Лабораторная работа № 1.14

Изучение колебаний струны

Содержание

Введение
Экспериментальная установка
Проведение измерений
Обработка результатов
Контрольные вопросы
Приложение

Цели работы

- 1. Наблюдение поперечных стоячих волн на тонкой натянутой струне.
- 2. Экспериментальное определение зависимости собственных частот поперечных колебаний от номера гармоники и силы натяжения струны.

Задачи

- 1. Измерить значения резонансных частот колебаний струны в режиме формирования стоячих волн. Рассчитать значения скорости волны и погонной плотности струны при известной силе ее натяжения.
- 2. Провести прямое измерение массы и длины струны, непосредственно определить ее погонную плотность. Сравнить полученные значений погонных плотностей ρ_{ℓ} .

Введение

Под струной в рамках данной лабораторной работы будем понимать тонкую однородную упругую нить. Примерами струн могут являться стальной трос, резиновый жгут, струны гитары, скрипки и других подобных музыкальных инструментов. Как известно, одно из свойств струн — их гибкость, то есть механическое напряжение в струне направлено преимущественно вдоль ее оси, что позволяет не учитывать при расчете динамики ее движения изгибные напряжения, которые могли бы возникать при поперечных деформациях (как, например, в упругих стержнях).

Смещение струны в поперечном направление может быть вызвано изменением формы (статическое воздействие) или кратковременной передачей локального импульса ее элементам (удар). В обоих случаях натяжение играет роль возвращающей силы, ко-

торая стремится вернуть струну в начальное прямолинейное положение, приводя к взаимному перемещению ее элементов. Возникшие отклонения от равновесного состояния могут распространяться вдоль струны — и таким образом возникает волновой процесс.

Рис. 1. К выводу волнового уравнения

Скорость распространения поперечной бегущей волны u малой амплитуды в натянутой струне зависит от массы единицы ее длины ρ_ℓ (данная величина называется погонной или линейной плотностью) и силы натяжения \vec{T} и определяется как:

$$u = \sqrt{\frac{T}{\rho_{\ell}}} \tag{1}$$

Это выражение для скорости напрямую следует из вида дифференциального уравнения для процессов упругой деформации, происходящих в струнах. Данное уравнение, называемое волно-

вым можно получить из второго закона Ньютона, записанного для любого достаточно малого элемента струны (см. рис.1). Это уравнение играет крайне важную роль в физике и, кроме волн в струне, может описывать волновые процессы в самых разных системах, в том числе волны в сплошных однородных упругих средах и даже электромагнитные волны.

Направим ось Ox вдоль струны в положении ее равновесия. Форму струны будем описывать функцией y=y(x,t), определяющей её вертикальное смещение в точке x в момент времени t. Угол наклона касательной к струне в точке x относительно оси Ox обозначим как α . В любой момент этот угол совпадает с углом наклона касательной к графику функции y(x), то есть $tg \alpha = \frac{\partial y}{\partial x}$.

Рассмотрим силы, приложенные к малому участку предварительно натянутой струны, начинающемуся в точке с горизонтальной координатой x, имеющему длину Δx и массу $\Delta m = \rho_\ell \Delta x$, где ho_ℓ — линейная плотность. При небольшом отклонении от положения равновесия на выделенный элемент действуют силы натяжения \vec{T}_1 и \vec{T}_2 , направленные по касательной к струне. Модули этих сил будут очень мало отличатся от их значений в отсутствии деформации ($T_1 = T_2 = T$), так как длина малого элемента струны в смещенном состоянии практически равна его длине в положении равновесия, поэтому добавочным напряжением вследствие удлинения струны при ее деформации можно пренебречь, но возникшая вертикальная составляющая равнодействующей силы будет стремиться вернуть рассматриваемый участок струны к положению равновесия, придавая ему определенное вертикальное ускорение $\frac{\partial^2 y}{\partial t^2}$. Заметим, что угол α зависит от координаты xвдоль струны и различен в точках приложения сил $ec{T}_1$ и $ec{T}_2$. Таким образом, второй закон Ньютона в проекции на ось Oy будет иметь вид:

$$\Delta m \frac{\partial^2 y}{\partial t^2} = T_2 \sin\left(\alpha \left(x + \Delta x\right)\right) - T_1 \sin\left(\alpha \left(x\right)\right) \tag{2}$$

