

DAMON Recipes:

Ways to Save Memory Using a Linux Kernel Subsystem in the Real World

SeongJae Park <sj@kernel.org> Honggyu Kim <honggyu.kim@sk.com>

Notices

- The views expressed herein are those of the speakers;
 They do not reflect the views of their employers
- This talk is for DAMON recipes (usages);
 detailed internals of DAMON are out of the focus

Overview

- DAMON in Nutshell (5 mins)
- DAMON Recipes
 - Profiling and profiling-guided optimizations (5 mins)
 - Memory auto-scaling in AWS Aurora Serverless v2 (7 mins)
 - Tiered memory management in SK hynix HMSDK (15 mins)
- DAMON Community (2 mins)
- Summary (1 mins)
- QnA (5 mins)

DAMON in Nutshell

DAMON: Data Access Pattern Snapshot Generator

- Informs which address range is how frequently accessed for how long time
- Supports virtual/physical address spaces (could be expanded)

```
size 31.273 MiB
                                                  access rate 0 %
                                                                 age 3 m 47.400 s
                                   size 31.379 MiB
                                                                 age 3 \text{ m } 34.700 \text{ s}
                                                  access rate 0 %
   size 31.449 MiB
                                                                 age 45.800 s
                                                  access rate 0 %
    size 31.438 MiB
                                                                 age 27.300 s
                                                  access rate 0 %
      size 31.391 MiB
                                                  access rate 0 %
                                                                 age 9.300 s
        size 6.000 MiB
                                                  access rate 0 %
                                                                 age 2.400 s
                                   size 8.000 KiB
                                                  access rate 55 %
                                                                 age 0 ns
                                   size 9.531 MiB
                                                  access rate 100 % age 1.900 s
                                   size 8.000 KiB
                                                  access rate 45 %
                                                                 age 300 ms
                                   size 9.660 MiB
                                                  access rate 0 %
                                                                 age 2.300 s
                                   size 6.949 MiB
                                                  access rate 0 %
                                                                 age 3 m 21.300 s
                                   size 120.000 KiB access rate 0 %
                                                                 age 3 m 50 s
                                   size 8.000 KiB
                                                  access rate 55 %
                                                                 age 300 ms
 size 4.000 KiB
                                                                 age 3 \text{ m } 49.700 \text{ s}
                                                  access rate 0 %
total size: 314.598 MiB
```


DAMON: Data Access Pattern Snapshot Generator

- Informs which address range is how frequently accessed for how long time
- Supports virtual/physical address space Cold!

```
size 31.273 MiB
                                                       access rate 0 %
                                                                       age 3 m 47.400 s
                                       size 31.379 MiB
                                                      access rate 0 %
                                                                       age 3 \text{ m } 34.700 \text{ s}
    size 3
                                                                       age 45.800 s
                                                          ss rate 0 %
                                       size 3
                                                                       age 27.300 s
                                                          ss rate 0 %
                                                Hot!
      size 3
                                                          ss rate 0 %
                                                                       age 9.300 s
         size 6
                                                          ss rate 0 %
                                                                       age 2.400 s
                                       size 8.000 KiB
                                                       access rate 55 %
                                                                       age 0 ns
                                       size
         9999999999999999999999999
                                                          ess rate 100 % age 1.900 s
                                       size
                                                          ess rate 45 %
                                                                       age 300 ms
                                               Warm!
                                       size
                                                          ess rate 0 %
                                                                       age 2.300 s
                                       size
                                                          ess rate 0 %
                                                                       age 3 m 21.300 s
                                       size 120.000 Kib access rate 0 %
                                                                       age 3 m 50 s
                                       size 8.000 KiB
                                                       access rate 55 %
                                                                       age 300 ms
                                       size 4.000 KiB
                                                                       age 3 \text{ m } 49.700 \text{ s}
                                                       access rate 0 %
total size: 314.598 MiB
```


Best-effort Overhead-Accuracy Tradeoff

- Let users control upper-bound monitoring overhead limit
- Under the limit, provides its best accuracy using adaptive mechanisms
- From real world production usages, 3-4% CPU usage is commonly reported
- More details available at the design doc

