ImportanceIteration Algorithm Explanation

Yirong Chen, Leo Luo, Yanzhen Shen 5/6/2022

Note: All indexes in this file are starting from 0.

Correctness

We will first show that function PageRank in src/importance.cpp act as a single time of matrix multiplication.

Consider the procedure SINGLE-ITERATION.

SINGLE-ITERATION(G, v)

- 1 let w be a vector with |V| elements and initialized to 0.
- 2 **for** i = 0 **to** |V| 1
- $3 p = \frac{v[i]}{|G.Adj[i]|}$
- 4 **for** each $j \in G.adj[i]$
- 5 w[j] = w[j] + p

Note that Single-Iteration is the pseudocode of PageRank.

Lemma 1. Let G = (V, E) be a directed, strongly connected, simple graph. Let A be the adjcency matrix ¹ of G Let B be a left stochastic matrix ² from the result of normalizing A^T . Then Bv = Single-Iteration(G, v).

Proof. Let w = Bv. Then

$$w[i] = \sum_{j=0}^{|V|-1} B[i][j]v[j]$$
 .

 $^{{}^{1}}A[i][j] \neq 0$ iff $(i,j) \in E$ iff there is an edge from i to j

 $^{^{2}}$ a real square matrix, with each column summing to 1

Let f(j) maps j to the number of non-zero entries in column j of B. Since G is strongly connected, f(j) > 0. Since G is simple, all elements in G.Adj[j] are unique (we can treat G.Adj[j] as a set); hence |G.Adj[j]| = f(j). Let

$$S_i = \{j \in \{0, \dots, |V| - 1\} | i \in G.Adj[j]\}$$
.

Since

$$B[i][j] = \frac{1}{f(j)} \neq 0 \iff (j,i) \in E \iff i \in G.Adj[j] \iff j \in S_i$$
,

we have

$$w[i] = \sum_{j=0}^{|V|-1} B[i][j]v[j] = \sum_{j \in S_i} \frac{1}{f(j)}v[j] = \sum_{j \in S_i} \frac{v[j]}{|G.Adj[j]|} \quad . \tag{1}$$

SINGLE-ITERATION-LOOP-INVERSION(G, v)

- 1 let w be a vector with |V| elements and initialized to 0.
- 2 **for** i = 0 **to** |V| 1
- 3 **for** each $j \in S_i$
- 4 $w[i] = w[i] + \frac{v[j]}{|G.Adi[i]|}$

SINGLE-ITERATION-LOOP-INVERSION is a loop inversion version of SINGLE-ITERATION. Obviously, it produces the result of equation (1) for all $i \in \{0, \dots, |V| - 1\}$.

Actually, the lemma is enough to show that ImportanceIteration produces a same result as power iteration method.

The following theorem is cited from MATH 257:

Theorem 2. Let A be an $n \times n$ -left stochastic matrix with only positive entries and let $z \in \mathbb{R}^n$ be a probability vector. Then

$$z_{\infty} := \lim_{k \to \infty} A^k z$$

exists, and z_{∞} is a stationary probability vector of A (i.e. $Az_{\infty} = z_{\infty}$).

Theorem 3. The function ImportanceIteration in src/importance.cpp correctly computes PageRank vector.

Proof. Immediately from 1 and Theorem 2.

Complexity Analysis

Let α be the number of iteration. Because of the usage of adjacency list, each invocation of PageRank or Single-Iteration takes $\Theta(V+E)$ time. Therefore, the time complexity of ImportanceIteration is $\Theta(\alpha(V+E))$, which is better than the time complexity of power iteration, $\Theta(\alpha V^2)$ ($|V|+|E|=O(V^2)$ in a simple graph).

Acknowledge

This file uses macro package "clrscode3e".