· Conpure to uniform system > frequency al momentum space

[g Tr In GH = y \(\frac{2}{p} \) Po In (po-ep+in sqn (p) - kp)

[ep = p/2m + Cool = cord $\frac{36c}{36c} |_{\mathcal{O}_{c}^{\circ}} = 0 \Rightarrow \mathcal{O}_{c}^{\circ} = 9 \quad \text{an} \quad \left[\sum_{Lo} = -\Gamma_{Lo} L_{o}^{\circ} \right] / \sqrt{1 - 9} \left(\frac{3}{5} \frac{k_{0}^{2}}{5} + \frac{c_{0}}{5} \right)$ · Consider the plot of Ela > positive pressure.

Effective Action and Pairing

"To for me house been restricted to repulsive interactions, with scattering length as 50, so that the ground state was stable (pressur is positive, so me could confine it).

When we have attraction, then our non interacting ground state is not a good starting point lat least a near the Fermi surface) > paining happens!

We'd like to extend our effective Field Reary approach to include pairing.

· Systematic power counting is the goal. · Should be present even in the dilute, natural system we have considered,

· Particularly important in large scattering length 150521

So how do we find pairing in a field teary/path integral framework? Answer: In the effective action formalism · Here: Show the basic idea and highlight some questions lot which there are many!

· Recall analogy of effective action and spin systems ().

- A lattice of spins si= ±1 with Hamiltonian in external magnetic Field H (we'll sum the interaction over all pairs here):

= - 21/2 Sis; - HZS:

with partition function

 $Z(\beta,H,N) = Z(\beta,H,N) = Z(\beta,H,N)$ (D5 e, \$ Sax [H(s)- Hsix)] 11/30/09 One relevant question is whether the ground state at zero external magnetic field (H=0) has a non-zoro magnetization. e magnetization M is the expectation value of \$5; The Helmholtz free errom! perturbative expansion, always predict M=0 can do a Logendre transformation to Ple free energy: inject m=-3(H) to find H(M), Hen G(w) = E(H(w)) + w H(w)· Note Plat -M $\frac{\partial m}{\partial H} = H$ so G as a function of M is minimized 3m=0 is no external field ** A perturbative approximation to G(m) can have nontrivial (Alat is m=0) solutions to 36/2m=0. · Similarly, our expansion of the dilute Fermi gas in EfT counting (powers & F/N) did not reveal pairing.

Do onalog of magnetic Legendre transformation. 11/30/09 magnetization example is one & spontaneously broken symmetry: in particular, the global symmetry of rotational invariance is broken by the magnetization in the ground state picking out a direction.

- (Put back the rectors - M -> m all H. ES; to see this) · The external field H acts as a source term to brook the symmetry. Then he see from G(m) whether it survives as ITH > 0. What is the corresponding symmetry in the fermion case with delta-function interaction? lethorton of motor for & 2=4+ 1 ist + 2m + 472 - 5 Co(2+12 has the usual Gaililean invariance and parity and time reversal symmetries.
But there is also a global (perform the super transformation at every space-time point) U(1) symmetry: since to always appears with to Intinitismal > 2 = (1-10) ya 154 = - 14x 10(x) = 32 24 24 + 32 27 27 = 2+2 total divergency j(x) = - = - = (2/24 - (2/4))2

17/30/09 Symmetry transformations and Noether's Resource · We nont to consider the idea of symmetries from the point of vins of path integrals.

· A symmetry is manifested by a transformation of the fuld's that does not change the action; · But this should just correspond to a change of voriables in the path integral, > in general we can do this without changing the integral. This is called a Rub redetinition and while the lagrangian might change, 5 matrix elevents and turndymon observables don't · A The action doesn't change, then we have additional consciences if the Jacobian is unity. If not we have grantin aromalies, there, to UD) symmetry transformation.
Tours the Lagrangian invariant and his Jacobian unity in the path integral.
Because it is a unitary transformation among the Relds.) cotinuous

4. A main consequence of a symmetry transformation is that

there is a conserved time-independent charge of associated with

a conserved current diff=0.

