Rank-73987 over GF(8)

January 15, 2021

The equation

The equation of the surface is:

$$X_1^2 X_2 + X_0 X_3^2 + X_0 X_1 X_2 = 0$$

(0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0)The point rank of the equation over GF(8) is 1243910733

General information

Number of lines	5
Number of points	81
Number of singular points	3
Number of Eckardt points	1
Number of double points	4
Number of single points	34
Number of points off lines	42
Number of Hesse planes	0
Number of axes	0
Type of points on lines	9^{5}
Type of lines on points	$3, 2^4, 1^{34}, 0^{42}$

Singular Points

The surface has 3 singular points:

0:
$$P_0 = \mathbf{P}(1,0,0,0) = \mathbf{P}(1,0,0,0)$$

1: $P_2 = \mathbf{P}(0,0,1,0) = \mathbf{P}(0,0,1,0)$

The 5 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \mathbf{Pl}(1, 0, 0, 0, 0, 0)_0$$

$$\ell_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{64} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{64} = \mathbf{Pl}(0, 0, 1, 0, 0, 0)_{2}$$

$$\ell_{2} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{137} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{137} = \mathbf{Pl}(0, 0, 1, 0, 0, 1)_{664}$$

$$\ell_{3} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{4680} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{4680} = \mathbf{Pl}(0, 0, 0, 1, 0, 0)_{17}$$

$$\ell_{4} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{4744} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{4744} = \mathbf{Pl}(0, 1, 0, 0, 0, 0)_{1}$$

Rank of lines: (0, 64, 137, 4680, 4744)

Rank of points on Klein quadric: (0, 2, 664, 17, 1)

Eckardt Points

The surface has 1 Eckardt points: $0: P_2 = \mathbf{P}(0, 0, 1, 0) = \mathbf{P}(0, 0, 1, 0).$

Double Points

The surface has 4 Double points: The double points on the surface are:

$$P_0 = (1, 0, 0, 0) = \ell_0 \cap \ell_1$$

$$P_5 = (1, 1, 0, 0) = \ell_0 \cap \ell_2$$

$$P_1 = (0, 1, 0, 0) = \ell_0 \cap \ell_3$$

$P_3 = (0,0,0,1) = \ell_3 \cap \ell_4$

Single Points

The surface has 34 single points: The single points on the surface are:

 $0: P_6 = (2, 1, 0, 0)$ lies on line ℓ_0 1: $P_7 = (3, 1, 0, 0)$ lies on line ℓ_0 2: $P_8 = (4, 1, 0, 0)$ lies on line ℓ_0 $3: P_9 = (5, 1, 0, 0)$ lies on line ℓ_0 4: $P_{10} = (6, 1, 0, 0)$ lies on line ℓ_0 5: $P_{11} = (7, 1, 0, 0)$ lies on line ℓ_0 6: $P_{12} = (1, 0, 1, 0)$ lies on line ℓ_1 7: $P_{13} = (2,0,1,0)$ lies on line ℓ_1 8: $P_{14} = (3, 0, 1, 0)$ lies on line ℓ_1 9: $P_{15} = (4,0,1,0)$ lies on line ℓ_1 10: $P_{16} = (5, 0, 1, 0)$ lies on line ℓ_1 11: $P_{17} = (6,0,1,0)$ lies on line ℓ_1 12: $P_{18} = (7,0,1,0)$ lies on line ℓ_1 13 : $P_{20} = (1, 1, 1, 0)$ lies on line ℓ_2 14: $P_{29} = (2, 2, 1, 0)$ lies on line ℓ_2 15: $P_{38} = (3, 3, 1, 0)$ lies on line ℓ_2 16: $P_{47} = (4, 4, 1, 0)$ lies on line ℓ_2 17: $P_{56} = (5, 5, 1, 0)$ lies on line ℓ_2

