

Your Turn 0

- Open 10-Organize.Rmd
- Run the setup chunk

gapminder

gdpPercap <dbl></dbl>	pop <int></int>	lifeExp <dbl></dbl>	year <int></int>	continent <fctr></fctr>	<pre>country <fctr></fctr></pre>
779.4453	8425333	28.80100	1952	Asia	Afghanistan
820.8530	9240934	30.33200	1957	Asia	Afghanistan
853.1007	10267083	31.99700	1962	Asia	Afghanistan
836.1971	11537966	34.02000	1967	Asia	Afghanistan
739.9811	13079460	36.08800	1972	Asia	Afghanistan
786.1134	14880372	38.43800	1977	Asia	Afghanistan
978.0114	12881816	39.85400	1982	Asia	Afghanistan
852.3959	13867957	40.82200	1987	Asia	Afghanistan
649.3414	16317921	41.67400	1992	Asia	Afghanistan
635.3414	22227415	41.76300	1997	Asia	Afghanistan

Your Turn 1

How has life expectancy changed over time?

Make a line plot of **lifeExp** vs. **year** grouped by **country**. Set alpha to 0.2 to see the results better.


```
gapminder %>%
  ggplot(mapping = aes(x = year, y = lifeExp, group = country) +
  geom_line(alpha = 0.2)
```


Idea 1

To quantify "linearity," fit a linear model, compare r-squared.

Idea 2

To quantify rate of change, fit a linear model, extract coefficient on year.

Goal

Fit model, compute R², collect coefficient **for every country**.

- 1. dplyr + tidyr grouping toolkit
- 2. purrr toolkit and list columns

Quiz

How is a data frame/tibble to a list?

A data frame / tibble is a list

data frame

num	cha	log
7	"one"	TRUE
2	"two"	FALSE
3	"three"	FALSE

list

+ class = "data.frame"

A data frame / tibble is a list

data frame

num	cha	log
7	"one"	TRUE
2	"two"	FALSE
3	"three"	FALSE

df["num"]

num	
1	
2	
3	

df[["num"]]
df\$num

c(1, 2, 3)

A data frame / tibble is a list

data frame

num	cha	log
1	"one"	TRUE
2	"two"	FALSE
3	"three"	FALSE

df %>% select(num)

num	
7	
2	
3	

df[["num"]]
df\$num

c(1, 2, 3)

Quiz

If one of the elements of a list can be another list, can one of the columns of a data frame be another list?

List data frame

num	cha	listcol
1	"one"	7
2	"two"	c("1", "two", "FALSE")
3	"three"	FALSE

Yes

```
tibble(
  num = c(1, 2, 3),
  cha = c("one", "two", "three"),
  listcol = list(1, c("1", "two", "FALSE"), FALSE)
# A tibble: 3 x 3
    num cha listcol
  <dbl> <dhr> <dbl> <chr> ist>
      1 one <dbl [1]>
      2 two <chr [3]>
      3 three <lg1 [1]>
```


Goal

Why?

Nesting

nest()

Nest rows into a list column by group.

```
nest(.data, ...)
```

A grouped data frame

Places grouped cases into a list column.

```
gapminder %>%
  group_by(country) %>%
  nest()
```

country

data

Afghanistan

continent	year	lifeExp	рор	gdpPercap
Asia	1952	28.801	8425333	779.445315
Asia	1957	30.332	9240934	820.85303
Asia	1962	31.997	10267083	853.10071
Asia	1967	34.02	11537966	836.197138
Asia	1972	36.088	13079460	739.981106
Asia	1977	38.438	14880372	786.11336
Asia	1982	39.854	12881816	978.011439
Asia	1987	40.822	13867957	852.395945
Asia	1992	41.674	16317921	649.341395
Asia	1997	41.763	22227415	635.341351
Asia	2002	42.129	25268405	726.734055
Asia	2007	43.828	31889923	974.580338

Albania

continent	year	lifeExp	рор	gdpPercap
331111113111	yeu.	e_xp	Pop	gup: c.cup
Europe	1952	55.23	1282697	1601.05614
Europe	1957	59.28	1476505	1942.28424
Europe	1962	64.82	1728137	2312.88896
Europe	1967	66.22	1984060	2760.19693
Europe	1972	67.69	2263554	3313.42219
Europe	1977	68.93	2509048	3533.00391
Europe	1982	70.42	2780097	3630.88072
Europe	1987	72	3075321	3738.93274
Europe	1992	71.581	3326498	2497.4379
Europe	1997	72.95	3428038	3193.0546
Europe	2002	75.651	3508512	4604.21174
Europe	2007	76.423	3600523	5937.02953

gapminder

country <fctr></fctr>	continent <fctr></fctr>	year <int></int>	lifeExp <dbl></dbl>	pop <int></int>	gdpPercap <dbl></dbl>
Afghanistan	Asia	1952	28.80100	8425333	779.4453
Afghanistan	Asia	1957	30.33200	9240934	820.8530
Afghanistan	Asia	1962	31.99700	10267083	853.1007
Afghanistan	Asia	1967	34.02000	11537966	836.1971
Afghanistan	Asia	1972	36.08800	13079460	739.9811
Afghanistan	Asia	1977	38.43800	14880372	786.1134
Afghanistan	Asia	1982	39.85400	12881816	978.0114
Afghanistan	Asia	1987	40.82200	13867957	852.3959
Afghanistan	Asia	1992	41.67400	16317921	649.3414
Afghanistan	Asia	1997	41.76300	22227415	635.3414


```
gapminder %>%
  group_by(country) %>%
  nest()
```

\sim	×

country <fctr></fctr>	data <s3: vctrs_list_of=""></s3:>	
Afghanistan	<s3: vctrs_list_of=""></s3:>	
Albania	<s3: vctrs_list_of=""></s3:>	
Algeria	<s3: vctrs_list_of=""></s3:>	
Angola	<s3: vctrs_list_of=""></s3:>	
Argentina	<s3: vctrs_list_of=""></s3:>	
Australia	<s3: vctrs_list_of=""></s3:>	
Austria	<s3: vctrs_list_of=""></s3:>	
Bahrain	<s3: vctrs_list_of=""></s3:>	
Bangladesh	<s3: vctrs_list_of=""></s3:>	
Belgium	<s3: vctrs_list_of=""></s3:>	

1-10 of 142 rows

Previous 1 2 3 4 5 6 ... 15 Next

gapminder_nested\$data[[1]]

country <fctr></fctr>	<pre>data <s3: vctrs_list_of=""></s3:></pre>
Afghanistan	<s3: vctrs_list_of=""></s3:>
Albania	<s3: vctrs_list_of=""></s3:>
Algeria	<s3: vctrs_list_of=""></s3:>
Angola	<s3: vctrs_list_of=""></s3:>
Argentina	<s3: vctrs_list_of=""></s3:>
Australia	<s3: vctrs_list_of=""></s3:>
Austria	<s3: vctrs_list_of=""></s3:>
Bahrain	<s3: vctrs_list_of=""></s3:>
Bangladesh	<s3: vctrs_list_of=""></s3:>
Belgium	<s3: vctrs_list_of=""></s3:>

continent <fctr></fctr>	year <int></int>	lifeExp <dbl></dbl>	pop <int></int>	gdpPercap <dbl></dbl>
Asia	1952	28.801	8425333	779.4453
Asia	1957	30.332	9240934	820.8530
Asia	1962	31.997	10267083	853.1007
Asia	1967	34.020	11537966	836.1971
Asia	1972	36.088	13079460	739.9811
Asia	1977	38.438	14880372	786.1134
Asia	1982	39.854	12881816	978.0114
Asia	1987	40.822	13867957	852.3959
Asia	1992	41.674	16317921	649.3414
Asia	1997	41.763	22227415	635.3414
1–10 of 12 rows			Pr	evious 1 2 Next

Previous 1 2 3 4 5 6 ... 15 Next

1-10 of 142 rows

```
fit_model <- function(df) lm(lifeExp ~ year, data = df)
gapminder_nested <- gapminder_nested %>%
   mutate(model = map(data, fit_model))
                                                                                            model
                                             data
    country
                                    <S3: vctrs_list_of>
    <fctr>
                                                      st>
                                                                        ...and
                 map()
    Afghanistan
                                   <S3: vctrs_list_of>
                                                   <$3: lm>
                                                                  returns a list
                                                   <$3: lm>
    Albania
                                   <S3: vctrs_list_of>
             takes a list
    Algeria
                                   <S3: vctrs_list_of>
                                                   <$3: lm>
                                                   <$3: lm>
                                   <S3: vctrs_list_of>
    Angola
    Argentina
                                   <S3: vctrs_list_of>
                                                   <$3: lm>
    Australia
                                   <S3: vctrs_list_of>
                                                   <$3: lm>
                                   <S3: vctrs_list_of>
                                                   <$3: lm>
    Austria
    Bahrain
                                                   <$3: lm>
                                   <S3: vctrs_list_of>
    Bangladesh
                                                   <$3: lm>
                                   <S3: vctrs_list_of>
    Belgium
                                                   <$3: lm>
                                   <S3: vctrs_list_of>
   1–10 of 142 rows
```


gapminder_nested\$model[[1]]

data <s3: vctrs_list_of=""></s3:>	model <list></list>
<s3: vctrs_list_of=""></s3:>	<s3: lm=""></s3:>
	<s3: vctrs_list_of=""> <s3: vctrs_list_of=""></s3:></s3:></s3:></s3:></s3:></s3:></s3:></s3:></s3:></s3:>

<S3: vctrs_list_of>

<\$3: lm>

Call:
lm(formula = lifeExp ~ year, data = df)

Coefficients:

(Intercept) year -507.5343 0.2753

Previous 1 2 3 4 5 6 ... 15 Next

Belgium

1–10 of 142 rows

```
get_rsq <- function(mod) glance(mod)$r.squared
gapminder_nested <- gapminder_nested %>%
  mutate(r.squared = map_dbl(model, get_rsq))
```

				<i>□</i>
country <fctr></fctr>	data <s3: vctrs_list_of=""></s3:>	model <list></list>	r.squared <dbl></dbl>	\and
Afghanistan map_db()	<s3: vctrs_list_of=""></s3:>	<\$3: lm>	0.94771226	
Albania takes a list	<s3: vctrs_list_of=""></s3:>	<s3: lm=""></s3:>	0.91057777	returns
Algeria	<s3: vctrs_list_of=""></s3:>	<s3: lm=""></s3:>	0.98511721	numbe
Angola	<s3: td="" vctrs_nst_of<=""><td><s3: lm=""></s3:></td><td>0.88781463</td><td></td></s3:>	<s3: lm=""></s3:>	0.88781463	
Argentina	<s3: vctrs_list_of=""></s3:>	<\$3: lm>	0.99556810	
Australia	<s3: vctrs_list_of=""></s3:>	<s3: lm=""></s3:>	0.97964774	
Austria	<s3: vctrs_list_of=""></s3:>	<s3: lm=""></s3:>	0.99213401	
Bahrain	<s3: vctrs_list_of=""></s3:>	<s3: lm=""></s3:>	0.96673981	
Bangladesh	<s3: vctrs_list_of=""></s3:>	<\$3: lm>	0.98936087	
Belgium	<s3: vctrs_list_of=""></s3:>	<\$3: lm>	0.99454056	

Your Turn 2

Run the chunk, then filter **gapminder_nested** to find the countries with **r.squared** less than 0.5.


```
gapminder_nested %>%
  filter(r.squared < 0.5)
 A tibble: 13 x 4
                                                             But how can we plot these
                                           data model
   country
                                                                    countries?
   <fct>
                                1 Botswana
                                       [12 \times 5] < S3: lm>
 2 Central African Republic
                                      [12 \times 5] < S3: lm>
                                                               0.493
 3 Congo, Dem. Rep.
                                       [12 \times 5] < S3: lm >
                                                               0.348
 4 Cote d'Ivoire
                                       [12 \times 5] < S3: 1m >
                                                               0.283
                                       [12 \times 5] < S3: lm>
                                                               0.443
 5 Kenya
 6 Lesotho
                                       [12 \times 5] < S3: lm>
                                                               0.0849
 7 Namibia
                                       [12 \times 5] < S3: lm>
                                                               0.437
                                       [12 \times 5] < S3: lm >
 8 Rwanda
                                                               0.0172
 9 South Africa
                                       [12 \times 5] < S3: lm>
                                                               0.312
10 Swaziland
                                       \lceil 12 \times 5 \rceil < S3: 1m >
                                                               0.0682
11 Uganda
                                       [12 \times 5] < S3: lm>
                                                               0.342
12 Zambia
                                       [12 \times 5] < S3: lm >
                                                               0.0598
13 Zimbabwe
                                        [12 \times 5] < S3: lm>
                                                               0.0562
```


unnest()

