

inot necessarily simple)

If a connected planar graph has n vertices, m edges, and f faces, then

$$n-m+f=2$$

Claim. If G is a simple planar graph with at least 3 vertices, then (n23) m ≤ 3n-6

Let G be a simple planar graph with at least 3 vertices. Every vertex of G has degree at least five, and at least one vertex of G has degree eight. Show that G has at least fifteen vertices.

$$n-m+f=2$$
 $\binom{n-vertices}{m-vedges}$ $m \le 3n-6$

$$2|E| = \sum_{v \in V} deg(v)$$
d shaking

deg(
$$v$$
) > 5, $v \in V$
deg(v) > 8
 \Rightarrow $n > 15$
 $5n + (8-5) = 5n + 3$
 $\leq deg(v) = 2m \geq 5n + 3$
 $m \leq 3n - 6$
 $6n - 12 \geq 2m \geq 5n + 3 \Rightarrow n \geq 15$

isomorphism
$$n-m+f=2$$

$$m \leq 3n-b$$
Again

A graph is planar if there is a way to draw it in a plane without edges crossing.

证明:
$$m \le 3n-6$$
 $prove: Face length;$
 $2m = \frac{f}{i=1} = 3f$
 $2m \ge Fi \ge 3f$
 $2m \ge 3f$
 $m \ge$

Types of Graphs

- 1) 1,2,3,4,5 n=5 2m=15 X
- 2) 3,3,3,2,2 n=5 2m=13 \times 3) 4,4,4,4,4 n=5 2m=20 =) m=10
- 4) 4,4,3,2,1
- 5) 3,3,2,2,2

If it exists, draw all the possibilities up to isomorphism and determine whether these graphs are planar.

$$2|E| = \sum_{v \in V} \deg(v)$$

- ① Calculate n·M ② see the vertex with largest degree

(2)

4/4 Let G be a simple connected graph whose vertex degrees are all $\leq k$, and there exists a vertex whose degree is strictly smaller than k. Prove by induction on number of vertices that G is k-colorable. $k \in \mathbb{Z}^+$ Pin): a is k-colorable. deg(v) = k, vEV deg(Vi) < K $(kE2^{+})$ · 1-colorable Base case: n=1 Inductive step: Assume pun is true for n=m, m Z^t
For n=m+1: Remove V deg(v) = k, veV deg(vi) < k \ (k\in 2t)

m vertices -> k-colorable (by pim))

color v with one of k colors

pumm) is time J