

Preuzeto iz elektronske pravne baze Paragraf Lex

Ukoliko ovaj propis niste preuzeli sa Paragrafovog sajta ili niste sigurni da li je u pitanju važeća verzija propisa, poslednju verziju možete naći <u>OVDE</u>.

PRAVILNIK

O PREVENTIVNIM MERAMA ZA BEZBEDAN I ZDRAV RAD PRI IZLAGANJU VEŠTAČKIM OPTIČKIM ZRAČENJIMA

("Sl. glasnik RS", br. 120/2012, 29/2013 - ispr. i 130/2021)

Član 1

Ovim pravilnikom propisuju se zahtevi koje je poslodavac dužan da ispuni u obezbeđivanju primene preventivnih mera sa ciljem otklanjanja ili svođenja na najmanju moguću meru rizika od nastanka oštećenja zdravlja zaposlenih koji nastaju ili mogu da nastanu pri izlaganju veštačkim optičkim zračenjima, a naročito rizika od nastanka oštećenja očiju i kože, granične vrednosti izloženosti zračenju za nekoherentno optičko zračenje i granične vrednosti izloženosti zračenju za lasersko optičko zračenje.

Član 2

Pojedini izrazi koji se koriste u ovom pravilniku imaju sledeće značenje:

- 1) optičko zračenje jeste svako elektromagnetsko zračenje sa opsegom talasne dužine između 100 nm i 1 mm. Spektar optičkog zračenja se deli na ultraljubičasto zračenje, vidljivo zračenje i infracrveno zračenje:
 - (1) ultraljubičasto zračenje jeste optičko zračenje sa opsegom talasne dužine između 100 nm i 400 nm. Ultraljubičasta oblast se deli na UVA (315 nm do 400 nm), UVB (280 nm do 315 nm) i UVC (100 nm do 280 nm),
 - (2) vidljivo zračenje jeste optičko zračenje sa opsegom talasne dužine između 380 nm i 780 nm,
 - (3) infracrveno zračenje jeste optičko zračenje sa opsegom talasne dužine između 780 nm i 1 mm. Infracrvena oblast se deli na IRA (780 nm do 1400 nm), IRB (1400 nm do 3000 nm) i IRC (3000 nm do 1 mm);
- 2) laser (pojačanje svetlosti pomoću stimulisane emisije zračenja) jeste svaki uređaj koji može proizvesti ili pojačati elektromagnetsko zračenje u opsegu talasne dužine optičkog zračenja uglavnom procesom kontrolisane stimulisane emisije;
- 3) lasersko zračenje jeste optičko zračenje lasera;
- 4) nekoherentno zračenje jeste svako optičko zračenje koje nije lasersko zračenje;
- 5) granične vrednosti izloženosti jesu granice izloženosti optičkom zračenju koje su neposredno zasnovane na utvrđenim posledicama po zdravlje i biološkim razlozima. Usaglašenost sa ovim graničnim vrednostima obezbeđuje da su zaposleni koji su izloženi veštačkim izvorima optičkog zračenja zaštićeni od svih poznatih štetnih posledica po zdravlje;
- 6) iradijansa (E) ili gustina snage jeste snaga optičkog zračenja po jedinici površine prijemnika izražena u vatima po kvadratnom metru (W m-²);

- 7) izloženost zračenju (H) jeste vremenski integral iradijanse, izražen u džulima po kvadratnom metru (J m-2);
- 8) radijansa (L) jeste fluks zračenja ili izlazna snaga po jedinici površine izvora u jedinični prostorni ugao, izražena u vatima po kvadratnom metru i steradijanu (W m-² sr-¹);
- 9) nivo jeste kombinacija iradijanse, izloženosti i radijanse kojima je zaposleni izložen.

Član 3

Granične vrednosti izloženosti zračenju za nekoherentno optičko zračenje (Prilog 1.) i Granične vrednosti izloženosti zračenju za lasersko optičko zračenje (Prilog 2.) odštampane su uz ovaj pravilnik i čine njegov sastavni deo.

Član 4

Poslodavac je dužan da za sva radna mesta u radnoj okolini na kojima postoji mogućnost izlaganja zaposlenih veštačkim izvorima optičkog zračenja, izvrši procenu rizika od nastanka oštećenja zdravlja zaposlenih, proceni nivo izloženosti i, ukoliko je potrebno, obezbedi da se izvrši merenje nivoa izloženosti optičkom zračenju, radi utvrđivanja načina i mera za otklanjanje ili smanjenje izloženosti na nivo ispod graničnih vrednosti.

Metode koje se koriste u postupku procene, merenja i/ili izračunavanja treba da budu:

- 1) za lasersko zračenje u skladu sa standardima SRPS EN 12254:2010, SRPS EN 12254:2010/AC:2012, SRPS EN ISO 11146-1:2009, SRPS EN ISO 11146-2:2009, SRPS EN ISO 11670:2009 i SRPS EN ISO 11670:2009/AC:2009;
- 2) za nekoherentno zračenje u skladu sa standardima SRPS EN 14255-1:2012 i SRPS EN 14255-2:2012.

U slučajevima izloženosti koji nisu obuhvaćeni ovim standardima procena, merenje i/ili izračunavanje vrši se u skladu sa odgovarajućim tehničkim propisima.

Procena nivoa izloženosti veštačkim optičkim zračenjima može se vršiti na osnovu podataka dobijenih od proizvođača opreme za rad u skladu sa zakonom kojim se uređuju tehnički zahtevi za proizvode i ocenjivanje usaglašenosti.

Poslodavac je dužan da na osnovu utvrđenih štetnosti koje nastaju usled izloženosti zaposlenih veštačkim optičkim zračenjima angažuje pravno lice sa licencom radi sprovođenja preventivnih i periodičnih ispitivanja uslova radne okoline.

Član 5

Poslodavac je dužan da u postupku procene rizika koji se javlja usled izloženosti zaposlenih veštačkim optičkim zračenjima naročito uzme u obzir:

- 1) nivo, opseg talasne dužine i trajanje izloženosti veštačkim izvorima optičkog zračenja;
- 2) granične vrednosti izloženosti za nekoherentno zračenje i granične vrednosti izloženosti za lasersko zračenje;
- 3) efekte koji mogu uticati na bezbednost i zdravlje zaposlenih koji su posebno osetljivi na izlaganje veštačkim izvorima optičkog zračenja;
- 4) uticaje na bezbednost i zdravlje zaposlenih koji proizlaze iz interakcije između optičkog zračenja i hemijskih supstanci osetljivih na optičko zračenje na radnom mestu;
- 5) posredne uticaje na bezbednost i zdravlje zaposlenih, kao što su privremeno slepilo, eksplozija ili požar;
- 6) postojanje opreme za rad koja je projektovana za smanjenje nivoa izloženosti veštačkom optičkom zračenju;
- 7) informacije o rezultatima dobijenim na osnovu praćenja zdravstvenog stanja i na bazi dostupnih podataka;
- 8) izloženost većem broju izvora veštačkog optičkog zračenja;
- 9) klasifikaciju koja se primenjuje na lasere prema odgovarajućem standardu SRPS EN 60825-1:2008, a za bilo koji veštački izvor za koji je verovatno da će izazvati štetu sličnu kao laseri klase 3B ili 4, bilo koju sličnu klasifikaciju;
- 10) podatke o izvorima optičkog zračenja koji su dobijeni od proizvođača opreme za rad u skladu sa zakonom kojim se uređuju tehnički zahtevi za proizvode i ocenjivanje usaglašenosti.

