LECTURE-7

Contour	integration
	1

Lecture - 7: Contours, contour integration.

A curve & is a continuous function from a bounded, closed interval [a,b] to C. The initial and final point of the curve are &(a) and &(b), respectively.

Eq:
$$\alpha: [0,1] \rightarrow 1$$
 $t \mapsto ti + (1-t)$

at $t=0$, $\alpha(0)=1$
 $t=1$, $\alpha(1)=i$

image $\{\alpha(t)/t \in [a,b]\}$ is often also called a $\alpha(0)$

Abuse of: The image $\{\alpha(t)/t\in [a,b]\}$ is often also called a curve. notation

A curve x is said to be smooth if x' exists and is continuous, ie if x(t) = x(t) + iy(t) then x'(t) := x'(t) + iy'(t) exists and x', y' are continuous.

Ep: \(\times'(t) in the above example is -1+i

A contour in a is obtained by joining finitely many smooth curves!

A closed curve (contour)) is a curre(contour)
A closed curve (contour) whose enitial and final	points are the same.

A simple closed curve (contour) is a curve (contour) which does not cross itself with the exception of its initial and final points, it $x: [a,b] \to 0$ is simple closed if x: a curve such that x: a curve = a cut that <math>x: a curve = a cut that a cut that

not simple.

Opposite curve: Let $1: [a,b] \rightarrow \mathbb{C}$ be a curve. Then its opposite is the curve $-1: [a,b] \rightarrow \mathbb{C}$ given by $t \longmapsto V(a+b-t)$

Join of two curre 12 & 12: $A_{\cdot}: [a_{\cdot}, b_{\cdot}] \longrightarrow C$ $\frac{1}{2} + \frac{1}{2} \left(b_1 \right) = \frac{1}{2} \left(a_2 \right)$ $\sqrt{1 + 1} = \sqrt{1 + (b_1 - a_2)} \rightarrow C$ $t \mapsto \gamma_1(t) \quad i \mid t \in [a_1, b_1]$ $t \mapsto \sqrt{(t-b_1+a_2)}$ y t∈[b1,b1+(b2-a)] on of a complex-valued function → C be a continuous Then $\int f(t)dt := \int x(t)dt + i \int y(t)dt$ where f(t) = x(t) + iy(t).

Integration of a function along a contour!		
Let $V: [a,b] \to \mathbb{C}$ be a smooth curve.		
Let $f: C \to C$ be continuous.		
Then $\int f(z)dz := \int \int (v(t))v(t)dt$		
Let 1 = 1, + 1, + + 1, be a contour.		
Then $\int f(z)dz := \int f(z)dz + \cdots + \int f(z)dz$.		
Evaluating \f(z)dz		
first principles anti-derivatives (Fundamental thm)		
,		

Example: (The fundamental integral)

Let 5.EC, 4>0 and ne H.

(= circle of radius r centured at 3.

given by $V: [0, 2\pi] \rightarrow \mathbb{C}$ $t \mapsto 5. + Ye^{it}$ $\int (Z-5.)^{n} dz = \int (3. + Ye^{it} - 3.)^{n} \cdot iYe^{it} dt$

 $= \int (\gamma e^{it})^n i\gamma e^{it} dt = i\gamma^{n+1} \int_{0}^{2\pi} e^{i(n+1)t} dt$

 $= i r^{n+4} \left(\int_{0}^{2\pi} \cos(n+1)t \, dt + i \int_{0}^{2\pi} \sin(n+1)t \, dt \right)$ $= i r^{n+4} \left(-\frac{\sin(n+1)t}{n+1} + i \frac{(\cos(n+1)t)}{n+1} \right) \Big|_{0}^{2\pi}$

 $= \frac{1}{1} \frac{n+1}{n+1} \times 0 = 0$

if
$$m+1=0$$
 is $n=-1$

then
$$\int_{0}^{2\pi} (\gamma e^{it})^{n} i\gamma e^{it} dt$$

$$= i \int_{0}^{2\pi} dt = 2\pi i$$

Thus,
$$\int (z-5)^n dz = 0$$
 if $n \neq -1$

$$C_{5_0,7} = 2\pi i$$
 if $n = -1$

9 Integral via anti-derivatives:

domain = open + connected.

Theorem: Let f be a continuous function defined on a domain D. Suppose there exists F on $D \ni F'=f$.

Let $Z_1, Z_2 \in D$. Then for any contour

C starting at z, and ending at z, the

integral $\int f(z)dz = F(z_1) - F(z_1)$

In particular, the integral is independent of the contour.

Proof: Let the contour C be given by $V: [a,b] \rightarrow C$ $(V(a)=Z_1; V(b)=Z_2)$.

Then $\frac{1}{dt}(F(V(t)))=F(V(t))V'(t)=f(V(t))V(t)$

Hence $\int f(I(t)) I(t) dt = \int \frac{d}{dt} (F(I(t)) dt)$

= F(V(b)) - F(V(a))

$$= F(Z_2) - F(Z_1)$$

 $= F(Z_2) - F(Z_1)$ NOTE: If $Z_1 = Z_2$ is if C is a closed contour then $\int_C f(z)dz = 0$

Examples: (i) $\int_{Z_1}^{Z_2} z dz = \frac{Z^2}{2} \Big|_{Z_1}^{Z_2} = \frac{Z_2^2 - Z_1^2}{2}$

(ii) \[\frac{1}{z} dz = \log z_2 - \log z_1 \]
\[\frac{1}{z} \]

(1) $\int f(z)dz = -\int f(z)dz$ -7
(2) $\int f(z)dz = \int f(z)dz + \int f(z)dz$ $\frac{1}{\sqrt{1+\sqrt{2}}}$

(3) (ML-inequality): Let $f:D\to C$ be a continuous function on a domain D. Let C be a contour in D given by $V:[a,b]\to C$ If $|f(z)| \leq M \forall z \in C$, then $|f(z)| \leq Ml$ where $l = \int |V(t)| dt$.

length of 1.

consequences of the correr-

 $\left| \int f(z) dz \right| = \left| \int f(\tau(t)) \tau(t) dt \right|$

= [|f(v(t)) | \1'(t) | dt = Ml.