数学分析 (上)

数学学院

靳勇飞

2024年9月

 $x_0 \in \mathbb{R}$, 函数 f 在集合 I 上有定义。

若当 $x \to x_0$ 时, $f(x) \to f(x_0)$,则当 $x - x_0 \to 0$ 时, $f(x) - f(x_0) \to 0$. 要比较这两个无穷小量,我们应该考虑

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

函数变化与变量变化的比较.

函数变化的线性估计.

$$f(x + \Delta x) - f(x) = A\Delta x + o(\Delta x)$$

 Δy

▼□▶ ◆○▶ ◆○≥▶ ◆○≥

 $x + \Delta x$

 $dx = \Delta x$

 \boldsymbol{x}

割线的极限是切线.

连接 (x, f(x)) 与 $(x + \Delta x, f(x + \Delta x))$ 的割线的斜率是 $\frac{f(x + \Delta x) - f(x)}{(x + \Delta x) - x}$, 则切线的斜率 是 $\lim_{x \to \infty} \frac{f(x + \Delta x) - f(x)}{(x + \Delta x)}$.

数学学院 靳勇飞

数学分析(上)

定义

f 在 x_0 有定义, 若存在 $g_{x_0} \in \mathbb{R}$, 使得当 x 趋于 x_0 时,

$$f(x) - f(x_0) = g_{x_0} \cdot (x - x_0) + o(x - x_0),$$

称 f 在 x_0 可微, 或 f 在 x_0 微分存在。把 $g_{x_0} \cdot (x - x_0)$ 称为 f 在 x_0 的微分。

定义

f 在 x_0 有定义, 若存在 $g_{x_0} \in \mathbb{R}$, 使得当 x 趋于 x_0 时,

$$f(x) - f(x_0) = g_{x_0} \cdot (x - x_0) + o(x - x_0),$$

称 f 在 x_0 可微, 或 f 在 x_0 微分存在。把 $g_{x_0} \cdot (x - x_0)$ 称为 f 在 x_0 的微分。

事实

若f在 x_0 可微,则

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{g_{x_0} \cdot (x - x_0) + o(x - x_0)}{x - x_0} = g_{x_0}$$

定义

若 $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}$ 存在,称 f 在 x_0 可导,把这个极限记为 $f'(x_0)$,称为 f 在 x_0 的导数,即

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.$$

定义

若 $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}$ 存在,称 f 在 x_0 可导,把这个极限记为 $f'(x_0)$,称为 f 在 x_0 的导数,即

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.$$

事实

若 f 在 x_0 可导,则

$$\lim_{x \to x_0} \frac{f(x) - f(x_0) - f'(x_0)(x - x_0)}{x - x_0} = f'(x_0) - f'(x_0) = 0$$

所以当 x 趋于 x_0 时, $f(x) - f(x_0) = f'(x_0)(x - x_0) + o(x - x_0)$.

定理

(单变量函数)f 在 x_0 可导充分必要条件是 f 在 x_0 可微。

定理

(单变量函数)f 在 x_0 可导充分必要条件是 f 在 x_0 可微。

定理

f 在 x_0 可导 (可微) 的必要条件是 f 在 x_0 连续。

例

对任意的 $x_0 \in \mathbb{R}$, 任意的 $n \in \mathbb{N}^+$, $f(x) = x^n$ 在 x_0 可导, 且 $f'(x_0) = nx_0^{n-1}$.

证明.

对任意的 $x_0 \in \mathbb{R}$, 任意的 $n \in \mathbb{N}^+$,

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{x^n - x_0^n}{x - x_0}$$
$$= \lim_{x \to x_0} \frac{(x - x_0) \sum_{k=0}^{n-1} x_0^k x^{n-1-k}}{x - x_0}$$
$$= nx_0^{n-1}.$$

例

任意的 $\alpha \in \mathbb{R}$, 对任意的 $x_0 \in \mathbb{R}$, $x_0 \neq 0$, 若 $f(x) = x^{\alpha}$ 在 x_0 有定义,则 $f(x) = x^{\alpha}$ 在 x_0 可导,且 $f'(x_0) = \alpha x_0^{\alpha-1}$.

证明.

任意的 $\alpha \in \mathbb{R}$, 对任意的 $x_0 \in \mathbb{R}$, $x_0 \neq 0$, $f(x) = x^{\alpha}$ 在 x_0 有定义,则

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{x^{\alpha} - x_0^{\alpha}}{x - x_0} = \lim_{x \to x_0} \frac{x_0^{\alpha} \left(\left(\frac{x}{x_0} \right)^{\alpha} - 1 \right)}{x - x_0}$$

$$= x_0^{\alpha} \lim_{x \to x_0} \frac{e^{\alpha \ln \frac{x}{x_0}} - 1}{x - x_0} = x_0^{\alpha} \lim_{x \to x_0} \frac{\alpha \ln \frac{x}{x_0}}{x - x_0} = x_0^{\alpha} \lim_{x \to x_0} \frac{\alpha \ln \left(1 + \frac{x}{x_0} - 1 \right)}{x - x_0}$$

$$= x_0^{\alpha} \lim_{x \to x_0} \frac{\alpha \left(\frac{x}{x_0} - 1 \right)}{x - x_0} = \alpha x_0^{\alpha - 1}.$$

数学学院 靳勇飞

数学分析(上

例

任意的 $\alpha \ge 1$, $f(x) = x^{\alpha}$ 在 0 可导, 且 f'(0) = 0.

证明.

任意的 $\alpha \ge 1$,

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{x^{\alpha} - 0}{x - 0} = \lim_{x \to 0} x^{\alpha - 1} = 0.$$

例

 $f(x) = \sqrt[3]{x}$ 在 0 不可导。

例

 $f(x) = \sqrt[3]{x}$ 在 0 不可导。

证明.

当 $x \neq 0$ 时,

$$\frac{f(x) - f(0)}{x - 0} = \frac{\sqrt[3]{x} - 0}{x - 0} = x^{-\frac{2}{3}}$$

因为 $\lim_{x\to 0} x^{-\frac{2}{3}} = \infty$, 所以 $f(x) = \sqrt[3]{x}$ 在 0 不可导。

例

 $f(x) = \sqrt[3]{x}$ 在 0 不可导。

证明.

当 $x \neq 0$ 时,

$$\frac{f(x) - f(0)}{x - 0} = \frac{\sqrt[3]{x} - 0}{x - 0} = x^{-\frac{2}{3}}$$

因为 $\lim_{x\to 0} x^{-\frac{2}{3}} = \infty$, 所以 $f(x) = \sqrt[3]{x}$ 在 0 不可导。

事实

存在函数在一点连续但在这点不可导。

若 f 在 x_0 可微,则当 x 趋于 x_0 时, $f(x) - f(x_0) = f'(x_0)(x - x_0) + o(x - x_0)$. 引入新变量 $h = x - x_0$,上面的事实变为: 若 f 在 x_0 可微,则当 h 趋于 0 时, $f(x_0 + h) - f(x_0) = f'(x_0)h + o(h)$.

若 f 在 x_0 可微,则当 x 趋于 x_0 时, $f(x) - f(x_0) = f'(x_0)(x - x_0) + o(x - x_0)$. 引入新变量 $h = x - x_0$,上面的事实变为: 若 f 在 x_0 可微,则当 h 趋于 0 时, $f(x_0 + h) - f(x_0) = f'(x_0)h + o(h)$.

定义

f 在 x 可微,则当 h 趋于 0 时, f(x+h)-f(x)=A(x)h+o(h). 把这里关于 h 的线性函数 $h\to A(x)h$ 叫做函数 f 在 x 的微分,记为 df,即

$$\mathrm{d}f = A(x)h$$

事实

对函数 f(x) = x, 则 $dx = df = 1 \cdot h = h$. 因此

$$\mathrm{d}f = A(x)\,\mathrm{d}x$$

定义

对任意的 x, 如果 f 在 x 可微, 则 f'(x) 确定, 这定义了一个函数, 称为 f 的导函数, 记为 f', 或者 $\frac{\mathrm{d}f}{\mathrm{d}x}$.

定义

对任意的 x, 如果 f 在 x 可微, 则 f'(x) 确定, 这定义了一个函数, 称为 f 的导函数, 记为 f', 或者 $\frac{\mathrm{d}f}{\mathrm{d}x}$.

事实

- ① f 的导函数 f' 只在 f 可导的地方有定义,一般 f' 的定义域小于 f 的定义域。
- ② f 在 x_0 的导数 $f'(x_0)$, 现在可以理解为 f 的导函数 f' 在 x_0 的函数值, 故又可记为 $f'|_{x=x_0}$, $f'|_{x_0}$, $\frac{df}{dt}|_{x=x_0}$, $\frac{df}{dt}|_{x_0}$.
- ③ 对一个函数 f 求导, 可以表示为: (f)', f', 或者 $\frac{d}{dx}f$, 例如: $(e^x)'$, $\frac{d}{dx}e^x$, $\frac{d(e^x)}{dx}$

事实

函数 f 的微分为

$$\mathrm{d}f = f'(x)\,\mathrm{d}x$$

$$f'(x) = \frac{\mathrm{d}f}{\mathrm{d}x}$$

一个求导式子,对应一个微分的式子!

例

$$(x^{\alpha})' = \alpha x^{\alpha - 1}$$
 $d(x^{\alpha}) = \alpha x^{\alpha - 1} dx$

定义

若在某区间上,函数 F 和 f 成立关系: F'=f 或者等价的 dF=f(x)dx,则称 F 是 f 在区间上的一个原函数。

函数 f 在一个区间上的所有原函数的组成的集合 {函数F: F' = f}, 称为 f 的不定积分,记作 $\int f(x) dx$.

若 F' = f,不定积分也简写为 F(x) + C. 即

$$\int f(x) \, dx = \{ F(x) : F'(x) = f(x) \}$$

例

因为 $(x^{\alpha})' = \alpha x^{\alpha-1}$, 所以 $\int \alpha x^{\alpha-1} dx = x^{\alpha} + C$.

事实

一个求导式子,对应一个微分的式子,对应一个不定积分的式子。

例

求导式子	微分式子	不定积分式子
$(x^{\alpha})' = \alpha x^{\alpha - 1}$	$d(x^{\alpha}) = \alpha x^{\alpha - 1} dx$	$\int \alpha x^{\alpha - 1} \mathrm{d}x = \int \mathrm{d}(x^{\alpha}) = x^{\alpha} + C$

例

再次考察
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$
,因此

$$(\sin x)'|_{x=0} = \lim_{x\to 0} \frac{\sin x - \sin 0}{x - 0} = \lim_{x\to 0} \frac{\sin x}{x} = 1.$$

例

再次考察 $\lim_{x\to 0} \frac{\sin x}{x} = 1$,因此

$$(\sin x)'|_{x=0} = \lim_{x\to 0} \frac{\sin x - \sin 0}{x - 0} = \lim_{x\to 0} \frac{\sin x}{x} = 1.$$

例

再次考察 $\lim_{x\to 0} \frac{e^x-1}{x} = 1$,因此

$$(e^x)'|_{x=0} = \lim_{x\to 0} \frac{e^x - e^0}{x - 0} = \lim_{x\to 0} \frac{e^x - 1}{x} = 1.$$

例

对任意的 $x_0 \in \mathbb{R}$, 因此

$$(e^x)'\big|_{x=x_0} = \lim_{x \to x_0} \frac{e^x - e^{x_0}}{x - x_0} = \lim_{x \to x_0} \frac{e^{x_0}(e^{x - x_0} - 1)}{x - x_0} = \lim_{x \to x_0} \frac{e^{x_0}(x - x_0)}{x - x_0} = e^{x_0}.$$

$$(e^{x})' = e^{x}.$$

$$d(e^{x}) = e^{x} dx$$

$$\int e^{x} dx = \int d(e^{x}) = e^{x} + C$$

例

对任意的 $x_0 \in \mathbb{R}$, 因此

$$(\sin x)'\Big|_{x=x_0} = \lim_{x \to x_0} \frac{\sin x - \sin x_0}{x - x_0} = \lim_{x \to x_0} \frac{2\sin \frac{x - x_0}{2}\cos \frac{x + x_0}{2}}{x - x_0} = \lim_{x \to x_0} \cos \frac{x + x_0}{2} = \cos x_0.$$

$$(\sin x)' = \cos x.$$

$$d(\sin x)) = \cos x dx$$

$$\int \cos x dx = \int d(\sin x) = \sin x + C$$

例

对任意的 $x_0 \in \mathbb{R}$, 因此

$$(\cos x)'\Big|_{x=x_0} = \lim_{x \to x_0} \frac{\cos x - \cos x_0}{x - x_0} = \lim_{x \to x_0} \frac{-2\sin\frac{x - x_0}{2}\sin\frac{x + x_0}{2}}{x - x_0} = \lim_{x \to x_0} -\sin\frac{x + x_0}{2} = -\sin x_0.$$

$$(\cos x)' = -\sin x.$$

$$d(\cos x) = -\sin x dx$$

$$\int -\sin x dx = \int d(\cos x) = \cos x + C$$

例

对任意的 $x_0 > 0$, 因此

$$(\ln x)'\big|_{x=x_0} = \lim_{x \to x_0} \frac{\ln x - \ln x_0}{x - x_0} = \lim_{x \to x_0} \frac{\ln \frac{x}{x_0}}{x - x_0} = \lim_{x \to x_0} \frac{\ln \left(1 + \frac{x}{x_0} - 1\right)}{x - x_0} = \lim_{x \to x_0} \frac{\frac{x}{x_0} - 1}{x - x_0} = \frac{1}{x_0}.$$

$$(\ln x)' = \frac{1}{x}.$$

$$d(\ln x) = \frac{1}{x} dx$$

$$\int \frac{1}{x} dx = \int d(\ln x) = \ln x + C$$

事实		
求导式子	微分式子	不定积分式子
(C)' = 0	dC = 0 dx	$\int 0 \mathrm{d}x = C$
$(x^{\alpha})' = \alpha x^{\alpha - 1}$	$d(x^{\alpha}) = \alpha x^{\alpha - 1} dx$	$\int \alpha x^{\alpha - 1} \mathrm{d}x = x^{\alpha} + C$
$(e^x)'=e^x$	$d(e^x) = e^x dx$	$\int e^x \mathrm{d}x = e^x + C$
$(\sin x)' = \cos x$	$d(\sin x) = \cos x dx$	$\int \cos x \mathrm{d}x = \int \mathrm{d} (\sin x) = \sin x + C$
$(\cos x)' = -\sin x$	$d(\cos x) = -\sin x dx$	$\int -\sin x \mathrm{d}x = \int \mathrm{d}(\cos x) = \cos x + C$
$(\ln x)' = \frac{1}{x}$	$d(\ln x) = \frac{1}{x} dx$	$\int \frac{1}{x} dx = \int d(\ln x) = \ln x + C$

(D) (B) (E) (E)

定义

方程 y = f(x) 表示的图像指的是平面上的点集:

$$\{(x,y)\in\mathbb{R}^2:y=f(x)\}.$$

定义

方程 y = f(x) 表示的图像指的是平面上的点集:

$$\{(x, y) \in \mathbb{R}^2 : y = f(x)\}.$$

定义

方程 F(x,y) = 0 表示的图像指的是平面上的点集:

$$\{(x,y) \in \mathbb{R}^2 : F(x,y) = 0\}.$$

定义

如果 f 在 x_0 可微 (导),则方程

$$y - f(x_0) = f'(x_0)(x - x_0)$$

表示的直线称为函数 f 的图像在点 $(x_0, f(x_0))$ 处的切线。 过 $(x_0, f(x_0))$ 与切线垂直的线, 称为函数 f 的图像在点 $(x_0, f(x_0))$ 处的法线。

例

求抛物线 $y^2 = 2px(p \neq 0)$ 上任一点 (x_0, y_0) 处的切线和法线。

解

抛物线 $y^2 = 2px$ 的方程为 $x(y) = \frac{y^2}{2p}$, 对抛物线上任一点 (x_0, y_0) , 抛物线在这点的 "斜率" (以 y 为自变量, x 为应变量) 为

$$x'(y_0) = \lim_{y \to y_0} \frac{x(y) - x(y_0)}{y - y_0} = \lim_{y \to y_0} \frac{\frac{y^2}{2p} - \frac{y_0^2}{2p}}{y - y_0} = \lim_{y \to y_0} \frac{y + y_0}{2p} = \frac{y_0}{p}$$

所以在 (x_0, y_0) 的切线方程为: $x - x_0 = x'(y_0)(y - y_0) = \frac{y_0}{p}(y - y_0)$. (注意这个方程包含了过 (0,0) 的切线 x = 0.) 法线方程为: $y - y_0 = -\frac{y_0}{p}(x - x_0)$.

数学学院 靳勇飞

数学分析(

定理

一条平行于抛物线 $y^2 = 2px(p \neq 0)$ 对称轴 x 轴的光线经抛物线反射后必通过焦点。

解

抛物线 $y^2 = 2px$ 的方程为 $x(y) = \frac{y^2}{2p}$, 对抛物线上任一点 (x_0, y_0) , 过这点的法线方程为: $y - y_0 = -\frac{y_0}{p}(x - x_0)$. 抛物线的焦点关于法线的对称点是 $(2x_0 + \frac{p}{2}, y_0)$, 这点和 (x_0, y_0) 的连线是 $y = y_0$.

所以任何从焦点射出的光线,射到抛物线上后,经抛物线(的切线)反射后,将平行于 x 轴。或者说,一条平行于抛物线 $y^2 = 2px(p \neq 0)$ 对称轴 x 轴的光线经抛物线线反射后必通过焦点。

作业

● 课本第 110 页习题 2, 4, 5, 7(2)(4), 9,11

思考讨论

● 课本第 110 页习题 1,10

定义

若 $\lim_{x\to x_0^-}\frac{f(x)-f(x_0)}{x-x_0}$ 存在,称 f 在 x_0 左可导,把这个极限记为 $f'_-(x_0)$,称为 f 在 x_0 的左导数,即

$$f'_{-}(x_0) = \lim_{x \to x_0^{-}} \frac{f(x) - f(x_0)}{x - x_0}.$$

定义

若 $\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0}$ 存在,称 f 在 x_0 左可导,把这个极限记为 $f'_-(x_0)$,称为 f 在 x_0 的左导数,即

$$f'_{-}(x_0) = \lim_{x \to x_0^{-}} \frac{f(x) - f(x_0)}{x - x_0}.$$

定义

若 $\lim_{x\to x_0^+} \frac{f(x)-f(x_0)}{x-x_0}$ 存在,称 f 在 x_0 右可导,把这个极限记为 $f'_+(x_0)$,称为 f 在 x_0 的右导数,即

$$f'_{+}(x_0) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}.$$

定义

f 在 x_0 可导的充分必要条件是 f 在 x_0 左可导且 f 在 x_0 右可导,且 f 在 x_0 的左导数等于 f 在 x_0 的右导数。

定义

f 在 x_0 可导的充分必要条件是 f 在 x_0 左可导且 f 在 x_0 右可导,且 f 在 x_0 的左导数等于 f 在 x_0 的右导数。

例

函数 f(x) = |x| 在 0 左可导且右可导,但 f 在 0 的左导数不等于 f 在 0 的右导数,所以 f 在 0 不可导。

导数是用函数极限定义的,因此也是一个局部性质。

例

函数 $f(x) = x^2 D(x)$ 在 0 可导, 但在任何其它的点不连续, 当然也不可导。

导数是用函数极限定义的,因此也是一个局部性质。

例

函数 $f(x) = x^2 D(x)$ 在 0 可导, 但在任何其它的点不连续, 当然也不可导。

事实

存在一个在所有点连续的函数,它在所有的点均不可导。

定理

f,g 在某集合 I 上可导,则对任意的实数 $\alpha,\beta \in \mathbb{R}$, $\alpha f + \beta g$ 在该集合 I 上也可导,且在该集合 I 上

$$(\alpha f + \beta g)' = \alpha f' + \beta g'.$$

定理

f, g 在某集合 I 上可导,则对任意的实数 $\alpha, \beta \in \mathbb{R}$, $\alpha f + \beta g$ 在该集合 I 上也可导,且在该集合 I 上

$$(\alpha f + \beta g)' = \alpha f' + \beta g'.$$

对应的微分式子.

$$d(\alpha f + \beta g) = \alpha df + \beta dg = (\alpha f' + \beta g') dx.$$

对应的积分式子.

$$\int \alpha f'(x) + \beta g'(x) \, \mathrm{d}x = \alpha \int f'(x) \, \mathrm{d}x + \beta \int g'(x) \, \mathrm{d}x = \alpha f(x) + \beta g(x) + C.$$

数学学院 靳勇飞

例

求 $\sum_{k=0}^{n} a_k x^k$ 的导函数。

例

求 $\sum_{k=0}^{n} a_k x^k$ 的导函数。

例

求 $a \sin x + b \cos x$ 的导函数。

例

求 $\sum_{k=0}^{n} a_k x^k$ 的导函数。

例

求 $a \sin x + b \cos x$ 的导函数。

例

求 $2\log_a x - 3e^x$ 的导函数。

定理

$$\left(\sum_{i=1}^{n} c_{i} f_{i}(x)\right)' = \sum_{i=1}^{n} c_{i} f_{i}'(x)$$

定理

f,g 在某集合 I 上可导,则他们的积 $f \cdot g$ 在该集合 I 上也可导,且在该集合 I 上

$$(f \cdot g)' = f' \cdot g + f \cdot g'.$$

$$d(f \cdot g) = g df + f dg = (f' \cdot g + f \cdot g') dx.$$

定理

f,g 在某集合 I 上可导,则他们的积 $f \cdot g$ 在该集合 I 上也可导,且在该集合 I 上

$$(f\cdot g)'=f'\cdot g+f\cdot g'.$$

$$d(f \cdot g) = g df + f dg = (f' \cdot g + f \cdot g') dx.$$

对应的积分式子.

$$\int f'(x)g(x) + f(x)g'(x) dx = \int d(f(x)g(x)) = f(x) \cdot g(x) + C.$$

$$= \int f'(x)g(x) dx + \int f(x)g'(x) dx$$

$$= \int g(x) df(x) + \int f(x) dg(x)$$

数学学院 靳勇飞

数学分析(上

定理

$$\left(\prod_{i=1}^{n} f_i(x)\right)' = \sum_{j=1}^{n} \left\{ f_j'(x) \prod_{i=1, i \neq j}^{n} f_i(x) \right\}$$

例

求 $x^{m+n} = x^m x^n$ 的导函数。

例

求 $x^{m+n} = x^m x^n$ 的导函数。

例

求 $\sin x \cos x$ 的导函数。

例

求 $x^{m+n} = x^m x^n$ 的导函数。

例

求 $\sin x \cos x$ 的导函数。

例

求 $e^x \sin x \ln x$ 的导函数。

例

求 $x^{m+n} = x^m x^n$ 的导函数。

例

求 $\sin x \cos x$ 的导函数。

例

求 $e^x \sin x \ln x$ 的导函数。

例

求 $\frac{\sin x}{x}$ 的导函数。

求导公式.

$$(f \cdot g)' = f' \cdot g + f \cdot g'.$$

$$d(f \cdot g) = g df + f dg = (f' \cdot g + f \cdot g') dx.$$

求导公式.

$$(f \cdot g)' = f' \cdot g + f \cdot g'.$$

$$d(f \cdot g) = g df + f dg = (f' \cdot g + f \cdot g') dx.$$

分部积分公式.

$$\int f'(x)g(x) dx + \int f(x)g'(x) dx = \int g(x) df(x) + \int f(x) dg(x) = f(x) \cdot g(x) + C.$$

$$\int f(x)g'(x) dx = \int f(x) dg(x) = f(x) \cdot g(x) - \int g(x) df(x) = f(x) \cdot g(x) - \int f'(x)g(x) dx$$

分部积分公式.

$$\int f'(x)g(x) dx + \int f(x)g'(x) dx = \int g(x) df(x) + \int f(x) dg(x) = f(x) \cdot g(x) + C.$$

$$\int f(x)g'(x) dx = \int f(x) dg(x) = f(x) \cdot g(x) - \int g(x) df(x) = f(x) \cdot g(x) - \int f'(x)g(x) dx$$

事实 (要点)

把求导后形式变简单的留在 d前面,原函数没有更复杂的放在 d后面!

例

求 $\int x \cos x \, dx$.

例

求 $\int x \cos x \, dx$.

例

求 $\int xe^x dx$.

例

求 $\int x \cos x \, dx$.

例

求 $\int xe^x dx$.

例

求 $\int \ln x \, \mathrm{d}x$.

例

求 $\int x \cos x \, dx$.

例

求 $\int xe^x dx$.

例

求 $\int \ln x \, dx$.

例

求 $\int e^x \sin x \, dx$.

定理

f, g 在某集合 I 上可导,且对任意的 $x \in I, g(x) \neq 0$,则他们的商 $\frac{f}{g}$ 在该集合 I 上也可导,且在该集合 I 上

$$\left(\frac{f}{g}\right)' = \frac{f' \cdot g - f \cdot g'}{g^2}.$$

$$d\left(\frac{f}{g}\right) = \frac{g df - f dg}{g^2} = \frac{f' \cdot g - f \cdot g'}{g^2} dx.$$

定理

f, g 在某集合 I 上可导,且对任意的 $x \in I, g(x) \neq 0$,则他们的商 $\frac{f}{g}$ 在该集合 I 上也可导,且在该集合 I 上

$$\left(\frac{f}{g}\right)' = \frac{f' \cdot g - f \cdot g'}{g^2}.$$

$$d\left(\frac{f}{g}\right) = \frac{g df - f dg}{g^2} = \frac{f' \cdot g - f \cdot g'}{g^2} dx.$$

对应的积分式子.

$$\int \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g(x)^2} dx = \frac{f(x)}{g(x)} + C.$$

例

求 $\frac{\sin x}{x}$ 的导函数。

例

求 $\frac{\sin x}{x}$ 的导函数。

例

求 $\sec x$ 的导函数。

例

求 $\frac{\sin x}{x}$ 的导函数。

例

求 $\sec x$ 的导函数。

例

求 $\tan x$ 的导函数。

定理

y = f(x) 在 x_0 的某领域内连续且严格单调, f 在 x_0 可导, 且 $f'(x_0) \neq 0$, 则其反函数 $x = \varphi(y)$ 在 $y_0 = f(x_0)$ 处可导, 且

$$\varphi_{\mathbf{y}}'(y_0) = \frac{1}{f_{\mathbf{x}}'(x_0)}.$$

$$\frac{\mathrm{d}x}{\mathrm{d}y}\Big|_{y=y_0} = \frac{1}{\frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{x=x_0}}$$

定理

y = f(x) 在 x_0 的某领域内连续且严格单调, f 在 x_0 可导, 且 $f'(x_0) \neq 0$, 则其反函数 $x = \varphi(y)$ 在 $y_0 = f(x_0)$ 处可导, 且

$$\varphi_{\mathbf{y}}'(y_0) = \frac{1}{f_{\mathbf{x}}'(x_0)}.$$

$$\frac{\mathrm{d}x}{\mathrm{d}y}\Big|_{y=y_0} = \frac{1}{\frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{x=x_0}}$$

一般的微分式子.

$$\frac{\mathrm{d}x}{\mathrm{d}y} = \frac{1}{\frac{\mathrm{d}y}{\mathrm{d}z}}$$

例

求 $\ln x$ 的导函数。

例

求 $\ln x$ 的导函数。

例

求 $\arcsin x$ 的导函数。

例

求 $\ln x$ 的导函数。

例

求 $\arcsin x$ 的导函数。

例

求 $\arccos x$ 的导函数。

反函数的导数

例

求 $\ln x$ 的导函数。

例

求 $\arcsin x$ 的导函数。

例

求 $\arccos x$ 的导函数。

例

求 $\arctan x$ 的导函数。

反函数的导数

例

求双曲正弦函数
$$\operatorname{sh} x = \frac{e^x - e^{-x}}{2}$$
 , 双曲余弦函数 $\operatorname{ch} x = \frac{e^x + e^{-x}}{2}$ 的导函数。

反函数的导数

例

求双曲正弦函数 $\operatorname{sh} x = \frac{e^x - e^{-x}}{2}$, 双曲余弦函数 $\operatorname{ch} x = \frac{e^x + e^{-x}}{2}$ 的导函数。

例

求反双曲正弦函数 $sh^{-1}x$,反双曲余弦函数 $ch^{-1}x$ 的导函数。

定理 (复合函数求导的链式法则)

若 g 在 x_0 可导, f 在 $u_0 = g(x_0)$ 可导, 则复合函数 $f \circ g$ 在 x_0 可导, 且

$$[f(g(x))]'\Big|_{x=x_0} = f'(g(x))\Big|_{x=x_0} \ g'(x)\Big|_{x_0}$$

$$\frac{\mathrm{d}f}{\mathrm{d}x}\Big|_{x=x_0} = \frac{\mathrm{d}f}{\mathrm{d}g}\Big|_{g=u_0} \cdot \frac{\mathrm{d}g}{\mathrm{d}x}\Big|_{x=x_0}$$

定理 (复合函数求导的链式法则)

若 g 在 x_0 可导, f 在 $u_0 = g(x_0)$ 可导, 则复合函数 $f \circ g$ 在 x_0 可导, 且

$$[f(g(x))]'\Big|_{x=x_0} = f'(g(x))\Big|_{x=x_0} \ g'(x)\Big|_{x_0}$$

$$\left. \frac{\mathrm{d}f}{\mathrm{d}x} \right|_{x=x_0} = \left. \frac{\mathrm{d}f}{\mathrm{d}g} \right|_{g=u_0} \cdot \left. \frac{\mathrm{d}g}{\mathrm{d}x} \right|_{x=x_0}$$

一般的微分式子.

$$df(g(x)) = f'(g) dg = f'(g(x))g'(x) dx$$

例

求 $\sin 2x$ 的导函数。

例

求 $\sin 2x$ 的导函数。

例

求 $(x^2 + 1)^{2022}$ 的导函数。

例

求 $\sin 2x$ 的导函数。

例

求 $(x^2 + 1)^{2022}$ 的导函数。

例

求 $\ln \cos(x^3 + 1)$ 的导函数。

例

求 $\ln(x + \sqrt{x^2 + a^2})$ 的导函数。

例

求 $\ln(x + \sqrt{x^2 + a^2})$ 的导函数。

例

求 $\ln(x + \sqrt{x^2 - a^2})$ 的导函数。

例

求 $\ln(x + \sqrt{x^2 + a^2})$ 的导函数。

例

求 $\ln(x + \sqrt{x^2 - a^2})$ 的导函数。

例

求 $\arcsin \frac{x}{a}$ 的导函数。

例

求 $x^{\alpha} = e^{\alpha \ln x}$ 的导函数。

例

求 $x^{\alpha} = e^{\alpha \ln x}$ 的导函数。

例

求 x^x 的导函数。

例

求 $x^{\alpha} = e^{\alpha \ln x}$ 的导函数。

例

求 x^x 的导函数。

例

求 $f(x)^{g(x)}$ 的导函数。

例

求 $x^{\alpha} = e^{\alpha \ln x}$ 的导函数。

例

求 x^x 的导函数。

例

求 $f(x)^{g(x)}$ 的导函数。

例

求 arctan x 的导函数。

链式法则.

$$[f(g(x))]' = f'(g(x)) \cdot g'(x)$$

$$df(g(x)) = f'(g) dg = f'(g(x))g'(x) dx$$

链式法则.

$$[f(g(x))]' = f'(g(x)) \cdot g'(x)$$

$$df(g(x)) = f'(g) dg = f'(g(x))g'(x) dx$$

对应的积分式子——换元积分法.

$$\int f'(g(x))g'(x) dx = \int f'(g) dg = f(g) + C = f(g(x)) + C$$

$$\int f'(g) dg = \int f'(g(x))g'(x) dx = f(g(x)) + C = f(g) + C$$

Е

对应的积分式子——换元积分法.

$$\int f'(g(x))g'(x) dx = \int f'(g) dg = f(g) + C = f(g(x)) + C$$

$$\int f'(g) dg = \int f'(g(x))g'(x) dx = f(g(x)) + C = f(g) + C$$

事实 (要点)

哪里复杂哪里不喜欢就换哪里!

例

求
$$\int \frac{1}{x+a} \, \mathrm{d}x$$
.

例

求
$$\int \frac{1}{x+a} dx$$
.

例 (课本第 212 页)

例

求
$$\int \frac{1}{x+a} dx$$
.

例 (课本第 212 页)

求
$$\int \frac{1}{\sqrt{x}(1+x)} dx$$
.

例

例

求 $\int \frac{1}{x+a} dx$.

例 (课本第 212 页)

求 $\int \frac{1}{\sqrt{x}(1+x)} dx$.

例

求 $\int \frac{1}{(\arcsin x)^2 \sqrt{1-x^2}} dx$.

例

求 $\int \frac{1}{x(x^{10}+2)} dx$.

例

$$a > 0$$
, $\Re \int \frac{1}{\sqrt{a^2 - x^2}} dx$.

例

$$a > 0$$
, $\Re \int \frac{1}{\sqrt{a^2 - x^2}} dx$.

例

求
$$\int \frac{1}{x^2+a^2} dx$$
.

例

例

求
$$\int \frac{1}{x^2+a^2} dx$$
.

例 (课本第 217 页)

求
$$\int \frac{1}{x^2-a^2} dx$$
.

例

例

求
$$\int \frac{1}{x^2+a^2} \, \mathrm{d}x$$
.

例 (课本第 217 页)

求
$$\int \frac{1}{x^2-a^2} dx$$
.

例

$$p, q \in \mathbb{R}, \ \coprod \ p^2 - 4q < 0, \ \ \ \ \ \int \frac{1}{x^2 + px + q} \ \mathrm{d}x.$$

求函数的导函数

作业

- 课本第 127 页习题 3(1)(4)(6)(7), 4(2)(5)(6), 13(5)
- ② 课本第 221 页习题 1 奇数题, 2 偶数题, 3 偶数题

思考讨论

● 课本第 128 页习题 12

隐函数的导数

例 (课本第 124 页)

求由方程 $e^{x+y} - xy - e = 0$ 确定的 (可导的) y = y(x) 的导函数。并求在 (0,1) 处的切线方程。

隐函数的导数

例 (课本第 124 页)

求由方程 $e^{x+y} - xy - e = 0$ 确定的 (可导的) y = y(x) 的导函数。并求在 (0,1) 处的切线方程。

例 (课本第 123 页)

求由方程 $\sin y^2 = \cos \sqrt{x}$ 确定的 (可导的) y = y(x) 的导函数。

参数方程定义
$$\begin{cases} x = \phi(t) \\ y = \psi(t) \end{cases}, t \in [\alpha, \beta].$$

参数方程定义
$$\begin{cases} x = \phi(t) \\ y = \psi(t) \end{cases}, t \in [\alpha, \beta].$$

问题 已知
$$\phi(t), \psi(t)$$
 在 $[\alpha, \beta]$ 可导, $\phi'(t) \neq 0$. 求 $\frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{t=t_0}$

参数方程定义
$$\begin{cases} x = \phi(t) \\ y = \psi(t) \end{cases}, t \in [\alpha, \beta].$$

问题 已知 $\phi(t)$, $\psi(t)$ 在 $[\alpha, \beta]$ 可导, $\phi'(t) \neq 0$. 求 $\frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{t=t_0}$.

求导公式
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\psi'(t)}{\phi'(t)}$$

参数方程定义
$$\begin{cases} x = \phi(t) \\ y = \psi(t) \end{cases}, t \in [\alpha, \beta].$$

问题 已知 $\phi(t)$, $\psi(t)$ 在 $[\alpha, \beta]$ 可导, $\phi'(t) \neq 0$. 求 $\frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{t=t_0}$.

求导公式
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\psi'(t)}{\phi'(t)}$$

上式可看成微分形式 $\begin{cases} dy = \psi'(t) dt \\ dx = \phi'(t) dt \end{cases}$ 两边相除的结果。

参数方程定义
$$\begin{cases} x = \phi(t) \\ y = \psi(t) \end{cases}, t \in [\alpha, \beta].$$

问题 已知 $\phi(t)$, $\psi(t)$ 在 $[\alpha, \beta]$ 可导, $\phi'(t) \neq 0$. 求 $\frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{t=t_0}$.

求导公式
$$\frac{dy}{dx} = \frac{\psi'(t)}{\phi'(t)}$$

上式可看成微分形式 $\begin{cases} dy = \psi'(t) dt \\ dx = \phi'(t) dt \end{cases}$ 两边相除的结果。

注:参数方程所表示的函数求导法是复合函数与反函数求导公式的结合。

例 (课本第 125 页)

求由参数方程

$$\begin{cases} x = t - \sin t \\ y = 1 - \cos t \end{cases}, 0 \le t \le \pi$$

确定的 (可导的) y = y(x) 的导函数。

例 (课本第 125 页)

求由参数方程

$$\begin{cases} x = t - \sin t \\ y = 1 - \cos t \end{cases}, 0 \le t \le \pi$$

确定的 (可导的) y = y(x) 的导函数。

例

求由参数方程

$$\begin{cases} x = \cos t, \\ y = \sin t \end{cases}, 0 \le t \le 2\pi$$

确定的 (可导的) y = y(x) 的导函数。

求函数的导函数

作业

● 课本第 128 页习题 5(3)(7), 8(2)(5)(6),10

例

 $m, n \in \mathbb{N}, \ \ \, \exists \sin mx \cos nx \, \mathrm{d}x.$

例

 $m, n \in \mathbb{N}, \ \Re \int \sin mx \cos nx \, \mathrm{d}x.$

例

$$a>0, \; \vec{x} \; \int \sqrt{x^2+a^2} \, \mathrm{d}x.$$

例

 $m, n \in \mathbb{N}, \ \Re \int \sin mx \cos nx \, \mathrm{d}x.$

例

$$a > 0$$
, $\Re \int \sqrt{x^2 + a^2} \, \mathrm{d}x$.

例

$$a > 0$$
, $\Re \int \sqrt{x^2 - a^2} dx$.

例

 $m, n \in \mathbb{N}, \ \Re \int \sin mx \cos nx \, \mathrm{d}x.$

例

a > 0, $\Re \int \sqrt{x^2 + a^2} \, \mathrm{d}x$.

例

a > 0, $\Re \int \sqrt{x^2 - a^2} dx$.

例

a > 0, $\Re \int \sqrt{a^2 - x^2} dx$.

例 (课本第 225 页)

$$n \in \mathbb{N}, \ \Re \int \frac{1}{(x-a)^n} \, \mathrm{d}x.$$

例 (课本第 225 页)

$$n \in \mathbb{N}, \ \ \, \overline{\chi} \int \frac{1}{(x-a)^n} \, \mathrm{d}x.$$

例

$$n \in \mathbb{N}$$
, 求 $\frac{1}{(x^2+a^2)^n}$ 的导函数.

例 (课本第 225 页)

$$n \in \mathbb{N}, \ \, \ \, \vec{\times} \, \int \frac{1}{(x-a)^n} \, \mathrm{d}x.$$

例

 $n \in \mathbb{N}$, 求 $\frac{1}{(x^2+a^2)^n}$ 的导函数.

例 (课本第 218 页)

$$n \in \mathbb{N}, \ \ \, \Re \int \frac{1}{(x^2 + a^2)^n} \, \mathrm{d}x.$$

例 (课本第 225 页)

$$n \in \mathbb{N}, \ \, \ \, \vec{x} \int \frac{1}{(x-a)^n} \, \mathrm{d}x.$$

例

 $n \in \mathbb{N}$, 求 $\frac{1}{(x^2+a^2)^n}$ 的导函数.

例 (课本第 218 页)

 $n \in \mathbb{N}, \ \, \Re \int \frac{1}{(x^2 + a^2)^n} \, \mathrm{d}x.$

例 (课本第 225 页)

$$p,q \in \mathbb{R}, \ \coprod \ p^2 - 4q < 0, \ n \in \mathbb{N}, \ \stackrel{1}{\cancel{x}} \ \int \frac{1}{(x^2 + px + q)^n} \, \mathrm{d}x.$$

例

求
$$e^{\alpha x} \left(\sum_{k=0}^{n} a_k x^k \right)$$
 的导函数。

例

求 $e^{\alpha x} \left(\sum_{k=0}^{n} a_k x^k \right)$ 的导函数。

例

求
$$\int (x^2+1)e^{2x}\,\mathrm{d}x.$$

例

求 $e^{\alpha x} \left(\sum_{k=0}^{n} a_k x^k \right)$ 的导函数。

例

求 $\int (x^2+1)e^{2x}\,\mathrm{d}x.$

例

m > n, 求 $\left(\sum_{k=0}^{n} a_k x^k\right) \sin \beta x + \left(\sum_{k=0}^{m} b_k x^k\right) \cos \beta x$ 的导函数。

例

求 $e^{\alpha x} \left(\sum_{k=0}^{n} a_k x^k \right)$ 的导函数。

例

求 $\int (x^2 + 1)e^{2x} dx.$

例

m > n, 求 $\left(\sum_{k=0}^{n} a_k x^k\right) \sin \beta x + \left(\sum_{k=0}^{m} b_k x^k\right) \cos \beta x$ 的导函数。

例

求 $\int x^2 \sin x \, dx$.

例

求 $e^{\alpha x}(a\sin\beta x + b\cos\beta x)$ 的导函数。

例

求 $e^{\alpha x}(a\sin\beta x + b\cos\beta x)$ 的导函数。

例

求 $\int e^{3x} \sin 4x \, dx$.

例

求 $e^{\alpha x}(a\sin\beta x + b\cos\beta x)$ 的导函数。

例

求 $\int e^{3x} \sin 4x \, dx$.

例

求 $e^{\alpha x} \left[\left(\sum_{k=0}^{n} a_k x^k \right) \sin \beta x + \left(\sum_{k=0}^{n} b_k x^k \right) \cos \beta x \right]$ 的导函数。

求函数的导函数

作业

● 课本第 222 页习题 8 (1)(4), 10(1)(3)

思考讨论

- ① 求 $e^{\alpha x} \left[\left(\sum_{k=0}^{n} a_k x^k \right) \sin \beta x + \left(\sum_{k=0}^{n} b_k x^k \right) \cos \beta x \right]$ 的导函数。
- ② 利用前面的结果, 计算 $\int xe^{3x} \sin 4x \, dx$.

定理 (课本第 225 页)

若 P(x), Q(x) 是实系数多项式, 且

$$Q(x) = \prod_{j=1}^{l} (x - x_j)^{k_j} \cdot \prod_{j=1}^{n} (x^2 + p_j x + q_j)^{m_j},$$

则对真分式 $\frac{P(x)}{Q(x)}$ 存在唯一的下述形式表示式:

$$\frac{P(x)}{Q(x)} = \sum_{j=1}^{l} \left(\sum_{k=1}^{k_j} \frac{a_{jk}}{(x - x_j)^k} \right) + \sum_{j=1}^{n} \left(\sum_{k=1}^{m_j} \frac{b_{jk}x + c_{jk}}{(x^2 + p_j x + q_j)^k} \right).$$

其中 a_{ik} , b_{ik} , c_{ik} 都是实数。

例 (课本第 226 页)

存在唯一的实数 A, B, C, D 使得对任意的 (使式子有意义的)x,

$$\frac{4x^3 - 13x^2 + 3x + 8}{(x+1)(x-2)(x-1)^2} = \frac{A}{x+1} + \frac{B}{x-2} + \frac{C}{x-1} + \frac{D}{(x-1)^2}$$

求法.

两边通分后, 两边的分子应该相等,

$$4x^3 - 13x^2 + 3x + 8 = A(x-2)(x-1)^2 + B(x+1)(x-1)^2 + C(x+1)(x-2)(x-1) + D(x+1)(x-2)$$

因为对任意的 x 都应成立, 取 x = -1, 可得 A = 1; 取 x = 2, 可得 B = -2; 取 x = 1, 可得 D = -1; 取 x = 0, 可得 8 = -2A + B + 2C - 2D, 得 C = 5.

例 (课本第 226 页)

存在唯一的实数 A, B, C, D, E 使得对任意的 (使式子有意义的)x,

$$\frac{x^4 + x^3 + 3x^2 - 1}{(x - 1)(x^2 + 1)^2} = \frac{A}{x - 1} + \frac{Bx + C}{x^2 + 1} + \frac{Dx + E}{(x^2 + 1)^2}$$

求法.

两边通分后, 两边的分子应该相等,

$$x^{4} + x^{3} + 3x^{2} - 1 = A(x^{2} + 1)^{2} + (Bx + C)(x - 1)(x^{2} + 1)$$
$$+ (Dx + E)(x - 1)$$

因为对任意的 x 都应成立, 取 x=1, 可得 A=1; 比较 x^4 的系数可得 A+B=1, 得 B = 0: 比较 x^3 的系数可得 C = 1: 取 $x^2 = -1$. 可得

定理 (课本第 225 页)

若 P(x), Q(x) 是实系数多项式, 且

$$Q(x) = \prod_{j=1}^{l} (x - x_j)^{k_j} \cdot \prod_{j=1}^{n} (x^2 + p_j x + q_j)^{m_j},$$

则对真分式 $\frac{P(x)}{Q(x)}$ 存在唯一的下述形式表示式:

$$\frac{P(x)}{Q(x)} = \sum_{j=1}^{l} \left(\sum_{k=1}^{k_j} \frac{a_{jk}}{(x - x_j)^k} \right) + \sum_{j=1}^{n} \left(\sum_{k=1}^{m_j} \frac{b_{jk}x + c_{jk}}{(x^2 + p_j x + q_j)^k} \right).$$

其中 a_{ik} , b_{ik} , c_{ik} 都是实数。

每部分的积分.

 $n \ge 1$,

$$\int \frac{1}{(x-a)^n} \, \mathrm{d}x = \begin{cases} \ln|x-a| + C, & \not \equiv n = 1\\ -\frac{1}{n-1} \cdot \frac{1}{(x-a)^{n-1}} + C, & \not \equiv n \ge 2 \end{cases}$$

每部分的积分.

$$p, q \in \mathbb{R}, \ \mathbb{H} \ p^2 - 4q < 0,$$

$$\int \frac{1}{x^2 + px + q} dx = \int \frac{1}{(x + \frac{p}{2})^2 + \frac{4q - p^2}{4}} dx = \frac{1}{\sqrt{\frac{4q - p^2}{4}}} \arctan \frac{x + \frac{p}{2}}{\sqrt{\frac{4q - p^2}{4}}} + C$$
$$= \frac{2}{\sqrt{4q - p^2}} \arctan \frac{2x + p}{\sqrt{4q - p^2}} + C$$

П

每部分的积分.

$$p, q \in \mathbb{R}, \ \mathbb{H} \ p^2 - 4q < 0,$$

$$\int \frac{Ax+B}{x^2+px+q} dx = \int \frac{\frac{A}{2}(2x+p)+B-\frac{Ap}{2}}{x^2+px+q} dx = \int \frac{\frac{A}{2}(2x+p)}{x^2+px+q} dx + \int \frac{B-\frac{Ap}{2}}{x^2+px+q} dx$$
$$= \frac{A}{2} \ln \left| x^2+px+q \right| + \left(B-\frac{Ap}{2} \right) \frac{2}{\sqrt{4q-p^2}} \arctan \frac{2x+p}{\sqrt{4q-p^2}} + C$$

Г

每部分的积分.

 $p, q \in \mathbb{R}$, 且 $p^2 - 4q < 0$, n > 1, 注意

$$\left(\frac{2x+p}{(x^2+px+q)^{n-1}}\right)' = \frac{6-4n}{(x^2+px+q)^{n-1}} + \frac{(4q-p^2)(n-1)}{(x^2+px+q)^n}$$

所以

$$\int \frac{1}{(x^2 + px + q)^n} dx = \frac{1}{(4q - p^2)(n - 1)} \left(\frac{2x + p}{(x^2 + px + q)^{n - 1}} - (6 - 4n) \int \frac{1}{(x^2 + px + q)^{n - 1}} dx \right)$$

例

解

$$\left(\frac{2x+1}{x^2+x+1}\right)' = \frac{-2x^2-2x+1}{(x^2+x+1)^2} = \frac{-2}{x^2+x+1} + \frac{3}{(x^2+x+1)^2}$$

所以

$$\int \frac{1}{(x^2 + x + 1)^2} dx = \frac{1}{3} \cdot \frac{2x + 1}{x^2 + x + 1} + \frac{2}{3} \int \frac{1}{x^2 + x + 1} dx$$
$$= \frac{1}{3} \cdot \frac{2x + 1}{x^2 + x + 1} + \frac{4}{3\sqrt{3}} \arctan \frac{2x + 1}{\sqrt{3}} + C$$

每部分的积分.

$$p, q \in \mathbb{R}, \ \mathbb{H} \ p^2 - 4q < 0,$$

$$\int \frac{Ax+B}{(x^2+px+q)^n} \, \mathrm{d}x = \int \frac{\frac{A}{2}(2x+p)+B-\frac{Ap}{2}}{(x^2+px+q)^n} \, \mathrm{d}x$$
$$= \frac{A}{2} \int \frac{(2x+p)}{(x^2+px+q)^n} \, \mathrm{d}x + \left(B-\frac{Ap}{2}\right) \int \frac{1}{(x^2+px+q)^n} \, \mathrm{d}x$$

例

解

$$\int \frac{x}{(x^2 + x + 1)^2} dx = \int \frac{\frac{1}{2}(2x + 1) - \frac{1}{2}}{(x^2 + x + 1)^2} dx$$

$$= \frac{1}{2} \int \frac{2x + 1}{(x^2 + x + 1)^2} dx - \frac{1}{2} \int \frac{1}{(x^2 + x + 1)^2} dx$$

$$= -\frac{1}{2} \frac{1}{x^2 + x + 1} - \frac{1}{6} \cdot \frac{2x + 1}{x^2 + x + 1} - \frac{2}{3\sqrt{3}} \arctan \frac{2x + 1}{\sqrt{3}} + C$$

事实.

