DEPARTMENT OF MATHEMATICS

MA201 Mathematics III

Academic Year 2015 - 2016

Tutorial & Additional Problem Set - 3

Date of Tutorial Class: August 18, 2015

Elementary Analytic Functions and their Properties SECTION - A (for Tutorial -3)

1. Prove that $\sinh(\Im(z)) \le |\sin(z)| \le \cosh(\Im(z))$ where $\Im(z)$ denotes the imaginary part of z. Deduce that $|\sin(z)|$ tends to ∞ as $|\Im(z)| \to \infty$.

(Thus, $\sin(z)$ is an unbounded complex-valued function of a complex variable, whereas $\sin(x)$ for $x \in \mathbb{R}$ is a bounded real-valued function of a real variable.).

- 2. Find all solutions of
 - (i) $\exp(z) = 1$
- (ii) $\exp(z) = i$
- (iii) $\exp(z 1) = 1$.
- 3. Describe the image of the following sets in the z-plane under the mapping $w = \sin z$.
 - (a) $\{z = x + iy \in \mathbb{C} : x = \pi/2, -\infty < y < \infty\}$
 - (b) $\{z = x + iy \in \mathbb{C} : x = -\pi/2, -\infty < y < \infty\}$
 - (c) $\{z = x + iy \in \mathbb{C} : |x| \le \pi/2, y = 0\}$
 - (d) $\{z = x + iy \in \mathbb{C} : x = 0, -\infty < y < \infty\}$
 - (e) $\{z = x + iy \in \mathbb{C} : x = a \text{ with } |a| < \pi/2, -\infty < y < \infty\}$
 - (f) $\{z = x + iy \in \mathbb{C} : |x| < \pi/2, y > 0\}$
 - (g) $\{z = x + iy \in \mathbb{C} : |x| < \pi/2, y = b, b \neq 0\}$

(Hint. $\cos(z) = \sin(z + \frac{\pi}{2})$, $\sinh(z) = -i\sin(iz)$ and $\cosh(z) = \cos(iz)$)

- 4. Evaluate the following:
 - (i) $\log(3-2i)$
- (ii) Log i
- (iii) $(i)^{(-i)}$
- 5. Find the principal branch of the multiple valued function $\log(2z-1)$.
- 6. If $z \neq 0$, c is a complex number and n is an integer then we know that the identity $(z^c)^n = (z)^{cn}$ holds. Give an example to show that this identity does not hold if n is replaced with arbitrary complex number.

SECTION - B (Supplementary Problems)

(These are for your own practice. They will not be discussed in Tutorials.)

- 7. Find the values of z for which $\exp(z)$ is (a) real and (b) purely imaginary.
- 8. Find the image of the vertical line $x = c_1$ and the horizontal line $y = c_2$ where c_1 and c_2 are real constants under the following mappings:
 - (i) $w = \exp(z)$
- (ii) w = (1/z)
- (Assume that c_1 and c_2 are non-zero.)
- 9. Show that the identity $\text{Log}(z_1z_2) = \text{Log}(z_1) + \text{Log}(z_2)$ is not always valid. (Note that this identity holds true iff $-\pi < \text{Arg}(z_1) + \text{Arg}(z_2) \le \pi$.)
- 10. Determine the domain of analyticity for the function f(z) = Log (3z i) and compute f'(z).