Član 6

Poslodavac je dužan da donese akt o proceni rizika u pisanoj formi, radi mogućnosti stalnog uvida. Procena rizika vrši se u skladu sa propisima o bezbednosti i zdravlju na radu, redovno se ažurira, odnosno vrši se delimična izmena ili dopuna akta o proceni rizika ukoliko:

- 1) je procena rizika izvršena tako da nisu evidentirani i procenjeni svi faktori rizika koji nastaju usled izlaganja zaposlenih veštačkim optičkim zračenjima;
- 2) je došlo do promene u obavljanju poslova, odnosno pojave novih opasnosti i štetnosti;
- 3) je to potrebno na osnovu rezultata dobijenih na osnovu praćenja zdravstvenog stanja.

Procena rizika može da sadrži obrazloženje poslodavca da, prema prirodi i obimu rizika koji proističu iz izlaganja veštačkom optičkom zračenju više nije potrebna dalja detaljna procena rizika.

Član 7

Poslodavac je dužan da uzimajući u obzir savremena tehnička rešenja i dostupnost mera za kontrolu rizika na njegovom izvoru, kao i polazeći od načela primene preventivnih mera, rizik koji nastaje usled izloženosti zaposlenih veštačkim optičkim zračenjima otkloni ili smanji na najmanju moguću meru.

Poslodavac je dužan da, ukoliko se u postupku procene rizika utvrdi da su granične vrednosti izloženosti veštačkom optičkom zračenju prekoračene ili da mogu biti prekoračene, aktom o proceni rizika utvrdi tehničke i/ili organizacione mera čija primena mora da obezbedi smanjenje izloženosti zaposlenih i pri tome je dužan da jednu ili više uzme u obzir:

- 1) druge metode rada čijom se primenom smanjuje rizik od optičkog zračenja;
- 2) izbor odgovarajuće opreme za rad koja, s obzirom na poslove koje zaposleni obavlja emituje manje optičkog zračenja;
- 3) smanjenje emisije optičkog zračenja primenom tehničkih mera, uključujući i, gde je to neophodno, korišćenje blokada, štitova ili sličnih mehanizama za zaštitu zdravlja;
- 4) odgovarajuće programe održavanja radnog mesta i opreme za rad;
- 5) projektovanje i raspored radnih mesta;
- 6) ograničavanje trajanja i nivoa izloženosti;
- 7) kontrolu upotrebe odgovarajućih sredstava i opreme za ličnu zaštitu na radu;
- 8) uputstva proizvođača opreme za rad, obezbeđena u skladu sa tehničkim propisom donetim na osnovu zakona kojim se uređuju tehnički zahtevi za proizvode i ocenjivanje usaglašenosti, a kojim je propisana obaveza proizvođača da sačini uputstvo za takvu opremu.

Poslodavac je dužan da radna mesta, za koja je na osnovu procene rizika utvrđeno da postoji mogućnost da granična vrednost izloženosti veštačkom optičkom zračenju bude prekoračena, obeleži oznakama za bezbednost i zdravlje na radu, kao i da taj prostor obezbedi od pristupa svih lica koja ne rade na tim radnim mestima.

Poslodavac je dužan da izloženost zaposlenih veštačkom optičkom zračenju svede na najmanju moguću vrednost, a u svakom slučaju na vrednost koja je manja od granične vrednosti izloženosti.

Poslodavac je dužan da, ukoliko je i pored primene preventivnih mera izloženost veća od granične vrednosti izloženosti veštačkom optičkom zračenju, što je moguće pre preduzme odgovarajuće mere tako da smanji izloženost ispod granične vrednosti izloženosti, utvrdi razloge zbog kojih je došlo do prekoračenja granične vrednosti izloženosti i koriguje primenu mera sa ciljem da se spreči da se prekoračenje granične vrednosti izloženosti veštačkom optičkom zračenju ponovi.

Poslodavac je dužan da prilagodi mere za bezbednost i zdravlje na radu koje se odnose na smanjenje izloženosti veštačkom optičkom zračenju zaposlenima koji su posebno osetljivi na izlaganje veštačkom optičkom zračenju.

Član 8

Poslodavac je dužan da zaposlenima koji jesu izloženi veštačkom optičkom zračenju ili njihovim predstavnicima za bezbednost i zdravlje na radu obezbedi sve informacije o merama koje se preduzimaju sa ciljem ostvarenja bezbednih i zdravih uslova rada pri izlaganju veštačkom optičkom zračenju, kao i da te zaposlene u toku osposobljavanja za bezbedan i zdrav rad upozna sa svim vrstama rizika koji nastaju pri izlaganju veštačkom optičkom zračenju, a naročito u odnosu na:

- 1) mere koje se preduzimaju sa ciljem otklanjanja ili smanjenja na najmanju moguću meru rizika od oštećenja zdravlja usled izloženosti veštačkom optičkom zračenju u skladu sa ovim pravilnikom;
- 2) postojanje granične vrednosti izloženosti i rizike koji mogu da nastanu pri izlaganju;
- 3) rezultate procene rizika i/ili merenja uz objašnjenje njihovog značenja i mogućih opasnosti i štetnosti koji mogu nastati usled izlaganja veštačkom optičkom zračenju;
- 4) način za otkrivanje i prijavljivanje oštećenja zdravlja koji su posledica izloženosti;
- 5) okolnosti pod kojima zaposleni imaju pravo na praćenje zdravstvenog stanja;
- 6) bezbedne načine rada kako bi se izloženost veštačkom optičkom zračenju smanjila na najmanju moguću meru;
- 7) pravilno korišćenje odgovarajućih sredstava i opreme za ličnu zaštitu na radu.

Član 9

Poslodavac i zaposleni, odnosno njihovi predstavnici za bezbednost i zdravlje na radu dužni su da sarađuju u vezi sa svim pitanjima koja se odnose na primenu preventivnih mera pri izlaganju veštačkim optičkim zračenjima, u skladu sa Zakonom o bezbednosti i zdravlju na radu.

Poslodavac je dužan da, radi prevencije i ranog otkrivanja svih štetnih posledica, sprečavanja dugoročnih rizika po zdravlje i svih rizika od hroničnih bolesti koji su posledica izloženosti veštačkom optičkom zračenju, u skladu sa propisima u oblasti bezbednosti i zdravlja na radu i zdravstvene zaštite, obezbedi propisano praćenje zdravstvenog stanja za zaposlene koji rade, ili treba da rade, na radnim mestima za koja se rezultatima procene rizika, iz člana 4. ovog pravilnika utvrdi da su radna mesta sa povećanim rizikom od nastanka oštećenja zdravlja.

Služba medicine rada koja prati zdravstveno stanje zaposlenih iz stava 1. ovog člana za svakog zaposlenog vodi podatke o njegovom zdravstvenom stanju i redovno ih ažurira na način koji omogućava kasniji uvid. Izveštaj o lekarskom pregledu zaposlenog sadrži ocenu zdravstvenog stanja.

