PCFG

PCFG

- Probabilistic / Stochastic Context Free Grammars:
 - Simple probabilistic models capable of handling recursion
 - A CFG with probabilities attached to rules
 - Rule probabilities → how likely is it that a particular rewrite rule is used?

Formal Definition of PCFG

- A PCFG consists of
 - A set of terminals $\{w_k\}$, k = 1,...,V

```
{w<sub>k</sub>} = { child, teddy, bear, played...}
```

A set of non-terminals {Nⁱ}, i = 1,...,n

```
{N_i} = {NP, VP, DT...}
```

- A designated start symbol N¹
- A set of rules $\{N^i \rightarrow \zeta^j\}$, where ζ^j is a sequence of terminals & non-terminals

```
NP \rightarrow DT NN
```

A corresponding set of rule probabilities

Rule Probabilities

Rule probabilities are such that

$$\forall i \sum_{i} P(N^{i} \to \zeta^{j}) = 1$$

E.g., P(NP
$$\rightarrow$$
 DT NN) = 0.2
P(NP \rightarrow NN) = 0.5
P(NP \rightarrow NP PP) = 0.3

- $P(NP \rightarrow DTNN) = 0.2$
 - Means 20 % of the training data parses use the rule NP \rightarrow DT NN

Probability of a sentence

- Notation:
 - w_{ab} subsequence w_a....w_b
 - $-N_j$ dominates $w_a....w_b$ or yield(N_i) = $w_a....w_b$

Probability of a sentence = P(w_{1m})

t: yield $(t)=w_{t-1}$

$$P(w_{1m}) = \sum_{t} P(w_{1m}, t) \longrightarrow \text{Where t is a parse tree of the sentence}$$

$$= \sum_{t} P(t)$$

$$= \sum_{t} P(t)$$

$$= \sum_{t} P(w_{1m} | t) = \sum_{t} P(w_{1m} | t)$$

 $\sum P(w_{1m} \mid t) = 1 \text{ If t is a parse tree for the sentence } w_{1m},$ this will be 1!!

Probability of a parse tree

- Domination : We say N_j dominates from k to l, symbolized as $N_{k,l}^j$, if $W_{k,l}$ is derived from N_i
- P (tree | sentence) = P (tree | $S_{1,l}$) where $S_{1,l}$ means that the start symbol S dominates the word sequence $W_{1,l}$
- P (t |s) approximately equals joint probability of constituent non-terminals dominating the sentence fragments.

Assumptions of the PCFG model

- Place invariance:
 - $P(NP \rightarrow DT NN)$ is same in locations 1 and 2
- Context-free:
 - $P(NP \rightarrow DT NN \mid anything outside "The child")$ = $P(NP \rightarrow DT NN)$
- Ancestor free: At 2,
 - $P(NP \rightarrow DT NN | its ancestor is VP)$
 - $= P(NP \rightarrow DT NN)$

The child

Probability of a parse tree

$$= P (NP_{1,2}, VP_{3,l} | S_{1,l}) * P (DT_{1,1}, N_{2,2} | NP_{1,2}) * D(w_1 | DT_{1,1}) * P (w_2 | N_{2,2}) * P (V_{3,3}, PP_{4,l} | VP_{3,l}) * P(w_3 | V_{3,3}) * P(P_{4,4}, NP_{5,l} | PP_{4,l}) * P(w_4 | P_{4,4}) * P (w_{5...l} | NP_{5,l})$$

(Using Chain Pulse Context Fragress and Ansactor Fragress)

(Using Chain Rule, Context Freeness and Ancestor Freeness)

Important Questions?

- Let W_{1m} be a sentence, G a grammar, t a parse tree
 - 1. What is the most likely parse of sentence? $argmax_tP(t/w_{1m},G)$
 - 2. What is the probability of a sentence? $P(w_{1m}/G)$
 - 2. How to learn the rule probabilities in the grammar G?

