In [524]: import pandas as pd import numpy as np

In [629]: # read first dataset
 pymoli_1= 'Resources/purchase_data.json'
 pymoli_1 =pd.read_json(pymoli_1)
 pymoli_1.head()

Out[629]:

	Age	Gender	Item ID	Item Name	Price	SN
O	38	Male	165	Bone Crushing Silver Skewer	3.37	Aelalis34
1	21	Male	119	Stormbringer, Dark Blade of Ending Misery	2.32	Eolo46
2	34	Male	174	Primitive Blade	2.46	Assastnya25
3	21	Male	92	Final Critic	1.36	Pheusrical25
4	23	Male	63	Stormfury Mace	1.27	Aela59

In [630]: # read second dataset
 pymoli_2='Resources/purchase_data2.json'
 pymoli_2=pd.read_json(pymoli_2)
 pymoli_2.head()

Out[630]:

	Age	Gender	Item ID	Item Name	Price	SN
0	20	Male	93	Apocalyptic Battlescythe	4.49	Iloni35
1	21	Male	12	Dawne	3.36	Aidaira26
2	17	Male	5	Putrid Fan	2.63	Irim47
3	17	Male	123	Twilight's Carver	2.55	Irith83
4	22	Male	154	Feral Katana	4.11	Philodil43

In [631]: # combine two dataset
 pymoli = pd.concat([pymoli_1, pymoli_2])
 pymoli.head()

Out[631]:

	Age	Gender	Item ID	Item Name		SN
0	38	Male	165	Bone Crushing Silver Skewer	3.37	Aelalis34
1	21	Male	119	Stormbringer, Dark Blade of Ending Misery	2.32	Eolo46
2	34	Male	174	Primitive Blade	2.46	Assastnya25
3	21	Male	92	Final Critic	1.36	Pheusrical25
4	23	Male	63	Stormfury Mace	1.27	Aela59

```
In [539]: #Player Count
    total_player =len(pymoli['SN'].unique())
    total_player_df = pd.DataFrame({'Total Players': total_player}, index=[0
    ])
    total_player_df
```

Out[539]:

```
Total Players

0 612
```

```
In [540]: #Purchasing Analysis(Total)
    unique_item = len(pymoli['Item Name'].unique())
    average_price = pymoli['Price'].mean()
    average_price="${:.2f}".format(average_price)
    num_purchase = pymoli.shape[0]
    total_revenue = pymoli['Price'].sum()
    total_revenue = "${:.2f}".format(total_revenue)
    purchasing_analysis_df=pd.DataFrame({'Number of Unique Items':unique_items,'Average Price':average_price,'Numer of Purchase':num_purchase, 'Total Revenue':total_revenue},index=[0])
    purchasing_analysis_df
```

Out[540]:

	Average Price	Number of Unique Items	Numer of Purchase	Total Revenue
0	\$2.93	180	858	\$2514.43

```
In [632]: #Create a cleaned dataframe with unique players
    u_player = pymoli['SN'].unique()
    u_gender = [list(pymoli['Gender'].loc[pymoli['SN'] == str(i)]) for i in
    u_player]
    u_gender = [item[0] for item in u_gender]
    u_pymoli_df = pd.DataFrame({'Player':u_player, 'Gender':u_gender})
    u_pymoli_df.head()
```

Out[632]:

	Gender	Player		
0 Male		Aelalis34		
1	Male	Eolo46		
2	Male	Assastnya25		
3	Male	Pheusrical25		
4	Male	Aela59		

```
In [542]: #Gender Demographics
    male = len(u_pymoli_df.loc[u_pymoli_df['Gender'] == 'Male'])
    female = len(u_pymoli_df.loc[u_pymoli_df['Gender'] == 'Female'])
    other = len(u_pymoli_df.loc[u_pymoli_df['Gender'] == 'Other / Non-Discl
    osed'])
    m_percent = "{:.2f}%".format(male/total_player*100)
    f_percent = "{:.2f}%".format(female/total_player*100)
    other_percent = '{:.2f}%'.format(other/total_player*100)
    gender_df = pd.DataFrame({'Percentage of Player':[m_percent, f_percent, other_percent], 'Total Count':[male, female, other]},index = ['Male','Female','Other / Non-Disclosed'])
    gender_df
```

Out[542]:

	Percentage of Player	Total Count
Male	80.88%	495
Female	17.65%	108
Other / Non-Disclosed	1.47%	9

```
In [543]: #Purchasing Analysis(Gender)
```

```
In [544]: #purchase count
    male_purchase = len(pymoli.loc[pymoli['Gender']=='Male'])
    female_purchase = len(pymoli.loc[pymoli['Gender']=='Female'])
    other_purchase = len(pymoli.loc[pymoli['Gender']=='Other / Non-Disclose
    d'])
    total_purchase = male_purchase+female_purchase+other_purchase
```

```
In [545]: #groupby gender - avg price
avg_price_gender = pymoli.groupby('Gender').mean()
```

```
In [546]: #male and female avg price
    m_avg_price = avg_price_gender['Price']['Male']
    f_avg_price = avg_price_gender['Price']['Female']
    other_avg_price = avg_price_gender['Price']['Other / Non-Disclosed']
    total_avg_price = m_avg_price+f_avg_price+other_avg_price
```

```
In [547]: #total value
    total_value_gender = pymoli.groupby('Gender').sum()
    m_total_value = total_value_gender['Price']['Male']
    f_total_value = total_value_gender['Price']['Female']
    other_total_value = total_value_gender['Price']['Other / Non-Disclosed']
    total_value = m_total_value+f_total_value+other_total_value
```

```
In [548]: #normalized total
    m_normalized = total_value/male_purchase
    f_normalized = total_value/female_purchase
    other_normalized = total_value/other_purchase
```

```
In [549]:
          other_purchase = "${:.2f}".format(other_purchase)
          m avg_price = "${:.2f}".format(m_avg_price)
           f_avg_price = "${:.2f}".format(f_avg_price)
           other_avg price = "${:.2f}".format(other_avg price)
          m_total_value = "${:.2f}".format(m_total_value)
           f_total_value = "${:.2f}".format(f_total_value)
           other_total_value = "${:.2f}".format(other_total_value)
          m_normalized = "${:.2f}".format(m_normalized)
           f_normalized = "${:.2f}".format(f_normalized)
           other_normalized = "${:.2f}".format(other_normalized)
In [550]:
          gender purchasing df = pd.DataFrame({'Purchase Count':[male purchase, fe
          male purchase, other purchase], 'Average Purchase Price':[m avg price,f_
           avg price,other avg price ], 'Total Purchase Value':[m total value,f tot
           al_value,other_total_value],'Normalized Totals':[m_normalized,f_normaliz
           ed,other_normalized]}, index = ['Male','Female','Other / Non-Disclosed'
           gender purchasing df
Out[550]:
                                               Normalized
                                                             Purchase
                                                                        Total Purchase
                             Average Purchase
                                       Price
                                                    Totals
                                                                Count
                                                                                Value
           Male
                           $2.94
                                             $3.61
                                                          697
                                                                      $2052.28
           Female
                           $2.85
                                             $16.88
                                                          149
                                                                      $424.29
           Other / Non-
                                             $209.54
                                                          $12.00
                                                                      $37.86
                           $3.15
           Disclosed
```

```
In [551]: #Age Demographics
    min_age = pymoli['Age'].min()
    max_age = pymoli['Age'].max()
    min_age
Out[551]: 7
In [552]: max_age
Out[552]: 45
In [553]: bins = np.linspace(6,46,10,dtype = int)
    bins
Out[553]: array([ 6, 10, 14, 19, 23, 28, 32, 37, 41, 46])
In [554]: labels = ['<=10','11-14','15-19','20-23','24-28','29-32','33-37','38-41'
    ,'42+']</pre>
```

