No	Kode Lab	Kode Sampel	pH h20 (1:1)	C-Organik	N-Total	P-tersedia	K-dd	Na	Ca	Mg	KTK	Al-dd
140		Roue Samper		g/Kş	2	mg/Kg	g/Kg					
1	123	123	3	3	3	3	3	3	3	3	3	3
2	4436	efreget	5	4	9	7	3	3	1	2	8	9

Kriteria

1. Memberikan nilai setiap alternatif (Ai) pada setiap kriteria (Cj) yang sudah ditentukan

	Alternatii	C 1	C2	C3	C4	C5	C6	C 7	C8	C9	C10	
	A1	1	1	5	1	5	5	2	4	1	1	
	A2	2	1	5	1	5	5	1	3	2	1	
•					Ta	bel. Ra	ting ke	cocokaı	n dari s	etiap al	ternatif pa	ada setiap kriteria

2. Menormalisasi matriks X menjadi matriks R

Diubah ke dalam matriks keputusan X dengan data:

 r_{ij} = Nilai rating kinerja ternormalisasi

$$(\quad \ \ ^{x_{ij}}$$

 $min(x_{ij})$ = Nilai terkecil dari setiap kriteria Benefit = Jika nilai terbesar adalah terbaik

Keterangan:

Cost = Jika nilai terkecil adalah terbaik a. Untuk Kemasaman tanah (pH tanah) termasuk kedalam atribut keuntungan (benefit)

 $x_{ij}^{\dagger}= ext{Nilai}$ atribut yang dimiliki dari setiap kriteria $max(x_{ij})$ = Nilai terbesar dari setiap kriteria

 $r_{21} = \frac{5}{max\{3,5\}} = \frac{5}{5} = 1.00$

b. Untuk Karbon organik tanah termasuk kedalam atribut keuntungan (benefit)
$$r_{12}=\frac{3}{max\{3,4\}}=\frac{3}{4}=0.75$$

$$r_{22}=\frac{4}{max\{3,4\}}=\frac{4}{4}=1.00$$

 $r_{11} = rac{3}{max\{3,5\}} = rac{3}{5} = 0.60$

 $r_{13} = \frac{3}{max\{3,9\}} = \frac{3}{9} = 0.33$ $r_{23} = \frac{9}{max\{3,9\}} = \frac{9}{9} = 1.00$

c. Untuk Nitrogen total tanah termasuk kedalam atribut keuntungan (benefit)

d. Untuk Fosfor(P) tersedia termasuk kedalam atribut keuntungan (benefit)
$$r_{14}=\frac{3}{max\{3,7\}}=\frac{3}{7}=0.43$$

$$r_{24}=\frac{7}{max\{3,7\}}=\frac{7}{7}=1.00$$

 $r_{15} = \frac{3}{max\{3,3\}} = \frac{3}{3} = 1.00$

e. Untuk Kalium dapat dipertukarkan termasuk kedalam atribut keuntungan (benefit)

f. Untuk Natrium(Na) dapat dipertukarkan termasuk kedalam atribut keuntungan (benefit)
$$r_{16}=\frac{3}{max\{3,3\}}=\frac{3}{3}=1.00$$

$$r_{26}=\frac{3}{max\{3,3\}}=\frac{3}{3}=1.00$$

 $r_{17} = \frac{3}{max\{3,1\}} = \frac{3}{3} = 1.00$

 $r_{27} = \frac{1}{max\{3,1\}} = \frac{1}{3} = 0.33$

 $r_{18} = \frac{3}{max\{3,2\}} = \frac{3}{3} = 1.00$

 $r_{28} = \frac{2}{m_{32} \left(\frac{2}{3}, \frac{2}{3} \right)} = \frac{2}{3} = 0.67$

 $r_{25} = rac{3}{max\{3,3\}} = rac{3}{3} = 1.00$

h. Untuk Magnesium(Mg) dapat dipertukarkan termasuk kedalam atribut keuntungan (benefit)

i. Untuk KTK termasuk kedalam atribut keuntungan (benefit)

g. Untuk Kalsium(Ca) dapat dipertukarkan termasuk kedalam atribut keuntungan (benefit)

$$r_{19} = rac{3}{max\{3,8\}} = rac{3}{8} = 0.38$$
 $r_{29} = rac{8}{max\{3,8\}} = rac{8}{8} = 1.00$

 $r_{110} = \frac{3}{max\{3,9\}} = \frac{3}{9} = 0.33$

 $r_{210} = rac{9}{max\{3,9\}} = rac{9}{9} = 1.00$

 $R = \left(\begin{array}{ccccccccc} 0.60 & 0.75 & 0.33 & 0.43 & 1.00 & 1.00 & 1.00 & 1.00 & 0.38 & 0.33 \\ 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 0.33 & 0.67 & 1.00 & 1.00 \end{array}\right)$

Bobot

Sangat Tinggi(ST)

j. Untuk Aluminium(Al) dapat dipertukarkan termasuk kedalam atribut keuntungan (benefit)

Tabel 3.14. Tingkat kepentingan masing-masing kriteria

 $W = (5 \ 5 \ 5 \ 4 \ 3 \ 4 \ 5 \ 3 \ 5 \ 3)$

Keterangan:

terbaik.

Matriks R:

3. Memberikan nilai bobot (W)

Kriteria

C1

alternatif terbaik (A_i) sebagai solusi.

 V_i = rangking untuk setiap alternatif W_j = nilai bobot dari setiap kriteria r_{ij} = nilai rating kinerja ternormalisasi

Dari Tabel 3.14 diperoleh vektor bobot (W) dengan data

alternatif terbaik
$$(A_i)$$
 sebagai solusi . Melakukan proses perangkingan dengan menggunakan persamaan sebagai berikut : $V_i = \sum_{j=i}^n W_j r_{ij}$

4. Hasil akhir dari proses perangkingan yaitu penjumlahan dari perkalian matriks ternormalisasi R dengan vektor bobot segingga diperoleh nilai terbesar yang dipilih sebagai

nilai V_i yang lebih besar mengindikasikan bahwa alternatif \mathcal{A}_i lebih terpilih, maka : $\begin{array}{l} V_1 = (5)(0.60) + (5)(0.75) + (5)(0.33) + (4)(0.43) + (3)(1.00) + (4)(1.00) + (5)(1.00) + (3)(1.00) + (5)(0.38) + (3)(0.33) \\ = 3 + 3.75 + 1.65 + 1.72 + 3 + 4 + 5 + 3 + 1.9 + 0.99 = 28.01 \end{array}$

 $\begin{array}{l} V_2 = (5)(1.00) + (5)(1.00) + (5)(1.00) + (4)(1.00) + (4)(1.00) + (3)(1.00) + (4)(1.00) + (5)(0.33) + (3)(0.67) + (5)(1.00) + (3)(1.00) \\ = 5 + 5 + 5 + 4 + 3 + 4 + 1.65 + 2.01 + 5 + 3 = 37.66 \end{array}$

Hasil perangkingan yang diperoleh V_1 = 28.01, V_2 = 37.66, Nilai terbesar ada pada V_2 . Dengan demikian alternatif A_2 adalah alternatif yang terpilih sebagai alternatif