Trabajo Práctico 5 - Formas canónicas elementales I

Santiago

1. Sea

$$A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$$

Probar que $2, 2 + \sqrt{2}$ y $2 - \sqrt{2}$ son autovalores de A y hallar los autovectores correspondientes.

Para que un escalar λ sea autovalor de A se debe cumplir

$$Av = \lambda v \quad v \neq 0$$

Como me pide comprobar, bastaría con chequear la igualdad, pero en caso de querer encontrarlos, podemos pensar que

$$Av - \lambda v = 0 \rightarrow (A - \lambda I)v = 0 \rightarrow A - \lambda I = 0 \rightarrow det(A - \lambda I) = 0$$

Osea que tendríamos que calcular ese determinante, igualarlo a 0 y encontrar para qué valores de λ se satisface la ecuación.

• $\lambda_1 = 2$

$$\begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} v = 2v \to \begin{pmatrix} 2x - y \\ -x + 2y - z \\ -y + 2z \end{pmatrix} = \begin{pmatrix} 2x \\ 2y \\ 2z \end{pmatrix} \to x = -z, y = 0$$

Los v = (x, 0, -x) = x(1, 0, -1) son los autovectores asociados al autovalor 2.

 $\lambda_0 = 2 \pm \sqrt{2}$

$$\begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} v = (2 + \sqrt{2})v \to \begin{pmatrix} 2x - y \\ -x + 2y - z \\ -y + 2z \end{pmatrix} = \begin{pmatrix} (2 + \sqrt{2})x \\ (2 + \sqrt{2})y \\ (2 + \sqrt{2})z \end{pmatrix} \to y = -\sqrt{2}x, z = x$$

Los $v = (x, -\sqrt{2}x, x) = x(1, -\sqrt{2}, 1)$ son los autovectores asociados a λ_2 .

• $\lambda_3 = 2 - \sqrt{2}$

$$\begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} v = (2 - \sqrt{2})v \to \begin{pmatrix} 2x - y \\ -x + 2y - z \\ -y + 2z \end{pmatrix} = \begin{pmatrix} (2 - \sqrt{2})x \\ (2 - \sqrt{2})y \\ (2 - \sqrt{2})z \end{pmatrix} \to y = \sqrt{2}x, z = x$$

Los $v = (x, \sqrt{2}x, x) = x(1, \sqrt{2}, 1)$ son los autovectores asociados a λ_3 .

En caso de haber querido encontrar los autovalores de cero:

$$det(A - \lambda I) = \begin{vmatrix} 2 - \lambda & -1 & 0 \\ -1 & 2 - \lambda & -1 \\ 0 & -1 & 2 - \lambda \end{vmatrix} = (2 - \lambda)[(2 - \lambda)^2 - 1] + [-1(2 - \lambda)]$$

Operando, se llega a

$$det(A - \lambda I) = (2 - \lambda)(2 - \sqrt{2} - \lambda)(2 + \sqrt{2} - \lambda)$$

Se puede llegar al mismo resultado calculando $det(\lambda I - A)$, que quizás está mejor para visualizar el polinomio característico como estamos acostumbrados, obteniendo

$$det(\lambda I - A) = (\lambda - 2)(\lambda - 2 - \sqrt{2})(\lambda - 2 + \sqrt{2})$$

2. Sea $A \in \mathbb{K}^{n \times n}$ una matriz inversible ¿Puede ser $\lambda = 0$ un autovalor de A? Probar que si λ es un autovalor de A, entonces λ^{-1} es autovalor de A^{-1} y además los autoespacios asociados a λ y λ^{-1} pertenecientes a A y A^{-1} respectivamente,

coinciden.

Si $\lambda=0$ es autovalor $Av=0 \to A^{-1}Av=0 \to v=0$. Esto contradice la definición de autovalor, ya que $v\neq 0$. Por lo tanto, λ no puede ser 0.

Si λ es autovalor de $A \to Av = \lambda v \to A^{-1}Av = A^{-1}\lambda v \to Iv = \lambda A^{-1}v \to \frac{1}{\lambda}Iv = A^{-1}v \to \lambda^{-1}$ es autovalor de A^{-1} .

Los autoespacios asociados a λ y λ^{-1} son

$$E(\lambda) = N(A - \lambda I)$$
 $E(\lambda^{-1}) = N(A^{-1} - \lambda^{-1}I)$

Los vectores v del autoespacio asociado a λ cumplen

$$(A - \lambda I)v = 0 \rightarrow Av = \lambda Iv \rightarrow Av = \lambda v$$

Es decir, los vectores del autoespacio, son los autovectores. Por otra parte, los vectores w del autoespacio asociado a λ^{-1} cumplen

$$(A^{-1} - \lambda^{-1}I)w = 0 \to A^{-1}w = \lambda^{-1}Iw \to A^{-1}w = \lambda^{-1}w \to w = \lambda^{-1}Aw \to Aw = \lambda w$$

que es exactamente la misma condición de los elementos del autoespacio asociado a λ , con lo cual estos coinciden.

