الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي دورة : جوان 2013

الشعبة: رياضيات

الحتبار في مادّة : الرياضيات المدّة : 04 سا و30 د

على المترشح أن يختار أحد الموضوعين التاليين: الموضوع الأقل

التمرين الأول: (06 نقاط)

، $(O; \vec{u}, \vec{v})$ معددان حقيقيان موجبان تماما. نعتبر في المستوي المنسوب إلى المعلم المتعامد المتجانس a (I

. النقط $z_E=be^{irac{3\pi}{2}}$ و $z_C=\overline{z_A}$ ، $z_B=-a\sqrt{2}$ ، $z_A=ae^{irac{3\pi}{4}}$ على الترتيب C ، B ، A النقط C ، B ، A

. OAB مثمّ الشّكل الأستي العدد المركّب و $\frac{Z_A-Z_B}{Z_A}$ ، ثمّ استنتج طبيعة المثلّث .1 .1

ب - حدّد طبيعة الرباعي OABC، ثمّ استنج مساحته.

M'(z) التشابه المباشر S ذو المركز O والنسبة $\frac{b}{a}$ والزاوية $\frac{3\pi}{4}$ ، يحول كل نقطة M(z) من المستوي إلى النقطة M(z) . S(A) = E أ- اكتب العبارة المركبة للتشابه المباشر M(z) ثمّ تحقق أنّ M(z) .

S(C)=G و S(B)=F و مقدرة بوحدة المساحة)، حيث S(B)=F و S(C)=G

.
$$|z_C|^2 + |z_E|^2 - 2|z_C \times z_E|\cos\left[\arg\left(\frac{z_E}{z_C}\right)\right]$$
 و b العبارة: a العبارة: a العبارة: a العبارة: a العبارة: a

.bو a بدلالة a و cE^2

. Z_n نقطة من المستوي تختلف عن O ، لاحقتها n (II

. $M_{n+1} = S\left(M_n\right)$ ، n نضع عدد طبیعی $M_0 = A$ نضع

 $v_n = \arg(z_n)$ و $u_n = |z_n|$ و غتبر المعرفتين، من أجل كل عدد طبيعي $u_n = |z_n|$ و $u_n = |z_n|$ و نعتبر المتتاليتين

b و a على الشّكل الأستي بدلالة a و b .1. اكتب العدد المركّب a على الشّكل الأستي بدلالة a

 $\operatorname{arg}\left(\frac{Z_{n+1}}{Z_n}\right) \in \left]-\pi;\pi\right]$ و a < b: نفرض أنّ a < b:

بيّن أنّ المتتالية (u_n) هندسية، والمتتالية (v_n) حسابية يُطلب تعيين أساس وحساب الحد الأوّل لكل منهما.

$$\lim_{n \to +\infty} T_n = a + b + \frac{b^2}{a} + \frac{b^3}{a^2} + \dots + \frac{b^n}{a^{n-1}} :$$
 عيث $T_n = a + b + \frac{b^2}{a} + \frac{b^3}{a^2} + \dots + \frac{b^n}{a^{n-1}} :$ عيث $T_n = a + b + \frac{b^2}{a} + \frac{b^3}{a^2} + \dots + \frac{b^n}{a^{n-1}} :$ عيث $T_n = a + b + \frac{b^2}{a} + \frac{b^3}{a^2} + \dots + \frac{b^n}{a^{n-1}} :$ عيث $T_n = a + b + \frac{b^2}{a} + \frac{b^3}{a^2} + \dots + \frac{b^n}{a^{n-1}} :$

4. عين قيّم الأعداد الطبيعية n التي تكون من أجلها النقط A ، O و M_n في استقامية.

