SPE Maths Quick Sheet

Author: Matthieu Stombellini | Published on kb.zoroark.guru

Last revision: 2019-11-23

Not intended for cheating. Contact: matthieu.stombellini@epita.fr

Series

• The series of general term u_n , denoted $\sum u_n$, is the sequence of partial sum

$$(S_n)_{n\in\mathbb{N}}, S_n = \sum_{k=0}^n u_k$$

- (S_n) converges $\Leftrightarrow \sum u_n$ converges
- Let $\sum u_n$ and $\sum v_n$ be two sequences. Let $\lambda \in \mathbb{R}$
 - $\circ \quad \sum u_n \text{ CVG and } \sum v_n \text{ CVG} \Rightarrow \sum (u_n + v_n) \text{ CVG}$
 - $\circ (\Sigma u_n \text{ CVG}) \Rightarrow (\Sigma \lambda u_n \text{ CVG})$
 - $\circ (\sum u_n \text{ CVG and } \sum v_n \text{ DVG}) \Rightarrow (\sum u_n + v_n \text{ CVG})$
- Necessary condition of convergence

$$\sum u_n$$
 is convergent $\Rightarrow \lim_{n \to +\infty} u_n = 0$

Series of nonnegative terms

- $\sum u_n$ is a series of nonnegative terms if, $\forall n \in \mathbb{N}, u_n \geq 0$.
- $\sum u_n$ is a series of nonnegative terms, (S_n) the sequence of partial sums: $\sum u_n$ converges $\Leftrightarrow u_n$ is upper-bounded
- Let (u_n) and (v_n) be two sequences such that $\forall n \in \mathbb{N}, 0 \leq u_n \leq v_n$

$$\begin{cases} \sum v_n \text{ CVG} \Rightarrow \sum u_n \text{ CVG} \\ \sum u_n \text{ DVG} \Rightarrow \sum v_n \text{ DVG} \end{cases}$$

- Geometric series: $\sum q^n \text{ CVG} \Leftrightarrow |q| < 1$
- Riemann series: $\sum \frac{1}{n^{\alpha}}$, $\alpha \in \mathbb{R}$
 - $\circ \quad \sum_{n} \frac{1}{n^{\alpha}} \text{ converges} \Leftrightarrow \alpha > 1$

Criteria of comparison

Let (u_n) and (v_n) be two nonnegative real sequences.

$$\circ \quad u_n = o(v_n) \Rightarrow \begin{cases} \sum v_n \text{ CVG} \Rightarrow \sum u_n \text{ CVG} \\ \sum u_n \text{ DVG} \Rightarrow \sum v_n \text{ DVG} \end{cases}$$

- $\circ u_n \underset{n \to +\infty}{\sim} v_n \Rightarrow \sum u_n$ and $\sum v_n$ are of the same nature
- o $u_n = O(v_n) \Rightarrow \text{same as } u_n = o(v_n)$

• Reminder Landau notation

$$\circ \quad u_n = o(v_n) \Leftrightarrow \frac{u_n}{v_n} \xrightarrow[n \to +\infty]{} 0$$

$$\circ \quad u_n \underset{n \to +\infty}{\sim} v_n \Leftrightarrow \frac{u_n}{v_n} \xrightarrow[n \to +\infty]{} 1$$

$$\circ \quad u_n = O(v_n) \Leftrightarrow \frac{u_n}{v_n} \text{ is bounded towards } n \to +\infty$$

$$\circ u_n + o(u_n) \sim u_n$$

• Let (u_n) be a real sequence of nonnegative terms. Then

$$\sum (u_n - u_{n-1}) \text{ CVG} \Leftrightarrow (u_n) \text{ CVG}$$

Riemann's rule

Let (u_n) be a real nonnegative sequence. If $\exists \alpha>1$ such that $n^\alpha u_n \xrightarrow[n \to +\infty]{} 0$ then $\sum u_n$ CVG

• D'Alembert/Cauchy test

If either
$$\begin{cases} \frac{u_{n+1}}{u_n} \to l \\ \sqrt[n]{u_n} \to l \end{cases}$$
 then
$$\begin{cases} l < 1 \Rightarrow \sum u_n \text{ CVG} \\ l > 1 \Rightarrow \sum u_n \text{ DVG} \\ l = 1 \Rightarrow ? \end{cases}$$

Using the ratio, it is a D'Alembert test. Using the root, it is a Cauchy test.

Series of arbitrary terms

• Alternating sequence

Let (u_n) be a real sequence. (u_n) is an alternating sequence if there exists a nonnegative sequence (v_n) such that for all $n \in \mathbb{N}$: $u_n = (-1)^n v_n$ or $u_n = (-1)^{n+1} v_n$

Alternating series

If u_n is an alternating sequence, then the series $\sum u_n$ is called an alternating series.

- Let (u_n) be a real alternating sequence
 - (u_n) is decreasing and $\lim_{n o +\infty} u_n = 0$, then $\sum u_n$ CVG

$$(|u_n|) \text{ is decreasing}$$

$$\lim_{n \to +\infty} u_n = 0$$
 $\Rightarrow \sum u_n \text{ CVG}$

- We say $\sum u_n$ converges absolutely if the series $\sum |u_n|$ converges.
 - $\sum u_n$ converges absolutely $\Rightarrow \sum u_n$ converges
 - \circ We say $\sum u_n$ is semi-convergent (or conditionally convergent) if it converges but does not converge absolutely.
- Let $\alpha \in \mathbb{R}$. Then $\sum \frac{(-1)^n}{n^{\alpha}} \ \mathrm{CVG} \Leftrightarrow \alpha > 0$

Generating functions

Ah yes, enslaved probabilities

Definition

If the possible values for X are [0, n], then

$$G_X(t)=t^0P(X=0)+t^1P(X=1)+\cdots+t^nP(X=N)$$

 $G_X(t)$ is a polynomial

• General properties

- $\circ G_X(1) = 1$
- $\circ \quad E(X) = G_X'(1)$

$$\circ Var(X) = G_X''(1) + G_X'(1) - (G_X'(1))^2$$

• If *X* and *Y* are **independent** random variables, then:

$$G_{X+Y}(t) = G_X(t) \times G_Y(t)$$

• Reminder Bernoulli distribution

$$X \leadsto \text{Bernoulli}(p) \Rightarrow \begin{cases} X \in \{0,1\} \\ P(X=1) = p \\ P(X=0) = 1 - p \end{cases}$$

X has a Bernoulli distribution with parameter p

• Reminder Binomial distribution

A binomial distribution is the repetition of a Bernoulli distribution n times. With $i \in [1, n]$,

$$X_i \rightsquigarrow \text{Bernoulli}(p)$$

$$Y = X_1 + \dots + X_n \rightsquigarrow B(n, p)$$

The probability that there are k X variables equal to 1 is:

$$P(Y = k) = \binom{n}{k} (1 - p)^{n - k} p^k$$

• If X can take an infinite number of values in \mathbb{N} ,

$$G_X(t) = \sum_{k=0}^{+\infty} P(X=k)t^k$$

Power series

Definition

$$\sum a_n x^n = a_0 + a_1 x + a_2 x^2 + \cdots$$

- o a_n does not depend on x
- o If x=0, all terms of $\sum a_n x^n$ are equal to 0, except when n=0, since $a_0\times x^0=a_0\times 1$
- o If $\sum a_n x^n$ CVG for some values of x, then we have $f(x) = \sum_{n=0}^{+\infty} a_n x^n$

• Sum and product of power series

Let $f(x) = \sum_{n=0}^{+\infty} a_n x^n$ with its radius of convergence R_f and $g(x) = \sum_{n=0}^{+\infty} b_n x^n$ with its radius of convergence R_g , then

- $f(x) + g(x) = \sum_{n=0}^{+\infty} (a_n + b_n) x^n$
- o $f(x) \times g(x) = \sum_{n=0}^{+\infty} c_n x^n$ where $c_n = \sum_{k=0}^{+\infty} a_k \times b_{n-k}$

Radius of convergence

Let (a_n) be a real sequence, $\sum a_n x^n$ the P.S. defined by this sequence and the function $f: x \mapsto \sum_{n=0}^{+\infty} a_n x^n$.

Then $\exists R \in \mathbb{R}_+ \cup \{+\infty\}$ such that

- $\lor \forall x \in \mathbb{R}, |x| < R$, then $\sum a_n x^n$ CVG ABS
- $\lor \forall x \in \mathbb{R}, |x| > R$, then $\sum a_n x^n$ DVG

R is called the radius of convergence of this P.S.

The set $\{x \in \mathbb{R}, |x| < R\} =]-R, R[$ is called the open disk of convergence of the P.S.

Determining the radius of convergence of a power series
 Ratio test (D'Alembert's rule)

Let $\sum a_n x^n$ be a power series. If $\left|\frac{a_{n+1}}{a_n}\right| \to l$, then $R=\frac{1}{l}$ (considering that $\frac{1}{0}=+\infty$ and $\frac{1}{+\infty}=0$)

Power series of basic functions

 \circ e^x

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$
$$= \sum_{n=0}^{+\infty} \frac{x^{n}}{n!}$$

$$R = +\infty$$

o
$$\ln(1+x)$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$$

$$= \sum_{n=1}^{+\infty} (-1)^{n+1} \frac{x^n}{n}$$

$$R = 1$$

$$\ln(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \cdots$$

$$= -\sum_{n=1}^{+\infty} \frac{x^n}{n}$$

$$(1+x)^{\alpha} = \sum_{n=0}^{+\infty} a_n x^n$$

$$a_n = \frac{\alpha(\alpha-1) \dots (\alpha-n)}{n!}$$

$$R = \begin{cases} 1 \text{ if } \alpha \notin \mathbb{N} \\ +\infty \text{ if } \alpha \in \mathbb{N} \end{cases}$$

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots$$
$$= \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

 $\cos(x)$

$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots$$
$$= \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$
$$R = +\infty$$

Infinite discrete random variable

Definition

Let $(\Omega, P, \mathcal{P}(\Omega))$ be a probability space, and $x: \Omega \to \mathbb{R}$ our random variable. X is a discrete infinite random variable if the values of $X(\Omega)$ are indexable by \mathbb{N} :

$$X(\Omega) = \{x_0, x_1, x_2, \dots\} = \{x_k, k \in \mathbb{N}\}\$$

(We will study IDRVs where $X(\Omega) \subset \mathbb{N}$, so X is an Infinite Integer Random variable)

- o $P(\Omega) = 1 \Leftrightarrow \sum_{n=0}^{+\infty} P(X = n) = 1$ (The series of general term P(X = n) is equal to 1)
- $P(X \in A) = \sum_{n \in A} P(X = n)$

• Geometric distribution

Let $p \in]0,1[$ and $X \leadsto Bernoulli(p)$. Let Y be the number of tries needed to get the first X = 1, with each try being independent.

$$\forall n \in \mathbb{N}^*, P(Y = n) = (1 - p)^{n-1} \times p$$

Y is a geometric distribution R.V. \Leftrightarrow Y \leadsto $\mathcal{G}(p)$

Expected value and variance

$$E(X) = \sum_{n \in X(\Omega)} n \times P(X = n)$$

$$V(X) = \sum_{n \in X(\Omega)} (n - E(X))^{2} P(X = n)$$

$$\sigma(X) = \sqrt{V(X)}$$

- o If the sum of power series in E(X) diverges, X has no expected value or variance
- o If the sum of power series in E(X) converges but the one in V(X) diverges, X has an expected value but no variance

