Домашнее задание №4

Бояркин 43501/3

1.1 Каноническая форма модели ВСВ

Передаточная функция задается в следующем виде:
$$W(s) = \frac{\sum_{j=1}^m b_j s^{(j)}}{\sum_{i=1}^n a_i s^{(i)}} = \frac{b_m \prod_{j=1}^m (s-s_j)}{a_n \prod_{i=1}^m (s-s_i)} = \frac{R(s)}{Q(s)}$$

Корни могут иметь различный вид и кратность. Рассмотрим следующие случаи:

• Вещественные корни

Пусть s_i - простые, т.е. $s_i \neq s_j$ при $i \neq j$, где i, j = 1, ..., n и кроме того, они вещественные: $Ims_i = 0$. В этом случае матрица A является диагональной матрицей $A = diag\{s_1, s_2, ..., s_n\}$.

• Вещественные и комплексные корни

Пусть s_i - простые, т.е. $s_i \neq s_j$ при $i \neq j$, где i,j=1,...,n и кроме того, среди корней присутствует комплексно-сопряженные пары корней: $s_{i,i+1} = \alpha_i \pm j\beta_i, j^2 = -1$. В этом случае матрица А является блочно-диагональной:

$$A = \begin{bmatrix} \mathbf{s_1} & 0 & 0 & 0 & \dots & 0 \\ 0 & \mathbf{s_2} & 0 & 0 & \dots & 0 \\ \vdots & & \ddots & & \dots & & \vdots \\ 0 & \dots & 0 & \mathbf{s_q} & 0 & \dots & 0 \\ 0 & & \dots & 0 & \alpha_1 & \beta_1 & \dots & 0 \\ 0 & & \dots & 0 & -\beta_1 & \alpha_1 & \dots & 0 \\ \vdots & & & \ddots & \ddots & & \vdots \\ 0 & & \dots & & 0 & \alpha_r & \beta_r \\ 0 & & \dots & & 0 & -\beta_r & \alpha_r \end{bmatrix}$$

В отличие от предыдущего случая мнимым корням соответствует матрица 2х2 следующего вида:

$$A_i = \begin{bmatrix} \alpha_i & \beta_i \\ -\beta_i & \alpha_i \end{bmatrix}$$

• Кратные вещественные и комплексные корни

Пусть имеется кратные корни: s_1 - кратности l_1, s_2 - кратности $l_2, ..., s_p$ - кратности l_p . Выполнено условие $\sum_{i=1}^{p} l_i = n$. Тогда матрица A имеет следующую блочную структуру:

$$A = \begin{bmatrix} \mathbf{J}_1 & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{0} & \mathbf{J}_2 & \dots & \mathbf{0} \\ \vdots & \dots & \ddots & \vdots \\ \mathbf{0} & \dots & \mathbf{0} & \mathbf{J}_r \end{bmatrix}$$

Блочно-диагональная форма матрицы A называется вещественной Жордановой матрицей. $J_i, i=1,2,...,r,$ r - ящики Жордана, имеющие вид:

— Для вещественных корней $Ims_j = 0$:

$$\mathbf{J}_{i} = \begin{bmatrix} s_{j} & 1 & 0 & 0 & \dots & 0 & 0 \\ 0 & s_{j} & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & s_{j} & 1 & \dots & 0 & 0 \\ 0 & 0 & 0 & s_{j} & \dots & 0 & 0 \\ \vdots & \dots & & \ddots & \ddots & \vdots \\ 0 & & \dots & 0 & s_{j} & 1 \\ 0 & & \dots & 0 & 0 & s_{j} \end{bmatrix}$$

— Для мнимых собственных чисел $s_j = \alpha_j \pm j\beta_j$:

$$\mathbf{J}_{i} = \begin{bmatrix} \alpha_{\mathbf{j}} & \beta_{\mathbf{j}} & 1 & 0 & 0 & \dots & 0 \\ -\beta_{\mathbf{j}} & \alpha_{j} & 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & \alpha_{\mathbf{j}} & \beta_{\mathbf{j}} & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & -\beta_{\mathbf{j}} & \alpha_{j} & 0 & 1 & 0 & \dots & 0 \\ \vdots & & \ddots & & \ddots & \ddots & & \vdots \\ 0 & & & \dots & & 0 & \alpha_{j} & \beta_{j} \\ 0 & & & \dots & & 0 & -\beta_{j} & \alpha_{j} \end{bmatrix}$$

1.2 Эквивалентные преобразования форм модели ВСВ

Обратимся теперь к задаче перехода от исходных уравнений состояния к уравнениям в заданной канонической форме. Решение этой задачи сводится к определению невырожденной п х-матрицы T такой, что для заданных матриц A, B, C получаются уравнения с матрицами $\widetilde{A} = TAT^{-1}$, $\widetilde{B} = TB$, $\widetilde{C} = CT^{-1}$, имеющими требуемый канонический вид.

• Преобразование к канонической форме

- Вещественные корни

Если все корни характеристического многочлена матрицы A - простые вещественные числа, тогда матрица приведения T к диагональной канонической форме (1) определяется из выражения:

$$T = [x_1^0, x_2^0, ..., x_n^0]^{-1}$$

где $x_i^0 (i=1,2,...,n)$ - собственные векторы матрицы A.

