Yakeen NEET 2.0 2026

Physics By Manish Raj Sir

DPP: 3

Motion in a Straight Line

Q1 The figure shows the displacement time graph of a particle moving on a straight line path. What is the average velocity of the particle over 10 seconds:

- (A) 2 m/s
- (B) 4 m/s
- (C) 6 m/s
- (D) 8 m/s
- **Q2** The position (x)-time (t) graph for a particle moving along a straight line is shown in figure. The average speed of particle in time interval t=0 to t=8 s is;

- (A) Zero
- (B) 5 m/s
- (C) 7.5 m/s
- (D) $9.7 \, \text{m/s}$
- **Q3** A car moves from X to Y with a uniform speed v_u and returns to X with a uniform speed v_d . The average speed for this ground trip is;
 - (A)

(B) $\sqrt{v_u v_d}$

- (D) $rac{v_u + v_d}{2}$
- Q4 The numerical ratio of average velocity to average speed is:
 - (A) always less than one
 - (B) always equal to one
 - (C) always more than one
 - (D) equal to or less than one
- Q5 What will be the average velocity when a particle completes the circle of radius 5 m in 20 s?
 - (A) 2 m/s
- (B) 10 m/s
- (C) 3.14 m/s
- (D) zero
- Q6 A particle is moving such that its position coordinates (x, y) are:

$$(2 \mathrm{m}, 3 \mathrm{m})$$
 at time $t = 0$,

$$(6~\mathrm{m}, 7~\mathrm{m})$$
 at time $\mathrm{t} = 2~\mathrm{s}$ and

$$(13 \mathrm{\ m}, 14 \mathrm{\ m})$$
 at time $t=5 \mathrm{\ s}$

Average velocity vector $\left(\overrightarrow{V}_{av}\right)$ from t

$$= 0$$
 to $t = 5$ s is:

$$\begin{array}{ll} = 0 \text{ to } \mathbf{t} = 5 \text{ s is:} \\ \text{(A)} \ \frac{1}{5} \Big(13 \, \hat{\mathbf{i}} \ + 14 \, \hat{\mathbf{j}} \Big) & \text{(B)} \ \frac{7}{3} \Big(\hat{i} \ + \, \hat{j} \Big) \\ \text{(C)} \ 2 \Big(\hat{i} \ + \, \hat{j} \Big) & \text{(D)} \ \frac{11}{5} \Big(\hat{\mathbf{i}} \ + \, \hat{\mathbf{j}} \Big) \end{array}$$

(B)
$$\frac{7}{3}(\hat{i}+\hat{j})$$

(C)
$$2(\hat{i}+\hat{j})$$

(D)
$$\frac{11}{5} \left(\hat{\mathbf{i}} + \hat{\hat{\mathbf{j}}} \right)$$

Q7 What is the magnitude of the average velocity of the particle moving on a semi-circle track of radius 5m if it takes 2.5s to move from A to B?

- (A) 1 m/s
- (B) 2.5~m/s
- (C) 4 m/s
- (D) 10~m/s

Q13 Which of the following relations representing

with constant acceleration?

(B) $x = 3t^2 + 5t^3 + 7$

(A) $x = 6 - 7t^{-2}$

(C) $x = 9t^2 + 8$ (D) $x = 4t^{-2} + 3t^{-1}$

displacement x of a particle describes motion

Q8 Figure shows the graph of x-coordinate of a particle moving along x-axis as a function of time. Average velocity during t=0 to $6~{\rm s}$ and instantaneous velocity at $t=3~{\rm s}$ respectively, will be

- (A) 10 m/s, 0
- (B) 60 m/s, 0
- (C) 0,0
- (D) $0,10~\mathrm{m/s}$
- **Q9** The relation between time t and displacement x is expressed by $x=2-5t+6t^2$. What will be the initial velocity of the particle?
 - (A) -5 m/sec
 - (B) -3 m/sec
 - (C) 6 m/sec
 - (D) 3 m/sec
- **Q10** A body is moving according to the equation $x=at+bt^2-ct^3$. Then its instantaneous speed is given by:
 - (A) a + 2b + 3ct
 - (B) $a+2bt-3ct^2$
 - (C) 2b-6ct
 - (D) None of these
- Q11 The displacement of a particle, moving in a straight line, is given by $s = 2t^2 + 2t 4$ where s is in meters and t in seconds. The acceleration of the particle is
 - (A) 8 m/s^2
- (B) 5 m/s^2
- (C) 7 m/s^2
- (D) 4 m/s^2
- Q12 The displacement of particle is given by

$$x = a_0 + rac{a_1 t}{2} - rac{a_2 t^2}{3}$$

What is its acceleration?

- (A) $\frac{2a_2}{3}$
- (B) $-\frac{2a_2}{3}$
- (C) a_2
- (D) zero

Answer	Key
---------------	-----

Q1	(A)	Q8	(C)
Q2	(B)	Q9	(A)
Q3	(A)	Q10	(B)
Q4	(D)	Q11	(D)
Q5	(D)	Q12	(B)
Q6	(D)	Q13	(C)
Q7	(C)		

Master NCERT with PW Books APP