

A Note About This Class

This Class Covers

- Deep technical details
 - Docker Swarm on EC2
 - o Amazon ECS
 - o Amazon EKS
- CI/CD
 - CodePipeline
 - CodeBuild
 - o Amazon ECR

This Class Does Not Cover

- Fundamentals
- General architecture
- Every service...

For More In-Depth Training

- AWS Fundamentals
- AWS Linux Operations
- Networking in AWS
- AWS Certified Cloud Practitioner CVC
- AWS Certified Solutions Architect Crash Course

Containers Overview

Review of containers
Scheduling and Orchestration
Container networking
Service discovery

Terms

Host

- Virtual or bare metal
- Provides varying levels of CPU, memory, network IO, etc

Cluster

Collection of hosts

Registry

Repository for container images

Service

- Specifies set number of container replicas
- Generally long-lived
- May include load balancer

Schedulers

- Determine optimal placement for containers among hosts
- Replace failed containers in a service
- Rebalance containers when host fails

Containers on Amazon EC2

Container

- Runs a process
 (can fork background processes)
- Provides isolation between processes
- Shares the host
 - o OS kernel
 - o CPU & memory
 - Network and disk IO
- Allows efficient use of available compute resources

Container Scheduling and Orchestration

Schedulers track

- State of the cluster
- Current placement of containers
- Available resources per host
- May coordinate with service discovery

Available Schedulers

- Docker Swarm
- ECS
- Kubernetes (K8s)
- Mesos

Deployments Simplified

- Cluster provides single pool of resources
- Containers are deployed to the cluster
- Relieves the burdens of container placement

Service Discovery

How do we find a service?

- Could have many container replicas
- Each at different IP
- And different port
- Could have multiple versions running concurrently

Service Discovery Options

- Elastic load balancer
- Route 53 auto naming
- Consul
- Etcd
- Zookeeper

Service Discovery with Amazon ECS

- ELB
 - Consistent DNS endpoint
 - ALB supports path-based routing
- ECS Service Discovery
 - Uses Route 53 Auto Naming
 - Registry of service names
 - Names mapped to set of DNS records
 - Supports health checks

CI/CD Pipelines

Image registry

Build tools

Pipelines

Container Images

- Form the basis of containers (You start with the image)
- Contains process and all dependencies
- Are the deployment artifact
- Replace, by including
 - o JAR,EAR,WAR
 - Node, php, python
- Need to be built
 - o based upon another image

Container Image Registry

- Is a repository for images
 - o therefore your artifact repo
- Public options include
 - o Dockerhub
 - o Quay.io
 - o Artifactory
- Private options include
 - o Amazon ECR
 - o DIY
 - EC2
 - On-premises

Build Servers/Services

How does the image get created?

- Build servers
 - o Jenkins
 - o Etc
- Build services
 - Bitbucket pipelines
 - AWS CodeBuild
 - o Dockerhub automated builds
 - o CircleCl
 - o Travis-CI

CI/CD with AWS Native Services

CI/CD with AWS Services

Docker Swarm on EC2

Terms

Options

Discussion

Docker Swarm on EC2

- Two auto scaling groups
 - o 1 for manager nodes
 - o 1 for worker nodes
- System containers run on nodes
 - o Don't change them!
- Services with ports will be exposed through Classic Load Balancer

- Service
 - Single container app
 - Can be replicated
- Stack
 - Collection of services
 - Mult-container apps

Docker Swarm for EC2

https://docs.docker.com/docker-for-aws/

Kubernetes on EC2

Terms

Options

Discussion

Kubernetes on EC2

- Numerous options
 - o Conjure-up
 - Kubernetes operations (kops)
 - o CoreOS Tectonic
- Terms
 - o Pod
 - ReplicaSet
 - o Service
 - o Deployment

Kubernetes on EC2

https://github.com/kubernetes/kops/blob/master/docs/aws.md

Must have kops and kubectl installed

Macs can use homebrew

Elastic Container Service

Terms

Container Networking

Demo: Building and Deploying

ECS Terms

Cluster

- Logical grouping of services
- May include EC2 instances

Service

- Maintains long-running tasks
- Can coordinate with ELB

Task

- Collection of containers
- o Can be deployed with/without Service

Task Definition

- JSON template
- Defines containers
- Specify CPU, memory, volumes

Elastic Container Registry

Private docker image repositories

ECS Networking Modes

none

- No port mappings
- No external connectivity

host

- Container ports mapped directly to host
- o Limits one container per host
- Better performance than bridge

• bridge

- Virtualized by docker engine
- o Container ports map to *other* ports on host
- Allows multiple containers on same host

awsvpc

- Each task gets it own ENI
- o ENI shared by all containers in task
- Only option supported by Fargate
- EC2 instance type limits number of ENIs
 - c4.large: 3 ENIs
 - Default ENI (eth0) counts as 1

ECS Architecture

ECS Build Steps

- 1. Create network stack
- 2. Create Internet stack
- 3. Find the latest ECS optimized AMI
- 4. Create auto scaling group and ECS cluster
- 5. Create application load balancer
- 6. Create ECS service with task definition (per service)
- 7. Create CICD pipeline (per service)

Private Docker Registries

Terms

Architecture

Demo: Building and Deploying

Public or Managed Registries

- Dockerhub
- AWS Elastic Container Registry (ECR)
- Codefresh.io
- Quay.io ("key")
- Artifactory
- Google Container Registry

- Benefits
 - o Managed
 - Some access control
- Cons
 - You don't control the registry itself
 - Can't use your own certificates

Private Registries

- Provision a server
- Install Docker
- Configure certs for TLS
- Configure storage volume
- Run registry container

https://docs.docker.com/registry/

- Benefits
 - You control the registry
 - You control all access
 - Use your own certificates (TLS)
- Cons
 - You are responsible for
 - HA
 - Fault tolerance
 - Durability
 - Security

Docker Trusted Registry

- Manage users via LDAP or AD
- Role Based Access Control
 - o Fine grained access
- Built-in security scanner
- Image signing (DevSecOps!)

https://docs.docker.com/ee/dtr/

https://docs.docker.com/engine/security/trust/content_trust/

- Benefits
 - Docker content trust
 - Verify publisher
 - Verify data integrity
 - Trust managed through keys
- Cons
 - More complex
 - o You are responsible for
 - HA
 - Fault tolerance
 - Durability
 - Security

ECS for Kubernetes (EKS)

Terms

Architecture

Demo: Building and Deploying

EKS Architecture

Useful links

https://docs.aws.amazon.com/AmazonECR/latest/userguide/ECR_GetStarted.html

https://jfrog.com/artifactory/

https://quay.io/

https://technologyconversations.com/2015/09/08/service-discovery-zookeeper-vs-etcd-vs-consul/

https://medium.com/@ArmandGrillet/comparison-of-container-schedulers-c427f4f7421

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service-discovery.html

https://platform9.com/blog/compare-kubernetes-vs-mesos/

https://www.infoworld.com/article/3268073/containers/what-is-kubernetes-container-orchestration-explained.html

https://technologyconversations.com/2017/12/14/what-is-a-container-scheduler/

https://rhelblog.redhat.com/2015/07/29/architecting-containers-part-1-user-space-vs-kernel-space/

https://medium.com/containers-on-aws/choosing-your-container-environment-on-aws-with-ecs-eks-and-fargate-cfbe416ab1a

https://aws.amazon.com/blogs/mt/the-right-way-to-store-secrets-using-parameter-store/

https://docs.aws.amazon.com/codebuild/latest/userguide/build-env-ref-available.html

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-networking.html

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-optimized_AMI.html

https://blog.giantswarm.io/understanding-basic-kubernetes-concepts-using-deployments-manage-services-declaratively/

https://thenewstack.io/about-etcd-the-distributed-key-value-store-used-for-kubernetes-googles-cluster-container-manager/

