

Lab Environments for Red Teamers with Dynamic Labs

Black Hat Europe 2022

Who Am I?

David Turco

Security Delivery Senior Manager

Accenture Security

Simulated Attack Capability Development

Simulated Attack Engagements

Agenda

Quickly deploy transient lab environments for simulated attacks, self-studying, training and research.

- 01 Introduction
- 02 Dynamic Labs 101
 - Design and architecture
 - Usage
- 03 Development
 - Templates
 - Release
- 04 Conclusion

Introduction

Traditional solutions can be clumsy and inefficient

01 | Simulated Attack engagements

Testing toolchains against 'digital twin' environments

02 | Self-studying

Practicing an existing or new technique

03 | Research

- Researching a new technique
- Sharing research

04 | Formal training

- Delivering internal training
- Delivering scalable external training

An open source tool aimed at red teamers and penetration testers for the rapid deployment of transient lab environments to the cloud.

https://github.com/ctxis/DynamicLabs

Uses simple configuration files (lab templates) to abstract the complexities of building realistic corporate environments, vulnerabilities included.

https://github.com/ctxis/DynamicLabs

Modern approach with Dynamic Labs

01 Simulated Attack engagements

- Define environment by tailoring an existing lab template
- Deploy environment
- Manual final touches
- Destroy environment

Modern approach with Dynamic Labs

02 Self-studying

- Choose existing community lab template
- Deploy environment
- Practice technique
- Destroy environment

Modern approach with Dynamic Labs

03 Research

- Define environment by tailoring an existing lab template
- Deploy environment
- Manual updates to the environment
- Destroy environment
- Implement lab template to share research

Modern approach with Dynamic Labs

O4 Formal Training

- Define complex lab environments during development of training
- Deploy multiple clones of the environment
- Deliver training
 - Destroy environments
- Distribute lab template to attendees

Dynamic Labs 101

Design and Architecture Roles

Management

Lab owner

Deployment of lab environment

Full administrative access

Automation

Candidate

End user of the deployed lab environment

Entry point

Deployment overview

Typical simple lab environment

Typical simple lab environment

Terraform deploys lab networks and systems in the cloud

Typical simple lab environment

Ansible configures lab systems

Lab environment

management network

"Copyright © 2022 Accenture. All rights reserved."

internal network

Typical simple lab environment

Candidate accesses lab environment

Lab environment

management network

"Copyright © 2022 Accenture. All rights reserved."

internal network

Slightly more complex lab environment

Multiple network segments, management and candidate are distinct

"Copyright © 2022 Accenture. All rights reserved."

Usage

High-Level **Deployment Steps**

- > Install pre-requisites
- > Choose a lab template
- > Update the configuration variables
- > Deploy the lab environment
- > Use the lab environment
- > Destroy the lab

Step 1 - Install pre-requisites

- Download a copy of Dynamic Labs from GitHub
- > Install Terraform for your platform
- Install the AWS CLI

Step 2 - Choose a lab template

From the Templates directory ∨ Templates > attack-paths > demos > exercises

Select a suitable template *.tfvars.example file → Templates > attack-paths √ demos > multi-AD ∨ simple-AD > standalone-kali-linux > standalone-ubuntu-server > standalone-windows-server > standalone-windows-workstation > exercises

Create a copy of the example file as *.tfvars ∨ Templates > attack-paths √ demos > multi-AD ∨ simple-AD terraform-aws.tfvars > standalone-kali-linux > standalone-ubuntu-server > standalone-windows-server > standalone-windows-workstation > exercises

Step 3 - Update the configuration variables

```
######### / AWS Credentials
AWS_ACCESS_KEY = ""
AWS_SECRET_KEY = ""
AWS_REGION = "eu-west-2"

########## / Attacker IP Range
# Permitted to SSH and RDP to management network (ID 0) and candidate network (ID 1).
candidate_ip = ["XXX.XXX.XXX.XXX/XX"] # Replace with your IP.
```

Step 4 - **Deploy the lab environment** (1/3)

```
$ cd Terraform/AWS
$ terraform workspace new demo
$ terraform init
$ terraform apply -var-file=../../Templates/demos/simple-
AD/terraform-aws.tfvars
```

Step 4 - **Deploy the lab environment** (2/3)

