

SHARJAH

محرسة دلهي الخاصة ذ.م.م. .DELHI PRIVATE SCHOOL L.L.C

Affiliated to C.B.S.E., DELHI

(Approved & Recognized By Ministry of Education - United Arab Emirates)

FIRST TERM EXAMINATION (2021-22)

Subject: MATHEMATICS
Grade: XI

Max. Marks:40
Time:90 Minutes

Name: Section: Roll No:

General Instructions:

- 1. This question paper contains three sections A, B and C. Each part is compulsory.
- 2. Section A has 20 MCQs, attempt any 16 out of 20.
- 3. Section B has 20 MCQs, attempt any 16 out of 20
- 4. Section C has 10 MCQs, attempt any 8 out of 10.
- 5. There is no negative marking.
- 6. All questions carry equal marks.

	SECTION				
		SECTION – A			
		In this section, attempt any 16 questions out of Questions $1-20$.			
		Each Question is of 1 mark weightage			
1.	The AM and GM between two positive numbers a and b are equal. Then				
	a.	$a = \frac{1}{b}$	b.	$b = \frac{1}{a^2}$	
	c.	$a = \frac{1}{b^2}$	d.	None of these	
2.	Let n(A)=2 and n(B)=2. the number of non-empty relation from A to B becomes				
	a.	4	b.	16	
	c.	15	d.	None of these	
3.	The range of the function $f(x) = \frac{x}{ x }$ is				
	a.	R- {0}	b.	R- {-1,1}	
	c.	{-1,1}	d.	None of these	
4.	If A and B are finite sets such that $A \subset B$, then $n(A \cup B) = \underline{\hspace{1cm}}$.				
	a.	Ø	b.	n (A)	
	c.	n(B)	d.	U	
5.	The range of the function $f(x)= x-1 $ is				
	a.	(-∞,0)	b.	[0, ∞)	
	c.	$(0,\infty)$	d.	R	

6.	The domain and the range of the function f given by $f(x)=2- x-5 $ is				
	$\mathbf{a} \qquad D = R^+ \text{ and } R = (-\infty, 2)$	b	$D = R^- \text{ and } R = (-\infty, 2)$		
	c $D = R$ and $R = (-\infty, 2)$	d			
7.	If Set A and B are defined as $A = \{(x, y): y = \frac{1}{x}, 0 \neq x \in R\}$ and $B = \{(x, y): y = x, x \in R\}$,				
	then $n(A \cap B) = $ _				
	a 2	В	0		
	c 1	d	None of these		
8	If Z_1 and Z_2 are any two complex numbers such that	at \mathbb{Z}_1 -	$+Z_2$ is real, then		
	$\mathbf{a} \qquad \qquad \mathbf{z}_1 = \overline{z_1} \text{and } \mathbf{z}_2 = \overline{z_2}$	b	$z_1 = \overline{z_2}$		
	a $z_1 = \overline{z_1}$ and $z_2 = \overline{z_2}$ c $z_1 = \frac{1}{z_2}$	d	None of these		
9.	If $z = \frac{3+i2}{3-i2}$ then $ z = $				
	a 5	b	13		
			$\sqrt{\frac{13}{5}}$		
	c 5	d	None of these		
	$\sqrt{\frac{5}{13}}$				
10.	If $z = \frac{1}{1+i^{50}+i^{100}+i^{501}}$ then $ z = $	•			
	a 1	b	0		
	$\begin{bmatrix} \mathbf{c} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$	d	None of these		
11.	The smallest positive integer for which $\left(\frac{1+i}{1-i}\right)^n = 1$, is				
	a 2	b	3		
	c <mark>4</mark>	d	6		
12.	If 'n' is a positive integer the value of $i^n + i^{n+1} + i^{n+2} + i^{n+3}$ is				
	a <mark>0</mark>	b	1		
	c -1	d	-i		
13.	$\left(\frac{1-i}{1+i}\right)^2 = \underline{\hspace{1cm}}$				
	a 1	b	- <mark>1</mark>		
	c i	d	None of these		
14.	The value of $9^{\frac{1}{3}}$, $9^{\frac{1}{9}}$, $9^{\frac{1}{2}}$,, $to \infty is$				
	a <mark>3</mark>	b	6		
	c 2	d	None of these		
15.	Which term of the sequence $\sqrt{3}$, 3 , $3\sqrt{3}$,, is 72				
	a 12	b	6		
	c 3	d	None of these		
16,	If three GMs are inserted in between 3 and 243, the	en th	e common ratio is		

