KISTEP 기술동향브리프

AR/VR 기술

Contents

제1장	개요1
제2장	기술동향5
제3장	산업동향11
제4장	정책동향15
제5장	R&D 투자동향 ·······18
제6장	결론21

제1장 개요

1.1 배경 및 필요성

- 가상현실(Virtual Reality; VR)/증강현실(Augmented Reality; AR)기술은 차세대 컴퓨팅 플랫폼 기술[1]로써 향후 기존 ICT 시장을 크게 변화시키고 신규 시장을 창출할 수 있는 파괴적 기술(Destructive Technique)임
 - Gartner의 'Top 10 Strategic Technology For 2018'은 차세대 디지털 비즈니스 생태계 구축을 위한 핵심 미래 기술로써 가상/증강현실기술을 선정[30]
- ◎ VR 기술은 초기 성숙기, AR 기술은 성장기 단계로 성장·진화하고 있으며, 현재 2~3세대 제품을 기반으로 수익모델 창출을 위한 노력이 계속되고 있음

자료: 연도별 Hype Cycle for Emerging Technology(Gartner) 재편집 [그림 1] Gartner Hype Cycle 2014~2017

1.2 기술의 정의 및 범위

- ◎ (가상현실) 실제 현실의 특정 환경, 상황, 또는 가상의 시나리오를 컴퓨터 모델링을 통해 구축하고 이러한 가상 환경에서 사용자가 상호작용할 수 있도록 돕는 시스템 및 관련 기술(9)
 - (가상현실 특징) 사용자의 시야각 전체를 가상 영상으로 채울 수 있는 HMD(Head-Mounted Display)를 주로 활용하며, 이외에도 프로젝션 기술을 활용한 CAVE(Cave Automatic Virtual Environment)가 있음
 - 가상현실 속 몰입감 향상을 위해서는 자율성(autonomy; 다양한 이벤트와 자극에 자율적으로 반응할 수 있음), 상호작용(interaction; 가상현실에서의 객체 또는 환경과 상호작용할 수 있음), 현존감(presence; 다감각 자극 경험을 제공)이 중요
- ◎ (증강현실) 실제 환경에 컴퓨터 모델링을 통해 생성한 가상의 오브젝트(예: 물체, 텍스트, 비디오)를 겹쳐보이게 하여 공간과 상황에 대한 가상 정보를 제공하는 시스템 및 관련 기술[5]
 - (증강현실 특징) HMD 이외에도 다양한 기기(예: 스마트폰, 프로젝션 기술 등)을 활용하며, 현실과 가상의 연속된 프레임의 어느 중간 단계를 구현하는 기술로써 사용자의 현실 환경에 실시간으로 가상 정보를 제공
- Milgram 연구팀은 현실환경과 가상환경의 양 극단 속에서 나타날 수 있는
 다양한 형태의 컴퓨팅 플랫폼 기술을 아래 프레임워크로 제안함

자료: Milgram(1994)를 재편집

[그림 2] 현실과 가상의 연속 프레임

- 현실환경: 실제 환경에 어떠한 것도 컴퓨터 모델링되지 않은 상태
- 증강현실: 실제 환경에 가상의 객체(정보)를 컴퓨터 모델링한 상태
- 증강가상: 가상 환경에 실제의 객체(정보)를 컴퓨터 모델링한 상태
- 가상환경: 사용자 환경의 모든 것이 컴퓨터 모델링된 상태
- 혼합현실: 현실과 가상의 연속 프레임 상에 양 극단(현실환경, 가상환경)을 제외한 중간 어느 지점에 컴퓨터 모델링된 상태
- - 이처럼 상호 간 통합되지 않는 기술분류체계로 인해 특정 기술 분야에 대한 효율적 R&D 전략 수립이 어려움
- ◎ 이에 본 브리프는 AR/VR 기술에 대한 기존 문헌연구 및 전문가 인터뷰를 바탕으로 아래와 같은 통합 기술분류체계를 제안함[7],[8]

〈표 1〉가상/증강현실분야에 대한 통합 기술분류체계

한국전자통신연구원 (ETRI)	소프트웨어정책연구소 (SPRi)	정보통신산업진흥원 (NIPA)	통합 기술분류체계
출력 인터페이스 기술	오감기술, 혼합현실	가상-실세계 연동 서비스 기술	디스플레이 기술
-	_	실세계 인식 기술	트래킹(추적) 기술
-	-	-	렌더링 기술
입력 인터페이스 기술, 서비스 기술	동적기술, 다중 사용자 환경 기술	다중센서 및 재연장치 제어 기술	인터랙션 및 사용자 인터페이스 기술

[※] AR/VR분야 통합 기술분류체계(대·중·소)의 세부내역은 붙임1 참조

• 디스플레이 기술(Display Technology): 가상/증강현실 속 몰입 콘텐츠(immersive experience)를 사용자가 감각적으로 경험(예: 시각, 청각, 촉각, 후각, 미각, 움직임 등) 할 수 있도록 제공하는 표시장치 기술

- 트래킹 기술(Tracking Technology) : 몰입 콘텐츠에서 사용자의 생체 데이터(예: 머리, 손, 발, 몸, 눈동자 움직임, 생리지표 등)를 실시간으로 추적하는 기술
- 렌더링 기술(Rendering Technology): 표시장치에 보여지는 몰입 콘텐츠를 고해상도/ 고화질로 구현하는데 필요한 하드웨어 및 소프트웨어 기술
- 인터랙션 및 사용자 인터페이스 기술(Interaction & User Interface Technology): 가상/증강현실 속 몰입 콘텐츠를 지각, 인지, 조작, 입력할 수 있도록 돕는 상호작용 및 인터페이스 기술

제2장 기술동향

2.1 해외 기술동향

- ◎ (디스플레이 기술) 사용자의 몰입감을 높이기 위한 핵심기술요인은 시야각 (FOV: Field of View)과 해상도, 재생빈도로 구분됨[25]

• 시야각

- VR HMD의 시야각은 90°(Google-Cardboard)에서 최대 210°(Starbreeze-StarVR)까지 기술개발이 이뤄졌으며 제품별 평균 110°1)의 시야각을 보임
 - ※ 높은 몰입감 구현을 위해서는 인간의 시각적 특성을 반영한 적정 시야각의 확보를 통한 화면 크기의 설정이 필요(인간의 평균 FOV: 좌우 120°, 상하 135°)[24],[25]
- AR HMD의 시야각은 14.7°(Goolge-Google glass)에서 35°(Microsoft-Hololens), 60°(ODG-R9), 90°(Meta-Meta2) 등 제품별로 시야각에 큰 편차를 보임

• 해상도

- AR/VR HMD는 대부분 HD(720p) 또는 full HD(1080p=2K) 수준의 해상도를 양안 디 스플레이를 통해 제공하고 있음[24]
 - ※ 사용자 몰입감 극대화를 위해서는 고해상도(4K 또는 8K)의 구현이 필요하며 이를 위해서는 배터리 및 데이터 처리량을 위한 하드웨어(예: CPU, GPU 등)에 대한 선제적 기술개발이 요구됨
- AR/VR분야의 디스플레이 패널은 기존 액정 기반 디스플레이(LCD: Liquid Crystal Display)에서 얇은 두께로도 높은 해상도를 제공할 수 있는 OLED(Organic Light Emitting Diode) 기반 디스플레이로 전환되는 추세[25]
 - ※ Oculus Rift(2018), HTC Vive pro(2018), HMD Odyssey(2017) 등에 적용됨

¹⁾ VR HMD의 대표 기기인 Oculus Rift, HTC Vive, Sony Playstation VR, HMD Odyssey의 평균 시야각.

• 재생빈도

- 동일 시간에 얼마나 많은 화면 프레임을 표시할 수 있는지를 나타내는 재생빈도 지표는 높을수록 사용자의 가상멀미(virtual-sickness)를 최소화하며, 현재 VR 기기 중 LCD 기반 제품의 재생빈도는 65Hz, OLED 기반 제품의 경우 약 86Hz의 수준까지 개발됨[15] ※ INTEL社는 최적의 AR/VR 기술 구현을 위한 디스플레이 재생빈도를 120Hz 수준으로 정의[25]
- ◎ (트래킹 기술) AR/VR 분야에서 연구개발된 트래킹 기술은 대부분 센서, 비전, 또는 이 둘을 융합한 하이브리드 추적 기술로 구성[8]
 - 최근 6DoF(Degree of Freedom)구현을 위해 GPS, 가속도센서, 자이로스코프, RFID, 무선센서 등이 결합된 하이브리드 위치 추적 기술이 연구개발됨[16]
 - ※ DoF는 자유도를 뜻하며, x,y,z 축에 대한 회전 및 위치 정보를 포괄
 - Microsoft社는 추적 대상이 시야에서 벗어나거나 장애물에 가려도 트래킹을 유지할 수 있는 인사이드-아웃 트래킹 기술을 연구개발함으로써 일상생활 속 가상현실 기술의 활용 편의성을 대폭 향상시킴[37]
 - Google社의 'Tango Project'는 적외선 카메라를 활용해 3D환경을 탐색하거나 공간의 특징을 파악할 수 있는 비전 트래킹 기술을 개발[36]
- ◎ (렌더링 기술) 사용자에게 AR/VR 콘텐츠를 실시간으로 제공하기 위한 기술로써 지연시간(latency)을 20ms 이하로 단축시키기 위한 연구개발이 진행되고 있음[25]
 - NVIDIA社는 고품질 가상현실 콘텐츠에 대해 사용자가 경험하는 지연시간을 단축시킬 수 있는 Direct Mode 기술 및 실시간 처리 기술을 연구개발함[24]
 - AMD社는 HMD를 통해 사용자에게 제공되는 AR/VR 콘텐츠의 지연시간 단축을 위해 헤드 트래킹 속도를 높이는 Latest data latch 기술, 이미지의 생성 속도를 높이는 기술 등을 개발하고 있음[24]
- (인터랙션 및 사용자 인터페이스 기술) 키보드나 마우스와 같은 간접입력 장치를 사용하지 않고 음성이나 동작 등 자연스러운 사용자 조작환경인 NUI/X(Natural user Interface/Experience) 기술이 대두되고 있음[20]
 - AMAZON社는 음성 인터페이스 기술인 인공지능 Alexa를 AR HMD 기기인 Smart glass에 적용함으로써 보다 자연스러운 사용자 조작환경을 구현하고자 함[28]

- Leap motion社는 적외선 카메라 트래킹 기술을 바탕으로 사용자의 손바닥 및 손가락 정보를 추적하고 이를 가상현실 속에서 반영할 수 있는 동작 인터페이스 기술을 개발함[13]
- Virtuix社의 'Omni', Cyberith社 'VIRTUALIZER' 등 가상현실에서 사용자의 이동 능력을 구현하기 위한 인터페이스 기술에 대한 연구개발이 진행 중[26],[29]
- □ 디스플레이, 트래킹, 렌더링, 인터랙션 및 사용자 인터페이스 기술에 대한 AR/VR 특허동향분석²) 결과, "디스플레이 기술" 및 "트래킹 기술"을 중심으로 연구개발이 진행되고 있음

