

UNIVERSITÀ POLITECNICA Delle Marche

Numerical Heat Transfer for Applications

FVM for unsteady state heat conduction

Dr Valerio D'Alessandro

PhD school in Engineering Science 2

Finite volume discretization of Fourier equation

Fourier equation is discretized its integral form over each control volume:

$$\frac{\partial T}{\partial t} - \alpha \nabla^2 T = 0 \Longrightarrow \int_{V_P} \frac{\partial T}{\partial t} dV - \int_{V_P} \alpha \nabla^2 T dV = 0$$

$$\int_{V_P} \frac{\partial T}{\partial t} dV - \int_{V_P} \alpha \nabla \cdot (\nabla T) \, dV = 0$$

$$\int_{V_P} \frac{\partial T}{\partial t} dV - \int_{\partial V_P} \alpha \nabla T \cdot d\mathbf{S} = 0$$

$$V_{P}\frac{dT_{P}}{dt} - \sum_{f} \alpha \left(\nabla T\right)_{f} \cdot \mathbf{S}_{f} = 0$$

PhD school in Engineering Science

Finite volume discretization of Fourier equation

$$a_9T_9 + a_{10}T_{10} + a_4T_4 + a_8T_8 + a_{15}T_{15} = 0$$

$$V_P \frac{dT_C}{dt} - \sum_f \alpha \left(\nabla T \right)_f \cdot \mathbf{S}_f = 0 \blacktriangleleft$$

$$V_P \frac{T_C^{(n+1)} - T_C^{(n)}}{\Delta t} - \sum_{f} \alpha \left(\nabla T \right)_f \cdot \mathbf{S}_f = 0$$
Implicit or explicit?

$$\frac{V_P}{\Delta t} T_C^{(n+1)} - a_C T_C^{(n+1)} - \sum_{nb} a_{nb} T_{nb}^{(n+1)} = -b_C + \frac{V_P}{\Delta t} T_C^{(n)}$$

PhD school in Engineering Science

4

Finite volume discretization of Fourier equation - implicit method

It is possible to use also different time integration schemes rather than backward Euler. A possible alternative is the following one:

$$\frac{dT_C}{dt} = \frac{3T_C^{(n+1)} - 4T_C^{(n)} + T_C^{(n-1)}}{2\Delta t} + O\left(\Delta t^2\right)$$

PhD school in Engineering Science

5

Finite volume discretization of Fourier equation - explicit method

$$V_P \frac{dT_C}{dt} - \sum_f \alpha (\nabla T)_f \cdot \mathbf{S}_f = 0$$
$$\frac{dT_C}{dt} = \frac{T_C^{(n+1)} - T_C^{(n)}}{\Delta t}$$

$$\frac{V_P}{\Delta t} T_C^{(n+1)} - a_C T_C^{(n+1)} - \sum_{nb} a_{nb} T_{nb}^{(n+1)} = -b_C + \frac{V_P}{\Delta t} T_C^{(n)}$$

$$T_C^{(n+1)} = T_C^{(n)} + \frac{\Delta t}{V_P} \left(a_C T_C^{(n)} + \sum_{nb} a_{nb} T_{nb}^{(n)} + b_C \right)$$

PhD school in Engineering Science

Ex3_FVM - Unsteady state heat conduction

Matlab code

```
format long e
alpha= 1e-2;
    = 0.01;
Time = 50;
caseName='cube';
m=mesh data(caseName);
Nc=m.numberOfElements;
Ni=m.numberOfInteriorFaces:
Nb=m.numberOfBElements;
A=zeros(Nc,Nc);
b=zeros(Nc,1);
    = ones(Nc,1);
T0
    = zeros(Nc,1);
   = -alpha*A:
   = -alpha*b:
for i=1:Nc
       = m.elements(i).volC;
   A(i,i) = A(i,i) + Vc/dt;
end
```

$$\frac{V_P}{\Delta t} T_C^{(n+1)} - a_C T_C^{(n+1)} - \sum_{nb} a_{nb} T_{nb}^{(n+1)} = -b_C + \frac{V_P}{\Delta t} T_C^{(n)}$$

A matrix implemention, as well as B.C. for laplacian term discretization, is extactly the same of the steady state case.

However, it is mandatory to switch **A** and **b** entries sign deriving from spatial terms discretization.

$$\frac{V_P}{\Delta t}$$

A matrix diagonal terms contributions deriving from unsteady term discretization.

PhD school in Engineering Science

Ex3_FVM - Unsteady state heat conduction

```
bn = zeros(Nc,1);
flow time = 0;
for i= 1: (Time/dt)
   for j=1:Nc
       Vc = m.elements(j).volC;
        bn(j) = b(j) + (Vc/dt)*T0(j);
    end
%
   Tc = bicq(A,b,1e-12,1000);
   Tc = pcg(A,b,1e-12,1000,L,U);
   T0 = Tc;
   bn = zeros(Nc,1);
   flow time = flow time + dt;
   if (mod(i,500) == 0)
          wrtfld(flow time, m , Tc, 'Tc', caseName)
    end
end
```


$$\frac{V_P}{\Delta t} T_C^{(n+1)} - a_C T_C^{(n+1)} - \sum_{nb} a_{nb} T_{nb}^{(n+1)} = -b_C + \frac{V_P}{\Delta t} T_C^{(n)}$$

PhD school in Engineering Science

Ex3_FVM - Unsteady state heat conduction in 1-D configuration

$$\frac{\partial T}{\partial t} - \alpha \nabla^2 T = 0$$

$$T(x = 0, t) = 1$$

$$T(x = 1, t) = 0$$

$$\partial_n T (y = 0, t) = 0$$

$$\partial_n T (y = 1, t) = 0$$

$$T(x, t = 0) = 1$$

PhD school in Engineering Science

Ex3_FVM - Unsteady state heat conduction in 1-D configuration

$$\frac{\partial T}{\partial t} - \alpha \nabla^2 T = 0$$

$$T(x = 0, t) = 1$$

$$T(x = 1, t) = 0$$

$$\partial_n T (y = 0, t) = 0$$

$$\partial_n T (y = 1, t) = 0$$

$$T(x, t = 0) = 1$$

PhD school in Engineering Science

Finite volume discretization of general heat conduction equation

General heat conduction equation is discretized its integral form over each control volume:

$$\rho c \frac{\partial T}{\partial t} - \lambda \nabla^2 T = \rho_b c_{p,b} \omega_b \left(T_{a,0} - T \right) + G_L$$

$$G_L = \alpha I(x)$$
 $I(x) = I_0 e^{-\alpha x}$ $g_p = \frac{\rho_b c_{p,b} \omega_b}{\rho c}$

$$\frac{\partial T}{\partial t} - \alpha \nabla^2 T + g_p T = g_p T_{a,0} + \frac{1}{\rho c} G_L$$

$$\int_{V_P} \left(\frac{\partial T}{\partial t} - \alpha \nabla^2 T + g_p T \right) dV = \int_{V_P} \left(g_p T_{a,0} + \frac{1}{\rho c} G_L \right) dV$$

PhD school in Engineering Science

Finite volume discretization of general heat conduction equation

The FVM discretization of general heat conduction equation differes from the previous case only for the source terms.

$$\int_{V_P} \left(\frac{\partial T}{\partial t} - \alpha \nabla^2 T + g_p T \right) dV = \int_{V_P} \left(g_p T_{a,0} + \frac{1}{\rho c} G_L \right) dV$$

$$V_P \frac{T_C^{(n+1)} - T_C^{(n)}}{\Delta t} - \sum_f \alpha \left(\nabla T \right)_f \cdot \mathbf{S}_f + V_P g_P T_C = V_P \left(g_p T_{a,0} + \frac{1}{\rho c} G_L \right)$$

