

Práticas no. 3 Expansão em Séries de Taylor e Fourier

Etapa 1. Série de Taylor

(a) Lembrando que a expansão da função $f(t) = \sin(t)$ em série de Taylor em torno de t = 0 (série de Maclaurin) é dada por:

 $f(t) = \sin(t) = t - \frac{1}{3!}t^3 + \frac{1}{5!}t^5 - \frac{1}{7!}t^7 + \dots,$

obtenha aproximações $\hat{f}(t)$ usando 1, 2, 3 e 4 termos da série e apresente em uma figura usando comando subplot em estrutura 2×2 . Em cada figura, apresente também a função f(t) e coloque rótulos nos eixos e título. Utilize tempo na faixa $-\pi$ até π com intervalos de 0,01 segundos. Ajuste os eixos adequadamente usando a função axis.

(b) Refaça os gráficos anteriores com a expansão de Taylor em volta de $t=\pi/2$. Para encontrar a expansão, utilize a função taylortool configurada para $-\pi/2 \le t \le 3\pi/2$, $a=\pi/2$ e N=7.

Etapa 2. Série de Fourier

Considere o sinal periódico x(t) dado pela equação abaixo:

$$x(t) = \begin{cases} t/A, & 0 \le t < A \\ 1, & A \le t < \pi \\ 0, & \pi \le t < 2\pi \\ x(t+2\pi), & \text{caso contrário} \end{cases}$$

Quando $A \to 0$, x(t) aproxima uma onda quadrada, já quando $A \to \pi$, x(t) aproxima uma onda dente de serra. A Figura 1 apresenta x(t) para $A = \pi/2$.

Figura 1: Sinal periódico x(t) para $A = \pi/2$.

Como o período de x(t) é $T_0=2\pi$ s, tem-se:

$$\omega_0 = \frac{2\pi}{T_0} = 1 \text{ rad/s}.$$

Assim, a expansão por série de Fourier de x(t) é dada por:

$$x(t) = c_0 + \sum_{k=1}^{\infty} c_k e^{jkt} + c_{-k} e^{-jkt},$$

como x(t) é real, $c_{-k} = c_k^*$.

Os coeficientes c_k são dados por:

$$c_k = \begin{cases} \frac{2\pi - A}{4\pi}, & k = 0\\ \\ \frac{1}{2\pi k} \left(\frac{e^{-jkA} - 1}{kA} + je^{-jk\pi} \right), & \text{caso contrário} \end{cases}$$

- (a) Utilizando a função $sinal_x.m$, disponível no Moodle, crie x(t) para $-1 \le t \le 9$ s e $A = \pi/2$, com passo de 1 ms. Apresente o sinal em uma figura com rótulos e título. Usando a função fourierS.m, também disponível no Moodle, obtenha a expansão em série de Fourier com k máximo igual a 20 e apresente a aproximação de $\hat{x}(t)$ sobreposta no gráfico anterior. Obtenha o máximo sobressinal (overshoot) com a função max.
- (b) Obtenha uma nova aproximação usando k máximo de 100 e apresente o módulo do espectro de Fourier dos coeficientes c_k , também obtidos com a função fourierS.m.

Relatório

- Apresente os códigos, resultados e gráficos dos exercícios em um arquivo PDF (pode-se usar o comando publish do MATLAB/Octave) e entregue pelo Moodle.
- A data de entrega é quinta-feira, 21/setembro, até às 23:55.