Mec E 230 Formula Sheet

Generalized CV-CS Analysis

Conservation of mass: $\frac{dm_{CV}}{dt} = \dot{m}_{in} - \dot{m}_{out}$ Conservation of energy:

$$\frac{dE_{CV}}{dt} = (\dot{E}_{in} - \dot{E}_{out}) + (\dot{W}_{in} - \dot{W}_{out}) + \dot{Q} - \dot{W},$$

where for **Closed system** \Rightarrow no mass in/out of system, steady-state system \Rightarrow no Δ w/ time, adiabatic system \Rightarrow no addition/removal of heat.

Work

General: $W = \int F dx$

Translational: $W_{M,T} = \int_{s_1}^{s_2} F ds$ and $\dot{W}_{M,T} = Fv$.

F, s, and v are in the same direction.

Rotational: $W_{M,R} = \int_{\theta_1}^{\theta_2} T d\theta$ and $\dot{W}_{M,R} = T\omega$.

Electrical: $W_E = \int_{t_1}^{t_2} \xi I dt$ and $\dot{W}_E = \xi I$.

Boundary: $W_B = \int_{V_1}^{V_2} p \, dV$.

Flow: $\dot{W}_F = \dot{m}w_F$, where $w_F = p\nu = \frac{p}{\rho}$

Change in the energy in a system

 $\Delta E_{CV} = \Delta KE + \Delta PE + \Delta U_T + \Delta U_L + \Delta U_C + \Delta U_N$

- $\Delta KE = \frac{1}{2} \left(m \left(v_2^2 v_1^2 \right) + I_G(\omega_2^2 + \omega_1^2) \right)$
- $\Delta PE = mq(h_2 h_1)$
- $\Delta U_T = m \int_{T_1}^{T_2} c_v(T) dT$ where if c_v is constant we write $\Delta U_T = mc_v(T_2 T_1)$
- $\Delta U_L = m u_L$ where u_L is the specific latent heat of phase change

Random heat/pressure-related things

Adiabatic, quasi-equilibrium, ideal gas, const. c_v :

 $\frac{T_2}{T_1} = \left(\frac{V_1}{V_2}\right)^{k-1}; \, \frac{p_2}{p_1} = \left(\frac{V_1}{V_2}\right)^{k-1},$ where k is a constant from table A-8 or table B-8

Pressure: $p = \frac{1}{2} m_p \hat{n} \langle v^2 \rangle$ where m_p is the mass of the particle, \hat{n} is the number of particles per unit volume, and v is the particle's velocity.

Also, pressure: $p = \frac{F}{A}$

Ideal Gas Law: $pV = n\bar{R}T$ $Moles \Leftrightarrow Mass: m = nM$

Specific volume: $\nu = \frac{1}{\rho} = \frac{V}{m}$ Isothermal: $V_1p_1 = V_2p_2$ since nRT is constant.

Heat transfer

Conduction (Fourier's law (1D)): $\dot{Q}_{cond} = -kA\frac{dT}{dx}$

Then, if k and A are constant with x:

$$\left|\dot{Q}_{cond}\right| = -\frac{kA}{L}\Delta T = \frac{1}{R_{cond}}\Delta T$$
, where $R_{cond} = \frac{L}{kA}$. For heat transfer through the walls of a cylinder (e.g.

pipe), A is not constant w.r.t. r, and $\left|\dot{Q}_{cond}\right| = \frac{1}{R_{cond}} \Delta T$ where $R_{cond} = \frac{\ln(r_{outer}/r_{inner})}{2\pi L k}$, with L being the length of

Equivalent resistances:

Series: $R_{eff} = R_1 + R_2$; Parallel: $\frac{1}{R_{eff}} = \frac{1}{R_1} + \frac{1}{R_2}$

Convective resistance: $R_{conv} = \frac{1}{hA}$

Important unit conversions

Energy, work:

 $1 \text{ Btu} = 778.169 \, \text{ft} \cdot \text{lbf}$

Temperature:

 $T(^{\circ}F) = \frac{9}{5}T(^{\circ}C) + 32$

 $T(^{\circ}C) = \frac{5}{9}(T(^{\circ}T) - 32)$

 $T(K) = T(^{\circ}C) + 273.15$

 $T(R) = T(^{\circ}F) + 459.67$

 $T(R) = \frac{9}{5}T(K)$

Volume:

 $1 \,\mathrm{m}^3 = 1000 \,\mathrm{L}$

 $1 \,\mathrm{cm}^3 = 1 \,\mathrm{mL}$

Mass, force: $1 \text{ lbm} = \frac{1}{32.174} \text{ slug} = \frac{1 \text{ lbf}}{32.174 \frac{\text{ft}}{-2}}$

Important constants

Universal Gas Constant:

 $\bar{R} = 8.31434 \,\mathrm{J/(mol \cdot K)}$ $= 1.9858 \, \text{Btu/(lbmol} \cdot \text{R)}$

 $= 1545.35 \,\mathrm{ft \cdot lbf/(lbmol \cdot R)}$

 $= 10.73 \,\mathrm{psia} \cdot \mathrm{ft}^3/(\mathrm{lbmol} \cdot \mathrm{R})$

Random notes

3 (+ 1?) types of piston problems:

- 1. **Isothermal**: T is constant, p varies. So replace p with something like $\frac{p_1 V_1}{V}$ in your W_B integral.
- 2. **Isobaric**: T varies, p is constant.
- 3. Nothing constant, but adiabatic: Remeber that $pV^n = constant$, where n is given to you. Should be able to derive something like $W = \frac{mc_v}{R}(p_1V_1 - p_2V_2)$.
- 4. **Isotropic**: Same as Isothermal, but replace p with something like $\frac{p_1V_1^n}{V^n}$ instead.

Be calm. Take your time. If you get stuck for more than ten seconds, move on and come back to it. Enjoy!