$12a_{1126} \ (K12a_{1126})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{59} - u^{58} + \dots - 2u + 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 59 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{59} - u^{58} + \dots - 2u + 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{3} + 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{8} + 5u^{6} + 7u^{4} + 2u^{2} + 1 \\ u^{8} + 4u^{6} + 4u^{4} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{4} + 3u^{2} + 1 \\ -u^{6} - 2u^{4} + u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{13} - 8u^{11} - 23u^{9} - 28u^{7} - 14u^{5} - 4u^{3} + u \\ u^{15} + 7u^{13} + 16u^{11} + 11u^{9} - 2u^{7} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{22} + 13u^{20} + \dots + 2u^{2} + 1 \\ -u^{24} - 12u^{22} + \dots - 8u^{6} - 4u^{4} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{45} + 26u^{43} + \dots + 4u^{3} + u \\ -u^{47} - 25u^{45} + \dots - 4u^{5} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{40} - 23u^{38} + \dots + 2u^{2} + 1 \\ -u^{40} - 22u^{38} + \dots - 8u^{6} - 4u^{4} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^{58} + 4u^{57} + \cdots 12u + 2$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{59} - 15u^{58} + \dots + 16u - 1$
c_2, c_3, c_7 c_8	$u^{59} - u^{58} + \dots - 2u + 1$
C4	$u^{59} - u^{58} + \dots - 60u + 29$
c_5, c_{10}, c_{11}	$u^{59} - u^{58} + \dots + u^2 + 1$
c_6	$u^{59} + u^{58} + \dots - 32u + 185$
c_9, c_{12}	$u^{59} - 9u^{58} + \dots - 312u + 17$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{59} - y^{58} + \dots - 66y - 1$
c_2, c_3, c_7 c_8	$y^{59} + 67y^{58} + \dots - 2y - 1$
C ₄	$y^{59} - 9y^{58} + \dots + 8762y - 841$
c_5, c_{10}, c_{11}	$y^{59} + 55y^{58} + \dots - 2y - 1$
c_6	$y^{59} + 19y^{58} + \dots - 707526y - 34225$
c_9, c_{12}	$y^{59} + 47y^{58} + \dots - 338y - 289$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.087204 + 0.851478I	5.17243 - 4.73662I	-4.00000 + 2.76071I
u = 0.087204 - 0.851478I	5.17243 + 4.73662I	-4.00000 - 2.76071I
u = 0.522294 + 0.671217I	7.75645 + 10.78740I	-0.55320 - 8.84457I
u = 0.522294 - 0.671217I	7.75645 - 10.78740I	-0.55320 + 8.84457I
u = -0.509216 + 0.664867I	1.80756 - 7.41238I	-4.27230 + 9.26004I
u = -0.509216 - 0.664867I	1.80756 + 7.41238I	-4.27230 - 9.26004I
u = -0.522330 + 0.627830I	8.64971 - 0.66019I	1.00927 + 3.06229I
u = -0.522330 - 0.627830I	8.64971 + 0.66019I	1.00927 - 3.06229I
u = 0.502304 + 0.642574I	2.30495 + 3.34683I	-2.71079 - 3.11364I
u = 0.502304 - 0.642574I	2.30495 - 3.34683I	-2.71079 + 3.11364I
u = 0.423758 + 0.695721I	1.01542 + 5.69298I	-5.32566 - 8.42870I
u = 0.423758 - 0.695721I	1.01542 - 5.69298I	-5.32566 + 8.42870I
u = -0.373673 + 0.691083I	-3.05801 - 2.71446I	-12.01209 + 6.09741I
u = -0.373673 - 0.691083I	-3.05801 + 2.71446I	-12.01209 - 6.09741I
u = 0.301840 + 0.720122I	0.268239 - 0.062723I	-7.61119 - 1.27500I
u = 0.301840 - 0.720122I	0.268239 + 0.062723I	-7.61119 + 1.27500I
