Digital Integrated Circuits Lab 2 Inverter Simulation

Dr. Yanan Sun

Email: sunyanan@sjtu.edu.cn

Office: Rm 416-2, Building of Microelectronics 2025/10/21

Outline

- Hspice
- Lab Contents
- Report Requirements

Outline

- Hspice
- Lab Contents
- Report Requirements

常用激励源 — 脉冲电压源

Vxxx n+ n- pulse/pu <(> V1 V2 <td<tr<tf<pw<per>>>>

➤ 示例: Vin 1 0 PULSE (0V 5V 10ns 10ns 10ns 40ns 100ns)

定义了一个低电平为 0V, 高电平为 5V, 延迟为 10ns, 脉冲上升延迟10ns, 下降延迟 10ns, 脉冲宽度 40ns, 周期为 100ns 的脉冲信号电压源

上升/下降时间、延时测量

□ TRIG 和 TRAG 可以配合.MEASURE 语句测量特定事件发生之间的延迟

.MEASURE <DC|AC|TRAN> result TRIG ··· TARG ··· <MINVAL=val> <WEIGHT=val>

示例:

- .MEASURE TRAN tpLH
- + TRIG V(a) VAL='SUPPLY/2' FALL=1
- + TARG V(b) VAL='SUPPLY/2' RISE=1

本示例测量了从 a 节点第一次在下降沿中达到 SUPPLY/2 开始, 到 b 节点第一次在上升沿中达到 SUPPLY/2 结束间的延迟时间。

上升/下降时间、延时测量 (cont.)

□ TRIG 和 TRAG 可以配合.MEASURE 语句测量特定事件发生之间的延迟

.MEASURE <DC|AC|TRAN> result TRIG ··· TARG ··· <MINVAL=val> <WEIGHT=val>

示例:

.meas TRAN Trise

- + TRIG v(out) VAL='Vmin+0.1*Vmax' RISE=1
- + TARG v(out) VAI='0.9*Vmax' RISE=1

.meas TRAN Tfall

- + TRIG v(out) VAL='0.9*Vmax' FALL=2
- + TARG v(out) VAI='Vmin+0.1*Vmax' FALL=2

.meas TRAN Tdelay

- + TRIG v(in) VAL=2.5 FALL=1
- + TARG v(out) VAL=2.5 FALL=2

功耗测量

- ☐ HSPICE can measure power
 - ➤ Instantaneous P(t)
 - Or average P over some interval

.print P(vdd)
.measure pwr AVG P(vdd) FROM=0ns TO=10ns

- ☐ Power in single gate
 - ➤ Connect to separate V_{DD} supply
 - Be careful about input power

□〉测量电压源 Vdd在 Ons-100ns 间的平均功耗

输入控制语句 .DATA

□.data

- ▶基于数据驱动的分析允许用户修改任意数量的参数。
- ▶可以系统罗列需要分析扫描的参数列表。

```
* Inline .DATA example
.Tran 1n 100n SWEEP DATA=devinf
.AC DEC 10Hz 100kHz SWEEP DATA=devinf
.DC TEMP -55 125 10 SWEEP DATA=devinf

*
.DATA devinf Width Length Vth Cap
+ 10u 100u 2v 5p
+ 50u 600u 10v 10p
+ 100u 200u 5v 20p
.ENDDATA
```

DATA Statement: Inline or Multiline

```
* Multiline .DATA example
.PARAM Vds=0 Vbs=0 L=1.0u
.DC DATA=vdot
.DATA vdot
Vbs Vds L
+0 0.1 1.0u
+0 0.1 1.5u
+-1 0.1 1.0u
+0 0.5 1.0u
.ENDDATA
```

Outline

- Hspice
- Lab Contents
- Report Requirements

Device Models for Inverter Simulation

- Use the Predictive Technology Model (PTM) to evaluate the DC characteristics of ptm16hp FinFETs
 - PTM model is released in Lab section.
 - Use the high-power (HP) models
 - For both n-channel and p-channel devices

Simulation Settings

- \Box Lg = 20nm for ptm16hp FinFETs
- ☐ Supply voltage is 0.75V for FinFETs
- ☐ Simulation temperature
 - \rightarrow T = 25°C

Task 1: CMOS Inverter FO4 Delay Measurement

☐ Measure FO4 delay (t_{pLH}, t_{pHL}, t_p) of inverter

Vpulse	Value
V1	0V
V2	0.75V
Delay Time	400ps
Raise Time	25ps
Fall Time	25ps
Pulse Width	400ps
Period	800ps

$$t_p = \frac{t_{pLH} + t_{pHL}}{2}$$

Task 1: 语法提示

☐ Trapezoidal pulse : pulse

PULSE (v2 v1 td tr tf pw per)
e.g. VIN in 0 PULSE 0 5 2ns 2ns 30ns 80ns

■ Measure delay

You can use the .MEASURE command to measure the propagation delay For example (measure the propagation delay from b to c for L->H transition):

- .MEASURE TRAN t_{pLH}
- + TRIG V(b)='0.5*SUPPLY' FALL=2
- + TARG V(c)='0.5*SUPPLY' RISE=2
- ☐ Use function to measure tp

.measure tran tp param='(TpLH+TpHL)/2'

$$t_p = \frac{t_{pLH} + t_{pHI}}{2}$$

Task 2: Delay Optimization for Inverter Chain

□ For a inverter chain with 4 stages and 256X C_{load}, find the minimum delay chain design

Optimize the size of each stage

☐ Design the optimum delay chain by FinFET technology

Hint:

- For a given stage N, the optimum f is determined by $f = \sqrt[N]{F}$
- Note that the sizes of FinFETs should be integer number
- Different rounding method may induce different results

Task 2: 语法提示

■ Multi-points sweep

Hint: The first inverter's fin number is one. And you can use parameters to represent the fin numbers of the following three inverters and sweep their different combinations.

*For example, suppose the following three inverter has fin number of s1,s2,s3

.tran 1ps 10ns sweep data=datam

Task 3: CMOS Inverter Power

- ☐ Measure the power of inverter chain
 - Only include the power consumption of inverter chain
 - Apply a pulse voltage on the input node and measure the power averaging for multiple cycles
 Device Under Test

C_{input}

4 Stages

The chain size should use the optimum values you have found

- You can use two different power supply sources for the DUT inverter and other parts (for example, use V_{DD1} for the DUT inverter while using V_{DD2} for the other parts, if you have)
- The power consumption of the load part does not need to be included in the power consumption of the inverter chain under test.

Task 3: 语法提示

■ Measure power Hint: You can use the .MEASURE command to measure the power consumption .MEASURE <DC|AC|TRAN> result func out_var FROM=val TO=val *For example (measure the energy of the circuit from VDD)
.MEASURE TRAN avgpower AVG P(VDD) FROM=1ns TO=80ns

☐ The power consumption measurement may be negative because the current direction is flowing out of VDD.

Task 4: EDP measurement

☐ Using optimized chain to find optimal point of Energy and delay

Power-Delay Product (PDP):

$$PDP = P_{av}t_p$$

Energy-Delay Product (EDP):

$$EDP = PDP * t_p = P_{av}t_p^2 = \frac{C_L V_{DD}^2}{2}t_p$$

Hint:

- To find ensure your results, you can sweep the VDD beyond the standard supply
- Ultral-low VDD may result in unfunctional circuit
- Use function to measure EDP

.measure tran edp param='abs(avgpower*tp*tp)'

Task 5 (Optional): Inverter chain optimization with unfixed stages

☐ For a given Initial stage and Cload, find the minimum delay chain design

Optimize Stage Number and Size of each stage

□ Design the optimum delay chain by FinFET technology

Hint:

- For a given stage N, the optimum f is determined by $f = \sqrt[N]{F}$
- Sweep the N to find corresponding f
- In theory, the optimum f should satisfy $C_L = F \cdot C_{in} = f^N C_{in}$ with $N = \frac{\ln F}{\ln f}$ $C_{int} = \gamma C_g$ $f = \exp(1 + \gamma/f)$

$$f = \exp(1 + \gamma/f)$$

Outline

- Hspice
- Lab Contents
- Report Requirements

Report Requirement

- □Write your lab report like writing a technical document (readable, comprehensive analysis, no typo...)
- ☐ You may include
 - Introduction/background
 - Lab procedures
 - Lab results
 - Technical analysis of the simulation results
 - Observations and conclusions

Submission

- ☐You need to submit your report and code
 - Name of report (in PDF format): lab2_report_[Name]_[Student No.].pdf
 - Name of code (compressing the files):
 lab2_code__[Name]_[Student No.].zip
- ☐ Please upload your report to Canvas course website
- ☐ Submission of lab2 report and code will be due on

4th November 2025