

*	ENGINEERING NOTE	SECTION	PROJECT	SERIAL-CATEGORY	PAGE
SUBJECT			NAME		
			DATE	REVI	ISION DATE
(3)	Lens Eq. S > 0 is obj. distance (obj. on left)	* 5'0	if same	focul focul focul focul focul side Side (1	O converging
	Magnification	* s'>0 m = -s	it opp.	Side (r	ight)
2	*m>0 >> upright *m<0 >>> inverted *IMI size ratio	ne of ima	age w.r.	t. obj.	
W	hat are allowed diverging lens		9	Θ	
	$\frac{1}{S} + \frac{1}{S'} =$	中司	s, = (+		
	MdN = 5 =	- 1/s 1/s'		$\frac{1}{s'} < \frac{1}{s}$	

A lens is used to make an image; three light rays are drawn out of the infinite number coming from the arrowhead. The image given in this sketch could be seen:

- 1. By placing a screen at the image point.
- 2. Without a screen by looking back at the lens.
- 3. By both techniques (1) and (2).
- 4. Only if the lens is big enough.
- 5. None of the above answers is 100% correct.

A screen is placed at the position of the image, and a "sharp" image appears on the screen. Next, Jennifer moves the screen a <u>SHORT</u> distance <u>TOWARD</u> the lens. The image would appear:

- 1. Smaller and "sharper".
- Smaller and "fuzzier".
- Larger and "sharper".
- 4. Larger and "fuzzier".
- 5. Would disappear.

Finally, Jennifer blocks half the lens, as shown, with a piece of paper. What happens to the image?

- It disappears.
- Only half of it is still seen
- 3. It looks the same, but gets **slightly** dimmer.
- It gets fuzzy.
- 5. It depends on what part of the lens is blocked.

A lens has been hidden behind a blue curtain, but you've been given three light (red) rays used to construct an image. Your task is to determine the type of lens and the type of image.

- 1) Convex (converging) lens, real image
- 2. Convex (converging) lens, virtual image
- 3. Concave (diverging) lens, real image
- 4. Concave (diverging) lens, virtual image

For the figure below, determine the lens and type of image.

- Convex (converging) lens, real image 1.
- 2. 3. Convex (converging) lens, virtual image
- Concave (diverging) lens, real image
- Concave (diverging) lens, virtual image

deno

For the figure below, determine the lens and type of image.

- 1. Convex (converging) lens, real image
- Convex (converging) lens, virtual image 2.
- 3. Concave (diverging) lens, real image
- Concave (diverging) lens, virtual image

ENGINEERING N	OTE	PROJECT		SERIAL-CATEGORY	PAGE
SUBJECT			DATE	REVISIO	N DATE
9 Lensmakers					
Converging					
(Double) - convex	Plano-Co.			x - Meniso	cus
Diverging		index refract	00		
	E	ietract	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
(Double) - Conzave	Pos. R Plane	-Concave	C	orcave-Mer	niscus
side ((teft)	7	side	2 (r	ight	-10
(121)	10	20)	R	c exam	ples
	1	./	IK.	250	
Lensmakers	Eq.	1 =	(n-i)[<u> </u> -	$\frac{1}{R_2}$

ormal for diverging

Suppose a lens produces an image with m=+2.0 when an object is 15 cm from the lens.

- (a) What kind of lens is this?
- (b) What's the focal length of the lens?
- (c) Draw a ray diagram of the situation.

(a) Conversing
$$m = -\frac{s'}{5} = +2.0$$

(b) $\frac{1}{f} = \frac{1}{5} + \frac{1}{5}$, $\frac{1}{5' = -30 \text{ cm}}$ $f = 30$