التمرين الثاني: (03 نقاط)

- eta = n + 3و $lpha = 2n^3 14n + 2$: عدد طبيعي . نعتبر العددين الصحيحين lpha و lpha ، حيث $lpha = 2n^3 14n + 2$ و $lpha = n \cdot 1$ (يرمز PGCD إلى القاسم المشترك الأكبر) . PGCD(lpha;eta) = PGCD(eta;10) الأكبر lpha = -1 ما هي القيّم الممكنة للعدد PGCD(lpha;eta) .
 - $PGCD(\alpha; \beta) = 5$. بحيث يكون: 5 الطبيعي n ، بحيث يكون: 5
 - 2. أ ادرس، حسب قيّم العدد الطبيعي n، بواقى القسمة الإقليدية للعدد 4^n على 11

$$\begin{cases} 4^{5n} + 4^n + n \equiv 0 \\ 11 \end{cases}$$
 . $\begin{cases} 4^{5n} + 4^n + n \equiv 0 \\ 11 \end{cases}$. $\begin{cases} 4$

التمرين الثالث: (05 نقاط)

 $(O;\vec{i},\vec{j},\vec{k})$ الفضاء منسوب إلى المعلم المتعامد المتجانس

$$D(-3;4;4)$$
 و $C(-2;-7;-7)$ ، $B(2;2;-1)$ ، $A(0;0;1)$ و نعتبر النقط

والمستوي (
$$\varphi$$
) المعرّف بالتمثيل الوسيطي:
$$\begin{cases} x=1+3\alpha+\beta \\ y=1-2\alpha \end{cases}$$
 وسيطان حقيقيان.
$$z=4+\alpha+\beta$$

- 1. أ بين أنّ النقط A ، B و C تعيّن مستويا.
- \cdot تحقق أنّ الشعاع $\vec{n}(3;-2;1)$ ناظمي للمستوي $\vec{n}(3;-2;1)$ ، ثمّ اكتب معادلة ديكارتية له.
 - 2. أ اكتب معادلة ديكارتية للمستوي (\mathcal{P}) ، ثمّ بيّن أنّ المستوبين (ABC) و (\mathcal{P}) متعامدان.

$$\begin{cases} x=-2+t \ y=-7+4t \,;\; t\in\mathbb{R} \end{cases}$$
 بين أن تقاطع (ABC) و (BC) هو المستقيم (ABC) ذو التمثيل الوسيطي: $z=-7+5t$

- ج احسب المسافة بين النقطة D والمستوي (ABC)، والمسافة بين النقطة D والمستوي (P)، ثمّ استتج المسافة بين النقطة D والمستقيم (Δ) .
 - (\mathfrak{G}) المستوى الذي يشمل النقطة D والعمودي على كل من المستويين (ABC) و (\mathfrak{G}) .
 - أ اكتب معادلة ديكارتية للمستوي (١٠).
 - H و (\mathfrak{Q}) و (\mathfrak{P}) و المستويات الثلاثة (ABC) و المستويات الثلاثة (ABC) و المستويات الثلاثة وحداثيات (\mathfrak{P})
 - $oldsymbol{\leftarrow}$ احسب بطريقة ثانية، المسافة بين النقطة D والمستقيم (Δ) .

التمرين الرابع: (06 نقاط)

$$u(x) = e^x - 3x + 4 - e$$
. الدالة u معرّفة على المجال $0; +\infty$ إلى المجال $0; +\infty$

أ - ادرس اتجاه تغيّر الدالة u

$$\cdot e^x - e > 3x - 4$$
، $]0;+\infty[$ من المجال x عدد حقيقي x من أجل كل عدد عقيقي

$$v(x) = -3x^3 + 4x^2 - 1 + \ln x$$
 بين أنَ: $v(x) = -3x^3 + 4x^2 - 1 + \ln x$ بين أنَ: $v(x) = -3x^3 + 4x^2 - 1 + \ln x$ بين أنَ: $v(x) = 0$ (يرمز $v(x) = 0$).

$$V(x) \le 0$$
 ، $]0;+\infty$ من المجال X عدد حقیقی X من المجال الله، من أجل كل عدد حقیقی

$$\frac{-1+\ln x}{x^2} \le 3x-4$$
 ، $]0;+\infty[$ من المجال $]0;+\infty[$ عدد حقیقي x من المجال عدد حقیقي

$$e^{x} - e + \frac{1 - \ln x}{x^{2}} > 0$$
:]0;+∞[من المجال x من أجل كل عدد حقيقي x من المجال 3.

.
$$f(x) = e^x - ex + \frac{\ln x}{x}$$
 بـ $]0;+\infty[$ بين على المجال $]0;+\infty[$ بين معرّفة على المجال $]0;+\infty[$

. $(O; \vec{i}, \vec{j})$ المنحنى الممثل للدالة f في المستوي المنسوب إلى المعلم المتعامد المتجانس (\mathcal{C}_f)

$$\lim_{X\to +\infty} f(X)$$
 و $\lim_{X\to 0} f(X)$ احسب: .1

2. بين أنّ الدالة f متزايدة تماما على المجال $]\infty+;0[$ ، ثمّ شكّل جدول تغيّراتها.

.
$$0; \frac{5}{2}$$
 على المجال (\mathcal{C}_f) على المجال $f(1)$ على .3

. (
$$f\left(\frac{5}{2}\right) \approx 5,75$$
 و $f\left(1,64\right) \approx 1$ ، $f\left(2\right) \approx 2,3$ (ناخذ: 2,3)

4. احسب مساحة الحيّز المستوي المحدّد بالمنحنى $\left(\mathcal{C}_f\right)$ وحامل محور الفواصل والمستقيمين اللّذين معادلتاهما x=2 و $x=\frac{1}{2}$

الموضوع الثاني

التمرين الأوّل: (03 نقاط)

- $2n+27\equiv 0[n+1]\equiv 1$. أ- عين الأعداد الطبيعية n التي تحقق:
- (b-a)(a+b)=24 : عين الثنائيات (a;b) من الأعداد الطبيعية، حيث
 - $\sqrt{24}$ استتج طريقة لرسم قطعة مستقيمة طولها
- $\beta = \overline{3403}$ و $\alpha = \overline{10141}$ و $\alpha =$
 - $\begin{cases} b^2 a^2 = 24 \\ \alpha a \beta b = 9 \end{cases}$: من الأعداد الطبيعية حيث (a; b) من الثنائية
- 3. أ عيّن القاسم المشترك الأكبر للعددين 2013 و 1434، ثمّ استنتج القاسم المشترك الأكبر للعددين 671 و 478. x عيّن القاسم المشترك الأكبر للعددين x التالية: x عيّن المعادلة ذات المجهول x التالية: x التالية: x المعادلة ذات المجهول x التالية: x المعادلة ذات المحددين x المعادلة ألمان المحددين x المعادلة ذات المحددين x المعادلة ألمان x المعادلة ذات المحددين x المعادلة ألمان x ا

التمرين الثاني: (05 نقاط)

- . $z^2+z+1=0$ ، التالية: $z^2+z+1=0$ ، المعادلة ذات المجهول z ، التالية: $z^2+z+1=0$
- 2. نعتبر في المستوي المنسوب إلى المعلم المتعامد المتجانس $(O; \vec{u}, \vec{v})$ ؛ النقط B ، B و M ذات اللّحقات:

$$(z_A$$
 و \overline{z}_A و روم على الترتيب. $(z_A = \overline{z}_A ; z_A = -\frac{1+i\sqrt{3}}{2})$

