- 1. (000076) 求函数 $y = \frac{1}{2-x} + \sqrt{x^2-1}$ 的定义域.
- 2. (000567) 函数 $f(x) = \sqrt{1 \lg x}$ 的定义域为_
- 3. (000607) 函数 $y = \log_2(1 \frac{1}{x})$ 的定义域为_____.
- 4. (000646) 函数 $y = \sqrt{2x x^2}$ 的定义域是
- 5. (000778) 函数 $y = \sqrt{\lg(x+2)}$ 的定义域为 .
- 6. (000845) 已知函数 $f(x) = \lg(\sqrt{x^2 + 1} + ax)$ 的定义域为 R, 则实数 a 的取值范围是
- 7. (000868) 函数 $f(x) = \frac{\sqrt{x+2}}{x-1}$ 的定义域为______.
- 8. (000931) 函数 $y = \log_3(x-1)$ 的定义域是
- 9. (001164) 写出下列函数的定义域 (写在对应关系的右边):

(1)
$$f(x) = \frac{6}{x^2 - 3x + 2}$$
;

$$(1) f(x) = \frac{6}{x^2 - 3x + 2};$$

$$(2) f(x) = \frac{3x - 1}{2x^3 + 4x^2 + x - 7};$$

$$(3) f(x) = \frac{\sqrt[3]{4x + 8}}{\sqrt{3x - 2}};$$

$$(4) f(x) = \sqrt{2x - 1} + \sqrt{1 - 2x} + 4;$$

(3)
$$f(x) = \frac{\sqrt[3]{4x+8}}{\sqrt{3x-2}};$$

(4)
$$f(x) = \sqrt{2x-1} + \sqrt{1-2x} + 4$$

(5)
$$f(x) = \sqrt{x^2 - 4}$$

(5)
$$f(x) = \sqrt{x^2 - 4}$$
;
(6) $f(x) = \frac{\sqrt{2x + 1}}{x - 3}$.

- 10. (001262) 已知函数 y = f(2x-1) 的定义域为 [0,3], 则函数 y = f(3x+1) 的定义域为_
- 11. (001274) 已知 k 是实数, 函数 $y = \sqrt{kx^2 + 2(k+2)x + 3(4k-1)}$ 的定义域为 \mathbf{R} , 则 k 的取值范围为
- 12. (002820) 若实数 x、y、m 满足 |x-m| > |y-m|, 则称 x 比 y 远离 m.
 - (1) 若 $x^2 1$ 比 1 远离 0, 求 x 的取值范围;
 - (2) 定义: 在 R 上的函数 f(x) 等于 x^2 和 x+2 中远离 0 的那个值. 求证: $f(x) \ge 1$ 在 R 上恒成立.
- 13. (002831) 已知函数 $f(x) = \sqrt{ax^2 + x + 1}$.
 - (1) 若函数 y = f(x) 的定义域为 $(-\infty, +\infty)$, 求实数 a 的取值范围;
 - (2) 若函数 y = f(x) 的值域为 $[0, +\infty)$, 求实数 a 的取值范围
- 14. (002833) 已知函数 y=f(x) 的定义域为 [1,4], 则函数 $y=\frac{f(2x)}{x-2}$ 的定义域是
- 15. $(002968)^*$ 已知函数 $f(x) = 2 + \log_3 x$ $(3 \le x \le 27)$.
 - (1) 求函数 $y = f(x^2)$ 的定义域;
 - (2) 求函数 $g(x) = [f(x)]^2 + f(x^2)$ 的值域.
- 16. (009508) 下列四组函数中, 同组的两个函数是相同函数的是().

A.
$$y = |x| + y = (\sqrt{x})^2$$

B.
$$y = x - y = e^{\ln x}$$

C.
$$y = x - 5$$
 $y = \sqrt[5]{x^5}$

D.
$$y = x - y = (\frac{1}{x})^{-1}$$

17.	. (005300) 在① $y=x$ 与 $y=\sqrt{x^2}$; ② $y=\sqrt{x^2}$ 与 $y=(\sqrt{x})^2$; ③ $y= x $ 与 $y=$	$\frac{x^2}{x}; \textcircled{4} y = x $	$\Rightarrow y = \sqrt{x^2}; \ \textcircled{5}$
	$y=x^0$ 与 $y=1$ 这五组函数中, 表示同一函数的组数是 ().		

A. 0

B. 1

C. 2

D. 3

$$18._{(000342)}$$
 若函数 $f(x) = \begin{cases} 2^x, & x \leq 0, \\ & \text{的值域为 } (-\infty, 1], \text{则实数 } m \text{ 的取值范围是} \\ -x^2 + m, & x > 0 \end{cases}$

(2) 函数
$$f(x) = -x, x \in [-1,0)$$
 的值域为______;

(3) 函数
$$f(x) = \begin{cases} x^2, & 0 \le x \le 1, \\ -x, & -1 \le x < 0. \end{cases}$$
 的值域为_____.

20. (001238) 函数 $y = x^2 - 3x + 1$, $x \in [1,4]$ 的值域为______

21. (001239) 函数
$$y = \frac{2x+3}{x-1}$$
 的值域为______.

22. (001242) 函数
$$y = \sqrt{1+x} + 2x$$
 的值域为______.

23. (001243) 函数
$$y = |x-3| - |x-10|$$
 的值域为_____

24. (001244) 函数
$$y = |x-3| + |x-10| + |x+1| + |x+2|$$
 的值域为_____.

25. (001245) 函数
$$y = ||x - 3| + x|$$
 的值域为_____.

26. (001250) 函数
$$y = \sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{x^2 + 64}}}}$$
 的值域为_____.

27. (001252) 函数
$$y = \frac{1}{x^2 + x + 1}$$
 的值域为_____.

28. (001266) 写出下列函数的值域.

(1)
$$y = 3x + 1, x \in [-2, 5];$$

(2)
$$y = |2x + 1|, x \in [-1, 3];$$

$$(3) \ y = \frac{x-1}{2x+3}; \underline{\hspace{1cm}}$$

(4)
$$y = \frac{|x|+1}{|x|-1}$$
;

$$(2) \ y = |2x + 1|, \ x \in [-1, 3], \underline{\qquad}$$

$$(3) \ y = \frac{x - 1}{2x + 3}; \underline{\qquad}$$

$$(4) \ y = \frac{|x| + 1}{|x| - 1}; \underline{\qquad}$$

$$(5) \ y = \frac{|x + 3|}{x - 4}, \ x \in [-4, 0]; \underline{\qquad}$$

$$(6) \ y = \frac{2x + 1}{|x + 1| - |x|}; \underline{\qquad}$$

(6)
$$y = \frac{2x+1}{|x+1|-|x|};$$

29.
$$(001275)$$
 已知 k 是实数, 函数 $y = \sqrt{kx^2 + 2(k+2)x + 3(4k-1)}$ 的值域为 $[0, +\infty)$, 则 k 的取值范围为______

30. (002987) 函数 $f(x) = ax^2 + bx + c$ 与函数 $g(x) = cx^2 + bx + a(ac \neq 0, \ a \neq c)$ 的值域分别为 M、N, 则下列结 论正确的是_____

A. M = N

B. $M \subseteq N$

C. $M \supset N$

D. $M \cap N \neq \emptyset$

31. (002994) 函数
$$y = \log_{\frac{1}{2}}(-x^2 + 2x + 3)$$
 的值域是_____.

32. (003862) 如图, 直角梯形 OABC 中, AB || OC, AB = 1, OC = BC = 2, 直线 l: x = t 截此梯形所得位于 l 左 方图形面积为S,

则函数 S = f(t) 的图像大致为_

33. (001176) 求证: 函数 $y=x^3$ 的图像不是一条直线 (本题不能使用斜率的概念).

34. (003884) 已知函数 y=f(x) 的定义域为 $\{x|-3\leq x\leq 8,\; x\neq 5\},$ 值域为 $\{y|-1\leq y\leq 2,\; y\neq 0\}.$ 下列关于 函数 y = f(x) 的说法: ① 当 x = -3 时, y = -1; ② 将 y = f(x) 的图像补上 (5,0), 得到的图像必定是一条 连续的曲线; ③ y = f(x) 是 [-3,5) 上的单调函数; ④ y = f(x) 的图像与坐标轴只有一个交点. 其中正确的 命题是

35. (005303) 函数 $y = x + \frac{|x|}{|x|}$ 的图像是().

В.

C.

36. (007942) 打开水龙头, 让水匀速地注入一个杯子内, 随着时间的增加, 杯中水面的高度不断增加, 直至水满溢出. 在这个过程中, 杯中水面的高度 h 关于注水时间 t 的函数为 h = f(t).

