Dados para o trabalho

Bernardo Sotto-Maior Peralva

08 de junho de 2021

Ambiente Experimental CERN

 O trabalho será desenvolvido no contexto do maior e mais energético acelerador de partículas até o momento, o LHC (do inglês, Large Hadron Collider), localizado no CERN (do francês Centre Europeenne pour La Recherche Nucleaire).

2/21

- O LHC é um acelerador circular de 27 km de extensão, acelerando feixes de prótons próximo a velocidade da luz.
- Colisões são realizadas em 4 experimentos: ATLAS, CMS, ALICE e LHCb.

Ambiente Experimental ATLAS

 Dentre os principais experimentos projetados para medir os subprodutos das colisões, encontra-se o detector de propósito geral ATLAS (do inglês, A Toroidal LHC Apparatus).

4/21

Sistema de calorimetria do ATLAS

 No ATLAS, o sistema de calorimetria é composto por dois componentes: o Calorímetro de Argônio Líquido, ou LAr (do inglês Liquid Argon Calorimeter) e o Calorímetro Hadrônico de Telhas, ou TileCal (do inglês Tile Hadronic Calorimeter).

Sistema de calorimetria do ATLAS

 Em calorimetria de altas energias, técnicas de estimação de parâmetros são aplicadas para o estimar propriedades importantes de partículas absorvidas e amostradas pela eletrônica de leitura de um calorímetro.

O Calorímetro de Telhas (TileCal)

 O TileCal é baseado na técnica de amostragem que utiliza placas (ou telhas) de plástico cintilante como material ativo, intercalada com camadas de aço como material absorvente.

Calorimetria de Altas Energias

 Métodos de estimação são utilizados para estimar propriedades como amplitude, fase e pedestal de sinais gerados pela eletrônica de leitura de um calorímetro, sendo a amplitude a informação de maior importância.

Empilhamento de sinais

 Em sistemas que operam em altas taxas de eventos, o sinal amostrado pode conter informações de colisões adjacentes, resultando no efeito de empilhamento de sinais e dificultando a estimação da amplitude do sinal de interesse.

Dados

Descrição do banco de dados e parâmetros utilizados

- Dois conjuntos de dados são disponibilizados, contendo 100.000 realizações cada:
 - Sem sinal de interesse: rúido eletrônico + empilhamento
 - Com sinal de interesse cuja amplitude deve ser estimada pelos métodos propostos. Sinal imerso ao ruído eletrônico e empilhamento
- Ruido eletrônico: modelo gaussiano com média zero e 1,5 contagens de ADC de desvio padrão
- Empilhamento de sinais: modelo exponencial de média 30 contagens de ADC, variando de 0 a 100% de ocupação (probabilidade de ocorrer um sinal em uma dada colisão).
- Sinal de interesse: modelo exponencial de média 90 contagens de ADC
- Desvio de fase: modelo uniforme [-4,4] ns
- Deformação do pulso: amplitude da amostra temporal variando 1% uniformemente
- Pedestal: valor constante igual a 30 contagens de ADC

B. S. Peralva (UERJ) Aula 08/06/21 08 de junho de 2021 10/21

Dados

Descrição do banco de dados e parâmetros utilizados

• Exemplos de ruído (ruído eletrônico+empilhamento)

var 1	var 2	var 3	var 4	var 5	var 6	var 7
30.6789	30.4616	30.5791	47.2937	100.1157	121.6271	78.5617
47.1437	35.8586	34.7989	44.4713	148.5912	256.1586	187.6970
95.3952	72.3061	49.1841	38.0381	29.2746	29.9340	31.8294

 Exemplos de sinal corrompido (sinal de interesse imerso em ruído eletrônico+empilhamento)

var 1	var 2	var 3	var 4	var 5	var 6	var 7	Amp
				66.3779			
69.9513	47.8661	58.7896	113.0666	103.4931	61.8475	38.1190	69.1814
28.0913	32.8565	77.4947	133.6823	106.4655	62.6288	51.8289	2.3117

Dados disponíveis em:

https://drive.google.com/drive/folders/
1AGRuku7yjgjU8uuanUGm-TXy9ySohxsL?usp=sharing

