Exercise For Convexity and Optimization in \mathbb{R}^n

Qiuyi Chen Qiuyi.Chen@liverpool.ac.uk

May, 2025

C	$\boldsymbol{\cap}$	n	-	$\boldsymbol{\cap}$	1	-	C
				_			
_	$\overline{}$		_	$\overline{}$		_	$\overline{}$

1 Topics in Real Analysis

3

Dedicated to the knee scrapes, playdates, and heartaches.

Topics in Real Analysis

Exercise 1.1. For any vectors \mathbf{x} and \mathbf{y} in \mathbb{R}^n , show that $\|\mathbf{x} + \mathbf{y}\|^2 + \|\mathbf{x} - \mathbf{y}\|^2 = 2\|\mathbf{x}\|^2 + 2\|\mathbf{y}\|^2$. Interpret this relation as a statement about parallelograms in \mathbb{R}^2 and \mathbb{R}^3 .

Solution. To prove that $\|\mathbf{x} + \mathbf{y}\|^2 + \|\mathbf{x} - \mathbf{y}\|^2 = 2\|\mathbf{x}\|^2 + 2\|\mathbf{y}\|^2$ for any vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, we use the definition of the Euclidean norm and properties of the dot product. Recall that $\|\mathbf{x}\|^2 = \mathbf{x} \cdot \mathbf{x}$.

First, expand $\|\mathbf{x} + \mathbf{y}\|^2$:

$$\|\mathbf{x} + \mathbf{y}\|^2 = (\mathbf{x} + \mathbf{y}) \cdot (\mathbf{x} + \mathbf{y}) = \mathbf{x} \cdot \mathbf{x} + 2\mathbf{x} \cdot \mathbf{y} + \mathbf{y} \cdot \mathbf{y} = \|\mathbf{x}\|^2 + 2(\mathbf{x} \cdot \mathbf{y}) + \|\mathbf{y}\|^2$$

Next, expand $\|\mathbf{x} - \mathbf{y}\|^2$:

$$\|\mathbf{x} - \mathbf{y}\|^2 = (\mathbf{x} - \mathbf{y}) \cdot (\mathbf{x} - \mathbf{y}) = \mathbf{x} \cdot \mathbf{x} - 2\mathbf{x} \cdot \mathbf{y} + \mathbf{y} \cdot \mathbf{y} = \|\mathbf{x}\|^2 - 2(\mathbf{x} \cdot \mathbf{y}) + \|\mathbf{y}\|^2.$$

Add these two expressions:

$$\|\mathbf{x} + \mathbf{y}\|^2 + \|\mathbf{x} - \mathbf{y}\|^2 = (\|\mathbf{x}\|^2 + 2(\mathbf{x} \cdot \mathbf{y}) + \|\mathbf{y}\|^2) + (\|\mathbf{x}\|^2 - 2(\mathbf{x} \cdot \mathbf{y}) + \|\mathbf{y}\|^2) = \|\mathbf{x}\|^2 + \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2 + \|\mathbf{y}\|^2 + 2(\mathbf{x} \cdot \mathbf{y}) - 2(\mathbf{x} \cdot \mathbf{y}).$$

The cross terms $2(\mathbf{x} \cdot \mathbf{y})$ and $-2(\mathbf{x} \cdot \mathbf{y})$ cancel, yielding:

$$\|\mathbf{x} + \mathbf{y}\|^2 + \|\mathbf{x} - \mathbf{y}\|^2 = 2\|\mathbf{x}\|^2 + 2\|\mathbf{y}\|^2.$$

Thus, the equality holds for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.

In \mathbb{R}^2 and \mathbb{R}^3 , this equality has a geometric interpretation related to parallelograms. Consider vectors \mathbf{x} and \mathbf{y} emanating from the same initial point. These vectors form two adjacent sides of a parallelogram. The vector $\mathbf{x} + \mathbf{y}$ represents one diagonal of the parallelogram, and $\mathbf{x} - \mathbf{y}$ represents the other diagonal (assuming the parallelogram is completed appropriately).

