Exercise: Asymptotic Analysis

- Using informal definitions of O, Θ , Ω ,
 - Determine: True or False??

a.
$$\frac{n(n+1)}{2} \in O(n^3)$$
 b. $\frac{n(n+1)}{2} \in O(n^2)$

b.
$$\frac{n(n+1)}{2} \in O(n^2)$$

c.
$$\frac{n(n+1)}{2} \in \Theta(n^3)$$
 d. $\frac{n(n+1)}{2} \in \Omega(n)$

$$d.\frac{n(n+1)}{2} \in \Omega(n)$$

■ For each of the following functions, indicate the class O(g(n)) the function belongs to. (Use the simplest g(n) possible in your answers.) Prove your assertions.

a.
$$(n^2 + 1)^{10}$$

b.
$$\sqrt{10n^2 + 7n + 3}$$

c.
$$2^{n+1} + 3^{n-1}$$

Which value is larger?

- 1. n^2 vs n^3 (Hint: cancel same term)
- 2. 2^n vs n^2 (Hint: apply log and substitute n)
- 3. 3^n vs 2^n (Hint: apply log and cancel same term)
- 4. n^2 vs $n \log n$ (Hint: apply log and cancel same term)
- 5. $n \text{ vs } (\log n)^{100}$ (Hint: apply log and substitute n. Use bigger n)

© S. Turaev CSC 3102 DSA II

List the following functions according to their order of growth from the lowest to the highest:

- (n-2)!,
- $5 \lg(n + 100)^{10}$,
- 2^{2n}
- $0.001n^4 + 3n^3 + 1$,
- $\sqrt[3]{n}$,
- 3ⁿ.

© S. Turaev CSC 3102 DSA II

Exercise: Analysis of Iterative Algorithm

Example

```
A()
    for (i = 1 \text{ to } n){
        printf ("Salam");
```

```
A()
    int i, j;
    for (i = 1 \text{ to } n){
        for (j = 1 \text{ to } n){
                 printf ("Salam");
}}}
```

```
A( )
   int i = 1, s = 1;
   while (s \leq n){
      i + +;
      s = s + i;
      printf ("Salam");
```

Example

```
A()
   for (i = 1; i^2 \le n; i + +){
       printf ("Salam");
```

```
A()
   int i, j, k, n;
   for (i = 1; i \le n; i + +){
      for (j = 1; j \le i; j + +){
         for (k = 1; k \le 100; k + +){
              printf ("Salam");
  }}}
```