# ICI 4242 - Autómatas y compiladores

Autómatas finitos

Rodrigo Olivares Mg. en Ingeniería Informática rodrigo.olivares@uv.cl

1er Semestre

# Contenido

- Introducción
  - Modelado de sistemas discretos
- Autómatas finitos
  - Máquinas de estados finitos
  - Definición formal AFD
  - Definición formal AFND
  - Definición formal  $\lambda$ -AFND
- Conversiones
  - AFND a AFD
  - λ-AFND a AFD

#### Modelado de sistemas discretos

#### Abstracción

La realidad es continua, por lo tanto los sistemas discretos son una abstracción del mundo real. La noción más básica de los modelos de eventos discretos es la de **estado**.

#### Estado

Un estado es una situación en la que se permanece un cierto lapso de tiempo.

#### Modelado de sistemas discretos

## Ejemplo

Un ejemplo de la vida real es el de los "estados civiles", que puede estar una persona: soltera, casada, viuda, divorciada, etc. De uno de estos estados se puede pasar a otro al ocurrir un evento o acción. Así, por ejemplo, del estado "soltero", se puede pasar al estado "casado", al ocurrir el evento "boda". Similarmente, se puede pasar de "casado", a "divorciado", mediante el evento "divorcio".

#### Modelado de sistemas discretos



Modelado de sistemas discretos

#### Estados finales

El propósito de algunos modelos de estados y eventos es el de reconocer secuencias de eventos "buenas", de manera que se les pueda diferencias de las secuencias "malas".

#### Modelado de sistemas discretos

#### Cobro autómatico

El dispensador acepta monedas de valor 1, 2 y 5, y el precio de cada lata es de 5. Vamos a considerar que el evento llamado "1. es la introducción de una moneda de valor 1 en la máquina, el evento "2" para la moneda de valor 2, etc.

La primera cuestión que hay que resolver para diseñar nuestro modelo es decidir cómo son los estados. Una buena idea sería que cada estado recordara lo que se lleva acumulado hasta el momento. El estado inicial, desde luego, recordaría que se lleva acumulado 0.

#### Modelado de sistemas discretos



Máquinas de estados finitos

#### Evento a Transición

A partir de ahora vamos a considerar modelos de estados y eventos un poco más abstractos que los que hemos visto antes. Retomemos el ejemplo de la máquina dispensadora. En ese modelo es posible reconocer secuencias de eventos "aceptables", como la secuencia de monedas 2,2,1 con respecto a secuencias no aceptables, como 1,1,1. A partir de ahora los nombres de los eventos van a estar formados por un caracter, y les llamaremos **transiciones** en vez de "eventos".

#### Máquinas de estados finitos

#### Transición

De este modo, por ejemplo, en vez de un evento "meter 1", vamos a tener una transición con el caracter "1". Desde luego, la elección de qué caracter tomar como nombre de la transición es una decisión arbitraria.

#### Secuencia de transición

Las secuencias de transiciones van a representarse por concatenaciones de caracteres, esto es, por palabras. Así, en el ejemplo de la máquina dispensadora la palabra "1121", representa la secuencia de eventos "meter 1", "meter 1", "meter 2", "meter 1".

#### Máquinas de estados finitos

## Máquina abstracta

Desde el punto de vista abstracto las máquinas pueden ser visualizadas como dispositivos con los siguientes componentes:

- Una cinta de entrada;
- Una cabeza de lectura (y eventualmente escritura);
- Un control.



Definición formal AFD

### Definición

Al describir una máquina de estados finitos en particular, debemos incluir las informaciones que varían de un autómata a otro; es decir, no tiene sentido incluir descripciones generales aplicables a todo autómata. Estas informaciones son exactamente las que aparecen en un diagrama de estados y transiciones.

#### Definición formal AFD

#### Definición matemática o formal

Un **Autómata Finito Determinista** M es una quíntupla (Q,  $\Sigma$ ,  $\delta$ ,  $q_0$ , F), donde:

Q: es un conjunto de identificadores (símbolos) de estados;

 $\Sigma$ : es el alfabeto de entrada;

 $\delta: Q \times \Sigma \to Q$  es la función de transición, que a partir de un estado y un símbolo del alfabeto obtiene un nuevo estado.

