F. Bicycle NTU

Description

台大有大量的腳踏車,但停車空間有限,因此學生常常把其他人的車推擠進狹小空間,導致停車場擁擠。這樣不僅會讓學生找不到自己的車,也會增加失竊的風險。 為了更了解這個問題,總務處決定分析學生的停車行為。

為簡化分析,每個停車格視為一個節點,所有停車格以小徑相連構成一棵樹狀結構。兩格之間的路徑是唯一的,設w(x,y)表示連接x與y的路徑所需時間,從x到z的總花費時間為路徑中所有邊的總和。

每個停車格 x 設有座標範圍 $[1,c_x]$,容量為 c_x ,可停放一輛或多輛腳踏車。學生可以自由選擇停放或移動腳踏車,但學校會定期進行整理與清除,有些車會被拖吊到水源校區,學生需搭校車前往領回。

有以下幾種操作:

- 1. Park s, x, p: 學生 s 嘗試將腳踏車停在格子 x 的位置 p ,規則如下:
 - 若 p 為空,直接停在 p。

 - 若整數位置皆已滿,則:
 - 若最左邊的車不在 p,插入 p 左側兩車中間(例如 1,2,3 被佔,用戶想 停 3,實際會停在 5/2)。
 - 否則插入 p 右側兩車中間(例如停在 1 時,實際會停在 5/4)。
- 2. **Move** s, y, p: 學生 s 將車從原格 x 移至新格 y 的位置 p, 並計算 x 到 y 的移動時間。若 x = y, 不移動,耗時為 0。
- 3. Clear x,t: 在時間 t 清空格 x,將所有車移至水源校區。學生 s 將於 $t+\ell_s$ 被 通知來領車。
- 4. **Rearrange** x,t: 在時間 t 清除所有非法停車(非整數座標)之車輛並移至水源校區,學生 s 將於 $t+\ell_s$ 被通知。
- 5. **Fetch** t:時間 t 校車發車至水源,所有已被通知可領車的學生一同前往,領回 後不會立即停車,會等之後再用 Park 操作。
- 6. **Rebuild** x, y, d (額外):將連接 x 與 y 的邊權重 w(x, y) 改為 d ,保證 x, y 原本有邊。

Input

第一行為三整數 n,q:停車格數、操作數

第二行有 n 個整數:各停車格容量 c_x

接下來 n-1 行,每行三整數 x,y,w:表示停車格 x,y 之間有一條距離為 w 的小

徑

接下來 q 行操作:格式如下(前綴為操作類型代碼):

• **Park**: 0 s x p

• Move: 1 s y p

• Clear: 2 x t

• Rearrange: 3 x t

• **Fetch**: 4 t

• Rebuild: 5 x y d

其中 s 為學生編號 , x, y 為停車格編號 , p 為位置 , t 為時間 , d 為新距離

Output

對於每個操作,輸出格式如下:

- Park: 輸出
 - [s] parked at ([x], [fp]).
 - ,其中 fp 為最簡分數或整數
- Move: 輸出
 - [s] moved to [y] in [t] seconds.
- Clear: 無輸出
- Rearrange: 輸出

Rearranged [n] bikes in [x].

- ,其中 n 為被移除的腳踏車數量
- Fetch: 輸出

At [t], [n] bikes was fetched.

- ,其中 n 為被領回的腳踏車數量
- Rebuild: 無輸出

Sample 1

Input	Output
1 5 3	0 parked at (0, 2).
3	1 parked at (0, 1).
0 0 0 0 0	2 parked at (0, 3).
0 0 0 2	
0 1 0 2	
0 2 0 2	

Sample 2

Input	Output
1 5 6	0 parked at (0, 1).
3	1 parked at (0, 2).
0 0 0 0 0	2 parked at (0, 3).
0 0 0 1	3 parked at (0, 5/2).
0 1 0 2	Rearranged 1 bikes in 0.
0 2 0 3	4 parked at (0, 5/2).
0 3 0 3	
3 0 1	
0 4 0 3	

Sample 3

Input	Output
1 5 6	0 parked at (0, 1).
3	1 parked at (0, 2).
3 4 5 6 7	2 parked at (0, 3).
0 0 0 1	3 parked at (0, 3/2).
0 1 0 1	At 6, 3 bikes was fetched.
0 2 0 1	
0 3 0 1	
2 0 1	
4 6	

Sample 4

Input	Output
6 5 6	0 parked at (0, 1).
3 3 3 4 4 4	0 moved to 1 in 11 seconds.
3 4 5 6 7	0 moved to 4 in 10 seconds.
0 2 1	0 moved to 2 in 8 seconds.
0 5 4	0 moved to 3 in 2 seconds.
1 5 7	0 moved to 2 in 2 seconds.
2 3 2	
4 5 3	
0 0 0 1	
1 0 1 1	
1 0 4 1	
1 0 2 1	
1 0 3 1	
1 0 2 1	

Sample 5

Input	Output
5 10 10	6 parked at (4, 1).
5 10 6 11 2	0 parked at (4, 2).
0 0 0 0 0 0 0 0 0	3 parked at (4, 3/2).
3 0 49410	2 parked at (4, 5/4).
3 2 54898	7 parked at (2, 4).
2 1 76874	7 moved to 2 in 0 seconds.
4 1 14829	4 parked at (0, 3).
0 6 4 1	
5 3 0 315398	
0 0 4 1	
0 3 4 2	
0 2 4 1	
2 4 18337236	
0 7 2 4	
1 7 2 5	
0 4 0 3	
2 2 37134602	

Subtasks

在一個子任務的「測試資料範圍」的敘述中,如果存在沒有提到範圍的變數,則此變數的範圍為 Input 所描述的範圍。

子任務編號	子任務配分	測試資料範圍
1	10%	$n \leq 300, q \leq 300$,僅 Park、Move
2	20%	$n \le 300, q \le 300$,含 Fetch
3	20%	$n \leq 300$,含 Fetch
4	50%	不含 Rebuild
5	Bonus	包含所有操作,完成可獲飲料獎勵