CIS 678 - Machine Learning

- Linear to Polynomial Regression
- Model Regularization

Plan

- LR to Polynomial Regression
- Regularization
 - Theory
 - o Practical Notebook presentation

- Does this data points seem familiar matching a known function?

- Does this data points seem familiar matching a known function?
 - A Sinusoidal function

$$y(t) = A\sin(\omega t + arphi) = A\sin(2\pi f t + arphi)$$

- Does this data points seem familiar matching a known function?
 - A Sinusoidal function

$$y(t) = A\sin(\omega t + arphi) = A\sin(2\pi f t + arphi)$$

Clearly this is not a linear function; right?

- Does this data points seem familiar matching a known function?
- Can we approximate this function using LR?

$$\hat{y} = \beta_0 + \beta_1 x$$

LR will not work; right?

- Can you recall any nonlinear function you learned at your high school/colleges?

- Can you recall any nonlinear function you learned at your high school/colleges?
- Quadratic (x²)

$$f(x) = x^2$$
, $f(x) = 2x^2$, $f(x) = 5x^2$.

What is the impact of changing the coefficient of x^2 as we have done in these examples? One way to find out is to sketch the graphs of the functions.

- Can you recall any nonlinear function you learned at your high school/colleges?
- Cubic (x³)

- Can you recall any nonlinear function you learned at your high school/colleges?
- Quadratic (x²)
- Cubic (x³)

-

$$\hat{y} = \beta_0 + \beta_1 x
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_2 x^3
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_2 x^3 + \dots$$

- Can you recall any nonlinear function you learned at your high school/colleges?
- Quadratic (x²)
- Cubic (x³)

_

$$\hat{y} = \beta_0 + \beta_1 x
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_2 x^3
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_2 x^3 + \dots$$

- Can you recall any nonlinear function you learned at your high school/colleges?
- Quadratic (x²)
- Cubic (x³)

_

$$\hat{y} = \beta_0 + \beta_1 x
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_2 x^3
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_2 x^3 + \dots$$

- Can you recall any nonlinear function you learned at your high school/colleges?
- Quadratic (x²)
- Cubic (x³)

_

$$\hat{y} = \beta_0 + \beta_1 x
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_2 x^3
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_2 x^3 + \dots$$

- Polynomial function
 - M is the order/degree of polynomial ..

M=0

$$\hat{y} = \beta_0$$

- Polynomial function
 - M is the order/degree of polynomial ..

$$M=1$$

$$\hat{y} = \beta_0 + \beta_1 x$$

- Polynomial function
 - M is the order/degree of polynomial ..

$$\hat{y} = \beta_0 + \beta_1 x
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_2 x^3
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_2 x^3 + \dots$$

- Polynomial function
 - M is the order/degree of polynomial ..

$$\hat{y} = \beta_0 + \beta_1 x
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_2 x^3
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_2 x^3 + \dots$$

- Polynomial function
 - M is the order/degree of polynomial ..

M=? Which one is preferable?

$$\hat{y} = \beta_0 + \beta_1 x
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_2 x^3
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_2 x^3 + \dots$$

Model

$$\hat{y} = \beta_0 + \beta_1 x$$
$$\Theta = \{\beta_0, \beta_1\}$$

Let's recall the definition of our optimization function

$$\epsilon = |\hat{y} - y|$$

Optimization function

$$E_{\Theta} = \frac{1}{2} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

$$\Theta^* = \operatorname{argmin}_{\Theta} E\{(x_i, y_i)\}_{i=1, \dots, N}$$

 $E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$

Model

$$\hat{y} = \beta_0 + \beta_1 x$$

$$\Theta = \{\beta_0, \beta_1\}$$

$$\epsilon = |\hat{y} - y|$$

Same model, two different

notations

Optimization function

$$E_{\Theta} = \frac{1}{2} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

$$\Theta^* = \operatorname{argmin}_{\Theta} E\{(x_i, y_i)\}_{i=1,\dots,N}$$

 $E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ y(x_n, \mathbf{w}) - t_n \right\}^2$

Model

x: scalar

 \boldsymbol{x} , \mathbf{x} : vector

X: Matrix

$$\hat{y} = \beta_0 + \beta_1 x$$

$$\Theta = \{\beta_0, \beta_1\}$$

$$\epsilon = |\hat{y} - y|$$

Essentially, the same formulation

Generally ML vs Math conventions

$$W^* = \operatorname{argmin}_W E\{(x_i, t_i)\}_{i=1, \cdots, N}$$

Optimization function

$$E_{\Theta} = \frac{1}{2} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

$$\Theta^* = \operatorname{argmin}_{\Theta} E\{(x_i, y_i)\}_{i=1, \dots, N}$$

Table 1.1 Table of the coefficients w* for polynomials of various order. Observe how the typical magnitude of the coefficients increases dramatically as the order of the polynomial increases.

	M = 0	M = 1	M = 6	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^{\star}		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
w_8^{\star}				-557682.99
w_9^{\star}				125201.43

Table 1.1 Table of the coefficients w* for polynomials of various order.

Observe how the typical magnitude of the coefficients increases dramatically as the order of the polynomial increases.

	M = 0	M = 1	M = 6	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^\star		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}		٠.	17.37	48568.31
w_4^\star		· v		-231639.30
w_5^{\star}		•	\ · · · ·	~. 640042.26
w_6^\star			•	-1061800.52
+				1042400.18
w_8^{\star}		wes		-557682.99
w_0^*	·	1910c		125201.43
	Jute	cing	٠.	į
∇p_{i}	solute ;	asire	-·-·-\\	
' ~r	solute) e incre		١.	.'
' ai	J. ~ **	•	*	
Ĭ.				

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

Regularizer

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

Regularizer

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{1}{2} ||\mathbf{w}||^2$$

Table 1.1 Table of the coefficients w[⋆] for polynomials of various order. Observe how the typical magnitude of the coefficients increases dramatically as the order of the polynomial increases.

	M = 0	M = 1	M = 6	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^\star		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
$w_3^{\tilde{\star}}$		٠.	17.37	48568.31
$w_{\scriptscriptstyle A}^{\star}$		· v		-231639.30
w_5^{\star}		•	` `	640042.26
$w_5^{\star} \ w_6^{\star}$		_,	•	-1061800.52
***				1042400.18
w_8^{\star}		wes		-557682.99
w_{9}^{*}		19100		125201.43
	Jute	cing	٠.	į
∇p_i	solute ;	a5" -		/
\ ar	solute) e incre		١.	
' 91		•	•	
١.				

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ y(x_n, \mathbf{w}) - t_n \right\}^2 + \frac{1}{2} ||\mathbf{w}||^2$$

Table 1.1 Table of the coefficients w[⋆] for polynomials of various order. Observe how the typical magnitude of the coefficients increases dramatically as the order of the polynomial increases.

	M = 0	M = 1	M = 6	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^\star		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}		٠.	17.37	48568.31
w_4^{\star}		,	· · · · · ·	-231639.30
w_5^{\star}		•	\ . · · · ·	640042.26
w_6^\star			•	-1061800.52
+				1042400.18
w_8^\star		wes		-557682.99
w_9^{\star}	٠.٠٠	19102		125201.43
	Jule	cing	٠.	<i>i</i>
Vρ,	solute ;	ייבע.	-·-· \.	
່າເ	solute) e incre		`.	<i>:</i> '
' 'a'			•	
١				

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ y(x_n, \mathbf{w}) - t_n \right\}^2$$

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ y(x_n, \mathbf{w}) - t_n \right\}^2 + \frac{1}{2} \|\mathbf{w}\|^2$$
 decreasing

e 1.1 Table of the coefficients w* for polynomials of various order. Observe how the typical magnitude of the coefficients increases dramatically as the order of the polynomial increases.

	M = 0	M = 1	M = 6	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^\star		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}		٠.	17.37	48568.31
w_4^{\star}		· ·	· · · · · ·	-231639.30
w_5^\star		•	\ . · · · ·	640042.26
w_6^\star			•	-1061800.52
211*				1042400.18
w_8^\star		mes		-557682.99
w_{9}^{*}	٠.٠٠	19102		125201.43
	Jute	cing	٠.	<i>i</i>
Vр,	solute ;	92,, ₋		
\ or	solute) e incre		١.	
' 91		•	•	
١.	^			

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ y(x_n, \mathbf{w}) - t_n \right\}^2 + \frac{1}{2} ||\mathbf{w}||^2$$
decreasing

able 1.1 Table of the coefficients w* for polynomials of various order. Observe how the typical magnitude of the coefficients increases dramatically as the order of the polynomial increases.

M=0 $M=1$ $M=6$	M = 1
w_0^{\star} 0.19 0.82 0.31	0.3
w_1^* -1.27 7.99	232.3
w_2^{\star} -25.43	-5321.8
w_3^{\star} 17.37	48568.3
w_4^{\star}	-231639.3
w_5^{\star}	. 640042.2
	-1061800.5
*	1042400.1
Absolute values aincreasing	-557682.9
-wot 1	125201.4
alute sing	i
Absol reasily	•
Absolute Vaing	

How to control this?

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ y(x_n, \mathbf{w}) - t_n \right\}^2$$

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ y(x_n, \mathbf{w}) - t_n \right\}^2$$

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ y(x_n, \mathbf{w}) - t_n \right\}^2 + \underbrace{\frac{\lambda}{2} \|\mathbf{w}\|^2}$$

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ y(x_n, \mathbf{w}) - t_n \right\}^2 + \underbrace{\frac{\lambda}{2} \|\mathbf{w}\|^2}$$

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ y(x_n, \mathbf{w}) - t_n \right\}^2 + \underbrace{\frac{\lambda}{2} \|\mathbf{w}\|^2}$$

$$\mathbf{w} = 0$$

Table of the coefficients w* for

M = 0

0.19

M = 1 M = 6

0.31

7.99

-25.43

17.37

0.82

-1.27

M = 9

232.37

-5321.83

48568.31

-231639.30 640042.26 -1061800.52 1042400.18 -557682.99 125201.43

0.35

- Polynomial function
 - M is the order/degree of polynomial ..

M=0

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

- Polynomial function
 - M is the order/degree of polynomial ..

$$M=1$$

- Polynomial function
 - M is the order/degree of polynomial ..

$$M=3$$

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

- Polynomial function
 - M is the order/degree of polynomial ..

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

Overfitting!!!

- Polynomial function
 - M is the order/degree of polynomial ..

$$M=3$$

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

- Polynomial function
 - M is the order/degree of polynomial ..

$$M=3$$

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

$$\hat{y} = \beta_0
\hat{y} = \beta_0 + \beta_1 x
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_2 x^3
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_2 x^3 + \dots$$

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

$$\hat{y} = \beta_0
\hat{y} = \beta_0 + \beta_1 x
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_2 x^3
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_2 x^3 + \dots$$

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

Model (still) linear

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

Objective function with the Regularizer!

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

$$\tilde{E}(\mathbf{W}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} \|\mathbf{w}\|_2^2$$

The same but with slightly different notation!

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

$$\tilde{E}(\mathbf{W}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} \|\mathbf{w}\|_2^2$$

The same but with slightly different notation!

L2 Regularizer

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

$$\tilde{E}(\mathbf{W}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} \|\mathbf{w}\|_2^2$$

The same but with slightly different notation!

L2 Regularizer

Ridge Regression

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

$$\tilde{E}(\mathbf{W}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} \|\mathbf{w}\|_2^2$$

The same but with slightly different notation!

L2 Regularizer

Ridge Regression

$$\tilde{E}(\mathbf{W}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} \|\mathbf{w}\|_1$$

L1 Regularizer

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

$$\tilde{E}(\mathbf{W}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} \|\mathbf{w}\|_2^2$$

The same but with slightly different notation!

L2 Regularizer

Ridge Regression

$$\tilde{E}(\mathbf{W}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} \|\mathbf{w}\|_1$$

L1 Regularizer

Lasso Regression

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

$$\tilde{E}(\mathbf{W}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} \|\mathbf{w}\|_2^2$$

L2 Regularizer

Ridge Regression

$$\tilde{E}(\mathbf{W}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} \|\mathbf{w}\|_1$$

L1 Regularizer

Lasso Regression

How to choose lambda (λ)? Through CV

QA

Classification

- General Idea (two steps process)
 - LR (Bias Only)
 - LR (general)

Notebook presentation

- Without regularizer
- With regularizer

Predictive modeling: Regression (diabetes)

Predictive modeling: Classification

Break!

Maximum Likelihood Learning

Regularization

Least Squares

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

MLE EQN

Regularization

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

Regularizer

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

Our model got a little bigger: 2 params to M param

I know one of your tricks; get you soon!!

Our model yesterday

Our model got a little bigger: 2 params to M param

I know one of your tricks; get you soon!!

Our model today

- Polynomial function
 - M is the order/degree of polynomial ..
 - Where to stop? What is the best M?

Good news is our gradient descent (iterative learning) remains the same!

$$\hat{y} = \beta_0 + \beta_1 x
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_2 x^3
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_2 x^3 + \dots$$

- Polynomial function
 - M is the order ..
 - Where to stop? What is the best M?
 - Good news is our gradient descent (iterative learning)
 remains the same!
- You only need to change your objective function (from LR to Polynomial LR)

$$\hat{y} = \beta_0 + \beta_1 x
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_2 x^3
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_2 x^3 + \dots$$

