The fastest known globally convergent first-order method for minimizing strongly convex functions

Bryan Van Scoy

University of Wisconsin-Madison

Dec 12, 2017

Unconstrained optimization:

$$\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & x \in \mathbb{R}^d \end{array}$$

- Need methods which are fast and simple
- Use first-order methods

Unconstrained optimization:

$$\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & x \in \mathbb{R}^d \end{array}$$

- Need methods which are fast and simple
- Use first-order methods
- \bullet In this talk, we will design a first-order method for the case when f is smooth and strongly convex

Unconstrained optimization:

$$\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & x \in \mathbb{R}^d \\ \end{array}$$

- Need methods which are fast and simple
- Use first-order methods
- \bullet In this talk, we will design a first-order method for the case when f is smooth and strongly convex

Main result

Design and analyze a novel method which is both globally convergent and faster than Nesterov's method

Analysis Simple convergence proof (time domain)
Design Intuition using IQCs (frequency domain)

Smooth strongly convex

A differentiable function $f: \mathbb{R}^d \to \mathbb{R}$ is called L-smooth if

$$\|\nabla f(x) - \nabla f(y)\| \le L \|x - y\|$$
 for all $x, y \in \mathbb{R}^d$

and m-strongly convex if

$$f(y) \ge f(x) + \nabla f(x)^{\mathsf{T}} (y - x) + \frac{m}{2} ||x - y||^2 \quad \text{for all } x, y \in \mathbb{R}^d.$$

Smooth strongly convex

A differentiable function $f: \mathbb{R}^d \to \mathbb{R}$ is called L-smooth if

$$\|\nabla f(x) - \nabla f(y)\| \le L \|x - y\|$$
 for all $x, y \in \mathbb{R}^d$

and m-strongly convex if

$$f(y) \ge f(x) + \nabla f(x)^{\mathsf{T}} (y - x) + \frac{m}{2} ||x - y||^2 \quad \text{for all } x, y \in \mathbb{R}^d.$$

slope restricted on [m, L]

Method

gradient method

$$x_{k+1} = x_k - \alpha \, \nabla f(x_k)$$

heavy ball method

$$x_{k+1} = (1+\beta)x_k - \beta x_{k-1} - \alpha \nabla f(x_k)$$

fast gradient method

$$x_{k+1} = (1+\beta)x_k - \beta x_{k-1} - \alpha \nabla f((1+\beta)x_k - \beta x_{k-1})$$

Method

gradient method

$$x_{k+1} = x_k - \alpha \, \nabla f(x_k)$$

heavy ball method

$$x_{k+1} = (1+\beta)x_k - \beta x_{k-1} - \alpha \nabla f(x_k)$$

fast gradient method

$$x_{k+1} = (1+\beta)x_k - \beta x_{k-1} - \alpha \nabla f((1+\beta)x_k - \beta x_{k-1})$$

triple momentum method

$$x_{k+1} = (1+\beta)x_k - \beta x_{k-1} - \alpha \nabla f((1+\gamma)x_k - \gamma x_{k-1})$$

Method	Parameters
GM	$(\alpha,0,0)$
HBM (Polyak, 1964)	$(\alpha, \beta, 0)$
FGM (Nesterov, 2004)	$(\alpha, 0, 0)$ $(\alpha, \beta, 0)$ (α, β, β)
TMM (Van Scoy, Freeman, Lynch, 2017)	

Triple momentum method

$$x_{k+1} = (1+\beta)x_k - \beta x_{k-1} - \alpha \nabla f((1+\gamma)x_k - \gamma x_{k-1})$$

Parameters:

$$\begin{split} \rho &= 1 - \frac{1}{\sqrt{\kappa}} \\ \alpha &= \frac{1+\rho}{L} \\ \beta &= \frac{\rho^2}{2-\rho} \\ \gamma &= \frac{\rho^2}{(1+\rho)(2-\rho)} \end{split}$$

Condition ratio $\kappa := L/m$

Triple momentum method

$$x_{k+1} = (1+\beta)x_k - \beta x_{k-1} - \alpha \nabla f((1+\gamma)x_k - \gamma x_{k-1})$$

