Calculus I (MAC 2311) Practice Skills Test 3 Version A Friday, April 10, 2015

Time: 30 minutes

Write your answer for each question on the **Answer line**. Only the answer on the line will be graded. Neatly do the work to support your answer in the blank space provided. Each question is worth 1 point. Note: Use of any calculator will be considered as academic dishonesty.

Name:

Section and NID/PID:		
section and WiD/1 ib.		
1. Find the critical point(s) for the function $f(x) = e^2$	x. (Write DNE, if nor	ne exists)
A'(x) = 2 e2x =0		
	Answer:	PNE
2. Let $f(x)$ be a function satisfying all the conditions conclusion for Rolle's Theorem for the function $f(x)$		
$f'(x) = \cos x = 0$		
=> X= M/2		17/2
	Answer:	
3. Let $f(x)$ be a function satisfying all the conditions satisfies the conclusion for MVT for the function $f(x)$	$(x) = x^3$ in the interval	
f'(x) = 3x2 = (-1)3-1	= 1	
$f'(x) = 3x^2 = (-1)^3 - (-$	Answer:	$\frac{\sqrt{3}}{3}$, $\frac{\sqrt{3}}{3}$
4. Let f be continuous and differentiable on $(-\infty, \infty)$ of $f(4)$?	and $f(1)=10, f'(x) \ge$	2 for all x. What is the minimum value
By MVT, f(4)-f(1) = f'((c) (4-1) ≥	2(4-1) = 6
$\Rightarrow f(A) \ge f(1) + 6$	Answer:	16
=> f(4) = 16		2000

5. Find the interval in which the function $f(x) = \ln x$ is increasing.

In x is increasing function (or \(\sigma > 0 \) when x>0)

Answer: (O)

6. Find the absolute maxima of the function $f(x) = x^2$. (Write DNE, if none exists)

Answer: DXE

7. Find the interval in which the function $f(x) = (x-2)^3 (0 \le x \le 5)$ is concave upwards.

$$f'(x) = 3(x-2)^2$$

 $f''(x) = 6(x-2)$

Answer: (2,5)

8. Find the inflection point(s) of the function $f(x) = \frac{1}{x-3}, x \neq 3$. (Write DNE, if none exists)

f'(x)=	$-(x-3)^{-1}$	
f ((x) =	2(x-3)-3	
leg (-00,	3) pos: (3,0	

f not continuous at x=3, so

Answer: DNE

9. Evaluate: $\lim_{x\to 0^+} \frac{\ln x}{x}$. (Hint: Use L'Hospital rule)

$$= \lim_{x \to \infty} \frac{1}{x} = 0$$

Answer:____

10. Evaluate the value of the limit $\lim_{x\to 0} \frac{5^x-4^x}{3^x-2^x}$.(Hint: Use L'Hospital rule)

In (5/4)/In(3/2)

 $=\frac{\ln(5/4)}{\ln(3/2)}$

Calculus I (MAC 2311) Skills Test 3 Version B Friday, April 10, 2015

Time: 30 minutes

Write your answer for each question on the **Answer line**. Only the answer on the line will be graded. Neatly do the work to support your answer in the blank space provided. Each question is worth 1 point. Note: Use of any calculator will be considered as academic dishonesty.

1. Find the critical point(s) for the function $f(x) = e^{2x}$. (Write DNE, if none exists)

Section and NID/PID: _

f'(x) = 2e2x +0

Answer: 2. Let $f(x)$ be a function satisfying all the conditions of Rolle's Theorem. Find the values of c which s conclusion for Rolle's Theorem for the function $f(x) = 3 \sin x$ in $[0, \pi]$. (Write DNE, if none exists) $f'(x) = 3\cos x = 0$ $\Rightarrow x = 1/2$ Answer: 3. Let $f(x)$ be a function satisfying all the conditions of Mean Value Theorem (MVT). Find all numl satisfies the conclusion for MVT for the function $f(x) = 4x^3$ in the interval $[-1,1]$. (Write DNE, if not $f'(x) = 1/2 \times 2 = 1/3$ $\Rightarrow x = 1/3$ Answer: 4. Let $f(x) = 1/3$ Answer: 3. Answer: 4. Let $f(x) = 1/3$ Answer: 4. Let $f(x) = 1/3$ Answer: 3. Answer: 4. Let $f(x) = 1/3$ Answer: 4. Let $f(x) = 1/3$ Answer: 3. Answer: 4. Let $f(x) = 1/3$ Answer: 3. Answer: 4. Let $f(x) = 1/3$ Answer: 4. Let $f(x) = 1/3$ Answer: 3. Answer:		
conclusion for Rolle's Theorem for the function $f(x) = 3 \sin x$ in $[0, \pi]$. (Write DNE, if none exists) $ f'(x) = 3 \cos x = 0 $ $ \Rightarrow x = \pi/2 $ Answer: 3. Let $f(x)$ be a function satisfying all the conditions of Mean Value Theorem (MVT). Find all numl satisfies the conclusion for MVT for the function $f(x) = 4x^3$ in the interval [-1,1]. (Write DNE, if not $f'(x) = 12 \times 2 = \frac{4(-1)^3}{3} = \frac{4}{3}$ $ \Rightarrow x = \frac{1}{3} \times 4 $		Answer: DNE
3. Let $f(x)$ be a function satisfying all the conditions of Mean Value Theorem (MVT). Find all numl satisfies the conclusion for MVT for the function $f(x) = 4x^3$ in the interval [-1,1]. (Write DNE, if not $f'(x) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{3} $		
Answer: An		
satisfies the conclusion for MVT for the function $f(x) = 4x^3$ in the interval [-1,1]. (Write DNE, if not $f'(x) = 12 \times 2 = \frac{4(-1)^3 - 4(1)^3}{3} = \frac{4(-1)^3 - 4(1)^3}{$	$\Rightarrow \cos x = 0$ $\Rightarrow x = \pi/2$	Answer:
g of $f(4)$? g MVT, $f(4) - f(1) = f'(c)(4-1) \ge 3(4)$ g g g g g g g g g g	satisfies the conclusion for MVT for the function f $f'(x) = 2x^2 = 4(-1) $ $= 3 $	$f(x) = 4x^3$ in the interval [-1,1]. (Write DNE, if none exists)
$=) f(4) \ge f(1) + 9$ Answer: 10		
	$=) f(4) \ge f(1) + 9$	

