1 Verificação do timing do espectrómetro

Esta verificação foi realizada utilizando o *pulser* que nos permite através da emissão de impulsos eléctricos simular o sinal fornecido pelos detectores quando expostos à fonte radioactiva.

Apesar da simetria tanto em termos de montagem como de ligações, existe um atraso entre os dois detectores. Este atraso, da ordem dos nanosegundos, devido à electrónica da montagem, foi compensado com a definição da janela de abertura temporal de $6\mu s$.

2 Regulação dos limiares V_1 e V_2 de cada um dos dois analisadores monocanal

Para definir os limites superior e inferior de cada um dos analisadores com o objectivo de isolar o pico de aniquilação de 511 KeV foi em primeiro lugar obtido o espectro da fonte ²²Na.

(Desenhar à mão algo deste género)

Por análise do espectro foi realizada a identificação de cada um dos picos/regiões:

- 1 Corrente negra gerada pela emissão de electrões apenas devido ao efeito termoiónico existente nos dínodos.
- 2 Picos de retrodifusão relativos aos picos de absorção total 4 e 6. A retrodifusão relativa ao pico 4 é mais proeminente, exibindo um pico com maior área, já a relativa ao pico 6 é mais subtil. Foi observado um Δ Canal de \approx 24 Canais entre ambos.
 - 3 Região do joelho de Compton que termina o respectivo Patamar de Compton do pico 4.

- 4 Pico de Absorção total relativo ao processo de Aniquilação 511 KeV.
- 5 Região do Joelho de Compton que termina o respectivo Patamar de Compton do pico 6.
- \bullet 6 Pico de Absorção total relativo ao γ que é libertado aquando da desexcitação do metaestado do $^{22}{\rm Na}$ para o estado fundamental $^{22}{\rm Ne}.$
 - 7 Pico relativo ao potássio da radiação ambiente.

Sendo a zona de trabalho definida com base no pico relativo ao processo de aniquilição $\beta^+ + \beta^- \to \gamma$, foram recolhidos os valores fornecidos pelo *software* para ambos os detectores A e B:

Detector	Centróide (Ch) ROI NET (POLNET (Ch.Ct)	ROI INT (Ch·Ct)	FWHM (Ch)	Canal	
Detector					Inf	Sup
A	$302,61\pm0,08$	40789 ± 419	51553 ± 227	26,31	266	334
В	$251,14\pm0,09$	21988±333	28405 ± 169	22,64	205	281

A conversão dos limites superior e inferior em canal para valores limiares de V_1 e V_2 foi feita ajustando o valor do pulser de forma a ser compatível com os valores de canal obtidos anteriormente e, de seguida, ajustando o respectivo limite da janela de forma a obtê-la com maior range possível. Desta conversão resultaram os limites:

Detector	Limite	Canal	Δ Canal	Pulser (V)	ΔV	
Δ	LL	266	68	2,21	0,69	
Λ	UL	334	00	2,90	0,09	
В	LL	205	76	1,86	0,70	
	UL	281	10	2,56	0,10	

3 Obtenção da distribuição angular dos dois γ de aniquilação do processo $\beta^+ + \beta^- \to \gamma\gamma$

A recolha dos valores de contagens obtidos para diferentes ângulos encontram-se apresentados na tabela abaixo:

t_{aq} (s)	$\theta(^{\circ})$	$N_A(\mathrm{Ct})$	$N_B(\mathrm{Ct})$	N_C (Ct)	$N_{A_{corr}}$ (Ct)	$N_{B_{corr}}(\mathrm{Ct})$	$N_{C_{fort}}$ (Ct)	$N_{C_{corr}}$ (Ct)
120	-20	10600 ± 102	10996 ± 104	34.0 ± 5.8	8386 ± 124	8511 ± 160	$11,66 \pm 0,16$	$22,3 \pm 5,8$
90	-15	8016 ± 89	8252 ± 91	115 ± 11	6342 ± 100	6388 ± 125	$8,82 \pm 0,14$	106 ± 11
60	-12	5178 ± 72	5432 ± 74	334 ± 18	4097 ± 73	4205 ± 89	$5,61 \pm 0,11$	328 ± 18
30	-10	2667 ± 52	2739 ± 52	282 ± 17	2110 ± 47	2120 ± 53	$2,922 \pm 0,079$	279 ± 17
30	-9	2611 ± 51	2763 ± 53	363 ± 19	2066 ± 47	2139 ± 54	$2,885 \pm 0,079$	360 ± 19
30	-8	2670 ± 52	2696 ± 52	396 ± 20	2113 ± 47	2087 ± 53	$2,879 \pm 0,079$	393 ± 20
30	-7	2561 ± 51	2677 ± 52	501 ± 22	2026 ± 46	2072 ± 52	$2,742 \pm 0,076$	498 ± 22
30	-6	2555 ± 50	2637 ± 51	568 ± 24	2022 ± 46	2041 ± 52	$2,695 \pm 0,075$	565 ± 23
30	-5	2584 ± 51	2696 ± 52	624 ± 25	2044 ± 46	2087 ± 53	$2,787 \pm 0,077$	621 ± 25
30	-4	2614 ± 51	2673 ± 52	669 ± 26	2068 ± 47	2069 ± 52	$2,795 \pm 0,077$	666 ± 26
30	-3	2716 ± 52	2766 ± 53	839 ± 29	2149 ± 48	2141 ± 54	$3,005 \pm 0,081$	836 ± 29
30	-2	2660 ± 52	2707 ± 52	845 ± 29	2104 ± 47	2095 ± 53	$2,880 \pm 0,079$	842 ± 29
30	-1	2666 ± 52	2705 ± 52	916 ± 30	2109 ± 47	2094 ± 53	$2,885 \pm 0,079$	913 ± 30
30	0	2504 ± 50	2673 ± 52	896 ± 30	1981 ± 45	2069 ± 52	$2,677 \pm 0,074$	893 ± 30
30	1	2604 ± 51	2749 ± 52	890 ± 30	2060 ± 46	2128 ± 53	$2,863 \pm 0,078$	887 ± 30
30	2	2588 ± 51	2737 ± 52	820 ± 29	2048 ± 46	2119 ± 53	$2,833 \pm 0,078$	817 ± 29
30	3	2641 ± 51	2753 ± 52	817 ± 28	2089 ± 46	2131 ± 53	$2,908 \pm 0,079$	814 ± 29
30	4	2571 ± 51	2683 ± 52	674 ± 26	2034 ± 46	2077 ± 52	$2,759 \pm 0,076$	671 ± 26
30	5	2704 ± 52	2741 ± 52	615 ± 25	2139 ± 48	2122 ± 53	$2,965 \pm 0,080$	612 ± 25
30	6	2566 ± 51	2760 ± 53	525 ± 23	2030 ± 46	2136 ± 54	$2,833 \pm 0,078$	522 ± 23
30	7	2594 ± 51	2706 ± 52	460 ± 21	2052 ± 46	2095 ± 53	$2,808 \pm 0,077$	457 ± 21
30	8	2567 ± 51	2737 ± 52	410 ± 20	2031 ± 46	2119 ± 53	$2,810 \pm 0,077$	407 ± 20
30	9	2568 ± 51	2611 ± 51	289 ± 17	2032 ± 46	2021 ± 51	$2,682 \pm 0,074$	286 ± 17
30	10	2640 ± 51	2643 ± 51	268 ± 16	2089 ± 47	2046 ± 52	$2,791 \pm 0,077$	265 ± 16
60	12	5265 ± 73	5455 ± 74	433 ± 21	4166 ± 74	4223 ± 89	$5,74 \pm 0,11$	427 ± 21
90	15	7774 ± 88	8253 ± 91	87.0 ± 9.3	6151 ± 98	6389 ± 126	$8,55 \pm 0,14$	$78,4 \pm 9,3$
120	20	10598 ± 103	11030 ± 105	$22,0 \pm 4,7$	8385 ± 124	8538 ± 161	$12,69 \pm 0,16$	$10,3 \pm 4,7$

Os valores apresentados de N_A , N_B e N_C representam as contagens obtidas pelos detectores A, B e C (coincidências), e são os valores recolhidos directamente dos contadores.

