

Instituto Tecnológico de Culiacán

Inteligencia Artificial

Equipo:

Uriarte Lopez Brandon Gael Ramos Matunaga Raúl Alejandro

Carrera:

Ingeniería en Sistemas Computacionales

Docente:

Mora Felix Zuriel Dathan

APRENDIZAJE AUTOMATICO

aprendizaje automático o machine learning es una rama de la inteligencia artificial que se enfoca en el desarrollo de algoritmos y modelos que permiten a las computadoras aprender a realizar tareas específicas a partir de datos, sin ser programadas explícitamente para ello. En lugar de seguir instrucciones paso a paso, los sistemas de aprendizaje automático identifican patrones en los datos y utilizan esos patrones para hacer predicciones o tomar decisiones.

PROCESOS DE APRENDIZAJE AUTOMATICO

ADQUISICION DE DATOS

En el aprendizaje automático, la adquisición de datos es un paso fundamental, ya que la calidad y cantidad de los datos determinan directamente el rendimiento del modelo. Los datos son la base sobre la cual el programa 'aprende' y genera respuestas o predicciones. Algunas de las formas más comunes de obtener datos son:

1. Bases de datos:

- o Datos estructurados almacenados en sistemas de gestión de bases de datos.
- o Ejemplo: Información de clientes en una empresa.

2. APIs:

- Conexión a servicios externos que proporcionan datos en tiempo real o históricos.
- Ejemplo: Datos meteorológicos, precios de acciones, redes sociales (Twitter, Facebook).

3. Sensores y dispositivos IoT:

- Datos generados por sensores, cámaras, micrófonos, wearables, etc.
- Ejemplo: Datos de temperatura, humedad, movimiento, o imágenes capturadas por cámaras.

4. Archivos y documentos:

- o Datos almacenados en formatos como CSV, Excel, JSON, XML, o documentos de texto.
- Ejemplo: Registros de ventas, informes médicos, transcripciones de audio.

5. Web scraping:

- o Extracción automatizada de datos de sitios web.
- Ejemplo: Precios de productos en tiendas online, reseñas de usuarios.

6. Encuestas y formularios:

- o Datos recopilados directamente de usuarios a través de cuestionarios o formularios en línea.
- Ejemplo: Encuestas de satisfacción al cliente.

PROCESOS DE DATOS

El **procesamiento de datos** es una etapa crucial en el aprendizaje automático, ya que los datos crudos suelen ser incompletos, inconsistentes o no están en un formato adecuado para ser utilizados directamente por los modelos. Los pasos para los procesos de datos son:

1. Limpieza de datos:

- o Objetivo: Eliminar errores, inconsistencias y datos irrelevantes.
- Acciones comunes:
 - Manejo de valores faltantes (imputación o eliminación).
 - Corrección de errores tipográficos o formatos incorrectos.
 - Eliminación de datos duplicados.

2. Transformación de datos:

- o Objetivo: Convertir los datos a un formato adecuado para el modelo.
- Acciones comunes:
 - Normalización o estandarización de valores numéricos.
 - Codificación de variables categóricas.
 - Reducción de dimensionalidad.

3. Ingeniería de características:

- Objetivo: Mejorar el rendimiento del modelo creando o seleccionando características relevantes.
- Acciones comunes:
 - Creación de nuevas variables a partir de las existentes.
 - Selección de características más importantes para reducir la complejidad del modelo.
 - Transformaciones matemáticas sobre los datos.

4. Integración de datos:

- Objetivo: Unificar datos provenientes de múltiples fuentes para tener un conjunto de datos coherente.
- Acciones comunes:
 - Fusión de bases de datos con información complementaria.
 - Resolución de discrepancias entre fuentes.
 - Conversión a un formato estándar para facilitar el análisis y entrenamiento del modelo.

5. Muestreo de datos:

- Objetivo: Seleccionar una parte representativa de los datos para mejorar la eficiencia y precisión del modelo.
- Acciones comunes:
 - División del conjunto de datos en entrenamiento, validación y prueba.
 - Uso de muestreo aleatorio o estratificado para mantener la representatividad.
 - Equilibrio de clases en problemas de clasificación.

ENTRENAMIENTO DEL MODELO

El entrenamiento del modelo Consiste en enseñarle al modelo a reconocer patrones en los datos para que pueda hacer predicciones o tomar decisiones. Los pasos para entrenar el modelo son:

- 1. Selección del algoritmo de aprendizaje:
 - o Dependiendo del problema, se elige un algoritmo adecuado, como:
 - Regresión lineal o logística.
 - Árboles de decisión o Random Forest.

- Redes neuronales.
- 2. División del conjunto de datos:
 - Se separan los datos en:
 - Entrenamiento: El modelo aprende a partir de estos datos.
 - Validación: Se usa para ajustar hiperparámetros y prevenir sobreajuste.
 - Prueba: Evalúa el desempeño final del modelo en datos nunca antes visto.
- 3. Ajuste de parámetros del modelo:
 - Durante el entrenamiento, el modelo ajusta sus parámetros internos mediante un proceso iterativo.
 - Se usa una función de costo o pérdida para medir el error y se optimiza usando algoritmos como:
 - Descenso de gradiente.
 - Backpropagation.
- 4. Evaluación y ajuste:
 - Se mide el desempeño del modelo con métricas como:
 - Precisión, Recall, F1-score.
 - Error cuadrático medio.
 - Si el rendimiento no es bueno, se pueden ajustar hiperparámetros, cambiar la arquitectura del modelo o usar técnicas como regularización.
- 5. Generalización y prueba final:
 - Se evalúa el modelo en el conjunto de prueba para asegurarse de que funciona bien en datos nuevos.
 - Si es necesario, se vuelve a entrenar con ajustes.

EVALUACION DEL MODELO

La evaluación del modelo es el proceso de medir qué tan bien funciona un modelo de aprendizaje automático en datos nuevos. Su objetivo es asegurarse de que el modelo generaliza bien y no solo memoriza los datos de entrenamiento.

IMPLEMENTACION DEL MODELO

La **implementación del modelo** es la etapa final en el proceso de aprendizaje automático, donde el modelo entrenado y evaluado se despliega en un entorno productivo para que pueda ser utilizado en aplicaciones reales. Esta fase es crucial porque permite que el modelo genere valor al hacer predicciones o tomar decisiones automáticamente.

SIMILITUDES Y DIFERENCIAS ENTRE LOS COMPONENTES DEL MODELO COGNITIVO Y LAS ETAPAS DEL APRENDIZAJE AUTOMÁTICO.

Similitudes:

1. Procesamiento de Información:

- Modelo Cognitivo: En el modelo cognitivo, la mente humana procesa la información a través de diferentes etapas, como la percepción, atención, memoria y razonamiento. Cada una de estas etapas influye en cómo las personas adquieren y aplican el conocimiento.
- Aprendizaje Automático: En aprendizaje automático, las máquinas procesan grandes cantidades de datos para aprender patrones y hacer predicciones o decisiones sin intervención humana directa. En ambos, el objetivo es aprender de los datos o experiencias previas para mejorar el desempeño a lo largo del tiempo.

2. Adquisición de Conocimiento:

- Modelo Cognitivo: En este modelo, el conocimiento se adquiere mediante la experiencia y la interacción con el entorno, pasando por etapas como la atención (selección de información relevante) y la memoria (almacenamiento y recuperación de información).
- Aprendizaje Automático: En el aprendizaje automático, las máquinas "adquieren conocimiento" a través de ejemplos (datos etiquetados o no etiquetados) que les permiten ajustar sus parámetros internos para predecir o clasificar nuevos datos.

3. Mejora Iterativa:

- Modelo Cognitivo: A lo largo de la experiencia humana, el aprendizaje es un proceso continuo de ajuste, con la práctica y la retroalimentación permitiendo la mejora en la toma de decisiones y en la resolución de problemas.
- Aprendizaje Automático: Los algoritmos de aprendizaje automático mejoran iterativamente a medida que procesan más datos. Cada ciclo de entrenamiento ajusta los parámetros para reducir el error en las predicciones o clasificaciones.

Diferencias:

1. Origen y Aplicación:

- Modelo Cognitivo: Se basa en los procesos mentales humanos, como la percepción, la memoria, el razonamiento y la resolución de problemas. Su enfoque está en la simulación de cómo los seres humanos piensan y aprenden.
- Aprendizaje Automático: Se enfoca en construir algoritmos y modelos que permiten a las máquinas aprender de datos. A diferencia del modelo cognitivo, no imita directamente la forma de pensar humana, sino que se concentra en maximizar el rendimiento de una tarea específica.

2. Interacción con el Entorno:

- Modelo Cognitivo: Los seres humanos interactúan activamente con su entorno, interpretando y adaptando su conocimiento en tiempo real. La percepción humana es muy flexible y puede adaptarse a nuevas situaciones con facilidad.
- Aprendizaje Automático: Las máquinas requieren datos estructurados y etiquetados para aprender. Aunque algunas técnicas, como el aprendizaje por refuerzo, permiten que la máquina aprenda interactuando con su entorno, la flexibilidad y capacidad de adaptación es más limitada que en los humanos.

3. Capacidad de Interpretación:

- Modelo Cognitivo: Los seres humanos no solo procesan datos, sino que también comprenden y dan sentido a esos datos de manera contextual y abstracta. El razonamiento y la intuición juegan un papel clave.
- Aprendizaje Automático: Aunque los modelos de aprendizaje automático pueden hacer predicciones precisas, su capacidad para interpretar o "entender" el significado de los datos es limitada. El aprendizaje automático no tiene una comprensión consciente o intuitiva del contexto

Bibliografia

https://sdindustrial.com.mx/blog/adquisicion-de-datos/

https://datos.gob.es/es/blog/como-preparar-un-conjunto-de-datos-para-machine-learning-y-analisis

https://datanorth.ai/blog/what-is-data-preparation

https://www.aprendemachinelearning.com/7-pasos-machine-learning-construir-maquina/

https://aprendeia.com/sobreajuste-y-subajuste-en-machine-learning/