HIGh security and light weigHT - HIGHT -

Ji Yong-Hyeon

content...

Department of Information Security, Cryptology, and Mathematics

College of Science and Technology Kookmin University

January 28, 2024

List of Symbols

Contents

1	HIGI	Π	1
	1.1	Specification	1
	1.2	State Representation	1
		Key Schedule	
		1.3.1 Round Constant	
		1.3.2 Rotation Function	
		1.3.3 Encryption Key Schedule of LEA-128	
		1.3.4 Decryption Key Schedule of LEA-128	
	1.4	Encryption of LEA-128	5
	1.5	Decryption of LEA-128	6
Α	Add	tional Data A	7
	A.1	Substitution-BOX	7

Chapter 1

HIGHT

1.1 Specification

Table 1.1: Specification Comparison between AES and HIGHT Block Ciphers

Specification	AES	HIGHT		
Block Size (bits)	128	64		
Key Size (bits)	128/192/256	128		
Structure	Substitution-Permutation Network	Generalized Feistel Network (ARX - Add-Rotation-Xor)		
Rounds	10/12/14 (depends on key size)	24/28/32 (depends on key size)		
Design Year	1998	2013		

Table 1.2: Parameters of the Block Cipher HIGHT

	Block	Key	Number of	Round-Key	Total Size of	
Algorithms	Size	Length	Rounds	Length	Round-Keys	
	$(N_b$ -byte)	$(N_k$ -byte)	(N_r)	(byte)	$((N_r * 192)-bit)$	
bit	16(4-word)	16(4-word)	24	24	4608 (144-word)	
byte (8-bit)	16(4-word)	24(6-word)	28	24	5376 (168-word)	
word (32-bit, 4-byte)	16(4-word)	32(8-word)	32	24	6144 (192-word)	

1.2 State Representation

Let state[0], state[1], ... be representation of arrays of bytes. Note that

$$\mathsf{state}[i] \coloneqq \{input_{8i}, input_{8i+1}, \dots, input_{8i+7}\} \in \mathbb{F}_{2^8}$$

for $input_i \in \mathbb{F}_2$. For example, $state[0] = \{input_0, input_1, \dots, input_7\}$.

The 128-bit plaintext P of LEA is represented as an array of four 32-bit words P[0], P[1], P[2] and P[3]. Then

$$P[i] = \text{state}[4i + 3] \parallel \text{state}[4i + 2] \parallel \text{state}[4i + 1] \parallel \text{state}[4i] \text{ for } 0 \le i \le 3.$$

Here, $P[i] \in \mathbb{F}_{2^{32=8\cdot4}}$ The key K of LEA is also represented as the same way.

2 CHAPTER 1. HIGHT

Table 1.3: Representations for words, bytes, and bits

Input Bit Sequence	24	•••	31	16	• • •	23	8	• • •	15	0	• • •	7
Word Number						0						
Byte Number		3			2			1			0	
Bit Numbers in Word	31											1

Example 1.1.

128-bit Input String	0x0f1e2d3c4b5a69788796a5b4c3d2e1f0							
Culitinto Mondo	0x0f1e2d3c	0x4b5a6978	0x8796a5b4	0xc3d2e1f0				
Split into Words	P[0]	P[1]	P[2]	P[3]				
P[0] (Word)	0x0f1e2d3c							
P[0] (Bit)	0b 0000:1111:0001:1110:0010:1101:0011:1010							
Culit into Pretos	0x0f	0x1e	0x2d	0x3c				
Split into Bytes	state[3]	state[2]	state[1]	state[0]				
state[0] (Byte)	0x3c							
Split into Rita	1111:0000	-	-	-				
Split into Bits	24 · · · 31	16 · · · 23	8 15	0 · · · 7				

```
void stringToWordArray(const char* hexString, u32* wordArray) {
1
      size_t length = strlen(hexString);
2
      for (size_t i = 0; i < length; i += 8) {</pre>
3
          sscanf(&hexString[i], "%8x", &wordArray[i / 8]);
4
5
      }
6
  }
7
 const char* inputString = "0f1e2d3c4b5a69788796a5b4c3d2e1f0";
  u32 key[4];
  stringToWordArray(inputString, key);
```

```
(gdb) x/16xb key
0x7fffffffd9c0: 0x3c
                          0 x 2 d
                                 0x1e
                                        0x0f
                                               0x78
                                                       0x69
                                                              0x5a
                                                                     0x4b
0x7ffffffffd9c8: 0xb4
                                 0x96
                          0xa5
                                        0x87
                                               0 x f 0
                                                       0 x e 1
                                                              0xd2
                                                                     0xc3
```

