Machine Learning

(機器學習)

Lecture 3: Feasibility of Learning

Hsuan-Tien Lin (林軒田)

htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Roadmap

1 When Can Machines Learn?

Lecture 3: Feasibility of Learning

- Learning is Impossible?
- Probability to the Rescue
- Connection to Learning
- Connection to Real Learning
- Feasibility of Learning Decomposed

A Learning Puzzle

$$y_n = -1$$

$$y_n = +1$$

$$g(\mathbf{x}) = ?$$

let's test your 'human learning' with 6 examples :-)

Two Controversial Answers

whatever you say about $g(\mathbf{x})$,

$$y_n = -$$

$$y_n = -1$$

$$y_n = +1$$

$$g(\mathbf{x}) = ?$$

truth $f(\mathbf{x}) = +1$ because . . .

truth
$$f(\mathbf{x}) = -1$$
 because . . .

which reason is correct?

Two Controversial Answers

whatever you say about $g(\mathbf{x})$,

$$y_n = -1$$

$$g(\mathbf{x}) = ?$$

truth $f(\mathbf{x}) = +1$ because . . .

- symmetry ⇔ +1
- (black or white count = 3) or (black count = 4 and middle-top black) ⇔ +1

truth $f(\mathbf{x}) = -1$ because . . .

- left-top black ⇔ -1
- middle column contains at most 1 black and right-top white ⇔ -1

all valid reasons, your adversarial teacher can always call you 'didn't learn'. :-(

A Brain-Storming Problem

$$(5,3,2) \rightarrow 151022, \quad (7,2,5) \rightarrow ?$$

It is like a 'learning problem' with N = 1, $\mathbf{x}_1 = (5, 3, 2)$, $y_1 = 151022$. Learn a hypothesis from the one example to predict on $\mathbf{x} = (7, 2, 5)$. What is your answer?

151026

$$g(\mathbf{x}) = 151012 + x_1 + x_2 + x_3$$

143547

$$g(\mathbf{x}) = x_1 \cdot x_2 \cdot 10000 + x_1 \cdot x_3 \cdot 100 + (x_1 \cdot x_2 + x_1 \cdot x_3 - x_2)$$

which one is the **smarter** answer that only top 2% people can think of?

What is the Next Number?

1,4,1,5

What is the Next Number?

1,4,1,5,0,-1,1,6 by
$$y_t = y_{t-4} - y_{t-2}$$

1,4,1,5,1,6,1,7 by
$$y_t = y_{t-2} + [t \text{ is even}]$$

1,4,1,5,2,9,3,14 by
$$y_t = y_{t-4} + y_{t-2}$$

any number can be the next!

A 'Simple' Binary Classification Problem

$$\begin{array}{c|c|c} \mathbf{x}_n & y_n = f(\mathbf{x}_n) \\ \hline 0 0 0 & \circ \\ 0 0 1 & \times \\ 0 1 0 & \times \\ 0 1 1 & \circ \\ 1 0 0 & \times \\ \end{array}$$

• $\mathcal{X} = \{0, 1\}^3$, $\mathcal{Y} = \{0, \times\}$, can enumerate all candidate f as \mathcal{H}

pick
$$g \in \mathcal{H}$$
 with all $g(\mathbf{x}_n) = y_n$ (like PLA), does $g \approx f$?

Infeasibility of Learning

	x	у	g	f_1	f_2	f_3	f_4	<i>f</i> ₅	f_6	f ₇	f_8
	000	0	0	0	0	0	0	0	0	0	0
_	0 0 1	×	×	×	×	×	×	X	×	×	×
\mathcal{D}	010	×	×	×	×	×	×	X	×	×	×
	011	0	0	0	0	0	0	0	0	0	0
	100	×	×	×	×	×	×	×	×	×	×
	101		?	0	0	0	0	X	X	×	×
	110		?	0	0	×	×	0	0	×	×
	111		?	0	×	0	×	0	×	0	×

- $g \approx f$ inside \mathcal{D} : sure!
- $g \approx f$ outside \mathcal{D} : No! (but that's really what we want!)

learning from \mathcal{D} (to infer something outside \mathcal{D}) is doomed if any 'unknown' f can happen. :-(

No Free Lunch Theorem for Machine Learning

Without any assumptions on the learning problem on hand, all learning algorithms perform the same.

(CC-BY-SA 2.0 by Gaspar Torriero on Flickr)

no algorithm is best for all learning problems

Questions?

Inferring Something Unknown with Assumptions

difficult to infer unknown target f outside \mathcal{D} in learning; can we infer something unknown in other scenarios?

- consider a bin of many many orange and green marbles
- do we know the orange portion (probability)? No!

can you infer the orange probability?

Statistics 101: Inferring Orange Probability

bin

assume

orange probability = μ , green probability = $1 - \mu$, with μ **unknown**

sample

assume N marbles sampled independently:

orange fraction =
$$\nu$$
, green fraction = $1 - \nu$,

now ν known

does in-sample ν say anything about out-of-sample μ ?

Possible versus Probable

does in-sample ν say anything about out-of-sample μ ?

No!

possibly not: sample can be mostly green while bin is mostly orange

Yes!

probably yes: in-sample ν likely close to unknown μ

formally, what does ν say about μ ?

Hoeffding's Inequality (1/2)

• in big sample (*N* large), ν is probably close to μ (within ϵ)

$$\mathbb{P}\left[\left|\nu-\mu\right|>\epsilon\right]\leq 2\exp\left(-2\epsilon^2\mathsf{N}\right)$$

• called Hoeffding's Inequality, for marbles, coin, polling, ...

the statement ' $\nu = \mu$ ' is probably approximately correct (PAC)

Hoeffding's Inequality (2/2)

$$\mathbb{P}\left[\left|\nu - \mu\right| > \frac{\epsilon}{\epsilon}\right] \le 2\exp\left(-2\epsilon^2 N\right)$$

- valid for all N and e
- does not depend on μ , no need to 'know' μ
- larger sample size N or
 looser gap ε
 ⇒ higher probability for 'ν ≈ μ'

if large N, can probably infer unknown μ by known ν (under iid sampling assumption)

Questions?

Connection to Learning Connection to Learning

bin

- unknown orange prob. μ
- marble ∈ bin
- orange •
- green •
- size-N sample from bin

of i.i.d. marbles

learning

- fixed hypothesis $h(\mathbf{x}) \stackrel{?}{=} \text{target } f(\mathbf{x})$
- ullet $\mathbf{x} \in \mathcal{X}$
- h is wrong $\Leftrightarrow h(\mathbf{x}) \neq f(\mathbf{x})$
- h is right $\Leftrightarrow h(\mathbf{x}) = f(\mathbf{x})$
- check h on $\mathcal{D} = \{(\mathbf{x}_n, \underbrace{y_n}_{f(\mathbf{x}_n)})\}$

with i.i.d. \mathbf{x}_n

if large N & i.i.d. \mathbf{x}_n , can probably infer unknown $[\![h(\mathbf{x}) \neq f(\mathbf{x})]\!]$ probability by known $[\![h(\mathbf{x}_n) \neq y_n]\!]$ fraction

(set of candidate formula)

for any fixed h, can probably infer

by known
$$E_{in}(\mathbf{h}) = \frac{1}{N} \sum_{n=1}^{N} [h(\mathbf{x}_n) \neq y_n]$$

(under iid sampling assumption)

The Formal Guarantee

for any fixed h, in 'big' data (N large),

in-sample error $E_{\text{in}}(h)$ is probably close to out-of-sample error $E_{\text{out}}(h)$ (within ϵ)

$$\mathbb{P}\left[\left|E_{\mathsf{in}}(h) - E_{\mathsf{out}}(h)\right| > \epsilon\right] \leq 2\exp\left(-2\epsilon^2N\right)$$

same as the 'bin' analogy ...

- valid for all N and ∈
- does not depend on E_{out}(h), no need to 'know' E_{out}(h)
 —f and P can stay unknown
- 'E_{in}(h) = E_{out}(h)' is probably approximately correct (PAC)

if
$${}^{`}E_{in}(h) \approx E_{out}(h)$$
' and ${}^{`}E_{in}(h)$ small' $\Longrightarrow E_{out}(h)$ small $\Longrightarrow h \approx f$ with respect to P

Verification of One h

for any fixed h, when data large enough,

$$E_{\text{in}}(h) \approx E_{\text{out}}(h)$$

Can we claim 'good learning' ($g \approx f$)?

