

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro(43) Internationales Veröffentlichungsdatum
2. Oktober 2003 (02.10.2003)

PCT

(10) Internationale Veröffentlichungsnummer
WO 03/081637 A2(51) Internationale Patentklassifikation⁷:

H01L

(72) Erfinder; und

(21) Internationales Aktenzeichen:

PCT/EP03/03209

(75) Erfinder/Anmelder (nur für US): STRÜDER, Lothar [DE/DE]; Römerstrasse 28, 80803 München (DE). LUTZ, Gerhard [DE/DE]; Therese Giehse Allee 23, 81739 München (DE). RICHTER, Rainer [DE/DE]; Reichenaustrasse 33, 81243 München (DE).

(22) Internationales Anmeldedatum:

27. März 2003 (27.03.2003)

(25) Einreichungssprache:

Deutsch

(74) Anwalt: BEIER, Ralph; v. Bezold & Sozien, Akademiestrasse 7, 80799 München (DE).

(26) Veröffentlichungssprache:

Deutsch

(81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

[Fortsetzung auf der nächsten Seite]

(54) Titel: CONDUCTOR C

SEMICONDUCTOR DETECTOR

(54) Bezeichnung: LEIT

FÜR EINEN HALBLEITER-DETEKTOR

WO 03/081637 A2

(57) **Abstract:** The invention relates to a conductor crossover for a semiconductor detector, particularly for a drift detector for conducting X-ray spectroscopy. The conductor crossover comprises at least two doped semiconductor electrodes (2), which are placed inside a semiconductor substrate (1), at least one connecting conductor (M), which is guided over the semiconductor electrodes (2), and a first insulating layer (Ox). An intermediate electrode (L) is situated between the connecting conductor (M) and the first insulation layer (Ox). Said intermediate electrode overlaps the area of the semiconductor substrate (1) between the semiconductor electrodes (2) and is electrically insulated from the connecting conductor (M) by at least one additional insulation layer (I). The invention also relates to a drift detector equipped with a conductor crossover of this type and to a detector arrangement for conducting X-ray spectroscopy.

[Fortsetzung auf der nächsten Seite]

(84) **Bestimmungsstaaten (regional):** ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

— ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(57) **Zusammenfassung:** Es wird eine Leitungsüberführung für einen Halbleiter-Detektor, insbesondere für einen Driftdetektor zur Röntgenspektroskopie beschrieben, die mindestens zwei in einem Halbleitersubstrat (1) angeordnete dodierte Halbleiterelektroden (2), mindestens eine über die Halbleiterelektroden (2) geführte Anschlussleitung (M) und eine erste Isolationsschicht (Ox) umfasst, wobei zwischen der Anschlussleitung (M) und der ersten Isolationsschicht (Ox) eine Zwischenelektrode (L) angeordnet ist, die den Bereich des Halbleitersubstrats (1) zwischen den Halbleiterelektroden (2) überdeckt und durch mindestens eine weitere Isolationsschicht (I) gegenüber der Anschlussleitung (M) elektrisch isoliert ist. Es werden auch ein mit einer derartigen Leitungsüberführung ausgestatteter Driftdetektor und eine Detektoranordnung zur Röntgenspektroskopie beschrieben.

Leitungsüberführung für einen Halbleiter-Detektor

Die Erfindung betrifft eine Leitungsüberführung für einen Halbleiter-Detektor, insbesondere für einen Driftdetektor zur Röntgenspektroskopie, gemäß dem Oberbegriff des Anspruchs 1.

Halbleiter-Detektoren zur Erfassung elektromagnetischer Strahlung basieren auf der Messung von freien Ladungsträgern, die durch die Strahlung in einem Halbleiterbauelement generiert werden. Mit den Ladungsträgern wird ein elektrisches Signal gebildet, das über mindestens eine Anschlussleitung zu einer Messeinrichtung überführt wird. Die Ausbildung der Anschlussleitung stellt ein generelles Problem bei der Gestaltung von Halbleiter-Detektoren dar. Der Detektor muss mit der Anschlussleitung praktikabel herstellbar und handhabbar sein, es darf daran die Anschlussleitung nicht zu einer Beeinträchtigung der Detektionsfunktion kommen.

Es sind beispielweise Halbleiter-Detektoren zur ortsaufgelösten Strahlungsdetektion mit mehreren, in einem Halbleitersubstrat angeordneten Halbleiterelektroden bekannt (sog. Streifen- oder Spuren-Detektoren). Bei diesen werden isolierte Anschlussleitungen unmittelbar über die Halbleiterelektroden zu einem Substratrand geführt. Eine derartige Leitungsüberführung ist jedoch nur möglich, wenn zwischen der Anschlussleitung und den Halbleiterelektroden kein störender Potentialunterschied besteht.

