Sto: 12.Hausaufgabe (24.01.24) - Till Billerbeck (G3), Cora Zeitler (G1)

Donnerstag, 18. Januar 2024

Aufgabe 4 🏠

Es seien X, Y, Z Zufallsvariablen, X und Y unabhängig, sowie Z = -X. Wir definieren $\mu_X :=$ $E[X], \mu_Y := E[Y], v_X := \mathrm{Var}(X), v_Y := \mathrm{Var}(Y)$ und nehmen an $\mu_X, \mu_Y, v_X, v_Y \in \mathbb{R}$. Berechnen

a) E[XY], b) E[XZ], c) Var(Y+Z).

4a)
$$E[XY] = E[X] \cdot E[Y]$$
 || weil X and Y unabhanging $= \mu_X \cdot \mu_Y = \mu_X \mu_Y$

4c)
$$Var(Y+Z) = Var(Y-X)$$
 $/z = -X$
= $Var(Y) - Var(X)$ | weil X unalthamaig
= $V_Y - V_X$

Aufgabe 3 🏠

3) Vor
$$(X) = E[(X - E(X))^{2}]$$

$$= E[(X - \frac{b}{2})^{2}] / Sole 9.7. : Dichte f. Dann gilt$$

$$= \int_{0}^{b} (X - \frac{b}{2})^{2} \cdot \frac{1}{b} dX$$

$$= \int_{0}^{b} (X^{2} - 2 \cdot \frac{b}{2} \cdot X + \frac{b^{2}}{4}) \cdot \frac{1}{b} dX = \int_{0}^{b} X^{2} \cdot \frac{1}{b} - bX \cdot \frac{1}{b} + \frac{b^{2}}{4} \cdot \frac{1}{b} dX$$

$$= \int_{0}^{b} (X^{2} - 2 \cdot \frac{b}{2} \cdot X + \frac{b^{2}}{4}) \cdot \frac{1}{b} dX = \int_{0}^{b} X^{2} \cdot \frac{1}{b} - bX \cdot \frac{1}{b} + \frac{b^{2}}{4} \cdot \frac{1}{b} dX$$

$$= \int_{0}^{b} \frac{1}{b} X^{2} - X + \frac{b}{4} dX$$

$$= \left[\frac{1}{3b} \times 3 - \frac{1}{2} \times 2 + \frac{b}{4} \times 3 \right]_{0}^{b}$$

$$= \frac{b^{2}}{3} - \frac{2b^{2}}{4} + \frac{b^{2}}{4}$$

$$= \frac{b^{2}}{3} - \frac{b^{2}}{4} = \frac{4b^{2}}{12} - \frac{3b^{2}}{12} = \frac{b^{2}}{12}$$

3) Andere Variante:

Autople 3
$$\times \sim \mathcal{U}[0, 5]$$
, $5 > 0$. Bestimmen: $Var(X)$.

 $Var(X) = \mathcal{E}[X^2] - \mathcal{E}[X]^2$
 $\mathcal{E}[X] - \mathcal{S} \times \frac{1}{5} \cdot 1_{(0, 5)} dx = \mathcal{S} \times \frac{1}{5} dx = \frac{1}{5} \mathcal{S} \times dx = \frac{1}{5} \cdot (\frac{1}{2}x^2)_0^5) = \frac{1}{5} \cdot \frac{6^2}{2} = \frac{4}{5}$
 $\mathcal{E}[X^2] = \mathcal{S} \times \frac{1}{5} \cdot 1_{(0, 5)} dx - \mathcal{S} \times \frac{1}{5} \cdot \frac{1}{5} dx = \frac{1}{5} \mathcal{S} \times \frac{1}{5} = \frac{1}{5} \cdot (\frac{1}{3}x^3)_0^5) = \frac{1}{5} \cdot \frac{5}{3} = \frac{6^3}{3}$
 $(> Var(X) = \frac{5^2}{3} - (\frac{5}{2})^2 = \frac{5^2}{3} - \frac{5^2}{4} = \frac{45^2}{72} - \frac{35^2}{72} = \frac{6^2}{72}$