# Revisão Eletrônica Digital

Prof. Roberto de Matos

roberto.matos@ifsc.edu.br





#### Objetivo

- Relembrar conceitos de eletrônica digital.
- Relembrar blocos de construção digital (combinacional e sequencial).
- Fazer uma implementação utilizando os blocos de construção digital.





#### Decimal

- Base 10: Possibilidade de variar 10 algarismos diferentes (0, ..., 9) em cada posição.
- Da direita para a esquerda, os pesos de cada coluna são 1, 10, 100, 1000, ...

$$9742_{10} = 9 \times 10^3 + 7 \times 10^2 + 4 \times 10^1 + 2 \times 10^0$$



#### Binário

- Base 2: Possibilidade de variar 2 algarismos diferentes (0, 1) em cada posição.
- Da direita para a esquerda, os pesos de cada coluna são 1, 2, 4, 8, 16, ...

■ 
$$10110_2 = 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 22_{10}$$

Para representar a mesma quantidade de informações, precisamos usar mais posições (bits) em binário.



#### Binário

- Base 2: Possibilidade de variar 2 algarismos diferentes (0, 1) em cada posição.
- Da direita para a esquerda, os pesos de cada coluna são 1, 2, 4, 8, 16, ...
- $10110_2 = 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 22_{10}$
- Para representar a mesma quantidade de informações, precisamos usar mais posições (bits) em binário.

#### Dicas:

- Um número binário de N bits pode representar  $2^N$  possibilidades, ou seja,  $0, 1, 2, 3, ..., 2^N 1$ .
- Para saber exatamente o número de bits (N) necessários para representar um determinado valor decimal (D) use a seguinte fórmula:  $N = \lfloor log_2(D) \rfloor + 1$



#### Hexadecimal

- Base 16: Possibilidade de variar 16 algarismos (0, ..., 9, A, ..., F) diferentes em cada posição.
- Da direita para a esquerda, os pesos de cada coluna são 1, 16, 256, 4096, 65.536, ...

■ 
$$2ED_{16} = 2 \times 16^2 + E \times 16^1 + D \times 16^0 = 749_{10}$$
, sendo  $E = 14_{10}$  e  $D = 13_{10}$ 



#### Hexadecimal

- Base 16: Possibilidade de variar 16 algarismos (0, ..., 9, A, ..., F) diferentes em cada posição.
- Da direita para a esquerda, os pesos de cada coluna são 1, 16, 256, 4096, 65.536, ...
- $2ED_{16} = 2 \times 16^2 + E \times 16^1 + D \times 16^0 = 749_{10}$ , sendo  $E = 14_{10}$  e  $D = 13_{10}$

#### Dicas:

- Facilita a escrita de binários longos.
- $\blacksquare$  4<sup>a</sup> potência da base 2 (2<sup>4</sup> = 16), ou seja, cada hexadecimal representa 4 bits.
- Colocar 0x na frente de um hexadecimal é uma notação muito utilizada (ex.: 0x2ED).



# Representação de números negativos

#### Código complemento de dois

- Esta é a opção adotada para representar números negativos em praticamento todos os computadores e outros sistema digitais.
- A representação binária de um número negativo é obtida da seguinte forma:
  - 1 Converta a sua representação positiva (magnitude) para binário
  - 2 Inverta todos os bits (complemento de um)
  - 3 Some um (1)
- Exemplo: Converter −7<sub>10</sub> considerando uma representação de 5 bits.



#### Código complemento de dois

- Esta é a opção adotada para representar números negativos em praticamento todos os computadores e outros sistema digitais.
- A representação binária de um número negativo é obtida da seguinte forma:
  - 1 Converta a sua representação positiva (magnitude) para binário
  - 2 Inverta todos os bits (complemento de um)
  - 3 Some um (1)
- Exemplo: Converter −7<sub>10</sub> considerando uma representação de 5 bits.
  - $1 +7_{10} = 00111_2$
  - 2 11000<sub>2</sub>
  - $3 11000_2 + 1 = 11001_2$
- Assim,  $-7_{10} = 11001_2$







# **NOT**



$$Y = \overline{A}$$

# **BUF**



$$Y = A$$



# **NOT**



$$Y = \overline{A}$$

# **BUF**



$$Y = A$$

## **AND**



$$Y = AB$$

| Α | В | Y |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |



## **NOT**



$$Y = \overline{A}$$

# **BUF**



$$Y = A$$

## **AND**



$$Y = AB$$

| Α | В | Y |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |

#### OR



$$Y = A + B$$

| Α | В | Y |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 1 |



# **NAND**

$$Y = \overline{AB}$$

|   | Α | В | Y |
|---|---|---|---|
| Ī | 0 | 0 | 1 |
|   | 0 | 1 | 1 |
|   | 1 | 0 | 1 |
|   | 1 | 1 | 0 |



# **NAND**

$$Y = \overline{AB}$$

# **NOR**

$$Y = \overline{A + B}$$

| Α | В | Y |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 0 |



#### **NAND**

$$Y = \overline{AB}$$

## **NOR**



$$Y = \overline{A + B}$$

## **XOR**

$$Y=A\oplus B$$

| Α | В | Y |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |



#### **NAND**

$$Y = \overline{AB}$$

## **NOR**



$$Y = \overline{A + B}$$

## **XOR**



$$Y = A \oplus B$$

# **XNOR**

$$Y = \overline{A \oplus B}$$

| Α | В | Y |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |



#### NOR3



 $Y = \overline{A + B + C}$ 

| Α | В | С | Y |
|---|---|---|---|
| 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 0 |



#### NOR<sub>3</sub>



 $Y = \overline{A + B + C}$ 

| Α | В | C | Y |
|---|---|---|---|
| 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 0 |

#### AND4



#### Y = ABCD

| 1-11000                                                       |                                                     |                                                |                                                          |                                                     |  |
|---------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|--|
| Α                                                             | C                                                   | В                                              | D                                                        | Y                                                   |  |
| 0                                                             | 0                                                   | 0                                              | 0                                                        | 0                                                   |  |
| 0                                                             | 0                                                   | 0                                              | 1                                                        | 0                                                   |  |
| 0                                                             | 0                                                   | 1                                              | 0                                                        | 0                                                   |  |
| 0                                                             | 0                                                   | 1                                              | 1                                                        | 0                                                   |  |
| 0                                                             | 1                                                   | 0                                              | 0                                                        | 0                                                   |  |
| 0                                                             | 1                                                   | 1<br>0<br>0<br>1<br>1<br>0<br>0<br>1<br>1<br>1 | 1                                                        | 0                                                   |  |
| 0                                                             | 1                                                   | 1                                              | 0                                                        | 0                                                   |  |
| 0                                                             | 1                                                   | 1                                              | 1                                                        | 0                                                   |  |
| 1                                                             | 0                                                   | 0                                              | 0                                                        | 0                                                   |  |
| 1                                                             | 0                                                   | 0                                              | 1                                                        | 0                                                   |  |
| 1                                                             | 0                                                   | 1                                              | 0                                                        | 0                                                   |  |
| 1                                                             | 0                                                   | 1                                              | 1                                                        | 0                                                   |  |
| 1                                                             | 1                                                   | 0                                              | 0                                                        | 0                                                   |  |
| 1                                                             | 0<br>0<br>0<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>0 | 0                                              | 1                                                        | 0                                                   |  |
| 0<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>1 | 1                                                   | 1<br>1                                         | 0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |  |
| 1                                                             | 1                                                   | 1                                              | 1                                                        | 1                                                   |  |
|                                                               |                                                     |                                                |                                                          |                                                     |  |



# Lógica Combinacional

## Introdução

■ Saída tem relação só com entradas:





#### Introdução

■ Saída tem relação só com entradas:



Somador Completo:

$$\begin{tabular}{lll} $A$ & & & & \\ $B$ & & & & \\ $C_{\rm in}$ & & & & \\ $S = A \oplus B \oplus C_{\rm in}$ & & \\ $C_{\rm out} = AB + AC_{\rm in} + BC_{\rm in}$ & \\ \end{tabular}$$



#### Barramentos

- Vários sinais agrupados para simplificar o circuito.
- Exemplo:





#### Barramentos

- Vários sinais agrupados para simplificar o circuito.
- Exemplo:

■ Somador 8 bits:

$$A_{[7..0]} \xrightarrow{8} C_{\text{in}} C_{\text{out}}$$



- Valor **X** pode significar:
  - Circuito: Valor ilegal ou desconhecido





- Valor **X** pode significar:
  - Circuito: Valor ilegal ou desconhecido

$$A = 1$$

$$Y = X$$

$$B = 0$$

■ Simulador: Valor não inicializado



- Valor **X** pode significar:
  - Circuito: Valor ilegal ou desconhecido

$$A = 1 - Y = X$$

$$B = 0 - Y = X$$

- Simulador: Valor não inicializado
- Tabela Verdade: Não importa (don't care)



