OMCA GEOMETRICA

L'office geometrice descrive la propagatione della lucre sulla base di kygi empirione

- 1) Iz luce a propaga m linea retta in un metto continuo
- 2) LEGGE DI CARTESIO: PENCOENRA = URIFIESSIONE L. niflessione su una superficie liscia
- 3) LEGGE DI SNELL: MI SIM OI = MT SIMOT angoli colcolet vispetto

Raggio incidente. niflesso e trasmesso sono complanari

Tutte le relazioni dell'ottice geometrice sono compatibili con teoria C.E.M. La valide fimo a che la metura ombulatoria mon si manifesta

Delle relation di fase tra i campi all'interfaccia dei metti si ottengono k leggi

- RIFRAZIONE

Congisione confirmité all'interfaccia

Descrivions cempi come un'onde piana:

(incidente e viflesso)

Conditione confirmità impone Fi=Fi Yt e i lingo interfaccia

 $rac{1}{2} = \frac{1}{2} \left(\frac{1}{2} - \frac$

● Conditione in (0,0,0)

Allora Wat = Wat -> per essere verificata Yt => Wa = Wa

STESSA FREQUENZA NEI DUR MEZZI

• Conditione t=0 For e-ik=+ For e-ik-r = For e-ik-r

per essene unihoota \(\(\times \) (\(\times \) (\(\times \) (\(\times \)) => e-ik== e-ikr-r = e-ikr-r

Quindi -> KI. V = - KR. V = KT. T

(0= b) x esse obum -- hudo see à (x =0)

(KI)y y = - (KR)y · y = (KT)y y

Scette assi è avoltrania -> scelgo x.z mel prano di incidenta del reggio

In queste potesi

(KI)y=0 => (K?)y=(KR)==0

Anche Krc KT gizcciono nello stesso piano Xiz perchè sono complanari

* (KI)x = (KR)x => | KI SIM DI = | KR SIM DR => OI = DR

Legge DI CARTESIO

* (KI)x = (KT)x <> KI SIM OI = KA SIM OT

h= wm → wmisim DI = wm sin DT → leage Di snell

(EoI+EoR)x=(EoT)x → componente govallela

E1 (EI+EOR) Z = E2 (EOT) Z

· Componente parallela

Simile per ER e ET (altentione segui)

$$\vec{B} = \vec{K} \times \vec{E}$$
 è complet ameute de terminats de lle conoscenze di \vec{E}

$$(\widetilde{E}_{\sigma I} + \widetilde{E}_{\sigma R}) \sim 0$$
 $I = \widehat{E}_{\sigma T} \sim 0$ $I = 0$

E wel bigo of indigensa

Fat: Z Fat 0+B Relazioni Di Frednel
com E nel promo di incidenza

Teor = d-B foi

RELAZIONI DI FRESMEL con È nel piamo 1 al pravo di incidenza

FOT = 2 FOT 1+AB

EOR: 1-07 FOI 1+07

Se $\theta_{I} = 0 = 1 \cos \theta_{I} = 1 \rightarrow \text{ Per SNRU} : \cos \theta_{I} = 4 = 1 \cos \theta_{I} = 1$

Se d-B<0 0 => on de inflesso è sfolsato di 180° inspetto onde incidente

COEFFICIENTI DI RIFLESSIONE E TRASMISSIONE

 $R_{\parallel} = \left(\frac{d-B}{d+B}\right)^2$ $R_{\perp} = \left(\frac{1-\alpha B}{1+\alpha B}\right)^2$

T/ = (40] 2 / 2+0/3)2 $T_{\parallel} = \underbrace{4dB}_{(a+B)^2}$

pulzhaternine / al pramo di incidenza -> inche ceso d=B => R/1=0

Non c'è nflessione, tutto l'onde è trasmessa

Mel pieuro L al giano di moidente

ANGOW DI BRENSTER to BE = B

COSPA B

$$\beta^{2}(1-\beta^{2}) = (1-\beta^{2})(1+\beta^{2}) \sin^{2}\theta = \sum_{j=1}^{2} \cos^{2}\theta = \frac{1}{2+\beta^{2}}$$

$$t_3^2 \theta_0 = \underline{sm^2 \theta_B} = \beta^2 \implies t_3 \theta_0 = \beta$$

