Недостатки DAS

- Трудность управления серверами и системами хранения; медленное создание резервных копий, вызванное большой нагрузкой локальной сети
- Ограниченное количество поддерживаемых дисков
- Ограничение на размер системы хранения
- Невозможность совместного использования системы хранения несколькими серверами
- Отнимающее много времени и сложное создание резервной копии и управление
- Необходимость отключения при установке дополнительных дисков

Почему мы нуждаемся в сетевой системе хранения?

- Объем данных продолжает расти по экспоненте
- Потребность в избыточности и резервировании
- Готовность и доступность данных
- Консолидация систем хранения для централизованного управления*
- Увеличение надежности и улучшение производительности (скорости)
- Виртуализация систем хранения*
- Снижение общей стоимости
- Защита данных

Краткий обзор сетевой системы хранения (NAS)

- Устройство хранения, присоединенное к IP-сети, для предоставления файловых систем клиентам и серверам в смешанной / неоднородной среде.
- В отличие от SAN, которая использует частную (свою) сеть хранения (например волоконно-оптические коммутаторы), большинство подключений NAS находится между клиентами (рабочими станциями) и устройством совместного использования файлов NAS.
- Решения NAS обычно конфигурируются как файловые системы (устройства), к которым обращаются рабочие станции и серверы через сетевой протокол, такой как TCP/IP, и через приложения для доступа к файлам, такие как Network File System (NFS) или Common Internet File System (CIFS) / Server Message Block (SMB).

Краткий обзор сетевой системы хранения (NAS)

Краткий обзор сети хранения данных (SAN)

- Высокопроизводительная сеть хранения данных, в которой данные между серверами и устройствами хранения данных передаются отдельно от трафика локальной сети (LAN).
- В среде SAN устройства хранения, такие как DAS, NAS, RAID-массивы или ленточные библиотеки, подключаются к серверам, используя оптоволоконный канал / SCSI / iSCSI.
- Характеристики SAN:
 - Виртуализация
 - Консолидация систем хранения
 - Консолидация серверов
 - Блочная передача данных с использованием инкапсулированного SCSI

Краткий обзор сети хранения данных (SAN)

Различия NAS и SAN

Сетевая система хранения (NAS)	Сеть хранения данных (SAN)	
 Клиенты "видят" блок NAS как независимое устройство, используется клиент-серверная архитектура, где клиент адресует запросы непосредственно к NAS. 	■ Клиент "видит" SAN как часть сервера, поэтому клиент должен послать запрос к серверу, подключенному к SAN.	
 Клиенты соединяются с NAS и совместно используют файлы с помощью сетевой файловой системы (NFS), Common Internet File System (CIFS), или протокола HTTP. 	■ Клиенты подсоединяются к SAN с помощью SCSI, iSCSI, оптоволоконного канала, в зависимости, что поддерживается SAN.	
 Основанная на файлах передача данных (данные идентифицируются именем файла и другими параметрами, такими как данные перемещения файла или метаданные файла (владелец файла, разрешения, и т. п.) 	■ Блочная передача данных на большие расстояния (данные адресуются номером дискового блока и без форматирования файловой системы).	
 Файловая система управляется главным устройством NAS. 	 Файловая система управляется серверами или главным устройством SAN. 	
 Резервные копии и "зеркала" исполняются на файлах, а не блоках, которые сохраняют полосу пропускания и время. 	■ Резервные копии и "зеркала" копируются "блок-в-блок", даже если блоки пусты. "Зеркало" должно быть равным или бо́льшим по емкости, чем исходный том.	

DAS

NAS

SAN

Приложение

Файловая система

Дисковое хранилище Приложение

Ethernet файловый ввод вывод

Файловая система

Дисковое хранилище Приложение

Файловая система

Fibre channel блочный ввод вывод

Дисковое хранилище

Сравнение решений для систем хранения

DAS	NAS	SAN
Непосредственное подключение к клиенту	Подключение к серверам и рабочим станциям по сети общего пользования	Подключение к серверам по частной сети хранения данных
Более медленный доступ к данным по сравнению с сетевой системой хранения	Быстрый доступ к данным (зависит от скорости локальной сети)	Быстрый доступ к данным (зависит от используемого протокола)
Прямая передача данных	Передача данных на файловом уровне	Передача данных на блоковом уровне
Передача данных по протоколу SCSI	Передача данных с использованием NFS / CIFS / протокола SMB	Для протокола передачи данных используются оптоволоконный канал или SCSI, или iSCSI

Сетевая файловая система NFS в Linux

Что такое NFS?

- NFS это сервис для разделения файлов и каталогов через ЛВС.
- NFS работает на многих платформах UNIX и ПК.
- NFS обеспечивает прозрачный доступ к файлам с любого узла ЛВС.

Серверы и клиенты NFS

Схема взаимодействия между NFS-клиентом и NFS-сервером

Вызовы удаленных процедур NFS

Демоны portmap и rpcbind NFS

Сервера NFS без ведения состояния

Когда мои клиенты запрашивают доступ к файлу, я лишь шлю в ответ «файловый титул». Я не слежу за тем, какими файлами пользуются мои клиенты.

