

邻接表

- ❖ 如何避免邻接矩阵的空间浪费?
- ❖ 将邻接矩阵的各行组织为列表,只记录存在的边
- ❖ 等效于,每一顶点∨对应于列表:

$$L_v = \{ u \mid \langle v, u \rangle \in E \}$$

实例

❖ 4个顶点,5条弧:不必占用4 × 4 = 16个单元,但
还是占用了9个单元,另加4个表头

∞	A	В	С	D
A		9	3	5
В	9	7		2
С	3			
D	5	2		

空间复杂度

- 注意: 无向弧被重复存储

- 问题: 如何改进?

* 适用于稀疏图

较之邻接矩阵, 有极大改进

时间复杂度(1/2)

- ❖ 建立邻接表 (递增式构造) : Ø(n + e) //如何实现
- ❖ 枚举所有以顶点v为尾的弧: ∅(1 + deg(v)) //遍历v的邻接表
- **❖ 枚举 (无向图中) 顶点v的邻居: ∅(1 + deg(v))** //遍历v的邻接表
- ❖ 枚举所有以顶点v为头的弧: O(n + e) //遍历所有邻接表
 - **可改进至0(1 + deg(v))** //建立逆邻接表——为此,空间需增加多少?
- ❖ 计算顶点v的出度/入度: 增加度数记录域: Ø(n)附加空间
 - 增加/删除弧时更新度数: O(1)时间 //总体O(e)时间
 - 每次查询: ∅(1)时间!

时间复杂度 (2/2)

- ❖ 给定顶点u和v,判断是否<u,v> ∈ E
 - 有向图: 搜索u的邻接表, O(deg(u)) = O(e)
 - 无向图: 搜索u或v的邻接表, O(max(deg(u), deg(v))) = O(e)
 - "并行"搜索: O(2 × min(deg(u), deg(v))) = O(e)

能够达到邻接矩阵的0(1)吗?

- ❖ 散列! 如果装填因子选取得当 //保持兴趣
 - 弧的判定: expected-0(1), 与邻接矩阵 "相同"
 - 空间: O(n + e), 与邻接表相同
- ❖ 为何有时仍使用邻接矩阵? 仅仅因为实现简单? 不,有更多用处! 比如,可处理 Euclidean graph和intersection graph之类的隐式图 (implicitly-represented graphs)

取舍原则

- ❖ 空间/速度
- ❖ 顶点类型
 - bit
 - int
 - float
 - struct
 - class
 - . . .
- ❖ 弧类型 (方向 / 权值)
- ❖ 图类型 (稀疏 / 稠密)

	邻接矩阵	邻接表	
适用场合	经常检测边的存在 经常做边的插入/删除 图的规模固定 稠密图	经常计算顶点的度数 顶点数目不确定 经常做遍历 稀疏图	