CMOS Circuit Design and SPICE Simulation using SKY130 Technology Workshop

Brief Description of the course:

This is focused towards CMOS circuit design and SPICE simulation using SKY130 technology organized by VLSI System Design. The content of the workshop is divided across the five days in a smart way which allows the learner to grasp all the concepts if the workshop is attended dedicatedly. On the first day of the workshop the emphasis was on the basics of NMOS Drain current (Id), Drain-to-source Voltage (Vds) and the plot between the two of them. The second day focuses primarily on velocity saturation and basics of CMOS inverter VTC and the plots between Id and Vgs and the plot for determining the value of Vt. The third was concentrated on CMOS switching threshold and dynamic simulations, where a lot of equations were derived to find the relationships between the (W/L) ratios of the PMOS and NMOS and the switching threshold voltage (Vm). On the fourth day of the workshop, Noise margins and CMOS inverter robustness with respect to them was discussed. On the fifth and final day of the workshop the emphasis was on Power supply variation and Device variation. In the power supply variation, the effects of using various power supplies on the inverter were observed and we discussed the advantages and disadvantages of using a small power supply and the reason that it is not used. In the device variation, the impact of manufacturing processes on a single inverter and inverter chain were discussed.

Tools Covered:

- NGSpice + SKY130 PDK Open-source SPICE simulator with accurate 130 nm device models.
- NGSpice Built-in Plotter For waveform visualization.
- VS Code / Vim Netlist editing with syntax highlighting.
- Bash & Make Scripts Automating multi-corner sweeps and parameter studies.
- Git & GitHub Version control, sharing lab results, reproducibility.

Projects Covered:

- Design & Characterization of a CMOS Inverter
 - Sizing PMOS/NMOS pairs
 - Generating VTC plots
 - Optimizing switching threshold and rise/fall delays
- 2. Noise-Margin & Delay Analysis of an Inverter Chain

- o Evaluating NMH/NML
- o Timing analysis through TT/SS/FF corners
- Sub-1 V supply sweeps
- 3. PVT-Aware Low-Power Standard Cell
 - Building process-tolerant library cells
 - Parametric sweeps using scripts
 - o Documenting guard-band guidelines for tape-out

What I Learned

- Setting up the SKY130 PDK and NGSpice for CMOS simulations.
- Extracting Id–Vds and Id–Vgs curves, understanding channel-length modulation, μ , λ , and Cox.
- Designing CMOS inverters and deriving switching-threshold equations.
- Analyzing noise margins (NMH/NML) and robustness under glitches.
- Performing transient simulations to measure rise/fall delays and power consumption.
- Sweeping VDD for low-power design and running PVT corner simulations.
- Using Bash/Make automation for large-scale SPICE sweeps.
- Integrating SPICE-verified designs into OpenLane/VSDFlow for digital implementation.
- Applying learned concepts to create silicon-ready, low-power, robust designs.

INDEX:

- 1. Basics of MOSFET
- 2. Modes of Operation:
 - o Accumulation Mode
 - o Depletion Mode
 - o Inversion Mode
- 3. Transfer characteristics in triode and saturation regions
- 4. Transconductance gm in triode vs saturation
- 5. Region conditions recap
- 6. p-type enhancement MOSFET: modes, equations, characteristics
- 7. Non-Ideal Effects of MOSFET:
 - o Channel Length Modulation
 - o Body Effect
 - o Effects on Threshold Voltage
 - o Subthreshold Conduction

8.Introduction To SPICE Simulations

- 9. Velocity Saturation & Basics of CMOS Inverter
- 10.CMOS Voltage Transfer Characteristics
- 11. Static Behavior Evaluation of CMOS
- 12.Conclusion
- 13.References

MOSFET

Full Form: Metal Oxide Semiconductor Field Effect Transistor

- S: Source
- D: Drain
- G: Gate (metallic contact with SiO₂ insulation layer)
- B: Body (p-type substrate for n-MOS)
- L: Channel length
- W: Channel width
- tox: Oxide thickness
- SiO₂ acts as a perfect insulator

Why it is called Field Effect Transistor?

In MOSFET, the current that flows between Drain (D) and Source (S) terminals is controlled by an electric field which is perpendicular to the direction of the current flow.

- This perpendicular control is why it is called a Field Effect Transistor (FET).
- The Gate (G) terminal is separated from the channel by a perfect insulating layer (SiO₂), hence no current (negligible) flows through the gate terminal.

Regions (Modes) of Operation

1.Enhancement MOSFET:

- 1. Accumulation Mode
- 2. Depletion Mode
- 3. Inversion Mode

1. Accumulation Mode

Condition: VGS < 0 (for n-MOS)

Where:

$$V_{_{GS}}=V_{_{G}}-V_{_{S}}$$

Explanation:

- ullet Gate connected to negative voltage \Rightarrow negative charges develop on the metallic gate plate.
- These negative charges attract holes (majority carriers in p-type substrate) toward the Si-oxide interface.

Capacitor Analogy:

- MOS structure behaves like a parallel plate capacitor:
 - o Negative charge on Gate plate.
 - o Positive charge (holes) on semiconductor plate.

Capacitance in accumulation mode:

$$C_{MOS} = \frac{\varepsilon_{ox} \cdot A}{t_{ox}}, A = W \cdot L$$

Equilibrium:

When fully charged,

$$Q(Gate) = Q(SC - plate)$$

$$Q = C_{MOS} \cdot V_{GS}$$

If VDS > 0:

- Accumulated holes form a barrier between source and drain.
- This barrier prevents conduction ⇒

 $I_{DS} = 0$ for any applied V_{DS}

For n-type MOSFET:

 $V_{GS} < 0 \Rightarrow Accumulation Mode, I_{DS} = 0$

2. Depletion Mode

Condition: VGS > 0 (small positive voltage, below threshold)

Explanation:

- Positive charges develop on the Gate plate.
- These positive charges repel holes from p-type substrates near the Si-oxide interface.
- This creates a depletion region containing:
 - o Negative acceptor ions (fixed)
 - o Minority carriers (electrons)
- $\bullet \quad \text{ As VGS increases} \Rightarrow \text{depletion region width (W_dep) increases}.$

Capacitor Analogy:

- Stored charges:
 - o +ve on Gate metallic plate
 - o -ve (acceptor ions & electrons) in depletion region
- Equivalent capacitance:

$$C_{MOS} = \frac{C_{ox} \cdot C_{dep}}{C_{ox} + C_{dep}}$$

Where:

$$C_{ox} = \frac{\varepsilon_{ox} \cdot A}{t_{ox}}, \ C_{dep} = \frac{\varepsilon_{sc} \cdot A}{W_{dep}}$$

Observation:

- In depletion mode, $C_{MOS} < C_{MOS}$ (in accumulation mode)
- $\bullet \qquad \text{As } V_{GS} \uparrow \Rightarrow W_{dep} \uparrow, C_{dep} \downarrow, \text{hence } C_{MOS} \downarrow$
- MOS capacitance here behaves as a voltage-variable capacitor (VVC).

If VDS > 0:

• Depletion region has high resistance between source and drain ⇒ negligible current:

$$I_{DS} \approx 0$$

Thus,

$$V_{GS}$$
 in depletion mode: $C_{MOS} = \frac{C_{ox} \cdot C_{dep}}{C_{ox} + C_{dep}}$, $I_{DS} \approx 0$

Depletion Mode of Operation

Structure and Bias

- Consider an n-MOS structure with p-type substrate (Body B), n+ Source (S), n+ Drain (D), Gate (G) over oxide of thickness t_ox, and channel geometry W×L.
- Apply a small positive gate bias: VGS > 0 (but below threshold Vth).

Physical Process

- Positive charge on the metallic gate plate repels holes (majority carriers) from the p-type substrate near the Si-oxide interface, creating a depletion region containing mainly negative acceptor ions and some minority electrons.
- As VGS increases above 0V, more positive charge forms on the gate, repelling more holes; depletion width W_dep increases with VGS.

