

Programação Lógica Neuro-Probabilística

Parte 2 de 2

CPS840 – Tópicos Especiais em Inteligência Artificial Professor: Gerson Zaverucha

Cleiton Moya de Almeida

Rio de Janeiro, 9 de setembro de 2020

Parte 1:

- Introdução
 - √ Abordagens em IA
 - ✓ Proposta do DeepProbLog
 - ✓ Exemplo
- Programação em Lógica
 - √ Conceitos Básicos
 - ✓ Prolog
- ProbLog
 - ✓ Definição
 - ✓ Inferência
 - ✓ Aprendizado

Parte 2:

- Deep Learning
 - ✓ Conceitos básicos
 - ✓ Backpropagation
- DeepProbLog
 - ✓ Semântica
 - ✓ Inferência
 - ✓ Aprendizado
- Experimentos
 - ✓ Raciocínio Lógico e Deep Learning
 - ✓ Programação Indutiva
 - ✓ Programação Probabilística e Deep Learning
- Trabalhos correlatos
- Conclusões

Deep Learning

Conceitos Básicos

- ✓ Rede neural artificial (NN): modelo não-linear altamente hiper parametrizado (por conseguinte bastante flexível);
- ✓ Conjunto de treinamento: $\{(x_i, y_i)\}_{i=1}^N$, com N exemplares i.i.d.;
- \checkmark $\hat{y} = \mathcal{M}(x|\Theta)$, onde M é uma função de mapeamento com parâmetros Θ ;
- $\checkmark \mathcal{L}(\hat{y}, y)$: função de custo (*loss function*)
- ✓ Treinar o modelo significa minimizar o valor esperado $\bar{\mathcal{L}} = \frac{1}{N} \sum_{i} \mathcal{L}(\mathcal{M}(x_i | \Theta), y_i);$

Fonte: Abu-Mostafa, Magdon-Ismail. e-Chapter 7: Neural Networks.

Deep Learning

Backpropagation

- ✓ A abordagem de otimização mais utilizada em redes neurais é o algoritmo de Gradiente Descendente;
- ✓ O treinamento é feito com o algoritmo *backpropagation*:

```
Initialize all weights w_{ij}^{(l)} at random

2: for t=0,1,2,\ldots do

3: Pick n\in\{1,2,\cdots,N\}

4: Forward: Compute all x_j^{(l)}

5: Backward: Compute all \delta_j^{(l)}

6: Update the weights: w_{ij}^{(l)} \leftarrow w_{ij}^{(l)} - \eta \ x_i^{(l-1)} \delta_j^{(l)}

7: Iterate to the next step until it is time to stop

8: Return the final weights w_{ij}^{(l)}
```


Fonte: Abu-Mostafa, Learning From Data. Lecture 10: Neural Networkshttp://work.caltech.edu/slides/slides10.pdf

Semântica

✓ Recordando, **ProbLog** trabalha com um conjunto de fatos probabilísticos:

```
0.2::earthquake.
0.1::burglary.
0.5::hears_alarm(mary).
```

✓ ProbLog suporta também fatos probabilísticos não básicos na forma de disjunções anotadas (ADs):

$$p_1 :: h_1 ; ... ; p_n :: h_n := b_1, ..., b_m.$$

Onde o somatório de p_1, \dots, p_n deve ser unitário.

- \checkmark Significado: quando ocorre $\underline{ t todos}\ b_j$, implica em algum h_i , ou nenhum deles com probabilidade $(1-\sum p_i)$
- ✓ Exemplos:

$$\frac{1}{3}$$
 :: color(B, green); $\frac{1}{3}$:: color(B, red); $\frac{1}{3}$:: color(B, blue) :- ball(B).

0.4:: earthquake(none); 0.4:: earthquake(mild); 0.2:: earthquake(severe).

Conjunto de fatos

✓ Auxiliam a modelagem, mas não são essenciais em ProbLog (podem ser substituídas por fatos + regras).

