

ROBT206 - Microcontrollers with Lab

Lecture 10 - Combinational Logic Design

8 February, 2018

Course Logistics

Important Dates and Tasks

Reading Assignment: Mano Chapters 3 and 4

Quiz #2 on 15 February: Till the end of Other gates lecture

Midterm exam on 22 Feb: Mano Chapters I-4 (till the end of

combinational logic)

Topics

Today's Topics

Design Procedure for Combinational Logic Design

- Specification
- Formulation
- Optimization

Technology Mapping:

- AND, OR and NOT
- NAND and NOR

Verification: Manual and Simulation

Rudimentary Logic Functions

Decoding

Combinational Circuits

- ▶ A combinational logic circuit has:
 - A set of *m* Boolean inputs,
 - A set of *n* Boolean outputs, and
 - n switching functions, each mapping the 2^m input combinations to an output such that the current output depends only on the current input values
- A block diagram:

m Boolean Inputs

n Boolean Outputs

Design Procedure

Specification

Write a specification for the circuit if one is not already available

2. Formulation

- Derive a truth table or initial Boolean equations that define the required relationships between the inputs and outputs, if not in the specification
- Apply hierarchical design if appropriate

3. Optimization

- Apply 2-level and multiple-level optimization
- Draw a logic diagram or provide a netlist for the resulting circuit using ANDs, ORs, and inverters

Design Procedure

4. Technology Mapping

Map the logic diagram or netlist to the implementation technology selected

5. Verification

 Verify the correctness of the final design manually or using simulation

Design Example

Specification

- BCD to Excess-3 code converter
- Transforms BCD code for the decimal digits to Excess-3 code for the decimal digits
- BCD code words for digits 0 through 9: 4-bit patterns 0000 to 1001, respectively
- Excess-3 code words for digits 0 through 9: 4-bit patterns consisting of 3 (binary 0011) added to each BCD code word
- Implementation:
 - multiple-level circuit
 - AND, OR and NOT gates

2. Formulation

- Conversion of 4-bit codes can be most easily formulated by a truth table
- Variables
 - <u>BCD</u>:

A,B,C,D

- Variables
 - Excess-3 W,X,Y,Z
- Don't Cares
 BCD 1010
 to 1111

Input BCD	Output Excess-3
A B C D	WXYZ
0 0 0 0	0 0 1 1
0 0 0 1	0 1 0 0
0 0 1 0	0 1 0 1
0 0 1 1	0 1 1 0
0 1 0 0	0111
0101	1000
0110	1001
0111	1010
1000	1011
1001	1100

3. Optimization

2-level using K-maps

$$W = A + BC + BD$$

$$X = \overline{B}D + \overline{B}C + B\overline{C}\overline{D}$$

$$Y = CD + \overline{C}\overline{D}$$

$$Z = \overline{D}$$

3. Optimization (continued)

Multiple-level using transformations

$$W = A + BC + BD$$

$$X = \overline{B}C + \overline{B}D + B\overline{C}D$$

$$Y = CD + \overline{C}\overline{D}$$

$$Z = \overline{D}$$

Perform extraction, finding factor:

$$T_1 = C + D$$

 $W = A + BT_1$
 $X = \overline{B}T_1 + B\overline{C}\overline{D}$
 $Y = CD + \overline{C}\overline{D}$
 $Z = \overline{D}$

3. Optimization (continued)

Multiple-level using transformations

$$T_1 = C + D$$

$$W = A + BT_1$$

$$X = \overline{B}T_1 + B\overline{C}\overline{D}$$

$$Y = CD + \overline{C}\overline{D}$$

$$Z = \overline{D}$$

An additional extraction not shown in the text since it uses a Boolean transformation: $(CD = C + D = \overline{T}_1)$:

$$W = A + BT_{1}$$

$$X = \overline{B}T_{1} + BT_{1}$$

$$Y = CD + \overline{T}_{1}$$

$$Z = \overline{D}$$

4. Technology Mapping

Mapping with a library containing inverters, 2-input AND and OR gates

Beginning Hierarchical Design

- To control the complexity of the function mapping inputs to outputs:
 - Decompose the function into smaller pieces called blocks
 - Decompose each block's function into smaller blocks, repeating as necessary until all blocks are small enough
 - Any block not decomposed is called a primitive block
 - The collection of all blocks including the decomposed ones is a hierarchy
- Example: 9-input parity tree (see next slide)
 - Top Level: 9 inputs, one output
 - 2nd Level: Four 3-bit odd parity trees in two levels
 - 3rd Level: Two 2-bit exclusive-OR functions
 - Primitives: Four 2-input NAND gates
 - Design requires $4 \times 2 \times 4 = 32$ 2-input NAND gates

Hierarchy for Parity Tree Example

Reusable Functions

- Whenever possible, we try to decompose a complex design into common, *reusable* function blocks
- These blocks are
 - verified and well-documented
 - placed in libraries for future use

Top-Down versus Bottom-Up

- A **top-down design** proceeds from an abstract, high-level specification to a more and more detailed design by decomposition and successive refinement
- A **bottom-up design** starts with detailed primitive blocks and combines them into larger and more complex functional blocks
- Design usually proceeds top-down to known building blocks ranging from complete CPUs to primitive logic gates or electronic components.
- Much of the material devoted to learning about combinational blocks uses the top-down design.

Technology Mapping

- Mapping Procedures
 - ▶ To NAND gates
 - ▶ To NOR gates

Mapping to NAND gates

Assumptions:

- Gate loading and delay are ignored
- Cell library contains an inverter and n-input NAND gates, $n = 2, 3, \dots$
- An AND, OR, inverter schematic for the circuit is available
- ▶ The mapping is accomplished by:
 - Replacing AND and OR symbols,
 - Pushing inverters through circuit fan-out points, and
 - Canceling inverter pairs

NAND Mapping Algorithm

I. Replace ANDs and ORs:

- 2. Repeat the following pair of actions until there is at most one inverter between:
 - a. A circuit input or driving NAND gate output, and
 - b. The attached NAND gate inputs.

NAND Mapping Example

Mapping to NOR gates

Assumptions:

- Gate loading and delay are ignored
- Cell library contains an inverter and n-input NOR gates, $n = 2, 3, \dots$
- An AND, OR, inverter schematic for the circuit is available
- The mapping is accomplished by:
 - Replacing AND and OR symbols,
 - Pushing inverters through circuit fan-out points, and
 - Canceling inverter pairs

NOR Mapping Algorithm

I. Replace ANDs and ORs:

- 2. Repeat the following pair of actions until there is at most one inverter between:
 - a. A circuit input or driving NAND gate output, and
 - b. The attached NAND gate inputs.

NOR Mapping Example

Verification

- Verification show that the final circuit designed implements the original specification
- Simple specifications are:
 - truth tables
 - Boolean equations
 - HDL code
- If the above result from <u>formulation</u> and are not the <u>original specification</u>, it is critical that the formulation process be flawless for the verification to be valid!

Basic Verification Methods

Manual Logic Analysis

- Find the truth table or Boolean equations for the final circuit
- Compare the final circuit truth table with the specified truth table, or
- Show that the Boolean equations for the final circuit are equal to the specified Boolean equations

Simulation

- Simulate the final circuit (or its netlist, possibly written as an HDL) and the specified truth table, equations, or HDL description using test input values that fully validate correctness.
- The obvious test for a combinational circuit is application of all possible "care" input combinations from the specification

Verification Example: Manual Analysis

Find the circuit truth table from the equations and compare to specification truth table:

Input BCD A B C D	Output Excess3- WXYZ	
0 0 0 0	0 0 1 0	
0010	0 0 0 0 0 0 0 0 0 0	
0 1 0 1	1000	
0 1 1 1	1010	

The tables match!

Verification Example: Simulation

Simulation procedure:

- Use a schematic editor or text editor to enter a gate level representation of the final circuit
- Use a waveform editor or text editor to enter a test consisting of a sequence of input combinations to be applied to the circuit
 - This test should guarantee the correctness of the circuit if the simulated responses to it are correct
 - Short of applying all possible "care" input combinations, generation of such a test can be difficult

Verification Example: Simulation

Enter waveform that applies all possible input combinations:

Are all BCD input combinations present? (Low is a 0 and high is a one)

28

Verification Example: Simulation

▶ Run the simulation of the circuit for 120 ns

Rudimentary Logic Functions

- Functions of a single variable X
- Can be used on the inputs to functional blocks to implement other than the block's intended function
- TABLE 4-1
 Functions of One Variable

X F=0 F=XF=
$$\bar{X}$$
F=1

0 0 0 1 1
1 0 1

$$V_{CC} \text{ or } V_{DD}$$

$$F = 1$$

$$F = 1$$

$$F = 1$$

$$F = X$$

$$(c)$$

$$F = 0$$

$$X - F = X$$

$$(d)$$

Multiple-bit Functions

Multi-bit Examples:

- In (b) of the example, $F = (F_3, F_2, F_1, F_0)$ is a bus.
- The bus can be split into individual bits as shown in (b)
- Sets of bits can be split from the bus as shown in (c) for bits 2 and 1 of F.
- The sets of bits need not be continuous as shown in (d) for bits 3, 1, and 0 of F.

Enabling Function

- Enabling permits an input signal to pass through to an output
- Disabling blocks an input signal from passing through to an output, replacing it with a fixed value
- The value on the output when it is disable can be Hi-Z (as for three-state buffers and transmission gates), 0, or I
- When disabled, 0 output
- When disabled, I output

Decoding

- Decoding the conversion of an n-bit input code to an m-bit output code with $n \le m \le 2^n$ such that each valid code word produces a unique output code
- Circuits that perform decoding are called decoders
- Here, functional blocks for decoding are
 - called *n*-to-*m* line decoders, where $m \leq 2^n$, and
 - \triangleright generate 2^n (or fewer) minterms for the n input variables

Decoder Examples

▶ I-to-2-Line Decoder

(a)

(b)

2-to-4-Line Decoder

\mathbf{A}_1	\mathbf{A}_0	\mathbf{D}_0	\mathbf{D}_1	\mathbf{D}_2	\mathbf{D}_3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1
(a)					

(b)

Note that the 2-4-line made up of 2 I-to-2-line decoders and 4 AND gates.

Decoder Expansion

- General procedure given in book for any decoder with n inputs and 2^n outputs.
- This procedure builds a decoder backward from the outputs.
- The output AND gates are driven by two decoders with their numbers of inputs either equal or differing by 1.
- These decoders are then designed using the same procedure until 2-to-1-line decoders are reached.
- The procedure can be modified to apply to decoders with the number of outputs $\neq 2^n$

> 3-to-8-line decoder

- Number of output ANDs = 8
- Number of inputs to decoders driving output ANDs = 3
- Closest possible split to equal
 - ▶ 2-to-4-line decoder
 - I-to-2-line decoder
- 2-to-4-line decoder
 - Number of output ANDs = 4
 - Number of inputs to decoders driving output ANDs = 2
 - Closest possible split to equal
 - □ Two I-to-2-line decoders

Converts n-bit input to m-bit output, where n <= m <= 2ⁿ

"Standard" Decoder: ith output = 1, all others = 0, where i is the binary representation of the input (ABC)

Converts n-bit input to m-bit output, where n <= m <= 2ⁿ

"Standard" Decoder: ith output = 1, all others = 0, where i is the binary representation of the input (ABC)

Hierarchical design: use small decoders to build bigger decoder A₀-

Note: A2 "selects" whether the 2-to-4 line decoder is active in the top half (A2=0) or the bottom (A2=1)

Applying hierarchical design again, the 2:4 DEC helps construct a 3:8 DEC.

Decoder with Enable

- In general, attach *m*-enabling circuits to the outputs
- See truth table below for function
 - Note use of X's to denote both 0 and I
 - Combination containing two X's represent four binary combinations
- Alternatively, can be viewed as distributing value of signal EN to I

of 4 outputs

In this case, called a demultiplexer

EN	A ₁	A_0	D ₀	D ₁	D ₂	D ₃
0	X	Χ	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1
(a)						

Combinational Logic Implementation

- Decoder and OR Gates
- ▶ Implement *m* functions of *n* variables with:
 - Sum-of-minterms expressions
 - ▶ One *n*-to-2^{*n*}-line decoder
 - m OR gates, one for each output
- Find the minterms for each output function
- OR the minterms together

Combinational Logic Implementation Binary Adder Bit Example

- Inputs: Bits X and Y being added with the
- incoming carry Z from the right
- Outputs: The sum bit S and the carry bit C
- From the truth table, we obtain the functions:

$$S(X,Y,Z) = \Sigma_{\rm m} (1,2,4,7)$$

$$C(X,Y,Z) = \Sigma_m (3,5,6,7)$$

X	Υ	Z	С	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Implementing a Function Using Decoder Example

E.g.,
$$F = A\overline{C} + BC$$

С	В	A	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Warning: Easy, but not a minimal circuit.

Any Questions?

