Proposta de Solução_Final_v1

February 14, 2022

1 Proposta de Solução - João Carlos Casoto Júnior

Olá!

Fiz minha proposta de solução e criei um modelo de classificação para prever fraudes de acordo com os dados das subestações.

1.0.1 Etapas desenvolvidas

1. Data Understanding

- Checar estrutura do dataset e distribuição de valores quantitativos
- Procurar por valores faltantes/NA
- Checar a distribuição dos dados na variável target ('classe_cliente')

2. Data Visualization

- Quant (boxplots, histogramas e Matriz de Correlação)
- Quali (Countplots, Crosstab Chart)

3. Data Wrangling

- Remap das variáveis qualitativas [resultado não foi bom, código comentado]
- One Hot Encoding nas variáveis qualitativas

4. Data Modelling & Evaluation

- Padronizar dados, separar dataset em treino/teste (80/20) e aplicar regra de Cross Validation
- Checar distribuição dos dados com PCA e t-SNE
- Tratar base desbalanceada, com:
 - 1. UnderSampling [desempenho ruim, código comentado]
 - 2. OverSampling ROSE
 - 3. OverSampling SMOTE
- Aplicação de escalas nos dados (Normalização e Padronização)
- Treinamento dos algoritmos:
 - KNN
 - Regressão Linear
 - Random Forest c/ GridSearchCV
 - Gradient Boosting c/ GridSearchCV [resultado não foi bom, código comentado]
 - SVM [resultado não foi bom, código comentado]

5. Model Deployment

- Geração de arquivo .sav (pickle)
- API Deploy (script complementar API Deploy.py)

1.0.2 Outros possíveis testes a serem explorados

- 1. Inclusão no pipeline de um algoritmo de redes neurais/redes neurais bayesianas (acho que a ponderação nos tipos de erros do modelo ajudariam no desempenho final);
- 2. Realizar mais testes com ajuste de hiperparâmetros no random forest com GradientBoosting;
- 3. Ajuste de hiperparâmetros para novas tentativas com SVM;
- 4. Melhor entendimento do processo afim de tentar incluir novas variáveis (mais explicativas) no dataset.
- 5. Melhor ajuste do código para desenvolvimento da API (estruturação em classes, padronização de inputs em formato JSON)

2 Data Understanding

```
[2]: # Leitura do dataset
dataset = pd.read_csv('dados.csv')
display(dataset.head())
```

```
id_subestacao local_medidor tipo_medidor
                                                consumo_medio_mensal
0
               14
                      comercial
                                      digital
                                                                  293
                                                                  190
1
               30
                    residencial
                                      digital
2
               38
                    residencial
                                      digital
                                                                  399
3
                                                                  307
               40
                    residencial
                                    analogico
4
               15
                    residencial
                                      digital
                                                                  407
```

```
temperatura_minima numero_fases classe_cliente
   temperatura_maxima
0
                    42
                                         10
                                              monofasica
                                                                   normal
                    36
                                         13
                                                trifasica
                                                                   normal
1
2
                    31
                                         14
                                                 bifasica
                                                                   normal
3
                                              monofasica
                    45
                                         11
                                                                   normal
4
                    39
                                         19
                                                trifasica
                                                                   normal
```

```
[3]: # Checando estrutura do dataset e distribuição de valores quantitativos display(dataset.info()) display(dataset.describe())
```

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 150000 entries, 0 to 149999

Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	id_subestacao	150000 non-null	int64
1	local_medidor	150000 non-null	object
2	tipo_medidor	150000 non-null	object
3	consumo_medio_mensal	150000 non-null	int64
4	temperatura_maxima	150000 non-null	int64
5	${ t temperatura_minima}$	150000 non-null	int64
6	numero_fases	150000 non-null	object
7	classe_cliente	150000 non-null	object

dtypes: int64(4), object(4)
memory usage: 9.2+ MB

None

max

	id_subestacao	consumo_medio_mensal	temperatura_maxima	\
count	150000.00	150000.00	150000.00	
mean	25.03	277.82	39.49	
std	14.17	102.49	5.77	
min	1.00	100.00	30.00	
25%	13.00	190.00	34.00	
50%	25.00	278.00	39.00	
75%	37.00	365.00	44.00	
max	49.00	549.00	49.00	

temperatura_minima
count 150000.00
mean 16.99
std 4.32
min 10.00
25% 13.00
50% 17.00
75% 21.00

24.00

[4]: # Procurando por valores faltantes/NA dataset.isna().sum()

