$.

行列式与乘法交换

我们来证明 $|\mathbf{A}\mathbf{B}| = |\mathbf{A}| \cdot |\mathbf{B}|$. 设 $\mathbf{A} = (a_{ij}), \mathbf{B} = (b_{ij}),$

$$D = \begin{vmatrix} a_{11} & \cdots & a_{1n} & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & 0 \\ a_{1n} & \cdots & a_{nn} & 0 & \cdots & 0 \\ -1 & & & b_{11} & \cdots & b_{nn} \\ & \ddots & & \vdots & \ddots & \vdots \\ & & -1 & b_{n1} & \cdots & b_{nn} \end{vmatrix} = \begin{vmatrix} \mathbf{A} & \mathbf{O} \\ -\mathbf{E} & \mathbf{B} \end{vmatrix} = |\mathbf{A}| \cdot |\mathbf{B}|.$$

经过变换
$$c_{n+j} + b_{1j}c_1 + \dots + b_{nj}, j = 1, \dots, n$$
 得到 $D = \begin{vmatrix} \mathbf{A} & \mathbf{C} \\ -\mathbf{E} & \mathbf{O} \end{vmatrix}$, 其中 $\mathbf{C} = (c_{ij})$, $c_{ij} = \sum_{k=1}^{n} b_{kj}a_{ik}$. 换言之 $\mathbf{C} = \mathbf{AB}$. 再进行变换 $r_i \leftrightarrow r_{n+j}, j = 1, \dots, n$ 得到

$$D = (-1)^n \begin{vmatrix} -\mathbf{E} & \mathbf{O} \\ \mathbf{A} & \mathbf{C} \end{vmatrix} = (-1)^n |-\mathbf{E}| \cdot |\mathbf{C}| = |\mathbf{C}| = |\mathbf{AB}|.$$

例: 方阵的行列式

练习

设 A 为 5 阶方阵, |A| = -1, 则 |2A| = -32, |A|A| = 1.

练习

设
$$\alpha = (1,0,-1), \mathbf{A} = \alpha^{\mathrm{T}} \alpha$$
,则 $|5\mathbf{E} - \mathbf{A}^3| = \underline{^{-75}}$.

练习

 $2\sin a \cos a \qquad \sin a \cos b + \cos a \sin b \qquad \sin a \cos c + \cos a \sin c$ $\sin b \cos a + \cos b \sin a \qquad 2\sin b \cos b \qquad \sin b \cos c + \cos b \sin c$ $\sin c \cos a + \cos c \sin a \qquad \sin c \cos b + \cos c \sin b \qquad 2\sin c \cos c$ = 0

例: 方阵的行列式

答案

注意到

$$\begin{pmatrix} 2\sin a\cos a & \sin a\cos b + \cos a\sin b & \sin a\cos c + \cos a\sin c \\ \sin b\cos a + \cos b\sin a & 2\sin b\cos b & \sin b\cos c + \cos b\sin c \\ \sin c\cos a + \cos c\sin a & \sin c\cos b + \cos c\sin b & 2\sin c\cos c \end{pmatrix}$$

$$= \begin{pmatrix} \sin a & \cos a & 0 \\ \sin b & \cos b & 0 \\ \sin c & \cos c & 0 \end{pmatrix} \begin{pmatrix} \cos a & \cos b & \cos c \\ \sin a & \sin b & \sin c \\ 0 & 0 & 0 \end{pmatrix} .$$

设 $\mathbf{A} \in M_{m \times n}, \mathbf{B} \in M_{n \times m}$. 如果 m > n, 那么

$$|\mathbf{A}\mathbf{B}| = \left| (\mathbf{A}, \mathbf{O}_{m \times (m-n)}) \begin{pmatrix} \mathbf{B} \\ \mathbf{O}_{(m-n) \times m} \end{pmatrix} \right| = 0 = |\mathbf{B}\mathbf{A}|.$$

第三节 逆矩阵

- ■方阵的伴随矩阵
- 逆矩阵的定义和形式
- ■逆矩阵的性质
- ■逆矩阵的应用

伴随矩阵

定义

设 $\mathbf{A} = (a_{ij})_{n \times n}$. 由 **A** 的代数余子式形成的矩阵

$$\mathbf{A}^* = (A_{ji}) = \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{21} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{21} & \cdots & A_{nn} \end{pmatrix}$$

称为矩阵 A 的伴随矩阵.

注意, 伴随矩阵的 (i,j) 元是代数余子式 A_{ji} 而不是 A_{ij} .

例

如果
$$\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
, 那么 $\mathbf{A}^* = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.

伴随矩阵的性质

伴随矩阵满足如下重要性质:

(1)
$$AA^* = A^*A = |A|E_n$$
.

这是因为

$$\mathbf{A}\mathbf{A}^* = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{21} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{21} & \cdots & A_{nn} \end{pmatrix}$$

的 (i,j) 元是

$$a_{i1}A_{j1} + \dots + a_{in}A_{jn} = \begin{cases} |\mathbf{A}|, & i = j; \\ 0, & i \neq j. \end{cases}$$

伴随矩阵的性质

- (2) $(k\mathbf{A})^* = k^{n-1}\mathbf{A}^*$.
- (3) $(\mathbf{A}^{\mathrm{T}})^* = (\mathbf{A}^*)^{\mathrm{T}}$.
- (4) $|\mathbf{A}^*| = |\mathbf{A}|^{n-1}$.

如果 A = O, 显然 $A^* = O$. 如果 |A| = 0 但 $A \neq O$, 那么

$$\mathbf{A}^* \begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{nj} \end{pmatrix} = \mathbf{O}_{n \times 1}.$$

所以以 A^* 为系数的齐次线性方程组有非零解, 从而 $|A^*|=0$. 如果 $|A| \neq 0$, 由 $|A^*| \cdot |A| = ||A| \cdot ||A|| = ||A|| \cdot ||A||$ 可得.

例: 伴随矩阵

例

设非零 $n \geqslant 3$ 实方阵 **A** 满足对任意 $i, j, a_{ij} = A_{ij}$. 求 $|\mathbf{A}|$.

解

由题设可知 $(\mathbf{A}^*)^{\mathrm{T}} = \mathbf{A}$. 因此 $|\mathbf{A}^*| = |\mathbf{A}| = |\mathbf{A}|^{n-1}$, 从而 $|\mathbf{A}| = 0$ 或 1. 如果 $|\mathbf{A}| = 0$, 则

$$\mathbf{A}\mathbf{A}^* = \mathbf{A}\mathbf{A}^{\mathrm{T}} = |\mathbf{A}|\mathbf{E} = \mathbf{O}.$$

而 $\mathbf{A}\mathbf{A}^{\mathrm{T}}$ 的第 i 个对角元为

$$\sum_{k=1}^{n} a_{ik}^2 \geqslant 0.$$

于是 A 所有元素均为零, 矛盾! 因此 |A|=1.

给定一个线性变换 $f:\mathbb{C}^n\to\mathbb{C}^m$, 如果线性变换 $g:\mathbb{C}^m\to\mathbb{C}^n$ 满足

$$(gf)(\mathbf{u}) = \mathbf{u}, \forall \mathbf{u} \in \mathbb{C}^n, \quad (fg)(\mathbf{v}) = \mathbf{v}, \forall \mathbf{v} \in \mathbb{C}^m,$$

则称 g 是 f 的逆.

设 f,g 对应的矩阵分别是 A,B, 则

$$AB = E_m, \quad BA = E_n.$$

注意到 $m \neq n$ 时上述等式不可能成立, 因为 m > n 时, 通过补零列可知 $|\mathbf{AB}| = 0$; m < n 时 $|\mathbf{BA}| = 0$. 因此线性变换的逆只可能在 m = n 时存在.

逆矩阵的定义和唯一性

由此得到对应的矩阵的逆的定义:

定义

设 \mathbf{A} 是 n 阶方阵. 若存在 n 阶方阵 \mathbf{B} 使得

$$AB = BA = E_n$$

则称 A 是可逆矩阵, B 是 A 的逆矩阵.

(1) 如果 A 是可逆矩阵, 它的逆矩阵唯一吗?

设 \mathbf{B}, \mathbf{B}' 都是 \mathbf{A} 的逆矩阵, 则

$$AB = E_n, \quad B'A = E_n.$$

于是

$$\mathbf{B} = (\mathbf{B}'\mathbf{A})\mathbf{B} = \mathbf{B}'(\mathbf{A}\mathbf{B}) = \mathbf{B}'.$$

因此若逆矩阵存在必唯一。

逆矩阵的存在性

(2) 任何非零矩阵都有逆吗?

设
$$\begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
,则

$$a + c = 1$$
, $2a + 2c = 0$.

这不可能, 因此
$$\begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}$$
 不可逆. 实际上从 $\mathbf{AB} = \mathbf{E}$ 可知

$$|\mathbf{A}| \cdot |\mathbf{B}| = 1.$$

所以退化矩阵都是不可逆的.

(3) 那非退化矩阵都可逆吗?

注意到

因此如果 A 非退化,则

$$\mathbf{A}\mathbf{A}^* = \mathbf{A}^*\mathbf{A} = |\mathbf{A}|\mathbf{E}.$$

$$\mathbf{A} \cdot rac{\mathbf{A}^*}{|\mathbf{A}|} = rac{\mathbf{A}^*}{|\mathbf{A}|} \cdot \mathbf{A} = \mathbf{E},$$

$$\mathbf{A}^{-1} = \frac{\mathbf{A}^*}{|\mathbf{A}|}$$

定理

n 阶方阵 \mathbf{A} 可逆当且仅当 $|\mathbf{A}| \neq 0$. 此时 $\mathbf{A}^{-1} = \frac{\mathbf{A}^*}{|\mathbf{A}|}$.

推论

设 A, B 为 n 阶矩阵. 如果 AB = E (或 BA = E), 则 $B = A^{-1}$.

证明

如果 $\mathbf{AB} = \mathbf{E}$, 则 $|\mathbf{A}| \cdot |\mathbf{B}| = 1$, $|\mathbf{A}| \neq 0$. 因此 \mathbf{A} 可逆.

$$\mathbf{A}^{-1} = \mathbf{A}^{-1}(\mathbf{AB}) = \mathbf{B}.$$

例

证明
$$\mathbf{A} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
 可逆并求其逆矩阵.

解

由于
$$|\mathbf{A}| = \cos^2 \theta + \sin^2 \theta = 1$$
, 因此 \mathbf{A} 可逆. 由于 $\mathbf{A}^* = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$, 因此

$$\mathbf{A}^{-1} = \frac{\mathbf{A}^*}{|\mathbf{A}|} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}.$$

注意到 ${\bf A}$ 对应的是平面上沿原点逆时针旋转 θ , 因此 ${\bf A}^{-1}$ 对应的是平面上沿原点逆时针旋转 $-\theta$.

例

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & -1 \\ -1 & 3 & 4 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 2 & 3 & -1 \\ -1 & -3 & 5 \\ 1 & 5 & 11 \end{pmatrix}$$
 是否可逆? 若可逆求其逆矩阵.

