NOTE DI ANALISI 2

Manuel Deodato

Indice

1	Calcolo differenziale in più variabili		
	1.1	Derivate parziali	3
	1.2	Derivate direzionali	3
	1.3	Derivate successive	4
	1.4	Funzioni differenziabili	5
	1.5	Funzioni composte	6
	1.6	Massimi e minimi relativi	7
2	Calcolo integrale in più variabili		9
		Integrazione in dimensioni superiori	0

1 CALCOLO DIFFERENZIALE IN PIÙ VARIABILI

1.1 Derivate parziali

Una funzione di più variabili f(x, y): $\mathbb{R}^2 \to \mathbb{R}$ può essere derivata mantenendo fissa una variabile e derivando rispetto all'altra. Questo corrisponde al valutare la variazione di f lungo un asse specifico.

Definizione 1.1 (Derivata parziale)

Sia $f(x_1, ..., x_n) : \mathbb{R}^n \to \mathbb{R}$; la sua derivata parziale rispetto a x_k è:

$$\frac{\partial f}{\partial x_k}(x_1, \dots, x_n) = \lim_{h \to 0} \frac{f(x_1, \dots, x_k + h, \dots, x_n) - f(x_1, \dots, x_k, \dots, x_n)}{h}$$
(1.1.1)

Il vettore che ha per componenti le derivate di f rispetto a ciascuna delle sue variabili si chiama **gradiente** e si indica con ∇f .

1.2 Derivate direzionali

È possibile studiare la variazione di f lungo una particolare direzione individuata dal versore \hat{n} . Una retta parallela a \hat{n} e passante per un punto x si individua con $x + t\hat{n}$; fissando i punti x e \hat{n} , $g(t) := f(x + t\hat{n})$ è una funzione di una variabile e g'(0) è la derivata direzionale di f lungo \hat{n} :

$$\frac{\partial f}{\partial \hat{n}}(x) = g'(0) = \lim_{h \to 0} \frac{f(x + h\hat{n}) - f(x)}{h} \tag{1.2.1}$$

Più in generale:

$$g'(t) \stackrel{\text{def}}{=} \lim_{h \to 0} \frac{g(t+h) - g(t)}{h} = \lim_{h \to 0} \frac{f(x_t + h\hat{n}) - f(x_t)}{h} \equiv \frac{\partial f}{\partial \hat{n}}(x_t)$$
 (1.2.2)

 $con x_t = x + t\hat{n}.$

Osservazione 1.1. Conoscendo ∇f , si può calcolare la derivata direzionale di f come $\nabla f \cdot \hat{n}$.

Esempio 1.1. Si calcola la derivata direzionale di $f(x, y) = x^2y - e^{x+y}$ lungo la direzione $\hat{n} = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$.

Svolgimento. Si ha

$$g(t) = f\left(x + \frac{t}{2}, y + \frac{\sqrt{3}}{2}t\right) = \left(x + \frac{t}{2}\right)^2 \left(y + \frac{\sqrt{3}}{2}t\right) - \exp\left[x + y + t\left(\frac{1}{2} + \frac{\sqrt{3}}{2}\right)\right]$$

Allora

$$\frac{\partial f}{\partial \hat{n}}(x, y) = g'(0) = xy + \frac{\sqrt{3}}{2}x^2 - \left(\frac{1}{2} + \frac{\sqrt{3}}{2}\right)e^{x+y}$$

Alternativamente $\nabla f = \left(2xy - e^{x+y}, x^2 - e^{x+y}\right)$, quindi $\partial_{\hat{n}} f = \nabla f \cdot \hat{n} = xy - \frac{1}{2}e^{x+y} + \frac{\sqrt{3}}{2}x^2 - \frac{\sqrt{3}}{2}e^{x+y} = xy + \frac{\sqrt{3}}{2}x^2 - \left(\frac{1}{2} + \frac{\sqrt{3}}{2}\right)e^{x+y}$.

Teorema 1.1

Se $f:A\subset\mathbb{R}^2\to\mathbb{R}$ ha un massimo o minimo relativo in x_0 interno ad A e se ammette derivata lungo \hat{n} in x_0 , allora:

$$\frac{\partial f}{\partial \hat{n}}(x_0) = 0 \tag{1.2.3}$$

Dimostrazione. Si prende $g(t) = f(x_0 + t\hat{n})$ che, per costruzione, ha un minimo in t = 0, quindi g'(0) = 0, da cui segue la tesi.

In particolare, se f è derivabile in x_0 , tutte le derivate parziali si annullano in quel punto; in questo caso, x_0 è detto **punto stazionario**.