In der Röntgenspektroskopie sind zur hochauflösenden Strahlungsdetektion Driftdetektoren bekannt (siehe L. Strüder in "Nuclear Instruments and Methods in Physics Research A", Bd. 454, 2000, S. 73-113, und beispielsweise DE 34 27 476 A1). Ein Driftdetektor umfasst beispielsweise ein Halbleitersubstrat aus schwach n-dotiertem Silizium, das auf einer Oberfläche (Oberseite) eine

stark n-dotierte, mittig angeordnete Anode und auf der entgegen- gesetzten Oberfläche (Unterseite) einen Rückkontakt aus einem stark p-dotierten Halbleitermaterial aufweist. Auf der Oberseite sind ferner ringförmige, konzentrisch um die Anode angeordnete Halbleiterelektroden aus einem stark p-dotierten Halbleitermate- rial vorgesehen. Die Halbleiterelektroden werden jeweils auf ei- nem festen elektrischen Potential gehalten, das mit zunehmendem Abstand von der Anode negativer wird. Dies führt zum einen im Wirkungsbereich der Elektroden zu einer vollständigen Verarmung des Halbleitersubstrats und zum anderen zur Erzeugung eines elektrischen Driftfeldes im Halbleitersubstrat. Durch Strah- lungswechselwirkung werden im Halbleitersubstrat freie Elektro- nen generiert, die durch das Driftfeld zur Anode getrieben wer- den, so dass das elektrische Signal an der Anode ein Maß für die Energie und/oder Intensität der Strahlung ist.

Die Gestaltung der Anschlussleitung der Anode stellt bei Drift- detektoren bisher ein erhebliches Problem dar. Die o. g. Führung der Anschlussleitung über die Halbleiterelektroden würde wegen hoher Potentialunterschiede zwischen der Anschlussleitung und dem Halbleitersubstrat mit den Halbleiterelektroden zu Fehlsig- nalen durch unerwünschte Ladungsträgervervielfachungen und/oder zu elektrischen Durchbrüchen führen. Die bekannten Silizium- Driftdetektoren zeichnen sich daher durch eine frei geführte Kontaktierung der Anode von der Oberseite des Halbleitersubstrats her aus. Elektrische Anschlussleitungen werden von der Anode zu einer räumlich getrennten Anschlusseinheit oder Mess- einrichtung frei durch den zur Oberseite benachbarten Halbraum geführt.

Die freie Führung von Anschlussleitungen besitzt mehrere Nachteile. Die elektrische Kontaktierung ist schwierig, da die Anschlussleitungen üblicherweise mit einem Ultraschallbonding aufgebracht werden, bei dem das Halbleitersubstrat zu uner- wünschten mechanischen Schwingungen neigt. Es können Fehlkontak-

tierungen auftreten. Falls beim Bonden das Halbleitersubstrat im sensiblen Bereich beschädigt wird, kann es zu einem Ausfall des Detektors kommen. Des Weiteren besitzt die freie Führung von Anschlussleitungen Nachteile in Bezug auf die Stabilität der Kontaktierung und die Kombination von Driftdetektoren in Gruppen.

Der Erfindung liegt die Aufgabe zugrunde, eine verbesserte Leitungsüberführung für einen Halbleiter-Detektor zu schaffen, mit der die Nachteile herkömmlicher Leitungsüberführungen überwunden werden und die insbesondere bei großen Potentialunterschieden zwischen einer Anschlussleitung und Halbleiterelektroden einsetzbar ist, wie sie beispielsweise beim oben beschriebenen Driftdetektor auftreten.

Diese Aufgabe wird, ausgehend von einer Leitungsüberführung gemäß dem Oberbegriff des Anspruchs 1, durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst.

Eine Grundidee der Erfindung ist es, eine Leitungsüberführung für einen Halbleiter-Detektor mit einem Halbleitersubstrat und Halbleiterelektroden bereitzustellen, wobei mit der Leitungsüberführung mindestens eine Anschlussleitung z. B. von einer signalgebenden Ausleseelektrode zu einer Messeinrichtung über die Halbleiterelektroden und das Halbleitersubstrat oder über mindestens einen benachbarten Detektor hinweggeführt wird und zwischen der Anschlussleitung und dem Halbleitersubstrat mindestens eine Zwischenelektrode angeordnet ist, die relativ zur Anschlussleitung und zum benachbarten Halbleitersubstrat elektrisch isoliert ist und mindestens einen Teilbereich des Halbleitersubstrats zwischen den Halbleiterelektroden gegenüber der Anschlussleitung elektrisch abschirmt.

Durch die Bereitstellung der Zwischenelektrode ergeben sich eine Reihe von Vorteilen. Die Zwischenelektrode kann auf einem vorgegebenen elektrischen Potential gehalten werden, so dass Störungen

gen der Detektorfunktion durch das Potential der Anschlussleitung vermieden werden. Es können vorteilhaftweise die Beschränkungen herkömmlicher Leitungsüberführungen auf geringe Potentialunterschiede überwunden werden. Die elektrische Verbindung der Anschlussleitung mit einer Messeinrichtung durch Bonden kann im nicht-sensitiven Bereich des Detektors am Rand des Halbleitersubstrats mit Abstand von der Anode erfolgen. Dies vereinfacht die Kontaktierung, Detektorausfälle durch Substratschäden werden vermieden.

