Package 'aelab'

July 8, 2024

Type Package

Title Calculation of Greenhouse Gas Flux

Version 0.4.0

Maintainer Zhao-Jun Yong <nuannuan0425@gmail.com>

Description

Facilitate the analysis of data related to ecology, specifically the establishment of carbon budget. Currently, the package allows the below analysis.

- (i) the calculation of greenhouse gas flux based on data obtained from trace gas analyzer using the method described in Lin et al. (2024).
- (ii) the calculation of Dissolved Oxygen (DO) metabolism based on data obtained from dissolved oxygen data logger using the method described in Staehr et al. (2010).

Lin et al. (2024) <doi:10.1016/j.scitotenv.2024.170768>.

Staehr et al. (2024) <doi:10.4319/lom.2010.8.0628>.

Imports tibble, lubridate, stats, dplyr, openxlsx, readxl, ggplot2, readr, tidyr

License GPL (>= 3)

Encoding UTF-8

RoxygenNote 7.2.3

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

Config/testthat/edition 3

Depends R (>= 2.10)

VignetteBuilder knitr

LazyData true

NeedsCompilation no

Author Zhao-Jun Yong [cre, aut]

Repository CRAN

Date/Publication 2024-07-08 05:30:02 UTC

2 calculate_do

Contents

	calculate_do	
	calculate_regression	
	convert_time	
	hobo	
	n2o	
	plot_hobo	
	process_hobo	
	process_info	
	process_weather	
	tidy_licor	
ndex		

calculate_do

 $calculate_do$

Description

Calculate the Net Ecosystem Production, Gross Primary Production and Ecosystem respiration based on the change in dissolved oxygen concentration.

Usage

```
calculate_do(df)
```

Arguments

df

 $Merged\ data frame\ produced\ by\ process_hobo(),\ process_weather()\ and\ process_info()\ functions.$

Value

A dataframe.

Examples

```
data(hobo)
calculate_do(hobo)
```

calculate_regression 3

```
calculate_regression calculate_regression
```

Description

Calculate the slope of greenhouse gas (GHG) concentration change over time using simple linear regression.

Usage

```
calculate_regression(
  data,
  ghg,
  reference_time,
  duration_minutes = 7,
  num_rows = 300
)
```

Arguments

Data from the LI-COR Trace Gas Analyzer that has been processed and time-converted.

ghg Column name of the file containing data on GHG concentration (e.g., "CH4",

"N2O").

reference_time The date and time at which the measurement started.

duration_minutes

The duration of the measurement, default to 7.

num_rows The number of rows used to perform the regression, default to 300.

Value

A tibble containing the time range (POSIXct format) of the slope and R2 (both numeric) from the simple linear regression.

Examples

```
data(n2o)
calculate_regression(n2o, "N2O", as.POSIXct("2023-05-04 09:16:15", tz = "UTC"))
```

4 hobo

convert_time

Description

Convert the time of the LI-COR Trace Gas Analyzer to match the time in real life.

Usage

```
convert_time(data, day = 0, hr = 0, min = 0, sec = 0)
```

Arguments

data	Data from the LI-COR Trace Gas Analyzer that had been processed by tidy_licor().
day	Day(s) to add or subtract.
hr	Hour(s) to add or subtract.
min	Minute(s) to add or subtract.
sec	Second(s) to add or subtract.

Value

The input data with a new column in POSIXct format converted based on the input value.

Examples

```
data(n2o)
converted_n2o <- convert_time(n2o, min = -10, sec = 5)</pre>
```

hobo Processed data from Onset HOBO Dissolved Oxygen Data Logger. A dataset containing 336 dissolved oxygen concentrations changed over time.

Description

Processed data from Onset HOBO Dissolved Oxygen Data Logger. A dataset containing 336 dissolved oxygen concentrations changed over time.

n2o 5

Format

A data frame with 336 rows and 13 variables:

- date_time: Date and time in POSIXct format.
- pressure_hpa: Atmospheric pressure (hpa).
- wind_ms: Wind speed (m/s).
- do: Dissolved oxygen concentrations (mg/L)
- temp: Water temperature (Celsius)
- depth: Water depth (m).
- salinity: Salinity (ppt).
- start_date_time: Start date and time of the deployment.
- end_date_time: End date and time of the deployment.
- sunrise: Sunrise time during that day.
- sunset: Sunset time during that day.
- no_hobo: Name for the data logger .
- site: Name for the site.

Source

own data.

n2o

Processed data from N2O LI-COR Trace Gas Analyzer. A dataset containing 567 N2O concentrations changed over time.

Description

Processed data from N2O LI-COR Trace Gas Analyzer. A dataset containing 567 N2O concentrations changed over time.

Format

A data frame with 567 rows and 4 variables:

- DATE: Date in character format.
- TIME: Time in character format.
- N2O: Concentrations of nitrous oxide (N2O), in ppb.
- date_time: Date and time in POSIXct format.

Source

own data.

process_hobo

plot_hobo

plot_hobo

Description

Plot the dissolved oxygen concentration over time series grouped by different data loggers to observe the variations.

Usage

```
plot_hobo(df)
```

Arguments

df

Dataframe produced by process_hobo() function.

Value

A plot generated by ggplot2.

Examples

```
data(hobo)
plot_hobo(hobo)
```

process_hobo

process_hobo

Description

Tidy the data retrieved from HOBO U26 Dissolved Oxygen Data Logger.

Usage

```
process_hobo(file_path, no_hobo)
```

Arguments

file_path

Directory of file.

no_hobo

The code for the data logger.

Value

A dataframe.

process_info 7

Examples

```
hobo_data_path <- system.file("extdata", "ex_hobo.csv", package = "aelab")
df <- process_hobo(hobo_data_path, "code_for_logger")</pre>
```

process_info

process_info

Description

Import and process the necessary information, including the sunrise and sunset times of the day, the date and time range of the deployment, and the code for the data logger.

Usage

```
process_info(file_path)
```

Arguments

file_path

Directory of file.

Value

A dataframe.

Examples

```
info_data_path <- system.file("extdata", "info.xlsx", package = "aelab")
df <- process_info(info_data_path)</pre>
```

process_weather

convert_time

Description

Tidy the daily weather data downloaded from weather station in Taiwan.

Usage

```
process_weather(file_path, date, zone)
```

Arguments

file_path Directory of file.

date Date of the daily weather data in yyyy-mm-dd format.

zone Code for the region of the weather station.

8 tidy_licor

Value

A dataframe.

Examples

```
weather_data_path <- system.file("extdata", "ex_weather.csv", package = "aelab")
df <- process_weather(weather_data_path, "2024-01-01", "site_A")</pre>
```

tidy_licor

tidy_licor

Description

Tidy the data downloaded from GHG Analyzer.

Usage

```
tidy_licor(file_path, gas, analyzer = "licor")
```

Arguments

file_path Directory of file.

gas Choose between CO2/CH4 or N2O LI-COR Trace Gas Analyzer, which is "ch4"

and "n2o", respectively.

analyzer The brand of the analyzer which the data was downloaded from.

Value

Return the loaded XLSX file after tidying for further analysis.

Examples

```
ghg_data_path <- system.file("extdata", "ch4.xlsx", package = "aelab")
tidy_licor(ghg_data_path, "ch4")</pre>
```

Index

```
calculate_do, 2
calculate_regression, 3
convert_time, 4
hobo, 4
n2o, 5
plot_hobo, 6
process_hobo, 6
process_info, 7
process_weather, 7
tidy_licor, 8
```