只要把被积函数化为了多项式除以多项式的形式, 就一定能够求出来!

i

事实.

如果是 $\int R(\sin x, \cos x) dx$ 的形式, 可通过三角函数的万能公式来计算!

$$x = 2 \arctan t$$

$$\sin x = \frac{2t}{1 + t^2}$$

$$\mathrm{d}x = \frac{2}{1 + t^2} \, \mathrm{d}t$$

$$dx = \frac{2}{1+t^2} dt$$
$$\cos x = \frac{1-t^2}{1+t^2}$$

事实.

如果是 $\int R(\sin x, \cos x) dx$ 的形式, 可通过三角函数的万能公式来计算!

$$x = 2 \arctan t$$

$$\sin x = \frac{2t}{1 + t^2}$$

$$\mathrm{d}x = \frac{2}{1 + t^2} \, \mathrm{d}t$$

$$\cos x = \frac{1 - t^2}{1 + t^2}$$

例

求
$$\int \frac{1}{3+\sin x} \, \mathrm{d}x$$
.

事实.

如果是 $\int R(\sin^2 x, \cos^2 x) dx$ 的形式, 可通过变换 $t = \tan x$ 来计算。

$$t = \tan x$$

$$dx = \frac{1}{1+t^2} dt$$

$$\sin^2 x = \frac{\tan^2 x}{1+\tan^2 x} = \frac{t^2}{1+t^2}$$

$$\cos^2 x = \frac{1}{1+\tan^2 x} = \frac{1}{1+t^2}$$

事实.

如果是 $\int R(\sin^2 x, \cos^2 x) dx$ 的形式, 可通过变换 $t = \tan x$ 来计算。

$$t = \tan x$$

$$dx = \frac{1}{1+t^2} dt$$

$$\sin^2 x = \frac{\tan^2 x}{1+\tan^2 x} = \frac{t^2}{1+t^2}$$

$$\cos^2 x = \frac{1}{1+\tan^2 x} = \frac{1}{1+t^2}$$

事实.

如果是 $\int R(\sin x, \cos^2 x)\cos x \, dx$ 或 $\int R(\sin^2 x, \cos x)\sin x \, dx$ 的形式,可通过变换 $t = \cos x$ 或 $t = \sin x$ 来计算。

事实.

如果是 $\int R(\sin x, \cos^2 x)\cos x \, dx$ 或 $\int R(\sin^2 x, \cos x)\sin x \, dx$ 的形式, 可通过变换 $t = \cos x$ 或 $t = \sin x$ 来计算。

例

$$\Re \int \frac{\cos^3 x}{\sin^7 x} \, \mathrm{d}x$$

事实.

如果是
$$\int R\left(x, \sqrt[n]{\frac{ax+b}{cx+d}}\right) dx$$
 的形式, 可通过变换 $t = \sqrt[n]{\frac{ax+b}{cx+d}}$ 来计算。

数学学院 靳勇飞

数学分析(上)

有理函数的积分

事实.

如果是
$$\int R\left(x, \sqrt[n]{\frac{ax+b}{cx+d}}\right) dx$$
 的形式, 可通过变换 $t = \sqrt[n]{\frac{ax+b}{cx+d}}$ 来计算。

例

$$\Re \int \frac{1}{\sqrt[3]{(x-1)(x+1)^2}} \, \mathrm{d}x.$$

有理函数的积分

事实.

如果是 $\int R(x, \sqrt{ax^2 + bx + c}) dx$ 的形式,可分下面几种情况来计算。

3
$$[ax^2 + bx + c = a(x - \lambda)(x - \mu)] \Rightarrow \sqrt{ax^2 + bx + c} = t(x - \lambda);$$

有理函数的积分

事实.

如果是 $\int R(x, \sqrt{ax^2 + bx + c}) dx$ 的形式,可分下面几种情况来计算。

- ③ 【 $ax^2 + bx + c = a(x \lambda)(x \mu)$ 】 \diamondsuit $\sqrt{ax^2 + bx + c} = t(x \lambda)$;

例

求
$$\int \frac{1}{\sqrt{a^2 - x^2}} dx.$$
求
$$\int \frac{1}{x + \sqrt{x^2 - x - 1}} dx.$$

二项式的积分

事实.

如果是二项式 $\int x^m (a+bx^n)^p dx$ 的形式, m,n,p 都是有理数。

①【p 是整数】设 λ 是 m,n 分母的最小公倍数,令 $t = \sqrt[4]{x} = x^{\frac{1}{\lambda}}$;

例

求
$$\int x^{\frac{1}{3}} \left(2 + 7x^{\frac{1}{5}}\right)^4 dx$$
. 用替换 $t = \frac{1}{15}$.

二项式的积分

事实.

如果是二项式 $\int x^m (a+bx^n)^p dx$ 的形式, m,n,p 都是有理数。

①【 $\frac{m+1}{n}$ 是整数】设 λ 是 p 分母的最小公倍数,令 $t=\sqrt[4]{a+bx^n}=(a+bx^n)^{\frac{1}{\lambda}}$;

解法.

可先做变换
$$z = x^n$$
, 得 $\int x^m (a + bx^n)^p dx = \frac{z = x^n}{n} \int (a + bz)^p z^{\frac{m+1}{n} - 1} dz$, 再用替换 $t = \sqrt[4]{a + bz}$.

二项式的积分

事实.

如果是二项式 $\int x^m (a+bx^n)^p dx$ 的形式, m,n,p 都是有理数。

$$\bigcirc$$
【 $p + \frac{m+1}{n}$ 是整数】

解法.

数学学院 靳勇飞

事实.

如果是
$$\int \frac{P(x)}{\sqrt{ax^2 + bx + c}} dx$$
 的形式, $P(x)$ 是多项式。

解法.

用待定系数法找比 P(x) 低一阶的多项式 Q(x) 使得

$$\int \frac{P(x)}{\sqrt{ax^2 + bx + c}} dx = \lambda \int \frac{1}{\sqrt{ax^2 + bx + c}} dx + Q(x) \sqrt{ax^2 + bx + c}.$$

事实.

如果是
$$\int \frac{1}{(x-\alpha)^k \sqrt{ax^2+bx+c}} dx$$
 的形式, k 是整数。

解法.

用替换
$$x - \alpha = \frac{1}{t}$$
.

事实.

如果是
$$\int \frac{1}{(ax^2 + bx + c)^{m+\frac{1}{2}}} dx$$
 的形式, m 是整数。

解法.

用替换
$$t = \frac{2ax + b}{\sqrt{ax^2 + bx + c}}$$
.

事实.

如果是
$$\int \frac{1}{(x^2 + px + q)^k \sqrt{ax^2 + bx + c}} dx$$
 的形式, k 是整数。

解法.

先 (找合适的 u,v) 用替换 $x=\frac{ut+v}{t+1}$ 同时把两个一次项系数变为 0, 在用之前讲过的变换。

关于三角函数的特殊形状的积分举例

分子分母都是 $\sin x$, $\cos x$ 的线性组合.

$$\cancel{x} \int \frac{\sin x}{a \sin x + b \cos x} \, \mathrm{d}x \, \not \approx \int \frac{\cos x}{a \sin x + b \cos x} \, \mathrm{d}x$$

关于三角函数的特殊形状的积分举例

分子分母都是 $\sin x$, $\cos x$ 的线性组合.

$$\cancel{x} \int \frac{\sin x}{a \sin x + b \cos x} \, \mathrm{d}x \, \not \approx \int \frac{\cos x}{a \sin x + b \cos x} \, \mathrm{d}x$$

方法.

把分子表示成分母和分母的导数的线性组合!

关于三角函数的特殊形状的积分举例

分子分母都是 $\sin x$, $\cos x$ 的线性组合.

$$\cancel{x} \int \frac{\sin x}{a \sin x + b \cos x} \, \mathrm{d}x \, \not \approx \int \frac{\cos x}{a \sin x + b \cos x} \, \mathrm{d}x$$

方法.

把分子表示成分母和分母的导数的线性组合!