(1) 如果甲杯、乙杯的形状分别如图所示, 那么下列草图中, 甲杯相应函数 h=f(t) 的图像是______, 乙 杯相应函数 h = f(t) 的图像是_ _____.(只有杯子的圆柱和圆锥形部分可以盛水)

(2) 下列是两个杯子相应函数 h = f(t) 的图像, 试说明这两个杯子形状有何差别.

37. (003936) 函数 $y = \ln(\cos x) \left(-\frac{\pi}{2} < x < \frac{\pi}{2} \right)$ 的大致图像是

38. $(002838)^*$ 设 D 是含数 1 的有限实数集, f(x) 是定义在 D 上的函数, 若 f(x) 的图像绕原点逆时针旋转 $\frac{\pi}{6}$ 后与 原图像重合,则在以下各项中,f(1)的可能取值只能是(

A. $\sqrt{3}$

B. $\frac{\sqrt{3}}{2}$

C. $\frac{\sqrt{3}}{3}$

D. 0

39. (007984) 下列图形中, 能作为某个函数的图像的只能是(

В.

C.

40. (000083) 邮局规定: 当邮件质量不超过 100g 时, 每 20g 邮费 0.8 元, 且不足 20g 时按 20g 计算; 超过 100g 时, 超过 100g 的部分按每 100g 邮费 2 元计算, 且不足 100g 按 100g 计算; 同时规定邮件总质量不得超过 2000g. 请写出邮费关于邮件质量的函数表达式, 并计算 50g 和 500g 的邮件分别收多少邮费.

41. (009511) 根据下图的函数图像, 用解析法表示 y 关于 x 的函数.

42. (011383) 在某种计算机语言中, 有一种函数 $y=\mathrm{INT}(x)$ 叫做取整函数 (也叫高斯函数), 它表示 y 等于不超过 x的最大整数,如 $\mathrm{INT}(0.9)=0,\ \mathrm{INT}(3.14)=3.$ 已知 $a_n=\mathrm{INT}(\frac{2}{7}\times 10^n),\ b_1=a_1,\ b_n=a_n-10a_{n-1}(n\in \mathbf{N}^*$ 且 $n \ge 2$), 则 b_{2018} 等于 (

A. 2

B. 5

C. 7

D. 8

43. (011126) 符号 [x] 表示不超过 x 的最大整数, 如 $[\pi] = 3$, [-1.08] = -2, 定义函数 $\{x\} = x - [x]$, 那么下列命题 中正确的序号是().

① 函数 $\{x\}$ 的定义域为 \mathbf{R} , 值域为 [0,1]; ② 方程 $\{x\}=\frac{1}{2}$ 有无数解; ③ 函数 $\{x\}$ 是周期函数; ④ 函数 $\{x\}$ 是增函数.

A. (1)(2)

B. (3)(3)

C. (3)(4)

D. (4)(1)

44. (002863) 函数 $y = \frac{1}{x^2 - 4x + 5}$ 的图像关于 ().

A. y 轴对称

B. 原点对称

C. 直线 x = 2 对称 D. 点 (2,1) 对称

45. (007949) 已知幂函数 f(x) 的定义域是 $(+\infty,0) \cup (0,+\infty)$, 且它的图像关于 y 轴对称, 写出一个满足要求的幂 函数 f(x).

46. (005508) f(x) + f(2-x) + 2 = 0 对任何实数 x 都成立, 则 f(x) 的图像 ().

A. 关于直线 x = 1 成轴对称图形

B. 关于直线 x=2 成轴对称图形

C. 关于点 (1,-1) 成中心对称图形

D. 关于点 (-1,1) 成中心对称图形

47. (002879) 已知定义域为 R 的函数 y = f(x) 是偶函数, 并且其图像关于直线 x = 1 对称.

- (1) 若 f(0) = 1, f(1) = 2, 求 f(15) + 2f(20) 的值;
- (2) $\mathfrak{P} x \in [0,1]$ $\mathfrak{P}, f(x) = x^3$.
- ① $1 < x \le 2$ 时, 求 y = f(x) 的解析式;
- ② $-2 \le x < 0$ 时, 求 y = f(x) 的解析式;
- ③ 求函数 $y = f(x) \frac{1}{8}$ 在 [-2, 2] 上的所有零点;
- ④ 求 y = f(x) 在 R 上的解析式.

