Основы компьютерных сетей. Технология Ethernet. Занятие 1.Физический уровень.

Введение

Модель OSI (Open System Interconnection), или эталонная модель взаимодействия открытых систем описывает, как устройства в локальных и глобальных сетях обмениваются данными и что происходит с этими данными. Её предложили в 1984 году инженеры из Международной организации по стандартизации (ISO), которая работала над единым стандартом передачи данных по интернету.

При этом сама по себе эталонная модель — не стандарт интернета, как, например, <u>TCP/IP</u>.

Модель OSI включает семь слоёв, или уровней, — причём каждый из них выполняет определённую функцию: например, передать данные или представить их в понятном для человека виде на компьютере. У каждого слоя — свой набор протоколов.

Абстракции для описания сетевого взаимодействия

Существуют две основные сетевые модели стеков протоколов, описывающие работу сетей передачи данных:

- 1. Модель OSI (Open Systems Interconnection), она же эталонная модель взаимодействия открытых систем (ЭМВОС) это семиуровневая абстрактная модель, разработанная Международной Организацией по Стандартам (International Organization for Standardization ISO).
- 2. **Стек протоколов TCP/IP** четырёхуровневая модель, разработанная по инициативе Министерства обороны США. Используется сейчас как основной стек протоколов в сетях.

Модель OSI		
Тип данных	Уровень (layer)	Функции
Данные	7. Прикладной (application)	Доступ к сетевым службам
	6. Уровень представления (presentation)	Представление и шифрование данных
	5. Сеансовый (session)	Управление сеансом связи
Сегменты	4. Транспортный (transport)	Прямая связь между конечными пунктами и надежность
Пакеты (датаграммы)	3. Сетевой (network)	Определение маршрута и логическая адресация
Кадры	2. Канальный (data link)	Физическая адресация
Биты	1. Физический (physical)	Работа со средой передачи, сигналами и двоичными данными

Стек ТСР/ІР. Инкапсуляция

п-о-р	Основные протоколы TCP/IP по уровням модели OSI [скрыть]	
Прикладной	BGP • HTTP • DHCP • IRC • SNMP • DNS • NNTP • XMPP • SIP • BitTorrent • IPP • NTP • SNTP • RDP	
	Электронная почта SMTP • POP3 • IMAP4	
	Передача файлов FTP • TFTP • SFTP	
	Удалённый доступ rlogin • Telnet	
Представления	XDR • SSL	
Сеансовый	ADSP • H.245 • iSNS • NetBIOS • PAP • RPC • L2TP • PPTP • RTCP • SMPP • SCP • SSH • ZIP • SDP	
Транспортный	TCP • UDP • SCTP • DCCP • RUDP • RTP	
Сетевой	IPv4 • IPv6 • IPsec • ICMP • IGMP • ARP • RARP • RIP2 • OSPF	
Канальный	Ethernet • PPPoE • PPP • L2F • 802.11 Wi-Fi • 802.16 WiMax • Token ring • ARCNET • FDDI • HDLC • SLIP • ATM • DTM • X.25 • Frame relay • SMDS • STP	
Физический	Ethernet • RS-232 • EIA-422 • RS-449 • RS-485	

Назначение компьютерных сетей

Обмен информацией и ресурсами
Совместная работа и коммуникация
Доступ к удаленным ресурсам
Централизованное управление и контроль
Резервное копирование и восстановление данных
Доступ в Интернет

Основные виды компьютерных сетей

- •Локальная сеть (Local Area Network, LAN) это сеть, ограниченная географически и обычно охватывающая небольшую территорию, такую как офис, школа, дом или здание.
- •Глобальная сеть (Wide Area Network, WAN) это сеть, охватывающая большие географические расстояния и объединяющая локальные сети и устройства через общедоступные телекоммуникационные сети. Интернет, частные сети предприятий, глобальные корпоративные сети.
- •Metropolitan Area Network (MAN) это тип компьютерной сети, который охватывает географически ограниченную область, обычно город или предместье.

Интернет

Интернет – всемирная система объединённых компьютерных сетей для хранения и передачи информации.

Сеть построена на базе стека протоколов ТСР/ІР.

Предоставляет сервисы.

- World Wide Web или WWW.
- Социальные сети.
- Почта.
- Обмен файлами и.т.д.

Физический уровень

Физический уровень (Physical Layer) является нижайшим уровнем в модели OSI (Open Systems Interconnection) и других сетевых моделях.

