بناء شبكة ادارة فندق

دراسة الحالة:

الفندق مكوّن من ثلاث طوابق:

تفاصيل الطوابق:

- 1. الطابق الأول: يحتوي على ثلاثة أقسام:
 - الاستقبال
 - المخزن
 - قسم اللوجستيات
- 2. الطابق الثاني :يحتوي على ثلاثة أقسام:
 - المالية
 - الموارد البشرية
 - المبيعات/التسويق
 - 3. الطابق الثالث :يضم:
 - قسم تكنولوجيا المعلومات
 - قسم الإدارة

الاعتبارات اثناء التصميم والتنفيذ:

- 1- يجب أن يكون هناك ثلاثة أجهزة توجيه (Router) تربط الطوابق الثلاثة، وتوضع جميعها في غرفة السير فر داخل قسم تكنولوجيا المعلومات.
 - 2- يجب أن تكون أجهزة التوجيه متصلة ببعضها باستخدام كابل تسلسلي (Serial DCE).
 - 3- الشبكة بين أجهزة التوجيه تستخدم العناوين التالية:
 - 10.10.10.0/30 .1
 - 10.10.10.4/30 .2
 - 4- كل طابق يحتوي على جهاز تبديل واحد (Switch) يتم وضعه في نفس الطابق.
 - 5- كل طابق يحتوي على شبكات Wi-Fi متصلة بالأجهزة المحمولة وأجهزة الحاسوب المحمولة.
 - 6- يجب أن يكون لكل قسم طابعة خاصة به.
 - 7- كل قسم يجب أن يكون في شبكة VLAN منفصلة بالتفاصيل المناسبة.
 - 8- استخدام بروتوكول SPF الشبكة.
 - 9- جميع الأجهزة في الشبكة يجب أن تحصل على عنوان IP بشكل ديناميكي، ويجب أن يكون جهاز التوجيه الخاص بكل طابق مهيأ كخادم. DHCP
 - 10- جميع الأجهزة في الشبكة يجب أن تكون قادرة على التواصل مع بعضها.
 - 11- يجب تهيئة خدمة SSHعلى جميع أجهزة التوجيه لتوفير إمكانية تسجيل الدخول عن بُعد.
 - 12- إضافة جهاز حاسوب يُسمى Test-PCإلى المنفذ أfa0/1 في قسم تكنولوجيا المعلومات الاختبار الاتصال عن بُعد.

13- يجب تهيئة أمان المنفذ في جهاز التبديل الخاص بقسم تكنولوجيا المعلومات بحيث:

- يسمح فقط لجهاز Test-PC بالاتصال عبر المنفذ 1-60/1
 - استخدام طريقة Stickyللحصول على عنوان.
 - وضع Shutdown كإجراء في حالة حدوث انتهاك.

جدول العناوين:

	Department	Network	VLAN
	Reception	192.168.8.0/24	Vlan 80
Floor 1	Store	192.168.7.0/24	Vlan 70
	Logistics	192.168.6.0/24	Vlan 60
Floor 2	Finance	192.168.5.0/24	Vlan 50
	HR	192.168.4.0/24	Vlan 40
	Sales	192.168.3.0/24	Vlan 30
	Admin	192.168.2.0/24	Vlan 20
Floor 3	IT	192.168.1.0/24	Vlan 10

طوبولوجيا الشبكة:

خطوات الحل:

- 1- أو لا نبدأ بطبقة الدخول (Access layer) . نقوم بتكون أجهزة التبديل (Switch) :
 - انشاء وتسمية VLAN وربطها بالقسم المرتبط بها ووضعها بالمود Access
 - وضع المنفذ المتصل بالراوتر في وضع Trunk
- على سويتش الطابق الثالث للمنفذ المتصل بجهاز Test-PC نأمن المنفذ بتفعيل خاصية port security ونسمح فقط للجهاز Test-PC انه يتصل فقط عبر هذا المنفذ وذلك بتمكين السويتش بتعلم عنوان MAC بشكل تلقائي وذلك بتفعيل خاصية Sticky. واذا حصل أي انتهاك للأمان يوضع المنفذ في وضع Shutdown
 - 2- ثانيا نبدأ في طبقة (distribution layer). نقوم بتكوين أجهزة توجيه(Router):
 - تفعيل المنفذ المرتبط بالسوتش
 - ، قسم المنفذ المرتبط بالسويتش الى تفر عات ثانويه على عدد VLAN
- في المنافذ الفرعية اختيار نوع التغليف dot1q ومن ثم رقم VLAN لتمكين الراوتر
 من استقبال وارسال الحزم الخاصة بتلك VLAN
 - عين عنوان البوابة الافتراضية لهذا المنفذ الفرعي
 - الان نبدأ بتفعيل خدمة DHCP
 - استثنى بعض العناوين لمنع الخادم من توزيعها
 - انشى حقول وسمها على الشبكه المرتبطة بالقسم لتسهيل التعرف عليهم
 - حدد الشبكه المراد توزيعها في هذا الحقل

- حدد عنوان البوابة الافتراضية الذي سيتم توجيه طلبات الخدمة عليه
- أخير ا تأكد من ان الأقسام تستطيع سحب عناوينها بشكل تلقائي وأيضا تستطيع التواصل
 مع بقية الأقسام في نفس الطابق

3- لتمكين تواصل الطوابق بعضها ببعض:

- أو لا تفعيل وتعيين عنوان للمنفذ التسلسلي Serial DCE لكل راوتر
- ومن ثم تفعيل بروتوكول OSPF والدخول الى الواجهة النشطة لهذا البروتوكول.
- من واجهة بروتوكول OSPF أعلن عن الشبكات المتاحة لديك لتمكين أجهزة التوجيه الاخرى من التعرف على مسارات توجيه الحزم.
 - 4- تهيئة اتصال SSH على جميع اجهزه التوجيه.

الحل:

للاختصار لم اعرض كل الاعدادات على الأجهزة لان بعض الحلول متكررة مثل انشاء ال vlan الخطوات هي نفسها عند بقية السويتش.

وضعت جهاز Access poin المتصل بالسوتش في المنفذ fa0/8 بوضع vlans وضعت جهاز vlans

Switch configuration:

```
SW-F1 (config) #int range fa0/1-2
SW-F1 (config-if-range) #description Reception vlan
SW-F1 (config-if-range) #switchport access vlan 80
SW-F1 (config-if-range) #switchport mode access
SW-F1 (config) #int range fa0/3-4
SW-F1 (config-if-range) #description Store vlan
SW-F1 (config-if-range) #switchport access vlan 70
SW-F1 (config-if-range) #switchport mode access
SW-F1 (config) #int range fa0/5-6
SW-F1 (config-if-range) #description Logistics vlan
SW-F1 (config-if-range) #switchport access vlan 60
```

```
SW-F1 (config-if-range) #switchport mode access interface FastEthernet0/8 switchport access vlan 80 switchport mode access interface FastEthernet0/7 switchport mode trunk
```

SW-F3 configuration:

كما ذكرت خطوات انشاء vlan هي نفسها كما في SW-F1.

هنا فعلنا خاصية تامين المنفذ بحيث يتعلم على اول عنوان MAC يمر بشكل تلقائي. وفي حالة حدوث انتهاك للأمان راح يتم وضع المنفذ في Shutdown وهذا اعداد افتراضي ف لا حاجة الى تكوينه

```
interface FastEthernet0/3
description IT vlan
switchport access vlan 10
switchport mode access
switchport port-security mac-address sticky
```

R-F1 Configuration:

```
interface GigabitEthernet0/0/0
no ip address
duplex auto
speed auto
!
interface GigabitEthernet0/0/0.60
description Logistics vlan
encapsulation dot1Q 60
ip address 192.168.6.1 255.255.255.0
!
interface GigabitEthernet0/0/0.70
description Store vlan
encapsulation dot1Q 70
ip address 192.168.7.1 255.255.255.0
```

```
interface GigabitEthernet0/0/0.80
description Reception vlan
encapsulation dot1Q 80
ip address 192.168.8.1 255.255.255.0
ip dhcp excluded-address 192.168.6.1 192.168.6.4
ip dhcp excluded-address 192.168.7.1 192.168.7.4
ip dhcp excluded-address 192.168.8.1 192.168.8.4
ip dhcp pool Logistics
network 192.168.6.0 255.255.255.0
default-router 192.168.6.1
dns-server 192.168.6.1
ip dhcp pool Store
network 192.168.7.0 255.255.255.0
default-router 192.168.7.1
dns-server 192.168.7.1
ip dhcp pool Reception
network 192.168.8.0 255.255.255.0
default-router 192.168.8.1
dns-server 192.168.8.1
interface Serial0/2/1
ip address 10.10.10.1 255.255.252
router ospf 10
log-adjacency-changes
network 192.168.6.0 0.0.0.255 area 0
network 192.168.7.0 0.0.0.255 area 0
network 192.168.8.0 0.0.0.255 area 0
network 10.10.10.0 0.0.0.3 area 0
username Admin privilege 15 password 0 pass1234
ip domain-name cisco.com
```

```
crypto key generate rase: 1024
line vty 0 4
login local
transport input ssh
line vty 5 15
login local
transport input ssh
```

R-F2 Configuration:

```
interface GigabitEthernet0/0/0
no ip address
duplex auto
speed auto
interface GigabitEthernet0/0/0.30
description Sales vlan
encapsulation dot1Q 30
ip address 192.168.3.1 255.255.255.0
interface GigabitEthernet0/0/0.40
description HR vlan
encapsulation dot1Q 40
ip address 192.168.4.1 255.255.255.0
interface GigabitEthernet0/0/0.50
description Finance vlan
encapsulation dot1Q 50
ip address 192.168.5.1 255.255.255.0
ip dhcp excluded-address 192.168.3.1 192.168.3.4
ip dhcp excluded-address 192.168.4.1 192.168.4.4
```

```
ip dhcp excluded-address 192.168.5.1 192.168.5.4
ip dhcp pool Sales
network 192.168.3.0 255.255.255.0
default-router 192.168.3.1
dns-server 192.168.3.1
ip dhcp pool HR
network 192.168.4.0 255.255.255.0
default-router 192.168.4.1
dns-server 192.168.4.1
ip dhcp pool Finance
network 192.168.5.0 255.255.255.0
default-router 192.168.5.1
dns-server 192.168.5.1
interface Serial0/2/0
ip address 10.10.10.5 255.255.255.252
clock rate 2000000
interface Serial0/2/1
ip address 10.10.10.2 255.255.255.252
router ospf 10
log-adjacency-changes
network 192.168.3.0 0.0.0.255 area 0
network 192.168.4.0 0.0.0.255 area 0
network 192.168.5.0 0.0.0.255 area 0
network 10.10.10.4 0.0.0.3 area 0
network 10.10.10.0 0.0.0.3 area 0
username Admin privilege 15 password 0 pass1234
ip domain-name cisco.com
```

```
crypto key generate rase: 1024

!
line vty 0 4
login local
transport input ssh
line vty 5 15
login local
transport input ssh
!
```