[4]: id_subestacao 0 local_medidor 0 tipo_medidor 0 consumo_medio_mensal 0 temperatura_maxima 0 temperatura_minima 0

numero_fases 0 classe_cliente 0

dtype: int64

[5]: # Verificando as colunas qualitativas se não há preenchimentos indevidos

→ (blanks, descrições fora do padrão, etc.)

for col in dataset.loc[:, dataset.dtypes == np.object]:
 display(dataset[col].value_counts())

industrial 62718 comercial 49695 residencial 37587

Name: local_medidor, dtype: int64

digital 75669 analogico 74331

Name: tipo_medidor, dtype: int64

monofasica 50582 trifasica 50146 bifasica 49272

Name: numero_fases, dtype: int64

normal 145483 fraudador 4517

Name: classe_cliente, dtype: int64

[6]: # Checando a distribuição dos dados na variável 'classe_cliente' dataset['classe_cliente'].value_counts(normalize = True)

[6]: normal 0.97 fraudador 0.03

Name: classe_cliente, dtype: float64

2.0.1 Notas

- 1. Dados distribuídos em 150 mil registros e oito variáveis (incluindo variável target 'classe_cliente');
- 2. Contém variáveis numéricas e categóricas; separarei o dataset para gerar visualizações pontuais;
- 3. Nas variáveis quantitativas, o consumo médio mensal e as temperaturas representam informações diferentes, portanto, escalas diferentes (valores Min/Max). Dependendo do modelo a ser treinado, será necessário normalizar a base e remover a ocluna 'id subestação';
- 4. Procurei por valores missing ou indevidos tanto nas variáveis quantitativas (contagem simples) quanto qualitativas (via tabelas de contingência) mas nada foi encontrado, logo nenhuma ação será necessária;

5. Avaliando a distribuição da variável 'classe_cliente', vemos que os dados estão altamente desbalanceados (razão 97/3), por isso será necessário aplicarmos alguma técnica de normalização na base (ex.: ROSE, SMOTE, etc.).

Data Visualization

3.1 Quantitativas

```
[7]: # Separar colunas categóricas das numéricas para visualizar estrutura dos dados
     categorical = dataset.loc[:, dataset.dtypes == np.object]
     numerical = dataset.loc[:, dataset.dtypes == np.int64]
     print('Categóricas: ', categorical.columns.tolist(), '\nNuméricas: ', numerical.

→columns.tolist())
    Categóricas: ['local_medidor', 'tipo_medidor', 'numero_fases',
    'classe_cliente']
    Numéricas: ['id_subestacao', 'consumo_medio_mensal', 'temperatura_maxima',
    'temperatura_minima']
[8]: # Boxplot com distribuições das variáveis numéricas
     numerical.plot(kind = 'box', subplots = True, layout = (2,2), sharex = False,
      ⇒sharey = False, figsize=(12, 12))
[8]: id_subestacao
                                AxesSubplot(0.125,0.536818;0.352273x0.343182)
     consumo_medio_mensal
                             AxesSubplot(0.547727,0.536818;0.352273x0.343182)
                                   AxesSubplot(0.125,0.125;0.352273x0.343182)
     temperatura_maxima
     temperatura_minima
                                AxesSubplot(0.547727,0.125;0.352273x0.343182)
```



```
[9]: # Histogramas de distribuição
numerical.hist(figsize=(12, 12))
plt.show()
```


3.1.1 Notas

- 1. As variáveis categóricas estão bem distribuídas (histograma) e sem outliers na distribuição (boxplots), por mais que tenhamos alguns registros de consumo médio mensal mais altos do que a média;
- 2. Todos os dados serão mantidos a priori.

3.2 Qualitativas

```
[10]: # Plot de contagem por tipo de transação (normal/fraudulenta)
    sns.countplot(categorical['classe_cliente'], palette = "OrRd")
    plt.box(False)
    plt.xlabel('Categoria', fontsize = 11)
    plt.ylabel('Contagem', fontsize = 11)
```

```
plt.title('Distribuição de Transações por Classe de Clientes\n')
plt.show()
```

Distribuição de Transações por Classe de Clientes


```
[11]: # Plot de contagem por tipo de transação (norma/fraudulenta)
    sns.countplot(categorical['local_medidor'], palette = "OrRd")
    plt.box(False)
    plt.xlabel('Categoria', fontsize = 11)
    plt.ylabel('Contagem', fontsize = 11)
    plt.title('Distribuição de Transações por Classe de Clientes\n')
    plt.show()
```

Distribuição de Transações por Classe de Clientes


```
[12]: # Stacked Bar Subestação x Classe do cliente

pd.crosstab(dataset['id_subestacao'], dataset['classe_cliente']).plot(kind =

→'bar',

stacked = True,

figsize = (15, 5),

color = ['red', 'green'])

plt.xlabel('Subestação', fontsize = 11)

plt.ylabel('Contagem', fontsize = 11)

plt.title('Distribuição de Transações por Subestação\n')

plt.show()
```


3.2.1 Nota

Há um forte desbalanceamento na classe dos clientes, por isso será utilizado técnicas para balancear os dados no dataset (ROSE, UnderSampling e replicação das transações fraudulentas nas subestações afim de balancear o dataset).

3.3 Data Wrangling

```
[13]: # Criar cópias do dataset original

# dataset_modified = dataset.copy()
dataset_modified2 = dataset.copy()

[14]: # Converte colunas categóricas para 'Categorical' e mapeia em formato de_
```

```
# Converte colunas categóricas para 'Categorical' e mapeia em formato de números - [APENAS PARA REGISTRO]

# for col in categorical.columns.tolist():
# dataset_modified[col] = pd.Categorical(dataset_modified[col]) # Converte notategorico
# cats = dict(enumerate(dataset_modified[col].cat.categories)) # Mapeia notategorias em dict
# cats = {v: k for k, v in cats.items()} # Inverte par chave/valor do dict
# dataset_modified[col] = dataset_modified[col].map(cats) # Remapeia base

# Converte colunas para int64
# for col in categorical.columns.tolist():
# dataset_modified[col] = pd.to_numeric(dataset_modified[col]) # Converte notategorico
# dataset_modified.head()
```

```
[15]: # One Hot Encoding nas variáveis categóricas (conversão do DataFrame para
       → formato wide)
      from sklearn.preprocessing import OneHotEncoder
      cols = categorical.columns.tolist()
      cols.remove('classe_cliente')
      display(cols)
      # Converte colunas para int64
      for col in categorical.columns.tolist():
          dataset[col] = dataset[col].astype(str) # Converte para categórico
      dataset_modified2 = dataset.copy()
      for col in cols:
          ohe = OneHotEncoder().fit(dataset modified2[col].values.reshape(-1,1))
          ohe_cols = list(map(lambda val: col + '_' + str(val), ohe.categories_[0]))
          print(ohe_cols)
          ohe_frame = pd.DataFrame(ohe.transform(dataset_modified2[col].values.
       →reshape(-1,1)).toarray(), columns = ohe_cols)
          dataset_modified2 = pd.concat([dataset_modified2, ohe frame], join =__
       \hookrightarrow 'inner', axis = 1)
          dataset_modified2.drop(columns = {col}, inplace = True)
      # Mapear classe target para binário
      dataset_modified2['classe_cliente'] = dataset_modified2['classe_cliente'].
       \rightarrowmap(lambda x: 1 if x == 'fraudador' else 0)
      dataset_modified2.head()
     ['local_medidor', 'tipo_medidor', 'numero_fases']
     ['local_medidor_comercial', 'local_medidor_industrial',
     'local_medidor_residencial']
     ['tipo_medidor_analogico', 'tipo_medidor_digital']
     ['numero_fases_bifasica', 'numero_fases_monofasica', 'numero_fases_trifasica']
[15]:
         id_subestacao
                        consumo_medio_mensal temperatura_maxima
                    14
                                          293
                                                                42
                    30
                                          190
                                                                36
      1
      2
                    38
                                          399
                                                                31
                    40
                                                                45
      3
                                          307
      4
                    15
                                                                39
                                          407
         temperatura_minima classe_cliente local_medidor_comercial \
      0
                         10
                                                                  1.00
                         13
                                           0
                                                                  0.00
      1
      2
                         14
                                           0
                                                                  0.00
```

```
0.00
      3
                          11
                                           0
      4
                          19
                                           0
                                                                  0.00
         local_medidor_industrial local_medidor_residencial \
      0
                              0.00
                                                          0.00
                              0.00
                                                          1.00
      1
                              0.00
      2
                                                          1.00
      3
                              0.00
                                                          1.00
      4
                              0.00
                                                          1.00
         tipo_medidor_analogico tipo_medidor_digital numero_fases_bifasica \
      0
                            0.00
                                                  1.00
                                                                          0.00
                            0.00
                                                  1.00
                                                                          0.00
      1
      2
                            0.00
                                                  1.00
                                                                          1.00
      3
                            1.00
                                                  0.00
                                                                          0.00
      4
                            0.00
                                                                          0.00
                                                   1.00
         numero_fases_monofasica
                                   numero_fases_trifasica
      0
                             1.00
                                                      0.00
                            0.00
                                                      1.00
      1
      2
                            0.00
                                                      0.00
      3
                             1.00
                                                      0.00
      4
                            0.00
                                                      1.00
[16]: # Matriz de correlação de Pearson
      corr = dataset_modified2.iloc[:, 1:].corr()
      display(corr.style.background_gradient(cmap = 'coolwarm').set_precision(2))
      # Visão alternativa com heatmap
      f, ax = plt.subplots(figsize = (10, 8))
      display(sns.heatmap(corr, mask = np.zeros_like(corr, dtype = np.bool),
                  cmap = sns.diverging_palette(1000, 10, as_cmap = True),
                  square = True, ax = ax))
```

<pandas.io.formats.style.Styler at 0x1c0b48980c8>

<matplotlib.axes._subplots.AxesSubplot at 0x1c0b57a66c8>

3.4 Data Modelling & Evaluation

3.4.1 Padronizando dados, separando dataset em treino/teste e Cross Validation

```
[18]: # Separando variáveis X e Y

array = dataset_modified2.values

X = array[:, 1:-1]
Y = array[:, -1]

# Criando cross-validation score para coletar acurácia ajustada dos modelos
```

```
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score

# Definindo hiperparâmetros para testes de CV (10 treinamentos para cada modelo)
num_folds = 10
kfold = KFold(num_folds, shuffle = True)
```

```
[19]: # Separando dados entre treino e teste (ratio 80/20, normalizadas e⊔

→ padronizadas)
from sklearn.model_selection import train_test_split

test_size = 0.3
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = test_size)
# X_trainS, X_testS, Y_trainS, Y_testS = train_test_split(X, Y, test_size = \underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline
```

NOTA: Base de treino com 105000 linhas e teste 45000 linhas.

3.4.2 Checando distribuição dos dados com t-SNE e PCA

```
[20]: # # Checando distribuição dos dados com t-SNE scatter plot
    # import matplotlib.patches as mpatches
    # from sklearn.manifold import TSNE
    # X_reduced_tsne = TSNE(n_components = 2).fit_transform(X)

# f, ax = plt.subplots(figsize=(24,16))

# blue_patch = mpatches.Patch(color='#0A0AFF', label='Normal')
    # red_patch = mpatches.Patch(color='#AF0000', label='Fraud')

# ax.scatter(X_reduced_tsne[:,0], X_reduced_tsne[:,1], c=(Y == 0), \( \) \( \to \) \( \t
```

```
[21]: # # Checando distribuição dos dados com PCA scatter plot
# import matplotlib.patches as mpatches
```

3.4.3 Tratar desbalanceamento da base

```
[22]: # !pip install imbalanced-learn
```

3.4.4 Nota

UnderSampling não gerou um bom resultado, por isso foi comentado (baixa quantidade de casos fraudulentos).

```
[24]: # # OverSampling (ROSE)

# from sklearn.datasets import make_classification
# from imblearn.over_sampling import RandomOverSampler
```

```
[25]: # OverSampling (SMOTE)

from imblearn.over_sampling import SMOTE

# Classificação
sm = SMOTE()
X_over, Y_over = sm.fit_resample(X_train, Y_train)

# Plot
ax = pd.DataFrame(Y_over)[0].value_counts().plot.pie(autopct = '%.2f')
_ = ax.set_title('OverSampling Shareof - Variável "Target"')
display(pd.DataFrame(Y_over)[0].value_counts())
```

1.00 101872 0.00 101872 Name: 0, dtype: int64

OverSampling Shareof - Variável "Target"

3.4.5 Aplicação de Escalas (Normalização e Padronização)

```
[26]: # Normalizando dados com escala MinMax (dados estarão no range de O a 1) eu
       \rightarrow padronização
      from sklearn.preprocessing import StandardScaler
      from sklearn.preprocessing import MinMaxScaler
      print("Dados originais: \n\n", X)
      scaler = MinMaxScaler(feature_range = (0, 1))
      X_train_norm = scaler.fit_transform(X_over)
      X_test_norm = scaler.transform(X_test)
      print("\nDados normalizados (escala MinMax): \n\n", X_train_norm)
      # Padronizando dados (StandardScaler)
      scaler = StandardScaler().fit(X_over)
      X_train_scaled = scaler.fit_transform(X_over)
      X_test_scaled = scaler.transform(X_test)
      print("\nDados padronizados (StandardScaler): \n\n", X_train_scaled)
     Dados originais:
                                      0.]
      [[293. 42. 10. ... 0.
                               1.
      [190.
             36. 13. ...
                           0.
                                0.
                                     1.]
                                     0.]
      [399. 31.
                  14. ...
                         1.
                               0.
      [381. 34. 17. ... 0.
                              0.
                                     1.7
                  21. ...
      [427.
             38.
                          0.
                                0.
                                     1.]
      [277. 46. 13. ... 0.
                                1.
                                     0.11
     Dados normalizados (escala MinMax):
      [[0.74832962 0.94736842 0.
                                          ... 0.
                                                       0.
                                                                  1.
      [0.09576837 0.10526316 0.5
                                         ... 1.
                                                      0.
                                                                  0.
                                                                            1
                                         ... 0.
      [0.14476615 0.21052632 0.
                                                       1.
                                                                  0.
                                                                            1
      [0.70948626 0.63157895 0.26150041 ... 1.
                                                      0.
                                                                  0.
                                                                            ]
      [0.57237615 0.10542667 0.21439667 ... 0.
                                                                            ]
                                                       1.
                                                                  0.
      [0.30859554 0.11685791 0.11138567 ... 0.
                                                                            ]]
                                                      1.
                                                                  0.
```

```
Dados padronizados (StandardScaler):
```

3.5 Treinamento dos Algoritmos

3.5.1 Regressão Logística

```
[27]: # Regressão logística sem padronização

from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report

# Fit e avaliação do modelo
regrl = LogisticRegression()
regrl.fit(X_over, Y_over)
regrl.score(X_over, Y_over)

# Predições
results = cross_val_score(regrl, X_over, Y_over, cv = kfold)
predictions = regrl.predict(X_test)

# Score
print("Acurácia (Regressão Logística): %.3f" % (results.mean() * 100))
display(print(classification_report(Y_test, predictions)))
```

Acurácia (Regressão Logística): 77.885

	precision	recall	f1-score	support
0.0	0.99	0.77	0.87	43611
1.0	0.09	0.76	0.17	1389
accuracy	0.54	0.70	0.77	45000
macro avg	0.54	0.76	0.52	45000
weighted avg	0.96	0.77	0.84	45000

None

```
# Regressão logística com padronização

# Fit e avaliação do modelo
regrl = LogisticRegression()
regrl.fit(X_train_scaled, Y_over)
regrl.score(X_train_scaled, Y_over)

# Predições
results = cross_val_score(regrl, X_train_scaled, Y_over, cv = kfold)
predictions = regrl.predict(X_test_scaled)

# Score
print("Acurácia (Regressão Logística): %.3f" % (results.mean() * 100))
display(print(classification_report(Y_test, predictions)))
```

Acurácia (Regressão Logística): 77.871 precision recall f1-score support 0.99 0.0 0.77 0.86 43611 1.0 0.09 0.76 0.17 1389 0.77 45000 accuracy 0.54 0.76 0.52 45000 macro avg weighted avg 0.96 0.77 0.84 45000

None

3.5.2 Nota

Acurácia não é uma boa métrica para este problema, visto que ele prevê praticamente todos os casos de não fraude enquanto que a precisão dos casos fraudadores é inferior à 10%, por isso este modelo não será utilizado.

3.5.3 KNN

```
[29]: from sklearn.neighbors import KNeighborsClassifier
  from sklearn.metrics import mean_squared_error
  from sklearn.metrics import precision_score, recall_score
  import math

alpha = [n for n in range(3, 50, 2)]
  argmax = 0
```

```
best_param = int
for param in alpha:
    model = KNeighborsClassifier(n_neighbors = param)
    knn = model.fit(X_train_norm, Y_over)
    preds = knn.predict(X_test_norm)
    score = precision_score(Y_test, preds, average = None)[1]
    if score > argmax:
        argmax = score
        best_param = param
# Apresentar melhor parâmetro
print(best_param, argmax)
# Fit no modelo com melhor parâmetro e avaliação (score)
model = KNeighborsClassifier(n_neighbors = best_param)
knn = model.fit(X_train_norm, Y_over)
preds = knn.predict(X_test_norm)
print(precision_score(Y_test, preds, average = None)[0])
print(confusion_matrix(Y_test, preds))
print(classification_report(Y_test, preds))
3 0.19792117799913383
0.9781687006629032
[[41759 1852]
 [ 932 457]]
```

	precision	recall	f1-score	support
0.0	0.98	0.96	0.97	43611
1.0	0.20	0.33	0.25	1389
accuracy			0.94	45000
macro avg	0.59	0.64	0.61	45000
weighted avg	0.95	0.94	0.95	45000

3.5.4 Notas

- 1. O modelo não desempenhou bem também, mesmo que melhor em comparação à Regressão Logística. A taxa de precisão para fraudes foi baixa (aprox. 18%);
- 2. Foi processado um range de K-vizinhos ímpares entre 3 e 49 (limitei ao número de subestações).

