Лабораторная работа №8

"Модель конкуренции двух фирм"

Выполнил: Кармацкий Никита Сергеевич

НФИбд-01-21

Цель работы:

Изучить модель конкуренции двух фирм. Применить её на практике для решения задания лабораторной работы

Теоретическая справка:

Для построения модели конкуренции хотя бы двух фирм необходимо рассмотреть модель одной фирмы. Вначале рассмотрим модель фирмы, производящей продукт долговременного пользования, когда цена его определяется балансом спроса и предложения. Примем, что этот продукт занимает определенную нишу рынка и конкуренты в ней отсутствуют.

Обозначим:

N - число потребителей производимого продукта.

S – доходы потребителей данного продукта. Считаем, что доходы всех потребителей одинаковы. Это предположение справедливо, если речь идет об одной рыночной нише, т.е. производимый продукт ориентирован на определенный слой населения.

M – оборотные средства предприятия

au - длительность производственного цикла

p - рыночная цена товара

 \widetilde{p} - себестоимость продукта, то есть переменные издержки на производство единицы продукции

 δ - доля оборотных средств, идущая на покрытие переменных издержек k - постоянные издержки, которые не зависят от количества выпускаемой продукции

Q(S/p) – функция спроса, зависящая от отношения дохода S к цене p. Она равна количеству продукта, потребляемого одним потребителем в единицу времени.

Функцию спроса товаров долговременного использования часто представляют в простейшей форме:

$$Q=q-krac{p}{S}=q(1-rac{p}{p_{cr}})$$

где q – максимальная потребность одного человека в продукте в единицу времени.

Эта функция падает с ростом цены и при $p=p_{cr}$ (критическая стоимость продукта) потребители отказываются от приобретения товара. Величина $p_{cr}=Sq/k$. Параметр k – мера эластичности функции спроса по цене. Таким образом, функция спроса является пороговой (то есть, Q(S/p)=0 при $p\geq p_{cr}$) и обладает свойствами насыщения.

Уравнения динамики оборотных средств (1 вид):

$$rac{dM}{dt} = -rac{M\delta}{ au} + NQp - k = -rac{M\delta}{ au} + Nq(1-rac{p}{p_{cr}})p - k$$

Уравнения динамики оборотных средств (2 вид):

$$rac{dM}{dt} = -rac{M\delta}{ au}(rac{p}{p_{cr}}-1) - M^2(rac{\delta}{ au\widetilde{p}})^2rac{p_{cr}}{Nq} - k$$

В обсуждаемой модели параметр δ всюду входит в сочетании с τ . Это значит, что уменьшение доли оборотных средств, вкладываемых в производство, эквивалентно удлинению производственного цикла. Поэтому мы в дальнейшем положим: $\delta=1$, а параметр τ будем считать временем цикла, с учётом сказанного.

Задание лабораторной работы:

Случай 1

Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. Считаем, что в рамках нашей модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителей каким-либо иным способом.) Будем считать, что постоянные издержки пренебрежимо малы, и в модели учитывать не будем. В этом случае динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$egin{split} rac{dM_1}{d\Theta} &= M_1 - rac{b}{c_1} M_1 M_2 - rac{a1}{c1} M_1^2 \ rac{dM_2}{d\Theta} &= rac{c_2}{c_1} M_2 - rac{b}{c_1} M_1 M_2 - rac{a_2}{c_1} M_2^2 \end{split}$$

где

$$egin{align} a_1 &= rac{p_{cr}}{ au_1^2 \widetilde{p}_1^2 N q} \ a_2 &= rac{p_{cr}}{ au_2^2 \widetilde{p}_2^2 N q} \ b &= rac{p_{cr}}{ au_1^2 \widetilde{p}_1^2 au_2^2 \widetilde{p}_2^2 N q} \ c_1 &= rac{p_{cr} - \widetilde{p}_1}{ au_1 \widetilde{p}_1} \ c_2 &= rac{p_{cr} - \widetilde{p}_2}{ au_2 \widetilde{p}_2} \end{aligned}$$

также введена нормировка $t=c_1\Theta$

Случай 2

Рассмотрим модель, когда, помимо экономического фактора влияния (изменение себестоимости, производственного цикла, использование кредита и т.п.), используются еще и социально-психологические факторы – формирование общественного предпочтения одного товара другому, не зависимо от их качества и цены. В этом случае взаимодействие двух фирм будет зависеть друг от друга, соответственно коэффициент перед $M_1 M_2$ будет отличаться. Пусть в рамках рассматриваемой модели динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$egin{split} rac{dM_1}{d\Theta} &= M_1 - rac{b}{c_1} M_1 M_2 - rac{a1}{c1} M_1^2 \ rac{dM_2}{d\Theta} &= rac{c_2}{c_1} M_2 - (rac{b}{c_1} + 0.00033) M_1 M_2 - rac{a_2}{c_1} M_2^2 \end{split}$$

Для обоих случаев рассмотрим задачу со следующими начальными условиями и параметрами

$$egin{aligned} M_0^1 &= 3.3 \ M_0^2 = 2.2 \ p_{cr} &= 26 \ N = 33 \ q = 1 \ au_1 &= 25 \ au_2 = 14 \ \widetilde{p}_1 &= 5.5 \ \widetilde{p}_2 = 11 \end{aligned}$$

Задачи:

- 1. Изучить модель конкуренции двух фирм
- 2. Построить графики изменения оборотных средств двух фирм для обоих случаев

Основные этапы выполнения работы

1. Результат работы программы для первого случая. Julia

Рис.1 График первого случая на Julia

2. Результат работы программы для второго случая. Julia

Рис.2 График второго случая на Julia

3. Результат работы программы для первого случая. OpenModelica

Рис.3 График первого случая на OpenModelica

4. Результат работы программы для второго случая. OpenModelica

Рис.4 График второго случая на OpenModelica

Анализ полученных результатов. Сравнение языков.

В итоге проделанной работы на языках Julia и Open Modelica мы построили графики изменения обортных средств для двух фирм со случаями, когда конкурентная борьба ведется только рыночными методами и когда, помимо экэномического фактора влияния, используется еще и социально-психологичнские факторы.

Построение модели на языке OpenModelica занимает значительно меньше строк и времени, чем аналогичное построение на языке Julia.

Вывод:

В ходе выполнения лабораторной работы была изучена модель конкуренции двух фирм и в дальнейшем построена модель на языках Julia и Open Modelica.

Список литературы. Библиография

- Документация по Julia: https://docs.julialang.org/en/v1/
- Документация по OpenModelica: https://openmodelica.org/
- Решение дифференциальных уравнений: https://www.wolframalpha.com/
- Мальтузианская модель роста: https://www.stolaf.edu//people/mckelvey/envision.dir/malthus.html
- Математические модели конкурентной среды: https://dspace.spbu.ru/bitstream/11701/12019/1/Gorynya_2018.pdf
- Разработка математических моделей конкурентных процессов: https://www.academia.edu/9284004 Наумейко_РАЗРАБОТКА_МАТЕМАТИЧЕСКОЙ_МОДЕЛИ_КОНКУРЕНТНЫХ_ПР ОЦЕССОВ

Спасибо за внимание