蛋白质性质和结构分析

日期: 2022-12-7

实验者: 生信 2001 张子栋

MarkdownNotes/软件第8次作业.md at main · Bluuur/MarkdownNotes (github.com)
生物信息学原理/软件第8次作业.md · blur/MarkdownNotes - 码云 - 开源中国 (gitee.com)

蛋白质性质和结构分析

实验目的

实验内容

实验步骤

Nanog

预测该基因编码产物的亚细胞定位。 (至少使用两种预测方法,并比较不同方法的预测结果是否一致)

PSORT WoLF PSORT: Protein Subcellular Localization Prediction (hgc.jp)

Yloc YLoc (uni-tuebingen.de)

DeepLoc

人 Nanog 基因产物是否是糖蛋白? 什么类型的糖蛋白?

GlycoEP Prediction of Glycosysylation sites in Eukaryotics Proteins (osdd.net)

NetOGlyc NetOGlyc - 4.0 - Services - DTU Health Tech

NetNGlyc Services- DTU Health Tech

分析人 Nanog 基因产物的亲水性和疏水性,列出最亲水和最疏水的位点。

分析甲虫基因 AF422804

等电点是多少? 分子量是多少? 是否含有 pfam 保守结构域? 如有, 列出登录号。

Expasy - ProtParam tool

等电点

分子量

保守结构域

是否膜蛋白质?如果是膜蛋白质,请注明跨膜结构位点。是否具有 GPI 固定 (anchor) 的蛋白质?

Services- DTU Health Tech

预测该蛋白序列的二级结构,并简述预测结果(至少使用两种预测方法,并比较不同方法的预测结果 是否一致)。

JPred JPred: A Protein Secondary Structure Prediction Server (dundee.ac.uk)

PSIRPRED PSIPRED Workbench (ucl.ac.uk)

PredictProtein Welcome to PredictProtein!

使用 Swiss-Model 预测该蛋白质序列的三级结构,并简述预测结果;该蛋白在 AlphaFoldDB 中是否有预测结果?如有,简述预测结果。

SWISS-MODEL Interactive Workspace (expasy.org)

SWISS-MODLE 结果分析

Alpha Fold

Alpha Fold 结果分析

讨论

Nanog

分析甲虫基因 AF422804

实验目的

- 熟悉蛋白质序列和结构的主要分析内容。
- 在实践中逐步理解蛋白质序列和结构的主要分析算法的基本原理。

实验内容

- 综合使用多种在线工具,对蛋白质的一级、二级和三级结构进行分析和预测。
- 综合使用多种在线工具,对蛋白质的跨膜结构、翻译后修饰、亚细胞定位等进行分析和预测。

实验步骤

Nanog

1. Nanog 是 2003 年 5 月发现的一种转录因子,是一个有助于胚胎干细胞自我更新的关键因子,被认为在胚胎干细胞的全能性维持中起关键作用。人源 Nanog 基因,通常写成 Nanog1,位于 12 号染色体上。针对该基因(AY230262),请完成以下分析:

预测该基因编码产物的亚细胞定位。(至少使用两种预测方法,并比较不同方法的 预测结果是否一致)

检索 AY230262 蛋白质序列 [NANOG Homo sapiens] - Protein - NCBI (nih.gov)

- 1 >AAP49529.1 NANOG [Homo sapiens]
- 2 MSVDPACPQSLPCFEASDCKESSPMPVICGPEENYPSLQMSSAEMPHTETVSPLPSSMDLLIQDSPDSST
- 3 SPKGKQPTSAEKSVAKKEDKVPVKKQKTRTVFSSTQLCVLNDRFQRQKYLSLQQMQELSNILNLSYKQVK
- 4 TWFQNQRMKSKRWQKNNWPKNSNGVTQKASAPTYPSLYSSYHQGCLVNPTGNLPMWSNQTWNNSTWSNQT
- 5 QNIQSWSNHSWNTQTWCTQSWNNQAWNSPFYNCGEESLQSCMQFQPNSPASDLEAALEAAGEGLNVIQQT
- 6 TRYFSTPQTMDLFLNYSMNMQPEDV

PSORT Wolf Psort: Protein Subcellular Localization Prediction (hgc.jp)

Wolf PSORT

Protein Subcellular Localization Prediction

about WoLF PSORT WoLF PSORT(こついて links Example Output

Please select an organism type:

- Animal
- □ Plant
- Fungi

Please select input method:

- From Text Area
- □ From File

Input Filename:

选择文件 未选择文件

Text Area: Enter multifasta format protein sequence(s) here.

MSVDPACPQSLPCFEASDCKESSPMPVICGPEENYPSLQMSSAE

MPHTETVSPLPSSMDLLIQDSPDSSTSPKGKQPTSAEKSVAKKEDKVPVKKQKTRTVF

SSTQLCVLNDRFQRQKYLSLQQMQELSNILNLSYKQVKTWFQNQRMKSKRWQKNNWPK

NSNGVTQKASAPTYPSLYSSYHQGCLVNPTGNLPMWSNQTWNNSTWSNQTQNIQSWSN

HSWNTQTWCTQSWNNQAWNSPFYNCGEESLQSCMQFQPNSPASDLEAALEAAGEGLNV IQQTTRYFSTPQTMDLFLNYSMNMQPEDV

提交

clear

(†Select organism type to activate the submit button)

Contact:

Functional Analysis in silico | NAKAI Lab

8F General Research Bldg., 4-6-1 Shirokanedai Minato-ku Tokyo 108-8639, Japan E-mail: fais "AT" hgc.jp (relace "AT" to @)

• 预测结果为 nuc1 , 对照 WoLF PSORT 细胞定位缩写表, 即亚细胞定位为细胞核。

Yloc YLoc (uni-tuebingen.de)

• 粘贴序列,选择预测模型、物种后进行预测。

• 亚细胞定位为细胞核。

QuaryID: ec8ab61daa7d0a3892ba1830b4268aa2

DeepLoc

• 输入序列后提交。<u>DeepLoc - 1.0 - Services - DTU Health Tech</u>

• 预测结果为细胞核。

[webface] Job finished

noreply@dtu.dk < noreply@dtu.dk > 23:50

收件人: zidongzh@outlook.com

Your job 63A870A8000051A120580292 has finished.

Details should be available at

 $\underline{https://services.healthtech.dtu.dk//cgi-bin/webface2.cgi?jobid=63A870A8000051A120580292}$

--DTU Health tech server queue

人 Nanog 基因产物是否是糖蛋白? 什么类型的糖蛋白?

GlycoEP Prediction of Glycosysylation sites in Eukaryotics Proteins (osdd.net)

粘贴序列后提交。

NetOGlyc NetOGlyc - 4.0 - Services - DTU Health Tech

粘贴序列后提交。

显示 POSITIVE 的位点可能会被糖基化 (Potential > 0.5)

```
```GFF
1
 2
 ##gff-version 2
 3
 ##source-version NetOGlyc 4.0.0.13
 4
 ##date 22-12-25
 5
 ##Type Protein
 #seqname source feature start end score strand frame
 6
 comment
 7
 AAP49529_1 netOGlyc-4.0.0.13 CARBOHYD 2 2 0.593531
 #POSITIVE
 AAP49529_1 netOGlyc-4.0.0.13 CARBOHYD 10 10 0.35134
8
9
 AAP49529_1 netOGlyc-4.0.0.13 CARBOHYD 17 17 0.124292
 AAP49529_1 netOGlyc-4.0.0.13 CARBOHYD 22 22 0.397592
10
 CARBOHYD 23 23 0.601683
11
 AAP49529_1 netOGlyc-4.0.0.13
 #POSITIVE
 CARBOHYD 37 37 0.608048
12
 AAP49529_1 netOGlyc-4.0.0.13
 #POSITIVE
13
 AAP49529_1 netOGlyc-4.0.0.13
 CARBOHYD 41 41 0.823332
 #POSITIVE
 42 42 0.657648
 AAP49529_1 netOGlyc-4.0.0.13
 CARBOHYD
14
 #POSITIVE
```

15		netOGlyc-4.0.0.13	CARBOHYD	48	48	0.816338		
16	#POSITIVE AAP49529_1	netOGlyc-4.0.0.13	CARBOHYD	50	50	0.787776		
	#POSITIVE							
17	AAP49529_1 #POSITIVE	netOGlyc-4.0.0.13	CARBOHYD	52	52	0.922385	•	•
18	AAP49529_1	netOGlyc-4.0.0.13	CARBOHYD	56	56	0.860595		
	#POSITIVE							
19	AAP49529_1 #POSITIVE	netOGlyc-4.0.0.13	CARBOHYD	57	57	0.885228		
20		netOGlyc-4.0.0.13	CARBOHYD	65	65	0.899472		
	#POSITIVE	,						
21	AAP49529_1	netOGlyc-4.0.0.13	CARBOHYD	68	68	0.892244		
	#POSITIVE							
22		netOGlyc-4.0.0.13	CARBOHYD	69	69	0.991003		
2.2	#POSITIVE	matoclus 4 0 0 12	CARROLINA	70	70	0 000445		
23	#POSITIVE	netOGlyc-4.0.0.13	CARBOHYD	70	70	0.868445	•	•
24		netOGlyc-4.0.0.13	CARBOHYD	71	71	0.982961		
	#POSITIVE							
25	AAP49529_1	netOGlyc-4.0.0.13	CARBOHYD	78	78	0.974264		
	#POSITIVE							
26		netOGlyc-4.0.0.13	CARBOHYD	79	79	0.990992		
	#POSITIVE							
27	AAP49529_1 #POSITIVE	netOGlyc-4.0.0.13	CARBOHYD	83	83	0.936976		•
28		netOGlyc-4.0.0.13	CARBOHYD	98	98	0.311117		
29		netOGlyc-4.0.0.13	CARBOHYD			0.546425		
	#POSITIVE						-	
30	AAP49529_1	netOGlyc-4.0.0.13	CARBOHYD	103	103	0.138478		
31	AAP49529_1	netOGlyc-4.0.0.13	CARBOHYD	104	104	0.717357		
	#POSITIVE							
32		netoGlyc-4.0.0.13	CARBOHYD			0.126528		•
33 34		netOGlyc-4.0.0.13 netOGlyc-4.0.0.13	CARBOHYD CARBOHYD			0.0999028	•	•
35		netOGlyc-4.0.0.13	CARBOHYD			0.0108395	•	•
36		netOGlyc-4.0.0.13	CARBOHYD			0.0336472		
37		netOGlyc-4.0.0.13	CARBOHYD			0.365898		
38	AAP49529_1	netOGlyc-4.0.0.13	CARBOHYD	162	162	0.724423		
	#POSITIVE							
39		netOGlyc-4.0.0.13	CARBOHYD	166	166	0.862944		
4.0	#POSITIVE			170	170	0.707334		
40	#POSITIVE	netOGlyc-4.0.0.13	CARBOHYD	170	170	0.797324	•	•
41		netOGlyc-4.0.0.13	CARBOHYD	173	173	0.74059		
	#POSITIVE						-	
42	AAP49529_1	netOGlyc-4.0.0.13	CARBOHYD	176	176	0.768598		
	#POSITIVE							
43		netOGlyc-4.0.0.13	CARBOHYD	179	179	0.160221		
44		netOGlyc-4.0.0.13	CARBOHYD			0.482741		
45		netOGlyc-4.0.0.13	CARBOHYD			0.136736	•	•
46 47		netOGlyc-4.0.0.13 netOGlyc-4.0.0.13	CARBOHYD CARBOHYD			0.169051 0.087622		•
48		netOGlyc-4.0.0.13	CARBOHYD			0.143784		
49		netOGlyc-4.0.0.13	CARBOHYD			0.0481689		

50	AAP49529_1 netOGlyc-4.0.0.13	CARBOHYD	207 207 0.113265	
51	AAP49529_1 netOGlyc-4.0.0.13	CARBOHYD	210 210 0.0859972	
52	AAP49529_1 netOGlyc-4.0.0.13	CARBOHYD	215 215 0.158727	
53	AAP49529_1 netOGlyc-4.0.0.13	CARBOHYD	217 217 0.189561	
54	AAP49529_1 netOGlyc-4.0.0.13	CARBOHYD	220 220 0.139987	
55	AAP49529_1 netOGlyc-4.0.0.13	CARBOHYD	223 223 0.0932478	
56	AAP49529_1 netOGlyc-4.0.0.13	CARBOHYD	225 225 0.0317189	
57	AAP49529_1 netOGlyc-4.0.0.13	CARBOHYD	228 228 0.117951	
58	AAP49529_1 netOGlyc-4.0.0.13	CARBOHYD	230 230 0.101636	
59	AAP49529_1 netOGlyc-4.0.0.13	CARBOHYD	238 238 0.0321494	
60	AAP49529_1 netOGlyc-4.0.0.13	CARBOHYD	247 247 0.0359253	
61	AAP49529_1 netOGlyc-4.0.0.13	CARBOHYD	250 250 0.0473348	
62	AAP49529_1 netOGlyc-4.0.0.13	CARBOHYD	258 258 0.224786	
63	AAP49529_1 netOGlyc-4.0.0.13	CARBOHYD	261 261 0.0486538	
64	AAP49529_1 netOGlyc-4.0.0.13	CARBOHYD	280 280 0.595211	
	#POSITIVE			
65	AAP49529_1 netOGlyc-4.0.0.13	CARBOHYD	281 281 0.660622	
	#POSITIVE			
66	AAP49529_1 netOGlyc-4.0.0.13	CARBOHYD	285 285 0.753219	
	#POSITIVE			
67	AAP49529_1 netOGlyc-4.0.0.13	CARBOHYD	286 286 0.733299	
	#POSITIVE			
68	AAP49529_1 netOGlyc-4.0.0.13	CARBOHYD	289 289 0.294352	
69	AAP49529_1 netOGlyc-4.0.0.13	CARBOHYD	297 297 0.170629	
70	***			

NetOGlyc-4.0 Server Output - DTU Health Tech								
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
##gff-version 2								
	on NetOGlyc 4.0.0.13							
##date 22-12-25								
#segname	source feature start	end score	strand	frame	comment			
AAP49529 1	net0G1yc-4. 0. 0. 13	CARBOHYD	2	2	0. 593531			#POSITIVE
AAP49529_1	net0G1yc-4. 0. 0. 13	CARBOHYD	10	10	0. 35134 .			
AAP49529_1	net0G1yc-4. 0. 0. 13	CARBOHYD	17	17	0. 124292			
AAP49529_1	net0G1yc-4. 0. 0. 13	CARBOHYD	22	22	0. 397592			
AAP49529_1	net0G1yc-4. 0. 0. 13	CARBOHYD	23	23	0.601683			#P0SITIVE
AAP49529_1	net0G1yc-4. 0. 0. 13	CARBOHYD	37	37	0. 608048			#POSITIVE
AAP49529_1	net0G1yc-4. 0. 0. 13	CARBOHYD	41	41	0. 823332			#POSITIVE
AAP49529_1	net0Glyc-4. 0. 0. 13	CARBOHYD	42	42	0. 657648			#POSITIVE
AAP49529_1	net0G1yc-4. 0. 0. 13	CARBOHYD	48 50	48	0. 816338			#POSITIVE
AAP49529_1 AAP49529 1	net0G1yc-4. 0. 0. 13 net0G1yc-4. 0. 0. 13	CARBOHYD CARBOHYD	50 52	50 52	0. 787776 0. 922385			#POSITIVE #POSITIVE
AAP49529_1 AAP49529_1	net0G1yc-4. 0. 0. 13	CARBOHYD	52 56	56	0. 860595			#POSITIVE
AAP49529_1	net0G1yc-4. 0. 0. 13	CARBOHYD	57	57	0. 885228			#POSITIVE
AAP49529 1	net0G1yc-4. 0. 0. 13	CARBOHYD	65	65	0.899472			#POSITIVE
AAP49529 1	net0G1vc-4. 0. 0. 13	CARBOHYD	68	68	0. 892244			#POSITIVE
AAP49529 1	net0Glyc-4. 0. 0. 13	CARBOHYD	69	69	0. 991003			#POSITIVE
AAP49529 1	net0Glyc-4.0.0.13	CARBOHYD	70	70	0.868445			#P0SITIVE
AAP49529 1	net0G1yc-4. 0. 0. 13	CARBOHYD	71	71	0. 982961			#POSITIVE
AAP49529_1	net0G1yc-4. 0. 0. 13	CARBOHYD	78	78	0. 974264			#POSITIVE
AAP49529_1	net0G1yc-4. 0. 0. 13	CARBOHYD	79	79	0. 990992			#P0SITIVE
AAP49529_1	net0G1yc-4. 0. 0. 13	CARBOHYD	83	83	0. 936976			#P0SITIVE
AAP49529_1	net0G1yc-4. 0. 0. 13	CARBOHYD	98	98	0. 311117			UDOGTATUD
AAP49529_1	net0Glyc-4. 0. 0. 13	CARBOHYD	100	100	0. 546425			#POSITIVE
AAP49529_1	net0G1yc-4. 0. 0. 13	CARBOHYD	103 104	103 104	0. 138478			#DOCTATIVE
AAP49529_1 AAP49529 1	net0G1yc-4. 0. 0. 13 net0G1yc-4. 0. 0. 13	CARBOHYD CARBOHYD	104	104	0. 717357 0. 126528			#POSITIVE
AAP49529_1	net0G1yc-4. 0. 0. 13	CARBOHYD	121	121	0. 120328			
AAP49529 1	net0G1yc-4. 0. 0. 13	CARBOHYD	129	129	0. 0246992			
AAP49529 1	net0G1yc-4. 0. 0. 13	CARBOHYD	135	135	0. 0108395			
AAP49529 1	net0G1yc-4. 0. 0. 13	CARBOHYD	141	141	0. 0336472			
AAP49529 1	net0Glyc-4.0.0.13	CARBOHYD	150	150	0. 365898			
AAP49529_1	net0G1yc-4. 0. 0. 13	CARBOHYD	162	162	0.724423			#POSITIVE
AAP49529_1	net0G1yc-4. 0. 0. 13	CARBOHYD	166	166	0.862944			#POSITIVE
AAP49529_1	net0G1yc-4. 0. 0. 13	CARBOHYD	170	170	0. 797324			#POSITIVE
AAP49529_1	net0G1yc-4. 0. 0. 13	CARBOHYD	173	173	0.74059 .		#P0SITI	
AAP49529_1	net0G1yc-4. 0. 0. 13	CARBOHYD	176	176	0. 768598			#POSITIVE
AAP49529_1	net0Glyc-4. 0. 0. 13	CARBOHYD	179	179	0. 160221			
AAP49529_1 AAP49529_1	net0Glyc-4. 0. 0. 13	CARBOHYD	180 190	180 190	0. 482741			
AAP49529_1 AAP49529_1	net0G1yc-4. 0. 0. 13 net0G1yc-4. 0. 0. 13	CARBOHYD CARBOHYD	190	190	0. 136736 0. 169051			
AAP49529_1 AAP49529_1	net0G1yc-4. 0. 0. 13	CARBOHYD	200	200	0. 169051			
AAP49529_1	net0G1yc-4. 0. 0. 13	CARBOHYD	204	204	0. 143784			
AAP49529 1	net0G1yc-4. 0. 0. 13	CARBOHYD	205	205	0. 0481689			
AAP49529 1	net0G1yc-4. 0. 0. 13	CARBOHYD	207	207	0. 113265			
AAP49529 1	net0G1yc-4. 0. 0. 13	CARBOHYD	210	210	0.0859972			
AADAOEGO 1	+001 4 0 0 19	CADDOIND	015	015	0 150707			

# [webface] Job finished



# noreply@dtu.dk < noreply@dtu.dk >

0:07

收件人: zidongzh@outlook.com

Your job 63A8751500003926CFFCF00B has finished.

Details should be available at

 $\underline{https://services.healthtech.dtu.dk//cgi-bin/webface2.cgi?jobid=63A8751500003926CFFCF00B}$ 

--DTU Health tech server queue

NetNGlyc Services- DTU Health Tech

粘贴序列后提交。

