

Scanned with CamScanner

For making cascade_final.xml document used following procedure used in viola jones algorithm :

- 1) Created data set which had positive images (images which had the face) and negative images (images which don't have faces)
- 2) After creating dataset, included the sample in below window,

3) Selected some attributes

4) Now Cascaded the dataset in the following step in the software.

5) After filling the information in each steps

I have used dataset of having positive images value around 2000 images and negative images of around 4500 images, it required an overnight to make the final xml document.

Ran Viola – Jones Algorithm on the Avengers picture and result is as follows:

I further calculated the max_height and max_width for which the image can be cropped, actually resizing the image increases the accuracy in face recognition. But we can do the step that we crop the face only and hence it will further increase our model accuracy and also help us to reduce complexity of the model.

Credits for XML document: Cascade Trainer GUI

References: https://www.youtube.com/watch?v=uEJ71VIUmMQ

https://www.youtube.com/watch?v=LopYA64KmdE&t=602s

Camlin Page
Date
Casel: when Nis small
Pitic N is small of then for Non Canadiance from
is not greater and can be obtained in the
Cars : When Nis large
NA Computation rures
to calculate eignrectors
Here we calculate sign quelter of small
covaliance matrix
10 T. C. Marchine
[Cs=ATA (MXM)matrix.]
Calculate agen neutor for this small matrix so
to find eigen metter of corraliance matrix.
we can mutiply that weeter to A
Ui = AND dison veeting
A small comminue
elgen veetor y covariance matrix
matrix
I Now next stopis to calculate weight matrix
k
of mean = 5 w; u; (wj = vjt oj)
321
The whole a fix has the state of the state o
25 Di= Wi = 192, M
in the way to be with the way to the same
I had a see that we breakgroup no we
wk)
Lük J
30
De represents the unique matrix of M trail
Images.

Scanned with CamScanner

In [*]:

```
import cv2

face_cascade = cv2.CascadeClassifier('cascade_final_1.xml')

img = cv2.imread('avengers-endgame.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray,1.1,1)

for (x,y,w,h) in faces:
    cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)

cv2.imshow('img',img)
cv2.waitKey()
```

In [9]:

```
Max Width=0
Max_Height=0
images_train = 8
variants = 15
for i in range(1, variants+1):
    for j in range(1, images train+1):
        if (i<10):
            face image = cv2.cvtColor(cv2.imread("train/Subject0"+str(i)+" (" + str(j) + ")
        else:
            face_image = cv2.cvtColor(cv2.imread("train/Subject"+str(i)+" (" + str(j) + ").
        faces=face_cascade.detectMultiScale(gray,1.1,1)
        for (x,y,w,h) in faces:
            cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)
            if (Max_Width<w):</pre>
                Max Width=w
            if (Max_Height<h):</pre>
                Max_Height=h
for i in range(1, variants+1):
    for j in range(images train, images train+1+3):
        if (i<10):
            try:
                 face_image = cv2.cvtColor(cv2.imread("test/Subject0"+str(i)+" (" + str(j) +
            except:
                continue
        else:
            try:
                 face_image = cv2.cvtColor(cv2.imread("test/Subject"+str(i)+" (" + str(j) +
            except:
                continue
        faces=face cascade.detectMultiScale(gray,1.1,1)
        for (x,y,w,h) in faces:
            cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)
            if (Max Width<w):</pre>
                Max Width=w
            if (Max_Height<h):</pre>
                Max Height=h
```

In [10]:	
Max_Width	
Out[10]:	
104	
In [11]:	
Max_Height	
Out[11]:	
104	
In []:	

Classifying Detected Faces using idea of Eigen **Faces**

In [5]:

```
# Importing all the important libraries which we will require in further steps
import numpy as np
import cv2
from matplotlib import pyplot as plt
import math
```

We need to resize our image as we take input, since from our analysis of the viola jones algorthim we got to know that maximum sized face in image lies between width and height of 104 and 104 respectively.

In [42]:

```
total pixels = 10816
images_train = 8 # Training Images
variants = 15  # Total Number of Subjects
total_images = images_train*variants
face_vector = []
# Running two for loops for training all the variants and 8 images of each images
# Hence total images used for training =120
for i in range(1, variants+1):
    for j in range(1, images_train+1):
        if (i<10):
            face image = cv2.cvtColor(cv2.imread("train/Subject0"+str(i)+" (" + str(j) + ")
            # Mention the width and height of the size of the images
            width = 104
            height = 104
            dim = (width, height)
            # resize image
            face_image = cv2.resize(face_image, dim, interpolation = cv2.INTER_AREA)
            face_image = cv2.cvtColor(cv2.imread("train/Subject"+str(i)+" (" + str(j) + ").
            width = 104
            height = 104
            dim = (width, height)
            # resize image
            face_image = cv2.resize(face_image, dim, interpolation = cv2.INTER_AREA)
        plt.imshow(face_image, cmap = 'gray', interpolation = 'bicubic')
        plt.show()
        # Plotting image for verification
        face_image = face_image.reshape(total_pixels,)
        # We also change our shape in above step
        face_vector.append(face_image)
        # Finally we store each image data into the face vector
face_vector = np.asarray(face_vector)
face_vector = face_vector.transpose()
print(face_vector.shape)
print(face vector)
```

20

In [43]:

```
avg face_vector = face_vector.mean(axis=1) # Taking mean along axis=1
avg_face_vector = avg_face_vector.reshape(face_vector.shape[0], 1) # Reshaping vector to su
normalized_face_vector = face_vector - avg_face_vector # Now subtracting each vector with n
print(normalized_face_vector)
```

```
7.775
7.775
                 7.775
                                          ... -34.225
                                                              7.775
    7.775
              ]
    6.05
                 6.05
                               6.05
                                          ... -26.95
                                                              6.05
    6.05
              ]
   5.275
                 5.275
                               5.275
                                               -7.725
                                                              5.275
    5.275
              ]
 [-9.525]
                29.475
                              29,475
                                               26.475
                                                             28.475
   25.475
              ]
                              28.08333333 ...
  -5.91666667
                28.08333333
                                               27.08333333
                                                             27.08333333
  19.083333331
  0.55833333 31.55833333
                             31.55833333 ... 30.55833333 15.55833333
   32.55833333]]
```

Covariance Matrix Calculation from the Normalized Vectors of Each Image.

In [44]:

```
covariance_matrix = np.cov(np.transpose(normalized_face_vector))
print(covariance_matrix)
```

```
1007.63837433 ... -4568.29151024
[ 7135.55123252
                 1677.95284541
                 -984.24448088]
   -66.70706089
[ 1677.95284541
                2724.07587853
                                  448.87689574 ... -1218.61996653
   -473.10453375
                 -849.68322177]
                   448.87689574 1850.42961998 ... -710.31428453
[ 1007.63837433
    62.07375967
                   -21.44972611]
[-4568.29151024 -1218.61996653
                                 -710.31428453 ... 6354.81426635
   364.30136077
                   381.15223038]
   -66.70706089
                 -473.10453375
                                   62.07375967 ...
                                                     364.30136077
  2093.30753961
                   367.91063954]
 [ -984.24448088
                  -849.68322177
                                  -21.44972611 ...
                                                     381.15223038
                 3448.51324958]]
   367.91063954
```

Since Python can do ton's of calculation each second we don't need to go for the second step of the calculating smaller matrix.

In [45]:

```
eigen_values, eigen_vectors = np.linalg.eig(covariance_matrix)
```

```
In [47]:
```

```
# This is would the step called as PCA
# Here we take only top 60 eigen vectors for the further prediction of the test images
# If k is small we reduce the complexity of model heavily
print(eigen_vectors.shape)
k = 60
k_eigen_vectors = eigen_vectors[0:k, :]
print(k_eigen_vectors.shape)
(120, 120)
(60, 120)
In [48]:
# Now we need to lower the dimension and also we complete the step of having dot product wi
# face vector
eigen_faces = k_eigen_vectors.dot(np.transpose(normalized_face_vector))
print(eigen_faces.shape)
(60, 10816)
In [49]:
# Now the there are K eigenvector which carries information of all the images
# All the image normalized vector are the linear combination of the selcted K eigenvectors
# And hence we calculate the weights of such linear combination
weights = np.transpose(normalized_face_vector).dot(np.transpose(eigen_faces))
print(weights)
[[-19751293.08461218-512723.31719035j -30833963.95790347-512723.31719035j
  41071047.00050665-512723.31719038j ...
  -21148717.96916098-512723.31719036j 24041258.84470751-512723.31719038j
  41889351.93616537-512723.31719034j]
 [-13866656.53824024+118792.51405259j -5290483.56858655+118792.51405259j
   8416135.42293709+118792.51405259j ...
    3614185.82647408+118792.51405258j 15671292.44183596+118792.51405259j
   19593882.12448596+118792.51405259j]
 [ -8923876.6041844 +233474.78611274j
                                         663862.44374345+233474.78611274j
    6198499.72604148+233474.78611275j ...
   4428246.09014259+233474.78611274j 13062070.37996404+233474.78611275j
   8777386.41807092+233474.78611273j]
 [ 30226678.38135644-265850.98779615j
                                       14296439.86852476-265850.98779616j
  -18471496.92830129-265850.98779616j ...
   -4085791.02974588-265850.98779614j -33746605.54521682-265850.98779615j
  -46864329.58240522-265850.98779615j]
 [-14818874.21051635+267675.23917903j
                                        4166257.90704249+267675.23917903j
   -4749577.29935316+267675.23917904j ...
   2078559.88958225+267675.23917903j
                                        6837154.2083489 +267675.23917904j
   1856196.98144588+267675.23917903j]
  7348099.2554031 +611312.90196432j
                                        8600884.26643787+611312.90196432j
  -13883122.3688818 +611312.90196435j ...
  10299523.59405019+611312.90196432j -4715473.37990118+611312.90196435j
   -1821684.20731755+611312.90196431j]]
```

```
In [ ]:
```

```
# The below algorithm can be use for the manual looking that what would be predicted for ea
test_add = "test/Subject05 (11).jpg"
test_img = cv2.imread(test_add)
test_img = cv2.cvtColor(test_img, cv2.COLOR_RGB2GRAY)
# Again Redefining the Image
width = 104
height = 104
dim = (width, height)
# resize image
test_img = cv2.resize(test_img, dim, interpolation = cv2.INTER_AREA)
test_img = test_img.reshape(total_pixels, 1)
test_normalized_face_vector = test_img - avg_face_vector
test_weight = np.transpose(test_normalized_face_vector).dot(np.transpose(eigen_faces))
index = np.argmin(np.linalg.norm(test_weight - weights, axis=1))
if(index>=0 and index <8):</pre>
    print("Prediction : Subject01")
if(index>=8 and index<16):</pre>
    print("Prediction : Subject02")
if(index>=16 and index<24):</pre>
    print("Prediction : Subject03")
if(index>=24 and index<32):</pre>
    print("Prediciton : Subject04")
if(index>=32 and index<40):</pre>
    print("Prediction : Subject05")
```

