INDICACIONES

- En esta actividad se evalúa si el estudiante (*Criterio 1.1*) comprende los conceptos fundamentales de lógica matemática, teoría de conjuntos y números reales aplicables en su campo.
- El taller se desarrollará de manera colaborativa en grupos de trabajo asignados por el docente.
- Se permitirá el uso de libros de texto y notas de clase.
- Cada grupo deberá resolver los problemas propuestos y justificar cada solución de manera clara, indicando los procedimientos utilizados y los conceptos aplicados.
- Al final del taller, cada grupo presentará sus resultados y explicará sus razonamientos al resto de la clase, mediante una exposición.

EJERCICIOS

1. Un veterinario está monitoreando la frecuencia cardíaca de un gato. La frecuencia cardíaca normal para un gato es de entre 140 y 220 latidos por minuto. La frecuencia cardíaca se puede formular como la función f definida por la regla:

«Dividir el número de latidos por el tiempo medido en minutos».

Por simplicidad, el veterinario suele contar la cantidad de latidos en 15 segundos.

- a) Escribir la función f(x) que representa la frecuencia cardíaca de un gato, donde x representa la cantidad de latidos que se cuenta en 15 segundos.
- b) Un gato llega con el veterinario y para poder ingresarlo debe medir su frecuencia cardíaca. Después de 15 segundos, el veterinario ha contado 30 latidos. Determinar la frecuencia cardíaca del gato y verificar si está dentro del rango normal.
- c) Identificar el tipo de función que es f y realizar una gráfica de la función. Sugerencia: Para graficar la función, hacer la tabla de valores con los puntos x del conjunto {50,100,150,200,250}.
- d) Identificar el dominio y recorrido de la función f. Explicar su respuesta.
- e) Se conoce que la frecuencia cardíaca normal de un gato está dentro del intervalo [140, 220]. Determinar el conjunto de todos los puntos del domino de f cuya imagen está dentro del intervalo [140, 220].
- f) Dar dos conclusiones del análisis realizado en los literales anteriores.

Solución.

a) La función se puede definir como:

$$f(x) = \frac{x}{15} \cdot (60) = 4x.$$

b) Para calcular la frecuencia cardíaca con 30 latidos, sustituimos x por 30 en la función f, es decir.

$$f(30) = 4(30) = 120.$$

Como el gato tiene una frecuencia cardíaca de 120 < 140, podemos concluir que no está dentro del rango normal.

c) La función f es una función lineal. Una representación gráfica de esta función es:

- d) El dominio de la función es $dom(f) = \mathbb{R}_+$ y el recorrido o imagen de f es $Img(f) = \mathbb{R}_+$. Tanto el dominio como el recorrido no pueden ser números negativos o el cero, pues un gato no puede tener 0 latidos o un número negativo de estos. De igual forma, como x > 0, entonces f(x) = 4x > 0.
- e) Notemos que 140 y 220 son los extremos del intervalo. Como es una función lineal, basta con conocer los valores de x para los cuales se obtiene una imagen de 140 y 220. Gráficamente, podemos notar que con x=35 se obtiene que f(35)=140 y con x=55 obtenemos f(55)=220. Por lo tanto, para cualquier punto $x\in[35,55]$ se tiene que $f(x)\in[140,220]$.
- 2. Un veterinario calcula los costos de atención para los perros que llegan a su consultorio. El costo total (en dólares americanos) se puede expresar como la función:

$$g(x) = 3x^2 + 12x,$$

donde x es el tiempo, medido en horas, que dura la consulta de un perro.

- a) Factorizar la expresión del costo total.
- b) Determinar el dominio de la función. Justificar su respuesta.
- c) Graficar la función para el dominio calculado.
- d) Un perro llega a su consultorio y tarde 2 horas y media en atenderlo. Calcular el costo de la consulta.
- e) Analizando los literales anteriores, dar dos conclusiones sobre los resultados obtenidos.

Solución.

a) Notemos que los factores en común del binomio son 3x, es decir, tenemos que:

$$3x^2 + 12x = 3x(x+4)$$
.

Cada uno de los factores encontrados son polinomios de orden 1 y no es posible factorarlos más.

- b) Observemos que el tiempo solo puede ser un valor no negativo. Por lo tanto, el dominio de la función sería $\mathbb{R}_{\geqslant 0}$.
- c) El gráfico de la función es:

d) Para calcular el costo de la consulta, debemos evaluar la función g en x=2,5. Es decir,

$$g(2,5) = 3(2,5)(2,5+4) = 7,5(6,5) = 48,75.$$