B2B Sales: Conversion and Revenue Prediction

Data Science Immersion Program Group 6

Faith Feng, Niall Keleher, Jinyu Li, Shiya Yi

Data

Models & Results

Data

Models & Results

Project Overview

Goals:

- 1. Identify which B2B customers will place an order in the next 30 days (Conversion Rate)
- 2. For converted B2B customers, estimate the amount they will spend in the next 30 days (Revenue)
- 3. Business insights on how to increase expected revenue (Conversion Rate × Revenue)

Why important to predict B2B conversion rate & revenue?

B2B @ Wayfair

- Increasing Customer Base
- 351K active customers, 114K inactive customers
- Higher Average Order Value (AOV)
- B2B AOV \$520 vs. B2C AOV \$270
- Different than B2C Customers
- Purchase pattern --
 - frequency
 - seasonality
- Business Account Manager (BAM)
- Onboarding BAM (OBAM)
- Retention BAM (RBAM)
- Unmanaged BAM (Ninja)

B2B customer journey

B2B Customer Journey & 3 Main Programs

Data

Models & Results

Customer Type by B2B Program Status

Onboarding Retention Unmanaged 278,839

437,555 104,479

532,167 unique customers

Seasonality in Spending

Feature space

Preprocessing

- Missing value imputation
- Remove duplicate and irrelevant features
- One hot encoding of categorical features
- Create date-specific features (month, week, day of year)
- Feature aggregation and interactions

154 features as inputs to our models

Data

Models & Results

Model

- Binary classification: Predict which customers will place an order in the next 30 days
- 2. **Regression:** For those customers who placed an order in the next 30 days, predict how much revenue they will generate

non-normal distribution of target:

- violate the assumptions of linear model
- possible to get negative prediction values
- solution: log transformation

Performance Comparison

- Compare models for performance: (classification: AUC-PRC, regression: MSE)
 - Lasso
 - **ElasticNet**
 - Random Forest
 - **GBM**
- Model improvements
 - Tuning parameters
 - Down sample/over sample
 - Model stacking (future work)

AUC-PRC results for classification models

Results

Important predictors for all program categories:

- Interaction with webpage (SKU viewed, ATC, click, idea board)
- Number/amount of orders in the past year
- Communication with Wayfair (email list, past calls)

Important predictors for:

- Onboarding: price of items viewed, whether the main orderer in a company, percentage of large orders
- Retention: conversion rate of quotes
- Unmanaged: days since last visit

Partial Dependence Plots

Data

Models & Results

- Caveat: this does not suggest causality of the feature:
 - Self-selection: customers who are more interested in Wayfair might be more likely to subscribe to maillist and communicate with Wayfair.
- This project tells us the correlation between features and revenue. Useful for projecting expected revenue.
- Not appropriate to evaluate counterfactuals.
- Need more causal inference to tell which channel we should focus on in order to increase profit.

Future Work: Experiment

	Call	Not Call
Convert	Complier	Always-taker
Not Convert	Never-taker	Defier

• Experiment:

- Making calls to customers is expensive (\$16/call)
- Don't waste money on customers who are never going to convert and who will convert no matter what.
- Estimate local average treatment effect (LATE) on compliers.
- Infer whether a potential customer can be influenced, predict customer lifetime value.

Future Work: Model and Data

Model refinements:

- Different customer programs have different rate of conversion and expected revenue.
- Model the transition among those groups, e.g.
 Markov-switching model.

Additional data:

- More detailed categories of business type and business size.
- Fast-growing companies and large companies might tend to buy more.

Thank you! Questions?

Faith Feng, Niall Keleher, Jinyu Li, Shiya Yi

