Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Merge Sort

Application: Internet Search Engines

- Sorting has a lot of applications, including uses in Internet search engines.
- Sorting arises in the steps needed to build a data structure, known as the inverted file or inverted index, that allows a search engine to quickly return a list of the documents that contain a given keyword.

Word	Document Number & word location
banana	1:3, 2:45
butterfly	2:15, 3:12
camel	4:40
dog	1:60, 1:70, 2:22, 3:20, 4:11
horse	4:21
pig	2:55
pizza	1:56, 3:33

Application: How Sorting Builds an Internet Search Engine

- To build an inverted file we need to identify, for each keyword, k, the documents containing k.
- Bringing all such documents together can be done simply by sorting the set of keyworddocument pairs by keywords.
- This places all the (k, d) pairs with the same keyword, k, right next to one another.
- From this sorted list, it is then a simple computation to scan the list and build a lookup table of documents for each keyword that appears in this sorted list.

Word	Document Number & word location
banana	1:3, 2:45
butterfly	2:15, 3:12
camel	4:40
dog	1:60, 1:70, 2:22, 3:20, 4:11
horse	4:21
pig	2:55
pizza	1:56, 3:33

Divide-and-Conquer

- Divide-and conquer is a general algorithm design paradigm:
 - Divide: divide the input data
 S in two disjoint subsets S₁ and S₂
 - Recur: solve the subproblems associated with S₁ and S₂
 - Conquer: combine the solutions for S_1 and S_2 into a solution for S
- The base case for the recursion are subproblems of size 0 or 1

Merge-Sort

- Merge-sort is a sorting algorithm based on the divide-and-conquer paradigm
- Like heap-sort
 - It has $O(n \log n)$ running time
- Unlike heap-sort
 - It does not use an auxiliary priority queue
 - It accesses data in a sequential manner (suitable to sort data on a disk)

The Merge-Sort Algorithm

- Merge-sort on an input sequence S with n elements consists of three steps:
 - Divide: partition S into two sequences S_1 and S_2 of about n/2 elements each
 - Recur: recursively sort S_1 and S_2
 - Conquer: merge S_1 and S_2 into a unique sorted sequence

Algorithm mergeSort(S)Input sequence S with nelements Output sequence S sorted according to Cif S.size() > 1 $(S_1, S_2) \leftarrow partition(S, n/2)$ $mergeSort(S_1)$ $mergeSort(S_2)$

 $S \leftarrow merge(S_1, S_2)$

Merging Two Sorted Sequences

- The conquer step of merge-sort consists of merging two sorted sequences A and B into a sorted sequence S containing the union of the elements of A and B
- Merging two sorted sequences, each with n/2 elements and implemented by means of a doubly linked list, takes O(n) time

```
Algorithm merge(S_1, S_2, S):
    Input: Two arrays, S_1 and S_2, of size n_1 and n_2, respectively, sorted in non-
       decreasing order, and an empty array, S, of size at least n_1 + n_2
    Output: S, containing the elements from S_1 and S_2 in sorted order
    i \leftarrow 1
    i \leftarrow 1
    while i \le n and j \le n do
         if S_1[i] \leq S_2[j] then
               S[i+j-1] \leftarrow S_1[i]
              i \leftarrow i + 1
         else
               S[i+j-1] \leftarrow S_2[j]
              j \leftarrow j + 1
    while i \le n do
         S[i+j-1] \leftarrow S_1[i]
         i \leftarrow i + 1
    while j \leq n do
         S[i+j-1] \leftarrow S_2[j]
         i \leftarrow i + 1
```

Merge-Sort Tree

- An execution of merge-sort is depicted by a binary tree
 - each node represents a recursive call of merge-sort and stores
 - unsorted sequence before the execution and its partition
 - sorted sequence at the end of the execution
 - the root is the initial call
 - the leaves are calls on subsequences of size 0 or 1

Execution Example

Partition

Recursive call, partition

Recursive call, partition

Recursive call, base case

Recursive call, base case

Recursive call, ..., base case, merge

Merge

Recursive call, ..., merge, merge

Merge

Analysis of Merge-Sort

- The height h of the merge-sort tree is $O(\log n)$
 - at each recursive call we divide in half the sequence,
- \bullet The overall amount or work done at the nodes of depth *i* is O(n)
 - we partition and merge 2^i sequences of size $n/2^i$
 - we make 2^{i+1} recursive calls
- \bullet Thus, the total running time of merge-sort is $O(n \log n)$

Summary of Sorting Algorithms

Alg	orithm	Time	Notes
selec	tion-sort	$O(n^2)$	slowin-placefor small data sets (< 1K)
inser	tion-sort	$O(n^2)$	slowin-placefor small data sets (< 1K)
hea	ap-sort	$O(n \log n)$	 fast in-place for large data sets (1K — 1M)
mer	ge-sort	$O(n \log n)$	fastsequential data accessfor huge data sets (> 1M)