Projeto 1

Crawler, Classificador e Extrator

Tiago Moraes (tbm2) Matheus Borba (mlbas) Edjan (esvm)

Crawler

1. Análise do *robots.txt*

- Utilizando a lib *reppy*, conseguimos fazer um parse no *robots.txt*.
 - o Baixamos o robots.txt e fazemos o parsing dele com a lib
 - Exporta uma função allowed -> True | False

```
robots = Robots.fetch(f'{seed[1]}/robots.txt')
```

2. Processamento e verif. da url

- Processamento de urls relativas → absolutas
- Verifica se url é do mesmo domínio e chama o *allowed* do reppy

```
def process_url(url, root):
    if (url.startswith('/')):
        return f'{root}{url}'
    return url
```

DESAFIO: Loop de query params foi resolvido colocando um limite no tamanho da url

```
def check_url(url, root, robots):
    # Don't access Disallowed routes by robots.txt
    if (not robots.allowed(url, '*')):
        return False

# Remove long urls (avoid qp loops)
    if (len(url) > 160):
        return False

if (url.startswith('/') or
        url.startswith(root) or
        url = root):
        # Means url is usable
        return True

return False
```

3. Análise do content-type

 Fazemos o request do header antecipadamente, evitando o download desnecessário de páginas que não são text/html

```
# Check headers if response is html text
try:
    hr = requests.head(start)

    if (not 'content-type' in hr.headers):
        return urls

    if (not hr.headers['content-type'].startswith('text/html')):
        return urls
except:
    return urls
```

4. BFS vs Heurística v2

Função para pegar todas as âncoras na página

- Abordagem BFS: Todos os hrefs da página
- Abordagem Heurística(v2): (fila prioritária)

```
WANTED_TERMS = ['vinho', 'produto', 'product',
'tinto', 'branco', 'espumante', 'rose', 'rosado',
'cabernet', 'malbec', 'shiraz', 'primitivo',
'merlot', 'garnacha', 'pinot', 'carmenere', 'brut',
'mosacatel', 'tempranillo', 'reserva','chardonnay',
'riesling', 'seco']

NOT_WANTED_TERMS = ['kits?', 'saca', 'ta(ç|c)a',
'contato', 'sobre', 'cart', 'carrinho', 'termo',
'pol(í|i)tica', 'acess(ó|o)rios', 'blog', 'central']
```

```
def classify_anchor(anchor):
    for term in NOT_WANTED_TERMS:
        if anchor.text and re.match(f'.*{term}.*', anchor.text.lower()):
            return -1

        if anchor['href'] and re.match(f'.*{term}.*', anchor['href'].lower()):
            return -1

        for term in WANTED_TERMS:
        if anchor.text and re.match(f'.*{term}.*', anchor.text.lower()):
            return 1

        if anchor['href'] and re.match(f'.*{term}.*', anchor['href'].lower()):
            return 1
```

Heurística v2

- Acessa primeiro a fila prioritária.
- Se ela se esvaziar, acessa a fila regular.
- As âncoras com NOT_WANTED_TERMS, são descartadas.

obs.: vì da heurística se baseava apenas em só acessar âncoras com termos desejados, mas em diversos sites, essa abordagem fazia com que o crawler entrasse em "estagnação", conseguindo *crawlear* um número muito pequeno de páginas. A solução foi criar um sistema de priorização para as âncoras desejadas, mas não excluir as que eram regulares (nem desejadas, nem indesejadas).

PROBLEMA: v2 tinha resultado muito semelhante (senão pior) ao BFS

5. Heurística v3

Abordagem **Heurística(v3):** (analisa **anchor.text** e **anchor.href**)

```
WANTED_PATHS = ['/p/', '/produto', '/product', '/prod',
'/item', '/vinho']

WANTED_TERMS = ['tinto', 'branco', 'espumante', 'rose',
'rosado', 'cabernet', 'malbec', 'shiraz', 'primitivo',
'merlot', 'garnacha', 'pinot', 'carmenere', 'brut',
'mosacatel', 'tempranillo', 'reserva', 'chardonnay',
'riesling', 'seco', 'ver', 'mais']

NOT_WANTED_PATHS = ['/kits?', '/carrinho', '/cart',
'/sacola', '/add/']

NOT_WANTED_TERMS = ['kits?', 'saca', 'ta(ç|c)a',
'contato', 'sobre', 'carrinho', 'termo', 'sacola',
'pol(í|i)tica', 'acess(ó|o)rios', 'blog', 'central']
```

```
def classify_anchor(anchor):
    weight = 0
    for term in WANTED PATHS:
        if anchor['href'] and re.match(f'.*{term}.*', anchor['href'].lower()):
            weight = weight + 20
    for term in WANTED TERMS:
        if anchor.text and re.match(f'.*{term}.*', anchor.text.lower()):
            weight = weight + 10
    for term in NOT WANTED PATHS:
        if anchor['href'] and re.match(f'.*{term}.*', anchor['href'].lower()):
            weight = weight - 20
    for term in NOT WANTED TERMS:
        if anchor.text and re.match(f'.*{term}.*', anchor.text.lower()):
            weight = weight -10
    return weight
```

