HowTo ASIX

Certificats Digitals:

- Certificats Digitals x509
- Autoritats de certificació CA
- Seus Virtuals
- Certificats autosignats

Índex de continguts

TSL/SSL Conexions segures (HTTPS)	2
Creació/Gestió de certificats digitals	
Certificas digitals	
Crear certificats autosignats	
Crear una CA pròpia: Certificate Authority	
Crear el certificat del servidor (real)	
Afegir/modificar/eliminar una passfrase de la clau privada	
Examinar els continguts de certificats i claus privades	
Estructura de directoris usada en els exemples	
- F	

Escola del treball de Barcelona

Departament d'informàtica

ASIX 2011

TSL/SSL Conexions segures (HTTPS)

Creació/Gestió de certificats digitals

Certificas digitals

- Crear un certificat auto-signat per fer tests
- Crear certificats per ser una pròpia CA.
- Crear els certificats del servidor basats en una CA (pròpia o externa)
- Afegir/modificar/eliminar una *passfrase* a una clau privada.

Crear certificats autosignats

- Vàlid per a fer de CA i per ser un certificat de servidor autosignat (sense que calgui una altra CA).
- Genera:
 - o autosigned.server.cert és el certificat.
 - autosigned.server.key és la clau privada ("serverkey")
- La clau privada generada no conté *passfrase*, una frase de seguretat que es demana com un password per poder desxifrar el fitxer. Se li pot afegir/modificar.

Generar el certificat + clau privada autosignats

```
# openssl req -new -x509 -nodes -out autosigned.server.crt -keyout autosigned.server.key
Generating a 2048 bit RSA private key
```

```
..+++
......+++
```

writing new private key to 'autosigned.server.key'

You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [XX]:ca

State or Province Name (full name) []:Barcelona

Locality Name (eg, city) [Default City]:Barcelona

Organization Name (eg, company) [Default Company Ltd]:escola del treball de barcelona

Organizational Unit Name (eg, section) []:departament informatica

Common Name (eg, your name or your server's hostname) []:www.edt.org

Email Address []:admin@edt.org

ll auto*

-rw-r--r-- 1 root root 1489 29 nov 16:28 autosigned.server.crt

-rw-r--r-- 1 root root 1704 29 nov 16:28 autosigned.server.key

cat autosigned.server.crt

-----BEGIN CERTIFICATE-----

MIIEHTCCAwWgAwIBAgIJAMf0OqXXwvGYMA0GCSqGSIb3DQEBBQUAMIGkMQ ... output suprimit ...

PgCgnrTzCgSrMdWsvuFyaorcV6u9HaZoMDHkC5F4Bt76UbIZVo8F23s2Fhjl7TjhSg==

----END CERTIFICATE----

cat autosigned.server.key

-----BEGIN PRIVATE KEY-----

MIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQC8VYl8jRqW5Pdm ... output suprimit ...

sbuv4mqD0dQrZHFPPGzPn+g=

----END PRIVATE KEY----

Afegir *passfrase* a la clau privada (generem un nou fitxer de clau privada)

openssl rsa -des3 -in autosigned.server.key -out autosigned.passfrase.server.key

writing RSA key

Enter PEM pass phrase: serverkey

Verifying - Enter PEM pass phrase: serverkey

cat autosigned.passfrase.server.key

----BEGIN RSA PRIVATE KEY-----

Proc-Type: 4,ENCRYPTED

DEK-Info: DES-EDE3-CBC,159C3F65D3CECAE4

pZpIBwsjVZoM9w2ZHrhfTrW6bRyvG/yTu3+93E+M9Sord3+CipWR9c9lMdEZyxik

... output suprimit ...

SkiF9OkA+9S2rYNkcnuDt4GXs+afzkMWSIqRRkPCsXXoaJ0n8zjWyQ==

----END RSA PRIVATE KEY----

Crear una CA pròpia: Certificate Authority

- Fer-ho manulment pas a pas:
 - o generar la clau privada (observar amb cat el contingut físic i amb openssl el lògic)
 - generar el certificat x509 propi de la CA.
- Usar els scripts ja preparats de openssl (CA.sh o CA.pl).

Crear una entitat CA pròpia

```
# generar la clau privada, encriptada amb 3des i amb passfrase (format PEM)
# openssl genrsa -des3 -out ca.kev 1024
Generating RSA private key, 1024 bit long modulus
.....+++++
.....+++++
e is 65537 (0x10001)
Enter pass phrase for ca.key: cakey
Verifying - Enter pass phrase for ca.key: cakey
# generar el certificat x509 pròpi de l'entitat CA (per a 365 dies) en format PEM
# openssl req -new -x509 -nodes -sha1 -days 365 -key ca.key -out ca.crt
Enter pass phrase for ca.key: cakey
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.
Country Name (2 letter code) [XX]:ca
State or Province Name (full name) []:Bercelona
Locality Name (eg, city) [Default City]:Barcelona
Organization Name (eg., company) [Default Company Ltd]: Veritat Absoluta
Organizational Unit Name (eg, section) []:Departament de certificats
Common Name (eg, your name or your server's hostname) []:VeritatAbsoluta
Email Address []:admin@edt.org
# 11
-rw-r--r-- 1 root root 1159 29 nov 17:40 ca.crt
-rw-r--r-- 1 root root 963 29 nov 17:24 ca.key
# Observar la clau privada de la CA
# mostrar el contingut físic
# cat ca.kev
----BEGIN RSA PRIVATE KEY----
Proc-Type: 4,ENCRYPTED
DEK-Info: DES-EDE3-CBC,770703FF70C7B96F
dx25QunUljFCtQJrSJQAgAtbnpCLhtxkVtozRsDv6SjbwtFbshaxm6hms6tANSmg
... output suprimit ...
8yAB1+vj72huDV2r4PVgXouRJcxCDKjMlrbWhRjJEWqPSgLdNC7z3Q==
----END RSA PRIVATE KEY----
# mostrar el contingut lògic
# openssl rsa -noout -text -in ca.key
```

```
Enter pass phrase for ca.key:
Private-Key: (1024 bit)
modulus:
  00:de:1c:ec:6c:2e:bf:4d:b6:ca:8d:93:d3:9d:41:
  ... output suprimit ...
  c8:90:13:34:ba:31:d1:b3:f5
publicExponent: 65537 (0x10001)
privateExponent:
  7d:8e:8e:1b:4d:85:b8:f1:a6:a8:c7:b2:ed:07:8d:
  ... output suprimit ...
  0f:03:eb:ef:ed:45:ba:b5
prime1:
  00:f2:44:ed:97:c3:e2:9a:aa:95:ae:67:26:86:0f:
  ... output suprimit ...
  13:50:0d:e0:4b
prime2:
  00:ea:b3:8c:97:c6:a4:95:57:39:e0:de:74:f1:b3:
  ... output suprimit ...
  71:ad:e4:94:bf
exponent1:
  70:b0:87:23:94:c6:0e:d3:52:14:71:7e:85:d5:5a:
  ... output suprimit ...
  c8:8e:eb:c9
exponent2:
  00:91:af:dc:80:c6:3c:99:bb:28:61:4e:95:57:07:
  ... output suprimit ...
  e0:b3:e9:a4:ef
coefficient:
  5a:92:81:89:a7:83:52:b5:33:16:ed:79:0e:25:c7:
  ... output suprimit ...
  2a:a2:bf:df
# Observar el certificat x509 de la CA
# mostrar el contingut físic del certificat x509
# cat ca.crt
----BEGIN CERTIFICATE----
MIIDKjCCApOgAwIBAgIJANWdpn/8oUijMA0GCSqGSIb3DQEBBQUAMIGtMQswCQYD
... output suprimit ...
7zBltLVl0unEnCIxY0jNhWkLdwPz/CKuDCIl6c8XAVCfJRHMhWpi8EGUi4GW2A==
```

mostrar el contingut lògic del certificat x509

openssl x509 -noout -text -in ca.crt

----END CERTIFICATE----

Certificate:

Data:

```
Version: 3 (0x2)
    Serial Number:
      d5:9d:a6:7f:fc:a1:48:a3
    Signature Algorithm: sha1WithRSAEncryption
         Issuer: C=ca, ST=Bercelona, L=Barcelona, O=Veritat Absoluta, OU=Departament de
certificats, CN=VeritatAbsoluta/emailAddress=admin@edt.org
    Validity
      Not Before: Nov 29 16:40:57 2011 GMT
      Not After: Nov 28 16:40:57 2012 GMT
        Subject: C=ca, ST=Bercelona, L=Barcelona, O=Veritat Absoluta, OU=Departament de
certificats, CN=VeritatAbsoluta/emailAddress=admin@edt.org
    Subject Public Key Info:
      Public Key Algorithm: rsaEncryption
         Public-Key: (1024 bit)
         Modulus:
           00:de:1c:ec:6c:2e:bf:4d:b6:ca:8d:93:d3:9d:41:
           ... output suprimit ...
           c8:90:13:34:ba:31:d1:b3:f5
         Exponent: 65537 (0x10001)
    X509v3 extensions:
      X509v3 Subject Key Identifier:
         35:7C:15:36:20:F3:B5:87:E2:C4:C8:71:5A:B2:87:16:7F:B8:13:63
      X509v3 Authority Key Identifier:
         keyid:35:7C:15:36:20:F3:B5:87:E2:C4:C8:71:5A:B2:87:16:7F:B8:13:63
      X509v3 Basic Constraints:
         CA:TRUE
  Signature Algorithm: sha1WithRSAEncryption
    33:39:de:3a:cc:c6:fd:74:a4:5e:40:cd:c9:33:f0:e7:27:32:
    ... output suprimit ...
    96:d8
```