Page **2** of **6**

	a	6	b	4	
	c	3	d	None of these	
17.	If the first term of a GP is 2 and the sum to infinity is 6, then the common ratio is				
	a	3	b	<u>1</u>	
				3	
	С	<u>2</u>	d	2	
18.	The common ratio of a GP is 3, and its 7 th term is 243, then its third term is				
10.	a	1	b	9	
	c	3	d	27	
19.		thmetic means are inserted between 7 and 71 in			
17.		nmon difference is	Such	a way that its 5 mean is 27. Then the	
	a	5	b	4	
	C	6	d	None of these	
20.	If th	ne sum of n terms of an AP is given $S_n=3n+2n^2$,			
	a	14	b	9	
	С	4	d	5	
		SECTION	ON I	<u> </u>	
		In this section, attempt any 16 que	estio	ns out of Questions $21 - 40$.	
		Each Question is of		_	
0.1	If n arithmetic means are inserted between 3 and 17 such that the last is 3 times the first, then				
21.	If n	arithmetic means are inserted between 3 and 17	suc	h that the last is 3 times the first, then	
21.	If n n =		7 suc	h that the last is 3 times the first, then	
21.			b.	th that the last is 3 times the first, then	
21.	n =		I _	th that the last is 3 times the first, then 6 8	
21.	n = a. c.	<u> </u>	b.	<mark>6</mark> 8	
	n = a. c.	5 9 AM''s are inserted between x and 2y and also	b.	<mark>6</mark> 8	
	n = a. c. If n	5 9 AM''s are inserted between x and 2y and also	b.	<mark>6</mark> 8	
	n = a. c. If n the a. c.	5 9 AM" s are inserted between x and 2y and also x=y ry=(n-r+1)x	b.d.betwb.d.	$\frac{6}{8}$ een 2x and y. If the r th means are equal, $\frac{ny=rx}{ry=(n-r)x}$	
	n = a. c. If n then a. c. In a	5 9 AM" s are inserted between x and 2y and also n x=y ry=(n-r+1)x a locality of 2000 families, it was found that 409	 b. d. betw d. of 	een 2x and y. If the r th means are equal, $ny=rx$ $ry=(n-r)x$ families buy newspaper A, 20% buy	
22.	n = a. c. If n there a. c. In a new	5 9 AM" s are inserted between x and 2y and also n x=y ry=(n-r+1)x a locality of 2000 families, it was found that 409 vspaper B and 10% families buy newspaper C,5	 b. d. b. d. 6 of : % bu 	8 een 2x and y. If the r th means are equal, ny=rx ry= (n-r)x families buy newspaper A, 20% buy ny A and B,3% buy B and C and 4 % buy	
22.	n = a. c. If n there a. c. In a new	5 9 AM" s are inserted between x and 2y and also n x=y ry=(n-r+1)x a locality of 2000 families, it was found that 409 yespaper B and 10% families buy newspaper C,5 and C. If 2% buy all the 3 newspapers, the number of the control	b. d. betw b. d. 6 of :	8 een 2x and y. If the r th means are equal, ny=rx ry= (n-r)x families buy newspaper A, 20% buy y A and B ,3% buy B and C and 4 % buy families which buy A only is	
22.	n = a. c. If n there a. c. In a new	5 9 AM" s are inserted between x and 2y and also n x=y ry=(n-r+1)x a locality of 2000 families, it was found that 409 vspaper B and 10% families buy newspaper C,5 and C. If 2% buy all the 3 newspapers, the numb	 b. d. b. d. 6 of : b. b. b. b. 	8 een 2x and y. If the r th means are equal, ny=rx ry= (n-r)x families buy newspaper A, 20% buy y A and B ,3% buy B and C and 4 % buy families which buy A only is	
22.	n = a. c. If n then a. c. In a new A a a. c.	5 9 AM" s are inserted between x and 2y and also n x=y ry=(n-r+1)x a locality of 2000 families, it was found that 409 yespaper B and 10% families buy newspaper C,5 and C. If 2% buy all the 3 newspapers, the numb 310 360	b. d. betw b. d. 6 of: 9 but the per of b. d.	8 een 2x and y. If the r th means are equal, ny=rx ry= (n-r)x families buy newspaper A, 20% buy y A and B ,3% buy B and C and 4 % buy families which buy A only is	
22.	n = a. c. If n then a. c. In a new A a a. c. If the	5 9 AM" s are inserted between x and 2y and also n x=y ry=(n-r+1)x a locality of 2000 families, it was found that 409 yespaper B and 10% families buy newspaper C,5 and C. If 2% buy all the 3 newspapers, the numb 310 360 he sum to infinity of a GP is 2 and the sum to in	b. d. betw b. d. 6 of: 9 but the per of b. d.	8 een 2x and y. If the r th means are equal, ny=rx ry= (n-r)x families buy newspaper A, 20% buy y A and B ,3% buy B and C and 4 % buy families which buy A only is	
22.	n = a. c. If n there a. c. In a new A a a. c. If the	5 9 AM" s are inserted between x and 2y and also n x=y ry=(n-r+1)x a locality of 2000 families, it was found that 409 vspaper B and 10% families buy newspaper C,5 and C. If 2% buy all the 3 newspapers, the numb 310 360 he sum to infinity of a GP is 2 and the sum to in common ratio is	b. d. betw b. d. 6 of 1 % but er of b. d. finity	8 een 2x and y. If the r th means are equal, ny=rx ry= (n-r)x families buy newspaper A, 20% buy y A and B ,3% buy B and C and 4 % buy families which buy A only is 660 730 of the squares of the terms is also 2, then	
22.	n = a. c. If n then a. c. In a new A a a. c. If the the a.	5 9 AM" s are inserted between x and 2y and also n x=y ry=(n-r+1)x a locality of 2000 families, it was found that 409 yespaper B and 10% families buy newspaper C,5 and C. If 2% buy all the 3 newspapers, the numb 310 360 the sum to infinity of a GP is 2 and the sum to in common ratio is	b. d. betw b. d. 6 of: 8 but betw cer of d. finity	8 een 2x and y. If the r th means are equal, ny=rx ry= (n-r)x families buy newspaper A, 20% buy y A and B ,3% buy B and C and 4 % buy families which buy A only is 660 730 of the squares of the terms is also 2, then	
22.	n = a. c. If n there a. c. If the a. c. c. c.	5 9 AM" s are inserted between x and 2y and also n x=y ry=(n-r+1)x a locality of 2000 families, it was found that 409 vspaper B and 10% families buy newspaper C,5 and C. If 2% buy all the 3 newspapers, the numb 310 360 he sum to infinity of a GP is 2 and the sum to in common ratio is 1/2 1/4	b. d. betw b. d. 6 of : 8 but the per of the d. finity b. d.	8 een 2x and y. If the r th means are equal, ny=rx ry= (n-r)x families buy newspaper A, 20% buy y A and B ,3% buy B and C and 4 % buy families which buy A only is 660 730 of the squares of the terms is also 2, then	
22.	n = a. c. If n there a. c. If the a. c. c. c.	5 9 AM" s are inserted between x and 2y and also n x=y ry=(n-r+1)x a locality of 2000 families, it was found that 409 yespaper B and 10% families buy newspaper C,5 and C. If 2% buy all the 3 newspapers, the numb 310 360 he sum to infinity of a GP is 2 and the sum to in common ratio is 1/2 1/4 1,q,r are in AP and x,y,z form a GP then x ^{q-r} . y	 b. d. betw d. of: b. d. finity 	een 2x and y. If the r th means are equal, $ny=rx$ $ry= (n-r)x$ families buy newspaper A, 20% buy $ry A \text{ and B ,3% buy B and C and 4 % buy}$ families which buy A only is 660 730 $r \text{ of the squares of the terms is also 2, then}$ $1/3$ $-\frac{1}{2}$ $2^{p-q} =$	
22.	n = a. c. If n there a. c. If the a. c. c. c.	5 9 AM" s are inserted between x and 2y and also n x=y ry=(n-r+1)x a locality of 2000 families, it was found that 409 vspaper B and 10% families buy newspaper C,5 and C. If 2% buy all the 3 newspapers, the numb 310 360 he sum to infinity of a GP is 2 and the sum to in common ratio is 1/2 1/4	b. d. betw b. d. 6 of : 8 but the per of the d. finity b. d.	8 een 2x and y. If the r th means are equal, ny=rx ry= (n-r)x families buy newspaper A, 20% buy y A and B ,3% buy B and C and 4 % buy families which buy A only is 660 730 of the squares of the terms is also 2, then	

