

Bloque II: El nivel de aplicación

Tema 4: Protocolos del nivel de aplicación II

Índice

- Bloque II: El nivel de aplicación
 - Tema 4: Protocolos del nivel de aplicación II
 - DNS
 - Introducción
 - Cliente y servidor DNS
 - Espacio de nombres DNS
 - Funcionamiento DNS
 - DNS: Caché y Forwarding
 - Consultas DNS
 - P2P

Lecturas recomendadas:

- Capítulo 2, sección 2.5 y 2.6, de "Redes de Computadores: Un enfoque descendente". James F. Kurose, Keith W. Ross. Addison Wesley.
- Capítulo 11, secciones 11.1, 11.2, 11.3, 11.4 y 11.5, de "TCP/IP Illustrated, Volume 1: The Protocols", W. Richard Stevens, Addison Wesley.

DNS: Introducción

- Domain Name System
- Nosotros utilizamos nombres para las máquinas (p.e. www.google.com), pero TCP/IP se comunica utilizando direcciones IP (p.e. 209.85.227.104).
- DNS es el sistema que se encarga de hacer la correspondencia entre nombres de máquinas y direcciones IP.
 - También proporciona información de los servidores de correo.
- Especificaciones: RFC 1034 (conceptos) y RFC 1035 (implementación y especificación). Varias actualizaciones posteriores.
- Modelo cliente-servidor.
- Se implementa sobre UDP (puerto 53), aunque también puede utilizar TCP.
- Antes del DNS, fichero de hosts:
 - Windows: %SystemRoot%\System32\drivers\etc\hosts
 - Linux: /etc/hosts y /etc/nsswitch.conf para orden de consulta
 - Inconvenientes: poco escalable, inconsistente con las copias locales y facilidad para nombres duplicados.
 - Válido como solución simple para redes muy pequeñas sin servidor DNS.

Cliente DNS

- DNS también es el protocolo que permite a los clientes y servidores comunicarse.
- Cliente DNS: cada máquina tiene un cliente DNS (resolver)
 - Cada vez que cualquier aplicación necesita averiguar una dirección IP, le pasa la pregunta al cliente DNS (por ejemplo, InetAddress.getByName()).
 - El cliente DNS envía la consulta a su servidor DNS, cuando obtiene la respuesta, se la pasa a la aplicación.

¿Cuál es mi servidor DNS? Ver las propiedades IPv4 (avanzadas) de la conexión en Windows o el fichero /etc/resolv.conf en máquina Linux.

5

Servidor DNS

• **Servidor DNS**: cada red (p.e. wifi de la UDC, ISP, ...) tiene un servidor DNS.

- Recibe consultas DNS de clientes, averigua la dirección IP y la envía a los clientes.
- ¿Cómo averigua mi servidor DNS una dirección IP?
- El DNS es una base de datos distribuida → No hay un servidor que conozca todos los nombres y sus IPs.
- Hay múltiples servidores DNS organizados jerárquicamente
 → Preguntando a otros servidores.

Espacio de nombres DNS

• Estructura de nombres jerárquica en forma de árbol:

- Nombre de dominio: www.fic.udc.es
 - No se distinguen mayúsculas y minúsculas.
- FQDNs (fully qualified domain names): nombre de dominio completo (formalmente acabado en ".").
 - Si está incompleto → Se "rellena" con nuestro dominio: /etc/resolv.conf

Espacio de nombres DNS: TLDs

- Top-Level Domains (TLDs):
 - ccTLDs: country-codes TLDs
 - gTLDs: generic TLDs. Tres tipos: generic, generic-restricted y sponsored.
 - IDN ccTLDs: internationalized country-code TLDs

- Listado completo de los TLDs: http://www.iana.org/domains/root/db/
- Los nuevos gTLDs: http://newgtlds.icann.org/en/program-status/delegated-strings

Servidores de nombres

- Hay servidores DNS en cada nivel de la jerarquía de los nombres de dominio:
 - Distribuir la carga entre los servidores de nombres.
 - Delegación de la administración de los servidores de nombres
- Servidores raíz: http://www.root-servers.org/
 - Existen 13 servidores raíz (A-M), replicados por seguridad y fiabilidad → Son críticos.
 - Conocen a todos los TLDs y delegan en ellos.
- Servidores TLD:
 - Cada dominio de 1^{er} nivel tiene su servidor TLD asociado.
 - Delegan en servidores de 2º nivel la gestión de los sub-dominios.
- Servidores DNS inferiores:
 - Conocen a todos los equipos de su dominio.
 - Conocen a los servidores DNS raíz.
 - Ante una consulta, si no conoce una IP, le pregunta a un servidor raíz.