 $q_0 \in Q$ : es el estado inicial

 $F \subset Q$ : es un conjunto de estados finales;

Definición formal AFD

#### Definición matemática o formal

La función de transición indica a qué estado se va a pasar sabiendo cuál es el estado actual y el símbolo que se está leyendo. Es importante notar que  $\delta$  es una **función** y no simplemente una relación; esto implica que para un estado y un símbolo del alfabeto dados, habrá un y sólo un estado siguiente. Esta característica se denomina *determinismo* y la definición dada corresponde a los **autómatas finitos determinístas** o AFD.

Definición formal AFD

## Ejemplo AFD

Si consideramos el siguiente autómata:



#### Definición formal AFD

## Ejemplo AFD

Puede ser expresado formalmente como:  $M = (Q, \Sigma, \delta, q_0, F)$ , donde:

$$Q = \{q_0, q_1, q_2\}$$

$$\Sigma = \{a, b\}$$

$$\delta = \{((q_0, a), q_1), ((q_0, b), q_2), ((q_1, a), q_1), ((q_1, b), q_1), ((q_2, a), q_0), ((q_2, b), q_2)\}$$

$$F = \{q_1, q_2\}$$

#### Definición formal AFD

## Ejemplo AFD

La función de transición  $\delta$  puede ser expresada mediante una tabla como la siguiente, para este ejemplo:

|               | q                     | $\sigma$ | $\delta(q,\sigma)$ |
|---------------|-----------------------|----------|--------------------|
| $\rightarrow$ | $q_0$                 | а        | $q_1$              |
| $\rightarrow$ | <b>q</b> 0            | b        | $q_2$              |
| #             | $q_1$                 | а        | $q_1$              |
| #             | $q_1$                 | b        | $q_1$              |
| #             | $q_2$                 | а        | $q_0$              |
| #             | <b>q</b> <sub>2</sub> | b        | $q_2$              |

#### Definición formal AFD

## Ejercicios AFDs

Construya un autómata finito para cada uno de los siguientes lenguajes (representación gráfica y formal):

$$L_1 = \{(ab)^n | n > 1\}$$
  
 
$$L_2 = \{a^n b^m | n \ge 2 \land m \ge 3\}$$



#### Definición formal AFND

#### Definición

Un autómata finito no determinista (AFND) es un autómata finito que, a diferencia de los autómatas finitos deterministas, posee al menos un estado  $q_i \in Q$ , tal que para un símbolo  $a \in \Sigma$  del alfabeto, existe más de una transición  $\delta(q_i, a)$  posible.

#### Definición formal AFND

#### Definición

En un AFND puede darse cualquiera de estos dos casos:

- ightarrow Que existan transiciones del tipo  $\delta(q_i,a)=q_j$  y  $\delta(q_i,a)=q_k$ , siendo  $q_j 
  eq q_k$ ;
- $\rightarrow$  Que existan transiciones del tipo  $\delta(q_i, \lambda)$ , siendo  $q_i$  un estado **no-final**, o bien un estado final pero con transiciones hacia otros estados.

#### Definición formal AFND

#### Definición matemática o formal

Un **Autómata Finito No Determinista** M es una quíntupla (Q,  $\Sigma$ ,  $\delta$ ,  $q_0$ , F), donde:

Q: es un conjunto de identificadores (símbolos) de estados;

 $\Sigma$ : es el alfabeto de entrada;

 $\delta \colon Q \times \Sigma \to \mathcal{P}(Q)$  (conjunto potencia) es la función de transición.

 $q_0 \in Q$ : es el estado inicial

 $F \subset Q$ : es un conjunto de estados finales;

#### Definición formal AFND

## Ejemplo AFND

Puede ser expresado formalmente como:  $M = (Q, \Sigma, \delta, q_0, F)$ , donde:

$$\begin{split} Q &= \{q_0,q_1,q_2\} \\ \Sigma &= \{0,1\} \\ \delta &= \{((q_0,0),q_0),((q_1,0),q_0),((q_2,0),q_2),((q_0,1),q_0),((q_0,1),q_1),\\ ((q_1,1),q_2),((q_2,1),q_1)\} \\ F &= \{q_1\} \end{split}$$

#### Definición formal AFND

# Ejemplo AFND

Definir la función de transición  $\delta$ :

$$q$$
  $\sigma$   $\delta(q,\sigma)$ 

#### Definición formal AFND

# Ejemplo AFND - Solución

Definir la función de transición  $\delta$ :



#### Definición formal AFND

# Ejemplo AFND - Solución



Definición formal  $\lambda$ -AFND

#### Definición

Estas transiciones permiten al autómata cambiar de estado sin procesar/consumir ningún símbolo de entrada.