18: $P_{65} = (6, 6, 1, 0)$ lies on line ℓ_2 19: $P_{74} = (7,7,1,0)$ lies on line ℓ_2 20: $P_{82} = (0, 1, 0, 1)$ lies on line ℓ_3 21: $P_{90} = (0, 2, 0, 1)$ lies on line ℓ_3 22: $P_{98} = (0, 3, 0, 1)$ lies on line ℓ_3 23: $P_{106} = (0, 4, 0, 1)$ lies on line ℓ_3 24: $P_{114} = (0, 5, 0, 1)$ lies on line ℓ_3 25: $P_{122} = (0, 6, 0, 1)$ lies on line ℓ_3 26: $P_{130} = (0,7,0,1)$ lies on line ℓ_3 27: $P_{138} = (0,0,1,1)$ lies on line ℓ_4 28: $P_{201} = (0, 0, 2, 1)$ lies on line ℓ_4 29: $P_{265} = (0,0,3,1)$ lies on line ℓ_4 $30: P_{329} = (0,0,4,1)$ lies on line ℓ_4 31: $P_{393} = (0,0,5,1)$ lies on line ℓ_4 32 : $P_{457} = (0, 0, 6, 1)$ lies on line ℓ_4 33: $P_{521} = (0,0,7,1)$ lies on line ℓ_4

The single points on the surface are:

Points on surface but on no line

The surface has 42 points not on any line: The points on the surface but not on lines are:

$0: P_{160} = (7, 2, 1, 1)$	$22: P_{381} = (4, 6, 4, 1)$
$1: P_{165} = (4, 3, 1, 1)$	$23: P_{391} = (6,7,4,1)$
$2: P_{171} = (2,4,1,1)$	$24: P_{403} = (2, 1, 5, 1)$
$3: P_{184} = (7, 5, 1, 1)$	$25: P_{415} = (6, 2, 5, 1)$
$4: P_{187} = (2, 6, 1, 1)$	$26: P_{419} = (2, 3, 5, 1)$
$5: P_{197} = (4,7,1,1)$	$27: P_{431} = (6, 4, 5, 1)$
$6: P_{214} = (5, 1, 2, 1)$	$28: P_{436} = (3, 5, 5, 1)$
$7: P_{218} = (1, 2, 2, 1)$	$29: P_{444} = (3, 6, 5, 1)$
$8: P_{226} = (1, 3, 2, 1)$	$30: P_{469} = (4, 1, 6, 1)$
$9: P_{238} = (5, 4, 2, 1)$	$31: P_{486} = (5, 3, 6, 1)$
$10: P_{243} = (2, 5, 2, 1)$	$32: P_{492} = (3, 4, 6, 1)$
$11: P_{259} = (2,7,2,1)$	$33: P_{501} = (4, 5, 6, 1)$
$12: P_{280} = (7, 1, 3, 1)$	$34: P_{510} = (5, 6, 6, 1)$
$13: P_{286} = (5, 2, 3, 1)$	$35: P_{516} = (3,7,6,1)$
$14: P_{295} = (6, 3, 3, 1)$	$36: P_{532} = (3, 1, 7, 1)$
$15: P_{311} = (6,5,3,1)$	$37: P_{540} = (3, 2, 7, 1)$
$16: P_{320} = (7, 6, 3, 1)$	$38: P_{552} = (7, 3, 7, 1)$
$17: P_{326} = (5,7,3,1)$	$39: P_{560} = (7, 4, 7, 1)$
$18: P_{343} = (6, 1, 4, 1)$	$40: P_{570} = (1, 6, 7, 1)$
19: $P_{349} = (4, 2, 4, 1)$	$41: P_{578} = (1,7,7,1)$
$20: P_{362} = (1, 4, 4, 1)$	
$21: P_{370} = (1, 5, 4, 1)$	
,	

Line Intersection Graph

	01234
0	01110
1	10101
2	11001
3	10001
4	$\begin{array}{c} 0 \ 1 \ 2 \ 3 \ 4 \\ 0 \ 1 \ 1 \ 1 \ 0 \\ 1 \ 0 \ 1 \ 0 \ 1 \\ 1 \ 1 \ 0 \ 0 \ 1 \\ 0 \ 1 \ 1 \ 1 \ 0 \end{array}$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2	ℓ_3
in point	P_0	P_5	P_1

Line 1 intersects

Line	ℓ_0	ℓ_2	ℓ_4
in point	P_0	P_2	P_2

Line 2 intersects

Line	ℓ_0	ℓ_1	ℓ_4
in point	P_5	P_2	P_2

Line 3 intersects

Line	ℓ_0	ℓ_4
in point	P_1	P_3

Line 4 intersects

Line	ℓ_1	ℓ_2	ℓ_3
in point	P_2	P_2	P_3

The surface has 81 points: The points on the surface are:

0 7 (1 0 0 0)	22 7 (2.4.2.4)	** *
$0: P_0 = (1,0,0,0)$	$28: P_{106} = (0, 4, 0, 1)$	$56: P_{362} = (1, 4, 4, 1)$
$1: P_1 = (0, 1, 0, 0)$	$29: P_{114} = (0, 5, 0, 1)$	$57: P_{370} = (1, 5, 4, 1)$
$2: P_2 = (0, 0, 1, 0)$	$30: P_{122} = (0, 6, 0, 1)$	$58: P_{381} = (4, 6, 4, 1)$
$3: P_3 = (0,0,0,1)$	$31: P_{130} = (0,7,0,1)$	$59: P_{391} = (6,7,4,1)$
$4: P_5 = (1, 1, 0, 0)$	$32: P_{138} = (0,0,1,1)$	$60: P_{393} = (0, 0, 5, 1)$
$5: P_6 = (2, 1, 0, 0)$	$33: P_{160} = (7, 2, 1, 1)$	$61: P_{403} = (2, 1, 5, 1)$
$6: P_7 = (3, 1, 0, 0)$	$34: P_{165} = (4,3,1,1)$	$62: P_{415} = (6, 2, 5, 1)$
$7: P_8 = (4, 1, 0, 0)$	$35: P_{171} = (2,4,1,1)$	$63: P_{419} = (2, 3, 5, 1)$
$8: P_9 = (5, 1, 0, 0)$	$36: P_{184} = (7, 5, 1, 1)$	$64: P_{431} = (6, 4, 5, 1)$
9: $P_{10} = (6, 1, 0, 0)$	$37: P_{187} = (2, 6, 1, 1)$	$65: P_{436} = (3, 5, 5, 1)$
$10: P_{11} = (7, 1, 0, 0)$	$38: P_{197} = (4,7,1,1)$	$66: P_{444} = (3, 6, 5, 1)$
$11: P_{12} = (1,0,1,0)$	$39: P_{201} = (0,0,2,1)$	$67: P_{457} = (0,0,6,1)$
$12: P_{13} = (2,0,1,0)$	$40: P_{214} = (5, 1, 2, 1)$	$68: P_{469} = (4, 1, 6, 1)$
$13: P_{14} = (3, 0, 1, 0)$	$41: P_{218} = (1, 2, 2, 1)$	$69: P_{486} = (5, 3, 6, 1)$
$14: P_{15} = (4, 0, 1, 0)$	$42: P_{226} = (1, 3, 2, 1)$	$70: P_{492} = (3, 4, 6, 1)$
15: $P_{16} = (5, 0, 1, 0)$	$43: P_{238} = (5, 4, 2, 1)$	$71: P_{501} = (4, 5, 6, 1)$
$16: P_{17} = (6, 0, 1, 0)$	$44: P_{243} = (2, 5, 2, 1)$	$72: P_{510} = (5, 6, 6, 1)$
$17: P_{18} = (7,0,1,0)$	$45: P_{259} = (2,7,2,1)$	$73: P_{516} = (3, 7, 6, 1)$
$18: P_{20} = (1, 1, 1, 0)$	$46: P_{265} = (0, 0, 3, 1)$	$74: P_{521} = (0, 0, 7, 1)$
$19: P_{29} = (2, 2, 1, 0)$	$47: P_{280} = (7, 1, 3, 1)$	$75: P_{532} = (3, 1, 7, 1)$
$20: P_{38} = (3, 3, 1, 0)$	$48: P_{286} = (5, 2, 3, 1)$	76: $P_{540} = (3, 2, 7, 1)$
$21: P_{47} = (4, 4, 1, 0)$	$49: P_{295} = (6, 3, 3, 1)$	$77: P_{552} = (7, 3, 7, 1)$
$22: P_{56} = (5, 5, 1, 0)$	$50: P_{311} = (6, 5, 3, 1)$	78: $P_{560} = (7, 4, 7, 1)$
$23: P_{65} = (6, 6, 1, 0)$	$51: P_{320} = (7, 6, 3, 1)$	79: $P_{570} = (1, 6, 7, 1)$
$24: P_{74} = (7,7,1,0)$	$52: P_{326} = (5,7,3,1)$	$80: P_{578} = (1, 7, 7, 1)$
$25: P_{82} = (0, 1, 0, 1)$	$53: P_{329} = (0,0,4,1)$	
$26: P_{90} = (0, 2, 0, 1)$	$54: P_{343} = (6, 1, 4, 1)$	
$27: P_{98} = (0, 3, 0, 1)$	$55: P_{349} = (4, 2, 4, 1)$	
(, , , ,	(, , , , ,	