

Definition 1. A [prime power] is a prime or an integer power of a prime.

§

Example 1. Examples of prime powers are,

$$2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, \dots$$

Definition 2. Let the alphabet be \mathbf{F}_q , in other words a Galois field $GF(q)$, where q is a prime power, and let the vector space $V(n, q)$ be $(\mathbf{F}_q)^n$. Then a *linear code* over $GF(q)$, for some positive integer n , is a subspace of $V(n, q)$.

Theorem 1. A subset C of $V(n, q)$ is a linear code if and only if,

- a. $\mathbf{u} + \mathbf{v} \in C$ for all \mathbf{u} and \mathbf{v} in C
- b. $a\mathbf{u} \in C$ for all $\mathbf{u} \in C$ and $a \in GF(q)$

Proof. The proof follows from Definition 2 since, if C is a field, it must be closed under addition and multiplication. \blacksquare

Example 2. A binary code is linear if and only if the sum of any two code words is a code word.

Definition 3. A *vector space* V is a set which is closed under finite vector addition and scalar multiplication. If the scalars are members of a field F , then V is called a vector space under F . Furthermore, V is a vector space under F if and only if for all members of V and F the following properties hold under addition,

- a. commutativity
- b. associativity
- c. existence of an identity
- d. existence of an inverse

while under multiplication the following,

- e. associativity under scalar multiplication
- f. distributivity of scalar sum
- g. distributivity of vector sum
- h. existence of a scalar multiplication identity

In other words, for all \mathbf{x} , \mathbf{y} and \mathbf{z} in V and all p and q in F ,

- a. $\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$
- b. $(\mathbf{x} + \mathbf{y}) + \mathbf{z} = \mathbf{x} + (\mathbf{y} + \mathbf{z})$
- c. $\mathbf{0} + \mathbf{x} = \mathbf{x} + \mathbf{0} = \mathbf{x}$
- d. $\mathbf{x} + (-\mathbf{x}) = \mathbf{0}$
- e. $r(s\mathbf{x}) = (rs)\mathbf{x}$
- f. $(r + s)\mathbf{x} = r\mathbf{x} + s\mathbf{x}$
- g. $r(\mathbf{x} + \mathbf{y}) = r\mathbf{x} + r\mathbf{y}$
- h. $1\mathbf{x} = \mathbf{x}$

Example 3. Let q be a prime power, and let $GF(q)$ denote a finite field over q elements. Then, by *vector space over finite field* we mean a set $GF(q)^n$ of all ordered n -tuples over $GF(q)$, which is closed under finite vector addition and multiplication, that is to say, multiplication by some scalar a in $GF(q)$.

Theorem 2. A non-empty subset C of $V(n, q)$ is a subspace if and only if C is closed under addition and scalar multiplication. In other words

Proof. What Theorem 2 states amounts to saying that a non-empty C in $V(n, q)$ is a subspace if and only if,

- a. $\mathbf{x}, \mathbf{y} \in C$ implies $\mathbf{x} + \mathbf{y} \in C$
- b. if $a \in GF(q)$ and $\mathbf{x} \in C$, then $a\mathbf{x} \in C$

All properties to be met in Definition 3 are the same for C as for $V(n, q)$ itself, provided that C is closed under addition and scalar multiplication. Therefore statements (a) and (b) are necessary for C to be a subspace. They are also sufficient since C is already a subset of $V(n, q)$. \P

Definition 4. A *linear combination* of r vectors $\mathbf{v}_1, \dots, \mathbf{v}_r$ in $V(n, q)$ is any vector of the form $\sum_{i=1}^r a_i \mathbf{v}_i$, where a_i are scalars. Let A be a set of vectors $\{\mathbf{v}_1, \dots, \mathbf{v}_r\}$. Then A is said to be *linearly dependent* if there exist scalars a_1, \dots, a_r not all of which are zero, such that

$$\sum_{i=1}^r a_i \mathbf{v}_i = \mathbf{0}$$

And A is *linearly independent* if it is not linearly dependent, that is to say, if

$$\sum_{i=1}^r a_i \mathbf{v}_i = \mathbf{0}$$

implies a_i are all zero for $i = 1, \dots, r$.

Definition 5. Let C be a subspace of a vector space $V(n, q)$ over $GF(q)$. Then a subset $\{\mathbf{v}_1, \dots, \mathbf{v}_r\}$ of C is called a *generating*- or *spanning set* of C if every vector in C can be expressed as a linear combination of $\mathbf{v}_1, \dots, \mathbf{v}_r$.

A *basis* of C is a generating set of the same which is also linearly independent.

Definition 6. For a q -ary (n, m, d) -code C , the *relative minimum distance* of C is defined to be

$$\delta(C) = \frac{d - 1}{n}$$

Definition 7. Let a code alphabe A be of size $q > 1$, n the size of each word, d the minimum distance, and $A_q(n, d)$ the largest possible vocabulary size m such that there exists an (n, m, d) -code over A . Then any (n, m, d) -code C which has $m = A_q(n, d)$ is called an *optimal code*.

The *main coding theory problem* is precisely to find the value of $A_q(n, d)$.

Definition 8. Consider each word as an n -tuple. Then all such tuples lying within Hamming distance r of an n -tuple x are said to be within a *Hamming sphere* of radius r around x .

Theorem 3. Let the size of the alphabet be $q = |A|$, the size of a word be n , and the Hamming- or minimum distance be d . Then the Hamming- or sphere-packing bound on the size m of a code dictionary C is given by,

$$m \leq \frac{q^n}{\sum_{i=0}^{r'} (q-1)^i \binom{n}{i}}$$

where

$$r' = \left\lfloor \frac{d-1}{2} \right\rfloor$$

Proof. Let c be a code word. Let $e(x, y)$ be the number of places which are different between two words x and y . Since there are $q - 1$ possibilities for each differing position between any two words, there are $(q - 1)^i$ possible errors when i places are different. And to position these i places there are altogether $\binom{n}{i}$ ways. Therefore the number of all words w_i such that $e(w_i, c) \leq r$ is the number n_r of n -tuples in a Hamming sphere of radius r around c , and is,

$$n_r = \sum_{i=0}^r (q - 1)^i \binom{n}{i}$$

Then the lower bound for our code is $d(C) > 2r$, that is to say, $d(C) \geq 2r + 1$. In other words, Hamming spheres of radius r around the m code words of C are mutually nonintersecting. There are a total of q^n possible n -tuples, that is words of length n , not all of which are code words. In other words, $m < q^n$. And since there are n_r of these n -tuples within each sphere, the the number of the all the n -tuples contained within the space of all these n -tuples over the alphabet A is $n_r m$. Hence,

$$m \sum_{i=0}^r (q-1)^i \binom{n}{i} \leq q^n$$

and thus this theorem. ¶

Definition 9. Codes which satisfies the Hamming bound are called *perfect codes*.

Problem 1. Let r and n be integers such that $0 < r < \frac{n}{2}$, then prove that,

$$\left[8n \left(\frac{r}{n}\right) \left(1 - \frac{r}{n}\right)\right]^{-\frac{1}{2}} 2^{nH\left(\frac{r}{n}, 1 - \frac{r}{n}\right)} \leq \sum_{i=0}^r \binom{n}{i} \leq 2^{nH\left(\frac{r}{n}, 1 - \frac{r}{n}\right)}$$

where $H(x, y)$ is the entropy function the arguments x and y of which are probabilities and $H(\cdot, \cdot)$ has the unit of bits per symbol. (Hint: Stirling's approximation to $n!$, cf MacWilliams and Sloane, 1977)

Note 1. Let $C(n, d)$ be a code with words of length n and minimum distance between words d . Let $m_{n,d}$ be the number of code words in $C(n, d)$. Then the size of the largest dictionary of n -tuples with fractional minimum distance d_f is,

$$m_m(n, d_f) = \max_{\left\{C(n,d) : \left(\frac{d}{n}\right) \geq d_f\right\}} |C(n, d)|$$

Problem 2. From Note 1, show that for n fixed, $m_m(n, d_f)$ is a monotonous nonincreasing function of d_f . Then show that with d_f fixed, $m_m(n, d_f)$ increases exponentially with n .

Definition 10. The *asymptotic transmission rate* is defined to be,

$$R(d_f) \lim_{n \rightarrow \infty} \frac{1}{n} \log m_m(n, d_f)$$

Also defined are the upper- and the lower bounds on this rate,

$$\bar{R}(d_f) = \limsup_{n \rightarrow \infty} \frac{1}{n} \log m_m(n, d_f)$$

and

$$\underline{R}(d_f) = \liminf_{n \rightarrow \infty} \frac{1}{n} \log m_m(n, d_f)$$

Note 2. For large n , show that $\underline{R}(d_f) < R(d_f) < \bar{R}(d_f)$.

Example 4. Using the results from Problem 1 we obtain the Hamming bound for the binary code,

$$m \leq \left(8n\left(\frac{r}{n}\right)\left(1 - \frac{r}{n}\right)\right)^{\frac{1}{2}} 2^{n\left(1-H\left(\frac{r}{n}, 1-\frac{r}{n}\right)\right)} \quad (1)$$

where

$$r = \left\lfloor \frac{d-1}{2} \right\rfloor$$

Equation 1 must hold for all binary dictionaries, therefore it gives an upper bound on the maximum dictionary size $m_m(n, d_f)$ over all dictionaries whose word length is n and fractional distance,

$$d_f = \frac{d}{n} = \frac{2r + \left\{ \frac{1}{2} \right\}}{n}$$

where the choice of 1 or 2 depends on whether d is odd or respectively even. For large n ,

$$m_m(n, d_f) \leq \left(9n \left(\frac{d_f}{2} \right) \left(1 - \frac{d_f}{2} \right) \right)^{\frac{1}{2}} 2^{n \left(1 - H \left(\frac{d_f}{2}, 1 - \frac{d_f}{2} \right) \right)}$$

The upper bound for the attainable information rate is,

$$\begin{aligned}\bar{R}(d_f) &= \limsup_{n \rightarrow \infty} \frac{1}{n} \log_2 m_m(n, d_f) \\ &\leq \lim_{n \rightarrow \infty} \left\{ \frac{1}{2} \frac{\log_2 n}{n} + \frac{1}{2n} \log_2 \left(\frac{9d_f}{2} \left(1 - \frac{d_f}{2} \right) \right) \right\} + 1 - H \left(\frac{d_f}{2}, 1 - \frac{d_f}{2} \right)\end{aligned}$$

As n approaches infinity,

$$\bar{R}(d_f) \leq 1 - H \left(\frac{d_f}{2}, 1 - \frac{d_f}{2} \right)$$

Theorem 4. Let $d(c_i, c_j)$ be the Hamming distance between the code words c_i and c_j . Let $d(C)$ be the minimum distance between code words, and \bar{d} the average distance between words. If,

$$\frac{d}{n} > \frac{q-1}{q}$$

then the *Plotkin's bound*,

$$m_{n,d} \leq \frac{\frac{d}{n}}{\frac{d}{n} - \frac{q-1}{q}}$$

The average distance gives an upper bound for the minimum distance, that is $d \leq \bar{d}$, where

$$\begin{aligned}\bar{d} &= \frac{\sum_{i=2}^m \sum_{j=1}^{i-1} d(c_i, c_j)}{\sum_{i=2}^m \sum_{j=1}^{i-1} 1} \\ &= \left(\frac{m(m-1)}{2} \right)^{-1} \sum_{i=2}^m \sum_{j=1}^{i-1} d(c_i, c_j)\end{aligned}$$

Since the Plotkin's bound is an upper bound on d , we need to maximise,

$$\begin{aligned}\sum_{i>j} \sum d(c_i, c_j) &= \sum_{i>j} \sum_{k=1}^n d(c_{ik}, c_{jk}) \\ &= \sum_{k=1}^n \sum_{i>j} d(c_{ik}, c_{jk})\end{aligned}$$

This implies (*cf* Plotkin, 1960),

$$\sum_{i>j} \sum d(c_i, c_j) \leq \sum_{k=1}^n \max_{\{c_{ik}, i=1, \dots, m\}} \left\{ \sum_{i>j} \sum d(c_{ik}, c_{jk}) \right\}$$

which says that the upper bound is maximised by choosing a maximising c_{ik} from the alphabet A . However this is,

$$\max_{c_{ik}, i=1, \dots, m} \sum_{i>j} \sum d(c_{ik}, c_{jk}) \leq \left(\frac{m}{n}\right)^2 \frac{n(n-1)}{2}$$

Providing that,

$$\frac{d}{n} > \frac{n-1}{n}$$

then

$$d \leq n \left(\frac{m}{m-1} \right) \left(\frac{n-1}{n} \right)$$

¶

Note 3. Notice how,

$$\sum_{i=1}^{m-1} \sum_{j=i+1}^m (\cdot) = \sum_{i=2}^m \sum_{j=1}^{i-1} (\cdot)$$

Equivalently to this are,

$$\sum_{i < j} \sum (\cdot) \quad \text{and} \quad \sum_{i > j} \sum (\cdot)$$

Note 4. If,

$$d_f > \frac{q-1}{q}$$

then,

$$m_m(n, d_f) \leq \frac{d_f}{d_f - \left(\frac{q-1}{q}\right)}$$

and then,

$$\bar{R}(d_f) = \limsup_{n \rightarrow \infty} \frac{1}{n} \log m_m(n, d_f) = 0$$

On the other hand if,

$$d_f \leq \frac{q-1}{q}$$

then from,

$$m(n, d) = \sum_{a \in A} m_a(n, d)$$

where $m(n, d) = |C(n, d)|$, $C(n, d)$ being any code consisting of n -tuples whose minimum distance is at least d , and $m_x(n, d) = |C_x(n, d)|$, $C_x(n, d)$ comprising all n -tuples in $C(n, d)$ which begin with the symbol x . Hence,

$$\begin{aligned} m(n, d) &\leq qm_x(n, d) \\ &= qm(n-1, d) \\ &\vdots \\ &= q^{n-k}m(k, d) \end{aligned}$$

Provided k is small enough, we may yet use the Plotkin's bound, hence

$$m(n, d) \leq \frac{q^{n-k} \binom{d}{k}}{\binom{d}{k} - \binom{q-1}{q}}$$

when

$$\frac{d}{k} > \frac{q-1}{q}$$

Choose k the largest integer satisfying

$$\frac{d}{k} - \frac{1}{qk} \geq \frac{q-1}{q}$$

Then,

$$k + r = \frac{qd - 1}{q - 1}$$

where $0 \leq r < 1$. And then,

$$\frac{m(n, d) \leq q^{n - (\frac{qd-1}{q-1})}r + 1d}{(q - 1)r + 1}$$

Finally,

$$m(n, d) \leq q^{n - (\frac{qd-1}{q-1})}d$$

and, if d_f is fixed and n become large,

$$\bar{R}(d_f) \leq \log q \left(1 - \frac{q}{q - 1} d_f \right)$$

Problem 3. Prove that,

$$q^r ((q - 1)r + 1)^{-1} \leq 1$$

for $0 \leq r \leq 1$

Proposition 1. Let C be a code containing binary n -tuples, $m_d(x)$ the number of code words within distance d of an n -tuple x . Further, let A be a new code whose code words are the difference vectors a_1, \dots, a_{m_d} such that $a_i = c_i \ominus x$, $i = 1, \dots, m_d$, where \ominus denotes modulo subtraction of the vectors, element by element. Assume that $d < \frac{n}{2}$ and both d and m are large enough such that $m_d(x) \geq 2$. Then,

