Gradient algorithms

V. Leclère (ENPC)

April 15th, 2022

Why should I bother to learn this stuff?

- Gradient algorithm is the easiest, most robust optimization algorithm.
 It is not numerically efficient, but numerous more advanced algorithm are built on it.
- Conjugate gradient algorithm(s) are efficient methods for (quasi)-quadratic function. They are in particular used for approximately solving large linear systems.
- => useful for comprehension of
 - more advanced continuous optimization algorithms
 - machine learning training methods
 - numerical methods for solving discretized PDE

2/29

Contents

1 Introduction [BV	9.	1
--------------------	----	---

- Some general thoughts and definition
- Descent methods
- 2 Strong convexity consequences [BV 9.2]
- 3 Gradient descent [BV 9.3-9.4]
- 4 Conjugate gradient

Leclère Gradient algorithms April 15th, 2022 2 / 29

Contents

1	Introduction	[BV 9.1
		L .

- Some general thoughts and definition
- Descent methods
- ② Strong convexity consequences [BV 9.2]
- 3 Gradient descent [BV 9.3-9.4]
- Conjugate gradient

V. Leclère Gradient algorithms April 15th, 2022 2 / 29

A word on solution

- In this lecture, we are going to address unconstrained, finite dimensional, non-linear, smooth, optimization problem.
- In continuous non-linear (and non-quadratic) optimization, we cannot expect to obtain an exact solution. We are thus looking for approximate solution.
- By solution, we generally means local minimum.¹
- The speed of convergence of an algorithm is thus determining an upper bound on the number of iterations required to get an ε -solution, for $\varepsilon > 0$.

¹Sometimes just stationary points. Equivalent to global minimum in the convex setting.

Black-box optimization

We consider the following unconstrained optimization problem

- The black-box model consists in considering that we only know the function f through an oracle, that is a way of computing information on f at a given point x.
- Oracle gives local information on f. Oracles are generally a user defined code.
 - A zeroth order oracle only return the value f(x).
 - ▶ A first order oracle return both f(x) and $\nabla f(x)$.
 - ▶ A second order oracle return f(x), $\nabla f(x)$ and $\nabla^2 f(x)$.
- By opposition, structured optimization leverage more knowledge on the objective function *f* . Classical model are
 - $f(x) = \sum_{i=1}^{N} f_i(x);$
 - ▶ $f(x) = f_0(x) + \lambda g(x)$, where $f_0(x)$ is smooth and g is "simple", typically $g(x) = ||x||_1$;

Black-box optimization

4 / 29

We consider the following unconstrained optimization problem

- The black-box model consists in considering that we only know the function f through an oracle, that is a way of computing information on f at a given point x.
- Oracle gives local information on f. Oracles are generally a user defined code.
 - A zeroth order oracle only return the value f(x).
 - ▶ A first order oracle return both f(x) and $\nabla f(x)$.
 - ▶ A second order oracle return f(x), $\nabla f(x)$ and $\nabla^2 f(x)$.
- By opposition, structured optimization leverage more knowledge on the objective function f. Classical model are
 - $f(x) = \sum_{i=1}^{N} f_i(x);$
 - ▶ $f(x) = f_0(x) + \lambda g(x)$, where $f_0(x)$ is smooth and g is "simple", typically $g(x) = ||x||_1$;
 - ...

Contents

1	Introduction	[BV 9.3
	Introduction	[BA 8]

- Some general thoughts and definition
- Descent methods

2 Strong convexity consequences [BV 9.2]

3 Gradient descent [BV 9.3-9.4]

4 Conjugate gradient

7. Leclère Gradient algorithms April 15th, 2022 4 / 29

Consider the unconstrained optimization problem

$$v^{\sharp} = \min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}).$$

A descent direction algorithm is an algorithm that constructs a sequence of points $(x^{(k)})_{k \in \mathbb{N}}$, that are recursively defined with:

$$x^{(k+1)} = x^{(k)} + t^{(k)}d^{(k)}$$

where

- $x^{(0)}$ is the initial point,
- $d^{(k)} \in \mathbb{R}^n$ is the descent direction,
- $t^{(k)}$ is the step length.

For most of the analysis we will assume f to be (strongly) convex, but the algorithms presented are often used in a non-convex setting.

To complete the algorithm, we need a stopping test, generally testing that $\|\nabla f(x^{(k)})\|$ is small enough.

Consider the unconstrained optimization problem

$$v^{\sharp} = \min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}).$$

A descent direction algorithm is an algorithm that constructs a sequence of points $(x^{(k)})_{k \in \mathbb{N}}$, that are recursively defined with:

$$x^{(k+1)} = x^{(k)} + t^{(k)}d^{(k)}$$

where

- $x^{(0)}$ is the initial point,
- $d^{(k)} \in \mathbb{R}^n$ is the descent direction,
- $t^{(k)}$ is the step length.

For most of the analysis we will assume f to be (strongly) convex, but the algorithms presented are often used in a non-convex setting.

