Universität Salzburg Florian Graf

Machine Learning

Übungsblatt **1** 15 Punkte

Aufgabe 1.

4 P.

Die multivariate Normalverteilung $\mathcal{N}(\mu, \Sigma)$ in \mathbb{R}^d mit Mittelwert $\mu \in \mathbb{R}^d$ und Kovarianzmatrix $\Sigma \in \mathbb{R}^{d \times d}$ ist definiert über die Dichte

$$\rho: \mathbb{R}^2 \to [0, \infty) , \qquad \mathbf{x} \mapsto \frac{1}{\sqrt{(2\pi)^d \det(\Sigma)}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^\top \Sigma^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)$$

Das heißt, für normalverteilte Zufallsvariablen $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ gilt $\mathbb{P}[\mathbf{X} \in A] = \int_A \rho(\mathbf{x}) d\mathbf{x}$.

Im folgenden sei d=2, d.h. wir betrachten die zweidimensionale Normalverteilung mit $\boldsymbol{\mu}=\begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}$ und $\boldsymbol{\Sigma}=\begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{12} & \Sigma_{22} \end{pmatrix}$.

- (a) Wir betrachten die Standardnormalverteilung $\mathcal{N}(\mathbf{0},\mathbf{I})$, d.h. $\boldsymbol{\mu}=\mathbf{0}=\begin{pmatrix} 0\\0 \end{pmatrix}$ und $\boldsymbol{\Sigma}=\mathbf{I}=\begin{pmatrix} 1&0\\0&1 \end{pmatrix}$. Zeigen Sie dass $\mathbb{P}[\mathbf{X}\in\mathbb{R}^2]=1$. (Tipp: Berechnen Sie das Integral in Polarkoordinaten.)
- (b) Berechnen Sie den Erwartungswert $\mathbb{E}[\mathbf{X}] = \begin{pmatrix} \mathbb{E}[X_1] \\ \mathbb{E}[X_2] \end{pmatrix}$ einer standard-normalverteilten Zufallsvariable $\mathbf{X} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}) = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$, wobei $\mathbb{E}[X_i]$ definiert ist als $\mathbb{E}[X_i] = \int_{\mathbb{R}} \int_{\mathbb{R}} x_i \rho(x_1, x_2) \, dx_1 \, dx_2$.
- (c) Berechnen Sie die Kovarianzen $Cov(X)_{ij} = \mathbb{E}\left[(X_i \mathbb{E}[x_i])(X_j \mathbb{E}[x_j])\right]$.
- (d) Bonus: Nun sei $X \sim \mathcal{N}(\mu, \Sigma)$ für beliebiges $\mu \in \mathbb{R}^2$ und positiv definites $\Sigma \in \mathbb{R}^{2 \times 2}$. Zeigen Sie $\mathbb{E}[X] = \mu$ und $Cov(X) = \Sigma$.
- (e) Zeichnen Sie die Niveaulinien der Wahrscheinlichkeitsdichte ρ , d.h. die Mengen $L_c := \{ \mathbf{x} \in \mathbb{R}^2 : \rho(\mathbf{x}) = c \}$ für verschiedene Werte c > 0 für
 - $\mathcal{N}(0, \mathbf{I})$ und
 - $\mathcal{N}(\mu, \Sigma)$ mit $\mu = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ und $\Sigma = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$.

Nutzen Sie diese um eine Stichprobe der Verteilungen zu skizzieren.

Aufgabe 2.

6 P.

Gegeben sei das folgende Wahrscheinlichkeitsmodell

$$p(y = c|\mathbf{x}, \boldsymbol{\theta}) = \frac{p(\mathbf{x}|y = c, \boldsymbol{\theta})p(y = c|\boldsymbol{\theta})}{\sum_{c'} p(\mathbf{x}|y = c', \boldsymbol{\theta})p(y = c'|\boldsymbol{\theta})} , \qquad (1)$$

wobei $c \in \{c_1, c_2\}, p(\mathbf{x}|y=c, \theta) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu_c}, \boldsymbol{\Sigma_c}) \text{ und } p(y=c_1|\theta) = \lambda.$

(a) Wir weisen einer Beobachtung $\mathbf{x} \in \mathbb{R}^2$ die Klasse c zu, falls $p(y=c|\mathbf{x}, \boldsymbol{\theta}) = \max_{c' \in c_1, c_2} p(y=c'|\mathbf{x}, \boldsymbol{\theta})$. Zeigen Sie, dass die Entscheidungsgrenze (decision boundary) $G := \{\mathbf{x} \in \mathbb{R} : p(y=c_1|\mathbf{x}, \boldsymbol{\theta}) = p(y=c_2|\mathbf{x}, \boldsymbol{\theta})\}$ durch eine quadratische Gleichung der Form

$$\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} + \mathbf{b}^{\mathsf{T}} \mathbf{x} + c = 0. \tag{2}$$

bestimmt ist und leiten Sie Formeln für A, b und c her.

Die Lösungsmengen von Gleichung (2) sind Kegelschnitte (Ellipsen, Parabeln, Hyperbeln) oder Geraden.

(b) Bestimmen Sie Verteilungen $\mathcal{N}(\mu_{c_i}, \Sigma_{c_i})$, sodass G (i) eine Gerade oder (ii) ein Kreis ist. Skizzieren Sie in beiden Fällen die Verteilungen und die Entscheidungsgrenze G. Wie ändern sich hergeleiteten die Entscheidungsgrenzen qualitativ in Abhängigkeit von $p(y = c_1 | \theta) = \lambda \in (0, 1)$.

Im Folgenden sind die bedingten Verteilungen $p(\mathbf{x}|y=c,\theta) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu_c},\boldsymbol{\Sigma_c})$ und $p(y=c_1|\theta) = p(y=c_2|\theta) = 1/2$ gegeben. Skizzieren Sie die Verteilungen, bestimmen Sie die Entscheidungsgrenze und skizzieren Sie diese ebenfalls.

(c)
$$\mu_{c_1} = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$$
, $\Sigma_{c_1} = I$ und $\mu_{c_2} = \begin{pmatrix} 0 \\ 3 \end{pmatrix}$, $\Sigma_{c_2} = \begin{pmatrix} 1/3 & 0 \\ 0 & 1 \end{pmatrix}$.

(d)
$$\mu_{c_1} = \mu_{c_1} = 0$$
, $\Sigma_{c_1} = I$ und $\Sigma_{c_2} = \begin{pmatrix} 1/10 & 0 \\ 0 & 5 \end{pmatrix}$.

(e) Es sei $\mu_{c_1} = \mathbf{0}$ und $\Sigma_{c_1} = \mathbf{I}$. Weiter sei $\mu_{c_2} = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$ und $\Sigma_{c_2} = \begin{pmatrix} 1/a & 0 \\ 0 & 1/a \end{pmatrix}$ mit a > 0. Leiten Sie die Entscheidungsgrenze G = G(a) in Abhängigkeit von a her. Wie verhält sich G(a) in den Extremfällen $a \to 0$, $a \to 1$ und $a \to \infty$? Skizzieren Sie die Verteilungen und die Entscheidungsgrenze G in diesen 3 Fällen.

Aufgabe 3.

Im Folgenden darf benutzt werden, dass für Beobachtungen $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ der ML-Schätzer für multivariate Normalverteilungen gegeben ist durch

$$\hat{\boldsymbol{\mu}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} , \qquad \hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_{i} - \hat{\boldsymbol{\mu}}) (\mathbf{x}_{i} - \hat{\boldsymbol{\mu}})^{\top} .$$
 (3)

5 P.

Es seien Beobachtungen $\mathbf{x}_1^1,\ldots,\mathbf{x}_{n_1}^1\in\mathbb{R}^2$ der Klasse c_1 und $\mathbf{x}_1^2,\ldots,\mathbf{x}_{n_2}^2\in\mathbb{R}^2$ der Klasse c_2 gegeben.

- (a) Leiten Sie die Maximum-Likelihood Schätzer für μ_{c_i} , Σ_{c_i} und λ her, unter der Annahme, dass die Beobachtungen durch das Wahrscheinlichkeitsmodell Gleichung (1) erzeugt wurden.
- (b) Leiten Sie die Maximum-Likelihood Schätzer her, unter der Annahme, dass $\Sigma_{c_1} = \Sigma_{c_2} = \Sigma_c$.
- (c) Leiten Sie die Maximum-Likelihood Schätzer her, unter der Annahme, dass $\Sigma_{c_1} = \sigma_1^2 \mathbf{I}$ und $\Sigma_{c_2} = \sigma_2^2 \mathbf{I}$ diagonal sind.
- (d) Die Beobachtungen sind in folgender Tabelle aufgeführt. Zeichnen Sie diese in ein zweidimensionales Koordinatensystem. Berechnen Sie für die Fälle (a) bis (c) die Entscheidungsgrenzen und zeichnen Sie diese Ebenfalls ein.