 $N_{A_{corrigido}}$ e $N_{B_{corrigido}}$ foram obtidos após aplicação de um factor correctivo associado às contagens com ruído. Os valores resultaram assim da expressão:

$$N_{i_{corrigido}} = N_i \times N_{i_{s/Ruido}} \quad i = A, B$$
 (1)

Onde a $\mathcal{N}_{i_{s/Ruido}}$ foram obtidas através de:

$$N_{i_{s/Ruido}} = \frac{ROINET}{ROIINT} \tag{2}$$

Onde os valores de ROI NET e ROI INT utilizados são so presentes na Tabela 1, sendo obtidas as $\%N_{i_{s/Ruido}}$:

Detector	$\%N_{i_{s/Ruido}}$
A	$79,12\pm0,88$
В	$77,41\pm1,26$

 $\acute{\rm E}$ assim um factor de correcção associado ao detector.

Por sua vez, os valores apresentados de $N_{C_{corrigido}}$ foram obtidos após aplicação de um factor de correcção associado às contagens de coincidências fortuitas.

O valor de contagens relativas às coincidências fortuitas é obtido através da expressão:

$$N_{Cfort} = 2N_A N_B \frac{\tau}{\Delta t} \tag{3}$$

Com τ =6 μ s.

Subtraindo esta quantidade às contagens obtidas por N_C obtemos:

$$N_{C_{corrigido}} = N_C - N_{C_{fort}} (4)$$

Por fim, uma vez que para os ângulos de 12°, 15° e 20° foram necessários tempos de aquisição mais longos, as contagens foram normalizadas obtendo-se como resultado as taxas R_A , R_B e R_C através da expressão:

$$R_i = \frac{N_i}{\Delta t} \quad i = A, B, C \tag{5}$$

Tendo sido obtidos os valores:

t_{aq} (s)	$\theta(^{\circ})$	$R_A(\mathrm{Ct/s})$	$R_B(\mathrm{Ct/s})$	$R_C(\mathrm{Ct/s})$
120	-20	69.9 ± 1.0	70.9 ± 1.3	0.186 ± 0.049
90	-15	$70,5 \pm 1,1$	70.9 ± 1.4	$1,18 \pm 0,12$
60	-12	$68,3 \pm 1,2$	70.1 ± 1.5	$5,47 \pm 0,30$
30	-10	$70,3 \pm 1,6$	70.7 ± 1.8	$9,30 \pm 0,56$
30	-9	$68,9 \pm 1,5$	$71,3 \pm 1,8$	$12,00 \pm 0,64$
30	-8	70.4 ± 1.6	$69,1 \pm 1,7$	$13,10 \pm 0,66$
30	-7	67.5 ± 1.5	$69,1 \pm 1,7$	$16,61 \pm 0,75$
30	-6	67.4 ± 1.5	$68,0 \pm 1,7$	$18,84 \pm 0,79$
30	-5	$68,1 \pm 1,5$	$69,6 \pm 1,8$	$20,71 \pm 0,83$
30	-4	$68,9 \pm 1,6$	$68,9 \pm 1,7$	$22,21 \pm 0,86$
30	-3	$71,6 \pm 1,6$	$71,4 \pm 1,8$	$27,87 \pm 0,96$
30	-2	$70,2 \pm 1,6$	69.8 ± 1.8	$28,07 \pm 0,97$
30	-1	$70,3 \pm 1,6$	69.8 ± 1.8	$30,4 \pm 1,1$
30	0	$66,0 \pm 1,5$	$68,9 \pm 1,7$	$29,78 \pm 0,99$
30	1	$68,7 \pm 1,5$	$70,9 \pm 1,8$	$29,67 \pm 0,99$
30	2	$68,3 \pm 1,5$	$70,6 \pm 1,8$	$27,24 \pm 0,95$
30	3	$69,7 \pm 1,6$	$71,0 \pm 1,8$	$27,14 \pm 0,95$
30	4	67.8 ± 1.5	$69,2 \pm 1,7$	$22,37 \pm 0,87$
30	5	$71,3 \pm 1,6$	$70,7 \pm 1,8$	$20,40 \pm 0,83$
30	6	$67,7 \pm 1,5$	$71,2 \pm 1,8$	$17,41 \pm 0,76$
30	7	$68,4 \pm 1,5$	69.8 ± 1.8	$15,24 \pm 0,71$
30	8	$67,7 \pm 1,5$	$70,6 \pm 1,8$	$13,57 \pm 0,67$
30	9	$67,7 \pm 1,5$	$67,4 \pm 1,7$	$9,54 \pm 0,57$
30	10	$69,6 \pm 1,6$	$68,2 \pm 1,7$	$8,84 \pm 0,55$
60	12	$69,4 \pm 1,2$	$70,4 \pm 1,5$	$7,12 \pm 0,35$
90	15	$68,3 \pm 1,1$	70.9 ± 1.4	0.87 ± 0.10
120	20	$69,9 \pm 1,0$	$71,2 \pm 1,3$	$0,086 \pm 0,039$

