Lycée Buffon DS 4
MPSI Année 2020-2021

Devoir du 28/11/2020

Exercice 1: Soit $f: x \mapsto 2 \arctan\left(x + \sqrt{x^2 - 1}\right) - \arctan\left(\sqrt{x^2 - 1}\right)$

- 1. Déterminer l'ensemble de définition noté \mathcal{D}_f de la fonction f.
- 2. Étudier la dérivabilité de f et déterminer sa dérivée aux points de dérivation.
- 3. Tracer le graphe de f.

Exercice 2 : Soit $f: \mathbb{C} \to \mathbb{C}, z \mapsto z^2 - z + 1$. Déterminer $f(\mathbb{C}), f(\mathbb{C}^*), f(\mathbb{R}), f^{-1}(\mathbb{C}), f^{-1}(\mathbb{C}^*)$ et $f^{-1}(\mathbb{R})$.

Exercice 3 : On souhaite démontrer que : $\forall (x,y) \in [0,1]^2, \ x^y + y^x \ge 1.$

- 1. (a) Prouver que pour tout $x \in \mathbb{R}$, on a $e^x \ge 1 + x$.
 - (b) Soit $a \in \mathbb{R}^{+*}$ fixé. On considère $f_a: t \mapsto t \ln(at)$. Étudier $f_a:$ domaine de définition, de dérivation, variations, limites, valeur du minimum, tangente au point d'abscisse 1/a et graphe.
- 2. On suppose que $x \in]0,1]$ et que $0 < y \le x$. On pose $a = \frac{y}{x}$.
 - (a) On suppose dans cette question que $e^{-1} \le a \le 1$.
 - i. Prouver que $x \ln(ax) \ge -1$ et que $ax \ln(x) \ge -e^{-1}$.
 - ii. En déduire que $x^{y} + y^{x} \ge e^{-1} + e^{-1/e} \ge 1$.
 - (b) On suppose dans cette question que $0 < a < e^{-1}$.
 - i. Prouver que $x \ln(ax) \ge \ln(a)$ et que $ax \ln(x) \ge -ae^{-1}$.
 - ii. En déduire que $x^y + y^x \ge 1$.
- 3. Conclure.

Pour tout complexe z=a+ib et pour tout réel x strictement positif, on définit l'exponentielle complexe x^z par $x^z=e^{z\ln(x)}=x^a\left(\cos\left(b\ln(x)\right)+i\sin\left(b\ln(x)\right)\right)$.

- 4. Soit $z \in \mathbb{C}$. On note $f_z : \mathbb{R}^{+*} \to \mathbb{C}$, $x \mapsto x^z$
 - (a) Démontrer que la fonction f_z est dérivable sur \mathbb{R}^{+*} et déterminer sa dérivée.
 - (b) Justifier que f_z admet des primitives sur \mathbb{R}^{+*} et les déterminer.
 - (c) En déduire une primitive de $t \mapsto t \cos(\ln(t))$.

(d) Retrouver ce résultat de deux façons : grâce à un changement de variable puis à l'aide d'intégrations par parties.

Exercice 4: On considère l'équation différentielle

(E):
$$y''' - (4+i)y'' + (1-5i)y' + (2+6i)y = (2+6i)x^2 - 16ix - 9 + 3i - (2+7i)e^x$$

dont on note $\mathcal S$ l'ensemble des solutions sur $\mathbb R$ à valeurs dans $\mathbb C$.

On note (E_0) l'équation homogène associée dont on note S_0 l'ensemble des solutions.

- 1. Soit $r \in \mathbb{C}$. Prouver que la fonction $t \mapsto e^{rt}$ est solution de (E_0) si et seulement si r est racine du polynôme $P = X^3 (4+i)X^2 + (1-5i)X + 2 + 6i$.
- 2. Déterminer les racines complexes de P. On les note r_1 , r_2 et r_3 .

 On pourra remarquer que P possède une racine réelle simple et factoriser On pourra utiliser $289 = 17^2$ donc $4 \times 289 = \dots^2$
- 3. Prouver que $S_0 = \{t \mapsto \lambda e^{r_1 t} + \mu e^{r_2 t} + \nu e^{r_3 t}, (\lambda, \mu, \nu) \in \mathbb{C}^3\}$
- 4. Démontrer que si $f_p \in \mathcal{S}$, alors $\mathcal{S} = \{f_p + f_0, f_0 \in \mathcal{S}_0\}$
- 5. Déterminer S.

Exercice 5: Pour tout $(p,q) \in \mathbb{N}^2$, on pose $I_{p,q} = \int_0^1 t^p (1-t)^q dt$.

- 1. Soit $(p,q) \in \mathbb{N} \times \mathbb{N}^*$. Déterminer $I_{p,0}$ et trouver une relation entre $I_{p,q}$ et $I_{p+1,q-1}$.
- 2. Soit $(p,q) \in \mathbb{N}^2$. Proposer une formule pour $I_{p,q}$ et la prouver.
- 3. Soit *n* un entier. On pose, $P_n: x \mapsto \frac{(2n+1)!}{(n!)^2} \int_0^x t^n (1-t)^n dt$.
 - (a) Prouver que $P_n(1) = 1$.
 - (b) Prouver que $\forall x \in \mathbb{R}$, $P_n(x) + P_n(1-x) = 1$. Que peut-on en déduire sur le graphe de la fonction P_n ?

Exercice 6 : On considère l'équation différentielle $(E): (4-x^2)y'-(4+x)y=2+x$

- 1. Déterminer les solutions de l'équation homogène associée à (E) sur I=]-2,2[.
- 2. Déterminer les solutions de (E) sur I =]-2, 2[.
- 3. Prouver que parmi les solutions de (E), il y en a au plus qui possède une limite finie en 2.