Yes!

if $E_{in}(h)$ small for the fixed hand A pick the h as g \implies 'g = f' PAC

No!

if \mathcal{A} forced to pick THE h as g $\implies E_{\text{in}}(h)$ almost always not small $\implies g \neq f$ PAC!

real learning:

 \mathcal{A} shall make choices $\in \mathcal{H}$ (like PLA) rather than being forced to pick one h. :-(

The 'Verification' Flow

can now use 'historical records' (data) to verify 'one candidate formula' h

Questions?

Multiple h

real learning (say like PLA):

BINGO when getting ••••••?

Q: if everyone in size-400 NTU ML class flips a coin 5 times, and one of the students gets 5 heads for her coin 'g'. Is 'g' really magical?

A: No. Even if all coins are fair, the probability that one of the coins results in 5 heads is $1 - \left(\frac{31}{32}\right)^{400} > 99\%$.

BAD sample: E_{in} and E_{out} far away
—can get worse when involving 'choice'

Hsuan-Tien Lin (NTU CSIE) Machine Learning 25/35

BAD Sample and BAD Data

BAD Sample

e.g., $E_{\text{out}} = \frac{1}{2}$, but getting all heads ($E_{\text{in}} = 0$)!

BAD Data for One h

 $E_{\text{out}}(h)$ and $E_{\text{in}}(h)$ far away:

e.g., E_{out} big (far from f), but E_{in} small (correct on most examples)

	\mathcal{D}_1	\mathcal{D}_2	 \mathcal{D}_{1126}	 \mathcal{D}_{5678}	 Hoeffding
h	BAD			BAD	$\mathbb{P}_{\mathcal{D}}\left[\mathbf{BAD} \ \mathcal{D} \ \text{for } h \right] \leq \dots$

Hoeffding: small

$$\mathbb{P}_{\mathcal{D}} \left[\mathbf{BAD} \; \mathcal{D} \right] = \sum_{\mathsf{all \; possible} \mathcal{D}} \mathbb{P}(\mathcal{D}) \cdot \left[\!\!\left[\mathbf{BAD} \; \mathcal{D} \right] \!\!\right]$$

BAD Data for Many h

- **GOOD** data for many *h*
- \iff **GOOD** data for verifying any h
- \iff there exists **no BAD** h such that $E_{out}(h)$ and $E_{in}(h)$ far away there exists some h such that $E_{out}(h)$ and $E_{in}(h)$ far away
- \iff BAD data for many h

	\mathcal{D}_1	\mathcal{D}_{2}	 \mathcal{D}_{1126}	 \mathcal{D}_{5678}	Hoeffding
h_1	BAD			BAD	$\mathbb{P}_{\mathcal{D}}\left[\mathbf{BAD} \ \mathcal{D} \ \text{for} \ h_1 \right] \leq \dots$
h ₂		BAD			$\mathbb{P}_{\mathcal{D}}\left[BAD\;\mathcal{D}\;for\;\mathit{h}_{2}\right]\leq\ldots$
h_3	BAD	BAD		BAD	$\mathbb{P}_{\mathcal{D}}\left[BAD\;\mathcal{D}\;for\;\mathit{h}_{3}\right]\leq\ldots$
h_M	BAD			BAD	$\mathbb{P}_{\mathcal{D}}\left[BAD\;\mathcal{D}\;for\;h_{M}\right]\leq\ldots$
all	BAD	BAD	GOOD	BAD	?

do *not* know if \mathcal{D} is **BAD** or not; wish $\mathbb{P}_{\mathcal{D}}[\mathsf{BAD}\ \mathcal{D}]$ small & pray for "**GOOD luck**"

Bound of BAD Data

 $\mathbb{P}_{\mathcal{D}}[\mathsf{BAD}\;\mathcal{D}]$

- $= \mathbb{P}_{\mathcal{D}} [\mathbf{BAD} \ \mathcal{D} \text{ for } h_1 \text{ or } \mathbf{BAD} \ \mathcal{D} \text{ for } h_2 \text{ or } \dots \text{ or } \mathbf{BAD} \ \mathcal{D} \text{ for } h_M]$
- $\leq \mathbb{P}_{\mathcal{D}}[\mathsf{BAD}\ \mathcal{D}\ \mathsf{for}\ h_1] + \mathbb{P}_{\mathcal{D}}[\mathsf{BAD}\ \mathcal{D}\ \mathsf{for}\ h_2] + \ldots + \mathbb{P}_{\mathcal{D}}[\mathsf{BAD}\ \mathcal{D}\ \mathsf{for}\ h_M]$ (union bound)

$$\leq \quad 2\exp\left(-2\epsilon^2N\right) + 2\exp\left(-2\epsilon^2N\right) + \ldots + 2\exp\left(-2\epsilon^2N\right)$$

