α) Η εξίσωση της μορφής $x^2+y^2+Ax+By+\Gamma=0$ παριστάνει κύκλο με κέντρο $K\left(-\frac{A}{2},-\frac{B}{2}\right)$

και ακτίνα
$$\rho\!=\!\frac{\sqrt{A^2+B^2-4\Gamma}}{2}$$
 , αν και μόνο αν $\,A^2+B^2-4\Gamma\!>\!0$.

Για την εξίσωση (1) έχουμε:

$$A^2 + B^2 - 4\Gamma = 4 - 4(-8) = 36 > 0$$
,

δηλαδή παριστάνει κύκλο με κέντρο K(1,0) και ακτίνα $\rho_1 = 3$.

Όμοια για την (2) έχουμε:

$$A^2 + B^2 - 4\Gamma = 36 - 4 \cdot 8 = 4 > 0$$

δηλαδή παριστάνει κύκλο με κέντρο $\Lambda(3,0)$ και ακτίνα $\rho_2 = 1$.

β)

i. Έχουμε
$$(K\Lambda) = \sqrt{(3-1)^2 + 0^2} = 2$$
.

ii. Δύο κύκλοι με κέντρα K, Λ και ακτίνες ρ_1 και ρ_2 αντίστοιχα εφάπτονται εσωτερικά αν και μόνο αν $(K\Lambda)=|\rho_1-\rho_2|=\rho_1-\rho_2$, όπως γνωρίζουμε από την Ευκλείδεια γεωμετρία. Είναι $\rho_1-\rho_2=3-1=2$, από β)i. έχουμε $(K\Lambda)=2=\rho_1-\rho_2$, δηλαδή ικανοποιείται η προϋπόθεση οπότε ο κύκλος C_2 εφάπτεται εσωτερικά του κύκλου C_1 .

γ) Κάθε ακτίνα του κύκλου C_1 , ΚΑ και ΚΒ σύμφωνα με το παρακάτω σχήμα, που δεν είναι κάθετη στον x'x άξονα, είναι πάνω σε ευθεία η οποία διέρχεται από το σημείο K(1,0) και έχει κλίση $\lambda \in \mathbb{R}$. Άρα θα έχει εξίσωση:

$$(\varepsilon)$$
: $y-0=\lambda(x-1) \Leftrightarrow y-\lambda x+\lambda=0$, $\lambda \in \mathbb{R}$.

Η $\left(arepsilon
ight)$ θα εφάπτεται στον $\,C_2\,$ αν και μόνο αν $\,d\left(\Lambda, arepsilon
ight) =
ho_2\,$. Έχουμε:

$$d(\Lambda,\varepsilon) = \rho_2 \Leftrightarrow \frac{|0-3\lambda+\lambda|}{\sqrt{1+\lambda^2}} = 1 \Leftrightarrow |2\lambda| = \sqrt{1+\lambda^2} \Leftrightarrow 3\lambda^2 = 1 \Leftrightarrow \lambda = \pm \frac{\sqrt{3}}{3}.$$

Τελικά οι ζητούμενες ακτίνες ΚΑ και ΚΒ έχουν εξισώσεις:

$$(ε1): 3y - \sqrt{3}x + \sqrt{3} = 0$$
 και

$$(ε2): 3y + \sqrt{3}x - \sqrt{3} = 0$$
 αντίστοιχα.