Quasi-hereditary algebras associated with reduced expressions in Coxeter groups

木村雄太

2016年8月27日

目次

0	はじめに	1
1	Buan-Iyama-Reiten-Scott の結果	2
2	$\operatorname{End}_\Pi(M)$ の準遺伝性	4
3	$\operatorname{End}_{\Pi}(M)$ の特性傾加群	5
4	$\operatorname{End}_\Pi(M)$ のクイバー表示	8

0 はじめに

このノートは 2016 年 8 月 26 日から 8 月 30 日に大阪府立大学で行われた Summer School on Quasi-hereditary Algebras の講義ノートである. 内容は, [IR] および [BIRSm] の解説である.

このノートを通して k を代数閉体とする. k 上の多元環 A に対して, $\operatorname{mod} A$ で有限生成左 A-加群のなす圏を表す.特に断らない限り,加群といえば有限生成左加群とする.A-加群 M に対し, $\operatorname{add} M$ で M の有限直和の直和因子のなす $\operatorname{mod} A$ の充満部分圏を表す.写像 $f: X \to Y, g: Y \to Z$ の合成を $gf = g \circ f: X \to Z$ で表す.クイバー Q の矢 α,β に対して,矢の合成を $\alpha\beta = \stackrel{\alpha}{\longleftarrow}$ で表す.準遺伝多元環の定義および性質は同サマースクールの他の講義を参照せよ.

定義 0.1. A を有限次元準遺伝的多元環とし、 $\{\Delta_i\}_{i\in I}$ を A の standard module とする.

- (1) [R] 各 $i \in I$ に対して、 $pd\Delta_i \le 1$ となるとき、A を左強準遺伝的多元環 (left strongly quasihereditary algebra) という.
- (2) [IR] A の各直既約射影加群が唯一の Δ -フィルトレーションを持つとき, A を Δ -serial という.

Ringel [R] により、左強準遺伝的だが右強準遺伝的でない多元環が与えられている。ここで準遺伝的多元環A が右強準遺伝的とは、 A^{op} が左強準遺伝的であるときをいう。この講義ノートの目的は、左強準遺伝的かつ Δ -serial な準遺伝的多元環の例を構成することである。

この講義ノートで扱う左強準遺伝的多元環の構成は [BIRSc] に従い、また各証明は [IR] に従う. 左強準遺伝的多元環の Δ -filtered category $\mathcal{F}(\Delta)$ の持つ性質については、例えば [R] を見よ.

1 Buan-Iyama-Reiten-Scott の結果

この節では [BIRSc] の結果を紹介する.この節を通して Q を非輪状クイバーとし, \overline{Q} で Q のダブルクイバーとする.即ち, $\overline{Q}_0:=Q_0$ かつ $\overline{Q}_1:=Q_1\sqcup\{\alpha^*:v\to u\mid\alpha:u\to v\in Q_1\}$.

定義 1.1. 次で定義される多元環 Π を, Q の前射影多元環 (preprojective algebra) という.

$$\Pi := k\overline{Q}/\langle \sum_{\alpha \in Q_1} \alpha \alpha^* - \alpha^* \alpha \rangle.$$

- 定義 1.2. (1) 次の生成元と関係式で定義される群 W_Q を Q の**コクセター群 (Coxeter group)** という. 生成元: $\{s_u \mid u \in Q_0\}$,関係式: $s_u s_u = 1$,もし u と v の間に Q において矢がなければ $s_u s_v = s_v s_u$,もし u と v の間に Q において矢がちょうど 1 本あれば $s_u s_v s_u = s_v s_u s_v$.
 - (2) $w \in W_Q$ の表示 $s_{u_1}s_{u_2}\cdots s_{u_l}$ が**既約 (reduced)** とは, l が w の任意の表示 $s_{v_1}s_{v_2}\cdots s_{v_m}$ に対して $l \leq m$ を満たすときをいう.

前射影多元環 Π の両側イデアルを次のように定義する. 各 $u \in Q_0$ に対して,

$$I_u := \Pi(1 - e_u)\Pi,$$

ここで e_u は $u \in Q_0$ に対応する Π の冪等元である. 次に $s_{u_1}s_{u_2}\cdots s_{u_l}$ を $w \in W_Q$ の既約表示とするとき,

$$I_w := I_{u_1} I_{u_2} \cdots I_{u_l}$$

とする. 命題 1.3 により, I_w は w の既約表示によらずに定まることがわかる. そこで $w \in W_Q$ に対して, 前射影多元環の商多元環を次で定める.

$$\Pi_w := \Pi/I_w$$
.

命題 1.3. [BIRSc, Proposition III. 1.8] 各 $u, v \in Q_0$ に対して, 次が成立する.

- (a) $I_u I_u = I_u$.
- (b) もしuとvの間にQにおいて矢がなければ $I_uI_v = I_vI_u$.
- (c) もしuとvの間にQにおいて矢がちょうど1本あれば $I_uI_vI_u = I_vI_uI_v$.

また次の性質を確かめることができる.

補題 1.4. [BIRSc, Proposition Ⅲ. 1.11] 次が成立する.

