Aula 22

Fórmulas Integrais de Cauchy

<u>Definição</u>: Seja γ um caminho fechado e z_0 um ponto que não pertence à curva percorrida por γ . Então, chama-se **índice** de γ relativamente ao ponto z_0 ao valor dado por

$$I(\gamma, z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{1}{z - z_0} dz.$$

Teorema (Fórmula Integral de Cauchy): Seja

 $f:D_f\subset\mathbb{C} o\mathbb{C}$ uma função holomorfa na região D_f e seja γ um caminho fechado homotópico a um ponto em D_f . Se $z_0\in D_f$ é um ponto que não pertence à curva percorrida por γ tem-se

$$f(z_0) \cdot I(\gamma, z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - z_0} dz.$$

Em particular, se γ percorre uma curva de Jordan uma vez no sentido positivo e z_0 está no lado de dentro da curva, tem-se

$$f(z_0) = \frac{1}{2\pi i} \oint_{\gamma} \frac{f(z)}{z - z_0} dz.$$

Teorema (Fórmulas Integrais de Cauchy para Derivadas):

Seja $f:D_f\subset\mathbb{C}\to\mathbb{C}$ uma função holomorfa na região D_f , então f é infinitamente diferenciável em D_f . Seja γ um caminho fechado homotópico a um ponto em D_f e $z_0\in D_f$ um ponto que não pertence à curva percorrida por γ , tem-se

$$\frac{d^k f}{dz^k}(z_0) \cdot I(\gamma, z_0) = \frac{k!}{2\pi i} \int_{\gamma} \frac{f(z)}{(z - z_0)^{k+1}} dz, \qquad k = 0, 1, 2, \dots$$

Em particular, se γ percorre uma curva de Jordan uma vez no sentido positivo e z_0 está no lado de dentro da curva, tem-se

$$\frac{d^k f}{dz^k}(z_0) = \frac{k!}{2\pi i} \oint_{\gamma} \frac{f(z)}{(z - z_0)^{k+1}} dz, \qquad k = 0, 1, 2, \dots$$

Corolário: Seja $f: D_f \subset \mathbb{C} \to \mathbb{C}$ uma função definida na região D_f . Se f tem primitiva em D_f então f é holomorfa em D_f .

Teorema (Morera): Seja $f:D_f\subset\mathbb{C}\to\mathbb{C}$ contínua no domínio D_f . Se, para qualquer caminho fechado γ em D_f , se tem

$$\oint_{\gamma} f(z) \, dz = 0,$$

então f é holomorfa em D_f .

Teorema (Liouville): Seja $f: \mathbb{C} \to \mathbb{C}$ inteira e limitada, ou seja, tal que existe um M>0 para o qual $|f(z)|\leq M$ para todo o $z\in \mathbb{C}$. Então f é constante.