IS 7033: Artificial Intelligence and Machine Learning

Dr. Peyman Najafirad (Paul Rad)

Associate Professor

Cyber Analytics and Al

210.872.7259

https://github.com/paulNrad/ProbabilisticGraphModels

Reinforcement Learning

Read Reinforcement Learning by Richard Sutton Chapter 3 and 4

Reinforcement Learning Summary

- The reinforcement learning (RL) framework is characterized by an **agent** learning to interact with its **environment**.
- At each time step, the agent receives the environment's **state** (the environment present a situation to the agent), and the agent must choose an appropriate **action** in response. One time step later, the agent receives a **reward** (the environment indicates whether the agent has responded appropriately to the state) and a new **state**.
- All agents have the goal to maximize expected cumulative reward, or the expected sum of rewards attained over all time steps.

The agent-environment interaction in reinforcement learning. (Source: Sutton and Barto, 2017)

Episodic vs. Continuing Tasks

• Continuing tasks are tasks that continue forever, without end.

• **Episodic tasks** are tasks with a well-defined starting and ending point. In this case, we refer to a complete sequence of interaction, from start to finish, as an **episode**. Episodic tasks come to an end whenever the agent reaches a **terminal state**.

Goals, Cumulative Reward, and Discounted Return

- The return at time step t is $G_t := R_{t+1} + R_{t+2} + R_{t+3} + ...$
- The agent selects actions with the goal of maximizing expected (discounted) return.
- The discounted return at time step t is $G_t := R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + ...$
 - The **discount rate** γ is something that you set, to refine the goal that you have the agent. It must satisfy $0 \le \gamma \le 1$.
 - If γ =0, the agent only cares about the most immediate reward.
 - If $\gamma=1$, the return is not discounted.
 - For larger values of γ , the agent cares more about the distant future. Smaller values of γ result in more extreme discounting, where in the most extreme case agent only cares about the most immediate reward.

MDPs and One-Step Dynamics

A (finite) Markov Decision Process (MDP) is defined by:

- A (finite) set of states S
- A (finite) set of actions A
- A set of rewards R
- The one-step dynamics of the environment

p(s', r | s,
$$\alpha$$
) = P(S_{t+1} = s', R_{t+1} = r | S_t = s, A_t = α) for all s, s', α , and r

• A discount rate $\gamma \mathcal{E} [0,1]$

We can start to think of the solution as a series of actions that need to be learned by the agent towards the pursuit of a goal.

Policies

A policy determines how an <u>agent chooses an action in response to</u> the current state. In other words, it specifies how the agent responds to situations that the environment has presented.

• A <u>deterministic policy</u> is mapping from the set of environment states to the set of possible actions:

$$\pi:S\to A$$

• A <u>stochastic policy</u> is a mapping $\pi: S \times A \rightarrow [0,1]$

$$\pi (\alpha \mid s) = P (A_t = \alpha \mid S_t = s)$$

Policies

Cleaning Robot

Stochastic Policy

$$\pi$$
 (recharge | low) = 0.5
 π (search | low) = 0.1
 π (wait | low) = 0.4
 π (search | high) = 0.9
 π (wait | high) = 0.1

Deterministic Policy π (recharge | low) = 1 π (search | high) = 1

Now that we know how to establish a policy, what step can we take to make sure the agent's policy is the best one (optimal policy). **Question:** Consider a different stochastic policy where:

```
\pi (recharge | low ) = 0.3

\pi (search | low ) = 0.2

\pi (wait | low ) = 0.5

\pi (search | high ) = 0.6

\pi (wait | high ) = 0.4
```

Which of the following statements are true, if the agent follows the policy?

- a) If the battery is low, the agent will always decide to wait for cans.
- b) If the battery level is high, the agent chooses to search for a can with 60% probability, and otherwise waits for a can.
- c) If the battery level is low, the agent is most likely to decide to wait for cans.

Grid world

Let's consider:

- The agent can only move up, down, left or right, and can only take actions that lead in to not fall off the grid.
- The goal of the agent to get to the bottom right hand corner of the world as quickly as possible.
- The agent receives a rewards of negative one for most transitions. If it leads to a mountain rewards of 3 and the finish state rewards of 5.

MDP and Agent Policy

Let's choose a policy that the agent visits every state in a roundabout manner.

Cumulative Return for S0 \rightarrow (-1) + (-1) + (-1) + (-3) + (-1) + (-1) + (-3) + (5) = -6

State-Value Function

For each state, the <u>state-value function</u> yields the <u>expected return</u>, if the agent started in that state, and then followed the policy for all times steps.

-6	-5	-4
1	0	-3
2	5	0

We call v_{π} the state-value function for policy π The value of state s under a policy π is:

$$v_{\pi}$$
 (s) = E $_{\pi}$ [G_t|S_t = s]

For each state s

It yields the <u>expected return</u> If the agent starts in <u>state s</u> and then uses <u>the policy</u> to choose its actions for all time steps.

Bellman Equations

Discount rate is 1

Bellman Expected Equation

$$v_{\pi}$$
 (s) = E $_{\pi}$ [R_{t+1}+ γv_{π} (S_{t+1}) | S_t = s]

The value of any state s = the expected value of the immediate rewards +

The discounted value of the state that follows under that policy.

Question: State-Value Functions for π'

You will calculate the value function corresponding to a particular policy

Deterministic policy

 $\pi(s_1)$ =right

 $\pi(s_2)$ =right

 $\pi(s_3)$ =down

 $\pi(s_4)$ =up

 $\pi(s_5)$ =right

 $\pi(s_6)$ =down

 $\pi(s_7)$ =right

 $\pi(s_8)$ =right

Assume γ=1

Questions:

What is $v_{\pi}(s_4)$?

What is $v_{\pi}(s_1)$?

State value functions for different policies

State value function for policy π

State value function for policy π'

 $\pi' \geq \pi \ if \ and \ only \ if \ v_{\pi'}(s) \geq v_{\pi}(s) \ for \ all \ s \in S$

Optimal policy

Definition

 $\pi' \geq \pi \ if \ and \ only \ if \ v_{\pi'}(s) \geq v_{\pi}(s) \ for \ all \ s \in S$

Definition

An optimal policy π^* satisfies $\pi^* \geq \pi$ for all π

The optimal state value function is denoted v^*

Both are Optimal Policies

State value function for policy $oldsymbol{\pi}'$

State value function for policy π "

Action Value Function $q_{\pi}(s, a)$

We call v_{π} the state-value function for policy π

The value of state s under a policy π is:

$$v_{\pi}$$
 (s) = E $_{\pi}$ [G_t | S_t = s]

For each state s

It yields the <u>expected return</u> If the agent starts in <u>state s</u> and then uses <u>the policy</u> to choose its actions for all future time steps.

We call q_{π} the action-value function for policy π

The value of taking action a under a policy π is:

$$q_{\pi}(s, \alpha) = E_{\pi}[G_t|S_t = s, A_t = \alpha]$$

For each state s and action a

It yields the <u>expected return</u> If the agent starts in <u>state s</u> and then chooses <u>action a</u> and then uses <u>the policy</u> to choose its actions for all future time steps.

Action Value for Policy π

Action value function for policy π'

2	1	\times	3	2
0		1		4
1		2		3
1	0	\times	4	1
1		2		5
0		1		
2	1	\times	5	1
		Ì		

Optimal Policy

• The agent interacts with the environment. From that interactions, it **estimates** the **optimal action value function**. Then the agent uses that **value function** to get the **optimal policy**.

Interaction \rightarrow q * $\rightarrow \pi_*$

Action value function for policy π'

2	1	\times	3	2
0		1		4
1		2		3
1	0	\times	4	1
1		2		5
0/		1		
2	1	\times	5	1
		· ·		