Введение в анализ

данных

Лекция 5. Логистическая регрессия

Логистическая регрессия: простое объяснение

Логистическая регрессия

• Решаем задачу бинарной классификации: $\mathbb{Y} = \{-1, +1\}$

• Минимизация верхней оценки:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \log(1 + \exp(-y_i \langle w, x_i \rangle)) \to \min_{w}$$

- Кредитный скоринг
- Стратегия: выдавать кредит только клиентам с b(x) > 0.9
- 10% невозвращённых кредитов нормально

- Баннерная реклама
- b(x) вероятность, что пользователь кликнет по рекламе
- c(x) прибыль в случае клика
- c(x)b(x)— хотим оптимизировать

- Прогнозирование оттока клиентов
- Медицинская диагностика
- Поисковое ранжирование (насколько веб-страница соответствует запросу?)

Будем говорить, что модель b(x) предсказывает вероятности, если среди объектов с b(x) = p доля положительных равна p.

Линейный классификатор

$$a(x) = sign \langle w, x \rangle$$

• Обучим как-нибудь — например, на логистическую функцию потерь:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \log(1 + \exp(-y_i \langle w, x_i \rangle)) \to \min_{w}$$

• Может, $\langle w, x \rangle$ сойдёт за оценку?

Линейный классификатор

- Переведём выход модели на отрезок [0, 1]
- Например, с помощью сигмоиды:

$$\sigma(\langle w, x \rangle) = \frac{1}{1 + \exp(-\langle w, x \rangle)}$$

Сигмоида

• Модель для оценивания вероятностей:

$$b(x) = \sigma(\langle w, x \rangle)$$

• Как обучать?

• Модель для оценивания вероятностей:

$$b(x) = \sigma(\langle w, x \rangle)$$

- Как обучать?
- Если $y_i = +1$, то $\sigma(\langle w, x_i \rangle) \to 1$
- Если $y_i = -1$, то $\sigma(\langle w, x_i \rangle) \to 0$

• Модель для оценивания вероятностей:

$$b(x) = \sigma(\langle w, x \rangle)$$

- Как обучать?
- Если $y_i = +1$, то $\sigma(\langle w, x_i \rangle) \to 1$ или $\langle w, x_i \rangle \to +\infty$
- Если $y_i = -1$, то $\sigma(\langle w, x_i \rangle) \to 0$ или $\langle w, x_i \rangle \to -\infty$

- Если $y_i = +1$, то $\sigma(\langle w, x_i \rangle) \to 1$ или $\langle w, x_i \rangle \to +\infty$
- Если $y_i = -1$, то $\sigma(\langle w, x_i \rangle) \to 0$ или $\langle w, x_i \rangle \to -\infty$
- То есть задача сделать отступы на всех объектах максимальными

$$y_i\langle w, x_i\rangle \to \max_w$$

- Если $y_i = +1$, то $\sigma(\langle w, x_i \rangle) \to 1$
- Если $y_i = -1$, то $\sigma(\langle w, x_i \rangle) \to 0$

$$-\sum_{i=1}^{\ell} \left\{ [y_i = 1] \sigma(\langle w, x_i \rangle) + [y_i = -1] \left(1 - \sigma(\langle w, x_i \rangle) \right) \right\} \rightarrow \min_{w}$$

$$-\sum_{i=1}^{\ell} \{ [y_i = 1] \sigma(\langle w, x_i \rangle) + [y_i = -1] (1 - \sigma(\langle w, x_i \rangle)) \} \rightarrow \min_{w}$$

- Если $y_i = +1$ и $\sigma(\langle w, x_i \rangle) = 0$, то штраф равен 1
- Если $y_i=+1$, то заменить $\sigma(\langle w,x_i\rangle)=1$ на $\sigma(\langle w,x_i\rangle)=0.5$ так же плохо, как заменить $\sigma(\langle w,x_i\rangle)=0.5$ на $\sigma(\langle w,x_i\rangle)=0$
- Надо строже!

$$-\sum_{i=1}^{\ell} \{ [y_i = 1] \log \sigma(\langle w, x_i \rangle) + [y_i = -1] \log (1 - \sigma(\langle w, x_i \rangle)) \} \rightarrow \min_{w}$$

- Если $y_i = +1$ и $\sigma(\langle w, x_i \rangle) = 0$, то штраф равен $-\log 0 = +\infty$
- Достаточно строго
- Функция потерь называется **log-loss**

$$L(y,z) = -[y = 1] \log z - [y = -1] \log(1 - z)$$

Логистическая регрессия

$$-\sum_{i=1}^{\ell} \left\{ [y_i = 1] \log \sigma(\langle w, x_i \rangle) + [y_i = -1] \log \left(1 - \sigma(\langle w, x_i \rangle) \right) \right\} =$$

$$-\sum_{i=1}^{\ell} \left\{ [y_i = 1] \log \frac{1}{1 + \exp(-\langle w, x \rangle)} + [y_i = -1] \log \left(1 - \frac{1}{1 + \exp(-\langle w, x \rangle)} \right) \right\} =$$