#### Definición formal $\lambda$ -AFND

#### Definición matemática o formal

**Autómata Finito No Determinista con**  $\lambda$ -transiciones M es una quíntupla  $(Q, \Sigma, \delta, q_0, F)$ , donde:

Q: es un conjunto de identificadores (símbolos) de estados;

 $\Sigma$ : es el alfabeto de entrada;

 $\delta: Q \times (\Sigma \cup \lambda) \to \mathcal{P}(Q)$  (conjunto potencia) es la función de transición.

 $q_0 \in Q$ : es el estado inicial

 $F \subset Q$ : es un conjunto de estados finales;

#### Definición formal $\lambda$ -AFND

## Ejemplo $\lambda$ -AFND

Puede ser expresado formalmente como:  $M = (Q, \Sigma, \delta, q_0, F)$ , donde:

$$\begin{split} Q &= \{q_0,q_1,q_2\} \\ \Sigma &= \{0,1\} \\ \delta &= \{((q_0,0),q_0),((q_1,0),q_0),((q_2,0),q_2),((q_0,1),q_0),((q_0,1),q_1),\\ ((q_1,1),q_2),((q_2,\lambda),q_1)\} \\ F &= \{q_1\} \end{split}$$

Definición formal  $\lambda$ -AFND

# Ejemplo $\lambda$ -AFND

Definir la función de transición  $\delta$ :

$$q$$
  $\sigma$   $\delta(q,\sigma)$ 

Definición formal  $\lambda$ -AFND

# Ejemplo $\lambda$ -AFND - Solución

Definir la función de transición  $\delta$ :



#### Definición formal $\lambda$ -AFND

# Ejemplo $\lambda$ -AFND - Solución



# Conversiones AFND a AFD

#### AFND a AFD

Existe una equivalencia entre los AFD y AFND, de forma que un autómata  $\mathbf{M}$  es equivalente a un autómata  $\mathbf{M}$ ', ssi L(M) = L(M'). Este procedimiento, es llamado **construcción de subconjuntos**.

# Conversiones AFND a AFD

## Algoritmo

- 1.- Construir una tabla con columnas, una por cada  $\sigma \in \Sigma$ .
- 2.- En la primera fila, escribir  $\{q_0\}$  y en la columna  $\sigma_i$  escribir  $\delta(\{q_0\}, \sigma_i)$ , es decir, todos los estados a los que puedo llegar desde  $q_0$  con entrada  $\sigma_i$ .
- 3.- Copiar las casillas de la fila anterior como principio de nuevas filas.
- 4.- Para cada fila R pendiente, rellenar la fila R escribiendo en cada columna  $\sigma_i$ ,  $\delta(R, \sigma_i)$ , es decir, todos los estados a los que puedo llegar desde algún estado de R con entrada  $\sigma_i$ .
- 5.- Repetir los pasos 3 y 4 hasta que no queden filas por rellenar.

# Conversiones

AFND a AFD

# Ejemplo

Según el siguiente AFND, construya el AFD equivalente.



# Conversiones AFND a AFD

# Ejemplo - Solución

| $\{Q\}$       | а             | Ь             |
|---------------|---------------|---------------|
| $\{q_0\}$     | $\{q_1,q_2\}$ |               |
| $\{q_1,q_2\}$ | $\{q_1,q_2\}$ | $\{q_3,q_4\}$ |
| $\{q_3,q_4\}$ | $\{q_1\}$     | $\{q_3,q_4\}$ |
| $\{q_1\}$     | $\{q_1,q_2\}$ |               |

# Conversiones AFND a AFD

## Ejemplo - Solución (renombrando estados)

| $\{Q\}$       | a             | Ь             | $q_i'$ |
|---------------|---------------|---------------|--------|
| $\{q_0\}$     | $\{q_1,q_2\}$ |               | $q'_0$ |
| $\{q_1,q_2\}$ | $\{q_1,q_2\}$ | $\{q_3,q_4\}$ | $q_2'$ |
| $\{q_3,q_4\}$ | $\{q_1\}$     | $\{q_3,q_4\}$ | $q_3'$ |
| $\{q_1\}$     | $\{q_1,q_2\}$ |               | $q_1'$ |

