Cláusula cerrada:

Cláusula sin variables; los argumentos de los símbolos de relación son términos cerrados.

Ejemplo: $C = P(a) \vee Q(a, b)$ a, b constantes

Definición:

S conjunto de cláusulas; P conjunto de términos cerrados. P(S) es el conjunto de todas las instancias de cláusulas de S donde las variables de S se sustituyen por términos de P.

Ejemplo:

$$S = \{ R(x) \lor T(x, y), \neg R(b), R(a) \lor \neg T(a, z) \}$$
 $P = \{ a, b \}$ a, b ctes.

$$P(S) = \{ R(a) \lor T(a, a), R(a) \lor T(a, b), R(b) \lor T(b, a), R(b) \lor T(b, b), \neg R(b), R(a) \lor \neg T(a, a), R(a) \lor \neg T(a, b) \}$$

Ciencias de la Computación II - Filminas de Clase – Facultad Cs. Exactas – UNCPBA - 2016

P-satisfacibilidad

Definición:

Sea S conjunto de cláusulas cerradas. S es proposicionalmente satisfacible o p-satisfacible si S es satisfacible como un conjunto de cláusulas proposicionales, donde las fórmulas atómicas cerradas $P(t_1, t_2, ..., t_n)$ que ocurren en S se tratan como variables proposicionales.

Eiemplo:

$$P(S) = \{ R(a) \lor T(a, a), R(a) \lor T(a, b), R(b) \lor T(b, a), R(b) \lor T(b, b), \neg R(b), R(a) \lor \neg T(a, a), R(a) \lor \neg T(a, b) \}$$

P(S) se puede escribir como un conj. de cláusulas proposicionales S'

$$p_1 = R(a)$$
 $p_2 = R(b)$ $p_3 = T(a, a)$ $p_4 = T(a, b)$ $p_5 = T(b, a)$ $p_6 = T(b, b)$

$$S' = \{p_1 \lor p_3, p_1 \lor p_4, p_2 \lor p_5, p_2 \lor p_6, \neg p_2, p_1 \lor \neg p_3, p_1 \lor \neg p_4\}$$

S' = {
$$p_1 \lor p_3$$
, $p_1 \lor p_4$, $p_2 \lor p_5$, $p_2 \lor p_6$, $\neg p_2$, $p_1 \lor \neg p_3$, $p_1 \lor \neg p_4$ }

Se puede comprobar que la valuación

$$v(p_1) = 1$$
 $v(p_2) = 0$ $v(p_3) = v(p_4) = 0$ $v(p_5) = v(p_6) = 1$

satisface a S'

Por lo tanto, como S' es satisfacible, S es p-satisfacible.

Ciencias de la Computación II - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2016

P-satisfacibilidad

Lema:

Sea S un conjunto de cláusulas cerradas. Entonces S es p-satisfacible sí y sólo sí S tiene un Modelo de Herbrand.

<u>Ejemplo</u>:

S = { R(x)
$$\vee$$
 T(x, y), \neg R(b), R(a) \vee \neg T(a, z) } a, b ctes.

$$U(S) = \{ a, b \}$$

$$B(S) = \{ R(a), R(b), T(a, a), T(a, b), T(b, a), T(b, b) \}$$

S es p-satisfacible entonces debe tener un Modelo de Herbrand

Sea
$$Y \subseteq B(S)$$
 tal que $M_y(H) \models S \leftrightarrow$

$$M_y(H) \models R(x) \lor T(x, y)$$
 y $M_y(H) \models \neg R(b)$ y $M_y(H) \models R(a) \lor \neg T(a, z)$

Ejemplo:

$$\overline{S} = \{ R(x) \lor T(x, y), \neg R(b), R(a) \lor \neg T(a, z) \}$$
 a, b ctes.

$$\Rightarrow M_{v}(H) \models \neg R(b) \iff R(b) \notin Y \qquad \checkmark (1)$$

$$\Rightarrow M_{y}(H) \models R(a) \lor \neg T(a, z) \leftrightarrow R(a) \in Y$$

$$(a, d) \notin Y \quad \forall d: d \in U(S) \leftrightarrow T(a, a), T(a, b) \notin Y$$

$$\Rightarrow$$
 Elegimos R(a) \in Y \checkmark (2)

$$\Rightarrow M_y(H) \models R(x) \lor T(x, y) \iff$$

$$M_y(H) \models (R(x) \lor T(x, y))[d_1, d_2] \qquad \forall d_1, d_2 : d_1, d_2 \in U(S)$$

Ciencias de la Computación II - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2016

P-satisfacibilidad

$$d_1=d_2=a$$

$$M_y(H) \models R(a) \lor T(a, a) \leftrightarrow M_y(H) \models R(a) \acute{o} M_y(H) \models T(a, a)$$

 $d_1 = a, d_2 = b$ $\checkmark por (2)$

$$M_y(H) \models R(a) \lor T(a, b) \leftrightarrow M_y(H) \models R(a) \acute{o} M_y(H) \models T(a, b)$$

$$d_1 = b, d_2 = a$$
 \checkmark por (2)

$$M_y(H) \models R(b) \lor T(b, a) \leftrightarrow M_y(H) \models R(b) \acute{o} M_y(H) \models T(b, a)$$

NO por (1)

$$d_1 = d_2 = b$$

$$M_y(H) \models R(b) \lor T(b, b) \leftrightarrow M_y(H) \models R(b) \acute{o} M_y(H) \models T(b, b)$$

NO por (1)

Podemos definir $Y = \{ R(a), T(b, a), T(b, b) \}$

S tiene un Modelo de Herbrand

 $Y = \{ R(a), T(b, a), T(b, b) \}$

Está asociado a la valuación definida en resolución por p-satisfacible

$$p_1 = R(a)$$
 $p_2 = R(b)$ $p_3 = T(a, a)$ $p_4 = T(a, b)$ $p_5 = T(b, a)$ $p_6 = T(b, b)$

$$v(p_1) = 1$$
 $v(p_2) = 0$ $v(p_3) = v(p_4) = 0$ $v(p_5) = v(p_6) = 1$

Ciencias de la Computación II - Filminas de Clase – Facultad Cs. Exactas – UNCPBA - 2016

P-satisfacibilidad

Teorema:

Sea S un conjunto de cláusulas (no necesariamente cerradas). Las siguientes condiciones son equivalentes:

- > S tiene Modelos de Herbrand
- > U(S)(S) es p-satisfacible (U(S)(S) denota el conjunto de todas las instancias cerradas de cláusulas de S sobre U(S))
- \triangleright Todo subconjunto finito S₀ ⊆ U(S)(S) es p-satisfacible

Teorema:

Sea S un conjunto de cláusulas. Las siguientes condiciones son equivalentes:

- > S es insatisfacible
- > S no tiene modelos
- > S no tiene Modelos de Herbrand
- >U(S)(S) es p-insatisfacible
- \triangleright Existe un subconjunto finito $S_0 \subseteq U(S)(S)$ que es p-insatisfacible
- ► Existe un subconjunto finito $S_0 \subseteq U(S)(S)$ tal que $S_0 \vdash_R \bot$

Ciencias de la Computación II - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2016

P-satisfacibilidad

Ejemplo:

$$S = \{ A(x, b) \lor A(f(a), y), \neg A(f(a), b), \neg A(f(a), f(a)) \}$$
 a, b constantes

$$U(S) = \{ a, b, f(a), f(b), f(f(a)), f(f(b)), ... \}$$

$$B(S) = \{ A(a, a), A(a, b), A(b, a), A(b, b), A(a, f(a)), A(f(a), a), A(b, f(a)), A(f(a), b), ..., A(a, f(b)), A(f(b), a), ... \}$$

$$U(S)(S) = \{A(a, b) \lor A(f(a), a), A(a, b) \lor A(f(a), b), A(b, b) \lor A(f(a), a), A(b, b) \lor A(f(a), b), ..., A(f(a), b) \lor A(f(a), b), \neg A(f(a), b), \neg A(f(a), f(a))\}$$

El subconjunto finito

 $S_0 = \{A(f(a), b), \neg A(f(a), b)\}\$ es claramente insatisfacible

S es insatisfacible

Ejemplo:

S = { A(x, b),
$$\neg$$
A(z, b) \vee B(y), \neg B(f(b))} b constante
U(S) = { b, f(b), f(f(b)), f(f(f(b))), ...}

$$B(S) = \{ A(b, b), A(b, f(b)), A(f(b), b), A(f(b), f(b)), ..., B(b), B(f(b)), B(f(f(b))), ... \}$$

Supongamos que existe un modelo $M_Y(H)$, tal que $M_Y(H) \models S$ Entonces $M_Y(H) \models A(x, b) \land (\neg A(z, b) \lor B(y)) \land \neg B(f(b))$

- Como $M_Y(H) \models \neg B(f(b))$ entonces $M_Y(H) \not\models B(y)$
- Como $M_Y(H) \models \neg A(z, b) \lor B(y)$ entonces debe ser $M_Y(H) \not\models A(z, b)$
- Pero entonces $M_Y(H) \neq A(x, b)$

S es insatisfacible

Ciencias de la Computación II - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2016

P-satisfacibilidad

$$S = \{ A(x, b), \neg A(z, b) \lor B(y), \neg B(f(b)) \}$$
 b constante

S es insatisfacible

Entonces

$$\neg S = \neg \ \forall x \ \forall z \ \forall y (A(x, b) \land (\neg A(z, b) \lor B(y)) \land \neg B(f(b)))$$
 Es válida

$$\neg S = \exists x \exists z \exists y (\neg A(x, b) \lor A(z, b) \land \neg B(y) \lor B(f(b)))$$
 Es válida

Otra forma para probar que S es insatisfacible:

Mostrar que existe $S_0 \subseteq U(S)(S)$ tal que S_0 es insatisfacible

$$S_0 = \{ A(b, b), \neg A(b, b) \lor B(f(b)), \neg B(f(b)) \}$$