```
Output for 'AAP49529.1'
Warning: This sequence may not contain a signal peptide!!
 Proteins without signal peptides are unlikely to be exposed to the N-glycosylation machinery and thus may not be glycosylated (in vivo) even though they contain potential motifs.
 SignalP-NN euk predictions are as follows:
 Cmax pos ? Ymax pos ? Smax pos ? Smean ? D ? 0.108 62 0.101 37 0.107 56 0.095 0.098 N 0.450
 # name
AAP49529.1
 SignalP-noTM
 SignalP output is explained at https://services.healthtech.dtu.dk/services/SignalP-4.1/output.php
Name: AAP49529.1 Length: 305
MSVDPACPQSLPCFEASDCKESSPMPVICGPEENYPSLQMSSAEMPHTETVSPLPSSMDLLIQDSPDSSTSPKGKQPTSA
EKSVAKKEDKVPVKKQKTRTVFSSTQLCVLNDRFQRQKYLSLQQMQELSNILNLSYKQVKTWFQNQRMKSKRWQKNNWPK
NSNGVTQKASAPTYPSLYSSYHQGCLVNPTGNLPMWSNQTWNNSTWSNQTQNIQSWSNHSWNTQTWCTQSWNNQAWNSPF
YNCGEESLQSCMQFQPNSPASDLEAALEAAGEGLNVIQQTTRYFSTPQTMDLFLNYSMNMQPEDV
 80
 160
 240
 160
 240
 320
(Threshold=0.5)
SeqName
 Position Potential
 Jury
 N-Glyc
 agreement result
 133 NLSY
188 NPTG
198 NQTW
202 NNST
AAP49529. 1
 0.5512
 (7/9)
(5/9)
(6/9)
AAP49529. 1
AAP49529. 1
 0. 5528
0. 5532
 WARNING: PRO-X1.
 0. 4189
0. 4077
0. 4834
AAP49529. 1
AAP49529. 1
 203
 NSTW
 208 NQTQ
218 NHSW
295 NYSM
AAP49529. 1
AAP49529. 1
 0.3536
 (7/9)
AAP49529, 1
 0.5649
```

NetNGlyc 1.0: predicted N-glycosylation sites in AAP49529.1



• 有四个位点可能糖基化 (Potential > 0.5)

分析人 Nanog 基因产物的亲水性和疏水性,列出最亲水和最疏水的位点。

• ProtScale 粘贴序列后提交。 Expasy - ProtScale

```
ProtScale
ProtScale (Reference / Documentation) allows you to compute and represent the profile produced by any amino acid scale on a selected protein.

An amino acid scale is defined by a numerical value assigned to each type of amino acid. The most frequently used scales are the hydrophobicity or hydrophiblicity scales and the secondary structure conformational parameters scales, but many other scales exist which are based on different chemical and physical properties of eachs are the hydrophobicity or hydrophiblicity scales and the secondary structure conformational parameters scales, but many other scales exist which are based on different chemical and physical properties of each scales are the hydrophobicity or hydrophiblicity scales and the secondary structure conformational parameters scales, but many other scales exist which are based on different chemical and physical properties of each scales are the hydrophobicity or hydrophiblicity scales and the secondary structure conformational parameters scales, but many other scales exist which are based on different chemical and physical properties of each scales are the hydrophobicity or hydrophiblicity scales and the secondary structure conformational parameters scales, but many other scales are the hydrophobicity or hydrophiblicity scales and the secondary structure conformational parameters scales.

For you can paste your own sequence in the box below:

Or you can paste your own sequence in the box below:

For your can paste your own sequence in the box below:

For your can paste your own sequence in the box below:

For your can paste your own sequence in the box below:

For your can paste your own sequence in the box below:

For your can paste your own sequence in the box below:

For your can paste your own sequence in the box below:

For your can paste your own sequence in the box below:

For your can paste your own sequence in the secondary structure conformational parameters scales.

For your can paste your own sequence in the box below:

For your can
```

• 最亲水位点: Position: 105 Score: 1.300 (max)

```
最疏水位点: Position: 153 Score: -3.156 (min)
 1 MIN: -3.156, MAX: 1.300
 2
 Sequence:
 3
 MSVDPACPQSLPCFEASDCKESSPMPVICGPEENYPSLQMSSAEMPHTETVSPLPSSMDLLIQDSPDSST
 SPKGKQPTSAEKSVAKKEDKVPVKKQKTRTVFSSTQLCVLNDRFQRQKYLSLQQMQELSNILNLSYKQVK
 TWFQNQRMKSKRWQKNNWPKNSNGVTQKASAPTYPSLYSSYHQGCLVNPTGNLPMWSNQTWNNSTWSNQT
 QNIQSWSNHSWNTQTWCTQSWNNQAWNSPFYNCGEESLQSCMQFQPNSPASDLEAALEAAGEGLNVIQQT
 TRYFSTPQTMDLFLNYSMNMQPEDV
 4
 5
 Scale: Hydropathicity.
 6
 7
 Window size: 9
 Scale not normalized.
 8
 9
 Relative weight for window edges: 100 %
 10
 Weight variation model: linear
 11
 12
 13
 Position: 5
 Score: -0.067
 Position: 6
 14
 Score: -0.367
 Position: 7
 Score: 0.144
 15
 16
 Position: 8
 Score: -0.500
 17
 Position: 9
 Score: 0.167
 18
 Position: 10
 Score: 0.656
 19
 Position: 11
 Score: 0.067
 20
 Position: 12
 Score: -0.011
 21
 Position: 13
 Score: 0.078
 22
 Position: 14
 Score: 0.078
 23
 Position: 15
 Score: 0.444
 24
 Position: 16
 Score: -0.411
 25
 Position: 17
 Score: -0.622
 Position: 18
 Score: -0.989
 26
 27
 Position: 19
 Score: -1.389
 28
 Position: 20
 Score: -1.178
 29
 Position: 21
 Score: -1.167
 Score: -1.256
 30
 Position: 22
 31
 Position: 23
 Score: -0.400
```

```
32 | Position: 24 | Score: -0.178
33
 Position: 25
 Score: 0.533
34
 Position: 26
 Score: 0.878
35
 Position: 27
 Score: 0.789
 Position: 28
 Score: 0.489
36
37
 Position: 29
 Score: 0.278
38
 Position: 30
 Score: -0.322
39
 Position: 31
 Score: -0.289
40
 Position: 32
 Score: -0.933
 Position: 33
 Score: -1.522
41
42
 Position: 34
 Score: -1.378
43
 Position: 35
 Score: -1.722
44
 Position: 36
 Score: -1.333
45
 Position: 37
 Score: -1.033
 Score: -0.733
46
 Position: 38
47
 Position: 39
 Score: -0.144
48
 Position: 40
 Score: -0.389
 Position: 41
 Score: -0.000
49
 Score: -0.089
 Position: 42
50
 Position: 43
51
 Score: -0.867
 Position: 44
 Score: -0.556
52
 Position: 45
 Score: -1.156
53
 Score: -1.144
54
 Position: 46
 Position: 47
55
 Score: -0.589
 Position: 48
 Score: -0.878
56
 Position: 49
57
 Score: -0.667
 Position: 50
 Score: -0.456
58
59
 Position: 51
 Score: -0.456
 Position: 52
 Score: -0.189
60
61
 Position: 53
 Score: -0.200
 Position: 54
 Score: 0.400
62
63
 Position: 55
 Score: 0.089
 Position: 56
 Score: 0.044
64
 Position: 57
 Score: 0.556
65
66
 Position: 58
 Score: 1.233
 Score: 0.422
67
 Position: 59
68
 Position: 60
 Score: 0.211
 Score: 0.211
69
 Position: 61
 Score: 0.122
70
 Position: 62
 Score: -0.478
71
 Position: 63
72
 Position: 64
 Score: -0.178
73
 Score: -0.689
 Position: 65
74
 Position: 66
 Score: -1.189
75
 Score: -1.778
 Position: 67
76
 Position: 68
 Score: -1.567
77
 Position: 69
 Score: -1.611
78
 Position: 70
 Score: -1.567
79
 Position: 71
 Score: -1.822
80
 Position: 72
 Score: -1.822
 Position: 73
81
 Score: -1.911
82
 Position:
 74
 Score: -1.900
83
 Position: 75
 Score: -1.911
 Position:
 76
 Score: -1.622
84
85
 Position: 77
 Score: -1.833
86
 Position: 78
 Score: -1.833
```

```
87 Position: 79 Score: -1.878
 88
 Position: 80
 Score: -0.978
 89
 Position: 81
 Score: -0.389
 Position: 82
 90
 Score: -0.644
 Position: 83
 Score: -1.000
 91
 92
 Position: 84
 Score: -1.300
 93
 Position: 85
 Score: -1.889
 94
 Position: 86
 Score: -1.933
 95
 Position: 87
 Score: -1.033
 Position: 88
 Score: -1.122
 96
 97
 Position: 89
 Score: -1.122
 98
 Position: 90
 Score: -1.756
 99
 Position: 91
 Score: -1.756
 Position: 92
 Score: -1.711
100
101
 Position: 93
 Score: -1.756
102
 Position: 94
 Score: -1.444
103
 Position: 95
 Score: -1.511
 Position: 96
 Score: -2.056
104
105
 Position: 97
 Score: -1.411
 Position: 98
 Score: -1.567
106
107
 Position: 99
 Score: -1.222
 Position: 100
108
 Score: -0.878
109
 Position: 101
 Score: -0.567
110
 Position: 102
 Score: -0.522
 Position: 103
 Score: -0.022
111
112
 Position: 104
 Score: 0.756
 Position: 105
 Score: 1.300 (max)
113
 Score: 1.256
 Position: 106
114
115
 Position: 107
 Score: 0.556
116
 Position: 108
 Score: 0.256
 Position: 109
117
 Score: -0.156
 Score: 0.233
118
 Position: 110
119
 Position: 111
 Score: 0.233
 Position: 112
 Score: -0.689
120
121
 Position: 113
 Score: -1.356
 Score: -2.256
122
 Position: 114
 Position: 115
123
 Score: -2.822
124
 Position: 116
 Score: -2.011
125
 Position: 117
 Score: -1.711
 Position: 118
126
 Score: -0.789
 Position: 119
127
 Score: -1.489
 Score: -1.489
128
 Position: 120
 Score: -0.778
129
 Position: 121
130
 Position: 122
 Score: -0.778
131
 Position: 123
 Score: -0.733
132
 Position: 124
 Score: -0.167
133
 Position: 125
 Score: -0.678
134
 Position: 126
 Score: -0.978
135
 Position: 127
 Score: -0.900
136
 Position: 128
 Score: -0.089
137
 Position: 129
 Score: -0.089
138
 Position: 130
 Score: 0.122
139
 Position: 131
 Score: 0.422
140
 Position: 132
 Score: 0.667
 Score: -0.189
141
 Position: 133
```

```
142 Position: 134 Score: -0.489
143
 Position: 135
 Score: 0.367
144
 Position: 136
 Score: -0.567
 Score: -1.067
145
 Position: 137
146
 Position: 138
 Score: -0.778
147
 Position: 139
 Score: -0.889
148
 Position: 140
 Score: -1.189
149
 Position: 141
 Score: -1.433
150
 Position: 142
 Score: -1.389
 Position: 143
 Score: -1.500
151
152
 Position: 144
 Score: -1.756
153
 Position: 145
 Score: -1.756
154
 Position: 146
 Score: -1.767
 Position: 147
 Score: -2.100
155
 Score: -2.911
156
 Position: 148
157
 Position: 149
 Score: -2.622
 Position: 150
 Score: -2.622
158
 Position: 151
 Score: -2.667
159
 Score: -2.556
160
 Position: 152
 Position: 153
161
 Score: -3.156 (min)
 Position: 154
 Score: -2.822
162
163
 Position: 155
 Score: -2.911
 Score: -2.911
164
 Position: 156
165
 Position: 157
 Score: -2.800
 Score: -2.789
 Position: 158
166
167
 Position: 159
 Score: -2.789
 Position: 160
168
 Score: -2.400
 Score: -1.544
169
 Position: 161
170
 Position: 162
 Score: -1.233
171
 Position: 163
 Score: -1.522
 Position: 164
172
 Score: -1.778
173
 Position: 165
 Score: -1.144
 Position: 166
174
 Score: -0.844
 Position: 167
175
 Score: -0.556
176
 Position: 168
 Score: -0.344
177
 Position: 169
 Score: -0.378
 Position: 170
178
 Score: -0.989
179
 Position: 171
 Score: -1.089
180
 Position: 172
 Score: -0.789
 Position: 173
181
 Score: 0.067
182
 Position: 174
 Score: -0.278
183
 Position: 175
 Score: -0.278
 Score: -0.567
184
 Position: 176
185
 Position: 177
 Score: -0.533
186
 Position: 178
 Score: -0.811
187
 Position: 179
 Score: -1.056
 Score: -0.922
188
 Position: 180
189
 Position: 181
 Score: -0.556
190
 Position: 182
 Score: -0.556
191
 Position: 183
 Score: 0.056
192
 Position: 184
 Score: -0.244
193
 Position: 185
 Score: -0.333
194
 Position: 186
 Score: -0.267
195
 Position: 187
 Score: 0.044
196
 Position: 188
 Score: 0.044
```

```
197
 Position: 189 Score: 0.511
198
 Position: 190
 Score: 0.056
199
 Position: 191
 Score: -0.156
200
 Position: 192
 Score: -0.722
201
 Position: 193
 Score: -0.422
202
 Position: 194
 Score: -0.633
 Score: -0.944
203
 Position: 195
204
 Position: 196
 Score: -0.978
205
 Position: 197
 Score: -0.689
206
 Position: 198
 Score: -1.500
207
 Position: 199
 Score: -1.711
208
 Position: 200
 Score: -2.011
209
 Position: 201
 Score: -1.989
210
 Position: 202
 Score: -2.000
211
 Position: 203
 Score: -1.700
212
 Position: 204
 Score: -1.700
213
 Position: 205
 Score: -2.011
214
 Position: 206
 Score: -1.989
 Position: 207
215
 Score: -1.989
 Position: 208
216
 Score: -1.989
 Score: -1.400
 Position: 209
217
 Score: -1.711
218
 Position: 210
219
 Position: 211
 Score: -1.700
220
 Position: 212
 Score: -1.711
 Position: 213
221
 Score: -1.411
 Position: 214
222
 Score: -1.411
223
 Position: 215
 Score: -1.689
 Score: -1.389
224
 Position: 216
225
 Position: 217
 Score: -1.100
226
 Position: 218
 Score: -1.989
 Position: 219
227
 Score: -1.678
228
 Position: 220
 Score: -1.978
229
 Position: 221
 Score: -1.956
 Position: 222
230
 Score: -1.967
231
 Position: 223
 Score: -1.300
 Score: -1.022
232
 Position: 224
233
 Position: 225
 Score: -1.322
234
 Position: 226
 Score: -1.311
 Score: -1.022
235
 Position: 227
 Position: 228
236
 Score: -1.333
237
 Position: 229
 Score: -1.333
 Score: -1.644
238
 Position: 230
 Score: -1.344
239
 Position: 231
240
 Position: 232
 Score: -1.722
241
 Position: 233
 Score: -2.033
 Score: -1.733
242
 Position: 234
243
 Position: 235
 Score: -1.822
244
 Position: 236
 Score: -1.411
245
 Position: 237
 Score: -1.167
246
 Position: 238
 Score: -1.167
247
 Position: 239
 Score: -0.500
248
 Position: 240
 Score: -0.744
249
 Position: 241
 Score: -1.033
250
 Position: 242
 Score: -1.033
251
 Position: 243
 Score: -1.033
```

```
252 Position: 244 Score: -0.433
 Position: 245
253
 Score: -1.133
254
 Position: 246
 Score: -1.078
 Score: -0.411
255
 Position: 247
256
 Position: 248
 Score: -0.478
257
 Position: 249
 Score: -0.822
 Score: -0.122
258
 Position: 250
259
 Position: 251
 Score: -0.122
260
 Position: 252
 Score: -0.211
261
 Position: 253
 Score: -1.022
 Score: -0.722
262
 Position: 254
263
 Position: 255
 Score: -0.811
264
 Position: 256
 Score: -0.889
265
 Position: 257
 Score: -1.189
266
 Position: 258
 Score: -1.189
 Position: 259
267
 Score: -1.078
268
 Position: 260
 Score: -1.078
269
 Position: 261
 Score: -0.700
270
 Position: 262
 Score: -0.111
 Position: 263
 Score: 0.400
271
 Position: 264
 Score: 0.189
272
273
 Position: 265
 Score: 0.189
274
 Position: 266
 Score: 0.478
 Score: 0.822
275
 Position: 267
 Score: 0.011
 Position: 268
276
277
 Position: 269
 Score: 0.356
 Position: 270
 Score: 0.578
278
 Score: -0.011
279
 Position: 271
280
 Position: 272
 Score: 0.033
281
 Position: 273
 Score: 0.922
 Position: 274
 Score: 0.333
282
283
 Position: 275
 Score: -0.256
284
 Position: 276
 Score: -0.289
 Position: 277
 Score: 0.022
285
286
 Position: 278
 Score: -0.433
 Score: -1.000
287
 Position: 279
 Position: 280
288
 Score: -0.300
 Position: 281
289
 Score: -0.856
290
 Position: 282
 Score: -1.433
 Position: 283
291
 Score: -1.222
292
 Position: 284
 Score: -1.222
293
 Position: 285
 Score: -1.222
 Score: -0.933
294
 Position: 286
295
 Position: 287
 Score: -0.822
296
 Position: 288
 Score: -0.256
297
 Position: 289
 Score: -0.256
298
 Position: 290
 Score: 0.256
299
 Position: 291
 Score: -0.056
300
 Position: 292
 Score: -0.022
301
 Position: 293
 Score: 0.278
302
 Position: 294
 Score: 0.567
303
 Position: 295
 Score: -0.033
304
 Position: 296
 Score: 0.567
305
 Position: 297
 Score: -0.244
306
 Position: 298
 Score: -0.733
```

307 Position: 299 Score: -1.544 308 Position: 300 Score: -1.544 309 Position: 301 Score: -0.933

```
ProtScale

User-provided sequence:

MINITERATIVE LETTERATIVE INSPIRED SAMPHINE TYPE SA
```

### ProtScale output for user\_sequence



# 分析甲虫基因 AF422804

分析一个甲虫基因 (AF422804) 编码的蛋白质的化学性质和结构特点 (请注明分析方法名称)。

获取蛋白质序列 [ABC transmembrane transporter white <u>Tribolium castaneum</u>] - <u>Protein - NCBI</u> (<u>nih.gov</u>)

>AAL56571.1 ABC transmembrane transporter white [Tribolium castaneum] MENETEPLLSGVVSQINGNSGDSTSSATSIDLSTFRVPTYGTTSHPTSKLVPPDERITYSWTEINAFANV 3 SPPKTKFFNLIKRKDSPVQKKHILKNVFGVAYPGELLAILGSSGAGKTTLLNTLTFHTSSNLTVSGLRCV NGIPVSSKTLASQSAYVQQDDLFIGTLTVKEHLIFQALLRMDRDISYSQRMARVEEVISDLALSKCQNTP 5 IGILGRIKGISGGEKKRLSFAAEVLTNPKLMFCDEPTSGLDSFMALTVMQVLKEMAMTGKTVICTIHQPS 6 SEVYSMFDKLLLMSEGRTAFLGSPEEAETFFRELEAPCPRNYNPADYFIQLLAIVPEKEESSRQAVNLIC DKFERSNIGVKIALEAATTEREGGYHDIWMSGESFKSPYKASCWAQFKAVLWRSILAVFKEPLLIKVRLL 8 QTLIISLVIGAIYFGQDLNQDGVMNINGVLFVFLTNMTFQNVFAVINVFSGELPVFLQEHRNGMYRPSIY 9 FISKTLAESPIFIIIPVTLTSVCYFMIGLNSHGFRFYIACGIMILVANVAISFGYLISCVSRSVSMALSI 10 GPPLVIPFLLFGGFFLNVSSIPIYFKWLSFLSWFRYGNGALMINQWENVTNIQCPNADLPCPKDGHVILE TFHFSEADFVMDVVMLAVLIVGFRLVAFLALLVKTWRFK



### 等电点是多少? 分子量是多少? 是否含有 pfam 保守结构域? 如有, 列出登录号。

#### **Expasy - ProtParam tool**

粘贴序列并提交。



1 Number of amino acids: 669

2

Molecular weight: 74351.58

```
5
 Theoretical pI: 7.52
6
7 Amino acid composition:
8 Ala (A) 41 6.1%
9
 Arg (R) 25 3.7%
10 Asn (N) 31 4.6%
 Asp (D) 21 3.1%
11
 Cys (C) 12 1.8%
12
13
 Gln (Q) 20 3.0%
14 Glu (E) 35 5.2%
15 Gly (G) 42 6.3%
16 His (H) 10 1.5%
17
 Ile (I) 52 7.8%
18 Leu (L) 72 10.8%
19 Lys (K) 32 4.8%
20 Met (M) 20 3.0%
21 Phe (F) 46 6.9%
22 Pro (P) 32 4.8%
23 Ser (S) 61 9.1%
24 Thr (T) 40 6.0%
25 Trp (W) 8 1.2%
26 Tyr (Y) 18 2.7%
27 Val (V) 51 7.6%
28 Pyl (o) 0 0.0%
29
 Sec (U) 0 0.0%
30
31
 (B) 0
 0.0%
32
 (z) 0
 0.0%
33
 (X) 0
 0.0%
34
35
36 Total number of negatively charged residues (Asp + Glu): 56
37 Total number of positively charged residues (Arg + Lys): 57
38
39 Atomic composition:
40
41 Carbon C
 3394
42 Hydrogen H
 5311
 855
43 Nitrogen N
44 Oxygen
 0
 952
45
 Sulfur
 S
 32
46
47 Formula: C3394H5311N8550952S32
48 Total number of atoms: 10544
49
50 Extinction coefficients:
51
52
 Extinction coefficients are in units of M-1 cm-1, at 280 nm measured in
 water.
53
54 Ext. coefficient 71570
55
 Abs 0.1% (=1 g/l) 0.963, assuming all pairs of Cys residues form cystines
56
57
```

4

