Variant Analysis

Michael Schatz

October 9, 2023

Lecture 12: Applied Comparative Genomics

Assignment 4: BWT and Modimizers Due Wednesday Oct 11 by 11:59pm

https://github.com/schatzlab/appliedgenomics2023/tree/main/assignments/assignment4

Personal Genomics

How does your genome compare to the reference?

Exact Matching Review & Overview

Where is GATTACA in the human genome?

Brute Force (3 GB) BANANA BAN ANA NAN ANA O(m * n)Slow & Easy

Suffix Array (>15 GB) \$ A\$ ANA\$ ANANA\$ BANANA\$ NA\$ NANA\$ $O(m + \lg n)$ Full-text index

Hash Table (>15 GB) BAN ⇒ 0 ○ NULL ANA \Rightarrow 1 \bigcirc ANA \Rightarrow 3 \bigcirc NULL NAN ⇒ 2 → NULL O(1)Fixed-length lookup

BWT (3 GB) BANANA\$ \$BANANA A\$BANAN ANA\$BAN ANANA\$B BANANA\$ NA\$BANA NANA\$BA ANNB\$AA O(m)Full-text and concise

*** These are general techniques applicable to any text search problem ***

Minimizers, Modimizers, & MinHash

Sketching and sampling approaches for fast and accurate long read classification Das and Schatz (2022) BMC Bioinformatics. doi: 10.1186/s12859-022-05014-0

Similarity metrics

Hamming distance

Count the number of substitutions to transform one string into another

MIKESCHATZ
||X||XXXX|
MICESHATZZ
5

Edit distance

 The minimum number of substitutions, insertions, or deletions to transform one string into another

MIKESCHAT-Z
||X||X|||X|
MICES-HATZZ

Edit Distance Example

AGCACACA → ACACACTA in 4 steps

```
AGCACACA → (I. change G to C)

ACCACACA → (2. delete C)

ACACACA → (3. change A to T)

ACACACT → (4. insert A after T)

ACACACTA → done
```

[Is this the best we can do?]

Edit Distance Example

AGCACACA → ACACACTA in 3 steps

```
AGCACACA \rightarrow (I. change G to C)

ACCACACA \rightarrow (2. delete C)

ACACACA \rightarrow (3. insert T after 3<sup>rd</sup> C)

ACACACTA \rightarrow done
```

[Is this the best we can do?]

Reverse Engineering Edit Distance

D(AGCACACA, ACACACTA) = ?

Imagine we already have the optimal alignment of the strings, the last column can only be 1 of 3 options:

The optimal alignment of last two columns is then 1 of 9 possibilities

The optimal alignment of the last three columns is then 1 of 27 possibilities...

Eventually spell out every possible sequence of {I,M,D}

Recursive solution

- Computation of D is a recursive process.
 - At each step, we only allow matches, substitutions, and indels
 - D(i,j) in terms of D(i',j') for i' ≤ i and j' ≤ j.

```
D(AGCACACA, ACACACTA) = min{D(AGCACACA, ACACACT) + I,

D(AGCACAC, ACACACTA) + I,

D(AGCACAC, ACACACT) +\delta(A, A)}
```


[What is the running time?]

Dynamic Programming

- We could code this as a recursive function call... ...with an exponential number of function evaluations
- There are only (n+1) x (m+1) pairs i and j
 - We are evaluating D(i,j) multiple times
- Compute D(i,j) bottom up.
 - Start with smallest (i,j) = (1,1).
 - Store the intermediate results in a table.
 - Compute D(i,j) after D(i-1,j), D(i,j-1), and D(i-1,j-1)

Recurrence Relation for D

Find the edit distance (minimum number of operations to convert one string into another) in O(mn) time

```
•Base conditions:
   - D(i,0) = i, for all i = 0,...,n
   -D(0,j) = j, for all j = 0,...,m
•For i > 0, j > 0:
        D(i,j) = min {
                    D(i-1,j) + 1, // align 0 chars from S, I from T
                    D(i,j-1) + I, // align I chars from S, 0 from T
                    D(i-1,j-1) + \delta(S(i),T(j)) // align 1+1 chars
```

		A	С	A	С	A	С	Т	Α
	0	_	2	3	4	5	6	7	8
Α	Ι								
G	2								
С	3								
Α	4								
С	5								
Α	6								
С	7								
Α	8								

[What does the initialization mean?]