- (a) $u, v \in Q_0, u \neq v$ のとき, $I_u e_v = \Pi e_v$.
- (b) $s_{u_1}s_{u_2}\cdots s_{u_l}$ を $w\in W_Q$ の既約表示とする. $v\in\{u_1,u_2,\ldots,u_l\}$ に対して, $p_v=\max\{1\leq i\leq l\mid u_i=v\}$ とおく. このとき $(\Pi/I_{u_1\cdots u_{n_u}})e_v=\Pi_w e_v$ となる.

 I_w の計算において、次の補題が役に立つ.

補題 1.5. $u \in Q_0, X \in \mathsf{mod}\,\Pi$ とする.

- Π/I_u は頂点 u に対応する単純 Π -加群である.
- I_uX は X の部分加群 Y のうち、次を満たすものの中で最小の部分加群である; X/Y の組成因子は全て Π/I_u と同型である.

有限次元多元環 A と A-加群 M に対して, $\operatorname{mod} A$ の充満部分圏を次で定める.

- Sub $M := \{ X \in \operatorname{mod} A \mid X \text{ is a submodule of } M^{\oplus n} \text{ for some } n \geq 0 \}.$
- $\bullet \ ^{\perp}M:=\{\,X\in \operatorname{mod} A\mid \operatorname{Ext}_A^i(X,M)=0\ \forall i>0\,\,\}.$

Buan-Iyama-Reiten-Scott らは次を示した [BIRSc, Propositions III. 2.2, III. 2.3, III. 2.5, Theorem III. 2.6]. 命題 1.6. $w \in W_Q$ とする. 次が成立する.

- (a) Π_w は k 上有限次元多元環である.
- (b) Π_w の自己移入次元は 1 以下である. 特に $\mathsf{Sub}\,\Pi_w = {}^\perp\Pi_w$ となる.
- (c) Sub Π_w は安定 2-Calabi-Yau フロベニウス圏である. 即ち安定圏 $\underline{\mathsf{Sub}}\,\Pi_w$ は 2-CY な三角圏である.
- (d) $s_{u_1}s_{u_2}\cdots s_{u_l}$ を w の既約表示とする. $i\in\{1,2,\ldots,l\}$ に対して, $M_i:=(\Pi/I_{u_1\cdots u_i})e_{u_i}$, $M:=\bigoplus_{i=1}^l M_i$ とする. このとき, $M\in\operatorname{Sub}\Pi_w$ であり, M は $\operatorname{Sub}\Pi_w$ の団傾対象 (cluster tilting object) である. 即ち. 次の等式が成立する.

$$\begin{split} \operatorname{\mathsf{add}} M &= \{\, X \in \operatorname{\mathsf{Sub}} \Pi_w \mid \operatorname{Ext}^1_{\Pi_w}(X,M) = 0 \,\} \\ &= \{\, X \in \operatorname{\mathsf{Sub}} \Pi_w \mid \operatorname{Ext}^1_{\Pi_w}(M,X) = 0 \,\}. \end{split}$$

(e) $gl.dim \operatorname{End}_{\Pi_w}(M) \leq 3$.

定義 1.7. $\mathbf{w}=s_{u_1}s_{u_2}\cdots s_{u_l}$ を $w\in W_Q$ の既約表示とする. 命題 1.6 (c) に現れた $\mathsf{Sub}\,\Pi_w$ の団傾対象

$$M_i = M(\mathbf{w})_i := (\Pi/I_{u_1 \cdots u_i})e_{u_i}, \quad M = M(\mathbf{w}) := \bigoplus_{i=1}^l M_i$$

を既約表示wに関する標準団傾対象(standard cluster tilting object)という.

M は w の既約表示 \mathbf{w} に依存していることに注意せよ. この講義ノートで扱うのは, 標準団傾対象の自己準同型多元環 $\operatorname{End}_{\Pi}(M)$ である. $\operatorname{End}_{\Pi}(M)$ のクイバーと関係式による表示は第 4 節で与えられる.

例 1.8. Q を次のクイバーとする: $2 \xrightarrow{\beta} 3$. Q の前射影多元環 Π は左加群として、次の組成因子による表示を持つ. $\Pi = \Pi e_1 \oplus \Pi e_2 \oplus \Pi e_3$;

 W_Q の元の既約表示 $\mathbf{w} = s_1 s_2 s_3 s_1$ に対して、各 M^i は補題 1.5 により次のように計算される.

となり、よって M^1 , M^2 , M^3 , M^4 は次となる;

$$M_1 = 1,$$
 $M_2 = \frac{2}{1},$ $M_3 = \frac{3}{1},$ $M_4 = \frac{2}{1},$ $M_4 = \frac{2}{1},$

2 End_Ⅱ(M) **の準遺伝性**

この節では [IR] の結果を紹介する. この節を通して Q を非輪状クイバーとする.

定理 2.1. [IR, Theorem 3.1] $\mathbf{w} = s_{u_1} s_{u_2} \cdots s_{u_l}$ を $w \in W_Q$ の既約表示とし, $M = M(\mathbf{w})$, $\Gamma := \operatorname{End}_{\Pi}(M)$ とする. このとき Γ は次の遺伝鎖を持つ準遺伝的多元環である.

$$0 \subset \Gamma e_1 \Gamma \subset \Gamma(e_1 + e_2)\Gamma \subset \cdots \subset \Gamma(e_1 + \cdots + e_{l-1})\Gamma \subset \Gamma$$
,

ここで e_i は M_i に対応する Γ の冪等元である.

