#### 六、數據與計算分析

### (1) 測量靜態彈性係數及動態彈性係數

|      | 質量 kg  | 原長 m  | 後長 m   | 靜態 k (N/m) | T(s)     | 動態 k(N/m) |
|------|--------|-------|--------|------------|----------|-----------|
| 最細彈簧 | 0.0803 | 0.101 | 0.1612 | 13.072     | 0.579333 | 9.4454    |
| 中間彈簧 | 0.0803 | 0.101 | 0.215  | 6.903      | 0.785    | 5.1444    |
| 最粗彈簧 | 0.0803 | 0.076 | 0.7444 | 1.177      | 1.726    | 1.0641    |

分析:從結果來看動態彈性係數都是小魚靜態彈性係數的,先排除測量誤差, 我推論造成這種結果的原因因該為,這個彈簧壓縮時沒有反彈力,還有再測量 的時候讓彈簧超過他的彈力範圍。

造成誤差原因:動態 k 是利用人工目測出週期地所以會有不小誤差。還有空氣阻力的原因。

### (2)

|    | 質量 kg   | 週期 s | 週期平方 s^2 |
|----|---------|------|----------|
| #1 | 0.4019  | 2.47 | 6.12     |
| #2 | 0.42196 | 2.53 | 6.40     |
| #3 | 0.44206 | 2.58 | 6.66     |



我們以兩條最出粗彈簧量連接滑車,所以可以得

| slope  | 實驗值k     | 理論值k     | 誤差  |
|--------|----------|----------|-----|
| 13.351 | 2.956963 | 2.128255 | 39% |

分析:造成誤差的原因有,摩擦力,滑車和軌道間的摩擦力和輪子本身和自己的轉軸的摩擦力。就算我們將彈簧本身的重量也納入計算,也完全沒有改變結果,因為和彈簧和滑車質量相差太大了。

|      | 質量 kg  | 週期 s   | k(N/m)   | 1/k(m/N) | 週期平方(s^2)   |
|------|--------|--------|----------|----------|-------------|
| 最細彈簧 | 0.4019 | 4.0937 | 9.445354 | 0.105872 | 16.75837969 |
| 中間彈簧 | 0.4019 | 4.6912 | 5.144415 | 0.194386 | 22.00735744 |
| 最粗彈簧 | 0.4019 | 6.029  | 1.064128 | 0.939737 | 36.348841   |



| slope | 實驗值M     | 理論值 M  | 誤差  |
|-------|----------|--------|-----|
| 21.84 | 0.553214 | 0.4019 | 38% |

## 分析:

造成誤差的原因可能是,我們把兩條粗的彈簧的彈性係數視為相同,雖然 他們看起來完全相同,但是有可能有一條已經被弄得比較沒有彈性了。再來就 是摩擦力造成的誤差。

(四)、

|    | 振幅   | 週期     |
|----|------|--------|
| #1 | 0.11 | 6.1449 |
| #2 | 0.13 | 6.1569 |
| #3 | 0.16 | 6.1746 |



分析: 作圖發現週期和震幅低度相關,因此這個實驗實驗驗證震幅大小和 週期無關,有些微的誤差應該是摩擦力影響週期測量的結果因為滑車越來越慢 導致光電閘測得週期變大。

## (五)、





分析: 帶 x-t 圖中第一個低點的數值得到

| 點      | 理論值      | 實驗值      | 誤差 |    |
|--------|----------|----------|----|----|
| 0.3648 | -0.62578 | -0.63947 |    | 2% |

有些微的誤差原因;可能是因為 vt 圖是利用前後平均的方法算的,再加上時間 距離不小,導致實驗和理論的誤差,當然摩擦力也會有影響導致速度比預期的 低。

# (六)、阻尼震盪

大阻尼:





斜率為-3.424 所以 b 為 3.163365

小阻尼:





斜率為-0.07 所以 b 為 0.064672

分析: 我們把大阻尼調的很大,小阻尼調到最小,實驗結果大小阻尼差很多,和 預期實驗結果相符。

## (七)、利用 tracker 分析阻尼震盪

利用和實驗六相同的小阻尼滑車,拍攝。





分析:很漂亮的圖形,不過在一開始的數據不太平整,推測應該是手要放開 滑車的時候沒有分手分乾淨,影響一開始滑車的運動。

#### 八、問題與討論

- 在何種情況下,彈簧不遵守虎克定律?
  當彈簧的伸長量超過彈性限度,則不遵守。
- 2. 為何圖 1 中,滑車上要兩邊裝彈簧而不能只用一條? 比較穩定,再加上實驗用的彈簧被壓縮時,反彈的力量幾乎沒有。

3. 如果彈簧的質量 ms 不能忽略,而且振盪時彈簧的伸長是均勻的,試證 週期應為。

很簡單 F = (m+ms/3)a = kx。馬上可以推得公式,但是為甚麼是 ms/3 我就不太清楚了。

- 4. 做簡諧運動的滑車終將停止,找出至少兩個會使滑車停止運動的原因。 摩擦力(空氣、滑軌、輪軸)、彈簧不夠理想,在伸縮時有能量損失。
- 5. 空氣軌不水平對本實驗會有何影響? 沒有影響,彈簧週期不受重力引響,我覺得甚至更好,在操作前利用 重力抵銷掉滑軌和滑車之間的磨擦力,讓光電閘測出的週期更精確。
- 6. 任何實驗測量均有誤差,誤差來源除了由實驗者的操作所致以外,每一 儀器都有它的 測量限度,即它的解析度(resolution)。做完幾個空氣軌實驗後, 你是否已瞭解實驗系 統的性能和它的解析度?試估計由測量儀器的解析度所造 成的百分誤差,並和數據之 誤差做比較。

A:像是 Arduino 就很方便他可以自己定義要測量的時間距離還是要量週期等等,解析度也可以,很好。光電閘的話,算不錯用,不過數據要自己慢慢打有點慢,而且是前後一個瞬時速度,相較起來 Arduino 就準確許多。

九、參考資料

清華普物實驗室