La estructura de un cuerpo:

Cuerpo. Sea $\[\mathbb{K} \]$ un conjunto dotado de dos operaciones, adición (+) y multiplicación (.) Digamos que $\[\mathbb{K} \]$ es un cuerpo si para todo a,b $\in \[\mathbb{K} \]$ se cumple las siguientes condiciones:

• +y • son operaciones internas sobre

| K : a + b ∈ | K y a * b ∈ | K |

- + y * son operaciones conmutativas: a + b = b + a y a * b = b * a
 + y "* son operaciones asociativas: (a + b) + c = a + (b + c) y (a * b) * c = a * (b * c)

• Hay un elemento neutro para la adición: a + 0 = 0 + a = a

- Hay un elemento neutro para multiplicación (distinto del neutro de la adición): a*1=1*a=a ₩ a € 1K
- Elemento opuesto: \bigvee $q \in \mathbb{K}$ hay otro elemento -a \in \mathbb{K} tal que a + (-a) = (-a) + a = 0

Elemento inverso: $\forall a \in \mathbb{K}$, $a \neq 0$ hay otro elemento $0 \in \mathbb{K}$

La operación * es distrivutiva respecto + : a * (b + c) = a * b + a * c

Observación: Cuando no pueda haber confución guitaremos el signo * para detonar la operación de mutiplicación. Es decir, se denota a*b como ab-

Los cuerpos mas conocidos son los reales, racionales y complejos tambien lo son. En su lugar los naturales y los enteros no son un cuerpo, pues no cumplen todas las caracteristicas

PROPIEDADESDE LOS CUERPOS.

Propiedades de los cuerpos. En un cuerpo 🖟 se verifica las siguientes propiedades:

- Propiedad de simplificación para la suma: a + b = a + c => b = c
- Los neutros (0 y 1) son únicos.
- Cada elemento diferente de 0 tiene un único inverso.
- f_{K} no tiene divisores de 0: $ab = 0 \Rightarrow a = 0$ o b = 0Cada elemento tiene un único opuesto.

CUERPOS CONOCIDOS

Ejemplo 1

Algunos de los cuerpos más conocidos son:

• Q: Los números racionales

-surma:
$$\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}$$
 $a,b,c,d \in \mathbb{Z}$

- producto: $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$ $a,b,c,d \in \mathbb{Z}$

- * R: Los números reales
- C : Los números complejos

$$S:Los numeros completes$$

- suma: $Ca+bi$) + $CC+di$) = $Ca+C$)+ $Cb+d$); $a_1b_1C_1d \in \mathbb{R}$
- $Producto$: $Ca+bi$) • $CC+di$) = $(aC-bd)+(ad+bc)$; $a_1b_1C_1d \in \mathbb{R}$

Eiemplo 2:

EL CUERPO Z2

Entremos un poquito más en detalle en este cuerpo tan interesante:

- Consta de 2 elementos : el 1 y el 0
- Su tabla de suma y producto son las siguientes:

Tahla suma

Tabla producto

