Bio 1M: Primate evolution

Patterns of evolution 1

Humans as an example

- We are an example of a biological species that has evolved
 - Many of your friends are probably humans
- Humans seem unique:
 - How do they differ from other evolved organisms?
 - What do they share with other evolved organisms?

Sir

milarities and differences
• What is different about people?
_
_
_
_
• What is the same?
_
_
*
*
story
\bullet There are a lot of steps (and a lot of divergences) between us and to common ancestor of life

Hi

- he last universal
- More than 3 billion years ago!
- Some key steps:
 - Eukaryotes
 - Animals
 - Vertebrates
 - Mammals
 - Primates
 - Apes

Timeline — Fig 25.7

- Why not just say how long ago?
 - Periods may be punctuated by major events
 - * Radiations, mass extinctions
 - People started talking about periods before they had good measures of how long ago things happened
 - Periods have cool names

*

1.1 Context for evolution

- Adaptations build on existing adaptations often in unexpected ways
- Evolution does not know where it's going
- In a constant environment, species can only improve with gradual adaptations to the same environment
 - and will be in danger of getting "stuck", e.g. vertebrate eyes
- A changing environment provides opportunities to try new combinations and build in unexpected directions

Physical changes

- Physical changes often provide species with new adaptive challenges and opportunities:
- Global climate change
- Continental drift
- Geological changes
 - New environments can arise (e.g., mountain ranges, desert basins)
 - Geology may also change connections between two populations without a large effect on how they live
 - * Rivers changing course
 - * Mountain ranges separating valley species

*

Changing ecosystems

- Taxa can be dramatically affected by changes in other taxa
 - Due to evolution or to colonization
- Interactions with other organisms are key to most ecological niches
 - Who do I eat? Who is trying to eat me? How do I reproduce?
- Co-evolution is a key driver of diversity. For example:
 - Plants evolve new ways to use insects for sex, or vertebrates for dispersal
 - Animals evolve new ways to benefit from plant resources

Mammalian ancestors

- Our ancestors, the **therapsids**, radiated and dominated many terrestrial environments before dinosaurs did
- Therapsids were largely replaced by dinosaurs in the age of dinosaurs
 - But some survived, and one radiated after a mass extinction

Radiation and contraction

• Examples:

- Many clades seem to go through periods of radiation and contraction
 - Gain and then loss of species diversity
- Therapsids, apes, hominins (us)
- Radiation gives many chances for adaptation
 - Things that have had radiations may be more likely to persist
 - Even after periods of contraction

Reasons for contraction

•	Why	might	a cl	lade	diversify	and	then	suffer	many	extincti	ons?
	_										
	_										

Observer bias

• One reason we see a lot of clades with a history of radiations may be that those clades are the ones we're looking at

_

- Clades with a history of radiation may be more successful
 - They've explored more kinds of environments
 - They're found in more different specific places
 - * e.g., marsupials in Australia
 - They've had more chances to adapt
 - * May have a few very successful species (like us)

Mammals - S55.1

- •
- ullet
- •
- •
- What might these have in common?

_

2 The evolution of primates — S55.2-3

- Humans are **primates**, an "order" characterized by
 - Highly developed **stereroscopic** vision
 - * Eyes are close together, face forward, and are used together
 - * Allows 3-d visualization
 - Versatile limbs
 - * Grasping hands and feet
 - * Nails and fingertips (instead of claws)
 - Large brains

Traits

• What sort of traits do biologists use to characterize a group?

• How would you interpret the fact that humans don't have grasping feet?

The angiosperm explosion

- Flowering plants diversified very rapidly around 100 mya million years ago
- This radically changed the ecology of the world, and opened up many new niches, apparently including space for primates

Primate adaptations

- There are a variety of theories for how characteristic primate adaptations evolved
- Each step was likely favored adaptively
- Likely something to do with processing and handling angiosperm fruit and flowers
 - Or else the insects that fed on these fruit and flowers

Adaptive theories

- There are many theories for why primate traits might have been adaptively favored in our ancestors
 - Leaping from branch to branch
 - Climbing and balancing on trees
 - Exploiting new plant resources
 - Catching insects
 - Adaptive foraging: the ability to switch between types of food, and to learn to use new types of food

Patterns of adaptation

- These strategies may have evolved sequentially
 - Maybe exploiting tree resources came first, but similar traits helped some species later catch insects
 - Maybe traits which evolved for one specific purpose later became useful for adaptive foraging

Anthropoids — Fig 55.2

$3 \quad \text{Apes} - \text{S}55.4$

Ape adaptations — p.228

- Apes are more adapted for swinging through trees, whereas monkeys are more adapted for climbing and leaping
- More upright
- Better at hanging, and worse at sitting
- Lots of missing pieces of the puzzle
 - There may be a lot of convergent evolution and secondary loss going on

Patterns of replacement

- Apes "radiated" into many habitats before monkeys did
 - Many ape species were apparently later replaced by monkeys
- Why might apes have diversified, and later been replaced by monkeys?
 - What if the ane radiation had never happened?
- What if the ape radiation had never happened?–

4 Learning about the past — S 55.5

Getting fed

- A major factor in adaptation is food source.
- The most important strategies for early primates were:

- Frugivory: eating fruits (and sometimes flowers)

- Folivory: eating leaves

- **Insectivory**: eating insects

Teeth — Fig 9.15

- Teeth are very important for processing food
- Why do we have wisdom teeth?

_

- Teeth help scientists understand what extinct animals ate
 - Well preserved, highly adapted

Eyes

- Eye **orbits** are the skeletal cavities where eyes are
- Orbits tell us size, shape and position of eyes from fossil animals
- What are the advantages and disadvantages of more forward-facing eyes?

• What are the advantages and disadvantages of larger eyes?

_

_

Sexual dimorphism

- Information about differences between males and females has implications about social structure and mating patterns
 - In species where there is more variation in male success (less bonding in pairs), we expect:

*

*

Dimorphism and sexual strategies

- Gorillas live in male-centered groups (one adult male, several adult females)
- Chimpanzees live in large, well-mixed groups with lots of interactions between males and females
- Which species should have more sexual dimorphism overall?

• Which species should have larger male genitals?

_

• What about humans?

Learning about evolution

- Understanding the course of evolution is an important part of understanding how things work now
 - How organisms work, and how ecosystems work
- There are many challenges:
 - Timelines, identification, convergent evolution

Summary

- People have important differences from other organisms
- We got here using the same rules of natural selection as everyone else
 - Things may be different now, but even that is not so clear
- Adaptation does not move in a straight line
 - Changing conditions lead to opportunities for new adaptations
 - New adaptations themselves can be an important cause of changing conditions
 - * Innovations, or co-evolution with other taxa