A Simple PCFG (in CNF)

S	\rightarrow	NP VP	1.0	NP ·	→	NP PP	0.4
VP	\rightarrow	V NP	0.7	NP	\rightarrow	astronomers	0.1
VP	\rightarrow	VP PP	0.3	NP	\rightarrow	ears	0.18
PP	\rightarrow	P NP	1.0	NP	\rightarrow	saw	0.04
Р	\rightarrow	with	1.0	NP	\rightarrow	stars	0.18
V	\rightarrow	saw	1.0	NP	\rightarrow	telescope	0.1

₀ Astronomers ₁	saw	2	stars	3	with	4	telescope 5
X _{0,1}	X _{0, 2}		X _{0, 3}		X _{0, 4}		X _{0, 5}
	X _{1, 2}		X _{1, 3}		X _{1,4}		X _{1,5}
			X _{2,3}		X _{2,4}		X _{2,5}
					X _{3,4}		X _{3,5}
							X _{4,5}

Table for sentence that has length 5

₀ Astronomers	1 saw	2 stars	5	3 with	4 telescope 5
NP [0.1]	x _{0, 2}		X _{0, 3}	X _{0, 4}	X _{0, 5}
	NP [0.1], V[1.0] X _{1,2}		X _{1,3}	X _{1,4}	
$X_{0,1} = NP ->$	Astronomers	NP [0.18]	X _{2,3}	X _{2, 4}	X _{2,5}
$X_{1,2} = NP ->$				P[1.0] X_{3, 4}	x _{3,5}
$X_{2,3} = NP->$					NP [0.1] X _{4,5}

 $X_{3,4} = P -> with$

 $X_{4,5} = NP \rightarrow telescope$

0Astronomers 1 saw 2 stars 3 with 4 telescope 5 NP [0.1]
$$\mathbf{v}_{0,1}$$
 $\mathbf{\phi}_{0,1}$ $\mathbf{v}_{0,2}$ S [0.0126] $\mathbf{v}_{0,3}$ $\mathbf{v}_{0,4}$ $\mathbf{v}_{0,4}$ $\mathbf{v}_{0,5}$ NP [0.1], $\mathbf{v}_{1,0}$ VP [0.126] $\mathbf{v}_{1,3}$ $\mathbf{\phi}_{0,4}$ $\mathbf{v}_{1,4}$ VP [0.00504], V[1.0] $\mathbf{v}_{1,2}$ VP [0.18] $\mathbf{v}_{2,3}$ $\mathbf{\phi}_{1,5}$ NP [0.0072], S NP [0.0072], S NP [0.18] $\mathbf{v}_{2,4}$ NP [0.0072], S NP [0.1] $\mathbf{v}_{3,5}$ $\mathbf{v}_{3,5}$

Example Trees

Example Trees

Probability of trees and sentence

- P(t): The probability of tree is the product of the probabilities of the rules used to generate it.
- $P(w_{1n})$: The probability of the sentence is the sum of the probabilities of the trees which have that sentence as their yield

Tree and Sentence probabilities

```
W<sub>15</sub>=astronomers saw star with telescope
P(t_1) = 1.0 * 0.1 * 0.7 * 1.0 * 0.4 * 0.18*
       1.0 *1.0 *0.1
     = 0.000504
P(t_2) = 1.0 * 0.1 * 0.3 * 0.7 * 1.0 * 0.18 *
        1.0 * 1.0 * 0.1
     = 0.000378
P(W_{15}) = P(t_1) + P(t_2)
        = 0.000504 + 0.000378
        = 0.000882
```

Features of PCFGs

- As the number of possible trees for a given input grows, a PCFG gives some idea of the plausibility of a particular parse
- But the probability estimates are based purely on structural factors, and do not factor in lexical cooccurrence. Thus, PCFG does not give a very good idea of the plausibility of the sentence.
- Real text tends to have grammatical mistakes.
 PCFG avoids this problem by ruling out nothing, but by giving implausible sentences a low probability
- In practice, a PCFG is a worse language model for English than an n-gram model
- All else being equal, the probability of a smaller tree is greater than a larger tree

Example PCFG Rules & Probabilities

•	S -	\rightarrow	NP	VP	
---	-----	---------------	----	----	--

• DT
$$\rightarrow$$
 the

• NP
$$\rightarrow$$
 NNS

0.5

•
$$NP \rightarrow NP PP$$

VBD → sprayed

•
$$PP \rightarrow P NP$$

• $VP \rightarrow VP PP$

1.0

•
$$VP \rightarrow VBD NP$$

Example Parse t₁

The gunman sprayed the building with bullets.


```
P(t_1)
= 1.0 * 0.5 * 1.0 * 0.5 * 0.6 *
0.4 * 1.0 * 0.5 * 1.0 * 0.5 * 1.0
* 1.0 * 0.3 * 1.0
= 0.00225
```

Another Parse t₂

The gunman sprayed the building with bullets.