De seguida foi feita uma análise da taxa de contagens de coincidências R_C em função do ângulo θ . O gráfico obtido para esta relação encontra-se apresentado abaixo:

Como é possível verificar pelo gráfico apresentado, estamos perante uma distribuição que visualmente se aproxima de uma distribuição normal. Foram assim analisados os 4 momentos - Média, Variância, Assimetria e Curtose - de forma a podermos realizar uma análise mais específica da curva obtida.

Média	Variância	Desvio Padrão	Assimetria	Curtose
-0,077	29,945	5,472	0,017	2,579

Por análise dos momentos calculados, concluímos que os valores não seguem uma distribuição gaussiana.

O primeiro momento – média – é negativo, tal como seria de prever pelo gráfico, uma vez que o pico está deslocado para a esquerda, não se encontrando verdadeiramente nos 0° . Tal indicia um ligeiro desalinhamento/assimetria da montagem experimental.

O terceiro momento – assimetria – por ser não nulo, indicia também que a distribuição não é uma gaussiana. Note-se, no entanto, que este valor é próximo de zero (0.0165).

Por fim temos o quarto momento cujo valor, caso se tratasse de uma gaussiana, seria de 3. O facto de ter sido obtido um valor inferior revela que a curva obtida apresenta um achatamento relativamente à distribuição normal. Este achatamento que teoricamente não deveria existir, revela que para ângulos imediatamente a seguir e imediatamente antes de 0° os valores de contagens obtidos são muito semelhantes em vez de se obter automaticamente um decréscimo.

4 Eficiência

Tendo-se verificado que as contagens apresentadas para as coincidências, N_C , são muito inferiores às apresentadas pelos detectores A e B, foi calculada a eficiência do fotopico.

Considerando que a contagem proveniente do detector A é um acontecimento independente da contagem apresentada pelo detector B:

$$P(A) = \frac{P(A \cap B)}{P(B)}$$

e da mesma forma:

$$P(B) = \frac{P(A \cap B)}{P(A)}$$

Obtemos assim para a eficiência de cada um dos detectores:

$$\varepsilon_A = \frac{N_C}{N_B}$$
$$\varepsilon_B = \frac{N_C}{N_A}$$

Foram assim obtidos os valores de eficiência:

Detector	Eficiência (%)
A	$43,2\pm1,8$
В	$45,1\pm1,8$

Fórmulas de Erros

Ponto 2

$$\sigma_{centroide}^2 = \frac{FWHM}{2\sqrt{2 \times ln(2) \times ROIINT}}$$

Ponto 3

$$\sigma_{N_{i_{corr}}}^2 = N_i^2 \sigma_{N_{i_{s/Ruido}}}^2 + N_{i_{s/Ruido}}^2 \sigma_{N_i}^2$$

$$\sigma_{N_{s/Ruido}}^2 = \left(\frac{\sigma_{ROINET}}{ROINET}\right)^2 + \frac{(ROINET)^2}{(ROIINT)^4}\sigma_{ROIINT}^2$$

$$\sigma_{N_{C_{corr}}}^2 = \sigma_{N_C}^2 + \sigma_{N_{C_{fot}}}^2$$

$$\sigma_{R_i}^2 = \left(\frac{\sigma_{N_i}}{\Delta t}\right)^2$$

Ponto 4

$$\sigma_{\varepsilon_A}^2 = \left(\frac{\sigma_{N_C}}{N_B}\right)^2 + \frac{N_C^2}{N_B^4} \sigma_{N_B}^2$$

$$\sigma_{\varepsilon_B}^2 = \left(\frac{\sigma_{N_C}}{N_A}\right)^2 + \frac{N_C^2}{N_A^4}\sigma_{N_A}^2$$