LaPIS Diagnostic Test Workbook - Mathematics

Name : Jayanth V

Class: 7

Section : B

School : AKV Public School

Login ID : AKV140

Jayanth V's Performance Report

Score: 15/40 Percentage: 37.5%

Jayanth V's Study Planner

Date	Topics Planned	Q. Numbers	Teacher Remark	Teacher Sign	Parent Sig
		Teacher's Fe	edback to Student		
	Class Teacher S	 Signature	Princi	pal Signature	

Basic arithmetic

Topics to be Improved		
Types of angles	Identification of types of angles	

Hi, here in this video you will learn Types of Angles

Question: 1

Find the angles.

Answer:

The angle ranges from $__$ ° to $__$ °.

The angle perpendicular to 0° is $___{\circ}$.

The straight line measures $___^{\circ}$.

Question: 2

The angle formed between the directions

(i) West and East is _____ angle.

(ii) North and East is angle.
(iii) East and South is angle.
Answer:
The angle formed between West and East is° and it is called angle.
The angle formed between North and East is° and it is called angle.
The angle formed between East and South is° and it is called angle.
Question: 3
The addition of straight angle and right angle is angle.
Answer:
The measurement of straight angle is°
The measurement of right angle is°.
Straight angle + Right angle = + = =
It is called as angle.

Data handling

Topics to be Improved		
Chance of probability	Sample space in probability, Basis of probability	
Arithmetic mean, mode and median	Mean, Median and Mode	

Hi, here in this video you will learn Basics of probability

Question: 4

Which of the following contains list of all possible outcomes.

Probability

Sample space

Sure events

.....

.....

Impossible events

Answer:

Probability is the measure of ______ (chance /number) of an events happenings. Sample space consists of _____ (possible/ impossible) outcomes. Sure events always _____ (occurs/don't occurs). Impossible events _____ (occurs/ don't occurs). Therefore, _____ contains list of possible outcomes.

Question: 5

Write the possible outcomes while spinning the given wheel.

Answer:			
Outcomes are (possible/imp The possible outcomes while spinning wheel	/	-	
Question: 6			
A bag contains three balss of colour blue, grare taken out.	reen and red. Write	e the possible outcom	nes if two balls
Answer:			
A bag contains,,	er ball can be ner ball can be ball can be cossible outcomes ar	or or e blue +	·
Hi, here in this video you will learn	Mean, Media	n, Mode	
Question: 7			
Find the mode of the following data: 5, 15,	23, 5, 32, 44, 72, 5	5, 6, 3, 5, 65, 45, 67,	24, 19 and 98.
Answer:			
Mode is the number that occursArranging the data in ascending order: occurs most number of time			
Question: 8			
Which shape contains median of the given d	lata 3, 5, 6, 2, 7, 9,	6, 4 and 1	
Answer:			1.
Median is the(first/central/lascending or descending order. Arrange the given data in ascending order:	•		rranged in
Central value of the given data is	and it is the	of a	ı data.
$\underline{\textit{Question: 9}}$			

Marks scored	100	90	80	70
Number of students	4	5	2	1

$Mean = \underline{\hspace{1cm}}$, $Median = \underline{\hspace{1cm}}$ and $Mode = \underline{\hspace{1cm}}$.
Answer:
$Mean = \frac{\text{of all observation}}{\text{number of observation}}.$
Here s sum of all observation $=$, number of observation $=$
Therefore, mean =
Arrange the data in ascending order:
Here, median =, mode =
Hi, here in this video you will learn Basics of probability
Question: 10
Identify the sure events and impossible events
(i) The sun rises in the west.
(ii) Water is colourless.
(iii) Clock rotates in clock wise direction.
(iv) Ball is square in shape.
$\underline{Answer:}$
Events that always occur are called (sure/ impossible) events.
Events that cannot occur are called (sure/ impossible) events.
Here, The sun rises in the west is event. Water is colourless is
event.
Clock rotates in clock wise direction is event. Ball is square in shape is event.
Question: 11
Probability of sure events is (greater / smaller) than probability of impossible events
Answer:
Probability of sure event = $\underline{\hspace{1cm}}$ (0/ 1/ any number).
Probability of impossible event $=$ (0/ 1/ any number). Therefore, Probability of sure event Probability of impossible event.
$\underline{Question: \ 12}$

Raju has pencil, an eraser, a scale, sharpener, colour pencil a probability of getting a pen from his box.	and protractor in his box.	What is the
Answer:		
Things Raju have (Yes/ No). Does Raju have pen in his box, (Yes/ No). Then probability of getting pen from his box is (0/1).)	

Geometry

Topics to be Improved		
Criteria for congruence of triangle	Idenfication of criteria of congruence of triangles	
Types of triangle	Basics of types of triangle (sides)	
Faces vertex and edges	Idenfication of faces, edges and vertices	
Sum of lengths of two sides of a triangle	Sum of two sides of a triangle	
Related angles	Basic of angles	
Right angle triangle and pythagoras property	Basics of Pythagoras property	
Transversal angle made by transversal	Basics of Transversal angle	

Hi, here in this video you will learn Criteria of congruence

Two geometrical shapes are said to be congruent if they are _____

O 10		
Question: 13 Circle the groups that cor	tain congruent images.	

Answer:

(identical/non-iden	ntical) in shapes and size.		
Example: Square a	and Rectangle are	(congruent/not congruent).	
Question: 14			

If the three sides of the triangle are equal to the corresponding sides of the other triangle, then two triangles are congruent under $____$ (SSS/ASA/SAS) criteria .

Answer:

Two triangle are _____ (congruent/not congruent) if they are identical in shapes and size. Criteria for congruence of triangles are SSS, _____ and ____.

- 1. In SSS Congruence criteria (2/3/5) sides of the triangle are (equal/1) not equal) to the three corresponding sides of the other triangle.
- 2. In SAS Congruence criteria (2/3/5) sides and (one/two) angle between them are equal to the corresponding sides and the included angle of the other triangle.
- 3. In ASA Congruence criteria (2/3/5) angles and (one/two) side between them are equal to the corresponding angles and the included side of the other triangle.

SSS	sides and angles are equal
SAS	sides and angles are equal
ASA	sides and angles are equal

.....

Question: 15

The triangles LNM and PRQ are congruent by SAS criteria. Then find the side PR

Answer:

The given two triangles satisfy criteria of congruence.
By SAS congruence criteria, MN = $_$, $_$ and $\angle N = _$
The side MN=8 cm in ΔLNM is equal to the side in ΔPRQ
The common included angle in \triangle LNM and $\triangle PRQ$ are
The side PR is equal to the side in $\triangle LNM$.
Therefore, length of side $PR = \underline{\hspace{1cm}}$

Hi, here in this video you will learn **Types of triangle**

Question: 16

Polygon with three sides is called as _____.

Answer:

A polygon is a simple _____ (open / closed) curve made up of only line segments. Polygon with three sides is called _____. Draw a diagram of polygon with three sides :

Question: 17

Identify the types of triangles.

Answer:

Triangle has _____ sides.

- Triangle with all sides are equal is called ______ triangle.
- Triangle with two sides of equal length is called _____ triangle.
- Triangle with three sides of different length is called _____ triangle.

Question: 18

A park is in the shape of an isosceles triangle. If side length of the park is 30ft and 60ft. then the possible length of third side of park can be ______.

.....

.....

Answer:

The shape of the park is ______.

The shapes has ______ sides and this shape has _____ sides of equal length.

Given: length of sides of park is _____.

The possible length of third side is _____.

 Hi , here in this video you will learn $\operatorname{\mathbf{Basics}}$ of $\operatorname{\mathbf{3D}}$ $\operatorname{\mathbf{model}}$

Question: 19

A point at which two or more lines segments meet is called _____(Vertex/ edges/ faces).

Answer:

has two end point (line/line segment/ray).

A ______is a point where two or more line segments meet(Vertex/ edges/ faces).

Mark the vertices in the diagram,

Mark and find the number of vertices, edges and faces in a cube.

$\underline{Answer:}$

Mark the vertex, edges and faces in a cube.

Count the number	of vertex,	edges and	faces in a	cube.	
Cube have	. vertices,	ed	$lges and _{-}$		faces.

Question: 21

How many vertices, edges and faces does dices have?

Answer:
The shape of dice is Dices have vertices, edges and faces.
Hi, here in this video you will learn Sum of the length of sides of the triangle
Question: 22
Find the greatest distance to reach C from A in the given diagram.
$\begin{array}{c} A \\ \hline 30m \\ B \\ \hline 60m \\ \end{array}$
Answer:
The sides of the given triangle are The possible way to reach point C from point A are and AB then to
Question: 23 (Sum of / Difference between) the length of any two sides of a triangle is smaller than the length of the third side.
Answer:
There are sides in a triangle. The sum of the two sides of a triangle is than the other side of the triangle. The difference of the two sides of a triangle is than the other side of the triangle. Example: In triangle XYZ,

Question: 24	
--------------	--

The lengths of two sides of a triangle are 7 cm and 10 cm. Between which two numbers can length of the third side fall?

Answer:

- 1. The sum of the two sides of a triangle is ______ than the third side of the triangle. Therefore, the third side should be _____(less/ greater) than sum of other two sides. Here, sum of the two sides = _____ + ___ = ____ Therefore, the length of the third side is less than _____
- 2. The difference of the two sides of a triangle is ______ than the third side of the triangle.

 Therefore, the third side should be ______ (less/ greater) than sum of other two sides.

 Here, difference of the two sides = _____ ___ = ____ = ____

 Therefore, the length of the third side is greater than ______

Therefore, length of the third side is greater than ______ but less than _____.

Hi, here in this video you will learn **Related Angles**

Question: 25

- (i) When two rays of an angle are perpendicular, then the angle formed between them is a $\underline{\hspace{1cm}}$ angle .
- (ii) When two rays of an angle are in opposite sides, then the angle formed between them is a _____ angle .

Answer:

A _____ (line segment /ray) begins from one point and travels endlessly in a direction.

(i) The angle formed between two perpendicular rays is ____° and it is called _____ angle.

(ii) If two rays starting at same point moves in opposite direction, they form a ______ (straight / perpendicular) line. The measure of the angle formed is _____ and it is called _____ angles.

Question: 26

Find the angle of $\angle DBE$

Answer:

BA and BC are _____ (parallel / perpendicular) rays. The angle formed between this rays is ____, $\angle ABC$ = ____.

$$\angle ABC = \angle ABE + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$= 30^{\circ} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$= \underline{\hspace{1cm}}$$
Therefore, $\angle DBE = \underline{\hspace{1cm}}$

Question: 27

Find the complementary angles in the given diagram.

Answer:

Two angles are said be complementary if sum of their angles is equal to _____.

$$\angle AOB = \underline{\hspace{1cm}}$$
, and its complement angle is $\underline{\hspace{1cm}}$.

$$\angle BOC =$$
 _____, and its complement angle is _____.

$$\angle COD = \underline{\hspace{1cm}}$$
, and its complement angle is $\underline{\hspace{1cm}}$.

$\angle DOE = \underline{\hspace{1cm}}$, and its complement angle is $\underline{\hspace{1cm}}$. Therefore, in the given figure the complementary angles are $\angle AOB$, $\underline{\hspace{1cm}}$ and $\angle BOC$, $\underline{\hspace{1cm}}$
——————————————————————————————————————
Hi, here in this video you will learn Pythagoras property
Question: 28
In a right angled triangle, square of the = sum of the squares of the legs.
Answer:
Pythagoras theorem is only applicable for triangle. Longest side of the triangle is (hypotenuse/ legs) and other two sides are called (hypotenuse/ legs).
Pythagoras theorem states that
Question: 29
Find the hypotenuse of the triangle ABC if base is 12 m and altitude is 5 m.
Answer:
m
Pythagoras theorem states that square of the = sum of the squares of its
Given: Base =, Altitude =, Base and altitude are (hypotenuse/ legs) of the triangle.
By Pythagoras theorem, $()^2 = ()^2 + ()^2$ = +
Therefore, hypotenuse of the triangle is
Question: 30
Find the length of the rectangle, if breadth is 3 cm and diagonal is 5 cm.
Answer:

Pythagoras theorem states that square on the _____ = sum of the squares on

Is Pythagoras theorem applicable in rectangle? ____ (yes/ no).

Given: breadth = _____, length of diagonal = _____

By Pythagoras theorem,
$$(____)^2 = (___)^2 + (___)^2$$

Therefore, diagonal of the rectangle is _____

Hi, here in this video you will learn Basics of Transversal angle

Question: 31

In given diagram, \angle 1 and \angle 7 are ______ (alternate / corresponding) angles.

.....

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

Angle that lies on different vertices and on the opposite sides of transversal is ______ angles.

Angle that lies on different vertices and on the same sides of transversal is _____ angles. Therefore, $\angle 1$ and $\angle 7$ are _____

Question: 32

Find the transversal, alternate angles and corresponding angles in a given diagram.

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

In a given diagram, _____ is a transversal line. (BF/AD/CE)

Alternate angles	Corresponding angles
\angle a and \angle g, \angle b and \angle h,	\angle a and \angle e, \angle b and \angle f,

.....

Question: 33

Find $\angle e$ and $\angle g$ if $\angle a = 30^{\circ}$.

Answer:

When parallel lines cut by a transversal,

- (i) Alternate angles are _____ (equal / not equal).
- (ii) Corresponding angles are _____ (equal / not equal).

Here, alternate angle of $\angle a$ is _____ and its value is ____. Corresponding angle of $\angle a$ is _____ and its value is _____.

Number system

Topics to be Improved			
Decimals	Multiplication and division of decimals		
Operations on rational numbers	Division of rational numbers		
Fractions	Division of fraction		
Law of Exponents	Law of Exponents		
Positive and negative rational numbers	Identification of positive rational numbers		
Introduction to rational numbers	Basics of rational numbers		
Exponents	Solving exponents		

Hi, here in this video you will learn Basics of decimals

Question: 34

Shade 0.4 part of the given shape.

Answer:

There are _____ boxes.

0.4 can be expressed as _____ in fraction

This fraction represents _____ parts out of ____equal parts.

So, we need to shade ______boxes out of ____boxes.

Question: 35

Solve the following.

- (i) 0.4×1.2
- (ii) 0.48×1.2

Answer:

(i) 0.4×1.2 :
Multiplication of 0.4×1.2 assuming there is no decimal point is
The number of digits after decimal point in 0.4 is and 1.2 is
Total digits after decimal point in the product of two numbers is
Count that digits from the right towards left and place the decimal point, the result i
(ii) 0.48×1.2 :
Multiplication of 0.48×1.2 assuming there is no decimal point is
The number of digits after decimal point in 0.48 is and 1.2 is
Total digits after decimal point in the product of two numbers is
Count that digits from the right towards left and place the decimal point, the result i
Question:~36
One box of chocolate costs Rs.20.10. What is the cost of 15 chocolates, if a box contains 10 chocolates?
$\underline{Answer:}$
One box contains chocolates. The cost of one box is Then cost of one chocolate = ÷ =
(i) Total digits after decimal point in decimal number $=$
(ii) Divide the two numbers assuming there is no decimal point.
2010 _
$\frac{2618}{15} = \underline{\hspace{1cm}}$

2010	_	
15	_	

(iii) Place the decimal point after _____ digits counting from the right in the quotient after division.

Then the cost of one chocolate is _____.

The cost of 15 chocolates = cost of one chocolate \times ____ = ___ x ___

Hi, here in this video you will learn Operation on rational numbers

is

is

Question: 37

Fill in the boxes to make the given expression correct.

$$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \boxed{\square}$$

\boldsymbol{A}	n	s	\boldsymbol{w}	e	r	•

When any fraction is divided by a fraction, we multiply the dividend by the _____ (same/reciprocal) of the divisor.

Here, dividend = and divisor = =

1		14	=	1	\times	=	
5	·	15					

Question: 38

Solve: $\frac{18}{7} \div 0.6$

Answer:

Fraction form of $0.6 = \underline{\hspace{1cm}}$

when any fraction is divided by a fraction, we multiply the dividend by the $__$ (same/reciprocal) of the divisor. Here, dividend = $__$ and divisor = $__$.

$$\frac{18}{7} \div \boxed{\square} = \frac{18}{7} \times \boxed{\square} = \boxed{\square}$$

Question: 39

Find the missing number in the expression $\frac{8}{3} \div \frac{16}{\square} = 2$

Answer:

$$\frac{8}{3} \div \frac{16}{\Box} = 2$$

$$\frac{8}{3} \times \frac{\square}{16} = 2$$

Transposing 8/3 to RHS,

$$\frac{\square}{16} = 2 \square \frac{8}{3}$$

$$\frac{\square}{16} = 2 \times \boxed{\square}$$

$$\frac{\square}{16} = \frac{\square}{\square}$$

Transposing 16 to other side, the result is _____

Hi, here in this video you will learn Division on fractions

Question: 40

Find the shape which contains the improper fraction of $5\frac{2}{7}$.

10		25	22
35	$\sqrt{\frac{10}{7}}$	$\left(\begin{array}{c} \frac{37}{7} \end{array}\right)$	$\left(\frac{32}{7} \right)$

 $5\frac{2}{7}$ is a _____ (proper/mixed) fraction. Here, 5 is ____ , 2 is ____ and 7 is ____

To convert mixed fraction into improper fraction, $\frac{\text{(Whole} \times \underline{\hspace{1cm}} \text{)+Numerator}}{\text{Denominator}}$

$$5 \frac{2}{7} = \frac{(--- \times ---) + ----}{7} = \frac{\square}{\square}$$

Question: 41

Solve: $\frac{1}{3} \div \frac{14}{3}$

Answer:

To divide a fraction by another fraction, multiply the dividend by $___$ (same / reciprocal) of the divisor. Here, dividend = $__$ and divisor = $__$.

$$\frac{1}{3} \div \frac{14}{3} = \frac{1}{3} \times \boxed{\square} = \boxed{\square}$$

<u>Question: 42</u>

Find the half of the fraction $\frac{12}{40}$.

Answer:

To find half of a number, divide the number by _____

$$\frac{12}{40} \div \underline{} = \frac{12}{40} \times \underline{} = \underline{}$$

Then the answer is _____

Hi, here in this video you will learn Law of exponents

Question: 43

 $(x)^0$ is equal to ______

Answer:	
21100 WC1 •	

_____ (Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result.

In
$$(x)^0$$
 base = _____
Power = ____

.....

......

.....

Any number or variable with power zero is equal to _____. Therefore, $(x)^0$ equal to _____.

Question: 44

i.
$$a^m \times a^n = \underline{\hspace{1cm}}$$

ii. $a^m \div a^n = \underline{\hspace{1cm}}$

Answer:

Multiplication of two numbers with same base with different power, their exponents are _____ (added/ subtracted)

Division of two numbers with same base with different power, their exponents are _____ (added/ subtracted).

Question: 45

Circle the result of the expression $(a^0 \times b^1) + (m^1 \times n^0) + (x^0 \times y^1)$

$$a+n+x$$
 bmy 1 $ab+mn+xy$ 0 anx $b+m+y$

Answer:

Any number with power zero is equal to______ (One/ Zero). Any number with power one is equal to _____ (same/ different) number.

$$(a^{0} \times b^{1}) + (m^{1} \times n^{0}) + (x^{0} \times y^{1}) = (\underline{\hspace{1cm}}) + (\underline{\hspace{1cm}} \ddot{O} \underline{\hspace{1cm}}) + (\underline{\hspace{1cm}})$$

$$= \underline{\hspace{1cm}} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$= \underline{\hspace{1cm}}$$

Hi, here in this video you will learn **Positive and Negative rational numbers**

Question: 46

Segregate positive and negative rational number.

•	If both the numerator and the denominator of a rational number are
	(positive/negative), then it is positive rational number.

• If either the numerator and the denominator of a rational number are negative, then it is (positive/negative) rational number.
In the given circle, positive rational numbers are and negative rational numbers are
Question: 47
$\frac{-3}{-4}$ is a (positive /negative / neither positive nor negative) rational number.
$\underline{Answer:}$
-3 is a number, -4 is a number.
-3 is a number, -4 is a number. Division of $\frac{-3}{-4} = \boxed{\boxed{}}$ and this rational number.
(Positive / Negative / Neither positive nor negative rational number)
Question: 48
The product of a positive rational number and a negative rational number isrational number. (Positive/ Negative/ neither positive nor negative)
$\underline{Answer:}$
Examples for positive rational numbers: Examples for negative rational numbers: Positive rational number × Negative rational number = × = and this is rational number

Hi, here in this video you will learn Basics of rational numbers

Question: 49

The numbers in the diagram represents.......

0, 4,5,2,3,1 are _____ numbers.

-1,-2, -3, -4 are _____ numbers.

The combination of these circles are called ______.

 $\frac{1}{49}$, $\frac{1}{2}$, $\frac{8}{27}$, $\frac{11}{5}$, $\frac{13}{75}$ are ______.

Combination of all three circles are called as _____ numbers.

Question: 50

Shade the correct form of rational numbers.

Answer:

Rational number can be expressed as ______, where both numerator and denominator are _____ (integer/ not a integer),

......

denominator is equal to ______(zero/ one/ any integer other than zero).

Circle the number which is not a rational number.

$$\frac{-5}{-8}$$
 $\frac{-3}{2}$ $\frac{12}{-6}$ $\frac{0}{-9}$ 256 $\frac{4}{0}$

Answer:

Question: 51

Rational number can be expressed as ______, where both numerator and denominator are ______(integer/ not a integer), denominator is equal to ______ (zero/ one/ any integer other than zero).

Here, $___$ is/are rational number and $___$ is/are not a rational number.

Hi, here in this video you will learn Exponents and power
Question: 52
Find the exponential form of 1000.
Answer:
(Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result. Exponents is also called as (Base / Power).
1000 can be written as = $10 \times $
10 is raised to the power of $\underline{} = (10)^{\underline{}}$
Question: 53 Find the value of $(-2)^3$. Answer:
In this exponential form $(-2)^3$, base =, power = $(-2)^3 = \underline{\qquad} \times \underline{\qquad} = \underline{\qquad}.$
Question: 54
(i) Tenth power of 100 is $((10)^{100})$ or $(100)^{10}$.
(ii) k is raised to the power of 5 is $\underline{\hspace{1cm}}((k)^5 \text{ or } (5)^k)$.

Exponential form = (Base)—

- (i) Tenth power of 100: Base = $__$, Power/Exponents = $__$, exponential form = $__$.
- (ii) k is raised to the power of 5: Base = ____, Power/Exponent = ____, exponential form = ____.

Comparing Quantities

Topics to be Improved		
Equivalent ratios	Basic of proportion	
Percentage	Basic of percentage	

Hi, here in this video you will learn Basics of proportion	
Question: 55	
If a:b and c:d are equivalent ratio, then it can be expressed as	
$\underline{Answer:}$	
A (proportion / ratio) is used to express (one/two) equivalent is Standard form to express proportion is	ratios.
Question:~56	

Find the ratio of shaded part to unshaded part of A and B. Are the two ratios equivalent ?

Answer:

Shaded part of $A = \underline{\hspace{1cm}}$, Unshaded part of $A = \underline{\hspace{1cm}}$.
Ratio of shaded to unshaded parts of A is Fractional form =
Shaded part of $B = \underline{\hspace{1cm}}$,
Unshaded part of $B = \underline{\hspace{1cm}}$.
Ratio of shaded to unshaded parts of B is
Fractional form $=$
Fraction form of A (equal/ not equal) to Fraction form of B.
Question: 57

If a: b:: c: d is proportion, shade the correct expression

$\boxed{ a = \frac{bc}{d} } \boxed{ \boxed{ c = \frac{ad}{b} } } \boxed{ \boxed{ ad=cd} }$
Answer:
Two equivalent ratio which are proportion, it can be written as a : b :: c : d or = (in fraction) . First and fourth term are called and second and third term are called In proportion, product of extreme terms is (equal to/ not equal to) product of middle terms. Therefore, a \times d =, then a = and c =
Hi, here in this video you will learn Basics of percentage
Question: 58
2% can be written as
Answer:
Percentages are numerators of fractions with denominator $2\% = { }$
Question: 59
Arun attended the LaPIS test for 100 marks and got 75% marks. What is the mark scored by Arun?
Answer:
Arun attended LaPIS test for marks. He got marks.
75 % can be written in fraction form
Then the mark scored by Arun = Total mark \times 75% = \times =
Question: 60
There are 25 apples in a basket in which 10 of them are rotten. Find the percentage of rotten

 $\underline{\textit{Answer:}}$

apples.

There are apples in a ba	asket.	
Number of rotten apples are $__$	·	
Fraction form of rotten apples	in a basket $=$	
Convert it into a percent—	v % —	

Algebra

Topics to be Improved		
Monomials, binomials, trinomials and polynomials	Types of algebraic expression	
Basics of simple equation	Solving of simple equation, Formating of simple equation	
subtraction of algebraic expressions	subtraction of algebraic expressions	
Addition and subtraction of algebraic expressions	Like terms and Unlike terms	

Hi,	here in	this	video	you	will	learn	Types	of	expression
-----	---------	------	-------	-----	------	-------	-------	----	------------

Question: 61

There are _____ terms in the expression 7x + 3y + m + 5.

Answer:

In algebraic expression, _____ (variables/ terms) are connected together with operations of addition.

The terms in the expression are ______, _____, and ______.

Therefore, there are ______ terms in the expression.

Question: 62

Classify the following expression into monomial, binomial and polynomial.

- 1. 7m + n + 2
- 2. $8x^2 + 0$
- 3. 7xy + 4m

Answer:

- 1. The terms in expression $8x^2 + 0$ are _____. Here, expression has _____ term and it is a _____.
- 2. The terms in expression 7xy + 4m are _____. Here, expression has _____ term and it is a _____.
- 3. The terms in expression 7m + n + 2 are _____. Here, expression has ____ term and it is a _____.

Question: 63 $5m^2 + m + 0$ is a ______ expression. (Monomial/ Binomial/ Trinomial) Answer: The terms in expression $5m^2 + m + 0$ are ____ Here, the expression has ______ terms and it is called a _____ expression. Hi, here in this video you will learn Solving an equation Question: 64 If ©=5, then 5 © +5 =Answer:The value of the given smiley ② is _____. Substituting the value in the expression $= 5(\underline{\hspace{1cm}}) + 5 = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$. Question: 65 Which of the following number can be placed in the box to make the equation correct (-2, -1, 0, 1, +3 = -47 | Answer: The given equation is 7 = -4 Substitute the values (-2, -1, 0, 1, 2) in the circle, 7× ____+3= ____ $7 \times$ _____+3 = _____ $7 \times \underline{\hspace{1cm}} + 3 = \underline{\hspace{1cm}}$ $7 \times _{---} + 3 = _{---}$ 7× ____+3 = ____ Therefore, ______ is the number that can be placed in a box to make the equation correct. Question: 66 Arrange the terms in the descending order when the value of x is 2. $5x \times 1$ x + 3 2x - 4 $\frac{1}{2}x$ 2x

Answer:

The given expression are _____.

The value of x is _____.

substituting value of $\mathbf x$

$$2x = 2 \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

$$x + 3 = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

 $5x \times 1 = 5 \times \underline{\hspace{1cm}} \times 1 = \underline{\hspace{1cm}}$

$$2x - 4 = 2 \times \underline{\qquad} - 4 = \underline{\qquad}$$
 $\frac{1}{2}x = \frac{1}{2} \times \underline{\qquad} = \underline{\qquad}$

		ng order:,, raic terms are,				
Hi,	here in this vie	deo you will learn	Subtraction	on expressi	-	
\overline{Que}	stion: 67					
Find	the sum of two ex	expressions $a + b + c a$	and $b + c + d$			
Ans	<u>wer:</u>					
The The	two terms will get	ions are and _ added only if they are sions = +	e(Like/	Unlike) terms.		
\overline{Que}	stion: 68					
			School A	School B		
		Number of boys	100b	250b		
		Number of girls	150g	200g		
		Number of teachers	25t	45t		
(i)	Total number of	boys in school A and	B is			
(ii)	Total number of	students in school B i	s			
(iii)	How many more	teachers are there in s	school B than scl	hool A ?	-	
\underline{Ans}	wer:					
(i)	Number of boys	in school A = in school B = boys in school A and	-•	+=		
(ii)	Number of boys in school $B = \underline{\hspace{1cm}}$, Number of girls in school $B = \underline{\hspace{1cm}}$. Total number of students in school B is $\underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$.					
(iii)	(iii) Number of teachers more in school B than school A = Teachers in school B — Teachers in school A = $___$.					
\overline{Que}	stion: 69					

Solve the following:

$$\begin{array}{c|c}
13x + \underline{\hspace{1cm}} \\
(+) & 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

$$\begin{array}{cccc}
 & 3a - 5b \\
 & 5a - 7b \\
 & -2a - \underline{\hspace{2cm}}
 \end{array}$$

Answer:

The two terms will get added only if they are _____ (like/unlike) terms.

$$\begin{array}{c|c}
13x + \underline{\hspace{1cm}} \\
(+) & 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

Hi, here in this video you will learn Addition on expression

Question: 70

Shade the like terms.

Answer:

Given terms are ______

Two or more term have _____ (same/ different) variables is called like terms.

Here, like terms are _____

Question: 71

Complete the expression $7r^2 + r \square - 2 \square = r^2$

Answer:

_____ (Like / Unlike) terms can be added or subtracted.

$$_{7r^2+ r} \square_{-2} \square = (_{7} + \underline{ } - 2)_{r^2} = \underline{ }$$

......

Question: 72

Sam have 3a chocolates and 9y icecream. Ram have 7a chocolates and 5y icecream.

(i) Total chocolates Ram and Sam have : _____.

Answer: Box A contains chocolates. Box B contains chocolates. No. of chocolates in Box B = × (No. of chocolates in Box A) Question: 74 Write the equation for the following statement. Subtracting four times of m from 4 is n Answer:	(ii) How many icecreams Sam have more than Ram :
(i) Total chocolates Ram and Sam have: Ram's chocolate + Sam's chocolates = + = (ii) How many icecreams Sam have more than Ram: icecream icecream = = Hi, here in this video you will learn Solving an equation using application Question: 73 Box B contains times the number of chocolates in Box A Answer: Box A contains chocolates. Box B contains chocolates. No. of chocolates in Box B = × (No. of chocolates in Box A) Question: 74 Write the equation for the following statement. Subtracting four times of m from 4 is n Answer:	Answer:
(i) Total chocolates Ram and Sam have: Ram's chocolate + Sam's chocolates = + = (ii) How many icecreams Sam have more than Ram: icecream icecream = = Hi, here in this video you will learn Solving an equation using application Question: 73 Box B contains times the number of chocolates in Box A Answer: Box A contains chocolates. Box B contains chocolates. No. of chocolates in Box B = × (No. of chocolates in Box A) Question: 74 Write the equation for the following statement. Subtracting four times of m from 4 is n Answer:	
(i) Total chocolates Ram and Sam have: Ram's chocolate + Sam's chocolates = + = (ii) How many icecreams Sam have more than Ram: icecream icecream = = Hi, here in this video you will learn Solving an equation using application Question: 73 Box A Gontains times the number of chocolates in Box A Answer: Box A contains chocolates. Box B contains chocolates. Box B contains chocolates. No. of chocolates in Box A) Question: 74 Write the equation for the following statement. Subtracting four times of m from 4 is n Answer:	
(i) Total chocolates Ram and Sam have: Ram's chocolate + Sam's chocolates = + = (ii) How many icecreams Sam have more than Ram: icecream icecream = = Hi, here in this video you will learn Solving an equation using application Question: 73 Box A times the number of chocolates in Box A Answer: Box A contains chocolates. Box B contains chocolates. No. of chocolates in Box B = × (No. of chocolates in Box A) Question: 74 Write the equation for the following statement. Subtracting four times of m from 4 is n Answer:	
Ram's chocolate + Sam's chocolates = + = (ii) How many icecreams Sam have more than Ram: icecream icecream = = Hi, here in this video you will learn Solving an equation using application Question: 73 Box B contains times the number of chocolates in Box A Answer: Box A contains chocolates. Box B contains chocolates. No. of chocolates in Box B = × (No. of chocolates in Box A) Question: 74 Write the equation for the following statement. Subtracting four times of m from 4 is n Answer:	Ram
Hi, here in this video you will learn Solving an equation using application Question: 73 Box A Box B Contains times the number of chocolates in Box A Answer: Box A contains chocolates. Box B contains chocolates. No. of chocolates in Box B = × (No. of chocolates in Box A) Question: 74 Write the equation for the following statement. Subtracting four times of m from 4 is n Answer:	
application Question: 73 Box A Box B Box B contains times the number of chocolates in Box A Answer: Box A contains chocolates. Box B contains chocolates. No. of chocolates in Box B = × (No. of chocolates in Box A) Question: 74 Write the equation for the following statement. Subtracting four times of m from 4 is n Answer:	
Box B contains times the number of chocolates in Box A Box A contains chocolates. Box B contains chocolates. Box B contains chocolates. No. of chocolates in Box B = \times (No. of chocolates in Box A) Question: 74 Write the equation for the following statement. Subtracting four times of m from 4 is n Answer:	海岛海绵
Box B contains times the number of chocolates in Box A Ranker: Box A contains chocolates. Box B contains chocolates. No. of chocolates in Box B = \times (No. of chocolates in Box A) Question: 74 Write the equation for the following statement. Subtracting four times of m from 4 is n Answer:	Question: 73
Box B contains times the number of chocolates in Box A Ranker: Box A contains chocolates. Box B contains chocolates. No. of chocolates in Box B = \times (No. of chocolates in Box A) Question: 74 Write the equation for the following statement. Subtracting four times of m from 4 is n Answer:	
Box B contains times the number of chocolates in Box A Ranker: Box A contains chocolates. Box B contains chocolates. No. of chocolates in Box B = \times (No. of chocolates in Box A) Question: 74 Write the equation for the following statement. Subtracting four times of m from 4 is n Answer:	
Box B contains times the number of chocolates in Box A Ranker: Box A contains chocolates. Box B contains chocolates. No. of chocolates in Box B = \times (No. of chocolates in Box A) Question: 74 Write the equation for the following statement. Subtracting four times of m from 4 is n Answer:	
Answer: Box A contains chocolates. Box B contains chocolates. No. of chocolates in Box B = × (No. of chocolates in Box A) Question: 74 Write the equation for the following statement. Subtracting four times of m from 4 is n Answer:	Box A Box B
Box A contains chocolates. Box B contains chocolates. No. of chocolates in Box B = \times (No. of chocolates in Box A) Question: 74 Write the equation for the following statement. Subtracting four times of m from 4 is n Answer:	Box B contains times the number of chocolates in Box A
Box B contains chocolates. No. of chocolates in Box B = \times (No. of chocolates in Box A)	Answer:
No. of chocolates in Box B = $____$ × (No. of chocolates in Box A) Question: 74 Write the equation for the following statement. Subtracting four times of m from 4 is n Answer:	Box A contains chocolates.
Question: 74 Write the equation for the following statement. Subtracting four times of m from 4 is n Answer:	Box B contains chocolates.
Write the equation for the following statement. Subtracting four times of m from 4 is n Answer:	
Subtracting four times of m from 4 is n Answer:	Question: 74
Answer:	- · · · · · · · · · · · · · · · · · · ·
$\Gamma_{}$ $L_{}$ $\Gamma_{}$	Farm times of m
Four times of $m = \underline{\hspace{1cm}}$ Subtracting four times of m from $4 = \underline{\hspace{1cm}}$	
Substacting four times of m from 4 —	Substacting four united of the from 4 —
The equation is	The equation is
Question: 75	Question, 7/5

Compare the given two statements $(<,>,=)$
Sum of $2a$ and 9 Add 9 to the product of a and 2
$\underline{Answer:}$
Sum of $2a$ and $9 = \underline{\hspace{1cm}}$
Product of a and $2 = \underline{\hspace{1cm}}$
Add 9 to the product of a and $2 = \underline{\hspace{1cm}}$
Therefore, sum of $2a$ and $9 \square$ Add 9 to the product of a and 2