অধ্যায় - ৭

কার্ড ও বাল্বের সাহায্যে বাইনারি মান নির্ণয় ৭ম অধ্যায় (১৫১ - ১৫৩ পৃষ্ঠা)

donate us on bKash 01916973743

কার্ড ও বাল্বের সাহায্যে বাইনারি মান নির্ণয়

দলগত কাজ: তোমরা ৪ জনের দল তৈরি করে ০ থেকে ১৫ পর্যন্ত সংখ্যাগুলোর বাইনারি মান কার্ড এবং বাল্বের সাহায্যে নির্ণয় করো।

সমাধানঃ

কার্ডের সাহায্যে ০ থেকে ১৫ সংখ্যাগুলোর বাইনারি মান নির্ণয়ঃ

			,		5 0
সংখ্যা	সংখ্যা প্রতি সারিতে ৪টি করে কার্ড এবং কার্ড অনুসারে ডট, অন কার্ডগুলো হলুদ বাইনারি এবং অফ কার্ডগুলো অফ হোয়াইট দেখিয়ে অন এর জন্য ১ ও অফ এর জন্য ০ ধরা হয়েছে।				বাইনারি মান
0	••••	••	••	•	0000
	••••	••		· ·	0000
			-		
	0	0	0	0	
2	••••	••	••	•	000%
	••••	••			
	0	0	0	2	
২	••••	••	••	•	00%0
	••••	••			
	0	0	2	0	
9	••••	••	••	•	00%
	••••	••			
	0	0	2	2	
8	••••	••	••	•	0\$00
	••••	••			
	0	2	0	0	
¢	••••	••	••	•	0505
	••••	••			
	0	2	0	2	

৬	••••	••	••	•	0220
	••••	••			
	0	5	2	0	
٩	••••	••	••	•	0222
	••••	••			
	0	5	>	>	
Ъ	••••	••	••	•	2000
	••••	••			
	2	0	0	0	
৯	••••	••	••	•	2002
	••••	••			
	2	0	0	>	
\$0	••••	••	••	•	2020
	••••	••			
	2	0	>	0	
22	••••	••	••	•	2022
	••••	••			
	>	0	>	>	
১২	••••	••	••	•	? }00
	••••	••			
	2	>	0	0	
20	••••	••	••	•	? ? 02
	••••	••			
	>	>	0	>	
> 8	••••	••	••	•	
	••••	••			
	>	>	>	0	2220
\$৫	••••	••	••	•	2222
	••••	••			
	2	2	2	>	

বাল্বের সাহায্যে ০ থেকে ১৫ সংখ্যাগুলোর বাইনারি মান নির্ণয়ঃ

উপরের চিত্রে ০ এর জন্য একটাও বাল্ব অন থাকে না, অফ বাল্বের জন্য ০ ধরে পাই ০০০০।

অতএব, ০ এর বাইনারি মান = ০০০০।

উপরের চিত্রে ১ এর জন্য শুধুমাত্র ১ম বাল্ব অন থাকে। অন বাল্বের জন্য ১ ও অফ বাল্বের জন্য ০ ধরে পাই ০০০১।

অতএব, ১ এর বাইনারি মান = ০০০১।

উপরের চিত্রে ২ এর জন্য শুধুমাত্র ২য় বাল্ব অন থাকে। অন বাল্বের জন্য ১ ও অফ বাল্বের জন্য ০ ধরে পাই ০০১০।

অতএব, ২ এর বাইনারি মান = ০০১০।

উপরের চিত্রে ৩ এর জন্য শুধুমাত্র ১ম ও ২য় বাল্ব অন থাকে। অন বাল্বের জন্য ১ ও অফ বাল্বের জন্য ০ ধরে পাই ০০১১।

