

Topics

Beyond image classification

Object detection

► Introduction & performance metrics

Deep object detection

- Sliding window approach
- ► Two-stage detectors (R-CNN)
- One-stage detectors (YOLO)
- ► Feature pyramid networks

We have focused on image classification

- ► Fundamental computer vision task
- We now know how to achieve good performance

Rest of lecture will focus on more challenging tasks

Recall our ingredients for image classification

- ► A suitable dataset
- A network with a suitable final layer (linear layer)
- ▶ A suitable loss function $L(\theta)$ (cross-entropy)
- lacktriangle An algorithm for computing $abla L(m{ heta})$ (backpropagation)
- ightharpoonup An algorithm for updating heta on this basis (Adam)
- An intuitive performance metric (accuracy)

These ingredients are universal

Steps 4 and 5 are not task-specific and can be reused

So when tackling a new problem, ask yourself

- ▶ Do I have enough (labeled) data?
- What is a suitable network output?
- What is a suitable loss function?
- What is a good metric for evaluation?

Answer to first question is almost always "no"

- Networks are usually pre-trained on ImageNet
- First learn what different objects look like
- ► Then adapt for other tasks (transfer learning)

PyTorch provides such models directly

net = models.resnet34(pretrained=True)

Object Detection

Task Definition

Given an image and C class labels (e.g. {bird, cat, dog})

- Draw bounding boxes around all instances of all classes
- Assign correct class label to each bounding box

Image adapted from 123rf.com

Object Detection Challenges & Opportunities

More challenging than image classification

- ► Same basic challenges (see lecture 1)
- More complex task
- Harder to implement efficiently

Many useful applications such as

- ► Face detection (e.g. surveillance)
- Autonomous driving (e.g. road sign detection)

Object Detection Datasets

COCO is the most popular dataset with detection labels

Image from cocodataset.org

Object Detection Progress

Image from paperswithcode.com

Object Detection Detector Output

What is a suitable object detector output?

Most detectors predict the following

- ightharpoonup N bounding boxes \mathcal{B}_n
- lacktriangleright N corresponding class labels c_n
- lacktriangleq N corresponding confidence scores p_n

Object Detection

Loss Function

Two tasks at once

- ▶ Predict accurate bounding boxes (regression)
- Assign them correct class labels (classification)

We thus usually have
$$L(\boldsymbol{\theta}) = L_{\mathsf{loc}}(\boldsymbol{\theta}) + L_{\mathsf{clf}}(\boldsymbol{\theta})$$

- ► First term measures bounding box accuracy (e.g. L1 loss)
- ► Second term is classification loss (e.g. cross-entropy loss)

Intersection over union (IoU) base measure

Object Detection

Performance Metrics

Ignoring class labels and given a

- ► Single ground-truth bounding box B'
- ▶ Single predicted bounding box \mathcal{B}
- ightharpoonup loU threshold t_{iou}

 \mathcal{B} is a

- ▶ True positive (TP) if $iou(\mathcal{B}', \mathcal{B}) \ge t_{iou}$
- ► False positive (FP) otherwise

In second case there is also one false negative (FN)

 \triangleright No \mathcal{B} with sufficient IoU with \mathcal{B}'

Object Detection

Performance Metrics

Ignoring class labels and given multiple bounding boxes

- ► Precision = TPs / (TPs + FPs)
- ightharpoonup Recall = TPs / (TPs + FNs)

In case of multiple ${\cal B}$ for a given ${\cal B}'$

ightharpoonup Count $\mathcal B$ with highest p as TP, others als FPs

Both metrics are in [0,1]

▶ Ideally precision = recall = 1

Object Detection Performance Metrics

Use confidence threshold t_p to balance recall vs. precision

Increasing t_p results in fewer detections

- Usually increases precision
- Usually decreases recall

Precision vs. recall curves highlight this behavior

- ▶ Plotting precision and recall over $t_p \in [0,1]$
- ► Area under curve is called average precision (AP)

AP is most popular base metric

- ► Concise measure of detector performance
- ightharpoonup For single t_{iou} and single class

Mean average precision (mAP) extends this to C classes

$$\mathsf{mAP}_{t_{iou}} = \frac{1}{C} \sum_{c}^{C} \mathsf{AP}_{c}$$

Object Detection

Performance Metrics

And further to multiple t_{iou} , e.g.

$$\mathsf{mAP} = \frac{1}{10}(\mathsf{mAP}_{0.50} + \dots + \mathsf{mAP}_{0.95})$$

Confusingly mAP is sometimes named just AP in papers

Like in COCO performance chart above

Many interesting approaches and methods exist

► See survey papers such as [1] for an overview

Virtually all use a classification network as backbone

► Transfer learning as mentioned earlier

We will cover three approaches

- Naive sliding window approach
- ► Two-stage detectors (R-CNN)
- ► Single-stage detectors (YOLO)

Deep Object Detection Sliding Window Approach

Training

- ▶ Train a classifier for C+1 classes
- Additional "background" class

Detection

- Slide fixed-size window over image
- Predict class-scores for every window
- ► Perform non-maximum suppression

Deep Object Detection Sliding Window Approach

Deep Object Detection Sliding Window Approach

Inefficient

► Many windows to classify

Single fixed-size window (no scale invariance)

- ► Must process image at multiple scales (more inefficient)
- Inaccurate bounding boxes (fixed aspect ratio)

Cannot handle multiple objects in same window (softmax)

Two-Stage Detectors

Improve efficiency by

- First generating many region proposals
- Classifying these proposals

Two-Stage Detectors

Region proposals have different size and aspect ratio

- Solves window-related problems
- Warp to common size to support minibatch predictions