		A	С	A	С	A	С	Т	Α
	0		2	3	4	5	6	7	8
Α	ı	• 0							
G	2								
С	3								
A	4								
С	5								
A	6								
С	7								
A	8								

 $D[A,A] = min\{D[A,]+1, D[,A]+1, D[,]+\delta(A,A)\}$

		A	С	A	С	A	С	Т	Α
	0		2	3	4	5	6	7	8
A			_						
G	2								
С	3								
A	4								
С	5								
Α	6								
С	7								
Α	8								

 $D[A,AC] = min\{D[A,A]+1, D[,AC]+1, D[,A]+\delta(A,C)\}$

		A	С	A	С	A	C	Т	A
	0		2	3	4	5	6	7	8
A		0		2					
G	2								
С	3								
A	4								
С	5								
A	6								
С	7								
A	8								

 $D[A,ACA] = min\{D[A,AC]+1, D[,ACA]+1, D[,AC]+\delta(A,A)\}$

		A	U	A	С	A	C	Т	Α
	<u>0</u>	—	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>	8
A		0		2	3	4	5	6	<u>7</u>
G	2								
С	3								
A	4								
С	5								
A	6								
С	7								
A	8								

[What about the other A?]

		A	U	4	U	A	С	Т	Α
	<u>0</u>	<u> </u>	<u>2</u>	<u> თ</u>	<u>4</u>	5	6	7	8
A		0		2	3	<u>4</u>	5	6	7
G	2	I		2	3	4	<u>5</u>	<u>6</u>	<u>7</u>
С	3								
A	4								
С	5								
A	6								
С	7								
A	8								

		A	С	A	С	A	С	Т	Α
	0	_	2	3	4	5	6	7	8
A		0		2	3	4	5	6	7
G	2	<u> </u>		2	3	4	5	6	7
С	3	2	<u> </u>	2	2	3	4	5	6
A	4	3	2	1	2	2	3	4	5
С	5	4	3	2	_	2	2	3	4
A	6	5	4	3	2	<u>—</u>	2	3	3
С	7	6	5	4	3	2	<u> </u>	<u>2</u>	3
A	8	7	6	5	4	3	2	2	<u>2</u>

D[AGCACACA,ACACACTA] = 2

AGCACAC-A

|*||||*|
A-CACACTA

[Can we do it any better?]

Global Alignment Schematic

- A high quality alignment will stay close to the diagonal
 - If we are only interested in high quality alignments, we can skip filling in cells that can't possibly lead to a high quality alignment
 - Find the global alignment with at most edit distance d: O(2dn)

Local vs. Global Alignment

- The Global Alignment Problem tries to find the best end-to-end alignment between the two strings
 - Only applicable for very closely related sequences

- The <u>Local Alignment Problem</u> tries to find pairs of substrings with highest similarity.
 - Especially important if one string is substantially longer than the other
 - Especially important if there is only a distant evolutionary relationship

Global vs Local Alignment Schematic

Local vs. Global Alignment (cont'd)

Global Alignment

Local Alignment—better alignment to find conserved segment

tccCAGTTATGTCAGgggacacgagcatgcagagac

aattqccqccqtcqttttcaqCAGTTATGTCAGatc

Part 2: Variant Calling

Variant Calling Overview

$$\begin{array}{c}
\text{Detect} \\
\text{SNP/INDELs} \\
\text{(GATK or} \\
\text{FreeBayes)}
\end{array}$$

