Advanced Behavior and Design of Steel Structure

Team 6 M11205310 劉映形 M11205314 張原嘉

TABLE OF CONTENTS

- <u>01</u> Model Information
- <u>O2</u> Base Shear &Lateral Seismic Force
- 03 Load Combinations
- <u>04</u> Section Selection
- <u>05</u> Section Inspection
- <u>06</u> Design Details

- 07 Modal Analysis
- <u>08</u> Story Drifts
- 09 NonlinearPUSHOVER Analysis
- 10 Nonlinear Time History Analysis
- 11 Discussion & Suggestion

Model Information

Model Information

耶莫 Yermo · eang Palmdale Victorville Santa Barbara Santa Clarita Hesperia 284 ft 海峽群島 Los A geles Oxnard Ontario Riverside National Forest 安那翰 Anaheim Long Beach 穆列塔 Murrieta Irvine 特曼庫拉 Temecula Oceanside Anza-Borre Desert

LOCATION

Los Angeles (LA) (34.051283, -118.246637)

Design Code: ASCE 7-16

III RISK CATAGORY

D−Stiff Soil

Model Information

Story Heigh	t Span Length	No. of Stories
13 ft	23 ft	10

Each floor has a 4×6 span configuration.

OUTER

Fixed-end momentresisting frames (MRF).

INTERIOR

Pin-connected gravity frames.

02

Base Shear & Lateral Seismic Force

- Seismic Parameter
- Base Shear
- Lateral Seismic Force

Seismic Parameters

Parameters	Value	Reference
S_{S}	1.927	By ATC Website
S_1	0.703	By ATC Website
F_a	1	By ATC Website
$F_{\mathbf{v}}$	1.5	By table 11.4-2, $S_1 \geq 0.5$, Site Class D $F_v = 1.5$
S_{MS}	1.972	By ATC Website
S_{M1}	1.055	By equation $S_{M1} = F_v S_1$
S_{DS}	1.315	By ATC Website
S_{D1}	0.703	By equation $S_{D1} = \frac{2}{3}S_{M1}$
R	8	By ASCE 7-16, Steel special moment frames
I _e	1.25	By table 1.5-2, Risk category III, Seismic important factor
C_d	5.5	By ASCE 7-16, Steel special moment frames

Seismic Parameters

$$T_a = C_t h_n^x = 0.028 \times 130^{0.8} = 1.375 \text{ sec}$$

$$T = C_u T_a = 1.4 \times 1.375 = 1.925 \text{ sec}$$

$$T = \min\{1.375, 1.925\} = 1.375 \text{ sec}$$

$$T_s = \frac{S_{D1}}{S_{Ds}} = \frac{0.703}{1.315} = 0.535 \text{ sec}$$

 $T_L = 8 \sec (\text{From ATC Hazards})$

$$T_S < T < T_L$$

$$\rightarrow S_a = \frac{S_{D1}}{T} = \frac{0.703}{1.375} = 0.511g$$

1.375 sec

Structural Period (T)

0.511g

Spectral Response 8Acceleration (S_a)

Lateral Seismic Force $C_{vx} = \frac{w_x h_n^k}{\sum_{i=1}^n w_i h_n^i}$

$$C_{vx} = \frac{w_x h_n^k}{\sum_{i=1}^n w_i h_n^i}$$

$$V_{x} = \sum_{i=1}^{n} F_{i}$$

Story	w_{x} (kips)	h_{χ} (ft)	$w_x h_n^x$	C_{vx}	$V - F_t(kips)$	$F_{\chi}(kips)$	$V_x(kips)$
10	1523.520	130.000	1665994.019	0.217	1650.500	532.834	
9	1523.520	117.000	1431846.159	0.186	1650.500	307.480	532.834
8	1523.520	104.000	1208826.134	0.157	1650.500	259.588	840.315
7	1523.520	91.000	997699.023	0.130	1650.500	214.250	1099.902
6	1523.520	78.000	799397.034	0.104	1650.500	171.666	1314.152
5	1523.520	65.000	615089.486	0.080	1650.500	132.087	1485.818
4	1523.520	52.000	446301.870	0.058	1650.500	95.841	1617.904
3	1523.520	39.000	295139.542	0.038	1650.500	63.379	1713.745
2	1523.520	26.000	164775.854	0.021	1650.500	35.385	1777.124
1	1523.520	13.000	60835.690	0.008	1650.500	13.064	1812.509
Base	0.000	0.000	0.000	0.000		0.000	1825.573
Total	15235.200	715.000	7685904.811	1.000		1825.573	14019.877

