THERMAL TESTS OF ETL MODULE COMPONENTS

THE SETUP

Side view of the setup:

Thermal Conductivity:

$$K = P*L/A(T_{hot}-T_{cold})$$

P: Power (heat per unit time)

L: Thinkness of the sample

A: Area of the sample

THERMISTOR TOLERANCE: BOILING WATER TEST

- Submerged the thermistors in distilled boiling water.
- Took measurement of the temperature every 2 mins using multiple sensors.
- The boiling point at our height: 98.7 C.

Boiling point measurement: 98.62 +- 0.52 C

THERMISTOR TOLERANCE: ICE BATH TEST

- Submerged the thermistors in ice bath of distilled water.
- Took measurement of the temperature every 2 mins using multiple sensors.
- The freezing point at our height: ~0 C.

Freezing point measurement: 0.34 +- 0.19 C

THERMAL CONDUCTIVITY: GLASS

THERMAL CONDUCTIVITY: ALN

p0 p1 **VALUE**

ERROR 4.39744e-01 2.59623e+00 4.33785e+00 2.19464e+00 taking 0.5 C as uncertainty in T_{hot} - T_{cold} Measurement of Thermal Conductivity AlN: 4.3 Wm⁻¹K⁻¹ Actual value for AlN ceremic ~ 80-140 Wm⁻¹K⁻¹

LOOKING FORWARD

- Current setup might not work for the high thermally conductive materials such as AlN.
- Purdue group has a slightly different more sophisticated setup that works for wide range of materials. here