Capacitor Analogy and Charge Balance

- The MOS structure behaves like a capacitor where positive charge is stored on the gate plate and corresponding negative charge (fixed acceptor ions + minority electrons) appears in the semiconductor (SC) plate.
- At electrostatic equilibrium: Q+(gate) = |Q-|(semiconductor).
- Voltage across the MOS capacitor equals the applied VGS in quasi-static consideration (ignoring flat-band/work-function differences as per the note's context).

Capacitance in Depletion

- The effective MOS capacitance in depletion is the series combination of oxide and depletion capacitances: CMOS = (Cox · Cdep) / (Cox + Cdep)
 Cox = εox·A / tox, with A = W·L
 Cdep = εsc·A / W_dep
- Observations with increasing VGS (below Vth):
 - o $W_{dep} \uparrow \Rightarrow Cdep \downarrow \Rightarrow CMOS \downarrow$
 - o CMOS in depletion is less than CMOS in accumulation
 - o MOS capacitance behaves as a voltage-variable capacitor (VVC)

Conduction with Applied VDS in Depletion

• If a potential difference is applied between drain and source (VDS > 0) while in depletion, the depletion region presents a high resistance path; current between drain and source is negligible: $IDS \approx 0$ for any applied VDS in depletion mode.

Transition Toward Inversion and Threshold

Minority Electron Attraction

- As VGS increases further above 0V, in addition to hole repulsion, minority electrons are increasingly attracted toward the Si-oxide interface. [2][L1]
- The continued electron attraction accompanies depletion-region growth until a point where electron concentration at the surface becomes significant.[1][2]

Threshold Voltage and Inversion Onset

- At VGS = Vth, depletion width reaches approximately its maximum, and a very thin inversion layer of electrons forms at the interface such that electron concentration at the surface equals the hole concentration in the p-type bulk (strong inversion condition).
- At VGS = Vth, the inversion layer thickness is extremely small, so its conductive cross-sectional area A → 0; channel resistance R \infty 1/A → \infty; hence IDS tends to zero for any applied VDS at the exact threshold point.
- Around this point, the minimum MOS capacitance can be described by the series combination with the minimum depletion capacitance: CMOS(min) = Cox · Cdep(min) / (Cox + Cdep(min)).[[]

3. Inversion Mode (VGS > Vth):

Channel Formation and Capacitance

- For VGS > Vth, repelling additional holes becomes progressively harder, while attracting more electrons becomes easier; thus, the inversion-layer (n-type channel) thickness increases with VGS.
- Depletion width ceases to increase appreciably with further VGS in strong inversion (approximately at its maximum), so the small-signal MOS capacitance in inversion becomes dominated by the oxide: CMOS ≈ Cox (independent of VGS).
 Cox = sox·A / tox

Finite Channel Resistance and Current Flow

• With VGS > Vth and VDS > 0 applied, the inversion layer has finite thickness and finite cross-sectional area; hence, finite channel resistance and nonzero drain current flow from drain to source through the n-type inversion channel.

Channel Potential, Reverse-Biased Junctions, and Tapering

Body Diodes and Reverse Bias

• The p-n junctions (body-to-source and body-to-drain) are reverse-biased in normal operation (with body at 0V and positive potentials near n-regions), causing depletion penetration into both p and n sides.

The local potential along the channel decreases from the drain toward the source (VD > VB > VC > VS), so reverse bias is greater near the
drain than near the source.

Depletion Penetration and Channel Shape

- Due to stronger reverse bias near the drain, depletion extends more into the n-type inversion layer near the drain than near the source, making the channel cross-section taper: thicker near source, thinner near drain.
- As VDS increases from 0V, current increases while the channel's tapering intensifies, reducing the effective cross-sectional area and
 increasing channel resistance; current still rises with VDS but with decreasing incremental rate.

Pinch-Off and Saturation Condition

Pinch-Off Criterion

- With increasing VDS at fixed VGS > Vth, the channel thickness at the drain end keeps reducing; at VDS = VGS Vth, the channel thickness at the drain approaches zero (pinch-off at the drain end).
- At pinch-off, the incremental resistance at the drain end tends to infinity (local area → 0), and the incremental current gain with further increases in VDS tends to zero.

Beyond Pinch-Off

• For VDS > VGS - Vth, the pinch-off point shifts slightly toward the source; the effective channel length shortens, but the incremental current remains approximately unchanged, leading to a near-constant IDS (current saturation).

Conclusion from all Modes

- VGS<0 → Accumulation mode → IDS=0 for any applied VDS
- VGS<Vth → Depletion mode → IDS=0 for any applied VDS
- VGS>Vth → Inversion mode; for 0<VDS<(VGS-Vth), a conductive channel (inversion layer) forms between D and S and IDS flows from drain to source, increasing with VDS (triode region)

Triode Region (Linear Region) Behavior:

- Condition: VGS>Vth and 0<VDS<(VGS-Vth)
- Drain current equation in triode region:
 IDS = Kn [2(VGS-Vth)·VDS VDS²], where Kn = μn·Cox·W/L
- Alternative form (emphasizing aspect ratio and parameters):
 μn: electron mobility; Cox: oxide capacitance per unit area (= εοx/tox); W/L: aspect ratio; Vov=(VGS-Vth): overdrive voltage
- IDS increases with VDS with diminishing incremental gain as VDS grows (due to the -VDS2 term

Saturation Region and Pinch-Off:

- Pinch-off condition: VDS = VGS Vth
- At VDS ≥ (VGS-Vth), incremental current with further VDS is approximately zero; current becomes nearly constant → saturation region
- Saturation boundary is the common point between triode and saturation regions: VDS = VGS Vth^[3]
- Drain current at the boundary (from triode equation) gives the saturation current expression: IDS(sat) = Kn (VGS – Vth)²
- For any VDS greater than (VGS-Vth), current remains at approximately IDS(sat) and is largely independent of VDS (ideal long-channel model, ignoring channel-length modulation)

Practical Notes on Entering Saturation

- For smaller VGS values just above Vth, only a small VDS is required to reach saturation; thus, probability of operating in saturation is high
- For higher VGS values, a larger VDS is required to reach saturation; probability of being in saturation is lower at the same VDS

Characteristics of N channel MOSFET and GRAPHS:

Drain Characteristics (IDS vs VDS at constant VGS):

- Example threshold noted: Vth=0.75V
- Regions:
 - o VGS<0.75V \rightarrow IDS=0 (cutoff)
 - o For VGS>Vth:
 - $0 < VDS < (VGS Vth) \rightarrow triode (linear) region$
 - VDS≥(VGS-Vth) → saturation region
- Qualitative plots show increasing IDS curves for higher VGS, with linear-like behavior at very small VDS and saturation plateaus beyond pinch-off
- In triode region and for very small VDS, IDS-VDS is approximately linear with nearly constant conductance (i.e., resistance roughly
 constant), but the slope depends on VGS; hence the device behaves as a VVR (voltage-variable resistor)

Formulas emphasized in this context:

- IDS \approx Kn·2(VGS-Vth)·VDS for very small VDS (linear approximation)
- VVR interpretation: VDS = R(VGS)·IDS, where R varies with VGS

Drain Characteristics of MOSFET

Transfer Characteristics (IDS vs VGS at constant VDS, with device in saturation)

- Consider VDS sufficiently large so MOSFET remains in saturation across the sweep
- IDS-VGS curve is non-linear and parabolic in saturation according to IDS(sat) = Kn (VGS-Vth)²
- Indicates how effectively input voltage VGS controls output current IDS

 At smaller VGS (just above Vth), changes in VGS produce relatively small IDS changes; at higher VGS, small VGS changes produce large IDS changes

Transconductance:

- gm = $\partial IDS/\partial VGS$ in saturation = $2 \cdot Kn \cdot (VGS-Vth)$
- This gm expression is valid in saturation region

Transfer Characteristic

Key Parameters and Notation

- μn: mobility of electrons
- Cox: oxide capacitance per unit area (= εοx/tox)
- W/L: aspect ratio
- $Kn = \mu n \cdot Cox \cdot W/L$: conduction parameter
- Vov = (VGS-Vth): overdrive voltage

Recap: Saturation Region (n-MOS)

- $IDS(sat) = Kn [VGS Vth]^2$
- Transconductance in saturation: $gm = \partial IDS/\partial VGS = 2Kn [VGS Vth]$ $\Rightarrow gm \propto \sqrt{IDS}$ since $IDS = Kn(VGS Vth)^2 \Rightarrow gm = 2\sqrt{(Kn \cdot IDS)}$
- As VGS ↑ ⇒ IDS ↑ and gm ↑; and vice versa.