Two-Stage Detectors

Approach of R-CNN

- ► First successful deep-learning-based object detector
- Clunky design and training, see [2] if interested

Two-Stage Detectors

Approach still inefficient

► Got to classify many region proposals

More efficient extension

- Process complete (high-resolution) image once
- Project region proposals onto suitable conv layer output
- Classify each resulting feature map region

Two-Stage Detectors

Approach was introduced by Fast R-CNN [3]

mage adapted from [1]

Two-Stage Detectors

Region proposal step remains a bottleneck

- ► Generic algorithms (e.g. selective search [4])
- Not integrated into network
- Usually quite slow

mage adapted from [4]

Two-Stage Detectors

There are improvements that address this

► Faster R-CNN is an example

R-CNN variants are two-stage detectors

- ightharpoonup First generate r region proposals
- Then analyze these proposals

Modern detectors are one-stage detectors

Combine both stages, inference time independent of r

One-Stage Detectors

Most one-stage detectors utilize anchor boxes

- ► Fixed set of reference bounding boxes
- At different scales and aspect ratios

Deep Object Detection One-Stage Detectors

YOLO is a popular anchor-based detector familiy

- ► High detection performance
- ► Runs in real-time

Many versions exist

- ► We will cover v2, and v3
- Overall approach (detector head) identical

Deep Object Detection YOLO

Simplified overall approach

- lacktriangle Divide input image into coarse $S \times S$ grid
- ► For each grid cell and anchor box, predict class labels (if any)
- ► Perform non-maximum suppression

mage from pjreddie.com

Deep Object Detection YOLO v2

More precisely, given an anchor box we seek to predict

- ► The IoU overlap p with the most relevant object
- ▶ The offset and scale of the box (x, y, w, h)
- C class scores

To constrain the number of detections

- ▶ Divide the image into grid (e.g. 7×7)
- Align each anchor box with the center of each grid cell
- Predict the above for every box and every cell

Deep Object Detection YOLO v2

Assuming k anchor boxes and a 7×7 grid

- ▶ Output is $k \cdot (5 + C) \times 7 \times 7$
- ► Can be implemented using conv and pooling layers

Backbone pools down to desired grid size

► For instance $224 \mapsto 112 \mapsto 56 \mapsto 28 \mapsto 14 \mapsto 7$

Detector head consists of conv layers only

- ▶ Last one has $k \cdot (5 + C)$ channels
- ► YOLO v2 uses 4 layers in total (implementation detail)

Deep Object Detection YOLO v2

Network has no linear layers

- ► Fully convolutional network (FCN) architecture
- ► Supports varying input (image) resolution

Deep Object Detection YOLO v2 - Training

Pretrain backbone, then fine-tune for detection

For every training image, grid cell, and bounding box label

- Find the anchor box with the highest IoU
- lacksquare Compute and assign $(p, x, y, h, w, o_1, \dots, o_C)$
- ightharpoonup Assign $(0, \dots)$ to all unassigned anchor boxes

Deep Object Detection YOLO v2 - Training

Weighted sum of three L2 losses per anchor box

- ► Confidence loss (loss on *p*)
- ► Classification loss (loss on class scores) *
- ▶ Localization loss (loss on x, y, w, h) *
- (*) Only if IoU with ground-truth box is sufficient

YOLO v2 - Inference

Network always predicts $k \cdot S \cdot S$ detections

- ▶ But most have $p \approx 0$
- ► Perform per-class non-maximum suppression

Image adapted from Youtube

YOLO v2 - Limitations

Issues with

- ► Small objects
- Predicting tight bounding boxes

Because backbone feature tensor has low resolution of $S \times S$

- ► Late in network so semantically strong features
- But limited amount of spatial information due to pooling

Could address this by duplicating detector heads

► Attach to different conv layers

(c) Pyramidal feature hierarchy

Image from [6]

Earlier layers have higher resolution but are semantically weaker

▶ We want both

(c) Pyramidal feature hierarchy

Image from [6]

Feature Pyramid Networks

Feature pyramid networks (FPNs) achieve this by combining

- ► High-resolution but semantically weaker features
- Lower-resolution but semantically stronger features

→ predict

predict

predict

Accomplished by

- Upsampling lower-resolution features
- ► Combining features using sum operation

Requires matching number of channels

- Fixed number of channels (e.g. 256)
- Implemented using pointwise convolutions

FPNs aggregate and refine features

▶ Independent of base network architecture and task

In object detection context

- ► FPN (or alternatives) forms the neck of the detector
- Independent of backbone and head network architectures

Deep Object Detection YOLO v3

YOLO v3 uses a FPN neck with 3 scales

- ► One YOLO head per scale
- ▶ In addition to other improvements, see [7] if interested

Several improved variants of YOLO exist, such as [8]

- ► Better backbone network
- ► Improved neck architecture
- Better training data augmentation
- Overall approach (detector head) largely identical

YOLO is a good candidate for object detection

- ▶ Modern variants perform well (COCO mAP around 55%)
- Have great speed vs. performance trade-off

YOLO - Remarks

Speed vs. performance on COCO [8]

YOLO - Showcase

Image from youtube

Bibliography

- [1] Zaidi et al. Deep Object Detection Survey. 2021
- [2] Girshick et al. R-CNN. 2013
- [3] Girshick. Fast R-CNN. 2015
- [4] Uijlings et a. Selective Search. 2013
- [5] Redmon & Farhadi. YOLO v2. 2016
- [6] Lin et al. Feature Pyramid Networks. 2017
- [7] Redmon & Farhadi. YOLO v3. 2017
- [8] Wang et al. Scaled-YOLO v4. 2021