Generating function

$$G_X(t) = P(X = 0)t^0 + P(X = 1)t^1 + \dots + P(X = n)t^n + \dots$$
$$= \sum_{n=0}^{+\infty} P(X = n)t^n$$

- \circ The convergence radius of the resulting series is ≥ 1
- \circ G_X exists and is continuous over at least [-1,1], and $G_X(1)=1$
- o G_X is C^{∞} over]-1,1[
 - Reminder

f is C^0 over I means that it is continuous over I f is C^1 over I means that it is differentiable and that f' is continuous over I f is C^n over I means that it is differentiable and that $f^{(n+1)}$ is continuous

- o If X and Y are independent IIRV, $G_{X+Y} = G_X + G_Y$
- o If X has an expected value ($\Leftrightarrow \sum_{n \in X(\Omega)} n \times P(X = n)$ converges), then G_X is differentiable for t = 1 and $E(X) = G_X'(1)$
- o If X has a variance, G_X' is differentiable for t=1 and $V(X)=G_X''(1)+G_X'(1)-\left(G_X'(1)\right)^2$

Linear algebra, Second Edition

Vector space

- Let E be a K vector space. Then $\forall (\lambda, \mu) \in \mathbb{K}^2, \forall (x, y) \in E^2$,
 - $\circ \quad (\lambda + \mu)x = \lambda x + \mu x$
 - $\circ \lambda(\mu x) = (\lambda \mu)x$
 - $\circ \quad \lambda(x+y) = \lambda x + \lambda y$
 - \circ 1x = x

Vector subspace

Definition

Let E be a \mathbb{K} -vs. F is a vector subspace of E if:

- \circ $F \subset E$
- \circ $F \neq \emptyset$
- $(u,v) \in F^2, \forall (\alpha,\beta) \in \mathbb{K}^2, (\alpha u + \beta v) \in F$ (Closure)

Operations

Let E be a \mathbb{K} -vs, F and G be two vector subspaces of E

- o $F \cap G$ is a vector subspace of E
- $F + G = \{z \in E, \exists (x, y) \in F \times G, z = x + y\}$ is a vector subspace of E

Direct sum

Let E be a \mathbb{K} -vs, F and G be two vector subspaces of E. We say that F and G are in direct sum if

$$\forall (x, y) \in F \times G, x + y = 0_E \Rightarrow x = y = 0_E$$

- The following are all equivalent:
 - F and G are in direct sum
 - $F \cap G = \{0_F\}$
 - $\forall z \in E$, $\exists ! (x, y) \in F \times G$, z = x + y

• Supplementary subspaces

F and G are supplementary in E (written $E = F \oplus G$) if:

- \circ $F \cap G = \{0_E\}$
- \circ E = F + G

Saying that two subspaces are in direct sum or that they are supplementary is equivalent

Spanned vector subspaces

Definition

Let E be a \mathbb{K} -vs and $X \subset E$. There exists a subspace of E containing X. It is called the vector subspace of E spanned by X, denoted $\mathrm{Span}(X)$. We say that X spans G or that G is spanned by X.

With
$$X = \{x_1, ..., x_n\} \subset E$$
 and $(\lambda_1, ..., \lambda_n) \in \mathbb{K}^n$:

$$\operatorname{Span}(X) = \{\lambda_1 x_1 + \lambda_2 x_2 + \cdots + \lambda_n x_n\}$$

Linear map

- Let E and F be two \mathbb{K} -vs and $f: E \to F$. We say that f is a linear map if, denoted $f \in \mathcal{L}(E, F)$:

 - $o \quad \forall u \in E, \forall \lambda \in \mathbb{K}, f(\lambda u) = \lambda f(u)$
 - o Or, with just one definition:

$$\forall (u, v) \in E^2, \forall \lambda \in \mathbb{K}, f(\lambda u + v) = \lambda f(u) + f(v)$$

• Kernel, image

Let $f \in \mathcal{L}(E, F)$.