Where $Kn = \mu n \cdot Cox \cdot W/L$, and $Cox = \epsilon ox/tox$.

Transfer Characteristics in Triode Region (n-MOS):

- Condition: VGS > Vth and 0 < VDS < (VGS Vth)
- Drain current: IDS = Kn [2(VGS - Vth)·VDS - VDS²]
- For small-signal slope with respect to VGS at constant VDS: $gm = \partial IDS/\partial VGS = 2Kn\cdot VDS$
 - o Note: In triode, gm depends on VDS (not on VGS directly), so at fixed VDS, gm is constant versus VGS.
- Linearized form $(y = m \ x + c)$ at constant VDS treating IDS vs VGS: $y \equiv IDS$, $x \equiv VGS$ $m = 2Kn \cdot VDS$ $c = -2Kn \cdot Vth \cdot VDS Kn \cdot VDS^2$
 - o Slope increases with VDS; intercept set by Vth and VDS² term.

Graphical notes:

- For VGS > Vth, IDS-VGS in triode is an affine line at fixed VDS with slope 2Kn·VDS.
- IDS-VDS in triode is approximately linear at very small VDS, then curves downward due to -VDS² term.

Comparing gm in Regions (n-MOS)

- Triode (0 < VDS < VGS − Vth): gm = 2Kn·VDS ⇒ independent of VGS at fixed VDS
- Saturation (VDS ≥ VGS Vth): gm = 2Kn(VGS - Vth) ⇒ increases linearly with VGS and equals 2√(Kn·IDS)

Key takeaways:

- In saturation, both IDS and gm depend on VGS.
- In triode, IDS depends on VGS, but gm at constant VDS does not depend on VGS; it depends on VDS.

Region conditions (n-MOS):

Triode: VDS < VGS - Vth
 Saturation: VDS ≥ VGS - Vth

p-Type Enhancement MOSFET (pMOS, enhancement type):

Convention used: body at reference; source at higher potential than drain; for pMOS, VSD > 0, VDS < 0; use $VSG = -VGS \ge 0$.

Modes:

- Accumulation (pMOS): VGS > 0 (i.e., VSG < 0)
 - o Gate positive w.r.t. source de-accumulates holes; with the provided note convention, the accumulation/depletion labeling mirrors nMOS text but keep sign conventions consistent in equations below.
- Depletion: Vth < VGS < 0 (i.e., 0 < VSG < |VTP|)
 - o Effective depletion, no conduction channel; CMOS in depletion is series: CMOS = (Cdep·Cox)/(Cdep + Cox)
 - o At VGS = Vth (VSG = |VTP|), CMOS reaches minimum: CMOS(min) = (Cdep(min)·Cox)/(Cdep(min) + Cox)
- Inversion (ON): $VGS < Vth \Leftrightarrow VSG > |VTP|$
 - o Channel forms; current flows for applied source-drain bias.
 - o For pMOS in normal operation: source at higher potential, drain at lower \Rightarrow VSD > 0 and VSG > 0.

Capacitance references:

- CMOS(inversion) \approx Cox = ε ox · A/tox (strong inversion)
- CMOS(accumulation) ≈ Cox
- Depletion uses series formula above.

pMOS conduction (using pMOS-friendly variables):

- ON condition: VSG > |VTP|
- Triode (linear) region: 0 < VSD < (VSG + VTP)
 ISD = Kp [2(VSG + VTP) · VSD VSD²]
- Saturation: $VSD \ge (VSG + VTP)$ $ISD(sat) = Kp [VSG + VTP]^2$
- Parameter: $Kp = \mu p \cdot Cox \cdot W/(2L)$

Notes:

- Drain characteristics ISD-VSD mirror nMOS with variable substitutions:
 VDS ↔ VSD, (VGS Vth) ↔ (VSG + VTP)
- Transfer characteristic in saturation (ISD vs VSG at sufficiently large VSD):
 ISD = Kp [VSG + VTP]² = Kp [-VGS + VTP]²
 This is a mirror image of nMOS transfer characteristics.

pMOS region conditions summary:

- OFF: $VSG < |VTP| \Rightarrow ISD = 0$ (no inversion)
- Triode: VSG > |VTP| and VSD < (VSG + VTP)
- Saturation: VSG > |VTP| and $VSD \ge (VSG + VTP)$

Transconductance for pMOS:

- Triode (constant VSD): $gm = \partial ISD/\partial VSG = 2Kp \cdot VSD$
- Saturation: gm = $\partial ISD/\partial VSG = 2Kp (VSG + VTP) = 2\sqrt{(Kp \cdot ISD)}$

Sign conventions reminder:

- For pMOS, typical signs: $VSG \ge 0$, $VSD \ge 0$, VTP < 0 (magnitude |VTP|).
- Mapping to nMOS forms: replace (VGS Vth) with (VSG + VTP).

Quick Equation Box:

- nMOS triode: IDS = Kn [2(VGS Vth)·VDS VDS²]
- nMOS saturation: IDS = Kn (VGS Vth)²
- nMOS gm:
 - o Triode: $gm = 2Kn \cdot VDS$
 - o Saturation: gm = $2Kn(VGS Vth) = 2\sqrt{(Kn \cdot IDS)}$
- pMOS triode: ISD = $Kp [2(VSG + VTP) \cdot VSD VSD^2]$
- pMOS saturation: ISD = Kp (VSG + VTP)²
- pMOS gm:
 - o Triode: $gm = 2Kp \cdot VSD$
 - o Saturation: $gm = 2Kp(VSG + VTP) = 2\sqrt{(Kp \cdot ISD)}$

2. Depletion MOSFET Basics

n-Type Depletion MOSFET

- n-type channel exists even at VGS = $0 \rightarrow$ current flows for VDS > 0.
- Applying -ve VGS repels electrons → channel width reduces (depletion).
- At VGS = Vth (negative) \rightarrow channel fully depleted \rightarrow IDS = 0 for any VDS.
- Vth is negative for n-type depletion MOSFET.
- Modes:
 - o $VGS \le Vth \rightarrow OFF$ (no channel)
 - o $VGS > Vth, VDS < (VGS Vth) \rightarrow Triode$
 - o $VGS > Vth, VDS \ge (VGS Vth) \rightarrow Saturation$

Equations:

• Triode:

$$I_{DS} = K_n [2(V_{GS} - V_{th})V_{DS} - V_{DS}^2]$$

• Saturation:

$$I_{DS} = K_n (V_{GS} - V_{th})^2$$

- With positive VGS, electron density in the channel increases → enhancement mode.
- Drain characteristics:
 - o $VGS < 0 \rightarrow$ depletion mode curves
 - o $VGS > 0 \rightarrow$ enhancement mode curves (similar to enhancement MOSFET but Vth is negative)

p-Type Depletion MOSFET

- Vth positive.
- Modes:
 - o $VGS > 0 \rightarrow Depletion mode$
 - o $VGS < 0 \rightarrow Enhancement mode$
- Transfer characteristic = mirror image (about y-axis) of n-type.

Enhancement vs Depletion MOSFET:

- Enhancement type: Normally OFF at VGS = 0 (needs inversion to conduct).
- Depletion type: Normally ON at VGS = 0 (already has channel).
- n-type enhancement: Vth > 0
 n-type depletion: Vth < 0
 p-type enhancement: Vth < 0
- p-type depletion: Vth > 0

2. MOSFET Symbol Representation

- Arrow shows p-n junction direction between body and inversion layer.
- Symbol variations for:
 - o n-type enhancement
 - o n-type depletion
 - o p-type enhancement
 - o p-type depletion

3. Non-Ideal Effects

3.1 Channel Length Modulation (λ)

- In saturation (VDS \geq VGS Vth):
 - o Increasing VDS moves pinch-off point toward source, reducing effective channel length.
 - o Leads to slight increase in IDS with VDS instead of constant (ideal).
- Ideal: $\lambda = 0 \rightarrow IDS$ flat in saturation.
- Practical: small positive $\lambda \to IDS$ slope in saturation region.

Modified Saturation Current Equation:

$$I_{DS} = I_{DSo} \left[1 + \lambda V_{DS} \right]$$

where

$$I_{DSo} = K_n (V_{GS} - V_{th})^2$$

• λ: channel-length modulation parameter (V⁻¹), very small in long-channel devices.

Key Summary Table

Туре	Vth Sign	At VGS=0	Modes Possible
n-Enhancement	+ve	OFF	Enhancement only
n-Depletion	-ve	ON	Depletion & Enhancement
p-Enhancement	-ve	OFF	Enhancement only
p-Depletion	+ve	ON	Depletion & Enhancement

1. Channel Length Modulation

• In Saturation Region: If we increase

$$V_{DS} > (V_{GS} - V_{th})$$

the zero-point (where channel thickness \rightarrow 0) shifts toward the Source terminal, thus the effective channel length decreases.

• This decrease in effective channel length with increase in VDS (above $V_{GS} - V_{th}$) is called Channel Length Modulation.

Ideal vs Practical

- Ideal assumption: In saturation, for $V_{DS} > (V_{GS} V_{th})$, I_{DS} stays constant.
- Practical: With increase in VDS above $(V_{GS} V_{th})$, I_{DS} increases slightly \rightarrow drain characteristics have slope in saturation instead of flat.

Equations:

• Ideal saturation current:

$$I_{DSo} = K_n \left[V_{GS} - V_{th} \right]^2$$

• With channel length modulation:

$$I_{DS} = I_{DSo} \left[1 + \lambda \Delta V_{DS} \right]$$

where:

 λ = channel length modulation parameter (V⁻¹, very small in long-channel MOSFETs)

$$\Delta V_{DS} = V_{DS} - (V_{GS} - V_{th})$$

Output Resistance

- Ideal: $\lambda = 0 \Rightarrow r_o \to \infty$
- Practical: $\lambda > 0 \Rightarrow$ finite but high r_0

$$r_o = \frac{1}{\lambda I_{DSo}}$$

Modified Current Expression (including λ):

$$I_{DS} = K_n [V_{GS} - V_{th}]^2 \cdot [1 + \lambda (V_{DS} - (V_{GS} - V_{th}))]$$

Effect on gm

- Ideal: $g_m = 2K_n(V_{GS} V_{th})$, independent of VDS in saturation.
- Practical: In saturation, as VDS $\uparrow \Rightarrow \Delta V_{DS} \uparrow \Rightarrow \text{IDS} \uparrow \Rightarrow \text{gm} \uparrow$.

Also: Due to channel length modulation, effective Vth decreases slightly with VDS.

2. Body Effect:

- Normally Body (B) and Source (S) are connected $\Rightarrow V_{SB} = 0$.
- When they are not connected $\Rightarrow V_{SR} \neq 0 \Rightarrow$ threshold voltage changes \Rightarrow Body Effect.

Equation:

$$V_{\scriptscriptstyle TN} = V_{\scriptscriptstyle TN0} + \gamma \! \left[\sqrt{V_{\scriptscriptstyle SB} + 2\varphi_{\scriptscriptstyle f}} - \sqrt{2\varphi_{\scriptscriptstyle f}} \right]$$

Where

- V_{TN} = threshold voltage with body effect
- V_{TN0} = threshold voltage when $V_{SB} = 0$
- γ = body effect parameter
- ϕ_f = Fermi potential
- Due to body effect, magnitude of Vth increases.

3. Threshold Voltage Dependence:

1. Oxide thickness (t_{ox}) :

$$C_{ox} = \frac{\varepsilon_{ox} \cdot A}{t_{ox}}$$

$$t_{ox}{\downarrow}{\Rightarrow}C_{ox}{\uparrow}{\Rightarrow}V_{th}\downarrow$$

$$t_{ox} \uparrow \Rightarrow C_{ox} \downarrow \Rightarrow V_{th} \uparrow$$

- 2. Substrate doping (N_s) :
 - $N_s \uparrow \Rightarrow$ more charge needed for inversion $\Rightarrow V_{th} \uparrow$

$$N_s \downarrow \Rightarrow V_{th} \downarrow$$

3. Temperature (T):

$$T\uparrow \Rightarrow V_{th} \downarrow$$

$$T \downarrow \Rightarrow V_{th} \uparrow$$

Temperature Effect on IDS

$$\begin{split} I_{DS} &= K_n (V_{GS} - V_{th})^2 \text{ with } \\ K_n &= \frac{\mu_n C_n W}{2L} \end{split}$$

$$K_n = \frac{\mu_n C_{ox} W}{2L}$$

- As *T* ↑:
 - o $V_{th} \downarrow \Rightarrow$ tends to increase IDS
 - $\mu_n \downarrow \Rightarrow K_n \downarrow \Rightarrow$ tends to reduce IDS
- Net effect: Reduction in IDS with temperature ⇒ thermal runaway not a problem in MOSFETs.

4. Subthreshold Conduction:

- Ideal: For $V_{GS} < V_{th} \Rightarrow I_{DS} = 0$
- Practical: For $V_{GS} < V_{th} \Rightarrow$ a small current (off-state current) flows.

Graph: √IDS vs VGS

- Ideal: intercept at Vth, zero below
- Practical: slope continues below Vth, nonzero IDS

Equation (ideal strong inversion):

$$\sqrt{I_{DS}} = \sqrt{K_n} \left(V_{GS} - V_{th} \right)$$

Cause: Weak inversion region – small diffusion current between source/drain even when $V_{GS} < V_{th}$.

Off-state current increases slightly due to channel length modulation.

Key Points Recap:

- ullet Channel Length Modulation \Rightarrow IDS slope in saturation, finite ro, gm depends slightly on VDS.
- Body Effect \Rightarrow higher Vth when VSB > 0.
- Threshold Voltage Dependence \Rightarrow affected by t_{ox} , doping N_s , temperature T.
- Subthreshold Conduction \Rightarrow small IDS for VGS < Vth (off-state current).

Introduction SPICE:

SPICE (Simulation Program with Integrated Circuit Emphasis) is a general-purpose electronic circuit simulator used to mathematically predict how circuits behave before building hardware. It models components (resistors, capacitors, inductors, diodes, BJTs, MOSFETs, sources, transmission lines) and solves the circuit's equations to perform common analyses:

Why SPICE simulations are needed:

SPICE predicts circuit behavior mathematically before hardware is built, enabling early fault finding, faster iteration, and lower cost by reducing prototype spins and optimizing component values and tolerances. SPICE supports DC, AC, and transient analyses—as well as noise, distortion, and temperature sweeps—so performance and reliability can be verified across operating conditions. It is industry-standard at both board and transistor levels to check design integrity and account for parasitics and tolerances that are hard to validate on breadboards.

What SPICE is used for in CMOS:

- Verify transistor-level operation and operating points in analog/mixed-signal CMOS blocks using DC/AC/transient analyses.
- Validate designs before fabrication where breadboarding integrated circuits is impractical and mask costs are high.
- Model and analyze subcircuits common in CMOS (switches, current mirrors, references, amplifiers) using MOS device models and small-signal parameters.

Why SPICE is used for in MOSFETs:

- Evaluate I–V behavior, switching dynamics, and power dissipation using vendor and PDK MOSFET models.
- Capture parasitics and temperature effects with advanced, temperature-dependent MOSFET models for accurate transient and thermal behavior
- Accelerate design by simulating MOSFET choices and gate-drive conditions to optimize efficiency and ensure safe operating area before hardware

The snap shot of SPICE netlist of the above NMOS

R1 resistance is added as it is not desired that the current from Vin would be directly fed to the gate of M1.

Definition of nodes and the method to identify them

A node is can be defined as a point connecting two termials. If two terminals of a single device are short circuited then the node is said to be in between these two terminals. But most of the times a node connects two different devices.

The method to identify nodes is to identify the SPICE netlist for the device and all the wires connecting different components have one node on them.

SPICE syntax:

*Model Description
.param temp=27
*Including sky130 library files

.lib "sky130_fd_pr/models/sky130.lib.spice" tt

*Netlist Description

XM1 Vdd n1 0 0 sky130_fd_pr__nfet_01v8 w=5 l=2
R1 n1 in 55
Vdd vdd 0 1.8V
Vin in 0 1.8V
*simulation commands
.op
.dc Vdd 0 1.8 0.1 Vin 0 1.8 0.2
.control
run
display
setplot dc 1
.endc

There are five types of process corners available for use:

tt -> Typical corner

.end

sf -> Slow-fast corner

ff -> Fast-fast corner

ss -> Slow-slow corner

fs -> Fast-slow corner

In the Lab activity, the corner is used. The corner can be changed by changing the word 'tt' in the line .lib " $sky130_fd_pr/models/sky130.lib.spice$ " tt with any valid process corner

Method to save SPICE model

Method to write code for SPICE simulation

The snap shot of the terminal window of NGSPICE Simulation:

Velocity Saturation and basics of CMOS inverter VTC:

• 1.Velocity Saturation:

In short-channel MOSFETs, as the electric field in the channel becomes very high, carrier velocity stops increasing linearly with field and reaches a maximum (saturation velocity). This limits the drain current, affects transconductance, and is a key factor in modern deep-submicron device behavior.

• CMOS Inverter VTC (Voltage Transfer Characteristic):

The VTC shows how the output voltage of a CMOS inverter changes with its input voltage. From the curve, you can identify switching threshold (Vm), noise margins (NMH, NML), and inverter gain - all critical for ensuring robust digital logic operation.

SPICE simulation for lower nodes and the characteristics for long channel and short channel devices were observed. The velocity saturation at lower and higher electric fields and the velocity saturation drain current model were also observed.

MOSFET as a switch and the characteristics of the CMOS inverter were taught.

The snap shot of various regions of operation of NMOS on graphs plotted between Ids and Vds.

The plot overlapping with the 'x' axis is at Vgs=0V and that is because there is 0 drain current at that point of time and the reason is that when Vgs=0V the nmos is not turned 'ON' so, there is no channel present.

The theory about the cut-off region of NMOS.

When Vgs<Vt the region of operation of the NMOS is said to be the cut-off region

Cut-off region is a region where the device has been cut-off or it is 'OFF'

Short channel effect

Velocity Saturation effect

For the lower values of the electric field, the velocity tends to be a linear function of the electric field. But, after a certain point (cut-off) the velocity just saturates. This point of saturation is represented by &c (critical electric field)

 $Vn(m/S) = linear for \epsilon \le = \epsilon c$

 $Vn(m/S) = constant \text{ for } \varepsilon \ge = \varepsilon c$

$$V_n(m/S) = \frac{\mu_n \varepsilon}{1 + \frac{\varepsilon}{\varepsilon_c}}$$
 for $\varepsilon <= \varepsilon_c$
= V_{sat} for $\varepsilon >= \varepsilon_c$

The snap shot of the graph of velocity saturation effect

The modes of operation for long channel (>250nm) devices and short channel (<250nm) devices.

The modes of operation for long channel devices are:

Cut-off region

Resistive region

Saturation region

The modes of operation for short channel devices are:

Cut-off region

Resistive region

Velocity Saturation region

Saturation region

Idsat is a technology parameter saturation voltage i.e voltage at which device velocity saturates and is independent of Vgs or Vds

The various modes when the value of Vmin is different:

When Vgt is the minimum of Vgt, Vds, Vdsat the device is in the saturation region.

When Vds is the minimum of Vgt, Vds, Vdsat the device is in the resistive region.

When Vdsat is the minimum of Vgt, Vds, Vdsat the device is in the velocity saturation region.

It looks like current should increase at lower nodes.

Velocity Saturation causes device to saturate early

For plotting the graph between Ids and Vds for short channel devices we need to write the following

SPICE code To Drain Characteristics:

```
*Model Description
.param temp=27
*Including sky130 library files
.lib "sky130_fd_pr/models/sky130.lib.spice" tt
*Netlist Description
XM1 Vdd n1 0 0 sky130_fd_pr__nfet_01v8 w=0.39 l=0.15
R1 n1 in 55
Vdd\ vdd\ 0\ 1.8V
Vin in 0 1.8V
*simulation commands
.op
.dc Vdd 0 1.8 0.1 Vin 0 1.8 0.2
.control
run
display
setplot dc1
.endc
.end
```


Drain Characteristics of MOSFET on NGSPICE

The snap shot of output window for plot between Ids and Vds for short channel device

To observe the value of Id at any point on the curve, then left click on the point on the curve to be observed.

Now on the terminal window, some values of x0 and y0 should appear.

The value of Id corresponds to the value of y0 in ampere.

To calculate Threshold voltage for Id versus Vgs curve, the following SPICE code is required:

SPICE code For Trandsfer Characteristics:

*Model Description

.param temp=27

*Including sky130 library files

.lib "sky130_fd_pr/models/sky130.lib.spice" tt

*Netlist Description

XM1 Vdd n1 0 0 sky130_fd_pr__nfet_01v8 w=0.39 l=0.15

R1 n1 in 55

Vdd vdd 0 1.8V

Vin in 0 1.8V

*simulation commands

.op

.dc Vin 0 1.8 0.1

. control

run

display

setplot dc1

.endc

.end

The snap shot of terminal window for plot between Ids and Vds for short channel device without the sweep for vdd

Transfer Characteristics of MOSFET ON NGSPICE

2.CMOS voltage transfer characteristics (VTC):

What was learnt:

CMOS WORKING:

Transistor as a switch

With infinite 'Off' resistance when $|Vgs| \le |Vt|$

With finite 'On' resistance when |Vgs|>|Vt|

The working of CMOS inverter

What happens when Vin is 'high' and equal to 'vdd'

PMOS turns 'OFF'

NMOS turns 'ON'

What happens when Vin is 'low' and equal to '0V'

PMOS turns 'ON'

NMOS turns 'OFF'

The flow of current when Vin is 'high' and when Vin is 'low'

When Vin=Vdd

Direct path exists between Vout and Vss resulting in Vout=0V

When Vin=0V

Direct path exists between Vdd and Vout, resulting in Vout=Vdd

Defined terminologies in CMOS inverter

Circuit Diagram of CMOS Inverter

Derivation CMOS voltage transfer characteristics (VTC):

For the NMOS voltage equations

$$V_{gsN} = V_{in}$$

$$V_{dsN} = V_{out}$$

For the PMOS voltage equations

$$V_{gsP} = V_{in} - V_{dd}$$

$$V_{dsP} = V_{out} - V_{dd}$$

For the relationship between the currents

$$I_{dsP} = -I_{dsN}$$

Load curve for PMOS transistor in CMOS inverter

The snap shot of load curve for PMOS transistor in CMOS inverter

Load curve for NMOS transistor in CMOS inverter

The snap shot of load curve for NMOS transistor in CMOS inverter

Superimposing the load curve of NMOS on the load curve of PMOS and plotting Vin vs Vout from the graph obtained

The snap shot of superimposed load curve of NMOS and load curve of PMOS

Voltage transfer characteristics and SPICE simulations:

The various components of a SPICE deck:

Component connectivity

Component values

Identification of 'nodes'

Naming 'nodes'

The snap shot of the SPICE netlist considered

The SPICE code for the above netlist looks something like following:

```
***MODEL Description***
```

NETLIST Description

M1 out in vdd vdd pmos W=0.375u L=0.25u

M2 out in 0 0 nmos W=0.375u L=0.25u

cload out 0 10f

Vdd vdd 0 2.5

Vin in 0 2.5

SIMULATION Commands

```
.dc Vin 0 2.5 0.05
***.include tsmc_025um_model.mod***
.LIB "tsmc_025um_model.mod" CMOS_MODELS
.end
Lab Activity:
For plotting the Vtc characteristics of CMOS inverter, the following code is needed:
*Model Description
.param temp=27
*Including sky130 library files
.lib "sky130_fd_pr/models/sky130.lib.spice" tt
*Netlist Description
XM1 out in vdd vdd sky130_fd_pr__pfet_01v8 w=0.84 l=0.15
XM2 out in 0 0 sky130_fd_pr__nfet_01v8 w=0.36 l=0.15
Cload out 0 50fF
Vdd vdd 0 1.8V
Vin in 0 1.8V
*simulation commands
.op
.dc Vin 0 1.8 0.01
.control
run
setplot dc1
display
.endc
.end
```

The snap shot of the terminal window for plotting the Vtc characteristics of CMOS inverter

output window for plotting the Vtc characteristics of CMOS inverter on NGSPICE

To find the switching threshold voltage (Vm), it is known that Vout = Vin so zoom in on the plot where roughly Vout = Vin by selecting the area of the plot by right clicking on the screen and dragging it to select the area.

