Solutions to J. Peter May's A Concise Course in Algebraic Topology

Patrick Borse

Abstract. This document contains solutions to the problems of J. Peter May's A Concise Course in Algebraic Topology.

Contents

Chapter 1.	The fundamental group and some of its applications	4
Chapter 2.	Categorical language and the van Kampen theorem	5
Chapter 3.	Covering spaces	6
Chapter 4.	Graphs	7
Chapter 5.	Compactly generated spaces	8
Chapter 6.	Cofibrations	9
Chapter 7.	Fibrations	10
Chapter 8.	Based cofiber and fiber sequences	11
Chapter 9.	Higher homotopy groups	12
Chapter 10.	CW complexes	13
Chapter 12.	A little homological algebra	14
Chapter 13.	Axiomatic and cellular homology theory	15
Chapter 14.	Derivations of properties from the axioms	16
Chapter 15.	The Hurewicz and uniqueness theorems	17
Chapter 16.	Singular homology theory	18
Chapter 18.	Axiomatic and cellular cohomology theory	19
Chapter 19.	Derivations of properties from the axioms	20
Chapter 20.	The Poincaré duality theorem	21
Chapter 21.	The index of manifolds; manifolds with boundary	22
Chapter 22.	Homology, cohomology, and $K(\pi, n)$ s	23
Chapter 23	Characteristic classes of vector hundles	24

The fundamental group and some of its applications

- Problem 1.
- Problem 2.
- Problem 3.

Categorical language and the van Kampen theorem

- Problem 4.
- Problem 5.
- Problem 6.
- Problem 7.

Covering spaces

- Problem 8.
- Problem 9.
- Problem 10.
- Problem 11.
- Problem 12.
- Problem 13.

Graphs

- Problem 14.
- Problem 15.
- Problem 16.

Compactly generated spaces

- Problem 17.
- Problem 18.
- Problem 19.

Cofibrations

Problem 20.

Problem 21.

Fibrations

Problem 22.

Based cofiber and fiber sequences

Problem 23.

Higher homotopy groups

- Problem 24.
- Problem 25.
- Problem 26.
- Problem 27.
- Problem 28.
- Problem 29.

$CHAPTER \ 10$

CW complexes

- Problem 30.
- Problem 31.
- Problem 32.
- Problem 33.
- Problem 34.

A little homological algebra

Problem 35.

Problem 36.

Problem 37.

Axiomatic and cellular homology theory

- Problem 38.
- Problem 39.
- Problem 40.
- Problem 41.
- Problem 42.

Derivations of properties from the axioms

Problem 43.

$CHAPTER \ 15$

The Hurewicz and uniqueness theorems

- Problem 44.
- Problem 45.
- Problem 46.
- Problem 47.
- Problem 48.
- Problem 49.
- Problem 50.

Singular homology theory

Problem 51.

Problem 52.

Problem 53.

Axiomatic and cellular cohomology theory

- Problem 54.
- Problem 55.
- Problem 56.
- Problem 57.
- Problem 58.
- Problem 59.
- Problem 60.
- Problem 61.
- Problem 62.

Derivations of properties from the axioms

Problem 63.

Problem 64.

Problem 65.

Problem 66.

Problem 67.

The Poincaré duality theorem

- Problem 68.
- Problem 69.
- Problem 70.
- Problem 71.
- Problem 72.
- Problem 73.
- Problem 74.

The index of manifolds; manifolds with boundary

Problem 75.

Problem 76.

Problem 77.

Problem 78.

Problem 79.

Problem 80.

Problem 81.

Problem 82.

Homology, cohomology, and $K(\pi, n)$ s

Problem 83.

Problem 84.

Problem 85.

Problem 86.

Problem 87.

Characteristic classes of vector bundles

Problem	88.
---------	-----

Problem 89.

Problem 90.

Problem 91.

Problem 92.