MA1200 CALCULUS AND BASIC LINEAR ALGEBRA I

LECTURE: CG1

Chapter 5
Exponential and Logarithmic Functions

Exponential Functions

The **exponential function with base** b is defined by

$$f(x)=b^x,$$

where the constant b (with b > 0 and $b \ne 1$) is called the **base**, and $x \in \mathbb{R}$ is called the **exponent**.

E.g. $f(x) = 10^x$, $g(x) = \left(\frac{1}{2}\right)^x$, $h(x) = 5^{3x+2}$ are examples of exponential functions. $k(x) = x^{10}$ is NOT an exponential function.

Graphs of exponential functions:

Note that:

- 1. The largest possible domain of $f(x) = b^x$ is $Dom(f) = \mathbb{R}$.
- 2. The largest possible range of $f(x) = b^x$ is $Ran(f) = (0, \infty)$.
- 3. For 0 < b < 1, $f(x) = b^x$ is a **strictly decreasing** function. $f(x) \to \infty \text{ as } x \to -\infty \text{ and } f(x) \to 0 \text{ as } x \to \infty$
- 4. For b > 1, $f(x) = b^x$ is a **strictly increasing** function. $f(x) \to 0 \text{ as } x \to -\infty \text{ and } f(x) \to \infty \text{ as } x \to \infty$

- 5. For any b (where b>0 and $b\neq 1$), the graph of $f(x)=b^x$ always cuts the y-axis at y=1, since $f(0)=b^0=1$ for all b>0. However, it never touches the x-axis, since $f(x)=b^x$ is always positive.
- 6. Since the exponential function $f(x) = b^x$ is either strictly decreasing (for 0 < b < 1) or strictly increasing (for b > 1), $f(x) = b^x$ is a one-to-one function and its inverse $f^{-1}(x)$ exists.

The graphs of exponential functions with different values of b are shown below.

Note that $y = 1^x$ is not an exponential function, since $y = 1^x = 1$ is a constant function.

Q.1 The larger the base, the faster the function is increasing for x>0.

- $y = 10^{x}$ $18 y = 10^{x}$ $16 y = e^{x}$ $12 y = 1.5^{x}$ $4 y = 1^{x} = 1$ 0 = 1 = 2 3 = 4
 - Q.2 The graph of $y = (\frac{3}{2})^x$ is a reflection of the graph of $y = (\frac{3}{2})^{3x}$ about the y-axis.

f(x) — f(-x)

reflect
about
y-axis

Question 1: Compare the graphs of $y = \left(\frac{3}{2}\right)^x$ and $y = 10^x$. What do you observe?

 $y = 1.5^{-x} = (2/3)^x$

-3

-2

Question 2: Compare the graphs of $y = \left(\frac{3}{2}\right)^x$ and $y = \left(\frac{2}{3}\right)^x$. What do you observe? $= \left(\frac{3}{2}\right)^{-x}$

Laws of indices:

If a > 0, b > 0, x and y are real numbers, then

(1)
$$a^0 = 1$$

$$(2) \quad a^{x+y} = a^x \cdot a^y$$

$$a^{-x} = \frac{1}{a^x}$$

(4)
$$a^{x-y} = \frac{a^x}{a^y}$$
 (5) $(a^x)^y = a^{xy}$

$$(5) \quad (a^x)^y = a^{xy}$$

$$(6) \qquad (ab)^x = a^x \cdot b^x$$

$$(7) \qquad \left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}$$

Natural Base *e*

A special case, in which we consider b = e, where e is defined by the limit of the sequence

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = 2.7182818 \dots$$

That is, the value of $\left(1+\frac{1}{n}\right)^n$ approaches the irrational number $e=2.7182818\ldots$ as ngets larger and larger (i.e. as $n \to \infty$). The number e is called the **natural base**. The exponential function with base e, $f(x) = e^x$, is called the **natural exponential function**.

Example 1

For each of the following functions, find its largest possible domain and largest possible range, and then sketch its graph.

