CS727 HW5

Zhili Feng

November 21, 2018

1. (5.4.19)

(a) Let $P = \{x : Dx \ge d; Fx = f; x \ge 0\}$. We have P is closed. Note that P contains no line since any x with negative entry is not in P. Then by theorem 4.3.4, $P = \operatorname{conv}(X) + \operatorname{pos}(Y)$, where X is the set of extreme points of P, and Y is a set of points of \mathbb{R}^n such that $\operatorname{pos}(Y)$ is the set of extreme rays of P.

Now by Minkowski-Weyl, since P is polyhedral, for any $x \in P$, we can write $x = \sum_{i=1}^{p} \lambda_i x_i + \sum_{i=1}^{q} \mu_i y_i$ such that $\lambda_i \geq 0, \sum_i^p \lambda_i = 1, \mu_i \geq 0$, and $x_i \in X, y_i \in Y$.

Note that we must have $\langle c^*, y_i \rangle \geq 0$ for all $i = 1, \ldots, q$. If there exists $\langle c^*, y_i \rangle < 0$, then we can make the corresponding μ_i approaching ∞ and inf $\{\langle c^*, x \rangle, x \in P\}$ will be $-\infty$. Hence:

$$\forall x \in P : \langle c^*, x \rangle \ge \left\langle c^*, \sum_{i=1}^p \lambda_i x_i \right\rangle$$

note $\sum_{i=1}^{p} \lambda_i x_i \in P$ since P is convex.

Since X is finite, we can find $x^* \in X$ with the smallest $\langle c^*, x^* \rangle$, i.e. $\langle c^*, x^* \rangle \leq \langle c^*, x_i \rangle \, \forall x_i \in X$. Then we have

$$\langle c^*, x^* \rangle \leq \left\langle c^*, \sum_{i=1}^p \lambda_i x_i \right\rangle$$
, for all suitable λ_i

Hence this x^* satisfies the condition that $\forall x \in P, \langle c^*, x^* \rangle \leq \langle c^*, x \rangle$. By definition, x^* attains the infimum that we want.

(b) First let us rewrite the constraints in P in terms of $Ax \leq a$:

$$Dx \ge d; Fx = f; x \ge 0 \iff \underbrace{\begin{bmatrix} -D \\ F \\ -F \\ -I \end{bmatrix}}_{A} x \le \underbrace{\begin{bmatrix} -d \\ f \\ -f \\ 0 \end{bmatrix}}_{a}$$

where $I \in \mathbb{R}^{n \times n}$ is the identity matrix.

Let $x_0 \in P$ be the feasible solution that satisfies base demand d_0 . Use the Hoffman's theorem, there exists $\gamma_A > 0$ such that given x_0 , we can find $x \in P$ (equivalently, $Ax \le a$) such that

$$||x - x_0|| \le \gamma_A ||(Ax_0 - a)_+||$$

Note that for x_0 :

$$Ax_0 = \begin{bmatrix} -D \\ F \\ -F \\ -I \end{bmatrix} x \le \begin{bmatrix} -d_0 \\ f \\ -f \\ 0 \end{bmatrix}$$

1

therefore:

$$(Ax_0 - a)_+ \le \left(\begin{bmatrix} -d_0 \\ f \\ -f \\ 0 \end{bmatrix} - \begin{bmatrix} -d \\ f \\ -f \\ 0 \end{bmatrix} \right)_+ = \left(\begin{bmatrix} d - d_0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \right)_+$$

Let the solution we get from (a) be x^* , we have:

$$\langle c^*, x^* \rangle$$

$$\leq \langle c^*, x \rangle$$

$$= \langle c^*, x_0 \rangle + \langle c^*, x - x_0 \rangle$$

$$\leq c_0 + ||c^*|| ||x - x_0||$$

$$\leq c_0 + ||c^*|| \gamma_A ||(Ax_0 - a)_+||$$

$$\leq c_0 + ||c^*|| \gamma_A ||(d - d_0)_+||$$

Let $\alpha = \gamma_A ||c^*||$, and we finish the proof.