- $\circ Ker(f) = \{x \in E, f(x) = 0_F\}$
- $o Im(f) = \{f(x), x \in E\} = \{y \in F, \exists x \in E, y = f(x)\}\$

Properties

Let $f \in \mathcal{L}(E,F)$

- o Ker(f) and Im(f) are vector subspaces (of E and F respectively)
- o $Ker(f) = \{0_F\} \Leftrightarrow f$ is injective
- o $Im(f) = F \Leftrightarrow f$ is surjective

Basis and dimension

• Linearly independent set

Let E be a \mathbb{K} -vs, and $L = \{x_1, ..., x_n\} \subset E$. We say that L is a linearly independent set if:

$$\forall (\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n, \sum_{i=1}^n \lambda_i x_i = 0_E \Rightarrow \lambda_1 = \dots = \lambda_n = 0_{\mathbb{K}}$$

Basis

Let E be a \mathbb{K} -vs and $B = \{x_1, ..., x_n\} \subset E$. B is a basis of E means that B is linearly independent and E is spanned by B.

• Finite vector space

Let E be a \mathbb{K} -vs. E is a finite vector space if E is spanned by a finite set of vectors of E.

e.g.:
$$\mathbb{R}_n[X]$$
 is spanned by $B = \underbrace{(1, X, X^2, \dots, X^n)}_{\text{finite set of } n+1 \text{ vectors}}$: it is a finite vector

space

Dimension

Let E be a \mathbb{K} -vs of finite dimension. All the basis of E have the same cardinality, which is called the dimension of E and is written $\dim(E)$

• Incomplete basis theorem

If $\dim(E) = n$

- A set S which is independent has at most n vectors. If it is not a spanning set, then
 - Card(S) < n
 - We can add vectors until we get a basis
- A spanning set S has at least n vectors. If it is not independent:
 - Card(S) > n

We can remove vectors until we get a basis

• Propositions

Let E be a \mathbb{K} -vs of finite dimension.

- o If $E \neq \{0\}$, then E admits at least one basis
- \circ Let F be a vector subspace of E. Then F admits at least one supplementary subspace in E

- o Let F and G be two supplementary subspaces in E, B as basis of F and B' a basis of G. Then $B \cup B'$ is a basis of E
- $\circ \quad E = F \oplus G \Rightarrow \dim E = \dim F + \dim G$
- \circ Let F and G be two vector subspaces of E such that

$$\frac{F \subset G}{\dim F = \dim G} \Rightarrow F = G$$

- Let $f \in \mathcal{L}(E, F)$. If f is bijective, then dim $E = \dim F$
- \circ Let F and G be two vector subspaces of E:

$$\dim F + G = \dim F + \dim G - \dim F \cap G$$

• Rank theorem (rank-nullity theorem)

Let $f \in \mathcal{L}(E, F)$ where E and F are vector spaces of finite dimensions.

$$\dim E = \dim Ker(f) + \dim Im(f)$$

Matrix representation of a linear map

Let $f: E \to F$ be a linear map, $\mathcal{B}_1 = (e_1, ..., e_p)$ a basis of E (dim(E) = p), $\mathcal{B}_2 = (\varepsilon_1, ..., \varepsilon_n)$ a basis of F (dim(F) = n). In \mathcal{B}_1 and \mathcal{B}_2 .

$$A = Mat(f)$$

$$= \begin{pmatrix} f(e_1) \text{ coord along } \varepsilon_1 & \cdots & f(e_p) \text{ coord along } \varepsilon_1 \\ \vdots & \cdots & \vdots \\ f(e_1) \text{ coord along } \varepsilon_n & \cdots & f(e_p) \text{ coord along } \varepsilon_n \end{pmatrix}$$

If $u \in E$ has coordinates $X = \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix}$ in the basis \mathcal{B}_1 and v = f(u) has

coordinates
$$Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$
 in the basis \mathcal{B}_2 , then $Y = AX$