S. No.	Laplace Transform i.e. L	Inverse Laplace Transform i.e. L ⁻¹	Remarks
1.	$L f(s) = \bar{f}(s) = \int_0^\infty e^{-st} f(t) dt$	$L^{-1} \; [\; \bar{f}(s) \;] = f(t)$	Definition
2.	a[f(t)] + b[g(t)] - ch(t)]	$a \bar{f}(s) + b \bar{g}(s) - c \bar{h}(s)$	Linearity property
3.	eat f(t)	$\bar{f}(s-a)$	First shifting property
4.	f(at)	$\frac{1}{a}\bar{f}\left(\frac{s}{a}\right)$	Change of scale
5.			
	f'(t)	$s \overline{f}(s) -f(o)$	Derivative
6.	f''(t)	$s^n \bar{f}(s) - s^{n-1} f'(o) \dots f^{n-1}(o)$	nth derivative
7.	$\int_0^t f(u) du$	$\frac{1}{s}ar{f}(s)$	Integral division by s
8.	$t^n f(t)$	$(-1)^n \frac{d^n}{ds^n} \bar{f}$, $n = 1, 2, 3,$	Multiplication by t^n
9.	$\frac{1}{t}f(t)$	$\int_0^\infty \bar{f}(s) \; ds$	Division by t
10.	$\int_0^t f(u) g(t-u) du = F^*G$	$L^{-1}[\bar{f}(s)\ \overline{g}(s)]$	Convolution theorem
11.	i	1/s	s > 0
12.	t^n	$n!/s^{n+1}, n = 1, 2, 3$	Otherwise: $\frac{\Gamma(n+1)}{s^{n+1}}$
13.	e ^{at}	1/(s-a)	s > a
14.	$e^{at}t^n$	$n!/(s-a)^{n+1}$	s > a
15.	$\sin at$	$a/(s^2+a^2)$	s > 0
16.	cos at	$s/(s^2 + a^2)$	s > 0
17.	sinh at	$a/(s^2-a^2)$	s > a
18.	cosh at	$s/(s^2-a^2)$	s > a
19.	$e^{at}\sin bt$	$b/[(s-a)^2+b^2]$	s > a
20.	$e^{at}\cos bt$	$(s-a)/[(s-a)^2+b^2]$	s > a
21.	$e^{at} \sinh bt$	$b/[(s-a)^2-b^2]$	s > a
22.	$e^{at}\cosh bt$	$(s-a)/[(s-a)^2-b^2]$	s > a
23.	$\frac{1}{2a} (t \sin at)$	$s/(s^2+\alpha^2)^2$	
24.	$(t \cos at)$	$(s^2 - a^2)/(s^2 + a^2)^2$	
25.	$\frac{1}{2a^3} \left(\sin at - at \cos at \right)$	$1/(s^2 + a^2)^2$	
26.	$\frac{1}{2a} \left(\sin at + at \cos at \right)$	$s^2/(s^2+a^2)^2$	
27.	$\cos at - \frac{1}{2} at \sin at$	$s^3/(s^2+a^2)^2$	
28.	$\frac{1}{2a} t \sinh at$	$s/(s^2-a^2)^2$	
29.	$t \cosh at$	$(s^2 + a^2)/(s^2 - a^2)^2$	
30.	$\frac{1}{2a} \left(\sinh at + at \cosh at \right)$	$s^2/(s^2-a^2)^2$	
	24		©Saksham Nigam

Inverse Laplace Transform

FORMULAE:

5) 2 -
$$\{\frac{1}{s^2 + a^2}\} = \frac{1}{a}$$
 sinat 6) $2^{-1}\{\frac{s}{s^2 - a^2}\} = \cosh at$

Proporties of I.L.T.

Laplace transform of periodic functions A function f(t) is said to be periodic if there exists a constant T (TTO) seech that flt +T)=flt), for all values of t. f(t+2T)= f(t) on general, of (t+n.T)=f(t) for all to where n is an integer and T is the period of the punction. of flt) is a periodic function with provided tie (ttT)=f(t), then

LS f(t) = 1 T(e-St. f(t)) dt

-e-St