

Project 3: LEO - Wyndor

Group 1:

Jacob Andreesen Miao Xu ____ Jeff Chen Yiyi Wang

TABLE OF CONTENTS

0

O1 PROJECT VISION

O3 SOFTWARE & RESOURCES

02 TECHNICAL APPROACH

04 RESPONSIBILITIES & TIMELINE

01 VISION

The Problem:

Production:

- The Wyndor Glass Co manufactures two different types of doors (y_A, y_b)
 - Three plants used to produce doors; each w/ different production limits

Marketing Strategy:

- Wyndor advertises their doors using both **TV** (x_1) and Radio (x_2) ads.
 - A max **200 ad slots** can be used; each ad carries a different cost

Covariates:

Potential Door Sales (ω) is dependent on the marketing strategy

Goals:

Determine the **optimal marketing strategy** and **production schedule** to **maximize Wyndor's expected profit**.

To solve this Predictive Stochastic Programming problem, we will utilize the **Learning Enabled Optimization (LEO)** methodology

LEO Protocol:

02

TECHNICAL APPROACH

Approach:

2-Stage Linear Program

Data Prep. & Error Values

Statistical Modeling & Optimization

Model Validation

Stochastic Linear Programming

First Stage: Advertising

$$\begin{aligned} Max &- 0.1x_1 - 0.5x_2 + E[h(x, W|Z)] \\ x_1 + x_2 &\leq 200 \\ x_1 - 0.5x_2 &\geq 0 \\ L_1 &\leq x_1 \leq U_1, \quad L_2 \leq x_2 \leq U_2 \end{aligned}$$

Second Stage: Production Schedule

$$h(x, (Z_i, W_i) = \text{Max} \quad 3y_A + 5y_B$$
s.t. $y_A \leq 8$

$$2y_B \leq 24$$

$$3y_A + 2y_B \leq 36$$

$$y_A + y_B \leq W_i | Z_i$$

$$y_A, y_B \geq 0.$$

Wyndor Covariates & Obj:

W: Response (Sales)

Z: Predictors (Ad. Strategy)

h = Profit(x,W|Z): Wyndor Obj. Function

First Stage Decisions:

X1: Television Ad. Slots

X2: Radio Ad. Slots

Second Stage Decisions:

 y_A : # of Door A produced y_B : # of Door B produced

Data Prep: Linear Reg. & Error

Multiple Linear Regression:

$$m(Z_i, \varepsilon) = \beta_0 + \sum_j \beta_j Z_{ij} + \varepsilon$$

Train & Val. Error:

$$\varepsilon_{ti} = \omega_i - \beta_0 - \beta_1 x_{1i} - \beta_2 x_{2i}$$

$$\varepsilon_{vi} = \omega_i - \beta_0 - \beta_1 x_{1i} - \beta_2 x_{2i}$$

Data Prep: QQ Plot & Outliers

Data Prep: Refit Data

Regression Coefficients

$$\beta_0 = 3.103$$
 $\beta_1 = 0.0422$
 $\beta_2 = 0.2099$

Deterministic Forecast

$$\mathbb{E}[\tilde{\omega}] = \mathbb{E}[\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \tilde{\varepsilon}] = \beta_0 + \beta_1 x_1 + \beta_2 x_2.$$

DF Model

Main Idea:

Prediction error assumed to be Zero

 $Max - 0.1x_1 - 0.5x_2 + 3y_A + 5y_B$ < 200s.t. $x_1 + x_2$ $x_1 - 0.5x_2$ ≤ 8 y_A $2y_B \leq 24$ $3y_A + 2y_B \leq 36$ $-\beta_1 x_1 - \beta_2 x_2 + y_A + y_B \leq \beta_0$ $y_A, y_B \geq 0$ $L_1 < x_1 < U_1, L_2 < x_2 < U_2$

Linear Program Integration

EAE/SAA Model

$\omega_i := \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon_{ti}$

EAE/SAA Model

Main Idea:

Utilizes generic outcome of random error variable

$$\begin{array}{lll} \text{Max } -0.1x_1 - 0.5x_2 \ + \overline{\frac{1}{N} \sum_{i=1}^{N} 3y_{Ai} + 5y_{Bi}} \\ \text{s.t.} & x_1 + x_2 & \leq 200 \\ x_1 - 0.5x_2 & \geq 0 \\ & y_{Ai} & \leq 8 \quad i = 1, \dots, N \\ & 2y_{Bi} & \leq 24 \quad i = 1, \dots, N \\ & 3y_{Ai} + 2y_{Bi} & \leq 36 \quad i = 1, \dots, N \\ & -\beta_1 x_1 - \beta_2 x_2 + & y_{Ai} + y_{Bi} & \leq \beta_0 + \varepsilon_{ti} \quad i = 1, \dots, N \\ & L_1 \leq x_1 \leq U_1, \quad L_2 \leq x_2 \leq U_2, y_{Ai}, y_{Bi} \geq 0. \end{array}$$

Linear Program Integration

Validation: MVSAE

MVSAE Procedure:

- 1. Solve model M times using validation error set & \hat{x}
- 2. Calculate mean and SD for optimal solution
- 3. Construct 95% confidence interval

Results

				. ,	(in \$K) MVSAE
0 D	eterministic LP	173.434077	26.565923	41.373631	[39.811, 40.136]
1	SLP with SAA	180.173138	19.826862	40.340003	[40.252, 40.723]

(Sampled N = 200; Replicated M = 1000 times)

Extension: NDU Model

$$E[\widetilde{\omega}] = (\beta_0 + \xi_0) + (\beta_1 + \xi_1)x_1 + (\beta_2 + \xi_2)x_2$$

NDU Model

$$x = (x_1, x_2)$$
 Generic Outcome Vector

$$x=(x_1,x_2)$$
 Generic Outcome Vector (ξ_0,ξ_1,ξ_2) Generic Error Outcomes

Vectors

$$\min_{\xi_i} \quad (\xi_i)^{\top} \Sigma_{\beta}^{-1}(\xi_i)
(\hat{\beta}_0 + \xi_{i0}) + (\hat{\beta}_1 + \xi_{i1}) Z_{i1} + (\hat{\beta}_2 + \xi_{i2}) Z_{i2} = W_i$$

Solve for error outcomes

03

SOFTWARE & RESOURCES

Supporting Software

Programming & Data Prep.

Regression & Modeling

Solvers

GLPK

CBC

04

RESPONSIBILITIES & TIMELINE

Responsibilities

OUR PROCESS

THANK YOU

Fight On