Heurística v3

```
if in WANTED_PATHS = +20
```

if in **NOT_WANTED_PATHS** = **-20**

if in **WANTED_TERMS** = **+10**

if in **NOT_WANTED_PATHS** = -10

obs.: Adição do "Crawl Delay" para não sobrecarregar os sites

Outros desafios

DESAFIO: Crawler navegava pelas *seeds* de forma linear (1 site por vês), o que deixava o crawler lento. Usamos **multiprocessing**, com um **Pool(10)**, para que os sites fossem *crawleados* em paralelo.

```
def main():
    pool = Pool(10)
    pool.map(bfs_crawl, seeds)
    pool.close()
    pool.join()
```


Crawling Time ≈ 55 min (p/10 seeds)

DESAFIO: Fluxo infinito de iteração pelos query params

```
Entered (inttps://www.viavini.com.pr/vinnos/tipo/vinno-pranco.ntmt/uva=1/64:, 50/)
Entered ('https://www.viavini.com.br/vinhos/tipo/vinho-branco.html?uva=1984', 30)
Entered ('https://www.viavini.com.br/vinhos/tipo/vinho-branco.html?harmonizacao=1513', 30)
Entered ('https://www.viavini.com.br/vinhos/tipo/vinho-branco.html?produtor=983', 30)
Entered ('https://www.viavini.com.br/vinhos/tipo/vinho-branco.html?produtor=960', 30)
Entered ('https://www.viavini.com.br/vinhos/tipo/vinho-branco.html?uva=1910', 30)
Entered ('https://www.viavini.com.br/vinhos/tipo/vinho-branco.html?produtor=630', 30)
Entered ('https://www.viavini.com.br/vinhos/tipo/vinho-branco.html?harmonizacao=1512', 30)
Entered ('https://www.viavini.com.br/vinhos/tipo/vinho-branco.html?harmonizacao=1529', 30)
Entered ('https://www.viavini.com.br/vinhos/tipo/vinho-branco.html?regiao=1750', 30)
Entered ('https://www.viavini.com.br/vinhos/tipo/vinho-branco.html?harmonizacao=1530', 30)
Entered ('https://www.viavini.com.br/vinhos/tipo/vinho-branco.html?produtor=629', 30)
Entered ('https://www.viavini.com.br/vinhos/tipo/vinho-branco.html?uva=1811'. 30)
Entered ('https://www.viavini.com.br/vinhos/tipo/vinho-branco.html?uva=1966'. 30)
Entered ('https://www.viavini.com.br/vinhos/tipo/vinho-branco.html?uva=1967'. 30)
Entered ('https://www.viavini.com.br/vinhos/tipo/vinho-branco.html?produtor=749', 30)
Entered ('https://www.viavini.com.br/vinhos/tipo/vinho-branco.html?harmonizacao=1511', 30)
Entered ('https://www.viavini.com.br/vinhos/tipo/vinho-branco.html?tipo=1181', 30)
Entered ('https://www.viavini.com.br/vinhos/tipo/vinho-branco.html?uva=1926', 30)
Entered ('https://www.viavini.com.br/vinhos/tipo/vinho-branco.html?uva=1762', 30)
Entered ('https://www.viavini.com.br/vinhos/tipo/vinho-branco.html?uva=1911', 30)
Entered ('https://www.viavini.com.br/vinhos/tipo/vinho-branco.html?uva=1968', 30)
Entered ('https://www.viavini.com.br/vinhos/tipo/vinho-branco.html?uva=1971', 30)
```

Harvest Ratios

BFS

classificador	total
NAIVE_BAYES	0,518
DECISION_TREE	0,427
SVM	0,298
LOGISTIC_REGRESSION	0,397
MULTILAYER_PERCEPTRON	0,395

