Devoir d'informatique

Consignes

- Le devoir se fera sur copie double uniquement.
- Le numéro de chaque exercice et de chaque question devra être indiqué sur votre copie.
- Les indentations devront correctement figurer sur votre copie. Vous pourrez par exemple tracer une barre verticale.
- Pour chaque fonction vous donnerez au plus une ligne de commentaire permettant de spécifier votre fonction.
- Les fonctions ou les variables déclarées avant la question n sont disponibles à la question n.

1 Relevé d'une course d'Ussain Bolt

Une mesure de vitesse a été réalisée lors du 100 m réalisé par Ussain Bolt lors du des championnats du monde de Berlin en 2009.

Les vitesses mesurées sont stockées dans la liste les_v. La figure 1 représente le tracé des vitesses en fonction de leur indice dans la liste les_v.

FIGURE 1 – Tracé de la vitesse lors du 100 m d'Ussain Bolt

Questions préliminaires

Question 1 Écrire une fonction $conversion(v:float) \rightarrow float$ permettant de convertir une vitesse en $m s^{-1}$ en $km h^{-1}$.

Question 2 Écrire une fonction conversion_1(v:[float]) -> [float] permettant de convertir une liste de vitesses en $m \, s^{-1}$ en une liste de vitesses en $km \, h^{-1}$.

1

Une mesure a été faite toutes les 0,2 s.

Question 3 Écrire une fonction creer_les_t(n:int, pas:float)-> [float] permettant de renvoyer une liste de n valeurs séparées par un pas pas. Ainsi creer_les_t(3, 0.2) devra renvoyer [0,0.2,0.4].

Question 4 Donner une instruction (ou une suite d'instructions) permettant de créer la liste les_t associée aux vitesses mesurées les_v.

Question 5 En utilisant la bibliothèques matplotlib.pyplot et la fonction plot, donner les instructions permettant de tracer la vitesse en $km h^{-1}$ en fonction du temps.

Dans les questions suivantes on interdit l'utilisation de max, min, index.

Question 6 Écrire une fonction vitesse_max(les_v:[float]) -> float qui renvoie la vitesse maximale d'une liste de vitesses.

Question 7 Écrire une fonction indice_vitesse_max(les_v:[float]) -> int qui renvoie l'indice de la vitesse maximale d'une liste de vitesses.

Détermination de l'instant d'arrivée

On souhaite utiliser les vitesses mesurées pour déterminer l'instant auquel le coureur franchit la ligne d'arrivée. Pour cela on propose d'estimer les positions successives du coureur à l'aide de la méthode des trapèzes. On note $x_i = x(t_i)$ la valeur de la position estimée au i^e instant de mesure. La position initiale x_0 sera prise nulle.

FIGURE 2 – Intégration par la méthode des trapèzes

Question 8 Donner la relation entre x_{i+1} , x_i et $\int_{t}^{t_{i+1}} v(t)dt$.

Question 9 Donner l'expression approchée de $\int_{t_i}^{t_{i+1}} v(t)dt$ en fonction de v_i , v_{i+1} , t_i et t_{i+1} . En déduire une estimation de x_{i+1} en fonction de x_i , v_i , v_{i+1} , t_i et t_{i+1} .

Question 10 Écrire une fonction integre(les_v:[float],les_t:[float]) -> [float] permettant d'intégrer les vitesses et renvoyant la liste des positions estimées.

Question 11 Écrire une fonction chrono(les_x:[float],les_t:[float])-> float prenant comme argument la liste des positions et la liste des temps et permettant d'abord de déterminer l'indice pour lequel la distance de 100 m est dépassée. Cette fonction renverra alors le temps pour lequel les 100 m ont été atteints.

Question 12 Écrire une fonction transforme (les_t:[float], les_x:[float], les_v:[float]) -> [[float]/]] permettant de transformer les 3 listes en une liste de listes. Cette liste sera de la forme [[les_t[0],les_x[0],/ les_v[0]], [les_t[1],les_x[1],les_v[1]], ...].

2 Codage des nombres sur une carte Arduino

Les entrées analogiques de la carte permettent de coder des informations sur 10 bits.

Question 13 Combien de nombres entiers est-il possible de coder sur 10 bits?

Question 14 Si on souhaite coder des entiers (positifs), donner le plus petit et le plus grand entier codables.

Question 15 Si on souhaite coder des entiers relatifs, donner le plus petit et le plus grand entier codables.

Question 16 Convertir $(23)_{10}$ en binaire puis en hexadécimal.

Question 17 Le nombre (203)₁₆ permet de coder un entier relatif. Quel est-il?