To complete the algorithm, we need a stopping test, generally testing that $\|\nabla f(x^{(k)})\|$ is small enough.

5 / 29

Consider the unconstrained optimization problem

$$v^{\sharp} = \min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}).$$

A descent direction algorithm is an algorithm that constructs a sequence of points $(x^{(k)})_{k \in \mathbb{N}}$, that are recursively defined with:

$$x^{(k+1)} = x^{(k)} + t^{(k)}d^{(k)}$$

where

- $x^{(0)}$ is the initial point,
- $d^{(k)} \in \mathbb{R}^n$ is the descent direction,
- $t^{(k)}$ is the step length.

For most of the analysis we will assume f to be (strongly) convex, but the algorithms presented are often used in a non-convex setting.

To complete the algorithm, we need a stopping test, generally testing that $\|\nabla f(x^{(k)})\|$ is small enough.

Consider the unconstrained optimization problem

$$v^{\sharp} = \min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}).$$

A descent direction algorithm is an algorithm that constructs a sequence of points $(x^{(k)})_{k \in \mathbb{N}}$, that are recursively defined with:

$$x^{(k+1)} = x^{(k)} + t^{(k)}d^{(k)}$$

where

- $x^{(0)}$ is the initial point,
- $d^{(k)} \in \mathbb{R}^n$ is the descent direction,
- $t^{(k)}$ is the step length.

For most of the analysis we will assume f to be (strongly) convex, but the algorithms presented are often used in a non-convex setting.

To complete the algorithm, we need a stopping test, generally testing that $\|\nabla f(x^{(k)})\|$ is small enough.

Descent direction algorithms

For a differentiable objective function f, $d^{(k)}$ will be a descent direction iff $\nabla f(x^{(k)}) \cdot d^{(k)} < 0$, which can be seen from a first order development:

$$f(x^{(k)} + t^{(k)}d^{(k)}) = f(x^{(k)}) + t\langle \nabla f(x^{(k)}), d^{(k)} \rangle + o(t).$$

$$d^{(k)} = -\nabla f(x^{(k)})$$
 (gradient)

$$d^{(k)} = -\alpha^{(k)} \nabla f(x^{(k)}) + \beta^{(k)} (x^{(k)} - x^{(k-1)})$$
 (heavy ball \diamondsuit)
$$d^{(k)} = -[\nabla^2 f(x^{(k)})]^{-1} \nabla f(x^{(k)})$$
 (Newton)

$$\mathbf{d}^{(k)} = -W^{(k)} \nabla f(\mathbf{x}^{(k)})$$
 (Quasi-Newton

V. Leclère

6/29

Descent direction algorithms

For a differentiable objective function f, $d^{(k)}$ will be a descent direction iff $\nabla f(x^{(k)}) \cdot d^{(k)} < 0$, which can be seen from a first order development:

$$f(x^{(k)} + t^{(k)}d^{(k)}) = f(x^{(k)}) + t\langle \nabla f(x^{(k)}), d^{(k)} \rangle + o(t).$$

The most classical descent direction are²

$$\mathbf{0} \quad d^{(k)} = -\left[\nabla^2 f(\mathbf{x}^{(k)})\right]^{-1} \nabla f(\mathbf{x}^{(k)}) \tag{Newton}$$

$$\mathbf{0} \quad \mathbf{d}^{(k)} = -W^{(k)} \nabla f(\mathbf{x}^{(k)})$$
 (Quasi-Newton) where $W^{(k)} \approx \left[\nabla^2 f(\mathbf{x}^{(k)}) \right]^{-1}$.

V. Leclère

²they will be discussed at length during the course

Step-size choice

The step-size $t^{(k)}$ can be:

- fixed $t^{(k)} = t^{(0)}$,
 - too small and it will take forever
 - too large and it won't converge
- optimal $t^{(k)} \in \operatorname{arg\,min}_{\tau \geq 0} f(x^{(k)} + \tau d^{(k)})$,
 - computing it require solving an unidimensional problem
 - might not be worth the computation
- a backtracking step choice³, for given $\tau_0 > 0, \alpha \in]0, 0.5[, \beta \in]0, 1[$,

 - ② if $f(x^{(k)} + \tau d^{(k)}) > f(x^{(k)}) + \alpha \tau \nabla f(x^{(k)})^{\top} d^{(k)} : t^{(k)} = \tau$, STOP
 - **3** $\tau \leftarrow \beta \tau$, go back to 2.
 - ▶ start with an "optimist" step τ_0
 - automatically adapt to ensure convergence
 - more complex procedure exists

³There exists a lot of other alternatives

Contents

Introduction

[BV 9.1]

- Some general thoughts and definition
- Descent methods
- Strong convexity consequences

[BV 9.2]

Gradient descent

BV 9.3-9.4]

4 Conjugate gradient

Strong convexity definition(s)

8 / 29

Recall that $f: \mathbb{R}^n \to \mathbb{R}$ is m-convex⁴ iff

$$f(tx+(1-t)y) \le tf(x)+(1-t)f(y)-\frac{m}{2}t(1-t)\|y-x\|^2, \quad \forall x, y, \quad \forall t \in]0,1[$$

If f is differentiable, it is m-convex iff

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{m}{2} ||y - x||^2, \quad \forall y, x$$

If f is twice differentiable, it is m-convex if

$$mI \leq \nabla^2 f(x) \qquad \forall x$$

ightharpoonup this last characterization is the most usefull for our analysis.

