A Nondeterministic Dynamic Programming Model

1 Nondeterministic Dynamic Programming

A finite nondeterministic dynamic programming is defined by five-tuple:

$$\mathcal{N} = (N, X, \{U, U(\cdot)\}, T, \{r, k, \beta\}),$$

where the definitions of each component are as follows.

- 1. $N(\geq 2)$ is an integer which means the total number of stage. The subscript n ranges $\{0, 1, \ldots, N\}$. It specifies the current number of stage.
- 2. X is a nonempty finite set which denotes a state space. Its elements $x_n \in X$ are called nth states. x_0 is an initial state and x_N is a terminal state.
- 3. U is a nonempty finite set which denotes an action space. Furthermore we also denote by U a mapping from X to 2^U and U(x) is the set of all feasible actions for a state $x \in X$, where 2^Y denotes the following power set:

$$2^Y = \{A | A \subset Y, \ A \neq \emptyset\}.$$

After this, let $G_r(U)$ denote the graph of a mapping $U(\cdot)$:

$$G_r(U) := \{(x, u) \mid u \in U(x), x \in X\} \subset X \times U.$$

- 4. $T: G_r(U) \to 2^X$ is a nondeterministic transition law. For each pair of a state and an action $(x,u) \in G_r(U)$, T(x,u) means the set of all states appeared in the next stage. If an action u_n is chosen for a current state x_n , each $x_{n+1} \in T(x,u)$ will become a next state.
- 5. $r: G_r(U) \to R^1$ is a reward function, $k: X \to R^1$ is a terminal reward function and $\beta: G_r(T) \to [0,\infty)$ is a weight function. If an action u_n is chosen for a current state x_n , we get a reward $r(x_n, u_n)$ and each next state x_{n+1} will be appeared with a corresponding weight $\beta(x_n, u_n, x_{n+1})$ (≥ 0). For a terminal state x_N we get a terminal reward $k(x_N)$.

A mapping $\pi_n: X \to U$ (n = 0, 1, ..., N - 1) is called *nth decision function* if $\pi_n(x) \in U(x)$ for any $x \in X$. A sequence of decision functions:

$$\pi = \{\pi_0, \pi_1, \dots \pi_{N-1}\}\$$

is called a Markov policy. Let $\Pi(=\Pi(0))$ denotes the set of all Markov policies, which is called Markov policy class. If a decision-maker takes a Markov policy $\pi = \{\pi_0, \pi_1, \dots \pi_{N-1}\}$, he chooses $\pi_n(x_n) \in U$ for state x_n at nth stage. Then total weighted value is given by

$$V(x_0; \pi) := r_0 + \sum_{x_1 \in X(1)} \beta_0 r_1 + \sum_{(x_1, x_2) \in X(2)} \beta_0 \beta_1 r_2 + \dots + \sum_{(x_1, \dots, x_{N-1}) \in X(N-1)} \beta_0 \beta_1 \dots \beta_{N-2} r_{N-1}$$

$$+ \sum_{(x_1, \dots, x_N) \in X(N)} \beta_0 \beta_1 \dots \beta_{N-1} k, \quad x_0 \in X, \ \pi \in \Pi$$
 (1)

where

$$r_n = r(x_n, \pi_n(x_n)), \quad \beta_n = \beta(x_n, \pi_n(x_n), x_{n+1}), \quad k = k(x_N),$$

 $X(m) = \{(x_1, \dots, x_m) \in X \times \dots \times X \mid x_{l+1} \in T(x_l, \pi_l(x_l)) \mid 0 \le l \le m-1 \}.$

Thus the $nondeterministic\ dynamic\ programming\ problem$ is formulated as a maximization problem :

$$P_0(x_0)$$
 Maximize $V(x_0; \pi)$ subject to $\pi \in \Pi$.