- أ أكتب Z_A على الشّكل الأستى.
- $\operatorname{arg}\left[\left(z-z_A
 ight)^2
 ight]=\operatorname{arg}\left(z_A
 ight)-\operatorname{arg}\left(z_B
 ight)$ عين مجموعة النقط M من المستوي، حيث:
- $.z'=z_A\cdot z+z_B\sqrt{3}$:حيث M'(z) النقطة M(z) النقطة M(z) عيث M(z) عيث M(z) .3
 - ما طبيعة التحويل ٢؟ عين عناصره المميزة.
 - \cdot z'=-2z+3i : حيث M'(z) النقطة M(z) النقطة M(z) حيث h حيث h
 - عيّن نسبة ومركز التحاكي h.
 - $(h \circ r)$ نضع: $S = h \circ r$ و برمز $(h \circ r)$ نضع: $S = h \circ r$
- . z'=2 $e^{i\frac{\pi}{3}}(z-i)+i$ هي: التّحويل S ، مبرزاً عناصره المميزة، ثمّ تحقّق أنّ عبارته المركّبة هي: S
- S(D)=E و S(C)=D ، S(O)=C و عتبر النقطة Ω ذات اللاحقة i والنقط i و النقط i و i و i و i و i و i و i د i و i د i و i د i النقط i د i و i د i د i النقط i د i
 - $eta\in\mathbb{R}$ مع $z=2e^{i heta}+e^{irac{\pi}{2}}$: من المستوي، حيث $M\left(z
 ight)$ مجموعة النقط $M\left(z
 ight)$ من المستوي، حيث S مع S مع S صورة S بالتحويل S بالتحويل S بالتحويل S مع S مع

التمرين الثالث: (04 نقاط)

$$B(1;1;1)$$
 و $A(-1;0;2)$ النقطتين $A(-1;0;2)$ النقطتين $A(-1;0;2)$ و ونعتبر في الفضاء المنسوب إلى المعلم المتعامد المتجانس $X=2+\alpha$ و المستقيم $X=2+\alpha$ المعرّف بالتمثيل الوسيطي التالي: $X=-1-\alpha$ حيث $X=1$

(AB) أ - اكتب تمثيلا وسيطيا للمستقيم .1

 (ΔB) و نفس المستقيمين (AB) و أنّ المستقيمين أنّ المستقيمين

- (Δ) المستوي الذي يشمل (AB) ويوازي ((Δ)).
 - أ اكتب تمثيلا وسيطيا للمستوى (9).
- y 1 أثبت أن y 1 1 1 ، هي معادلة ديكارتية للمستوي ((\mathcal{P})).
- $(eta\in\mathbb{R})$ مع (1+2eta;1+eta;1-eta) مع الفضاء إحداثياتها (AB) مع (AB) مع (AB) مع (AB) .
 - Ψ جد إحداثيات النقطتين M و N حتى تكون M المسقط العمودي للنقطة N على المستوي Ψ
 - ABN . مساحة المثلث N و (\mathcal{P}) هي $\frac{2}{\sqrt{3}}$ ، ثمّ احسب مساحة المثلث N

التمرين الرابع: (08 نقاط)

- $g(x)=1+\left(x^2-1
 ight)e^{-x}$: بر $g(x)=1+\left(x^2-1
 ight)e^{-x}$ الدالة g(x)=1
 - $\lim_{x\to +\infty} g(x)$ و $\lim_{x\to -\infty} g(x)$.1

 $(g(1+\sqrt{2}) \approx 1.43)$ و $g(1-\sqrt{2}) \approx -0.25$ و $g(1+\sqrt{2}) \approx 1.43$ و $g(1+\sqrt{2}) \approx 1.43$ و $g(1+\sqrt{2}) \approx 1.43$

2. أ - بين أنّ المعادلة g(x)=0 تقبل حليّن في $\mathbb R$ ، ثمّ تحقّق أنّ أحدهما معدوم والآخر lpha ، حيث:

 $-0.8 < \alpha < -0.7$

- \cdot استنتج إشارة g(x) ؛ حسب قيم العدد الحقيقى \cdot
- $f(x) = x (x+1)^2 e^{-x}$ الدالة f معرّفة على \mathbb{R} بر \mathbb{R}

(2 cm وحدة الطول $(O;\vec{i},\vec{j})$ منحنى الدالة $(O;\vec{i},\vec{j})$ في المستوي المنسوب إلى المعلم المتعامد المتجانس ($(O;\vec{i},\vec{j})$). (وحدة الطول

. $\lim_{X\to +\infty} f(X)$ و $\lim_{X\to -\infty} f(X)$ عسب. 1.