1.3 Key Schedule

```
KeySchedule<sup>enc</sup><sub>128</sub>: \{0, 1\}^{128=32\cdot4} \rightarrow \{0, 1\}^{192\cdot24=4608=32\cdot144}

KeySchedule<sup>enc</sup><sub>192</sub>: \{0, 1\}^{192=32\cdot6} \rightarrow \{0, 1\}^{192\cdot28=5376=32\cdot168}

KeySchedule<sup>enc</sup><sub>256</sub>: \{0, 1\}^{256=32\cdot8} \rightarrow \{0, 1\}^{192\cdot32=6144=32\cdot192}
```

1.3. KEY SCHEDULE 3

1.3.1 Round Constant

The constant $\delta[i] \in \mathbb{F}_{2^{32}}$ $(i \in \{1, ..., 7\})$ is as follows:

i	$\delta[i]$	value
0	δ[0]	0xc3efe9db
1	$\delta[1]$	0x44626b02
2	δ [2]	0x79e27c8a
3	$\delta[3]$	0x78df30ec
4	$\delta[4]$	0x715ea49e
5	δ[5]	0xc785da0a
6	δ [6]	0xe04ef22a
7	δ[7]	0xe5c40957

1.3.2 Rotation Function

```
Algorithm 1: Rotation to Left and Right

/* RotL: \{0,1\}^{32} \times \{0,1\}^{32} \rightarrow \{0,1\}^{32}

*/

Function RotL(value, shift):

2 | return (value \ll shift) | (value \gg (32 – shift));

3 end

/* RotR: \{0,1\}^{32} \times \{0,1\}^{32} \rightarrow \{0,1\}^{32}

*/

Function RotR(value, shift):

5 | return (value \gg shift) | (value \ll (32 – shift));

6 end
```

1.3.3 Encryption Key Schedule of LEA-128

```
Algorithm 2: Encryption Key Schedule (LEA-128)
    Input: User-key UK = UK[0] \parallel UK[1] \parallel UK[2] \parallel UK[3] (UK[i] \in {0, 1}^{32})
    Output: Encryption Round-keys \{RK_i^{enc}\}_{i=0}^{23} (RK_i^{enc} \in \{0, 1\}^{192})
    /* UK \in \{0, 1\}^{128} is 16-byte and \{RK_i^{enc}\}_{i=0}^{23} \in \{0, 1\}^{4608} is 576-byte
                                                                                                                                        */
 1 for i = 0 to 3 do
                                                                               //T = T[0] \| \cdots \| T[3] \in \{0, 1\}^{128 = 32*4}
 T[i] = \mathsf{UK}[i]
 3 end
 4 for i = 0 to 23 do
                                                                                                                //T[i] \in \{0, 1\}^{32}
         T[0] \leftarrow \text{RotL}(T[0] \boxplus \text{RotL}(\delta[i \mod 4], i + 0), 1)
         T[1] \leftarrow \text{RotL}(T[1] \boxplus \text{RotL}(\delta[i \mod 4], i + 1), 3)
         T[2] \leftarrow \text{RotL}(T[2] \boxplus \text{RotL}(\delta[i \mod 4], i + 2), 6)
         T[3] \leftarrow \text{RotL}(T[3] \boxplus \text{RotL}(\delta[i \mod 4], i + 3), 11)
                                                                                                      // RK_i^{enc} \in \{0, 1\}^{196=32*6}
         RK_i^{enc} \leftarrow T[0] \parallel T[1] \parallel T[2] \parallel T[1] \parallel T[3] \parallel T[1]
11 return \left\{\mathsf{RK}_{i}^{\mathsf{enc}}\right\}_{i=0}^{23}
```

4 CHAPTER 1. HIGHT

1.3.4 Decryption Key Schedule of LEA-128

Algorithm 3: Decryption Key Schedule (LEA-128)

```
Input: User-key UK = UK[0] \parallel UK[1] \parallel UK[2] \parallel UK[3] (UK[i] \in {0, 1}^{32})
    Output: Decryption Round-keys \{RK_i^{dec}\}_{i=0}^{23} (RK_i^{dec} \in \{0, 1\}^{192})
/* UK \in \{0, 1\}^{128} is 16-byte and \{RK_i^{dec}\}_{i=0}^{23} \in \{0, 1\}^{4608} is 576-byte
                                                                                                                                                                   */
 1 for i = 0 to 3 do
                                                                                              //T = T[0] \parallel \cdots \parallel T[3] \in \{0, 1\}^{128 = 32*4}
     T[i] = \mathsf{UK}[i]
 3 end
 4 for i = 0 to 23 do
                                                                                                                                      // T[i] \in \{0, 1\}^{32}
           T[0] \leftarrow \text{RotL}(T[0] \boxplus \text{RotL}(\delta[i \mod 4], i + 0), 1)
           T[1] \leftarrow \text{RotL}(T[1] \boxplus \text{RotL}(\delta[i \mod 4], i + 1), 3)
 6
           T[2] \leftarrow \text{RotL}(T[2] \boxplus \text{RotL}(\delta[i \mod 4], i + 2), 6)
 7
           T[3] \leftarrow \text{RotL}(T[3] \boxplus \text{RotL}(\delta[i \mod 4], i + 3), 11)
           \mathsf{RK}_{23-\mathbf{i}}^{\mathsf{dec}} \leftarrow T[0] \parallel T[1] \parallel T[2] \parallel T[1] \parallel T[3] \parallel T[1]
                                                                                                                         // RK_i^{dec} \in \{0, 1\}^{196 = 32*6}
 9
10 end
11 return \left\{ \mathsf{RK}_i^{\mathsf{dec}} \right\}_{i=0}^{23}
```