Heurística v2

classificador	total
NAIVE_BAYES	0,328
DECISION_TREE	0,426
SVM	0,314
LOGISTIC_REGRESSION	0,414
MULTILAYER_PERCEPTRON	0,416

Heurística v3

classificador	total
NAIVE_BAYES	0,418
DECISION_TREE	0,508
SVM	0,405
LOGISTIC_REGRESSION	0,482
MULTILAYER_PERCEPTRON	0,488

De fato, foram melhores do que BFS e v2

Harvest Ratio

classificador	viavini	wine	evino	superad ega	grandcr u	adegam ais	divinho	divvino	vivavinh o	mistral	total
NAIVE_BAYES	0,152	0,740	0,313	0,636	0,754	0,605	0,274	0,802	0,313	0,600	0,518
DECISION_TREE	0,153	0,602	0,212	0,296	0,632	0,408	0,179	0,748	0,592	0,454	0,427
SVM	0,120	0,565	0,035	0,276	0,685	0,403	0,177	0,032	0,246	0,442	0,298
LOGISTIC_REGRESSIO N	0,120	0,616	0,129	0,372	0,715	0,416	0,185	0,762	0,194	0,468	0,397
MULTILAYER_PERCEP TRON	0,120	0,606	0,196	0,350	0,698	0,409	0,177	0,745	0,205	0,453	0,395

Harvest Ratio

Heurística v2

classificador	viavini	wine	evino	superad ega	grandcr u	adegam ais	divinho	divvino	vivavinh o	mistral	total
NAIVE_BAYES	0,121	0,669	0,050	0,117	0,879	0,299	0,137	0,004	0,264	0,676	0,328
DECISION_TREE	0,124	0,749	0,146	0,193	0,928	0,427	0,137	0,008	0,140	0,645	0,426
SVM	0,121	0,633	0,012	0,206	0,851	0,298	0,137	0,007	0,253	0,620	0,314
LOGISTIC_REGRESSI ON	0,124	0,665	0,090	0,184	0,881	0,299	0,137	0,916	0,204	0,644	0,414
MULTILAYER_PERCE PTRON	0,121	0,653	0,134	0,211	0,853	0,299	0,135	0,915	0,212	0,632	0,416

Harvest Ratio

Heurística v3

classificador	viavini	wine	evino	superad ega	grandcr u	adegam ais	divinho	divvino	vivavinh o	mistral	total
NAIVE_BAYES	0,000	0,778	0,188	0,487	0,868	0,753	0,131	0,008	0,184	0,777	0,418
DECISION_TREE	0,019	0,816	0,319	0,504	0,849	0,795	0,131	0,794	0,111	0,758	0,508
SVM	0,000	0,755	0,073	0,545	0,847	0,743	0,131	0,002	0,182	0,759	0,405
LOGISTIC_REGRESSIO N	0,000	0,766	0,233	0,482	0,854	0,753	0,128	0,703	0,139	0,772	0,482
MULTILAYER_PERCE PTRON	0,000	0,779	0,291	0,496	0,851	0,752	0,126	0,686	0,146	0,759	0,488

Classificação

- Processamento (nltk)
 - Bag of words
 - Frequência, Contagem
 - Stemming, stopwords
 - Feature Extractor (scale vector)
 - Most Frequent Words
 - Doc Frequency Difference
 - Plain Frequency Difference
 - Mixed Frequency Difference
- Treinamento (Scikit-learn)
 - Naive Bayes (Gaussian NB)
 - Decision Tree
 - SVM
 - Logistic Regression
 - Multilayer Perceptron

Feature Extractor

Pós-processamento do vocabulário com/sem stopwords.

- Doc and Mixed Frequency Difference não sofreram tantas alterações.
- Quantidade de palavras extraídas igual a 50.*

```
wout/MostFrequentWordsExtractor: ['de', 'vinho', 'mai', 'do', 'r$', 'ver', 'comprar', 'tinto', 'com', 'sauvignon', 'cabernet', 'para', 'por', 'espum', 'todo', 'da', 'branco', 'malbec', 'em', 'até', 'wine', 'saiba', 'um', 'pinot', 'pai'
'que', 'uva', '750ml', 'não', 'seu', 'chardonnay', 'tipo', 'ao', 'como', 'os', 'ponto', 'na', 'catena', 'qrand', 'política', 'vineyard', 'no', 'produto', 'rosé', 'noir', 'reserva', 'del', 'kit', 'blanc', 'chile']
w/MostFrequentWordsExtractor: ['vinho', 'mai', 'r$', 'ver', 'comprar', 'tinto', 'sauvignon', 'cabernet', 'espum', 'todo', 'branco', 'malbec', 'wine', 'saiba', 'pinot', 'pai', 'uva', '750ml', 'chardonnav', 'tipo', 'ponto', 'catena',
'grand', 'política', 'vineyard', 'produto', 'rosé', 'noir', 'reserva', 'del', 'kit', 'blanc', 'chile', 'zapata', 'syrah', 'visualizacão', 'rápida', 'itália', 'espanha', 'di', 'loja', 'ano', 'pontuado', 'privacidad', 'carrinho',
'frança', 'preço', 'brasil', 'fruta', 'sul']
wout/DocFrequencyDifferenceExtractor: ['teor', 'alcoólico', 'temperatura', 'harmonização', 'mese', 'relacionado', 'ordenar', 'serviço', 'barrica', 'filtrar', 'guarda', 'fruta', 'carvalho', 'aroma', 'ficha', 'prazo', '750ml', 'final',
'visual', 'exclusivo', 'técnica', 'safra', 'boca', 'est', 'disponibilidad', 'volum', 'nota', 'vermelho', 'classificação', 'melhor', 'tanino', 'produto', 'vinícola', 'nariz', 'francê', 'encontrado', 'carn', 'vermelha', 'olfativo', 'a-z'
'reqião', 'frete', 'toqu', '18°c', 'baixa', 'desconto', 'seco', 'queijo', 'estoqu', 'juro']
w/DocFrequencyDifferenceExtractor: ['teor', 'alcoólico', 'temperatura', 'harmonizacão', 'mese', 'relacionado', 'ordenar', 'servico', 'barrica', 'filtrar', 'guarda', 'fruta', 'carvalho', 'aroma', 'ficha', 'prazo', '750ml', 'final',
'visual', 'exclusivo', 'técnica', 'safra', 'boca', 'est', 'disponibilidad', 'volum', 'nota', 'vermelho', 'classificação', 'melhor', 'tanino', 'produto', 'vinícola', 'nariz', 'francê', 'encontrado', 'carn', 'vermelha', 'olfativo', 'a-z'
'região', 'frete', 'togu', '18°c', 'baixa', 'desconto', 'seco', 'queijo', 'estogu', 'juro']
wout/PlainFrequencyDifferenceExtractor: ['comprar', 'de', 'vinho', 'r$', 'visualização', 'rápida', 'quantidad', 'por', 'tinto', 'mai', 'vistamar', 'do', 'artiqo', 'ver', 'até', 'wishlist', 'ao', 'sauviqnon', 'cabernet', 'adicionar',
'espum', 'os', 'kit', 'assin', 'branco', 'carrinho', 'yith wcwl add to wishlist', 'que', 'para', 'não', 'carmen', 'ou', 'chile', 'niepoort', 'preço', '750ml', 'rosé', 'esporão'. 'chardonnay'. 'limpar'. 'são'. 'produto'. 'você'.
'reserva', 'vinícola', 'as', 'rose', 'est', 'taça', 'melhor']
w/PlainFrequencyDifferenceExtractor: ['comprar', 'vinho', 'r$', 'visualizacão', 'rápida', 'quantidad', 'tinto', 'mai', 'vistamar', 'artiqo', 'ver', 'wishlist', 'sauviqnon', 'cabernet', 'adicionar', 'espum', 'kit', 'assin', 'branco',
'carrinho', 'yith wcwl add to wishlist', 'carmen', 'chile', 'niepoort', 'preço', '750ml', 'rosé', 'esporão', 'chardonnay', 'limpar', 'produto', 'reserva', 'vinícola', 'rose', 'est', 'taça', 'melhor', 'rogião', 'obrigatório', 'esgotado'
'la', 'campo', 'ordenar', 'franca', 'harmonizacão', 'safra', 'barrica', 'brisa', 'spiegelau', '---'l
wout/MixedFrequencyDifferenceExtractor: ['comprar', 'visualização', 'teor', 'harmonização', 'artigo', 'por', 'até', '750ml', 'mese', 'ordenar', 'temperatura', 'barrica', 'vinho', 'kit', 'ver', 'alcoólico', 'de', 'quantidad', 'est',
'produto', 'filtrar', 'vinícola', 'quarda', 'melhor', 'ficha', 'carvalho', 'safra', 'limpar', 'reqião', 'exclusivo', 'relacionado', 'serviço', 'tinto', 'técnica', 'esqotado', 'rápida', 'seco', 'preço', 'cabernet', 'final', 'branco',
'classificação', 'resultado', 'adicionar', 'são', 'espum', 'ou', 'desconto', 'sem', 'comentário']
w/MixedFrequencyDifferenceExtractor: ['comprar', 'visualizacão', 'teor', 'harmonizacão', 'artigo', '750ml', 'mese', 'ordenar', 'temperatura', 'barrica', 'vinho', 'kit', 'ver', 'alcoólico', 'quantidad', 'est', 'produto', 'filtrar',
'vinícola', 'quarda', 'melhor', 'ficha', 'carvalho', 'safra', 'limpar', 'reqião', 'exclusivo', 'relacionado', 'servico', 'tinto', 'técnica', 'esgotado', 'rápida', 'seco', 'preco', 'cabernet', 'final', 'branco', 'classificação',
'resultado', 'adicionar', 'espum', 'desconto', 'comentário', 'sauvignon', 'la', 'mai', 'vinhedo', 'fresco', 'carmen']
```

Generic Classifier

```
class DocumentClassifier(Classifier):
   def __init__(self, feature_extractor: FeatureExtractor):
        self.trained = False
    def train(self, docs: [Document], classifier_type: ClassifierType, train_size: float = 1.0, verbose: bool =
        start time = dt.now()
       positive_docs = list(filter(lambda doc: doc.is_instance == DocumentClass.INSTANCE, docs))
       negative_docs = list(filter(lambda doc: not doc.is_instance == DocumentClass.INSTANCE, docs))
        total_positive = int(len(positive_docs)*train_size)
        total_negative = int(len(negative_docs)*train_size)
        train_docs = positive_docs[:total_positive] + negative_docs[:total_negative]
        train docs = shuffle(train docs)
        test_docs = positive_docs[total_positive:] + negative_docs[total_negative:]
        test_docs = shuffle(test_docs)
       self.features = self.feature_extractor.get_feature_words(num_features=50)
            classifier_type.NAIVE_BAYES: GaussianNB(),
           classifier_type.DECISION_TREE: DecisionTreeClassifier(),
           classifier_type.SVM: SVC(),
           classifier type.LOGISTIC REGRESSION: LogisticRegression().
           classifier_type.MULTILAYER_PERCEPTRON: MLPClassifier()
       clf = classifiers[classifier_type]
```

```
classifier_type.NAIVE_BAYES: GaussianNB(),
    classifier_type.DECISION_TREE: DecisionTreeClassifier(),
    classifier_type.SVM: SVC(),
   classifier_type.LOGISTIC_REGRESSION: LogisticRegression(),
   classifier_type.MULTILAYER_PERCEPTRON: MLPClassifier()
x, y, self.scaler = get_vectors_scaler(self.features, train_docs)
if len(test docs) > 0:
    final_preds = self._internal_predict(test_docs)
    final_preds = doc_class_to_int(final_preds)
    correct_preds = doc_class_to_int([test_doc.is_instance for test_doc in test_docs])
       print_metrics(final_preds, correct_preds)
    end time = dt.now()
    train_duration = (end_time-start_time).total_seconds()
self.trained = True
```

Treinamento - Naive Bayes (Gaussian NB)

	А	В	С	D	E	F	G
1	Stopwords Dropped	Feature Selector	Accuracy	Precision	Recall	F1-Measure	Training took(seconds)
2	True	Most Frequent Words	0.5901639344262295	0.5510204081632653	0.9	0.6835443037974683	0.200358
3	False	Most Frequent Words	0.6065573770491803	0.56	0.9333333333333333	0.70000000000000001	0.175127
4	True	Doc Frequency Difference	0.8688524590163934	0.80555555555556	0.966666666666667	0.8787878787878789	0.452479
5	False	Doc Frequency Difference	0.8688524590163934	0.80555555555556	0.966666666666667	0.8787878787878789	0.384467
6	True	Plain Frequency Difference	0.8524590163934426	0.7837837837837838	0.966666666666667	0.8656716417910447	0.533508
7	False	Plain Frequency Difference	0.7377049180327869	0.6590909090909091	0.966666666666667	0.7837837837837838	0.42628
8	True	Mixed Frequency Difference	0.8524590163934426	0.7837837837837838	0.966666666666667	0.8656716417910447	0.829031
9	False	Mixed Frequency Difference	0.8524590163934426	0.7837837837837838	0.966666666666667	0.8656716417910447	0.703819

Treinamento - Decision Tree

	Α	В	С	D	E	F	G
1	Stopwords Dropped	Feature Selector	Accuracy	Precision	Recall	F1-Measure	Training took(seconds)
2	True	Most Frequent Words	0.8360655737704918	0.8125	0.866666666666667	0.8387096774193549	0.223341
3	False	Most Frequent Words	0.7377049180327869	0.7058823529411765	0.8	0.75000000000000001	0.193823
4	True	Doc Frequency Difference	0.8852459016393442	0.8709677419354839	0.9	0.8852459016393444	0.525822
5	False	Doc Frequency Difference	0.9180327868852459	0.9032258064516129	0.933333333333333	0.9180327868852459	0.327213
6	True	Plain Frequency Difference	0.8852459016393442	0.8484848484848485	0.9333333333333333	0.888888888888	0.42303
7	False	Plain Frequency Difference	0.7377049180327869	0.71875	0.766666666666667	0.7419354838709677	0.338326
8	True	Mixed Frequency Difference	0.9180327868852459	0.9032258064516129	0.9333333333333333	0.9180327868852459	0.773576
9	False	Mixed Frequency Difference	0.9016393442622951	0.9285714285714286	0.866666666666667	0.896551724137931	0.639591

Treinamento - SVM

	А	В	С	D	E	F	G
1	Stopwords Dropped	Feature Selector	Accuracy	Precision	Recall	F1-Measure	Training took(seconds)
2	True	Most Frequent Words	0.5901639344262295	0.5675675675675675	0.7	0.626865671641791	0.210193
3	False	Most Frequent Words	0.7049180327868853	0.6428571428571429	0.9	0.75	0.171704
4	True	Doc Frequency Difference	0.8360655737704918	0.9545454545454546	0.7	0.8076923076923077	0.496865
5	False	Doc Frequency Difference	0.8360655737704918	0.9545454545454546	0.7	0.8076923076923077	0.339314
6	True	Plain Frequency Difference	0.7540983606557377	0.7142857142857143	0.833333333333333	0.7692307692307692	0.395384
7	False	Plain Frequency Difference	0.6885245901639344	0.6410256410256411	0.833333333333333	0.7246376811594204	0.33102
8	True	Mixed Frequency Difference	0.819672131147541	0.9523809523809523	0.66666666666666	0.7843137254901961	0.775635
9	False	Mixed Frequency Difference	0.8360655737704918	0.9545454545454546	0.7	0.8076923076923077	0.6349

Treinamento - Logistic Regression

	A	В	С	D	E	F	G
1	Stopwords Dropped	Feature Selector	Accuracy	Precision	Recall	F1-Measure	Training took(seconds)
2	True	Most Frequent Words	0.7377049180327869	0.7058823529411765	0.8	0.75000000000000001	0.261649
3	False	Most Frequent Words	0.7213114754098361	0.7407407407407407	0.66666666666666	0.7017543859649122	0.19425
4	True	Doc Frequency Difference	0.9180327868852459	0.8787878787878788	0.966666666666667	0.9206349206349207	0.445906
5	False	Doc Frequency Difference	0.9180327868852459	0.8787878787878788	0.966666666666667	0.9206349206349207	0.333979
6	True	Plain Frequency Difference	0.8852459016393442	0.8484848484848485	0.9333333333333333	0.88888888888889	0.401929
7	False	Plain Frequency Difference	0.8688524590163934	0.84375	0.9	0.870967741935484	0.338523
8	True	Mixed Frequency Difference	0.8852459016393442	0.8285714285714286	0.966666666666667	0.8923076923076922	0.766476
9	False	Mixed Frequency Difference	0.9180327868852459	0.8787878787878788	0.966666666666667	0.9206349206349207	0.639141

Treinamento - Multilayer Perceptron

	Α	В	С	D	E	F	G
1	Stopwords Dropped	Feature Selector	Accuracy	Precision	Recall	F1-Measure	Training took(seconds)
2	True	Most Frequent Words	0.7868852459016393	0.717948717948718	0.9333333333333333	0.8115942028985509	2.189233
3	False	Most Frequent Words	0.819672131147541	0.7567567567567568	0.9333333333333333	0.835820895522388	0.961627
4	True	Doc Frequency Difference	0.9180327868852459	0.8787878787878788	0.966666666666667	0.9206349206349207	2.412335
5	False	Doc Frequency Difference	0.9180327868852459	0.9032258064516129	0.9333333333333333	0.9180327868852459	0.825137
6	True	Plain Frequency Difference	0.8688524590163934	0.7894736842105263	1.0	0.8823529411764706	1.937562
7	False	Plain Frequency Difference	0.8688524590163934	0.80555555555556	0.966666666666667	0.8787878787878789	1.124622
8	True	Mixed Frequency Difference	0.9180327868852459	0.9032258064516129	0.9333333333333333	0.9180327868852459	2.834526
9	False	Mixed Frequency Difference	0.9508196721311475	0.9354838709677419	0.966666666666667	0.9508196721311476	1.525286