После моего начального запроса на «поиск», я могу просто опознавать файл, к которому хочу обращаться, по его файловому титулу.

lookup(/home/user1/data)

file handle: 1234

Последствия

- Повышается производительность
- -- Серверы NFS можно перезагружать с минимальным влиянием на их клиентов
- Клиенты NFS можно перезагружать с минимальным влиянием на их серверы
- Если клиент удаляет файл, используемый другими клиентами, образуются устаревшие файловые титулы
- Блокировка файлов и другие операции «ведения состояния» осложняются

Настройка конфигурации серверов и клиентов NFS

- 1. Обеспечить согласованность номеров UID и GID.
- 2. Настроить конфигурацию сервера NFS.
 - Удостовериться, включена ли в ядро подсистема NFS.
 - Запустить демоны сервера NFS.
 - Создать файл /etc/exports.
 - Экспортировать каталоги.
 - Проверить конфигурацию сервера NFS.
- 3. Настроить конфигурацию клиента NFS.
 - Удостовериться, включена ли в ядро подсистема NFS.
 - Запустить демоны клиента NFS.
 - Создать новую запись в файле /etc/fstab.
 - Монтировать файловую систему NFS.
 - Проверить конфигурацию клиента NFS.
- 4. Поддерживать синхронизацию времени со всеми другими узлами.

Обеспечить согласованность номеров UID и GID

server:/etc/passwd

```
user1:...:101 100:...:/home/user1:...
user2:...:102:100:...:/home/user2:...
user3:...:103:100:...:/home/user3:...
```

client:/etc/passwd

```
user1:...:103:100:...:/home/user1:...
user2:..:102:100:...:/home/user2:...
user3:...:101
100:...:/home/user3:...
```

Внимание: Избегайте такой конфигурации пользователей!

Определение экспортируемых каталогов

- Для управления сервером NFS используется файл /etc/exports
- каталог (или файловая система) client1 (option1, option2)
 client2 (option1, option2)
- /export/data *.mcslp.pri(rw,sync) *(sync)
- Общие параметры
 - rw: Этот параметр разрешает NFS-клиентам доступ для чтения/записи. Доступ по умолчанию только для чтения.
 - async: Этот параметр может повысить производительность, но он может также вызвать потерю данных. Настройка по умолчанию — sync.
 - mp (mountpoint=path): При явном объявлении этого параметра NSF требует монтирования экспортируемого каталога.

Определение экспортируемых каталогов

- Отображение пользователей
 - root_squash: Этот параметр не позволяет пользователю root обращаться к смонтированному NFS-тому.
 - no_root_squash: Этот параметр позволяет пользователю root обращаться к смонтированному NFS-тому.
 - all_squash: Этот параметр, полезный для NFS-томов с открытым доступом, подавляет все UID и GID и использует только учетную запись анонимного пользователя.
 Установка по умолчанию - no_all_squash.
 - anonuid и anongid: Эти параметры меняют UID и GID анонимного пользователя на указанную учетную запись.

• Примеры записей /etc/exports

```
/opt/files 192.168.0.*
/opt/files 192.168.0.120
/opt/files 192.168.0.125(rw, all_squash, anonuid=210, anongid=100)
/opt/files *(ro, insecure, all_squash)
```

Проверить конфигурацию сервера

✓ Зарегистрированы ли демоны сервера NFS?

```
# rpcinfo -p [server]
  program vers proto    port service
  100003   2   tcp   2049   nfs
  100003   3   tcp   2049   nfs
```

Какие файловые системы кому экспортированы?

```
# showmount -e [server]
/usr/share/man (everyone)
/opt/games (everyone)
```

Какие опции экспорта были заданы?

```
# exportfs
/usr/share/man
/opt/games -ro
```

Какие клиенты в данный момент смонтировали файловые системы с сервера?

```
# showmount -a [server]
  client:/usr/share/man
  client:/opt/games
```

NFS-клиент

- mount server:directory local mount point
- mount 192.168.0.100:/opt/files /mnt
- mount -t nfs 192.168.0.100:/opt/files /mnt
- /etc/fstab
 - 192.168.0.100:/opt/files /mnt nfs rw 0 0

Проверить конфигурацию клиента NFS

```
✓ Работают ли демоны клиента NFS?
```

```
# ps -e | grep -e rpc -e biod
1000 ? 0:00 biod
1010 ? 0:00 rpcbind
1020 ? 0:00 rpc.lockd
1030 ? 0:00 rpc.statd
```

Какие файловые системы доступны с сервера?

```
# showmount -e server
/usr/share/man (everyone)
/opt/games (everyone)
/home oakland,la
```

Какие файловые системы монтированы у меня?

```
# mount -v
/dev/vg00/lvol1 on /stand type hfs defaults on Sat Jan 1 2000
/dev/vg00/lvol3 on / type vxfs defaults on Sat Jan 1 2000
server:/home on /home type nfs defaults,NFSv3 on Sat Jan 1 2000
```