Crear el certificat del servidor (real)

- Crear una clau privada per el servidor (o per el servei web desitjat).
- Crear una petició de certificat request per enviar a una CA:
 - o indicar les dades apropiades de qui som quan demanem el certificat.
 - o assegurar-se de que el CN (common name) és el de la seu web a usar el certificat.
- La CA genera el certificat .crt signat per ella mateixa i l'envia al client.
 - usar un fitxer de configuració de la CA que undiqui que els certificats a elaborar siguin de tipus "serverAuth", és a dir, certificats de servidor.
 - Es generarà un número de sèrie dels certificats que l'entitat de certificació CA va emetent.
- "Et voilà" el servidor HTTP ja disposa d'un servificat que diu que "<u>www.edt.org</u>" és qui diu ser. Per tant si es fa la configuració SSL apropiada es podran fer connexions HTTPS.

```
# Crear una clau privada per al servidor
# és en format PEM, de 1024 bits i xifrada en 3DES. Utilitza passfrase
# podeu mirar a l'apartat "afegir/modificar/eliminar passfrases" si la voleu treure
# openssl genrsa -des3 -out server.key 1024
Generating RSA private key, 1024 bit long modulus
.....+++++
.....+++++
e is 65537 (0x10001)
Enter pass phrase for server.key: serverkey
Verifying - Enter pass phrase for server.key: serverkey
# Generar una petició de certificat request per enviar a l'entitat certificadora CA
# openssl req -new -key server.key -out server.csr
Enter pass phrase for server.key:
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are guite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.
Country Name (2 letter code) [XX]:ca
State or Province Name (full name) []:Barcelona
Locality Name (eg, city) [Default City]:Barcelona
Organization Name (eg, company) [Default Company Ltd]:escola del treball de barcelona
Organizational Unit Name (eg, section) []:departament d'informatica
Common Name (eg, your name or your server's hostname) []:www.edt.org
Email Address []:admin@edt.org
Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:request password
An optional company name []:edt
# 11
-rw-r--r-- 1 root root 10 29 nov 17:51 key.txt
-rw-r--r-- 1 root root 830 29 nov 17:58 server.csr
-rw-r--r-- 1 root root 963 29 nov 17:50 server.key
# Observar la petició de certificat
# openssl req -noout -text -in server.csr
Certificate Request:
  Data:
     Version: 0 (0x0)
```

```
Subject: C=ca, ST=Barcelona, L=Barcelona, O=escola del treball de barcelona,
OU=departament d'informatica, CN=www.edt.org/emailAddress=admin@edt.org
    Subject Public Key Info:
       Public Key Algorithm: rsaEncryption
         Public-Key: (1024 bit)
         Modulus:
           00:bc:6f:02:72:f2:f9:3f:19:62:2e:d8:46:61:46:
           ... output suprimit ...
           2c:6a:47:5b:db:99:14:28:af
         Exponent: 65537 (0x10001)
    Attributes:
       unstructuredName
                              :unable to print attribute
       challengePassword
                              :unable to print attribute
  Signature Algorithm: sha1WithRSAEncryption
    10:8d:61:05:7f:12:76:41:e4:d6:09:d4:fc:a6:56:be:36:fa:
     ... output suprimit ...
    ee:99
# Una entitat CA ha de signar la petició request de certificat i retornar un certificat .crt.
# en aquest cas com que som CA nosaltres mateixos generarem el certificat (com a "Veritat
Absoluta") del client ("www.edt.org") que ha fet el request.
$ man x509
$ man ca
# Fitxer de configuració de la generació de certificats: indica què certifiquen
# cat ssl/ca/ca.conf
basicConstraints = critical,CA:FALSE
extendedKeyUsage = serverAuth,emailProtection
# L'autoritat CA ha de signar el certificat
# openssl x509 -CA ssl/ca/ca.crt -CAkey ssl/ca/ca.key -req -in ssl/server/server.csr -days 365
-sha1 -extfile ssl/ca/ca.conf -CAcreateserial -out ssl/server/server.crt
Signature ok
subject=/C=ca/ST=Barcelona/L=Barcelona/O=escola del treball de barcelona/OU=departament
d'informatica/CN=www.edt.org/emailAddress=admin@edt.org
Getting CA Private Key
Enter pass phrase for ssl/ca/ca.key: cakey
# Mostrar el nº de sèrie que genera la CA per a cada certificat que emet.
# cat ssl/ca/ca.srl
F96F36F4897271FF
```

```
# L'entitat li enviarà al client el certificat generat: server.crt
# 11
-rw-r--r-- 1 root root 1184 29 nov 18:09 server.crt
-rw-r--r-- 1 root root 830 29 nov 17:58 server.csr
-rw-r--r-- 1 root root 963 29 nov 17:50 server.key
# El client que ha sol·licitat el certificat pot validar el certificat respecte la seva clau privada
# openssl x509 -noout -modulus -in ssl/server/server.crt | openssl md5
(stdin)= 3b5cc670b2312990f4e53efc37194108
# openssl rsa -noout -modulus -in ssl/server/server.key | openssl md5
Enter pass phrase for ssl/server/server.key: serverkey
(stdin)= 3b5cc670b2312990f4e53efc37194108
# També pot examinar el contingut del certificat per veure si és realment el seu
# openssl x509 -noout -text -in ssl/server/server.crt
Certificate:
  Data:
    Version: 3 (0x2)
    Serial Number:
       f9:6f:36:f4:89:72:71:ff
    Signature Algorithm: sha1WithRSAEncryption
         Issuer: C=ca, ST=Bercelona, L=Barcelona, O=Veritat Absoluta, OU=Departament de
certificats, CN=VeritatAbsoluta/emailAddress=admin@edt.org
    Validity
       Not Before: Nov 30 20:24:15 2011 GMT
       Not After: Nov 29 20:24:15 2012 GMT
            Subject: C=ca, ST=Barcelona, L=Barcelona, O=escola del treball de barcelona,
OU=departament d'informatica, CN=www.edt.org/emailAddress=admin@edt.org
    Subject Public Key Info:
       Public Key Algorithm: rsaEncryption
         Public-Key: (1024 bit)
         Modulus:
            00:bc:6f:02:72:f2:f9:3f:19:62:2e:d8:46:61:46:
            ... output suprimit ...
            2c:6a:47:5b:db:99:14:28:af
         Exponent: 65537 (0x10001)
    X509v3 extensions:
       X509v3 Basic Constraints: critical
         CA:FALSE
       X509v3 Extended Key Usage:
         TLS Web Server Authentication, E-mail Protection
  Signature Algorithm: sha1WithRSAEncryption
    4b:d1:73:d4:56:9b:5e:05:27:75:56:34:49:7d:c5:5f:7c:7d:
    ... output suprimit ...
    08:6e
```

