

OVP Guide to Using Processor Models

Model specific information for Altera Nios II_Nios_II_F

Imperas Software Limited Imperas Buildings, North Weston Thame, Oxfordshire, OX9 2HA, U.K. docs@imperas.com

Author	Imperas Software Limited
Version	20210408.0
Filename	OVP_Model_Specific_Information_nios_ii_Nios_II_F.pdf
Created	5 May 2021
Status	OVP Standard Release

Copyright Notice

Copyright (c) 2021 Imperas Software Limited. All rights reserved. This software and documentation contain information that is the property of Imperas Software Limited. The software and documentation are furnished under a license agreement and may be used or copied only in accordance with the terms of the license agreement. No part of the software and documentation may be reproduced, transmitted, or translated, in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without prior written permission of Imperas Software Limited, or as expressly provided by the license agreement.

Right to Copy Documentation

The license agreement with Imperas permits licensee to make copies of the documentation for its internal use only. Each copy shall include all copyrights, trademarks, service marks, and proprietary rights notices, if any.

Destination Control Statement

All technical data contained in this publication is subject to the export control laws of the United States of America. Disclosure to nationals of other countries contrary to United States law is prohibited. It is the readers responsibility to determine the applicable regulations and to comply with them.

Disclaimer

IMPERAS SOFTWARE LIMITED, AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Model Release Status

This model is released as part of OVP releases and is included in OVPworld packages. Please visit OVPworld.org.

Contents

1	Overview	1
	1.1 Description	. 1
	1.2 Licensing	. 1
	1.3 Limitations	. 1
	1.4 Verification	. 2
	1.5 Features	. 2
2	Configuration	3
	2.1 Location	. 3
	2.2 GDB Path	. 3
	2.3 Semi-Host Library	. 3
	2.4 Processor Endian-ness	. 3
	2.5 QuantumLeap Support	. 3
	2.6 Processor ELF code	. 3
3	All Variants in this model	4
4	Bus Master Ports	5
5	Bus Slave Ports	6
6	Net Ports	7
7	FIFO Ports	9
8	Formal Parameters	10
9	Execution Modes	12
10	Exceptions	13
11	Hierarchy of the model 11.1 Level 1	. 14
12	Model Commands 12.1 Level 1 12.1.1 dumpTLB 12.1.1.1 Argument description	. 15
	19.1.9 jame	15

Imperas OVP Fast Processor Model Documentation for Altera Nios II_Nios_II_F

12.1.3	itrace			 	 			 		•	 •	 		•	15
13 Registers															16
13.1 Level	1			 	 		 	 				 			16
13.1.1	User .			 	 		 	 				 			16
13.1.2	System			 	 		 	 				 			17
13.1.3	Integra	tion sup	port	 	 			 				 	_	_	17

Overview

This document provides the details of an OVP Fast Processor Model variant.

OVP Fast Processor Models are written in C and provide a C API for use in C based platforms. The models also provide a native interface for use in SystemC TLM2 platforms.

The models are written using the OVP VMI API that provides a Virtual Machine Interface that defines the behavior of the processor. The VMI API makes a clear line between model and simulator allowing very good optimization and world class high speed performance. Most models are provided as a binary shared object and also as source. This allows the download and use of the model binary or the use of the source to explore and modify the model.

The models are run through an extensive QA and regression testing process and most model families are validated using technology provided by the processor IP owners. There is a companion document (OVP Guide to Using Processor Models) which explains the general concepts of OVP Fast Processor Models and their use. It is downloadable from the OVPworld website documentation pages.

1.1 Description

Nios_II Family Processor Model.

1.2 Licensing

Open Source Apache 2.0

1.3 Limitations

No Custom instructions.

No Cache model.

No JTAG.

1.4 Verification

Models have been extensively tested by Imperas, and validated against tests from Altera.

1.5 Features

Barrel Shifter.

Configurable MPU.

Configurable MMU.

Shadow Register Sets.

Hardware Multiply.

Hardware Divide.

Hardware Extended Multiply.

Configuration

2.1 Location

This model's VLNV is altera.ovpworld.org/processor/nios_ii/1.0.

The model source is usually at:

\$IMPERAS_HOME/ImperasLib/source/altera.ovpworld.org/processor/nios_ii/1.0

The model binary is usually at:

\$IMPERAS_HOME/lib/\$IMPERAS_ARCH/ImperasLib/altera.ovpworld.org/processor/nios_ii/1.0

2.2 GDB Path

The default GDB for this model is: \$IMPERAS_HOME/lib/\$IMPERAS_ARCH/gdb/nios2-elf-gdb.

2.3 Semi-Host Library

The default semi-host library file is altera.ovpworld.org/semihosting/nios_iiNewlib/1.0

2.4 Processor Endian-ness

This is a LITTLE endian model.

2.5 QuantumLeap Support

This processor is qualified to run in a QuantumLeap enabled simulator.

2.6 Processor ELF code

The ELF code supported by this model is: 0x71.

All Variants in this model

This model has these variants

Variant	Description
Nios_II_F	(described in this document)
Nios_II_S	
Nios_II_E	

Table 3.1: All Variants in this model

Bus Master Ports

This model has these bus master ports.

Name	min	max	Connect?	Description
INSTRUCTION	32	32	mandatory	
DATA	32	32	optional	

Table 4.1: Bus Master Ports

Bus Slave Ports

This model has no bus slave ports.

Net Ports

This model has these net ports.

Name	Type	Connect?	Description
reset_n	input	optional	
d_irq0	input	optional	
d_irq1	input	optional	
d_irq2	input	optional	
d_irq3	input	optional	
d_irq4	input	optional	
d_irq5	input	optional	
d_irq6	input	optional	
d_irq7	input	optional	
d_irq8	input	optional	
d_irq9	input	optional	
d_irq10	input	optional	
d_irq11	input	optional	
d_irq12	input	optional	
d_irq13	input	optional	
d_irq14	input	optional	
d_irq15	input	optional	
d_irq16	input	optional	
d_irq17	input	optional	
d_irq18	input	optional	
d_irq19	input	optional	
d_irq20	input	optional	
d_irq21	input	optional	
d_irq22	input	optional	
d_irq23	input	optional	
d_irq24	input	optional	
d_irq25	input	optional	
d_irq26	input	optional	
d_irq27	input	optional	
d_irq28	input	optional	
d_irq29	input	optional	

d_irq30	input	optional	
d_irq31	input	optional	

Table 6.1: Net Ports

FIFO Ports

This model has no FIFO ports.

Formal Parameters

Name	Type	Description
variant	Enumeration	Selects variant (either a generic UISA
		or a specific model)
verbose	Boolean	Specify verbose output messages
endian	Endian	Specify Model endian
TEST_MODE_EXIT	Boolean	Enable Test mode exit for instruction,
		cmpltui r0, r0, (0xabc1 0xabc2)
TEST_HALT_EXIT	Boolean	Enable a Halt on "br 0", branch to
		self
INST_ADDR_WIDTH	Uns32	Instruction bus Width
DATA_ADDR_WIDTH	Uns32	Data bus Width
HW_MULTIPLY	Boolean	Hardware Multiply
HW_MULX	Boolean	Hardware Extended Multiply
HW_DIVIDE	Boolean	Hardware Divide
RESET_VECTOR	Uns32	Reset Vector Address
EXCEPTION_VECTOR	Uns32	Exception Vector Address
BREAK_VECTOR	Uns32	Break Vector Address
INCLUDE_MMU	Boolean	MMU Available
FAST_TLB_MISS_EXCEPTION_VECTOR	Uns32	Fast TLB Exception Vector Address
INCLUDE_MPU	Boolean	MPU Available
INCLUDE_CPURESETREQUEST	Boolean	CPU Reset Request Signal
INCLUDE_CPURESETTAKEN	Boolean	CPU Reset Taken Signal
CPUID_CONTROL_VALUE	Uns32	CPUID Control Register Value
EXCEPTION_ILLEGAL_INSTRUCTION	Boolean	Generate Illegal Instruction Excep-
		tion
EXCEPTION_DIVISION_ERROR	Boolean	Generate Division Error Exception
EXCEPTION_MISALIGNED_MEMORY_ACCESS	Boolean	Generate Misaligned Memory Access
		Exception
EXCEPTION_EXTRA_INFORMATION	Boolean	Generate Extra Exception informa-
		tion
INTERRUPT_CONTROLLER_INTERFACE	Enumeration	Interrupt Controller Interface (Inter-
		nal or External)
NUMBER_SHADOW_REGISTER_SETS	Uns32	Number of Shadow Register Sets
HARDCOPY_COMPATIBILITY	Boolean	Hardcopy Compatibility
MMU_PID_BITS	Uns32	MMU Process ID (PID) Bits
MMU_OPTIMIZE_NUMBER_OF_TLB_ENTRIES	Boolean	MMU Optimize Number of TLB En-
		tries based on device family
MMU_TLB_ENTRIES	Enumeration	MMU TLB Entries (128, 256, 512 or
		1024)
MMU_TLB_SET_ASSOCIATIVITY	Enumeration	MMU TLB Entries (8 or 16)
MMU_MICRO_DTLB_ENTRIES	Uns32	MMU Micro data TLB Entries

