Реберные раскраски

Theorem 2 (Визинг, 1964)

Во всяком графе существует правильная раскраска ребер в D+1 цвет, где D — наибольшая степень вершины.

Замечание: теорема дает очень точную оценку, так как D цветов, очевидно, необходимо.

Реберные раскраски

Лемма 1

Пусть G = (V, E) гра ϕ , и пусть

- v вершина степени не более чем k,
- степень каждого из соседей v также не превосходит k
- причем степень к достигается не более чем для одного из соседей v.

Тогда если ребра графа $G\setminus \{v\}$ можно покрасить в k цветов, то и ребра графа G можно покрасить в k цветов.

 \mathcal{L} оказательство леммы. Индукцией по k:

Базис, k=1: v — или изолированная вершина, или вершина, связанная ребром с другой вершиной степени 1.

Раскраска графа $G' = G \setminus \{v\}$ в один цвет дополняется покраской дополнительного ребра в единственный цвет.

Индуктивный переход.

Пусть $m=\deg v$, u_1,\ldots,u_m — соседи v в G: $\deg u_1\leq k$, а $\deg u_i\leq k-1$ $\forall i=2,\ldots m$.

B G': $\deg u_1 \le k - 1$, a $\deg u_1 \le k - 2 \ \forall i = 2, ... m$.

Пусть c — раскраска ребер G' в цвета $\{1,\ldots,k\}$.

Можем считать, что $\deg u_1=k$, а $\deg u_i=k-1$ $\forall i=2,\ldots m.$

Если какие-то степени меньше, то можно добавить в граф G' дополнительные вершины, соединить их ребрами с u_i и произвольно раскрасить эти ребра в свободные цвета.

Для цвета i:

 $X_i \subseteq \{u_1, \dots, u_m\} :=$ подмножество всех соседей убранной вершины v, т.ч. никакие инцидентные им ребра не раскрашены в цвет i.

Тогда

- lacktriangle u_1 степени k-1 попадает ровно в одно из X_1,\ldots,X_k ,
- u_2, \ldots, u_m степени k-2 попадают ровно в два из этих множеств.

Отсюда $\sum_{i=1}^{k} |X_i| = 2 \text{deg} v - 1 < 2k$.

Пусть $\exists i,j \colon |X_i| > |X_j| + 2$ (цвет i встречается реже).

Рассмотрим подграф $G_{i,j}'$ графа G', образованный ребрами цветов i и j.

Каждая КС в $G'_{i,j}$ — это или простой путь, или простой цикл; в них чередуются i-ребра и j-ребра. Каждая вершина $\notin X_i \cap X_i$, попадет в одну из этих КС.

Тогда \exists KC, в которой больше вершин из X_i , чем из X_j .

Эта КС — простой путь, начинающийся с j-ребра в X_i и заканчивающийся или другим j-ребром в другой вершине из X_i , или за пределами $X_i \cup X_j$.

Перекрасим путь, поменяв местами цвета i и j.

При этом $|X_i|$ уменьшится на 1 или на 2, а $|X_j|$ на столько же увеличится.

Применяя такое перекрашивание необходимое число раз к наиболее редкому цвету i и наиболее частому цвету j, получим

$$||X_i|-|X_j||\leq 2$$

для любых двух цветов.

 $\sum_{i=1}^k |X_i|$ нечетно $\Rightarrow \exists i$: $|X_i|$ нечетно. $\Rightarrow \exists i$: $|X_i|=1$, поскольку в противном случае все слагаемые ≥ 2 , и их сумма $\geq 2k$.

Пусть $X_i = \{u_l\}$, то есть ни одно из ребер G', инцидентных u_l , не покрашено в цвет i.

Строим граф $\tilde{G}=(V,\tilde{E})$: удаляем из G ребро (u_I,v) , а также все ребра, покрашенные в G' в цвет i.

Степень ν уменьшилась на единицу, и степени всех соседей ν также уменьшились на единицу \Rightarrow по предположению индукции ребра \tilde{G} раскрашиваются в k-1 цветов.

Остается вернуть все удаленные из G ребра и покрасить их в цвет i.

Доказательство теоремы Визинга.

Пусть G=(V,E) граф, где $V=\{v_1,\ldots,v_n\}$, и пусть $D=\mathrm{max}_i\mathrm{deg}v_i.$

Пусть G_i — подграф G на вершинах v_1, \ldots, v_i .

Докажем, что ребра каждого G_i можно раскрасить в D+1 цветов. Индукция по i.

Базис: G_1 — это одинокая вершина, раскрасить можно.

Шаг индукции: если G_{i-1} можно раскрасить, то, по лемме для графа G_i , вершины $v=v_i$ и числа k=D+1, граф G_i тоже можно раскрасить в D+1 цветов.

Реберные раскраски

Теорема Визинга \Rightarrow два класса графов:

- ightharpoonup Класс 1: ребра красится в D цветов,
 - двудольные графы
 - почти все случайные графы
 - lacktriangle планарные графы при $D \geq 7$
- ▶ Класс 2: в D + 1 цвет.
 - lacktriangle некоторые планарные графы при $D \leq 5$

Открытые вопросы

Планарные графы с D=6?

Задача проверки, имеет ли произвольный граф класс 1, является NP-полной задачей (не известно полиномиального по времени алгоритма) — снова 1000000 от института Клэя за решение.