In the claims:

1. (currently amended) A process for the preparation of furopyrroles of the general formula

$$A^3$$
 N (I), comprising

(a) microwave irradiation heating of a compound of the formula

solvent,

wherein A^1 and A^2 are C_1 - C_{18} alkyl, C_2 - C_{18} alkenyl, C_2 - C_{18} alkynyl, C_5 - C_8 cycloalkyl, C_5 - C_8 cycloalkenyl, aryl or heteroaryl,

 A^3 is hydrogen, C_1 - C_{18} alkyl, cyanomethyl, Ar^3 , - $CR^{30}R^{31}$ -(CH_2)_m- Ar^3 or Y- R^{32} , wherein R^{30} and R^{31} independently of each other stand for hydrogen or C_1 - C_4 alkyl, or phenyl which can be substituted up to three times with C_1 - C_4 alkyl,

 Ar^3 stands for aryl, C_5 - C_8 cycloalkyl, C_5 - C_8 cycloalkenyl or heteroaryl, which can be substituted one to three times with C_1 - C_8 alkyl, C_1 - C_8 alkoxy, halogen or phenyl, which can be substituted with C_1 - C_8 alkyl or C_1 - C_8 alkoxy one to three times, and m stands for 0, 1, 2, 3 or 4,

R is C_1 - C_{18} alkyl, aryl, or aralkyl, in which can be substituted one to three times with C_1 - C_8 alkyl, C_1 - C_8 alkoxy, or halogen,

Y is -C(O)-, -C(O)O-, -C(O)NH-, $-SO_2NH$ - or $-SO_2$ - and R^{32} is C_1 - C_{18} alkyl, Ar^3 , or aralkyl.

. : :

· 2. (previously presented) The process according to claim 1, comprising in addition reacting a compound of formula I with a primary amine of the formula A⁴-NH₂ (IV), wherein a

DPP of formula
$$A^3 - N - A^4$$
 III is obtained,

wherein A⁴ is C₁-C₁₈alkyl or Ar³, wherein Ar³, A¹, A² and A³ are defined as in claim 1.

3. **(original)** The process according to claim 1, wherein the compound of the formula I, wherein A³ is different from a hydrogen atom, is obtained by reacting a compound of the formula

the meanings as given in claim 1 and X is a leaving group.

4. (previously presented) The process according to claim 1, wherein A¹ and A² are radicals of the formula

or
$$R^5$$
 R^3 , wherein

 R^1 and R^2 are independently of each other hydrogen, halogen, C_1 - C_{18} alkyl, C_1 - C_{18} alkylamino, C_1 - C_{18} alkylamino, C_1 - C_{18} alkylaminocarbonyl, C_1 - C_{18} alkylaminocarbonyl, C_1 - C_{18} alkylaminocarbonyl, C_1 - $C_$

$$(C_1-C_{18}alkyl)$$
, phenyl, $-C=N$ R^3 , imidazolyl, pyrrazolyl, triazolyl,

piperazinyl, pyrrolyl, oxazolyl, benzoxazolyl, benzothiazolyl, benzimidazolyl, morpholinyl, piperidinyl or pyrrolidinyl, $-CONX^5X^6$, $-C(O)OX^7$ or $-SO_2X^9$; wherein X^5 and X^6 are hydrogen, linear or branched C_{1-10} -alkyl, C_{5-10} -cycloalkyl or C_{6-10} -aryl, X^7 is hydrogen, linear or branched C_{1-10} -alkyl, C_{5-10} -cycloalkyl or C_{6-10} -aryl, X^9 is hydrogen, linear or branched C_{1-10} -alkyl, C_{5-10} -cycloalkyl, C_{7-10} -aralkyl, C_{6-10} -aryl or $-NX^{10}X^{11}$, wherein X^{10} and X^{11} are hydrogen, linear or branched C_{1-10} -alkyl, C_{7-10} -aralkyl or C_{6-10} -aryl,

G is $-CH_2$ -, $-CH(CH_3)$ -, $-C(CH_3)_2$ -, -CH=N-, -N=N-, -O-, -S-, -SO-, $-SO_2$ -, $-SO_2NH$ -, -CONH- or $-NR^7$ -,

 R^3 and R^4 are independently of each other hydrogen, halogen, C_1 - C_6 alkyl, C_1 - C_{18} alkoxy or $-\ddot{C}N$, R^5 and R^6 are independently of each other hydrogen, halogen or C_1 - C_6 alkyl, and R^7 is hydrogen or C_1 - C_6 alkyl;

or A1 and A2 are radicals of the formula

$$R^{25}$$
 R^{26}
 R^{25}
 R^{26}
 R^{25}
 R^{26}
 R^{27}
 R^{21}
 R^{21}
 R^{22}
 R^{23}
 R^{21}
 R^{22}
 R^{23}
 R^{21}
 R^{22}
 R^{23}
 R^{21}
 R^{22}

