BrainGB: A Benchmark for Brain Network **Analysis with Graph Neural Networks**

☑ hejie.cui@emory.edu

https://hejiecui.com/

Hejie Cui¹, Wei Dai¹, Yanqiao Zhu², Xuan Kan¹, Antonio Chen¹, Joshua Lukemire³, Liang Zhan⁴, Lifang He⁵, Ying Guo³, Carl Yang¹

Department of Computer Science, Emory University

3 Department of Biostatistics and Bioinformatics

Department of ECE, University Pittsburgh

5 Department of CSE, Lehigh University

Presenter: MohammadJavad Vaez

mjvaez.github.io

Franciolit

EFLECTIVE.

IFS.

HARY.

TITTES.

NG, KNOWING,

Intuition.

Criticism.

Comparison.

Accer intim

فهرست مطالب:

مقدمات

مفاهیم کلی گراف

مطالعات گذشته

ساختار مقاله

نتایج، بحث و توسعه

مقدمات

- مغز، مرکز سیستم نوروبیولوژیک
 - ساختار بسیار پیچیدهی مغز
- کاربرد مطالعات مغزی (مدلسازی شبکه عصبی، تراپی مشکلات روانی، هوش مصنوعی و ...)
- تعامل مدارات عصبی و زیرسیستمها در توسعه ی علوم عصبی و همچنین تحلیل بیماریها بسیار موثر است.
 - برای نشان دادن تعاملات بین نواحی مختلف مغز میتوان از نظریهی گراف الهام گرفت.
 - ویژگی نا اقلیدسی تصاویر مغز و بدون نظم و قاعده بودن
 - Benchmark: مجموعهای از استاندارهاست که میتواند معیاری برای اندازه گیری و سنجش عملکرد باشد.
 - Pipeline: در واقع BrainGB ساختار مغز را با استفاده از pipelineها به صورت خلاصه مدلسازی می کند.

مفاهیم کلی گراف

- Input: a brain network dataset of N subjects $D = \{G_n, y_n\}_{n=1}^N$
 - $G_n = \{V_n, E_n\}$: brain network of subject n
 - y_n : prediction label (e.g., neural diseases)
- Properties:
 - In D, $\forall n, V_n = V = \{v_i\}_{i=1}^M$
 - $W_n \in \mathbb{R}^{M \times M}$ describes the connection strengths between ROIs: real-valued and noisy

• Output: a prediction \hat{y}_n for each subject n

• can be further analyzed for biomarkers

خواص سیستمهای پیچیده گراف

مطالعات كذشته

- مدلهای کم عمق گراف
 - تجزیه tensor

ویژگی benchmark طراحی شده

ساختار مقاله

Overview

Fig. 1. Overview of BrainGB framework for brain network analysis with graph neural networks.

- Various medical imaging techniques: MRI, EEG, PET, etc.
- Magnetic-Resonance Imaging (MRI) are the most widely used for brain analysis research.
 - Function MRI (fMRI)
 - → functional brain networks describe correlations between time series signals of brain regions
 - Diffusion Tensor Imaging (DTI)
 - → structural brain networks describe the physical connectivity between gray matter regions

