Folland problem 1.8:

 (X, \mathcal{A}, μ) a measure space, E_n a sequence of sets, $E_n \in \mathcal{A}$. Let $A_k = \bigcap_{n=k}^{\infty} E_n$, then $A_k = E_k \cap A_{k+1}$, then $x \in A_k \Rightarrow x \in E_k \cap A_{k+1} \Rightarrow x \in A_{k+1} \Rightarrow A_k \subset A_{k+1}$, and $A_k \in \mathcal{A}$. Then by continuity from below, $\mu(\bigcup_{k=1}^{\infty} A_k) = \lim_{k \to \infty} \mu(A_k)$, $\mu(\bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} E_n) = \lim_{k \to \infty} \mu(\bigcap_{n=k}^{\infty} E_n)$, $\mu(\liminf_{k \to \infty} E_n) = \lim_{k \to \infty} \mu(\bigcap_{n=k}^{\infty} E_n)$, (not complete)

supplementary problem 6:

Def: E_n a sequence of sets, $n \in \mathbb{N}$. Take the statement " $x \in E_n$ for all but finitely many n" to precicely mean " $\exists k \in \mathbb{N}$ s.t. $x \in \bigcap_{n=k}^{\infty} E_n$ ". Then, " $x \in E_n$ for infinitely many n" means " $x \in \bigcup_{n=k}^{\infty} E_n$, $\forall k \in \mathbb{N}$ ".

Prop 1: (Folland, p2)

 $\limsup E_n = \{x : x \in E_n \text{ for infinitely many } n\}$

 $x \in \limsup E_n = \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} E_n \Leftrightarrow (x \in \bigcup_{n=k}^{\infty} E_n, \ \forall k \in \mathbb{N})$ (by the definition of intersection)

Prop 2: (Folland, p2)

 $\liminf E_n = \{x : x \in E_n \text{ for all but finitely many } n\}$

$$x \in \liminf E_n = \bigcup_{k=1}^{\infty} \cap_{n=k}^{\infty} E_n \Leftrightarrow (x \in \bigcap_{n=k}^{\infty} E_n, \text{ some } k \in \mathbb{N})$$
 (by the definition of union)

 (X, \mathcal{A}, μ) a measure space, E_n a sequence of sets, $E_n \in \mathcal{A}$, μ a finite measure, and $\mu(E_n) > \alpha > 0$. Then we take $\limsup(E_n)$, by Folland problem 1.8,

$$\mu(\limsup(E_n)) \ge \limsup \mu(E_n) \ge \liminf \mu(E_n) \ge \inf \mu(E_n) \ge \alpha > 0,$$

so $\mu(\limsup(E_n)) > 0 \Rightarrow \limsup(E_n) \neq \phi \Rightarrow \exists x \in \limsup(E_n) \Rightarrow \exists x \in E_n \subset X \text{ for infinitely many } n$

supplementary problem 8:

$$(X, \mathcal{A}, \mu) \text{ a measure space. } f: Y \to X. \ f^{-1}(\mathcal{A}) = \{f^{-1}(A): A \in \mathcal{A}\}, \ f^{-1}(A) = \{y \in Y: f(y) \in A\}$$

Let $\mathcal{B} = f^{-1}(\mathcal{A})$. We have three functions here; $f: Y \to X$, maps elements in Y to elements in X, $f^{-1}(\mathcal{A})$ maps sigma algebras to sigma algebras, and $f^{-1}(A): \mathcal{A} \to \mathcal{B}$ maps elements in one sigma algebra to elements in another. Write $F^{-1}: \mathcal{A} \to \mathcal{B}$, $F^{-1}(A) = \{y \in Y: f(y) \in A\}$.

claim 1: F^{-1} is injective

Let $A, A' \in \mathcal{A}$ such that $F^{-1}(A) = F^{-1}(A')$. Let $B = F^{-1}(A), B' = F^{-1}(A')$, so B = B'. This means that $b \in B \Leftrightarrow b \in B'$, which is to say $b \in \{y \in Y : f(y) \in A\} \Leftrightarrow b \in \{y \in Y : f(y) \in A'\}$, which means $f(b) \in A \Leftrightarrow f(b) \in A'$, which means exactly A = A'.

claim 2: F^{-1} is surjective

 $B \in \mathcal{B} \Rightarrow f(B) = A$, some $A \in \mathcal{A}$, by the definition of $f^{-1}(\mathcal{A})$, and preimages; $f(B) = \{x \in X : x = f(y), y \in B\}$, so F^{-1} is surjective.

Thus F^{-1} is bijective.

 $\begin{array}{l} \text{Lemma 1: } F^{-1}(A^c) = (F^{-1}(A))^c \\ x \in (F^{-1}(A))^c \Leftrightarrow (x \not\in F^{-1}(A) \ \& \ x \in Y) \Leftrightarrow (x \in Y \ \& \ x \not\in \{y \in Y : f(y) \in A\}) \Leftrightarrow (x \in Y \ \& \ f(x) \not\in A) \\ \Leftrightarrow (x \in Y, f(x) \in X, f(x) \not\in A) \Leftrightarrow (f(x) \in A^c) \Leftrightarrow (x \in \{y \in Y : f(y) \in A^c\}) \Leftrightarrow (x \in F^{-1}(A^c)) \end{array}$

- 1a) $\phi \in \mathcal{A}$, $\not\exists f(y) \in \phi \Rightarrow f^{-1}(\phi) = \phi \Rightarrow \phi \in \mathcal{B}$.
- 1b) $B \in \mathcal{B} \Rightarrow f(B) = A$, some $A \in \mathcal{A}$. $A \in \mathcal{A} \Rightarrow A^c \in \mathcal{A} \Rightarrow (f(B))^c \in \mathcal{A}$. Then by the definition of $\mathcal{B}, F^{-1}(f(B))^c) \in \mathcal{B}$, and by Lemma 1, $F^{-1}(f(B))^c) = F^{-1}(f(B))^c \in \mathcal{B} \Rightarrow B^c \in \mathcal{B}$. We've used that $F^{-1}(f(B)) = B \Leftrightarrow F^{-1}(\{f(x) : x \in B\}) = B \Leftrightarrow \{y \in Y : f(y) \in \{f(x) : x \in B\}\} = B$.
- 1c) B_k a sequence in \mathcal{B} . $x \in f(\bigcup_{k \in \mathbb{N}} B_k) \Leftrightarrow (x \in f(B_k), \text{ some } k \in \mathbb{N}) \Leftrightarrow x \in \bigcup_{k \in \mathbb{N}} f(B_k)$. Thus $f(\bigcup_{k \in \mathbb{N}} B_k) = \bigcup_{k \in \mathbb{N}} f(B_k)$. Now, $f(B_k) \in \mathcal{A}$, which is a sigma algebra, so $f(\bigcup_{k \in \mathbb{N}} B_k) = \bigcup_{k \in \mathbb{N}} f(B_k) \in \mathcal{A}$, so $f(\bigcup_{k \in \mathbb{N}} B_k) \in \mathcal{B}$ by the definition of \mathcal{B}

Thus, \mathcal{B} is a sigma algebra