Autor: Hubert Kowalczyk 259550	Struktury Danych i złożoność obliczeniowa Semestr letni 2022/2023	Termin: Wtorek NP: 17:05	
Prowadzący: Dr. Inż. Tomasz Kapłon	Ćwiczenie 3	Data wykonania ćwiczenia: 25.04.2023	
		Data oddania sprawozdania 09.05.2023	

1. Cel ćwiczenia

Celem ćwiczenia było napisanie programu ,który zrealizuje algorytm wyznaczania minimalnego drzewa spinającego.

2. Realizacja

Algorytm Kruskal zrealizowano na komputerze wyposażonej w procesor Intel Core i7-9750H. Podczas realizacji skorzystano również ze szkieletu z zadania 1. Napisano również prosty generator grafów w postaci tablicy. Samo generowanie wymaga minimalnej, maksymalnej wagi oraz liczby krawędzi. Opcja usuwanie krawędzi grafu oraz generowania grafu wymaga napisania "Tak" w pliku cfg.

3. Algorytm Kruskal opisanie

Algorytm tworzy pusty zbiór krawędzi T oraz Listę L wszystkich krawędzi grafu uporządkowaną według niemalejących wag. Dopóki w T nie ma wszystkich wierzchołków grafu. Algorytm wybiera z listy L krawędź i, jeśli nie tworzy ona cyklu z krawędziami już obecnymi w T, dodaję ją do zbioru T. Gdy algorytm zakończy pracę, w T znajdzie się minimalne drzewo rozpinające.

4. Badanie oraz metodologia badań

Ze względu na błąd pojawiający się przy generowaniu grafu większego niż 700 krawędzi. Maksymalna wielkość instancji to 700. Dla 20 różnych wielkości instancji zmierzony został czas dla każdej wielkości instancji. Czas ten uzyskano poprzez dziesięciokrotne zmierzeniu czasu oraz wyciągnięcie średniej z tych czasów. Badanie powtórzono z opcją usuniętych krawędzi grafu. Obcinanie krawędzi grafu wykonywano na wielkości instancji 700. Wszystkie badania przeprowadzono na tym samym grafie, zmieniona była tylko wielkość instancji.

5. Uzyskane Wyniki

Wyniki pomiarów zgrupowano w tabeli 1:

Tabela 1 Wyniki pomiarów uzyskane podczas realizacji zadania

	Bez obcięcia	Z obcięciem
Wielkość Instancji	Czas wykonania [ms]	Czas wykonania [ms]
10	90,47	21,80
20	138,97	123,48
30	467,69	155,58
40	1177,61	402,63
50	2233,57	555,28
100	3590,71	1831,45
150	5269,35	3647,16
200	7403,35	6070,94
250	9807,35	10124,00
300	12413,64	13026,23
350	8055,33	16379,21
400	10600,66	22461,29
450	13628,73	26026,76
500	16492,97	32022,70
550	20716,16	36985,01
600	23952,96	47375,85
625	26267,72	52048,98
650	28637,77	56266,65
675	30525,71	58767,59
700	33224,23	60652,03

Wyniki pomiarów naniesiono na wspólny wykres:

Wykres 1 Złożoność obliczeniowa O(n) na podstawie wyników z tabeli 1