Predicting Divorce from Demographic Traits

Helen Skinner

Contents

- Purpose and justification
- Data
- Model
- Results
- Uses, shortcomings and further work
- Acknowledgements

Purpose and justification

Purpose: Is it possible to predict whether an individual has ever been divorced based on demographic traits?

Justification:

- Commercial uses
- Intervention targeting and potential prevention
- General interest

Data – Overview

General Social Survey 2012

4,820 respondents

1,069 variables

Significant data preprocessing required:

- Respondents did not answer every question
- Inconsistent coding for 'inapplicable', 'don't know' and 'no answer'
- Potential for label leakage

Data – Preprocessing workflow

1,069

39

3,311

39

202

182

Final Dataset

*on training set only

Data – Select and engineer variables

Dropping Low response rates e.g. Most opinion Label leakage questions Manual selection e.g. Dwelling type required **Grouping** Reduce noise e.g. Religion Reduce overfitting e.g. Occupation **Imputing** Potentially important but some missing data e.g. Income using Sensible method logical rules available

Data – Create binary outcome and select observations

Binarizing

01 10

- Compare "has been divorced" vs "has never been divorced"
- Remove all single people as not applicable
- Previously divorced and now remarried counts as "has been divorced"
- Widowed counts as "has never been divorced"

Dropping

- Remove single people as not applicable
- Remove observations with missing data

Data - Non-normality and collinearity

Modeling – Selection pathway

Modeling – Training strategy

Algorithm	Tuned hyperparameters	
KNN	n_neighborsweights	
Gaussian Naive Bayes	var_smoothing	
Random Forest	n_estimatorscriterionmax_depthmax_features	
Gradient Boosting	losslearning_ratemax_depthmax_features	
SVM	• C • gamma	

- Aim to find best version of each algorithm
- Tune each algorithm to find
 - Best hyperparameters
 - Best data scaling
- Use f1 score to assess
- All algorithms trained on:
 - Unscaled data
 - StandardScaler
 - MinMaxScaler

Modeling – Training results

Algorithm	Best hyperparameters	Best data scaling
KNN	n_neighbors = 18weights = distance	Unscaled
Gaussian Naive Bayes	var_smoothing = 1e-09	StandardScaler
Random Forest	 n_estimators = 100 criterion = entropy max_depth = 4 max_features = None 	No difference
Gradient Boosting	 loss = exponential learning_rate = 0.1 max_depth = 4 max_features = None 	No difference
SVM	C = 10gamma = 0.0005	Unscaled

To get the best performance from each algorithm:

- Use data scaled in this way
 - Use these hyperparameters

Modeling – Validation results

Modeling – Validation results

Modeling – Testing results

- Small reduction in accuracy on test set compared to validation
- Still more accurate than guessing all not divorced

Practical uses of the model

- Advertising or actuarial
 - Counseling or legal services via social media to at risk groups
 - Insurance implications
- Intervention
 - Support or help for at risk groups
 - Charity or governmental
- General interest
 - Individuals may be interested to know personal probability
 - Either for decision-making or not

Weak points of the model

- Accuracy
 - Approximately 8 percentage points better than guessing
- Feature importances
 - Difficult to extract due to use of SVM
- Scaling
 - Run time of 11.2 seconds for training set with 2,648 observations and testing set with 663 observations
 - Estimated run time of over 24 hours for datasets over ~5 million

Further work

Test on alternative data

- Other years of GSS available
- Would require significant data preprocessing

Try using PCA

- Decrease computing time
- Increase difficulty in extracting feature importances

Different data

- More observations
- Additional variables about marital information e.g. age married

Investigate feature importances

- Straightforward for Random Forest
- Not so straightforward for SVM

Further feature engineering

- Lower collinearity threshold
- Categorize occupations differently

Different model

- Try non-binary classification
- Similar but different predictions e.g. whether someone has children

Acknowledgements

- Technical advice and support gratefully received from
 - Jenny Yu
 - Tom Nickson
 - Technical Coaching and peer group via Slack
- Icons
 - Icons made by OCHA and Freepik from www.flaticon.com

Appendix Additional slides for information purposes

Modeling – Validation results

Modeling – Validation results

39%

61%

Modeling – Testing results

- Small reduction in accuracy on test set compared to validation
- Still more accurate than guessing all not divorced