Ввиду малости рассматриваемых смещений можно положить $\sin \alpha \approx \operatorname{tg} \alpha = \frac{\partial y}{\partial x}$ и записать уравнение (2) в виде:

$$\Delta m \frac{\partial^2 y}{\partial t^2} = T \left(\left. \frac{\partial y}{\partial x} \right|_{x + \Delta x} - \left. \frac{\partial y}{\partial x} \right|_x \right) \tag{3}$$

Разделив обе части последнего соотношения на Δx и далее устремив Δx к нулю получим окончательный вид волнового уравнения для струны:

$$\frac{\partial^2 y}{\partial t^2} = \frac{T}{\rho_\ell} \cdot \frac{\partial^2 y}{\partial x^2},\tag{4}$$

Несложно показать, что введенная выше величина $u=\sqrt{\frac{T}{\rho_\ell}}$ является скоростью распространения любых (не только гармонических возмущений) на натянутой струне. Рассмотрим любую произвольную функцию вида $y=y(\xi)$, где $\xi=x\pm ut$. Подставляя её в уравнение (4), убеждаемся, что она является его решением при произвольном виде функции y:

$$\frac{\partial^2 y}{\partial t^2} = \frac{\partial \xi}{\partial t} \cdot \frac{\partial}{\partial \xi} \left(\frac{\partial y}{\partial t} \right) = \frac{\partial \xi}{\partial t} \cdot \frac{\partial}{\partial \xi} \left(\frac{\partial \xi}{\partial t} \cdot \frac{\partial y}{\partial \xi} \right) = u^2 \frac{\partial^2 y}{\partial \xi^2} = u^2 \frac{\partial^2 y}{\partial x^2}.$$

Если аргумент функции $y=y(\xi)$ считать постоянной величиной $\xi=x\pm ut=Const$ и произвести его дифференцирование по времени, то получим

$$dx \pm udt = 0 \quad \Rightarrow \quad \frac{dx}{dt} = \mp u$$
 (5)

Таким образом, функция $y(\xi)$ описывает возмущение произвольного профиля, распространяющееся по струне с постоянной скоростью u с сохранением своей формы, причем функция вида $y^+ = y(x-ut)$ соответствует волне, движущейся в положительном, а вида $y^- = y(x+ut)$ - в отрицательном направлении оси Ox. Общее решение волнового уравнения (4) представляет собой линейную комбинацию двух волновых процессов, распространяющихся в противоположных направлениях. Конкретный вид функций y^+ и y^- определяется способом возбуждения колебаний и граничными условиями их распространения.

Особый интерес представляет случай гармонических волн:

$$y(x,t) = y_m \cos\left[2\pi\left(ft \pm \frac{x}{\lambda}\right) + \varphi_0\right],$$
 (6)

где y_m - амплитуда волны (максимальное отклонение элементов колеблющегося объекта от положения равновесия), f - частота волны, а λ - длина волны (расстояние, проходимое фронтом волны за один период колебаний), φ_0 - начальная фаза колебаний. Несложно заметить, что скорость распространения волны в этом случае можно найти следующим образом: $u=\lambda \cdot f$.

Гораздо более компактный вид уравнению (5) можно придать если ввести следующие переобозначения: $\omega=2\pi f$ - $\mu \kappa \rho$ - $\mu \kappa \rho$ или $\kappa \rho$ - $\mu \kappa \rho$

$$y(x,t) = y_m \cos(\omega t - kx + \varphi_0). \tag{7}$$

Однако в струне (как впрочем, и в любой иной упругой среде) могут существовать периодические возмущения не только в виде бегущих волн. Рассмотрим вид решения волнового уравнения для струны длиной ℓ , оба конца которой жестко закреплены

и не испытывают смещения, т.е. $y(0,t)=y(\ell,t)=0$. Будем искать решение волнового уравнения в виде произведения двух функций, каждая из которых зависит только от одной из переменных (x,t):

$$y(x,t) = X(x) \cdot T(t) \tag{8}$$

После подстановки (8) в волновое уравнение и деления его на y(x,t) получим соотношение вида $\frac{1}{X}\frac{d^2X}{dx^2}=\frac{1}{u^2}\cdot\frac{1}{T}\frac{d^2T}{dt^2}$, которое является верным равенством только при условии, что каждая из его сторон является некоторой постоянной величиной, не зависящей ни от x, ни от t. Это приводит нас к двум независимым уравнениям:

$$\frac{1}{X}\frac{d^2X}{dx^2} = -k^2; \quad \frac{1}{T}\frac{d^2T}{dt^2} = -\omega^2,$$