# Exemplo do uso do X

#### ■ Tabela completa:



| $A_3$  | $A_2$ | $A_1$ | $A_0$                                | <i>Y</i> <sub>3</sub> | $Y_2$ | $Y_1$ | $Y_0$ |
|--------|-------|-------|--------------------------------------|-----------------------|-------|-------|-------|
| 0      | 0     | 0     | 0                                    | 0                     | 0     | 0     | 0     |
| 0      | 0     | 0     | 1                                    | 0                     | 0     | 0     | 1     |
| 0      | 0     | 1     | 0                                    | 0                     | 0     | 1     | 0     |
| 0      | 0     | 1     | 1                                    | 0                     | 0     | 1     | 0     |
| 0      | 1     | 0     | 0                                    | 0                     | 1     | 0     | 0     |
| 0      | 1     | 0     | 1<br>0<br>1<br>0<br>1<br>0<br>1<br>0 | 0                     | 1     | 0     | 0     |
| 0      | 1     | 1     | 0                                    | 0                     | 1     | 0     | 0     |
| 0      | 1     | 1     | 1                                    | 0                     | 1     | 0     | 0     |
| 1      | 0     | 0     | 0                                    | 1                     | 0     | 0     | 0     |
| 1      | 0     | 0     | 1                                    | 1                     | 0     | 0     | 0     |
| 1<br>1 | 0     | 1     | 0                                    | 1                     | 0     | 0     | 0     |
| 1      | 0     | 1     |                                      | 1                     | 0     | 0     | 0     |
| 1      | 1     | 0     | 0<br>1                               | 1                     | 0     | 0     | 0     |
| 1      | 1     | 0     | 1                                    | 1                     | 0     | 0     | 0     |
| 1      | 1     | 1     | 0                                    | 1                     | 0     | 0     | 0     |
| 1      | 1     | 1     | 1                                    | 1                     | 0     | 0     | 0     |



## Exemplo do uso do X

#### ■ Tabela completa:



| $A_3$                                                         | $A_2$                                     | $A_1$                 | $A_0$                                                    | <i>Y</i> <sub>3</sub> | $Y_2$            | $Y_1$                 | $Y_0$                                                                                       |
|---------------------------------------------------------------|-------------------------------------------|-----------------------|----------------------------------------------------------|-----------------------|------------------|-----------------------|---------------------------------------------------------------------------------------------|
| 0                                                             |                                           | 0                     | 0                                                        | 0                     | 0                | 0                     | 0                                                                                           |
| 0                                                             | 0                                         | 0                     | 1                                                        | 0                     | 0                | 0                     | 1                                                                                           |
| 0                                                             | 0                                         |                       | 0                                                        | 0                     | 0                | 1                     | 0                                                                                           |
| 0                                                             | 0                                         | 1                     | 1                                                        | 0                     | 0                | 1                     | 0                                                                                           |
| 0                                                             | 1                                         | 0                     | 0                                                        | 0                     | 1                | 0                     | 0                                                                                           |
| 0                                                             | 0<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>0 | 1<br>0<br>0<br>1<br>1 | 1                                                        | 0                     | 0<br>1<br>1      | 1<br>0<br>0<br>0      | 0                                                                                           |
| 0                                                             | 1                                         | 1                     | 0                                                        | 0                     | 1                | 0                     | 0                                                                                           |
| 0                                                             | 1                                         | 1                     | 1                                                        | 0                     | 1                | 0                     | 0                                                                                           |
| 1                                                             | 0                                         | 0<br>0<br>1<br>1<br>0 | 0                                                        | 1                     | 0                | 0<br>0<br>0<br>0<br>0 | 0                                                                                           |
| 1                                                             | 0                                         | 0                     | 1                                                        | 1                     | 0                | 0                     | 0                                                                                           |
| 1                                                             | 0                                         | 1                     | 0                                                        | 1                     | 0                | 0                     | 0                                                                                           |
| 1                                                             | 0                                         | 1                     | 1                                                        | 1                     | 0<br>0<br>0<br>0 | 0                     | 0                                                                                           |
| 1                                                             | 1                                         | 0                     | 0                                                        | 1                     | 0                | 0                     | 0                                                                                           |
| 1                                                             | 1                                         | 0                     | 1                                                        | 1                     | 0                | 0                     | 0                                                                                           |
| 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1 | 1                                         | 1                     | 0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1 | 1                     | 0                | 0                     | 0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| 1                                                             | 1                                         | 1                     | 1                                                        | 1                     | 0                | 0                     | 0                                                                                           |

#### ■ Tabela Simplificada:

| $A_3$ | $A_2$ | $A_1$ | $A_0$ | <i>Y</i> <sub>3</sub> | $Y_2$ | $Y_1$ | $Y_0$ |
|-------|-------|-------|-------|-----------------------|-------|-------|-------|
| 0     | 0     | 0     | 0     | 0                     | 0     | 0     | 0     |
| 0     | 0     | 0     | 1     | 0                     | 0     | 0     | 1     |
| 0     | 0     | 1     | X     | 0                     | 0     | 1     | 0     |
| 0     | 1     | X     | X     | 0                     | 1     | 0     | 0     |
| 1     | X     | X     | X     | 0<br>0<br>0<br>0<br>0 | 0     | 0     | 0     |



- Valor **Z** significa que o nodo do circuito está flutuando ou alta impedância.
- Associado a um terceiro estado (tristate).



