UET – Calcul Haute Performance (High Performance Computing)

Domaine de connaissance: Système et Réseaux, Programmation parallèle.

Code du module	Titre du module	Coef.	Crédits
	High Performance Computing		4

	Volume horaire	
Cours	TDs/TPs	TOTAL
22	30	60

Semestre	3
----------	---

Pré-requis	requis Architectures Evoluées des Ordinateurs - Programmation Orientée Objet - Système	
d'exploitation I - Système d'exploitation II.		

Objectifs du module

- Identifier les différentes architectures du HPC (MultiCoeurs, Cluster, Grilles et GPU).
- Lister les différentes applications du HPC
- Optimiser les programmes pour tirer avantage des caractéristiques de l'architecture des processeurs.
- Concevoir, Implémenter et analyser des programmes parallèles avec mémoire partagée en utilisant OpenMP.
- Concevoir, Implémenter et analyser des programmes parallèles avec mémoire distribuée en utilisant MPI.
- Implémenter des programmes parallèles sur les GPUs en utilisant CUDA.

Contenu du module:

- 1) Introduction au Calcul Haute Performance (High Performance Computing (HPC)) (~6h)
 - **a)** Motivation et Introduction aux architectures parallèles (MultiCoeurs, Cluster, Grilles et GPU).
 - b) Les différentes applications du HPC (Simulation scientifique, Economie, Ingénierie,

Recherche Opérationnelle).

- c) Modèles de machines parallèles, classifications de Flynn et Raina.
- **d)** Modèle de programmation parallèle et distribuée (parallélisme de tâches, parallélisme de données, niveau du parallélisme, communication par messages).
- e) Problèmes fondamentaux de la programmation parallèle distribuée (partitionnement de tâches/données, régulation de charge, ordonnancement, tolérance aux pannes, mesure de performance, présentation des lois d'Amdahl et de Gustafson).

TD (~4h): Techniques de parallélisation et Parallélisme.

2) Programmation Parallèles pour architecture à Mémoires Partagées. (~6h)

a) Programmation parallèle avec les POSIX Threads du langage C (PThreads)

TP (~3h): Introduction au PThreads.

b) Programmation parallèle avec les threads JAVA.

TP (~3h): Introduction au Threads JAVA.

c) Programmation parallèle avec OpenMP.

TP (~3h): Introduction à OpenMP.

3) Programmation Parallèles pour architecture à Mémoire Distribuée (~4h)

a) Programmation parallèle avec PVM (Parallel Virtual Machine).

TP (~3h): Introduction à PVM.

b) Programmation parallèle avec MPI (Message Passing Interface).

TP (~3h): Introduction à MPI.

4) Programmation Parallèle pour architectures GPU (Graphical Processor Unit) (~8h)

- **a)** Introduction, historique et architecture des GPU.
- **b)** Modèles de mémoires (Globale, Locale, partagées).

TD (~2h): Etude de l'architecture GPU.

c) Programmation des GPU avec OpenCL.

TP (~3h): Introduction à OpenCL.

d) Programmation des GPU avec CUDA.

TP (~3h): Introduction à CUDA.

Travail individuel

- Projet Programmation Parallèle ~ 30 heures

Contrôle des connaissances		
- Contrôle intermédiaire	20%	
- Contrôle final	50%	
- TPs	10%	
- Projet	20%	

Bibliographie

- 1. P. Pacheco, "An Introduction to Parallel Programming", Morgan Kauffman, 2011
- 2. G. Hager and G. Wellein, "Introduction to High Performance Computing for Scientists and Engineers", Chapman & Hall
- **3.** A. Grama, G. Karypis, V. Kumar, and A. Gupta, "Introduction to Parallel Computing", Addison-Wesley, 2003
- 4. C. Lin, L. Snyder, "Principles of Parallel Programming", Addison-Wesley, 2008
- **5.** G. S. Almasi et A. Gottlieb. Benjamin Cummings **Highly Parallel Computing** Second edition..
- 6. K. Hwang. McGraw-Hill. Advanced Computer Architecture: Parallelism, Scalability, Programmability,
- **7.** I. Foster. **Designing and Building Parallel Programs**, Addison-Wesley, http://www.mcs.anl.gov/dbpp/.
- **8.** H. S. Morse.**Practical Parallel Computing**, AP Professional.
- **9.** M. Cosnard et D. Trystram. **Algorithmes et Architectures Parallèles**, InterÉditions.
- **10.** CPU Info Center, http://infopad.eecs.berkelev.edu/CIC/.
- 11. Journal of Parallel and Distributed Computing

Outils

1. Pthreads, JAVA Treads, OpenMP, MPI, OpenCL et CUDA.