A Level Maths - S2 Sam Robbins 13SE

S2 Notes

1 Continuous random variables

1.1 Probability Density Function

- $f(x) \ge 0$ for all values of x, so that no probabilities are negative.
- $\int_{-\infty}^{\infty} f(x)dx = 1$ (The sum of all probabilities is 1)
- $P(a < x < b) = \int_a^b f(x)dx$

1.2 Median

When finding the median of a CRV with multiple ranges, set F(x) to 0.5 and rearrange. If x lies outside the range, change to a different range until one works

2 Continuous distributions

2.1 Continuity correction

Probability	Corrected Probability
P(X=n)	P(n - 0.5 < X < n + 0.5)
P(X > n)	P(X > n + 0.5)
$P(X \leqslant n)$	P(X < n + 0.5)
P(X < n)	P(X < n - 0.5)
$P(X \geqslant n)$	P(X > n - 0.5)

3 Discrete distributions

3.1 Samples

When asked to list all the possible samples remember:

Number of samples = Number of options Sample size

4 Hypothesis tests

Remember to split the significance level for a two tailed test

4.1 Method

- 1. Establish the null and alternative hypothesis $(H_0 \text{ and } H_1)$
- 2. Define distribution under H_0
- 3. Decide on the significance level
- 4. Collect data, state the test statistic, X=
- 5. Calculate the probability of obtaining the test statistic or a more extreme result (same direction as H_1)
- 6. Compare this to the sig level as a decimal
 - If greater than the sig level, it is a non significant result, it is not in the critical region and we do not reject H_0
 - If less than sig level, it is a significant result, it is in the critical region and we reject H_0
- 7. Interpret the results in terms of the original claim