设一混合物体系的某广度性质 M 是状态函数,不妨记作 $M=M(X,Y,\{n_i\})$,其中 X、Y 表示除组成 $\{n_i\}$ 外,独立、完整确定体系状态的其他强度性质。组份 i 在体系中的偏摩尔性质(partial molar property)定义为*

$$M_i \stackrel{\text{def}}{=} \left. \frac{\partial M}{\partial n_i} \right|_{X,Y,\{n_{j \neq i}\}}$$

仅由该定义和热力学基本关系,可依次推出两个重要知识: 偏摩尔量的加和性和吉布斯--杜亥姆方程。

0.0.1 偏摩尔量的加和性

在本小节我们将证明

$$M = \sum_{i} n_i M_i \tag{1}$$

这件事称为偏摩尔量的加和性。

由广度性质的定义可知, $M = \sum_{i} n_{i}$ 成正比。故对每一 $X \setminus Y$ 有

$$M\left(X,Y,\left\{ \lambda n_{i}\right\} \right)=\lambda M\left(X,Y,\left\{ n_{i}\right\} \right)$$

其中 λ 为任意正实数。该性质又可说成是:混合物体系的广度性质,是体系各组份摩尔数的 1 次齐函数 † 。由欧拉齐函数定理可直接得到偏摩尔量的加和性结论。

定义混合物体系的摩尔量(molar porperty)为

$$M_{\rm m} \stackrel{\rm def}{=} \frac{M}{n}$$

则式(1)又可写成

$$M_{\rm m} = \sum_{i} x_i M_i \tag{2}$$

式(2)又可以这样推导。由全微分式

$$dM = \frac{\partial M}{\partial X} \Big|_{Y,\{n_i\}} dX + \frac{\partial M}{\partial Y} \Big|_{X,\{n_i\}} dY + \sum_i M_i dn_i$$

更新至 2024-08-11 1

^{*}大部分资料中的偏摩尔量定义规定为 X = T、Y = p 的情况,但这并不是必要的。我们将看到,推广为一般情况并不增加难度,且所有偏摩尔量的规律仍成立。本节的推导过程是跟《物理化学》84.3 很像的。

[†]见《物理化学》附录 I.8,或者 §??。

和以下系列微分关系式

$$\begin{aligned} \mathrm{d}M &= \mathrm{d}\left(nM_{\mathrm{m}}\right) = n\mathrm{d}M_{\mathrm{m}} + M_{\mathrm{m}}\mathrm{d}n \\ \mathrm{d}n_{i} &= \mathrm{d}\left(x_{i}n\right) = x_{i}\mathrm{d}n_{i} + n\mathrm{d}x_{i} \\ \frac{\partial M}{\partial X}\bigg|_{Y,\{n_{i}\}} &= \frac{\partial\left(nM_{\mathrm{m}}\right)}{\partial X}\bigg|_{Y,\{n_{i}\}} = n\left.\frac{\partial M_{\mathrm{m}}}{\partial X}\right|_{Y,\{x_{i}\}} \\ \frac{\partial M}{\partial Y}\bigg|_{Y,\{n_{i}\}} &= \left.\frac{\partial\left(nM_{\mathrm{m}}\right)}{\partial Y}\right|_{X,\{n_{i}\}} = n\left.\frac{\partial M_{\mathrm{m}}}{\partial Y}\right|_{X,\{x_{i}\}} \end{aligned}$$

可得

$$\begin{split} n\left(\mathrm{d}M_{\mathrm{m}} - \left.\frac{\partial M_{\mathrm{m}}}{\partial X}\right|_{Y,\{x_i\}} \mathrm{d}X - \left.\frac{\partial M_{\mathrm{m}}}{\partial Y}\right|_{X,\{x_i\}} \mathrm{d}Y - \sum_i M_i \mathrm{d}x_i\right) \\ + \left(M_{\mathrm{m}} - \sum_i x_i M_i\right) \mathrm{d}n = 0 \end{split}$$

上式第一项恰好就是M的全微分式,故为零。

0.0.2 吉布斯-杜亥姆方程

由偏摩尔量的加和性,联系 M 的全微分式

$$dM = d\left(\sum_{i} n_{i} M_{i}\right) = \sum_{i} n_{i} dM_{i} + \sum_{i} M_{i} dn_{i}$$
$$= \frac{\partial M}{\partial X} \Big|_{Y,\{n_{i}\}} dX + \frac{\partial M}{\partial Y} \Big|_{X,\{n_{i}\}} dY + \sum_{i} M_{i} dn_{i}$$

可得到下式

$$\sum_{i} n_{i} dM_{i} = \left. \frac{\partial M}{\partial X} \right|_{Y, \{n_{i}\}} dX + \left. \frac{\partial M}{\partial Y} \right|_{X, \{n_{i}\}} dY \tag{3}$$