Step 4 - **Deploy the lab environment** (3/3)

```
demo@dynamiclabs:~/dynamic-labs/Terraform/AWS$ terraform apply -var-file=../../Templates/demos/simple-AD/terraform-aws.tfvars
module.windows_server.data.aws_ami.windows_server_zuɪy: keaging...
module.management server.data.aws ami.ubuntu: Reading...
module.ubuntu_server.data.aws_ami.ubuntu_20_04: Reading...
module.windows_server.data.aws_ami.windows_server_2016: Reading...
module.kali.data.aws_ami.kali: Reading...
module.ubuntu server.data.aws ami.ubuntu 22 04: Reading...
module.windows_server.data.aws_ami.windows_server_2022: Reading...
module.windows_server.data.aws_ami.windows_server_2019: Read complete after 0s [id=ami-0685ae995ef3c2224]
module.ubuntu_server.data.aws_ami.ubuntu_22_04: Read complete after 1s [id=ami-0acf1b3e8253d4481]
module.management server.data.aws ami.ubuntu: Read complete after 1s [id=ami-0acf1b3e8253d4481]
module.windows_server.data.aws_ami.windows_server_2022: Read complete after 1s [id=ami-04e0ebd20d57a72c1]
module.ubuntu_server.data.aws_ami.ubuntu_20_04: Read complete after 1s [id=ami-05bfd03d0709e3ecb]
module.windows_server.data.aws_ami.windows_server_2016: Read complete after 1s [id=ami-0e91d2bbbb46eb7c5]
module.kali.data.aws_ami.kali: Read complete after 1s [id=ami-0b12b19de4b259d25]
Terraform used the selected providers to generate the following execution plan. Resource actions are indicated with the follow
  + create
 <= read (data resources)
Terraform will perform the following actions:
 # aws_key_pair.candidate will be created
  + resource "aws key pair" "candidate" {
      + arn
                        = (known after apply)
      + fingerprint
                       = (known after apply)
                       = (known after apply)
```

Step 5 - Use the lab environment - Terraform Output

```
Apply complete! Resources: 1 added, 0 changed, 1 destroyed
Candidate_Credentials = {
    "Kali Candidate SSH Key" = "../../SSH-Keys/demo-candidate_key.pem"
    "Kali Candidate Username" = "kali"
 Information about lab-specific account credentials, including the autogenerated ones, is included in the '[Environment Carepackage]'
 which is printed oput to screen slighly above this output message.
 The carepackage is also available on the management server at ~/carepackage.json"
                                                                                                                  Public_Lab_Systems = [
Lab_Systems = [
   "name" = "demoDC101"
    "private ip" = "10.1.1.10"
                                                                                                                              "name" = "demoGS201"
    "name" = "demoGS201"
   "private_ip" = "10.1.2.104"
                                                                                                                              "private_ip" = "10.1.2.104"
 Nanagement_Credentials = {
  "Kali Candidate SSH Key" = "../../SSH-Keys/demo-candidate_key.pem"
                                                                                                                              "public_ip" = "35.176.97.207"
  "Kali Candidate Username" = "kali"
  "Management SSH Key" = "../../SSH-Keys/demo-management_key.pem"
  "Management Username" = "ubuntu"
  "Management Windows Password" = "OQ5tQIJr^Y1o@QHr"
  "Management Windows Username" = "ansible"
Management Server = {
  "name" = "demoOverlord"
  "public_ip" = "18.130.16.35"
  "user" = "ubuntu"
Public_Lab_Systems = [
    "name" = "demoGS201"
    "private_ip" = "10.1.2.104"
    "public ip" = "35.176.97.207"
```

Step 5 - Use the lab environment – Environment Carepackage

```
TASK [############## Environment Carepackage #############]
task path: /home/ubuntu/Ansible/plays/carepackage.yml:21
ok: [localhost] => {
    "carepackage.stdout": [
           "host or domain name": "dynamic.lab",
            "type": "domain".
            "users": [
                    "password": "Sup3rSecretString.2022!",
                    "username": "LowPriv"
```

