CS/ECE/ME532 Activity 20

Estimated time: 15 min for P1, 20 min for P2, 15 min for P3

1. An exponential loss function f(w) is defined as

$$f(w) = \begin{cases} e^{-2(w-1)}, & w < 1 \\ e^{w-1}, & w \ge 1 \end{cases}$$

a) Is f(w) convex? Why? Hint: Graph the function.

Yes the sunction is convex, it will be above any tangent line to it b) Is f(w) differentiable everywhere? If not, where not?

No the function has a sharp point at w=1 where it isn't differentiable c) The "differential set" $\partial f(w)$ is the set of subgradients $v \in \partial f(w)$ for which

of our experimental conditions: temperature, pressure, concentration of catalyst, and several other factors. For each experiment $i=1,\ldots,m$ we record the experimental conditions in the vector $x_i \in \mathbb{R}^n$ and the outcome in the scalar $b_i \in \{-1,1\}$ (+1 if the reaction occurred and -1 if it did not). We will train our linear classifier to minimize hinge loss. Namely, we solve:

minimize $\sum_{i=1}^{n} (1 - b_i \boldsymbol{x}_i^T \boldsymbol{w})_+$ where $(u)_+ = \max(0, u)$ is the hinge loss operator

a) Derive a gradient descent method for solving this problem. Explicitly give the computations required at each step. Note: you may ignore points where the function is non-differentiable. Initialize a start point -> calculate gradient which

15 $g = \sum_{i=1}^{k} -d_{i}x_{i}$ (ignore non-differentiable) \longrightarrow update the weights using $w^{(k+1)} = w^{(k)} - z_{i}y_{i}$ b) Explain what happens to the algorithm if you land at a w^{k} that classifies all the points perfectly, and by a substantial margin

The solution converges and will stay at that wk

3. You have four training samples $y_1 = 1, \boldsymbol{x}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, y_2 = 2, \boldsymbol{x}_2 = \begin{bmatrix} 1 \\ -2 \end{bmatrix}, y_3 = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$

 $-1, \boldsymbol{x}_3 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$, and $y_4 = -2, \boldsymbol{x}_4 = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$. Use cyclic stochastic gradient descent to find the first two updates for the LASSO problem

$$\min_{m{w}} ||m{y} - m{X}m{w}||_2^2 + 2||m{w}||_1$$

assuming a step size of $\tau = 1$ and $\mathbf{w}^{(0)} = 0$. Also indicate the data used for the first six updates.

$$w^{(0)} = 0$$

$$w^{(1)} = w^{(0)} + z \left(d, -x, w^{(0)} \right) \times -\frac{2z}{2N} sign(w^{(0)})$$

$$= 0 + 1 \left(1 - \left[1 - 1 \right] 0 \right) \left[\frac{1}{-1} \right] - \frac{1}{2} \left[0 \right)$$

$$= \left[\frac{1}{-1} \right]$$

$$w^{(2)} = \left[\frac{1}{-1} \right] + 1 \left[2 - \left[1 - 2 \right] \left[\frac{1}{-1} \right] \right] \left[\frac{1}{-2} \right] - \frac{1}{2} \left[\frac{1}{-1} \right]$$

$$= \left[\frac{1}{-1} \right] + \left[2 - 3 \right] \left[\frac{1}{-2} \right] - \left[\frac{1}{2} \right]$$

$$= \left[\frac{1}{-1} \right] + \left[\frac{1}{-2} \right] - \left[\frac{1}{2} \right]$$

$$= \left[\frac{1}{-1} \right] + \left[\frac{1}{-2} \right] - \left[\frac{1}{2} \right]$$

$$= \left[\frac{1}{-1} \right] + \left[\frac{1}{-2} \right] - \left[\frac{1}{2} \right]$$

= (- 2]

For the first six updates the data will be: