

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

по Лабораторной работе №2 по курсу «Анализ Алгоритмов»

на тему: «Алгоритмы умножения матриц»

Студент группы ИУ7-51Б	(Подпись, дата)	<u>Шубенина Д. В.</u> (Фамилия И.О.)
Преподаватель	(Подпись, дата)	Волкова Л. Л. (Фамилия И.О.)
Преподаватель	(Полнись, дата)	Строганов Ю. В.

Содержание

Bı	веде	ние		9
1	Ана	алитич	еская часть	4
	1.1	Матри	ица	4
	1.2	Классі	ический алгоритм	4
	1.3	Алгора	итм Винограда	Ę
	1.4	Оптим	иизированный алгоритм Винограда	Ę
	1.5	Алгора	итм Штрассена	6
2	Кон	нструк	торская часть	8
	2.1	Разраб	ботка алгоритмов	8
	2.2	Описа	ние используемых типов данных	8
	2.3	Модел	ь вычисления для проведения оценки трудоемкости .	8
	2.4	Трудо	емкость алгоритмов	Ć
		2.4.1	Классический алгоритм	Ć
		2.4.2	Алгоритм Винограда	10
		2.4.3	Оптимизированный алгоритм Винограда	11
		2.4.4	Алгоритм Штрассена	12
	Выв	юд		13
3	Tex	нологи	ическая часть	1 4
	3.1	Требол	вания к ПО	14
	3.2	Средс	гва реализации	14
	3.3	Сведен	ния о модулях программы	14
	3.4	Реализ	зация алгоритмов	16
	3.5	Функц	циональные тесты	19
	Выв	юд		21
4	Исс	следова	ательская часть	22
	4.1	Технич	ческие характеристики	22
	4.2	Демон	страция работы программы	22
	4.3	Време	нные характеристики	23

	Характеристики по памяти	
Заклю	чение	27
Списо	к использованных источников	28

Введение

Умножение матриц является основным инструментом линейной алгебры и имеет многочисленные применения в математике, физике, программировании [1].

Целью данной лабораторной работы является изучение, реализация и исследование алгоритмов умножения матриц.

Необходимо выполнить следующие задачи:

- 1) изучить следующие алгоритмы умножения матриц:
 - классический алгоритм;
 - алгоритм Винограда;
 - оптимизированный алгоритм Винограда;
 - влгоритм Штрассена;
- 2) реализовать данные алгоритмы;
- 3) выполненить сравнительный анализ алгоритмов по затрачиваемым ресурсам (времени, памяти);
- 4) описать и обосновать полученные результаты в отчете.

1 Аналитическая часть

В данном разделе будут рассмотрены классический алгоритм умножения матриц, алгоритм Винограда (неоптимизированный и оптимизированный), а также алгоритм Штрассена.

1.1 Матрица

Матрицей типа (или размера) $m \times n$ называют прямоугольную числовую таблицу, состоящую из $m \cdot n$ чисел, которые расположены в m строках и n столбцах [2].

Обозначаются:

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$
(1.1)

или сокращенно $(a_{ij}), i = \overline{1, m}, j = \overline{1, n}$ [2].

Над матрицами возможны следующие операции:

- сложение матриц одинакового размера;
- умножение матриц, количество столбцов первой матрицы равно количеству строк второй матрицы [2].

1.2 Классический алгоритм

Пусть даны матрица $A=(a_{ij})$ размером $m\times n$ и матрица $B=(b_{ij})$ размером $n\times p$. Произведением матриц A и B называют матрицу $C=(c_{ij})$ размером $m\times p$ с элементами

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}, \tag{1.2}$$

которую обозначают C = AB [2].

Классический алгоритм реализует формулу (1.2).

1.3 Алгоритм Винограда

Алгоритм Винограда является одним из самых эффективных алгоритмов умножения матриц, имея асимптотическую сложность $O(n^{2.3755})$ [1].

Рассмотрим два вектора $A = (a_1, ..., a_n)$ и $B = (b_1, ..., b_n)$.

Их скалярное произведение равно:

$$A \cdot B = \sum_{i=1}^{n} a_i b_i \tag{1.3}$$

$$A \cdot B = \sum_{i=1}^{\frac{n}{2}} (a_{2i} + b_{2i+1})(a_{2i+1} + b_{2i}) + \sum_{i=1}^{\frac{n}{2}} a_i a_{i+1} + \sum_{i=1}^{\frac{n}{2}} b_i b_{i+1}$$
 (1.4)

В выражении (1.4) выполняется большее количество вычислений, чем в выражении (1.3), однако второе и третье слагаемые из (1.4) Виноград предложил вычислять предварительно [1]. Таким образом удается уменьшить количество операций умножения, являющихся более трудоемкими, чем операции сложения.

