Εργασία Υπολογιστικού Ηλεκτρομαγνητισμού

Φίλιππος Ρωσσίδης (ΑΕΜ 10379)

8 Μαΐου 2025

Μέρος Α

Στο πρώτο μέρος της εργασίας θα χρησιμοποιήσουμε την μέθοδο FEM για να επιλύσουμε δύο ηλεκτροστατικά προβλήματα: ενός ομοαξονικού καλωδίου (σχήμα 1α΄) όπου ο εσωτερικός αγωγός τίθεται σε δυναμικό 1 Volt και ο εξωτερικός σε 0 Volt, και ενός πυκνωτή απείρου μήκους, με διαστάσεις που φαίνονται στο σχήμα 1β΄ και διαφορά δυναμικού V.

Θα χρησιμοποιήσουμε την μέθοδο FEM για την εύρεση του δυναμικού στο χώρο και έπειτα απο το δυναμικό θα υπολογίσουμε το ηλεκτρικό πεδίο, την ενέργεια και την χωρητικότητα.

Σχήμα 1

Σύντομη περιγραφή της μεθόδου FEM για την εύρεση δυναμικού σε ηλεκτροστατικό πρόβλημα

Θα παρουσιάσω σύντομα την μέθοδο, για την πληρότητα της αναφοράς. Σε κάποια σημεία χρησιμοποιώ διαφορετικό συμβολισμό από τις σημειώσεις γιατι το θεώρησα πιο ευανάγνωστο.

Αρχικά, εφόσον λύνουμε δισδιάστατα προβλήματα, χωρίζουμε τον υπολογιστικό χώρο σε 2d simplexes δηλαδή τρίγωνα. Αν οριστούν οι συντεταγμένες simplex ενός σημείου (x,y) ως $\zeta_i(x,y)=h_i/H_i$ όπου h_i η απόσταση του σημείου από την πλευρά που δεν περιέχει τον κόμβο i και H_i το ύψος από τον κόμβο i, τότε

$$\zeta_i(x,y) = a_i + b_i x + c_i y, \quad i = 1, 2, 3$$

όπου τα a_i, b_i, c_i δίνονται με κυκλική εναλλαγή απο τις:

$$a_{1} = \frac{x_{2}y_{3} - x_{3}y_{2}}{D}, \quad b_{1} = \frac{y_{2} - y_{3}}{D}, \quad c_{1} = \frac{x_{3} - x_{2}}{D},$$

$$D = \begin{vmatrix} 1 & x_{1} & y_{1} \\ 1 & x_{2} & y_{2} \\ 1 & x_{3} & y_{3} \end{vmatrix}$$

$$(1)$$

Αναλύουμε, εντός του τριγώνου, το δυναμικό ως

$$\phi \approx \sum_{i=1}^{3} \phi_i N_i^t$$

όπου ϕ_i το δυναμικό στον κόμβο i και διαλέγουμε $N_i^t=\zeta_i$ τις τοπικές (εντός του τριγώνου t) συναρτήσεις βάσης. Σκοπός μας είναι να βρούμε τις κατάλληλες τιμές ϕ_i για κάθε κόμβο στον υπολογιστικό χώρο. Έτσι ορίζουμε τις ολικές συναρτήσεις βάσης ως

$$N_p = \sum_{t|p \in t} N_i^t$$

όπου t τρίγωνο τέτοιο ώστε ο κόμβος p να ανήκει σε αυτό, και i η τοπική αρίθμηση του p στο t. Το δυναμικό αναλύεται συνολικά:

$$\phi \approx \sum_{p=1}^{N_n} \phi_p N_p \tag{2}$$

όπου N_n το πλήθος κόμβων. Θα λύσουμε την εξίσωση Poisson:

$$\nabla \cdot (\epsilon \nabla \phi) + \rho = 0$$

χρησιμοποιώντας την μέθοδο Galerkin η οποία αποτελεί κατηγορία της μεθόδου σταθμισμένων υπολοίπων:

$$\langle \phi', \nabla \cdot (\epsilon \nabla \phi) + \rho \rangle = 0$$

όπου διαλέγουμε ως συναρτήσεις δοχιμής ϕ' τις συναρτήσεις βάσης N_i , οπότε:

$$\iint_{\Omega} \phi' [\nabla \cdot (\epsilon \nabla \phi) + \rho] ds = 0, \quad \forall \phi' \in \{N_i\}$$

όπου Ω ο υπολογιστικός χώρος. Οι παραπάνω είναι τόσες εξισώσεις όσους έχουμε αγνώστους κόμβους, τους οποίους θα βρούμε λύνοντας το σύστημα. Ισοδύναμα γράφονται:

$$-\iint_{\Omega} \nabla \phi' \cdot \epsilon \nabla \phi ds + \oint_{c} \phi' \epsilon \frac{\partial \phi}{\partial \hat{n}} dl + \iint_{\Omega} \phi' \rho ds = 0$$
(3)

όπου c το όριο της επιφάνειας Ω . Επειδή έχουμε είτε συνθήκες Dirichlet (γνωστό ϕ) είτε Neumann ($\frac{\partial \phi}{\partial \hat{n}} = 0$) στο όριο, ο δεύτερος όρος της εξίσωσης (3) ισούται με 0. Επίσης και στα δύο προβλήματα δεν υπάρχουν φορτία ($\rho = 0$), άρα:

$$\iint_{\Omega} \nabla \phi' \cdot \epsilon \nabla \phi ds = 0$$

Διακριτοποιώ αντικαθιστώντας την εξίσωση (2), επίσης αφού $\phi' \in \{N_i\}$ γράφω στη θέση του N_q για κάποιο $q \in \{1,..,N_n\}$:

$$\iint_{\Omega} \nabla N_q(\mathbf{r}) \cdot \epsilon \nabla \left(\sum_p \phi_p N_p(\mathbf{r})\right) ds = 0 \Rightarrow$$

$$\sum_p \epsilon \phi_p \iint_{\Omega} \nabla N_q(\mathbf{r}) \cdot \nabla N_p(\mathbf{r}) ds = 0$$
(4)

Ισχύει:

 $N_i^t(x,y)=\zeta_i(x,y)=a_i+b_ix+c_iy,$ εντός του στοιχείου και 0 αλλού \Rightarrow

$$abla N_i^t = egin{bmatrix} b_i \\ c_i \end{bmatrix},$$
 εντός του στοιχείου και 0 αλλού

Για κάθε κόμβο η ολική συνάρτηση βάσης εντός κάθε τριγώνου στο οποίο αυτός ανήκει ισούται με την τοπική συνάρτηση βάσης του και εκτός αυτών με μηδέν. Έπεται ότι το γινόμενο $\nabla N_p \cdot \nabla N_q$ ισούται με 0 για μη γειτονικούς κόμβους. Για γειτονικούς κόμβους p,q όπου ανήκουν και οι δύο σε κάποιο τρίγωνο t, ισχύει εντός του τριγώνου

$$\nabla N_p \cdot \nabla N_q = \nabla N_i^t \cdot \nabla N_j^t = \begin{bmatrix} b_i \\ c_i \end{bmatrix} \cdot \begin{bmatrix} b_j \\ c_j \end{bmatrix} = b_i b_j + c_i c_j$$

με i,j την τοπιχή αρίθμηση εντός του t. Έτσι:

$$\iint_{S} \nabla N_{p} \cdot \nabla N_{q} dS = \sum_{t|p,q \in t} (b_{i}b_{j} + c_{i}c_{j})A_{e}$$

$$\tag{5}$$

όπου i,j η τοπική αρίθμηση των κόμβων p,q στο τρίγωνο t, οι b,c δίνονται από την (1) και $A_e=D/2$ το εμβαδόν του τριγώνου. Η (4) γράφεται:

$$\sum_{p} \epsilon \phi_{p} \sum_{t|p,q \in t} (b_{i}b_{j} + c_{i}c_{j}) A_{e} = 0 \quad \forall q \in \{1, ..., N_{n}\}$$
(6)

Αν ορίσω τον τετραγωνικό πίνακα $N_n \times N_n$ S:

$$\mathbf{S}[p,q] = \epsilon \sum_{t|p,q \in t} (b_i b_j + c_i c_j) A_e$$

και τον πίνακα στήλη $1 \times N_n$ **F** που περιέχει τα δυναμικά των κόμβων ϕ_p , τότε το σύστημα (6) γράφεται:

$$\mathbf{S} \cdot \mathbf{F} = 0$$

Μπορούμε να υπολογίσουμε εύχολα τον πίναχα ${\bf S}$ αν απαριθμήσουμε χάθε τρίγωνο στον χώρο και έπειτα για χάθε έναν από τους ${\bf 9}$ συνδυασμούς των χόμβων του (έστω p,q ολιχά, i,j τοπιχά) υπολογίσουμε την ποσότητα $\epsilon(b_ib_j+c_ic_j)A_e$ και την προσθέσουμε στην θέση [p,q] του πίναχα.

Τέλος πρέπει να υπολογίσουμε τους κόμβους με οριακή συνθήκη Dirichlet δηλαδή γνωστούς. Επειδή ο πίνακας **F** είναι η λύση, δεν μπορεί να περιλαμβάνει τα γνωστά δυναμικά, έτσι τον χωρίζουμε τοποθετώντας πρώτα τα άγνωστα και έπειτα τα γνωστά:

$$\mathbf{F} = \begin{bmatrix} \mathbf{F}_f \\ \mathbf{F}_p \end{bmatrix}, \quad \mathbf{S} = \begin{bmatrix} \mathbf{S}_{ff} & \mathbf{S}_{fp} \\ \mathbf{S}_{pf} & \mathbf{S}_{pp} \end{bmatrix}$$

Τότε:

$$\mathbf{S}_{ff} \cdot \mathbf{F}_f = -\mathbf{S}_{fp} \cdot \mathbf{F}_p \tag{7}$$

 Λ ύνοντας το σύστημα (7) ως προς \mathbf{F}_f βρίσκουμε τα άγνωστα δυναμικά σε κάθε κόμβο του χώρου.

Αλγόριθμος ενέργειας

Αφού έχουμε βρει το δυναμικό σε κάθε κόμβο, θα υπολογίσουμε την συνολική ενέργεια ανά μονάδα μήκους:

$$W_e = \frac{1}{2} \iint_S \epsilon |\mathbf{E}|^2 dS = \frac{1}{2} \iint_S \epsilon \nabla \phi \cdot \nabla \phi dS$$

αναλύω το δυναμικό στις συναρτήσεις βάσης σύμφωνα με την (2):

$$W_e \approx \frac{1}{2} \iint_S \epsilon \nabla (\sum_p \phi_p N_p(\mathbf{r})) \cdot \nabla (\sum_q \phi_q N_q(\mathbf{r})) dS$$

γνωρίζουμε τις τιμές ϕ_p , το ϵ είναι σταθερό στον χώρο και τα αθροίσματα είναι πεπερασμένα, οπότε:

$$W_e \approx \frac{1}{2} \epsilon \iint_S \sum_p \{\phi_p \nabla N_p(\mathbf{r})\} \cdot \sum_q \{\phi_q \nabla N_q(\mathbf{r})\} dS$$

$$= \frac{1}{2} \epsilon \sum_{p} \sum_{q} \phi_{p} \phi_{q} \iint_{S} \nabla N_{p}(\mathbf{r}) \cdot \nabla N_{q}(\mathbf{r}) dS$$

Αντικαθιστώντας από την (5):

$$W_e \approx \frac{1}{2} \epsilon \sum_p \sum_{q \in N(p)} \phi_p \phi_q \sum_{t|p,q \in t} (b_i^t b_j^t + c_i^t c_j^t) A_e^t$$

$$= \sum_{p} \sum_{q \in N(p)} \frac{1}{2} \epsilon \phi_p \phi_q \sum_{t \mid p, q \in t} (b_i^t b_j^t + c_i^t c_j^t) A_e^t$$

όπου ως N(p) συμβολίζω τους γείτονες του κόμβου p (συμπεριλαμβανομένου και του εαυτού του).

Για να γλυτώσουμε υπολογιστικό χρόνο μπορούμε, όπως και στον υπολογισμό του πίνακα **S**, να απαριθμήσουμε όλα τα τρίγωνα και για κάθε έναν από τους 9 συνδυασμούς των κόμβων να υπολογίζουμε την ποσότητα

$$\frac{1}{2}\epsilon\phi_i\phi_j(b_ib_j+c_ic_j)A_e$$

και να την προσθέτουμε διαδοχικά στο αποτέλεσμα.

Ομοαξονικό καλώδιο

Το ομοαξονικό καλώδιο του σχήματος 1α΄ με 2b=3.5mm έχει χαρακτηριστική αντίσταση 50Ω και διηλεκτρικό τον αέρα. Ο εσωτερικός αγωγός τίθεται σε δυναμικό $\phi=1$ Volt και ο εξωτερικός σε $\phi=0$.

Υπολογισμός του α

Η χαρακτηριστική αντίσταση ομοαξονική γραμμής μεταφοράς δίνεται από την: 1

$$Z_0 = \frac{1}{2\pi} \sqrt{\frac{\mu}{\epsilon}} \ln(\frac{b}{a})$$

Λύνοντας ως προς a

$$a = be^{-2\pi Z_0 \sqrt{\frac{\epsilon}{\mu}}} = 1.75 \cdot 10^{-3} e^{-2\pi 50 \sqrt{\frac{\epsilon_0}{\mu_0}}}$$

Προχύπτει

$$a = 0.76mm$$

Χωρητικότητα αναλυτικά

Η ανά μονάδα μήκους χωρητικότητα κυλινδρικού πυκνωτή δίνεται από την: 2

$$C = \frac{2\pi\epsilon}{\ln(\frac{b}{a})} = 6.67014293 \cdot 10^{-11} F \tag{8}$$

Κώδικας / Αποτελέσματα

Η παραπάνω μέθοδος FEM για τον υπολογισμό του δυναμικού, όπως και αυτή για τον υπολογισμό της ενέργειας ανά μονάδα μήκους υλοποιήθηκε σε matlab. Υπάρχει αναλυτική εξήγηση σε επίπεδο συναρτήσεων με μορφή σχολίων στο αρχείο coaxial.m. Εδώ περιγράφεται συνοπτικά τη διαδικασία.

Αρχικά ορίζω τις περιοχές που φαίνονται στο σχήμα 2α΄ με τις παραμέτρους a,b. Οι περιοχές F1,F3 (όρια) θα χρησιμοποιηθούν για τον προσδιορισμό των σημείων με συνθήκες Dirichlet. Οι ακμές που βρίσκονται στο όριο τις F1 και του εξωτερικού (περιοχή 0) έχουν γνωστό δυναμικό $\phi=1$ Volt ενώ οι αντίστοιχες τις περιοχής F3 έχουν γνωστό δυναμικό $\phi=0$ Volt.

Ακολουθεί η δημιουργία τριγωνικού πλέγματος, στο σχήμα 2β' φαίνεται το αποτέλεσμα χωρίς refine. Στο σχήμα 5 φαίνονται οπτικοποιήσεις και του ομοαξονικού και του πυκνωτή παράλληλων πλακών για περισσότερα refines.

Ορίζεται καινούργια αρίθμηση για τους γνωστούς και αγνώστους κόμβους ώστε να τους επεξεργαστούμε ξεχωριστά, και έπειτα υπολογίζονται οι πίνακες \mathbf{S}_{ff} και \mathbf{S}_{fp} όπως περιγράφτηκε. Λύνεται το σύστημα (7) με direct μέθοδο. Έπειτα υπολογίζεται η ένταση του ηλεκτρικού πεδίου ως $\mathbf{E}=-\nabla \phi$. Στο σχήμα $2\gamma'$ φαίνονται τα αποτελέσματα.

 (γ') Δυναμικό (χρώμα) και ηλεκτρικό πεδίο (βέλη).

Σχήμα 2

Το πρόβλημα λύνεται με 0,1,2 και 3 refinements στο πλέγμα. Το πλήθος βαθμών ελευθερίας σε κάθε περίπτωση είναι το πλήθος των άγνωστων κόμβων. Για refinements 0,1,2 και 3 είναι 761, 3228, 13280 και 53856 αντίστοιχα. Στα γραφήματα δεν παρατηρείται διαφορά οπότε παρέχεται στο σχήμα 2γ΄ το αποτέλεσμα μόνο για 2 refinements. Παρατηρείται ελάχιστη διαφορά στο αποτέλεσμα του υπολογισμού της χωρητικότητας, η οποία υπολογίζεται ως εξής:

 $^{^{1}}$ Θεόδωρος Τσιμπούκης, Ηλεκτρομαγνητικό πεδίο, σελ. 933

 $^{^2 \}Theta$ εόδωρος Τσιμπούχης, Ηλεκτρομαγνητικό πεδίο, σελ. 145

Υπολογίζεται η ενέργεια με τη μέθοδο που παρουσιάστηκε παραπάνω. Έπειτα βρίσκεται η χωρητικότητα ως $C=2W_e/V^2$.

Το αποτέλεσμα ια refinements 0.1.2 και 3 είναι $6.68 \cdot 10^{-11} F$, $6.72567 \cdot 10^{-11} F$, $6.7065 \cdot 10^{-11} F$ και $6.67016 \cdot 10^{-11} F$, με σχετικό σφάλμα απο την αναλυτική τιμή -εξίσωση (8) - 0.15%, $3.6 \cdot 10^{-3}\%$, $7.55 \cdot 10^{-3}\%$ και $3 \cdot 10^{-4}\%$ αντίστοιχα. Με περισσότερα refinements παίρνουμε ακριβέστερα αποτελέσματα.

Ο πίναχας \mathbf{S} είναι αραιός (επειδή οι περισσότεροι χόμβοι είναι μη γειτονιχοί και για μη γειτονιχούς χόμβους $\mathbf{S}[p,q]=0$). Επομένως μπορούμε να χρησιμοποιήσουμε iterative solver ώστε να βελτιστοποιήσουμε μνήμη και χρόνο. Χρησιμοποιήθηκε η συνάρτηση pcg της matlab. Η iterative μέθοδος παρουσιάζει πλεονέχτημα ως προς την ταχύτητα και τη μνήμη, όμως τα αποτελέσματα είναι λιγότερο αχριβή μιας αχολουθείται διαδιχασία σύγχλισης.

Χρησιμοποιήθηκε tolerance στο σφάλμα ίσο με 0.01. Το αποτέλεσμα φαίνεται στο σχήμα $5\gamma'$ και όπως φαίνεται στα άκρα του καλωδίου παρουσιάζει οπτικό σφάλμα. Η υπολογισμένη χωρητικότητα με αυτή τη μέθοδο είναι $7.12\cdot 10^{-11}F$ με σημαντικό σφάλμα $4.58\cdot 10^{-12}F$.

Προφανώς εαν επιλεχθεί μικρότερο tolerance σφάλματος το αποτέλεσμα θα είναι πολύ ακριβέστερο, επιλέχθηκε συγκεκριμένα αυτό για να επιδειχθούν τα πλεονέκτημα και μειονεκτήματα της μεθόδου: για 3 refinements η direct μέθοδος τρέχει σε 0.072sec ενώ η iterative σε 0.048sec. Επίσης μπορεί να επιταχυνθεί περαιτέρω με καλό tuning και παραλληλοποίηση. Για μεγαλύτερα σε πλήθος αγνώστων προβλήματα οι διαφορές θα ήταν εμφανέστερες.

Για σύγκριση, στο 1 refinement, σε μικρότερο χρόνο από την direct (0.00129sec έναντι 0.00292sec) η iterative υπολογίζει χωρητικότητα $6.6887 \cdot 10^{-11} F$ με σχετικό σφάλμα 0.278%, καλύτερη από ότι στα 3 refinements.

Πυκνωτής επίπεδων πλακών

Ο πυχνωτής απείρου μήχους του σχήματος $1\beta'$ με διαστάσεις $w=4cm,\,t=2mm$ και d=1cm, διηλεχτρικό με $\epsilon_r=2.2$ τίθεται σε διαφορά δυναμικού V=100 Volt. Στις άχρες του υπολογιστικού χώρου υποτίθενται οριαχές συνθήχες Neumann. Οι πλάχες έχουν οριαχές συνθήχες Dirichlet με τους χόμβους που ανήχουν στην άνω να έχουν δυναμικό +V/2 και αυτούς που ανήχουν στην κάτω -V/2.

Ακολουθείται η ίδια διαδικασία με το ομοαξονικό καλώδιο (σχεδόν πανομοιότυπος κώδικας) για να υπολογιστούν το δυναμικό, το πεδίο και η χωρητικότητα. Διαφορά παρουσιάζεται στο γεγονός ότι η διηλεκτρική σταθερά εξαρτάται από την περιοχή (όπως φαίνεται στο σχήμα $1\beta'$ ανάμεσα στις πλάκες υπάρχει διηλεκτρικό με $\epsilon_r=2.2$ και έξω θεωρείται αέρας). Στο σχήμα $3\alpha'$ φαίνονται οι περιοχές που ορίστηκαν για να ξεχωρίζονται τα διηλεκτρικά (περιοχή F3) και οι συνθήκες Neumann και Dirichlet (περιοχή F1). Στο σχήμα $3\beta'$ φαίνεται το πλέγμα και στο σχήμα $3\gamma'$ το δυναμικό μετά το πέρας της διαδικασίας.

Επιπλέον γραφήματα

Μέρος Β

 (β') Δυναμικό (χρώμα) και ηλεκτρικό πεδίο (γραμμές ροής) πυκνωτή επίπεδων πλακών

Σχήμα 4

(α΄) Πλέγμα ομοαξονικού καλωδίου με 2 refinements.

 (β') Πλέγμα πυχνωτή επίπεδων πλακών με 2 refinements.

 (γ') Δυναμικό (χρώμα) και ηλεκτρικό πεδίο (βέλη) του ομοαξονικού καλωδίου με iterative solver.

Σχήμα 5: Επιπλέον γραφήματα