

Pearson

ANALOG SYSTEMS Continuous

DIGITAL SYSTEMS Discrete

ELECTRICITY NUMBER SYSTEM

BASE-?

BASE-10

GRANULARITY

RELIABILITY Robust to Noise

Fundamentally Hardware/Engineering Problem

TERNARY COMPUTER

https://en.wikipedia.org/wiki/Ternary_computer

Balanced Trinary {-1,0,1}

Entirely from Wood!

Thomas Fowler 1840

More History and Etymology → https://en.wikipedia.org/wiki/Computer

They are not actually base-10) We'll cover them later.

TRUE VS. FALSE

George Boole (/buːl/)

Mathematician Philosopher Logician

The Laws of Thought (1854)

Boolean Algebra!

Claude Elwood Shannon

Mathematician Electrical Engineer Cryptographer

M.Sc. Thesis (1937)

A Symbolic Analysis of Relay and Switching Circuits 21 years old!

Switching Algebra!

BINARY COMPUTER

More Reliability in Engineering
Deep Logic Foundation

NEGATIVE

Voltage HIGH [2,5]noise [0.8,2)LOW [0,0.8)Time 0 0 0 1 1 1 1 0 0 Value

DESIGN COMPUTER

Positive Logic
Button-Up Approach

DESIGN COMPUTER

Positive Logic Button-Up Approach

Finding simpler, but equivalent, computers reduces the overall cost!

Rely primarily on mathematical methods in Boolean algebra!

BUILD COMPUTER

Electrical and Computer Engineering

LOGIC GATES BOOLEAN GATES

Boolean Expression/Function: F(X) = X'

> inverse of X gives F <

BINARY VARIABLE

aka. Boolean variable

A variable that can have a value in {0,1} X, Y, Z, W, ...

BOOLEAN FUNCTION,

aka. Boolean Expression

A function that accept Boolean variable(s) and output a value in $\{0,1\}$, e.g., F(X) = X'

Y	X	X AND Y	Y & A	Υ΄Χ
0	0		0	
0	1		0	
1	0		0	
1	1		1	

X	Y	YANDX	X · Y	X ^ Y
0	0		0	
0	1		0	
1	0		0	
1	1		1	

BOOLEAN FUNCTION

Equality F1 = F2

For the same input(s), F1 and F2 result in same output

Υ	Χ	YX
0	1	0
0	0	0

$$F(X,0) = X0 = 0$$

Υ	Χ	YX
0	0	0
1	0	0

$$F = OY = O$$

Υ	Χ	YX
1	0	0
1	1	1

$$F = X1 = 1111X1111 = X$$

X	X	XX
0	0	0
1	1	1

$$F = XX = X$$

Χ	Χ	XX
0	0	0
1	1	1

$$F = XX = X$$

X′	Χ	X'X
14	0	Q
0	1	0

$$F = XX' = 0$$

X′	Χ	X'X		
1	0	0		
0	1	0		

$$F = XX' = 0$$

X′	Χ	X'X
1	0	0
0	1	0

$$F = XX' = 0$$

DESIGN

given the functionality, design the structure of a system

3-INPUT AND

TRUTH TABLE 3-INPUT AND

Z	Υ	X	ZYX
,0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Z	Y	X	Z(YX) =	Z(XY) <u> </u>	(ZX)Y <u> </u>	– XZY
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	0
0	1	1	0	0	0	0
1	0	0	0	0	0	0
1	0	1	0	0	0	0
1	1	0	0	0	0	0
1	1	1	\rightarrow 1	→ 1	> 1	1

Z	Υ	X	ZYX
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

DESIGN

given the functionality, design the structure of a system

4-INPUT AND

DESIGN PATTERNS

Using Same or Similar Previous Designs for New Designs

ANALYSIS

given the structure of a system, find its functionality.

determine the functionality exhibited by a structure.

EVALUATION

Correct vs. Wrong Nice vs. Poor

F = WZYX	F ₁	F_2
Effective (True)	Yes	Yes
Efficient (Fast)	Hmm, 3 levels, No!	Yes! 2 levels
Min. Cost	3 gates, Yes	3 gates, Yes

$$F = WZYX$$