Semântica

✓ Em DeepProbLog, as disjunções anotadas são estendidas de forma a **incorporar o modelo neural**:

```
nn(m_digit, [X], Y, [0...9]) :: digit(X,Y).
addition(X,Y,Z) :- digit(X,N1), digit(Y,N2), Z is N1+N2.
```

Neural annotated disjunction (nAD)

de Sistemas e Computação

DeepProbLog

Semântica

✓ Exemplo de programa DeepProbLog:

```
nn(m_digit, [X], Y, [0...9]) :: digit(X,Y).
addition(X,Y,Z) :- digit(X,N1), digit(Y,N2), Z is N1+N2.
```

Instanciando o nAD a com a imagem de entrada 3:

✓ Avaliando as expressões:

$$p_0$$
: digit($\mathbf{3}$, 0); ...; p_9 : digit($\mathbf{3}$, 9).

Ground AD

- $[p_0, ..., p_9]$: vetor de saída da rede m_digit quando avaliada em [3];

 - NN pode ser de qualquer arquitetura Requisito: saída precisa ser normalizada

Fonte: https://dtai.cs.kuleuven.be/stories/post/robin-manhaeve/deepproblog/

Semântica

✓ Além das disjunções anotadas, análogo aos fatos probabilísticos, temos também fatos neurais:

- \checkmark Neste exemplo, a rede neural m retorna o grau de similaridade das entradas X e Y (imagens).
- ✓ Instanciando com as entradas 3 e 3:

$$nn(m, [3, 3]) :: similar(3, 3).$$

Ground neural fact

✓ A avaliação resulta em um fato probabilístico:

```
p::similar(3,3).
```


- Semântica
 - ✓ Em resumo:

Inferência

✓ Exemplo: addition(Ø, \,\,1).

```
nn(m_digit, [X], Y, [0...9]) :: digit(X,Y).
addition(X,Y,Z) :- digit(X,N1), digit(Y,N2), Z is N1+N2.
```

(a) The DeepProbLog program.

```
nn(m_digit,[0],0)::digit(0,0);nn(m_digit,[0], 1)::digit(0,1).
nn(m_digit,[V],0)::digit(V,0);nn(m_digit,[V], 1)::digit(V,1).
addition(0,V,1):- digit(0,0), digit(V,1).
addition(0,V,1):- digit(0,1), digit(V,0).
```

(b) The ground DeepProbLog program.

```
0.8 :: digit(0,0); 0.1 :: digit(0,1).

0.2 :: digit(1,0); 0.6 :: digit(1,1).

addition(0,1,1) :- digit(0,0), digit(1,1).

addition(0,1,1) :- digit(0,1), digit(1,0).
```

(c) The ground ProbLog program.

✓ Note que: $Z = 1 \Rightarrow \begin{cases} N1, N2 \in \{0, 1\} \\ (N1, N2) \in \{(0, 1), (1, 0)\} \end{cases}$

- ✓ À partir deste passo, igual ProbLog:
 - 1. Cálculo da formula proposicional;
 - 2. Compilação de SDD;
 - Criação e avaliação do AC.

Aprendizado

- ✓ Aprendizado de:
 - Parâmetros da rede neural;
 - Probabilidades (parâmetros probabilísticos);
- ✓ Semelhante à abordagem **gradiente descendente** utilizado em ProbLog
- ✓ DeepProbLog:
 - ✓ Saída das redes neurais são probabilidades
- ✓ ProbLog:
 - \checkmark Os parâmetros p_i são otimizados utilizando o gradiente (estrutura *semiring*) , o qual permite calcular $\frac{\partial P(q)}{\partial p_i}$
 - ✓ O gradiente então é usado para a atualização (gradiente descendente)

Aprendizado

- ✓ Exemplo:
 - Mesmo exemplo da adição de duas imagens MNIST;
 - Introdução de ruído: alguns dos labels são corrompidos e escolhidos aleatoriamente (distribuição uniforme);
 - Objetivo: aprender também a fração dos exemplares com ruído;

```
nn(classifier, [X], Y, [0 .. 9]) :: digit(X,Y).
t(0.2) :: noisy.

1/19 :: uniform(X,Y,0) ; ... ; 1/19 :: uniform(X,Y,18).

addition(X,Y,Z) :- noisy, uniform(X,Y,Z).
addition(X,Y,Z) :- \+noisy, digit(X,N1), digit(Y,N2), Z is N1+N2.
```

(a) The DeepProbLog program.

