1.

Figure 1: figure bij opgave 1

In rechthoekige driehoek ABD gebruik je de stelling van Pythagoras:

$$|BD|^2 = |AD|^2 + |AB|^2 = 1 + 1 = 2$$
.

Je bekomt

$$|BD| = \sqrt{2} \approx 1,41.$$

2.

Figure 2: figure bij opgave 2

De korte zijde heeft lengte x; de lange zijde heeft lengte 2x. In rechthoekige driehoek ABD gebruik je de Stelling van Pythagoras:

$$|AD|^2 + |AB|^2 = |BD|^2$$

dus

$$x^{2} + (2x)^{2} = 10^{2} \text{ of } 5x^{2} = 100; x^{2} = 20.$$

Je bekomt $x = \sqrt{20}$

De korte zijde bheeft lengte $\sqrt{20}\approx 4,40;$ de lange zijde aheeft lengte $2\sqrt{20}\approx 8,94.$

3. De straal van de aarde stellen wexm. De omtrek is dan $2\pi x$ m (dit is 40000000m).

Til het touw overal 1 m boven de grond dan wordt de straal x+1 m en de omtrek $2\pi(x+1)$ m.

De omtrek neemt dus toe met 2π m $\approx 6,28$ m.

4.

Figure 3: figure bij opgave 4

De lengte van de zijde van het vierkant noteren we met z.

De straal van de ingeschreven cirkel is gelijk aan $\frac{z}{2}$ en de oppervlakte van de ingeschreven cirkel is daarom $\pi\left(\frac{z}{2}\right)^2=\frac{\pi z^2}{4}$.

De straal van de omgeschreven cirkel is gelijk aan de helft van de lengte van de diagonaal van het vierkant. De lengte van zulke diagonaal is $\sqrt{2}z$ (zie de oplossing bij opgave 1 uit deze reeks). De straal van de omgeschreven cirkel is dus $\frac{\sqrt{2}z}{2}$ en de oppervlakte van de omgeschreven cirkel is daarom $\pi \left(\frac{z}{\sqrt{2}}\right)^2 = \frac{\pi z^2}{2}$.

De gevraagde verhouding is dus $\frac{\frac{\pi z^2}{2}}{\frac{\pi z^2}{2}} = 2$.

- 5. Om juist te zijn moeten de 3 vergelijkingen gelden en dat is zo.
- 6. De oppervlakte van het grondvlak is $\frac{120.154}{2}cm^2 = 9240cm^2$. Het volume van de bloembak is dus $9240.35cm^3 = 323400cm^3$. Omdat $1dm^3 = 1000cm^3$ bekom je als volume voor de bloembak $323,40dm^3$.
- 7. Het vooraanzicht verdelen we in twee delen:

Omdat D op hoogte 6 m boven AB is, is de hoogte van driehoek ECD gelijk aan (6-2)m=4m.

De oppervlakte van deel I is $6,5.2m^2=13m^2$ en de oppervlakte van deel II is $\frac{6,5.4}{2}m^2=13m^2$.

Figure 4: figure bij opgave 7

Rekening houdend met de constante diepte 5 m bekom je als volume

$$(13+13).5m^3=130m^3$$
.

8. De Grote Piramide heeft als grondvlak een vierkant. De oppervlakte van dat vierkant is $230^2m^2=52900m2$.

Het volume van de Grote Piramide is dus $\frac{1}{3}$.52900.146 $m^3 = 2574466,667m^3$. Er worden ongeveer 2300000 blokken gebruikt; ieder blok heeft dan volume $\frac{2574466,667}{2300000}m^3 = 1,12m^3$.

9. Het volume van zulke bolvormige kaars is $\frac{4}{3}.\pi.4^3cm^3=268,08cm^3$. Omdat 1l kaarsvet = $1dm^3$ kaarsvet = $1000cm^3$ kaarsvet en $\frac{1000}{268,08}=3,73$ bekom je dat 3 volledige zulke bolvormige kaarsen kunnen gemaakt worden.

10. We noteren R mm voor de straal van zulke tennisbal.

Dan is
$$6R = 195$$
, dus $R = \frac{195}{6} = 32, 5$.

Het volume van zulke tennisbal is dus $\frac{4}{3}32,5^3mm^3 = 143793,3137mm^3$.

Het volume van de koker (oppervalkte grondvlak.hoogte) is $\pi.32, 5^2.195mm^3 = 647069, 9119mm^3$.

Het resterende volume in de koker is daarom

 $647069,9119mm^3 - 3.143793,3137mm^3 = 215689,970mm^3 \approx 215,69cm^3$.

11. Het volume van het glas is $\frac{1}{3} \cdot \pi \cdot 5$, $5^2 \cdot 9cm^3 = 285$, $099533cm^3$.

Zulk glas wordt gevuld met $0, 9.285, 099533cm^3 = 256, 58958cm^3$.

In totaal is er $10dm^3=10000cm^3$ wijn. Omdat $\frac{10000}{256,58958}=38,97$ kun je aan 38 genodigden een gevuld glas geven.