Logistic Regression

Due No due date **Time Limit** None

Points 2 Questions 2
Allowed Attempts Unlimited

Available after Apr 1 at 16:13

Take the Quiz Again

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	less than 1 minute	0 out of 2

Submitted Jun 16 at 18:20

Jnanswered

Question 1

0 / 1 pts

Which one is the **logistic transformation** that logistic regression takes to model the probability p?

orrect Answer

- Log odds
- Log
- Exponential
- Identity

$$\log \frac{p}{1-p} = \theta_0 + \theta_1 x_1 + \dots + \theta_F x_F$$

Question 2 0 / 1 pts

Assume there are class 0 and 1, p is the probability for class 1, and we have feature value x1, ..., xf. What is the **decision rule** for classifying an instance as class 1 in logistic regression?

orrect Answer

$$\quad \sigma(\widehat{\theta_0} + \widehat{\theta_1} x_1, \dots, + \widehat{\theta_F} x_f) > 0.5$$

$$\sigma(\widehat{\theta_0} + \widehat{\theta_1} x_1, \dots, + \widehat{\theta_F} x_f) > 0$$

$$\quad \sigma(\widehat{\theta_0} + \widehat{\theta_1} x_1, \dots, + \widehat{\theta_F} x_f) < 0$$

$$\sigma(\widehat{\theta_0} + \widehat{\theta_1}x_1, \dots, + \widehat{\theta_F}x_f) > 1$$

This is a binary classification task, and $\sigma(\widehat{\theta_0} + \widehat{\theta_1}x_1, ..., + \widehat{\theta_F}x_f)$ gives an estimate of the probability of class 1. Therefore, we classify the instance as class 1 if its probability is greater than 0.5 and classify as class 0 otherwise.