Lista 1: CM300 Introdução ao Cálculo

A. Ramos *

August 12, 2019

Abstract

Conjuntos numéricos e números reias; potencias e radicais; polinômios e fatorização; expressões fracionárias.

1 Exercícios

Refaça os exercícios desenvolvidos em aula.

Conjuntos numéricos e números reias 1.1

- 1. Use a notação de intervalo para descrever o intervalo de números reias
 - (a) x é maior que -6 e menor ou igual a 7;
 - (b) $x \neq \text{positivo};$
 - (c) x > -3;
 - (d) [-3, 5[.
- 2. Reescreva o que segue sem usar o símbolo para valor absoluto é simplifique:

(a) |5-9|; rpta:4

(b) |5| - |9|; rpta:-4

 $rpta:\pi-3$ (c) $|3 - \pi|$;

(d) $|4 - \pi|$; $rpta:4-\pi$

(e) |x+6| se x < -7; rpta: -x-6

(f) $|x^2 + 1|$. $rpta: x^2 + 1$

1.2 Potencias e Radicais

(e) $(x^2y^4z^6)^{1/2}$;

1. Simplifique os seguintes termos

(a) $\sqrt[4]{x^4z^4}$; rpta: |zx|

(b) $(x^2y^9)^{1/3}(y^2x)$; $rpta: y^5x^{5/3}$

(c) $[x(x+h)^2]^{1/2}$; $rpta: |x+h|\sqrt{x}$

(d) $(\frac{x^{mn}}{r^{n^2}})^{1/n}$; $rpta: x^{m-n}$

 $rpta: y^2|x||z^3|$

2. Subsituta (sem calculador) () por <, = ou > para tornar as expressões verdaderias

(a) $(2^{-3})^{1/3} \cap 2$; rpta :<

(b) $\sqrt[4]{(-2)^4} \bigcirc -2$; rpta :>

(c) $\sqrt{4} + \sqrt{9} \bigcirc \sqrt{4+9}$; rpta :>

3. Simplifique

^{*}Department of Mathematics, Federal University of Paraná, PR, Brazil. Email: albertoramos@ufpr.br.

(a)
$$x^0 + y^0 + (x + yx)^0 + (x^2y^{-1/5})^0$$
;

rpta:4

(b)
$$\left(\frac{8x^0y^5}{3x^5y^{-3}}\right)^{-2}$$
;

 $rpta: \frac{9x^{10}}{64y^{16}}$

(c)
$$\left(\frac{32x^2y^{-4}}{x^7y^6}\right)^{-3/5}$$

 $rpta: \frac{8}{r^3u^6}$

- 4. O tempo t (em segundos) que uma rocha leva para cair uma distância d (em metros) é aproximadamente $t=0.45\sqrt{d}$. Se a rocha há estado caindo por 90 segundos, qual é a distância já percorrida?
- 5. Se a espessura s (em metros) do sedimento acumulado em uma lagoa é dado por z=t/1500, onde t é o tempo medido em anos.
 - (a) Quantos anos são necessários para formar um sedimento de 6m? rpta: 9 séculos;
 - (b) Qual é a espessura acumulada do sedimento em 30 anos? rpta : 2cm

1.3 Polinômios and fatorização

1. Fatore os polinômios

(a)
$$t^2 + 6t - 27$$
 $rpta: (t-9)(t+3)$

(b) $3y^2 - y - 14$

$$rpta: (y+2)(3y-7)$$

(c) $3x^2 - 4yt - 3xt + 4xy$;

$$rpta: (x-t)(3x+4y)$$

 $rpta: (5z+7)(z-2)$

(d)
$$5z^2 - 3z - 14$$

$$rpta: (x+y+z-3)(x-y-z-3)$$

(e)
$$x^2 - 6x + 9 - y^2 - z^2 - 2zy$$

$$rpta: (x+y+z-3)(x-y-z-3)$$

(f)
$$x^4 - 5x^2 + 4$$

$$rpta: (x-1)(x+1)(x-2)(x+2)$$

(g)
$$5(y^2+4)^4(8y-1)^22y-2(8y-1)(y^2+4)^58$$

$$rpta: 2(8y-1)(48y^2-5y+32)(y^2+4)^4$$

2. Faca as operações indicadas

(a)
$$R^2 - (R - x)^2$$
;

 $rpta: 2Rx - x^2$

(b)
$$(x+h)^3 - (x-h)^3$$
;

 $rpta: 6x^2h + 2h^3$

$$(c) (ax + by + c)^2$$

$$rpta: a^{2}x^{2} + b^{2}y^{2} + c^{2}z^{2} + 2abxy + 2acx + 2bcy$$

(d)
$$-3(a-2)^3 + 5a(1-2a)^2$$

$$rpta: 17a^3 - 2a^2 - 31a + 24$$

(e)
$$-2(4x)(1-x^2)^3$$

$$rpta: 8x^7 - 24x^5 + 24x^3 - 8x.$$

Expressões fracionárias 1.4

1. Encontre o domínio de expressões algébricas

(a)
$$4x^3 - x^5$$

rpta: domínio: \mathbb{R}

(b) $\sqrt{x-5}$

 $rpta: domínio: [5, \infty)$

(c)
$$\sqrt{x+6}$$

(d) $\sqrt{2-x}$

 $rpta: domínio: [-6, \infty)$ rpta: domínio: $(-\infty, 2]$

(e)
$$\frac{x}{x+6}$$

rpta: domínio: $\mathbb{R} \setminus \{-6\}$, ou $x \neq -6$

rpta: domínio: $x \neq -6, 1, 4$

(f)
$$\frac{3}{(x+6)(x-1)(x-4)}$$

2. Simplifique ou reduza as seguites expressões

(a)
$$(x^2 - 2xy + y^2)/(x^2 - y^2)$$
, $x \neq \pm y$

$$rpta: \frac{x-y}{x+y}$$

(b)
$$\frac{2}{x^2-2x} + \frac{1}{x} + \frac{3}{4-x^2}, x \neq 0, \pm 2$$

$$rpta: \frac{x-1}{(x+2)(x-2)}$$

 $rpta: \sqrt{x}+2$

(c)
$$\frac{x-4}{\sqrt{x}-2}$$
, $x \neq 4$

3. Simplifique as expressões, encontre o dominio onde ambas expressões são equivalentes

$$(a)\frac{y^2+3y}{y^3+3y^2-5y-15}, \quad (b)\frac{8x^3-1}{2x^2+5x-3}, \qquad (c)\frac{\frac{y+x}{xy}}{\frac{y^2-x^2}{x^2y^2}}, \qquad (d)\frac{\frac{2(x+5)-13}{x+5}}{\frac{2(x-3)+3}{x-3}}.$$

Rpta:

$$(a)\frac{y}{y^2-5}; y \neq -3, \quad (b)\frac{4x^2+2x+1}{x+3}; x \neq 1/2, \quad (c)\frac{xy}{x-y}; x \neq 0, y \neq 0, x \neq y, \quad (d)\frac{x-3}{x+5}, x \neq 3, 3/2.$$