Zoom twice or thrice until the point where Vm lies becomes almost certain.

Left click roughly on the point on the curve where Vm should approximately lie.

Values of x0 and y0 will now appear on the terminal window.

Since we are finding Vm, therefore $x0 \sim y0$ and hence x0=y0=Vm.

For performing the transient analysis, the following code is required:

*Model Description

.param temp=27

*Including sky130 library files

.lib "sky130_fd_pr/models/sky130.lib.spice" tt

*Netlist Description

XM1 out in vdd vdd sky130_fd_pr__pfet_01v8 w=0.84 l=0.15

XM2 out in 0 0 sky130_fd_pr__nfet_01v8 w=0.36 l=0.15

Cload out 0 50fF

Vdd vdd 0 1.8V

Vin in 0 PULSE(0V 1.8V 0 0.1ns 0.1ns 2ns 4ns)

*simulation commands

.tran 1n 10n

.control

run

.endc

.end

The snap shot of the terminal window for performing the transient analysis

The snap shot of the output window for performing the transient analysis on NGSPICE

To calculate the rise delay:

Zoom on the part of the curve having fall of the input pulse and rise of the output pulse around voltage of (Vdd/2) by right clicking on the screen and dragging it to select the area.

Now, left click on the rising edge of the output curve at (Vdd/2) to get a point x0,y0 on the terminal.

Similarly, get the point at (Vdd/2) for falling edge of the input curve.

The difference between the x-coordinate of the rising edge of the output curve and the falling edge of the input curve is the rise delay.

To calculate the falling delay:

Zoom on the part of the curve having rise of the input pulse and fall of the output pulse around voltage of (Vdd/2) by right clicking on the screen and dragging it to select the area.

Now, left click on the falling edge of the output curve at (Vdd/2) to get a point x0,y0 on the terminal.

Similarly, get the point at (Vdd/2) for rising edge of the input curve.

The difference between the x-coordinate of the falling edge of the output curve and the rising edge of the input curve is the fall delay.

Static Behavior Evaluation - CMOS Inverter Robustness: Switching threshold

A CMOS inverter is a robust device because the shape of its input versus output curve remains the same for all different values of (W/L) ratios.

- 1. Static Behavior Evaluation: CMOS Inverter Robustness
- 2. Switching Threshold
- Noise Margin
- Power Supply Variation
- Device Variation

1.CMOS Inverter Robustness:

CMOS inverter robustness refers to its ability to operate correctly under **real-world variations and disturbances** without producing logic errors. Key factors include:

- Noise Margins (NMH/NML) Measure tolerance to unwanted voltage noise at logic levels.
- PVT Variations Process, Voltage, and Temperature changes can shift switching thresholds and delay.
- Glitch Immunity Ability to reject short transient pulses on the input.
- Load Variations Stable operation despite changes in capacitive or resistive loading.
- Supply Scaling Maintaining functionality when VDD changes, especially for low-power design.

A robust inverter maintains correct logic levels, adequate noise margins, and predictable timing across all operating conditions, ensuring reliability in large digital systems.

2.Switching Threshold (Vm)

The switching threshold of a CMOS inverter is the input voltage at which the inverter's output voltage equals its input voltage.

- At Vm, both the PMOS and NMOS transistors conduct significant current.
- It's the point where the inverter transitions from output HIGH to output LOW.
- Ideally, Vm is set near VDD/2 for balanced noise margins and symmetrical switching speed.
- In the VTC (Voltage Transfer Characteristic) curve, it's the midpoint of the steep transition region.

Formula :

For matched NMOS/PMOS parameters:

 $Vm{\approx}VDD2V_m \land approx \land frac\{V_{DD}\}\{2\}Vm{\approx}2VDD$

but in real designs, Vm is influenced by W/L ratios, threshold voltages (Vt), and mobility differences between electrons and holes.

Derivation FOR CMOS SWITCHING THRESHOLD(VM):

Vm when (Wp/Lp) is 1.5 is approximately equal to 0.98V and when (Wp/Lp) is 3.75 it is approximately equal to 1.2V

Wp and Lp in the above section are Width of PMOS channel and Length of PMOS channel

At Vm, both PMOS and NMOS are turned 'ON' because Vgs almost crossed the threshold region for both of them.

A few observations can be made from the information stated above,

Therefore, Vgs = Vds

IdsP = - IdsN which means that IdsP + IdsN = 0

We know the equations for IdsN and IdsP which are as stated below:

$$\begin{split} I_{dsN} &= k_n. \left[([V_m - V_t].V_{dsatN}) - \frac{V_{dsatN}^2}{2} \right] \\ \\ I_{dsP} &= k_p. \left[([V_m - Vdd - V_t].V_{dsatP}) - \frac{V_{dsatP}^2}{2} \right] \end{split}$$

We ignore the $1+\lambda Vds$ because the term is very small and it makes the equations very difficult for hand calculations.

Since, IdsP + IdsN = 0

Therefore, the equations can be re-written as:

$$k_{p}.\left[([V_{m}-Vdd-V_{t}].V_{dsatP})-\frac{V_{dsatP}^{2}}{2}\right]+k_{n}.\left[([V_{m}-V_{t}].V_{dsatN})-\frac{V_{dsatN}^{2}}{2}\right]=0$$

$$\begin{split} k_{n} \cdot \left[([V_{m} - V_{t}] \cdot V_{dsatN}) - \frac{V_{dsatN}^{2}}{2} \right] &= k_{p} \cdot \left[([-V_{m} + Vdd + V_{t}] \cdot V_{dsatP}) - \frac{V_{dsatP}^{2}}{2} \right] \\ & \therefore k_{n} \cdot V_{dsatN} \left[([V_{m} - V_{t}]) - \frac{V_{dsatN}}{2} \right] = k_{p} \cdot V_{dsatP} \left[([-V_{m} + Vdd + V_{t}] \cdot) - \frac{V_{dsatP}}{2} \right] \\ & \quad \therefore \frac{k_{p} \cdot V_{dsatP}}{k_{n} \cdot V_{dsatN}} = \frac{(V_{m} - V_{t}) - \frac{V_{dsatN}}{2}}{(-V_{m} + Vdd + V_{t}) + \frac{V_{dsatP}}{2}} \\ & \quad \therefore \frac{\left(\frac{W_{p}}{L_{p}}\right) \cdot k_{p}' \cdot V_{dsatP}}{\left(\frac{W_{n}}{L_{N}}\right) \cdot k_{n}' \cdot V_{dsatN}} = \frac{(V_{m} - V_{t}) - \frac{V_{dsatN}}{2}}{(-V_{m} + Vdd + V_{t}) + \frac{V_{dsatP}}{2}} \\ & \quad \therefore \frac{\left(\frac{W_{p}}{L_{p}}\right) \cdot k_{n}' \cdot V_{dsatN}}{\left(\frac{W_{n}}{L_{N}}\right) \cdot \left(\frac{W_{n}}{L_{N}}\right) \cdot \left(\frac{W_{n}}{L_{N}}\right) = \frac{k_{n}' \cdot V_{dsatP} \cdot \left[(V_{m} - V_{t}) - \frac{V_{dsatN}}{2} \right]}{k_{p}' \cdot V_{dsatP} \cdot \left[(-V_{m} + Vdd + V_{t}) + \frac{V_{dsatP}}{2} \right]} \end{split}$$

