Quantum Field Theory

Exercise 24:

Space inversion, or parity operation, corresponds to the improper Lorentz transformation

$$\Lambda^{\mu}_{\ \nu} = \left(\begin{array}{ccc} 1 & & & \\ & -1 & & \\ & & -1 & \\ & & & -1 \end{array} \right)$$

where the Dirac spinor Ψ and the adjoint $\bar{\Psi}$ transform according to

$$\Psi'(x') = S_P(\Lambda)\Psi(x), \ \bar{\Psi}'(x') = \bar{\Psi}(x)S_P^{-1}(\Lambda)$$

with

$$S_P = S_P^{-1} = \gamma^0.$$

In the lecture we also introduced the 4x4 Dirac matrix

$$\gamma^5 = i\gamma^0 \gamma^1 \gamma^2 \gamma^3.$$

- (a) Determine how the bilinear covariants $\bar{\Psi}\Psi$, $\bar{\Psi}\gamma^{\mu}\Psi$, $\bar{\Psi}\gamma_{5}\Psi$ and $\bar{\Psi}\gamma^{\mu}\gamma_{5}\Psi$ transform under the parity transformation. (3P)
- (b) Further show that $\bar{\Psi}\Psi$, $\bar{\Psi}\gamma^{\mu}\Psi$, $\bar{\Psi}\gamma_{5}\Psi$ and $\bar{\Psi}\gamma^{\mu}\gamma_{5}\Psi$ transform under proper Lorentz-transformations with $\Psi'(x') = S(\Lambda)\Psi(x)$ either as Lorentz-scalars or 4-vectors. In a first step it might be helpful to show that $\gamma_{5}S(\Lambda) = S(\Lambda)\gamma_{5}$. (3P)

Exercise 25:

For a Dirac field, the transformations

$$\psi(x) \to \psi'(x) = \exp(i\alpha\gamma_5)\psi(x), \quad \psi^{\dagger}(x) \to \psi^{\dagger\prime}(x) = \psi^{\dagger}(x)\exp(-i\alpha\gamma_5),$$

where α is an arbitrary parameter, are called chiral phase transformations.

(a) Show that the Lagrangian $\mathcal{L} = \bar{\psi}(i/\partial - m)\psi$ is invariant under chiral phase transformations for a vanishing mass term m = 0, and that in this case the corresponding conserved current can be expressed as $j_A^{\mu}(x) \equiv \bar{\psi}(x)\gamma^{\mu}\gamma_5\psi(x)$, the so-called axial current. (3P)

(b) Derive the equations of motion for the fields

$$\psi_L(x) \equiv \frac{1}{2}(1 - \gamma_5)\psi(x), \quad \psi_R(x) \equiv \frac{1}{2}(1 + \gamma_5)\psi(x),$$

for a non-vanishing mass $m \neq 0$, and show that they decouple in the limit m = 0. (2P)

Exercise 26:

In the expansion of the real Klein-Gordon field $\phi(x)$ with

$$\phi(x) = \frac{1}{\sqrt{V}} \sum_{\vec{k}} \frac{1}{\sqrt{2\omega_k}} \left(a_{\vec{k}} e^{-ik \cdot x} + a_{\vec{k}}^{\dagger} e^{ik \cdot x} \right)$$

we now impose the anticommutation relations

$$\{a_{\vec{k}},a_{\vec{p}}^{\dagger}\} = \delta_{\vec{k},\vec{p}}, \quad \{a_{\vec{k}},a_{\vec{p}}\} = \{a_{\vec{k}}^{\dagger},a_{\vec{p}}^{\dagger}\} = 0 \, .$$

Show that the commutator and anticommutator of the field operators for a space-like separation $(x - y)^2 < 0$ do not vanish, i.e., (4P)

$$[\phi(x), \phi(y)] \neq 0 \text{ und } \{\phi(x), \phi(y)\} \neq 0$$
.

Exercise 27:

The Dirac field operators Ψ_i with spinor component i satisfy the equal-time anticommutation relations

$$\{\Psi_a(x), \Psi_b(y)\}_{x_0=y_0} = \{\Psi_a^{\dagger}(x), \Psi_b^{\dagger}(y)\}_{x_0=y_0} = 0$$

and

$$\{\Psi_a(x), \Psi_b^{\dagger}(y)\}_{x_0=y_0} = \delta_{a,b} \delta^{(3)}(\vec{x} - \vec{y}) \; .$$

Based on these anticommutations relations show that the charge-current density operator

$$j^{\mu}(x) = -e\bar{\Psi}(x)\gamma^{\mu}\Psi(x)$$

satisfies the relation (5P)

$$[j^{\mu}(x), j^{\nu}(y)] = 0$$
, for $(x - y)^2 < 0$.

Worked-out solutions to the homework problems should be handed in at the beginning of the lecture of Tuesday, Dec. 13.