

Anopheles gambiae odorant receptor 1 genomic sequence (SEQ ID NO: 9)

5

Features:

- 1) Presumed Untranslated 5' and 3' regions are <u>underlined</u>.
- 2) Potential TATA box transcription initiation signal is double underlined.
- 10 3) Putative Start (ATG) and Stop (TAA) codons are in BOLD.
 - 4) Introns are tentatively assigned and are shown in lower case. Exons are highlighted.

AGCTTTGTTCATTTATGTTGAAATCTAGCCCATTTTGTATAGTGCTGAACGACGAAGAACATACGAAAGTACCTCGT 15 CCGAACACTATCAACATTAATTATACCAAGCTAGAAGAAGATATTTATAGTCAAGCCTCAACATCATAGGAAACTTT AGCAAAACCATTTAATTTACATGATGATAAGTCCCACCTCTTACCCCAGCACAGGTTTGAGAAGGACGAAAGTATCT TTACGATAATATTACTCTAAGGTAGTTTTTGAATAAAATAAAAATTTACGTGCAAGTGGTGGCATCGGACATCATTC GAACACGTCAGGACATAACTGCGACATGCGTATGGTCAGTTCCACTAGTGCCAACACTGGTTCCAGGGCACTACCTT 20 $\tt CCGAAGCAGTAGAACCTAATGTATTGGAAATTATTAGGACATACTGCAACATGCATATGGCTAGTTCCGCTGGTACCC$ AACGATGGCACCAGGACACTATCTGCGGCCTTGTAAAATCACTGTAAAATCTATACAAAAACGGCTTTACCCATACT TTATCACAAAAACGGCAGGTGAGGGCTGGATTGCTTCAAAGCATTAGAA<u>ATATAATTTCAAAGTCCATAATCTCC</u> AATGCTCAATTGTTGTAGATTCGTTGGATGACTCTCGCTACGTGCTATAGTGGTCAATACTTCCAATTAGATTTCAT 25 AATTAGTTTCCAATTGTCCACGGAAAACCCaCAAAAGAAAAAAAACTTGTATCTAGGGTGGAATTTTTCGAGAACA attctccaaattctgcagaataattctgcaaattttacaaaactgctcaaccaccaataattccaattaatcatctg aacatttaaaactgataattaagatgagtaattgcttcgtcatcacctaagaaatcgattagtttggataaaaagaa 30 aattcctcqttqaaaattqqtctcctataqttctqctaacqqqccacttcaaaaqcaagaactaacaaaatcataat tatggtgcaagtaactatcagtaccagtaatcgccattaaaaacttttcctcaattttgcggctcgttaccggctaaa tacaqaqcaqaqtaacqqqaaqtqatcaacqtcqctattaqtataacqaqqqaacqccctccqaaqqtqtqttqaaqq accttttcaaattgaaaccaagtactgtttccagttttaaattggatagttataaaatgagccgttcaacgatcggg catcatttqaqtttcatcttcqaqqaqaaatagatcaqtqccactqtttaaccgaaagtaatgaagctgaacaaact 35 qaacccacqqtqqqatqcqtacqatcqacqqqattcqttctqqttqcaqttqctttqtttgaaatatttagGCCTAT <u>EGCCACCGGAAGATACGGATCAGGCAACGCGGAACCGGTACATCGCGTACGGTTGGGCTTTGCGGATCATGTTTCTA</u> CATCTGTACGCTCTAACGCAAGCCCTATACTTCAAGGATGTGAAGGATATTAATGtgagtctctagttagctattag tgttccacctgtccataatctgtcttttattgggtagGACATCGCAAATGCATTGTTCGTGCTTATGACTCAAGTGA CGTTGATCTACAAGCTGGAAAAGTTTAACTACAACATCGCACGGATTCAGGCTTGTCTGCGCAAGCTTAACTGCACA 40 CTĞTATCACCCGAAACAGCGCGAAGAATTCAGgtaagcctgctgggaaatatgactaaaaagagtgctaacaaacga ctctcctccaaatqtaqCCCCGTTTTACAATCGATGAGTGTGTTTTTGGCTGATGATCTTTCTCATGTTTGTGGC <u>FATCTTCACCATCATCATGTGGGTTATGTCGCCAGCCTTCGACAATGAACGTCGTCTGCCGGTGCCGGCCTGGTCGTTCC</u> cggtggactatčaccattcggacatagtgtacggtgtactgttcctgtatcaaaccattggaatcgtcatgagcgca acgtacaacttctcgaccgataccatgttttccggcttgatgctacacataaatggacaaattgtgcggcttggtag 45 ttatcaqCTTGGACATGACGTCCCTCCCGAACGCCAATTGGTCGCAACGGATGCGAATGGAAAGAGATGCGAAAGG PTAAGqtacqaattggqccaattaattqtqtcatttaaaaaqcttqacccaacttttcacaqcttcqqcqatqaaqt gcaggacattttccaagGATCTATCTTCGCGCAAGTATGCGCGTCTGTAATTATCATTTGTATGACACTGCTGCAAG 50 FACCGGGGGCGATGTTACGATGGCCGATCTGCTGGGCTGTGGGGTCTATTTGCTAGTAAAGACATCGCAAGTGTTTA TTTTCTGTTACGTAGGGAATGAAATCTCCTATACGgtaggttggacacgtagaggaattaaatgtttgggaagaata tcaataccaaatagtatgatgtttcgttacagACGGATAAATTTACAGAGTTTGTTGGGTTTTGCAACTACTTCAAG TTCGATAAGCGTACCAGCCAAGCAATGATATTTTTTCTGCAAATgtgagatagcggtgtatttgtgcagtcagtaca

Appl. No. 10/056,405 Replacement Sheet

Figure 1 continued

15

Anopheles gambiae odorant receptor 2 genomic sequence (SEQ ID NO: 10)

Features:

5

- 1) Presumed Untranslated 5' and 3' regions are underlined.
- 2) Potential TATA box transcription initiation signal is <u>double underlined</u>.
- 10 3) Putative Start (ATG) and Stop (TAA) codons are in BOLD.
 - 4) Introns are tentatively assigned and are shown in lower case.
 - 5) Exons are highlighted.

GGGATCCTCTAGAGTCGACCTGCAGGCATGCAAGCTTCCCTCACCGTGACGTGCTAGAAATGGTTCAACATACTCGT 15 CCGGCAGAGCGAAGACGACGAACAGCGGAATGTCCCAGGAAATGTAATGAGATATCACAGCAAGTGAACCCAAACCG AAATCCACTGACCACTGGCCACACATCAACCACCGGAGCGGGGGCCTCAGTGCCCAGCGAAGC<u>ATATAA</u>TTTGCTCA AAAAGTCACGGTACTCAATTAATTTGATTATAATCAATTTCGTGGCTTCCAACACCCCTTCTTCCACAATCCATCG 20 TAAACCGCAACCCACAGCCGAAA<mark>ATGGTGATCGAAGAGTGTCCGATAATTGGTGTGAATGTGGGAGTGTGGGTGTT</mark> GITTE CETTE AN CETTE THE CITE CETTE CETTE CONTRACTOR OF A CONT tttttattctctgtttgttgccatccageTccGAACCRCCTTTCTCGTGATCAATCCACGGAAATTTGAGACATTTT 25 ccataaccaccccgacggtaacatttgatcgtcccgcgaaaatgtttgtacagAAAAATGAGGAGAKCGGAGGGGT 30 <u>CACAMACANATCATCCAC</u>taagtagacgctagtagactcgaccggattgcccttccctcggggaggggaggtttgct atttcgggatgcggcagcacgcatacacacaaaccggaagccattaattctcccgttttcatgcccgcacgggcact qqqtcatqtttcacatccttcctttccaaacacacacgcgcgcgtgcacgtacagATATGTTCATGAT 35 anche acteure che acce at et et et et et electeur et et et et et e e et et e e et et e e e e e e e e e e e e e MccArrigtaagtaaaatcgaccgacgtgcggtcgctagtccgtctccggactctcatttcgggactcaatcgttcc atctctcaatagAGCAATCAGCTGGCACAGAKGAVAATGAYTGGATGGTACAVGTTCAYGAYAGAGACGCGAGAYGYT tagateggetgtettaeattgttgtgtttetgeatggggateggttttgttttteeteteeattteag**RGGCTAGGG** 40 ACCHCCTCACCCACCCATCCTCCTAAC aatagctgttcattaataagttttttcagaatgtatcgtttttagttgatttaaacgcattgttctatgcaatggta 45 50 ttattattattattattgctattgttattattcttattattgctattgttattattattattcttattattqttgtt

Appl. No. 10/056,405 Replacement Sheet

acaataatctctaagaattaaaattgcattttgtaatgaaatatgttgattgttcgaatagttcagaaaaacttaaa ttcattactacaaaaaagcaaatttatgagtgaattactttcagttcttctaaacgcctatgtgtatgcaattacat 5 aacaataqctctcttttttattqcatttttccttaqtaatctaaatccaatctcttctttccctcttgcagATPAAA EFFCGCCAACGFCFACCCCATGACCFFFCGAAATGFTFTCAAAAAATTGCFCCAACGFGGFCCFAGFCCFAAFFFCACACFGCF GATCATCAAACACCATTAGCAGCCACAAAGTTACCAGCCGCTTATCCCACGGGATTTGGTGGAAAGTTATTGCACTG 10 GCGACGGTGAAAAAACGCTGCATTATTGTGCTTGCTTCAGCATTCCAGCGAATGACTCTTAAACTTTTCCATTCAAA AGTCGCGATGCTCACGATACGGAGCGGTGTGTTGTTCGATCCGCCGAGTGCACTCGCAAGCCGGTGATGTTGCCGGT AAGGTCTCTGCTCCGGGGCATGGATTCTTTCCCCCTCCGGGTGGTTGGGGGGTATTGTTTAGGTTTTTATTTTACAAA 15 ACGAACATGGCCAACAAACACAGCTTCTATCTCATCTCTGTGTCGCACTGTCTCGCTTTCCCGCTGCGTTGCTTGTA GTACTATCATTGTTTTAGTCCACGGGTTTACTTCTAATTCCATTGCACCACGCAAAAAGGCTCATCCTTTGCTCGTT 20 GCTGTGTGCGCTCGAGTCAGCCGACGGTACAAGGTTTAACCGGTACAAGCAACTCCCGGACCGATCCCAAAACTCTG AAGAGCGAGAAACATTGGTACGATTTGGTGTGTGTTAGCAAATTTGATTTCCACTGATTTTGAGTGCAAATTTAATGC ${\tt ATCGAAAATTTGCCATTCAGGGTAAAGTTGCTCGTGGACGGATCCCCCGGGCTGCAGGAATTCGATATCAAGCTTAT}$ 25 $\tt CGATACCGTCGACCTCGAGGGGGGGCCCGGTACCCAGCTTTTGTTCCCTTTAGTGGA$

Figure 2 continued

Anopheles gambiae odorant receptor 3 genomic sequence (SEQ ID NO: 11)

5

Features:

- 1) Presumed Untranslated 5' and 3' regions are <u>underlined</u>.
- 2) Putative Start (ATG) and Stop (TAA) codons are in BOLD.
- 3) Introns are tentatively assigned and are shown in lower case.
- 10 4) Exons are highlighted.

