STA2001 Probability and Statistics (I)

Lecture 5

Tianshi Chen

The Chinese University of Hong Kong, Shenzhen

Review

Definition[Random Variable]

Given a random experiment with sample space S, a function $X:S\to \overline{S}\subseteq R$ that assign one real number X(s)=x to each $s\in S$ is called a Random Variable (RV).

- RV defines a new random experiment with a numeric sample space \overline{S} (take/generate a number from \overline{S})
- If X is one to one, then old random experiment with S \Leftrightarrow new random experiment with \overline{S}
- If X is not one to one, then old random experiment with $S \Leftrightarrow$ new random experiment with \overline{S}
- igwedge X is said to be a discrete RV if \overline{S} is finite or countably infinite

Review

Definition[pmf]

Suppose that X is a RV with range \overline{S} . Then a function $f(x): \overline{S} \to (0,1]$ is called pmf, if

1.
$$f(x) > 0$$
, $x \in \overline{S}$. $f(x) > 0$, $\chi \in \overline{S}$

2.
$$\sum_{x \in \overline{S}} f(x) = 1.$$

$$\sum_{\chi \in \overline{S}} f(\chi) = 1$$

$$p(\chi \in A) = \sum_{\chi \in A} f(\chi).$$

3.
$$P(X \in A) = \sum_{x \in A} f(x), \quad A \subseteq \overline{S}.$$

Note: the 3rd point defines the probability function for an event $A \subseteq \overline{S}$.

The definition domain of f(x) can be extended from \overline{S} to R by simply letting f(x) = 0 for $x \notin \overline{S}$.

Review

Definition[cdf]

The function
$$F(x): R \to [0, 1]$$
 $cdf F(X) = P(X \le X)$

$$= \sum_{X' \le X, X' \in \overline{S}} f(X')$$

$$F(x) = P(X \le X) = \sum_{X' \le X, X' \in \overline{S}} f(X')$$

is called the cumulative distribution function (cdf).

Definition[Mathematical Expectation]

Assume that X is a discrete RV with range \overline{S} and f(x) is its pmf. If $\sum_{x \in \overline{S}} g(x) f(x)$ exists, then it's called the mathematical expectation of g(X) and is denoted by

$$E[g(X)] = \sum_{x \in \overline{S}} g(x)f(x)$$

4/19

Section 2.3 Special Mathematical Expectations [Special g(X)]

Mean and Variance
$$Var[X] = E[X(X-1)]$$

+ELN-ELN ▶ Mean of a RV [g(X) = X]:

$$E[X] = \sum_{x \in \overline{S}} xf(x) \xrightarrow{\overline{S} = \{x_1, \dots, x_k\}} \sum_{i=1}^k x_i f(x_i)$$

Interpretation of E[X]: the average value of X.

Variance of a RV
$$[g(X) = (X - E[X])^2]$$
:

$$Var(X) = E[(X - E[X])^2] = \sum (x - E[X])^2 f(x) = E[X^2] - (E[X])^2$$

$$\sum_{X \in \mathcal{I}} (X^{-2}X \cup \mathcal{I}(X^{-1})) f(X).$$

$$Var(X) = E[(X - E[X])^{2}$$

$$Var(X) = E[(X - E[X])^{2}] = \sum_{x \in \overline{S}} (x - E[X])^{2} f(x) = E[X^{2}] - (E[X])^{2} f(x)$$

$$\sum_{x \in \overline{S}} (x^{2} - 2x u + u^{2}) f(x).$$

$$Var(X) = E[(X - E[X])^{2}] = \sum_{x \in \overline{S}} (x - E[X])^{2} f(x) = E[X^{2}] - (E[X])^{2}$$

$$Var(X) = E[(X - E[X])^{2}] = E[(X - E[X])^{2}]$$

$$Var(X) = E[(X - E[X])^{2}] = E[(X - E[X])^{2}]$$

$$Var(X) = E[(X - E[X])^{2}] = E[(X - E[X])^{2}]$$

$$Var(X) = E[(X - E[X])^{2}] = E[(X - E[X])^{2}]$$

$$Var(X) = E[(X - E[X])^{2}] = E[(X - E[X])^{2}]$$

$$Var(X) = E[(X - E[X])^{2}] = E[(X - E[X])^{2}]$$

$$Var(X) = E[(X - E[X])^{2}] = E[(X - E[X])^{2}]$$

$$Var(X) = E[(X - E[X])^{2}] = E[(X - E[X])^{2}]$$

$$Var(X) = E[(X - E[X])^{2}] = E[(X - E[X])^{2}]$$

$$Var(X) = E[(X - E[X])^{2}] = E[(X - E[X])^{2}]$$

$$Var(X) = E[(X - E[X])^{2}] = E[(X - E[X])^{2}]$$

$$Var(X) = E[(X - E[X])^{2}] = E[(X - E[X])^{2}]$$

$$Var(X) = E[(X - E[X])^{2}] = E[(X - E[X])^{2}]$$

$$Var(X) = E[(X - E[X])^{2}] = E[(X - E[X])^{2}]$$

$$Var(X) = E[(X - E[X])^{2}] = E[(X - E[X])^{2}]$$

$$Var(X) = E[(X - E[X])^{2}] = E[(X - E[X])^{2}]$$

$$Var(X) = E[(X - E[X])^{2}] = E[(X - E[X])^{2}]$$

$$Var(X) = E[(X - E[X])^{2}] = E[(X - E[X])^{2}]$$

$$Var(X) = E[(X - E[X])^{2}] = E[(X - E[X])^{2}]$$

$$Var(X) = E[(X - E[X])^{2}] = E[(X - E[X])^{2}]$$

$$Var(X) = E[(X - E[X])^{2}] = E[(X - E[X])^{2}]$$

$$Var(X) = E[(X - E[X])^{2}] = E[(X - E[X])^{2}]$$

$$Var(X) = E[(X - E[X])^{2}] = E[(X - E[X])^{2}]$$

$$Var(X) = E[(X - E[X])^{2}] = E[(X - E[X])^{2}]$$

$$Var(X) = E[(X - E[X])^{2}] = E[(X - E[X])^{2}]$$

$$Var(X) = E[(X - E[X])^{2}]$$

Example 1, page 66

Let X equal the number of spots after a 6-sided die is rolled. A reasonable probability model is

$$f(x) = P(X = x) = \frac{1}{6}, \quad x = 1, 2, 3, 4, 5, 6$$

- Mean of X [g(X) = X]: Avq Value $E[X] = \frac{1}{6} \cdot (1 + 2 + 3 + 4 + 5 + 6) = \frac{7}{2}$
- ightharpoonup Variance of $X [g(X) = (X E[X])^2]$:

$$Var[X] = E[(X - E[X])^2] = E[X^2] - (E[X])^2 = \frac{91}{6} - \frac{49}{4}$$

Example 2, page 66 [Interpretation of noise variance and standard deviation]

X has pmf
$$f(x) = \frac{1}{3}$$
, $x = -1, 0, 1$

$$E[X] = 0, \quad Var[X] = \frac{2}{3}, \quad \sigma_X = \sqrt{\frac{2}{3}}$$

Y has pmf $f(y) = \frac{1}{3}$, y = -2, 0, 2

$$E[Y] = 0, \quad Var[Y] = \frac{8}{3}, \quad \sigma_Y = 2\sqrt{\frac{2}{3}}$$

Variance or standard deviation is a measure of the dispersion or spread out of the values of X with respect to its mean.

The rth Moment

rth moment of $X[g(X) = X^r \text{ with } r \text{ a positive integer}]$: If $E[X^r] = \sum_{x \in \overline{S}} x^r f(x)$ exists, then it's called the rth moment. first moment, EIX] Second EIX] In addition, if $E[(X-b)^r] = \sum_{x \in \overline{S}} (x-b)^r f(x)$ exists, then it's called the rth moment of X about b, $(\chi b)^{\gamma}$ and if $E[(X)_r] = E[X(X-1)\cdots(X-r+1)]$ exits, it's called the rth factorial moment. factorial moment Recall that $Var[X] = E[X^2] - (E[X])^2$, where E[X] and $E[X^2]$ are the first and second moments, respectively.

Moment Generating Function (mgf)

Definition

Let X be a discrete RV with range space \overline{S} and f(x) be its pmf. If there exists a h > 0 such that

$$E[e^{tX}] = \sum_{x \in \overline{S}} e^{tx} f(x) \text{ exists, for } -h < t < h$$

$$E[e^{tX}] = \sum_{x \in \overline{S}} e^{tx} f(x)$$

then the function defined by $M(t) = E[e^{tX}]$ is called the moment generating function (mgf) of X.

The mgf can be used to generate the moments of X.

Properties of Mgf

1.
$$M(0) = 1$$
 $M(0) = 1$

2. 2 RVs have the same mgf, they have the same probability

distribution, i.e., the same pmf.

Same Probability Distribution

Example 3

If X has the mgf

$$M(t) = e^{t}(\frac{3}{6}) + e^{2t}(\frac{2}{6}) + e^{3t}(\frac{1}{6}), \quad -\infty < t < \infty$$

then the support of the pmf f(x) of X is $\overline{S} = \{1, 2, 3\}$ and the

associated pmf

$$f(x) = \frac{4-x}{6}, \quad x = 1, 2, 3.$$

$$f(x) = \frac{4-x}{6}$$

Properties of Mgf

3.

$$M'(t) = \sum_{x \in \overline{S}} xe^{tx} f(x)$$
 $M''(t) = \sum_{x \in \overline{S}} x^2 e^{tx} f(x)$
 $M^{(r)}(t) = \sum_{x \in \overline{S}} x^r e^{tx} f(x)$

Several questions need to be noted here

- ls M(t) differentiable ? 1st order, 2nd order, ..., rth order
- Interchange of the differentiation and summation

Properties of Mgf

Setting t = 0 leads to

$$M'(0) = E[X]$$

$$M'(0) = E[X]$$

$$M''(0) = E[X^2]$$

$$M''(0) = E[X^2]$$

$$M^{(r)}(0) = E[X^r]$$

Observation: the moments can be computed by differentiating

M(t) and evaluating the derivatives at t = 0.

Example 4, page 71

Suppose X has the geometric distribution, that is its pmf is

$$f(x) = q^{x-1}p$$
, $x = 1, 2, 3, \dots$ $p = 1 - q$, $0 < q < 1$

Then what is E(X) and Var(X)?

Example 4, page 71

Suppose X has the geometric distribution, that is its pmf is

$$f(x) = q^{x-1}p$$
, $x = 1, 2, 3, \dots$ $p = 1 - q$, $0 < q < 1$

Then what is E(X) and Var(X)? Note the mgf of X is

Example 4, page 71

Let $h = -\ln q$ that is positive. To find the mean and variance of X

$$M'(t) = \frac{pe^{t}}{1 - qe^{t}} - \frac{(pe^{t}) \cdot (-qe^{t})}{(1 - qe^{t})^{2}} = \frac{pe^{t}}{(1 - qe^{t})^{2}}$$

$$M''(t) = \frac{pe^{t}(1 + qe^{t})}{(1 - qe^{t})^{3}}$$

$$\Rightarrow M'(0) = E[X] = \frac{p}{(1 - q)^{2}} = \frac{1}{p}$$

$$M''(0) = E[X^{2}] = \frac{1 + q}{p^{2}}$$

$$Var(X) = E[X^{2}] - (E[X])^{2} = \frac{1 + q}{p^{2}} - \frac{1}{p^{2}} = \frac{q}{p^{2}}$$

$$\sqrt{q} = \frac{q}{p^{2}}$$

2.4 Binomial Distribution

2.工成分产 Starting from this section, we will study some typical random phenomena/experiments and corresponding distributions, which are described by RV

- 1. description of the random phenomena/experiments
- 2. pmf (probability function), cdf
- 3. mathematical expectations, e.g., mean, variance, mgf

Bernoulli Experiment

Description: The outcomes can be classified in one of two mutually

exclusive and exhaustive ways, say either

success or failure

female or male

life or death

Bernoulli Experiment

Description: The outcomes can be classified in one of two mutually

exclusive and exhaustive ways, say either

success or failure

female or male

life or death

Bernoulli Distribution

Let X be a RV associated with a Bernoulli experiment with the probability of success p.

 $ightharpoonup RV: X: S o \overline{S}, S = \{\text{success, failure}\}. Define$

$$X(\text{success}) = 1$$
, $X(\text{failure}) = 0$, $\overline{S} = \{0, 1\}$

▶ pmf of $X: f(x): \overline{S} \to [0,1]$ 他 为 $f(x): \overline{S} \to [0,1]$

$$f(x) = p^{x}(1-p)^{1-x}, x \in \overline{S}$$

Then we say X has a Bernoulli distribution with probability of success p.

Bernoulli Distribution

Thus, if we use this binomial expansion with b = p and a = 1 - p, then the sum of the binomial probabilities is

$$\sum_{x=0}^{n} \binom{n}{x} p^{x} (1-p)^{n-x} = [(1-p)+p]^{n} = 1,$$

a result that had to follow from the fact that f(x) is a pmf.

We now use the binomial expansion to find the mgf for a binomial random variable and then the mean and variance.

