

令和5年度 単元テスト前演習 三角関数 (その1)

R5. 6.

1 以下の表を埋めよ.

_	单位円飞	
	思いられんろ	1

θ		0°	30°	45°	60°	90°	120°	135°	150°	180°
\$40	Œ	0	17.	470	1-TC	17	2 37C	3 4 TC	4	77
sin	θ	0		-/12	[3]2	t	[3	12	<u> </u>	0
cos	θ	1	[m] N	- [2	- N	0	- 2	- <u>[</u>	-13	-(
tan	θ	O	13	1	13	X	-[3	-1	-[]	٥

θ	210°	225°	240°	270°	300°	315°	330°	360°
如度	7/T	47	47	375	5 70	7-	11 TC	270
$\sin heta$	- 1/2	- 12	-13	-1	3	- 15	- 1/2	0
cos θ	- 13	- 12	- 5	٥		1/2	13	Ī
tan θ	13	l	13	X	- [3	- (-[]	0

$$oxed{2}$$
 $heta=rac{100}{3}\pi$ のとき, $\sin heta,\cos heta, an heta$ の値を求めよ.

$$\frac{160}{3}\pi = 30\pi + \frac{10}{3}\pi$$

$$= 30\pi + 2\pi + \frac{4}{3}\pi$$

$$\frac{1}{5} | \frac{100}{3} | 7 = -\frac{1}{2}$$

$$\frac{100}{3} | 7 = -\frac{1}{2}$$

$$\frac{100}{3} | 7 = -\frac{1}{2}$$

$$\frac{100}{3} | 7 = \sqrt{3}$$

3 以下の問いに答えよ.

(1) 半径 2, 中心角 $\frac{1}{4}\pi$ である扇形の面積と弧の長さを求めよ.

$$S = \frac{1}{2}r^{2}0$$
, $J = r0 = 7$

$$J = 2 - \frac{1}{4}\pi = \frac{1}{2}\pi$$

$$S = \frac{1}{2} \cdot \frac{1}{4}\pi = \frac{1}{2}\pi$$

:读!!

(2) θ の動径が第 4 象限にあり、 $\sin \theta = 5$ のとき、 $\cos \theta$ 、 $\tan \theta$ の値を求めよ.

", Oar 0 = 1

(3) $\cos \theta = \frac{1}{3}$ のとき, $\sin \theta$, $\tan \theta$ の値を求めよ.

$$A^{2}0 + \alpha A^{2}0 = |3'|$$

$$A = 1 - 3$$

$$\int d^{2} d^{$$

以下の問いに答えよ. $(0 \le \theta < 2\pi \ \text{とする})$ (1) $\sin \theta + \cos \theta = \sqrt{2} \ \text{のとき}, \sin \theta \cos \theta \ \text{の値を求めよ}.$

Sho. OAD 2000 17#2/23/2017

(2) 方程式 $\tan \theta = -\sqrt{3}$ を解け.

(3) 不等式 $\cos \theta < \frac{\sqrt{3}}{2}$ を解け.

$$\frac{\pi}{16} > 0 > \frac{\pi}{6}$$

上图内的.

$$9 = 30^{\circ} + 45^{\circ}, 30^{\circ} + 135^{\circ}$$

= $75^{\circ}, (55^{\circ})$

$$\int_{1}^{1} Q = \frac{1}{12} \pi, \frac{11}{12} \pi$$

(5) 不等式 $\cos\left(\theta + \frac{1}{3}\pi\right) < -\frac{1}{\sqrt{2}}$ を解け.

左图》

$$\frac{1}{12}\pi < 0 < \frac{11}{12}\pi$$

令和5年度 単元テスト前演習 三角関数 (その3)

 $\theta = \frac{1}{12}\pi$ について, $\sin \theta$, $\cos \theta$, $\tan \theta$ の値を求めよ.

$$\frac{1}{12}\pi = \frac{1}{3}\pi - \frac{1}{4}\pi^{3})$$

$$\frac{1}{12}\pi = \frac{1}{3}\pi \cdot \frac{1}{4}\pi^{3}$$

$$= \frac{1}{3}\pi \cdot \frac{1}{12} - \frac{1}{2}\pi^{2}$$

$$= \frac{1}{2} \cdot \frac{1}{12} - \frac{1}{2}\pi^{2}$$

$$= \frac{1}{4}\pi^{2}\pi = \frac{1}{4}\pi^{2}\pi^{2}$$

$$= \frac{1}{2} \cdot \frac{1}{2}\pi^{2} + \frac{1}{2}\pi^{2}\pi^{2}$$

$$= \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2}\pi^{2} \cdot \frac{1}{2}$$

$$= \frac{1}{4}\pi^{2}\pi^{2}$$

$$= \frac{1}{4}\pi^{2}\pi^{2}$$

$$= \frac{1}{4}\pi^{2}\pi^{2}$$

$$= \frac{1}{4}\pi^{2}$$

 $\theta = \frac{1}{8}\pi$ について, $\sin \theta$, $\cos \theta$, $\tan \theta$ の値を求めよ.

1. Detr = 12-JI

COA20= 20020-121) Cop = = 2 Cop = = -1

 $2 \cos^2 \frac{1}{6} \pi = \frac{2 + \sqrt{2}}{2}$ Const = 2+5=

上图41 000年1270

 $Aar f \pi = \frac{a_0 f \pi}{2 - \sqrt{2}}$ $= \frac{2 - \sqrt{2}}{\sqrt{2 - \sqrt{2}}} \times \frac{2 - \sqrt{2}}{\sqrt{4 - 2}} = \frac{2 - \sqrt{2}}{\sqrt{4 - 2}} = \frac{1}{\sqrt{4 - 2}}$

7 直線 y=x とのなす角が $\frac{\pi}{6}$ である直線で, 原点を通るものの

D127112.

$$= \frac{\int_{-1}^{1} \int_{0}^{1} dt}{\int_{-1}^{1} \int_{0}^{1} \int_{0}^{1} dt} = \frac{\int_{-1}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} dt}{\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} dt} = \frac{\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} dt}{\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} dt} = \frac{\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} dt}{\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} dt} = \frac{\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} dt}{\int_{0}^{1} \int_{0}^{1} dt} = \frac{\int_{0}^{1} \int_{0}^{1} dt}{\int_{0}^{1} \int_{0}^{1} dt} = \frac{\int_{0}^{1} \int_{0}^{1} dt}{\int_{0}^{1} dt} = \frac{\int_{0}^{1} dt}{\int$$

@1=7117.

て車由とのかり角は、

のと同様(267.

ひらずぬる 2種は

令和5年度 単元テスト演習 三角関数 (その4)

R5. 6. 9

 $\boxed{\bf 8}$ $0 \le \theta < 2\pi$ のとき, 方程式 $\sin 2\theta = \cos \theta$ を解け.

$$(2/L0 - 1) \cdot C_0 L0 = 0$$

$$7.9 = \frac{1}{6}\pi, \frac{1}{6}\pi, \frac{3}{2}\pi$$

9 $0 \le \theta < 2\pi$ のとき, 方程式 $\sqrt{3}\sin\theta + \cos\theta = 1$ を解け.

$$2\left(\frac{\sqrt{3}}{2} \text{ AD} + \frac{1}{2} \text{ AD}\right) = 1$$

$$A\left(0+\frac{1}{6}\pi\right)=\frac{1}{2}$$

左图形.

$$0 = 0, \frac{2}{3}\pi$$

一个0天定理中使以3开9(2!