บทที่ 9-1 Sorting

บทเรียนย่อย

- 9.1 Sorting Concept
- 9.2 Insertion Sort Algorithm
- 9.3 Insertion Sort Implementation
- 9.4 Selection Sort Algorithm
- 9.5 Selection Sort Implementation
- 9.6 Bubble Sort Algorithm
- 9.7 Bubble Sort Implementation

วัตถุประสงค์

- นิสิตมีความรู้ และความเข้าใจเกี่ยวกับแนวคิดในการเรียงลำดับ ข้อมูลรูปแบบต่าง ๆ
- นิสิตสามารถเขียนโปรแกรมเพื่อดำเนินการตามแนวคิดในการ เรียงลำดับข้อมูลรูปแบบต่าง ๆ
- นิสิตสามารถนำแนวคิดในการเรียงลำดับข้อมูลมาประยุกต์ใช้งานใน การพัฒนาโปรแกรม

บทเรียนย่อย

- 9.1 Sorting Concept
- 9.2 Insertion Sort Algorithm
- 9.3 Insertion Sort Implementation
- 9.4 Selection Sort Algorithm
- 9.5 Selection Sort Implementation
- 9.6 Bubble Sort Algorithm
- 9.7 Bubble Sort Implementation

9.1 Sorting Concept

Sorting (การเรียงลำดับข้อมูล) คือ การเรียงลำดับข้อมูลที่จัดเก็บใน หน่วยความจำของคอมพิวเตอร์ที่เป็นลักษณะโครงสร้างข้อมูลแบบ Array (อาร์เรย์) และ Pointer (พอตเตอร์) โดยอาจจะเรียงลำดับจากน้อยไปมาก หรือจากมากไปน้อยก็ได้ เช่น การเรียงข้อมูลนักศึกษาจากรหัสนักศึกษาโดย เรียงลำดับจากน้อยไปมาก เป็นต้น

13	5	30	24	19
		—		
5	13	19	24	30

4

Sort Algorithms (รูปแบบการเรียงลำดับข้อมูล)

รูปแบบการเรียงลำดับข้อมูลที่ได้รับความนิยม มีดังนี้

- Insertion Sort (การเรียงลำดับแบบแทรก)
- Selection Sort (การเรียงลำดับแบบเลือก)
- Bubble Sort (การเรียงลำดับแบบบับเบิล)
- Merge Sort (การเรียงลำดับแบบผสาน)
- Shell Sort (การเรียงลำดับแบบเชลล์)
- Quick Sort (การเรียงลำดับแบบเร็ว)

บทเรียนย่อย

- 9.1 Sorting Concept
- 9.2 Insertion Sort Algorithm
- 9.3 Insertion Sort Implementation
- 9.4 Selection Sort Algorithm
- 9.5 Selection Sort Implementation
- 9.6 Bubble Sort Algorithm
- 9.7 Bubble Sort Implementation

9.2 Insertion Sort Algorithm

Insertion Sort (การเรียงลำดับแบบแทรก) เป็นการเรียงลำดับแบบ ง่าย โดยอาศัยเทคนิคมาจากการจัดเรียงไพ่ในมือของผู้เล่น คือ ผู้เล่นจะทำ การหยิบไพ่ในกองมาทีละใบ โดยจะเริ่มเปรียบเทียบเมื่อหยิบไพ่ใบที่ 2 ไป จนถึงใบสุดท้าย ถ้าไพ่ใบที่หยิบขึ้นมาน้อยกว่าใบที่อยู่ก่อนหน้าจะนำไปแทรก ในตำแหน่งที่ถูกต้อง ซึ่งทำลักษณะนี้ไปเรื่อย ๆ จนไพ่หมดกองจะได้ไพ่ที่ เรียงลำดับในมืออย่างถูกต้อง

ลักษณะการดำเนินการของ Insertion Sort

ลักษณะการดำเนินการของ Insertion Sort จะมีการแบ่งส่วนข้อมูล ออกเป็น 2 ส่วน โดยส่วนแรก คือ ส่วนที่อยู่ด้านหน้าของตำแหน่งที่ i (ตั้งแต่ ข้อมูลตัวแรก ถึง ข้อมูลตัวที่ i - 1) ซึ่งเป็นข้อมูลที่ถูกเรียงลำดับแล้ว และอีก ส่วนคือข้อมูลตั้งแต่ตำแหน่งที่ i จนถึงข้อมูลตัวสุดท้าย ซึ่งเป็นข้อมูลที่ยังไม่ ถูกเรียงลำดับ โดยการจัดเรียงจะนำข้อมูลในตำแหน่งที่ i ไปแทรกในส่วนแรก เพื่อให้ข้อมูลเรียงลำดับอย่างถูกต้อง

ลักษณะการดำเนินการของ Insertion Sort [2]

ลักษณะการดำเนินการของ Insertion Sort [3]

ลักษณะการดำเนินการของ Insertion Sort [4]

ผลลัพธ์

Time :: Best: O(n) Worst: O(n²) Average: O(n²)

บทเรียนย่อย

- 9.1 Sorting Concept
- 9.2 Insertion Sort Algorithm
- 9.3 Insertion Sort Implementation
- 9.4 Selection Sort Algorithm
- 9.5 Selection Sort Implementation
- 9.6 Bubble Sort Algorithm
- 9.7 Bubble Sort Implementation

9.3 Insertion Sort Implementation

Algorithm: Insertion Sort

Pre : data[] (int) , size (int)

Post: ข้อมูลถูกจัดเรียงลำดับจากน้อยไปมาก

- 1. เริ่มต้น
- 2. ประกาศตัวแปรชื่อ temp , i และ j เป็นเลขจำนวนเต็ม
- 3. ทำซ้ำ ตั้งแต่ i = 1 จนมีค่าเท่ากับ size 1
 - 3.1 กำหนดให้ temp มีค่าเท่ากับ data ตำแหน่งที่ i
 - 3.2 กำหนดให้ j มีค่าเท่ากับ i 1

•••••

9.3 Insertion Sort Implementation [2]

•••••

- 3.3 ทำซ้ำจนกว่า j มีค่าน้อยกว่า 0 หรือ data ตำแหน่งที่ j จะมีค่าไม่มากกว่า temp
 - 3.3.1 กำหนดให้ data ตำแหน่งที่ j + 1 มีค่า เท่ากับ data ตำแหน่งที่ j
 - 3.3.2 กำหนดให้ j มีค่าเท่ากับ j 1
- 3.4 กำหนดให้ data ตำแหน่งที่ j + 1 มีค่าเท่ากับ temp
- 4. จบการทำงาน

*** ผลลัพธ์ *******

บทเรียนย่อย

- 9.1 Sorting Concept
- 9.2 Insertion Sort Algorithm
- 9.3 Insertion Sort Implementation
- 9.4 Selection Sort Algorithm
- 9.5 Selection Sort Implementation
- 9.6 Bubble Sort Algorithm
- 9.7 Bubble Sort Implementation

9.4 Selection Sort Algorithm

Selection Sort (การเรียงลำดับแบบเลือก) เป็นการเรียงลำดับแบบ ง่าย โดยเริ่มจากการหาตำแหน่งข้อมูลที่มีค่าน้อยที่สุดในกลุ่ม โดยเริ่มตั้งแต่ ข้อมูลตัวแรกจนถึงข้อมูลตัวที่ n แล้วนำมาสลับกับข้อมูลตัวแรก ซึ่งจะทำให้ ได้ข้อมูลตัวแรกที่มีค่าน้อยที่สุด แล้วไปหาตำแหน่งข้อมูลที่มีค่าน้อยที่สุดใน กลุ่มตั้งแต่ข้อมูลตัวที่ 2 ถึงข้อมูลตัวที่ n เพื่อนำมาสลับกับข้อมูลในตัวที่ 2 และดำเนินการในลักษณะนี้ จนกระทั่งสลับข้อมูลตัวที่ n – 1 จึงจะได้ข้อมูลที่ จัดเรียงลำดับที่ถูกต้อง