解

由于 $|\mathbf{A}| = 10$, 因此 \mathbf{A} 可逆. 计算其代数余子式为

$$A_{11} = 7$$
, $A_{12} = 1$, $A_{13} = 1$, $A_{21} = -5$, $A_{22} = 5$

$$A_{23} = -5, \ A_{31} = -3, \ A_{32} = 1, \ A_{33} = 1.$$

因此
$$\mathbf{A}^{-1} = \frac{\mathbf{A}^*}{10} = \frac{1}{10} \begin{pmatrix} 7 & -5 & -3 \\ 1 & 5 & 1 \\ 1 & -5 & 1 \end{pmatrix}$$
. 由于 $|\mathbf{B}| = 0$, 因此 \mathbf{B} 不可逆.

例

设 $\lambda_1,\ldots,\lambda_n\neq 0$.

$$\Lambda = \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix} = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n),$$

则

$$\Lambda^{-1} = \begin{pmatrix} \lambda_1^{-1} & & & \\ & \lambda_2^{-1} & & \\ & & \ddots & \\ & & & \lambda_n^{-1} \end{pmatrix} = \operatorname{diag}(\lambda_1^{-1}, \lambda_2^{-1}, \dots, \lambda_n^{-1}).$$

逆矩阵的计算方法

逆矩阵通常采用下述方法计算:

- (1) 利用公式 $A^{-1} = \frac{1}{|A|} A^*$, 适用于 2,3 阶方阵, 或用于抽象分析.
- (2) 寻找方阵 \mathbf{B} 使得 $\mathbf{AB} = \mathbf{E}$, 适用于抽象矩阵求逆.
- (3) 利用矩阵的初等变换求逆矩阵, 该方法我们会在之后的学习中接触到.

例

设 $\overline{\mathbf{A}}$ 为 n 阶矩阵且满足 $\mathbf{A}^2 + 3\mathbf{A} - 2\mathbf{E} = \mathbf{O}$. 求 \mathbf{A}^{-1} 和 $(\mathbf{A} - \mathbf{E})^{-1}$.

解

- (1) 由于 $\mathbf{A}^2 + 3\mathbf{A} = 2\mathbf{E}$, 因此 $\mathbf{A}(\mathbf{A} + 3\mathbf{E}) = 2\mathbf{E}, \mathbf{A}^{-1} = \frac{\mathbf{A} + 3\mathbf{E}}{2}$
- (2) 由于 $(\mathbf{A} \mathbf{E})(\mathbf{A} + 4\mathbf{E}) = -2\mathbf{E}$, 因此 $(\mathbf{A} \mathbf{E})^{-1} = -\frac{\mathbf{A} + 4\mathbf{E}}{2}$

设

$$f(x) = a_m x^m + \dots + a_1 x + a_0$$

是一个多项式. 定义

$$f(\mathbf{A}) = a_m \mathbf{A}^m + \dots + a_1 \mathbf{A} + a_0 \mathbf{E}.$$

例如,

- (1) 若 $\mathbf{A} = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$, 则 $f(\mathbf{A}) = \operatorname{diag}(f(\lambda_1), \ldots, f(\lambda_n))$.
- (2) $f(\mathbf{P}\mathbf{A}\mathbf{P}^{-1}) = \mathbf{P}f(\mathbf{A})\mathbf{P}^{-1}$.

若
$$f(\mathbf{A}) = \mathbf{O}$$
, 我们想求 $(\mathbf{A} - \alpha \mathbf{E})^{-1}$. 那么

$$f(\mathbf{A}) - f(\alpha)\mathbf{E} = (\mathbf{A} - \alpha\mathbf{E})\mathbf{B} = -f(\alpha)\mathbf{E}.$$

从而当
$$f(\alpha) \neq 0$$
 时, $(\mathbf{A} - \alpha \mathbf{E})^{-1} = -\frac{\mathbf{B}}{f(\alpha)}$.

想一想: 如果 $A^3 + A^2 - 2E = O$, 如何求 $(A^2 + E)^{-1}$?

- (1) 待定系数设 $(\mathbf{A}^2 + \mathbf{E})(a\mathbf{A}^2 + b\mathbf{A} + c\mathbf{E}) = \mathbf{E}$, 然后使得两边相减是 $\mathbf{A}^3 + \mathbf{A}^2 2\mathbf{E}$ 的倍数.
- (2) 通过 $\mathbf{A}^6 = (\mathbf{A}^3)^2$ 得到 \mathbf{A}^2 满足的方程.

例

多选题: 若 A, B, C 为同阶方阵, 且 A 可逆, 则 (AC).

(A) 若 AB = AC, 则 B = C

(B) 若 AB = CB, 则 A = C

(C) 若 AB = O, 则 B = O

(D) 若 BC = O, 则 B = O

设 n 阶方阵 A, B, C 满足 ABC = E, 则 (D).

(A)
$$ACB = E$$

(A)
$$ACB = E$$
 (B) $CBA = E$ (C) $BAC = E$

(C)
$$BAC = E$$

(D)
$$CAB = E$$

想一想 $\mathbf{B}^{-1} = ?$

练习

设
$$\mathbf{A} = \begin{pmatrix} 4 & 1 & 3 \\ 4 & a & 7 \\ 3 & -1 & 4 \end{pmatrix}$$

设 $\mathbf{A} = \begin{pmatrix} 4 & 1 & 3 \\ 4 & a & 7 \\ 3 & -1 & 4 \end{pmatrix}$, 且存在两个不等的 3×2 矩阵 \mathbf{B}, \mathbf{C} 使得 $\mathbf{AB} = \mathbf{AC}$, 则

设 3 阶方阵 A 满足 $A^3 - 2A + E = O$, 且 |A| = 2, 则 $|(A^2 - 2E)^{-1}| = -2$.

逆矩阵的性质

逆矩阵满足如下性质:

- (1) 设 A 可逆.
 - A^{-1} 也可逆, 且 $(A^{-1})^{-1} = A$;
 - 若 $\lambda \neq 0$, 则 $\lambda \mathbf{A}$ 也可逆, 且 $(\lambda \mathbf{A})^{-1} = \frac{1}{\lambda} \mathbf{A}^{-1}$;
 - \mathbf{A}^{T} 也可逆, 且 $(\mathbf{A}^{\mathrm{T}})^{-1} = (\mathbf{A}^{-1})^{\mathrm{T}}$;
 - $|\mathbf{A}^{-1}| = |\mathbf{A}|^{-1}$.
- (2) 若 A,B 为同阶可逆矩阵,则 AB 也可逆,且

$$(\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}.$$

一般地

$$(\mathbf{A}_1\mathbf{A}_2\cdots\mathbf{A}_n)^{-1}=\mathbf{A}_n^{-1}\cdots\mathbf{A}_2^{-1}\mathbf{A}_1^{-1}.$$

注意矩阵不能相除 $\frac{\mathbf{A}}{\mathbf{B}}$, 因为一般 $\mathbf{B}^{-1}\mathbf{A} \neq \mathbf{A}\mathbf{B}^{-1}$.

伴随矩阵和逆矩阵

注意一般地,
$$(\mathbf{A} + \mathbf{B})^{-1} \neq \mathbf{A}^{-1} + \mathbf{B}^{-1}$$
. 例如 $\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ 均可逆, 但 $\mathbf{A} + \mathbf{B} = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}$ 不可逆.

伴随矩阵的性质

(5) 若 A 可逆, 则 $(\mathbf{A}^{-1})^* = (\mathbf{A}^*)^{-1} = \frac{\mathbf{A}}{|\mathbf{A}|}$.

证明

由于
$$\mathbf{A}\mathbf{A}^* = |\mathbf{A}|\mathbf{E}$$
, 因此 $\mathbf{A}^* = |\mathbf{A}|\mathbf{A}^{-1}$. 于是

$$(\mathbf{A}^{-1})^* = |\mathbf{A}^{-1}|(\mathbf{A}^{-1})^{-1} = \frac{\mathbf{A}}{|\mathbf{A}|}, \quad (\mathbf{A}^*)^{-1} = (|\mathbf{A}|\mathbf{A}^{-1})^{-1} = \frac{\mathbf{A}}{|\mathbf{A}|}.$$

例: 求逆矩阵

例

设 A 是 3 阶方阵, $|\mathbf{A}| = \frac{1}{2}$. 求 $|(2\mathbf{A})^{-1} - (2\mathbf{A})^*|$.

解

$$(2\mathbf{A})^{-1} - (2\mathbf{A})^* = \frac{1}{2}\mathbf{A}^{-1} - 2^2\mathbf{A}^* = \mathbf{A}^* - 4\mathbf{A}^* = -3\mathbf{A}^*,$$

因此

$$|(2\mathbf{A})^{-1} - (2\mathbf{A})^*| = -27|\mathbf{A}^*| = -27|\mathbf{A}|^2 = -\frac{27}{4}.$$

例:解矩阵方程

如果 A,B 可逆,下述矩阵方程可以由逆矩阵表出:

- (1) $\mathbf{A}\mathbf{X} = \mathbf{C} \implies \mathbf{X} = \mathbf{A}^{-1}\mathbf{C};$
- (2) $XA = C \implies X = CA^{-1}$;
- (3) $\mathbf{AXB} = \mathbf{C} \implies \mathbf{X} = \mathbf{A}^{-1}\mathbf{CB}^{-1}$.

例

设
$$\mathbf{A} = \begin{pmatrix} 3 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 4 \end{pmatrix}$$
. 如果 $\mathbf{AX} = \mathbf{A} + 2\mathbf{X}$, 求 \mathbf{X} .

例:解矩阵方程

解

由题设得 $(\mathbf{A} - 2\mathbf{E})\mathbf{X} = \mathbf{A}$. 注意到

$$|\mathbf{A} - 2\mathbf{E}| = \begin{vmatrix} 1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & 2 \end{vmatrix} = -1 \neq 0, \quad (\mathbf{A} - 2\mathbf{E})^{-1} = \begin{pmatrix} 2 & -1 & -1 \\ 2 & -2 & -1 \\ -1 & 1 & 1 \end{pmatrix}.$$

因此

$$\mathbf{X} = (\mathbf{A} - 2\mathbf{E})^{-1}\mathbf{A} = \begin{pmatrix} 2 & -1 & -1 \\ 2 & -2 & -1 \\ -1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 3 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 4 \end{pmatrix} = \begin{pmatrix} 5 & -2 & -2 \\ 4 & -3 & -2 \\ -2 & 2 & 3 \end{pmatrix}.$$

也可由 $X = E + 2(A - 2E)^{-1}$ 计算得到.

练习

设 3 阶矩阵 A, B 满足 $A^{-1}BA = 6A + BA$. 如果 $A = \text{diag}(\frac{1}{2}, \frac{1}{4}, \frac{1}{7})$, 求 B.

