

План занятия

- 1. Задачи детектирования и сегментации объектов
- 2. Модель RCNN
- 3. Модель Fast RCNN
- 4. Модель Faster RCNN
- 5. SegNet
- 6. U-net
- 7. Модель Mask RCNN

Задачи обработки изображений

Основные задачи обработки изображений:

- а. Классификация объектов
- **b.** Детектирование объектов
- с. Сегментация объектов

(a) classification

(c) segmentation

Coревнование PASCAL Visual Object Classes

Цель соревнования:

Для 20 классов объектов надо:

- 1. Предсказать наличие объектов на изображении
- 2. Для каждого объекта предсказать рамку вокруг и метку класса

Объем данных:

~27k объектов на ~11k изображений

Coревнование PASCAL Visual Object Classes

Классы объектов:

- Person: person
- Animal: bird, cat, cow, dog, horse, sheep
- Vehicle: airplane, bicycle, boat, bus, car, motorbike, train
- Indoor: bottle, chair, dining table, potted plant, sofa, TV/monitor

Метрика соревнования: Mean Average Precision (mAP)

Intersection over Union (IoU)

Precision & Recall

relevant elements

How many selected items are relevant?

How many relevant items are selected?

Mean Average Precision (mAP)

- mAP = MEAN(AP для каждого класса объектов)
- AP = MEAN(Precision для каждого из 11 значений Recall [0.0, 0.1, ..., 1.0])

Прогресс в соревновании PASCAL VOC

Прогресс в соревновании ILSVRC

ILSVRC top-5 error on ImageNet

Фиолетовым отмечены модели на основе сверточных нейронных сетей

Прогресс в соревновании PASCAL VOC после революции CNN

RCNN (2014), идея

RCNN - Regions with CNN features

Идея: использование сверточной нейронной сети для детектирования объектов

Input image

Extract region proposals (~2k / image)

Compute CNN features Classify regions (linear SVM)

Выбор рамок потенциальных объектов на изображении

Проблема:

Проход скользящим окном на различных масштабах порождает очень много потенциальных рамок объектов

Решение:

Выбираем только те рамки, в которых потенциально могут быть объекты используя данные о цвете изображения

Selective Search (2012)

Алгоритм Selective Search

Снижаем количество рамок с ~100k до ~2k

RCNN, архитектура

Проблемы RCNN

- Используется предтренированная сверточная нейронная сеть
- Обучение экстрактора признаков, классификатора объектов и регрессора bbox-ов происходит раздельно
- Система работает медленно

Fast RCNN (2015), идея

Идея:

- Сделаем end-to-end систему
- Будем извлекать признаки из изображения только 1 раз

Fast RCNN, архитектура

RCNN и Fast RCNN

Training time: 84 hours / 8.75 hours

VOC07 test mAP: 66.0% / 68.1%

Testing time per image: 49s / 2.32s

Проблемы Fast RCNN

- Selective Search не тренируется
- Selective Search работает медленно

Faster RCNN (2015), идея

Идея:

Заменим Selective Search на тренируемую Region Proposal Network

Faster RCNN, архитектура

Region Proposal Network

RPN - это небольшая нейронная сеть, которая на вход принимает карты признаков и предсказывает:

- 1. Есть ли в данной области объект
- 2. Уточняет локализацию Bbox-ов

Region Proposal Network

Region Proposal Network

Сравниваем RCNN, Fast RCNN, Faster RCNN

	RCNN	Fast RCNN	Faster RCNN
PASCAL VOC 2007 mAP	66.0	66.9	66.9
Время на предсказание	50 сек.	2 сек.	0.2 сек.
Ускорение	1x	25x	250x

Виды сегментации

Задачи сегментации обычно разделяют на две группы:

COCO dataset для задач сегментации

Common Objects in Context (COCO) - это большой, качественно размеченный датасет обычных объектов в их естественной среде от Microsoft.

- более 200k изображений
- 80 категорий объектов (Instance)
- 91 классов (semantic)

Метрики соревнований в рамках СОСО

Semantic segmentation:

усреднение по классам IoU

Instance segmentation:

• mAP, усредненный по порогам принятия детекции по IoU [0.5, 0.55 ... 0.95]

VGG-16

Архитектура сети VGG-16 (победитель ILSVRC 2014)

Автоэнкодеры

input layer

output layer (reconstruction of input layer)

Архитектура SegNet (2015)

SegNet по сути сверточный автоэнкодер с хитрой реализацией операции unpooling

Архитектура SegNet, unpooling

0.1	0.5	1.2	-0.7
0.8	-0.2	-0.5	0.3
0.4	0.9	-0.1	-0.2
-0.6	0.1	0.5	0.3

C	0.8	1.2
C).9	0.5

		х	
х			
	х		
		х	

0	0	0.5	0
1.3	0	0	0
0	0.4	0	0
0	0	0.1	0

1.3	0.5
0.4	0.1

max locations

Архитектура U-net (2015)

U-net, пример

Задача:

- 25 спутниковых изображений в Train
- 425 спутниковых изображений в Test
- 10 классов объектов
- Изображения представляют участки поверхности земли 1х1 км
- Для каждого участка 1х1 км даны 4 файла tiff с разных приборов

U-net, пример

Input: 160x160x20

Output: 160x160x7 or 160x160x2

Сегментация Train

Сегментация Train

Сегментация Test

Сегментация Test

Mask RCNN (2017)

41

Добавим еще одну ветвь, которая на основе карты признаков будет предсказывать маску объекта

Mask RCNN, сегментация

U-net (Instance segmentation)

Задачу instance segmentation можно свести к задаче semantic segmentation следующими способами:

- Предсказание границ объектов
- Разделение масок одного класса зазором в несколько пикселей
- Предсказание центров объектов и последующая постобработка

Евгений Некрасов

e.nekrasov@corp.mail.ru