Álgebra lineal – Semanas 16 Forma canónica de Jordan

Facultad de Ciencias Exactas y Naturales Instituto de Matemáticas Universidad de Antioquia

27 de julio de 2021

Definición 1 (Matriz de bloques de Jordan)

Por N_k denotamos a la matriz $k \times k$ que tiene unos arriba de la diagonal principal y ceros en las demás posiciones:

$$N_k = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & \cdots & 0 & 0 \end{pmatrix}$$

Con la matriz N_k definimos la matriz de bloques de Jordan

$$B(\lambda) = \lambda I + N_k = \begin{pmatrix} \lambda & \mathbf{1} & 0 & \cdots & 0 \\ 0 & \lambda & \mathbf{1} & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda & \mathbf{1} \\ 0 & 0 & \cdots & 0 & \lambda \end{pmatrix}$$

Definición 2 (Matriz de Jordan)

Definimos la matriz de Jordan

$$J = \begin{pmatrix} B_1(\lambda_1) & 0 & \cdots & 0 \\ 0 & B_2(\lambda_2) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & B_r(\lambda_r) \end{pmatrix},$$

donde cada $B_j(\lambda_j)$ es una matriz de bloques de Jordan.

Ejemplo de matrices de Jordan

$$J = \begin{pmatrix} 3 & 1 & \vdots & 0 \\ 0 & 3 & \vdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \vdots & 4 \end{pmatrix}$$

Ejemplo de matrices de Jordan

$$J = \begin{pmatrix} -2 & \vdots & 0 & 0 & 0 & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \vdots & \vdots \\ 0 & \vdots & -2 & 1 & 0 & \vdots & 0 \\ 0 & \vdots & 0 & -2 & 1 & \vdots & 0 \\ 0 & \vdots & 0 & 0 & -2 & \vdots & 0 \\ \vdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ -2 & 0 & 0 & 0 & \vdots & 7 \end{pmatrix}$$

Ejemplo de matrices de Jordan

Propiedad 1 (Matrices de Jordan 2×2)

Las únicas matrices de Jordan de 2×2 son de la forma

$$J = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \quad \text{\'o} \qquad J = \begin{pmatrix} \lambda & \mathbf{1} \\ 0 & \lambda \end{pmatrix}$$

Propiedad 2 (Matrices de Jordan 3×3)

Las únicas matrices de Jordan de 3×3 son de la forma

$$J = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix} \quad 6 \qquad J = \begin{pmatrix} \lambda_1 & \vdots & 0 & 0 \\ \cdots & \vdots & \ddots & \cdots \\ 0 & \vdots & \lambda_2 & 1 \\ 0 & \vdots & 0 & \lambda_2 \end{pmatrix}$$

ó

$$J = \begin{pmatrix} \lambda_1 & \mathbf{1} & \vdots & 0 \\ 0 & \lambda_1 & \vdots & 0 \\ \vdots & \ddots & \ddots & \ddots \\ 0 & 0 & \vdots & \lambda_2 \end{pmatrix} \qquad \delta \qquad J = \begin{pmatrix} \lambda_1 & \mathbf{1} & 0 \\ 0 & \lambda_1 & \mathbf{1} \\ 0 & 0 & \lambda_1 \end{pmatrix}$$

Propiedad 3 (Forma canónica de Jordan)

Sea A una matriz $n\times n$ con entradas reales o complejas. Entonces existe una matriz invertible C de $n\times n$ con entradas complejas tal que

$$C^{-1}AC = J,$$

donde J es una matriz de Jordan cuyos elementos en la diagonal son los valores propios de A. Más aún, la matriz de Jordan J es única, excepto por el orden en el que aparecen los bloques de Jordan.

Observación 1

- $oldsymbol{\circ}$ Las entradas de C en la propiedad 3 pueden ser reales.
- ${\color{red} \bullet}$ La matriz C en la propiedad 3 no necesariamente es única.
- En la propiedad 3, si por ejemplo A es semejante a

$$J = \begin{pmatrix} 3 & 1 & \vdots & 0 \\ 0 & 3 & \vdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \vdots & 4 \end{pmatrix}, \quad \text{tambi\'en lo es} \quad J = \begin{pmatrix} 4 & \vdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \vdots & 3 & 1 \\ 0 & \vdots & 0 & 3 \end{pmatrix}$$

Forma canónica de Jordan

Propiedad 3

Sea A una matriz $n\times n$ con entradas reales o complejas. Entonces existe una matriz invertible C de $n\times n$ con entradas complejas tal que

$$C^{-1}AC = J,$$

donde J es una matriz de Jordan cuyos elementos en la diagonal son los valores propios de A. Más aún, la matriz de Jordan J es única, excepto por el orden en el que aparecen los bloques de Jordan.

Definición 2 (Forma canónica de Jordan)

La matriz J en la propiedad 3 se denomina la $forma\ canónica\ de\ Jordan$ de A.

Vector propio generalizado

Propiedad 4

Suponga que A es una matriz de 2×2 que tiene un valor propio λ de multiplicidad algebraica 2 y de multiplicidad geométrica 1. Si \mathbf{v}_1 un vector propio correspondiente a λ , entonces existe un vector \mathbf{v}_2 que satisface la ecuación

$$(A - \lambda I)\mathbf{v}_2 = \mathbf{v}_1$$

Definición 3 (Vector propio generalizado)

Sea A es una matriz de 2×2 con un solo valor propio λ de multiplicidad geométrica 1. Un vector ${\bf v}_2$ que satisfaga la ecuación

$$(A - \lambda I)\mathbf{v}_2 = \mathbf{v}_1$$

se denomina vector propio generalizado de A.

Ejemplo de vector propio generalizado

Ejemplo 1

Halle un vector propio generalizado de

$$A = \left(\begin{array}{cc} 3 & -2 \\ 8 & -5 \end{array}\right)$$

Solución.

• Polinomio característico de A:

$$p(\lambda) = |P - \lambda I| = \begin{vmatrix} 3 - \lambda & -2 \\ 8 & -5 - \lambda \end{vmatrix} = \lambda^2 + 2\lambda + 1$$

• Valores propios de A:

$$p(\lambda) = \lambda^2 + 2\lambda + 1 = (\lambda + 1)^2 = 0 \implies \lambda_1 = \lambda_2 = -1.$$

Ejemplo de vector propio generalizado

• Espacio propio $E_{\lambda_1} = E_{-1} = N_{A+I}$:

$$(A+I\mid \mathbf{0}) = \begin{pmatrix} 4 & -2 & 0 \\ 8 & -4 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \Rightarrow \quad \mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

• Para el vector propio generalizado \mathbf{v}_2 , resolvemos $(A - \lambda I)\mathbf{v}_2 = \mathbf{v}_1$:

$$(A+I\mid \mathbf{v}_1) = \begin{pmatrix} 4 & -2 & 1\\ 8 & -4 & 2 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & -\frac{1}{2} & \frac{1}{4}\\ 0 & 0 & 0 \end{pmatrix} \quad \Rightarrow \quad \begin{array}{c} x = \frac{1}{4} + \frac{1}{2}y\\ y = y \end{array}$$

$$\mathbf{v}_2 = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \frac{1}{4} \\ 0 \end{pmatrix}$$

Forma canónica de Jordan para matrices 2×2

Propiedad 5

Suponga que A es una matriz de 2×2 que tiene un valor propio λ de multiplicidad algebraica 2 y de multiplicidad geométrica 1. Si \mathbf{v}_1 un vector propio correspondiente a λ y \mathbf{v}_2 es un vector propio generalizado de A, entonces

$$C^{-1}AC = J$$
, donde $J = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$

es la forma canónica de Jordan de A y C es la matriz cuyas columnas son los vectores \mathbf{v}_1 y \mathbf{v}_2 .

Forma canónica de Jordan para matrices 2×2

Ejemplo 2

Halle la forma canónica de Jordan de

$$A = \left(\begin{array}{cc} 3 & -2 \\ 8 & -5 \end{array}\right)$$

Solución.

• Valores y vectores propios de A obtenidos:

$$\lambda = -1, \quad \mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \quad \mathbf{v}_2 = \begin{pmatrix} \frac{1}{4} \\ 0 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & \frac{1}{4} \\ 2 & 0 \end{pmatrix}.$$

• Forma canónica de Jordan de A:

$$C^{-1}AC = \left(\begin{array}{cc} -1 & 1\\ 0 & -1 \end{array}\right) = J$$

Forma canónica de Jordan para matrices 3×3

Propiedad 6

Suponga que A es una matriz 3×3 que tiene un valor propio λ de multiplicidad algebraica 3 y de multiplicidad geométrica 1. Si \mathbf{v}_1 un vector propio correspondiente a λ , entonces:

 \bullet Existe un vector \mathbf{v}_2 tal que

$$(A - \lambda I)\mathbf{v}_2 = \mathbf{v}_1,$$

con \mathbf{v}_1 y \mathbf{v}_2 LI.

\odot Existe un vector \mathbf{v}_3 tal que

$$(A - \lambda I)\mathbf{v}_3 = \mathbf{v}_2,$$

con \mathbf{v}_1 , \mathbf{v}_2 y \mathbf{v}_3 LI.

 \bullet La matriz C cuyas columnas son los vectores \mathbf{v}_1 , \mathbf{v}_2 y \mathbf{v}_3 satisface

$$C^{-1}AC = J = \begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix}.$$

Forma canónica de Jordan para matrices 3×3

Ejemplo 3

Halle la forma canónica de Jordan de

$$A = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -3 & 3 \end{array}\right)$$

Solución.

Bibliografía

- Clara Mejía Álgebra lineal elemental y aplicaciones Ude@, 2006.
- Stanley Grossman Álgebra lineal McGraw-Hill Interamericana, Edición 8, 2019.
- David Poole Álgebra lineal: una introducción moderna Cengage Learning Editores, 2011.
- Bernard Kolman *Álgebra lineal* Pearson Educación, 2006.
- Ron Larson
 Fundamentos de Álgebra lineal
 Cengage Learning Editores, 2010.

