Started on Saturday, 10 February 2024, 3:30 PM

State Finished

Completed on Saturday, 10 February 2024, 3:48 PM

Time taken 18 mins 2 secs

Grade 10.00 out of 10.00 (100%)

Question ${\bf 1}$

Correct

Mark 1.00 out of 1.00

Which for the following shows image segmentation

Your answer is correct.

The correct answer is:

Question ${\bf 2}$

Correct

Mark 1.00 out of 1.00

What is the modified optimization problem for linear classification

- $\bar{\mathbf{a}}^T \bar{\mathbf{x}}_i + b \ge 0, \ 1 \le i \le M$ $\bar{\mathbf{a}}^T \bar{\mathbf{x}}_i + b \le 0, \ M + 1 \le i \le 2M$

Your answer is correct.

The correct answer is:

$$\begin{split} & \bar{\mathbf{a}}^T \bar{\mathbf{x}}_i + b \geq 1, \ 1 \leq i \leq M \\ & \bar{\mathbf{a}}^T \bar{\mathbf{x}}_i + b \leq -1, \ M+1 \leq i \leq 2M \end{split}$$

Question **3**

Correct

Mark 1.00 out of 1.00

The modified optimization problem for linear classification

- Separates both classes by a slab
- Separates both classes by a sphere
- O Separates both classes by a **ellipsoid**
- Separates both classes by a hyperplane

Your answer is correct.

The correct answer is:

Separates both classes by a **slab**

Question ${f 4}$

Correct

Mark 1.00 out of 1.00

What is the distance between the two hyperplanes given below

$$\begin{split} x_1 + \sqrt{2}x_2 + \sqrt{3}x_3 + \dots + \sqrt{N}x_N &= \frac{1}{\sqrt{2}} \\ x_1 + \sqrt{2}x_2 + \sqrt{3}x_3 + \dots + \sqrt{N}x_N &= -\frac{1}{\sqrt{2}} \end{split}$$

- $\sqrt{2} \sqrt{N(N+1)}$
- $\begin{array}{c}
 2 \\
 \sqrt{\frac{N(N+1)(2N+1)}{6}}
 \end{array}$
- $\frac{2\sqrt{2}}{\sqrt{N(N+1)}}$

Your answer is correct.

The correct answer is:

$$\frac{2}{\sqrt{N(N+1)}}$$

Question ${\bf 5}$

Correct

Mark 1.00 out of 1.00

The slack variables satisfy the property

- $u_i \ge 0, v_i \ge 0$
- $u_i \ge 0, v_i < 0$
- $0 u_i < 0, v_i \ge 0$
- $u_i < 0, v_i < 0$

Your answer is correct.

The correct answer is:

 $u_i \ge 0, v_i \ge 0$

Ouestion	6
Question	•

Correct

Mark 1.00 out of 1.00

In the example considered in lectures, the size of the feature vector equals

- Number of emails in the set
- Number of words in the dictionary
- 2
- Number of words in an e-mail

Your answer is correct.

The correct answer is:

Number of words in the dictionary

Question **7**

Correct

Mark 1.00 out of 1.00

The naïve Bayes assumption states that

$$p(y = u | \bar{\mathbf{x}} = \bar{\mathbf{v}}) = \prod_{i=1}^{N} p(y = u | x_i = v_i)$$

$$p(y = u, \bar{\mathbf{x}} = \bar{\mathbf{v}}) = p(y = u) \times p(\bar{\mathbf{x}} = \bar{\mathbf{v}})$$

$$p(\bar{\mathbf{x}} = \bar{\mathbf{v}}|y = u) = \prod_{i=1}^{N} p(x_i = v_i|y = u)$$

Your answer is correct.

The correct answer is:

$$p(\bar{\mathbf{x}} = \bar{\mathbf{v}}|y = u) = \prod_{i=1}^{N} p(x_i = v_i|y = u)$$

Question ${\bf 8}$

Correct

Mark 1.00 out of 1.00

The probability $p(x_j = 1|y = 0)$ can be evaluated using the formula

$$\bigcirc \quad \underline{\sum_{j=1}^{N} \mathbf{1}(x_j(i)=1,y(i)=0)}_{N}$$

$$0 1 - p(x_j = 0|y = 0)$$

$$\sum_{i=1}^{M} \mathbf{1}(x_j(i)=1,y(i)=0)$$

Your answer is correct.

The correct answer is:

$$1 - p(x_j = 0 | y = 0)$$

Question **9**

Correct

Mark 1.00 out of 1.00

The posterior probability $p(y=1|ar{\mathbf{x}}=ar{\mathbf{v}})$ is given as

$$\bigcirc \quad \underline{p(\overline{\mathbf{x}} = \overline{\mathbf{v}}|y = 1) \times p(y = 1) + p(\overline{\mathbf{x}} = \overline{\mathbf{v}}|y = 0) \times p(y = 0)} \\ p(\overline{\mathbf{x}} = \overline{\mathbf{v}})$$

$$\frac{p(\overline{\mathbf{x}} = \overline{\mathbf{v}})}{p(\overline{\mathbf{x}} = \overline{\mathbf{v}}|y=1) \times p(y=1)}$$

Your answer is correct.

The correct answer is:

$$\frac{p(\bar{\mathbf{x}} = \bar{\mathbf{v}}|y=1) \times p(y=1)}{p(\bar{\mathbf{x}} = \bar{\mathbf{v}})}$$

Question 10	
Correct	
Mark 1.00 out of 1.00	
To avoid zero prior probabilities, during computation of prior probabilities, one can add	
one to the numerator and two in the denominator	✓
one to the numerator and one in the denominator	
 two to the numerator and two in the denominator 	
 two to the numerator and one in the denominator 	
Your answer is correct.	
The correct answer is:	
one to the numerator and two in the denominator	