600953 XS4F 内外モデル SPECIFICATION FOR SUPPLIER

CONTENTS	
REFERENCE ELECTRICAL COMPONENTS	3
RS485 INTERFACE Chip	3
TEXAS INSTRUMENTS THVD1426DR	3
CAN INTERFACE Chip	4
MICROCHIP MCP2542FDT-E/SN	4
GPIO EXPANDER Chip	7
ANALOG DEVICES MAX7300AAX+	7
STEERING LED(S)	9
NEOPIXEL 2020 (RGB) – WS2812C	9
MICROCONTROLLER(S)	11
STM32 NUCLEO F446RE – CLOSURE MCU	11
STM32 BLUE PILL F103C8T6 – STRG MCU	22
SYSTEM COMPONENTS AND RELATIONS	24
SYSTEM SCHEMATIC	24
CLOSURE MCU	25
Block schematic	25
Necessary functions	25
Communication specification (CAN, RS485)	26
Board design requests	27
STRG MCU	27
Block schematic	27
Necessary functions	28
Communication specification (CAN, KEYCODE USB)	28
Board design requests	30
Tables:	
Table 1: CAN msg - BDC to CLOSURE MCU	26
Table 2: CAN msg - CLOSURE MCU to BDC	
Table 3: RS485 msg - CLOSURE MCU to DOOR MOTORS	
Table 4: RS485 msg - CLOSURE MCU to LATCH MOTORS	
Table 4. 1040J 1138 * GLUJUNE MOU IU LATON MOTUNO	

Table 5: CAN msg - BDC to STRG MCU	28
Table 6: CAN msg - STRG MCU to BDC	29
Figures:	
Figure 1: Example of routing for RS485 routes	27
Figure 2: STRG MCU PCB adn STRG BUTTONS PCB connection illustration	31

REFERENCE ELECTRICAL COMPONENTS

RS485 INTERFACE CHIP

TEXAS INSTRUMENTS THVD1426DR

- **Product homepage:** https://www.ti.com/product/THVD1426/part-details/THVD1426DR
- Datasheet: https://www.ti.com/lit/ds/symlink/thvd1426.pdf?ts=1727146185066&ref_url=https%253A%252F%252F www.mouser.jp%252F

CHECK DATASHEET, in this document the contains only pinout, typical application and packaging info ONLY.

Figure 11-1. Layout Example

Packaging:

CAN INTERFACE CHIP

MICROCHIP MCP2542FDT-E/SN

- Product homepage: https://www.microchip.com/en-us/product/mcp2542fd
- Datasheet:
 https://ww1.microchip.com/downloads/aemDocuments/documents/APID/ProductDocuments/DataSheets/MCP2542FD-MCP2542WFD-4WFD-Data-Sheet-DS20005514C.pdf

CHECK DATASHEET, in this document the contains only pinout, typical application and packaging info ONLY.

Packaging:

MCP2542FD/4FD, MCP2542WFD/4WFD

8-Lead Plastic Dual Flat, No Lead Package (MF) - 3x3x0.9mm Body [DFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimensio	MIN	NOM	MAX	
Contact Pitch	0.65 BSC			
Optional Center Pad Width	W2			2.40
Optional Center Pad Length	T2			1.55
Contact Pad Spacing	C1		3.10	
Contact Pad Width (X8)	X1			0.35
Contact Pad Length (X8)	Y1			0.65
Distance Between Pads	G	0.30		

Notes:

Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2062B

MCP2542FD/4FD, MCP2542WFD/4WFD

8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm (.150 ln.) Body [SOIC]

For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging 2X _____ 0.10 C A-B A D NOTE 5 E₂ <u>E1</u> E1 Ŧ 2X 0.10 C A-B 2X 0.10 C A-B Ш NOTE 5 NO VIEW // 0.10 C C A A2 8X 0.10 C SIDE VIEW R0.13

> VIEW C Microchip Technology Drawing No. C04-057-SN Rev F Sheet 1 of 2

(L1)

MCP2542FD/4FD, MCP2542WFD/4WFD

8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm (.150 ln.) Body [SOIC]

SEE VIEW C

VIEW A-A

For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETER	S			
Dimension	on Limits	MIN	NOM	MAX			
Number of Pins	N	8					
Pitch	е	1.27 BSC					
Overall Height	Α	-	-	1.75			
Molded Package Thickness	A2	1.25	-	-			
Standoff §	A1	0.10	-	0.25			
Overall Width	E		6.00 BSC				
Molded Package Width	E1		3.90 BSC				
Overall Length	D		4.90 BSC				
Chamfer (Optional)	h	0.25	-	0.50			
Foot Length	L	0.40	-	1.27			
Footprint	L1		1.04 REF				
Foot Angle	φ	0°	-	8°			
Lead Thickness	С	0.17	-	0.25			
Lead Width	b	0.31	-	0.51			
Mold Draft Angle Top	α	5°	-	15°			
Mold Draft Angle Bottom	β	5°	-	15°			

Microchip Technology Drawing No. C04-057-SN Rev F Sheet 2 of 2

GPIO EXPANDER CHIP

ANALOG DEVICES MAX7300AAX+

- Product homepage: https://www.analog.com/en/products/max7300.html
- Datasheet: https://www.analog.com/media/en/technical-documentation/data-sheets/MAX7300.pdf

CHECK DATASHEET, in this document the contains only pinout, typical application and packaging info ONLY.

Typical Operating Circuit

Pin Configurations

Packaging:

STEERING LED(S)

NEOPIXEL 2020 (RGB) - WS2812C

- Product homepage: https://akizukidenshi.com/catalog/g/g115068/
- Datasheet: https://akizukidenshi.com/goodsaffix/ws2812c-2020.pdf

CHECK DATASHEET, in this document the contains only pinout, typical application and packaging info ONLY.

Mechanical Dimensions (Unit: mm)

Data Transfer Time

Data Transfer Time		
тон	0 code, high voltage time	220ns~380ns
T1H	1 code, high voltage time	580ns~1μs
TOL	0 code, low voltage time	580ns~1μs
T1L	1 code, low voltage time	580ns~1μs
RES	Frame unit, low voltage time	>280µs

G R B

VDD

Note: The data of D1 is send by MCU, and D2, D3, D4 through pixel internal reshaping amplification to transmit.

Composition of 24bit Data

- 1																								
- 1	G7	G6	G5	G4	G3	G2	C1	G0	R7	R6	R5	R4	R3	R2	R1	R0	B7	B6	B5	B4	B3	B2	B1	B0
- 1	G/ I	GO	G5	U-4	L G2	G2	l GI	l GU	I IN/	1 10	1 100	1.74		N.Z.	I I I	I NU	D/	DO	ו כם ו	D4	נםו	I DZ	DI	י טע ו
- 1					l .	l .																	1 !	1
- 1					l .	l .																	1 !	1

Note: Data transmit in order of GRB, high bit data at first.

Typical Application Circuit

Remarks: C1 is the filter capacitor for VDD, its value of 100nF.

MICROCONTROLLER(S)

STM32 NUCLEO F446RE - CLOSURE MCU

- Product homepage: https://www.st.com/en/evaluation-tools/nucleo-f446re.html#documentation
- Datasheet: file:///C:/Users/bacsi/Downloads/um1724-stm32-nucleo64-boards-mb1136stmicroelectronics.pdf
- Schematic: https://www.carminenoviello.com/wp-content/uploads/2015/01/MB1136.pdf

CHECK DATASHEET, in this document the contains only features list, pinout, powering information and schematic.

Microcontroller features:

- Common features
 - STM32 microcontroller in an LQFP64 or LQFP48 package
 - 1 user LED shared with ARDUINO*
 - 1 user and 1 reset push-buttons
 - 32.768 kHz crystal oscillator
 - Board connectors:
 - ARDUINO® Uno V3 expansion connector
 - ST morpho extension pin headers for full access to all STM32 I/Os
 - o Flexible power-supply options: ST-LINK USB V_{BUS} or external sources
 - o Comprehensive free software libraries and examples available with the STM32Cube MCU Package

- Support of a wide choice of Integrated Development Environments (IDEs) including IAR Embedded Workbench*, MDK-ARM, and STM32CubeIDE
- Features specific to some of the boards
 - Second user LED: NUCLEO-C071RB
 - External or internal SMPS to generate V_{core} logic supply: NUCLEO-L412RB-P, NUCLEO-L433RC-P, NUCLEO-L452RE-P, and NUCLEO-U545RE-Q
 - 24 MHz or 48 MHz HSE: NUCLEO-C031C6, NUCLEO-C071RB, NUCLEO-G431RB, NUCLEO-G474RE, and NUCLEO-G491RE
 - User USB Device full speed, or USB SNK/UFP full speed: NUCLEO-C071RB, NUCLEO-H503RB, NUCLEO-H533RE, and NUCLEO-U545RE-Q
 - o Cryptography: NUCLEO-H533RE, NUCLEO-U083RC, and NUCLEO-U545RE-Q
 - o Board connectors:
 - External SMPS experimentation dedicated connector: NUCLEO-L412RB-P, NUCLEO-L433RC-P, NUCLEO-L452RE-P, and NUCLEO-U545RE-O
 - USB Type-C^o, Micro-B, or Mini-B connector for the ST-LINK
 - USB Type-C* user connector: NUCLEO-C071RB, NUCLEO-H503RB, NUCLEO-H533RE, and NUCLEO-U545RE-O
 - MIPI® debug connector: NUCLEO-C071RB, NUCLEO-G431RB, NUCLEO-G474RE, NUCLEO-G491RE, NUCLEO-H503RB, NUCLEO-H533RE, NUCLEO-U031R8, and NUCLEO-U083RC
 - On-board ST-LINK (STLINK/V2-1, STLINK-V3E, STLINK-V2EC, or STLINK-V3EC) debugger/programmer with USB re-enumeration capability: mass storage, Virtual COM port, and debug port

Powering:

6.5 Power supply and power selection

6.5.1 External power supply input

The STM32 NUCLEO-G070RB or NUCLEO-G071RB board is designed to be powered by several DC power supply. It is possible to supply the STM32 NUCLEO-G070RB or NUCLEO-G071RB board with any of the following sources:

- 5V USB STLK from ST-LINK USB connector
- VIN (7 V 12 V) from Arduino connector or ST morpho connector
- E5V from ST morpho connector
- 5V USB CHG from ST-LINK USB
- 3.3 V on Arduino connector or ST morpho connector

Note:

If an external 5 V DC power source is used, the Nucleo board must be powered by a power supply unit or by an auxiliary equipment complying with the standard EN-60950-1: 2006+A11/2009 and must be safety extra low voltage (SELV) with limited power capability.

The power supply capabilities are showed in *Table 7*.

Table 7. Power supply capabilities

Input power	Connector pins	Voltage range	Max current	Limitation
5V_USB_STLK	CN2 PIN1	4.75 V to 5.25 V	500 mA	Max current depends on the USB enumeration: – 100 mA without enumeration – 500 mA with enumeration OK
VIN	CN6 pin 8 CN7 pin 24	7 V to 12 V	800 mA	From 7 V to 12 V only and input current capability is linked to input voltage: - 800 mA input current when VIN=7 V - 450 mA input current when 7 V <vin<9 -="" 10="" 300="" current="" input="" ma="" v="" when="">VIN>9 V - less than 300 mA input current when VIN>10 V</vin<9>
E5V	CN7 pin 6	4.75 V to 5.25 V	500 mA	
5V_USB_CHG	CN2 pin 1	4.75 V to 5.25 V	500 mA	Max current depends on the USB wall charger used to powered the Nucleo board
3V3	CN6 pin 4 CN7 pin 16 JP3 pin 1	3 V to 3.6 V	-	Used when ST-LINK part of PCB not used or remove SB1 and SB19

5V_ST_LINK is a DC power with limitation from ST-LINK USB connector (USB type Micro-B connector of ST-LINK/V2-1). In this case JP2 jumper must be on pins 1 and 2 to select STLK power source on silkscreen of JP2. This is the default setting. If the USB enumeration succeeds, the STLK power is enabled, by asserting the PWR_ENn signal (from STM32F103CBT6). This pin is connected to a power switch STMPS2141STR, which Powers the board. This power switch also features a current limitation to protect the PC in case of a short-circuit on board (more than 750 mA).

