ESPACES VECTORIELS

DÉNINITION ET PROPRIÉTÉS D'UNE APPLICATION LINÉAIRE

 $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

1 Définition d'une application linéaire

Définition 1 Soient E et F deux \mathbb{K} -espaces vectoriels et f une application de E dans F. On dit que l'aplication f est linéaire, si :

1.
$$\forall (u, v) \in E^2$$
, $f(u + v) = f(u) + f(v)$.

2.
$$\forall (\lambda, u) \in \mathbb{K} \times E, \ f(\lambda u) = \lambda f(u).$$

L'ensemble des applications linéaires de E dans F est **noté** $\mathcal{L}_{\mathbb{K}}(E,F)$ ou, tout simplement, $\mathcal{L}(E,F)$.

Remarque 1 1. Une application linéaire f de E dans F est appelée morphisme ou **homomorphisme**. Si, de plus, f est bijective, on dit que f est un isomorphisme.

2. Une application linéaire d'un espace vectoriel E dans lui même est appelée ${\it en-domorphisme}$.

2 Propriétés

Proposition 1 Soient E et F deux \mathbb{K} -espaces vectoriels. Si f est une application linéaire de E dans F, alors

$$f(0_E) = 0_F \ et \ \forall u \in E, \ f(-u) = -f(u).$$

Proposition 2 (Caractérisation d'une application linéaire) Soient E et F deux \mathbb{K} -espaces vectoriels et f une application de E dans F. L'application f est linéaire, si et seulement si.

$$\forall (u, v) \in E^2 \ et \ \forall (\alpha, \beta) \in \mathbb{K}^2, f(\alpha u + \beta v) = \alpha f(u) + \beta f(v).$$

Remarque 2 Soient E et F deux \mathbb{K} -espaces vectoriels et f une application de E dans F. L'application f est linéaire, si et seulement si,

$$\forall (u, v) \in E^2 \text{ et } \forall \alpha \in \mathbb{K}, f(\alpha u + v) = \alpha f(u) + f(v).$$

1 IONISX