

NEW RESPONDENCE OF

NICH-VOLTAGE, HIGH-POWER TRANSISTOR

Characteristics of Developmental Units

Interim Report No. 5

Donald A. Krueger and Wilmer M. Lawson, Jr.

SOUND DEVISION

17 August 1960

DISTRIBUTION STATEMENT A
Approved for public releases
Distribution Unlimited

U. S. NAVAL RESEARCE LABORATORY Washington, D.C.

NRL Memorandum Report 1098 -

HTCH-VOLTAGE, HICH-POWER TRANSISTORS

Characteristics of Developmental Units.

Interim Report 5

Donald A. Krueger
Wilmer M. Lawson, Jr.

94 HRL-MR-1098

251950

Electrical Applications Branch Sound Division U.S. NAVAL RESEARCH LABORATORY Washington, D. C.

DISTRIBUTION STATEMENT A

Approved for public releases

Distribution Unlimited

DISTRIBUTION

CNO		
Attn:	Code 001 Code 31	1
ONR		
Attn:	Code 411	5
BUSHIPS		
Attn:	Code 300 Code 688 Code 691A2 Code 1500	1 4 1 1
BUWEPS	Ma (Isoval w totalin)	
Attn:	Code RUDC Code RREN	2 2
NBS		1
USNEL		1
USNOL		1
USNUSL		1
Headquart	dief of Staff, Development ers, USAF on 25, D. C.	1
AFCRC		1
ARDC		1
Headquart	et, Marine Corps ers n 25, D. C.	1
Radio Cor Somervill	poration of America e, New Jersey	1

TABLE OF CONTENTS

DISTRIBUTION	11
ABSTRACT	iv
PROBLEM AUTHORIZATION	iv
PROBLEM STATUS	iv
INTRODUCTION	
BACKGROUND AND TEST PROCEDURE	1
TEST RESULTS AND DISCUSSION	2
SUMMARY AND CONCLUSIONS	3

ABSTRACT

Lot number 4 of 27 units, designated TA1801 developmental samples, have been received by NRL on ONR contract No. NOnr-2478(00). These units have been tested for breakdown and output characteristics, and tabular and photographic data are presented.

A curve-tracing circuit which will give common-base and commonemitter (with base open or shorted) characteristics is described. Also described are the modifications to a curve tracer for output characteristics and a test power-amplifier circuit.

The results of the tests in general were that the transistors do not yet meet the desired 300V breakdown and that the breakdown levels are less than those determined by RCA, 230-V average instead of 260-V average as given in RCA data. Operation in the test-amplifier circuit was tried but was unsuccessful.

PROBLEM AUTHORIZATION

NRL Problem No. 55805-15 BUSHIPS Project NE 050 962, AS 02101, S-1834 ONR RF 001-03-43-4062

PROBLEM STATUS

This is an interim report on one phase of the project; work is continuing.

INTRODUCTION

A contract, NOnr-2478(00) has been negotiated for the Naval Research Laboratory by the Office of Naval Research with the Semiconductor Products Division of the Radio Corporation of America. This contract calls for the development of a 300-volt, 10-ampere, germanium power-transistor, capable of dissipating 150 watts at a 25°C mounting-base temperature. Twenty-seven samples designated "developmental units" and numbered TA-1801 have been received. All of the units are encased in the final "pipe-plug" design.

The results of the breakdown-voltage tests and the output characteristics of these units are presented.

BACKGROUND AND TEST PROCEDURE

In view of the relatively large number of samples involved in the latter phases of this contract, a permanent test circuit has been constructed which will present the three important voltage-breakdowns, BV , BV , BV , on an oscilloscope. A schematic of this circuit is included as Figure 1. Basically, the curve tracer applies a half-wave, 60-cycle, sine-wave voltage to two of the terminals of the transistor under test. The collector current is then displayed on the X-axis of the oscilloscope through the current shunt, R₁, while the applied voltage is fed simultaneously to the Y-axis through the potential-divider circuit, R₂ and R₃. A current-limiting resistor, varying from 3Kn to 151Kn, is placed in series with the collector terminal to prevent excessive dissipation after breakdown. The Tektronk 515 oscilloscope is calibrated with a battery and a Weston Secondary-Standard voltmeter.