 $+\infty$ عند (\mathcal{C}_f) عند المعادلة y=x ، مقارب مائل للمنحنى Δ عند Δ

- (Δ) بالنسبة إلى المستقيم ((\mathcal{C}_f)) بالنسبة إلى المستقيم
- (f الله الدالة المشتقة للدالة f'(x) = g(x) ، g(x) ، عدد حقيقي g(x) ، على عدد حقيقي g(x) . g(x) على g(x) . g(x) على g(x) على g(x) . g(x) على g(x) على g(x) . g(x) .
- 3. أ بيّن أنّ المنحنى $\binom{\mathcal{C}_f}{f}$ يقبل مماسين، معامل توجيه كل منهما يساوي 1، يطلب تعيين معادلة لكل منهما. \mathbf{P}_f والمماسين والمنحنى $\binom{\mathcal{C}_f}{f}$.

 $(x+1)^2 + me^x = 0$: x ناقش بيانيا، حسب قيم الوسيط الحقيقي x ، عدد حلول المعادلة ذات المجهول

 $H(x) = (-x^2 - 4x - 5)e^{-x}$ بين \mathbb{R} بين H معرّفة على H

 \mathbb{R} على $x\mapsto (x+1)^2\,e^{-x}$ على H دالة أصلية للدالة:

- (C_f) والمستقيمين اللذين المربع ، مساحة الحيّز المستوي المحدّد بالمنحنى (C_f) والمستقيمين اللذين (X = 0) و X = 0 و X = 0
 - . $u_{n+1}=f\left(u_{n}\right)$ ، n عدد طبيعي $u_{0}=\alpha$ ومن أجل كل عدد طبيعي $\left(u_{n}\right)$ —III (تذكّر أنّ العدد α يحقّق $g(\alpha)=0$
 - $-1 \le u_n \le \alpha$ ، n عدد طبیعی انّه، من أجل كل عدد التراجع أنّه، من أجل كل عدد التراجع أنّه، من أجل
 - . بيّن أنّ المتتالية $\left(u_{n}
 ight)$ متتاقصة.
 - 3. استنتج أنّ (u_n) متقاربة، ثمّ احسب نهايتها.

الإجابة النموذجية لموضوع امتحان البكالوريا دورة: 2013

اختبار مادة: الرياضيات الشعبة: رياضيات المدة: 04 ساعات ونصف

عدد الصفحات: 4

الإجابة النموذجية

العلامة		عناصر الإجابة	(الموضوع الأول)
المجموع	مجزأة	8 B • 18	5 € 608 00 € 2000 00 € 1
			التمرين الأوّل: (06 نقاط) "
	0,25+0,5	، المثلث OAB متساوي الساقين وقائم في A .	$\frac{Z_A - Z_B}{Z_A} = e^{-i\frac{\kappa}{2}} - 1.1$
	$0,25\times2$	$s(\mathit{OABC}) = a^2$ ua ه ، مساحته $s(\mathit{OABC})$	ب - الرباعي OABC مرب
	$0,25\times2$	$z' = \frac{b}{a}e^{i\frac{3\pi}{4}} \times z .$	$\frac{z_E}{z_A} = \frac{b}{a} e^{i\frac{3\pi}{4}} - 1.2$
	0,25	$S_{(OEFG)} = \left(rac{b}{a} ight)^2 imes a^2$ عي $OEFG$ هي b^2 مقدّرة بوحدة المساحات.	ب - تبيان أنّ مساحة الرباء
06	0,5	$ z_C ^2 + z_E ^2 - 2 z_C \times z_E \cos\left[\arg\left(\frac{z_E}{z_C}\right)\right] = a$	$a^2 + b^2 - ab\sqrt{2} - 1.3$
	$0,25 \times 2$	الكاشي:	ب - المثلث OCE حسب
	0,207.2	$CE^2 = OC^2 + OE^2 - 2OC \times OE \times COS(\overrightarrow{OC}, \overrightarrow{OC})$	\overrightarrow{DE}) =
		$ z_C - z_E ^2 - 2 z_C z_E \cos\left[\arg\left(\frac{z_E}{z_C}\right)\right] = a^2 + b^2$	$b^2 - ab\sqrt{2}$
	0,25	$\cdot \frac{Z_{n+1}}{Z_n} = \frac{b}{a} e^{i\frac{3\pi}{4}}$ معناه	$M_{n+1} = s(M_n)$ -1. II
	0,75×2	$u_0=\left z_0 ight =\left z_A ight =a$ أساسها $rac{b}{a}$ وحدّها الأول u_0 معرّف بـ	
		$\cdot v_0 = ext{arg}ig(z_A^{}ig) = rac{3\pi}{4}$ اسها $rac{3\pi}{4}$ وحدها الأوّل $v_0^{}$ معرّف بـ	متتالية حسابية أس $\left(V_{n} ight)$ -
	0,5	$\lim_{n\rightarrow +\infty}T_n=+\infty \text{o} T_n=u_0+u_1+u_2+u_3+\ldots+u_n=$	$\frac{a^2}{b-a} \left[\left(\frac{b}{a} \right)^{n+1} - 1 \right] - 3$
	0,75		$\ell \in \mathbb{N}$ مع $n = 4\ell$ - 4
	T		التمرين الثاني: (03 نقاط
	0,75	$PGCD(\alpha;\beta) = PGCD$	$(oldsymbol{eta};10)$: أ - تبيان أنّ 1
03	$0,5\times2$	$p \in \mathbb{N}$ مع $n = 10 p + 2$ \rightarrow $PGCD(a)$	$(\alpha; \beta) \in \{1; 2; 5; 10\}$ - φ
	0,75	دد الطبيعي n ، بواقي القسمة الاقليدية للعدد 4^n على 11 .	2. أ - دراسة حسب قيم الع
	0,5	$p \in \mathbb{N}$ (ب- n=110p+82

