

Executive summary

- Exploratory data analysis
- Model selection by Root Mean Square Mean
- Linear regression model
- Model behaviour as expected
- Assumptions of variables made with the linear regression model.
- Code & Results

Problem description

• In this competition we had to be able to develop a model for an Aeroderivative Gas Turbine to predict the POWER (kW) output from the Low Pressure Turbine (LPT).

• For this porpoise we handled synthetic data that simulates the behavior of Gas Turbine engines based at different locations worldwide.

Exploratory data analysis

General data overview

- Unusual 0 values
- NaN values

- First, we guest it was a sensor's problem.
- Then we realize that the zeros correspond to the variable CMP_SPEED and the NaN values where allocated to the turbine's variables.
- Showing that in those days the turbine was put-off

Data preprocessing and feature engineering techniques

Handling missing values

- Delete the rows with missing values
- Replace the missing values with the statistics mean
- Replace the missing values with zeros

```
# Remove all nan values
df.dropna(inplace = True)
df_test.dropna(inplace = True)

# Replace with mean
for col in df.columns:
    if df[col].dtype == 'float':
        df[col].fillna(df[col].mean(), inplace = True)

for col in df_test.columns:
    if df_test[col].dtype == 'float':
        df_test[col].fillna(df_test[col].mean(), inplace = True)

# Handling missing values with zero
df.fillna(0, inplace = True)
df_test.fillna(0, inplace = True)
```

Data preprocessing and feature engineering techniques

Determinate hyperparameters.

CMP_SPEED, CDP, GGDP, HPT_IT, CDT, LPT_IT, EXH_T.

Selection of feature variables

- CMP_SPEED, CDP, GGDP, HPT_IT, CDT, LPT_IT, EXH_T.
- CMP_SPEED compressor speed in RPM.
- CDP compressor discharge pressure, barA.
- CDT compressor discharge temperature, degC. —
- GGDP gas generator discharge pressure, barA.
- HPT_IT High Pressure Turbine (HPT) inlet temperature, degC.
- LPT_IT Low Pressure Turbine (LPT) inlet temperature, degC.
- EXH_T exhaust temperature, degC.

Model comparison and model selection techniques

- Based in Root Mean Square Error parameters applied to the test dataset (subset).
- Logistic regression
- Linear regression
- Ridge regression

Model Selection - Linear Regression

Actual vs Predicted data on training dataset

	Actual	Predicted
date		
2021-07-18	0.000000	-51.594492
2021-10-02	5283,494881	5249.715082
2021-03-09	10749.132285	11160.228757
2021-10-04	17166.465997	16250.215063
2021-05-29	3103.702759	3376.599212

Actual vs Predicted data on test splitted data

	actual	predicted
date		39
2021-10-28	10757.528311	10579.359239
2021-02-03	11769.494848	12475.357093
2021-01-09	12818.381578	13487.561463
2021-04-10	7040.412363	7128.064488
2021-02-20	5584.987785	5620.507935

Model Selection - Linear Regression

Actual vs Predicted data on training dataset

	Actual	Predicted
date		
2021-07-18	0.000000	-31.763825
2021-10-02	5283.494881	5308.745030
2021-03-09	10749.132285	11233.155887
2021-10-04	17166.465997	16976.987363
2021-05-29	3103.702759	2194.332666

Actual vs Predicted data on test splitted data

	actual	predicted	
date			
2021-10-28	10757.528311	10733.030062	
2021-02-03	11769.494848	12433.462689	
2021-01-09	12818.381578	13489.899869	
2021-04-10	7040.412363	7393.157403	
2021-02-20	5584.987785	5647.803598	

RMSE For Model Evaluation

$$RMSE = \sqrt{\frac{\sum_{i=1}^{N} (Predicted_{i} - Actual_{i})^{2}}{N}}$$


```
rmse_train = (np.sqrt(mean_squared_error(target_train, target_train_predict)))
rmse_test = (np.sqrt(mean_squared_error(target_test, target_test_predict)))

print("RMSE for training data: {:.4f}".format(rmse_train))
print("RMSE for test splitted data: {:.4f}".format(rmse_test))
```

```
RMSE for training data: 354.4378
RMSE for test splitted data: 363.4620
```

RMSE for training data: 457.8888
RMSE for test splitted data: 482.0964

Results

Expected vs. predictions

Model coefficients and model eval.

- Interception \rightarrow -3080.509774297314
- Coefficients \rightarrow -0.78558, 189.443, 3008, 260.384, -562.218, 306.611
- Independent variables → CMP_SPEED, CDP, GGDP, HPT_IT, LPT_IT, EXH_T
- POWER = -3080.509774297314 0.78558CMP_SPEED + 189.443CDP + 3008GGDP + 260.384HPT_IT 562.218LPT_IT + 306.611EXH_T

R2: 0.9965

References

- Pathak, M. (2018). Joining DataFrames in Pandas Tutorial. 12/03/22, de Datacamp. Sitio web:
 https://www.datacamp.com/community/tutorials/joining-dataframes-pandas
- Ashok, P. (2020). What is ridge Regression?. 12/03/22, de Great Learning. Sitio Web: <u>Ridge Regression Definition & Examples | What is Ridge Regression? (mygreatlearning.com)</u>
- Ohri, A. (2017). 10 Popular Regression Algorithms In Machine Learning Of 2022. 12/03/22, de Jigsaw. Sitio Web: 10
 Popular Regression Algorithms In Machine Learning Of 2022 (jigsawacademy.com)
- Meghna, P. (2021). Pandas dropna() Drop Null/NA Values from DataFrame. 12/02/22, JournalDev. Sitio Web: <u>Pandas</u>
 <u>dropna() Drop Null/NA Values from DataFrame JournalDev</u>
- Pandas. Versión 1.4.1. Sitio web: <u>pandas documentation</u> <u>pandas 1.4.1 documentation</u> (<u>pydata.org</u>)
- Scikit. Versión 1.0.2. Sitio web: <u>scikit-learn: machine learning in Python scikit-learn 1.0.2 documentation</u>

Q&A SESSION

Personal experience