Here,

Wp is the width of the channel in PMOS

Lp is the length of the channel in PMOS

Wn is the width of the channel in NMOS

Ln is the length of the channel in NMOS

kn' is the process transconductance of the NMOS

kp' is the process transconductance of the PMOS

Vdsatn is the Vdsat of the NMOS

Vdsatp is the Vdsat of the PMOS

Vm is the switching threshold voltage

Vt is the threshold voltage

Vdd is the supply voltage

We experimented with the sizes of the PMOS with respect to the sizes of NMOS and came up with the following conclusions

(Wp/Lp) x.(Wn/Ln) Rise Delay Fall Delay

(Wp/Lp)	1.(Wn/Ln) 148pS	71pS	0.99V
(Wp/Lp)	2.(Wn/Ln) 80pS	76pS	1.2V
(Wp/Lp)	3.(Wn/Ln) 57pS	80pS	1.25V
(Wp/Lp)	4.(Wn/Ln) 45pS	84pS	1.35V
(Wp/Lp)	5.(Wn/Ln) 37pS	88pS	1.4V

We can make some conclusions from the above table:

When (Wp/Lp) = 2.(Wn/Ln), there is an approximately equal rise-fall delay

Due to the equal rise-fall delay, (Wp/Lp) = 2.(Wn/Ln) create typical characteristics for a clock inverter/buffer

The conditions other than (Wp/Lp) = 2.(Wn/Ln) can still be used as regular inverters/buffers and these can be preferred for data path

Switching threshold for (Wp/Lp) = 2.(Wn/Ln) and (Wp/Lp) = 3.(Wn/Ln) is very small. Similarly, switching threshold for (Wp/Lp) = 4.(Wn/Ln) and (Wp/Lp) = 5.(Wn/Ln) is also very small

When Wp/Lp is increased, the rise delay is significantly reduced because time required for the output capacitor to charge decreases significantly and the reason is the availability of a bigger area to charge the capacitor.

 $Ron(PMOS) \sim 2.5*Ron(NMOS)$

3.CMOS Noise Margin Robustness:

CMOS Noise Margin Robustness:

Noise margin robustness is the CMOS inverter's **ability to tolerate unwanted voltage noise** on its input without misinterpreting logic levels.

- NMH (Noise Margin High) → Max noise voltage a HIGH input can withstand before being seen as LOW.
- NML (Noise Margin Low) → Max noise voltage a LOW input can withstand before being seen as HIGH.
- Larger NMH/NML = more robust against interference, supply ripple, and crosstalk.
- Achieved by **balancing switching threshold** and designing for steep VTC slope.

Static Behavior Evaluation - CMOS Inverter Robustness: Noise Margin

The ideal and actual Input-Output characteristics of an inverter were observed

ideal Input-Output characteristics of an Inverter

actual Input-Output characteristics of an Inverter with finite slope

In the above diagram, the terms stated are explained as follows:

Vil is Input Low Voltage (Vil could be Vdd/4)

Any input voltage level between 0 and Vil will be treated as logic '0'

Voh is Output High Voltage (Vih < Voh <= Vdd)

Any output voltage level between Voh and Vdd will be treated as logic '1'

Vih is Input High Voltage (Vih could be 3.Vdd/4)

Any input voltage level between Vih and Vdd will be treated as logic '1'

Vol is Output Low Voltage (0 <= Vol < Vil)

Any output voltage level between 0 and Vol will be treated as logic '0'

Actual Input-Output characteristics on an inverter were observed and they were plotted on a scale

Actual Input-Output characteristics of an Inverter

Noise induced bump characteristics at different noise margin levels

For any signal to be considered as logic '0' and logic '1', it should be in the NMI and NMh ranges, respectively. - If the height of the bump lies in between Vol and Vil then it's not hazardous because it still lies in the range of logic '0'. Any glitch that occurs in this region is a safe glitch because it will still be considered as logic '0'. - If the height of the bump lies in the "undefined region" then it is potentially hazardous because it can acquire

logic '1' which can be fatal. Any glitch in this region is unsafe because it is unclear if it will go to logic '1' or fall to logic '0'. - If the height of the bump lies in between Vih and Voh then it will definitely be considered as logic '1'. These kinds of glitches are the glitches that need to be fixed.

Conclusions of noise margins of the inverter at different values of Wp/Lp were observed and they were as follows:

(Wp/Lp)	x.(Wn/Ln) NMh	NMl	Vm	
(Wp/Lp)	1.(Wn/Ln) 0.3	0.3	0.99V	
(Wp/Lp)	2.(Wn/Ln) 0.35	0.3	1.2V	
(Wp/Lp)	3.(Wn/Ln) 0.4	0.3	1.25V	
(Wp/Lp)	4.(Wn/Ln) 0.42	0.27	1.35V	
(Wp/Lp)	5.(Wn/Ln) 0.42	0.27	1.4V	

A few conclusions can be inferred from the above table: - When (Wp/Lp) = 2.(Wn/Ln) there is a rise at the NMh because PMOS is responsible for holding the charges on the capacitance. When the size of PMOS is increased, a low-resistance path from supply to the capacitance is formed and as a result of that, the capacitance is able to retain the charge for a longer amount of time resulting in an increased NMh. - When (Wp/Lp) = 4.(Wn/Ln) there is a drop at the NMl because the NMOS has now become weaker than the PMOS - When (Wp/Lp) = 5.(Wn/Ln) the NMh almost comes to a static point. - In the above table, NMl is not affected much but NMh has increased by 120mV but this range is still acceptable and this proves the CMOS inverter robustness with respect to the Noise Margin. - Finally, the areas that can be used for digital and analog applications are stated in the figure below:

GRAPH Areas Fitted for digital and analog Designs:

Vout versus Vin curve showing the areas that can be used for digital and analog applications

Lab Activity:

For performing the Day 4 Lab Activity we need the following code

*Model Description

.param temp=27

*Including sky130 library files

.lib "sky130_fd_pr/models/sky130.lib.spice" tt

*Netlist Description

XM1 out in vdd vdd sky130_fd_pr__pfet_01v8 w=1 l=0.15

XM2 out in 0 0 sky130_fd_pr__nfet_01v8 w=0.36 l=0.15

Cload out 0 50fF

Vdd vdd 0 1.8V

Vin in 0 1.8V

*simulation commands

.op

.dc Vin 0 1.8 0.01

.control

run

setplot dc1

display

.endc

.end

The snap shot of the output window for calculating the Noise Margins

Method to calculate the Noise Margins from the plot:

Run the ngspice command and open the plot

left click on the point towards the top of the graph where the curvature seems to be '-1'

In this case it was x0 = 0.766667, y0 = 1.71351

Now, left click on the point towards the bottom of the graph where the curvature seems to be '-1'

In this case it was x0 = 0.977333, y0 = 0.110811. Let's consider these points as x1 and y1 thus making the coordinates x1 = 0.977333, y1 = 0.110811

For noise margin high we need Voh-Vih and in this case Voh=y0 and Vih=x1

For noise margin low we need Vil-Vol and in this case Vil=x0 and Vol=y1

Therefore, we get NMh = 0.736177 and NMl = 0.655856

4.CMOS Power supply:

- Power-Supply Variations (VDD changes)
 - Fluctuations in supply voltage (e.g., from 1.8 V down to 0.6 V in low-power designs).
 - o Can affect switching threshold, noise margins, delay, and power consumption.
 - o A robust design ensures functionality across the expected VDD range.

