

Compact Hashing for Mixed Image-Keyword Query over Multi-Label Images

Xianglong Liu¹, Yadong Mu², Bo Lang¹ and Shih-Fu Chang²

¹Beihang University, Beijing, China

²Columbia University, New York, USA

Outline

- Introduction
 - Motivation
 - Our Solution
- Boosted Shared Hashing
 - Formulation
 - Optimization
 - The Retrieval Stage
- Experiments
- Conclusion

"Image + Keyword" based Visual Search (1/4)

- Yet another image search paradigm
 - Query image provides content descriptor
 - Textual keywords greatly narrow the semantic gap!

"Image + Keyword" based Visual Search (2/4)

- Challenge-1: Noisy or unknown label information
 - Database Images: labels are unknown and expensive to annotate
 - Training Images: a small set, and manually annotated
 - Query: Image + Keyword (or label)

	Problem Settings	
	Visual Features	Labels
Database	V	
Training Set	√	V
Query	V	V

"Image + Keyword" based Visual Search (3/4)

- Challenge-2: Scalability to Web-Scale Data
 - Linear scan is infeasible
 - Approximate nearest neighbor (ANN)
 - balance the performance and computational complexity
 - Tree-based methods (KD tree, metric tree, ball tree, etc.)
 - Hashing-based methods: efficient index and search

"Image + Keyword" based Visual Search (4/4)

- Challenge-3: Diverse Semantics
 - User intention is ambiguous / diverse
 - Query-adaptive hashing over multi-label data

Related Works

Supervised Hashing

Overview of Our Solution (1/2)

 Key idea: to encourage sparse association between hashing functions and labels by exploiting shared subspaces among the labels

Overview of Our Solution (2/2)

Data Structure

Multi-label data

$$\langle x_i, l_i \rangle \in \mathbb{R}^D \times \{0, 1\}^L, \ i = 1 \dots N$$

 $l_i(k) = 1$: x_i is associated with the k-th label

Neighbor graph

homogeneous neighbors: with the same label heterogeneous neighbors: with different labels

- Homogeneous Neighbors
- Heterogeneous Neighbors

Objective Function

• Encourage prediction f of hashing function h on neighbor pairs to have the same sign with neighbor matrix Z:

Homogeneous:
$$z_{ij}$$
=1, expect $h_b(x_i)$ $h_b(x_j)$ =1

Heterogeneous: z_{ij} =-1, expect $h_b(x_i)$ $h_b(x_j)$ =-1

 z_{ij} $f(x_i, x_j, k)$ =1

Hashing prediction $f^{(b)}(x_i, x_j, k) = \delta [k \in S(b)] \cdot h_b(x_i) \cdot h_b(x_j)$
 $F(x_i, x_j, k) = \sum_{b=1}^{B} f^{(b)}(x_i, x_j, k)$

Active Label Set $S(b)$: labels associated with the b -th bit

Sequential Learning: Boosting

 Boosting style: to learn a hashing function that tries to correct the previous mistakes by updating weights on neighbor pairs

Optimize: hashing function

Taylor expansion

Relaxation of sign function

$$\mathcal{J} \approx \frac{1}{2} w^T X R X^T w$$

efficiently solved by eigen-decomposition

Optimize: active label set

- Find a label subset S(b) that gives minimum loss
 - Intuitive way: exhaustively compare all possible 2^L subsets
 - A greedy selection $O(L^2)$:
 - Initialize S(b): the label giving minimum loss;
 - Expand S(b): add label giving the most loss decrease among all rest labels
 - Terminated when the gain is incremental (<5%)

Query-Adaptive Search

Bit selection based on matching-score

- Select bits that are most confident across all query labels l_q
- Measured by Jaccard index: computed between a (any column of matrix A) and query labels l_a :

$$s_J(a, l_q) = \frac{|a \cap l_q|}{|a \cup l_q|}$$

 $A \in \{0,1\}^{L imes B}$ is the learned bit-label association matrix

Experiments

Datasets

- Multi-category: CIFAR-10 (60K)
- Multi-label: NUS-WIDE (270K)

Baselines:

SPLH [Wang 10a], SH [Weiss 08], and LSH [Indyk 98]

Setting:

- 15 homogeneous and 30 heterogeneous neighbors without tuning.
- same # bits per query for all methods
- Average performance of 10 independent runs

CIFAR-10

- 32x32 color images, 10 semantic categories (e.g., airplane, frog, truck etc.)
- 3,000 images as training data
- 1,000 random samples as the queries
- 384-D GIST features

Good neighbors under 24 hash bits

Mean-Average-Precision (0-1)

Impact of Sharing

- Greedy sharing: S(b)
- All sharing: each hashing function is universal for all labels
- Random sharing: uniformly sample specific number (the averaged size of S(b)) of labels to be active

NUS-WIDE

- Select 25 most-frequent tags ("sky", "clouds", "person", etc.) from 81 tags
- 5,000 images as training set
- 1,000 images with two randomly selected labels as the query set
- Groundtruth for each query: images with both (1) the same labels; and (2)
 the closest distances of their visual features
- Concatenate 500-D Bow (SIFT) and 225-D block-wise color moment

Good neighbors: two-label query

MAP: two-label query

Examples

Summary and Conclusion

Summary and contributions

- the first compact hashing technique for mixed image-keyword search over multi-label images
- an efficient Boosting-style algorithm to sequentially learn the hashing functions and active label set for multi-label images
- A simple hashing function selection adaptive to query labels

Future work

- Theoretical analysis of performance guarantee
- Extension to non-linear and reweighted hashing

Thank you!

Convergency

Sharing Rate