Если обрабатываемые матрицы имеют нечетный размер, то неоюходимо дополнительно рассчитать произведения крайних строк и столбцов.

1.4 Оптимизированный алгоритм Винограда

Для программной реализации алгоритма Винограда существует несколько оптимизаций:

— значение $d=\frac{n}{2}$, используемое в качестве ограничения цикла расчета второго и третьего слагаемых из соотношения (1.4) сохранить в переменную;

- заменить операцию умножения на 2 на операциб побитового сдвига влево на 1;
- при наличии операторов **+=**, **-=** в выбранном языке программирования использовать их при необходимости.

1.5 Алгоритм Штрассена

Пусть A и B — матрицы размером $n \times n$, где n — степень числа 2. Поделим эти матрицы на четыре части, пополам по вертикали и горизонтали, например

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \tag{1.5}$$

где A_{ij} — подматрицы матрицы A, имеющие размер $\frac{n}{2} \times \frac{n}{2}$.

Пусть матрица C — результирующая матрица, элементы которой в случае выбранного разбиения матриц A и B будут равны

$$C_{11} = A_{11}B_{11} + A_{12}B_{21},$$

$$C_{12} = A_{11}B_{12} + A_{12}B_{22},$$

$$C_{21} = A_{21}B_{11} + A_{22}B_{21},$$

$$C_{22} = A_{21}B_{12} + A_{22}B_{22}.$$

$$(1.6)$$

Разбиение матриц A_{ij} , B_{ij} выполняется рекурсивно до того момента, пока перемножение матриц не будет сведено к перемножению чисел [3].

При таком подходе для матрицы размером 2×2 количество операций умножения равно 8. Количество умножений можно снизить до 7, используя алгоритм Штрассена [4].

Для выбранного разбиения необходимо ввести новые матрицы:

$$M_{1} = (A_{12} - A_{22})(B_{21} + B_{22}),$$

$$M_{2} = (A_{11} + A_{22})(B_{11} + B_{22}),$$

$$M_{3} = (A_{11} - A_{21})(B_{11} + B_{12}),$$

$$M_{4} = (A_{11} + A_{12})B_{22},$$

$$M_{5} = A_{11}(B_{12} - B_{22}),$$

$$M_{6} = A_{22}(B_{21} - B_{11}),$$

$$M_{7} = (A_{21} + A_{22})B_{11}.$$

$$(1.7)$$

Тогда C_{ij} выражаются через эти матрицы [3]:

$$C_{11} = M_1 + M_2 - M_4 + M_6,$$

$$C_{12} = M_4 + M_5,$$

$$C_{21} = M_6 + M_7,$$

$$C_{22} = M_2 - M_3 + M_5 - M_7.$$

$$(1.8)$$

Алгоритм Штрассена рекурсивно производит разбиение исходных матриц в соответствии с (1.5), вычисление результирующей матрицы согласно (1.7), (1.8).

Вывод

В данном разделе были рассмотрены алгоритмы умножения матриц: классический, алгоритм Винограда, алгоритм Штрассена. Для алгоритма Винограда отдельно были рассмотрены возможные оптимизации, применимые при реализации.

2 Конструкторская часть

В данном разделе будут приведены схемы алгоритмов умножения матриц, описание используемых типов данных и структуры программного обеспечения.

2.1 Разработка алгоритмов

2.2 Описание используемых типов данных

При реализации алгоритмов будут использованы следующие типы данных:

— *матрица* — двумерный массив значений типа int.

2.3 Модель вычисления для проведения оценки трудоемкости

Введем модель вычислений, которая потребуется для определения трудоемкости каждого отдельного взятого алгоритма умножения матриц.

- 1) Трудоемкость базовых операций имеет:
 - значение 1 для операций:

$$+, -, =, + =, - =, ==, ! =, <, >, <=, >=,$$

$$[], ++, --, &&, |], >>, <<, &, |$$

$$(2.1)$$

— значение 2 для операций:

$$*,/,\%, *=,/=,\%=.$$
 (2.2)

2) Трудоемкость условного оператора:

$$f_{\text{if}} = \begin{cases} \min(f_1, f_2), & \text{лучший случай} \\ \max(f_1, f_2), & \text{худший случай.} \end{cases}$$
 (2.3)

3) Трудоемкость цикла

$$f_{
m for} = f_{
m инициализация} + f_{
m cравнение} + + M_{
m итераций} \cdot (f_{
m тело} + f_{
m инкремент} + f_{
m cравнениe}).$$
 (2.4)

4) Трудоемкость передачи параметра в функцию и возврат из нее равен 0.

2.4 Трудоемкость алгоритмов

Далее будут приведены рассчеты трудоемкости реализуемых алгоритмов умножения матриц.

Пусть имеется две матрицы:

- 1) A размером $M \times N$,
- 2) B размером $N \times P$.

2.4.1 Классический алгоритм

Для стандартного алгоритма умножения матриц трудоемкость будет составлена из:

- цикла по $i \in [1 \dots M]$, трудоемкость которого $f = 2 + M \cdot (2 + f_{\text{тело}});$
- цикла по $j \in [1 \dots P]$, трудоемкость которого $f = 2 + P \cdot (2 + f_{\text{тело}});$
- цикла по $k \in [1...N]$, трудоемкость которого $f = 2 + N \cdot (2 + 12)$;

Поскольку трудоемкость стандартного алгоритма равна трудоемкости внешнего цикла, то

$$f_{\text{Standard}} = 2 + M \cdot (2 + 2 + P \cdot (2 + 2 + N \cdot (3 + 3 + (2 + 2 + 2)))) =$$

$$= 2 + 4M + 4MN + 14MNP \approx 14MNP = O(N^3)$$
(2.5)

2.4.2 Алгоритм Винограда

Трудоемкость алгоритма Винограда складывается из:

— трудоемкости создания и инициализации массивов RowFactors и ColFactors:

$$f_{\text{arrs}} = f_{\text{RowFactors}} + f_{\text{ColFactors}}$$
 (2.6)

— трудоемкость заполнения массива RowFactors:

$$f_{\text{RowFactors}} = 2 + M \cdot (2 + 4 + \frac{N}{2} \cdot (4 + 6 + 1 + 2 + 3 \cdot 2)) = 2 + 6M + \frac{19MN}{2};$$
 (2.7)

— трудоемкость заполнения массива ColFactors:

$$f_{\text{ColFactors}} = 2 + P \cdot (2 + 4 + \frac{N}{2} \cdot (4 + 6 + 1 + 2 + 3 \cdot 2)) =$$

$$2 + 6P + \frac{19NP}{2};$$
(2.8)

— трудоемкость цикла заполнения массивов для четных размеров:

$$f_{\text{fill}} = 2 + M \cdot (4 + P \cdot (13 + 32\frac{N}{2})) = 2 + 4M + +13MP + \frac{32MNP}{2} = 2 + 4M + 13MP + 16MNP;$$
(2.9)

— трудоемкость цикла, выполняемого в случае нечетных размеров мат-

рицы:

$$f_{\text{oddLoop}} = 3 + \begin{cases} 0, & \text{четная} \\ 2 + M \cdot (4 + P \cdot (2 + 14)), & \text{иначе.} \end{cases}$$
 (2.10)

Таким образом, для нечетного размера матрицы имеем:

$$f_{\text{odd}} = f_{\text{arrs}} + f_{\text{RowFactors}} + f_{\text{ColFactors}} + f_{\text{fill}} + f_{\text{oddLoop}} \approx$$

$$\approx 16MNP = O(N^3); \quad (2.11)$$

для четного:

$$f_{\text{even}} = f_{\text{arrs}} + f_{\text{RowFactors}} + f_{\text{ColFactors}} + f_{\text{fill}} + f_{\text{oddLoop}} \approx$$

$$\approx 16MNP = O(N^3). \quad (2.12)$$

2.4.3 Оптимизированный алгоритм Винограда

Оптимизация алгоритма Винограда осуществляется следующим образом:

- операция x = x + k заменяется на операцию x + = k;
- операция $x \cdot 2$ заменяется на x << 1;
- некоторые значения для алгоритма вычисляются заранее.

Тогда трудоемкость алгоритма Винограда складывается из:

- трудоемкости предвычисления значения $\frac{N}{2}$, равной 3;
- трудоемкости f_{arrs} (2.6) создания и инициализации массивов RowFactors и ColFactors;
- трудоемкость заполнения массива RowFactors:

$$f_{\text{RowFactors}} = 2 + M \cdot (2 + 2 + \frac{N}{2} \cdot (2 + 5 + 1 + 2 + 3)) =$$

$$2 + 2M + \frac{13MN}{2};$$
(2.13)

— трудоемкость заполнения массива ColFactors:

$$f_{\text{ColFactors}} = 2 + P \cdot (2 + 2 + \frac{N}{2} \cdot (2 + 5 + 1 + 2 + 3)) =$$

$$2 + 2P + \frac{13NP}{2};$$
(2.14)

— трудоемкость цикла заполнения массивов для четных размеров:

$$f_{\text{fill}} = 2 + M \cdot (4 + P \cdot (2 + 10 + 2 + 19\frac{N}{2})) = 2 + 4M + +13MP + \frac{32MNP}{2} = 2 + 4M + 14MP + \frac{19MNP}{2};$$
(2.15)

трудоемкость цикла, выполняемого в случае нечетных размеров матрицы:

$$f_{\text{oddLoop}} = 3 + \begin{cases} 0, & \text{четная} \\ 2 + M \cdot (4 + P \cdot (2 + 11)), & \text{иначе.} \end{cases}$$
 (2.16)

Таким образом, для нечетного размера матрицы имеем:

$$f_{\text{odd}} = f_{\text{arrs}} + f_{\text{RowFactors}} + f_{\text{ColFactors}} + f_{\text{fill}} + f_{\text{oddLoop}} \approx$$

$$\approx \frac{19MNP}{2} = O(N^3); \quad (2.17)$$

для четного:

$$f_{\text{even}} = f_{\text{arrs}} + f_{\text{RowFactors}} + f_{\text{ColFactors}} + f_{\text{fill}} + f_{\text{oddLoop}} \approx$$

$$\approx \frac{19MNP}{2} = O(N^3). \quad (2.18)$$

2.4.4 Алгоритм Штрассена

Пусть матрицы A и B имеют размер $n \times n$, где n — степень 2.

Если M(n) — количество умножений, выполняемых алгоритмом Штрассена для умножения двух матриц размером $n \times n$, то рекуррентное соотношение для M(n) будет иметь следующий вид [4]:

$$M(n) = 7M\left(\frac{n}{2}\right), n > 1, M(1) = 1.$$
 (2.19)

Поскольку $n=2^k$:

$$M(2^{k}) = 7M(2^{k-1}) = 7 \cdot [7M(2^{k-2})] = 7^{2} \cdot M(2^{k-2}) = \dots =$$

$$= 7^{i} \cdot M(2^{k-i}) = \dots = 7^{k} \cdot M(2^{k-k}) = 7^{k}.$$
(2.20)

Так как $k = \log_2(n)$:

$$M(n) = 7^{\log_2(7)} = n^{\log_2(7)} \approx n^{2.807}.$$
 (2.21)

Рассмотрим количество сложений A(n). Для умножения двух матриц порядка n>1 алгоритму требуется 7 умножений и 18 сложений матриц размером $\frac{n}{2} \times \frac{n}{2}$ [4]; при n>1 сложений не требуется, так как задача вырождается в перемножение двух чисел, поэтому количество сложений оценивается следующим образом:

$$A(n) = 7 \cdot A\left(\frac{n}{2}\right) + 18 \cdot \left(\frac{n}{2}\right)^2, n > 1, A(1) = 0.$$
 (2.22)

Итоговая трудоемкость рассчитывается как:

$$T(n) = A(n) + M(n).$$
 (2.23)

Вывод

В данном разделе на основе теоретических данных были построены схемы реализуемых алгоритмов умножения матриц. Также была проведена оценка трудоемкостей алгоритмов. В результате оценки алгоритма Винограда выяснилось, что оптимизированная версия в 1.6 раз менее трудоемка, чем неоптимизированная.

3 Технологическая часть

В данном разделе приведены средства реализации программного обеспечения, сведения о модулях программы, листинг кода и функциональные тесты.

3.1 Требования к ПО

К программе предъявлен ряд требований:

- на вход программе подаются две матрицы, каждая записана в отдельном текстовом файле;
- результатом умножения является матрица, выводимая на экран;
- программа должна позволять производить измерения процессорного времени, затрачиваемого на выполнение реализуемых алгоритмов.