V. Leclère Gradient algorithms April 15th, 2022

⁴A strongly convex function is a m-convex function for some m > 0

Strong convexity definition(s)

8 / 29

Recall that $f: \mathbb{R}^n \to \mathbb{R}$ is $m\text{-convex}^4$ iff

$$f(tx+(1-t)y) \le tf(x)+(1-t)f(y)-\frac{m}{2}t(1-t)||y-x||^2, \quad \forall x, y, \quad \forall t \in]0,1[$$

If f is differentiable, it is m-convex iff

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{m}{2} ||y - x||^2, \quad \forall y, x$$

If f is twice differentiable, it is m-convex if

$$mI \leq \nabla^2 f(x) \qquad \forall x$$

→ this last characterization is the most usefull for our analysis.

V. Leclère Gradient algorithms April 15th, 2022

 $^{^4}$ A strongly convex function is a *m*-convex function for some m > 0

Strong convexity definition(s)

8 / 29

Recall that $f: \mathbb{R}^n \to \mathbb{R}$ is $m\text{-convex}^4$ iff

$$f(tx+(1-t)y) \le tf(x)+(1-t)f(y)-\frac{m}{2}t(1-t)||y-x||^2, \quad \forall x, y, \quad \forall t \in]0,1[$$

If f is differentiable, it is m-convex iff

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{m}{2} ||y - x||^2, \quad \forall y, x$$

If f is twice differentiable, it is m-convex iff

$$mI \leq \nabla^2 f(\mathbf{x}) \qquad \forall \mathbf{x}$$

 \sim this last characterization is the most usefull for our analysis.

V. Leclère Gradient algorithms April 15th, 2022

 $^{^4}$ A strongly convex function is a *m*-convex function for some m>0

Bounding the Hessian

Consider a *m*-convex C^2 function (on its domain), and $x^{(0)} \in \text{dom } f$. Denote $S := \text{lev}_{f(x_0)}(f) = \{x \in \mathbb{R}^n \mid f(x) \leq f(x_0)\}.$

As f is a strongly convex function S is bounded.

As $\nabla^2 f$ is continuous, there exists M>0 such that, $\|\nabla^2 f(x)\|\leq M$, for all $x\in S$.

Thus we have, for all $x \in S$,

$$mI \leq \nabla^2 f(x) \leq MI$$

Or equivalently

$$m \le \lambda_{min}(\nabla^2 f(x)) \le \lambda_{max}(\nabla^2 f(x)) \le M \qquad \forall x \in S$$

Bounding the Hessian

Consider a *m*-convex C^2 function (on its domain), and $x^{(0)} \in \text{dom } f$. Denote $S := \text{lev}_{f(x_0)}(f) = \{x \in \mathbb{R}^n \mid f(x) \leq f(x_0)\}.$

As f is a strongly convex function S is bounded.

As $\nabla^2 f$ is continuous, there exists M>0 such that, $\|\nabla^2 f(x)\|\leq M$, for all $x\in S$.

Thus we have, for all $x \in S$,

$$mI \leq \nabla^2 f(x) \leq MI$$

Or equivalently

$$m \le \lambda_{min}(\nabla^2 f(x)) \le \lambda_{max}(\nabla^2 f(x)) \le M \quad \forall x \in S$$

Strongly convex suboptimality certificate

Let f be a m-convex C^2 function. We have

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{m}{2} ||y - x||^2, \quad \forall y, x$$

The under approximation is minimized, for a given x, for $y^{\sharp} = x - \frac{1}{2} \nabla f(x)$, yielding

$$f(y) \ge f(x) - \frac{1}{2m} \|\nabla f(x)\|^2 \quad \forall y$$

$$v^{\sharp} + \frac{1}{2m} \|\nabla f(\mathbf{x})\|^2 \ge f(\mathbf{x}) \qquad \forall \mathbf{x}$$

Thus we obtain the following sub-optimality certificate

$$\|\nabla f(\mathbf{x})\| \leq \sqrt{2m\varepsilon} \implies f(\mathbf{x}) \leq v^{\sharp} + \varepsilon$$

Strongly convex suboptimality certificate

Let f be a m-convex C^2 function. We have

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{m}{2} ||y - x||^2, \quad \forall y, x$$

