Отчёт по лабораторной работе №2. Задача о погоне.

Предмет: математическое моделирование

Александр Сергеевич Баклашов

Содержание

1	Цел	ь работ	ы	4
2	Задание			5
3 Теоретическое введение			кое введение	6
4	Выполнение лабораторной работы 4.1 Задания из лабораторной работы			7 7
	7.1	4.1.1 4.1.2	Проведение аналогичных рассуждений	7
		4.1.3	случаев	10 13
	4.2	Вариа 4.2.1 4.2.2 4.2.3		14 14 15
		4.2.4	случаев	17 21
5	Выв	оды		23
6	6 Библиография			24

List of Figures

4.1	Разложение скорости катера на тангенциальную и радиальную со-	
	ставляющие	9
4.2	Код для 1 случая	11
4.3	Траектория катера и лодки (1 случай)	11
4.4	Точка пересечения катера и лодки (1 случай)	12
4.5	Код для 2 случая	12
4.6	Траектория катера и лодки (2 случай)	13
4.7	Точка пересечения катера и лодки (2 случай)	14
4.8	Разложение скорости катера на тангенциальную и радиальную со-	
	ставляющие	16
4.9	Код для 1 случая	18
4.10	Траектория катера и лодки (1 случай)	19
4.11	Точка пересечения катера и лодки (1 случай)	20
4.12	Код для 2 случая	20
4.13	Траектория катера и лодки (2 случай)	21
4.14	Точка пересечения катера и лодки (2 случай)	22

1 Цель работы

Рассмотреть пример построения математических моделей для выбора правильной стратегии при решении задач поиска. С помощью примера научиться решать задачи такого типа.

2 Задание

- 1. Провести аналогичные рассуждения и вывод дифференциальных уравнений, если скорость катера больше скорости лодки в n paз.
- 2. Построить траекторию движения катера и лодки для двух случаев. Определить по графику точку пересечения катера и лодки
- 3. Записать уравнение, описывающее движение катера, с начальными условиями для двух случаев (в зависимости от расположения катера относительно лодки в начальный момент времени).
- 4. Построить траекторию движения катера и лодки для двух случаев.
- 5. Найти точку пересечения траектории катера и лодки.

3 Теоретическое введение

Работа выполнена на языке Scilab. В данной лабораторной работе приводится пример построения математических моделей для выбора правильной стратегии при решении задач поиска. Условие задачи состоит в том, что береговой катер в тумане преследует лодку браконьеров, затем туман рассеивается, лодка обнаруживается на определённом расстоянии от катера, и снова скрывается. В качесте решения задачи нам необходимо определить по какой траектории необходимо двигаться катеру, чтобы нагнать лодку, а также найти точку пересечения катера и лодки.

4 Выполнение лабораторной работы

4.1 Задания из лабораторной работы

4.1.1 Проведение аналогичных рассуждений

4.1.1.1 Задача

На море в тумане катер береговой охраны преследует лодку браконьеров. Через определенный промежуток времени туман рассеивается, и лодка обнаруживается на расстоянии k км от катера. Затем лодка снова скрывается в тумане и уходит прямолинейно в неизвестном направлении. Известно, что скорость катера в 3 раза больше скорости браконьерской лодки.

4.1.1.2 Решение

- 1. Принимаем за $t_0=0$, $x_{lod0}=0$ место нахождения лодки браконьеров в момент обнаружения, $x_{k0}=0$ место нахождения катера береговой охраны относительно лодки браконьеров в момент обнаружения лодки
- 2. Введем полярные координаты. Считаем, что полюс это точка обнаружения лодки браконьеров $x_{lod0}=\Theta=0$, а полярная ось r проходит через точку нахождения катера береговой охраны
- 3. Траектория катера должна быть такой, чтобы и катер, и лодка все время были на одном расстоянии от полюса r, только в этом случае траектория

катера пересечется с траекторией лодки. Поэтому для начала катер береговой охраны должен двигаться некоторое время прямолинейно, пока не окажется на том же расстоянии от полюса, что и лодка браконьеров. После этого катер береговой охраны должен двигаться вокруг полюса удаляясь от него с той же скоростью, что и лодка браконьеров.

4. Чтобы найти расстояние x (расстояние после которого катер начнет двигаться вокруг полюса), необходимо составить простое уравнение. Пусть через время t катер и лодка окажутся на одном расстоянии x от полюса. За это время лодка пройдет x, а катер k-x (или k+x, в зависимости от начального положения катера относительно полюса). Время, за которое они пройдут это расстояние, вычисляется как x/v или (k-x)/3v (во втором случае (k+x)/3v). Так как время одно и то же, то эти величины одинаковы. Тогда неизвестное расстояние х можно найти из следующего уравнения:

$$\frac{x}{v} = \frac{k-x}{3v}$$
 в первом случае или $\frac{x}{v} = \frac{k+x}{3v}$ во втором случае Отсюда мы найдем два значения: $x_1 = \frac{k}{4}$, $x_2 = \frac{k}{2}$ Задачу будем решать для двух случаев.

5. После того, как катер береговой охраны окажется на одном расстоянии от полюса, что и лодка, он должен сменить прямолинейную траекторию и начать двигаться вокруг полюса удаляясь от него со скоростью лодки v. Для этого скорость катера раскладываем на две составляющие: v_r - радиальная скорость и v_τ - тангенциальная скорость. Радиальная скорость - это скорость, с которой катер удаляется от полюса, $v_r = \frac{dr}{dt}$. Нам нужно, чтобы эта скорость была равна скорости лодки, поэтому полагаем $\frac{dr}{dt} = v$. Тангенциальная скорость — это линейная скорость вращения катера относительно полюса. Она равна произведению угловой скорости $\frac{d\Theta}{dt}$ радиус $r, v_\tau = r \frac{d\Theta}{dt}$. (рис. 4.1)

Figure 4.1: Разложение скорости катера на тангенциальную и радиальную составляющие

Из рисунка видно: v_{τ} = $\sqrt{9v^2-v^2}$ = 2v $\sqrt{2}$

Тогда получаем: $r \frac{d\Theta}{dt}$ = $2v \sqrt{2}$.

6. Решение исходной задачи сводится к решению системы из двух дифференциальных уравнений

$$\begin{cases} \frac{dr}{dt} = v \\ r\frac{d\Theta}{dt} = 2v\sqrt{2} \end{cases}$$

с начальными условиями

$$\begin{cases} \Theta_0 = 0 \\ r_0 = x_1 \end{cases}$$

или

$$\begin{cases} \Theta_0 = -\pi \\ r_0 = x_2 \end{cases}$$

Исключая из полученной системы производную по t, можно перейти к следующему уравнению:

$$\frac{dr}{d\Theta} = \frac{r}{2\sqrt{2}}$$

Начальные условия остаются прежними. Решив это уравнение, получим траекторию движения катера в полярных координатах.

4.1.2 Построение траектории движения катера и лодки для двух случаев

4.1.2.1 Задача

Построение траектории движения катера и лодки для двух случаев

4.1.2.2 Решение

Зададим начальные значения (такое же n (скорость катера больше скорости лодки в 3 раза)), как и в предыдущем пункте, но также зададим k=5):

$$\begin{cases} k = 5 \\ n = 3 \end{cases}$$

Отсюда получаем, что $x_1 = \frac{5}{4}$, $x_2 = \frac{5}{2}$

Также, из этого получим начальные условия для 1 и 2 случая:

Для 1 случая:

$$\begin{cases} \Theta_0 = 0 \\ r_0 = \frac{5}{4} \end{cases}$$

Для 2 случая:

$$\left\{ \begin{array}{l} \Theta_0 = -\pi \\ r_0 = \frac{5}{2} \end{array} \right.$$

Напишем код для данной задачи:

Для 1 случая (рис. 4.2)

```
k=5;// начальное расстояние от лодки до катера
fi=3*$p1/4;
n=3 // катер быстрее лодки в 3 раза
//мачальные условия в случае 1
r0=k/4;
tetha0=0;

//мачальные условия в случае 2
//r0=k/2;
//tetha0==%pi;
function f=f(tetha, r) //функция, описывающая движение катера береговой охраны
dr=r/(2*sqrt(2));
endfunction;
tetha=0:0.01:2*%pi;
r=ode (r0,tetha0,tetha,f);
//функция, описывающая движение лодки браконьеров
function xt=f2(t)
xt=tan(fi)*t;
endfunction
t=0:1:25;
polarplot(tetha,r,style = color('green')); //построение траектории движения катера в полярных координатах
plot2d(t,f2(t),style = color('red')); //построение траектории движения лодки
```

Figure 4.2: Код для 1 случая

Также определим траектории катера (зелёный цвет) и лодки (красный цвет) (рис. 4.3)

Figure 4.3: Траектория катера и лодки (1 случай)

И точку пересечения катера и лодки (рис. 4.4)

Figure 4.4: Точка пересечения катера и лодки (1 случай)

Из рисунка видно, что точка пересечения (6.1738; -6.1739) Для 2 случая (рис. 4.5)

```
k=5;// начальное расстояние от лодки до катера
fi=3*$p1/4;
n=3 // катер быстрее лодки в 3 раза
//мачальные условия в случае 1
//r0=k/4;
//r0=k/4;
//tetha0=0;

//начальные условия в случае 2
r0=k/2;
tetha0=*$p1;
function dr=f(tetha, r) //функция, описывающая движение катера береговой охраны
dr=r/(2*sqrt(2));
endfunction;
tetha=0:0.01:2*$p1;
r=ode(r0,tetha0,tetha,f);
//функция, описывающая движение лодки браконьеров
function xt=f2(t)
xt=tan(f1)*t;
endfunction
t=0:1:50;
polarplot(tetha,r,style = color('green')); //построение траектории движения катера в полярных координатах
plot2d(t,f2(t),style = color('red')); //построение траектории движения лодки
```

