Lec 1/30

Monday, January 30, 2017 15:02

ch 11 Interval est, huntion & 11.1 a \$ 11.2 asturation of means

Det: Confidence Interval:

if $\hat{\theta}_1$, $\hat{\theta}_2$ are random variables (usually statistics of a RS X, ..., Xn)

Such that $P(\hat{\theta}_1 \land \theta \land \hat{\theta}_2) = 1 - \alpha$

then the interval $(\hat{\theta}_1, \hat{\theta}_2)$ is a (1-4) ×100 % Confidence interval for θ .

Note: Cls based on sample data, give a runge of possible valver for 6.

Consider estimation of means

Coal: From a random Sample, obtain an estimate por the menn of a pop.

Ex: Dog food production line.

Boxes filled w/ dog biscuits, estimate mean weight of a box.

Take a RS of 100 boxes $X_1, ..., X_{100}$, find $\overline{X} = \frac{\overline{X} Y_1}{100} = 1.16$ lbs

Since we expect variability from sample to sample, it is unlikely that n=1.15. we need to include an estimate of variability.

We know $Var(X) = \frac{Var(X_i)}{100} = \frac{\sigma^2}{100}$. Spoze for now that σ^2 is known.

$$\int_{\sqrt{2\pi}}^{1.96} e^{-\frac{1}{2}x^2} dx = 0.95$$

 $\Rightarrow \mathbb{P}(-1.96 < \frac{\times -\mu}{\sigma/6} < 1.95) \approx 0.95$

-1.96 < \(\overline{\chi_{-}}\) < 1.96

$$\Rightarrow \frac{\overline{X} - 196 \frac{\sigma}{\sqrt{n}}}{2} < M < \frac{\overline{X} + 1.96 \frac{\sigma}{\sqrt{n}}}{\hat{\theta}_{z}} \qquad \text{so CI is } (\hat{\theta}_{i}, \hat{\theta}_{z})$$

 $(\hat{\theta}_i, \hat{\theta}_i)$ has about a 95% chance of containing M. (approx CI).

iff X; s are normal, this is exact.

Thm 11.2 If X is mem of RS of eize n from a normal population $(X_i \overset{\sim}{\sim} \text{Normal})$ with a known σ^2 , then $(\overline{X} - \frac{7}{2} \overset{\leftarrow}{\sim} \overline{n})$, $\overline{X} + \overline{Z} \overset{\leftarrow}{\sim} \overline{n})$ is a $1 - \alpha \times 100\%$. confidence interval for the num of the population. $(\overline{X} + \overline{Z} \overset{\leftarrow}{\sim} \overline{n})$

90% CI
$$\Rightarrow \alpha = 0.1 \Rightarrow Z_{\frac{\alpha}{2}} = 1.65$$

99% CI $\Rightarrow \alpha = 0.01 \Rightarrow Z_{\frac{\alpha}{2}} = 2.58$
95% CI $\Rightarrow \alpha = 0.05 \Rightarrow Z_{\frac{\alpha}{2}} = 1.96$
68% CI $\Rightarrow \alpha = 0.32 \Rightarrow Z_{\frac{\alpha}{2}} = 1$

Back to example: $\overline{X} = 1.15$, assume $\sigma = 0.17$ lbs.

95% CI =
$$(1.15 \pm 1.96 \cdot \frac{0.17}{10}) = (1.15 \pm 1.96 \cdot 0.017) = (1.12, 1.18)$$

when what the content of the co

Remark: buce you use values of sample, cI is not a RV anymore. M is eiter in CI or not. (144 95% chance).

15% of intervals constructed in This way contain M.

Before collecting data:

- Probability statement

- interval (X + Zz on) is random

After collectory datas

- Confidence statement
- how often is the method soccessful?