Midterm 1A

MATH 20E, LECTURE A00, SPRING 2019

NAME:

PID:

- \bullet Print your NAME on every page and write your PID in the space provided above.
- Show all of your work in the spaces provided. No credit will be given for unsupported answers, even if correct.
- Supporting work for a problem must be on the page containing that problem. No scratch paper will be accepted.
- No calculators, tables, phones, or other electronic devices are allowed during this exam. You may use your double-sided handwritten notes, but no books or other assistance.

DO NOT TURN PAGE UNTIL INSTRUCTED TO DO SO (This exam is worth 40 points)

Problem 0.(1 points.) Follows the instructions on this exam and any additional instructions given during the exam.

Problem 1.(9 points.) Evaluate the path integral of f(x,y) = 2x along the path $\vec{c}(t) = (t,t^2)$ where $0 \le t \le 1$.

$$\vec{C}(t) = (t, t^2) \implies \vec{C}(t) = (1, 2t). \text{ and } ||\vec{C}(t)|| = \sqrt{1^2 + (2t)^2} = \sqrt{1 + 4t^2}$$
Since $x(t) = t$ along the path $\vec{C}(t)$, $y(x(t), y(t)) = 2t$.

The path integral is
$$\int \vec{F} dx = \int_{0}^{1} 2t ||\vec{C}(t)|| dt$$

$$= \int_{0}^{1} 2t \sqrt{1 + 4t^2} dt. \qquad ||et u = 2t| du = 2dt.||et u = 1 + 4t^2.||et u = 2t| du = 2dt.||et u = 2dt.||et u = 2dt| du = 2dt| du = 2dt.||et u = 2dt| du$$

let u= 2t, du= 2dt.

Problem 2.(10 points.) Define $g: \mathbb{R}^2 \to \mathbb{R}^3$ by $g(s,t) = (s^2t, s+2t^2, st)$ and $f: \mathbb{R}^3 \to \mathbb{R}$ by $f(x,y,z) = e^{2x-y+z}$. Find $D(f \circ g)(1,1)$.

$$(f \circ g)(4,1) = f(g(4,1)) = f(4,3,1) \neq 0$$

$$D(g \circ g)(4,1) = Df(4,3,1) Dg(4,1)$$

$$\Rightarrow \text{ we need to find } Df(4,3,1) \text{ and } Dg(4,1).$$

$$Df(x,y,z) = \left[\frac{\partial(e^{2x}-y+z)}{\partial x} - \frac{\partial(e^{2x}-y+z)}{\partial y} - \frac{\partial(e^{2x}-y+z)}{\partial z}\right]$$

$$= \left[2e^{2x}-y+z - e^{2x}-y+z - e^{2x}-y+z\right].$$

$$\therefore Df(4,3,1) = \left[2e^{0} - e^{0} - e^{0}\right] = \left[2-1\right]$$

$$Dg(x,t) = \begin{bmatrix} 2xt & x^2 \\ 1+2x & 4t \\ t & x \end{bmatrix} \Rightarrow Dg(4,1) = \begin{bmatrix} 2 & 1 \\ 3 & 4 \\ 1 & 1 \end{bmatrix}$$

$$D(g \circ g)(1,1) = \begin{bmatrix} 2 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 4 - 1 + 1 & 2 - 4 + 1 \end{bmatrix} = \begin{bmatrix} 3 & -1 \end{bmatrix}.$$

Problem 3.(10 points.) Evaluate the following integral

$$\int \int_D y e^x \, dA,$$

where D is the triangular region with vertices (0,0),(1,2), and (3,0). (Hint: you may want to use integration by parts.)

we need to gind The pirst one passes the equations $dope = \frac{2}{1} = 2$.

The pirst one parses through (0,0) and (42) the second one passes through (1,2) and (3,0) slope = $-\frac{2}{2} = -1$. y - 0 = -1(x-3). y = -x + 3. or x = -y + 3.