AAGCAGAACACATCAAGAAGCAATTAGGTGTGTCGTACGTTAGCAAGTAGTTCGCGAGGAGGAATAAAATAGATGCC TTCTGAGCGGCTTCGTCTCATTACTTCCTTCGGAACTCCTCAAGACAACGCACGATGGTACTGCCAAAATTAAAGG ATGAAACAGCAGTGATGCCGTTTCTGCTGCAAATTCAAACCATTGCCGGACTGTGGGGTGACCGTTCCCAGCGGTAC 15 CGTTTTTATCTCATCTTTTCCTACTTCTGCGCGATGGTGGTTCTACCCAAAGTGCTGTTCGGTTATCCAGATCTCGA GGTTGCGGTACGCGGCACGGCCGAGCTGATGTTCGAATCGAACGCATTCTTCGGCATGCTAATGTTTTCCTTTCAAC GCGACAACTACGAGCGATTGGTGCATCAGCTGCAGGATCTGGCAGCTCTAGgtgagtatgcagccaatcgattgttc caaaccttcqcaacatccttcqtaacactqctacactttcagTCCTCCAAGACCTACCCACAGAGCTGGGAGAGTAC CTGATCTCAGTGAACCGACGGGTCGATCGGTTCTCCAAAATTTACTGCTGCTGTCACTTTTCCATGGCAACGTTCTT 20 TTGGTTCATGCCCGTCTGGACGACCTATTCCGCCTACTTTGCTGTGCGCAACAGCACGGAACCGGTCGAGCACGTGT TGCACCTCGAGGAAGAGCTGTACTTCCTGAACATTCGGACTTCGATGGCGCACTATACGTTTTATGTGGCCATTATG TGGCCCACGATCTATACGCTCGGGTTTACCGGTGGCACAAGCTGCTGACCATTTTCAGCAATGTTAAGTACTGTTC GGCCATGCTGAAGCTCGTTGCACTCCGAATCCACTGTCTAGCGAGAGTAGEGCAAGACCGAGCGGAAAAGGAGCTGA ACGAGATTATTTCCATGCATCAGCGGGTACTCAAqtaaqtaaattcaaattgaaagttttgcagggaataacttgag tgtgtctgacccgtgcacatcctagCTGCGTGTTCCTGCTGGAGACGACATTCCGCTGGGTATTTTCGTGCAGTTC 25 ATTCAGTGTACAATGATCTGGTGCAGTCTCATCCTCTACATAGCGGTGACGgtaatagcattttcgtcatttcgtta gccttattcaatccatttttgtgaacgtgaatttcccccagGGGTTCAGCTCGACGGTAGCGAATGTATGTGTCCAG ATCATTTTGGTGACGGTGGAAACTTACGGCTACGGCTACTTCGGAACAGATCTAACCACGGAGGTGCTTTGGqtacc ctttggatgaagcttcaaaaagtaattccaaattctgttttcgatttttccccttttccactagAGCTATGGCGTTG 30 CCCTCGCCATTTACGATAGCGAGTGGTACAAGTTTTCCATTTCGATGCGCCGCAAACTTCGACTGCTACTGCAACGA TCCCAAAAACCGCTCGGCGTAACGGCGGGAAAGTTTCGCTTCGTCAATGTGGCCCAGTTTGGCAAGgtaacattaat tacagtttgaaaattctgaagaatgcatcttacttgccttacttgttgttccagATGCTCAAGATGTCCTATTCATT TTACGTAGTACTGAAGGAGCAGTTTTAGGAGCTGCTGTTTCCCACCCTGGAAATGGCCTTTTCGCACTGTCTTCTGT 35 ACAGCTGAAGGACAGGGTACAATTTTTGCTGCTGTTATTACGCGCAGCGCATTGGATACGAAAACATTGGCCACAAG TTCTACGATTTTAGCGTTTATTTACTGTTCGTAGCAGCTTTTTTCCaCAATAAACACACACAATAACGTACCGACAG **ACGA**

Anopheles gambiae odorant receptor 4 genomic sequence (SEQ ID NO: 12)

5

Features:

- 1) Putative Start (ATG) and Stop (TAA) codons are in BOLD.
- 2) Introns are tentatively assigned and are shown in lower case.
- 10 GGGGAACTCCCCCACCGACCAGACGACGGAAAGCTAACGATGTGCAATTGAATAGTCATTAGT AGCGTTTTTGCTCGCAAACGAACTAACCCTTTGACTTTTTAAGTTCACTACGGTGAGGACAAAAA AACAACACAAAAATGCATCCTTTCGAATATTAGTCAGGTTGTATCAACAATGAAGTTTGAACTGT 15 TTCAAAAATATTCCTCCCCGGACACGGTCTTATCCTTCGTGCTAAGGCTTTTGCATATCGTGGGC ATGAATGGGGCAGGATTTCGGTCGCGAATTCGAGTTGGTGGCATTTTTCTGTTCTATTTAATCTT TCTTGTAATACCGCCACTAACGGGCGGGTACACCGATGGTCACCAGCGTGTACGCACCAGTGTG ${\tt GAATTCCTGTTTAATTGCAATATTTACGGCGGCAGTATGTTCTTTGCCTACGATGTGGCCACTTT}$ 20 GAGCGGATATTATCGCCAAAGTGCAAACGACCTGCATGGGTGCTGTAACGCTTTTCTACTGGAT TGCACCGATACCTTCCATCTGTGCGCACTACTACAGGTCGACCAATTCCACCGAACCCGTGCGG TTTGTGCAACATTTAGAGGTGAAGTTCTATTGGCTCGAGAATCGCACCTCAGTCGAGGACTACAT AACCTTCGTGCTGATCATGCTACCCGTCGTGGTTATGTGTGGTTACGTATGCAATTTGAAGGTGA 25 TGACCATCTGCTGCAGCATTGGACACTGTACACTGTACACCAGGATGACTATAGAGATGGTAGA ${\tt GCAGTTGGAAAGCATGGCATCAGCGGAACGAACTGCCAGCGCCATACGCAACGTGGGGCAGAT}$ 30 GGTAATGTTTTTTTTTCTTGCCACTGCGGAAACTTTCCTGTATTGTTTACTTGGGACGCGGCTTGCGA CACAACAGCAGCTGCTGGAGCACGCACTCTATGCTACACGGTGGTACAACTACCCAATAGCCTT TCGCAGCAGCATTAGGATGATGTTGAGACAGTCGCAAAGGCATGCACACATAACGGTGGGGAAG TTTTTTCGCGTTAATTTGGAAGAATTTAGCAGGATTGTCAACTTATCCTACTCTGCTTACGTCGT AGTTTTCCGAATCTATATTAGATCTAGAATTTAATCTAGATGTCATAATATGATCTTGGCCATGA 35 ${\tt CCGGTTCCTGGTTTTGGAACCAATTCTCAAAACAATTTTGAACTTAGGGCGAGGCATGAAATGTC}$ CCAAGAACCTATCCAAGTTCTGGAACTACATATTACCGAATCTATCCCATTATTGCCTCGGAACT GGTTTGGTGCTAAATATTTGTCCAAATGTTGGTCCTGGACCTATCCAGACAAAGATCTTCAATTA TTCCTACCACTGGAACTGATTAATTGATGTAGGAAGTCATGGAGGTGTTCAGGGAGAATTTAAA 40 CACTAATGTTCCAACTCATTATTTCAAGGGCAATTCTATTTTTATATGCCCCTACGGATTGATAC GTATGTATTACTCCATTTCCTGGACTTTGTCTTATTCTTGCTGCTGATTGGACGTGAAATGTTGA GAAAAAGATTCTTATTTATGAGTGATACAGAGCCTTTAAATACTCCTACGTTGTTTGCTATTTAA GTATGGCCAGGCTAATCACAATCGCTACTAATGAACAGAATCTCTTCTAATTAAACCCTTTCGAT TGATAGTGTCAATGTCAATGTCGAGATAATTGAACTGCAAACgATACCTACCTTAAACGGAGCAG 45 AACACATCAAGAAGCAATTAGGTGTGTCGTACGTTAGCAAGTAGTTCGCGAGGAGGAATAAAAT

Figure 5 ANOPHELES GAMBIAE

Preferred DNA Codons

Amino Acids			Preferred Codons					
Alanine	Ala	A	GCC	GCG	GCT	GCA		
Cysteine	Cys	C	TGC	TGT				
Aspartic acid	Asp	D	GAC	GAT				:
Glutamic acid	Glu	\mathbf{E}	GAG	GAA				
Phenylalanine	Phe	F	TTC	TTT				
Glycine	Gly	G	GGC	GGT	GGA	GGG		
Histidine	His	H	CAC	CAT				
Isoleucine	Ile	I	ATC	ATT	ATA			
Lysine	Lys	K	AAG	AAA				
Leucine	Leu	L	CTG	CTC	TTG	CTT	CTA	TTA
Methionine	Met	M	ATG					
Asparagine	Asn	N	AAC	AAT				
Proline	\mathbf{Pro}	P	CCG	CCC	CCA	CCT		
Glutamine	Gln	Q	CAG	CAA				
Arginine	Arg	R	CGC	CGG	\mathbf{CGT}	CGA	AGA	AGG
Serine	Ser	S	TCG	AGC	TCC	AGT	TCT	TCA
Threonine	Thr	${f T}$	ACG	ACC	ACT	ACA		
Valine	Val	V	GTG	GTC	GTT	GTA		
Tryptophan	\mathbf{Trp}	W	TGG					
Tyrosine	Tyr	Y	TAC	TAT				

http://www.kazusa.or.jp/codon/cgibin/showcodon.cgi?species=Anopheles+gambiae+[gbinv]

Name	SEQ ID NO
Arrestin 1 (cDNA)	SEQ ID NO: 1
Arrestin 1 (polypeptide)	SEQ ID NO: 2
Odorant Receptor 1 (cDNA)	SEQ ID NO: 3
Odorant Receptor 1 (polypeptide)	SEQ ID NO: 4
Odorant Receptor 2 (cDNA)	SEQ ID NO: 5
Odorant Receptor 2 (polypeptide)	SEQ ID NO: 6
Odorant Receptor 3 (cDNA)	SEQ ID NO: 7
Odorant Receptor 3 (polypeptide)	SEQ ID NO: 8
Odorant Receptor 4 (cDNA)	SEQ ID NO: 13
Odorant Receptor 4 (polypeptide)	SEQ ID NO: 14
Odorant Receptor 5 (cDNA)	SEQ ID NO: 15
Odorant Receptor 5 (polypeptide)	SEQ ID NO: 16
Odorant Receptor 6 (cDNA)	SEQ ID NO: 17
Odorant Receptor 6 (polypeptide)	SEQ ID NO: 18
Odorant Receptor 7 (cDNA)	SEQ ID NO: 19
Odorant Receptor 7 (polypeptide)	SEQ ID NO: 20

Anopheles gambiae odorant receptor 5 genomic sequence (SEQ ID NO: 21)

5

Predicted Exons: *ITALICIZED*, <u>UNDERLINED</u> AND <u>HIGHLIGHTED</u>. Introns: lowercase.

10 tctagacttgaacccatgacgggcattttattgagtcgttcgagttgacgactgtaccaccgggaccacccgtttatcactatcactattaattaattataatatgettttgtagegateageetaeegggttttgtttetetggatatettaagtteeeatttgattateaagatagaa caacaacttgtaccttaaataatcattacgtacccttaatcaacctgtgcatcaaggagttttcgcgaaagcaaaaatccgattgtct gatgttgtcttgattccatccgattcgttactggttctgcaaaatcgtccaataatacggcaatgtccttatcgatgcttgaatcaacat cacattgtttgcatttcgttttttgcgtgcaaatatgttatttgcaaagaaggcaaggtaatgtgcttaagagtaaatacaattcgctg 15 tccattttttttttttccaccagtttttccaaccagttccttttagtccttcgaatacatccgaccagtcagcaagtgcatcATGGTGCTACCGAAGCTGTCCGAACCGTACGCCGTGATGCCGCTTCTACTACGCCTGCAGCG TTTCGTTGGGCTGTGGGGTGAACGACGCTATCGCTACAAGTTCCGGTTGGCATTTTT AGCTTCTGTCTGCTAGTAGTTATTCCGAAGGTTGCCTTCGGCTATCCAGATTTAGAGAC AATGGTTCGCGGAACAGCTGAGCTGATTTTCGAATGGAACGTACTGTTTGGGATGTTG20 *ĊŦĠŦŦŦŦĊŦĊŦĊAĠĠĊŦŔĠŔĊĠĸĊŦŔŦĠŔŦĠŦŦĠŦĠŢĠŦĠŦŔĊĊĠĠŦŔĊŔĠĠŔĊŔŦŔŦĊ* AAAGATTGgtgcgtgataatgattgataaaaggaacctttgagcaactcctatccctttcaag $\overline{CTTTCCGTAAGGAC}$ *CAAGATCTACTGCTGCAGCCATCTGTGTTTTGGCCATCTTCTACTGGGTGGCTCCTTC* CCAGCACCTACCTAGCGTACCTGGGGGGCACGAAACAGATCCGTCCCGGTCGAACATGT25 GCTACACCTGGAGGAGGAGCTGTACTGGTTTCACACCCGCGTCTCGCTGGTAGATTACTCCATĂTŤCACCGCCĂTCĂTGCTĞCCTACAATCTTTATGCTAGCGTACTTCĞGTGGACT *AAAGCTGCTAACCATCTTCAGCAACGTGAAGTACTGTTCGGCAATGCTCAGGCTTGTG* GCGATGAGAATCCAGTTCATGGACCGGCTGGACGAGCGCGAAGCGGAAAAGGAACTGATCGAAATCATCGTCATGCATCAGAAGGCGCTAAAgtaaggtctgccggtatgttgtggatagaatacattt 30 ctagctgctttcagATGTGTGGAGCTGTTGGAAATCATCTTTCGGTGGGTTTTTCTGGGACAG *TTCATACAGTGCGTAATGATCTGGTGCAGCTTGGTTCTGTACGTCGCCGTTACG*gtaacta aaagcactgtagtgatctgtctgccacaccattcactgctgtgtcttgttttgtcactcttcccag'GGTCTCAGCACAAAG CGGCAAACGTGGGTGTACTGTTTATACTGCTAACAGTGGAAACCTACGGATTCTGCTA $CTTTGGCAGTGATCTTACCTCGGAGGCAAGTTGTTATTCGCTGA{
m g}{
m ttcagttacttttccgttcccc}$ tctaaccgtaccacttgtaccatttgtttgagacagagcttgagcgtagCACGTGCGTACGCTAGCCTCTGG 35 TATCGCCGTTCGGTTTCGATTCAACGGAAGCTTCGAATGGTACTGCAGCGTGCCCAGA *AACCGGTCGGCATCTCGGCTGGGAAGTTTTGCTTCGTCGACATTGAGCAGTTTGGCAA* TgtatggggagacettccactgtggcaagaaagattttctttattaatgcatettttaatttacagATGGCAAAAACATCA TACTCGTTCTACATCGTTCTGAAGGATCAATTTTAAaggggaactcccccacccgaccagacgacgaa 40 agetaacgatgtgcaattgaatagtcattagtagcgtttttgctcgcaaacgaactaaccctttgactttttaagttcactacggtgag cataatcataattatatgccacattttattataagtttttg

Anopheles gambiae odorant receptor 6 partial genomic sequence (SEQ ID NO: 22)

5 These are the predicted last three exons of another candidate *Anopheles* gambiae odorant receptor.

Predicted Exons: *ITALICIZED*, <u>UNDERLINED</u> AND <u>HIGHLIGHTED</u>. Introns: lowercase.

