School of Computing and Information Systems COMP30026 Models of Computation Week 3: Writing and Checking Proofs

For the homework problems, swap your answers with a friend, and critique each other's work!

Exercises

- T3.1 For each of the following, determine whether it is a valid deductive argument. Justify your response.
 - (a) My neighbours have woken me up every night so far, and therefore they will also wake me up tonight.
 - (b) Suppose that all birds fly, and that Jo flies. This suggests that Jo is a bird.
 - (c) There is no greatest prime number.
 - (d) Suppose that cities, villages, and towns exist. Suppose also that some pigeons live in cities, and that some pigeons do not. Therefore, some pigeons live in towns.
 - (e) Suppose that 0 = 1. Then the set of all sets exists.
- T3.2 Prove by induction the following statement:

Claim: For all positive integers n,

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}.$$

T3.3 The following "proof" contains a very subtle but significant error. Can you spot it? (Reminder: for all $p, q, n \in \mathbb{Z}$, we have $p \equiv q \pmod{n}$ if and only if p - q is a multiple of n.)

Claim: Let $a, b \in \mathbb{Z}$ where $a \equiv 1 \pmod{3}$ and $b \equiv 2 \pmod{3}$. Then $a + b \equiv 0 \pmod{3}$.

"Proof:" Since $a \equiv 1 \pmod 3$ there is an integer k such that a = 3k + 1. Since $b \equiv 2 \pmod 3$, we can write b = 3k + 2. Thus

$$a + b = (3k + 1) + (3k + 2)$$

= $6k + 3$
= $3(2k + 1)$,

and so $a + b \equiv 0 \pmod{3}$.

T3.4 Prove by contradiction the following claim:

Claim: Let $a, b \in \mathbb{R}$. If a is rational and ab is irrational, then b is irrational.

Homework problems

P3.1 Prove or disprove the following claim:

Claim: For all sets A, B, C, if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

P3.2 Prove or disprove the following claim:

Claim: For all sets A, B, C, if $A \in B$ and $B \in C$, then $A \in C$.

P3.3 Prove that $\sqrt{3}$ is irrational.

P3.4 Write a corrected version of the proof from T3.3.

P3.5 Prove by induction the following claim:

Claim: For all positive integers n,

$$\sum_{i=1}^{n} i^2 = \frac{2n^3 + 3n^2 + n}{6}.$$

P3.6 **Definition:** An integer is even iff it is a multiple of 2.

Definition: An integer is odd iff it is not even.

Prove that the product of any two odd integers is odd.

P3.7 Prove the following claim:

Claim: Let a, b and c be odd integers. Then the polynomial $ax^2 + bx + c$ has no rational roots.