VCF Format

```
Example
     ##fileformat=VCFv4.0
                                                                               Mandatory header lines
     ##fileDate=20100707
     ##source=VCFtools
                                                                                         Optional header lines (meta-data
     ##reference=NCBI36
                                                                                         about the annotations in the VCF body)
     ##INFO=<ID=AA, Number=1, Type=String, Description="Ancestral Allele"
VCF header
     ##INFO=<ID=H2, Number=0, Type=Flag, Description="HapMap2 memberskip">
     ##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype"
     ##FORMAT=<ID=GQ, Number=1, Type=Integer, Description="Genotype Quality (phred score)">
     ##FORMAT=<ID=GL, Number=3, Type=Float, Description="Likelihoods for RR, RA, AA genotypes (R=ref, A=alt)">
     ##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Red Depth">
     ##ALT=<ID=DEL, Description="Deletion">
     ##INFO=<ID=SVTYPE, Number=1, Type=String, Description="Type of structural variant">
     ##INFO=<ID=END.Number=1.Type=Integer.Description="End position of the variant">
                                                                                                        Reference alleles (GT=0)
     #CHROM POS ID
                        REF ALT
                                    QUAL FILTER INFO
                                                                        FORMAT
                                                                                    SAMPLE1 SAMPLE2
                        ACG_A,AT
                                          PASS
                                                                        GT:DP
                                                                                    1/2:13
                                                                                             0/0:29
              1
Body
                             T, CT
                 rs1
                                          PASS
                                                  H2:AA=T
                                                                        GT:GO
                                                                                    0|1:100 2/2:70
                                                                                             1/1:95
                                          PASS
                                                                        GT:GQ
                                                                                    1 0:77
                                                                                                        Alternate alleles (GT>0 is
            100
                             <DEL>
                                          PASS
                                                                                    1/1:12:3 0/0:20
                                                  SVTYPE=DEL; END=300
                                                                        GT:GO:DP
                                                                                                       an index to the ALT column)
                                                  Other event
    Deletion
                                                                           Phased data (G and C above
                 SNP
                                        Insertion
                                                                           are on the same chromosome)
                           Large SV
```

VCF Format

#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT LF1396 chr7 117175373 . A G 90

PASS AF=0.5 GT

Genotyping Theory

- If there were no sequencing errors, identifying SNPs would be very easy: any time a read disagrees with the reference, it must be a variant!
- Sequencing instruments make mistakes
 - Quality of read decreases over the read length
- A single read differing from the reference is probably just an error, but it becomes more likely to be real as we see it multiple times

The Binomial Distribution: Adventures in Coin Flipping

P(heads) = 0.5

P(tails) = 0.5

What is the distribution of tails (alternate alleles) do we expect to see after 5 tosses (sequence reads)?

Number of "tails"

R code:

barplot(table(rbinom(30, 5, 0.5)))

30 experiments (students tossing coins)

5 tosses each

Probability of Tails

What is the distribution of tails (alternate alleles) do we expect to see after 15 tosses (sequence reads)?

R code:

barplot(table(rbinom(30, 15, 0.5)))

30 experiments (students tossing coins)
15 tosses each

Probability of Tails

What is the distribution of tails (alternate alleles) do we expect to see after 30 tosses (sequence reads)?

R code:

barplot(table(rbinom(30, 30, 0.5)))

30 experiments (students tossing coins) 30 tosses each

Probability of Tails

What is the distribution of tails (alternate alleles) do we expect to see after 30 tosses (sequence reads)?

R code:

barplot(table(rbinom(3e6, 30, 0.5)))

3M experiments (students tossing coins)
30 tosses each
Probability of Tails

So, with 30 tosses (reads), we are much more likely to see an even mix of alternate and reference alleles at a heterozygous locus in a genome

This is why at least a "30X" (30 fold sequence coverage) genome is recommended: it confers sufficient power to distinguish heterozygous alleles and from mere sequencing errors

P(3/30 het) <?> P(3/30 err)