в общих решениях которых

$$X(x) = A_x \cdot \sin kx + B_x \cdot \cos kx$$
$$T(t) = A_t \cdot \sin \omega t + B_t \cdot \cos \omega t$$

константы (A_x, B_x) определяются исходя из граничных, а (A_t, B_t) - из начальных условий конкретной задачи, причем соответствующим выбором начала отсчета времени можно сделать любой из параметров (A_t, B_t) равным нулю. С учетом «нулевых» $y(0,t) = y(\ell,t) = 0$ граничных условий в общем решении $B_x = 0$, а на волновое число накладывается условие $\sin k\ell = 0$. Решение этого уравнения определяет допустимые значения волнового числа, а, следовательно, и спектр резонансных частот струны: $k_n\ell = \pi n$ - где n - это любое целое число. Резонансные частоты равны:

$$f_n = \frac{\omega_n}{2\pi} = \frac{k_n u}{2\pi} = \frac{un}{2\ell}.$$
 (9)

Если частота колебаний, возбуждаемых в струне, приближается к одной из этих частот, наступает резонанс - амплитуда колебаний резко возрастает. Форма отклонения струны от равновесного положения в этом случае будет описываться функцией

$$y(x,t) = A\sin(\omega t)\sin(kx) = A\sin(\frac{\pi n}{\ell}x)\sin(\frac{u\pi n}{\ell}t).$$
 (10)

Уравнение (10) описывает cmoячую волну, которая изменяется по гармоническому закону $\sin \omega t$ с амплитудой $A(x) = |A\sin kx|$. Точки, в которых амплитуда колебаний струны максимальна, называются пучностями стоячей волны, а точки, в которых амплитуда колебаний равна нулю, называются узлами.

Рис. 2. Конфигурации стоячих волн на закреплённой струне

Отметим, что колебания струны в режиме возбуждения стоячей волны можно рассматривать как результат сложения (суперпозиции) двух бегущих волн $y^+(x,t)$ и $y^-(x,t)$, распространяю-

щихся в противоположных направлениях:

$$y^{+}(x,t) = \frac{A}{2}\cos(\omega t - kx), \quad y^{-}(x,t) = -\frac{A}{2}\cos(\omega t + kx),$$
$$y(x,t) = \frac{A}{2}\left[\cos(\omega t - kx) - \cos(\omega t + kx)\right] = A\sin(kx)\sin(\omega t).$$

Появление в общем решении слагаемого $y^-(x,t)$, которое соответствует волне распространяющейся к источнику, можно интерпретировать как наличие в струне волны, *отраженной* от дальнего закрепленного конца. Отдельным образом разберем причину появления знака «—» в форме ее записи, рассмотрев в качестве примера возмущения струны уединенный бегущий импульс «треугольной» формы (см. рис. 3).

Рис. 3. Отражение импульса с обращением фазы на π

Если длительность импульса равна au, то его протяженность вдоль струны равна $u\tau$. Пусть в момент времени t=0 импульс достигает закрепленного конца струны. В последующие моменты времени струна будет воздействовать на точку крепления с переменной силой, перпендикулярной направлению движения импульса. Эта сила в момент времени t>0 имеет положительную вертикальную проекцию, т.е. тянет точку крепления вверх. В течении времени 0 < t < au/2 она остается постоянной, а в момент времени $t = \tau/2$ обращается в ноль. По третьему закону Ньютона с такой же силой точка крепления действует вниз на конец струны. В момент времени $t = \tau/2$ струна становится прямой. Однако ее часть длиной $u\tau/2$ продолжает двигаться вниз по инерции. При $t > \tau/2$ конец струны действует на точку крепления силой направленной вниз, и это действие прекращается при $t = \tau$. Соответственно, точка крепления воздействует на конец струны с силой, направленной вверх, тормозя движение ее элементов вниз. Окончательно поперечное взаимодействие прекратится при $t > \tau$, когда сформируется отраженный импульс, имеющий противоположную по отношению к падающему полярность.

