

Problema Arbsumpow

Fișier de intrare: standard input Fișier de ieșire: standard output

Municipiul B. a fost numit de curând stațiune turistică de interes național – astfel a decis să înceapă să desemneze anumite zone din oraș ca fiind centre culturale. Orașul este format din N intersecții, numerotate de la 1 la N, legate printre ele cu N-1 drumuri, astfel încât oricare două intersecții să fie legate direct sau indirect prin drumuri. Fiecare intersecție are câte o valoare culturală, intersecția i având valoarea v[i].

Orașul poate desemna o mulțime S de intersecții ca fiind centru cultural dacă și numai dacă poți ajunge din oricare intersecție din S la oricare alta trecând doar prin intersecții din S și drumuri. Fie M mulțimea de mulțimi S ce pot fi desemnate ca centre culturale.

Pentru oricare mulțime de intersecții $S \in M$, se consideră că valoarea culturală a centrului este dată de v(S), definit prin

$$v(S) = \left(\sum_{x \in S} v[x]\right)^P,$$

pentru o constantă P.

Municipiul va desemna fiecare mulțime din M ca fiind centru cultural pentru câte o zi, într-o ordine oarecare. Primăria este curioasă despre suma valorilor culturale a tuturor centrelor desemnate, modulo $10^9 + 7$, adică

$$\left(\sum_{S \in M} v(S)\right) \mod 10^9 + 7.$$

Îi puteți ajuta să găsească această valoare?

Date de intrare

În prima linie a fișierului de intrare se vor găsi valorile N, P. Urmează pe a doua linie valorile $v[1], \ldots, v[N]$. Pe cea de-a treia linie se vor găsi valorile $p[2], \ldots, p[N]$, indicând că există pentru fiecare i de la 2 la N un drum între intersecțiile i si p[i]. Se garantează ca p[i] < i oricare ar fi 1 < i < N.

Date de ieșire

Se va afișa o singură linie, ce conține răspunsul cerut.

Restricții și precizări

#	Punctaj	Restricții
1	7	$1 \le N \le 15, 1 \le v[i] \le 10^9, 1 \le P \le 7$
2	12	$1 \le N \le 100, v[1] = \ldots = v[N] = 1, 1 \le P \le 7$
3	5	$1 \le N \le 1000, v[1] = \ldots = v[N] = 1, 1 \le P \le 7$
4	8	$1 \le N \le 1000, 1 \le v[i] \le 10^9, P = 1$
5	10	$1 \le N \le 100000, 1 \le v[i] \le 10^9, P = 1$
6	9	$1 \le N \le 1000, 1 \le v[i] \le 10^9, P = 2$
7	13	$1 \le N \le 100000, 1 \le v[i] \le 10^9, P = 2$
8	14	$1 \leq N \leq 100000, 1 \leq v[i] \leq 10^9, 1 \leq P \leq 7,$ o intersecție e capătul a cel mult două drumuri
9	22	$1 \le N \le 100000, 1 \le v[i] \le 10^9, 1 \le P \le 7$

Exemple

stdin	stdout
3 2	75
1 2 3	
1 1	
4 1	190
9 10 9 10	
1 2 1	
5 2	1133
1 2 3 4 5	
1 1 3 3	
7 2	590
1 1 1 1 1 1 1	
1 1 1 2 5 2	
10 3	12312296
13 8 4 8 6 13 6 8 14 9	
1 2 3 3 2 6 5 4 8	

Explicație

Pentru primul exemplu, muchiile sunt (1,2), (1,3). Subarborii sunt determinați de următoarele mulțimi de noduri: $\{1\}$, $\{2\}$, $\{3\}$, $\{1,2\}$, $\{1,3\}$, $\{1,2,3\}$. Acestea au sumele 1,2,3,3,4,6. Ridicând acestea la pătrat ne dă 1,4,9,9,16,36, iar însumând ne dă 75.