The under approximation is minimized, for a given x, for $y^{\sharp} = x - \frac{1}{x} \nabla f(x)$, yielding

$$f(y) \ge f(\mathbf{x}) - \frac{1}{2m} \|\nabla f(\mathbf{x})\|^2 \qquad \forall y$$

$$v^{\sharp} + \frac{1}{2m} \|\nabla f(\mathbf{x})\|^2 \ge f(\mathbf{x}) \qquad \forall \mathbf{x}$$

Thus we obtain the following sub-optimality certificate

$$\| \nabla f(\mathbf{x}) \| \le \sqrt{2m\varepsilon} \implies f(\mathbf{x}) \le v^{\sharp} + \varepsilon$$

Strongly convex suboptimality certificate

Let f be a m-convex C^2 function. We have

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{m}{2} ||y - x||^2, \quad \forall y, x$$

The under approximation is minimized, for a given x, for $y^{\sharp} = x - \frac{1}{m} \nabla f(x)$, yielding

$$f(y) \ge f(x) - \frac{1}{2m} \|\nabla f(x)\|^2 \quad \forall y$$

$$v^{\sharp} + \frac{1}{2m} \|\nabla f(\mathbf{x})\|^2 \ge f(\mathbf{x}) \qquad \forall \mathbf{x}$$

Thus we obtain the following sub-optimality certificate

$$\| \nabla f(\mathbf{x}) \| \le \sqrt{2m\varepsilon} \implies f(\mathbf{x}) \le v^{\sharp} + \varepsilon$$

Condition numbers

For any $A \in S_n^{++}$ positive definite matrix, we define its condition number $\kappa(A) = \lambda_{max}/\lambda_{min} \ge 1$ the ratio between its largest and smallest eigenvalue.

$$\operatorname{cond}(C) = \left(\frac{D_{out}}{D_{in}}\right)^2$$

11/29

Condition numbers

For any $A \in \mathcal{S}_n^{++}$ positive definite matrix, we define its condition number $\kappa(A) = \lambda_{max}/\lambda_{min} \geq 1$ the ratio between its largest and smallest eigenvalue.

Consider a bounded convex set C. Let D_{out} be the diameter of the smallest ball B_{out} containing C, and D_{in} be the diameter of the largest ball B_{in} contained in C.

Then the condition number of ${\cal C}$ is

$$\operatorname{cond}(C) = \left(\frac{D_{out}}{D_{in}}\right)^2$$

Condition numbers

For any $A \in S_n^{++}$ positive definite matrix, we define its condition number $\kappa(A) = \lambda_{max}/\lambda_{min} \geq 1$ the ratio between its largest and smallest eigenvalue.

Consider a bounded convex set C. Let D_{out} be the diameter of the smallest ball B_{out} containing C, and D_{in} be the diameter of the largest ball B_{in} contained in C.

Then the condition number of C is

$$\operatorname{cond}(C) = \left(\frac{D_{out}}{D_{in}}\right)^2$$

Condition number of sublevel set

We have, for all $x \in S$,

$$mI \leq \nabla^2 f(x) \leq MI$$

thus

$$\kappa(\nabla^2 f(\mathbf{x})) \leq M/m$$

Further.

$$v^{\sharp} + \frac{m}{2} \|x - x^{\sharp}\|^2 \le f(x) \le v^{\sharp} + \frac{M}{2} \|x - x^{\sharp}\|^2$$

For any $v^{\sharp} \leq \alpha \leq f(x_0)$, we have

$$B(x^{\sharp}, \sqrt{2(\alpha - v^{\sharp})/M}) \subset \underset{\alpha}{\text{lev}} f \subset B(x^{\sharp}, \sqrt{2(\alpha - v^{\sharp})/m})$$

and thus

$$\operatorname{cond}(C_{\alpha}) \leq M/m$$

Condition number of sublevel set

We have, for all $x \in S$,

$$mI \preceq \nabla^2 f(\mathbf{x}) \preceq MI$$

thus

$$\kappa(\nabla^2 f(\mathbf{x})) \leq M/m$$

Further,

$$v^{\sharp} + \frac{m}{2} \|x - x^{\sharp}\|^{2} \le f(x) \le v^{\sharp} + \frac{M}{2} \|x - x^{\sharp}\|^{2}$$

For any $v^{\sharp} \leq \alpha \leq f(x_0)$, we have

$$B(x^{\sharp}, \sqrt{2(\alpha - v^{\sharp})/M}) \subset \underset{\alpha}{\text{lev}} f \subset B(x^{\sharp}, \sqrt{2(\alpha - v^{\sharp})/m})$$

and thus

$$\operatorname{cond}(C_{\alpha}) \leq M/m$$

Condition number of sublevel set

We have, for all $x \in S$,

$$mI \preceq \nabla^2 f(\mathbf{x}) \preceq MI$$

thus

$$\kappa(\nabla^2 f(\mathbf{x})) \leq M/m$$

Further,

$$v^{\sharp} + \frac{m}{2} \|x - x^{\sharp}\|^2 \le f(x) \le v^{\sharp} + \frac{M}{2} \|x - x^{\sharp}\|^2$$

