Ques 1: Given a Boolean function

$$f(a,b,c,d) = \sum_{m=0}^{\infty} m(0,1,5,7,11,14) + d(12,15)$$

Implement the function with a minimal network of 2:1 multiplexer. Consider that true and false forms of inputs are available.

$$f(a,b,c,d) = \sum m(0,1,5,7,11,14) + d(12,15)$$

 $f(a,b,c,d) = \overline{a}\overline{b}\overline{c} + \overline{a}bd + ab\overline{d} + acd$

Ques 2: For the sequential circuit shown below, t_{pd} is the propagation delay, t_{setup} is the setup time, and t_{hold} is the hold time. Find the maximum clock frequency at which this circuit can operate reliably.

Setup Time: It is the amount of time for which the data at the synchronous input must be stable before the active edge of the clock.

Hold Time: It is the amount of time for which the data of the synchronous input must be stable after the active edge of the clock.

Maximum clock frequency = The minimum time after which the next clock edge arrives

For Flip-Flop 1:

After the arrival of a clock edge, the output becomes stable after $t_{pd} = 8$ ns.

The output is then passed through on XOR gate and a NAND gate.

The net delay will be: 3ns + 2ns + 2ns = 7ns

This output from the NAND gate after 7 nsec must remain stable for at least t_{setup} time of FF2

So, the minimum time after which the next clock edge should arrive at FF 1 is

$$(T_{min})_{FF1} = 7 \text{ ns } +4 \text{ns} = 11 \text{ ns}$$

For Flip-Flop 2:

After the arrival of a clock edge, the output becomes stable after $t_{hold} = 3$ ns.

The output of FF2 is the input to FF1, this output after tpd = 8 ns must remain stable for at least (t_{setup}) time of FF1, i.e., for 5 ns, before the next clock edge should arrive at FF1.

The minimum time after which the next clock should arrive at FF1 should be:

$$(T_{min})_{FF2} = 8 \text{ ns} + 5 \text{ns} = 13 \text{ ns}$$

For the given circuit to operate reliably, the minimum clock time

$$(T_{min})_{CLK} = max[(T_{min})_{FF1}, (T_{min})_{FF2}] = 13 \text{ ns}$$

The maximum clock frequency will be

$$(f_{clk})_{max} = \frac{1}{(T_{min})_{clk}}$$

 $(f_{clk})_{max} = \frac{1}{T_{min}} = 76.92 MH$

$$(f_{clk})$$
max = $\frac{1}{13 \text{ ns}}$ = **76.92** *MHz*

Ques 3: For the sequential circuit shown below, t_{pd} is the propagation delay, t_{setup} is the setup time, and t_{hold} is the hold time. Find the maximum clock frequency at which this circuit can operate reliably.

Setup Time: It is the amount of time for which the data at the synchronous input must be stable before the active edge of the clock.

Hold Time: It is the amount of time for which the data of the synchronous input must be stable after the active edge of the clock.

Input is applied at FF_A and output is obtained at FF_C.

Two possible routes from input to output:

1.
$$FF_A \longrightarrow Comb. logic \longrightarrow FF_C$$

Minimum time required for stable output at FF_c:

$$9 \text{ ns} + 4 \text{ ns} + 2 \text{ ns} = 15 \text{ ns}$$

$$9 \text{ ns} + 4 \text{ ns} + 2 \text{ ns} = 15 \text{ ns}$$

2. $FF_A \longrightarrow FF_B \longrightarrow Comb. logic \longrightarrow FF_C$

Minimum time required for stable output at EE

$$10 \text{ ns} + 4 \text{ ns} + 2 \text{ ns} = 16 \text{ ns}$$

$$(T_{min})_{CLK} = max[(T_{min})FF1, (T_{min})FF2] = 16 \text{ ns}$$

The maximum clock frequency will be

 (f_{clk}) max = $\frac{1}{(Tmin)CLK}$

$$(f_{clk})$$
max = $\frac{1}{16 \text{ ns}}$ = 62.5 MHz

Ques 4: Transform the S-R flip flop to

- a) T flip flop
- b) J-K flip flop
- c) D flip flop

Characteristics equation of SR Flip-flop:
$$S + \overline{R} Q_n = Q_{n+1}$$
 (applied S.R = 0)

Characteristics equation of T Flip-flop:
$$T + Q_n = Q_{n+1}$$

Characteristics equation of JK Flip-flop: J
$$\overline{Q}_n + \overline{K}Q_n = Q_{n+1}$$

Characteristics equation of D Flip-flop:
$$D = Q_{n+1}$$

Transforming SR Flip-flop to T Flip-flop

Characteristic Table of T Flip-flop			Excitation Table of SR Flip- flop		
Т	Q_n	Q_{n+1}	S	R	
0	0	0	0	X	
0	1	1	Х	0	
1	0	1	1	0	
1	1	0	0	1	

Solving K-map for S and R separately with T and Q_n as inputs, we get:

$$S = T \overline{Q_n}$$
 and $R = TQ_n$

Transforming SR Flip-flop to D Flip-flop

Characteristic Table of D Flip-flop			Excitation Table of SR Flip- flop		
D	Q_n	Q_{n+1}	S	R	
0	0	0	0	X	
0	1	0	0	1	
1	0	1	1	0	
1	1	1	Х	0	

Solving K-map for S and R separately with D and Q_n as inputs, we get:

$$S = D$$
 and $R = \overline{D}$

Transforming SR Flip-flop to JK Flip-flop

Ch	naracteristic Ta	Excitation Table of SR Flip- flop			
J	К	Q_n	Q_{n+1}	S	R
0	0	0	0	0	Х
0	0	1	1	Х	0
0	1	0	0	0	Х
0	1	1	0	0	1
1	0	0	1	1	0
1	0	1	1	Х	0
1	1	0	1	1	0
1	1	1	0	0	1

Solving K-map for S and R separately with D and \boldsymbol{Q}_n as inputs, we get:

$$S = J \overline{Q_n}$$
 and $R = K Q_n$