- Valor **Z** significa que o nodo do circuito está flutuando ou alta impedância.
- Associado a um terceiro estado (tristate).
- Buffer tristate:



| A-[         | Ē | — Y |  |  |  |
|-------------|---|-----|--|--|--|
| <u>Ē</u>    | Α | Y   |  |  |  |
| 0           | 0 | 0   |  |  |  |
| 0           | 1 | 1   |  |  |  |
| 1           | 0 | Z   |  |  |  |
| 1           | 1 | Z   |  |  |  |
| Ativo baiyo |   |     |  |  |  |

# Blocos de Construção Combinacional

- Roteamento em circuitos.
- Implementação de lógica.



- Roteamento em circuitos.
- Implementação de lógica.



| S | $D_1$ | $D_0$ | Υ |
|---|-------|-------|---|
| 0 | 0     | 0     | 0 |
| 0 | 0     | 1     | 1 |
| 0 | 1     | 0     | 0 |
| 0 | 1     | 1     | 1 |
| 1 | 0     | 0     | 0 |
| 1 | 0     | 1     | 0 |
| 1 | 1     | 0     | 1 |
| 1 | 1     | 1     | 1 |



- Roteamento em circuitos.
- Implementação de lógica.



- Roteamento em circuitos.
- Implementação de lógica.



■ Barramentos :



Multiplexador 4x1:

$$S_{[1:0]}$$
 $D_0$ 
 $D_0$ 
 $D_1$ 
 $D_2$ 
 $D_0$ 
 $D_1$ 
 $D_2$ 
 $D_3$ 
 $D_1$ 

#### Dica:

Um multiplexador N:1 precisar de  $log_2N$  linhas de seleção.



#### Decodificador

- Decodifica um padrão para outro. Exemplos:
  - $\blacksquare \ \, \mathsf{BCD} \to \mathsf{Display} \, \mathbf{7} \, \mathsf{segmentos};$
  - Código de operação → sinais de controle;
  - Binário  $\rightarrow$  one hot. N entradas para  $2^N$  saídas.



| $A_1$ | $A_0$ | <i>Y</i> <sub>3</sub> | $Y_2$ | $Y_1$ | $Y_0$ |
|-------|-------|-----------------------|-------|-------|-------|
| 0     | 0     | 0                     | 0     | 0     | 1     |
| 0     | 1     | 0                     | 0     | 1     | 0     |
| 1     | 0     | 0                     | 1     | 0     | 0     |
| 1     | 1     | 1                     | 0     | 0     | 0     |



#### Somadores



|   | Α | В | $C_{ m out}$ | S |
|---|---|---|--------------|---|
| • | 0 | 0 | 0            | 0 |
|   | 0 | 1 | 0            | 1 |
|   | 1 | 0 | 0            | 1 |
|   | 1 | 1 | 1            | 0 |

$$S = A \oplus B$$
$$C_{\text{out}} = AB$$



$$S = A \oplus B \oplus C_{in}$$

$$C_{out} = AB + AC_{in} + BC_{in}$$



#### Somadores



| Α | В | $C_{\mathrm{out}}$ | S |
|---|---|--------------------|---|
| 0 | 0 | 0                  | 0 |
| 0 | 1 | 0                  | 1 |
| 1 | 0 | 0                  | 1 |
| 1 | 1 | 1                  | 0 |

$$S = A \oplus B$$
$$C_{\text{out}} = AB$$



$$S = A \oplus B \oplus C_{in}$$

$$C_{out} = AB + AC_{in} + BC_{in}$$







## Subtrator



- (a): Símbolo
- (b): Implementação ( $Y = A + \overline{B} + 1 = A B$ )



# Comparadores

## ■ Igualdade:



## Comparadores

### ■ Igualdade:



## ■ Menor que:

$$\begin{array}{c|c}
A & B \\
\downarrow N & \downarrow N \\
\hline
\downarrow N & \downarrow N \\
\hline
[N-1] & A < B
\end{array}$$



# Unidade Lógica Aritmética - ULA



| F <sub>2:0</sub> | Operação                      |  |
|------------------|-------------------------------|--|
| 000              | A AND B                       |  |
| 001              | A OR B                        |  |
| 010              | A +B                          |  |
| 011              | not used                      |  |
| 100              | A AND $\overline{\mathtt{B}}$ |  |
| 101              | A OR B                        |  |
| 110              | A -B                          |  |
| 111              | not used                      |  |