Flatten list columns into regular columns

poor_fit <- gapminder_nested %>%
 filter(r.squared < 0.5)</pre>

poor_fit %>% unnest(data)

Columns from inside **data**

							~ X
country <fctr></fctr>	continent <fctr></fctr>	year <int></int>	lifeExp <dbl></dbl>	pop <int></int>	gdpPercap <dbl></dbl>	model <list></list>	r.squared <dbl></dbl>
Botswana	Africa	1952	47.622	442308	851.2411	<s3: lm=""></s3:>	0.03402340
Botswana	Africa	1957	49.618	474639	918.2325	<s3: lm=""></s3:>	0.03402340
Botswana	Africa	1962	51.520	512764	983.6540	<\$3: lm>	0.03402340
Botswana	Africa	1967	53.298	553541	1214.7093	<\$3: lm>	0.03402340
Botswana	Africa	1972	56.024	619351	2263.6111	<\$3: lm>	0.03402340
Botswana	Africa	1977	59.319	781472	3214.8578	<\$3: lm>	0.03402340
Botswana	Africa	1982	61.484	970347	4551.1421	<\$3: lm>	0.03402340
Botswana	Africa	1987	63.622	1151184	6205.8839	<\$3: lm>	0.03402340
Botswana	Africa	1992	62.745	1342614	7954.1116	<\$3: lm>	0.03402340
Botswana	Africa	1997	52.556	1536536	8647.1423	<\$3: lm>	0.03402340
L-10 of 156 rows				Previous	1 2 3	4 5 6	16 Next


```
unnest(poor_fit, data) %>%
  ggplot(aes(x = year, y = lifeExp)) +
  geom_line(aes(color = country))
```


Your Turn 3

Edit the code in the chunk provided to instead find and plot countries with a slope above 0.6 years/year.

I've provided a **get_slope()** function:

```
get_slope <- function(mod) {
  tidy(mod) %>% filter(term == "year") %>% pull(estimate)
}
```



```
gapminder_nested <- gapminder_nested %>%
  mutate(slope = map_dbl(model, get_slope))
big_slope <- gapminder_nested %>%
  filter(slope > 0.6)
unnest(big_slope, data) %>%
  ggplot(aes(x = year, y = lifeExp)) +
    geom_line(aes(color = country))
```


Recap

A table is...an organizational structure...that you can manipulate.

country	data	model	r.squared
Afghanistan	continent year lifeExp pop gdpPercap Asia 1952 28.801 8425333 779.445315 Asia 1957 30.332 9240934 820.85303 Asia 1962 31.997 10267083 853.10071 Asia 1967 34.02 11537966 836.197138 Asia 1972 36.088 13079460 739.981106 Asia 1977 38.438 14880372 786.11336 Asia 1982 39.854 12881816 978.011439 Asia 1987 40.822 13867957 852.395945 Asia 1992 41.674 16317921 649.341395 Asia 1997 41.763 22227415 635.341351 Asia 2002 42.129 25268405 726.734055 Asia 2007 43.828 31889923 974.580338	Call: lm(formula = lifeExp ~ year, data = .x) Coefficients: (Intercept) year -507.5343 0.2753	0.034
Albania	continent year lifeExp pop gdpPercap Europe 1952 55.23 1282697 1601.05614 Europe 1957 59.28 1476505 1942.28424 Europe 1962 64.82 1728137 2312.88896 Europe 1967 66.22 1984060 2760.19693 Europe 1972 67.69 2263554 3313.42219 Europe 1977 68.93 2509048 3533.00391 Europe 1982 70.42 2780097 3630.88072 Europe 1987 72 3075321 3738.93274 Europe 1992 71.581 3326498 2497.4379 Europe 1997 72.95 3428038 3193.0546 Europe 2002 75.651 3508512 4604.21174 Europe 2007 76.423 3600523 5937.02953	Call: lm(formula = lifeExp ~ year, data = .x) Coefficients: (Intercept) year -594.0725 0.3347	0.493

