姓名:李展緯 學號:40747044s

演算法 hw3 handwritten

1.

(1)

Write down the state transition(recursive relation), and tabulate(draw a table) with the givenitems by using the transition you wrote. Please label the meaning of the column and the row in your table.

i\w	1	2	3	4	5	6
1	0	4	4	4	4	4
2	0	4	4	4	6	6
3	2	4	6	6	6	8
4	2	4	6	6	6	8

横列:容量為w 的袋子所能裝的物品最高價值 直行:編號為i 的物品

$$V(i,w) = max(v[i-1, w], v[i-1,w-w(i)] + v(i))$$

(2)

$$dp(i,j) = p(i) + (sum(i+1,j) - dp(i+1,j))$$

 $dp(i,j) = p(j) + (sum(i,j-1) - dp(i,j-1))$

上述兩種情況中,因為對手一定拿最多的那一堆,因此用 i~j 的總和

$$P1,....P6 = 2,8,3,7,5,3$$

```
dp(i,j) = \{ \\ dp(i,j) = p(i) \quad \text{if } i = j \}
```

 $dp(i,j).first = dp(j,j).first + a(i,j+1).second , dp(i,j).second = dp(i,j+1).first \\ if dp(i,j) dp(j,j).first + a(i-1,j).second > dp(i,i) dp(j,j).first + a(i-1,j).second \\$

```
dp(i,j).first = dp(i,i).first + a(i-1,j).second, dp(i,j).second = dp(i-1,j).first
if dp(i,j) dp(j,j).first + a(i-1,j).second < dp(i,i) dp(j,j).first + a(i-1,j).second
}
```

dp(I,j).first 為在 pi~pj 中先手可拿到的數量 dp(I,j).first 為在 pi~pj 中後手可拿到的數量

i∖j	2	8	3	7	5	3
2	(2,0)	(0,0)	(0,0)	(0,0)	(0,0)	(0,0)
8	(8,2)	(8,0)	(0,0)	(0,0)	(0,0)	(0,0)
3	(5,8)	(8,3)	(3,0)	(0,0)	(0,0)	(0,0)
7	(15,5)	(11,7)	(7,3)	(7,0)	(0,0)	(0,0)
5	(10,15)	(15,8)	(8,7)	(7,5)	(5,0)	(0,0)
3	(18,10)	(16,10)	(10,8)	(10,5)	(5,3)	(3,0)

2. (1) dp(1) = 1

dp(3) = 11

8種組合

2種組合

1種組合

(2)

No

當 dp = 3 時,此方程式不成立,因為有情況未被包含進去 如:

$$(3)dp(4) = dp(1) + dp(3)+dp(3)+dp(1)+dp(2)+dp(2)$$

$$(4)dp(5) = dp(4) + dp(1) + dp(1) + dp(4)$$

$$dp(5) = dp(4) + dp(1) + dp(1) + dp(4) = 2(dp(4) + dp(1)) = 2(dp(1) + dp(2) + dp(3) + dp(4))$$

$$dp(n) = 2(dp(n-1),...dp(1))$$

3.

- (1) 因為有 M 格,而每格只有 1 或 0 兩種選擇,因此為 2^{M}
- $(2)2^{M}-1 \sim 0$
- (3)if(P&S!=0) 則可知道上下兩行必有相鄰的西瓜
- (4)