Data Warehousing and Data Mining

De-Normalization Techniques

Splitting Tables

Table_h1

Table_h2

ColA	ColB	ColC	

ColA	ColB	ColC

Horizontal split

2

Splitting Tables: Horizontal splitting...

Breaks a table into multiple tables based upon common column values. Example: Campus specific queries.

GOAL

- Spreading rows for exploiting parallelism.
- Grouping data to avoid unnecessary query load in WHERE clause.

Splitting Tables: Horizontal splitting

ADVANTAGE

- Enhance security of data.
- Organizing tables differently for different queries.
- Graceful degradation of database in case of table damage.

Splitting Tables: Vertical Splitting

- Infrequently accessed columns become extra "baggage" thus degrading performance.
- Very useful for rarely accessed large text columns with large headers.
- Header size is reduced, allowing more rows per block, thus reducing I/O.
- Splitting and distributing into separate files with repeating primary key.
- For an end user, the split appears as a single table through a view.

Performance issues: Vertical Splitting Facts

Example: Consider a 100 byte header for the member table such that 20 bytes provide complete coverage for 90% of the queries.

Split the member table into two parts as follows:

- 1. Frequently accessed portion of table (20 bytes), and
- Infrequently accessed portion of table (80+ bytes).
 Why 80+?

Note that primary key (member_id) must be present in both tables for eliminating the split.

Performance issues: Vertical Splitting Good vs. Bad

Scanning the claim table for most frequently used queries will be 500% faster with vertical splitting

Ironically, for the "infrequently" accessed queries the performance will be inferior as compared to the un-split table because of the join overhead.

Pre-joining ...

- Identify frequent joins and append the tables together in the physical data model.
- Generally used for 1:M such as master-detail.
- Additional space is required as the master information is repeated in the new header table.

Pre-Joining...

Master

Sale_ID Sale_date Sale_person M Sale_ID Tx_ID Item_ID | Item_Qty | Sale_Rs **Detail**

denormalized

normalized

Tx_ID	Sale_ID	Sale_date	Sale_person	Item_ID	Item_Qty	Sale_Rs

Pre-Joining: Typical Scenario

Typical of Market basket query

Join ALWAYS required

Tables could be millions of rows

Squeeze Master into Detail

Repetition of facts. How much?

Adding Redundant Columns...

Table_2

Table_2

ColA	ColC	ColD	 ColZ

ColA	ColC	ColD	 ColZ

Adding Redundant Columns...

Columns can also be moved, instead of making them redundant. Very similar to pre-joining as discussed earlier.

EXAMPLE

Frequent referencing of code in one table and corresponding description in another table.

- A join is required.
- To eliminate the join, a redundant attribute added in the target entity which is functionally <u>independent</u> of the primary key.

Derived Attributes: Example

Age is also a derived attribute, calculated as Current_DateDoB (calculated periodically).

GP (Grade Point) column in the data warehouse data model is included as a derived value. The formula for calculating this field is Grade*Credits.

Derived Attributes: Example

Advantages	Disadvantages
No need to look up source values each time a derivable value is needed	Running data manipulation language (DML) statements against the source data requires recalculation of the derivable data
No need to perform a calculation for every query or report	-

Database denormalization tips

1.Instead of trying to denormalize the whole database right away, focus on particular parts that you want to speed up.

- 2.Do your best to learn the logical design of your application really well to understand what parts of your system are likely to be affected by denormalization.
- 3.Analyze how often data is changed in your application; if data changes too often, maintaining the integrity of your database after denormalization could become a real problem.