3. Probar que si $A \in \mathbb{K}^{n \times n}$ es una matriz triangular, entonces los autovalores de A son los elementos de la diagonal.

Hay 2 tipos de matrices triangulares: superior e inferior. Supongamos una superior:

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ 0 & a_{22} & a_{23} & \dots & a_{2n} \\ 0 & 0 & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_{nn} \end{pmatrix}$$

Para encontrar los autovalores, tengo que encontrar las raíces del polinomio característico:

$$p(\lambda) = det(\lambda I - A) = \begin{vmatrix} \lambda - a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ 0 & \lambda - a_{22} & a_{23} & \dots & a_{2n} \\ 0 & 0 & \lambda - a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \lambda - a_{nn} \end{vmatrix}$$

Al desarrolar el determinante por la primera columna:

$$p(\lambda) = (\lambda - a_{11}) \begin{vmatrix} \lambda - a_{22} & a_{23} & \dots & a_{2n} \\ 0 & \lambda - a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda - a_{nn} \end{vmatrix}$$

Al repetir este proceso n veces, termino con:

$$p(\lambda) = (\lambda - a_{11})(\lambda - a_{22})(\lambda - a_{33})\dots(\lambda - a_{nn})$$

Es decir, los autovalores de A son los elementos de la diagonal principal.

Para las matrices triangular inferiores, se puede llegar a la misma conclusión con un análisis similar.

4. Sea $A \in \mathbb{K}^{n \times n}$; Puede tener A más de n autovectores linealmente independientes?

Los autovalores de A son las raíces del polinomio característico, el mismo es un polinomio de grado n, entonces voy a tener a lo sumo n soluciones. Por lo tanto, no es posible que hayan más de n.

También se puede pensar a A como la representación matricial de alguna transformación lineal

$$T: V \to V \quad dim(V) = n$$

5. (a) Construir una matriz $A \in \mathbb{R}^{2 \times 2}$ que tenga un sólo autovalor.

Si pensamos a A como la representación matricial de una transforamción lineal $T: \mathbb{R}^2 \to \mathbb{R}^2$, entonces las direcciones en las cuales los vectores son escalados, deben serlo en un mismo factor.

$$T(1,0) = (\lambda,0)$$
 $T(0,1) = (0,\lambda)$

Cuya representación matricial en la base canónica es

$$[T]_{\mathcal{E}} = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$$

Esta matriz, como se vio en el ejercicio 3, tiene un único autovalor: λ .

(b) Construir una matriz $A \in \mathbb{R}^{2\times 2}$ que tenga un sólo autovalor con un autoespacio asociado de dimensión 1.

El autoespacio asociado a un autovalor está conformado por los autovectores asociados. Al ser de dimensión 1, éste debe ser una recta que contenga al origen. Sólo los vectores de esa recta van a ser escalados por un cierto λ . Propongo:

$$T(1,0) = (\lambda,0)$$
 $T(0,1) = (\alpha,\beta)$

Cuya representación matricial en la base canónica es

$$[T]_{\mathcal{E}} = \begin{pmatrix} \lambda & \alpha \\ 0 & \beta \end{pmatrix}$$

Como pide un único autovalor, $\beta = \lambda$. Para que el autoespacio sea de dimensión 1:

$$E(\lambda): \begin{pmatrix} 0 & \alpha \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow \alpha y = 0$$

Si $\alpha = 0$ el autoespacio será \mathbb{R}^2 , mientras que si $\alpha \neq 0 \to E(\lambda) = \overline{\{(1,0)\}}$. Por lo tanto,

$$A = \begin{pmatrix} \lambda & \alpha \\ 0 & \lambda \end{pmatrix} \quad \alpha \neq 0$$

(c) Contruir una matriz $A \in \mathbb{R}^{2 \times 2}$ que no tenga autovalores. ¿Puede hacer lo mismo para una matriz de $\mathbb{C}^{2 \times 2}$?

Se puede proponer la rotación presentado en la Práctica 2:

$$[R_{\frac{\pi}{2}}]_{\mathcal{E}} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

La misma no tiene autovalores en \mathbb{R} . No puede hacerse lo mismo con matrices de $\mathbb{C}^{2\times 2}$ ya que siempre existirán raíces complejas para el polinomio característico.

