Frederick Robinson Fall 2011

1 Let M be an (abstract) compact smooth manifold. Prove that there exists some $n \in \mathbb{Z}^+$ such that M can be smoothly embedded in Euclidean space \mathbb{R}^n .

- 2 Prove that the real projective space \mathbb{RP}^n is a smooth manifold of dimension n.
- 3 Let M be a compact, simply connected smooth manifold of dimension n. Prove that there is no smooth immersion $f: M \to T^n$, where $T^n = S^1 \times \cdots \times S^1$ is the n-torus.
- 4 Give a topological proof of the Fundamental Theorem of Algebra: any nonconstant single-variable polynomial with complex coefficients has at least one complex root.
- 5 Let $f: M \to N$ be a smooth map between two manifolds M and N. Let α be a p-form on N. Show that $d(f^*\alpha) = f^*(d\alpha)$.
- 6.1 What are the de Rham cohomology groups of a smooth manifold?
- 6.2 State de Rham's Theorem.
- 7 Consider the form

$$\omega = (x^2 + x + y)dy \wedge dz$$

on \mathbb{R}^3 . Let $S^2=\{x^2+y^2+z^2=1\}\subset\mathbb{R}^3$ be the unit sphere, and $i:S^2\to\mathbb{R}^3$ the inclusion.

- 7.1 Calculate $\int_{S^2} \omega$.
- 7.2 Construct a closed form α on \mathbb{R}^3 such that $i^*\alpha = o^*\omega$, or show that such a form α does not exist.
- 8.1 Let M be a Möbius band. Using homology, show that there is no retraction from M to ∂M .
- 8.2 Let K be a Klein bottle. Show that there exist homotopically nontrivial simple closed curves γ_1 and γ_2 on K such that K retracts to γ_1 , but does not retract to γ_2 .
- 9 Let X be the topological space obtained from a pentagon by identifying its edges as in the picture:

Calculate the homology and cohomology groups of X with integer coefficients.

10 Let X,Y be topological spaces and $f,g:X\to Y$ two continuous maps. Consider the space Z obtained from the disjoint union $Y\amalg(X\times[0,1])$ by identifying $(x,0)\sim f(x)$ and $(x,1)\sim g(x)$ for all $x\in X$. Show that there is a long exact sequence of the form:

$$\cdots \to H_n(X) \to H_n(Y) \to H_n(Z) \to H_{n-1}(X) \to \cdots$$