Pismeni ispit iz OE 15.2.2016.

Prezime i ime JMBAG Grupa

**1.** Odredite napon  $U_{AB}$  u mreži prema slici.

**3** boda



- B) 30 V
- C) 45 V
- D) 75 V
- E) 90 V



2. Na simetrični trofazni generator spojeno je trošilo prema slici. Kolika se radna snaga razvija 3 boda na trošilu? Zadano:  $R=X_{\rm L}=X_{\rm C}=10~\Omega$ ,  $U_{\rm l}=380~{\rm V}$ .

- A) 0 W
- B) 4840 W
- C) 14440 W
- D) 1210 W
- E) 10890 W



**3.** Odredite maksimalnu snagu koja se može razvijati na otporu *R* u mreži prema slici.

**3** boda

- A) 4.6 W
- B) 6.2 W
- C) 16.6 W
- D) 9.7 W
- E) 2.4 W



**4.** Kolika struja teče kroz otpornik od 2  $\Omega$  u mreži prema slici?

3 boda

- A) 0 A
- B) 2.5 A
- C) 5 A
- D) 7.5 A
- E) 10 A



- 5. Odredite iznos otpora R takav da vrijedi  $U_{AB} = 4 \text{ V}$ .
- 3 boda



- B)  $40 \Omega$ C)  $\Omega$  08
- E)
- $160 \Omega$ D)  $240 \Omega$



- 6. Odredite efektivnu vrijednost struje kroz kapacitet  $C_1$ , ako je napon izvora u(t) = $3 boda 4\sqrt{2} \sin(\omega t) + \sqrt{2} \sin(2\omega t)$  [V], a iznosi reaktivnih otpora zadani su za kružnu frekvenciju ω.
  - A) 0.106 A
  - B) 0.212 A
  - 0.424 A C)
  - D) 0.600 A
  - E) 0.848 A



- 7. Odredite faktor oblika  $\xi$  za valni oblik prema slici.
- 3 boda
- 0.717 A)
- B) 1.2
- C) 1.394
- D) 1.673
- E) 1.792



- 8. Kratki vodič kreće se konstantnom brzinom  $\vec{v}$  u homogenom magnetskom polju indukcije  $\vec{B}$ . **2** boda Polaritet napona  $U_{ab}$  je:
  - A) u svakom trenutku  $U_{ab} > 0$
  - B) u svakom trenutku  $U_{ab} < 0$
  - C) u svakom trenutku  $U_{ab} = 0$
  - D) promjenjivog polariteta



- Kroz dvije zavojnice s $N_1=40$ zavoja i  $N_2=10$ zavoja prolaze promjenjivi magnetski tokovi **2** boda  $\Phi_1 = 2t + 4$  [Vs] i  $\Phi_2 = -6t + 1$  [Vs] (izvori kojima je postignuta promjena magnetskih tokova nisu prikazani na slici). Odredite napon  $u_{ab}(t)$  tijekom intervala  $0 \le t \le 10$  s?
  - A) 140 V
  - B) 20 V
  - C) -20 V
  - -140 V D)
  - E) 0 V



- 10. Odredite iznos induktiviteta L takav da fazni kut između napona  $\dot{U}_1$  i  $\dot{U}_{AB}$  iznosi 60° pri kružnoj frekvenciji  $\omega=\sqrt{3}\cdot 10^3~{\rm s}^{-1}$ . Zadano:  $\dot{U}_1=\dot{U}_2=U \angle 0^\circ$  V,  $R=90~\Omega$ . 2 boda
  - A)  $0 \, \mathrm{mH}$
  - B) 30 mH 52 mH C)
  - 90 mH D)
  - E) 156 mH



- Na simetrični trofazni izvor priključeno je trošilo prema slici. Odredite pokazivanje idealnog **2** boda ampermetra nakon što zatvorimo sklopku **S**. Linijski napon je  $U_1 = 400$  V i R = 90 Ω.
  - 2.55 A A)
  - B) 3.66 A
  - C) 4.44 A
  - D) 6.58 A
  - E) 7.69 A



**12**. Koliki napon mjeri idealni voltmetar u dijelu mreže prema slici?

3 boda

- A) 30 V
- B)  $30\sqrt{2} \text{ V}$
- $30\sqrt{5} \text{ V}$ C)
- D) 50 V
- E) 75 V