– Вещественные и комплексные корни

Если размер каждой клетки совпадает с кратностью соответствующего вещественного собственного значения или равен удвоенной кратности мнимых (комплексно-сопряженных) собственных значений, то такая матрица может быть приведена к виду Фробениуса. В противном случае такая возможность отсутствует.

Рассматривая алгоритмы приведения уравнений состояния к формам НФУ и НФН, будем считать, что преобразование матрицы A к виду Фробениуса возможно.

• Управляемое каноническое представление

Введем матрицы управляемости:

$$Q = [b, Ab, ..., A^{n-1}b], \widetilde{Q} = [\widetilde{b}, \widetilde{Ab}, ..., \widetilde{A}^{n-1}\widetilde{b}]$$

Если выполнены условия $det(sI_n-A)\equiv det(sI_n-\widetilde{A},detQ\neq 0,det\widetilde{Q}\neq 0)$, то существует и единственна невырожденная матрица преобразования T, определяемая выражением $T=\widetilde{Q}Q^{-1}$, при которой матрицы A,b и $\widetilde{A},\widetilde{b}$ связаны соотношением $\widetilde{A}=TAT^{-1},\widetilde{b}=Tb$.

• Наблюдаемое каноническое представление

Введем матрицы наблюдаемости:

$$Q = \begin{bmatrix} \mathbf{c} \\ \mathbf{c}A \\ \vdots \\ \mathbf{c}A^{n-1} \end{bmatrix}, \quad \tilde{Q} = \begin{bmatrix} \tilde{\mathbf{c}} \\ \tilde{\mathbf{c}}\tilde{A} \\ \vdots \\ \tilde{\mathbf{c}}\tilde{A}^{n-1} \end{bmatrix}$$

При выполнении условий $det(sI_n-A)\equiv det(sI_n-\widetilde{A},detQ\neq 0,det\widetilde{Q}\neq 0$ существует и единственна невырожденная матрица преобразования $T=\widetilde{Q}^{-1}Q$ так, что матрицы A, c и $\widetilde{A},\widetilde{c}$ связаны соотношением $\widetilde{A}=TAT^{-1},\widetilde{c}=cT^{-1}$.

Всегда есть множитель $\lambda \in R$, $\lambda \neq 0$ такой, что $x_i^0, \lambda x_{i+1}^0$ - комплексно-сопряженные. Поэтому будем считать, что выполнено условие $x_{i+1}^0 = conj(x_i^0)$, где сопј - операция комплексного сопряжения. Определим теперь векторы h_i, h_{i+1} формулами:

$$h_i = \frac{1}{2}(x_i^0 + x_{i+1}^0), h_{i+1} = \frac{1}{2}(x_i^0 + x_{i+1}^0)$$

Векторы h_i, h_{i+1} по построению вещественные и, если все собственные числа простые, линейно независимы между собой и с другими собственными векторами. Эти векторы определяют в пространстве \mathbb{R}^n некоторую собственную плоскость – инвариантное подпространство матрицы A размерности два.

Построим теперь матрицу преобразования

$$T = [X_1^0, X_2^0, ..., h_j, h_{j+1}, ..., h_{q+r-1}, h_{q+r}]^{-1}$$

где вектор-столбцы x_i^0 отвечают вещественным, а h_j, h_{j+1} - мнимым собственным значениям $s_{j,j+1} = \alpha_j \pm \jmath \beta_j$.

Преобразование $\widetilde{A} = TAT^{-1}$ с найденной таким образом матрицей T приводит уравнения системы к вещественной блочно-диагональной форме (1), в которой порядок следования блоков соответствует порядку расположения столбцов x_i^0, h_j у матрицы $P = T^{-1}$.

– Кратные вещественные и комплексные корни Из выражения $\widetilde{A} = TAT^{-1}$, следует что:

$$\widetilde{A}T = TA$$

Обозначим столбцы матрицы Т как $q_1, q_2, ..., q_n$. Тогда из формы (3) матрицы А с учетом предыдущей формулы получим $Aq_i - \lambda q_i + \gamma_i q_i - 1$, где γ_i принимает значение 0 или 1 в зависимости от A, а λ - характеристическое число матрицы A.

Пусть разбиение блока T_i матрицы T, соответствующее разбиению блока J_i - в форме (4) или (5) в зависимости от вида корня - имеет вид $T_{i1}, T_{i2}, ..., T_{il_i}$. Тогда число γ_i равно нулю, когда соответствующий столбец q_i матрицы T является первым столбцом подблока. Так как, при γ_i вектор q_i является собственным вектором матрицы A, можно найти первые столбцы каждого подблока как собственные векторы матрицы A. Оставшиеся столбцы каждого подблока тогда получаются из (*) при $\gamma_i = 1$. Такие оставшиеся столбцы известны как обобщенные собственные векторы. Этот процесс останавливается, когда $Aq_i - \lambda q_i + \gamma_i q_i - 1$ обеспечивает получение решения.