Radon Measures

(1) Pre:

· We will consider a measure acting like lebesque measure (in 12"). But we will discuss it in locally compact Mansdroff (LCM) space X.

1) 7hm. Chrysohn bemma im LCM spaces

If X is LCM space. $k \in U \in X$. k is opt and U is open. Then exists $f(x) \in C(X, C_0, IJ)$. St. $f \equiv I$ on k. $\exists R \circ pt$. $R \subset U$. $f(x) \equiv 0$ on R^c .

Thm. (Tietze Thm in LCM space)

If X is LCM space. $k \subseteq X$. $f \in Cck$).

Then $\exists f \in Ccx$). St $F|_{k} = f$. $\exists k \subseteq X$. F(X) = 0. When $X \in R^{c}$.

Thm. C Partion of Unsty in LCM space)

If X is LCM space. K GX. SUx3," is been cover of K. Then exists POU on K subordinates to EUx3,", consisting of cpt-supp functions

Remark: In 204 space. Many Thom's conclusions is weakened to "on upt set". "Finise elements" (2.9. Pou).

& Derssey:

Thm. C Stone - Weierstrass Thm)

X is apt Mandroff space. If A is closed subalgebra of CCX separating points. Then

A = CCX or If t CCX for some X.

Cor. Suppose B is a subalgebra of C'(x) separating points and containing const. Then $\overline{B} = C''(x)$.

Cor: $\exists x_0 \in X$. St. $f(x_0) = 0$ for $\forall f \in B$. then $\overline{B} = C''(x_0)$.

If $\in C''(x_0) \mid f(x_0) = 0$

Pennok: i) Pecau: algebra: A vector span X satssfies: f.g ex. Then fg ex.

A set $M \in C'(x)$ is separating: If \forall $x \neq y \in X. \exists f \in M. St. f(x) \neq f(y)$

ii) In complex case, we require 34 $h \in B$. Then $\overline{h} \in B \subseteq Cex$

iss) Common examples:

Bernstein polynomial: $\int f(\frac{1}{n}) (\frac{n}{n}) \times (1-x)^{n/k} \times$

Pf: Lemma. i) $M \subseteq C^{\infty}(x)$. Satisfies: $\forall u.v \in M$. Supple. $\forall u.v \in M$. Supple. $\forall u.v \in M$. And it a lattice) $\forall u.v \in M$. Besides, $\forall x... \times x \in X$. And $\forall u.v \in M$. $\forall u.v \in M$. St. Specy. $\forall u.v \in M$. $\forall u.v \in M$. St. Specy. $\forall u.v \in M$. St. Specy. $\forall u.v \in M$. St. Specy. $\forall u.v \in M$. Specy. Specy. $\forall u.v \in M$. Specy. Specy. $\forall u.v \in M$. Specy. Specy. Specy. $\forall u.v \in M$. Specy. Spe

is) H is Vector subspace of $C'^{K}(x)$. It's a separating lattice which contains const. Then $\overline{H} = C'^{K}(x)$

- (2) Posstinu limear Func on C'ex) and Representation:
 - O Def: I is posseive binear function on Cccx), if

 Icf) >0. Whenever f>0.

Pf: By Wrysohn. ∃φ. st. φ=1 on K.

Note that If I = φ II fllu put in I(·).

PMK: Note that 34 M is Borel measure on Xst. $\forall \ K \subseteq X$. $m(K) < \infty$. Then $C_{C}(x) \in L^{C}(X)$.

So $I: f \longmapsto \int_{X} f dM$ is a PLF.

Next, we will prove it's unique expression

for some special measure.

& Def: M is Bord measure on X. E & Bx.

M is $\begin{cases} opter regular & sf & m(E) = finf [mini] & n \geq E. open \end{cases}$ I inner regular if $m(E) = snp [m(E)] | k \leq E. opt \}$ M is regular on all Borel sets, if it satisfies both on Borel sets.

It won be a bit too much to ask for regular when X isn't 8-cpt

So we define radon measure:

It's a Borel measure satisfies finite on all cpt

sets, inner regular on all open sets, outer regular on

all Borel sets.