[그림 3] 기간별 특허동향분석 (2006~2017)

^{2) &#}x27;The Reality of VR and AR' 보고서에 언급된 AR/VR분야 10대 기업(Microsoft, Sony, Apple(Metaio), Samsung, Magic leap, Google, Canon, Facebook(Oculus), Intel, HTC)의 미국특허를 대상으로 분석을 진행

- 기간별 분석 결과, 2006~2011년의 경우 인터랙션 및 사용자 인터페이스 기술에 대한 연구 개발을 통한 기존 디스플레이(예: 컴퓨터, TV 등)와의 융합이 주로 진행
- 2012년 이후에는 Oculus社에서 상용 HMD인 Oculus Rift DK1을 출시하는 등 AR/VR 콘텐츠를 구현할 수 있는 디스플레이 기술 및 트래킹 기술에 대한 특허출원 빈도가 크게 증가

2.2 국내 기술동향

◎ (디스플레이 기술) Samsung electronics社와 LG electronics社를 중심으로 AR/VR분야에 적용될 수 있는 OLED 디스플레이 기술을 기반으로 해상도, 재생빈도 관련 기술을 선도[43]

자료: 특허청 및 OLED.NET을 재편집

[그림 4] AR/VR용 OLED 디스플레이 특허출원 및 출원인 동향

- AR/VR용 OLED 디스플레이에 대한 글로벌 특허출원은 2010년을 기점으로 큰 폭으로 증가하였으며, 특히 국내기업이 90% 이상의 점유율을 보이고 있음
 - 한국전자통신연구원(ETRI)에서는 기존보다 넓은 동작 온도 범위를 갖으며, 정밀한 서브 픽셀의 구현이 가능한 백색 OLED 기술을 개발함[25]
 - LG Display社는 Google社와의 협업을 통해 세계최초로 120hz 수준의 재생빈도와 1800만 화소의 초고해상도를 갖는 OLED 기반의 VR 디스플레이를 개발함[39]
- ◎ (트래킹 기술) 센서 및 비전 트래킹 소프트웨어(SW)에 대한 연구개발이 주를 이루며, 이를 구성하는 센서 하드웨어(HW)의 90% 이상을 해외 수입에 의존함[21]

- 한국전자통신연구원은 직선 레이저와 AR기술을 활용한 고밀도 3차원 데이터 획득이 가능한 스캐닝 SW를 개발하였으며, 최소의 사진영상만으로 내부/외부 정보를 추정할 수 있는 소프트웨어 기술을 보유[18]
- 비주얼캠프社는 사용자의 시선을 추적할 수 있는 기술인 Eye-tracking 기술을 국산화하여 다양한 AR/VR 기기에 접목하고 있음[35]
- MAXST社는 Marker Tracker, Image Tracker 등의 기술을 접목한 AR 솔루션을 개발하여 사용자 간의 협업이나, 정비 산업 등에서 적용[32]
- ◎ (렌더링 기술) 국내 학계 중심으로 대용량 데이터 처리 및 렌더링에 대한 연구가 진행되고 있으며, 산업계에서는 내부 R&D 위주로 개발 진행[18]
 - 대용량 지형 데이터의 실시간 가시화를 위해 데이터를 메모리 상에 효율적으로 구조화하는 방법이 연구되고 있음
 - 최근에는 쿼드트리 기반의 상세 단계 선별 기법을 GPU에서 처리하는 기술이 개발되어 렌더링 속도가 향상되는 성과를 얻음
- ◎ (인터랙션 및 사용자 인터페이스 기술) NUI/X 기술 관련하여 타 기술과의 융합이 부족하여 파급력은 미미한 상황이지만[20]. 기술 국산화가 진행되고 있음
 - 한국전자통신연구원(ETRI)은 3D 카메라 제작 기술을 활용한 동작 인터페이스 관련 원천기술을 개발하였으나, 큰 파급효과를 가지지 못함[20]
 - 가우디오랩社는 소프트웨어 기술 기반으로 청각 기반의 사용자 상호작용 기술분야를 연구하고 있으며, 청각 인터페이스 분야에 뛰어난 성과를 거둠[42]
 - ※ 영국에서 개최된 'VR 어워드 2017'에서 올해의 혁신 기업으로 선정됨으로써 기술력을 인정받음
 - 이노시뮬레이션社는 머신 기반의 사용자 이동/동작/움직임 상호작용 기술을 통해 자동차, 철도, 국방, 미디어 등 다양한 분야에 진출[31]
- AR/VR분야의 기술수준은 미국(0년) 〉유럽(0.8년) 〉일본(1년) 〉한국(1.6년)중국(2.0년) 순이며, 한국은 미국 대비 20%p의 기술격차가 있음[19]
 - (증강현실) 기초연구(20.9%p), 응용·개발(19.0%p), 사업화(19.9%p) 기술격차
 - (가상현실) 기초연구(20.6%p), 응용·개발(19.2%p), 사업화(20.4%p) 기술격차