MMU_MICRO_ITLB_ENTRIES	Uns32	MMU Micro instruction TLB Entries
MPU_USE_LIMIT_FOR_REGION_RANGE	Boolean	Controls Memory
MPU_NUMBER_DATA_REGIONS	Uns32	Number of Data Regions to Allocate
MPU_MINIMUM_DATA_REGION_SIZE	Uns32	Minimum Data Region Size 64Bytes
		to 1MBytes (power of 2)
MPU_NUMBER_INSTRUCTION_REGIONS	Uns32	Number of Instruction Regions to Al-
		locate
MPU_MINIMUM_INSTRUCTION_REGION_SIZE	Uns32	Minimum Instruction Region Size
		64Bytes to 1MBytes (power of 2)
CUSTOM_FP_DIVISION	Boolean	Enable Custom Hardware for FP Di-
		vision Instruction
CUSTOM_BITSWAP	Boolean	Enable Custom Hardware for Bit
		Swap Instruction
CUSTOM_ENDIAN_CONVERT	Boolean	Enable Custom Hardware for Endian
		Conversion Instruction
CUSTOM_INTERRUPT_VECTOR	Boolean	Enable Custom Interrupt Vector In-
		struction

Table 8.1: Parameters

Execution Modes

Mode	Code	Description
VM_MODE_KERNEL	0	Supervisor Mode
VM_MODE_USER	1	User Mode
VM_MODE_KERNEL_MPU	2	Supervisor Mode MPU
VM_MODE_USER_MPU	3	User Mode MPU

Table 9.1: Modes implemented in this processor

Exceptions

Exception	Code
NONE	0
RESET	1
HARDWARE_BREAK	2
PROCESSOR_ONLY_RESET_REQUEST	4
INTERNALINTERRUPT	8
EXTERNAL_NONMASKABLE_INTERRUPT	16
EXTERNAL_MASKABLE_INTERRUPT	32
SUPERVISOR_ONLY_INSTRUCTION_ADDRESS	64
FAST_TLB_MISS_INSTRUCTION	128
DOUBLE_TLB_MISS_INSTRUCTION	256
TLB_PERMISSION_VIOLATION_EXECUTE	512
MPU_REGION_VIOLATION_INSTRUCTION	1024
SUPERVISOR_ONLY_INSTRUCTION	2048
TRAP_INSTRUCTION	4096
ILLEGAL_INSTRUCTION	8192
UNIMPLEMENTED_INSTRUCTION	16384
BREAK_INSTRUCTION	32768
SUPERVISOR_ONLY_DATA_ADDRESS	65536
MISALIGNED_DATA_ADDRESS	131072
MISALIGNED_DESTINATION_ADDRESS	262144
DIVISION_ERROR	524288
FAST_TLB_MISS_DATA	1048576
DOUBLE_TLB_MISS_DATA	2097152
TLB_PERMISSION_VIOLATION_READ	4194304
TLB_PERMISSION_VIOLATION_WRITE	8388608
MPU_REGION_VIOLATION_DATA	16777216

Table 10.1: Exceptions implemented by this processor

Hierarchy of the model

A CPU core may be configured to instance many processors of a Symmetrical Multi Processor (SMP). A CPU core may also have sub elements within a processor, for example hardware threading blocks.