(Consider &= &(4; diff) where do= of di= Ti

It is sufficient to consider an infinitesimal transformation. (why, find what do

you gain?) Ψ(x) = (x) + εf(y) For internal symmetry, let E> E(X): \(\varphi(X) = \varphi(X) + \varepsilon(X) \varphi(V) $\frac{\partial \mathcal{S}}{\partial x} = \frac{\partial \mathcal{S}}{\partial x} = \frac{\partial$ Try $6|x,t\rangle$: $\int d^3x \, d' = \int d^3x \, \left[\frac{1}{4} \left(2+6x\right)\right] \left(i\frac{1}{6}+\mu\right) \left(1-i6\right)^2 \left($

11/30/09 so the conserved charge is the fermion number N= 5474 dx.

This will be a broken symmetry if we have a non-zero

expectation value for <474. Uhy. So we'll need a chemical t's show one way to proceed, Following M. Stone's Te Physics of Quantum Fields" discussion. - We'll work in Euclidean space at temperature 1/B

(with h=1) and take \$500 early on.

We'll consider spin-1/2 only and attractive Co=-N <0

(0 v=2) The partition function is (in 1-D), the 3-D generalization is immediate) Z= Tr(EPA-pA) where a=1,2 correspond to 1, V The Phink about Grassmann enticommuting fields, we don't real to warry about anticommutators so we can see he have simply rearranged the usual & (+2+x)2 term: (all at x,t) 4+4+2+24 (2 interchange) => some sign) · Note Plat The Minkowski eis= isdadt &(x,t)

Euclideun Z= es= = esdad &e(x,t) where $J_{\epsilon}(x, \tau) = -J(x, -i\tau)$

C. San

Q15) 11/30/09 a bosic dan is to eliminate the 2+1+1+1 term ay introducing on auxiliary field, just as we did for the (2+4) term in the large N discussion. · What can we say about the field? · 4+24 is thermittan, but 7,24 is not so we can expect to need a charged scalar. We'll call it & and We note the Gaussian integral over Dad D' can be , あ(D,DX) e- 前「Mar (DX-N)生生) × 大川生生 (8(4x) = \$\frac{1}{3}\dx\frac{1}{3}\dx 121 (24-4,44) when he have a nice convergent integral at each x, T.

The sign of the quartic term in the exponent is just
right to kill the corresponding term in Z. So we can write labourbing the constant denominator in the equation above into the measure): Z= S&(4,4)&(\(\Delta,\Delta\)? (\(\Sigma\) - 2m\(\Delta\) - \(\Delta\) \(\Del VS. (SE =0 => KID-13-71=0) We can verify that the new "interaction term" is Hermittan". 5474 + 5474 = +5 794 + 5474 noting that D and D* community with the Grassman variables · Also the syn of the interaction is not relevant since △=7. - D and △×=> - B leaves Z invariant.

(F)	
	11/30/09
	In our previous effective action example, $0 \propto 414_{x}$ and we expanded $O(x,t) = O_{c}(x) + N(x,t)$,
	Here we write
	$\Delta(x, \tau) = \Delta_{\mathcal{L}}(x) + \gamma(x, \tau)$
	$\left[\Delta(x, t) = \Delta(x) + t(x, t) \right]$
	and expand in fluctuations of about Dc.
	- For our initial discussion we'll just need the "classical"
	piece. So we take D=Do and D*-Do in Z[],)*] and do the Gaussian 4t, 4 interpretions.
	and do the Gaussian 2t, 4 integrations,
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	· Previously, when hi introduced or, we had (for N=2)
-43	(4) 4) 37-3m-N-1/16(x) 0 /4/
	0 3 - Ju-1/10 (x) / 72
	and so the determinant of the matrix (from the Goversion integral)
	simply picked up a factor of 2 (a 1) in general) from
	The 2x2 submatrix. I had gets later of 9, det set the square
o o o o o o o o o o o o o o o o o o o	7 - + + - 21 121 - 9 1 6 1 14 4
	· The present matrix mixes 4, and 49, so the above form doesn't work.
	But we can swap 4g and 4gt (remembering they are Grossmann!):
	(41 42) (87-5m-M - Dc) (41)
	1 - DE 2 + 2m + 4 19t2
·	· We can just redefine 7= 75 and 4= 75 and we have a more ordinary looking Gaussian integral, with a non-diagonal submatrix.
	a more or divery looking Gaussian integral, with a
	non diagonal submatrix.