Notation: $U \subseteq X$. $f \in C_{CCX}$, $f \prec U \cdot 3f = 0$ $0 \leq f \leq 1$. Supp $f \subseteq U$.

7/m. (Riesz Propresentation)

If I is PLF on C_{CCX}). Then there exists a unique randon measure M. It. Icf) = $\int f \Lambda M$. $\forall f \in C_{CCX}$) Moreover. M satisfies:

 $\begin{cases} m(u) = \sup \Sigma I(f) : f < u \cdot f \in C(x) \end{cases} . \forall u \subseteq X \qquad (A)$ $l m(k) = \inf \Sigma I(f) : f : \chi_{k} \cdot f \in C(x) \end{cases} \forall k \subseteq X \cdot (B)$

ff: 1°) Uniqueness:

prove: if m is the randon measure. St. Isf)= \int fAm.

Then it satisfies (A). (B).

(From My of tandon measure, take away "inf" and "sup". by approxi.!)

=> M is Leternian by I() on open sets.

extens set to Borel sets by outer regular.

2°) Existence:

The ideal is from uniqueness.

Prove: M* is owter mensure and every open set

is m*-mensurable. (Note: M is premiume)

n. ←) inf [m(w): N ≥ E, u open] = inf [in(uk): E c vikk. open]

Take away inf. Since m(w) > inf I I m(uk): E c vikk]

y N = UUk ≥ E. Next. check m(w) ≤ in(uk).

From lef of m. Apply POU to each UK.

to attain [qk]. ∴ f < u ⇒ f = Ifqk

b. Check w open satisfies Caratheodory.

By lef of M*: E ~ v open.

operate in M(·). VNW ~ Icf), by lef.

By Caratheodorg extension 7hm: M* | Bx is a measure So ito's a Borel measure swissfin outer regular.

=> Prove: n = N*/Bx savisfus (B).

We argue that: Icf) = M(k). Mik; $\leq Icf$).

By outer regular: $N \stackrel{r}{\supset} k$. $M(n) \stackrel{r}{\subseteq} Icf$, $\forall u \geq k$. By Wigsohn. $\exists f \geq Xk$. f < u. $\therefore Icf$) $\in M(n)$ $\forall f \geq Xk$. $f \in C_{c}(u)$, constinct open set: $U = \mathcal{U} f > 1 - \mathcal{U}_{c}$. $\forall g < U_{c}$. $(1-\mathcal{U}_{c})^{2}f \neq g$. $\therefore (1-\mathcal{U}_{c})^{2}Icf$; Icf) $\geq M(u)$. Let $\mathcal{U} = \mathcal{U}_{c}$.

Inner regular is followed by: $\mu(k) \leq I(\chi_k) \leq c_0$. .. M is finite on every upt sor. $\forall x. \ \alpha \leq M(n)$. $\exists f \in C_c(n)$, $f \leq u. \ st. \ \alpha \leq M(f) \leq M(u)$.

By Maryshon. $\exists g \neq \chi_k, \ g \leq u. \ k = Suppf. -: Ing_p \neq Inf_p = \alpha$.

Lastly, prove: $I(f) = \int f k M$. $Exhaust f: ki = \int f + \frac{i}{N} \int_{N} \int_{N}$

By owe regular: we have $\frac{m(k_i)}{N} \leq I(f_i) \leq \frac{m(k_i)}{N}$ $\int_{-\infty}^{\infty} \sum_{i=1}^{\infty} m(k_i) \leq \int_{-\infty}^{\infty} f(k_i) \leq \frac{m(k_i)}{N} \leq I(f_i) \leq \frac{m(k_i)}{N}$ $\int_{-\infty}^{\infty} \sum_{i=1}^{\infty} m(k_i) \leq I(f_i) \leq \frac{m(k_i)}{N} \leq \frac{m(k_i)}{N}$

Female: The randon measure we obtain is a complete measure (Since $M = M^{*}|B_{X}$.) And by outer regular: $M^{*}(E) = \inf \{ \mu(N) | u \ge E \cdot \mathrm{open} \} = \inf \{ \inf \mu(u) | E \circ B \circ u \cdot B \circ B_{X} \}$ $= \inf \{ \mu(B) | E \circ B \in B_{X} \}$.

