Orientação de trabalho:

- Termine de resolver os exercícios propostos na Folha 3, correspondentes à secção 1.5 (= exer. das pág. 77 e 78 do manual).
- Termine o estudo do Capítulo 1 secção 1.6 (pág. 79 a 84 do manual)

Secção 1.5: Enumerabilidade

Nesta secção irá trabalhar com conjuntos infinitos e aprender as noções de: enumerável, numerável.

Seja X um conjunto.

- $X \neq \emptyset$ diz-se *enumerável* se existe uma função $f : \mathbb{N} \to X$ sobrejectiva. Por convenção $X = \emptyset$ é enumerável.
- X é numerável se existe uma bijecção entre X e \mathbb{N} . Neste caso, diz-se que X tem a cardinalidade \aleph_0 .

Observações:

- 1. Enumerar significa listar: assim de modo intuitivo um conjunto não vazio X é enumerável se podemos listar todos os seus elementos por meio de uma sequência infinita: $x_0, x_1, x_2, x_3, \ldots$
- 2. Os conjuntos finitos são enumeráveis ver exemplo 2 (pág. 80).
- 3. $X = \{s \in Seq_n : n \in \mathbb{N}\}$ é enumerável ver exemplo 5.
- 4. Sejam X, Y dois conjuntos. Temos:
 - (a) X, Y enumeráveis $\implies X \cup Y$ enumerável ver exemplo 3;
 - (b) X enumerável e $f\colon X\to Y$ sobrejectiva $\implies Y$ enumerável ver exemplo 4;
 - (c) X, Y enumeráveis $\implies X \times Y$ é enumerável ver exemplo 7;
 - (d) X enumerável e $Y \subseteq X \implies Y$ enumerável ver exemplo 8.
- 5. Se $X \subseteq \mathbb{N}$ é **infinito** então X é **numerável** ver o lema da pág. 81.
- 6. É imediato das definições que:

$$X$$
 numerável $\Longrightarrow X$ enumerável.

7. Se X é **infinito**, temos uma equivalência: ver a proposição da pág. 82

$$X$$
 numerável $\iff X$ enumerável.

Os seguintes conjuntos são numeráveis:

Exemplo 1.

- (a) \mathbb{Z} é numerável porque $\Phi \colon \mathbb{N} \to \mathbb{Z}$ definida por $\Phi(n) = \begin{cases} \frac{n}{2} & \text{se } n \neq 0 \text{ e } n \text{ é par } \\ \frac{1-n}{2} & \text{se } n \text{ é impar } \end{cases}$ é bijectiva.
- (b) $\mathbb{N} \times \mathbb{N}$ é numerável ver obser. 7 e 4-(c).
- (c) \mathbb{Q} é numerável ver exemplo da pág. 83.

Nem todos os conjuntos infinitos têm a mesma cardinalidade do conjunto dos números naturais, ou seja nem todos os conjuntos infinitos são enumeráveis.

Sequências binárias infinitas:

Designa-se por Seq_{∞} o conjunto de todas as sequências binárias infinitas. Um elemento de Seq_{∞} é do tipo

$$s = s_0 s_1 s_2 \dots \text{ com } s_0, s_1, s_2, \dots \in \{0, 1\}.$$

Por exemplo, temos:

$$s = 0101010101...$$
, $s' = 11111111111...$, $s'' = s_0 s_1 s_2 ...$ com $s_i = \begin{cases} 1 & \text{se } 5 \mid i \\ 0 & \text{se } 5 \nmid i \end{cases}$. (1)

Teorema de Cantor: Seq_{∞} não é enumerável.

Além disso,

$$\#Seq_{\infty} > \aleph_0 = \#\mathbb{N}.$$

Também não são enumeráveis os seguintes conjuntos:

Exemplo 2.

- (a) R não é enumerável ver corolário da pág. 83.
- (b) $\mathcal{P}(\mathbb{N})$ não é enumerável ver exercício 1.

Ana L. Correia

Enumerabilidade (secção 1.6)

- 1. Seja Seq_{∞} o conjunto de todas as sequências binárias infinitas. Mostre que Seq_{∞} e o conjunto $\mathcal{P}(\mathbb{N})$ das partes de \mathbb{N} têm a mesma cardinalidade. Conclua que $\mathcal{P}(\mathbb{N})$ não tem cardinalidade \aleph_0 .
- 2. Seja $A = \{a_0, a_1, a_2, a_3, \ldots\}$ um conjunto infinito enumerável.
 - (a) Mostre que o conjunto de todas as sequências finitas de elementos de A é enumerável.
 - (b) Será que o conjunto de todos os subconjuntos finitos de A é enumerável?
 - (c) Será que o conjunto de todos os subconjuntos de A é enumerável?
- 3. Sendo $X=\{x_0,x_1,x_2\ldots\}$ e $Y=\{y_0,y_1,y_2\ldots\}$, pode apresentar-se a seguinte enumeração de $X\times Y$:

Obtenha uma fórmula em i e j que permita obter a posição do par (x_i, y_j) nesta lista (comece a partir da posição 0).