العلامة العلامة		entra sur
المجموع		(تابع للموضوع الأوّل) عناصر الإجابة
		التمرين الثالث: (05 نقاط)
	0,75	ABCا و B تعیّن مستویا B ، A و B تعیّن مستویا B ، A
	$0,5\times2$	ب - الشعاع $\vec{n}(3;-2;1)$ ناظمي لـِ $\vec{n}(3;-2;1)$ ؛ (ABC) ؛ $\vec{n}(3;-2;1)$ معادلة له.
	0,5+0,25	و (\mathscr{G}) و المستوي (\mathscr{G}) و المستوي المستوي (\mathscr{G}) و المتعامدان.
	0,5	$x=-2+t$ $y=-7+4t$ $(t\in\mathbb{R})$ معرّف به (Δ) معرّف وفق مستقیم (\mathcal{G}) معرّف $z=-7+5t$
05	$0,25\times3$	$d(D,(\Delta)) = \sqrt{\frac{43}{3}} + d(D,(\mathcal{G})) = \frac{\sqrt{3}}{3} + d(D,(ABC)) = \sqrt{14} - \varepsilon$
	0,5	3. أ - 0 = 3 × 4 y + 5 عي معادلة لـِ (0) ؛
	0, 25 +0, 25	$H\left(\frac{1}{3}, \frac{7}{3}, \frac{14}{3}\right)$ هندسیا. $(\mathcal{P}) \cap (ABC) \cap (\mathcal{Q}) = \{H\}$ ب
	0,25	$d(D,(\Delta)) = DH = \sqrt{\frac{43}{3}} -\Rightarrow$
		التمرين الرابع: (06 نقاط)
	0,5	u الدالة u الدالة u
	0,5	$e^x - e > 3x - 4$ ، $]0; +\infty[$ من المجال x من أجل كل عدد حقيقي x من المجال
	0,75+0,5	. $v(x) \le 0$ ، $]0;+\infty[$ ب - إثبات أنّه من أجل كل عدد حقيقي x من المجال $v'(1)=0$. 2
	0,5	$-1+\ln X$ عدد حقیقی X من المجال $0;+\infty$ ، $0;+\infty$ من المجال عدد حقیقی X من المجال X
06	0,5	$e^{x}-e+rac{1-\ln x}{x^{2}}>0:]0;+\infty[$ يثبات أنّه من أجل كل عدد حقيقي x من المجال .3
	0,5	$\lim_{X \to +\infty} f(X) = +\infty : \lim_{X \to 0} f(X) = -\infty \cdot 1 - II$
	0,5×2	f متزايدة تماما على المجال $]0;+\infty[$ ؛ جدول تغيّرات الدالة f
	0,5	$\cdot \left[0; \frac{5}{2}\right]$ على المجال $\left(\mathcal{C}_f\right)$ على المجال $f(1) = 0$. 3
	0, 25 +	$A = -\int_{\frac{1}{2}}^{1} f(x) dx + \int_{1}^{2} f(x) dx, ua \approx 1,024 \ ua : A$.4
	0, 25 +	$\frac{\mathbf{J}_{1}^{2}}{2}$
	0,25	$(\int f(x) dx = e^x - \frac{e}{2}x^2 + \frac{1}{2}(\ln x)^2 + c)$