· M* | Bx is indee by (M. Bx).

(3) Regularisen and Approximation:

O Regular and o-finite:

Prop. Every Radon measure is inner regular on o-finite set. Every Kadon measure is regular on 6-cyt set X.

Pf: 5ther E=UEi. M(Ei) < 00. - E is M-mensurarh

19) E is finser M-mensured:

E is infinise M-measured

Let Fn = ÜE: p E. Fn is finise M-measured!

Prop. M is 5-finite Radon measure. E & Bx. Then:

1) \$\forall E>0. \text{ In open. Folish. Follown. Follown. St. Mon/f) < \xi.

ii) \$\text{If for set A. his set B. AcEcB. St. MOB/A) = 0.}

Pf: \$\text{F} = UEi. Modern. Suppose \$\text{Ei}\$ Assjoint.

7hm. X is LCM space where every open set is 5-opt.

Le.g. X is C²) Then every Borel measure pl on X

Which is finite on up set is regular (so Radon).

Ei Li ui. replace by open sots.

Remork, It generalizes the prop. before.

Pf: Icf) = If hu is PLF on Coex).

By Riesz Thm. IV Radon measure association in.

Next. Gonsider to prove: MED = VCE). EEBx.

For u open. U = Ukn. By Wigsohn on each kn

I for T' Xu. fr = Viti for xu. for Eccin,

By Monotone Convergence 7hm: $M(u) = \lim_{n \to \infty} \int f_n M_n = \lim_{n \to \infty} \int f_n M_n = \mathcal{V}(u)$. $\forall u. open$.

Note $\exists F \in \mathcal{V}(u) = \mathcal{V}(u) = \mathcal{V}(u) = \mathcal{V}(u)$. $\forall u. open$. $M(u) = \lim_{n \to \infty} \int f_n M_n = \lim_{n \to \infty} \int f_n M_n = \mathcal{V}(u) = \mathcal{V}(u)$. $\forall u. open$. $M(u) = \lim_{n \to \infty} \int f_n M_n = \lim_{n \to \infty} \int f_n M_n = \mathcal{V}(u)$. $\forall u. open$. $M(u) = \lim_{n \to \infty} \int f_n M_n = \lim_{n \to \infty} \int f_n M_n = \mathcal{V}(u)$. $\mathcal{V}(u) = \mathcal{V}(u)$. $M(u) = \lim_{n \to \infty} \int f_n M_n = \lim_{n \to \infty} \int f_n M_n = \mathcal{V}(u)$. $\mathcal{V}(u) = \mathcal{V}(u)$. $M(u) = \lim_{n \to \infty} \int f_n M_n = \lim_{n \to \infty} \int f_n M_n = \mathcal{V}(u)$. $\mathcal{V}(u) = \mathcal{V}(u)$. $M(u) = \lim_{n \to \infty} \int f_n M_n = \lim_{n \to \infty} \int f_n M_n = \mathcal{V}(u)$. $\mathcal{V}(u) = \mathcal{V}(u)$. $M(u) = \lim_{n \to \infty} \int f_n M_n = \lim_{n \to \infty} \int f_n M_n = \mathcal{V}(u)$. $M(u) = \lim_{n \to \infty} \int f_n M_n = \lim_{n \to$

@ Prop. M is Radon measure on X. Then Coex, = L'em. 1=p-0.

Lusin's 7hm: M is Radon measure on X. $f:X \to \mathbb{C}$. M-measurable.

Vanishes outside a M-finite-measure set. Then $\forall E>0$. $\exists \varphi \in C_{ecx}$, st. $\varphi = f$ except a set of measure E.

More-over. \mathcal{G} If $II_{M} < \infty$. Then $\exists \varphi$, st. $II \varphi_{II_{M}} < II f_{II_{M}}$.

Pf: E = cf203. If II film < 00. Them ft L'cm.

If In E (ccx) -> f in L'. If Ink -> f. n.v.

By Egorov. Thm. If A CE. mcE/A) < \frac{c}{3}. It.

Ink = f. on A. Lefine A and by Tietze Thm

Obtain a Cccx) Euroction! Truncate it for II of Illus II film.

If f is unbounded:

Since E is firste. If An = Los If I so I f E.

Apply the same argument on An \(\frac{c}{b}\)E.

3 Integration of Semicinti. Force.:

Def: ist is lower semiconti. CLSCs if:

f: X -> C-ro, tro]. If >n } is open for Yatik.

is) f is upper semiconti (NSC) if: $f: X \to E-co. +co). (f < a)$ is open for their.

prop. i) $N \subseteq X$. $k \subseteq X$. χ_n . $-\chi_k$ are LSC.

ii). c > 0. f 3 lsc. Then of 33 lsc

iii). $f = \sup \{j(x) : j \in g \subseteq LSC \mid Fame \}$.

Then f is LSC.

iv). f. f. mre lsc. Then fitfe is lsc.

1). If $X \geq L \in M$ space. $f \geq 0$. is $L \leq C$.

Then $f = Sup \, L g(x)$: $g \in Co(x)$. $0 \leq q \leq f$.

9f: iii) If>n3 = U I g>n).

iv) Y X1. Ft. f.(X0) + f.(X0) > a. Ya EIR.

IE. > 0. Ft. f.(X0) = a-f.(X0) + E

: If. + f.(2>a) = If. > f.(X0) - L3 U If. > a-f.(X0) + E3

ras a reighbour of to in Ifitteral.

V). $\forall n < f(x)$, n>0. If >a) is open, By LCM. $\exists V \subseteq Ef>n$. Antains χ . By Wrysohn. $\exists \gamma$, $g(\chi) = n$. $0 \le \gamma \le \alpha \chi \alpha \le f$. $g \in C_{4}(\chi)$ $\exists \gamma n \to f(\chi)$. Pointwise. 1hm. (Mono Ganverge for New of 150) g is a family of nonnegative LSC on LCH space X brusted by " = " f = supiglge G3. If M is Radon measure on X. Then Ithm = sapt Squal gegs. Pf: Note that f is Bolel-mensurable (By LSC). StAM? Sup SAAM. For the reverse inequilty: return to det of f: let $\phi_n = \frac{1}{2n} \sum_{i=1}^{n} \chi_{u_{ni}} \cdot \mathcal{H}_{ni} = \mathcal{I}_{f} > \frac{1}{2n}$ refine Uni by opt set Uni. from LCM. Since on ff. Jon M = I million & Stam. Va. SfAm > a > 0. 7 Y= in I Xuni. St. Sydu > a. Y= 9n. Yne Couxs simu f= supg. : Yx EX. Igx > Yn. And 1x-Yn is LSC. Note that IIx-Yn703, open cover UNni by such finite sets. By direct: = 9 > 9xx, correspond such finite sets: -, Jg LM > a. Gr. SfAM = sup & Squal 7 & Cocx), 0 = q = f). fix LSC. prop. M is Ladon measure on X. \$ 70. Borel-measurable Then Sthen = inf I Squn: 7 is LSC. 73f]. If sfood in 6-finite. Also: SfAm = snp ISJAm | 7 EUSC. 0 = 7 = f3. Pf: = = in x Ei 1 f pointwisse. Lefine Eig by open sur Ui;

Pf: $\exists \hat{\Sigma} a_j \chi_{Ej} \uparrow f$ pointwise. Refine E_j^c by open set U_j^c Note that $\chi_{U_j^c}$ is LSC. $\hat{\Sigma} a_j \chi_{B_j^c} \Rightarrow \hat{\Sigma} a_j \chi_{E_j^c}$ For the second. In. $\int f \Lambda m \cdot a > 0$. By onter regular of G-finite E_j^c : $\exists k_{P_j^c} \chi_{P_j^c} \Rightarrow a_j m(k_{P_j^c}) > a_j \in K_{P_j^c} \subseteq E_j^c$.

