Computing the Riemann Constant Vector

21 April 2015

Chris Swierczewski cswiercz@uw.edu

Department of Applied Mathematics University of Washington Seattle, Washington

u(x, y, t) = surface height of a 2D periodic shallow water wave.

$$\frac{3}{4}u_{yy} = \frac{\partial}{\partial x} \left(u_t - \frac{1}{4} \left(6uu_x + u_{xxx} \right) \right)$$

Figure: Île de Ré, France

Figure: Model of San Diego Bay

"Finite-genus solutions:"

$$u = c + 2\partial_x^2 \log \theta \Big(\mathbf{U} x + \mathbf{V} y + \mathbf{W} t + \mathbf{A} (P^{\infty}, \mathcal{D}) - \mathbf{K} (P^{\infty}), \Omega \Big)$$

"Finite-genus solutions:"

$$u = c + 2\partial_x^2 \log \theta \Big(\mathbf{U} x + \mathbf{V} y + \mathbf{W} t + \mathbf{A} (P^{\infty}, \mathcal{D}) - \mathbf{K} (P^{\infty}), \Omega \Big)$$

lacktriangle Riemann theta function $heta:\mathbb{C}^{ extit{g}} imes\mathfrak{h}_{ extit{g}} o\mathbb{C}$

$$\theta(z,\Omega) = \sum_{n \in \mathbb{Z}^g} e^{2\pi i \left(\frac{1}{2}n \cdot \Omega n + n \cdot z\right)}$$

"Finite-genus solutions:"

$$u = c + 2\partial_x^2 \log \theta \Big(\mathbf{U} x + \mathbf{V} y + \mathbf{W} t + \mathbf{A} (P^{\infty}, \mathcal{D}) - \mathbf{K} (P^{\infty}), \Omega \Big)$$

▶ Riemann theta function $\theta : \mathbb{C}^g \times \mathfrak{h}_g \to \mathbb{C}$

$$\theta(z,\Omega) = \sum_{n \in \mathbb{Z}^g} e^{2\pi i \left(\frac{1}{2}n \cdot \Omega n + n \cdot z\right)}$$

▶ Quantities come from compact, connected, Riemann surfaces built from algebraic curves.

Given $f \in \mathbb{C}[x,y]$ construct an algebraic curve,

$$C = \{(\alpha, \beta) \in \mathbb{C}^{*2} \mid f(\alpha, \beta) = 0\}.$$

Given $f \in \mathbb{C}[x,y]$ construct an algebraic curve,

$$C = \{(\alpha, \beta) \in \mathbb{C}^{*2} \mid f(\alpha, \beta) = 0\}.$$

C as a *y-covering* of \mathbb{C}_{x}^{*} :

▶ For each $x \in \mathbb{C}$, what are all possible y-roots to f(x,y) = 0?

$$x \mapsto y(x) = (y_1(x), \dots, y_d(x))$$

Given $f \in \mathbb{C}[x,y]$ construct an algebraic curve,

$$C = \{(\alpha, \beta) \in \mathbb{C}^{*2} \mid f(\alpha, \beta) = 0\}.$$

C as a *y-covering* of \mathbb{C}_x^* :

▶ For each $x \in \mathbb{C}$, what are all possible y-roots to f(x,y) = 0?

$$x \mapsto y(x) = (y_1(x), \dots, y_d(x))$$

▶ y_i's are continuous functions of x

Given $f \in \mathbb{C}[x,y]$ construct an algebraic curve,

$$C = \{(\alpha, \beta) \in \mathbb{C}^{*2} \mid f(\alpha, \beta) = 0\}.$$

C as a *y-covering* of \mathbb{C}_x^* :

▶ For each $x \in \mathbb{C}$, what are all possible y-roots to f(x,y) = 0?

$$x \mapsto y(x) = (y_1(x), \dots, y_d(x))$$

▶ y_i's are continuous functions of x

Given $f \in \mathbb{C}[x, y]$ construct an algebraic curve,

$$C = \{(\alpha, \beta) \in \mathbb{C}^{*2} \mid f(\alpha, \beta) = 0\}.$$

C as a *y-covering* of \mathbb{C}_{x}^{*} :

▶ For each $x \in \mathbb{C}$, what are all possible y-roots to f(x,y) = 0?

$$x \mapsto y(x) = (y_1(x), \dots, y_d(x))$$

• y_i 's are continuous functions of x

Question

As $x \in \mathbb{C}_{x}^{*}$ varies on what surface is y single-valued?