Figure 4.5: Код для 2 случая

Также определим траектории катера (зелёный цвет) и лодки (красный цвет) (рис. 4.6)

Figure 4.6: Траектория катера и лодки (2 случай)

4.1.3 Нахождение точки пересечения траектории катера и лодки

Определим точку пересечения катера и лодки (рис. 4.7)

Figure 4.7: Точка пересечения катера и лодки (2 случай)

Из рисунка видно, что точка пересечения (37.4943; -37.4943)

4.2 Вариант 38

На море в тумане катер береговой охраны преследует лодку браконьеров. Через определенный промежуток времени туман рассеивается, и лодка обнаруживается на расстоянии 19 км от катера. Затем лодка снова скрывается в тумане и уходит прямолинейно в неизвестном направлении. Известно, что скорость катера в 5,1 раза больше скорости браконьерской лодки.

4.2.1 Задача

1. Запишите уравнение, описывающее движение катера, с начальными условиями для двух случаев (в зависимости от расположения катера относи-

- тельно лодки в начальный момент времени).
- 2. Постройте траекторию движения катера и лодки для двух случаев.
- 3. Найдите точку пересечения траектории катера и лодки.

4.2.2 Решение

4.2.2.1 Записать уравнение, описывающее движение катера, с начальными условиями для двух случаев

- 1. Принимаем за $t_0=0$, $x_{lod0}=0$ место нахождения лодки браконьеров в момент обнаружения, $x_{k0}=0$ место нахождения катера береговой охраны относительно лодки браконьеров в момент обнаружения лодки
- 2. Введем полярные координаты. Считаем, что полюс это точка обнаружения лодки браконьеров $x_{lod0}=\Theta=0$, а полярная ось r проходит через точку нахождения катера береговой охраны
- 3. Траектория катера должна быть такой, чтобы и катер, и лодка все время были на одном расстоянии от полюса r, только в этом случае траектория катера пересечется с траекторией лодки. Поэтому для начала катер береговой охраны должен двигаться некоторое время прямолинейно, пока не окажется на том же расстоянии от полюса, что и лодка браконьеров. После этого катер береговой охраны должен двигаться вокруг полюса удаляясь от него с той же скоростью, что и лодка браконьеров.
- 4. Чтобы найти расстояние x (расстояние после которого катер начнет двигаться вокруг полюса), необходимо составить простое уравнение. Пусть через время t катер и лодка окажутся на одном расстоянии x от полюса. За это время лодка пройдет x, а катер 19-x (или 19+x, в зависимости от начального положения катера относительно полюса). Время, за которое они пройдут это расстояние, вычисляется как x/v или (19-x)/5, 1v (во втором случае (19+x)/5, 1v). Так как время одно и то же, то эти величины

одинаковы. Тогда неизвестное расстояние х можно найти из следующего уравнения:

$$\frac{x}{v} = \frac{19 - x}{5, 1v}$$
 в первом случае

или

 $\frac{x}{v} = \frac{19+x}{5,1v}$ во втором случае

Отсюда мы найдем два значения: $x_1 = \frac{19}{6,1}$, $x_2 = \frac{19}{4,1}$

Задачу будем решать для двух случаев.

5. После того, как катер береговой охраны окажется на одном расстоянии от полюса, что и лодка, он должен сменить прямолинейную траекторию и начать двигаться вокруг полюса удаляясь от него со скоростью лодки v. Для этого скорость катера раскладываем на две составляющие: v_r - радиальная скорость и v_τ - тангенциальная скорость. Радиальная скорость - это скорость, с которой катер удаляется от полюса, $v_r = \frac{dr}{dt}$. Нам нужно, чтобы эта скорость была равна скорости лодки, поэтому полагаем $\frac{dr}{dt} = v$. Тангенциальная скорость — это линейная скорость вращения катера относительно полюса. Она равна произведению угловой скорости $\frac{d\Theta}{dt}$ радиус r, v_τ = r $\frac{d\Theta}{dt}$. (рис. 4.8)

Figure 4.8: Разложение скорости катера на тангенциальную и радиальную составляющие

Из рисунка видно: $v_{ au}$ = $\sqrt{26.01v^2-v^2}$ = v $\sqrt{25.01}$

Тогда получаем: $r \frac{d\Theta}{dt}$ = $v \sqrt{25.01}$.

