Complexity Theory: Assignment 1

asifkhan@cmi.ac.in, arsricharan@cmi.ac.in

Submission: Feb 6 2020

- 1. If $EXP \neq NEXP$, then $P \neq NP$.
- 2. Let HALT be the algorithm which on input (α, x) runs the machine M_{α} encoded by α on x and accepts if M_{α} halts on x. Show that HALT is NP-hard. Is it NP-complete?
- 3. If L_1, L_2 are in NP, then are $L_1 \cup L_2$ and $L_1 \cap L_2$ in NP?
- 4. Show that TAUTOLOGY is coNP-complete. Show that NP = coNP if and only if 3SAT and TAUTOLOGY are polynomial-time reducible to one another.
- 5. Prove that if every unary NP language is in P, then EXP = NEXP. A unary language is a subset of $\{1\}^n$.
- 6. Let $\Sigma_2 SAT$ denote the following problem: Given a formula ψ of the form

$$\psi = \exists x \forall y (\phi(x, y) = 1).$$

where ϕ is a CNF formula, need to decide if ψ is true. Prove that if P = NP, then $\Sigma_2 SAT$ is in P.