

Recap from Week 04

Forecast for Week 05

Learning Outcomes for this week:

- Understand the bias-variance tradeoff
- Understand why overfitting occurs: the role of model complexity and the sampled dataset
- Apply bias and variance decomposition in simple scenarios

Bias

The difference between the average prediction and the true value.

Variance

The variability of the model prediction, for given data. Tells us spread of our data.

NUS CS3244: Machine Learning

CC BY 4.0 Drawn by Min-Yen Kan

Regressing the sine function

$$f:[-1,1]\to\mathbb{R}$$

Only two training examples! m=2

Two models used for learning:

$$\overset{\vee}{\bullet} \mathcal{H}_1: h(x) = \theta_1 x + \theta_0$$

$$\overset{\mathbf{V}}{\diamond} \mathcal{H}_0: h(x) = \theta_0$$

Your turn Q1: Which is better, \mathcal{H}_0 or \mathcal{H}_1 ?

$$f(x) = \sin(\pi x)$$

Approximation – \mathcal{H}_0 versus \mathcal{H}_1

Use the full power of the model

where — and — are the $\overline{h}(x)$ of each \mathcal{H} .

Learning – \mathcal{H}_0 versus \mathcal{H}_1

Bias & variance - \mathcal{H}_0 versus \mathcal{H}_1

And the winner is ...

Bias = 0.50

Var = ?

Bias = 0.21

$$Var =$$
?

Lesson learned

Match the 'model complexity' to the

data resources, not to the target complexity.

Learning Curves

Plot expected L_{test} and L_{train} ...

 \dots as we vary size m

Expected test cost $\mathbb{E}_{\mathcal{D}}[L_{test}(f_{\mathcal{D}})]$

Expected training cost $\mathbb{E}_{\mathcal{D}}[L_{train}(f_{\mathcal{D}})]$

Simple versus Complex Models

Simple Model

Complex Model

Bias-Variance on a Curve

Overfitting, Illustrated

Simple target function 5 data points –

slightly noisy

4th-order polynomial fit

 $L_{train} = 0$ but L_{test} is huge

Overfitting, Illustrated

Simple target function

5 data points —

slightly noisy

4th-order polynomial fit

 $L_{train} = 0$ but L_{test} is huge

The culprit

Overfitting:

"Fitting the data more than is warranted"

Culprit: fitting the noise.

Not just useless,

but harmful

In-Lecture Activity

2nd versus 0 10th order polynomials

In Zoom breakout or physical subgroups, discuss and react 🔊 🔊 🚉 (5 mins): Pick your model of choice for each scenario. In each scenario, you are given 15 data points. Justify your choice.

Q2: 10th-order target + noise

Q3: 50th order target, noiseless

NUS CS3244: Machine Learning

Two fits for each function

Noisy low-order target

	2 nd Order	
L_{train}	0.050	
L_{test}	0.127	

Noiseless high-order target

	2 nd Order	
L_{train}	0.029	
L_{test}	0.120	

Approximation—generalization tradeoff

Small L_{test} : good approximation of f on unseen test data

More complex $\mathcal{H} \to \mathrm{better}$ chance of approximating f

Less complex $\mathcal{H} \to \mathsf{better}$ chance of **generalizing** on test data

$$\mathsf{Ideal}\ \mathcal{H} = \{f\} \qquad \qquad \mathsf{Good}\ \mathsf{luck}$$
 with that!

Occam's Razor

CORE PRINCIPLES IN RESEARCH

OCCAM'S RAZOR

"WHEN FACED WITH TWO POSSIBLE EXPLANATIONS, THE SIMPLER OF THE TWO IS THE ONE MOST LIKELY TO BE TRUE."

OCCAM'S PROFESSOR

"WHEN FACED WITH TWO POSSIBLE WAYS OF DOING SOMETHING, THE MORE COMPLICATED ONE IS THE ONE YOUR PROFESSOR WILL MOST LIKELY ASK YOU TO DO."

WWW.PHDCOMICS.COM

"Simpler is better"

Formalized as Minimum

Description Length (MDL)

The shortest description of the data is the best model (related to Entropy)

Last Week's Assigned Task

Post a 1-2 sentence answer to the topic in your tutorial group: $\#tg-\underline{xx}$

Describe kNN or decision trees with respect to variance.

Pre-Lecture Activity from last week

The kNN model is very susceptible to variance in the training data especially for low values of k since the algorithm only considers the nearest datapoints, it is easily affected by variance in the region, not being able to recognise the bigger trend to be able to generalise well. While the impact of variance can be reduced by increasing the value of k, the tradeoff here will be that the model will less likely to draw a boundary when necessary.

kNN: As discussed in previous lectures, there seems to be an inverse correlation with the value of k and the variance of the model. For instance, a low value of k e.g. 1-NN results in a model which has very high variance, meaning it performs the best on training data but does not generalize well to test data.

for kNN with small k, the variance tends to be high; the reverse happens to larger k. This is because relying on fewer neighbors is more risky and may give high variance in results

The variance of kNN depends on the value of K chosen. If K is 1, the model essentially remembers the training data resulting in overfitting since it would not be able to generalise to new data, hence, variance will be high. If K becomes bigger, the model would have to consider more neighbours and thus better able to discover underlying pattern that is generalisable to new data, hence, resulting in lower variance. (edited)

For kNN, a model with high variance pays a lot of attention to training data. Hence when k increases, variance decreases as it will look for more points near it and generalize it more while compared to k=1 where it will only look for the nearest point and increases its sensitivity to training data.

ln k NN

Model free: Data completely dictates the model

Higher k lowers the dependence of the model on a particular data point, makes model more robust and lowers variance

27

Pre-Lecture Activity from last week

A decision tree which is not pruned will be very prone to overfitting as noises or small changes to the input data can cause very different outputs. Hence, causing a high variance in its output prediction.

DTs are prone to overfitting when are not pruned, leading to high variance as the noise from the dataset is captured.

For decision trees, it seems that they are prone to overfitting with high variance. This is because as we build deeper, it will fit the training data better, but generalizes less to new test data. To reduce this variance, we can perform pre-pruning to stop growing the tree earlier before it perfectly classifies the training set or perform post-pruning according to an optimization metric.

One factor that may affect the variance of decision trees is the tree depth. As tree depth increases, we may be overfitting, with the data spaces being segmented into smaller and smaller areas. This represents higher variance. Source

saas.berkeley.edu

SAAS - Education Committee

SAAS is here to provide Berkeley undergraduates interested in Statistics with resources and a statistics-driven community

...In Decision Trees

Pruning discards detailed tests that may use criteria nonessential for classification in test data.

Before After

...In Linear Models

We just did this!

Each additional parameter θ_i adds a degree of freedom in the model.

NUS CS3244: Machine Learning

...In SVM

The SVM determines its separating hyperplane by virtue of its support vectors.

of support vectors

complexity
of the model

... in Ensembles

We have T reports $h_1, h_2, ..., h_T$ predicting whether a stock will go up as h(x).

We can:

- 1. Select the most trustworthy of them based on their usual performance Training performance: $h(x) = h_{t^*}(x)$ with $t^* = argmin_{t \in \{1,2,...,T\}} L_{train}(h_t^-)$
- 2. Let each report have a vote Uniform Vote: $h(x) = \text{sign}(\sum_{t=1}^{T} 1 \cdot h_t(x))$
- 3. Weight the reports non-uniformly Weighted Vote: $h(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t \cdot h_t(x) \right)$ where $\alpha_t \ge 0$.
- 4. Combine the predictions conditionally This is decision trees, let's finish it up now!

Key: component hypotheses are **Diverse**.

Ensembling diverse h generalizes better.

fact: Decision trees have a native version: Random forests.

Quantifying the tradeoff

Decomposing L_{test} into

- 1. How well ${\mathcal H}$ can approximate f overall
- 2. How well we can zoom in on a good $h_{\theta} \in \mathcal{H}$

Applies to real-valued targets and uses squared error

There is an equivalent binary version through the lens of VC analyses (related to SVM)

Recap: Expected Value

We'll need to reason about values of data, irrespective of particular samples, so we'll need to work with expected values of random variable.

Expected Value: Average over all possible outcome of a random variable X.

$$\mathbb{E}[X] = \sum_{x \in X} x \Pr[X = x]$$

Example

Let X be the outcome of a fair dice roll. Then the expected value is $\mathbb{E}[X] = \frac{1}{6}(1+2+3+4+5+6) = 3.5$.

Variance

Intuition

Quantify how much deviation from expected value.

$$Var[x] = \mathbb{E}[(x - \mathbb{E}[x])^2]$$

Example

Let x be the outcome of a fair dice roll. Then the variance is $Var[x] = \frac{1}{6} \left((1-3.5)^2 + \dots + (6-3.5)^2 \right) = \frac{35}{12}$.

Some Terminology

- $\mathbb{E}_{x}[z(x)] \equiv$ Expected value of z(), given the distribution of values of x.
- $h_{\mathcal{D}} \equiv \text{Hypothesis}$ of learner when learning from Dataset \mathcal{D} .
- $\mathbb{E}_{\mathcal{D}}[z()] \equiv$ Expected value of z(), given distribution of possible Datasets \mathcal{D} .

Start with L_{test}

$$L_{test}(h_{\mathcal{D}}) = \mathbb{E}_{x}[(h_{\mathcal{D}}(\mathbf{x}) - f(\mathbf{x}))^{2}]$$

h(x) depends on the specific dataset \mathcal{D} .

Start with L_{test}

$$L_{test}(h_{\mathcal{D}}) = \mathbb{E}_{x}[(h_{\mathcal{D}}(\mathbf{x}) - f(\mathbf{x}))^{2}]$$

$$\mathbb{E}_{\mathcal{D}}[L_{test}(h_{\mathcal{D}})]$$

$$= \mathbb{E}_{\mathcal{D}} \big[\mathbb{E}_{\mathbf{x}} [(h_{\mathcal{D}}(\mathbf{x}) - f(\mathbf{x}))^2] \big]$$

$$= \mathbb{E}_{\mathbf{x}} \big[\mathbb{E}_{\mathbf{D}} \big[(h_{\mathbf{D}}(\mathbf{x}) - f(\mathbf{x}))^2 \big] \big]$$

h(x) depends on the specific dataset \mathcal{D} .

Generalizing over all $\mathcal D$ with same m

Swap ok, as integrand is strictly non-negative

Focus on $\mathbb{E}_{\mathcal{D}}[(h_{\mathcal{D}}(\mathbf{x}) - f(\mathbf{x}))^2]$, get the outer term $\mathbb{E}_{\mathbf{x}}[...]$ later.

The average hypothesis

To evaluate $\mathbb{E}_{\mathcal{D}}[(h_{\mathcal{D}}(\mathbf{x}) - f(\mathbf{x}))^2]$, we define the 'average' hypothesis $\bar{h}(\mathbf{x}) = \mathbb{E}_{\mathcal{D}}[h_{\mathcal{D}}(\mathbf{x})]$

Imagine many, many data sets $\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_K$ drawn:

$$\overline{h}(\mathbf{x}) \approx \frac{1}{K} \sum_{k=1}^{K} h_{\mathcal{D}}(\mathbf{x})$$

Using $\bar{h}(x)$

$$\mathbb{E}_{\mathcal{D}}[(h_{\mathcal{D}}(\mathbf{x}) - f(\mathbf{x}))^2] =$$

Using $\bar{h}(x)$

$$\mathbb{E}_{\mathcal{D}}[(h_{\mathcal{D}}(\mathbf{x}) - f(\mathbf{x}))^2] =$$

$$= \mathbb{E}_{\mathcal{D}} \left[\left(h_{\mathcal{D}}(\mathbf{x}) - \bar{h}(\mathbf{x}) + \bar{h}(\mathbf{x}) - f(\mathbf{x}) \right)^{2} \right]$$

Add
$$-\bar{h}(x) + \bar{h}(x)$$
.
Associate first two and second two terms.

$$= \mathbb{E}_{\mathcal{D}} \left[\left(h_{\mathcal{D}}(\mathbf{x}) - \bar{h}(\mathbf{x}) \right)^{2} + \left(\bar{h}(\mathbf{x}) - f(\mathbf{x}) \right)^{2} + 2 \left(\underbrace{h_{\mathcal{D}}(\mathbf{x}) - \bar{h}(\mathbf{x})}_{0} \right) \left(\underbrace{\bar{h}(\mathbf{x}) - f(\mathbf{x})}_{\text{const w.r.t. } \mathcal{D}} \right) \right]$$

Expand out, cross terms drop as first part of term is 0.

$$= \mathbb{E}_{\mathbb{D}} \left[\left(h_{\mathbb{D}}(\mathbf{x}) - \bar{h}(\mathbf{x}) \right)^{2} \right] + \left(\bar{h}(\mathbf{x}) - f(\mathbf{x}) \right)^{2}$$

 $2^{\rm nd}$ term is constant with respect to ${\mathcal D}$

Bias and Variance

$$\mathbb{E}_{\mathcal{D}}[(h_{\mathcal{D}}(\mathbf{x}) - f(\mathbf{x}))^{2}] = \mathbb{E}_{\mathcal{D}}\left[\left(h_{\mathcal{D}}(\mathbf{x}) - \bar{h}(\mathbf{x})\right)^{2}\right] + \left(\bar{h}(\mathbf{x}) - f(\mathbf{x})\right)^{2}$$
Q4
Q5

NUS CS3244: Machine Learning

Bias and Variance

$$\mathbb{E}_{\mathcal{D}}[(h_{\mathcal{D}}(\mathbf{x}) - f(\mathbf{x}))^{2}] = \mathbb{E}_{\mathcal{D}}\left[\left(h_{\mathcal{D}}(\mathbf{x}) - \bar{h}(\mathbf{x})\right)^{2}\right] + \left(\bar{h}(\mathbf{x}) - f(\mathbf{x})\right)^{2}$$

Therefore,

$$\mathbb{E}_{\mathcal{D}}[L_{test}(h_{\mathcal{D}})] = \mathbb{E}_{\mathbf{x}}[\mathbb{E}_{\mathcal{D}}[(h_{\mathcal{D}}(\mathbf{x}) - f(\mathbf{x}))^{2}]]$$

$$= \mathbb{E}_{\mathbf{x}}[\mathrm{bias}(\mathbf{x}) + \mathrm{var}(\mathbf{x})]$$

$$=$$
 bias $+$ var

The tradeoff

$$Bias[h(x)] = |\bar{h}(x) - f(x)|$$

$$Var[h(x)] = \mathbb{E}\left[\left(h(x) - \overline{h}(x)\right)^{2}\right]$$

 \mathcal{H}_{small} : just one hypothesis.

 \mathcal{H}_{big} : big, contains the target function f. But you must find it.

10th order polynomial with noise

Two learners Overfitting and Restrained:

Both <u>know</u> the target is 10th order, you get 15 data points.

(

O chooses \mathcal{H}_{10}

y/2

R chooses \mathcal{H}_2

NUS CS3244: Machine Learning

47

When is \mathcal{H}_2 better than \mathcal{H}_{10} ?

Number of Data Points, m

Overfitting (grey region): $L_{test}(\mathcal{H}_{10}) > L_{test}(\mathcal{H}_{2})$

Without noise, with complex f

The two learners \mathcal{H}_{10} and \mathcal{H}_{2}

A detailed experiment

Impact of noise level and target complexity

$$y = f(x) + \epsilon(x) = \sum_{q=0}^{Q_f} \alpha_q x^q + \epsilon(x)$$

Noise level: σ^2

Target complexity: Q_f

Data set size: m

The overfit measure

We fit the data set $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)$ using our 2 models:

 \mathcal{H}_2 : 2nd order polynomials

 \mathcal{H}_{10} :10th order polynomials

Compare out-of-sample errors of $h_2 \in \mathcal{H}_2$ and $h_{10} \in \mathcal{H}_{10}$

Overfit measure

$$L_{test}(h_{10}) - L_{test}(h_2)$$

Overfit measure: $L_{test}(h_{10}) - L_{test}(h_2)$

Noise

That part of *y* that we **cannot** model

It has two sources ...

Stochastic Noise: Data Error

We would like to learn f

$$y_j = f(\mathbf{x}_j)$$

Unfortunately, we actually observe $oldsymbol{\mathcal{D}}$

$$y_j = f(\mathbf{x}_j) + \text{stochastic_noise}$$

Stochastic Noise Fluctuations that we cannot model

Deterministic Noise: Model Error

We would like to learn from O

$$y_j = \bar{h}(\mathbf{x}_j)$$

Unfortunately, we only observe ${\mathcal D}$

$$y_j = f(\mathbf{x}_j)$$

$$= \bar{h}(\mathbf{x}_i) + \text{deterministic_noise}$$

Deterministic Noise

The part of f we lack the capacity to model

NUS CS3244: Machine Learning

Both sources of noise hurt learning

Stochastic Noise

Source: random measurement errors

Re-measure γ : Stochastic noise changes

Change \mathcal{H} : Stochastic noise still the same

Deterministic Noise

Source: learner's \mathcal{H} cannot model f

Re-measure y: Deterministic noise the same

Change \mathcal{H} : Deterministic noise changes

We have a single $\mathcal D$ and fixed $\mathcal H$ so we cannot distinguish between either; with finite $m,\mathcal H$ will try to fit the noise.

Noise and Bias-Variance

Recall the decomposition:

$$\mathbb{E}_{\mathcal{D}}[(h_{\mathcal{D}}(x) - f(x))^{2}] = \mathbb{E}_{\mathcal{D}}\left[\left(h_{\mathcal{D}}(x) - \bar{h}(x)\right)^{2}\right] + \underbrace{\left(\bar{h}(x) - f(x)\right)^{2}}_{\text{bias}}$$

What if f is a noisy target?

$$y = f(x) + \epsilon(x)$$

$$\mathbb{E}[\boldsymbol{\epsilon}(x)] = 0$$

A noise term

$$\mathbb{E}_{\mathcal{D},\boldsymbol{\epsilon}}[(h_{\mathcal{D}}(x)-y)^2] =$$

A noise term

$$\mathbb{E}_{\mathcal{D},\epsilon}[(h_{\mathcal{D}}(x) - y)^{2}] =$$

$$= \mathbb{E}_{\mathcal{D},\epsilon}[(h_{\mathcal{D}}(x) - f(x) - \epsilon(x))^{2}]$$

$$-\epsilon(x)^2$$

Expand observed
$$y$$

$$= \mathbb{E}_{\mathcal{D}, \epsilon} \left[\left(\underbrace{h_{\mathcal{D}}(x) - \bar{h}(x)}_{\text{(1)}} + \underbrace{\bar{h}(x) - f(x)}_{\text{(2)}} - \underbrace{\epsilon(x)}_{\text{(3)}} \right)^{2} \right]$$

$$= \mathbb{E}_{\mathcal{D},\epsilon} \left[\left(h_{\mathcal{D}}(x) - \bar{h}(x) \right)^2 + \left(\bar{h}(x) - f(x) \right)^2 + (\epsilon(x))^2 + \text{cross terms} \right]$$

Additional cross terms disappear as

$$\mathbb{E}(\boldsymbol{\epsilon}(x))=0$$

Actually, two noise terms

$$\mathbb{E}_{\mathcal{D}}[(h_{\mathcal{D}}(x) - f(x))^2] =$$

$$\underbrace{\mathbb{E}_{\mathcal{D},x}\left[\left(h_{\mathcal{D}}(x) - \overline{h}(x)\right)^{2}\right]}_{\text{variance}} + \underbrace{\mathbb{E}_{x}\left(\overline{h}(x) - f(x)\right)^{2}}_{\text{bias}} + \underbrace{\mathbb{E}_{\epsilon,x}\left(\epsilon(x)\right)^{2}}_{\sigma^{2}}$$

NUS CS3244: Machine Learning

Deterministic Noise

Stochastic Noise

Summary

Bias-Variance Tradeoff

 $\underline{\operatorname{Bias}} {:}$ How well ${\mathcal H}$ can approximate f overall

Match the 'model complexity' to the data resources, not to the target complexity

Overfitting: Fitting the data more than is warranted

Two causes: stochastic + deterministic noise

Bias ≡ deterministic noise

Noise causes overfitting

Overfitting is the disease

Noise is the cause

Learning is led astray by fitting the noise more than the signal

Two Cures:

- 1. Regularization: Restrain the model
- 2. Validation: Reality check by peeking at (the bottom line)

Assigned Task (due before next Mon)

Read the post https://www.kaggle.com/alexisbcook/cross-validation (10 mins)

Post a 1-2 sentence answer to the topic in your tutorial group: $\#tg-\underline{xx}$

How does cross validation relate to variance?

[There's an optional exercise with this course page, using random forest and MAE, you're welcomed to do it if you'd like]