Wprowadzenie

ASC 2024

Piotr Żoch

Plan

- Sprawy organizacyjne
- Szereg czasowy: sezonowość, stacjonarność, integracja.

Sprawy organizacyjne

Sprawy organizacyjne

- Email: p.zoch@uw.edu.pl.
- Dyżur: uzgadniany indywidualnie.
- Forma zajęć: konwersatorium
- Slajdy i inne materiały: Github
- Zaliczenie: projekt zaliczeniowy (50%) + egzamin (50%)

Projekt zaliczeniowy

- Dokładne wytyczne i przykładowe projekty: http://www.ekonometria.wne.uw.edu.pl
- Indywidualna analiza dwóch szeregów czasowych (dane miesięczne/kwartalne/roczne)
 - Szereg sezonowy.
 - Szereg niesezonowy.
- Dekompozycja szeregu, dobranie modelu ARIMA/SARIMA, prognozy z modelu.
- Termin: 16 czerwca, 23:59 (termin poprawkowy: 2 września 23:59)
- Wybrane szeregi należy ze mną skonsultować do 14 kwietnia.
- Kto pierwszy, ten lepszy!

Literatura

- Z USOSa:
 - Enders W. (2014), Applied Econometric Time Series, Wiley.
 - Pawełek B., Wanat S., Zeliaś A. (2003/2013), Prognozowanie ekonomiczne Teoria, przykłady, zadania, PWN.
- Klasyk:
 - Hamilton, J. (1994), Time Series Analysis, Princeton University Press.

Szeregi czasowe

Dane

- Dane przekrojowe (cross sectional data) wiele jednostek n = 1, 2, ..., N obserwowanych w jednym okresie
- Szeregi czasowe (time series data) jedna jednostka obserwowana w wielu okresach t=1,2,...,T
- Dane panelowe (panel data) wiele jednostek n=1,2,...,N obserwowanych w wielu okresach t=1,2,...,T

Szereg czasowy

- Proces stochastyczny: zbiór zmiennych losowych $\{Y_t\}_{t\in T}$, które przyjmują wartości w przestrzeni probabilistycznej (Ω, \mathcal{F}, P) i są indeksowane przez zbiór T.
 - ullet Przykład: $Y_t \sim \mathcal{N}\left(0,\sigma^2
 ight)$
 - ullet Przykład: $Y_t \sim N\left(t, \sigma_t^2
 ight)$
- Szereg czasowy: pojedyncza realizacja pewnego procesu stochastycznego.

$$\{y_t\}_{t\in\mathcal{T}}$$

 Ciąg obserwacji pokazujący kształtowanie się badanego zjawiska w kolejnych okresach (dniach, miesiącach, kwartałach, latach, itp.)

Szereg czasowy

Praca z szeregami czasowymi

- Po co?
 - Prognozowanie przyszłych wartosci
 - Badanie dynamiki szeregów
 - Dodatkowo: pewne właściwości szeregów czasowych ważne nawet przy zwykłej regresji liniowej
- Co robić?
 - Analiza czasowa (ten kurs)
 - Analiza częstotliwościowa (może o tym wspomnimy)

- Sezonowość: zmienność związana z cyklem kalendarzowym:
 - Przykład: dla zmiennych miesięcznych sezonowość miesięczna.

- Jeśli sezonowość ma wpływ na związek między zmienną objaśniającą a objaśnianą i nie zostanie uwzględniona w modelu, to pojawi się w resztach (nie będą spełniały założeń klasycznego modelu regresji liniowej).
- Co robić?
 - Pracować z danymi wyrównanymi sezonowo (różne metody, które poznamy na tym kursie).
 - Potraktować sezonowość poważnie i uwzględnić ją w modelu.

 Różnicowanie sezonowe: prosty sposób na pozbycie się sezonowości — zamiast pierwotnych wartości zmiennych możemy wykorzystać

$$\Delta_s y_t := y_t - y_{t-s}$$

gdzie s=4 dla zmiennych kwartalnych, s=12 dla zmiennych miesięcznych.

- Zmienna jest stacjonarna w sensie ścisłym jeśli łączne rozkłady $\{Y_t,Y_{t+1},\cdots,Y_T\}$ i $\{Y_{t+\tau},Y_{t+1+\tau},\cdots,Y_{T+\tau}\}$ są takie same dla wszystkich $T\geq t\geq 1, \tau\geq 0$.
- Inaczej: $F(\{Y_t, Y_{t+1}, \cdots, Y_T\}) = F(\{Y_{t+\tau}, Y_{t+1+\tau}, \cdots, Y_{T+\tau}\})$
- Rozkład nie zależy od czasu.

- Zmienna jest stacjonarna w sensie słabym (stacjonarność kowariancyjna) jeśli spełnione są trzy warunki:
 - $E[Y_t] = \mu < \infty$
 - $Var[Y_t] = \sigma^2 < \infty$
 - $Cov(Y_t, Y_{t+h}) = Cov(Y_s, Y_{s+h}) = \gamma_h$
- Intuicyjnie: właściwości zmiennej nie zmieniają się w czasie.
- Jeśli którykolwiek warunek nie jest spełniony, zmienna jest niestacjonarna.
- W praktyce będziemy badać stacjonarność w sensie słabym.

