- 1. Given a curve $S \subset \mathbb{R}^n$, the *curvature* of S at the point $\vec{p} \in S$ is the magnitude of the acceleration when passing through \vec{p} at unit speed (following the curve S). That is, if $\vec{r}(t)$ is an arc-length parameterization of S and $\vec{r}(t_0) = \vec{p}$, then the curvature of S at the point \vec{p} would be $||\vec{r}''(t_0)||$.
 - (a) Let $S_r \subset \mathbb{R}^2$ be a circle of radius r centered at the origin. Compute the curvature of S_r at the point $\vec{p} = (r, 0)$.
 - (b) The following points lie on the curve $\mathcal{C} \subset \mathbb{R}^2$.

x	y
0.7	0.49
0.8	0.64
0.9	0.81
1	1
1.1	1.21
1.2	1.44
1.3	1.69

- i. Suppose that \vec{r} is an arc-length parameterization of \mathcal{C} and that $\vec{r}(t_0) = (1,1)$. Estimate $\vec{r}'(t_0)$. (Hint: make sure your vector has the correct length!)
- ii. Estimate the curvature of C at (1,1).
- 2. For this problem, we will be using MATLAB/OCTAVE, though not every part requires programming. Let \mathcal{P} be the part of the parabola $1-x^2$ that is above the x-axis and consider the following parameterizations of \mathcal{P} :

$$\vec{r}(t) = \begin{bmatrix} t \\ 1 - t^2 \end{bmatrix}$$
 and $\vec{p}(t) = \begin{bmatrix} \sin(\pi t/2) \\ 1 - \sin^2(\pi t/2) \end{bmatrix}$.

- (a) Find the domains of \vec{r} and \vec{p} such that they are indeed parameterizations of \mathcal{P} .
- (b) Plot a numerical estimate of the speed of \vec{r} and \vec{p} vs. time. You may find the following MATLAB/OCTAVE tips helpful:

If you have a list x=[1, 4, 9, 16, 25], for example, and you would like to get a list of the consecutive differences between entries in x, you can use the command

$$x(:, 2:length(x)) - x(:, 1:(length(x)-1))$$

If you have a list vecs whose *columns* are vectors and you'd like to get a list containing the lengths of those vectors, you can use the command

The extra 1 in the sum command tells MATLAB/OCTAVE to sum along the columns (the command sum(x, 2) would sum along the rows).

Hint: it will be worth your time to define MATLAB/OCTAVE functions for \vec{r} and \vec{p} for use later in the problem. Also, make sure you understand why the example code above works before you use it.

- (c) Plot the arc length of the path traversed by \vec{r} and \vec{p} with respect to time. For which t_0 do you expect $\operatorname{arclen}_0^{t_0}(\vec{r}) = \operatorname{arclen}_0^{t_0}(\vec{p})$? Explain. (Hint: don't look for a formula for arc length! Use MATLAB/OCTAVE to create a list whose ith item is the arc length up to the ith time step.)
- (d) Inverting functions given by formulas is hard, but inverting functions as a concept is easy—you just switch the x and y coordinates! In MATLAB/OCTAVE we have easy access to x and y coordinates, however we don't have access to $all\ x$ and y coordinates. The solution is to estimate the points we don't have based on those we do. This process is called interpolation.

We will create an approximation of $f(x) = x^2$ and its inverse on the interval [0,10] using 11 regularly spaced points. Create two lists, xs = 0:1:10 and ys = xs.* xs. We will define approximations to f and f^{-1} using the interp1 command. Create two new functions with the following code:

```
fapprox = @(x) (interp1(xs, ys, x, 'spline'))
fiapprox = @(x) (interp1(ys, xs, x, 'spline'))
```

The 'spline' argument tells MATLAB/OCTAVE to do a smooth approximation using polynomials rather than jaggedy approximation with lines or step functions.

- i. Using at least 1001 equally spaced points in the interval [0, 10], graph f and fapprox on the same plot. On a separate plot, graph f^{-1} and fiapprox. Where do the functions exactly match their approximations? Why? (*Hint:* plot(x1s, y1s, x2s, y2s) can be used to plot two functions in the same graph.)
- ii. Using at least 1001 equally spaced points in the interval [0,10], plot fiapprox o fapprox and fapprox o fiapprox. If fiapprox and fapprox were perfect inverses of each other, what graph should you get? Why doesn't your graph look like that?
- iii. Define two new functions fgoodapprox and figoodapprox using 51 equally spaced points between [0, 10] as the basis for your approximations. Then, graph figoodapprox o fgoodapprox and fgoodapprox o figoodapprox. Is this closer to what you expected?
- (e) Let \vec{a} be the arc-length parameterization of \mathcal{P} with $\vec{a}(0) = (-1,0)$. Define \vec{a} as a function in MATLAB/OCTAVE. On separate plots, plot $||\vec{r}''(t)||$, $||\vec{p}''(t)||$, and $||\vec{a}''(t)||$. You previously found values t_0 where $\vec{r}(t_0) = \vec{p}(t_0)$. At these values, should $||\vec{r}''(t_0)|| = ||\vec{p}''(t_0)||$? Explain.
- (f) Let $c: \mathcal{P} \to \mathbb{R}$ be the function that takes a point on \mathcal{P} and returns the curvature at that point. Use MATLAB/OCTAVE to plot $c \circ \vec{p}$, $c \circ \vec{r}$, and $c \circ \vec{a}$. You previously found values t_0 where $\vec{r}(t_0) = \vec{p}(t_0)$. At these values, should $c \circ r(t_0) = c \circ \vec{p}(t_0)$? Explain.