Proof. $e = e_1 \in \Gamma$ とおく. 次の2つの主張を示せば十分である.

- (i) $\Gamma e \Gamma$ は Γ \mathcal{O} heredity ideal である.
- (ii) $w' \in W_Q$ を既約表示 $\mathbf{w}' = s_{u_2} s_{u_3} \cdots s_{u_l}$ を持つ元とし、この既約表示に関する $\operatorname{Sub} \Pi_{w'}$ の標準団傾対象を $M' = M(\mathbf{w}')$ をする.このとき多元環 $\Gamma/\Gamma e\Gamma$ と $\operatorname{End}_{\Pi}(M')$ は同型である.

 $S=M_1$ とおく、 S は $u_1\in Q_0$ に関する単純 Π_w -加群である、 $\Gamma e\Gamma=\{f\in \operatorname{End}_{\Pi_w}(M)\mid f$ は add S を通過する $\}$ となっていることに注意する.

 $Proof\ of\ (i).\ e\Gamma e \simeq \operatorname{End}_{\Gamma}(\Gamma e) \simeq \operatorname{End}_{\Pi_w}(S)$ は半単純多元環である。次に $\Gamma e\Gamma$ が右 Γ -加群として射影的であることを示す。M の S-socle を $\operatorname{soc}_S(M)$ と表す。このとき包含写像 $f:\operatorname{soc}_S(M)\to M$ は M の右 add S-近似となっている。よって f は右 Γ -加群としての同型 $\operatorname{Hom}_{\Pi_w}(M,\operatorname{soc}_s(M))\simeq \Gamma e\Gamma$ を導く。 $\operatorname{Hom}_{\Pi_w}(M,M_1)$ は右 Γ -加群として射影加群なので, $\Gamma e\Gamma$ は右 Γ -加群として射影的である。 $\Gamma e\Gamma$ が左 Γ -加群として射影的であることを示すには,M の S-top を用いればよい。

 $Proof\ of\ (ii)$. 関手 $F: \mathsf{mod}\ \Pi \to \mathsf{mod}\ \Pi$ を $F(X) := X/\mathsf{soc}_S(X)$ と定める。補題 $1.5\ \mathsf{D}\ U$ M,M' の定義より,F(M) = M' となる。環準同型 $\Phi = F_{M,M}: \mathsf{End}_\Pi(M) \to \mathsf{End}_\Pi(M')$ が $\Gamma/\Gamma e\Gamma \simeq \mathsf{End}_\Pi(M')$ を導くことを示す。 $f \in \Gamma$ に対して, $\Phi(f) = 0$ であることと f が $\mathsf{add}\ S$ を通過することは同値であり,更にこれは $f \in \Gamma e\Gamma$ と同値である。よって Φ は環準同型 $\Gamma/\Gamma e\Gamma \to \mathsf{End}_\Pi(M')$ を導き,かつ単射である。 Φ が全射であることを示す。 まず, $\mathsf{Ext}^1_\Pi(M,S) = 0$ である。 実際, $\Omega_\Pi(M)$ の $\mathsf{top}\ \mathsf{td}\ S$ を直和因子に持たないので, $\mathsf{Hom}_\Pi(\Omega_\Pi(M),S) = 0$ である。 よって $\mathsf{Ext}^1_\Pi(M,S) = 0$ である。 完全列 $0 \to \mathsf{soc}_S\ M \to M \xrightarrow{P} M' \to 0$ に $\mathsf{Hom}_\Pi(M,-)$ を施す。 $\mathsf{Ext}^1_\Pi(M,S) = 0$ なので, $\mathsf{Hom}_\Pi(M,p)$ は全射である。 そこで任意の $g \in \mathsf{End}_\Pi(M')$ に 対して,pf = gp を満たす $f \in \mathsf{End}_\Pi(M)$ が存在する。これは $\Phi(f) = g$ を意味する。

 $\Gamma=\operatorname{End}_{\Pi}(M)$ が左強準遺伝的であることを示すために次の補題が必要である. 証明には Γ のクイバー表示が使われる ([IR, Theorem 3.4] の証明を見よ). $s_{u_1}s_{u_2}\cdots s_{u_l}$ を $w\in W_Q$ の既約表示とする. 各 $1\leq i\leq l$ に対して, $i':=\max\{1\leq j\leq i-1\mid u_j=u_i\}$ とし, $f_i:M_i\to M_{i'}$ を標準的全射とする.

補題 2.2. 各 $1 \leq i \leq l$ に対して, $f_i: M_i \to M_{i'}$ は M_i の左 $\mathsf{add}(\bigoplus_{j < i} M_j)$ -近似である.

 $L_i := \operatorname{Ker}(f_i)$ とおく. $\Gamma = \operatorname{End}_{\Pi}(M)$ が左強準遺伝的多元環であることを示す.

