Dynamic Gaussian Mixture based Deep Generative Model For Robust Forecasting on Sparse Multivariate Time Series

Yinjun Wu¹, Jingchao Ni², Wei Cheng², Bo Zong², Dongjin Song³, Zhengzhang Chen², Yanchi Liu², Xuchao Zhang², Haifeng Chen², Susan Davidson¹ ¹University of Pennsylvania, ²NEC Laboratories America, ³University of Connecticut

Background High sparsity of the multivariate time series (MTS) in Medical Domain:

- Different sampling rates, e.g., dialysis is three times per week, blood test is biweekly
- Irregular measurements: patients may miss some visits for tests for a variety of reasons

- Blood test: 2 times / month
- CTR: 1 time / month

ICU signals (MIMIC-III): lab events and chart events are different sources.

Finance: different sources such as financial news, analysis and market-makers in investment banks

Complex monitoring systems: sensors of different components have different rates

Our perspective

Similar patients may have similar latent states

-> cluster latent states from different MTS's

Our framework

Joint imputation and forecasting framework

Forecasting component

Transition Process

Emission Process

 $p(x'_{t+1})$

Emission of a new observation from a Dynamic Gaussian mixture

- Draw a latent cluster variable z_{t+1} from $Categorical(p(\psi_{t+1}))$
- Draw x_{t+1} from $N(\mu_{Z_{t+1}}, \sigma^{-1}I)$

Gaussian Mixture with two mixture components:

Pamameterization

Generative network

 $p(z_{t+1}|z_{1:t}) = f_{\theta}(z_{1:t})$ $p(z_{t+1}|z_{1:t}) = softmax(MLP(\mathbf{h}_t)),$ where $\boldsymbol{h}_t = RNN(z_t, \boldsymbol{h}_{t-1})$

Inference network

Variational inference:

• introduce approximate posterior $q_{\phi}(z_{1:T}|x_{1:T}) =$ $q_{\phi}(z_1|x_1) \sum_{t=1}^{T-1} q_{\phi}(z_{t+1}|x_{1:t+1},z_t)$

DGM² is able to fit the underlying clustering structures

DGM² can generate time series that are close to the true values

Imputation component

Parameterizing missing entries - interpolation

• Temporal intensity: $\bar{x}_{t^*}^i = \frac{1}{\lambda(t^*, \boldsymbol{m}^i; \alpha_i)} \sum_{t=1}^{\infty} \boldsymbol{\lambda}_{t^*}$

Multi-dimensional correlation:

$$\hat{x}_{t^*}^i = \left[\sum_{j'=1}^d \rho_{ij} \lambda(t^*, \boldsymbol{m}^i; \alpha_j) \bar{x}_{t^*}^j\right] / \sum_{j'=1}^d \lambda(t^*, \boldsymbol{m}^i; \alpha_j)$$