Gemäß einer vorteilhaften Ausführungsform der Erfindung überdeckt die Zwischenelektrode zur elektrischen Abschirmung des Halbleitersubstrates den Zwischenraum zwischen benachbarten Halbleiterelektroden vollständig. Die Breite der Zwischenelektrode ist vorzugsweise größer als der laterale Abstand zwischen benachbarten Halbleiterelektroden. Es können zur Vereinfachung der Bauelementstruktur mit einer einzelnen Zwischenelektrode mehrere Zwischenräume zwischen benachbarten Halbleiterelektroden überdeckt werden. Es ist alternativ möglich, dass die Zwischenelektrode zwei- oder mehrteilig ist und jeweils nur einen Teilbereich des Zwischenraums zwischen den benachbarten Halbleiterelektroden abschirmt. Vorzugsweise schirmt die Zwischenelektrode mit ihren einzelnen Teilen den Übergang zwischen dem Halbleitersubstrat und einer Halbleiterelektrode ab.

Die Festlegung des elektrischen Potentials der Zwischenelektrode erfolgt vorzugsweise dadurch, dass diese elektrisch mit einer der benachbarten Halbleiterelektroden verbunden ist, wodurch der Potentialunterschied zwischen der Zwischenelektrode und den benachbarten Halbleiterelektroden gering gehalten wird. Das Potential der Zwischenelektrode kann alternativ dadurch festgelegt werden, dass die Zwischenelektrode mit einer externen Spannungsquelle verbunden ist.

Die Zwischenelektrode besteht aus einem elektrisch leitfähigen Material, wie beispielsweise Metall, einem intrinsischen oder dotierten Halbleiter oder einem Widerstandsmaterial. Vorteilhafterweise werden an die Leitfähigkeit der Zwischenelektrode und ggf. der elektrischen Verbindung der Zwischenelektrode mit einer der Halbleiterelektroden keine besonderen Anforderungen gestellt, da die Zwischenelektrode lediglich der elektrostatischen Abschirmung dient. Es kann eine schlecht leitende Verbindung vorgesehen sein, da die Zwischenelektrode keine elektrische Leistung führen muss. Beispielsweise kann eine Zwischenelektrode aus Polysilizium direkt mit einer der Halbleiterelektroden aus Silizium verbunden werden. Durch den direkten Polysilizium-Silizium-Übergang, der sonst in Halbleiterbauelementen vermieden wird, vereinfacht sich der Aufbau des erfindungsgemäßen Detektors.

Gemäß einer weiteren vorteilhaften Ausführungsform der Erfindung können zur Verbesserung der elektrischen Abschirmung über mehrere Ebenen mit Zwischenelektroden vorgesehen sein, wobei die einzelnen Ebenen durch zusätzliche Isolationsschichten gegeneinander isoliert sind. Eine derartige mehrlagige Anordnung der Zwischenelektroden ist insbesondere dann vorteilhaft, wenn die Anschlussleitung einen sehr großen Potentialunterschied (z. B. im kV-Bereich) gegenüber den Halbleiterelektroden aufweist.

In einer vorteilhaften Variante der Erfindung ist darüber hinaus mindestens eine Abschirmungselektrode mit einem festen elektrischen Potential vorgesehen, die zwischen der Anschlussleitung und dem Halbleitersubstrat angeordnet ist. Bei einer mittigen Anordnung der signalgebenden Ausleseelektrode (Anode) auf dem Halbleitersubstrat ist die mindestens eine Abschirmungselektrode vorzugsweise am äußeren Rand des Halbleitersubstrats angeordnet. Zur Verbesserung der elektrischen Abschirmung können mehrere Abschirmungselektroden vorgesehen sein, die jeweils ein festes elektrisches Potential aufweisen.

Die erfindungsgemäße Führung der Anschlussleitung ist nicht auf die Kontaktierung der Ausleseelektrode beschränkt, sondern in gleicher Weise auf die Kontaktierung der einzelnen Halbleiterelektroden anwendbar. Auf diese Weise können sämtliche Anschlussleitungen sowohl für die Ausleseelektrode als auch für die Halbleiterelektroden nach außen geführt werden, so dass eine einfache und mechanisch sichere Kontaktierung möglich ist. Falls die Ausleseelektrode mit einem Verstärkungselement (z. B. Transistor) integriert auf dem Halbleitersubstrat angeordnet ist, kann die erfindungsgemäße Leitungsüberführung auch zum Anschluss des Verstärkungselementes, z. B. für die Anschlusskontakte des Transistors, verwendet werden. Mit einer Zwischenelektrode können mehrere Anschlussleitungen abgeschirmt werden.

Die Erfindung ist nicht auf bestimmte Dotierungsverhältnisse im Detektor beschränkt. Es können beispielsweise ein schwach n-dotiertes Halbleitersubstrat mit stark p-dotierten Halbleiterelektroden und einer Ausleseelektrode aus stark n-dotiertem Halbleitermaterial oder umgekehrt ein schwach p-dotiertes Halbleitersubstrat mit stark n-dotierten Halbleiterelektroden und einer stark p-dotierten Ausleseelektrode vorgesehen sein.

Bei einem Röntgen-Driftdetektor sollte das Halbleitersubstrat so schwach dotiert sein, dass das Halbleitersubstrat im normalen Betrieb vollständig verarmt, damit im unbestrahlten Halbleitersubstrat keine freien Ladungsträger vorhanden sind. Entsprechend sollten die Halbleiterelektroden und die Ausleseelektrode aus einem Material bestehen, das so stark dotiert ist, dass im normalen Betrieb keine vollständige Verarmung erfolgt.