Remark: It gives a warp by LSC and USC to establish the correspond between PLF with Radon measure

() · Since Co(x) = Co(x) in LCM space X. We can extent $I(f) = \int f Am$ continuously from Co(x) to Co(x). For which

Ladon measure M satisfies: $M(x) = Inpl \int f An | f \in Co(x) \cdot 0 \le f \le |S| < \infty$ Next, we win give a complete description of Co(x).

Lemma: C Jordan Recomposition for Linear Fam on Co(x))

If $I \in C_o^*(x, x)$. Then exists $PLF I^I \in C_o^*(x, x)$ $5t \cdot I = I^T - I^T$

Pf: Firstly Ref I on $f \ge 0$: $I^{\dagger}(f) = Swp I Jeg(f) = Co(X(IR)) \cdot 0 \le g \le f \le f.$ $0 \le I^{\dagger}(f) \le ||I|||f||_{W} \cdot Check \ I^{\dagger}(s) \text{ times on } C(X(IR))$

Def: I+ for general $f \in C_0(X, |k|)$: I'cf:= I'cf+)- I'cf)

Pef: I'= I'-I. Check I+. I' we time on C(X, |k|)

Pef: $M(X) = I M = M_1^+ - M_1^+ + i (M_2^+ - M_2^-) | M_1^+ M_2^+ \text{ we rador or } X$.

With norm $||M|| = |M(CX)| < c_0$.

Prop. M is complex Borel measure. Then MEMIX) = |MIEMIX)

Remark: We can show & M. M. EMIX). Then we have:

M, + CM2 & MIX). CEIR. : MIX) is liment span

Thm. C Riesz frepresentation)

X is LCM space. Mt Mexs. In Cfs = Sf Am. ft Crex).

Then In 1 m is an isometric isomerphism from

Cotox) to Mexs.

Pf: Duly need to show jes isometry:

Note that IIm(f) = SIfI AIMI = IIfIIu IIMII. i.e. IIImII = IIMII.

For the reverse: Note: IIMII = IMICX) = SIAI* AIMI. h= LM

h transite SAMI to SAM. STAM SIAIMI = STAM

By lustin's 7hm. If f = I. owtside E. st. M(E) < \frac{2}{5}.

refine suppf, Let it be Co(X). IIMII \(\sigma\) If fAMI = IIMII.

Car. If X is upt Mausdorff space. Then C(X) = MIX).

isomeray

Pf: STAME By Stone-Weinstras 7hm: C(X) = Co(X)

Permark: Another method to construct complex Radon measure:

Suppose M is fixed positive Radon measure on X. $f \in L'(M)$.

Then $AVf = f AM \in M(X)$. With $||Vf|| = ||f||_{L'(M)}$.

Let $f \stackrel{Q}{\longmapsto} Vf$. Q is isometry from L'(M) to $M \subseteq M(X)$. $M = I \cup E M(X) \mid V < M \mid$. We can identify L'(M) as subset of M(X).

(1) 1984 148 CENT 48611 (1)

1 Vagne Convergence:

Prop. [M] U IMEJEEN = M(x). Fn(x)= Mn(-p,x). F(x)=M(-p.x].

 $F_{N}(x) \rightarrow F_{0}(x)$ At Continuation Sup $|F_{0}(x)| \rightarrow 0$ $(x \rightarrow \infty) \cdot M^{2}(x)$

Pf: The same way, since they belong to Mex)!

(5) Pr. Luct of Radon Measure:

Thm. $B \times \mathcal{O} B y \subseteq B \times x y$. if X. Y are C^2 , then $B \times \mathcal{O} D y = D \times x y$.

Moreover, in the latter case if M. V are Radon measure or X. Y cresp. J. then $M \times U$ is ladon measure in $X \times Y$.

Pf: It's some as before. Just prove the last one:

Check $m \times v$ is finite on every upt but k.

Since $k \subseteq Z_1(k) \times Z_2(k)$. $Z_1(k)$. $Z_2(k)$ is fixer!

Radon mensure on XXY cortainty!

