Primer trabajo

Notas importantes:

- Lenguaje: Sólo se puede utilizar *Python*. Asimismo, se debe evitar el uso de módulos especializados. Esto es, sólo pueden utilizar los módulos llamados o creados en clase. La penalidad de no cumplir este requerimiento es de -20 puntos.
- Entregable: Es suficiente presentar el *Jupyter Notebook* (incluyendo los archivos *py* y bases de datos que permitan ejecutar el *notebook*). Este *notebook* debe estar adecuadamente documentado. Por ejemplo, se debe **indicar explícitamente en que segmento se responde cada pregunta**. Si la ubicación de la respuesta a una pregunta no es evidente, se considerará como pregunta no respondida y no recibirá puntaje.
- Este trabajo (1 de 2) se evalúa sobre 20 puntos y equivale al 30 % de la nota final.

1. Simulación

Ustedes desean verificar si, el paseo aleatorio es un buen proceso para predecir el tipo de cambio nominal peruano. Para ello, descarga dicha serie del repositorio BCRPdata y realiza la siguiente regresión:

$$y_t = \beta_0 + \sum_{i=1}^{12} \beta_i y_{t-i} + u_t = \beta X_t + u_t \text{ con } u_t \sim \mathcal{N}(0, \sigma^2),$$
(1)

donde y es el logaritmo por 100 del tipo de cambio interbancario promedio mensual (serie PNO1207PM), $\beta = [\beta_0 \dots \beta_{12}]'$ y $X_t = [1 \ y_{t-1} \dots \ y_{t-12}]'$.

Así, formulan el siguiente *prior* independiente: $\beta \sim \mathcal{N}(\underline{b}, \underline{V})$ y $\sigma^2 \sim \Gamma^{-1}\left(\frac{\underline{a}_1}{2}, \frac{\underline{a}_2}{2}\right)$, donde:

- $\underline{b} = [0, 1, 0, ..., 0]'$
- \bullet $\underline{V}=\mathrm{diag}\left(100,\frac{\lambda}{1^2},\frac{\lambda}{2^2},...,\frac{\lambda}{12^2}\right)$ con $\lambda=0.20$
- $\underline{a}_1 = \underline{a}_2 = 0.01$

En este caso, la distribución posterior es

$$p(\beta, \sigma^{2}|y, X) \propto \frac{1}{(\sigma^{2})^{\frac{a_{1}+n+2}{2}}} \exp\left[-\frac{1}{2\sigma^{2}}\left(\underline{a}_{2}+(n-k)s^{2}+(\beta-b)'X'X(\beta-b)\right) + \sigma^{2}(\beta-\underline{b})'\underline{V}^{-1}(\beta-\underline{b})\right]$$

$$(2)$$

donde $b=(X'X)^{-1}X'y$ y $s^2=\frac{(y-Xb)'(y-Xb)}{n-k}$. Esta es una función de distribución conjunta que no se puede simular con modelos de densidad conocidos. De acuerdo con ello, se intenta computar las densidades marginales; sin embargo, sólo es posible obtener expresiones para las siguientes densidades condicionales:

$$p(\beta|\sigma^2, y, X) \propto \exp\left[-\frac{1}{2\sigma^2}(\beta - \overline{b})'\overline{V}^{-1}(\beta - \overline{b})\right] :: \beta|\sigma^2, y, X \sim \mathcal{N}(\overline{b}, \overline{V})$$
(3)

$$p(\sigma^2|\beta, y) \propto \frac{1}{(\sigma^2)^{\frac{\overline{a}_1}{2}+1}} \exp\left[-\frac{\overline{a}_2/2}{\sigma^2}\right] : \sigma^2|\beta, y, X \sim \Gamma^{-1}\left(\frac{\overline{a}_1}{2}, \frac{\overline{a}_2}{2}\right)$$
(4)

$$\begin{array}{l} \text{donde } \overline{V} = \left(\underline{V}^{-1} + \frac{1}{\sigma^2}X'X\right)^{-1} \text{, } \overline{b} = \overline{V}\left(\underline{V}^{-1}\underline{b} + \frac{1}{\sigma^2}X'y\right) \text{, } \overline{a}_1 = \underline{a}_1 + n \text{ y } \overline{a}_2 = \underline{a}_2 + (n-k)s^2 + (\beta-b)'X'X(\beta-b). \end{array}$$

- 1. [4 puntos] Con muestreo de Gibbs obtenga 10^5 simulaciones de β y calcule el intervalo creíble del 95 % de $\sum_{i=1}^{12} eta_i$. ¿Rechazarían la hipótesis nula de que $\sum_{i=1}^{12} eta_i = 1$ (i.e., H_0 : paseo aleatorio es un buen proceso)?
- 2. [6 puntos] Repitan la pregunta 1, pero realicen la simulación con muestreo de Metropolis-Hastings.

2. **BVAR**

La base de datos "DBmf_sa.xlsx" (hoja "Final") contiene información entre 2003 y 2020 de las siguientes variables

- ysoc: Logaritmo (\times 100) del PBI real de socios comerciales (trimestral, índice: 2007=100, ajustado por estacionalidad)
- **psoc:** Logaritmo (\times 100) del IPC de socios comerciales (promedio trimestral de serie mensual, índice: 2009=100, ajustado por estacionalidad)
- rsoc: Tasa de interés externa o Effective FED Funds rate (promedio trimestral de serie mensual, %)
- ti: Logaritmo (× 100) de los términos de intercambio del comercio internacional (promedio trimestral de serie mensual, índice: 2007=100)
- cc: Balanza de cuenta corriente (trimestral, % del PBI)
- yp: Logaritmo (× 100) del PBI real primario (acumulado trimestral de serie mensual, índice: 2007=100, ajustado por estacionalidad)
- y: Logaritmo (\times 100) del PBI real (acumulado trimestral de serie mensual, índice: 2007=100, ajustado por estacionalidad)

- cons: Logaritmo (\times 100) del consumo real (trimestral, precios constantes de 2007, ajustado por estacionalidad)
- inv: Logaritmo (× 100) de la inversión real (trimestral, precios constantes de 2007, ajustado por estacionalidad)
- p: Logaritmo (× 100) del IPC (promedio trimestral de serie mensual, índice: 2021=100, ajustado por estacionalidad)
- r: Tasa de interés interbancaria promedio (promedio trimestral de serie mensual, %)
- rer: Logaritmo (× 100) del tipo de cambio real multilateral (promedio trimestral de serie mensual, índice 2009=100)

a partir de esta base de datos nos interesa realizar proyecciones para los próximos dos años (2021 y 2022). Para ello implementaremos los siguientes pasos:

- 1. Calibrar los hiperparámetros del BVAR (sin y con tratamiento por pandemia).
- 2. Calcular el error medio de la proyección (sin y con tratamiento por pandemia).

Por lo tanto, el vector es

$$\mathbf{y}_{t} = [y_{t}^{soc}, \ p_{t}^{soc}, \ r_{t}^{soc}, \ ti_{t}, \ cc_{t}, \ y_{t}^{p}, \ y_{t}, \ cons_{t}, \ inv_{t}, \ p_{t}, \ r_{t}, \ rer_{t}]'. \tag{5}$$

Considere para el prior (de Minnesota) que todas las variables tienen raíz unitaria con excepción de la cuenta corriente y las tasas de interés. Esto debido a que las variables mencionadas son teóricamente estacionarias.

Un tratamiento para la pandemia

Con la notación en clase, el modelo BVAR se puede escribir de la siguiente manera:

$$\mathbf{y}_t = \mathbf{X}_t \mathbf{B} + \mathbf{a}_t \text{ con } \mathbf{a}_t \sim \mathcal{N}(\mathbf{0}_{k \times 1}, \mathbf{\Sigma})$$

En este contexto, Lenza and Primiceri (2022) sugieren introducir un escalador del término de error, s_t , de la siguiente manera:

$$\mathbf{y}_t = \mathbf{X}_t \mathbf{B} + \mathbf{s}_t \mathbf{a}_t \text{ con } \mathbf{a}_t \sim \mathcal{N}(\mathbf{0}_{k \times 1}, \mathbf{\Sigma})$$
 (6)

que sigue el siguiente proceso:

$$s_{t} = \begin{cases} 1, & \text{para } t < t^{*} \text{ donde } t^{*} \text{ es el primer trimestre de 2020} \\ \bar{s}_{0}, & \text{para } t = t^{*} \\ \bar{s}_{1}, & \text{para } t = t^{*} + 1 \\ \bar{s}_{2}, & \text{para } t = t^{*} + 2 \\ 1 + (\bar{s}_{2} - 1)\rho^{t - t^{*}}, & \text{para } t > t^{*} + 2 \end{cases}$$

$$(7)$$

Note que, si definimos $\tilde{\mathbf{y}}_t = \mathbf{y}_t/s_t$ y $\tilde{\mathbf{X}}_t = \mathbf{X}_t/s_t$, entonces 6 se puede escribir de la siguiente manera:

$$\tilde{\mathbf{y}}_t = \tilde{\mathbf{X}}_t \mathbf{B} + \mathbf{a}_t \text{ con } \mathbf{a}_t \sim \mathcal{N}(\mathbf{0}_{k \times 1}, \mathbf{\Sigma})$$
 (8)

que es el objeto con el que ya estamos familiarizados.

Calibrar los hiperparámetros del BVAR

Si agrupamos a los hiperparámetros en θ , la verosimilitud marginal de los datos es $p(\mathbf{y}|\theta)$ que se calcula al integrar a la probabilidad de los datos en el rango de valores admisibles de los coeficientes del BVAR:

$$p(\mathbf{y}|\boldsymbol{\theta}) = \int \int p(\mathbf{y}|\mathbf{B}, \boldsymbol{\Sigma}, \boldsymbol{\theta}) p(\mathbf{B}|\boldsymbol{\Sigma}, \boldsymbol{\theta}) p(\boldsymbol{\Sigma}|\boldsymbol{\theta}) d\mathbf{B} d\boldsymbol{\Sigma}.$$
(9)

En Giannone et al. (2015) se demuestra que para el caso del prior Nolmal-Wishart conjugado la expresión (9) se reduce a

$$p(\mathbf{y}|\boldsymbol{\theta}) = \pi^{-\frac{kT}{2}} \frac{\Gamma_k((T+\underline{v})/2)}{\Gamma_k(\underline{v}/2)} |\underline{\mathbf{S}}|^{-\frac{T}{2}} \left(\frac{|\overline{\Omega}(\boldsymbol{\theta})|}{|\underline{\Omega}(\boldsymbol{\theta})|} \right)^{\frac{k}{2}} \left(\frac{|\overline{\mathbf{S}}(\boldsymbol{\theta})|}{|\underline{\mathbf{S}}|} \right)^{-\frac{T+\underline{v}}{2}} \propto f(\boldsymbol{\theta}), \tag{10}$$

una versión numéricamente estable de $f(\theta)$ en (10) se implementa en la función Hyper_ML que es parte del módulo VARstuff.py.

Ejercicios

De acuerdo a ello, implementemos los siguientes pasos

- 3. [1 puntos] Modifiquen Hyper_ML para incluir un argumento de entrada adicional (llamado 'flag_sc'), tal que cuando flag_sc = True, se añada el prior de suma de coeficiente (la versión actual solo implementa el prior de *Minnesota*). Es probable que necesiten añadir más argumentos para que la función logre calcular el prior de suma de coeficientes. Fijen el hiperparámetro de este segundo prior en τ . Entonces $\theta = [\lambda, \tau]'$.
- 4. [2 puntos] En todas las regresiones, considere 5 rezagos (p=5) dada la frecuencia trimestral. Encuentre los hiperparámetros que maximizan la siguiente *hyperposterior*:

$$p(\boldsymbol{\theta}|\mathbf{y}) = p(\mathbf{y}|\boldsymbol{\theta})p(\boldsymbol{\theta}),\tag{11}$$

donde $p(y|\theta)$ se define en 9 mientras que el hyperprior, $p(\theta)$, se obtiene de:

■ Tanto λ como τ siguen una distribución $\Gamma(\alpha, \theta)$ cuya densidad es

$$f(x) = \frac{1}{\Gamma(\alpha)\theta^{\alpha}} x^{\alpha - 1} \exp\left(-\frac{x}{\theta}\right)$$
 (12)

donde la moda de x es $m=(\alpha-1)\theta$ y la varianza es $v=\alpha\theta^2.$

- En el caso de λ : m=0.2 y v=0.16.
- En el caso de μ : m=1 y v=1.
- 5. [2 puntos] Calibre los hiperparámetros con sus valores estimados en la pregunta anterior. Realice una proyección (central y con un intervalo creíble del 95 %) para los años 2021 y 2022 del crecimiento económico anual y de la inflación a 4 trimestres. Compare su proyección contra los valores ejecutados y calcule la raíz error cuadrático medio.

$$e_x = \left[\frac{1}{8} \sum_{i=1}^{8} (\mathbf{E}_T X_{T+i} - X_{T+i})^2\right]^{\frac{1}{2}},$$

donde $E_T X_{T+i}$ es la variable que se proyecta para el momento T+i con información al momento T, a partir del VAR en la transformación de interés, mientras que X_{T+i} es el valor ejecutado.²

- 6. [4 Ptos.] Repita las preguntas 3-5 luego de incluir la 'corrección' de Lenza and Primiceri (2022). Para ello tome en cuenta lo siguiente:
 - a. En la pregunta 3, $\boldsymbol{\theta} = [\lambda, \tau, \bar{s}_0, \bar{s}_1, \bar{s}_2, \rho]'$. Asimismo, dentro de la función que computa la verosimilitud marginal de los datos se deberá reescalar \mathbf{y} y \mathbf{X} de tal manera que los cálculos se realicen con $\tilde{\mathbf{y}}$ y $\tilde{\mathbf{X}}$. Los *hyperpriors* restantes son
 - i. $\bar{s}_0, \bar{s}_1, \bar{s}_2 \sim \mathcal{P}(1,1)$. Observe que la distribución de Pareto $\mathcal{P}(a,b)$ tiene la forma:

$$f(x) = \begin{cases} \frac{ab^a}{x^{a+1}}, & \text{para } x > b \\ 0, & \text{para } x \le b \end{cases}$$

ii. $\rho \sim \mathcal{B}(a,b)$ con **media** m=0.8 y varianza v=0.04. La densidad de $\mathcal{B}(a,b)$ es:

$$f(x) = \begin{cases} \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} x^{a-1} (1-x)^{b-1}, & \text{ para } x \in [0,1] \\ 0, & \text{ para otros casos} \end{cases}$$

cuya **media** es $m=\frac{a}{a+b}$ y con varianza $v=\frac{ab}{(a+b)^2(a+b+1)}$.

7. [1 Pto.] ¿Qué modelo es más preciso (con o sin tratamiento por pandemia)?¿esperaba estos resultados?

¹Ver apéndice A para consultar las transformaciones.

²El resto de hojas del Excel "DBmf_sa.xlsx" incluyen datos a 2022.

Bibliografía

Giannone, D., Lenza, M. and Primiceri, G. E. (2015), 'Prior selection for vector autoregressions', *Review of Economics and Statistics* **97**(2), 436–451.

Lenza, M. and Primiceri, G. E. (2022), How to estimate a vector autoregression after march 2020, Technical Report 4.

A. Transformaciones

Transformaciones regularmente utilizadas:

■ Crecimiento del PBI: Sea X_t el nivel de PBI (i.e., $X_t = \exp(y_t/100)$), entonces el crecimiento económico anual se entiende por el valor del fin de año de:

$$\mathsf{Crec} = 100 \times \left(\frac{\sum_{i=0}^{11} X_{t-i}}{\sum_{i=0}^{11} X_{t-12-i}} - 1 \right)$$

■ Inflación a 4 trimestres: Sea X_t el nivel del IPC (i.e., $X_t = \exp(p_t/100)$), entonces inflación a 4 trimestres se entiende por:

$$\Pi_t = 100 \times \left(\frac{X_t}{X_{t-4}} - 1\right)$$