

# PRIFYSGOL

## EN4110 Mechatronics – Modular Robotic Snake

Building a modular robot in a chain-like formation that can perform several motions to make it adaptable to certain tasks and its environment

Supervisors: Ze Ji, Emmanuel Brosseau

Team members: Chian Sye Chia, Sara Djoudi, Jack Frampton, Thomas Alexander Hulse, Angelina Murphy, Nor Binti Mohd Ridzuan, **Thomas Scammell and Toby Wright** 

#### Introduction

The main objective for this project was to create a modular robot that can replicate three methods of snake locomotion. By imitating these motions, snake-like robots can have numerous applications in an industrial context such as travelling over hazardous terrain for rescue missions<sup>[1]</sup> and exploring extra-terrestrial environments<sup>[2]</sup>.

#### **Types of Snake Locomotion:**





Figure 1. Methods of snake locomotion<sup>[3]</sup>

3. Sidewinding motion

#### **Project Aims:**

- 1. Design a housing, to be 3D printed, able to contain all necessary components that can be connected in the same orientation or at 90° to each other.
- 2. Create two prototypes using these housings to replicate the aforementioned methods of snake locomotion: Prototype 1 - Linear actuators will be used to actuators to open and close scales cut into a skin wrapped
  - around each unit to replicate rectilinear motion. **Prototype 2 -** Sinusoidal motions will propagate through the length of the robot using Dynamixel servomotors in each unit to replicate serpentine and sidewinding locomotion.
- 3. One multi-functional robot: If time permitted, it was planned to combine the two prototypes together and implement sensors with closed-loop feedback to allow the robot to detect objects and react to them accordingly.

#### **Component Developments**

#### Skin

The primary purpose of the skin design was to facilitate rectilinear motion through friction as is demonstrated by snakeskin scales in nature.

#### **Features**

- Made from Silicone excellent flexibility and anti-adhesive by nature.
- Snake-scale pattern inspired by Kirigami art patterns.
- Specialised Sil-Poxy adhesive used for attachment to the housing.

Mechanism: Upon extension, embedded scales to pop out and provide anchorage to the ground. Upon contraction, the housings are propelled forwards and the skin layer becomes a flat sheet again (Figure 2 and 3).





Figure 2. Silicone snakeskin layer sample

Figure 3. Demonstration of 'scale-buckling' effect when the skin layer is extended

Manufacture: SolidWorks used to design the snake scale patterns and the skin layer was then manufactured using a GlobalMAX waterjet cutting machine.

#### **Skeleton**

The role of the skeleton is to facilitate the three primary roles outlined:

#### **Component housing**

A sliding mounting insert was designed and component layout was optimised to allow for necessary cable routing (Figure 4b).





Figure 4. Component mounting insert a) Rendered CAD b} Internal components packaged **Robot motion** 

- The bracket was designed to allow for 180° rotation, enable unimpeded rotation on flat surfaces and provide structural rigidity under load.
- The housing is designed to slide over itself, allowing for the extension and contraction necessary for skin function.

#### Skin and sensor integration

- An external recess was added to accommodate the skin layer.
- At each end of the module, a region for sensor placement and skin layer bonding was implemented.
- Cable routing was incorporated to accommodate component connections.

#### **Control, Sensors and Software**

Sensors provide a closed-loop feedback (Figure 5) to detect contact with obstacles then reroute itself around the object.



Sensors: Changes in the resistivity of the sensors of a force applied are converted to a voltage using a voltage divider circuit.

Arduino: The micro-controller reads the voltage of the sensor and converts into a value from 1 - 1023.

Arduino ROS Node: These values are published to the Arduino ROS node 10 times per second as a digital 16-bit called "PressureSensor".

Laptop ROS Node: The values are interpreted. If deemed a collision a ROS Topic is sent to the AX-12A ROS node.

**AX-12A ROS Node:** The ROS Topic is received and the motors reroute the robot around the obstacle.

#### **Prototypes - Integration**

#### **Prototype 1 – Rectilinear motion**

- **Purpose:** To simulate the contracting muscles of the snake during rectilinear motion.
- Method: To control the movement of the scales from the skin layer using micro linear actuators (step 1 & 2).
- Working Principle: Higher friction coefficient in one direction caused by the scales protruding (step 3), propelling the robot forwards.
- Methodology: The following steps lead to the robot being propelled forwards.

















Figure 6. Prototype 1 Motion Flow Chart

#### **Prototype 2 – Serpentine and Sidewinding motion**

- Purpose: Simulate the serpentine and sidewinding motions of a snake.
- Method: Coordinate movement of motors in the form of matrices, executed in Python under ROS (step 2 & 3).
- Working Principle: Motors, with alternating time-delays, follow triangle-wave motion (step 1) between two angular positions, lifting sections of the snake and propelling the robot in the desired direction (step 4).
- Methodology: The following steps lead to the robot performing 6 different movements, based on step 1.









Figure 7. Prototype 2 Motion Flow Chart

#### **Results and Discussion**

#### **Prototype 1 – Rectilinear motion**

#### **Skin design tests**

#### 1. Tension testing

Seven samples (Figure 8) uniaxially extended to select the optimal snakeskin layer; Sample 3 was chosen.



Figure 8. Snake-skin samples (height=70 mm and width=48 mm) **Skin mechanism tests** 

### 2. Frictional testing

To investigate the skin layer interaction with different surfaces - the skin layer travels across rough surfaces more effectively.



Figure 9. Frictional testing results for Snake-skin layer

1. Actuator retraction-extension motion - Software validated to produce in-sync actuator motion.

2. Housing retraction-extension motion - Housing assembly with actuator validated module extension and retraction.

3. Function of the scales during housing motion - Skin attachment withstood the tension force of the housing extension and the scales flattened at normal state and protruded at extension (Figures 2 and 3).

Outcome: The following tests proved that one module housing enclosed within a skin layer was capable of producing rectilinear motion and adding further modules would increase the speed of robot movement.

### **Prototype 2 – Serpentine and Sidewinding motion**

#### **Servo motor tests**

- **1. 5-motors with standard motor brackets** Testing software developed for the 6 motions (Figure 10).
- 2. 5-motors with 3D printed SLS brackets Assessment with increased weight and size of the modules (Figure 11).
- Objectives tested: Ease of assembly, full range of motion and motion stability.









Figure 12. Stage 2 video capture motions a) Right Sidewinding b) Backwards Serpentine c) Anti-clockwise Rotation

Outcome: Both stages successful in producing robot movement: stage 1 successful in all objectives, stage 2 had minor stability issues.

#### **Future Work and Conclusion**

#### **Prototype 1**

- Achieved: A single module can extend/contract, propelling the module housing forwards.
- Future steps: Assemble more modules in a chain formation to enhance the rectilinear motion.
- Industrial application: The rectilinear motion enables the robot to travel through narrow, hazardous environments.

#### **Prototype 2**

• Future steps: Incorporating the closed feedback loop will create a smart robot can reroute itself around obstacles.

- Achieved: Housings assembled into chain formation to perform serpentine and sidewinding motion.
- Industrial application: Explore extra-terrestrial environments to retrieve critical scientific data.
- [2]. Liljeback, P., Pettersen, K. Y., Stavdahl, O. & Gravdahl, J. T., 2013. Snake Robots: Modelling, Mechatronics, and Control, s.l.: Springer [3]. Encyclopaedia Britannica. 2020. Snake Locomotion. Available at: https://kids.britannica.com/students/assembly/view/171904 [Accessed 30th March 2020]