Pareto meets Huber: Efficiently avoiding poor minima in robust estimation

Christopher Zach (christopher.m.zach@gmail.com)

Guillaume Bourmaud (guillaume.bourmaud@u-bordeaux.fr)

Chalmers University of Technology, Sweden University of Bordeaux, France

1) Introduction

Problem statement

Minimize a cost function involving robust data terms

$$\min_{\mathbf{x}} \ \Psi(\mathbf{x}) \qquad ext{with} \qquad \Psi(\mathbf{x}) = \sum_{i=1}^{N} \psi(\|\mathbf{r}_i(\mathbf{x})\|)$$

where $\mathbf{r}_i : \mathbb{R}^p \to \mathbb{R}^n$ is the vectorial residual function and $\psi : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ is a *robust kernel* function.

Challenges

- large number of local minima
- large number of parameters to estimate

How to obtain an algorithm able to quickly decrease $\Psi(\mathbf{x})$ while avoiding poor local minima?

2) Contributions

1) we propose to use a Multi-Objective Optimization (MOO) approach to obtain an algorithm able of both avoiding poor local minima and quickly decreasing the target objective,

2) we derive an efficient Levenberg-Marquardt-MOO (LM-MOO) method yielding cooperative minimization steps.

	IRLS [1], Triggs [2], $\sqrt{\psi}$ [3]	HQ [4], k-HQ [5]	GOM [6]	GOM+ [7]	LM-MOO (ours)
Quickly decreases target cost*					
Avoids poor local minima*					
Never ignores target cost		×	X	X	
No extra variables	✓	×	✓	√	√

State of the art NLLS-based robust estimation algorithms and their corresponding properties.

(*) These rankings are observed experimentally on several computer vision problems.

4) Multi-objective Levenberg-Marquardt method (LM-MOO)

Require: Target Ψ and guidance costs $(\Psi^1, \dots, \Psi^{K_{\text{max}}})$ **Require:** Initial solution x_0 , parameter, $\nu > 0$ 1: $k \leftarrow K_{\text{max}}$ 2: repeat $\mu \leftarrow \frac{\|\nabla \Psi(\mathbf{x}_0)\|}{\|\nabla \Psi(\mathbf{x}_0)\| + \|\nabla \Psi^k(\mathbf{x}_0)\|}$ *⊳ Gauss-Newton / IRLS model* $\mathbf{g}_F \leftarrow \nabla F^k(\mathbf{x}_0) \qquad \mathbf{H}_F \leftarrow \nabla^2 F^k(\mathbf{x}_0)$ $\mathbf{v} \leftarrow - \left(\mathtt{H}_F + \nu \mathtt{I}\right)^{-1} \mathbf{g}_F$ > Search direction $\mathbf{x}^+ \leftarrow \mathbf{x}_0 + \mathbf{v}$ if $F^k(\mathbf{x}^+) < F^k(\mathbf{x}_0)$ then \triangleright Success to reduce F^k strong $\leftarrow \Psi(\mathbf{x}^+) < \Psi(\mathbf{x}_0) \land \Psi^k(\mathbf{x}^+) < \Psi^k(\mathbf{x}_0)$ stop \leftarrow TEST-STOPPING(Ψ , Ψ^k , \mathbf{x}_0 , \mathbf{x}^+) if strong and not stop then $\triangleright Update \mathbf{x}_0$ $\mathbf{x}_0 \leftarrow \mathbf{x}^{\dagger}$ else \triangleright Failure to reduce Ψ and Ψ^k $k \leftarrow k - 1$ ▶ Go to next guidance function end if $\nu \leftarrow \nu/10$ ▷ Decrease the damping parameter \triangleright Failure to reduce F^k else $\nu \leftarrow 10\nu$ ▷ Increase the damping parameter end if 21: **until** k = 022: **return** the solution of a standard Levenberg-Marquardt method given current point \mathbf{x}_0

3) Creating a sequence of "guidance" costs

Scaled version of a robust kernel

$$\psi_{\tau}(x) = \tau^2 \psi(x/\tau)$$

Smoothed version of $\Psi(\mathbf{x})$

$$\Psi_{\tau}(\mathbf{x}) = \sum_{i=1}^{N} \psi_{\tau}(\|\mathbf{r}_{i}(\mathbf{x})\|)$$

Sequence of "guidance" costs provided as input of LM-MOO

$$(\Psi^1, \dots, \Psi^{K_{\max}})$$
 where $\Psi^i(\mathbf{x}) = \Psi_{2^{(i-1)}}(\mathbf{x})$

5) Results

Bundle adjustment

$$\min_{\{\mathbf{R}_i, \mathbf{t}_i\}_i, \{\mathbf{X}_j\}_j} \sum_{i,j} \psi \left(f_i \eta_i \left(\pi(\mathbf{R}_i \mathbf{X}_j + \mathbf{t}_i) \right) - \hat{\mathbf{p}}_{ij} \right)$$

$$= 1.6 \underbrace{\frac{10^5}{1.5}}_{1.5} \underbrace{\frac{10^5}{1.6}}_{1.5} \underbrace{\frac{10^5}{1.6}}_{1.5} \underbrace{\frac{10^5}{1.6}}_{1.6} \underbrace{\frac{10^5}{1.6}}_{1.8} \underbrace{\frac{10^5}{1.6}}_{1.8} \underbrace{\frac{10^5}{1.6}}_{1.6} \underbrace{\frac{10^5}{1.6}}_$$

Best encountered objective values obtained versus wall clock time as reported by different methods for linearized (top) and metric (bottom) bundle adjustment instances.

Dense correspondence

$$\min_{\mathbf{d}} \sum_{p \in \mathcal{V}} \left(\lambda \sum_{k=1}^{K} \psi_{\text{data}}(d_p - \hat{d}_{p,k}) + \sum_{q \in \mathcal{N}(p)} \psi_{\text{reg}}(d_p - d_q) \right)$$

Top: Initial best-cost depth and solutions of joint HQ, GOM+ and LM-MOO, respectively, for the "teddy" and "cones" stereo pair. Bottom: best objectives reached vs. runtime for different methods.

References

- [1] Peter J Green. Iteratively reweighted least squares for maximum likelihood estimation, and some robust and resistant alternatives. 1984
- [2] Bill Triggs, Philip McLauchlan, Richard Hartley, and Andrew Fitzgibbon. Bundle adjustment A modern synthesis. 2000
- [3] Chris Engels, Henrik Stewénius, and David Nistér. Bundle adjustment rules. 2006
- [4] Christopher Zach. Robust bundle adjustment revisited. 2014

- [5] Christopher Zach and Guillaume Bourmaud. Iterated lifting for robust cost optimization. 2017
- [6] Andrew Blake and Andrew Zisserman. Visual reconstruction. 1987
- [7] Christopher Zach and Guillaume Bourmaud. Descending, lifting or smoothing: Secrets of robust cost optimization. 2018