INTRO TO CH1: PHYSICAL QUANTITIES & UNITS

Physical quantity:
Any quantity that can be measured and has units.
Is further divided into:
. Base Quantitien: those that can't be simplified further
a. Derived Quantitien: can be expressed using one or more base
quantities.
The seven (7) base quantities: quantity (unit)
1. length (m)
a. time (s)
3. temperature (K)
4. mass (kg)
5. amount of substance (mol)
6. current (A)
7. light intensity (cd) > "candela"
Important derived quantitien: quantity (base units)
- Area (m²) - Power (kgm²s-3)
- Deusity (kgm-3) - Energy (kgm25-2)
- Volume (m³) - Charge (As)
- Speed (ms-') - Voltage (kgm²s-3A-')
- Acceleration (ms-2) - Resistance (kgm2s-3A-2)
- Force (kgms-2) - Specific Heat Capacity (m2s-2K-

- Work Done (kgm²s-2)

Example Question:

Given that
$$F = Q^2$$
 and $F = y1^2$
where ...

271 d

$$\frac{Q^{2}d^{2}}{I^{2}r^{2}} = \frac{\chi y I^{2}r^{2}}{I^{2}r^{2}}$$

$$\frac{(AS)^2 m}{(AS)^2 m} = \frac{2}{2}$$

$$A^2 s^2 m^2 = 1$$

$$A^2 s^2 m \qquad \text{i., base units of } (xy)^- = ms^{-2}$$

$$\frac{M}{S^2} = \frac{1}{\lambda y}$$

Example Question:
In the given equation, find the base with of x
$x = kr^3 (P_1 - P_2) \sqrt{\frac{M}{R_1}} \text{where} \dots$
r=radius, P. and Pz = Pressure, M = Mass per mol, T= temperature,
R = Toules per Kelvin. Mole, K = Dimensionless quantity.
$\alpha = kr^3 (P_1 - P_2) \sqrt{\frac{M}{R.T}}$
$\pi = m^3$