

分割

Segmentation

分割

- 介绍发展前沿

►分割 Segmentation

Semantic segmentation

实例级别

Instance segmentation

▶分割

▶分割的发展

- Fully Convolutional Networks for Semantic Segmentation arXiv:1411.4038
- 全卷积
- 多层feature跳接结构(Skip Architecture)

FCN

- Fully Convolutional Networks for Semantic Segmentation arXiv:1411.4038
- 全卷积
- 多层feature跳接结构 (Skip Architecture)

0.0625,	0.1875,	0.1875,	0.0625
0.1875,	0.5625,	0.5625,	0.1875
0.1875,	0.5625,	0.5625,	0.1875
0.0625,	0.1875,	0.1875,	0.0625

FCN

- Fully Convolutional Networks for Semantic Segmentation arXiv:1411.4038
- 全卷积
- 多层feature跳接结构(Skip Architecture)

• 回忆一下经典的VGG-16

空间 (spatial) 尺度缩小了26=32倍

• 将最后的7x7 conv (fc6) padding改为SAME

Bilinear interpolation

FCN-CRF (conditional random fields)

$$P(\mathbf{X} = \mathbf{x}|\mathbf{I}) = \frac{1}{Z(\mathbf{I})} \exp(-E(\mathbf{x}|\mathbf{I}))$$

+
$$P(\mathbf{X} = \mathbf{x}|\mathbf{I}) = \frac{1}{Z(\mathbf{I})} \exp(-E(\mathbf{x}|\mathbf{I}))$$

A'trous conv/Dilated conv

• Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs arXiv:1412.7062

Multi-Scale Context Aggregation by Dilated Convolutions

arXiv:1511.01722

• 利用多孔卷积替代掉原有VGG的Conv

Atrous Conv


```
net = slim.max pool2d(net, [2, 2], scope='pool3')
net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv4')
net = slim.max pool2d(net, [1, 1], stride=1, scope='pool4')
with tf.variable scope('conv5'):
  with tf.variable scope('conv5 1'):
    kernel = tf.Variable(tf.truncated normal(shape=[3, 3, 512, 512]),
        name='weights')
    biases = tf.Variable(tf.zeros([512]), name='biases')
    net = tf.nn.atrous conv2d(net, kernel,
        rate=2, padding='SAME', name='conv2d')
    net = tf.nn.relu(net+biases)
```


Deep lab v2

- DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs arXiv:1606.00915
- a'trous spatial pyramid pooling(ASPP)

Convolution

1 x k x c x 21

Convolution

k x 1 x 21 x 21

Conv + ReLU 3 x 3 x 21 x 21

Convolution 3 x 3 x 21 x 21

wxhxc

Sum

w x h x 21

w x h x 21

Sum

w x h x 21

Large Kernel Matters

— Improve Semantic Segmentation by Global Convolutional Network

arXiv:1703.02719

• 大内核 (Large kernel)

Deep lab V3

- Rethinking Atrous Convolution for Semantic Image Segmentation arXiv:1706.05587
- 多尺度信息结合方式的探究
- 工程上的胜利

(b) Encoder-Decoder

(c) Deeper w. Atrous Convolution

(d) Spatial Pyramid Pooling

- Fully Convolutional Instance-aware Semantic Segmentation arXiv:1611.07709
- Inside/outside score

Mask R-CNN

Mask R-CNN

arXiv: 1703.06870

• 结构上: Faster R-CNN+FCN

• 为了得到更精确的mask位置,加入RoI Align

ROI Align

• 回顾一下ROI pooling

			J .				
0.88	0.44	0.14	0.16	0.37	0.77	0.96	0.27
0.19	0.45	0.57	0.16	0.63	0.29	0.71	0.70
0.66	0.26	0.82	0.64	0.54	0.73	0.59	0.26
0.85	0.34	0.76	0.84	0.29	0.75	0.62	0.25
0.32	0.74	0.21	0.39	0.34	0.03	0.33	0.48
0.20	0.14	0.16	0.13	0.73	0.65	0.96	0.32
0.19	0.69	0.09	0.86	0.88	0.07	0.01	0.48
0.83	0.24	0.97	0.04	0.24	0.35	0.50	0.91

0.88	0.44	0.14	0.16	0.37	0.77	0.96	0.27
0.19	0.45	0.57	0.16	0.63	0.29	0.71	0.70
0.66	0.26	0.82	0.64	0.54	0.73	0.59	0.26
0.85	0.34	0.76	0.84	0.29	0.75	0.62	0.25
0.32	0.74	0.21	0.39	0.34	0.03	0.33	0.48
0.20	0.14	0.16	0.13	0.73	0.65	0.96	0.32
0.19	0.69	0.09	0.86	0.88	0.07	0.01	0.48
0.83	0.24	0.97	0.04	0.24	0.35	0.50	0.91

ROI Align

· ROI Align:采用双线性插值的方式,允许非整数像素的切割点

Mask ^ X R-CNN

- Learning to segment every thing arXiv: 1711.10370
- 采用迁移学习思路,学习一个映射
- 可能大幅度减小训练数据的成本

THANK YOU

