CS 60047 Autumn 2020 Advanced Graph Theory

Instructor

Bhargab B. Bhattacharya

Lecture #30, #31: 06 Nov. 2020

Indian Institute of Technology Kharagpur Computer Science and Engineering

Graph Coloring Problem

- Graph coloring is an assignment of "colors", to certain objects in a graph. Such objects can be vertices, edges, faces, or a mixture of the above
- Numerous applications: scheduling, register allocation in a microprocessor, frequency assignment in mobile radios, pattern matching, and so on ...

Vertex Coloring

- Assignment of colors to the vertices of the graph such that no two adjacent vertices are assigned the same color => proper coloring
- Chromatic number (χ) : least number of colors needed to color the graph
- A graph that can be assigned (proper) k-coloring is k-colorable, and it is k-chromatic if its chromatic number is exactly k
- Equivalent to covering vertices with minimum number of independent sets, or minimum clique-cover of vertices in the complementary graph => chromatic partitioning

Vertex Coloring

- The problem of finding a minimum coloring of a graph is NP-Hard
- The corresponding decision problem (Is there a coloring which uses at most *k* colors?) is NP-complete
- The chromatic number χ for $C_n = 3$ (n is odd) or 2 (n is even), $K_n = n$, $K_{m,n} = 2$

Planar graph coloring

The Four Color Theorem: the chromatic number of a planar graph is at most 4

Coloring Planar Graphs

Theorem: Every planar graph G is 6-colorable

Proof: By easy induction

Basis: if $v \le 6$, G is 6-colorable

- □ Find a vertex *x* of degree 5 or less (such a vertex always exists in a planar graph)
- □ Remove x; the remaining graph G x is 6-colorable by induction hypothesis. Next, color x with a color not used by its (at most) 5 neighbors in G x

Coloring Planar Graphs

Theorem (Heawood 1890)

Every planar graph G is 5-colorable

Proof: By induction

Basis: if $v \le 5$, G is 5-colorable

- find a vertex x of degree 5 or less (such a vertex always exists in a planar graph)
- \Box the remaining graph G x is 5-colorable by induction hypothesis
- use arguments based on Kempe chains and planarity

Coloring Planar Graphs

Four color theorem (Appel and Haken 1976) Every planar graph G is 4-colorable

Result: Every planar graph with fewer than four triangles is 3-colorable

Colorability

Graphs with loops - uncolorable - = simple graphs

For any graph G, $\chi(G) > \omega(G)$ Chromatic
number

Also, $\chi(G) \ge \frac{|v|}{\kappa(G)}$ independence number is size of the maximum independent set

=> G is 2-colorable if and only if G is bipartite (non-empty 6) &

Special cases

1. G is planar
$$\Rightarrow \chi(4) \leq 4$$
.

2. G is
$$Kn \Rightarrow \chi(G) = n$$

 $\Rightarrow \chi(G) = 1$

3.
$$\forall \text{ any Integel } n \geqslant 3$$
,
 $\chi(c_n) = \int_{3}^{2} if n \text{ is even}$

Cartesian product of two graphs
$$G$$
 and H
 G D H \Rightarrow vertices set $V(G) \times V(H)$

Edge S et $V(G) \times V(H)$
 (I) $U = U'$ and (V, V') $\in E(H)$, or

 (I) $U = U'$ and (U, U') $\in E(G)$
 (I) $U = V'$ and (U, U') $\in E(G)$
 (I) $U = V'$ and (U, U') $\in E(G)$

Theorem: $\chi(G \square H) = \max_{\chi} \{\chi(G), \chi(H)\}$ Proof: Clear

Theorem: For every graph G, $\chi(G) \leq 1 + \Delta(G)$ Proof by construction:

largest degree of a vertex is G

- 1. Label the vertices as $v_1, v_2, ..., v_i, ..., v_n$
 - 2. In crementally color the vertice in the same order

 (a) assign C1 to V1; if V2 is adjacent
 to V1, assign color C2 to V2, else
 assign color C, to V2.