U postupku vršenja prethodnog i periodičnog lekarskog pregleda služba medicine rada koristi podatke o faktorima rizika na radnom mestu sa povećanim rizikom, kao i podatke o posebnim zdravstvenim uslovima koje moraju ispunjavati zaposleni, iz akta poslodavca o proceni rizika.

Rezultati praćenja zdravstvenog stanja zaposlenih čuvaju se u odgovarajućem obliku kojim se obezbeđuje mogućnost naknadnog uvida uz poštovanje obaveze o poverljivosti podataka o ličnosti.

Svakom zaposlenom potrebno je na lični zahtev obezbediti pristup njegovim podacima o zdravstvenom stanju i rezultatima praćenja zdravstvenog stanja.

Poslodavac je dužan da zaposlenog na radnom mestu na kome je izloženost veća od granične vrednosti izloženosti, a koje nije aktom o proceni rizika iz člana 4. stav 1. ovog pravilnika utvrđeno kao radno mesto sa povećanim rizikom, uputi na ciljani lekarski pregled. Ciljani lekarski pregledi vrše se na način, po postupku i u rokovima kao i prethodni i periodični lekarski pregledi zaposlenih na radnim mestima sa povećanim rizikom.

Kada je izloženost veća od granične vrednosti izloženosti ili se praćenjem zdravstvenog stanja utvrdi oštećenje zdravlja zaposlenog koje je prema nalazu službe medicine rada nastalo kao posledica izlaganja veštačkom optičkom zračenju na radnom mestu, tada je:

- 1) služba medicine rada dužna da obavesti zaposlenog o rezultatima praćenja zdravstvenog stanja koji se odnose na njega i da zaposlenom obezbedi sve informacije i savete u vezi sa načinom praćenja zdravstvenog stanja po završetku izlaganja;
- 2) služba medicine rada dužna da obaveštava poslodavca o bitnim rezultatima praćenja zdravstvenog stanja zaposlenog na način kojim se ne narušava princip poverljivosti ličnih podataka;
- 3) poslodavac dužan da:
 - (1) izvrši proveru procene rizika koja je sprovedena u skladu sa članom 4. ovog pravilnika,
 - (2) proveri i izvrši korekciju preventivnih mera koje su predviđene za otklanjanje ili smanjenje rizika saglasno članu 7. ovog pravilnika,
 - (3) uzme u obzir savet službe medicine rada pri sprovođenju preventivnih mera koje su predviđene za otklanjanje ili smanjenje rizika saglasno članu 7. ovog pravilnika,
 - (4) obezbedi praćenje zdravstvenog stanja ostalih zaposlenih koji su bili na sličan način izloženi veštačkom optičkom zračenju. Služba medicine rada može predložiti da se izvrši lekarski pregled izloženih lica.

Član 11

Ovaj pravilnik stupa na snagu osmog dana od dana objavljivanja u "Službenom glasniku Republike Srbije", a primenjuje se od 1. januara 2017. godine.

Samostalni član Pravilnika o izmeni i dopunama Pravilnika o preventivnim merama za bezbedan i zdrav rad pri izlaganju veštačkim optičkim zračenjima

("SI. glasnik RS", br. 130/2021)

Član 4

Ovaj pravilnik stupa na snagu osmog dana od dana objavljivanja u "Službenom glasniku Republike Srbije".

Prilog 1. GRANIČNE VREDNOSTI IZLOŽENOSTI ZRAČENJU ZA NEKOHERENTNO OPTIČKO ZRAČENJE

Odgovarajuće biofizičke vrednosti izlaganja optičkom zračenju mogu se utvrditi na osnovu sledećih formula, koje zavise od opsega zračenja koje emituje izvor. Rezultate treba uporediti sa odgovarajućim graničnim vrednostima izloženosti iz Tabele 1.1. Za jedan izvor optičkog zračenja može biti bitna više od jedne vrednosti izloženosti i odgovarajuće granične vrednosti izloženosti.

Nabrajanja od (1) do (15) odnose se na odgovarajuće redove u Tabeli 1.1.

(2)
$$H_{UVA} = \int_{\lambda=315 \text{ min}}^{\lambda-400 \text{ min}} E_{\lambda}(\lambda, t) \cdot d\lambda \cdot dt$$

$$\lambda = 315 \text{ min}$$
(Huva je bitno samo u rasponu od 315 nm do 400 nm)

(3), (4)
$$L_{B} = \int_{\lambda - 300 \text{ nm}} L_{\lambda} (\lambda) \cdot B(\lambda) \cdot d\lambda$$
 (L_B je bitno samo u rasponu od 300 nm do 700 nm)

(5), (6)
$$\mathbf{E}_{\mathbf{B}} = \int \mathbf{E}_{\lambda}(\lambda) \cdot \mathbf{B}(\lambda) \cdot d\lambda \qquad (E_{\mathbf{B}} \text{ je bitno samo u rasponu od } 300 \text{ nm do } 700 \text{ nm})$$

(7) do (12)
$$L_{R} = \int_{\lambda}^{\lambda} L_{\lambda} (\lambda) \cdot R(\lambda) \cdot d\lambda$$
 (videti tabelu 1.1 za odgovarajuće vrednosti λ 1 i λ 2)
$$L_{R} = \int_{\lambda}^{\lambda} L_{\lambda} (\lambda) \cdot R(\lambda) \cdot d\lambda$$

(13), (14)
$$\mathbf{E}_{\mathbb{IR}} = \int_{\mathbf{\lambda}} \mathbf{E}_{\lambda} (\lambda) \cdot d\lambda$$
 (Eir je bitno samo u rasponu od 780 nm do 3000 nm)
$$\mathbf{E}_{\mathbb{IR}} = \int_{\mathbf{\lambda}} \mathbf{E}_{\lambda} (\lambda) \cdot d\lambda$$

(15)
$$H_{\text{skin}} = \int_{0}^{\infty} \int_{0}^{\infty} E_{\lambda}(\lambda, t) \cdot d\lambda \cdot dt \qquad (H_{\text{KOŽA}} \text{ bitno samo u rasponu od } 380 \text{ nm do } 3000 \text{ nm})$$

Za potrebe ovog pravilnika, gore navedene formule mogu biti zamenjene sledećim izrazima, uz korišćenje diskretnih vrednosti iz sledećih tabela:

(1)
$$E_{\text{eff}} = \sum_{\lambda=180 \text{ fem}}^{\lambda=400 \text{ tem}} E_{\lambda} \cdot S(\lambda) \cdot \Delta \lambda$$

(2)
$$\mathbf{E}_{UVA} = \sum_{\lambda=1}^{\lambda=400 \text{ turn}} \mathbf{E}_{\lambda} \cdot \Delta \lambda.$$

(3), (4)
$$L_{B} = \sum_{\lambda = 300 \text{ nm}}^{\lambda = 700 \text{ nm}} L_{\lambda} \cdot B(\lambda) \cdot \Delta \lambda$$

$$E_{B} = \sum_{\lambda = 300 \text{ mm}}^{\lambda - 700 \text{ m/s}} E_{\lambda} \cdot B(\lambda) \cdot \Delta\lambda$$

(13), (14) $E_{R} = \sum_{\lambda=1}^{1} L_{\lambda} \cdot R(\lambda) \cdot \Delta \lambda$ (15) $E_{L_{m}} = \sum_{\lambda=1}^{1} E_{\lambda} \cdot \Delta \lambda$ $i H_{koza} = E_{kozaž} \cdot \tilde{z} \, \tilde{z} \, \Delta t$

Oznake u Prilogu 1. imaju sledeće značenje:

Ελ (λ, t) Ελ spektralna iradijansa ili spektralna gustina snage: snaga upadnog zračenja po jedinici površine, izražena u vatima po kvadratnom metru i nanometru [W m⁻² nm⁻¹]; vrednosti Ελ (λ, t) i Ελ se dobijaju merenjima ili ih može dati proizvođač opreme;

 E_{eff} efektivna iradijansa (UV opseg): izračunata iradijansa unutar UV opsega talasnih dužina od 180 nm do 400 nm, spektralno ponderisana pomoću S (λ), izražena u vatima po kvadratnom metru [W m-2];

H izloženost zračenju: integral iradijanse po vremenu, izražen u džulima po kvadratnom metru [J m²];

 H_{eff} efektivna izloženost zračenju: izloženost zračenju spektralno ponderisana pomoću S (λ), izražena u džulima po kvadratnom metru [J m-2];

E_{UVA} ukupna iradijansa (UVA): izračunata iradijansa unutar UVA opsega talasnih dužina od 315 nm do 400 nm, izražena u vatima po kvadratnom metru [W m⁻²];

H_{UVA} izloženost zračenju: integral po vremenu i talasnoj dužini ili zbir iradijansi unutar UVA opsega talasnih dužina od 315 nm do 400 nm, izražen u džulima po kvadratnom metru [J m⁻²];

S (λ) funkcija spektralnog ponderisanja koja uzima u obzir zavisnost posledica UV zračenja po zdravlje (na oči i kožu) od talasne dužine, (Tabela 1.2) [bez dimenzija];

t, Δt vreme, trajanje izlaganja, izraženo u sekundama [s];

λ talasna dužina, izražena u nanometrima [nm];

Δλ širina intervala izračunavanja ili merenja, izražena u nanometrima [nm];

Lλ (λ), Lλ spektralno zračenje izvora izraženo u vatima po kvadratnom metru, steradijanu i nanometru [W m-2 sr-1 nm-1];

R (λ) funkcija spektralnog ponderisanja koja uzima u obzir zavisnost termičkog oštećenja oka izazvanog vidljivim i IRA zračenjem od talasne dužine (Tabela 1.3) [bez dimenzija];

 L_R efektivno zračenje (termičko oštećenje): izračunato zračenje spektralno ponderisano pomoću R (λ), izraženo u vatima po kvadratnom metru i steradijanu [W m 2 sr 1];

B (λ) funkcija spektralnog ponderisanja koja uzima u obzir zavisnost fotohemijskog oštećenja oka izazvanog zračenjem plave svetlosti od talasne dužine (Tabela 1.3) [bez dimenzija];

 L_B efektivno zračenje (plava svetlost): izračunato zračenje spektralno ponderisano pomoću B (λ), izraženo u vatima po kvadratnom metru i steradijanu [W m⁻² sr⁻¹];

 E_B efektivna iradijansa (plava svetlost): izračunata iradijansa spektralno ponderisana pomoću B (λ), izražena u vatima po kvadratnom metru [W m-2];

E_{IR} ukupna iradijansa (termičko oštećenje): izračunata iradijansa unutar infracrvenog zračenja u opsegu talasnih dužina od 780 nm do 3000 nm, izražena u vatima po kvadratnom metru [W m⁻²];

E_{KOZA} ukupna iradijansa (vidljivo zračenje, IRA i IRB): izračunata iradijansa - unutar vidljivog i infracrvenog zračenja u opsegu talasnih dužina od 380 nm do 3000 nm, izražena u vatima po kvadratnom metru [W m⁻²];

H_{KOŽA} izloženost zračenju: integral po vremenu i talasnoj dužini ili zbir iradijansi unutar vidljivog i infracrvenog zračenja u opsegu talasnih dužina od 380 nm do 3000 nm, izražen u džulima po kvadratnom metru [J m⁻²]:

 α ugaona obuhvaćenost: ugao pod kojim se izvor vidi iz neke tačke u prostoru, izražen u miliradijanima (mrad). Izvor je stvaran ili virtualan objekat koji formira najmanju - moguću - sliku - na mrežnjači.

Tabela 1.1

GRANIČNE VREDNOSTI IZLOŽENOSTI ZA NEKOHERENTNO OPTIČKO ZRAČENJE

Indeks	Talasna dužina nm	Granične vrednosti izloženosti	Jedinice	Komentar	Deo tela	Opasnost
	180 do 400 (UVA, UVB i UVC)	H _{eff} = 30 Dnevna vrednost 8 časova	[J m ⁻²]		Vežnjača	Fotokeratitis Konjuktivitis Kataraktogeneza Eritem Elastoza Rak kože
	315 do 400 (UV)	H _{UVA} = 10 ⁴ Dnevna vrednost 8 časova	[J m ⁻²]		Sočivo oka	Kataraktogeneza
, ,	300 do 700 (plava svetlost) <i>vidi</i> Napomenu 1.	$L_{B} = \frac{10^{6}}{t}$ $za \ t \le 10000 \ s$	L _B : [W m ⁻² sr ⁻¹] t: [sekunde]	za α ≥ 11 mrad	Mrežnjača oka	Fotoretinitis
, ,	300 do 700 (plava svetlost) vidi Napomenu 1.	L _B = 100 za t > 10000 s	[W m ⁻² sr ⁻¹]			
(5)	300 do 700 (plava svetlost) vidi Napomenu 1.	$E_{B} = \frac{100}{t}$ $za \ t \le 10000 \ s$	E _B : [W m ⁻²] t: [sekunde]	za α < 11 mrad vidi Napomenu 2.		
(6)	300 do 700 (plava svetlost) vidi Napomenu 1.	E _B = 0,01 t > 10000 s	[W m ⁻²]			
(7)	380 do 1400 (Vidljivo i IRA)	$L_{R} = \frac{2.8 \ \text{\'x} \cdot 10^{7}}{C\alpha}$ $za \ t > 10 \ \text{s}$	[W m ⁻² sr ⁻¹]	$C\alpha$ = 1,7 za α \leq 1,7 mrad $C\alpha$ = α za		
(8)	380 do 1400 (Vidljivo i IRA)	$L_{R} = \frac{5 \check{z} \cdot 10^{7}}{C\alpha t^{\circ}, 25}$ $za 10 \mu s \le t \le 10$ s	L _R [W m ⁻² sr ⁻¹] t: [sekunde]	1,7 $\leq \alpha \leq$ 100 mrad $C\alpha = 100 \text{ za}$ $\alpha > 100 \text{ mrad}$ $\lambda 1 = 380; \lambda 2 = 1400$	Mrežnjača oka	Opekotine mrežnjače
(9)	380 do 1400 (Vidljivo i IRA)	$L_{R} = \frac{8,89 \ \text{\'z} \cdot 10^{8}}{C\alpha}$ za t < 10 \ \mu s	[W m-2 sr-1]			
(10)	780 do 1400 (IRA)	$L_{R} = \frac{6 \check{z} \cdot 10^{6}}{C\alpha}$ $za t > 10 s$	[W m ⁻² sr ⁻¹]	$C\alpha = 11 \text{ za}$ $\alpha \le 11 \text{ mrad}$ $C\alpha = \alpha \text{ za}$	Mrežniača	Opekotine
(11)	780 do 1400 (IRA)	$L_{R} = \frac{5 \check{z} \cdot 10^{7}}{C\alpha t^{\circ}, 25}$ $za 10 \mu s \le t \le 10$ s	L _R [W m ⁻² sr ⁻¹] t: [sekunde]	$11 \le \alpha \le 100 \text{ mrad}$ $C\alpha = 100 \text{ za}$ $\alpha > 100 \text{ mrad}$	UKA	mrežnjače

(12)	780 do 1400 (IRA)	$L_{R} = \frac{8.89 \text{\'{z}} \cdot 10^{8}}{C\alpha}$ za t < 10 µs	[W m ⁻² sr ⁻¹]	(merenje vidnog polja: 11 mrad) $\lambda 1 = 780; \lambda 2 = 1400$		
(13)	780 do 3000 (IRA i IRB)		E: [W m ⁻²] t: [sekunde]			Opekotine rožnjače Kataraktogeneza
(14)	780 do 3000 (IRA i IRB)	E _{IR} = 100 za t > 1000 s	[W m ⁻²]			
(15)	380 do 3000 (Vidljivo, IRA i IRB)		H: [J m ⁻²] t: [sekunde]		Koža	Opekotine

Napomena 1.: Opseg od 300 nm do 700 nm obuhvata delove UVB, celokupno UVA i većinu vidljivog zračenja; međutim, štetnost koja je sa njim u vezi obično se naziva štetnost "plave svetlosti". Strogo uzevši, plava svetlost obuhvata samo opseg od oko 400 nm do 490 nm.

Napomena 2.: Kada se pogled uperi u veoma male izvore sa vidnim uglom < 11 mrad, L_B se može pretvoriti u E_B . Ovo se obično primenjuje samo na oftalmološke instrumente ili na stabilizovano oko tokom anestezije. Maksimalno trajanje "zurenja" iznosi: $t_{max} = 100/E_B$ gde je E_B izraženo u [W m⁻²]. Zbog očnih pokreta tokom normalnog gledanja ono ne prelazi 100 s.

Tabela 1.2 $S(\lambda) \ [\text{BEZ DIMENZIJA}], \ \text{OD 180 NM DO 400 NM}$

λunm	S (λ)	λunm	S (λ)						
180	0,0120	228	0,1737	276	0,9434	324	0,000520	372	0,000086
181	0,0126	229	0,1819	277	0,9272	325	0,000500	373	0,000083
182	0,0132	230	0,1900	278	0,9112	326	0,000479	374	0,000080
183	0,0138	231	0,1995	279	0,8954	327	0,000459	375	0,000077
184	0,0144	232	0,2089	280	0,8800	328	0,000440	376	0,000074
185	0,0151	233	0,2188	281	0,8568	329	0,000425	377	0,000072
186	0,0158	234	0,2292	282	0,8342	330	0,000410	378	0,000069
187	0,0166	235	0,2400	283	0,8122	331	0,000396	379	0,000066
188	0,0173	236	0,2510	284	0,7908	332	0,000383	380	0,000064
189	0,0181	237	0,2624	285	0,7700	333	0,000370	381	0,000062
190	0,0190	238	0,2744	286	0,7420	334	0,000355	382	0,000059
191	0,0199	239	0,2869	287	0,7151	335	0,000340	383	0,000057
192	0,0208	240	0,3000	288	0,6891	336	0,000327	384	0,000055
193	0,0218	241	0,3111	289	0,6641	337	0,000315	385	0,000053
194	0,0228	242	0,3227	290	0,6400	338	0,000303	386	0,000051
195	0,0239	243	0,3347	291	0,6186	339	0,000291	387	0,000049
196	0,0250	244	0,3471	292	0,5980	340	0,000280	388	0,000047
197	0,0262	245	0,3600	293	0,5780	341	0,000271	389	0,000046
198	0,0274	246	0,3730	294	0,5587	342	0,000263	390	0,000044
199	0,0287	247	0,3865	295	0,5400	343	0,000255	391	0,000042
200	0,0300	248	0,4005	296	0,4984	344	0,000248	392	0,000041
201	0,0334	249	0,4150	297	0,4600	345	0,000240	393	0,000039
202	0,0371	250	0,4300	298	0,3989	346	0,000231	394	0,000037
203	0,0412	251	0,4465	299	0,3459	347	0,000223	395	0,000036

204	0,0459	252	0,4637	300	0,3000	348	0,000215	396	0,000035
205	0,0510	253	0,4815	301	0,2210	349	0,000207	397	0,000033
206	0,0551	254	0,5000	302	0,1629	350	0,000200	398	0,000032
207	0,0595	255	0,5200	303	0,1200	351	0,000191	399	0,000031
208	0,0643	256	0,5437	304	0,0849	352	0,000183	400	0,000030
209	0,0694	257	0,5685	305	0,0600	353	0,000175		
210	0,0750	258	0,5945	306	0,0454	354	0,000167		
211	0,0786	259	0,6216	307	0,0344	355	0,000160		
212	0,0824	260	0,6500	308	0,0260	356	0,000153		
213	0,0864	261	0,6792	309	0,0197	357	0,000147		
214	0,0906	262	0,7098	310	0,0150	358	0,000141		
215	0,0950	263	0,7417	311	0,0111	359	0,000136		
216	0,0995	264	0,7751	312	0,0081	360	0,000130		
217	0,1043	265	0,8100	313	0,0060	361	0,000126		
218	0,1093	266	0,8449	314	0,0042	362	0,000122		
219	0,1145	267	0,8812	315	0,0030	363	0,000118		
220	0,1200	268	0,9192	316	0,0024	364	0,000114		
221	0,1257	269	0,9587	317	0,0020	365	0,000110		
222	0,1316	270	1,0000	318	0,0016	366	0,000106		
223	0,1378	271	0,9919	319	0,0012	367	0,000103		
224	0,1444	272	0,9838	320	0,0010	368	0,000099		
225	0,1500	273	0,9758	321	0,000819	369	0,000096		
226	0,1583	274	0,9679	322	0,000670	370	0,000093		
227	0,1658	275	0,9600	323	0,000540	371	0,000090		

Tabela 1.3 $\label{eq:Bezolmenzija} B~(\lambda),~R~(\lambda)~[BEZ~DIMENZIJA],~OD~380~NM~DO~1400~NM$

λ u nm	Β (λ)	R (λ)
300 ≤ λ < 380	0,01	-
380	0,01	0,1
385	0,013	0,13
390	0,025	0,25
395	0,05	0,5
400	0,1	1
405	0,2	2
410	0,4	4
415	0,8	8
420	0,9	9
425	0,95	9,5
430	0,98	9,8

435	1	10
440	1	10
445	0,97	9,7
450	0,94	9,4
455	0,9	9
460	0,8	8
465	0,7	7
470	0,62	6,2
475	0,55	5,5
480	0,45	4,5
485	0,32	3,2
490	0,22	2,2
495	0,16	1,6
500	0,1	1
500 < λ ≤ 600	10 ^{0,02} · ^(450 - λ)	1
600 < λ ≤ 700	0,001	1
700 < λ ≤ 1050	-	100,002 · (700 - λ)
1050 < λ ≤ 1150	-	0,2
1150 < λ ≤ 1200	-	0,2 · 10 ^{0,02} · (1 150 · λ)
1200 < λ ≤ 1400	-	0,02

Prilog 2. GRANIČNE VREDNOSTI IZLOŽENOSTI ZRAČENJU ZA LASERSKO OPTIČKO ZRAČENJE

Odgovarajuće biofizičke vrednosti izlaganja optičkom zračenju mogu se utvrditi na osnovu sledećih formula, koje zavise od opsega zračenja koje emituje izvor. Rezultate treba uporediti sa odgovarajućim graničnim vrednostima izloženosti iz Tabela od 2.2 do 2.4. Za jedan izvor optičkog zračenja može biti bitna više od jedne vrednosti izloženosti i odgovarajuće granične vrednosti izloženosti.

Koeficijenti koji se koriste prilikom izračunavanja u Tabelama od 2.2 do 2.4 navedeni su u Tabeli 2.5, a korekcije za ponovljeno izlaganje navedene su u Tabeli 2.6.

$$E = \frac{dP}{dA} [W m^2]$$

$$H = \int_{-\infty}^{t} E(t) \cdot dt [J m^{-2}]$$

Oznake u Prilogu 2. imaju sledeće značenje:

dP elementarna snaga izražena u vatima [W];

dA elementarna površina izražena u kvadratnim metrima [m-2];

E (t), E iradijansa ili gustina snage: snaga upadnog zračenja po jedinici površine obično izražena u vatima po kvadratnom metru [W m -2]; vrednosti E (t) i E dobijaju se merenjem ili ih može dati proizvođač opreme;

H izloženost zračenju: integral iradijanse po vremenu, izražen u džulima po kvadratnom metru [J m²];

t vreme, trajanje izlaganja, izraženo u sekundama [s];

λ talasna dužina, izražena u nanometrima [nm];

γ konusni ugao merenja koji ograničava vidno polje, izražen u miliradijanima [mrad];

γm vidno polje merenja, izraženo u miliradijanima [mrad];

α ugao koji odgovara izvoru, izražen u miliradijanima [mrad];

ograničavajući otvor: kružna površina duž koje se izračunava srednja vrednost iradijanse i izloženosti zračenju;

G integrisano zračenje: integral zračenja tokom datog vremena izloženosti, izražen kao energija zračenja po jedinici površine koja zrači i jediničnom prostornom uglu emisije, u džulima po kvadratnom metru po steradijanu [J m⁻² sr⁻¹].

Tabela 2.1

OPASNOSTI ZRAČENJA

Talasna dužina [nm] λ	Opseg zračenja	Zahvaćeni organ	Opasnost	Tabela graničnih vrednosti
od 180 do 400	UV	oko	fotohemijsko oštećenje i termičko oštećenje	2.2, 2.3
od 180 do 400	UV	koža	eritem	2.4
od 400 do 700	vidljivo	oko	oštećenje mrežnjače	2.2
od 400 do 600	vidljivo	oko	fotohemijsko oštećenje	2.3
od 400 do 700	vidljivo	koža	termičko oštećenje	2.4
od 700 do 1400	IRA	oko	termičko oštećenje	2.2, 2.3
od 700 do 1400	IRA	koža	termičko oštećenje	2.4
od 1400 do 2600	IRB	oko	termičko oštećenje	2.2
od 2600 do 10 ⁶	IRC	oko	termičko oštećenje	2.2
od 1400 do 10 ⁶	IRB, IRC	oko	termičko oštećenje	2.3
od 1400 do 10 ⁶	IRB, IRC	koža	termičko oštećenje	2.4

Tabela 2.2

GRANIČNE VREDNOSTI IZLOŽENOSTI ZA IZLAGANJE OKA LASERSKOM ZRAČENJU - KRATKOTRAJNA IZLOŽENOST < 10 S

1	a dužinaª nm]	Otvor				Trajanje [s]					
	,		10 ⁻¹³ do 1 ⁻¹¹	10 ⁻¹¹ do 10 ⁻⁹	10 ⁻⁹ do 10 ⁻⁷	10 ⁻⁷ do 1,8 · 10 ⁻⁵	1,8 · 10 ⁻⁵ do 5 · 10 ⁻⁵	5 · 10 ⁻⁵ do 10 ⁻³	10 ⁻³ do 10 ¹		
UVC	180 do 280			0 ¹⁰ [Wm ⁻²] apomenu ^v	H = 30 [J m ⁻²]						
UVB	280 do 302										
	303	1mm za t<0.3 s; 1,5 ·			H = 40 [c	m ⁻²]; ako je t napom		a je H=5,6 · 10³ t ^{0,25} [J	m ⁻²] vidi		
	304	t ^{0,375} za 0.3 <t<10 s</t<10 			H = 60 [c		o je t < 1,3 · 10 ⁻⁸ tada je H=5,6 ·10³ t ^{0,25} [J m ⁻²] v pomenu ^g				
	305	H = 100 [J m ⁻ ako je t < 1,0 · 10 ⁻⁷ tada je H=5 ²]; ako je t < 1,0 · 10 ⁻⁷ tada je H=5						a je H=5,6 · 10³ t ^{0,25} [J	m ⁻²] vidi		
	306				H = 160 ²];	[J m ⁻ ako je t napom		a je H=5,6 · 10³ t ^{0,25} [J	m ⁻²] vidi		
	307				H = 250 ²];	[J m ⁻ ako je t napom		a je H=5,6 · 10³ t ^{0,25} [J	m ⁻²] vidi		
	308				H = 400 ²];	[J m ⁻ ako je t napom		a je H=5,6 · 10³ t ^{0,25} [J	m ⁻²] vidi		
	309				H = 630 ²];	. ,	ako je t < 1,6 · 10 ⁻⁴ tada je H=5,6 · 10 ³ t ^{0,25} [J m ⁻²] vi napomenu ^g				