Benefits

Data and models stay in correspondence across manipulations

gapminder_nested %>% filter(str_sub(country, 1, 1) == "P")

country <fctr></fctr>	data <s3: vctrs_list_of=""></s3:>	model <list></list>	r.squared <dbl></dbl>	slope <dbl></dbl>
Pakistan	<s3: vctrs_list_of=""></s3:>	<s3: lm=""></s3:>	0.9972497	0.4057923
Panama	<s3: vctrs_list_of=""></s3:>	<\$3: lm>	0.9511952	0.3542091
Paraguay	<s3: vctrs_list_of=""></s3:>	<\$3: lm>	0.9829865	0.1573545
Peru	<s3: vctrs_list_of=""></s3:>	<s3: lm=""></s3:>	0.9884740	0.5276979
Philippines	<s3: vctrs_list_of=""></s3:>	<s3: lm=""></s3:>	0.9914226	0.4204692
Poland	<s3: vctrs_list_of=""></s3:>	<s3: lm=""></s3:>	0.8396631	0.1962189
Portugal	<s3: vctrs_list_of=""></s3:>	<s3: lm=""></s3:>	0.9690351	0.3372014
Puerto Rico	<s3: vctrs_list_of=""></s3:>	<\$3: lm>	0.9078191	0.2105748

8 rows

Your Turn 4

Challenge:

- 1. Create your own copy of **gapminder_nested** and then add one more list column: **output** which contains the output of **augment()** for each model.
- 2. Plot the residuals against time for the countries with small r-squared.


```
jake_gapminder <- gapminder_nested

jake_gapminder %>%
  mutate(output = map(model, augment)) %>%
  filter(r.squared < 0.5) %>%
  unnest(output) %>%
  ggplot(aes(x = year, y = .resid)) +
   geom_line(aes(color = country))
```


Resampling

Bootstrapping

id	X	y	Z
1	0.73	-0.76	0.86
2	-0.24	0.59	0.93
3	-0.24	-1.81	0.46
4	-1.12	-0.17	1.71
5	0.21	-0.73	-1.25
6	0.13	-1.41	1.73
7	-0.62	-0.57	-1.72
8	0.81	-0.76	0.93
9	-0.18	2.75	-0.14

id	X	У	Z
2	-0.24	0.59	0.93
4	-1.12	-0.17	1.71
1	0.73	-0.76	0.86
3	-0.24	-1.81	0.46
5	0.21	-0.73	-1.25
7	-0.62	-0.57	-1.72
6	0.13	-1.41	1.73
1	0.73	-0.76	0.86
6	0.13	-1.41	1.73
id	X	У	Z
4	-1.12	-0.17	1.71
7	0.77	0.76	0.06

id	X	У	Z
4	-1.12	-0.17	1.71
1	0.73	-0.76	0.86
6	0.13	-1.41	1.73
4	-1.12	-0.17	1.71
1	0.73	-0.76	0.86
5	0.21	-0.73	-1.25
7	-0.62	-0.57	-1.72
6	0.13	-1.41	1.73
7	-0.62	-0.57	-1.72

• • •

bootstraps()

Randomly same the data with replacement.

```
bootstraps(data, times = 25, ...)
```