Die Umsetzung der Erfindung ist nicht auf die Verwendung von Silizium oder Polysilizium als Halbleitermaterial beschränkt. Vielmehr könnten die einzelnen Halbleiterkomponenten auch aus anderen Materialien gefertigt sein, wie beispielsweise Germanium

oder Gallium-Arsenid. Die Verwendung von Silizium als Halbleitermaterial bietet jedoch den Vorteil einer kostengünstigen Verfügbarkeit und ausgereiften Technologie.

Gemäß einer weiteren vorteilhaften Ausführungsform der Erfindung ist die mindestens eine Anschlussleitung über Halbleiterelektroden mit einer ringförmigen Topologie geführt. Eine ringförmige Topologie wird zum Beispiel durch kreisförmige, ovale, polygone oder nicht-konzentrisch geschlossen verlaufende Elektroden gebildet. Es sind ggf. mehrere Halbleiterelektroden vorgesehen, die sich gegenseitig umschließen.

Ein weiterer Vorteil der erfindungsgemäßen Leitungsüberführung betrifft die Kombination von Halbleiter-Detektoren in Gruppen. Zum einen können großflächige Detektoranordnungen oder -arrays z. B. mit einer Vielzahl von wabenförmig aneinander angrenzenden Driftdetektoren einfacher kontaktiert werden, da die Anschlussleitungen von mehreren Detektoren an den Rand der Detektoranordnung geführt und dort kontaktiert werden können. Anschlussleitungen können nicht nur über einen Driftdetektor zu dessen Rand, sondern über eine Vielzahl von Detektoren geführt werden, ohne deren Funktion zu beeinträchtigen. Zum anderen ermöglicht die erfindungsgemäße Führung der Anschlussleitungen eine eng gestapelte Anordnung mehrerer Driftdetektoren übereinander, ohne dass zwischen den einzelnen Driftdetektoren störendes Streu- oder Absorptionsmaterial angeordnet ist.

Für ein Detektorarray weist jedes Halbleitersubstrat vorzugsweise die Form einer hexagonalen Scheibe auf, so dass zahlreiche Detektoren lückenlos aneinander angrenzend angeordnet werden können. Die Halbleiterelektroden verlaufen hierbei vorzugsweise entsprechend einem hexagonalen Ring. Die hexagonale Form ist vorteilhafterweise die Polygonform, die am besten einer Kreisfläche angenähert ist und damit eine große Detektorfläche bietet und andererseits überlappungsfrei in dichter Packung in einer

Ebene angeordnet werden kann. Besonders vorteilhaft ist die monolithische Integration einer Vielzahl hexagonaler Driftdetektoren auf einem Wafer.

Es ist alternativ möglich, dass das Halbleitersubstrat kreis Scheibenförmig ist, wobei die Halbleiterelektroden vorzugsweise kreisringförmig sind. Schließlich ist es auch möglich, dass die einzelnen Halbleiterelektroden linear angeordnet sind und parallel zueinander verlaufen, wobei die Ausleseelektrode dann vorzugsweise neben den Halbleiterelektroden angeordnet ist.

Weitere vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen gekennzeichnet oder werden nachstehend zusammen mit der Beschreibung der bevorzugten Ausführungsbeispiele anhand der Zeichnungen näher erläutert. Es zeigen:

Fig. 1: eine Querschnittsdarstellung eines Driftdetektors mit einem ersten Ausführungsbeispiel einer erfindungsgemäßen Leitungsüberführung,

Fig. 2: eine Detektordarstellung mit einem alternativen Ausführungsbeispiel einer Leitungsüberführung mit zusätzlichen Abschirmelektroden,

Fig. 3: eine Detektordarstellung mit einem alternativen Ausführungsbeispiel einer Leitungsüberführung, bei der mehrere Ebenen von Zwischen elektroden übereinander angeordnet sind, und

Fig. 4: eine Draufsicht eines Driftdetektors mit mehreren erfindungsgemäßen Leitungsüberführungen.

In Fig. 1 ist ein Silizium-Driftdetektor im Querschnitt vergrößert dargestellt, der beispielsweise in der Röntgenspektroskopie verwendet werden kann. Der zylinderförmige Driftdetektor umfasst ein Halbleitersubstrat 1, auf dessen Oberflächen dotierte Bereiche Halbleiterelektroden 2, 3 und A bilden. Die Strahlungsdetektion erfolgt durch die Erfassung von Elektronen, die durch die Strahlung im Halbleitersubstrat 1 freigesetzt werden, wobei die Halbleiterelektroden in an sich bekannter Weise zusammenwirken, wie es beispielsweise von L. Strüder in der o.g. Publikation beschrieben ist. Das Halbleitersubstrat 1 besteht aus einer n-dotierten Silizium-Scheibe, wobei die Dotierung so schwach ist, dass das Halbleitersubstrat 1 im sensitiven Bereich vollständig verarmt. Das Halbleitersubstrat 1 besitzt beispielsweise eine Dicke von ungefähr 300 μ m und einen Durchmesser, der je nach Anwendung wenige mm, z. B. ungefähr 2,5 mm, oder bis einige cm, z. B. 10 cm beträgt.