$$\frac{d_c}{n} \leq \frac{2d}{n} \left(1 - \frac{d}{n}\right) \frac{m_a}{m_a - 1} \quad (2)$$

where

$$m_a \geq \left\lceil 2^{-n} m \sum_{i=0}^d \binom{n}{i} \right\rceil$$

Proof. Since C is a code of binary n -tuples, there are

$$\sum_{i=0}^d \binom{n}{i}$$

n -tuples within distance d of each code word. This gives the total of

$$m \sum_{i=0}^d \binom{n}{i}$$

n -tuples in the Hamming sphere around the m code words.

There are $m_d(x)$ code words within the distance d of any n -tuple x . For x in X^n , c in C and $d(x, c) \leq d$, the number of pairs (x, c) can be counted by picking up first x and then c , hence

$$\sum_{x \in X^n} m_d(x) = m \sum_{i=0}^d \binom{n}{i}$$

Since X^n contains 2^n of n -tuples, consequently there exists some value of x such that,

$$m_d(x) \geq \left\lceil 2^{-n} m \sum_{i=0}^d \binom{n}{i} \right\rceil$$

Let c_1, \dots, c_{m_d} be code words in C that lie within Hamming distance d of the n -tuple x . Consider the difference vector a_1, \dots, a_{m_d} such that $a_i = c_i \ominus x$. Then A is a set of localised code words of C . Then,

$$a_i \ominus a_j = (c_i \ominus x) \ominus (c_j \ominus x) = c_i \ominus c_j$$

and we have,

$$d(c_i, c_j) = d(a_i, a_j)$$

Thus,

$$m_a \geq m_d(x) \geq \left\lceil 2^{-n} m \sum_{i=0}^d \binom{n}{i} \right\rceil$$

Also, $d_a \geq d_c$ and $w(a_i) \leq d$ for all n -tuple a_i in A , where the Hamming weight $w(a_i)$ is the number of nonzero elements in a_i .

Next, applying the average-distance Plotkin bound to the localised code A one obtains,

$$d_c \leq d_a \leq \bar{d}_a = \left(\frac{m_a(m_a - 1)}{2} \right)^{-1} \sum_{i>j} \sum d(a_i, a_j) \quad (3)$$

We maximise RHS of Equation 3 to get rid of the dependence on A . We enlarge our restriction on $w(a_i)$ above to the set of all possible a_i in A , thus,

$$\sum_{a_i \in A} w(a_i) \leq m_a d \quad (4)$$

Then, let z_k be the number of code words in A having a 0 in the k^{th} position. We maximise,

$$\sum_{i>j} \sum d(a_i, a_j) = \sum_{k=1}^n (m_a - z^k) \quad (5)$$

subject to the constraint of Equation 4 that,

$$\sum_{k=1}^n (m_a - z_k) \leq m_a d \quad (6)$$

By setting,

$$z_k = \frac{m_a d}{n} \quad (7)$$

we maximise RHS of Equation 5 under the constraint in Equation 6. From Equation's 3, 5 and 7 we obtain Equation 2. ¶

Algorithm 1 *Gilbert bound, a lower bound to m for n , d and q .*

```
 $S^n \leftarrow X^n$ 
for all  $c_i$  in  $S^n$  do
    for all  $n$ -tuples  $c_j$  within  $d - 1$  distance of  $C$  do
        remove  $c_j$ 
    endfor
endfor
```

Note 5. For the Gilbert bound algorithm, Algorithm 1, initially $|S|^n = |X|^n$. For each c_i chosen, at most

$$\sum_{i=0}^{d-1} (q-1)^i \binom{n}{i}$$

n -tuples are removed. If

$$(m-1) \sum_{i=0}^{d-1} (q-1)^i \binom{n}{i} < q^n$$

then the algorithm will not stop after $m-1$ code-word selections.