Reg/DFA/NFA (1)

- (**DFA**) $M=(Q,\Sigma,\delta,q_0,F),\,\delta:Q imes\Sigma o Q$
- (NFA) $M=(Q,\Sigma,\delta,q_0,F),\,\delta:Q imes\Sigma_{arepsilon} o\mathcal{P}(Q)$
- $\begin{array}{ll} & \text{(GNFA) } (Q, \Sigma, \delta, q_0, q_{\mathrm{a}}), \\ \\ \delta: (Q \setminus \{q_{\mathrm{a}}\}) \times (Q \setminus \{q_{\mathrm{start}}\} \longrightarrow \mathcal{R} \text{ (where} \end{array}$

 $\mathcal{R} = \{\text{all regex over }\Sigma\}$)

- GNFA accepts $w\in \Sigma^*$ if $w=w_1\cdots w_k$, where $w_i\in \Sigma^*$ and there exists a sequence of states q_0,q_1,\ldots,q_k s.t. $q_0=q_{\mathrm{start}},\,q_k=q_{\mathrm{a}}$ and for each i, we have $w_i\in L(R_i)$, where $R_i=\delta(q_{i-1},q_i)$.
- (DFA-to-GNFA) $G=(Q',\Sigma,\delta',s,a),$
- $Q'=Q\cup\{s,a\},\quad \delta'(s,\varepsilon)=q_0,\quad \text{ For each }q\in F,\\ \delta'(q,\varepsilon)=a,$
- **(P.L.)** If A is a regular lang., then $\exists p$ s.t. every string $s \in A$, $|s| \geq p$, can be written as s = xyz, satisfying: (i) $\forall i \geq 0, xy^iz \in A$, (ii) |y| > 0 and (iii) $|xy| \leq p$.
- Every NFA can be converted to an equivalent one that has a single accept state.
- (regular grammar) $G=(V,\Sigma,R,S)$. Rules: $A\to aB,\,A\to a$ or $S\to \varepsilon.\,(A,B,S\in V)$ and $a\in \Sigma$

	N-Reg	Reg	CFL	TD	TR	Р	NP	NPC
$L_1 \cup L_2$	no	✓	✓	✓	✓	√	✓	no
$L_1\cap L_2$	no	✓	no	✓	✓	√	✓	no
\overline{L}	√	✓	no	✓	no	√	?	?
$L_1 \cdot L_2$	no	✓	✓	✓	✓	√	✓	no
L^*	no	✓	✓	√	√	√	√	no
$_L\mathcal{R}$		✓	✓	✓	✓	√		
$L\cap R$		✓	✓	√	√	√		
$L1 \setminus L2$		✓	no	✓	no	✓	?	

CFG (2)

- **(CFG)** $G=(\underset{\mathsf{n.t.}}{V},\underset{\mathsf{ter.}}{\Sigma},R,S).$ Rules: $A\to w.$ (where $A\in V$ and $w\in (V\cup\Sigma)^*).$
 - A derivation of w is a leftmost derivation if at every step the leftmost remaining variable is the one replaced.
 - w is derived ambiguously in G if it has at least two different l.m. derivations.
 - G is ambiguous if it generates at least one string ambiguously.
 - A CFG is ambiguous iff it generates some string with two different parse trees.
- **(P.L.)** If L is a CFL, then $\exists p$ s.t. any string $s \in L$ with $|s| \geq p$ can be written as s = uvxyz, satisfying: (i) $\forall i \geq 0, uv^ixy^iz \in L$, (ii) $|vxy| \leq p$, and (iii) |vy| > 0.

