浙 沪 北 碧 物 理 实 验 报 告

实验名称:空气密度测量	
指导教师:	
信 箱 号:	

实验日期: ___月.__日 星期___________ 下午

【实验目的】 1、掌握低真空的获得种检测方法 2、掌握分析天平、福廷式气压计 的正确使用方法 3、学会测量空气的密度

る.T。 $p = p' \frac{1}{9} (1-0.000163t/2)$) 其中 9 为 当地 的 重力加速度 $0 = 980.665 \text{ Cm/S}^2$.

1

利用公式 (重点说明)

意事项】 3. 气压计测得的征仰》 真空空间的装置置高进行修正.

粉徵质量的仪器.

上使用完真空泵, 注意先缓慢放 人使用完真空泵, 注意先缓慢放 气再拨出致强炮 二、使用电光分析天平底应等了 使用方点, 注意保护刀口, 调零

【数据处理与结果】	3. 计算空气密度
V=165.224 cm3	$P = \frac{m_1 - m_0}{\sqrt{1 - m_0}} = 1.22 \text{kg/m}^3$
t= 16.5°C	$U\rho = \overline{\rho} \sqrt{\frac{(Um_1)^2}{m_1 - m_2}^2 + (\frac{Um_2}{m_1 - m_2})^2}$
$u_t = \frac{\Delta x}{13} = 0.1^{\circ}C$ $t = (16.5 \pm 0.1)^{\circ}C$	$= 0.25 \text{ kg/m}^3$
相对	Pwo=1876.7/Pa. Pw=相对固度XPwo=1296.81Pa
U相对 湿度 = AB = 0.1%	Pof = P-Po (1+0t)(1+3-Po)
相对運度(69.1%±0.1%)	$(P_0 = 101325Pa)(a = \frac{1}{273.15}c^{-1})$
p'= 1025.5 hPa	Pot = 1,29 kg/m ³ .
人修正的	1
P= P g (1-0.000/63 t/C)	N P CITUD
$(9 = 9.783 \text{ m/s}^2, 9_0 = 980.65 \text{ cm/s}^2)$). = 0.26 kg/m^3 $R_{4} = (1.29 \pm 0.26) \text{ kg/m}^3$
D=102028 Pa, to=	101 = (1.21 10.20) 19/11
2 例 m, Mo	- 15 6
m 10 2200 88,2875 89,2876 88	2873 88,2877 88,2876
mo/0 88 025 28.0 98 4 80.025 89	086 82.0854 89.0854
$\overline{m}_1 = 88.287629$	4、计算赛步汽件带量
$V_{Am_1} = \sqrt{\frac{1}{12} (m_{11} - m_1)^2} = 0.000099$	$R = \frac{P_0 N_A}{T P_T}$
$U_{Bm_1} = \frac{\Delta 1 \times 1}{N3} = 0.000039$	$(M_0 = 28.98 \times 10^{-3} \text{kg.} T_0 = 273.15 \text{K})$
$Um_1 = \sqrt{UAm_1^2 + U_{Bm_1}^2} = 0.000099$.	(MA=28.98X10-3kg, To=273.15K) R=重量31/(mol·K)·1.7
$m_1 = (28, 28762 \pm 0.00009)9$	$VR = \overline{R} \sqrt{\frac{U\rho_{of}}{\overline{Q}}^2} = 2 \sqrt{\frac{mol \cdot K}{Mol \cdot K}}$
$m_{e} = 88.085479$	(Q.3±1,7) Por
VAM = 0.000039	R=(23+1.7) P+ //(mol·K)
UBM2 = 0.000039	相对误差 18-Ral = 0.17%.
$U_{ma} = 0.000049$. $M_{a} = (38.08547 \pm 0.00004)9$.	(Ro = 8. 314441 J/ [md·K]
- (SU. DA) T T	工、抽志空气质量与时间的大多。
	(此)村权),

5 抽去空气质量与时间的关系

 $m_1 = 88.2876 \; g$

抽真空时间/s	5	10	15	20	25	30
m0/g	88.0859	88.0857	88.0854	88.0854	88.0856	88.0855
抽去空气的质量m/g	0.2017	0.2019	0.2022	0.2023	0.2023	0.2023

因此,抽真空时间最好应大于 $30 \ s$

以是是分析。 一次是中侧厚的人压需要后续进 分修正。由于毛细作用所导致的 水侧面的降低,以及多升针的失 均后起来作为仪器的争统设置 2. m。的误差主要来自于空气是否 抽取彻底,玻璃泡密封是否良好

验心得及思考题】 = 0.127%. 需要,因为最后计算空气质③ 时采用了差值点。即(M-M。)= M ,是完了空气序为的影响。实验 posm.

教师签字:

