

Universidad de San Carlos de Guatemala Escuela de Ciencias Físicas y Matemáticas

Métodos Matemáticos para Física, Semestre 2, 2023

Profesor: Dr. Juan Ponciano Auxiliar: Diego Sarceño

Guía 5

Introducción

Luego de un tiempo estudiando secuencias, convergencia, completitud y espacios de Banach y Hilbert. Volvemos a los espacios euclídeos, en concreto, al estudio de aplicaciones/transformaciones/mapas lineales entre dichos espacios.

Series de Fourier Generalizadas

El análisis de las series de Fourier esta directamente ligado con el trato de operadores lineales y sus valores, vectores y funciones propias. Temas que se tratarán con énfasis más adelante. Sin embargo, es necesario tratar la parte de sus condiciones de frontera.

Condiciones de Frontera Comunes^a:

Para una función X definida en un intervalo [a, b].

Dirichlet: X(a) = X(b) = 0.

Neumann: X'(a) = X'(b) = 0.

Periódicas: X(a) = X(b) y X'(a) = X'(b).

Con esto, se pueden definir las series de Fourier Generalizadas.

Series de Fourier Generalizadas

Dado un sistema de condiciones de frontera, suponga que hay una suesión $X_n(x)$ de eigenfunciones (funciones propias) y una sucesión λ_n de eigenvalores (valores propios) a su respectivo X_n , entonces definimos la serie de Fourier Generalizada de ϕ como:

$$\mathcal{S}$$

$$\sum_{n=1}^{\infty} A_n X_n(x),$$

donde $A_n = \frac{\langle \phi, X_n \rangle}{\|X_n\|^2}$. Con esto y las condiciones de forntera mostradas anteriormente, se generan 3 tipos de series de Fourier, la serie en senos, en cosenos y la completa.

^aPuede revisar el desarrollo de la solución al sistema $A(X) = \lambda X$ con $A = -\frac{d^2}{dx^2}$ con las condiciones de frontera mostradas en el siguiente video a partir del minuto 23 : 28.

Transformaciones Lineales

Ya que se estudiaron propiedades en espacios euclídeos, es momento de estudiar lo que modifica los vectores en dicho espacio y hacia otros. Para esto se mostrarán una serie de definiciones y teoremas importantes. Primero la más importante y básica de todas:

Mapas lineales o Trasformaciones lineales

Un mapa lineal de V a W es una función $T:V\to W$ con las siguientes propiedades: (para todo $u,v\in V$ y $\alpha\in \mathbb{F}$)

 \mathcal{S}

Aditividad: T(u+v) = Tu + Tv.

Homogeneidad: $T(\alpha v) = \alpha T v$.

De forma general, un mapa lineal es una función que satisface lo siguiente: $T(\alpha u + \beta v) = \alpha T u + \beta T v$.

$|\mathcal{S}|$

Formas y Operadores Lineales

Una función escalar definida sobre un espacio euclídeo $\mathbf{E}, f : \mathbf{E} \to \mathbb{F}$, es llamada forma o funcional lineal si satisface las condiciones de linealidad. Mientras que un operador lineal es una función $A : \mathbf{E} \to \mathbf{E}$, que también satisface las condiciones de linealidad.

Algunos ejemplos de operadores lineales son:

Operador Nulo: $Ox = 0, \forall x \in E$.

Operador Identidad: $Ix = x, \forall x \in E$.

Operador de Proyección: $Px = \sum_{i=1}^{n} e_i \langle e_i, x \rangle$ para un sistema ortonormal completo $\{e_1, \dots, e_n\}$ en $\mathbf{E}_n \subset \mathbf{E}$.

Operadores Idempotentes: un operador que cumpla con P(Px) = Px, $\forall x \in \mathbf{E}$, se llama idempotente.

Operador de Fredholm: Ver guía 4.

Estudiando un poco los mapas lineales, es fácil darse cuenta que el conjunto de mapas lineales es un espacio vectorial, denotado como $\mathcal{L}(V,W)$. Esto también aplica para formas y operadores lineales.