该式称吉布斯–杜亥姆方程 (Gibbs–Duhem equation)。它在 $X \setminus Y$ 恒定条件下的形式 是

$$\sum_{i} n_i dM_i = 0 \tag{4}$$

0.0.3 不同状态变量下的偏摩尔量之间的关系

在不同的状态变量——

$$(X, Y, \{n_i\})$$
 和 $(X', Y', \{n_i\})$

下, $M(X,Y,\{n_i\})$ 和 $M(X',Y',\{n_i\})$ 一般是不同的函数,因此相应条件下定义的偏摩尔量也是不同的函数。若记同一体系在控制条件 $(X',Y',\{n_i\})$ 下的同一性质为

$$M' \equiv M'(X', Y', \{n_i\})$$

则 M_i 与 M_i' 是相互联系的。由于体系的平衡状态是唯一的,使体系处于相同状态的 $(X,Y,\{n_i\})$ 和 $(X',Y',\{n_i\})$ 有一一对应关系。由 M 的全微分式,

$$dM = \left. \frac{\partial M}{\partial X} \right|_{Y,\{n_i\}} dX + \left. \frac{\partial M}{\partial Y} \right|_{X,\{n_i\}} dY + \sum_i M_i dn_i$$

两边除以 dn_i ,保持 $X' \setminus Y'$ 恒定,可得

$$M_i' = \left. \frac{\partial M}{\partial X} \right|_{Y,\{n_i\}} \left. \frac{\partial X}{\partial n_i} \right|_{X',Y',\{n_{j \neq i}\}} + \left. \frac{\partial M}{\partial Y} \right|_{X,\{n_i\}} \left. \frac{\partial Y}{\partial n_i} \right|_{X',Y',\{n_{j \neq i}\}} + M_i$$

此即为 M_i' 与 M_i 之间的一般关系式。所用到的两个偏微分——

$$\left. \frac{\partial X}{\partial n_i} \right|_{X',Y',\{n_{j \neq i}\}}, \quad \left. \frac{\partial Y}{\partial n_i} \right|_{X',Y',\{n_{i}j \neq i\}}$$

是由混合物体系的状态方程可知的。例如,我们要考虑 $(T, p, \{n_i\})$ 和 $(T, V\{n_i\})$ 下定义的偏摩尔量之间的关系,由上式,

$$\begin{split} \frac{\partial M}{\partial n_i}\bigg|_{T,V,\{n_{j\neq i}\}} &= \left.\frac{\partial M}{\partial p}\right|_{T,\{n_i\}} \left.\frac{\partial p}{\partial n_i}\right|_{T,V,\{n_{j\neq i}\}} + \left.\frac{\partial M}{\partial n_i}\right|_{T,p,\{n_{j\neq i}\}} \\ \left.\frac{\partial M}{\partial n_i}\right|_{T,p,\{n_{j\neq i}\}} &= \left.\frac{\partial M}{\partial V}\right|_{T,\{n_i\}} \left.\frac{\partial V}{\partial n_i}\right|_{T,p,\{n_{j\neq i}\}} + \left.\frac{\partial M}{\partial n_i}\right|_{T,V,\{n_{j\neq i}\}} \end{split}$$

可见,两种偏摩尔性质的转换需已知混合物的状态方程,以便求得以下两个偏导数

$$\left. \frac{\partial p}{\partial n_i} \right|_{T,V,\{n_{j\neq i}\}}, \quad \left. \frac{\partial V}{\partial n_i} \right|_{T,p,\{n_{j\neq i}\}}$$

这两个偏导数在 §??介绍过了,都属于可测量。

0.0.4 偏摩尔量的测定

实验上,我们往往只能测量一个多组份体系的摩尔量 $M_{\rm m}=M_{\rm m}\left(X,Y,\{n_i\}\right)$ 随某组份 i 在恒定 X、Y 下的变化。以下推算,使得我们能够通过 $M_{\rm m}$ 对 x_i 的曲线得出 M_i 。

在恒定 $X \setminus Y$ 下, $M = nM_{\rm m}$, 对其进行微分有

$$d(nM_{\rm m}) = ndM_{\rm m} + M_{\rm m}dn$$

更新至 2024-08-11

对 $n = \sum_{i} n_i$ 进行微分有

$$\mathrm{d}n = \sum_{i} \mathrm{d}n_{i}$$

上列两式联立起来有

$$n \mathrm{d} M_{\mathrm{m}} + M_{\mathrm{m}} \sum_{i} \mathrm{d} n_{i} = \sum_{i} M_{i} \mathrm{d} n_{i}$$

利用该式求关于 n_i 的偏导(即保持 $\{n_{j\neq i}\}$ 恒定),得到

$$\begin{split} n \left. \frac{\partial M_{\mathrm{m}}}{\partial n_{i}} \right|_{X,Y,\{n_{j \neq i}\}} + M_{\mathrm{m}} &= M_{i} + \sum_{j \neq i} M_{j} \left. \frac{\partial n_{j}}{n_{i}} \right|_{n_{j \neq i}} \\ \Leftrightarrow & \left(1 - x_{i}\right) \left. \frac{\partial M_{\mathrm{m}}}{\partial x_{i}} \right|_{X,Y,\{n_{j \neq i}\}} + M_{\mathrm{m}} &= M_{i} \end{split}$$

利用这一结论,偏摩尔量 M_i 就能由摩尔量 $M_{\rm m}$ 对 x_i 的曲线数据,如图1所示般得出。

图 1: 从摩尔量曲线求偏摩尔量的"截距法"。

《物理化学》§4.3 中的"偏摩尔量的求法"之"3. 截距法"介绍了上述方法对于双组份混合物的特例。