

Database Systems

Lecture 4 – Machine Learning for Data Analytics

Dr. T. Akilan takilan@lakeheadu.ca

Welcome back

- ☐ Project Stage 2
- ☐ Assignment 1
- Pop quiz

This Session

- General ML Modeling Phases
 - Overfitting
 - K-fold cross validation (CV)
- Regression
 - Linear regression
 - Ordinary least square
- Classification
 - Logistic regression
 - Maximum likelihood estimation
- Evaluation metrics
 - ROC
 - AUC

General ML Model Training Phases

General ML Model Training Phases Cont.

Supervised model training can be broken down into three steps:

1. Representation

- Model is exposed to data (generally, large data)
- Model transforms the input data into the desired results
- Model learns the relationship between the raw data and which data points are strong predictors for the desired outcome

2. Evaluation

- Score the models based on the predictions.
- Make sure the model is not overfit to training data

3. Optimization

- The model must be optimized to perform on more diverse sets of input data
- > Select the most generalized model.

Model Overfitting and Its Avoidance

• "If you torture the data long enough, it will confess to anything."

Ronald Coase - Nobel Prize in Economics, 1991 (Image from https://en.wikipedia.org/)

Model Overfitting and Its Avoidance Cont.

- Problem: Model using pure memorization
 - possibility of a most extreme overfitting procedure
- Reality: All ML models have the tendency to overfit to certain degree some more than others
- Solution:
 - There is no single choice or rule of thumb that can eliminate overfitting.
 - The best strategy is to recognize overfitting and manage complexity in a principled way

Model Overfitting and Its Avoidance Cont.

- How to recognize it.
 - Holdout Data and Fitting Graphs
 - Hold out data –
 - ✓ The value of the target variable is known
 - ✓ It will not be used to build the model (hidden true values)
 - ✓ The model will predict the outcomes for all the data points in the holdout set
 - ✓ Generalization performance is computed by comparing the predicted values with the hidden true values

Observation:

- As the models get too complex, they look very accurate on the training data.
- However, they are overfitting, as the training accuracy diverges from the holdout (generalization) accuracy.

Recognizing Model Overfitting

How to recognize it.

Recognizing Model Overfitting—Cross Validation

- Splitting a labeled dataset into k partitions called folds
- Each iteration, (k-1)/k portion of the data used for training and 1/k used for testing

Model Overfitting and Its Avoidance

- The general approaches:
 - K-fold Cross validation
 - Attribute regularization
 - > Key feature selection and removal of irrelevant features
 - Data augmentation
 - Model regularization
 - Network pruning (reduce network size when it has become too large)
 - Weight regularization
 - > Adding dropout layers
 - > Employing explicit complexity penalties into the objective function

General ML Model Testing Phases

General ML Models

Sample Real-world Problems	Туре	Applicable ML Models
Need to determine the relationships between (numerical) data points	Regression	Linear Regression, Logistic Regression
Need to assign (known) labels to (unknown) objects	Classification	Naïve Bayes, Decision Trees
Need to group items by similarity or commonalities in the attributes	Clustering	K-means clustering
Need to discover relationships between actions or items	Association	Apriori
Need to analyze text reviews or corpus	NLP	BoW, TF-IDF, RNN

Linear Regression

Regression

- The focus is on the relationship between outcome(s) and its input variable(s).
 - Not only for outcome prediction, but also reasoning how changes in individual drivers affect
 the outcome.
 - \circ Multiple input variables \rightarrow Multivariate Regression.
- The outcome can be continuous or discrete.
 - Discrete predicting the probability that the outcome will occur.
 - Continuous estimating the real value of output value(s).
- Example: Regression analysis is useful for answering the following kinds of questions:

What is a person's expected income?

Will an applicant default on a loan?

Linear Regression

• Used to estimate a continuous value as a linear (additive) function of other variables

```
o Income = f(years of education, age, gender)
```

- O House = f(median home price in neighborhood, square footage, # of bedrooms/bathrooms)
- Treatment effect = f(duration of radiation, frequency of radiation, patient attributes)
- Input: variables can be continuous or discrete.
- Output:
 - A linear expression for predicting outcome as a function of drivers.
 - O A set of coefficients that indicate the relative impact of each driver.

Linear Regression Cont.

The preferred method for almost any problem, where we are predicting a continuous outcome

Try this first; if it fails, then try something more **complicated** models.

- Example: linear relationship between the accidents in a state and the population of the state.
- The fitted model (i.e., best fit line) represents the relation:

$$y = \beta_0 + \beta_1 x$$

= 142,7120 + 0,0001256x.

Image credit: https://www.mathworks.com/

Linear Regression: Model Description

Assumption: a linear relationship between the input variables and the outcome variable.

$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_{p-1} x_{p-1} + \varepsilon$ y - outcome variable (dependent variable). x_j - input (independent) variables, for $j = 1, 2, \dots, p-1$, (given that the dataset has P number of features) β_0 - value of y when each x_i equals zero. β_j - change in y based on a unit change in x_i , for $j = 1, 2, \dots, p-1$. ε - a random error term that represents the difference in the model and a particular observed value for

- The estimates for these unknown parameters are chosen so that, on average, the model provides a reasonable estimate of y based on the input X.
- i.e., the fitted model should minimize the overall error between the linear model and the actual observations.
- How do we find the unknown parameters?
 - > Ordinary Least Squares (OLS) is a common technique to estimate the parameters.

Dataset

Linear Regression: Model Description Cont.

Ordinary Least Squares (OLS)

- The vertical lines represent the distance between each observed y value and the linear regressor line.
- The *n* individual distances to be squared and then summed.

•
$$\sum_{i=1}^{n} [y_i - (\beta_1 x_1 + \dots + \beta_{p-1} x_{p-1})]^2$$

•
$$S(\beta) = \sum_{i=1}^{n} \left| y_i - \sum_{j=1}^{p-1} x_{i,j} \beta_j \right|^2$$

Objective: find the optimal values for the parameters $\beta'_{j}s$ that minimize the sum of squared errors (SSR) or residual sum of squares (RSS)).