Afegir/modificar/eliminar una passfrase de la clau privada

- Afegir a la clau <nom>.key per disposar de seguretat a la clau privada. Sense la passfrase ningú podrà utilitzar la clau privada. Cal la passfrase per desxifrar la clau privada per poderla usar.
- Inconvenient: en engegar Apache demanarà la passfrase necessària per a cada certificat de servidor que en tingui una.
- Avantatge: seguretat de la clau privada. Si algú la pot obtenir es pot fer passar per nosaltres.
- Accions a saber fer:
 - afegir una passfrase a una clau privada que no en té: genera una nova key.
 - eliminar una passfrase d'una clau privada que ja en té: genera una nova key no xifrada (perill!).
 - o modificar una passfrase d'una clau provada que ja en té una: genera una nova key.

Afegir *passfrase* a la clau privada (generem un nou fitxer de clau privada)

openssl rsa -des3 -in server.key -out passfrase.server.key

writing RSA key

Enter PEM pass phrase: serverkey

Verifying - Enter PEM pass phrase: serverkey

mv passfrase.server.key server.key

Modificar la passfrase existent

openssl rsa -des3 -in passfrase.server.key -out passfrase.new.server.key

Enter pass phrase for passfrase.server.key:

writing RSA key

Enter PEM pass phrase: serverkey

Verifying - Enter PEM pass phrase: newserverkey ## mv passfrase.new.server.key passfrase.server.key

