

### magma Scan Report

Project Name magma

Scan Start Friday, June 21, 2024 11:09:56 PM

Preset Checkmarx Default

Scan Time 00h:02m:05s

Lines Of Code Scanned 4903 Files Scanned 6

Report Creation Time Friday, June 21, 2024 11:13:44 PM

Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=50057

Team CxServer Checkmarx Version 8.7.0 Scan Type Full

Source Origin LocalPath

Density 5/100 (Vulnerabilities/LOC)

Visibility Public

### Filter Settings

**Severity** 

Included: High, Medium, Low, Information

Excluded: None

**Result State** 

Included: Confirmed, Not Exploitable, To Verify, Urgent, Proposed Not Exploitable

Excluded: None

Assigned to

Included: All

**Categories** 

Included:

Uncategorized All

Custom All

PCI DSS v3.2 All

OWASP Top 10 2013 All

FISMA 2014 All

NIST SP 800-53 All

OWASP Top 10 2017 All
OWASP Mobile Top 10 All

2016

Excluded:

Uncategorized None

Custom None

PCI DSS v3.2 None

OWASP Top 10 2013 None

FISMA 2014 None



NIST SP 800-53 None

OWASP Top 10 2017 None

OWASP Mobile Top 10 None

2016

#### **Results Limit**

Results limit per query was set to 50

### **Selected Queries**

Selected queries are listed in Result Summary



### **Result Summary**

### Most Vulnerable Files





### Top 5 Vulnerabilities





# Scan Summary - OWASP Top 10 2017 Further details and elaboration about vulnerabilities and risks can be found at: OWASP Top 10 2017

| Category                                                 | Threat<br>Agent  | Exploitability | Weakness<br>Prevalence | Weakness<br>Detectability | Technical<br>Impact | Business<br>Impact | Issues<br>Found | Best Fix<br>Locations |
|----------------------------------------------------------|------------------|----------------|------------------------|---------------------------|---------------------|--------------------|-----------------|-----------------------|
| A1-Injection                                             | App.<br>Specific | EASY           | COMMON                 | EASY                      | SEVERE              | App.<br>Specific   | 64              | 22                    |
| A2-Broken<br>Authentication                              | App.<br>Specific | EASY           | COMMON                 | AVERAGE                   | SEVERE              | App.<br>Specific   | 70              | 70                    |
| A3-Sensitive<br>Data Exposure                            | App.<br>Specific | AVERAGE        | WIDESPREAD             | AVERAGE                   | SEVERE              | App.<br>Specific   | 0               | 0                     |
| A4-XML External<br>Entities (XXE)                        | App.<br>Specific | AVERAGE        | COMMON                 | EASY                      | SEVERE              | App.<br>Specific   | 0               | 0                     |
| A5-Broken<br>Access Control*                             | App.<br>Specific | AVERAGE        | COMMON                 | AVERAGE                   | SEVERE              | App.<br>Specific   | 3               | 1                     |
| A6-Security<br>Misconfiguration                          | App.<br>Specific | EASY           | WIDESPREAD             | EASY                      | MODERATE            | App.<br>Specific   | 0               | 0                     |
| A7-Cross-Site<br>Scripting (XSS)                         | App.<br>Specific | EASY           | WIDESPREAD             | EASY                      | MODERATE            | App.<br>Specific   | 0               | 0                     |
| A8-Insecure<br>Deserialization                           | App.<br>Specific | DIFFICULT      | COMMON                 | AVERAGE                   | SEVERE              | App.<br>Specific   | 0               | 0                     |
| A9-Using<br>Components<br>with Known<br>Vulnerabilities* | App.<br>Specific | AVERAGE        | WIDESPREAD             | AVERAGE                   | MODERATE            | App.<br>Specific   | 32              | 32                    |
| A10-Insufficient<br>Logging &<br>Monitoring              | App.<br>Specific | AVERAGE        | WIDESPREAD             | DIFFICULT                 | MODERATE            | App.<br>Specific   | 0               | 0                     |

<sup>\*</sup> Project scan results do not include all relevant queries. Presets and\or Filters should be changed to include all relevant standard queries.



# Scan Summary - OWASP Top 10 2013 Further details and elaboration about vulnerabilities and risks can be found at: OWASP Top 10 2013

| Category                                                 | Threat<br>Agent                                             | Attack<br>Vectors | Weakness<br>Prevalence | Weakness<br>Detectability | Technical<br>Impact | Business<br>Impact                | Issues<br>Found | Best Fix<br>Locations |
|----------------------------------------------------------|-------------------------------------------------------------|-------------------|------------------------|---------------------------|---------------------|-----------------------------------|-----------------|-----------------------|
| A1-Injection                                             | EXTERNAL,<br>INTERNAL,<br>ADMIN USERS                       | EASY              | COMMON                 | AVERAGE                   | SEVERE              | ALL DATA                          | 0               | 0                     |
| A2-Broken<br>Authentication<br>and Session<br>Management | EXTERNAL,<br>INTERNAL<br>USERS                              | AVERAGE           | WIDESPREAD             | AVERAGE                   | SEVERE              | AFFECTED<br>DATA AND<br>FUNCTIONS | 0               | 0                     |
| A3-Cross-Site<br>Scripting (XSS)                         | EXTERNAL,<br>INTERNAL,<br>ADMIN USERS                       | AVERAGE           | VERY<br>WIDESPREAD     | EASY                      | MODERATE            | AFFECTED<br>DATA AND<br>SYSTEM    | 0               | 0                     |
| A4-Insecure<br>Direct Object<br>References               | SYSTEM<br>USERS                                             | EASY              | COMMON                 | EASY                      | MODERATE            | EXPOSED<br>DATA                   | 3               | 1                     |
| A5-Security<br>Misconfiguration                          | EXTERNAL,<br>INTERNAL,<br>ADMIN USERS                       | EASY              | COMMON                 | EASY                      | MODERATE            | ALL DATA<br>AND SYSTEM            | 0               | 0                     |
| A6-Sensitive<br>Data Exposure                            | EXTERNAL,<br>INTERNAL,<br>ADMIN<br>USERS, USERS<br>BROWSERS | DIFFICULT         | UNCOMMON               | AVERAGE                   | SEVERE              | EXPOSED<br>DATA                   | 0               | 0                     |
| A7-Missing<br>Function Level<br>Access Control*          | EXTERNAL,<br>INTERNAL<br>USERS                              | EASY              | COMMON                 | AVERAGE                   | MODERATE            | EXPOSED<br>DATA AND<br>FUNCTIONS  | 0               | 0                     |
| A8-Cross-Site<br>Request Forgery<br>(CSRF)               | USERS<br>BROWSERS                                           | AVERAGE           | COMMON                 | EASY                      | MODERATE            | AFFECTED<br>DATA AND<br>FUNCTIONS | 0               | 0                     |
| A9-Using<br>Components<br>with Known<br>Vulnerabilities* | EXTERNAL<br>USERS,<br>AUTOMATED<br>TOOLS                    | AVERAGE           | WIDESPREAD             | DIFFICULT                 | MODERATE            | AFFECTED<br>DATA AND<br>FUNCTIONS | 32              | 32                    |
| A10-Unvalidated<br>Redirects and<br>Forwards             | USERS<br>BROWSERS                                           | AVERAGE           | WIDESPREAD             | DIFFICULT                 | MODERATE            | AFFECTED<br>DATA AND<br>FUNCTIONS | 0               | 0                     |

<sup>\*</sup> Project scan results do not include all relevant queries. Presets and\or Filters should be changed to include all relevant standard queries.



# Scan Summary - PCI DSS v3.2

| Category                                                              | Issues<br>Found | Best Fix<br>Locations |
|-----------------------------------------------------------------------|-----------------|-----------------------|
| PCI DSS (3.2) - 6.5.1 - Injection flaws - particularly SQL injection  | 0               | 0                     |
| PCI DSS (3.2) - 6.5.2 - Buffer overflows                              | 25              | 23                    |
| PCI DSS (3.2) - 6.5.3 - Insecure cryptographic storage                | 0               | 0                     |
| PCI DSS (3.2) - 6.5.4 - Insecure communications                       | 0               | 0                     |
| PCI DSS (3.2) - 6.5.5 - Improper error handling*                      | 0               | 0                     |
| PCI DSS (3.2) - 6.5.7 - Cross-site scripting (XSS)                    | 0               | 0                     |
| PCI DSS (3.2) - 6.5.8 - Improper access control                       | 0               | 0                     |
| PCI DSS (3.2) - 6.5.9 - Cross-site request forgery                    | 0               | 0                     |
| PCI DSS (3.2) - 6.5.10 - Broken authentication and session management | 0               | 0                     |

<sup>\*</sup> Project scan results do not include all relevant queries. Presets and\or Filters should be changed to include all relevant standard queries.



# Scan Summary - FISMA 2014

| Category                             | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                | Issues<br>Found | Best Fix<br>Locations |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------|
| Access Control                       | Organizations must limit information system access to authorized users, processes acting on behalf of authorized users, or devices (including other information systems) and to the types of transactions and functions that authorized users are permitted to exercise.                                                                                                                                                                                   | 1               | 1                     |
| Audit And Accountability*            | Organizations must: (i) create, protect, and retain information system audit records to the extent needed to enable the monitoring, analysis, investigation, and reporting of unlawful, unauthorized, or inappropriate information system activity; and (ii) ensure that the actions of individual information system users can be uniquely traced to those users so they can be held accountable for their actions.                                       | 0               | 0                     |
| Configuration Management             | Organizations must: (i) establish and maintain baseline configurations and inventories of organizational information systems (including hardware, software, firmware, and documentation) throughout the respective system development life cycles; and (ii) establish and enforce security configuration settings for information technology products employed in organizational information systems.                                                      | 5               | 5                     |
| Identification And Authentication*   | Organizations must identify information system users, processes acting on behalf of users, or devices and authenticate (or verify) the identities of those users, processes, or devices, as a prerequisite to allowing access to organizational information systems.                                                                                                                                                                                       | 69              | 69                    |
| Media Protection                     | Organizations must: (i) protect information system media, both paper and digital; (ii) limit access to information on information system media to authorized users; and (iii) sanitize or destroy information system media before disposal or release for reuse.                                                                                                                                                                                           | 0               | 0                     |
| System And Communications Protection | Organizations must: (i) monitor, control, and protect organizational communications (i.e., information transmitted or received by organizational information systems) at the external boundaries and key internal boundaries of the information systems; and (ii) employ architectural designs, software development techniques, and systems engineering principles that promote effective information security within organizational information systems. | 0               | 0                     |
| System And Information Integrity     | Organizations must: (i) identify, report, and correct information and information system flaws in a timely manner; (ii) provide protection from malicious code at appropriate locations within organizational information systems; and (iii) monitor information system security alerts and advisories and take appropriate actions in response.                                                                                                           | 8               | 8                     |

<sup>\*</sup> Project scan results do not include all relevant queries. Presets and\or Filters should be changed to include all relevant standard queries.



# Scan Summary - NIST SP 800-53

| Category                                                               | Issues<br>Found | Best Fix<br>Locations |
|------------------------------------------------------------------------|-----------------|-----------------------|
| AC-12 Session Termination (P2)                                         | 0               | 0                     |
| AC-3 Access Enforcement (P1)                                           | 75              | 75                    |
| AC-4 Information Flow Enforcement (P1)                                 | 0               | 0                     |
| AC-6 Least Privilege (P1)                                              | 0               | 0                     |
| AU-9 Protection of Audit Information (P1)                              | 0               | 0                     |
| CM-6 Configuration Settings (P2)                                       | 0               | 0                     |
| IA-5 Authenticator Management (P1)                                     | 0               | 0                     |
| IA-6 Authenticator Feedback (P2)                                       | 0               | 0                     |
| IA-8 Identification and Authentication (Non-Organizational Users) (P1) | 0               | 0                     |
| SC-12 Cryptographic Key Establishment and Management (P1)              | 0               | 0                     |
| SC-13 Cryptographic Protection (P1)                                    | 0               | 0                     |
| SC-17 Public Key Infrastructure Certificates (P1)                      | 0               | 0                     |
| SC-18 Mobile Code (P2)                                                 | 0               | 0                     |
| SC-23 Session Authenticity (P1)*                                       | 0               | 0                     |
| SC-28 Protection of Information at Rest (P1)                           | 0               | 0                     |
| SC-4 Information in Shared Resources (P1)                              | 0               | 0                     |
| SC-5 Denial of Service Protection (P1)*                                | 52              | 13                    |
| SC-8 Transmission Confidentiality and Integrity (P1)                   | 0               | 0                     |
| SI-10 Information Input Validation (P1)*                               | 19              | 14                    |
| SI-11 Error Handling (P2)*                                             | 9               | 9                     |
| SI-15 Information Output Filtering (P0)                                | 0               | 0                     |
| SI-16 Memory Protection (P1)                                           | 15              | 6                     |

<sup>\*</sup> Project scan results do not include all relevant queries. Presets and\or Filters should be changed to include all relevant standard queries.



# Scan Summary - OWASP Mobile Top 10 2016

| Category                     | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Issues<br>Found | Best Fix<br>Locations |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------|
| M1-Improper Platform Usage   | This category covers misuse of a platform feature or failure to use platform security controls. It might include Android intents, platform permissions, misuse of TouchID, the Keychain, or some other security control that is part of the mobile operating system. There are several ways that mobile apps can experience this risk.                                                                                                                                                                      | 0               | 0                     |
| M2-Insecure Data Storage     | This category covers insecure data storage and unintended data leakage.                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0               | 0                     |
| M3-Insecure Communication    | This category covers poor handshaking, incorrect SSL versions, weak negotiation, cleartext communication of sensitive assets, etc.                                                                                                                                                                                                                                                                                                                                                                          | 0               | 0                     |
| M4-Insecure Authentication   | This category captures notions of authenticating the end user or bad session management. This can include: -Failing to identify the user at all when that should be required -Failure to maintain the user's identity when it is required -Weaknesses in session management                                                                                                                                                                                                                                 | 0               | 0                     |
| M5-Insufficient Cryptography | The code applies cryptography to a sensitive information asset. However, the cryptography is insufficient in some way. Note that anything and everything related to TLS or SSL goes in M3. Also, if the app fails to use cryptography at all when it should, that probably belongs in M2. This category is for issues where cryptography was attempted, but it wasnt done correctly.                                                                                                                        | 0               | 0                     |
| M6-Insecure Authorization    | This is a category to capture any failures in authorization (e.g., authorization decisions in the client side, forced browsing, etc.). It is distinct from authentication issues (e.g., device enrolment, user identification, etc.). If the app does not authenticate users at all in a situation where it should (e.g., granting anonymous access to some resource or service when authenticated and authorized access is required), then that is an authentication failure not an authorization failure. | 0               | 0                     |
| M7-Client Code Quality       | This category is the catch-all for code-level implementation problems in the mobile client. That's distinct from server-side coding mistakes. This would capture things like buffer overflows, format string vulnerabilities, and various other codelevel mistakes where the solution is to rewrite some code that's running on the mobile device.                                                                                                                                                          | 0               | 0                     |
| M8-Code Tampering            | This category covers binary patching, local resource modification, method hooking, method swizzling, and dynamic memory modification. Once the application is delivered to the mobile device, the code and data resources are resident there. An attacker can either directly modify the code, change the contents of memory dynamically, change or replace the system APIs that the application uses, or                                                                                                   | 0               | 0                     |



|                              | modify the application's data and resources. This can provide the attacker a direct method of subverting the intended use of the software for personal or monetary gain.                                                                                                                                                                                                                                                                                                                |   |   |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|
| M9-Reverse Engineering       | This category includes analysis of the final core binary to determine its source code, libraries, algorithms, and other assets. Software such as IDA Pro, Hopper, otool, and other binary inspection tools give the attacker insight into the inner workings of the application. This may be used to exploit other nascent vulnerabilities in the application, as well as revealing information about back end servers, cryptographic constants and ciphers, and intellectual property. | 0 | 0 |
| M10-Extraneous Functionality | Often, developers include hidden backdoor functionality or other internal development security controls that are not intended to be released into a production environment. For example, a developer may accidentally include a password as a comment in a hybrid app. Another example includes disabling of 2-factor authentication during testing.                                                                                                                                    | 0 | 0 |



# Scan Summary - Custom

| Category   | Issues<br>Found | Best Fix<br>Locations |
|------------|-----------------|-----------------------|
| Must audit | 0               | 0                     |
| Check      | 0               | 0                     |
| Optional   | 0               | 0                     |



## Results Distribution By Status First scan of the project

|                  | High | Medium | Low | Information | Total |
|------------------|------|--------|-----|-------------|-------|
| New Issues       | 3    | 142    | 97  | 0           | 242   |
| Recurrent Issues | 0    | 0      | 0   | 0           | 0     |
| Total            | 3    | 142    | 97  | 0           | 242   |
|                  |      |        |     |             |       |

| Fixed Issues | 0 | 0 | 0 | 0 | 0 |
|--------------|---|---|---|---|---|
| Tived 133de3 | O | O | O | O | O |



## Results Distribution By State

|                             | High | Medium | Low | Information | Total |
|-----------------------------|------|--------|-----|-------------|-------|
| Confirmed                   | 0    | 0      | 0   | 0           | 0     |
| Not Exploitable             | 0    | 0      | 0   | 0           | 0     |
| To Verify                   | 3    | 142    | 97  | 0           | 242   |
| Urgent                      | 0    | 0      | 0   | 0           | 0     |
| Proposed Not<br>Exploitable | 0    | 0      | 0   | 0           | 0     |
| Total                       | 3    | 142    | 97  | 0           | 242   |

## **Result Summary**

| Vulnerability Type          | Occurrences | Severity |
|-----------------------------|-------------|----------|
| Buffer Overflow LongString  | 3           | High     |
| <u>Use After Free</u>       | 42          | Medium   |
| <u>Dangerous Functions</u>  | 32          | Medium   |
| MemoryFree on StackVariable | 19          | Medium   |
| Double Free                 | 15          | Medium   |



| Buffer Overflow boundcpy WrongSizeParam                | 13 | Medium |
|--------------------------------------------------------|----|--------|
| Integer Overflow                                       | 8  | Medium |
| Use of Zero Initialized Pointer                        | 7  | Medium |
| Stored Buffer Overflow boundcpy                        | 4  | Medium |
| Memory Leak                                            | 2  | Medium |
| Improper Resource Access Authorization                 | 69 | Low    |
| Unchecked Return Value                                 | 9  | Low    |
| Exposure of System Data to Unauthorized Control        | 5  | Low    |
| <u>Sphere</u>                                          | 5  | Low    |
| Potential Path Traversal                               | 3  | Low    |
| <u>Unchecked Array Index</u>                           | 3  | Low    |
| TOCTOU                                                 | 2  | Low    |
| Use of Sizeof On a Pointer Type                        | 2  | Low    |
| Heuristic 2nd Order Buffer Overflow read               | 1  | Low    |
| <u>Inconsistent Implementations</u>                    | 1  | Low    |
| Incorrect Permission Assignment For Critical Resources | 1  | Low    |
| NULL Pointer Dereference                               | 1  | Low    |

### 10 Most Vulnerable Files

## High and Medium Vulnerabilities

| File Name        | Issues Found |
|------------------|--------------|
| magma/cache.c    | 104          |
| magma/sds.c      | 31           |
| magma/dime.c     | 6            |
| magma/url.c      | 3            |
| magma/messages.c | 1            |

PAGE 13 OF 179



#### Scan Results Details

#### **Buffer Overflow LongString**

Query Path:

CPP\Cx\CPP Buffer Overflow\Buffer Overflow LongString Version:1

#### Categories

PCI DSS v3.2: PCI DSS (3.2) - 6.5.2 - Buffer overflows NIST SP 800-53: SI-10 Information Input Validation (P1)

OWASP Top 10 2017: A1-Injection

#### **Description**

**Buffer Overflow LongString\Path 1:** 

Severity High
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

<u>57&pathid=1</u>

Status New

The size of the buffer used by url\_encode in Address, at line 65 of magma/url.c, is not properly verified before writing data to the buffer. This can enable a buffer overflow attack, using the source buffer that url\_encode passes to "%%02X", at line 65 of magma/url.c, to overwrite the target buffer.

|        | Source      | Destination |
|--------|-------------|-------------|
| File   | magma/url.c | magma/url.c |
| Line   | 109         | 109         |
| Object | "%%%02X"    | Address     |

```
Code Snippet
```

File Name magma/url.c

Method stringer\_t \* url\_encode(stringer\_t \*s) {

```
....

109. else if (snprintf(hex, 4, "%%%02X", *p) == 3 && (r = st_append(output, PLACER(&hex[0], 3)))) {
```

#### **Buffer Overflow LongString\Path 2:**

Severity High
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=2

Status New

The size of the buffer used by url\_encode in hex, at line 65 of magma/url.c, is not properly verified before writing data to the buffer. This can enable a buffer overflow attack, using the source buffer that url\_encode passes to "%%%02X", at line 65 of magma/url.c, to overwrite the target buffer.

|      | Source      | Destination |
|------|-------------|-------------|
| File | magma/url.c | magma/url.c |



| Line   | 109      | 109 |
|--------|----------|-----|
| Object | "%%%02X" | hex |

Code Snippet

File Name magma/url.c

Method stringer\_t \* url\_encode(stringer\_t \*s) {

**Buffer Overflow LongString\Path 3:** 

Severity High
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

<u>57&pathid=3</u>

Status New

The size of the buffer used by url\_encode in hex, at line 65 of magma/url.c, is not properly verified before writing data to the buffer. This can enable a buffer overflow attack, using the source buffer that url\_encode passes to "%%%02X", at line 65 of magma/url.c, to overwrite the target buffer.

|        | Source      | Destination |
|--------|-------------|-------------|
| File   | magma/url.c | magma/url.c |
| Line   | 109         | 109         |
| Object | "%%%02X"    | hex         |

Code Snippet

File Name magma/url.c

Method stringer\_t \* url\_encode(stringer\_t \*s) {

....
109. else if (snprintf(hex, 4, "%%%02X", \*p) == 3 && (r = st\_append(output, PLACER(&hex[0], 3)))) {

#### Use After Free

Query Path:

CPP\Cx\CPP Medium Threat\Use After Free Version:1

Categories

NIST SP 800-53: SC-5 Denial of Service Protection (P1)

OWASP Top 10 2017: A1-Injection

#### Description

#### **Use After Free\Path 1:**

Severity Medium
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=113



#### Status New

The pointer cdir at magma/cache.c in line 61 is being used after it has been freed.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 121           | 137           |
| Object | cdir          | cdir          |

#### Code Snippet

File Name magma/cache.c

Method char \*\_get\_dime\_dir\_location(const char \*suffix) {

```
121. free(cdir);
....
137. _dime_dir = cdir;
```

#### **Use After Free\Path 2:**

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=114

Status New

The pointer cdir at magma/cache.c in line 61 is being used after it has been freed.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 127           | 137           |
| Object | cdir          | cdir          |

#### Code Snippet

File Name magma/cache.c

Method char \*\_get\_dime\_dir\_location(const char \*suffix) {

127. free(cdir);
....
137. \_\_dime\_\_dir = cdir;

#### **Use After Free\Path 3:**

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=115



The pointer cdir at magma/cache.c in line 61 is being used after it has been freed.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 133           | 137           |
| Object | cdir          | cdir          |

```
Code Snippet
File Name magma/cache.c
Method char *_get_dime_dir_location(const char *suffix) {

....
133. free(cdir);
....
137. __dime_dir = cdir;
```

#### **Use After Free\Path 4:**

Severity Medium
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=116

Status New

The pointer dataholder at magma/cache.c in line 1585 is being used after it has been freed.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1611          | 1608          |
| Object | dataholder    | dataholder    |

#### Code Snippet

File Name

magma/cache.c

Method

size\_t \_mem\_append\_serialized\_array(unsigned char \*\*buf, size\_t \*blen, const unsigned char \*\*array, size\_t itemsize) {

```
free (dataholder);

f
```

#### **Use After Free\Path 5:**

Severity Medium
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=117



The pointer strholder at magma/cache.c in line 1640 is being used after it has been freed.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1667          | 1664          |
| Object | strholder     | strholder     |

Code Snippet

File Name

magma/cache.c

Method

size\_t \_mem\_append\_serialized\_str\_array(unsigned char \*\*buf, size\_t \*blen,
const char \*\*array) {

```
free(strholder);

if (!_mem_append(&strholder, &holdlen, (unsigned char
*)*arptr, strlen(*arptr) + 1)) {
```

#### **Use After Free\Path 6:**

Severity Medium
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=118

Status New

The pointer dataholder at magma/cache.c in line 1698 is being used after it has been freed.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1724          | 1721          |
| Object | dataholder    | dataholder    |

Code Snippet

File Name

magma/cache.c

Method

size\_t \_mem\_append\_serialized\_array\_cb(unsigned char \*\*buf, size\_t \*blen,
const char \*\*array, custom\_serializer\_t sfn) {

```
free(dataholder);

if (!sfn(&dataholder, &holdlen, *arptr)) {
```

#### **Use After Free\Path 7:**

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=119



The pointer next at magma/cache.c in line 741 is being used after it has been freed.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 2192          | 779           |
| Object | object        | next          |

```
Code Snippet
File Name
              magma/cache.c
Method
             cached_object_t *_unlink_object(cached_object_t *object, int destroy, int stale)
              {
               . . . .
                               free(object);
               2192.
                                                     ٧
File Name
              magma/cache.c
Method
             cached_object_t *_add_cached_object_cmp(const char *id, const void *key,
             cached_store_t *store, unsigned long ttl, time_t expiration, void *data, int
              persists, int relaxed, cached_store_comparator_t cmpfn) {
               779.
                              ptr = ptr->next;
```

#### **Use After Free\Path 8:**

Severity Medium
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=120

Status New

The pointer data at magma/cache.c in line 2140 is being used after it has been freed.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 2192          | 2182          |
| Object | object        | data          |

Code Snippet

File Name magma/cache.c

Method cached\_object\_t \*\_unlink\_object(cached\_object\_t \*object, int destroy, int stale)

ſ



```
free(object);
....
2182. store->destructor(object->data);
```

Use After Free\Path 9:

Severity Medium
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=121

Status New

The pointer dtype at magma/cache.c in line 2140 is being used after it has been freed.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 2192          | 2150          |
| Object | object        | dtype         |

Code Snippet

File Name magma/cache.c

2192.

Method cached\_object\_t \*\_unlink\_object(cached\_object\_t \*object, int destroy, int stale)

....

if (!(store = get cached store by type(object->dtype))) {

#### Use After Free\Path 10:

Severity Medium
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=122

Status New

The pointer next at magma/cache.c in line 2140 is being used after it has been freed.

free (object);

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 2192          | 2165          |
| Object | object        | next          |

Code Snippet

File Name magma/cache.c

Method cached\_object\_t \*\_unlink\_object(cached\_object\_t \*object, int destroy, int stale)



Use After Free\Path 11:

Severity Medium
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=123

Status New

The pointer next at magma/cache.c in line 2140 is being used after it has been freed.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 2192          | 2163          |
| Object | object        | next          |

Code Snippet

File Name magma/cache.c

Method cached\_object\_t \*\_unlink\_object(cached\_object\_t \*object, int destroy, int stale)

.... 2192. free(object);

2163. if (object->next) {

#### Use After Free\Path 12:

Severity Medium
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=124

Status New

The pointer next at magma/cache.c in line 2140 is being used after it has been freed.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 2192          | 2160          |
| Object | object        | next          |

Code Snippet

File Name magma/cache.c

Method cached\_object\_t \*\_unlink\_object(cached\_object\_t \*object, int destroy, int stale)

ί



```
free(object);

contains a second of the contains a second or contai
```

**Use After Free\Path 13:** 

Severity Medium
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=125

Status New

The pointer next at magma/cache.c in line 2140 is being used after it has been freed.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 2192          | 2160          |
| Object | object        | next          |

Code Snippet

File Name magma/cache.c

Method cached\_object\_t \*\_unlink\_object(cached\_object\_t \*object, int destroy, int stale)

{

2192. free(object);

2160. object->prev->next = object->next;

#### Use After Free\Path 14:

Severity Medium
Result State To Verify
Online Results <a href="http://win-">http://win-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=126

Status New

The pointer prev at magma/cache.c in line 2140 is being used after it has been freed.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 2192          | 2164          |
| Object | object        | prev          |

Code Snippet

File Name magma/cache.c

Method cached\_object\_t \*\_unlink\_object(cached\_object\_t \*object, int destroy, int stale)



```
free(object);
....
2192. free(object);
....
2164. object->next->prev = object->prev;
```

**Use After Free\Path 15:** 

Severity Medium
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=127

Status New

The pointer prev at magma/cache.c in line 2140 is being used after it has been freed.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 2192          | 2164          |
| Object | object        | prev          |

Code Snippet

File Name magma/cache.c

Method cached\_object\_t \*\_unlink\_object(cached\_object\_t \*object, int destroy, int stale)

{

2192. free(object);

....
2164. object->next->prev = object->prev;

**Use After Free\Path 16:** 

Severity Medium
Result State To Verify
Online Results <a href="http://win-">http://win-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=128

Status New

The pointer next at magma/cache.c in line 2140 is being used after it has been freed.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 2192          | 2156          |
| Object | object        | next          |

Code Snippet

File Name magma/cache.c

Method cached\_object\_t \*\_unlink\_object(cached\_object\_t \*object, int destroy, int stale)



**Use After Free\Path 17:** 

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=129

Status New

The pointer head at magma/cache.c in line 2140 is being used after it has been freed.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 2192          | 2156          |
| Object | object        | head          |

Code Snippet

File Name magma/cache.c

Method cached\_object\_t \*\_unlink\_object(cached\_object\_t \*object, int destroy, int stale)

{

2192. free(object);

2156. store->head = object->next;

Use After Free\Path 18:

Severity Medium
Result State To Verify
Online Results <a href="http://win-">http://win-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=130

Status New

The pointer prev at magma/cache.c in line 2140 is being used after it has been freed.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 2192          | 2159          |
| Object | object        | prev          |

Code Snippet

File Name magma/cache.c

Method cached\_object\_t \*\_unlink\_object(cached\_object\_t \*object, int destroy, int stale)



```
....
2192. free(object);
....
2159. if (object->prev) {
```

**Use After Free\Path 19:** 

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=131

Status New

The pointer timestamp at magma/cache.c in line 2093 is being used after it has been freed.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 2192          | 2117          |
| Object | object        | timestamp     |

Code Snippet

File Name magma/cache.c

Method cached\_object\_t \*\_unlink\_object(cached\_object\_t \*object, int destroy, int stale)

{

.... 2192. free(object);

A

File Name magma/cache.c

Method int \_is\_object\_expired(cached\_object\_t \*obj, int \*refresh) {

if (obj->ttl && (time\_t)(obj->timestamp + obj->ttl) <= now) {

**Use After Free\Path 20:** 

Severity Medium
Result State To Verify
Online Results <a href="http://win-">http://win-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=132

Status New

The pointer timestamp at magma/cache.c in line 2093 is being used after it has been freed.

|      | Source        | Destination   |
|------|---------------|---------------|
| File | magma/cache.c | magma/cache.c |
| Line | 2192          | 2098          |



```
Object
           object
                                                    timestamp
Code Snippet
             magma/cache.c
File Name
Method
             cached_object_t *_unlink_object(cached_object_t *object, int destroy, int stale)
               2192.
                               free (object);
File Name
             magma/cache.c
Method
             int _is_object_expired(cached_object_t *obj, int *refresh) {
               2098.
                           if (!obj || !obj->timestamp) {
```

#### Use After Free\Path 21:

Severity Medium
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=133

Status New

The pointer ttl at magma/cache.c in line 2093 is being used after it has been freed.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 2192          | 2117          |
| Object | object        | ttl           |

```
Code Snippet
File Name magma/cache.c
Method cached_object_t *_unlink_object(cached_object_t *object, int destroy, int stale)
{
....
2192. free(object);

File Name magma/cache.c
int _is_object_expired(cached_object_t *obj, int *refresh) {
....
2117. if (obj->ttl && (time_t)(obj->timestamp + obj->ttl) <= now) {
```

#### Use After Free\Path 22:



Severity Medium
Result State To Verify
Online Results <a href="http://win-">http://win-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=134

Status New

The pointer ttl at magma/cache.c in line 2093 is being used after it has been freed.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 2192          | 2117          |
| Object | object        | ttl           |

```
Code Snippet
File Name magma/cache.c
Method cached_object_t *_unlink_object(cached_object_t *object, int destroy, int stale)

{
....
2192. free(object);

File Name magma/cache.c
Method int_is_object_expired(cached_object_t *obj, int *refresh) {
....
2117. if (obj->ttl && (time_t)(obj->timestamp + obj->ttl) <= now) {
```

#### Use After Free\Path 23:

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=135

Status New

The pointer expiration at magma/cache.c in line 2093 is being used after it has been freed.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 2192          | 2119          |
| Object | object        | expiration    |

Code Snippet

File Name magma/cache.c

Method cached\_object\_t \*\_unlink\_object(cached\_object\_t \*object, int destroy, int stale)



```
File Name magma/cache.c

Method int _is_object_expired(cached_object_t *obj, int *refresh) {

....

2119. if (!obj->relaxed || !obj->expiration) {
```

#### Use After Free\Path 24:

Severity Medium
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=136

Status New

The pointer expiration at magma/cache.c in line 2093 is being used after it has been freed.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 2192          | 2111          |
| Object | object        | expiration    |

```
Code Snippet
File Name magma/cache.c
Method magma/cache.c

Sached_object_t *_unlink_object(cached_object_t *object, int destroy, int stale)

Size of the control of the con
```

#### **Use After Free\Path 25:**

Severity Medium
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=137



The pointer expiration at magma/cache.c in line 2093 is being used after it has been freed.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 2192          | 2111          |
| Object | object        | expiration    |

```
Code Snippet
File Name magma/cache.c
Method cached_object_t *_unlink_object(cached_object_t *object, int destroy, int stale)
{
....
2192. free(object);

File Name magma/cache.c
int _is_object_expired(cached_object_t *obj, int *refresh) {
....
2111. if (obj->expiration && obj->expiration < now) {
```

#### Use After Free\Path 26:

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=138

Status New

The pointer relaxed at magma/cache.c in line 2093 is being used after it has been freed.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 2192          | 2119          |
| Object | object        | relaxed       |



```
Method int _is_object_expired(cached_object_t *obj, int *refresh) {
    ....
2119. if (!obj->relaxed || !obj->expiration) {
```

#### Use After Free\Path 27:

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=139

Status New

The pointer data at magma/cache.c in line 741 is being used after it has been freed.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 2192          | 774           |
| Object | object        | data          |

```
Code Snippet
```

File Name

magma/cache.c

Method cached\_object\_t \*\_unlink\_object(cached\_object\_t \*object, int destroy, int stale) {

.... 2192. free(object);

¥

File Name magma/cache.c

Method

cached\_object\_t \*\_add\_cached\_object\_cmp(const char \*id, const void \*key, cached\_store\_t \*store, unsigned long ttl, time\_t expiration, void \*data, int

persists, int relaxed, cached\_store\_comparator\_t cmpfn) {

774. } else if (!cmpfn(ptr->data, key)) {

#### Use After Free\Path 28:

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=140

Status New

The pointer id at magma/cache.c in line 741 is being used after it has been freed.

|      | Source        | Destination   |
|------|---------------|---------------|
| File | magma/cache.c | magma/cache.c |



| Line   | 2192   | 771 |
|--------|--------|-----|
| Object | object | id  |

```
Code Snippet
File Name
             magma/cache.c
Method
             cached_object_t *_unlink_object(cached_object_t *object, int destroy, int stale)
              {
               2192.
                               free (object);
                                                     ٧
File Name
             magma/cache.c
Method
             cached_object_t *_add_cached_object_cmp(const char *id, const void *key,
             cached_store_t *store, unsigned long ttl, time_t expiration, void *data, int
              persists, int relaxed, cached_store_comparator_t cmpfn) {
               771.
                              if (!memcmp(ptr->id, hashid, SHA_256_SIZE)) {
```

#### Use After Free\Path 29:

Severity Medium
Result State To Verify
Online Results <a href="http://win-">http://win-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=141

Status New

The pointer next at magma/cache.c in line 903 is being used after it has been freed.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 2192          | 937           |
| Object | object        | next          |



```
....
937. ptr = ptr->next;
```

**Use After Free\Path 30:** 

Severity Medium
Result State To Verify
Online Results <a href="http://win-">http://win-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=142

Status New

The pointer id at magma/cache.c in line 903 is being used after it has been freed.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 2192          | 931           |
| Object | object        | id            |

```
Code Snippet
```

File Name magma/cache.c

Method cached\_object\_t \*\_unlink\_object(cached\_object\_t \*object, int destroy, int stale)

2192. free(object);

**y** 

File Name magma/cache.c

Method int \_remove\_cached\_object(const char \*oid, cached\_store\_t \*store) {

931. if (!memcmp(ptr->id, hashid, SHA\_256\_SIZE)) {

**Use After Free\Path 31:** 

Severity Medium
Result State To Verify
Online Results <a href="http://win-">http://win-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=143

Status New

The pointer next at magma/cache.c in line 953 is being used after it has been freed.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 2192          | 982           |
| Object | object        | next          |



```
Code Snippet
             magma/cache.c
File Name
Method
             cached_object_t *_unlink_object(cached_object_t *object, int destroy, int stale)
               2192.
                               free (object);
                                                     A
File Name
             magma/cache.c
Method
             int _remove_cached_object_cmp(const void *key, cached_store_t *store,
             cached_store_comparator_t cmpfn) {
               . . . .
               982.
                             ptr = ptr->next;
```

#### Use After Free\Path 32:

Severity Medium
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=144

Status New

The pointer data at magma/cache.c in line 953 is being used after it has been freed.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 2192          | 976           |
| Object | object        | data          |

```
Code Snippet
File Name
             magma/cache.c
Method
             cached_object_t *_unlink_object(cached_object_t *object, int destroy, int stale)
              {
               . . . .
                               free (object);
               2192.
                                                     ٧
File Name
             magma/cache.c
Method
             int _remove_cached_object_cmp(const void *key, cached_store_t *store,
             cached_store_comparator_t cmpfn) {
               976.
                              if (!cmpfn(ptr->data, key)) {
```

#### Use After Free\Path 33:



Severity Medium
Result State To Verify
Online Results <a href="http://win-">http://win-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=145

Status New

The pointer next at magma/cache.c in line 506 is being used after it has been freed.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 2192          | 534           |
| Object | object        | next          |

```
Code Snippet
File Name magma/cache.c
Method cached_object_t *_unlink_object(cached_object_t *object, int destroy, int stale)
{
....
2192. free(object);

File Name magma/cache.c
int _cached_object_exists_cmp(const void *key, cached_store_t *store, cached_store_comparator_t cmpfn) {
....
534. ptr = ptr->next;
```

#### Use After Free\Path 34:

Severity Medium
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=146

Status New

The pointer data at magma/cache.c in line 506 is being used after it has been freed.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 2192          | 529           |
| Object | object        | data          |

Code Snippet

File Name magma/cache.c

Method cached\_object\_t \*\_unlink\_object(cached\_object\_t \*object, int destroy, int stale)

ረ



```
File Name magma/cache.c

Method int _cached_object_exists_cmp(const void *key, cached_store_t *store, cached_store_comparator_t cmpfn) {

....
529. if (!cmpfn(ptr->data, key)) {
```

#### **Use After Free\Path 35:**

Severity Medium
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=147

Status New

The pointer next at magma/cache.c in line 355 is being used after it has been freed.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 2192          | 394           |
| Object | object        | next          |

```
Code Snippet
File Name
             magma/cache.c
Method
             cached_object_t *_unlink_object(cached_object_t *object, int destroy, int stale)
              {
               . . . .
               2192.
                               free (object);
                                                      ٧
File Name
              magma/cache.c
Method
             cached_object_t *_find_cached_object(const char *oid, cached_store_t *store) {
               394.
                              ptr = ptr->next;
```

#### Use After Free\Path 36:

Severity Medium
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=148



The pointer id at magma/cache.c in line 355 is being used after it has been freed.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 2192          | 383           |
| Object | object        | id            |

```
Code Snippet
File Name
              magma/cache.c
Method
             cached_object_t *_unlink_object(cached_object_t *object, int destroy, int stale)
              {
               . . . .
                               free(object);
               2192.
                                                      ٧
File Name
              magma/cache.c
Method
             cached_object_t *_find_cached_object(const char *oid, cached_store_t *store) {
               . . . .
               383.
                              if (!memcmp(ptr->id, hashid, SHA 256 SIZE)) {
```

#### Use After Free\Path 37:

Severity Medium
Result State To Verify
Online Results <a href="http://win-">http://win-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=149

Status New

The pointer next at magma/cache.c in line 412 is being used after it has been freed.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 2192          | 445           |
| Object | object        | next          |



#### Use After Free\Path 38:

Severity Medium
Result State To Verify
Online Results <a href="http://win-">http://win-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=150

Status New

The pointer data at magma/cache.c in line 412 is being used after it has been freed.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 2192          | 434           |
| Object | object        | data          |

# Code Snippet

File Name magma/cache.c

Method cached\_object\_t \*\_unlink\_object(cached\_object\_t \*object, int destroy, int stale) {

....

2192. free(object);

File Name magma/cache.c

Method cached\_object\_t \*\_find\_cached\_object\_cmp(const void \*key, cached\_store\_t

\*store, cached\_store\_comparator\_t cmpfn) {

434. if (!cmpfn(ptr->data, key)) {

#### Use After Free\Path 39:

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

٧

57&pathid=151

Status New

The pointer next at magma/cache.c in line 460 is being used after it has been freed.

|      | Source        | Destination   |
|------|---------------|---------------|
| File | magma/cache.c | magma/cache.c |



| Line   | 2192   | 488  |
|--------|--------|------|
| Object | object | next |

```
Code Snippet
File Name magma/cache.c
Method cached_object_t *_unlink_object(cached_object_t *object, int destroy, int stale)
{
....
2192. free(object);

File Name magma/cache.c
int _cached_object_exists(const unsigned char *hashid, cached_store_t *store) {
....
488. ptr = ptr->next;
```

## Use After Free\Path 40:

Severity Medium
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=152

Status New

The pointer id at magma/cache.c in line 460 is being used after it has been freed.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 2192          | 483           |
| Object | object        | id            |



#### Use After Free\Path 41:

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=153

Status New

The pointer next at magma/cache.c in line 556 is being used after it has been freed.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 2192          | 590           |
| Object | object        | next          |

### Code Snippet

File Name magma/cache.c

Method cached\_object\_t \*\_unlink\_object(cached\_object\_t \*object, int destroy, int stale) {

.... 2192. free(object);

¥

File Name magma/cache.c

Method cached\_object\_t \*\_add\_cached\_object(const char \*id, cached\_store\_t \*store,

unsigned long ttl, time\_t expiration, void \*data, int persists, int relaxed) {

590. ptr = ptr->next;

#### Use After Free\Path 42:

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=154

Status New

The pointer id at magma/cache.c in line 556 is being used after it has been freed.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 2192          | 585           |
| Object | object        | id            |

Code Snippet

File Name magma/cache.c



# **Dangerous Functions**

Query Path:

CPP\Cx\CPP Medium Threat\Dangerous Functions Version:1

#### Categories

OWASP Top 10 2013: A9-Using Components with Known Vulnerabilities OWASP Top 10 2017: A9-Using Components with Known Vulnerabilities

## Description

#### Dangerous Functions\Path 1:

Severity Medium
Result State To Verify
Online Results <a href="http://win-">http://win-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=64

Status New

The dangerous function, memcpy, was found in use at line 556 in magma/cache.c file. Such functions may expose information and allow an attacker to get full control over the host machine.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 610           | 610           |
| Object | memcpy        | memcpy        |

#### Code Snippet

File Name magma/cache.c

Method cached\_object\_t \*\_add\_cached\_object(const char \*id, cached\_store\_t \*store,

unsigned long ttl, time t expiration, void \*data, int persists, int relaxed) {

memcpy(entry->id, hashid, SHA\_256\_SIZE);

#### **Dangerous Functions\Path 2:**

Severity Medium
Result State To Verify



Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=65

Status New

The dangerous function, memcpy, was found in use at line 741 in magma/cache.c file. Such functions may expose information and allow an attacker to get full control over the host machine.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 788           | 788           |
| Object | memcpy        | memcpy        |

Code Snippet

File Name magma/cache.c

Method

cached\_object\_t \*\_add\_cached\_object\_cmp(const char \*id, const void \*key, cached\_store\_t \*store, unsigned long ttl, time\_t expiration, void \*data, int

persists, int relaxed, cached\_store\_comparator\_t cmpfn) {

788. memcpy(entry->id, hashid, SHA 256 SIZE);

**Dangerous Functions\Path 3:** 

Severity Medium Result State To Verify Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=66

Status New

The dangerous function, memcpy, was found in use at line 994 in magma/cache.c file. Such functions may expose information and allow an attacker to get full control over the host machine.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1025          | 1025          |
| Object | memcpy        | memcpy        |

Code Snippet

File Name magma/cache.c

Method cached\_object\_t \*\_clone\_cached\_object(const cached\_object\_t \*obj) {

> . . . . 1025. memcpy(result->id, obj->id, sizeof(result->id));

Dangerous Functions\Path 4:

Severity Medium Result State To Verify Online Results http://WIN-



BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=67

Status New

The dangerous function, memcpy, was found in use at line 1196 in magma/cache.c file. Such functions may expose information and allow an attacker to get full control over the host machine.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1322          | 1322          |
| Object | memcpy        | memcpy        |

Code Snippet

File Name magma/cache.c

Method int \_load\_cache\_contents(void) {

1322. memcpy(obj, cdata, chdr\_size);

Dangerous Functions\Path 5:

Severity Medium
Result State To Verify
Online Results <a href="http://win-">http://win-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=68

Status New

The dangerous function, memcpy, was found in use at line 1755 in magma/cache.c file. Such functions may expose information and allow an attacker to get full control over the host machine.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1768          | 1768          |
| Object | memcpy        | memcpy        |

Code Snippet

File Name magma/cache.c

Method unsigned int \_deserialize\_data(unsigned char \*dst, unsigned char \*\*bufptr, const

unsigned char \*bufend, size\_t len) {

1768. memcpy(dst, \*bufptr, len);

Dangerous Functions\Path 6:

Severity Medium
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=69



#### Status New

The dangerous function, memcpy, was found in use at line 1826 in magma/cache.c file. Such functions may expose information and allow an attacker to get full control over the host machine.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1858          | 1858          |
| Object | memcpy        | memcpy        |

```
Code Snippet
```

File Name magma/cache.c

Method unsigned int \_deserialize\_string(char \*\*dst, unsigned char \*\*bufptr, const

unsigned char \*bufend) {

```
1858. memcpy(*dst, *bufptr, rsize);
```

## Dangerous Functions\Path 7:

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=70

Status New

The dangerous function, memcpy, was found in use at line 2208 in magma/cache.c file. Such functions may expose information and allow an attacker to get full control over the host machine.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 2242          | 2242          |
| Object | memcpy        | memcpy        |

#### Code Snippet

File Name magma/cache.c

Method cached\_object\_t \*\_replace\_object(cached\_object\_t \*oobj, cached\_object\_t

\*nobj, int shadow) {

....
2242. memcpy(nobj->id, oobj->id, SHA\_256\_SIZE);

#### **Dangerous Functions\Path 8:**

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=71

Status New



The dangerous function, memcpy, was found in use at line 2343 in magma/cache.c file. Such functions may expose information and allow an attacker to get full control over the host machine.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 2364          | 2364          |
| Object | memcpy        | memcpy        |

Code Snippet

File Name magma/cache.c

Method void \*\_serialize\_signet\_cb(void \*record, size\_t \*outlen) {

....
2364. memcpy(result, serial, ssize);

Dangerous Functions\Path 9:

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=72

Status New

The dangerous function, memcpy, was found in use at line 81 in magma/sds.c file. Such functions may expose information and allow an attacker to get full control over the host machine.

|        | Source      | Destination |
|--------|-------------|-------------|
| File   | magma/sds.c | magma/sds.c |
| Line   | 132         | 132         |
| Object | memcpy      | memcpy      |

Code Snippet

File Name magma/sds.c

Method sds sdsnewlen(const void \*init, size\_t initlen) {

132. memcpy(s, init, initlen);

Dangerous Functions\Path 10:

Severity Medium
Result State To Verify
Online Results <a href="http://win-">http://win-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=73

Status New

The dangerous function, memcpy, was found in use at line 194 in magma/sds.c file. Such functions may expose information and allow an attacker to get full control over the host machine.



|        | Source      | Destination |
|--------|-------------|-------------|
| File   | magma/sds.c | magma/sds.c |
| Line   | 229         | 229         |
| Object | memcpy      | memcpy      |

File Name magma/sds.c

Method sds sdsMakeRoomFor(sds s, size\_t addlen) {

229. memcpy((char\*)newsh+hdrlen, s, len+1);

Dangerous Functions\Path 11:

Severity Medium
Result State To Verify
Online Results <a href="http://win-">http://win-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=74

Status New

The dangerous function, memcpy, was found in use at line 245 in magma/sds.c file. Such functions may expose information and allow an attacker to get full control over the host machine.

|        | Source      | Destination |
|--------|-------------|-------------|
| File   | magma/sds.c | magma/sds.c |
| Line   | 261         | 261         |
| Object | memcpy      | memcpy      |

Code Snippet

File Name magma/sds.c

Method sds sdsRemoveFreeSpace(sds s) {

261. memcpy((char\*)newsh+hdrlen, s, len+1);

Dangerous Functions\Path 12:

Severity Medium
Result State To Verify
Online Results <a href="http://win-">http://win-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=75

Status New

The dangerous function, memcpy, was found in use at line 376 in magma/sds.c file. Such functions may expose information and allow an attacker to get full control over the host machine.

|      | Source      | Destination |
|------|-------------|-------------|
| File | magma/sds.c | magma/sds.c |



| Line   | 381    | 381    |
|--------|--------|--------|
| Object | memcpy | memcpy |

File Name magma/sds.c

Method sds sdscatlen(sds s, const void \*t, size\_t len) {

381. memcpy(s+curlen, t, len);

Dangerous Functions\Path 13:

Severity Medium
Result State To Verify
Online Results <a href="http://win-">http://win-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=76

Status New

The dangerous function, memcpy, was found in use at line 405 in magma/sds.c file. Such functions may expose information and allow an attacker to get full control over the host machine.

|        | Source      | Destination |
|--------|-------------|-------------|
| File   | magma/sds.c | magma/sds.c |
| Line   | 410         | 410         |
| Object | memcpy      | memcpy      |

Code Snippet

File Name magma/sds.c

Method sds sdscpylen(sds s, const char \*t, size\_t len) {

410. memcpy(s, t, len);

Dangerous Functions\Path 14:

Severity Medium
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=77

Status New

The dangerous function, memcpy, was found in use at line 579 in magma/sds.c file. Such functions may expose information and allow an attacker to get full control over the host machine.

|        | Source      | Destination |
|--------|-------------|-------------|
| File   | magma/sds.c | magma/sds.c |
| Line   | 611         | 611         |
| Object | memcpy      | memcpy      |



File Name magma/sds.c

Method sds sdscatfmt(sds s, char const \*fmt, ...) {

611. memcpy(s+i,str,l);

Dangerous Functions\Path 15:

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=78

Status New

The dangerous function, memcpy, was found in use at line 579 in magma/sds.c file. Such functions may expose information and allow an attacker to get full control over the host machine.

|        | Source      | Destination |
|--------|-------------|-------------|
| File   | magma/sds.c | magma/sds.c |
| Line   | 627         | 627         |
| Object | memcpy      | memcpy      |

Code Snippet

File Name magma/sds.c

Method sds sdscatfmt(sds s, char const \*fmt, ...) {

627. memcpy(s+i,buf,1);

Dangerous Functions\Path 16:

Severity Medium
Result State To Verify
Online Results <a href="http://win-">http://win-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=79

Status New

The dangerous function, memcpy, was found in use at line 579 in magma/sds.c file. Such functions may expose information and allow an attacker to get full control over the host machine.

|        | Source      | Destination |
|--------|-------------|-------------|
| File   | magma/sds.c | magma/sds.c |
| Line   | 644         | 644         |
| Object | memcpy      | memcpy      |

Code Snippet

File Name magma/sds.c



Method sds sdscatfmt(sds s, char const \*fmt, ...) {
....
644. memcpy(s+i,buf,l);

**Dangerous Functions\Path 17:** 

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=80

Status New

The dangerous function, strlen, was found in use at line 355 in magma/cache.c file. Such functions may expose information and allow an attacker to get full control over the host machine.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 369           | 369           |
| Object | strlen        | strlen        |

Code Snippet

File Name magma/cache.c

Method cached\_object\_t \*\_find\_cached\_object(const char \*oid, cached\_store\_t \*store) {

....
369. if (\_compute\_sha\_hash(256, (unsigned char \*)oid, strlen(oid), hashid) < 0) {

Dangerous Functions\Path 18:

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=81

Status New

The dangerous function, strlen, was found in use at line 556 in magma/cache.c file. Such functions may expose information and allow an attacker to get full control over the host machine.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 570           | 570           |
| Object | strlen        | strlen        |

Code Snippet

File Name magma/cache.c

Method cached\_object\_t \*\_add\_cached\_object(const char \*id, cached\_store\_t \*store,

unsigned long ttl, time\_t expiration, void \*data, int persists, int relaxed) {



```
....
570. if (_compute_sha_hash(256, (unsigned char *)id, strlen(id), hashid) < 0) {
```

Dangerous Functions\Path 19:

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=82

Status New

The dangerous function, strlen, was found in use at line 741 in magma/cache.c file. Such functions may expose information and allow an attacker to get full control over the host machine.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 755           | 755           |
| Object | strlen        | strlen        |

Code Snippet

File Name magma/cache.c

Method

cached\_object\_t \*\_add\_cached\_object\_cmp(const char \*id, const void \*key,
cached\_store\_t \*store, unsigned long ttl, time\_t expiration, void \*data, int
persists, int relaxed, cached\_store\_comparator\_t cmpfn) {

```
....
755. if (_compute_sha_hash(256, (unsigned char *)id, strlen(id), hashid) < 0) {
```

Dangerous Functions\Path 20:

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=83

Status New

The dangerous function, strlen, was found in use at line 903 in magma/cache.c file. Such functions may expose information and allow an attacker to get full control over the host machine.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 916           | 916           |
| Object | strlen        | strlen        |

Code Snippet

File Name magma/cache.c



```
Method int _remove_cached_object(const char *oid, cached_store_t *store) {
    ....
916.    if (_compute_sha_hash(256, (unsigned char *)oid, strlen(oid), hashid) < 0) {</pre>
```

Dangerous Functions\Path 21:

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=84

Status New

The dangerous function, strlen, was found in use at line 1552 in magma/cache.c file. Such functions may expose information and allow an attacker to get full control over the host machine.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1564          | 1564          |
| Object | strlen        | strlen        |

## Code Snippet

File Name

magma/cache.c

Method

size\_t \_mem\_append\_serialized\_string(unsigned char \*\*buf, size\_t \*blen, const char \*string) {

```
....
1564. res = _mem_append(buf, blen, (unsigned char *)string,
strlen(string) + 1);
```

#### Dangerous Functions\Path 22:

Severity Medium
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=85

Status New

The dangerous function, strlen, was found in use at line 1640 in magma/cache.c file. Such functions may expose information and allow an attacker to get full control over the host machine.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1664          | 1664          |
| Object | strlen        | strlen        |

Code Snippet

File Name magma/cache.c



Dangerous Functions\Path 23:

Severity Medium
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=86

Status New

The dangerous function, strlen, was found in use at line 63 in magma/dime.c file. Such functions may expose information and allow an attacker to get full control over the host machine.

|        | Source       | Destination  |
|--------|--------------|--------------|
| File   | magma/dime.c | magma/dime.c |
| Line   | 107          | 107          |
| Object | strlen       | strlen       |

Code Snippet

File Name magma/dime.c

Method static void show\_coc(const char \*cocstr) {

107. dptr = token + strlen(token) - 1;

Dangerous Functions\Path 24:

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=87

Status New

The dangerous function, strlen, was found in use at line 144 in magma/sds.c file. Such functions may expose information and allow an attacker to get full control over the host machine.

|        | Source      | Destination |
|--------|-------------|-------------|
| File   | magma/sds.c | magma/sds.c |
| Line   | 145         | 145         |
| Object | strlen      | strlen      |

Code Snippet

File Name magma/sds.c

Method sds sdsnew(const char \*init) {



```
....
145. size_t initlen = (init == NULL) ? 0 : strlen(init);
```

Dangerous Functions\Path 25:

Severity Medium
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=88

Status New

The dangerous function, strlen, was found in use at line 174 in magma/sds.c file. Such functions may expose information and allow an attacker to get full control over the host machine.

|        | Source      | Destination |
|--------|-------------|-------------|
| File   | magma/sds.c | magma/sds.c |
| Line   | 175         | 175         |
| Object | strlen      | strlen      |

Code Snippet

File Name magma/sds.c

Method void sdsupdatelen(sds s) {

175. int reallen = strlen(s);

Dangerous Functions\Path 26:

Severity Medium
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=89

Status New

The dangerous function, strlen, was found in use at line 391 in magma/sds.c file. Such functions may expose information and allow an attacker to get full control over the host machine.

|        | Source      | Destination |
|--------|-------------|-------------|
| File   | magma/sds.c | magma/sds.c |
| Line   | 392         | 392         |
| Object | strlen      | strlen      |

Code Snippet

File Name magma/sds.c

Method sds sdscat(sds s, const char \*t) {



```
392. return sdscatlen(s, t, strlen(t));
```

Dangerous Functions\Path 27:

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=90

Status New

The dangerous function, strlen, was found in use at line 418 in magma/sds.c file. Such functions may expose information and allow an attacker to get full control over the host machine.

|        | Source      | Destination |
|--------|-------------|-------------|
| File   | magma/sds.c | magma/sds.c |
| Line   | 419         | 419         |
| Object | strlen      | strlen      |

Code Snippet

File Name magma/sds.c

Method sds sdscpy(sds s, const char \*t) {

....
419. return sdscpylen(s, t, strlen(t));

Dangerous Functions\Path 28:

Severity Medium
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=91

Status New

The dangerous function, strlen, was found in use at line 501 in magma/sds.c file. Such functions may expose information and allow an attacker to get full control over the host machine.

|        | Source      | Destination |
|--------|-------------|-------------|
| File   | magma/sds.c | magma/sds.c |
| Line   | 504         | 504         |
| Object | strlen      | strlen      |

Code Snippet

File Name magma/sds.c

Method sds sdscatvprintf(sds s, const char \*fmt, va\_list ap) {



```
....
504. size_t buflen = strlen(fmt)*2;
```

Dangerous Functions\Path 29:

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=92

Status New

The dangerous function, strlen, was found in use at line 579 in magma/sds.c file. Such functions may expose information and allow an attacker to get full control over the host machine.

|        | Source      | Destination |
|--------|-------------|-------------|
| File   | magma/sds.c | magma/sds.c |
| Line   | 607         | 607         |
| Object | strlen      | strlen      |

Code Snippet

File Name magma/sds.c

Method sds sdscatfmt(sds s, char const \*fmt, ...) {

1 = (next == 's') ? strlen(str) : sdslen(str);

Dangerous Functions\Path 30:

Severity Medium
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=93

Status New

The dangerous function, vsnprintf, was found in use at line 501 in magma/sds.c file. Such functions may expose information and allow an attacker to get full control over the host machine.

|        | Source      | Destination |
|--------|-------------|-------------|
| File   | magma/sds.c | magma/sds.c |
| Line   | 520         | 520         |
| Object | vsnprintf   | vsnprintf   |

Code Snippet

File Name magma/sds.c

Method sds sdscatvprintf(sds s, const char \*fmt, va\_list ap) {



```
....
520. vsnprintf(buf, buflen, fmt, cpy);
```

Dangerous Functions\Path 31:

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=94

Status New

The dangerous function, realloc, was found in use at line 1196 in magma/cache.c file. Such functions may expose information and allow an attacker to get full control over the host machine.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1268          | 1268          |
| Object | realloc       | realloc       |

Code Snippet

File Name magma/cache.c

Method int \_load\_cache\_contents(void) {

if (!(reall\_res = realloc(cdata, clen))) {

Dangerous Functions\Path 32:

Severity Medium
Result State To Verify
Online Results <a href="http://win-">http://win-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=95

Status New

The dangerous function, atoi, was found in use at line 138 in magma/dime.c file. Such functions may expose information and allow an attacker to get full control over the host machine.

|        | Source       | Destination  |
|--------|--------------|--------------|
| File   | magma/dime.c | magma/dime.c |
| Line   | 184          | 184          |
| Object | atoi         | atoi         |

Code Snippet

File Name magma/dime.c

Method int main(int argc, char \*argv[]) {



if (!(port = atoi(optarg))) {

# MemoryFree on StackVariable

Query Path:

CPP\Cx\CPP Medium Threat\MemoryFree on StackVariable Version:0

**Description** 

MemoryFree on StackVariable\Path 1:

Severity Medium
Result State To Verify
Online Results <a href="http://win-">http://win-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=32

Status New

Calling free() (line 61) on a variable that was not dynamically allocated (line 61) in file magma/cache.c may result with a crash.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 121           | 121           |
| Object | cdir          | cdir          |

Code Snippet

File Name magma/cache.c

Method char \*\_get\_dime\_dir\_location(const char \*suffix) {

121. free(cdir);

MemoryFree on StackVariable\Path 2:

Severity Medium
Result State To Verify
Online Results <a href="http://win-">http://win-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=33

Status New

Calling free() (line 61) on a variable that was not dynamically allocated (line 61) in file magma/cache.c may result with a crash.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 127           | 127           |
| Object | cdir          | cdir          |

Code Snippet

File Name magma/cache.c



Method char \*\_get\_dime\_dir\_location(const char \*suffix) {
....
127. free(cdir);

MemoryFree on StackVariable\Path 3:

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=34

Status New

Calling free() (line 61) on a variable that was not dynamically allocated (line 61) in file magma/cache.c may result with a crash.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 133           | 133           |
| Object | cdir          | cdir          |

Code Snippet

File Name magma/cache.c

Method char \*\_get\_dime\_dir\_location(const char \*suffix) {

.... 133. free(cdir);

MemoryFree on StackVariable\Path 4:

Severity Medium
Result State To Verify
Online Results <a href="http://win-">http://win-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=35

Status New

Calling free() (line 154) on a variable that was not dynamically allocated (line 154) in file magma/cache.c may result with a crash.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 183           | 183           |
| Object | cfile         | cfile         |

Code Snippet

File Name magma/cache.c

Method char \*\_get\_cache\_location(void) {



.... 183. free(cfile);

MemoryFree on StackVariable\Path 5:

Severity Medium
Result State To Verify
Online Results <a href="http://win-">http://win-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=36

Status New

Calling free() (line 1068) on a variable that was not dynamically allocated (line 1068) in file magma/cache.c may result with a crash.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1136          | 1136          |
| Object | tstr          | tstr          |

Code Snippet

File Name magma/cache.c

Method void \_dump\_cache(cached\_data\_type\_t dtype, int do\_data, int ephemeral) {

1136. free(tstr);

MemoryFree on StackVariable\Path 6:

Severity Medium
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=37

Status New

Calling free() (line 1196) on a variable that was not dynamically allocated (line 1196) in file magma/cache.c may result with a crash.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1374          | 1374          |
| Object | tstr          | tstr          |

Code Snippet

File Name magma/cache.c

Method int \_load\_cache\_contents(void) {



.... 1374. free(tstr);

MemoryFree on StackVariable\Path 7:

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=38

Status New

Calling free() (line 1414) on a variable that was not dynamically allocated (line 1414) in file magma/cache.c may result with a crash.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1476          | 1476          |
| Object | cdata         | cdata         |

Code Snippet

File Name magma/cache.c

Method int \_save\_cache\_contents(void) {

1476. free(cdata);

MemoryFree on StackVariable\Path 8:

Severity Medium
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=39

Status New

Calling free() (line 1414) on a variable that was not dynamically allocated (line 1414) in file magma/cache.c may result with a crash.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1481          | 1481          |
| Object | cdata         | cdata         |

Code Snippet

File Name magma/cache.c

Method int \_save\_cache\_contents(void) {



.... 1481. free(cdata);

MemoryFree on StackVariable\Path 9:

Severity Medium
Result State To Verify
Online Results <a href="http://win-">http://win-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=40

Status New

Calling free() (line 1585) on a variable that was not dynamically allocated (line 1585) in file magma/cache.c may result with a crash.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1611          | 1611          |
| Object | dataholder    | dataholder    |

Code Snippet

File Name magma/cache.c

Method size\_t \_mem\_append\_serialized\_array(unsigned char \*\*buf, size\_t \*blen, const

unsigned char \*\*array, size\_t itemsize) {

.... free (dataholder);

MemoryFree on StackVariable\Path 10:

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=41

Status New

Calling free() (line 1585) on a variable that was not dynamically allocated (line 1585) in file magma/cache.c may result with a crash.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1621          | 1621          |
| Object | dataholder    | dataholder    |

Code Snippet

File Name magma/cache.c

Method size\_t \_mem\_append\_serialized\_array(unsigned char \*\*buf, size\_t \*blen, const

unsigned char \*\*array, size\_t itemsize) {



free(dataholder);

MemoryFree on StackVariable\Path 11:

Severity Medium
Result State To Verify
Online Results <a href="http://win-">http://win-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=42

Status New

Calling free() (line 1640) on a variable that was not dynamically allocated (line 1640) in file magma/cache.c may result with a crash.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1667          | 1667          |
| Object | strholder     | strholder     |

Code Snippet

File Name magma/cache.c

Method size\_t \_mem\_append\_serialized\_str\_array(unsigned char \*\*buf, size\_t \*blen,

const char \*\*array) {

.... 1667. free(strholder);

MemoryFree on StackVariable\Path 12:

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=43

Status New

Calling free() (line 1640) on a variable that was not dynamically allocated (line 1640) in file magma/cache.c may result with a crash.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1677          | 1677          |
| Object | strholder     | strholder     |

Code Snippet

File Name magma/cache.c

Method size\_t \_mem\_append\_serialized\_str\_array(unsigned char \*\*buf, size\_t \*blen,

const char \*\*array) {



free(strholder);

MemoryFree on StackVariable\Path 13:

Severity Medium
Result State To Verify
Online Results <a href="http://win-">http://win-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=44

Status New

Calling free() (line 1698) on a variable that was not dynamically allocated (line 1698) in file magma/cache.c may result with a crash.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1724          | 1724          |
| Object | dataholder    | dataholder    |

Code Snippet

File Name magma/cache.c

Method size\_t \_mem\_append\_serialized\_array\_cb(unsigned char \*\*buf, size\_t \*blen,

const char \*\*array, custom\_serializer\_t sfn) {

.... free(dataholder);

MemoryFree on StackVariable\Path 14:

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=45

Status New

Calling free() (line 1698) on a variable that was not dynamically allocated (line 1698) in file magma/cache.c may result with a crash.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1734          | 1734          |
| Object | dataholder    | dataholder    |

Code Snippet

File Name magma/cache.c

Method size\_t \_mem\_append\_serialized\_array\_cb(unsigned char \*\*buf, size\_t \*blen,

const char \*\*array, custom\_serializer\_t sfn) {



1734. free(dataholder);

MemoryFree on StackVariable\Path 15:

Severity Medium
Result State To Verify
Online Results <a href="http://win-">http://win-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=46

Status New

Calling free() (line 2343) on a variable that was not dynamically allocated (line 2343) in file magma/cache.c may result with a crash.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 2359          | 2359          |
| Object | serial        | serial        |

Code Snippet

File Name magma/cache.c

Method void \*\_serialize\_signet\_cb(void \*record, size\_t \*outlen) {

.... 2359. free(serial);

MemoryFree on StackVariable\Path 16:

Severity Medium
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=47

Status New

Calling free() (line 2343) on a variable that was not dynamically allocated (line 2343) in file magma/cache.c may result with a crash.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 2365          | 2365          |
| Object | serial        | serial        |

Code Snippet

File Name magma/cache.c

Method void \*\_serialize\_signet\_cb(void \*record, size\_t \*outlen) {



.... 2365. free(serial);

MemoryFree on StackVariable\Path 17:

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=48

Status New

Calling free() (line 138) on a variable that was not dynamically allocated (line 138) in file magma/dime.c may result with a crash.

|        | Source       | Destination  |
|--------|--------------|--------------|
| File   | magma/dime.c | magma/dime.c |
| Line   | 435          | 435          |
| Object | line         | line         |

Code Snippet

File Name magma/dime.c

Method int main(int argc, char \*argv[]) {

435. free(line);

MemoryFree on StackVariable\Path 18:

Severity Medium
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=49

Status New

Calling free() (line 138) on a variable that was not dynamically allocated (line 138) in file magma/dime.c may result with a crash.

|        | Source       | Destination  |
|--------|--------------|--------------|
| File   | magma/dime.c | magma/dime.c |
| Line   | 441          | 441          |
| Object | line         | line         |

Code Snippet

File Name magma/dime.c

Method int main(int argc, char \*argv[]) {



.... 441. free(line);

MemoryFree on StackVariable\Path 19:

Severity Medium
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=50

Status New

Calling free() (line 138) on a variable that was not dynamically allocated (line 138) in file magma/dime.c may result with a crash.

|        | Source       | Destination  |
|--------|--------------|--------------|
| File   | magma/dime.c | magma/dime.c |
| Line   | 470          | 470          |
| Object | line         | line         |

Code Snippet

File Name magma/dime.c

Method int main(int argc, char \*argv[]) {

470. free(line);

#### Double Free

Query Path:

CPP\Cx\CPP Medium Threat\Double Free Version:1

Categories

NIST SP 800-53: SI-16 Memory Protection (P1)

#### Description

## Double Free\Path 1:

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=96

Status New

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 103           | 108           |
| Object | pwbuf         | pwbuf         |

#### Code Snippet



File Name magma/cache.c

Method char \*\_get\_dime\_dir\_location(const char \*suffix) {

103. free (pwbuf);
....
108. free (pwbuf);

#### Double Free\Path 2:

Severity Medium
Result State To Verify
Online Results <a href="http://win-">http://win-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=97

Status New

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 100           | 108           |
| Object | pwbuf         | pwbuf         |

## Code Snippet

File Name magma/cache.c

Method char \*\_get\_dime\_dir\_location(const char \*suffix) {

100. free(pwbuf);
....
108. free(pwbuf);

#### Double Free\Path 3:

Severity Medium
Result State To Verify
Online Results <a href="http://win-">http://win-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=98

Status New

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 108           | 112           |
| Object | pwbuf         | pwbuf         |

Code Snippet

File Name magma/cache.c

Method char \*\_get\_dime\_dir\_location(const char \*suffix) {



```
108. free(pwbuf);
....
112. free(pwbuf);
```

**Double Free\Path 4:** 

Severity Medium
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=99

Status New

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 103           | 112           |
| Object | pwbuf         | pwbuf         |

Code Snippet

File Name magma/cache.c

Method char \*\_get\_dime\_dir\_location(const char \*suffix) {

103. free(pwbuf);
...
112. free(pwbuf);

## **Double Free\Path 5:**

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=100

Status New

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 100           | 112           |
| Object | pwbuf         | pwbuf         |

Code Snippet

File Name magma/cache.c

Method char \*\_get\_dime\_dir\_location(const char \*suffix) {

100. free(pwbuf);
....
112. free(pwbuf);

PAGE 67 OF 179



## Double Free\Path 6:

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=101

Status New

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1226          | 1231          |
| Object | cfile         | cfile         |

Code Snippet

File Name magma/cache.c

Method int \_load\_cache\_contents(void) {

.... 1226. free(cfile);

.... 1231. free(cfile);

#### **Double Free\Path 7:**

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=102

Status New

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1286          | 1243          |
| Object | cdata         | cdata         |

Code Snippet

File Name magma/cache.c

Method int \_load\_cache\_contents(void) {

1286. free(cdata);

1243. free(cdata);

## **Double Free\Path 8:**

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500



<u>57&pathid=103</u>

Status New

Source Destination

File magma/cache.c magma/cache.c

Line 1316 1243

Object cdata cdata

Code Snippet

File Name magma/cache.c

Method int \_load\_cache\_contents(void) {

1316. free(cdata);

1040

1243. free(cdata);

Double Free\Path 9:

Severity Medium
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=104

Status New

Source Destination

File magma/cache.c magma/cache.c

Line 1316 1272

Object cdata cdata

Code Snippet

File Name magma/cache.c

Method int \_load\_cache\_contents(void) {

1316. free(cdata);

1272. free(cdata);

**Double Free\Path 10:** 

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=105

Status New

Source Destination



| File   | magma/cache.c | magma/cache.c |
|--------|---------------|---------------|
| Line   | 1286          | 1272          |
| Object | cdata         | cdata         |

File Name magma/cache.c

. . . .

Method int \_load\_cache\_contents(void) {

.... 1286. free(cdata);

1272. free (cdata);

**Double Free\Path 11:** 

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=106

Status New

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1286          | 1402          |
| Object | cdata         | cdata         |

Code Snippet

File Name magma/cache.c

Method int \_load\_cache\_contents(void) {

1286. free(cdata);

.... 1402. free(cdata);

**Double Free\Path 12:** 

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=107

Status New

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1316          | 1402          |
| Object | cdata         | cdata         |



File Name magma/cache.c

Method int \_load\_cache\_contents(void) {

1316. free(cdata);

1402. free(cdata);

**Double Free\Path 13:** 

Severity Medium
Result State To Verify
Online Results <a href="http://win-">http://win-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=108

Status New

Source Destination

File magma/cache.c magma/cache.c

Line 1476 1481

Object cdata cdata

Code Snippet

File Name magma/cache.c

1481.

Method int \_save\_cache\_contents(void) {

1476. free(cdata);

....

free(cdata);

Double Free\Path 14:

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=109

Status New

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 2359          | 2365          |
| Object | serial        | serial        |

Code Snippet

File Name magma/cache.c

Method void \*\_serialize\_signet\_cb(void \*record, size\_t \*outlen) {



```
2359. free(serial);
....
2365. free(serial);
```

**Double Free\Path 15:** 

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=110

Status New

|        | Source       | Destination  |
|--------|--------------|--------------|
| File   | magma/dime.c | magma/dime.c |
| Line   | 435          | 441          |
| Object | line         | line         |

Code Snippet

File Name magma/dime.c

Method int main(int argc, char \*argv[]) {

435. free(line);
....
441. free(line);

# Buffer Overflow boundcpy WrongSizeParam

Query Path:

CPP\Cx\CPP Buffer Overflow\Buffer Overflow boundcpy WrongSizeParam Version:1

Categories

PCI DSS v3.2: PCI DSS (3.2) - 6.5.2 - Buffer overflows

OWASP Top 10 2017: A1-Injection

**Description** 

**Buffer Overflow boundcpy WrongSizeParam\Path 1:** 

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=19

Status New

The size of the buffer used by \*\_clone\_cached\_object in ->, at line 994 of magma/cache.c, is not properly verified before writing data to the buffer. This can enable a buffer overflow attack, using the source buffer that \* clone cached object passes to ->, at line 994 of magma/cache.c, to overwrite the target buffer.

|      | Source        | Destination   |
|------|---------------|---------------|
| File | magma/cache.c | magma/cache.c |



| Line   | 1025 | 1025 |
|--------|------|------|
| Object | ->   | ->   |

File Name magma/cache.c

Method cached\_object\_t \*\_clone\_cached\_object(const cached\_object\_t \*obj) {

....
1025. memcpy(result->id, obj->id, sizeof(result->id));

**Buffer Overflow boundcpy WrongSizeParam\Path 2:** 

Severity Medium
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=20

Status New

The size of the buffer used by \*\_create\_cached\_object in cached\_object\_t, at line 244 of magma/cache.c, is not properly verified before writing data to the buffer. This can enable a buffer overflow attack, using the source buffer that \*\_create\_cached\_object passes to cached\_object\_t, at line 244 of magma/cache.c, to overwrite the target buffer.

|        | Source          | Destination     |
|--------|-----------------|-----------------|
| File   | magma/cache.c   | magma/cache.c   |
| Line   | 260             | 260             |
| Object | cached_object_t | cached_object_t |

Code Snippet

File Name magma/cache.c

Method cached object t \* create cached object(cached data type t dtype, unsigned

long ttl, time t expiration, void \*data, int persists, int relaxed) {

....
260. memset(result, 0, sizeof(cached\_object\_t));

**Buffer Overflow boundcpy WrongSizeParam\Path 3:** 

Severity Medium
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=21

Status New

The size of the buffer used by \_destroy\_cache\_entry in cached\_object\_t, at line 316 of magma/cache.c, is not properly verified before writing data to the buffer. This can enable a buffer overflow attack, using the source buffer that \_destroy\_cache\_entry passes to cached\_object\_t, at line 316 of magma/cache.c, to overwrite the target buffer.

|      | Source        | Destination   |
|------|---------------|---------------|
| File | magma/cache.c | magma/cache.c |



| Line   | 343             | 343             |
|--------|-----------------|-----------------|
| Object | cached_object_t | cached_object_t |

File Name magma/cache.c

Method void \_destroy\_cache\_entry(cached\_object\_t \*entry) {

....
343. memset(entry, 0, sizeof(cached\_object\_t));

Buffer Overflow boundcpy WrongSizeParam\Path 4:

Severity Medium
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=22

Status New

The size of the buffer used by \*\_add\_cached\_object in cached\_object\_t, at line 556 of magma/cache.c, is not properly verified before writing data to the buffer. This can enable a buffer overflow attack, using the source buffer that \*\_add\_cached\_object passes to cached\_object\_t, at line 556 of magma/cache.c, to overwrite the target buffer.

|        | Source          | Destination     |
|--------|-----------------|-----------------|
| File   | magma/cache.c   | magma/cache.c   |
| Line   | 601             | 601             |
| Object | cached_object_t | cached_object_t |

Code Snippet

File Name magma/cache.c

Method cached\_object\_t \*\_add\_cached\_object(const char \*id, cached\_store\_t \*store,

unsigned long ttl, time\_t expiration, void \*data, int persists, int relaxed) {

....
601. memset(entry, 0, sizeof(cached\_object\_t));

**Buffer Overflow boundcpy WrongSizeParam\Path 5:** 

Severity Medium
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=23

Status New

The size of the buffer used by \*\_clone\_cached\_object in cached\_object\_t, at line 994 of magma/cache.c, is not properly verified before writing data to the buffer. This can enable a buffer overflow attack, using the source buffer that \*\_clone\_cached\_object passes to cached\_object\_t, at line 994 of magma/cache.c, to overwrite the target buffer.

|      | Source        | Destination   |
|------|---------------|---------------|
| File | magma/cache.c | magma/cache.c |



| Line   | 1021            | 1021            |
|--------|-----------------|-----------------|
| Object | cached_object_t | cached_object_t |

File Name magma/cache.c

Method cached\_object\_t \*\_clone\_cached\_object(const cached\_object\_t \*obj) {

....
1021. memset(result, 0, sizeof(cached\_object\_t));

**Buffer Overflow boundcpy WrongSizeParam\Path 6:** 

Severity Medium
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=24

Status New

The size of the buffer used by \_load\_cache\_contents in cached\_object\_t, at line 1196 of magma/cache.c, is not properly verified before writing data to the buffer. This can enable a buffer overflow attack, using the source buffer that \_load\_cache\_contents passes to cached\_object\_t, at line 1196 of magma/cache.c, to overwrite the target buffer.

|        | Source          | Destination     |
|--------|-----------------|-----------------|
| File   | magma/cache.c   | magma/cache.c   |
| Line   | 1321            | 1321            |
| Object | cached_object_t | cached_object_t |

Code Snippet

File Name magma/cache.c

Method int load cache contents(void) {

1321. memset(obj, 0, sizeof(cached\_object\_t));

**Buffer Overflow boundcpy WrongSizeParam\Path 7:** 

Severity Medium
Result State To Verify
Online Results <a href="http://win-">http://win-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=25

Status New

The size of the buffer used by \_deserialize\_string in rsize, at line 1826 of magma/cache.c, is not properly verified before writing data to the buffer. This can enable a buffer overflow attack, using the source buffer that deserialize string passes to rsize, at line 1826 of magma/cache.c, to overwrite the target buffer.

|      | Source        | Destination   |
|------|---------------|---------------|
| File | magma/cache.c | magma/cache.c |
| Line | 1858          | 1858          |



Object rsize rsize

Code Snippet

File Name magma/cache.c

Method unsigned int \_deserialize\_string(char \*\*dst, unsigned char \*\*bufptr, const

unsigned char \*bufend) {

1858. memcpy(\*dst, \*bufptr, rsize);

**Buffer Overflow boundcpy WrongSizeParam\Path 8:** 

Severity Medium
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=26

Status New

The size of the buffer used by sdscatlen in len, at line 376 of magma/sds.c, is not properly verified before writing data to the buffer. This can enable a buffer overflow attack, using the source buffer that sdscatlen passes to len, at line 376 of magma/sds.c, to overwrite the target buffer.

|        | Source      | Destination |
|--------|-------------|-------------|
| File   | magma/sds.c | magma/sds.c |
| Line   | 381         | 381         |
| Object | len         | len         |

Code Snippet

File Name magma/sds.c

Method sds sdscatlen(sds s, const void \*t, size\_t len) {

381. memcpy(s+curlen, t, len);

**Buffer Overflow boundcpy WrongSizeParam\Path 9:** 

Severity Medium
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=27

Status New

The size of the buffer used by sdscpylen in len, at line 405 of magma/sds.c, is not properly verified before writing data to the buffer. This can enable a buffer overflow attack, using the source buffer that sdscpylen passes to len, at line 405 of magma/sds.c, to overwrite the target buffer.

| -      |             |             |
|--------|-------------|-------------|
|        | Source      | Destination |
| File   | magma/sds.c | magma/sds.c |
| Line   | 410         | 410         |
| Object | len         | len         |



File Name magma/sds.c

Method sds sdscpylen(sds s, const char \*t, size\_t len) {

. . . . 410. memcpy(s, t, len);

**Buffer Overflow boundcpy WrongSizeParam\Path 10:** 

Severity Medium Result State To Verify Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=28

Status New

The size of the buffer used by sdscatfmt in 1, at line 579 of magma/sds.c, is not properly verified before writing data to the buffer. This can enable a buffer overflow attack, using the source buffer that sdscatfmt passes to 1, at line 579 of magma/sds.c, to overwrite the target buffer.

|        | Source      | Destination |
|--------|-------------|-------------|
| File   | magma/sds.c | magma/sds.c |
| Line   | 611         | 611         |
| Object | I           | I           |

Code Snippet

File Name magma/sds.c

Method sds sdscatfmt(sds s, char const \*fmt, ...) {

> . . . . 611. memcpy(s+i,str,l);

Buffer Overflow boundcpy WrongSizeParam\Path 11:

Severity Medium Result State To Verify Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=29

Status New

The size of the buffer used by sdscatfmt in 1, at line 579 of magma/sds.c, is not properly verified before writing data to the buffer. This can enable a buffer overflow attack, using the source buffer that sdscatfmt passes to l, at line 579 of magma/sds.c, to overwrite the target buffer.

|        | Source      | Destination |
|--------|-------------|-------------|
| File   | magma/sds.c | magma/sds.c |
| Line   | 627         | 627         |
| Object | I           | I           |

Code Snippet

File Name magma/sds.c



Method sds sdscatfmt(sds s, char const \*fmt, ...) {
....
627. memcpy(s+i,buf,l);

Buffer Overflow boundcpy WrongSizeParam\Path 12:

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=30

Status New

The size of the buffer used by sdscatfmt in l, at line 579 of magma/sds.c, is not properly verified before writing data to the buffer. This can enable a buffer overflow attack, using the source buffer that sdscatfmt passes to l, at line 579 of magma/sds.c, to overwrite the target buffer.

|        | Source      | Destination |
|--------|-------------|-------------|
| File   | magma/sds.c | magma/sds.c |
| Line   | 644         | 644         |
| Object | I           | 1           |

Code Snippet

File Name magma/sds.c

Method sds sdscatfmt(sds s, char const \*fmt, ...) {

memcpy(s+i,buf,l);

Buffer Overflow boundcpy WrongSizeParam\Path 13:

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=31

Status New

The size of the buffer used by sdscmp in minlen, at line 767 of magma/sds.c, is not properly verified before writing data to the buffer. This can enable a buffer overflow attack, using the source buffer that sdscmp passes to minlen, at line 767 of magma/sds.c, to overwrite the target buffer.

|        | Source      | Destination |
|--------|-------------|-------------|
| File   | magma/sds.c | magma/sds.c |
| Line   | 774         | 774         |
| Object | minlen      | minlen      |

Code Snippet

File Name magma/sds.c

Method int sdscmp(const sds s1, const sds s2) {



....
774. cmp = memcmp(s1,s2,minlen);

# Integer Overflow

Query Path:

CPP\Cx\CPP Integer Overflow\Integer Overflow Version:0

## Categories

PCI DSS v3.2: PCI DSS (3.2) - 6.5.2 - Buffer overflows

FISMA 2014: System And Information Integrity

NIST SP 800-53: SI-10 Information Input Validation (P1)

#### Description

#### Integer Overflow\Path 1:

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=53

Status New

A variable of a larger data type, AssignExpr, is being assigned to a smaller data type, in 1503 of magma/cache.c. This will cause a loss of data, often the significant bits of a numerical value or the sign bit.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1509          | 1509          |
| Object | AssignExpr    | AssignExpr    |

Code Snippet

File Name magma/cache.c

Method int \_set\_cache\_permissions(unsigned long flags) {

....
1509. \_cache\_flags = flags;

## Integer Overflow\Path 2:

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=54

Status New

A variable of a larger data type, AssignExpr, is being assigned to a smaller data type, in 579 of magma/sds.c. This will cause a loss of data, often the significant bits of a numerical value or the sign bit.

|      | Source      | Destination |
|------|-------------|-------------|
| File | magma/sds.c | magma/sds.c |
| Line | 587         | 587         |



Object AssignExpr AssignExpr

Code Snippet

File Name magma/sds.c

Method sds sdscatfmt(sds s, char const \*fmt, ...) {

....
587. i = initlen; /\* Position of the next byte to write to dest str. \*/

Integer Overflow\Path 3:

Severity Medium
Result State To Verify
Online Results <a href="http://win-">http://win-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=55

Status New

A variable of a larger data type, AssignExpr, is being assigned to a smaller data type, in 579 of magma/sds.c. This will cause a loss of data, often the significant bits of a numerical value or the sign bit.

|        | Source      | Destination |
|--------|-------------|-------------|
| File   | magma/sds.c | magma/sds.c |
| Line   | 613         | 613         |
| Object | AssignExpr  | AssignExpr  |

Code Snippet

File Name magma/sds.c

Method sds sdscatfmt(sds s, char const \*fmt, ...) {

613. i += 1;

Integer Overflow\Path 4:

Severity Medium
Result State To Verify
Online Results <a href="http://win-">http://win-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=56

Status New

A variable of a larger data type, AssignExpr, is being assigned to a smaller data type, in 579 of magma/sds.c. This will cause a loss of data, often the significant bits of a numerical value or the sign bit.

|        | Source      | Destination |
|--------|-------------|-------------|
| File   | magma/sds.c | magma/sds.c |
| Line   | 629         | 629         |
| Object | AssignExpr  | AssignExpr  |

Code Snippet



File Name magma/sds.c

Method sds sdscatfmt(sds s, char const \*fmt, ...) {

629. i += 1;

**Integer Overflow\Path 5:** 

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=57

Status New

A variable of a larger data type, AssignExpr, is being assigned to a smaller data type, in 579 of magma/sds.c. This will cause a loss of data, often the significant bits of a numerical value or the sign bit.

|        | Source      | Destination |
|--------|-------------|-------------|
| File   | magma/sds.c | magma/sds.c |
| Line   | 646         | 646         |
| Object | AssignExpr  | AssignExpr  |

Code Snippet

File Name magma/sds.c

Method sds sdscatfmt(sds s, char const \*fmt, ...) {

.... 646. i += 1;

Integer Overflow\Path 6:

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=58

Status New

A variable of a larger data type, AssignExpr, is being assigned to a smaller data type, in 714 of magma/sds.c. This will cause a loss of data, often the significant bits of a numerical value or the sign bit.

|        | Source      | Destination |
|--------|-------------|-------------|
| File   | magma/sds.c | magma/sds.c |
| Line   | 719         | 719         |
| Object | AssignExpr  | AssignExpr  |

Code Snippet

File Name magma/sds.c

Method void sdsrange(sds s, int start, int end) {



....
719. start = len+start;

Integer Overflow\Path 7:

Severity Medium
Result State To Verify
Online Results <a href="http://win-">http://win-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=59

Status New

A variable of a larger data type, AssignExpr, is being assigned to a smaller data type, in 714 of magma/sds.c. This will cause a loss of data, often the significant bits of a numerical value or the sign bit.

|        | Source      | Destination |
|--------|-------------|-------------|
| File   | magma/sds.c | magma/sds.c |
| Line   | 723         | 723         |
| Object | AssignExpr  | AssignExpr  |

Code Snippet

File Name magma/sds.c

Method void sdsrange(sds s, int start, int end) {

723. end = len+end;

Integer Overflow\Path 8:

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=60

Status New

A variable of a larger data type, AssignExpr, is being assigned to a smaller data type, in 714 of magma/sds.c. This will cause a loss of data, often the significant bits of a numerical value or the sign bit.

|        | Source      | Destination |
|--------|-------------|-------------|
| File   | magma/sds.c | magma/sds.c |
| Line   | 731         | 731         |
| Object | AssignExpr  | AssignExpr  |

Code Snippet

File Name magma/sds.c

Method void sdsrange(sds s, int start, int end) {

731. end = len-1;



## Use of Zero Initialized Pointer

Ouerv Path:

CPP\Cx\CPP Medium Threat\Use of Zero Initialized Pointer Version:1

## Categories

NIST SP 800-53: SC-5 Denial of Service Protection (P1)

#### **Description**

Use of Zero Initialized Pointer\Path 1:

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=155

Status New

The variable declared in next at magma/cache.c in line 2140 is not initialized when it is used by shadow at magma/cache.c in line 2208.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 2143          | 2247          |
| Object | next          | shadow        |

```
Code Snippet
```

File Name

File Name magma/cache.c

{

Method cached\_object\_t \*\_unlink\_object(cached\_object\_t \*object, int destroy, int stale)

....

2143. cached\_object\_t \*next = NULL;

magma/cache.c

Method cached\_object\_t \*\_replace\_object(cached\_object\_t \*oobj, cached\_object\_t

\*nobj, int shadow) {

....
2247. nobj->shadow = oobj;

## Use of Zero Initialized Pointer\Path 2:

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

٧

57&pathid=156

Status New

The variable declared in next at magma/cache.c in line 2140 is not initialized when it is used by next at magma/cache.c in line 2208.



|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 2143          | 2231          |
| Object | next          | next          |

```
Code Snippet
File Name
             magma/cache.c
Method
             cached_object_t *_unlink_object(cached_object_t *object, int destroy, int stale)
               . . . .
               2143.
                          cached object t *next = NULL;
                                                     ٧
File Name
             magma/cache.c
             cached_object_t *_replace_object(cached_object_t *oobj, cached_object_t
Method
              *nobj, int shadow) {
               2231.
                          nobj->next = oobj->next;
```

## Use of Zero Initialized Pointer\Path 3:

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=157

Status New

The variable declared in data at magma/messages.c in line 73 is not initialized when it is used by data at magma/messages.c in line 73.

|        | Source           | Destination      |
|--------|------------------|------------------|
| File   | magma/messages.c | magma/messages.c |
| Line   | 81               | 99               |
| Object | data             | data             |

```
Code Snippet
File Name magma/messages.c
Method stringer_t * naked_message_get(stringer_t *message, prime_org_signet_t *org, prime_user_key_t *user) {

... uchr_t *data = NULL, *position = NULL;
... 99. data += 6;
```

#### Use of Zero Initialized Pointer\Path 4:



Severity Medium
Result State To Verify
Online Results <a href="http://win-">http://win-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=158

Status New

The variable declared in vector at magma/sds.c in line 933 is not initialized when it is used by vector at magma/sds.c in line 933.

|        | Source      | Destination |
|--------|-------------|-------------|
| File   | magma/sds.c | magma/sds.c |
| Line   | 936         | 1023        |
| Object | vector      | vector      |

```
Code Snippet
File Name magma/sds.c
Method sds *sdssplitargs(const char *line, int *argc) {

...
936. char **vector = NULL;
...
1023. vector = s_realloc(vector,((*argc)+1)*sizeof(char*));
```

## Use of Zero Initialized Pointer\Path 5:

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=159

Status New

The variable declared in vector at magma/sds.c in line 933 is not initialized when it is used by vector at magma/sds.c in line 933.

|        | Source      | Destination |
|--------|-------------|-------------|
| File   | magma/sds.c | magma/sds.c |
| Line   | 936         | 1036        |
| Object | vector      | vector      |

```
Code Snippet

File Name magma/sds.c

Method sds *sdssplitargs(const char *line, int *argc) {

....
936. char **vector = NULL;
....
1036. sdsfree(vector[*argc]);
```

## Use of Zero Initialized Pointer\Path 6:



Severity Medium
Result State To Verify
Online Results <a href="http://win-">http://win-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=160

Status New

The variable declared in reall\_res at magma/cache.c in line 1196 is not initialized when it is used by cdata at magma/cache.c in line 1196.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1280          | 1279          |
| Object | reall_res     | cdata         |

Code Snippet

File Name magma/cache.c

Method int \_load\_cache\_contents(void) {

1280. reall\_res = NULL; .... 1279. cdata = reall\_res;

## Use of Zero Initialized Pointer\Path 7:

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=161

Status New

The variable declared in current at magma/sds.c in line 933 is not initialized when it is used by vector at magma/sds.c in line 933.

|        | Source      | Destination |
|--------|-------------|-------------|
| File   | magma/sds.c | magma/sds.c |
| Line   | 1026        | 1024        |
| Object | current     | vector      |

#### Code Snippet

File Name magma/sds.c

Method sds \*sdssplitargs(const char \*line, int \*argc) {

current = NULL;
current = null;
vector[\*argc] = current;



## Stored Buffer Overflow boundcpy

Ouerv Path:

CPP\Cx\CPP Stored Vulnerabilities\Stored Buffer Overflow boundcpy Version:1

## Categories

NIST SP 800-53: SI-10 Information Input Validation (P1)

OWASP Top 10 2017: A1-Injection

#### Description

Stored Buffer Overflow boundcpy\Path 1:

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=162

Status New

The size of the buffer used by \_load\_cache\_contents in objlen, at line 1196 of magma/cache.c, is not properly verified before writing data to the buffer. This can enable a buffer overflow attack, using the source buffer that load cache contents passes to Address, at line 1196 of magma/cache.c, to overwrite the target buffer.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1239          | 1283          |
| Object | Address       | objlen        |

#### Code Snippet

File Name magma/cache.c

Method int \_load\_cache\_contents(void) {

if ((nread = read(cfd, &objlen, sizeof(objlen))) !=
sizeof(objlen)) {
 memset(cdata, 0, objlen);

Stored Buffer Overflow boundcpy\Path 2:

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=163

Status New

The size of the buffer used by \_load\_cache\_contents in objlen, at line 1196 of magma/cache.c, is not properly verified before writing data to the buffer. This can enable a buffer overflow attack, using the source buffer that load cache contents passes to cdata, at line 1196 of magma/cache.c, to overwrite the target buffer.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1285          | 1283          |
| Object | cdata         | objlen        |



```
Code Snippet
File Name magma/cache.c
Method int _load_cache_contents(void) {

....
1285. if (read(cfd, cdata, objlen) != objlen) {
....
1283. memset(cdata, 0, objlen);
```

**Stored Buffer Overflow boundcpy\Path 3:** 

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=164

Status New

The size of the buffer used by \_load\_cache\_contents in chdr\_size, at line 1196 of magma/cache.c, is not properly verified before writing data to the buffer. This can enable a buffer overflow attack, using the source buffer that \_load\_cache\_contents passes to Address, at line 1196 of magma/cache.c, to overwrite the target buffer.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1239          | 1322          |
| Object | Address       | chdr_size     |

```
Code Snippet
```

File Name magma/cache.c

Method int \_load\_cache\_contents(void) {

```
if ((nread = read(cfd, &objlen, sizeof(objlen))) !=
sizeof(objlen)) {
    memcpy(obj, cdata, chdr_size);
```

Stored Buffer Overflow boundcpy\Path 4:

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=165

Status New

The size of the buffer used by \_load\_cache\_contents in chdr\_size, at line 1196 of magma/cache.c, is not properly verified before writing data to the buffer. This can enable a buffer overflow attack, using the source buffer that \_load\_cache\_contents passes to cdata, at line 1196 of magma/cache.c, to overwrite the target buffer.

|      | Source        | Destination   |
|------|---------------|---------------|
| File | magma/cache.c | magma/cache.c |



Line 1285 1322
Object cdata chdr\_size

Code Snippet

File Name magma/cache.c

Method int \_load\_cache\_contents(void) {

if (read(cfd, cdata, objlen) != objlen) {
 ...

memcpy(obj, cdata, chdr\_size);

## Memory Leak

Query Path:

CPP\Cx\CPP Medium Threat\Memory Leak Version:1

## Categories

NIST SP 800-53: SC-5 Denial of Service Protection (P1)

#### Description

## Memory Leak\Path 1:

Severity Medium
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=111

Status New

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 2357          | 2357          |
| Object | result        | result        |

Code Snippet

File Name magma/cache.c

Method void \*\_serialize\_signet\_cb(void \*record, size\_t \*outlen) {

2357. if(!(result = malloc(ssize))) {

## Memory Leak\Path 2:

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=112

Status New

Source Destination



| File   | magma/cache.c | magma/cache.c |
|--------|---------------|---------------|
| Line   | 1853          | 1853          |
| Object | dst           | dst           |

File Name magma/cache.c

Method unsigned int \_deserialize\_string(char \*\*dst, unsigned char \*\*bufptr, const

unsigned char \*bufend) {

1853. if (!(\*dst = malloc(rsize))) {

## Improper Resource Access Authorization

Query Path:

CPP\Cx\CPP Low Visibility\Improper Resource Access Authorization Version:1

## Categories

FISMA 2014: Identification And Authentication NIST SP 800-53: AC-3 Access Enforcement (P1) OWASP Top 10 2017: A2-Broken Authentication

## **Description**

Improper Resource Access Authorization\Path 1:

Severity Low
Result State To Verify
Online Results <a href="http://win-">http://win-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=166

Status New

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1239          | 1239          |
| Object | Address       | Address       |

Code Snippet

File Name magma/cache.c

Method int \_load\_cache\_contents(void) {

1239. if ((nread = read(cfd, &objlen, sizeof(objlen))) !=
sizeof(objlen)) {

Improper Resource Access Authorization\Path 2:

Severity Low
Result State To Verify
Online Results <a href="http://win-">http://win-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=167

Status New



|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1285          | 1285          |
| Object | cdata         | cdata         |

File Name magma/cache.c

Method int \_load\_cache\_contents(void) {

if (read(cfd, cdata, objlen) != objlen) {

Improper Resource Access Authorization\Path 3:

Severity Low

Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=168

Status New

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 325           | 325           |
| Object | fprintf       | fprintf       |

Code Snippet

File Name magma/cache.c

Method void \_destroy\_cache\_entry(cached\_object\_t \*entry) {

••••

325. fprintf(stderr, "Error destroying cached object: could not

find associated cached store.\n");

Improper Resource Access Authorization\Path 4:

Severity Low
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=169

Status New

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 332           | 332           |
| Object | fprintf       | fprintf       |



File Name magma/cache.c

Method void \_destroy\_cache\_entry(cached\_object\_t \*entry) {

332. fprintf(stderr, "Cache destructor generated

error(s):\n");

Improper Resource Access Authorization\Path 5:

Severity Low
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=170

Status New

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 683           | 683           |
| Object | fprintf       | fprintf       |

Code Snippet

File Name magma/cache.c

Method cached\_object\_t \*\_add\_cached\_object\_forced(const char \*id, cached\_store\_t

\*store, unsigned long ttl, time\_t expiration, void \*data, int persists, int relaxed)

{

683. fprintf(stderr, "\n");

Improper Resource Access Authorization\Path 6:

Severity Low
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=171

Status New

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1081          | 1081          |
| Object | fprintf       | fprintf       |

Code Snippet

File Name magma/cache.c

Method void \_dump\_cache(cached\_data\_type\_t dtype, int do\_data, int ephemeral) {



. . . . fprintf(stderr, "Dumping data cached store of type: %s ...\n", cached stores[i].description);

Improper Resource Access Authorization\Path 7:

Severity Low Result State To Verify Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=172

Status New

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1086          | 1086          |
| Object | fprintf       | fprintf       |

Code Snippet

File Name magma/cache.c

Method void \_dump\_cache(cached\_data\_type\_t dtype, int do\_data, int ephemeral) {

> . . . . 1086. fprintf(stderr, "- Skipped empty store.\n");

Improper Resource Access Authorization\Path 8:

Severity Low Result State To Verify Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=173

Status New

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1105          | 1105          |
| Object | fprintf       | fprintf       |

Code Snippet

File Name magma/cache.c

Method void \_dump\_cache(cached\_data\_type\_t dtype, int do\_data, int ephemeral) {

> . . . . 1105. fprintf(stderr, "Error: Could not get current time for TTL calculation.\n");

Improper Resource Access Authorization\Path 9:

Severity Low



Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=174

Status New

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1119          | 1119          |
| Object | fprintf       | fprintf       |

Code Snippet

File Name magma/cache.c

Method void \_dump\_cache(cached\_data\_type\_t dtype, int do\_data, int ephemeral) {

1119. fprintf(stderr, "+++ [%u: ", (unsigned int)(j + 1));

Improper Resource Access Authorization\Path 10:

Severity Low
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=175

Status New

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1123          | 1123          |
| Object | fprintf       | fprintf       |

Code Snippet

File Name magma/cache.c

Method void \_dump\_cache(cached\_data\_type\_t dtype, int do\_data, int ephemeral) {

fprintf(stderr, "] ttl = %s, expiration = %s, data = %s, timestamp = %s, persist = %s",

Improper Resource Access Authorization\Path 11:

Severity Low
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=176

Status New

Source Destination



| File   | magma/cache.c | magma/cache.c |
|--------|---------------|---------------|
| Line   | 1127          | 1127          |
| Object | fprintf       | fprintf       |

File Name magma/cache.c

Method void \_dump\_cache(cached\_data\_type\_t dtype, int do\_data, int ephemeral) {

1127. fprintf(stderr, " [RELAXED]");

Improper Resource Access Authorization\Path 12:

Severity Low
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=177

Status New

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1131          | 1131          |
| Object | fprintf       | fprintf       |

Code Snippet

File Name magma/cache.c

Method void \_dump\_cache(cached\_data\_type\_t dtype, int do\_data, int ephemeral) {

1131. fprintf(stderr, " [SHADOWED]\n");

Improper Resource Access Authorization\Path 13:

Severity Low
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=178

Status New

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1133          | 1133          |
| Object | fprintf       | fprintf       |

Code Snippet

File Name magma/cache.c

Method void \_dump\_cache(cached\_data\_type\_t dtype, int do\_data, int ephemeral) {



....
1133. fprintf(stderr, "\n");

Improper Resource Access Authorization\Path 14:

Severity Low
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=179

Status New

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1148          | 1148          |
| Object | fprintf       | fprintf       |

Code Snippet

File Name magma/cache.c

Method void \_dump\_cache(cached\_data\_type\_t dtype, int do\_data, int ephemeral) {

1148. fprintf(stderr, " Skipped a total of %zu non-persistent cache entries.\n", (total - j));

Improper Resource Access Authorization\Path 15:

Severity Low
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=180

Status New

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1172          | 1172          |
| Object | fprintf       | fprintf       |

Code Snippet

File Name magma/cache.c

Method void \_dump\_cache\_data(FILE \*fp, const cached\_object\_t \*obj, int brief) {

....
1172. fprintf(stderr, "Error dumping object cache data: could not find associated cached store.\n");

Improper Resource Access Authorization\Path 16:

Severity Low



Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=181

Status New

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1184          | 1184          |
| Object | fprintf       | fprintf       |

Code Snippet

File Name magma/cache.c

Method void \_dump\_cache\_data(FILE \*fp, const cached\_object\_t \*obj, int brief) {

.... fprintf(stderr, "Errors were encountered while dumping cache store: $\n"$ );

Improper Resource Access Authorization\Path 17:

Severity Low
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=182

Status New

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1295          | 1295          |
| Object | fprintf       | fprintf       |

Code Snippet

File Name magma/cache.c

Method int \_load\_cache\_contents(void) {

1295. fprintf(stderr, "Error: read cached data of unrecognized type. Continuing...\n");

Improper Resource Access Authorization\Path 18:

Severity Low
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=183

Status New

Source Destination



| File   | magma/cache.c | magma/cache.c |
|--------|---------------|---------------|
| Line   | 1298          | 1298          |
| Object | fprintf       | fprintf       |

File Name magma/cache.c

Method int \_load\_cache\_contents(void) {

. . . .

1298. fprintf(stderr, "Error: cached object did not have a

deserialization handler. Continuing...\n");

Improper Resource Access Authorization\Path 19:

Severity Low
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=184

Status New

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1309          | 1309          |
| Object | fprintf       | fprintf       |

Code Snippet

File Name magma/cache.c

Method int \_load\_cache\_contents(void) {

1309. fprintf(stderr, "Error reading in cached object data; unexpected small entry size.\n");

Improper Resource Access Authorization\Path 20:

Severity Low
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=185

Status New

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1333          | 1333          |
| Object | fprintf       | fprintf       |

Code Snippet



File Name magma/cache.c

Method int \_load\_cache\_contents(void) {

1333. fprintf(stderr, "Error: cached object could not

be deserialized (continuing)...\n");

Improper Resource Access Authorization\Path 21:

Severity Low
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=186

Status New

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1349          | 1349          |
| Object | fprintf       | fprintf       |

Code Snippet

File Name magma/cache.c

Method int \_load\_cache\_contents(void) {

1349. fprintf(stderr, "Error: Could not get current time for TTL calculation. $\n"$ );

Improper Resource Access Authorization\Path 22:

Severity Low
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=187

Status New

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1363          | 1363          |
| Object | fprintf       | fprintf       |

Code Snippet

File Name magma/cache.c

Method int \_load\_cache\_contents(void) {

```
1363. fprintf(stderr, "+++ type = %u, ttl = %s, expiration = %s, data = %s, timestamp = %s\n",
```



Improper Resource Access Authorization\Path 23:

Severity Low
Result State To Verify
Online Results <a href="http://win-">http://win-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=188

Status New

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1379          | 1379          |
| Object | fprintf       | fprintf       |

Code Snippet

File Name magma/cache.c

Method int \_load\_cache\_contents(void) {

1379. fprintf(stderr, "Error: deserialized cached object
was a duplicate:\n");

Improper Resource Access Authorization\Path 24:

Severity Low
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=189

Status New

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1384          | 1384          |
| Object | fprintf       | fprintf       |

Code Snippet

File Name magma/cache.c

Method int \_load\_cache\_contents(void) {

....
1384. fprintf(stderr, "Error: could not look up object in cache.\n");

Improper Resource Access Authorization\Path 25:

Severity Low
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=190



|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1465          | 1465          |
| Object | fprintf       | fprintf       |

File Name magma/cache.c

Method int \_save\_cache\_contents(void) {

1465. fprintf(stderr, "Error serializing cached

data for storage:\n");

Improper Resource Access Authorization\Path 26:

Severity Low
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=191

Status New

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 2185          | 2185          |
| Object | fprintf       | fprintf       |

Code Snippet

File Name magma/cache.c

Method cached\_object\_t \*\_unlink\_object(cached\_object\_t \*object, int destroy, int stale)

{

2185. fprintf(stderr, "Cache destructor generated

error(s):\n");

Improper Resource Access Authorization\Path 27:

Severity Low
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=192

Status New

|      | Source        | Destination   |
|------|---------------|---------------|
| File | magma/cache.c | magma/cache.c |



Line 2299 2299
Object fprintf fprintf

Code Snippet

File Name magma/cache.c

Method unsigned int \_evict\_if\_stale(cached\_object\_t \*\*objptr) {

2299. fprintf(stderr, "Error: could not unlink expired item
from cache:");

Improper Resource Access Authorization\Path 28:

Severity Low Result State To Verify

Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=193

Status New

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 2386          | 2386          |
| Object | fprintf       | fprintf       |

Code Snippet

File Name magma/cache.c

Method void \_dump\_signet\_cb(FILE \*fp, void \*record, int brief) {

2386. fprintf(fp, "\*\*\* hashed \*\*\*");

Improper Resource Access Authorization\Path 29:

Severity Low
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=194

Status New

|        | Source       | Destination  |
|--------|--------------|--------------|
| File   | magma/dime.c | magma/dime.c |
| Line   | 185          | 185          |
| Object | fprintf      | fprintf      |

Code Snippet

File Name magma/dime.c

Method int main(int argc, char \*argv[]) {



```
fprintf(stderr, "Error: specified invalid port number.\n");
```

Improper Resource Access Authorization\Path 30:

Severity Low Result State To Verify

Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=195

Status New

|        | Source       | Destination  |
|--------|--------------|--------------|
| File   | magma/dime.c | magma/dime.c |
| Line   | 190          | 190          |
| Object | fprintf      | fprintf      |

Code Snippet

File Name magma/dime.c

Method int main(int argc, char \*argv[]) {

fprintf(stderr, "Error: invalid port
specified; must be %u or %u.\n", DMTP\_PORT, DMTP\_PORT\_DUAL);

Improper Resource Access Authorization\Path 31:

Severity Low
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=196

Status New

|        | Source       | Destination  |
|--------|--------------|--------------|
| File   | magma/dime.c | magma/dime.c |
| Line   | 207          | 207          |
| Object | fprintf      | fprintf      |

Code Snippet

File Name magma/dime.c

Method int main(int argc, char \*argv[]) {

## Improper Resource Access Authorization\Path 32:



Severity Low Result State To Verify

Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=197

Status New

|        | Source       | Destination  |
|--------|--------------|--------------|
| File   | magma/dime.c | magma/dime.c |
| Line   | 227          | 227          |
| Object | fprintf      | fprintf      |

Code Snippet

File Name magma/dime.c

Method int main(int argc, char \*argv[]) {

227. fprintf(stderr, "Error: no signet name was

specified!\n");

## Improper Resource Access Authorization\Path 33:

Severity Low
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=198

Status New

|        | Source       | Destination  |
|--------|--------------|--------------|
| File   | magma/dime.c | magma/dime.c |
| Line   | 232          | 232          |
| Object | fprintf      | fprintf      |

Code Snippet

File Name magma/dime.c

Method int main(int argc, char \*argv[]) {

232. fprintf(stderr, "Error: -h or -c cannot be specified

together. Please choose one.\n");

## Improper Resource Access Authorization\Path 34:

Severity Low
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=199

Status New



|        | Source       | Destination  |
|--------|--------------|--------------|
| File   | magma/dime.c | magma/dime.c |
| Line   | 237          | 237          |
| Object | fprintf      | fprintf      |

File Name magma/dime.c

Method int main(int argc, char \*argv[]) {

237. fprintf(stderr, "Error: the -h option requires a

signet fingerprint to be supplied with -f.\n");

Improper Resource Access Authorization\Path 35:

Severity Low
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=200

Status New

|        | Source       | Destination  |
|--------|--------------|--------------|
| File   | magma/dime.c | magma/dime.c |
| Line   | 240          | 240          |
| Object | fprintf      | fprintf      |

Code Snippet

File Name magma/dime.c

Method int main(int argc, char \*argv[]) {

240. fprintf(stderr, "Error: the -c option requires a signet fingerprint to be supplied with -f.\n");

Improper Resource Access Authorization\Path 36:

Severity Low
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=201

Status New

|        | Course       | Doctination  |
|--------|--------------|--------------|
|        | Source       | Destination  |
| File   | magma/dime.c | magma/dime.c |
| Line   | 245          | 245          |
| Object | fprintf      | fprintf      |



File Name magma/dime.c

Method int main(int argc, char \*argv[]) {

245. fprintf(stderr, "Error: the -e option can only be

specified together with  $-h.\n"$ );

Improper Resource Access Authorization\Path 37:

Severity Low
Result State To Verify
Online Results <a href="http://win-">http://win-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=202

Status New

|        | Source       | Destination  |
|--------|--------------|--------------|
| File   | magma/dime.c | magma/dime.c |
| Line   | 250          | 250          |
| Object | fprintf      | fprintf      |

Code Snippet

File Name magma/dime.c

Method int main(int argc, char \*argv[]) {

250. fprintf(stderr, "Error: the -0 option can only be used

in conjunction with -i.\n");

Improper Resource Access Authorization\Path 38:

Severity Low
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=203

Status New

|        | Source       | Destination  |
|--------|--------------|--------------|
| File   | magma/dime.c | magma/dime.c |
| Line   | 265          | 265          |
| Object | fprintf      | fprintf      |

Code Snippet

File Name magma/dime.c

Method int main(int argc, char \*argv[]) {



....
265. fprintf(stderr, "Error: chain of custody query is not allowed for org signets.\n");

Improper Resource Access Authorization\Path 39:

Severity Low Result State To Verify

Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=204

Status New

|        | Source       | Destination  |
|--------|--------------|--------------|
| File   | magma/dime.c | magma/dime.c |
| Line   | 273          | 273          |
| Object | fprintf      | fprintf      |

Code Snippet

File Name magma/dime.c

Method int main(int argc, char \*argv[]) {

fprintf(stderr, "Error: unable to load cache contents
from disk.\n");

Improper Resource Access Authorization\Path 40:

Severity Low
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=205

Status New

|        | Source       | Destination  |
|--------|--------------|--------------|
| File   | magma/dime.c | magma/dime.c |
| Line   | 298          | 298          |
| Object | fprintf      | fprintf      |

Code Snippet

File Name magma/dime.c

Method int main(int argc, char \*argv[]) {

fprintf(stderr, "Failed to retrieve DIME

management record from file.\n");

## Improper Resource Access Authorization\Path 41:



Severity Low Result State To Verify

Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=206

Status New

Source Destination

File magma/dime.c magma/dime.c

Line 309 309

Object fprintf fprintf

Code Snippet

File Name magma/dime.c

Method int main(int argc, char \*argv[]) {

fprintf(stderr, "Failed to query DIME management

record. \n");

Improper Resource Access Authorization\Path 42:

Severity Low
Result State To Verify
Online Results <a href="http://win-">http://win-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=207

Status New

Source Destination

File magma/dime.c magma/dime.c

Line 314 314

Object fprintf fprintf

Code Snippet

File Name magma/dime.c

Method int main(int argc, char \*argv[]) {

fprintf(stderr, "Error: unable to save

cache contents to disk.\n");

Improper Resource Access Authorization\Path 43:

Severity Low
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=208

Status New



|        | Source       | Destination  |
|--------|--------------|--------------|
| File   | magma/dime.c | magma/dime.c |
| Line   | 324          | 324          |
| Object | fprintf      | fprintf      |

Code Snippet

File Name magma/dime.c

Method int main(int argc, char \*argv[]) {

324. fprintf(stderr, "Error: unable to save cache contents

to disk.\n");

Improper Resource Access Authorization\Path 44:

Severity Low
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=209

Status New

|        | Source       | Destination  |
|--------|--------------|--------------|
| File   | magma/dime.c | magma/dime.c |
| Line   | 346          | 346          |
| Object | fprintf      | fprintf      |

Code Snippet

File Name magma/dime.c

Method int main(int argc, char \*argv[]) {

.... fprintf(stderr, "Connecting to DX at %s:%d ...\n",

dxname, port);

Improper Resource Access Authorization\Path 45:

Severity Low
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=210

Status New

|        |              | <b>-</b>     |
|--------|--------------|--------------|
|        | Source       | Destination  |
| File   | magma/dime.c | magma/dime.c |
| Line   | 356          | 356          |
| Object | fprintf      | fprintf      |



Code Snippet

File Name magma/dime.c

Method int main(int argc, char \*argv[]) {

356. fprintf(stderr, "Establishing connection to DX

server...\n");

Improper Resource Access Authorization\Path 46:

Severity Low
Result State To Verify
Online Results <a href="http://win-">http://win-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=211

Status New

Source Destination

File magma/dime.c magma/dime.c

Line 361 361

Object fprintf fprintf

Code Snippet

File Name magma/dime.c

Method int main(int argc, char \*argv[]) {

361. fprintf(stderr, "Error: could not connect to DX

server.\n");

Improper Resource Access Authorization\Path 47:

Severity Low
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=212

Status New

Source Destination

File magma/dime.c magma/dime.c

Line 369 369

Object fprintf fprintf

Code Snippet

File Name magma/dime.c

Method int main(int argc, char \*argv[]) {



....
369. fprintf(stderr, "Error: an error was encountered during the DX certificate verification process.\n");

Improper Resource Access Authorization\Path 48:

Severity Low
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=213

Status New

|        | Source       | Destination  |
|--------|--------------|--------------|
| File   | magma/dime.c | magma/dime.c |
| Line   | 373          | 373          |
| Object | fprintf      | fprintf      |

Code Snippet

File Name magma/dime.c

Method int main(int argc, char \*argv[]) {

....
373. fprintf(stderr, "Error: DX certificate verification failed.\n");

Improper Resource Access Authorization\Path 49:

Severity Low
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=214

Status New

|        | Source       | Destination  |
|--------|--------------|--------------|
| File   | magma/dime.c | magma/dime.c |
| Line   | 395          | 395          |
| Object | fprintf      | fprintf      |

Code Snippet

File Name magma/dime.c

Method int main(int argc, char \*argv[]) {

# Improper Resource Access Authorization\Path 50:



Severity Low
Result State To Verify
Online Results <a href="http://win-">http://win-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=215

Status New

|        | Source       | Destination  |
|--------|--------------|--------------|
| File   | magma/dime.c | magma/dime.c |
| Line   | 414          | 414          |
| Object | fprintf      | fprintf      |

Code Snippet

File Name magma/dime.c

Method int main(int argc, char \*argv[]) {

414. fprintf(stderr, "Signet history command

failed. $\n"$ );

## Unchecked Return Value

Query Path:

CPP\Cx\CPP Low Visibility\Unchecked Return Value Version:1

Categories

NIST SP 800-53: SI-11 Error Handling (P2)

### **Description**

### **Unchecked Return Value\Path 1:**

Severity Low
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=8

Status New

The \_dump\_cache method calls the snprintf function, at line 1068 of magma/cache.c. However, the code does not check the return value from this function, and thus would not detect runtime errors or other unexpected states.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1106          | 1106          |
| Object | snprintf      | snprintf      |

Code Snippet

File Name magma/cache.c

Method void \_dump\_cache(cached\_data\_type\_t dtype, int do\_data, int ephemeral) {



### **Unchecked Return Value\Path 2:**

Severity Low
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=9

Status New

The \_dump\_cache method calls the snprintf function, at line 1068 of magma/cache.c. However, the code does not check the return value from this function, and thus would not detect runtime errors or other unexpected states.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1110          | 1110          |
| Object | snprintf      | snprintf      |

### Code Snippet

File Name magma/cache.c

Method void \_dump\_cache(cached\_data\_type\_t dtype, int do\_data, int ephemeral) {

1110. snprintf(ttlstr, sizeof(ttlstr), "[no ttl]");

## **Unchecked Return Value\Path 3:**

Severity Low
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=10

Status New

The \_dump\_cache method calls the snprintf function, at line 1068 of magma/cache.c. However, the code does not check the return value from this function, and thus would not detect runtime errors or other unexpected states.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1112          | 1112          |
| Object | snprintf      | snprintf      |

Code Snippet

File Name magma/cache.c

Method void \_dump\_cache(cached\_data\_type\_t dtype, int do\_data, int ephemeral) {



### **Unchecked Return Value\Path 4:**

Severity Low
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=11

Status New

The \_dump\_cache method calls the snprintf function, at line 1068 of magma/cache.c. However, the code does not check the return value from this function, and thus would not detect runtime errors or other unexpected states.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1114          | 1114          |
| Object | snprintf      | snprintf      |

# Code Snippet

File Name magma/cache.c

Method void \_dump\_cache(cached\_data\_type\_t dtype, int do\_data, int ephemeral) {

snprintf(ttlstr, sizeof(ttlstr), "expired %lu
seconds ago", (unsigned long)(now - (ptr->timestamp + ptr->ttl)));

## **Unchecked Return Value\Path 5:**

Severity Low
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=12

Status New

The \_load\_cache\_contents method calls the snprintf function, at line 1196 of magma/cache.c. However, the code does not check the return value from this function, and thus would not detect runtime errors or other unexpected states.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1350          | 1350          |
| Object | snprintf      | snprintf      |

Code Snippet

File Name magma/cache.c



**Unchecked Return Value\Path 6:** 

Severity Low
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=13

Status New

The \_load\_cache\_contents method calls the snprintf function, at line 1196 of magma/cache.c. However, the code does not check the return value from this function, and thus would not detect runtime errors or other unexpected states.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1354          | 1354          |
| Object | snprintf      | snprintf      |

Code Snippet

File Name magma/cache.c

Method int \_load\_cache\_contents(void) {

....
1354. snprintf(ttlstr, sizeof(ttlstr), "%lu seconds", (unsigned long)(obj->timestamp + obj->ttl - now));

### **Unchecked Return Value\Path 7:**

Severity Low
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=14

Status New

The \_load\_cache\_contents method calls the snprintf function, at line 1196 of magma/cache.c. However, the code does not check the return value from this function, and thus would not detect runtime errors or other unexpected states.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1356          | 1356          |
| Object | snprintf      | snprintf      |

### Code Snippet



```
File Name magma/cache.c

Method int _load_cache_contents(void) {

....

1356. snprintf(ttlstr, sizeof(ttlstr), "expired %lu seconds ago", (unsigned long) (now - (obj->timestamp + obj->ttl)));
```

**Unchecked Return Value\Path 8:** 

Severity Low
Result State To Verify
Online Results <a href="http://win-">http://win-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=15

Status New

The \_dump\_cache method calls the expstr function, at line 1068 of magma/cache.c. However, the code does not check the return value from this function, and thus would not detect runtime errors or other unexpected states.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1122          | 1122          |
| Object | expstr        | expstr        |

### Code Snippet

File Name magma/cache.c

Method void \_dump\_cache(cached\_data\_type\_t dtype, int do\_data, int ephemeral) {

# Unchecked Return Value\Path 9:

Severity Low
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=16

Status New

The \_deserialize\_string method calls the Pointer function, at line 1826 of magma/cache.c. However, the code does not check the return value from this function, and thus would not detect runtime errors or other unexpected states.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1853          | 1853          |
| Object | Pointer       | Pointer       |



Code Snippet

File Name magma/cache.c

Method unsigned int \_deserialize\_string(char \*\*dst, unsigned char \*\*bufptr, const

unsigned char \*bufend) {

1853. if (!(\*dst = malloc(rsize))) {

# Exposure of System Data to Unauthorized Control Sphere

Query Path:

CPP\Cx\CPP Low Visibility\Exposure of System Data to Unauthorized Control Sphere Version:1

## Categories

FISMA 2014: Configuration Management

NIST SP 800-53: AC-3 Access Enforcement (P1)

# Description

Exposure of System Data to Unauthorized Control Sphere\Path 1:

Severity Low
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=236

Status New

The system data read by \_dump\_cache in the file magma/cache.c at line 1068 is potentially exposed by dump\_cache found in magma/cache.c at line 1068.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1104          | 1104          |
| Object | perror        | perror        |

Code Snippet

File Name magma/cache.c

Method void \_dump\_cache(cached\_data\_type\_t dtype, int do\_data, int ephemeral) {

1104. perror("time");

**Exposure of System Data to Unauthorized Control Sphere\Path 2:** 

Severity Low
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=237

Status New

The system data read by \_load\_cache\_contents in the file magma/cache.c at line 1196 is potentially exposed by \_load\_cache\_contents found in magma/cache.c at line 1196.



|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1348          | 1348          |
| Object | perror        | perror        |

Code Snippet

File Name magma/cache.c

Method int \_load\_cache\_contents(void) {

1348. perror("time");

Exposure of System Data to Unauthorized Control Sphere\Path 3:

Severity Low

Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=238

Status New

The system data read by \_lock\_cache\_store in the file magma/cache.c at line 2261 is potentially exposed by \_lock\_cache\_store found in magma/cache.c at line 2261.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 2264          | 2264          |
| Object | perror        | perror        |

Code Snippet

File Name magma/cache.c

Method void \_lock\_cache\_store(cached\_store\_t \*store) {

2264. perror("pthread\_mutex\_lock");

Exposure of System Data to Unauthorized Control Sphere\Path 4:

Severity Low

Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=239

Status New

The system data read by \_unlock\_cache\_store in the file magma/cache.c at line 2274 is potentially exposed by unlock cache store found in magma/cache.c at line 2274.

|      | Source        | Destination   |
|------|---------------|---------------|
| File | magma/cache.c | magma/cache.c |



Line 2277 2277
Object perror perror

Code Snippet

File Name magma/cache.c

Method void \_unlock\_cache\_store(cached\_store\_t \*store) {

2277. perror("pthread\_mutex\_unlock");

**Exposure of System Data to Unauthorized Control Sphere\Path 5:** 

Severity Low
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=240

Status New

The system data read by show\_coc in the file magma/dime.c at line 63 is potentially exposed by show\_coc found in magma/dime.c at line 63.

|        | Source       | Destination  |
|--------|--------------|--------------|
| File   | magma/dime.c | magma/dime.c |
| Line   | 75           | 75           |
| Object | perror       | perror       |

Code Snippet

File Name magma/dime.c

Method static void show\_coc(const char \*cocstr) {

75. perror("strdup");

### Potential Path Traversal

Query Path:

CPP\Cx\CPP Low Visibility\Potential Path Traversal Version:0

Categories

OWASP Top 10 2013: A4-Insecure Direct Object References

OWASP Top 10 2017: A5-Broken Access Control

Description

Potential Path Traversal\Path 1:

Severity Low
Result State To Verify
Online Results <a href="http://win-">http://win-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

<u>57&pathid=5</u>

Status New



Method \*\_get\_cache\_location at line 154 of magma/cache.c gets user input from the getenv element. This element's value then flows through the code and is eventually used in a file path for local disk access in load cache contents at line 1196 of magma/cache.c. This may cause a Path Traversal vulnerability.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 172           | 1220          |
| Object | getenv        | cfile         |

```
Code Snippet
File Name magma/cache.c
Method char *_get_cache_location(void) {

....
172. if ((cfile = getenv("DIME_CACHE_FILE"))) {

File Name magma/cache.c

int _load_cache_contents(void) {

....
1220. if ((cfd = open(cfile, O_RDONLY)) < 0) {
```

## Potential Path Traversal\Path 2:

Severity Low
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=6

Status New

Method \*\_get\_cache\_location at line 154 of magma/cache.c gets user input from the getenv element. This element's value then flows through the code and is eventually used in a file path for local disk access in load cache contents at line 1196 of magma/cache.c. This may cause a Path Traversal vulnerability.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 172           | 1224          |
| Object | getenv        | cfile         |

```
Code Snippet

File Name magma/cache.c

Method char *_get_cache_location(void) {

....

172. if ((cfile = getenv("DIME_CACHE_FILE"))) {

File Name magma/cache.c
```



```
Method int _load_cache_contents(void) {
    ....
    1224.    if ((cfd = creat(cfile, S_IRWXU)) < 0) {</pre>
```

Potential Path Traversal\Path 3:

Severity Low
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

<u>57&pathid=7</u>

Status New

Method \*\_get\_cache\_location at line 154 of magma/cache.c gets user input from the getenv element. This element's value then flows through the code and is eventually used in a file path for local disk access in \_save\_cache\_contents at line 1414 of magma/cache.c. This may cause a Path Traversal vulnerability.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 172           | 1432          |
| Object | getenv        | cfile         |

### Code Snippet

File Name magma/cache.c

Method char \*\_get\_cache\_location(void) {

if ((cfile = getenv("DIME\_CACHE\_FILE"))) {

A

File Name magma/cache.c

Method int \_save\_cache\_contents(void) {

....
1432. if ((cfd = open(cfile, (O\_CREAT | O\_TRUNC | O\_WRONLY), (S\_IRWXU))) < 0) {

# **Unchecked Array Index**

Query Path:

CPP\Cx\CPP Low Visibility\Unchecked Array Index Version:1

### Categories

NIST SP 800-53: SI-10 Information Input Validation (P1)

### Description

Unchecked Array Index\Path 1:

Severity Low
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=61



| Status | New   |
|--------|-------|
| Status | 11000 |

|        | Source      | Destination |
|--------|-------------|-------------|
| File   | magma/sds.c | magma/sds.c |
| Line   | 350         | 350         |
| Object | len         | len         |

Code Snippet

File Name magma/sds.c

Method void sdsIncrLen(sds s, int incr) {

350.  $s[len] = '\0';$ 

Unchecked Array Index\Path 2:

Severity Low
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=62

Status New

|        | Source      | Destination |
|--------|-------------|-------------|
| File   | magma/sds.c | magma/sds.c |
| Line   | 665         | 665         |
| Object | i           | i           |

Code Snippet

File Name magma/sds.c

Method sds sdscatfmt(sds s, char const \*fmt, ...) {

665. s[i] = '\0';

Unchecked Array Index\Path 3:

Severity Low
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=63

Status New

|        | Source      | Destination |
|--------|-------------|-------------|
| File   | magma/sds.c | magma/sds.c |
| Line   | 693         | 693         |
| Object | len         | len         |



Code Snippet

File Name magma/sds.c

Method sds sdstrim(sds s, const char \*cset) {

693. s[len] = '\0';

# Use of Sizeof On a Pointer Type

Query Path:

CPP\Cx\CPP Low Visibility\Use of Sizeof On a Pointer Type Version:1

Description

Use of Sizeof On a Pointer Type\Path 1:

Severity Low
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=17

Status New

|        | Source      | Destination |
|--------|-------------|-------------|
| File   | magma/sds.c | magma/sds.c |
| Line   | 1023        | 1023        |
| Object | sizeof      | sizeof      |

Code Snippet

File Name magma/sds.c

Method sds \*sdssplitargs(const char \*line, int \*argc) {

vector = s\_realloc(vector,((\*argc)+1)\*sizeof(char\*));

**Use of Sizeof On a Pointer Type\Path 2:** 

Severity Low
Result State To Verify
Online Results <a href="http://win-">http://win-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=18

Status New

|        | Source      | Destination |
|--------|-------------|-------------|
| File   | magma/sds.c | magma/sds.c |
| Line   | 1029        | 1029        |
| Object | sizeof      | sizeof      |

Code Snippet

File Name magma/sds.c

Method sds \*sdssplitargs(const char \*line, int \*argc) {



if (vector == NULL) vector = s\_malloc(sizeof(void\*));

## TOCTOU

Query Path:

CPP\Cx\CPP Low Visibility\TOCTOU Version:1

**Description** 

### TOCTOU\Path 1:

Severity Low
Result State To Verify
Online Results <a href="http://win-">http://win-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=241

Status New

The \_load\_cache\_contents method in magma/cache.c file utilizes open that is accessed by other concurrent functionality in a way that is not thread-safe, which may result in a Race Condition over this resource.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1220          | 1220          |
| Object | open          | open          |

### Code Snippet

File Name magma/cache.c

Method int \_load\_cache\_contents(void) {

1220. if ((cfd = open(cfile, O\_RDONLY)) < 0) {

### TOCTOU\Path 2:

Severity Low
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=242

Status New

The \_save\_cache\_contents method in magma/cache.c file utilizes open that is accessed by other concurrent functionality in a way that is not thread-safe, which may result in a Race Condition over this resource.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1432          | 1432          |
| Object | open          | open          |

Code Snippet

File Name magma/cache.c



# **Inconsistent Implementations**

Query Path:

CPP\Cx\CPP Low Visibility\Inconsistent Implementations Version:0

Description

Inconsistent Implementations\Path 1:

Severity Low
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=4

Status New

|        | Source       | Destination  |
|--------|--------------|--------------|
| File   | magma/dime.c | magma/dime.c |
| Line   | 149          | 149          |
| Object | getopt       | getopt       |

### Code Snippet

File Name magma/dime.c

Method int main(int argc, char \*argv[]) {

while ((opt = getopt(argc, argv, "046d:e:f:i:hcnp:v")) != 1) {

### **NULL** Pointer Dereference

Query Path:

CPP\Cx\CPP Low Visibility\NULL Pointer Dereference Version:1

Categories

NIST SP 800-53: SC-5 Denial of Service Protection (P1)

OWASP Top 10 2017: A1-Injection

### Description

### **NULL Pointer Dereference\Path 1:**

Severity Low
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=51

Status New

The variable declared in 0 at magma/dime.c in line 138 is not initialized when it is used by drec at magma/dime.c in line 138.



|        | Source       | Destination  |
|--------|--------------|--------------|
| File   | magma/dime.c | magma/dime.c |
| Line   | 304          | 304          |
| Object | 0            | drec         |

```
Code Snippet
File Name magma/dime.c
Method int main(int argc, char *argv[]) {
....
304. drec->validated = no_trust ? 0 : 1;
```

# Heuristic 2nd Order Buffer Overflow read

Query Path:

CPP\Cx\CPP Heuristic\Heuristic 2nd Order Buffer Overflow read Version:0

# Categories

PCI DSS v3.2: PCI DSS (3.2) - 6.5.2 - Buffer overflows NIST SP 800-53: SI-10 Information Input Validation (P1)

OWASP Top 10 2017: A1-Injection

# Description

## **Heuristic 2nd Order Buffer Overflow read\Path 1:**

Severity Low
Result State To Verify
Online Results <a href="http://WIN-">http://WIN-</a>

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=52

Status New

The size of the buffer used by \_load\_cache\_contents in objlen, at line 1196 of magma/cache.c, is not properly verified before writing data to the buffer. This can enable a buffer overflow attack, using the source buffer that load cache contents passes to Address, at line 1196 of magma/cache.c, to overwrite the target buffer.

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 1239          | 1285          |
| Object | Address       | objlen        |

# Incorrect Permission Assignment For Critical Resources



### Query Path:

CPP\Cx\CPP Low Visibility\Incorrect Permission Assignment For Critical Resources Version:1

### Categories

FISMA 2014: Access Control

NIST SP 800-53: AC-3 Access Enforcement (P1) OWASP Top 10 2017: A2-Broken Authentication

## Description

Incorrect Permission Assignment For Critical Resources\Path 1:

Severity Low
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050067&projectid=500

57&pathid=235

Status New

|        | Source        | Destination   |
|--------|---------------|---------------|
| File   | magma/cache.c | magma/cache.c |
| Line   | 119           | 119           |
| Object | mkdir         | mkdir         |

## Code Snippet

File Name magma/cache.c

Method char \*\_get\_dime\_dir\_location(const char \*suffix) {

if (mkdir(cdir, S\_IRWXU) < 0) {

# **Buffer Overflow LongString**

### Risk

### What might happen

Buffer overflow attacks, in their various forms, could allow an attacker to control certain areas of memory. Typically, this is used to overwrite data on the stack necessary for the program to function properly, such as code and memory addresses, though other forms of this attack exist. Exploiting this vulnerability can generally lead to system crashes, infinite loops, or even execution of arbitrary code.

### Cause

# How does it happen

Buffer Overflows can manifest in numerous different variations. In it's most basic form, the attack controls a buffer, which is then copied to a smaller buffer without size verification. Because the attacker's source buffer is larger than the program's target buffer, the attacker's data overwrites whatever is next on the stack, allowing the attacker to control program structures.

Alternatively, the vulnerability could be the result of improper bounds checking; exposing internal memory addresses outside of their valid scope; allowing the attacker to control the size of the target buffer; or various other forms.

# **General Recommendations**



### How to avoid it

- o Always perform proper bounds checking before copying buffers or strings.
- o Prefer to use safer functions and structures, e.g. safe string classes over char\*, strncpy over strcpy, and so on.
- o Consistently apply tests for the size of buffers.
- o Do not return variable addresses outside the scope of their variables.

# **Source Code Examples**



# Buffer Overflow boundcpy WrongSizeParam

# Risk

### What might happen

Buffer overflow attacks, in their various forms, could allow an attacker to control certain areas of memory. Typically, this is used to overwrite data on the stack necessary for the program to function properly, such as code and memory addresses, though other forms of this attack exist. Exploiting this vulnerability can generally lead to system crashes, infinite loops, or even execution of arbitrary code.

### Cause

# How does it happen

Buffer Overflows can manifest in numerous different variations. In it's most basic form, the attack controls a buffer, which is then copied to a smaller buffer without size verification. Because the attacker's source buffer is larger than the program's target buffer, the attacker's data overwrites whatever is next on the stack, allowing the attacker to control program structures.

Alternatively, the vulnerability could be the result of improper bounds checking; exposing internal memory addresses outside of their valid scope; allowing the attacker to control the size of the target buffer; or various other forms.

### **General Recommendations**

### How to avoid it

- o Always perform proper bounds checking before copying buffers or strings.
- o Prefer to use safer functions and structures, e.g. safe string classes over char\*, strncpy over strcpy, and so on.
- o Consistently apply tests for the size of buffers.
- o Do not return variable addresses outside the scope of their variables.

# Source Code Examples

PAGE 129 OF 179



# MemoryFree on StackVariable

# Risk

### What might happen

Undefined Behavior may result with a crash. Crashes may give an attacker valuable information about the system and the program internals. Furthermore, it may leave unprotected files (e.g memory) that may be exploited.

### Cause

### How does it happen

Calling free() on a variable that was not dynamically allocated (e.g. malloc) will result with an Undefined Behavior.

## **General Recommendations**

### How to avoid it

Use free() only on dynamically allocated variables in order to prevent unexpected behavior from the compiler.

# **Source Code Examples**

# **CPP**

Bad - Calling free() on a static variable

```
void clean_up() {
   char temp[256];
   do_something();
   free(tmp);
   return;
}
```

Good - Calling free() only on variables that were dynamically allocated

```
void clean_up() {
   char *buff;
   buff = (char*) malloc(1024);
   free(buff);
   return;
}
```



# **Integer Overflow**

# Risk

### What might happen

Assigning large data types into smaller data types, without proper checks and explicit casting, will lead to undefined behavior and unintentional effects, such as data corruption (e.g. value wraparound, wherein maximum values become minimum values); system crashes; infinite loops; logic errors, such as bypassing of security mechanisms; or even buffer overflows leading to arbitrary code execution.

### Cause

### How does it happen

This flaw can occur when implicitly casting numerical data types of a larger size, into a variable with a data type of a smaller size. This forces the program to discard some bits of information from the number. Depending on how the numerical data types are stored in memory, this is often the bits with the highest value, causing substantial corruption of the stored number. Alternatively, the sign bit of a signed integer could be lost, completely reversing the intention of the number.

# **General Recommendations**

#### How to avoid it

- o Avoid casting larger data types to smaller types.
- o Prefer promoting the target variable to a large enough data type.
- If downcasting is necessary, always check that values are valid and in range of the target type, before casting

# **Source Code Examples**

### CPP

### **Unsafe Downsize Casting**

```
int unsafe_addition(short op1, int op2) {
    // op2 gets forced from int into a short
    short total = op1 + op2;
    return total;
}
```

### **Safer Use of Proper Data Types**

```
int safe_addition(short op1, int op2) {
    // total variable is of type int, the largest type that is needed
    int total = 0;

    // check if total will overflow available integer size
    if (INT_MAX - abs(op2) > op1)
```



```
{
    total = op1 + op2;
}
else
{
    // instead of overflow, saturate (but this is not always a good thing)
    total = INT_MAX
}
return total;
}
```



# **Dangerous Functions**

# Risk

### What might happen

Use of dangerous functions may expose varying risks associated with each particular function, with potential impact of improper usage of these functions varying significantly. The presence of such functions indicates a flaw in code maintenance policies and adherence to secure coding practices, in a way that has allowed introducing known dangerous code into the application.

# Cause

## How does it happen

A dangerous function has been identified within the code. Functions are often deemed dangerous to use for numerous reasons, as there are different sets of vulnerabilities associated with usage of such functions. For example, some string copy and concatenation functions are vulnerable to Buffer Overflow, Memory Disclosure, Denial of Service and more. Use of these functions is not recommended.

# **General Recommendations**

#### How to avoid it

- Deploy a secure and recommended alternative to any functions that were identified as dangerous.
  - If no secure alternative is found, conduct further researching and testing to identify whether current usage successfully sanitizes and verifies values, and thus successfully avoids the usecases for whom the function is indeed dangerous
- Conduct a periodical review of methods that are in use, to ensure that all external libraries and built-in functions are up-to-date and whose use has not been excluded from best secure coding practices.

# **Source Code Examples**

## CPP

### **Buffer Overflow in gets()**



Safe reading from user

Unsafe function for string copy

```
int main(int argc, char* argv[])
{
    char buf[10];
    strcpy(buf, argv[1]); // overflow occurs when len(argv[1]) > 10 bytes
    return 0;
}
```

Safe string copy

```
int main(int argc, char* argv[])
{
    char buf[10];
    strncpy(buf, argv[1], sizeof(buf));
    buf[9]= '\0'; //strncpy doesn't NULL terminates
    return 0;
}
```

### **Unsafe format string**

```
int main(int argc, char* argv[])
{
    printf(argv[1]); // If argv[1] contains a format token, such as %s, %x or %d, will cause
an access violation
    return 0;
}
```

### Safe format string



```
int main(int argc, char* argv[])
{
    printf("%s", argv[1]); // Second parameter is not a formattable string
    return 0;
}
```



Status: Draft

**Double Free** 

Weakness ID: 415 (Weakness Variant)

**Description** 

## **Description Summary**

The product calls free() twice on the same memory address, potentially leading to modification of unexpected memory locations.

# **Extended Description**

When a program calls free() twice with the same argument, the program's memory management data structures become corrupted. This corruption can cause the program to crash or, in some circumstances, cause two later calls to malloc() to return the same pointer. If malloc() returns the same value twice and the program later gives the attacker control over the data that is written into this doubly-allocated memory, the program becomes vulnerable to a buffer overflow attack.

**Alternate Terms** 

**Double-free** 

### **Time of Introduction**

- Architecture and Design
- **Implementation**

**Applicable Platforms** 

# **Languages**

C

C++

### **Common Consequences**

| Scope          | Effect                                                                                                            |
|----------------|-------------------------------------------------------------------------------------------------------------------|
| Access Control | Doubly freeing memory may result in a write-what-where condition, allowing an attacker to execute arbitrary code. |

### Likelihood of Exploit

Low to Medium

**Demonstrative Examples** 

## **Example 1**

The following code shows a simple example of a double free vulnerability.

```
Example Language: C
```

```
char* ptr = (char*)malloc (SIZE);
if (abrt) {
free(ptr);
free(ptr);
```

Double free vulnerabilities have two common (and sometimes overlapping) causes:

- Error conditions and other exceptional circumstances
- Confusion over which part of the program is responsible for freeing the memory Although some double free vulnerabilities are not much more complicated than the

previous example, most are spread out across hundreds of lines of code or even different files. Programmers seem particularly susceptible to freeing global variables



more than once.

# **Example 2**

While contrived, this code should be exploitable on Linux distributions which do not ship with heap-chunk check summing turned on.

(Bad Code)

```
Example Language: C
```

```
#include <stdio.h>
#include <unistd.h>
#define BUFSIZE1 512
#define BUFSIZE2 ((BUFSIZE1/2) - 8)
int main(int argc, char **argv) {
char *buf1R1;
char *buf2R1;
char *buf1R2;
buf1R1 = (char *) malloc(BUFSIZE2);
buf2R1 = (char *) malloc(BUFSIZE2);
free(buf1R1);
free(buf2R1);
buf1R2 = (char *) malloc(BUFSIZE1);
strncpy(buf1R2, argv[1], BUFSIZE1-1);
free(buf2R1);
free(buf1R2);
```

**Observed Examples** 

| Reference     | Description                                          |
|---------------|------------------------------------------------------|
| CVE-2004-0642 | Double free resultant from certain error conditions. |
| CVE-2004-0772 | Double free resultant from certain error conditions. |
| CVE-2005-1689 | Double free resultant from certain error conditions. |
| CVE-2003-0545 | Double free from invalid ASN.1 encoding.             |
| CVE-2003-1048 | Double free from malformed GIF.                      |
| CVE-2005-0891 | Double free from malformed GIF.                      |
| CVE-2002-0059 | Double free from malformed compressed data.          |

## **Potential Mitigations**

### Phase: Architecture and Design

Choose a language that provides automatic memory management.

### **Phase: Implementation**

Ensure that each allocation is freed only once. After freeing a chunk, set the pointer to NULL to ensure the pointer cannot be freed again. In complicated error conditions, be sure that clean-up routines respect the state of allocation properly. If the language is object oriented, ensure that object destructors delete each chunk of memory only once.

### **Phase: Implementation**

Use a static analysis tool to find double free instances.

Relationships

| Kelationships |                |     |                                            |                                                 |
|---------------|----------------|-----|--------------------------------------------|-------------------------------------------------|
| Nature        | Туре           | ID  | Name                                       | View(s) this relationship pertains to           |
| ChildOf       | Weakness Class | 398 | Indicator of Poor Code<br>Quality          | Seven Pernicious<br>Kingdoms<br>(primary)700    |
| ChildOf       | Category       | 399 | Resource Management<br>Errors              | Development<br>Concepts<br>(primary)699         |
| ChildOf       | Category       | 633 | Weaknesses that Affect<br>Memory           | Resource-specific<br>Weaknesses<br>(primary)631 |
| ChildOf       | Weakness Base  | 666 | Operation on Resource<br>in Wrong Phase of | Research Concepts (primary)1000                 |



|          |                |     | <u>Lifetime</u>                                                 |                                                                                    |
|----------|----------------|-----|-----------------------------------------------------------------|------------------------------------------------------------------------------------|
| ChildOf  | Weakness Class | 675 | <u>Duplicate Operations on</u><br><u>Resource</u>               | Research Concepts1000                                                              |
| ChildOf  | Category       | 742 | CERT C Secure Coding<br>Section 08 - Memory<br>Management (MEM) | Weaknesses<br>Addressed by the<br>CERT C Secure Coding<br>Standard<br>(primary)734 |
| PeerOf   | Weakness Base  | 123 | Write-what-where Condition                                      | Research Concepts1000                                                              |
| PeerOf   | Weakness Base  | 416 | <u>Use After Free</u>                                           | Development<br>Concepts699<br>Research Concepts1000                                |
| MemberOf | View           | 630 | Weaknesses Examined by SAMATE                                   | Weaknesses Examined by SAMATE (primary)630                                         |
| PeerOf   | Weakness Base  | 364 | Signal Handler Race<br>Condition                                | Research Concepts1000                                                              |

# **Relationship Notes**

This is usually resultant from another weakness, such as an unhandled error or race condition between threads. It could also be primary to weaknesses such as buffer overflows.

### **Affected Resources**

# Memory

**Taxonomy Mappings** 

| <b>Mapped Taxonomy Name</b> | Node ID | Fit | Mapped Node Name                                                              |
|-----------------------------|---------|-----|-------------------------------------------------------------------------------|
| PLOVER                      |         |     | DFREE - Double-Free<br>Vulnerability                                          |
| 7 Pernicious Kingdoms       |         |     | Double Free                                                                   |
| CLASP                       |         |     | Doubly freeing memory                                                         |
| CERT C Secure Coding        | MEM00-C |     | Allocate and free memory in the same module, at the same level of abstraction |
| CERT C Secure Coding        | MEM01-C |     | Store a new value in pointers immediately after free()                        |
| CERT C Secure Coding        | MEM31-C |     | Free dynamically allocated memory exactly once                                |

### **White Box Definitions**

A weakness where code path has:

- 1. start statement that relinquishes a dynamically allocated memory resource
- 2. end statement that relinquishes the dynamically allocated memory resource

### **Maintenance Notes**

It could be argued that Double Free would be most appropriately located as a child of "Use after Free", but "Use" and "Release" are considered to be distinct operations within vulnerability theory, therefore this is more accurately "Release of a Resource after Expiration or Release", which doesn't exist yet.

**Content History** 

| e on the real of the second |                                                                                    |                               |                  |
|-----------------------------|------------------------------------------------------------------------------------|-------------------------------|------------------|
| Submissions                 |                                                                                    |                               |                  |
| <b>Submission Date</b>      | Submitter                                                                          | Organization                  | Source           |
|                             | PLOVER                                                                             |                               | Externally Mined |
| Modifications               |                                                                                    |                               |                  |
| <b>Modification Date</b>    | Modifier                                                                           | Organization                  | Source           |
| 2008-07-01                  | Eric Dalci                                                                         | Cigital                       | External         |
|                             | updated Potential Mitigations,                                                     | Time of Introduction          |                  |
| 2008-08-01                  |                                                                                    | KDM Analytics                 | External         |
|                             | added/updated white box def                                                        | initions                      |                  |
| 2008-09-08                  | CWE Content Team                                                                   | MITRE                         | Internal         |
|                             | updated Applicable Platforms, Common Consequences, Description, Maintenance Notes, |                               |                  |
|                             | Relationships, Other Notes, R                                                      | elationship Notes, Taxonomy N | Mappings         |
| 2008-11-24                  | CWE Content Team                                                                   | MITRE                         | Internal         |

PAGE 138 OF 179



|            | updated Relationships, Tax | konomy Mappings |          |
|------------|----------------------------|-----------------|----------|
| 2009-05-27 | CWE Content Team           | MITRE           | Internal |
|            | updated Demonstrative Ex   | amples          |          |
| 2009-10-29 | CWE Content Team           | MITRE           | Internal |
|            | updated Other Notes        |                 |          |

BACK TO TOP



#### Failure to Release Memory Before Removing Last Reference ('Memory Leak')

Weakness ID: 401 (Weakness Base)

**Description** 

### Status: Draft

# **Description Summary**

The software does not sufficiently track and release allocated memory after it has been used, which slowly consumes remaining memory.

# **Extended Description**

This is often triggered by improper handling of malformed data or unexpectedly interrupted sessions.

### **Terminology Notes**

"memory leak" has sometimes been used to describe other kinds of issues, e.g. for information leaks in which the contents of memory are inadvertently leaked (CVE-2003-0400 is one such example of this terminology conflict).

### **Time of Introduction**

- Architecture and Design
- Implementation

# **Applicable Platforms**

## <u>Languages</u>

C

C++

### **Modes of Introduction**

Memory leaks have two common and sometimes overlapping causes:

- Error conditions and other exceptional circumstances
- Confusion over which part of the program is responsible for freeing the memory

### **Common Consequences**

| Scope        | Effect                                                                                                                                                                                                                                                                                                                            |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Availability | Most memory leaks result in general software reliability problems, but if an attacker can intentionally trigger a memory leak, the attacker might be able to launch a denial of service attack (by crashing or hanging the program) or take advantage of other unexpected program behavior resulting from a low memory condition. |

### Likelihood of Exploit

### Medium

**Demonstrative Examples** 

### Example 1

The following C function leaks a block of allocated memory if the call to read() fails to return the expected number of bytes:

```
(Bad Code)
```

```
Example Language: C
char* getBlock(int fd) {
char* buf = (char*) malloc(BLOCK_SIZE);
if (!buf) {
return NULL;
}
if (read(fd, buf, BLOCK_SIZE) != BLOCK_SIZE) {
return NULL;
}
```



```
return buf;
```

# **Example 2**

Here the problem is that every time a connection is made, more memory is allocated. So if one just opened up more and more connections, eventually the machine would run out of memory.

(Bad Code)

```
Example Language: C
```

```
bar connection() {
foo = malloc(1024);
return foo;
}
endConnection(bar foo) {
free(foo);
}
int main() {
while(1) //thread 1
//On a connection
foo=connection(); //thread 2
//When the connection ends
endConnection(foo)
}
```

**Observed Examples** 

| Observed Examples |                                                                                                                    |
|-------------------|--------------------------------------------------------------------------------------------------------------------|
| Reference         | Description                                                                                                        |
| CVE-2005-3119     | Memory leak because function does not free() an element of a data structure.                                       |
| CVE-2004-0427     | Memory leak when counter variable is not decremented.                                                              |
| CVE-2002-0574     | Memory leak when counter variable is not decremented.                                                              |
| CVE-2005-3181     | Kernel uses wrong function to release a data structure, preventing data from being properly tracked by other code. |
| CVE-2004-0222     | Memory leak via unknown manipulations as part of protocol test suite.                                              |
| CVE-2001-0136     | Memory leak via a series of the same command.                                                                      |

### **Potential Mitigations**

Pre-design: Use a language or compiler that performs automatic bounds checking.

### Phase: Architecture and Design

Use an abstraction library to abstract away risky APIs. Not a complete solution.

Pre-design through Build: The Boehm-Demers-Weiser Garbage Collector or valgrind can be used to detect leaks in code. This is not a complete solution as it is not 100% effective.

Relationships

| Kelationships |                |     |                                                          |                                                       |
|---------------|----------------|-----|----------------------------------------------------------|-------------------------------------------------------|
| Nature        | Туре           | ID  | Name                                                     | View(s) this relationship pertains to                 |
| ChildOf       | Weakness Class | 398 | Indicator of Poor Code<br>Quality                        | Seven Pernicious<br>Kingdoms<br>(primary)700          |
| ChildOf       | Category       | 399 | Resource Management<br>Errors                            | Development<br>Concepts<br>(primary)699               |
| ChildOf       | Category       | 633 | Weaknesses that Affect<br>Memory                         | Resource-specific<br>Weaknesses<br>(primary)631       |
| ChildOf       | Category       | 730 | OWASP Top Ten 2004<br>Category A9 - Denial of<br>Service | Weaknesses in<br>OWASP Top Ten<br>(2004) (primary)711 |
| ChildOf       | Weakness Base  | 772 | Missing Release of Resource after Effective              | Research Concepts (primary)1000                       |



|           |                |     | <u>Lifetime</u>                             |                                                  |
|-----------|----------------|-----|---------------------------------------------|--------------------------------------------------|
| MemberOf  | View           | 630 | Weaknesses Examined by SAMATE               | Weaknesses<br>Examined by SAMATE<br>(primary)630 |
| CanFollow | Weakness Class | 390 | Detection of Error Condition Without Action | Research Concepts1000                            |

### **Relationship Notes**

This is often a resultant weakness due to improper handling of malformed data or early termination of sessions.

### **Affected Resources**

# Memory

### **Functional Areas**

## Memory management

### **Taxonomy Mappings**

| <b>Mapped Taxonomy Name</b> | Node ID | Fit               | Mapped Node Name           |
|-----------------------------|---------|-------------------|----------------------------|
| PLOVER                      |         |                   | Memory leak                |
| 7 Pernicious Kingdoms       |         |                   | Memory Leak                |
| CLASP                       |         |                   | Failure to deallocate data |
| OWASP Top Ten 2004          | A9      | CWE More Specific | Denial of Service          |

### White Box Definitions

A weakness where the code path has:

- 1. start statement that allocates dynamically allocated memory resource
- 2. end statement that loses identity of the dynamically allocated memory resource creating situation where dynamically allocated memory resource is never relinquished

Where "loses" is defined through the following scenarios:

- 1. identity of the dynamic allocated memory resource never obtained
- 2. the statement assigns another value to the data element that stored the identity of the dynamically allocated memory resource and there are no aliases of that data element
- 3. identity of the dynamic allocated memory resource obtained but never passed on to function for memory resource release
- 4. the data element that stored the identity of the dynamically allocated resource has reached the end of its scope at the statement and there are no aliases of that data element

### References

J. Whittaker and H. Thompson. "How to Break Software Security". Addison Wesley. 2003.

### **Content History**

| Submissions              |                                                                                                                                                     |               |                  |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------|
| <b>Submission Date</b>   | Submitter                                                                                                                                           | Organization  | Source           |
|                          | PLOVER                                                                                                                                              |               | Externally Mined |
| Modifications            |                                                                                                                                                     |               |                  |
| <b>Modification Date</b> | Modifier                                                                                                                                            | Organization  | Source           |
| 2008-07-01               | Eric Dalci                                                                                                                                          | Cigital       | External         |
|                          | updated Time of Introduction                                                                                                                        | n             |                  |
| 2008-08-01               |                                                                                                                                                     | KDM Analytics | External         |
|                          | added/updated white box de                                                                                                                          | efinitions    |                  |
| 2008-08-15               |                                                                                                                                                     | Veracode      | External         |
|                          | Suggested OWASP Top Ten                                                                                                                             | 2004 mapping  |                  |
| 2008-09-08               | CWE Content Team                                                                                                                                    | MITRE         | Internal         |
|                          | updated Applicable Platforms, Common Consequences, Relationships, Other Notes, References, Relationship Notes, Taxonomy Mappings, Terminology Notes |               |                  |
| 2008-10-14               | CWE Content Team                                                                                                                                    | MITRE         | Internal         |
|                          | updated Description                                                                                                                                 |               |                  |
| 2009-03-10               | CWE Content Team                                                                                                                                    | MITRE         | Internal         |
|                          | updated Other Notes                                                                                                                                 |               |                  |
| 2009-05-27               | CWE Content Team                                                                                                                                    | MITRE         | Internal         |
|                          | updated Name                                                                                                                                        |               |                  |
| 2009-07-17               | KDM Analytics                                                                                                                                       |               | External         |
|                          | Improved the White Box Det                                                                                                                          | finition      |                  |



| 2009-07-27         | CWE Content Team                           | MITRE                                                                        | Internal |  |
|--------------------|--------------------------------------------|------------------------------------------------------------------------------|----------|--|
|                    | updated White Box Definitions              |                                                                              |          |  |
| 2009-10-29         | CWE Content Team                           | MITRE                                                                        | Internal |  |
|                    | updated Modes of Introduction, Other Notes |                                                                              |          |  |
| 2010-02-16         | CWE Content Team                           | MITRE                                                                        | Internal |  |
|                    | updated Relationships                      |                                                                              |          |  |
| Previous Entry N   | ames                                       |                                                                              |          |  |
| <b>Change Date</b> | <b>Previous Entry Name</b>                 | Previous Entry Name                                                          |          |  |
| 2008-04-11         | Memory Leak                                | Memory Leak                                                                  |          |  |
| 2009-05-27         | Failure to Release Mem<br>Leak')           | Failure to Release Memory Before Removing Last Reference (aka 'Memory Leak') |          |  |
|                    |                                            |                                                                              |          |  |

BACK TO TOP



# **Use After Free**

# Risk

### What might happen

A use after free error will cause code to use an area of memory previously assigned with a specific value, which has since been freed and may have been overwritten by another value. This error will likely cause unexpected behavior, memory corruption and crash errors. In some cases where the freed and used section of memory is used to determine execution flow, and the error can be induced by an attacker, this may result in execution of malicious code.

### Cause

# How does it happen

Pointers to variables allow code to have an address with a set size to a dynamically allocated variable. Eventually, the pointer's destination may become free - either explicitly in code, such as when programmatically freeing this variable, or implicitly, such as when a local variable is returned - once it is returned, the variable's scope is released. Once freed, this memory will be re-used by the application, overwritten with new data. At this point, dereferencing this pointer will potentially resolve newly written and unexpected data.

### **General Recommendations**

### How to avoid it

- Do not return local variables or pointers
- Review code to ensure no flow allows use of a pointer after it has been explicitly freed

# Source Code Examples

### **CPP**

### Use of Variable after It was Freed

```
free(input);
printf("%s", input);
```

### Use of Pointer to Local Variable That Was Freed On Return

```
int* func1()
{
    int i;
    i = 1;
    return &i;
}

void func2()
{
    int j;
    j = 5;
```



```
//..
    int * i = func1();
    printf("%d\r\n", *i); // Output could be 1 or Segmentation Fault
    func2();
    printf("%d\r\n", *i); // Output is 5, which is j's value, as func2() overwrote data in
the stack
//..
```



# **Use of Zero Initialized Pointer**

## Risk

#### What might happen

A null pointer dereference is likely to cause a run-time exception, a crash, or other unexpected behavior.

## Cause

## How does it happen

Variables which are declared without being assigned will implicitly retain a null value until they are assigned. The null value can also be explicitly set to a variable, to ensure clear out its contents. Since null is not really a value, it may not have object variables and methods, and any attempt to access contents of a null object, instead of verifying it is set beforehand, will result in a null pointer dereference exception.

## **General Recommendations**

#### How to avoid it

- For any variable that is created, ensure all logic flows between declaration and use assign a non-null value to the variable first.
- Enforce null checks on any received variable or object before it is dereferenced, to ensure it does not contain a null assigned to it elsewhere.
- Consider the need to assign null values in order to overwrite initialized variables. Consider reassigning or releasing these variables instead.

# **Source Code Examples**

#### **CPP**

#### **Explicit NULL Dereference**

```
char * input = NULL;
printf("%s", input);
```

#### Implicit NULL Dereference

```
char * input;
printf("%s", input);
```

#### Java

#### **Explicit Null Dereference**

```
Object o = null;
out.println(o.getClass());
```





# **Stored Buffer Overflow boundcpy**

## **Risk**

#### What might happen

Buffer overflow attacks, in their various forms, could allow an attacker to control certain areas of memory. Typically, this is used to overwrite data on the stack necessary for the program to function properly, such as code and memory addresses, though other forms of this attack exist. Exploiting this vulnerability can generally lead to system crashes, infinite loops, or even execution of arbitrary code.

#### Cause

#### How does it happen

Buffer Overflows can manifest in numerous different variations. In it's most basic form, the attack controls a buffer, which is then copied to a smaller buffer without size verification. Because the attacker's source buffer is larger than the program's target buffer, the attacker's data overwrites whatever is next on the stack, allowing the attacker to control program structures.

Alternatively, the vulnerability could be the result of improper bounds checking; exposing internal memory addresses outside of their valid scope; allowing the attacker to control the size of the target buffer; or various other forms.

#### **General Recommendations**

#### How to avoid it

- o Always perform proper bounds checking before copying buffers or strings.
- o Prefer to use safer functions and structures, e.g. safe string classes over char\*, strncpy over strcpy, and so on.
- o Consistently apply tests for the size of buffers.
- o Do not return variable addresses outside the scope of their variables.

# **Source Code Examples**

#### CPP

#### **Overflowing Buffers**

```
const int BUFFER_SIZE = 10;
char buffer[BUFFER_SIZE];

void copyStringToBuffer(char* inputString)
{
    strcpy(buffer, inputString);
}
```

#### **Checked Buffers**

```
const int BUFFER_SIZE = 10;
const int MAX_INPUT_SIZE = 256;
char buffer[BUFFER_SIZE];

void copyStringToBuffer(char* inputString)
```



```
if (strnlen(inputString, MAX_INPUT_SIZE) < sizeof(buffer))
{
    strncpy(buffer, inputString, sizeof(buffer));
}
}</pre>
```



Status: Draft

#### **Use of Function with Inconsistent Implementations**

Weakness ID: 474 (Weakness Base)

**Description** 

## **Description Summary**

The code uses a function that has inconsistent implementations across operating systems and versions, which might cause security-relevant portability problems.

**Time of Introduction** 

- Architecture and Design
- Implementation

## **Applicable Platforms**

## **Languages**

C: (Often)

PHP: (Often)

ΑII

## **Potential Mitigations**

Do not accept inconsistent behavior from the API specifications when the deviant behavior increase the risk level.

#### **Other Notes**

The behavior of functions in this category varies by operating system, and at times, even by operating system version. Implementation differences can include:

- Slight differences in the way parameters are interpreted leading to inconsistent results.
- Some implementations of the function carry significant security risks.
- The function might not be defined on all platforms.

Relationships

| Nature   | Туре             | ID  | Name                              | View(s) this relationship pertains to                                                                    |
|----------|------------------|-----|-----------------------------------|----------------------------------------------------------------------------------------------------------|
| ChildOf  | Weakness Class   | 398 | Indicator of Poor Code<br>Quality | Development Concepts (primary)699 Seven Pernicious Kingdoms (primary)700 Research Concepts (primary)1000 |
| ParentOf | Weakness Variant | 589 | Call to Non-ubiquitous API        | Research Concepts (primary)1000                                                                          |

## **Taxonomy Mappings**

| <b>Mapped Taxonomy Name</b> | Node ID | Fit | Mapped Node Name             |
|-----------------------------|---------|-----|------------------------------|
| 7 Pernicious Kingdoms       |         |     | Inconsistent Implementations |

#### **Content History**

| Submissions              |                                                                             |              |                  |  |
|--------------------------|-----------------------------------------------------------------------------|--------------|------------------|--|
| <b>Submission Date</b>   | Submitter                                                                   | Organization | Source           |  |
|                          | 7 Pernicious Kingdoms                                                       |              | Externally Mined |  |
| Modifications            |                                                                             |              |                  |  |
| <b>Modification Date</b> | Modifier                                                                    | Organization | Source           |  |
| 2008-07-01               | Eric Dalci                                                                  | Cigital      | External         |  |
|                          | updated Potential Mitigations, Time of Introduction                         |              |                  |  |
| 2008-09-08               | CWE Content Team                                                            | MITRE        | Internal         |  |
|                          | updated Applicable Platforms, Relationships, Other Notes, Taxonomy Mappings |              |                  |  |
| Previous Entry Names     |                                                                             |              |                  |  |
| Change Date              | <b>Previous Entry Name</b>                                                  |              |                  |  |
| 2008-04-11               | Inconsistent Implementat                                                    | ions         |                  |  |

BACK TO TOP



# **Potential Path Traversal**

## Risk

#### What might happen

An attacker could define any arbitrary file path for the application to use, potentially leading to:

- o Stealing sensitive files, such as configuration or system files
- o Overwriting files such as program binaries, configuration files, or system files
- o Deleting critical files, causing a denial of service (DoS).

## Cause

#### How does it happen

The application uses user input in the file path for accessing files on the application server's local disk. This enables an attacker to arbitrarily determine the file path.

## **General Recommendations**

#### How to avoid it

- 1. Ideally, avoid depending on user input for file selection.
- 2. Validate all input, regardless of source. Validation should be based on a whitelist: accept only data fitting a specified structure, rather than reject bad patterns. Check for:
  - o Data type
  - o Size
  - o Range
  - o Format
  - Expected values
- 3. Accept user input only for the filename, not for the path and folders.
- 4. Ensure that file path is fully canonicalized.
- 5. Explicitly limit the application to using a designated folder that separate from the applications binary folder
- 6. Restrict the privileges of the application's OS user to necessary files and folders. The application should not be able to write to the application binary folder, and should not read anything outside of the application folder and data folder.

# **Source Code Examples**

## **CSharp**

Using unvalidated user input as the file name may enable the user to access arbitrary files on the server local disk

```
public class PathTraversal
{
    private void foo(TextBox textbox1)

{
    string fileNum = textbox1.Text;
    string path = "c:\files\file" + fileNum;
    FileStream f = new FileStream(path, FileMode.Open);
    byte[] output = new byte[10];
    f.Read(output,0, 10);
```



```
}
```

#### Potentially hazardous characters are removed from the user input before use

#### Java

Using unvalidated user input as the file name may enable the user to access arbitrary files on the server local disk

```
public class Absolute Path Traversal {
    public static void main(String[] args) {
        Scanner userInputScanner = new Scanner(System.in);
        System.out.print("\nEnter file name: ");
        String name = userInputScanner.nextLine();
        String path = "c:\files\file" + name;
        try {
            BufferedReader reader = new BufferedReader(new FileReader(path));
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}
```

#### Potentially hazardous characters are removed from the user input before use

```
public class Absolute_Path_Traversal_Fixed {
    public static void main (String[] args) {
        Scanner userInputScanner = new Scanner(System.in);
        System.out.print("\nEnter file name: ");
        String name = userInputScanner.nextLine();
        name = name.replace("/", "").replace("..", "");
        String path = "c:\files\file" + name;
        try {
            BufferedReader reader = new BufferedReader(new FileReader(path));
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}
```



# **Unchecked Return Value**

## Risk

## What might happen

A program that does not check function return values could cause the application to enter an undefined state. This could lead to unexpected behavior and unintended consequences, including inconsistent data, system crashes or other error-based exploits.

## Cause

#### How does it happen

The application calls a system function, but does not receive or check the result of this function. These functions often return error codes in the result, or share other status codes with it's caller. The application simply ignores this result value, losing this vital information.

## **General Recommendations**

#### How to avoid it

- Always check the result of any called function that returns a value, and verify the result is an expected value.
- Ensure the calling function responds to all possible return values.
- Expect runtime errors and handle them gracefully. Explicitly define a mechanism for handling unexpected errors.

# **Source Code Examples**

#### **CPP**

#### **Unchecked Memory Allocation**

```
buff = (char*) malloc(size);
strncpy(buff, source, size);
```

#### **Safer Memory Allocation**

```
buff = (char*) malloc(size+1);
if (buff==NULL) exit(1);

strncpy(buff, source, size);
buff[size] = '\0';
```



Status: Draft

#### Use of sizeof() on a Pointer Type

Weakness ID: 467 (Weakness Variant)

**Description** 

## **Description Summary**

The code calls sizeof() on a malloced pointer type, which always returns the wordsize/8. This can produce an unexpected result if the programmer intended to determine how much memory has been allocated.

**Time of Introduction** 

Implementation

**Applicable Platforms** 

## **Languages**

 $\mathbf{C}$ 

C++

**Common Consequences** 

| Scope     | Effect                                                                                                                                                  |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Integrity | This error can often cause one to allocate a buffer that is much smaller than what is needed, leading to resultant weaknesses such as buffer overflows. |

## Likelihood of Exploit

High

**Demonstrative Examples** 

## **Example 1**

Care should be taken to ensure size of returns the size of the data structure itself, and not the size of the pointer to the data structure.

In this example, sizeof(foo) returns the size of the pointer.

```
(Bad Code)
```

```
Example Languages: C and C++
```

```
double *foo;
```

foo = (double \*)malloc(sizeof(foo));

In this example, sizeof(\*foo) returns the size of the data structure and not the size of the pointer.

(Good Code)

Example Languages: C and C++

double \*foo;

foo = (double \*)malloc(sizeof(\*foo));

## **Example 2**

This example defines a fixed username and password. The AuthenticateUser() function is intended to accept a username and a password from an untrusted user, and check to ensure that it matches the username and password. If the username and password match, AuthenticateUser() is intended to indicate that authentication succeeded.

(Bad Code)

```
/* Ignore CWE-259 (hard-coded password) and CWE-309 (use of password system for authentication) for this example. */
char *username = "admin";
char *pass = "password";
int AuthenticateUser(char *inUser, char *inPass) {
```



```
printf("Sizeof username = %d\n", sizeof(username));
printf("Sizeof pass = %d\n", sizeof(pass));
if (strncmp(username, inUser, sizeof(username))) {
printf("Auth failure of username using sizeof\n");
return(AUTH_FAIL);
/* Because of CWE-467, the sizeof returns 4 on many platforms and architectures. */
if (! strncmp(pass, inPass, sizeof(pass))) {
printf("Auth success of password using sizeof\n");
return(AUTH SUCCESS);
else {
printf("Auth fail of password using sizeof\n");
return(AUTH FAIL);
int main (int argc, char **argv)
int authResult;
if (argc < 3) {
ExitError("Usage: Provide a username and password");
authResult = AuthenticateUser(argv[1], argv[2]);
if (authResult != AUTH SUCCESS) {
ExitError("Authentication failed");
DoAuthenticatedTask(argv[1]);
```

In AuthenticateUser(), because sizeof() is applied to a parameter with an array type, the sizeof() call might return 4 on many modern architectures. As a result, the strncmp() call only checks the first four characters of the input password, resulting in a partial comparison (CWE-187), leading to improper authentication (CWE-287).

Because of the partial comparison, any of these passwords would still cause authentication to succeed for the "admin" user:

(Attack

```
pass5
passABCDEFGH
passWORD
```

Because only 4 characters are checked, this significantly reduces the search space for an attacker, making brute force attacks more feasible.

The same problem also applies to the username, so values such as "adminXYZ" and "administrator" will succeed for the username.

#### **Potential Mitigations**

#### **Phase: Implementation**

Use expressions such as "sizeof(\*pointer)" instead of "sizeof(pointer)", unless you intend to run sizeof() on a pointer type to gain some platform independence or if you are allocating a variable on the stack.

#### **Other Notes**

The use of sizeof() on a pointer can sometimes generate useful information. An obvious case is to find out the wordsize on a platform. More often than not, the appearance of sizeof(pointer) indicates a bug.

#### **Weakness Ordinalities**

| Ordinality | Description                                                 |
|------------|-------------------------------------------------------------|
| Primary    | (where the weakness exists independent of other weaknesses) |



Relationships

| retationships |                |     |                                                           |                                                                                    |
|---------------|----------------|-----|-----------------------------------------------------------|------------------------------------------------------------------------------------|
| Nature        | Туре           | ID  | Name                                                      | View(s) this relationship pertains to                                              |
| ChildOf       | Category       | 465 | <u>Pointer Issues</u>                                     | Development<br>Concepts<br>(primary)699                                            |
| ChildOf       | Weakness Class | 682 | Incorrect Calculation                                     | Research Concepts (primary)1000                                                    |
| ChildOf       | Category       | 737 | CERT C Secure Coding<br>Section 03 - Expressions<br>(EXP) | Weaknesses<br>Addressed by the<br>CERT C Secure Coding<br>Standard<br>(primary)734 |
| ChildOf       | Category       | 740 | CERT C Secure Coding<br>Section 06 - Arrays<br>(ARR)      | Weaknesses Addressed<br>by the CERT C Secure<br>Coding Standard734                 |
| CanPrecede    | Weakness Base  | 131 | Incorrect Calculation of Buffer Size                      | Research Concepts1000                                                              |

**Taxonomy Mappings** 

| v 11 0               |         |     |                                                                                |
|----------------------|---------|-----|--------------------------------------------------------------------------------|
| Mapped Taxonomy Name | Node ID | Fit | Mapped Node Name                                                               |
| CLASP                |         |     | Use of sizeof() on a pointer type                                              |
| CERT C Secure Coding | ARR01-C |     | Do not apply the sizeof operator to a pointer when taking the size of an array |
| CERT C Secure Coding | EXP01-C |     | Do not take the size of a pointer to determine the size of the pointed-to type |

## **White Box Definitions**

A weakness where code path has:

- 1. end statement that passes an identity of a dynamically allocated memory resource to a sizeof operator
- $\ensuremath{\mathsf{2}}.$  start statement that allocates the dynamically allocated memory resource

## References

Robert Seacord. "EXP01-A. Do not take the size of a pointer to determine the size of a type".

<a href="https://www.securecoding.cert.org/confluence/display/seccode/EXP01-">https://www.securecoding.cert.org/confluence/display/seccode/EXP01-</a>

 $\underline{A.+Do+not+take+the+sizeof+a+pointer+to+determine+the+size+of+a+type}{>}.$ 

**Content History** 

| Content History          |                                                                                                                         |                                |                  |  |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------|--|
| Submissions              |                                                                                                                         |                                |                  |  |
| <b>Submission Date</b>   | Submitter                                                                                                               | Organization                   | Source           |  |
|                          | CLASP                                                                                                                   |                                | Externally Mined |  |
| Modifications            |                                                                                                                         |                                |                  |  |
| <b>Modification Date</b> | Modifier                                                                                                                | Organization                   | Source           |  |
| 2008-07-01               | Eric Dalci                                                                                                              | Cigital                        | External         |  |
|                          | updated Time of Introduction                                                                                            | n                              |                  |  |
| 2008-08-01               |                                                                                                                         | KDM Analytics                  | External         |  |
|                          | added/updated white box definitions                                                                                     |                                |                  |  |
| 2008-09-08               | CWE Content Team                                                                                                        | MITRE                          | Internal         |  |
|                          | updated Applicable Platforms, Common Consequences, Relationships, Other Notes, Taxonomy Mappings, Weakness Ordinalities |                                |                  |  |
| 2008-11-24               | CWE Content Team                                                                                                        | MITRE                          | Internal         |  |
|                          | updated Relationships, Taxo                                                                                             | nomy Mappings                  |                  |  |
| 2009-03-10               | CWE Content Team                                                                                                        | MITRE                          | Internal         |  |
|                          | updated Demonstrative Exa                                                                                               | updated Demonstrative Examples |                  |  |
| 2009-12-28               | CWE Content Team                                                                                                        | MITRE                          | Internal         |  |
|                          | updated Demonstrative Exa                                                                                               | mples                          |                  |  |
| 2010-02-16               | CWE Content Team                                                                                                        | MITRE                          | Internal         |  |
|                          | updated Relationships                                                                                                   |                                |                  |  |
|                          |                                                                                                                         |                                |                  |  |

BACK TO TOP



# **NULL Pointer Dereference**

## Risk

## What might happen

A null pointer dereference is likely to cause a run-time exception, a crash, or other unexpected behavior.

## Cause

## How does it happen

Variables which are declared without being assigned will implicitly retain a null value until they are assigned. The null value can also be explicitly set to a variable, to ensure clear out its contents. Since null is not really a value, it may not have object variables and methods, and any attempt to access contents of a null object, instead of verifying it is set beforehand, will result in a null pointer dereference exception.

## **General Recommendations**

#### How to avoid it

- For any variable that is created, ensure all logic flows between declaration and use assign a non-null value to the variable first.
- Enforce null checks on any received variable or object before it is dereferenced, to ensure it does not contain a null assigned to it elsewhere.
- Consider the need to assign null values in order to overwrite initialized variables. Consider reassigning or releasing these variables instead.

# **Source Code Examples**

PAGE 157 OF 179



# Heuristic 2nd Order Buffer Overflow read

## Risk

#### What might happen

Buffer overflow attacks, in their various forms, could allow an attacker to control certain areas of memory. Typically, this is used to overwrite data on the stack necessary for the program to function properly, such as code and memory addresses, though other forms of this attack exist. Exploiting this vulnerability can generally lead to system crashes, infinite loops, or even execution of arbitrary code.

## Cause

#### How does it happen

Buffer Overflows can manifest in numerous different variations. In it's most basic form, the attack controls a buffer, which is then copied to a smaller buffer without size verification. Because the attacker's source buffer is larger than the program's target buffer, the attacker's data overwrites whatever is next on the stack, allowing the attacker to control program structures.

Alternatively, the vulnerability could be the result of improper bounds checking; exposing internal memory addresses outside of their valid scope; allowing the attacker to control the size of the target buffer; or various other forms.

## **General Recommendations**

#### How to avoid it

- o Always perform proper bounds checking before copying buffers or strings.
- o Prefer to use safer functions and structures, e.g. safe string classes over char\*, strncpy over strcpy, and so on.
- o Consistently apply tests for the size of buffers.
- o Do not return variable addresses outside the scope of their variables.

## Source Code Examples

PAGE 158 OF 179



**Improper Validation of Array Index** 

Weakness ID: 129 (Weakness Base) Status: Draft

**Description** 

## **Description Summary**

The product uses untrusted input when calculating or using an array index, but the product does not validate or incorrectly validates the index to ensure the index references a valid position within the array.

**Alternate Terms** 

out-of-bounds array index

index-out-of-range

array index underflow

**Time of Introduction** 

Implementation

**Applicable Platforms** 

**Languages** 

C: (Often)

C++: (Often)

Language-independent

**Common Consequences** 

| Common Consequences                    |                                                                                                                                                                                                                                                                                                    |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Scope                                  | Effect                                                                                                                                                                                                                                                                                             |
| Integrity Availability                 | Unchecked array indexing will very likely result in the corruption of relevant memory and perhaps instructions, leading to a crash, if the values are outside of the valid memory area.                                                                                                            |
| Integrity                              | If the memory corrupted is data, rather than instructions, the system will continue to function with improper values.                                                                                                                                                                              |
| Confidentiality Integrity              | Unchecked array indexing can also trigger out-of-bounds read or write operations, or operations on the wrong objects; i.e., "buffer overflows" are not always the result. This may result in the exposure or modification of sensitive data.                                                       |
| Integrity                              | If the memory accessible by the attacker can be effectively controlled, it may be possible to execute arbitrary code, as with a standard buffer overflow and possibly without the use of large inputs if a precise index can be controlled.                                                        |
| Integrity Availability Confidentiality | A single fault could allow either an overflow (CWE-788) or underflow (CWE-786) of the array index. What happens next will depend on the type of operation being performed out of bounds, but can expose sensitive information, cause a system crash, or possibly lead to arbitrary code execution. |

## Likelihood of Exploit

#### High

## **Detection Methods**

#### **Automated Static Analysis**

This weakness can often be detected using automated static analysis tools. Many modern tools use data flow analysis or constraint-based techniques to minimize the number of false positives.

Automated static analysis generally does not account for environmental considerations when reporting out-of-bounds memory operations. This can make it difficult for users to determine which warnings should be investigated first. For example, an analysis tool might report array index errors that originate from command line arguments in a program that is not expected to run with setuid or other special privileges.

Effectiveness: High



This is not a perfect solution, since 100% accuracy and coverage are not feasible.

#### Automated Dynamic Analysis

This weakness can be detected using dynamic tools and techniques that interact with the software using large test suites with many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The software's operation may slow down, but it should not become unstable, crash, or generate incorrect results.

Black box methods might not get the needed code coverage within limited time constraints, and a dynamic test might not produce any noticeable side effects even if it is successful.

#### **Demonstrative Examples**

## **Example 1**

The following C/C++ example retrieves the sizes of messages for a pop3 mail server. The message sizes are retrieved from a socket that returns in a buffer the message number and the message size, the message number (num) and size (size) are extracted from the buffer and the message size is placed into an array using the message number for the array index.

(Bad Code)

```
Example Language: C
```

```
/* capture the sizes of all messages */
int getsizes(int sock, int count, int *sizes) {
char buf[BUFFER_SIZE];
int ok;
int num, size;
// read values from socket and added to sizes array
while ((ok = gen recv(sock, buf, sizeof(buf))) == 0)
// continue read from socket until buf only contains '.'
if (DOTLINE(buf))
break:
else if (sscanf(buf, "%d %d", &num, &size) == 2)
sizes[num - 1] = size;
```

In this example the message number retrieved from the buffer could be a value that is outside the allowable range of indices for the array and could possibly be a negative number. Without proper validation of the value to be used for the array index an array overflow could occur and could potentially lead to unauthorized access to memory addresses and system crashes. The value of the array index should be validated to ensure that it is within the allowable range of indices for the array as in the following code.

(Good Code)

```
Example Language: C
```

```
/* capture the sizes of all messages */
int getsizes(int sock, int count, int *sizes) {
char buf[BUFFER SIZE];
int ok;
int num, size;
// read values from socket and added to sizes array
while ((ok = gen recv(sock, buf, sizeof(buf))) == 0)
// continue read from socket until buf only contains '.'
if (DOTLINE(buf))
```



```
break;
else if (sscanf(buf, "%d %d", &num, &size) == 2) {
   if (num > 0 && num <= (unsigned)count)
   sizes[num - 1] = size;
else
   /* warn about possible attempt to induce buffer overflow */
   report(stderr, "Warning: ignoring bogus data for message sizes returned by server.\n");
}
...
}
```

## **Example 2**

In the code snippet below, an unchecked integer value is used to reference an object in an array.

```
(Bad Code)

Example Language: Java

public String getValue(int index) {

return array[index];
}
```

If index is outside of the range of the array, this may result in an ArrayIndexOutOfBounds Exception being raised.

## **Example 3**

In the following Java example the method displayProductSummary is called from a Web service servlet to retrieve product summary information for display to the user. The servlet obtains the integer value of the product number from the user and passes it to the displayProductSummary method. The displayProductSummary method passes the integer value of the product number to the getProductSummary method which obtains the product summary from the array object containing the project summaries using the integer value of the product number as the array index.

```
(Bad Code)

Example Language: Java

(Method called from servlet to obtain product information
public String displayProductSummary(int index) {

String productSummary = new String("");

try {

String productSummary = getProductSummary(index);
} catch (Exception ex) {...}

return productSummary;
}

public String getProductSummary(int index) {

return products[index];
```

In this example the integer value used as the array index that is provided by the user may be outside the allowable range of indices for the array which may provide unexpected results or may comes the application to fail. The integer value used for the array index should be validated to ensure that it is within the allowable range of indices for the array as in the following code.

```
(Good Code)

Example Language: Java

// Method called from servlet to obtain product information
public String displayProductSummary(int index) {

String productSummary = new String("");
```



```
try {
String productSummary = getProductSummary(index);
} catch (Exception ex) {...}

return productSummary;
}

public String getProductSummary(int index) {
String productSummary = "";

if ((index >= 0) && (index < MAX_PRODUCTS)) {
    productSummary = productS[index];
}
    else {
        System.err.println("index is out of bounds");
        throw new IndexOutOfBoundsException();
}

return productSummary;
}</pre>
```

An alternative in Java would be to use one of the collection objects such as ArrayList that will automatically generate an exception if an attempt is made to access an array index that is out of bounds.

(Good Code)

```
Example Language: Java
```

```
ArrayList productArray = new ArrayList(MAX_PRODUCTS);
...

try {
productSummary = (String) productArray.get(index);
} catch (IndexOutOfBoundsException ex) {...}
```

#### **Observed Examples**

| Reference     | Description                                                                                                               |
|---------------|---------------------------------------------------------------------------------------------------------------------------|
| CVE-2005-0369 | large ID in packet used as array index                                                                                    |
| CVE-2001-1009 | negative array index as argument to POP LIST command                                                                      |
| CVE-2003-0721 | Integer signedness error leads to negative array index                                                                    |
| CVE-2004-1189 | product does not properly track a count and a maximum number, which can lead to resultant array index overflow.           |
| CVE-2007-5756 | chain: device driver for packet-capturing software allows access to an unintended IOCTL with resultant array index error. |

## **Potential Mitigations**

## Phase: Architecture and Design

## Strategies: Input Validation; Libraries or Frameworks

Use an input validation framework such as Struts or the OWASP ESAPI Validation API. If you use Struts, be mindful of weaknesses covered by the CWE-101 category.

#### Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server.

Even though client-side checks provide minimal benefits with respect to server-side security, they are still useful. First, they can support intrusion detection. If the server receives input that should have been rejected by the client, then it may be an indication of an attack. Second, client-side error-checking can provide helpful feedback to the user about the expectations for valid input. Third, there may be a reduction in server-side processing time for accidental input errors, although this is typically a small savings.

#### **Phase: Requirements**

#### Strategy: Language Selection

Use a language with features that can automatically mitigate or eliminate out-of-bounds indexing errors.



For example, Ada allows the programmer to constrain the values of a variable and languages such as Java and Ruby will allow the programmer to handle exceptions when an out-of-bounds index is accessed.

**Phase: Implementation** 

## Strategy: Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy (i.e., use a whitelist). Reject any input that does not strictly conform to specifications, or transform it into something that does. Use a blacklist to reject any unexpected inputs and detect potential attacks.

When accessing a user-controlled array index, use a stringent range of values that are within the target array. Make sure that you do not allow negative values to be used. That is, verify the minimum as well as the maximum of the range of acceptable values.

#### **Phase: Implementation**

Be especially careful to validate your input when you invoke code that crosses language boundaries, such as from an interpreted language to native code. This could create an unexpected interaction between the language boundaries. Ensure that you are not violating any of the expectations of the language with which you are interfacing. For example, even though Java may not be susceptible to buffer overflows, providing a large argument in a call to native code might trigger an overflow.

#### **Weakness Ordinalities**

| Ordinality | Description                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Resultant  | The most common condition situation leading to unchecked array indexing is the use of loop index variables as buffer indexes. If the end condition for the loop is subject to a flaw, the index can grow or shrink unbounded, therefore causing a buffer overflow or underflow. Another common situation leading to this condition is the use of a function's return value, or the resulting value of a calculation directly as an index in to a buffer. |

Relationships

| Kelationships |                  |     |                                                                      |                                                                                                   |
|---------------|------------------|-----|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Nature        | Туре             | ID  | Name                                                                 | View(s) this relationship pertains to                                                             |
| ChildOf       | Weakness Class   | 20  | Improper Input<br>Validation                                         | Development<br>Concepts<br>(primary)699<br>Research Concepts<br>(primary)1000                     |
| ChildOf       | Category         | 189 | Numeric Errors                                                       | Development<br>Concepts699                                                                        |
| ChildOf       | Category         | 633 | Weaknesses that Affect<br>Memory                                     | Resource-specific<br>Weaknesses<br>(primary)631                                                   |
| ChildOf       | Category         | 738 | CERT C Secure Coding<br>Section 04 - Integers<br>(INT)               | Weaknesses<br>Addressed by the<br>CERT C Secure Coding<br>Standard<br>(primary)734                |
| ChildOf       | Category         | 740 | CERT C Secure Coding<br>Section 06 - Arrays<br>(ARR)                 | Weaknesses Addressed<br>by the CERT C Secure<br>Coding Standard734                                |
| ChildOf       | Category         | 802 | 2010 Top 25 - Risky<br>Resource Management                           | Weaknesses in the<br>2010 CWE/SANS Top<br>25 Most Dangerous<br>Programming Errors<br>(primary)800 |
| CanPrecede    | Weakness Class   | 119 | Failure to Constrain Operations within the Bounds of a Memory Buffer | Research Concepts1000                                                                             |
| CanPrecede    | Weakness Variant | 789 | <u>Uncontrolled Memory</u><br><u>Allocation</u>                      | Research Concepts1000                                                                             |
| PeerOf        | Weakness Base    | 124 | <u>Buffer Underwrite</u><br>('Buffer Underflow')                     | Research Concepts1000                                                                             |

## **Theoretical Notes**

An improperly validated array index might lead directly to the always-incorrect behavior of "access of array using out-of-bounds index."

## **Affected Resources**



## Memory

## f Causal Nature

# **Explicit**

**Taxonomy Mappings** 

| <b>Mapped Taxonomy Name</b> | Node ID | Fit | Mapped Node Name                                                                                              |
|-----------------------------|---------|-----|---------------------------------------------------------------------------------------------------------------|
| CLASP                       |         |     | Unchecked array indexing                                                                                      |
| PLOVER                      |         |     | INDEX - Array index overflow                                                                                  |
| CERT C Secure Coding        | ARR00-C |     | Understand how arrays work                                                                                    |
| CERT C Secure Coding        | ARR30-C |     | Guarantee that array indices are within the valid range                                                       |
| CERT C Secure Coding        | ARR38-C |     | Do not add or subtract an integer to a pointer if the resulting value does not refer to a valid array element |
| CERT C Secure Coding        | INT32-C |     | Ensure that operations on signed integers do not result in overflow                                           |

## **Related Attack Patterns**

| CAPEC-ID | Attack Pattern Name | (CAPEC Version: 1.5) |
|----------|---------------------|----------------------|
| 100      | Overflow Buffers    |                      |

## References

[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 5, "Array Indexing Errors" Page 144. 2nd Edition. Microsoft. 2002.

**Content History** 

| Content History            |                                                                                                                                                    |                                                                                                                                                                           |                  |  |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|
| Submissions                |                                                                                                                                                    |                                                                                                                                                                           |                  |  |
| <b>Submission Date</b>     | Submitter                                                                                                                                          | Organization                                                                                                                                                              | Source           |  |
|                            | CLASP                                                                                                                                              |                                                                                                                                                                           | Externally Mined |  |
| Modifications              |                                                                                                                                                    |                                                                                                                                                                           |                  |  |
| <b>Modification Date</b>   | Modifier                                                                                                                                           | Organization                                                                                                                                                              | Source           |  |
| 2008-07-01                 | Sean Eidemiller                                                                                                                                    | Cigital                                                                                                                                                                   | External         |  |
|                            | added/updated demonstrativ                                                                                                                         | e examples                                                                                                                                                                |                  |  |
| 2008-09-08                 | CWE Content Team                                                                                                                                   | MITRE                                                                                                                                                                     | Internal         |  |
|                            |                                                                                                                                                    | updated Alternate Terms, Applicable Platforms, Common Consequences, Relationships,<br>Other Notes, Taxonomy Mappings, Weakness Ordinalities                               |                  |  |
| 2008-11-24                 | CWE Content Team                                                                                                                                   | MITRE                                                                                                                                                                     | Internal         |  |
|                            | updated Relationships, Taxor                                                                                                                       | nomy Mappings                                                                                                                                                             |                  |  |
| 2009-01-12                 | CWE Content Team                                                                                                                                   | MITRE                                                                                                                                                                     | Internal         |  |
|                            | updated Common Consequences                                                                                                                        |                                                                                                                                                                           |                  |  |
| 2009-10-29                 | CWE Content Team                                                                                                                                   | MITRE                                                                                                                                                                     | Internal         |  |
|                            | updated Description, Name, Relationships                                                                                                           |                                                                                                                                                                           |                  |  |
| 2009-12-28                 | CWE Content Team                                                                                                                                   | MITRE                                                                                                                                                                     | Internal         |  |
|                            | updated Applicable Platforms, Common Consequences, Observed Examples, Other Notes, Potential Mitigations, Theoretical Notes, Weakness Ordinalities |                                                                                                                                                                           |                  |  |
| 2010-02-16                 | CWE Content Team                                                                                                                                   | MITRE                                                                                                                                                                     | Internal         |  |
|                            |                                                                                                                                                    | updated Applicable Platforms, Demonstrative Examples, Detection Factors, Likelihood of Exploit, Potential Mitigations, References, Related Attack Patterns, Relationships |                  |  |
| 2010-04-05                 | CWE Content Team                                                                                                                                   | MITRE                                                                                                                                                                     | Internal         |  |
|                            | updated Related Attack Patte                                                                                                                       | erns                                                                                                                                                                      |                  |  |
| <b>Previous Entry Name</b> | es                                                                                                                                                 |                                                                                                                                                                           |                  |  |
| Change Date                | <b>Previous Entry Name</b>                                                                                                                         |                                                                                                                                                                           |                  |  |
| 2009-10-29                 | Unchecked Array Indexin                                                                                                                            | g                                                                                                                                                                         |                  |  |
|                            |                                                                                                                                                    |                                                                                                                                                                           |                  |  |

BACK TO TOP



Status: Draft

**Improper Access Control (Authorization)** 

Weakness ID: 285 (Weakness Class)

**Description** 

## **Description Summary**

The software does not perform or incorrectly performs access control checks across all potential execution paths.

## **Extended Description**

When access control checks are not applied consistently - or not at all - users are able to access data or perform actions that they should not be allowed to perform. This can lead to a wide range of problems, including information leaks, denial of service, and arbitrary code execution.

#### **Alternate Terms**

AuthZ:

"AuthZ" is typically used as an abbreviation of "authorization" within the web application security community. It is also distinct from "AuthC," which is an abbreviation of "authentication." The use of "Auth" as an abbreviation is discouraged, since it could be used for either authentication or authorization.

#### Time of Introduction

- Architecture and Design
- Implementation
- Operation

## **Applicable Platforms**

#### Languages

Language-independent

## **Technology Classes**

Web-Server: (Often)

Database-Server: (Often)

#### **Modes of Introduction**

A developer may introduce authorization weaknesses because of a lack of understanding about the underlying technologies. For example, a developer may assume that attackers cannot modify certain inputs such as headers or cookies.

Authorization weaknesses may arise when a single-user application is ported to a multi-user environment.

#### **Common Consequences**

| Scope           | Effect                                                                                                                                                                                                              |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Confidentiality | An attacker could read sensitive data, either by reading the data directly from a data store that is not properly restricted, or by accessing insufficiently-protected, privileged functionality to read the data.  |
| Integrity       | An attacker could modify sensitive data, either by writing the data directly to a data store that is not properly restricted, or by accessing insufficiently-protected, privileged functionality to write the data. |
| Integrity       | An attacker could gain privileges by modifying or reading critical data directly, or by accessing insufficiently-protected, privileged functionality.                                                               |

## Likelihood of Exploit

High

**Detection Methods** 



#### **Automated Static Analysis**

Automated static analysis is useful for detecting commonly-used idioms for authorization. A tool may be able to analyze related configuration files, such as .htaccess in Apache web servers, or detect the usage of commonly-used authorization libraries.

Generally, automated static analysis tools have difficulty detecting custom authorization schemes. In addition, the software's design may include some functionality that is accessible to any user and does not require an authorization check; an automated technique that detects the absence of authorization may report false positives.

#### Effectiveness: Limited

#### **Automated Dynamic Analysis**

Automated dynamic analysis may find many or all possible interfaces that do not require authorization, but manual analysis is required to determine if the lack of authorization violates business logic

#### **Manual Analysis**

This weakness can be detected using tools and techniques that require manual (human) analysis, such as penetration testing, threat modeling, and interactive tools that allow the tester to record and modify an active session.

Specifically, manual static analysis is useful for evaluating the correctness of custom authorization mechanisms.

#### Effectiveness: Moderate

These may be more effective than strictly automated techniques. This is especially the case with weaknesses that are related to design and business rules. However, manual efforts might not achieve desired code coverage within limited time constraints.

## **Demonstrative Examples**

## **Example 1**

The following program could be part of a bulletin board system that allows users to send private messages to each other. This program intends to authenticate the user before deciding whether a private message should be displayed. Assume that LookupMessageObject() ensures that the \$id argument is numeric, constructs a filename based on that id, and reads the message details from that file. Also assume that the program stores all private messages for all users in the same directory.

(Bad Code)

```
Example Language: Perl
```

```
my($id) = @_;
my $Message = LookupMessageObject($id);
print "From: ".encodeHTML($Message->{from})."<br/>print "Subject: ".encodeHTML($Message->{subject})."\n";
print "Subject: ".encodeHTML($Message->{subject})."\n";
print "Body: ".encodeHTML($Message->{body})."\n";
}

my $q = new CGI;
#For purposes of this example, assume that CWE-309 and
#CWE-523 do not apply.
if (! AuthenticateUser($q->param('username'), $q->param('password'))) {
ExitError("invalid username or password");
}

my $id = $q->param('id');
DisplayPrivateMessage($id);
```

While the program properly exits if authentication fails, it does not ensure that the message is addressed to the user. As a result, an authenticated attacker could provide any arbitrary identifier and read private messages that were intended for other users.

One way to avoid this problem would be to ensure that the "to" field in the message object matches the username of the authenticated user.

## **Observed Examples**

| Reference     | Description                                                                                                                |
|---------------|----------------------------------------------------------------------------------------------------------------------------|
| CVE-2009-3168 | Web application does not restrict access to admin scripts, allowing authenticated users to reset administrative passwords. |



| <u>CVE-2009-2960</u> | Web application does not restrict access to admin scripts, allowing authenticated users to modify passwords of other users.                                           |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CVE-2009-3597        | Web application stores database file under the web root with insufficient access control (CWE-219), allowing direct request.                                          |
| CVE-2009-2282        | Terminal server does not check authorization for guest access.                                                                                                        |
| CVE-2009-3230        | Database server does not use appropriate privileges for certain sensitive operations.                                                                                 |
| CVE-2009-2213        | Gateway uses default "Allow" configuration for its authorization settings.                                                                                            |
| CVE-2009-0034        | Chain: product does not properly interpret a configuration option for a system group, allowing users to gain privileges.                                              |
| CVE-2008-6123        | Chain: SNMP product does not properly parse a configuration option for which hosts are allowed to connect, allowing unauthorized IP addresses to connect.             |
| CVE-2008-5027        | System monitoring software allows users to bypass authorization by creating custom forms.                                                                             |
| CVE-2008-7109        | Chain: reliance on client-side security (CWE-602) allows attackers to bypass authorization using a custom client.                                                     |
| CVE-2008-3424        | Chain: product does not properly handle wildcards in an authorization policy list, allowing unintended access.                                                        |
| CVE-2009-3781        | Content management system does not check access permissions for private files, allowing others to view those files.                                                   |
| CVE-2008-4577        | ACL-based protection mechanism treats negative access rights as if they are positive, allowing bypass of intended restrictions.                                       |
| CVE-2008-6548        | Product does not check the ACL of a page accessed using an "include" directive, allowing attackers to read unauthorized files.                                        |
| CVE-2007-2925        | Default ACL list for a DNS server does not set certain ACLs, allowing unauthorized DNS queries.                                                                       |
| CVE-2006-6679        | Product relies on the X-Forwarded-For HTTP header for authorization, allowing unintended access by spoofing the header.                                               |
| CVE-2005-3623        | OS kernel does not check for a certain privilege before setting ACLs for files.                                                                                       |
| CVE-2005-2801        | Chain: file-system code performs an incorrect comparison (CWE-697), preventing defauls ACLs from being properly applied.                                              |
| CVE-2001-1155        | Chain: product does not properly check the result of a reverse DNS lookup because of operator precedence (CWE-783), allowing bypass of DNS-based access restrictions. |

## **Potential Mitigations**

#### Phase: Architecture and Design

Divide your application into anonymous, normal, privileged, and administrative areas. Reduce the attack surface by carefully mapping roles with data and functionality. Use role-based access control (RBAC) to enforce the roles at the appropriate boundaries.

Note that this approach may not protect against horizontal authorization, i.e., it will not protect a user from attacking others with the same role.

#### **Phase: Architecture and Design**

Ensure that you perform access control checks related to your business logic. These checks may be different than the access control checks that you apply to more generic resources such as files, connections, processes, memory, and database records. For example, a database may restrict access for medical records to a specific database user, but each record might only be intended to be accessible to the patient and the patient's doctor.

#### Phase: Architecture and Design

## Strategy: Libraries or Frameworks

Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness



easier to avoid.

For example, consider using authorization frameworks such as the JAAS Authorization Framework and the OWASP ESAPI Access Control feature.

#### **Phase: Architecture and Design**

For web applications, make sure that the access control mechanism is enforced correctly at the server side on every page. Users should not be able to access any unauthorized functionality or information by simply requesting direct access to that page.

One way to do this is to ensure that all pages containing sensitive information are not cached, and that all such pages restrict access to requests that are accompanied by an active and authenticated session token associated with a user who has the required permissions to access that page.

#### **Phases: System Configuration; Installation**

Use the access control capabilities of your operating system and server environment and define your access control lists accordingly. Use a "default deny" policy when defining these ACLs.

| Relationships |                  |     |                                                                             |                                                                                                   |
|---------------|------------------|-----|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Nature        | Туре             | ID  | Name                                                                        | View(s) this relationship pertains to                                                             |
| ChildOf       | Category         | 254 | Security Features                                                           | Seven Pernicious<br>Kingdoms<br>(primary)700                                                      |
| ChildOf       | Weakness Class   | 284 | Access Control (Authorization) Issues                                       | Development<br>Concepts<br>(primary)699<br>Research Concepts<br>(primary)1000                     |
| ChildOf       | Category         | 721 | OWASP Top Ten 2007<br>Category A10 - Failure<br>to Restrict URL Access      | Weaknesses in<br>OWASP Top Ten<br>(2007) (primary)629                                             |
| ChildOf       | Category         | 723 | OWASP Top Ten 2004<br>Category A2 - Broken<br>Access Control                | Weaknesses in<br>OWASP Top Ten<br>(2004) (primary)711                                             |
| ChildOf       | Category         | 753 | 2009 Top 25 - Porous<br>Defenses                                            | Weaknesses in the<br>2009 CWE/SANS Top<br>25 Most Dangerous<br>Programming Errors<br>(primary)750 |
| ChildOf       | Category         | 803 | 2010 Top 25 - Porous<br>Defenses                                            | Weaknesses in the<br>2010 CWE/SANS Top<br>25 Most Dangerous<br>Programming Errors<br>(primary)800 |
| ParentOf      | Weakness Variant | 219 | Sensitive Data Under<br>Web Root                                            | Research Concepts (primary)1000                                                                   |
| ParentOf      | Weakness Base    | 551 | Incorrect Behavior Order: Authorization Before Parsing and Canonicalization | Development<br>Concepts<br>(primary)699<br>Research Concepts1000                                  |
| ParentOf      | Weakness Class   | 638 | Failure to Use Complete Mediation                                           | Research Concepts1000                                                                             |
| ParentOf      | Weakness Base    | 804 | Guessable CAPTCHA                                                           | Development Concepts (primary)699 Research Concepts (primary)1000                                 |

**Taxonomy Mappings** 

| Mapped Taxonomy Name  | Node ID | Fit               | Mapped Node Name               |
|-----------------------|---------|-------------------|--------------------------------|
| 7 Pernicious Kingdoms |         |                   | Missing Access Control         |
| OWASP Top Ten 2007    | A10     | CWE More Specific | Failure to Restrict URL Access |
| OWASP Top Ten 2004    | A2      | CWE More Specific | Broken Access Control          |

#### **Related Attack Patterns**

| CAPEC-ID  | Attack Pattern Name                                         | (CAPEC Version: 1.5) |
|-----------|-------------------------------------------------------------|----------------------|
| 1         | Accessing Functionality Not Properly<br>Constrained by ACLs |                      |
| <u>13</u> | Subverting Environment Variable Values                      |                      |



| <u>17</u> | Accessing, Modifying or Executing Executable Files  |
|-----------|-----------------------------------------------------|
| 87        | Forceful Browsing                                   |
| <u>39</u> | Manipulating Opaque Client-based Data<br>Tokens     |
| <u>45</u> | Buffer Overflow via Symbolic Links                  |
| <u>51</u> | Poison Web Service Registry                         |
| <u>59</u> | Session Credential Falsification through Prediction |
| <u>60</u> | Reusing Session IDs (aka Session Replay)            |
| 77        | Manipulating User-Controlled Variables              |
| 76        | Manipulating Input to File System Calls             |
| 104       | Cross Zone Scripting                                |

## References

NIST. "Role Based Access Control and Role Based Security". < <a href="http://csrc.nist.gov/groups/SNS/rbac/">http://csrc.nist.gov/groups/SNS/rbac/</a>.

[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 4, "Authorization" Page 114; Chapter 6, "Determining Appropriate Access Control" Page 171. 2nd Edition. Microsoft. 2002.

## **Content History**

| Content History            |                                                           |                             |                                                      |
|----------------------------|-----------------------------------------------------------|-----------------------------|------------------------------------------------------|
| Submissions                |                                                           |                             |                                                      |
| <b>Submission Date</b>     | Submitter                                                 | Organization                | Source                                               |
|                            | 7 Pernicious Kingdoms                                     |                             | Externally Mined                                     |
| Modifications              |                                                           |                             |                                                      |
| <b>Modification Date</b>   | Modifier                                                  | Organization                | Source                                               |
| 2008-07-01                 | Eric Dalci                                                | Cigital                     | External                                             |
|                            | updated Time of Introduction                              | on                          |                                                      |
| 2008-08-15                 |                                                           | Veracode                    | External                                             |
|                            | Suggested OWASP Top Ten                                   | 2004 mapping                |                                                      |
| 2008-09-08                 | CWE Content Team                                          | MITRE                       | Internal                                             |
|                            | updated Relationships, Oth                                |                             | ings                                                 |
| 2009-01-12                 | CWE Content Team                                          | MITRE                       | Internal                                             |
|                            | updated Common Consequ<br>Potential Mitigations, Refere   |                             | ood of Exploit, Name, Other Notes,                   |
| 2009-03-10                 | CWE Content Team                                          | MITRE                       | Internal                                             |
|                            | updated Potential Mitigation                              | าร                          |                                                      |
| 2009-05-27                 | CWE Content Team                                          | MITRE                       | Internal                                             |
|                            | updated Description, Relate                               |                             |                                                      |
| 2009-07-27                 | CWE Content Team                                          | MITRE                       | Internal                                             |
|                            | updated Relationships                                     |                             |                                                      |
| 2009-10-29                 | CWE Content Team                                          | MITRE                       | Internal                                             |
|                            | updated Type                                              |                             |                                                      |
| 2009-12-28                 | CWE Content Team                                          | MITRE                       | Internal                                             |
|                            | updated Applicable Platforn<br>Detection Factors, Modes o |                             | s, Demonstrative Examples,<br>xamples, Relationships |
| 2010-02-16                 | CWE Content Team                                          | MITRE                       | Internal                                             |
|                            | updated Alternate Terms, E<br>Relationships               | Detection Factors, Potentia | Mitigations, References,                             |
| 2010-04-05                 | CWE Content Team                                          | MITRE                       | Internal                                             |
|                            | updated Potential Mitigation                              | าร                          |                                                      |
| <b>Previous Entry Name</b> | es                                                        |                             |                                                      |
| <b>Change Date</b>         | <b>Previous Entry Name</b>                                |                             |                                                      |
| 2009-01-12                 | Missing or Inconsistent                                   | Access Control              |                                                      |
|                            |                                                           |                             |                                                      |

BACK TO TOP



#### **Incorrect Permission Assignment for Critical Resource**

Weakness ID: 732 (Weakness Class) Status: Draft

**Description** 

## **Description Summary**

The software specifies permissions for a security-critical resource in a way that allows that resource to be read or modified by unintended actors.

## **Extended Description**

When a resource is given a permissions setting that provides access to a wider range of actors than required, it could lead to the disclosure of sensitive information, or the modification of that resource by unintended parties. This is especially dangerous when the resource is related to program configuration, execution or sensitive user data.

#### **Time of Introduction**

- Architecture and Design
- Implementation
- Installation
- Operation

## **Applicable Platforms**

#### Languages

## Language-independent

#### **Modes of Introduction**

The developer may set loose permissions in order to minimize problems when the user first runs the program, then create documentation stating that permissions should be tightened. Since system administrators and users do not always read the documentation, this can result in insecure permissions being left unchanged.

The developer might make certain assumptions about the environment in which the software runs - e.g., that the software is running on a single-user system, or the software is only accessible to trusted administrators. When the software is running in a different environment, the permissions become a problem.

**Common Consequences** 

| common consequences |                                                                                                                                                                         |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Scope               | Effect                                                                                                                                                                  |
| Confidentiality     | An attacker may be able to read sensitive information from the associated resource, such as credentials or configuration information stored in a file.                  |
| Integrity           | An attacker may be able to modify critical properties of the associated resource to gain privileges, such as replacing a world-writable executable with a Trojan horse. |
| Availability        | An attacker may be able to destroy or corrupt critical data in<br>the associated resource, such as deletion of records from a<br>database.                              |

## Likelihood of Exploit

#### Medium to High

#### **Detection Methods**

#### **Automated Static Analysis**

Automated static analysis may be effective in detecting permission problems for system resources such as files, directories, shared memory, device interfaces, etc. Automated techniques may be able to detect the use of library functions that modify permissions, then analyze function calls for arguments that contain potentially insecure values.

However, since the software's intended security policy might allow loose permissions for certain operations (such as publishing a file on a web server), automated static analysis may produce some false positives - i.e., warnings that do not have any security consequences or require any code changes.

When custom permissions models are used - such as defining who can read messages in a particular forum in a bulletin board system - these can be difficult to detect using automated static analysis. It may be possible to define custom signatures that

PAGE 170 OF 179



identify any custom functions that implement the permission checks and assignments.

#### Automated Dynamic Analysis

Automated dynamic analysis may be effective in detecting permission problems for system resources such as files, directories, shared memory, device interfaces, etc.

However, since the software's intended security policy might allow loose permissions for certain operations (such as publishing a file on a web server), automated dynamic analysis may produce some false positives - i.e., warnings that do not have any security consequences or require any code changes.

When custom permissions models are used - such as defining who can read messages in a particular forum in a bulletin board system - these can be difficult to detect using automated dynamic analysis. It may be possible to define custom signatures that identify any custom functions that implement the permission checks and assignments.

#### **Manual Static Analysis**

Manual static analysis may be effective in detecting the use of custom permissions models and functions. The code could then be examined to identifying usage of the related functions. Then the human analyst could evaluate permission assignments in the context of the intended security model of the software.

#### **Manual Dynamic Analysis**

Manual dynamic analysis may be effective in detecting the use of custom permissions models and functions. The program could then be executed with a focus on exercising code paths that are related to the custom permissions. Then the human analyst could evaluate permission assignments in the context of the intended security model of the software.

#### **Fuzzing**

Fuzzing is not effective in detecting this weakness.

#### **Demonstrative Examples**

## **Example 1**

The following code sets the umask of the process to 0 before creating a file and writing "Hello world" into the file.

```
Example Language: C
```

```
#define OUTFILE "hello.out"
umask(0);
FILE *out;
/* Ignore CWE-59 (link following) for brevity */
out = fopen(OUTFILE, "w");
if (out) {
fprintf(out, "hello world!\n");
fclose(out);
```

After running this program on a UNIX system, running the "Is -I" command might return the following output:

(Result)

-rw-rw-rw- 1 username 13 Nov 24 17:58 hello.out

The "rw-rw-rw-" string indicates that the owner, group, and world (all users) can read the file and write to it.

## Example 2

The following code snippet might be used as a monitor to periodically record whether a web site is alive. To ensure that the file can always be modified, the code uses chmod() to make the file world-writable.

```
Example Language: Perl
$fileName = "secretFile.out";
if (-e $fileName) {
chmod 0777, $fileName;
```



```
my $outFH;
if (! open($outFH, ">>$fileName")) {
    ExitError("Couldn't append to $fileName: $!");
}
my $dateString = FormatCurrentTime();
my $status = IsHostAlive("cwe.mitre.org");
print $outFH "$dateString cwe status: $status!\n";
close($outFH);
```

The first time the program runs, it might create a new file that inherits the permissions from its environment. A file listing might look like:

(Result)

```
-rw-r--r-- 1 username 13 Nov 24 17:58 secretFile.out
```

This listing might occur when the user has a default umask of 022, which is a common setting. Depending on the nature of the file, the user might not have intended to make it readable by everyone on the system.

The next time the program runs, however - and all subsequent executions - the chmod will set the file's permissions so that the owner, group, and world (all users) can read the file and write to it:

(Result)

```
-rw-rw-rw- 1 username 13 Nov 24 17:58 secretFile.out
```

Perhaps the programmer tried to do this because a different process uses different permissions that might prevent the file from being updated.

## **Example 3**

The following command recursively sets world-readable permissions for a directory and all of its children:

(Bad Code)

Example Language: Shell chmod -R ugo+r DIRNAME

If this command is run from a program, the person calling the program might not expect that all the files under the directory will be world-readable. If the directory is expected to contain private data, this could become a security problem.

**Observed Examples** 

| Observed Examples |                                                                                                                                                                                                         |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reference         | Description                                                                                                                                                                                             |
| CVE-2009-3482     | Anti-virus product sets insecure "Everyone: Full Control" permissions for files under the "Program Files" folder, allowing attackers to replace executables with Trojan horses.                         |
| CVE-2009-3897     | Product creates directories with 0777 permissions at installation, allowing users to gain privileges and access a socket used for authentication.                                                       |
| CVE-2009-3489     | Photo editor installs a service with an insecure security descriptor, allowing users to stop or start the service, or execute commands as SYSTEM.                                                       |
| CVE-2009-3289     | Library function copies a file to a new target and uses the source file's permissions for the target, which is incorrect when the source file is a symbolic link, which typically has 0777 permissions. |
| CVE-2009-0115     | Device driver uses world-writable permissions for a socket file, allowing attackers to inject arbitrary commands.                                                                                       |
| CVE-2009-1073     | LDAP server stores a cleartext password in a world-readable file.                                                                                                                                       |
| CVE-2009-0141     | Terminal emulator creates TTY devices with world-writable permissions, allowing an attacker to write to the terminals of other users.                                                                   |



| CVE-2008-0662 | VPN product stores user credentials in a registry key with "Everyone: Full Control" permissions, allowing attackers to steal the credentials.                          |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CVE-2008-0322 | Driver installs its device interface with "Everyone: Write" permissions.                                                                                               |
| CVE-2009-3939 | Driver installs a file with world-writable permissions.                                                                                                                |
| CVE-2009-3611 | Product changes permissions to 0777 before deleting a backup; the permissions stay insecure for subsequent backups.                                                    |
| CVE-2007-6033 | Product creates a share with "Everyone: Full Control" permissions, allowing arbitrary program execution.                                                               |
| CVE-2007-5544 | Product uses "Everyone: Full Control" permissions for memory-mapped files (shared memory) in inter-process communication, allowing attackers to tamper with a session. |
| CVE-2005-4868 | Database product uses read/write permissions for everyone for its shared memory, allowing theft of credentials.                                                        |
| CVE-2004-1714 | Security product uses "Everyone: Full Control" permissions for its configuration files.                                                                                |
| CVE-2001-0006 | "Everyone: Full Control" permissions assigned to a mutex allows users to disable network connectivity.                                                                 |
| CVE-2002-0969 | Chain: database product contains buffer overflow that is only reachable through a .ini configuration file - which has "Everyone: Full Control" permissions.            |

## **Potential Mitigations**

#### **Phase: Implementation**

When using a critical resource such as a configuration file, check to see if the resource has insecure permissions (such as being modifiable by any regular user), and generate an error or even exit the software if there is a possibility that the resource could have been modified by an unauthorized party.

#### **Phase: Architecture and Design**

Divide your application into anonymous, normal, privileged, and administrative areas. Reduce the attack surface by carefully defining distinct user groups, privileges, and/or roles. Map these against data, functionality, and the related resources. Then set the permissions accordingly. This will allow you to maintain more fine-grained control over your resources.

#### Phases: Implementation; Installation

During program startup, explicitly set the default permissions or umask to the most restrictive setting possible. Also set the appropriate permissions during program installation. This will prevent you from inheriting insecure permissions from any user who installs or runs the program.

#### **Phase: System Configuration**

For all configuration files, executables, and libraries, make sure that they are only readable and writable by the software's administrator.

#### **Phase: Documentation**

Do not suggest insecure configuration changes in your documentation, especially if those configurations can extend to resources and other software that are outside the scope of your own software.

#### **Phase: Installation**

Do not assume that the system administrator will manually change the configuration to the settings that you recommend in the manual.

#### **Phase: Testing**

Use tools and techniques that require manual (human) analysis, such as penetration testing, threat modeling, and interactive tools that allow the tester to record and modify an active session. These may be more effective than strictly automated techniques. This is especially the case with weaknesses that are related to design and business rules.

#### **Phase: Testing**

Use monitoring tools that examine the software's process as it interacts with the operating system and the network. This technique is useful in cases when source code is unavailable, if the software was not developed by you, or if you want to verify that the build phase did not introduce any new weaknesses. Examples include debuggers that directly attach to the running process; system-call tracing utilities such as truss (Solaris) and strace (Linux); system activity monitors such as FileMon, RegMon, Process Monitor, and other Sysinternals utilities (Windows); and sniffers and protocol analyzers that monitor network traffic.



Attach the monitor to the process and watch for library functions or system calls on OS resources such as files, directories, and shared memory. Examine the arguments to these calls to infer which permissions are being used.

Note that this technique is only useful for permissions issues related to system resources. It is not likely to detect application-level business rules that are related to permissions, such as if a user of a blog system marks a post as "private," but the blog system inadvertently marks it as "public."

#### **Phases: Testing; System Configuration**

Ensure that your software runs properly under the Federal Desktop Core Configuration (FDCC) or an equivalent hardening configuration guide, which many organizations use to limit the attack surface and potential risk of deployed software.

Relationships

| Relationships |                                |     |                                                           |                                                                                                   |
|---------------|--------------------------------|-----|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Nature        | Туре                           | ID  | Name                                                      | View(s) this relationship pertains to                                                             |
| ChildOf       | Category                       | 275 | Permission Issues                                         | Development<br>Concepts<br>(primary)699                                                           |
| ChildOf       | Weakness Class                 | 668 | Exposure of Resource to Wrong Sphere                      | Research Concepts (primary)1000                                                                   |
| ChildOf       | Category                       | 753 | 2009 Top 25 - Porous<br>Defenses                          | Weaknesses in the<br>2009 CWE/SANS Top<br>25 Most Dangerous<br>Programming Errors<br>(primary)750 |
| ChildOf       | Category                       | 803 | 2010 Top 25 - Porous<br>Defenses                          | Weaknesses in the<br>2010 CWE/SANS Top<br>25 Most Dangerous<br>Programming Errors<br>(primary)800 |
| RequiredBy    | Compound Element:<br>Composite | 689 | Permission Race<br>Condition During<br>Resource Copy      | Research Concepts1000                                                                             |
| ParentOf      | Weakness Variant               | 276 | <u>Incorrect Default</u><br><u>Permissions</u>            | Research Concepts (primary)1000                                                                   |
| ParentOf      | Weakness Variant               | 277 | Insecure Inherited Permissions                            | Research Concepts (primary)1000                                                                   |
| ParentOf      | Weakness Variant               | 278 | <u>Insecure Preserved</u><br><u>Inherited Permissions</u> | Research Concepts (primary)1000                                                                   |
| ParentOf      | Weakness Variant               | 279 | Incorrect Execution-<br>Assigned Permissions              | Research Concepts (primary)1000                                                                   |
| ParentOf      | Weakness Base                  | 281 | Improper Preservation of Permissions                      | Research Concepts (primary)1000                                                                   |

#### **Related Attack Patterns**

| CAPEC-ID  | Attack Pattern Name                                                 | (CAPEC Version: 1.5) |
|-----------|---------------------------------------------------------------------|----------------------|
| 232       | Exploitation of Privilege/Trust                                     |                      |
| 1         | Accessing Functionality Not Properly Constrained by ACLs            |                      |
| <u>17</u> | Accessing, Modifying or Executing Executable Files                  |                      |
| <u>60</u> | Reusing Session IDs (aka Session Replay)                            |                      |
| <u>61</u> | Session Fixation                                                    |                      |
| <u>62</u> | Cross Site Request Forgery (aka Session Riding)                     |                      |
| 122       | Exploitation of Authorization                                       |                      |
| 180       | Exploiting Incorrectly Configured Access<br>Control Security Levels |                      |
| 234       | Hijacking a privileged process                                      |                      |

#### References

Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security Assessment". Chapter 9, "File Permissions." Page 495.. 1st Edition. Addison Wesley. 2006.

John Viega and Gary McGraw. "Building Secure Software". Chapter 8, "Access Control." Page 194.. 1st Edition. Addison-Wesley. 2002.



## **Maintenance Notes**

The relationships between privileges, permissions, and actors (e.g. users and groups) need further refinement within the Research view. One complication is that these concepts apply to two different pillars, related to control of resources (CWE-664) and protection mechanism failures (CWE-396).

|    | 4            | 4 T  | т.    | 4     |
|----|--------------|------|-------|-------|
|    | nter         | า† ⊩ | -1101 | torv  |
| VU | $\mathbf{n}$ | 11 1 | 112   | LUI V |

| Submissions                 |                                                                                                |                                |                            |
|-----------------------------|------------------------------------------------------------------------------------------------|--------------------------------|----------------------------|
| <b>Submission Date</b>      | Submitter                                                                                      | Organization                   | Source                     |
| 2008-09-08                  |                                                                                                |                                | Internal CWE Team          |
|                             | new weakness-focused entry                                                                     | for Research view.             |                            |
| Modifications               |                                                                                                |                                |                            |
| <b>Modification Date</b>    | Modifier                                                                                       | Organization                   | Source                     |
| 2009-01-12                  | CWE Content Team                                                                               | MITRE                          | Internal                   |
|                             | updated Description, Likeliho                                                                  | od of Exploit, Name, Potential | Mitigations, Relationships |
| 2009-03-10                  | CWE Content Team                                                                               | MITRE                          | Internal                   |
|                             | updated Potential Mitigations, Related Attack Patterns                                         |                                |                            |
| 2009-05-27                  | CWE Content Team                                                                               | MITRE                          | Internal                   |
|                             | updated Name                                                                                   |                                |                            |
| 2009-12-28                  | CWE Content Team                                                                               | MITRE                          | Internal                   |
|                             | updated Applicable Platforms, Common Consequences, Demonstrative Examples,                     |                                |                            |
|                             | Detection Factors, Modes of Introduction, Observed Examples, Potential Mitigations, References |                                |                            |
| 2010-02-16                  | CWE Content Team                                                                               | MITRE                          | Internal                   |
|                             | updated Relationships                                                                          |                                |                            |
| 2010-04-05                  | CWE Content Team                                                                               | MITRE                          | Internal                   |
|                             | updated Potential Mitigations, Related Attack Patterns                                         |                                |                            |
| <b>Previous Entry Names</b> | 5                                                                                              |                                |                            |
| <b>Change Date</b>          | <b>Previous Entry Name</b>                                                                     |                                |                            |
| 2009-01-12                  | Insecure Permission Assignment for Resource                                                    |                                |                            |
| 2009-05-27                  | Insecure Permission Assignment for Critical Resource                                           |                                |                            |

BACK TO TOP



# **Exposure of System Data to Unauthorized Control Sphere Risk**

## What might happen

System data can provide attackers with valuable insights on systems and services they are targeting - any type of system data, from service version to operating system fingerprints, can assist attackers to hone their attack, correlate data with known vulnerabilities or focus efforts on developing new attacks against specific technologies.

## Cause

#### How does it happen

System data is read and subsequently exposed where it might be read by untrusted entities.

## **General Recommendations**

#### How to avoid it

Consider the implications of exposure of the specified input, and expected level of access to the specified output. If not required, consider removing this code, or modifying exposed information to exclude potentially sensitive system data.

## **Source Code Examples**

#### Java

#### **Leaking Environment Variables in JSP Web-Page**

```
String envVarValue = System.getenv(envVar);
if (envVarValue == null) {
    out.println("Environment variable is not defined:");
    out.println(System.getenv());
} else {
    //[...]
};
```



# **TOCTOU**

## Risk

#### What might happen

At best, a Race Condition may cause errors in accuracy, overidden values or unexpected behavior that may result in denial-of-service. At worst, it may allow attackers to retrieve data or bypass security processes by replaying a controllable Race Condition until it plays out in their favor.

#### Cause

#### How does it happen

Race Conditions occur when a public, single instance of a resource is used by multiple concurrent logical processes. If the these logical processes attempt to retrieve and update the resource without a timely management system, such as a lock, a Race Condition will occur.

An example for when a Race Condition occurs is a resource that may return a certain value to a process for further editing, and then updated by a second process, resulting in the original process' data no longer being valid. Once the original process edits and updates the incorrect value back into the resource, the second process' update has been overwritten and lost.

## **General Recommendations**

#### How to avoid it

When sharing resources between concurrent processes across the application ensure that these resources are either thread-safe, or implement a locking mechanism to ensure expected concurrent activity.

# **Source Code Examples**

#### Java

Different Threads Increment and Decrement The Same Counter Repeatedly, Resulting in a Race Condition

```
public static int counter = 0;
     public static void start() throws InterruptedException {
            incrementCounter ic;
            decrementCounter dc;
            while (counter == 0) {
                  counter = 0;
                   ic = new incrementCounter();
                   dc = new decrementCounter();
                   ic.start();
                   dc.start();
                   ic.join();
                   dc.join();
            System.out.println(counter); //Will stop and return either -1 or 1 due to race
condition over counter
     public static class incrementCounter extends Thread {
         public void run() {
            counter++;
```



```
public static class decrementCounter extends Thread {
    public void run() {
        counter--;
    }
}
```

# Different Threads Increment and Decrement The Same Thread-Safe Counter Repeatedly, Never Resulting in a Race Condition

```
public static int counter = 0;
public static Object lock = new Object();
public static void start() throws InterruptedException {
      incrementCounter ic;
      decrementCounter dc;
      while (counter == 0) { // because of proper locking, this condition is never false
             counter = 0;
             ic = new incrementCounter();
             dc = new decrementCounter();
             ic.start();
             dc.start();
             ic.join();
             dc.join();
      System.out.println(counter); // Never reached
public static class incrementCounter extends Thread {
   public void run() {
      synchronized (lock) {
            counter++;
    }
public static class decrementCounter extends Thread {
   public void run() {
      synchronized (lock) {
            counter--;
    }
}
```



# **Scanned Languages**

| Language | Hash Number      | <b>Change Date</b> |
|----------|------------------|--------------------|
| CPP      | 4541647240435660 | 6/19/2024          |
| Common   | 0105849645654507 | 6/19/2024          |