1 Question 1.2

 $5^{4358} \mod 10$

2 Solution

from simple calculation, we suspect $5^n \mod 10$ is always 5, so $5^{4358} \mod 10 = 5$.

2.1 Proof

Base case:

$$5^1 \mod 10 = 5$$

Inductive step: assume when n=k, the statement holds, then consider n=k+1

$$5^{k+1} \mod 10 = 5^k \times 5 \mod 10$$

= $(5^k \mod 10 \times 5 \mod 10) \mod 10$
= $25 \mod 10$
= 5

So the statement holds for $n = k + 1 \forall k \in \mathbb{Z}^+$, and by the principle of mathematical induction, $5^n \mod 10 = 5$.