Dernière mise à jour	SLCI2	Denis DEFAUCHY
27/09/2022	Correction	Résumé

Systèmes Linéaires Continus Invariants

SLCI2 - Correction

Résumé

Programme PSI/MP 2022 (<u>LIEN</u>)			
Id	Compétence développée	Connaissances associées	
		Compensation de pôles, réglage de marges,	
C1-02	Proposer une démarche de	amortissement, rapidité et bande passante.	
réglage d'un corr	réglage d'un correcteur.	Application aux correcteurs de type proportionnel,	
		proportionnel intégral et à avance de phase.	
C2-04	Mettre en œuvre une démarche	Correcteurs proportionnel, proportionnel intégral et	
CZ-04	de réglage d'un correcteur.	à avance de phase.	

Dernière mise à jour	SLCI2	Denis DEFAUCHY
27/09/2022	Correction	Résumé

Correction

Correcteur en cascade – en série – On sait corriger le signal électrique ou numérique!

Réglage de K_p pour obtenir les marges souhaitées

Si $FTBO = K_{BO} \frac{(1+\cdots)}{(1+\cdots)}$, on donne le diagramme de Bode associé.

On ajoute K_p qui génère une translation de gain $TG = 20 \log K_p \iff K_p = 10^{\frac{TG}{20}}$

	p i s s s p p		
Marge de gain	$TG = \Delta G^{actuelle} - \Delta G^{souhait\acute{e}e}$		
Marge de phase	Trouver la pulsation $\omega'_{c_0}/\pi+arphi_{\omega'_{c_0}}=\Delta arphi.$ Déterminer $TG=-G'_{\omega'_{c_0}}$, ce qui annulera le gain en ω'_{c_0}		

Le nouveau gain statique de BO à obtenir vaut alors : $K_{BO}^{'}=K_{BO}K_{p}$

Dernière mise à jour	SLCI2	Denis DEFAUCHY
27/09/2022	Correction	Résumé

 $C(p) = K_d p$

Correction dérivée

Effets inverses de la correction intégrale

Bilan des correcteurs				
Corrections classiques	C(p)	Stabilité	Précision	Rapidité
Proportionnelle	C(p) = K > 1	`	7	$(\Delta t_{r_{5\%}} peut \searrow)$
Intégrale	$C(p) = \frac{1}{p}$	>	7	>
Dérivée	C(p) = p	7	7	7
Attention : ces résultats s'appliquent généralement, mais il existe des cas particuliers – Bien regarder les diagrammes de Bode pour conclure définitivement				

Dernière mise à jour	SLCI2	Denis DEFAUCHY
27/09/2022	Correction	Résumé

Correcteurs PI PD PID

PI	PD	PID
$C(p) = K_p + \frac{K_i}{p}$	$C(p) = K_p + K_d p$	$C(p) = K_p + \frac{K_i}{p} + K_d p$
$C(p) = \frac{pK_p + K_i}{p}$	$C(p) = K_p + K_d p$	$C(p) = \frac{pK_p + K_i + K_d p^2}{p}$

Cas du Pl

Objectifs
Profiter de la précision de l'intégrateur tout en ayant une marge de phase maîtrisée (stabilité)

$$C(p) = K_p + \frac{K_i}{p}$$
$$= K_i \frac{1 + T_i p}{p}; T_i = \frac{K_p}{K_i}$$

Si premier ordre au dénominateur : Choix de T_i par compensation de pôle (le + grand si plusieurs)

Choix de K_i pour obtenir une marge de phase (45°?) sur $FTBO(p) \frac{1+T_ip}{n}$

Détermination de ω_{c_0} permettant de respecter une marge de phase souhaitée sur le système non corrigé Choix de K_p pour obtenir la marge souhaitée par TG Choix de T_i pour ne (presque) pas influencer la phase à ω_{c_0} : $\frac{1}{T_i} \approx \frac{\omega_{c_0}}{10}$

Retard de phase Correcteurs à actions localisées Avance de phase

Page 4 sur 4

$$C(p) = \frac{a(1+Tp)}{1+aTp} \quad ; \quad a > 1$$
Objectif

Réglage

$$K_{BO}^{Corr} = aK_{BO} \& \varepsilon = f(K_{BO}^{Corr})$$

Trouver a pour respecter la précision

Régler T pour que $\omega_{min}=\omega_{choisi}\ll\omega_{c_0}$

$$T = \frac{1}{\omega_{choisi}\sqrt{a}}$$

Résultats

isées Avance de phase $C(p) = \frac{1 + aTp}{1 + Tp} \quad ; \quad a > 0$

Objectif

 $\nearrow \Delta \varphi \Leftrightarrow \nearrow Stabilité$

Réglage

$$\theta = \Delta \varphi^{souhait\acute{e}e} - \Delta \varphi$$

$$\varphi_{max} = \theta = \sin^{-1} \left(\frac{a-1}{a+1}\right) \Leftrightarrow a = \frac{1+\sin\theta}{1-\sin\theta}$$

$$\omega_{max} = \omega_{c_0} = \frac{1}{T\sqrt{a}} \Leftrightarrow T = \frac{1}{\omega_{c_0}\sqrt{a}}$$

Résultats

Remontée de phase de θ à ω_{c_0}

Danger

 $\omega_{c0}^{Corr}>\omega_{c_0}\Rightarrow\Delta\varphi$ pas aussi grand que voulu

Remarque

Ajouter un gain $K=\frac{1}{\sqrt{a}}$ permet d'avoir un gain nul en ω_{max} (a) mais diminue K_{BO} (précision ? (3))