МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Институт №8 «Информационные технологии и прикладная математика» Кафедра 806 «Вычислительная математика и программирование»

Лабораторная работа №4 по курсу «Нейроинформатика»

Сети с радиальными базисными элементами

Выполнил: Д. Д. Син

Группа: 8О-407Б

Преподаватели: Н.П Аносова

Постановка задачи

Целью работы является исследование свойств некоторых видов сетей с радиальными базис- ными элементами, алгоритмов обучения, а также применение сетей в задачах классификации и аппроксимации функции.

Основные этапы работы:

- 1. Использовать вероятностную нейронную сеть для классификации точек в случае, когда классы не являются линейно разделимыми.
- 2. Использовать сеть с радиальными базисными элементами (RBF) для классификации точек в случае, когда классы не являются линейно разделимыми.
- 3. Использовать обобщенно-регрессионную нейронную сеть для аппроксимации функции. Проверить работу сети с рыхлыми данными.

Вариант 23

23. Эллипс:
$$a=0.4$$
, $b=0.5$, $\alpha=0$, $x_0=0.05$, $y_0=0$ Эллипс: $a=0.6$, $b=0.6$, $\alpha=0$, $x_0=0$, $y_0=0$ Эллипс: $a=0.8$, $b=1$, $\alpha=0$, $x_0=0$, $y_0=0$

23.
$$x = \sin(0.66\pi t), t \in [0, 5], h = 0.025$$

Метод решения

Для решения лабораторной работы необходимо построить 3 нейронных сети: PNN, GRNN и RBN.

Архитектуры сетей:

Вероятностные нейронные сети

Обобщенно-регрессионная сеть

Pattern Layer

Сеть с радиально-базисными элементами

Результаты работы

Заданные множества

Обучающая выборка

Задание 1. Классификация на 3 класса вероятностной сетью pnn = PNN(std=0.1) pnn.fit(x_train, y_train)

pnn = PNN(std=0.3)
pnn.fit(x_train, y_train)

Задание 2. Классификация на 3 класса сетью с радиально базисными элементами svc = SVC(kernel='rbf', C=1e2, gamma=0.3) svc.fit(x_train, y_train)

svc = SVC(kernel='rbf', C=1e2, gamma=0.1)
svc.fit(x_train, y_train)

Задание 3. Обучающая выборка

Аппроксимация функции

grnn = GRNN(std=0.1) grnn.fit(x_train, y_train)

Вывод

В данной лабораторной работе применили сети с радиально базисными элементами к задаче классификации и регрессии. Убедились, что вероятностные сети очень хорошо подходят для задач классификации. И изучили библиотеки для работы с нейронными сетями на python, в которых уже есть готовые реализации основных архитектур сетей.