An der Oberseite (bezogen auf Figur 1) des Halbleitersubstrats 1 ist mittig die Ausleseelektrode A angeordnet, die aus einem n-dotierten Halbleitermaterial besteht. Die Dotierung der Ausleseelektrode A ist so stark, dass im Betrieb keine vollständige Verarmung auftritt. Vorteilhaft an der dargestellten Anordnung der Ausleseelektrode A ist deren niedrige Kapazität, so dass auch Strahlung geringer Energie und geringer Einwirkdauer spektroskopisch erfasst werden können.

Mehrere ringförmige Halbleiterelektroden 2 sind an der Oberseite des Halbleitersubstrats 1 angeordnet, die die Ausleseelektrode A konzentrisch umgeben. Die einzelnen Halbleiterelektroden 2 bestehen jeweils aus einem p-dotierten Halbleitermaterial, wobei die Dotierung der Halbleiterelektroden 2 so stark sind, dass im Betrieb keine vollständige Verarmung auftritt. Die Halbleiterelektroden werden auch als Feldringe R1 bis Rn bezeichnet.

Auf der Oberseite des Halbleitersubstrats 1 ist eine erste Isolationsschicht Ox vorgesehen, die zur Herstellung elektrischer Verbindungen die Ausleseelektrode A und ggf. Teile der Halbleiterelektroden 2 freilässt. Auf der Unterseite des Halbleitersubstrats 1 ist gegenüber der Ausleseelektrode A und den Halbleiterelektroden 2 eine flächige Gegenelektrode 3 angeordnet. Die Gegenelektrode 3 besteht aus einem p-dotierten Halbleitermaterial, wobei die Dotierung so stark ist, dass im Betrieb keine vollständige Verarmung der Gegenelektrode 3 auftritt.

Die einzelnen Halbleiterelektroden 2 werden von der Mitte zum Rand mit einem zunehmend negativen elektrischen Potential beaufschlagt, wodurch sich im Inneren des Halbleitersubstrats 1 das o. g. elektrische Driftfeld aufbaut, das die durch Strahlung im Halbleitersubstrat 1 freigesetzten Elektronen in Richtung der Ausleseelektrode A treibt. Die Minima der Potentiallinien des Elektronenpotentials liegen auf einer Kante 4, entlang der die freigesetzten Elektronen in Richtung der Ausleseelektrode A wandern.

Die Ansteuerung der Halbleiterelektroden 2 erfolgt durch einen integrierten Spannungsteiler (siehe linker Teil von Figur 1), der z. B. aus einer Kette von MOS-Anreicherungstransistoren besteht, die in Durchgangsrichtung betrieben werden. Die Breite der einzelnen MOS-Anreicherungstransistoren kann klein im Vergleich zum Umfang der ringförmigen Halbleiterelektroden 2 sein. Die MOS-Anreicherungstransistoren werden jeweils durch Überführung eines Leiters über die an der Oberseite des Halbleitersubstrats 1 angeordnete Isolationsschicht Ox zwischen benachbarten Halbleiterelektroden 2 gebildet, so dass zwischen den einzelnen Halbleiterelektroden 2 jeweils etwa die Schwellenspannung des Transistors abfällt. Alternativ kann zur Ansteuerung der Halbleiterelektroden ein resistiver Spannungsteiler oder eine punch-through-Struktur vorgesehen sein.

Im Folgenden wird die Kontaktierung der Ausleseelektrode A mit der erfindungsgemäßen Leitungsüberführung beschrieben. Die Ausleseelektrode A ist mit einer Anschlussleitung M verbunden, die über die ringförmigen Halbleiterelektroden 2 nach außen zu einem Bond-Pad B geführt ist. Zwischen der Anschlussleitung M und den Halbleiterelektroden 2 befinden sich mehrere Zwischenelektroden L. Die Zwischenelektroden L sind strukturierte Teilschichten mit einer Fläche, die in radialer Richtung den Zwischenraum zwischen jeweils zwei benachbarten Halbleiterelektroden 2 vollständig überdeckt und quer dazu mindestens so breit wie die Anschlussleitung M ist. Die radiale Ausdehnung der Zwischenelektroden L ist vorzugsweise so gewählt, dass in senkrechter Projektion eine Überlappung der Halbleiterelektroden 2 gegeben ist, wobei die Überlappung z. B. dem zwei- bis drei-fachen Wert der Dicke der Isolationsschicht Ox ist. Mit den Zwischenelektroden L wird das Halbleitersubstrat 1 elektrisch abgeschirmt, um zu verhindern, dass im Halbleitersubstrat 1 zwischen den Halbleiterelektroden 2 aufgrund der Feldwirkung der Anschlussleitung M Ladungsträgervervielfältigungen oder elektrische Durchbrüche auftreten. Zwischen der Anschlussleitung M und den einzelnen Zwischenelektroden L befindet sich eine weitere Isolationsschicht I, um die Anschlussleitung M von den einzelnen Zwischenelektroden zu isolieren.

Die einzelnen Zwischenelektroden L werden jeweils auf einem festen elektrischen Potential gehalten, indem jede einzelne Zwischenelektrode L mit einer der beiden benachbarten Halbleiterelektroden elektrisch verbunden ist.

Schließlich weist der Driftdetektor eine Außenelektrode 5 auf, die vorzugsweise nach außen bis über das Bond-Pad B hinausgeführt ist.

Die in den Fign. 2 und 3 dargestellte Ausführungsbeispiele erfindungsgemäßer Leitungsüberführungen stimmen weitgehend mit dem

vorstehend beschriebenen Ausführungsbeispiel überein, so dass für entsprechende Elemente dieselben Bezugszeichen verwendet werden und zur Vermeidung von Wiederholungen auf die Beschreibung zu Fig. 1 verwiesen wird.

Die Besonderheit des Ausführungsbeispiels gemäß Fig. 2 besteht darin, dass an der Oberseite des Halbleitersubstrats 1 im Außenbereich mehrere ringförmige, konzentrisch angeordnete Abschirmungselektroden G_1-G_m angeordnet sind, die sich auf ein elektrisches Potential einstellen, das von innen nach außen bis auf das Potential einer Substratelektrode S abnimmt, die das Potential des Halbleitersubstrats im Randbereich festlegt.

Die Besonderheit des Ausführungsbeispiels gemäß Fig. 3 besteht darin, dass zwischen der Anschlussleitung M und den einzelnen Halbleiterelektroden 2 zwei Ebenen von Zwischenelektroden L_1, L_2 angeordnet sind. Die mehrlagige Anordnung der Zwischenelektroden L_1, L_2 verhindert auch bei sehr hohen Spannungen zwischen der Anschlussleitung M und den Halbleiterelektroden 2 Störungen der Detektorfunktion durch das Feld der Anschlussleitung M.

Zwischen der Anschlussleitung M und der zusätzlichen Zwischenelektrode L_2 ist eine weitere Isolationsschicht I_2 angeordnet, um die Anschlussleitung M gegenüber der Zwischenelektrode L_2 zu isolieren.

Fig. 4 zeigt einen Driftdetektor in Draufsicht, bei dem die Ausleseelektrode mit einem Feldeffekt-Transistor integriert auf dem Halbleitersubstrat angeordnet ist. In der Draufsicht sind die p-dotierten Bereiche (Halbleiterelektroden 2, 2a, 2z, 2i, Gate G) schraffiert und die n-dotierten Bereiche (freiliegenden Gebiete des Halbleitersubstrates 1, Drain D, Source S) unschraffiert gezeigt. Der Transistor Tr umfasst den n-dotierten, zentralen Drain-Bereich D, den p-dotierten, ringförmigen Gate-Bereich G und den n-dotierten, ringförmigen Source-Bereich S. Der Gate-

Bereich G ist mit der Anode A (Ausleseelektrode) verbunden. Die Anschlusskontakte des Transistors Tr sind einzeln jeweils mit einer erfindungsgemäßen Leitungsüberführung zum äußeren Rand des Driftdetektors geführt. Des weiteren sind Halbleiterelektroden 2 gruppenweise mit Leitungsüberführungen mit äußeren Kontaktstellen (Bond-Pad's) verbunden. Mit erfindungsgemäß vorgesehenen Zwischenelektroden L können Anschlussleitungen einzeln oder in Gruppen abgeschirmt werden.

Beim dargestellten Beispiel sind die Bond-Pad's B1 bis B6 entsprechend mit dem Source S, dem Drain D, der innersten Halbleiterelektrode 2i, einer zwischenliegenden Halbleiterelektrode 2z, einer äußeren Halbleiterelektrode 2a und einem p-dotierten Isolationsring Is zwischen dem Source S und der Anode A verbunden. Die beiden äußersten Ringe sind Abschirmungselektroden (Guard-Elektroden), die dem Potentialabbau dienen und nicht kontaktiert sind. Ein Substratkontakt (nicht dargestellt) ist außerhalb der äußersten Ringes vorgesehen.

Die Erfindung ist nicht auf die vorstehend beschriebenen Ausführungsbeispiele beschränkt. Vielmehr ist eine Vielzahl von Varianten und Abwandlungen denkbar, die von dem Erfindungsgedanken Gebrauch machen und deshalb ebenfalls in den Schutzbereich fallen.

PATENTANSPRÜCHE

1. Leitungsüberführung für einen Halbleiter-Detektor, insbesondere für einen Driftdetektor zur Röntgenspektroskopie, mit
 - mindestens zwei in einem Halbleitersubstrat (1) angeordneten dotierten Halbleiterelektroden (2),
 - mindestens einer über die Halbleiterelektroden (2) geführten Anschlussleitung (M), und
 - einer ersten Isolationsschicht (O_x),
dadurch gekennzeichnet, dass zwischen der Anschlussleitung (M) und der ersten Isolationsschicht (O_x) eine Zwischenelektrode (L, L₂) angeordnet ist, die den Bereich des Halbleitersubstrats (1) zwischen den Halbleiterelektroden (2) überdeckt und durch mindestens eine weitere Isolationsschicht (I) gegenüber der Anschlussleitung (M) elektrisch isoliert ist.
2. Leitungsüberführung nach Anspruch 1, **dadurch gekennzeichnet**, dass die Zwischenelektrode (L) elektrisch mit einer der Halbleiterelektroden (2) verbunden ist und deren elektrisches Potential aufweist.
3. Leitungsüberführung nach Anspruch 2, bei der die Verbindung zwischen der Zwischenelektrode (L) und der Halbleiterelektrode (2) durch einen Polysilizium-Silizium-Übergang gebildet wird.
4. Leitungsüberführung nach Anspruch 1, **dadurch gekennzeichnet**, dass die Zwischenelektrode (L, L₂) zur Festlegung ihres elektrischen Potentials mit einer externen Spannungsquelle verbunden ist.
5. Leitungsüberführung nach mindestens einem der vorhergehenden Ansprüche, **dadurch gekennzeichnet**, dass zwischen der Anschluss-

leitung (M) und dem Halbleitersubstrat (1) übereinander mehrere Ebenen mit mehreren isolierten Zwischenelektroden (L, L2) angeordnet sind.

