

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

PROGRAMA SINTÉTICO

UNIDAD ACADÉMICA:

UNIDAD PROFESIONAL INTERDISCIPLINARIA EN INGENIERÍA Y TECNOLOGÍAS

AVANZADAS.

PROGRAMA ACADÉMICO: Ingeniería Mecatrónica

UNIDAD DE APRENDIZAJE:

Sistemas de Visión Artificial

NIVEL: IV

PROPÓSITO DE LA UNIDAD DE APRENDIZAJE:

Implementa un sistema de visión artificial con base en la programación de alto nivel.

CONTENIDOS:

1. Sistemas de visión

11. Adquisición y segmentación de Imágenes

III. Imágenes como estructuras de datos

Filtrado de imágenes digitales. IV.

V. Compresión de datos y mejora en imágenes

ORIENTACIÓN DIDÁCTICA:

Esta unidad de aprendizaje se abordará mediante la estrategia de aprendizaje basado en proyectos (POL). El facilitador aplicará los métodos de enseñanza sintético, deductivo, inductivo, analógico. Las técnicas y actividades de aprendizaje que auxiliarán a la estrategia seleccionada serán las siguientes: desarrollo de proyecto, solución de problemas, desarrollo de programas de cómputo, desarrollo de algoritmos y realización de prácticas de laboratorio.

EVALUACIÓN Y ACREDITACIÓN:

La presente Unidad de Aprendizaje se evaluará a partir del esquema de portafolio de evidencias, el cual se conforma de: evaluación diagnóstica, evaluación formativa, sumativa y rubricas de autoevaluación, coevaluación y heteroevaluación.

Esta unidad de aprendizaje también se puede acreditar mediante:

- Evaluación de saberes previamente adquiridos, con base en los lineamientos establecidos por la Academia.
- Acreditación en otra Unidad Académica del IPN u otra institución educativa externa al Instituto Nacional ó internacional previo convenio establecido.

BIBLIOGRAFÍA:

- Borenstein, G. (2013). Making Things See (3th Edition). Canada: Maker Media. ISBN: 978-1-449-30707-3
- Forsyth, P. (2011). Computer vision: a modern approach (2nd Edition). France: Prentice Hall. ISBN: 9780136085928
- Gevers, T. (2012). Color in Computer Vision. (1st Edition). USA: Wiley. ISBN:9780470890844.
- Szeliski, R. (2010). Computer Vision: Algorithms and Applications. USA: Springer. ISBN: 9782184882-934-3
- Zhihui, X. (2008). Computer vision. China: In-Tech. ISBN: 978-953-7619-21-3.

SECRETARIA DE EDUCACIÓN PÚBLICA INSTITUTO POLITÉCNICO NACIONAL DIRECCIÓN DE EDUCACIÓN SUPERIOR

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD ACADÉMICA: UNIDAD PROFESIONAL INTERDISCIPLINARIA DE INGENIERÍA Y

TECNOLOGÍAS AVANZADA

PROGRAMA ACADÉMICO: Ingeniería Mecatrónica

SALIDA LATERAL: N/A

ÁREA DE FORMACIÓN: Profesional

MODALIDAD: Escolarizada

UNIDAD DE APRENDIZAJE: Sistemas de Visión Artificial

TIPO DE UNIDAD DE APRENDIZAJE:

Teórico-Práctica / Obligatoria

VIGENCIA: Agosto del 2013

NIVEL: IV

CRÉDITOS: 4.5 Tepic - 2.90 SATCA

INTENCIÓN EDUCATIVA

Esta unidad de aprendizaje contribuye a conformar el perfil de egreso del Ingeniero en Mecatrónica, debido a que los sistema de visión artificial le permiten adquirir, segmentar y acondicionar imágenes que puede utilizar para lograr un mejor desempeño en los sistemas mecatrónicos. Además, fomenta las siguientes competencias: resolución de problemas, toma de decisiones, trabajo en equipo, desarrollo de habilidades de argumentación y presentación de la información; fomenta la comunicación, la creatividad, analiza información necesaria para temas particulares y el pensamiento crítico para la solución de problemas afines a la ingeniería.

Las unidades de aprendizaje precedentes son: Programación Avanzada, Análisis de Señales y sistemas, Microcontroladores, Microprocesadores e Interfaz y la consecuente es Visón Artificial Aplicada.

