PROBLEMAS DE REPASO PARA LA PRACTICA INTEGRADA 2

PROBLEMA 1

En un instituto de educación técnica los talleres de electricidad, mecánica y carpintería están ubicados en dos pabellones. A continuación se presenta la distribución de alumnos según turno, pabellón y especialidad

	Pabellón A			Pabellón B			
Turno	Carpintería	Electricida d	Mecánica	Carpintería	Electricida d	Mecánica	Total
Tarde	13	10	12	18	15	16	84
Noche	8	5	6	20	8	9	56
Total	21	15	18	38	23	25	140
	54			86			. 10

Nota: sólo se asignará puntaje en cada ítem si tiene identificado los eventos o sucesos, con planteamiento y solución correcta.

- a) Se eligió un alumno al azar, ¿Cuál es la probabilidad de que asista al pabellón A 0.3857
- b) Si el alumno está en el taller de mecánica, cual es la probabilidad de que sea del pabellón B? 0.5814
- c) Si el alumno elegido es del turno noche, cual es la probabilidad de que sea de electricidad?
- d) Si el alumno elegido es de la especialidad de carpintería, hallar la probabilidad de que sea del turno noche 0.4746
- e) Si el alumno elegido es del turno tarde y estudia en el pabellón A, ¿Cuál es la probabilidad de que sea de la especialidad de carpintería o mecánica?. 0.7143

Problema 2

Un cierto tipo de pólizas incluyen pagos hospitalarios. El 85% de las pólizas incluyen pagos de consultas externas o pagos de operaciones quirúrgicas. El 25% de las pólizas no incluyen pagos de operaciones quirúrgicas. Considerando independencia entre estos dos eventos. Si se elige una póliza al azar:

Muestre su procedimiento

- a) Calcule la probabilidad de que incluya pagos en consultas externas. 0.40
- b) Halle la probabilidad de que incluya sólo uno de estos tipos de pólizas 0.55
- c) Si una póliza no incluye pagos de operaciones quirúrgicas, hallar la probabilidad de que incluya pagos por consultas externas 0.40
- d) Calcular la probabilidad que incluya pagos en consultas externas o en operaciones quirúrgicas 0.8875
- e) Cuál sería la probabilidad que recién en la cuarta solicitud no se incluyan pagos en operaciones quirúrgicas. 0.0117

PROBLEMA 3.

Una compañía de seguros afirma que el 20% de sus clientes tienen edades entre 25 y 30 años, la probabilidad de que una persona de este grupo compre seguro contra accidente es de 7% y que compre

seguro contra robos es el restante; el 50% tienen edades entre 30 y 50 años con una probabilidad de comprar seguro contra accidente del 4%, 50% compra seguro contra enfermedad y 46% compra seguro contra robos; el resto de clientes son de 50 años o más, los cuales compran seguros contra enfermedades.

Nota: sólo se asignará puntaje en cada ítem si tiene identificado los eventos o sucesos, con planteamiento y solución correcta.

- a) Diagrama el árbol de decisión o la tabla que represente los eventos
- b) La probabilidad de que una persona que compra una póliza en esta compañía compre seguro contra accidente. 0.034
- c) Si una persona que compró una póliza en la compañía no tuvo accidente, ¿Cuál es la probabilidad de que tenga por lo menos 50 años de edad. 0.3106
- d) Hallar la probabilidad de que el tercer cliente elegido sea el primero que tiene accidente. Suponer independencia en la elección de los clientes. 0.03173

PROBLEMA 04

Sea X.v.a. Número de accidentes en barcos carga en un periodo de 6 meses, para una empresa naviera, la función probabilidad está dada por:

$$f(x) = \frac{k}{2}x$$
 ; cuando x= 0,1,2,3.

- a) Hallar el valor de k para que f(x) sea función probabilidad.
- b) Encuentre el número esperado de accidentes en 6 meses.
- c) Si por cada accidente, el seguro le paga a la empresa naviera un monto fijo de 30 mil dólares más 5 mil dólares por accidente. Determine el pago esperado.

Problema 05

Las utilidades anuales X, en millones dólares, de un distribuidor de automóviles se puede modelar con una función de densidad de la forma siguiente:

$$f(x) = k(x-1)$$
, $1 < x < 5$

- a) Hallar el valor de la constante k. RPTA: 1/8
- b) Determine el valor esperado y el coeficiente de variación de las utilidades anuales del distribuidor de automóviles. Detalle el procedimiento RPTA: 3.6667; 25.7098%
- c) Supongamos que debido a ciertas medidas decretadas por el gobierno, las utilidades del ejercicio desarrollado en el ítem a) se ha modificado de la siguiente manera: Y = 2X-1. Determine el valor esperado y el coeficiente de variación de las utilidades anuales del distribuidor de automóviles, luego de realizada la modificación. ¿Se puede afirmar que la heterogeneidad se redujo? Detalle el procedimiento.

PROBLEMA 06

En una empresa textil se confecciona el mismo producto con dos diferentes máquinas A y B. Se han observado 3 categorías de la vida útil T1, T2 y T3 para los productos según la máquina en que fue elaborado al respecto, se presenta el siguiente cuadro:

Máquina	T1: menos de un año	T2:De un año a 2	T3:Más de 2 años	Total
A	25	15	40	80
В	30	60	50	140

Total 55	75	90	220
----------	----	----	-----

Nota: Defina los eventos

- a. Se elige al azar un producto de la máquina A, calcule la probabilidad que tenga un tiempo de vida útil superior a dos años. 0-5
- b. Se elige al azar un producto que tiene un tiempo de vida útil máximo dos años,
 calcule la probabilidad de que haya sido producido por B. 90/130
- c. Si por otro lado se eligen al azar 2 productos sin reposición, considere la variable aleatorio X: Número de productos de la máquina A. Determine la función probabilidad y la función distribución. (presente los eventos y el rango)
 - c.1 Cuál es la probabilidad de que los dos productos sean de la máquina A.