

Théorie des automates et langages formels

Grammaires non contextuelles ≡ Automates à Pile

Théorèmes

<u>Théorème 1</u>. Soit L un langage engendré par une grammaire non contextuelle. Il existe un automate à pile qui reconnaît L.

Théorème 2. Soit L un langage reconnu par un automate à pile. Il existe une grammaire non contextuelle tel que L est engendré par cette grammaire.

Exemple

Preuve du théorème 1 [1]

Démonstration: par un algorithme constructif

(grammaire → automate à pile)

1. On transforme la grammaire en une autre grammaire non contextuelle sous la forme normale de Chomsky.

Donc on peut supposer que toutes les productions sont de la forme:

$$X_i \rightarrow X_j X_k$$

 $X_i \rightarrow X$

2. On construit:

Preuve du théorème 1 [2]

3. Pour chaque production de la forme $X_i \rightarrow X_j X_k$ on rajoute Pour chaque production de la forme

Pour chaque production de la forme $X_i \rightarrow x$ on rajoute:

Preuve du théorème 1 [2]

5. On rajoute:

6. Si $\Lambda \in L$ (S $\rightarrow \Lambda$), on rajoute:

 $S \rightarrow AR_1 \mid BR_2 \mid AA \mid BB \mid a \mid b \mid \Lambda$ $A \rightarrow a$

 $B \rightarrow b$

 $R_1 \rightarrow SA$

 $R_2 \rightarrow SB$

Théorème 2

Soit L un langage reconnu par un automate à pile. Il existe une grammaire non contextuelle tel que L est engendré par cette grammaire.

Les automates à pile sont équivalent aux grammaires non contextuelles

Question?