العلامة		2 (1-M)	/ tithi e . ta . tis
المجموع	مجزأة ا	عناصر الإجابة	(الموضوع الثاني)
03	ا معد ا		التمرين الأوّل: (03 نقاط)
	0,25	$0;4;24$ هي: $2n+27\equiv 0[n+1]$ التي تحقّق	
	0,5		$(x,b) \in \{(1;5); (5;7)\}$ - \downarrow
	0,25		ج - طريقة لرسم قطعة مستق عرب
			$\sqrt{24}^2 + 1^2$ يمكن استعمال
	$0,25\times2$		$\alpha = \overline{10141} = 671 - 1.2$
	0,5	(a;b) = (5;7) معناه	$\begin{cases} b^2 - a^2 = 24 \\ 671a - 478b = 9 \end{cases}$
	0,25×2	PGCD(671;478) = 1 : PGCD	(2013;1434) = 3 - 1.3
	0,5	$k \in \mathbb{Z}$ معناه $(x, y) = (478k + 5; 671k + 7)$ مع	013x - 1434y = 27 - 4
			التمرين الثاني: (05 نقاط)
	0,5	$z = \frac{-1 + i\sqrt{3}}{2}$ أو $z = \frac{-1 - i\sqrt{3}}{2}$	معناه $z^2 + z + 1 = 0$ معناه
05	0,5+0,25	. A باستثناء النقط هي المستقيم (OA) باستثناء النقطة $Z_A=-$	$-\frac{1+i\sqrt{3}}{2} = e^{-i\frac{2\pi}{3}} - 1.2$
	0,5	$\pmb{\omega}(0;1)$ و مرکزه $-rac{2\pi}{3}$	هو دوران زاويته r -1.3
	0,5	$\omega(0;1)$ ومركزه هو النقطة $\omega(0;1)$	ب - نسبة التحاكي h هج
	0,75	کزه $\omega(0;1)$ ونسبته 1 وزاویته $-rac{2\pi}{3}$ ؛ $-rac{2\pi}{3}$ ونسبته $\omega(0;1)$	جه و تشابه مباشر مر r
		$1{ imes}2$ ونسبته S هو تشابه مباشر مرکزه $\omega(0;1)$ ونسبته S	ونسبته $\omega(0;1)$
			$-\frac{2\pi}{3} + \pi = \frac{\pi}{3}$ وزاویته
	0.05		
	0,25	: : : E	التحقق من الكتابة المركبة
	0,75	E . تبيان أنّ النقط Ω ، Ω و E في استقامية.	
	0,5	لدائرة ذات المركز Ω ونصف القطر 2 .	
	0,5	Ω القطر Ω القطر Ω	1 H
		\(\bullet \)	التمرين الثالث: (40) نقاط) $-1+2t$
	0,25	(AB) هو تمثيل وسيطي للمستقيم $y=$	or and the state of the state o
	0,5	عير متقاطعين وغير متوازيين إذن هما ليسا من نفس المستوي. Δ	