 $D = \begin{cases} 0 \le y \le 2 \\ y \le x \le -y + 3 \end{cases}.$ 2 - y + 3 2 - y + 3 2 - y + 3 2 - y + 3 2 - y + 3 2 - y + 3 2 - y + 3 2 - y + 3 2 - y + 3 2 - y + 3 2 - y + 3 2 - y + 3 2 - y + 3 2 - y + 3 2 - y + 3 2 - y + 3 2 - y + 3 2 - y + 3 3 u = y and $dv = (e^{y+3} - e^{y/2})dy$ integration du = dy $v = -\overline{e}y^{+3} - 2ey^2$ by parts $=y(-e^{y+3}-2e^{y/2})\Big|_{y=0}^{2}-\int_{0}^{2}(-e^{y+3}-2e^{y/2})dy$ $=-2(e^{4}+2e^{4})$ + $(-e^{9+3})_{y=0}^{2}$ + $4e^{9/2}|_{y=0}^{2}$ =-6e + (-e+e3) + 4e-4.

$$=-3e+e^3-4.$$

Problem 4.(10 points.) Let $D^* = \{(u, v) : 0 \le u \le 2\pi, 0 \le v \le 1\}$ and let D be the image of D^* under the transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by $T(u, v) = (2v \cos(u), v \sin(u))$.

- a) (4 points) Describe D.
- b) (6 points) Find the area of D.
- D is the set of all points $(x,y) \in \mathbb{R}^2$ which satisfies $x(u,v) = 2v\cos(u)$ and $y(u,v) = v\sin(u)$. =) $\frac{x^2}{4} + y^2 = \frac{4v^2\cos^2(u)}{4} + v^2\sin^2(u) = v^2\cos^2(u) + v^2\sin^2(u) = v^2$.

=)
$$\frac{x^2}{4} + y^2 = \frac{4v^2\cos^2(u)}{4} + v^2\sin^2(u) = v^2\cos^2(u) + v^2\sin^2(u) = v$$

- $\frac{x^2}{4} + \frac{y^2}{4} = v^2 \leq 1.$
- .. D is a region bounded (and including) by the eclipse $\frac{x^2}{4} + y^2 \le 1$.

- b) Area(D) = If dA = If |xxy) | dudo
 - $x(u,v) = 2v\cos(u)$ $y(u,v) = v\sin(u)$ $\frac{\partial x}{\partial u} = -2v\sin(u)$ $\frac{\partial x}{\partial v} = 2\cos(u)$ $\frac{\partial y}{\partial v} = \sin(u)$ $\frac{\partial y}{\partial v} = \sin(u)$
 - $\frac{|2(x,y)|}{|3(u,v)|} = \frac{|-2v\sin^2(u) 2v\cos^2(u)|}{|3(u,v)|} = \frac{|-2v\sin^2(u) 2v\cos^2(u)|}{|3(u,v)|} = \frac{|2v|}{|3(u,v)|} = \frac{|2$

Midterm 1B

MATH 20E, LECTURE A00, SPRING 2019

NAME:

PID:

- Print your NAME on every page and write your PID in the space provided above.
- Show all of your work in the spaces provided. No credit will be given for unsupported answers, even if correct.
- Supporting work for a problem must be on the page containing that problem. No scratch paper will be accepted.
- No calculators, tables, phones, or other electronic devices are allowed during this exam. You may use your double-sided handwritten notes, but no books or other assistance.

DO NOT TURN PAGE UNTIL INSTRUCTED TO DO SO (This exam is worth 40 points)

Problem 0.(1 points.) Follows the instructions on this exam and any additional instructions given during the exam.

Problem 1.(9 points.) Evaluate the path integral of $f(x, y, z) = e^{\sqrt{z}}$ along the path $\vec{c}(t) = (1, 2, t^2)$ where $0 \le t \le 1$.

$$\frac{2}{4} = (0,0,2t) \Rightarrow ||2(t)|| = |2t|^2 = 2t \text{ since } t \geqslant 0.$$
Along path \vec{c} , $z(t) = t^2$.
$$\int_{\vec{c}} s ds = \int_{\vec{c}} t e^{-t} t dt$$

$$= 2 \int_{\vec{c}} t e^{-t} dt$$

$$= 2 \int_{\vec{c}} t e^{-t} dt$$

$$= 2 \left[t e^{-t} - e^{-t} \right]_{\vec{c}}^{1}.$$

$$= 2 \left[e^{-t} - e^{-t} \right]_{\vec{c}}^{1}.$$

$$= 2 \left[e^{-t} - e^{-t} \right]_{\vec{c}}^{1}.$$

$$= 2.$$

Problem 2.(10 points.) Define $g: \mathbb{R}^2 \to \mathbb{R}^3$ by $g(s,t) = (s^2t, s+2t^2, st)$ and $f: \mathbb{R}^3 \to \mathbb{R}$ by f(x,y,z) = xyz. Find $D(f \circ g)(1,1)$.

$$g(41) = (4,3,1).$$
 $D_{\varphi}(x,y,z) = [yz xz xy]$
 $\Rightarrow D_{\varphi}(4,3,1) = [3 1 3].$

$$Dg(1,1) = \begin{bmatrix} 2 & 1 \\ 1 & 4 \\ 1 & 1 \end{bmatrix}$$
 (see version A).

$$D(pog)(4,1) = D_{f}(4,3,1) D_{g}(4,1)$$

$$= \begin{bmatrix} 3 & 1 & 3 \end{bmatrix} \begin{bmatrix} 2 & 1 & 7 \\ 4 & 4 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 6+3+3 & 3+4+3 \end{bmatrix}$$

$$= \begin{bmatrix} 10 & 10 \end{bmatrix}.$$

Problem 3.(10 points.) Evaluate the following integral

$$\int \int_D y e^x \, dA,$$

where D is the triangular region with vertices (0,0),(2,2), and (3,0). (Hint: you may want to use integration by parts.)

$$\begin{array}{lll}
\text{Integration by pairs.} \\
2 & \text{if } \alpha = 3 - \frac{1}{2}.
\end{array}$$

$$\begin{array}{lll}
D = \begin{cases}
0 \le y \le 2 \\
3 - \frac{1}{2} \times 4 = y
\end{cases}$$

$$\begin{array}{lll}
2 & \text{if } \alpha = 3 - \frac{1}{2}.
\end{array}$$

$$\begin{array}{lll}
D = \begin{cases}
0 \le y \le 2 \\
3 - \frac{1}{2} \times 4 = y
\end{cases}$$