6. Leitungsüberführung nach mindestens einem der vorhergehenden Ansprüche, **dadurch gekennzeichnet**, dass zur Kontaktierung der Halbleiterelektroden (2) und/oder eines Verstärkungselements (T) mindestens eine weitere Anschlussleitung vorgesehen ist, die über benachbarte Halbleiterelektroden (2) geführt ist.

7. Leitungsüberführung nach mindestens einem der vorhergehenden Ansprüche, **dadurch gekennzeichnet**, dass die Halbleiterelektroden (2) p-dotiert sind, während das Halbleitersubstrat (1) und/oder die Ausleseelektrode (A) n-dotiert ist.

8. Leitungsüberführung nach mindestens einem der Ansprüche 1 bis 6, **dadurch gekennzeichnet**, dass die Halbleiterelektroden (2) n-dotiert sind, während das Halbleitersubstrat (1) p-dotiert ist.

9. Leitungsüberführung nach mindestens einem der vorhergehenden Ansprüche, **dadurch gekennzeichnet**, dass das Halbleitersubstrat (1), die Halbleiterelektroden (2) und/oder die Substratelektrode (S) im wesentlichen aus Silizium, insbesondere Polysilizium, Germanium oder Gallium-Arsenid bestehen.

10. Leitungsüberführung nach mindestens einem der vorhergehenden Ansprüche, **dadurch gekennzeichnet**, dass die Anschlussleitung (M) über Halbleiterelektroden (2) mit einer ringförmigen Topologie geführt ist.

11. Leitungsüberführung nach Anspruch 10, **dadurch gekennzeichnet**, dass die Anschlussleitung (M) über mehrere Halbleiterelektroden (2) geführt ist, die sich gegenseitig umschließen.

12. Leitungsüberführung nach mindestens einem der vorhergehenden Ansprüche, **dadurch gekennzeichnet**, dass die mindestens eine Anschlussleitung über eine Vielzahl von benachbarten Driftdetektoren geführt wird.
13. Driftdetektor zur Röntgenspektroskopie, der mit mindestens einer Leitungsüberführung nach mindestens einem der vorhergehenden Ansprüche ausgestattet ist.
14. Detektoranordnung zur Röntgenspektroskopie, die eine Vielzahl von Driftdetektoren umfasst und mit mindestens einer Leitungsüberführung nach mindestens einem der vorhergehenden Ansprüche 1 bis 12 ausgestattet ist, die über mehrere Driftdetektoren geführt ist.

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro(43) Internationales Veröffentlichungsdatum
2. Oktober 2003 (02.10.2003)

PCT

(10) Internationale Veröffentlichungsnummer
WO 03/081637 A3(51) Internationale Patentklassifikation⁷: H01L 31/0224,
31/115FÖRDERUNG DER WISSENSCHAFTEN E.V.
[DE/DE]; Hofgartenstrasse 8, 80539 München (DE).

(21) Internationales Aktenzeichen: PCT/EP03/03209

(72) Erfinder; und

(22) Internationales Anmeldedatum:
27. März 2003 (27.03.2003)(75) Erfinder/Anmelder (nur für US): STRÜDER, Lothar
[DE/DE]; Römerstrasse 28, 80803 München (DE).
LUTZ, Gerhard [DE/DE]; Therese Giehse Allee 23,
81739 München (DE). RICHTER, Rainer [DE/DE];
Reichenaustrasse 33, 81243 München (DE).

(25) Einreichungssprache: Deutsch

(74) Anwalt: BEIER, Ralph; v. Bezold & Sozien, Akademiestrasse 7, 80799 München (DE).

(26) Veröffentlichungssprache: Deutsch

(81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT,
AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR,
CU, CZ, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,(30) Angaben zur Priorität:
102 13 812.5 27. März 2002 (27.03.2002) DE(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme
von US): MAX-PLANCK-GESELLSCHAFT ZUR

[Fortsetzung auf der nächsten Seite]

(54) Title: CONDUCTOR CROSSOVER FOR A SEMICONDUCTOR DETECTOR

(54) Bezeichnung: LEITUNGSÜBERFÜHRUNG FÜR EINEN HALBLEITER-DETEKTOR

(57) **Abstract:** The invention relates to a conductor crossover for a semiconductor detector, particularly for a drift detector for conducting X-ray spectroscopy. The conductor crossover comprises at least two doped semiconductor electrodes (2), which are placed inside a semiconductor substrate (1), at least one connecting conductor (M), which is guided over the semiconductor electrodes (2), and a first insulating layer (Ox). An intermediate electrode (L) is situated between the connecting conductor (M) and the first insulation layer (Ox). Said intermediate electrode overlaps the area of the semiconductor substrate (1) between the semiconductor electrodes (2) and is electrically insulated from the connecting conductor (M) by at least one additional insulation layer (I). The invention also relates to a drift detector equipped with a conductor crossover of this type and to a detector arrangement for conducting X-ray spectroscopy.