In [633]: pymoli['Age Range'] = pd.cut(pymoli['Age'], bins=bins, labels=labels)
 pymoli.head()

Out[633]:

	Age	Gender	Item ID	Item Name	Price	SN	Age Range
0	38	Male	165	Bone Crushing Silver Skewer	3.37	Aelalis34	38-41
1	21	Male	119	Stormbringer, Dark Blade of Ending Misery	2.32	Eolo46	20-23
2	34	Male	174	Primitive Blade	2.46	Assastnya25	33-37
3	21	Male	92	Final Critic	1.36	Pheusrical25	20-23
4	23	Male	63	Stormfury Mace	1.27	Aela59	20-23

In [556]: age_grouped_df = pymoli.groupby('Age Range')
 age_grouped_df.max()

Out[556]:

	Age	Gender	Item ID	Item Name	Price	SN
Age Range						
<=10	10	Male	177	Woeful Adamantite Claymore	4.89	Yarithsurgue62
11-14	14	Other / Non- Disclosed	183	Woeful Adamantite Claymore	4.75	Undistasta86
15-19	19	Male	183	Worldbreaker	4.95	Zhisrisu83
20-23	23	Other / Non- Disclosed	183	Yearning Mageblade	4.95 Zontibe81	
24-28	28	Other / Non- Disclosed	182	Yearning Mageblade	4.95 Zhisrisu83	
29-32	32	Other / Non- Disclosed	182	Yearning Mageblade	4.95	Yathecal72
33-37	37	Other / Non- Disclosed	183	Wolf, Promise of the Moonwalker	4.83	Wailin72
38-41	40	Male	181	Woeful Adamantite Claymore	4.65	Yasrisu92
42+	45	Male	124	Venom Claymore	3.81	Raesurdil91

```
In [557]: age purchasing = age grouped df ['Price'].count()
          age purchasing
Out[557]: Age Range
          <=10
                    37
          11-14
                    34
          15-19
                   144
          20-23
                   295
          24-28
                   190
          29-32
                    70
          33-37
                    54
          38-41
                    31
          42+
                     3
          Name: Price, dtype: int64
In [558]: avg price age = age grouped df ['Price'].mean()
          total_value_age = age_grouped_df ['Price'].sum()
          total_value_age
Out[558]: Age Range
          <=10
                   110.44
          11-14
                    92.75
          15-19
                   416.83
          20-23
                   858.33
          24-28
                   564.81
          29-32
                   210.06
          33-37
                   154.87
          38-41
                    97.70
          42+
                     8.64
          Name: Price, dtype: float64
In [559]: normalized_totals_age = total_value_age/age_purchasing
In [560]: avg_price_age = avg_price_age.map('${:.2f}'.format)
          total_value_age = total_value_age.map('${:.2f}'.format)
          normalized totals age = normalized totals age.map('${:.2f}'.format)
```

```
In [561]: age_purchasing_df = pd.DataFrame()
    age_purchasing_df['Purchase Count'] = age_purchasing
    age_purchasing_df['Average Purchase Price'] = avg_price_age
    age_purchasing_df['Total Purchase Value'] = total_value_age
    age_purchasing_df['Normalized Totals'] = normalized_totals_age
    age_purchasing_df
```

Out[561]:

	Purchase Count	Average Purchase Price	Total Purchase Value	Normalized Totals
Age Range				
<=10	37	\$2.98	\$110.44	\$2.98
11-14	34	\$2.73	\$92.75	\$2.73
15-19	144	\$2.89	\$416.83	\$2.89
20-23	295	\$2.91	\$858.33	\$2.91
24-28	190	\$2.97	\$564.81	\$2.97
29-32	70	\$3.00	\$210.06	\$3.00
33-37	54	\$2.87	\$154.87	\$2.87
38-41	31	\$3.15	\$97.70	\$3.15
42+	3	\$2.88	\$8.64	\$2.88

```
In [562]: #Top Spenders
    top_total_value = pymoli['Price'].groupby(pymoli['SN']).sum().nlargest(5
)
    top_purchase_count = pymoli['Price'].groupby(pymoli['SN']).count()
    top_avg = pymoli['Price'].groupby(pymoli['SN']).mean()
    top_total_value = top_total_value.map('${:.2f}'.format)
    top_total_value
```

