Introduction

- AI Engineering:
 - Focuses less on modeling and training, and more on model adaption and evaluation
 - Works with models that are bigger and consume more compute resources, and incur higher latency than traditional ML models
- Token:
 - Basic unit of a language model (can be a word, character, or part of a word)
 - Allow models to break words into meaningful components
 - There are fewer unique tokens than unique words
- Masked language model: Trained to predict a token anywhere in a sequence, using the context from both before and after the missing token \rightarrow fill in the blank
- Autoregressive language model:
 - Trained to predict the next token in a sequence, using only the preceding tokens
 - Can continually generate one token after another
- Generative models can generate open-ended outputs
- Classical ML models are closed-ended since they only can outputs that are among predefined values
- Completions are predictions based on probabilities, and not guaranteed to be correct
- Self-supervision:
 - Model infers labels from the input data
 - Language modeling is self-supervised because each input sequence provides both the labels (tokens to be predicted) and the contexts the model can use to predict these labels \rightarrow labels are inferred from the input data
- Foundation model: Can be built upon for different needs
- Multimodal model: Models that can work with more than one data modality
- Agents: AI that can plan and use tools
- Three layers of AI stack:
 - Application development: Provide a model with good prompts and necessary context
 - Model development: Tooling for developing models, including frameworks for modeling, training, finetuning, and inference optimization
 - Infrastructure: Tooling for model infrastructure, including tooling for model serving, managing data and compute, and monitoring
- Inference optimization: Make models faster and cheaper
- Prompt engineering: Get AI models to express the desirable behaviors from the input alone, without changing the model weights

Foundation Models

- Sampling:
 - Process of constructing output
 - How does a model chooses an output from all possible options
 - Makes an AI's output probabilistic
 - To generate the next token, the model first computes the probability distribution over all tokens in the vocabulary
 - Greedy sampling: Always pick the most likely outcome \rightarrow creates boring outputs since the most common words are responded
 - Instead of picking the most likely token, the model can sample the next tokens ac-

cording to the probability distribution

• Sampling strategies:

- Temperature: A higher temperature reduces the probabilities of common tokens and increases the probability of rarer tokens
- Top-k: Pick top-k logits to perform softmax over these \to smaler k makes the text more predictable but less interesting

- Top-p:

- * Allows for a more dynamic selection of values to be sampled from than top-k
- * Model sums the probabilities of the most likely next values in descending order and stops when the sum reaches $p \to only$ the values within the cumulative probability are considered
- * Focuses only on the set of most relevant values for each context and allows outputs to be more contextually appropriate
- * Typically range from 0.95 to 0.99

• Logit vector:

- Corresponds to one possible value \rightarrow one token in the model's vocabulary
- Logit vector size is the size of the vocabulary
- Do not represent probabilities
- To convert logits to probabilities, a softmax layer is often used
- Sparsity allows for more efficient data storage and computation (large percentage of zerovalue parameters)
- Number of tokens in a model's dataset isn't the same as its number of training tokens \rightarrow the number of training tokens measures the tokens that the model is trained on
- FLOP: Unit for a model's compute requirement → measures the number of floating point operations performed for a certain task
- Utilization: Measures how much of the maximum compute capacity one can use
- Post-Training:
 - Issues of a pre-trained model:
 - * Self-supervision optimizes the model for text completion, not conversations
 - * Outputs can be biased or wrong

- Solution:

- * Supervised finetuning (SFT): finetune the pre-trained model on high-quality instruction data to optimize models for conversations instead of completion
- * Preference finetuning: Finetune the model to output responses that aligh with human preferences
- Preference finetuning is typically done with reinforcement learning or reinforcement learning from human feedback (RLHF)
- Pre-training optimizes token-level quality
- Post-training optimizes the model to generate responses that users prefer

• RLHF:

- Train a reward model that scores the foundation model's output
- Optimize the foundation model to generate responses for which the reward model will give maximal scores

• Reward model:

- Outputs a score for how good the response is
- Generate multiple responses for each prompt and the resulting data is comparison data with the format (prompt, winning_response, losing_response)

- Robustness: A model is robust if it doesn't dramatically change its outputs with small variations in the input
- Inconsistency: Generating very different responses for the same or slightly different prompts
- Hallucination:
 - Response that isn't grounded in facts
 - Cannot differentiate between the data it's given and the data it generates
 - Snowball hallucinations: Model continues ti justify the initial wrong assumption
 - $-\,$ Also caused by the mismatch between the model's internal knowledge and the labeler's internal knowledge