PROPÓSITO DE LA UNIDAD DE APRENDIZAJE

Implementa un sistema de visión artificial con base en la programación de alto nivel.

TIEMPOS ASIGNADOS

HORAS TEORÍA/SEMANA: 1.5

HORAS PRÁCTICA/SEMANA: 1.5

HORAS TEORÍA/SEMESTRE: 27

HORAS PRÁCTICA/SEMESTRE:

27

HORAS TOTALES/SEMESTRE: 54

M. en C. Arodi Rafael Carvallo

Dominguez

Presidente del CTCE

5 de julio de 2013

Programas Conseio General Consultivo del IPN.

INSTITUTO PONITECNICO MECIONAL RATE CHER MOGICAL Pario de la ACON SIPERIO de la SIPERIO DE PROGRAMAS

Académicos. 7 de agosto de 2013

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE: Sistemas de Visión Artificial

HOJA: 3

DE

10

Nº UNIDAD TEMÁTICA: I

NOMBRE: Sistemas de Visión

UNIDAD DE COMPETENCIA

Relaciona ente si las partes principales de un sistema de visión artificial con base en los sistemas de representación

No.	contenidos	HORAS AD Actividades de Docencia		vidades Actividades de		CLAVE BIBLIOGRÁFICA
		Т	Р	Т	P	
1.1 1.1.1 1.1.2 1.1.3	Generalidades Percepción de color Estereopsis Elementos de un sistema de visión artificial	0.5		1.0	0.5	4B,6B,2C,7C
1.2 1.2.1 1.2.2	Imágenes como matrices Pixel Convención de coordenadas en imágenes		0.5	1.0	0.5	
1.3 1.3.1	Espacio de color Espacio coordenado de color RGB Escala de grises	0.5		1.0	0.5	
1.3.2 1.3.3	Espacio coordenado de color CMY Espacio coordenado de color HSV Transformaciones entre espacios de color		0.5		0.5	
1.5	Representación Monocromática e imágenes binivel					
	Subtotales:	1.0	1.0	3.0	2.0	

ESTRATEGIAS DE APRENDIZAJE

Encuadre del curso, Integración de equipos de trabajo.

Esta unidad de temática se abordará a partir de la estrategia de aprendizaje orientada a proyectos (POL). El facilitador aplicará los métodos deductivo, inductivo y sintético. Las técnicas y actividades que auxiliarán a la estrategia seleccionada serán las siguientes: propuesta del proyecto, solución de problemas, desarrollo de programas de cómputo, y realización de la práctica 1.

EVALUACIÓN DE LOS APRENDIZAJES

Evaluación Diagnóstica Portafolio de evidencias:

Propuesta de proyecto	30%
	20%
Reporte de prácticas	
Evaluación escrita	40%
Programas de cómputo	5%
	5%
Solución de problemas	0 70
Rúbricas de autoevaluación y	
coevaluación.	

DE EDUCACIÓN PÚBLICA

INSTITUTO POLITÉCNICO NACIONAL DIRECCIÓN DE EDUCACIÓN SUPERIOR

SECRETARÍA ACADÉMICA

UNIDAD DE APRENDIZAJE:

Sistemas de Visión Artificial

HO.JA:

DE

10

N° UNIDAD TEMÁTICA: II

NOMBRE: Adquisición y segmentación de Imágenes

UNIDAD DE COMPETENCIA

Utiliza la adquisición y segmentación en in imágenes con base en técnicas iluminación y de umbralado

No.	CONTENIDOS	HORAS AD Actividades de Docencia		Actividades		Actividades		Activida Apren	S TAA ades de dizaje nomo	CLAVE BIBLIOGRÁFICA
		T	P	Т	P					
2.1 2.2 2.3	Adquisición y representación de imágenes Tipos de datos para representación de imágenes Efectos de la iluminación en la adquisición de imágenes	0.5 0.5	0.5	0.5 0.5 1.0	1.0 0.5 1.0	1B,4B,5C				
2.4 2.4.1	Técnicas de calibración de una cámara Algoritmo para la detección de líneas por mínimos cuadrados	0.5	0.5	1.0	1.0					
2.5 2.5.1 2.5.2 2.5.3 2.5.4	Proceso de segmentado en imágenes Segmentación por técnica de umbralado Bordes y detección de fronteras Encadenamientos Detección por regiones	0.5	0.5	1.0	1.0					
	Subtotales:	2.0	1.5	4.0	4.5					

ESTRATEGIAS DE APRENDIZAJE

Esta unidad temática se abordará a partir de la estrategia de aprendizaje orientada a proyectos (POL). El facilitador aplicará los métodos deductivo, inductivo y sintético. Las técnicas y actividades que auxiliarán a la estrategia seleccionada serán las siguientes: avance del proyecto, solución de problemas, desarrollo de programas de cómputo, y realización de la práctica 2 y 3.

EVALUACIÓN DE LOS APRENDIZAJES

Portafolio de evidencias:

Resolución de problemas	10%
Reporte de prácticas	20%
Evaluación escrita	20%
Avance del proyecto	40%
Programas de cómputo	10%
Púbricas de autoevaluación v	

Rúbricas de autoevaluación y coevaluación. SEA CONTROL OF THE PROPERTY OF

SECRETARÍA DE EDUCACIÓN PÚBLICA INSTITUTO POLITÉCNICO NACIONAL DIRECCIÓN

DE EDUCACION SUPERIOR

SECRETARÍA ACADÉMICA

UNIDAD DE APRENDIZAJE: Sistemas de Visión Artificial

HOJA: 5

10

N° UNIDAD TEMÁTICA: III	NOMBRE: Imágenes como Estructuras de Datos
N UNIDAD ILMATIOA. III	NIDAD DE COMPETENCIA

Crea imágenes como una estructura de datos a partir de técnicas de señales digitales.

No.	contenidos	HORAS AD Actividades de Docencia		HORAS AD Actividades		HORAS AD Acti		HORAS AD Actividades de Aprendizaie		des de dizaje	CLAVE BIBLIOGRÁFICA
		T	Р	Т	P						
3.1 3.1.1	Histograma Segmentación de imágenes usando histograma	0.5		1.0	1.5	1B, 2C,3B					
3.2	Escalas (estructura de datos, pirámide de Gauss y Laplace)	0.5	0.5	1.0	0.5						
3.3 3.3.1	Vecindades y Rotaciones Combinación de pixeles Rotación	1.0	1.0	2.0	2.5						
3.3.2	Orientación local										
	Subtotales:	2.0	1.5	4.0	4.5						

ESTRATEGIAS DE APRENDIZAJE

Esta unidad temática se abordará a partir de la estrategia de aprendizaje orientada a proyectos (POL). El facilitador aplicará los métodos deductivo, inductivo y sintético. Las técnicas y actividades que auxiliarán a la estrategia seleccionada serán las siguientes: avance del proyecto, solución de problemas, desarrollo de programas de cómputo, y realización de la práctica 4 y 5.

EVALUACIÓN DE LOS APRENDIZAJES

Portafolio de evidencias:

Resolución de problemas	10%
Reporte de prácticas	20%
Evaluación escrita	20%
Avance del proyecto	40%
Programas de computo	10%
Rúbricas de autoevaluación y	

coevaluación.

SECRETARÍA ACADÉMICA

HOJA: 6

NOMBRE: Filtrado de Imágenes Digitales

10

UNIDAD DE APRENDIZAJE:

N° UNIDAD TEMÁTICA: IV

Sistemas de Visión Artificial

UNIDAD DE COMPETENCIA

Aplica el filtrado a imágenes con base en los filtros digitales

No.	CONTENIDOS	HORAS AD Actividades de Docencia		Actividades		Actividades de		ades de Idizaje	CLAVE BIBLIOGRÁFICA
		T	T P T P	Р					
4.1 4.1.1 4.1.2	Filtros espaciales Filtrado lineal Filtrado no-lineal	1.0	1.0	2.0	4.0	3B, 5C,8B			
4.2 4.2.1	Filtrado en el dominio de la frecuencia Transformada de Fourier aplicada a imágenes	1.0	1.0	2.0	2.0				
	Subtotales:	2.0	2.0	4.0	6.0				

ESTRATEGIAS DE APRENDIZAJE

Esta unidad temática se abordará a partir de la estrategia de aprendizaje orientada a proyectos (POL). El I facilitador aplicará los métodos deductivo, inductivo y sintético. Las técnicas y actividades que auxiliarán a la estrategia seleccionada serán las siguientes: avance del proyecto, solución de problemas, realización de programas de cómputo, y realización de la práctica 6 y 7.