ลักษณะการดำเนินการของ Selection Sort

ลักษณะการดำเนินการของ Selection Sort [2]

ลักษณะการดำเนินการของ Selection Sort [3]

ผลลัพธ์

Time :: Best: $O(n^2)$ Worst: $O(n^2)$ Average: $O(n^2)$

บทเรียนย่อย

- 9.1 Sorting Concept
- 9.2 Insertion Sort Algorithm
- 9.3 Insertion Sort Implementation
- 9.4 Selection Sort Algorithm
- 9.5 Selection Sort Implementation
- 9.6 Bubble Sort Algorithm
- 9.7 Bubble Sort Implementation

9.5 Selection Sort Implementation

Algorithm: Selection Sort

Pre : data[] (int) , size (int)

Post: ข้อมูลถูกจัดเรียงลำดับจากน้อยไปมาก

- 1. เริ่มต้น
- 2. ประกาศตัวแปรชื่อ temp, min, i และ j เป็นเลขจำนวนเต็ม
- 3. ทำซ้ำ ตั้งแต่ i = 0 จนมีค่าเท่ากับ size 2
 - 3.1 กำหนดให้ min มีค่าเท่ากับ i
 - 3.2 ทำซ้ำ ตั้งแต่ j = i + 1 จนมีค่าเท่ากับ size 1

•••••

9.5 Selection Sort Implementation [2]

•••••

3.2.1 ถ้า ข้อมูลตำแหน่งที่ j มีค่าน้อยกว่าข้อมูล ตำแหน่งที่ min

3.2.1.1 หากเป็นจริง กำหนดให้ min มีค่า เท่ากับ j

- 3.3 กำหนดให้ temp มีค่าเท่ากับ data ตำแหน่งที่ i
- 3.4 กำหนดให้ data ตำแหน่งที่ i มีค่าเท่ากับ data ตำแหน่งที่ min
- 3.5 กำหนดให้ data ตำแหน่งที่ min มีค่าเท่ากับ temp
- 4. จบการทำงาน

Data	13	5	30	24	19
temp = ?	min, i = 0	j = 1	2	3	4
Data	13	5	30	24	19
temp = ?	i = 0	min, j = 1	2 	3	4
Data	13	5	30	24	19
temp = ?	i = 0	min = 1	2	3	j = 4

การทำงานของ Selection Sort รอบที่ i มีค่าเท่ากับ 0 [2]

การทำงานของ Selection Sort รอบที่ i มีค่าเท่ากับ 0 [3]

Data	5	13	30	24	19
temp = 1	3 i = 0	min = 1	2	3	j = 4

บทเรียนย่อย

- 9.1 Sorting Concept
- 9.2 Insertion Sort Algorithm
- 9.3 Insertion Sort Implementation
- 9.4 Selection Sort Algorithm
- 9.5 Selection Sort Implementation
- 9.6 Bubble Sort Algorithm
- 9.7 Bubble Sort Implementation

9.6 Bubble Sort Algorithm

Bubble Sort (การเรียงลำดับแบบบับเบิล) เป็นการเรียงลำดับแบบ การเปรียบเทียบเป็นคู่ ๆ โดยถ้าข้อมูลคู่นั้นยังเรียงลำดับไม่ถูกต้องให้ทำการ สลับค่ากัน ซึ่งการเปรียบเทียบอาจจะเริ่มจากข้อมูลคู่แรกไปคู่สุดท้ายที่ จัดเรียงแล้ว หรือเริ่มจากข้อมูลคู่สุดท้ายไปคู่แรกที่จัดเรียงแล้ว จากนั้นจะไป เริ่มต้นการเปรียบเทียบแบบเดียวกันอีกจนกระทั่งจัดเรียงลำดับเรียบร้อยทุก ตำแหน่ง