Backward Euler and an implcit time integration strategy is adopted:

$$V_{P} \frac{T_{C}^{(n+1)} - T_{C}^{(n)}}{\Delta t} - a_{C} T_{C}^{(n+1)} - \sum_{nb} a_{nb} T_{nb}^{(n+1)} + V_{P} g_{P} T_{C}^{(n+1)} = V_{P} \left(g_{p} T_{a,0} + \frac{1}{\rho c} G_{L} \right)$$

$$\frac{V_{P}}{\Delta t} T_{C}^{(n+1)} - a_{C} T_{C}^{(n+1)} - \sum_{nb} a_{nb} T_{nb}^{(n+1)} = -b_{C} + \frac{V_{P}}{\Delta t} T_{C}^{(n)} \quad \text{Fourier equation}$$

PhD school in Engineering Science

Finite volume discretization of general heat conduction equation

$$V_P \frac{T_C^{(n+1)} - T_C^{(n)}}{\Delta t} - a_C T_C^{(n+1)} - \sum_{nb} a_{nb} T_{nb}^{(n+1)} + V_P g_P T_C^{(n+1)} = V_P \left(g_p T_{a,0} + \frac{1}{\rho c} G_L \right)$$

$$\frac{V_P}{\Delta t}T_C^{(n+1)} - a_C T_C^{(n+1)} - \sum_{t} a_{nb} T_{nb}^{(n+1)} = -b_C + \frac{V_P}{\Delta t} T_C^{(n)}$$
 Fourier equation

$$\frac{V_P}{\Delta t} T_C^{(n+1)} + \tilde{a}_c T_C^{(n+1)} - \sum_{nb} a_{nb} T_{nb}^{(n+1)} = \tilde{b}_C + \frac{V_P}{\Delta t} T_C^{(n)}$$

$$\tilde{a}_c = -a_c + V_P g_P$$

$$\tilde{b}_C = -b_C + V_P \left(g_p T_{a,0} + \frac{1}{\rho c} G_L \right)$$

PhD school in **Engineering** Science

Ex4_FVM - Heat conduction in a biological tissue under laser heating

$$\rho c \frac{\partial T}{\partial t} - \lambda \nabla^2 T = c_{p,b} w_b (T_{a,0} - T) + G_L$$
$$T(x = 0, t) = 37$$

$$\partial_n T\left(x=1,t\right) = 0$$

$$\partial_n T\left(y=0,t\right)=0$$

$$\partial_n T\left(y=1,t\right)=0$$

$$T(\mathbf{x}, t = 0) = 37$$

- LASER source is active only for 10 s. It is applied at (x,y)=(0,0.5). the spot diameter is 1cm, while LASER intensity is 15 MW/m^2 .
- Tissue properties are standard. (Take a look to the code on gitHub to obtain their values.)

PhD school in Engineering Science

Ex4_FVM - Heat conduction in a biological tissue under laser heating

```
alpha = 1.26e-3;
rhot = 1050;
     = 3770;
cpb
      = 3340:
cpt
     = 0.5;
wb
      = 37;
Ta0
Tini = 37;
      = 0.05;
caseName='cube';
         = 0.01;
dt
Time
         = 1:
writeInt = 100;
m=mesh data(caseName);
Nc=m.numberOfElements:
Ni=m.numberOfInteriorFaces:
Nb=m.numberOfBElements:
A=zeros(Nc,Nc);
b=zeros(Nc,1);
```

$$\frac{V_P}{\Delta t} T_C^{(n+1)} + \tilde{a}_c T_C^{(n+1)} - \sum_{nb} a_{nb} T_{nb}^{(n+1)} = \tilde{b}_C + \frac{V_P}{\Delta t} T_C^{(n)}$$

$$\tilde{a}_c = -a_c + V_P g_P \qquad \tilde{b}_C = -b_C + V_P \left(g_p T_{a,0} + \frac{1}{\rho c} G_L \right)$$

- A matrix implementation, as well as **b** vector one, for laplacian and unsteady terms are exactly the same of the Fourier equation case.
- Pennes and Beer law terms can be implemented summing their contribution on **b** and **A** diagonal terms deriving from the Fourier equation discretization.

