

NumProg WS 20/21 : Tutorübung 03

- 1. Interpolation + verschiedene Basisfunktionen
- 2. Polynominterpolation Newton
- 3. Polynominterpolation Aitken-Neville
- 4. Runge-Effekt

Interpolation

Wir können eine **unbekannte Funktion** f(x) mit Hilfe von **gegebenen Stützpunkten** (x_i, y_i) annähernd rekonstruieren:

- konstruieren einer Interpolationsfunktion g(x), welche durch Stützpunkte verläuft
- damit folgt $\forall x_i, y_i : g(x_i) = y_i = f(x_i)$
- Ziel: $g(x) \approx f(x)$ im gesamten Interpolationsbereich

Interpolation

Wir können eine **unbekannte Funktion** f(x) mit Hilfe von **gegebenen Stützpunkten** (x_i, y_i) annähernd rekonstruieren:

- konstruieren einer Interpolationsfunktion g(x), welche durch Stützpunkte verläuft
- damit folgt $\forall x_i, y_i : g(x_i) = y_i = f(x_i)$
- Ziel: $g(x) \approx f(x)$ im gesamten Interpolationsbereich

Wie wird g(x) nun konstruiert?

Konstruktion von g(x)

Allgemeine Zusammensetzung von Interpolationsfunktion g(x) bei n Stützstellen:

$$g(x) = \sum_{i=0}^{n-1} g_i(x) \cdot c_i$$

- $g_i(x) := \text{verwendete Basisfunktionen}$
- c_i := deren Anteil an der Lösung

Die Lösung wird mit einem Gleichungssystem $A \cdot c = y$ berechnet, wobei $A_{i,j} = g_j(x_i)$:

$$\begin{bmatrix} g_0(x_0) & \cdots & g_{n-1}(x_0) \\ \vdots & & \vdots \\ g_0(x_{n-1}) & \cdots & g_{n-1}(x_{n-1}) \end{bmatrix} \cdot \begin{bmatrix} c_0 \\ \vdots \\ c_{n-1} \end{bmatrix} = \begin{bmatrix} f(x_0) \\ \vdots \\ f(x_{n-1}) \end{bmatrix}$$

verschiedene Basisfunktionen $g_i(x)$

		Komplexität Gleichungssystem	Komplexität Polynomauswertung
(Aufgabe 1.a):	Vandermonde	$\mathcal{O}(n^3)$	$\mathcal{O}(n)$
(Aufgabe 1.d) :	Lagrange	$\mathcal{O}(1)$	$\mathcal{O}(n^2)$
(Aufgabe 2) :	Newton	$\mathcal{O}(n^2)$	$\mathcal{O}(n)$

verschiedene Basisfunktionen $g_i(x)$

	Komplexität Gleichungssystem	Komplexität Polynomauswertung
(Aufgabe 1.a): Vandermonde	$\mathcal{O}(n^3)$	$\mathcal{O}(n)$
(Aufgabe 1.d): Lagrange	$\mathcal{O}(1)$	$\mathcal{O}(n^2)$
(Aufgabe 2): Newton	$\mathcal{O}(n^2)$	$\mathcal{O}(n)$

→ wir wollen oft Polynome auswerten: **Newton-Verfahren bevorzugt**

Punkte:

$$\boldsymbol{P_0}=(0,1)$$

$$P_0 = (0,1)$$
 $P_1 = (1,3)$ $P_2 = (2,5)$

$$\boldsymbol{P_2}=(2,5)$$

Aktuelle Berechnung:

keine (initiale Tabelle)

x_i	$i \setminus k$	0		1		2
x_0	0	$[x_0]f$	\rightarrow	$[x_0, x_1]f$	\rightarrow	$\overline{[x_0, x_1, x_2]f}$
			7		7	
x_1	1	$[x_1]f$	\rightarrow	$[x_1, x_2]f$		
			7			
x_2	2	$[x_2]f$				

Punkte:

$$P_0 = (0,1)$$
 $P_1 = (1,3)$ $P_2 = (2,5)$

$$P_1=(1,3)$$

$$P_2=(2,5)$$

Aktuelle Berechnung: x_i einsetzen

$$x_i$$
 einsetzen

x_i	$i \setminus k$	0		1		2
0	0	[<mark>0</mark>] <i>f</i>	\rightarrow	[0, 1] <i>f</i>	\rightarrow	[0, 1, 2] <i>f</i>
			7		7	
1	1	[1] <i>f</i>	\rightarrow	[1, 2]f		
			7			
2	2	[<mark>2</mark>] <i>f</i>				

Punkte:

$$\boldsymbol{P_0} = (0,1)$$

$$P_0 = (0,1)$$
 $P_1 = (1,3)$ $P_2 = (2,5)$

$$P_2 = (2,5)$$

Aktuelle Berechnung: $f(x_i)$ einsetzen

x_i	$i\setminus k$	0		1		2
0	0	1	\rightarrow	[0, 1] <i>f</i>	\rightarrow	[0, 1, 2] <i>f</i>
			7		7	
1	1	3	\rightarrow	[1, 2]f		
			7			
2	2	5				

Punkte:

$$P_0 = (0,1)$$
 $P_1 = (1,3)$ $P_2 = (2,5)$

$$P_1=(1,3)$$

$$P_2=(2,5)$$

$$[1,2]f = \frac{5-3}{2-1} = 2$$

x_i	$i \setminus k$	0		1		2
0	0	1	\rightarrow	[0, 1] <i>f</i>	\rightarrow	[0, 1, 2] <i>f</i>
			7		7	
1	1	3	\rightarrow	2		
			7			
2	2	5				

Punkte:

$$P_0 = (0,1)$$
 $P_1 = (1,3)$ $P_2 = (2,5)$

$$P_1=(1,3)$$

$$P_2=(2,5)$$

$$[0,1]f = \frac{3-1}{1-0} = 2$$

x_i	$i\setminus k$	0		1		2
0	0	1	\rightarrow	2	\rightarrow	[0, 1, 2] <i>f</i>
			7		7	
1	1	3	\rightarrow	2		
			7			
2	2	5				

Punkte:

$$P_0 = (0,1)$$
 $P_1 = (1,3)$ $P_2 = (2,5)$

$$P_1=(1,3)$$

$$P_2=(2,5)$$

$$[0,1,2]f=\frac{2-2}{2-0}=0$$

x_i	$i \setminus k$	0		1		2	
0	0	1	\rightarrow	2	\rightarrow	0	
			7		7		
1	1	3	\rightarrow	2			
			7				
2	2	5					

Punkte:

$$P_0=(0,1)$$

$$P_0 = (0,1)$$
 $P_1 = (1,3)$ $P_2 = (2,5)$

$$P_2=(2,5)$$

Aktuelle Berechnung:
$$p(x) = 1 + 2 \cdot (x - x_0) + 0 \cdot (x - x_0)(x - x_1) = 2x + 1$$

x_i	$i\setminus k$	0		1		2	
0	0	1	\rightarrow	2	\rightarrow	0	
			7		7		
1	1	3	\rightarrow	2			
			7				
2	2	5					

Punkte:

 $P_0 = (0,1)$ $P_1 = (1,3)$ $P_2 = (2,5)$

Wert gesucht an Stelle:

x = 1.5

Aktuelle Berechnung:

keine (initiale Tabelle)

x_i	$i\setminus k$	0	1		2
x_0	0	$p[0,0] = y_0 \rightarrow$	<i>p</i> [0, 1]	\rightarrow	<i>p</i> [0, 2]
		7		7	
x_1	1	$p[1,0] = y_1 \rightarrow$	p[1, 1]		
		7			
x_2	2	$p[2,0] = y_2$			

Punkte:

 $P_0 = (0,1)$ $P_1 = (1,3)$ $P_2 = (2,5)$

Wert gesucht an Stelle:

x = 1.5

Aktuelle Berechnung:

 x_i und y_i einsetzen

x_i	$i \setminus k$	0		1		2	
0	0	1	\rightarrow	<i>p</i> [0, 1]	\rightarrow	<i>p</i> [0,2]	_
			7		7		
1	1	3	\rightarrow	p[1, 1]			
			7				
2	2	5					

Punkte:

$$\boldsymbol{P_0} = (\boldsymbol{0}, \boldsymbol{1})$$

$$P_0 = (0,1)$$
 $P_1 = (1,3)$ $P_2 = (2,5)$

$$P_2=(2,5)$$

Wert gesucht an Stelle:

$$x = 1.5$$

$$p[1,0] = 1 + \frac{1.5-0}{1-0}(3-1) = 1 + 1.5 \cdot 2 = 4$$

x_i	$i \setminus k$	0		1		2
0	0	1	\rightarrow	4	\rightarrow	<i>p</i> [0, 2]
			7		7	
1	1	3	\rightarrow	p[1, 1]		
			7			
2	2	5				

Punkte:

$$\boldsymbol{P_0} = (\boldsymbol{0}, \boldsymbol{1})$$

$$P_0 = (0,1)$$
 $P_1 = (1,3)$ $P_2 = (2,5)$

$$P_2=(2,5)$$

Wert gesucht an Stelle:

$$x = 1.5$$

$$p[1,1] = 3 + \frac{1.5-1}{2-1}(5-3) = 3 + 0.5 \cdot 2 = 4$$

x_i	$i \setminus k$	0		1		2	
0	0	1	\rightarrow	4	\rightarrow	<i>p</i> [0, 2]	
			7		7		
1	1	3	\rightarrow	4			
			7				
2	2	5					

Punkte:

$$P_0=(0,1)$$

$$P_0 = (0,1)$$
 $P_1 = (1,3)$ $P_2 = (2,5)$

$$P_2 = (2,5)$$

Wert gesucht an Stelle: x = 1.5

$$x = 1.5$$

$$p[0,2] = 4 + \frac{1.5-0}{2-0}(4-4) = 4 + 0.75 \cdot 0 = 4$$
 \leftarrow Auswertung

x_i	$i \setminus k$	0		1		2	
0	0	1	\rightarrow	4	\rightarrow	4	
			7		7		
1	1	3	\rightarrow	4			
			7				
2	2	5					

Punkte:

$$\boldsymbol{P_0} = (0,1)$$

$$P_0 = (0,1)$$
 $P_1 = (1,3)$ $P_2 = (2,5)$

$$P_2=(2,5)$$

Wert gesucht an Stelle:

$$x = 1.5$$

$$p[0,2] = 4 + \frac{1.5-0}{2-0}(4-4) = 4 + 0.75 \cdot 0 = 4 \leftarrow p(1.5) = 4$$

$$\leftarrow p(1.5) = 4$$

	x_i	i \ k	0		1		2	
-	0	0	1	\rightarrow	4	\rightarrow	4	
				7		7		
	1	1	3	\rightarrow	4			
				7				
	2	2	5					

x_i	$i \backslash k$	0	1	2	3
x_0	0	y_0			
x_1	1	y_1			
x_2	2	y_2			
x_3	3	y_3			

gegebene x-Stelle

x_i	$i \backslash k$	0	1	2	3
x_0	0	y_0	P_1		
$ x_1 $	1	y_1	P_2		
x_2	2	y_2	P_3		
x_3	3	y_3			

x_i	$i \backslash k$	0	1	2	3
x_0	0	y_0	P_1	Q_1	
x_1	1	y_1	P_2	Q_2	
x_2	2	y_2	P_3		
x_3	3	y_3			

gegebene x-Stelle

x_i	$i \backslash k$	0	1	2	3
x_0	0	y_0	P_1	Q_1	R
x_1	1	y_1	P_2	Q_2	
x_2	2	y_2	P_3		
x_3	3	y_3			

gegebene x-Stelle

Runge-Effekt

Runge-Effekt