Funcionamiento DNS

Funcionamiento DNS

Funcionamiento DNS

Consultas recursivas:

- El servidor DNS hará todo el trabajo necesario para devolver la respuesta completa a la petición.
- Puede implicar múltiples transacciones del servidor con otros servidores DNS.
- No es obligatorio que los servidores DNS soporten este tipo de consultas.
- Mi servidor, normalmente, será recursivo.
- Consultas iterativas (no recursivas):
 - Si el servidor DNS tiene la respuesta, entonces la devuelve.
 - Si el servidor DNS no tiene la respuesta, devolverá información útil, pero no hará peticiones adicionales a otros servidores DNS.
 - Los servidores raíz y TLD son no recursivos.

Caché DNS

- Para reducir los mensajes DNS → Cachés.
- Los servidores DNS disponen de una caché:
 - Cada par dirección IP nombre que se resuelve se almacena en la caché.
 - Tº de vida (TTL) de varios días.
 - Negative caching: almacenar también las peticiones incorrectas.
- Respuesta autoritativa: responde directamente el servidor DNS que "conoce" la información → Servidor autoritativo
 - ¿Caché también en el cliente o sólo en el servidor?

Ahora la tendencia es poner también una caché en el cliente:

- Windows ya la incorpora.
- En Linux: dnsmasq → servidor DNS local para caching (y forwarding)
 - Deshabilitar en /etc/NetworkManager/NetworkManager.conf

Servidor DNS de Forwarding

- Servidores DNS de Forwarding:
 - No es responsable de ninguna zona → No almacena información en disco.
 - Sólo reenvía las consultas a otros servidor DNS → Consultas recursivas.
 - Almacena las respuestas en caché → Respuesta rápida para consultas frecuentes.

Un router inalámbrico, lo normal es que incorpore un servidor DNS de forwarding:

- Reenvía las consultas al servidor DNS de mi ISP.
- Las consultas en caché se resuelven en mi LAN → Evito accesos a la red del ISP.

Consultas DNS

- Consulta A (Estándar): nombre → IP
 - dig www.google.com
 - Online: http://www.kloth.net/services/dig.php
- Consulta CNAME: alias de un nombre
 - dig -t CNAME www.lavoz.com
- Consulta PTR (Consulta inversa Pointer)
 - Un cliente DNS necesita conocer el nombre de dominio asociado a la dirección IP 88.221.32.170 → Consulta inversa 170.32.221.88.in-addr.arpa.
 - Se basa en el TLD arpa.
 - Es necesario invertir la dirección IP, ya que los nombres de dominio son más genéricos por la derecha (al contrario que las direcciones IP).
 - dig -x 88.221.32.170

Consultas DNS

Cuando se envía un e-mail (p.e. a john.doe@gmail.com), ¿cómo sabe mi servidor de correo cuál es el servidor de correo SMTP del dominio gmail.com?

- Consulta MX (Mail Exchanger):
 - El servidor de correo origen, envía una consulta MX a su servidor DNS preguntando por el dominio de destino (p.e. gmail.com).
 - La respuesta incluye un listado con los servidores de correo disponibles.
 - Menor preferencia → Primero
 - dig -t MX gmail.com

DNS: Comandos

- Comandos nslookup y dig:
 - Envía peticiones DNS al servidor DNS por defecto
 - Por defecto, envían peticiones estándar.
 - Permiten especificar otros tipos de peticiones.
- Comando bind:
 - Berkeley Internet Name Domain
 - Servidor DNS más utilizado en Internet.
 - Incluido en Linux
- Servidor DNS público de Google:
 - 8.8.8.8 y 8.8.4.4
 - http://code.google.com/speed/public-dns/

P2P

- Los protocolos anteriores se basaban en el modelo cliente-servidor: el servidor proporciona un servicio y el cliente consume ese servicio.
- El modelo P2P (**Peer To Peer**) está compuesto por pares (peers) que realizan ambas funciones: consumir y proporcionar un servicio.
- Se basa en equipos de usuarios:
 - No son propiedad de un proveedor de servicio.
 - Conectados intermitentemente.
 - Proporcionan acceso a una parte de sus recursos (disco, cpu, ancho de banda)

Ventajas:

- Compartición de recursos (cuantos más, mejor).
- Gran tolerancia a fallos.

Inconvenientes:

- Seguridad: acceso a los recursos de un equipo → Aumento de las medidas de seguridad en los últimos años.
- Gran uso de ancho de banda → A veces restringidos por los ISPs.

P2P: Ejemplos y tipos

- Distribución de archivos: BitTorrent, Napster, BitTorrent
- Voz sobre IP: Skype
- Instant messaging (IM)
- Préstamo masivo de CPU

- Plataforma BOINC (Berkeley Open Infrastructure for Network Computing)
- Blockchain, bitcoin: basados en redes P2P.
- P2P estructurado: los nodos se organizan en una topología específica.
- P2P sin estructura: los nodos se conectan entre sí de forma aleatoria.
 - P2P puro: todos los nodos son iguales.
 - P2P centralizado: dispone de un nodo central que funciona como un servidor de directorio. El resto de los nodos no están organizados.
 - P2P híbrido: existe nodos especiales (supernodos) que realizan algunas tareas del servidor de directorio.