OVP processor models can be written to include SMP blocks and to have many levels of hierarchy. Some OVP CPU models may have a fixed hierarchy, and some may be configured by settings in a configuration register. Please see the register definitions of this model.

This model documentation shows the settings and hierarchy of the default settings for this model variant.

11.1 Level 1

This level in the model hierarchy has 3 commands.

This level in the model hierarchy has 3 register groups:

Group name	Registers
User	32
System	17
Integration_support	1

Table 11.1: Register groups

This level in the model hierarchy has no children.

Model Commands

A Processor model can implement one or more **Model Commands** available to be invoked from the simulator command line, from the OP API or from the Imperas Multiprocessor Debugger.

12.1 Level 1

12.1.1 dumpTLB

12.1.1.1 Argument description

Display the current contents of the TLB

12.1.2 isync

specify instruction address range for synchronous execution

Argument	Type	Description
-addresshi	Uns64	end address of synchronous execution range
-addresslo	Uns64	start address of synchronous execution range

Table 12.1: isync command arguments

12.1.3 itrace

enable or disable instruction tracing

Argument	Type	Description
-after	Uns64	apply after this many instructions
-enable	Boolean	enable instruction tracing
-instructioncount	Boolean	include the instruction number in each trace
-off	Boolean	disable instruction tracing
-on	Boolean	enable instruction tracing
-registerchange	Boolean	show registers changed by this instruction
-registers	Boolean	show registers after each trace

Table 12.2: itrace command arguments

Registers

13.1 Level 1

13.1.1 User

Registers at level:1, group:User

Name	Bits	Initial-Hex	RW	Description
zero	32	0	r-	
at	32	0	rw	
r2	32	0	rw	
r3	32	0	rw	
r4	32	0	rw	
r5	32	0	rw	
r6	32	0	rw	
r7	32	0	rw	
r8	32	0	rw	
r9	32	0	rw	
r10	32	0	rw	
r11	32	0	rw	
r12	32	0	rw	
r13	32	0	rw	
r14	32	0	rw	
r15	32	0	rw	
r16	32	0	rw	
r17	32	0	rw	
r18	32	0	rw	
r19	32	0	rw	
r20	32	0	rw	
r21	32	0	rw	
r22	32	0	rw	
r23	32	0	rw	
et	32	0	rw	
bt	32	0	rw	
gp	32	0	rw	
$_{\mathrm{sp}}$	32	0	rw	
fp	32	0	rw	
ea	32	0	rw	
ba	32	0	rw	
ra	32	0	rw	

Table 13.1: Registers at level 1, group:User

13.1.2 System

Registers at level:1, group:System

Name	Bits	Initial-Hex	RW	Description
PC	32	0	rw	program counter
status	32	0	rw	
estatus	32	0	rw	
bstatus	32	0	rw	
ienable	32	0	rw	
ipending	32	0	rw	
cpuid	32	0	rw	
ctl6	32	0	rw	
except	32	0	rw	
pteaddr	32	0	rw	
tlbacc	32	0	rw	
tlbmisc	32	0	rw	
eccinj	32	0	rw	
badaddr	32	0	rw	
config	32	0	rw	
mpubase	32	0	rw	
mpuacc	32	0	rw	

Table 13.2: Registers at level 1, group:System

13.1.3 Integration_support

Registers at level:1, group:Integration_support

Name	Bits	Initial-Hex	RW	Description
stop	32	0	rw	

Table 13.3: Registers at level 1, group:Integration_support