310				$H = 10^3 [J m^{-2}];$			⁻³ tada je H=	-5,6 ⋅ 10³ t ^{0,25} [J m ⁻²] vidi
311				H = 1,6·10 ³ [J m ⁻²];			⁻³ tada je H=	-5,6 · 10³ t ^{0,25} [J m ⁻²] vidi
312				H = 2,5·10 ³ [J m ⁻²]			⁻² tada je H=	-5,6 · 10³ t⁰.25 [J m ⁻²] vidi
313				H = 4,0·10 ³ [J m ⁻²]			-¹ tada je H=	=5,6 · 10³ t ^{0,25} [J m⁻²] vidi
314				H = 6,3·10 ³ [J m ⁻²]			⁰ tada je H=	5,6 · 10³ t ^{0,25} [J m ⁻²] vidi
315 do 400						H=5,6 · 1	10 ³ t ^{0,25} [J m [.]	2]
400 do 700				H = 5·10 ⁻³ C _E	[J m ⁻²]		H = 18 ·	t ^{0,75} C _E [J m ⁻²]
700 do 1050				H = 5·10 ⁻³ C _A C	E [J m ⁻²]		$H = 18 \cdot t^{0.75} C_A C_E [J m^{-2}]$	
1050 do 1400				H = 5⋅10 ⁻	² C _C C _E [J	m ⁻²]	H = 90) · t ^{0,75} 5 C _C C _E [J m ⁻²]
1400 do 1500	Vidi napome nu ^b	E=10 ¹² [Wm ⁻²]	Vidi napomenu ^v		H = 10 ³	[J m ⁻²]		H = $5.6 \cdot 10^3 t^{0.25} [\text{J m}^{-2}]$
1500 do 1800		E=10 ¹³ [Wm ⁻²]	Vidi napomenu ^v			H = 1	10 ⁴ [J m ⁻²]	
1800 do 2600		E=10 ¹² [Wm ⁻²]	Vidi napomenu⁴		H = 10 ³	[J m ⁻²]		$H = 5.6 \cdot 10^3 t^{0.25} [J m^{-2}]$
2600 do 10 ⁶		E=10 ¹¹ [Wm ⁻²]] Vidi napomenu⁴	H = 100	[J m ⁻²]		H = 5,6	6·10³ · t ^{0,25} [J m ⁻²]
	312 313 314 315 do 400 400 do 700 700 do 1050 do 1400 1400 do 1500 1500 do 1800 do 2600 2600 do	311 312 313 314 315 do 400 400 do 700 700 do 1050 1050 do 1400 1400 do 1500 1500 do 1800 1800 do 2600 2600 do	311 312 313 314 315 do 400 400 do 700 700 do 1050 do 1050 1400 do 1500 1400 do 1500 1500 do 1800 1800 do 1800 1800 do 2600 2600 do E=10 ¹¹ [Wm ⁻²]	311 312 313 314 315 do 400 400 do 700 700 do 1050 1050 do 1400 1400 do 1500 1400 do 1500 1400 do 1500 1400 do 1500 1500 do 1800 1800 do 1800 1800 do 2600 2600 do E=10 ¹² [Wm ⁻²] Vidi napomenu ^v E=10 ¹² [Wm ⁻²] Vidi napomenu ^v	311 312 313 314 315 do 400 400 do 700 700 do 1050 1050 do 1400 1400 do 1500 1500 do 1800 1800 do 2600 2600 do 2600 4	311 312 313 314 315 do 400 400 do 700 700 do 1050 1050 do 1400 1400 do 1500 1050 do 1400 1400 do 1500 1500 do 1800 1800 do 1800 1800 do 2600 2600 do 1800 1800 do 2600 2600 do 1900 1900 do 1	311 312 313 314 315 do 400 400 do 700 700 700 700 700 do 1050 1050	311 312 313 314 315 do 400 do 700 700 do 1050 do 1050 do 1400 Vidi 1apomen 1bou 1bou 1bou 1bou 1bou 1bou 1bou 1bou

^aAko talasnu dužinu lasera pokrivaju dve granične vrednosti, primenjuje se ona restriktivnija.

Tabela 2.3

GRANIČNE VREDNOSTI IZLOŽENOSTI ZA IZLAGANJE OKA LASERSKOM ZRAČENJU - DUGOTRAJNA IZLOŽENOST ≥ 10 S

Tala	asna dužina² [nm]	Otvor	Trajanje [s]					
			10 ¹ do 10 ² 10 ² do 10 ⁴ 10 ⁴ c					
UVC	180 do 280	3,5 mm	H = 30 [J m ⁻²]					
	280 do 302							
	303		H = 40 [J m ⁻²]					
	304		H = 60 [J m ⁻²]					
	305			H = 100 [J m ⁻²]				
	306		H = 160 [J m ⁻²] H = 250 [J m ⁻²]					
	307							
	308		H = 400 [J m ⁻²]					

 $^{^{\}text{b}}$ Kada je 1400 ≤ λ < 10 $^{\text{s}}$ nm: prečnik otvora = 1 mm za t < 0,3 s i 1,5 t $^{\text{0,375}}$ mm za 0,3 s < t < 10 s; kada je 10 $^{\text{s}}$ ≤ λ < 10 $^{\text{s}}$ nm: prečnik otvora = 11 mm.

vZbog nedostatka podataka za navedene talasne dužine pulseva, ICNIRP preporučuje korišćenje ograničenja iradijanse od 1 ns.

 $^{{}^{}g}$ Tabela daje ograničenja za pojedinačne laserske pulseve. U slučaju višestrukih laserskih pulseva, trajanja laserskih pulseva koji su unutar intervala od T_{min} (data u Tabeli 2.6) moraju se sabrati i vrednost tako dobijenog vremena mora se uneti umesto t u formuli: $5,6 \cdot 10^{3}$ $t^{0.25}$.

UVB	309	1		□ _ 620 [1 m·2]			
UVB	309			$H = 630 [J m^{-2}]$			
	310			$H = 1.0 \cdot 10^3 [J \text{ m}^{-2}]$			
	311		H = 1,6 · 10 ³ [J m ⁻²] H = 2,5 · 10 ³ [J m ⁻²] H = 4,0 · 10 ³ [J m ⁻²]				
	312						
	313						
	314		$H = 6.3 \cdot 10^3 [J \text{ m}^{-2}]$				
UVA	315 do 400		H =10 ⁴ [J m ⁻²]				
Vidljivost 400- 700	400 do 600 Fotohemijsko ^b oštećenje mrežnjače	7mm	$H = 100 C_B [J m^{-2}]$ (γ = 11 mrad) ⁹	$E = 1 C_B [W m^{-2}]; (\gamma = 1,1 t^{0.5} mrad)^g E = 1 C_B [W m^{-2}]; (\gamma = 110 mrad)^g$			
	400 do 700 Termičko ^b oštećenje mrežnjače		ako je α < 1,5 mrad ako je α > 1,5 mrad i t \leq T ₂ ako je α > 1,5 mrad i t > T ₂	tada je E = 10 [W m $^{-2}$] tada je H = 18 C _E to,75 [J m $^{-2}$] tada je E = 18 C _E T ₂ -0,25 [W m $^{-2}$]			
IRA	700 do 1400	7mm	ako je α < 1,5 mrad ako je α > 1,5 mrad i t \leq T ₂ ako je α > 1,5 mrad i t > T ₂	tada je E = 10 C_A C_C [W m ⁻²] tada je H = 18 C_A C_C C_E $t^{0.75}$ [J m ⁻²] tada je E = 18 C_A C_C C_E T_2 -0.25 [W m ⁻²] (ne sme preći 1000 W m ⁻²)			
IRB&IRC	1400 do 10 ⁶	Vidi napomenu ^v		E = 1000 [W m ⁻²]			

^aAko su talasna dužina ili drugo svojstvo lasera pokriveni sa dve granične vrednosti, primenjuje se ona restriktivnija.