The mgf is $(a+b)^{n} = \sum_{x=0}^{n} (a+b)^{n} b^{x} a^{n-x}$ ematical expectations:

Mathematical expectations:

- 1. E[X]
- 2. *Var*[*X*]
- 3. $M(t) = E[e^{tX}]$

then the mean and variance.

$$M(t) = E(e^{tX}) = \sum_{x=0}^{n} e^{tx} {n \choose x} p^{x} (1-p)^{n-x}$$

$$= \sum_{x=0}^{n} {n \choose x} (pe^{t})^{x} (1-p)^{n-x}$$

$$= [(1-p)+pe^{t}]^{n}, \quad -\infty < t < \infty,$$

$$= [(1-p)+pe^{t}]^{n}, \quad -\infty < t < \infty,$$

$$= \left[(-p)+pe^{t} \right]^{x} (-p)^{n-x}$$

$$= \left[(-p)+pe^{t} \right]^{x} (-p)^{n-x}$$

$$= \left[(-p)+pe^{t} \right]^{x}$$

$$= \left[(-p)+pe^{t} \right]^{x}$$

$$+ n(t) = n(n-t) \left[(-p)+pe^{t} \right]^{n-x}$$

$$+ n(-p)+pe^{t} \right]^{n+x} (-pe^{t})^{n+x}$$

$$+ n(-p)+pe^{t} \right]^{n+x} (-pe^{t})^{n+x}$$

Bernoulli Distribution

Mathematical expectations:

1.
$$E[X] = \sum_{x \in \overline{S}} xf(x) = 0 \cdot (1-p) + 1 \cdot p = p$$

2.

$$Var[X] = E[(X - E[X])^{2}] = \sum_{x \in \overline{S}} (x - p)^{2} f(x)$$
$$= p^{2} (1 - p) + (1 - p)^{2} p = (1 - p) p$$

3. Mgf: $M(t) = E[e^{tX}] = e^t \cdot p + (1-p), \ t \in (-\infty, \infty)$

Bernoulli Trials

If a Bernoulli experiment is performed *n* times

- 独立性
- 1. independently, i.e., all trials are independent
- 2. the probability of success, say p, remains the <u>same</u> from trial to trial.

then these *n* repetitions of the Bernoulli experiment is called *n* Bernoulli trials.

Example 1

For a lottery, the probability of winning is 0.001. If you

buy the lottery for 10 successive days, that corresponds to

10 Bernoulli trials with the probability of success p = 0.001.

Random sample of size *n* from a Bernoulli distribution

In a sequence of n Bernoulli trials, let X_i denote the Bernoulli RV associated with the ith trial.

An observed sequence of n Bernoulli trials will be n-tuple of zeros and ones, which is called a random sample of size n from a Bernoulli distribution.

Example 2, page 74

Instant lottery ticket; 20% are winners. 5 tickets are purchased and (0,0,0,1,0) is a random sample. Assuming independence between purchasing different tickets, What is probability of this sample?

Example 2, page 74

Recall that if all trials are independent and let A_i be the event associated with the ith trial. Then

$$P(\cap_{i=1}^n A_i) = \prod_{i=1}^n P(A_i)$$

Therefore, the probability is $0.2(0.8)^4$ according to multiplication principle for independent events.

Binomial Distribution

We are interested in the number of successes in n Bernoulli trials. The order of the occurrences is not relevant.

Let X be the number of successes in n Bernoulli trials with its range $\overline{S} = \{0, 1, 2, \dots, n\}$. Find the pmf of X.

- 1. A Bernoulli (success-failure) experiment is performed *n* times.
- 2. The *n* trials are independent $P(\bigcap_{i=1}^{n} A_i) = \prod_{i=1}^{n} P(A_i)$, where A_i is the event associated with *i*th trial, multiplication rule for independent events.
- 3. The probability of success for each trial is p.

Binomial Distribution

4. If $x \in \overline{S}$ successes occur, the number of ways of selecting

x successes in n Bernoulli trials is
$$\binom{n}{x} = \frac{n!}{x!(n-x)!}$$
. Since

Bernoulli trials are independent, the probability of each way

is
$$p^{x}(1-p)^{n-x}$$

$$\Rightarrow f(x) = P(X = x) = \binom{n}{x} p^{x} (1 - p)^{n - x}, \quad x = 0, 1, \dots, n$$

Binomial Distribution

Definition[Binomial distribution]

A RV X is said to have a binomial distribution, if the range space $\overline{S} = \{0, 1, \dots, n\}$ and the pmf

$$f(x) = \binom{n}{x} p^{x} (1-p)^{n-x}, \quad x = 0, 1, \dots, n$$

and denoted by $X \sim b(n, p)$, where the constants n, p are parameters of the distribution.

It is called the binomial distribution because of its connection with binomial expansion

$$(a+b)^n = \sum_{x=0}^n \binom{n}{x} a^x b^{n-x}$$
 with $a = p, b = 1-p$

Example 2 [revisited]

If X is the number of winning tickets among 5 tickets that are purchased. What is the probability of purchasing 2 winning tickets?

Example 2 [revisited]

If X is the number of winning tickets among 5 tickets that are purchased. What is the probability of purchasing 2 winning tickets?

$$X \sim b(5,0.2), \quad f(2) = P(X=2) = {5 \choose 2} (0.2)^2 (0.8)^3.$$