Step 6 - **Destroy the lab environment**

```
demo@dynamiclabs:~/dynamic-labs/Terraform/AWS$ terraform destroy -var-file=../../Templates/demos/simple-AD/terraform-aws.tfvars
module.candidate.tls_private_key.private_key: Retreshing state... [id=a6a7a1709290t429239tt20398819dc1bb0ate7b]
module.management.tls_private_key.private_key: Refreshing state... [id=72b1759d742b1c23a406e7eabf5633191b87fa9c]
random_password.system_password: Refreshing state... [id=none]
module.candidate.local_sensitive_file.public_key_openssh: Refreshing_state... [id=2ba040e2c622d64e3da85cdd6ba255be5b318ed3]
module.management.local_sensitive_file.private_key: Refreshing state... [id=4a2ecbb3fc87ab95174077705bfe64d6b8c77b54]
module.management.local_sensitive_file.public_key_openssh: Refreshing state... [id=c97484ae519bd52a919fd4d75b7e9d497ea63a88]
module.candidate.local_sensitive_file.private_key: Refreshing_state... [id=bfc5cb4955bfb87afab5bd073b65afc829dd3e33]
module.windows_server.data.template_file.base_config: Reading...
module.windows server.data.template file.base config: Read complete after 0s [id=69ba4ef6cbd71dd906c8446553d8953bb7a72abe3afc16078
aws key pair.management: Refreshing state... [id=demo management]
aws_key_pair.candidate: Refreshing state... [id=demo_candidate]
module.ubuntu_server.data.aws_ami.ubuntu_22_04: Reading...
module.management server.data.aws ami.ubuntu: Reading...
Do you really want to destroy all resources in workspace "demo"?
  Terraform will destroy all your managed infrastructure, as shown above.
  There is no undo. Only 'yes' will be accepted to confirm.
  Enter a value:
```


Development

Core Concepts Lab Templates

- Single configuration file that defines a lab
- Lab templates are Terraform variable files (tfvars)
- > Templates are structured as follows:
 - User configurable settings
 - Networks
 - Systems

>

Core Concepts - Networks

```
######### / Networking
    address space lab
                               = "10.1.0.0/16"
     address space management = "10.1.254.0/24"
17
     networks = |
             network id
                           = "1"
             network name = "INTERNAL"
21
22
             network template = "internal permissive"
             address space = "10.1.1.0/24"
23
25
             # Exposes RDP and SSH ports to the candidate IP ranges
             network id
             network name = "CANDIDATE EXTERNAL"
             network template = "candidate"
29
             address space = "10.1.2.0/24"
     security rules = [
34
35
```

Core Concepts - Network Templates

Currently available network templates

candidate

Allows inbound SSH and RDP traffic from the from the public IP ranges defined in candidate_ip

internal_permissive

Allows inbound connections from all lab networks.

No direct access from the Internet

internal_segregated

Only allows traffic within the same lab network.

required to define
allowed traffic

>

Core Concepts - Systems

```
_########## / Systems
    systems = [
           module
                      = "microsoft windows server"
           os version = "2022"
41
           size
42
                      = "t2.medium"
           network id = "1"
43
           hostname
                      = null
44
           private ip = "10.1.1.10"
45
           public ip = false
           class
                      = "DC"
47
              = "01"
           id
           features = [ ]
                      = "microsoft windows server"
52
           module
           os version = "2022"
           size
                      = "t2.small"
           network id = "2"
           hostname
                      = null
           private ip = null
```

Core Concepts - Systems

Supported Operating Systems

Operating System	Module Name	OS Version	AWS	Azure
Windows Server 2016	microsoft_windows_server	2016	X	X
Windows Server 2019	microsoft_windows_server	2019	Χ	X
Windows Server 2022	microsoft_windows_server	2022	X	X
Windows 10 (21H2)	microsoft_windows_desktop	10		X
Windows 11 (22H2)	microsoft_windows_desktop	11		X
Ubuntu Server 20.04	canonical_ubuntu_server	20.04	Χ	X
Ubuntu Server 22.04	canonical_ubuntu_server	22.04	X	X
Kali Linux (latest)	offensivesecurity_kalilinux	latest	Χ	X