答案

右乘 \mathbf{A}^{-1} 得到 $\mathbf{B} = 6(\mathbf{A}^{-1} - \mathbf{E})^{-1} = \text{diag}(6, 2, 1)$. 也可以左乘 \mathbf{A} 右乘 \mathbf{A}^{-1} 得到

$$(\mathbf{E} - \mathbf{A})\mathbf{B} = 6\mathbf{A} = 6\mathbf{E} - 6(\mathbf{E} - \mathbf{A}),$$

$$\mathbf{B} = 6(\mathbf{E} - \mathbf{A})^{-1} - 6\mathbf{E} = \text{diag}(6, 2, 1).$$

例

解矩阵方程
$$\mathbf{A}^*\mathbf{X} = \mathbf{A}^{-1} + 2\mathbf{X}$$
, 其中 $\mathbf{A} = \begin{pmatrix} 1 & 1 & -1 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix}$.

解

注意到 |A|=4. 两边同时左乘 A 得到 4X=E+2AX, 因此

$$\mathbf{X} = (4\mathbf{E} - 2\mathbf{A})^{-1} = \begin{pmatrix} 2 & -2 & 2 \\ 2 & 2 & -2 \\ -2 & 2 & 2 \end{pmatrix}^{-1} = \frac{1}{4} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}.$$

练习

解矩阵方程 $\mathbf{A}^*\mathbf{X}\mathbf{A} = 2\mathbf{X}\mathbf{A} - 8\mathbf{E}$, 其中 $\mathbf{A} = \begin{pmatrix} 1 & 2 & -2 \\ 0 & -2 & 4 \\ 0 & 0 & 1 \end{pmatrix}$.

答案

两边同时左乘 A 右乘 A^{-1} 得到

$$-2\mathbf{X} = 2\mathbf{A}\mathbf{X} - 8\mathbf{E}, \quad (\mathbf{A} + \mathbf{E})\mathbf{X} = 4\mathbf{E},$$

$$\mathbf{X} = 4(\mathbf{A} + \mathbf{E})^{-1} = 4 \begin{pmatrix} 2 & 2 & -2 \\ 0 & -1 & 4 \\ 0 & 0 & 2 \end{pmatrix}^{-1} = 4 \begin{pmatrix} 2 & 4 & -6 \\ 0 & -4 & 8 \\ 0 & 0 & 2 \end{pmatrix}.$$

例

设
$$\mathbf{P} = \begin{pmatrix} 1 & 2 \\ 1 & 4 \end{pmatrix}, \Lambda = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \mathbf{AP} = \mathbf{P}\Lambda, 求 \mathbf{A}^n.$$

解

$$|\mathbf{P}| = 2, \mathbf{P}^{-1} = \frac{1}{2} \begin{pmatrix} 4 & -1 \\ -1 & 1 \end{pmatrix}, \mathbf{A} = \mathbf{P}\Lambda \mathbf{P}^{-1},$$

$$\mathbf{A}^{n} = \mathbf{P}\Lambda \mathbf{P}^{-1} \cdot \mathbf{P}\Lambda \mathbf{P}^{-1} \cdots \mathbf{P}\Lambda \mathbf{P}^{-1} = \mathbf{P}\Lambda^{n}\mathbf{P}^{-1}$$

$$= \frac{1}{2} \begin{pmatrix} 1 & 2 \\ 1 & 4 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 2^{n} \end{pmatrix} \begin{pmatrix} 4 & -1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 - 2^{n} & 2^{n} - 1 \\ 2 - 2^{n+1} & 2^{n+1} - 1 \end{pmatrix}.$$

我们会在后面学习到该技巧来计算一般方阵的幂次.

如果 $\mathbf{A}\mathbf{x} = \mathbf{b} \mathbf{A}$ 可逆, 则

$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{b} = \frac{1}{|\mathbf{A}|}\mathbf{A}^*\mathbf{b}$$

因此

$$x_i = \frac{1}{|\mathbf{A}|} \sum_{k=1}^n A_{ki} b_k.$$

此即克拉默法则.

伴随矩阵的伴随

容易知道, 2 阶方阵满足 $(A^*)^* = A$. 如果 $A \in n \ge 3$ 阶非退化方阵, 则

$$(\mathbf{A}^*)^* = |\mathbf{A}^*|(\mathbf{A}^*)^{-1} = |\mathbf{A}|^{n-1} \frac{\mathbf{A}}{|\mathbf{A}|} = |\mathbf{A}|^{n-2} \mathbf{A}.$$

如果 $A \in n \ge 3$ 阶退化方阵, 我们会在后面证明 $(A^*)^* = O$. 因此

伴随矩阵的性质

(6)
$$(\mathbf{A}^*)^* = \begin{cases} \mathbf{A}, & n = 2; \\ |\mathbf{A}|^{n-2}\mathbf{A}, & n \geqslant 3. \end{cases}$$

例: 逆矩阵的性质

练习

单选题: 设 \mathbf{A} 是 n 阶方阵, 如果 (\mathbf{D}), 则 $\mathbf{A} - \mathbf{E}$ 可逆.

(A) A 可逆

(B) |A| = 0

(C) A 的主对角线元素均为 0

(D) 存在某个正整数 m 使得 $\mathbf{A}^m = \mathbf{O}$

练习

若 A 为 n 阶方阵,则下面命题正确的有1__个.

$$\mathbf{(1)} \ \mathbf{A}^{-1} = \frac{1}{|\mathbf{A}|} \mathbf{A}^*$$

(2)
$$A^* = |A|A^{-1}$$

(3)
$$|\mathbf{A}^*| = |\mathbf{A}|^{n-1}$$

逆矩阵的应用: 通信加密

1929 年, 希尔通过线性变换对信息进行加密和解密处理, 提出了密码史上具有重要地位的希尔密码系统.

例

设接受收到的密文字母为 "WBIZTNWJBRFSGNZ", 加密密钥为 $\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 2 \\ 0 & 1 & 2 \end{pmatrix}$.

请用希尔密码系统解密密文.

解

密文对应的数字为

22, 1, 8, 25, 19, 13, 22, 9, 1, 17, 5, 18, 6, 13, 25.

由于密钥是 3 阶方阵, 所以将上述数字按 3 个一列写成

$$\mathbf{C} = \begin{pmatrix} 22 & 25 & 22 & 17 & 6 \\ 1 & 19 & 9 & 5 & 13 \\ 8 & 13 & 1 & 18 & 25 \end{pmatrix}$$

逆矩阵的应用: 通信加密

续解

解密密钥为
$$\mathbf{A}^{-1} = \begin{pmatrix} 0 & 1 & -1 \\ 2 & -2 & -1 \\ -1 & 1 & 1 \end{pmatrix}$$
, 因此

$$\mathbf{A}^{-1}\mathbf{C} = \begin{pmatrix} -7 & 6 & 8 & -13 & -12 \\ 34 & -1 & 25 & 6 & -39 \\ -13 & 7 & -12 & 6 & 32 \end{pmatrix}, \quad \mathbf{X} = \begin{pmatrix} 19 & 6 & 8 & 13 & 14 \\ 8 & 25 & 25 & 6 & 13 \\ 13 & 7 & 14 & 6 & 6 \end{pmatrix}.$$

查表得到明文: TINGZHI ZONGGONG.

第四节 分块矩阵

- 分块矩阵的定义和运算
- ■特殊分块矩阵

分块矩阵的定义

有时为了研究矩阵和其部分元素形成的矩阵的联系,需要使用分块法将其进行拆分:

定义

用若干条横线和竖线将矩阵 A 分成许多小矩阵, 每个小矩阵成为 A 的子块, 以子块为元素的矩阵称为分块矩阵.

例如

$$\mathbf{A} = egin{pmatrix} \mathbf{O}_{m imes n} & \mathbf{E}_m \ \mathbf{E}_n & \mathbf{O}_{n imes m} \end{pmatrix}$$

就是一个分块矩阵.

分块矩阵的运算: 加法和数乘

如果分块矩阵 \mathbf{A} , \mathbf{B} 同型, 且每个对应分块也同型, 则 $\mathbf{A}+\mathbf{B}$ 就是对应分块相加形成的分块矩阵:

$$\begin{pmatrix} \mathbf{A}_{11} & \cdots & \mathbf{A}_{1r} \\ \vdots & \ddots & \vdots \\ \mathbf{A}_{s1} & \cdots & \mathbf{A}_{sr} \end{pmatrix} + \begin{pmatrix} \mathbf{B}_{11} & \cdots & \mathbf{B}_{1r} \\ \vdots & \ddots & \vdots \\ \mathbf{B}_{s1} & \cdots & \mathbf{B}_{sr} \end{pmatrix} = \begin{pmatrix} \mathbf{A}_{11} + \mathbf{B}_{11} & \cdots & \mathbf{A}_{1r} + \mathbf{B}_{1r} \\ \vdots & \ddots & \vdots \\ \mathbf{A}_{s1} + \mathbf{B}_{s1} & \cdots & \mathbf{A}_{sr} + \mathbf{B}_{sr} \end{pmatrix}.$$

数 λ 和分块矩阵的数乘, 就是 λ 和对应分块数乘形成的分块矩阵:

$$\lambda \begin{pmatrix} \mathbf{A}_{11} & \cdots & \mathbf{A}_{1r} \\ \vdots & \ddots & \vdots \\ \mathbf{A}_{s1} & \cdots & \mathbf{A}_{sr} \end{pmatrix} = \begin{pmatrix} \lambda \mathbf{A}_{11} & \cdots & \lambda \mathbf{A}_{1r} \\ \vdots & \ddots & \vdots \\ \lambda \mathbf{A}_{s1} & \cdots & \lambda \mathbf{A}_{sr} \end{pmatrix}.$$

分块矩阵的运算: 乘法

设

$$\mathbf{A} = \begin{pmatrix} \mathbf{A}_{11} & \cdots & \mathbf{A}_{1r} \\ \vdots & \ddots & \vdots \\ \mathbf{A}_{s1} & \cdots & \mathbf{A}_{sr} \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} \mathbf{B}_{11} & \cdots & \mathbf{B}_{1t} \\ \vdots & \ddots & \vdots \\ \mathbf{B}_{r1} & \cdots & \mathbf{B}_{rt}, \end{pmatrix}$$

且 \mathbf{A}_{ij} 的列数和 \mathbf{B}_{jk} 的行数相同, 则

$$\mathbf{A}\mathbf{B} = egin{pmatrix} \mathbf{C}_{11} & \cdots & \mathbf{C}_{1r} \ dots & \ddots & dots \ \mathbf{C}_{s1} & \cdots & \mathbf{C}_{sr} \end{pmatrix}, \quad \mathbf{C}_{ij} = \sum_{k=1}^r \mathbf{A}_{ik} \mathbf{B}_{kj}.$$

简单来说就是, 如果对应的分块能做相应运算, 则分块矩阵的运算就如同把这些分块视作数一样运算.

