PRUEBA N°1 ESTRUCTURA DE DATOS PRIMER SEMESTRE 2006

	NOMBRE:	SECCIÓN:
P	ARTE I: Marcar la opción que corresponda (3*buenas - malas)	
1.	Que problema tiene el siguiente codigo:	
	<pre>int *p = new int[100]; delete p;</pre>	
	 a) Mal definición de p. b) Solo borra el elemento p[0] y el resto queda sin "acceso"; c) Borra todos los elementos del arreglo. d) Ninguna de las Anteriores. 	
2.	Dada la siguiente declarativa	
	<pre>class Algo{ public: float tonto(int a) { return a * 2.0; } }; Algo o;</pre>	
	Cual es la opción incorrecta? a) int x = tonto(1); b) float r = o.tonto(3); c) cout ;; o.tonto(2); d) Ninguna de las Anteriores.	
3.	Teniendo el siguiente código:	
	<pre>int entero; float real;</pre>	
	<pre>void hola(int a, float r, float& a, int *p);</pre>	
	Cual es la llamada válida? a) hola(real, entero, ℜ, &entero); b) hola(entero, real, real, &entero); c) hola(entero, real, ℜ, entero); d) Ninguna de las Anteriores.	

4. Qué valor se imprime?

```
int i = 3, j = 6;
float r = 7.0;

int cosa(int t, int *a) { return t * (*a);}
int cosa(float t, int *a) { return t + *a; }
int cosa(double t, int *a) { return t / *a;}

cout << cosa(r, &i);</pre>
```

- a) 21
- b) 10
- c) 2.33
- d) Ninguna de las Anteriores.

5. Dada la siguiente declarativa:

6. Se dispone de la siguiente declaración

```
template <class T, class U>
T funcion(U p)
{
    return (T) p;
}
```

Son correctas?

```
I ) int x = funcion(3.14127312);
II ) float r = funcion(3);
III ) cout << funcion(2);</pre>
```

- a) Solo I y III
- b) Solo II
- c) Solo III
- d) Ninguna de las Anteriores.

7. Dada la siguiente clase:

```
class Padre
{
    public:
        void imprimir();
```

UNIVERSIDAD TECNOLÓGICA METROPOLITANA FACULTAD DE INGENIERÍA ESCUELA DE INFORMÁTICA

 ${\rm INF-628} \\ {\rm Prof. \ Mauro \ Castillo \ V.}$

private:
 int variable;
};

Para crear la clase Hijo, que herede todo de la clase Padre, que sentencia se debe usar?

- a) class Hijo : public Padre {};
- b) class Padre : public Hijo {}
- c) class Hijo(Padre) {}
- d) Ninguna de las Anteriores.

8. Dada la declaración:

b) 3 c) 7

public:

int doble();

```
class A
           {
                    public:
                             int f(int a)
                                     B b;
                                      return a + b.f(a);
                             }
           };
           class B
                    public:
                             int f(int b)
                             {
                                     Cc;
                                      return (b + 1) * c.f(b / 2);
                             }
           };
           class C
                    public:
                             int f(int r)
                                    return r * r;
                             }
           };
           A a;
           cout << a.f(3);</pre>
  Que valor se imprime?
  a) No imprime nada
  d) Ninguna de las Anteriores.
9. Dada la siguiente declarativa
           Class Numero
```

UNIVERSIDAD TECNOLÓGICA METROPOLITANA FACULTAD DE INGENIERÍA ESCUELA DE INFORMÁTICA

 ${\rm INF-628} \\ {\rm Prof. \ Mauro \ Castillo \ V.}$

```
private:
    int base;
}
```

Que implementación es la correcta para definir la función miembro "doble".

- a) int doble() { return base + base}
- b) int Numero::doble() { return base + base}
- c) Numero doble() { return base + base}
- d) Ninguna de las Anteriores.

10. Dadas las siguientes declaraciones:

```
I) int sub(int j, float r, int g = 0)
II) float sub(int j = 0, float t, int r = 0)
III) void sub(int j = 0, float t = 5, int w = 0)
```

Cúal o cuales son declaraciones correctas?

- a) Solo I
- b) I y III
- c) Todas
- d) Ninguna de las Anteriores.

PARTE II: (15 puntos)

Se tiene una Cola con dígitos (0..9). Se pide implementar el operador recursivo **Numero(Q)** que permite retornar el número formado por los dígitos de la cola Q

Por ejemplo si se realizan las siguientes operaciones sobre la cola Q

```
Q.agregar(1);
Q.agregar(2);
Q.agregar(3);
Q.agregar(4);
```

El operador Numero(Q) debe retornar 4321

UNIVERSIDAD TECNOLÓGICA METROPOLITANA FACULTAD DE INGENIERÍA ESCUELA DE INFORMÁTICA

PARTE III (15 puntos)

Se dispone de un stack de números enteros. Se pide escribir el operador **Separa(S)**, que permite separar los elementos de S de tal forma que los números pares queden en la parte inferior del stack ordenados en forma descendente; y en la parte superior del stack deben quedar los elementos impares ordenados en forma ascendente. Puede utilizar como estructuras auxiliar algún TAD.

```
AUTA PARTE II
1 b
2 a
3 b
4 b
5 a
6 d
7 c
8 a
9 b
10 b
  PAUTA PARTE II
template <class T>
T numero(ColaAbstracta<T> &q)
{
        if(q.vacia()) {
                return 0;
        }
        else {
                return q.extraer() + numero(q) * 10;
        }
}
  PAUTA PARTE III
template <class T>
void separa(PilaAbstracta<T> &p)
        ColaDinamica<T> q;
        PilaDinamica<T> t;
        T x;
        while(!p.vacio()) {
                x = p.pop();
                if(x \% 2 == 0)
                        q.agregar(x);
                else
                        t.push(x);
        while(!q.vacia()) {
                p.push(q.extraer());
        while(!t.vacio()) {
                p.push(t.pop());
        }
}
```