EVALUACIÓN DE LOS APRENDIZAJES

Portafolio de evidencias:

Resolución de problemas	10%
Reporte de prácticas	20%
Evaluación escrita	20%
Avance del proyecto	40%
Programas de cómputo	10%
Rúbricas de autoevaluación y	

coevaluación.

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE:

Sistemas de Visión Artificial

HOJA: 7

DE

10

N° UNIDAD TEMÁTICA: V	NOMBRE: Compresión de datos y mejora en imágenes					
UNIDAD DE COMPETENCIA						

Edita imágenes con base en las técnicas de escalamiento, compresión y reconstrucción

No.	CONTENIDOS	HORAS AD Actividades de Docencia		Actividades		Actividades de		ades de Idizaje	CLAVE BIBLIOGRÁFICA
		T P	P	T	P				
5.1 5.1.1	Mejora de imágenes Análisis y eliminación de ruido en imágenes	0.5	1.0	2.0	1.0	1B,4B,5C			
5.2	Compresión de datos en imágenes	0.5	1.0	2.0	1.0				
		X							
	Subtotales:	1.0	2.0	4.0	2.0				

ESTRATEGIAS DE APRENDIZAJE

Esta unidad temática se abordará a partir de la estrategia de aprendizaje orientada a proyectos (POL). El facilitador aplicará los métodos deductivo, inductivo y sintético. Las técnicas y actividades que auxiliarán a la estrategia seleccionada serán las siguientes: reporte del proyecto, solución de problemas, desarrollo de programas de cómputo, y realización de la práctica 8.

EVALUACIÓN DE LOS APRENDIZAJES

Portafolio de evidencias:

Resolución de problemas	10%
Reporte de prácticas	20%
Evaluación escrita	20%
Entrega de proyecto	40%
Programas de cómputo	10%
Rúbricas de autoevaluación y	
coevaluación.	

M

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE: Sistemas de Visión Artificial

HOJA: 8

10

RELACIÓN DE PRÁCTICAS

PRÁCTICA No.	NOMBRE DE LA PRÁCTICA	UNIDADES TEMÁTICAS	DURACIÓN	LUGAR DE REALIZACIÓN
1	Transformación entre espacios de color	1	3	
2	Calibración de la cámara	п	3	
3	Segmentación, bordes y fronteras	11	3	
4	Histograma	III	3	•
5	Rotaciones	111	3	Laboratorio de cómputo
6	Filtros en el dominio del tiempo	IV	4	
7	Filtros en el dominio de la frecuencia	IV	4	
8	Mejora de imágenes	٧	4	
		TOTAL DE HORAS	27 horas	

EVALUACIÓN Y ACREDITACIÓN:

Las prácticas se consideran requisito indispensable para acreditar esta unidad de aprendizaje. El reporte de la práctica y del proyecto estará integrado por los siguientes elementos: portada, índice, objetivo, consideraciones teóricas, desarrollo de la práctica, conclusiones y bibliografía.

Las prácticas aportan el 20% de la calificación de cada unidad temática, lo cual está considerado dentro de la evaluación continua.

DE EDUCACIÓN PÚBLICA INSTITUTO POLITÉCNICO NACIONAL DIRECCIÓN DE EDUCACIÓN SUPERIOR

SECRETARÍA ACADÉMICA

UNIDAD DE APRENDIZAJE:

Sistemas de Visión Artficial

HOJA:

9

DE 10

PERÍODO	UNIDAD	PROCEDIMIENTO DE EVALUACIÓN		
1	ly II	Evaluación continua	60%	
		Evaluación escrita	40%	
2		Evaluación continua	80%	
		Evaluación escrita	20%	
3	IVyV	Evaluación continua	80%	SOS UNIDOS ME
	3 4	Evaluación escrita	20%	

Los porcentajes con los que cada unidad temática contribuyen a la evaluación final son:

La unidad l'aporta el 20% de la calificación final.

La unidad II aporta el 20% de la calificación final.

La unidad III aporta el 20% de la calificación final. La unidad IV aporta el 20% de la calificación final.

