Vakumkammer

Verktøy for testing av temperaturegenskaper hos CubeSat i vakum

Harald Garvik Jonas Ghini Eivind Kvinge Andreas Mosand Erlend Sigholt Erlend Strandvik

Midsemesterpresentasjon, vår 2014

- Det er ønskelig å teste studentsatelittens oppførsel i vakum før den sendes opp
- Ved mangel av atmosfære vil satelitten kun tape varme via stråling. Man ønsker ikke at den overoppheter
- Bidrag til satelittens temperatur er satelittens eget strømforbruk, og solstråling
- Per dags dato må NUTS bestille begrenset tid med vakumkammer for å teste. De må dessuten kunne gi garantier for avgassing, ingen eksplosjoner etc. Dette begrenser mulighetene for testing

Gruppas sammensetning

Betydning for valg av prosjekt og løsning

Sammensetning

- To fra Elektro
- To fra Data
- En fra EMIL
- En fra Bygg

Gruppas sammensetning

Betydning for valg av prosjekt og løsning

Sammensetning

- To fra Elektro
- To fra Data
- En fra EMIL
- En fra Bygg

Prosjekt

Kompetanse til både å bygge fysisk vakumkammer, sette opp nødvendige sensorer, i tillegg til åprogrammere mikrokontroller.

Perfekt gruppesammensetning for å lage et formålsspesifikt vakumkammer.

- Vakumkammer i passe størrelse for Kubesatelitten
- Temperatursensorer inne i kammeret
- Tilhørende vakumpumpe(r)
- Varmekilde inne i kammeret for å simulere solstråling
- Informasjon og logging til PC via microcontroller

Fremgang Hvor er vi nå?

Kammer

- Vi har materialer: stålvegg, aluminiumslokk og -bunn
- Vi har backingpumpe og turbopumpe
- Bestemt design på pakninger og gjennomføring til pumpe

Hardware

- Designet og fått produsert et kretskort. Inneholder:
 - Analog front-end til fire termoelementer som skal føres inn i kammer (ADC i mikrokontroller benyttes).
 - Lokal temperatursensor for kompensering til termoelementene.
 - Trykksensor.
 - Logiske utganger til styring av pumper o.l.

Software

- Satt opp USB-kommunikasjon via terminal, med tilhørende logging til fil på PC.
- Konfigurert ADC (Analog Digital Converter), og satt opp støtte for å ta imot temperaturavlesninger fra sensorer.

Veien fremover Hva gjenstår?

Kammer

- Bestemme gjennomføringer til temp. måling, satellittkommuniksajon og trykkmåling
- Maskinering: kammervegg og bunn/topp må dreies og planeres, og topp/bunn må få frest inn spor til O-ring

Veien fremover Hva gjenstår?

Hardware

- Lodde komponenter på kretskortet, starter med en temperaturkanal.
- Foreta målinger på temperaturkanalen, samt kalibrering.
- Lodde resten av kortet for å teste det i sin helhet.
- Bistå software-gruppa med kalibrering og testing av hele systemet.

Veien fremover Hva gjenstår?

Software

- Sette opp I2C på mikrokontroller for kommunikasjon med sensorer som skal kobles på der
- Integrere sensorer med mikrokontroller når de er ferdigstilte
- Kalibrere sensoravlesninger
- Potensielt forbedre programmvare på PC med flere features (grafisk presentasjon av logging mm.)

Oppsummering Planlagt sluttprodukt

- Lager fullstendig oppsett for temperaturtesting av kubesatelitten i vakuum
- Totalt sett omtrent i tråd med skjema