Next. We will construct product of Radon mensione on Xxy. Perste: 98/cx,9, = 900)higs. on Xxy:

Prop. $P = Span (g \otimes h | g \cdot h \in C_{CCX}), Co(Y), rusp.)$ Then $\overline{P} = C_{CCXXY})$ in unisform norm.

Pf: It equals: $\forall f \in C_{LCXXY}$), $\Sigma > 0$.

precept open set $U \subseteq X$, $V \subseteq Y$. Containing $Z_{X} \in Suppf$). $Z_{Y} \in Suppf$. $Z_{Y} \in Suppf$.

1°) If @h | ge con, he cod) is house in conxi).

Since it's upt-Manshorth. apply Weisstern Thm.

2°) Refine the supp by Urysohn

Prop. i) $\forall f \in C_{i}(X \times Y)$ is $B \times \otimes BY$ - measurable.

ii) \mathcal{F}_{i} $M \cdot V$ is Radon measure on $X \cdot Y$ resp.

Then $C_{i}(X \times Y) \subseteq L'(M \times V)$. Satisfies: $\int f \wedge L(M \times V) = \int f \wedge M \wedge V = \int f \wedge V \wedge M$ $Pf: \quad \mathcal{F}_{i} \otimes \mathcal{F}_{i} = \mathcal{F}_{i}(\mathcal{F}_{i}) \wedge \mathcal{F}_{i}(\mathcal{F}_{i}) \otimes \mathcal{F}_{i}(\mathcal{F}_{i})$ It's $B \times \otimes BY$ - measurable

Apply Fubini Thm to oftain the last one.

Femore: We notatin: Icf)= $\int f \lambda_{M} \times v$. on $f \in Co(x \times Y)$ By Riesz Thm. it retermines Radon Measure $M \times V$ on $C(c(x \times Y))$ (unique).

Note that: $M \times v \neq M \times v$ in Jeneral.

Next, we will lisbover the lomain of MXV.

Lemma. i) $E \in B_{XXY} \Rightarrow E_X \cdot E^T \in B_Y \cdot B_X \cdot for \forall X_1 Y_1 \cdot resp.$ $f is B_{XXY} - measurable \Rightarrow f_X \cdot f_Y is B_Y - measurable.$ $B_X - measurable for \forall X_1 Y_1, resp.$

is) $f \in C_0(XXY)$. M.V is Radon measure on X.Y.Then $\int f_X AV$. $\int f^T AM$ is continuous X.Y. resp.

Pf: i) Open sets $\subseteq IEIEx.E^{A}tB1.Bx rup = M.$ Check M is 6- algebra.

ii) By finite open cover of Zy (suppf). Gpt.

The. $(M \hat{x} V)$ on open sets) $M_1 V \hat{z}_3$ Radon measure on $X \times Y$. $U \stackrel{c}{=} X \times Y$. Then $V(X \times Y)$, $M(U^T)$ \hat{z}_3 B_X -measurable. B_Y -measurable resp. $B_{U}(X \times Y)$ $M(U^T)$ $M(U^T)$

Pf: Since χ_n is $l \leq c$. By its Monotone Convergent 7hm

in $F = c f \in c_{c}(x \times y) \mid o = f \leq \chi_n \mid$.

: We obtain the measurability of vous. nout).

Since $\int f \lambda(m\hat{x}v) = \int f^{\dagger} h m \Lambda v = \int f_{\lambda} \lambda v \Lambda m$. for $f \in C_{L(XXY)}$. $\therefore m\hat{x}v(m) = \int sup \int f_{\lambda} \lambda v \int \Lambda m = \int sup \chi \int f^{\dagger} \Lambda m \int \Lambda v$.

7hm. (MXV on Borel sets)

Suppose M.V are σ -fixer Radon measure on X.Y. resp. If $E \in Bxxy$. Then $V \in Ex$). $M \in E^{x}$ are Porel-measurable on X.Y. resp. Besides. $M \stackrel{\sim}{X} V \in E$) = $\int V \in Ex$) $Am = \int M \in E^{x}$) AV.