La unidad V aporta el 20% de la calificación final.

SECRETARÍA

DE EDUCACIÓN PÚBLICA
INSTITUTO POLÍTECNICO NACIONAL
DIRECCIÓN
DE EDUCACIÓN SUPERIOR

Esta unidad de aprendizaje también se puede acreditar mediante:

- Evaluación de saberes previamente adquiridos con base en los lineamientos que establezca la Academia.
- Acreditación en otra UA del IPN u otra institución educativa externa al IPN nacional o internacional, con las que se tengan convenio

CLAVE	В	С	BIBLIOGRAFÍA
1	Х		Borenstein, G. (2013). Making Things See (3 ^{trh} Edition). Canada: Maker Media. ISBN: 978-1-449-30707-3.
2		X	Cremers, D., Magnor, M., Oswald, M. R., Zelnik-Manor, L. (2010). Video Processing and Computational Video. USA: Springer. ISBN: 978-3-642-24869-6.
3	Х		Forsyth, P. (2011). Computer vision: a modern approach (2 nd Edition). France: Prentice Hall. ISBN: 9780136085928
4	X		Gevers, T. (2012). Color in Computer Vision (1st Edition). USA: Wiley. ISBN: 9780470890844.
5		Х	Pajares, M., Cruz, G. G. (2007). Visión por Computador. Imágenes digitales y Aplicaciones. España: Alfaomega.
6	Х		ISBN: 9789701513569.
			Szeliski, R. (2010). Computer Vision: Algorithms and Applications. USA: Springer. ISBN: 978-1-84882-934-3.
7		X	Challete D (2040) Committee Visions Alexables and Analizations
8	X		Szeliski, R. (2010). Computer Vision: Algorithms and Applications. Disponible en: http://szeliski.org/Book/ .
0	^		Zhihui, X. (2008). Computer vision. China: China: In-Tech. ISBN: 978-953-7619-21-3.

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

PERFIL DOCENTE POR UNIDAD DE APRENDIZAJE

SECRETARIA DE EDUCACIÓN PÚBLICA INSTITUTO POLITÉCNICO NACIONAL DIRECCIÓN DE EDUCACIÓN SUPERIOR

1. DATOS GENERALES

UNIDAD ACADÉMICA: UNIDAD PROFESIONAL INTERDISCIPLINARIA EN INGENIERIA Y TECNOLOGÍAS

AVANZADAS.

PROGRAMA ACADÉMICO:

Ingeniería en Mecatrónica

NIVEL IV

ÁREA DE FORMACIÓN:

Institucional

Profesional

Terminal y de Integración

ACADEMIA: Mecatrónica

UNIDAD DE APRENDIZAJE: Sistemas de Visión

Artificial

ESPECIALIDAD Y NIVEL ACADÉMICO REQUERIDO:

Doctorado o Maestría con especialidad en Biónica o

Mecatrónica

Científica

Básica

2. PROPÓSITO DE LA UNIDAD DE APRENDIZAJE

Implementa un sistema de visión artificial con base en la programación de alto nivel.

PERFIL DOCENTE

CONOCIMIENTOS	EXPERIENCIA PROFESIONAL	HABILIDADES	ACTITUDES
Procesamiento de imágenes Sensores Acondicionamiento de Señales Actuadores Modelo Educativo Institucional (MEI)	Mínimo dos años de experiencia docente en el nivel superior en el área de Electrónica o afín.	Manejo de grupo. Capacidad de análisis y síntesis. Comunicación asertiva. Habilidad didáctica y pedagógica. Uso de laboratorio Aplicar Modelo Educativo Institucional (MEI) Manejo de las tecnologías de la Información y Comunicación (TIC)	Vocación por la docencia Honestidad Critica fundamentada Respeto (relación maestro- alumno) Ética profesional y personal Responsabilidad Científica Trabajo en equipo Superación docente y profesional Compromiso social y ambiental Compromiso Institucional Puntualidad

ELABORÓ

REVISÓ

M. en C. Jorge Fonseca Campos Subdirector Academico

SUBDIRECCION ACAUSTICOA

M. en C. Arodi Rafael Carvallo Dominguez Director de la Unidad-Académica

Dr. Leonel Germán Corona Ramírez Presidente de Academia