Analízis 3. (B és C szakirány)

Szükséges ismeretek a 8. gyakorlathoz

Jelen dokumentum ekkor lett frissítve: 2019/04/01 12:44

További kidolgozások elérhetőek ide kattintva. A gyakorlatok anyaga ide kattintva érhető el.

Forrás(ok): Dr. Szili László - Definíciók és tételek az előadásokon

1. Definiálja $\mathbb{R}^n \to \mathbb{R}$ típusú függvény parciális deriváltját.

Legyen $2 \leq n \in \mathbb{N}$, e_1, \ldots, e_n a kanonikus bázis R^n -ben, $f \in \mathbb{R}^n \to \mathbb{R}$ és $a \in int\mathcal{D}_f$. Az f függvénynek az a pontban létezik az i-edik $(i = 1, 2, \ldots, n)$ változó szerinti parciális deriváltja, ha az

$$F:K(0)\ni t\mapsto f(a+te_i)$$

valós-valós függvény deriválható a 0 pontban. Az F'(0) valós számot az f függvény a pontbeli, i-edik változó szerinti parciális deriváltjának nevezzük és a $\partial_i f(a)$ szimbólummal jelöljük.

2. Mi az iránymenti derivált fogalma?

Legyen $2 \leq n \in \mathbb{N}$, $f \in \mathbb{R}^n \to \mathbb{R}$ és $a \in int\mathcal{D}_f$. Tegyük fel, hogy $e \in \mathbb{R}^n$ egy egységvektor: $||e||_2 = 1$. Az f függvénynek az a pontban létezik az e irány mentén vett iránymenti deriváltja, ha az

$$F: K(0) \ni t \mapsto f(a+te)$$

valós-valós függvény deriválható a 0 pontban. Az F'(0) valós számot az f függvény a pontbeli e irányú iránymenti deriváltjának nevezzük, és a $\partial_e f(a)$ szimbólummal jelöljük.

3. Milyen állítást ismer lineáris leképezések mátrixreprezentációjával kapcsolatban?

Legyen $n, m \in \mathbb{N}^+$. Tetszőleges $L \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ lineáris leképezéshez egyértelműen létezik olyan $a \in \mathbb{R}^m \times \mathbb{R}^n$ mátrix, amellyel az

$$L(x) = A \cdot x \quad (x \in \mathbb{R}^n)$$

egyenlőség teljesül.

4. Írja le az $f \in \mathbb{R}^n \to \mathbb{R}^m$ függvény totális deriválhatóságának a definícióját.

Az $f \in \mathbb{R}^n \to \mathbb{R}^m \quad (n, m \in \mathbb{N}^+)$ függvény (totálisan) deriválható az $a \in int\mathcal{D}_f$ pontban, ha

$$\exists L \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$$
 lineáris leképezés és $\exists \varepsilon \in \mathbb{R}^n \to \mathbb{R}^m$, $\lim_{h \to 0} \varepsilon(h) = 0$ függvény, hogy

$$f(a+h) - f(a) = L(h) + \varepsilon(h) \cdot ||h||$$

teljesül minden olyan $h \in \mathbb{R}^n$ vektorra, amelyre $a + h \in \mathcal{D}_f$, ahol $\|.\|$ tetszőleges norma az \mathbb{R}^n lineáris téren. Ekkor f'(a) := L az f függvény a-beli deriváltja.

5. Milyen ekvivalens átfogalmazást ismer mátrixokkal a pontbeli deriválhatóságra?

Legyen $f \in \mathbb{R}^n \to \mathbb{R}^m \quad (n, m \in \mathbb{N}^+)$ és $a \in int\mathcal{D}_f$. Ekkor

$$f \in D\{a\} \quad \Longleftrightarrow \quad \exists A \in \mathbb{R}^{m \times n} : \lim_{h \to 0} \frac{\|f(a+h) - f(a) - A \cdot h\|^{(1)}}{\|h\|^{(2)}} = 0,$$

ahol $\|.\|^{(1)}$ tetszőleges \mathbb{R}^m -beli és $\|.\|^{(2)}$ tetszőleges \mathbb{R}^n -beli norma. Ekkor f'(a) := A az f függvény a pontbeli deriváltja vagy deriváltmátrixa.

1

6. Milyen tételt ismer a deriváltmátrix előállítására?

Legyen $f = (f_1, f_2, ..., f_m) \in \mathbb{R}^n \to \mathbb{R}^m$, ahol $f_i \in \mathbb{R}^n \to R$ az f függvény i-edik (i = 1, 2, ..., m) koordinátafüggvénye. Tegyük fel, hogy f totálisan deriválható az $a \in int\mathcal{D}_f$ pontban. Ekkor f mindegyik koordinátafüggvényének mindegyik változó szerinti parciális deriváltja létezik az a pontban. Az f'(a) deriváltmátrix a parciális deriváltakkal így fejezhető ki:

$$f'(a) = \begin{bmatrix} \partial_1 f_1(a) & \partial_2 f_1(a) & \dots & \partial_n f_1(a) \\ \partial_1 f_2(a) & \partial_2 f_2(a) & \dots & \partial_n f_2(a) \\ \vdots & \vdots & \vdots & \vdots \\ \partial_1 f_m(a) & \partial_2 f_m(a) & \dots & \partial_n f_m(a) \end{bmatrix}.$$

Az f'(a) deriváltmátrixot az f függvény $a \in int\mathcal{D}_f$ pontbeli Jacobi-mátrixának nevezzük.

7. Fogalmazza meg az összetett függvény pontbeli deriválhatóságára vonatkozó állítást, az ún. általános láncszabályt.

Legyen $n,m,s\in\mathbb{N}^+$. Ha $g\in\mathbb{R}^n\to\mathbb{R}^m$ és $g\in D\{a\}$, továbbá $f\in\mathbb{R}^m\to\mathbb{R}^s$ és $f\in D\{g(a)\}$, akkor $(f\circ g)\in D\{a\}$ és

$$(f \circ g)'(a) = f'(g(a)) \cdot g'(a),$$

ahol \cdot a mátrixok közötti szorzás műveletét jelenti.

8. Milyen elégséges feltételt ismer a totális deriválhatóságra a parciális deriváltakkal?

Legyen $f \in \mathbb{R}^n \to \mathbb{R}$ $(n \in \mathbb{N}^+)$ és $a \in int\mathcal{D}_f$. Tegyük fel, hogy az a pontnak létezik olyan $K(a) \subset \mathcal{D}_f$ környezete, amelyre minden $i = 1, \ldots, n$ index esetén a következők teljesülnek:

- 1. $\exists \partial_i f(x)$ minden $x \in K(a)$ pontban,
- 2. a $\partial_i f: K(a) \to \mathbb{R}$ parciális deriváltfüggvény folytonos az a pontban.

Ekkor az f függvény totálisan deriválható az a pontban.