2021-EE-27-39

EE24BTECH11006 - Arnay Mahishi

- 1) A $1\mu C$ point charge is held at the origin of a cartesian coordinate system. If a second point charge of $10\mu C$ is moved from (0, 10, 0) to (5, 5, 5) and subsequently to (5, 0, 0), then the total work done is ______mJ.(Round off to 2 decimal places) Take $\frac{1}{4\pi\epsilon_0} = 9 \times 10^9$ in SI units. All coordinates are in meters.
- 3) An alternator with internal voltage of $1 \angle \delta_1$ p.u. and synchronous reactance of 0.4 p.u. is connected by a transmission line of reactance 0.1 p.u. to a synchronous motor having synchronous reactance 0.35 p.u. and internal voltage of $0.85 \angle \delta_2$ p.u. If the real power supplied by the alternator is 0.866 p.u., then $(\delta_1 \delta_2)$ is ______ degrees. (Round off to 2 decimal places.)

 (Machines are of non-salient type. Neglect resistances.)
- 4) The Bode magnitude plot for the transfer function $\frac{V_0(S)}{V_i(S)}$ of the circuit is as shown. The value of R is ______\Omega.(Round of to 2 decimal places)

- 5) A signal generator having a source resistance of 50Ω is set to generate a 1kHz sinewave. Open circuit terminal voltage is 10V peak-to-peak. Connecting a capacitor across the terminals reduces the voltage to 8V peak-to-peak. The value of this capacitor is μF . (Round off to 2 decimal places.)
- 6) A 16-bit synchronous binary up-counter is clocked with a frequency f_{CLK} . The two most significant bits are OR-ed together to form an output Y. Measurements show

1

that Y is periodic, and the duration for which Y remains high in each period is 24 ms. The clock frequency f_{CLK} is _____MHz. (Round off to 2 decimal places.)

7) In the BJT diagram shown, beta of the PNP transistor is 100. Assume $V_{BE} = -0.7V$. The voltage across R_c will be 5V when R_2 is ______ $k\Omega$. (Round off to 2 decimal places)

10) In the open interval (0, 1), the polynomial $p(x) = x^4 - 4x^3 + 2$ has

- a) two real roots
- b) one real root
- c) three real roots d) no real roots
- 11) Suppose the probability that a coin toss shows "head" is p, where 0 . The coinis tossed repeatedly until the first "head" appears. The expected number of tosses required is
 - a) $\frac{p}{1-p}$
- b) $\frac{1-p}{p}$ c) $\frac{1}{p}$

- 12) Let (-1-j), (3-j), (3+j) and (-1+j) be the vertices of a rectangle C in the complex plane. Assuming that C is traversed in counter-clockwise direction, the value of the contour integral $\oint_C \frac{dz}{z^2(z-4)}$ is
 - a) $\frac{j\pi}{2}$

b) 0

- c) $\frac{-j\pi}{18}$
- d) $\frac{j\pi}{16}$
- 13) In the circuit, switch 'S' is in the closed position for a very long time. If the switch is opened at time t = 0, then $i_L(t)$ in amperes, for $t \ge 0$ is

- a) $8e^{-10t}$
- b) 10

- c) $8 + 2e^{-10t}$ d) $10(1 e^{-2t})$