The below code is written for calculating the accuracy

In [51]:

```
no_of_images_test=3
accuracy=0
for i in range(1, variants+1):
    for j in range(images_train+1,images_train+1+no_of_images_test):
        if (i<10):
            test_add="test/Subject0"+str(i)+" ("+str(j)+").jpg"
            test_img = cv2.imread(test_add)
            width = 104
            height = 104
            dim = (width, height)
            # resize image
            test_img = cv2.resize(test_img, dim, interpolation = cv2.INTER_AREA)
        else:
            test add="test/Subject"+str(i)+" ("+str(j)+").jpg"
            test_img = cv2.imread(test_add)
            width = 104
            height = 104
            dim = (width, height)
            # resize image
            test_img = cv2.resize(test_img, dim, interpolation = cv2.INTER_AREA)
        plt.imshow(test_img, cmap = 'gray', interpolation = 'bicubic')
        plt.show()
        # The steps which are followed by the train images are same for the test images
        test_img = cv2.cvtColor(test_img, cv2.COLOR_RGB2GRAY)
        # Again we generate weights and normalized vectors by the mean vector of the traini
        test_img = test_img.reshape(total_pixels, 1)
        test_normalized_face_vector = test_img - avg_face_vector
        test_weight = np.transpose(test_normalized_face_vector).dot(np.transpose(eigen_face
        # In this step we obtain minimum of all the weights
        index = np.argmin(np.linalg.norm(test_weight - weights, axis=1))
        predicted=math.floor(index/images_train)+1
        print("Real : "+str(i))
        print("Predicted : "+str(predicted))
        # After our Prediction matches with real scenario we increase value in accuracy var
        if predicted==i:
            accuracy=accuracy+1
accuracy=(accuracy*100)/(variants*no of images test)
print("Accuracy : " ,accuracy)
```


Real : 1 Predicted: 1

Real : 1 Predicted: 1

Real : 1 Predicted : 1

Real : 2 Predicted : 2

Real : 2 Predicted : 1

Real : 2 Predicted: 4

Real : 3 Predicted: 3

Real : 3 Predicted: 3

Real: 3 Predicted: 3

Real : 4 Predicted : 4

Real : 4
Predicted : 4

Real : 4 Predicted : 4

Real : 5
Predicted : 5

Real : 5 Predicted : 5

Real : 5 Predicted : 5

Real : 6
Predicted : 6

Real : 6 Predicted : 6

Real : 6 Predicted : 6

Real : 7
Predicted : 7

Real : 7
Predicted : 7

Real : 7
Predicted : 10

Real: 8
Predicted: 8

Real : 8 Predicted : 10

Real: 8
Predicted: 8

Real : 9 Predicted : 9

Real : 9 Predicted : 9

Real : 9 Predicted : 8

Real : 10 Predicted : 10

Real : 10 Predicted : 10

Real : 10 Predicted : 10

Real : 11 Predicted : 11

Real: 11 Predicted: 11

Real : 11 Predicted: 11

Real : 12 Predicted : 12

Real : 12 Predicted : 12

Real : 12 Predicted : 12

Real : 13 Predicted : 13

Real : 13 Predicted : 13

Real : 13 Predicted : 7

Real : 14 Predicted : 14

Real : 14 Predicted : 14

Real : 14 Predicted : 14

Real : 15 Predicted : 15

Real : 15 Predicted: 15

Real : 15 Predicted: 15

Accuracy: 86.666666666667

References:

https://github.com/xanmolx/FaceDetectorUsingPCA/blob/master/PCA_Face_Recognition_IIT2016040.ipyn (https://github.com/xanmolx/FaceDetectorUsingPCA/blob/master/PCA Face Recognition IIT2016040.ipyr

https://www.youtube.com/watch?v=g4Urfno4aTc&t=1657s (https://www.youtube.com/watch? v=g4Urfno4aTc&t=1657s)

Discussion Collabarators: Kamlesh Sawadekar; Unnat Dave

Ideas are influenced by the above sources, so the variable names or the steps might look similar but each step is being understood in written by me while reading the paper

4	•
In []:	