10

ttgatgccgtatgcgccgcgtgctataggctag TTATGCTTACCGGATGTTGCGATCGCGCACGTGCTTT TCCGCATACGCCAGTGCACACTTGATGGCGGTGGTGATGACGTCTGCTGCGCACCGTT 15 ACAGACGGTTAGACGGATATATGCTGGTAAAGTTTGTCCTCTTCATGCTGTGCTTTCTG ATCGAGCTGCTGATGCTGTGTGCGTACGGTGAGGATATTGTGGAATCGgtaaggcaccaggc ggtgatgagcgagtcgcgagtaattgaagcttttgcttttaaaacacatcagag*CCTTGGGGTGATTGATGCCGCT* TACGGTTGCGAATGGTACCGGGAAGGGTCGGTGGCGTTCCATCGATCCGTGCTGCAAA 20 TTATACACCGCAGCCAGCCAGTCCGTCATACTGACCGCATGGAAAATTTGGCCCATCCAA ATGAGTACTTTCAGTCAGgtgagttgccaattgattgccgtttgcgttaatatttcagtaagagtgcgctctttcccttag ATCCTGCAAGCTTCCTGGTCCTACTTTACCCTCCTGAAGACCGTCTACGGGAATAAgtaa gcgcgagagagagagagagagagtatcgttcaccctttggatgaatcaatagatttctaatcatgaaccattgaaaaatgaatca acattttcgctagttgcacaatattgtaccattctatacagcttcaccacgaccaagcgtttgttgcatcaggaccaaacacgtttcga 25 caagccgcgtcacctgctggc

Anopheles gambiae odorant receptor 7 genomic sequence (SEQ ID NO: 23)

5

Features

- 1. Predicted Exons (7): ALL CAPS, ITALICIZED, UNDERLINED, HIGHLIGHTED
- 2. Introns (6): lowercase
- 10 3. 5' and 3' sequences: lowercase, dotted underlined

ccgcccgggcaggtgacttacgcggtctgacttgctggtgcgctgctttgtacggcaaacggctacacaagcgaatcgaattattttcctatcacgctgcgcttaccagcgcctgctggtaggcaaagaatgtgcaaagtttcatttggcttggttcgtctgctttgctgtgaacgtgt 15 gcattgtgtttagtgagaagtgaaaagaaaagtgctgaaaaatgcaagtccagccgaccaagtacgtcggccttcgttgccgacct gatgccgaacattcgggttgatgcaggccaggggtcaactttctgttccggctacgtcaccggcccgatactgatccgcaaggtgtac tcctggtggacgctcgcccATGGTGCTGATCCAGTTCTTCGCCATCCTCGGCAACCTGGCGACGA ACGCGGACGACGTGAACGAGCTGACCGCCAACACGATCACGACCCTGTTCTTCACGCA20 CTCGGTCACCAAGTTCATCTACTTTGCGGTCAACTCGGAGAACTTCTACCGGACGCTCGCCATCTGGAACCAGACCAACACGCACCCGCTGTTTGCCGAATCGGACGCCCGGTACC ATTCGATTGCGCTCGCCAAGATGCGGAAGCTGCTGGTGCTGGTGATGGCCACCACCGT $\underline{CCTGTCGGTTGTCG}$ gtatgtgtgtgtgtgtgtgccgtttgggaaagtgtctttgcggcagaaccccaatctactgttacgc ttgactgggtttttgttttttctcggtggagggacgggataaaatatctgaaagaataattgagtcaacccacagggggatgcaag 25 acategeaggeagaggtttgggtttgatttateacegeacacegaatatetteacggtteataagetteacegeggtgaaaaggga cctactag CCTGGGTTACGATAACATTTTTCGGCGAGAGCGTCAAGACTGTGCTCGATAAG GCAACCAACGAGACGTACACGGTGGATATACCCCGGCTGCCCATCAAGTCCTGGTATC CGTGGAATGCAATGAGCGGACCGGCGTACATTTTCTCTTTCATCTACCAGGTACGTTG 30 GGGGAATgtcctgcgcgtcacagttggcagtcagtgagcggcaacacggcgaaaaaatgggactaaaaccggtcttcacaga gccaacacattcctacagcaattgcataccttcgggcggtcgggactgggcaatgcagctacaacatcctcgcctaaagttatgcaat tcgagcgacaaatgttgccgtgttagggctttttgtgataatagtcgtttttttgtcctctcgcttatcaaactctatcaacggaggaaatccattttcgctacaatgcctacagctcaagtttcaaggtcaatcgagcgggtggggatcaacttttttattcattttgctaacgccccaaggtcaatcgagcgggtggggatcaacttttttattcattttgctaacgccccaaggtcaatcgagcgggtggggatcaacttttttattcattttgctaacgccccaaggtcaatcgagcgggtggggatcaacttttttattcattttgctaacgcccccaaggtcaatcgagcgggtggggatcaacttttttattcattttgctaacgcccccaaggtcaatcgagcgggtggggatcaacttttttattcattttgctaacgcccccaaggtcaatcgagcgggtggggatcaacttttttattcattttgctaacgcccccaaggtcaatcgagcgggtggggatcaacttttttattcattttgctaacgcccccaaggtcaatcgagcgggtggggatcaacttttttattcattttgctaacgcccccaaggtcaatcgagcgggtggggatcaacttttttattcattttgctaacgcccccaaggtcaatcgagcgggtggggatcaacttttttattcattttgctaacgcccccaaggtcaatcgagcgggtggggatcaacttttttattcattttgctaacgcccccaaggtcaatcgagcgggtggggatcaacttttttattcattttgctaacgcccccaaggtcaatcgagcggggatcaacttttttattcatttttattcattttgctaacgcccccaaggtcaatcgagcggggatcaacttttttattcatttttattcattttattcattttattcattttattcattttattcattttatttattcattttattcattttattcattttattcattttatttattcattttatttattcattttatcaacaaattctatgttctcaatggcaaagattactgccgcaccaatcgcccaacgaaacggcaaaaggaaaagcgacgattatga 35 agatgtccaaaccattgcccgcccgacgctttatctgatgatttgcgggatggcttttacttgtctgctactttcaggcacaaaaggaa at gaa accage ge agget egtt t ge gg aggt tette agge act gagget gagt act taa at c gaa egat ttt tae gat te taa at c gaa egat tette agge act gag agget gagt act taa at c gaa egat ttt tae gat te taa at c gaa egat tette agge act gag atggatccagttttatgatgtggcctgcattacagtggcaattataccctgatgttcatttcattgcattttgtaagtttgtgctggtaacg ${\tt cccgtaacgattaattcttttcaaagagattctttcaaagagattcaaaaatgtgtataacaaatgctaacgaatggaccgtacttgg$ 40 gtggcggcagatgtgtcgctgtccgcttccttccttcccagcaagctcgtgcgaaataatttattccatcattttaatacagccgtttgtg cattttaattagcaaagcaatataaaaagcagctaaccatccccattaaaacaaagtgcttccgggcccaattgttatggcggtgga aagtaatggttttaccagtggaagtgtcctttcccatcgtgggtacttcgcgatattcttgtcttatacaagtgcatacagaaaaaaa ggacaaatcctccttgctatggtctaaggccagcttcggtaccgcttcggttcgggatgtcataaagtttgatgggtgtttttaacatt acttccgctcttaaccacctaatggacttttcatgcttgagctaaagttaaaccagccaccagcggtacgcaccgagccacggttgatt 45 teggeggeggecteatecceagttttgegccaccaatattgeetteattaatetgtacceteggagegttagggecegeggacgagteet