Core Concepts - System Features

Defining a domain and its users

```
features
                     name = "AD Forest"
                     value = [
52
                         {name = "domain name", value = "dynamic.lab"},
                         {name = "domain netbios name", value = "dynamic"}
54
                     name = "AD User"
                     value = [
                         {name = "HighPriv", password = "TheSkyIsTheLimit.2022?"},
                         {name = "LowPriv", password = "Sup3rSecretString.2022!"}
62
                     name = "AD Group Membership"
                     value = [{name = "Domain Admins", value = "HighPriv"}]
67
```

>

Core Concepts – System Features

Joining a machine to the domain

Core Concepts – System Features

Implemented features

AD Forest

AD Domain

AD_Join

AD_User

AD User Password

AD_User_Right

AD_Group

AD_Group_Membership

AD_SecEdit_Access

AD_MSA

AD MSA AllowRetrieve

AD_SetSPN

AD_GPO

AD_GPO_ACL

AD_Object_ACL

AD_Organizational_Unit

AD Object Organizational Unit

AD Unconstrained Delegation

AD_Constrained_Delegation

AD_DNS_Forwarder_Zone

AD_DNS_Record

AD_Trust

AD_CleanUp

Win_User

Win_User_Password

Win Group

Win_Group_Membership

Win_Directory

Win_Simple_File

Win_Dirtree_Copy

Win_Filesystem_ACL

Win_File_Share

Win Defender Disable

Win_PowerShell_Script

Win EARLY PowerShell Script

Win CleanUp

IIS_Web_Application

MSSQL_Server

flag

ATTCK_T1003_1

ATTCK T1187 1

ATTCK_T1552_2_1

ATTCK T1574 9 1

Linux User

Linux_Authorized_Keys

Linux_Directory

Linux_Simple_File

Linux_Dirtree_Copy

Linux_Apt_Package_Install

Linux_Apt_Package_Upgrade

Linux Nginx Website

Linux_Shell_Script

Linux EARLY Shell Script

38

Time for a new release

Dynamic Labs - version 1.2

Available on GitHub

Simplified usage and template syntax

Improved documentation

Added new system features and extended the supported OS versions

New and improved lab templates

Contributing

Contributing to Dynamic Labs

Templates

- Create new template
- Description
- Walkthrough
- We'll add them to the community version

Core Code

- Implement new system features
- Add support for a new cloud providers

Conclusion

Takeaways

Dynamic Labs is a tool that provides a modern approach to lab environments for red teamers and pentesters.

Open Source

Tool publicly available at https://github.com/ctxis/DynamicLabs

Lab templates

Lightweight and easy to create, modify and distribute

Open to community contributions

Create lab templates and share them with the community

Credits

Rohan Durve (@Decode141)

Thank you

David Turco

@endle__

https://github.com/ctxis/DynamicLabs

About Accenture

Accenture is a global professional services company with leading capabilities in digital, cloud and security. Combining unmatched experience and specialized skills across more than 40 industries, we offer Strategy and Consulting, Song, Technology and Operations services—all powered by the world's largest network of Advanced Technology and Intelligent Operations centers. Our 710,000 people deliver on the promise of technology and human ingenuity every day, serving clients in more than 120 countries. We embrace the power of change to create value and shared success for our clients, people, shareholders, partners and communities. Visit us at accenture.com.

About Accenture Security

Accenture Security is a leading provider of end-to-end cybersecurity services, including advanced cyber defense, applied cybersecurity solutions and managed security operations. We bring security innovation, coupled with global scale and a worldwide delivery capability through our network of Advanced Technology and Intelligent Operations centers. Helped by our team of highly skilled professionals, we enable clients to innovate safely, build cyber resilience and grow with confidence. Follow us @AccentureSecure on Twitter or visit us at www.accenture.com/security.

Disclaimer: Accenture, the Accenture logo, and other trademarks, service marks, and designs are registered or unregistered trademarks of Accenture and its subsidiaries in the United States and in foreign countries. All trademarks are properties of their respective owners. This document is intended for general informational purposes only and does not take into account the reader's specific circumstances, and may not reflect the most current developments. Accenture disclaims, to the fullest extent permitted by applicable law, any and all liability for the accuracy and completeness of the information in this presentation and for any acts or omissions made based on such information. Accenture does not provide legal, regulatory, audit, or tax advice. Readers are responsible for obtaining such advice from their own legal counsel or other licensed professionals.