# 3000788 Intro to Comp Molec Biol

Lecture 6: Applications of sequence alignment

September 4, 2023



### Sira Sriswasdi, PhD

- Research Affairs
- Center of Excellence in Computational Molecular Biology (CMB)
- Center for Artificial Intelligence in Medicine (CU-AIM)

# Sequence homology

### Evolution occurs at the sequence level

#### Histone H1 (residues 120-180)

https://en.wikipedia.org/wiki/Homology (biology)

- Genes / proteins originating from the same ancestor will have similar sequence
- High sequence similarity → functional similarity, structural similarity, etc.

# Sequence alignment enables inference





Ferguson et al. J General Virology, 94: 2070-2081 (2013)

- Same amino acid residue positions are involved in similar secondary structure
- Properties of amino acid side chains are important

# Molecular probe design



http://www.sigmaaldrich.com/technical-documents/articles/biology/crispr-cas9-genome-editing.html

- Sequence alignment can check the specificity of your probes

# Broad applications of sequence homology

- Infer evolutionary relationship across species
  - Many-to-many alignment between gene lists
- Identify the species of origin for a sequence
  - One-to-many alignment against a reference database
  - Host vs pathogen
- Predict function and structure
  - Partial similarity is good enough
  - Locate conserved functional domain / motif
- Check the specificity of designed probes



https://sites.google.com/site/jkim339n/part2a

# Components of sequence alignment

# Starting from exact match (seed / word)



- Input sequence length = 300
- Expected similarity between input and reference = 95% (genome re-sequencing)
- Expected 15 mismatches
- If mismatches are random, there should be a run of 285/16 ~ 18 positions with matches
  - MM...MEM...MEM...MEM...MM
  - NCBI's MEGABLAST searches for a run of 28 matches

# Dynamic programming algorithm

Dynamic programming matrix:



- The best alignment for TTCATA vs TGCTCGTA is either
  - T/T + best alignment for TCATA vs GCTCGTA
  - T/- + best alignment for TCATA vs TGCTCGTA
  - -/T + best alignment for TTCATA vs GCTCGTA
- Rely on the score function

Optimum alignment scores 11:

# Alignment scores



```
Score = +1+1-1-1-1+1+1+1+1
= +3
```

Ref: ACCGTATCG

11 1111

Query: AC---ATCG

- Gap cost models
  - Constant = Same penalty regardless of length
  - Linear = Penalty x Length
  - Affine = Existence + (Extension x Length)

# Alignment score interpretation

- Match / Mismatch = +1 / -2
  - To permit a mismatch, there must be >2 matches afterward to gain score
  - Want hits with high identity
- Match / Mismatch = +2 / -3
  - A mismatch followed by two matches = net +1 score
  - Want hits with intermediate identity
- Gap cost
  - Constant = An insertion/deletion can be of any length
  - Linear = Long indel is less likely than short indel
  - Affine = Existence + (Extension x Length)
    - Balance between constant and linear

# Global and local alignment

# Global vs local alignment

### Local Alignment

### **Global Alignment**



# Global alignment



Match: 1 Mismatch: -1 GAP: -2

Seq1: ATGCT

1 111

Seq2: A-GCT

# Local alignment

|   |   | Α | T | G | С | Т |  |
|---|---|---|---|---|---|---|--|
|   | 0 | 0 | 0 | 0 | 0 | 0 |  |
| Α | 0 | 1 | 0 | 0 | 0 | 0 |  |
| G | 0 | 0 | 0 | 1 | 0 | 0 |  |
| С | 0 | 0 | 0 | 0 | 2 | 0 |  |
| L | 0 | 0 | 0 | 0 | 0 | 3 |  |

Seq1: ATGCT

Seq2: AGCT

- Ignore possibilities with negative score
  - Start over is better

# Basic Local Alignment Search Tool BLAST



### NCBI's nucleotide BLAST interface



# **Nucleotide BLAST algorithms**



- MEGABLAST: word size = 28, match/mismatch score = +1/-2, linear gap
- BLASTN: word size = 11, match/mismatch score = +2/-3, affine gap

### MEGABLAST vs BLASTN



#### BLASTN = lots of intermediate-identity hits



# Interpreting BLAST result



Query coverage = % of input sequence used in the alignment

Identity = % of identity between input and matched sequences in the aligned region

**E value** = expected number of hits with the same or higher score by chance (given input length and database size)

Typical cutoff is 1e-5

### **Understanding E value**

- Given an input sequence of length N and a reference sequence of length M
- E value for a hit with score S is proportional to  $N \times M \times e^{-\lambda S}$



### E value as Poisson distribution

Sequence

Hits with score >S

- Event of interest = hits with score > S occurs on the sequence of length N
- Expected value = E value
- Probability of observing k hits with score  $>S = \frac{E^k e^{-E}}{k!}$