Osservazione 1.2. Nel caso a una variabile, i punti di massimo/minimo che cadevano sulla frontiera di un insieme erano, solitamente, un numero finito; qua chiaramente non è più così.

Esempio 1.2. Calcolare massimi e minimi di $f(x, y) = (x^2 + y^2 - 1)e^{x+y}$ nel cerchio chiuso centrato nell'origine e di raggio 1.

Svolgimento. Sul bordo del cerchio $x^2 + y^2 = 1$, quindi $f \equiv 0$. All'interno:

$$f_x = 2xe^{x+y} + (x^2 + y^2 - 1)e^{x+y}$$

$$f_y = 2ye^{x+y} + (x^2 + y^2 - 1)e^{x+y}$$

che si annullano quando

$$x^{2} + y^{2} + 2x - 1 = 0$$
$$x^{2} + y^{2} + 2y - 1 = 0 \Rightarrow 2x - 2y = 0 \Rightarrow x = y$$

Sostituendo x = y nella prima equazione, ad esempio, si ottengono due soluzioni, una sola delle quali appartiene al cerchio; questo corrisponderà al punto di minimo della funzione:

$$f\left(\frac{\sqrt{3}-1}{2}, \frac{\sqrt{3}-1}{2}\right) = (1-\sqrt{3})e^{\sqrt{3}-1} < 0$$

In più dimensioni vale un analogo del teorema di Lagrange:

Teorema 1.2

Sia f(x): $A \subset \mathbb{R}^n \to \mathbb{R}$ e $x_0 \in A$, con $I(x_0, r) \subset A$. Considerando una direzione \hat{n} , si definisce $g(s) = f(x_0 + s\hat{n})$ per |s| < r. Vale l'analogo del teorema di Lagrange:

$$f(x_0 + s\hat{n}) - f(x_0) = g(s) - g(0) = sg'(\tau) = s\frac{\partial f}{\partial \hat{n}}(x_0 + \tau\hat{n})$$
(1.2.4)

1.3 Derivate successive

Sia f una funzione per cui esistono le derivate prime e sono anch'esse derivabili; le derivate seconde potranno essere derivate prima rispetto a x_i e poi rispetto a x_j o viceversa. In generale se f è una funzione di m, si hanno m^n derivate di ordine n. Per le derivate seconde miste¹ vale il seguente.

¹Chiaramente il risultato vale in generale, ma si affronta per funzione di due variabili nel caso delle derivate seconde miste per semplicità.

Teorema 1.3 (Teorema di Schwarz)

Sia f una funzione derivabile in un intervallo I del punto (x, y) e siano queste continue nello stesso intervallo; allora $f_{xy}(x, y) = f_{yx}(x, y)$.

Dimostrazione. Siano $h, k \in \mathbb{R}$: $(x + h, y + k) \in I$ e sia

$$A(h,k) = f(x+h, y+k) - f(x+h, y) - f(x, y+k) + f(x, y)$$

Prendendo p(t) = f(t, y + k) - f(t, y), si ha A(h, k) = p(x + h) - p(x); per Lagrange:

$$A(h,k) = p'(\xi)h = [f_x(\xi, y+k) - f_x(\xi, y)]h, \ x < \xi < x+h$$

Applicando nuovamente Lagrange, si ha $A(h,k) = f_{yx}(\xi,\eta)hk$, $y < \eta < y + k$. Ripetendo il discorso con q(t) = f(x+h,t) - f(x,t), si trova $A(h,k) = f_{xy}(\sigma,\tau)hk$, quindi $f_{yx}(\xi,\eta) = f_{xy}(\sigma,\tau)$, dove $x < \sigma < x + h$ e $y < \tau < y + k$. Prendendo il limite per $h,k \to 0$, risulta $f_{xy}(x,y) = f_{yx}(x,y)$ per continuità delle derivate seconde.

Come per funzioni di una variabile, vale la formula di Taylor.

Teorema 1.4 (Formula di Taylor)

Sia f(x) di classe C^2 in $A \subset \mathbb{R}^n$ e x_0 punto interno ad A; in un intorno di x_0 , allora, si ha:

$$f(x) = f(x_0) + \langle \nabla f(x_0), x - x_0 \rangle + \frac{1}{2} \langle H f(x_0)(x - x_0), x - x_0 \rangle + R_2(x; x_0)$$
 (1.3.1)

con

$$\lim_{x \to x_0} \frac{R_2(x; x_0)}{\|x - x_0\|^2} = 0$$

1.4 Funzioni differenziabili

Una funzione derivabile, anche in ogni direzione, non è necessariamente continua in più variabili.