Weighted Ensemble for Accuracy

```
class AccuracyWeightedEnsemble:
        clfs = []
            clfs.append({
        self.clfs = clfs
        self.trained = False
   def train(self, docs: List['Document'], train_size: float = 1.0, verbose: bool = False):
        start_time = dt.now()
       positive_docs = list(filter(lambda doc: doc.is_instance == 1, docs))
       negative_docs = list(filter(lambda doc: not doc.is_instance == 1, docs))
        total_positive = int(len(positive_docs) * train_size)
        total_negative = int(len(negative_docs) * train_size)
        train_docs = positive_docs[:total_positive] + negative_docs[:total_negative]
        train docs = shuffle(train docs)
        test_docs = positive_docs[total_positive:] + negative_docs[total_negative:]
        test docs = shuffle(test docs)
```

```
labels = np.array(doc_class_to_int([doc.is_instance for doc in docs]))
kfold = StratifiedKFold(n splits=10)
    for train index, test index in kfold.split(docs, labels):
        clf['clf'].train(docs[train_index], train_size=train_size, verbose=verbose)
        preds = clf['clf'].predict(docs[test_index])
        v = labels[test index]
       _, acc, _, _ = compute_metrics(preds, y)
        accs.append(acc)
    clf['acc'] = np.mean(accs)
sum_acc = 0.0
    clf['clf'].train(train_docs, train_size=train_size, verbose=verbose)
    sum_acc += clf['acc']
self.total_acc = sum_acc
if len(test docs) > 0:
    preds = self._internal_predict(test_docs)
    y = doc_class_to_int([doc.is_instance for doc in test_docs])
    if verhose:
        print metrics(preds. v)
if verbose:
    end_time = dt.now()
    train_duration = (end_time - start_time).total_seconds()
    print("Training took {} seconds".format(train_duration))
self.trained = True
```

Extração

- Um extrator específico para cada site
- Um extrator geral
- A extração foi aplicada nas páginas que foram classificadas como positivas considerando cada um dos classificadores e também nas negativas, para extrair as métricas
- Utilizamos a lib BeautifulSoup para parsear html

```
html text = html file.read()
    total_negative_pages_extracted_succesfully += 1
```

```
if negative_pages_extract_result['wine_type'] is not None and negative_pages_extract_result['wine_type'] != '':
            total_negative_pages_extracted_succesfully += 1
        print('failed to open ../crawler/bfs_pages/{}/{}.html'.format(domain, index + 1))
false_positive = total_pages_for_classifier - total_pages_extracted_successfully
true_negative = total_pages - total_negative_pages_extracted_succesfully
precision = (total_pages_extracted_successfully / total_pages_for_classifier) * 100
if total_pages_extracted_successfully + total_negative_pages_extracted_successfully > 0:
   recall = (total_pages_extracted_successfully / (total_pages_extracted_successfully + total_negative_pages_extracted_succesfully)) * 100
accuracy = 0
if true_negative + false_positive + total_pages_extracted_successfully + total_negative_pages_extracted_succesfully > 0:
   accuracy = ((true_negative + total_pages_extracted_successfully) / (true_negative + false_positive + total_pages_extracted_successfully + total_negative_
extraction_results_metrics.append([
   total_pages_for_classifier,
    precision,
    accuracy,
```

Extrator específico

```
def divinho_extract(soup):
        name = None
        name_marker = soup.find('span', itemprop="name")
        if name_marker:
            name = name_marker.text
        wine_type = None
        wine_type_marker = soup.find('div', attrs={'data-code': 'tipo'})
        if wine_type_marker:
        grape = None
       grape_marker = soup.find('div', attrs={'data-code': 'uva'})
        if grape_marker:
        if alcohol_content_marker:
            alcohol_content = alcohol_content_marker.text.replace('\n', ' ').strip(' ')
```