		2K
	Plan: Work in a busis Plat diagonalizes to Ext Sm	
	Plan! Work in a busis Plat diagonalizes the st star parts and then just calculate the determinant of the 2x2 matrix.	
le '	You might imagine introducing quasi particle	
	You might imagine introducing quasi particle aperators instead to diagonalize it! - So we work in the Fourier basis	
		engan eriterapa kan kenaran sain kina kan da kina da Aran menganyi kenaran kina kina kenaran kenaran kenaran k Kenaran kenaran kenara
	Ten he reed	
	Termina [Do] = - lo TITI det int am - M Do Do in- Enty)	
7 mg	$=-\ln \left[\left[\omega^{2} + \left(\frac{1}{2m} - \mu \right)^{2} + \left \Delta c \right ^{2} \right]$	
	= - Z \{ \lambda \lambda \rangle \lambda \rangle \rangle \lambda \rangle \rang	
	$- > - LT \left(\frac{dw}{dR} \left(\frac{dR}{R} \ln \left(\frac{w^2 + \xi_{\perp}^2}{R} \right) + \left \frac{\Delta c}{R} \right ^2 \right) \right)$	
Para Para Para Para Para Para Para Para	with $S_{\pm} = \frac{1}{2m} - \mu \int \Gamma_{note}! no Hartree-Fock part!$	
# 0 1 2 2 2 2 2 2 2 2 2	· Now we can use our derivative trick again: - let 10012 -> Y10012 at take (1dx AT] which will gix us T[0].	
	> \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	= \(\frac{9}{9x} \left(\frac{9}{9n} \left(\frac{1}{9n} \frac{1}{10}	(it (2 k))
	= 5 00 \$ 152+ NOCIO	•
	$= \sqrt{\xi_k^2 + \Delta_c^2} - \xi_k $	A

11/30/09 effective action is in talq no. The ground state: looking for a non-zero De follows from Hernodyranic potential E=St W-St S

	11/30/09	
	Let's return to the quadratic term before doing the fermion integration	
	(1) 12) 37-2m-y ->c 12/2 + 17/2c)	
	and go to a uniform system $\Delta_c(x) \rightarrow \Delta_c$ and Fourier transform: (also take 1-1 and 2-4)	C
4 3 d d d d d d d d d d d d d d d d d d	=	
	Now think about diagonalizing the matrix => introduce a rotated basis of Grassman fields: (4/16) (cas X + + Sin X k) (x(k)) (4/1-k) = Sin X + (os X k) p(-k))	
	ad choose Xx so Not be get a diagonal matrix.	
	This is accomplished (surprise, surprise,) by $ \cos 2\chi = \frac{\xi_{k}}{V_{k}^{2}+ \Delta c ^{2}} $ Sing $\chi_{k} = \frac{ \Delta c }{V_{k}^{2}+ \Delta c ^{2}}$ (checked with Mallementia	2
	Inviting the transformation, $ \begin{pmatrix} \alpha(k) \\ \beta^{\dagger}(-k) \end{pmatrix} = \begin{pmatrix} \cos k - \sin k \\ + \sin k \cos k \end{pmatrix} \begin{pmatrix} 24k \\ 24k \end{pmatrix} $	**.]
		7 - 13 - MAY - 1, 4.