6. Решение исходной задачи сводится к решению системы из двух дифференциальных уравнений

$$\begin{cases} \frac{dr}{dt} = v \\ r\frac{d\Theta}{dt} = v\sqrt{25.01} \end{cases}$$

с начальными условиями

$$\begin{cases} \Theta_0 = 0 \\ r_0 = \frac{19}{6.1} \end{cases}$$

или

$$\begin{cases} \Theta_0 = -\pi \\ r_0 = \frac{19}{4.1} \end{cases}$$

Исключая из полученной системы производную по t, можно перейти к следующему уравнению:

$$\frac{dr}{d\Theta} = \frac{r}{\sqrt{25.01}}$$

Начальные условия остаются прежними. Решив это уравнение, получим траекторию движения катера в полярных координатах.

4.2.3 Построение траектории движения катера и лодки для двух случаев

Зададим начальные значения из варианта:

$$\begin{cases} k = 19 \\ n = 5.1 \end{cases}$$

Отсюда получаем, что $x_1 = \frac{5}{4}$, $x_2 = \frac{5}{2}$

Начальные условия для 1 и 2 случая:

Для 1 случая:

$$\begin{cases} \Theta_0 = 0 \\ r_0 = \frac{19}{6.1} \end{cases}$$

Для 2 случая:

$$\left\{ \begin{array}{l} \Theta_0 = -\pi \\ r_0 = \frac{19}{4,1} \end{array} \right.$$

Напишем код для данной задачи:

Для 1 случая (рис. 4.9)

```
k=19;// начальное расстояние от лодки до катера
fi=3*$pi/4;
n=5.1 // катер бистрее лодки в 5.1 раза
//начальные условия в случае 1
r0=k/6.1;
tetha0=0;
//начальные условия в случае 2
//но=k/4.1;
//tetha0=*$pi;
function dr=f(tetha, r) //функция, описывающая движение катера береговой охраны
dr=r/(sqrt(25.01));
endfunction;
tetha=0:0.01:2*$pi;
r=ode (r0,tetha0,tetha,f);
//функция, описывающая движение лодки браконьеров
function xt=f2(t)
xt=tan(fi)*t;
endfunction
t=0:1:25;
polarplot(tetha,r,style = color('green')); //построение траектории движения катера в полярных координатах
plotzd(t,f2(t),style = color('red')); //построение траектории движения лодки
```

Figure 4.9: Код для 1 случая

Также определим траектории катера (зелёный цвет) и лодки (красный цвет) (рис. 4.10)

Figure 4.10: Траектория катера и лодки (1 случай)

И точку пересечения катера и лодки (рис. 4.11)

Figure 4.11: Точка пересечения катера и лодки (1 случай)

Из рисунка видно, что точка пересечения (6.6121; -6.6122) Для 2 случая (рис. 4.12)

```
k=19;// начальное расстояние от лодки до катера
fi=3*$p1/4;
n=5.1 // катер быстрее лодки в 5.1 раза
//начальные условия в случае 1
//r0=k/6.1;
//tetha0=0;
//начальные условия в случае 2
r0=k/4.1;
tetha0=-$p1;
function dr=f(tetha, r) //функция, описывающая движение катера береговой охраны
dr=r/(sqrt(25.01));
endfunction;
tetha0=0:0.01:2*$p1;
r=ode(r0,tetha0,tetha,f);
//функция, описывающая движение расстоять ображоньеров
function xt=f2(t)
xt=tan(fi)*t;
endfunction
t=0:1:25;
polarplot(tetha,r,style = color('green')); //построение траектории движения катера в полярных координатах
plot2d(t,f2(t),style = color('red')); //построение траектории движения лодки
```

Figure 4.12: Код для 2 случая

Также определим траектории катера (зелёный цвет) и лодки (красный цвет) (рис. 4.13)

Figure 4.13: Траектория катера и лодки (2 случай)

4.2.4 Нахождение точки пересечения траектории катера и лодки

И точку пересечения катера и лодки (рис. 4.14)

Figure 4.14: Точка пересечения катера и лодки (2 случай)

Из рисунка видно, что точка пересечения (18.4378; -18.4378)

5 Выводы

В ходе данной лабораторной работы я рассмотрел пример построения математических моделей для выбора правильной стратегии при решении задач поиска. С помощью примера научился решать задачи такого типа.

6 Библиография

- 1. Scilab documentation. [Электронный ресурс]. M. URL: Scilab documentation (Дата обращения: 17.02.2021).
- 2. Лабораторная работа №2. Задача о погоне. 4 с. [Электронный ресурс]. М. URL: Лабораторная работа №2 (Дата обращения: 17.02.2021).
- 3. Лабораторная работа №2. Варианты. [Электронный ресурс]. М. URL: Варианты (Дата обращения: 17.02.2021).