Lec 12 多元函数微分学的几何应用

12.1 空间曲线的切线 (tangent) 与法平面 (normal plane)

12.1.1 向径式

定义 12.1 (光滑曲线)

设 Γ 的方程为向径式: $(t)=(x(t),y(t),z(t))\in C^1(I)$, 且 $r'(t)\neq \mathbf{0}$, 称这样的曲线 Γ 为光 滑曲线.

定义 12.2 (逐段光滑曲线)

由有限段光滑曲线连接而成的曲线称为逐段光滑曲线,

定义 12.3 (切向量)

设 $M_0(x(t_0), y(t_0), z(t_0)), M(x(t_0 + \Delta t), y(t_0 + \Delta t), z(t_0 + \Delta t)) \in \Gamma$, 若极限 $\lim_{\Delta t \to 0} \frac{(t_0 + \Delta t) - (t_0)}{\Delta t}$ $= \lim_{\Delta t \to 0} \frac{(x(t_0 + \Delta t) - x(t_0), y(t_0 + \Delta t) - y(t_0), z(t_0 + \Delta t) - z(t_0))}{\Delta t} = (x'(t_0), y'(t_0), z'(t_0))$ $\triangleq \tau$

存在,则记 $\tau = 为 \Gamma$ 在切点 M_0 处切线 T 的切向量.

 $\dot{\mathbf{L}}$ 切向量 $\boldsymbol{\tau}$ 的方向恒指向参数 t 增加的方向, 即恒指向质点运动的运动方向.

由直线点向式知: Γ 上过切点 $M_0(x_0, y_0, z_0)$ 的切线 T 方程为:

$$\frac{x - x_0}{x'(t_0)} = \frac{y - y_0}{y'(t_0)} = \frac{z - z_0}{z'(t_0)},$$

而过 M_0 且垂直于 T 的 Γ 的法平面 π 为:

$$x'(t_0)(x-x_0) = y'(t_0)(y-y_0) = z'(t_0)(z-z_0) = 0,$$

其中,M(x,y,z) 是法平面 π 中的动点坐标组成的点.

12.1.2 交面式

设 Γ 的交面式:
$$\begin{cases} F(x,y,z)=0, \\ G(x,y,z)=0; \end{cases}$$
 其中, $F,G\in C^1$ 且 $\frac{\partial(F,G)}{\partial(y\partial z)}\neq 0$, 依隐函数组存在定理,

设
$$\Gamma$$
 的交面式:
$$\begin{cases} F(x,y,z) = 0, \\ G(x,y,z) = 0; \end{cases}$$
 其中, $F,G \in C^1$ 且 $\frac{\partial(F,G)}{\partial(y\partial z)} \neq 0$, 依隐函数组存在定理, 该方程组唯一确定函数组
$$\begin{cases} x = x, \\ y = y(x), \end{cases}$$
 且 $y'(x) = \frac{\partial(F,G)}{\partial(x\partial z)} \bigg/ \frac{\partial(F,G)}{\partial(y\partial z)}, z'(x) = \frac{\partial(F,G)}{\partial(y\partial z)} \bigg/ \frac{\partial(F,G)}{\partial(y\partial z)}. \end{cases}$ $\Rightarrow = (x,y(x),z(x))$ 則 $\tau = (x,y(x),z(x))$ 則 $\tau = (x,y(x),z(x))$ 其 0 此时 Γ 上点 $M_0(x_0,y_0,z_0)$ 处的切线下

 $(x) = (1, y'(x), z'(x)) \neq \mathbf{0}$. 此时, Γ 上点 $M_0(x_0, y_0, z_0)$ 处的切线下 的方程为:

$$\frac{x - x_0}{1} = \frac{y - y_0}{y'(x_0)} = \frac{z - z_0}{z'(x_0)},$$

而过切点 M_0 的法平面 π 为

$$1(x - x_0) + y'(x_0)(y - y_0) + z'(x_0)(z - z_0) = 0$$

$$\sharp + y'(x_0) = \frac{\partial(F, G)}{\partial(x\partial z)} \Big|_{M_0} / \frac{\partial(F, G)}{\partial(y\partial z)} \Big|_{M_0}, z'(x) = \frac{\partial(F, G)}{\partial(y\partial z)} \Big|_{M_0} / \frac{\partial(F, G)}{\partial(y\partial z)} \Big|_{M_0}$$

12.2 曲面 Σ 的切平面与法线 N

12.2.1 隐式曲面

定义 12.4 (光滑曲面)

设曲面 Σ 为隐式曲面 F(x,y,z)=0, 而 $F\in C^1$, 且 $\nabla F=(F_x',F_y',F_z')\neq 0$. 称这样的曲面 Σ 为光滑曲面.