অতএব, ৩ এর বাইনারি মান = ০০১১।

উপরের চিত্রে ৪ এর জন্য শুধুমাত্র ৩য় বাল্ব অন থাকে। অন বাল্বের জন্য ১ ও অফ বাল্বের জন্য ০ ধরে পাই ০১০০।

অতএব, ৪ এর বাইনারি মান = ০১০০।

উপরের চিত্রে ৫ এর জন্য শুধুমাত্র ৩য় ও ১ম বাল্ব অন থাকে। অন বাল্বের জন্য ১ ও অফ বাল্বের জন্য ০ ধরে পাই ০১০১। অতএব, ৫ এর বাইনারি মান = ০১০১।

উপরের চিত্রে ৬ এর জন্য শুধুমাত্র ৩য় ৪ ২য় বাল্ব অন থাকে। অন বাল্বের জন্য ১ ৪ অফ বাল্বের জন্য ০ ধরে পাই ০১১০।

অতএব, ৬ এর বাইনারি মান = ০১১০।

উপরের চিত্রে ৭ এর জন্য শুধুমাত্র ৩য়, ২য় ও ১ম বাল্ব অন থাকে। অন বাল্বের জন্য ১ ও অফ বাল্বের জন্য ০ ধরে পাই ০১১১।

অতএব, ৭ এর বাইনারি মান = ০১১১।

উপরের চিত্রে ৮ এর জন্য শুধুমাত্র ৪র্থ বাল্ব অন থাকে। অন বাল্বের জন্য ১ ও অফ বাল্বের জন্য ০ ধরে পাই ১০০০।

অতএব, ৮ এর বাইনারি মান = ১০০০।

উপরের চিত্রে ৯ এর জন্য শুধুমাত্র ৪র্থ ও ১ম বাল্ব অন থাকে। অন বাল্বের জন্য ১ ও অফ বাল্বের জন্য ০ ধরে পাই ১০০১। অতএব, ৯ এর বাইনারি মান = ১০০১।

উপরের চিত্রে ১০ এর জন্য শুধুমাত্র ৪র্থ ও ২য় বাল্ব অন থাকে। অন বাল্বের জন্য ১ ও অফ বাল্বের জন্য ০ ধরে পাই ১০১০।

অতএব, ১০ এর বাইনারি মান = ১০১০।

উপরের চিত্রে ১১ এর জন্য শুধুমাত্র ৪র্থ, ২য় ও ১ম বাল্ব অন থাকে। অন বাল্বের জন্য ১ ও অফ বাল্বের জন্য ০ ধরে পাই ১০১১।

অতএব, ১১ এর বাইনারি মান = ১০১১।

উপরের চিত্রে ১২ এর জন্য শুধুমাত্র ৪র্থ ও ৩য় বাল্ব অন থাকে। অন বাল্বের জন্য ১ ও অফ বাল্বের জন্য ০ ধরে পাই ১১০০।

অতএব, ১২ এর বাইনারি মান = ১১০০।

উপরের চিত্রে ১৩ এর জন্য শুধুমাত্র ৪র্থ, ৩য় ও ১ম বাল্ব অন থাকে। অন বাল্বের জন্য ১ ও অফ বাল্বের জন্য ০ ধরে পাই ১১০১। অতএব, ১৩ এর বাইনারি মান = ১১০১।

উপরের চিত্রে ১৪ এর জন্য শুধুমাত্র ৪র্থ, ৩য় ও ২য় বাল্ব অন থাকে। অন বাল্বের জন্য ১ ও অফ বাল্বের জন্য ০ ধরে পাই ১১১০।

অতএব, ১৪ এর বাইনারি মান = ১১১০।

উপরের চিত্রে ১৫ এর জন্য চারটি বাল্বই অন থাকে। অন বাল্বের জন্য ১ ও অফ বাল্বের জন্য ০ ধরে পাই ১১১১।

অতএব, ১৫ এর বাইনারি মান = ১১১১।

আরেকটু ভেবে দেখিঃ

তুমি যদি বিভিন্ন বিট সংখ্যার জন্য সর্ববামের কার্ডে ডটের সংখ্যা এবং ঐ সংখ্যক বিট দিয়ে সর্বোচ্চ সম্ভব সংখ্যা নির্ণয় করতে পারো, তবে আগের পৃষ্ঠার সমস্যাগুলো সমাধান করা তোমার জন্য আরও সহজ হয়ে যাবে। নিচের ছকটি পূরণ করে সহজেই উত্তরগুলো লিখতে পারো। কয়েকটি তোমার জন্য পূরণ করে দেওয়া আছে।

বিট সংখ্যা (কার্ড সংখ্যা)	সর্ববামের ডটের সংখ্যা	সর্বোচ্চ কোন দশমিক সংখ্যা তৈরি
		করা সম্ভব
>	>	>
٤	х	9
O	8	٩
8	৮	> &
¢	১৬	৩১
৬	७२	৬৩
٩	৬8	১২৭
Ъ	ን২৮	২ ৫৫

উপরের ছকটি মনোযোগ দিয়ে পর্যবেক্ষণ করো। এবার বলো, যে কোন একটি বিট সংখ্যা ও তার জন্য সর্বোচ্চ কোন দশমিক সংখ্যা তৈরি করা সম্ভব এদের মধ্যে কি কোন সম্পর্ক আছে? কোন সূত্র বানাতে পারবে সহজেই বিট সংখ্যা থেকে সর্বোচ্চ দশমিক সংখ্যা বের করার জন্য?

সমাধানঃ

একটি বিট সংখ্যা ও তার জন্য যে সর্বোচ্চ দশমিক সংখ্যা তৈরি করা সম্ভব এদের মধ্যে একটি সম্পর্ক আছে। সহজেই বিট সংখ্যা থেকে সর্বোচ্চ দশমিক সংখ্যা বের করার জন্য আমি একটি সূত্র বানাতে পেরেছি। সূত্রটি নিন্মরুপঃ

২^{বিট সংখ্যা} – ১ = সর্বোচ্চ দশমিক সংখ্যা।

উদাহরণঃ

বিট সংখ্যা ১ হলে, সর্বোচ্চ দশিমক সংখ্যা = ২ 5 – ১ = ২-১ = ১।

বিট সংখ্যা ২ হলে, সর্বোচ্চ দশিমক সংখ্যা = $2^2 - 3 = 8 - 3 = 91$

বিট সংখ্যা ৩ হলে, সর্বোচ্চ দশিমক সংখ্যা = ২ $^{\circ}$ – ১ = ৮-১ = ৭।

এভাবে সকল ক্ষেত্রে এই সূত্র প্রযোজ্য হবে।

শিখনঃ ২য় বিট পর্যন্ত ব্যবহার করে কী কী সংখ্যা তৈরি করা যায়?

সমাধানঃ

২য় বিট পর্যন্ত ব্যবহার করে গঠিত বাইনারি সংখ্যাগুলো হলোঃ

00, 05, 50, 551

অর্থাৎ ২য় বিট পর্যন্ত ব্যবহার করে মোট ৪টি সংখ্যা তৈরি করা যায়।

শিখনঃ বিট ১-৮ পর্যন্ত ব্যবহার করে মোট কতটি সংখ্যা পাওয়া যায় তার ছকটি পূরণ করো।

সমাধানঃ

বিট সংখ্যা (কার্ড সংখ্যা)	মোট কতটি সংখ্যা পাওয়া সম্ভব (০ সহ)
>	× ×
¥	8

v	৮
8	১৬
¢	৩২
৬	৬8
٩	১২৮
Ъ	২৫৬

শিখন ফলাফলঃ এই নিয়ম ২^{বিট সংখ্যা} = মোট গঠিত সংখ্যা।

If you think this math solution is helpful for you..

Then please donate us for more update

bKash Personal

01916973743