Практика №5. Построение кода Хеммигна для исходных последовательностей различной длины путем генерации проверочной матрицы. Внесение ошибки в одном разряде. Вычисление синдрома ошибки и ее исправление

ПРИМЕР

Задание. Методом Хемминга закодировать комбинацию α=1101, построив вспомогательную таблицу. Внести ошибку в один из разрядов кодового вектора; найти синдром; найти и исправить ошибку.

Построим сначала вспомогательную таблицу, в которой каждый столбец представляет двоичное представление десятичных эквивалентов номера столбца. При необходимости ее можно «тянуть» вниз и вправо до бесконечности. Теперь убираем из рассмотрения первый столбец (он соответствует нулевой позиции, в которой не может быть никаких битов):

0	1	2	3	4	5	6	7
0	1	0	1	0	1	0	1
0	0	1	1	0	0	1	1
0	0	0	0	1	1	1	1

Проверочным битам будут соответствовать те столбцы, в которых встречается только одна единица (первый, второй и четвертый), причем номер строки есть номер проверочного бита.

Для кодирования в верхней строке запишем информационные биты в столбцы за исключением проверочных

			1		1	0	1
0	1	0	1	0	1	0	1
0	0	1	1	0	0	1	1
0	0	0	0	1	1	1	1

Теперь посчитаем проверочные биты. Для этого выбираем строку, где стоит проверочная единица и считаем сложение по модулю 2 побитовой конъюнкции этой строки и информационной последовательности (исключая позиции проверочных битов)

			1		1	0	1
0	1	0	1	0	1	0	1
0	0	1	1	0	0	1	1
0	0	0	0	1	1	1	1

Для первой вспомогательной строки будет:

 $1 \cdot 1 \oplus 1 \cdot 1 \oplus 0 \cdot 0 \oplus 1 \cdot 1 = 1$

Для второй вспомогательной строки будет:

 $1 \cdot 1 \oplus 1 \cdot 0 \oplus 0 \cdot 1 \oplus 1 \cdot 1 = 0$

Для третьей вспомогательной строки будет:

 $1.0 \oplus 1.1 \oplus 0.1 \oplus 1.1 = 0$

Таким образом таблица примет вид

a copuse in the initial bing								
	1	0	1	0	1	0	1	
0	1	0	1	0	1	0	1	
0	0	1	1	0	0	1	1	
0	0	0	0	1	1	1	1	

Закодированная последовательность β=1010101

Пусть при передаче сообщения α произошла ошибка замещения в 7–м разряде, т.е. получено сообщение $\beta = 1010100$.

Подсчитаем синдром ошибки

	1	0	1	0	1	0	0
0	1	0	1	0	1	0	1
0	0	1	1	0	0	1	1
0	0	0	0	1	1	1	1

Для этого считаем сложение по модулю 2 побитовой конъюнкции принятой строки с каждой строкой вспомогательной матрицы

Для первого символа синдрома будет:

 $1 \cdot 1 \oplus 0 \cdot 0 \oplus 1 \cdot 1 \oplus 0 \cdot 0 \oplus 1 \cdot 1 \oplus 0 \cdot 0 \oplus 0 \cdot 1 = 1$

Для второго символа синдрома будет:

 $1 \cdot 0 \oplus 0 \cdot 1 \oplus 1 \cdot 1 \oplus 0 \cdot 0 \oplus 1 \cdot 0 \oplus 0 \cdot 1 \oplus 0 \cdot 1 = 1$

Для третьего символа синдрома будет:

 $1 \cdot 0 \oplus 0 \cdot 0 \oplus 1 \cdot 0 \oplus 0 \cdot 1 \oplus 1 \cdot 1 \oplus 0 \cdot 1 \oplus 0 \cdot 1 = 1$

Таким образом синдром примет вид $S=(111)^T$, что соответствует седьмому разряду ошибочно принятого бита. Если мы использовали вспомогательную матрицу, то десятичное представление синдрома ошибки указывает номер разряда, в котором произошла ошибка.

ЗАДАНИЕ

Запросить у пользователя количество информационных разрядов и сгенерировать таблицу, требуемого размера.

Методом Хемминга закодировать произвольную информационную комбинацию, заданного размера, рассчитав проверочные символы табличным методом.

Внести ошибку в один из разрядов кодового вектора; найти синдром; найти и исправить ошибку.