چالشهای مربوط به دیتای MRI

عدم استفاده از دادهی خام

پیشپردازش و حذف نویز

وجود ابزارهای مختلف جهت پیش پردازش و بالا بودن مدت زمان

اجرا

عدم کارایی ابزارهای موجود برای انجام تمامی پیش پردازش ها در دادههای dMRI

مراحل مختلف پیش پردازش در modality های مختلف

پیش پردازش fMRI

Functional Brain Network Construction

Fu	SPM 12	AFNI	FSL	Free Surfer	CONN	fMRI Prep	ANTs	Nilear				
	1	,	1	1		,	,	,				
Remove voxels not necessar	Remove voxels not necessary for analysis such as bone, dura, air, etc., leaving just the brain							1	V	V		
	1	✓	1	✓	✓	1						
Adjust for the fact that each												
	,	,	1	1	,	,	,					
Correct movement made during	Motion Correction/Realignment Correct movement made during scanning by aligning all the functional images with one reference						√	√	V			
	Co-registration					1	,	,	,			
Align participant's function	Align participant's functional images with the anatomical structural images for localization						V	V	√			
	Normalization					,	,	,				
Wrap the data across subjects to a template/atlas standardized space					✓	1	V	√				
	Smoothing					√	1		1	1		
Perform weighted averages of individual voxels with neighboring voxels					1							
Functional Brain Network Construction					D							
Brain Region Parcellation Construct Network egment each subject into the ROI defined by the given atlas Calculate pairwise correlations between ROIs as edges					Recommended Software: CONN, GraphVar, Brain Connectivity Toolbox							

Fig. 2: The framework of fMRI data preprocessing and functional brain network construction procedures, with recommended tools for each step shown on the right. The more commonly-used tools for the functional modality are placed at the front.

پیش پردازش fMRI

Brain extraction

Slice timing correction

Motion correction

Coregistration and normalization

پیش پردازشdMRI

Structural Brain Network Construction

Diffusion MRI Data Preprocessing	FSL	AFNI	Free Surfer	Track Vis	3D Slider	Tortoise	MRtrix3	DSI Studio
Eddy-current and Head Motion Correction Align all raw images to the b0 image to correct for head motion and eddy current distortions	√	√	✓		✓	✓	✓	1
EPI Induced Susceptibility Artifacts Correction Correct the spatially nonlinear distortions caused by B ₀ inhomogeneities in Echo-planar imaging	1	1	1		✓	1	1	
Brain Extraction Remove voxels not necessary for analysis such as bone, dura, air, etc., leaving just the brain	√	√	✓		✓		1	1
Reconstruct Local Diffusion Pattern Fit a diffusion tensor model at each voxel on preprocessed and eddy current corrected data	1	1	√	1	✓	√	1	1
Tractography Reconstruct brain connectivity graphs using brain tractography algorithms like FACT	1	1		1	✓		✓	1
Brain Region Parcellation Parcellate ROIs from T1-weighted structural MRI	√	✓				1	1	1
Structural Brain Network Construction Construct Network Compute the network based on the generated label and the reconstructed whole brain tractography	Recomn	nended So	ftware: FS	L, Metric	., DSI Stu	dio		

Fig. 3: The framework of dMRI data preprocessing and structural brain network construction procedures, with recommended tools for each step shown on the right. The more commonly-used tools for the structural modality are placed at the front.

M1: Node Feature Construction

Input: $G_n = (X, \mathcal{E})$

- Identity: unique one-hot feature for each node
- **Eigen**: eigen decomposition performed on the weighted matrix, then the top *k* eigenvectors are used to generate a *k* dimensional feature vector for each node.
- **Degree**: degree value as a one-dimensional vector
- Degree profile: $oldsymbol{x}_i = [\deg(v_i) \parallel \min(\mathcal{D}_i) \parallel \max(\mathcal{D}_i) \ \parallel \max(\mathcal{D}_i) \parallel \operatorname{std}(\mathcal{D}_i)],$
- Connection profile: the corresponding row for each node in the edge weight matrix

M2: Message Passing Mechanisms

Message passing

$$egin{aligned} oldsymbol{m}_i^l &= \sum_{j \in \mathcal{N}_i} oldsymbol{m}_l \left(oldsymbol{h}_i^l, oldsymbol{h}_j^l, w_{ij}
ight), \ oldsymbol{h}_i^{l+1} &= U_l \left(oldsymbol{h}_i^l, oldsymbol{m}_i^l
ight), \end{aligned}$$

 $m_{ij} = h_j \cdot w_{ij}$.

- Edge weighted:
- · Bin concat:
- Edge weight concat: $w_{ij} = \|_1^d w_{ij} = w_{ij} \| w_{ij} \| \dots \| w_{ij}$, $m_{ij} = \mathrm{MLP}(\boldsymbol{h}_i \parallel \boldsymbol{w}_{ij}).$
- Node edge concat:
- Node concat:

$$oldsymbol{m}_{ij} = \mathrm{MLP}(oldsymbol{h}_i \parallel oldsymbol{h}_j \parallel w_{ij}).$$

$$m_{ij} = \mathrm{MLP}(\boldsymbol{h}_i \parallel \boldsymbol{h}_j).$$

 $m_{ij} = \mathrm{MLP}(\boldsymbol{h}_i \parallel \boldsymbol{b}_t).$

M3: Attention-enhanced Message Passing

• Attention weighted: $m_{ij} = h_j \cdot \alpha_{ij}$.

$$\alpha_{ij} = \frac{\exp\left(\sigma\left(\boldsymbol{a}^{\top}\left[\boldsymbol{\Theta}\boldsymbol{x}_{i} \parallel \boldsymbol{\Theta}\boldsymbol{x}_{j}\right]\right)\right)}{\sum_{k \in \mathcal{N}(i) \cup \{i\}} \exp\left(\sigma\left(\boldsymbol{a}^{\top}\left[\boldsymbol{\Theta}\boldsymbol{x}_{i} \parallel \boldsymbol{\Theta}\boldsymbol{x}_{i}\right]\right)\right)},$$

- Edge weighted w/ attn: $m_{ij} = h_j \cdot \alpha_{ij} \cdot w_{ij}$.
- Attention edge sum: $m_{ij} = h_j \cdot (\alpha_{ij} + w_{ij}).$
- Node edge concat w/attn: $m_{ij} = \text{MLP}(h_i \parallel (h_j \cdot \alpha_{ij}) \parallel w_{ij}).$
- Node concat w/attn: $m_{ij} = MLP(h_i \parallel (h_j \cdot \alpha_{ij})).$

M4: Pooling Strategies

Output: g_n

In the second stage of GNNs, a feature vector for the whole graph is computed using the pooling strategy *R*,

$$\mathbf{g}_n = R\left(\{\mathbf{h}_i \mid v_i \in \mathcal{G}_n\}\right).$$

Mean pooling:

$$oldsymbol{g}_n = rac{1}{M} \sum_{k=1}^{N_n} oldsymbol{h}_k.$$

• Sum pooling:

$$oldsymbol{g}_n = \sum_{k=1}^M oldsymbol{h}_k.$$

Concat pooling:

$$oldsymbol{g}_n = \parallel_{k=1}^M oldsymbol{h}_i = oldsymbol{h}_1 \parallel oldsymbol{h}_2 \parallel \ldots \parallel oldsymbol{h}_k.$$

Modular Performance Report

Tab.2. Performance report (%) of different message passing GNNs in the four-modular design space with other two representative baselines on four datasets.

Module	Method	HIV			PNC			PPMI			ABCD		
		Accuracy	F1	AUC	Accuracy	F1	AUC	Accuracy	F1	AUC	Accuracy	F1	AUC
Node Features	Identity	50.00±0.00	33.33±0.00	46.73±10.57	57.34±0.17	36.44±0.17	52.58±4.80	79.25±0.24	44.21±0.08	59.65±6.80	49.97±0.13	33.32±0.06	50.00±0.20
	Eigen	65.71±2.86	65.45±2.69	65.31±2.89	51.40±3.92	48.63±5.42	50.18±7.57	74.09±2.77	47.36±4.26	49.21±1.58	50.79±0.82	50.79±0.83	51.18±1.16
	Degree	44.29±5.35	35.50±6.10	42.04±4.00	63.89±2.27	59.69±3.85	70.25±4.38	79.52±2.31	49.40±5.17	59.73±4.31	63.46±1.29	63.45±1.28	68.16±1.41
	Degree profile	50.00±0.00	33.33±0.00	50.00±0.00	51.40±7.21	33.80±3.21	50.00±0.00	77.02±1.97	49.45±3.51	58.65±2.44	49.92±0.11	33.30±0.05	50.00±0.00
	Connection profile	65.71±13.85	64.11±13.99	75.10±16.95	69.83±4.15	66.20±4.74	76.69±5.04	77.99±2.78	52.96±4.52	65.77±4.09	82.42±1.93	82.30±2.08	91.33±0.77
Message Passing	Edge weighted	50.00±0.00	33.33±0.00	49.80±4.20	64.87±5.44	59.70±7.04	69.98±4.19	79.25±0.24	44.21±0.08	62.26±2.80	74.47±1.17	74.36±1.23	82.37±1.46
	Bin concat	50.00±0.00	33.33±0.00	49.39±9.25	54.74±5.88	36.42±3.97	61.68±3.91	79.25±0.24	44.21±0.08	52.67±7.16	53.72±4.97	43.26±12.43	61.86±5.79
	Edge weight concat	51.43±2.86	44.36±6.88	48.16±10.13	63.68±3.31	60.27±5.97	67.34±3.02	79.25±0.24	44.21±0.08	59.72±4.65	64.59±1.30	64.30±1.43	70.63±1.02
	Node edge concat	65.71±13.85	64.11±13.99	75.10±16.95	69.83±4.15	66.20±4.74	76.69±5.04	77.99±2.78	52.96±4.52	65.77±4.09	82.42±1.93	82.30±2.08	91.33±0.77
	Node concat	70.00±15.91	68.83±17.57	77.96±8.20	70.63±2.35	67.12±1.81	$78.32 {\scriptstyle \pm 1.42}$	78.41±1.62	54.46±3.08	68.34±1.89	80.50±2.27	80.10±2.47	91.36±0.92
Message Passing w/ Attention	Attention weighted	50.00±0.00	33.33±0.00	49.80±8.52	65.09±2.21	60.74±4.89	69.79±4.24	79.25±0.24	44.21±0.08	63.24±3.77	77.74±0.97	77.70±1.01	85.10±1.10
	Edge weighted w/ attn	50.00±0.00	33.33±0.00	42.04±15.63	62.90±1.22	61.14±0.57	69.74±2.37	79.25±0.24	44.21±0.08	54.92±4.80	78.04±1.96	77.81±2.33	86.86±0.63
	Attention edge sum	51.43±7.00	49.13±5.65	54.49±15.67	61.51±2.86	55.36±4.76	69.38±3.50	79.11±0.40	44.17±0.12	60.47±6.26	75.71±1.52	75.59±1.68	83.78±0.82
	Node edge concat w/ attn	72.86±11.43	72.52±11.72	78.37±10.85	67.66±5.07	64.69±5.36	74.52±1.20	77.30±1.52	50.96±4.20	63.93±4.89	83.10±0.47	83.03±0.52	91.85±0.29
	Node concat w/ attn	71.43 ± 9.04	70.47±9.26	82.04±11.21	68.85±6.42	64.29±10.15	75.36±5.09	78.41±1.43	49.98±1.87	68.14±5.01	83.19 ± 0.93	83.12±0.96	91.55±0.59
Pooling Strategies	Mean pooling	47.14±15.39	41.71±17.36	58.78±18.63	66.86±2.33	61.39±4.88	74.20±3.39	79.25±0.24	44.21±0.08	59.64±5.47	81.13±0.35	81.06±0.34	88.49±1.12
	Sum pooling	57.14±9.04	52.23±12.65	57.96±11.15	60.13±2.87	53.96±7.61	66.11±4.22	79.39±0.52	47.68±3.12	61.29±2.11	77.48±3.75	76.96±4.58	87.90±0.65
	Concat pooling	65.71±13.85	64.11±13.99	75.10±16.95	69.83±4.15	66.20±4.74	76.69±5.04	77.99±2.78	52.96±4.52	65.77±4.09	82.42±1.93	82.30±2.08	91.33±0.77
Other Baselines	BrainNetCNN	60.21±17.16	60.12±13.56	70.93±4.01	71.93±4.90	69.94±5.42	78.50±3.28	77.24±2.09	50.24±3.09	58.76±8.95	85.1±0.92	85.7±0.83	93.5±0.34
	BrainGNN	62.98±11.15	60.45±8.96	68.03±9.16	70.62±4.85	68.93±4.01	77.53±3.23	79.17±1.22	44.19±3.11	45.26±3.65	OOM	OOM	OOM

18/23

- Node features: the <u>connection profile</u> captures the whole picture of structural information in the brain network and preserves rich information on pairwise connections used to perform brain parcellation.
- **Message passing**: <u>node concat</u> reinforces self-representation of the central node during each step of message passing.
- Attention-enhanced message passing: the attention mechanism utilizes learnable attention weights in addition to the fixed edge weights in the aggregation and update process of GNNs.
- **Pooling strategies**: in <u>concat pooling</u>, the final node representations of <u>all</u> the brain regions are kept in the graph-level representation for classifiers.

محدوديتها

- **Graph structure mysteriousness**: for brain networks, what kinds of graph structures (e.g., communities, subgraphs) are effective beyond the pairwise connections are still unknown.
- **Limited Datasets**: the small size of neuroimaging datasets may limit the effectiveness and generalization ability of complex deep learning models.

پیشنهادات برای آینده

- Neurology-driven GNN designs: to design the GNN architectures based on neurological understanding of predictive brain signals, especially disease-specific ones.
- Pre-training and transfer learning of GNNs: to design techniques that can train complex GNN models across studies and cohorts. Besides, information sharing across different diseases could lead to a better understanding of cross-disorder commonalities.

- [1] X. Li, Y. Zhou, N. Dvornek, M. Zhang, S. Gao, J. Zhuang, D. Scheinost, L. H. Staib, P. Ventola, and J. S. Duncan, "Braingnn: Interpretable brain graph neural network for fmri analysis," Med Image Anal, 2021. 1, 3, 9
- [2] F. V. Farahani, W. Karwowski, and N. R. Lighthall, "Application of graph theory for identifying connectivity patterns in human brain networks: a systematic review," Front. Neurosci., vol. 13, p. 585, 2019. 1
- [3] K. Osipowicz, M. R. Sperling, A. D. Sharan, and J. I. Tracy, "Functional mri, resting state fmri, and dti for predicting verbal fluency outcome following resective surgery for temporal lobe epilepsy," J. Neurosurg.,
- vol. 124, pp. 929-937, 2016. 1
- [4] L. A. Maglanoc, T. Kaufmann, R. Jonassen, E. Hilland, D. Beck, N. I. Landrø, and L. T. Westlye, "Multimodal fusion of structural and functional brain imaging in depression using linked independent component analysis," Hum Brain Mapp, vol. 41, pp. 241–255, 2020. 1,5
- [5] E. Bullmore and O. Sporns, "Complex brain networks: graph theoretical

[20] T. D. Satterthwaite, D. H. Wolf, D. R. Roalf, K. Ruparel, G. Erus,

- analysis of structural and functional systems," Nat. Rev. Neurosci.,vol. 10, pp. 186-198, 2009. 1, 3
- [6] O. Sporns, "Graph theory methods: applications in brain networks," Dialogues Clin. Neurosci., 2022. 1
- [7] Y. Liu et al., "Multi-view multi-graph embedding for brain network clustering analysis," in AAAI, 2018. 1, 8
- [8] L. Zhan, Y. Liu, Y. Wang, J. Zhou, N. Jahanshad, J. Ye, P. M. Thompson, and A. D. N. I. (ADNI), "Boosting brain connectome classification accuracy in alzheimer's disease using higher-order singular value decomposition," Frontiers in neuroscience, vol. 9, p. 257, 2015. 1
- [9] J. Faskowitz, R. F. Betzel, and O. Sporns, "Edges in brain networks: Contributions to models of structure and function," arXiv.org, 2021. 1,3
- [10] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
- J. Uszkoreit, and N. Houlsby, "An image is worth 16x16 words: Transformers for image recognition at scale," in ICLR, 2021. 1
- [11] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark et al., "Learning transferable visual models from natural language supervision," in ICML, 2021. 1
- [12] A. Arnab, M. Dehghani, G. Heigold, C. Sun, M. Luci' c, and C. Schmid, "Vivit: A video vision transformer," in ICCV, 2021. 1
- [13] A. Gulati, J. Qin, C. Chiu, N. Parmar, Y. Zhang, J. Yu, W. Han, S. Wang, Z. Zhang, Y. Wu, and R. Pang, "Conformer: Convolution-augmented transformer for speech recognition," in INTERSPEECH, 2020. 1
- [14] T. N. Kipf and M. Welling, "Semi-supervised classification with graphconvolutional networks," in ICLR, 2017. 1, 3, 6
- [15] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, "How powerful are graphneural networks?" in ICLR, 2019. 3
- [16] P. Velickovi c, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, "Graph attention networks," in ICLR, 2018. 1, 7
- [17] J. Kawahara, C. J. Brown, S. P. Miller, B. G. Booth, V. Chau, R. E.Grunau, J. G. Zwicker, and G. Hamarneh, "Brainnetcnn: Convolutional neural networks for brain networks; towards predicting neurodevelop-ment," Neurolmage, vol. 146, pp. 1038–1049, 2017. 1, 3, 9
- [18] G. K. Murugesan, C. Ganesh, S. Nalawade, E. M. Davenport, B. Wagner, W. H. Kim, and J. A. Maldjian, "Brainnet: Inference of brain network topology using machine learning," Brain Connect, vol. 10, pp. 422–435,2020. 2
- [19] C. Su, Z. Xu, J. Pathak, and F. Wang, "Deep learning in mental healthoutcome research: a scoping review," Transl. Psychiatry, vol. 10, pp.1–26, 2020. 2

- [21] G. Deco, V. K. Jirsa, and A. R. McIntosh, "Emerging concepts for the dynamical organization of resting-state activity in the brain," Nat. Rev.Neurosci., vol. 12, pp. 43–56, 2011.
- [22] Y. Wang and Y. Guo, "A hierarchical independent component analysis model for longitudinal neuroimaging studies," NeuroImage, vol. 189,pp. 380–400, 2019.
- [23] R. Yu, L. Qiao, M. Chen, S.-W. Lee, X. Fei, and D. Shen, "Weighted graph regularized sparse brain network construction for mci identification," Pattern Recognit, vol. 90, pp. 220–231, 2019. 2
- [24] T. R. Insel and B. N. Cuthbert, "Brain disorders? precisely," Science,vol. 348, pp. 499–500, 2015. 2
- [25] L. M. Williams, "Precision psychiatry: a neural circuit taxonomy fordepression and anxiety," Lancet Psychiatry, vol. 3, pp. 472–480, 2016.
- [26] W. Li, M. Wang, Y. Li, Y. Huang, and X. Chen, "A novel brain network
- construction method for exploring age-related functional reorganization," Comput. Intell. Neurosci., vol. 2016, 2016. 2
- [27] J. Zimmermann, J. D. Griffiths, and A. R. McIntosh, "Unique mapping of structural and functional connectivity on cognition," J. Neurosci.,vol. 38, pp. 9658–9667, 2018. 3
- [28] Y. Hu, M. Zeydabadinezhad, L. Li, and Y. Guo, "A multimodalmultilevel neuroimaging model for investigating brain connectome development," J Am Stat Assoc, pp. 1–15, 2022. 3
- [29] G. Martensson, J. B. Pereira, P. Mecocci, B. Vellas, M. Tsolaki, I. Kłoszewska, H. Soininen, S. Lovestone, A. Simmons, G. Volpe et al.,
- "Stability of graph theoretical measures in structural brain networks in alzheimer's disease," Sci. Rep., vol. 8, pp. 1–15, 2018. 3
- [30] N. Yahata, J. Morimoto, R. Hashimoto, G. Lisi, K. Shibata, Y. Kawakubo, H. Kuwabara, M. Kuroda, T. Yamada, F. Megumi et al.,
- "A small number of abnormal brain connections predicts adult autism spectrum disorder," Nat. Commun., vol. 7, pp. 1–12, 2016.
- [31] M. A. Lindquist, "The statistical analysis of fmri data," Stat Sci, vol. 23,