PhD school in Engineering Science

Ex4_FVM - Heat conduction in a biological tissue under laser heating

```
% Initial condition
    = zeros(Nc,1);
for i = 1:Nc
   TO(i) = TO(i) + Tini;
end
wrtfld(0, m , T0, 'Tc', caseName);
% A and b allocation
    = zeros(Nc,1);
   = -alpha*A;
   = -alpha*b;
for i=1:Nc
   Vc = m.elements(i).volC;
   A(i,i) = A(i,i) + Vc/dt;
end
```

$$\frac{V_P}{\Delta t} T_C^{(n+1)} + \tilde{a}_c T_C^{(n+1)} - \sum_{nb} a_{nb} T_{nb}^{(n+1)} = \tilde{b}_C + \frac{V_P}{\Delta t} T_C^{(n)}$$

$$\tilde{a}_c = -a_c + V_P g_P \qquad \tilde{b}_C = -b_C + V_P \left(g_p T_{a,0} + \frac{1}{\rho c} G_L \right)$$

- A matrix implementation, as well as **b** vector one, for laplacian and unsteady terms are exactly the same of the Fourier equation case.
- **Pennes** and Beer law terms can be implemented summing their contribution on **b** and **A** diagonal terms deriving from the Fourier equation discretization.

PhD school in Engineering Science

Ex4_FVM - Heat conduction in a biological tissue under laser heating

```
% Initial condition
    = zeros(Nc,1);
for i = 1:Nc
   TO(i) = TO(i) + Tini;
end
wrtfld(0, m , T0, 'Tc', caseName);
. . .
% Beer law term
     = 0.5;
qamma = 8;
      = 1.5e7;
      = zeros(Nc,1);
for i=1:Nc
          = m.elements(i).volC;
   Vc
   if ( abs( m.elements(i).Cc(2) - yL ) < 0.01 )
        bl(i) = gamma*I0*exp(-
gamma*m.elements(i).Cc(1))/(rhot*cpt);
        bl(i) = bl(i)*Vc;
    end
end
```

$$\tilde{a}_c = -a_c + V_P g_P$$

$$\tilde{b}_C = -b_C + V_P \left(g_p T_{a,0} + \frac{1}{\rho c} G_L \right)$$

$$G_L = \alpha I(x)$$
 $I(x) = I_0 e^{-\alpha x}$

- A matrix implementation, as well as **b** vector one, for laplacian and unsteady terms are exactly the same of the Fourier equation case.
- Pennes and **Beer law** terms can be implemented summing their contribution on **b** and **A** diagonal terms deriving from the Fourier equation discretization.

PhD school in Engineering Science

Ex4_FVM - Heat conduction in a biological tissue under laser heating

```
bn = zeros(Nc,1);
flow time = 0;
for i= 1: (Time/dt)
    for j=1:Nc
              = m.elements(j).volC;
        bn(i) =
                  b(i) -
                   bl(j)*min( sign(flow time-10),0)
                 + (Vc/dt)*T0(j);
    end
   Tc = bicq(A,bn,1e-12,1000);
   Tc = pcq(A,bn,1e-12,1000,L, U);
    T0 = Tc:
    bn = zeros(Nc,1);
    flow time = flow time + dt;
    if ( mod(i,writeInt) == 0)
          wrtfld(flow time, m , Tc , 'Tc', caseName)
    end
end
```


$$\frac{V_P}{\Delta t} T_C^{(n+1)} + \tilde{a}_c T_C^{(n+1)} - \sum_{nb} a_{nb} T_{nb}^{(n+1)} = \tilde{b}_C + \frac{V_P}{\Delta t} T_C^{(n)}$$