R-F3 Configuration:

```
interface GigabitEthernet0/0/0
no ip address
duplex auto
speed auto
interface GigabitEthernet0/0/0.10
description IT vlan
encapsulation dot1Q 10
ip address 192.168.1.1 255.255.255.0
interface GigabitEthernet0/0/0.20
encapsulation dot1Q 20
ip address 192.168.2.1 255.255.255.0
ip dhcp excluded-address 192.168.1.1 192.168.1.4
ip dhcp excluded-address 192.168.2.1 192.168.2.4
ip dhcp pool IT
network 192.168.1.0 255.255.255.0
default-router 192.168.1.1
dns-server 192.168.1.1
ip dhcp pool Admin
network 192.168.2.0 255.255.255.0
default-router 192.168.2.1
dns-server 192.168.2.1
```

```
!
interface Serial0/2/1
ip address 10.10.10.6 255.255.255.252
!
router ospf 10
log-adjacency-changes
network 192.168.1.0 0.0.0.255 area 0
network 192.168.2.0 0.0.0.255 area 0
network 10.10.10.4 0.0.0.3 area 0
username Admin privilege 15 password 0 pass1234
ip domain-name cisco.com
crypto key generate rase: 1024
line vty 0 4
login local
transport input ssh
line vty 5 15
login local
transport input ssh
```

Access Point Configuration:

Laptop configuration:

لتمكين الجهاز المحمول من الاتصال لاسلكيا.

أولا إطفاء الجهاز ومن ثم تغيير الوحدة الى The Linksys-WPC300N module ثم

انتقل الىdesktop> PC Wireless اختر نقطة الاتصال الأقرب لك ومن ثم ادخل مفتاح المشترك

التحقق:

1- تحقق من ان الأجهزة من نفس الطابق يستطيعون التواصل ببعض:

FLOOR-1:

PC-L ping PC-R

```
Cisco Packet Tracer PC Command Line 1.0
C:\>ping 192.168.8.6 with 32 bytes of data:
Request timed out.
Reply from 192.168.8.6: bytes=32 time<ims TTL=127
Ping statistics for 192.168.8.6:
Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),
Approximate round trip times in mill:-seconds:
Minimum = Oms, Maximum = Oms, Average = Oms
C:\>
```

Laptop-F1 ping PC-L

```
Physical Coring Desidos Programming Allibudes

Command Hompel

Cisco Packet Tracer PC Command Line 1.0

Cir\ping 192.168.6.5. with 32 bytes of data:

Reply from 192.168.6.5. with 32 bytes of data:

Reply from 192.168.6.5. bytes=32 time=2ms TTL=127

Ping statistics for 192.168.6.5.

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = Sms, Maximum = 22ms, Average = 16ms

Ci\pi
```

FLOOR-2:

PC-S2 ping PC-F

```
C:\>ping 192.168.5.5

Pinging 192.168.5.5 with 32 bytes of data:

Request timed out.

Reply from 192.168.5.5: bytes=32 time<1ms TTL=127

Ping statistics for 192.168.5.5:

Packets Sent = 4, Received = 3, Lost = 1 (25% loss),

Approximate round trip times in milli-seconds:

Minimum = Oms, Maximum = Oms, Average = Oms

C:\>
```

Laptop F2 ping PC-S2

```
Physical Cordo Desidop Programming Altributes

Command Prompt

Cisco Packet Tracer PC Command Line 1.0

C:\>ping 192.168.3.6

Finging 192.168.3.6 with 32 bytes of data:

Reply from 192.168.3.6: bytes=32 time=3ms TTL=127

Reply from 192.168.3.6: bytes=32 time=1ms TTL=127

Reply from 192.168.3.6: bytes=32 time=1dms TTL=127

Reply from 192.168.3.6: bytes=32 time=1dms TTL=127

Ping statistics for 192.168.3.6:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds:

Minimum = 14ms, Maximum = 39ms, Average = 21ms

C:\>
```

FLOOR-3

Test-PC ping PC-A

2- تحقق من تفعيل بروتوكول OSPF:

R-F1:

R-F2:

```
R-F2#show ip route ospf
0 192.168.1.0 [110/65] via 10.10.10.6, 00:38:31, Serial0/2/0
0 192.168.2.0 [110/65] via 10.10.10.6, 00:38:31, Serial0/2/0
0 192.168.6.0 [110/65] via 10.10.10.1, 00:38:31, Serial0/2/1
0 192.168.7.0 [110/65] via 10.10.10.1, 00:38:31, Serial0/2/1
0 192.168.8.0 [110/65] via 10.10.10.1, 00:38:31, Serial0/2/1
R-F2#
```

R-F3:

```
R-F3#show ip route ospf
10.0.0.0/8 is variably subnetted, 3 subnets, 2 masks
0 10.10.10.0 [110/128] via 10.10.10.5, 00:39:37, Serial0/2/1
0 192.168.3.0 [110/65] via 10.10.10.5, 00:39:37, Serial0/2/1
0 192.168.4.0 [110/65] via 10.10.10.5, 00:39:37, Serial0/2/1
0 192.168.5.0 [110/65] via 10.10.10.5, 00:39:37, Serial0/2/1
0 192.168.6.0 [110/129] via 10.10.10.5, 00:39:27, Serial0/2/1
0 192.168.7.0 [110/129] via 10.10.10.5, 00:39:27, Serial0/2/1
0 192.168.8.0 [110/129] via 10.10.10.5, 00:39:27, Serial0/2/1
R-F3#
```

3- تحقق من ان كل الأجهزة تستطيع التواصل ببعض:

PC-L from floor 1 ping PC-S2 from floor 2

```
C:\>ping 192.168.3.6

Pinging 192.168.3.6 with 32 bytes of data:

Reply from 192.168.3.6: bytes=32 time=18ms TTL=126
Reply from 192.168.3.6: bytes=32 time=5ms TTL=126
Reply from 192.168.3.6: bytes=32 time=10ms TTL=126
Reply from 192.168.3.6: bytes=32 time=1ms TTL=126
Ping statistics for 192.168.3.6:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 1ms, Maximum = 18ms, Average = 8ms

C:\>
```

PC-F from floor 2 ping Laptop1 from floor 3

```
Physical Config Desktop Programming Attributes

Command Prompt

Cisco Packet Tracer PC Command Line 1.0

C:\>ping 192.168.2.7 with 32 bytes of data:

Request timed out.

Reply from 192.168.2.7: bytes=32 time=22ms TTL=126

Reply from 192.168.2.7: bytes=32 time=23ms TTL=126

Reply from 192.168.2.7: bytes=32 time=5ms TTL=126

Ping statistics for 192.168.2.7:

Ping statistics for 192.168.2.7:

Approximate round trip times in milli-seconds:

Minimum = 5ms, Maximum = 32ms, Average = 19ms

C:\>
```

4- تحقق من ان test-pc من الطابق الثالث يستطيع الدخول على أجهزة التوجية عن بعد ب استخدام ssh

```
[Connection to 10.10.10.2 closed by foreign host]

G:\>ush -1 Admin 10.10.10.2

Password:

R-F24conf for
Enter configuration commands, one per line. End with CNTL/Z.

R-F2(config) #
```

```
C:\>ash -1 Admin 10.10.10.1

Password:

R-F1#conf terminal
Enter configuration commands, one per line. End with CNTL/Z.

R-F1(config)#
```

```
C:\>ssh -1 Admin 10.10.10.6

Fassword:

R-F3|conf t
Enter configuration commands, one per line. End with CNTL/Z.
R-F3(config)||
```

تم اعداد هذا التقرير بواسطة:

الاسم: عائشة أحمد

التاريخ: 13-1-2025

صفحة https://github.com/aisha-x :GitHub

ملاحظه:

تم الاستناد في اعداد هذا التقرير الى دراسة الحالة الواردة في المرجع، مع اجراء تحليل شامل وإعادة صياغة الحالة باللغة العربية. جميع الحلول والمخرجات ناتجه عن اجتهاد شخصي لتبسيط وفهم الدراسة.

المرجع:

https://youtu.be/RwFJTJTe-OM?si=qJbISwjtBQ793y0C