MDI0002 – Matemática Discreta Aula 01 Noções de Lógica e Técnicas de Demonstração

Karina Girardi Roggia karina.roggia@udesc.br

Departamento de Ciência da Computação Centro de Ciências Tecnológicas Universidade do Estado de Santa Catarina

2020

Matemática Discreta

Por que Discreta?

- Limitações finitas de um computador
 - tamanho da memória
 - número de instruções que pode executar
 - número de símbolos que pode tratar
- Portanto é necessário o estudo de estruturas baseadas em conjuntos finitos
- Porém isto não implica pré-fixação de tamanhos máximos (por exemplo: armazenamento)

Matemática Discreta

Conjuntos de recursos computacionais

- são contáveis ou discretos (em oposição ao termo contínuo)
- podem ser enumerados (não há elemento entre quaisquer outros dois)
- Exemplo: \mathbb{N} versus \mathbb{R}

Matemática Discreta

Estudo baseado em **Conjuntos Contáveis**, finitos ou infinitos Matemática do Contínuo

- Cálculo Diferencial e Integral
- Análise Matemática

Conjuntos

- Conceito
- Denotação: por extensão e por compreensão
- Pertinência
- Contingência
- Conjuntos finitos e infinitos
- Conjunto vazio e conjunto universo

Por que Lógica?

Teoremas

- Podem ser vistos como problemas a serem implementados
- A prova ou demonstração é a solução computacional (se não for por absurdo...)

Programação - Operadores lógicos

• Segue a lógica proposicional clássica

Lógica Proposicional Clássica

Proposição

- Sentença, frase ou construção que se pode atribuir juízo
- É o "átomo" da lógica
- Verdadeiro ou Falso

Conectivos

- Operam sobre as proposições
- Constroem fórmulas mais complexas

Conectivos

- e (conjunção) ∧
- ou (disjunção) ∨
- não (negação) ¬
- ullet se-então (condicional) ightarrow

Tabelas-Verdade

Conjunção e Disjunção

р	q	p∧q	p∨q
V	V	V	V
V	F	F	V
F	V	F	V
F	F	F	F

Negação

regução		
p	¬р	
V	F	
F	V	

Tabela-Verdade

Condicional

р	q	p→q
V	V	V
V	F	F
F	V	V
F	F	V

Tautologia e Contradição

Tautologia

- Fórmula que é sempre verdadeira
- Para qualquer combinação de valores das proposições

Contradição

- Fórmula que é sempre falsa
- Para qualquer combinação de valores das proposições

Quantificadores

Passagem da Lógica Proposicional para a Lógica de Primeira Ordem

Seja uma proposição sobre um conjunto de valores, como

de forma que, dependendo do valor de n, o valor-verdade possivelmente muda.

Para cada valor de *n*, uma proposição diferente é considerada.

Quantificadores

Quantificador Universal

- Para todo x
- $\forall x \in U, p(x)$

Quantificador Existencial

- Existe x
- $\exists x \in U, p(x)$

Quantificadores

Existência \neq Unicidade

- Existe somente um
- Existe e é único
- Simbolizado por ∃!

$$\exists!x\ p(x) \Leftrightarrow (\exists x\ p(x)) \land (\forall x \forall y\ p(x) \land p(y) \rightarrow x = y)$$

Teoremas

Sentença do tipo

$$p \rightarrow q$$

que deve ser demonstrada.

p – hipótese

q – tese

Demonstração: sequência de sentenças que seguem a partir da hipótese que devem ser justificadas com passos lógicos, definições ou teoremas anteriormente demonstrados.

Verdadeiro ou Falso?

A partir de uma afirmação qualquer, por exemplo,

$$\forall n \in \mathbb{N} \ n! < n^3$$

Como provar se é verdadeira ou falsa?

- Análise da afirmação
- Demonstração caso seja verdadeira
- Contra-exemplo caso seja falsa

Algumas Dicas Iniciais

• Um teorema da forma

$$p \leftrightarrow q$$

é usualmente provado em duas "partes".

"Indo": $p \rightarrow q$.

E "voltando": $q \rightarrow p$.

- Exemplo geralmente **não** é prova. Exceção: conjectura é a existência de um elemento que respeite alguma propriedade.
- No caso de um número **finito e pequeno** de elementos, pode-se mostrar o que se quer elemento a elemento. (Prova por exaustão)

Prova Direta

Pressupõe que a hipótese p é verdadeira e segue até deduzir a tese q também como verdadeira.

Ou seja, partindo-se de p, chega-se a q.

Exemplo:

a soma de dois números pares é par

Reescrita pela forma $p \rightarrow q$

se m e n são dois números pares quaisquer, então m+n é par

Prova por Contraposição

Baseia-se no resultado

$$p \rightarrow q \Leftrightarrow \neg q \rightarrow \neg p$$

р	q	p o q	$\neg p$	$\neg q$	eg q o eg p
V	V	V	F	F	V
V	F	F	F	V	F
F	V	V	V	F	V
F	F	V	V	V	V

Para provar $p \to q$, faz-se a **prova direta** de $\neg q \to \neg p$.

Exemplo:

$$n! > (n+1) \rightarrow n > 2$$

Redução ao Absurdo

Baseia-se no resultado

$$p \rightarrow q \Leftrightarrow (p \land \neg q) \rightarrow F$$

р	q	p o q
V	V	V
V	F	F
F	V	V
F	F	V

Para provar $p \to q$, faz-se a **prova direta** de $(p \land \neg q) \to F$.

- supõe-se a hipótese: p
- supõe-se a negação da tese: ¬q
- chega-se a uma *contradição*, por exemplo, $s \wedge \neg s$

Redução ao Absurdo

Exemplo:

0 é o único elemento neutro da adição em $\mathbb N$

Reescrevendo na forma p o q

se 0 é elemento neutro da adição em $\mathbb N$ então 0 é o único elemento neutro da adição em $\mathbb N$

Suponha

- 0 é um elemento neutro da adição em N
- 0 não é o único elemento neutro da adição em N

Seja

ullet e um outro elemento neutro da adição em $\mathbb N$ tal que e
eq 0