定义 12.5 (逐片光滑曲面)

由有限段光滑曲面连接而成的曲面为逐片光滑曲面.

例如长方体表面,四面体表面均为逐片光滑曲面.

设 $M_0(x_0, y_0, z_0) \in \Sigma$, $\Gamma_1 : 1(t) = (x_1(t), y_1(t), z_1(t))$, $\Gamma_2 : 2(t) = (x_2(t), y_2(t), z_2(t))$ 是 Σ 中 过点 M_0 的任意两条光滑曲线, 从而

$$\begin{cases} F(x_1(t), y_1(t), z_1(t)) \equiv 0 \\ F(x_2(t), y_2(t), z_2(t)) \equiv 0 \end{cases}$$

两边对 t 求导有

$$\begin{cases} F'_x(M_0)x'_1(t) + F'_y(M_0)y'_1(t) + F'_z(M_0)z'_1(t) = 0\\ F'_x(M_0)x'_2(t) + F'_y(M_0)y'_2(t) + F'_z(M_0)z'_2(t) = 0 \end{cases}$$

$$\diamondsuit \boldsymbol{\tau}_1 = (x_1'(t_0), y_1'(t_0), z_1'(t_0)), \boldsymbol{\tau}_2 = (x_2'(t_0), y_2'(t_0), z_2'(t_0), \boldsymbol{n}(M_0) = (F_x'(M_0), F_y'(M_0), F_z'(M_0)) = (F_x'(M_0), F_y'(M_0), F_z'(M_0), F_z$$

 (F'_x, F'_y, F'_z) $\bigg|_{M_0} = \nabla F \bigg|_{M_0}$,则 $\mathbf{n}(M_0) = \nabla F \bigg|_{M_0} \neq \mathbf{0}$,且 $\mathbf{n}(M_t) = \boldsymbol{\tau}_1 \times \boldsymbol{\tau}_2$. 即向量 $\mathbf{n}(M_0)$ 是由 $\boldsymbol{\tau}_1, \boldsymbol{\tau}_2$ 确定的平面 π 的法向量. 由 Γ_1, Γ_2 在 Σ 内的任意性可知, Σ 内过点 M_0 的所有曲线 Γ 在 M_0 处的切线都共面,由过点 M_0 的所有切线组成的平面 π 称之为曲面 Σ 在点 M_0 处的切平面,由点法式知, π 的方程为:

$$F_x'(M_0)(x-x_0) + F_y'(M_0)(y-y_0) + F_z'(z-z_0) = 0$$

或

$$\nabla F\big|_{M_0} \cdot \overrightarrow{M_0M} = 0$$

M(x,y,z) 是切平面 π 中的动点, $\overrightarrow{M_0M} = (x-x_0,y-y_0,z-z_0)$,过切点 M_0 垂直于切平面 π 的直线——法线 N 的方程:

$$\frac{x - x_0}{F_x'(M_0)} = \frac{y - y_0}{F_y'(M_0)} = \frac{z - z_0}{F_z'(M_0)}$$

或

$$\nabla F \bigg|_{M_0} imes \overrightarrow{M_0 M} = \mathbf{0}$$

12.2.2 显式曲面

当曲面为显式曲面

$$\Sigma : z = f(x, y) \in C^1(D)$$

时, 设 $M_0(x_0, y_0, z_0) \in \Sigma$, 则 $z_0 = f(x_0, y_0) = f(P_0)$, $P_0(x_0, y_0)$. 此时

$$F(x,y,z) = f(x,y) - z, \mathbf{n}(M_0) = (F'_x, F'_y, F'_z) \Big|_{M_0} = (f'_x(P_0), f'_y(P_0), -1) \neq \mathbf{0}$$

. 过点 $M_0(x_0, y_0, z_0)$ 的切平面 $\pi: f_x'(P_0)(x - x_0) + f_y'(p_0)(y - y_0) - (z - z_0) = 0$. 而 $f_x'(P_0)(x - x_0) + f_y'(p_0)(y - y_0)$ 恰好是 z = f(x, y) 在 $P_0(x_0, y_0)$ 点的全微分 $\mathrm{d}z\big|_{P_0}$.