The STM32 NUCLEO-G070RB or NUCLEO-G071RB board and its shield is powerable from the ST-LINK USB connector CN2, but only ST-LINK circuit is powered before USB enumeration, because the host PC only provides 100 mA to the board at that time. During the USB enumeration, the STM32 NUCLEO-G070RB or NUCLEO-G071RB board requires 500 mA of current from the host PC. If the host is able to provide the required power, the enumeration ends by a 'SetConfiguration' command and then, the power transistor STMPS2141STR is switched ON, the green LED LD3 is turned ON, thus the STM32 NUCLEO-G070RB or NUCLEO-G071RB board and its shield request no more than 500 mA current. If the host is not able to provide the required current, the enumeration fails. Therefore the power switch STMPS2141STR stays OFF and the MCU part including the extension board is not powered. As a consequence the green LED LD3 stays turned OFF. In this case it is mandatory to use an external power supply.

USB power: STLK configuration: jumper JP2 [1-2] must be connected as showed in *Figure 9*.

Figure 9. STLK power source

VIN is the 7 V to 12 V DC power from Arduino CN6 pin 8 named VIN on Arduino connector silkscreen or from ST morpho connector CN7 pin 24. In this case JP2 jumper must be on pins 3 and 4 to select VIN power source on silkscreen of JP2. In that case the DC power comes from the power supply through the Arduino Uno V3 battery shield (compatible with Adafruit PowerBoost 500 shield).

MB1360C CN11 22002 20002 JP2 PIN 3/4 ON U5 VIN 7-12V MISO/D12 **VOUT 5V** /MOSI/D11 PWM/CS/D10 CN7 PIN24 CN6 PIN8 PWM/D3 D2 TX/D1 RX/D0 MSv48504V1

VIN configuration: jumper JP2 [3-4] must be connected as showed in Figure 10.

Figure 10. JP2 [3-4]: STLK power source

E5V is the DC power coming from external (5V DC power from ST morpho connector CN7 pin 6). In this case JP2 jumper must be on pins 5 and 6 to select E5V power source on silkscreen of JP2.

E5V configuration: Jumper JP2 [5-6] must be connected as showed in Figure 11.

Figure 11. JP2 [5-6]: STLK power source

5V_USB_CHARGER is the DC power charger connected to USB ST-LINK (CN2). To select the CHG power source on silkscreen of JP2, the jumper of JP2 must be on pins 7 and 8. In this case, if the STM32 NUCLEO-G070RB or NUCLEO-G071RB board is powered by an external USB charger the debug is not available. If the PC is connected instead of the charger, the limitation is no more effective, in this case the PC could be damaged.

CHG configuration: jumper JP2 [7-8] must be connected as showed in Figure 12.

6.5.2 External power supply output:

- 5V: The 5V (CN6 pin 5 or CN7 pin 18) is usable as output power supply for an Arduino shield or an extension board, when the NUCLEO-G070RB or NUCLEO-G071RB board is powered by USB, VIN or E5V. In this case the maximum current allowed is showed in Table 7.
- 3.3V: on CN6 pin 4 or CN7 pin 16 is usable as power supply output. The current is limited by the maximum current capability of the regulator U6 (LDL112PV33R from STMicroelectronics). In this condition the maximum consumption of the STM32 NUCLEO-G070RB or NUCLEO-G071RB board and the connected shield must be less than 500 mA.

Pinout:

Pins Legend

Schematic:

STM32 BLUE PILL F103C8T6 - STRG MCU

- Product homepage: https://stm32-base.org/boards/STM32F103C8T6-Blue-Pill.html
- Datasheet: file:///C:/Users/bacsi/Downloads/stm32f103c8.pdf [Chip only]
- Schematic: https://stm32-base.org/assets/pdf/boards/original-schematic-STM32F103C8T6-Blue Pill.pdf

CHECK DATASHEET, in this document the contains only features list, pinout, powering information and schematic.

Microcontroller features:

- Arm® 32-bit Cortex®-M3 CPU core
 - 72 MHz maximum frequency, 1.25 DMIPS/MHz (Dhrystone 2.1) performance at 0 wait state memory access
 - Single-cycle multiplication and hardware division
- Memories
 - o 64 or 128 Kbytes of Flash memory
 - o 20 Kbytes of SRAM
- · Clock, reset and supply management
 - 2.0 to 3.6 V application supply and I/Os
 - POR, PDR, and programmable voltage detector (PVD)
 - o 4 to 16 MHz crystal oscillator
 - o Internal 8 MHz factory-trimmed RC
 - o Internal 40 kHz RC
 - o PLL for CPU clock
 - o 32 kHz oscillator for RTC with calibration
- Low-power
 - Sleep, Stop and Standby modes
 - V_{BAT} supply for RTC and backup registers
- 2x 12-bit, 1 μs A/D converters (up to 16 channels)
 - o Conversion range: 0 to 3.6 V
 - o Dual-sample and hold capability
 - Temperature sensor
- DMA
 - 7-channel DMA controller
 - Peripherals supported: timers, ADC, SPIs, I²Cs and USARTs
- Up to 80 fast I/O ports
 - 26/37/51/80 I/Os, all mappable on 16 external interrupt vectors and almost all 5 V-tolerant
- Debug mode:
 - o Serial wire debug (SWD) and JTAG interfaces
- Seven timers
 - Three 16-bit timers, each with up to 4 IC/OC/PWM or pulse counter and quadrature (incremental) encoder input
 - 16-bit, motor control PWM timer with dead-time generation and emergency stop
 - Two watchdog timers (independent and window)
 - SysTick timer 24-bit downcounter
- Up to nine communication interfaces
 - Up to two I²C interfaces (SMBus/PMBus[®])
 - Up to three USARTs (ISO 7816 interface, LIN, IrDA capability, modem control)
 - Up to two SPIs (18 Mbit/s)
 - o CAN interface (2.0B Active)
 - USB 2.0 full-speed interface
- CRC calculation unit, 96-bit unique ID
- Packages are ECOPACK®

Powering: Use [5V] pin and [G] pin to connect power for the blue pill board.

Pinout:

⇄	Header :	1 pins		→ Header 2 pins						
#	Name	Function	Connected to	#	Name	Function	Connected to			
1	VB	-	V_{BAT}	1	3.3	-	+3.3V rail			
2	C13	-	PC13	2	G	-	Ground plane			
3	C14	-	PC14	3	5V	-	+5V rail			
4	C15	-	PC15	4	B9	-	PB9			
5	AO	-	PA0	5	B8	-	PB8			
6	A1	-	PA1	6	B7	-	PB7			
7	A2	-	PA2	7	B6	-	PB6			
8	A3	-	PA3	8	B5	-	PB5			
9	A4	-	PA4	9	B4	-	PB4			
10	A5	-	PA5	10	B3	-	PB3			
11	A6	-	PA6	11	A15	-	PA15			
12	A7	-	PA7	12	A12	-	PA12			
13	В0	-	PB0	13	A11	-	PA11			
14	B1	-	PB1	14	A10	-	PA10			
15	B10	-	PB10	15	A9	-	PA9			
16	B11	-	PB11	16	A8	-	PA8			
17	R	-	NRST	17	B15	-	PB15			
18	3.3	-	+3.3V rail	18	B14	-	PB14			
19	G	-	Ground plane	19	B13	-	PB13			
20	G	-	Ground plane	20	B12	-	PB12			

Schematic:

SYSTEM COMPONENTS AND RELATIONS

SYSTEM SCHEMATIC

CLOSURE MCU

BLOCK SCHEMATIC

NECESSARY FUNCTIONS

- Control the suspension adjustment motors based on CAN messages [T.B.D]
 - o This function cannot be detailed at actual status, will be updated as soon as possible
- Control the door motors and latch motors based on CAN messages
- Door motors and latch motors should be on separate RS485 bus
- The latch and door motors controls should be able to:
 - Door open function:
 - From door closed state: Open latch → Open door fully → Release electical control on latch and door motor (free movement)
 - Door close funciton:
 - From door open state: Close door \rightarrow Close latch \rightarrow Release electical control on latch and door motor (free movement)
 - O Door pop-up function:
 - From door closed state: Open latch \rightarrow Open door slightly (pop-up) \rightarrow Release electical control on latch and door motor (free movement)
 - Report the following state of the motors via CAN messages:
 - 4 latch motor state (open/close)
 - 4 door motor state (closed/openFree/moving)

DOOR MOTOR DRIVERS

Oriental motor AZD-AD series

- **Product page:** https://catalog.orientalmotor.com/item/azd-closed-loop-absolute-type-servo-drivers-ac/azd-absolute-stepper-driver-stored-data/azd-ad
- Operating manual: https://www.orientalmotor.com/products/pdfs/opmanuals/HM-60314-5owE.pdf

• Function manual: https://www.orientalmotor.com/products/pdfs/opmanuals/HM-60262-9E.pdf

LATCH MOTORS

Dynamixel XM430-W350-R

- Product page: https://emanual.robotis.com/docs/en/dxl/x/xm430-w350/
- Operating manual and function manual is on the product homepage, please check for more information

COMMUNICATION SPECIFICATION (CAN, RS485)

	CAN (5.0V) → RX message: BDC to CLOSURE MCU											
ID	0x50	DLC	2	Baud rate	500kbit/s	Transmission	Tx, periodic	50ms				
Bits→	7	6	- 4		3	2	1	0				
Bytes↓	/	0	5	4	3	2	1	0				
	>RRR_door_req		>RRL_door_req		>FRR_door_req		>FRL_door_req					
	[0] No action		[0] No action		[0] No action		[0] No action					
0	[1] Open door		[1] Open door		[1] Open door		[1] Open door					
	[2] Pop-up door		[2] Pop-up door		[2] Pop-up door		[2] Pop-up door					
	[3] Close door		[3] Close door		[3] Close door		[3] Close door					
1	> BDC_to_CLOS	SURE_MCU_MsgCounter										
1	■ Increase by 1	■ Increase by 1 at every Msg, restarts from 0 at overflow										

Table 1: CAN msg - BDC to CLOSURE MCU

	CAN (5.0V) → TX message: CLOSURE MCU to BDC												
ID	0x51	DLC	3 Baud rate		500kbit/s Transmission		Tx, periodic	50ms					
Bits→ Bytes↓	7	6	5	4	3	2	1	0					
0	>RRR_latch_sts [0] No action [1] Closed [2] Open [3] N/A		>RRL_latch_sts [0] No action [1] Closed [2] Open [3] N/A		>FRR_latch_sts [0] No action [1] Closed [2] Open [3] N/A		>FRL_latch_sts [0] No action [1] Closed [2] Open [3] N/A						
1	>RRR_door_sts [0] No action [1] Closed [2] OpenFree [3] Moving		>RRL_door_sts [0] No action [1] Closed [2] OpenFree [3] Moving		>FRR_door_sts [0] No action [1] Closed [2] OpenFree [3] Moving		>FRL_door_sts [0] No action [1] Closed [2] OpenFree [3] Moving						
2	_	U_to_BDC_MsgCo	ounter arts from 0 at over	flow	-		-						

