Varianta 5

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

SUBIECTUL I (30 de puncte)

1.	$\lg 100 + \lg \frac{1}{10} = \lg 10 =$	3 p
	=1	2 p
2.	f(-1) = 3, f(0) = 2, f(1) = 1	3 p
	$Im f = \{1, 2, 3\}$	2 p
3.	$x_{v} = -\frac{b}{2a} = -1$	2p
	$y_v = -\frac{\Delta}{4a} = -2$	3 p
4.	$3^{2x+1} = 3^2$	2p
	$3^{2x+1} = 3^2$ $2x+1=2 \Leftrightarrow x = \frac{1}{2}$	3 p
	$AB = \sqrt{(2-1)^2 + (0-2)^2} =$	3 p
	$=\sqrt{5}$	2 p
6.	$\sin 10^{\circ} = \cos 80^{\circ}$	2p
	$\sin^2 80^\circ + \cos^2 80^\circ = 1$	3 p

SUBIECTUL al II-lea (30 de puncte)

a)	$x \circ y = xy - \frac{1}{3}x - \frac{1}{3}y + \frac{1}{9} + \frac{3}{9} =$	1p
	$=x\left(y-\frac{1}{3}\right)-\frac{1}{3}\left(y-\frac{1}{3}\right)+\frac{1}{3}=$	2p
	$= \left(x - \frac{1}{3}\right) \left(y - \frac{1}{3}\right) + \frac{1}{3} \text{ pentru orice } x, y \in M$	2 p
b)	$x \circ y = xy - \frac{1}{3}x - \frac{1}{3}y + \frac{4}{9}$	2p
	$y \circ x = yx - \frac{1}{3}y - \frac{1}{3}x + \frac{4}{9}$	2 p
	Finalizare	1p
c)	$(x \circ y) \circ z = \left(x - \frac{1}{3}\right)\left(y - \frac{1}{3}\right)\left(z - \frac{1}{3}\right) + \frac{1}{3}$, pentru orice $x, y, z \in M$	2p
	$x \circ (y \circ z) = \left(x - \frac{1}{3}\right) \left(y - \frac{1}{3}\right) \left(z - \frac{1}{3}\right) + \frac{1}{3}, \text{ pentru orice } x, y, z \in M$	2 p
	Finalizare	1p

	·	
d)	$x \circ e = e \circ x$, pentru orice $x \in M$	1p
	$x \circ e = x \Rightarrow xe - \frac{1}{3}x - \frac{1}{3}e + \frac{4}{9} = x \Rightarrow \left(x - \frac{1}{3}\right) \cdot e = \frac{4}{3} \cdot \left(x - \frac{1}{3}\right)$, pentru orice $x \in M$	3p
	$e = \frac{4}{3}$	1p
e)	$x \circ x = \frac{4}{9} \Rightarrow x^2 - \frac{2}{3}x = 0$	2p
	$x = 0 \text{sau } x = \frac{2}{3}$	2p
	Finalizare: $x = \frac{2}{3}$	1p
f)	$\left(a+\frac{1}{3}\right)\circ 3=\frac{8a+1}{3}$	2p
	$\left(a+\frac{1}{3}\right)\circ 3\circ \left(a+\frac{1}{3}\right) = \left(\frac{8a+1}{3}\right)\circ \left(a+\frac{1}{3}\right) = \frac{8a^2+1}{3}, \text{ pentru orice } a\in M$	3р

SUBIECTUL al III-lea (30 de puncte)

a)	$\begin{pmatrix} 2 & 1 & -1 \end{pmatrix}$	
	$A(2) = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 2 & -1 \\ -1 & 1 & 2 \end{pmatrix}$	2 p
de	$\operatorname{et}(A(2)) = 6$	3 p
b) de	$\operatorname{et}(A(m)) = m^3 - 1 + 1 - m + m - m =$	2 p
	$=m^3-m$	3 p
	$\operatorname{et}(A(m)) = 0 \Rightarrow m^3 - m = 0$	2p
m	$n(m-1)(m+1) = 0 \Rightarrow m = -1, m = 0, m = 1$	3 p
d)	$\int 3x + y - z = 1$	
m	$i = 3 \Rightarrow \begin{cases} x + 3y - z = 1 \\ -x + y + 3z = 1 \end{cases}$	2 p
	-x + y + 3z = 1	•
	Terificare: $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ este soluție a sistemului	3 p
e)	$i = 2 \Rightarrow \begin{cases} 2x + y - z = 1 \\ x + 2y - z = 1 \\ -x + y + 2z = 1 \end{cases}$	
m	$i = 2 \Rightarrow \begin{cases} x + 2y - z = 1 \end{cases}$	1p
	-x + y + 2z = 1	1h
x	$z = \frac{1}{2}, \ y = \frac{1}{2}, \ z = \frac{1}{2}$	4 p
f)	$\int y - z = 1$	
m	$i = 0 \Rightarrow \begin{cases} y - z = 1 \\ x - z = 1 \\ -x + y = 1 \end{cases}$	1p
	-x+y=1	_
	căzând primele 2 ecuații se obține $y = x$	2 p
	alocuind în a treia ecuație se obține $0=1$, imposibil, deci sistemul (S) nu are soluții pentru $n=0$	2p

Proba E.c)

Proba scrisă la MATEMATICĂ

Varianta 5

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Calculați $\lg 100 + \lg \frac{1}{10}$.
- **5p** 2. Determinați mulțimea valorilor funcției $f: \{-1,0,1\} \to \mathbb{R}, f(x) = -x + 2$.
- **5p** | **3.** Determinați coordonatele vârfului parabolei asociate funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + 2x 1$.
- **5p** | **4.** Rezolvați în mulțimea numerelor reale ecuația $3^{2x+1} = 9$.
- **5p** | **5.** Într-un reper cartezian xOy se consideră punctele A(1,2) și B(2,0). Calculați distanța de la A la B.
- **5p 6.** Calculati $\sin^2 10^{\circ} + \sin^2 80^{\circ}$.

SUBIECTUL al II-lea

(30 de puncte)

Pe mulțimea $M = \left(\frac{1}{3}, +\infty\right)$ se definește legea de compoziție $x \circ y = xy - \frac{1}{3}x - \frac{1}{3}y + \frac{4}{9}$.

- **5p** a) Verificați dacă $x \circ y = \left(x \frac{1}{3}\right) \left(y \frac{1}{3}\right) + \frac{1}{3}$, pentru orice $x, y \in M$.
- **5p b)** Arătați că $x \circ y = y \circ x$, pentru orice $x, y \in M$.
- **5p c**) Demonstrați că legea de compoziție "o" este asociativă.
- **5p d**) Determinați $e \in M$ astfel încât $x \circ e = e \circ x = x$, pentru orice $x \in M$.
- **5p e**) Rezolvați în mulțimea M ecuația $x \circ x = \frac{4}{9}$.
- **5p f**) Arătați că $\left(a + \frac{1}{3}\right) \circ 3 \circ \left(a + \frac{1}{3}\right) = \frac{8a^2 + 1}{3}$, pentru orice $a \in M$.

SUBIECTUL al III-lea

(30 de puncte)

Se consideră matricea $A(m) = \begin{pmatrix} m & 1 & -1 \\ 1 & m & -1 \\ -1 & 1 & m \end{pmatrix}$ și sistemul (S) $\begin{cases} mx + y - z = 1 \\ x + my - z = 1 \end{cases}$, unde m este un număr real. -x + y + mz = 1

- **5p** a) Calculați $\det(A(2))$.
- **5p b**) Arătați că $\det(A(m)) = m^3 m$.
- **5p** c) Determinați valorile reale ale lui m pentru care $\det(A(m)) = 0$.
- **5p d**) Verificați dacă, pentru m=3, tripletul $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ este soluție a sistemului (S).
- **5p** e) Pentru m = 2, rezolvați sistemul (S).
- **5p** | **f**) Pentru m = 0, arătați că sistemul (S) nu are soluții.

Varianta 9

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

SUBIECTUL I (30 de puncte)

	· •	
1.	$a_7 = a_1 + 6r$	3p
	$a_7 = 7$	2p
2.	$G_f \cap Ox = \big\{ A(3,0) \big\}$	3 p
	$G_f \cap Ox = \{A(3,0)\}$ $G_f \cap Oy = \{B(0,4)\}$	2 p
3.	$\Delta = \left(2m+1\right)^2 - 4\left(m^2 + m\right)$	2 p
	$\Delta = 1 > 0$, deci ecuația admite două soluții reale distincte pentru orice $m \in \mathbb{R}$	3 p
4.	$5 \cdot 3^x = 45 \Leftrightarrow 3^x = 9$	3 p
	x = 2	2p
5.	Notăm cu O centrul paralelogramului $ABCD \Rightarrow \overrightarrow{AM} + \overrightarrow{AQ} = \overrightarrow{AO}$	2p
	$\overrightarrow{CN} + \overrightarrow{CP} = \overrightarrow{CO}$	2 p
	$\overrightarrow{AO} + \overrightarrow{CO} = \overrightarrow{0}$	1p
6.	$\cos B = \frac{3}{5} \Rightarrow AB = 12$	2p
	5	_
	$AB^2 + AC^2 = BC^2 \Rightarrow AC = 16$	2p
	Perimetrul este egal cu 48	1p

SUBIECTUL al II-lea

(30 de puncte)

	•	
a)	(-5)*5=1	2p
	(-10)*10=1	2p
	(-5)*5 = (-10)*10	1p
b)	$x^2 * x \le 13 \Leftrightarrow x^2 + x - 12 \le 0$	2 p
	$x \in [-4,3]$	3 p
c)	$4^x * 2^x = 21 \Leftrightarrow 4^x + 2^x = 20$	1p
	Cu notația $2^x = t$ obținem $t^2 + t = 20$	1p
	t = 4 sau $t = -5$	2p
	Finalizare: $x = 2$	-р 1р
d)	$(x*y)*z = x + y + z + 2$, pentru orice $x, y, z \in \mathbb{R}$	2 p
	$x*(y*z) = x + y + z + 2$, pentru orice $x, y, z \in \mathbb{R}$	2p
	Finalizare	2р 1р
e)	3*x' = x'*3 = -1	2p
	x' = -5	3 p
f)	n*(n+1) = 2n+2	1p
	$2n + 2 \le 2012 \Leftrightarrow n \le 1005$	2 p
	A are 1006 elemente	2 p

SUB	IECTUL al III-lea	(30 de puncte)
a)	$\det A = 18 - 36 =$	3p
	=-18	2p
b)	Matricea B este inversabilă \Leftrightarrow det $B \neq 0$	3p
	Finalizare	2 p
c)	$a = 1 \Rightarrow B = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$	1p
	$A \cdot B = \begin{pmatrix} 5 & 3 & 4 \\ 4 & 5 & 3 \\ 3 & 4 & 5 \end{pmatrix}, B \cdot A = \begin{pmatrix} 5 & 4 & 3 \\ 3 & 5 & 4 \\ 4 & 3 & 5 \end{pmatrix}$	2p
	${}^{t}(A \cdot B) = \begin{pmatrix} 5 & 4 & 3 \\ 3 & 5 & 4 \\ 4 & 3 & 5 \end{pmatrix} = B \cdot A$	2 p
d)	$a = 1 \Rightarrow (S) \begin{cases} x + y = 0 \\ x + z = 2 \end{cases}$	2р
	Verificare: $\left(\frac{1}{2}, -\frac{1}{2}, \frac{3}{2}\right)$ este soluție a sistemului (S)	3p
e)	$\det B \neq 0 \Rightarrow$ sistemul este de tip Cramer	2p
	$x = \frac{1}{2a}, \ y = -\frac{1}{2a}, \ z = \frac{3}{2a}$	3p
f)	$x = \frac{1}{2a}, \ y = -\frac{1}{2a}, \ z = \frac{3}{2a}$ $x_0 + y_0 + z_0 = \frac{1}{4} \Leftrightarrow \frac{3}{2a} = \frac{1}{4}$	3p
	a=6	2p

Proba E.c) Proba scrisă la MATEMATICĂ

Varianta 9

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p** | **1.** Se consideră progresia aritmetică $(a_n)_{n\geq 1}$ cu rația r=-2 și $a_1=19$. Calculați a_7 .
- **5p** 2. Determinați coordonatele punctelor de intersecție a graficului funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 4 \frac{4x}{3}$ cu axa Ox și respectiv cu axa Oy.
- **5p** | 3. Arătați că ecuația $x^2 (2m+1)x + m^2 + m = 0$ admite două soluții reale distincte, pentru orice $m \in \mathbb{R}$.
- **5p 4.** Rezolvați în mulțimea numerelor reale ecuația $3^{x+1} + 2 \cdot 3^x = 45$.
- **5p 5.** Se consideră paralelogramul ABCD și M, N, P, Q mijloacele laturilor (AB), (BC), (CD) respectiv (DA). Demonstrați că $\overrightarrow{AM} + \overrightarrow{AQ} + \overrightarrow{CN} + \overrightarrow{CP} = \overrightarrow{0}$.
- **5p 6.** Se consideră triunghiul dreptunghic ABC cu ipotenuza BC = 20 și $\cos B = \frac{3}{5}$. Calculați perimetrul triunghiului ABC.

SUBIECTUL al II-lea (30 de puncte)

Pe mulțimea numerelor reale se definește legea de compoziție x * y = x + y + 1.

- **5p a)** Arătați că (-5)*5=(-10)*10.
- **5p b)** Rezolvați în mulțimea numerelor reale inecuația $x^2 * x \le 13$.
- **5p** | **c**) Rezolvați în mulțimea numerelor reale ecuația $4^x * 2^x = 21$.
- **5p d**) Demonstrați că (x*y)*z = x*(y*z), pentru orice numere reale x, y, z.
- **5p e**) Determinați simetricul elementului x = 3 în raport cu legea de compoziție "*", știind că elementul neutru este e = -1.
- **5p** | **f**) Determinați numărul elementelor mulțimii $A = \{n \in \mathbb{N} \mid n * (n+1) \le 2012\}$.

SUBIECTUL al III-lea (30 de

Se consideră matricele $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{pmatrix}, B = \begin{pmatrix} 0 & a & a \\ a & a & 0 \\ a & 0 & a \end{pmatrix}$ și sistemul de ecuații (S) $\begin{cases} ay + az = 1 \\ ax + ay = 0, \text{ unde } a \\ ax + az = 2 \end{cases}$

este un număr real nenul.

- **5p** a) Calculați determinantul matricei A.
- **5p b**) Arătați că matricea B este inversabilă pentru orice $a \in \mathbb{R} \setminus \{0\}$.
- **5p** c) Pentru a = 1, arătați că $^{t}(AB) = BA$.
- **5p d**) Pentru a = 1, arătați că tripletul $\left(\frac{1}{2}, -\frac{1}{2}, \frac{3}{2}\right)$ este soluție a sistemului (S).
- **5p e**) Rezolvați sistemul (S), pentru $a \in \mathbb{R} \setminus \{0\}$.
- **5p f**) Determinați numărul real nenul a pentru care soluția (x_0, y_0, z_0) a sistemului (S) verifică relația $x_0 + y_0 + z_0 = \frac{1}{4}$.

Model

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare.

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

SUBIECTUL I (30 de puncte) 1. $|\sqrt{3}-5| < 0 \Rightarrow |\sqrt{3}-5| = 5-\sqrt{3}$ 2p $\sqrt{3}-1>0 \Rightarrow \left|\sqrt{3}-1\right|=\sqrt{3}-1$ 2p $a = 4 \in \mathbb{Z}$ 2. $f(1) + f(2) + ... + f(10) = 2 \cdot (1 + 2 + 3 + ... + 10) - 10 =$ 1p 2p $=2\cdot\frac{10\cdot11}{2}-10=$ 2p 1p 1p 2p $x^2 - 4x + 4 = 0$ Finalizare: x = 2 şi y = 32p $3 + 4x \ge 0 \Rightarrow x \in \left[-\frac{3}{4}, +\infty \right]$ 1p 2p 3 + 4x = 25Finalizare: $x = \frac{11}{2}$ este soluție $\vec{w} = \vec{v} + \vec{u} = 2\vec{i} + \vec{j} + \vec{i} - 5\vec{j} = 3\vec{i} - 4\vec{j}$ 2p 3p Coordonatele vectorului \overline{w} sunt (3,-4)2p $AC^2 = BC^2 + AB^2 - 2BC \cdot AB \cdot \cos B$ 1p 3p Finalizare: AC = 7

	Finalizare: $AC = 7$	1p
SUB	SUBIECTUL al II-lea (30 de pr	
a)	$\hat{1} + \hat{3} + \hat{5} + \hat{7} = \hat{0}$	5 p
b)	$\hat{2}^2 = \hat{4}$	1p
	$\hat{2}^3 = \hat{0}$	1p
	$\hat{2}^4 = \hat{2}^6 = \hat{2}^8 = \hat{2}^{10} = \hat{0}$	2 p
	$\hat{2}^{10} + \hat{2}^8 + \hat{2}^6 + \hat{2}^4 + \hat{2}^2 = \hat{4}$	1p
c)	Dacă $x \in \mathbb{Z}_8$ este inversul lui $\hat{7}$, atunci $\hat{7}x = \hat{1}$	2p
	$x = \hat{7}$	3 p
d)	$\hat{7}x + \hat{2} = \hat{5} \Leftrightarrow \hat{7}x = \hat{3}$	2p
	$x = \hat{7}^{-1} \cdot \hat{3} = \hat{7} \cdot \hat{3} = \hat{5}$	3 p
e)	$x^2 \in \left\{\hat{0}, \hat{1}, \hat{4}\right\}$	2p
	$\hat{0} + \hat{5} \neq \hat{0}, \ \hat{1} + \hat{5} \neq \hat{0}, \ \hat{4} + \hat{5} \neq \hat{0}$	2 p
	Ecuația nu are soluții în mulțimea \mathbb{Z}_8	1p

Probă scrisă la Matematică

Barem de evaluare și de notare

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare.

f)	$\begin{cases} x+y=\hat{4} \\ x+\hat{2}(x+y)=\hat{1} \end{cases} \Leftrightarrow \begin{cases} x+y=\hat{4} \\ x=\hat{1} \end{cases}$	4p	
	$\Leftrightarrow \begin{cases} x = \hat{1} \\ y = \hat{3} \end{cases}$	1p	

	(y=3)	
SUB	IECTUL al III-lea (30 de	puncte)
a)	$C = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}, {}^{t}C = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, C + {}^{t}C = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$	3р
	$\det(C + {}^{t}C) = \begin{vmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{vmatrix} = 4$ $A^{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$	2p
b)	$A^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$	3 p
	$A^{3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = O_{3}$	2p
c)	$(I_3 + A)(I_3 - A + A^2) = I_3 + A^3$	3p
	$I_3 + A^3 = I_3 + O_3 = I_3$	2p
d)	$(I_3 + aA)(I_3 + A + A^2) = I_3 \Leftrightarrow I_3 + A + A^2 + aA + aA^2 + aA^3 = I_3$	2p
	$\Leftrightarrow (a+1)(A+A^2) = O_3$	1p
	$A + A^{2} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 2 & 1 & 0 \end{pmatrix} \neq O_{3} \Rightarrow a + 1 = 0 \Rightarrow a = -1$	2p
e)	$C^{-1} = I_3 - A + A^2$	3 p
	$C^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}$	2p
f)	$xC + yA^{2} + zI_{3} = A \Leftrightarrow \begin{pmatrix} x & 0 & 0 \\ x & x & 0 \\ x & x & x \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ y & 0 & 0 \end{pmatrix} + \begin{pmatrix} z & 0 & 0 \\ 0 & z & 0 \\ 0 & 0 & z \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix}$	2p
	$\Leftrightarrow \begin{pmatrix} x+z & 0 & 0 \\ x & x+z & 0 \\ x+y & x & x+z \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix} \Rightarrow x = 1, y = 0, z = -1$	3р

Probă scrisă la **Matematică**

Examenul de bacalaureat 2012 Proba E. c) Proba scrisă la MATEMATICĂ

Model

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare.

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.
- La toate subiectele se cer rezolvări complete.

SUBIECTUL I (30 de puncte)

5p 1. Arătați că
$$a = |\sqrt{3} - 5| + |\sqrt{3} - 1|$$
 este un număr întreg.

5p 2. Se consideră funcția
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = 2x - 1$. Calculați $f(1) + f(2) + f(3) + ... + f(10)$.

5p 3. Rezolvați, în mulțimea numerelor reale, sistemul
$$\begin{cases} 2x-1=y \\ x^2-2x+3=y \end{cases}$$

5p 4. Rezolvați, în mulțimea numerelor reale, ecuația
$$\sqrt{3+4x} = 5$$
.

5p | **5.** Se consideră vectorii
$$\vec{v} = 2\vec{i} + \vec{j}$$
 și $\vec{u} = \vec{i} - 5\vec{j}$. Determinați coordonatele vectorului $\vec{w} = \vec{v} + \vec{u}$.

5p 6. Calculați lungimea laturii
$$AC$$
 a triunghiului ABC în care $AB = 3$, $BC = 8$ și $m(\angle ABC) = 60^\circ$.

SUBIECTUL al II-lea (30 de puncte)

Se consideră inelul $(\mathbb{Z}_8,+,\cdot)$, unde $\mathbb{Z}_8=\left\{\hat{0},\hat{1},\hat{2},\hat{3},\hat{4},\hat{5},\hat{6},\hat{7}\right\}$.

5p a) Calculați, în
$$\mathbb{Z}_8$$
, $\hat{1} + \hat{3} + \hat{5} + \hat{7}$.

5p b) Verificați, în
$$\mathbb{Z}_8$$
, egalitatea $\hat{2}^{10} + \hat{2}^8 + \hat{2}^6 + \hat{2}^4 + \hat{2}^2 = \hat{4}$.

5p c) Determinați inversul elementului
$$\hat{7}$$
 în inelul $(\mathbb{Z}_8,+,\cdot)$.

5p d) Rezolvați, în
$$\mathbb{Z}_8$$
, ecuația $\hat{7}x + \hat{2} = \hat{5}$.

5p e) Arătați că ecuația
$$x^2 + \hat{5} = \hat{0}$$
 nu are soluții în mulțimea \mathbb{Z}_8 .

5p f) Rezolvați sistemul de ecuații
$$\begin{cases} x + y = \hat{4} \\ \hat{3}x + \hat{2}y = \hat{1} \end{cases}$$
, unde $x, y \in \mathbb{Z}_8$.

SUBIECTUL al III-lea

(30 de puncte)

Se consideră matricele
$$A = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix}, I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 și $C = I_3 + A$.

5p a) Calculați
$$\det(C + {}^tC)$$
, unde tC este transpusa matricei C .

5p b) Calculați
$$A^3$$
, unde $A^3 = A \cdot A \cdot A$.

5p c) Verificați egalitatea
$$(I_3 + A)(I_3 - A + A^2) = I_3$$
.

5p d) Determinați
$$a \in \mathbb{R}$$
 pentru care $(I_3 + aA)(I_3 + A + A^2) = I_3$.

5p e) Calculați inversa matricei
$$C$$
.

5p f) Determinați numerele reale
$$x, y, z$$
 care verifică egalitatea $xC + yA^2 + zI_3 = A$.

Probă scrisă la Matematică

Varianta 5

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

SUBIECTUL I (30 de puncte)

1.	$\lg 100 + \lg \frac{1}{10} = \lg 10 =$	3 p
	=1	2 p
2.	f(-1) = 3, f(0) = 2, f(1) = 1	3 p
	$Im f = \{1, 2, 3\}$	2 p
3.	$x_{v} = -\frac{b}{2a} = -1$	2p
	$y_v = -\frac{\Delta}{4a} = -2$	3 p
4.	$3^{2x+1} = 3^2$	2p
	$3^{2x+1} = 3^2$ $2x+1=2 \Leftrightarrow x = \frac{1}{2}$	3 p
	$AB = \sqrt{(2-1)^2 + (0-2)^2} =$	3 p
	$=\sqrt{5}$	2 p
6.	$\sin 10^{\circ} = \cos 80^{\circ}$	2p
	$\sin^2 80^\circ + \cos^2 80^\circ = 1$	3 p

SUBIECTUL al II-lea (30 de puncte)

a)	$x \circ y = xy - \frac{1}{3}x - \frac{1}{3}y + \frac{1}{9} + \frac{3}{9} =$	1p
	$=x\left(y-\frac{1}{3}\right)-\frac{1}{3}\left(y-\frac{1}{3}\right)+\frac{1}{3}=$	2p
	$= \left(x - \frac{1}{3}\right) \left(y - \frac{1}{3}\right) + \frac{1}{3} \text{ pentru orice } x, y \in M$	2 p
b)	$x \circ y = xy - \frac{1}{3}x - \frac{1}{3}y + \frac{4}{9}$	2p
	$y \circ x = yx - \frac{1}{3}y - \frac{1}{3}x + \frac{4}{9}$	2 p
	Finalizare	1p
c)	$(x \circ y) \circ z = \left(x - \frac{1}{3}\right)\left(y - \frac{1}{3}\right)\left(z - \frac{1}{3}\right) + \frac{1}{3}$, pentru orice $x, y, z \in M$	2p
	$x \circ (y \circ z) = \left(x - \frac{1}{3}\right) \left(y - \frac{1}{3}\right) \left(z - \frac{1}{3}\right) + \frac{1}{3}, \text{ pentru orice } x, y, z \in M$	2 p
	Finalizare	1p

	·	
d)	$x \circ e = e \circ x$, pentru orice $x \in M$	1p
	$x \circ e = x \Rightarrow xe - \frac{1}{3}x - \frac{1}{3}e + \frac{4}{9} = x \Rightarrow \left(x - \frac{1}{3}\right) \cdot e = \frac{4}{3} \cdot \left(x - \frac{1}{3}\right)$, pentru orice $x \in M$	3p
	$e = \frac{4}{3}$	1p
e)	$x \circ x = \frac{4}{9} \Rightarrow x^2 - \frac{2}{3}x = 0$	2p
	$x = 0 \text{sau } x = \frac{2}{3}$	2p
	Finalizare: $x = \frac{2}{3}$	1p
f)	$\left(a+\frac{1}{3}\right)\circ 3=\frac{8a+1}{3}$	2p
	$\left(a+\frac{1}{3}\right)\circ 3\circ \left(a+\frac{1}{3}\right) = \left(\frac{8a+1}{3}\right)\circ \left(a+\frac{1}{3}\right) = \frac{8a^2+1}{3}, \text{ pentru orice } a\in M$	3р

SUBIECTUL al III-lea (30 de puncte)

SUB	LECTUL al III-lea (30 de puncte	:)
a)	$A(2) = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 2 & -1 \\ -1 & 1 & 2 \end{pmatrix}$	2p
	$\det(A(2)) = 6$	3 p
b)	$\det(A(m)) = m^3 - 1 + 1 - m + m - m =$	2p
	$=m^3-m$	3 p
c)	$\det(A(m)) = 0 \Rightarrow m^3 - m = 0$	2p
	$m(m-1)(m+1) = 0 \Rightarrow m = -1, m = 0, m = 1$	3 p
d)	$\int 3x + y - z = 1$	
	$m = 3 \Rightarrow \begin{cases} x + 3y - z = 1 \\ -x + y + 3z = 1 \end{cases}$	2p
	-x + y + 3z = 1	•
	Verificare: $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ este soluție a sistemului	3 p
e)	$\int 2x + y - z = 1$	
	$m=2 \Rightarrow \begin{cases} x+2y-z=1 \end{cases}$	1
	$m = 2 \Rightarrow \begin{cases} 2x + y - z = 1\\ x + 2y - z = 1\\ -x + y + 2z = 1 \end{cases}$	1p
	$x = \frac{1}{2}, \ y = \frac{1}{2}, \ z = \frac{1}{2}$	4 p
f)	y-z=1	
	$m = 0 \Rightarrow \begin{cases} y - z = 1 \\ x - z = 1 \\ -x + y = 1 \end{cases}$	1p
	-x+y=1	_
	Scăzând primele 2 ecuații se obține $y = x$	2p
	Înlocuind în a treia ecuație se obține $0=1$, imposibil, deci sistemul (S) nu are soluții pentru	2p
	m = 0	1

Proba E.c)

Proba scrisă la MATEMATICĂ

Varianta 5

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Calculați $\lg 100 + \lg \frac{1}{10}$.
- **5p** 2. Determinați mulțimea valorilor funcției $f: \{-1,0,1\} \to \mathbb{R}, f(x) = -x + 2$.
- **5p** | **3.** Determinați coordonatele vârfului parabolei asociate funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + 2x 1$.
- **5p** | **4.** Rezolvați în mulțimea numerelor reale ecuația $3^{2x+1} = 9$.
- **5p** | **5.** Într-un reper cartezian xOy se consideră punctele A(1,2) și B(2,0). Calculați distanța de la A la B.
- **5p 6.** Calculati $\sin^2 10^{\circ} + \sin^2 80^{\circ}$.

SUBIECTUL al II-lea

(30 de puncte)

Pe mulțimea $M = \left(\frac{1}{3}, +\infty\right)$ se definește legea de compoziție $x \circ y = xy - \frac{1}{3}x - \frac{1}{3}y + \frac{4}{9}$.

- **5p** a) Verificați dacă $x \circ y = \left(x \frac{1}{3}\right) \left(y \frac{1}{3}\right) + \frac{1}{3}$, pentru orice $x, y \in M$.
- **5p b)** Arătați că $x \circ y = y \circ x$, pentru orice $x, y \in M$.
- **5p c**) Demonstrați că legea de compoziție "o" este asociativă.
- **5p d**) Determinați $e \in M$ astfel încât $x \circ e = e \circ x = x$, pentru orice $x \in M$.
- **5p e**) Rezolvați în mulțimea M ecuația $x \circ x = \frac{4}{9}$.
- **5p f**) Arătați că $\left(a + \frac{1}{3}\right) \circ 3 \circ \left(a + \frac{1}{3}\right) = \frac{8a^2 + 1}{3}$, pentru orice $a \in M$.

SUBIECTUL al III-lea

(30 de puncte)

Se consideră matricea $A(m) = \begin{pmatrix} m & 1 & -1 \\ 1 & m & -1 \\ -1 & 1 & m \end{pmatrix}$ și sistemul (S) $\begin{cases} mx + y - z = 1 \\ x + my - z = 1 \end{cases}$, unde m este un număr real. -x + y + mz = 1

- **5p** a) Calculați $\det(A(2))$.
- **5p b**) Arătați că $\det(A(m)) = m^3 m$.
- **5p** c) Determinați valorile reale ale lui m pentru care $\det(A(m)) = 0$.
- **5p d**) Verificați dacă, pentru m=3, tripletul $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ este soluție a sistemului (S).
- **5p** e) Pentru m = 2, rezolvați sistemul (S).
- **5p** | **f**) Pentru m = 0, arătați că sistemul (S) nu are soluții.

Varianta 9

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

SUBIECTUL I (30 de puncte)

	· •	
1.	$a_7 = a_1 + 6r$	3p
	$a_7 = 7$	2p
2.	$G_f \cap Ox = \big\{ A(3,0) \big\}$	3 p
	$G_f \cap Ox = \{A(3,0)\}$ $G_f \cap Oy = \{B(0,4)\}$	2 p
3.	$\Delta = \left(2m+1\right)^2 - 4\left(m^2 + m\right)$	2p
	$\Delta = 1 > 0$, deci ecuația admite două soluții reale distincte pentru orice $m \in \mathbb{R}$	3 p
4.	$5 \cdot 3^x = 45 \Leftrightarrow 3^x = 9$	3 p
	x = 2	2p
5.	Notăm cu O centrul paralelogramului $ABCD \Rightarrow \overrightarrow{AM} + \overrightarrow{AQ} = \overrightarrow{AO}$	2p
	$\overrightarrow{CN} + \overrightarrow{CP} = \overrightarrow{CO}$	2 p
	$\overrightarrow{AO} + \overrightarrow{CO} = \overrightarrow{0}$	1p
6.	$\cos B = \frac{3}{5} \Rightarrow AB = 12$	2p
		_
	$AB^2 + AC^2 = BC^2 \Rightarrow AC = 16$	2p
	Perimetrul este egal cu 48	1p

SUBIECTUL al II-lea

(30 de puncte)

	•	
a)	(-5)*5=1	2 p
	(-10)*10=1	2p
	(-5)*5 = (-10)*10	1p
b)	$x^2 * x \le 13 \Leftrightarrow x^2 + x - 12 \le 0$	2 p
	$x \in [-4,3]$	3 p
c)	$4^x * 2^x = 21 \Leftrightarrow 4^x + 2^x = 20$	1p
	Cu notația $2^x = t$ obținem $t^2 + t = 20$	1р
	t = 4 sau $t = -5$	2p
	Finalizare: $x = 2$	-р 1р
d)	$(x*y)*z = x + y + z + 2$, pentru orice $x, y, z \in \mathbb{R}$	2 p
	$x*(y*z) = x + y + z + 2$, pentru orice $x, y, z \in \mathbb{R}$	2p
	Finalizare	2р 1р
e)	3*x' = x'*3 = -1	2p
	x' = -5	3 p
f)	n*(n+1) = 2n+2	1p
	$2n + 2 \le 2012 \Leftrightarrow n \le 1005$	2 p
	A are 1006 elemente	2 p

SUB	IECTUL al III-lea	(30 de puncte)
a)	$\det A = 18 - 36 =$	3p
	=-18	2p
b)	Matricea B este inversabilă \Leftrightarrow det $B \neq 0$	3p
	Finalizare	2p
c)	$a = 1 \Rightarrow B = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$ $(5 2 4)$	1p
	$A \cdot B = \begin{pmatrix} 5 & 3 & 4 \\ 4 & 5 & 3 \\ 3 & 4 & 5 \end{pmatrix}, B \cdot A = \begin{pmatrix} 5 & 4 & 3 \\ 3 & 5 & 4 \\ 4 & 3 & 5 \end{pmatrix}$	2p
	${}^{t}(A \cdot B) = \begin{pmatrix} 5 & 4 & 3 \\ 3 & 5 & 4 \\ 4 & 3 & 5 \end{pmatrix} = B \cdot A$	2 p
d)	$a = 1 \Rightarrow (S) \begin{cases} x + y = 0 \\ x + z = 2 \end{cases}$	2р
	Verificare: $\left(\frac{1}{2}, -\frac{1}{2}, \frac{3}{2}\right)$ este soluție a sistemului (S)	3p
e)	$\det B \neq 0 \Rightarrow$ sistemul este de tip Cramer	2p
	$x = \frac{1}{2a}, \ y = -\frac{1}{2a}, \ z = \frac{3}{2a}$	3p
f)	$x = \frac{1}{2a}, \ y = -\frac{1}{2a}, \ z = \frac{3}{2a}$ $x_0 + y_0 + z_0 = \frac{1}{4} \Leftrightarrow \frac{3}{2a} = \frac{1}{4}$	3p
	a=6	2p

Proba E.c) Proba scrisă la MATEMATICĂ

Varianta 9

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p** | **1.** Se consideră progresia aritmetică $(a_n)_{n\geq 1}$ cu rația r=-2 și $a_1=19$. Calculați a_7 .
- **5p** 2. Determinați coordonatele punctelor de intersecție a graficului funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 4 \frac{4x}{3}$ cu axa Ox și respectiv cu axa Oy.
- **5p** | 3. Arătați că ecuația $x^2 (2m+1)x + m^2 + m = 0$ admite două soluții reale distincte, pentru orice $m \in \mathbb{R}$.
- **5p 4.** Rezolvați în mulțimea numerelor reale ecuația $3^{x+1} + 2 \cdot 3^x = 45$.
- **5p 5.** Se consideră paralelogramul ABCD și M, N, P, Q mijloacele laturilor (AB), (BC), (CD) respectiv (DA). Demonstrați că $\overrightarrow{AM} + \overrightarrow{AQ} + \overrightarrow{CN} + \overrightarrow{CP} = \overrightarrow{0}$.
- **5p 6.** Se consideră triunghiul dreptunghic ABC cu ipotenuza BC = 20 și $\cos B = \frac{3}{5}$. Calculați perimetrul triunghiului ABC.

SUBIECTUL al II-lea (30 de puncte)

Pe mulțimea numerelor reale se definește legea de compoziție x * y = x + y + 1.

- **5p a)** Arătați că (-5)*5=(-10)*10.
- **5p b)** Rezolvați în mulțimea numerelor reale inecuația $x^2 * x \le 13$.
- **5p** | **c**) Rezolvați în mulțimea numerelor reale ecuația $4^x * 2^x = 21$.
- **5p d**) Demonstrați că (x*y)*z = x*(y*z), pentru orice numere reale x, y, z.
- **5p e**) Determinați simetricul elementului x = 3 în raport cu legea de compoziție "*", știind că elementul neutru este e = -1.
- **5p** | **f**) Determinați numărul elementelor mulțimii $A = \{n \in \mathbb{N} \mid n * (n+1) \le 2012\}$.

SUBIECTUL al III-lea (30 de

Se consideră matricele $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{pmatrix}, B = \begin{pmatrix} 0 & a & a \\ a & a & 0 \\ a & 0 & a \end{pmatrix}$ și sistemul de ecuații (S) $\begin{cases} ay + az = 1 \\ ax + ay = 0, \text{ unde } a \\ ax + az = 2 \end{cases}$

este un număr real nenul.

- **5p** a) Calculați determinantul matricei A.
- **5p b**) Arătați că matricea B este inversabilă pentru orice $a \in \mathbb{R} \setminus \{0\}$.
- **5p** c) Pentru a = 1, arătați că $^{t}(AB) = BA$.
- **5p d**) Pentru a = 1, arătați că tripletul $\left(\frac{1}{2}, -\frac{1}{2}, \frac{3}{2}\right)$ este soluție a sistemului (S).
- **5p e**) Rezolvați sistemul (S), pentru $a \in \mathbb{R} \setminus \{0\}$.
- **5p f**) Determinați numărul real nenul a pentru care soluția (x_0, y_0, z_0) a sistemului (S) verifică relația $x_0 + y_0 + z_0 = \frac{1}{4}$.

Model

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare.

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

SUBIECTUL I (30 de puncte) 1. $|\sqrt{3}-5| < 0 \Rightarrow |\sqrt{3}-5| = 5-\sqrt{3}$ 2p $\sqrt{3}-1>0 \Rightarrow \left|\sqrt{3}-1\right|=\sqrt{3}-1$ 2p $a = 4 \in \mathbb{Z}$ 2. $f(1) + f(2) + ... + f(10) = 2 \cdot (1 + 2 + 3 + ... + 10) - 10 =$ 1p 2p $=2\cdot\frac{10\cdot11}{2}-10=$ 2p 1p 1p 2p $x^2 - 4x + 4 = 0$ Finalizare: x = 2 şi y = 32p $3 + 4x \ge 0 \Rightarrow x \in \left[-\frac{3}{4}, +\infty \right]$ 1p 2p 3 + 4x = 25Finalizare: $x = \frac{11}{2}$ este soluție $\vec{w} = \vec{v} + \vec{u} = 2\vec{i} + \vec{j} + \vec{i} - 5\vec{j} = 3\vec{i} - 4\vec{j}$ 2p 3p Coordonatele vectorului \overline{w} sunt (3,-4)2p $AC^2 = BC^2 + AB^2 - 2BC \cdot AB \cdot \cos B$ 1p 3p Finalizare: AC = 7

	Finalizare: $AC = 7$	1p
SUB	IECTUL al II-lea (30 de	puncte)
a)	$\hat{1} + \hat{3} + \hat{5} + \hat{7} = \hat{0}$	5 p
b)	$\hat{2}^2 = \hat{4}$	1p
	$\hat{2}^3 = \hat{0}$	1p
	$\hat{2}^4 = \hat{2}^6 = \hat{2}^8 = \hat{2}^{10} = \hat{0}$	2 p
	$\hat{2}^{10} + \hat{2}^8 + \hat{2}^6 + \hat{2}^4 + \hat{2}^2 = \hat{4}$	1p
c)	Dacă $x \in \mathbb{Z}_8$ este inversul lui $\hat{7}$, atunci $\hat{7}x = \hat{1}$	2p
	$x = \hat{7}$	3 p
d)	$\hat{7}x + \hat{2} = \hat{5} \Leftrightarrow \hat{7}x = \hat{3}$	2p
	$x = \hat{7}^{-1} \cdot \hat{3} = \hat{7} \cdot \hat{3} = \hat{5}$	3 p
e)	$x^2 \in \left\{\hat{0}, \hat{1}, \hat{4}\right\}$	2p
	$\hat{0} + \hat{5} \neq \hat{0}, \ \hat{1} + \hat{5} \neq \hat{0}, \ \hat{4} + \hat{5} \neq \hat{0}$	2p
	Ecuația nu are soluții în mulțimea \mathbb{Z}_8	1p

Probă scrisă la Matematică

Barem de evaluare și de notare

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare.

f)	$\begin{cases} x+y=\hat{4} \\ x+\hat{2}(x+y)=\hat{1} \end{cases} \Leftrightarrow \begin{cases} x+y=\hat{4} \\ x=\hat{1} \end{cases}$	4p	
	$\Leftrightarrow \begin{cases} x = \hat{1} \\ y = \hat{3} \end{cases}$	1p	

	(y=3)	
SUB	IECTUL al III-lea (30 de	puncte)
a)	$C = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}, {}^{t}C = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, C + {}^{t}C = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$	3р
	$\det(C + {}^{t}C) = \begin{vmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{vmatrix} = 4$ $A^{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$	2p
b)	$A^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$	3 p
	$A^{3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = O_{3}$	2p
c)	$(I_3 + A)(I_3 - A + A^2) = I_3 + A^3$	3p
	$I_3 + A^3 = I_3 + O_3 = I_3$	2p
d)	$(I_3 + aA)(I_3 + A + A^2) = I_3 \Leftrightarrow I_3 + A + A^2 + aA + aA^2 + aA^3 = I_3$	2p
	$\Leftrightarrow (a+1)(A+A^2) = O_3$	1p
	$A + A^{2} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 2 & 1 & 0 \end{pmatrix} \neq O_{3} \Rightarrow a + 1 = 0 \Rightarrow a = -1$	2p
e)	$C^{-1} = I_3 - A + A^2$	3 p
	$C^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}$	2p
f)	$xC + yA^{2} + zI_{3} = A \Leftrightarrow \begin{pmatrix} x & 0 & 0 \\ x & x & 0 \\ x & x & x \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ y & 0 & 0 \end{pmatrix} + \begin{pmatrix} z & 0 & 0 \\ 0 & z & 0 \\ 0 & 0 & z \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix}$	2p
	$\Leftrightarrow \begin{pmatrix} x+z & 0 & 0 \\ x & x+z & 0 \\ x+y & x & x+z \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix} \Rightarrow x = 1, y = 0, z = -1$	3р

Probă scrisă la **Matematică**

Examenul de bacalaureat 2012 Proba E. c) Proba scrisă la MATEMATICĂ

Model

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare.

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.
- La toate subiectele se cer rezolvări complete.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $a = |\sqrt{3} 5| + |\sqrt{3} 1|$ este un număr întreg.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = 2x 1. Calculați f(1) + f(2) + f(3) + ... + f(10).
- **5p** 3. Rezolvați, în mulțimea numerelor reale, sistemul $\begin{cases} 2x-1=y\\ x^2-2x+3=y \end{cases}$
- **5p 4.** Rezolvați, în mulțimea numerelor reale, ecuația $\sqrt{3+4x} = 5$.
- **5p** | **5.** Se consideră vectorii $\vec{v} = 2\vec{i} + \vec{j}$ și $\vec{u} = \vec{i} 5\vec{j}$. Determinați coordonatele vectorului $\vec{w} = \vec{v} + \vec{u}$.
- **5p 6.** Calculați lungimea laturii AC a triunghiului ABC în care AB = 3, BC = 8 și $m(\angle ABC) = 60^{\circ}$.

SUBIECTUL al II-lea (30 de puncte)

Se consideră inelul $(\mathbb{Z}_8,+,\cdot)$, unde $\mathbb{Z}_8 = \{\hat{0},\hat{1},\hat{2},\hat{3},\hat{4},\hat{5},\hat{6},\hat{7}\}$.

- **5p a)** Calculați, în \mathbb{Z}_8 , $\hat{1} + \hat{3} + \hat{5} + \hat{7}$.
- **5p b)** Verificați, în \mathbb{Z}_8 , egalitatea $\hat{2}^{10} + \hat{2}^8 + \hat{2}^6 + \hat{2}^4 + \hat{2}^2 = \hat{4}$.
- **5p c)** Determinați inversul elementului $\hat{7}$ în inelul $(\mathbb{Z}_8,+,\cdot)$.
- **5p d)** Rezolvați, în \mathbb{Z}_8 , ecuația $\hat{7}x + \hat{2} = \hat{5}$.
- **5p e)** Arătați că ecuația $x^2 + \hat{5} = \hat{0}$ nu are soluții în mulțimea \mathbb{Z}_8 .
- **5p f)** Rezolvați sistemul de ecuații $\begin{cases} x + y = \hat{4} \\ \hat{3}x + \hat{2}y = \hat{1} \end{cases}$, unde $x, y \in \mathbb{Z}_8$.

SUBIECTUL al III-lea (30 de puncte)

Se consideră matricele $A = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix}, I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ și $C = I_3 + A$.

- **5p** a) Calculați $\det(C + {}^tC)$, unde tC este transpusa matricei C.
- **5p b)** Calculați A^3 , unde $A^3 = A \cdot A \cdot A$.
- **5p** c) Verificați egalitatea $(I_3 + A)(I_3 A + A^2) = I_3$.
- **5p d)** Determinați $a \in \mathbb{R}$ pentru care $(I_3 + aA)(I_3 + A + A^2) = I_3$.
- **5p e)** Calculați inversa matricei C.
- **5p f**) Determinați numerele reale x, y, z care verifică egalitatea $xC + yA^2 + zI_3 = A$.

Probă scrisă la Matematică