Data frame

Number of bootstrap samples


```
admission %>%
  bootstraps(times = 100)
# Bootstrap sampling
# A tibble: 100 x 2
   splits
                       id
                    <chr>
   <t>>
1 <split [9.4K/3.5K] > Bootstrap001
 2 <split [9.4K/3.5K] > Bootstrap002
 3 <split [9.4K/3.4K] > Bootstrap003
 4 <split [9.4K/3.5K] > Bootstrap004
 5 <split [9.4K/3.5K] > Bootstrap005
 6 <split [9.4K/3.5K] > Bootstrap006
7 <split [9.4K/3.5K] > Bootstrap007
8 <split [9.4K/3.4K] > Bootstrap008
 9 <split [9.4K/3.4K] > Bootstrap009
10 <split [9.4K/3.5K] > Bootstrap010
# ... with 90 more rows
```



```
admission %>%
  bootstraps(times = 100)
# Bootstrap sampling
# A tibble: 100 x 2
   splits
   t>
                        <chr>
 1 <split [9.4K/3.5K] > Bootstrap001
 2 <split [9 4K/3.5K] > Bootstrap002
 3 <split [9 1K/3.4K] > Bootstrap003
                3.5K] > Bootstrap004
   analysis data
                3.5K] > Bootstrap005
   (same size as
                3.5K] > Bootstrap006
     original)
                3.5K] > Bootstrap007
 8 <split [9.4K/3.4K] > Bootstrap008
 9 <split [9.4K/3.4K] > Bootstrap009
  <split [9.4K/3.5K]> Bootstrap010
# ... with 90 more rows
```



```
admission %>%
  bootstraps(times = 100)
# Bootstrap sampling
 A tibble: 100 x 2
   splits
   <t>>
                        <chr>
 1 <split [9.4K/3.5K] > Bootstrap001
 2 <split [9/4K/3.5K] > Bootstrap002
 3 <split [9 1K/3.4K] > Bootstrap003
                 3.5K
   analysis data
                      assessment data
                 3.5K
                      (rows not included
   (same size as
                       in analysis data)
     original)
 8 <split [9.4K/3.4K] > Bootstrap008
 9 <split [9.4K/3.4K] > Bootstrap009
   <split [9.4K/3.5K]> Bootstrap010
# ... with 90 more rows
```



```
models <- admission %>%
  bootstraps(times = 100)

models$splits[[1]]
# <9416/3418/9416>
```

Size of analysis data

Size of assessment data

Size of total data

admission %>%
bootstraps(times = 100)

splits	id
<split 3.5k]="" [9.4k=""></split>	Bootstrap001
<split 3.5k]="" [9.4k=""></split>	Bootstrap002
<split 3.4k]="" [9.4k=""></split>	Bootstrap003


```
admission %>%
  bootstraps(times = 100) %>%
  mutate(model = map(splits, function(x) glm(admit ~ gender, data = analysis(x), family = binomial)))
```

splits	id	model
<split 3.5k]="" [9.4k=""></split>	Bootstrap001	Call: glm(formula = admit ~ gender, family = binomial, data = analysis(x)) Coefficients: (Intercept) genderFemale -0.7762 -0.4731 Degrees of Freedom: 9415 Total (i.e. Null); 9414 Residual Null Deviance: 11150 Residual Deviance: 11050 AIC: 11050
<split 3.5k]="" [9.4k=""></split>	Bootstrap002	Call: glm(formula = admit ~ gender, family = binomial, data = analysis(x)) Coefficients: (Intercept) genderFemale -0.7944 -0.4518 Degrees of Freedom: 9415 Total (i.e. Null); 9414 Residual Null Deviance: 11100 Residual Deviance: 11020 AIC: 11020
<split 3.4k]="" [9.4k=""></split>	Bootstrap003	Call: glm(formula = admit ~ gender, family = binomial, data = analysis(x)) Coefficients: (Intercept) genderFemale -0.7314 -0.4857 Degrees of Freedom: 9415 Total (i.e. Null); 9414 Residual Null Deviance: 11280 Residual Deviance: 11180 AIC: 11180

Bootstrapped Comparisons

- Write a function to calculate the comparison of interest on your observed data
- 2. Create bootstrapped samples
- 3. Apply the function to each sample
- 4. Create a distribution of comparison value from each bootstrapped sample

 Write a function to calculate the comparison of interest on your observed data

```
mean(admission$gre_v[admission$gender == "Male"]) -
  mean(admission$gre_v[admission$gender == "Female"])
[1] 0.02895073
mean_diff <- function(splits) {
  x <- analysis(splits)
  mean(x$gre_v[x$gender == "Male"]) -
    mean(x$gre v[x$gender == "Female"])
```


2. Create bootstrapped samples

```
admission %>%
  bootstraps(times = 100)
# Bootstrap sampling
 A tibble: 100 x 2
   splits
  <t>>
                       <chr>
1 <split [9.4K/3.5K] > Bootstrap001
2 <split [9.4K/3.4K] > Bootstrap002
 3 <split [9.4K/3.5K] > Bootstrap003
4 <split [9.4K/3.5K] > Bootstrap004
 ... with 96 more rows
```


