Смесено произведение

Работим в геометричното пространство, като считаме че са фиксирани единична отсечка за измерване на дължини и ориентация.

Определение 1 *Смесено произведение на векторите u, v, w* се нарича числото $\langle u, v, w \rangle = \langle u \times v, w \rangle \in \mathbb{R}$ (тоест векторното произведение $u \times v$, умножено скаларно с w).

Забележка 1 Други означения за смесеното произведение са (u, v, w) и uvw.

Теорема 1 Ако векторите u, v, w не са компланарни, то обемът на паралелепипеда, построен върху $u, v, w, e \mid \langle u, v, w \rangle \mid$, а обемът на тетраедъра, построен върху $u, v, w, e \mid \langle u, v, w \rangle \mid$.

Теорема 2 Нека $e = (e_1, e_2, e_3)$ е положително ориентиран ортонормиран базис на пространството на геометричните вектори и спрямо него векторите u, v, w имат

координати
$$u(x_1, x_2, x_3)$$
, $v(y_1, y_2, y_3)$, $w(z_1, z_2, z_3)$. Тогава $\langle u, v, w \rangle = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}$.

Теорема 3 1. (критерий за компланарност на вектори)

Векторите u, v, w са компланарни $\Leftrightarrow \langle u, v, w \rangle = 0$.

2. (u, v, w) е положително ориентиран базис $\Leftrightarrow \langle u, v, w \rangle > 0$, (u, v, w) е отрицателно ориентиран базис $\Leftrightarrow \langle u, v, w \rangle < 0$.

Теорема 4 Смесеното произведение има следните свойства:

1.
$$\langle v, u, w \rangle = -\langle u, v, w \rangle$$
, $\langle w, v, u \rangle = -\langle u, v, w \rangle$, $\langle u, w, v \rangle = -\langle u, v, w \rangle$ (антисиметричност) $\langle v, w, u \rangle = \langle u, v, w \rangle$, $\langle w, u, v \rangle = \langle u, v, w \rangle$ (цикличност)

2.
$$\langle u_1 + u_2, v, w \rangle = \langle u_1, v, w \rangle + \langle u_2, v, w \rangle$$
, $\langle u, v_1 + v_2, w \rangle = \langle u, v_1, w \rangle + \langle u, v_2, w \rangle$, $\langle u, v, w_1 + w_2 \rangle = \langle u, v, w_1 \rangle + \langle u, v, w_2 \rangle$ (адитивност по трите аргумента)

3.
$$\langle \lambda u, v, w \rangle = \lambda \langle u, v, w \rangle$$
, $\langle u, \lambda v, w \rangle = \lambda \langle u, v, w \rangle$, $\langle u, v, \lambda w \rangle = \lambda \langle u, v, w \rangle$, където $\lambda \in \mathbb{R}$ (хомогенност по трите аргумента)

Забележка 2 Свойствата 2. и 3. в горната теорема заедно са еквивалентни на свойството

тоест смесеното произведение е трилинейно.

Пример 1 От антисиметричността на смесеното произведение (а също и от Теорема 3 или Теорема 2) следва, че ако два от векторите u, v, w съвпадат, то $\langle u, v, w \rangle = 0$.

Твърдение 1 Нека $e=(e_1,e_2,e_3)$ е произволен базис на пространството на геометричните вектори и спрямо него векторите u,v,w имат координати $u(x_1,x_2,x_3),\,v(y_1,y_2,y_3),\,w(z_1,z_2,z_3).$ Тогава

$$\langle u, v, w \rangle = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix} . \langle e_1, e_2, e_3 \rangle.$$