NONMETRIC METHODS Recognition with Strings

Pattern Recognition

CSE 555/655

Attribute Lists

- Nominal Data
 - No natural notion of similarity or ordering
 - E.g., a fruit =(red,shiny,sweet,small)
- Distance between vectors cannot be measured
 - Nearest-neighbor uses distance
 - Neural network uses similarity of outputs

Strings

- Patterns are ordered sequences, or variable length strings of discrete items
- Examples
 - Sequence of letters in an English word
 - In DNA, bases in a gene sequence
 - In JOCR, brush strokes recognized by neural network, then string matching for OCR
- Move away from pdfs and metrics to syntactic methods

Gene Sequence

- DNA bases in gene sequence
- E.g., AGCTTCGAATC
- Letters stand for nucleic acids
 - A: adenine
 - G: guanine
 - C: cytosine
 - T: thymine

String Pattern Classifiction

- String elements are nominal
 - Characters, letters, or symbols
- No obvious notion of distance between strings
- Strings need not be of same length
- Strings are not vectors, yet we will use notation, x = AGCTTC

String Terminology

- Patterns, Strings, templates, words
- A long string is denoted text
- Any continuous string that is part of x is a substring, segment, or factor of x
 - E.g., "GCT" is a factor of "AGCTTC"

String Recognition Problems

- Many computational problems with strings
- Problems of greatest importance:
- 1. String Matching: Given x and text, determine whether x is a factor of text and if so, where it appears
- 2. Edit Distance: Given two strings x and y compute minimum number of basic operations—insertions, deletions and substitutions—to transform x to y

String Problems

3. String Matching with errors: Given **x** and *text*, find the locations in *text* where the cost or distance to any factor of **x** is minimal

String Problems

4. String Matching with "Don't-care symbol": Same as basic string matching, but with special symbol-- * which can match any other symbol., e.g.,

Given DNA segment x = AGCCG*****GACTG

Motifs:

Important for coding protein

Inert: no function

Is *text* in the class of sequences that could yield the particular protein