

FIG.1



THERMALLY ACTIVATED FLUORESCENCE INTENSITY  $I_f$  VS. INVERSE ABSOLUTE TEMPERATURE OF DMSO SOLUTIONS OF RHODAMINE 6G AND TWO OTHER DYES

FIG.2

## THERMALLY ACTIVATED FLUORESCENCE INTENSITY I $_{\rm f}$ Vs. inverse temperature of dye it in Poly-A-Methyl styrene



 $T^{-1} \times 10^{-3}$ 

FIG.3

## EFFECT OF A MAGNETIC FIELD OF 14.6 TESLA ON THE TRANSMISSION SPECTRA OF A Nd-DOPED Ba CROWN GLASS, FOR THE $^4I_{9/2} ightarrow ^4F_{5/2}$ TRANSITION



FIG. 4