u = -0.085060 + 0.774106I	-0.61920 + 1.71941I	-8.31003 - 3.37529I
u = -0.085060 - 0.774106I	-0.61920 - 1.71941I	-8.31003 + 3.37529I
u = -0.573822 + 0.292341I	9.62917 - 3.10105I	3.62624 + 3.32555I
u = -0.573822 - 0.292341I	9.62917 + 3.10105I	3.62624 - 3.32555I
u = -0.445524 + 0.459511I	5.05128 - 1.59378I	2.60026 + 4.57588I
u = -0.445524 - 0.459511I	5.05128 + 1.59378I	2.60026 - 4.57588I
u = 0.592961 + 0.236270I	9.02899 - 6.97871I	2.70616 + 3.27231I
u = 0.592961 - 0.236270I	9.02899 + 6.97871I	2.70616 - 3.27231I
u = -0.570616 + 0.237617I	3.05307 + 3.70586I	-0.77253 - 3.59782I
u = -0.570616 - 0.237617I	3.05307 - 3.70586I	-0.77253 + 3.59782I
u = 0.552309 + 0.268389I	3.39541 + 0.29109I	0.41142 - 3.33717I
u = 0.552309 - 0.268389I	3.39541 - 0.29109I	0.41142 + 3.33717I
u = -0.029521 + 1.409530I	4.52945 - 5.12440I	0
u = -0.029521 - 1.409530I	4.52945 + 5.12440I	0

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.263506 + 0.518367I	-0.175692 + 1.026690I	-3.26382 - 6.43248I
u = 0.263506 - 0.518367I	-0.175692 - 1.026690I	-3.26382 + 6.43248I
u = 0.01406 + 1.42792I	-1.64302 + 2.04334I	0
u = 0.01406 - 1.42792I	-1.64302 - 2.04334I	0
u = 0.490035 + 0.102215I	2.69779 - 2.53971I	-0.68814 + 3.21089I
u = 0.490035 - 0.102215I	2.69779 + 2.53971I	-0.68814 - 3.21089I
u = -0.08759 + 1.53351I	-1.60105 - 3.31687I	0
u = -0.08759 - 1.53351I	-1.60105 + 3.31687I	0
u = -0.423131	-1.20479	-7.49580
u = 0.07142 + 1.57608I	-7.46190 + 2.18967I	0
u = 0.07142 - 1.57608I	-7.46190 - 2.18967I	0
u = -0.15017 + 1.57667I	1.23526 - 3.11687I	0
u = -0.15017 - 1.57667I	1.23526 + 3.11687I	0
u = 0.14422 + 1.58462I	-5.21473 + 5.71673I	0
u = 0.14422 - 1.58462I	-5.21473 - 5.71673I	0
u = -0.04686 + 1.59696I	-8.59473 + 1.10722I	0
u = -0.04686 - 1.59696I	-8.59473 - 1.10722I	0
u = -0.14844 + 1.59187I	-5.81777 - 9.84244I	0
u = -0.14844 - 1.59187I	-5.81777 + 9.84244I	0
u = 0.15352 + 1.59359I	0.10974 + 13.29100I	0
u = 0.15352 - 1.59359I	0.10974 - 13.29100I	0
u = -0.10679 + 1.60050I	-10.87520 - 4.50273I	0
u = -0.10679 - 1.60050I	-10.87520 + 4.50273I	0
u = 0.08882 + 1.60302I	-7.65490 + 1.41234I	0
u = 0.08882 - 1.60302I	-7.65490 - 1.41234I	0
u = 0.12015 + 1.60190I	-6.80500 + 7.70998I	0
u = 0.12015 - 1.60190I	-6.80500 - 7.70998I	0
u = 0.03277 + 1.60858I	-3.11395 - 4.26425I	0
u = 0.03277 - 1.60858I	-3.11395 + 4.26425I	0

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$u^{59} - 15u^{58} + \dots + 16u - 1$
c_2, c_3, c_7 c_8	$u^{59} - u^{58} + \dots - 2u + 1$
c_4	$u^{59} - u^{58} + \dots - 60u + 29$
c_5, c_{10}, c_{11}	$u^{59} - u^{58} + \dots + u^2 + 1$
c_6	$u^{59} + u^{58} + \dots - 32u + 185$
c_9, c_{12}	$u^{59} - 9u^{58} + \dots - 312u + 17$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$y^{59} - y^{58} + \dots - 66y - 1$
c_2, c_3, c_7 c_8	$y^{59} + 67y^{58} + \dots - 2y - 1$
C4	$y^{59} - 9y^{58} + \dots + 8762y - 841$
c_5, c_{10}, c_{11}	$y^{59} + 55y^{58} + \dots - 2y - 1$
c_6	$y^{59} + 19y^{58} + \dots - 707526y - 34225$
c_9, c_{12}	$y^{59} + 47y^{58} + \dots - 338y - 289$