Whenever we move from 250nm nodes to lower nodes like 20nm or so on, we scale our supply voltage as well. For example, if things were working at 1V sometime back, now they will be operating at 0.7V

A CMOS inverter can be operated at 0.5V as well and it has it's own advantages and disadvantages:

Advantages of using 0.5V supply:

There is a significant increase in gain (close to 50% improvement)

There is a significant reduction in energy consumption (close to 90% improvement)

Disadvantages of using 0.5V supply:

Performance impact (0.5V supply rising and falling edge is insufficient to completely charge or discharge the load capacitance)

Lab Activity:

To perform the lab activity for power supply scaling, we need the following code:

*Model Description

.param temp=27

*Including sky130 library files

.lib "sky130_fd_pr/models/sky130.lib.spice" tt

*Netlist Description

XM1 out in vdd vdd sky130_fd_pr__pfet_01v8 w=1 l=0.15

XM2 out in 0 0 sky130 fd pr nfet 01v8 w=0.36 l=0.15

Cload out 0 50fF

Vdd vdd 0 1.8V

Vin in 0 1.8V

.control

let powersupply = 1.8

alter Vdd = powersupply

let voltage supply variation = 0

dowhile voltage supply variation ≤ 6

dc Vin 0 1.8 0.01

let powersupply = powersupply - 0.2

alter Vdd = powersupply

 $let\ voltage supply variation = voltage supply variation + 1$

end

plot dc1.out vs in dc2.out vs in dc3.out vs in dc4.out vs in dc5.out vs in dc6.out vs in xlabel "input voltage(V)" ylabel "output voltage(V)" title "Inveter dc characteristics as a function of supply voltage"

.endc

.end

The snap shot of the output window to observe the power supply variation

To calculate the gain for the given plot:

Select the curve for which the gain is to be calculated (In this case, we chose the plot for 1.8V Vdd)

Left click on the point where the slope of the curve is almost changing toward the top of the plot

The point obtained was x0 = 0.766667, y0 = 1.71351

Now, left click on the point where the slope of the curve is almost changing toward the bottom of the plot

The point obtained was x0 = 0.982667, y0 = 0.1 but for our convenience let us consider the coordinates of the point to be x1, y1

Therefore, the point becomes x1 = 0.982667, y1 = 0.1

Subtract y1 from y0. So, y0 - y1 = 1.61351

Subtract x1 from x0. So, x0 - x1 = -0.216

Now, gain = (y0-y1)/(x0-x1)

Hence, Gain(g) = |(1.61351)/(-0.216)| = |-7.46995| = 7.46995

5.Device Variation:

What was learnt:

There are two sources for device variation:

1. Etching Process Variation:

The etching process will define the structures in the layout of the CMOS inverter.

Etching is a very important fabrication step

It is the process that defines the structure (width and the height)

Based on the structures that get defined by the process, it directly impacts the delay

In layout of the CMOS inverter we have:

P-diffusion region which is indicated by green color.

Poly-silicon area which is indicated by red color.

Metal layer which is indicated by blue color.

N-diffusion region indicated by yellow color.

Contacts between two layers indicated by black crosses.

The thickness of the poly-silicon layer is the gate length and it defines at which node we are (20nm, 30nm, 45nm, etc.).

The thickness of the P-diffusion layer is the width of the gate of the PMOS and the thickness of the N-diffusion layer is the width of the gate of the NMOS.

Width identifies the overlap area between the diffusion layer and the poly-silicon layer.

Fabrication is basically a lab where we have a lot of things like chemicals, water, gases, etc. running and due to these the ideal structure is distorted.

. The snap shot of the inverter chain

Inverter Chain:

When inverters are connected back-to-back they are collectively called the "Inverter Chain".

In an inverter chain, the gates in the middle have the same structures on both sides. So, it's very likely that this particular gate structure will have a repeated distortion because they are exposed to the same kind of structures.

In an inverter chain, gates in the middle will have a structure which is different from the gates at the ends because they might be connected to different devices that will impact the gates

2.Oxide Thickness:

In an ideal oxidation process, the gate oxide thickness will be constant throughout the process.

In the real oxidation process, the gate oxide thickness will not be constant along the gate length.

In an inverter chain, the gate oxide thickness can vary for each transistor.

Oxide thickness directly affects the Id equation because Cox is dependent on it.

Strong PMOS:

PMOS with less resistance (possibly least resistance if the size chosen is the greatest size possible)

PMOS is wider in size (possibly widest PMOS available)

Weak NMOS:

NMOS with high resistance (possibly highest resistance if the size chosen is the least size possible)

NMOS is small in size (possibly smallest NMOS available)

Strong NMOS:

NMOS with less resistance (possibly least resistance if the size chosen is the greatest size possible)

NMOS is wider in size (possibly widest NMOS available)

Weak PMOS:

PMOS with high resistance (possibly highest resistance if the size chosen is the least size possible)

PMOS is small in size (possibly smallest PMOS available)

With the variation from Weak PMOS - Strong NMOS to Strong PMOS - Weak NMOS, the switching threshold varies from roughly 0.7V to 1.4V which is fairly acceptable because behavior of the inverter is intact

We can plot the variation if we move from Weak PMOS - Strong NMOS to Strong PMOS - Weak NMOS using SPICE simulation and the plot is given below:

From the plot given above, we can make the following conclusions:

Variation in Noise Margin high (NMh) is roughly from 2.5V to 2.1V which is a variation of 400mV which is good enough to filter out high voltage variations

Variation in Noise Margin low (NMI) is roughly from 0V to 0.3V which is a variation of 300mV which is good enough to filter out low voltage variations

Overall, variation in the Noise margins is low and this leaves the operation of the gate intact.

Lab Activity:

To perform the lab activity for device variation, we need the following code:

*Model Description

.param temp=27

*Including sky130 library files

.lib "sky130_fd_pr/models/sky130.lib.spice" tt

*Netlist Description

XM1 out in vdd vdd sky130_fd_pr__pfet_01v8 w=7 l=0.15

XM2 out in 0 0 sky130_fd_pr__nfet_01v8 w=0.42 l=0.15

Cload out 0 50fF

 $Vdd\ vdd\ 0\ 1.8V$

Vin in 0 1.8V

*simulation commands

.op

.dc Vin 0 1.8 0.01

.control

run

setplot dc1

display

.endc

.end

The snap shot of output window to observe device variation

Since the pfet width is very huge as compared to the nfet width, the plot is shifted towards right

To find the value of the switching threshold:

Zoom in on the plot where $Vin \sim Vout$ by right clicking and dragging the cursor to select the area

Zoom until the value of switching threshold becomes almost certain

Left click on the point where Vin is roughly equal to Vout

A point x0 = 0.988209, y0 = 0.988191 is obtained

Since $x0 \sim y0$. Therefore, Switching Threshold Voltage = Vm = x0 = y0 = 0.988V

Conclusion:

During this course, I gained in-depth knowledge of **MOSFETs** and the **CMOS inverter**, exploring various techniques to modify inverter characteristics. I learned how to create a **SPICE deck** from a netlist, run simulations, and analyze results effectively. Understanding the **CMOS voltage transfer characteristics** and the factors influencing them greatly improved my grasp of static behavior evaluation, including all its sub-categories such as noise margins, switching threshold, and robustness analysis.

The **Lab Activities** were especially valuable, allowing me to experiment with parameter variations in SPICE and observe their direct impact on performance plots. This hands-on approach not only solidified my theoretical understanding but also built my confidence in applying these concepts to practical circuit design.

Overall, this workshop significantly strengthened my fundamentals in MOSFET operation, CMOS design, and SPICE simulation workflows. It also sparked a deeper interest to further master device-level design and analysis. My experience with **VLSI System Design** was exceptional, thanks to their continuous guidance, quick doubt-resolution, and practical learning approach.

References:

https://github.com/kunalg123/sky130CircuitDesignWorkshop

https://www.vsdiat.com/

https://www.vlsisystemdesign.com/

https://en.wikipedia.org/wiki/MOSFET

https://en.wikipedia.org/wiki/Power MOSFET

https://www.electronicsforu.com/technology-trends/learn-electronics/mosfet-basics-working-applications

https://en.wikipedia.org/wiki/Depletion_and_enhancement_modes

https://en.wikipedia.org/wiki/CMOS

https://www.allaboutcircuits.com/technical-articles/understanding-mosfet-on-state-drain-to-source-resistance/

https://physicswallah.onelink.me/ZAZB/PWAppWEb