命題 2.3. [IR, Theorem 3.4] $\mathbf{w} = s_{u_1} s_{u_2} \cdots s_{u_l}$ を $w \in W_Q$ の既約表示とし, $M = M(\mathbf{w})$, $\Gamma := \operatorname{End}_{\Pi}(M)$ とする.このとき次が成立する.

(a) Γ は直既約射影 Γ-加群の順序

$$\operatorname{Hom}_{\Pi}(M_l, M), \operatorname{Hom}_{\Pi}(M_{l-1}, M), \dots, \operatorname{Hom}_{\Pi}(M_1, M),$$

に関して左強準遺伝的である. また, $\Delta_i = \text{Hom}_{\Pi}(L_i, M)$ である.

(b) Γ is Δ -serial σ of δ .

Proof. (a) 定理 2.1 により, $\Delta_i = \operatorname{Hom}_{\Pi}(L_i, M)$ かつ $\operatorname{pd}_{\Gamma}\operatorname{Hom}_{\Pi}(L_i, M) \leq 1$ を示せば十分である.完全列 $0 \to L_i \xrightarrow{\iota} M_i \xrightarrow{f_i} M_{i'} \to 0$ に $\operatorname{Hom}_{\Pi_w}(M, -)$ を施す. $\operatorname{Ext}^1_{\Pi_w}(M, M) = 0$ より, 次の完全列を得る.

$$0 \to \operatorname{Hom}_{\Pi}(M_{i'}, M) \xrightarrow{(f_i, M)} \operatorname{Hom}_{\Pi}(M_i, M) \xrightarrow{(\iota, M)} \operatorname{Hom}_{\Pi}(L_i, M) \to 0. \tag{2.1}$$

これより $\mathrm{pd}_{\Gamma}\operatorname{Hom}_{\Pi}(L_i,M)\leq 1$ である. 次に各 $1\leq i\leq l$ に対して、 $\Delta_i=\operatorname{Hom}_{\Pi}(L_i,M)$ を示す. 各 $1\leq r\leq l$ に対して、 S_r を $\operatorname{Hom}_{\Pi}(M_r,M)$ に関する単純 Γ -加群とする. 完全列 (2.1) 及び i'< i より、次を示せば十分である.

• 単純 Γ -加群 S_r が $\operatorname{Hom}_{\Pi}(L_i, M)$ の組成因子のとき, $r \geq i$ である.

以下この主張を示す. S_r が $\operatorname{Hom}_\Pi(L_i,M)$ の組成因子なので, $\operatorname{Hom}_\Pi(M_r,M)$ から $\operatorname{Hom}_\Pi(L_i,M) \sim 0$ でない射 $\alpha: \operatorname{Hom}_\Pi(M_r,M) \to \operatorname{Hom}_\Pi(L_i,M)$ が存在する. $\operatorname{Hom}_\Pi(M_r,M)$ は射影 Γ -加群なので, α は (ι,M) を通過する. そこで $g: M_i \to M_r$ で, $(\iota,M) \circ (g,M) = \alpha$ を満たすものが存在する. ここでもし r < i ならば, $f_i: M_i \to M_{i'}$ は M_i の左 $\operatorname{add}(\bigoplus_{j < i} M_j)$ -近似なので, g は f_i を通過する. しかしこのとき $\alpha = 0$ となり矛盾である. よって $r \geq i$ である.

$3 \operatorname{End}_{\Pi}(M)$ の特性傾加群

この節では準遺伝的多元環 $\operatorname{End}_{\Pi}(M)$ について解説する.この節を通して Q を非輪状クイバーとする.また, $\mathbf{w}=s_{u_1}s_{u_2}\cdots s_{u_l}$ を $w\in W_Q$ の既約表示とし, $M=M(\mathbf{w})$, $\Gamma:=\operatorname{End}_{\Pi}(M)$ とする. $\pi:P\to M$ を M の Π_w -加群としての射影被覆とし, $\widetilde{\Omega}M:=\operatorname{Ker}\pi\oplus\Pi_w$ とおく.このとき $\widetilde{\Omega}M\in\operatorname{Sub}\Pi_w$ であり, $\widetilde{\Omega}M$ は $\operatorname{Sub}\Pi_w$ の団傾対象である ([IR, Proposition 3.5 (a)]). Γ の特性傾加群は次で与えられる.

定理 3.1. [IR, Theorem 3.5] $U := \operatorname{Hom}_{\Pi}(\widetilde{\Omega}M, M)$ が Γ の特性傾加群である. 更に $\operatorname{End}_{\Gamma}(U) \simeq \operatorname{End}_{\Pi}(\widetilde{\Omega}M)$ である.

この節では定理 3.1 の証明を行う. U が傾 Γ -加群であり, $U \in \mathcal{F}(\Delta)$ であること及び $\mathcal{F}(\Delta) \subset {}^\perp U$ が成立することを示す. 以下の補題が証明の鍵となる.

補題 3.2. $X,T \in \mathsf{Sub}\,\Pi_w$ とし, T を団傾対象とする. このとき完全列

$$0 \to T_0 \to T_1 \to X \to 0$$
, $0 \to X \to T_2 \to T_3 \to 0$

で $T_i \in \operatorname{add} T$ なるものが存在する.