3.5.5 Random Forest com GridSearchCV

```
[30]: # Grid Search
      from sklearn.ensemble import RandomForestClassifier
      from sklearn.model_selection import GridSearchCV
      from sklearn.metrics import average_precision_score, roc_auc_score, f1_score
      num_trees = 1000
      random forest = RandomForestClassifier(n estimators = num_trees)
      # Usando um grid completo de todos os parâmetros
      param_grid = {"max_depth": [5, None],
                    "max_features": [5, 7],
                    "criterion": ["gini", "entropy"]}
      # Executando o Grid Search com média de precisão como métrica a serr avaliada
      grid_search = GridSearchCV(random_forest, param_grid = param_grid,__
       →return_train_score = True, \
                                 scoring = 'average_precision', n_jobs = 4)
      # Previsões
      grid_search.fit(X_over, Y_over)
      predictions = grid_search.predict(X_test)
      display(print(classification_report(Y_test, predictions)))
      # Coletando melhores parâmetros do GridSearchCV e treinando um novo modelo
      best_params = grid_search.best_params_
      best_params['n_estimators'] = num_trees
      display(best_params)
      random_forest = RandomForestClassifier(**best_params)
      random_forest.fit(X_over, Y_over)
      # Previsões
      predictions = random_forest.predict(X_test)
      print("Precisão em Teste:", precision_score(Y_test, predictions, average = ___
       →None))
      display(print(classification_report(Y_test, predictions)))
```

support	f1-score	recall	precision	
43611	0.99	0.99	0.98	0.0
1389	0.42	0.32	0.63	1.0
45000	0.97			accuracy
45000	0.70	0.66	0.81	macro avg

```
weighted avg 0.97 0.97 0.97 45000
```

None

```
{'criterion': 'gini',
  'max_depth': None,
  'max_features': 5,
  'n_estimators': 1000}
```

Precisão em Teste: [0.97851452 0.63241679]

	precision	recall	f1-score	support
0.0	0.98	0.99	0.99	43611
1.0	0.63	0.31	0.42	1389
accuracy			0.97	45000
macro avg	0.81	0.65	0.70	45000
weighted avg	0.97	0.97	0.97	45000

None

```
[31]: # Gerando Confusion Matrix
confusion_matrix = pd.DataFrame(confusion_matrix(Y_test, predictions))
sns.heatmap(confusion_matrix, annot = True, cmap = "YlGnBu", fmt = '2g')

plt.title('Confusion Matrix - Random Forest c/ GridSearchCV')
plt.xlabel('Previsão')
plt.ylabel('Real')
plt.show()
```



```
[32]: # Curva ROC e F1 Score
print('ROCAUC: ', roc_auc_score(Y_test, predictions))
print('F1: ', f1_score(Y_test, predictions))
```

ROCAUC: 0.6543953060765526 F1: 0.42019230769230764

3.5.6 Notas

O Grid Search foi criado com quatro parâmetros: - n_estimators/trees - A tendência é ter um modelo melhor com mais estimadores, mas com tempo de processamento também mais alto; - max depth - Determina a "profundidade" da árvore. Um valor-teto pode ser colocado afim de eliminar overfitting; - max_features - Determina a quantidade de atributos a serem desmembrados nas random forests; - criterion - Determina como o algoritmo fará a divisão dos atributos e a classificação dos nós em cada árvore;

Finalmente temos um modelo com melhor desempenho em relação aos demais, mantendo a precisão mais alta nas duas classes.

3.5.7 Gradient Boosting Classifier com GridSearchCV

```
[33]: # Grid de parâmetros (usando hiperparâmetros do último treinamento)
from sklearn.ensemble import GradientBoostingClassifier

param_grid = {'learning_rate': [0.1, 0.01],
```

```
'max_depth': [None],
                   'max_features': [5],
                   'min_samples_leaf': [3, 4],
                   'subsample': [0.5, 0.7],
                   'n_estimators': [1000]
                   }
     # Regressor
     random_forest_gb = GradientBoostingClassifier()
     # Modelo criado com GridSearchCV
     gs_cv = GridSearchCV(random_forest_gb, param_grid, scoring =__
      # Imprime os melhores parâmetros
     print('Melhores Hiperparâmetros: %r' % gs_cv.best_params_)
     Melhores Hiperparâmetros: {'learning_rate': 0.1, 'max_depth': None,
     'max_features': 5, 'min_samples_leaf': 3, 'n_estimators': 1000, 'subsample':
     0.7}
[36]: # Treinando o modelo com melhores parâmetros
     random_forest_gb = GradientBoostingClassifier(**gs_cv.best_params_)
     random_forest_gb.fit(X_over, Y_over)
     # Previsões
     predictions = random_forest_gb.predict(X_test)
     print("Precisão em Teste:", precision score(Y test, predictions, average = L
      →None))
```

Precisão em Teste: [0.97830611 0.54156171] precision recall f1-score support 0.0 0.98 0.99 0.98 43611 1.0 0.54 0.31 0.39 1389 0.97 45000 accuracy 0.69 45000 macro avg 0.76 0.65

0.96

display(print(classification_report(Y_test, predictions)))

0.97

None

3.5.8 Nota

weighted avg

O GradientBoosting não performou tão bem quanto a primeira versão do modelo, provavelmente precisaria aumentar e testar com novos hiperparâmetros para o modelo (o que é computacional-

0.97

45000

mente mais pesado e com tempo de processamento maior).

3.6 Model Deployment

```
[42]: # Coletando modelo de random forest com GridSearchCV e gerando arquivo .savu
                                          \hookrightarrow (picke)
                                      import pickle
                                      f = 'classificador.sav'
                                      pickle.dump(random_forest, open(f, 'wb'))
[46]: | # Teste de integração com input de linha (script avulso API_Deploy.py)
                                      from IPython.display import Image
                                      Image('API_test.png')
[46]:
                                                                           1.0 200 OK

int-Length: 54
int-Type: application/json

Mon, 14 Feb 2022 12:15:01 GMT

in: Werkzeug/1.0.0 Python/3.7.6
                                                             Prompt de Comando - python API_Deploy.py
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                \Users\casoto\Desktop\Fraude>python API_Deploy.p
Serving Flask app "API_Deploy" (lazy loading)
Environment: production
                                                                     Use a production WSGI server instead.
                                                                     Debug mode: on
Restarting with windowsapi reloader
Debugger is active!
Debugger PIN: 230-114-300
Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)
                                                                                            - [14/Feb/2022 09:15:01] "=[37mGET /?query=215+31+19+1+0+0+0+1+1+0+0 HTTP/1.1=[0m" 200 - classes in `C:\\Users\\casoto\\Anaconda3\\Lib\\encodings\\_pycache_\\ascii.cpython-37.pyc', reloading
                                                                     | 1.0.6.1. | 147/E07/2072 | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6.1. | 1.0.6
```

