COMP3203 Final Exam Notes

William Findlay et al. December 13, 2018

Contents

1	Tes	1 Stuff (Brief and Important Only)	4
	1.1	Units	4
	1.2	Equations	4
		1.2.1 Frequency and Period	4
		1.2.2 Wavelength	4
		1.2.3 Bandwidth	4
		1.2.4 Delay	4
		1.2.5 Delay Bandwidth Product	4
		1.2.6 Shannon Capacity	5
		1.2.7 Redundancy	5
	1.3	Error Checking	5
	1.0	Entor Checking	0
2	\mathbf{AR}	$\Omega_{ m S}$	5
	2.1	Sliding Window	5
		2.1.1 Go Back N	5
		2.1.2 Selective Reject	6
	2.2	Stop and Wait	6
	2.2	2.2.1 Errors in Stop and Wait	6
		2.2.2 Correctness	8
		2.2.2 Correctness	O
3	$\mathbf{M}\mathbf{u}$	tiaccess	8
	3.1	LANs	8
	3.2	The Problem with Shared Channels	8
	3.3	MAC Protocol	9
	3.4	Uncoordinated Access Control	9
	3.5	Ethernet	9
	3.6	Coordinated Access	9
	5.0	3.6.1 Tree Algorithm	9
		3.6.2 Binary Countdown	9
		3.6.3 Bitmap	9
		5.0.5 Dicinap	9
4	Wir	eless	9
_	4.1	Cellular	9
	4.2	Ad Hoc	9
	1.2	4.2.1 UDG	9
		4.2.2 Compass Routing	9
		4.2.3 Face Routing	9
	4.3	Bluetooth	9
	4.0	Diuctooth	3
5	\mathbf{GP}		9
	5.1	Three Techniques	9
	5.2	Satellites	9
	J		Ü
6	Rot	ting	9
	6.1	Distance Vector (RIP)	9
	6.2	Link State Protocol (LSP)	9
	6.3	MSTs	9
	6.4	Dijkstra	9
		,	,
7	\mathbf{IP}		9
	7.1	IPv4	9
		7.1.1. Classes of Address	q

	7.1.2	S	ub	n	ets	\mathbf{S}																													(
	7.1.3	S	ub	n	et	Ν	Ιa	sk	S																										Ć
7.2	IPv6.																																		Ć
7.3	DHCP	٠.																																	ę
7.4	ARP .																																		ę
	7.4.1	R	A	R	Ρ																														Ś
TC																																			ę
8.1	How it	t V	Vo	rk	S	(5	Sli	di	ng	ς.	W	7i1	ac	lo	W	7)																			ç
	How it																																		
8.3	Eauilil	bri	ur	n	Μ	.O(de	1																											Ģ

Test 1 Stuff (Brief and Important Only) 1

Units 1.1

prefix	base 10 conversion	base 2 conversion
pico	10^{-12}	2^{-40}
nano	10^{-9}	2^{-30}
micro	10^{-6}	2^{-20}
milli	10^{-3}	2^{-10}
	10^{0}	2^{0}
kilo	10^{3}	2^{10}
mega	10^{6}	2^{20}
giga	10^{9}	2^{30}
tera	10^{12}	2^{40}
peta	10^{15}	2^{50}

- $Hz \implies$ cycles per second
 - $-GHz \implies 10^9$ cycles per second
 - etc.

Equations

1.2.1 Frequency and Period

- $T = \frac{1}{f}$ $f = \frac{1}{T}$

1.2.2 Wavelength

- $\lambda = vT$
- $f = \frac{v}{\lambda}$, since $f = \frac{1}{T} \implies \lambda = \frac{v}{f}$
 - for electromagnetic waves in a vacuum, v=c

1.2.3 Bandwidth

- B = lowest frequency highest frequency

 - -bps
 - or any scalar of the above two

1.2.4 Delay

- $\begin{array}{l} \bullet \ \ \mathrm{propagation} \ \ \mathrm{delay} = \frac{\mathrm{distance}}{\mathrm{speed} \ \mathrm{of} \ \mathrm{light} \ \mathrm{in} \ \mathrm{medium}} \\ \bullet \ \ \mathrm{transmit} \ \ \mathrm{delay} = \frac{\mathrm{packet} \ \mathrm{size}}{\mathrm{bandwidth}} \\ \bullet \ \ \mathrm{queue} \ \ \mathrm{delay} = \mathrm{buffering} \ \ \mathrm{and} \ \ \mathrm{switching} \ \ \mathrm{delays} \ \ \mathrm{at} \ \ \mathrm{nodes} \\ \end{array}$

- total delay = propagation + transmit + queue
- **RTT** or round-trip-time = $2 \times \text{delay}$

1.2.5 Delay Bandwidth Product

- # of bits = $B \times D$
 - e.g., # of bits = $10bps \times 10s = 100b$
- this is the number of bits of data that can be sent before the first bit arrives
- we can send $2(B \times D)$ bits before we receive the first reply bit

1.2.6 Shannon Capacity

- maximum theoretical capacity
- $C = B \log_2 \left(1 + \frac{S}{N}\right)$, where $\frac{S}{N}$ is the signal/noise ratio

 - $\begin{array}{ccc} & \text{high } \frac{S}{N} & \Longrightarrow \text{ good capacity} \\ & \text{low } \frac{S}{N} & \Longrightarrow \text{ poor capacity } \because \log_2(1+0) = 0 \end{array}$
- $\frac{S}{N}$ should be in Db

1.2.7 Redundancy

- redundancy = $\frac{n+r}{r}$
- r redundancy bits must cover n+r bits for errors
 - in other words, 2^r must be able to express n+r bits
 - this means $2^r > n + r$
 - or, $n < 2^r r$

Error Checking 1.3

- VRC
- LRC
- CRC
 - this is usually used before ARQ
- checksum

ARQs

- (A)utomatic (R)epeat Re(Q)uests
- strategy to handle errors detected by the CRC
 - or whatever other detection method
- main types
 - stop and wait
 - sliding window
 - go back N
 - selective reject

2.1Sliding Window

2.1.1 Go Back N

- most commonly used sliding window
- \bullet sequential frames numbered $n \mod N$
- send up to N-1 frames before an ACK is received
- unbounded sequence numbers is a hurdle for sliding window in non-FIFO channels

ACKs and NAKs

- if no error
 - send RR (ACK) for frame[n]
- - send REJ (NAK) for frame[n]
- if frame lost, send a NAK
- if no ACK or NAK received before timeout, assume lost

When Sender Receives a NAK[n]

• resend frame [n] and all frames sent since

When a Sender Receives No ACK or NAK

• go back to the previous ACK and resend all frames sent since

2.1.2 Selective Reject

- \bullet similar to go back N
- BUT we only resend the lost frame
 - out of order!
 - receiver needs sorting logic to store frames after a NAK
- in general, smaller window size

Figure 1: An example of the Selective Reject protocol.

2.2 Stop and Wait

- $\bullet\,$ also called an ${\bf ABP}$
 - $-\ alternating\ bit\ protocol$
 - because the label bits alternate between 0 and 1
- \bullet you can think of it as sliding "window" with a \mathbf{window} size of 1
- $\bullet\,$ works only in FIFO queues
 - suitable for data link layer

2.2.1 Errors in Stop and Wait

- two main types
- frame errors
 - damaged frame
- ullet **ACK** errors
 - damaged acknowledgement

Figure 2: A diagram of the Stop and Wait ARQ protocol.

Frame Errors

Figure 3: A lost frame error in the Stop and Wait ARQ protocol.

- frame is damaged
 - one or more bits have been altered
- \bullet discard the frame
- \bullet source waits for ACK
 - if it doesn't receive one, it will resend

ACK Errors

- frame is received but ACK is damaged
- sender will resend message
- $\bullet\,$ receiver will accept the same message twice
 - so we need to label frames
 - $-\,$ and label ACKs

- use a bit for this
 - ACK[b] acknowledges frame $[b+1 \mod 2]$
 - says receiver is ready for frame[b]

Figure 4: An ACK error in the Stop and Wait ARQ protocol.

2.2.2 Correctness

- satisfies:
 - safety
 - algorithm never gives an incorrect result
 - always results in a "corrected" error
 - liveness
 - never enters a deadlock condition

3 Multiaccess

3.1 LANs

- two types
 - switched
 - lines, multiplexes, switches
 - hierarchical addressing scheme
 - routing tables
 - broadcast
 - no routing
 - flat addressing scheme
 - (M))edium (A))ccess (C))ontrol to coordinate transmissions
 - preferred over switched due to simplicity

3.2 The Problem with Shared Channels

- in point-to-point networks we have signal as a function of one transmitted signal
- in *shared* networks, we may have **more than one** transmission contributing to a signal

- 3.3 **MAC Protocol**
- 3.4 **Uncoordinated Access Control**
- 3.5 Ethernet
- 3.6 Coordinated Access
- 3.6.1 Tree Algorithm
- 3.6.2 Binary Countdown
- 3.6.3 Bitmap
- 4 Wireless
- 4.1 Cellular
- 4.2 Ad Hoc
- 4.2.1 UDG
- 4.2.2 Compass Routing
- 4.2.3 Face Routing
- 4.3 Bluetooth
- **GPS** 5
- 5.1 Three Techniques
- 5.2 **Satellites**
- Routing 6
- 6.1Distance Vector (RIP)
- 6.2 Link State Protocol (LSP)
- **MSTs** 6.3
- 6.4Dijkstra
- IP
- 7.1 IPv4
- 7.1.1 Classes of Address
- Subnets
- 7.1.3 Subnet Masks
- 7.2IPv6
- 7.3DHCP
- 7.4 ARP
- 7.4.1 RARP
- 8 TCP

How it Works (Sliding Window)

9