(Compact) Riemann Surfaces X:

► connected, 1-dimensional complex manifold,

- ► connected, 1-dimensional complex manifold,
- ▶ homeomorphic to a doughnut with *g* holes,

- ► connected, 1-dimensional complex manifold,
- ▶ homeomorphic to a doughnut with *g* holes,
 - ightharpoonup g = genus

- ► connected, 1-dimensional complex manifold,
- ightharpoonup homeomorphic to a doughnut with g holes,
 - ightharpoonup g = genus
- surface on which y(x) is single-valued,

- ► connected, 1-dimensional complex manifold,
- ▶ homeomorphic to a doughnut with g holes,
 - ightharpoonup g = genus
- surface on which y(x) is single-valued,
 - ▶ (branch cuts, etc.)

- ► connected, 1-dimensional complex manifold,
- ▶ homeomorphic to a doughnut with g holes,
 - ightharpoonup g = genus
- \triangleright surface on which y(x) is single-valued,
 - ► (branch cuts, etc.)
 - ► (caveats: singular points and points at infinity)

- ► connected, 1-dimensional complex manifold,
- ▶ homeomorphic to a doughnut with g holes,
 - ightharpoonup g = genus
- \blacktriangleright surface on which y(x) is single-valued,
 - ► (branch cuts, etc.)
 - (caveats: singular points and points at infinity)
 - ► (optional board demo for undergraduates)

Whirlwind Background - Homology

Whirlwind Background - Homology

Demo

Homology Basis

Question What do we usually do with paths?

Question

What do we usually do with paths?

Answer

Integrate "things" on them.

Question

What do we usually do with paths?

Answer

Integrate "things" on them.

Meromorphic one-forms on X

$$\nu \in \Omega^1_X$$
,

Question

What do we usually do with paths?

Answer

Integrate "things" on them.

Meromorphic one-forms on X

$$\nu \in \Omega^1_X$$
,

On C they look like

$$\nu = \nu(x, y) \, \mathrm{d} x$$

Consider only $\omega \in \Omega^1_X$ holomorphic on X

Consider only $\omega \in \Omega^1_X$ holomorphic on X

$$\omega = \omega(x, y) \, \mathrm{d}x$$

Consider only $\omega \in \Omega^1_X$ holomorphic on X

$$\omega = \omega(x, y) \, \mathrm{d}x$$

"Abelian differentials of the first kind"

$$\Gamma(X,\Omega_X^1)$$

Theorem

$$\Gamma(X, \Omega_X^1) = \operatorname{span}_{\mathbb{C}[x,y]} \{\omega_1, \dots, \omega_g\}$$

Theorem

$$\Gamma(X, \Omega_X^1) = \operatorname{span}_{\mathbb{C}[x,y]} \{\omega_1, \dots, \omega_g\}$$

• "normalized" basis $\{\omega_i\}$ is such that

$$\oint_{a_i} \omega_i = \delta_{ij}$$

Theorem

$$\Gamma(X,\Omega_X^1) = \operatorname{span}_{\mathbb{C}[x,y]}\{\omega_1,\ldots,\omega_g\}$$

• "normalized" basis $\{\omega_i\}$ is such that

$$\oint_{\mathsf{a}_j} \omega_i = \delta_{ij}$$

► algorithm returns a non-normalized basis

$$\{\tilde{\omega}_1,\ldots,\tilde{\omega}_g\}$$

Demo

Abelian differentials of the first kind

Culmination of the theory: construct matrices

$$\oint_{a_j} \omega_i = \delta_{ij}, \qquad \oint_{b_j} \omega_i = \Omega_{ij}$$

Culmination of the theory: construct matrices

$$\oint_{a_j} \omega_i = \delta_{ij}, \qquad \oint_{b_j} \omega_i = \Omega_{ij}$$

The matrix $\Omega \in \mathbb{C}^{g \times g}$ is a "Riemann matrix"

symmetric

Culmination of the theory: construct matrices

$$\oint_{a_j} \omega_i = \delta_{ij}, \qquad \oint_{b_j} \omega_i = \Omega_{ij}$$

The matrix $\Omega \in \mathbb{C}^{g \times g}$ is a "Riemann matrix"

- symmetric
- ▶ $\operatorname{Im}(\Omega) > 0$

Culmination of the theory: construct matrices

$$\oint_{a_j} \omega_i = \delta_{ij}, \qquad \oint_{b_j} \omega_i = \Omega_{ij}$$

The matrix $\Omega \in \mathbb{C}^{g \times g}$ is a "Riemann matrix"

- symmetric
- ▶ $\operatorname{Im}(\Omega) > 0$

Culmination of the theory: construct matrices

$$\oint_{a_j} \omega_i = \delta_{ij}, \qquad \oint_{b_j} \omega_i = \Omega_{ij}$$

The matrix $\Omega \in \mathbb{C}^{g \times g}$ is a "Riemann matrix"

- ► symmetric
- ▶ $Im(\Omega) > 0$

Non-normalized differentials

$$\oint_{a_j} \tilde{\omega}_i = A_{ij}, \qquad \oint_{b_j} \tilde{\omega}_i = B_{ij}$$

Culmination of the theory: construct matrices

$$\oint_{a_j} \omega_i = \delta_{ij}, \qquad \oint_{b_j} \omega_i = \Omega_{ij}$$

The matrix $\Omega \in \mathbb{C}^{g \times g}$ is a "Riemann matrix"

- ► symmetric
- ▶ $Im(\Omega) > 0$

Non-normalized differentials

$$\oint_{a_j} \tilde{\omega}_i = A_{ij}, \qquad \oint_{b_j} \tilde{\omega}_i = B_{ij}$$

Fact:
$$\Omega = A^{-1}B$$

Whirlwind Background - Period Matrix

Period matrix

$$\tau = [I \ \Omega] \in \mathbb{C}^{g \times 2g}$$

Whirlwind Background - Period Matrix

Period matrix

$$\tau = [I \ \Omega] \in \mathbb{C}^{g \times 2g}$$

Jacobian of the Riemann surface

$$J(X) = \mathbb{C}^g / \Lambda$$

where

$$\Lambda = \mathbb{Z}^g \times \Omega \, \mathbb{Z}^g$$

Demo

Period matrix

A place $P \in X$ can be represented locally by a "Puiseux series"

$$P = \begin{cases} x_P(t) = \alpha + \lambda t^e, \\ y_P(t) = \sum_{k=0}^{\infty} \beta_k t^{n_k}, \end{cases}$$

A place $P \in X$ can be represented locally by a "Puiseux series"

$$P = \begin{cases} x_P(t) = \alpha + \lambda t^e, \\ y_P(t) = \sum_{k=0}^{\infty} \beta_k t^{n_k}, \end{cases}$$

► e = ramification index

A place $P \in X$ can be represented locally by a "Puiseux series"

$$P = \begin{cases} x_P(t) = \alpha + \lambda t^e, \\ y_P(t) = \sum_{k=0}^{\infty} \beta_k t^{n_k}, \end{cases}$$

- ► e = ramification index
- ▶ places *lie above* the curve *C*

$$P\big|_{t=0} = (\alpha, \beta) \in C$$

A place $P \in X$ can be represented locally by a "Puiseux series"

$$P = \begin{cases} x_P(t) = \alpha + \lambda t^e, \\ y_P(t) = \sum_{k=0}^{\infty} \beta_k t^{n_k}, \end{cases}$$

- ► e = ramification index
- ▶ places *lie above* the curve *C*

$$P\big|_{t=0} = (\alpha, \beta) \in C$$

▶ there can be distinct places with same projection on *C*.

A $\operatorname{divisor} \mathcal{D}$ on X is a finite formal linear comb. of places

$$\mathcal{D} = \sum n_i P_i$$

A $\mathit{divisor}\ \mathcal{D}$ on X is a finite formal linear comb. of places

$$\mathcal{D} = \sum n_i P_i$$

$$ightharpoonup \deg \mathcal{D} = \sum_i n_i$$

A $\operatorname{divisor} \mathcal{D}$ on X is a finite formal linear comb. of places

$$\mathcal{D} = \sum n_i P_i$$

- ▶ $\deg \mathcal{D} = \sum_i n_i$
- ightharpoonup Div(X) is an Abelian group

A $\mathit{divisor}\ \mathcal{D}$ on X is a finite formal linear comb. of places

$$\mathcal{D} = \sum n_i P_i$$

- $\deg \mathcal{D} = \sum_i n_i$
- ▶ Div(X) is an Abelian group
- *effective* if $\forall i, n_i \geq 0$