设

则

$$\mathbf{A} = \begin{pmatrix} \mathbf{A}_{11} & \cdots & \mathbf{A}_{1r} \\ \vdots & \ddots & \vdots \\ \mathbf{A}_{s1} & \cdots & \mathbf{A}_{sr} \end{pmatrix}$$

$$\mathbf{A}^{ ext{T}} = egin{pmatrix} \mathbf{A}_{11}^{ ext{T}} & \cdots & \mathbf{A}_{s1}^{ ext{T}} \ dots & \ddots & dots \ \mathbf{A}_{1r}^{ ext{T}} & \cdots & \mathbf{A}_{sr}^{ ext{T}} \end{pmatrix}$$

分块对角阵

如果方阵

$$\mathbf{A} = egin{pmatrix} \mathbf{A}_1 & & & & \ & \ddots & & \ & & \mathbf{A}_m \end{pmatrix},$$

其中 $\mathbf{A}_1, \ldots, \mathbf{A}_m$ 都是方阵, 称 \mathbf{A} 为分块对角阵. 记作 $\mathbf{A} = \operatorname{diag}(\mathbf{A}_1, \ldots, \mathbf{A}_m)$. 分块对角阵具有如下性质:

- (1) $|\mathbf{A}| = |\mathbf{A}_1| \cdots |\mathbf{A}_m|$;
- (2) A 可逆当且仅当 $A_1, ..., A_m$ 均可逆, 此时 $A^{-1} = \text{diag}(A_1^{-1}, ..., A_m^{-1})$.
- (3) $\mathbf{A}^k = \operatorname{diag}(\mathbf{A}_1^k, \dots, \mathbf{A}_m^k).$

例: 分块对角阵

例

$$\vec{x} \mathbf{A} = egin{pmatrix} 2 & 1 & 0 & 0 \ 1 & 1 & 0 & 0 \ 0 & 0 & 2 & 0 \ 0 & 0 & -1 & 3 \ \end{pmatrix}$$
的逆矩阵.

解

读
$$\mathbf{A}_1 = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}, \mathbf{A}_2 = \begin{pmatrix} 2 & 0 \\ -1 & 3 \end{pmatrix}$$
,则 $\mathbf{A}_1^{-1} = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}, \quad \mathbf{A}_2^{-1} = \frac{1}{6} \begin{pmatrix} 3 & 0 \\ 1 & 2 \end{pmatrix}.$

故
$$\mathbf{A}^{-1} = \operatorname{diag}(\mathbf{A}_1^{-1}, \mathbf{A}_2^{-1}) = \begin{pmatrix} 1 & -1 & \\ -1 & 2 & \\ & & \frac{1}{2} & 0 \\ & & & \frac{1}{6} & \frac{1}{3} \end{pmatrix}.$$

例: 分块三角阵的逆

例

设 A, B 均可逆, 求 $\begin{pmatrix} A & O \\ C & B \end{pmatrix}$ 的逆矩阵.

解

由 $\begin{vmatrix} \mathbf{A} & \mathbf{O} \\ \mathbf{C} & \mathbf{B} \end{vmatrix} = |\mathbf{A}| \cdot |\mathbf{B}| \neq 0$ 可知该方阵可逆. 设

$$egin{pmatrix} \mathbf{A} & \mathbf{O} \\ \mathbf{C} & \mathbf{B} \end{pmatrix} egin{pmatrix} \mathbf{A}_1 & \mathbf{A}_2 \\ \mathbf{A}_3 & \mathbf{A}_4 \end{pmatrix} = \mathbf{E}.$$

例: 分块三角阵的逆

续解

则

$$AA_1 = E$$
, $AA_2 = O$, $CA_1 + BA_3 = O$, $CA_2 + BA_4 = E$.

于是

$$A_1 = A^{-1}, A_2 = O, A_4 = B^{-1}.$$

再由 $CA_1 + BA_3 = O$ 可得

$$\mathbf{A}_3 = -\mathbf{B}^{-1}\mathbf{C}\mathbf{A}_1 = -\mathbf{B}^{-1}\mathbf{C}\mathbf{A}^{-1}.$$

故

$$\begin{pmatrix} \mathbf{A} & \mathbf{O} \\ \mathbf{C} & \mathbf{B} \end{pmatrix}^{-1} = \begin{pmatrix} \mathbf{A}^{-1} & \mathbf{O} \\ -\mathbf{B}^{-1}\mathbf{C}\mathbf{A}^{-1} & \mathbf{B}^{-1} \end{pmatrix}.$$

例: 分块方阵的伴随

练习

设
$$\mathbf{A}, \mathbf{B}$$
 为同阶方阵, $\mathbf{C} = \begin{pmatrix} \mathbf{A} \\ \mathbf{B} \end{pmatrix}$, 则 $\mathbf{C}^* = (\ \ \ \ \ \)$.

$$(\mathsf{A}) \begin{pmatrix} \mathbf{A}^* \\ \mathbf{B}^* \end{pmatrix}$$

(C)
$$\begin{pmatrix} |\mathbf{B}|\mathbf{A}^* \end{pmatrix}$$

(B)
$$\begin{pmatrix} \mathbf{B}^* \\ \mathbf{A}^* \end{pmatrix}$$

D)
$$\left(egin{matrix} |\mathbf{A}|\mathbf{B}^* \ |\mathbf{B}|\mathbf{A}^* \end{matrix}
ight)$$

第五节 矩阵的初等变换

- 初等变换和行最简形矩阵
- ■初等矩阵
- 矩阵等价

我们在第一章中利用了如下三种初等变换来帮助计算行列式:

初等变换

- (1) 互换两行 (列): $r_i \leftrightarrow r_j, c_i \leftrightarrow c_j$;
- (2) 一行 (列) 乘非零常数 k: kr_i, kc_i;
- (3) j 行 (列) 乘 k 加到 i 行 (列): $r_i + kr_j, c_i + ke_j$.

实际上它也可以用来解线性方程组. 例如

$$\begin{cases} x_1 + 3x_2 - 2x_3 = 4 \\ 3x_1 + 6x_2 - 2x_3 = 11 \\ 2x_1 + x_2 + x_3 = 3 \end{cases} \iff \begin{pmatrix} 1 & 3 & -2 & | & 4 \\ 3 & 6 & -2 & | & 11 \\ 2 & 1 & 1 & | & 3 \end{pmatrix}$$

右侧矩阵被称为增广矩阵.

增广矩阵化为行阶梯形

$$\begin{pmatrix} 1 & 3 & -2 & | & 4 \\ 3 & 6 & -2 & | & 11 \\ 2 & 1 & 1 & | & 3 \end{pmatrix} \xrightarrow{r_2 - 3r_1} \begin{pmatrix} 1 & 3 & -2 & | & 4 \\ 0 & -3 & 4 & | & -1 \\ 0 & -5 & 5 & | & -5 \end{pmatrix} \xrightarrow{-\frac{1}{5}r_3} \begin{pmatrix} 1 & 3 & -2 & | & 4 \\ 0 & -3 & 4 & | & -1 \\ 0 & 1 & -1 & | & 1 \end{pmatrix}$$

$$\xrightarrow{r_2 \leftrightarrow r_3} \begin{pmatrix} 1 & 3 & -2 & | & 4 \\ 0 & 1 & -1 & | & 1 \\ 0 & -3 & 4 & | & -1 \end{pmatrix} \xrightarrow{r_3 + 3r_2} \begin{pmatrix} 1 & 3 & -2 & | & 4 \\ 0 & 1 & -1 & | & 1 \\ 0 & 0 & 1 & | & 2 \end{pmatrix}$$

经过若干次初等变换, 增广矩阵变为行阶梯形矩阵.

增广矩阵化为行最简形

$$\begin{pmatrix} 1 & 3 & -2 & 4 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 1 & 2 \end{pmatrix} \xrightarrow{r_2 + r_3} \begin{pmatrix} 1 & 3 & 0 & 8 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 2 \end{pmatrix} \xrightarrow{r_1 - 3r_2} \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 2 \end{pmatrix}$$

$$\iff \begin{cases} x_1 = -1 \\ x_2 = 3 \\ x_3 = 2 \end{cases}$$

再经过若干次初等变换,增广矩阵变为行最简形矩阵.

线性方程组的初等变换 👄 增广矩阵的初等行变换

定义

矩阵的初等行 (列) 变换包括:

- (1) 对换变换: 互换两行 (列): $r_i \leftrightarrow r_j, c_i \leftrightarrow c_j$;
- (2) 数乘变换: 一行 (列) 乘非零常数 k: kr_i, kc_i;
- (3) 倍加变换: j 行 (列) 乘 k 加到 i 行 (列): $r_i + kr_j$, $c_i + kc_j$.

这三类变换过程都是可逆的, 且其逆变换是同一类变换:

- (1) $r_i \leftrightarrow r_j$ 的逆是 $r_i \leftrightarrow r_j$;
- (2) kr_i 的逆是 $\frac{1}{k}r_i$;
- (3) $r_i + kr_j$ 的逆是 $r_i kr_j$.

行阶梯形矩阵

定义

满足下述条件的矩阵称为行阶梯形矩阵:

- (1) 每个非零行的第一个非零元只出现在上一行第一个非零元的右边;
- (2) 零行只可能出现在最下方.

换言之, 若 $\mathbf{A} \in M_{m \times n}$, 存在正整数

$$1 \leqslant k_1 < k_2 < \dots < k_\ell, j \leqslant m$$

使得 $a_{1,k_1}, \ldots, a_{\ell,k_\ell}$ 均非零; $j < k_i$ 或 $i > \ell$ 时 $a_{ij} = 0$.

$$\begin{pmatrix} 1 & 3 & -2 & 4 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 1 & 2 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 3 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 3 & 4 & -1 \\ 1 & 0 & 1 & 2 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 3 & -1 \end{pmatrix} >$$

任何矩阵都可通过初等行变换化为行阶梯形.

行最简形矩阵

定义

满足下述条件的行阶梯形矩阵称为行最简形矩阵:

- (1) 每个非零行的第一个非零元是 1;
- (2) 每个非零行的第一个非零元所在列其它元素均为 0.

$$\begin{pmatrix} \mathbf{1} & 0 & 0 & 4 \\ 0 & \mathbf{1} & 0 & 1 \\ 0 & 0 & \mathbf{1} & 2 \end{pmatrix} \qquad \begin{pmatrix} 0 & \mathbf{1} & 0 & 2 & 0 \\ 0 & 0 & \mathbf{1} & 1 & 0 \\ 0 & 0 & 0 & 0 & \mathbf{1} \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

任何矩阵都可通过初等行变换化为行最简形.

行最简形矩阵

例

用初等行变换将
$$\mathbf{A} = \begin{pmatrix} 1 & 3 & -9 & 3 \\ 0 & 1 & -3 & 4 \\ -2 & -3 & 9 & 6 \end{pmatrix}$$

解

$$\begin{pmatrix} 1 & 3 & -9 & 3 \\ 0 & 1 & -3 & 4 \\ -2 & -3 & 9 & 6 \end{pmatrix} \xrightarrow{r_3+2r_1} \begin{pmatrix} 1 & 3 & -9 & 3 \\ 0 & 1 & -3 & 4 \\ 0 & 3 & -9 & 12 \end{pmatrix} \xrightarrow{r_3-3r_2} \begin{pmatrix} 1 & 3 & -9 & 3 \\ 0 & 1 & -3 & 4 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
$$\xrightarrow{r_1-3r_2} \begin{pmatrix} 1 & 0 & 0 & -9 \\ 0 & 1 & -3 & 4 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

第一类初等矩阵

单位阵 E 经过一次初等变换得到的方阵称为初等矩阵.