- 6. Considerar las transformaciones lineales $R_{\frac{\pi}{2}}, S_Y, H_2$ y P_X del ejercicio 11 de la práctica 2. Hallar los autovalores, autovectores y autoespacios asociados. ¿Es alguna de ellas diagonalizable?
 - $R_{\frac{\pi}{2}}$ La representación matricial en la base canónica fue presentada en el ejercicio anterior:

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

La misma no tiene autovalores, con lo cual tampoco tendrá autovectores, ni autoespacios y tampoco será diagonalizable ya que no existe una base de \mathbb{R}^2 formada por autovectores.

• S_Y Tenemos que

$$A = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

3

Como es una matriz triangular, los autovalores son $\lambda_1=-1$ y $\lambda_2=1$. Para hallar los autoespacios asociados:

$$\begin{cases} E(-1): \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow y = 0 \rightarrow E(-1) = \overline{\{(1,0)\}} \\ E(1): \begin{pmatrix} -2 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow x = 0 \rightarrow E(1) = \overline{\{(0,1)\}} \end{cases}$$

Por lo tanto, los autovectores asociados a $\lambda_1 = -1$ son de la forma (x,0), mientras que (0,y) son los asociados a $\lambda_2 = 1$. Como $\{(1,0)(0,1)\}$ son base de \mathbb{R}^2 , entonces S_Y es diagonalizable.

*H*₂

$$A = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$

Del ejercicio 5b, se sabe que tiene como autovalor a $\lambda = 2$ y $E(2) = \mathbb{R}^2$, los autovalores son todos los vectores de \mathbb{R}^2 y como ya es una matriz diagonal, es diagonalizable.

P_X

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

Los autovalores son $\lambda_1 = 1$ y $\lambda_2 = 0$. Para los autoespacios y autovectores:

$$\begin{cases} E(1): \begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} & \rightarrow y = 0 \rightarrow E(1) = \overline{\{(1,0)\}} \\ E(0): \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} & \rightarrow x = 0 \rightarrow E(0) = \overline{\{(0,1)\}} \end{cases}$$

Es diagonalizable.

7. Sea V un \mathbb{K} -EV de dimensión finita y sea $T \in L(V)$. Probar que, si λ y μ son dos autovalores de T diferentes, entonces $N(T - \lambda I) \cap N(T - \mu I) = \{\vec{0}\}.$

Por el **Lema 4.9** los autovectores asociados a los distintos autovalores son li, entonces $\overline{\{v_{\lambda}\}} \cap \overline{\{v_{\mu}\}} = \{\vec{0}\} \rightarrow E(\lambda) \cap E(\mu) = \{\vec{0}\} \rightarrow N(T - \lambda I) \cap N(T - \mu I) = \{\vec{0}\}$

8. Sea V un \mathbb{K} -EV de dimensión finita y sea $T \in L(V)$. Supongamos que λ es un autovalor de T y que $v \in V$ es un autovector asociado a λ . Probar que si $p \in \mathbb{K}[x]$, entonces $p(T)v = p(\lambda)v$.

Si

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

Tenemos que

$$p(T)v = a_n T^n v + a_{n-1} T^{n-1} v + \dots + a_1 T v + a_0 I v$$

$$= a_n T^{n-1} T v + a_{n-1} T^{n-2} T v + \dots + a_1 T v + a_0 v$$

$$= a_n T^{n-1} \lambda v + a_{n-1} T^{n-2} \lambda v + \dots + a_1 \lambda v + a v$$

$$= a_n \lambda^n v + a_{n-1} \lambda^{n-1} v + \dots + a_1 \lambda v + a v$$

$$= p(\lambda) v$$

9. Sea

$$A = \begin{pmatrix} 0 & -2 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

4

(a) Hallar el polinomio minimal de A considerando los coeficientes en \mathbb{C} , en \mathbb{R} y en \mathbb{Z}_3 .

Como el minimal tiene las mismas raíces que el polinomio característico, empiezo calculando éste último

$$p_A(\lambda) = \det(\lambda I - A) = \begin{vmatrix} \lambda & 2 & -1 \\ -1 & \lambda & 0 \\ 0 & 0 & \lambda - 1 \end{vmatrix} = (\lambda - 1) \begin{vmatrix} \lambda & 2 \\ -1 & \lambda \end{vmatrix} = (\lambda - 1)(\lambda^2 + 2)$$

Para \mathbb{C} : $p_A(\lambda) = (\lambda - 1)(\lambda - 2i)(\lambda + 2i) \to m_A(\lambda) = p_A(\lambda)$.