# Low complexity region

#### CG island

# **CCCGCGCCCCGGCGCCCG**ATGCAACTAGC



- Probability of getting a hit with score >S will be high if both sequences contain only C's and G's
- BLAST withholds these regions from score calculation

# Protein sequence alignment

### Amino acid side chains





https://www.technologynetworks.com/applied-sciences/articles/essential-amino-acids-chart-abbreviations-and-structure-324357

# **Integrated Genomics Viewer (IGV)**



- Amino acids with similar properties can replace each other with minimal impact on protein function
- D, E have -COOH groups
- K, R have positively charged –NH<sub>2</sub> groups
- A, V, I, L have small hydrocarbon side chains
- F, Y, W have benzene rings
- Alignment score must reflect these!

wikipedia.com

### **Block Substitution Matrix (BLOSUM)**



# **Point Accepted Mutation (PAM)**



- Estimate amino acid substitution rate between highly similar proteins (>85%)

# Point Accepted Mutation (PAM)



- Extrapolate substitution rates for more distant proteins

### PAM vs BLOSUM

| PAM    | BLOSUM   |  |  |  |  |  |
|--------|----------|--|--|--|--|--|
| PAM100 | BLOSUM90 |  |  |  |  |  |
| PAM120 | BLOSUM80 |  |  |  |  |  |
| PAM160 | BLOSUM60 |  |  |  |  |  |
| PAM200 | BLOSUM52 |  |  |  |  |  |
| PAM250 | BLOSUM45 |  |  |  |  |  |

Data from https://en.wikipedia.org/wiki/BLOSUM



- BLOSUM for low identity, PAM for high identity

# Protein BLAST algorithms



- Standard BLASTP assumes that all amino acid residue positions are the same
- But there are protein domains & motifs with specific patterns

# Position-specific scoring matrix (PSSM)



www.nemates.org/uky/520/Lecture/Lect6/BIO520\_2010\_Lect6.pp

weblogo.berkelev.edu

- Different scoring matrix for each position in the motif
- But how do we know the position-specific amino acid profile?

### Pattern hit initiated (PHI-BLAST)

x = any amino acid

[LIVMF]-G-E-
$$x$$
-[GAS]-[LIVM]- $x$ (5,11)-R-[STAQ]

L, I, V, M, or F

any sequences of 5-11 amino acids

- Combine regular BLASTP with user-specified pattern
- Hits must be similar to the input sequence AND match the pattern
- Search for known protein domain

# Position-specific iteratred (PSI-BLAST)



- Start from user inputs
- First round of BLASTP
- Construct PSSM from hits
- Re-search using the PSSM
- Repeat

Frickey, T. and Lupas, A. NAR 32:5231-8 (2004)

# Using BLASTP to annotate protein function

|                         | Description                                                               | Scientific Name             |      | Total<br>Score | Query<br>Cover | E<br>value | Per.<br>Ident | Acc.<br>Len | Accession      |
|-------------------------|---------------------------------------------------------------------------|-----------------------------|------|----------------|----------------|------------|---------------|-------------|----------------|
| ✓                       | hypothetical protein JCGZ_15894 [Jatropha curcas]                         | Jatropha curcas             | 1161 | 1161           | 99%            | 0.0        | 89.37%        | 689         | KDP41487.1     |
| $\overline{\mathbf{v}}$ | NADPHcytochrome P450 reductase [Manihot esculenta]                        | Manihot esculenta           | 1159 | 1159           | 100%           | 0.0        | 86.98%        | 691         | XP_021601058.2 |
| ✓                       | NADPHcytochrome P450 reductase [Manihot esculenta]                        | Manihot esculenta           | 1145 | 1145           | 100%           | 0.0        | 86.25%        | 690         | XP_021601060.1 |
| ✓                       | NADPHcytochrome P450 reductase-like [Hevea brasiliensis]                  | Hevea brasiliensis          | 1130 | 1130           | 99%            | 0.0        | 85.59%        | 689         | XP_021642755.1 |
| ✓                       | NADPHcytochrome P450 reductase [Ricinus communis]                         | Ricinus communis            | 1124 | 1124           | 99%            | 0.0        | 84.64%        | 692         | XP_002514049.1 |
| ☑                       | LOW QUALITY PROTEIN: NADPHcytochrome P450 reductase-like [Hevea brasilien | . <u>Hevea brasiliensis</u> | 1120 | 1120           | 100%           | 0.0        | 84.81%        | 698         | XP_021660128.1 |
| ☑                       | hypothetical protein COLO4_35252 [Corchorus olitorius]                    | Corchorus olitorius         | 1111 | 1111           | 100%           | 0.0        | 82.08%        | 1505        | OMO57587.1     |
| ☑                       | Flavodoxin [Corchorus capsularis]                                         | Corchorus capsularis        | 1093 | 1093           | 100%           | 0.0        | 82.08%        | 692         | OMO50775.1     |
| ☑                       | NADPHcytochrome P450 reductase-like [Hibiscus syriacus]                   | Hibiscus syriacus           | 1085 | 1085           | 100%           | 0.0        | 81.24%        | 693         | XP_039050423.1 |
| ✓                       | hypothetical protein CXB51_011412 [Gossypium anomalum]                    | Gossypium anomalum          | 1083 | 1083           | 100%           | 0.0        | 81.10%        | 694         | KAG8494022.1   |
| ☑                       | NADPH:cytochrome P450 reductase [Gossypium hirsutum]                      | Gossypium hirsutum          | 1083 | 1083           | 100%           | 0.0        | 81.24%        | 693         | ACN54323.1     |
| ☑                       | NADPHcytochrome P450 reductase-like [Gossypium hirsutum]                  | Gossypium hirsutum          | 1083 | 1083           | 100%           | 0.0        | 81.10%        | 693         | NP_001313876.2 |

