Principles of Data Reduction

Statistical Theory

Guillaume Dehaene Ecole Polytechnique Fédérale de Lausanne

- Statistics of the data
- 2 Ancillarity
- 3 Sufficiency
 - Sufficient Statistics
 - Establishing Sufficiency
- Minimal Sufficiency
 - Establishing Minimal Sufficiency
- Completeness
 - Relationship between Ancillary and Sufficient Statistics
 - Relationship between completeness and minimal sufficiency

Statistical Models and The Problem of Inference

Recall our setup:

- Collection of r.v.'s (a random vector) $\mathbf{X} = (X_1, ..., X_n)$
- $\mathbf{X} \sim F_{\theta} \in \mathfrak{F}$
- ullet \mathcal{F} a parametric class with parameter $heta \in \Theta \subseteq \mathbb{R}^d$

The Problem of Point Estimation

- **①** Assume that F_{θ} is known up to the parameter θ which is unknown
- **2** Let $(x_1,...,x_n)$ be a realization of $\mathbf{X} \sim F_{\theta}$ which is available to us
- **3** Estimate the value of θ that generated the sample given $(x_1,...,x_n)$

The only guide (apart from knowledge of \mathfrak{F}) at hand is the data:

- \hookrightarrow Anything we "do" will be a function of the data $g(x_1,...,x_n)$
- \hookrightarrow Need to study properties of such functions and information loss incurred (any function of $(x_1,..,x_n)$ will carry at most the same information but usually less)

The data-processing inequality

Key idea: whatever we do with the data, it can't increase our information.

Only new data brings new information.

By transforming the data / projecting it down onto the value of a statistic, at best we preserve the information that is in the data.

Statistics of the data

Statistics

Definition (Statistic)

Let **X** be a random sample from F_{θ} . A *statistic* is a (measurable) function T that maps **X** into \mathbb{R}^d and does not depend on θ .

- \hookrightarrow Intuitively, any function of the sample alone is a statistic.
- \hookrightarrow Any statistic is itself a r.v. with its own distribution.

Example

 $T(\mathbf{X}) = n^{-1} \sum_{i=1}^{n} X_i$ is a statistic (since n, the sample size, is known).

Example

 $T(\mathbf{X}) = (X_{(1)}, \dots, X_{(n)})$ where $X_{(1)} \leq X_{(2)} \leq \dots X_{(n)}$ are the order statistics of \mathbf{X} . Since T depends only on the values of \mathbf{X} , T is a statistic.

Example

Let $T(\mathbf{X}) = c$, where c is a known constant. Then T is a statistic

Ancillarity

Statistics and Information About θ

- \bullet Evident from previous examples: some statistics are more informative and others are less informative regarding the true value of θ
- Any T(X) that is not "1-1" carries less information about θ than X
- Which are "good" and which are "bad" statistics?

Definition (Ancillary Statistic)

A statistic T is an ancillary statistic (for θ) if its distribution does not functionally depend θ

 \hookrightarrow So an ancillary statistic has the same distribution $\forall \ \theta \in \Theta$.

Ancillarity example

Example

Suppose that $X_1,...,X_n \stackrel{iid}{\sim} \mathcal{N}(\mu,1)$ (only the mean μ is unknown).

Let $T(X_1,...,X_n) = X_1 - X_2$.

Then T has a Normal distribution with mean 0 and variance 2. Thus T is ancillary for the unknown parameter μ . If both μ and σ^2 were unknown, T would not be ancillary for $\theta = (\mu, \sigma^2)$.

Statistics and Information about θ

- ullet If T is ancillary for heta then T contains no information about heta
- In order to contain any useful information about θ , the dist(T) must depend explicitly on θ .
- Intuitively, the amount of information T gives on θ increases as the dependence of $\operatorname{dist}(T)$ on θ increases

Example

Let $X_1,...,X_n \stackrel{iid}{\sim} \mathcal{U}[0,\theta]$, $S = \min(X_1,...,X_n)$ and $T = \max(X_1,...,X_n)$.

- $f_S(x;\theta) = \frac{n}{\theta} \left(1 \frac{x}{\theta}\right)^{n-1}, \quad 0 \le x \le \theta$
- $f_T(x;\theta) = \frac{n}{\theta} \left(\frac{x}{\theta}\right)^{n-1}, \quad 0 \le x \le \theta$
- \hookrightarrow Neither S nor T are ancillary for θ
- \hookrightarrow As $n \uparrow \infty$, f_S becomes concentrated around 0
- \hookrightarrow As $n \uparrow \infty$, f_T becomes concentrated around θ while
- \hookrightarrow Indicates that T provides more information about θ than does S.

Sufficiency

Statistics and Information about θ

- $\mathbf{X} = (X_1, \dots, X_n) \stackrel{iid}{\sim} F_{\theta}$ and $T(\mathbf{X})$ a statistic.
- The fibres or level sets or contours of T are the sets

$$A_t = \{ \mathbf{x} \in \mathbb{R}^n : T(\mathbf{x}) = t \}.$$

(all potential samples that could have given me the value t for T)

- \hookrightarrow T is constant when restricted to a fibre.
 - Any realization of X that falls in a given fibre is equivalent as far as T is concerned
 - Any inference drawn through T will be the same within fibres.
 - Look at the dist(\mathbf{X}) on an fibre A_t : $f_{\mathbf{X}|T=t}(\mathbf{x})$

Statistics and Information about θ

- Suppose $f_{\mathbf{X}|T=t}$ changes depending on θ : we are losing information.
- Suppose $f_{\mathbf{X}|T=t}$ is functionally independent of θ
 - \implies Then **X** contains no information about θ on the set A_t
 - \implies In other words, **X** is ancillary for θ on A_t
- If this is true for each $t \in \text{Range}(T)$ then T(X) contains the same information about θ as X does.
 - \hookrightarrow It does not matter whether we observe $\mathbf{X} = (X_1, ..., X_n)$ or just $T(\mathbf{X})$.
 - \hookrightarrow Knowing the exact value **X** in addition to knowing $T(\mathbf{X})$ does not give us any additional information **X** is irrelevant if we already know $T(\mathbf{X})$.

Definition (Sufficient Statistic)

A statistic $T = T(\mathbf{X})$ is said to be *sufficient* for the parameter θ if for all (Borel) sets B the probability $\mathbb{P}[\mathbf{X} \in B | T(\mathbf{X}) = t]$ does not depend on θ .

Sufficient Statistics

Example (Bernoulli Trials)

Let $X_1,...,X_n \stackrel{iid}{\sim} \mathsf{Bernoulli}(\theta)$ and $T(\mathbf{X}) = \sum_{i=1}^n X_i$. Given $\mathbf{x} \in \{0,1\}^n$,

$$\begin{split} \mathbb{P}[\mathbf{X} = \mathbf{x} | T = t] &= \frac{\mathbb{P}[\mathbf{X} = \mathbf{x}, T = t]}{\mathbb{P}[T = t]} = \frac{\mathbb{P}[\mathbf{X} = \mathbf{x}]}{\mathbb{P}[T = t]} \mathbf{1} \{ \sum_{i=1}^{n} x_i = t \} \\ &= \frac{\theta^{\sum_{i=1}^{n} x_i} (1 - \theta)^{n - \sum_{i=1}^{n} x_i}}{\binom{n}{t} \theta^t (1 - \theta)^{n - t}} \mathbf{1} \{ \sum_{i=1}^{n} x_i = t \} \\ &= \frac{\theta^t (1 - \theta)^{n - t}}{\binom{n}{t} \theta^t (1 - \theta)^{n - t}} = \binom{n}{t}^{-1}. \end{split}$$

• T is sufficient for $\theta \to \text{Given } \#$ of tosses that came heads, knowing which tosses came heads is irrelevant in deciding if the coin is fair:

0011101 VS 1000111 VS 1010101

Sufficient Statistics

- Definition hard to verify (especially for continuous variables)
- Definition does not allow easy identification of sufficient statistics

Theorem (Fisher-Neyman Factorization Theorem)

Suppose that $\mathbf{X} = (X_1, \dots, X_n)$ has a joint density or frequency function $f(\mathbf{x}; \theta), \ \theta \in \Theta$. A statistic $T = T(\mathbf{X})$ is sufficient for θ if and only if

$$f(\mathbf{x}; \theta) = g(T(\mathbf{x}), \theta)h(\mathbf{x}).$$

Example

Let $X_1,...,X_n \stackrel{iid}{\sim} \mathcal{U}[0,\theta]$ with pdf $f(x;\theta) = \mathbf{1}\{x \in [0,\theta]\}/\theta$. Then,

$$\mathit{f}_{\mathbf{X}}(\mathbf{x}) = \frac{1}{\theta^n} \mathbf{1} \{ \mathbf{x} \in [0, \theta]^n \} = \frac{\mathbf{1} \{ \max[x_1, ..., x_n] \leq \theta \} \mathbf{1} \{ \min[x_1, ..., x_n] \geq 0 \}}{\theta^n}$$

Therefore $T(\mathbf{X}) = X_{(n)} = \max[X_1, ..., X_n]$ is sufficient for θ .

Sufficient Statistics

Proof of Neyman-Fisher Theorem - Discrete Case.

Suppose first that T is sufficient. Then

$$f(\mathbf{x}; \theta) = \mathbb{P}[\mathbf{X} = \mathbf{x}] = \sum_{t} \mathbb{P}[\mathbf{X} = \mathbf{x}, T = t]$$
$$= \mathbb{P}[\mathbf{X} = \mathbf{x}, T = T(\mathbf{x})] = \mathbb{P}[T = T(\mathbf{x})] \mathbb{P}[\mathbf{X} = \mathbf{x} | T = T(\mathbf{x})]$$

Since T is sufficient, $\mathbb{P}[\mathbf{X} = \mathbf{x} | T = T(\mathbf{x})]$ is independent of θ and so $f(x; \theta) = g(T(\mathbf{x}); \theta) h(\mathbf{x})$.

Now suppose that $f(x; \theta) = g(T(\mathbf{x}); \theta)h(\mathbf{x})$. Then if $T(\mathbf{x}) = t$,

$$\mathbb{P}[\mathbf{X} = \mathbf{x} | T = t] = \frac{\mathbb{P}[\mathbf{X} = \mathbf{x}, T = t]}{\mathbb{P}[T = t]} = \frac{\mathbb{P}[\mathbf{X} = \mathbf{x}]}{\mathbb{P}[T = t]} \mathbf{1} \{ T(\mathbf{x}) = t \}
= \frac{g(T(\mathbf{x}); \theta) h(\mathbf{x}) \mathbf{1} \{ T(\mathbf{x}) = t \}}{\sum_{\mathbf{y}: T(\mathbf{y}) = t} g(T(\mathbf{y}); \theta) h(\mathbf{y})} = \frac{h(\mathbf{x}) \mathbf{1} \{ T(\mathbf{x}) = t \}}{\sum_{T(\mathbf{y}) = t} h(\mathbf{y})}.$$

which does not depend on θ .

Minimal Sufficiency

Minimally Sufficient Statistics

- Saw that sufficient statistic keeps what is important and leaves out irrelevant information.
- How much info can we throw away? Is there a "smallest" sufficient statistic?

Definition (Minimally Sufficient Statistic)

A statistic $T = T(\mathbf{X})$ is said to be *minimally sufficient* for the parameter θ if it is sufficient for θ and for any other sufficient statistic $S = S(\mathbf{X})$ there exists a function $g(\cdot)$ with

$$T(\mathbf{X}) = g(S(\mathbf{X})).$$

Lemma

If T and S are minimaly sufficient statistics for a parameter θ , then there exists injective functions g and h such that S = g(T) and T = h(S).

Theorem

Let $\mathbf{X} = (X_1, ..., X_n)$ have joint density or frequency function $f(\mathbf{x}; \theta)$ and $T = T(\mathbf{X})$ be a statistic. Suppose that $f(\mathbf{x}; \theta)/f(\mathbf{y}; \theta)$ is independent of θ if and only if $T(\mathbf{x}) = T(\mathbf{y})$. Then T is minimally sufficient for θ .

Proof.

Assume for simplicity that $f(\mathbf{x};\theta) > 0$ for all $\mathbf{x} \in \mathbb{R}^n$ and $\theta \in \Theta$. [sufficiency part] Let $\mathfrak{T} = \{T(\mathbf{y}) : y \in \mathbb{R}^n\}$ be the image of \mathbb{R}^n under T and let A_t be the level sets of T. For each t, choose a representative element $\mathbf{y}_t \in A_t$. Notice that for any \mathbf{x} , $\mathbf{y}_{T(\mathbf{x})}$ is in the same level set as \mathbf{x} , so that

$$f(\mathbf{x};\theta)/f(\mathbf{y}_{T(\mathbf{x})};\theta)$$

does not depend on θ by assumption. Let $g(t,\theta):=f(\mathbf{y}_t;\theta)$ and notice

$$f(\mathbf{x}; \theta) = \frac{f(\mathbf{y}_{T(\mathbf{x})}; \theta) f(\mathbf{x}; \theta)}{f(\mathbf{y}_{T(\mathbf{x})}; \theta)} = g(T(\mathbf{x}), \theta) h(\mathbf{x})$$

and the claim follows from the factorization theorem.

