

Universidade do Minho Escola de Ciências

## Licenciatura em Engenharia Informática

Departamento de Matemática e Aplicações

Exame :: Parte I :: 1 de julho de 2015

Nome

Número (\_\_\_\_\_

## Assinale, com uma cruz, se está a responder a esta parte do exame

Justifique, convenientemente, todas as suas respostas.

Exercício 1. [6 valores] Indique o valor lógico de cada uma das seguintes afirmações:

- a) Se  $f: \mathcal{D} \subseteq \mathbb{R}^2 \longrightarrow \mathbb{R}$  é a função definida por  $f(x,y) = \frac{\sqrt{4-x^2-y^2}}{(x-2)^2+y^2}$ , o domínio  $\mathcal{D}$  de f é fechado e limitado.
- b) Se  $\lim_{(x,y)\to(1,2)}f(x,y)=1$ , então  $\lim_{x\to 1}f(x,2x)=2$ .
- c) Se f é a função cujo esboço gráfico se representa na figura,  $f_x(0,0)=0$ .



d) Se  $f:\mathbb{R}^2\longrightarrow\mathbb{R}$  é uma função derivável em (1,1) tal que Df(1,1)(x,y)=x+2y, então

$$\frac{\partial f}{\partial (1,1)}(1,1) = 3\frac{\sqrt{2}}{2}.$$

Exercício 2. [3 valores] Calcule, caso exista,  $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$ .

Exercício 3. [5 valores] Considere  $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$   $(x,y) \longmapsto \begin{cases} \frac{x^3 - 2x^2y^2}{x^2 + y^2}, & \text{se } (x,y) \neq (0,0) \\ 0, & \text{se } (x,y) = (0,0) \end{cases}$ 

- a) Mostre que f é uma função contínua.
- b) Calcule  $\nabla f(0,0)$ .
- c) Mostre que f não é derivável em (0,0).

Exercício 4. [3 valores] Seja  $g: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$  tal que  $g(x,y) = (x^2 + 2y, e^{xy})$  e  $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$  uma função de classe  $\mathscr{C}^1$  cuja matriz jacobiana no ponto (2,1) é

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
.

- a) Calcule a matriz jacobiana de g.
- b) Use a regra da cadeia para obter a matriz jacobiana de  $f \circ g$  no ponto (0,1).

Exercício 5. [3 valores] Determine uma equação do plano tangente ao gráfico da função f definida por  $f(x,y)=x^2+y^3$  no ponto de coordenadas (3,1,10).



## **Universidade do Minho** Escola de Ciências

Licenciatura em Engenharia Informática

Departamento de Matemática e Aplicações

Exame :: Parte II :: 1 de julho de 2015

Nome Número

## Assinale, com uma cruz, se está a responder a esta parte do exame

Justifique, convenientemente, todas as suas respostas.

Exercício 1. [6 valores] Indique o valor lógico de cada uma das seguintes afirmações:

- a) Se a função  $f:\mathbb{R}^2\longrightarrow\mathbb{R}$  atinge um mínimo absoluto em P, então P também é ponto de mínimo absoluto da função g, definida por g(x,y)=-f(x,y).
- b) O volume do sólido representado na figura é dado por

$$\int_0^{2\pi} \int_{\frac{\pi}{4}}^{\pi} \int_0^4 \rho^2 \sin \phi \, d\rho d\phi d\theta.$$



- c) Se C é a curva definida por C(t)=(t,t),  $0\leq t\leq 1$ , então  $\int_C xy\,dr=\int_0^1 t^2\,dt.$
- d) Se  $C_1$ ,  $C_2$  e  $C_3$  são curvas orientadas com o mesmo ponto inicial e o mesmo ponto final e  $\int_{C_1} \boldsymbol{F} \cdot d\boldsymbol{r} = \int_{C_2} \boldsymbol{F} \cdot d\boldsymbol{r}, \text{ então } \int_{C_1} \boldsymbol{F} \cdot d\boldsymbol{r} = \int_{C_3} \boldsymbol{F} \cdot d\boldsymbol{r}.$

Exercício 2. [3 valores] Considere a região plana  $\mathcal{R}$  sombreada na figura.



- a) Apresente um único integral duplo que represente a área de  $\mathcal{R}$ .
- b) Reescreva o integral da alínea anterior, mudando a ordem de integração.

Exercício 3. [3 valores] Identifique e classifique os pontos críticos da função definida por

$$f(x,y) = \frac{x^2}{4} - \frac{y^2}{9}.$$

Exercício 4. [4 valores] Seja  $\mathcal{P}$  a pirâmide definida pelos 3 planos coordenados e pelo plano tangente à superfície definida por xyz=2 no ponto de coordenadas (1,2,1).

- a) Determine uma equação do plano tangente referido.
- b) Defina um integral duplo que represente o volume de  $\mathcal{P}$ .

Exercício 5. [4 valores] Considere o sólido  $\mathcal{S}=\{(x,y,z)\in\mathbb{R}^3:z\geq x^2+y^2,\ x^2+y^2+z^2\leq 6\}.$ 

- a) Esboce a região S.
- b) Escreva uma expressão integral, usando um sistema de coordenadas adequado, que exprima o volume de S.
- c) Calcule o volume de S.