WO 03/081637 A3

(57) **Zusammenfassung:** Es wird eine Leitungsüberführung für einen Halbleiter-Detektor, insbesondere für einen Driftdetektor zur Röntgenspektroskopie beschrieben, die mindestens zwei in einem Halbleitersubstrat (1) angeordnete dodierte Halbleiterelektroden (2), mindestens eine über die Halbleiterelektroden (2) geführte Anschlussleitung (M) und eine erste Isolationsschicht (Ox) umfasst, wobei zwischen

[Fortsetzung auf der nächsten Seite]

GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) **Bestimmungsstaaten (regional):** ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

- mit internationalem Recherchenbericht
- vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen

(88) **Veröffentlichungsdatum des internationalen Recherchenberichts:**

18. Dezember 2003

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP 03/03209A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 H01L31/0224 H01L31/115

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 H01L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, PAJ, INSPEC

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ^a	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	DE 34 27 476 A (KEMMER JOSEF DR;LUTZ GERHARD) 31 October 1985 (1985-10-31) cited in the application column 16, line 12 -column 34, line 38; figures 1-10 ---	1,4,5,7, 9,10,13, 14
A	US 4 729 005 A (WEI CHING-YEU ET AL) 1 March 1988 (1988-03-01) the whole document ---	1-15
P, A	US 2002/139970 A1 (IWANCZYK JAN ET AL) 3 October 2002 (2002-10-03) the whole document ---	1-15

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

° Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

7 November 2003

13/11/2003

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax (+31-70) 340-3016

Authorized officer

Boero, M

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP 03/03209

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	STRUEDER L: "High-resolution imaging X-ray spectrometers" NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH, SECTION - A: ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT, NORTH-HOLLAND PUBLISHING COMPANY. AMSTERDAM, NL, vol. 454, no. 1, 1 November 2000 (2000-11-01), pages 73-113, XP004238224 ISSN: 0168-9002 cited in the application the whole document -----	1-14

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/EP 03/03209

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
DE 3427476	A 31-10-1985	DE	3427476 A1	31-10-1985
		AT	77899 T	15-07-1992
		DE	3586279 D1	06-08-1992
		WO	8504986 A1	07-11-1985
		EP	0179102 A1	30-04-1986
		US	4885620 A	05-12-1989
US 4729005	A 01-03-1988	NONE		
US 2002139970	A1 03-10-2002	NONE		

INTERNATIONALER RECHERCHENBERICHT

Internationaler Aktenzeichen
PCT/EP 03/03209

A. Klassifizierung des Anmeldungsgegenstandes
IPK 7 H01L31/0224 H01L31/115

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 H01L

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, PAJ, INSPEC

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	DE 34 27 476 A (KEMMER JOSEF DR; LUTZ GERHARD) 31. Oktober 1985 (1985-10-31) in der Anmeldung erwähnt Spalte 16, Zeile 12 - Spalte 34, Zeile 38; Abbildungen 1-10	1, 4, 5, 7, 9, 10, 13, 14
A	US 4 729 005 A (WEI CHING-YEU ET AL) 1. März 1988 (1988-03-01) das ganze Dokument	1-14
A, A	US 2002/139970 A1 (IWANCZYK JAN ET AL) 3. Oktober 2002 (2002-10-03) das ganze Dokument	1-14
		-/-

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

* Besondere Kategorien von angegebenen Veröffentlichungen :

A Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist

E älteres Dokument, das jedoch erst am oder nach dem Internationalen Anmeldedatum veröffentlicht worden ist

L Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)

O Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

P Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

T Spätere Veröffentlichung, die nach dem Internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

X Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erforderlicher Tätigkeit beruhend betrachtet werden

Y Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erforderlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist

& Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

Absendedatum des Internationalen Recherchenberichts

7. November 2003

13/11/2003

Name und Postanschrift der Internationalen Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Boero, M

INTERNATIONALER FORSCHENBERICHT

Internationaler Aktenzeichen

PCT/EP 03/03209

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	<p>STRUEDER L: "High-resolution imaging X-ray spectrometers" NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH, SECTION - A: ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT, NORTH-HOLLAND PUBLISHING COMPANY. AMSTERDAM, NL, Bd. 454, Nr. 1, 1. November 2000 (2000-11-01), Seiten 73-113, XP004238224 ISSN: 0168-9002 in der Anmeldung erwähnt das ganze Dokument</p> <p>_____</p>	1-14

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur gleichen Patentfamilie gehören

Internationale Patentzeichen

PCT/EP 03/03209

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
DE 3427476	A	31-10-1985	DE 3427476 A1		31-10-1985
			AT 77899 T		15-07-1992
			DE 3586279 D1		06-08-1992
			WO 8504986 A1		07-11-1985
			EP 0179102 A1		30-04-1986
			US 4885620 A		05-12-1989
US 4729005	A	01-03-1988	KEINE		
US 2002139970	A1	03-10-2002	KEINE		