1. Ejercicio 1

Se procederá al análisis del circuito de la Figura 1. El mismo es un circuito destinado al análisis del disparo de un transistor MOSFET.

1.1. Carga Inductiva

La carga inductiva tiene dos valores de corriente, uno cuando se prende el MOSFET (I_0) , y otro cuando se apaga (I_1) . Siendo $t_1 = D/f_s$, $t_2 = (1 - D)/f_s$, $\tau_{RL} = L/R$, f_s la frecuencia del switch y D el duty cycle, entonces resolviendo el circuito RL se tiene que

$$I_0 = \frac{V_2}{R_2} \frac{1 - exp(-t_1/\tau_{RL})}{\exp(t_2/\tau_{RL}) - \exp(-t_1/\tau_{RL})}$$

$$I_1 = \frac{V_2}{R_2} \frac{(1 - \exp(-t_1/\tau_{RL})) \exp(t_2/\tau_{RL})}{\exp(t_2/\tau_{RL}) - \exp(-t_1/\tau_{RL})}$$

Figura 1: Circuito para análisis de disparo de transistor MOSFET

1.2. Conmutación MOSFET

Durante la conmutación del MOSFET, se cargan y descargan capacidades internas. Las capacidades a considerar en en análisis de conmutación son la Capacidad Gate-Source C_{GS} y la capacidad Gate-Drain C_{GD} .

1.2.1. Encendido del MOSFET

Considerando que, ante un escalón de tensión en provisto por el circuito Driver, dichas capacidades comienzan a cargarse, se puede modelar la primera etapa del prendido del MOSFET con un circuito RC, por lo que la tensión V_G en función del tiempo puede ser aproximada por $V_G(t) = V_1(1 - \exp(-t/\tau_1))$, donde $\tau_1 = R_1\tilde{C}_{G,1}$ y $\tilde{C}_{G,1} = C_{GS} + C_{GD,1}$. Cuando la tensión en el Gate llega a $V_{GS,th}$ (en $t=t_{d,on}$), comienza a formarse la capa de inversión, por lo que la corriente del Drain I_D comienza a aumentar hasta llegar al valor I_0 impuesto por la carga inductiva y hasta que el diodo deje de conducir (en $t=t_1$). Esto ocurrirá cuando la tensión en el Gate llegue a un valor $V_G = V_{G,I_D=I_0}$. El tiempo entre que comienza a circular corriente hasta que se alcanza el valor I_0 se denomina t_{ri} . Se puede demostrar que $t_{d,on} = -\tau_1 \ln (1 - V_{G,th}/V_1)$, $t_1 = -\tau_1 \ln (1 - V_{G,I_D=I_0}/V_1)$ y $t_{ri} = t_1 - t_{d,on}$.

Luego, cuando la corriente de Drain llega al valor I_0 , el valor de la tensión en el Gate se mantiene temporalmente en $V_G = V_{G,I_D=I_0}$, por lo que la capacidad C_{GS} deja de cargarse, mientras se sigue cargando C_{GD} a corriente constante. A medida se cargue C_{GD} se formará la capa de acumulación, bajando la resistencia R_{DS} , por lo que disminuye la tensión V_{DS} hasta alcanzar el valor $V_{DS,on}$. Dado que la capacidad C_{GD} varía durante este proceso, pues varían la longitud de la capa de acumulación, suele utilizarse el valor de la

Figura 2: Curvas de tensión y corriente en el MOSFET durante el encendido

carga total ΔQ para estimar la duración de esta etapa. Con esto, el tiempo que transcurre desde que empieza a caer la tensión V_{DS} hasta que alcanza el valor $V_{DS,on}$ puede estimarse según $t_{fv} = \Delta Q/I_{G,on} = (\Delta QR_1)/(V_1 - V_{G,I_D=I_0})$. A lo largo de esta etapa, cambia el valor de C_{GD} de $C_{GD,1}$ a $C_{GD,2}$. El cambio de la tensión V_{DG} en función del tiempo puede expresarse según $\frac{dV_{DG}}{dt} = \frac{V_{GG} - V_{G,I_D=I_0}}{R_1 C_{GD}}$.

