# How to Color a Pandas DataFrame

A short tutorial on how to set the colors on a pandas DataFrame.

#### Roman Orac



Photo by Robert Katzki on Unsplash

Pandas needs no introduction as it became the de facto tool for Data Analysis in Python. As a Data Scientist, I use pandas daily and it never ceases to amaze me with better ways of achieving my goals.

Another useful feature that I learned recently is how to color a pandas Dataframe.

#### Let's add colors

Let's create a pandas DataFrame with random numbers:

```
import numpy as np
import pandas as pddf = pd.DataFrame(np.random.ra
```

```
A B C D
0 68 11 17 12
1 96 36 82 61
2 90 86 58 77
3 21 33 18 49
4 21 40 27 17
5 87 75 73 47
6 33 86 1 77
7 31 23 43 42
8 61 34 26 87
9 65 22 0 31
10 39 16 10 44
11 82 57 56 34
12 61 86 65 64
13 91 30 85 81
14 0 75 29 87
```

Pandas Dataframe with random numbers (image made by author)

Coloring cells (by frequencies) is as simple as:

```
df.style.background_gradient(cmap="Blues")
```



Colored Pandas Dataframe with random numbers (image made by author)

## Coloring is column-based

If we increase column B by 1000, it won't interfere with other column colors.

As we see in the image below, maximums of columns A, C, D retained their color.

|    | Α  | В     | С  | D  |
|----|----|-------|----|----|
| 0  | 68 | 11000 | 17 | 12 |
| 1  | 96 | 36000 | 82 | 61 |
| 2  | 90 | 86000 | 58 | 77 |
| 3  | 21 | 33000 | 18 | 49 |
| 4  | 21 | 40000 | 27 | 17 |
| 5  | 87 | 75000 | 73 | 47 |
| 6  | 33 | 86000 | 1  | 77 |
| 7  | 31 | 23000 | 43 | 42 |
| 8  | 61 | 34000 | 26 | 87 |
| 9  | 65 | 22000 | 0  | 31 |
| 10 | 39 | 16000 | 10 | 44 |
| 11 | 82 | 57000 | 56 | 34 |
| 12 | 61 | 86000 | 65 | 64 |
| 13 | 91 | 30000 | 85 | 81 |
| 14 | 0  | 75000 | 29 | 87 |

Colored Pandas Dataframe with random numbers (image made by author)

### Change the color map

You can set any colormap supported in <u>matplotlib</u>. Just be careful to select the sequential colormap if your goal is to visualize the frequencies.

#### Sequential

For the Sequential plots, the lightness value increases monotonically through the colormaps. This is good. Some of the  $L^*$  values in the colormaps span from 0 to 100 (binary and the other grayscale), and others start around  $L^* = 20$ . Those that have a smaller range of  $L^*$  will accordingly have a smaller perceptual range. Note also that the  $L^*$  function varies amongst the colormaps: some are approximately linear in  $L^*$  and others are more curved

#### Sequential2

Many of the  $L^*$  values from the Sequential2 plots are monotonically increasing, but some (autumn, cool, spring, and winter) plateau or even go both up and down in  $L^*$  space. Others (afmhot, copper, gist\_heat, and hot) have kinks in the  $L^*$  functions. Data that is being represented in a region of the colormap that is at a plateau or kink will lead to a perception of banding of the data in those values in the colormap (see [mycarta-banding] for an excellent example of this).

Sequential colormaps from matplotlib (image made by author)

A bad example of visualizing frequencies is with a nonsequential colormap (so make sure you use a sequential colormap):

df.style.background\_gradient(cmap="Spectral")



A bad example of visualizing frequencies is with a non-sequential colormap (image made by author)

## Before you go

- <u>Intro to Machine Learning with PyTorch</u> [Course]

Some of the links above are affiliate links and if you go through them to make a purchase I'll earn a commission. Keep in mind that I link courses because of their quality and not because of the commission I receive from your purchases.

Follow me on <u>Twitter</u>, where I regularly <u>tweet</u> about Data

#### Science and Machine Learning.



Photo by <u>Courtney Hedger</u> on <u>Unsplash</u>