Folha 4: Soluções

1. Considerar a correspondência $\Phi \colon Seq_{\infty} \to \mathcal{P}(\mathbb{N})$ definida por $\phi(s_0s_1s_2...) = \{i \in \mathbb{N} : s_i = 1\}$. Provar que é biunívoca e concluir que $\#Seq_{\infty} = \#\mathcal{P}(\mathbb{N})$. Usar o Teorema de Cantor para concluir que $\#\mathcal{P}(\mathbb{N}) \neq \aleph_0$.

- 2. **(b)** Sim. **(c)** Não.
- 3. O par (x_i, y_j) ocupa, na lista indicada, a posição $\frac{(i+j)(i+j-1)}{2} + i + 1 = \frac{(i+j)(i+j-1)+2(i+1)}{2}$.

Ana L. Correia

1. Consideremos a correspondência

$$Seq_{\infty} \xrightarrow{\Phi} \mathcal{P}(\mathbb{N})$$

$$s = s_0 s_1 s_2 \dots \longmapsto \{i \in \mathbb{N} : s_i = 1\}$$

Para as sequências do exemplo (1) temos:

$$\Phi(s) = \Phi(0101010101....) = \{1, 3, 5, 7, ...\} = \{2k + 1: k \in \mathbb{N}\} = \text{naturais impares},$$

 $\Phi(s') = \Phi(1111111111....) = \mathbb{N},$
 $\Phi(s'') = \{i \in \mathbb{N}: 5 \mid i\} = \{0, 5.10, 15, ...\} = \{5k: k \in \mathbb{N}\}.$

A correspondência Φ é biunívoca:

1a. Dada qualquer sequência $s = s_0 s_1 s_2 \ldots \in Seq_{\infty}$, temos $\Phi(s) = \{i \in \mathbb{N} : s_i = 1\} \in \mathcal{P}(\mathbb{N})$.

1b, 2b. Sejam
$$s = s_0 s_1 s_2 \dots, t = t_0 t_1 t_2 \dots \in Seq_{\infty}$$
. Então

$$\Phi(s) = \Phi(t) \iff \{i \in \mathbb{N} : s_i = 1\} = \{i \in \mathbb{N} : t_i = 1\} \iff s_i = t_i, \ \forall i \in \mathbb{N} \iff s = t_i \}$$

(*) - se têm os 1's nas mesma posições também têm os 0's nas mesmas posições.

2a. Seja $X \in \mathcal{P}(\mathbb{N})$. Logo $X \subseteq \mathbb{N}$. Consideremos a sequência

$$s = s_0 s_1 s_2 \dots$$
 tal que $s_i = \begin{cases} 1 & \text{se } i \in X \\ 0 & \text{se } i \notin X \end{cases}$.

Portanto
$$\Phi(s) = \{i \in \mathbb{N} : s_i = 1\} = X$$
, e vale 2b.

Segue-se que Seq_{∞} e $\mathcal{P}(\mathbb{N})$ têm a mesma cardinalidade. Pelo Teorema de Cantor, $\#Seq_{\infty} \neq \aleph_0$. Logo $\mathcal{P}(\mathbb{N})$ também não tem a cardinalidade \aleph_0 .

2. (a) Seja \mathcal{A} o conjunto de todas as sequências finitas de elementos de A, isto é:

$$\mathcal{A} = \{ s = a_{k_1} a_{k_2} ... a_{k_m} \colon a_{k_i} \in A, k_i \in \mathbb{N} \}.$$

Em primeiro lugar, consideremos as posições dos elementos de A na enumeração $a_0, a_1, a_2, a_3, \ldots$, dizendo que a_k ocupa a posição k+1 (de modo, que a_0 ocupa a posição $1, a_1$ ocupa a posição $2, \ldots$).

Dada uma sequência finita $s = a_{k_1} a_{k_2} ... a_{k_m} \in \mathcal{A}$ definimos o PESO de s como sendo a soma $\sum_{i=1}^{m} (k_i + 1)$ das posições das suas componentes. Por exemplo:

$$s = a_0$$
 tem peso 1,
 $s' = a_0 a_5 a_3$ tem peso $(0+1) + (5+1) + (3+1) = 11$,
 $s'' = a_{12} a_6 a_{11}$ tem peso $(12+1) + (6+1) + (11+1) = 32$.

Agora, para cada número natural $n \geq 1$, consideramos o conjunto \mathcal{A}_n constituído por todos os elementos de \mathcal{A} que têm peso n. Como qualquer sequência em \mathcal{A} tem um peso bem determinado, concluímos que \mathcal{A} é a união disjunta de todos os seus subconjuntos \mathcal{A}_n :

$$\mathcal{A} = \bigcup_{n \geq 1} \mathcal{A}_n = \mathcal{A}_1 \dot{\cup} \mathcal{A}_2 \dot{\cup} \mathcal{A}_3 \dot{\cup} \cdots$$

Tratando-se de uma união enumerável, poderemos concluir que \mathcal{A} é enumerável se provarmos que cada \mathcal{A}_n , $n \geq 1$, é enumerável - ver o exemplo 6 da página 81. Ora,

$$s = a_{k_1} a_{k_2} \dots a_{k_m} \in \mathcal{A}_n \iff (k_1 + 1) + (k_2 + 1) + \dots + (k_m + 1) = n$$

 $\iff k_1 + k_2 + \dots + k_m = n - m$

e como uma equação deste tipo tem um número finito de soluções naturais, que é dado por $\binom{n-m+m-1}{n-m} = \binom{n-1}{n-m}$, concluímos que \mathcal{A}_n é um conjunto finito e, portanto, enumerável. Logo \mathcal{A} é enumerável.

