Modelos a Valores Booleanos:

Aplicações em Teoria dos Conjuntos

IME - USP

Orientador: Prof. Hugo Luiz Mariano José Goudet Alvim

2017-19

Palavras-chave

Reticulados; Álgebras de Heyting; Álgebras Booleanas; Teoria de Modelos; Valores booleanos de fórmulas; Independência; Forcing;

Resumo

Neste trabalho de iniciação científica, estudaremos a teoria de modelos a valores booleanos de ZF, a fim de entender e produzir provas de consistência e independência na teoria de conjuntos. Para tanto, trataremos de álgebras de Boole; de Heyting; Filtros; Morfismos; Teoria de Modelos e Lógica.

Conteúdo

1	Lóg	ica de Primeira Ordem	4
		· Def. Termos, Fórmulas e variáveis livres escopadas	5
		· Def. Estrutura, Interpretação e Validação	6
		· Def. Sentença	9
		· Prp. Genericidade restrita de fórmulas:	9
		· Prp. Independência das interpretações irrelevantes:	10
		· Teo. Genericidade de sentenças para validação:	10
		· Def. Satisfatibilidade	10
		· Def. Consequência	11
		· Prp. Resultados sobre ⊢	13
		· Def. Teoria	18
		· Def. Teoria	18
		· Def. Consistência	19
	1.1	Relativização	20
2	Teo	ria de Modelos de Teorias de Conjuntos	21
	2.1	Estruturas Transitivas	24
		· Def. Identidade Induzida	24
		· Def. Estrutura Transitiva	24
		· Def. Substrutura	24
		· Teo. Estrutura transitivas atendem fundação e extensionalidade .	25
		2.1.1 Incondicionalidade e Elementaridade	26
		· Def. Incondicionalidade	26
		· Def. Elementaridade	26
		· Prp. Condições suficientes para incondicionalidade	27
		· Def. Fórmulas Completas	27

	· Teo. $\exists x : \varphi$ para completas e absolutas
	· Teo. Quantificação limitada de fórmulas absolutas
	· Def. Fórmulas preservadas por Extenção/Restrição 29
	· Prp. Quantificação sobre absoluta é Restringível/Extendível 30
	2.1.2 Hierarquia de Lévy
	· Def. Fórmulas Σ , Π e Δ
	· Teo. Fórmulas $\Delta_1^{\mathcal{T}}$ são \mathcal{T} -absolutas
	· Prp. Δ_0 são absolutas
	· Teo. Resultados acerca da Hierarquia de Lévy
2.2	O Universo Construtível
	· Def. Construção de uma Fórmula
	· Def. Satisfatibilidade Internalizada
	• Def. L
	· Prp. L é transitivo
	· Prp. $\alpha < \beta \rightarrow L_{\alpha} \subset L_{\beta}$
	• Teo. $L \models \mathbf{ZF}$
	· Def. Rank Construtível

Capítulo 1

Lógica de Primeira Ordem

It seems to me now that mathematics is capable of an artistic excellence as great as that of any music [...] because it gives in absolute perfection that combination, characteristic of great art, of godlike freedom, with the sense of inevitable destiny; because, in fact, it constructs an ideal world where everything is perfect and yet true.

Bertrand Russell.

Começamos com uma língua \mathcal{L} de primeira ordem, isto é, a coleção de palavras (bem-)formadas por um determinado conjunto de símbolos para variáveis; uma série de símbolos para relações, $\langle R_1, R_2, \ldots \rangle$; uma de funções, $\langle F_1, F_2, \ldots \rangle$ e uma de constantes $\langle C_1, C_2, \ldots \rangle$; conectivos e operadores lógicos e quantificadores.

Definição: Termos, Fórmulas e variáveis livres | escopadas.

- (a) Se x_i for uma variável, então a palavra " x_i " é um **termo** e a (única) ocorrência de x_i é dita **livre** no termo.
- (b) Se C_i for uma constante, então a palavra " C_i " é um **termo**. Como ele não contém variável, não faz sentido tratar de ocorrências de variáveis livres ou escopadas.
- (c) Se $\{t_1, \ldots, t_k\}$ forem termos, e R_j é um relacional de aridade k, então a palavra " $(R_j(t_1, \ldots, t_k))$ " é uma **fórmula**. E cada ocorrência de cada variável presente nesta é dita livre nela exatamente quando for livre no termo em que ocorre e é dita escopada exatamente quando é escopada no termo que ocorre.
- (d) Se $\{t_1, \ldots, t_k\}$ forem termos, e F_j é um relacional de aridade k, então a palavra " $(F_j(t_1, \ldots, t_k))$ " é um **termo**. E cada ocorrência de cada variável presente nesta é dita livre nela exatamente quando for livre no termo em que ocorre e é dita escopada exatamente quando é escopada no termo que ocorre.
- (e) Se φ , ψ forem fórmulas e \diamond for um conectivo lógico, então as palavras: " $(\varphi \diamond \psi)$ " e " $(\neg \varphi)$ " são **fórmulas**, e occorências de variáveis são livres ou escopadas de acordo com sua liberdade ou limitação nas fórmulas componentes.
- (f) Se φ for uma fórmula, e x_i é uma variável, então as palavras: " $\exists x_i : \varphi$ " e " $\forall x_i : \varphi$ " são **fórmulas** e cada ocorrência de x_i é dita **escopada** pois está no escopo de um quantificador —, e cada ocorrência de qualquer outra variável é livre ou escopada de acordo com sua situação em φ .

A língua é formada destes componentes, fórmulas e termos.

* * *

Por legibilidade, por omitiremos parenteses quando possível, e intruduziremos abreviaturas para fórmulas, termos *etc.*

A ideia de uma língua é que ela *fale sobre* um determinado domínio. Quando escrevo, minhas palavras tratam de objetos de alguma sorte. Quando nomeio um objeto e predico sobre ele, por exemplo, existe uma interpretação da verdade do predicado no nosso universo.

Por exemplo, "Eu tenho cinco dedos cada uma de minhas mãos", é uma sentença da língua portuguesa, cujo valor de verdade é dependente em quem é "Eu" e em suas propriedades. Poderia ser o caso que o autor não tivesse cinco dedos em cada uma de minhas mãos, então, a interpretação costumeira de quem é "Eu" falsearia a sentença.

Poderia ser o caso que o autor não tivesse mão alguma, mas neste caso a sentença seria verdade, pelo mesmo motivo que eu tenho uma lamborghini em cada uma das minhas mansões.

Tentando capturar a noção de interpretação das *palavras* para objetos concretos (que não pertencem à língua, mas a um mundo) — por exemplo "Eu" — e como, associando palavras a objetos e símbolos a relações, constantes, funções *etc.* temos como determinar a veracidade de uma proposição no mundo alvo, dada uma interpretação.

Definição: Estrutura, Interpretação e Validação.

Assinatura: Uma assinatura é uma tripla de coleções: a das relações, cada qual com sua aridade; a das constantes; e, finalmente, a das funções, cada qual com sua aridade.

$$\Sigma = \left\langle \left\langle \mathbf{R_1}, \ldots \right\rangle, \left\langle \mathbf{C_1}, \ldots \right\rangle, \left\langle \mathbf{F_1}, \ldots \right\rangle \right\rangle$$

Se cada relação ou função em uma assinatura Σ tiver domínio em uma coleção A, e cada constante estiver em A, então podemos dizer que Σ está definida sobre A.

Estrutura: Chamamos a dupla $\langle A, \Sigma \rangle$ de A coleção e uma assinatura Σ definida sobre A, de \mathfrak{A} . E este tipo de objeto batizamos de **estrutura**. E dizemos A ser o domínio de \mathfrak{A} , que escrevemos $|\mathfrak{A}|$, e Σ ser assinatura de \mathfrak{A} , possivelmente $sgn(\mathfrak{A})$.

Compatibilidade Estrutura-Língua: Dada uma língua de primeira ordem \mathcal{L} e uma estrutura \mathfrak{A} dizemos elas serem compatíveis se e só se valem todas:

- (a) Se $sgn(\mathfrak{A})$ tiver tantas relações quanto há relacionais na língua.
- (b) Se $\mathbf{R_i}$ é a *i*-ésima relação da estrutura, então R_i , o *i*-ésimo símbolo relacional da língua, concorda com sua aridade.
- (c) Se $sgn(\mathfrak{A})$ tiver tantas funções quanto há funcionais na língua.
- (d) Se $\mathbf{F_i}$ é a *i*-ésima função da estrutura, então F_i , o *i*-ésimo símbolo funcional da língua, concorda com sua aridade.

Interpretação: Dizemos que uma f é uma interpretação de \mathcal{L} para \mathfrak{A} se e, só se:

- (a) \mathcal{L} e \mathfrak{A} são compatíveis.
- (b) f associa cada variável λ da língua para algum elemento $f(\lambda)$ de $|\mathfrak{A}|$.
- (c) f leva cada símbolo relacional R_i na relação $f[R_i] = \mathbf{R}_i$ da $sgn(\mathfrak{A})$.
- (d) f leva cada símbolo funcional F_i na função $f[F_i] = \mathbf{F}_i$ da $sgn(\mathfrak{A})$.
- (e) Se x_1, \ldots, x_k forem termos e F um funcional, então $f(F(x_1, \ldots, x_k)) = f[F](f(x_1), \ldots, f(x_k)).$
- (f) f leva cada símbolo de constante c em um membro f(c) de $|\mathfrak{A}|$.

Isto é, ter uma interpretação — ou melhor — *interpretar* um símbolo é dar significado a ele. Pois, leva-lo a um objeto, relação semântica entre objetos, função, *etc*.

Um exemplo de significação é imaginar que quando escrevo "o autor" em alguma sentença, pode-se interpretar como referente do símbolo o autor deste texto. Ficam, pois, definidas as propriedades do signo e, assim, este pedaço da sentença ganha significado.

Além disso, dada uma interpretação f de \mathcal{L} para \mathfrak{A} , uma variável ou constante x e um membro a de $|\mathfrak{A}|$, definimos $f_{[x/a]}$ como sendo exatamente igual a f nas variáveis e constantes exceto em x, onde ela valerá a. Os outros valores de f — isto é, em termos diversos — induz-se das funções, constantes e variáveis.

Isto se comporta como mudar um pedaço da interretação, por exemplo, a interpretação de "o nome do autor tem a letra W" muda radicalmente de acordo com quem é o autor, mesmo mantendo a interpretação da função "nome de X". Não poderia "autor" denotar Ludwig Wittgenstein, que foi autor?

Validação: Definimos uma fórmula φ de \mathcal{L} valer em \mathfrak{A} sob a interpretação f (estrutura compatível com a língua) — alternativamente, que \mathfrak{A} satisfaz φ —, ou simbolicamente, $\mathfrak{A} \vDash_f \varphi$ por recorrência sobre sua complexidade.

(a) Se x_0, \ldots, x_{ρ_i} forem termos quaisquer, R_i relacional de aridade ρ_i :

$$\varphi \equiv R_i(x_0, \dots, x_{o_i}) \Rightarrow [\mathfrak{A} \vDash_f \varphi \Leftrightarrow f[R_i](f(x_0), \dots, f(x_{o_i}))]$$

(b) Se σ e ψ forem fórmulas, x uma variável:

$$\varphi \equiv \sigma \wedge \psi \Rightarrow$$

$$[\mathfrak{A} \vDash_f \varphi \Leftrightarrow \mathfrak{A} \vDash_f \sigma e \mathfrak{A} \vDash_f \psi]$$

$$\varphi \equiv \sigma \vee \psi \Rightarrow$$

$$[\mathfrak{A} \vDash_f \varphi \Leftrightarrow \mathfrak{A} \vDash_f \sigma \text{ ou } \mathfrak{A} \vDash_f \psi]$$

$$\varphi \equiv \neg \sigma \Rightarrow$$

$$[\mathfrak{A} \vDash_f \varphi \Leftrightarrow \text{ não } \mathfrak{A} \vDash_f \sigma]$$

$$\varphi \equiv \sigma \rightarrow \psi \Rightarrow$$

$$[\mathfrak{A} \vDash_f \varphi \Leftrightarrow \mathfrak{A} \vDash_f \neg \sigma \text{ ou } \mathfrak{A} \vDash_f \psi]$$

$$\varphi \equiv \forall x : \sigma \Rightarrow$$

$$[\mathfrak{A} \vDash_f \varphi \Leftrightarrow \text{ para todo } a \text{ de } |\mathfrak{A}| \colon \mathfrak{A} \vDash_{f_{[x/a]}} \varphi]$$

$$\varphi \equiv \exists x : \sigma \Rightarrow$$

$$[\mathfrak{A} \vDash_f \varphi \Leftrightarrow \text{ existe algum } a \text{ de } |\mathfrak{A}| \colon \mathfrak{A} \vDash_{f_{[x/a]}} \varphi]$$

A motivação desta definição é a ideia que os fatos elementares, no caso as relações e funções entre os objetos, determinam todos os fatos "complexos". Os quantificadores por sua vez, desempenham o papel de providenciar genericidade. Isto é, sem estes, a validade de uma fórmula é extremamente dependente da interpretação. Mas uma **sentença** — isto é, uma fórmula com todas as variáveis em algum escopo de quantificador —, de certa forma, não depende de uma interpretação.

* * *

Definição: Sentença.

Uma **sentença** de uma língua é uma fórmula em que todas as ocorrências de suas variáveis são escopadas.

* * *

Lema: Genericidade restrita de fórmulas:.

Se todas as ocorrências de uma variável x em uma dada fórmula φ estiverem escopadas, então para todo a no domínio de uma certa estrutura $\mathfrak A$ compatível com a língua de φ , $\mathfrak A \vDash_f \varphi \Leftrightarrow \mathfrak A \vDash_{f_{[x/a]}} \varphi$.

Prova:

Onde x aparecer, ela estará escopada, então ja iamos substituir o valor de f lá. Como a validade das fórmulas é dada por recorrência, e como tudo permanece o mesmo salvo em x, fica clara a ida, para a volta reaplica-se a inda.

Lema: Independência das interpretações irrelevantes:.

Se x não ocorrer em varphi uma \mathcal{L} -fórmula com língua compatível com \mathfrak{A} estrutura, então para todo a em $|\mathfrak{A}|$, $\mathfrak{A} \models_f \varphi \Leftrightarrow \mathfrak{A} \models_{f_{[x/a]}} \varphi$.

Prova:

Na definição de validação x não desempenha papel algum.

Teorema: Genericidade de sentenças para validação:.

Dadas uma língua e uma estrutura compatíveis. Se φ for uma sentença da língua, então a estrutura valida φ sob uma interpretação f se e somente se valida sob qualquer interpretação g que leva as relações, funções e constantes nas mesmas que leva f.

Prova:

A volta é trivial, se valida para qualquer que coincide com f em certa parte, valida para f, que de certo coincide com f nesta parte.

Por outro lado, todas as ocorrências de variáveis são escopadas, então, qualquer substituição de variáveis (presentes em φ) na intepretação não altera a validade da sentença. Adicionalmente, qualquer substituição de variáveis irrelevantes não altera a validade. Pois, quaisquer substituições não alteram a validade. Logo, toda interpretação leva a mesma validação.

Definição: Satisfatibilidade.

Finalmente, definiremos uma noção de satisfatibilidade ou validade que independe de *interpretação*.

Dadas $\mathfrak A$ uma estrutura e $\mathcal L$ uma língua compatíveis, e uma fórmula φ da língua.

Deixe $\psi \equiv \forall x_1, \dots, \forall x_k : \varphi$ onde x_1, \dots, x_k são todas as variáveis em φ não escopadas,

 $\mathfrak{A} \vDash \psi \Leftrightarrow [\text{Para toda interpretação } f : \mathfrak{A} \vDash_f \psi]$

Possívelmente, nenhuma variável será livre em φ neste caso, ψ coincidirá com φ .

No caso que $\mathfrak{A} \models \varphi$ vale, dizemos que \mathfrak{A} satisfaz φ ou, alternativamente, φ é válida em \mathfrak{A} . Note que uma fórmula que não for sentença é válida só se por falta de contra exemplo.

No caso em que $\mathfrak{A} \models \Sigma$, com Σ uma coleção de fórmulas, dizemos que \mathfrak{A} modela Σ .

* * *

O estudo das estruturas e as fórmulas que lá são satisfeitas é extremamente importante, afinal. De exemplos, um trivial é uma estrutura com (apenas) a relação identidade e uma língua com (apenas) o símbolo "=", sendo assim, temos que

$$\langle A, Id \rangle^{1} \vDash x = x$$

Notação: A partir deste ponto, não vamos explicitamente dizer que uma língua é compatível com uma estrutura quando tratamos delas. Nem diremos que uma φ é fórmula da língua, etc.

Definição: Consequência.

Da mesma forma que definimos satisfatibilidade com a intenção de abstrair a noção de interpretação, queremos agora abstrair as relações da própria estrutura.

Estruturas compatíveis Duas estruturas são ditas compatíveis exatamente quando houver uma língua que é compatível com as duas, isto é as aridades de cada relação, função, número de constantes etc. coincidem.

 $^{^1\}mathrm{No}$ caso, interprete que a dupla é uma estrutura com apenas relações, nesta instância Ide domínio A.

Duas estruturas compatíveis podem satisfazer fórumlas radicalmente diferentes, por exemplo, a estrutura que tomamos acima e uma outra estrutura com apenas a relação " $x(Nq)y \Leftrightarrow x \neq y$ ". Se \mathcal{L} for a língua com apenas um símbolo relacional R, fica claro que $\langle A, Id \rangle \vDash x = x$ e $\langle B, Nq \rangle \nvDash x = x$. Queremos, pois, uma noção que não dependa tanto da estrutura fina do universo interpretativo.

Consequência: Dizemos que φ segue, ou é consequência, de ψ , ou simbolicamente,

$$\varphi \vdash \psi \Leftrightarrow [\text{Para toda } \mathfrak{A} : \mathfrak{A} \vDash \psi \Rightarrow \mathfrak{A} \vDash \varphi]$$

Note a semelhança com a definição de satisfatibilidade sem interpretação. Novamente, a quantificação universal faz o trabalho de generalizar o conceito em certa direção.

Extendemos a definição para conjuntos de fórmulas dos dois lados,

$$\Gamma \vdash \Sigma$$

Da maneira natural de fazer, isto é, para cada φ em Σ , $\Gamma \vdash \varphi$, e por isso, queremos dizer:

[Para toda
$$\mathfrak{A}$$
: (para toda γ em $\Gamma: \mathfrak{A} \models \psi$) $\Rightarrow \mathfrak{A} \models \varphi$]

Finalmente, se $\emptyset \vdash \varphi$, escrevemos $\vdash \varphi$.

* * *

A interpretação da definição é que algumas fórmulas são genéricas sobre uma certa sorte de estrutura, por exemplo, considere a fórmula $\varphi \equiv xRx \rightarrow xRx$. Não importa quem seja x, nem quais sejam suas relações com quaisquer outros membros de seu universo. φ é sempre verdade.

Considere um outro exemplo menos formal do mesmo princípio: Seja ψ = "Todos os cavalos são animais" e φ = "todas as cabeças de cavalo são cabeças de animais" então $\psi \vdash \varphi$ é válida. Isso não depende de se existem cavalos, o quê são cavalos,

o quê são cabeças, se cavalos tem quatro patas, se cavalos tem cabeças, se cavalos são uma cor etc. E isso não é jogo de palavras:

$$\psi \equiv \forall x : E(x, x) \to A(x, x)$$

$$\varphi \equiv \forall c : (\exists a : E(a, a) \land C(c, a)) \to \exists b : A(a, a) \land C(c, b)$$

Que podemos ler " φ : para todo objeto, se este for um Equino, ele é um Animal" e " ψ : para todo objeto, se existe um outro que é Equino e tem como Cabeça este, então existe um terceiro que é Animal e tem como Cabeça o primeiro".

Proposição: Resultados sobre ⊢.

- a) $\varphi \vdash \varphi$,
- b) $\Gamma \vdash \varphi \in \Gamma \subseteq \Lambda \Rightarrow \Lambda \vdash \varphi$,
- c) $\varphi \vdash \varphi \lor \psi$,
- d) $\{\varphi, \psi\} \vdash \varphi \land \psi$,
- e) $\varphi \wedge \psi \vdash \{\varphi, \psi\},\$
- f) $\vdash \varphi \lor \neg \varphi$,
- g) $\varphi \vdash \neg \neg \varphi$,
- h) $\neg \neg \varphi \vdash \varphi$,
- i) $\varphi \vdash \psi \Leftrightarrow \vdash \varphi \to \psi$,
- j) $\forall x : \varphi \vdash \exists x : \varphi$,
- k) $\forall x : \varphi \vdash \neg \exists x : \neg \varphi$,
- 1) $\neg \exists x : \neg \varphi \vdash \forall x : \varphi$,
- \mathbf{m}) $\vdash \varphi \Rightarrow \vdash \{ \forall x : \varphi, \exists x : \varphi \},$
- n) $\{\varphi, \varphi \to \psi\} \vdash \psi$,

o)
$$\{\varphi \lor \psi, \neg \varphi\} \vdash \psi$$
.

Prova:

a)

$$\frac{ \underbrace{ \begin{array}{c} \mathfrak{A} \vDash \varphi \\ \mathfrak{A} \vDash \varphi \end{array} } }{ \underbrace{ \begin{array}{c} \mathfrak{A} \vDash \varphi \\ \varphi \vdash \varphi \end{array} } }$$

b)

$$\frac{\Gamma \vdash \varphi}{\mathfrak{A} \vDash \Gamma \Rightarrow \mathfrak{A} \vDash \varphi} \qquad \frac{\Gamma \subseteq \Lambda \qquad \frac{\mathfrak{A} \vDash \Lambda}{\lambda \in \Lambda \Rightarrow \mathfrak{A} \vDash \lambda}}{\frac{\gamma \in \Gamma \Rightarrow \mathfrak{A} \vDash \gamma}{\mathfrak{A} \vDash \Gamma}}$$

$$\mathfrak{A} \vDash \varphi$$

$$\therefore \mathfrak{A} \vDash \Lambda \Rightarrow \mathfrak{A} \vDash \varphi$$

$$Assim, $\Lambda \vdash \varphi$$$

c)

$$\frac{\mathfrak{A} \vDash \varphi}{\mathfrak{A} \vDash \varphi \text{ ou } \mathfrak{A} \vDash \psi}$$

$$\mathfrak{A} \vDash \varphi \lor \psi$$

$$\therefore \varphi \vdash \varphi \lor \psi$$

d)

$$\frac{\mathfrak{A} \vDash \{\varphi, \psi\}}{\mathfrak{A} \vDash \varphi} \quad \frac{\mathfrak{A} \vDash \{\varphi, \psi\}}{\mathfrak{A} \vDash \psi}$$
$$\frac{\mathfrak{A} \vDash \varphi \circ \mathfrak{A} \vDash \psi}{\mathfrak{A} \vDash \varphi \wedge \psi}$$

 $\therefore \{\varphi,\psi\} \vdash \varphi \land \psi$

e)

$$\frac{\mathfrak{A} \vDash \varphi \land \psi}{\mathfrak{A} \vDash \varphi \in \mathfrak{A} \vDash \psi}$$
$$\mathfrak{A} \vDash \{\varphi, \psi\}$$

 $\therefore \varphi \wedge \psi \vdash \{\varphi, \psi\}$

f)

$$\frac{\mathfrak{A} \vDash \emptyset \qquad \mathfrak{A} \not\vDash \varphi}{\underset{\mathfrak{A} \vDash \neg \varphi}{\text{Não } \mathfrak{A} \vDash \varphi}}$$

 $\therefore \emptyset \vdash \varphi \vee \neg \varphi$

g)

$$\frac{\mathfrak{A} \vDash \varphi}{\text{N\tilde{a}o-n\tilde{a}o} \ \mathfrak{A} \vDash \varphi}$$

$$\frac{\text{N\tilde{a}o} \ \mathfrak{A} \vDash \neg \varphi}{\mathfrak{A} \vDash \neg \neg \varphi}$$

 $\therefore \varphi \vdash \neg \neg \varphi$

h)

$$\frac{\mathfrak{A} \vDash \neg \neg \varphi}{\text{Não } \mathfrak{A} \vDash \neg \varphi}$$

$$\frac{\text{Não-não } \mathfrak{A} \vDash \varphi}{\mathfrak{A} \vDash \varphi}$$

 $\therefore \neg \neg \varphi \vdash \varphi$

i)

$$\frac{\varphi \vdash \psi}{\mathfrak{A} \vDash \varphi \Rightarrow \mathfrak{A} \vDash \psi}$$

$$\underline{\text{Não } \mathfrak{A} \vDash \varphi \text{ ou } \mathfrak{A} \vDash \psi}$$

$$\underline{\mathfrak{A} \vDash \neg \varphi \text{ ou } \mathfrak{A} \vDash \psi}$$

$$\underline{\mathfrak{A} \vDash \neg \varphi \lor \psi}$$

$$\underline{\mathfrak{A} \vDash \emptyset \Rightarrow \mathfrak{A} \vDash \varphi \to \psi}$$

$$\underline{\mathfrak{A} \vDash \emptyset \Rightarrow \varphi \to \psi}$$

$$\underline{\mathfrak{A} \vDash \emptyset \Rightarrow \varphi \to \psi}$$

$$\frac{\emptyset \vdash \varphi \to \psi}{\mathfrak{A} \vDash \emptyset \Rightarrow \mathfrak{A} \vDash \varphi \to \psi}$$

$$\frac{\mathfrak{A} \vDash \varphi \Rightarrow \psi}{\mathsf{N}\tilde{\mathsf{a}}\mathsf{o}} \quad \mathfrak{A} \vDash \varphi \quad \mathsf{ou} \quad \mathfrak{A} \vDash \psi$$

$$\frac{\mathfrak{A} \vDash \varphi \Rightarrow \mathfrak{A} \vDash \psi}{\varphi \vdash \psi}$$