PCFGs - Inside-outside probabilities

Probability of a Sentence

Probability of Sentence $w_1...w_m : P(w_{1m}/G)$

- In general, simply summing the probabilities of all possible parse trees is not an efficient way to calculate the sentence probability
- We use inside algorithm, a dynamic programming algorithm based on concept of inside –outside probabilities.

Inside and Outside Probabilities

Outside: $\alpha_{j}(p,q) = P(w_{1(p-1)}, N^{j}_{pq}, w_{(q+1)m}|G)$ Inside: $\beta_{j}(p,q) = P(w_{pq}|N^{j}_{pq}, G)$

Inside-outside probabilities

What is the probability of starting from N^1 and deriving "The gunman sprayed", a NP and "with bullets"? - $\alpha_{NP}(4,5)$

Inside-outside probabilities

 $\alpha_{NP}(4,5)$ for "the building"

= $P(\text{The gunman sprayed}, NP_{4,5}, \text{ with bullets } | G)$

 $\beta_{NP}(4,5)$ for "the building" = $P(\text{the building} \mid NP_{4,5}, G)$

Probability of a string

Inside Probability

$$P(w_{1m}/G) = P(N^1 \rightarrow w_{1m}/G)$$

= $P(w_{1m}/N^1_{1m}, G)$
= $\beta_1 (1, m)$

- The internal probability of a substring is calculated by induction on the length of the string subsequence.
- Base case: We want to find β_j (k, k) (the probability of a rule : $N^j \rightarrow W_k$

$$\beta_{j}(k, k) = P(w_{k}/N_{kk}^{j}, G)$$
$$= P(N_{k}^{j} \rightarrow w_{k}/G)$$

Induction Step

• Induction: We want to find β_j (p, q) for p < q. As this is the inductive step using a Chomsky Normal Form grammar, the first rule must be of the form $N^j \rightarrow N^r N^s$, so we can proceed by induction, dividing the string in two, in various places, and summing the result:

 These inside probabilities can be calculated bottom up.

Inside Probabilities: Induction Step

Assuming Chomsky Normal Form, the first rule must be of the form $N^j \rightarrow N^r N^s$

$$\beta_j(p,q) = \sum_{r,s} \sum_{d=p}^{q-1} P(N^j \to N^r N^s) \beta_r(p,d) \beta_s(d+1,q)$$

- •Thus, we find all ways that a certain constituent can be built out of smaller constituents by varying what the labels of the two smaller constituents are and which words each spans.
 - Consider different splits of the words indicated by d E.g., "the huge" and "building" or "the" and "huge building"
 - > Consider different non-terminals to be used in the rule:

E.g., NP
$$\rightarrow$$
DT NN,
NP \rightarrow DT NNS

Calculation of Inside Probabilities

Given the PCFG:

```
S \rightarrow NP \ VP \quad 1.0 \qquad NP \rightarrow astronomers \ 0.1

PP \rightarrow P \ NP \quad 1.0 \qquad NP \rightarrow telescope \quad 0.18

VP \rightarrow V \ NP \quad 0.7 \qquad NP \rightarrow saw \quad 0.04

VP \rightarrow VP \ PP \quad 0.3 \qquad NP \rightarrow stars \quad 0.18

NP \rightarrow NP \ PP \quad 0.4 \qquad V \rightarrow saw \quad 1.0

P \rightarrow with \quad 1.0
```

Q) Find the probability of the following sentence using inside probability?

Sentence: Astronomers saw stars with telescope

Calculation of Inside Probabilities

	1	2	3	4	5
1 #	$B_{NP} = 0.1$		$\beta_{\rm S} = 0.0126$		$\beta_{\rm S} = 0.0015876$
2		$\beta_{\rm NP} = 0.04$	$\beta_{\text{VP}} = 0.126$		$\beta_{\rm VP} = 0.015876$
		$\beta_{\rm V} = 1.0$			
3			$\beta_{\rm NP} = 0.18$		$\beta_{\rm NP} = 0.01296$
4				$\beta_{\rm P} = 1.0$	$\beta_{PP} = 0.18$
5					$\beta_{\rm NP} = 0.18$
	astronomers	saw	stars	with	telescope

Outside Probabilities

Outside Probabilities

Base case:

$$\beta_1(1,m) = 1$$

 $\beta_j(1,m) = 0 \text{ if } j \neq 1$

Outside Probabilities

Base case:

$$\beta_1(1,m) = 1$$

 $\beta_j(1,m) = 0 \text{ if } j \neq 1$

Inductive Case: Compute outside probabilities in top down manner

$$w_{1}^{N_{j}}$$
 $w_{q+1}^{N_{q+1}}$

Outside Probabilities

Base case:

$$\beta_1(1,m) = 1$$

 $\beta_i(1,m) = 0 \text{ if } j \neq 1$

Inductive Case: Compute outside probabilities in top down manner

Outside probability

Problem: Consider the following PCFG:

 $S \rightarrow N V 1.0$ $N \rightarrow she 0.2$ $V \rightarrow V NP 0.7$ $N \rightarrow pizza 0.2$ $NP \rightarrow N P 1.0$ $V \rightarrow eats 0.3$ $P \rightarrow PP N 1.0$ $PP \rightarrow without 1.0$ $N \rightarrow N P 0.4$ $N \rightarrow anchovies 0.2$

Sentence: She eats pizza without anchovies

Use the inside-outside probabilities to estimate the probability of the sentence?

Triangular table:

She	Eats	Pizza	Without	anchovies	
N	S	S	Ф	S	
X11	X12	X13	X14	X15	
	V	V		V	
	X22	X23	X24	X25	
		N		NP, N	
		X33	X34	X35	
			PP	Р	
1 X22 = N V = S			X44	X45	

Ν

X55

$$X12 = X11 X22 = N V = S$$

$$X23 = X22 X33 = V N = V$$

$$X34 = X33 X44 = N PP = \Phi$$

$$X45 = X44 X55 = PP N = P$$

$$X13=X11 X23$$
, $X12 X33 = N V$, $S N = S$, $\Phi = S$

CONTD...

```
X24 = X22 X34, X23 X44 = V \Phi, V PP = \Phi

X35 = X33 X45, X34 X55 = N P, \Phi N = NP, N
```

```
X14 = X11 X24, X12 X34, X13 X44 = \Phi
X25=X22 X35, X23 X45, X24X55
    = V NP, V N, V P, \Phi N
    = V
X15 = X11 X25, X12 X35, X13 X45, X14 X55
    = N V, S NP, S N, S P
    = S
```

Calculation of inside probabilities

Inside:
$$\beta_j(p,q) = P(w_{pq}|N^j_{pq},G)$$

$$\begin{split} \beta_P(4,5) &= P(P \to PP\ N)\ ^*\beta_{PP}(4,4)\ ^*\beta_N(5,5) = 1^*1^*0.2 = 0.2 \\ \beta_{NP}(3,5) &= P(NP \to N\ P)\ ^*\beta_N(3,3)\ ^*\beta_P(4,5) = 1^*0.2^*0.2 = 0.04 \\ \beta_V(2,5) &= P(V \to V\ NP)\ ^*\beta_V(2,2)\ ^*\beta_{NP}(3,5) = 0.7^*0.3^*0.04 = 0.00168 \\ \beta_S(1,5) &= P(S \to N\ V)^*\beta_N(1,1)^*\beta_V(2,5) = 1^*0.2^*0.0084 = 0.00168 \end{split}$$

Calculation of outside probabilities

Outside:
$$\alpha_j(p,q) = P(w_{1(p-1)}, N^{j}_{pq}, w_{(q+1)m}|G)$$

 Outside probabilities (α) are computed in top down manner. For a given rule used in building the table, the outside probability for each child is updated using the outside probability of its parent non terminal and inside probability of its siblings.