Una aproximación es considerar que esto ocurre en dos etapas: una donde $C_{GD} = C_{GD,1}$ y otra donde $C_{GD} = C_{GD,2}$. Luego, la tensión en el Gate sigue creciendo hasta llegar al valor V_{GG} . El tiempo característico asociado está dado por $\tau_2 = R_1 \tilde{C}_{G,2}$, donde $\tilde{C}_{G,2} = C_{GS} + C_{GD,2}$. Un gráfico esquemático mostrando la conmutación del MOSFET se muestra en la Figura 2.

1.2.2. Apagado del MOSFET

El apagado del MOSFET es similar al encendido, pero en orden contrario. Primero, se comienzan a descargar las capacidades internas por el Gate, por lo que la tensión del Gate en la primera etapa está dada por $V_G(t) = V_{GG} \exp(-t/\tau_2)$. Esto ocurrirá hasta que la tensión V_G alcance el valor $V_{G,I_D=I_0}$ en $t=t_{d,off}$. Puede demostrarse que $t_{d,off} = -\tau_2 \ln{((V_{G,I_D=I_0})/(V_{GG}))}$. Luego, la tensión en el Gate permanecerá constante mientras se descarga $C_{GD,2}$ a corriente constante durante un tiempo t_{rv} . Análogo al caso de encendido, este tiempo está dado por $t_{rv} = \Delta Q/I_{G,off} = (\Delta QR_1)/(V_{G,I_D=I_0})$

Notar que, al igual que durante el prendido, la capacidad C_{GD} cambia de valor durante este proceso. La misma aproximación en dos etapas aplica para este caso. Finalmente, la tensión en el Gate baja según la ecuación $V_G = V_{G,I_D=I_0} \exp(-t/\tau_1)$.

A medida que la tensión cae, comienza a deshacerse el canal formado, por lo que baja el valor de I_D hasta hacerse nulo cuando $V_G = V_{G,th}$. Esto ocurre luego de un intervalo $t_{fi} = -\tau_1 \ln \left((V_{G,th})/(V_{G,I_D=I_0}) \right)$.

1.3. Diodo

Resulta importante tener en cuenta los efectos de un diodo real en las curvas de conmutación del MOSFET. Al no ser este análisis requisito de este ejercicio, no se realizará un análisis en detalle, pero si se comentará para poder explicar lo observado en simulaciones con un diodo real.

Al apagar el diodo, la corriente sobre el mismo baja, pero como las junturas no se vuelven a formar inmediatamente (los portadores de carga libres deben ser removidos para que la juntura llegue al equilibrio térmico antes de que la misma pueda ser polarizada en inversa), por un cierto tiempo t_{rr} la corriente en el diodo se vuelve negativa hasta llegar a un valor pico I_{rr} , y esta corriente puede alcanzar valores significativos.

1.3.1. Efecto de I_{rr} en la conmutación del MOSFET

Por causa de la corriente I_{rr} , la corriente de Drain I_D crece hasta el valor $I_0 + I_{rr}$, por lo que el valor de V_G crece por arriba de $V_{G,I_D=I_0}$. Cuando el diodo se recupera y la corriente vuelve a cero (y, por lo tanto,

Figura 3: Efectos de I_{rr} en el encendido del MOSFET.

la corriente I_D baja a I_0), el valor de V_G baja a $V_{G,I_D=I_0}$, y el cambio de tensión provee corriente adicional a la capacidad C_{GD} , produciendo que V_{GD} y V_{DS} decrezcan rápidamente durante este intervalo de recovery. Los efectos de la corriente I_{rr} en la conmutación del MOSFET pueden observarse en la Figura 3. Esta corriente no se tendrá en cuenta para el análisis teórico.

1.4. Valores de los componentes y variables

Los valores de los componentes y las variables se muestran en la Tabla 1.

Parámetro	Valor
V_0 (on)	15 V
V_0 (off)	0 V
f_s	50 KHz
D (Duty Cycle)	50%

ł	Componente	Q_1	Q_2	R_1	R_2	R_3
ł	Valor	BC337-25	BC557B	100 Ω	15Ω	$1 K\Omega$
ł	Componente	M_1	L_1	D_1	V_2	V_1
ł	Valor	IRF530	$220~\mu H$	MUR460	50 V	Ver Tabla izq.

Tabla 1: Valores de los componentes utilizados.

1.5. Búsqueda de parámetros en datasheet y cálculo de valores

Los valores de los parámetros del circuito obtenidos a partir del datasheet del transistor y los valores calculados de las capacidades internas, asi como también los tiempos teóricos de conmutación se muestran en la Tabla 2.

