《高等数学 B(三)》考试试卷(B卷) (闭卷 时间 120 分钟)

题 号	 =	三	四	五	总分
得 分					
阅卷人					

—,	选择题	(本大题共5小题,	每小题2分,	共10分)
----	-----	-----------	--------	-------

得 分

- 1、设A,B均为n阶方阵,满足等式AB=0,则必有(
 - (A) A = 0 或 B = 0
- (B) A + B = 0
- (C) |A| = 0 $\vec{\boxtimes} |B| = 0$ (D) |A| + |B| = 0
- 2、设A为n阶方阵,则以下结论中不成立的是(
 - (A) 若A可逆,则矩阵A的属于特征值 λ 的特征向量也是矩阵 A^{-1} 的属于特征值 $\frac{1}{\lambda}$ 的特征向量
 - (B) A 的特征向量即为方程($\lambda E A$)X = 0的全部解

 - (D) $A 与 A^T$ 有相同的特征值
- 3、设向量组 $I: a_1, a_2, \cdots, a_r$ 可由向量组 $II: \beta_1, \beta_2, \cdots, \beta_s$ 线性表示,则下列命题正确的是
 - (A) 若向量组I线性无关,则 $r \le s$ (B) 若向量组I线性相关,则r > s (C) 若向量组I1线性无关,则 $r \le s$ (D) 若向量组I1线性相关,则r > s
- 4、设随机变量 X 的分布函数为 F(x),则随机变量 Y = 2X + 1 的分布函数 G(y) = 0
- (A) $F(\frac{1}{2}y+1)$ (B) 2F(y)+1 (C) $\frac{1}{2}F(y)-\frac{1}{2}$ (D) $F(\frac{1}{2}y-\frac{1}{2})$
- 5、设随机变量 $X \sim t(n) (n > 1)$, $Y = \frac{1}{X^2}$, 则下列结论正确的是().

 - (A) $Y \sim \chi^2(n)$ (B) $Y \sim \chi^2(n-1)$ (C) $Y \sim F(n,1)$ (D) $Y \sim F(1,n)$
- 二**、**填空题(本大题共5小题,每小题2分,共10分)

得 分

6、二次型 $f(x_1, x_2, x_3) = (x_1 + x_2)^2 + (x_2 + x_3)^2 + (x_1 + x_3)^2$ 的秩为______.

- 7、设 A, B 为两个随机事件,满足 $P(A) = a, P(B) = 0.3, P(\overline{A} \cup B) = 0.7$,若事件 $A \subseteq B$ 相互独立,则 a =______.
- 8、设矩阵 $A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 2 & 0 \\ 3 & 4 & 5 \end{bmatrix}$, $A^* \not\in A$ 的伴随矩阵,则 $(A^*)^{-1} = \underline{\hspace{1cm}}$.
- 9、设随机变量 X 和 Y 相互独立,并且 $X \sim N(0,1)$, $Y \sim N(1,1)$,则随机变量 Z = X Y ~
- 10、设随机变量 X 和 Y 的数学期望分别为-2 和 2,方差分别为 1 和 4,而相关系数为-0.5,则根据切比雪夫不等式,有 $P(|X+Y| \ge 6) \le$ ______.
- 三、计算题(本大题共5小题,共54分)

得 分

11、(本小题 8 分)已知四阶行列式

$$D_4 = \begin{vmatrix} 2 & 3 & 4 & 5 \\ 5 & 5 & 3 & 3 \\ 2 & 1 & 4 & 2 \\ 2 & 2 & 1 & 1 \end{vmatrix},$$

记 A_{ij} 是 D_4 中元素 a_{ij} 的代数余子式. 求: (1) $A_{31}+A_{32}$; (2) $A_{33}+A_{34}$.

12、(本小题 12 分)设 A 为三阶矩阵, $\alpha_1,\alpha_2,\alpha_3$ 是线性无关的三维列向量,且满足 $A\alpha_1=\alpha_1+\alpha_2+\alpha_3$, $A\alpha_2=2\alpha_2+\alpha_3$, $A\alpha_3=2\alpha_2+3\alpha_3$.

- (1) 求矩阵B,使得 $A(\alpha_1,\alpha_2,\alpha_3)=(\alpha_1,\alpha_2,\alpha_3)B$;
- (2) 求可逆矩阵P, 使得 $P^{-1}BP$ 为对角形矩阵.

13、(本小题14分) 当 λ 取何值时, 线性方程组

$$\begin{cases} x_1 + x_2 + \lambda x_3 = 4, \\ -x_1 + \lambda x_2 + x_3 = \lambda^2, \\ x_1 - x_2 + 2x_3 = -4, \end{cases}$$

无解、有唯一解、有无穷多组解?并在无穷多解时写出方程组的通解.

- 14、(本小题10分)通讯中,等可能地传送字符AAAA、BBBB和CCCC三者之一. 由于通讯中存在干扰,正确接收字母的概率为0.6,接收其他两个字母的概率均为0.2. 假定前后字母是否被扭曲互不影响.
 - (1) 求收到字符ABCA的概率;
 - (2) 若收到字符 ABCA, 求它本来是 AAAA 的概率又是多大?

15、(本小题 10 分) 设总体 X 的概率密度函数为 $p(x;\theta) = \begin{cases} \frac{1}{\theta} x^{(1-\theta)/\theta}, & 0 < x < 1, \\ 0, & \text{其中} \theta > 0 \end{cases}$ 为未知参数, X_1, X_2, \cdots, X_n 是取自总体 X 的一个简单随机样本,求 θ 的极大似然估计量 $\hat{\theta}$.

四、证明题(本大题共2小题,每小题6分,共12分)

得 分

16、设A为n(n≥2)阶可逆矩阵,A*为A的伴随矩阵. 求证: $(A^*)^* = |A|^{n-2} A$.

17、已知A是n阶正定矩阵,令二次型 $f(x_1,x_2,\cdots,x_n)=X^TAX+x_n^2$ 的矩阵为B,其中 $X=(x_1,x_2,\cdots,x_n)^T$,证明:B是正定矩阵.

五、综合分析题(本大题共14分)

得 分

18、设二维随机向量(X,Y)的联合概率密度函数为

$$p(x, y) = \begin{cases} 1, & |y| < x, 0 < x < 1, \\ 0, & \text{ } \sharp \dot{\Xi}. \end{cases}$$

- (1) 求X和Y的边缘概率密度函数,并判断X和Y是否独立?
- (2) 判断 X 和 Y 是否不相关?
- (3) 求概率P(X+Y≥1).