 $\therefore \varphi \vdash \psi \Leftrightarrow \emptyset \vdash \varphi \to \psi$

j)

$$\frac{\mathfrak{A} \vDash \forall x : \varphi}{\text{Para todo } \hat{x} \text{ de } |\mathfrak{A}| \colon \mathfrak{A} \vDash_{f[x/\hat{x}]} \varphi} \quad \frac{|\mathfrak{A}| \neq \emptyset}{\text{Existe } \hat{x} \text{ em } |\mathfrak{A}|}$$

$$\frac{\text{Existe } \hat{x} \text{ em } |\mathfrak{A}| \colon \mathfrak{A} \vDash_{f[x/\hat{x}]} \varphi}{\mathfrak{A} \vDash \exists x : \varphi}$$

 $\therefore \forall x : \varphi \vdash \exists x : \varphi$

k)

$$\therefore \forall x: \varphi \vdash \neg \exists x: \neg \varphi$$

1)
$$\therefore \exists x : \neg \varphi \vdash \neg \forall x : \varphi$$

m) Se x não ocorre em φ , então é trivial. Se x ocorre em φ , lembramos que é uma sentença, então x sempre ocorre quantificado em φ . Então \vDash vai ignorar os quantificadores em " $\forall x : \phi$ " e " $\exists x : \phi$ ".

n)

$$\therefore \{\varphi, \varphi \to \psi\} \vdash \psi$$

o)

$$\frac{\mathfrak{A} \vDash \neg \varphi}{\text{N\~{a}o }\mathfrak{A} \vDash \varphi} \qquad \frac{\mathfrak{A} \vDash \varphi \lor \psi}{\mathfrak{A} \vDash \varphi \text{ ou }\mathfrak{A} \vDash \psi}$$

$$\mathfrak{A} \vDash \psi$$

$$\therefore \{\varphi \lor \psi, \neg \varphi\} \vdash \psi$$

O que estes resultados primários nos dizem é que, se tivermos uma prova formal (em um sistema dedutivo razoável) — partindo de hipóteses Γ — de uma coleção Φ de sentenças, então temos garantido que $\Gamma \vdash \Phi$. Isto é importante porque temos que, de certa forma, \vdash respeita a dedução lógica: se achamos que Γ consegue provar Φ , então de fato onde vale Γ , vale Φ .

A reciproca, que toda sentênça consequente de Γ é provável por hipóteses de Γ , requer um trato cuidadoso com sistemas dedutíveis, definição de prova, etc. Mas é resultado conhecido que se $\Gamma \vdash \varphi$, então prova-se φ com hipóteses de Γ . Claro, dado um sistema dedutivo dentro de certas hipóteses.

Definição: **Teoria**.

Dada uma língua, um subconjunto de sentenças \mathcal{T} é dito uma teoria quando ele é não-vazio e \vdash -fechado. Isto é, se $\mathcal{T} \vdash \tau$ então τ já estava em \mathcal{T} . Ou seja, é uma coleção de sentenças que contém todas as suas consequências sintáticas.

* * *

Tomemos agora um momento para tratar de **Teorias**.

Definição: Teoria.

Dada uma língua \mathcal{L} , um conjunto de sentenças \mathcal{S} é dito uma teoria dentro desta exatamente quando ele for fechado por \vdash , em outras palavras

Para qualquer τ em $\mathcal{L}, \mathcal{T} \vdash \tau \Rightarrow \tau$ já estava em \mathcal{T}

* * *

Dada uma língua \mathcal{L} , e um conjunto de sentenças não-vazio desta que batizamos "axiomas" \mathcal{A} , dizemos que um conjunto de sentenças \mathcal{T} é a teoria de \mathcal{A} exatamente quando para toda τ de \mathcal{T} , temos $\mathcal{A} \vdash \tau$, que podemos abreviar para $\mathcal{T}_{\mathcal{A}}$.

O fato de que, para um conjunto de axiomas conforme acima, $\mathcal{T}_{\mathcal{A}}$ é teoria verificase por:

Prova:

$$\frac{\mathcal{T}_{A} \vdash \tau}{\mathfrak{A} \vDash \mathcal{T}_{A} \Rightarrow \mathfrak{A} \vDash \tau} \qquad \frac{\mathcal{A} \subseteq \mathcal{T}_{A}}{\mathfrak{A} \vDash \mathcal{T}_{A} \Rightarrow \mathfrak{A} \vDash \mathcal{A}} \qquad \frac{\begin{array}{c} \text{para cada } \sigma \text{ em } \mathcal{T}_{A} \\ \hline \mathcal{A} \vdash \sigma \\ \hline \mathfrak{A} \vDash \mathcal{T}_{A} \Rightarrow \mathfrak{A} \vDash \tau \\ \hline \mathfrak{A} \vDash \mathcal{A} \Rightarrow \mathfrak{A} \vDash \tau \\ \hline \mathcal{A} \vdash \tau \\ \hline \mathcal{A} \vdash \tau \\ \hline \tau \text{ está em } \mathcal{T}_{A} \\ \end{array}$$

Obviamente, toda \mathcal{T} teoria é da forma $\mathcal{T}_{\mathcal{A}}$ para algum conjunto de axiomas conveniente (por exemplo a própria \mathcal{T}).

DEFINIÇÃO: Consistência.

Dizemos que uma teoria \mathcal{T} sobre uma língua \mathcal{L} é consistente se e só se ela é não trivial, isto é, existe uma \mathcal{L} -sentença φ que não está em \mathcal{T} .

* * *

A motivação da definição de consistência é evitar contradições:

$$\frac{\neg \varphi \land \varphi \text{ em } \mathcal{T}}{\neg \varphi \text{ em } \mathcal{T}} \quad \frac{\neg \varphi \land \varphi \text{ em } \mathcal{T}}{\varphi \text{ em } \mathcal{T}} \quad \psi \text{ em } \mathcal{L} \text{ sentença}}{\varphi \lor \psi \text{ em } \mathcal{T}}$$

$$\psi \text{ em } \mathcal{T}$$

Se a teoria não for trivial, então ela não pode ser contraditória. Se ela for trivial, ela obviamente é.

Uma estrutura que modela uma teoria passa a ocupar um lugar especial em nossos estudos, afinal, uma teoria pretende descrever exaustivamente as propriedades a priori de uma estrutura compatível através de uma manipulação que é puramente sintática, pois não temos acesso à estrutura específica quando tratamos de uma teoria (afinal, definimos ela com \vdash e não \models).

1.1 Relativização

Um último tema, agora já tratando da línguagem de ZF, é o tema da relativização de fórmulas. Uma φ fórmula com quantificadores e sem termos de abstração tem uma restrição a um determinado termo X, escrevemos $\varphi \upharpoonright X$ para a fórumla φ com todos os quantificadores limitados por X.

Então $\forall x: \exists y: y=P(x)$ torna-se $\forall x\in X: \exists y\in X: y=P(x)$. Por enquanto isso parece um tanto artificial, mas é interessante observar como fórumlas se comportam em domínios específicos da teoria.

Um resultado importante é o Princípio da Reflexção, que vale em ZF e diz que existem alturas arbitrariamente altas da hierarquia cumulativa tal que, para uma dada φ , $\forall x_1, x_2, \ldots, x_n \in X : \varphi(x_1, x_2, \ldots, x_n) \leftrightarrow \varphi(x_1, x_2, \ldots, x_n) \upharpoonright V_{\kappa}$

Capítulo 2

Teoria de Modelos de Teorias de Conjuntos A teoria dos modelos das teorias de conjuntos está relacionada com, por um lado, estudo de grandes cardinais e seus ramos, e, por outro, lógica e teoria de conjuntos em si.

Isto pois, para uma certa classe de teorias de primeira ordem expressivas o suficiente, existem sentenças que são independentes da teoria, e é o caso que as teorias de conjuntos estão justamente entre incompletas.

No campo da teoria, isto nos diz que a uma teoria de conjuntos é, de certa forma, agnóstica a respeito de certas proposições. Por exemplo, é necessário que não se possa provar a existência de cardinais excessivamente grandes, isto porque se um cardinal for \beth -fixo, a hierarquia cumulativa até o mesmo é um modelo da teoria de conjuntos.

Dado um modelo de, digamos ZF pode muito bem ser o caso que haja cardinais inacessíveis no mesmo, mas sem informações adicionais, é impossível provar que existem — se a teoria for consistente, que esperamos ser —.

No campo prático temos ainda traços do abalo deste quarto golpe narcísico que tomou a humanidade com os resultados de K. Gödel, da mesma forma que em um dado modelo de ZF possa valer ou não valer φ , pode ser que problemas importantes ou interessante sejam, simplesmente, independentes da teoria sem que saibamos. É este justamente o caso da hipótese do contínuo, que novamente mostra a capacidade de \mathbb{R} de apresentar-se como a besta que de fato é.

