GIẢI TÍCH 1 BÀI 16 TÍCH PHÂN KÉP

1. Tính thể tích bằng tích phân lặp

- Đã biết công thức tính thể tích vật thể trong Giải tích I: $V = \int_{a}^{b} S(x) dx$ (0.1)
- Diện tích tiết diện thẳng S(x) được tính như sau:

$$S(x) = \int_{y_1(x)}^{y_2(x)} f(x, y) dy$$
 (0.2)

• Thay (0.2) vào (0.1) ta có

$$V = \int_{a}^{b} \left(\int_{y_1(x)}^{y_2(x)} f(x, y) dy \right) dx \equiv \int_{a}^{b} \int_{y_1(x)}^{y_2(x)} f(x, y) dy$$

Ví dụ 1. Tính tích phân lặp $I = \int_{0}^{1} \left(\int_{x^{2}}^{x} 2y dy \right) dx$

Ví dụ 2. Sử dụng tích phân lặp tính thể tích tứ diện giới hạn bởi các mặt phẳng toạ độ và mặt phẳng

$$x + y + z = 1.$$

2. Tích phân hai lớp trên hình chữ nhật đóng

2.1. Định nghĩa

a) Phân hoạch π chia hình chữ nhật $R = [a; b] \times [c; d]$ thành hữu hạn các hình chữ nhật đóng, đôi một không có phần trong chung và có $|R| = \sum_{i=1}^{n} \Delta R_i$,

 ΔR_i là diện tích hình chữ nhật thứ i, |R| là diện tích hình chữ nhật R; d_i là đường chéo hình chữ nhật ΔR_i , $d(\pi) = \max_{i=1,n} d_i$

b) Tổng tích phân

$$\sigma = \sigma(f, \pi, p_1, ..., p_n) = \sum_{i=1}^n f(\xi_i, \eta_i) \Delta R_i, p_i(\xi_i, \eta_i),$$

Hàm f(x,y) xác định và bị chặn trên R

c) Các tổng Đacbu

• Tổng Đacbu dưới:
$$s(\pi) = \sum_{i=1}^{n} m_i \Delta R_i$$

• Tổng Đacbu trên: $S(\pi) = \sum_{i=1}^{n} M_i \Delta R_i$, ở đó

$$m_i = \inf_{\Delta R_i} f(x, y), M_i = \sup_{\Delta R_i} f(x, y),$$

thì có

$$m|R| \le s(\pi) \le \sigma(f, \pi, p_1, ..., p_n) \le S(\pi) \le M|R|$$

d) Tổng trên không tăng, tổng dưới không giảm

- Ta bảo phân hoạch π' mịn hơn π nếu mỗi hình chữ nhật trong phân hoạch π' luôn nằm trong hình chữ nhật nào đấy của phân hoạch π
- Khi π' mịn hơn π , ta có $s(\pi) \le s(\pi) \le S(\pi) \le S(\pi)$.

e) Dãy chuẩn tắc các phép phân hoạch

Cho $\{\pi_n\}$ là dãy các phân hoạch hình chữ nhật R. Dãy $\{\pi_n\}$ được gọi là chuẩn tắc nếu $\lim_{n\to\infty} d(\pi_n) = 0$.

f) Định nghĩa tích phân kép

Cho f xác định trên hình chữ nhật đóng R, Nếu có $\lim_{n\to\infty} \sigma(f, \pi, p_1, ..., p_n) =$

 $\lim_{n\to\infty}\sum_{i=1}^{p_n}f(\xi_i,\eta_i)\Delta R_i=I \text{ (số thực hữu hạn) với mọi dãy chuẩn tắc}$

$$\{\pi_n\}: \pi_n = \{\Delta R_1, \, \Delta R_2, \, ..., \, \, \Delta R_{p_n} \},$$

với mọi cách chọn điểm $p_i = (\xi_i ; \eta_i) \in \Delta R_i$, thì ta có hàm f khả tích trên R và viết $\iint_{R} f(x, y) dx dy = I.$

2.2. Điều kiên khả tích

Định lí 1. Hàm f khả tích trên R đóng $\Rightarrow f$ bị chặn

Định lí 2. Cho f bị chặn trên \overline{R} . Khi đó f khả tích trên $R \Leftrightarrow \forall \varepsilon > 0$, bé tuỳ ý, \exists phân hoạch π của R sao cho $S(\pi) - s(\pi) < \varepsilon$

Định lí 3. f liên tục trên R thì f khả tích trên R.

2.3. Tích phân hai lớp trên tập hợp bị chặn

a) Định nghĩa. R là hình chữ nhật đóng, tập bị chặn $D \subset R$, hàm f xác định trên D, và

$$f_0(x, y) = \begin{cases} f(x, y), (x, y) \in D \\ 0, (x, y) \in R \setminus D \end{cases}$$

Nếu f_0 khả tích trên R thì ta bảo f khả tích trên D và định nghĩa

$$\iint_D f(x, y) dx dy = \iint_R f_0(x, y) dx dy$$

b) Tính chất

1°/ **Cộng tính.** $D = D_1 \cup D_2$ bị chặn trong \mathbb{R}^2 , $|D_1 \cap D_2| = 0$, f khả tích trên D_1 , $D_2 \Rightarrow f$ khả tích trên D và có

$$\iint_{D} f(x, y) dx dy = \iint_{D_{1}} f(x, y) dx dy + \iint_{D_{2}} f(x, y) dx dy$$

2°/ **Tuyến tính.** D bị chặn trong \mathbb{R}^2 , f, g khả tích trên $D \Rightarrow \alpha f + \beta g$ khả tích trên D và có $\iint_D \left[\alpha f(x, y) + \beta g(x, y) \right] dx dy$

$$= \alpha \iint_D f(x, y) dx dy + \beta \iint_D g(x, y) dx dy, \ \alpha, \beta \in \mathbb{R}$$

3°/ **Bảo toàn thứ tự.** Hai hàm f, g khả tích trên tập bị chặn $D \subset \mathbb{R}^2$, và có $f(x, y) \leq g(x, y)$, $\forall (x, y) \in D$. Khi đó

$$\iint_D f(x, y) dx dy \leq \iint_D g(x, y) dx dy.$$

Hệ quả 4. Nếu $m \le f(x, y) \le M$, $\forall (x, y) \in D$, thì có

$$m|D| \leq \iint_D f(x, y) dx dy \leq M|D|$$

Hệ quả 5.
$$\left| \iint_D f(x, y) dx dy \right| \leq \iint_D |f(x, y)| dx dy$$

4°/ Các định lí giá trị trung bình

Định lí 4. D là tập hợp đo được, f khả tích trên D và có $m \le f(x, y) \le M$, $\forall (x, y) \in D$. Khi đó $\exists \mu \in [m, M]$ sao cho $\iint_D f(x, y) dx dy = \mu |D|$

Định lí 5. Cho D đóng, đo được, liên thông, f liên tục trên $D \Rightarrow \exists p(\xi, \eta) \in D$ sao cho

$$\iint_{D} f(x, y) dx dy = f(p)|D|.$$

2.4. Đưa tích phân hai lớp về tích phân lặp

a) Định lí Fubini trên hình chữ nhật. f khả tích trên hình chữ nhật $R = [a; b] \times [c; d]$

1°/ Nếu tồn tại
$$\int_{c}^{d} f(x, y) dy$$
 với x cố định $\in [a; b] \Rightarrow \varphi(x) = \int_{c}^{d} f(x, y) dy$ khả tích

trên [a; b] và có
$$\iint_{R} f(x, y) dx dy = \int_{a}^{b} \left[\int_{c}^{d} f(x, y) dy \right] dx$$
 (4.1)

2°/
$$\exists \int_{a}^{b} f(x, y) dx$$
, với y cố định thuộc $[c; d] \Rightarrow \psi(y) = \int_{a}^{b} f(x, y) dx$ khả tích trên $[c; d]$

và có
$$\iint_{R} f(x, y) dx dy = \int_{c}^{d} \left[\int_{a}^{b} f(x, y) dx \right] dy$$
 (4.2)

Nói riêng, nếu có f liên tục trên R thì ta có đồng thời (4.1), (4.2)

Ví dụ 1.
$$\iint_{R} (x+y)^2 dx dy, R = [0; 1] \times [0; 2]$$

Ví dụ 2.
$$\iint_{R} \frac{x^2 dx dy}{1 + y^2}, R = [0; 1] \times [0; 1]$$

b) Định lí Fubini trên tập hợp bị chặn

1°/ ϕ_1 , ϕ_2 khả tích trên [a; b], $\phi_1(x) \le \phi_2(x)$, $\forall x \in [a; b]$,

$$D = \{(x \; ; \; y) \colon a \leq x \leq b, \; \varphi_1(x) \leq y \leq \varphi_2(x)\}$$

$$f$$
 khả tích trên D , $\exists \int_{\varphi_1(x)}^{\varphi_2(x)} f(x,y) dy$, $\forall x$ cố định thuộc $[a;b]$.
Khi đó, $\varphi(x) = \int_{\varphi_1(x)}^{\varphi_2(x)} f(x,y) dy$ khả tích trên $[a;b]$ và có

Khi đó,
$$\varphi(x) = \int_{\varphi_1(x)}^{\varphi_2(x)} f(x, y) dy$$
 khả tích trên [a; b] và có

$$\iint_{D} f(x, y) dx dy = \int_{a}^{b} dx \int_{\varphi_{1}(x)}^{\varphi_{2}(x)} f(x, y) dy$$
(4.3)

Nói riêng, nếu φ_1 , φ_2 liên tục trên [a; b], f liên tục trên D thì vẫn đúng

$$2^{\circ}/\psi_1, \psi_2$$
 khả tích trên [c ; d], $\psi_1(y) \leq \psi_2(y)$, $\forall y \in [c; d]$,

$$D = \{(x ; y) : c \le y \le d, \psi_1(y) \le x \le \psi_2(y)\}$$

f khả tích trên
$$D$$
 và $\exists \int_{\psi_1(y)}^{\pi_2(y)} f(x, y) dx$, $\forall y$ cố định thuộc $[c; d]$.