A $\mathit{divisor}\ \mathcal{D}$ on X is a finite formal linear comb. of places

$$\mathcal{D} = \sum n_i P_i$$

- $\deg \mathcal{D} = \sum_i n_i$
- ▶ Div(X) is an Abelian group
- *effective* if $\forall i, n_i \geq 0$

A divisor \mathcal{D} on X is a finite formal linear comb. of places

$$\mathcal{D} = \sum n_i P_i$$

- $ightharpoonup \deg \mathcal{D} = \sum_i n_i$
- ► Div(X) is an Abelian group
- *effective* if $\forall i, n_i \geq 0$

Valuation Divisors

Given $\nu \in \Omega^1_X$,

$$(\nu)_{\text{val}} = \sum_{i=1}^{m} p_i P_i - \sum_{j=1}^{n} q_j Q_j$$

is called the *valuation divisor* of ν

A divisor $\mathcal D$ on X is a finite formal linear comb. of places

$$\mathcal{D} = \sum n_i P_i$$

- $ightharpoonup \deg \mathcal{D} = \sum_i n_i$
- ▶ Div(X) is an Abelian group
- *effective* if $\forall i, n_i > 0$

Valuation Divisors

Given $\nu \in \Omega^1_X$,

$$(\nu)_{\mathsf{val}} = \sum_{i=1}^{m} p_i P_i - \sum_{j=1}^{n} q_j Q_j$$

is called the valuation divisor of ν

$$C \in \text{Div}(X)$$
 is canonical if C is a valuation divisor

Demo

Places and divisors

The Abel Map

Let $P \in X$ be a fixed place. The Abel Map

$$\mathbf{A}:X\to J(X)$$

The Abel Map

Let $P \in X$ be a fixed place. The Abel Map

$$\mathbf{A}: X \to J(X)$$

is defined by

$$\mathbf{A}(P,Q) = (A_1(P,Q), \dots, A_g(P,Q)),$$

where

$$A_j(P,Q)=\int_P^Q\omega_j.$$

The Abel Map

Let $P \in X$ be a fixed place. The Abel Map

$$A: X \rightarrow J(X)$$

is defined by

$$\mathbf{A}(P,Q) = (A_1(P,Q), \dots, A_g(P,Q)),$$

where

$$A_j(P,Q) = \int_P^Q \omega_j.$$

Abel Map on Divisors

If $\mathcal{D} = \sum_{i} n_{i} P_{i}$ then

$$\mathbf{A}(P,\mathcal{D}) = \sum_{i} n_{i} \mathbf{A}(P,P_{i})$$

Demo

The Abel Map

The Riemann constant vector

$$K: X \rightarrow J(X)$$

The Riemann constant vector

$$K: X \rightarrow J(X)$$

is defined as

$$K(P) = (K_1(P), \ldots, K_g(P)),$$

where

$$K_j(P) = rac{1 + \Omega_{jj}}{2} - \sum_{k
eq j}^{g} \oint_{a_k} \omega_k(Q) A_j(P,Q) dQ.$$

$$K_j(P) = rac{1 + \Omega_{jj}}{2} - \sum_{k \neq j}^g \oint_{a_k} \omega_k(Q) A_j(P, Q) dQ$$

▶ Double integral: difficult to compute.

$$K_j(P) = \frac{1 + \Omega_{jj}}{2} - \sum_{k \neq j}^{g} \oint_{a_k} \omega_k(Q) A_j(P, Q) dQ$$

Double integral: difficult to compute.

Theorem

Let $P_0, P \in X$. Then

$$K(P) = K(P_0) + (g-1)A(P_0, P).$$

$$K_j(P) = \frac{1 + \Omega_{jj}}{2} - \sum_{k \neq j}^{g} \oint_{a_k} \omega_k(Q) A_j(P, Q) dQ$$

▶ Double integral: difficult to compute.

Theorem

Let $P_0, P \in X$. Then

$$K(P) = K(P_0) + (g-1)A(P_0, P).$$

▶ Idea: most work from computing $K(P_0)$ once.

