Basic Electronics

 $\bullet \bullet \bullet$

Nimal Skandhakumar

Faculty of Technology University of Sri Jayewardenepura

Electricity

- Flow of electrons
- Two types of electrical signals
 - alternating current (AC) wall socket supply
 - direct current (DC) battery
- Conductors Vs. Insulators
 - an electrical conductor allows the flow of electricity through it (metal)
 - o an insulator prevents the flow of electricity through it (rubber, plastics, wood)
- Circuit
 - a complete and closed path through which electric current can flow
 - o closed circuit vs. open circuit

Voltage and Current

- Electricity is typically defined as having
 - V: voltage Volts (V)
 - I: current rating Amps (A)
- Voltage, also called electromotive force, is the potential difference in charge between two points in an electrical field.
 - O How fast?
- Current is a flow of electrical charge carriers.
 - O How much?
- P: Power=Voltage×Current
 - \circ P = VI

$$\mathbf{v} = \frac{P}{T}$$

Resistance

- R: Resistance
 - The opposition that a substance offers to the flow of electric current.
 - Ohm unit of resistance
 - \circ Ω symbol (uppercase Greek letter omega)
- Ohm's Law
 - o mathematical relationship among electric current, resistance, and voltage
 - \circ V = IR
 - \circ I = V/R
 - \circ R = V/I
- https://www.youtube.com/watch?v=_-jX3dezzMg
- https://www.youtube.com/watch?v=F_vLWkkOETI

 $= I \times R$

$$\mathbf{R} = \frac{\mathsf{V}}{\mathsf{I}}$$

Series vs. Parallel

Series

- things are wired one after another
- electricity has to pass through one thing, then the next thing

Parallel

- things are wired side by side
- electricity passes through all of them at the same time, from one common point to another common point

$$R_S = R_1 + R_2$$

$$\frac{1}{R_P} = \frac{1}{R_1} + \frac{1}{R_2}$$

5

Exercise

Calculate voltage and current for each resistor.

Basic Components

Resistors

- Resistors add resistance to the circuit and reduces the flow of electrical current
- Measured in ohm

-__*__*

https://www.youtube.com/watch?v=7w5I-KbJ1Sg

Potentiometers

- Potentiometers are variable resistors.
- They have some sort of knob or slider that you turn or push to change resistance in a circuit.

https://www.youtube.com/watch?v=DsdjHtIkJXM&t=9s

Capacitors

- Stores electricity and then discharges it into the circuit when there is a drop in electricity.
- Measured in Farads, typically picofarad (pF), nanofarad (nF), and microfarad (uF)
- Ceramic disc capacitors are non-polarized. Electrolytic capacitors are typically polarized.
- https://www.youtube.com/watch?v=otQGdPLyF3w

Diodes

- Diodes are components which are polarized.
- They only allow electrical current to pass through them in one direction.
- Terminals:
 - Ring side: connects to ground –
 Cathode
 - Other side: connects to power –
 Anode
- https://www.youtube.com/watch?v=JNi6WY7WKAI

Light Emitting Diode (LED)

- A special type of diode that lights up when electricity passes through it.
- LEDs typically do not add much resistance.
- In order to prevent the circuit from shorting, you need to add a resistor in series.
- https://www.youtube.com/watch?v=Qlayua3yjuE

Transistors

- Takes in a small current at base pin and amplifies it such that a much larger current can pass between collector and emitter pins.
- The amount of current that passes between these two pins is proportional to the voltage being applied at the base pin.
- https://www.youtube.com/watch?v=7ukDKVHnac4

Integrated Circuits

 An entire specialized circuit that has been miniaturized and fit onto one small chip

Some more components

Experiment #2A, #2B

• Replace the $100k\Omega$ resistor with several values (such as $1k\Omega$, $10k\Omega$) and observe.

2.0