Khi đó
$$\psi(y) = \int_{\psi_1(y)}^{\psi_2(y)} f(x, y) dx$$
 khả tích trên $[c; d]$ và có
$$\iint_D f(x, y) dx dy = \int_c^d dy \int_{\psi_1(y)}^{\psi_2(y)} f(x, y) dx \qquad (4.4)$$

$$\iint_{D} f(x, y) dx dy = \int_{c}^{d} dy \int_{\psi_{1}(y)}^{\psi_{2}(y)} f(x, y) dx \qquad (4.4)$$

Nói riêng, nếu ψ_1 , ψ_2 liên tục trên [c; d], f liên tục trên D thì vẫn đúng

Ví dụ 1.
$$\iint_D (x^2 + y) dx dy$$
, $D: y^2 = x$, $y = x^2$.

Ví dụ 2.
$$\iint_D \sqrt{4x^2 - y^2} dx dy$$
, *D*: $x = 1$, $y = 0$, $y = x$.

Ví dụ 3.
$$\iint_{D} |\cos(x+y)| dx dy$$
, $D: [0; \pi] \times [0; \pi]$

Ví dụ 4.
$$\iint_{D} \sqrt{|y-x^2|} dx dy$$
, $D: [-1; 1] \times [0; 2]$

Ví dụ 5. Đổi thứ tự tính tích phân
$$\int_{0}^{1} dy \int_{\sqrt{2}y^{2}}^{\sqrt{3-y^{2}}} f(x,y)dx$$

Ví dụ 6. Tính
$$\int_{0}^{1} dy \int_{v}^{1} e^{-x^{2}} dx$$

2.5. Đổi biến trong tích phân 2 lớp.

a) Đổi biến

Định lí 1. Tập mở $U \subset \mathbb{R}^2$, D là tập con đo được, compact của U, ánh xạ $\varphi: U \to \mathbb{R}^2$ \mathbb{R}^2 , $(u, v) \mapsto (x(u, v), y(u, v))$, d dd

- x, y khả vi liên tục
- φ_{lps} là đơn ánh
- Định thức Jacobi $J(u, v) = \frac{D(x, y)}{D(u, v)} = \begin{vmatrix} x'_u & x'_v \\ y'_u & y'_v \end{vmatrix} \neq 0$ trên D° .

Khi đó

- φ(D) là tập compact đo được
- Nếu $f: \varphi(D) \to R$ liên tục trên $\varphi(D)$ thì có $\iint\limits_{\varphi(D)} f(x, y) dx dy = \iint\limits_{D} f(x(u, v), y(u, v)) |J(u, v)| du dv$

Ví dụ 1. Tính
$$\iint_D x \sin(x+y) dx dy$$
, $D: 0 \le x \le \frac{\pi}{2}$, $0 \le y \le x$

Ví dụ 2. Tính
$$\iint_D (2-x-y)^2 dx dy$$
, $D: 0 \le x \le 1, -x \le y \le x$

Ví dụ 3. Tính
$$\iint_D \arcsin \sqrt{x+y} dx dy$$
, $D: \begin{cases} x+y=0, y=-1 \\ x+y=1, y=0 \end{cases}$

Ví dụ 4. Tính
$$\iint_D dx dy$$
, *D*: $y = x$, $y = 4x$, $xy = 1$, $xy = 2$.

b) Đổi biến trong toạ độ cực

Cho ánh xạ $\varphi: \mathbb{R}^2 \to \mathbb{R}^2$, $(\theta, r) \mapsto (x, y)$, $x = r \cos \theta$, $y = r \sin \theta$.

Ta có
$$J(\theta, r) = \frac{D(x, y)}{D(\theta, r)} = \begin{vmatrix} -r\sin\theta & \cos\theta \\ r\cos\theta & \sin\theta \end{vmatrix} = -r$$
.

Dễ thấy φ không là song ánh, tuy nhiên thu hẹp của φ trên $A = (\alpha ; \alpha + 2\pi) \times (0 ; +\infty)$, $\alpha \in \mathbb{R}$ là song ánh từ $A \to \mathbb{R}^2 \setminus (0; 0)$.

Nếu D là tập compact đo được sao cho $Int D \subset U_{\alpha}$, $\alpha \in \mathbb{R}$ thì thu hẹp của φ trên Int D là đơn ánh và $J(\theta, r) \neq 0$ trên Int D. Khi đó với hàm số liên tục tuỳ ý $f : \varphi(D) \rightarrow$

$$\mathbb{R}$$
 ta luôn có $\iint_{\varphi(D)} f(x, y) dx dy = \iint_{D} f(r \cos \theta, r \sin \theta) r dr d\theta$

Ví dụ 1.
$$I = \iint_D e^{-x^2 - y^2} dx dy$$
, $D: x^2 + y^2 \le 1$.

Ví dụ 2.
$$I = \iint_D \sin \sqrt{x^2 + y^2} dx dy$$
, $D: \pi^2 \le x^2 + y^2 \le 4\pi^2$.

Ví dụ 3.
$$I = \iint_D \sqrt{1 - \frac{x^2}{a^2} - \frac{y^2}{b^2}} dx dy$$
, $D: \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1$.

Ví dụ 4.
$$I = \iint_D \sqrt{\frac{1-x^2-y^2}{1+x^2+y^2}} dx dy$$
, $D: \{x^2+y^2 \le 1, x \ge 0, y \ge 0\}$

Ví dụ 5.
$$I = \iint_D \frac{x^2 + y^2}{\sqrt{4 - (x^2 + y^2)^2}} dx dy$$
, $D: \frac{x^2}{2} + y^2 \le 1$

c) Tích phân hai lớp trên tập đối xứng

Cho $D=D_1\cup D_2,\ D_2=\mathbb{S}$ $(D_1),\ \text{các tập }D_1,\ D_2$ đo được và $|D_1\cap D_2|=0,\ \mathbb{S}$ là phép đối xứng

1°/ Nếu
$$f(S(x, y)) = f(x, y), \forall (x, y) \in D$$
 thì có $\iint_D f(x, y) dx dy = 2 \iint_{D_1} f(x, y) dx dy$

2°/ Nếu
$$f(S(x, y)) = -f(x, y)$$
 thì có $\iint_D f(x, y) dx dy = 0$

Ví dụ 1. Tính
$$I = \iint_D (x^2 - y^2) dx dy$$
, $D: \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1$

Ví du 2. Tính

a)
$$I = \iint_{D} (x^{5} - y^{5}) dx dy, D: \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} \le 1$$
b (K58) 1) Tính
$$I = \iint_{x^{2} + y^{2} \le 2y} (x^{5} + 2y) dx dy$$
 (2 π)

b (K58) 1) Tính $I = \iint_{x^2+y^2 \le 2y} (x^5 + 2y) dx dy$ 2) Đổi thứ tự tính tích phân $\int_{0}^{1} dx \int_{0}^{2-x^2} f(x,y) dx dy$.

$$\left(\int_{0}^{1} dy \int_{0}^{1} f(x, y) dx + \int_{1}^{2} dy \int_{0}^{\sqrt{2-y}} f(x, y) dx\right)$$

c (K59) 1) Tính
$$I = \iint_D (x^2 + y^2) dx dy$$
, D: $x + 2y \le 2, x \ge 0, y \ge 0$ ($\frac{5}{6}$)

2) Tính
$$I = \iint_D (x^2 + 2y) dx dy$$
, D là giao : $y = x^2, y = 2x$ ($\frac{88}{15}$)

3) Đổi thứ tự tính tích phân $\int_{0}^{1} dx \int_{1/2}^{1+x} f(x,y) dx dy$.

$$\left(\int_{0}^{1} dy \int_{\sqrt{1-y}}^{1} f(x,y) dx + \int_{1}^{2} dy \int_{y-1}^{1} f(x,y) dx\right)$$

4) Tính
$$I = \iint_{D} \sin(x+y) dx dy$$
, DI: $0 \le x \le \frac{\pi}{2}, 0 \le y \le \frac{\pi}{2}$ (2)

d (K60) 1) Tính
$$I = \iint_D e^{x^2 + y^2} dx dy$$
, D: $a \le x^2 + y^2 \le b^2$, $x \ge 0$, $(0 < a < b)$

$$(\frac{\pi}{2}(e^{b^2}-e^{a^2}))$$

2) Tính
$$I = \iint \frac{dxdy}{1 + x^2 + y^2}$$
, D: $x^2 + y^2 \le 4$ ($\pi \ln 5$)

3) Tính
$$I = \iint_D 3x dx dy$$
, D: $0 \le x \le 2, 1 \le x + y \le 3$ (12)

4) Tính
$$I = \iint_D (x^2 + 2y^2) dx dy$$
, D: $x^2 + y^2 \le 1$

 $(\frac{3\pi}{4})$

HAVE A GOOD UNDERSTANDING!