$$R^{21} \longrightarrow R^{23} \qquad R^{21} \longrightarrow R^{23} \qquad R^{21} \longrightarrow R^{23} \qquad R^{22} \longrightarrow R^{23} \longrightarrow R^{22} \longrightarrow R^{23} \longrightarrow R^{24} \longrightarrow R^{24} \longrightarrow R^{24} \longrightarrow R^{25} \longrightarrow R$$

$$R^{25}$$
 R^{26}
 R^{26}
 R^{26}
 R^{26}
 R^{26}
 R^{26}
 R^{27}
 R^{21}
 R^{23} or R^{23}

wherein R^{21} , R^{22} , R^{23} , R^{25} and R^{26} are independently of each other hydrogen, C_1 - C_8 alkyl, a hydroxyl group, a mercapto group, C_1 - C_8 alkoxy, C_1 - C_8 alkylthio, halogen, halo- C_1 - C_8 alkyl, a cyano group, an aldehyde group, a ketone group, a carboxyl group, an ester group, a carbamoyl group, an amino group, a nitro group, a silyl group or a siloxanyl group and R^{24} is a C_1 - C_8 alkyl group.

5. (original) The process according to claim 4, wherein A¹ and A² are radicals of the formula

wherein R^1 and R^2 are independently of each other hydrogen, chloro, bromo, C_1 - C_4 alkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkylamino, phenyl or CN,

G is -O-, $-NR^7$ -, -N=N- or $-SO_2$ -,

R³ and R⁴ are hydrogen, and

R⁷ is hydrogen, methyl or ethyl.

6. (previously presented) The process according to claim 4, wherein A^3 is cyanomethyl, C_1 - C_8 alkyl, Y- R^{32} wherein Y is -C(O)- and R^{32} is

—
$$R^{40}$$
 , wherein R^{40} is C_1 - C_4 alkyl, -O- C_1 - C_4 alkyl, or -S- C_1 - C_4 alkyl, or

-(CH₂)_m-Ar wherein m is 1 and Ar is a group of the formula

which can be substituted one to three times with C₁-C₈alkyl, C₁-C₈alkoxy, halogen or phenyl.

7. (previously presented) The process according to claim 4, wherein A⁴ is

which can be substituted one to three times with C₁-C₈alkyl, C₁-C₈alkoxy, halogen or phenyl.

8. (previously presented) The process according to claim 1, wherein the starting compound of formula (II)

$$A^3$$
 CO_2R OH A^3 OH A^2

is obtained by reacting a compound of formula (VIII) with an acyl halide A² –COX:

wherein R, A¹ and A² have the same meaning as given in claim 1, A³ is aryl, and X is halogen.

9. **(original):** The process according to claim 8, wherein the compound of formula (VIII) is obtained by reacting a compound of formula (IIb) with an amine A³ -NH₂:

wherein R and A¹ have the same meaning as given in claim 1 and A³ is aryl

10. (cancelled)

11-12 (canceled)

- 13. (previously presented) A process according to claim 1, wherein R is C_1 - C_4 alkyl, phenyl, or benzyl, which can be substituted one to three times with C_1 - C_8 alkyl, C_1 - C_8 alkoxy, or halogen.
- 14. (previously presented) A process according to claim 5, wherein A³ is cyanomethyl, C₁-C₈alkyl, Y-R³² wherein Y is -C(O)- and R³² is

—
$$R^{40}$$
 , wherein R^{40} is C_1 - C_4 alkyl, -O- C_1 - C_4 alkyl, or -S- C_1 - C_4 alkyl, or

-(CH₂)_m-Ar wherein m is 1 and Ar is a group of the formula

which can be substituted one to three times with C₁-C₈alkyl, C₁-C₈alkoxy, halogen or phenyl.

15. (new) A process for the preparation of furopyrroles according to claim 1 wherein wherein A¹ and A² are aryl and

 A^3 is hydrogen, C_1 - C_{18} alkyl, cyanomethyl, Ar^3 , - $CR^{30}R^{31}$ -(CH_2)_m- Ar^3 or Y- R^{32} , wherein R^{30} and R^{31} independently of each other stand for hydrogen or C_1 - C_4 alkyl, or phenyl which can be substituted up to three times with C_1 - C_4 alkyl,

Ar³ stands for aryl, C_5 - C_8 cycloalkyl or C_5 - C_8 cycloalkenyl, which can be substituted one to three times with C_1 - C_8 alkyl, C_1 - C_8 alkoxy, halogen or phenyl, which can be substituted with C_1 - C_8 alkoxy one to three times, and m stands for 0, 1, 2, 3 or 4.

16. (new) The process according to claim 15, comprising in addition reacting a compound of formula I with a primary amine of the formula A⁴-NH₂ (IV), wherein a

DPP of formula
$$A^3 - N - A^4$$
 III is obtained.

wherein A4 is C1-C18alkyl or Ar3.

