More Operations on Sets

More Operations on Sets

This Chapter:

- Identifying and specifying partitions of a set.
- 2) Finding the Cartesian Product of two sets.
- 3) Finding the Power Set of a set

Given two sets A and B, the Cartesian Product of A and B ($A \times B$, or "A cross B") is defined as

$$A \times B = \{(a,b): a \in A, b \in B\}$$

So the result of A cross B is a set of coordinate pairs, which are combinations of the elements from A and B.

Additionally, $A \times A$ is written as A^2

```
A = \{1, 2\} and B = \{3\}
```

The result of $A \times B$ is $\{(1, 3), (2, 3)\}$

And the result of $B \times A$ is $\{(3, 1), (3, 2)\}$

So note that $A \times B \neq B \times A$

It might be helpful to first write out all the coordinate pairs in a table before writing it out as a set...

$$A = \{2, 4, 6, 8\}$$
 $B = \{1, 2, 3, 4, 5\}$

List all elements of $A \times B$

$$A = \{ 2, 4, 6, 8 \}$$

$$A = \{2, 4, 6, 8\}$$
 $B = \{1, 2, 3, 4, 5\}$

List all elements of $A \times B$

B → A ↓	1	2	3	4	5
2	(2,1)	(2,2)	(2,3)	(2,4)	(2,5)
4	(4,1)	(4,2)	(4,3)	(4,4)	(4,5)
6	(6,1)	(6,2)	(6,3)	(6,4)	(6,5)
8	(8,1)	(8,2)	(8,3)	(8,4)	(8,5)

Remember that A's elements make up the x coordinate and B's elements make up the y coordinate!

In mathematics, the power set (or powerset) of any set S is the set of all subsets of S, including the empty set and S itself.

https://en.wikipedia.org/wiki/Power_set

```
If S is the set {x, y, z}, then the subsets are: {} (empty set Ø), {x}, {y}, {z}, {x, y}, {x, z}, {y, z}, {x, y, z}
```

and hence the power set of S is $\{ \emptyset, \{x\}, \{y\}, \{z\}, \{x, y\}, \{x, z\}, \{y, z\}, \{x, y, z\} \}$

1) What is the Power Set of { 1, 2, 3 }?

1) What is the Power Set of { 1, 2, 3 }?

 $\{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$

Given the sets $A = \{1, 2\}$ and $B = \{3\}$,

1) What is the Power Set $\wp(A \times B)$?

Given the sets $A = \{1, 2\}$ and $B = \{3\}$,

1) What is the Power Set $\wp(A \times B)$? A x B = { (1, 3), (2, 3) }

Power set of A x B is $\{\emptyset, \{(1,3)\}, \{(2,3)\}, \{(1,3), (2,3)\}\}$

It might help to substitute each ordered pair with another variable, like j = (1, 3) and k = (2, 3). This way, you can see that the set has two elements, and the Power Set will have some combination of these.

Given the sets
$$A = \{1, 2\}$$
 and $B = \{3\}$,

2) What is the result of $\wp(A) \times \wp(B)$?

Given the sets $A = \{1, 2\}$ and $B = \{3\}$,

2) What is the result of $\wp(A) \times \wp(B)$?

$$\wp(A) \times \wp(B)$$
 ?

The Power Set of A is $\{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$. The Power Set of B is $\{\emptyset, \{3\}\}$

The cross of these two would be pairs of all the elements...: $\{ (\emptyset, \emptyset), (\emptyset, \{3\}), (\{1\}, \emptyset), (\{1\}, \{3\}), (\{2\}, \emptyset), (\{2\}, \{3\}), (\{1, 2\}, \emptyset), (\{1, 2\}, \{3\}) \}$

Again, it might be helpful to come up with substitutions if you're finding it hard to keep all the subsets straight.

Partitions

For each set A, a *partition* of A is a set of subsets of A, such that...:

- 1. For all i, $s_i \neq \emptyset$ (Each part is non-empty)
- 2. For all i and j, if $S_i \neq S_j$, then $S_i \cap S_j = \emptyset$ (Different parts have nothing in common)
- 3. $S_1 \cup S_2 \cup S_3 \cup ... = A$ (Every element in A is in some part)

Partitions

Given some set $A = \{1, 2, 3, 4\}$, There are many valid partitions, so long as each element shows up in the partition set.

```
{ {1}, {2}, {3, 4} }

{ {1, 2}, {3, 4} }

{ {1, 4}, {2, 3} }

{ {1, 2, 3}, {4} },

{ {1, 2, 3, 4 } }
```

For the set { 1, 2, 3, 4, 5, 6 }, find a partition that meets the criteria:

a) Every part has the same size

b) No two parts have the same size

For the set { 1, 2, 3, 4, 5, 6 }, find a partition that meets the criteria:

a) Every part has the same size

One answer: { {1, 3}, {2, 4}, {5, 6} }

b) No two parts have the same size

One answer: { {2}, {3, 6}, {4, 1, 5} }

Look at the in-class exercises and the homework assignments for practice with each of these!