For any $v^{\sharp} \leq \alpha \leq f(x_0)$, we have

$$B(x^{\sharp}, \sqrt{2(\alpha - v^{\sharp})/M}) \subset \underset{\alpha}{\text{lev}} f \subset B(x^{\sharp}, \sqrt{2(\alpha - v^{\sharp})/m})$$

and thus

$$\operatorname{cond}(C_{\alpha}) \leq M/m$$

Contents

- 1 Introduction
 - Some general thoughts and definition
 - Descent methods
 - 2 Strong convexity consequences [BV 9.2]
 - 3 Gradient descent [BV 9.3-9.4]
 - 4 Conjugate gradient

V. Leclère Gradient algorithms April 15th, 2022

12/29

Gradient descent

- The gradient descent algorithm is a first-order descent direction algorithm with $d^{(k)} = -\nabla f(x^{(k)})$.
- That is, with an initial point x_0 , we have

$$x^{(k+1)} = x^{(k)} - t^{(k)} \nabla f(x^{(k)}).$$

- The three step-size choices (fixed, optimal and decreasing) leads to variations of the algorithm.
- This algorithm is slow, but robust in the sense that he often ends up converging.
- Most implementation of advanced algorithms have fail-safe procedure that default to a gradient step when something goes wrong for numerical reasons.
- It is the basis of the stochastic-gradient algorithm, which is used (in advanced form) to train ML models.

Gradient descent

- The gradient descent algorithm is a first-order descent direction algorithm with $d^{(k)} = -\nabla f(x^{(k)})$.
- That is, with an initial point x_0 , we have

$$x^{(k+1)} = x^{(k)} - t^{(k)} \nabla f(x^{(k)}).$$

- The three step-size choices (fixed, optimal and decreasing) leads to variations of the algorithm.
- This algorithm is slow, but robust in the sense that he often ends up converging.
- Most implementation of advanced algorithms have fail-safe procedure that default to a gradient step when something goes wrong for numerical reasons.
- It is the basis of the stochastic-gradient algorithm, which is used (in advanced form) to train ML models.

Steepest descent algorithm

• Using the linear approximation $f(x^{(k)} + h) = f(x^{(k)}) + \nabla f(x^{(k)})^{\top} h + o(\|h\|_{\mathbf{X}})$, it is quite natural to look for the steepest descent direction, that is

$$\mathbf{d}^{(k)} \in \operatorname*{arg\,min}_{h} \quad \left\{ \nabla f(\mathbf{x}^{(k)})^{\top} h \quad | \quad \|h\|_{\mathbf{F}} \leq 1 \right\}$$

- Here $\|\cdot\|_{\maltese}$ could be any norm on \mathbb{R}^n .
 - ▶ If $\|\cdot\|_{\maltese} = \|\cdot\|_2$, the steepest descent is a gradient step, i.e. proportional to $-\nabla f(x^{(k)})$.
 - ▶ If $\|\cdot\|_{\Breve{R}} = \|\cdot\|_P$, $\|x\|_{\Breve{R}} = \|P^{1/2}x\|_2$ for some $P \in S^n_{++}$, then the steepest descent is $-P^{-1}\nabla f(x^{(k)})$. In other words, a steepest descent step is a gradient step done on a problem after a change of variable $\bar{x} = P^{1/2}x$.
 - If $\|\cdot\|_{\maltese} = \|\cdot\|_1$, then the steepest descent can be chosen along a single coordinate, leading to the coordinate descent algorithm.
- Exercise: Prove these results.

Convergence results - convex case

Assume that f is such that $0 \leq \nabla^2 f \leq MI$.

Theorem

The gradient algorithm with fixed step size $t^{(k)} = t \leq \frac{1}{M}$ satisfies

$$f(x^{(k)}) - v^{\sharp} \le \frac{2M\|x^{(0)} - x^{\sharp}\|}{k} = O(1/k)$$

 \rightarrow this is a *sublinear* rate of convergence.

Convergence results - strongly convex case

Assume that f is such that $mI \leq \nabla^2 f \leq MI$, with m > 0. Define the conditionning factor $\kappa = M/m$.

Theorem

If $x^{(k)}$ is obtained from the optimal step, we have

$$f(\mathbf{x}^{(k)}) - \mathbf{v}^{\sharp} \le C^{k}(f(\mathbf{x}_{0}) - \mathbf{v}^{\sharp}), \qquad C = 1 - 1/\kappa$$

If $x^{(k)}$ is obtained by receding step size we have

$$f(x^{(k)}) - v^{\sharp} \le C^{k}(f(x_0) - v^{\sharp}), \qquad C = 1 - \min\{2m\alpha, 2\beta\alpha\}/\kappa$$

 \rightarrow linear rate of convergence.

Contents

1 Introduction [BV 9.1]					
Introduction [DV 9.1]	Introduction		\/	0	-11
	Introduction	LP	V		ر ب

- Some general thoughts and definition
- Descent methods
- 2 Strong convexity consequences [BV 9.2]
- 3 Gradient descent [BV 9.3-9.4]
- 4 Conjugate gradient

V. Leclère Gradient algorithms April 15th, 2022

16/29

The gradient conjugate algorithm stem from looking for numerical solution to the linear equation

$$Ax = b$$

- Never, ever, compute A^{-1} to solve a linear system.
- Classical algebraic method do a methodological factorisation of A to obtain the (exact) value of x.
- These methods are in $O(n^3)$ operations. They only yields a solution at the end of the algorithm.
- The solution would be exact if there was no rounding errors...

Alternatively, we can look to solve

$$\underset{x \in \mathbb{R}^n}{\mathsf{Min}} \qquad f(x) := \frac{1}{2} x^{\top} A x - \mathbf{b}^{\top} x$$

which is a smooth, unconstrained, convex optimization problem, whose optimal solution is given by Ax = b.

Alternatively, we can look to solve

$$\operatorname{Min}_{\mathbf{x} \in \mathbb{R}^n} \qquad f(\mathbf{x}) := \frac{1}{2} \mathbf{x}^{\top} A \mathbf{x} - \mathbf{b}^{\top} \mathbf{x}$$

which is a smooth, unconstrained, convex optimization problem, whose optimal solution is given by Ax = b.

We will assume that $A \in S_{++}^n$. If A is non symetric, but invertible, we could consider $A^{\top}Ax = A^{\top}b$.

Conjugate directions

We say that $u, v \in \mathbb{R}^n$ are A-conjugate if they are orthogonal for the scalar product associated to A, i.e.

$$\langle u, v \rangle_A := u^\top A v = 0$$

Let $(\tilde{d}_i)_{i\in[k]}$ be a linearly independent family of vector. We can construct a family of conjugate directions $(d_i)_{i\in[k]}$ through the Gram-Schmidt procedure (without normalisation), i.e., $\tilde{d}_1 = d_1$, and

$$d_{\kappa} = \tilde{d}_{\kappa} - \sum_{i=1}^{\kappa-1} \beta_{i,\kappa} d_{i}$$

$$\beta_{i,\kappa} = \frac{\left\langle \tilde{d}_{\kappa}, d_{i} \right\rangle_{A}}{\left\langle d_{i}, d_{i} \right\rangle_{A}} = \frac{\tilde{d}_{\kappa}^{\top} A d_{i}}{d_{i}^{\top} A d_{i}}$$

Conjugate directions

We say that $u, v \in \mathbb{R}^n$ are A-conjugate if they are orthogonal for the scalar product associated to A, i.e.

$$\langle u, v \rangle_A := u^\top A v = 0$$

Let $(\tilde{d}_i)_{i\in[k]}$ be a linearly independent family of vector. We can construct a family of conjugate directions $(d_i)_{i\in[k]}$ through the Gram-Schmidt procedure (without normalisation), i.e., $\tilde{d}_1=d_1$, and

$$d_{\kappa} = ilde{d}_{\kappa} - \sum_{i=1}^{\kappa-1} eta_{i,\kappa} d_i$$

$$\beta_{i,\kappa} = \frac{\left\langle \tilde{d}_{\kappa} , d_{i} \right\rangle_{A}}{\left\langle d_{i} , d_{i} \right\rangle_{A}} = \frac{\tilde{d}_{\kappa}^{\top} A d_{i}}{d_{i}^{\top} A d_{i}}$$

Conjugate direction method for quadratic function

Consider, for $A \in S_{++}^n$

$$f(x) := \frac{1}{2}x^{\top}Ax - b^{\top}x$$

A conjugate direction algorithm is a descent direction algorithm such that,

$$x^{(k+1)} = \underset{x \in x_1 + E^{(k)}}{\operatorname{arg \, min}} \quad f(x)$$

$$E^{(k)} = vect(d^{(1)}, \dots, d^{(k)})$$

- \spadesuit Exercise: Denote $g^{(k)} = \nabla f(x^{(k)})$. Show that
 - **1** $g^{(k)} d_i = 0$ for i < k
 - $g^{(k+1)} = g^{(k)} + t^{(k)}Ad^{(k)}$
 - **3** $g^{(k)}^{\top} d^{(i)} + t^{(k)} d^{(k)}^{\top} A d^{(i)} = 0$ for $i \le k$
 - Either
 - $g^{(k)}^{\top}d^{(k)}=0$ and $t^{(k)}=0$
 - or $g^{(k)}^{\top} d^{(k)} < 0$ and $t^{(k)} = -\frac{g^{(k)}^{\top} d^{(k)}}{t^{(k)} d^{(k)}^{\top} A d^{(k)}}$