tgctacaacacattttatgcttcacagatttacttcctgctgttttcgatggtccagagcaacctcgcggatgtcatgttctgctcctggt GAGCTTTCGGCCTCGCTGGACACCTACCGGCCCAACTCTTCGCAACTGTTCCGAGCAA 5 TTTCAGCCGGTTCCAAATCGGAGCTGATCATCAACGAAGgtatgtgaaacgtgtgctcgtggcagacg gactcaaagagagcataacacaatcccctggtagttcatttcaatgaccttaacactcggcaagctaagcgagacagtggggacag tgagaaagagagaacaagaaaaaaaaaccatcatccgtacgacatcatcgctacgtaccggtatttcaggatgaggaaataaaac 10 gagcaaaaaaagtcaaataaattgaagtttaaaaatagattttccccgtccatccgtggtggagcgtaaagcccggcggacaactt acgcccgtggtgcccaaagcgcaacgcgaattgcatgttaacaaacctttgcctaccatccaatccgtgtgaaattgcccgctctcttt 15 cttaagtccaatgtaatttaccgtgtttctgtcgttcgtcaccttcttcgtcgatggagattggtgcggttggcacgataaaagcccact gcacgttacggaccgagggaaaggtctttttgtaggcctagcaacggtcctcattcaccgcatgggggtgtagctcagatggtagag 20 cgctcgcttagcatgtgagaggtaccgggatcgatacccggcatctccaacccacacaaaacgttttttaagaagatttttagggaa gatattaacgcgggtacactgtgctcctctaagttggaagagtagatgatgatgacaagggagaaggaacatgtgtacgtgttt tgtccctctctctctgttcaactcctaaaagaattgtttggagtcctctcagttcctcgtaaagatcctttcgagattcttctttttt25 gAAAAGGATCCGGACGTTAAGGACTTTGATCTGAGCGGCATCTACAGCTCGAAGGCGG ACTGGGGCGCCAGTTCCGTGCGCCGTCGACGCTGCAAACGTTCGACGAGAATGGCAGGAACGGAAATCCGAACGGGCTTACCCGGAAGCAGGAAATGATGGTGCGCAGCGCCATC AAGTACTGGGTCGAGCGCACAAGCACGTTGTACGgtaggtatggtaatttctaaggtgtgtgtaaag 30 ctgaaaccggttgcaatatcgttttgcgaagaaattatgtgtaaagcgtattacaatctcattcctctgttaatctgtaccaattgtgtc agccccgaccgaaagcaggcctaattcgtaccagaaaaaccacaagctgtttgtaagcatcgatacgcccgaagctttcaatccagc cgcccggagtgaagtttttatttgaacgatatcacccgtatcgattttccactaaacatgcttaaatcgtttcacaaagctcccccaaa 35 gagtaaccgaacaacctcttgccgctgcttcacgatatcgaacagcaccaagataagcatccctttttccctagccgatgtctccgata tctcg attccgcttccagcgaggcaaagaaaaaggcgaactggctgacctcacccggggcgaggaaaaagcgtagggattacgtcgagcagcacgagttgtgatttcttcttcttctggttccataaatcgctgacggtttccattaccgcctgcggagtgcacacacgtgaag ggaaagcgaaaacgtttagattccagcagcaacggcagcaccagaagcagcagcagcagcggcaaattgaatcatcctgacgcgat 40 gagttgtctgggttttcgggtcggtggcttacagcaccaccaccatctgctgcagctaatacagctgtaaatttcgttagacatagactt gattttacaatattacacacacacttacacacacactatagatttgtcgcttggcgtatggctctgtacggcgtgccgtacatgccgc gagccgtgttgctgctggttgcgatacggatcacgtccgattcgattcagcctgcgtgtttttggtgaagatccttatcggtgacccact ttcagtgtgtcgagagcgagggtcactatggcgcctgtcagttggaaagctaggctcgattcaaagggccattgtgccagtgttcttt ttaagatagcgataagcttttgatcgaaatagtaaatcaaacattgtttcttttttcctattccaaactgttgccaacctcattattacg45 tttttgcagcggtgtatagtaaattgcatactttaaggcgtgattttcaaatgtagcgttccgtatgcagaaacgccatggattatgc aatttaaacaatgctgcttccttaacattcaaataacggcttattaaggaactttttgtgcaatttgtttttaacagcaaatagttagc tcagaacgatcacatttagtatcgcttcaacaaagaactcttttaaacacacaatttgtaatgccattccctcgagaaagtttcttgtcagtectectetgeateacageaacaaccaaacctgeteatgttteetgetegttteetagetgttttgaacgttattteegatteetgtget

5

10

15

20

25

30

35

40

45

tgcgccaagctcagcatccagccatgcatgtaaaatgagccacgcgacagattttagacatcgctttcgctctgcaccggaggtggttaacgagccagaaaatgagcacgccaaatgcaaagaaaatccccttttgagtggtgctcctgccaccactcatctccccaactggtgg cgcagaagctcaaaccaacgccgccagcaagcatcaacaatttctattcaaacacccaacgcagcgcccaaaccgggtgcactgta ctcagtagcgaagatgctcagattgtcccgtgcgctgctttcgatgcccgtttcggagcgggaagccatcgcttgccaacgttggcgatccgtaccgcggtggggcgagttttcaacgcaaccttctacaagcaacgccacaacgcctgggagcgatatttaacagaaacaagaa catecegaacttcageacatgeegtgatttgeetgttggaaaagettttgtggggtgtgagttgaaegagetetatttteeeagegat gggtggcatttgtgtggcatgctatcgtcagcttttcttgaatctttacctctccattcgcctccattagtacacgcgtatggaaaatgg $\tt gtgcaacggatcagaacggattttccgcgacagacttaataaagggaaagcaacgcgttttttgcatgtgtagtgtttatgagcttt$ aaaaaaatgtcaatctgtatcgattattcacacaaatcagatcccggaaccagtgtagcccaatgtgctcttattgaattaccacga gccctcatcgaacagataaacagaagggcaactcttgtgagcatcgcaatgcccgtctgaagttccgtcgaaaatgggcctaaattc tttgggattggtttttgcagcgaaaaatcaaaacattcgcacaaaaccgtcctccatttcaaatgcctacacttgtcactgtatatctctGCTACACATGCTGACCTCCACCATCAAGCTGACGCTGCTCGCCTACCAGGCAACGAAA ATCGACGGTGTCAACGTGTACGGATTGACCGTAATCGGATATTTGTGCTACGCGTTGGCTCAGGTTTTCCTGTTTTGCATCTTTGGCAATCGGCTCATCGAGGAGgtacgtgcgctcggcgtg ttgccgtgggaaagcattctccctgccccatatcgcttcattctcccagatcacacatttgcatcacaaagccagcacacttttgcttcgccgctgccatctcggcttctgaatgttttcacttctcccatacttctcccgtgcagAGCTCATCCGTGATGAAGGCGGC CTATTCCTGCCACTGGTACGACGGGTCCGAGGGGGGGGCAAAAACCTTCGTCCAGATCGTTTGTCAGCAGTGCCAGAAGGCGATGACTATTTCCGGAGCCAAGTTTTTCACCGTTTCGC TCGATCTGTTTGCTTCGgtaagtgtagcctggtggctggcacagaacaggctggcaaaacagggactttggctctagc CTACTTCATGGTGCTGGTGCAGCTGAAGTAAacagccgtggcccggaaggatgtgttttttttcgctcgttcg acagatetttgcaaaatgattagattttaatagattaacagtgettgattatetgteetgtagcaaceggggetgaagaacgttgatt tggtaaaagtacaaaagggacgttggaaattgaaccaccagaagagtgatatttatgcaaagctcaccaagggaaatctatgtat gtgtgatttgcgctcatcaagcactgtatgtgcctttcaactagtgcagcaataaagagtacaaatgtttcttagcgcaccgtacattg a atagagaa atcgtttt agtatgat catacctcca atcatttgtttgaa attaactttaattttaactca aattaaaccgatgttt tactttcgcatcgagatggaaatgaatgtaccactagaaccgagtgaaatgaattacttttcaacttgcacgccaaaaccattatctaaag agaaaaaaaaaaaccttccacgggaagctagcaattggaaatgcataaattaaccggaagaaattcgcaaaaccccgcaccgac

Appl. No. 10/056,405 Replacement Sheet

5

Figure 9 continued

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
 □ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
 □ FADED TEXT OR DRAWING
 □ BLURRED OR ILLEGIBLE TEXT OR DRAWING
 □ SKEWED/SLANTED IMAGES
 □ COLOR OR BLACK AND WHITE PHOTOGRAPHS
 □ GRAY SCALE DOCUMENTS
 □ LINES OR MARKS ON ORIGINAL DOCUMENT
 □ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.