目次

0.1	2001 基礎 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
0.2	2001 数学専門 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
0.3	2002 基礎 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
0.4	2002 数学専門 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
0.5	2003 基礎 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
0.6	2003 専門 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8

0.1 2001 基礎

$$\boxed{1} (1) \left\{ v_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \right\} が基底.$$

$$(2)f(v_1) = \begin{pmatrix} -1\\0\\1 \end{pmatrix} = -v_2, f(v_2) = \begin{pmatrix} 0\\-1\\1 \end{pmatrix} = v_1 - v_2 \, \text{TBS}.$$

よって
$$T = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}$$
 が表現行列.

 $\dim V = 1$ \mathcal{T} δ

 $(2)\varphi\colon V+W \to V/(V\cap W); v+w\mapsto [v]$ で定める. v+w=v'+w' なら $w-w'=v'-v\in V\cap W$ であるから [v]=[v+w-w']=[v'] より well-defined である. φ は全射準同型であり, $w\in W\subset\ker\varphi$ は明らか. $\varphi(v+w)=0$ なら $v\in V\cap W$ より $v+w\in W$ である.

よって $(V+W)/W\cong V/(V\cap W)$ であるから $\dim(V+W)-\dim W=\dim V-\dim(V\cap W)$ である. よって

$$1 = \dim V \cap W = \dim V + \dim W - \dim(V + W)$$
 である.
$$\begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & 3 \\ 1 & -5 & 3 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 0 & -2 & 2 \\ 0 & -6 & 2 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 0 & -2 & 2 \\ 0 & 0 & -4 \end{vmatrix} = 8 \neq 0$$
 より

 $\{v_1,w_1,w_2\}$ は一次独立. よって $\dim V+W=3$ である. よって $\dim V+\dim W-\dim(V+W)=\dim V-1=1$ より a=-1.

3 $(1)-2 < a_n < 2$ のとき, $0 < a_{n+1} = \sqrt{a_n+2} < 2$ である.また 0 < x < 2 なら (x-2)(x+1) < 0 より $x^2 < x+2$. すなわち $x < \sqrt{x+2}$ である.したがって -2 < x < 2 で $x < \sqrt{x+2}$ が成り立つのは明らか.よって $-2 < a_1 < 2$ のとき $a_1 < a_2 < \cdots < 2$ となるから広義単調増加.

 $a_1 = 2$ なら $a_2 = 2, \dots, a_n = 2$ より広義単調数列.

 $a_n>2$ なら $a_{n+1}=\sqrt{a_n+2}>2$ である. x>2 なら (x-2)(x+1)>0 より $x>\sqrt{x+2}$ である. よって $a_1>2$ のとき, $a_1>a_2>\cdots>2$ となるから広義単調減少.

(2) 全ての場合において $\{a_n\}$ は有界単調数列であるから収束する.したがってその収束値を α とおけば $\alpha=\sqrt{\alpha+2}$ であるから $\alpha=2$ である.

 $\boxed{4} \ R_1, R_2 > 1 \ \text{とする.} \ \left| \int_{-R_1}^{R_2} \frac{e^{ix}}{x^2 + 1} dx \right| \leq \int_{-R_1}^{R_2} \left| \frac{1}{x^2 + 1} \right| dx \leq \int_{-R_1}^{-1} \frac{1}{x^2} dx + \int_{-1}^{1} dx + \int_{1}^{R_2} \frac{1}{x^2} dx = \left[\frac{-1}{x} \right]_{-R_1}^{-1} + 2 + \left[\frac{-1}{x} \right]_{1}^{R_2} = 4 - \frac{1}{R_1} - \frac{1}{R_2} \rightarrow 4 \quad (R_1, R_2 \rightarrow \infty) \ \text{である.} \ \text{よって広義積分は収束する.}$

R>10 とする. \mathbb{C} 上の積分経路 D_R を $C_R=\left\{Re^{i\theta}\mid \theta\in[0,\pi]\right\}$ と $[-R,R]\subset\mathbb{R}$ の和集合とし,反時計回りの向きをとる. $\left|\int_{C_R}\frac{e^{iz}}{z^2+1}dz\right|=\int_0^\pi \left|\frac{\exp\left(iRe^{i\theta}\right)}{R^2e^{2i\theta}+1}Re^{i\theta}i\right|d\theta\leq \int_0^\pi \frac{R\exp(-R\sin\theta)}{R^2-1}d\theta\leq \frac{\pi}{R}\to 0 \quad (R\to\infty)$ である.

また $\int_{D_R} \frac{e^{iz}}{z^2+1} dz$ は被積分関数の特異点は $\pm i$ であり,積分領域内では i が唯一の特異点である.留数をもとめると $\mathrm{Res}\left(\frac{e^{iz}}{z^2+1},i\right) = \frac{e^{ii}}{i+i} = \frac{e^{-1}}{2i}$ である.したがって留数定理から $\int_{D_R} \frac{e^{iz}}{z^2+1} dz = \frac{\pi}{e}$ である.

以上より $\frac{\pi}{e} = \lim_{R \to \infty} \int_{D_R} \frac{e^{iz}}{z^2 + 1} dz = \lim_{R \to \infty} \left(\int_{C_R} \frac{e^{iz}}{z^2 + 1} dz + \int_{-R}^R \frac{e^{ix}}{x^2 + 1} dx \right) = \int_{-\infty}^{\infty} \frac{e^{ix}}{x^2 + 1} dx$ である.

0.2 2001 数学専門

 $\boxed{1}$ $A \in GL_2(\mathbb{F}_2)$ について $\det A \in \mathbb{F}^{\times} = 1$ であるから $GL_2(\mathbb{F}_2) = SL_2(\mathbb{F}_2)$ である.

 $GL_2(\mathbb{F}_2)=\operatorname{Aut}(\mathbb{F}_2^2)$ である. $\varphi\in\operatorname{Hom}(\mathbb{F}_2^2)$ は基底 (1,0),(0,1) で定まる. \mathbb{F}_2^2 の元 v で生成される部分空間 $\operatorname{Span}(v)=\{0,v\}$ であるから,非零なベクトルは各対ごとに 1 次独立. よって $(0,0)\neq\varphi(0,1)\neq\varphi(1,0)\neq(0,0)$ なら $\varphi\in\operatorname{Aut}(\mathbb{F}_2^2)$ である. したがって φ は $\mathbb{F}_2^2\setminus\{0,0\}$ の置換である. 集合 X の置換群を $\mathfrak{S}(X)$ で表すと, $f\colon\operatorname{Aut}(\mathbb{F}_2^2)\to\mathfrak{S}(\mathbb{F}_2^2\setminus\{0,0\})$ が定まり,これが全単射準同型であることは明らか. したがって $SL_2(\mathbb{F}_2)\cong\mathfrak{S}_3$ である.

- 2 A は x(x-1) を 0 でないべき零元としてもつ.
- (a) 中国剰余定理から $\mathbb{R}[x]/(x(x-1))\cong \mathbb{R}[x]/(x)\times \mathbb{R}[x]/(x-1)\cong \mathbb{R}^2$ より零でないべき零元をもたない. よって同型でない.

 $(b)x^2(-x^2+2)+(x-1)^2(x+1)^2=1$ であるから $(x^2)+((x-1)^2)=\mathbb{R}[x]$ である。 $\varphi\colon\mathbb{R}[x]/(x^2(x-1)^2)\to\mathbb{R}[x]/(x^2)\times\mathbb{R}[x]/(x^2)$ 次 $\mathbb{R}[x]/(x^2)$ 次 $\mathbb{R}[x]/$

 $(c)\mathbb{R}[x]/(x(x-1))\times\mathbb{R}[x]/(x(x-1))\cong\mathbb{R}^4$ より零でないべき零元をもたない. よって同型でない.

4 $(1)\{1,\zeta,\cdots,\zeta^5\}$ が基底となる.一次独立であることは $\sum\limits_{i=0}^5 c_i\zeta_i=0$ であるについて $c_i\neq 0$ なら ζ の最小多項式が 4 次以下であるとわかる. ζ は 1 の原始 7 乗根であるから $x^7-1=(x-1)(x^6+x^5+\cdots+1)$ より $p(x)=x^6+x^5+\cdots+1$ が ζ を根にもつ. $p(x+1)=\frac{(x+1)^7-1}{x}$ であり 7 は素数であるから $(x+1)^7$ の x^2 から x^6 までの係数は全て 7 の倍数である.よって p(x+1) も最高次の係数は 1 でそれ以外は 7 の倍数であるから x^6 までの係数は全て x^6 までの既約判定法から x^6 というである。 x^6 の最小多項式である. x^6 はモニックであるから x^6 の最小多項式である. x^6 はモニックであるから x^6 に表って x^6 の最小多項式である. x^6 はモニックであるから x^6 に表って x^6 の最小多項式である. x^6 の最小多項式である. x^6 の最小多項式である. x^6 に表って一次独立.

 $\mathbb{Q}(\zeta)$ は $\mathbb{Q}[\zeta]$ の商体であるが, $\mathbb{Q}[\zeta]\cong\mathbb{Q}[x]/(p(x))$ で p(x) は既約であり, $\mathbb{Q}[x]$ は PID であるから (p(x)) は極大イデアル.よって $\mathbb{Q}[\zeta]$ は体であるから $\mathbb{Q}[\zeta]=\mathbb{Q}(\zeta)$ である. $\mathbb{Q}[\zeta]$ の任意の元が $\{1,\zeta,\cdots,\zeta^5\}$ で生成されることは明らか.よって基底.

(2)p(x) の根は ζ^i $(i=1,\cdots,6)$ である. よって p(x) は $\mathbb{Q}(\zeta)$ で分解するから Galois 拡大.

 $\sigma \in \operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q})$ を $\sigma(\zeta) = \zeta^3$ とすれば $\sigma^i(\zeta) = \zeta^{3^i}$ であり、 $3^i \equiv 1 \mod (7)$ なる最小の i は 6 であるから σ の位数は 6 である. $|\operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q})| = [\mathbb{Q}(\zeta):\mathbb{Q}] = 6$ より $\operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q}) \cong \mathbb{Z}/6\mathbb{Z}$ である.

 $(3)\mathbb{Z}/6\mathbb{Z}$ の真部分群は $3\mathbb{Z}/6\mathbb{Z}, 2\mathbb{Z}/6\mathbb{Z}$ である. 対応する中間体は σ^3 で固定される体と σ^2 で固定される体である. $\sigma^3(\zeta+\zeta^6)=\zeta+\zeta^6=2\cos\frac{2\pi}{7}$ であるから, $\mathbb{Q}(\cos\frac{2\pi}{7})$ である.

 $\sigma^2(\zeta+\zeta^2+\zeta^4)=\zeta^2+\zeta^4+\zeta \ \text{rbsb} \ \mathbb{Q}(\zeta+\zeta^2+\zeta^4) \ \text{rbs}.$

よって求める中間体は \mathbb{Q} , $\mathbb{Q}(\zeta + \zeta^2 + \zeta^4)$, $\mathbb{Q}(\zeta + \zeta^6)$, $\mathbb{Q}(\zeta)$ である.

2002 基礎 0.3

$$\begin{bmatrix} 1 \end{bmatrix} A$$
 を行基本変形すると, $A = \begin{pmatrix} 1 & 0 & -1 & -2 \\ -1 & 1 & 2 & 3 \\ 2 & 1 & -1 & -3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ である. $(1) \dim \operatorname{Im}(T) = 2$ で

基底は
$$\left\{ \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right\}$$
 である.

$$(2)\dim\ker(T)=2$$
 で基底は $\left\{egin{pmatrix}1\\-1\\1\\0\end{pmatrix}, \begin{pmatrix}2\\-1\\0\\1\end{pmatrix}
ight\}$ である.

$$[2]$$
 A の固有方程式を $g_a(t)$ とすれば $g_a(t) = \begin{vmatrix} 1-t & 0 & 1 \\ 3 & 2-t & 0 \\ a & 0 & 1-t \end{vmatrix} = (2-t) \begin{vmatrix} 1-t & 1 \\ a & 1-t \end{vmatrix} = (2-t)((1-t)^2-t)$

 $a) = (2-t)(t^2-2t-a+1)$ である.

(1)a=4 より $g_4(t)=(2-t)(t^2-2t-3)=(2-t)(t-3)(t+1)$ である. よって固有値は 2,3,-1 であり,それ

ぞれの固有ベクトルは
$$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$
 , $\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}$ ととれる.よって $P = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 3 \\ 0 & 2 & 2 \end{pmatrix}$ とすれば $P^{-1}AP$ は対角行列.

(2) 固有値が全て異なれば対角化可能である. したがって $q_a(t)$ が重解を持つことが必要. $(2-t)(t^2-2t-a+1)=0$ の解は $t=2,1\pm\sqrt{1-(1-a)}=2,1\pm\sqrt{a}$ である.

よって重解をもつのは
$$a=0,1$$
 のときである. $a=0$ のとき,固有値 1 の固有空間は $\begin{pmatrix} 0 & 0 & 1 \\ 3 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $x=0$ の

解空間であるから次元は1である.よって対角化不可能.

$$a=1$$
 のとき,固有値 2 の固有空間は $\begin{pmatrix} -1 & 0 & 1 \\ 3 & 0 & 0 \\ 1 & 0 & -1 \end{pmatrix}$ $x=0$ の解空間であるから次元は 1 である.よって対

角化不可能.

$$\boxed{3} \ (1) f^{(1)}(x) = -\frac{1}{2} (1+x)^{-\frac{3}{2}}, f^{(2)}(x) = (-\frac{1}{2}) (-\frac{3}{2}) (1+x)^{-\frac{5}{2}}, \cdots f^{(n)}(x) = \frac{(2n-1)!!}{(-2)^n} (1+x)^{-\frac{2n+1}{2}} \ \text{であるから,} \\ f^{(n)}(0) = \frac{(2n-1)!!}{(-2)^n} \quad (n \geq 1) \ \text{である.} \\ \text{よって} \ 1 + \sum_{1}^{\infty} \frac{(2n-1)!!}{(-2)^n n!} x^n \ \text{がテイラー展開.}$$

よって
$$1 + \sum_{n=1}^{\infty} \frac{(2n-1)!!}{(-2)^n n!} x^n$$
 がテイラー展開

$$(2)g'(x) = \frac{1}{1+\sqrt{1+x}} \frac{\frac{1}{2}(1+x)^{-\frac{1}{2}}}{2} = \frac{1}{2x}(1-\frac{1}{\sqrt{1+x}})$$
 \mathcal{T} \mathcal{T} .

$$2^n n! = (2n)!!$$
 であるから、 $g(x) = \sum_{n=0}^{\infty} (-1)^{n-1} \frac{(2n-1)!!}{2n(2n)!!} x^n$ がわかる.

$$2^n n! = (2n)!!$$
 であるから、 $g(x) = \sum\limits_{n=1}^{\infty} (-1)^{n-1} \frac{(2n-1)!!}{2n(2n)!!} x^n$ がわかる。
収束半径は $|(-1)^{n-1} \frac{(2n-1)!!}{2n(2n)!!} / (-1)^n \frac{(2n+1)!!}{2(n+1)(2n+2)!!}| = \frac{(n+1)(2n+2)}{n(2n+3)} \to 1 \quad (n \to \infty)$ より 1 である.

 $\boxed{4}(1)x = r\cos\theta, y = r\sin\theta$ と変数変換すると、ヤコビアンはrである.よって

$$\int_0^{2\pi} \int_{\varepsilon}^1 \frac{1}{r^{\lambda}} r dr d\theta = 2\pi \int_{\varepsilon}^1 r^{1-\lambda} dr = \begin{cases} 2\pi \left[\frac{1}{2-\lambda} r^{2-\lambda}\right]_{\varepsilon}^1 & (\lambda \neq 2) \\ 2\pi \left[\log r\right]_{\varepsilon}^1 & (\lambda = 2) \end{cases} = \begin{cases} 2\pi \frac{1}{2-\lambda} (1 - \varepsilon^{2-\lambda}) & (\lambda \neq 2) \\ -2\pi \log \varepsilon & (\lambda = 2) \end{cases}$$

である. したがって $2-\lambda > 0$ なら収束し、値は $\frac{2\pi}{2-\lambda}$ である.

 $(2) \lambda \neq 2 \mathcal{O} \mathcal{E},$

$$\begin{split} \int_0^{2\pi} \int_\varepsilon^1 \frac{\log r}{r^\lambda} r dr d\theta &= 2\pi \int_\varepsilon^1 r^{1-\lambda} \log r dr = 2\pi [\frac{r^{2-\lambda}}{2-\lambda} \log r]_\varepsilon^1 - 2\pi \int_\varepsilon^1 \frac{r^{2-\lambda}}{2-\lambda} \frac{1}{r} dr = -2\pi \frac{\varepsilon^{2-\lambda}}{2-\lambda} \log \varepsilon - \frac{2\pi}{2-\lambda} \int_\varepsilon^1 r^{1-\lambda} dr \\ &= -2\pi \frac{1}{(2-\lambda)^2} (\varepsilon^{2-\lambda} \log \varepsilon^{2-\lambda} + (1-\varepsilon^{2-\lambda})) = -2\pi \frac{1}{(2-\lambda)^2} (1 + (\frac{\log \varepsilon^{\lambda-2} - 1}{\varepsilon^{\lambda-2}})) \end{split}$$

である.

 $\frac{\log \varepsilon^{\lambda-2}-1}{\varepsilon^{\lambda-2}}$ は $\lambda-2<0$ で分母分子共に $\varepsilon\to 0$ で無限大に発散する.よって $\lim_{\varepsilon\to 0} \frac{\varepsilon^{2-\lambda}(\lambda-2)\varepsilon^{\lambda-3}}{(\lambda-2)\varepsilon^{\lambda-3}}=0$ であるか らロピタルの定理より, $\frac{\log \varepsilon^{\lambda-2}-1}{\varepsilon^{\lambda-2}} o 0$ $(\varepsilon o 0)$ である.

 $\lambda - 2 > 0$ なら無限大に発散する.

 $\lambda = 2 \mathcal{O} \mathcal{E}$,

$$\int_0^{2\pi} \int_{\varepsilon}^1 \frac{\log r}{r^2} r dr d\theta = 2\pi \int_{\varepsilon}^1 \frac{\log r}{r} dr = \left[\frac{1}{2} (\log r)^2 \right]_{\varepsilon}^1 = -\frac{1}{2} (\log \varepsilon)^2 \to -\infty \quad (\varepsilon \to 0)$$

より発散する. したがって $\lambda < 2$ で $-2\pi \frac{1}{(2-\lambda)^2}$ に収束する.

2002 数学専門 0.4

1 (1)F の階数が 1 であるから, $0 \neq v_1 \in V$, $f(v) \neq 0$ なる v_1 が存在する. $\ker F$ は 3 次元部分空間であ るから基底 $\{v_2, v_3, v_4\}$ がとれる. $\sum c_i v_i = 0$ とすると $F(\sum c_i v_i) = c_1 f(v_1) = 0$ より $c_1 = 0$. したがって $\{v_2,v_3,v_4\}$ は一次独立であるから $c_i=0$ (i=2,3,4) である. $S=\{v_1,v_2,v_3,v_4\}$ とすれば一次独立. よって 4つ元からなる一次独立な集合が得られたから、Vの次元が4であることより、Sは基底.

この
$$S$$
 に関する表現行列は $F(v_i)=0$ $(i=2,3,4)$ であるから $\begin{pmatrix} lpha_1 & 0 & 0 & 0 \\ lpha_2 & 0 & 0 & 0 \\ lpha_3 & 0 & 0 & 0 \\ lpha_4 & 0 & 0 & 0 \end{pmatrix}$ となる.

 $(2)F(v_1) = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 + \alpha_4 v_4$ としたときに, $\alpha_1 = 0$ だとする. このとき, $F^2(v_1) = 0$ であるから,

 $\alpha_1 \neq 0$ のとき, $u_1 = \frac{1}{\alpha_1}(\alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 + \alpha_4 v_4) \neq 0$ とすれば $F(u_1) = F(v_1) = \alpha_1 u_1$ より u_1 が固有値

2 (1) 略.

 $(2)\varphi\colon H\to K; A=[a_{ij}]\mapsto \mathrm{diag}[a_{11},a_{22},a_{33}]$ とすれば φ は全射準同型である.よって $N=\ker \varphi$ とすれば $H/N \cong K$ である. N は対角成分が全て 1 であるような上三角行列全体である.

③ (1) \bar{R} において $f \in R$ の剰余類を \bar{f} で表す。 $S = \{\bar{1}, \bar{x}, \bar{x}^2\}$ が基底である。 $c_0\bar{1} + c_1\bar{x} + c_2\bar{x}^2 = 0$ とすると, $c_0 + c_1x + c_2x^2 \in (x^3 - 2)$ である。よって $c_0 + c_1x + c_2x^2 = (x^3 - 2)f(x)$ なる $f(x) \in R$ が存在する.次数を比較すれば左辺は 2 以下で右辺は 0 か 3 以上かであるから,f = 0.よって $c_0 + c_1x + c_2x^2 = 0$ より $c_0 = c_1 = 0$ である.すなわちい一次独立.

任意の $f(x) \in R$ は $f(x) = (x^3 - 2)g(x) + c_2x^2 + c_1x + c_0$ $(g(x) \in R, c_i \in K)$ と表せる. したがって $\bar{f} = c_2\bar{x}^2 + c_1\bar{x} + c_0$ より \bar{R} を生成する. よって S は基底.

 $(2)X^3-2$ は素数 2 に着目すれば $\mathbb{Z}[X]$ 上でアイゼンシュタインの既約判定法から既約である. X^3-2 は原始多項式であるから $\mathbb{Z}[X]$ 上既約であるなら $\mathbb{Q}[X]$ 上既約である. $\mathbb{Q}[X]$ は PID であるから既約元は素元であり、素イデアル (X^3-2) は極大イデアルである. よって R は体.

 $(3)X^3-2=(X-\sqrt[3]{2})(X^2+\sqrt[3]{2}X+\sqrt[3]{2}^2)$ である. $(X^2+\sqrt[3]{2}X+\sqrt[3]{2}^2),(X-\sqrt[3]{2})$ は互いに素なイデアルであるから中国剰余定理より, $\bar{R}\cong\mathbb{R}[X]/(X-\sqrt[3]{2})\times\mathbb{R}[X]/(X^2+\sqrt[3]{2}X+\sqrt[3]{2}^2)$ である. $\mathbb{R}[X]/(X-\sqrt[3]{2})\cong\mathbb{R}$ である.

 $X^2+\sqrt[3]{2}X+\sqrt[3]{2}^2$ は $\mathbb{R}[X]$ 上既約であるから, $\mathbb{R}[X]/(X^2+\sqrt[3]{2}X+\sqrt[3]{2}^2)$ は \mathbb{R} の代数拡大体となる. \mathbb{C} は代数閉包で \mathbb{C}/\mathbb{R} の拡大次数は 2 であるから, $\mathbb{R}[X]/(X^2+\sqrt[3]{2}X+\sqrt[3]{2}^2)\cong\mathbb{C}$ である.

よって $\bar{R} \cong \mathbb{R} \times \mathbb{C}$ である.

 $\boxed{4}$ $(1)x^2=t$ として t^2-t+1 の根は $t=\frac{1\pm\sqrt{1-4}}{2}=\frac{1\pm\sqrt{-3}}{2}$ である.したがって x^4-x^2+1 の根は $\pm\sqrt{\frac{1\pm\sqrt{-3}}{2}}$ である.

 $\sqrt{\frac{1+\sqrt{-3}}{2}}\sqrt{\frac{1-\sqrt{-3}}{2}}=1$ である。したがって $\mathbb{Q}(\sqrt{\frac{1+\sqrt{-3}}{2}})$ は $\pm\sqrt{\frac{1\pm\sqrt{-3}}{2}}$ を全て含む。よって $K=\mathbb{Q}(\sqrt{\frac{1+\sqrt{-3}}{2}})$ であり, $[K:\mathbb{Q}]=4$ である。また基底は $\{1,\sqrt{\frac{1+\sqrt{-3}}{2}},\frac{1+\sqrt{-3}}{2},\frac{1+\sqrt{-3}}{2}\sqrt{\frac{1+\sqrt{-3}}{2}}\}$ である。これは次のようにしてわかる。一次従属なら $\sqrt{\frac{1+\sqrt{-3}}{2}}$ の最小多項式を 3 次以下でとれる。 $P(X)=X^4-X^2+1$ とすれば P(X) が $\mathbb{Z}[x]$ 上可約であると分かる。

 $q(X) \mid P(X)$ なら $q(-X) \mid P(X)$ である.

(i) q(X)=q(-X) のとき, $q(X)=X^2-a$ とかける.よって $P(X)=(X^2-a)(X^2-b)$ である.係数比較をすれば a+b=1,ab=1 であるから, $(x-a)(x-b)=x^2-x+1$ である.しかし x^2-x+1 は $\mathbb{Z}[x]$ 上既約であるから矛盾.

(ii) $q(X) \neq q(-X)$ のとき、 $q(X) = X^2 - aX + b$ とかける。 $P(X) = (X^2 - aX + b)(X^2 + aX + b)$ である。係数比較をすれば $b^2 = 1$, $a^2 + 2b = 0$ である。よって $b = \pm 1$ である。b = 1 なら $a^2 + 2 = 0$ であるから、矛盾。b = -1 なら $a^2 - 2 = 0$ であるから、 $a^2 = 2$ であるがこれは $a \in \mathbb{Q}$ より矛盾。

以上より P(X) は $\mathbb{Z}[X]$ 上既約である。よって $\mathbb{Q}[X]$ 上既約であるから,これは一次従属でないことを意味する.よって一次独立であるから基底であるとわかる.

 $(2)\sigma \in \operatorname{Gal}(K/\mathbb{Q}) \ \ \, \text{について} \ \, \sigma(\sqrt{\frac{1+\sqrt{-3}}{2}}) \, = \, \sqrt{\frac{1-\sqrt{-3}}{2}} \ \, \text{とする.} \ \, \text{このとき} \ \, \sigma^2(\sqrt{\frac{1+\sqrt{-3}}{2}}) \, = \, \sigma(\sqrt{\frac{1-\sqrt{-3}}{2}}) \, = \, \sigma(\sqrt{\frac{1-\sqrt{-3}}{2}}) \, = \, \sigma(1/\sqrt{\frac{1+\sqrt{-3}}{2}}) \, = \, \frac{1}{\sqrt{\frac{1-\sqrt{-3}}{2}}} \, \, \text{ である.} \ \, \text{よって} \ \, \sigma^2 \, = \, \text{id} \ \, \text{である.} \ \, \text{また} \ \, \tau \, \in \, \operatorname{Gal}(K/\mathbb{Q}) \ \, \text{につい} \, \, \text{にしい} \,$

て $\tau(\sqrt{\frac{1+\sqrt{-3}}{2}}) = -\sqrt{\frac{1+\sqrt{-3}}{2}}$ とする. このとき $\tau^2 = \mathrm{id}$ である. $\mathrm{Gal}(K/\mathbb{Q})$ 位数 4 の群であるから, $(\mathbb{Z}/2\mathbb{Z})^2, \mathbb{Z}/4\mathbb{Z}$ のいずれかである. 位数 2 の元を 2 つ以上含むことから $\mathrm{Gal}(K/\mathbb{Q}) \cong (\mathbb{Z}/2\mathbb{Z})^2$ である. また σ, τ によって生成されると分かる. (3) $\mathrm{Gal}(K/\mathbb{Q})$ の非自明な部分群は $\langle \sigma \rangle, \langle \tau \rangle, \langle \sigma \circ \tau \rangle$ である.

 σ で不変な元 $\sqrt{\frac{1+\sqrt{-3}}{2}} + \sqrt{\frac{1-\sqrt{-3}}{2}} = \alpha$ とすれば $\alpha^2 = 3$ であるから, α は $\pm\sqrt{3}$ のいずれかである. τ で不変な元 $\sqrt{\frac{1+\sqrt{-3}}{2}}(-\sqrt{\frac{1+\sqrt{-3}}{2}}) = -\frac{1+\sqrt{-3}}{2}$ である.

 $\sigma \circ \tau$ で不変な元 $\sqrt{\frac{1+\sqrt{-3}}{2}} - \sqrt{\frac{1-\sqrt{-3}}{2}} = \beta$ とすれば $\beta^2 = -1$ であるから, β は $\pm i$ のいずれかである.

以上より非自明な中間体は $\mathbb{Q}(\sqrt{3})$, $\mathbb{Q}(\sqrt{-1})$, $\mathbb{Q}(\sqrt{-3})$ である.これに K, \mathbb{Q} を加えれば全ての中間体が得られる.

0.5 2003 基礎

1 (1)V の元の和が V の元に属すためには a=b=c=d=0 が必要十分である. V は A=

$$\begin{pmatrix} 1 & 1 & p+1 & 3 & q \\ 1 & 2 & 2p+1 & 2 & 0 \\ 1 & 0 & -p & 4 & 4q \\ 0 & 1 & -p^2 & -1 & -2q \end{pmatrix}$$
の解空間である. A を簡約化すると,

$$A \to \begin{pmatrix} 1 & 1 & p+1 & 3 & q \\ 0 & 1 & p & -1 & -q \\ 0 & -1 & -2p-1 & 1 & 3q \\ 0 & 1 & -p^2 & -1 & -2q \end{pmatrix} \to \begin{pmatrix} 1 & 0 & 1 & 4 & 2q \\ 0 & 1 & p & -1 & -q \\ 0 & 0 & -p-1 & 0 & 2q \\ 0 & 0 & -p^2-p & 0 & -q \end{pmatrix} \to \begin{pmatrix} 1 & 0 & 1 & 4 & 2q \\ 0 & 1 & p & -1 & -q \\ 0 & 0 & -p-1 & 0 & 2q \\ 0 & 0 & 0 & 0 & -q-2pq \end{pmatrix}$$

である. これの解空間の次元が 3 になるためには -p-1=0, 2q=0, -q-2pq=0 が必要十分. したがって p=-1, q=0 である.

$$a\omega^2)\begin{pmatrix}1\\\omega\\\omega^2\end{pmatrix},\begin{pmatrix}1&a&a\\a&1&a\\a&a&1\end{pmatrix}\begin{pmatrix}1\\\omega^2\\\omega\end{pmatrix}=(1+a\omega+a\omega^2)\begin{pmatrix}1\\\omega^2\\\omega\end{pmatrix}$$
 TB3.
$$1+a\omega+a\omega^2=1+a\omega+a(-1-\omega)=1-a$$

である。したがって固有値は1+2a1-aである。

$$(2)$$
 固有値が $1-a$ の固有ベクトルとして $\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$ 、 $\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$ がとれる.直交化すると, $\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$ 、である.

正規化することで
$$T=\begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} \end{pmatrix}$$
 は直交行列. このとき, $D=T^{-1}AT=\begin{pmatrix} 1+2a & 0 & 0 \\ 0 & 1-a & 0 \\ 0 & 0 & 1-a \end{pmatrix}$ となる.

 $(3)B = \{(x,y,x) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$ とする. T は直交行列であるから

$$\begin{bmatrix} \forall (x,y,z) \in B, \begin{pmatrix} x \\ y \\ z \end{pmatrix}^t A \begin{pmatrix} x \\ y \\ z \end{pmatrix} \ge -1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} \forall (x,y,z) \in B, \begin{pmatrix} T \begin{pmatrix} x \\ y \\ z \end{pmatrix} \end{pmatrix}^t A T \begin{pmatrix} x \\ y \\ z \end{pmatrix} \ge -1 \end{bmatrix}$$
$$\Leftrightarrow \begin{bmatrix} \forall (x,y,z) \in B, \begin{pmatrix} x \\ y \\ z \end{pmatrix}^t T^{-1} A T \begin{pmatrix} x \\ y \\ z \end{pmatrix} \ge -1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} \forall (x,y,z) \in B, \begin{pmatrix} x \\ y \\ z \end{pmatrix}^t D \begin{pmatrix} x \\ y \\ z \end{pmatrix} \ge -1 \end{bmatrix}$$

である.
$$(x,y,z)D\begin{pmatrix} x \\ y \\ z \end{pmatrix} = (1+2a)x^2+(1-a)y^2+(1-a)z^2=(1-a)(x^2+y^2+z^2)+3ax^2=3ax^2+1-a\geq -1$$

であるから, $x \in [-1,1]$ で $3ax^2 + 2 - a \ge 0$ が成り立つ a をもとめる.a > 0 のとき,左辺は x = 0 で最小値 2 - a をとるから $2 - a \ge 0$ より $0 < a \le 2$ である.

a=0 なら明らかに成立する.

a<0 なら左辺は $x=\pm 1$ で最小値をとるから $3a+2-a\geq 0$ より $0>a\geq -1$ である.よって $-1\leq a\leq 2$ が必要十分条件.

$$(x,y,z)A egin{pmatrix} x \\ y \\ z \end{pmatrix} \geq -1 \Leftrightarrow (x,y,z)A egin{pmatrix} x \\ y \\ z \end{pmatrix} + (x,y,z)E egin{pmatrix} x \\ y \\ z \end{pmatrix} \geq 0 \Leftarrow (x,y,z)(A+E) egin{pmatrix} x \\ y \\ z \end{pmatrix} \geq 0$$
 これが任意の

 $(x,y,z)\in B$ について成り立つことは任意の $\mathbb{R}^3\setminus\{O\}$ で成り立つことと同値である. (正規化すればよい.)

すなわち A+E が半正定値であることと必要十分.これは A+E 全ての固有値が非負であることと必要十分であり,A+E の固有値は $2+2a, 2+a\omega^2+a\omega=2-a$ である.よって $2+2a\geq 0, 2-a\geq 0$ より $2\geq a\geq -1$ である.

3 (1) 分母分子の極限が ∞ であるからロピタルの定理を使う. $\lim_{x \to \infty} \frac{\frac{1}{e^{ax} + e^x}(ae^{ax} + e^x)}{1} = \lim_{x \to \infty} \frac{1}{e^{ax} + e^x}(ae^{ax} + e^x)$ $= \lim_{x \to \infty} \frac{1}{e^{ax} + e^x}(ae^{ax} + e^x) - (a-1)e^x) = \lim_{x \to \infty} a - \frac{1}{e^{(a-1)x} + 1}(a-1)$ である. $a-1 \ge 0$ なら極限は a である. a-1 < 0 のとき,極限は 1 である. よって $\lim_{x \to \infty} \frac{1}{x} \log(e^{ax} + e^x) = \max(a,1)$ である.

(2)t+x=u と変数変換すれば $h(x)=\int_{x}^{2x}e^{e^{u}}du$ である. よって $h'(x)=2e^{e^{2x}}-e^{e^{x}}$ である.

 $(3)\frac{\partial g}{\partial r} = \frac{\partial f}{\partial x}\cos\theta + \frac{\partial f}{\partial y}\sin\theta, \frac{\partial g}{\partial \theta} = \frac{\partial f}{\partial x}(-r\sin\theta) + \frac{\partial f}{\partial \theta}(r\cos\theta) \ \text{である.} \ \text{よって} \ \frac{\partial f}{\partial x} = \frac{\partial g}{\partial r}(\cos\theta) + \frac{\partial g}{\partial \theta}(\frac{-\sin\theta}{r}), \frac{\partial f}{\partial y} = \frac{\partial g}{\partial r}(\sin\theta) + \frac{\partial g}{\partial \theta}(\frac{\cos\theta}{r}) \ \text{である.} \ \text{また} \ r = \sqrt{x^2 + y^2} \ \text{より} \ \frac{\partial r}{\partial x} = \frac{2x}{2r} = \cos\theta \ \text{である.} \ \tan\theta = \frac{y}{x} \ \text{より} \ x \ \text{で偏微分して} \\ \frac{1}{\cos^2\theta} \frac{\partial \theta}{\partial x} = -\frac{y}{x^2} \ \text{より} \ \frac{\partial \theta}{\partial x} = -\frac{r\sin\theta}{r^2\cos^2\theta}\cos^2\theta = -\frac{\sin\theta}{r} \ \text{である.}$

$$\begin{split} \frac{\partial}{\partial x} \frac{\partial g}{\partial r} &= \frac{\partial^2 g}{\partial r^2} \cos \theta + \frac{\partial^2 g}{\partial \theta \partial r} \frac{-\sin \theta}{r}, \frac{\partial}{\partial x} \frac{\partial g}{\partial \theta} &= \frac{\partial^2 g}{\partial r \partial \theta} \cos \theta + \frac{\partial^2 g}{\partial \theta^2} \frac{-\sin \theta}{r} \\ \frac{\partial^2 f}{\partial x \partial y} &= \frac{\partial}{\partial x} \frac{\partial g}{\partial r} (\sin \theta) + \frac{\partial g}{\partial r} (\cos \theta \frac{-\sin \theta}{r}) + \frac{\partial}{\partial x} \frac{\partial g}{\partial \theta} (\frac{\cos \theta}{r}) + \frac{\partial g}{\partial \theta} (\frac{-\sin \theta}{r} - \frac{\sin \theta}{r} - \frac{\cos \theta}{r^2} \cos \theta) \\ &= \left(\frac{\partial^2 g}{\partial r^2} \sin \theta \cos \theta - \frac{\partial^2 g}{\partial \theta \partial r} \frac{\sin^2 \theta}{r} \theta \right) - \frac{\partial g}{\partial r} (\frac{\cos \theta \sin \theta}{r}) + \left(\frac{\partial^2 g}{\partial r \partial \theta} \frac{\cos^2 \theta}{r} + \frac{\partial^2 g}{\partial \theta^2} \frac{-\sin \theta \cos \theta}{r^2} \right) + \frac{\partial g}{\partial \theta} (\frac{\sin^2 \theta - \cos^2 \theta}{r^2}) \\ &= \frac{\partial^2 g}{\partial r^2} \sin \theta \cos \theta + \frac{1}{r} \frac{\partial^2 g}{\partial r \partial \theta} (\cos^2 \theta - \sin \theta^2) + \frac{\partial^2 g}{\partial \theta^2} \frac{-\sin \theta \cos \theta}{r^2} + \frac{\partial g}{\partial \theta} (\frac{\sin^2 \theta - \cos^2 \theta}{r^2}) - \frac{\partial g}{\partial r} (\frac{\cos \theta \sin \theta}{r}) \end{split}$$

 $(4) \iint_D xy dx dy = \int_0^1 \int_{x^2}^x xy dy dx = \int_0^1 x \left[\frac{1}{2} y^2 \right]_{x^2}^x dx = \frac{1}{2} \int_0^1 x^3 - x^5 dx = \frac{1}{2} \left[\frac{1}{4} x^4 - \frac{1}{6} x^6 \right]_0^1 = \frac{1}{24}$

 $\boxed{4}$ (1)arcsin(sin x) = x を x で微分すると、(arcsin)'(sin x) cos x = 1 より arcsin'(x) $= \frac{1}{\cos \arcsin x}$ であ

る. $\cos^2(\arcsin x) + \sin^2(\arcsin x) = 1$ より $\cos^2(\arcsin x) = 1 - x^2$ である. $-\frac{\pi}{2} < x < \frac{\pi}{2}$ であるから $\cos(\arcsin x) > 0$ である. よって $\cos(\arcsin x) = \sqrt{1-x^2}$ である.

よって
$$g'(x) = \frac{1}{\sqrt{1-x^2}}$$
 である. $g''(x) = \frac{x}{(1-x^2)^{\frac{3}{2}}}$ である.

(2)f'(x) = g(x)g'(x) である. よって $\sqrt{1-x^2}f'(x) = \arcsin x$ である. x で微分すれば $-\frac{x}{(\sqrt{1-x^2})}f' + \sqrt{1-x^2}f'' = \frac{1}{\sqrt{1-x^2}}$ である. したがって $-xf'' + (1-x^2)f'' = 1$ である.

$$(3)f'(x)=\sum_{n=1}^{\infty}na_nx^{n-1},f''(x)=\sum_{n=2}^{\infty}n(n-1)a_nx^{n-2}$$
 である。よって $(1-x^2)f''(x)-xf'(x)=\sum_{n=2}^{\infty}(n(n-1)a_nx^{n-2}-n(n-1)a_nx^n)-\sum_{n=1}^{\infty}na_nx^n=\sum_{n=0}^{\infty}(n+2)(n+1)a_{n+2}x^n-\sum_{n=2}^{\infty}n(n-1)a_nx^n-\sum_{n=1}^{\infty}na_nx^n=1$ である。よって n の係数を比較すれば $2a_2=1,3\cdot 2a_3-a_1=0,(n+2)(n+1)a_{n+2}-n(n-1)a_n-na_n=0$ $(n\geq 2)$ である。よって $(n+2)(n+1)a_{n+2}=n^2a_n$ $(n\geq 2)$ である。この等式に $n=1$ を代入すると、 $3\cdot 2a_3=a_1$ となりこれは成り立つ。よって $(n+2)(n+1)a_{n+2}=n^2a_n$ $(n\geq 1)$ である。また $a_0=f(0)=\frac{1}{2}g(0)^2=0, a_1=f'(0)=g(0)g'(0)=0, a_2=\frac{1}{2}$ である。

 $(4)3 \cdot 2a_3 = 1a_1 = 0$ より $a_3 = 0$ である. $4 \cdot 3a_4 = 4a_2 = 2$ より $a_4 = \frac{1}{6}$ である. $5 \cdot 4a_5 = 9a_3 = 0$ より $a_5 = 0$ である. $6 \cdot 5a_6 = 16a_4$ より $a_6 = \frac{4}{45}$ である.

0.6 2003 専門

① (1)V は 3 次元線形空間であるから $\{v_1,v_2,v_3\}$ が一次独立であることを示せばよい。 $c_1v_1+c_2v_2+c_3v_3=0$ とする。 $F(c_1v_1+c_2v_2+c_3v_3)=c_1f(v_1)=0$ であり, $F(v_1)\neq 0$ より $c_1=0$ である。 よって $c_2v_2+c_3v_3=0$ であるが v_2,v_3 は一次独立であるから $c_2=c_3=0$ である。 したがって $\{v_1,v_2,v_3\}$ は基底。

 $(2)\{v_1,v_2,v_3\}$ が基底であるから $F(v_1)=av_1+bv_2+cv_3$ なる $a,b,c\in V$ が存在する. したがって表現行列

は
$$\begin{pmatrix} a & 0 & 0 \\ b & 0 & 0 \\ c & 0 & 0 \end{pmatrix}$$
である.

(3) $F(v_1) \notin U$ であるから $a \neq 0$ である. $u_1 = v_1 + \frac{b}{a}v_2 + \frac{c}{a}v_3$ とする. $F(u_1) = F(v_1) = a(v_1 + \frac{b}{a}v_2 + \frac{c}{a}v_3) = au_1$ である. $\{u_1, v_2, v_3\}$ に関する表現行列は対角行列である.

(4)U の一次独立な集合 $\{F(v_1)\}$ を延長して U の基底 $\{F(v_1),v_3\}$ をとる. このとき $\{v_1,F(v_1),v_3\}$ に関す

る表現行列は
$$\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
であり、ジョルダン標準形である.

 $\boxed{2}$ (1)U が開集合 $\Leftrightarrow^{\forall} x \in U$, $\exists r > 0, B_r(x) \subset U$ である.

 $(2)((a)\Rightarrow(b))$ U を \mathbb{R}^N の開集合とする. $x\in f^{-1}(U)$ を任意にとる. $f(x)\in U$ より $\exists r>0, B_r(f(x))\subset U$ である. したがって $f^{-1}(B_r(f(x)))\subset f^{-1}(U)$ がなりたつ. いま (a) より r に対してある $\delta>0$ が存在して $B_\delta(x)=f^{-1}f(B_\delta(x))\subset f^{-1}(B_r(f(x)))\subset f^{-1}(U)$ である. よって $f^{-1}(U)$ は開集合である.

 $((b)\Rightarrow(a))$ 任意の $a\in\mathbb{R}^N, \varepsilon>0$ をとる。 $B_{\varepsilon}(f(a))$ は開集合であるから $a\in f^{-1}(B_{\varepsilon}(f(a)))$ も開集合である。 したがってある $\delta>0$ が存在して $B_{\delta}(a)\subset f^{-1}(B_{\varepsilon}(f(a)))$ である。f で送って $f(B_{\delta}(a))\subset f(f^{-1}(B_{\varepsilon}(f(a))))\subset B_{\varepsilon}(f(a))$ である。

 $(3)((a)\Rightarrow(c))$ 任意の $\varepsilon>0$ に対してある $\delta>0$ が存在して $f(B_\delta(a))\subset B_\varepsilon(f(a))$ である. したがってある N が存在して n>N なら $d(a_n,a)<\delta$ すなわち $a_n\in B_\delta(a)$ が成り立つ. よって $f(a_n)\in B_\varepsilon(f(a))$ であるから $d(f(a_n),f(a))<\varepsilon$ である. これは $\lim f(a_n)=f(a)$ を意味する.

 $((c)\Rightarrow(a))$ 背理法を用いる。 ある $a\in\mathbb{R}^N$ と $\varepsilon>0$ が存在して任意の $\delta>0$ に対して $f(B_\delta(a))\not\subset B_\varepsilon(f(a))$ であると仮定する。 このとき $\delta=\frac{1}{n}$ とすれば $a_n\in B_\delta(a)$ で $f(a_n)\not\in B_\varepsilon(f(a))$ なるものがとれる。 これによって

数列 $\{a_n\}$ を作れば $\{a_n\}$ は a に収束するが $\{f(a_n)\}$ は f(a) に収束しない. これは矛盾.

- $\boxed{3}$ $(1)x=r\cos\theta,y=r\sin\theta$ とおくとヤコビアンは r である. よって $I_n=\int_0^{2\pi}\int_0^\infty \frac{r^2}{1+r^{2n}}drd\theta$ である.
- $(2)I_n \ \text{ の収束性は} \ \int_0^\infty \frac{r^2}{1+r^{2n}} dr \ \text{ olu束性と同値}. \ [0,1] \ \text{ では被積分関数が有界であるから} \ \int_1^\infty \frac{r^2}{1+r^{2n}} dr \ \text{ olu束性と同値}. \ n \geq 2 \ \text{ oluze}, \ \int_1^M \frac{r^2}{1+r^{2n}} dr \leq \int_1^M r^{2-2n} dr = \left[\frac{1}{3-2n} r^{3-2n}\right]_1^M = \frac{1}{3-2n} (M^{3-2n}-1) \to \frac{1}{3n-2} \ (M \to \infty) \ \text{ である}. \ n = 1 \ \text{ oluze}. \ r \geq 1 \ \text{ louze}. \ r \geq 1 \ \text{ column}$ であるから $2r^2 \geq r^2 + 1 \ \text{ column}$ である。 よって $\int_1^M \frac{r^2}{1+r^2} dr \geq \int_1^M \frac{r^2}{2r^2} dr = \int_1^M \frac{1}{2} dr = \frac{1}{2} M \to \infty \ (M \to \infty) \ \text{ lought}$ より発散する.

よって求める最小値aはa=2である.

 $(3)\frac{z^k}{1+z^4}$ は $z=e^{\frac{\pi i}{4}},e^{\frac{3\pi i}{4}},e^{\frac{5\pi i}{4}},e^{\frac{7\pi i}{4}}$ をそれぞれ 1 位の極として持つ.積分路 Γ 内の特異点は $z=e^{\frac{\pi i}{4}},e^{\frac{3\pi i}{4}}$ である.留数は $\mathrm{Res}\Big(\frac{z^k}{1+z^4},e^{\frac{\pi i}{4}}\Big)=\Big(\frac{z^k}{4z^3}\Big)\Big|_{z=e^{\frac{\pi i}{4}}}=\frac{1}{4}e^{\frac{(k-3)\pi i}{4}},\mathrm{Res}\Big(\frac{z^k}{1+z^4},e^{\frac{3\pi i}{4}}\Big)=\Big(\frac{z^k}{4z^3}\Big)\Big|_{z=e^{\frac{3\pi i}{4}}}=\frac{1}{4}e^{\frac{(3k-1)\pi i}{4}}$ である.したがって留数定理から $\int_{\Gamma}\frac{z^k}{1+z^4}dz=2\pi i(\frac{1}{4}e^{\frac{(k-3)\pi i}{4}}+\frac{1}{4}e^{\frac{(3k-1)\pi i}{4}}\Big)$ である.

$$\left| \int_{C_R} \frac{z^2}{1+z^4} dz \right| = \left| \int_0^\pi \frac{R^2 e^{2i\theta}}{1+R^4 e^{4i\theta}} Rie^{i\theta} d\theta \right| \leq \int_0^\pi \left| \frac{R^3}{1+R^4 e^{4i\theta}} \right| d\theta \leq \int_0^\pi \left| \frac{R^3}{R^4-1} \right| d\theta = \pi \frac{R^3}{R^4-1} \to 0 \quad (R \to \infty)$$

$$\int_{[-R,R]} \frac{z^2}{1+z^4} dz = \int_{[-R,0]} \frac{z^2}{1+z^4} dz + \int_{[0,R]} \frac{z^2}{1+z^4} dz = \int_R^0 \frac{r^2}{1+r^4} (-1) dr + \int_0^R \frac{r^2}{1+r^4} dr = 2 \int_0^R \frac{r^2}{1+r^4} dr$$

である. よって $\int_{\Gamma} \frac{z^2}{1+z^4} dz = \int_{C_R} \frac{z^2}{1+z^4} dz + 2 \int_0^R \frac{r^2}{1+r^4} dr$ である. $R \to \infty$ として $2\pi i (\frac{1}{4} e^{\frac{(2-3)\pi i}{4}} + \frac{1}{4} e^{\frac{(3\cdot 2-1)\pi i}{4}}) = 0 + 2 \int_0^\infty \frac{r^2}{1+r^4} dr$ である. したがって $\int_0^\infty \frac{r^2}{1+r^4} dr$ である. よって $I_2 = \int_0^{2\pi} \frac{\sqrt{2}}{4} \pi d\theta = \frac{\pi^2}{\sqrt{2}}$ である.

4 $(1)\varphi: K[X,Y] \to K[t]; x \mapsto t^3, y \mapsto t^2$ とする. このとき $\ker \varphi \supset (X^2 - Y^3)$ は明らか. $f(X,Y) \in \ker \varphi$ とすると, $f(X,Y) = (X^2 - Y^3)g(X,Y) + Xh_1(Y) + h_2(Y)$ とできる。 φ でおくれば $0 = t^3h_1(t^2) + h_2(t^2)$ である。t の次数について,偶数の次数を比較すれば $0 = h_2(t^2)$ であるから $h_2 = 0$ である。よって $0 = t^3h_1(t^2)$ より $h_1 = 0$ である。すなわち $\ker \varphi = (X^2 - Y^3)$ である。

よって準同型定理から $R=K[X,Y]/\ker \varphi \cong \operatorname{Im} \varphi = K[t^3,t^2]$ である.

 $K[t^3, t^2]$ は K[t] の部分環であるから整域であることは明らか. よって R は整域.

 $(2)K[t^2,t^3]$ の商体は $t^3/t^2=t$ より K(t) である. $K[t^2,t^3][s]\ni s^2-t^2$ は t を根にもつモニック多項式であるが, $t\notin K[t^2,t^3]$ であるから R は整閉でない.