1.4 Encryption of LEA-128

Algorithm 4: Encryption of LEA-128

```
Input: block src = src[0] || src[1] || src[2] || src[3] \in \{0, 1\}^{128=32*4} and \{RK_i^{enc}\}_{i=0}^{N_r-1=23}

Output: block dst = dsc[0] || dsc[1] || dsc[2] || dsc[3] \in \{0, 1\}^{128=32*4}

1 t_0 = t[0] || t[1] || t[2] || t[3] \leftarrow src

2 for i = 0 to 23 do

3 | tmp \leftarrow t[0]

4 | t_{i+1}[0] \leftarrow RotL(t_i[0] \oplus RK_i^{enc}[0] \boxplus (t_i[1] \oplus RK_i^{enc}[1]), 9)

5 | t_{i+1}[1] \leftarrow RotR(t_i[1] \oplus RK_i^{enc}[2] \boxplus (t_i[2] \oplus RK_i^{enc}[3]), 5)

6 | t_{i+1}[2] \leftarrow RotR(t_i[2] \oplus RK_i^{enc}[4] \boxplus (t_i[3] \oplus RK_i^{enc}[5]), 3)

7 | t_{i+1}[3] \leftarrow tmp

8 end

9 return dst \leftarrow t_{N_r}
```


6 CHAPTER 1. HIGHT

1.5 Decryption of LEA-128

Algorithm 5: Encryption of LEA-128

```
Input: block src = src[0] || src[1] || src[2] || src[3] \in \{0, 1\}^{128=32*4} and \{RK_i^{enc}\}_{i=0}^{N_r-1=23}

Output: block dst = dsc[0] || dsc[1] || dsc[2] || dsc[3] \in \{0, 1\}^{128=32*4}

1 t_0 = t[0] || t[1] || t[2] || t[3] \leftarrow src

2 for i = 0 to 23 do

3 | tmp \leftarrow t[0]

4 | t_{i+1}[0] \leftarrow RotL(t_i[0] \oplus RK_i^{enc}[0] \boxplus (t_i[1] \oplus RK_i^{enc}[1]), 9)

5 | t_{i+1}[1] \leftarrow RotR(t_i[1] \oplus RK_i^{enc}[2] \boxplus (t_i[2] \oplus RK_i^{enc}[3]), 5)

6 | t_{i+1}[2] \leftarrow RotR(t_i[2] \oplus RK_i^{enc}[4] \boxplus (t_i[3] \oplus RK_i^{enc}[5]), 3)

7 | t_{i+1}[3] \leftarrow tmp

8 end

9 return dst \leftarrow t_{N_r}
```

Algorithm 6: Decryption of LEA-128

```
Input: block src \in \{0, 1\}^{128=8*16}, decryption round-keys \{RK_i^{dec}\}_{i=0}^{N_r-1=23}

Output: block dst \in \{0, 1\}^{128=8*16}

1 t_0 \leftarrow src

2 for i = 0 to N_r - 1 do

3 | t_{i+1}[0] \leftarrow t_i[3]

4 | t_{i+1}[1] \leftarrow (RotR(t_i[0], 9) \boxminus (t_{i+1}[0] \oplus RK_i^{dec}[0])) \oplus RK_i^{dec}[1]

5 | t_{i+1}[2] \leftarrow (RotL(t_i[1], 5) \boxminus (t_{i+1}[1] \oplus RK_i^{dec}[2])) \oplus RK_i^{dec}[3]

6 | t_{i+1}[3] \leftarrow (RotL(t_i[2], 3) \boxminus (t_{i+1}[2] \oplus RK_i^{dec}[4])) \oplus RK_i^{dec}[5]

7 end

8 return dst \leftarrow t_{N_r}
```

Appendix A Additional Data A

A.1 Substitution-BOX