Table 2: CAN msg - CLOSURE MCU to BDC

RS485 (5.0V) → TX message: CLOSURE MCU to DOOR MOTORS											
Baud rate		115200 bit/s		Transn	nission	Tx, e					
Bits→	7	6	5	1	3	2	1	0			
Bytes ↓	/	0	3	4	S	2	1	U			
0		485 communication	on with door moto	rs based on the Or	ental Motor docur	nentation.					
	DOCUMENT LIN	<u>K</u> p267									
Х											

Table 3: RS485 msg - CLOSURE MCU to DOOR MOTORS

	RS485 (5.0V) → TX message: CLOSURE MCU to LATCH MOTORS											
Baud rate		115200 bit/s		Transn	nission	Tx, e						
Bits→	7	6	E	4	3	2	1	0				
Bytes ↓	/	b	3	4	'	2	1	U				
0		Please make RS485 communication with latch motors based on the Dynamixel product page information. PRODUCT HOMEPAGE										
	THODOGITION	- I AOL										
Χ												

BOARD DESIGN REQUESTS

- 1. The CLOSURE MCU board will be powered by 12VDC, please use appropriate DC/DC converter to drop it to 5VDC and use the Nucleo board's 5V pin to power the MCU.
 - 1.1. Recommended DC/DCs
 - 1.1.1. ROHM BP5293-50: https://akizukidenshi.com/catalog/g/g111188/
 - 1.1.2. MINMAX M78AR05-1: https://akizukidenshi.com/catalog/g/g113536/
- 2. Please use Wurth Elektronik WR-MPC3 connectors for the following connections:
 - 2.1. CN1 (power), 2pin side entry: WR-MPC3 66200221022
 - 2.2. CN300 (CAN), 4pin side entry: WR-MPC3 66200421022
 - 2.3. CN450 (latch RS485), 4pin side entry: WR-MPC3 66200421022
 - 2.4. Please make PIN1 to GND for all connectors, the other pins can se selected freely
- 3. Please use <u>RJ45 side entry connector</u> for the following connections:
 - 3.1. CN400 (door RS485): RJE091884111A
 - 3.2. Please design pin layout based on the oriental motor documentation
- 4. Add proper GND pouring to the PCB where it is possible, especially at CAN and RS485 routes
- 5. Please make the design in a way to be able to select on/off 120R terminiting resistor for CAN and RS485 buses
 - 5.1. Recommended design: Add 3pin header to select 120R resistor
- 6. Please make the deisng in a way to be able to see CAN and RS485 signal for debugging, even when the connectors are connected.
 - 6.1. Recommended design: Add 3pin header to see CAN gnd, CAN HIGH, CAN LOW
 - 6.2. Recommended design: Add 3pin header to see RS485 gnd, RS485 A, RS485 B

Figure 1: Example of routing for RS485 routes

STRG MCU

BLOCK SCHEMATIC

NECESSARY FUNCTIONS

- Read the button statuses and handle their debouncing phenomena
- Send the button statuses via CAN msg
- Send specified keycode (keyboard USB HID emulation) to PC when specific button pressed

COMMUNICATION SPECIFICATION (CAN, KEYCODE USB)

CAN (5.0V) → RX message: BDC to STRG MCU									
ID	0x60	DLC	4	Baud rate	500kbit/s	Transmission	Tx, periodic	50ms	
Bits→ Bytes↓	7	6	5	4	3	2	1	0	
0	>STRG_LED_R [0-255]								
1	>STRG_LED_G [0-255]								
2	>STRG_LED_B [0-255]								
3	> BDC_to_STRG_MCU_MsgCounter Increase by 1 at every Msg, restarts from 0 at overflow								

Table 5: CAN msg - BDC to STRG MCU

CAN (5.0V) → TX message: STRG MCU to BDC									
ID	0x61	DLC	4	Baud rate	500kbit/s	Transmission	Tx, periodic	50ms	
Bits→ Bytes↓	7	6	5	4	3	2	1	0	
0	>LH_DN_sts [0] No action	>LH_UP_sts [0] No action	>LH_ENC_RI GHT_sts	>LH_ENC_LE FT_sts	>LH_ENC_DN _sts	>LH_ENC_UP _sts	>LH_ENC_PU SH _sts	>LH_PUSH_T OP_sts	

	[1] Pushed	[1] Pushed	[0] No action						
			[1] Pushed						
1	>RH_ENC_LE	>RH_ENC_DN	>RH_ENC_UP	>RH_ENC_PU	>RH_PUSH_T	>LH_PUSH_B	>LH_RIGHT_s	>LH_LEFT_sts	
	FT_sts	_sts	_sts	SH_sts	OP_sts	TM_sts	ts	[0] No action	
	[0] No action	[0] No action	[0] No action	[0] No action	[0] No action	[0] No action	[0] No action	[1] Pushed	
	[1] Pushed	[1] Pushed	[1] Pushed	[1] Pushed	[1] Pushed	[1] Pushed	[1] Pushed		
2	>GEAR_DN_st	>GEAR_UP_st	>RH_PUSH_B	>RH_RIGHT_s	>RH_LEFT_sts	>RH_DN_sts	>RH_UP_sts	>RH_ENC_RI	
	s	S	TM_sts	ts	[0] No action	[0] No action	[0] No action	GHT_sts	
	[0] No action	[0] No action	[0] No action	[0] No action	[1] Pushed	[1] Pushed	[1] Pushed	[0] No action	
	[1] Pushed	[1] Pushed	[1] Pushed	[1] Pushed				[1] Pushed	
3	> STRG_MCU_to_BDC_MsgCounter								
	■ Increase by 1 at every Msg, restarts from 0 at overflow								

Table 6: CAN msg - STRG MCU to BDC

Please send the following keycodes once, when the buttons are pressed.

For the encoder there are two separate keycode to send based on the usage, having 1 scroll or multiple scroll in a given time. The logic to this can be seen below:

BOARD DESIGN REQUESTS

- 1. The STRG MCU board will be powered by 12VDC, please use appropriate DC/DC converter to drop it to 5VDC and use the Nucleo board's 5V pin to power the MCU.
 - 1.1. Recommended DC/DCs
 - 1.1.1. ROHM BP5293-50: https://akizukidenshi.com/catalog/g/g111188/
 - 1.1.2. MINMAX M78AR05-1: https://akizukidenshi.com/catalog/g/g113536/
- 2. Please use <u>JST XH</u> connectors for the following connections:
 - 2.1. CN1 (power), 2pin side entry: B2B-XH-A
 - 2.2. CN300 (CAN), 3pin top entry: B3B-XH-A
 - 2.3. CN600 (USB), 5pin top entry: B5B-XH-A
 - 2.4. CN 500 (LED), 3pin top entry: B3B-XH-A
 - 2.5. J1 (LH BTNS 1), 6pin top entry: B6B-XH-A
 - 2.6. J2 (LH BTNS 2), 6pin top entry: B6B-XH-A
 - 2.7. J3 (RH BTNS 1), 6pin top entry: B6B-XH-A
 - 2.8. J4 (RH BTNS 2), 6pin top entry: B6B-XH-A
 - 2.9. J5 (LH ENCODER), 4pin top entry: B4B-XH-A
 - 2.10. J6 (RH ENCODER), 4pin top entry: B4B-XH-A
 - 2.11. Please make PIN1 to GND for all connectors, the other pins can se selected freely

2.12. For illustration about connection of STRG MCU PCB and STRG BUTTONS PCB please see the figure below

Figure 2: STRG MCU PCB adn STRG BUTTONS PCB connection illustration

- 3. Add proper GND pouring to the PCB where it is possible, especially at CAN routes
 - 3.1. Please make the design in a way to be able to select on/off 120R terminiting resistor for CAN
 - 3.2. Recommended design: Add 3pin header to select 120R resistor
- 4. Please make the deisng in a way to be able to check CAN signal for debugging, even when the connectors are connected. (See details at CLOSURE MCU section)
 - 4.1. Recommended design: Add 3pin header to see CAN gnd, CAN HIGH, CAN LOW
- 5. Please design the PCB with the following dimensions