- Suspected novel CYP reductase from an indigenous plant
- BLASTP against plant sequences
- >80% similarity to known and predicted CYP reductase class I

### InterPro: Protein domain search



# Mixing protein-nucleotide alignment

### **BLASTX and TBLASTN**



- For alignment of coding DNA sequence
  - Codon structure = not all nucleotide positions evolve in the same manner
  - Similarity in protein is more informative than similarity in DNA
- Align translated DNA to protein database
- Align protein to translated DNA database

### Example use cases

- BLASTX = align translated DNA to protein database
  - You perform RNA-seq
  - Unsure which open reading frame is correct
  - Check whether this RNA translated to known protein or function
- TBLASTN = align protein to translated DNA database
  - You identified novel protein
  - No evidence in protein database
  - But there might be transcriptomics studies that identified the RNA of related proteins

# Beyond one-vs-all BLAST

### All-vs-all BLAST

- Compare genes between related species to identify genes originated from a common ancestor
  - {Mouse-a, Human-a}, {Mouse-b, Human-b}
- BLAST mouse to human
- BLAST human to mouse
- Reciprocal best hit:
  - Human-a should be the best hit for Mouse-a
  - Mouse-a should be the best hit for Human-a



https://sites.google.com/site/jkim339n/part2a

# Multiple sequence alignment (MSA)



- Dynamic programming is not feasible because of too many possibilities for grouping sequences
- Rely on heuristic algorithm

# When the space of possible solutions is too large



- Heuristic algorithm makes a decision by estimating the cost of all future steps
- Greedy algorithm makes a decision by optimizing the cost of only the next step
- Randomized algorithm makes a lot of random decisions and keeps the best one found

### Alignment output format

#### Aligned FASTA

>TRY2 RAT/24-239 -----IVGGYTCOENSVPYOVSLNSGY-------HFC GGSLI-----RIOVRLGE-HNINVLEGN--------EOFVNAAKIIKHPNFDRKT-L-----NNDIMLIKLS SP--VKLNARVATVALPS---SCA---PAGTOCLISGWGN-----TLSSGV---------NEPDLLO-CLDAP-LLPOADCEAS---YPGK-----ITDNMVCVGFL----EGG-KDSCOGDSGGPVVCNGE-----LOGIVSWG-YGCALPDN---PGVYTKVCNY VDWI >016LB2 AEDAE/136-374 -----ILNGIEADLEDFPYLGALALLDNYT----STVSYRC GANLI-----SDR-FM-LTAAHCLFG------KOAIHVRMGTLSLTDNPDED---------APVIIGVERVFFHRNYTRRPIT------RNDIALIKLN RT---VVEDFLIPVCLYT---EONDP-LPTVPLTIAGWGG-----NDSAS---------LMSSSLM-KASVT-TYERDECNSL---LAKKI-----VRLSNDOLCALGRSEF NDGLRNDTCVGDSGGPLELSIGR----RKYIVGLTSTG-IVCGNE-F---PSIYTRISOF IDWI-----

#### **PHYLIP**

Turkey AAGCTNGGGC ATTTCAGGGT GAGCCCGGGC AATACAGGGT AT Salmo gairAAGCCTTGGC AGTGCAGGGT GAGCCGTGGC CGGGCACGGT AT H. SapiensACCGGTTGGC CGTTCAGGGT ACAGGTTGGC CGTTCAGGGT AA Chimp AAACCCTTGC CGTTACGCTT AAACCGAGGC CGGGACACTC AT Gorilla AAACCCTTGC CGGTACGCTT AAACCATTGC CGGTACGCTT AA

#### ClustalW

Caballeronia\_arvi Caballeronia\_choica Caballeronia\_arationis Caballeronia\_telluris

Caballeronia\_arvi Caballeronia\_choica Caballeronia\_arationis Caballeronia\_telluris 

# Any question?

- See you on September 7