العلامة		Zula Million (1981) o alta di sulti	
المجموع	مجزأة	(تابع للموضوع الثاني) عناصر الإجابة	
03	0,25	(\mathcal{P}) وهو تمثيل وسيطي للمستوي $\begin{cases} x=-1+2\lambda+\gamma \\ y=\lambda \end{cases}$ $(\lambda\in\mathbb{R}); (\gamma\in\mathbb{R})$. $(\lambda\in\mathbb{R})$	
	0,25	$oldsymbol{arphi}$ ب إثبات أن $y+z-1=0$ هي معادلة ديكارتية للمستوي $(oldsymbol{arphi})$.	
	0,25	AB. أ- تبيان أنّ النقطة M تتتمي إلى المستقيم AB).	
	0,75	. $N(-3;-2;4)$ و $M\left(-\frac{11}{3};-\frac{4}{3};\frac{10}{3}\right)$ - ب	
	0,5+0,25	$S(ABN) = \sqrt{2} \ u.a \ . \ ABN$ حساب مساحة المثلث $d(N,(P)) = \frac{2}{\sqrt{3}}$ - ج	
		التمرين الرابع: (08 نقاط)	
	$0,25\times2$	$\lim_{x \to +\infty} g(x) = 1 : \lim_{x \to -\infty} g(x) = +\infty \cdot 1 \cdot 1 - I$	
	$0,25\times3$	$g'(x)=-(x^2-2x-1)e^{-x}$. جدول تغیّرات الدالة $g'(x)=g'(x)=-(x^2-2x-1)e^{-x}$.	
	0,5	$\left[1-\sqrt{2};1+\sqrt{2} ight]$ و عقبل حلاً في $\left[-\infty;1-\sqrt{2} ight]$ وحلاً في $g(x)=0$. ا	
		\mathbb{R} إذن تقبل حلين في \mathbb{R}	
	$0,25\times2$	$g(-0.8) \times g(-0.7) < 0$ $\alpha \in]-0.8; -0.7[: g(0) = 0$	
	0,25	$g(\alpha) = g(0) = 0$ و $g(x) < 0$ ، $x \in]\alpha;0[$ ؛ $g(x) > 0$ ، $x \in]-\infty;\alpha[$ \cup $]0;+\infty[$ - \cup	
	$0,25\times2$	$\lim_{x \to +\infty} f(x) = +\infty : \lim_{x \to -\infty} f(x) = -\infty \cdot 1 - II$	
08	0,25	$\lim_{X \to +\infty} [f(X) - X] = 0 - 4$	
	0,25	(Δ) ومنه المنحني (\mathcal{C}_f) يقع أسفل المستقيم $f(x)-x<0$ ومنه المنحني جـ - من أجل كل عدد حقيقي (Δ)	
	0,25	f'(x) = g(x) ، x عدد حقیقی عدد حقیقی $f'(x) = g(x)$	
	0,25	ب - جدول تغيرات الدالة f	
	0,25×3	$x=-1$. أ - تبيان أن المنحني (\mathcal{C}_f) يقبل مماسين $f'(x)=1$ لهما حلان $x=1$ أو $x=-1$)؛	
		$y = x - \frac{4}{e}$ f $y = x$	
	0,25×3	ب - تمثيل المماسين والمنحني (\mathcal{C}_f) .	
	0,5	$(x+1)^2 + me^x = 0$ عدد حلول المعادلة ، حسب قيم الوسيط الحقيقي m عدد عدول المعادلة ، حسب قيم الوسيط الحقيقي	
	0,25	$H'(x) = (x+1)^2 e^{-x}$.4	
	0,25	$S = 4(2e-5) cm^2$ - \checkmark	
	0,75	$-1 \le u_n \le lpha$ ، n البرهان بالتراجع أنّه من أجل كل عدد طبيعي . $-1 \le u_n \le lpha$	
	0,25	$u_{n+1}-u_n=-(u_n+1)^2e^{-u_n}<0$. المنتالية $\left(u_n ight)$ منتاقصة لأن: 2	
	$0,25\times2$	$\lim_{n o +\infty} u_n = -1$ ؛ متقاربة $\left(u_n ight)$ متقاربة 3.	