Lateral Seismic Force

Load Combinations

66

03

Load Combinations

DL: 120psf, LL: 100psf, SDL: 0psf

E Define Load Patterns × Click To: Loads Self Weight Auto Lateral Load Load Type Multiplier Dead Dead Dead Dead Live Live SPDL Super Dead Ex+ Seismic ASCE 7-16 Ex-Seismic ASCE 7-16 Ey+ Seismic ASCE 7-16 Ev-ASCE 7-16 Seismic Cancel

Load Combinations

COMBO	Load	COMBO	Load
0	1.4(DL)		
1	1.4(DL + SPDL)		
2	1.2(DL + SPDL) + 1.6LL		
3	1.2(DL + SPDL) + 1.0LL + 1.0Ex+	11	0.9(DL + SPDL) + 1.0LL + 1.0Ex+
4	1.2(DL + SPDL) + 1.0LL + 1.0Ex-	12	0.9(DL + SPDL) + 1.0LL + 1.0Ex-
5	1.2(DL + SPDL) + 1.0LL + 1.0Ey+	13	0.9(DL + SPDL) + 1.0LL + 1.0Ey+
6	1.2(DL + SPDL) + 1.0LL + 1.0Ey-	14	0.9(DL + SPDL) + 1.0LL + 1.0Ey-
7	1.2(DL + SPDL) + 1.0LL - 1.0Ex+	15	0.9(DL + SPDL) + 1.0LL - 1.0Ex+
8	1.2(DL + SPDL) + 1.0LL - 1.0Ex-	16	0.9(DL + SPDL) + 1.0LL - 1.0Ex-
9	1.2(DL + SPDL) + 1.0LL - 1.0Ey+	17	0.9(DL + SPDL) + 1.0LL - 1.0Ey+ ₁₃
10	1.2(DL + SPDL) + 1.0LL - 1.0Ey-	18	0.9(DL + SPDL) + 1.0LL - 1.0Ey

Section Selection

Section Selection

Fixed-end moment-resisting frames (MRF).

Storm	Poom (in)	Stress	Column (in.)	Ext. Col.	Int. Col.	
Story	Beam (in.)	Ratio	Column (m.)	Stress Ratio		
10		0.056~0.090		0.049~0.057	0.075~0.085	
9		0.100~0.135		0.062~0.067	0.090~0.099	
8		0.154~0.183	BH 36x30x1.5x2.4	0.078~0.088	0.130~0.136	
7		0.204~0.231		0.097~0.111	0.165~0.170	
6	BH 36x18x1.3x1.75	0.248~0.272		0.123~0.140	0.195~0.197	
5	D11 30x16x1.3x1.73	0.283~0.304		0.208~0.233	0.204~0.205	
4		0.307~0.326		0.265~0.295	0.222~0.224	
3		0.314~0.337	BH 36x32x1.5x2.4	0.325~0.359	0.239~0.244	
2		0.299~0.326		0.383~0.422	0.259~0.268	
1		0.236~0.262		0.431~0.475	0.298~0.303	

Section Selection

Pin-connected gravity frames.

Story	Beam	Stress Ratio	Column	Stress Ratio
10		0.131 ~ 0.204		0.046 ~ 0.061
9		0.129 ~ 0.202	W 12x336	0.075 ~ 0.084
8		0.129 ~ 0.202		0.107 ~ 0.116
7		0.129 ~ 0.201		0.225 ~ 0.232
6	W/ 12v136	0.129 ~ 0.200		0.279 ~ 0.286
5	- W 12x136	0.128 ~ 0.200		0.305 ~ 0.312
4		0.128 ~ 0.200		0.355 ~ 0.361
3		0.128 ~ 0.199	W 14x370	0.406 ~ 0.412
2		0.128 ~ 0.199		0.462 ~ 0.472
1		0.128 ~ 0.198		0.506 ~ 0.522

Width-Thickness Ratio Inspection

	Beam	Column
Flange	· · · · · · · · · · · · · · · · · · ·	$\frac{1}{100} = 0.32 \sqrt{\frac{29000}{(1.1)(50)}} = 7.348$
Web	For $C_a = 0 \le 0.114$ $\frac{h_w}{t_w} \le 2.57 \sqrt{\frac{E}{R_y F_y}} (1 - 1.04C_a)$ $\to \frac{h_w}{t_w} \le 59.013$	For $C_a = \frac{P_u}{\emptyset_c P_y} \le 0.114$ $\frac{h_w}{t_w} \le 2.57 \sqrt{\frac{E}{R_y F_y}} (1 - 1.04C_a)$ $\Rightarrow \frac{h_w}{t_w} \le 59.013 (1 - 1.04C_a)$ For $C_a = \frac{P_u}{\emptyset_c P_y} > 0.114$ $0.88 \sqrt{\frac{E}{R_y F_y}} (2.68 - C_a) \ge 1.57 \sqrt{\frac{E}{R_y F_y}}$ $\Rightarrow 20.207 (2.68 - C_a) \ge 36.051$

