Ch-6 CPU SCHEDULING

Descriptive

- 1) Write difference between preemptive and non preemptive scheduling with example.
- 2) Consider following set of processes,

Process	Arrival Time	Burst Time
P1	0.0	7
P2	2.0	4
Р3	4.0	1
P4	5.0	4

Draw Gantt chart for SJf preemptive scheduling

Calculate average waiting time.

3) Consider following set of processes,

Process	Arrival Time	Burst Time
P1	0.0	8
P2	4.0	4
Р3	1.0	1
P4	5.0	4

What is average waiting time for the above processes using FCFS non preemptive scheduling?

4) Calculate turn around time for the given processes using RR(round robin) algorithm . Quantum=20

Burst Time
53
68
17
24

- 5) List all optimized criteria for scheduling.
- 6) Write importance of CPU scheduler

Objective

- 1) List Process scheduling algorithms
- 2) FCFS,SJF,RR,SRTF –write full forms
- 3) The smallest integer number for priority of process means that the process is having highest priority.(T/F)

4)	The small unit of time allocated to process in RR algorithm is called
	(quantum, arrival time)
5)	The effect we get with short process behind long process is called
	effect(Gantt,convoy)
6)	Define :1)Response time 2)turnaround time

CH -8 DEADLOCK

Descriptive

- 1) What do you mean by deadlock problem?
- 2) Write Deadlock characteristics.
- 3) Write about resource allocation graph with the help of symbolic notations.
- 4) Draw the resource allocation graph with deadlock and explain
- 5) Write methods of Deadlock prevention and explain any two.
- 6) In which order the process abortion should be done for deadlock recovery?

Objective

- 1) Write an example in which two process have a deadlock
- 2) P1 -> Rj. What this notation does mean in resource allocation graph?

- 4) Returning to some safe state and restart the process for that state during deadlock recovery is called ______.
 - i) Starvation ii) return iii) rollback iv) recover