[minimality part] Suppose that T' is another sufficient statistic. By the factorization thm: $\exists g', h' : f(\mathbf{x}; \theta) = g'(T'(\mathbf{x}); \theta)h'(\mathbf{x})$. Let \mathbf{x}, \mathbf{y} be such that $T'(\mathbf{x}) = T'(\mathbf{y})$. Then

$$\frac{f(\mathbf{x};\theta)}{f(\mathbf{y};\theta)} = \frac{g'(T'(\mathbf{x});\theta)h'(\mathbf{x})}{g'(T'(\mathbf{y});\theta)h'(\mathbf{y})} = \frac{h'(\mathbf{x})}{h'(\mathbf{y})}.$$

Since ratio does not depend on θ , we have by assumption $T(\mathbf{x}) = T(\mathbf{y})$. Hence T is a function of T'; so is minimal by arbitrary choice of T' because the fibres of T' are subsets of the fibres of T.

Example (Bernoulli Trials)

Let $X_1,...,X_n \stackrel{iid}{\sim} \text{Bernoulli}(\theta)$. Let $\mathbf{x},\mathbf{y} \in \{0,1\}^n$ be two possible outcomes. Then

$$\frac{f(\mathbf{x};\theta)}{f(\mathbf{y};\theta)} = \frac{\theta^{\sum x_i} (1-\theta)^{n-\sum x_i}}{\theta^{\sum y_i} (1-\theta)^{n-\sum y_i}}$$

which is constant if and only if $T(\mathbf{x}) = \sum x_i = \sum y_i = T(\mathbf{y})$, so that T is minimally sufficient.

Exercise

Prove that the likelihood $f(\mathbf{X}; \theta)$ (which is a **random function**) is a sufficient statistic.

Let θ_0 be some arbitrary value such that $\forall \mathbf{X} : f(\mathbf{X}; \theta_0) \neq 0$. Prove that the normalized likelihood: $\frac{f(\mathbf{X}; \theta)}{f(\mathbf{X}; \theta_0)}$ is minimally sufficient.

This exercise shows that a "minimal" statistic can be quite big.

Completeness

- ullet Ancillary Statistic o Contains no info on heta
- ullet Minimally Sufficient Statistic o Contains all relevant info and as little irrelevant as possible.
- Should they be mutually independent?

Definition (Complete Statistic)

Let $\{g(t;\theta):\theta\in\Theta\}$ be a family of densities (or frequencies) corresponding to a statistic $T(\mathbf{X})$. The statistic T is called *complete* if given any measurable function h, the following implication holds

$$\int h(t)g(t;\theta)dt = 0 \quad \forall \theta \in \Theta \implies \mathbb{P}[h(T) = 0] = 1 \quad \forall \theta \in \Theta.$$

Not clear why term "complete" was chosen – one reason might be the resemblance to the notion of *complete system* in a Hilbert space (whose orthogonal complement is the zero space), in reference to $\{g(\cdot;\theta)\}_{\theta\in\Theta}$.

Example (Bernoulli Trials)

Let $X_1,...,X_n \stackrel{iid}{\sim} Bern(\theta)$, $\theta \in (0,1)$, and $T = \sum X_i$. Let h be arbitrary.

$$\mathbb{E}[h(T)] = \sum_{t=0}^{n} h(t) \binom{n}{t} \theta^{t} (1-\theta)^{n-t} = (1-\theta)^{n} \sum_{t=0}^{n} h(t) \binom{n}{t} \left(\frac{\theta}{1-\theta}\right)^{t}$$

As θ ranges in (0,1), the ratio $\theta/(1-\theta)$ ranges in $(0,\infty)$. Thus, assuming $\mathbb{E}[h(T)]=0$ for all $\theta\in(0,1)$ implies that

$$P(x) = \sum_{t=0}^{n} h(t) \binom{n}{t} x^{t} = 0 \qquad \forall x > 0,$$

i.e. the polynomial P(x) is uniformly zero over the entire positive reals. Hence, its coefficients must be all zero, so $g(t)=0,\ t=1,...,n$. Hence $\mathbb{P}[h(T)=0]=1$ for all $\theta\in(0,\infty)$.

→ Why is completeness relevant to data reduction?

Lemma

If T is complete, then h(T) is ancillary for θ if and only if h(T) = c a.s.

Proof.

One direction is obvious. For the other, let h(T) be ancillary. Then its distribution does not depend on θ . Hence $\mathbb{E}[h(T)] = c$, for some constant c, regardless of θ . Equivalently, $\mathbb{E}[h(T) - c] = 0$ for all θ . By completeness of T, $\mathbb{P}[h(T) = c] = 1$.

- ullet (equivalently: only trivial (=constant) functions of T are ancillary)
- In other words, a complete statistic contains no ancillary information
- Contrast to a sufficient statistic:
 - A sufficient statistic keeps all the relevant information
 - A complete statistic throws away all the irrelevant information

Theorem (Basu's Theorem)

A complete sufficient statistic is independent of every ancillary statistic.

Proof.

We consider the discrete case only. It suffices to show that,

$$\mathbb{P}[S(\mathbf{X}) = s | T(\mathbf{X}) = t] = \mathbb{P}[S(\mathbf{X}) = s]$$

Define:
$$h(t) = \mathbb{P}[S(\mathbf{X}) = s | T(\mathbf{X}) = t] - \mathbb{P}[S(\mathbf{X}) = s]$$

and observe that:

- **1** $\mathbb{P}[S(\mathbf{x}) = s]$ does not depend on θ (ancillarity)
- ② $\mathbb{P}[S(X) = s | T(X) = t] = \mathbb{P}[X \in \{x : S(x) = s\} | T = t]$ does not depend on θ (sufficiency)

and so h does not depend on θ .

Therefore, for any $\theta \in \Theta$,

$$\mathbb{E}h(T) = \sum_{t} (\mathbb{P}[S(\mathbf{X}) = s | T(\mathbf{X}) = t] - \mathbb{P}[S(\mathbf{X}) = s]) \mathbb{P}[T(\mathbf{X}) = t]$$

$$= \sum_{t} \mathbb{P}[S(\mathbf{X}) = s | T(\mathbf{X}) = t] \mathbb{P}[T(\mathbf{X}) = t] +$$

$$+ \mathbb{P}[S(\mathbf{X}) = s] \sum_{t} \mathbb{P}[T(\mathbf{X}) = t]$$

$$= \mathbb{P}[S(\mathbf{X}) = s] - \mathbb{P}[S(\mathbf{X}) = s] = 0.$$

But T is complete so it follows that h(t) = 0 for all t. QED.

Basu's Theorem is useful for deducing independence of two statistics:

- No need to determine their joint distribution
- Needs showing completeness (usually hard analytical problem)
- Will see models in which completeness is easy to check

Completeness and Minimal Sufficiency

Theorem (Lehmann-Scheffé)

Let **X** have density $f(\mathbf{x}; \theta)$. If $T(\mathbf{X})$ is sufficient and complete for θ then T is minimally sufficient.

Proof.

First of all we show that a minimally sufficient statistic exists. Define an equivalence relation as $\mathbf{x} \equiv \mathbf{x}'$ if and only if $f(\mathbf{x};\theta)/f(\mathbf{x}';\theta)$ is independent of θ . If S is any function such that S=c on these equivalent classes, then S is a minimally sufficient, establishing existence (rigorous proof by Lehmann-Scheffé (1950) to assure S measurably constructible). Therefore, it must be the case that $S=g_1(T)$, for some g_1 . Let

$$g(T) = T - g_2(S)$$

 $g_2(S) = \mathbb{E}[T|S]$ (does not depend on θ since S sufficient). Consider:

Write $\mathbb{E}[g(T)] = \mathbb{E}[T] - \mathbb{E}\{\mathbb{E}[T|S]\} = \mathbb{E}T - \mathbb{E}T = 0 \text{ for all } \theta.$

(proof cont'd).

By completeness of T, it follows that $g_2(S) = T$ a.s. In fact, g_2 has to be injective, or otherwise we would contradict minimal sufficiency of S. But then T is 1-1 a function of S and S is a 1-1 function of T. Invoking our previous lemma proves that T is minimally sufficient.

Sufficiency and completeness

The log-likelihood is minimally sufficient (if normalized), but not necessarily complete !

Exercise

Consider the following situation:

- We pick a random number $\mathbb{N} \ni N \sim F_n$
- We gather N IID Gaussian samples $X_1 \dots X_N \sim \mathcal{N}(\mu, 1)$.
- Write down the normalized log-likelihood function $\mu \to LL(\mu) LL(0)$ as a function of N, \mathbf{X} . This is a **function valued random variable**.
- ② Prove that it is minimally sufficient. (Note that the log-likelihood $\mu \to LL(\mu)$ is only sufficient, not minimally sufficient)
- 3 Prove that it is not complete.

Summary

We looked at how to "summarize" the data by computing the value of a statistic $S(\mathbf{X})$:

- Ancillary: S carries no information.
- Sufficient: S doesn't lose information.
- Minimally sufficient: S doesn't lose information and carries as little ancillary information as possible.
- Complete: *S* carries no ancillary information.

Most of the time, a minimally sufficient statistic exists: the normalized log-likelihood.

A complete sufficient statistic might not exist.