AMGOLO LIMITE E RIFLESSIONE TOTALE

M4>M2

$$M_a \sin \theta_T = M_2 \sin \theta_T$$
 $\theta_{T-T} = M_4 \sin \theta_L = M_2$

$$2 \qquad \text{angelo limite}$$

ANAUS CAMPI

Allora mohe se mon c'e' ande rifratta deve esistère un compo EM mon mille

rel metto 2

Ji quo divinativame dhe €ot è vapidomente evanescente lungo e mon tresporta onorgia → tutte enorgia viflessione

anausi numero di onda

Relevioni snell -> KI SIM DI = KT SIM OT componente x

Se $\theta > \theta_L \Rightarrow de toiono estendene l'anabisi alla rappresentatione complesa <math>KT^2 = (KT)_X^2 + (KT)_Z^2 \longrightarrow \frac{W^2}{C^2} M_Z^2 = \frac{W^2}{C^2} M_A^2 SIM^2 \theta_I + (KT)_Z^2$

 $\left(\frac{|K_1|_2^2}{|K_2|_2^2} + \frac{|W_2|_2^2}{|W_2|_2^2} \right) = \frac{|W_2|_2^2}{|W_2|_2^2} = \frac{|W_2|_2$

Per OI COL => Kz è rezk -> KT = Kx ûx + Kzûz vettore d'ande per il trasports dell'anda infratta

Per UI = OL => Kz = 0 -> anda viagna all'interfaccia

Per OI > OL => Kz Immzylnznio puro Kz² < O Kr. F = Kx X + i Kz. Z

CAMPO: ÊT = For e example societée

Lings x

Inoftre $\tilde{B} = \frac{\tilde{K} \times \tilde{E}}{\tilde{K} \times \tilde{E}}$ è stalsato d. 90° E & coslwt)
B & sm(wt)

Media sul periodo des vettore d'Birting e milla => voncé, trasporto energio

ESEMPIO FORMAZIONI DI MMAGINI

Superfic se zoni di commiche (paraboloidi) -> specchi e leuti

Approssime zione sferice (simmetria) e pavallasse (d piccolo rispetto 2500 ottico)

Approximazione parallasse

To med on the ong

$$\beta = \frac{B}{5n} \quad \text{an} \quad \frac{b}{5n} \quad \frac{d}{5n}$$

Releasione angoli
$$\rightarrow$$
 $9+3=0=8+8=8=8-8$

Ma simble = me simble
$$\longrightarrow$$
 per panallosse Me be γ mo be Quindi Me (α + β) = Me (β - γ) \rightarrow Me α + Me γ = (α - γ - γ - γ) β

$$\frac{M_2}{P} + \frac{M_2}{R} = \frac{M_2}{Q} - \frac{M_1}{Q} = \frac{M_2}{Q} + \frac{M_2}{Q} = \frac{M_2 - M_2}{R}$$
Ly parteure delle lente

Potere della coute -

• milo per M2=M1 • milo per R=00 -> superficie pionz, no rifrezione

Lente
$$\rightarrow$$
 combine nione d' due d'othin
 $M=1$

$$R_1 \quad M=1$$

$$\frac{1}{p} + \frac{1}{9} = \lfloor M_2 - 1 \rfloor$$

$$M_2 \quad M_3 \quad M_4$$

$$\frac{1}{p} + \frac{1}{q} = (M_2 - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

= P -> potere foce lizzante

OTICA ONDULATORIA.