$$\begin{array}{l} \alpha_{S}(1,5) = 1 \\ \alpha_{V}(2,5) = P(S \to N \ V)^{*} \ \beta_{N}(1,1)^{*}\alpha_{S}(1,5) = 1^{*}0.2^{*}1 = 0.2 \\ \alpha_{NP}(3,5) = P(V \to V \ NP)^{*} \ \beta_{V}(2,2)^{*}\alpha_{V}(2,5) \\ = 0.7^{*}0.3^{*}0.2 = 0.042 \\ \alpha_{P}(4,5) = P(NP \to N \ P)^{*} \ \beta_{N}(3,3)^{*}\alpha_{NP}(3,5) \\ = 1^{*}0.2^{*}0.042 \\ = 0.0084 \end{array}$$

Triangular table:

β _N (1,1)=0.2				$\alpha_{\rm S}(1,5)=1$
	β _V (2,2)=0.3			$\alpha_{V}(2,5) = 0.2$
		$\beta_N(3,3)=0.2$		$\alpha_{NP}(3,5)=0.042$
			β _{PP} (4,4)=1	$\alpha_{P}(4,5) = 0.0084$
				β _N (5,5)=0.2
She	Eats	Pizza	Without	anchovies

Top Down Bottom Up Parsing

for

Structurally ambiguous sentences

Top Down Bottom Up Chart Parsing for Structurally Ambiguous Sentences

- Sentence "I saw a boy with a telescope"
- Grammar:

```
S
         \rightarrow NP VP
NP \rightarrow ART N | ART N PP | PRON
VP \rightarrow VNPPP | VNP
PP \rightarrow P NP
ART \rightarrow a | an | the
         → boy | telescope
 N
PRON \rightarrow I
   \rightarrow saw
 V
         \rightarrow with
```

```
I saw a boy with a telescope 1 2 3 4 5 6 7 8
```

```
I saw a boy with a telescope
1 2 3 4 5 6 7 8
```

```
S_{1?} \rightarrow \bullet NP_{12}VP_{2?}
NP_{12} \rightarrow \bullet PRON_{12}
NP_{13} \rightarrow \bullet ART_{12}N_{23}
NP_{1?} \rightarrow \bullet ART_{12}N_{23}PP_{3?}
```



```
I saw a boy with a telescope 1 2 3 4 5 6 7 8
```

```
S_{1?} \rightarrow \bullet NP_{12}VP_{2?} \qquad NP_{12} \rightarrow PRON_{12} \bullet
NP_{12} \rightarrow \bullet PRON_{12} \qquad S_{1?} \rightarrow NP_{12} \bullet VP_{2?}
NP_{13} \rightarrow \bullet ART_{12}N_{23} \qquad VP_{2?} \rightarrow \bullet V_{23}NP_{3?}PP_{??}
NP_{1?} \rightarrow \bullet ART_{12}N_{23}PP_{3?} \qquad VP_{2?} \rightarrow \bullet V_{23}NP_{3?}
```


I saw a boy with a telescope 1 2 3 4 5 6 7 8

 $PP_{5?} \rightarrow P_{56} \bullet NP_{6?}$

 $NP_{67} \rightarrow PRON_{67}$

 $NP_{68} \rightarrow \bullet ART_{67}N_{78}$

 $NP_{6?} \rightarrow \bullet ART_{67}N_{78}PP_{8?}$

$$S_{1?} \rightarrow \bullet NP_{12}VP_{2?} \qquad NP_{12} \rightarrow PRON_{12} \bullet$$

$$NP_{12} \rightarrow \bullet PRON_{12} \qquad S_{1?} \rightarrow NP_{12} \bullet VP_{2?}$$

$$NP_{13} \rightarrow \bullet ART_{12}N_{23} \qquad VP_{2?} \rightarrow \bullet V_{23}NP_{3?}PP_{??}$$

$$NP_{1?} \rightarrow \bullet ART_{12}N_{23}PP_{3?} \qquad VP_{2?} \rightarrow \bullet V_{23}NP_{3?}$$

I saw a boy with a telescope 1 2 3 4 5 6 7 8

NP

NP

NP

I saw a boy with a telescope 1 2 3 4 5 6 7 8

NP

NP

PΡ

I saw a boy with a telescope 1 2 3 4 5 6 7 8

NP