Algorithm to compute $K(P_0)$ inspired by two theorems:

Algorithm to compute $K(P_0)$ inspired by two theorems:

Theorem

Let $\mathcal C$ be a divisor of degree 2g-2. Then $\mathcal C$ is a canonical divisor if and only if

$$2\,\mathbf{K}(P_0)\equiv -\,\mathbf{A}(P_0,\mathcal{C}).$$

Algorithm to compute $K(P_0)$ inspired by two theorems:

Theorem

A vector $\mathbf{W} \in J(X)$ satisfies

$$\theta(\mathbf{W}, \Omega) = 0,$$

if and only if $\exists \mathcal{D} = P_1 + \cdots + P_{g-1}$ such that

$$\mathbf{W} = \mathbf{A}(P_0, \mathcal{D}) + \mathbf{K}(P_0).$$

Combining the theorems:

1. compute a canonical divisor C,

Combining the theorems:

- 1. compute a canonical divisor C,
- 2. solve the equation

$$2\,\mathbf{K}(P_0)\equiv -\,\mathbf{A}(P_0,\mathcal{C}),$$

Meromorphic differential:

$$\nu = \frac{p(x,y)\,\mathrm{d}x}{q(x,y)}$$

Meromorphic differential:

$$\nu = \frac{p(x,y)\,\mathrm{d}x}{q(x,y)}$$

Valuation divisor:

$$(\nu)_{\mathsf{val}} = \sum_{i} p_{i} P_{i} - \sum_{i} q_{j} Q_{j}$$

Given $P \in X$,

$$P = (x_P(t), y_P(t)),$$

a necessary condition for $P \in (\nu)_{\mathsf{val}}$ is

$$p(x_P(t), y_P(t))\Big|_{t=0} = 0,$$

$$q(x_P(t), y_P(t))\Big|_{t=0} = 0, \quad or$$

$$\frac{\mathrm{d}x_P}{\mathrm{d}t}(0) = x_P'(t)dt\Big|_{t=0} = 0.$$

Demo

Localizing Differentials at Places

Goal: find \mathcal{P} containg the places in $(\nu)_{\text{val}}$.

Goal: find \mathcal{P} containg the places in $(\nu)_{\text{val}}$.

Use "resultant sets":

► R(f,p)(x) = resultant of f(x,y) and p(x,y) w.r.t. y,

Goal: find \mathcal{P} containg the places in $(\nu)_{\text{val}}$.

Use "resultant sets":

- ► R(f,p)(x) = resultant of f(x,y) and p(x,y) w.r.t. y,
- ▶ roots of R are $\alpha \in \mathbb{C}_{\mathsf{x}}$ such that

$$f(\alpha, y) = 0$$
 and $p(\alpha, y) = 0$

have simultaneous solutions,

Goal: find \mathcal{P} containg the places in $(\nu)_{\text{val}}$.

Use "resultant sets":

- ► R(f,p)(x) = resultant of f(x,y) and p(x,y) w.r.t. y,
- ▶ roots of R are $\alpha \in \mathbb{C}_{\times}$ such that

$$f(\alpha, y) = 0$$
 and $p(\alpha, y) = 0$

have simultaneous solutions,

▶ The point: $P = (x_P(t), y_P(t))$ is a zero of p(x, y) only if $x_P(0)$ is a root of R(f, p),

Given

$$\nu = \frac{p(x,y)\,\mathrm{d}x}{q(x,y)}$$

$$\mathcal{X}_{\nu}^{(1)} = \{\alpha \in \mathbb{C} \mid R(f,p)(\alpha) = 0\}$$

Given

$$\nu = \frac{p(x,y)\,\mathrm{d}x}{q(x,y)}$$

$$\mathcal{X}_{\nu}^{(1)} = \{ \alpha \in \mathbb{C} \mid R(f, p)(\alpha) = 0 \}$$
$$\mathcal{X}_{\nu}^{(2)} = \{ \alpha \in \mathbb{C} \mid R(f, q)(\alpha) = 0 \}$$

Given

$$\nu = \frac{p(x,y)\,\mathrm{d}x}{q(x,y)}$$

$$\mathcal{X}_{\nu}^{(1)} = \{ \alpha \in \mathbb{C} \mid R(f, p)(\alpha) = 0 \}$$

$$\mathcal{X}_{\nu}^{(2)} = \{ \alpha \in \mathbb{C} \mid R(f, q)(\alpha) = 0 \}$$

$$\mathcal{X}_{\nu}^{(3)} = \{ \alpha \in \mathbb{C} \mid \alpha \text{ is a branch point of } f \}$$

