Second-Order Discretization in Space and Time for Grey S₂-Radiation Hydrodynamics

Simon R. Bolding, Joshua E. Hansel, & Jim E. Morel

16 October 2015 CLASS seminar

- Overview
- The MUSCL-Hancock Method
- 3 Discretizations for TRT Equations
- The algorithm
- 6 Results
- 6 Conclusions and Future Work

- Overview

- Conclusions and Future Work

What is radiation hydrodynamics?

00000

- Thermal radiative transfer (TRT) coupled to material hydrodynamics
 - Inertial confinement fusion (NIF) and astrophysics calculations

Figure : Comparison of HYDRA simulations for collapses of 2 NIF hohlraum designs, from Meezan et. al., 2015

We have implemented and tested a 2nd order solution method

- Previous work by Edwards and Morel for an algorithm that is second-order in space and time
 - Hydrodynamics is solved with a MUSCL-Hancock (MH) method predictor-corrector in time
 - Radiation diffusion is solved with linear discontinuous finite elements in space (LDFE) and a modified form of TRBDF2 in time
- Resolved issues with mixing of different spatial discretizations for the hydrodynamic and radiation variables
- Used approximate radiation hydrodynamics equations that produce the correct equilibrium diffusion limit solution to $\mathcal{O}(u/c)$

We have extended the method to S_2 equations

- S₂ allows for conservation of momentum
- \bullet Can be generalized to S_n equations, but would also be well suited for a high-order low-order approach

The non-relativistic radiation hydrodynamics equations

• For hydro, we have the 1D Euler Equations with source terms from interaction and emission of radiation (grey)

$$\frac{\partial}{\partial t} \mathbf{U} + \frac{\partial}{\partial x} F(\mathbf{U}) = \mathbf{Q}(\mathbf{U})$$
 (1)

$$\mathbf{U} = \begin{pmatrix} \rho \\ \rho u \\ E \end{pmatrix}, \quad F(\mathbf{U}) = \begin{pmatrix} \rho u \\ \rho u^2 + p \\ u (E + p) \end{pmatrix}, \quad Q(\mathbf{U}) = \begin{pmatrix} 0 \\ Q_{\text{mom}} \\ Q_{\text{erg}} \end{pmatrix}$$

• The coupling terms are

$$Q_{\text{mom}} = \frac{\sigma_t}{c} \mathcal{F}_0, \qquad Q_{\text{erg}} = -\sigma_a c \left(a T^4 - \mathcal{E} \right) + \frac{\sigma_t u}{c} \mathcal{F}_0$$

- There is an equation of state to relate internal energy e and T
- The Euler equations are typically solved with explicit time discretizations that require a time step limit (CFL)

The S_2 equations for radiation hydrodynamics

- The radiation transport equation contains source and loss terms from interaction with material
- To get S_2 equations, we collocate to $\mu = \pm \frac{1}{\sqrt{3}}$ to get equations for half-range intensities I^{\pm}

$$\begin{split} &\frac{1}{c}\frac{\partial I^{+}(x,t)}{\partial t} + \frac{1}{\sqrt{3}}\frac{\partial I^{+}}{\partial x} + \sigma_{t}I^{+} = \frac{\sigma_{s}}{4\pi}c\mathcal{E} + \frac{\sigma_{a}}{4\pi}acT^{4} - \frac{\sigma_{t}u}{4\pi c}\mathcal{F}_{0} + \frac{\sigma_{t}}{\sqrt{3}\pi}\mathcal{E}u, \\ &\frac{1}{c}\frac{\partial I^{-}(x,t)}{\partial t} - \frac{1}{\sqrt{3}}\frac{\partial I^{-}}{\partial x} + \sigma_{t}I^{-} = \frac{\sigma_{s}}{4\pi}c\mathcal{E} + \frac{\sigma_{a}}{4\pi}acT^{4} - \frac{\sigma_{t}u}{4\pi c}\mathcal{F}_{0} - \frac{\sigma_{t}}{\sqrt{3}\pi}\mathcal{E}u, \end{split}$$

with

$$\mathcal{E} = rac{1}{c} 2\pi \int_{-1}^1 I(\mu) \, \mathrm{d}\mu, \qquad \mathcal{F} = 2\pi \int_{-1}^1 \mu \, I(\mu) \, \mathrm{d}\mu, \qquad \mathcal{F}_0 = \mathcal{F} - rac{4}{3} \mathcal{E} u$$

- These equations are solved using implicit time discretizations
- Angular moments of the S₂ equations gives the radiation balance and momentum equations, with correct $-Q_{\text{erg}}$ and $-Q_{\text{mom}}$

