

 PALM INTRANETDay : Monday
Date: 11/7/2005

Time: 12:56:09

Inventor Name Search

Enter the first few letters of the Inventor's Last Name.
Additionally, enter the first few letters of the Inventor's First name.

Last Name	First Name
-----------	------------

Robotti	Karla	Search
---------	-------	--------

To go back use Back button on your browser toolbar.

Back to [PALM](#) | [ASSIGNMENT](#) | [OASIS](#) | Home page

Welcome to DialogClassic Web(tm)

Dialog level 05.08.03D
Last logoff: 31oct05 16:24:49
Logon file001 07nov05 16:06:05

***** ANNOUNCEMENT *****

--UPDATED: Important Notice to Freelance Authors--
See HELP FREELANCE for more information

NEW FILES RELEASED

***Inspec (File 202)
***Physical Education Index (File 138)
***Computer and Information Systems Abstracts (File 56)
***Electronics and Communications Abstracts (File 57)
***Solid State and Superconductivity Abstracts (File 68)
***ANTE: Abstracts in New Technologies (File 60)

RELOADS COMPLETED

*** The 2005 reload of the CLAIMS files (Files 340, 341, 942)
is now available online.

RESUMED UPDATING

***ERIC (File 1)

Chemical Structure Searching now available in Prous Science Drug
Data Report (F452), Prous Science Drugs of the Future (F453), IMS R&D Focus (F445/95
Facts (F390), and Derwent Chemistry Resource (F355).

>>> Enter BEGIN HOMEBASE for Dialog Announcements <<
>>> of new databases, price changes, etc. <<

KWIC is set to 50.

HIGHLIGHT set on as ''

* * *

File 1:ERIC 1966-2005/Sep 30
(c) format only 2005 Dialog

Set Items Description

--- -----

Cost is in DialUnits

?

B 155, 5, 73
07nov05 16:06:16 User259876 Session D816.1
\$0.84 0.241 DialUnits File1
\$0.84 Estimated cost File1
\$0.05 INTERNET
\$0.89 Estimated cost this search
\$0.89 Estimated total session cost 0.241 DialUnits

SYSTEM:OS - DIALOG OneSearch

File 155:MEDLINE(R) 1951-2005/Nov 04

(c) format only 2005 Dialog

File 5:Biosis Previews(R) 1969-2005/Oct W5

(c) 2005 BIOSIS

File 73:EMBASE 1974-2005/Nov 07

(c) 2005 Elsevier Science B.V.

Set Items Description

?

S SOL-GEL OR (SOL (W) GEL)
 30 SOL-GEL
 11378 SOL
 693561 GEL
 3729 SOL(W) GEL
S1 3729 SOL-GEL OR (SOL (W) GEL)

?

S (ENCAPSULATED OR ENTRAPPED OR IMMOBILIZED) (S) (ENZYME OR DNA OR RNA OR ANTIBODY OR
Processing

 32820 ENCAPSULATED
 15293 ENTRAPPED
 95676 IMMOBILIZED
 2051423 ENZYME
 2537317 DNA
 1536691 RNA
 1284158 ANTIBODY
 1230750 BIOLOGICAL
 545561 MATERIAL
 5601 BIOLOGICAL(W) MATERIAL
S2 39370 (ENCAPSULATED OR ENTRAPPED OR IMMOBILIZED) (S) (ENZYME OR
DNA OR RNA OR ANTIBODY OR (BIOLOGICAL (W) MATERIAL))

?

S S1 AND S2

 3729 S1
 39370 S2
S3 299 S1 AND S2

?

S (MICROANALYTICAL OR MICROFLUIDIC OR MICRODEVICE OR MICROARRAY OR MICROCHANNEL OR M

 1639 MICROANALYTICAL
 3365 MICROFLUIDIC
 240 MICRODEVICE
 46004 MICROARRAY
 1371 MICROCHANNEL
 1645 MICROCOLUMN
S4 53605 (MICROANALYTICAL OR MICROFLUIDIC OR MICRODEVICE OR
MICROARRAY OR MICROCHANNEL OR MICROCOLUMN)

?

S S3 AND S4

 299 S3
 53605 S4
S5 14 S3 AND S4

?

RD

...completed examining records
 S6 8 RD (unique items)

?

T S6/3,K/ALL

6/3,K/1 (Item 1 from file: 155)
DIALOG(R)File 155:MEDLINE(R)
(c) format only 2005 Dialog. All rts. reserv.

17874565 PMID: 15253661

Entrapment of Src protein tyrosine kinase in sugar-modified silica.

Cruz-Aguado Jorge A; Chen Yang; Zhang Zheng; Brook Michael A; Brennan John D

Department of Chemistry, McMaster University, Hamilton, Ontario L8S 4M1, Canada.

Analytical chemistry (United States) Jul 15 2004, 76 (14) p4182-8,
ISSN 0003-2700 Journal Code: 0370536

Publishing Model Print

Document type: Journal Article

Languages: ENGLISH

Main Citation Owner: NLM

Record type: MEDLINE; Completed

... time a protein tyrosine kinase (PTK). Silane precursors bearing covalently attached gluconamide moieties were used in combination with the biocompatible precursor diglycerylsilane (DGS) to generate **sol - gel** derived silica that was able to encapsulate highly active Src PTK and preserve the activity of the **enzyme** over multiple uses. The relative activity of the **enzyme** was assayed using a LANCE based fluorescence resonance energy transfer method involving time-gated detection of fluorescence from a europium labeled antiphosphotyrosine **antibody** and Cy5 labeled streptavidin upon mutual binding to biotinylated phosphopeptides. Using this detection method, with the **antibody** and streptavidin external to the **sol - gel** matrix, it was possible to detect the phosphorylation of peptides with molecular weights of up to 2300 Da using the **entrapped enzyme** in N-(3-triethoxysilylpropyl)gluconamide (GLTES) doped glasses. Src kinase-doped glasses, derived from precursors such as tetramethyl orthosilicate, tetraethyl orthosilicate, or DGS that did not contain GLTES, provided no detectable **enzyme** activity. The addition of 1 mM ATP to the GLTES/DGS sol before the encapsulation of the protein increased the activity of the **enzyme** in the resulting gel, likely through a ligand-based stabilization mechanism. The use of such a system for determination of PTK activity and inhibition is demonstrated, setting the stage for the development of chromatographic and **microarray** based methods for the screening of kinase inhibitors.

6/3,K/2 (Item 2 from file: 155)

DIALOG(R)File 155: MEDLINE(R)

(c) format only 2005 Dialog. All rts. reserv.

14757422 PMID: 12713046

Microchip-based purification of DNA from biological samples.

Breadmore Michael C; Wolfe Kelley A; Arcibal Imee G; Leung Wayne K; Dickson Dana; Giordano Braden C; Power Mary E; Ferrance Jerome P; Feldman Sanford H; Norris Pamela M; Landers James P

Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA.

Analytical chemistry (United States) Apr 15 2003, 75 (8) p1880-6,
ISSN 0003-2700 Journal Code: 0370536

Contract/Grant No.: R21 CA78865-01; CA; NCI; R24 ES10229-01; ES; NIEHS

Publishing Model Print

Document type: Journal Article

Languages: ENGLISH

Main Citation Owner: NLM

Record type: MEDLINE; Completed

A microchip solid-phase extraction method for purification of **DNA** from

biological samples, such as blood, is demonstrated. Silica beads were packed into glass microchips and the beads immobilized with sol -□gel□ to provide a stable and reproducible solid phase onto which DNA could be adsorbed. Optimization of the DNA loading conditions established a higher

DNA recovery at pH 6.1 than 7.6. This lower pH also allowed for the flow rate to be increased, resulting in a decrease in extraction time from 25 min to less than 15 min. Using this procedure, template genomic DNA from human whole blood was purified on the microchip platform with the only sample preparation being mixing of the blood with load buffer prior to loading on the microchip device. Comparison between the microchip SPE (microchipSPE) procedure and a commercial microcentrifuge method showed comparable amounts of PCR-amplifiable DNA could be isolated from cultures of Salmonella typhimurium. The greatest potential of the microchipSPE device was illustrated by purifying DNA from spores from the vaccine strain of Bacillus anthracis, where eventual integration of SPE, PCR, and separation on a single microdevice could potentially enable complete detection of the infectious agent in less than 30 min.

6/3,K/3 (Item 3 from file: 155)

DIALOG(R)File 155: MEDLINE(R)

(c) format only 2005 Dialog. All rts. reserv.

14722144 PMID: 12669868

Simple method for preparation of nanostructure on microchannel surface and its usage for enzyme-immobilization.

Miyazaki Masaya; Kaneno Jun; Uehara Masato; Fujii Masayuki; Shimizu Hazime; Maeda Hideaki

Micro-space Chemistry Laboratory, National Institute of Advanced Industrial Science and Technology, 807-1 Shuku, Tosa, 841-0052 Saga, Japan.

Chemical communications (Cambridge, England) (England) Mar 7 2003,

(5) p648-9, ISSN 1359-7345 Journal Code: 9610838

Publishing Model Print

Document type: Journal Article

Languages: ENGLISH

Main Citation Owner: NLM

Record type: MEDLINE; Completed

Simple method for preparation of nanostructure on microchannel surface and its usage for enzyme-immobilization.

We developed a novel preparation method of nanostructure on the microchannel surface formed by sol -□gel□like simple treatment with 3-aminopropyltriethoxysilane, which is suitable for a highly efficient enzyme immobilized microchannel reactor.

6/3,K/4 (Item 4 from file: 155)

DIALOG(R)File 155: MEDLINE(R)

(c) format only 2005 Dialog. All rts. reserv.

13680689 PMID: 11320503

Stable sol - gel □microstructured and□ microfluidic□networks for□ protein patterning.

Kim Y D; Park C B; Clark D S

Department of Chemical Engineering, University of California, 110-C Gilman Hall, Berkeley, CA 94720, USA.

Biotechnology and bioengineering (United States) Jun 5 2001, 73 (5) p331-7, ISSN 0006-3592 Journal Code: 7502021

Publishing Model Print

Document type: Journal Article

Languages: ENGLISH
Main Citation Owner: NLM
Record type: MEDLINE; Completed

Stable sol - gel microstructured and microfluidic networks for protein patterning.

We demonstrate the formation of micropatterned **sol - gel** structures containing active proteins by patterning with polydimethylsiloxane (PDMS) microchannels. To transport sol solution efficiently into the hydrophobic PDMS microchannels, a hydrophilic-hydrophobic block copolymer...

... were prepared containing the reactive organic moieties polyvinylalcohol or polyvinylpyrrolidone. Retention of biochemical activity within the micropatterned gel was demonstrated by performing immunobinding assays with

immobilized immunoglobulin G (IgG) **antibody**. The potential application of microfluidics technology to **immobilized - enzyme** biocatalysis was demonstrated using PDMS-patterned microchannels filled with trypsin-containing sol-gels. This work provides a foundation for the microfabrication of functional protein chips using **sol - gel** processes.

Copyright 2001 John Wiley & Sons, Inc.

6/3,K/5 (Item 1 from file: 5)
DIALOG(R)File 5:Biosis Previews(R)
(c) 2005 BIOSIS. All rts. reserv.

0014741021 BIOSIS NO.: 200400110727

Coupled enzyme reaction microarrays based on pin-printing of sol - gel derived biomaterials.

AUTHOR: Rupcich Nicholas; Brennan John D (Reprint)

AUTHOR ADDRESS: Department of Chemistry, McMaster University, Hamilton, ON, L8S 4M1, Canada**Canada

AUTHOR E-MAIL ADDRESS: brennanj@mcmaster.ca

JOURNAL: Analytica Chimica Acta 500 (1-2): p3-12 19 December, 2003 2003

MEDIUM: print

ISSN: 0003-2670 _(ISSN print)

DOCUMENT TYPE: Article

RECORD TYPE: Abstract

LANGUAGE: English

Coupled enzyme reaction microarrays based on pin-printing of sol - gel derived biomaterials.

ABSTRACT: We report on the development of a new class of protein microarrays based on the co-immobilization of multiple components within a single pin-printed **sol - gel** array element. In the first case, the microarraying of a coupled two **enzyme** reaction involving glucose oxidase and horseradish peroxidase along with the fluorogenic reagent Amplex Red is demonstrated to allow "reagentless" fluorimetric detection of glucose. The second system involved the detection of urea using **co-immobilized** urease and fluorescein dextran, which works on the basis of a pH induced change in fluorescein emission intensity upon production of ammonium carbonate owing to hydrolysis of urea. In both the cases, it is demonstrated that the changes in intensity from the array are time-dependent, consistent with the **enzyme** catalyzed reaction, showing that such arrays can be used for kinetic studies. The rate of intensity change was also found to be dependent on the...

...array, showing that such arrays could be useful for quantitative multianalyte biosensing. Inhibition of urease by the competitive inhibitor thiourea is also demonstrated on a **microarray**, demonstrating

that **sol - gel** -based microarrays may find use in high-throughput drug-screening applications.

DESCRIPTORS:

METHODS & EQUIPMENT: coupled enzyme reaction **microarray** --
MISCELLANEOUS TERMS: **sol - gel** derived biomaterials

6/3,K/6 (Item 1 from file: 73)

DIALOG(R)File 73:EMBASE
(c) 2005 Elsevier Science B.V. All rts. reserv.

13245545 EMBASE No: 2005305159

A sol - gel immobilization of nano and micron size sorbents in poly(dimethylsiloxane) (PDMS) microchannels for microscale solid phase extraction (SPE)

Karwa M.; Hahn D.; Mitra S.

S. Mitra, Department of Chemistry and Environmental Science, New Jersey Institute of Technology, 138 Warren Street, Newark, NJ 07032 United States

AUTHOR EMAIL: mitra@adm.njit.edu

Analytica Chimica Acta (ANAL. CHIM. ACTA) (Netherlands) 01 AUG 2005, 546/1 (22-29)

CODEN: ACACA ISSN: 0003-2670

PUBLISHER ITEM IDENTIFIER: S0003267005008408

DOCUMENT TYPE: Journal ; Article

LANGUAGE: ENGLISH SUMMARY LANGUAGE: ENGLISH

NUMBER OF REFERENCES: 44

A sol - gel immobilization of nano and micron size sorbents in poly(dimethylsiloxane) (PDMS) microchannels for microscale solid phase extraction (SPE)

Sorbent particles consisting of nano and micro silica, and micron size octadecylsilica (ODS) were immobilized using **sol - gel** chemistry onto poly(dimethylsiloxane) (PDMS) **microfluidic** channels to serve as mu-chip solid phase extraction (SPE) devices. Extraction, preconcentration and purification of biological and chemical analytes were carried out using these. Micro and nano scale silica- **immobilized** mu-SPE were used for the extraction/purification of **DNA** from recombinant Escherichia coli crude lysate. The average **DNA** recovery was 77 +/- 9% (X +/- R.S.D.) for the micron size silica particles and 70 +/- 5% (X +/- R.S.D.) for the nano silica particles. The extracted **DNA** could be amplified by polymerase chain reaction (PCR) whereas the **DNA** from the crude lysate solution could not be. This was a testimony to the purification capability of the mu-SPE device. ODS **immobilized** mu-SPE were used to study the extraction efficiency (EE) and enhancement factor (EF) for three groups of organic compounds, aromatics, phenols and carboxylic acids...

6/3,K/7 (Item 2 from file: 73)

DIALOG(R)File 73:EMBASE
(c) 2005 Elsevier Science B.V. All rts. reserv.

13083662 EMBASE No: 2005143994

Protein array consisting of sol - gel bioactive platform for detection of E. coli O157:H7

Lee W.; Park K.-S.; Kim Y.-W.; Lee W.H.; Choi J.-W.

J.-W. Choi, Dept. of Chem. and Biomol. Eng., Sogang University, 1 Shinsu-Dong, Mapo-Gu, Seoul 121-742 South Korea

AUTHOR EMAIL: jwchoi@ccs.sogang.ac.kr

Biosensors and Bioelectronics (BIOSENS. BIOELECTRON.) (United Kingdom)

15 MAY 2005, 20/11 (2292-2299)
CODEN: BBIOE ISSN: 0956-5663
DOCUMENT TYPE: Journal ; Conference Paper
LANGUAGE: ENGLISH SUMMARY LANGUAGE: ENGLISH
NUMBER OF REFERENCES: 26

**Protein array consisting of sol - gel□bioactive platform for detection□
of E. coli O157:H7**

Sol - gel -derived bioactive platform was fabricated for detection of pathogenic microbes, E. coli O157:H7. Design flexibility of sol - gel technique and ease of fabrication can fulfill to create the surfaces with structural and chemical features that are compatible with biomaterials such as antibody , enzymes, etc. In this study, the bioactive platform was prepared based on the silica gels, which were produced by hydrolyzing tetraethylorthosilane (TEOS) in ethanol. The...

