Randomized Computation

Shuangjun Zhang

Fudan University zhangsj17@fudan.edu.cn

June 16, 2019

Overview

- Probabilistic Turing Machines
 - Polynomial Identity Testing
 - Probabilistic Turing Machines
 - Failure Probability
- Randomized Complexity Classes
 - RP and coRP
 - BPP
 - 7PP
- Relationship Between BPP and Ohter Class
 - BPP is in P/poly
 - BPP is in PH
 - Unsolved Problem about BPP

Polynomial Identity Testing

Let A(x), B(x) be polynomials(over R) of degrees n

- Question: Is A(x) = B(x)?
- Naive Idea: Converting the two polynomials to their canonical forms($\sum_{i=0}^{n} a_i x^i$), two polynomials are equivalent iff all the coeficients in their canonical forms are equal.
- Another Idea: Reduce problem to checking zero's of a polynomial.

$$A(x) = B(x) \Rightarrow A(x) - B(x) = 0$$

- If A(x) = B(x), $\forall r \in R, A(r) B(r) = 0$.
- If $A(x) \neq B(x)$, A(x) B(x) = 0 has at most n roots.

Polynomial Identity Testing

Algorithm PIT:

Input: A(x), B(x), with maximum degree is n

- Choose $r \in \{1, 2, ..., 100n\}$ at random;
- Computer A(r) and B(r);
- If $A(r) \neq B(r)$ Return 0;
- else Return 1;

Polynomial Identity Testing

Analysis:

• If \exists r, s.t. $A(r) \neq B(r)$, then $A(x) \neq B(x)$, that is

$$Pr[A(x) \neq B(x)|PIT() = 0] = 1$$

• If A(x) = B(x), then \forall r, A(r) = B(r), that is

$$Pr[PIT() = 1|A(x) = B(x)] = 1$$

• If $A(x) \neq B(x)$, then with probability at most 1/100, A(r) = B(r), that is

$$Pr[PIT() = 1|A(x) \neq B(x)] \leq 1/100$$

Probabilistic Turing Machines(PTM)

- So far, considered the following types of machines for input x:
 - TM: only one computation that either accepts or rejects
 - NTM: there are many sequences of computation, and x accepted if there exists a sequence that accepts
 - ATM: many sequences of computations, and x accepted based on the type of nodes $(\exists$ or \forall) along its path
 - OTM:a TM with access to an oracle
- Another kind of machine: Probabilistic Turing Machine
 - Very similar to a TM, except at each step, M could toss a coin to get a random bit, and decide which transition rule to follow based on the outcome of the coin toss
- A PTM takes input x and a random bit string r
- Pr[M(x, r) = z]: probability M outputs z

Failure Probability

A major aspect of randomized algorithms or probabilistic machines is that they may fail to produce the desired output with some specified failure probability.

- One-sided error
 - The machine may err only in one direction i.e. either on 'yes' instances or on 'no' instances.
- Two-sided error
 - The machine may err in both directions i.e. it may result a 'yes' instance as a 'no' instance and vice versa.
- Zero-sided error
 - The algorithm never provides a wrong answer.
 - But sometimes it returns 'don't know'

Randomized Complexity Classes

- RP (Randomized Polynomial time)
 - One-sided error
- coRP (complement of RP)
 - One-sided error
- BPP (Bounded-error Probabilistic Polynomial time)
 - Two-sided error
- ZPP (Zero-error Probabilistic Polynomial time)
 - Zero error

RP and coRP

Definition (RP)

The complexity class RP is the class of all languages L for which there exists a polynomial PTM M such that

$$x \in L \Rightarrow Pr[M(x) = 1] \ge 1/2$$

 $x \notin L \Rightarrow Pr[M(x) = 0] = 1$

Definition (coRP)

The complexity class coRP is the class of all languages L for which there exists a polynomial PTM M such that

$$x \in L \Rightarrow Pr[M(x) = 1] = 1$$

 $x \notin L \Rightarrow Pr[M(x) = 0] \ge 1/2$

RP is in NP

Theorem

$$RP \subseteq NP$$

Proof.

- Let L be a language in RP. Let M be a polynomial probabilistic Turing Machine that decides L.
- If x ∈ L, then there exists a sequence of coin tosses r such that M accepts x with r as the random string.
- So we can consider r as a certificate instead of a random string. r can be verified in polynomial time by the same machine.
- If $x \notin L$, then Pr[M(x) = 1] = 0. So there is no certificate r s.t. M(x, r) = 1.
- ullet So, L \in NP

Error Reduction for RP

- The constant 1/2 in the definition of RP can be replaced by any constant k, 0 < k < 1
- Since the error is one-sided, we can repeat the algorithm t times independently:
- Clearly, if $x \notin L$, all t runs will return a 0
- If $x \in L$, if any of the t runs returns a 1, we return the correct answer.
- If $x \in L$, if all t runs returns 0, we make mistake
- \bullet Pr[algorithm makes a mistake t times] $\leq \frac{1}{2^t}$
- Thus, we can make the error exponentially small by polynomial number of repetitions.

Bounded-error Probabilistic Polynomial time

Definition (BPP)

The complexity class BPP is the class of all languages L for which there exists a polynomial PTM M such that

$$x \in L \Rightarrow Pr[M(x) = 1] \ge 2/3$$

$$x \notin L \Rightarrow Pr[M(x) = 1] \le 1/3$$

M answers correctly with probability 2/3 on any input x regardless if $x \in L$ or $x \notin L$

$$P \subseteq BPP \subseteq EXP$$

 $BPP = coBPP$

Error Reduction for BPP

- 2/3 is arbitrary and can be improved as follows:
 - Repeat the algorithm t times, say it returns X_i at the i-th run
 - Take majority answer, i.e., if $\geq t/2$ times M returns 1, return 1, otherwise return 0
- The Chernoff Bound
 - Suppose $X_1, ..., X_t$ are t independent random variables with values in $\{0,1\}$ and for every i, $Pr[X_i = 1] = p$. Then

$$Pr[\frac{1}{t}\sum_{i=1}^{t}X_{i}-p>\epsilon]< e^{-\epsilon^{2}\frac{t}{2p(1-p)}}$$

$$Pr\left[\frac{1}{t}\sum_{i=1}^{t}X_{i}-p<-\epsilon\right]<\mathrm{e}^{-\epsilon^{2}\frac{t}{2p(1-p)}}$$

Error Reduction for BPP

- $x \in L$, $Pr[X_i = 1] = p \ge 2/3$, M outputs correctly if $\sum_{i=1}^t X_i \ge t/2$
- The algorithm makes a mistake when $\sum_{i=1}^{t} X_i < t/2$
- Pr[Algorithm outputs the wrong answer on x] $= Pr[\sum_{i=1}^{t} X_i < t/2]$ $= Pr[\frac{1}{t} \sum_{i=1}^{t} X_i < 1/2]$ $= Pr[\frac{1}{t}\sum_{i=1}^{t-1}X_i - p < 1/2 - p]$ $-(\frac{1}{2}-p)^2\frac{t}{2p(1-p)}$ $< e^{-2t(\frac{1}{2}-p)^2}$ $< e^{-2t(\frac{1}{2}-\frac{2}{3})^2}$ $=e^{-ct}$. where c is some constant
 - $=\frac{1}{2^n}$ if we set $t = \frac{n \ln 2}{2^n} = O(n)$
- So by running the algorithm O(n) times, reduce probability exponentially.

Another Definition of BPP

Definition (BPP)

The complexity class BPP is the class of all languages L for which there exists a polynomial PTM M such that

$$x \in L \Rightarrow Pr[M(x) = 1] \ge 1 - \frac{1}{2^{|x|}}$$

$$x \notin L \Rightarrow Pr[M(x) = 1] \le \frac{1}{2^{|x|}}$$

M answers correctly with probability $1-\frac{1}{2^{|x|}}$ on any input x regardless if x \in L or x \notin L

 $\mathsf{RP} \cup \mathsf{coRP} \subseteq \mathsf{BPP}.$

We have showed that $RP \subseteq NP$, But We don't know if $BPP \subseteq NP$

◆ロト ◆問ト ◆ ヨト ◆ ヨ ・ り Q ○

Zero-error Probabilistic Polynomial time

Definition (ZPP)

The complexity class ZPP is the class of all languages L for which there exists a polynomial PTM M such that

$$x \in L \Rightarrow M(x) = 1$$
 or $M(x) = 'Don't \ know'$
 $x \notin L \Rightarrow M(x) = 0$ or $M(x) = 'Don't \ know'$
 $\forall x, Pr[M(x) = 'Don't \ know'] \le 1/2$

Whenever M answers with a 0 or a 1, it answers correctly. If M is not sure, it'll output a 'Don't know'. On any input x, it outputs 'Don't know' with probability at most 1/2.

Another Definition of ZPP

Algorithm M':

Input:x

while(1):

- Invoke M to determine x ∈ L or not;
- If b = M(x), ouput b and halt;
- else continue;

If the running time of M is T(|x|), the expecting running time of M is 2T(|x|).

Definition (ZPP)

The complexity class ZPP is the class of all languages L for which there exists a expecting polynomial PTM M such that

$$x \in L \Rightarrow M(x) = 1$$

$$x \notin L \Rightarrow M(x) = 0$$

A Theorem on ZPP

Theorem

 $ZPP = RP \cap coRP$

- This theorem is surprising, since the corresponding question for nondeterministic(i.e. P = NP ∩ coNP) is open.
- We have to prove both ways:

$$ZPP \subseteq RP \cap coRP$$

$$RP \cap coRP \subseteq ZPP$$

First direction

$ZPP \subseteq RP \cap coRP$

- ullet We prove ZPP \subseteq coRP, the other proof is similar
- Let $L \in ZPP$. Then \exists PTM M that, \forall x, either correctly decides $x \in L$ or outputs 'Don't know'
- Let M' be the Turing Machine that on input x, returns 1 if M(x) = Don't know' and otherwise returns M(x).
 - $x \in L$: M(x) = 1 or M(x) = Don't know, so M'(x) = 1.
 - x \notin L: M(x) = 0, which is correct, or M(x) = 'Don't know' where M'(x) returns incorrectly with probability $\leq 1/2$
- So L \in coRP, and ZPP \subseteq coRP

Other direction

$$RP \cap coRP \subseteq ZPP$$

- $L \in RP \cap coRP$. Then there exist two TM's s.t.:
 - $M_1(x) = 1$ if $x \in L$. Incorrect for $x \notin L$ with prob. $\leq 1/2$
 - $M_2(x) = 0$ if $x \notin L$. Incorrect for $x \in L$ with prob. $\leq 1/2$
- Construct a PTM M' which works as follows on M'(x):
 - Run $M_1(x)$, and if $M_1(x) = 0$, return $x \notin L$
 - Run $M_2(x)$, and if $M_2(x) = 1$, return $x \in L$
 - Else return 'Don't know'
- Claim: If M'(x) returns a 0 or a 1, it is correct.
- Claim: M'(x) returns 'Don't know' with prob. $\leq 1/2$
 - Assume $x \in L$.
 - $\Pr[M' \text{ return 'Don't know'}] = \Pr[M_1(x) = 1 \land M_2(x) = 0]$ = $\Pr[M_2(x) = 0] \le 1/2$
 - The case for $x \notin L$ similar
- So, L ∈ ZPP

June 16, 2019

BPP is in P/poly

Theorem

$BPP \subseteq P/poly$

Proof:

- L \in BPP. Define L(x), L(x) = 1 if x \in L, else L(x) = 0
- \exists A PTM M on input $x \in \{0,1\}^n$, use m random bits s.t. $\forall x \in \{0,1\}^n$, $Pr[M(x, r) \neq L(x)] \leq 2^{-n-1}$
- Say $r \in \{0,1\}^m$ is bad for an input $x \in \{0,1\}^n$ if $M(x, r) \neq L(x)$, otherwise call r good for x
- \forall x, at most $\frac{2^m}{2^{n+1}}$ string r are bad for x
- Adding over all $x \in \{0,1\}^n$ there are at most $2^n \frac{2^m}{2^{n+1}} = 2^m/2$ string r are bad
- So, $\exists r_0 \in \{0,1\}^m$ good for every $x \in \{0,1\}^n$
- We can use r_0 as a advice, so $L \in P/poly$

Theorem

$BPP \subseteq \Sigma_2 \cap \Pi_2$

- First, we prove BPP $\subseteq \Sigma_2$
- Suppose $L \in \mathsf{BPP}$, then \exists ppt M for L s.t.

$$x \in L \Rightarrow Pr[M(x, r) = 1] \ge 1 - 2^{-n}$$

 $x \notin L \Rightarrow Pr[M(x, r) = 1] \le 2^{-n}$

$$|r| = m = poly(n)$$

• for $x \in \{0,1\}^n$, let S_x denote the set of r's for which M(x,r) = 1. Then:

$$x \in L \Rightarrow |S_x| \ge (1 - 2^{-n})2^m$$

 $x \notin L \Rightarrow |S_x| \le (2^{-n})2^m$

- For a set $S \subseteq \{0,1\}^m$ and a string $u \in \{0,1\}^m$. Define $S + u = \{x + u : x \in S\}$. Let $k = \lceil \frac{m}{n} \rceil + 1$, we have the following two claims.
- Claim 1: For every set $S \subseteq \{0,1\}^m$ with $|S| \le 2^{m-n}$ and every k vectors $u_1,...,u_k, \cup_{i=1}^k (S+u_i) \ne \{0,1\}^m$
- Proof of Claim 1:
 - Since $|S+u_i| = |S|$, $|\cup_{i=1}^k (S+u_i)| \le k|S+u_i| = k|S| < 2^m$ (for sufficiently large n)
- Claim 2: For every set $S \subseteq \{0,1\}^m$ with $|S| \ge (1-2^{-n})2^m$, there exists $u_1,...,u_k$, s.t. $\bigcup_{i=1}^k (S+u_i) = \{0,1\}^m$

Proof of Claim 2:

- We claim if $u_1, ..., u_k$ are chosen independently at random then $\Pr[\bigcup_{i=1}^k (S+u_i) = \{0,1\}^m] > 0$
- For $r \in \{0,1\}^m$, let B_r denote the "bad event" $r \notin \bigcup_{i=1}^k (S+u_i)$. It's suffice to show $Pr[\exists r \in \{0,1\}^m \ B_r] < 1$
- $Pr[\exists r \in \{0,1\}^m \ B_r] \leq \sum_{r \in \{0,1\}^m} Pr[B_r] \leq 2^m \max\{Pr[B_r]\}$ we should only prove $\forall r, Pr[B_r] < 2^{-m}$
- Let B_r^i denote the event $r \notin S + u_i$ (equivalently, $r + u_i \notin S$), then $B_r = \bigcap_{i \in [k]} B_r^i$
- $r + u_i$ is a uniform element in $\{0,1\}^m$, it will be in S with probability at least $1-2^{-n}$. So,

$$Pr[B_r^i] = Pr[r + u_i \notin S] = 1 - Pr[r + u_i \notin S] \le 2^{-n}$$

• Since the events B_r^i are independent, we have

$$Pr[Br] = Pr[\cap_{i \in [k]} B_r^i] = Pr[B_r^i]^k \le 2^{-nk} < 2^{-m}$$

- Claim 1: For every set $S \subseteq \{0,1\}^m$ with $|S| \le 2^{m-n}$ and every k vectors $u_1,...,u_k, \cup_{i=1}^k (S+u_i) \ne \{0,1\}^m$
- Claim 2: For every set $S \subseteq \{0,1\}^m$ with $|S| \le (1-2^{-n})2^m$, there exists $u_1,...,u_k$, s.t. $\bigcup_{i=1}^k (S+u_i) = \{0,1\}^m$
- Together with Claim 1 and 2, we know:
 - $x \in L \Rightarrow |S_x| \ge (1 2^{-n})2^m$ $\Rightarrow \exists u_1, ..., u_k \in \{0, 1\}^m \ \forall \ r \in \{0, 1\}^m \ r \in \bigcup_{i=1}^k (S_x + u_i)$
 - $x \notin L \Rightarrow |S_x| \le 2^{m-n}$ $\Rightarrow \forall u_1, ..., u_k \in \{0, 1\}^m \exists r \in \{0, 1\}^m r \notin \bigcup_{i=1}^k (S_x + u_i)$
 - Whether $r \in \bigcup_{i=1}^k (S_x + u_i)$ or not can be decided in polynomial time.
- $\bullet \ \, \mathsf{So,} \ \, \mathsf{L} \in \Sigma_2 \mathsf{,} \ \, \mathsf{BPP} \subseteq \Sigma_2$
- L \in BPP $\Rightarrow \overline{L} \in coBPP = BPP \Rightarrow \overline{L} \in \Sigma_2 \Rightarrow L \in co\Sigma_2 = \Pi_2$
- So, BPP $\subseteq \Pi_2$, BPP $\subseteq \Sigma_2 \cap \Pi_2$

Unsolved Problem about BPP

- BPP = P?
- Complete problem for BPP?
- Does BPTIME have a hierarchy theorem?

The End