The problem $P_0(x_0)$ means an N-stage decision process starting at 0th stage with an initial state x_0 . Let $v_0(x_0)$ be the maximum value of $P_0(x_0)$. A policy π^* is called *optimal* if

$$V(x_0; \pi^*) \ge V(x_0; \pi)$$
 $\forall \pi \in \Pi, \ \forall x_0 \in X.$

Similarly, we consider the (N-n)-stage process with a starting state $x_n (\in X)$ on nth stage. The Markov policy class for this process is

$$\Pi(n) = \{ \pi = \{ \pi_n, \pi_{n+1}, \dots \pi_{N-1} \} | \pi_l : X \to U, \ \pi_l(x) \in U(x), \ n \le l \le N-1 \}.$$

Thus weighted value is given by

$$V_{n}(x_{n};\pi) := r_{n} + \sum_{x_{n} \in X(n)} \beta_{n} r_{n+1} + \sum_{(x_{n}, x_{n+1}) \in X(n+1)} \beta_{n} \beta_{n+1} r_{n+1} + \cdots + \sum_{(x_{n}, \dots, x_{N}) \in X(N)} \beta_{n} \beta_{n+1} \cdots \beta_{N-1} k, \quad x_{n} \in X, \ \pi \in \Pi(n)$$

where

$$X(m) = \{(x_n, \dots, x_m) \in X \times \dots \times X \mid x_{l+1} \in T(x_l, \pi_l(x_l)), n \le l \le m-1 \}.$$

Then for n = 1, 2, ..., N - 1 the *imbedded problem* is defined by

$$P_n(x_n)$$
 Maximize $V(x_n; \pi)$ subject to $\pi \in \Pi(n)$,

and let $v_n(x_n)$ be the maximum value of $P_n(x_n)$. For n = N let $v_N(x_N) := k(x_N)$.

Then we have the following recursive equation:

Theorem 1 (nondeterministic)

$$\begin{array}{rcl} v_N(x) & = & k(x) & x \in X, \\ \\ v_n(x) & = & \max_{u \in U(x)} \left[r(x,u) + \sum_{y \in T(x,u)} \beta(x,u,y) v_{n+1}(y) \right] & x \in X, \ 0 \le n \le N-1. \end{array}$$

Let $\pi_n^*(x) \in U(x)$ be a point which attains $v_n(x)$. Then we get the optimal Markov policy $\pi^* = \{\pi_0^*, \pi_1^*, \dots \pi_{N-1}^*\}$ in Markov class Π .

The following results are for other transition systems.

Corollary 1 (stochastic) In case $\beta(x, u, y) = \beta \cdot p(y|x, u)$, $\beta \geq 0$ and p = p(y|x, u) is a Markov transition law, $P_0(x_0)$ is a stochastic dynamic programming problem. Then we have the following recursive equation:

$$v_{N}(x) = k(x) x \in X,$$

$$v_{n}(x) = \max_{u \in U(x)} \left[r(x, u) + \beta \sum_{y \in T(x, u)} v_{n+1}(y) p(y|x, u) \right] x \in X, \ 0 \le n \le N - 1.$$

Corollary 2 (deterministic) In case T(x, u) is a singleton, $P_0(x_0)$ is a deterministic dynamic programming problem. Then we have the following recursive equation:

$$\begin{array}{lcl} v_N(x) & = & k(x) & x \in X, \\ v_n(x) & = & \max_{u \in U(x)} [r(x,u) + \beta(x,u,T(x,u))v_{n+1}(T(x,u))] & x \in X, \ 0 \le n \le N-1, \end{array}$$

where $\beta(x, u, \{y\}), v_n(\{y\})$ are equated with $\beta(x, u, y), v_n(y)$, respectively.

Figure 1:

2 Splitting Problem

In this section we formulate a splitting problem as a nondeterministic dynamic programming problem. An outline of the splitting problem is as follows.

Let S be an initial sequence $\{1, 2, ..., L\}$. We split S into two parts, both of which consist of consecutive numbers. The *split-point* belongs to both the parts. It costs $c_S(i, k, j)$ to split $\{i, i + 1, ..., j\}$ into $\{i, i + 1, ..., k\}$ and $\{k, k + 1, ..., j\}$. We call c_S a *splitting cost function*. We continue splitting until any split part becomes a set of consecutive two numbers. It takes us $c_T(i, i + 1)$ to reach terminal state $\{i, i + 1\}$. We call c_T a *terminal cost function*. The problem is to find a sequence of splittings which minimizes the total sum of all splitting costs and of all terminal costs.

Example 1 Let $S = \{1, 2, 3, 4\}$ be an initial sequence. First we choose a split-point $k_1 = 2$. S is split into $\{1, 2\}$ and $\{2, 3, 4\}$ with splitting cost $c_S(1, 2, 4)$. Since $\{1, 2\}$ is a set of consecutive two numbers, it takes us terminal cost $c_T(1, 2)$. Next we choose a split-point $k_2 = 3$ for $\{2, 3, 4\}$. Then it is split into $\{2, 3\}$ and $\{3, 4\}$ with splitting cost $c_S(2, 3, 4)$. Finally it takes us terminal costs $c_T(2, 3)$ and $c_T(3, 4)$. Thus the total sum of costs for the strategy k_1, k_2 is

$$c_S(1,2,4) + c_S(2,3,4) + c_T(1,2) + c_T(2,3) + c_T(3,4)$$

(see Fig. 1).

We consider the following nondeterministic dynamic programming problem:

$$\mathcal{N} = (L-2, X, \{U, U(\cdot)\}, T, \{r, k, \beta\}),$$

where

$$X = \{\{i, i+1, \dots, j\} \mid 1 \le i < j \le L\}$$

$$U = \{2, 3, \dots, L-1\}$$

$$U(x) = \{i+1, i+2, \dots, j-1\}, \quad x = \{i, i+1, \dots, j\} \in X$$

$$T(x,u) = \{\{i, \dots, u\}, \{u, \dots, j\}\}, \quad x = \{i, i+1, \dots, j\} \in X, \quad u \in U(x)$$

$$\beta(x, u, y) = \begin{cases} 0 & x = \{i, i+1\} \\ 1 & \text{otherwise} \end{cases}, \quad (x, u, y) \in G_r(T).$$

$$r(x, u) = \begin{cases} c_T(i, i+1) & i+1 = j \\ c_S(i, k, j) & i+1 < j \end{cases}, \quad (x, u) = (\{i, \dots, j\}, k) \in G_r(U)$$

Furthermore let $v_0(x) = \cdots = v_{L-2}(x) = v(x)$, $x \in X$. Then the nondeterministic dynamic programming problem \mathcal{N} expresses the splitting problem with an initial sequence (state) $x_0 = \{1, 2, \dots, L\}$. The problem in Example 1 is interpreted as $P_0(x_0)$ with $x_0 = S = \{1, 2, 3, 4\}$ and N = 2.

We give an application of the splitting problem in the next section.

3 Chained Matrix Products

We consider the problem on chained matrix products (see tutOR, http://www. tutor.ms.unimelb.edu.au/). When we compute the product of three matrices A, B and C, the result is independent of the product order, that is A(BC) = (AB)C. On the other hand the number of scalar products required for computing the product depends on the product order.

Example 2 Let A be $(r_A \times c_A)$ -matrix, B $(r_B \times c_B)$ -matrix and C $(r_C \times c_C)$ -matrix $(c_A = r_B, c_B = r_C)$. The number of scalar products required for A(BC) is not equal to that for (AB)C:

$$c_B \times (r_B \times c_C) + c_A \times (r_A \times c_C) \neq c_A \times (r_A \times c_B) + c_B \times (r_A \times c_C).$$

The purpose is to minimize the number of scalar products. We call this problem the chained matrix products problem.

We formulate the chained matrix products problem as a splitting problem defined in the previous section. Suppose that we have M matrices A_1, A_2, \ldots, A_M to multiply and each matrix A_n has m_i rows and m_{i+1} columns. Then the splitting problem with

$$L = M + 1,$$

 $c_S(i, k, j) = m_i m_k m_j,$
 $c_T(i, i + 1) = 0$

denotes the chained matrix products problem. Hence we can get the optimal solutions by using Theorem 1.