Variab	ole $I_{0_{off}}$	$I_{0_{on}}$	$V_{G,th}$	$V_{G,I_D=I_0}$	Ooff	$V_{G,}$	$I_D = I_{0o}$	$\tilde{C}_{G,1}$	$\tilde{C}_{GD,2}$	ΔQ
Valor	2,21 A	1,12 A	4 V	4,8 V	T	4	1,5 V	650 pF	1120 pF	7 nC
		7	Variable	$C_{gd,1}$	C_g	$_{d,2}$	C_{gs}			
			Valor	50 pF	520	рF	600 p	οF		
	Variable	$t_{d,on}$	t_{ri}	t_{fv}		$t_{d,\epsilon}$	off	t_{rv}	t_{fi}	ı
	Valor	21.32 ns	3.23 ns	71.43	ns	127.6	32 ns	145.83 ns	11.85 ns	ı

Tabla 2: Valores obtenidos del datasheet

1.6. Curvas teóricas

Las curvas obtenidas a partir de la teoría se muestran en la Figura 4.

Figura 4: Curvas teóricas de V_G , V_{DS} e I_D .

1.7. Curvas Simuladas y valores obtenidos con la simulación

Las curvas de conmutación obtenidas en la simulación pueden observarse en la Figura 5. Los valores de los tiempos de conmutación obtenidos a partir de la simulación se muestran en la Tabla 3

	Variable	$t_{d,on}$	t_{ri}	t_{fv}	$t_{d,off}$	t_{rv}	t_{fi}
ĺ	Valor	28 ns	12 ns	183 ns	170 ns	450 ns	13 ns

Tabla 3: Tiempos de conmutación obtenidos a partir de la simulación.

1.8. Comparación de resultados obtenidos

Al comparar los resultados teóricos y las simulaciones, la diferencia más significativa es el pico de corriente que aparece en la corriente de Drain I_D . Este pico es debido a la corriente I_{rr} desarrollada en la Subsubsección 1.3.1. Este efecto no fue considerado para graficar las curvas teóricas, pero los resultados obtenidos en la simulación $(I_{D,max} = 10.29A, \text{ cuando } I_0 = 1.15A)$ muestran la importancia de tener en consideración este análisis.

Con respecto a la forma de las curvas obtenidas, las curvas teóricas y simuladas resultan semejantes en forma, con desviaciones por la aproximación del modelo teórico con respecto al modelo de la simulación, presentando algunas diferencias en los tiempos de las distintas etapas de la conmutación.

Los tiempos de las distintas etapas obtenidos con la simulación difieren de los valores calculados teóricamente. Este resultado es de esperar, dado que los valores utilizados y obtenidos a partir del datasheet pueden diferir con respecto a los valores tanto del componente real como de aquellos utilizados en el modelo de la simulación. Sin embargo, los valores son comparables en cuanto a su orden de magnitud. Se muestra en la Tabla 4 los errores relativos porcentuales de los tiempos de conmutación, asi como la diferencia de orden de magnitud entre los valores teóricos y simulados.

Figura 5: Curvas simuladas de V_G , V_{DS} e I_D , y detalle de conmutación de encendido y apagado.

Variable	$t_{d,on}$	t_{ri}	t_{fv}	$t_{d,off}$	t_{rv}	t_{fi}
Error porcentual	23.8%	73%	60.9%	24.9%	67.5%	8.84%
$\log_{10}(\text{Te\'orico/Simulado})$	-0.11	-0.56	-0.4	-0.12	-0.48	-0.04

Tabla 4: Errores porcentuales y diferencias en orden de magnitud de tiempos de conmutación.

Se puede observar que las diferencias más importantes se dan para los valores de $t_{d,on}$, t_{fv} y t_{rv} . Es de esperar una desviación en el valor de $t_{d,on}$ con respecto al calculado teóricamente, por los efectos de la corriente I_{rr} . Con respecto a las desviaciones de los valores de t_{fv} y t_{rv} , estos dos valores presentan desviaciones similares, y ambos están asociados al valor de la carga ΔQ , por lo que un posible motivo de estas desviaciones es que el valor de ΔQ obtenido a partir del datasheet para calcular los valores de t_{fv} y t_{rv} difieren del valor utilizado para el modelo de la simulación.

Figura 6: Superposición de curvas simuladas (lineas sólidas) y obtenidas a partir de la teoría (lineas discontinuas).