University of Bremen Institute of Environmental Physics

Trends in tropospheric nitrogen dioxide (NO₂) over megacities and large conurbations in the Mediterranean and Middle East from GOME and SCIAMACHY

Andreas Hilboll¹, A. Richter¹, M. Vrekoussis ^{2,1}, J. P. Burrows¹, E. Gerasopoulos³, C. Zerefos^{4,2}, T. Kindap⁵, U. Im⁶, M. Mihalopoulos⁷, M. Kanakidou⁷

hippil@iupphysik.un-brenjen.de

¹Institute of Environmental Physics, University of Bremen

²Research Centre for Atmospheric Physics and Climatology, Academy of Athens

³Institute for Environmental Research and Sustainable Development, National Observatory of Athens

⁴Faculty of Geology and Geoenvironment, University of Athens

⁵Eurasia Institute of Earth Sciences, Technical University Istanbul

⁶Institute of Environmental Sciences, Bogazici University Istanbul

⁷Environmental Chemical Processes Laboratory, University of Crete

Outline

Introduction

Combining GOME and SCIAMACHY time series

Trend analysis

Summary

- Megacities: pollution hot spots due to high energy use
- NO₂: ozone smog, acid rain, hazardous to human health
- Satellite instruments: long time series, global coverage

Instrument	Equator crossing	Global coverage	Available period	Pixel [km ²]
GOME	10h30	3 days	1995/10-2003/06	40 × 320
SCIAMACHY	10h00	6 days	2002/08-now	30×60

- Megacities: pollution hot spots due to high energy use
- NO₂: ozone smog, acid rain, hazardous to human health
- Satellite instruments: long time series, global coverage

Instrument	Equator crossing	Global coverage	Available period	Pixel [km ²]
GOME	10h30	3 days	1995/10-2003/06	40 × 320
SCIAMACHY	10h00	6 days	2002/08-now	30 × 60

- ▶ Differential Optical Absorption Spectroscopy (Lambert-Beer law)
- Subtraction of stratospheric NO₂ from scaled model data
- Correction for average lightpath in atmosphere
- ▶ Vertical tropospheric column [molec. cm⁻²] NO₂

Dataset description

- Grid satellite pixels on 0.125° × 0.125°
- Calculate monthly averages
- Define city regions

► For each month, calculate the average of each city region individually

Combined GOME/SCIAMACHY time series

- Most cities investigated show seasonal cycles and a complex increasing pattern
- There are small but significant differences between the GOME and the SCIAMACHY time series
- Challenging to assess the longer term changes and trends

Constructing one consistent time series from GOME and SCIAMACHY

GOME and SCIAMACHY have very different spatial resolution:

- GOME and SCIAMACHY have very different spatial resolution:
- For averages over large areas, this is no big problem: Monthly averages of NO₂ VC_{trop} over East Central China

- GOME and SCIAMACHY have very different spatial resolution:
- For averages over large areas, this is no big problem:
- For very localized sources (like cities), this leads to a relatively diluted signal in the GOME data — the same total amount of NO₂ is averaged over a larger area:

- GOME and SCIAMACHY have very different spatial resolution:
- For averages over large areas, this is no big problem:
- For very localized sources (like cities), this leads to a relatively diluted signal in the GOME data — the same total amount of NO₂ is averaged over a larger area:

- GOME and SCIAMACHY have very different spatial resolution:
- For averages over large areas, this is no big problem:
- For very localized sources (like cities), this leads to a relatively diluted signal in the GOME data — the same total amount of NO₂ is averaged over a larger area:

- GOME and SCIAMACHY have very different spatial resolution:
- For averages over large areas, this is no big problem:
- For very localized sources (like cities), this leads to a relatively diluted signal in the GOME data — the same total amount of NO₂ is averaged over a larger area:

- This leads to inconsistencies in time series spanning both GOME and SCIAMACHY.
- Any trend study of megacities needs to consider this effect

Comparison: GOME and SCIAMACHY measurements 2002/08 – 2003/06

How to derive consistent trends?

Previous studies artificially reduced the resolution of SCIAMACHY measurements:

Publication	Time period covered		
van der A et al., 2008	1996-2006		
Konovalov et al., 2010	1996-2008 (summer months)		

or calculated a correction factor for GOME measurements by convolving SCIAMACHY measurements (Konovalov et al., 2006)

Derived annual trends [% / yr]

City	van der A.	Konovalov (2010)
Baghdad		1.7 ± 0.7
Barcelona	_	3.7 ± 0.8
Cairo	1.3 ± 1.0	_
Teheran	6.5 ± 1.0	4.0 ± 0.8

Solution 1: Averaging over several SCIAMACHY pixels

The simplest approach:

average 5 neighboring SCIAMACHY pixels. But:

- non-linearities in the retrieval
- what to do with clouds
- **.** . . .

Solution 2: SCIAMACHY backscan measurements

Idea:

- SCIAMACHY scans 16 × 60x30km / forward scan
- ► 4 × 240x30km / backward scan
- backscan pixels close in size to GOME
- physically comparable to GOME measurement
- create climatology GOME × SCIA_{forw} / SCIA_{back} for each grid cell

Solution 2: SCIAMACHY backscan measurements

Idea:

- SCIAMACHY scans 16 × 60x30km / forward scan
- 4 × 240x30km / backward scan
- ▶ backscan pixels close in size to GOME
- physically comparable to GOME measurement
- create climatology GOME × SCIA_{forw} / SCIA_{back} for each grid cell

Sold Color C

Observations:

- Actually works quite well
- Difficult to see overall picture from individual trends
- Different trends per season
- Error quantification and significance analysis are difficult

GOME (corrected)

Solution 3: Fitting a trend using the levelshift method

This study: determination of annual growth rates by fitting

linear function + levelshift + seasonal component

Solution 3: Fitting a trend using the levelshift method

This study: determination of annual growth rates by fitting

linear function + levelshift + seasonal component

$$Y_t$$
 = μ + $\omega \cdot X_t$ + $\delta \cdot U_t$ + $(1 + \xi X_t) \cdot \eta \cdot S_t$ + N_t monthly avg. offset linear trend levelshift seasonality noise

Solution 3: Fitting a trend using the levelshift method

This study: determination of annual growth rates by fitting

linear function + levelshift + seasonal component

$$\underbrace{Y_t}_{\text{monthly avg.}} = \underbrace{\mu}_{\text{offset}} + \underbrace{\omega \cdot X_t}_{\text{linear trend}} + \underbrace{\delta \cdot U_t}_{\text{levelshift}} + \underbrace{(1 + \xi X_t) \cdot \eta \cdot S_t}_{\text{seasonality}} + \underbrace{N_t}_{\text{noise}}$$

where the seasonal part of the trend is described by

$$S_t = \sum_{i=1}^4 \left(eta_{1,j} \cdot \sin\left(rac{2\pi t}{12}
ight) + eta_{2,j} \cdot \cos\left(rac{2\pi t}{12}
ight)
ight)$$

and $\eta = 1 + (\gamma - 1)U_t$ accounts for a possible levelshift in the seasonal component.

Trend analysis: Results

Annual trends over selected megacities 1996-2002 (GOME) & 2003-2009 (SCIAMACHY)

Combining GOME and SCIAMACHY time series

Summary

Comparison to ground-based measurements

Athens

-situ

satellite

Istanbul

Seasonal differences

Seasonal differences

Observations:

- Winter trends are stronger than summer trends
- Winter values generally show more scattering (due to sampling)

Possible explanations:

- Different chemistry in summer and winter (non-linearities?)
- Seasonal differences in
 - ▶ industrial / traffic / energy NO₂ emissions
 - agricultural NO₂ emissions
 - aerosol amount / size distribution / vertical distribution

Observed trends for the MedME region 1996–2009

City	annual trend	summer trend	winter trend
	[% / yr]	[% / yr]	[% / yr]
Algiers	+ 8.3 ± 1.6	$+ 8.8 \pm 1.3$	_
Ankara	_	+ 1.1 \pm 0.5	_
Athens	_	-4.6 \pm 1.5	_
Baghdad	$+$ 22.3 \pm 2.7	+ 8.0 \pm 1.8	_
Barcelona	-3.4 ± 1.6	-4.7 \pm 1.1	_
Cairo	+ 9.7 ± 1.6	+4.9 \pm 0.7	$+16.7\pm2.5$
Dimashq	$+ 20.6 \pm 3.2$	+10.4 \pm 1.4	$+47.4\pm5.5$
Istanbul	_	_	_
Jeddah	$+ 3.8 \pm 1.2$	$+3.0\pm0.7$	$+4.1 \pm 1.4$
Madrid	- 4.8 ± 2.1	$\textbf{-4.5} \pm \textbf{1.3}$	$\textbf{-12.6} \pm \textbf{2.1}$
Milan	-3.0 ± 1.2	-1.6 ± 0.4	-8.1 ± 2.0
Riyadh	$+$ 6.3 \pm 1.2	_	$+9.9\pm1.2$
Rome	_	_	_
Teheran	+ 7.3 ± 1.9	+5.6 \pm 0.8	$+18.9 \pm 4.7$

Summary

Summary

- ► Long-term changes in tropospheric NO₂ from satellite
- Different spatial resolutions of GOME and SCIAMCHY result in differences in the behaviour of the two datasets.
- Here, we accounted for the differences between the two instruments by including an offset in the fitting procedure.
- Strong differences between summer and winter trends
- Significant upward trends for most developing cities
- Significant downward trends for most developed cities

Acknowledgements

- Sebastian Mieruch (IUP/Uni-HB)
- Igor Konovalov (RAS, CNRS)
- Björn-Martin Sinnhuber (IUP/Uni-HB)
- TEMIS for providing FRESCO+ data
- IGAC/ACCENT for funding my travel to this conference
- ESSReS for funding my PhD

(http://earth-system-science.org)

▶ DOAS group at IUP/Uni-HB

(http://doas-bremen.de)

and ...

Thank you for your attention!!!

Acknowledgements

- Sebastian Mieruch (IUP/Uni-HB)
- Igor Konovalov (RAS, CNRS)
- Björn-Martin Sinnhuber (IUP/Uni-HB)
- TEMIS for providing FRESCO+ data
- IGAC/ACCENT for funding my travel to this conference
- ESSReS for funding my PhD

(http://earth-system-science.org)

▶ DOAS group at IUP/Uni-HB

(http://doas-bremen.de)

and ...

Thank you for your attention!!!