(b) A resposta é afirmativa. Designemos por $\mathcal{P}_f(A)$ o conjunto de todos os subconjuntos finitos de A. De facto, a correspondência

$$\begin{array}{ccc}
\mathcal{A} & \xrightarrow{\Phi} & \mathcal{P}_f(A) \\
s = a_{k_1} a_{k_2} \dots a_{k_m} & \longmapsto & \{a_{k_1}, a_{k_2} \dots, a_{k_m}\}
\end{array}$$

define uma sobrejecção entre \mathcal{A} e $\mathcal{P}_f(A)$ - verifique!. Como \mathcal{A} é enumerável (pela alínea anterior), concluímos que $\mathcal{P}_f(A)$ também é enumerável - ver o exemplo 4 da pág. 80.

(c) Um subconjunto (qualquer) $X = \{a_{k_1}, a_{k_2}, a_{k_3}, \ldots\}$ determina, de maneira única, o subconjunto $\{k_1, k_2, k_3, \ldots\}$ de \mathbb{N} . Mais, a correspondência assim definida

$$\mathcal{P}(A) \xrightarrow{\Phi} \mathcal{P}(\mathbb{N})$$

$$X = \{a_{k_1}, a_{k_2}, a_{k_3}, \ldots\} \longmapsto \{k_1, k_2, k_3, \ldots\}$$

é biunívoca - verifique!. Pelo exercício 1, sabemos que $\mathcal{P}(\mathbb{N})$ não é numerável, logo $\mathcal{P}(A)$ também não é numerável. Como A é infinito, também $\mathcal{P}(A)$ é infinito, logo $\mathcal{P}(A)$ não pode ser enumerável - proposição da pág. 82.

3. Comecemos por dispor os elementos de $X \times Y$ numa "matriz infinita":

Então, a lista indicada

$$(x_0, y_0), (x_0, y_1), (x_1, y_0), (x_0, y_2), (x_1, y_1), (x_2, y_0), (x_0, y_3), \cdots$$

corresponde a percorrermos, de cima para baixo, certas "diagonais" nesta matriz. Para qualquer número natural n, chamemos n-ésima diagonal à sequência

$$(x_0, y_n), (x_1, y_{n-1}), \dots, (x_n, y_0)$$

- deste modo:

- a 0-ésima diagonal é (x_0, y_0) ,
- a 1-ésima diagonal é $(x_0, y_1), (x_1, y_0),$
- a 2-ésima diagonal é $(x_0, y_2), (x_1, y_1), (x_2, y_0),$

4 Ana L. Correia

• e assim sucessivamente.

Notemos que os pares da n-ésima diagonal são da forma (x_i, y_j) com i + j = n, com i a crescer e j a decrescer. Notemos, também que, naquela listagem, para atingirmos o elemento (x_0, y_n) teremos de percorrer todas as diagonais anteriores à n-ésima. Sendo assim, se

 $a_k = \text{número de elementos da } k$ -ésima diagonal, (portanto, $a_0 = 1, a_1 = 2, a_2 = 3$) percorremos, precisamente.

$$a_0 + a_1 + a_2 + \dots + a_{n-1} = \sum_{k=0}^{n-1} a_k$$

pares antes de atingirmos (x_0, y_n) . Como a k-ésima diagonal contém todos os elementos da forma (x_i, y_{k-i}) com $0 \le i \le k$, temos $a_k = k+1$ e, portanto,

$$\sum_{k=0}^{n-1} a_k = \sum_{k=0}^{n-1} (k+1) = \sum_{k=1}^{n} k = \frac{n(n-1)}{2}$$
 (progressão aritmética de razão 1).

Deste modo, na lista indicada, o par (x_0, y_n) ocupa a posição $\frac{n(n-1)}{2} + 1$. Finalmente, para chegarmos a um par genérico (x_m, y_{n-m}) , da n-ésima diagonal, teremos de considerar, nessa diagonal, primeiro os pares (x_0, y_n) , (x_1, y_{n-1}) , ..., $(x_{m-1}, y_{n-(m-1)})$ que são exactamente m pares. Em conclusão, o par (x_m, y_{n-m}) ocupa a posição

$$\frac{n(n-1)}{2} + 1 + m.$$

Agora dado um par qualquer, (x_i, y_j) , este par está na i+j-ésima diagonal. Assim substituindo na expressão acima n por i+j e m por i obtemos

$$\frac{(i+j)(i+j-1)}{2} + 1 + i = \frac{(i+j)(i+j-1) + 2(i+1)}{2}$$

- a posição que ocupa na lista.