Esempio 1.3. La funzione $f(x,y) = \begin{cases} \frac{xy^2}{x^2+y^2} &, \ (x,y) \neq 0 \\ 0 &, \ (x,y) = 0 \end{cases}$ ha derivate in ogni direzione nel punto (0,0), ma non è continua; prendendo $x_k = (1/k,1/k^2)$ per $k \to \infty$, si ha $x_k \to (0,0)$, ma $f(x_k) = \frac{1/k^4}{2/k^4} \to \frac{1}{2}$.

Definizione 1.2 (Differenziabilità)

Una funzione f(x) si dice differenziabile in x_0 se è derivabile in x_0 e se:

$$\lim_{x \to x_0} \frac{f(x) - f(x_0) - \langle \nabla f(x_0), x - x_0 \rangle}{\|x - x_0\|} = 0$$
 (1.4.1)

Questa definizione impone che una funzione sia differenziabile in punto se esiste un piano tangente che la approssima precisamente nel punto stesso.

Teorema 1.5

Una funzione f(x) differenziabile in x_0 è continua in x_0 ed è derivabile in ogni direzione.

Dimostrazione. Si mostra che è continua:

$$f(x) - f(x_0) = \frac{f(x) - f(x_0) - \left\langle \nabla f(x_0), x - x_0 \right\rangle}{\|x - x_0\|} \left\| x - x_0 \right\| + \left\langle \nabla f(x_0), x - x_0 \right\rangle$$

Per $x \to x_0$ il primo termine di destra va a 0 per assunzione di differenziabilità e l'altro anche perché diventa un prodotto scalare per 0, quindi si verifica $\lim_{x\to x_0} f(x) = f(x_0)$. Data generica direzione \hat{v} con $x = x_0 + t\hat{v}$, usando ancora definizione di differenziabilità:

$$\lim_{t \to 0} \frac{f(x_0 + t\hat{v}) - f(x_0) - \left\langle \nabla f(x_0), t\hat{v} \right\rangle}{t} = 0$$

Visto che $\langle \nabla f(x_0), t\hat{v} \rangle = t \langle \nabla f(x_0), \hat{v} \rangle$, si ottiene la tesi.

La direzione di massimo incremento di una funzione è quella del gradiente. Per mostrarlo, si parte da x_0 , assumendo che non sia un punto stazionario; si definisce, allora, $\hat{n} = \frac{\nabla f(x_0)}{\|\nabla f(x_0)\|}$, da cui:

$$\frac{\partial f}{\partial \hat{n}}(x_0) = \left\langle \nabla f(x_0), \hat{n} \right\rangle = \left\| \nabla f(x_0) \right\|$$

Prendendo altra direzione generica \hat{v} , si ha:

$$\frac{\partial f}{\partial \hat{v}}(x_0) = \left\langle \nabla f(x_0), \hat{v} \right\rangle \leq \left\| \nabla f(x_0) \right\| \left\| \hat{v} \right\| = \left\| \nabla f(x_0) \right\| \equiv \frac{\partial f}{\partial \hat{n}}(x_0)$$

Dalla definizione di funzione differenziabile il piano $z = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$ è quello che meglio approssima la funzione in (x_0, y_0) .

Si è concluso che una funzione differenziabile è derivabile in ogni direzione, ma una funzione derivabile non è differenziabile in generale. Vale, però, il seguente.

Teorema 1.6 (Teorema del differenziale totale)

Sia f(x) derivabile in x_0 e siano le sue derivate continue nello stesso punto; allora f è differenziabile in x_0 .

Dimostrazione. Si vuole dimostrare che

$$\lim_{(x,y)\to(x_0,y_0)}\frac{f(x,y)-f(x_0,y_0)-f_x(x_0,y_0)(x-x_0)-f_y(x_0,y_0)(y-y_0)}{\sqrt{(x-x_0)^2+(y-y_0)^2}}=0$$

Si usa il teorema di Lagrange per riscrivere $f(x, y) - f(x_0, y_0)$:

$$\begin{split} f(x,y_0) - f(x_0,y_0) &= f_x(\xi,y_0)(x-x_0), \ x_0 < \xi < x \\ f(x,y) - f(x,y_0) &= f_y(x,\eta)(y-y_0), \ y_0 < \eta < y \\ \Rightarrow f(x,y) - f(x_0,y_0) &= f_x(\xi,y_0)(x-x_0) + f_y(x,\eta)(y-y_0) \end{split}$$