3.2 Средства реализации

В качестве языка программирования, используемого при написании данной лабораторной работы, был выбран C++ [5], так как в нем имеется контейнер std::vector, представляющий собой массив динамический массив данных произвольного типа, и библиотека <ctime> [6], позволяющая производить замеры процессорного времени.

В качестве средства написания кода была выбрана кроссплатформенная среда разработки *Visual Studio Code* за счет того, что она предоставляет функционал для проектирования, разработки и отладки ПО.

3.3 Сведения о модулях программы

Данная программа разбита на следующие модули:

— main.cpp — файл, содержащий точку входа в программу;

- matrix.cpp файл, содержащий класс Matrix, реализующий необходимые для работы с матрицами функции;
- algorithms.cpp файл, содержащий реализации алгоритмов умножения матриц;
- measure.cpp файл, содержащий функции, замеряющие процессорное время выполнения реализуемых алгоритмов.

3.4 Реализация алгоритмов

Листинг 3.1 – Реализация классического алгоритма умножения матриц

```
1 Matrix Common(const Matrix &m1, const Matrix &m2)
2|\{
       size t rows1 = m1.rows();
       size t cols1 = m1.columns();
 4
       size t cols2 = m2.columns();
5
6
7
       Matrix res(rows1, cols2, 0);
8
9
       for (size t i = 0; i < rows1; ++i)
           for (size t j = 0; j < cols2; ++j)
10
               for (size t k = 0; k < cols1; ++k)
11
12
                   res[i][j] = res[i][j] + m1[i][k] * m2[k][j];
13
14
       return res;
15|}
```

Листинг 3.2 – Реализация алгоритма Винограда

```
1 Matrix Winograd (const Matrix &m1, const Matrix &m2)
2 {
      size_t = m1.rows();
3
4
      size t cols1 = m1.columns();
      size t cols2 = m2.columns();
6
7
      Matrix res(rows1, rows1);
8
9
      std::vector<int> row factors(rows1, 0);
      std::vector<int> col factors(cols2, 0);
10
11
12
      for (size t i = 0; i < rows1; ++i)
13
          for (size t j = 0; j < cols1 / 2; ++j)
               row_factors[i] = row_factors[i] + m1[i][2 * j] *
14
                 m1[i][2 * j + 1];
15
16
      for (size t i = 0; i < cols2; ++i)
          for (size t j = 0; j < cols1 / 2; ++j)
17
               col factors[i] = col factors[i] + m2[2 * j][i] *
18
                 m2[2 * j + 1][i];
```

```
19
20
       for (size t i = 0; i < rows1; ++i)
21
           for (size t j = 0; j < cols2; ++j)
22
23
           {
               res[i][j] = -row factors[i] - col factors[j];
24
               for (size t k = 0; k < cols1 / 2; ++k)
25
               {
26
                    res[i][j] = res[i][j] + (m1[i][2 * k] + m2[2 *
27
                       k + 1][j]) *
                                 (m1[i][2 * k + 1] + m2[2 * k][j]);
28
29
               }
           }
30
       }
31
32
       if (cols1 % 2)
33
34
       {
           for (size t i = 0; i < rows1; ++i)
35
               for (size t j = 0; j < cols2; ++j)
36
                    res[i][j] = res[i][j] + m1[i][cols1 - 1] *
37
                                 m2[cols1 - 1][j];
38
39
       }
40
41
       return res;
42| \}
```

Листинг 3.3 – Реализация алгоритма Винограда с оптимизациями

```
1 Matrix WinogradOpt(const Matrix &m1, const Matrix &m2)
2 {
3
      size t rows1 = m1.rows();
      size t cols1 = m1.columns();
5
      size t cols2 = m2.columns();
6
7
       Matrix res(rows1, rows1);
8
9
       std::vector<int> row factors(rows1, 0);
       std::vector<int> col factors(cols2, 0);
10
11
12
      size t half cols1 = cols1 / 2;
13
14
      for (size t i = 0; i < rows1; ++i)
```

```
for (size t j = 0; j < half cols1; ++j)
15
               row factors[i] += m1[i][j << 1] * m1[i][(j << 1) +
16
                   1];
17
18
       for (size t i = 0; i < cols2; ++i)
19
           for (size t j = 0; j < half cols1; ++j)
               col factors[i] += m2[j << 1][i] * m2[(j << 1) +
20
                   1][i];
21
22
       for (size t i = 0; i < rows1; ++i)
23
           for (size t j = 0; j < cols2; ++j)
24
25
           {
               res[i][j] = -row factors[i] - col factors[j];
26
27
               for (size t k = 0; k < half cols1; ++k)
28
29
                    size t k shifted = k << 1;
                    res[i][j] += (m1[i][k shifted] + m2[k shifted +
30
                       1][j]) *
                        (m1[i][k \text{ shifted} + 1] + m2[k \text{ shifted}][j]);
31
32
               }
           }
33
34
       }
35
       if (cols1 % 2)
36
37
       {
           for (size t i = 0; i < rows1; ++i)
38
39
               for (size t j = 0; j < cols2; ++j)
                    res[i][j] += m1[i][cols1 - 1] *
40
                    m2[cols1 - 1][j];
41
42
       }
43
44
       return res;
45|}
```