3. Apply the function to each sample

```
admission %>%
  bootstraps(times = 100) %>%
  mutate(grev_diff = map_dbl(splits, mean_diff))
# A tibble: 100 x 3
   splits
                                     grev_diff
 * <list>
                       <chr>
                                         <dbl>
1 <split [9.4K/3.5K] > Bootstrap001
                                        0.0728
2 <split [9.4K/3.4K] > Bootstrap002
                                       -0.0990
 3 <split [9.4K/3.5K] > Bootstrap003
                                       -0.190
4 <split [9.4K/3.5K] > Bootstrap004
                                        0.0751
 ... with 96 more rows
```


4. Create a distribution of comparison value from each bootstrapped sample

```
set.seed(32011)
grev_gender <- admission %>%
  bootstraps(times = 100) %>%
  mutate(grev_diff = map_dbl(splits, mean_diff))

ggplot(grev_gender, mapping = aes(x = grev_diff)) +
  geom_density()
```



```
quantile(grev_gender$grev_diff, probs = c(0.025, 0.500, 0.975))
2.5% 50% 97.5%
-0.34975576 0.04544041 0.32019353
```


Your Turn 5

Is there a difference between the percentage of male and female applicants admitted?

- Modify the function to calculate the difference between the percentage of males admitted and the percentage of females admitted
- Apply the function to 100 bootstrap samples
- Create a density plot of the results

 Write a function to calculate the comparison of interest on your observed data

```
mean(admission$admit[admission$gender == "Male"]) -
  mean(admission$admit[admission$gender == "Female"])
[1] 0.09410073
pct diff <- function(splits) {</pre>
  x <- analysis(splits)
  mean(x$admit[x$gender == "Male"]) -
    mean(x$admit[x$gender == "Female"])
```


2. Apply the function to each sample

```
admission %>%
  bootstraps(times = 100) %>%
  mutate(admit_diff = map_dbl(splits, pct_diff))
# A tibble: 100 x 3
   splits
                       id
                                     admit_diff
 * <list>
                       <chr>
                                          <dbl>
1 <split [9.4K/3.5K] > Bootstrap001
                                         0.0923
2 <split [9.4K/3.5K] > Bootstrap002
                                         0.0879
 3 <split [9.4K/3.4K] > Bootstrap003
                                         0.0964
4 <split [9.4K/3.5K] > Bootstrap004
                                         0.0991
 ... with 96 more rows
```


3. Create a distribution of comparison value from each bootstrapped sample

```
set.seed(32011)
admit_gender <- admission %>%
  bootstraps(times = 100) %>%
  mutate(admit_diff = map_dbl(splits, pct_diff))

ggplot(admit_gender, mapping = aes(x = admit_diff)) +
  geom_density()
```


Cross Validation

id	X	y	Z
7	0.73	-0.76	0.86
2	-0.24	0.59	0.93
3	-0.24	-1.81	0.46
4	-1.12	-0.17	1.71
5	0.21	-0.73	-1.25
6	0.13	-1.41	1.73
7	-0.62	-0.57	-1.72
8	0.81	-0.76	0.93
9	-0.18	2.75	-0.14

id	X	y	Z
2	-0.24	0.59	0.93
4	-1.12	-0.17	1.71
8	0.81	-0.76	0.93

id	X	y	Z
3	-0.24	-1.81	0.46
5	0.21	-0.73	-1.25
9	-0.18	2.75	-0.14

id	X	y	Z
1	0.73	-0.76	0.86
6	0.13	-1.41	1.73
7	-0.62	-0.57	-1.72

analysis (training) data

assessment (test) data

analysis (training) data

assessment (test) data

analysis (training) data

assessment (test) data

vfold_cv()

Randomly split the data into folds for cross validation.


```
admission %>%
 vfold_cv(v = 10, repeats = 10)
  10-fold cross-validation repeated 10 times
# A tibble: 100 x 3
  splits
           id id2
  <chr> <chr> <chr>
1 <split [8.5K/942] > Repeat01 Fold01
2 <split [8.5K/942] > Repeat01 Fold02
3 <split [8.5K/942] > Repeat01 Fold03
4 <split [8.5K/942] > Repeat01 Fold04
 5 <split [8.5K/942] > Repeat01 Fold05
 6 <split [8.5K/942] > Repeat01 Fold06
7 <split [8.5K/941] > Repeat01 Fold07
8 <split [8.5K/941] > Repeat01 Fold08
9 <split [8.5K/941] > Repeat01 Fold09
10 <split [8.5K/941] > Repeat01 Fold10
# ... with 90 more rows
```



```
admission %>%
 vfold_cv(v = 10, repeats = 10)
  10-fold cross-validation repeated 10 times
# A tibble: 100 x 3
                  id id2
  splits
  <lr>< < chr></r>
1 <split [8.5K/942] > Repeat01 Fold01
2 <split [8 5K/942] > Repeat01 Fold02
3 <split [8 5K/942] > Repeat01 Fold03
               942] > Repeat01 Fold04
 Size of analysis 942] > Repeat01 Fold05
     data
              942] > Repeat01 Fold06
      941]> Repeat01 Fold07
8 <split [8.5K/941] > Repeat01 Fold08
9 <split [8.5K/941] > Repeat01 Fold09
10 <split [8.5K/941] > Repeat01 Fold10
# ... with 90 more rows
```



```
admission %>%
 vfold_cv(v = 10, repeats = 10)
 10-fold cross-validation repeated 10 times
# A tibble: 100 x 3
         id id2
  splits
  <lr>< < chr></r>
1 <split [8.5K/942] > Repeat01 Fold01
2 <split [8 5K/942] > Repeat01 Fold02
 3 <split [8 5K/942] Repeat01 Fold03
              942]
 Size of analysis 942] > Size of assessment
     data
                        data
              942]>
     ____941]>
8 <split [8.5K/941] > Repeat01 Fold08
9 <split [8.5K/941] > Repeat01 Fold09
10 <split [8.5K/941] > Repeat01 Fold10
# ... with 90 more rows
```



```
models <- admission %>%
   vfold_cv(v = 10, repeats = 10)

models$splits[[1]]
# <8474/942/9416>
```

Size of analysis data

Size of assessment data

Size of total data

admission %>%

vfold_cv(v = 10, repeats = 10)

splits	id	id2
<split 942]="" [8.5k=""></split>	Repeat01	Fold01
<split 942]="" [8.5k=""></split>	Repeat01	Fold02
<split 942]="" [8.5k=""></split>	Repeat01	Fold03


```
admission %>%
  vfold_cv(v = 10, repeats = 10) %>%
  mutate(model = map(splits, function(x) glm(admit ~ gender, data = analysis(x), family = binomial)))
```

splits	id	id2	model
<split 942]="" [8.5k=""></split>	Repeat01	FoldO1	Call: glm(formula = admit ~ gender, family = binomial, data = analysis(x)) Coefficients: (Intercept) genderMale -0.21453 -0.02388 Degrees of Freedom: 8473 Total (i.e. Null); 8472 Residual Null Deviance: 11640 Residual Deviance: 11640
<split 942]="" [8.5k=""></split>	Repeat01	Fold02	Call: glm(formula = admit ~ gender, family = binomial, data = analysis(x)) Coefficients: (Intercept) genderMale -0.21665 -0.01874 Degrees of Freedom: 8473 Total (i.e. Null); 8472 Residual Null Deviance: 11640 Residual Deviance: 11640
<split 942]="" [8.5k=""></split>	Repeat01	Fold03	Call: glm(formula = admit ~ gender, family = binomial, data = analysis(x)) Coefficients: (Intercept) genderMale -0.232365 -0.008608 Degrees of Freedom: 8473 Total (i.e. Null); 8472 Residual Null Deviance: 11630 Residual Deviance: 11630 AIC: 11630

Consider

How would you assess model performance?

More to come in Case Study 3....

Recap

- Store objects and other lists in list-columns of data frames
- Use bootsraps() to recreate resampled data objects
- Use **vfold_cv()** to create *analysis* and *assessment* sub-samples of your data to assessment model performance
- Use purrr to iterate over bootstrapped samples and cross validation folds

