Física numérica Tarea #6 Ajuste de curvas

Instrucciones: Las soluciones a los ejercicios deberán ser acompañadas del código utilizado.

1. Interpolación de Lagrange.

- (a) Escriba un programa que ajuste un polinomio según el algortimo de Lagrange a un conjunto de n puntos.
- (b) Utilice su programa para ajustar un polinomio al conjunto de datos:

i =	1	2	3	4	5	6	7	8	9
$E_i (MeV)$	0	25	50	75	100	125	150	175	200
$f\left(E_{i}\right)\left(MeV\right)$	10.6	16.0	45.0	83.5	52.8	19.9	10.8	8.25	4.7
$\sigma_i \left(MeV \right)$	9.34	17.9	41.5	85.5	51.5	21.5	10.8	6.29	4.14

Utilice su ajuste para graficar la sección eficaz en pasos de 5 MeV.

(c) Utilice su gráfica para estimar la energía de resonancia E_r y Γ el ancho a la mitad del máximo (full-width at half-maximum). Compare sus resultados con el valor predicho por la teoría $(E_r, \Gamma) = (78 \ MeV, 55 \ MeV)$.

2. Interpolación vía splines cúbicos.

(a) Para los datos del problema anterior, ajuste splines cúbicos utilizando una rutina de las bibliotecas de Python. Estime los valores para la energía de resonancia E_r y Γ el ancho a la mitad del máximo (full-width at half-maximum).

3. Ajuste de la fórmula de resonancia de Breit-Wigner.

(a) Para la teoría indica que la fórmula de Breit-Wigner debe ajustar a los datos de los dos ejercicios anteriores:

$$f(E) = \frac{f_r}{(E - E_r)^2 + \Gamma^2/4}.$$

Su problema consiste en determinar los valores para los parámetros E_r , f_r y Γ . Se sugiere renombrar los párametros haciendo

$$a_1 = f_r$$
, $a_2 = E_R$, $a_3 = \frac{\Gamma^2}{4}$, $x = E$,

para escribir

$$g(x) = \frac{a_1}{(x - a_2)^2 + a_3},$$

y encontrar los párametros a partir de minimizar χ^2 , encuentre estas ecuaciones.

- (b) Las ecuaciones que obtuvo en el inciso anterior NO son lineales, elabore un programa que utilice el método de Newton-Raphson multidimensional para la búsqueda de las raíces.
- 4. Cuando una fuente de voltaje se conecta a través de una resistencia y un inductor en serie, el voltaje a través del inductor $V_i(t)$ obedece la ecuación

$$V\left(t\right) = V_0 e^{-\Gamma t}$$

donde t es el tiempo y $\Gamma = \frac{R}{L}$ es el cociente de la resistencia R y la inductacia L del circuito. Los datos obtenidos de un experimento son:

Data for decay of voltage across an inductor in an RL circuit
Date: 24-Oct-2012
Data taken by D. M. Blantogg and T. P. Chaitor

time (ns)	voltage (volts)	uncertainty (volts)				
0.0	5.08e+00	1.12e-01				
32.8	3.29e+00	9.04e-02				
65.6	2.23e+00	7.43e-02				
98.4	1.48e+00	6.05e-02				
131.2	1.11e+00	5.25e-02				
164.0	6.44e-01	4.00e-02				
196.8	4.76e-01	3.43e-02				
229.6	2.73e-01	2.60e-02				
262.4	1.88e-01	2.16e-02				
295.2	1.41e-01	1.87e-02				
328.0	9.42e-02	1.53e-02				
360.8	7.68e-02	1.38e-02				
393.6	3.22e-02	8.94e-03				
426.4	3.22e-02	8.94e-03				
459.2	1.98e-02	7.01e-03				
492.0	1.98e-02	7.01e-03				

- (a) Encuentre el mejo estimado para los valores de Γ y V_0 y las incertidumbres en sus valores $(\sigma_{\Gamma} \text{ y } \sigma_{V_0})$.
- (b) Encuentre el valor de χ^2 para su ajuste. ¿Tiene sentido?
- (c) Realice una gráfica semi-log para los datos y el ajuste.
- 5. **Ajustando el espectro de un cuerpo negro.** La Mecánica cuántica inició con el espectro de radiación de un cuerpo negro de Planck

$$I(\nu, T) = \frac{2h\nu^3}{c^2} \frac{1}{\exp(\frac{h\nu}{kT}) - 1},$$

donde $I(\nu,T)$ es la energía por unidad de tiempo de radiación con frecuencia ν emitida en la superficie por unidad de área, por unidad de ángulo sólido y por unidad de frecuencia por un cuerpo negro a temperatura T. El parámetro h es la constante de Planck, c es la velocidad de la luz en el vacío y k es la constante de Boltzmann. El proyecto COBE midió la radiación cósmica de fondo, obteniendo los siguientes resultados:

		ىن					v	
ν	$I(\nu, T)$	Error	ν	$I(\nu, T)$	Error	ν	$I(\nu,T)$	Error
$1/\mathrm{cm}$	MJy/sr	kJy/sr	$1/\mathrm{cm}$	MJy/sr	kJy/s	$1/\mathrm{cm}$	MJy/sr	kJy/sr
2.27	200.723	14	2.72	249.508	19	3.18	293.024	25
3.63	327.770	23	4.08	354.081	22	4.54	372.079	21
4.99	381.493	18	5.45	383.478	18	5.90	378.901	16
6.35	368.833	14	6.81	354.063	13	7.26	336.278	12
7.71	316.076	11	8.17	293.924	10	8.62	271.432	11
9.08	248.239	12	9.53	225.940	14	9.98	204.327	16
10.44	183.262	18	10.89	163.830	22	11.34	145.750	22
11.80	128.835	23	12.25	113.568	23	12.71	99.451	23
13.16	87.036	22	13.61	75.876	21	14.07	65.766	20
14.52	57.008	19	14.97	49.223	19	15.43	42.267	19
15.88	36.352	21	16.34	31.062	23	16.79	26.580	26
17.24	22.644	28	17.70	19.255	30	18.15	16.391	32
18.61	13.811	33	19.06	11.716	35	19.51	9.921	41
19.97	8.364	55	20.42	7.087	88	20.87	5.801	155
21.33	4.523	282						

(a) Grafique los datos del COBE y vea si tienen una forma similar a la radiación de cuerpo negro dada por Planck.

(b) Utilice estos datos para estimar la temperatura T de la radicación cósmica de fondo, ajustando la curva por mínimos cuadrados.