	11/30/09	331))
	Which is precisely the Bogolyubor transformation:	
	when he make he identifications of Uz ad Ix:	inny naman'i matifan a militana ay ny na airika na nina na nanada na dalah
	TUK = COS Xx 1 and Vx = SID Xx	en e
	Matternatica check:	
	$In[1] := r1 = \{\{Cos[x], Sin[x]\}, \{-Sin[x], Cos[x]\}\};$	dente estate estate
	In[2]:= MatrixForm[r1]	
	$Out[2]//MatrixForm= \begin{pmatrix} Cos[\chi] & Sin[\chi] \\ -Sin[\chi] & Cos[\chi] \end{pmatrix}$	
	<pre>In[3]:= rlt = Transpose[r1];</pre>	
	In[4]:= MatrixForm[rlt]	
	$Out[4]//MatrixForm = \begin{pmatrix} Cos[\chi] & -Sin[\chi] \\ Sin[\chi] & Cos[\chi] \end{pmatrix}$	
	$In[5] := \mathbf{mid} = \{ \{ -\mathbf{I}\omega + \xi, -\Delta \}, \{ -\Delta, -\mathbf{I}\omega - \xi \} \};$	alle land of the l
	In[6]:= MatrixForm[mid]	
	Out[6]//MatrixForm= $\begin{pmatrix} \xi - \mathbf{i} \boldsymbol{\omega} & -\Delta \\ -\Delta & -\xi - \mathbf{i} \boldsymbol{\omega} \end{pmatrix}$	incenting on a control of the contr
	$In[7] := \mathbf{Ek} = \mathbf{Sqrt}[\xi^2 + \Delta^2]$	decontraction and the second and the
	$Out[7] = \sqrt{\Delta^2 + \xi^2}$	www.colonyco.co.gov
	$In[8] := MatrixForm[Simplify[rlt.mid.rl] /. {Cos[2 \chi] \rightarrow \xi$ / Ek, Sin[2 \chi] \rightarrow \text{\Delta}/ B}$	Ek}]
	Out[8]//MatrixForm= $\left(\frac{\Delta^2}{\sqrt{\lambda^2 + \xi^2}} + \frac{\xi^2}{\sqrt{\lambda^2 + \xi^2}} - i\omega\right)$	managagaran gan managagaran panga
:	$\begin{pmatrix} \frac{\Delta^2}{\sqrt{\Delta^2 + \xi^2}} + \frac{\xi^2}{\sqrt{\Delta^2 + \xi^2}} - \mathbf{i} \ \omega & 0 \\ 0 & -\frac{\Delta^2}{\sqrt{\Delta^2 + \xi^2}} - \frac{\xi^2}{\sqrt{\Delta^2 + \xi^2}} - \mathbf{i} \ \omega \end{pmatrix}$	and interest of the second
	We can simplify that last result a bit more to get	
	(x(k)) (-iw + 52+121)2 0 (x(k))	
	D=1 LTXT + WE LB+N) (0 -iw-1/2+Dr) / b(-k)	
	=TL 12 + 25 (-in+ 52 200) (xtk) alk)+ B(k) B(k)	

11/30/09

Which is the action corresponding to the Hamiltonian.

7 = = = (\$\f(\kappa(\kappa) + \beta(\kappa) \)

What about the Hortree-Fock piece he had before?

To our two effective action expansions, he made
the different choices for getting old of the

[X12+7+7+2+3-4, term

i) 5-7-7-1-1-1-1-2 [\$\\\(\frac{1}{4}\)^2]

ii) >> 1x14242

· The bading term in the O-expansion included to

Hartree-Fock contribution [EHF = -17] or [EHFM = -2]

"If we solved either expansion exactly lie to all orders, we should get the same answer whether we choose i), ii) or to this !!

"However, if we transake the expansion, we are incorporating two different types of physics. Nagaosa in his OFT in Condonsed Mother Physics" book suys: "Here, a physical picture or intuition is necessary, because no general method exists."

"We would like effective field floory (FFT) to provide such a method, but we hoven't figured in dut yet.

· Nacquosa argues that the most physically reasonable approximation is it is is it is (rather than 1/2 [i) + ii)] > if restricted in momentum space, actually non-overlapping > do both.

• In practice this is what is done in nuclear models.