Eliminar la passfrase d'una clau privada

openssl rsa -in passfrase.server.key -out deleted-passfrase.server.key

Enter pass phrase for autosigned.passfrase.server.key: serverkey

writing RSA key

mv deleted-passfrase.server.key server-key

Llistat de tot el que s'ha anat generant

11

-rw-r--r-- 1 root root 1675 29 nov 16:55 deleted-passfrase.server.key

-rw-r--r-- 1 root root 1743 29 nov 16:48 passfrase.new.server.key

-rw-r--r-- 1 root root 1743 29 nov 16:37 passfrase.server.key

-rw-r--r-- 1 root root 1489 29 nov 16:28 server.crt

-rw-r--r-- 1 root root 1704 29 nov 16:28 server.key

Examinar els continguts de certificats i claus privades

- Examinar el contingut de certificats.
- Examinar el contingut de claus privades.
- Verificar si corresponen com a parella "certificat / clau-privada"

```
# Examinar el contingut de certificats:
# openssl x509 -noout -text -in autosigned.server.crt
Certificate:
  Data:
    Version: 3 (0x2)
    Serial Number:
       c7:f4:3a:a5:d7:c2:f1:98
    Signature Algorithm: sha1WithRSAEncryption
      Issuer: C=ca, ST=Barcelona, L=Barcelona, O=escola del treball de barcelona, OU=depaca,
CN=www.edt.org/emailAddress=admin@edt.org
    Validity
       Not Before: Nov 29 15:28:02 2011 GMT
       Not After: Dec 29 15:28:02 2011 GMT
     Subject: C=ca, ST=Barcelona, L=Barcelona, O=escola del treball de barcelona, OU=depaca,
CN=www.edt.org/emailAddress=admin@edt.org
    Subject Public Key Info:
      Public Key Algorithm: rsaEncryption
         Public-Key: (2048 bit)
           00:bc:55:89:7c:8d:1a:96:e4:f7:66:91:87:e9:63:
           ... output suprimit ...
           86:35
         Exponent: 65537 (0x10001)
    X509v3 extensions:
       X509v3 Subject Key Identifier:
         3F:3A:CC:C3:50:4C:28:89:B4:07:76:B3:3A:45:C9:40:63:40:E1:12
      X509v3 Authority Key Identifier:
         keyid:3F:3A:CC:C3:50:4C:28:89:B4:07:76:B3:3A:45:C9:40:63:40:E1:12
      X509v3 Basic Constraints:
         CA:TRUE
  Signature Algorithm: sha1WithRSAEncryption
    32:fd:29:72:57:81:ff:ae:55:d9:46:87:df:3b:31:8c:27:12:
    ... output suprimit ...
    ed:38:e1:4a
```

```
# openssl rsa -noout -text -in autosigned.server.key
Private-Key: (2048 bit)
modulus:
  00:bc:55:89:7c:8d:1a:96:e4:f7:66:91:87:e9:63:
  ... output suprimit ...
  86:35
publicExponent: 65537 (0x10001)
privateExponent:
  40:3a:33:8f:04:58:03:09:c6:cd:75:e8:11:d1:b3:
  ... output suprimit ...
  41
prime1:
  00:f5:7b:53:1f:8e:53:d5:e0:0c:19:2c:25:91:a5:
  ... output suprimit ...
  53:8e:50:bd:1e:7e:72:e9:a9
prime2:
  00:c4:67:5d:0c:aa:76:c3:35:3a:e0:c8:96:f4:f9:
  ... output suprimit ...
  d6:a6:17:09:bd:9f:b4:07:ad
exponent1:
  49:24:68:bd:03:44:59:7a:7b:40:58:d6:0c:d2:83:
  ... output suprimit ...
  71:2d:ff:5b:81:a3:ad:99
exponent2:
  00:83:6f:70:d3:d3:18:1b:56:fa:0a:07:f3:0e:0a:
  ... output suprimit ...
  88:de:29:b8:b9:0f:b1:59:19
coefficient:
  5f:44:60:85:5c:44:41:92:91:da:c2:c4:70:d8:ed:
  ... output suprimit ...
  64:71:4f:3c:6c:cf:9f:e8
```

```
# Verificar que el certificat i la clau-privada són conjuntats, es corresponen

# openssl x509 -noout -modulus -in autosigned.server.crt | openssl md5
(stdin)= db5c2f5add8d40d76b9ce4b962d94ab8

# openssl rsa -noout -modulus -in autosigned.server.key | openssl md5
(stdin)= db5c2f5add8d40d76b9ce4b962d94ab8
```

Estructura de directoris usada en els exemples

Des d'un directori de proves (/tmp/ssl) s'ha generat:

