

Verification Report for

Project : Small Scale Cattle Biogas to Power Projects in Gujarat, Rajasthan,

Karnataka, West Bengal, Chhattisgarh, Kerala and Haryana, India.

UCR Project ID : 017

Name of Verifier	SQAC Certification Pvt. Ltd.
Date of Issue	19/06/2023
Project Participant	Urja Bio System Pvt. Ltd., Pune, Maharashtra, India.
Work carried by	Mr. Santosh Nair
Work reviewed by	Mr. Praful Shinganapurkar

Summary:

SQAC Certification Pvt. Ltd. has performed verification of the "Small Scale Cattle Biogas to Power Projects in Gujarat, Rajasthan, Karnataka, West Bengal, Chhattisgarh, Kerala and Haryana, India" for replacement or modification of anaerobic animal manure management systems in livestock farms to achieve methane recovery and gainful use of the recovered methane to generate captive power. The small scale project activities involve the installation of 9 independent biogas digesters between the 200 m³ and 2000 m³ capacity range, for serving the captive electricity needs at the location of the project activities. Fresh cattle dung is fed into the anaerobic digesters.

•

The project activity meets the following 7 major UN sustainable development goals (SDG's):

Verification for the period: 01/01/2018 to 31/10/2021 (3 years, 10 months).

In our opinion, the total GHG emission reductions over the crediting / verification period stated in the Project Concept Note (PCN) / Monitoring Report (MR), submitted to SQAC are fairly stated.

Web: www.sqac.in

Email: <u>info@sqac.in</u> Tel: 7219716786 / 87

The GHG emission reductions were calculated on the basis of UCR Biogas Protocol Standard Baseline which draws reference from AMS.I.C.: Thermal energy production with or without electricity and AMS-III.D: Methane recovery in animal manure management systems. The verification was done remotely by way of video calls / verification, phone calls and submission of documents for verification through emails.

SQAC is able to certify that the emission reductions from the "Small Scale Cattle Biogas to Power Projects in Gujarat, Rajasthan, Karnataka, West Bengal, Chhattisgarh, Kerala and Haryana, India" for the period 01/01/2018 to 31/10/2021 amount to 1,43,945 CoUs.

<u>Detailed Verification Report</u>:

Purpose:

The Small Scale Cattle Biogas to Power Projects in Gujarat, Rajasthan, Karnataka, West Bengal, Chhattisgarh, Kerala and Haryana, India is located across the following Districts: Hisar, Dhanera, Palanpur, Kheda, Seekar, Hoogly, Tumkur, Trivendrum and Raipur, State: Gujarat, Rajasthan, Karnataka, West Bengal, Chhattisgarh, Kerala and Haryana, Country: India.

The small scale project activities involve the installation of 9 independent biogas digesters between the 200 m³ and 2000 m³ capacity range, for serving the captive electricity needs at the location of the project activities. Fresh cattle dung is fed into the anaerobic digesters.

In the absence of the project activity, animal manure is left to decay anaerobically within the project boundary and methane is emitted to the atmosphere. The project activity recovers and utilizes biogas for producing electricity for captive use and hence displaces electricity from the grid using fossil fuels. The project activity hence avoids CH₄ and CO₂ emissions and is beneficial to the environment and community.

Location of project activity:

Country: India.

State : Hisar, Dhanera, Palanpur, Kheda, Seekar, Hoogly, Tumkur, Trivendrum and Raipur : Gujarat, Rajasthan, Karnataka, West Bengal, Chhattisgarh, Kerala and Haryana.

The operational domestic biogas units are in continuous operation after installation, with minor and major repairs as and when are reported by the project owner. Since the UCR protocol for biogas systems is based on a conservative 330 days a year operation, the project activity was never non-operational for a period of 35 days or more during any year of the monitoring period.

Name	Location Village	State	Capacity
CIRB , Sirsa Road	Hisar	Haryana	200 m3
Navsagar Dairy	Dhanera	Gujarat	300 m3
Barkat bhai prasla	Palanpur	Gujarat	2000 m3
Arco Steel	Kheda	Gujarat	400m3
Olitia Foods	Seekar	Rajasthan	200 m3
SRC Farms	Hooghly	West Bengal	400 m3
Sunvik Farms	Tumkur	Karnataka	1000 m3
Murliya Dairy	Trivendrum	Kerala	600m3
Sarda dairy	Raipur	Chhatisgarh	1200 m3

Scope:

The scope covers verification of emission reductions from the project Small Scale Cattle Biogas to Power Projects in Gujarat, Rajasthan, Karnataka, West Bengal, Chhattisgarh, Kerala and Haryana, India.

Criteria:

Verification criteria is as per the requirements of UCR Protocol Standard Baseline, AMS.I.C. Thermal energy production with or without electricity and AMS-III.D: Methane recovery in animal manure management systems.

Description of project:

The project activity involves the installation of 9 independent biogas digesters between the 200 m³ and 2000 m³ capacity range, for serving the captive electricity needs at the location of the project activities. Fresh cattle dung is fed into the anaerobic digesters. The high rate digester treats cattle dung under anaerobic condition and converts 50 % of organic carbon to produce Biogas.

	Location			
Name	Village	State	Capacity	Commissioning Date
CIRB , Sirsa Road	Hisar	Haryana	200 m3	23-03-2018
Navsagar Dairy	Dhanera	Gujrat	300 m3	11-03-2019
Barkat Bhai Prasla	Palanpur	Gujrat	2000 m3	27-12-2018
Arco Steel	Kheda	Gujrat	400m3	26-09-2019
Olitia Foods	Seekar	Rajasthan	200 m3	01-12-2019
SRC Farms	Hooghly	West Bengal	400 m3	15-12-2018
Sunvik Farms	Tumkur	Karnataka	1000 m3	12-11-2019
Murliya Dairy	Trivendrum	Kerala	600m3	22-04-2020
Sarda dairy	Raipur	Chhatisgarh	1200 m3	09-07-2020

Year	2018	2019	2020	2021
Capacity Installed m ³	200	2900	4500	6300

Name	Power Capacity Kwh
CIRB	24
Navsagar Dairy	50
Barkat Bhai Prasla	250
Arco Steel	50
Olitia Foods	24
SRC Farms	50
Sunvik Farms	120
Murliya Dairy	75
Sarda dairy	150
Total	793

Number Annually within PoA	2018	2019	2020	2021
Cattle	267	3867	6000	8400

By using the biogas captured from the digesters the project activity generates power for captive use. The project activity is the controlled biological treatment of biomass or other organic matters through anaerobic digestion in closed reactors equipped with biogas recovery for electricity generation and a combustion/flaring system.

The cattle dung from each dairy farm is collected from the cattle sheds within the project boundary and unloaded into the underground primary collection tank fitted with agitator to prepare homogenous slurry with a dry solid content of 20%. The dry solid content of the homogenous slurry is measured periodically in the laboratory for ensuring the percentage of the dry solid content.

The raw slurry from the underground RCC collection tank is fitted with submersible stirrer to homogenously mix the substrate.

The technical specifications of the modified KVIC model bio-digesters are as follows:

Specification	Value
Total Installed Capacity	6300 m ³
Mixing Proportion	(Water: Waste) 1:1
Number of units (digesters)	9
Feed Material	Cattle Dung
Biogas Power Installed Capacity	0.793 MW _h
Working Days	330
Calorific Value Biogas	20 MJ/m ³
Concentration of methane in the biogas	0.43008kg CH4/m ³
	Applied an expected fraction of methane in biogas of 0.60 m3CH4/m3 multiplied by the density of methane at normal conditions of 0.7168 kg/m3

The dairy farm owners in the project activity can be classified as small to medium-level farmers who are feeding a combination of green fodder and crop residues. Feed intake is typically measured in terms of gross energy (e.g., megajoules (MJ) per day) or dry matter (e.g., kilograms (kg) per day).

