Cálculo Diferencial e Integral en Varias Variables

Mauro Polenta Mora

Ejercicio 1

Consigna

- 1. Investigar si las siguientes funciones de \mathbb{R}^2 en \mathbb{R} son normas:
 - 1. N(x, y) = |x| + |y|
 - 2. $N(x,y) = \sqrt{x^2 + y^2}$
 - 3. $N(x,y) = \max\{|x|,|y|\}$
 - 4. N(x,y) = |x+y|
- 2. Para aquellas que sean normas, dibujar la bola de centro en el origen y radio 1. Indicar cuáles de los siguientes puntos pertenecen a la bola de centro (3,4) y radio 2: (3,4), (4,5), (0,1).
- 3. Decimos que dos normas N_1,N_2 son equivalentes si existen constantes $\alpha,\beta>0$ tales que:
 - $\alpha N_1(u) \leq N_2(u) \leq \beta N_1(u)$.

Probar que aquellas funciones que son normas de este ejercicio son equivalentes dos a dos.

Resolución

Recordatorio

Decimos que una función $\|\cdot\|:\mathbb{R}^n\to\mathbb{R}$ es una norma si verifica las siguientes tres propiedades:

- 1. $||x|| \ge 0$, y ||x|| = 0 solamente si x = 0.
- 2. $\|\lambda x\| = |\lambda| \|x\|$, para todo $\lambda \in \mathbb{R}$
- 3. $\|x+y\| \leq \|x\| + \|y\|$ que se denomina la desigualdad triangular

Parte 1

Norma #1

- N(x,y) = |x| + |y|
- 1. Cumple con esta propiedad pues se están sumando dos valores siempre positivos. La única forma de que sea 0 es que ambos sean 0.
- 2. Queremos verificar que $N(\lambda x, \lambda y) = |\lambda| N(x, y)$, es decir:

•
$$|\lambda x| + |\lambda y| = |\lambda|(|x| + |y|)$$

Esto también se cumple, pues es el resultado de sacar factor común $|\lambda|$

3. Queremos verificar que $N(x_1+x_2,y_1+y_2) \leq N(x_1,y_1) + N(x_2,y_2)$, es decir:

$$\bullet \ |x_1+x_2|+|y_1+y_2| \leq |x_1|+|y_1|+|x_2|+|y_2|$$

Concluyendo, la función es una norma.

Norma #2

•
$$N(x,y) = \sqrt{x^2 + y^2}$$

Es claramente una norma, es la norma euclidea en \mathbb{R}^2 .

Norma #3

•
$$N(x,y) = \max\{|x|,|y|\}$$

Es claramente una normal, es la norma infinito en \mathbb{R}^2

Norma #4

- N(x,y) = |x+y|
- 1. Esta propiedad no se cumple, veamos un contraejemplo:

•
$$(x,y) = (1,-1)$$

Por lo tanto $N(1,-1) = 0$, sin embargo $(1,-1) \neq (0,0)$

Concluyendo, la función NO es una norma.

Parte 2

Esta parte consiste en gráficar, por lo que se va a saltear. De todos modos en el teórico se ve en detalle la bola abierta para cada una de las normas vistas.

Parte 3

Decimos que dos normas N_1,N_2 son equivalentes si existen constantes $\alpha,\beta>0$ tales que:

2

$$\bullet \quad \alpha N_1(u) \leq N_2(u) \leq \beta N_1(u).$$

Trabajaremos con estas normas:

1.
$$N_1(x,y) = |x| + |y|$$

2.
$$N_2(x,y) = \sqrt{x^2 + y^2}$$

3.
$$N_3(x,y) = \max\{|x|,|y|\}$$

Como la efectivamente la relación es de equivalencia, bastará con probar que:

$$\begin{array}{ll} \bullet & N_1 \sim N_3 \\ \bullet & N_2 \sim N_3 \end{array}$$

•
$$N_2 \sim N_3$$

Consideremos $(x,y) \in \mathbb{R}^2$ cualquiera, y supongamos que $x \geq y$ (sin perder generalidad). Entonces $N_3(x,y) = |x|$.

Caso $N_1 \sim N_3$:

Queremos probar que:

•
$$\alpha(|x|+|y|) \leq |x| \leq \beta(|x|+|y|)$$

Notemos que con $\alpha = \frac{1}{2}$; $\beta = 1$ se cumple la desigualdad.

Caso $N_2 \sim N_3$:

Queremos probar que:

•
$$\alpha\sqrt{x^2+y^2} \le |x| \le \beta\sqrt{x^2+y^2}$$

Operemos un poco:

$$\alpha \sqrt{x^2 + y^2} \le \alpha \sqrt{x^2 + x^2} \le \sqrt{2}\alpha |x| \le |x| \le \beta \sqrt{x^2 + y^2}$$

Entonces, esto último se cumple para:

•
$$\alpha = \frac{1}{\sqrt{2}}$$

• $\beta = 1$

•
$$\beta = 1$$

Conclusión: Las normas son equivalentes dos a dos.