设 P(x,y) 是 $P_0(x_0,y_0)$ 邻近的一点, $P(x,y) \in D$. 则曲面 z = f(x,y) 的 $\Delta z = f(P) - f(P_0) = f'_x(P_0)(x-x_0) + f'_y(P_0)(y-y_0) + o(\rho)$, $\rho = |\overrightarrow{P_0P}|$, 当 ρ 较小时,有曲面 $\Delta z \approx f'_x(P_0)(x-x_0) + f'_y(P_0)(y-y_0) = dz|_{P_0} = 切平面的\Delta z^1$. 即在点 M_0 的局部范围内,曲面 Σ 可用点 M_0 的切平面 π 来代替. 即局部可线性化.

$$\Delta z \approx f_x'(P_0)(x-x_0)^1 + f_y'(P_0)(y-y_0)^1, \rho > 0$$
比较小时成立

12.2.3 向径式

设 Σ 的向径式:

$$\Sigma: (u, v) = (x(u, v), y(u, v), z(u, z)) \in C^1(D_{u,v1})$$

 $^{^1}$ 正如我们所提到过的,不建议将 $\mathrm{d}z\big|_{P_0}$ 理解成线性主部 $f_x'(P_0)(x-x_0)+f_y'(P_0)(y-y_0)$,更准确的表达应当是 $\mathrm{d}z\big|_{P_0}(x-x_0,y-y_0)=f_x'(P_0)(x-x_0)+f_y'(P_0)(y-y_0)$ 类似这样的表述,当然这里领会精神即可

且
$$\boldsymbol{\tau}_u = v(u,v) = (x'_u, y'_u, z'_u) \neq \mathbf{0}, \boldsymbol{\tau}_v = v(u,v) = (x'_v, y'_v, z'_v) \neq \mathbf{0}$$
 则过点 $M_0(x_0, y_0, z_0)$ 的切平

且
$$\boldsymbol{\tau}_{u} = v(u,v) = (x'_{u}, y'_{u}, z'_{u}) \neq \boldsymbol{0}, \boldsymbol{\tau}_{v} = v(u,v) = (x'_{v}, y'_{v}, z'_{v}) \neq \boldsymbol{0}$$
 则过点 $M_{0}(x_{0}, y_{0}, z_{0})$ 的切平 面 $\boldsymbol{\pi}$ 的法向量 $\boldsymbol{n}(M_{0}) = \boldsymbol{\tau}_{u} \times \boldsymbol{\tau}_{v} \Big|_{M_{0}} = \begin{vmatrix} \boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\ x'_{u} & y'_{u} & z'_{u} \\ x'_{v} & y'_{v} & z'_{v} \end{vmatrix}_{M_{0}} = \left(\frac{\partial(y, z)}{\partial(u\partial v)}, \frac{\partial(z, x)}{\partial(u\partial v)}, \frac{\partial(x, y)}{\partial(u\partial v)}\right)$

$$\frac{\partial(y,z)}{\partial(u\partial v)}\bigg|_{M_0} \cdot (x-x_0) + \left. \frac{\partial(z,x)}{\partial(u\partial v)} \right|_{M_0} \cdot (y-y_0) + \left. \frac{\partial(x,y)}{\partial(u\partial v)} \right|_{M_0} \cdot (z-z_0) = 0$$

或用向量式表示为

$$oldsymbol{(oldsymbol{ au}_u imes oldsymbol{ au}_v)}igg|_{M_0} \cdot \overrightarrow{M_0 M} = 0$$

M(x,y,z) 是切平面 π 中的动点, 过点 M 且垂直于 π 的法线 $N:(\boldsymbol{\tau}_u\times\boldsymbol{\tau}_v)$ \times $\overrightarrow{M_0M}=\mathbf{0}$

12.3 例题

例 12.1 证明: 二次曲面 $\Sigma: Ax^2 + By^2 + Cz^2 + Dx + Ey + Fz + G = 0$ 在其任一点 $M_0(x_0, y_0, z_0)$ 处的切平面 π 的方程为

$$Ax_0x + By_0y + Cz_0z + D\frac{x_0 + x}{2} + E\frac{y_0 + y}{2} + F\frac{z_0 + z}{2} + G = 0$$

例 12.2 证明: 二次曲线 $\Gamma: Ax^2 + B^2 + Cx + Dy + E = 0$ 上点 $M_0(x_0, y_0)$ 处的切线 T 的方程为 $Ax_0x + By_0y + C\frac{x_0 + x}{2} + D\frac{y_0 + y}{2} + E = 0$

作业 $\exp(4:3,4,8(1)(4),9,11,16(1),17(2))$.