Листинг 3.4 – Реализация алгоритма Штрассена

```
1 Matrix Strassen(const Matrix &m1, const Matrix &m2)
2 {
3     size_t n = m1.rows() / 2;
4     size_t rows = m1.rows();
5
```

```
if (rows \ll 2)
6
7
           return Common(m1, m2);
8
9
      }
10
11
      auto a11 = m1. slice(0, n, 0, n);
      auto a12 = m1. slice(0, n, n, rows);
12
      auto a21 = m1. slice(n, rows, 0, n);
13
       auto a22 = m1. slice(n, rows, n, rows);
14
15
      auto b11 = m2. slice(0, n, 0, n);
16
      auto b12 = m2. slice (0, n, n, rows);
17
       auto b21 = m2. slice(n, rows, 0, n);
18
19
       auto b22 = m2. slice(n, rows, n, rows);
20
21
      auto p1 = Strassen(a11 + a22, b11 + b22);
22
      auto p2 = Strassen(a22, b21 - b11);
      auto p3 = Strassen(a11 + a12, b22);
23
      auto p4 = Strassen(a12 - a22, b21 + b22);
24
25
       auto p5 = Strassen(a11, b12 - b22);
      auto p6 = Strassen(a21 + a22, b11);
26
       auto p7 = Strassen(a11 - a21, b11 + b12);
27
28
      auto c11 = p1 + p2 - p3 + p4;
29
30
      auto c12 = p5 + p3;
31
      auto c21 = p6 + p2;
       auto c22 = p5 + p1 - p6 - p7;
32
33
       return Matrix::combine(c11, c12, c21, c22);
34
35 }
```

3.5 Функциональные тесты

На таблице 3.1 представлены функциональные тесты стандартного алгоритма умножения матриц.

На таблице 3.2 представлены функциональные тесты алгоритма Винограда.

На таблице 3.3 показаны функциональные тесты алгоритма Штрас-

сена.

Таблица 3.1 – Функциональные тесты для классического алгоритма

Матрица 1	Матрица 2	Ожидаемый результат	Фактический результат
(9)	(3)	(27)	(27)
$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$	(4 5 6)	$\begin{pmatrix} 4 & 5 & 6 \\ 8 & 10 & 12 \end{pmatrix}$	$\begin{pmatrix} 4 & 5 & 6 \\ 8 & 10 & 10 \end{pmatrix}$
$\begin{pmatrix} 2 \\ 3 \end{pmatrix}$	$\left(\begin{array}{ccc} \left(4 & 5 & 6\right) \end{array}\right)$	$ \begin{pmatrix} 8 & 10 & 12 \\ 12 & 15 & 18 \end{pmatrix} $	$ \begin{pmatrix} 8 & 10 & 12 \\ 12 & 15 & 18 \end{pmatrix} $
$\begin{pmatrix} 2 & 10 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 2 & 10 \\ 2 & 7 \end{pmatrix}$	$\begin{pmatrix} 2 & 10 \\ 2 & 7 \end{pmatrix}$
(3 7)	(0 1)	$\sqrt{3}$ 7	$\begin{pmatrix} 3 & 7 \end{pmatrix}$
$\left(\begin{array}{ccc} 4 & 2 & 9 \\ 1 & 3 & 1 \end{array}\right)$	$\left[\begin{array}{ccc} 2 & 0 & 0 \\ 0 & 2 & 0 \end{array}\right]$	$\begin{pmatrix} 8 & 4 & 9 \\ 2 & 6 & 1 \end{pmatrix}$	$\begin{pmatrix} 8 & 4 & 9 \\ 2 & 6 & 1 \end{pmatrix}$
$\begin{pmatrix} 0 & 5 & 3 \end{pmatrix}$	$\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$	0 10 3	0 10 3
$ \begin{pmatrix} 4 & 2 & 9 \\ 1 & 3 & 1 \\ 0 & 5 & 3 \end{pmatrix} $	()	Сообщение об ошибке	Сообщение об ошибке
$ \begin{array}{c ccc} & 1 & 2 & 3 \end{array} $	$\begin{pmatrix} 4 & 5 & 6 \end{pmatrix}$	Сообщение об ошибке	Сообщение об ошибке

Таблица 3.2 — Функциональные тесты для алгоритма Винограда

Матрица 1	Матрица 2	Ожидаемый результат	Фактический результат
(9)	(3)	(27)	(27)
$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$		Сообщение об ошибке	Сообщение об ошибке
$ \begin{pmatrix} 2 & 10 \\ 3 & 7 \end{pmatrix} $	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 2 & 10 \\ 3 & 7 \end{pmatrix}$	$\begin{pmatrix} 2 & 10 \\ 3 & 7 \end{pmatrix}$
$ \begin{pmatrix} 4 & 2 & 9 \\ 1 & 3 & 1 \\ 0 & 5 & 3 \end{pmatrix} $	$ \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} $	$\begin{pmatrix} 8 & 4 & 9 \\ 2 & 6 & 1 \\ 0 & 10 & 3 \end{pmatrix}$	$ \begin{pmatrix} 8 & 4 & 9 \\ 2 & 6 & 1 \\ 0 & 10 & 3 \end{pmatrix} $
$ \begin{pmatrix} 4 & 2 & 9 \\ 1 & 3 & 1 \\ 0 & 5 & 3 \end{pmatrix} $		Сообщение об ошибке	Сообщение об ошибке
$ \begin{array}{c ccc} \hline & 1 & 2 & 3 \end{array} $	$\begin{pmatrix} 4 & 5 & 6 \end{pmatrix}$	Сообщение об ошибке	Сообщение об ошибке

Таблица 3.3 – Функциональные тесты для алгоритма Штрассена

Матрица 1	Матрица 2	Ожидаемый результат	Фактический результат
(9)	(3)	(27)	(27)
$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$		Сообщение об ошибке	Сообщение об ошибке
$\begin{pmatrix} 2 & 10 \\ 3 & 7 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 2 & 10 \\ 3 & 7 \end{pmatrix}$	$\begin{pmatrix} 2 & 10 \\ 3 & 7 \end{pmatrix}$
$ \begin{pmatrix} 4 & 2 & 9 \\ 1 & 3 & 1 \\ 0 & 5 & 3 \end{pmatrix} $	$ \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} $	Сообщение об ошибке	Сообщение об ошибке
$ \begin{pmatrix} 4 & 2 & 9 \\ 1 & 3 & 1 \\ 0 & 5 & 3 \end{pmatrix} $	()	Сообщение об ошибке	Сообщение об ошибке
$\begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$	$\begin{pmatrix} 4 & 5 & 6 \end{pmatrix}$	Сообщение об ошибке	Сообщение об ошибке

Вывод

Были реализованы алгоритмы умножения матриц (классический, алгоритм Винограда, алгоритм Штрассена). Проведено тестирование реализованных алгортимов.

4 Исследовательская часть

4.1 Технические характеристики

Технические характеристики устройства, на котором выполнялись замеры по времени:

- Процессор: Intel i5-1035G1 (8) @ 3.600 ГГц.
- Оперативная память: 16 ГБайт.
- Операционная система: Manjaro Linux x86_64 (версия ядра Linux 5.15.131-1-MANJARO).

Во время проведения измерений времени ноутбук был подключен к сети электропитания и был нагружен только системными приложениями.

4.2 Демонстрация работы программы

На рисунке 4.1 показан пример работы разработанной программы для случая, когда пользователь выбирает опцию «Умножение алгоритмом Винограда» и затем — «Умножение алгоритмом Штрассена». Входными данными являются матрицы

$$\begin{pmatrix} 0 & 4 & 1 & 0 \\ 5 & 1 & 4 & 6 \\ 9 & 3 & 5 & 1 \\ 0 & 5 & 7 & 9 \end{pmatrix} \mathbf{H} \begin{pmatrix} 5 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Меню

- 1. Стандартное умножение матриц.
- 2. Умножение алгоритмом Винограда.
- 3. Умножение оптимизированным алгоритмом Винограда.
- 4. Умножение алгоритмом Штрассена.
- 5. Замерить время для реализованных алгоритмов.
- 6. Редактировать матрицы
- 0. Выход.