26.	The multiplicative inverse of the complex number $\frac{3-i}{1+2i} + \frac{1+i}{2-i}$ is					
	a	3+i2	b	2+i2		
	С	2+i	d	$\frac{1+2i}{}$		
		2		2		
27.						
	of t	he GP is	T .			
	a	1	b	2		
20	c	<u>3</u>	d	-1		
28.	$\frac{z+2}{z-2}$ is purely imaginary, then $ z =$					
	a	1	b	2		
	c	3	d	⁵ / ₂		
29.	If f	$\overline{(z)=\frac{7-z}{1-z^2}}$, where $z=1+2i$, then $ f(z) $ is				
	a	<u> </u>	b	z		
		2				
	c	2 z	d	None of these		
30.		o finite set have 'm' and 'n' elements. The num				
	48	more than the total number of elements in power	er set	of the second set. Then the value of m and		
	n aı		T _			
	a	m=6, n=5	b	m=7 , n=4		
21	C	$\mathbf{m} = 6, \mathbf{n} = 4$	d	m = 2, n=4		
31.		$\{4^n - 3n - 1: n \in N\}; Y = \{9(n-1): n \in N\}$	1	n XUY=		
	a	X N	b d	None of these		
32.	C		-			
32.	The sum of the first two terms of an infinite GP is 1 and every term is equal to twice the sum of the succeeding terms. The first term of the GP is					
	a	1/2	b	1/4		
	С	2/3	d	3/4		
33.		GP consists of an even number of terms. If the s				
		the odd places, the common ratio of the GP is				
	a	4	b	5		
	С	3	d	5/2		
34.	If ($(x + iy)^{\frac{1}{3}} = a + ib$, then $\frac{x}{a} + \frac{y}{b} = $	•			
	a	$a^2 + b^2$	b	$2(a^2 - b^2)$		
	c	$2(a^2+b^2)$	d	$2(a^2 - b^2) - 4(a^2 - b^2)$		
35.	The	e value of $\left(\frac{1-i}{1+i}\right)^{100}$ is	•			
		i	b	-i		
	a	0	d	1		
1	C	V	u	<mark></mark>		