Type of waste	Digester Capacity Installed (total)
Cattle dung based	6300 m ³

Type of waste	Estimated TPD treated in the digesters
Cattle dung based	126 TPD

Processing of Treated Slurry: The treated slurry is dewatered and the dry cake is used as high quality organic fertilizer.

Biogas Storage System: The biogas from all the digesters are collected in a gas storage facility and then sent to balloon holding chamber with a cumulative storage capacity of 6300m3 in this project activity.

Scrubbing System: From the balloons, the raw biogas is sent to scrubbing containers that remove CO₂ and H₂S gases and provide the raw biogas with a methane content of approximately 60%. This purified CH₄ is then typically stored in another balloon chamber for further usage.

Power Generation: The scrubbed biogas is then sent to biogas generators which is typically a spark ignition inter-cooler engine generator. The genset capacities in the project sites ranges between 24 kwh to 250 kwh with a total number of 9 generators installed within the project activities. The electrical efficiency is about 38% of each generator.

The total GHG emission reductions achieved in this monitoring period is as follows:

Summary of the Project Activity and ERs generated for Period	or the entire Monitoring
Start date of this Monitoring Period	01/01/2018
Carbon credits claimed up to	31/10/2021
Total ERs generated over the Monitoring period (tCO _{2eq})	1,43,945 tCO _{2eq}
Leakage	NA

United Nations Sustainable Development Goals:

Positive contribution of the project to the following Sustainable Development Goals:

SDG	Impact
2 TERO HUNGER Soal 2: End hunger, achieve food security and	Restoring soils through the recycling of nutrients, organic matter, and carbon Increasing crop yields through use of nutrient-rich digestate biofertiliser Recirculating phosphorus, which is essential for the growth of plants but limited in supply
improved nutrition and promote sustainable	
Goal 3: Ensure healthy lives and promote well-being for all at all ages	Reducing air pollution by substituting fossil fuel with biogas Treating and recycling sewage and organic wastes to reduce odours and the spread of diseases
Goal 7: Ensure access to affordable, reliable, sustainable and modern energy for all	Reducing dependence on fossil-fuel-based energy sources by replacing with biogas Utilising locally produced wastes and crops to generate energy for rural and remote communities. The project activity treats 126 tonnes per day (TPD) of cattle dung that would have otherwise been left to decay anaerobically Storing biogas to produce energy when required
sustainable and modern energy for an	Methane, constituting about 55–60% of landfill gas, is utilized to increase the share of renewable energy in the global energy mix

Level of Assurance:

The verification report is based on the information collected through interviews conducted over video calls / phone calls, supporting documents provided during the verification, Project Concept Note (PCN) / Monitoring Report (MR), submitted to SQAC. The verification opinion is assured provided the credibility of all the above.

Verification Methodology:

Review of the following documentation was done by SQAC Verifier, Mr. Santosh Nair, who is experienced in such projects.

- Project Concept Note (PCN)
- Monitoring Report (MR)
- Calibration Report
- Gas Generation Data
- Project Data Sheet
- Power Generation Report

Sampling Method:

Not applicable.

Verification of all 9 independent biogas digesters was done.

Persons interviewed:

- 1. Dr. Mukesh Raina
- 2. Mr. Santosh Wayande

Documentation Verified:

- Project Concept Note (PCN)
- Monitoring Report (MR)
- Calibration Report
- Gas Generation Data
- Project Data Sheet
- Power Generation Report
- Work orders for setting up Biogas Plant

	Calibration	Report for the Ye	ear 2021	
Client	Location	Serial Number Meter electricity meters Captive	Flare System/Pressure Gauge/Biogas	Power Genset Details
Mr. Barkat bhai Parsla Commissioned Date: 27-12-2018	Gujarat	Use of Electricity Meter No. 254154793 Accuracy class 0.25. Meters are digital and do not require calibration, only verification of their accuracy. Accuracy test at least once every 4 (four) years since commissioning. Last tested on: 25- 12-2021	Temperature Calibration is done internally on a weekly basis by project owners	Capacity:2500KW Make: L&T Ltd Specs:3 phase stat Meter
Regards,	SYSTEM OF THE PLANE			

TO WHOM SO EVER IT MAY CONCERN Calibration Report for the Year 2021

Client	Location	Serial Number Meter electricity meters Captive Use of Electricity	Flare System/Pressure Gauge/Biogas Temperature	Power Genset Details
Navsagar Dairy Farm Commissioned Date: 11/03/2019	Dhanera ,Gujarat	Meter No: 548243172 Accuracy class 0.2S. Meters are digital and do not require calibration, only verification of their accuracy. Accuracy test at least once every 4 (four) years since commissioning. Last tested on: 30- 12-2021	Calibration is done internally on a weekly basis by project owners	Capacity:500KWH Make: L&T Ltd Specs:3 phase static Meter

Register Office:

D-503, DSK Vrindavanam, Near DSK Toyota Showroom, Model Colony, Shivaji Nagar, Pune - 411016.

Tel.; +91 20 29705000 / 91611 projects@urjabiosystems.com

www.urjabiosystems.com i www.urjabiosystem.in
CIN - U40109PR2012PTC143549

TO WHOM SO EVER IT MAY CONCERN Calibration Report for the Year 2021

Client	Location	Serial Number	Flare	Power Genset
		Meter electricity	System/Pressure	Details
1		meters Captive	Gauge/Biogas	
		Use of Electricity	Temperature	
Olitia Foods Pvt.	Sikar, Rajasthan	Meter No:	Calibration is	Capacity:250KWH
Ltd		534879678	done internally on	Make: L&T Ltd
Commissioned		Accuracy class	a weekly basis by	Specs:3 phase
Date: 01-12-2019		0.2S.	project owners	static Meter
		Meters are digital		
		and do not require		
		calibration, only		
		verification of		
		their accuracy.		
1		Accuracy test at		
		least once every 4		
		(four) years since		
		commissioning.		
		Last tested on: 25-		
		12-2021		

Register Office:

D-503, DSK Vrindavanam, Near DSK Toyota Showroom, Model Colony, Shivaji Nagar, Pune - 411016.

Tel.: -91 20 29705000 / 6191 projects@urjabiosystems.com

www.urjabiosystems.com i www.urjabiosystem.in
CiN - U40106PR2012PTC1433496

TO WHOM SO EVER IT MAY CONCERN Calibration Report for the Year 2021

Client	Location	Serial Number	Flare	Power Genset
		Meter electricity	System/Pressure	Details
		meters Captive	Gauge/Biogas	
		Use of Electricity	Temperature	
Sarda Dairy	Raipur,	Meter No:	Calibration is	Capacity:1500KWH
Commissioned	Chhattisgarh	347816794	done internally on	Make: L&T Ltd
Date: 09-07-2020		Accuracy class	a weekly basis by	Specs:3 phase static
		0.25.	project owners	Meter
		Meters are digital		
		and do not require		
		calibration, only		
		verification of		
		their accuracy.		
		Accuracy test at		
		least once every 4		
		(four) years since		
		commissioning.		
		Last tested on: 30-		
	1	12-2021	I	1

TO WHOM SO EVER IT MAY CONCERN Calibration Report for the Year 2021

Client	Location	Serial Number Meter Electricity meters Captive Use of Electricity	Flare System/Pressure Gauge/Biogas Temperature	Power Genset Details
SRC Farm Ltd Commissioned Date: 15/12/2018	Hyderabad	Meter No: 534879678 Accuracy class 0.2S. Meters are digital and do not require calibration, only verification of their accuracy. Accuracy test at least once every 4 (four) years since commissioning. Last tested on: 30- 12-2021	Calibration is done internally on a weekly basis by project owners	Capacity:180KWH Make: L&T Ltd Specs:3 plase static Meter

M/s Urja Bio System Pvt. Ltd.

Register Office:

D-503, DSK Vrindavanam, Near DSK Toyota Showroom, Model Colony, Shivaji Nagar, Pune - 411016.

Tel.: +91 20 29765600 / 6191 projects@urjabiosystems.com

www.urjabiosystems.com I www.urjabiosystem.in
CIN - U401066PV2012PTC1433496

Applied methodologies and standardized baselines:

SECTORAL SCOPE - 01 Energy industries (Renewable/Non-renewable sources)

13 Waste handling and disposal

TYPE I - Renewable Energy Projects

CATEGORY - AMS-I.C.: Thermal energy production with or without electricity.

This methodology comprises renewable energy technologies that supply users i.e. residential, industrial or commercial facilities with thermal energy that displaces fossil fuel use. These units include technologies such as energy derived from renewable biomass and other technologies that provide thermal energy that displaces fossil fuel.

- AMS-III.D: Methane recovery in animal manure management systems

Replacement or modification of existing anaerobic manure management systems in livestock farms, or treatment of manure collected from several farms in a centralized plant to achieve methane recovery and destruction by flaring/combustion or energetic use of the recovered methane.

Applicability of methodologies and standardized baselines

- This project activity comprises measures to avoid the emissions of methane to the atmosphere from cattle dung within the project boundary.
- No methane recovery and destruction by flaring or combustion for gainful use takes place in the baseline scenario.
- The livestock population on the farm is managed under confined conditions.
- Manure or the streams obtained after treatment are not discharged into natural water resources (e.g., river or estuaries);
- Biogas is used for renewable power generation for captive use.
- ❖ The project activity is biogas power plant and is not a co-generation project.
- ❖ In the baseline scenario the retention time of manure waste in the anaerobic treatment system is greater than one month.

- Residual waste from the digestion is handled aerobically.
- ❖ The storage time of the manure after removal from the animal barns, including transportation, does not exceed 45 days before being fed into the anaerobic digester.
- ❖ Measures are limited to those that result in aggregate emission reductions of less than or equal to 60 kt CO₂ equivalent annually from all Type III components of the project activity.
- ❖ This is a small scale project with total electricity capacity of 0.793 MW which is not greater than small scale thresholds defined by the applied methodology I.C. under Type I renewable energy project activity, i.e. the total installed electrical energy generation capacity of the project equipment does not exceed 15 MW.

Applicability of double counting emission reductions

Each of the biogas unit is constructed within the project boundary. Each biogas unit has a unique ID, which is visible on the biogas unit and each power generator set has a unique ID and metering system. Agreement for Double Counting Avoidance from Project Participant has been provided duly signed on 19.06.2023.

Project boundary, sources and greenhouse gases (GHGs)

The project boundary includes the physical, geographical site(s) of:

- The livestock.
- Animal manure management systems (including centralised manure treatment plant where applicable);
- Facilities which recover and use methane for power generation.

	Source	GHG	Included?	Justification/Explanation
Baseline	Methane Emissions	CO ₂	Included	Major source of emission
	from manure decay.	CH ₄	Included	Major source of emission
	Emissions from electricity generated using fossil fuels	N ₂ O	Excluded	Excluded for simplification. This is conservative
Project Activity	Co ₂ Emissions from onsite electricity use	CO ₂	Excluded	Electricity is generated from collected biogas, hence these emissions are not accounted for.
	CH ₄ Emissions from flaring of the biogas	CH ₄	Included	Included in project emissions.
	CH ₄ Emissions associated with anaerobic digesters	N ₂ O	Excluded	Excluded for simplification. This is conservative

The project activity recovers and utilizes biogas for producing electricity and applies AMS IC methodology in addition to using a Type III component of a SSC methodology, hence any incremental carbon emissions occurring due to the implementation of the project activity is neglected.

Establishment and description of baseline scenario (UCR Protocol)

The baseline scenario is the situation where, in the absence of the project activity, animal manure is left to decay anaerobically within the project boundary and methane is emitted to the atmosphere.

Baseline emissions (BE_{y1}) are calculated by using the following option: a) Using the amount of the waste or raw material that would decay anaerobically in the absence of the project activity, with the most recent IPCC Tier 2 approach (please refer to the chapter 'Emissions from Livestock and Manure Management' under the volume 'Agriculture, Forestry and other Land use' of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories). For this calculation, information about the characteristics of the manure and of the management systems in the baseline is required. Manure characteristics include the amount of volatile solids (VS) produced by the livestock and the maximum amount of methane that can be potentially produced from that manure (Bo).

For renewable energy technologies that displace technologies using fossil fuels, the simplified baseline is the fuel consumption of the technologies that would have been used in the absence of

the project activity, times an emission factor for the fossil fuel displaced. Hence the baseline scenario is also electricity is imported from a grid.

The project proponent was not bound to incur this investment as it was not mandatory by national and sectoral policies. Thus, the continued operation of the project activity would continue to replace fossil fuel derived grid electricity.

Annual Emission Reductions: BE_v = BE_{v1} + BE generated, v - PE flare - PE AD, v

BEy = Total Baseline Emissions in a year.

BE generated = **EG** y,generated **x EF** y,grid

BE grid = Baseline emissions for the grid electricity displaced by the project in year y (tCO2e)

EG y,grid = Amount of grid electricity displaced by project in year y (MWh)

EF y,grid = Emission factor of the grid (t CO2e/MWh) = 0.9 (UCR Standard)

BE $_{y1}$ = GWP $_{CH4}$ x D $_{CH4}$ x UF $_{b}$ x $_{EMCF}$ x B $_{0,LT}$ x N $_{LT,y}$ x VS $_{LT,y}$ x MS% $_{BI,j}$

VS $_{LT,y} = (W_{site}/W_{default}) x VS_{default} x nd_y$

Where:

BE $_{y1}$ = Using the amount of manure that would decay anaerobically in the absence of the project activity based on direct measurement of the quantity of manure treated together with its specific volatile solids (VS) content

 $N_{LT,y}$ = Average number of animals of type LT in a year

W site = 275 kg Avg. Wt. at Site (cow) in kg

W _{default} =275 kg Avg. Default Wt. of (cow) as per IPCC for Dairy Cow in India.

nd y = Number of days in year y where the treatment was operational

VS _{default_cattle} = Volatile solids of livestock LT entering the animal manure management system in year y as per IPCC default for cattle in India

UF $_{b}$ = Model correction factor to account for model uncertainties (0.94) Default

VS _{jLTy} =Specific volatile solids content of animal manure from livestock type LT and animal manure management system j in year y (tonnes/tonnes, dry basis). (Cow=2.6). As per IPCC guidelines

D_{CH4} = CH4 density (0.00067 t/m3 at room temperature (20 °C) and 1 atm pressure)

MCF $_j$ = Annual methane conversion factor (MCF) for the baseline animal manure management system $_j$ (Dairy Cow = 5%), solid storage.

B $_{O,LT}$ = Maximum methane producing potential of the volatile solid generated for animal type LT (m 3 CH $_4$ /kg dm) in Indian Subcontinent (Cow =0.13). IPCC 2006 - IPCC Default Value taken for Indian Subcontinent

VS = Volatile Solids

The feed digestibility in the range of 50 to 60% has been considered as appropriate for this PoA. The production of volatile solids is very much dependent on the feed digestibility levels. Corresponding to the feed intake levels, the estimated dietary net energy concentration of diet of 5.5 MJ kg

(NEma) has been found appropriate considering the default Values for Moderate Quality Forage taken from IPCC 2006, Ch. 10, Vol. 4, Table 10.8 Page 10.23. Based on the above value, at 50 to 60% feed digestibility levels, the Dry Matter Intake comes around 49 kg/day for a 295kg cattle head as per the equation (Equation 10.18a in IPCC 2006 chapter 10, volume 4, Page 10.22) as follows:

DMI = BM0.75 $x[\{[(0.0119xNEma 2)+0.1938]\}/NEma]$ where:

DMI = Dry Matter Intake;

BM = Live Body Weight = Default Value of 275 Kg (as given in IPCC 2006 table 10.A.6, chapter 10, volume 4, Page 10.77 considered).

