

UNIVERSIDADE PAULISTA - UNIP

Disciplina: Álgebra Linear Curso: Ciência da Computação Prof^a. Juliana Brassolatti Gonçalves

Matrizes

Introdução

O crescente uso dos computadores tem feito com que a teoria das matrizes seja cada vez mais aplicada em áreas como Economia, Engenharia, Matemática, Física, dentre outras. Vejamos um exemplo.

A tabela a seguir representa as notas de três alunos em uma etapa:

	Química	Inglês	Literatura	Espanhol
Α	8	7	9	8
В	6	6	7	6
С	4	8	5	9

Se quisermos saber a nota do aluno **B** em Literatura, basta procurar o número que fica na segunda linha e na terceira coluna da tabela.

Vamos agora considerar uma tabela de números dispostos em linhas e colunas, como no exemplo acima, mas colocados entre parênteses ou colchetes:

Em tabelas assim dispostas, os números são os elementos. As linhas são enumeradas de cima para baixo e as colunas, da esquerda para direita:

Tabelas com \mathbf{m} linhas e \mathbf{n} colunas (\mathbf{m} e \mathbf{n} números naturais diferentes de 0) são denominadas matrizes m x n. Na tabela anterior temos, portanto, uma matriz 3 x 3.

Veja mais alguns exemplos:

$$\begin{bmatrix} 2 & 3 & -1 \\ 30 & -3 & 17 \end{bmatrix}$$
é uma matriz do tipo 2 x 3

$$\begin{bmatrix} 2 & -5 \\ \frac{1}{2} & \frac{1}{3} \end{bmatrix}$$
 é uma matriz do tipo 2 x 2

Notação geral

Costuma-se representar as matrizes por *letras maiúsculas* e seus elementos por *letras minúsculas*, acompanhadas por *dois índices* que indicam, respectivamente, a linha e a coluna que o elemento ocupa.

Assim, uma matriz **A** do tipo m x n é representada por:

ou, abreviadamente, $A = [a_{ij}]_{m \times n}$, em que **i** e **j** representam, respectivamente, a linha e a coluna que o elemento ocupa. Por exemplo, na matriz anterior, a_{23} é o elemento da 2^a linha e da 3^a coluna.

Na matriz B = $[-1\ 0\ 2\ 5]$, temos: $a_{11} = -1$, $a_{12} = 0$, $a_{13} = 2$ e $a_{14} = 5$.

Denominações especiais

Algumas matrizes, por suas características, recebem denominações especiais.

Matriz linha: matriz do tipo 1 x n, ou seja, com uma única linha.

Por exemplo, a matriz $A = [4 \ 7 \ -3 \ 1]$, do tipo $1 \ x \ 4$.

Matriz coluna: matriz do tipo m x 1, ou seja, com uma única coluna. Por exemplo,

$$\begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$$
 do tipo 3 x 1.

Matriz quadrada: matriz do tipo n x n, ou seja, com o mesmo número de linhas e colunas; dizemos que a matriz é de ordem **n**. Por exemplo, a matriz $C = \begin{bmatrix} 2 & 7 \\ 4 & 1 \end{bmatrix}$ é do tipo 2 x 2, isto é, quadrada de ordem 2.

Numa matriz quadrada definimos a diagonal principal e a diagonal secundária. A principal é formada pelos elementos \mathbf{a}_{ii} tais que i = j. Na secundária, temos i + j = n + 1.

Veja:

Observe a matriz a seguir:

 $a_{11} = -1$ é elemento da diagonal principal, pois i = j = 1

 a_{31} = 5 é elemento da diagonal secundária, pois i + j = n + 1 (3 + 1 = 3 + 1)

Matriz nula: matriz em que todos os elementos são nulos; é representada por $0_{m \times n}$.

Por exemplo,
$$0_{2x3} = \begin{bmatrix} 000\\000 \end{bmatrix}$$
.

Matriz diagonal: matriz quadrada em que todos os elementos que não estão na diagonal principal são nulos. Por exemplo:

a) A
$$_{2\times 2} = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$
 b) B $_{3\times 3} = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 7 \end{bmatrix}$

Matriz identidade: matriz quadrada em que todos os elementos da diagonal principal são iguais a 1 e os demais são nulos; é representada por I_n , sendo n a ordem da matriz. Por exemplo:

$$a) I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad b) I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Assim, para uma matriz identidade
$$I_n = [a_{ij}]a_{ij} = \begin{cases} 1, sei = j \\ 0, sei \neq j \end{cases}$$
.

Matriz transposta: matriz A^t obtida a partir da matriz A trocando-se ordenadamente as linhas por colunas ou as colunas por linhas. Por exemplo:

Se A =
$$\begin{bmatrix} 2 & 3 & 0 \\ -1 & -2 & 1 \end{bmatrix}$$
, então A^t = $\begin{bmatrix} 2 & -1 \\ 3 & -2 \\ 0 & 1 \end{bmatrix}$

Desse modo, se a matriz A é do tipo $m \times n$, A^t é do tipo $n \times m$. Note que a 1ª linha de A corresponde à 1ª coluna de A^t e a 2ª linha de A corresponde à 2ª coluna de A^t .

Matriz simétrica: matriz quadrada de ordem n tal que $A = A^{t}$. Por exemplo,

$$A = \begin{bmatrix} 3 & 5 & 6 \\ 5 & 2 & 4 \\ 6 & 4 & 8 \end{bmatrix}$$

é simétrica, pois $a_{12} = a_{21} = 5$, $a_{13} = a_{31} = 6$, $a_{23} = a_{32} = 4$.

Matriz oposta: matriz **-A** obtida a partir de **A** trocando-se o sinal de todos os elementos de **A**. Por exemplo, se $A = \begin{bmatrix} 3 & 0 \\ 4 & -1 \end{bmatrix}$, então $-A = \begin{bmatrix} -3 & 0 \\ -4 & 1 \end{bmatrix}$.

Igualdade de matrizes

Duas matrizes, A e B, do mesmo tipo m x n, são iguais se, e somente se, todos os elementos que ocupam a mesma posição são iguais:

$$A = B \Leftrightarrow a_{ij} = b_{ij} para \text{ todo } 1 \le i \le m \text{ e todo } 1 \le j \le n$$

Se
$$A = \begin{bmatrix} 2 & 0 \\ -1 & b \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & c \\ -1 & 3 \end{bmatrix}$ e $A = B$, então $c = 0$ e $b = 3$

Operações envolvendo matrizes

Adição

Dadas as matrizes $A = \left\lfloor a_{ij} \right\rfloor_{\!\!\! mxn}$ e $B = \left\lfloor b_{ij} \right\rfloor_{\!\!\! mxn}$, chamamos de soma dessas matrizes a matriz $C = \left\lfloor c_{ij} \right\rfloor_{\!\!\! mxn}$, tal que $c_{ij} = a_{ij} + b_{ij}$, para todo $1 \le i \le m$ e todo $1 \le j \le n$:

Exemplos:

$$\begin{bmatrix} 1 & 4 \\ 0 & 7 \end{bmatrix} + \begin{bmatrix} 2 & -1 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 + 2 & 4 + (-1) \\ 0 + 0 & 7 + 2 \end{bmatrix} = \begin{bmatrix} 3 & 3 \\ 0 & 9 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 3 & 0 \\ 0 & 1 & -1 \end{bmatrix} + \begin{bmatrix} 3 & 1 & 1 \\ 1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 2 + 3 & 3 + 1 & 0 + 1 \\ 0 + 1 & 1 & +(-1) & -1 + 2 \end{bmatrix} = \begin{bmatrix} 5 & 4 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

Observação: A + B existe se, e somente se, A e B forem do mesmo tipo.

Propriedades

Sendo **A**, **B** e **C** matrizes do mesmo tipo (m x n), temos as seguintes propriedades para a adição:

a) comutativa: A + B = B + A

b) associativa: (A + B) + C = A + (B + C)

c) elemento neutro: A + 0 = 0 + A = A, sendo 0 a matriz nula m x n

d) elemento oposto: A + (-A) = (-A) + A = 0

Subtração

Dadas as matrizes $A = \begin{bmatrix} a_{ij} \end{bmatrix}_{mxn}$ e $B = \begin{bmatrix} b_{ij} \end{bmatrix}_{mxn}$, chamamos de diferença entre essas matrizes a soma de **A** com a matriz oposta de **B**:

Observe:

$$\begin{bmatrix} 3 & 0 \\ 4 & -7 \end{bmatrix} - \begin{bmatrix} 1 & 2 \\ 0 & -2 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 4 & -7 \end{bmatrix} + \underbrace{\begin{bmatrix} -1 & -2 \\ 0 & 2 \end{bmatrix}}_{R} = \begin{bmatrix} 3 + (-1) & 0 + (-2) \\ 4 + 0 & -7 + 2 \end{bmatrix} = \begin{bmatrix} 2 & -2 \\ 4 & -5 \end{bmatrix}$$

Multiplicação de um número real por uma matriz

Dados um número real \mathbf{x} e uma matriz \mathbf{A} do tipo m x n, o produto de \mathbf{x} por \mathbf{A} é uma matriz \mathbf{B} do tipo m x n obtida pela multiplicação de cada elemento de \mathbf{A} por \mathbf{x} , ou seja, $b_{ij} = xa_{ij}$:

Observe o seguinte exemplo:

$$3 \begin{bmatrix} 2 & 7 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 3.2 & 3.7 \\ 3.(-1) & 3.0 \end{bmatrix} = \begin{bmatrix} 6 & 21 \\ -3 & 0 \end{bmatrix}$$

Propriedades

Sendo \mathbf{A} e \mathbf{B} matrizes do mesmo tipo (m x n) e \mathbf{x} e \mathbf{y} números reais quaisquer, valem as seguintes propriedades:

- a) associativa: x. (yA) = (xy). A
- b) distributiva de um número real em relação à adição de matrizes:

$$x. (A + B) = xA + xB$$

c) distributiva de uma matriz em relação à adição de dois números reais:

$$(x + y) \cdot A = xA = yA$$

d) elemento neutro: xA = A, para x = 1, ou seja, A=A

Multiplicação de matrizes

O produto de uma matriz por outra não é determinado por meio do produto dos seus respectivos elementos.

Assim, o produto das matrizes $A = \left\lfloor a_{ij} \right\rfloor_{mxp}$ e $B = \left\lfloor b_{ij} \right\rfloor_{pxn}$, é a matriz $C = (c_{ij})_{m \times n}$ em que cada elemento \mathbf{c}_{ij} é obtido por meio da soma dos produtos dos elementos correspondentes da i-ésima linha de A pelos elementos da j-ésima coluna \mathbf{B} .

Vamos multiplicar a matriz $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ e $B = \begin{bmatrix} -1 & 3 \\ 4 & 2 \end{bmatrix}$ para entender como se obtém cada \mathbf{C}_{ii} :

1ª linha e 1ª coluna

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \begin{bmatrix} -1 & 3 \\ 4 & 2 \end{bmatrix} = \begin{bmatrix} 1 & (-1) + 2 & 4 \\ 1 & 2 & 3 \end{bmatrix}$$

1ª linha e 2ª coluna

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \cdot \begin{bmatrix} -1 & 3 \\ 4 & 2 \end{bmatrix} = \begin{bmatrix} 1 \cdot (-1) + 2 \cdot 4 & 1 \cdot 3 + 2 \cdot 2 \\ 1 \cdot 3 & 4 & 2 \end{bmatrix}$$

2ª linha e 1ª coluna

$$A = \begin{bmatrix} 1 & 2 \\ \hline 3 & 4 \end{bmatrix} \cdot \begin{bmatrix} -1 & 3 \\ 4 & 2 \end{bmatrix} = \begin{bmatrix} 1 \cdot (-1) + 2 \cdot 4 & 1 \cdot 3 + 2 \cdot 2 \\ \hline 3 \cdot (-1) + 4 \cdot 4 & \\ c_{21} & \end{bmatrix}$$

2ª linha e 2ª coluna

$$A = \begin{bmatrix} 1 & 2 \\ \hline 3 & 4 \end{bmatrix}, \begin{bmatrix} -1 & 3 \\ 4 & 2 \end{bmatrix} = \begin{bmatrix} 1 \cdot (-1) + 2 \cdot 4 & 1 \cdot 3 + 2 \cdot 2 \\ 3 \cdot (-1) + 4 \cdot 4 & 3 \cdot 3 + 4 \cdot 2 \end{bmatrix}$$

Assim,
$$A \cdot B = \begin{bmatrix} 7 & 7 \\ 13 & 17 \end{bmatrix}$$
.

Observe que:

$$A.B = \begin{bmatrix} -1 & 3 \\ 4 & 2 \end{bmatrix}. \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} (-1).1 + 3.3 & (-1).2 + 3.4 \\ 4.1 + 2.3 & 4.2 + 2.4 \end{bmatrix} = \begin{bmatrix} 8 & 10 \\ 10 & 16 \end{bmatrix}$$

Portanto, $AB \neq BA$, ou seja, para a multiplicação de matrizes não vale a propriedade comutativa.

$$A = \begin{bmatrix} 2 & 3 \\ 0 & 1 \\ -1 & 4 \end{bmatrix} e B = \begin{bmatrix} 1 & 2 & 3 \\ -2 & 0 & 4 \end{bmatrix}.$$

Vejamos outro exemplo com as matrizes

$$A.B = \begin{bmatrix} 2 & 3 \\ 0 & 1 \\ -1 & 4 \end{bmatrix}. \begin{bmatrix} 1 & 2 & 3 \\ -2 & 0 & 4 \end{bmatrix} = \begin{bmatrix} 2.1+3(-2) & 2.2+3.0 & 2.3+3.4 \\ 0.1+1(-2) & 0.2+1.0 & 0.3+1.4 \\ -1.1+4(-2) & -1.2+4.0 & -1.3+4.4 \end{bmatrix} = \begin{bmatrix} -4 & 4 & 18 \\ -2 & 0 & 4 \\ -9 & -2 & 13 \end{bmatrix}$$

$$B \cdot A = \begin{bmatrix} 1 & 2 & 3 \\ -2 & 0 & 4 \end{bmatrix} \cdot \begin{bmatrix} 2 & 3 \\ 0 & 1 \\ -1 & 4 \end{bmatrix} = \begin{bmatrix} 1.2 + 2.0 + 3(-1) & 1.3 + 2.1 + 3.4 \\ -2.2 + 0.0 + 4(-1) & -2.3 + 0.1 + 4.4 \end{bmatrix} = \begin{bmatrix} -1 & 17 \\ -8 & 10 \end{bmatrix}$$

Da definição, temos que a matriz produto A. B só existe se o número de colunas de **A** for igual ao número de linhas de **B**:

$$A_{\text{mxp}} \cdot B_{\text{pxn}} = (A.B)_{\text{mxn}}$$

A matriz produto terá o número de linhas de A (m) e o número de colunas de B(n):

Se
$$A_{3\times2}$$
 e $B_{2\times5}$, então (A . B) $_{3\times5}$

Se A_{4x1} e B_{2x3}, então não existe o produto

Se A $_{4\times2}$ e B $_{2\times1}$, então (A . B) $_{4\times1}$

Propriedades

Verificadas as condições de existência para a multiplicação de matrizes, valem as seguintes propriedades:

- a) associativa: (A. B). C = A. (B. C)
- b) distributiva em relação à adição: A.(B + C) = A.B + A.C ou (A + B).C = A. C + B. C
- c) elemento neutro: A. $I_n = I_n$. A = A, sendo I_n a matriz identidade de ordem n

Vimos que a propriedade comutativa, geralmente, não vale para a multiplicação de matrizes. Não vale também o anulamento do produto, ou seja: sendo 0 $_{\rm m~x~n}$ uma matriz nula, A.B = 0 $_{\rm m~x~n}$ não implica, necessariamente, que A = 0 $_{\rm m~x~n}$ ou B = 0 $_{\rm m~x~n}$.

Matriz inversa

Dada uma matriz **A**, quadrada, de ordem **n**, se existir uma matriz **A'**, de mesma ordem, tal que A. A' = A'. A = I_n , então **A'** é matriz inversa de **A**. Representamos a matriz inversa por A^{-1}

<u>Lista – Exercícios – Para Estudar!</u>

1. Determine a, b, c e d para que se tenha
$$\begin{bmatrix} -1 & \frac{5}{6} \\ 2 & 10 \end{bmatrix} = \begin{bmatrix} a & 5b \\ \frac{c}{3} & -d \end{bmatrix}$$
.

Resposta:
$$a = -1, b = \frac{1}{6}, c = 6$$
 e $d = -10$

2. Determine x, y e z que satisfaçam
$$\begin{bmatrix} 1 & -2 & x \\ 3y & 5 & z-1 \end{bmatrix} = \begin{bmatrix} 1 & -2 & \frac{3}{4} \\ -6 & 5 & 0 \end{bmatrix}.$$

Resposta:
$$x = \frac{3}{4}, y = -2 \text{ e } z = 1$$

3. Determine p e q para que se tenha
$$\begin{bmatrix} p+q & -2 \\ 0 & 2p-q \end{bmatrix} = \begin{bmatrix} 6 & -2 \\ 0 & 3 \end{bmatrix}.$$

Resposta: p = 3 e q = 3

4. Verifique se existe
$$m \in \Re$$
, para que se tenha $\begin{bmatrix} 2 & m^2 - 9 \\ m - 3 & m + 3 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$.

Resposta: Não existe $m \in \Re$ que satisfaz.

5. Verifique se existe
$$m \in \Re$$
, tal que $\begin{bmatrix} 4-m^2 & 1 \\ -2 & 3 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ m & 3 \end{bmatrix}$.

Resposta: m = -2

6. Calcule:

a)
$$\begin{bmatrix} 1 & 0 & -3 \\ 2 & -3 & -1 \end{bmatrix} + \begin{bmatrix} 4 & -2 & \frac{1}{2} \\ 1 & -1 & 0 \end{bmatrix}$$

$$\mathbf{b}) \begin{bmatrix} 2 & -3 \\ \sqrt{3} & 0 \end{bmatrix} + \begin{bmatrix} 5 & -4 \\ 0 & -1 \end{bmatrix}$$

Resposta:
$$\begin{bmatrix} 5 & -2 & -\frac{5}{2} \\ 3 & -4 & -1 \end{bmatrix}$$

Resposta:
$$\begin{bmatrix} 7 & -7 \\ \sqrt{3} & -1 \end{bmatrix}$$

c)
$$\begin{bmatrix} 3 & -5 \\ 2 & 7 \\ 4 & 0 \end{bmatrix} - \begin{bmatrix} 1 & 2 \\ -3 & 5 \\ -1 & 1 \end{bmatrix}$$

$$\mathbf{d)} \begin{bmatrix} 11 & 6 \\ -9 & 4 \end{bmatrix} - \begin{bmatrix} 10 & -5 \\ 6 & -2 \end{bmatrix}$$

Resposta:
$$\begin{bmatrix} 2 & -7 \\ 5 & 2 \\ 5 & -1 \end{bmatrix}$$

Resposta:
$$\begin{bmatrix} 1 & 11 \\ -15 & 6 \end{bmatrix}$$

7. Sejam as matrizes
$$A=\left(a_{ij}\right)_{3x2}$$
, onde $a_{ij}=i+2j$ e $B=\left(b_{ij}\right)_{3x2}$, onde $b_{ij}=1+i+j$.

- a) Determine a matriz A + B.
- **b)** Determine a matriz D=A-B. Como você representaria, genericamente um elemento d_{ij} de D?

Resposta: a)
$$A + B = \begin{bmatrix} 6 & 9 \\ 8 & 11 \\ 10 & 13 \end{bmatrix}$$
 b) $A - B = \begin{bmatrix} 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}$ e $d_{ij} = j - 1$

b)
$$A - B = \begin{bmatrix} 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}$$
 e $d_{ij} = j - 1$

8. Sejam
$$A = \begin{bmatrix} 2 & 3 \\ -1 & 4 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & 5 \\ -2 & 1 \end{bmatrix}$ e $C = \begin{bmatrix} -1 & 3 \\ 4 & 2 \end{bmatrix}$. Determine $A + B + C$.

