Нижегородский государственный университет им. Н.И.Лобачевского

Факультет Вычислительной математики и кибернетики

Параллельные численные методы

Метод Гаусса

При поддержке компании Intel

Баркалов К.А., Кафедра математического обеспечения ЭВМ

Содержание

- □ Постановка задачи
- □ Нормы векторов и матриц
- □ Решение треугольных систем
- Метод Гаусса для систем общего вида
- Связь метода Гаусса и LU-разложения
- □ Вычислительная погрешность
- Распараллеливание метода
- □ Оценка эффективности
- Результаты экспериментов

Постановка задачи

 \square Рассмотрим систему из n линейных алгебраических уравнений вида

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\dots$$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n$$

- lacktriangle В матричном виде система может быть представлена как Ax = b
- \Box $A=(a_{ij})$ есть вещественная матрица размера $n \times n$; $b \bowtie x$ вектора из n элементов.
- □ Будем искать значения вектора неизвестных *x*, при которых выполняются все уравнения системы.

- Пинейное пространство называют *нормированным*, если каждому его вектору x поставлено в соответствие число, называемое *нормой* и обозначаемое как ||x||.
- □ Аксиомы нормированного пространства:
- 1. $|x| \ge 0$, причем $||x|| = 0 \iff x = 0$.
- $2. ||x + y|| \le ||x|| + ||y||$
- $3. \quad \|\alpha x\| \leq |\alpha| \|x\|$
- Пример нормы вектора

$$||x||_p = (|x_1|^p + |x_2|^p + ... + |x_n|^p)^{1/p}$$

где $p \ge 1$.

□ При p=1,2 и при p→∞ получаем соответственно манхеттенскую $||x||_1$, евклидову $||x||_2$ и чебышеву $||x||_\infty$ нормы

$$||x||_{1} = |x_{1}| + |x_{2}| + \dots + |x_{n}|$$

$$||x||_{2} = \sqrt{|x_{1}|^{2} + |x_{2}|^{2} + \dots + |x_{n}|^{2}} = \sqrt{x^{T}x}$$

$$||x||_{\infty} = \max\{|x_{1}|, |x_{2}|, \dots, |x_{n}|\}$$

- Для нормы в пространстве матриц требуют также выполнения свойства
- 4. $||AB|| \le ||A|| ||B||$

- □ Пусть A матрица, x вектор. Нормы согласованы, если $||Ax|| \le ||A|| \cdot ||x||$
- □ Матричная норма подчиненная норме вектора, если

$$||A|| = \sup_{x \neq 0} \frac{||Ax||}{||x||}$$

- Подчиненная норма всегда согласована со своей векторной нормой.
- □ Матричная норма, подчиненная векторной норме $||x||_p$, обозначается $||A||_p$

□ Нормы $||A||_1$, $||A||_2$, $||A||_\infty$ называются манхэттенской, спектральной и чебышевской нормами. Известно, что

$$||A||_{1} = \max_{j} \left\{ \sum_{i=1}^{n} |a_{ij}| \right\} \qquad ||A||_{2} = \max_{j} \left\{ \sqrt{\lambda_{j}(A^{T}A)} \right\} \quad ||A||_{\infty} = \max_{i} \left\{ \sum_{j=1}^{n} |a_{ij}| \right\}$$

- oxdot Для симметричной матрицы $\left\|A
 ight\|_2 = \max_i \left\{ \lambda_j(A) \right\}$
- \square Норма $||A||_F$ называется фробениусовской нормой

$$||A||_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^n a_{ij}^2}$$

 \Box Нормы $||x||_2$ и $||A||_F$ согласованы.

Число обусловленности матрицы

 \Box Число обусловленности невырожденной матрицы A $\operatorname{cond} A = ||A|| \ ||A^{-1}||$

□ Если матричная норма подчинена векторной, то

$$\operatorname{cond} A = \sup_{x \neq 0} \frac{\|Ax\|}{\|x\|} / \inf_{x \neq 0} \frac{\|Ax\|}{\|x\|}$$

□ Для спектрального числа обусловленности справедливо

$$\operatorname{cond}_{2} A = \sqrt{\frac{\max_{j} \lambda_{j}(A^{T} A)}{\min_{j} \lambda_{j}(A^{T} A)}}$$

 \square Для симметричной матрицы A получаем $\operatorname{cond}_2 A = \frac{\max\limits_{j} \left| \lambda_j(A) \right|}{\min\limits_{j} \left| \lambda_j(A) \right|}$

Треугольные матрицы

□ Частный случай: верхняя (нижняя) треугольная матрица.

$$a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n = b_1$$
 $a_{22}x_2 + ... + a_{2n}x_n = b_2$
 $...$
 $a_{nn}x_n = b_n$
 $Ux = b$

□ Найдем решение системы обратной подстановкой

$$x_n = b_n / a_{nn}$$
 $x_i = \left(c_i - \sum_{j=i+1}^n a_{ij} x_j\right) / a_{ii}$, $i=n-1,...,1$.

 \beth Обратная подстановка требует $n^2 + O(n)$ операций.

Случай нескольких правых частей

- \square UX=B, где $U\in R^{n\times n}$, $B\in R^{n\times m}$, $X\in R^{n\times m}$, n>m.

- \square Исключим X_N из всех блочных уравнений от N-1 до 1
- и т.д.

□ Разобьем систему на блоки размера
$$m \times m$$
.

□ Т.к. U_{NN} — треугольная матрица, то решим систему $U_{NN}X_N = B_N$ для всех неизвестных из X_N .

 $\begin{bmatrix} U_{11} & U_{12} & \dots & U_{1N} \\ 0 & U_{22} & \dots & U_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & U_{NN} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_N \end{bmatrix} = \begin{bmatrix} B_1 \\ B_2 \\ \vdots \\ B_N \end{bmatrix}$

$$\begin{bmatrix} U_{11} & U_{12} & \dots & U_{1N-1} \\ 0 & U_{22} & \dots & U_{2N-1} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & U_{N-1N-1} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_{N-1} \end{bmatrix} = \begin{bmatrix} B_1 - U_{1N} X_N \\ B_2 - U_{2N} X_N \\ \vdots \\ B_{N-1} - U_{N-1N} X_N \end{bmatrix}$$

Случай нескольких правых частей

- □ Общее число операций n^2 .
- □ Определим долю матричных умножений в общей трудоемкости алгоритма
- □ Пусть *n=rN*;
- □ N обратных подстановок для решения треугольных систем размера m×m Nr² операций;
- □ Долю матричных операций можно оценить как

$$1 - \frac{Nr^2}{n^2} = 1 - \frac{1}{N}$$

Погрешность решения

 \square Известно, что решение, полученное на компьютере с машинной точностью ε_m , будет являться точным решением возмущенной системы

$$(U+\Delta U)x=b,$$

причем норма матрицы возмущения будет

$$||\Delta U|| \le n\varepsilon_m ||U|| + O(\varepsilon_m^2)$$

 Далее рассмотрим алгоритм Гаусса для систем общего вида

$$Ax=b$$

Метод Гаусса

 Основная идея: приведение матрицы А к верхнему треугольному виду с помощью эквивалентных преобразований

$$Ux=c \qquad U = \begin{pmatrix} u_{1,1} & u_{1,2} & \dots & u_{1,n} \\ 0 & u_{2,2} & \dots & u_{2,n} \\ & & \dots & \\ 0 & 0 & \dots & u_{n,n} \end{pmatrix}$$

- □ Эквивалентные преобразования:
 - умножение уравнения на константу;
 - прибавление к уравнению другого уравнения.

Метод Гаусса – прямой ход

- □ На итерации i, $1 \le i \le n$, метода производится исключение неизвестной i для всех уравнений с номерами k, $i < k \le n$. Для этого из этих уравнений осуществляется вычитание строки i, умноженной на константу (a_{ki}/a_{ii}) , чтобы результирующий коэффициент при неизвестной x_i в строках оказался нулевым.
- □ Все необходимые вычисления определяются при помощи соотношений:

$$a_{kj} = a_{kj} - \mu_{ki} \cdot a_{ij},$$

 $b_{k} = b_{k} - \mu_{ki} \cdot b_{i},$ $i \le j \le n, i < k \le n, 1 \le i < n$

где $\mu_{ki} = a_{ki} / a_{ii}$ - множители Гаусса.

Метод Гаусса

□ Общая схема состояния данных на *i*-ой итерации прямого хода алгоритма.

Метод Гаусса – обратный ход

- После приведения матрицы коэффициентов к треугольному виду становится возможным определение значений неизвестных:
- \square Из последнего уравнения преобразованной системы может быть вычислено значение переменной x_n ,
- \square Из предпоследнего уравнения становится возможным определение переменной x_{n-1} , и т.д.
- В общем виде, выполняемые вычисления при обратном ходе метода Гаусса могут быть представлены при помощи соотношений:

$$x_n = c_n / u_{nn}, \quad x_i = \left(c_i - \sum_{j=i+1}^n u_{ij} x_j\right) / u_{ii}, \quad i=n-1,...,1$$

LU-разложение матрицы

- \Box *LU*-разложение представление матрицы *A* в виде A = LU,
- □ где *L* нижняя треугольная матрица с диагональными элементами, равными единице, а *U* верхняя треугольная матрица с ненулевыми диагональными элементами.
- □ Известно, что *LU*-разложение существует и единственно, если главные миноры матрицы *A* отличны от нуля.
- □ Алгоритм *LU*-разложения тесно связан с методом исключения Гаусса

Связь LU-разложения и метода Гаусса

□ Преобразования *k*-го шага метода Гаусса равносильны домножению системы слева на матрицу

Зная матрицы $M^{(i)}$, можно записать матрицу U и вектор c как

$$U=M^{(n-1)}M^{(n-2)}...M^{(1)}A,$$
 $c=M^{(n-1)}M^{(n-2)}...M^{(1)}b.$

Связь LU-разложения и метода Гаусса

 \square Обозначим $L^{-1}=M^{(n-1)}M^{(n-2)}...M^{(1)}$. Можно непосредственно проверить, что

$$L = \begin{bmatrix} 1 & & & & \\ \mu_{21} & 1 & & & \\ \vdots & \vdots & \ddots & & \\ \mu_{n-1,1} & \mu_{n-1,2} & \cdots & 1 & \\ \mu_{n,1} & \mu_{n,2} & \cdots & \mu_{n,n-1} & 1 \end{bmatrix}$$

- \square Отсюда получаем A=LU (за $\frac{2}{3}n^3+O(n^2)$ пераций)
- □ Обратный ход решаем две треугольные системы

$$Ly=b$$
, $Ux=y$,

за $O(n^2)$ операций.

Выбор ведущего элемента

□ Описанный алгоритм применим, только если ведущие элементы отличны от нуля, т.е.

$$a_{ii}\neq 0$$

 \square Рассмотрим k-й шаг алгоритма. Пусть

$$s = \arg\max\{|a_{kk}|, |a_{k+1,k}|, ..., |a_{n,k}|\}$$

- \square Тогда переставим *s*-ю и *k*-ю строки матрицы (выбор ведущего элемента по столбцу).
- □ В итоге получаем систему

$$PAx=Pb$$
,

где Р – матрица перестановки.

Погрешность решения

Пусть выполнено LU-разложение матрицы на компьютере

$$A + \delta A = LU$$
,

где $\delta\!A$ — эквивалентное возмущение.

Известно, что выполняется неравенство

$$\|\delta A\| \le n\varepsilon_m \|L\| \|U\| + O(\varepsilon_m^2)$$

При выполнении обратного хода получаем еще одно возмущение

$$(A+\delta A+\Delta A) x=b$$

Можно показать, что

$$\|\delta A + \Delta A\| \le 3n\varepsilon_m \|L\| \|U\| + O(\varepsilon_m^2)$$

Параллельный алгоритм

- □ Все вычисления сводятся к однотипным вычислительным операциям над строками матрицы коэффициентов системы линейных уравнений.
- □ В основу параллельной реализации алгоритма может быть положен принцип распараллеливания по данным,
- □ В качестве базовой подзадачи примем все вычисления, связанные с обработкой одной строки матрицы А и соответствующего элемента вектора b.

Параллельный алгоритм

- □ Размер матрицы больше, чем число ядер (n>>p)
- Базовые подзадачи можно укрупнить, объединив в рамках одной подзадачи несколько строк матрицы.

 Использование циклического способа формирования полос позволяет обеспечить лучшую балансировку вычислительной нагрузки между подзадачами

Оценка эффективности

□ Время работы последовательного алгоритма

$$T_1 = \frac{2}{3}n^3\tau$$

где $\tau-$ время выполнения одно операции.

□ Время работы параллельного алгоритма

$$T_p = \frac{2n^3\tau}{3p}$$

 С учетом накладных расходов δ на создание/закрытие параллельной секции

$$T_p = \frac{2n^3\tau}{3p} + 3(n-1)\delta$$

Результаты экспериментов

□ Ускорение по отношению к последовательной версии

Результаты экспериментов

□ Ускорение по отношению к однопоточной версии

Наблюдаем «эффект кэш-памяти»

Блочное LU-разложение

- □ Недостатком изложенного тривиального алгоритма является то, что его схема плохо соответствует правилам использования кэш-памяти компьютера.
- □ В языке С размещение данных в памяти осуществляется по строкам матрицы A.
- □ В рассмотренном нами алгоритме вычисления проводятся по столбцам, и это приводит к низкой эффективности использования кэша.
- □ Возможный способ улучшения ситуации укрупнение вычислительных операций, приводящее к последовательной обработке некоторых прямоугольных подматриц матрицы А.

Блочный алгоритм

- □ Разложение осуществляется путем замещения исходной матрицы A на искомых компоненты L и U по блокам.
- □ Пусть *r* размер блока, тогда

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} r \qquad L = \begin{bmatrix} L_{11} & 0 \\ L_{21} & L_{22} \end{bmatrix} n - r \qquad U = \begin{bmatrix} U_{11} & U_{12} \\ 0 & U_{22} \end{bmatrix} r \\ r & n - r \qquad r & n - r \qquad r & n - r$$

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} L_{11} & 0 \\ L_{21} & L_{22} \end{bmatrix} \cdot \begin{bmatrix} U_{11} & U_{12} \\ 0 & U_{22} \end{bmatrix} = \begin{bmatrix} L_{11}U_{11} & L_{11}U_{12} \\ L_{21}U_{11} & L_{21}U_{12} + L_{22}U_{22} \end{bmatrix}$$

Блочный алгоритм

- \square Получаем $A_{11} = L_{11}U_{11}$ $L_{11}U_{12} = A_{12}$ $L_{21}U_{11} = A_{21}$
- \square Разложение L_{11} , U_{11} может быть получено с помощью стандартного алгоритма.
- \square Блоки U_{12} и L_{21} могут быть найдены решением треугольных систем с несколькими правыми частями.
- \square Далее вычисляем редуцированную матрицу \widetilde{A}_{22} как $\widetilde{A}_{22} = A_{22} L_{21} U_{12} = L_{22} U_{22}$
- \square LU-разложение матрицы \widetilde{A}_{22} совпадает с искомыми блоками L_{22}, U_{22} для исходной матрицы A, и для его нахождения можно применить описанный алгоритм рекурсивно.

Блочный алгоритм

Applications of Parallel Computers, UC Berkeley, Computer Science Division, www.cs.berkeley.edu/~demmel/cs267_Spr10

Оценка трудоемкости

□ Данная вычислительная процедура включает в себя $2n^3/3 + O(n^2)$

операций, как и другие возможные реализации разложения.

 Вклад матричных операций в общее число действий аппроксимируется величиной

$$1-1/N^2$$

 При правильном выборе размера блока матричные операции (которые эффективно распараллеливаются) будут составлять большую часть вычислений.

Распараллеливание блочного алгоритма

- Распараллеливание возможно для следующих вычислительных процедур:
 - вычисление блоков L_{11} U_{11} (параллельная версия стандартного алгоритма);
 - вычисление блоков L_{21} U_{12} (параллельное решение систем линейных уравнений с треугольной матрицей и разными правыми частями);
 - выполнение матричного умножения при вычислении редуцированной матрицы \widetilde{A}_{22}
- Эффективность параллельного блочного алгоритма будет определяться эффективностью распараллеливания матричных операций.

Результаты экспериментов

□ Время работы при разных размерах блока

Результаты экспериментов

□ Ускорение по отношению к однопоточной программе

□ Линейная масштабируемость!

Литература

- 1. Самарский А.А., Гулин А.В. Численные методы. М.: Наука, 1989.
- Воеводин В.В. Вычислительные основы линейной алгебры. – М.: Наука, 1977.
- Голуб Дж., Ван Лоун Ч. Матричные вычисления. М.: Мир, 1999.
- 4. Белов С.А., Золотых Н.Ю. Численные методы линейной алгебры. Н.Новгород, Изд-во ННГУ, 2005.

Ресурсы сети Интернет

- Интернет-университет суперкомпьютерных технологий.
 [http://www.hpcu.ru].
- Intel Math Kernel Library Reference Manual.
 [http://software.intel.com/sites/products/documentation/hpc/mkl/mklman.pdf].

Авторский коллектив

- □ Баркалов Константин Александрович, к.ф.-м.н., старший преподаватель кафедры Математического обеспечения ЭВМ факультета ВМК ННГУ. barkalov@fup.unn.ru
- Коды учебных программ разработаны Маловой Анной и Сафоновой Яной

