Playing Atari with Deep Reinforcement Learning

김진수

wlstn5376@gmail.com

Table of Content

- ☐ Introduction
 - Fundamental of Reinforcement Learning
 - Markov Process
 - Q Learning
 - Fitted Q Learning
- Deep Reinforcement Learning
 - Deep Q Learning
 - Replay Memory
 - Non-stationary target
 - Algorithm
- □ Experiment and Result
 - Atari
 - Cart Pole
- Extra
 - Double DQN
 - Dueling Network Architecture
 - Policy Gradient Method

☐ Fundamental of Reinforcement Learning

Fundamental of Reinforcement Learning

Definition

: ML technique that enables an agent to learn in an interactive environment by trial and error using feedback from its own actions and experience — **Learn a optimal policy which maximizes reward**

Elements

- (1) Agent: object that takes decisions based on the rewards and punishment
- (2) Environment: Physical world in which the agent interacts
- (3) State: Current situation of the agent
- (4) Reward: Feedback from the environment
- (5) Action: mechanism by which the agent transitions between states of the environment
- (6) value: Future reward that an agent would receive by taking an action in a particular state

■ Markov Process

"The Future is independent of the past given the present"

$$P[S_{t+1} | S_t] = P[S_{t+1} | S_1,, S_t]$$

Definition 3.1. A discrete time stochastic control process is Markovian (i.e., it has the Markov property) if

- $\mathbb{P}(\omega_{t+1} \mid \omega_t, a_t) = \mathbb{P}(\omega_{t+1} \mid \omega_t, a_t, \dots, \omega_0, a_0)$, and
- $\mathbb{P}(r_t \mid \omega_t, a_t) = \mathbb{P}(r_t \mid \omega_t, a_t, \dots, \omega_0, a_0).$

Definition 3.2. An MDP is a 5-tuple (S, A, T, R, γ) where:

- S is the state space,
- A is the action space,
- T: S × A × S → [0, 1] is the transition function (set of conditional transition probabilities between states),
- R: S×A×S → R is the reward function, where R is a continuous set of possible rewards in a range R_{max} ∈ R⁺ (e.g., [0, R_{max}]),
- $\gamma \in [0,1)$ is the discount factor.

- Q-Learning
 - Model Free Algorithm
 - model
 - (1) transition model
 - (2) returns probability of being next state given current state and action
 - model free
 - (1) unknown environment
 - (2) return observations manually
 - (3) Policy Optimization(on-policy) vs **Q Learning**(off-policy)

Q-Learning

- Value Function
 - State value function

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^k r_{t+k} \mid s_t = s, \pi\right]$$

Action - value function

$$Q^{\pi}(s, a) = \mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^k r_{t+k} \mid s_t = s, a_t = a, \pi\right]$$

$$V^*(s) = \max_{\pi \in \Pi} V^{\pi}(s).$$

$$Q^*(s, a) = \max_{\pi \in \Pi} Q^{\pi}(s, a).$$

$$\pi^*(s) = \operatorname*{argmax}_{a \in \mathcal{A}} Q^*(s, a).$$

* Policy: mapping func. (s → a)

$$V_{\pi}(s) = \sum_{a \in A} \pi(a|s) * q_{\pi}(s,a)$$

- Q-Learning
 - Bellman Equation

$$Q^{\pi}(s, a) = \sum_{s' \in S} T(s, a, s') \left(R(s, a, s') + \gamma Q^{\pi}(s', a = \pi(s')) \right)$$

$$Q^{\pi}(s, a) = \mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^{k} r_{t+k} \mid s_{t} = s, a_{t} = a, \pi\right]$$

★ Bellman Operator

$$(\mathcal{B}K)(s,a) = \sum_{s' \in S} T(s,a,s') \left(R(s,a,s') + \gamma \max_{a' \in \mathcal{A}} K(s',a') \right) \blacktriangleleft$$

¹The Bellman operator is a contraction mapping because it can be shown that for any pair of bounded functions $K, K' : S \times A \to \mathbb{R}$, the following condition is respected:

$$||TK - TK'||_{\infty} \le \gamma ||K - K'||_{\infty}.$$

for any policy π any initial vector v, $\lim_{k\to\infty} (\tau^{\pi})^k = v_{\pi}, \ \lim_{k\to\infty} (\tau^*)^k = v_*$ where v_{π} is the value of policy π

and v_* is the value of an optimal policy π_*

- Q-Learning
 - Algorithm
 - Iterative Method
 - (1) Initialize Q(s,a) with arbitrary fixed values
 - (2) Select current action and state
 - (3) Observe reward and new state
 - (4) From Bellman Equation, get a new target value and update Q(s,a)
 - (5) Check if Q(s,a) is converged.
 - (6) If not, repeat the process (2)

$$Q^{new}(s_t, a_t) \leftarrow \underbrace{Q(s_t, a_t)}_{\text{old value}} + \underbrace{\alpha}_{\text{learning rate}} \cdot \underbrace{\left(\underbrace{r_t}_{\text{reward}} + \underbrace{\gamma}_{\text{discount factor}} \cdot \underbrace{\max_{a} Q(s_{t+1}, a)}_{\text{estimate of optimal future value}} - \underbrace{Q(s_t, a_t)}_{\text{old value}}\right)}_{\text{new value (temporal difference target)}}$$

Q-Learning

$$Q(s,a) := r(s,a) + \gamma \max_{a} Q(s',a) \longrightarrow Q(s,a) = r(s,a)$$

Game Board:

000 Current state (s): 010

O Table

Q Table	:					γ = 0.95
	0 0 0 1 0 0	0 0 0 0 1 0	0 0 0 0 0 1	100	0 1 0 0 0 0	0 0 1 0 0 0
Î	0.2	0.3	1.0	-0.22	-0.3	0.0
Ţ	-0.5	-0.4	-0.2	-0.04	-0.02	0.0
\Rightarrow	0.21	0.4	-0.3	0.5	1.0	0.0
	-0.6	-0.1	-0.1	-0.31	-0.01	0.0

☐ Fitted Q Learning

Define target value as $Y_k^Q = r + \gamma \max_{a' \in \mathcal{A}} Q(s', a'; \theta_k)$ Q - Learning(Bellman Equation for action-value function) $Q(s, a) := r(s, a) + \gamma \max_{a} Q(s', a)$

The Q values are parameterized with a network $Q(s,a,\theta)$ where parameters θ are updated by stochastic gradient descent by minimizing the objective functions L

$$L_{obj} = \left(Q(s, a; \theta_k) - Y_k^Q\right)^2$$

The parameters θ are updated as below

$$\theta_{k+1} = \theta_k + \alpha \left(Y_k^Q - Q(s, a; \theta_k) \right) \nabla_{\theta_k} Q(s, a; \theta_k)$$

Problem

- 1. Bellman Operator is not enough to guarantee convergence due to the change of target for each update process
- 2. Q values tend to be overestimated due to the max operator => DDQN

- Deep Q Learning
 - Neural Network as a function approximator

- Deep Q Learning
 - Issue

Q-Learning Loss Term diverges due to....

- 1. Correlations between samples
- 2. Non-stationary targets (update with a function approximator)

Replay Memory

- Generate Experience Replay Memory for each episode and extract random sample
- For each episode, store the agent's experiences with state-action pairs (s,a,r,s) and sample a random batch
- available to get a subset within which the correlation among the samples is low and provide better sampling efficiency


```
Transition = namedtuple(
    'Transition',
   ('state', 'action', 'next_state', 'reward')
 Batch 단위로 데이터를 샘플링하여 학습에 필요한 batch 데이터를 생성
:lass ReplayMemory(object):
   def init (self, capacity):
       self.memory = deque([], maxlen = capacity)
   def push(self, *args):
       transition data 저장
       self.memory.append(Transition(*args))
   def sample(self, batch size):
       return random.sample(self.memory, batch size)
   def len (self):
       return len(self.memory)
```

- Non stationary targets
- Create a target Q network which is separated from a prediction Q network
- Deep Q-Learning process
 - (1) update new value from prediction Q network
 - (2) get target value from the fixed target Q network
 - (3) update weights from prediction Q network
 - (4) load weights from prediction Q network to target Q network for every n steps
 - (5) repeat

☐ Algorithm

```
Algorithm 1 Deep Q-learning with Experience Replay
```

```
Initialize replay memory \mathcal D to capacity N
Initialize action-value function Q with random weights for episode =1,M do
Initialise sequence s_1=\{x_1\} and preprocessed sequenced \phi_1=\phi(s_1) for t=1,T do
With probability \epsilon select a random action a_t otherwise select a_t=\max_a Q^*(\phi(s_t),a;\theta)
Execute action a_t in emulator and observe reward r_t and image x_{t+1}
Set s_{t+1}=s_t,a_t,x_{t+1} and preprocess \phi_{t+1}=\phi(s_{t+1})
Store transition (\phi_t,a_t,r_t,\phi_{t+1}) in \mathcal D
Sample random minibatch of transitions (\phi_j,a_j,r_j,\phi_{j+1}) from \mathcal D
Set y_j=\left\{ \begin{array}{cc} r_j & \text{for terminal } \phi_{j+1} \\ r_j+\gamma\max_{a'} Q(\phi_{j+1},a';\theta) & \text{for non-terminal } \phi_{j+1} \end{array} \right.
Perform a gradient descent step on (y_j-Q(\phi_j,a_j;\theta))^2 according to equation 3 end for end for
```

$$\begin{split} Y_t^{\text{DQN}} &\equiv R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a; \boldsymbol{\theta}_t^-) \\ \downarrow & \\ \mathbf{L}_{DQN} &= \left(Q(s, a; \boldsymbol{\theta}_k) - Y_k^Q \right)^2 \\ \downarrow & \\ \boldsymbol{\theta}_{k+1} &= \boldsymbol{\theta}_k + \alpha \left(Y_k^Q - Q(s, a; \boldsymbol{\theta}_k) \right) \nabla_{\boldsymbol{\theta}_k} Q(s, a; \boldsymbol{\theta}_k), \end{split}$$

□ Algorithm

```
for t in count():
   state = state.to(device)
   action = select_action(state, policy_net, device)
   _, reward, done, _ = env.step(action.item())
   reward = torch.tensor([reward], device = device)
   last screen = current screen
   current screen = get screen(env)
   if not done:
       next state = current screen - last screen
   else:
       next state = None
   # memory에 transition 저장
   memory.push(state, action, next state, reward)
   state = next state
   # policy_net -> optimize
   optimize_model()
   if done:
       episode durations.append(t+1)
       break
if i episode % TARGET UPDATE == 0:
   target net.load state dict(policy net.state dict())
```


■ Model Architecture

Layer (type)	Input Shape	Param #	Tr. Param #
Conv2d-1	[1, 3, 40, 90]	1,216	1,216
BatchNorm2d-2	[1, 16, 18, 43]	32	32
Conv2d-3	[1, 16, 18, 43]	12,832	12,832
BatchNorm2d-4	[1, 32, 7, 20]	64	64
Conv2d-5	[1, 32, 7, 20]	25,632	25,632
BatchNorm2d-6	[1, 32, 2, 8]	64	64
Linear-7	[1, 512]	1,026	1,026

Total params: 40,866 Trainable params: 40,866 Non-trainable params: 0

Experiment and Result

	B. Rider	Breakout	Enduro	Pong	Q*bert	Seaquest	S. Invaders
Random	354	1.2	0	-20.4	157	110	179
Sarsa [3]	996	5.2	129	-19	614	665	271
Contingency [4]	1743	6	159	-17	960	723	268
DQN	4092	168	470	20	1952	1705	581
Human	7456	31	368	-3	18900	28010	3690
HNeat Best [8]	3616	52	106	19	1800	920	1720
HNeat Pixel [8]	1332	4	91	-16	1325	800	1145
DQN Best	5184	225	661	21	4500	1740	1075

Experiment and Result

(+) Human-level control through deep reinforcement learning(nature, 2015)

Experiment and Result

(+) Custom(OpenAl gym cart-pole v0), left : DQN, right : DDQN

Extra

Double DQN

Decoupling the action selection from the action evaluation

$$\begin{split} Y_t^{\text{Q}} &= R_{t+1} + \gamma Q(S_{t+1}, \operatorname*{argmax}_a Q(S_{t+1}, a; \pmb{\theta}_t); \pmb{\theta}_t) \\ \downarrow & \\ Y_t^{\text{DoubleQ}} &\equiv R_{t+1} + \gamma Q(S_{t+1}, \operatorname*{argmax}_a Q(S_{t+1}, a; \pmb{\theta}_t); \pmb{\theta}_t') \end{split}$$

Theorem 1. Consider a state s in which all the true optimal action values are equal at $Q_*(s,a) = V_*(s)$ for some $V_*(s)$. Let Q_t be arbitrary value estimates that are on the whole unbiased in the sense that $\sum_a (Q_t(s,a) - V_*(s)) = 0$, but that are not all zero, such that $\frac{1}{m} \sum_a (Q_t(s,a) - V_*(s))^2 = C$ for some C > 0, where $m \ge 2$ is the number of actions in s. Under these conditions, $\max_a Q_t(s,a) \ge V_*(s) + \sqrt{\frac{C}{m-1}}$. This lower bound is tight. Under the same conditions, the lower bound on the absolute error of the Double Q-learning estimate is zero.

Theorem 2. Consider a state s in which all the true optimal action values are equal at $Q_*(s,a) = V_*(s)$. Suppose that the estimation errors $Q_t(s,a) - Q_*(s,a)$ are independently distributed uniformly randomly in [-1,1]. Then,

$$\mathbb{E}\left[\max_{a} Q_t(s, a) - V_{\star}(s)\right] = \frac{m-1}{m+1}$$

Extra

Dueling Network Architecture

Decoupling the value and advantage function

$$\begin{split} Q(s, a; \theta^{(1)}, \theta^{(2)}, \theta^{(3)}) &= V\left(s; \theta^{(1)}, \theta^{(3)}\right) \\ &+ \left(A\left(s, a; \theta^{(1)}, \theta^{(2)}\right) - \max_{a' \in \mathcal{A}} A\left(s, a'; \theta^{(1)}, \theta^{(2)}\right)\right) \end{split}$$

Different approach to increase stability of the optimization

$$Q(s, a; \theta^{(1)}, \theta^{(2)}, \theta^{(3)}) = V\left(s; \theta^{(1)}, \theta^{(3)}\right) + \left(A\left(s, a; \theta^{(1)}, \theta^{(2)}\right) - \frac{1}{|\mathcal{A}|} \sum_{a' \in \mathcal{A}} A\left(s, a'; \theta^{(1)}, \theta^{(2)}\right)\right)$$

Profit

- 1. prevent overestimation of Q value function approximation
- increase stability of optimization

Extra

Policy Gradient Method

Policy Gradient Theorem

$$V^{\pi}(s_{0}) = \int_{\mathcal{S}} \rho^{\pi}(s) \int_{\mathcal{A}} \pi(s, a) R'(s, a) dads. \begin{cases} R'(s, a) = \int_{s' \in \mathcal{S}} T(s, a, s') R(s, a, s') \\ \rho^{\pi}(s) = \sum_{t=0}^{\infty} \gamma^{t} Pr\{s_{t} = s | s_{0}, \pi\}. \end{cases}$$

$$\nabla_{w} V^{\pi_{w}}(s_{0}) = \mathbb{E}_{s \sim \rho^{\pi_{w}}, a \sim \pi_{w}} \left[\nabla_{w} \left(\log \ \pi_{w}(s, a) \right) Q^{\pi_{w}}(s, a) \right]$$

- 1. Initialize the policy parameter θ at random.
- 2. Generate one trajectory on policy π_{θ} : $S_1, A_1, R_2, S_2, A_2, \ldots, S_T$.
- 3. For t=1, 2, ..., T:
 - 1. Estimate the the return G_t ;
 - 2. Update policy parameters: $\theta \leftarrow \theta + \alpha \gamma^t G_t \nabla_\theta \ln \pi_\theta(A_t | S_t)$

Reference

Paper

- Human-level control through deep reinforcement learning(nature, 2015)
- Playing Atari with Deep Reinforcement Learning, Mnih et al, 2013
- Dueling Network Architectures for Deep Reinforcement Learning, Wang et al, 2015
- Deep Reinforcement Learning with Double Q-learning, Hasselt et al 2015

Blog

- https://jeinalog.tistory.com/20
- https://towardsdatascience.com/grash-course-deep-q-networks-from-the-ground-up-1bbda41d3677
- https://sumniya.tistory.com/18
- https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html

End