Task 1. Will the conversion to BCNF be dependency preserving in any case? Proof your statement and give a reasoning for choosing BCNF design.

it is not always possible to be a dependency preserving when you converse relation to BSNF design, but still BSNF design is convenient and correct for many cases. For example table of Student(id, name, tot_credit, dept_name, building, budget). We can decompose it to Student(id, name, tot_credit, dept_name) and Department(dept_name, building, budget).

I think it is very convenient to use BCNF, because if some attribute depends on another attribute, and it is not a PK, then it is very inconvenient to store data in this table.

Task 2. Given table in 1NF, convert to 3NF if PK is UnitID:

PK(UnitId, StudentID)-> TutorID, Date, Room, Grade

TutorID->TutEmail

UnitID->Book,Topic

UnitID	StudentID	Date	Tutor ID	Room	Grade
U1	St1	23.02.03	Tut1	629	4.7
U2	St1	18.11.02	Tut3	631	5.1
U1	St4	23.02.03	Tut1	629	4.3
U5	St2	05.05.03	Tut3	632	4.9
U4	St2	04.07.03	Tut5	621	5.0

Tutor ID	TutEmail
Tut1	tut1@fhbb.ch
Tut3	tut3@fhbb.ch
Tut1	tut1@fhbb.ch
Tut3	tut3@fhbb.ch
Tut5	tut5@fhbb.ch

UnitID	Topic	Book
U1	GMT	Deumlich
U2	GIn	Zehnder
U1	GMT	Deumlich
U5	PhF	Dümmlers
U4	AVQ	SwissTopo

Task 3. Given table in 1NF, convert to 2NF if PK is {ProjectName, ProjectManager}, use decomposition:

ProjectName	Budget	TeamSize
Project1	1 kk \$	15
Project2	1.5 kk \$	12

ProjectName	ProjectManager	Position
Project1	Manager1	СТО
Project2	Manager2	CTO2

Task 4. Given table, convert to 3NF if PK is Group, use decomposition: (Faculties have a number of specialities, each speciality consists of a set of particular groups)

Group	Speciality
g1	s1
g2	s2

Speciality	Faculty
s1	f1
s2	f2

Task 5. Given table, convert to BCNF if PK is {ProjectID, Department}, use decomposition: (Curator depends on projectID and related departments, teamSize directly relates to project and related departments, ProjectGroupsNumber depends on TeamSize)

ProjectID	Department	Curator	TeamSize
p1	d1	e1	100
p2	d2	e2	120

TeamSize	ProjectGroupsNumber
100	5
120	6

Task 6. List the three design goals for relational databases, and explain why each is desirable. Give an example of both desirable and undesirable types of decompositions.

Desirable-

1)BCNF: name and city depend on StudentID and StudentID is PK

StudentID	Name	City
1	Zhandos	Almaty

2)Lossless join(decomposition), 3)Dependency preservation: there is if we join we don't loss a data and we have dependency preservation(studentID->name,city and city->country)

StudentID	Name	City
1	Zhandos	Almaty
2	Almas	Almaty

City	Country
Almaty	Kazakhstan

Undesirable-

1)There is address depends on city. But city is not a primary key

StudentID	Name	Address	City
1	Zhandos	Tole bi	Almaty

2)Lossy join(decomposition): there we will loss data if want to join

StudentID	Name
1	Zhandos
2	Zhandos

Name	City	Country
Zhandos	Almaty	Kazakhstan
Zhandos	Aktobe	Kazakhstan

3)there is name and city depend on studentID, so no dependency between name and city. When we decompose table(StudentID,name,city) we don't preserve the dependency. So after join there will be only (studentID->name) dependency

StudentID	Name
1	Zhandos

Name	City
Zhandos	Almaty