Tabela 2.4

GRANIČNE VREDNOSTI IZLOŽENOSTI ZA IZLAGANJE KOŽE LASERU

Talasna	Talasna dužinaª [nm]		Trajanje [s]						
			< 10 ⁻⁹	10 ⁻⁹ do 10 ⁻⁷	10 ⁻⁷ do 10 ⁻³	10 ⁻³ do 10 ¹	10¹ do 10³	10 ³ do 3 · 10 ⁴	
UV (A,B,C)	180 do 400	3,5 mm	$E = 3 \cdot 10^{10} [Wm^{-2}]$	Isto kao granične vrednosti izlaganja oka					
Vidljivost i	400 do 700	3,5 mm	$E = 2 \cdot 10^{11} [Wm^{-2}]$	H=200 C _A	$C_A = H=1,1 \cdot 10^4 C_A t^{0.25} [J \text{ m}^{-2}]$ $E=$		E = 2 · 1	= 2 · 10 ³ C _A [Wm ⁻²]	
	700 do 1400		$E = 2 \cdot 10^{11} C_A [Wm^{-2}]$	n²] [Jm²]					
IRB i	1400 do 1500		E = 10 ¹² [Wm ⁻²]		Isto kao grar	nične vrednost	i izlaganja ok	a	
	1500 do 1800		$E = 10^{13} [Wm^{-2}]$						
	1800 do 2600		E = 10 ¹² [Wm ⁻²]						
	2600 do 10 ⁶ E = 10 ¹¹ [Wm ⁻²]		-						

^aAko talasnu dužinu ili drugo svojstvo lasera pokrivaju dve granične vrednosti, primenjuje se ona restriktivnija.

 $^{^{}b}$ Za male izvore kojima odgovara ugao jednak ili manji od 1,5 mrad, vidljive duple granične vrednosti E od 400 nm do 600 nm smanjuju se na termičke granične vrednosti za 10 s ≤ t < T_1 i na fotohemijske granične vrednosti za duža vremena. Za T_1 i T_2 videti Tabelu 2.5. Granična vrednost za fotohemijsku opasnost mrežnjače može se takođe izraziti i kao vremenski integrisana radijansa $G = 10^{6}$ C_B [Jm²sr¹] za t >10 s do t = 10000 s i L = 100 C_B [Wm²sr¹] za t > 10000 s. Za merenje G i L γ_m , mora se koristiti kao vidno polje za izračunavanje srednje vrednosti. Zvanična granica između vidljivog i infracrvenog zračenja je 780 nm, kako je definisala CIE. Kolona sa nazivima opsega talasnih dužina treba samo da pruži bolji pregled korisniku. (Oznaku G koristi CEN; oznaku L_1 koristi CIE; oznaku L_2 koriste IEC i CENELEC.)

^vZa talasnu dužinu 1400 nm do 10⁵ nm: prečnik otvora = 3,5 mm; za talasnu dužinu 10⁵ nm do 10⁶ nm: prečnik otvora = 11 mm.

 $[^]g$ Za merenje vrednosti izlaganja γ se definiše na sledeći način: ako je α (ugaona obuhvaćenost izvora) $>\gamma$ (ograničavajući konusni ugao, naveden u zagradama u odgovarajućoj koloni), onda vidno polje merenja γ_m treba da bude data vrednost γ , (ako se koristi veće vidno polje merenja, onda bi opasnost bila precenjena). Ako je α < γ onda vidno polje merenja γ_m treba da bude dovoljno veliko da u potpunosti prekrije izvor, ali inače nije ograničeno i može biti veće od γ .

PRIMENJENI KOREKCIONI FAKTORI I OSTALI PARAMETRI ZA IZRAČUNAVANJA

	Važeći spektralni opseg	
Parametar kao što je navedeno u ICNIRP	(nm)	Vrednost
CA	λ < 700	C _A = 1,0
	700 do 1050	C _A = 10 0,002(λ-700)
	1050 do 1400	C _A = 5,0
Св	400 do 450	C _B = 1,0
	450 do 700	C _B = 10 ^{0,02(λ- 450)}
Cc	700 do 1150	C _C = 1,0
	1150 do 1200	C _C = 10 ^{0,018(λ - 1150)}
	1200 do 1400	C _C = 8,0
T ₁	λ < 450	T ₁ = 10 s
	450 do 500	$T_1 = 10 \cdot [10^{0.02(\lambda-450)}] s$
	λ > 500	T ₁ = 100 s
Parametar kao što je navedeno u ICNIRP	Važeći za biološki uticaj	Vrednost
$lpha_{min}$	Svi termički uticaji	α_{min} =1,5 mrad
Parametar kao što je navedeno u ICNIRP	Važeći ugaoni opseg (mrad)	Vrednost
C _E	α<α _{min}	C _E = 1,0
	$\alpha_{min} < \alpha < 100$	$C_E = \alpha/\alpha_{min}$
	α > 100	$C_E = \alpha^2/(\alpha_{\text{min}} \cdot \alpha_{\text{max}})$ mrad sa $\alpha_{\text{max}} = 100$ mrad
	α < 1,5	T ₂ = 10 s
	1,5 < α < 100	$T_2 = 10 \cdot [10^{(\alpha \cdot 1.5) \cdot 98.5}] \text{ s}$
	α > 100	T ₂ = 100 s
Parametar kao što je navedeno u ICNIRP	Važeći opseg vremena izlaganja (s)	Vrednost
g	t ≤ 100	γ = 11 [mrad]
	100 < t < 10 ⁴	γ = 1,1 t ^{0,5} [mrad]
	t > 10 ⁴	γ = 110 [mrad]
	I .	1

Tabela 2.6

KOREKCIJE ZA IZLAGANJE KOJE SE PONAVLJA

Svako od naredna tri opšta pravila treba da se primenjuje na sva izlaganja koja se ponavljaju, izazivaju ih ponavljajući pulsni ili skenirajući laserski sistemi.

- 1. Izlaganje koje izaziva bilo koji pojedinačni puls u nizu pulseva ne sme preći graničnu vrednost za trajanje pojedinačnog pulsa.
- 2. Izlaganje grupi pulseva (ili podgrupi pulseva u nizu) koje se dešava u vremenu t ne sme preći graničnu vrednost izlaganja za vreme t.
- 3. Izlaganje pojedinačnom pulsu u grupi pulseva ne sme preći graničnu vrednost izlaganja pojedinačnom pulsu pomnoženu sa kumulativno-termičkim korekcionim faktorom $C_p=N^{-0.25}$ gde je N broj pulseva. Ovo pravilo se primenjuje samo na granične vrednosti za zaštitu od termičkih povreda, gde se svi pulsevi koji teraju kraće od T_{min} tretiraju kao pojedinačni puls.

Parametar	Važeći spektralni opseg (nm)	Vrednost
T_{min}	315 <\≤ 400	T _{min} = 10 ⁻⁹ s (= 1 ns)
	400 <λ≤ 1050	$T_{min} = 18 \cdot 10^{-6} \text{ s} \ (= 18 \ \mu \text{s})$

1050 <λ≤ 1400	$T_{min} = 50 \cdot 10^{-6} \text{ s} \ (= 50 \ \mu\text{s})$
1400 <λ≤ 1500	T _{min} = 10 ⁻³ s (= 1 ms)
1500 <λ≤ 1800	T _{min} = 10 s
1800 <λ≤ 2600	$T_{min} = 10^{-3} \text{ s } (= 1 \text{ ms})$
2600 <λ≤ 10 ⁶	$T_{min} = 10^{-7} \text{ s } (= 100 \text{ ns})$