 (b) in general, assign to V2, The smallest-indexed
 available order.

$$d(v_i) = \Delta$$

$$C_{\Delta + 1} + v_i$$

$$C_{\Delta} + 1 + v_i$$

1) ordering of vertices
2) assign the leastindexed available color
at every step.

Since $d_i \leq \Delta(G)$, some colors must be available for coloring V_i' from the color set $\{c_1, c_2, \cdots, c_{\Delta+1}\}$

Hence, X(4) & 1(4)+1.

The upper bound is achieved for many graphs. For example, $\Delta(k_n) = n-1$ 4 $\chi(k_n) = n$.

Also, $\chi(c_n) = 3 = 1 + \Delta(c_n)$

Theorem (Brooks): If G is a connected graph of order n, then $X(G) \subseteq \Delta(G)$ unless G = Kn, or $n \ge 3$ is odd and G = Cn

Proof: See Textbook DW 5.1.22.

Example

Graphs with large chromatic numbers We Know that $X(G) \geq \omega(G)$ Question: Can $\omega(G) = 2$, while $\chi(G)$ arbitrarily large?

Answer:

yes! We can construct large

graphs, which are triangle-free, but

X(G) is artitrarily large.

Simple
$$G$$
 \Longrightarrow G' \succeq simple g_{nuph}
 $v_1, v_2, \dots, v_n \Longrightarrow$ $G \cup \{u_1, u_2, \dots, u_n, u_n\}$
 V_i $\bigvee_{i \in V_i} V_i$ $\bigvee_{i \in V_i} V_i$

Example

$$\begin{array}{c}
v_1 \\
v_1 \\
G \\
\omega(G) = 2, \quad \chi(G) = 2
\end{array}$$

$$\begin{array}{c}
v_2 \\
v_1 \\
v_2 \\
V_1 \\
V_2 \\
V_3 \\
V_4 \\
V_4 \\
V_5 \\
V_6 \\
V_6 \\
V_7 \\
V_8 \\
V_8$$

$$|V|=n$$

$$W = 2$$

$$X = k$$

$$Triangle-free large gaths$$

Extremal Problems

what are the smallest and largest 1. 12 K-chromatic graphs with n vertices?

Theorem: Every K-chromatic queth G with n vertices has at least (K) edges.

Proof: G is optimally colored with k colors, say

1, 2, i, j, k.

I am edge (i) _____ ji in G; => (x) distinct pairs of colors []

The maximization problem: What is the largest r-chromatic graph with n vertices?

*chromatic graph => 9 is r-partite

Construct Turan graph $T_{n,r} \Rightarrow complete reputter of the soft of$

$$T_{n,r}$$
:

$$|V_i| \sim |V_i| \leq 1.$$

 $\sum_{i=1}^{r} |v_i| = n$

$$\left|\frac{M}{\gamma}\right| = 12$$

Lemma (DW: 5.2.8)

Among simple recolorable graphs with nevertices,

To, is the unique graph with maximum

mumber of edgs.

groof !

when |x|.|x| is
maximized?

|X|-|Y| minimized

Theorem (Turan 1941)

Among all n-vertex simple graphs with no (r+1)-clique, $T_{n,r}$ has the maximum rumber of edgs.

Proof: Reading Assignment (DW: 5.2.9)

Example

In a circular city of diameter 1, we want to position 6 police cars such that the pairs of cars separated by distance more than $\frac{1}{\sqrt{2}}$, are maximized.

6 cars equispaced around circum ference # 9000 pairs = (5)-6 = 9

7000 Pairs

Edge coloring

In a league with 6 teams, each team has to play with every other. A team can play one match everyday. Schedule the games in fewest possible days.

Solution: In one day 3 teems

can play > "matching"

Total number of matches

= (6) = 15

News at kast 5 days offinal

> Edge coloring with 5 colors

Decomposing edges of K_6 into edge-disjoint 1-regular graphs

Also known as 1-factorization (a factor is a subgraph that spans all vertices)

Time-tabling problems

- *m* teachers, *n* classes
- Teacher i is required to teach class j
- In a given period, a teacher can be in at most one class, and a class can have at most one teacher.
- Design a timetable with minimum # of periods
- Properly color the edges of G with as few colors as possible

Time-tabling problems

Definition:

A k-edge coloring of G is a labeling $f: E(G) \rightarrow S$, |S| = k. An edge-coloring is proper if all edges incident on a vertex have different colors.

If G can be properly edge-colorable.

K-colors => 1k edge colorable.

Edge chromatic number (Chromatic index) X'(G) for a loopless graph G is the least K for Nich G is k-edge colorable

Observation (DW 7.1.3 -7.1.10)

$$V_{1}(G) \geq \Delta(G) \Leftrightarrow$$

2.
$$\chi'(G) \leq 2\Delta(G) - 1$$
 $\Delta(G) \leq \chi'(G) \leq 2\Delta(G) - 1$

Proof:
$$\chi'(G) = \chi(L(G)) \leq \Delta(L(G)) + 1$$

$$\leq 2\Delta(G)-1$$

König's Theorem (DW: 7.1.7)

If G is bipartite, then $\chi'(G) = \Delta(G)$

$$x_1$$
 x_2
 x_3
 x_4
 x_5
 x_5
 x_7
 x_1
 x_2
 x_3
 x_4
 x_5
 x_5

Examples

$$\chi'(c_3)=3 \qquad \chi'(c_4)=2 \qquad \chi'(c_5)=3$$

$$0dd cycle \Rightarrow \chi'=3 \qquad \chi'(PG)=4 \qquad [shows \chi'(G)=D(G)+1]$$
even cycle \Rightarrow \chi'=2 \quad \chi'(\chi') = Max\{m,n}

$$\chi'(PG) = 4$$
 [DW: 7.1.9]

Proof | PG | Comprises two vertex-disjoint

5- cycles; $\Delta(PG) = 3$
 $\Rightarrow \chi'(PG) \geq 3$

The inner 5-star (~ 5-cycle) Cannot be colored wilt G, B and R.

Hence, you now an additional color 1

Chromatic index of $K_n: \chi'(K_n)=2$

Case 1: n → even, Claim: $\chi'(\kappa_n) = n-1$

Idea! let n = 2kCan we partition the edges of kn in to (n-1) disjoint matchings?

$$\chi'(\kappa_6) = 7$$

Construction procedure

•
$$\{(v_0v_1), (v_2v_5), (v_3v_4)$$

• $\{(v_0, v_2), (v_1, v_3), (v_4, v_5)\}$

5 disjoint matching

This argument can be generalized to show $\chi'(Kn)=n-1$, when n=0

Let the vertices he Vo, V, V2, V3, V4, V5

$$\chi'(K_5) = ?$$

When $n = \sigma dd$.

 $\chi'(K_n) = ?$ when $n = \sigma dd$.

Proof! # edges in $K_n = \frac{n(n-1)}{2}$

Since n is odd, perfect most chiral does not exist, we can match $(n-1)$ edges in one pass. Hence, n passes are needed to cover all edges $\Rightarrow \chi'(K_n) > n$

Now: $\chi'(K_{N+1}) = n \Rightarrow delete the extra vertex \Rightarrow \chi'(K_n) = n$.

We have seen that $\Delta(G) \leq \chi'(G) \leq 2\Delta(G) - 1$ Vizing theorem (DW: 7.1.10) Vadin Vizing If G is a simple graph, then $\chi'(G) \leq \Delta(G) + 1$ $\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1$ i.e.,

Vizing Theorem

$$\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1$$

Summary: Edge Coloring of Graphs

- Definition: A proper k- edge coloring of a graph G=(V,E) is a mapping $f: E \to \{1,2,...,k\}$ such that adjacent edges receive distinct colors
- If the maximum degree is Δ then clearly $k \ge \Delta$
- Theorem (Vizing): Any graph has either Δ-coloring or (Δ+1)-coloring (for edges)
- Designing a time-table is a proper edge coloring of a graph
- Theorem: A bipartite graph admits ∆-coloring for edges
- Edges of the complete graph K_n admit Δ -coloring when n is even, and $(\Delta +1)$ -coloring when n is odd