21/29

Data: Linearly independent direction $\tilde{d}^{(1)}, \ldots, \tilde{d}^{(n)}$, initial point $x^{(1)}$ Matrix A and vector b for $k \in [n]$ do $\begin{vmatrix} d^{(k)} = \tilde{d}^{(k)} - \sum_{i=1}^{k-1} \frac{\left\langle \tilde{d}^{(k)}, d^{(i)} \right\rangle_A}{\left\langle d^{(i)}, d^{(i)} \right\rangle_A} d^{(i)} ; \\ t^{(k)} = \frac{\nabla f(x^{(k)})^\top d^{(k)}}{\left\langle d^{(k)}, d^{(k)} \right\rangle_A} ; \\ x^{(k+1)} = x^{(k)} + t^{(k)} d^{(k)} \end{vmatrix}$ // optimal step

Algorithm 1: Conjugate direction algorithm

This algorithm is such that (for a quadratic function f)

$$x^{(k+1)} = \underset{x \in x_1 + E^{(k)}}{\operatorname{arg \, min}} \quad f(x)$$

$$E^{(k)} = vect(d^{(1)}, \dots, d^{(k)})$$

22 / 29

If we choose $\tilde{d}^{(k)} = -\nabla f(x^{(k)}) =: g^{(k)}$ we obtain the conjugate gradient algorithm.

In particular we obtain that $E^{(k)} = vect(g^{(1)}, \dots, g^{(k)})$, and thus

$$g^{(k)}^{\mathsf{T}}g^{(i)}=0 \qquad \forall i \neq k$$

Note that

$$g^{(i+1)} - g^{(i)} = t^{(i)} A d^{(i)}, \quad \text{thus} \quad \frac{\left\langle \tilde{d}^{(k)}, d^{(i)} \right\rangle_A}{\left\langle d^{(i)}, d^{(i)} \right\rangle_A} = \frac{(\tilde{d}^{(k)})^\top (g^{(i+1)} - g^{(i)})}{d^{(i)^\top} (g^{(i+1)} - g^{(i)})}$$

$$\begin{split} d^{(k)} &= \tilde{d}^{(k)} - \sum_{i=1}^{k-1} \frac{-g^{(k)^{\top}} (g^{(i+1)} - g^{(i)})}{d^{(i)^{\top}} (g^{(i+1)} - g^{(i)})} d^{(i)} \\ &= -g^{(k)} + \frac{g^{(k)^{\top}} (g^{(k)} - g^{(k-1)})}{d^{(k-1)^{\top}} (g^{(k)} - g^{(k-1)})} d^{(k-1)} = -g^{(k)} + \frac{\|g^{(k)}\|^2}{\|g^{(k-1)}\|^2} d^{(k-1)} \end{split}$$

22 / 29

If we choose $\tilde{d}^{(k)} = -\nabla f(x^{(k)}) =: g^{(k)}$ we obtain the conjugate gradient algorithm.

In particular we obtain that $E^{(k)} = vect(g^{(1)}, \dots, g^{(k)})$, and thus

$$g^{(k)}^{\top}g^{(i)}=0 \qquad \forall i \neq k$$

Note that

$$g^{(i+1)} - g^{(i)} = t^{(i)} A d^{(i)}, \quad \text{thus} \quad \frac{\left\langle \tilde{d}^{(k)}, d^{(i)} \right\rangle_A}{\left\langle d^{(i)}, d^{(i)} \right\rangle_A} = \frac{(\tilde{d}^{(k)})^\top (g^{(i+1)} - g^{(i)})}{d^{(i)^\top} (g^{(i+1)} - g^{(i)})}$$

$$d^{(k)} = \tilde{d}^{(k)} - \sum_{i=1}^{k-1} \frac{-g^{(k)^{\top}} (g^{(i+1)} - g^{(i)})}{d^{(i)^{\top}} (g^{(i+1)} - g^{(i)})} d^{(i)}$$

$$= -g^{(k)} + \frac{g^{(k)^{\top}} (g^{(k)} - g^{(k-1)})}{d^{(k-1)^{\top}} (g^{(k)} - g^{(k-1)})} d^{(k-1)} = -g^{(k)} + \frac{\|g^{(k)}\|^2}{\|g^{(k-1)}\|^2} d^{(k-1)}$$

22 / 29

If we choose $\tilde{d}^{(k)} = -\nabla f(x^{(k)}) =: g^{(k)}$ we obtain the conjugate gradient algorithm.