A hipótese do contínuo não é um pouco independente, por sinal. Como enunciou Robert M. Solovay: " 2^{\aleph_0} can be anything it ought to be". Dizendo que \mathfrak{c} pode ser (e é em algum modelo) \aleph_{β} para um β sucessor ou de cofinalidade incontável. A hipótese do contínuo é "tão" independente que \mathfrak{c} pode, inclusive, ser fracamente inacessível.

¹The Theory of Models, Proceedings of the 1963 International Symposium at Berkeley. Amsterdam, North-Holland, 1965, Addison, Henkin, Tarski, eds., pg. 435.

Provar a independência de uma proposição pode ser feita tanto sintaticamente, ou semanticamente. Enquanto a maneira sintática é mais econômica ontologicamente falando, a semantica é mais acessível à mente, por mais que devamos tomar cuidado para não cairmos em confusões linguísticas.

Empregaremos uma abordagem principalmente semantica para tratar de ZF, e por isso que surge a necessidade da teoria dos modelos. Porém, para tratar de ZF, vamos primeiro definir qual teoria de fato falamos.

A língua de nossa teoria é relativamente simples, é a lingua com dois² símbolos relacionais $\langle =, \in \rangle$ apenas. Já a teoria é a gerada por esses 7 axiomas e o Esquema de Substituição, que nos dá um axioma para cada fórmula conforme.

1. Ax. da Identidade:

$$\forall x : [\exists! y : x = y] \land x = x.$$

2. Ax. Extensionalidade:

$$\forall x : \forall y : [\forall z : z \in x \leftrightarrow z \in y] \leftrightarrow x = y.$$

3. Ax. da União:

$$\forall x : \exists y : \forall z : [z \in y \leftrightarrow \exists w \in x : z \in w].$$

4. Ax. da Potência:

$$\forall x : \exists y : \forall z : z \in y \leftrightarrow [\forall w : w \in z \leftrightarrow w \in y].$$

5. Ax. Esquema da Substituição:

Se φ uma fórmula com apenas a,b,\vec{v} livres e c,w,x,y,z não ocorrendo em φ . Então:

$$[\forall \vec{v} : \forall a : [\exists b : \varphi(a, b; \vec{v})] \leftrightarrow [\exists! b : \varphi(a, b; \vec{v})]] \rightarrow \\ \rightarrow [\forall x : \exists y : \forall z : z \in y \leftrightarrow \exists w : w \in x \land \varphi(w, z; \vec{v})]$$

6. Ax. do Conjunto Indutivo:

$$\exists I : \exists x : x \in I \land (\forall t : t \in x \leftrightarrow t \neq t)$$
$$\land [(\exists w : w \in I) \rightarrow \exists z : z \in I \land \forall t' : t' \in z \leftrightarrow t' = w \lor t' \in w].$$

²Poderiamos fazer apenas com ∈, mas não é necessário.

7. Ax. da Fundação:

$$\forall x : (\exists x' : x' \in x) \to \exists y : (y \in x) \land [\forall t : (t \in x \land t \in y) \to t \neq t].$$

2.1 Estruturas Transitivas

Definição: Identidade Induzida.

Se tivermos uma relação R definida sobre uma classe A, gostaríamos de ter uma relação de equivalência em A que fosse congruente com R, definimos \approx_R como sendo

$$a \approx_R b \Leftrightarrow \forall t \in A : tRa \leftrightarrow tRb$$

Restrito ao domínio adequado.

Isto é, em A, dois identificados são idênticos à esquerda.

* * *

Definição: Estrutura Transitiva.

Uma estrutura $\mathfrak{A} = \langle A, \approx, \epsilon \rangle$ é dita uma **estrutura transitiva** exatamente quando $\epsilon = \{\langle a, b \rangle : a, b \in A \land a \in b\}, \approx = \approx_{\epsilon} e A$ é uma classe transitiva.

* * *

Definição: Substrutura.

Dadas duas estruturas compatíveis \mathfrak{A} e \mathfrak{B} dizemos que $\mathfrak{A} \subseteq \mathfrak{B}$ — que \mathfrak{A} é substrutura de \mathfrak{B} — exatamente quando $|\mathfrak{A}| \subseteq |\mathfrak{B}|$, as relações e funções de \mathfrak{A} são as restrições das de \mathfrak{B} e as constantes de \mathfrak{B} são as mesmas que as de \mathfrak{A} .

* * *

TEOREMA: Estrutura transitivas atendem fundação e extensionalidade.

Se $\mathfrak{A} = \langle A, \approx, \epsilon \rangle$ for uma estrutura transitiva, então,

- a) $\mathfrak{A} \models Ax$. da Fundação
- b) $\mathfrak{A} \models Ax$. da Extensionalidade

Prova:

a) Seja $x \in A$, com tal que $\exists y \in A : y \in x$, isso significa que $\exists y : y \in x$, assim, pelo axioma da fundação, $\exists y \in x : \forall t : [t \in x \land t \in y] \to t \neq t$. Como A é transitivo, temos que este y existe $em\ A$, então $\exists y \in x : \forall t : [t \in x \land t \in y] \to t \neq t$.

Por outro lado, temos que $\forall a, b \in A : a \approx b \leftrightarrow a = b$, pois, para a ida³: Como A é transitivo, então $a, b \subset A$. Assim, se os membros de a em A forem exatamente os de b em A, então os membros de a são os mesmos que os de b, e por extensionalidade, são iguais. Assim, temos $\exists y \in x : \forall t : [t \in x \land t \in y] \rightarrow t \not\approx t$, que é a tradução da fundação para a estrutura \mathfrak{A} .

b) Se $a, b \in A$ então todos os membros deste estão em A também. Se os membros de a e b que estão dentro de A coincidem, então os fora de A coincidem e temos a extensionalidade. Assim, eles são iguais (=), mas se são iguais, como vimos, também são iguais (\approx). Vale então a extensionalidade.

Neste teorema aparece insinuada uma propriedade de certas fórmulas que chamamos de Incondicionalidade, ou *Absoluteness*.

³a volta é trivial

2.1.1 Incondicionalidade e Elementaridade

DEFINIÇÃO: Incondicionalidade.

Sejam $\mathfrak{A} \subseteq \mathfrak{B}$ estruturas transitivas.

Uma fórmula φ da língua de ZF é dita **absoluta** ou **incondicional** entre \mathfrak{A} e \mathfrak{B} exatamente quando, para toda f interpretação das variáveis da língua em \mathfrak{A} .

$$\mathfrak{A} \vDash_f \varphi \Leftrightarrow \mathfrak{B} \vDash_f \varphi$$

Um termo t da língua é dito **absoluta entre** \mathfrak{A} e \mathfrak{B} exatamente quando, para toda f interpretação das variáveis da língua em \mathfrak{A} .

$$\mathfrak{A} \vDash_f x = t \Leftrightarrow \mathfrak{B} \vDash_f x = t$$

Dizemos ainda que uma fórmula é preservada sob restrição de \mathfrak{B} para \mathfrak{A} quando a implicação da direita para esquerda vale. E Dizemos que uma fórmula é preservada sob extensão de \mathfrak{A} para \mathfrak{B} quando a implicação da esquerda para a direita vale.

* * *

Definição: Elementaridade.

Dadas $\mathfrak{A} \subseteq \mathfrak{B}$ estruturas compatíveis Dizemos \mathfrak{A} ser substrutura elementar de \mathfrak{B} , ou que \mathfrak{B} é extensão elementar de \mathfrak{A} , exatamente quando toda fórmula é absoluta entre \mathfrak{A} e \mathfrak{B} .

* * *

Fórmulas absolutas, pois, formam uma classe de fórmulas muito útil para o trato de modelos, já que seus significados não mudam quando as extendemos ou as restringimos. Que estas fórmulas não são todas as que existem é simple de ver: Deixe $\mathfrak{A} = \langle \{1,2\}\,,\leq \rangle$ e $\mathfrak{B} = \langle \{1,2,3\}\,,\leq \rangle$ É trivial ver que $\forall x,y,z: (x\neq y) \rightarrow z = x \lor z = y$ não é absoluta entre as estruturas.

No entanto, a situação não é tão ruim assim, por mais que tamanho não seja absoluto entre estruturas, temos critérios para gerar fórmulas absolutas:

Proposição: Condições suficientes para incondicionalidade.

- a) fórmulas atômicas são absolutas.
- b) conjunção, disjunção e negação de absolutas é a absoluta.

Prova:

- a) Como uma é substrutura da outra, então as relações são as restrições. Como a fórmula é atômica, e a interpretação é em na substrutura, então vai ser verdade em numa estrutura exatamente quando for na outra.
- b) Segue da definição de satisfação.