...triethoxysilane (MPTS) was mixed with the TEOS solution for the surface functionalization of bioactive platform. During TEOS hydrolysis, the modified thin film was prepared by sol - gel dip coating.□Antibody□ against E. coli O157:H7 was immobilized with a configuration of protein array using piezo-type dispensing system. Surface morphology of the prepared bioactive platform was analyzed using atomic force microscopy (AFM). The antibody -antigen interaction was investigated with fluorescence microscopy and sandwich type immunoassay using fluorescein isothiocyanate (FITC)-labeled antibody . The results showed that antibody was sequestered within the sol - gel -derived bio-gel due to physical adsorption. The measurement of E. coli O157:H7 was done using the fabricated antibody surface. The fluorescence intensity was proportional to the concentration of E. coli O157:H7, of which the detection limit was 10 SUP2 CFU/ml. (c...

MEDICAL DESCRIPTORS:

*protein microarray ; *bacterium detection

6/3,K/8 (Item 3 from file: 73)
DIALOG(R)File 73:EMBASE
(c) 2005 Elsevier Science B.V. All rts. reserv.

12952447 EMBASE No: 2005011911
**Titania and alumina sol - gel□-derived microfluidics enzymatic-reactors□
for peptide mapping: Design, characterization, and performance**
Wu H.; Tian Y.; Liu B.; Lu H.; Wang X.; Zhai J.; Jin H.; Yang P.; Xu Y.;
Wang H.
P. Yang, Department of Chemistry, Fudan University, Shanghai 200433
China
Journal of Proteome Research (J. PROTEOME RES.) (United States) 2004
, 3/6 (1201-1209)
CODEN: JPROB ISSN: 1535-3893
DOCUMENT TYPE: Journal ; Article
LANGUAGE: ENGLISH SUMMARY LANGUAGE: ENGLISH
NUMBER OF REFERENCES: 25

**Titania and alumina sol - gel□-derived microfluidics enzymatic-reactors□
for peptide mapping: Design, characterization, and performance**

...alumina-based Poly(dimethylsiloxane) (PDMS) microfluidics enzymatic-reactors along with their analytical features in coupling with MALDI-TOF and ESI-MS were reported. Microfluidics with microchannel and stainless steel tubing (SST) were fabricated using PDMS casting and

OSUB2-plasma techniques, and were used for the preparation of an enzymatic-reactor. Plasma oxidation for the PDMS **microfluidic** system enabled the channel wall of the microfluidics to present a layer of silanol (SiOH) groups. These SiOH groups act as anchors onto the **microchannel** wall linked covalently with the hydroxyl groups of trypsin-encapsulated sol matrix. As a result, the trypsin-encapsulated gel matrix was anchored onto the wall of the **microchannel**, and the leakage of gel matrix from the **microchannel** was effectively prevented. A feature of the **microfluidic** enzymatic-reactors is the feasibility of performing on-line protein analysis by attached SST electrode and replaceable tip. The success of trypsin encapsulation was investigated...

MEDICAL DESCRIPTORS:

*peptide mapping; *matrix assisted laser desorption ionization time of flight mass spectrometry; *electrospray mass spectrometry; * **immobilized enzyme** reactor

?

Set	Items	Description
S1	3729	SOL-GEL OR (SOL (W) GEL)
S2	39370	(ENCAPSULATED OR ENTRAPPED OR IMMOBILIZED) (S) (ENZYME OR - DNA OR RNA OR ANTIBODY OR (BIOLOGICAL (W) MATERIAL))
S3	299	S1 AND S2
S4	53605	(MICROANALYTICAL OR MICROFLUIDIC OR MICRODEVICE OR MICROARRAY OR MICROCHANNEL OR MICROCOLUMN)
S5	14	S3 AND S4
S6	8	RD (unique items)

?

S S1 (S) S2
 3729 S1
 39370 S2
S7 285 S1 (S) S2

?

Set	Items	Description
S1	3729	SOL-GEL OR (SOL (W) GEL)
S2	39370	(ENCAPSULATED OR ENTRAPPED OR IMMOBILIZED) (S) (ENZYME OR - DNA OR RNA OR ANTIBODY OR (BIOLOGICAL (W) MATERIAL))
S3	299	S1 AND S2
S4	53605	(MICROANALYTICAL OR MICROFLUIDIC OR MICRODEVICE OR MICROARRAY OR MICROCHANNEL OR MICROCOLUMN)
S5	14	S3 AND S4
S6	8	RD (unique items)
S7	285	S1 (S) S2

?

S S7 AND S4
 285 S7
 53605 S4
S8 13 S7 AND S4

?

RD

...completed examining records
S9 7 RD (unique items)

?

S S9 NOT S6

7 S9
8 S6
S10 0 S9 NOT S6

?

Set	Items	Description
S1	3729	SOL-GEL OR (SOL (W) GEL)
S2	39370	(ENCAPSULATED OR ENTRAPPED OR IMMOBILIZED) (S) (ENZYME OR - DNA OR RNA OR ANTIBODY OR (BIOLOGICAL (W) MATERIAL))
S3	299	S1 AND S2
S4	53605	(MICROANALYTICAL OR MICROFLUIDIC OR MICRODEVICE OR MICROAR- RAY OR MICROCHANNEL OR MICROCOLUMN)
S5	14	S3 AND S4
S6	8	RD (unique items)
S7	285	S1 (S) S2
S8	13	S7 AND S4
S9	7	RD (unique items)
S10	0	S9 NOT S6

?

COST

07nov05 16:11:41 User259876 Session D816.2
\$4.07 1.197 DialUnits File155
\$0.88 4 Type(s) in Format 3
\$0.88 4 Types
\$4.95 Estimated cost File155
\$4.48 0.759 DialUnits File5
\$0.16 1 Type(s) in Format 95 (KWIC)
\$0.16 1 Types
\$4.64 Estimated cost File5
\$6.52 0.613 DialUnits File73
\$8.82 3 Type(s) in Format 3
\$8.82 3 Types
\$15.34 Estimated cost File73
OneSearch, 3 files, 2.569 DialUnits FileOS
\$1.60 INTERNET
\$26.53 Estimated cost this search
\$27.42 Estimated total session cost 2.811 DialUnits

?

[Return to logon page!](#)

Refine Search

Search Results -

Term	Documents
(11 AND 5).PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD.	44
(L11 AND L5).PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD.	44

Database:

US Pre-Grant Publication Full-Text Database
 US Patents Full-Text Database
 US OCR Full-Text Database
 EPO Abstracts Database
 JPO Abstracts Database
 Derwent World Patents Index
 IBM Technical Disclosure Bulletins

Search:

Refine Search
Recall Text
Clear
Interrupt

Search History

DATE: Monday, November 07, 2005 [Printable Copy](#) [Create Case](#)

<u>Set</u> <u>Name</u> <u>Query</u>	<u>Hit</u> <u>Count</u>	<u>Set</u> <u>Name</u> result set
side by side		
<u>L12</u> L11 and L5	44	<u>L12</u>
<u>L11</u> L2 same L3	450	<u>L11</u>
<u>L10</u> L8 and L6	24	<u>L10</u>
<u>L9</u> L8 and L6	24	<u>L9</u>
<u>L8</u> (crushing or grinding) same (gel or particulate or particle)	84926	<u>L8</u>
<u>L7</u> L6 and (UV or IR or Raman or (mass adj spectrometry))	162	<u>L7</u>
<u>L6</u> L5 and L4	203	<u>L6</u>
<u>L5</u> (microanalytical or microfluidic or microdevice or microarray or microchannel or microcolumn)	22648	<u>L5</u>
<u>L4</u> L3 and L2	1783	<u>L4</u>
(encapsulated or entrapped or immobilized) same (enzyme or DNA or		

<u>L3</u>	RNA or antibody or molecule or material)	145255	<u>L3</u>
<u>L2</u>	(sol-gel) or (sol adj gel)	26518	<u>L2</u>
<u>L1</u>	Robotti-Karla.in.	3	<u>L1</u>

END OF SEARCH HISTORY