〈표 2〉AR/VR분야 국가별 기술상대수준

		한국			미국			일본			중국			유럽	
연구 단계	기초	응용	사업화	기초	응용	사업화	기초	응용	사업화	기초	응용	사업화	기초	응용	사업화
증강 현실	79.1	81.0	80.1	100	100	100	86.9	87.3	87.2	75.2	76.1	76.1	88.0	88.0	88.3
가상 현실	79.4	80.8	79.6	100	100	100	87.0	87.9	87.4	76.3	77.0	76.9	87.6	87.9	87.5
상대 수준	80%			100%		87.3%		76.2%		87.8%					
기술 격차	1.6년				0년			1.0년			2.0년			0.8년	

자료: 2016년 ICT 기술수준조사보고서(정보통신기술진흥센터)를 재편집

- ☞ 국내의 디스플레이 기술 및 트래킹 기술(SW)은 글로벌 경쟁력에서 우위를 보이고 있으며, 렌더링 기술, 인터랙션 및 사용자 인터페이스 기술은 꾸준한 연구개발이 진행되고 있으나 선진국 수준에는 미치지 못함
 - •국내의 대다수 기업 및 연구진들은 AR/VR 기술의 핵심요소인 센서 부품과 상업화된 형태의 플랫폼 제품(예: Oculus Rift 또는 HTC vive 등)을 해외 수입에 의존하여 연구개발을 수행

제3장 산업동향

3.1 AR/VR 산업동향

◎ 2022년 글로벌 AR/VR현실분야의 예상 시장규모는 약 1,050억 달러이며, 특히 증강현실은 가상현실의 6배 이상 성장이 전망됨[1]

자료: Digital Capital(2018-Q1) 재편집

[그림 5] AR/VR 시장규모

- 스마트폰 기반 VR HMD 기기인 Samsung electronics社(Gear VR)은 2016년 500만대 누적판매량을 기록하고 가상현실 영상 1,000만 시간 이상 소비를 달성하는 등 가상현실 시장의 대중화를 선도[38]
- 2016년 7월 Niantic Lab에서 개발한 위치기반 증강현실 기술이 접목된 'Pokémon Go'는 1분기 약 6000억 원 매출과 8억 다운로드를 기록하면서 증강현실 시장이 크게 확대[27]
- ◎ 기기 형태별 시장규모는 Mobile AR 시장이 가장 큰 영향력을 있을 것으로 예측되었으며, Smart glass(AR HMD), Premium/Standalone VR(VR HMD), Mobile VR 시장 순으로 예측[1](그림 5-왼쪽)
 - Mobile AR 시장의 경우, Apple社(ARkit), Google社(ARCore), Facebook社(Camera

Effects) 등과 같은 SW 플랫폼 기술에 의해 발생되는 다양한 서비스로 인해 시장규모가 크게 확대될 예정

• AR의 중장기적 미래라 할 수 있는 Smart glass(AR HMD)는 Magic Leap社(Magic leap one), Microsoft社(Hololens 3세대) ODG社(R9) 등이 본격적으로 기술개발의 제품화를 진행하면서 2020년부터는 큰 수익을 올릴 것으로 예상

Magic leap one 2018년 출시예정 자료: http://www.shacknews.com

R9 2018년 출시예정 자료: https://www.osterhoutgroup.com

[그림 7] AR HMD 기기

• HTC社(HTC vive pro), Oculus社(Oculus Go), Microsoft社(Windows Mixed reality), SONY社(Playstation VR) 등이 주도하는 Premium/standalone VR(VR HMD) 시장은 기술 성숙도에 따라 시장규모가 달라질 것으로 예측

2017년 자료: https://www.vive.com

Oculus Go 2018년 자료: https://www.oculus.com

[그림 8] VR HMD 기기

- Samsung electronics社(The Gear VR), Google社(Daydream) 등이 출시된 Mobile VR 시장의 경우, 제작자의 관심이 Mobile AR에 집중됨에 따라 동일한 수준의 시장규모를 유지

자료: Digital Capital(2018-Q1)

[그림 9] 산업별(비즈니스 모델) 시장규모

☞ 다양한 요소기술이 적용되고 전 산업분야와 연관된 AR/VR분야는 스타트업들의 기술경쟁이 활발하며, 많은 투자가 이루어지고 있음

- Magic leap社는 18억 달러의 투자를 받으며 산업을 선도하는 Top player로 성장[3]
- 국내의 경우, 가우디오랩社는 50억 원, MAXST社는 20억 원의 투자를 유치[40],[41]

〈표 3〉AR/VR분야 스타트업에 대한 투자현황

기업	주요 기술	Funding (\$M)	기업	주요 기술	Funding (\$M)
magic leap	웨어러블 시네마틱 VR 기술	1,888	LYTZO	VR환경 이미지 추적 기술	216
\triangleleft unity	AR/VR 게임 저작기술	689	♦ NEXT VR	VR기반 생중계 기술	115
∽ D∆QRI	기업용 AR 기술	275	o NantMobile	AR환경 이미지 인식 기술	110
NIANTIC	스마트 폰 기반 AR게임	225	mındmaze	신경작용(뇌 과학) 관련 VR 기술	109

자료: M&A market reaport 1H 2018를 재편집

- 가격(Cost)이며, 합리적인 가격의 AR/VR 제품이 시장 경쟁력에서 우위를 정할 것으로 예상됨[3]
 - Facebook社는 Oculus Rift를 499달러에서 399달러로 가격을 낮췄으며, 독립형 기기인 Oculus Go를 199 달러에 출시
 - HTC社는 고사양 제품라인을 구축하면서 HTC vive를 599달러에서 499달러로 조정
 - Lenovo社는 신제품 Mirage Solo를 399 달러에 출시하며 치열한 가격 경쟁을 준비