Definição: Fórmulas Completas.

Uma fórmula $\varphi(x; \vec{v})$ é dita **completa** em $\mathfrak{A} \subseteq \mathfrak{B}$ com respeito a x exatamente quando é o caso que:

Se $\hat{x} \in |\mathfrak{B}|$ e \vec{u} forem parâmetros em $|\mathfrak{A}|$, então $\mathfrak{B} \models \varphi(\hat{x}, \vec{u}) \Rightarrow b \in |\mathfrak{A}|$. Sendo que com " $\mathfrak{B} \models \varphi(\hat{x}, \vec{u})$ " queremos dizer " $\mathfrak{B} \models_{f_{[x/\hat{x}, \vec{v}/\vec{u}]}} \varphi(\hat{x}, \vec{u})$ " pois φ só tem os parâmetros e x livres.

Uma fórmula completa em relação a uma par estrutura-substrutura e um variável é de tal forma que se não for verdade em baixo, não é por falta de testemunha. Da mesma forma que se uma sequência em \mathbb{R} não converge, não é porque está faltando o ponto de convergência, como poderia ser o caso em \mathbb{Q} .

* * *

Teorema: $\exists x : \varphi$ para completas e absolutas.

Seja $\varphi(x; \vec{v})$ absoluta entre $\mathfrak{A} \subseteq \mathfrak{B}$ transitivas, e completa para x entre as mesmas estruturas. Nestas condições, $\exists x : \varphi(x, \vec{v})$ é absoluta entre \mathfrak{A} e \mathfrak{B} .

Prova:

Primeiro, temos que:

- a) $\mathfrak{A} \vDash_f \varphi(x; \vec{v}) \Leftrightarrow \mathfrak{B} \vDash_f \varphi(x; \vec{v}).$
- b) $[(\vec{u} \subseteq |\mathfrak{A}|) \land (b \in |\mathfrak{B}|)] \Rightarrow [\mathfrak{B} \models_f \varphi(b; \vec{u}) \Rightarrow b \in |\mathfrak{A}|.$
- (⇒) Então considere:

$$\mathfrak{A} \vDash_{f} \exists x : \varphi(x, \vec{v})$$
Existe um \hat{x} em $|\mathfrak{A}|$ tal que: $\mathfrak{A} \vDash_{f_{[x/\hat{x}]}} \varphi(x, \vec{v})$
Existe um \hat{x} em $|\mathfrak{B}|$ tal que: $\mathfrak{A} \vDash_{f_{[x/\hat{x}]}} \varphi(x, \vec{v})$
Existe um \hat{x} em $|\mathfrak{B}|$ tal que: $\mathfrak{B} \vDash_{f_{[x/\hat{x}]}} \varphi(x, \vec{v})$

$$\mathfrak{B} \vDash_{f} \exists x : \varphi(x, \vec{v})$$

 (\Leftarrow) Por outro lado, tome que

Assim, fica provado o teorema.

TEOREMA: Quantificação limitada de fórmulas absolutas.

Seja φ absoluta entre $\mathfrak{A} \subseteq \mathfrak{B}$ estruturas transitivas, então $\exists x \in y : \varphi(x)$ e $\forall x \in y : \varphi(x)$ são ambas absolutas, quando y não ocorre em x.

Prova:

Primeiro,
$$\exists x \in y : \varphi(x) \equiv \exists x : x \in y \land \varphi$$
:

$$\frac{x \in y \text{ \'e absoluta}}{x \in y \land \varphi(x) \text{ \'e absoluta}}$$

 $x \in y \land \varphi(x)$ é completa para x entre \mathfrak{A} e \mathfrak{B} pois: se $y \in \mathfrak{A}$ e \mathfrak{B} crê que x está em y e satisfaz φ , então, certamente x está em y que está em \mathfrak{A} .

Logo, pelo teorema anterior, $\exists x \in y : \varphi(x)$ é absoluta entre as estruturas.

Para o quantificador universal, basta ver que $\neg \varphi(x)$ também é absoluta, então $\exists x: x \in y \land \neg \varphi(x)$ é absoluta, mas ela é equivalente a $\exists x: \neg(x \in y \to \varphi(x))$ que equivale a $\neg \forall x: x \in y \to \varphi(x)$. Neste caso, sabemos que ela será absoluta, mas negação de absoluta também é. Então $\forall x: x \in y \to \varphi(x)$.

Definição: Fórmulas preservadas por Extenção/Restrição.

Dizemos que uma fórmula φ é **preservada por extenções** — ou é **extendível** — exatamente quando:

$$\mathfrak{A} \subseteq \mathfrak{B}$$
 estruturas transitivas $\Rightarrow (\mathfrak{A} \vDash_f \varphi \Rightarrow \mathfrak{B} \vDash_f \varphi)$

Toda vez que f for uma $\mathfrak A$ valoração.

Dizemos que uma fórmula φ é **preservada por restrições** — ou é **restringível** — exatamente quando:

$$\mathfrak{A} \subseteq \mathfrak{B}$$
 estruturas transitivas $\Rightarrow (\mathfrak{A} \vDash_f \varphi \Leftarrow \mathfrak{B} \vDash_f \varphi)$

Toda vez que f for uma $\mathfrak A$ valoração.

* * *

Lema: Quantificação sobre absoluta é Restringível/Extendível.

Trivialmente, se φ for absoluta entre duas transitivas $\mathfrak{A} \subseteq \mathfrak{B}$, então $\exists x : \varphi$ é extendível e $\forall x : \varphi$ é restringível.

2.1.2 Hierarquia de Lévy

Definição: **Fórmulas** Σ , Π **e** Δ .

Uma fórmula φ é dita **restrita** ou **limitada** quando todos os seus quantificadores são da forma $\forall x: x \in y \to \psi$ ou $\exists x: x \in y \land \psi$ (isto é $\forall x \in y: \psi$ ou $\exists x \in y: \psi$)

Uma fórmula é dita Σ_0 e Π_0 exatamente quando ela é restrita; É dita Σ_{n+1} quando é da forma $\exists x_1 : \ldots : \exists x_k : \psi$ para $(x_i)_{1 \leq i \leq k}$ variáveis e uma ψ fórmula Π_n . Similarmente, é dita Π_{n+1} exatamente quando $\forall x_1 : \ldots : \forall x_k \psi$ com $(x_i)_{1 \leq i \leq k}$ variáveis e uma ψ fórmula Σ_n .

Finalmente, uma fórmula φ é dita $\Sigma_n^{\mathcal{T}}$ — sigma-n para \mathcal{T} — quando existe uma ψ que é Σ_n tal que $\mathcal{T} \vdash \psi \leftrightarrow \varphi$, $\Pi_n^{\mathcal{T}}$ sendo similarmente definida. Um caso especial são as fórumlas $\Delta_n^{\mathcal{T}}$, que são exatamente aquelas fórmulas que são $\Sigma_n^{\mathcal{T}}$ e $\Pi_n^{\mathcal{T}}$ simultaneamente. Novamente, um termo t é dito $\Sigma_n^{\mathcal{T}}$, $\Pi_n^{\mathcal{T}}$ ou $\Delta_n^{\mathcal{T}}$ quando x=t o for — com x não ocorrendo em t, é claro —.

* * *

O motivo do nosso interesse em catalogar certas fórmulas na hierarquia de Lévy é a relação que estas fórmulas possuem com as estruturas transitivas. A ver, as fórmulas $\Sigma_1^{\mathcal{T}}$ são preservadas por extensões, as $\Pi_1^{\mathcal{T}}$ são preservada por restrições e as $\Delta_1^{\mathcal{T}}$ são absolutas, quando se tratando de modelos da teoria \mathcal{T} , claro.

Teorema: Fórmulas Δ_1^T são T-absolutas.

Prova:

Lema: Δ_0 são absolutas.

Trivialmente, pois são conjunções de outras absolutas ou quantificações limitadas de fórmulas absolutas.

Seja φ uma fórmula $\Delta_1^{\mathcal{T}}$. Como ela é equivalente a uma $\forall x_k : \psi \text{ com } \psi \in \Sigma_0^{\mathcal{T}}$, ela é \mathcal{T} -equivalente a uma quantificação universal de uma fórmula absoluta, afinal ψ é absoluta.

Por outro lado, ela é equivalente a uma $\exists x_j : \gamma \text{ com } \gamma \in \Pi_0^{\mathcal{T}}$, que nos dá que ela é \mathcal{T} -equivalente a uma quantificação existêncial de uma absoluta, pois γ também é absoluta.