- Desconvolução de sinais, ou Multi-Amplitude Estimator (MAE): https://github.com/ingoncalves/jcae-2021-analysis/blob/master/analysis/filters/cof.py
- Optimal Filter (OF): https://github.com/ingoncalves/jcae-2021-analysis/blob/master/analysis/filters/of2.py
- Wiener Filter:

https://github.com/ingoncalves/jcae-2021-analysis/blob/master/analysis/filters/wiener.py

Sparse:

https://github.com/ingoncalves/jcae-2021-analysis/blob/master/analysis/filters/sparse_cof.py

BACKUP

Métodos

Estimação de energia em calorimetria

 Sistemas de calorimetria em geral utilizam estimadores lineares por fornecerem uma resposta rápida e serem de fácil implementação (hardware e software).

$$\hat{A} = \sum_{k=0}^{N-1} x[k]w[k].$$

- O *Optimal Filter* (OF) tem sido empregado atualmente em diversos sistemas de calorimetria.
- Além do OF, métodos alternativos como o Constrained Optimal Filter (COF), utilizam o conhecimento do formato do pulso em suas formulações matemáticas, bem como assumem o ruído eletrônico como sendo Gaussiano.

Optimal Filter

Modela o sinal de saída das células do calorímetro como

$$x[k] = Ag[k - \tau] + n[k] + ped.$$

e é baseado na soma ponderada das amostras temporais

$$\hat{A} = \sum_{k=0}^{N-1} x[k]w[k].$$

 O vetor de coeficientes w é calculado de forma offline visando minimizar a variância da amplitude. Algumas restrições podem ser consideradas em seu projeto, para garantir a imparcialidade do estimador, imunidade à fase a à flutuações do pedestal (OF2)

i)
$$\sum_{k=0}^{N-1} w[k]g[k] = 1$$
 ii) $\sum_{k=0}^{N-1} w[k]\dot{g}[k] = 0$ iii) $\sum_{k=0}^{N-1} w[k] = 0$

em que os vetores g e ġ correspondem ao pulso de referência normalizado e sua derivada, respectivamente.

Optimal Filter

 Os coeficientes w podem ser encontrados resolvendo o sistema matricial abaixo, utilizando os multiplicadores de Lagrange:

$$\begin{pmatrix} C[1,1] & C[1,2] & \cdots & C[1,N] & -g[1] & -\dot{g}[1] & -1 \\ C[2,1] & C[2,2] & \cdots & C[2,N] & -g[2] & -\dot{g}[2] & -1 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ C[N,1] & C[N,2] & \cdots & C[N,N] & -g[N] & -\dot{g}[N] & -1 \\ g[1] & g[2] & \cdots & g[N] & 0 & 0 & 0 \\ \dot{g}[1] & \dot{g}[2] & \cdots & \dot{g}[N] & 0 & 0 & 0 \\ 1 & 1 & \cdots & 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} w[1] \\ w[2] \\ \vdots \\ w[N] \\ \lambda \\ \xi \\ v \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ w[N] \\ \lambda \\ \xi \\ v \end{pmatrix},$$

em que a matriz C corresponde à matriz de covariância do ruído, e λ , ξ e ν os multiplicadores de Lagrange.

• Em geral C = I (matriz identidade), a qual descreve somente o ruído eletrônico. Porém, projetos otimizados podem usar a matriz de covariância do ruído de fundo resultante.

Constrained Optimal Filter

 Foi desenvolvido no intuito de prover um estimador onde não é necessário conhecer as características a priori do empilhamento. Modela o sinal de saída das células do calorímetro como um conjunto a[k] de deposições de energia

$$x[k] = \sum_{i} (g[i]a[n-i]) + n[k]$$

- O valor do pedestal é subtraído das amostras temporais x[k] antes de se aplicar o filtro. O valor do pedestal pode ser obtido através de um banco de dados, por exemplo.
- A estimação da energia implica em desconvoluir a sequência x[k] da resposta ao impulso g[k]. Aplicando um procedimento similar ao OF, a amplitude pode ser dada por

$$\hat{\mathbf{a}}_p = \mathbf{W}_p^T \mathbf{x}$$

em que

$$\mathsf{W}_p = \mathsf{C}_p^{-1} \mathsf{G}_p (\mathsf{G}_p^\mathsf{T} \mathsf{C}_p^{-1} \mathsf{G}_p)^{-1} \,.$$

