INSTITUT NATIONAL DES SCIENCES APPLIQUÉES DE LYON

Département du Premier Cycle - SCAN - First

MTES test 2 - Duration 2 h

Warnings and advices

- Documents, dictionaries, phones, and calculators are FORBIDDEN.
- The marking scheme is only given as an indication.

EXERCISE 1 (4 pts)

Consider the surface $S = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 4, x \ge 0, y \ge 0, z \le 0\}$ with the natural orientation of the sphere.

Give a representation of this surface and compute the flux of the vector field

$$\overrightarrow{A}(x, y, z) = z\overrightarrow{e_y} + x\overrightarrow{e_z}$$

through the surface S.

EXERCISE 2 (5 pts)

We consider here three surfaces that make the boundary of a volume V.

$$-D_1 = \{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 \le 4 \text{ and } z = 0\}$$

$$-D_2 = \{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 \le 4 \text{ and } z = 1\}$$

$$\begin{array}{l} -D_1 = \{(x,y,z) \in \mathbb{R}^3 | x^2 + y^2 \leqslant 4 \text{ and } z = 0\} \\ -D_2 = \{(x,y,z) \in \mathbb{R}^3 | x^2 + y^2 \leqslant 4 \text{ and } z = 1\} \\ -C = \{(x,y,z) \in \mathbb{R}^3 | x^2 + y^2 = 4 \text{ and } 0 \leqslant z \leqslant 1\} \end{array}$$

The three surfaces have the natural orientation given by V.

We consider on \mathbb{R}^3 the vector field

$$\overrightarrow{A}(x, y, z) = 2x\overrightarrow{e_x} + (1 - z)\overrightarrow{e_z}$$

- 1. Represent the volume V specifying the surfaces D_1, D_2 and C.
- 2. Compute the flux of \overrightarrow{A} through D_1 .
- 3. Compute the flux of \overrightarrow{A} through D_2 .
- 4. We consider the scalar field Φ on \mathbb{R}^3 given in cartesian coordinates by $\Phi(x, y, z) = x^2 + y^2$.
 - $\gamma_{(a)}$ Compute the gradient of Φ in the cartesian frame and in cartesian coordinates.
 - 7 (b) Compute the gradient of Φ in the cylindrical frame and in cylindrical coordinates.
 - ? (c) Deduce from the previous questions the normal normalized vector field \overrightarrow{n} on C that defines the orientation of C.
 - (d) Compute the flux of \overrightarrow{A} through C.
- 7.5. Compute the flux of \overrightarrow{A} through the boundary of V.

EXERCISE 3 (5 pts)

We consider the vector field \overrightarrow{F} defined on \mathbb{R}^2 by :

$$\overrightarrow{F}(x,y) = x\overrightarrow{e_x} - y\overrightarrow{e_y}$$

- 1. Compute the field lines of \overrightarrow{F} . Draw some of them.
- 2. Show without finding a potential that \overrightarrow{F} is derived from a potential V.
- 3. Find the potential V such that V(0,0) = 0.
- 4. Draw on the same picture of question 1 the level curves $V^{[-1]}(\{k\})$ of V. No justification required BUT just specify which ones are for k > 0, k = 0 and k < 0.
- 5. (a) Show that the points A(0,0) and B(1,1) are on the same level curves of V.
 - (b) Compute the circulation of \overrightarrow{F} from A to B along the parabola of equation $y = x^2$.

EXERCISE 4 (6 pts)

We consider the three vector fields defined on $\mathbb{R}^3 \setminus Oz$ given in cylindrical coordinates and in the local cylindrical frame:

$$- \overrightarrow{A} = \frac{2\cos(\theta)}{r^3} \overrightarrow{e_r}
- \overrightarrow{B} = \frac{\sin(\theta)}{r^3} \overrightarrow{e_\theta}
- \overrightarrow{S} = \overrightarrow{A} + \overrightarrow{B} + \overrightarrow{\nabla}(\Psi) \text{ where } \Psi \text{ is a } \mathcal{C}^2 \text{ scalar field on } \mathbb{R}^3$$

We consider the points : E(1,0,0), F(2,0,0), G(0,2,0) and H(0,1,0) and the curve Γ oriented in the direction EHGF made of :

- The arc of circle centered at 0 of radius 1 from E to H.
- The segment line [HG].
- The arc of circle centered at 0 of radius 2 from G to F.
- The segment line [FE].
 - 1. Draw a picture of Γ .
 - 2. (a) On which parts of Γ the infinitesimal circulation of \overrightarrow{A} is 0? Justify your answers with as few computations as possible.
 - (b) On which parts of Γ the infinitesimal circulation of \overrightarrow{B} is 0? Justify your answers with as few computations as possible.
 - 3. Compute the circulation of \overrightarrow{A} along Γ . From this result, can we deduce if \overrightarrow{A} is derived or not from a potential?
 - 4. Compute the circulation of \overrightarrow{B} along Γ . From this result, can we deduce if \overrightarrow{B} is derived or not from a potential?
 - 5. Compute the circulation of \overrightarrow{S} along Γ . From this result, can we deduce if \overrightarrow{S} is derived or not from a potential?