The collector-output characteristics (I vs V with I held constant) are taken with the aid of the Dual Transistor Characteristic Curve Tracer, described in N.R.L. Memorandum Report No. 834, modified as shown in Figure 2. This modification is necessary to limit the internal power dissipation of the units to a figure compatible with their leakage and thermal-resistance parameters. From these outputcharacteristic curves, the saturation voltage, output impedance, and forward-current gain of the units may be computed. The accuracy of these measurements is limited by the accuracy with which the data can be read from the photographs, and therefore may contain errors as large as ±20%. As a result the quoted values of saturation voltage and current gain in this report cannot be compared rigorously to the data given by R.C.A., since their measurements of these parameters are direct measurements and are inherently more accurate. Even through the accuracy of the N.R.L. measurements is such that the two sets of data cannot be compared rigorously, the method was chosen because of its ability to present a better overall description of the performance of the transistor in a circuit.

TEST RESULTS AND DISCUSSION

The results of the voltage-breakdown tests on the individual units are presented in Figures 3 through 28 and in numerical form in Table I. The manufacturer's data on these units is included as Table II. It will be noted when comparing these two tables, that the N.R.L. data for the BV and BV tests consistantly show a much lower breakdown voltage. To illustrate the margin of discrepancy, histograms have been prepared for the BV and BV tests which show the number of samples which have a particular voltage span. Figure 29 compares the N.R.L. and R.C.A. BV tests; Figure 30 compares the BV tests. Similar discrepancies have been found in the previous lots, (NRL Memo Reports 937, 1004 and 1042). Therefore, particular care was exercised in calibrating the test equipment. Other characteristics of the units as given by RCA are presented in a similar fashion in Figure 31.

It should be noted that a few of the samples initially exhibited breakdowns 30 to 50 volts in excess of the figures quoted in Table I. Under the normal test procedure, the circuit, Figure 1, is energized, and the voltage gradually increased until breakdown occurs. The circuit is then de-energized. When the circuit is re-energized, the full breakdown voltage is applied, and photographs of the characteristics are taken. However, on several of the samples, when the circuit was re-energized the breakdown voltage was as much as 50 volts lower than it had been previously. These units, when re-cycled many times, evidenced no further deterioration in their characteristics, but they never returned to their original state.

In this lot, as in a previous lot (N.R.L. Memo Report No. 1004) two of the units, see Figure 14 and 27, displayed a very peculiar breakdown in their collector-output curves. From the figures, it can be seen that the units function properly for the 25% and 50% base bias over most of the voltage range; however, near the peak-power-dissipation region, the units effectively short-circuit, collector-to emitter, but recover themselves and function properly on the 75 and 100% bias ranges. This phenomena was generally accompanied by a negative resistance characteristic, as well.

All of the previous tests performed on the units are static tests. In an attempt to collect data on the dynamic characteristics, the transistors were inserted in a class-B circuit operating in the common-collector mode, with transformer coupled input and output circuits. The common-collector mode was selected because of its ability to produce maximum output power, (i.e., the output current is the sum of the base and collector current). It has the further advantage that the two transistors can be mounted on the same heat sink and need not be electrically insulated from one another, thereby allowing more efficient cooling. A schematic of the test circuit is included as Figure 32.

The initial tests were performed with the transistors mounted on a water-cooled heat sink and operating at a collector voltage of 60

volts. Both units failed (collector-to-emitter shorts) at a total d.c. input current of 0.25 amperes. A second pair was inserted in the same circuit and also failed at approximately the same current. The collector voltage was reduced to 50, 40, and finally 30 volts. Although slightly higher currents and output powers were obtainable at these lower voltages (a maximum of 76 watts at a d.c. input of 3.25 amperes and 40 volts) all of the units tested, failed.

As a consequence of these results, Delco 2N174's were inserted in the same circuit, with the only change made to the circuit being the reversal of the polarity of the power supply to make the circuit compatible with the PNP transistors. The use of these transistors resulted in a maximum power output of 250 watts. This data was sufficient to indicate that the sample units themselves were malfunctioning and the tests were discontinued.

The remaining units, along with the destroyed units and a schematic of the test circuit were returned to the manufacturer, who is now attempting to determine the cause of the malfunction. To date, no word has been received from RCA as to possible causes of these phenomena.

SUMMARY AND CONCLUSIONS

- 1. The breakdown-voltage and output characteristics of the units are given in Figures 3 through 28 and in Table I.
- 2. The breakdown voltages are generally considerably less than quoted in the manufacturer's data.
- 3. Successful operation of the transistors in a common-collector mode was not achieved. Since 2N174 units operated quite satisfactorily in the same circuit, it appears there is some defect in the RCA transistors.
- 4. Test circuits and several destroyed and good transistors have been forwarded to RCA for analysis and comment.

	^h FE I _B ≈100 ma	1398 1398 1398 1398 1398 1398	n458	12 13 13 14.5	17
BLE I mental Data Transistors	BVCEO 150 ma	1112 135 127 135 135 135 135 135 135 135 135 135 135	45 50 88 125	135 180 170	210
N.R.L. TA-1801	BVCES 50 ma	22 23 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	22% 230 250 220	215 270 255 255 255 255 255	265
	BV _{CBO}	**************************************	100 1 350 100 1	+001 +001 +001	+0017
	Unit No.	10-1 10-2 10-2 10-2 10-2 10-2 10-3 10-3 10-3 10-3 10-3	11-1 11-3 11-7 11-12	13-1 13-2 13-6 13-11	13-13

TABLE II
Manufacturer's Data - Developmental Samples
TA 1801 NPN Power Transistors

	T.R.	°C/W	0000 9000 10	282	0.57	0.86	0.68	0.93	0.53 0.57 0.59 0.48	0.71	0.53	99.0
	ल ू स	MC	00000	0.72	0.16	0.59	0.55	0.71	0.76 0.63 0.62 0.62	0.53	0.37	0,113
cors	V _c (sat)	10A-I. 1A-I.	24.0000 24.0000 23.35	0.35	0.40	0.35	0.35	0.35	0.35 0.40 0.40 0.40	0.00	0,30	0.35 0.80
	hrE	10 A-Ic	25.0 17.0 25.0	17.0	12.5 12.5	12.5 17.0	13.0	12.5	18.2 16.7 25.0 20.0	12.5 10.0 8.3	10.0	12.5
		a-I	J4.3									
ransistor	hfE	100 m	25 E 25 8	513	188	250 200 200	120	8 =	200 11/3 12/5	531	111 286	日音
TA 1801 NFN Fower I	¹ 8	5V(µa)	150 150 110	388	170	120 220 150	88	200	200 150 150	220 100 140	88	32
	BVEBO	1 ma	150 160 160 160	55 5	중국	332	39	5,67	140 7 80 170	05.17 05.13	130	15 160
	BVCEO	150 ma	120 160 170 170	188	210	170 120 120	150 210	180	160 160 130 190	120 200 220	210 200	210
	BVCES	50 та	245 180 180 180 180 180 180 180 180 180 180	282	270	868 868 868	565	33	220 250 270 230	2 60 310 290	260 270	290
	BVCBO	1 ma	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	\$ 6	\$ \$ \$ \$ \$	\$ \$ \$	\$ \$ \$	100	\$20 \$30 \$100 \$100 \$100 \$100 \$100 \$100 \$100	* 001	\$ \$00 100 100 100 100 100 100 100 100 100	t 600 1004
		Unit No.	12777	10-11	10-22	10-25 10-26 10-27	10-29	10-31	11-1 11-3 11-7	13-2-13-13-13-13-13-13-13-13-13-13-13-13-13-	13-8	13-12 13-13

Figure 1 - Breakdown Characteristic Test Circuit

Figure 2 - Modifications to Dual Characteristic Curve Tracer

SCALES BELOW APPLY TO FIGS. 3 THROUGH 28:

HORIZ 3 V/MINOR DIV. VERT 200 MA/MINOR DIV.

200 MA/MINOR DIV.

I = 100 MA

BV_{CBO} IOOV VS IMA/MAJOR DIV. BV_{CES} 50V VS IO MA/MAJOR DIV. BV_{CEO} 50V VS IOMA/MAJOR DIV.

10-2

Figure 3

Ib = 200 MA

10-5

Figure 4

Ib = 200 MA

10-7

Figure 5

Ib= 200 MA

10-9

Figure 6

Figure 10

11-12

Figure 21

C TO E SHORT ON 25% BIAS RANGE

I_b=200MA

13-1

Figure 22

13-11

Figure 26

Ib = 300 MA

13-12

Figure 27

I_b = 300MA

13-13

Figure 28

Figure 29 - Breakdown Voltage Characteristics RCA. TA-1801 N.P.N. Power Transistors BV_{Ces}

Figure 30 - Breakdown Voltage Characteristics RCA. TA-1801 N.P.N. Power Transistors BV_{Ces}

Figure 31 - Characteristics of RCA. TA-1801 N.P.N. Power Transistors RCA DATA

1

Figure 32 - Test Amplifier for TA-1801 Transistors