Assim, sendo $\mathfrak{A}\subseteq\mathfrak{B}$ estruturas transitivas e fuma $\mathfrak{A}\text{-valoração},$ temos que:

- a) $\mathcal{T} \vdash \varphi \leftrightarrow \forall x_k : \psi$.
- b) $\mathcal{T} \vdash \varphi \leftrightarrow \exists x_k : \gamma$.
- c) $\mathfrak{A} \vDash_f \exists x_k : \gamma \Rightarrow \mathfrak{B} \vDash_f \exists x_k : \gamma$.
- d) $\mathfrak{A} \vDash_f \exists x_k : \psi \Rightarrow \mathfrak{B} \vDash_f \forall x_k : \psi$.

Se for o caso que $\mathfrak{A}, \mathfrak{B} \models \mathcal{T}$, então temos que

$$\mathfrak{A} \vDash_f \varphi \Leftrightarrow \mathfrak{B} \vDash_f \varphi$$

Agora que temos uma condição suficiente para uma fórmula ser absoluta entre estruturas transitivas de uma teoria dada, transferimos o problema de identificar uma fórmula absoluta para o problema de identificar uma fórmula Δ_1^T

Por [?], temos que, para um teoria \mathcal{T} tão forte quanto ZF,

Teorema: Resultados acerca da Hierarquia de Lévy.

- (a) Se " φ " $\in \Sigma_n^T$, então " $\forall x: \varphi$ " $\in \Pi_{n+1}^T$ e " $\exists x: \varphi$ " $\in \Sigma_n^T$, para toda x variável
- (b) Se " φ " $\in \Pi_n^{\mathcal{T}}$, então " $\forall x: \varphi$ " $\in \Pi_n^{\mathcal{T}}$ e " $\exists x: \varphi$ " $\in \Sigma_{n+1}^{\mathcal{T}}$, para toda x variável
- (c) Se " φ ", " ψ " $\in \Pi_n^T$, então suas conjunções e disjunções são Π_n^T
- (d) Se " φ ", " ψ " $\in \Sigma_n^T$, então suas conjunções e disjunções são Σ_n^T
- (e) Se " φ " $\in \Sigma_n^{\mathcal{T}}$ e " ψ " $\in \Pi_n^{\mathcal{T}}$, então suas conjunções e disjunções são $\Delta_{n+1}^{\mathcal{T}}$, e " $\varphi \to \psi$ " é $\Pi_n^{\mathcal{T}}$ e " $\psi \to \varphi$ " é $\Sigma_n^{\mathcal{T}}$
- (f) Quantificação limitada não altera classe de Lévy: portanto Se " φ " $\in \Sigma_n^{\mathcal{T}}$, temos que " $\forall x \in y : \varphi$ " continua $\Sigma_n^{\mathcal{T}}$,
- (g) Se $\varphi(x)$ for $\Delta_n^{\mathcal{T}}$, então $\{x:\varphi(x)\}$ é $\Pi_n^{\mathcal{T}}$
- (h) Se $\varphi(x)$ for $\Delta_n^{\mathcal{T}}$, então $\{x \in y : \varphi(x)\}$ é $\Delta_n^{\mathcal{T}}$
- (i) Se x for um termo $\Sigma_n^{\mathcal{T}}$ e $\mathcal{T} \vdash \exists y : y = x$, então t é $\Delta_n^{\mathcal{T}}$
- (j) Se $\varphi(x)$ e t forem $\Delta_n^{\mathcal{T}}$ e $\mathcal{T} \vdash \exists y : y = t$, então todos são $\Delta_n^{\mathcal{T}}$:
 $\{x \in y : \varphi(x)\}$ é $\Delta_n^{\mathcal{T}}$

 - $\bullet \exists x \in t : \varphi(x)$
 - $\bullet \ \forall x \in t : \varphi(x)$
- (k) Se φ e t forem $\Sigma_n^{\mathcal{T}},$ então $\{t:\varphi\}$ é $\Delta_{n+1}^{\mathcal{T}}$

2.2O Universo Construtível

Um modelo especial de ZF é o Universo Construtível, que satisfaz uma restrição adicional sobre sua estrutura fina. É um exemplo de modelo onde vale o axioma da escolha e a hipótese generalizada do contínuo, e gostaríamos de passar por ele justamente para contrapôr os modelos a valores Booleanos.

Chamamos o universo construtível de L, que é uma classe transitiva da hierarquia acumulada V. A definição de L dentro da língua depende de uma internalização da lógica e da teoria dos modelos transitivos. Mas, moralmente, queremos:

$$L_{\alpha+1} = \{x : \exists \varphi \text{ fórmula da teoria: } \exists \vec{p} \in L_{\alpha}^{<\omega} : x = \{t \in V_{\alpha} : \varphi(t; \vec{p})\}\}$$

$$(\lambda = \bigcup \lambda) \Rightarrow L_{\lambda} = \bigcup_{\alpha < \lambda} L_{\alpha}$$

Evidentemente, se " φ fórmula da teoria" não estiver formalizado dentro da teoria, não temos esperaça alguma desta definição fazer sentido. Pois, o primeiro passo que devemos tomar é achar uma Gödelização apropriada das fórmulas como conjuntos de fato.

Suponha que possuamos códigos para $\lceil \forall \rceil$, $\lceil \exists \rceil$, $\lceil = \rceil$, $\lceil \in \rceil$, $\lceil \neg \rceil$, $\lceil \lor \rceil$, $\lceil \land \rceil$ e $\lceil \rightarrow \rceil$. Então, definimos a codificação das fórmulas da seguinte maneira, similar a de $\lceil \mathbf{Drake} \rceil$:

Fixar códigos para os componentes simples não poderia ser mais fácil: temos apenas 8 deles, e $8 = \{\emptyset, 1, 2, 3, 4, 5, 6, 7\}$. Não desejamos impor a nossa bijeção favorita, qualquer uma serve. Agora que temos uma especificação de como é uma "fórmula" internalizada, podemos escrever uma fórmula de fato que afirma que um dado conjunto é uma representação de um fórumla.

Definição: Construção de uma Fórmula.

$$Repr(\varphi, \chi, n) \equiv [n \in \omega] \land [Fun(\chi)] \land [Dom(\chi) = n + 1] \land [\chi(n) = \varphi] \land \forall k \in n + 1 : \{ [\exists a, b \in k : [\chi(k) = \langle \ulcorner \neg \urcorner, \chi(a), \chi(b) \rangle]] \lor [\exists a, b \in k : [\chi(k) = \langle \ulcorner \neg \urcorner, \chi(a), \chi(b) \rangle]] \lor [\exists a, b \in k : [\chi(k) = \langle \ulcorner \neg \urcorner, \chi(a), \chi(b) \rangle]] \lor [\exists a, b \in k : [\chi(k) = \langle \ulcorner \neg \urcorner, \chi(a), \chi(b) \rangle]] \lor [\exists a, i \in k : [\chi(k) = \langle \ulcorner \neg \urcorner, \chi(a) \rangle]] \lor [\exists a, i \in k : [\chi(k) = \langle \ulcorner \neg \rbrack, i, \chi(a) \rangle]] \lor [\exists i, j \in \omega : [\chi(k) = \langle \ulcorner \neg \rbrack, i, j \rangle]] \lor [\exists i, j \in \omega : [\chi(k) = \langle \ulcorner \neg \rbrack, i, j \rangle]] \}$$

Apesar de longa, Repr é bem simples: ela afirma que χ é testemunha da construção de φ em n passos. Fica claro que um determinado conjunto X é fórmula se e só se $\exists n \in \omega : \exists \chi \in V_{\omega} : Repr(X, \chi, n)$.

Agora, deixe:

Definição: Satisfatibilidade Internalizada.

$$||A \vDash_f \varphi|| \equiv \exists w : \exists \chi, n, r \in V_\omega : [Repr(\varphi, \chi, n) \land Fun(w) \land (Dom(w) = n + 1) \land \land [r = rank(\varphi)] \land [f \in w(n)] \land \forall k \in n + 1 : [$$

$$[\exists i, j \in \omega : \chi(k) = \langle \ulcorner = \urcorner, i, j \rangle \land w(k) = \{f \in A^r : f(i) = f(j)\}] \lor \lor [\exists i, j \in \omega : \chi(k) = \langle \ulcorner \in \urcorner, i, j \rangle \land w(k) = \{f \in A^r : f(i) \in f(j)\}] \lor \lor [\exists a, b \in k : \chi(k) = \langle \ulcorner \lor \urcorner, \chi(a), \chi(b) \rangle \land w(k) = w(a) \cup w(b)] \lor \lor [\exists a, b \in k : \chi(k) = \langle \ulcorner \land \urcorner, \chi(a), \chi(b) \rangle \land w(k) = w(a) \cap w(b)] \lor \lor [\exists a, b \in k : \chi(k) = \langle \ulcorner \land \urcorner, \chi(a), \chi(b) \rangle \land w(k) = (A^r - w(a)) \cup w(b)] \lor \lor [\exists a, b \in k : \chi(k) = \langle \ulcorner \lnot \urcorner, \chi(a), \chi(a) \rangle \land w(k) = (A^r - w(a))] \lor \lor [\exists a \in k, i \in \omega : \chi(k) = \langle \ulcorner \lnot \urcorner, i, \chi(a) \rangle \land w(k) = \{v \in A^r : \exists x \in A : v_{[i/x]} \in w(a)\}] \lor \lor [\exists a \in k, i \in \omega : \chi(k) = \langle \ulcorner \lnot \urcorner, i, \chi(a) \rangle \land w(k) = \{v \in A^r : \exists x \in A : v_{[i/x]} \in w(a)\}] \lor \lor [\exists a \in k, i \in \omega : \chi(k) = \langle \ulcorner \lnot \urcorner, i, \chi(a) \rangle \land w(k) = \{v \in A^r : \exists x \in A : v_{[i/x]} \in w(a)\}]]$$

Onde $v_{[i/x]} = v - \langle i, v(i) \rangle \cup \{\langle i, x \rangle\}$, ou seja, substituição do valor de v em i por x.

 $||A \models_f \varphi||$ quer dizer, essencialmente, que existe uma sequência de conjuntos de testemunhas para a veracidade da fórmula e f é uma das testemunhas.

* * *

Definição: L.

Com isso, temos o suficiente para expressar a classe dos Construtíveis,

$$L_{\alpha+1} = \left\{ x : \exists \varphi : \exists r \in \omega : \exists f \in L_{\alpha}^{r} : x = \left\{ t \in L_{\alpha} : ||A \vDash_{f_{[0/t]}} \varphi|| \right\} \right\}$$
$$(\lambda = \bigcup_{\alpha \in Ord} \lambda) \to L_{\lambda} = \bigcup_{\alpha < \lambda} L_{\alpha}$$
$$L = \bigcup_{\alpha \in Ord} L_{\alpha}$$

* * *

O primeiro resultado importante sobre os Construtíveis é, claro, que L é modelo de ZF, que iremos verificar a seguir. Na sequência, iremos verificar que $L \models ZF + AC + CH$. Que é grande coisa.

Lema: L é transitivo.

Basta ver que L_{α} é transitivo. Se $x \in L_{\alpha+1}$ então $\exists \varphi \in V_{\omega} \exists f \in L_{\alpha}^{<\omega} : x = \{t \in L_{\alpha} : ||L_{\alpha} \vDash_{f} {}_{[0/t]}\varphi||\}$, oras então certamente $x \subseteq L_{\alpha}$. Similarmente, se λ for ordinal limite, L_{λ} será união de transitivos, e portanto transitivo. Unindo L_{α} para todos os ordinais, temos uma classe transitiva.

Lema: $\alpha < \beta \rightarrow L_{\alpha} \subset L_{\beta}$.

Basta provar para o caso sucessor. Assim sendo, suponha que para todos ordinais menores que α , vale o lema e seja $x \in L_{\alpha}$, então existe fórmula e parâmetros em algum L_{γ} menor que $\gamma < \alpha$ tais que $x = \{t \in L_{\gamma} : ||L_{\alpha} \vDash_f \varphi\}$. Como $L_{\alpha+1}$] é definido com parâmetros em L_{α} , que contém os L-s inferiores, então $\varphi(t) \land t \in L_{\gamma}$ dá exatamente x, mas está em $L_{\alpha+1}$.

Teorema: $L \models ZF$.

Para começar, notemos que $L_{\emptyset} = \emptyset$, pois \emptyset é ordinal limite e união vazia é vazia. Então L_1 contém o vazio, e portanto, $L \neq \emptyset$. Então está provado que $L \vDash \exists x : x = x$

Como L é estrutura transitiva, já temos os Axiomas da Fundação e da Extensionalidade.

Sejam $a, b \in L$, pela definição de L, $\exists \alpha, \beta \in Ord : (a \in L_{\alpha}) \land (b \in L_{\beta})$. Com isso, seja γ o maior entre eles. Como $a, b \in L_{\gamma}$ então $\{t \in L_{\gamma} : ||L_{\gamma} \vDash_f t = y \lor t = x||\}$ com $f(x) = a \land f(y) = b$ claramente nos dá que o par de dois conjuntos está em $L_{\gamma+1}$, provando o Axioma do Par.

Para o Axioma da Soma, precisamos fazer uma definição:

DEFINIÇÃO: Rank Construtível.

Seja $\rho_c(x) = \min \{ \alpha \in Ord : x \in L_{\alpha} \}$, para todo x que ocorre em L este chamado Rank Construtível está definido.

* * *

Continuando a prova, seja $X \in L$, então $X \in L_{\rho_c(x)}$, por substituição em ZF temos que $R = \{\alpha : \exists x \in X : \alpha = \rho_c(x)\}$ é conjunto. Seja $\gamma = \sup(R)$, Então em L_{γ} ocorrem todos os elementos de x, e pela transitividade de L_{γ} , todos os elementos deles. Considere então a fórmula $\varphi(t;X) \equiv \exists x \in X : t \in x$, ela dá $\bigcup X$ em $L_{\gamma+1}$ quando tomando parâmetro X.

Para o axioma das partes, seja $x \in L$, então $x \in L_{\alpha+1}$ para algum α conveniente. Então existe uma ψ fórmula interna, e f parâmetros tal que $x = \{t \in L_{\alpha} : ||L_{\alpha} \vDash_f \psi||\}$, então $x \subseteq L_{\alpha}$. Assim, considere a fórmula $\varphi(t; x, f, \psi, \alpha) \equiv \exists g \in L_{\alpha}^{<\omega} : \exists \phi : t = \{y \in L_{\alpha} : ||L_{\alpha} \vDash_g \phi|| \land ||L_{\alpha} \vDash_f \psi||\}$.

Haverá parâmetros para esta fórmula em algum L_{β} que nos dê algo similar a $\wp(x)$? Em $(\alpha+\omega+1)$ com certeza haverá, pois, lá já teremos todas as f parâmetros em L_{α} , todas as fórmulas, $x \in \alpha$, certamente. E como convencer-nos de que será realmente as partes de x? Se $(y \subset x) \upharpoonright L$, então há uma fórmula que concretiza y no nível que x ocorre que é mais específica que a fórmula que seleciona x. Não perdemos, assim, generalidade em escrever $[\wp(x)] \upharpoonright L$ como sendo aquela fórmula.

Quanto ao Axioma do Infinito, sabemos que o vazio está em L, vamos assumir que até um ordinal α , todos os ordinais finitos estão. Eles aparecem em uma etapa β da construção do L. Sabemos que o par $\{\alpha, \alpha\}$ existe na etapa $\beta + 1$, que o par $\{\alpha, \{\alpha, \alpha\}\}$ existe na etapa $\beta + 2$ e que em alguma etapa existe $\bigcup \{\alpha, \{\alpha, \alpha\}\}$, que é justamente o sucessor de α . Logo, existe um conjunto indutivo em L, pois ser indutivo é Δ_1 .

Sejam $X \in L_{\alpha} + 1$ e ψ uma fórmula da língua de ZF nas hipóteses do Esquema de Substituição. Isto é, $\forall y, z : \psi(y; x) \land \psi(z; x) \rightarrow y = z$. Temos que existe um conjunto $Y = \{y : \exists x \in X : \psi(y, x)\}$. Se relativizarmos a fórmula, teremos ainda um conjunto: $Y' = \{y : \exists x \in X : \psi(y, x) \mid L\}$. Este conjunto não tem obrigação nenhuma de estar em L (tome, por exemplo, ψ que só aceita y fora de L), mas $Y_c = Y' \cap L$ tem.

Referências Bibliográficas

[Bell]

Bell, J. L. Set Theory, Boolean-Valued Models and Independence Proofs, Oxford logic Guides v. 47, Clarendon Press, 2005.

[Drake]

Drake, Frank R. Set theory: an introduction to large cardinals, Studies in logic and the foundations of mathematics v. 76, American Elsevier Pub. Co., 1974.

[Freire]

Freire, Rodrigo. A. Grasping Sets Through Ordinals: On a Weak Form of the Constructibility Axiom, South American Journal of Logic Vol. 2, n. 2, pp. 357-359, 2016. ISSN: 2446-6719.

[Jech]

Jech, T. Set Theory: Third Millennium Edition, revised. and extended, Springer Monographs in Mathematics, Springer-Verlag, 2003.

[Kunen]

Kunen K. **Set Theory**, Studies in Logic **v. 34**, Lightning Source, Milton Keyne, UK.

[Miraglia]

Neto, F. Miraglia. Cálculo Proposicional: Uma interação da Álgebra e da Lógica, Coleção CLE – v. 1, Centro de Lógica, Epistemologia e História da Ciência, Campinas — São Paulo, 1987.