80818 Intuitionistic Logic - Exercise Sheet 5

September 30, 2021

1. Consider the standard Heyting valued model of **HAS** on the open sets of Cantor space. Define $A: \mathbb{N} \to \mathcal{O}_{2^{\mathbb{N}}}$ as follows.

$$A(n) := \{ f : \mathbb{N} \to 2 \mid f(n) = 1 \}$$

- (a) Show that $\llbracket \forall x \, x \in A \lor x \notin A \rrbracket = \top$.
- (b) Show that $\llbracket \forall x \, x \in A \rrbracket = \bot$.
- (c) Show that $[\exists x \, x \notin A] \neq \top$.
- (d) Show that the following formulation of Markov's principle is not provable in **HAS**:

$$\forall X (\forall x \, x \in X \ \lor \ x \notin X) \to (\neg(\forall x \, x \in X) \ \to \ \exists x \, x \notin X)$$

2. Consider the standard Heyting valued model of **HAS** on the open sets of $I^{\mathbb{N}}$. Define $A, B : \mathbb{N} \to \mathcal{O}_{I^{\mathbb{N}}}$ as follows:

$$A(n) := \{ f : \mathbb{N} \to I \mid f(n) = 0 \ \lor \ f(n) = 1 \}$$

$$B(n) := \{ f : \mathbb{N} \to I \mid f(n) = 2 \ \lor \ f(n) = 1 \}$$

- (a) Show that $[\![\forall x \, x \in A \lor x \in B]\!] = \top$.
- (b) Let $f: \mathbb{N} \to I$ be an element of $I^{\mathbb{N}}$ and n any natural number. Show that if f(n) = 0, then $f \notin [n \in B]$, and if f(n) = 2, then $f \notin [n \in A]$.
- (c) Let $(a_n)_{n\in\mathbb{N}}$ be a binary sequence (i.e. $a_n\in 2$ for each $n\in\mathbb{N}$). Show that

$$\bigwedge_{n \in \mathbb{N}} [(a_n = 0 \to n \in A) \land (a_n = 1 \to n \in B)] = \bot$$

3. Let (B, \leq) be any poset. Define a relation \triangleleft on B and subsets of B as follows:

$$p \triangleleft U$$
 iff $\forall q \leq p \,\exists r \leq q \, r \in U^{\leq}$

- (a) Show that if $p \leq q$ and $q \triangleleft U$, then $p \triangleleft U$.
- (b) Verify that (B, \leq, \triangleleft) satisfies the axioms of a formal topology.

- (c) Show that for any proper formal topology (B, \leq, \triangleleft) , any formula φ , any variable assignment σ and all $p \in B$, we have $p \Vdash_{\sigma} \neg \varphi$ if and only if for all $q \leq p, q \nvDash \varphi$.
- (d) Show that for the particular formal topology above, any formula φ , any variable assignment σ and any $p \in B$ we have $p \Vdash_{\sigma} \varphi \vee \neg \varphi$. (You may assume the law of excluded middle in the metatheory.)

Remark: This kind of forcing is sometimes used when we want models of theories in classical logic such as Zermelo-Fraenkel set theory.