Generation of three-photon GHZ States with Classical Light

2019, 1, 21

Yoonjeong Shin

Internship at Center for Quantum Information, KIST

(1) Ambiguous quantum-ness criteria

- Phase-incoherent classical lights act like photons
 - Photons

Phase-incoherent Laser pulses

Hong et al., Phys. Rev. L 1987

Kim et al., Phys. Rev. A 2013

(1) Ambiguous quantum-ness criteria

Ones with orthogonal polarization...

(1) Ambiguous quantum-ness criteria

- Interference between probability amplitudes
- Temporal overlapping of inputs is not required

Kim et al., Phys. Rev. A 2013

(2) Informationally Symmetric BSM

- Standard BSM
 - Two photons overlapping at BS
 - A third party perfoms BSM
 - Never know if C is trustworthy

(a) $\begin{array}{c} D1 \\ A \\ B \\ D4 \end{array}$ $\begin{array}{c} D2 \\ D4 \\ D3 \end{array}$

- Symmetric BSM
 - BS-free
 - participants perform BSM in tandem
 - Guarantee security
 - Remote communication

Kim et al., Opt. Ex 2018

(2) Informationally Symmetric BSM

- Generalizable to N-photon GHZ states generation/measurement
 - $|GHZ_N\rangle = \frac{1}{\sqrt{2}} (|0\rangle^{\otimes N} + |1\rangle^{\otimes N})$
 - By adding the scheme in parallel

(2) Informationally Symmetric BSM

Created three-photon GHZ states using photons

$$|DDD\rangle$$
 input \rightarrow GHZ output : $|GHZ^{\pm}\rangle = \frac{1}{\sqrt{2}}(|HHH\rangle \pm |VVV\rangle)$

- $P = 0.53 \pm 0.03$
- $F = 0.69 \pm 0.03 > 0.5$

: Genuine entanglement

(3) MDI Quantum Communication

- "Measurement-Device-Independent"
 - M: complete detection efficiency
 - ▶ D : knowledge of how devices work
- A way to share entanglement
 - Entangled-based protocol

MDI protocol

(3) MDI Quantum Communication

- Feasible
 - Immune to side attacks
 - Ensure long distance key distribution

(3) MDI Quantum Communication

- Practical applications for MDI multi-parity communication
 - QSS: Quantum Secret Sharing
 - ► Having some important decisions (ex. launching a nuclear missile)

Research Procedure (1) three incoherent input pulses

- 1. Split a fs laser into three pulses
- 2. Go through each AOMs \rightarrow phase-incoherent
- 3. Find out where the 2^{nd} order interferences take place \rightarrow HOM dips

Research Procedure (1) three incoherent input pulses

 $\times 10^{5}$

synchronous

- A kind of diffraction grating
- Asynchronous AOMs (Acousto-Optic Modulators)

(SI Joj) stimos abdus 2

A ×10⁵

asynchronous

O → Wash out 1st order interference!

Distance, Δl (µm)

DI

D2

Research Procedure (2) three-photon GHZ-like States

- ▶ 3rd order interference
- What they actually look like?

Research Procedure (3) Analysis of GHZ-like States

- 1. Quantum state tomography
 - Obtain fidelity, entanglement, and discord
 - Be compared to the theoretical figures and the results from photons
 - \bullet : $|DDD\rangle$ input \rightarrow GHZ output

- $P = 0.53 \pm 0.03$
- $F = 0.69 \pm 0.03 > 0.5$

: Genuine entanglement

- : $|DDD\rangle$ input \rightarrow GHZ output ?

Research Procedure

(3) Analysis of GHZ-like States

- 2. GHZ state measurement
 - With two sets of input states

:
$$|HHH>$$
, $|HHV>$, \cdots , $|VVV>$ and $|DDD>$, $|DDA>$, \cdots , $|AAA>$

Calculate error rates

$$|GHZ^{\pm}> = \sqrt[1]{\sqrt{2}} (|HHH> \pm |VVV>)$$

	<i>HHH</i> >	HHV >		VVV >
$ GHZ^+>$	1/2	0	0	1/2
<i>GHZ</i> ⁻ >	1/2	0	0	$^{1}/_{2}$

	DDD >	DDA >		AAA >
<i>GHZ</i> ⁺ >	?	?	?	?
$ GHZ^->$?	?	?	?

Summary

- classical lights act like photons
- identify the probability of QC with classical lights
- ► GHZ states → MDI QC
- more practical and related to the realization of QC in common use

"Generation of three-photon GHZ States with Classical Light"

Yoonjeong Shin

Internship at Center for Quantum Information, KIST