17. (new) The process according to claim 15, wherein the compound of the formula I, wherein A³ is different from a hydrogen atom, is obtained by reacting a compound of the formula

18. (new) The process according to claim 15, wherein A1 and A2 are radicals of the formula

$$\mathbb{R}^1$$
 , \mathbb{R}^1 , or \mathbb{R}^5 \mathbb{R}^4 , wherein

 R^1 and R^2 are independently of each other hydrogen, halogen, C_1 - C_{18} alkyl, C_1 - C_{18} alkoxy, C_1 - C_{18} alkylmercapto, C_1 - C_{18} alkylamino, C_1 - C_{18} alkoxycarbonyl, C_1 - C_{18} alkylaminocarbonyl, -CN, C_1 - C_2 0, trifluoromethyl, C_5 - C_8 0cycloalkyl, -C=N-

(C₁-C₁₈alkyl), phenyl,
$$_{-C=N}$$
 $\stackrel{}{-}$ R^3 , imidazolyl, pyrrazolyl, triazolyl,

piperazinyl, pyrrolyl, oxazolyl, benzoxazolyl, benzothiazolyl, benzimidazolyl, morpholinyl, piperidinyl or pyrrolidinyl, -CONX 5 X 6 , -C(O)OX 7 or -SO $_2$ X 9 ; wherein X 5 and X 6 are hydrogen, linear or branched C $_{1-10}$ -alkyl, C $_{5-10}$ -cycloalkyl or C $_{6-10}$ -aryl, X 7 is hydrogen, linear or branched C $_{1-10}$ -alkyl, C $_{5-10}$ -cycloalkyl or C $_{6-10}$ -aryl, X 9 is hydrogen, linear or branched C $_{1-10}$ -alkyl, C $_{5-10}$ -cycloalkyl, C $_{7-10}$ -aralkyl, C $_{6-10}$ -aryl or -NX 10 X 11 , wherein X 10 and X 11 are hydrogen, linear or branched C $_{1-10}$ -alkyl, C $_{7-10}$ -aralkyl or C $_{6-10}$ -aryl,

G is $-CH_2$ -, $-CH(CH_3)$ -, $-C(CH_3)_2$ -, -CH=N-, -N=N-, -O-, -S-, -SO-, $-SO_2$ -, $-SO_2$ NH-, -CONH- or $-NR^7$ -,

 R^3 and R^4 are independently of each other hydrogen, halogen, C_1 - C_6 alkyl, C_1 - C_{18} alkoxy or - $\dot{C}N$, R^5 and R^6 are independently of each other hydrogen, halogen or C_1 - C_6 alkyl, and R^7 is hydrogen or C_1 - C_6 alkyl;

or A¹ and A² are radicals of the formula

$$R^{25} \longrightarrow R^{26} \longrightarrow R^{26} \longrightarrow R^{27} \longrightarrow R^{28} \longrightarrow R$$

wherein R^{21} , R^{22} , R^{23} , R^{25} and R^{26} are independently of each other hydrogen, C_1 - C_8 alkyl, a hydroxyl group, a mercapto group, C_1 - C_8 alkoxy, C_1 - C_8 alkylthio, halogen, halo- C_1 - C_8 alkyl, a cyano group, an aldehyde group, a ketone group, a carboxyl group, an ester group, a carbamoyl group, an amino group, a nitro group, a silyl group or a siloxanyl group and R^{24} is a C_1 - C_8 alkyl group.

19. (new) The process according to claim 18, wherein A¹ and A² are radicals of the formula

$$\mathbb{R}^{1}$$
 , or \mathbb{R}^{2} , or \mathbb{R}^{3}

wherein R^1 and R^2 are independently of each other hydrogen, chloro, bromo, C_1 - C_4 alkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkylamino, phenyl or CN,

G is -O-, $-NR^7$ -, -N=N- or $-SO_2$ -,

R³ and R⁴ are hydrogen, and

R⁷ is hydrogen, methyl or ethyl.

20. (new) The process according to claim 18, wherein A^3 is cyanomethyl, C_1 - C_8 alkyl, Y- R^{32} wherein Y is -C(O)- and R^{32} is

-(CH₂)_m-Ar wherein m is 1 and Ar is a group of the formula

which can be substituted one to three times with C₁-C₈alkyl, C₁-C₈alkoxy, halogen or phenyl.

21. (new) The process according to claim 18, wherein A⁴ is

which can be substituted one to three times with C₁-C₈alkyl, C₁-C₈alkoxy, halogen or phenyl.

- 22. **(new)** A process according to claim 15, wherein R is C_1 - C_4 alkyl, phenyl, or benzyl, which can be substituted one to three times with C_1 - C_8 alkyl, C_1 - C_8 alkoxy, or halogen.
- 23. (new) A process according to claim 19, wherein A^3 is cyanomethyl, C_1 - C_8 alkyl, Y- R^{32} wherein Y is -C(O)- and R^{32} is

-(CH₂)_m-Ar wherein m is 1 and Ar is a group of the formula

which can be substituted one to three times with C₁-C₈alkyl, C₁-C₈alkoxy, halogen or phenyl.