Aprendizado

✓ Instanciando à partir da query addition(a, b, 1)

```
nn(classifier,[a],0) :: digit(a,0); nn(classifier,[a],1) :: digit(a,1).
nn(classifier,[b],0) :: digit(b,0); nn(classifier,[b],1) :: digit(b,1).
t(0.2)::noisy.

1/19::uniform(a,b,1).
addition(a,b,1) :- noisy, uniform(a,b,1).

addition(a,b,1) :- \+noisy, digit(a,0), digit(b,1).
addition(a,b,1) :- \+noisy, digit(a,1), digit(b,0).
```

(b) The ground DeepProbLog program.

Aprendizado

✓ Circuito aritmético (AC)

```
addition(a,b,1) := noisy, uniform(a,b,1).
addition(a,b,1) := \+noisy, digit(a,0), digit(b,1).
addition(a,b,1) := \+noisy, digit(a,1), digit(b,0).
```


(c) The AC for query addition(a,b,1).

Legend

```
p, \\ [\partial p/\partial p_{\text{noisy}}, \\ \partial p/\partial p_{\text{digit(a,0)}}, \dots, \partial p/\partial p_{\text{digit(a,9)}}, \\ \partial p/\partial p_{\text{digit(b,0)}}, \dots, \partial p/\partial p_{\text{digit(b,9)}}]
```


- Raciocínio Lógico + Deep Learning
 - **T1**: addition(**3**, **5**, 8)
 - ✓ Baseline: Rede neural convolucional (CNN)

	Number of training examples			
Model	30 000	3 000	300	
Baseline DeepProbLog		78.32 ± 2.14 92.18 ± 1.57		

- Raciocínio Lógico + Deep Learning
 - **T2**: addition([3,8],[2,5],63)

	Number of training examples				
Model	15 000	1 500	150	T1 (30 000)	
Baseline DeepProbLog		1.34 ± 0.53 87.21 ± 1.92			

- Raciocínio Lógico + Deep Learning
 - T3: addition(3,5,8)
 - ✓ Necessidade de regularização a nível lógico para não ficar preso na solução trivial 0 + 0 = 0;

- Raciocínio Lógico + Deep Learning
 - **T4**: addition(**3**, **5**, **14**)
 - ✓ Tolerância ao ruído com ou sem modelagem explícita do mesmo;

	Fraction of noise					
	0.0	0.2	0.4	0.6	0.8	1.0
Baseline DeepProbLog	93.46 97.20			52.67 92.90	8.79 46.42	5.87 0.88
DeepProbLog w/ explicit noise Learned fraction of noise	96.64 0.000			94.12 0.618	73.22 0.803	2.92 0.985

Programação Indutiva

- ✓ Program Sketching [1] usando interpretado diferencial ∂4 [2]
 - T5: forth_addition([4], [8], 1, [1, 3])
 - ✓ Acurácia 100%, semelhantes ao ∂4;
 - **T6**: forth_sort([8, 2, 4], [2, 4, 8])
 - ✓ Melhor escalabilidade do DeepProbLog;

		Training length				
	Test length	2	3	4	5	6
∂4 <u>8</u>	8	100.0	100.0	49.22	_	_
	64	100.0	100.0	20.65	_	_
DeepProbLog	8	100.0	100.0	100.0	100.0	100.0
	64	100.0	100.0	100.0	100.0	100.0

		Training length				
	2	3	4	5	6	
$\partial 4$ on GPU	42 s	160 s	_	_	_	
$\partial 4$ on CPU	$61 \mathrm{\ s}$	$390 \mathrm{\ s}$	_	_	_	
${\bf DeepProbLog}$	$11 \mathrm{\ s}$	$14 \mathrm{\ s}$	$32 \mathrm{\ s}$	$114~\mathrm{s}$	$245 \mathrm{s}$	

- T7: wap ('Robert has 12 books How many does he have now?', 12,3,1,10)
 - ✓ Acurácia 96.5%, semelhantes ao d4;

Programação Probabilística e Deep Learning

- **T8**: Classificação de moedas e comparação
 - ✓ Conceito de "supervisão distante"
 - ✓ Entrada: imagem sintética de 2 moedas
 - Imagem pode mostrar cara ou coroa das moedas
 - Rótulos: {"same", "different"}
 - ✓ Duas NN, uma para cada moeda
 - Predizem cara ou coroa
 - ✓ Duas tarefas:
 - Reconhecer e separar as duas moedas
 - Classificar cara/coroa
 - ✓ Questões:
 - Espera-se que as duas redes concordem sobre qual lado da moeda é cara e qual é coroa
 - Classificar cara/coroa


```
nn(net1, [X], Y, [heads, tails]) :: coin1(X,Y).
nn(net2, [X], Y, [heads, tails]) :: coin2(X,Y).

compare(X,X,same).
compare(X,Y,different) :- \+compare(X,Y,same).

coins(X,Comparison) :-
    coin1(X,C1),
    coin2(X,C2),
    compare(C1,C2,Comparison).
```


- Programação Probabilística e Deep Learning
 - **T8**: Classificação de moedas e comparação

Labeled examples	Not solved	Expected solution	Other solution
0	56%	11%	33%
5	39%	40%	21%
10	7%	92%	1%
20	4%	96%	0%
50	3%	97%	0%
100	4%	96%	0%


```
nn(net1, [X], Y, [heads, tails]) :: coin1(X,Y).
nn(net2, [X], Y, [heads, tails]) :: coin2(X,Y).

compare(X,X,same).
compare(X,Y,different) :- \+compare(X,Y,same).

coins(X,Comparison) :-
    coin1(X,C1),
    coin2(X,C2),
    compare(C1,C2,Comparison).
```


Programação Probabilística e Deep Learning

- **T9**: 0.8::poker([Q♡, Q♦, A♦, K♣],loss).
 - ✓ Jogo de Poker simplificado:
 - Apenas J, Q, K, A;
 - 2 jogadores com duas cartas;
 - 1 carta comunitária (não-observada);
 - Sem troca de cartas;
 - Mãos: par, trio, straight.
 - ✓ Entrada: as 4 cartas distribuídas as jogadores;
 - ✓ Classes: {win, loss, draw};
 - ✓ Objetivos:
 - 1. Treinar a NN para reconhecer as 4 cartas;
 - 2. Raciocinar (probabilisticamente) sobre a carta não-observada;
 - 3. Aprender a distribuição da carta comunitária (não rotulada);

Programação Probabilística e Deep Learning

✓ A fim de proporcionar convergência mais rápida, em 10% dos exemplares é adicionada a carta comunitária:

$$poker([Q\heartsuit, Q\diamondsuit, A\diamondsuit, K\clubsuit], A\diamondsuit, loss).$$

- ✓ Uma das vantagens de DeepProbLog: exemplares com diferentes graus de observabilidade;
- ✓ Função de custo: erro quadrático mínimo (MSE);

✓ Resultados:

- 10 experimentos, 6 convergiram.
- Os que convergiram foram capazes de aprender corretamente;
- Os que não convergiram: identificação incorreta das cartas;

Distribution	Jack	Queen	King	Ace
Actual	0.2	0.4	0.15	0.25
Learned	0.203 ± 0.002	0.396 ± 0.002	0.155 ± 0.003	0.246 ± 0.002

Table 8: The results for the Poker experiment (**T9**).

PESC Programa de Engenharia de Sistemas e Computação

Trabalhos Correlatos

- 3 tipos de abordagens diferentes:
 - √ Lógica como regularização
 - Lógica incluída como um regularizador durante a otimização da NN;
 - ✓ Templating Neural Networks
 - Lógica utilizada como template para a construção de arquiteturas de NN;
 - ✓ Neural Program Induction
 - Objetivo: Aprender programas com base nos dados
- Dfierenças com DeepProbLog:
 - ✓ Outras abordagens: tipicamente focam em codificar lógica nas redes neurais;
 - ✓ DeepProbLog: integra NN em um arcabouço lógico-probabilístico.

Conclusões

Conclusões do artigo:

- ✓ DeepProbLog estende ProbLog com predicados neurais;
- ✓ Aprendizado é feito usando aProbLog para o cálculo do gradiente;
- Experimentos demonstraram capacidade de combinar raciocínio simbólico e sub-simbólico, programação indutiva e programação lógica probabilística
- ✓ Limitações: DeepProbLog utiliza apenas inferência exata
 - Baixa escalabilidade;
 - Impraticável para problemas maiores;
- ✓ Trabalhos futuros: inferência aproximada.

Conclusões minhas:

- ✓ DeepProbLog é aplicável quando se consegue dividir de antemão o problema em duas partes: neural e lógico/probabilístico;
- ✓ Trabalho não expõe com clareza a limitação atual da escalabilidade da inferência (apenas cita na conclusão)

Obrigado Dúvidas?