SDM18 and Jetson Communication

SDM18 and Jetson Communication

SDM18 Introduction

- 1. Experimental Preparation
- 2. Experimental Wiring
- 3. Experimental Steps
- 4. Experimental Results
- 5. Explanation of Some Important SDM18 Parameters and Default Values

SDM18 Introduction

- The YDLIDAR SDM18 LiDAR (hereafter referred to as the SDM18) is a high-performance single-point LiDAR. This product utilizes the time-of-flight ranging principle and incorporates relevant optical, electrical, and algorithmic design to achieve high-precision laser distance measurement and output point cloud data at a high frame rate.
- Product Features
 - ➤ High ranging frequency, internal high sampling rate combined with filtering algorithms, resulting in highly stable data.
 - ➤ Long detection range, up to 18 meters.
 - ➤ Lightweight, approximately 1.35g.
 - > Laser power meets FDA Class I safety standards.

1. Experimental Preparation

- SDM18 Laser Ranging Module
- Jetson Series This tutorial uses the Jetson Orin Nano.

2. Experimental Wiring

Note: You can solder the pin headers to the serial port adapter board yourself. The default pin headers are not included. For our testing, we cannot use pin-based communication, so we need to use a USB port. Here, we directly connect the motherboard and SDM18 via Type-C (UART baud rate 921600).

The wiring diagram is shown in the figure.

3. Experimental Steps

- 1. Install the sdm18_test.py program provided in the example program onto the Jetson.
- 2. After connecting the USB, type Isusb. If the following device is recognized, the connection is successful.

```
jetson@yahboom:~$ lsusb

Bus 002 Device 002: ID 2109:0822 VIA Labs, Inc. USB3.1 Hub

Bus 002 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub

Bus 001 Device 003: ID 0bda:c822 Realtek Semiconductor Corp. Bluetooth Radio

Bus 001 Device 006: ID 2109:8822 VIA Labs. Inc. USB Billboard Device

Bus 001 Device 012: ID 1a86:7522 QinHeng Electronics USB Serial

Bus 001 Device 002: ID 2109:2822 VIA Labs, Inc. USB2.0 Hub

Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
```

- 3. Run ls /dev/ttyUSB* to see if the USB device is recognized. If it is, skip step 4. If not, proceed to step 4.
- 4. Type Isusb -t

```
jetson@yahboom:~/test$ lsusb

Bus 002 Device 002: ID 2109:0822 VIA Labs, Inc. USB3.1 Hub
Bus 002 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub
Bus 001 Device 003: ID 0bda:c822 Realtek Semiconductor Corp. Bluetooth Radio
Bus 001 Device 004: ID 2109:8822 VIA Labs, Inc. USB Billboard Device
Bus 001 Device 005: ID 1a86:7522 QinHeng Electronics USB Serial
Bus 001 Device 002: ID 2109:2822 VIA Labs, Inc. USB2.0 Hub
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
jetson@yahboom:~/test$ lsusb -t
/: Bus 02.Port 1: Dev 1, Class=root_hub, Driver=tegra-xusb/4p, 10000M
|__ Port 1: Dev 2, If 0, Class=Hub, Driver=hub/4p, 10000M
/: Bus 01.Port 1: Dev 1, Class=root_hub, Driver=tegra-xusb/4p, 480M
|_ Port 2: Dev 2. If 0. Class=Hub. Driver=hub/5p. 480M
|_ Port 3: Dev 4, If 0, Class=Vendor Specific Class, Driver=, 12M
|_ Port 3: Dev 3, If 0, Class=Wireless, Driver=btusb, 12M
|_ Port 3: Dev 3, If 1, Class=Wireless, Driver=btusb, 12M
|_ Port 3: Dev 3, If 1, Class=Wireless, Driver=btusb, 12M
|_ Port 3: Dev 3, If 1, Class=Wireless, Driver=btusb, 12M
|_ Port 3: Dev 3, If 1, Class=Wireless, Driver=btusb, 12M
|_ Port 3: Dev 3, If 1, Class=Wireless, Driver=btusb, 12M
```

```
git clone https://github.com/juliagoda/CH341SER.git cd CH341SER make -j6 sudo make install sudo modprobe ch34x
```

Then enter modinfo ch34x in terminal

If successful, the following information will be displayed.

```
jetson@yahboom:~/test$ modinfo ch34x
                /lib/modules/5.15.148-tegra/kernel/drivers/usb/serial/ch34x.ko
filename:
author:
                <tech@wch.cn>
description:
               WCH CH34x USB to serial adaptor driver
license:
                GPL
                usb:v1A86p5523d*dc*dsc*dp*ic*isc*ip*in*
alias:
                usb:v1A86p7523d*dc*dsc*dp*ic*isc*ip*in*
alias:
depends:
                usbserial
name:
                ch34x
                5.15.148-tegra SMP preempt mod_unload modversions aarch64
vermagic:
```

You can first execute the following command to see if a device such as 'ttyUSB*' appears. If successful, continue with the following steps. If still unsuccessful, connect the USB to TTL pins (GND-->GND RXD-->TX TXD-->RX 3V3-->3.3V)

```
sudo sh -c 'echo "1a86 7522" > /sys/bus/usb-serial/drivers/ch34x/new_id'
```

```
jetson@yahboom:~$ ls /dev/ttyU*
/dev/ttyUSB0
```

```
#1. Create the binding script
sudo tee /usr/local/bin/ch34x_bind.sh <<EOF
#!/bin/bash
sudo modprobe ch34x
echo "1a86 7522" > /sys/bus/usb-serial/drivers/ch34x/new_id
EOF

# Grant execution permissions
sudo chmod +x /usr/local/bin/ch34x_bind.sh

#2. Enable automatic startup via cron
# Edit the cron task
sudo crontab -e
Add the following to the end of the file:
@reboot /usr/local/bin/ch34x_bind.sh
```

- 5. You need to modify the program according to the actual device number, such as /dev/ttyUSB0.
- 6. This experiment requires the Python environment and pyserial library, which you need to prepare yourself .

```
pip3 install pyserial
```

7. You need to upload the sdm18_test.py program to the Jetson in advance, then enter the following command in the terminal:

4. Experimental Results

After connecting the cables and communicating normally, the serial port assistant will print the measured distance information, as shown in the figure.

```
Distance: 306 mm, Strength: 20396
Distance: 207 mm, Strength: 12208
Distance: 188 mm, Strength: 15034
Distance: 135 mm, Strength: 20489
Distance: 102 mm, Strength: 17530
Distance: 122 mm, Strength: 18883
Distance: 109 mm, Strength: 16209
Distance: 105 mm, Strength: 15849
Distance: 105 mm, Strength: 16771
Distance: 95 mm, Strength: 20551
Distance: 109 mm, Strength: 20836
Distance: 125 mm, Strength: 17752
Distance: 155 mm, Strength: 15763
Distance: 201 mm, Strength: 13696
Distance: 224 mm, Strength: 18329
Distance: 273 mm, Strength: 20668
Distance: 339 mm, Strength: 17926
Distance: 405 mm, Strength: 12878
Distance: 535 mm, Strength: 4080
Distance: 1268 mm, Strength: 4314
Distance: 1160 mm, Strength: 4474
Distance: 1129 mm, Strength: 4823
Distance: 1103 mm, Strength: 7231
```

- dis: Distance in mm
- strength: Strength

5. Explanation of Some Important SDM18 Parameters and Default Values

1. The SDM18 interface is shown in the figure:

The external physical interface terminal of SDM18 is WF08006, which realizes system power supply and data communication functions.

Figure 2 YDLIDAR SDM18 physical interface

2. Default Serial Port Configuration

The default baud rate for the SDM18 is 921600

Interface	Min	Typical	Max	Unit	Remarks
UART	9600	921600	921600	bps	Signal level 3.3V, 8-bit data bit,1 stop bit, no parity

- Important Serial Port Protocol Commands (all sent in hexadecimal format)
 The SDM18 defaults to idle mode upon power-up. To perform ranging, you must first issue the ranging start command
- Start ranging: A5 03 20 01 00 00 00 02 6E
- Stop ranging: A5 03 20 02 00 00 00 46 6E
- Protocol Analysis for Received Ranging

	Device Number			Reserved Bit	Data Length	Data Segment	CheckSum
1 Byte	1 Byte	1 Byte	1 Byte	1 Byte	2 Bytes	N Bytes	2 Bytes

Reply:

Packet heade	Device number		Command type	Reserved bit	Data length	Data segment	CheckSum
0xA5	0x03	0x20	0x01	0x00	0x00 00		CRC16

F6 06: distance value is $0 \times 06 = 1782 \text{ mm}$

74 26: strength value is 0x2674 = 9844

4. Checksum Calculation

This checksum uses the CRC-16-modelbus calculation method, calculating all bytes except the check digit.

The following figure shows the checksum calculation result for the "Start Ranging" command.

<u>A5</u> 03 20 01 00 00 00

Other protocols will not be explained here. Interested parties can refer to the SDM18 Development Manual.