Выберите опцию (0-6): 2

[0	20	5	0]
[25	5	20	6]
[45	15	25	1]
[0	25	35	9]

Меню

- 1. Стандартное умножение матриц.
- 2. Умножение алгоритмом Винограда.
- 3. Умножение оптимизированным алгоритмом Винограда.
- 4. Умножение алгоритмом Штрассена.
- 5. Замерить время для реализованных алгоритмов.
- 6. Редактировать матрицы
- 0. Выход.

Выберите опцию (0-6): 4

[0	20	5	0]
[25	5	20	6]
[45	15	25	1]
[0	25	35	9]

Меню

- 1. Стандартное умножение матриц.
- 2. Умножение алгоритмом Винограда.
- 3. Умножение оптимизированным алгоритмом Винограда.
- 4. Умножение алгоритмом Штрассена.
- 5. Замерить время для реализованных алгоритмов.
- 6. Редактировать матрицы
- 0. Выход.

Выберите опцию (0-6): 0

Рисунок 4.1 – Демонстрация работы программы

4.3 Временные характеристики

Исследование временных характеристик реализуемых алгоритмов производилось три раза:

- 1) на квадратных матрицах нечетного размера, который изменяется от 1 до 101 с шагом 10;
- 2) на квадратных матрицах четного размера, который изменяется от 10 до 110 с шагом 10;

3) на квадратных матрицах, размер которых — степень двойки от 2 до 128.

В силу того, что время работы алгоритмов может колебаться в связи с различными процессами, происходящими в системе, для обеспечения более точных результатов измерения для каждого алгоритма повторялись 100 раз, а затем бралось их среднее арифметическое значение.

На рисунке 4.2 показаны зависимости времени выполнения классического алгоритма умножения, алгоритма Винограда (без оптимизации и с ней) от нечетного размера квадратных матриц.

На рисунке 4.3 представлены зависимости времени выполнения классического алгоритма умножения, алгоритма Винограда (без оптимизации и с ней) от четного размера квадратных матриц.

На рисунке 4.4 представлены зависимости времени выполнения классического алгоритма умножения, алгоритмов Винограда (без оптимизации и с ней) и Штрассена от матриц, размер которых — степень 2.

Рисунок 4.2 – Результат измерений времени работы реализуемых алгоритмов на матрицах нечетных размеров

Рисунок 4.3 – Результат измерений времени работы реализуемых алгоритмов на матрицах четных размеров

Рисунок 4.4 – Результат измерений времени работы реализуемых алгоритмов на матрицах, размеры которых — степень 2

4.4 Характеристики по памяти

4.5 Вывод

Заключение

Список использованных источников

- 1 С. Анисимов Н., В. Строганов Ю. Реализация умножения матриц по Винограду на языке Haskell. // Новые информационные технологии в автоматизированных системах. 2018. URL: Режим доступа: https://cyberleninka.ru/article/n/realizatsiya-algoritma-umnozheniya-matrits-po-vinogradu-na-yazyke-haskell (дата обращения 03.11.2023).
- 2 Н. Канатников А., П. Крищенко А. Аналитическая геометрия. Конспект лекций. 2009. Т. 132.
- 3 Лекция 6: Сложность рекурсивных алгоритмов. Умножение матриц (над кольцом и булевых). Простой рекурсивный алгоритм для умножения целых чисел. Нахождение пары ближайших точек на плоскости. Режим доступа: https://logic.pdmi.ras.ru/~hirsch/students/cs2005/lecture6.pdf (дата обращения: 07.11.2023).
- 4 Р. Лапина Н., Е. Булатникова М. Алгоритм Штрассена для умножения матриц // Математика и ее приложения в современной науке и практике. 2014. URL: Режим доступа: https://elibrary.ru/item.asp?id=23140890 (дата обращения 07.11.2023).
- 5 Документация по Microsoft C++ [Электронный ресурс]. Режим доступа: https://learn.microsoft.com/ru-ru/cpp/?view=msvc-170&viewFallbackFrom=vs-2017 (дата обращения: 25.09.2023).
- 6 Standard library header <ctime> [Электронный ресурс]. Режим доступа: https://en.cppreference.com/w/cpp/header/ctime.