#### Ejemplo - Solución (renombrando estados)

$$\begin{array}{c|c|c} \{Q\} & a & b \\ \hline \{q'_0\} & \{q'_2\} & --- \\ \{q'_2\} & \{q'_2\} & \{q'_3\} \\ \{q'_3\} & \{q'_1\} & \{q'_3\} \\ \{q'_1\} & \{q'_2\} & --- \\ \end{array}$$

AFND a AFD

### Ejemplo - Solución



$$G = \cdots$$

$$M' = \cdots$$

$$L(G) = \{\lambda \mid a^{n+1} \mid (a^{n+1}b^{m+1})aa / n \geqslant 0 \land m \geqslant 0\}$$

El automata no posee una  $\lambda$ -transición, sin embargo la cadena vacía es aceptada por el lenguaje.

#### Ejercicio

Según el siguiente AFND, construya el AFD equivalente.



#### Ejercicio - Solución

| { <b>Q</b> }             | а                 | Ь                        | $q_i'$                |
|--------------------------|-------------------|--------------------------|-----------------------|
| $\{q_0\}$                | $\{q_0\}$         | $\{q_0,q_1\}$            | $\{q_0'\}$            |
| $\{q_0,q_1\}$            | $\{q_0,q_2\}$     | $\{q_0, q_1, q_2\}$      | $\{q_1'\}$            |
| $\{q_0,q_2\}$            | $\{q_0,q_3\}$     | $\{q_0,q_1,q_3\}$        | $\{q_2'\}$            |
| $\{q_0,q_1,q_2\}$        | $\{q_0,q_2,q_3\}$ | $\{q_0, q_1, q_2, q_3\}$ | $\{q_3'\}$            |
| $\{q_0,q_3\}$            | $\{q_0\}$         | $\{q_0,q_1\}$            | $\left\{q_4'\right\}$ |
| $\{q_0,q_1,q_3\}$        | $\{q_0,q_2\}$     | $\{q_0,q_1,q_2\}$        | $\{q_5'\}$            |
| $\{q_0,q_2,q_3\}$        | $\{q_0,q_3\}$     | $\{q_0,q_1,q_3\}$        | $\{q'_6\}$            |
| $\{q_0, q_1, q_2, q_3\}$ | $\{q_0,q_2,q_3\}$ | $\{q_0, q_1, q_2, q_3\}$ | $\left\{q_7'\right\}$ |

## ¿ Autómata ?



#### $\lambda$ -AFND a AFD

#### $\lambda$ -AFND a AFD

Tenemos un AFND M que puede tener  $\lambda$ -transiciones. Para cada  $R \in Q$  definimos E(R), el conjunto de estados alcanzables desde R mediante  $\lambda$ -transiciones.

#### $\lambda$ -AFND a AFD

#### Algoritmo

- 1.- Construir una tabla con columnas, una por cada  $\sigma \in \Sigma$ .
- 2.- En la primera fila escribir el inicial  $I = E(\{q_0\})$ , es decir, todos los estados a los que puedo llegar desde  $q_0$  con  $\lambda^*$ .
- 3.- En la primera fila, en la columna  $\sigma_i$  escribir  $\cup_{r \in I} E(\delta(r, \sigma_i))$ , es decir, todos los estados a los que puedo llegar desde I con entrada  $\sigma_i \lambda^*$ .
- 4.- Copiar las casillas de la fila anterior como principio de nuevas filas.
- 5.- Para cada fila R pendiente, rellenar la fila R escribiendo en cada columna  $\sigma_i$ ,  $\cup_{r \in R} E(\delta(r, \sigma_i))$ , es decir, todos los estados a los que puedo llegar desde algún estado de R con entrada  $\sigma_i \lambda^*$ .
- 6.- Repetir los pasos 4 y 5 hasta que no queden filas por rellenar.



#### $\lambda$ -AFND a AFD

#### Ejemplo

Según el siguiente  $\lambda$ -AFND, construya el AFD equivalente.



