UPPSALA UNIVERSITY Department of Mathematics Rolf Larsson

Exam in Mathematical Statistics Inference Theory II, 1MS037 2019-01-04

Time: 8.00-13.00. Limits for the credits 3, 4, 5 are 18, 25 and 32 points, respectively. The solutions should be well motivated.

Permitted aids: Hand-written sheet of formulae. Pocket calculator. Dictionary. No electronic device with internet connection.

1. Suppose $X_1, ..., X_n$ are independent negative binomial with parameters (r, p), where r is a positive integer and $0 , i.e. the probability mass function of <math>X_i$ is

$$p(x) = \binom{r+x-1}{x} p^r (1-p)^x$$

for $x = 0, 1, 2, \dots$ Suppose that r is known and that p is unknown.

- (a) Find a sufficient statistic for p. (3p)
- (b) Find a minimal sufficient statistic for p. (It could be the same one as in (a).)
- 2. Suppose that the discrete random variable X can take the values 1, 2, 3 according to

$$P(X = 1) = \theta_1^2, \ P(X = 2) = \theta_2^2, P(X = 3) = 2\theta_1\theta_2,$$

where $\theta_1 + \theta_2 = 1$. Consider an independent sample $\mathbf{X} = (X_1, ..., X_n)$ where all X_i are distributed as X.

- (a) Does the distribution belong to a strictly k-parametric family? In that case, determine k, the natural parameter(s) and the sufficient statistic(s). (2p)
- (b) Show that the Fisher information for θ_1 is $\frac{2n}{\theta_1(1-\theta_1)}$. (2p)
- (c) Is there any unbiased estimator of θ_1 with variance strictly less than $\frac{\theta_1(1-\theta_1)}{2n}$? Motivate your answer. (2p)
- 3. Suppose $X_1, ..., X_n$ are independent, distributed according to a continuous uniform distribution on $[-\theta, \theta]$. We have observations $x_1, ..., x_n$.
 - (a) Show that the maximum likelihood estimate (MLE) is $\hat{\theta}_{\text{MLE}} = \max_{i} |x_i|$, where |a| is the absolute value of a. (3p)
 - (b) Assume that the observations are 2.5, -3.2, -0.5, 2.0. Consider testing H_0 : $\theta = 4$ vs H_1 : $\theta > 4$, using the MLE as test statistic. Calculate the p value. (3p)

Hint: If X is uniform on $[-\theta, \theta]$, then |X| is uniform on $[0, \theta]$. This fact may be used without proof.

Please turn the page!

- 4. Suppose $X_1, ..., X_n$ are independent, distributed as $X \sim N(\mu, 1)$. We have observations $x_1, ..., x_n$.
 - (a) Show that \bar{X} is a sufficent statistic for μ . (1p)
 - (b) Let $\theta = P(X \le a)$ for some real number a. In the rest of this problem, the aim is to estimate θ . Show that the estimator

$$U = \begin{cases} 1, & \text{if } X_1 \le a, \\ 0, & \text{if } X_1 > a \end{cases}$$

is unbiased for θ . (2p)

- (c) Find a unbiased estimator of θ with smaller variance than U. (3p) Hint: It may be used without proof that $(X_1|\bar{X}=t)$ is normal with expectation t and variance $1-n^{-1}$.
- 5. Consider testing that the observation x comes from a discrete distribution with probability function $p_0(x)$ vs the alternative that it comes from a discrete distribution with probability function $p_1(x)$, where these two probability functions are given in the following table:

- (a) Which is the most powerful (MP) test at level $\alpha = 0.05$? (2p)
- (b) Calculate the size of the type II error and the power for the MP test.(2p)
- (c) Calculate sizes of the errors of type I and II as well as the power for the test with critical region $\{x = 3\}$. Compare to the power for the MP test. (2p)
- 6. Suppose $X_1, ..., X_n$ are independent, distributed as X which is exponential with intensity $\beta > 0$, i.e. with density function

$$f(x) = \beta \exp(-\beta x), \quad x > 0,$$

and 0 otherwise. Let $x_1, ..., x_n$ be the observations.

- (a) Show that this distribution belongs to a one-parameter exponential family. (1p)
- (b) Give the natural parameter and the sufficient statistic. (1p)
- (c) Consider testing H_0 : $\beta \geq \beta_0$ vs H_1 : $\beta < \beta_0$. Show that the uniformly most powerful (UMP) test has critical region $\bar{x} > C$ where \bar{x} is the mean of the observations and C is some constant. (3p)

Please turn the page!

- 7. Suppose we have one observation of X_1 , which is Poisson with parameter θ , and one of X_2 , which is Poisson with parameter $\theta + \delta$, where X_1 and X_2 are independent. The parameter space consists of all $\theta > 0$ and all $\delta \geq 0$.
 - (a) If $\delta = 0$, is $X_1 + X_2$ complete and sufficient for θ ? Why or why not?(2p)
 - (b) Consider testing H_0 : $\delta = 0$ vs H_1 : $\delta > 0$.

Derive the UMP α -similar test. Do we reject at level 0.05 if $x_1 = 2$ and $x_2 = 5$? (4p)

Hint: It may be used without proof that if $\delta = 0$, then $(X_2|X_1 + X_2 = t)$ is Bin(t, 1/2).

GOOD LUCK!