Solution to the radiation hydrodynamics equations

- Operator splitting in time of the Euler equations and thermal radiative transfer equations with momentum deposition
 - ullet First, MH solver advects discrete hydro states from t^n to t^*
 - ullet Then, a simultaneous solve for implicit radiation and hydro states from t^* to t^{n+1}
- For hydrodynamics, the spatial mesh is fixed and mass flows between cells (Eulerian)
- Within a radiation solve,
 - An outer fixed-point iteration is used to update momentum from radiation deposition
 - The radiation intensityand internal energy have to be solved with a Newton's method due to non-linear emission term $\sigma_a acT^4$
- Ensure total energy, momentum, and mass conservation

- Overview
- 2 The MUSCL-Hancock Method
- 3 Discretizations for TRT Equations
- 4 The algorithm
- 6 Results
- 6 Conclusions and Future Work

The MUSCL Hancock method is second-order accurate in $\times \& t$

• The MUSCL Hancock method uses a reconstructed linear shape in space, with slope limiting

- Explicit predictor-corrector steps are taken in time
- For the predictor step interior $F(\mathbf{U})$ is used on the faces. For the corrector step, an approximate Riemann solver is used for $F_{i\pm 1/2}(\mathbf{U})$.

$$\tilde{\mathbf{U}}_{i}^{n+1/2} - \mathbf{U}_{i}^{n} = -\frac{\Delta t}{2\Delta x} \left[F(\mathbf{U}_{i,R}^{n}) - F(\mathbf{U}_{i,L}^{n}) \right]$$

Step 2:

$$\mathbf{U}^{n+1} - \mathbf{U}^{n} = -\frac{\Delta t}{\Delta x} \left[F(\tilde{\mathbf{U}}_{i+1/2}^{n+1/2}) - F(\tilde{\mathbf{U}}_{i-1/2}^{n+1/2}) \right]$$

- Oiscretizations for TRT Equations

- Conclusions and Future Work

Time discretization for the S_2 , energy, and momentum solve

- We use a combination of Crank-Nicholson (CN) over half a time step, followed by a modified version of BDF2
- The BDF2 step takes place over a second half time step, rather than the over the full time step.
- This is done to conserve total energy and momentum over the full time step, in conjuction with two MH predictor-corrector steps.
- As an example, consider $\frac{d\mathbf{Y}}{dt} = f(\mathbf{Y})$. Our algorithm uses

$$\frac{(\mathbf{Y}^{n+1/2} - \mathbf{Y}^n)}{\frac{\Delta t}{2}} = \frac{1}{2} \left[f(\mathbf{Y}^{n+1/2}) + f(\mathbf{Y}^n) \right]$$

$$\frac{(\mathbf{Y}^{n+1} - \mathbf{Y}^{n+1/2})}{\frac{\Delta t}{2}} = \frac{2}{3}f(\mathbf{Y}^{n+1}) + \frac{1}{6}f(\mathbf{Y}^{n+1/2}) + \frac{1}{6}f(\mathbf{Y}^{n})$$

LD Galerkin Spatial Discreziation for TRT

• Within a Newton step, the material energy equation can be linearized and eliminated, producing fixed source S₂ equations

$$\pm \frac{1}{\sqrt{3}} \frac{\partial I^{\pm}}{\partial x} + \hat{\sigma}_t I^{\pm} - \frac{\hat{\sigma}_s Ec}{4\pi} = \hat{q}$$
 (2)

where $\hat{\cdot}$ quantities depend on the time discretization and material energy linearization

We use a lumped LDFE in space with upwinding to define I on faces

 Fully discrete system is formed with spatial unknowns at the left and TEXAS right edges of a cell. The system can be inverted directly for S₂

Spatial discretization of material variables in radiation solve

- S_2 equations requires LD values of ρ , u, and e at edges of a cell
 - ullet Use explicit MH slopes to get edge values of ho and u for kinetic energy
 - ullet The internal energy e is updated at edges based on new ${\mathcal E}$
 - ullet We save LD e slopes between radiation solves to construct e^* at edges
- Need to update hydro energy and momentum based on radiation deposition
 - We only change cell averages for the material momentum and total energy updates
 - The MH slopes are unaffected and reconstructed each hydro solve

Non-linear iteration scheme for each implicit solve

- Herein, a "nonlinear solve" refers to a simultaneous solve of the S₂ equations, radiation momentum deposition, and new total material energy
- FOR each nonlinear iteration
 - Update cell-averaged material momentum from radiation deposition
 - 2 Using Newtons method, we eliminate the material energy equation and solve for new LD values of I^{\pm}
 - 1 Update material internal energy e based on new \mathcal{E}
 - Update cell-averaged total material energy E
- Repeat iterations until convergence
- \mathcal{F}_0 terms are lagged for entire iteration
- We conserve momentum to the tolerance of outer iteration

$$\frac{1}{c^2} \frac{\partial \mathcal{F}^{k+1}}{\partial t} + \frac{1}{3} \frac{\partial \mathcal{E}^{k+1}}{\partial x} = -\left(\sigma_t \mathcal{F}^{k+1} - \frac{4}{3} (\mathcal{E}u)^k\right)$$

The algorithm

- The algorithm
- Conclusions and Future Work

Time stepping algorithm, first half of time step

MUSCL-Hancock steps

Nonlinear solves of TRT equations

Time stepping algorithm, second half of time step

MUSCL-Hancock steps

Nonlinear solves of TRT equations

Why all the steps?! This seems expensive...