Il limite scritto sopra si riscrive come:

$$\begin{split} \lim_{(x,y)\to(x_0,y_0)} \left[f_x(\xi,y_0) - f_x(x_0,y_0) \right] & \frac{x-x_0}{\sqrt{(x-x_0)^2 + (y-y_0)^2}} + \\ & + \left[f_y(x,\eta) - f_y(x_0,y_0) \right] \frac{y-y_0}{\sqrt{(x-x_0)^2 + (y-y_0)^2}} \end{split}$$

Essendo le frazioni ≤ 1 e visto che le quantità fra parentesi quadre, questo limite si maggiora con la somma delle parentesi quadre, che tende a 0 per $(x, y) \rightarrow (x_0, y_0)$.

1.5 Funzioni composte

Data una funzione $x(t): \mathbb{R}^k \to \mathbb{R}^n$, si definisce, per una generica direzione v:

$$\frac{\partial x}{\partial v} = \left(\frac{\partial x_1}{\partial v}, \dots, \frac{\partial x_n}{\partial t}\right)^{\top} \tag{1.5.1}$$

Vale il seguente per la derivata della funzione composta.

Teorema 1.7

Siano $E \subset \mathbb{R}^k$, $F \subset \mathbb{R}^n$ e $x(t): E \to F$, $f(x): F \to \mathbb{R}$ funzioni di classe C^1 . Allora la funzione composta $g(t) = f(x(t)): E \to \mathbb{R}$ è di classe C^1 e per ogni direzione v:

$$\frac{\partial g}{\partial v}(t) = \left\langle \nabla f\left(x(t)\right), \frac{\partial x}{\partial v}(t) \right\rangle \tag{1.5.2}$$

Dimostrazione. Si ha $g(t+hv) - g(t) = f\left(x(t+hv)\right) - f\left(x(t)\right) = f\left(x(t) + [x(t+hv) - x(t)]\right) - f\left(x(t)\right)$. Si prende $s = \|x(t+hv) - x(t)\|$ e la direzione $w = \frac{x(t+hv) - x(t)}{s}$ e si usa il teorema di Lagrange:

$$g(t + hv) - g(t) = f\left(x(t) + sw\right) - f\left(x(t)\right) = s\frac{\partial f}{\partial w}\left(x(t) + \tau w\right) = s\left\langle \nabla f\left(x(t) + \tau w\right), w\right\rangle$$

con $0 < \tau < s$. Dividendo per h e prendendo il limite $h \to 0$, per definizione $s \to 0$ e, quindi, $\tau \to 0$, mentre $\frac{x(t+hv)-x(t)}{h} \to \frac{\partial x}{\partial v}(t)$ quindi:

$$\lim_{h \to 0} \frac{g(t+hv) - g(t)}{h} = \lim_{h \to 0} \left\langle \nabla f\left(x(t) + \tau w\right), \frac{x(t+hv) - x(t)}{h} \right\rangle = \left\langle \nabla f\left(x(t)\right), \frac{\partial x}{\partial v}(t) \right\rangle$$

Nel caso particolare k = 1, x(t) è una curva e g(t) è funzione di una sola variabile con

$$g'(t) = \sum_{h=1}^{n} \frac{\partial f}{\partial x_h} (x(t)) x'_h(t) \equiv \left\langle \nabla f (x(t)), x'(t) \right\rangle$$

Spesso si prende x(t) = x + tv, cioè retta passante per x lungo direzione v; in questo caso $g'(t) = \nabla f(x+tv) \cdot v$. Se le derivate seconde sono continue, le derivate prime sono differenziabili e si può scrivere:

$$g''(t) = \sum_{i=1}^{n} v_i \frac{d}{dt} D_i f(x+tv) = \sum_{i=1}^{n} v_i \sum_{i=1}^{n} v_j D_{ij} f(x+tv)$$
 (1.5.3)

Indicando con $Hf = \nabla f \nabla^{\top}$ la matrice Hessiana di f, allora $\sum_{j} v_{j} D_{ij} f(x+tv) \equiv [Hf(x+tv)v]_{i}$, cioè è la componente i-esima del vettore tra parentesi quadre, essendo Hf una matrice. Allora:

$$g'(0) = \nabla f(x) \cdot v$$

$$g''(0) = \langle H f(x)v, v \rangle$$
(1.5.4)

1.6 Massimi e minimi relativi

Perché una funzione f di più variabili abbia un punto di massimo o di minimo in x_0 , è condizione necessaria che per ogni direzione v, valga g'(0) = 0 e $g''(0) \le 0$ o $g''(0) \ge 0$, cioè:

$$\langle Hf(x_0)v,v\rangle \leq 0$$
 punto di massimo $\langle Hf(x_0)v,v\rangle \geq 0$ punto di minimo (1.6.1)

Allora vale il seguente.