4 Fim

4.0.1 SVM [comentado]

```
# sum_v1 = sum.SVC(kernel = 'linear', class_weight = 'balanced', probability = __
\rightarrow True)
# svm_v1.fit(X_over, Y_over)
# pred sum v1 = sum v1.predict(X test)
# # Avaliação
# svm dict v1 = {'Modelo':'SVM',
                 'Versão':'1',
#
                  'Kernel': 'Linear sem Padronização',
                  'Precision':precision_score(pred_svm_v1, Y_test),
#
#
                  'Recall':recall_score(pred_svm_v1, Y_test),
                  'F1 Score':f1_score(pred_sum_v1, Y_test),
#
                  'Acurácia':accuracy_score(pred_svm_v1, Y_test),
                  'AUC':roc_auc_score(Y_test, pred_svm_v1)}
# display(svm_dict_v1)
# display(print(classification_report(Y_test, pred_svm_v1)))
```

```
[]: # SVM com Kernel linear + sem dados padronizados (originais)
     # from sklearn import sum
     # from sklearn.metrics import precision_score, recall_score, f1_score,
      →accuracy_score, roc_auc_score
     # from sklearn.decomposition import PCA
     # # Treina o Modelo
     # svm_v1 = svm.SVC(kernel = 'linear', class_weight = 'balanced', probability = __
     \rightarrow True)
     # svm_v1.fit(X_over, Y_over)
     # pred_svm_v1 = svm_v1.predict(X_test)
     # # Avaliação
     # svm_dict_v1 = {'Modelo':'SVM',
                      'Versão':'1'.
     #
                       'Kernel': 'Linear sem Padronização',
                       'Precision':precision_score(pred_sum_v1, Y_test),
     #
                       'Recall':recall_score(pred_svm_v1, Y_test),
                       'F1 Score':f1 score(pred sum v1, Y test),
                       'Acurácia':accuracy_score(pred_svm_v1, Y_test),
     #
                       'AUC':roc auc score(Y test, pred svm v1)}
     # display(svm_dict_v1)
     # display(print(classification_report(Y_test, pred_svm_v1)))
```

```
[]: # # SVM com Kernel Linear + Scaling dos dados

# svm_v2 = svm.SVC(kernel = 'linear')
```

```
[]: # SVM com Kernel RBF e GridSearchCV
     # from sklearn.model_selection import GridSearchCV
     # svm v3 = svm.SVC(kernel = 'rbf')
     # # Valores para o grid
     \# C range = np.array([50., 100., 200.])
     # gamma_range = np.array([0.3*0.001, 0.001, 3*0.001])
     # # Grid de hiperparâmetros
     # svm_param_grid = dict(gamma = gamma_range, C = C_range)
     # # Grid Search
     # # start = time.time()
     # svm_v3_grid_search_rbf = GridSearchCV(svm_v3, svm_param_grid, cv = 3)
     # # Treinamento
     # svm_v3_grid_search_rbf.fit(X_train_scaled, Y_over)
     # # end = time.time()
     # # print('Tempo de Treinamento do Modelo com Grid Search:', end - start)
     # # Acurácia em Treino
     # print(f"Acurácia em Treinamento: {svm_v3_grid_search_rbf.best_score_ :.2%}",u
      \rightarrow end = ' \setminus n')
     # print(f"Hiperparâmetros Ideais: {svm_v3_grid_search_rbf.best_params_}")
     # # Previsões
     # pred_svm_v3 = svm_v3_grid_search_rbf.predict(X_test_scaled)
     # # Dicionário de métricas e metadados
```

```
[]: # # SVM com Kernel Polinomial + GridSearchCV
     # # Cria o modelo
     # svm_v4 = svm.SVC(kernel = 'poly')
     # # Valores para o grid
     \# r_range = np.array([0.5, 1])
     # gamma_range = np.array([0.0001, 0.001, 0.01, .05, 0.1, 0.01, 1, 2])
     \# d_range = np.array([2, 3, 4])
     # # Grid de hiperparâmetros
     # param_grid_poly = dict(gamma = gamma_range, degree = d_range, coef0 = r_range)
     # # Grid Search
     # # start = time.time()
     # svm_v4_grid_search_poly = GridSearchCV(svm_v4, param_grid_poly, cv = 3)
     # # Treinamento
     # svm_v4_grid_search_poly.fit(X_train_scaled, Y_over)
     # # end = time.time()
     # # print('Tempo de Treinamento do Modelo com Grid Search:', end - start)
     # # Acurácia em Treino
     # print(f"Acurácia em Treinamento: {svm_v4_grid_search_poly.best_score_ :.2%}",__
     \rightarrow end = ' \setminus n'
     # print(f"Hiperparâmetros Ideais: {svm_v4_grid_search_poly.best_params_}")
     # # Previsões
     # pred_svm_v4 = svm_v4_grid_search_poly.predict(X_test_scaled)
     # # Dicionário de métricas e metadados
     # svm_dict_v4 = {'Modelo':'SVM',
     #
                       'Versão': '4',
     #
                       'Kernel': 'Polinomial com Dados Padronizados',
                       'Precision':precision_score(pred_sum_v4, Y_test),
```

```
#
                       'Recall':recall_score(pred_sum_u4, Y_test),
     #
                       'F1 Score':f1_score(pred_svm_v4, Y_test),
     #
                       'Acurácia':accuracy_score(pred_svm_v4, Y_test),
     #
                       'AUC':roc_auc_score(Y_test, pred_svm_v4)}
     # display(svm_dict_v4)
     # display(print(classification_report(Y_test, pred_svm_v4)))
 []: # # Concatena todos os dicionários em um dataframe do Pandas
     # resumo = pd.DataFrame({'SVM_dict_v1':pd.Series(SVM_dict_v1),
                               'SVM_dict_v2':pd.Series(SVM_dict_v2),
      #
                               'SVM_dict_v3':pd.Series(SVM_dict_v3),
                               'SVM_dict_v4':pd.Series(SVM_dict_v4)})
     #
      # resumo
[43]: X_test[0]
                                                            1., 0.,
[43]: array([215., 31., 19., 1.,
                                      0.,
                                            0., 0., 1.,
                                                                          0.])
```

5 Fim