The left side of the equality, $\|\mathbf{x} + \mathbf{y}\|^2 + \|\mathbf{x} - \mathbf{y}\|^2$, is the sum of the squares of the lengths of the two diagonals. The right side, $2\|\mathbf{x}\|^2 + 2\|\mathbf{y}\|^2$, is twice the sum of the squares of the lengths of the two adjacent sides. Since a parallelogram has two pairs of equal sides, the sum of the squares of the lengths of all four sides is $2\|\mathbf{x}\|^2 + 2\|\mathbf{y}\|^2$ (two sides of length $\|\mathbf{x}\|$ and two of length $\|\mathbf{y}\|$).

Therefore, the equality states that for any parallelogram in \mathbb{R}^2 or \mathbb{R}^3 , the sum of the squares of the lengths of the diagonals equals the sum of the squares of the lengths of all four sides. This is a fundamental property of parallelograms in Euclidean geometry, often called the parallelogram law.

Lemma 3.1. Let $\{S_{\alpha}\}_{{\alpha}\in A}$ be a collection of subsets of a set X. Then

$$\bigcup_{\alpha \in A} S_{\alpha} = c \left[\bigcap_{\alpha \in A} (cS_{\alpha}) \right],$$
$$\bigcap_{\alpha \in A} S_{\alpha} = c \left[\bigcup_{\alpha \in A} (cS_{\alpha}) \right].$$

Proof. We establish both identities by showing mutual inclusion of the corresponding sets.

1. $\bigcup_{\alpha \in A} S_{\alpha} = c \Big[\bigcap_{\alpha \in A} (cS_{\alpha}) \Big]$. (i) Subset relation \subseteq . Let $x \in \bigcup_{\alpha \in A} S_{\alpha}$. Then there exists an index $\alpha_0 \in A$ such that $x \in S_{\alpha_0}$. If x were also contained in $\bigcap_{\alpha \in A} (cS_{\alpha})$, it would belong to cS_{α_0} , i.e. $x \notin S_{\alpha_0}$, a contradiction. Therefore $x \notin \bigcap_{\alpha \in A} (cS_{\alpha})$, which means $x \in c |\bigcap_{\alpha \in A} (cS_{\alpha})|$.

(ii) Subset relation \supseteq . Conversely, take $x \in c[\bigcap_{\alpha \in A} (cS_{\alpha})]$. Then $x \notin \bigcap_{\alpha \in A} (cS_{\alpha})$, so there exists an index $\alpha_1 \in A$ with $x \notin cS_{\alpha_1}$. Equivalently, $x \in S_{\alpha_1}$, hence $x \in \bigcup_{\alpha \in A} S_{\alpha}$. Combining (i) and (ii) yields the desired equality.

2.
$$\bigcap_{\alpha \in A} S_{\alpha} = c \Big[\bigcup_{\alpha \in A} (cS_{\alpha}) \Big]$$
. The argument is analogous.

(i) Subset relation \subseteq . Let $x \in \bigcap_{\alpha \in A} S_{\alpha}$. Then $x \in S_{\alpha}$ for every α . Consequently, $x \notin cS_{\alpha}$ for any α , which implies $x \notin \bigcup_{\alpha \in A} (cS_{\alpha})$. Hence $x \in c[\bigcup_{\alpha \in A} (cS_{\alpha})]$.

(ii) Subset relation \supseteq . Let $x \in c[\bigcup_{\alpha \in A} (cS_{\alpha})]$. Then $x \notin \bigcup_{\alpha \in A} (cS_{\alpha})$, so for every $\alpha \in A$ we have $x \notin cS_{\alpha}$; equivalently $x \in S_{\alpha}$. Therefore $x \in \bigcap_{\alpha \in A} S_{\alpha}$.