- Przykład: biały szum (white noise): Y_t jest i.i.d. z wartością oczekiwaną równą 0 i wariancją σ^2 .
 - independent and identically distributed
- Stacjonarność
 - $E[Y_t] = 0 < \infty$
 - $Var[Y_t] = \sigma^2 < \infty$
 - $Cov(Y_t, Y_s) = 0 dla t \neq s$.
- Tak.

• Przykład: model AR(1)

$$y_{t} = \rho y_{t-1} + \varepsilon_{t}$$

$$\varepsilon_{t} \sim iid\left(0, \sigma_{\varepsilon}^{2}\right)$$

$$|\rho| < 1$$

• Stacjonarność? Sprawdźmy trzy warunki (słabej) stacjonarności.

- Warunek pierwszy: $E[y_t] = \mu < \infty$.
- Zauważmy, że

$$E[y_t] = E\left[\sum_{i=0}^{\infty} \rho^i \varepsilon_{t-i}\right]$$
$$= \sum_{i=0}^{\infty} \rho^i E[\varepsilon_{t-i}]$$
$$= 0 < \infty$$

- Warunek drugi: $Var[y_t] = \sigma^2 < \infty$.
- Zauważmy, że

$$\begin{aligned} \textit{Var}\left[y_{t}\right] &= \textit{Var}\left[\sum_{i=0}^{\infty} \rho^{i} \varepsilon_{t-i}\right] \\ &= \sum_{i=0}^{\infty} \rho^{2i} \textit{Var}\left[\varepsilon_{t-i}\right] \\ &= \frac{\sigma_{\varepsilon}^{2}}{1 - \rho^{2}} < \infty \end{aligned}$$

• Warunek drugi: $Cov(Y_t, Y_{t+h}) = Cov(Y_s, Y_{s+h}) = \gamma_h$.

$$\begin{aligned} \textit{Cov}\left[y_{t}, y_{t-h}\right] &= \textit{Cov}\left[\sum_{i=0}^{\infty} \rho^{i} \varepsilon_{t-i}, \sum_{i=0}^{\infty} \rho^{i} \varepsilon_{t-h-i}\right] \\ &= \textit{Cov}\left[\sum_{i=0}^{h-1} \rho^{i} \varepsilon_{t-i} + \rho^{h} \sum_{i=0}^{\infty} \rho^{i} \varepsilon_{t-i-h}, \sum_{i=0}^{\infty} \rho^{i} \varepsilon_{t-h-i}\right] \\ &= \rho^{h} \sum_{i=0}^{\infty} \rho^{2i} \textit{Var}\left[\varepsilon_{t-i-h},\right] \\ &= \rho^{h} \frac{\sigma_{\varepsilon}^{2}}{1 - \rho^{2}} \end{aligned}$$

Wniosek?

• Przykład: błądzenie losowe (random walk)

$$y_t = y_{t-1} + \varepsilon_t$$
$$\varepsilon_t \sim iid\left(0, \sigma_{\varepsilon}^2\right)$$

- Podobne do AR(1), ale z $\rho = 1$.
- Stacjonarność?

• Zauważmy, że:

$$E[y_t] = 0$$
 $Var[y_t] = \sum_{s=1}^{t} Var[\varepsilon_s]$
 $= t\sigma_{\varepsilon}^2$
 $Cov[y_t, y_{t-h}] = \sum_{s=1}^{t-h} Var[\varepsilon_s]$
 $= (t-h)\sigma_{\varepsilon}^2$

• Przykład: błądzenie losowe z dryfem

$$y_t = \mu + y_{t-1} + \varepsilon_t$$
$$\varepsilon_t \sim iid\left(0, \sigma_{\varepsilon}^2\right)$$

• Stacjonarność?

Stacjonarność wokół trendu

 Zmienna jest stacjonarna wokoł trendu (trendostacjonarna) jeśli odchylenie od trendu

$$y_t - E[y_t]$$

jest stacjonarne

• Przykład: trend liniowy

$$y_{t} = \alpha + \beta t + \varepsilon_{t}$$

$$E[y_{t}] = \alpha + \beta t$$

$$y_{t} - E[y_{t}] = \varepsilon_{t}$$

Zmienna zintegrowana

- Zmienna jest zintegrowana, jeśli jest zmienną niestacjonarną, której d-te różnice są stacjonarne.
 - *d*-te różnice:

$$egin{aligned} \Delta_1 y_t &:= y_t - y_{t-1} \ \Delta_2 y_t &:= \Delta_1 \left(\Delta_1 y_t
ight) \ \Delta_d y_t &:= \Delta_1 \left(\Delta_{d-1} y_t
ight) \end{aligned}$$

• Mówimy, że zmienna y_t jest zintegrowana stopnia d.

$$y_t \sim I(d)$$

• Zmienne stacjonarne są zintegrowane stopnia 0.

$$y_t \sim I(0)$$

Zmienna zintegrowana

• Przykład: błądzenie losowe (random walk)

$$y_t = y_{t-1} + \varepsilon_t$$
$$\varepsilon_t \sim iid\left(0, \sigma_{\varepsilon}^2\right)$$

- ullet Wiemy już, że y_t jest zmienną niestacjonarną.
- Czy pierwsze różnice są stacjonarne?

Zmienna zintegrowana

• W tym przypadku mamy

$$\Delta_1 y_t = y_t - y_{t-1}$$
$$= \varepsilon_t$$

czyli $\Delta_1 y_t$ to biały szum, zmienna stacjonarna.

• Konkluzja: $y_t \sim I(1)$.