Digital IC Design

Final Team Project:
32-Rows x 4-Columns Digital
Computation-in-Memory Macro
for Matrix Multiplications

Professor Po-Tsang Huang

International College of Semiconductor Technology National Yang Ming Chiao Tung University

Design a Digital CIM Macro

- Spec of CIM macro:
 - ◆ Array Size:
 - > 512bit
 - > 32rows x 4 columns x 4bit
 - ◆ CIM cell:
 - > 6T SRAM + NOR (Provided by TA)
 - Pre-store data:
 - Weights should be stored in SRAM cells by initial conditions (.IC)

Design a Digital CIM Macro

Spec of matrixes:

- Inputs matrix (unsigned values):
 - \blacktriangleright 4 rows x 32columns: $(I_1, I_2, I_{32})_1$, $(I_1, I_2, I_{32})_2$, ..., $(I_1, I_2, I_{32})_4$
 - > All inputs are 4bit
 - ➤ Give the input bit serially: 32 inputs (4 bits each) should be sent to the DCIM macro, 1 bit per cycle, over a total of 4 cycles to generate a column of output
 - You can add any extra control signals for your design
- Weights matrix(unsigned values):
 - > 32rows x 4 columns: $(W_1, W_2, W_3, W_4)_{1}$, $(W_1, W_2, W_3, W_4)_{2, ...}$, $(W_1, W_2, W_3, W_4)_{32}$
 - > All weights are 4bit
 - Weights should be stored in latches by initial conditions (.IC)
- Output matrix (unsigned values):
 - \rightarrow 4rows x 4columns: $(O_1, O_2, O_3, O_4)_1$, $(O_1, O_2, O_3, O_4)_2$, ... $(O_1, O_2, O_3, O_4)_4$,
 - ➤ All outputs are 13 bits
 - $\triangleright (O_1)_1 = ((I_1)_1 \times (W_1)_1) + ((I_2)_1 \times (W_1)_2) + \dots ((I_{32})_1 \times (W_1)_{32})$
 - $(O_2)_1 = ((I_1)_1 \times (W_2)_1) + ((I_2)_1 \times (W_2)_2) + \dots ((I_{32})_1 \times (W_2)_{32})$
 - $\triangleright (O_1)_2 = ((I_1)_2 \times (W_1)_1) + ((I_2)_2 \times (W_1)_2) + \dots ((I_{32})_2 \times (W_1)_{32})$

Design a Digital CIM Macro

Input & Output ports

Input signal	Bit width	Definition
I ₁ -I ₃₂	1bit x 32	Input serial signals
Output signal	Bit width	Definition
Out_valid	1	O ₁ - O ₄ are valid
$O_1 - O_4$	13bit x 4	Output signals

^{*}You can add Control signals and define by yourself

Matrixes:

$$\begin{bmatrix} (I_{1})_{1} & (I_{2})_{1} & (I_{32})_{1} \\ (I_{1})_{2} & (I_{2})_{2} & (I_{32})_{2} \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ (I_{1})_{4} & (I_{2})_{4} & (I_{32})_{4} \end{bmatrix} \times \begin{bmatrix} (W_{1})_{1} & (W_{2})_{1} & (W_{4})_{1} \\ (W_{1})_{2} & (W_{2})_{2} & (W_{4})_{2} \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ (W_{1})_{32} & (W_{2})_{32} & (W_{4})_{32} \end{bmatrix} = \begin{bmatrix} (O_{1})_{1} & (O_{2})_{1} & (O_{4})_{1} \\ (O_{1})_{2} & (O_{2})_{2} & (O_{4})_{2} \\ \vdots & \ddots & \vdots & \vdots \\ (O_{1})_{4} & (O_{2})_{4} & (O_{4})_{4} \end{bmatrix}$$

Digital CIM Macro

Example of 32-rows x 4-columns DCIM macro

Example of Bit Serial Input

- Example of Waveform
 - ◆ Bit Serial input

Maximize the energy efficiency

- Maximize the energy efficiency under 2 different throughput, respectively:
 - ◆ When the **throughput** is higher than **30 GOPS**
 - ◆ When the **throughput** is higher than **80 GOPS**
 - ◆ 1MAC = 2 OPs
- The Frequency and Voltage can be adjusted by yourself
- The input/weight matrixes should be random patterns
- The function should be correct
 - ◆ Provide correct waveform (Each Outputs should be combined into a bus signal(13bit) in Decimal format)
 - ◆ Example of 13bit bus signal in Decimal format:

