Question 1:-

> summary(crime.pca)

Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6 PC7

Standard deviation 2.4534 1.6739 1.4160 1.07806 0.97893 0.74377 0.56729

Proportion of Variance 0.4013 0.1868 0.1337 0.07748 0.06389 0.03688 0.02145

Cumulative Proportion 0.4013 0.5880 0.7217 0.79920 0.86308 0.89996 0.92142

PC8 PC9 PC10 PC11 PC12 PC13 PC14

Standard deviation 0.55444 0.48493 0.44708 0.41915 0.35804 0.26333 0.2418

Proportion of Variance 0.02049 0.01568 0.01333 0.01171 0.00855 0.00462 0.0039

Cumulative Proportion 0.94191 0.95759 0.97091 0.98263 0.99117 0.99579 0.9997

PC15

Standard deviation 0.06793

Proportion of Variance 0.00031

Cumulative Proportion 1.00000

crime.pca

(Intercept) PC1 PC2 PC3

905.08511 65.21593 -70.08312 25.19408

PC4

69.44603

> t(alphas)

M So Ed Po1 Po2

[1,] -21.27796 10.22309 14.35261 63.45643 64.55797

LF M.F Pop NW

[1,] -14.00535 -24.43757 39.83067 15.43455

Cross validation

Small symbols show cross-validation predicted values

R squared:-

.894

Comparison:- No major change observed between regular Model and PCA. Rsquare is pretty close

```
R- Code:-
```

```
Assignment #1
data <-
read.table("http://www.statsci.org/data/general/uscrime.txt",s
ep="\t", header=TRUE)
head(data)
install.packages("CompGLM")
library(CompGLM)
crime.pca <- prcomp(data[,1:15],scale. = TRUE)
summary(crime.pca)
screeplot(crime.pca,type="lines",col="red")
crime.pca
var=crime.pca$sdev^2
propvar = var/sum(var)
plot(cumsum(propvar))
pcs = crime.pca$x[,1:4]
pccrime <- cbind(pcs,data[,"Crime"])</pre>
crime.model <- Im(V5~.,data=as.data.frame(pccrime))
summary(crime.model)
plot(crime.model$fitted.values,data$Crime)
abline(0,1)
plot(crime.model$fitted.values,scale(crime.model$residuals))
betas <- crime.model$coefficients[2:5]
alphas <- crime.pca$rotation[,1:4]%*%betas
t(alphas)
install.packages("pls")
library(pls)
pcr.fit = pcr(Crime~.,data=data,scale=TRUE)
summary(pcr.fit)
coef(pcr.fit)
```

Question2:-

Summary:-

Regression tree:

tree(formula = Crime ~ ., data = data)

Variables actually used in tree construction:

[1] "Po1" "Pop" "LF" "NW"

Number of terminal nodes: 7

Residual mean deviance: 47390 = 1896000 / 40

Distribution of residuals:

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
-573 900	-98 300	-1 545	0 000	110 600	490 100

> sstot = sum((data\$Crime - mean(data\$Crime))^2)

> r2 = 1 - ssres/sstot

> r2

[1] 0.7244962

> cv.tree(tree.data)

\$size

[1] 7 6 5 4 3 2 1

\$dev

[1] 8123895 8141074 8801881 9161379 9561715 8606786 8159704

\$k

[1] -Inf 117534.9 263412.9 355961.8 731412.1 1019362.7 2497521.7

\$method

[1] "deviance"

attr(,"class")

[1] "prune" "tree.sequence"

```
Assignment 2:-
install.packages("tree")
install.packages("MASS")
library(tree)
library(MASS)
set.seeed(1)
tree.data <- tree(Crime~.,data=data)
summary(tree.data)
plot(tree.data)
text(tree.data)
cv.tree(tree.data)
termnodes = 5
prune.data <- prune.tree(tree.data,best=termnodes)</pre>
predict.crime = predict(tree.data)
ssres = sum((predict.crime-data$Crime)^2)
plot(data$Crime,predict.crime)
abline(0,1)
plot(data$Crime,scale(predict.crime-data$Crime))
abline(0,0)
sstot = sum((data$Crime - mean(data$Crime))^2)
r2 = 1 - ssres/sstot
r2
```

2.2 :- Random Forest

> importance(rf.data)

	%IncMSE	IncNodePurity
M	0.5949712	200681.22
So	2.6383397	27528.66
Ed	4.3375837	245793.97
Po1	11.8143933	1218574.59
Po2	10.4978019	1100955.83
LF	3.6223058	275606.54
M.F	1.0122219	317880.44
Pop	0.8249897	408418.62
NW	7.7919759	482281.81
U1	1.3302065	146537.98
U2	2.1698443	170303.91
Wealth	3.7358676	574134.71
Ineq	1.7090580	241945.33
Prob	8.2873199	749370.61
Time	2.3432048	218148.78

rf.data


```
Random Forest:-
install.packages("randomForest")
library(randomForest)
numpred = 4
rf.data =
randomForest(Crime~.,data=data,mtry=numpred,importance=T
RUE)
importance(rf.data)
varImpPlot(rf.data)
for (i in 1:nrow(data)){
rf.x = randomForest(Crime~.,data=data[-
i,],mtry=numpred,imprtance=TRUE)
ssres=ssres + (predict(rf.x,newdata=data[i,]) - data[i,16])^2
}
r2 = 1-ssres/sstot
r2
```

Question 3:-

Reaching to work on time

Response variable: - Am I on time or not

Predictors:-

- Start time window
 Traffic in 101 freeway
- 3. School Traffic
- Elevator wait time
 Speed

Question4:-

Call:

glm(formula = V21 ~ ., family = binomial(link = "logit"), data = data,
 maxit = 100)

Deviance Residuals:

Min	10	Median	3Q	Max
-2.3410	-0.6994	-0.3752	0.7095	2.6116

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	4.005e-01	1.084e+00	0.369	0.711869	
V1A12	-3.749e-01	2.179e-01	-1.720	0.085400	
V1A13	-9.657e-01	3.692e-01	-2.616	0.008905	**
V1A14	-1.712e+00	2.322e-01	-7.373	1.66e-13	***
V2	2.786e-02	9.296e-03	2.997	0.002724	**
V3A31	1.434e-01	5.489e-01	0.261	0.793921	
V3A32	-5.861e-01	4.305e-01	-1.362	0.173348	
V3A33	-8.532e-01	4.717e-01	-1.809	0.070470	
V3A34	-1.436e+00	4.399e-01	-3.264	0.001099	**
V4A41	-1.666e+00	3.743e-01	-4.452	8.51e-06	***
V4A410	-1.489e+00	7.764e-01	-1.918	0.055163	
V4A42	-7.916e-01	2.610e-01	-3.033	0.002421	**
V4A43	-8.916e-01	2.471e-01	-3.609	0.000308	***
V4A44	-5.228e-01	7.623e-01	-0.686	0.492831	
V4A45	-2.164e-01	5.500e-01	-0.393	0.694000	
V4A46	3.628e-02	3.965e-01	0.092	0.927082	
V4A48	-2.059e+00	1.212e+00	-1.699	0.089297	
V4A49	-7.401e-01	3.339e-01	-2.216	0.026668	*
V5	1.283e-04	4.444e-05	2.887	0.003894	**
V6A62	-3.577e-01	2.861e-01	-1.250	0.211130	
V6A63	-3.761e-01	4.011e-01	-0.938	0.348476	
V6A64	-1.339e+00	5.249e-01	-2.551	0.010729	*
V6A65	-9.467e-01	2.625e-01	-3.607	0.000310	***
V7A72	-6.691e-02	4.270e-01	-0.157	0.875475	
V7A73	-1.828e-01	4.105e-01	-0.445	0.656049	

V7A74	-8.310e-01	4.455e-01	-1.866	0.062110	
V7A75	-2.766e-01	4.134e-01	-0.669	0.503410	
V8	3.301e-01	8.828e-02	3.739	0.000185	***
V9A92	-2.755e-01	3.865e-01	-0.713	0.476040	
V9A93	-8.161e-01	3.799e-01	-2.148	0.031718	*
V9A94	-3.671e-01	4.537e-01	-0.809	0.418448	
V10A102	4.360e-01	4.101e-01	1.063	0.287700	
V10A103	-9.786e-01	4.243e-01	-2.307	0.021072	*
V11	4.776e-03	8.641e-02	0.055	0.955920	
V12A122	2.814e-01	2.534e-01	1.111	0.266630	
V12A123	1.945e-01	2.360e-01	0.824	0.409743	
V12A124	7.304e-01	4.245e-01	1.721	0.085308	
V13	-1.454e-02	9.222e-03	-1.576	0.114982	
V14A142	-1.232e-01	4.119e-01	-0.299	0.764878	
V14A143	-6.463e-01	2.391e-01	-2.703	0.006871	**
V15A152	-4.436e-01	2.347e-01	-1.890	0.058715	
V15A153	-6.839e-01	4.770e-01	-1.434	0.151657	
V16	2.721e-01	1.895e-01	1.436	0.151109	
V17A172	5.361e-01	6.796e-01	0.789	0.430160	
V17A173	5.547e-01	6.549e-01	0.847	0.397015	
V17A174	4.795e-01	6.623e-01	0.724	0.469086	
V18	2.647e-01	2.492e-01	1.062	0.288249	
V19A192	-3.000e-01	2.013e-01	-1.491	0.136060	
V20A202	-1.392e+00	6.258e-01	-2.225	0.026095	*
Signif. cod	es: 0 ***/	0.001 `**'	0.01	*′ 0.05 `	.' 0.1 ` ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1221.73 on 999 degrees of freedom Residual deviance: 895.82 on 951 degrees of freedom

AIC: 993.82

Number of Fisher Scoring iterations: 5

2.Choosing the best Model:-

> step(model)

Start: AIC=993.82

V21 ~ V1 + V2 + V3 + V4 + V5 + V6 + V7 + V8 + V9 + V10 + V11 +

V12 + V13 + V14 + V15 + V16 + V17 + V18 + V19 + V20

		Df	Deviance	AIC
-	V17	3	896.56	988.56
-	V12	3	899.08	991.08
-	V11	1	895.82	991.82
-	V18	1	896.94	992.94
<1	none>		895.82	993.82
-	V16	1	897.89	993.89
-	V7	4	904.03	994.03
-	V15	2	900.05	994.05
-	V19	1	898.06	994.06
-	V13	1	898.34	994.34
-	V9	3	905.15	997.15
-	V10	2	903.24	997.24
-	V20	1	901.88	997.88
-	V14	2	903.98	997.98
-	V5	1	904.28	1000.28
-	V2	1	904.87	1000.87
-	V6	4	915.63	1005.63
-	V8	1	910.27	1006.27
-	V3	4	917.62	1007.62
-	V4	9	931.12	1011.12
-	V1	3	962.05	1054.05

Step: AIC=988.56

V21 ~ V1 + V2 + V3 + V4 + V5 + V6 + V7 + V8 + V9 + V10 + V11 +

V12 + V13 + V14 + V15 + V16 + V18 + V19 + V20

		Df	Deviance	AIC
_	V12	3	899.79	985.79
_	V11	1	896.57	986.57
_	V18	1	897.67	987.67

_	V7	4	904.32	988.32
-	V16	1	898.47	988.47
<r< td=""><td>none></td><td></td><td>896.56</td><td>988.56</td></r<>	none>		896.56	988.56
-	V15	2	900.60	988.60
-	V19	1	899.13	989.13
_	V13	1	899.19	989.19
-	V9	3	905.83	991.83
_	V10	2	903.87	991.87
_	V20	1	902.67	992.67
_	V14	2	904.95	992.95
-	V5	1	905.31	995.31
_	V2	1	905.85	995.85
_	V6	4	917.02	1001.02
_	V8	1	911.45	1001.45
_	V3	4	918.12	1002.12
	V4	9	931.82	1005.82
	V1	3	962.35	1048.35
	νТ	5	702.33	1010.33

Step: AIC=985.79

V21 ~ V1 + V2 + V3 + V4 + V5 + V6 + V7 + V8 + V9 + V10 + V11 +

V13 + V14 + V15 + V16 + V18 + V19 + V20

	Df	Deviance	AIC
- V11	1	899.81	983.81
- V18	1	900.79	984.79
- V15	2	903.47	985.47
- V16	1	901.49	985.49
<none></none>		899.79	985.79
- V19	1	901.81	985.81
- V7	4	907.85	985.85
- V13	1	902.52	986.52
- V9	3	908.67	988.67
- V20	1	905.83	989.83
- V10	2	908.05	990.05
- V14	2	908.87	990.87
- V5	1	909.80	993.80

-	V2	1	909.99	993.99
_	V6	4	919.78	997.78
_	V8	1	915.56	999.56
_	V3	4	921.66	999.66
_	V4	9	936.35	1004.35
_	V1	3	967.78	1047.78

Step: AIC=983.81

V21 ~ V1 + V2 + V3 + V4 + V5 + V6 + V7 + V8 + V9 + V10 + V13 +

V14 + V15 + V16 + V18 + V19 + V20

		Df	Deviance	AIC
-	V18	1	900.81	982.81
_	V16	1	901.53	983.53
-	V19	1	901.81	983.81
<r< td=""><td>none></td><td></td><td>899.81</td><td>983.81</td></r<>	none>		899.81	983.81
-	V7	4	907.86	983.86
-	V15	2	903.95	983.95
_	V13	1	902.53	984.53
-	V9	3	908.69	986.69
-	V20	1	905.88	987.88
_	V10	2	908.08	988.08
-	V14	2	908.87	988.87
_	V5	1	909.80	991.80
_	V2	1	910.05	992.05
_	V6	4	919.78	995.78
_	V8	1	915.59	997.59
_	V3	4	921.66	997.66
-	V4	9	936.35	1002.35
_	V1	3	968.09	1046.09

Step: AIC=982.81

V21 ~ V1 + V2 + V3 + V4 + V5 + V6 + V7 + V8 + V9 + V10 + V13 +

V14 + V15 + V16 + V19 + V20

Df Deviance AIC

-	V16	1	902.80	982.80
<r< td=""><td>none></td><td></td><td>900.81</td><td>982.81</td></r<>	none>		900.81	982.81
-	V7	4	908.82	982.82
-	V19	1	902.90	982.90
-	V15	2	905.01	983.01
-	V13	1	903.38	983.38
-	V9	3	908.75	984.75
-	V20	1	906.79	986.79
-	V10	2	908.83	986.83
-	V14	2	909.90	987.90
-	V5	1	910.50	990.50
-	V2	1	910.95	990.95
-	V6	4	920.53	994.53
-	V8	1	915.95	995.95
-	V3	4	923.28	997.28
-	V4	9	937.61	1001.61
-	V1	3	969.35	1045.35

Step: AIC=982.8

V21 ~ V1 + V2 + V3 + V4 + V5 + V6 + V7 + V8 + V9 + V10 + V13 +

V14 + V15 + V19 + V20

		Df	Deviance	AIC
-	V7	4	910.50	982.50
-	V19	1	904.72	982.72
<r< td=""><td>none></td><td></td><td>902.80</td><td>982.80</td></r<>	none>		902.80	982.80
-	V15	2	907.17	983.17
-	V13	1	905.21	983.21
-	V9	3	910.47	984.47
-	V10	2	910.88	986.88
-	V20	1	909.14	987.14
-	V14	2	912.57	988.57
-	V2	1	912.50	990.50
-	V5	1	912.54	990.54
-	V6	4	922.72	994.72
_	V3	4	923.43	995.43

```
- V8 1 917.65 995.65

- V4 9 940.20 1002.20

- V1 3 971.04 1045.04
```

Step: AIC=982.5

V21 ~ V1 + V2 + V3 + V4 + V5 + V6 + V8 + V9 + V10 + V13 + V14 +

V15 + V19 + V20

	Df	Deviance	AIC
<none></none>		910.50	982.50
- V19	1	912.82	982.82
- V13	1	912.96	982.96
- V15	2	915.01	983.01
- V20	1	916.63	986.63
- V9	3	920.98	986.98
- V10	2	919.41	987.41
- V14	2	920.76	988.76
- V2	1	918.79	988.79
- V5	1	920.07	990.07
- V6	4	931.53	995.53
- V8	1	925.92	995.92
- V3	4	932.30	996.30
- V4	9	947.78	1001.78
- V1	3	979.75	1045.75

Call: glm(formula = V21 ~ V1 + V2 + V3 + V4 + V5 + V6 + V8 + V9 + V10 +
V13 + V14 + V15 + V19 + V20, family = binomial(link = "logit"),
data = data, maxit = 100)

Coefficients:

(Intercept)	V1A12	V1A13	V1A14	V2	V3A31
1.7495411	-0.3900152	-1.0240813	-1.7177165	0.0256787	-0.1187724
V3A32	V3A33	V3A34	V4A41	V4A410	V4A42
-0.8303101	-0.9097304	-1.4917085	-1.6072585	-1.4349203	-0.7404978
V4A43	V4A44	V4A45	V4A46	V4A48	V4A49
-0.9194787	-0.5250945	-0.1424475	0.1435655	-2.1643060	-0.7826591

V8	V6A65	V6A64	V6A63	V6A62	V5
0.3299308	-0.9628458	-1.2894345	-0.4303584	-0.3282182	0.0001294
V13	V10A103	V10A102	V9A94	V9A93	V9A92
-0.0130933	-1.0404263	0.4874391	-0.4169133	-0.8227885	-0.2872096
V20A202	V19A192	V15A153	V15A152	V14A143	V14A142
-1.3824572	-0.2794111	-0.1496754	-0.4415029	-0.6994941	-0.0786395

Degrees of Freedom: 999 Total (i.e. Null); 964 Residual

Null Deviance: 1222

Residual Deviance: 910.5 AIC: 982.5

4. Rerunning the model that is the best

Call:

 $glm(formula = V21 \sim V1 + V2 + V3 + V4 + V5 + V6 + V6 + V8 + V9 +$

V10 + V13 + V14 + V18 + V20, family = binomial(link = "logit"),

data = data, maxit = 100)

Deviance Residuals:

Min	1Q	Median	3Q	Max
-2.2194	-0.7062	-0.3810	0.7679	2.8151

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	1.122e+00	7.671e-01	1.463	0.143482	
V1A12	-4.105e-01	2.107e-01	-1.948	0.051365	
V1A13	-1.035e+00	3.617e-01	-2.863	0.004202	**
V1A14	-1.774e+00	2.273e-01	-7.804	5.98e-15	***
V2	2.685e-02	8.813e-03	3.047	0.002315	**
V3A31	-1.460e-01	5.201e-01	-0.281	0.779003	
V3A32	-8.610e-01	4.057e-01	-2.122	0.033832	*
V3A33	-9.597e-01	4.606e-01	-2.084	0.037203	*
V3A34	-1.544e+00	4.280e-01	-3.608	0.000308	***
V4A41	-1.552e+00	3.615e-01	-4.292	1.77e-05	***
V4A410	-1.558e+00	7.527e-01	-2.070	0.038412	*
V4A42	-7.000e-01	2.525e-01	-2.772	0.005570	**
V4A43	-9.193e-01	2.424e-01	-3.792	0.000150	***

V4A44	-5.399e-01	7.375e-01	-0.732	0.464146	
V4A45	-1.347e-01	5.356e-01	-0.252	0.801420	
V4A46	1.858e-01	3.880e-01	0.479	0.632129	
V4A48	-2.125e+00	1.201e+00	-1.769	0.076830	
V4A49	-8.264e-01	3.223e-01	-2.565	0.010331	*
V5	1.180e-04	4.065e-05	2.902	0.003711	* *
V6A62	-3.040e-01	2.750e-01	-1.106	0.268863	
V6A63	-4.019e-01	3.965e-01	-1.014	0.310788	
V6A64	-1.338e+00	5.108e-01	-2.619	0.008821	* *
V6A65	-9.567e-01	2.554e-01	-3.746	0.000179	***
V8	3.251e-01	8.495e-02	3.827	0.000130	***
V9A92	-2.082e-01	3.693e-01	-0.564	0.573012	
V9A93	-8.617e-01	3.643e-01	-2.365	0.018017	*
V9A94	-3.898e-01	4.392e-01	-0.888	0.374787	
V10A102	5.587e-01	3.967e-01	1.408	0.159001	
V10A103	-1.019e+00	4.134e-01	-2.465	0.013700	*
V13	-1.576e-02	7.979e-03	-1.976	0.048172	*
V14A142	-1.457e-01	4.024e-01	-0.362	0.717335	
V14A143	-6.784e-01	2.341e-01	-2.898	0.003759	* *
V18	2.891e-01	2.434e-01	1.188	0.234873	
V20A202	-1.325e+00	6.206e-01	-2.135	0.032765	*

(Dispersion parameter for binomial family taken to be 1)

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Null deviance: 1221.73 on 999 degrees of freedom Residual deviance: 915.85 on 966 degrees of freedom

AIC: 983.85

Number of Fisher Scoring iterations: 5

6. Pick up the column after resetting the data $\mbox{\sc Call:}$

 $glm(formula = V21 \sim V1A13 + V4A41 + V4A42 + V4A43 + V5 + V6A64 + V6A65 + V14A143, family = binomial(link = "logit"), data = data,$

Deviance Residuals:

Min	1Q	Median	3Q	Max
-1.7457	-0.8780	-0.6603	1.1784	2.3350

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	-0.3126188	0.1999268	-1.564	0.117896	
V1A13	-0.3372613	0.3214658	-1.049	0.294116	
V4A41	-1.3197124	0.3014160	-4.378	1.20e-05	***
V4A42	-0.2359357	0.1942581	-1.215	0.224539	
V4A43	-0.6332838	0.1812329	-3.494	0.000475	* * *
V5	0.0001362	0.0000267	5.102	3.37e-07	* * *
V6A64	-1.2339374	0.4509007	-2.737	0.006208	**
V6A65	-0.9791016	0.2203000	-4.444	8.81e-06	***
V14A143	-0.5693045	0.1771638	-3.213	0.001312	**
Signif cod	es: 0 ***	′ 0 001 **′	0 01 1:	*′ 0 05 \	′ 0 1 ′

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1221.7 on 999 degrees of freedom

Residual deviance: 1123.6 on 991 degrees of freedom

AIC: 1141.6

ROC Curve

Number of Fisher Scoring iterations: 4

7. Confusion matrix

ypred 0 1 0 660 251

1 40 49

R- Code:-

Assigniment 4:-

data <- read.table("https://archive.ics.uci.edu/ml/machine-learningdatabases/statlog/german/german.data",sep=" ")

head(data)

data\$V21[data\$V21==1] <- 0

data\$V21[data\$V21==2] <- 1

data = as.data.frame(data)

smp_size <- floor(0.75 * nrow(css))</pre>

set.seed(123)

train_ind <- sample(seq_len(nrow(css)),size=smp_size)</pre>

data.train <- data[train_ind,]</pre>

data.test <- data[-train_ind,]</pre>

model = glm(formula=V21~.,family=binomial(link = "logit"),data=data,maxit=100)

model = glm(formula= V21~ V1 + V2 + V3 + V4 + V5 +V6 + V6 + V8 + V9 + V10 +

V13 + V14 + V18 + V20, family=binomial(link="logit"), data=data, maxit=100)

```
head(data$V21)
step(model)
conversion:-
data$V1A14[data$V1 == "A14"] <- 1
data$V1A14[data$V1 != "A14"] <- 0
data$V1A13[data$V1 == "A13"] <- 1
data$V1A13[data$V1 != "A13"] <- 0
data$V3A34[data$V3 == "A34"] <- 1
data$V3A34[data$V3 != "A34"] <- 0
data$V4A41[data$V4 == "A41"] <- 1
data$V4A41[data$V4 != "A41"] <- 0
data$V4A42[data$V4 == "A42"] <- 1
data$V4A42[data$V4 != "A42"] <- 0
data$V4A43[data$V4 == "A43"] <- 1
data$V4A43[data$V4 != "A43"] <- 0
data$V6A64[data$V6 == "A64"] <- 1
data$V6A64[data$V6 != "A64"] <- 0
data$V6A65[data$V6 == "A65"] <- 1
data$V6A65[data$V6 != "A65"] <- 0
data$V14A143[data$V14 == "A143"] <- 1
data$V14A143[data$V14 != "A143"] <- 0
model = glm(formula= V21~ V1A13 + V4A41 + V4A42 + V4A43 + V5 +V6A64 + V6A65 +
V14A143, family=binomial(link="logit"), data=data, maxit=100)
summary(model)
yhat = predict(model,data,type="response")
ypred = as.integer(yhat > 0.5)
head(ypred)
install.packages("pROC")
library(pROC)
roc(data$V21,ypred)
plot(roc(data$V21,ypred))
table <- as.matrix(table(ypred,data$V21))</pre>
```

summary(model)