1 Introduction

Introduction 2/1

Mathematics and Statistics

$$\int_{M} d\omega = \int_{\partial M} \omega$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 1 Introduction Monday 7 January 2019

Where to find course information

■ The course web site: http://www.math.mcmaster.ca/earn/3A03

- Click on Course information to download course information as pdf file. You are expected to read and pay attention to every word of this file.
- Let's have a look now...

What is a "real" number?

What is a "real" number?

- The "Reals" (\mathbb{R}) are all the numbers that are needed to fill in the "number line" (so it has no "gaps" or "holes").
- Why aren't the rational numbers (ℚ) sufficient?

- How do we know that $\sqrt{2}$ is not rational?
- How can we *prove* this? Approach: "Proof by contradiction."

$\sqrt{2}$ is irrational

$\mathsf{Theorem}$

$$\sqrt{2} \notin \mathbb{Q}$$
.

Proof.

Suppose $\sqrt{2} \in \mathbb{Q}$. Then there exist two positive integers m and n with gcd(m, n) = 1 such that $m/n = \sqrt{2}$.

$$\therefore \left(\frac{m}{n}\right)^2 = \left(\sqrt{2}\right)^2 \quad \Longrightarrow \quad \frac{m^2}{n^2} = 2 \quad \Longrightarrow \quad m^2 = 2n^2.$$

 $\therefore m^2$ is even $\implies m$ is even (\because odd numbers have odd squares).

m=2k for some $k\in\mathbb{N}$.

$$\therefore 4k^2 = m^2 = 2n^2 \implies 2k^2 = n^2 \implies n \text{ is even.}$$

 \therefore 2 is a factor of both m and n. Contradiction! $\therefore \sqrt{2} \notin \mathbb{O}$.

Does $\sqrt{2}$ exist?

- We have established that $\sqrt{2}$ is not rational.
- But do we really know it exists?
- Can we do without it?
- No. Objects with side length $\sqrt{2}$ exist!

So irrational numbers are "real".

What exactly are non-rational real numbers?

- We have solid intuition for what rational numbers are. (Ratios of integers.)
- The number line contains numbers that are not rational.

- Can we construct irrational numbers?(Just as we construct rationals as ratios of integers?)
- Do we need to construct integers first?
- Maybe we should start with 0, 1, 2, ...
- But what exactly are we supposed to construct numbers from?

Informal introduction to construction of numbers (\mathbb{N})

- Assume we know what a set is.
- Define $0 \equiv \emptyset = \{\}$ (the empty set)
- Define $2 \equiv \{0,1\} = \{\{\},\{\{\}\}\}\}$
- Define $n + 1 \equiv n \cup \{n\}$ (successor function)
- Define **natural numbers** $\mathbb{N} = \{1, 2, 3, \dots\}$
 - Some books define $\mathbb{N} = \{0, 1, 2, \ldots\}$ and $\mathbb{N}^+ = \{1, 2, 3, \ldots\}$.
 - It is more common to define $\mathbb N$ to start with 1.
- \blacksquare Thus, n is defined to be a set containing n elements.

Introduction $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \dots$ 10/15

Informal introduction to construction of numbers (\mathbb{N})

Historical note:

- We have defined n to be a set containing n elements.
- Logicians first tried to define n as "the set of all sets containing n elements".
- The earlier definition possibly better captures our intuitive notion of what *n* "really is", but such "sets" are unweildy and create serious challenges for development of mathematical foundations.

Informal introduction to construction of numbers (\mathbb{N})

Order of natural numbers:

Natural numbers defined as above have the right order:

$$m \le n \iff m \subseteq n$$

Note: we *define* "<" on natural numbers via "C" on sets.

Addition and multiplication of natural numbers:

- Still possible to define in terms of sets, but trickier.
- We'll defer this for later, after gaining more experience with rigorous mathematical concepts.
- If you can't wait, see this free e-book:

"Transition to Higher Mathematics" http://openscholarship.wustl.edu/books/10/.