Parameters:

$$\rho = 1 - \frac{1}{\sqrt{\kappa}}$$

$$\alpha = \frac{1+\rho}{L}$$

$$\beta = \frac{\rho^2}{2-\rho}$$

$$\gamma = \frac{\rho^2}{(1+\rho)(2-\rho)}$$

Condition ratio $\kappa := L/m$

Theorem (Van Scoy, Freeman, Lynch, 2017)

Suppose f is L-smooth and m-strongly convex with minimizer $x_\star \in \mathbb{R}^d$. Then for any initial conditions $x_0, x_{-1} \in \mathbb{R}^d$, there exists a constant c>0 such that

$$||x_k - x_\star|| \le c \, \rho^k$$
 for all $k \ge 1$.

f quadratic

Convergence rate:
$$||x_k - x_{\star}|| \le c \rho^k$$

Iterations to converge
$$\propto -\frac{1}{\log \rho}$$

f smooth strongly convex

- HBM does not converge if $L/m \ge (2+\sqrt{5})^2 \approx 17.94$
- For FGM, Nesterov proved the rate $\sqrt{1-\sqrt{m/L}}$ which is loose!
- TMM converges faster than Nesterov's method!

Simulations

Objective function:

$$f(x) = \sum_{i=1}^{p} g(a_i^T x - b_i) + \frac{m}{2} ||x||^2, \quad x \in \mathbb{R}^d$$

where

$$g(y) = \begin{cases} \frac{1}{2} y^2 e^{-r/y}, & y > 0\\ 0, & y \le 0 \end{cases}$$

with
$$A = [a_1, \dots, a_p] \in \mathbb{R}^{d \times p}$$
, $b \in \mathbb{R}^p$, and $||A|| = \sqrt{L - m}$

f is

- *m*-smooth
- L-strongly convex
- infinitely differentiable (of class C^{∞})

Simulations

Parameters: m = 1, $L = 10^4$, d = 100, p = 5, $r = 10^{-6}$

Robustness to m

Parameters: m = 1, $L = 10^4$, d = 100, p = 5, $r = 10^{-6}$

To prove the bound for TMM, use *interpolation*.

To prove the bound for TMM, use *interpolation*.

Interpolation: The set $\{y, u, v\}$ is \mathcal{F} -interpolable if and only if $u_k = \nabla f(y_k)$ and $v_k = f(y_k)$ for some $f \in \mathcal{F}$ and all k.

To prove the bound for TMM, use interpolation.

Interpolation: The set $\{y, u, v\}$ is \mathcal{F} -interpolable if and only if $u_k = \nabla f(y_k)$ and $v_k = f(y_k)$ for some $f \in \mathcal{F}$ and all k.

Theorem (Taylor, Hendrickx, Glineur, 2016)

The set $\{y,u,v\}$ is interpolable by an L-smooth m-strongly convex function if and only if $q_{ij}\geq 0$ for all i,j where

$$q_{ij} := (L - m)(v_i - v_j) - \frac{1}{2} \|u_i - u_j\|^2$$

$$+ (mu_i - Lu_j)^{\mathsf{T}} (y_i - y_j) - \frac{mL}{2} \|y_i - y_j\|^2.$$

1. Suppose f is L-smooth and m-strongly convex. Then the **interpolation conditions** are satisfied; specifically, $q_{ij} \geq 0$ for all i, j.

- 1. Suppose f is L-smooth and m-strongly convex. Then the interpolation conditions are satisfied; specifically, $q_{ij} \geq 0$ for all i, j.
- 2. Define the Lyapunov function

$$V_k := mL \|z_k - x_{\star}\|^2 + q_{k-1,\star}$$

where
$$z_k := (1+\delta)x_k - \delta x_{k-1}$$
 and $\delta := \frac{\rho^2}{1-\rho^2}$.

- 1. Suppose f is L-smooth and m-strongly convex. Then the interpolation conditions are satisfied; specifically, $q_{ij} \geq 0$ for all i, j.
- 2. Define the Lyapunov function

$$V_k := mL \|z_k - x_\star\|^2 + q_{k-1,\star}$$

where
$$z_k := (1+\delta)x_k - \delta x_{k-1}$$
 and $\delta := \frac{\rho^2}{1-\rho^2}$.

3. Using the definition of TMM, it is straighforward to verify that

$$V_{k+1} - \rho^2 V_k = -\left[(1 - \rho^2) q_{\star,k} + \rho^2 q_{k-1,k} \right] \le 0$$

for all $k \geq 1$.

- 1. Suppose f is L-smooth and m-strongly convex. Then the interpolation conditions are satisfied; specifically, $q_{ij} \geq 0$ for all i, j.
- 2. Define the Lyapunov function

$$V_k := mL \|z_k - x_{\star}\|^2 + q_{k-1,\star}$$

where
$$z_k := (1+\delta)x_k - \delta x_{k-1}$$
 and $\delta := \frac{\rho^2}{1-\rho^2}$.

3. Using the definition of TMM, it is straighforward to verify that

$$V_{k+1} - \rho^2 V_k = -\left[(1 - \rho^2) q_{\star,k} + \rho^2 q_{k-1,k} \right] \le 0$$

for all $k \geq 1$.

4. Iterating gives the **bound** $V_k \leq \rho^{2(k-1)}V_1$ for $k \geq 1$.

 (Ψ,M) are chosen such that w satisfies

$$0 \le \sum_{j=0}^{k} \rho^{-2j} (w_j - w_\star)^\mathsf{T} M(w_j - w_\star)$$

when f is L-smooth and m-strongly convex.

$$(\Psi,M) \text{ are chosen such that } w \text{ satisfies}$$

$$0 \leq \sum_{j=0}^k \rho^{-2j} (w_j - w_\star)^\mathsf{T} M(w_j - w_\star)$$
 when f is L -smooth and m -strongly convex.

Theorem (Boczar, Lessard, Recht, 2015)

Define $\Pi(z) := \Psi(z)^* M \Psi(z)$. If there exists $\varepsilon > 0$ such that

$$\begin{bmatrix} G(z) \\ I \end{bmatrix}^* \Pi(z) \begin{bmatrix} G(z) \\ I \end{bmatrix} \preceq -\varepsilon I \quad \text{for all } z \in \rho \mathbb{T}$$

then the state of G converges linearly with rate ρ .

$$(\Psi,M) \text{ are chosen such that } w \text{ satisfies}$$

$$0 \leq \sum_{j=0}^k \rho^{-2j} (w_j - w_\star)^\mathsf{T} M(w_j - w_\star)$$
 when f is L -smooth and m -strongly convex.

Theorem (Boczar, Lessard, Recht, 2015)

Define $\Pi(z) := \Psi(z)^* M \Psi(z)$. If there exists $\varepsilon > 0$ such that

$$\begin{bmatrix} G(z) \\ I \end{bmatrix}^* \Pi(z) \begin{bmatrix} G(z) \\ I \end{bmatrix} \preceq -\varepsilon I \quad \text{for all } z \in \rho \mathbb{T}$$

then the state of G converges linearly with rate ρ .

The TMM parameters are the unique solution to

$$\begin{bmatrix} G(z) \\ I \end{bmatrix}^* \Pi(z) \begin{bmatrix} G(z) \\ I \end{bmatrix} = 0 \quad \text{for all } z \in \rho \mathbb{T}$$

Summary

Triple momentum method: globally convergent with rate $1-\sqrt{m/L}$ when f is L-smooth and m-strongly convex

Analysis Simple convergence proof (time domain)

Design Intuition using IQCs (frequency domain)

Summary

Triple momentum method: globally convergent with rate $1 - \sqrt{m/L}$ when f is L-smooth and m-strongly convex

Analysis Simple convergence proof (time domain)

Design Intuition using IQCs (frequency domain)

Extension: gradient noise

$$x_{k+1} = (1+\beta)x_k - \beta x_{k-1} - \alpha u_k$$
$$y_k = (1+\gamma)x_k - \gamma x_{k-1}$$

No noise: $u = \nabla f(y)$

Relative gradient noise: $||u - \nabla f(y)||_2 \le \delta ||\nabla f(y)||_2$

S. Cyrus, B. Hu, B. Van Scoy, L. Lessard. "A Robust Accelerated Optimization Algorithm for Strongly Convex Functions". In ArXiv e-prints (Oct. 2017). arXiv: 170.04753 [math.OC].

Thanks!

Gradient noise

What if the measured gradient is *not* the actual gradient?

$$x_{k+1} = (1+\beta)x_k - \beta x_{k-1} - \alpha u_k$$
$$y_k = (1+\gamma)x_k - \gamma x_{k-1}$$

No noise: $u = \nabla f(y)$

Relative gradient noise: $||u - \nabla f(y)||_2 \le \delta ||\nabla f(y)||_2$

Robust momentum method

$$x_{k+1} = (1+\beta)x_k - \beta x_{k-1} - \alpha \nabla f((1+\gamma)x_k - \gamma x_{k-1})$$

Parameters:

$$\rho \in \left[1 - \frac{1}{\sqrt{\kappa}}, 1 - \frac{1}{\kappa}\right]$$

$$\alpha = \frac{\kappa(1 - \rho)^2 (1 + \rho)}{L}$$

$$\beta = \frac{\kappa \rho^3}{\kappa - 1}$$

$$\gamma = \frac{\rho^3}{(\kappa - 1)(1 - \rho)^2 (1 + \rho)}$$

Theorem (Cyrus, Hu, Van Scoy, Lessard, 2017)

Suppose f is L-smooth and m-strongly convex with minimizer $x_\star \in \mathbb{R}^d$. Then for any initial conditions $x_0, x_{-1} \in \mathbb{R}^d$, there exists a constant c>0 such that

$$||x_k - x_\star|| \le c \, \rho^k$$
 for all $k \ge 1$.

Robust momentum method

$$x_{k+1} = (1+\beta)x_k - \beta x_{k-1} - \alpha \nabla f((1+\gamma)x_k - \gamma x_{k-1})$$

Parameters:

$$\rho \in \left[1 - \frac{1}{\sqrt{\kappa}}, 1 - \frac{1}{\kappa}\right]$$

$$\alpha = \frac{\kappa(1 - \rho)^2 (1 + \rho)}{L}$$

$$\beta = \frac{\kappa \rho^3}{\kappa - 1}$$

$$\gamma = \frac{\rho^3}{(\kappa - 1)(1 - \rho)^2 (1 + \rho)}$$

Theorem (Cyrus, Hu, Van Scoy, Lessard, 2017)

Suppose f is L-smooth and m-strongly convex with minimizer $x_\star \in \mathbb{R}^d$. Then for any initial conditions $x_0, x_{-1} \in \mathbb{R}^d$, there exists a constant c>0 such that

$$||x_k - x_\star|| \le c \, \rho^k$$
 for all $k \ge 1$.

Robust momentum method

$$x_{k+1} = (1+\beta)x_k - \beta x_{k-1} - \alpha \nabla f((1+\gamma)x_k - \gamma x_{k-1})$$

Parameters:

$$\begin{split} \rho &\in \left[1 - \frac{1}{\sqrt{\kappa}}, 1 - \frac{1}{\kappa}\right] \\ \alpha &= \frac{\kappa (1 - \rho)^2 (1 + \rho)}{L} \\ \beta &= \frac{\kappa \rho^3}{\kappa - 1} \\ \gamma &= \frac{\rho^3}{(\kappa - 1)(1 - \rho)^2 (1 + \rho)} \end{split}$$

Theorem (Cyrus, Hu, Van Scoy, Lessard, 2017)

Suppose f is L-smooth and m-strongly convex with minimizer $x_\star \in \mathbb{R}^d$. Then for any initial conditions $x_0, x_{-1} \in \mathbb{R}^d$, there exists a constant c>0 such that

$$||x_k - x_\star|| \le c \, \rho^k$$
 for all $k \ge 1$.

Noise strength (δ)

Conclusion

Analysis

- Numerical: solve SDP to calculate upper bound on convergence rate
- Closed-form: have expressions for convergence rate for some methods and functions classes (such as TMM on smooth strongly convex functions)

Design

- Triple momentum method Fastest known convergence rate for first-order methods on smooth strongly convex functions
- Robust momentum method Interpolates TMM and GM (with $\alpha=1/L$) to exploit the trade-off between convergence rate and robustness to gradient noise