TDT4171 - Assignment 1

Aleksander Hansen

February 2016

I.1

- a) $\binom{52}{5} = 2598960$
- b) $\frac{1}{2598960}$
- c) $\frac{13}{2598960}$

I.2

- a) Du trekker først et hvilket som helst kort fra stokken, deretter er det 3 like kort igjen av 51. $\frac{3}{51}=\frac{1}{17}$
- b) Vi kan fjerne alle kortene av samme farge fra totalen, og får: $\frac{3}{39}=\frac{1}{13}$

I.3

Siden P(A|B) > P(A), har vi at:

$$\frac{P(A \cap B)}{P(B)} > P(A)$$

Vi ganger begge sidene med brøken $\frac{P(B)}{P(A)}$ og får

$$\frac{P(A \cap B)}{P(A)} = P(B|A) > P(B)$$

i.e. A gjør B mer sannsynlig gitt at B gjør a mer sannsynlig.

II

Figure 1: Bayesiansk netverk

III

I figur 1 har vi valgt dør 1 og embetsmannen åpner dør 2, vi ser da fra figuren at ved å bytte valget vårt til dør 3 dobler vi sannsynligheten for å vinne prisen. Dette gjelder selvsagt generelt hvis vi eller embetsmannen hadde åpnet andre dører så lenge reglene til spillet oppgitt i oppgaveteksten er fulgt.

Figure 2: Bayesiansk netverks grapf med MyChoice = Door
1 og Opened ByOfficial = Door
2

ContainsPrize		□ Door1			□ Door2			□ Door3		
	MyChoice	Door1	Door2	Door3	Door1	Door2	Door3	Door1	Door2	Door3
▶	Door1	0	0	0	0	0.5	1	0	1	0.5
Г	Door2	0.5	0	1	0	0	0	1	0	0.5
	Door3	0.5	1	0	1	0.5	0	0	0	0

Figure 3: Betinget sannsynlighets tabell