(1) $r_i \leftrightarrow r_j$ 和 $c_i \leftrightarrow c_j$ 都对应初等矩阵

第二类初等矩阵

(2) kr_i, kc_i 都对应初等矩阵

(3) $r_i + kr_j, c_j + kc_i$ 都对应初等矩阵

我们来看

$$\mathbf{E}(1,3)\mathbf{A} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} = \begin{pmatrix} 7 & 8 & 9 \\ 4 & 5 & 6 \\ 1 & 2 & 3 \end{pmatrix}.$$

 $\mathbf{E}(i,j)$ 左乘在矩阵 A 上, 即对 A 实施 $r_i \leftrightarrow r_j$.

$$\mathbf{E}(2(k))\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 4k & 5k & 6k \\ 7 & 8 & 9 \end{pmatrix}.$$

 $\mathbf{E}(i(k))$ 左乘在矩阵 A 上, 即对 A 实施 kr_i .

$$\mathbf{E}(3,1(k))\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ k & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 + k & 8 + 2k & 9 + 3k \end{pmatrix}.$$

 $\mathbf{E}(i,j(k))$ 左乘在矩阵 A 上, 即对 A 实施 $r_i + kr_j$.

从分块矩阵乘法

$$\mathbf{E}(i,j)\mathbf{A} = \mathbf{E}(i,j) \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_i \\ \vdots \\ \alpha_j \\ \vdots \\ \alpha_n \end{pmatrix} = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_j \\ \vdots \\ \alpha_i \\ \vdots \\ \alpha_n \end{pmatrix}$$

可以看出确实如此.

同理, 初等矩阵右乘矩阵 A 等同于对 A 实施对应的初等列变换.

初等矩阵与初等变换

定理

设 $\mathbf{A} \in M_{m \times n}$.

- (1) 对 A 实施一次初等行变换, 相当于在A 的左边乘对应的 m 阶初等矩阵.
- (2) 对 A 实施一次<mark>初等列变换</mark>,相当于在A 的右边乘对应的 n 阶初等矩阵.

即左行右列.

例: 初等矩阵与初等变换

读
$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}, \mathbf{B} = \begin{pmatrix} a_{11} & a_{13} & a_{12} \\ a_{21} & a_{23} & a_{22} \\ a_{31} + 2a_{11} & a_{33} + 2a_{13} & a_{32} + 2a_{12} \end{pmatrix},$$

$$\mathbf{P}_{1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \mathbf{P}_{2} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \mathbf{P}_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix}.$$

$$\mathbf{F} \angle \mathbf{B} = (\mathbf{C})$$

$$\mathbf{A} \mathbf{P}_{3} \mathbf{A} \mathbf{P}_{2} \qquad (\mathbf{B}) \mathbf{P}_{2} \mathbf{A} \mathbf{P}_{3} \qquad (\mathbf{C}) \mathbf{P}_{3} \mathbf{A} \mathbf{P}_{1} \qquad (\mathbf{D}) \mathbf{P}_{1} \mathbf{P}_{2} \mathbf{A} \mathbf{P}_{3}$$

例: 初等矩阵与初等变换

例

设 A 为 3 阶方阵,将 A 的第 1 列与第 2 列交换得 B, 再把 B 的第 2 列加到第 3 列得到 C. 求满足 AQ = C 的可逆矩阵 Q.

解

$$\mathbf{B} = \mathbf{A} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \mathbf{C} = \mathbf{B} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$
 因此

$$\mathbf{Q} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

例: 初等矩阵的逆

由于初等变换都是可逆, 因此初等矩阵也都是可逆的:

- (1) $\mathbf{E}(i,j)\mathbf{E}(i,j) = \mathbf{E} \implies \mathbf{E}(i,j)^{-1} = \mathbf{E}(i,j);$
- (2) $\mathbf{E}(i(k))\mathbf{E}(i(\frac{1}{k})) = \mathbf{E} \implies \mathbf{E}(i(k))^{-1} = \mathbf{E}(i(\frac{1}{k}));$
- (3) $\mathbf{E}(i, j(k))\mathbf{E}(i, j(-k)) = \mathbf{E} \implies \mathbf{E}(i, j(k))^{-1} = \mathbf{E}(i, j(-k)).$

例

设 \mathbf{A} 是 n 阶可逆矩阵,将 \mathbf{A} 的第 i 行与第 j 行对换后得到的矩阵记为 \mathbf{B} ,则 $\mathbf{A}\mathbf{B}^{-1} = \underline{\mathbf{E}(i,j)}$

例: 初等矩阵与初等变换

设
$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}, \mathbf{B} = \begin{pmatrix} a_{13} & -a_{11} + a_{12} & a_{11} \\ a_{23} & -a_{21} + a_{22} & a_{21} \\ a_{33} & -a_{31} + a_{32} & a_{31} \end{pmatrix},$$

$$\mathbf{P}_{1} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \mathbf{P}_{2} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \mathbf{P}_{3} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \mathbf{E} \mathbf{A} \, \mathbf{P} \mathbf{B} \mathbf{B}^{-1} = (\mathbf{B})$$
(A) $\mathbf{A}^{-1}\mathbf{P}_{1}\mathbf{P}_{2}$ (B) $\mathbf{P}_{1}\mathbf{P}_{2}\mathbf{A}^{-1}$ (C) $\mathbf{P}_{1}\mathbf{P}_{3}\mathbf{A}^{-1}$ (D) $\mathbf{P}_{3}\mathbf{P}_{1}\mathbf{A}^{-1}$

例: 初等矩阵

例

这题可以直接计算, 也可以利用初等矩阵对应的变换来看.

解

$$\mathbf{P}_1\mathbf{P}_2$$
 就是对 \mathbf{P}_1 实施初等列变换 c_1+ac_4 , 即 $\mathbf{P}_1\mathbf{P}_2=egin{pmatrix} 0 & 0 & 1 & 0 \ 0 & 1 & 0 & 0 \ 1 & 0 & 0 & 0 \ a & 0 & 0 & 1 \end{pmatrix}$.

例: 初等矩阵

续解

同理
$$\mathbf{P}_1\mathbf{P}_2\mathbf{P}_3 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & k & 0 & 0 \\ 1 & 0 & 0 & 0 \\ a & 0 & 0 & 1 \end{pmatrix}$$

反过来,
$$\mathbf{P}_1^{-1} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
, $\mathbf{P}_2^{-1}\mathbf{P}_1^{-1} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & -a & 1 \end{pmatrix}$,

$$(\mathbf{P}_1\mathbf{P}_2\mathbf{P}_3)^{-1} = \mathbf{P}_3^{-1}\mathbf{P}_2^{-1}\mathbf{P}_1^{-1} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1/k & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & -a & 1 \end{pmatrix}.$$

例: 初等矩阵

将可逆方阵 **A** 的第 1 行的 2 倍加到第 2 行得到 **B**, 则对 A^{-1} 实施初等变换(D)可得到 B^{-1} .

(A) $r_2 + 2r_1$

(B) $r_2 - 2r_1$

(C) $c_1 + 2c_2$

(D) $c_1 - 2c_2$

初等变换解矩阵方程

如果 $(\mathbf{A}, \mathbf{B}) \stackrel{\mathcal{T}}{\sim} (\mathbf{E}, \mathbf{X})$, 那么存在可逆矩阵 \mathbf{P} 使得 $\mathbf{P}(\mathbf{A}, \mathbf{B}) = (\mathbf{E}, \mathbf{X})$. 即 $\mathbf{P} = \mathbf{A}^{-1}, \mathbf{X} = \mathbf{A}^{-1}\mathbf{B}$. 所以这种方法可用来解矩阵方程 $\mathbf{A}\mathbf{X} = \mathbf{B}$, 其中 \mathbf{A} 是可逆阵. 特别地, $(\mathbf{A}, \mathbf{E}) \stackrel{\mathcal{T}}{\sim} (\mathbf{E}, \mathbf{A}^{-1})$ 可用来帮助计算矩阵的逆. 类似地 $\begin{pmatrix} \mathbf{A} \\ \mathbf{B} \end{pmatrix} \stackrel{c}{\sim} \begin{pmatrix} \mathbf{E} \\ \mathbf{X} \end{pmatrix}$ 可用

来解 XA = B, 其中 A 是可逆阵.

练习

求
$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 1 & 4 \end{pmatrix}$$
 的逆.

解

$$(\mathbf{A}, \mathbf{E}) = \begin{pmatrix} 1 & 1 & 2 & 1 & 0 & 0 \\ 1 & 2 & 3 & 0 & 1 & 0 \\ 2 & 1 & 4 & 0 & 0 & 1 \end{pmatrix} \xrightarrow[r_3 - 2r_1]{r_3 - 2r_1} \begin{pmatrix} 1 & 1 & 2 & 1 & 0 & 0 \\ 0 & 1 & 1 & -1 & 1 & 0 \\ 0 & -1 & 0 & -2 & 0 & 1 \end{pmatrix}$$

续解

$$(\mathbf{A}, \mathbf{E}) \stackrel{r}{\sim} \begin{pmatrix} 1 & 1 & 2 & 1 & 0 & 0 \\ 0 & 1 & 1 & -1 & 1 & 0 \\ 0 & -1 & 0 & -2 & 0 & 1 \end{pmatrix} \stackrel{r_3+r_2}{\longleftarrow} \begin{pmatrix} 1 & 1 & 2 & 1 & 0 & 0 \\ 0 & 1 & 1 & -1 & 1 & 0 \\ 0 & 0 & 1 & -3 & 1 & 1 \end{pmatrix}$$

$$\stackrel{r_1-2r_3}{\sim} \begin{pmatrix} 1 & 1 & 0 & 7 & -2 & -2 \\ 0 & 1 & 0 & 2 & 0 & -1 \\ 0 & 0 & 1 & -3 & 1 & 1 \end{pmatrix} \stackrel{r_1-r_2}{\longleftarrow} \begin{pmatrix} 1 & 0 & 0 & 5 & -2 & -1 \\ 0 & 1 & 0 & 2 & 0 & -1 \\ 0 & 0 & 1 & -3 & 1 & 1 \end{pmatrix} .$$

$$\stackrel{1}{\sim} = \begin{pmatrix} 5 & -2 & -1 \\ 2 & 0 & -1 \\ 3 & 1 & 1 & 1 & 1 \end{pmatrix} .$$

例: 初等变换解矩阵方程

练习

若
$$\mathbf{A} = \begin{pmatrix} 2 & 2 & 0 \\ 2 & 1 & 3 \\ 0 & 1 & 0 \end{pmatrix}$$
, $\mathbf{AX} = \mathbf{A} + \mathbf{X}$, 求 \mathbf{X} .