(a)
$$f(x) = e^{x+1} - 5$$

(b)
$$g(x) = 3 + 2e^{-x}$$

(b)
$$g(x) = 3 + 2e^{-x}$$
 (c) $h(x) = 1 - 3\left(\frac{1}{2}\right)^x$

Solution

- (a) Since e^{x+1} is well-defined for all real values of x, the function $f(x) = e^{x+1} 5$ is also well-defined for all real values of x. $\therefore Dom(f) = \mathbb{R}$ For any $x \in Dom(f) = \mathbb{R}$, e^{x+1} is always greater than 0, and thus $f(x) = e^{x+1} - 5$ is always greater than -5. $\therefore Ran(f) = (-5, \infty)$.
- (b) $g(x) = 3 + 2e^{-x}$ is well-defined for all real values of x, so $Dom(g) = \mathbb{R}$. For any $x \in Dom(g) = \mathbb{R}$, we have $e^{-x} > 0$ and thus $g(x) = 3 + 2e^{-x} > 3$. $\therefore Ran(f) = (3, \infty).$

(c) $h(x) = 1 - 3\left(\frac{1}{2}\right)^x$ is well-defined for all real values of x, so $Dom(h) = \mathbb{R}$.

For any
$$x \in Dom(h) = \mathbb{R}$$
, we have $\left(\frac{1}{2}\right)^x > 0 \implies -3\left(\frac{1}{2}\right)^x < 0$

⇒
$$h(x) = 1 - 3\left(\frac{1}{2}\right)^x < 1$$
. Thus, $Ran(f) = (-\infty, 1)$.

Graphs:

(c)
$$h(x) = 1 - 3\left(\frac{1}{2}\right)^x$$

Inverse function of b^x

The exponential function $f(x) = b^x$ (with b > 0 and $b \ne 1$) is a one-to-one function and thus it has an inverse. Its inverse is

$$f^{-1}(x) = \log_b x,$$

which is called the logarithmic function with base b.

Logarithmic Functions

The **logarithmic function with base** b is defined as

$$f(x) = \log_b x$$

for x > 0. For $y = \log_b x$, the constant b (with b > 0 and $b \ne 1$) is called the **base**, and y is called the **exponent**.

$$y = \log_b x \iff x = b^y$$

Here, $y = \log_b x$ is the <u>logarithmic form</u> and $b^y = x$ is the <u>exponential form</u>.

Note that exponential function is the inverse function of logarithmic function.

Example 2

Write down each equation in its equivalent exponential form.

- (a) $2 = \log_5 x$ (b) $3 = \log_b 64$ (c) $\log_3 7 = y$

Solution

- (a) $2 = \log_5 x$ means $5^2 = x$
- (b) $3 = \log_b 64$ means $b^3 = 64$.
- (c) $\log_3 7 = y$ means $3^y = 7$.

Example 3

Write down each equation in its equivalent logarithmic form.

- (a) $12^2 = r$ (b) $b^3 = 8$ (c) $e^a = 9$

Solution

(a) $(12)^2 = r$ means $(2) = \log_{12} r$

(b) $b^3 = 8$ means $3 = \log_b 8$.

(c) $e^a = 9$ means $a = \log_e 9$.

<u>Graphs of logarithmic functions</u>:

$$y = \log_b x$$
$$(0 < b < 1)$$

Note that:

1. The logarithmic function $f(x) = \log_b x$ is only defined for positive values of x.

 \therefore The largest possible domain of $f(x) = \log_b x$ is $|Dom(f) = (0, \infty)|$.

2. The largest possible range of $f(x) = \log_b x$ is $|Ran(f)| = \mathbb{R}$.

3. For 0 < b < 1, $f(x) = \log_b x$ is a **strictly decreasing** function.

4. For b > 1, $f(x) = \log_b x$ is a **strictly increasing** function.

5. For any b (where b>0 and $b\neq 1$), the graph of $f(x)=\log_b x$ always cuts the x-axis at x=1, i.e. $f(1)=\log_b 1=0$ for all b>0 and $b\neq 1$. However, it never cuts the y-axis, since $f(x) = \log_b x$ is not defined at zero or negative values of x.

Two commonly used logarithms:

- If the base b = 10, $\log_{10} x$ is called the **common logarithm**, usually denoted by $\log x$.
- If the base b=e (the natural number), $\log_e x$ is called the **natural logarithm**, usually denoted by $\ln x$.

The graphs of logarithmic functions with different values of b are shown below.