Proof. 一つ目の完全列の存在を示す.二つ目も同様に示すことができる. $f:T_1 \to X$ を X の右 add T-近似 とする. Π_w は団傾対象 T の直和因子なので,f は全射である. $T_0:=\operatorname{Ker} f$ とおく. $T_0 \in \operatorname{add} T$ となることを示す.短完全列 $0 \to T_0 \to T_1 \to X \to 0$ に $\operatorname{Hom}_{\Pi_w}(T,-)$ を施すと,次の完全列が得られる;

$$\operatorname{Hom}_{\Pi_w}(T,T_1) \xrightarrow{f^*} \operatorname{Hom}_{\Pi_w}(T,X) \to \operatorname{Ext}^1_{\Pi_w}(T,T_0) \to \operatorname{Ext}^1_{\Pi_w}(T,T_1).$$

ここで T は団傾対象なので、 $\operatorname{Ext}^1_{\Pi_w}(T,T_1)=0$ である。また f^* は全射である。よって、 $\operatorname{Ext}^1_{\Pi_w}(T,T_0)=0$ である。団傾対象の定義により、 $T_0\in\operatorname{add} T$ となる。

命題 3.3. [IR, Propositions 3.5 (b), 3.6] $U = \operatorname{Hom}_{\Pi}(\widetilde{\Omega}M, M)$ とおく. 任意の $X \in \operatorname{Sub}\Pi_w$ に対して、次が成立する.

- (a) $\operatorname{pd}_{\Gamma} \operatorname{Hom}_{\Pi}(X, M) \leq 1$.
- (b) 任意の i > 0 に対して, $\operatorname{Ext}^i_{\Gamma}(\operatorname{Hom}_{\Pi}(X, M), U) = 0$. 特に $\mathcal{F}(\Delta) \subset {}^{\perp}U$.
- (c) U は傾 Γ -加群であり, $\operatorname{End}_{\Gamma}(U) \simeq \operatorname{End}_{\Pi}(\widetilde{\Omega}M)$ となる.

Proof. (a) 補題 3.2 により, 単完全列

$$0 \to X \to M' \xrightarrow{f} M'' \to 0 \tag{3.1}$$

で、 $M', M'' \in \operatorname{add} M$ なるものが存在する. $\operatorname{Hom}_{\Pi}(-, M)$ を施して、単完全列

$$0 \to \operatorname{Hom}_{\Pi}(M'', M) \to \operatorname{Hom}_{\Pi}(M', M) \to \operatorname{Hom}_{\Pi}(X, M) \to 0$$
(3.2)

を得る. これより, $\mathrm{pd}_{\Gamma} \mathrm{Hom}_{\Pi}(X, M) \leq 1$ である.

(b) $\operatorname{Ext}^1_{\Gamma}(\operatorname{Hom}_{\Pi}(X,M),U)=0$ を示せば十分である. 再び単完全列 (3.1) を考える. 単完全列 (3.2) に $\operatorname{Hom}_{\Gamma}(-,U)$ を施すことで、次の可換図式が得られる.

ここで各行は完全であり,一行目右端の完全性は, $\Pi(M',M)$ が射影 Γ -加群であることから従う.写像 f^* が全射であることを示す. $\underline{\mathrm{Hom}}_{\Pi_w}(\widetilde{\Omega}M,M'')\simeq\mathrm{Ext}^1_{\Pi_w}(M,M'')=0$ なので, $\widetilde{\Omega}M$ から M'' への任意の射は射影 Π_w -加群を通過する.また,射影 Π_w -加群から M'' への任意の射は,全射 $f:M'\to M''$ を通過する.よって f^* は全射である.以上から $\mathrm{Ext}^1_{\Gamma}(\mathrm{Hom}_{\Pi}(X,M),U)=0$ である.

(c) $X = \widetilde{\Omega}M$ とおく. (b) の可換図式左端から導かれる同型により、 $\operatorname{End}_{\Gamma}(U) \simeq \operatorname{End}_{\Pi}(\widetilde{\Omega}M)$ となる. また、 $\operatorname{pd}_{\Gamma}U \leq 1$ かつ $\operatorname{Ext}^1_{\Gamma}(U,U) = 0$ である. $\widetilde{\Omega}M$ は $\operatorname{Sub}\Pi_w$ の団傾対象であるので、補題 3.2 により、完全

列 $0 \to \widetilde{M}_1 \to \widetilde{M}_0 \to M \to 0$ で, $\widetilde{M}_1, \widetilde{M}_0 \in \operatorname{add} \widetilde{\Omega} M$ なるものが存在する. この完全列に $\operatorname{Hom}_{\Pi}(-, M)$ を施すと, 完全列 $0 \to \Gamma \to \operatorname{Hom}_{\Pi}(\widetilde{M}_0, M) \to \operatorname{Hom}_{\Pi}(\widetilde{M}_1, M) \to 0$ が得られる. 以上により, U は傾 Γ -加群である.

次の命題を示すことによって、定理 3.1 の証明は完了する.

命題 3.4. [IR, Theorem 3.5] $U = \operatorname{Hom}_{\Pi}(\widetilde{\Omega}M, M)$ とおく. 次が成立する.

- (a) $U \in \mathcal{F}(\Delta)$.
- (b) $^{\perp}U = \mathcal{F}(\Delta)$.
- (c) U は Γ の特性傾加群である.

Proof. (a) $\widetilde{\Omega}M=\Omega M\oplus \Pi_w$ であった. ここで Ω は Π_w -加群としての射影被覆の核である. まず $\operatorname{Hom}_{\Pi}(\Pi_w,M)$ は Γ の直和因子である. $\Gamma\in \mathcal{F}(\Delta)$ なので, $\operatorname{Hom}_{\Pi}(\Pi_w,M)$ は $\mathcal{F}(\Delta)$ の対象である. 次に,既約表示 $\mathbf{w}=s_{u_1}s_{u_2}\cdots s_{u_l}$ に現れる頂点 u_1,\ldots,u_l の内一つを $u(\in Q_0)$ と置き,以降固定する. $\{1\leq i\leq l\mid u_i=u\}=\{i_1< i_2<\cdots< i_t\}$ とおく.ここで右辺の順序は,整数のなす集合に備わる通常の順序である.このとき, $\operatorname{Hom}_{\Pi}(\Omega M_{i_i},M)\in \mathcal{F}(\Delta)$ を j に関する減少帰納法で示す.

j=t のとき、 $M_{i_t}=\Pi_w e_u$ なので、 $\Omega M_{i_j}=0$ である.次に $j\leq t$ として、 $\operatorname{Hom}_\Pi(\Omega M_{i_j},M)\in \mathcal{F}(\Delta)$ が成立しているとする.このとき、 $\operatorname{Hom}_\Pi(\Omega M_{i_{j-1}},M)\in \mathcal{F}(\Delta)$ を示す. $u_{i_j}=u_{i_{j-1}}$ なので、 $M_{i_j},M_{i_{j-1}}$ の射影被覆は $\Pi_w e_u$ で与えられ、次の可換図式が得られる.

ここで射 f_{i_j} は補題 2.2 で扱ったものである. $L_{i_j} := \operatorname{Ker}(f_{i_j})$ とおく. 次の完全列が得られる.

$$0 \to \Omega M_{i_i} \xrightarrow{g} \Omega M_{i_{i-1}} \to L_{i_i} \to 0.$$

この完全列に $\operatorname{Hom}_{\Pi}(-,M)$ を施して, 次の完全列を得る.

$$0 \to \operatorname{Hom}_{\Pi}(L_{i_i}, M) \to \operatorname{Hom}_{\Pi}(\Omega M_{i_{i-1}}, M) \xrightarrow{g_*} \operatorname{Hom}_{\Pi}(\Omega M_{i_i}, M). \tag{3.3}$$

写像 g_* が全射であることを示す。 $\underline{\mathrm{Hom}}_{\Pi_w}(\Omega M_{i_j}, M) \simeq \mathrm{Ext}^1_{\Pi_w}(M_{i_j}, M) = 0$ なので, ΩM_{i_j} から M への任意の射は射影 Π_w -加群を通過する。 $L_{i_j} \in \mathrm{Sub}\,\Pi_w = {}^\perp\Pi_w$ なので, ΩM_{i_j} から射影 Π_w -加群への任意の射は g を通過する。よって g_* は全射である。完全列(3.3)と帰納法の仮定により, $\mathrm{Hom}_\Pi(\Omega M_{i_{j-1}}, M) \in \mathcal{F}(\Delta)$ である。

(b), (c) 命題 3.3 (b), および $U \in \mathcal{F}(\Delta)$ により, U は $\mathcal{F}(\Delta)$ の中で移入的である. 命題 3.3 (c) により U は 傾 Γ -加群なので, U は Γ の特性傾加群である.

この節の最後に $\operatorname{Sub}\Pi_w$ と $\mathcal{F}(\Delta)$ の双対を与える次の定理を述べておく. 証明は省略する.

定理 3.5. [IR, Theorem 3.8] 関手 $\operatorname{Hom}_{\Pi}(-,M):\operatorname{mod}\Pi_w\to\operatorname{mod}\Gamma$ 及び $\operatorname{Hom}_{\Gamma}(-,M):\operatorname{mod}\Gamma\to\operatorname{mod}\Pi_w$ は $\operatorname{Sub}\Pi_w$ と $\mathcal{F}(\Delta)$ の双対を導く.

4 $\operatorname{End}_{\Pi}(M)$ のクイバー表示

この節では [BIRSm] の結果を紹介する. Q を loop と 2-cycle を持たないクイバーとする. Q の cycle によって張られる kQ の k-部分空間を kQ_{cyc} とする. 以下, $\operatorname{End}_{\Pi}(M)$ を表示するための必要最低限の定義を与える. 詳細な定義は例えば [BIRSm] の 1 章を参照せよ.

定義 4.1. (1) $\alpha \in Q_1$ に対して k-線形写像 $\partial_\alpha : kQ_{cyc} \to kQ$ を次で定める.即ち Q の cycle $p = \alpha_1\alpha_2\cdots\alpha_m, (\alpha_i\in Q_1)$ に対して,

$$\partial_{\alpha}(p) := \sum_{\alpha_i = \alpha} \alpha_{i+1} \cdots \alpha_m \alpha_1 \cdots \alpha_{i-1},$$

ここでもし $\alpha_i = \alpha$ なる i が存在しなければ $\partial_{\alpha}(p) = 0$ とする. これを kQ_{cyc} に線形に拡張する.