Аналогично, если по струне распространяется гармоническая волна, то по достижении закрепленного конца возникает обращенная отраженная волна. Чтобы учесть изменение ее полярности, можно либо в явном виде вписать знак «—» в форму ее представления, либо в аргумент гармонической функции добавить фазовый сдвиг $\Delta \varphi = \pi$. Поэтому говорят, что в этом случае при отражении фаза волны скачком меняется на π или происходит «потеря полуволны».

Экспериментальная установка

Рис. 4. Элементы лабораторной установки

На рисунке 4 показан комплект оборудования, входящий в состав лабораторной установки:

- 1. Механический вибратор
- 2. Генератор гармонических сигналов
- 3. Рулетка
- 4. Эластичная (белая) и неэластичная (зеленая) струны
- 5. Набор грузов и держателей для них
- 6. Струбцины для крепления вибратора и опорного блока
- 7. Опорный блок
- 8. Стержень для крепления вибратора

Проведение измерений

Часть 1: Определение линейной плотности струны

1. Определите с помощью лабораторных весов (рис. 5) массу обеих струн, а рулеткой измерьте их длину. Внесите полученные значения с их приборными погрешностями в протокол проведения измерений.

Рис. 5. Лабораторные весы

- 2. Соберите лабораторную установку. Для этого необходимо закрепить на краях стола фиксаторы штативов, крепко затянув штативы с помощью винтов. Расстояние между ними должно быть $\approx 115\ cm$.
- 3. Надежно привяжите конец эластичной струны к подвижной части вибратора (виброножу) для этого в нем есть специальное отверстие. К свободной части струны с помощью L-образного держателя прикрепите груз массой $m=50\ \emph{c}$ и перекиньте ее через опорный блок.

- 4. Измерьте рулеткой длину ℓ колеблющейся части струны она равна расстоянию от узла на виброноже до верхней части подвижного блока и внесите ее значение в протокол измерений.
- 5. Подключите сигнальный генератор к вибратору. Установите ручку регулировки амплитуды в среднее положение. Включите генератор сигналов тумблером на его боковой панели, переведя его в положение \mathbf{ON} .
- 6. Регуляторами грубой и плавной настройки подберите частоту сигнала так, чтобы струна колебалась в 4 сегментах (при этом должны отчетливо наблюдаться четыре пучности и пять узлов). Обратите внимание на то, чтобы в картине колебаний присутствовал узел непосредственно на краю виброножа (если этого не происходит или узел меняет свое положение в процессе работы струнного вибратора, то рекомендуется закрепить нить еще раз).
- 7. Уменьшая амплитуду возбуждения, подстройте частоту таким образом, чтобы получить стоячую волну максимально возможной амплитуды с полностью неподвижными узлами. Также при приближении к резонансу следует незамедлительно уменьшать амплитуду сигнала, если вибратор или опорный блок начинают издавать значительный шум.
- 8. Значения резонансной частоты и массы подвешенного груза вместе с его держателем внесите в Таблицу 1 протокола измерений.
- 9. Уменьшите амплитуду сигнала генератора до нуля. К подвешенному грузу добавьте груз массой $\Delta m=50\ \emph{c}$, повторите измерения резонансной частоты.
- 10. Поэтапно с шагом $\Delta m=50$ г доводя суммарную массу подвешенного груза до 250 г, определите значения резонансных частот для пяти различных сил натяжения струны.

Часть 2: Определение скорости волны

- 1. Установите на держателе нагрузку общей массой 120 г.
- 2. Регуляторами грубой и плавной настройки частоты добейтесь получения устойчивой картины стоячих волн для нормальных мод колебаний с номерами от $n_1=1$ до $n_5=5$ (количество пучностей, формирующихся на струне, равно номеру нормальной моды колебаний).
- 3. Внесите значения резонансных частот f_n для каждого номера n в Таблицу 2.
- 4. Повторите измерения частот f_n для значений нагрузочной массы $m_i=150,\,180,\,210,\,240,\,270$ г.

Проведите аналогичные измерения для неэластичной нити, заполнив второй экземпляр Таблицы 2

После завершения измерений следует вернуть все грузы на свои места, а генератор сигналов выключить тумблером на его боковой панели, переведя его в положение **OFF**.

Обработка результатов

Расчеты производятся для каждой струны, графики однотипных зависимостей изображаются в одном графическом поле.

Часть 1: Определение линейной плотности струны

- 1.1 Используя результаты прямых измерений масс и длин струн, найдите их фактическую линейную плотность ρ_{ℓ} с учетом приборной погрешности.
- 1.2 Постройте график зависимости квадрата резонансной частоты f^2 от силы натяжения струны T=mg, где m масса подвешенного груза, $g=9.82~m/c^2$ ускорение свободного падения.
- 1.3 Качественно оцените степень линейности построенной зависимости. Найдите с помощью метода наименьших квадратов ее угловой коэффициент $\alpha=\frac{4}{\ell^2\rho_\ell}$ и его погрешность $\Delta\alpha$.
- 1.4 Найдите линейную плотность $\rho_{\ell} = \frac{4}{\alpha \ell^2}$ струны и ее погрешность:

$$\Delta \rho_{\ell} = \rho_{\ell} \sqrt{\left(\frac{\Delta \alpha}{\alpha}\right)^2 + \left(2\frac{\Delta \ell}{\ell}\right)^2}$$

.

Часть 2: Определение скорости волны

- $2.1\,$ Для каждого значения величины силы натяжения T из Таблицы $2\,$ постройте графики зависимости резонансных частот f_n от их номера n.
- 2.2 По угловым коэффициентам полученных зависимостей с помощью формулы (9) определите скорость u волны в струне как

функцию силы натяжения. Аппроксимацию проводите методом наименьших квадратов с оценкой величины погрешности.

- 2.3 Постройте график зависимости квадрата фазовой скорости u^2 от силы натяжения T. По угловому коэффициенту графика $u^2=u^2(T)$ с помощью формулы (1) определите линейную плотность струны ρ_ℓ . Оцените погрешность полученного результата.
- 2.4 Сравните полученные значения линейной плотности из первой и второй части работы с результатом прямых измерений из п. 1.1.

Контрольные вопросы

- 1. Как связаны между собой частота, длина волны и скорость распространения бегущей волны?
- 2. Используя метод размерности, покажите, что скорость распространения поперечных волн по струне имеет вид $u \sim T^{1/2} \rho_{\ell}^{-1/2}$.
- 3. Как образуется стоячая волна?
- 4. Как происходит отражение бегущей волны от жестко закрепленного конца струны и от конца, который может свободно двигаться в направлении, перпендикулярном к направлению натяжения струны? Как изменяется фаза волны при отражении от закрепленного и свободного конца?
- 5. Дайте определение пучности и узла стоячей волны. Как определить частоты, на которых возможны собственные колебания струны, закреплённой на концах?
- 6. Во сколько раз необходимо увеличить натяжение струны, чтобы частота её собственных колебаний удвоилась?
- 7. Как изменяется фаза колебаний в стоячей волне? Изобразите распределение фазы колебаний в стоячей волне на закреплённой с двух сторон струне, если на ее длине укладывается n=1,2,3 полуволны.

Приложение

Таблица 1: Определение линейной плотности струны

Струна №1				Струна №2			
m, ϵ	f, Гц	f^2 , Γu^2	T, H	т, г	f, Гц	f^2 , Γu^2	T, H
$\rho_\ell \pm \Delta \rho_\ell = \dots$				$ \rho_\ell \pm \Delta \rho_\ell = \dots $			

Таблица 2: Определение скорости волны

	$m_1 = \dots$	$m_2 = \dots$	$m_3 = \dots$	$m_4 = \dots$	$m_5 = \dots$	$m_6 = \dots$
	$T_1 = \dots$	$T_2 = \dots$	$T_3 = \dots$	$T_4 = \dots$	$T_5=\dots$	$T_6 = \dots$
n	f_1 , Γ ц	f_2 , Γ ц	f_3 , Γ ц	f_4 , Γ ц	f_5 , Γ ц	f_6 , Γ ц
1						
2						
3						
4						
5						
	$u_1 = \dots$	$u_2 = \dots$	$u_3 = \dots$	$u_4 = \dots$	$u_5=\dots$	$u_6 = \dots$