#### $\lambda$ -AFND a AFD

#### Ejemplo - Solución

| $E(\{q_i\})$                                        | a                                         | Ь                                                   | $ q_i' $ |
|-----------------------------------------------------|-------------------------------------------|-----------------------------------------------------|----------|
| $A = \{q_0\} \cup \{q_0, q_1, q_3\}$                | $B = \{q_1, q_2\} \cup \{q_0, q_1, q_3\}$ | $C = \{q_1, q_3, q_4\} \cup \{q_0, q_1, q_3\}$      | $q_0'$   |
| $B = \{q_1, q_2\} \cup \{q_0, q_1, q_3\}$           | $B = \{q_1, q_2\} \cup \{q_0, q_1, q_3\}$ | $C = \{q_1, q_3, q_4\} \cup \{q_0, q_1, q_3\}$      | $q_1'$   |
| $C = \{q_1, q_3, q_4\} \cup \{q_0, q_1, q_3\}$      | $B = \{q_1, q_2\} \cup \{q_0, q_1, q_3\}$ | $D = \{q_1, q_2, q_3, q_4\} \cup \{q_0, q_1, q_3\}$ | $q_2'$   |
| $D = \{q_1, q_2, q_3, q_4\} \cup \{q_0, q_1, q_3\}$ | $B = \{q_1, q_2\} \cup \{q_0, q_1, q_3\}$ | $D = \{q_1, q_2, q_3, q_4\} \cup \{q_0, q_1, q_3\}$ | $q_3'$   |
|                                                     |                                           |                                                     |          |

#### $\lambda$ -AFND a AFD

## Ejemplo - Solución (renombrando conjunto de estados)

|               | $E(\{q_i\})$ | a      | Ь      |
|---------------|--------------|--------|--------|
| $\rightarrow$ | $q_0'$       | $q_1'$ | $q_2'$ |
|               | $q_1'$       | $q_1'$ | $q_2'$ |
| #             | $q_2'$       | $q_1'$ | $q_3'$ |
| #             | $q_3'$       | $q_1'$ | $q_3'$ |

#### $\lambda$ -AFND a AFD

#### Ejemplo

Según el siguiente  $\lambda$ -AFND, construya el AFD equivalente.



 $\lambda$ -AFND a AFD

#### Ejercicio

Según el siguiente  $\lambda$ -AFND, construya el AFD equivalente.



#### $\lambda$ -AFND a AFD

#### Ejercicio - Solución

| $E(\{q_i\})$                         | a                                                                  | Ь                                                        | $ q_i' $ |
|--------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------|----------|
| $A = \{q_0\} \cup \{q_2\}$           | $A = \{q_0\} \cup \{q_2\}$                                         | $B = \{q_1\} \cup \emptyset \Leftrightarrow B = \{q_1\}$ | $q'_0$   |
| $B = \{q_1\}$                        | $C = \{q_1, q_2\} \cup \emptyset \Leftrightarrow C = \{q_1, q_2\}$ | $D = \{q_2\} \cup \emptyset \Leftrightarrow D = \{q_2\}$ | $q_1'$   |
| $C = \{q_1, q_2\}$                   | $E = \{q_0, q_1, q_2\} \cup \{q_2\}$                               | $D = \{q_2\} \cup \emptyset \Leftrightarrow D = \{q_2\}$ | $q_2'$   |
| $D = \{q_2\}$                        | $A = \{q_0\} \cup \{q_2\}$                                         |                                                          | $q_3^7$  |
| $E = \{q_0, q_1, q_2\} \cup \{q_2\}$ | $E = \{q_0, q_1, q_2\} \cup \{q_2\}$                               | $C = \{q_1, q_2\}$                                       | $q_4'$   |

#### $\lambda$ -AFND a AFD

#### Ejercicio - Solución (renombrando conjunto de estados)

$$egin{array}{c|cccc} E(\{q_i\}) & a & b \ \hline \# 
ightarrow & q_0' & q_1' & q_2' \ q_1' & q_2' & q_3' & \ q_2' & q_4' & q_3' & \ q_3' & q_1' & --- \ \# & q_4' & q_4' & q_2' \end{array}$$

# Conversiones $\lambda$ -AFND a AFD

## ¿ Autómata ?



## Preguntas

## Preguntas?