En el caso de \mathbb{R} , recordando que el minimal divide al característico y comparte raíces, concluimos que hay 2 posibilidades

$$m_A(\lambda) = p_A(\lambda), \quad m_A(\lambda) = (\lambda - 1)$$

Sin embargo, $(\lambda - 1)$ no anula a A, con lo cual $m_A(\lambda) = p_A(\lambda)$.

(b) Decir en cada caso si A es diagonalizable.

Por el **Teorema 4.41** en \mathbb{C} es diagonalizable, mientras que en \mathbb{R} no.

10. Para cada una de las siguientes matrices hallar sus autovalores y autoespacios asociados. Decir si son diagonalizables y en caso de serlo hallar la matriz diagonal y el cambio de base correspondiente.

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{pmatrix}, \quad C = \begin{pmatrix} -3 & 0 & 0 \\ 0 & 5 & -1 \\ 0 & 6 & -2 \end{pmatrix}.$$

• *A* :

Como la matriz es triangular, los autovalores son los elementos de la diagonal principal. En este caso el único autovalor es $\lambda = 1$. Para hallar el autoespacio asociado, tengo que resolver

$$\left(\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \rightarrow y = z = 0$$

Por lo tanto, el autoespacio asociado será:

$$E(1) = \overline{\{(1,0,0)\}}$$

No hay base de autovectores, entonces no es diagonalizable.

• B:

El polinomio característico es

$$p_B(x) = (x+2)^2(x-4)$$

Por lo tanto, los autovalores son

$$\lambda_1 = -2$$
 $\lambda_2 = 4$

Por otra parte,

$$E(-2) = \overline{\{(-1,0,1),(1,1,0)\}}$$
 $E(4) = \overline{\{(1,1,2)\}}$

Como hay una base de autovectores, entonces B es diagonalizable.

$$B = \begin{pmatrix} -1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 2 \end{pmatrix} \begin{pmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 4 \end{pmatrix} \begin{pmatrix} -1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 2 \end{pmatrix}^{-1}$$

 \bullet C: El polinomio característico es:

$$p_C(x) = (\lambda + 3)(\lambda - 4)(\lambda + 1)$$

Los autovalores son

$$\lambda_1 = -3$$
 $\lambda_2 = 4$ $\lambda_3 = -1$

Los autoespacios son

$$E(-3) = \overline{\{(1,0,0)\}}$$
 $E(4) = \overline{\{(0,1,1)\}}$ $E(-1) = \overline{\{(0,1,6)\}}$

La diagonalización es igual que en el caso anterior.

11. Considerar las matrices

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & 1 \end{pmatrix}.$$

Probar que A y B tienen polinomios característicos diferentes, pero sus polinomios minimales coinciden.

12. Sea $T \in L(\mathbb{R}_2[x])$ dado por $T(a_0 + a_1x + a_2x^2) = (a_0 + a_1) - (2a_1 + 3a_2)x$.

- (a) Hallar la representación matricial de T con respecto a la base usual de $R_2[x]$.
- (b) Hallar el polinomio característico y los autovalores de T.
- (c) Es T diagonalizable?

13. Sea $T \in L(\mathbb{R}^3)$ dado por T(x, y, z) = (x, x + y, z).

- (a) Hallar el polinomio característico y el minimal de T.
- (b) Calcular los autovalores y una base para cada autoespacio asociado.
- (c) Decir si T es diagonalizable, justificando de dos maneras diferentes.

14. (a) Sea $T \in L(\mathbb{R}^3)$ tal que:

- Sus autovalores son 1 y -1.
- $\{(0,1,-1)\}$ es una base de N(T+I) y $\{(0,1,1);(1,0,0)\}$ es una base de N(T-I).

 $\dot{\epsilon}$ Se puede decir si T es diagonalizable? Hallar el polinomio característico de T.

- (b) Sea $T \in L(\mathbb{R}^4)$ tal que:
 - Sus autovalores son 1 y -1.
 - $\{(0,-1,0,0)\}$ es una base de N(T+I) y $\{(0,0,1,1);(1,0,0,0)\}$ es una base de N(T-I).

 ξ Se puede decir si T es diagonalizable?

15. ¿Cuáles son los posibles autovalores de una matriz A si se sabe que $A = A^2$?

16. Decir para qué valores de a y b la siguiente matriz es diagonalizable.

$$A = \begin{pmatrix} a & b & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

6

- 17. Sea A una matriz cuadrada tal que $A \neq I$ y $A^3 A^2 + A = I$. ¿Es A diagonalizable sobre \mathbb{C} ?¿Y sobre \mathbb{R} ?
- 18. Probar que si $A \in \mathbb{R}^{2 \times 2}$ es simétrica, entonces es semejante a una matriz diagonal.