k-Nearest Neighbors Classification using kd-Trees

Design of Parallel and High Performance Computing

Fabian Wermelinger
Johannes de Fine Licht
Prabhakaran Santhanam

November 2, 2015

- Algorithm k-Nearest Neighbours (kNN)
 - Classification of a given Test Point Output the most occurring class of the k nearest neighbours

- Algorithm k-Nearest Neighbours (kNN)
 - Classification of a given Test Point Output the most occurring class of the k nearest neighbours

- Algorithm k-Nearest Neighbours (kNN)
 - Classification of a given Test Point Output the most occurring class of the k nearest neighbours

- Algorithm k-Nearest Neighbours (kNN)
 - Classification of a given Test Point Output the most occurring class of the k nearest neighbours

- Algorithm k-Nearest Neighbours (kNN)
 - Classification of a given Test Point Output the most occurring class of the k nearest neighbours

- Algorithm k-Nearest Neighbours (kNN)
 - Classification of a given Test Point Output the most occurring class of the k nearest neighbours

- kd-tree Implementation of kNN is used
 - kd-tree can do look up in O(log n), associated with additional overhead due to building the tree.

- For each level of the tree, a dimension is chosen for splitting the data points.
- For each dimension an average of value of that dimension for all data points are taken and that point is used to split the tree at that level. This process is repeated recursively.

- For each level of the tree, a dimension is chosen for splitting the data points.
- For each dimension an average of value of that dimension for all data points are taken and that point is used to split the tree at that level. This process is repeated recursively.

- For each level of the tree, a dimension is chosen for splitting the data points.
- For each dimension an average of value of that dimension for all data points are taken and that point is used to split the tree at that level. This process is repeated recursively.

- For each level of the tree, a dimension is chosen for splitting the data points.
- For each dimension an average of value of that dimension for all data points are taken and that point is used to split the tree at that level. This process is repeated recursively.

- For each level of the tree, a dimension is chosen for splitting the data points.
- For each dimension an average of value of that dimension for all data points are taken and that point is used to split the tree at that level. This process is repeated recursively.

- For each level of the tree, a dimension is chosen for splitting the data points.
- For each dimension an average of value of that dimension for all data points are taken and that point is used to split the tree at that level. This process is repeated recursively.

- For each level of the tree, a dimension is chosen for splitting the data points.
- For each dimension an average of value of that dimension for all data points are taken and that point is used to split the tree at that level. This process is repeated recursively.

- For each level of the tree, a dimension is chosen for splitting the data points.
- For each dimension an average of value of that dimension for all data points are taken and that point is used to split the tree at that level. This process is repeated recursively.

- For each level of the tree, a dimension is chosen for splitting the data points.
- For each dimension an average of value of that dimension for all data points are taken and that point is used to split the tree at that level. This process is repeated recursively.

FLANN

Fast Library for Approximate Nearest Neighbor by Marius Muja and David G. Lowe (http://www.cs.ubc.ca/research/flann/).

Implements different NN algorithms suitable for different input:

Widely used, in particular in Computer Vision application.

All cores query one set of random kd-trees

O(log n)

parallel

All cores query one set of random kd-trees

O(log n)

parallel

All cores query one set of random kd-trees

Random kd-trees distributed on cores

Random kd-trees distributed on cores

Pros

- Keep entire tree in L1 or L2 cache
- Still O(log n)

Random kd-trees distributed on cores

Pros

- Keep entire tree in L1 or L2 cache
- Still O(log n)

Cons

- Requires synchronization
- Limited tree size

Single distributed complete tree

Pros

- Exact solution
- O(log n)
- Keep subtrees in L1/L2 cache

Pros

- Exact solution
- O(log n)
- Keep subtrees in L1/L2 cache

Cons

- Communication costs
- Load imbalance
 - Requires extensive tweaking

Bruteforce

Xeon Phi

optimized matrix library

utilization

optimized

matrix library

Results of Current Tests

- Linear search vs. kd-tree search is identical (using 128-dimensional SIFT data, compared to exact k-neighbors)
- Speed up of kd-tree search using median splitting compared to linear search (1'000'000 base vectors, 10'000 query vectors)

3-Dimensional Data				
k	t _{linear}	t _{kd}	Improvement	
10	16.89s	0.21s	78.6x	
50	18.70s	1.20s	15.6x	
100	16.02s	2.89s	5.6x	
500	20.40s	15.82s	1.3x	
1000	31.63s	32.51s	1.0x	

128-Dimensional Data				
k	t _{linear}	t _{kd}	Improvement	
10	356.7s	446.0s	0.8x	
50	368.5s	621.1s	0.6x	
100	310.0s	526.4s	0.6x	
500	713.3s	744.5s	1.0x	
1000	721.2s	563.0s	1.3x	

Run on 1 Brutus node with four 12-core AMD Opteron 6174 CPUs and 64 GB of RAM GCC 4.8.2 -std=c++11 -O3 -g

Milestones

Naive kNN search kd-Tree kNN search Randomized approximate kd-Trees on CPU Parallelize tree build and kNN search Tuning to Xeon Phi