5. Find the interval in which the function $f(x) = \ln(3x)$ is increasing.
In (3x) is always increasing
$(or \frac{1}{\times} > 0 \text{ when } \times > 0)$ Answer: (o, ∞)
6. Find the absolute maxima of the function $f(x) = 5x^2$. (Write DNE, if none exists)
There is none
Answer: DXE
7. Find the interval in which the function $f(x) = (x-2)^3 (0 \le x \le 3)$ is concave upwards.
$f'(x) = 3(x-2)^2$
f''(x) = 6(x-2)
Answer: (2,3)
8. Find the inflection point(s) of the function $f(x) = \frac{1}{x-11}, x \neq 11$. (Write DNE, if none exists)
$f'(x) = -(x-11)^{-2}$ But f is not continuous at
f"(x) = 2(x-11)-5
neg: $(-\infty, 11)$ pos: $(11, \infty)$ 9. Evaluate: $\lim_{x\to 0^+} \frac{9 \ln x}{x}$. (Hint: Use L'Hospital rule)
$=\lim_{x\to\infty}\frac{9x}{x}=0$
Answer:
10. Evaluate the value of the limit $\lim_{x\to 0} \frac{15^x - 14^x}{13^x - 11^x}$. (Hint: Use L'Hospital rule)
- lim (In 15)15x - (In 14)14x
= $\lim_{x \to 0} \frac{(\ln 15)15^{x} - (\ln 14)14^{x}}{(\ln 13)13^{x} - (\ln 11)11^{x}} \ln (15/14) / \ln (13/11)$ Answer:
= In (15/14)
In (13/11)
The End.

Calculus I (MAC 2311) Skills Test 3 Version C Friday, April 10, 2015 Time: 30 minutes

Write your answer for each question on the **Answer line**. Only the answer on the line will be graded. Neatly do the work to support your answer in the blank space provided. Each question is worth 1 point. Note: Use of any calculator will be considered as academic dishonesty.

Section and NID/PID:	
Ŷ.	
1. Find the critical point(s) for the function $f(x) = e^{\theta}$	e^{6x} . (Write DNE, if none exists)
f(x)=6e6x =0	
	DNE
7	Answer:
2. Let f(x) be a function action in all the conditions	of Rolle's Theorem. Find the values of a which estisfies the
conclusion for Rolle's Theorem for the function $f(x)$	s of Rolle's Theorem. Find the values of c which satisfies the $f(x) = 5 \sin x$ in $[0, \pi]$. (Write DNE, if none exists)
$f'(x) = 5\cos x = 0$	
=> (05x=0	
$\Rightarrow X = \frac{\Gamma}{2}$	The same of the sa
7 X = 2	Answer:
3. Let f(x) be a function satisfying all the conditions	ns of Mean Value Theorem (MVT). Find all number c which
satisfies the conclusion for MVT for the function f	$f(x) = 6x^3$ in the interval [-1,1]. (Write DNE, if none exists)
$f'(x) = 18x^2 = \frac{6(-1)^3}{}$	6(1) = (0
	1
> X2= = = = = = = = = = = = = = = = = = =	13 13
3	Answer:3
of $f(0)$?) and $f(3)=4$, $f'(x) \ge 3$ for all x. What is the minimum value
By MVT, f(9) - f(3)	$=f'(c)(9-3)=6f'(c) \ge 18$
$=) f(q) \ge f(3) + 18$	
	Answer:
⇒ ((a) ≥ 2)	

5. Find the interval in which the function $f(x) = \ln (8x)$	$(8x)$ is increasing. $\times > 0$ (domain)
always increasing (or 1 >0 when x>0)	
$(or \frac{1}{x} > 0 \text{ when } x > 0)$	Answer: \(\lambda \)
6. Find the absolute maxima of the function $f(x)$	$= 12x^2$. (Write DNE, if none exists)
No max	
	Answer:DNE
7. Find the interval in which the function $f(x) = (x - x)^{-1}$	$-4)^3 (0 \le x \le 5)$ is concave upwards.
f'(x) = 3(x-4)2	
f''(x) = 6(x-4)	Answer: (4,5)
8. Find the inflection point(s) of the function $f(x) = \frac{1}{2}$	$\frac{1}{x-10}, x \neq 10$. (Write DNE, if none exists)
	is not continuous at 10, so
$f''(x) = 2(x-16)^{-3}$ negative: $(-\infty, 0)$ 9. Evaluate: $\lim_{x\to 0} \frac{7\ln x}{x}$. (Hint: Use L'Hospital rule)	Answer:DNE
$\lim_{x \to \infty} \frac{7\frac{1}{x}}{1} = 0$	
	Answer:
10. Evaluate the value of the limit $\lim_{x\to 0} \frac{8^x-7^x}{5^x-3^x}$. (Hint:	Use L'Hospital rule)
lim (ln8) 8x - (ln7) 7x x->0 (ln5) 5x - (ln3) 3x	$\ln (8/7) / \ln (5/3)$
= In(8/7)	Answer: $/(n(5/3))$
\n(5/3)	