 In a TRBDF2 scheme, we need a second order accurate estimate of solution at $t_{n+1/2}$

$$\frac{(\mathbf{U}^{n+1} - \mathbf{U}^{n+1/2})}{\frac{\Delta t}{2}} = \frac{2}{3}f(\mathbf{U}^{n+1}) + \frac{1}{6}f(\mathbf{U}^{n+1/2}) + \frac{1}{6}f(\mathbf{U}^{n})$$

- If we used a MH predictor to $t_{n+1/2}$, then the hydro variables would only be first order accurate
- The 4 nonlinear solves are not that bad... The maximum allowable size of Δt based on CFL limit is now twice as big.
- For the same total number of hydro steps, we do the same amount of work as a two step method, but are second order accurate

- 1 Overview
- 2 The MUSCL-Hancock Method
- 3 Discretizations for TRT Equations
- 4 The algorithm
- 6 Results
- 6 Conclusions and Future Work

Method of Manufactured Solutions

- Add effective source equation
- saem for radiation
- Adds in a mass term. blah blah
- Use same temporal discretization for sources, but quadruature for high accuracy spatial integration of sources
- Can be automated relatively easily with Sympy

Before and after of schock solution

• Shock is a discontinuity in the solution

•

Pure Hydrodynamics: Shock Tube Problem Solutions with van Leer Slope Limiter

Diffusion-Limit MMS Problem Solutions

24 / 32

Convergence Rate for Diffusion-Limit MMS Problem

Results Mach 2 Radiation-Hydrodynamics Shock

0.10

-0.015

-0.010

-0.005

0.005

0.010

0.015

0.020

0.025

0.000

Mach 3 Radiation-Hydrodynamics Shock, 1000 cells

- 6 Conclusions and Future Work

Conclusions

Demonstrated second order accuracy using manufactured solutions Able to obtain accurate solutions in the EDL When radiaiton or material motion become insignificant, you get back the respective algorithms

Future Work

Coupling to a high-order system using hybrid-" S_2 -like" equations. Exploring slope limiting and EDL, what is going wrong there Different way to use internal energy slopes Stability of nonlinear iteration scheme.

- $\tilde{\psi}(x,\mu)$ is linear over each cell, preserving 0th and 1^{st} moment in x and μ
- Use path-length estimators of flux to approximate moments e.g.

$$\langle \psi \rangle_{\mu,ij} = \frac{6}{h_{\mu}^2 h_{x}} \iint_{\mathcal{D}} (\mu - \mu_{i}) \psi(x,\mu) dx d\mu$$

Space-Angle LDFE Mesh

- $\tilde{\psi}(x,\mu)$ is linear over each cell, preserving 0th and 1^{st} moment in x and μ
- Use path-length estimators of flux to approximate moments e.g.

$$\langle \psi \rangle_{\mu,ij} = \frac{6}{h_{\mu}^2 h_{x}} \iint_{\mathcal{D}} (\mu - \mu_{i}) \psi(x,\mu) dx d\mu$$

Use standard LD and upwinding to get face terms

Questions?

Second-Order Discretization in Space and Time for Grey S_2 -Radiation Hydrodynamics

Simon R. Bolding, Joshua E. Hansel, & Jim E. Morel

16 October 2015

The full equations

Material balance equations

$$\begin{split} \frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x} \left(\rho u \right) &= 0 \\ \frac{\partial}{\partial t} \left(\rho u \right) + \frac{\partial}{\partial x} \left(\rho u^2 + p \right) &= \frac{\sigma_t}{c} \mathcal{F}_0 \\ \frac{\partial E}{\partial t} + \frac{\partial}{\partial x} \left[\left(E + p \right) u \right] &= -\sigma_a c \left(a T^4 - \mathcal{E} \right) + \frac{\sigma_t u}{c} \mathcal{F}_0 \end{split}$$

• Radiation transport equation, collocated to $\mu=\pm\frac{1}{\sqrt{3}}$

$$\frac{1}{c}\frac{\partial \psi^{\pm}}{\partial t} \pm \frac{1}{\sqrt{3}}\frac{\partial \psi^{\pm}}{\partial x} + \sigma_t \psi^{\pm} = \frac{\sigma_s}{4\pi}c\mathcal{E} + \frac{\sigma_a}{4\pi}ac\mathcal{T}^4 - \frac{\sigma_t u}{4\pi c}\mathcal{F}_0 \pm \frac{\sigma_t}{\sqrt{3}\pi}\mathcal{E}u$$