Example 3 Let M = 4, $m_1 = 3$, $m_2 = 10$, $m_3 = 5$, $m_4 = 4$ and $m_5 = 16$. For example, $A_1(A_2(A_3A_4))$ involves

$$m_3 m_4 m_5 + m_2 m_3 m_5 + m_1 m_2 m_5 = 5 \cdot 4 \cdot 16 + 10 \cdot 5 \cdot 16 + 3 \cdot 10 \cdot 16 = 1600$$

scalar products. In the following, the recursive equation in Theorem 1 is applied to this problem. First, since $c_T(i, i + 1) = 0$, $U(x) = \phi$ for $x = \{i, i + 1\} \in X$,

$$v(x) = 0, \quad x = \{i, i+1\} \in X.$$

Next, since $r(\{i, j\}, k) = c_S(i, k, j) = m_i m_k m_j$ for $x = \{i, i + 1, ..., j\} \in X$ (i + 1 < j),

$$v(\{1,2,3\}) = r(\{1,2,3\},2) + (v(\{1,2\}) + v(\{2,3\}))$$

$$= m_1 m_2 m_3 + (0+0) = 150, \qquad \pi^*(\{1,2,3\}) = 2,$$

$$v(\{2,3,4\}) = r(\{2,3,4\},3) + (v(\{2,3\}) + v(\{3,4\}))$$

$$= m_2 m_3 m_4 + (0+0) = 200, \qquad \pi^*(\{2,3,4\}) = 3,$$

$$v(\{3,4,5\}) = r(\{3,4,5\},4) + (v(\{3,4\}) + v(\{4,5\}))$$

$$= m_3 m_4 m_5 + (0+0) = 320, \qquad \pi^*(\{3,4,5\}) = 4,$$

and

$$v(\{1,2,3,4\}) = \min\{r(\{1,2,3,4\},2) + (v(\{1,2\}) + v(\{2,3,4\})), \\ r(\{1,2,3,4\},3) + (v(\{1,2,3\}) + v(\{3,4\}))\} \\ = \min\{m_1m_2m_4 + (0+200), m_1m_3m_4 + (150+0)\} \\ = \min\{120+200,60+150\} = \min\{320,210\} \\ = 210, \qquad \pi^*(\{1,2,3,4\}) = 3,$$

$$v(\{2,3,4,5\}) = \min\{r(\{2,3,4,5\},3) + (v(\{2,3\}) + v(\{3,4,5\})), \\ r(\{2,3,4,5\},4) + (v(\{2,3,4\}) + v(\{4,5\}))\} \\ = \min\{1120,840\} = 840, \qquad \pi^*(\{2,3,4,5\}) = 4.$$

Finally

$$\begin{array}{lll} v(\{1,2,3,4,5\}) &=& \min\{r(\{1,2,3,4,5\},2)+(v(\{1,2\})+v(\{2,3,4,5\})),\\ && r(\{1,2,3,4,5\},3)+(v(\{1,2,3\})+v(\{3,4,5\})),\\ && r(\{1,2,3,4,5\},4)+(v(\{1,2,3,4\})+v(\{4,5\}))\}\\ &=& \min\{1320,710,402\}=402, & \pi^*(\{1,2,3,4,5\})=4. \end{array}$$

Thus we get the minimum of the number of scalar products $v(\{1, 2, 3, 4, 5\}) = 402$. The optimal sequence of splittings $\{k_1, k_2, k_3\}$ is given by

$$k_1 = \pi^*(\{1, 2, 3, 4, 5\}) = 4, \ k_2 = \pi^*(\{1, 2, 3, 4\}) = 3, \ k_3 = \pi^*(\{1, 2, 3\}) = 2,$$

which means that the optimal product order is $((A_1A_2)A_3)A_4$.