Resposta:
$$A + B + C = \begin{bmatrix} 1 & 11 \\ 1 & 7 \end{bmatrix}$$

9. Resolva as seguintes equações matriciais:

$$\mathbf{a)} \ X + \begin{bmatrix} 3 \\ -1 \\ 5 \end{bmatrix} = \begin{bmatrix} 11 \\ 3 \\ -2 \end{bmatrix}$$

b)
$$X - \begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix} = \begin{bmatrix} 4 & -1 \\ 0 & 3 \end{bmatrix}$$

Resposta: a)
$$X = \begin{bmatrix} 8 \\ 4 \\ -7 \end{bmatrix}$$

$$\mathbf{b)} \ \ X = \begin{bmatrix} 6 & 2 \\ 4 & 4 \end{bmatrix}$$

10. Determine a matriz X em
$$\begin{bmatrix} 2 & 4 \\ -3 & 5 \end{bmatrix} + \begin{bmatrix} -1 & 3 \\ 5 & 0 \end{bmatrix} = X - \begin{bmatrix} 1 & -2 \\ 3 & 4 \end{bmatrix}$$
.

Resposta:
$$X = \begin{bmatrix} 2 & 5 \\ 5 & 9 \end{bmatrix}$$

11. Resolva o sistema matricial
$$\begin{cases} X + Y = \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix} + \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix} \\ X - Y = \begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$$

Resposta:
$$X = \begin{bmatrix} 3 \\ 5/2 \\ -1/2 \end{bmatrix}$$
; $Y = \begin{bmatrix} 2 \\ 1/2 \\ 17/2 \end{bmatrix}$

12. Dada a matriz
$$\begin{bmatrix} 1 & -11 & 3 \\ 8 & 5 & -2 \end{bmatrix}$$
, obtenha as matrizes: **a)** $3A$

b)
$$\frac{1}{2}A$$

Resposta: a)
$$\begin{bmatrix} 3 & -33 & 9 \\ 24 & 15 & -6 \end{bmatrix}$$
 b) $\begin{bmatrix} \frac{1}{2} & -\frac{11}{2} & \frac{3}{2} \\ 4 & \frac{5}{2} & -1 \end{bmatrix}$

b)
$$\begin{bmatrix} \frac{1}{2} & -\frac{11}{2} & \frac{3}{2} \\ 4 & \frac{5}{2} & -1 \end{bmatrix}$$

13. Dada as matrizes
$$A = \begin{bmatrix} 3 & -2 \\ 1 & -5 \\ 4 & -3 \end{bmatrix}$$
 e $B = \begin{bmatrix} 0 & 1 \\ -3 & 2 \\ 1 & 5 \end{bmatrix}$, obtenha as matrizes:

a)
$$2A + B$$

b)
$$A - 2B$$

Resposta: a)
$$\begin{bmatrix} 6 & -3 \\ -1 & -8 \\ 9 & -1 \end{bmatrix}$$
 b) $\begin{bmatrix} 3 & -4 \\ 7 & -9 \\ 2 & -13 \end{bmatrix}$

b)
$$\begin{bmatrix} 3 & -4 \\ 7 & -9 \\ 2 & -13 \end{bmatrix}$$

14. Resolva a seguinte equação matricial:
$$\begin{bmatrix} 1 & 2 & 3 \\ -3 & -2 & 4 \end{bmatrix} + 2X = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & 5 \end{bmatrix}.$$

Resposta:
$$\begin{bmatrix} 0 & -\frac{3}{2} & -\frac{3}{2} \\ 1 & 2 & \frac{1}{2} \end{bmatrix}$$

15. Sejam
$$A = \begin{bmatrix} 2 & 0 \\ 1 & -1 \end{bmatrix}$$
, $B = \begin{bmatrix} 3 & -1 \\ 0 & 1 \end{bmatrix}$ e $C = \begin{bmatrix} 0 & 2 \\ -1 & 0 \end{bmatrix}$. Determine a matriz X que satisfaz $2A + B = X + 2C$.