解

由题设知 $(\mathbf{A} - \mathbf{E})\mathbf{X} = \mathbf{A}, \mathbf{X} = (\mathbf{A} - \mathbf{E})^{-1}\mathbf{A}.$

$$(\mathbf{A} - \mathbf{E}, \mathbf{A}) = \begin{pmatrix} 1 & 2 & 0 & 2 & 2 & 0 \\ 2 & 0 & 3 & 2 & 1 & 3 \\ 0 & 1 & -1 & 0 & 1 & 0 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & 2 & 0 & 2 & 2 & 0 \\ 0 & 1 & -1 & 0 & 1 & 0 \\ 0 & -4 & 3 & -2 & -3 & 3 \end{pmatrix}$$

例: 初等变换解矩阵方程

续解

$$(\mathbf{A} - \mathbf{E}, \mathbf{A}) \stackrel{r}{\sim} \begin{pmatrix} 1 & 2 & 0 & 2 & 2 & 0 \\ 0 & 1 & -1 & 0 & 1 & 0 \\ 0 & -4 & 3 & -2 & -3 & 3 \end{pmatrix} \stackrel{r_3 + 4r_2}{\sim} \begin{pmatrix} 1 & 2 & 0 & 2 & 2 & 0 \\ 0 & 1 & -1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 2 & -1 & -3 \end{pmatrix}$$

$$\stackrel{r_2 + r_3}{\sim} \begin{pmatrix} 1 & 2 & 0 & 2 & 2 & 0 \\ 0 & 1 & 0 & 2 & 0 & -3 \\ 0 & 0 & 1 & 2 & -1 & -3 \end{pmatrix} \stackrel{r_1 - 2r_2}{\sim} \begin{pmatrix} 1 & 0 & 0 & -2 & 2 & 6 \\ 0 & 1 & 0 & 2 & 0 & -3 \\ 0 & 0 & 1 & 2 & -1 & -3 \end{pmatrix} .$$

$$& & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ &$$

练习

- (1) 设 \mathbf{A} 是 3 阶方阵, 存在可逆阵 \mathbf{P} 使得 $\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{pmatrix} 1 & 2 & 3 \\ & 3 & 3 \end{pmatrix}$, 则 $\mathbf{P}^{-1}\mathbf{A}^*\mathbf{P} = \operatorname{diag}(6,3,2)$
- (2) 设 A 是 3 阶方阵, 存在可逆阵 $\mathbf{P} = (\alpha_1, \alpha_2, \alpha_3)$ 使得 $\mathbf{P}^{-1}\mathbf{AP} = \begin{pmatrix} 1 & 2 & \\ & 3 \end{pmatrix}$. 若 $\mathbf{Q} = (\alpha_1, \alpha_3, \alpha_2)$, 则 $\mathbf{Q}^{-1}\mathbf{AQ} = \frac{\operatorname{diag}(1, 3, 2)}{3}$.
- (3) 设 n 阶方阵 A, B 满足 AB = E, 则以下说法正确的有 4 个.
 - (I) A 等价于 E; (II) A 等价于 B;
 - (III) A 可经过有限次初等行变换化为 B; (IV) AB = BA.

例: 初等变换

练习

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}, \qquad \mathbf{B} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}$$

$$\mathbf{P}_1 = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}, \qquad \mathbf{P}_2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

若 A 可逆, 则
$$\mathbf{B}^{-1} = (\ \mathbf{C}\)$$
.

(A)
$$A^{-1}P_1P_2$$

(A)
$$A^{-1}P_1P_2$$
 (B) $P_1A^{-1}P_2$

(C)
$$P_1P_2A^{-1}$$

(D)
$$\mathbf{P}_2\mathbf{A}^{-1}\mathbf{P}_1$$

定义

- (1) 如果 A 经过有限次初等行变换变为 B, 则称 A 和 B 行等价, 记作 $A \stackrel{\tau}{\sim} B$.
- (2) 如果 A 经过有限次初等列变换变为 B, 则称 A 和 B 列等价, 记作 $A \stackrel{c}{\sim} B$.
- (3) 如果 A 经过有限次初等行变换和初等列变换变为 B, 则称 A 和 B 列等价, 记作 $A \sim B$.

每个矩阵都可以通过初等行变换变为行最简形矩阵. 对于可逆方阵 P, 由于初等矩阵都是可逆的, 因此它对应的行最简形矩阵 Q 也是可逆的. 于是 Q 没有零行, 它只能是 E. 换言之, 可逆方阵可以写成有限个初等矩阵的乘积. 所以 $A \stackrel{7}{\sim} B$ 等价于存在可逆矩阵 P 使得 B = PA.

矩阵等价的刻画

定理

- (1) $\mathbf{A} \stackrel{r}{\sim} \mathbf{B}$ 当且仅当存在可逆矩阵 \mathbf{P} 使得 $\mathbf{B} = \mathbf{P}\mathbf{A}$.
- (2) $\mathbf{A} \stackrel{c}{\sim} \mathbf{B}$ 当且仅当存在可逆矩阵 \mathbf{Q} 使得 $\mathbf{B} = \mathbf{AQ}$.
- (3) $A \sim B$ 当且仅当存在可逆矩阵 P, Q 使得 B = PAQ.

由此可知

命题

矩阵的行等价、列等价、等价均满足

- (1) 自反性: A ~ A;
- (2) 对称性: $\mathbf{A} \sim \mathbf{B} \implies \mathbf{B} \sim \mathbf{A}$;
- (3) 传递性: $\mathbf{A} \sim \mathbf{B}, \mathbf{B} \sim \mathbf{C} \implies \mathbf{A} \sim \mathbf{C}$.

任一矩阵通过有限次初等行变换变为行最简形后,可通过初等列变换将其变为标准型 $\begin{pmatrix} \mathbf{E}_r & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \end{pmatrix}$. 例如:

$$\begin{pmatrix} 1 & 0 & 0 & -9 \\ 0 & 1 & -3 & 4 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{c_4 + 9c_1} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & -3 & 4 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{c_3 + 3c_2} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

矩阵的等价也叫做相抵,上述标准型也叫作相抵标准型. 我们会看到不同的 r 对应的相抵标准型不等价. 所以相抵标准型相当于在每一个等价类中找到了一个具有代表性的矩阵.

命题

方阵 \mathbf{A} 可逆当且仅当它的标准型为 \mathbf{E}_n .

例: 初等变换

例

将矩阵
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}$$
 表示成有限个初等阵的乘积.

解

$$\mathbf{A} \stackrel{r_2 \leftrightarrow r_3}{\rightleftharpoons} \begin{pmatrix} 0 & -1 & 0 \\ 2 & 0 & -1 \end{pmatrix} \stackrel{r_3 - 2r_1}{\rightleftharpoons} \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \stackrel{r_2}{\rightleftharpoons} \stackrel{0}{\rightleftharpoons} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{E} \, \mathbf{E} \, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \mathbf{A} = \mathbf{E},$$

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

第六节 矩阵的秩

- ■矩阵秩的定义
- 矩阵秩与子式
- ■矩阵秩的性质

上一节中我们说每个矩阵 \mathbf{A} 都等价于某个标准型 $\begin{pmatrix} \mathbf{E}_r & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \end{pmatrix}$. 称 r 为 \mathbf{A} 的秩, 记作 $\mathbf{R}(\mathbf{A})$.

第一个问题是, 秩是唯一的吗? 如果两个 $m \times n$ 矩阵

$$\begin{pmatrix} \mathbf{E}_r & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \end{pmatrix} \sim \begin{pmatrix} \mathbf{E}_s & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \end{pmatrix}, \quad (r > s)$$

则存在可逆的方阵 $\mathbf{P} \in M_m, \mathbf{Q} \in M_n$ 使得

$$egin{pmatrix} \mathbf{E}_r & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \end{pmatrix} \mathbf{Q} = \mathbf{P} egin{pmatrix} \mathbf{E}_s & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \end{pmatrix}.$$

设
$$\mathbf{P} = \begin{pmatrix} \mathbf{P}_1 & \mathbf{P}_2 \\ \mathbf{P}_3 & \mathbf{P}_4 \end{pmatrix}, \mathbf{Q} = \begin{pmatrix} \mathbf{Q}_1 & \mathbf{Q}_2 \\ \mathbf{Q}_3 & \mathbf{Q}_4 \end{pmatrix}, 其中 \mathbf{P}_1 \in M_s, \mathbf{Q}_1 \in M_r.$$
 则
$$\begin{pmatrix} \mathbf{Q}_1 & \mathbf{Q}_2 \\ \mathbf{O} & \mathbf{O} \end{pmatrix} = \begin{pmatrix} \mathbf{P}_1 & \mathbf{O} \\ \mathbf{P}_3 & \mathbf{O} \end{pmatrix}.$$

由于 r > s, 因此 \mathbf{Q}_1 的最后 r - s 列为零, $\mathbf{Q}_2 = \mathbf{O}$. 从而

$$|\mathbf{Q}| = \begin{vmatrix} \mathbf{Q}_1 & \mathbf{O} \\ \mathbf{Q}_3 & \mathbf{Q}_4 \end{vmatrix} = |\mathbf{Q}_1| \cdot |\mathbf{Q}_4| = 0.$$

矛盾! 因此不同的标准型之间不等价, 也就是说矩阵的秩是唯一的.

行阶梯形矩阵的秩

对于行阶梯形矩阵,再实施初等变换使其变为行最简形矩阵或标准型矩阵,并不会改变它的非零行的个数.换言之,行阶梯形矩阵的秩就是非零行的个数.

例

求矩阵
$$\mathbf{A} = \begin{pmatrix} 2 & -1 & 0 & 3 & -2 \\ 0 & 3 & 1 & -2 & 5 \\ 0 & 0 & 0 & 4 & -3 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & -5 \\ 4 & 7 & 1 \end{pmatrix}$$
的秩.