例

$$\Re \int \frac{\sin x}{3\sin x + 2\cos x} \, \mathrm{d}x$$

无法用初等函数表示的积分

部分无法用初等函数表示的积分.				
名称	式子	名称	式子	
积分指数	$\operatorname{Ei}(x) = \int \frac{e^x}{x} \mathrm{d}x$	积分对数		
积分正弦	$\operatorname{Si}(x) = \int \frac{\sin x}{x} \mathrm{d}x$	积分余弦	$Ci(x) = \int \frac{\cos x}{x} dx$	
积分双曲正弦	$Shi(x) = \int \frac{\sinh x}{x} dx$	积分双曲余弦	$Chi(x) = \int \frac{\operatorname{ch} x}{x} \mathrm{d}x$	
菲涅尔积分	$S(x) = \int \sin x^2 \mathrm{d}x$	菲涅尔积分	$C(x) = \int \cos x^2 \mathrm{d}x$	
欧拉-普哇松积分	$\Phi(x) = \int e^{-x^2} \mathrm{d}x$			П

无法用初等函数表示的积分

椭圆积分.

表中 0 < k < 1.

名称	雅克比形式	勒让德形式
第一类椭圆积分	$\int \frac{1}{\sqrt{(1-z^2)(1-k^2z^2)}} \mathrm{d}z$	$\int \frac{1}{\sqrt{1 - k^2 \sin^2 \phi}} \mathrm{d}\phi$
第二类椭圆积分	$\int \frac{z^2}{\sqrt{(1-z^2)(1-k^2z^2)}} \mathrm{d}z$	$\int \sqrt{1 - k^2 \sin^2 \phi} \mathrm{d}\phi$
第三类椭圆积分	$\int \frac{1}{(1+nz^2)\sqrt{(1-z^2)(1-k^2z^2)}} \mathrm{d}z$	$\int \frac{1}{(1+n\sin^2\phi)\sqrt{1-k^2\sin^2\phi}} d\phi$
		_

数学学院 靳勇飞

数学分析(上)

求函数的导函数

作业

● 课本第 229 页习题 1 (2)(6)(7)(12)(16), 3, 4 (3)(7)(10), 6(5)(6)(11), 7(6)(11)(17)

定义

$$f''(x_0) = \lim_{x \to x_0} \frac{f'(x) - f'(x_0)}{x - x_0}.$$

定义

如果 f 在集合 I 上每一点都二阶可导,则称 f(x) 在 I 上二阶可导。 f' 的导函数被称为 f 的二阶导数,记为 f'',或者 $\frac{\mathrm{d}^2 f}{\mathrm{d} x^2}$.

定义

$$f^{(n)}(x_0) = \lim_{x \to x_0} \frac{f^{(n-1)}(x) - f^{(n-1)}(x_0)}{x - x_0}.$$

定义

如果 f 在集合 I 上每一点都 n 阶可导,则称 f(x) 在 I 上 n 阶可导。 $f^{(n-1)}$ 的导函数被称为 f 的 n 阶导数,记为 $f^{(n)}$,或者 $\frac{\mathrm{d}^n f}{\mathrm{d} x^n}$.

注意.

- 零阶导数 $f^{(0)}$ 就是不求导的意思, $f^{(0)} = f$, 二阶及以上的导数统称高阶导数。
- ② 导数记号 f'(x), f''(x), f'''(x), $f^{(n)}(x)$ ($n \ge 4$).
- **③** 在 x_0 处的 n 阶导数记为 $f^{(n)}(x_0)$, $y^{(n)}\Big|_{x=x_0}$, $\frac{d^n y}{dx^n}\Big|_{x=x_0}$, $\frac{d^n f}{dx^n}\Big|_{x=x_0}$ 等。

Ц

例

求 $y = x^{\alpha}$ 的 n 阶导数。

例

求 $y = x^{\alpha}$ 的 n 阶导数。

例

求 $y = e^{\alpha x}$ 的 n 阶导数。

例

求 $y = x^{\alpha}$ 的 n 阶导数。

例

求 $y = e^{\alpha x}$ 的 n 阶导数。

例

求 $y = \ln x$ 的 n 阶导数。

例

求 $y = x^{\alpha}$ 的 n 阶导数。

例

求 $y = e^{\alpha x}$ 的 n 阶导数。

例

求 $y = \ln x$ 的 n 阶导数。

例

求 $y = \sin x$ 的 n 阶导数。

定理 (高阶导数是线性的)

$$[c_1 f(x) + c_2 g(x)]^{(n)} = c_1 f^{(n)}(x) + c_2 g^{(n)}(x).$$

例

$$P(x) = \sum_{k=0}^{n} a_k x^k$$
 是 n 阶多项式,则

$$P'(x) = \sum_{k=1}^{n} a_k k x^{k-1} = a_1 + 2a_2 x + 3a_3 x^2 + 4a_4 x^3 + \dots + na_n x^{n-1}$$

$$P''(x) = \sum_{k=2}^{n} a_k k (k-1) x^{k-2} = 2! a_2 + 6a_3 x + 12a_4 x^2 + \dots + n(n-1)a_n x^{n-2}$$

$$P'''(x) = \sum_{k=3}^{n} a_k k (k-1) x^{k-3} = 3! a_3 + 24a_4 x + \dots + n(n-1)(n-2)a_n x^{n-3}$$

$$\dots$$

$$P^{(n)}(x) = n!a_n$$

对任意的 m > n, 有 $P^{(m)}(x) = 0$.

例

求
$$y = \frac{1}{x(x-1)}$$
 的 n 阶导数。

例

求 $y = \frac{1}{x(x-1)}$ 的 n 阶导数。

解

因为

$$y = \frac{1}{x(x-1)} = \frac{1}{x-1} - \frac{1}{x}$$

所以

$$y^{(n)} = \left(\frac{1}{x-1} - \frac{1}{x}\right)^{(n)} = (-1)^n n! (x-1)^{-n-1} - (-1)^n n! x^{-n-1}$$

定理 (Leibniz 公式)

$$[f(x) \cdot g(x)]^{(n)} = \sum_{k=0}^{n} C_n^k f^{(n-k)}(x) g^{(k)}(x).$$

定理 (Leibniz 公式)

$$[f(x) \cdot g(x)]^{(n)} = \sum_{k=0}^{n} C_n^k f^{(n-k)}(x) g^{(k)}(x).$$

例

求 $y = x^2 \sin x$ 的 2024 阶导数。

定理 (Leibniz 公式)

$$[f(x) \cdot g(x)]^{(n)} = \sum_{k=0}^{n} C_n^k f^{(n-k)}(x) g^{(k)}(x).$$

例

求 $y = x^2 \sin x$ 的 2024 阶导数。

例

求 $y = \arctan x$ 在 0 处的 n 阶导数

例

求由方程 $e^{xy} + x^2y - 1 = 0$ 确定的二阶可导隐函数 y = y(x) 的二阶导数 y''。

求隐函数的高阶导数.

对参数形式
$$\begin{cases} x = \phi(t) \\ y = \psi(t) \end{cases}$$
 , 求 $\frac{d^2y}{dx^2}$.

求隐函数的高阶导数.

对参数形式
$$\begin{cases} x = \phi(t) \\ y = \psi(t) \end{cases}$$
 , 求
$$\frac{d^2y}{dx^2}$$
.

例

求摆线
$$\begin{cases} x = t - \sin t \\ y = 1 - \cos t \end{cases}$$
 在 $t = \pi$ 处二阶导函数 $\frac{d^2y}{dx^2}$ 的值。

高阶微分.

- 一阶微分 dy = f'(x) dx
- ② 二阶微分 $d(dy) = d(f'(x) dx) = df'(x) dx + f'(x) d(dx) = f''(x) dx^2$
- **③** y 的 n 阶微分的表达式: $d^n y = f^{(n)}(x) dx^n$

注意区分.

- **①** $d(x^2) = 2x dx$, 表示 x^2 的一阶微分
- ② $dx^2 = (dx)^2$, 表示 x 的一阶微分的平方
- ③ $d^2x = d(dx)$, 表示 x 的二阶微分

注意.

高阶微分没有形式不变性!

事实.

对复合函数
$$\begin{cases} y = f(u) \\ u = g(x) \end{cases}$$
 , 则二阶微分

$$d^{2}y = d(dy) = d(f'(u) du) = df'(u) du + f'(u) d(du) = f''(u) du^{2} + f'(u) d^{2}u$$

$$\not\equiv f''(u) du^{2}$$

高阶导数与高阶微分

作业

● 课本第 138 页习题 1(5)(9), 2(4)(6), 4(1), 6(3), 7(4), 9(2)