Out[562]: SN

Undirrala66 \$17.06
Aerithllora36 \$15.10
Saedue76 \$13.56
Sondim43 \$13.02
Mindimnya67 \$12.74
Name: Price, dtype: object

```
In [563]: top_spenders_df = pd.DataFrame()
    top_spenders_df['Total Purchase Value'] = top_total_value
    top_spenders_df
```

Out[563]:

	Total Purchase Value
	Total i dichase value
SN	
Undirrala66	\$17.06
Aerithllora36	\$15.10
Saedue76	\$13.56
Sondim43	\$13.02
Mindimnya67	\$12.74

```
In [564]: top_index = list(top_spenders_df.index)
top_index
Out[564]: ['Undirrala66', 'Aerithllora36', 'Saedue76', 'Sondim43', 'Mindimnya67']
In [565]: top_s_purchase_count = [top_purchase_count[element] for element in top_i
```

```
In [566]: top_spenders_df = pd.DataFrame()
    top_spenders_df['Total Purchase Value'] = top_total_value
    top_spenders_df['Purchase Count'] = top_s_purchase_count
    top_spenders_df['Average Purchase Price'] = top_s_avg
    top_spenders_df['Average Purchase Price'] = top_spenders_df['Average Purchase Price'].map('${:.2f}'.format)
    top_spenders_df
```

Out[566]:

	Total Purchase Value	Purchase Count	Average Purchase Price
SN			
Undirrala66	\$17.06	5	\$3.41
Aerithllora36	\$15.10	4	\$3.77
Saedue76	\$13.56	4	\$3.39
Sondim43	\$13.02	4	\$3.25
Mindimnya67	\$12.74	4	\$3.18

Out[638]:

popular_grouped.head()

		Purchase Count	Item Price	Total Purchase Value
Item ID	Item Name			
84	Arcane Gem	12	\$2.45	\$29.34
39	Betrayal, Whisper of Grieving Widows	11	\$2.35	\$25.85
31	Trickster	10	\$2.32	\$23.22
44	Bonecarvin Battle Axe	9	\$2.67	\$24.04
154	Feral Katana	9	\$2.62	\$23.55

```
In [639]: #Most Profitable Item
    profitable_grouped = pymoli.groupby(['Item ID','Item Name']).sum().sort_
    values(['Price'], ascending=False)
    profitable_ct = pymoli.groupby(['Item ID','Item Name']).count()
    profitable_avg = pymoli.groupby(['Item ID','Item Name']).mean()
    profitable_total = pymoli.groupby(['Item ID','Item Name']).sum()
    profitable_grouped.head()
```

Out[639]:

		Age	Price
Item ID	Item Name		
34	Retribution Axe	234	37.26
107	Splitter, Foe Of Subtlety	222	33.03
115	Spectral Diamond Doomblade	154	29.75
32	Orenmir	140	29.70
84	Arcane Gem	268	29.34

```
In [640]: profitable_index = list(profitable_grouped.index)
```

Out[642]:

		Purchase Count	Item Price	Total Purchase Value
Item ID	Item Name			
34	Retribution Axe	9	\$4.14	\$37.26
107	Splitter, Foe Of Subtlety	9	\$3.67	\$33.03
115	Spectral Diamond Doomblade	7	\$4.25	\$29.75
32	Orenmir	6	\$4.95	\$29.70
84	Arcane Gem	12	\$2.45	\$29.34