Time :: Best: $O(n^2)$ Worst: $O(n^2)$ Average: $O(n^2)$

บทเรียนย่อย

- 9.1 Sorting Concept
- 9.2 Insertion Sort Algorithm
- 9.3 Insertion Sort Implementation
- 9.4 Selection Sort Algorithm
- 9.5 Selection Sort Implementation
- 9.6 Bubble Sort Algorithm
- 9.7 Bubble Sort Implementation

9.5 Bubble Sort Implementation

Algorithm: Bubble Sort

Pre : data[] (int) , size (int)

Post: ข้อมูลถูกจัดเรียงลำดับจากน้อยไปมาก

- 1. เริ่มต้น
- 2. ประกาศตัวแปรชื่อ temp, i และ j เป็นเลขจำนวนเต็ม
- 3. ทำซ้ำ ตั้งแต่ i = 1 จนมีค่าเท่ากับ size 1
 - 3.1 ทำซ้ำ ตั้งแต่ j = size 1 จนมีค่าลดลงเท่ากับ i
 - 3.1.1 ถ้า data ตำแหน่งที่ j มีค่าน้อยกว่า data ตำแหน่งที่ j 1

•••••

9.5 Bubble Sort Implementation [2]

Algorithm: Bubble Sort

Pre : data[] (int) , size (int)

Post: ข้อมูลถูกจัดเรียงลำดับจากน้อยไปมาก

•••••

- 3.1.1.1 กำหนดให้ temp มีค่าเท่ากับ data ตำแหน่งที่ j
- 3.1.1.2 กำหนดให้ data ตำแหน่งที่ j มีค่าเท่ากับ data ตำแหน่งที่ j 1
- 3.1.1.3 กำหนดให้ data ตำแหน่งที่ j -1 มีค่าเท่ากับ temp
- 4. จบการทำงาน

แบบฝึกหัดที่ 1

- 1. สร้างคลาสชื่อ SortingArray เพื่อเรียงลำดับข้อมูลเลขจำนวนเต็มจากน้อยไป มาก โดยมีความสามารถในการจัดการข้อมูล ดังนี้
 - สามารถสุ่มข้อมูลเลขจำนวนเต็มใส่อาร์เรย์
 - สามารถจัดเรียงลำดับข้อมูลแบบ Insertion Sort
 - สามารถจัดเรียงลำดับข้อมูลแบบ Selection Sort
 - สามารถจัดเรียงลำดับข้อมูลแบบ Bubble Sort
 - สามารถแสดงข้อมูลทั้งหมด
- 2. นำคลาสที่สร้างขึ้นไปทดสอบการใช้งานในฟังก์ชัน main โดยทำการสร้างเป็น ลักษณะเมนูสำหรับทดลองทุกความสามารถที่มีในคลาส SortingArray ของตนเอง

แบบฝึกหัดที่ 2

- 1. นำคลาสที่ชื่อ DbLinkedList ใน example04 มาปรับปรุงเพื่อเพิ่ม ความสามารถในการเรียงลำดับข้อมูลเลขจำนวนเต็มจากน้อยไปมาก โดยเลือก รูปแบบการเรียงลำดับข้อมูล 1 แบบ จากรายการดังนี้
 - จัดเรียงลำดับข้อมูลแบบ Insertion Sort
 - จัดเรียงลำดับข้อมูลแบบ Selection Sort
 - จัดเรียงลำดับข้อมูลแบบ Bubble Sort
- 2. นำคลาสที่สร้างขึ้นไปทดสอบการใช้งานในฟังก์ชัน main โดยทำการสร้างเป็น ลักษณะเมนูสำหรับทดลองทุกความสามารถที่มีในคลาส DbLinkedList ของ ตนเอง