Pf: O Fixed open set U.VEX.Y. rusp.
rustriot on UXV

OM = I E & Bxxy | E satisfies the corchisions).

i) Oper suts & M.

is) E. F & M. = E/F & M. if F & E.] prop of

121) [Ek], Assjoint & M. = ÜEk & M.] manure

iv) M is cheel under courtable increase - mono union and becrease intersection converge Than

(3) Let $E = E A/B \mid A \cdot B \subseteq XXY3$. $E \subseteq M$.

Check it's an elementary family.

A is collection of finishe enring of elements in E (ASjoint)

A is an algebra. And $A \subseteq M$.

(A is an algebra. And $A \subseteq M$.

(5 CA) = monotone class generated by A.

By $A \in M = M$. $A \in M = M = M$.

A) X = UUn. Y = UUn. Where Un TX. Vn fy.

For Ee Bxxy. En Cunxvn) Satisfies the

conclusions for Yn. Apply Mono-Converge 7hm!

Remark. By Tonour Thm. If $E \in Bx \times By$. Then $M\hat{x} \vee (E) = \int V(Ex) dx = M \times V(E).$

1hm. (Fubini- Torelli 7hm for $M\hat{X}V)$ Let M. V are σ -finite Radon measure on X.Y.

- i) If f is Borel-measurable on $X \times Y$. Then $f \times f^{*}$ is Borel-measurable on $X, Y, rusp. \ \forall \ X, Y \in X, Y$
- is) $f \in L'(m\hat{x}v) \Rightarrow f_{x} \in L'(v)$. for $n \in x$, $f_{y} \in L'(m)$,

 for $a \in y$. $\int f_{x} \wedge v \in L'(m)$. $\int f^{\eta} \wedge m \in L'(v)$.

 Besides: $\int f \wedge L(m\hat{x}v) = \int f \wedge m \wedge v = \int f \wedge v \wedge m$.

 Pf: Approxi. by χ_{u} . Apply Monetone Convergent 7hm.

Extend to infinite products:

. Suppose EXadan family of Upt Maus Norff

Spaces. Ma is Radon measure on X9. 52. Mai X4)=1.

Then TIXA is also upt. MansAorff

ANN

Pef: M. Radon measure on X. for $E \subseteq X$ $E = \prod_{n \in A} E_n$. $E_n \in B_{Xn}$. $E_n = X_n$ for M.

but finitely many A. $M(E) = M(\prod_{n \in A} E_n) = \prod_{n \in A} M(E_1)$ with

7hm. In the space $TIX_{T}=X$ with measure [Ma] $TIX_{T}=X$ with measure [Ma] $TIX_{T}=X$ with measure $IIX_{T}=X$ with measure $IIX_{T}=X$ with measure $IIX_{T}=X$ with measure $IIX_{T}=X$ and $IIX_{T}=X$ with measure $IIX_{T}=X$ and $IIX_{T}=X$ with measure $IIX_{T}=X$ and $IIX_{T}=X$ with measure $IIX_{T}=X$ with $IIX_{T}=X$ with measure $IIX_{T}=X$ with $IIX_{T}=X$ with I

Pf: The point is extending M from elementary one to general:

1) Denote $C_F = \mathcal{E} f \in C_c(x) | f = g \circ \mathcal{Z}_{ca.,ac.,an}$ where $g \in C_c(x) \cdot f$ or some $[x_i]_i \in A_s$.

Pef: Iif) = $\int g \wedge M_{a}, \hat{x} \wedge M_{4} \cdots \hat{x} \wedge M_{4}$. = $\int g \wedge \hat{\otimes} M_{4} (S \hat{m}_{a} \wedge M_{4} (X_{a}) = 1)$

Check I (.) in PDF.

Since CFCX) is separating subalgebra : CFCX) = (CX)

extend I (f) continuly to CCX).

If: $\forall E \in B_{TiX_{ii}}$. Use regularisty of M. $E \xrightarrow{Z'} Z'(E) \subseteq CX.M_J$. $\therefore \exists k \in Z'(E)$.

14. $M(k) \ni M(Z(E)) \cdot \Sigma$. Then Z(k) upt. is what we need!