解

 \mathbf{A} 是行阶梯形矩阵, 因此 $R(\mathbf{A})=3$.

$$\mathbf{B} \overset{r_2 - 2r_1}{\underset{r_4 - 4r_1}{\longleftarrow}} \begin{pmatrix} 1 & 2 & 3 \\ 0 & -1 & -11 \\ 0 & -1 & -11 \end{pmatrix} \overset{r_3 - r_2}{\underset{-r_2}{\longleftarrow}} \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 11 \\ 0 & 0 & 0 \end{pmatrix} \implies R(\mathbf{B}) = 2.$$

例: 计算矩阵的秩

求矩阵
$$\mathbf{A} = \begin{pmatrix} 1 & 1 & a \\ -1 & a-1 & 1-a \\ 1 & 1 & a^2 \\ 1 & 1 & 2a+1 \end{pmatrix}$$
的秩.

$$\mathbf{A} \underbrace{\begin{array}{c} r_{2}+r_{1} \\ r_{3}-r_{1} \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array}}_{a} \underbrace{\begin{pmatrix} 1 & 1 & a \\ 0 & a & 1 \\ 0 & 0 & a^{2}-a \\ 0 & 0 & a+1 \\ \end{pmatrix}}_{c_{3}-ar_{4}} \underbrace{\begin{pmatrix} 1 & 1 & a \\ 0 & a & 1 \\ 0 & 0 & a \\ 0 & 0 & a+1 \\ \end{pmatrix}}_{c_{3}-ar_{4}} \underbrace{\begin{pmatrix} 1 & 1 & a \\ 0 & a & 1 \\ 0 & 0 & a \\ 0 & 0 & a+1 \\ \end{pmatrix}}_{c_{3}-ar_{4}} \underbrace{\begin{pmatrix} 1 & 1 & a \\ 0 & a & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ \end{pmatrix}}_{c_{3}-ar_{4}} \underbrace{\begin{pmatrix} 1 & 1 & a \\ 0 & a & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ \end{pmatrix}}_{c_{3}-ar_{4}} \underbrace{\begin{pmatrix} 1 & 1 & a \\ 0 & a & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ \end{pmatrix}}_{c_{3}-ar_{4}} \underbrace{\begin{pmatrix} 1 & 1 & a \\ 0 & a & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ \end{pmatrix}}_{c_{3}-ar_{4}} \underbrace{\begin{pmatrix} 1 & 1 & a \\ 0 & a & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ \end{pmatrix}}_{c_{3}-ar_{4}} \underbrace{\begin{pmatrix} 1 & 1 & a \\ 0 & a & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ \end{pmatrix}}_{c_{3}-ar_{4}} \underbrace{\begin{pmatrix} 1 & 1 & a \\ 0 & a & 1 \\ 0 & 0 & 0 \\ \end{pmatrix}}_{c_{3}-ar_{4}} \underbrace{\begin{pmatrix} 1 & 1 & a \\ 0 & a & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ \end{pmatrix}}_{c_{3}-ar_{4}} \underbrace{\begin{pmatrix} 1 & 1 & a \\ 0 & a & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ \end{pmatrix}}_{c_{3}-ar_{4}} \underbrace{\begin{pmatrix} 1 & 1 & a \\ 0 & a & 1 \\ 0 & 0 & 0 \\ \end{pmatrix}}_{c_{3}-ar_{4}} \underbrace{\begin{pmatrix} 1 & 1 & a \\ 0 & a & 1 \\ 0 & 0 & 1 \\ \end{pmatrix}}_{c_{3}-ar_{4}} \underbrace{\begin{pmatrix} 1 & 1 & a \\ 0 & a & 1 \\ 0 & 0 & 0 \\ \end{pmatrix}}_{c_{3}-ar_{4}} \underbrace{\begin{pmatrix} 1 & 1 & a \\ 0 & a & 1 \\ 0 & 0 & 0 \\ \end{pmatrix}}_{c_{3}-ar_{4}} \underbrace{\begin{pmatrix} 1 & 1 & a \\ 0 & a & 1 \\ 0 & 0 & 0 \\ \end{pmatrix}}_{c_{3}-ar_{4}} \underbrace{\begin{pmatrix} 1 & 1 & a \\ 0 & a & 1 \\ 0 & 0 & 0 \\ \end{pmatrix}}_{c_{3}-ar_{4}} \underbrace{\begin{pmatrix} 1 & 1 & a \\ 0 & a & 1 \\ 0 & 0 & 0 \\ \end{pmatrix}}_{c_{3}-ar_{4}} \underbrace{\begin{pmatrix} 1 & 1 & a \\ 0 & a & 1 \\ 0 & 0 & 1 \\ \end{pmatrix}}_{c_{3}-ar_{4}} \underbrace{\begin{pmatrix} 1 & 1 & a \\ 0 & a & 1 \\ 0 & 0 & 1 \\ \end{pmatrix}}_{c_{3}-ar_{4}} \underbrace{\begin{pmatrix} 1 & 1 & a \\ 0 & a & 1 \\ 0 & 0 & 0 \\ \end{pmatrix}}_{c_{3}-ar_{4}} \underbrace{\begin{pmatrix} 1 & 1 & a \\ 0 & a & 1 \\ 0 & 0 & 0 \\ \end{pmatrix}}_{c_{3}-ar_{4}} \underbrace{\begin{pmatrix} 1 & 1 & a \\ 0 & a & 1 \\ 0 & 0 & 0 \\ \end{pmatrix}}_{c_{3}-ar_{4}} \underbrace{\begin{pmatrix} 1 & 1 & a \\ 0 & a & 1 \\ 0 & 0 & 1 \\ \end{pmatrix}}_{c_{3}-ar_{4}} \underbrace{\begin{pmatrix} 1 & 1 & a \\ 0 & a & 1 \\ 0 & 0 & 1 \\ \end{pmatrix}}_{c_{3}-ar_{4}} \underbrace{\begin{pmatrix} 1 & 1 & a \\ 0 & a & 1 \\ 0 & 0 & 1 \\ \end{pmatrix}}_{c_{3}-ar_{4}} \underbrace{\begin{pmatrix} 1 & 1 & a \\ 0 & a & 1 \\ 0 & 0 & 1 \\ \end{pmatrix}}_{c_{3}-ar_{4}} \underbrace{\begin{pmatrix} 1 & 1 & a \\ 0 & a & 1 \\ 0 & 0 & 1 \\ \end{pmatrix}}_{c_{3}-ar_{4}} \underbrace{\begin{pmatrix} 1 & 1 & a \\ 0 & a & 1 \\ 0 & 0 & 1 \\ \end{pmatrix}}_{c_{3}-ar_{4}} \underbrace{\begin{pmatrix} 1 & 1 & a \\ 0 & a & 1 \\ 0 & a & 1 \\ \end{pmatrix}}_{c_{3}-ar_{4}} \underbrace{\begin{pmatrix} 1 & 1 & a \\ 0 & a & 1 \\ 0 & a & 1 \\$$

$$\begin{pmatrix}
1 & 1 & a \\
0 & a & 1 \\
0 & 0 & a \\
0 & 0 & a+1
\end{pmatrix}$$

$$\begin{bmatrix} 1 \\ a \\ +1 \end{bmatrix}$$

$$r_4-r_3$$

$$\begin{bmatrix} 0\\0\\0 \end{bmatrix}$$

$$\begin{pmatrix} 1 & 1 & a \\ 0 & a & 1 \\ 0 & 0 & a \end{pmatrix}$$

$$\begin{pmatrix} 0 & a \\ 0 & 1 \end{pmatrix}$$

$$\underbrace{car_4}_{ar_4} \begin{bmatrix} 1 & 1 \\ 0 & a \\ 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

因此
$$a \neq 0$$
 时, $R(\mathbf{A}) = 3$; $a = 0$ 时, $R(\mathbf{A}) = 2$.

例: 计算矩阵的秩

练习

求矩阵
$$\mathbf{A} = \begin{pmatrix} 1 & 1 & -2 & 3 \\ 2 & 1 & -6 & 4 \\ 3 & 2 & m & 7 \end{pmatrix}$$
 的秩

答案

$$m \neq -8$$
 H, $R(\mathbf{A}) = 3$; $m = -8$ H, $R(\mathbf{A}) = 2$.

例: 计算矩阵的秩

例

求矩阵
$$\mathbf{A} = \begin{pmatrix} a & 1 & 1 & 1 \\ 1 & a & 1 & 1 \\ 1 & 1 & a & 1 \\ 1 & 1 & 1 & a \end{pmatrix}$$
 的秩.

解

$$\mathbf{A} \xrightarrow[r_{4}-ar_{1}]{r_{4}-ar_{1}} \begin{pmatrix} 1 & 1 & 1 & a \\ 0 & a-1 & 0 & 1-a \\ 0 & 0 & a-1 & 1-a \\ 0 & 1-a & 1-a & 1-a^{2} \end{pmatrix} \xrightarrow[r_{4}+r_{3}]{r_{4}+r_{2}} \begin{pmatrix} 1 & 1 & 1 & a \\ 0 & a-1 & 0 & 1-a \\ 0 & 0 & a-1 & 1-a \\ 0 & 0 & 0 & -(a+3)(a-1) \end{pmatrix}$$

因此 $a \neq 1, -3$ 时, $R(\mathbf{A}) = 4$; a = -3 时, $R(\mathbf{A}) = 3$; a = 1 时, $R(\mathbf{A}) = 1$.

线性代数 ▶ 第二章 矩阵及其运算 ▶ 6 矩阵的秩 ▶ A 矩阵秩的定义

矩阵秩的性质

矩阵秩有另一种刻画方式. 矩阵 \mathbf{A} 任取 k 行 k 列交叉得到的 k^2 个元素 (不改变位置次序) 形成的 k 阶方阵的行列式, 称为 \mathbf{A} 的 k 阶子式. 例如 n 阶方阵的余子式是n-1 阶子式.

定理

设 $R(\mathbf{A}) = r$, 则存在非零的 r 阶子式, 但所有的 r+1 阶子式都是零.

根据行列式的拉普拉斯展开, 如果 $\mathbf A$ 的 k 阶子式均为零, 则 k+1 阶子式也都是零. 因此 $\mathbf A$ 的任意 s>r 阶子式都是零.

推论

- (1) $R(\mathbf{A}) \geqslant r \iff \mathbf{A}$ 存在非零 r 阶子式.
- (2) $R(\mathbf{A}) \leqslant r \iff \mathbf{A}$ 所有 r+1 阶子式均为零.
- (3) $R(\mathbf{A}) = r \implies \mathbf{A}$ 存在 $1, 2, \dots, r$ 阶非零子式.

矩阵秩的性质

证明

设 $\mathbf{B} = \mathbf{P}\mathbf{A}$, 其中 \mathbf{P} 是初等矩阵.

- (1) 若 P = E(i, j), 则 B 的 k 阶子式总等于 A 的某个 k 阶子式, 最多相差 -1.
- (2) 若 P = E(i(a)), 则 B 的 k 阶子式总等于 A 的某个 k 阶子式或 a 倍.
- (3) 若 $\mathbf{P} = \mathbf{E}(i, j(a))$, 则 \mathbf{B} 的 k 阶子式总等于 \mathbf{A} 的某个 k 阶子式.
- 因此如果 A 的 k 阶子式都是零, 则 B 的 k 阶子式也都是零.

由于 P^{-1} 也是初等矩阵, 因此反过来也成立. 对于 B = AP 情形同理. 因此, 如

果 $\mathbf{A} \sim \mathbf{B}$, 则 \mathbf{A} 的 k 阶子式都是零 \iff \mathbf{B} 的 k 阶子式都是零.

对于标准型矩阵, 该定理显然成立. 因此该定理对任意矩阵都成立.

命题

设 $\mathbf{A} \in M_{m \times n}$, 则 $0 \leqslant R(\mathbf{A}) \leqslant \min(m, n)$.

定义

- $\overline{(1)}$ 若 $R(\mathbf{A}) = m$, 称 \mathbf{A} 行满秩;
- (2) 若 R(A) = n, 称 A 列满秩;
- (3) 若 R(A) = m = n, 称 A 满秩.