제4장 정책동향

4.1 해외 정책동향[12],[22]

- 🕯 (미국) 2000년대 중반부터 혼합현실기술을 '10대 미래 핵심전략 기술'로 지정하여 투자해왔으며, Facebook, Google, Microsoft 社 등 민간기업 중심의 연구개발 진행
- 🕯 (중국) 2016년 4월 공업신식화부 중심으로 VR산업 로드맵을 수립하였고 이를 기반으로 'VR 산업발전백서 5.0' 발표하였으며, 해외 가상현실 원천기술 보유 기업을 인수하는 방안도 검토 중
- 🕯 (일본) ICT 기술 강국으로 재도약하기 위해 AR/VR 산업에 대한 범부처적인 투자를 수행하고 있으며, 'Virtual Reality Techno Japan' 정책을 시행
- (유럽) '범유럽 7차 종합계획(EU 7th Framework Program)'을 수립하고 실감 미디어 유관 서비스 핵심기술을 산·학·연 과제로 추진하고 있으며, 정부 주도의 Fraunhofer IGD를 세워 민간 기업을 지원

〈표 5〉국외 AR/VR 정책 동향 흐름

중 국

- 시진핑 정부의 '인터넷플러스' 정책을 통해 기존 산업과의 AR/VR 융합기술을 육성
- '신흥산업 육성정책'에 가상현실사업을 포함시키며, 콘텐츠 제작·유통 등을 위한 산업단지 조성 추진(장시성, 푸젠성 등)
- 2020년까지 국제표준 50% 주도를 목표로, R&D-표준 | 일본정부(문무성)는 대학을 중심으로 AR/VR 기술개발을 -특허연계 등 표준화 혁신 전략 수립·이행

일 본

- 2004년 콘텐츠 진흥법 제정 후, 국가 차원의 200만 엔 규모의 펀드를 조성하여 38개 회사에 지원
- 오감·생체 신호 인식 이용 복지향상 기술개발(경제산업성), 오감 전송 기술 개발(우정성), 인간 감각계측 응용 기술 개발(통신산업성) 등 범부처적인 투자
- 진행하고 있으며, 로봇과의 융합연구에 투자를 확대

유 럽

- 'ESPRIT', 'BRITE', 'PROMETHEUS'와 같은 대형 R&D에 몰입감 증대를 위한 감성연구를 다수 포함
- AMIRE 프로젝트를 통해 AR/VR 콘텐츠 제작을 위한 저작도구 기술에 360만 유로 투자
- 실감형 인터페이스 개발을 위해 700만 유로 이상의 예산을 제조 및 의료기기분야에 편성

미국

- NRC(National Research Council)에서 'MOVES (Modeling, Virtual, Environments, Simulation) 프로그램을 통해 기술들을 각 산업별 분야에 적용하는 연구개발을 지원
- 2011년 49억 달러 예산으로 NITRD(Networking and information Technology R&D)를 설립하여 운영
- 산·학·연 연계를 통한 기술 사업화 및 민간투자 활성화

4.2 국내 정책동향

〈표 4〉 국내 AR/VR 정책 동향 흐름

미래성장동력 종합 실천 계획('15.4, 19대 미래신산업 성장동력분야 '실감형 콘텐츠')

가상현실(VR) 산업 육성 계획('16.7, 무역투자진흥회의 관계부처 합동)

1

국가전략프로젝트 9대 전략분야 VR·AR 지정('16.8, 과학기술전략회의)

1

4차 산업혁명 대응 12대 신산업 - AR/VR 선정('16.12, 제4차 신산업 민관협의회)

1

13대 혁신성장동력 추진계획 - 가상증강현실('17.10, 국가과학기술심의회)

- - AR·VR 융합 콘텐츠·서비스·플랫폼·디바이스(CPND)의 핵심기술 고도화 및 개별산업 (교육·제조·국방·의료 등)과의 융합 촉진
 - 2022년까지 연 매출 100억 이상 글로벌 강소기업 100개이상 육성

- 기술사업을 통한 현장 중심 실감형 문화콘텐츠 기술개발 및 사업화 지원
 - 문화콘텐츠 펀드 및 제작지원 사업 연계 등 실감형 콘텐츠 산업 조기 육성
- •조기 상용화를 통한 VR·AR 융합콘텐츠서비스의 실증 및 사업화 추진
 - 도서관, 노인정, 초중교 체험교육, 재난안전 훈련체험 등에 도입하여 대중인식확산
- 기술개발을 위한 거점센터와 인증 지원을 통해 인프라 구축
 - 지역별로 특화된 VR·AR 지역 거점센터 구축 및 VR 제작가이드라인 및 인증지원
- •정부 공공서비스 도입을 통한 융합콘텐츠 초기시장 조성
- AR/VR 디바이스를 활용한 대국민 재난·안전 분야 가상 훈련서비스 추진
- - (과학기술정보통신부) 기초·원천 R&D부터 서비스, 사업화 및 상용화까지 지원하는 'VR 5대 선도 프로젝트'을 추진 중이며, 2016년도부터 600억 원 이상 투자
 - ※ VR 5대 선도 프로젝트: VR 게임·체험, VR 테마파크, VR 플랫폼, 다면영상, 세계유통
 - 혁신성장프로젝트 중 가상증강 사업을 통해 Smart glass(AR-HMD)기반 AR 원천기술 개발에 주력
 - (산업통상자원부) '13대 산업 엔진' 중 하나로 가상현실을 선정하여 의료훈련용 가상수술· 중장비·스포츠 트레이닝 등 다양한 분야의 훈련시스템 개발
 - (문화체육관광부) '16년 VR/AR 게임 콘텐츠 원천기술 개발 및 ICT 융복합 기능성 게임 제작, '17년 '가상현실(VR) 종합지원센터' 등을 추진하며 AR/VR 응용기술 개발에 주력
 - (국방부) 국방과학연구소(ADD)를 중심으로 '전장 환경 3D 가시화 기술', 인공지능 가상군 (CGF/SAF) 기술 등 시뮬레이션 관련 핵심기술 확보에 주력하고 있으며, 시뮬레이션 관련 기술을 민간의 영역으로까지 확대 적용을 고려

제5장 R&D 투자동향

5.1 R&D 투자동향

- - 과제 수는 2012년 대비 2016년 3.63배, 정부 R&D 투자 금액은 3.54배 증가

[그림 10] AR/VR 분야 정부 투자 동향

◎ 연구개발단계별 투자는 개발연구(1,574억, 56.0%), 기초연구(604억, 21.3%), 응용연구(435억, 15.4%), 기타(216억, 7.7%) 순으로 진행됨

[그림 11] 연구개발단계별 투자동향

- ⑩ 연구수행 기간은 전체적으로 단축되는 양상을 보이며, '12년 대비 '16년 기초연구는 (3.8년 → 2.8년)으로 연구개발단계 중 가장 크게 단축됨
 - ※ 기타 사업들은 주로 중장기적 투자가 진행되는 인력양성 및 인프라 구축 과제(교육부-BK21 플러스³⁾, 산업부-초광역연계 3D 융합산업육성⁴⁾)로 구성되어 연구수행기간의 증가세를 보임

〈표 6〉연구개발단계별 연구수행기간

(단위: 년)

	2012	2013	2014	2015	2016
개 발 연 구	2.0	2.1	1.9	1.7	1.4
기 초 연 구	3.8	3.7	3.7	3.4	2.8
응용연구	3.0	3.4	3.7	3.1	2.4
기 타	1.7	0.6	2.5	2.5	2.9
전 체	2.8	2.8	2.7	2.2	2.0

◎ 연구수행 주체는 과제 수 기준 중소기업(44.9%), 대학(43.6%), 출연연구소 (7.0%) 등의 순으로 나타났으며, 정부투자금액 기준 중소기업(38.1%), 출연연구소(28.8%), 대학(19.1%) 등의 순으로 나타남

3) 과제명 : 콘텐츠 사이언스 사업단 등

4) 과제명 : 3D 디스플레이 부품소재 실용화지원센터 구축 등

• 출연연구소의 경우, 대형 R&D 과제(첨단 융복합콘텐츠기술개발-178.1억, 디지털콘텐츠 원천기술개발-66억) 등으로 구성되어 과제 수 대비 정부투자규모가 높음

자료: NTIS

[그림 12] 연구수행 주체별 투자현황

☞ 협력 연구는 단독연구(협력없음, 65%)가 가장 큰 유형으로 나타났으며, 산학(15%), 산산(9%), 산학연(2%) 산연(2%)로 순으로 나타남

[그림 13] 협력연구 현황5)

^{5) 2%}미만의 공동연구협력 유형 및 미입력 유형은 시각화 과정에서 제외

제6장 결론

6.1 요약

- AR/VR 분야는 사용자의 몰입 경험을 향상시키고 가상멀미를 최소화할 수 있는"디스플레이 기술"과 "트래킹 기술"을 중심으로 연구개발이 진행됨
 - 국내의 경우, 디스플레이 기술과 트래킹 소프트웨어 기술에서 국제적 경쟁우위를 점하고 있으나,
 트래킹 센서 관련 부품 및 상용화된 AR/VR 완제품 하드웨어의 경우 90% 이상 수입에 의존
 - 상용화된 형태의 국내 AR 디바이스는 부재하며, 현 국내 AR/VR 기술수준은 선도적 기술 수준을 보유한 미국 대비 약 1.6년 격차가 있음
- 🦚 AR 시장규모는 VR 시장규모와 비교했을 때 6배 이상 성장할 것으로 전망됨
 - 기기 형태별 시장규모는 Mobile AR, Smart glass(AR HMD), VR HMD, Mobile VR
 순으로 성장할 것으로 예측
 - 산업별 시장규모에서 AR 기술은 전자상거래 및 하드웨어, 광고 산업 등에서 확대될 것으로 전망되며, VR 기술은 게임 산업을 중점으로 하드웨어, 위치기반 가상여행 등에서 시장이 규모가 확대될 전망
 - 초기 성숙기 단계인 AR/VR 시장 확보를 위한 스타트 업의 기술력 경쟁이 심화되고 있으며,
 2-3세대 제품을 출시한 기업들은 기술 수준뿐만 아니라 가격적 측면까지 고려하여 시장 경쟁력을 확보하는 중
- AR/VR 분야의 정부 R&D 투자는 연평균(2012~2016) 37%로 수준으로 증가하였으며, 2012년 대비 2016년 투자 금액은 3.54배로 증가
 - 상용화 혹은 사업화가 주요 목적인 개발연구를 중점적으로 투자되었으며, 정부 연구개발 과제의 연구수행 기간은 점차적으로 단축되는 경향이 있음
 - 중소기업을 중심으로 대학·출연연구소가 AR/VR 연구개발을 수행하고 있지만, 협력 연구수준은 전체 대비 약 30% 수준

6.2 정책제언

- 다감각 디스플레이 기술(시각, 청각, 촉각, 후각, 미각 등)에 대한 투자 확대
 - 기술 우위인 디스플레이 기술 및 트래킹 기술에 대한 지속적 경쟁력 확보를 위해 현재 "시각" 중심의 디스플레이 기술에서 진일보한 다감각 디스플레이 기술(청각, 촉각, 후각, 미각 컴퓨팅)분야로의 투자 확대가 필요함
- 기술 아웃소싱, 기술이전, 창업 생태계를 조성하여 Start up 및 히든 챔피언 기업 육성
 - Start up인 Magic Leap社 및 Oculus社는 대규모 투자 및 M&A를 통해, AR/VR분야를 선도하는 기업으로 성장
- - AR분야의 시장규모는 향후 VR 시장규모의 6배 이상 확대될 것으로 전망되므로,
 독자적인 한국형 AR 디바이스 제품 개발 및 상용화가 시급
- ◎ 기반기술의 확장 및 상업적 성공에 기여할 수 있는 산·학·연 중심의 R&D 투자 필요
 - 영국의 경우, Ultrahaptics 社(중소기업)-European Research Council(정부 출연연구소)-University of Sussex(대학) 상호 협력을 통해 초음파 기반의 無 접촉식 촉각 디스플레이 연구를 성공적으로 수행
 - ※ 국내 AR/VR분야 정부 R&D 협력 연구 수준은 약 30% 수준
- - 기초·원천 연구의 경우 5년 이상의 중장기적 연구지원[10]이 바람직하나, 현재 AR/VR 분야의 기초연구 과제는 2016년 기준 2.8년의 연구개발 기간으로 수행되고 있음
- 다학제간 연계를 통한 융합 연구생태계 조성 및 융합 인재양성 필요
 - AR/VR 분야는 기계공학, 컴퓨터공학, 전기공학, 화학공학뿐만 아니라 뇌과학, 심리학 등 여러 분야의 학문이 결합한 융합 기술 분야로서 정부 차원의 연구 인프라 조성 및 인재양성 필요

| 참고 문 헌 |

● 해외 문헌

- [1] Digital-Capital. (2018), Augmented/Virtual Reality Report Q1 2018.
- [2] Goldman sachs Group. (2016), Virtual & Augmented Reality understanding the race for the next computing platform.
- [3] Hampleton. (2018.5), AR/VR M&A market report 1H 2018.
- [4] Manatt Digital Media. (2015), The Reality of VR and AR.
- [5] Milgram, P., & Kishino, F. (1994), A taxonomy of mixed reality visual displays, IEICE TRANSACTIONS on Information and Systems, 77(12), 1321–1329.
- [6] Perkins coie. (2018), 2018 Augmented and Virtual Reality Survey Results.
- [7] Schmalstieg, D., &Hollerer, T. (2016), Augmented reality: principles and practice, Addison-Wesley Professional.
- [8] Van Krevelen, D. W. F., & Poelman, R. (2010), A survey of augmented reality technologies, applications and limitations, International journal of virtual reality, 9(2), 1.
- [9] Zeltzer, D. (1992), Autonomy, interaction, and presence. Presence: Teleoperators & Virtual Environments, 1(1), 127–132.

●국내 문헌

- [10] 과학기술정책연구원(2015), 과학기술정책포럼 토론요지.
- [11] 국가과학기술심의회(2017.12), 혁신성장동력 추진계획(안).
- [12] 국가기술표준원(2017.10), 유망신산업 표준화 로드맵-AR·VR.
- [13] 남재현, 양승훈, 허웅, & 김병규(2014), Leap Motion 시스템을 이용한 손동작 인식기반 제어 인터페이스 기술 연구. 멀티미디어학회논문지, 17(11), 1263-1269.
- [14] 소프트웨어정책연구소(2017), 가상현실/증강현실 기술발전 방향과 시사점.
- [15] 유비리서치(2017.7), AR과 VR용 디스플레이 시장 보고서.
- [16] 융합연구정책센터(2016.7), 융합연구리뷰, vol2, no.7.
- [17] 정보통신산업진흥원(2014), SW 융합 기술 고도화 4대 기반 기술.
- [18] 정보통신기술진흥센터(2016.10), ICT R&D 중장기 기술로드맵.
- [19] 정보통신기술진흥센터(2016), 2016 ICT 기술수준조사보고서.

- [20] 중소기업청(2017.1), 중소·중견기업 기술로드맵 2017-2019.
- [21] 포스코경영연구원(2017.7), 4차 산업혁명을 이끄는 센서 -시장구조는 어떻게 바뀌나?-.
- [22] 한국산업기술진흥원(2017.11), AR·VR 산업 동향 및 기술전략.
- [23] 한국전자통신연구원(2016), 가상현실동향분석.
- [24] 한국전자통신연구원(2016), VR/AR 착용형 디스플레이 기술동향.
- [25] 한국전자통신연구원(2017), 초실감 AR/VR 구현을 위한 디스플레이 기술 개발 동향.
- [26] 현대경제연구원(2017), VIP 리포트-국내외 AR·VR 산업 현황 및 시사점.