```
58 Ext. coefficient 70820
59 Abs 0.1% (=1 g/l) 0.953, assuming all Cys residues are reduced
60
61 Estimated half-life:
62
63 The N-terminal of the sequence considered is M (Met).
64
65 The estimated half-life is: 30 hours (mammalian reticulocytes, in vitro).
 >20 hours (yeast, in vivo).
66
67
 >10 hours (Escherichia coli, in vivo).
68
69
70
 Instability index:
71
 The instability index (II) is computed to be 37.71
72
73
 This classifies the protein as stable.
74
75
76
77 Aliphatic index: 100.52
78
79 Grand average of hydropathicity (GRAVY): 0.259
```

#### 等电点

• Theoretical pI: 7.52

### 分子量

• Molecular weight: 74351.58

### 保守结构域

The Pfam website will be decommissioned in January 2023. <u>Pfam is now hosted by InterPro(xfam.org)</u>

改用 InterProScan InterPro (ebi.ac.uk)



#### • 全部结果:



是否膜蛋白质?如果是膜蛋白质,请注明跨膜结构位点。是否具有 GPI 固定 (anchor) 的蛋白质?

**Services- DTU Health Tech** 

粘贴序列并提交。

# **TMHMM** result

```
AAL56571.1 Length: 669
AAL56571.1 Number of predicted TMHs:
 AAL56571.1 Exp number of AAs in TMHs: 138.42885
AAL56571.1 Exp number, first 60 AAs:
 8e-05
AAL56571.1 Total prob of N-in:
 0.03731
AAL56571. 1
 TMHMM2. 0
 outside
 1
 416
 TMhelix
 417
 435
AAL56571. 1
 TMHMM2. 0
AAL56571. 1
 TMHMM2. 0
 inside
 436
 447
AAL56571. 1
 TMHMM2. 0
 TMhelix 0 4 1
 448
 470
 TMHMM2. 0
 outside
 471
 499
AAL56571. 1
 TMHMM2.0
 TMhelix
 500
 519
AAL56571.1
 525
AAL56571. 1
 TMHMM2. 0
 inside
 520
 TMhelix
 526
 548
AAL56571. 1
 TMHMM2. 0
AAL56571.1
 outside
 549
 562
 TMHMM2. 0
 585
AAL56571. 1
 TMHMM2. 0
 TMhelix
 563
AAL56571. 1
 TMHMM2. 0
 inside
 586
 642
AAL56571. 1
 TMHMM2. 0
 TMhelix
 643
 662
AAL56571. 1
 TMHMM2. 0
 outside
 663
 669
```





- 是膜蛋白, 共有6个跨膜螺旋。
- 以下为跨膜位点

```
AAL56571.1 Length: 669
AAL56571.1 Number of predicted TMHs:
AAL56571.1 Exp number of AAs in TMHs: 138.42885
AAL56571.1 Exp number, first 60 AAs:
 8e-05
 0.03731
AAL56571.1 Total prob of N-in:
AAL56571. 1
 TMHMM2. 0
 outside
 1
 416
AAL56571. 1
 417
 TMHMM2. 0
 TMhelix
 435
AAL56571.1
 TMHMM2. 0
 inside
 436
 447
AAL56571. 1
 TMHMM2. 0
 TMhelix
 448
 470
AAL56571. 1
 TMHMM2. 0
 outside
 471
 499
AAL56571. 1
 TMhelix
 500
 519
 TMHMM2. 0
AAL56571. 1
 TMHMM2. 0
 inside
 520
 525
AAL56571. 1
 TMHMM2. 0
 TMhelix
 526
 548
AAL56571.1
 TMHMM2. 0
 outside
 549
 562
 TMhelix
AAL56571.1
 TMHMM2. 0
 563
 585
 586
AAL56571. 1
 TMHMM2. 0
 inside
 642
AAL56571. 1
 TMHMM2. 0
 TMhelix
 643
 662
AAL56571.1
 TMHMM2. 0
 outside
 663
 669
```

分析 GPI 位点 GPI Modification Site Prediction (imp.ac.at)
 粘贴序列并提交



是无 GPI 固定的蛋白质
 Output of the prediction tool:

```
1
 2
 Query sequence AAL56571.1 (length 669 amino acids):
 MENETEPLLS GVVSQINGNS GDSTSSATSI DLSTFRVPTY GTTSHPTSKL VPPDERITYS
 WTEINAFANV SPPKTKFFNL IKRKDSPVQK KHILKNVFGV AYPGELLAIL GSSGAGKTTL
 LNTLTFHTSS NLTVSGLRCV NGIPVSSKTL ASQSAYVQQD DLFIGTLTVK EHLIFQALLR
 MDRDISYSQR MARVEEVISD LALSKCQNTP IGILGRIKGI SGGEKKRLSF AAEVLTNPKL
 MFCDEPTSGL DSFMALTVMQ VLKEMAMTGK TVICTIHQPS SEVYSMFDKL LLMSEGRTAF
9
 LGSPEEAETF FRELEAPCPR NYNPADYFIQ LLAIVPEKEE SSRQAVNLIC DKFERSNIGV
 KIALEAATTE REGGYHDIWM SGESFKSPYK ASCWAQFKAV LWRSILAVFK EPLLIKVRLL
11
 QTLIISLVIG AIYFGQDLNQ DGVMNINGVL FVFLTNMTFQ NVFAVINVFS GELPVFLQEH
 RNGMYRPSIY FISKTLAESP IFIIIPVTLT SVCYFMIGLN SHGFRFYIAC GIMILVANVA
13
 ISFGYLISCV SRSVSMALSI GPPLVIPFLL FGGFFLNVSS IPIYFKWLSF LSWFRYGNGA
 LMINQWENVT NIQCPNADLP CPKDGHVILE TFHFSEADFV MDVVMLAVLI VGFRLVAFLA
15
 LLVKTWRFK
16
 The site with the best score is shown in black.
17
18
19
20
 Prediction of potential C-terminal GPI-Modification Sites
21
22
 Use of the prediction function for METAZOA
23
24
25
26
 None potential GPI-modification site was found.
 Among all positions checked, sequence position 638 had the best score.
27
28
29
30
 Total Score..... -21.03
 (PValue = 2.419695e-02)
 Components of the Score Function:
31
32
 Profile Score....:
 -9.72
33
 Term 0 Contents and Windows of DE in Region [-11..1].....:
 0.00
```

34	Term 1	Hydrophilicity of N-terminal Region [-111]:	-0.00
35	Term 2	Penalty for low Profile Score in Region [02]:	-4.00
36	Term 3	Volume Limitation [-1+2]	-2.24
37	Term 4	Volume Compensation (-1, 1, 2)	-2.02
38	Term 5	Volume Compensation (-1, 2)	-0.02
39	Term 6	Backbone Flexibility [-12]	0.00
40	Term 7	Propeptide Length	0.00
41	Term 8	Hydrophilicity of Spacer Region [38]	-0.48
42	Term 9	Volume Limitation [38]	-0.74
43	Term 10	Penalty for charged AAs in Spacer Region [310]:	0.00
44	Term 11	Backbone Flexibility [38]	0.00
45	Term 12	Penalty for low Profile Score in Region [10end]:	0.00
46	Term 13	Hydrophobicity of Tail [10end]	-0.34
47	Term 14	Hydrophobicity of Tail [26end]	-1.47
48	Term 15	Even Distribution of Hydrophobicity [9end]:	0.00
49	Term 16	Penalty for polar Windows in Region [10end]:	0.00
50	Term 17	Penalty for SGC-Windows in Region [10end]:	0.00
51	Term 18	LVI Contents [10end]	0.00
52	Term 19	Penalty for FYHW - Sections in Region [10end]:	0.00
53	Term 20	Penalty for Windows with small Volume [10end]:	0.00
54	Profile	independent Score:	-7.31

预测该蛋白序列的二级结构,并简述预测结果 (至少使用两种预测方法,并比较不同方法的预测结果是否一致)。

JPred JPred: A Protein Secondary Structure Prediction Server (dundee.ac.uk)

1. 输入序列并提交。



2. 提示 PDB 数据库中存在已知结构,继续预测。



### 3. 预测结果



MENETEPLLSGVVSQINGNSGDSTSSATSIDLSTFRVPTYGTTSHPTSKLVPPDERITYSWTEINAFA NVSPPKTKFFNLIKRKDSPVQKKHILKNVFGVAYPGELLAILGSSGAGKTTLLNTLTFHTSSNLTVSG LRCVNGIPVSSKTLASQSAYVQQDDLFIGTLTVKEHLIFQALLRMDRDISYSQRMARVEEVISDLALS KCQNTPIGILGRIKGISGGEKKRLSFAAEVLTNPKLMFCDEPTSGLDSFMALTVMQVLKEMAMTGKTV ICTIHQPSSEVYSMFDKLLLMSEGRTAFLGSPEEAETFFRELEAPCPRNYNPADYFIQLLAIVPEKEE SSRQAVNLICDKFERSNIGVKIALEAATTEREGGYHDIWMSGESFKSPYKASCWAQFKAVLWRSILAV FKEPLLIKVRLLQTLIISLVIGAIYFGQDLNQDGVMNINGVLFVFLTNMTFQNVFAVINVFSGELPVF LQEHRNGMYRPSIYFISKTLAESPIFIIIPVTLTSVCYFMIGLNSHGFRFYIACGIMILVANVAISFG YLISCVSRSVSMALSIGPPLVIPFLLFGGFFLNVSSIPIYFKWLSFLSWFRYGNGALMINQWENVTNI QCPNADLPCPKDGHVILETFHFSEADFVMDVVMLAVLIVGFRLVAFLALLVKTWRFK \_\_\_\_\_\_ --HHHHHHHHHHHHH----EEEE-----HHHHHHHHHHHHHHHH---EEEEEE----HHHHHHH-EEEEE----EEEEE-----HHHHH-----------НННННННННННННННННННННН-----ННННННН-----

- $\circ$  红色的为  $\alpha$  Helix
- $\circ$  绿色的为  $\beta$  Sheet
- 。 其他未无规则卷曲
- $\circ$   $\alpha$  Helix 较多

#### PSIRPRED PSIPRED Workbench (ucl.ac.uk)

1. 输入序列后提交

(7 TOTALD ORIGIN	☐ DeepMetaPSICOV 1.0 (Structural Contact Prediction)	☐ MEMPACK (TM Topology and Helix Packing)	
	Fold Recognition		
	GenTHREADER (Rapid Fold Recognition)	DDomTHREADER (Protein Domain Fold Recognition)	
	Structure Modelling		
	☐ Bioserf 2.0 (Automated Homology Modelling)	☐ Domserf 2.1 (Automated Domain Homology Modelling)	
	DMPfold 1.0 Fast Mode (Protein Structure Prediction)		
	Domain Prediction		
	☐ DomPred (Protein Domain Prediction)		
	Function Prediction		
	☐ FFPred 3 (Eurkaryotic Function Prediction)		
	Help Submission details		
	Submission details  Protein Sequence		
	FISKTLAESPIFIIIPVTLTSVCYFMIGLNSHGFRFYIACGIMILVA GPPLVIPFLLFGGFFLNVSSIPIYFKWLSFLSWFRYGNGALMI TFHFSEADFVMDVVMLAVLIVGFRLVAFLALLVKTWRFK	NIVAISFGYLISCVSRSVSMALSI NOWENVTNIQCPNADLPCPKDGHVILE	-
	Help If you wish to test these services follow this link to retrieve a test fasta sequ	rence.	
	Job name		
	AAL56571.1		
	Email (optional)		
	zidongzh@outlook.com		
	Reset Submit		
			Copyright © 2022.

#### 2. 预测结果



o Helix 较多

#### **PredictProtein Welcome to PredictProtein!**

1. 网站下线



使用 Swiss-Model 预测该蛋白质序列的三级结构,并简述预测结果;该蛋白在AlphaFoldDB 中是否有预测结果?如有,简述预测结果。

#### **SWISS-MODEL Interactive Workspace (expasy.org)**

1. 输入序列并提交。



#### 2. 预测结果





### SWISS-MODLE 结果分析

● 模板一致度较低,为 27.18%

• GMQE: 可信度为 0.55

# AAL56571.1 Created: today at 18:31



**Alpha Fold** 

在 UniProt 中找到该蛋白 w - ABC transmembrane transporter white - Tribolium castaneum (Red flour beetle) | UniProtKB | UniProt



1. 在 AlphaFold 中打开



### Alpha Fold 结果分析

• 不同区域的可信度通过不同de



# **Nanog**

- 亚细胞定位
  - Deeploc 结果最清晰明了。
- 是否糖蛋白
  - 。 GlycoEP 相比其他两种方法运行较慢。提交此实验报告时未受到结果邮件。

# 分析甲虫基因 AF422804

- 二级结构预测
  - o PSIRPRED 预测结果更直观。
  - o PredictProtein 网站下线
- 三级结构预测
  - 不知道怎么在 Alpha Fold DB 中直接搜索该蛋白,最后通过 UniProt 搜索转到 Alpha Fold 中。