ESCUELA COLOMBIANA DE INGENIERÍA JULIO GARAVITO DECANATURA INGENIERÍA DE SISTEMAS

Introducción a Sistemas Complejos, JAVA, MVN y GIT

Nombre estudiante: Michael Jefferson Ballesteros Coca

Curso: *Arquitecturas Empresariales* – Docente: *Luis Daniel Benavides Navarro* Fecha de entrega: *Agosto 13, 2020*

Requerimientos del Programa.

- (a) El programa lee n numeros reales desde un archivo
- (b) Use una LinkedList (Lista encadenada) para guardar los n numeros para los cálculos. **Use su propia implementación**

Generalidades.

LinkedList. Las LinkedLists son estructuras de datos comunes donde se guardan datos, se implementan con apuntadores, que permiten encadenar a partir de direcciones de memoria los datos que se usan. Las LinkedLists poseen 2 componentes principales:

- Cabeza de la lista
- Nodos

Existen varias opciones para crear esta estructura, para este repositorio, la LinkedList posee una cabeza, donde tiene 2 apuntadores, uno hacia el inicio de la LinkedList y otro hacia el ultimo nodo de la estructura.

También tiene diferentes funcionalidades que fueron implementadas, entre ellas:

- add()
- remove()
- size()
- toArray()

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} a_i = \frac{a_1 + a_2 + a_3 + \dots + a_n}{n}$$

Media.

Cuando buscamos la media de un conjunto de datos, ubicamos la posición del centro de estos a través del promedio de estos.

La clase Calculator en el repositorio posee un método (calculateMean())

```
public static Double calculateMean(Double[] array){
    Double sum = Od;
    int n = array.length;
    for(Double x: array) {
        sum += x;
    }
    return sum/n;
}
```

Donde, se usó un ciclo For para recorrer los datos y se lleva una variable (sum) para realizar la suma de los datos; se concluye después de recorrer los datos, la media, calculando con el valor n de la cantidad de datos que existen y la suma de todos los datos.

$$S = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n-1}}$$

Desviación Estándar.

La desviación estándar cuantifica la variación de la población, aunque parecería más robusta con respecto a el promedio si se calculara a papel y lápiz, podría ser un procedimiento complejo.

Se implemento un método en la clase Calculator para calcular la desviación estándar (calculateDeviation())

```
public static Double calculateDeviation(Double[] array, double mean){
    Double sumax = Od;
    int n = array.length;
    for(Double x: array){
        sumax+=Math.pow(x-mean, 2);
    }
    return Math.sqrt((sumax/(n-1)));
}
```

Esta vez, usamos el ciclo For para determinar la parte interna de la raíz, donde se llevó una variable (sumax) donde se hacia el cálculo entre el promedio y cada dato del conjunto de datos. El método finaliza retornando la raíz cuadrada de la parte interna de la raíz, usando la librería Math de Java.

Absolute $Error = |v_A - v_E|$

Error Absoluto.

Para poder comprobar nuestros cálculos, necesitamos usar el error absoluto y tener un margen de tolerancia, ya que con este podemos decir si el dato resultante es confiable o no.

Para este caso de prueba, previamente se ha declarado la variable (TOLERANCE) para después compararla con el error absoluto. Usamos el archivo data1.txt que posee un conjunto de datos a operar, guardamos estos datos en la LinkedList para luego determinar la media de estos datos. En la variable (errorAbsoluto) la librería Math se encarga de darnos el valor absoluto entre el valor que se calculó a través de la aplicación y el número que se supone previamente debería dar , después de hacer el cálculo. Con una tolerancia de 0.1, usamos la variable (errorAbsoluto)para determinar si el error es menor a la tolerancia que tenemos.

Conclusión. Aunque desde el principio, el taller parecía bastante sencillo, fue un verdadero reto cuando se tuvo que enfatizar en que lo que importaba era la arquitectura del repositorio; y sin dejar de lado la ejecución del programa, se diera a conocer de manera clara y concisa la estructura del repositorio y sus respectivas componentes.