(2) $W \in kQ_{cyc}$, $F \subset Q_0$ に対して、三つ組 (Q, W, F) の frozen Jacobian algebra Jac(Q, W, F) を次で定義する.

$$\mathsf{Jac}(Q,W,F) := kQ/\langle \partial_{\alpha}W \mid \alpha \in Q_1, s(\alpha) \not\in F \ \sharp \, t \ t(\alpha) \not\in F \rangle$$

例 4.2. Q 及び $W \in kQ_{cyc}$ を次とする:

$$2 \xrightarrow{\beta} 3, \quad W = \gamma \beta \alpha.$$

このとき, $\partial_{\alpha}(W) = \gamma\beta$, $\partial_{\beta}(W) = \alpha\gamma$, $\partial_{\gamma}(W) = \beta\alpha$ となる. また,

- $F = \emptyset \ \mathcal{O} \ \mathcal{E}, \ \mathsf{Jac}(Q, W, F) = kQ/\langle \gamma \beta, \alpha \gamma, \beta \alpha \rangle,$
- $F = \{1, 3\}$ Ø $\geq \mathfrak{F}$, $Jac(Q, W, F) = kQ/\langle \gamma \beta, \alpha \gamma \rangle$,

となる.

以下, Q を非輪状有限クイバーとし, $\mathbf{w} = s_{u_1} s_{u_2} \cdots s_{u_l}$ を $w \in W_Q$ の既約表示とし, $M = M(\mathbf{w})$ とする. この節では, 既約表示 \mathbf{w} に対して, クイバー $Q_{\mathbf{w}}$ と $F_{\mathbf{w}} \subset (Q_{\mathbf{w}})_0$, $W_{\mathbf{w}} \in k(Q_{\mathbf{w}})_{cyc}$ が存在し, $\operatorname{Jac}(Q_{\mathbf{w}}, F_{\mathbf{w}}, W_{\mathbf{w}}) \simeq \operatorname{End}_{\Pi}(M)$ となることを紹介する (定理 4.8). 以下クイバー $Q_{\mathbf{w}}$ と $F_{\mathbf{w}} \subset (Q_{\mathbf{w}})_0$, $W_{\mathbf{w}} \in k(Q_{\mathbf{w}})_{cyc}$ の構成を与える. まず $Q_{\mathbf{w}}$ の構成を与える.

定義 4.3. [BIRSc] $\mathbf{w} = s_{u_1} s_{u_2} \cdots s_{u_l}$ を既約表示とする. このときクイバー $Q_{\mathbf{w}}$ を次で定義する.

- 頂点: $(Q_{\mathbf{w}})_0 = \{1, 2, \dots, l\}$. $u \in Q_0$ に対して, $u_i = u$ を満たす頂点 $i \in (Q_{\mathbf{w}})_0$ を u 型の頂点という.
- 矢:
 - 各 $u \in Q_0$ に対して、 $\{1 \le i \le l \mid u_i = u\} = \{i_1, i_2, \dots, i_s\}$ とし、 $i_1 < i_2 < \dots < i_s$ とする.このとき、各 $2 \le j \le s$ に対して、矢 $p(i_j): i_j \to i_{j-1}$ を引く.(この矢を**左向きの矢**という)
 - $-\alpha: u \to v \in Q_1$ とする. $Q_{\mathbf{w}}$ の u 型および v 型の頂点が次のように並んでいるとする.

$$\underbrace{i_1 < \dots < i_{s(1)}}_{u \, \underline{\mathbb{H}}} < \underbrace{j_1 < \dots < j_{t(1)}}_{v \, \underline{\mathbb{H}}} < \underbrace{i_{s(1)+1} < \dots < i_{s(2)}}_{u \, \underline{\mathbb{H}}} < j_{t(1)+1} < \dots < j_{t(2)} < i_{s(2)+1} < \dots .$$

このとき、各 $k \ge 1$ に対して、矢 $\alpha_{s(k)}: i_{s(k)} \to j_{t(k)}$ 、および矢 $\alpha^*_{t(k)}: j_{t(k)} \to i_{s(k+1)}$ を引く. $j_1 < i_1$ のときも同様に矢を引く.

例 4.4. Q を次のクイバーとする: $\begin{pmatrix} \alpha \\ 2 \end{pmatrix} \begin{pmatrix} \gamma \\ \gamma \\ \beta \end{pmatrix}$ 3.

(a) W_Q の元の既約表示 $\mathbf{w} = s_1 s_2 s_3 s_1$ に対して, $Q_{\mathbf{w}}$ は次となる.

(b) W_Q の元の既約表示 $\mathbf{w} = s_1 s_2 s_3 s_2 s_1 s_2$ に対して, $Q_{\mathbf{w}}$ は次となる.

次に $F_{\mathbf{w}} \subset (Q_{\mathbf{w}})_0$, $W_{\mathbf{w}} \in k(Q_{\mathbf{w}})_{cyc}$ を構成する.