36.	The complex number z=x+iy which satisfies the equation $\left \frac{z-i2}{z+i2}\right = 1$ lies on				
	a	The real axis	b	Imaginary axis	
	c	The straight-line x=1	d	The line y=1	
37.	37. Find the range of the function $f(x) = \frac{3}{2-x^2}$				
	a	$(-\infty,0) \cup \left(\frac{3}{2},0\right)$	b	$\frac{\text{R-}[0,\frac{3}{2})}{(-\frac{3}{2},\frac{3}{2})}$	
	c	$(0,\frac{3}{2})$	d	$\left(-\frac{3}{2},\frac{3}{2}\right)$	
38.					
	a	(-∞, -1) ∪ [1,4)	b	$(-\infty, -1) \cup (1,4)$ $(-\infty, 1] \cup [1,4)$	
	c	$(-\infty, -1) \cup (1,4]$	d	(-∞,1]∪[1,4)	
39.	If f	f(x)=a x+b where a and b are integers and $f(-1)=a$	= -5 a	and $f(3)=3$. Then the value of $a+b=$	
	a	5	b	-5	
	c	<mark>-1</mark>	d	3	
40	a aı	and b are real numbers such that $\frac{a}{1+i} + \frac{b}{1+2i} + 1 = \frac{a}{1+2i}$	= 0 , t	then a + ib is	
	a	$\sqrt{34}$	b	$\sqrt{50}$	
	c	$\sqrt{41}$	d	$\sqrt{40}$	
		SECTION –	С		
		In this section, attempt a	ny 8	questions.	
		Each question is of 1-ma	ark w	veightage.	
		Questions 46-50 are based	on a	Case-Study.	
41	If n	is even $\frac{1+i^{2n+1}}{1+i^{2n-1}} = $			
	a	1	b	-1	
	c	i	d	-i	
42.	The conjugate of $\frac{1}{i^7}$				
	a	1	b	- <mark>i</mark>	
	c	i	d	None of these	
43.	The domain of the function $f(x) = \sqrt{x-1} + \sqrt{3-x}$				
	a	[1,∞)	b	(-∞, 3)	
	c	(1,3)	d	[1,3]	
44	The	e domain of the function $f(x)$ given by $f(x) = \frac{x^2 + 2}{x^2 - x^2}$	$\frac{x+1}{x-6}$		
	a	R- {3,-2}	b	R-(3,-2)	
	c	R- [-3,-2]	d	-1	
45.	The	e range of the function defined by $f(x) = \frac{4-x}{4+x}$			
	a	-4	b	<mark>-1</mark>	
	c	1	d	None of these	

In a survey of 25 students, it was found that 15 had taken Mathematics,12 had taken Physics and 11 had taken Chemistry ,5 had taken Mathematics and Chemistry ,9 had taken Mathematics and Physics, 4 had taken Physics and Chemistry and 3 had taken all the three subjects. Find the number of students that had taken in the following question (Qu Nos:46-50)

46	How many students taken Mathematics alone			
	a	4	b	5
	c	2	d	1
47.	Number of students who has not choose any of the subjects			
	a	0	b	2
	c	3	d	1
48.	Number of students who has taken only one subjects			
	a	10	b	8
	С	11	d	5
49.	Number of students who have taken atleast one of the three subjects			
	a	9	b	25
	c	23	d	15
50.	Number of students who has taken any of the two subjects			
	a	11	b	7
	c	6	d	9