48. (000734) 给出下列函数: ① $y = x + \frac{1}{x}$; ② $y = x^2 + x$; ③ $y = 2^{|x|}$; ④ $y = x^{\frac{2}{3}}$; ⑤ $y = \tan x$; ⑥ $y = \sin(\arccos x)$; ① $y = \lg(x + \sqrt{x^2 + 4}) - \lg 2$. 从这 7 个函数中任取两个函数,则其中一个是奇函数另一个是偶函数的概率

- 49. (001221) 判断下列函数的奇偶性, 并说明理由.
 - (1) f(x) = |1 + x| + |1 x|;

 - (2) $f(x) = (1-x)\sqrt{\frac{1+x}{1-x}};$ (3) $f(x) = \frac{\sqrt{x^2+1}+x-1}{\sqrt{x^2+1}+x+1};$
- 50. (002842) 给定六个函数: ① $y=\frac{1}{x}$; ② $y=x^2+1$; ③ $y=x^{-\frac{1}{3}}$; ④ $y=2^x$; ⑤ $y=\log_2 x$; ⑥ $y=\sqrt{x^2-1}+1$

在这六个函数中, 是奇函数但不是偶函数的是, 是偶函数但不是奇函数的是, 既不是奇 函数也不是偶函数的是______,既是奇函数又是偶函数的是_

- 51. (002856) 判断下列函数 y = f(x) 的奇偶性, 并说明理由:
 - (1) $f(x) = x^3 \frac{1}{-}$;
 - (2) $f(x) = \frac{|x+3|-3}{\sqrt{4-x^2}}$
- 52. (000474) 已知函数 y = f(x) 是奇函数, 当 x < 0 时, $f(x) = 2^x ax$, 且 f(2) = 2, 则 a =______.
- 53. (000863) 设定义在 R 上的奇函数 y = f(x), 当 x > 0 时, $f(x) = 2^x 4$, 则不等式 $f(x) \le 0$ 的解集是
- 54. (002843) 设常数 a、 $b \in \mathbf{R}$. 若定义在 [a-2,2a] 上的 $f(x)=ax^2+bx$ 是偶函数, 则 a=
- 55. (002847) 设 y = f(x) 是定义在 R 上的函数, 当 $x \ge 0$ 时, $f(x) = x^2 2x$.
 - (1) 当 y = f(x) 为奇函数时,则当 x < 0 时, f(x) =_______;
 - (2) 当 y = f(x) 为偶函数时,则当 x < 0 时, f(x) =_____.
- 56. (002848) 设奇函数 y = f(x) 的定义域为 [-5,5]. 若当 $x \in [0,5]$ 时, y = f(x) 的图像如图, 则不等式 xf(x) < 0的解是

- 57. (002849) 若定义在 R 上的两个函数 y = f(x)、y = g(x) 均为奇函数. 设 F(x) = af(x) + bg(x) + 1.
 - (1) 若 F(-2) = 10, 则 $F(2) = _____$;
 - (2) 若函数 y = F(x) 在 $(0, +\infty)$ 上存在最大值 4, 则 y = F(x) 在 $(-\infty, 0)$ 上的最小值为_

- 58. (002851) 已知函数 $f(x) = x^2 2a|x-1|, x \in \mathbf{R}$, 常数 $a \in \mathbf{R}$.
 - (1) 求证: 函数 y = f(x) 不是奇函数;
 - (2) 若函数 y = f(x) 是偶函数, 求实数 $f(x) = \log_3 |2x + a|$ 的值.
- 59. (002853) 设 y = f(x) 是定义在 R 上的函数, 则下列叙述正确的是 ().

A.
$$y = f(x)f(-x)$$
 是奇函数

B.
$$y = f(x)|f(-x)|$$
 是奇函数

$$C. y = f(x) - f(-x)$$
 是偶函数

D.
$$y = f(x) + f(-x)$$
 是偶函数

- 60. (002859) 是否存在实数 b, 使得函数 $g(x)=rac{2^x}{4^x-b}$ 是奇函数? 若存在, 求 b 的值; 若不存在, 说明理由.
- 61. (002860) 常数 $a \in \mathbf{R}$. 若函数 $f(x) = \lg(10^x + 1) + ax$ 是偶函数, 则 a =_____.