矩阵秩的性质

命题

- $(1) R(\mathbf{A}) = 0 \iff \mathbf{A} = \mathbf{O};$
- (2) n 阶方阵 \mathbf{A} 可逆 $\iff R(\mathbf{A}) = n$;
- (3) $R(k\mathbf{A}) = R(\mathbf{A}) = R(\mathbf{A}^{\mathrm{T}}), k \neq 0;$
- (4) $\mathbf{A} \sim \mathbf{B} \iff R(\mathbf{A}) = R(\mathbf{B});$
- (5) $R(\mathbf{AB}) \leqslant \min(R(\mathbf{A}), R(\mathbf{B}));$
- (6) 若 $\mathbf{A}_{m \times n} \mathbf{B}_{n \times \ell} = \mathbf{O}$, 则 $R(\mathbf{A}) + R(\mathbf{B}) \leqslant n$;
- (7) $R(\mathbf{A} + \mathbf{B}) \leqslant R(\mathbf{A}) + R(\mathbf{B});$
- (8) $\max(R(\mathbf{A}), R(\mathbf{B})) \leqslant R(\mathbf{A}, \mathbf{B}) \leqslant R(\mathbf{A}) + R(\mathbf{B}).$

命题

(5) $R(\mathbf{AB}) \leqslant \min(R(\mathbf{A}), R(\mathbf{B})).$

证明

(5) 设
$$\mathbf{A} = \mathbf{P}' \begin{pmatrix} \mathbf{E}_r & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \end{pmatrix} \mathbf{Q}, \mathbf{B} = \mathbf{P} \begin{pmatrix} \mathbf{E}_s & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \end{pmatrix} \mathbf{Q}', 其中 \mathbf{P}, \mathbf{P}', \mathbf{Q}, \mathbf{Q}' 均可逆. 那么$$

$$R(\mathbf{AB}) = R(\begin{pmatrix} \mathbf{E}_r & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \end{pmatrix} \mathbf{QP} \begin{pmatrix} \mathbf{E}_s & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \end{pmatrix}).$$

注意到右侧矩阵除前 r 行 s 列外均为零. 因此它的秩不超过 $\min(r,s)$.

如果 B 行满秩, 则 R(AB) = R(A); 如果 B 列满秩, 则 R(BA) = R(A);

矩阵秩的性质

命题

(6) 若 $\mathbf{A}_{m \times n} \mathbf{B}_{n \times \ell} = \mathbf{O}$,则 $R(\mathbf{A}) + R(\mathbf{B}) \leqslant n$.

证明

(6) 设
$$\mathbf{A} = \mathbf{P}' \begin{pmatrix} \mathbf{E}_r & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \end{pmatrix} \mathbf{Q}, \mathbf{B} = \mathbf{P} \begin{pmatrix} \mathbf{E}_s & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \end{pmatrix} \mathbf{Q}', 其中 \mathbf{P}, \mathbf{P}', \mathbf{Q}, \mathbf{Q}' 均可逆. 那么$$

$$\mathbf{A}\mathbf{B} = \mathbf{O} \implies egin{pmatrix} \mathbf{E}_r & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \end{pmatrix} \mathbf{Q}\mathbf{P} egin{pmatrix} \mathbf{E}_s & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \end{pmatrix} = \mathbf{O}.$$

设
$$\mathbf{QP} = \begin{pmatrix} \mathbf{C}_1 & \mathbf{C}_2 \\ \mathbf{C}_3 & \mathbf{C}_4 \end{pmatrix}$$
 其中 \mathbf{C}_1 为 $(n-s) \times s$. 由于 \mathbf{QP} 的前 r 行 s 列均为零, 因此

若 r+s>n, 则 $\mathbf{C}_1=\mathbf{O}$ 且 \mathbf{C}_3 的第一行为零, $|\mathbf{QP}|=\pm|\mathbf{C}_2|\cdot|\mathbf{C}_3|=0$, 矛盾!

命题

 $\overline{(7)} R(\mathbf{A} + \mathbf{B}) \leqslant R(\mathbf{A}) + R(\mathbf{B}).$

证明

(7) 由于添加零行或零列不改变秩, 因此不妨设 A,B 都是方阵. 由于

$$A + B = (E, O) \begin{pmatrix} A \\ B \end{pmatrix} \begin{pmatrix} E \\ O \end{pmatrix},$$

因此
$$R(\mathbf{A} + \mathbf{B}) \leqslant R \begin{pmatrix} \mathbf{A} \\ \mathbf{B} \end{pmatrix} = R(\mathbf{A}) + R(\mathbf{B}).$$

命题

(8) $\max(R(\mathbf{A}), R(\mathbf{B})) \leqslant R(\mathbf{A}, \mathbf{B}) \leqslant R(\mathbf{A}) + R(\mathbf{B}).$

证明

(8) 不妨设 A,B 是方阵,那么

$$\mathbf{A} = (\mathbf{A}, \mathbf{B}) \begin{pmatrix} \mathbf{E} \\ \mathbf{O} \end{pmatrix}, \quad (\mathbf{A}, \mathbf{B}) = (\mathbf{E}, \mathbf{E}) \begin{pmatrix} \mathbf{A} \\ & \mathbf{B} \end{pmatrix}.$$

因此
$$R(\mathbf{A}) \leqslant R(\mathbf{A}, \mathbf{B}), R(\mathbf{A}, \mathbf{B}) \leqslant R\begin{pmatrix} \mathbf{A} \\ \mathbf{B} \end{pmatrix} = R(\mathbf{A}) + R(\mathbf{B}).$$

矩阵秩性质的应用

练习

(1) 设
$$R(\mathbf{A}) = 2, \mathbf{B} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 0 \\ -1 & 0 & 3 \end{pmatrix}$$
, 则 $R(\mathbf{AB}) = \underline{}$.

(2) 若 \mathbf{A} 是 n 阶方阵且 $R(\mathbf{AB}) < R(\mathbf{B})$, 则 $|\mathbf{A}| = 0$.

(4) 若
$$\mathbf{A} = \begin{pmatrix} t & 2 & 3 \\ 2 & 1 & -1 \\ 0 & 0 & 5 \end{pmatrix}$$
 且存在非零矩阵 \mathbf{B} 使得 $\mathbf{AB} = \mathbf{O}$, 则 $t = \underline{\mathbf{4}}$.

例:矩阵秩性质的应用

证明: 若 n 阶方阵 \mathbf{A} 满足 $\mathbf{A}^2 = \mathbf{A}$, 则 $R(\mathbf{A}) + R(\mathbf{A} - \mathbf{E}) = n$.

证明

由于
$$\mathbf{A}(\mathbf{A} - \mathbf{E}) = \mathbf{A}^2 - \mathbf{A} = \mathbf{O}$$
, 因此 $R(\mathbf{A}) + R(\mathbf{A} - \mathbf{E}) \leq n$. 由于 $\mathbf{A} + (\mathbf{E} - \mathbf{A}) = \mathbf{E}$, 因此 $n = R(\mathbf{E}) \leq R(\mathbf{A}) + R(\mathbf{E} - \mathbf{A})$ 故 $R(\mathbf{A}) + R(\mathbf{A} - \mathbf{E}) = n$

因此 $n = R(\mathbf{E}) \leqslant R(\mathbf{A}) + R(\mathbf{E} - \mathbf{A})$. 故 $R(\mathbf{A}) + R(\mathbf{A} - \mathbf{E}) = n$.

例: 矩阵秩性质的应用

例

证明: 设 \mathbf{A} 是 n 阶方阵, 则

$$R(\mathbf{A}^*) = \begin{cases} n, & R(\mathbf{A}) = n; \\ 1, & R(\mathbf{A}) = n - 1; \\ 0, & R(\mathbf{A}) \leqslant n - 2. \end{cases}$$

证明

- $\overline{(1)}$ 若 $\overline{R}(\mathbf{A}) = n$, \mathbf{A} 可逆, 从而 \mathbf{A}^* 可逆, $R(\mathbf{A}^*) = n$.
- (2) 若 $R(\mathbf{A}) = n 1$, 由 $\mathbf{A}\mathbf{A}^* = |\mathbf{A}|\mathbf{E} = \mathbf{O}$ 可知 $R(\mathbf{A}^*) \le 1$. 由于 $R(\mathbf{A}) = n 1$, A 存在非零的 n 1 子式, 从而 $\mathbf{A}^* \ne \mathbf{O}$. 故 $R(\mathbf{A}^*) = 1$.
- (3) 若 $R(\mathbf{A}) \leq n-2$, 则 \mathbf{A} 的 n-1 子式均为零, 从而 $\mathbf{A}^* = \mathbf{O}$.

例: 矩阵秩性质的应用

练习

(1) \mathfrak{P} $\alpha = (1, 0, -1, 2)^{\mathrm{T}}, \beta = (0, 1, 0, 2)^{\mathrm{T}}, \mathbb{M} R(\alpha \beta^{\mathrm{T}}) = \underline{\hspace{1cm}}.$

(2) 若
$$\mathbf{A} = \begin{pmatrix} a & b & b \\ b & a & b \\ b & b & a \end{pmatrix}$$
 且 $R(\mathbf{A}^*) = 1$, 则 (B).

- (A) $a \neq b, a + 2b \neq 0$ (B) $a \neq b, a + 2b = 0$
- (C) $a = b, a \neq 0$ (D) a = b = 0
- (3) 设 **A**, **B** 为 *n* 阶方阵,则(**A**).
 - (A) $R(\mathbf{A}, \mathbf{AB}) = R(\mathbf{A})$ (B) $R(\mathbf{A}, \mathbf{BA}) = R(\mathbf{A})$
 - (C) $R(\mathbf{A}, \mathbf{AB}) = \max(R(\mathbf{A}), R(\mathbf{B}))$ (D) $R(\mathbf{AB}) = R(\mathbf{A}^{\mathrm{T}}\mathbf{B}^{\mathrm{T}})$

答案

存在 $AB = O, BA \neq O, D$ 错误. 令 A = E, C 错误. (E,B) 行满秩, 选 A.

例: 矩阵秩性质的应用

练习

(1) 设 P 为 3 阶非零矩阵,
$$\mathbf{Q} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & t \\ 3 & 6 & 9 \end{pmatrix}$$
 且 $\mathbf{PQ} = \mathbf{O}$, 则 (A).

(A)
$$t \neq 6$$
 时, $R(\mathbf{P}) = 1$

(B)
$$t \neq 6$$
 时, $R(\mathbf{P}) = 2$ (D) $t = 6$ 时, $R(\mathbf{P}) = 2$

(C)
$$t = 6$$
 时, $R(\mathbf{P}) = 1$

(2) 设
$$\mathbf{A}, \mathbf{B}$$
 均为 n 阶非零矩阵, 且 $\mathbf{AB} = \mathbf{O}$, 则 $R(\mathbf{A})$ 与 $R(\mathbf{B})(\mathbf{B})$.

(C) 都等于 n

$$(D)$$
 一个小于 n , 一个等于 n

- (3) 设 $\mathbf{A} \in M_{m \times n}, \mathbf{B} \in M_{n \times m}, \mathbb{D}$ (A).
 - (A) 当 m > n 时, 必有 $|\mathbf{AB}| = 0$

(B) 当 m > n 时, 必有 $|\mathbf{AB}| \neq 0$

- (C) 当 m < n 时, 必有 $|\mathbf{AB}| = 0$
- (D) 当 m < n 时, 必有 $|\mathbf{AB}| \neq 0$