• 사이트

- [27] https://en.wikipedia.org/wiki/Pokmon_Go
- [28] https://www.cbinsights.com
- [29] https://www.cyberith.com
- [30] https://www.gartner.com/smarterwithgartner
- [31] http://www.innosim.com
- [32] http://www.maxst.com
- [33] https://www.osterhoutgroup.com
- [34] http://www.shacknews.com
- [35] http://visual.camp

● 보도자료

- [36] IT동아(2016), 증강현실 업그레이드! 프로젝트 탱고, 2016.06.10.
- [37] KBENCH(2017), VR과 차이 없는 윈도우 MR, 그 실체와 기술적 한계는?, 2017.10.30.
- [38] ZD넷코리아(2017), 삼성, 1분기에 '기어 VR' 78만 2천대 팔았다, 2017.05.11.
- [39] 노컷뉴스(2018), 구글-LG 초고해상도 OLED 디스플레이 공개한다. 2018.03.13.
- [40] 뉴스와이어(2016), 증강현실 스타트업 맥스트, 20억 원 투자 유치, 2016.05.09.
- [41] 더벨(2016), 한투파·LB인베스트, 가우디오랩에 50억 투자, 2016.06.28.
- [42] 연합뉴스(2017), 가우디오랩, 영국 VR어워드서 '올해의 혁신기업' 선정, 2017.10.13.
- [43] 전자신문(2017), VR/AR 디바이스는 왜 OLED를 선호하나, 2017.11.06.

붙임 1

가상/증강현실분야 통합 기술분류체계

대분류	중분류	소분류		
	Head-Mounted Visual Display	Optical See-Through (OST) HMD		
	머리부착형 디스플레이	Video See-Through (VST) HMD		
	Handheld Visual Display 핸드헬드(손에 쥘수 있는) 디스플레이	Smartphone, Tablets		
		Desktop Display		
	Stationary Visual Display	Virtual Mirror Display		
	고정형(거치형) 디스플레이	Virtual Showcase		
		Window/Portal Display		
		Spatial Augmeted Reality		
	Projective Visual Display	View-dependent Spatial Augmented Reality		
	투사(투영)형 디스플레이	Head-Mounted Projector Display		
D: 1		Dynamic Shader Lamp		
Display 디스플레이 기술	Audio Display 오디오(음성) 디스플레이	Audio Display		
	Extrinsic Haptic Display 외향 햅틱 디스플레이	Force Feedback Device		
		Active Surface		
	Intrinsic Haptic Display 내향 햅틱 디스플레이	Wearable Haptic Device		
		Mid-air Haptic Device		
	Extrinsic Olfactory Display 외향 후각 디스플레이	Odors originate in stationary environment locations		
	Intrinsic Olfactory Display 내향 후각 디스플레이	Wearable olfactory displays		
	Gustatory Display 미각 디스플레이	Gustatory Display		
	Motion Display 모션(동작) 디스플레이	Motion simulator		
		Mechanical tracking		
		Electromagnetic tracking		
		Ultrasonic tracking		
		Global positioning system		
Tracking	Sensor-based Tracking Techniques	Wireless network		
트래킹(추적) 기술	센서 기반 트래킹	Magnetometer		
		Gyroscope		
		Linear accelerometer		
		Odometer		
		Odometer		

대분류	중분류	소분류		
		Marker tracking		
	Vision-based Tracking Techniques 비전 기반 트래킹	Natural feature tracking		
	12 12 = 18	Model-based tracking		
		Complementary sensor fusion		
	Hybrid Tracking Techniques (Sensor Fusion) 센서 융합	Competitive sensor fusion		
	2.138	Cooperative sensor fusion		
	Calibration and registration	Geometric registration		
	정합 및 등록	Photometric registration		
Rendering	Rendering hardware and software	Rendering hardware		
렌더링 기술	렌더링 하드웨어 & 소프트웨어	Rendering software		
		Tangibles on surfaces		
	Tangible interaction 촉각적 인터랙션	Tangibles with generic shape		
		Tangibles with distinct shapes		
		Transparent Tangibles		
	Collaborative interaction 협력 인터랙션	Collaborative interaction		
Interaction and User Interfaces	Natural interaction 자연스러운 인터랙션	Gesture		
인터랙션 및 사용자 인터페이스 기술	Multimodal interaction 다감각 인터랙션	Haptic interaction		
	Speech interaction 음성 인터랙션	Conversational Agents		
		Annotation and Labeling Technique		
	Visualization	X-ray Visualization		
	시각화 기술	Spatial manipulation		
		Information Filtering Technique		

| KISTEP 기술동향브리프 발간 현황 |

발간호	제목	저자 및 소속
2018-01	블록체인	유거송(KISTEP), 김경훈(KISDI)
2018-02	독일의 연구개발 동향	이주석·김승연(KISTEP)
2018-03	휴먼 마이크로바이옴	황은혜·김은정(KISTEP) 남영도(KFRI)
2018-04	신육종기술(NPBTs)	박지현·홍미영(KISTEP) 한지학(㈜툴젠)
2018-05	2차원소재	함선영(KISTEP)
2018-06	이산화탄소 포집·저장·활용기술	김한해·배준희·정지연(KISTEP)
2018-07	줄기세포	김주원·김수민(KISTEP)
2018-08	일본의 연구개발 동향	유종태(KISTEP)
2018-09	AR/VR 기술	임상우(KISTEP), 서경원(UBC)

|저자소개|

임상우

한국과학기술기획평가원 사업총괄조정센터 연구원

E-mail: lsw90@kistep.re.kr

서경원

The University of British Columbia, Postdoctoral Research Fellow

E-mail: koneseo@gmail.com

KISTEP 기술동향브리프 | 2018-09호

AR/VR 기술