$$\begin{array}{lll}
2 & \text{if } \alpha = 3 - \frac{1}{2}.
\end{array}$$

$$\begin{array}{lll}
2 & \text{if } \alpha = 3 - \frac{1}{2}.
\end{array}$$

$$\begin{array}{lll}
2 & \text{if } \alpha = 3 - \frac{1}{2}.
\end{array}$$

$$\begin{array}{lll}
2 & \text{if } \alpha = 3 - \frac{1}{2}.
\end{array}$$

$$\begin{array}{lll}
2 & \text{if } \alpha = 3 - \frac{1}{2}.
\end{array}$$

$$\begin{array}{lll}
2 & \text{if } \alpha = 3 - \frac{1}{2}.
\end{array}$$

$$\begin{array}{lll}
2 & \text{if } \alpha = 3 - \frac{1}{2}.
\end{array}$$

$$\begin{array}{lll}
2 & \text{if } \alpha = 3 - \frac{1}{2}.
\end{array}$$

$$\begin{array}{lll}
2 & \text{if } \alpha = 3 - \frac{1}{2}.
\end{array}$$

$$\begin{array}{lll}
2 & \text{if } \alpha = 3 - \frac{1}{2}.
\end{array}$$

$$\begin{array}{lll}
2 & \text{if } \alpha = 3 - \frac{1}{2}.
\end{array}$$

$$\begin{array}{lll}
2 & \text{if } \alpha = 3 - \frac{1}{2}.
\end{array}$$

$$\begin{array}{lll}
2 & \text{if } \alpha = 3 - \frac{1}{2}.
\end{array}$$

$$\begin{array}{lll}
2 & \text{if } \alpha = 3 - \frac{1}{2}.
\end{array}$$

$$\begin{array}{lll}
2 & \text{if } \alpha = 3 - \frac{1}{2}.
\end{array}$$

$$\begin{array}{lll}
3 & \text{if } \alpha = 3 - \frac{1}{2}.
\end{array}$$

$$\begin{array}{lll}
3 & \text{if } \alpha = 3 - \frac{1}{2}.
\end{array}$$

$$\begin{array}{lll}
3 & \text{if } \alpha = 3 - \frac{1}{2}.
\end{array}$$

$$\begin{array}{lll}
3 & \text{if } \alpha = 3 - \frac{1}{2}.
\end{array}$$

$$\begin{array}{lll}
3 & \text{if } \alpha = 3 - \frac{1}{2}.
\end{array}$$

$$\begin{array}{lll}
3 & \text{if } \alpha = 3 - \frac{1}{2}.
\end{array}$$

$$\begin{array}{lll}
3 & \text{if } \alpha = 3 - \frac{1}{2}.
\end{array}$$

$$\begin{array}{lll}
3 & \text{if } \alpha = 3 - \frac{1}{2}.
\end{array}$$

$$\begin{array}{lll}
3 & \text{if } \alpha = 3 - \frac{1}{2}.$$

$$\begin{array}{lll}
3 & \text{if } \alpha = 3 - \frac{1}{2}.
\end{array}$$

$$\begin{array}{lll}
3 & \text{if } \alpha = 3 - \frac{1}{2}.$$

$$\begin{array}{lll}
3 & \text{if } \alpha = 3 - \frac{1}{2}.$$

$$\begin{array}{lll}
3 & \text{if } \alpha = 3 - \frac{1}{2}.$$

$$\begin{array}{lll}
3 & \text{if } \alpha = 3 - \frac{1}{2}.$$

$$\begin{array}{lll}
3 & \text{if } \alpha = 3 - \frac{1}{2}.$$

$$\begin{array}{lll}
3 & \text{if } \alpha = 3 - \frac{1}{2}.$$

$$\begin{array}{lll}
3 & \text{if } \alpha = 3 - \frac{1}{2}.$$

$$\begin{array}{lll}
3 & \text{if } \alpha = 3 - \frac{1}{2}.$$

$$\begin{array}{lll}
3 & \text{if } \alpha = 3 - \frac{1}{2}.$$

$$\begin{array}{lll}
3 & \text{if } \alpha = 3 - \frac{1}{2}.$$

$$\begin{array}{lll}
3 & \text{if } \alpha = 3 - \frac{1}{2}.$$

$$\begin{array}{lll}
3 & \text{if } \alpha = 3 - \frac{1}{2}.$$

$$\begin{array}{lll}
3 & \text{if } \alpha = 3 - \frac{1}{2}.$$

$$\begin{array}{lll}
3 & \text{if } \alpha = 3 - \frac{1}{2}.$$

$$\begin{array}{lll}
3 & \text{if } \alpha = 3 - \frac{1}{2}.$$

$$\begin{array}{lll}
3 & \text{if } \alpha = 3 - \frac{1}{2}.$$

$$\begin{array}{lll}
3 & \text{if } \alpha = 3 - \frac{1}{2}.$$

$$\begin{array}{lll}
3 & \text{if } \alpha = 3 - \frac{1}{2}.$$

$$\begin{array}{lll}
3 & \text{if } \alpha = 3 - \frac{1}{2}.$$

$$\begin{array}{ll}
3 & \text{if } \alpha = 3 - \frac{1}{2}.$$

$$\begin{array}{lll}
3 & \text{if } \alpha = 3 - \frac{1}$$

Problem 4.(10 points.) Let $D^* = \{(u, v) : 0 \le u \le 2\pi, 0 \le v \le 1\}$ and let D be the image of D^* under the transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ given by $T(u, v) = (v \cos(u), 2v \sin(u))$.

- a) (4 points) Describe D.
- b) (6 points) Find the area of D.

a)
$$x^2 + \frac{y^2}{4} = v^2 \le 1$$
.

a)
$$x^2 + y^2 = v^2 \le 1$$
.
b) Area(D) = $\iint_0^2 2v \, du \, dv = 2\pi$.