Formelerione di un metodo di colcolo ottice ondeletoria

-> Fronti d'ondo determinate de souvappositione li onde steriche di sovgenti puntiformi distribuite con continuita nel mezzo

DIFFRATIONE CON INVIWPPO

la descritione onculetoria funciona perchè l'ottice fisice ammette solutioni andibetoria di eq. limeoni

Base dell'innihoppo di Hoygens

Interferenza tra due sorgenti

$$\langle I \rangle = E \pi \langle E^2 | \vec{v}_1 \vec{t} \rangle = E \pi \langle E_1^2 + E_2^2 + 2\vec{E}_1 \vec{E}_2 \rangle =$$

$$= E \pi \langle E_1^2 \rangle + E \pi \langle E_2^2 \rangle + 2 E \pi \langle \vec{E}_1 \vec{E}_2 \rangle I_{12} : interferenta$$

Termine intenference - 2EV (E, E2> cosa La mox que EillE2: stessa pobonitatione Nella protico difficile avera interferenza per di mon piccoli. => condisione interferentes: stesse poloniatorione nel punto di interferenta Quindi -> considero solo motors scolere Is= 2815 (E. E2) Ej = Eoj e j=1,2 Ej=Re [Êj] -> compo reale osservable Øj = wjt - kj. Fj + 4j Fase $\Delta \phi = \psi_1 - \psi_2 = \begin{cases} 0 & \rightarrow \text{max sorvations} \\ \text{TT (multiple)} \rightarrow \text{si elidorna} \end{cases}$ En di = Wit - Ki · Vi Per aven souvepposizione osservatile nel tempo, la fase releture mon deve combine vapidemente allora: Who Wb -> stesse frequents controle Se mi + mx => megis e, nolls Pongo WI=WZ=W E. E2 = E01 005 (Ki. Ki - wt + 41) E02 cos (KzVz - wt + 42) = For For [cos(wt) cos (Ki. K+ Pi) + sim(wt) sim (Ki Vi + Pi)]. · [cos(wt) cos (Kz· r2 + 42) + sim(wt) sim (Kz· r2+42)] Suluppo mel produtto e colorlo media temporale

< E, E2> = 1 E0, E02 [cos(K, K, +4) cos(K2V2+42) + sim(K, K, +4) sim(K, K+4)]

$$\langle E_1 E_2 \rangle = 1 E_0 E_0 \cos(\vec{k}_1 \vec{v}_1 + \vec{q}_1 - \vec{k}_2 \cdot \vec{v}_2 - \vec{q}_2)$$

$$5 = \phi_2 - \phi_1$$

Differents di Fase

commino ottico

Poiche
$$T_j = \epsilon n \langle t_j^2 \rangle = \frac{1}{2} \epsilon n E_{0j}^2 \Rightarrow \sqrt{T_j} = \frac{1}{\sqrt{2}} \sqrt{\epsilon n} E_{0j}$$

Possimo rischiven le relevioni di Interferza tro die rorgent come

• COERENZA TEMPORALE → stessa fase miriale (impossibile con de suyent d'iense)

$$T = 2T_1(4+\cos\delta) \Rightarrow T = 4T\cos^2\frac{\delta}{2}$$

contioni per il wox: $\frac{5}{2} = hT$

conditioni minimi:
$$\frac{S}{2} = \frac{\pi}{2} + h\pi = \pi \left(\frac{M + \frac{1}{2}}{2} \right)$$
in unz conditione sulla differente di commino office

la conditione si traduce

differente di commino o

A meno di un segmo -> S= kir. - Kzrz = W (Mik. - N21/2)

Per troisere ve la rioni precedenti si usa:

Ki= W = W mi = 2II mi = 2II

Condinione interference:

- $max \rightarrow \delta = 2\pi m \Rightarrow (m_1 k_1 m_2 k_2) = m \lambda$
- min $\rightarrow \delta = (2m+1) \pi \Rightarrow (m_1 \kappa n_2 \kappa) = (m+1) \pi$

CONDIZIONI INTERFERENZA

- 1) Stessa polevizzazione
- 2) stessa frequenta centrale
- 3) Coevenza temporale: QV = cost lindipendente del tempo)
- Se D4 dipandesse dat temps no immègne d'interferenta persistente
- 4) Coevente speniale -> solle dimensione del fionte che interferis ce

Queste condinioni si venificeno con:

- a) Separatori di funte d'onda
- 6) Separatori di ampiezza