Section 6.8- The Inverse Trigonometric Functions and Their Derivatives

Name/ Uid: Date:

We would like to define inverse functions to our familiar trigonometric functions like sine, cosine, tangent, etc. However, these functions are not one-to-one on their natural domains. For example, $\sin x$ has natural domain \mathbb{R} , but it does not pass the horizontal line test. However, $\sin x$ is one-to-one for $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$. Similarly, $\cos x$ is one-to-one for $0 \le x \le \pi$ and $\tan x$ is one-to-one for $-\frac{\pi}{2} < x < \frac{\pi}{2}$. The graphs of $\sin x$, $\cos x$, and $\tan x$ respectively on these restricted domains are shown below:

 $y = \sin x$

 $y = \sin x$ $y = \cos x$ $y = \tan x$ We then define the functions $\sin^{-1} x$, $\cos^{-1} x$, and $\tan^{-1} x$ to be the inverses of these one-to-one functions. The graphs of $\sin^{-1} x$, $\cos^{-1} x$, and $\tan^{-1} x$ respectively are shown below:

Notation 1. The inverse trigonometric functions are sometimes denoted by the prefix 'arc', i.e. $\sin^{-1} x = \arcsin x$.

Example 1. Evaluate the following:

- (a) $\sin^{-1}(1) =$
- (b) $\cos^{-1}(\frac{1}{2}) =$
- (c) $\sin(\sin^{-1}(\frac{1}{2})) =$
- $(d) \sin^{-1} \left(\sin \left(\frac{3\pi}{2} \right) \right) =$
- (e) $\cos^{-1}(\sin(-\frac{\pi}{2})) =$

Derivatives of Inverse Trigonometric Functions

Derivatives of the inverse trig functions can be found by using the general relationship between the derivative of a function and that of its inverse. For example, if $f(x) = \sin x$, then $f'(x) = \cos x$ and so for any -1 < x < 1,

$$D_x \sin^{-1} x = (f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))} = \frac{1}{\cos(\sin^{-1} x)}.$$

1

To find $\cos(\sin^{-1} x)$, we set $\theta = \sin^{-1} x$ and observe that we can draw the following right triangle:

It follows that $\cos \theta = \sqrt{1 - x^2}$, and so $D_x \sin^{-1} x = \frac{1}{\sqrt{1 - x^2}}$. The derivatives of the other inverse trig functions can be found similarly. We have the following derivatives:

$$D_x \sin^{-1} x = \frac{1}{\sqrt{1 - x^2}}$$

$$D_x \cos^{-1} x = -\frac{1}{|x|\sqrt{x^2 - 1}}$$

$$D_x \cos^{-1} x = \frac{1}{\sqrt{1 - x^2}}$$

$$D_x \sec^{-1} x = \frac{1}{|x|\sqrt{x^2 - 1}}$$

$$D_x \cot^{-1} x = -\frac{1}{1 + x^2}$$

$$D_x \cot^{-1} x = -\frac{1}{1 + x^2}$$

These derivatives give rise to antiderivatives of course. Because of the sign relationships exhibited above, we only need to remember three antiderivatives

$$\int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1} x + C$$

$$\int \frac{1}{1+x^2} dx = \tan^{-1} x + C$$

$$\int \frac{1}{x\sqrt{x^2-1}} dx = \sec^{-1} |x| + C$$

Example 2. Find the following derivatives and indefinite integrals

(a)
$$D_x(\tan^{-1}(\sqrt{x}))$$

(b)
$$D_x(\sin(\cos^{-1}(x)))$$

$$(c) \int \frac{1}{\sqrt{9-x^2}} \ dx$$

$$(d) \int \frac{e^{2x}}{1 + e^{4x}} \ dx$$

(e)
$$\int \frac{1}{x^2 + 2x + 5} dx$$
 Hint: $x^2 + 2x + 5 = (x+1)^2 + 4$