Он отвечает за передачу физических сигналов по физическим средам связи, таким как провода, оптоволокно или беспроводные каналы.

Физический уровень определяет электрические, оптические и механические характеристики для физического соединения между устройствами передачи данных.

Физический уровень

Роль физического уровня в сетевых системах:

- 1.Передача сигналов: Физический уровень обеспечивает передачу битовых потоков по физическим средам связи. Он определяет методы кодирования и модуляции, используемые для представления данных в виде сигналов, которые могут быть переданы по среде передачи.
- 2.Физическое соединение: Физический уровень определяет характеристики физического соединения между устройствами передачи данных. Это может включать разъемы, кабели, разъемы оптоволоконных сетейи другие компоненты, необходимые для установления физического соединения.
- 3.Сигнализация: Физический уровень определяет протоколы сигнализации, которые управляют началом и окончанием передачи данных, а также обнаружением и исправлением ошибок на физическом уровне.
- 4.Передача данных в среде: Физический уровень определяет способы передачи данных через физическую среду связи, включая методы модуляции. Он также определяет спецификации скорости передачи данных, дистанцию и шумозащищенность для конкретной физической среды.
- 5.Преобразование сигналов: Физический уровень может включать преобразование сигналов между различными форматами или интерфейсами, например, преобразование сигналов с электрического на оптический или обратно в оптических сетях.

Физический уровень

Роль физического уровня в сетевых системах:

- 1.Передача сигналов: Физический уровень обеспечивает передачу битовых потоков по физическим средам связи. Он определяет методы кодирования и модуляции, используемые для представления данных в виде сигналов, которые могут быть переданы по среде передачи.
- 2.Физическое соединение: Физический уровень определяет характеристики физического соединения между устройствами передачи данных. Это может включать разъемы, кабели, разъемы оптоволоконных сетейи другие компоненты, необходимые для установления физического соединения.
- 3.Сигнализация: Физический уровень определяет протоколы сигнализации, которые управляют началом и окончанием передачи данных, а также обнаружением и исправлением ошибок на физическом уровне.
- 4.Передача данных в среде: Физический уровень определяет способы передачи данных через физическую среду связи, включая методы модуляции. Он также определяет спецификации скорости передачи данных, дистанцию и шумозащищенность для конкретной физической среды.
- 5.Преобразование сигналов: Физический уровень может включать преобразование сигналов между различными форматами или интерфейсами, например, преобразование сигналов с электрического на оптический или обратно в оптических сетях.

Среды передачи данных

- А. Проводные среды передачи данных
- 1. Витая пара
- 2. Коаксиальный кабель
- 3. Волоконно-оптический кабель
- В. Беспроводные среды передачи данных
- 1. Радиоволны
- 2. Инфракрасное излучение
- 3. Микроволны

Среды передачи данных

- А. Проводные среды передачи данных
- 1. Витая пара
- 2. Коаксиальный кабель
- 3. Волоконно-оптический кабель
- В. Беспроводные среды передачи данных
- 1. Радиоволны
- 2. Инфракрасное излучение
- 3. Микроволны

Сигналы и кодирование

- А. Аналоговые и цифровые сигналы
- В. Методы кодирования данных
- 1. Амплитудная модуляция (АМ)
- 2. Частотная модуляция (ЧМ)
- 3. Фазовая модуляция (ФМ)
- 4. Методы линейного и нелинейного кодирования

Виды связи. Simplex

Simplex - односторонняя связь.

Примеры:

- Теле- и радиовещание.
- Передача сигнала от спутников GPS.

Виды связи. Half-duplex

Half-duplex – двусторонняя связь, но в один момент времени может передавать только одно устройство.

Пример: общение по рации, когда можно либо слушать канал, либо, нажав кнопку, передавать в него.

Виды связи. Full-duplex

Full-duplex или просто duplex – двусторонняя передача, оба устройства могут одновременно вести передачу.

Пример: разговор по телефону.

Методы передачи данных

Unicast - передача данных единственному адресату.

Методы передачи данных

Broadcast - широковещательная передача данных всем

устройствам.

Методы передачи данных

Multicast - передача данных группе устройств.

Виды коммутации. Коммутация каналов

В сети с коммутацией каналов между двумя конечными устройствами устанавливается физический канал. Пример: телефонная сеть.

Поток данных В

Виды коммутации. Коммутация пакетов

В сети с коммутацией пакетов информация от каждого устройства делится на небольшие пакеты, и данные передаются по одним и тем же физическим каналам. Пример: компьютерные сети

Топология сети

Виды топологий

Сетевая топология — это структура графа, на вершинах которого находятся конечные узлы сети (компьютеры/телефоны/принтеры) и сетевое оборудование (коммутаторы, роутеры), а рёбра — физические линии связи между узлами.

Сетевые топологии могут быть.

- Физическими определяет как физически соединены устройства в сети.
- Логическими определяет направления потоков данных между узлами сети и способы передачи данных

Сетевая технология Ethernet

Ethernet - семейство технологий пакетной передачи данных в компьютерных сетях, использующих метод множественного доступа с контролем несущей и обнаружением коллизий - CSMA/CD.

Название «Ethernet» (буквально «эфирная сеть» или «среда сети») связано с тем что первоначально принцип работы этой технологии был заимствован из радио технологии ALOHAnet.

Ethernet описывается стандартами группы IEEE 802.3

Ethernet сейчас является одной из самых распространённых технологий ЛВС. В середине 90-х, он вытеснил такие сетевые технологии, как ARCNET и Token Ring.

Основы Ethernet

Первой физической схемой подключения (физической топологией) Ethernet была «шина». Все устройства конфликтуют за среду передачи данных. Передача ведётся в режиме half-duplex на скорости до 10Мбит/сек. Технологии имели название 10BASE5 и 10BASE2

Коаксиальный кабель

Имеет всего одну пару проводников для передачи данных.

Проблемы ранних Ethernet.

- Режим half-duplex. Устройство не может одновременно вести прием и передачу.
- •Обрыв кабеля выводил из строя всю сеть.
- Неудобства при работе с коаксиальным кабелем.

Переход на витую пару со сменой топологии на звезду

Hub (концентратор) – сетевое устройство, работающее на первом уровне модели OSI.

Любой фрейм, пришедший на порт хаба, дублируется на все его порты кроме того, с которого он этот фрейм получил.

10BASE-T

Hub

Hub

8Р8С («RJ-45») коннектор

8P8C («RJ-45») коннектор на витой паре

Обжимка витой пары

Обжимка витой пары

Основные протоколы семейства Ethernet, работающие по витой паре

- •10BASE-T или просто Ethernet. Скорость 10Мбит/с, half/full duplex. Используется 2 пары.
- •100BASE-T или Fast Ethernet. Скорость 100Мбит/с, duplex. Используется 2 пары.
- •1000BASE-Т или Gigabit Ethernet. Скорость 1000Мбит/с, только full duplex, используются 4 пары.
- •Для всех стандартов можно применять витую пару UTP(unshielded twisted pair
- неэкранированная витая пара) категории **5e**. У всех стандартов ограничение по длине кабеля **100м**.
- •Все эти протоколы поддерживают обратную совместимость
- •Большинство устройств поддерживает авто-согласование скорости.

>

ETHERNET CABLES (COPPER)

 Up to 10G can be a twisted pair with <= 100m length limit Different categories support different speed.

b

 Cost effective coaxial 10G/25G solution exists (twinax). Length up to 15 meters

 For >1G speed over twisted pair Transmit and Receive happens simultaneously over each pair of wires

- Multimode (MMF):
 - Used for shorter distance (10G < 550m, 40G < 150m)
 - Less expensive
 - LED as light source
- Single mode
 - For long distances
 - Expensive
 - Laser as light source

Color makes sense

Color	Meaning
Orange	multi-mode optical fiber
Aqua	OM3 or OM4 10 G laser-optimized 50/125 µm multi-mode optical fibe
Erika violet	OM4 multi-mode optical fiber (some vendors)
Yellow	single-mode optical fiber
Blue	Sometimes used to designate polarization-maintaining optical fiber

- Connector types (tens of them!)
 - Standard Connector (SC)

· Multi-fiber Push On (MPO)

Transceiver form factors:

- SFP+ format for 10G
- SFP28 for 25G (same size with SFP+)
- QSFP/QSFP28 format for 25G -> 100G

BREAKOUT CABLES FOR >40G

- For 40G and 100G breakout cables are available
- Can split 1 high speed port into several low speed (1x40G into 4x10G, or 1x100G into 4x25G)

> ETHERNET PORTS

Fiber

Copper

Домашнее задание

- 1. Скачать и установить cisco packet tracer 8.x.
- 2. Диагностика физического уровня. Скачать файл packet tracer, в котором собрана сеть с несколькими хостами (в центре хаб, а также пара компьютер- компьютер), в каждом из которых проблема с линком по той или иной причине, задача поднять все линки и проверить связь командой ping.