$$-\sum_{i=1}^{\ell} \left\{ [y_i = 1] \log \frac{1}{1 + \exp(-\langle w, x \rangle)} + [y_i = -1] \log \left(\frac{1}{1 + \exp(\langle w, x \rangle)} \right) \right\} =$$

$$\sum_{i=1}^{\ell} \left\{ [y_i = 1] \log (1 + \exp(-\langle w, x \rangle)) + [y_i = -1] \log (1 + \exp(\langle w, x \rangle)) \right\} =$$

$$\sum_{i=1}^{\ell} \log (1 + \exp(-y_i \langle w, x_i \rangle))$$

Логистическая регрессия: сложное объяснение

Будем говорить, что модель b(x) предсказывает вероятности, если среди объектов с b(x) = p доля положительных равна p.

Калибровочная кривая

- Разобьём отрезок [0,1] на n корзинок $[0,t_1],[t_1,t_2],\dots,[t_{n-1},1]$ это ось X
- Для каждого отрезка $[t_i, t_{i+1}]$ берём объекты, для которых $b(x) \in [t_i, t_{i+1}]$
- Считаем среди объектов долю положительных, откладываем её на оси Y

Калибровочная кривая

• Функционал ошибки:

$$Q(a,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, b(x_i)) \to \min_{a}$$

• Функционал ошибки:

$$Q(a,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, b(x_i)) \to \min_{a}$$

• Рассмотрим ошибку только на объектах x_1, \dots, x_n , где модель b(x) выдаёт вероятность около p:

$$\sum_{i=1}^{n} L(y_i, b(x_i)) = \sum_{i=1}^{n} L(y_i, p)$$

• А что было бы оптимально выдать на этих объектах?

• Рассмотрим ошибку только на объектах x_1, \dots, x_n , где модель b(x) выдаёт вероятность около p:

$$\sum_{i=1}^{n} L(y_i, b(x_i)) = \sum_{i=1}^{n} L(y_i, p)$$

• А что было бы оптимально выдать на этих объектах?

$$p_* = \arg\min \sum_{i=1}^n L(y_i, p)$$

• Мы ожидаем, что $p_* = \frac{1}{n} \sum_{i=1}^n [y_i = +1]$

Log-loss

• Рассмотрим ошибку только на объектах, где модель b(x) выдаёт вероятность около p:

$$\sum_{i=1}^{n} L(y_i, b(x_i)) = \sum_{i=1}^{n} L(y_i, p)$$

А что было бы оптимально выдать на этих объектах?

$$p_* = \arg\min \sum_{i} \{-[y_i = +1] \log p - [y_i = -1] \log(1-p)\}$$

Log-loss

$$p_* = \arg\min \sum_{i} \{-[y_i = +1] \log p - [y_i = -1] \log(1-p)\}$$

• Посчитаем производную по p и приравняем к нулю:

$$\sum_{i} \left\{ -\frac{[y_i = +1]}{p} + \frac{[y_i = -1]}{1 - p} \right\} = -\frac{n_+}{p} + \frac{n_-}{1 - p} = 0$$

$$p_* = \frac{n_+}{n_+ + n_-} = \frac{1}{n} \sum_{i=1}^{n} [y_i = +1]$$

• Считаем, что модель корректно оценивает вероятности, если для любых $y_1, \dots, y_n \in \mathbb{Y}$

$$\arg\min \sum_{i=1}^{n} L(y_i, p) = \frac{1}{n} \sum_{i=1}^{n} [y_i = +1]$$

- Это условие на функцию потерь
- Оно выполнено для log-loss, то есть логистическая регрессия корректно оценивает вероятности
- Значит, для объектов с близкими вероятностями она будет пытаться выдать число, близкое к доле положительных объектов

MSE

$$p_* = \arg\min \sum_{i=1}^{n} (p - [y_i = +1])^2$$

• Посчитаем производную по p и приравняем к нулю:

$$2\sum_{i=1}^{n}(p-[y_i=+1])=0$$

$$p_* = \frac{1}{n} \sum_{i=1}^{n} [y_i = +1]$$

MSE

• Почему бы не обучать классификаторы на MSE?

$$\sum_{i=1}^{n} (\sigma(\langle w, x_i \rangle) - [y_i = +1])^2 \to \min_{w}$$

MSE

$$\frac{\partial}{\partial w_1} \left(\frac{1}{1 + e^{-w_1 x - w_0}} - 1 \right)^2 = -\frac{2x e^{w_1 x + w_0}}{(1 + e^{w_1 x + w_0})^3}$$

Log-loss

$$\frac{\partial}{\partial w_1} \left(\log \frac{1}{1 + e^{-w_1 x - w_0}} \right) = \frac{x}{1 + e^{w_1 x + w_0}}$$

MAE

$$p_* = \arg\min \sum_{i=1}^n |p - [y_i = +1]|$$

• Можно показать, что p_* равно либо 0, либо 1