- Na slici su prikazane vanjske karakteristike dva realna izvora (1) i (2). Ako na stezaljke 2 boda izvora (2) priključimo trošilo  $R_t$  kroz trošilo će poteći 2 puta veća struja nego u slučaju kada isto trošilo priključimo na stezaljke izvora (1). Kolika je vrijednost otpora  $R_t$ ?
  - $R_{\rm t} = 1 \, \Omega$
  - B)  $R_t = 2 \Omega$ C)  $R_t = 3 \Omega$

  - D)  $R_t = 4 \Omega$ E)  $R_t = 5 \Omega$



- Dva su točkasta naboja  $Q_1$  (x=0, y=0) = 2 nAs i  $Q_2$  (x=6 cm, y=0) = 2 nAs prikazana  $3 \ boda$  slikom. Odredite iznos jakosti električnog polja E u točki A ( $x = 4 \ cm, y = 3 \ cm$ ) prema slici.
  - A) 18274 V/m
  - B) 14478 V/m
  - C) 15935 V/m
  - D) 8457 V/m
  - E) 4992 V/m



**15.** *U-I* karakteristika nelinearnog elementa zadana je slikom. Ako na realni naponski izvor **2** boda zadan izrazom I = -0.01U + 0.04 [A] spojimo nelinearni element odredite statički otpor nelinearnog elementa u tako dobivenom spoju.



C) 
$$25.4 \Omega$$

E) 
$$39.7 \Omega$$



U spoju prema slici odredite Nortonovu struju  $\dot{I}_{
m N}$  i Nortonovu impedanciju  $Z_{
m N}$  između točaka 3 boda A i B ako je zadano:  $R = X_L = X_C = 100 \Omega$ ,  $\dot{U} = j10 \text{ V}$ .

A) 
$$\dot{I}_{N} = 0$$
 A,  $Z_{N} = 50 + j50$  Ω

B) 
$$\dot{I}_{\rm N}={\rm j}0.1\,{\rm A}$$
 ,  $\underline{Z}_{\rm N}=100\,\Omega$ 

C) 
$$\dot{I}_{N} = j0.05 \text{ A}$$
,  $Z_{N} = 100 \Omega$ 

D) 
$$\dot{I}_{N} = 0 \text{ A}$$
,  $Z_{N} = 100 \Omega$ 

C) 
$$\dot{I}_{N} = j0.05 \text{ A}, \underline{Z}_{N} = 100 \Omega$$
  
D)  $\dot{I}_{N} = 0 \text{ A}, \underline{Z}_{N} = 100 \Omega$   
E)  $\dot{I}_{N} = 0 \text{ A}, \underline{Z}_{N} = 50 - j50 \Omega$ 



Odredite kapacitet zračnog pločastog kondenzatora ako se ploče razmaknute d=1 mm **17. 2** boda privlače silom F = 400 mN, a na njima se nalazi naboj Q = 100 nAs.

18. Od iste količine vodljivog materijala specifičnog otpora  $\rho$  načinjena su dva cilindrična vodiča. 2 boda Prvi vodič ima presjek S, a drugi presjek 2S. Odredite odnos otpora vodiča!

A) 
$$R_1 = R_2$$

$$B) R_1 = 2R_2$$

B) 
$$R_1 = 2R_2$$
 C)  $R_1 = 4R_2$  D)  $R_1 = 8R_2$  E)  $2R_1 = R_2$ 

D) 
$$R_1 = 8R_2$$

E) 
$$2R_1 = R_2$$

19. Faktor snage trošila radne snage P=1 kW iznosi  $\cos \varphi=0.707$  (ind.). Za popravljanje *3 boda* faktora snage na  $\cos \varphi = 0.95$  spajamo kondenzator paralelno trošilu. Odredite najmanji kapacitet kondenzatora ako je napon izvora U = 230 V, a frekvencija f = 50 Hz.

- E) 13 μF
- Odredite napon  $u_{ab}(t)$  u trenutku  $t=3\,\mathrm{ms}$  nakon zatvaranja sklopke **S**. Kondenzatori su 20. 3 boda nenabijeni u trenutku zatvaranja sklopke S.