- $= 2M \exp\left(-2\epsilon^2 N\right)$
- finite-bin version of Hoeffding, valid for all M, N and ϵ
- does not depend on any $E_{\text{out}}(h_m)$, no need to 'know' $E_{\text{out}}(h_m)$ —f and P can stay unknown
- ' $E_{in}(g) = E_{out}(g)$ ' is PAC, regardless of \mathcal{A}

'most reasonable' \mathcal{A} (like PLA): pick the h_m with lowest $E_{in}(h_m)$ as g

Questions?

if $|\mathcal{H}| = M$ finite, N large enough, for whatever α picked by

for whatever g picked by $\mathcal{A},\, \mathcal{E}_{\mathsf{out}}(g) pprox \mathcal{E}_{\mathsf{in}}(g)$

if ${\cal A}$ finds one g with $E_{\rm in}(g)\approx 0$,

PAC guarantee for $E_{\text{out}}(g) \approx 0 \Longrightarrow \text{learning possible :-}$

Two Central Questions

for batch & supervised binary classification,
$$g \approx f \iff E_{\text{out}}(g) \approx 0$$

achieved through
$$\underbrace{E_{\mathsf{out}}(g) \approx E_{\mathsf{in}}(g)}_{\mathsf{lecture } 3}$$
 and $\underbrace{E_{\mathsf{in}}(g) \approx 0}_{\mathsf{lecture } 1}$

learning split to two central questions:

- 1 can we make sure that $E_{out}(g)$ is close enough to $E_{in}(g)$? (test/generalize)
- 2 can we make $E_{in}(g)$ small enough? (train/optimize)

what role does $\underbrace{\textit{M}}_{|\mathcal{H}|}$ play for the two questions?

Trade-off on M

- 1 can we make sure that $E_{out}(g)$ is close enough to $E_{in}(g)$?
- 2 can we make $E_{in}(g)$ small enough?

small M

- 1 Yes!, $\mathbb{P}[BAD] < 2 \cdot M \cdot \exp(...)$
- 2 No!, too few choices

large M

- 1 No!, $\mathbb{P}[\mathbf{BAD}] \leq 2 \cdot \mathbf{M} \cdot \exp(\ldots)$
- 2 Yes!, many choices

using the right M (or \mathcal{H}) is important $M = \infty$ doomed?

Preview

Known

$$\mathbb{P}\left[\left| \mathsf{E}_{\mathsf{in}}(g) - \mathsf{E}_{\mathsf{out}}(g)
ight| > \epsilon
ight] \leq 2 \cdot \mathsf{M} \cdot \exp\left(-2\epsilon^2 \mathsf{N}
ight)$$

Todo

establish a finite quantity that replaces M

$$\mathbb{P}\left[\left|E_{\mathsf{in}}(g) - E_{\mathsf{out}}(g)\right| > \epsilon\right] \stackrel{?}{\leq} 2 \cdot m_{\mathcal{H}} \cdot \exp\left(-2\epsilon^2 N\right)$$

- justify the feasibility of learning for infinite M
- study $m_{\mathcal{H}}$ to understand its trade-off for 'right' \mathcal{H} , just like M

mysterious PLA to be fully resolved "soon":-)

Questions?

Summary

1 When Can Machines Learn?

Lecture 2: The Learning Problems

Lecture 3: Feasibility of Learning

- Learning is Impossible?
 absolutely no free lunch outside D
- Probability to the Rescue probably approximately correct outside D
- Connection to Learning
 verification possible if E_{in}(h) small for fixed h
- Connection to Real Learning learning possible if $|\mathcal{H}|$ finite and $E_{in}(g)$ small
- Feasibility of Learning Decomposed two questions: $E_{\text{out}}(g) \approx E_{\text{in}}(g)$, and $E_{\text{in}}(g) \approx 0$
- 2 Why Can Machines Learn?
 - next: what if $|\mathcal{H}| = \infty$?