- (CNF) $A \to BC$, $A \to a$, or $S \to \varepsilon$, (where $A,B,C \in V$, $a \in \Sigma$, and $B,C \neq S$).
- If G is a CFG in CNF, and $w \in L(G)$, then $|w| \leq 2^{|h|} 1$, where h is the height of the parse tree for w.
- Every CFL is generated by a CFG in CNF.
- L is CFL if it is generated by some CFG.
- A CFL is inherently ambiguous if all CFGs that generate it are ambiguous.
- · Every CFL is generated by a CFG in CNF.
- Every regular lang. is CFL.
- (derivation) $S\Rightarrow u_1\Rightarrow u_2\Rightarrow \cdots \Rightarrow u_n=w,$ where each u_i is in $(V\cup \Sigma)^*$. (in this case, Ggenerates w (or S derives w), $S\stackrel{*}{\Rightarrow} w$)
- $\begin{array}{l} \textbf{(PDA)}\ M = (Q, \underset{\mathsf{input}\ \mathsf{stack}}{\Sigma}, \Gamma, q_0 \in Q, \underset{\mathsf{accepts}}{F} \subseteq Q). \\ \\ \textbf{(where}\ Q, \Sigma, \Gamma, F\ \mathsf{finite}). \end{array}$

- $\delta: Q imes \Sigma_{arepsilon} imes \Gamma_{arepsilon} \longrightarrow \mathcal{P}(Q imes \Gamma_{arepsilon}).$
- M accepts $w\in \Sigma^*$ if there is a seq. $r_0,r_1,\ldots,r_m\in Q$ and $s_0,,s_1,\ldots,s_m\in \Gamma^*$ s.t.:
- $ullet r_0=q_0 ext{ and } s_0=arepsilon$
- For $i=0,1,\ldots,m-1$, we have $(r_i,b)\in\delta(r_i,w_{i+1},a)$, where $s_i=at$ and $s_{i+1}=bt$ for some $a,b\in\Gamma_{\varepsilon}$ and $t\in\Gamma^*.$
- $ullet r_m \in F$
- A PDA can be represented by a state diagram, where each transition is labeled by the notation " $a,b \rightarrow c$ " to denote that the PDA: **Reads** a from the input (or read nothing if $a=\varepsilon$). **Pops** b from the stack (or pops nothing if $b=\varepsilon$). **Pushes** c onto the stack (or pushes nothing if $c=\varepsilon$)
- **(CSG)** $G=(V,\Sigma,R,S)$. Rules: $S \to \varepsilon$ or $\alpha A\beta \to \alpha\gamma\beta$ where: $\alpha,\beta \in (V \cup \Sigma \setminus \{S\})^*;$ $\gamma \in (V \cup \Sigma \setminus \{S\})^+; A \in V.$

(TM) $M = (Q, \sum\limits_{\mathsf{input}} \subseteq \Gamma, \prod\limits_{\mathsf{tape}}, \delta, q_0, q_{\mathsf{accept}}, q_{\mathsf{reject}}),$ where $\sqcup \in \Gamma$ (blank), $\sqcup
otin \Sigma$, $q_{\mathrm{reject}}
eq q_{\mathrm{accept}}$, and $\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{L, R\}$

(unrec.) $\overline{A_{TM}}$, $\overline{EQ_{\mathsf{TM}}}$, EQ_{CFG} , $\overline{HALT_{\mathsf{TM}}}$,

 $REGULAR_{TM} = \{M \text{ is a TM and } L(M) \text{ is regular}\}$

- $EQ_{\mathsf{TM}} = \{M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2)\}$
- (rec.) accepts if $w \in L$, rejects/loops if $w \notin L$.

TM (3), Decidability (4)

- There exists some languages that are not rec.
- (co-TR) if its complement is rec. Every inf. rec. lang. has an inf. dec. subset.
- (rec. but not undec) A_{TM} , $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM halts on } w \},$ $D = \{p \mid p \text{ is an int. poly. with an int. root}\},\$ $EQ_{\mathsf{CFG}}, E_{\mathsf{TM}}$
- (dec.) accepts if $w \in L$, rejects if $w \notin L$.
 - A_{DFA} , A_{NFA} , A_{REX} , E_{DFA} , EQ_{DFA} , A_{CFG} , E_{CFG} , every CFL, every finite lang., A_{LBA} , ALL_{DFA} ,

- $L ext{ is dec.} \iff L ext{ is rec. } \wedge L ext{ is co-TR} \iff \exists \, \text{TM dec.}$
- (decider) TM that halts on all inputs.
- (Rice) Let P be a lang. of TM desc., such that (i) P is nontrivial (not empty and not all TM desc.) and (ii) for each two TM M_1 and M_2 , we have $L(M_1) = L(M_2) \implies (\langle M_1 \rangle \in P \iff \langle M_2 \rangle \in P)$. Then P is undecidable.

Reducibility (5)

 $f:\Sigma^* o\Sigma^*$ is computable if there exists a TM M s.t. for every $w \in \Sigma^*$, M halts on wand outputs f(w) on its tape.

- A is m. reducible B (denoted by $A \leq_m B$), if there is a comp. func. $f:\Sigma^* o \Sigma^*$ s.t. for every w, we have $w \in A \iff f(w) \in B$. (Such f is called the **m. reduction** from A to B.)
- (5.22) If $A \leq_{\mathrm{m}} B$ and B is dec., then A is dec.
- (5.23) If $A \leq_{\mathrm{m}} B$ and A is undec., then B is undec.
- (5.28) If $A \leq_{\mathrm{m}} B$ and B is rec., then A is rec.
- (5.29) If $A \leq_{\mathrm{m}} B$ and A is not rec., then B is not
- (e5.6) If $A \leq_{\mathrm{m}} B$ and $B \leq_{\mathrm{m}} C$, then $A \leq_{\mathrm{m}} C$.

Complexity (7)

- ((**Run. time**) decider M is a f(n)-time **TM**.) $f: \mathbb{N} \to \mathbb{N}$, where f(n) is the max. num. of steps
- that DTM (or NTM) M takes on any n-length input (and any branch of any n-length input. resp.).
- $\mathsf{TIME}(t(n)) = \{L \mid L \text{ is dec. by } O(t(n)) \text{ DTM}\}.$
- $\mathsf{NTIME}(t(n)) = \{L \mid L \text{ is dec. by } O(t(n)) \text{ NTM}\}.$
- $\mathbf{P} = igcup_{k \in \mathbb{N}} \mathsf{TIME}(n^k)$
- (verifier for L) TM V s.t.
 - $L = \{ w \mid \exists c : V(\langle w, c \rangle) = \mathsf{accept} \}.$
 - (certificate for $w \in L$) str. c s.t.
 - $V(\langle w,c
 angle) = \mathsf{accept}.$
- $\mathbf{NP} = igcup_{k \in \mathbb{N}} \mathsf{NTIME}(n^k)$
- $\mathbf{NP} = \{L \mid L \text{ is decidable by a PT verifier}\}.$

- $P\subseteq NP.$
- $\text{CLIQUE} = \{ \langle G, k \rangle \mid G \text{ is an undir. g. with a k-clique} \}.$
- $\text{SUBSET-SUM} = \{ \langle S, k \rangle \mid S \text{ is a m. set of int.} \land \exists T \subseteq S : \sum_{s = T}^{1} x = k \}^{s} \quad \equiv_{P} \text{ is an equivalence relation on NP.}$
- $f: \Sigma^* \to \Sigma^*$ is **PT computable** if there exists a PT TM M s.t. for every $w \in \Sigma^*$, M halts with f(w)on its tape.
- A is PT (mapping) reducible to B, denoted $A \leq_P B$, if there exists a PT computable func. $f:\Sigma^* o\Sigma^*$ s.t. for every $w\in\Sigma^*$, $w \in A \iff f(w) \in B$. (in such case f is called the **PT reduction** of A to B).
- If $A \leq_P B$ and $B \in P$, then $A \in P$.

- If $A \leq_P B$ and $B \leq_P A$, then A and B are **PT** equivalent, denoted $A \equiv_P B$.
- P \ {∅, Σ*} is an equivalence class of ≡_P.
- $\mathbf{NP\text{-}complete} = \{B \mid B \in \mathrm{NP}, \forall A \in \mathrm{NP}, A \leq_P B\}$
- CLIQUE, SUBSET-SUM, SAT, 3SAT, VERTEX-COVER, HAMPATH, UHAMATH, $3COLOR \in \text{NP-complete}.$
- $\emptyset, \Sigma^* \notin NP$ -complete.
- If $B \in NP$ -complete and $B \in P$, then P = NP.
- If $B \in \text{NP-complete}$ and $C \in \text{NP}$ s.t. $B \leq_P C$, then $C \in NP$ -comp.
- If P = NP, then NP-complete = P = NP.