In particular we obtain that $E^{(k)} = vect(g^{(1)}, \dots, g^{(k)})$, and thus

$$g^{(k)}^{\top}g^{(i)}=0 \qquad \forall i \neq k$$

Note that

$$g^{(i+1)} - g^{(i)} = t^{(i)} A d^{(i)}, \text{ thus } \frac{\langle \tilde{d}^{(k)}, d^{(i)} \rangle_A}{\langle d^{(i)}, d^{(i)} \rangle_A} = \frac{(\tilde{d}^{(k)})^\top (g^{(i+1)} - g^{(i)})}{d^{(i)}^\top (g^{(i+1)} - g^{(i)})}$$

$$d^{(k)} = \tilde{d}^{(k)} - \sum_{i=1}^{k-1} \frac{-g^{(k)^{\top}} (g^{(i+1)} - g^{(i)})}{d^{(i)^{\top}} (g^{(i+1)} - g^{(i)})} d^{(i)}$$

$$= -g^{(k)} + \frac{g^{(k)^{\top}} (g^{(k)} - g^{(k-1)})}{d^{(k-1)^{\top}} (g^{(k)} - g^{(k-1)})} d^{(k-1)} = -g^{(k)} + \frac{\|g^{(k)}\|^2}{\|g^{(k-1)}\|^2} d^{(k-1)}$$

If we choose $\tilde{d}^{(k)} = -\nabla f(x^{(k)}) =: g^{(k)}$ we obtain the conjugate gradient algorithm.

In particular we obtain that $E^{(k)} = vect(g^{(1)}, \dots, g^{(k)})$, and thus

$$g^{(k)}^{\top}g^{(i)}=0 \qquad \forall i \neq k$$

Note that

$$g^{(i+1)} - g^{(i)} = t^{(i)} A d^{(i)}, \text{ thus } \frac{\langle \tilde{d}^{(k)}, d^{(i)} \rangle_A}{\langle d^{(i)}, d^{(i)} \rangle_A} = \frac{(\tilde{d}^{(k)})^\top (g^{(i+1)} - g^{(i)})}{d^{(i)}^\top (g^{(i+1)} - g^{(i)})}$$

$$\begin{split} d^{(k)} &= \tilde{d}^{(k)} - \sum_{i=1}^{k-1} \frac{-g^{(k)^{\top}} (g^{(i+1)} - g^{(i)})}{d^{(i)^{\top}} (g^{(i+1)} - g^{(i)})} d^{(i)} \\ &= -g^{(k)} + \frac{g^{(k)^{\top}} (g^{(k)} - g^{(k-1)})}{d^{(k-1)^{\top}} (g^{(k)} - g^{(k-1)})} d^{(k-1)} = -g^{(k)} + \frac{\|g^{(k)}\|^2}{\|g^{(k-1)}\|^2} d^{(k-1)} \end{split}$$


```
Data: Initial point x^{(1)}, matrix A and vector b g^{(1)} = Ax^{(1)} - b; d^{(1)} = -g^{(1)} for k = 2..n do If \|g^{(k)}\|_2^2 is small : STOP; d^{(k)} = -g^{(k)} + \frac{\|g^{(k)}\|_2^2}{\|g^{(k-1)}\|_2^2} d^{(k-1)}; t^{(k)} = \frac{\|g^{(k)}\|_2^2}{d^{(k)^{\top}}Ad^{(k)}}; t^{(k+1)} = x^{(k)} + t^{(k)}d^{(k)}; t^{(k+1)} = g^{(k)} + t^{(k)}Ad^{(k)}
```

Algorithm 2: Conjugate gradient algorithm - quadratic function

Conjugate gradient properties

We can show the following properties, for a quadratic function,

- The algorithm find an optimal solution in at most *n* iterations
- If $\kappa = \lambda_{max}/\lambda_{min}$, we have

$$||x^{(k+1)} - x^{\sharp}||_{A} \le 2\left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^{k} ||x^{(1)} - x^{\sharp}||_{A}$$

By comparison, gradient descent with optimal step yields

$$||x^{(k+1)} - x^{\sharp}||_{A} \le 2\left(\frac{\kappa - 1}{\kappa + 1}\right)^{k}||x^{(1)} - x^{\sharp}||_{A}$$

Non-linear conjugate gradient

Algorithm 3: Conjugate gradient algorithm - non-linear function Two natural choices for the choice of β , equivalent for quadratic functions

•
$$\beta^{(k)} = \frac{\|g^{(k)}\|_2^2}{\|g^{(k-1)}\|_2^2}$$
 (Fletcher-Reeves)
• $\beta^{(k)} = \frac{g^{(k)^\top}(g^{(k)} - g^{(k-1)})}{\|g^{(k-1)}\|_2^2}$ (Polak-Ribière)

What you have to know

- What is a descent direction method.
- That there is a step-size choice to make.
- That there exists multiple descent direction.
- Gradient method is the slowest method, and in most case you should used more advanced method through adapted library.
- Conditionning of the problem is important for convergence speed.

What you really should know

- A problem can be pre-conditionned through change of variable to get faster results.
- Solving linear system can be done exactly through algebraic method, or approximately (or exactly) through minimization method.
- Conjugate gradient method are efficient tools for (approximately) solving a linear equation.
- Conjugate gradient works by exactly minimizing the quadratic function on an affine subspace.

What you have to be able to do

• Implement a gradient method with receeding step-size.

What you should be able to do

- Implement a conjugate gradient method.
- Use the strongly convex and/or Lipschitz gradient assumptions to derive bounds.

V. Leclère Gradient algorithms April 15th, 2022 29 / 29