EngTrans1 - Cap4

Yuri Becker February 14, 2017

Exercício 4.3

Assumindo descida e: g=10 e f=0.3

Fórmula aproximada

Caso rampa 3%, 6%, 12% e 24%

$$a = g(f \pm 0.01)$$

$$a = 10(0.3 - 0.01) = 2.9$$

Fórmula real

Caso rampa 3%

$$a = g(f \cos\theta \pm sen\theta)$$

$$a = 10(0.3 \cos(3) - sen(3))$$

$$a = 10(0.3 0.9986295 - 0.052336)$$

$$a = 2.472529$$

Caso rampa 6%

$$a = g(f \cos\theta \pm sen\theta)$$

$$a = 10(0.3 \cos(6) - sen(6))$$

$$a = 10(0.3 0.9945219 - 0.1045285)$$

$$a = 1.9382811$$

Caso rampa 12%

$$a = g(f \cos\theta \pm sen\theta)$$

$$a = 10(0.3 \cos(12) - sen(12))$$

$$a = 10(0.3 \ 0.9781476 - 0.2079117)$$

$$a = 0.8553259$$

Caso rampa 24%

$$a = g(f \cos\theta \pm sen\theta)$$

$$a = 10(0.3 \cos(24) - sen(24))$$

$$a = 10(0.3 \ 0.9135455 - 0.4067366)$$

$$a = -1.3267301$$

Diferenças

Rampa	Aproximada	Real	Diferença
3	2.9	2.47	0.43
6	2.9	1.94	0.96
12	2.9	0.86	2.04
24	2.9	-1.33	4.23

Exercício 4.4

4.4 A)

Nivel de freagem					М	23300	
Estagio	0	1	2	3	4	G	228806
Ff1	0	7500	17000	24000	33000	bf	2.72
Ff2	0	28000	80000	100000	120000	h	1.31
Calculo da desaceleracao					b	3.05	
a (m/s2)	0	1.523605	4.16309	5.321888	6.566524		
Calculo da forca normal							
Fz1	24756.06	40003.6	66418.35	78015.08	90470.81		
Fz2	204049.9	188802.4	162387.6	150790.9	138335.2		
Calculo dos coeficientes de atrito minimos							
f1	0	0.187483	0.255953	0.307633	0.364759		
f2	0	0.148303	0.492648	0.66317	0.867458		

Figure 1: 4.4a

Coeficiente minimo = 0.87

4.4 B)

Distancia de frenagem ASHTO

$$f = 0.31 e v = 80$$
:

$$D = \frac{V^2}{254(f)} = \frac{80^2}{254 \cdot 0.31} = 81.2801626$$

Desaceleracao maxima:

Atrito de 0.31 encontra-se entre os estagios 1 e 2, portanto utilizar aceleracao de 3:

$$d = \frac{V^2}{2a} = \frac{(80/3.6)^2}{2 \cdot 3} = 82.3045267$$

Eficiencia

$$nf = \frac{a}{g \cdot f} = \frac{3}{9.81 \cdot 0.31} = 0.9864852$$

4.4 C)

Ex4.4 c							
Nivel de freagem					М	8200	
Estagio	0	1	2	3	4	G	80524
Ff1	0	7500	17000	24000	33000	bf	2.01
Ff2	0	28000	80000	100000	120000	h	1.72
	Calculo da desaceleracao					b	3.05
a (m/s2)	0	4.329268	11.82927	15.12195	18.65854		
Calculo da forca normal							
Fz1	27457.36	47477.04	82159	97385.23	113739.3		
Fz2	53066.64	33046.96	-1635	-16861.2	-33215.3		
Calculo dos coeficientes de atrito minimos							
f1	0	0.157971	0.206916	0.246444	0.290137		
f2	0	0.847279	-48.9296	-5.93076	-3.61279		

Figure 2: 4.4c

Pode-se perceber que o para freagens acima do estagio 1 ocorre o levantamento da parte traseira. Por isso a desaceleração máxima será de 4.33~m/s2 assumindo que o solo tem atrito > que 0.85.

Eficiencia

$$nf = \frac{4.33}{9.81 \cdot 0.85} = 0.538276$$

Exercício 4.5

$$A_{c,lim} = 0.265g$$

a)

Pela tabela, 90km/h -> f=0.13

$$R_{min} = \frac{V^2}{127(e+f)}$$

$$250 = \frac{8100}{127(e+0.13)}$$

$$e = 12.511811\%$$

b)

Limite lateral de 0.265g:

A maior velocidade sem tombamento:

$$v = \sqrt{a_c \cdot R} = \sqrt{0.265 \cdot 9.81 \cdot 125} = 18.0265429 m/s$$

$$18.0265429m/s = 64.8955545km/h$$

O \boldsymbol{a}_c limite de tombamento, caso ultrapassar esse valor, ocorre o tombamento:

$$a_c = g(e+f) = g(0.052+f)$$

fé valor tabelado e para v = 60 km/h -> f = 0.15:

$$a_c = g(e+f) = g(0.052 + 0.15) = 0.202g$$

Como 0.202g < 0.265g não ocorre tombamento