Since both inclusions hold, the second identity follows.

Exercise 4.1. Use the properties of the norm to show that the function d defined by

$$d(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\| = \left(\sum_{i=1}^{n} (x_i - y_i)^2\right)^{1/2}$$

is a metric, or distance function, on \mathbb{R}^n .

Proof. To verify that $d(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}||$ is a metric on \mathbb{R}^n , we must show that it satisfies the following three properties for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^n$: (i) non-negativity with the identity of indiscernibles, (ii) symmetry, and (iii) the triangle inequality.

1. Non-negativity and identity of indiscernibles. The Euclidean norm is always non-negative, so

$$d(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\| \ge 0.$$

Moreover, $d(\mathbf{x}, \mathbf{y}) = 0$ if and only if $\|\mathbf{x} - \mathbf{y}\| = 0$, which occurs precisely when $\mathbf{x} - \mathbf{y} = \mathbf{0}$, i.e. when $\mathbf{x} = \mathbf{y}$.

2. Symmetry. Because $\|\mathbf{v}\| = \|-\mathbf{v}\|$ for any vector \mathbf{v} ,

$$d(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\| = \|-(\mathbf{x} - \mathbf{y})\| = \|\mathbf{y} - \mathbf{x}\| = d(\mathbf{y}, \mathbf{x}).$$

3. Triangle inequality. The Euclidean norm satisfies the triangle inequality $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$. Choosing $\mathbf{u} = \mathbf{x} - \mathbf{y}$ and $\mathbf{v} = \mathbf{y} - \mathbf{z}$ gives

$$d(\mathbf{x}, \mathbf{z}) = \|\mathbf{x} - \mathbf{z}\| = \|(\mathbf{x} - \mathbf{y}) + (\mathbf{y} - \mathbf{z})\| \le \|\mathbf{x} - \mathbf{y}\| + \|\mathbf{y} - \mathbf{z}\| = d(\mathbf{x}, \mathbf{y}) + d(\mathbf{y}, \mathbf{z}).$$

Since all three axioms hold, the function d is indeed a metric on \mathbb{R}^n .

Exercise 4.2. (a) Sketch the graph of $y = \sin(1/x)$ for x > 0.

(b) Consider the graph as a set in \mathbb{R}^2 and find the limit points of this set.

Solution. (a) Sketch of the curve. Set t = 1/x for x > 0. Then the graph of $y = \sin(1/x)$ for x > 0 corresponds to the standard sine curve $y = \sin t$ for t > 0, but viewed through the change of variables x = 1/t. As $x \to 0^+$ we have $t \to +\infty$, so the curve oscillates infinitely often between -1 and 1 while its x-coordinate approaches 0. For moderate values of x the graph resembles the usual sine curve stretched horizontally, whereas near the y-axis the oscillations become increasingly rapid, creating a "comb-like" fringe that accumulates on the interval $\{0\} \times [-1, 1]$.

(b) Limit points of the graph. Let

$$S := \{ (x, \sin(1/x)) : x > 0 \} \subset \mathbb{R}^2.$$

We claim that the set of limit points of S is

$$S' = S \cup \{(0,y) : -1 \le y \le 1\}.$$

The verification proceeds in two steps.

Step 1: Every point of S is a limit point. Fix $(x_0, \sin(1/x_0)) \in S$ with $x_0 > 0$ and let $\varepsilon > 0$ be given. Recall the elementary inequality $|\sin u - \sin v| \le |u - v|$ valid for all real numbers u, v. Set

$$\delta := \min \left\{ \frac{\varepsilon}{2}, \, \frac{\varepsilon x_0^2}{4}, \, \frac{x_0}{2} \right\}.$$

Pick any $x_{\varepsilon} \in (x_0 - \delta, x_0 + \delta) \setminus \{x_0\}$ and define $P_{\varepsilon} := (x_{\varepsilon}, \sin(1/x_{\varepsilon}))$. Then $P_{\varepsilon} \in S$ and

$$|x_{\varepsilon} - x_0| < \frac{\varepsilon}{2}, \qquad |\sin(1/x_{\varepsilon}) - \sin(1/x_0)| \le |1/x_{\varepsilon} - 1/x_0| = \frac{|x_{\varepsilon} - x_0|}{|x_{\varepsilon}|x_0|} \le \frac{2\delta}{x_0^2} \le \frac{\varepsilon}{2}.$$

Consequently

$$||P_{\varepsilon} - (x_0, \sin(1/x_0))|| \le \sqrt{(|x_{\varepsilon} - x_0|)^2 + (|\sin(1/x_{\varepsilon}) - \sin(1/x_0)|)^2} < \varepsilon,$$

proving that $(x_0, \sin(1/x_0))$ is indeed a limit point of S.

Step 2: Points of the form (0,y) with $|y| \le 1$ are limit points. Fix $y \in [-1,1]$ and $\varepsilon > 0$. Because the sine function attains every value in [-1,1] infinitely often, we can pick $t_{\varepsilon} > \max\{1/\varepsilon,0\}$ such that $|\sin t_{\varepsilon} - y| < \varepsilon$. Setting $x_{\varepsilon} = 1/t_{\varepsilon}$ we obtain $0 < x_{\varepsilon} < \varepsilon$ and

$$||(x_{\varepsilon}, \sin(1/x_{\varepsilon})) - (0, y)|| < \sqrt{\varepsilon^2 + \varepsilon^2} < \sqrt{2} \varepsilon.$$

Thus (0,y) is approached by points of S distinct from itself, so it is a limit point.

Step 3: No other points are limit points. If x < 0, every open ball centred at (x,y) contains points whose first coordinate is negative, whereas S lies entirely in x > 0; thus such points cannot be limit points. If x = 0 but |y| > 1, the vertical separation |y| - 1 already exceeds the range of sin, so no sequence in S can approach (0,y).

Finally, consider a point (x, y) with x > 0 that does

emphnot belong to S. Write $y_0 := \sin(1/x)$ and set $d := |y - y_0| > 0$. Choose

$$r := \min \left\{ \frac{d}{2}, \, \frac{x}{2} \right\}.$$

For any $(x', \sin(1/x')) \in S$ satisfying |x' - x| < r we have $x' \ge x/2$ and hence, using $|\sin u - \sin v| \le |u - v|$ again,

$$|\sin(1/x') - y_0| \le \frac{|x' - x|}{x'x} \le \frac{2r}{x^2} \le \frac{d}{2}.$$

Therefore

$$|\sin(1/x') - y| \ge |y - y_0| - |\sin(1/x') - y_0| > \frac{d}{2}$$

so the Euclidean distance between $(x', \sin(1/x'))$ and (x, y) exceeds d/2. Hence the ball B((x, y), d/2) contains no point of S, proving that (x, y) is not a limit point. Collecting the cases established in Steps 1–3 completes the description of S'.

Consequently, the set of all limit points of the graph is precisely $S \cup (\{0\} \times [-1,1])$, as asserted.

Exercise 4.3. Show that for $x \in \mathbb{R}^n$ and r > 0 the set B(x,r) is open; that is, show that an open ball is open.

Proof. Let $y \in B(x,r)$, so by definition ||y-x|| < r. Define

$$\varepsilon := r - \|y - x\| > 0.$$

We claim that the entire ball $B(y,\varepsilon)$ is contained in B(x,r). Indeed, if $z \in B(y,\varepsilon)$ then $||z-y|| < \varepsilon$, and by the triangle inequality,

$$||z-x|| \le ||z-y|| + ||y-x|| < \varepsilon + ||y-x|| = r.$$

Hence $z \in B(x,r)$. Since every point y of B(x,r) is an interior point, the set B(x,r) is open.