Given

$$\nu = \frac{p(x,y)\,\mathrm{d}x}{q(x,y)}$$

$$\begin{aligned} &\mathcal{X}_{\nu}^{(1)} = \{\alpha \in \mathbb{C} \mid R(f,p)(\alpha) = 0\} \\ &\mathcal{X}_{\nu}^{(2)} = \{\alpha \in \mathbb{C} \mid R(f,q)(\alpha) = 0\} \\ &\mathcal{X}_{\nu}^{(3)} = \{\alpha \in \mathbb{C} \mid \alpha \text{ is a branch point of } f\} \end{aligned}$$

$$\mathcal{X}_{\nu} = \mathcal{X}_{\nu}^{(1)} \cup \mathcal{X}_{\nu}^{(2)} \cup \mathcal{X}_{\nu}^{(3)} \cup \{\infty\}$$

Given

$$\nu = \frac{p(x, y) \, \mathrm{d}x}{q(x, y)}$$

$$\begin{split} &\mathcal{X}_{\nu}^{(1)} = \{\alpha \in \mathbb{C} \mid R(f,p)(\alpha) = 0\} \\ &\mathcal{X}_{\nu}^{(2)} = \{\alpha \in \mathbb{C} \mid R(f,q)(\alpha) = 0\} \\ &\mathcal{X}_{\nu}^{(3)} = \{\alpha \in \mathbb{C} \mid \alpha \text{ is a branch point of } f\} \end{split}$$

$$\mathcal{X}_{\nu} = \mathcal{X}_{\nu}^{(1)} \cup \mathcal{X}_{\nu}^{(2)} \cup \mathcal{X}_{\nu}^{(3)} \cup \{\infty\}$$

$$\mathcal{P} = \{ P \in X \mid x_P(0) \in \mathcal{X}_{\nu} \}$$

Optimization

Use the Abelian differentials of the 1st kind:

$$\tilde{\omega}_i = \frac{p_i(x, y) \, \mathrm{d}x}{\partial_y f(x, y)}$$

▶ already computed the $\tilde{\omega}_i$'s,

Optimization

Use the Abelian differentials of the 1st kind:

$$\tilde{\omega}_i = \frac{p_i(x, y) \, \mathrm{d}x}{\partial_y f(x, y)}$$

- ▶ already computed the $\tilde{\omega}_i$'s,
- ▶ already computed roots of $R(f, \partial_y f)(x)$, (branch points)

Optimization

Use the Abelian differentials of the 1st kind:

$$\tilde{\omega}_i = \frac{p_i(x, y) \, \mathrm{d}x}{\partial_y f(x, y)}$$

- ▶ already computed the $\tilde{\omega}_i$'s,
- ▶ already computed roots of $R(f, \partial_y f)(x)$, (branch points)
- \triangleright p_i 's tend to be simple monomials,

Optimization

Use the Abelian differentials of the 1st kind:

$$\tilde{\omega}_i = \frac{p_i(x, y) \, \mathrm{d}x}{\partial_y f(x, y)}$$

- ▶ already computed the $\tilde{\omega}_i$'s,
- ▶ already computed roots of $R(f, \partial_y f)(x)$, (branch points)
- \triangleright p_i 's tend to be simple monomials,
- ▶ no poles \rightarrow terminate when deg reaches 2g 2,

Demo

Computing a Canonical Divisor

Solve for $K(P_0)$

$$2 \, \textbf{K}(P_0) \equiv - \, \textbf{A}(P_0, \mathcal{C})$$

Solve for $K(P_0)$

$$2 \mathbf{K}(P_0) \equiv -\mathbf{A}(P_0, C)$$

Embed into \mathbb{C}^g

$$2 \mathbf{K}(P_0) + \mathbf{A}(P_0, C) = \lambda$$

where

$$\lambda \equiv \mathbf{0} \bmod \Lambda$$

Embed in \mathbb{C}^g

 λ is one of the 2^{2g} lattice vectors in the fundamental region of $\Lambda.$

Division by two is legal in \mathbb{C}^g

$$\boldsymbol{K}(P_0) = \boldsymbol{h} - \frac{1}{2}\,\boldsymbol{A}(P_0,\mathcal{C})$$

where $h = \lambda/2$ is one of 2^{2g} half-lattice vectors

Division by two is legal in \mathbb{C}^g

$$oldsymbol{K}(P_0) = oldsymbol{h} - rac{1}{2} \, oldsymbol{A}(P_0, \mathcal{C})$$

where $h = \lambda/2$ is one of 2^{2g} half-lattice vectors

Project down to
$$J(X) = \mathbb{C}^g / \Lambda$$

$$\boldsymbol{K}(P_0) \equiv \boldsymbol{h} - \frac{1}{2} \, \boldsymbol{A}(P_0, \mathcal{C})$$