NEma = estimated dietary net energy concentration of diet (Default Values for Moderate Quality Forage taken from IPCC 2006, Ch. 10, Vol. 4, Table 10.8 Page 10.23 = 5.5 MJ kg-1 VSDefault, Cow is the value for the volatile solid excretion rate per day on a dry matter basis for a defined livestock population (kg dm/animal/day) = 2.6

GWP CH4 =21 is the default IPCC value of CH4 applicable to the crediting period (tCO2e/t CH4)

Project Emissions:

PE flare, y = Emissions from flaring of the biogas stream in the year $y (tCO_2e)$

PE flare,y = GWP CH4 $\times \Sigma TM$ RG,h $\times (1 - \eta flare,h) \times 0.001$

PE AD, y = Project Emissions associated with anaerobic digesters in year y (tCO_2e)

PE leakage = Nil

PE transport = Nil

Emissions from incremental transportation in the year y (t CO_2e), and physical leakage is negligible since the dung is generated within the project boundary of all the sites in the PoA.

PE power,
$$y = Nil$$
.

No fossil fuel is used for power generation within the project boundary. The electricity generated for captive use. The use of the recovered biogas is within the project boundary and its output is monitored in order to ensure that the recovered biogas is actually destroyed. Project emissions on account of storage of cattle dung before being fed into the anaerobic digester is not accounted since the storage time of the dung after removal from the cattle shed, including transportation, does not exceed 24 hours before being fed into the anaerobic digester.

Yearly baseline emission reductions (BE)

Type IC

		Emission Reductions
Year	kwh Generated	Type IC (tCO ₂)
2018	138240	124
2019	2566080	2309
2020	4498560	4048
2021	5709600	5138

Type IIID

Parameter	Unit	2018	2019	2020	2021
Emission Reductions	Emission Reductions		27 600 00	10 000 00	E0 072 00
$ER_y = (BE_y - PEy - LE_y)_{AMS}$	III.D + (ER _y) _{AMS IC}	1,906.00	27,609.00	42,838.00	59,973.00
Baseline Emissions		1,969.40	28,523.10	44,256.17	61,958.64
$BE_y = GWP_{CH4} \times D_{CH4} \times UF_b \times \Sigma MCF_j \times B_{0,LT} \times N_{LT,y} \times VS_{LT,y} \times MS\%_{Bl,j}$					
Project Emissions		63.01	913.67	1.417.77	1,984.88
$PE_y = PE_{PL,y} + PE_{flare,y} + PE_p$	ower + PE _{transport,y} + PE _{storage} + PE _{AD,y}	03.01	313.01	1,417.77	1,304.00

Annual Emission Reductions

Year	Emission Reductions Type IC (tCO ₂)	Emission Reductions Type IIID (tCO ₂)	Total Emission Reduction (tCO ₂)
2018	124	1906	2030
2019	2309	27609	29918
2020	4048	42838	46886
2021	5138	59973	65111
			143945

Total emission reductions (ER_y) = 1,43,945 CoUs (1,43,945 tCO_{2eq})

Monitoring period number and duration

First Issuance Period: 3 years, 10 months – 01/01/2018 to 31/10/2021

Conclusions:

Based on the audit conducted on the basis of UCR Biogas Protocol Standard Baseline which draws reference from AMS.I.C. Thermal energy production with or without electricity and AMS-III.D: Methane recovery in animal manure management systems, the documents submitted during the remote verification including the data, Project Concept Note (PCN) / Monitoring Report (MR), SQAC is able to certify that the emission reductions from the project - Small Scale Cattle Biogas to Power Projects in Gujarat, Rajasthan, Karnataka, West Bengal, Chhattisgarh, Kerala and Haryana, India, UCR ID- 017, for the period 01/01/2018 to 31/10/2021 amounts to 1,43,945 **CoUs** (1,43,945 **tCO**_{2eq})

Santosh Nair

Lead Verifier (Signature)

Continuation of the state of th

Praful Shinganapurkar Senior Internal Reviewer

(Signature)

Date: 19/06/2023