14 The Second Kleene Algebra and Function Realizability

14.1 The second Kleene algebra

Definition 14.1. A partial function $F : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$ is *continuous* if for all $f \in \mathbb{N}^{\mathbb{N}}$ such that $F(f) \downarrow$ there is $n \in \mathbb{N}$ such that for all $g \in \mathbb{N}^{\mathbb{N}}$, if g(i) = f(i) for i < n, then $F(g) \downarrow$ and F(g) = F(f).

A partial function $F: \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ is *continuous* if for all n the partial function sending f to F(f)(n) is continuous.

Note that every continuous function $\mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ is in particular a continuous function.

The key idea behind the second Kleene algebra is that we can encode partial continuous functions $\mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ as elements of $\mathbb{N}^{\mathbb{N}}$. We first show how to encode partial continuous functions $\mathbb{N}^{\mathbb{N}} \to \mathbb{N}$. Write $2^{<\omega}$ for the set of finite binary sequences. Note that we can view any function $f: 2^{<\omega} \to \mathbb{N} + \{\bot\}$ as a continuous partial function function $F: \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$ defined by

$$F(g) := \begin{cases} f(g(0), \dots, g(n-1)) & f(g(0), \dots, g(n-1)) \in \mathbb{N} \text{ and } n \text{ is least such undefined} \\ & \text{otherwise} \end{cases}$$

This in fact defines a surjective function from $(\mathbb{N}+\{\bot\})^{2^{<\omega}}$ to continuous partial functions $\mathbb{N}^{\mathbb{N}} \to \mathbb{N}$. Given continuous $F: \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$, we can define $f: 2^{<\omega} \to \mathbb{N}+\{\bot\}$ on (a_0,\ldots,a_{n-1}) as follows. If F(g)=F(h) whenever $g(i)=h(i)=a_i$ for i< n, then we take $f(a_0,\ldots,a_{n-1}):=F(g)$, and otherwise we take $f(a_0,\ldots,a_{n-1})$ to be \bot . We say f is an associate of the function F.

However, we have a canonical bijection between $(\mathbb{N} + \{\bot\})^{2^{<\omega}}$ and $\mathbb{N}^{\mathbb{N}}$ by composing with bijections $2^{<\omega} \cong \mathbb{N}$ and $\mathbb{N} + \{\bot\} \cong \mathbb{N}$. This is one way of understanding the explicit definition below.

Definition 14.2. We define a function | from $\mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}}$ to partial functions $\mathbb{N} \to \mathbb{N}$. We define f|g(n) to be $f(\langle n, [g(0), \ldots, g(m-1)] \rangle) - 1$ if m is the least such number with $f(\langle n, [g(0), \ldots, g(m-1)] \rangle) > 0$. If there is no such m, then f|g(n) is undefined. We then convert this into a partial binary operator giving a partial applicative structure on $\mathbb{N}^{\mathbb{N}}$ by

$$f \cdot g(n) := \begin{cases} f|g & f|g \text{ is total} \\ \text{undefined} & \text{otherwise} \end{cases}$$

The partial applicative structure has elements \mathbf{s} and \mathbf{k} making it a partial combinatory algebra, that we call the second Kleene algebra, \mathcal{K}_2 .

We have a canonical way to make \mathcal{K}_2 into an extended pca.

We define 0 to be the function constantly equal to 0. Note that the function sending $f: \mathbb{N} \to \mathbb{N}$ to the function $\lambda n.f(n) + 1$ is evidently continuous, and so has an associate, S that we use for the successor combinator. Note that for each n, the numeral \underline{n} is precisely the constant function $\lambda x.n$.

14.2 Function realizability

We refer to realizability over \mathcal{K}_2 as function realizability. We will show two key properties of function realizability: that every function $\mathbb{N}^\mathbb{N} \to \mathbb{N}$ is continuous, and that we have the axiom of choice $\mathbf{AC}^{N \to N,N}$. These two axioms are sometimes combined together into a single axiom called *continuous choice*, which states that whenever $\forall f^{N \to N} \exists x^N \varphi(f,x)$ there exists a continuous function $F:(N \to N) \to N$ such that for all $f \in \mathbb{N}^\mathbb{N}$ we have $\varphi(f,F(f))$. However, we will consider them separately. We first look at the axiom of choice.

Note that we have a continuous way to take a function $f: \mathbb{N} \to \mathbb{N}$ and evaluate it: i.e. return the numeral $\underline{f(n)}$ given f and \underline{n} as input. We can also go the other way, and given an associate \overline{f} for a continuous function F such that $F(\underline{n})$ is a numeral for all n, we can find, continuously in f, a function $g: \mathbb{N} \to \mathbb{N}$ such that F(N) = g(n).

Using this, we can show the following for realizability models on \mathcal{K}_2 .

Theorem 14.3. $\mathbf{AC}^{N \to N, N \to N}$ holds in the standard extensional realizability model of \mathbf{HA}_{ω} on \mathcal{K}_2 .

Definition 14.4. Let $F: \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$. A modulus of convergence function is a function $M: \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$ such that if $F(g) \downarrow$, then also $M(g) \downarrow$ and for all $h: \mathbb{N} \to \mathbb{N}$ if h(i) = g(i) for i < M(g) then $F(h) \downarrow$ and F(h) = F(g).

Note that assuming $\mathbf{AC}^{N \to N,N}$, F is continuous if and only if it admits a modulus of convergence function. In fact we have the following theorem.

Theorem 14.5. We can find $m \in \mathcal{K}_2$ with the following property. For all f, if $F: \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ is the partial continuous function that f represents, then mf represents the modulus of convergence function for F.

Using this result we can show the following for realizability models.

Theorem 14.6. In both standard realizabliity models of \mathbf{HA}_{ω} on \mathcal{K}_2 , every function $\mathbb{N}^{\mathbb{N}} \to \mathbb{N}$ is continuous.

Moreover, in the intensional model, there is a function $m : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ such that for all f, m(f) is a modulus of convergence function for f.