Division by two is legal in \mathbb{C}^g

$$\mathbf{K}(P_0) = \mathbf{h} - \frac{1}{2}\,\mathbf{A}(P_0,\mathcal{C})$$

where $h = \lambda/2$ is one of 2^{2g} half-lattice vectors

Project down to $J(X) = \mathbb{C}^g / \Lambda$

$$\boldsymbol{K}(P_0) \equiv \boldsymbol{h} - \frac{1}{2}\,\boldsymbol{A}(P_0,\mathcal{C})$$

Goal

Find an appropriate half-lattice vector \boldsymbol{h} .

Theorem

For any effective, degree g-1 divisor $\mathcal{D}=P_1+\cdots+P_{g-1}$,

$$\theta(\mathbf{A}(P_0, \mathcal{D}) + \mathbf{K}(P_0), \Omega) = 0.$$

Theorem

For any effective, degree g-1 divisor $\mathcal{D}=P_1+\cdots+P_{g-1}$,

$$\theta(A(P_0, D) + K(P_0), \Omega) = 0.$$

$$\theta\big(\operatorname{\boldsymbol{A}}(P_0,\mathcal{D})+\operatorname{\boldsymbol{K}}(P_0),\Omega\big)=\theta\Big(\operatorname{\boldsymbol{A}}\big(P_0,(g-1)P_0\big)+\operatorname{\boldsymbol{K}}(P_0),\Omega\Big)$$

Theorem

For any effective, degree g-1 divisor $\mathcal{D}=P_1+\cdots+P_{g-1}$,

$$\theta(\mathbf{A}(P_0, \mathcal{D}) + \mathbf{K}(P_0), \Omega) = 0.$$

$$\theta(\mathbf{A}(P_0, \mathcal{D}) + \mathbf{K}(P_0), \Omega) = \theta(\mathbf{A}(P_0, (g-1)P_0) + \mathbf{K}(P_0), \Omega)$$
$$= \theta((g-1)\mathbf{A}(P_0, P_0) + \mathbf{K}(P_0), \Omega)$$

Theorem

For any effective, degree g-1 divisor $\mathcal{D}=P_1+\cdots+P_{g-1}$,

$$\theta(\mathbf{A}(P_0, D) + \mathbf{K}(P_0), \Omega) = 0.$$

$$\theta(\mathbf{A}(P_0, \mathcal{D}) + \mathbf{K}(P_0), \Omega) = \theta(\mathbf{A}(P_0, (g-1)P_0) + \mathbf{K}(P_0), \Omega)$$
$$= \theta((g-1)\mathbf{A}(P_0, P_0) + \mathbf{K}(P_0), \Omega)$$
$$= \theta(\mathbf{0} + \mathbf{K}(P_0), \Omega)$$

Theorem

For any effective, degree g-1 divisor $\mathcal{D}=P_1+\cdots+P_{g-1}$,

$$\theta(\mathbf{A}(P_0, \mathcal{D}) + \mathbf{K}(P_0), \Omega) = 0.$$

$$\theta(\mathbf{A}(P_0, \mathcal{D}) + \mathbf{K}(P_0), \Omega) = \theta(\mathbf{A}(P_0, (g-1)P_0) + \mathbf{K}(P_0), \Omega)$$

$$= \theta((g-1)\mathbf{A}(P_0, P_0) + \mathbf{K}(P_0), \Omega)$$

$$= \theta(\mathbf{0} + \mathbf{K}(P_0), \Omega)$$

$$= \theta(\mathbf{K}(P_0), \Omega)$$

Theorem

For any effective, degree g-1 divisor $\mathcal{D}=P_1+\cdots+P_{g-1}$,

$$\theta(\mathbf{A}(P_0, \mathcal{D}) + \mathbf{K}(P_0), \Omega) = 0.$$

$$\theta(\mathbf{A}(P_0, \mathcal{D}) + \mathbf{K}(P_0), \Omega) = \theta(\mathbf{A}(P_0, (g-1)P_0) + \mathbf{K}(P_0), \Omega)$$

$$= \theta((g-1)\mathbf{A}(P_0, P_0) + \mathbf{K}(P_0), \Omega)$$

$$= \theta(\mathbf{0} + \mathbf{K}(P_0), \Omega)$$

$$= \theta(\mathbf{K}(P_0), \Omega)$$

$$= 0$$

The Point

It is necessary that

$$\theta \left(\mathbf{h}_{j} - \frac{1}{2} \, \mathbf{A}(P_{0}, \mathcal{C}), \Omega \right) = 0$$

for at least one of the 2^{2g} half lattice vectors h_j .

The Point

It is necessary that

$$\theta(\mathbf{h}_j - \frac{1}{2}\mathbf{A}(P_0, C), \Omega) = 0$$

for at least one of the 2^{2g} half lattice vectors h_j .

Basic Strategy

Evaluate above espression with each h_j to find a zero.

The Point

It is necessary that

$$\theta(\mathbf{h}_j - \frac{1}{2}\mathbf{A}(P_0, C), \Omega) = 0$$

for at least one of the 2^{2g} half lattice vectors h_j .

Basic Strategy

Evaluate above espression with each h_j to find a zero.

Conjecture

This only works for exactly one h_j .

Numerical considerations:

 \blacktriangleright θ computation accurate to order ϵ (at best machine precision)

Numerical considerations:

- lacktriangledown decomputation accurate to order ϵ (at best machine precision)
- lacktriangle only use "oscillatory part" of heta

Numerical considerations:

- \blacktriangleright θ computation accurate to order ϵ (at best machine precision)
- \blacktriangleright only use "oscillatory part" of θ
- ▶ filter out any **h**_i such that

$$\left| \theta \left(\mathbf{h}_j - \frac{1}{2} \mathbf{A}(P_0, \mathcal{C}), \Omega \right) \right| > \epsilon$$

Numerical considerations:

- \blacktriangleright θ computation accurate to order ϵ (at best machine precision)
- \blacktriangleright only use "oscillatory part" of θ
- ▶ filter out any **h**; such that

$$\left|\theta\left(\mathbf{h}_{j}-\frac{1}{2}\,\mathbf{A}(P_{0},\mathcal{C}),\Omega\right)\right|>\epsilon$$

▶ continue filtering by shifting by $A(P_0, \mathcal{D})$

$$\left| \theta \left(\mathbf{h}_j - \frac{1}{2} \, \mathbf{A}(P_0, \mathcal{C}) + \mathbf{A}(P_0, \mathcal{D}), \Omega \right) \right| > \epsilon$$

(for any degree g-1 effective divisor \mathcal{D})

Demo

Finding a half-lattice vector. Verifying results.

Concluding Remarks and Next Steps

Solutions to KP:

$$u = c + 2\partial_x^2 \log \theta \left(\mathbf{U} x + \mathbf{V} y + \mathbf{W} t + \mathbf{A} \left(P^{\infty}, \mathcal{D} \right) - \mathbf{K} (P^{\infty}), \Omega \right),$$

Concluding Remarks and Next Steps

Solutions to KP:

$$u = c + 2\partial_x^2 \log \theta \Big(\mathbf{U} x + \mathbf{V} y + \mathbf{W} t + \mathbf{A} (P^{\infty}, \mathcal{D}) - \underbrace{\mathbf{K} (P^{\infty})}_{\text{now have this}}, \Omega \Big),$$

Concluding Remarks and Next Steps

Solutions to KP:

$$u = c + 2\partial_x^2 \log \theta \Big(\underbrace{\mathbf{\textit{U}} x + \mathbf{\textit{V}} y + \mathbf{\textit{W}} t}_{\text{remaining work}} + \mathbf{\textit{A}} \left(P^{\infty}, \mathcal{D}\right) - \underbrace{\mathbf{\textit{K}} (P^{\infty})}_{\text{now have this}}, \Omega \Big),$$

Thank You!

cswiercz@uw.edu

http://abelfunctions.cswiercz.info