Teorema 1.8

Sia f(x) una funzione con derivate seconde continue; se in x_0 , $\nabla f(x_0) = 0$ e la matrice Hessiana è tale che $Hf(x_0) > 0$ (definita positiva), allora x_0 è di minimo relativo per f. Se fosse $Hf(x_0) < 0$, x_0 sarebbe di massimo relativo.

Possono verificarsi altri due casi:

7

- se $\langle Hf(x_0)v,v\rangle$ assume sia valori positivi che negativi al variare di v, si ha un **punto di sella**:
- se la matrice Hessiana è semidefinita, ma non definita, non si può concludere niente e bisogna esaminare cosa accade attorno a x_0 .

2 CALCOLO INTEGRALE IN PIÙ VARIABILI

2.1 Integrazione in dimensioni superiori

Per le definizioni di base, si deve definire cos'è un rettangolo.

Definizione 2.1

Dati due intervalli [a.b) e [c,d), il rettangolo che identificano è definito come $R = [a,b) \times [c,d)$, con $a \le x < b$ e $c \le y < d$.

Si suddividono due intervalli in intervalli più piccoli, cioè [a,b) si suddivide in n sotto-intervalli $I_h = [x_{h-1}, x_h)$, con $x_0 = a, \dots x_n = b$ e [c,d) in m sotto-intervalli $J_k = [y_{k-1}, y_k)$. Allora il rettangolo sarà suddiviso in $n \times m$ sotto-rettangoli $R_{hk} = I_h \times J_k$.

Una funzione semplice $\varphi(x)$ è una funzione che assume un valore costante su ogni sottorettangolo e che vale 0 fuori da R. Indicando con λ_{hk} il valore costante che assume in R_{hk} :

$$\varphi(x) = \sum_{h=1}^{n} \sum_{k=1}^{m} \lambda_{hk} \chi_{R_{hk}}(x)$$
 (2.1.1)

con χ_D funzione caratteristica del dominio D. L'integrale di funzioni simili è dato da:

$$\int \varphi(x) \, dx dy = \sum_{h=1}^{n} \sum_{k=1}^{m} \lambda_{hk} m(R_{hk}) = \sum_{h=1}^{n} \sum_{k=1}^{m} \lambda_{hk} m(I_h) m(J_k) = \sum_{h=1}^{n} \sum_{k=1}^{m} \lambda_{hk} (x_h - x_{h-1}) (y_k - y_{k-1})$$
(2.1.2)

È necessario dare anche la definizione di supporto di una funzione:

Definizione 2.2

Il supporto di una funzione f è la chiusura dell'insieme in cui $f \neq 0$, cioè:

$$supp(f) = \overline{\{x : f(x) \neq 0\}}$$
(2.1.3)

Infine, si indica con $\mathscr{S}^+(D)$ la classe delle funzioni semplici φ che maggiorano f in D e $\mathscr{S}^-(D)$ la classe delle funzioni semplici ψ che minorano f in D; da questo, si ha la seguente definizione di integrale di Riemann.

Definizione 2.3 (Integrazione di funzioni a supporto compatto)

Sia f una funzione a supporto compatto, con $\mathrm{supp}(f) \subset K; f$ è integrabile secondo Riemann se:

$$\sup_{\psi \in \mathscr{S}^{-}(K)} \int \psi \ dx dy = \inf_{\varphi \in \mathscr{S}^{+}(K)} \int \varphi \ dx dy \tag{2.1.4}$$

dove

$$\int_{*} f(x) dx = \inf_{\varphi \in \mathscr{S}^{+}(K)} \int \varphi dx dy \text{ integrale inferiore}$$

$$\int_{*}^{*} f(x) dx = \sup_{\psi \in \mathscr{S}^{-}(K)} \int \psi dx dy \text{ integrale superiore}$$
(2.1.5)

La condizione di integrabilità si può esprimere come:

$$\int_{x} f(x) \, dx = \int_{x}^{x} f(x) \, dx \tag{2.1.6}$$

Osservazione 2.1. Anche per più variabili, è condizione sufficiente e necessaria perché f a

supporto compatto sia integrabile che $\forall \epsilon > 0$, esistono funzioni semplici φ, ψ tali che:

$$\int \varphi \, dx dy - \int \psi \, dx dy < \varepsilon \tag{2.1.7}$$