CS 312: Artificial Intelligence Laboratory

Lab 4 report

- B Siddharth Prabhu (200010003)
- Sourabh Bhosale (200010004)

• Introduction:

The objective of this task is to find the best (shortest) tour (visiting all cities exactly once and returning to the origin city) in a given amount of time with a given a set of cities (coordinates) and distances between them, viz. **Traveling Salesman Problem**.

Methodology (Ant Colony Optimization):

Ants build solutions to TSP by moving on the problem graph from one city to another until they complete a tour. During an iteration of the ACO algorithm each ant builds a tour executing one step for each node (city).

For each ant, transitions from one city to another depend on:

- 1. Whether or not the city has been visited.
- 2. The heuristic desirability ("visibility") of connected cities.
- 3. The amount of pheromone trail on the edge connecting two cities.

Probability of ant k, currently at city i, choosing a next city j is given by,

$$P_{ij}^{k}(t) = \begin{cases} \frac{\tau_{ij}^{\alpha}(t)\eta_{ij}^{\beta}(t)}{\sum_{s=Allowed_{k}}\tau_{is}^{\alpha}(t)\eta_{is}^{\beta}(t)} & \text{if } j \in Allowed_{k}(t) \\ 0 & \text{Otherwise} \end{cases}$$

 $Allowed_k$: feasible neighbourhood of ant k when being at city i, which are the set of cities that ant k has not visited yet.

 $\tau_{ij}(t)$: Intensity of pheromone w.r.t. time.

 $\eta_{ij}(t)$: visibility of city j from i.

 η_{ij} = $1/d_{ij}$: heuristic value that gives more priority to closer city

 d_{ij} : length of arc (i, j)

 α, β : hyper-parameters

 α = 0, β > 1: the closest city is selected

 α > 1, β = 0: only pheromone is used

 $\tau_{ij}(t+n)$ = $\rho \tau_{ij}(t)$ + $\Delta \tau_{ij}(t,t+n)$, where ρ is evaporation rate.

$$\Delta \tau_{ij}(t, t+n) = \sum_{k=1}^{m} \Delta \tau_{ij}^{k}(t, t+n)$$

Where τ_{ij}^k = Q/L_k , if ant k visits city j from i, and 0 otherwise.

Cost = sum (edges) = L_k for k^{th} ant, where L_k = cost generated by ant k.

• Pseudocode:

TSP-ACO()

Initialise au_{ij} (0) to a small value for all segments i-j in the problem

while termination condition is satisfied:

Construct the tour for each of the m ants

Remember the best tour when a better one is found

Update the pheromone levels for each segment τ_{ij} (t+n)

while end

return best tour

• Conclusion and Iterative Improvements:

- In ACO, Artificial ants use a probability determined by pheromones and visibility to choose a good path with less cost, that tends to be closer to a min-cost solution (in smaller cases).
- ACO can find best solutions on smaller problems.
- ACO has little chance to get stuck in a local optimum.
- On larger problems, it converges to good solutions, but not the global optimum.
- We tweaked values of α , β , ρ to get a better tour, with lesser cost. Our outputs for euc_100 and noneuc_100 were 1613 and 5394 respectively. But these may from one run to another due to probabilistic reasons.