定義 4.5. [BIRSm] $\mathbf{w} = s_{u_1} s_{u_2} \cdots s_{u_l}$ を既約表示とする. $v \in \{u_1, u_2, \dots, u_l\}$ に対して, $p_v = \max\{1 \leq i \leq l \mid u_i = v\}$ とおく.

- (1) $F_{\mathbf{w}} = \{ p_v \mid v \in \{ u_1, u_2, \dots, u_l \} \}$ ≥ 73 .
- (2) $\alpha: u \to v \in Q_1$ とする. $Q_{\mathbf{w}}$ の u 型および v 型の頂点が次のように並んでいるとする.

$$\underbrace{i_1 < \dots < i_{s(1)}}_{u \, \text{Pl}} < \underbrace{j_1 < \dots < j_{t(1)}}_{v \, \text{Pl}} < \underbrace{i_{s(1)+1} < \dots < i_{s(2)}}_{u \, \text{Pl}} < j_{t(1)+1} < \dots < j_{t(2)} < i_{s(2)+1} < \dots.$$

このとき,

$$W_{\alpha} := p\alpha_{t(1)}^* \alpha_{s(1)} - p\alpha_{s(2)} \alpha_{t(1)}^* + p\alpha_{t(2)}^* \alpha_{s(2)} - \cdots$$

とする. ここで, 各 p は $Q_{\mathbf{w}}$ の左向きの矢の合成として一意に決まる道である. $j_1 < i_1$ のときも同様に定める.

$$W_{\mathbf{w}} := \sum_{\alpha \in Q_1} W_{\alpha}$$

とする.

例 4.6. 例 4.4 (a), (b) を考える.

- (a) $F_{\mathbf{w}} = \{2, 3, 4\}, W_{\alpha} = p_4 \alpha_2^* \alpha_1, W_{\beta} = 0, W_{\gamma} = p_4 \gamma_3^* \gamma_1$ となる.
- (b) $F_{\mathbf{w}} = \{3, 5, 6\}, W_{\alpha} = p_5 \alpha_4^* \alpha_1 p_6 \alpha_5 \alpha_4^*, W_{\beta} = p_4 p_6 \beta_3^* \beta_2, W_{\gamma} = p_5 \gamma_3^* \gamma_1 \ge \Im \delta.$

定義 4.7. $\mathbf{w}=s_{u_1}s_{u_2}\cdots s_{u_l}$ を $w\in W_Q$ の既約表示とし, $M=M(\mathbf{w})$, $\Gamma:=\mathrm{End}_\Pi(M)$ とする. 環準同型 $\Psi:kQ_{\mathbf{w}}\to\Gamma$ を次で定義する.

- 各 $i \in (Q_{\mathbf{w}})_0$ に対して, $\Psi(e_i)$ を M_i に関する Γ の冪等元とする.
- 矢 $p(i_j): i_j \to i_{j-1}$ に対して、全射準同型 $\Psi(p_{i_j}): M_{i_j} \to M_{i_{j-1}}$.
- 各 $\alpha \in Q_1$ に対して,

定理 4.8. [BIRSm, Theorem 6.6] $\Psi: kQ_{\mathbf{w}} \to \Gamma$ は同型 $\mathsf{Jac}(Q_{\mathbf{w}}, F_{\mathbf{w}}, W_{\mathbf{w}}) \simeq \Gamma$ を導く.

例 4.9. 例 4.4 (a) を考える. 自己準同型環 $\operatorname{End}_{\Pi}(M_{\mathbf{w}})$ のクイバー $Q_{\mathbf{w}}$ は例 4.4 (a) で与えられる. 定理 4.8 により, 次の同型が得られる.

$$\begin{split} \operatorname{End}_{\Pi}(M_{\mathbf{w}}) &\simeq \operatorname{Jac}(Q_{\mathbf{w}}, F_{\mathbf{w}}, W_{\mathbf{w}}) \\ &\simeq kQ_{\mathbf{w}}/\langle p_4\alpha_2^*, \, p_4\gamma_3^*, \, \alpha_2^*\alpha_1 + \gamma_3^*\gamma_1 \rangle. \end{split}$$

実際, $Q_{\mathbf{w}}$ の各頂点 i に例 1.8 の M_i を対応させ, 定義 4.7 の写像を計算すると, 関係式が満たされることが分かる.

参考文献

- [BIRSc] A. Buan, O. Iyama, I. Reiten, J. Scott, Cluster structures for 2-Calabi-Yau categories and unipotent groups, Compos. Math. 145 (2009), no. 4, 1035-1079.
- [BIRSm] A. Buan, O. Iyama, I. Reiten, D. Smith, Mutation of cluster-tilting objects and potentials, Amer. J. Math. 133 (2011), no. 4, 835-887.
- [IR] O. Iyama, I. Reiten, 2-Auslander algebras associated with reduced words in Coxeter groups, Int. Math. Res. Not. IMRN 2011, no. 8, 1782-1803.
- [R] C. M. Ringel, *Iyama's finiteness theorem via strongly quasi-hereditary algebras*, J. Pure Appl. Algebra 214 (2010), no. 9, 1687-1692.