Extrator genérico

```
def has_text(tag):
def global_extract(big_soup):
       soup = big_soup.find(attrs={'class': re.compile('.*(Plp)roduct.*', re.DOTALL)})
        if soup.main:
            soup = soup.main
        name = None
        name_marker = soup.find(itemprop='name')
        if (name_marker):
        wine_type = None
        wine_type_marker = soup.find(text=re.compile('.*Tipo.*', re.DOTALL))
        if (wine_type_marker):
            wine type sibling = wine type marker.find next(has text)
            if wine_type_sibling:
                wine_type = wine_type_sibling.text.replace('\n', '').strip()
        grape = None
        grape_marker = soup.find(text=re.compile('.*Uvas?.*', re.DOTALL))
        if (grape_marker):
            grape_sibling = grape_marker.find_next(has_text)
            if grape sibling:
```

```
country_marker = soup.find(text=re.compile('.*Pais.*', re.DOTALL))
   country_sibling = country_marker.find_next(has_text)
classification_marker = soup.find(text=re.compile('.*Classificação.*', re.DOTALL))
   classification_sibling = classification_marker.find_next(has_text)
alcohol content = None
alcohol_content_marker = soup.find(text=re.compile('.*(Teor|Graduação).*', re.DOTALL))
if (alcohol_content_marker):
    if alcohol_content_sibling:
year_marker = soup.find(text=re.compile('.*Safra.*', re.DOTALL))
    year_sibling = year_marker.find_next(has_text)
    if year_sibling:
        year = year_sibling.text.replace('\n', '').strip()
```

Resultados extrator específico (Grand Cru)

```
s"Sangiovese, Malvasia Nera, Aglianico", "country": "Italia", "classification": null, "alcohol_content": "13%", "year": "2018"}, {"name": null, "wine_type' 🛂 1005 🔥 🗸
ς"country": "Brasil", "classification": null, "alcohol_content": "12%", "year": "0000"}, {"name": "Fanti Rosso Di Montalcino DOP 2016 750 mL", "wine_type": 🤾
```

Resultados extrator específico (Grand Cru)

	Total Pages	Precision	Recall	Accuracy
aive_bayer	754.0	67.10875331564988	74.52135493372607	76.01139601139602
nlp	698.0	68.19484240687679	70.10309278350515	74.98528546203649
vm	685.0	67.73722627737226	68.33578792341679	74.1399762752076
ecision_tree	632.0	68.67088607594937	63.91752577319587	72.87201469687692
ogistic_regression	715.0	68.25174825174825	71.87039764359352	75.64102564102564

Resultados extrator genérico (Grand Cru)

```
\( \) "alcohol_content": "12%", "year": "2017"}, {"name": null, "wine_type": null, "grape": null, "country": null, "classification": null, "alcohol_content": r ✓ 1001 ∧ ✓
```

Resultados extrator genérico (Grand Cru)

	Total Pages	Precision	Recall	Accuracy
naive_bayer	754.0	68.16976127320955	74.27745664739885	76.18233618233619
mlp	698.0	69.05444126074498	69.65317919075144	74.92642731018246
svm	685.0	68.61313868613139	67.91907514450867	74.08066429418743
decision_tree	632.0	69.4620253164557	63.4393063583815	72.68830373545622
logistic_regression	715.0	69.0909090909091	71.38728323699422	75.58275058275058

Observações

- Em alguns casos, o extrator genérico foi até melhor pois tinha muitos fallbacks para os campos
- Quando o valor do campo não está numa tag HTML específica, nosso extrator genérico fica bem ruim, vide exemplos na próxima página

Resultados extrator específico (Mistral)

	Total Pages	Precision	Recall	Accuracy
aive_bayer	600.0	71.0	58.758620689655174	70.45596502186133
lp	453.0	70.86092715231787	44.275862068965516	63.13617606602476
/m	442.0	70.13574660633483	42.758620689655174	62.09286209286209
ecision_tree	454.0	70.70484581497797	44.275862068965516	63.092783505154635
ogistic_regression	468.0	71.15384615384616	45.93103448275862	64.12525527569775

Resultados extrator genérico (Mistral)

	Total Pages	Precision	Recall	Accuracy
aive_bayer	600.0	0.0	0.0	62.52342286071205
nlp	453.0	0.0	0.0	68.84456671251719
vm	442.0	0.0	0.0	69.36936936936937
ecision_tree	454.0	0.0	0.0	68.79725085910653
ogistic_regression	468.0	0.0	0.0	68.14159292035397

Post mortem

- Vinho foi o melhor domínio?
- Sites escolhidos ajudaram?
- O que fazer pra melhorar o classificador?