Extensible Design

- DAMON supports virtual address spaces and the physical address space
- The core logic and address space/access check-specific logic are separated
- Can be extended for different address spaces and access check primitives
- E.g., CPU (AMD IBS, Intel PEBS, ...) or devices (e.g., GPU, CXL, ...) providing access check primitives for special address spaces (e.g., CPU cache, unified memory, low-tier memory, ...)
- More details are available at design doc

Extensible Design

- DAMON supports virtual address spaces and the physical address space
- The core logic and address space/access check-specific logic are separated
- Can be extended for different address spaces and access check primitives
- E.g., CPU (AMD IBS, Intel PEBS, ...) or devices (e.g., GPU, CXL, ...) providing access check primitives for special address spaces (e.g., CPU cache, unified memory, low-tier memory, ...)
- More details are available at design doc

DAMOS: DAMon-based Operation Schemes

- A feature of DAMON
- Apply memory operation actions to regions of interesting access pattern
- More details are available at design doc

```
# # pageout memory regions that not accessed for >=5 seconds
# damo start --damos_action pageout --damos_access_rate 0% 0% --damos_age 5s max
```

```
Pageout! | Size 31.273 MiB | access rate 0 % | age 3 m 47.400 s | size 31.379 MiB | access rate 0 % | age 3 m 34.700 s | size 31.449 MiB | access rate 0 % | age 45.800 s | age 27.300 s | size 31.438 MiB | access rate 0 % | age 27.300 s | age 27.300 s | size 31.391 MiB | access rate 0 % | age 27.300 s | age 2.400 | size 8.000 KiB | access rate 0 % | age 2.400 | age 2.400 | size 8.000 KiB | access rate 45 % | age 3.00 ms | access rate 0 % | age 2.300 s | age 3.00 ms | access rate 0 % | age 3.00 ms | access rate 0 % | age 3.00 ms | access rate 0 % | age 3.00 ms | access rate 0 % | age 3.00 ms | access rate 0 % | age 3.00 ms | access rate 0 % | age 3.00 ms | access rate 0 % | age 3.00 ms | access rate 0 % | age 3.00 ms | access rate 0 % | age 3.00 ms | access rate 0 % | age 3.00 ms | access rate 0 % | age 3.00 ms | access rate 0 % | age 3.00 ms | access rate 0 % | age 3.00 ms | access rate 0 % | age 3.00 ms | access rate 0 % | age 3.00 ms | access rate 0 % | age 3.00 ms | access rate 0 % | age 3.00 ms | access rate 0 % | age 3.00 ms | access rate 0 % | age 3.00 ms | access rate 0 % | age 3.00 ms | access rate 0 % | age 3.00 ms | access rate 0 % | age 3.00 ms | access rate 0 % | age 3.00 ms | access rate 0 % | age 3.00 ms | access rate 0 % | age 3.00 ms | access rate 0 % | age 3.00 ms | access rate 0 % | age 3.00 ms | access rate 0 % | age 3.00 ms | access rate 0 % | age 3.00 ms | access rate 0 % | age 3.00 ms | access rate 0 % | age 3.00 ms | access rate 0 % | age 3.00 ms | access rate 0 % | age 3.00 ms | access rate 0 % | age 3.00 ms | access rate 0 % | age 3.00 ms | access rate 0 % | age 3.00 ms | access rate 0 % | age 3.00 ms | access rate 0 % | age 3.00 ms | access rate 0 % | age 3.00 ms | access rate 0 % | age 3.00 ms | access rate 0 % | age 3.00 ms | access rate 0 % | age 3.00 ms | access rate 0 % | age 3.00 ms | access rate 0 % | age 3.00 ms | access rate 0 % | age 3.00 ms | access rate 0 % | age 3.00 ms | access rate 0 % | age 3.00 ms | access rate 0 % | age 3.00 ms | access rate 0 % | age 3.00 ms | access
```


DAMOS: DAMon-based Operation Schemes

- A feature of DAMON
- Apply memory operation actions to regions of interesting access pattern
- More details are available at design doc

```
# # pageout memory regions that not accessed for >=5 seconds
# damo start --damos_action pageout --damos_access_rate 0% 0% --damos_age 5s max
```

```
auze 31.273 MiB
                                                                            age 3 m 47.400
                                                         access rate 0 %
                                       size 31.379 MiB
                                                         access rate 0 %
                                                                            age 3 m 34.700 s
Pageout!
                                        size 31.449 MiB
                                                         access rate 0 %
                                                                            age 45.800 s
                                        size 31.438 MiB
                                                                            age 27.300 s
                                                         access rate 0 %
                                        size 31.391 MiB
                                                         access rate 0 %
                                                                            age 9.300 s
                                                         access rate 0 %
                                                                            age 2.400
                                        size 8.000 Nip
                                                                            uge v NS
                                       size 9.531 MiB
                                                         access rate 100 % age 1.900 s
                                       size 8.000 KiB
                                                         access rate 45 %
                                                                            age 300 ms
                                       size 9.660 MiB
                                                         access rate 0 %
                                                                            age 2.300 s
                                       size 6.949 MiB
                                                         access rate 0 %
                                                                            age 3 m 21.300 s
                                        size 120.000 KiB access rate 0 %
                                                                            age 3 m 50 s
                                       size 8.000 KiB
                                                         access rate 55 %
                                                                            age 300 ms
                                        size 4.000 KiB
                                                         access rate 0 %
                                                                            age 3 \text{ m } 49.700 \text{ s}
```


Availability

- DAMON is enabled on kernels of major Linux distros
- including Amazon Linux, Android, Debian, Fedora, Oracle Linux
- DAMON user-space tool is packaged for multiple packaging systems including Arch, Debian, Fedora, PyPi, Raspbian

Distribution	DAMON [x]	UTS_RELEASE [x]
Android 12 (5.10) aarch64	у	5.10.218
Android 13 (5.10) aarch64	у	5.10.218
Android 13 (5.15) aarch64	у	5.15.151
Android 14 (5.15) aarch64	у	5.15.158
Android 14 (6.1) aarch64	У	6.1.90
Arch x86_64	у	6.10.9-arch1
CentOS 9 Stream aarch64	у	5.14.0-505.el9.aarch64
CentOS 9 Stream x86_64	У	5.14.0-505.el9.x86_64
CentOS Hyperscale 9 aarch64	у	6.10.9-0.hs1.hsx.el9.aarch64
CentOS Hyperscale 9 x86_64	у	6.10.9-0.hs1.hsx.el9.x86_64

Packaging status		
AOSC		
AUR		
Debian 13		
Debian Unstable		
Devuan Unstable		
EPEL 9	2.4.8	
EPEL 10		
Fedora 37		
Fedora 38		
Fedora 39	2.4.8	
Fedora 40	2.4.8	
Fedora Rawhide		
Kali Linux Rolling		
PureOS landing		
PyPI		
Raspbian Testing		
Ubuntu 23.10		
Ubuntu 24.04		
Ubuntu 24.10	2.4.6	

That's It About DAMON Itself

- Internal mechanism of DAMON is out of the scope of this talk
- This talk is for how {others are using, you can use} DAMON for fun and profit
- For more details of the internal mechanism, refer to the design doc

Three DAMON Recipes

Introducing (Only) Three DAMON Recipes

- No one knows entire and optimum DAMON usages
- Following three recipes are only speakers' best knowledge
- We are waiting to learn more recipes from you

Accesses Profiling (-guided Optimization)

DAMON for Profiling (and Optimizations)

- Record, or snapshot data access pattern of workloads using DAMON
- Record/snapshot additional information together
- Visualize the data points (e.g., heatmap, flamegraphs, workingset size)
- Get insights from data for better understanding workloads and systems
- Make profiling-guided optimizations

Image is retrieved from internet

General DAMON-based Profiling-Guided Optimization

- Find hot/cold regions and matching data/variables in the code
- Protect/promote hot data using mlock() or madvise(MADV_HUGEPAGES)
- Evict/demote cold data using madvise(PAGEOUT, NOHUGEPAGES)
- Any creative optimizations would be possible
- Hot page protection achieves 2.3x speedup under memory pressure
- More detailed blog article

DAMON user-space tool supports for PGO

- DAMON user-space tool, damo, is for easy usages of DAMON
- We are adding features for easy DAMON-based PGO to damo
- As of this talk, some profiling parts are added, more works to go
- Quick start: damo monitor --report_type holistic

Generated from https://gr.io

Proactive Reclamation

Proactive Reclamation

- Reactive reclamation: Reclaim cold memory when memory pressure happens
- Proactively reclamation: Reclaim cold memory before memory pressure
- Benefit 1: Reduce memory footprint without performance degradation
- Benefit 2: Minimize degradation from direct reclamation
- Known usages: Google, Meta, and Amazon
- Each company uses its own implementation for its usage
- Amazon uses DAMON-based implementation for memory auto-scaling

Memory Auto-scaling Business Model

- User: Specify workload and min/max memory requirements
- Service provider: Run it somewhere, charge as they go
- Achieving high performance and low price is the provider's duty

Designs of Collaborative Memory Auto-scaling

- Non-collab approach: Host reclaims/reallocs guests' memory
- Collab approach: Host reallocs guests-reported free pages
- Minimize perf degradation from host's mistakes
- Question: What if guests are not memory frugal?

Design of AWS' Collaborative Memory Auto-scaling

- Guests report free pages to host; the host re-alloc reported pages
- Guests run DAMOS-based proactive reclamation for increasing free pages

AWS' DAMON-based Proactive Reclamation

Scale-up

- AWS Aurora Serverless v2 is an officially known user of the memory scaling
- Holistic re:Invent of the entire memory auto-scaling with DAMON is ongoing

[RFC IDEA v2 0/6] mm/damon: introduce Access/Contiguity-aware Memory Auto-scaling (ACMA)

Reclaim

scale-down

min-mem max-mem end (memory address)

CXL Memory Tiering

Moving Mic to Honggyu Kim

- Hongguu Kim from SK hynix will introduce this recipe
- If you are reading these slides after the talk, refer to Honggyu's slides (damon_recipes_osseu_hmsdk.pdf)

DAMON Community

DAMON Owner: Community

- DAMON is a community-driven development project
- Not owned by individual or companies (e.g., SJ, Amazon, Meta)
- Owned by the community
- A number of DAMON features are results of community discussions

Mailing List

- Primary and official place for the community
- For any question, discussion, reports, and patches
- A tool (hkml) for mailing list-unfamiliar people is supported: https://github.com/sjp38/hackermail
- Mailing address: damon@lists.linuxdev
- Archive: https://lore.kernel.org/damon
- Don't hesitate sending personal mails/DMs to the maintainer (SJ)

Community Meetups: Beer/Coffee/Tea Chats

- For any informal chats
- Regular bi-weekly open/registration-based discussions
- Occasional/regular private meetings on demand
- Feel free to join existing meeting series, or ask one for yours
- Multiple individuals and companies are using these
- Google doc and calendar for schedules are available

Generated from https://gr.io

Project Website

https://damonitor.github.io

Provides all information for DAMON starters including

news, demo, usage guides

Table Of Contents

- Demo Video
- Demo Screenshot
- Recent News
- · Getting Started
- Install
- Source Code
- User-space Too
- Tests Package
- Official Document
- Showcase Website
- Evaluation Results
- DAMON-based System Optimization Guide
- Profile-Guided Optimization Example
- Community
- Contribution
- Publications and Presentation

Call For Your Voices

- We prefer random evolution over intellectual design
- Put your voice on the evolution path for your purposes
- Report your use case, test results, and challenges you gone through
- Ask questions and request features/documents
- Show your interest to known TODO items
- Send patches
- The maintainer is committed to help the community, you

Summary

Summary

- DAMON is an efficient data access pattern snapshot generator
- People can optimize system memory usage using DAMON
- AWS Aurora Serverless v2 and SK hynix HMSDK are using DAMON for memory auto-scalaing and CXL memory tiering, respectively
- DAMON community is waiting for your voices
- If you want to start, visit the project site: https://damonitor.github.io

Generated from https://qr.io

Questions?

- If your question is not answered by the session, use below
- The maintainer: sj@kernel.org
- Project webpage: https://damonitor.github.io
- Kernel docs for admin and kernel programmers
- DAMON mailing list: damon@lists.linux.dev
- DAMON Beer/Coffee/Tea Chat
- Today's in-person DAMON meetup (4:55 pm, room 444)

OPEN SOURCE SUMMIT EUROPE