Representación de Trasnformaciones Lineales

La forma más utilizada para representar mapas lineales en espacios de dimensión finita es la forma matricial. Esta se define como

Matriz

Sean m y nenteros positivos. Una $matriz\ de\ m\times n\ A$ es un arreglo rectangular de elementos de

 \mathbb{F} con m filas y n columnas:

$$A = \begin{pmatrix} A_{11} & \cdots & A_{1n} \\ \vdots & & \vdots \\ A_{m1} & \cdots & A_{mn} \end{pmatrix}.$$

Muy bonita definición, pero no nos dice nada acerca de como construír una matriz ya conociendo el operador asociado. Para se tiene el siguiente procedimiento:

Matriz de un Mapa Lineal

Sea $T \in \mathcal{L}(V, W)$ y $\{e_1^V, \dots, e_n^V\}$ un sistema ortonormal completo de V y e_1^W, \dots, e_n^W un sistema ortonormal completo de W. La matriz de T respecto a estas bases es la matriz $m \times n$ $\mathcal{M}(T)$ cuyas entradas A_{jk} son definidos como

$$Te_k^V = A_{1k}e_1^W + \dots + A_{mk}e_m^W = \sum_{j=1}^m A_{jk}e_j^W.$$

En otras palabras, la k-ésima columna de $\mathcal{M}(T)$ consiste en los escalares necesarios para escribir a Te_k^V como una combinación lineal de (e_1^W,\ldots,e_m^W) .

Características de los Operadores

Para diferentes operadores se cumplen ciertas condiciones o características importantes.

Norma de un Operador

Dado un operador lineal sobre un espacio euclídeo, $A : \mathbf{E} \to \mathbf{E}$, se define su norma, ||A||, como el supremo de la funcional ||Ax|| tomada sobre el conjunto de vectores unitarios de ese espacio,

$$||Ax|| := \sup_{x \in \mathbf{E} \, |\, ||x|| = 1} ||Ax||.$$

Si $||A|| < \infty$, el operador se dice **acotado**. Y todo vector unitario x_o para el cual esa cota es alcanzada se dice **vector máximo** de A.

Y, como es de esperarse, el operador identidad tiene norma 1 y el operador nulo, tiene norma cero.

Proposiciones y Lemas Importantes

- En un espacio euclídeo de dimensión finita, todo operador lienal resulta acotado y tiene un vector máximo.
- ullet Si A es un operador lineal acotado sobre un espacio euclídeo ${\bf E}$, entonces

$$||Ax|| \le ||A|| ||x||.$$

■ De forma equivalente, la norma de un operador acotado A también puede definirse como

$$||A|| = \sup_{x,y \text{ unitarios}} \langle y, Ax \rangle.$$

- Sean A y B operadores lineales acotados sobre un espacio euclídeo \mathbf{E} , su suma también es un operador acotado $||A+B|| \le ||A|| + ||B||$. Asimismo, la norma de los operadores cumple las propiedades de norma. En concreto, los operadores acotados sobre un espacio euclídeo forman un espacio de Banach.
- También se cumple $||AB|| \le ||A|| ||B||$.

Visto lo anterior, es claro que dos operadores acotados que tienen los mismo elementos de matriz son iguales. Si

$$\langle x, Ay \rangle = \langle x, By \rangle, \quad \forall x, y \in \mathbf{E},$$

entonces, $A - B = \mathbf{O}$ por ende A = B. Ahora bien,

Operador Adjunto

Dado un operador lineal acotado, se define su operador adjunto como aquel operador que satisface

$$\langle y, A^{\dagger} x \rangle = \langle Ay, x \rangle = \langle x, Ay \rangle^*, \quad \forall x, y \in \mathbf{E}.$$

Teniendo una base ortonormal $\{e_1, \ldots, e_n\}$, la matriz asociada al operador adjunto, A', tiene por elementos a

$$(A')_{ij} = \langle e_i, A^{\dagger} e_j \rangle = \langle A e_i, e_j \rangle = \langle e_j, A e_i \rangle^* = (A)_{ij}^* = (A^{\dagger})_{ij}.$$

A la matriz asociada al operador adjunto es llamada **matriz adjunta** (transpuesta conjugada), y es de la forma $A' = A^{\dagger} = (A^t)^*$.

Operador Simétrico y Autoadjunto

A un operador acotado A definido sobre un espacio euclídeo ${\bf E}$ se dice simétrico si

$$\langle Ax, y \rangle = \langle x, Ay \rangle, \quad \forall x, y \in \mathbf{E}.$$

Dadas esas condiciones, un operador simétrico coincide con su adjunto, a esto se le denomina autoadjunto o hermítico, $A = A^{\dagger}$.

Teorema Espectral

Para iniciar con esta sección es necesario introducir algunas definiciones y teoremas.

Espectro

El espectro de un operador A, $\sigma(A)$, es el conjunto de todos los números complejos λ tales que $A - \lambda I$ no es inverible.

En concreto, el espectro de un operador se relaciona directamente con la ecuación de la ecuación

$$Au = \lambda u$$
.

donde $U \neq 0$ y $\lambda \in \mathbb{F}$ (normalmente se consideran los complejos puesto que son algebraicamente cerrados, para ser un poco más generales, tomaremos un cuerpo \mathbb{F} .). Las soluciones de dicha ecuación pueden relacionarse con las propiedades del **operador resolvente** dado como

$$R_{\lambda} = (A - \lambda I)^{-1}.$$

Los valores complejos para los cuales el operador R_{λ} está bien definido y es acotado se dice que pertenecen al conjunto resolvente. Los valores λ para los cuales no esta bien definido, i.e. "presenta problemas", consituyen el espetro del operador y estan denominados como valores propios¹.

Tomando a Axler como primera fuente, se define un teorema espectral para dos posibles campos \mathbb{R} y \mathbb{C} . Por lo que, se tiene

Teorema Espectral Complejo

Tomando $\mathbb{F}=\mathbb{R}$ y T un operador. Entonces, lo siguiente es equivalente:

a) T es normal^a.

- b) E tiene una base ortonormal de vectores propios de T.
- c) T tiene una matriz diagonal respecto a alguna base ortonormal de V.

Teorema Espectral Real

Tomando $\mathbb{F} = \mathbb{R}$ y T un operador. Entonces, lo siguiente es equivalente:

- a) T es autoadjunto.
- b) E tiene una base ortonormal de vectores propios de T.
- c) T tiene una matriz diagonal respecto a alguna base ortonormal de V.

aUn operador normal es aquel que conmuta con su adjuto $(TT^{\dagger} = T^{\dagger}T)$ y $||Tv|| = ||T^{\dagger}v||$.

¹Revisar el inciso (3) de la bibliografía para mayor información.

Problemas

Ejercicio 1

Suponga qe T es un operador. Pruebe que λ es un valor propio de T si y solo si $\bar{\lambda}$ es un valor propio de T^{\dagger} .

Guía 5

Ejercicio 2

Demuestre que los valores propios de un operador lineal simétrico A son reales.

Ejercicio 3

Demuestre que los vectores propios de un operador lineal simétrico A correspondientes a valores propios diferentes son ortogonales entre sí.

Ejercicio 4

Probar que para cualquier matriz cuadrada A, la matriz $A + A^t$ es simétrica.

Ejercicio 5

Dad la siguiente matriz:

$$R(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.$$

Encontrar A^2 , A^3 y una fórmula para A^n y demuestrela.

Ejercicio 6

Demuestre que los números de Fibonacci F_n cumplen la siguiente ecuación matricial:

$$\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^n = \begin{pmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{pmatrix}, \qquad n \in \mathbb{Z}.$$

¿Cuáles son los valores propios de la matriz que aparece en el miembro izquierdo (sin el exponente), y qué relación tiene con la sucesión de Fibonacci? ¿Cómo se puede demostrar la identidad de Cassini² empleando la ecuación matricial anterior?

²Investigue.

Bibliografía

- [1] Falomir, H. (2015). Curso de métodos de la física matemática. Series: Libros de Cátedra.
- [2] Arfken, G. B., & Weber, H. J. (2013). Mathematical methods for physicists.
- [3] Chubay, R. (2017). Propiedades Espectrales de Operadores no Acotados en el Espacio $L^2(\mathbb{R})$. [Tesis de Licenciatura]. Universidad de San Carlos de Cuatemala.
- [4] Axler, S. (2015). Linear algebra done right. springer publication.