Width-Thickness Ratio Inspection

			Bea	Column			
		Fla	nge	W	eb eb	Flange	
Sto	ory	$rac{b_f}{2t_f}$	Upper Limit	$rac{m{h}_w}{m{t}_w}$	Upper Limit	$rac{b_f}{2t_f}$	Upper Limit
MRF	6-10F	5.142	7.348	25.00	59.013	6.670	7.348
MINT	1-5F	5.142	7.348	25.00	59.013	6.250	7.348
Gravity	6-10F	4.960	7.348	13.79	59.013	2.263	7.348
Frame	1-5F	4.960	7.348	13.79	59.013	3.101	7.348
			PASS!		PASS!		PASS!

Column web inspection of MRF

19

					-		
Story	P_u	$\frac{P_u}{\emptyset_c P_y}$	Compare with 0.114	$rac{m{h}_w}{m{t}_w}$	$0.88\sqrt{\frac{E}{R_yF_y}}\left(2.68-\frac{P_u}{\phi_cP_y}\right)$	Upper/ Lower Limit	
10	130.52	0.013	Less	20.800		58.210	PASS!
9	284.54	0.030	Less	20.800		57.160	PASS!
8	465.81	0.049	Less	20.800		56.000	PASS!
7	672.54	0.071	Less	20.800		54.650	PASS!
6	901.21	0.095	Less	20.800		53.180	PASS!
5	1148.57	0.115	Greater		51.810	36.051	PASS!
4	1408.74	0.142	Greater		51.260	36.051	PASS!
3	1676.59	0.169	Greater		50.720	36.051	PASS!
2	1941.36	0.195	Greater		50.190	36.051	PASS!
1	2173.67	0.219	Greater		49.710	36.051	PASS!

Column web inspection of gravity frames

					_		
Story	P_u	$\frac{P_u}{\emptyset_c P_y}$	Compare with 0.114	$rac{m{h}_w}{m{t}_w}$	$0.88\sqrt{\frac{E}{R_yF_y}}\left(2.68-\frac{P_u}{\phi_cP_y}\right)$	Upper/ Lower Limit	
10	243.04	0.049	Less	6.110		56.000	PASS!
9	485.71	0.099	Less	6.110		52.930	PASS!
8	728.05	0.148	Greater		51.140	36.051	PASS!
7	969.86	0.198	Greater		50.130	36.051	PASS!
6	1212.6	0.247	Greater		49.140	36.051	PASS!
5	1456.15	0.269	Greater		48.700	36.051	PASS!
4	1700.11	0.315	Greater		47.770	36.051	PASS!
3	1944.94	0.360	Greater		46.860	36.051	PASS!
2	2196.97	0.407	Greater		45.910	36.051	PASS!
1	2452.24	0.454	Greater		44.960	36.051	PASS!

6605

Section Inspection

Strong Column and Weak Beam

Strong Column/Weak Beam Inspection

$$\frac{\sum M^*_{pc}}{\sum M^*_{pc}} > 1.0$$

Story		M^*_{pc} (kip · in)	M^*_{pb} (kip · in)	M^*_{pc}/M^*_{pc}	
MDF	6-10F	252125~274615	215933	1.167~1.271	PASS!
MRF	1-5F	238504~268739	215933	1.104~1.244	PASS!
Gravity	6-10F	45513~57336	30491	1.492~1.880	PASS!
Frame	1-5F	40483~53935	30605	1.322~1.762	PASS!

Design Details

- Width-Thickness Ratio Inspection
- Doubler Plate
- Continuity Plate
- Connection Size

66

06

Doubler Plate

Story		R _u (kips)	R_v (kips)	<i>t_p</i> (in.)	Doubler Plate (in.)	Lower Limit $\frac{d_z + w_z}{90}$	
MDF	6-10F	4192.271	2052.000	3.481	1.981	0.707	PASS!
MRF -	1-5F	4192.271	2080.800	3.454	1.954	0.707	PASS!
Gravity	6-10F	2169.962	1685.664	2.740	0.960	0.242	PASS!
Frame	1-5F	2169.227	1675.544	2.578	0.918	0.260	PASS!

Continuity Plate

$$t_{cf} = 2.4$$
in. $< \frac{b_{bf}}{6} = \frac{18}{6} = 3$ in.

St	ory	$\frac{b_{bf}-t_{cw}}{2}$ Lower Limit	$rac{oldsymbol{b}_{cf} - oldsymbol{t}_{cw}}{2}$ Upper Limit	Design Width	
MDT	6-10F	8.25	14.25	9	PASS!
MRF	1-5F	8.25	15.25	9	PASS!

Story -		Lower Limit		Design	
		$0.5t_{bf}$	$0.75t_{bf}$	Thickness	
MRF	Int.		1.312	1.5	PASS!
1-10F	Ext.	0.875		0.9	PASS!

Design Configuration:

Story		Width (in.)	Thickness (in.)	Full Depth (in.)
MRF	Int.	9	1.5	31.2
1-10F	Ext.	9	0.9	31.2

Two plates

Two plates

Connection Size

Reduced Beam Section, RBS

Limitations

Beam:

1. Beam Depth = 36in. \leq 36in.

2. Beam flange thickness = 1.75 in. \leq 1.75in.

3. The clear span-to-depth ratio = 7.661 in. \geq 7in. *PASS!*

Column:

1. Column Depth = 36in. \leq 36in. PASS!

Width-to-thickness ratios:

Satisfy the requirements of AISC code *PASS!*

Selection: a = 9 in., b = 24 in., c = 4.5 in.

RBS Size:

PASS!

PASS!

$$0.5b_{bf}$$
 =9 $\leq a \leq 0.75b_{bf}$ =13.5 *PASS!*

$$0.65d = 23.5 \le b \le 0.85d = 30.6$$
 PASS!

$$0.1b_{bf}$$
 =1.8 $\leq c \leq 0.25b_{bf}$ =4.5 *PASS!*

Modal Analysis

- Structural Period
- Structural Mode

Structural Period

$$T = 1.187 \sec \langle C_u T_a = 1.4 \times 1.375 = 1.925 \sec PASS!$$

Case	Mode	Period (sec)	Frequency (cyc/sec)	CircFreq (rad/sec)	Eigenvalue (rad²/sec²)
Modal	1	1.187	0.842	5.293	28.079
Modal	2	1.185	0.844	5.304	28.137
Modal	3	0.755	1.324	8.320	69.213

99

Structural Mode

Mode 1

Y Direction

Mode 2
X Direction

Mode 3

Torsion

Story Drifts

30

$$\delta_{ANA} \le \delta_{xe} = \frac{I_e \delta_x}{C_d} = 0.00341$$

The maximum inter-story drifts

Nonlinear PUSHOVER Analysis

- PUSHOVER Curve
- Story Drifts
- Plastic Hinge Distribution

66

09

PUSHOVER Curve

Set the plastic hinges at the relative positions of the 0.05 and 0.95 members of the beam and column.

- 1. V=1825.573 kips X & Y lateral disp.=2.799 in.
- 2. X & Y lateral disp.=18 in. Strength decrease
- \rightarrow Roof drifts of 1.15% rad <u>18in.</u> ×4% = 1.15% 62.4in

Story Drifts (Roof drifts of 2% rad)

The maximum inter-story drifts both occur on the fourth floor.

Y Direction

Story Drifts (Roof drifts of 4% rad)

The maximum inter-story drifts both occur on the fourth floor.

Y Direction

Plastic Hinge Distribution (X-Dir)

No plastic hinge

Plastic hinge occurs on 1st to 6th floors

10th floor → Strength decrease before reaching 1.5% no plastic hinge

Plastic Hinge Distribution (Y-Dir)

Same distribution as X-dir

Nonlinear Time History Analysis

- Maximum Inter-Story Drift
- Maximum Floor Acceleration
- Floor Shear Distribution

"

The design-based level of appropriate scaled ground motions.

Maximum Inter-Story Drift

X Direction

Y Direction

Maximum Floor Acceleration

Floor Shear Distribution

Y-Dir

11

Discussion & Suggestion

Discussion & Suggestion

- 1. When the lateral displacement of the top floor reaches 2%, plastic hinges appear at the bottom of the columns on the second floor, which shows that the strength of the columns is insufficient. It is recommended that the cross-section be enlarged to improve its strength.
- 2. The stress ratio of the section is smaller than that of other parts, and most of them are shown in light blue on ETABS, which means that our section design this time is conservative and less economical.
- 3. To ensure that the inter-story drift doesn't exceed the limit of 0.00341, the columns and beams are designed with large sections. It is recommended to use a Special Concentrically Braced Frame (SCBF) for a more economical design.

56

THANKS!