Resposta:
$$X = \begin{bmatrix} 7 & -5 \\ 4 & -1 \end{bmatrix}$$

16. Determine, se existirem, os produtos:

a)
$$\begin{bmatrix} 2 & -1 \\ 4 & 3 \end{bmatrix} \cdot \begin{bmatrix} -1 & 4 & 3 & -2 \\ 0 & 1 & 1 & -3 \end{bmatrix}$$
 b) $\begin{bmatrix} 4 & -3 \\ 2 & 5 \end{bmatrix} \cdot \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}$ **c)** $A = \begin{bmatrix} 2 & -1 \\ 0 & -3 \end{bmatrix} \cdot \begin{bmatrix} 4 & 2 \\ 3 & 5 \\ 5 & 2 \end{bmatrix}$

$$\mathbf{b)} \begin{bmatrix} 4 & -3 \\ 2 & 5 \end{bmatrix} \cdot \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}$$

c)
$$A = \begin{bmatrix} 2 & -1 \\ 0 & -3 \end{bmatrix} \cdot \begin{bmatrix} 4 & 2 \\ 3 & 5 \\ 5 - 2 \end{bmatrix}$$

Resposta:
$$\begin{bmatrix} -2 & 7 & 5 & -1 \\ -4 & 19 & 15 & -17 \end{bmatrix}$$
 Resposta: $A = \begin{bmatrix} 4 & -10 \\ 2 & 8 \end{bmatrix}$ **Resposta:** Não Existe

Resposta:
$$A = \begin{bmatrix} 4 & -10 \\ 2 & 8 \end{bmatrix}$$

$$\mathbf{d}) \begin{bmatrix} 1 & 10 & -6 \\ 5 & 2 & 0 \\ -3 & -1 & -3 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 5 \\ -2 \end{bmatrix} \quad \mathbf{e}) \begin{bmatrix} 1 & -1 \\ 5 & 2 \\ -3 & 4 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ 0 \\ 5 \\ 2 \end{bmatrix} \qquad \mathbf{f}) \begin{bmatrix} 4 & -3 \\ 2 & 1 \\ 0 & -1 \\ 2 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & -2 \\ 3 & 5 \end{bmatrix}$$

$$\mathbf{e}) \begin{bmatrix} 1 & -1 \\ 5 & 2 \\ -3 & 4 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ 0 \\ 5 \\ 2 \end{bmatrix}$$

$$\mathbf{f} \mathbf{)} \begin{bmatrix} 4 & -3 \\ 2 & 1 \\ 0 & -1 \\ 3 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & -2 \\ 3 & 5 \end{bmatrix}$$

Resposta:
$$\begin{bmatrix} 63 \\ 15 \\ -2 \end{bmatrix}$$

Resposta:
$$\begin{bmatrix} 63 \\ 15 \\ -2 \end{bmatrix}$$
 Resposta: Não Existe Resposta: $\begin{bmatrix} -5 & -23 \\ 5 & 1 \\ -3 & -5 \\ 3 & -6 \end{bmatrix}$

g)
$$\begin{bmatrix} 3 & 5 & -2 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ 5 \\ 0 \end{bmatrix}$$

g)
$$\begin{bmatrix} 3 & 5 & -2 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ 5 \\ 0 \end{bmatrix}$$
 h) $\begin{bmatrix} 2 \\ 10 \\ 5 \end{bmatrix} \cdot \begin{bmatrix} 4 & -1 & 3 \end{bmatrix}$ i) $\begin{bmatrix} 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 4 & -3 \end{bmatrix}$

i)
$$[1 \ 2] \cdot [4 \ -3]$$

Resposta:
$$[3 7]$$
Resposta: $\begin{bmatrix} 8 & -2 & 6 \\ 40 & -10 & 30 \\ 20 & -5 & 15 \end{bmatrix}$
Resposta: Não Existe

17. Sejam
$$A = \begin{bmatrix} 3 & -1 \\ 0 & 2 \\ 1 & 4 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & 1 \\ 1 & -3 \end{bmatrix}$ e $C = \begin{bmatrix} 4 \\ -1 \end{bmatrix}$. Determine, se existir:

- a) $A \cdot B$
- b) $B \cdot A$

a) Resposta:
$$A \cdot B = \begin{bmatrix} -1 & 6 \\ 2 & -6 \\ 4 & -11 \end{bmatrix}$$
 b) Resposta: Não Existe c) Resposta: $\begin{bmatrix} 13 \\ -2 \\ 0 \end{bmatrix}$

d) Resposta:
$$\begin{bmatrix} -1 \\ 7 \end{bmatrix}$$

18. Calcule x e y em
$$B = \begin{bmatrix} 2 & x \\ y & -3 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ -5 \end{bmatrix} = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$$
. Resposta: $x = \frac{7}{5}$; $y = \frac{-9}{2}$