Задача 9-1

Одним из устаревающих способов получения крупнотоннажного продукта химической промышленности неорганического вещества \mathbf{K} из газа \mathbf{X} является каталитический цикл с использованием газа \mathbf{Y} – так называемый ... *метод*.

Последовательность реакций в данном цикле с коэффициентами приведена ниже:

$$2\mathbf{Y} + \mathbf{O} \to 2\mathbf{Z} \tag{I}$$

$$Y + Z + 2K \rightarrow 2G + H_2O$$
 (II)

$$H_2O + \mathbf{G} \to \mathbf{K} + \mathbf{L}$$
 (III)

$$2L + X \rightarrow K + 2Y$$
 (IV)

Известно, что G имеет ионное строение и содержит 4 элемента в своём составе, а L – нестабильное соединение, существующее только в растворе.

Запишите суммарное уравнение получения ${\bf K}$ (можно использовать буквенные обозначения веществ).

Определите неизвестные соединения, представленные на схеме.

Примесным компонентом в получаемом растворе K является соединение P со схожими химическими свойствами, присутствие которого обусловлено использованием Y в качестве катализатора.

Определите соединение **P**. Приведите уравнение реакции, объясняющие образование соединения **P** в растворе **K**.

Приведите название описанного метода получения ${\bf K}$. При использовании стехиометрических количеств реагентов реакции имеют

следующие выходы: I - 48%, II - 88%, III - 87%, IV - 74%.

Вычислите расход реагентов (в тоннах) на получение 1 тонны чистого \mathbf{K} . Примите, что вода находится в избытке и ее количество рассчитывать не нужно. Если Вам не удалось установить формулы веществ, вычислите расход реагентов в молях на получение 1 моль \mathbf{K} .

) Газ **X** является побочным продуктом другого крупнотоннажного химического производства. Напишите уравнение реакции, ведущей к его образованию.

Решение задачи 9-1

1) Внимательно рассмотрим 4 данных уравнения. Нам известно, что вещество \mathbf{K} – продукт, который должен оказаться справа, \mathbf{X} – реагент, который должен оказаться слева, \mathbf{Y} – катализатор, который не должен остаться в конечной схеме. Также видно, что вещество \mathbf{O} встречается в схеме только один раз – значит, это тоже реагент. Соединения \mathbf{Z} , \mathbf{G} и \mathbf{L} – по-видимому, промежуточные вещества, которые тоже должны сократиться в конечной схеме.

Обратимся к реакции **IV**, в которой соединение **X** находится слева. Скомбинируем её с реакцией **III**, чтобы исключить промежуточное вещество **L**. Получим:

$$2H_2O + X + 2G = 3K + 2Y$$

Используем реакцию **II**, чтобы исключить промежуточное соединение **G**. Получим:

$$H_2O + X + Z = K + Y$$

Реакция I позволит исключить вещества Z и Y. Итоговая реакция синтеза K имеет следующий вид:

$$H_2O + X + 0.5 O = K$$

2) Попробуем определить соединение **К**. Видно, что в его синтезе используется вода, следовательно, оно содержит кислород и водород. С учётом того, что это крупнотоннажный неорганический продукт химической промышленности, получаемый из газа, понимаем, что это кислота. Среди вариантов H₂SO₄, HNO₃ и H₃PO₄ последняя не подходит сразу, поскольку она не образуется из газа. На 1 молекулу воды образуется 1 молекула K, что позволяет исключить и азотную кислоту. Итак, **К** – H₂SO₄.

Серную кислоту получают из диоксида серы. Тогда $X - SO_2$, $O - O_2$.

Рассмотрим имеющиеся уравнения реакций с учётом полученных ранее ланных:

$$H_2O + SO_2 + Z = H_2SO_4 + 2Y$$

$$2Y + O_2 = 2Z$$

Из этих двух реакций видно, что \mathbf{Y} и \mathbf{Z} отличаются на 1 атом кислорода, причём \mathbf{Y} легко окисляется. Кроме того, при пропускании этих веществ через раствор серной кислоты образуется ионное соединение \mathbf{G} . Анион в этом соединении — очевидно, сульфат или гидросульфат. Следовательно, газ \mathbf{Y} способен образовывать катионы. В тексте задачи также может быть найдена информация о \mathbf{P} , похожем по свойствам на $\mathbf{H}_2\mathbf{SO}_4$ и обусловленном наличием \mathbf{Y} в каталитической схеме. Всё это указывает на то, что \mathbf{Y} — \mathbf{NO} , \mathbf{Z} — \mathbf{NO}_2 . Тогда \mathbf{G} — \mathbf{NOHSO}_4 ($\mathbf{NO}^+\mathbf{HSO}_4^-$), \mathbf{L} — \mathbf{HNO}_2 .

 P – азотная кислота HNO₃. Она образуется при пропускании смеси кислорода и диоксида азота через воду:

$$2H_2O + 4NO_2 + O_2 = 4HNO_3$$

- 4) Данный метод получения серной кислоты называется *нитрозным* или *башенным*.
- 5) В приведённой схеме образуется только 1 моль **K**, поскольку **K**, образующийся в реакции **III**, затрачивается в реакции **II**. Соединение **X** (SO₂) используется только на последней стадии, поэтому на 1 моль **K** необходимо, с учётом выхода, 1/0.74 = 1.35 моль **X**. Соединение **O** (O₂) проходит через все 4 стадии, а по схеме на 1 моль **K** необходимо 0.5 моль O₂. Тогда, с учётом выхода, необходимое количество **O** равно $0.5/(0.74 \cdot 0.87 \cdot 0.88 \cdot 0.48) = 1.84$ моль.

В 1 тонне чистого **K** содержится 10 204 моль. На получение этого количества понадобится $10204 \cdot 1.35 \cdot 64/1$ 000 000 = 0.882 **т X** (SO₂) и 10 $204 \cdot 1.84 \cdot 32/1$ 000 000 = 0.601 **T O** (O₂).

Катализатор в ходе реакции не расходуется, поэтому его количество считать не следует.

6) SO₂ преимущественно получают при обжиге сульфидных минералов, главным образом, пирита или сульфидов меди:

$$2\text{CuS} + 3\text{O}_2 = 2\text{CuO} + 2\text{ SO}_2$$

 $4\text{FeS}_2 + 11\text{O}_2 = 2\text{Fe}_2\text{O}_3 + 8\text{SO}_2$

Система оценивания:

1	Суммарное уравнение получения К	3 балла
2	Неизвестные соединения X, Y, Z, K, O, G, L, по 1 баллу	7 баллов
3	Соединение Р – 1 балл	3 балла
	уравнение реакции – 2 балла	
4	Название метода	1 балл
5	Расчёт массы $X - 2$ балла,	5 баллов
	расчёт массы О – 3 балла;	
	за расчёты количества вещества – 1 и 2 балла соответственно	
6	Уравнение реакции обжига сульфидного минерала	1 балл
	ИТОГО: 20 баллов	