Работу выполнил Просвирин Кирилл, 712гр.

19 февраля 2018

Маршрут IX

под руководством А.В. Гаврикова, к.ф.-м.н. 19 февраля 2018 г., 26 февраля 2018 г.

Лабораторная работа № 2.1.6

Эффект Джоуля-Томсона

Цель работы: определение изменения температуры углекислого газа при протекании через малопроницаемую перегородку при различных начальных значенях давления и температуры; вычисление по результатам опытов коэффициентов Ван-дер-Ваальса.

В работе используется: Термостат, дифференциальная термопара, микровольтметр, манометр, установка (баллон, труба и т.д.).

1 Теоретическая справка

Эффект Джоуля—Томсона — изменение температуры газа, медленно протекающего из области высокого в область низкого давления в условиях хорошей тепловой изоляции.

В условиях данной лабораторной работы газ проходит через пористую перегородку из области с давлением P1 в область с атмосферным давлением P2. Рассмотрим стационарный поток между сечениями I и II до и после перегородки. Считая стенки адиабатическими и жёсткими, из закона сохранения энергии получим:

$$A_1 - A_2 = \left(U_2 + \frac{\mu v_2^2}{2}\right) - \left(U_1 + \frac{\mu v_1^2}{2}\right),$$

где $A_1 = P_1 V_1$ — работа совершенная над газом при прохождении через I, $A_2 = P_2 V_2$ — работа совершенная над газом при прохождении через II. Тогда

$$H_1 - H_2 = \frac{1}{2}\mu(v_2^2 - v_1^2).$$

Поскольку скорости по обе стороны от перегородки малы, энтальпию можно считать неизменной. Тогда

$$\mu_{\rm MT} = \frac{\Delta T}{\Delta P} = -\frac{(\partial H/\partial P)_T}{(\partial H/\partial T)_P}.$$

Нетрудно показать, что для идеального газа коэффициент Джоуля–Томсона равен нулю, а для газа Ван-дер-Ваальса

$$\mu_{\rm AT} = \frac{\frac{2a}{RT} - b}{C_P}.$$

Температура, при которой $\mu_{\text{дт}}$ меняет знак, называют температурой инверсии:

$$T_{\text{инв}} = \frac{2a}{Rb}$$

2 Экспериментальная установка

Рис. 1: Схема установки

Описание установки. Рамка 1 жестко соединена с проволокой 2, закрепленной вертикально в специальных зажимах 3, позволяющих сообщить начальное закручивание для возбуждения крутильных колебаний вокруг вертикальной оси. В рамке с помощью планки 4, гаек 5 и винта 6 закрепляется твердое тело 7.

3 Измерения

$T = 24^{\circ}\mathrm{C}$				$T = 50^{\circ} \text{C}$			$T = 70^{\circ} \text{C}$				
ΔP , at	$U, \mu V$	ε , μV	ΔT ,° C	ΔP , at	U, μ	ε , μV	ΔT ,° C	ΔP , at	U, μ	ε , μV	ΔT ,° C
4,1	140	135	3,31	4	117	107,5	2,50	4	97	87,1	1,95
3,51	121	116	2,84	$3,\!5$	105	95,7	2,23	$3,\!5$	87	77,2	1,73
2,7	84	79,1	1,94	2,7	78	68,6	1,59	2,7	66	55,9	$1,\!25$
2	57	52,3	1,28	2	52	42,6	0,99	2	41	31	0,69
1	26	21,1	0,52	1	23	13	0,30	1	18	8,9	0,2

Таблица 1: Зависимость напряжения от перепада давлений

Для различных значений температур термостата будем снимать зависимость показаний манометра и вольтметра. Данные измерений и их обработки приведены в таблице 1.

Рис. 2: График зависимости $\Delta T(\Delta P)$

4 Обработка

Из данных эксперимента несложно рассчитать величины $\mu_{\rm JT}$:

Эксперимент		Табличныеданные
$\mu_{24} = (0.92 \pm 0.09) \ K/at$		$1{,}11 K/at$
$\mu_{50} = (0.75 \pm 0.05) \ K/at$	в сравнении с	$0.84 \ K/at$
$\mu_{70} = (0.61 \pm 0.09) \ K/at$		0.74~K/at

Приведем формулы для подсчета коэффициентов и их погрешностей

$$a = \frac{RC_P}{2} \frac{\mu_1 - \mu_2}{\frac{1}{T_1} - \frac{1}{T_2}}, \quad b = C_p \frac{\mu_1 T_1 - \mu_2 T_2}{T_2 - T_1};$$

$$\Delta a = \frac{RC_p}{2} \frac{\sqrt{\sigma_{\mu_1}^2 + \sigma_{\mu_2}^2}}{\frac{1}{T_1} + \frac{1}{T_2}}, \quad \Delta b = C_P = \frac{\sqrt{\sigma_{\mu_1}^2 T_1^2 + \sigma_{\mu_2}^2 T_2^2}}{T_2 - T_1}$$

$$\Delta T_{\text{инв}} = T_{\text{инв}} \sqrt{\left(\frac{\Delta a}{a}\right)^2 + \left(\frac{\Delta b}{b}\right)^2}$$

Теперь можно найти коэффициенты Джоуля–Томсона для каждой серии измерений при различных температурах:

	$[24;50]^{\circ}C$	$[24;70]^{\circ}C$	$[50; 70]^{\circ}$ C
$a, \frac{H \cdot \mathbf{M}^4}{\mathbf{MOJIb}^2}$	$1,49 \pm 0,8$	$1,66 \pm 0,5$	$1,92 \pm 0,7$
$b, \frac{M^3}{MOJIB}$	346 ± 237	418 ± 130	511 ± 279
$T_{\text{инв}}, K$	1053 ± 925	975 ± 419	922 ± 621
$T_{\mathrm{\kappa p}}, K$	156 ± 127	144 ± 62	136 ± 92

Таблица 2: Коэффициенты Джоуля–Томсона

5 Выводы

Все порядки выдержаны, но в искомую σ ничего не попадает.