Constrained Optimal Filter

 \bullet A matriz G_p é dada por

$$G_{\rho} = \begin{pmatrix} g[3] & g[4] & g[5] & g[6] & 0 & 0 & 0 \\ g[2] & g[3] & g[4] & g[5] & g[6] & 0 & 0 \\ g[1] & g[2] & g[3] & g[4] & g[5] & g[6] & 0 \\ g[0] & g[1] & g[2] & g[3] & g[4] & g[5] & g[6] \\ 0 & g[0] & g[1] & g[2] & g[3] & g[4] & g[5] \\ 0 & 0 & g[0] & g[1] & g[2] & g[3] & g[4] \\ 0 & 0 & 0 & g[0] & g[1] & g[2] & g[3] \end{pmatrix} \,,$$

 Caso o ruído de fundo seja considerado Gaussiano, a amplitude estimada pode ser dada por

$$\hat{a} = G^{-1}x$$

- Esta expressão não depende da matriz de covariância do ruído C, sendo esta uma das vantagens do método COF com relação ao método OF.
- De posse do vetor de amplitudes, é aplicado um corte linear para selecionar somente amplitudes acima de um patamar definido no projeto do filtro.

Filtro de Wiener

- O filtro de Wiener não utiliza um modelo do sinal recebido e do ruído, utilizando apenas a estatística do conjunto de dados.
- É um filtro linear com 8 coeficientes (7 pesos e 1 bias), projetados para diferentes condições de empilhamento de sinais.
- Utiliza um processo de simulação onde se conhece o valor desejado do parâmetro a ser estimado.
- Busca minimizar o erro médio quadrático do erro de estimação.

$$J = E\left[\left(\hat{A} - A\right)^2\right]$$

• Para que J seja minimizado, é necessário calcular sua derivada em função dos coeficientes w[k], onde

$$\frac{\partial}{\partial w[k]} \mathbb{E}\{e[n]^2\} = 2\left(\sum_{i=0}^{N-1} w[i] \mathbb{E}\left\{x[n-k]x[n-i]\right\}\right) - 2\mathbb{E}\left\{x[n-k]d[n]\right\}.$$

Filtro de Wiener

 Pelo princípio da ortogonalidade, para que a função de custo J atinja o seu mínimo, sua derivada deve ser igual a zero. Logo,

$$\sum_{i=0}^{N-1} w[i] \mathbb{E} \{ x[n-k]x[n-k] \} = \mathbb{E} \{ x[n-k]d[n] \} \quad k = 0, 1, \dots, N-1.$$

• Utilizando as Equações de Wiener-Hopf R[i,k] e p[k], representando autocorrelação da entrada do filtro a correlação cruzada entre a entrada do filtro e a saída desejada, respectivamente

$$R[i,k] = \frac{1}{N} \sum_{i=0}^{N-1} x[n-k]x[n-i] \qquad p[k] = \frac{1}{N} \sum_{i=0}^{N-1} x[n-k]d[n]$$

obtém-se o sistema de equações lineares

$$\sum_{i=0}^{N-1} w[i]R[i,k] = p[k] \quad k = 0, 1, \dots, N-1.$$

Filtro de Wiener

• Em forma matricial, o sistema é dado por

$$wR = p$$
.

onde os pesos do Filtro de Wiener podem ser obtidos pela solução

$$\mathsf{w}=\mathsf{R}^{-1}\mathsf{p}\,,$$

• Para absorver o valor médio do ruído e compensar tal contribuição na estimação, este trabalho propõe a inclusão de um elemento adicional constante igual a 1 em cada sinal de entrada como último elemento, resultando num conjunto de pesos com N+1 elementos. Ao final do processo de filtragem, o elemento w[N] é somado ao resultado, compensando o valor médio do ruído

$$\hat{A}_{FW} = \left(\sum_{i=0}^{N-1} w[i]x[i]\right) + w[N]$$