PRO-CONSTRUCTIBLE SETS

1. Introduction

This is a continuation of [Monygham, 2018].

2. PRIME SPECTRUM AND COLIMITS OF COMMUTATIVE ALGEBRAS

Proposition 2.1. Let A be a ring and $\{B_i\}_{i\in I}$ be a filtered diagram of A-algebras. Then the image of

Spec
$$(\operatorname{colim}_{i \in I} B_i) \to \operatorname{Spec} A$$

is equal to the intersection of images $\{\operatorname{Spec} B_i \to \operatorname{Spec} A\}_{i \in I}$.

Lemma 2.1.1. Let A be a ring and $\{B_i\}_{i\in I}$ be a filtered diagram of A-algebras. Then $\operatorname{colim}_{i\in I}B_i=0$ if and only if there exists i_0 in I such that $B_{i_0}=0$.

Proof of the lemma. For every $i \in I$ let $f_i : B_i \to \operatorname{colim}_{i \in I} B_i$ be the canonical morphism. If $\operatorname{colim}_{i \in I} B_i = 0$, then $f_i(1) = 0$ for every $i \in I$. Since I is filtered category, this implies that there exists $i_0 \in I$ such that 1 = 0 in B_{i_0} . Hence $B_{i_0} = 0$. The converse holds, because if $B_{i_0} = 0$ for some $i_0 \in I$, then

$$0 = f_{i_0}(0) = f_{i_0}(1) = 1$$

in $colim_{i \in I} B_i$.

Proof of the proposition. Consider $\mathfrak{p} \in \operatorname{Spec} A$ and let $k(\mathfrak{p}) = A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}}$ be its residue field. For every A-algebra B we denote $k(\mathfrak{p}) \otimes_A B$ by $B(\mathfrak{p})$. We have

$$k(\mathfrak{p}) \otimes_A (\operatorname{colim}_{i \in I} B_i) \cong \operatorname{colim}_{i \in I} (k(\mathfrak{p}) \otimes_A B_i) \cong \operatorname{colim}_{i \in I} B_i(\mathfrak{p})$$

According to Lemma 2.1.1 we have

$$k(\mathfrak{p}) \otimes_A (\operatorname{colim}_{i \in I} B_i) = 0 \iff \exists_{i \in I} B_i(\mathfrak{p}) = 0$$

This implies that

$$\operatorname{Spec}\left(k(\mathfrak{p})\otimes_{A}\left(\operatorname{colim}_{i\in I}B_{i}\right)\right)=\varnothing\iff\exists_{i\in I}\ B_{i}(\mathfrak{p})=0$$

Since the prime spectrum on the left hand side is the fiber of p under the morphism

Spec
$$(\operatorname{colim}_{i \in I} B_i) \to \operatorname{Spec} A$$

we deduce that \mathfrak{p} is not in the image of this map if and only if there exists $i \in I$ such that $B_i(\mathfrak{p}) = 0$. Hence \mathfrak{p} is not in the image of

Spec
$$(colim_{i \in I} B_i) \rightarrow Spec A$$

if and only if it is not in the image of some Spec $B_i \to \operatorname{Spec} A$. This finishes the proof.

Corollary 2.2. Let A be a ring and $\{B_i\}_{i\in I}$ be a family of A-algebras. We set

$$\bigotimes_{i \in I} B_i = \operatorname{colim}_{n \in \mathbb{N}, \{i_1, \dots, i_n\} \subseteq I} \left(B_{i_1} \otimes_A \dots \otimes_A B_{i_n} \right)$$

Then the image of the map

$$\operatorname{Spec}\left(\bigotimes_{i\in I}B_{i}\right)\to\operatorname{Spec}A$$

is the intersection of images of maps $\{\operatorname{Spec} B_i \to \operatorname{Spec} A\}_{i \in I}$.

Proof. For $\{i_1,...,i_n\} \subseteq I$ the image of the map

Spec
$$(B_{i_1} \otimes_A ... \otimes_A B_{i_n}) \rightarrow \operatorname{Spec} A$$

is the intersection of images of maps $\{\operatorname{Spec} B_i \to \operatorname{Spec} A\}_{i \in I}$. Hence the assertion is an immediate consequence of Proposition 2.1.

Corollary 2.3. Let X be a quasi-compact scheme and E be a subset of X. Suppose that E is an intersection of constructible subsets of X. Then there exists an affine scheme Z and a morphism $f:Z\to X$ such that f(Z)=E.

Proof. Let $X = \bigcup_{j=1}^m U_j$ be an affine open cover. By [Monygham, 2018, Corollary 3.4] and Corollary 2.2 for every $1 \le j \le m$ there exists an affine scheme Z_j and a morphism $f_j : Z_j \to U_j$ such that $f_j(Z_j) = E \cap U_j$. Define affine scheme $Z = \coprod_{j=1}^m Z_j$ and let $f : Z \to X$ be a morphism such that $f_{|Z_j|}$ is the composition of f_j with the inclusion $U_j \hookrightarrow Z$. Then

$$f(Z) = \bigcup_{j=1}^{m} f_j(Z_j) = \bigcup_{j=1}^{m} (E \cap U_j) = E$$

3. Pro-constructible sets

Definition 3.1. Let X be a topological space. A subset E of X is called *pro-constructible in* X if for every point x in X there exists an open neighbourhood U of x in X such that $U \cap E$ is an intersection of locally constructible subsets of U.

Fact 3.2. Let $f: X \to Y$ be a morphism of schemes and E be a pro-constructible subset of Y. Then $f^{-1}(E)$ is a pro-constructible subset of X.

Proof. This is an immediate consequence of [Monygham, 2018, Fact 3.5] and the definition of pro-constructible sets. \Box

Corollary 3.3. *Let* X *be a scheme and* E *be a subset of* X. *Then the following are equivalent.*

- (i) *E* is pro-constructible.
- (ii) $E \cap U$ is an intersection of constructible sets in U for every open quasi-compact and quasi-separated subset U of X.
- **(iii)** $E \cap U$ is an intersection of constructible sets in U for every affine open subset U of X.

Proof. This is a consequence of [Monygham, 2018, Theorem 3.2] and the fact that union of sets is distributive over (arbitrary) intersection. \Box

The next theorem is a version of Chevalley's theorem on images for pro-constructible sets.

Theorem 3.4. Let $f: X \to Y$ be a quasi-compact morphism of schemes and E be a pro-constructible subset of X. Then f(E) is pro-constructible in Y.

Lemma 3.4.1. Let A be a ring and B be an A-algebra. Then B is a filtered colimit of finitely presented A-algebras.

Proof of the lemma. Left as an exercise.

The next result is very simple but useful.

Lemma 3.4.2. Let X be a quasi-compact scheme. Then there exists an affine scheme W and a surjective morphism $W \to X$.

Proof of the lemma. Let $X = \bigcup_{j=1}^m U_j$ be an open affine cover of X. Pick $W = \coprod_{j=1}^m U_j$ with the canonical morphism $W \to X$.

Proof of the theorem. According to Corollary 3.3, we may assume that Y is affine. Then X is quasicompact. Lemma 3.4.2 yields affine scheme W and a surjective morphism $g:W\to X$. By Fact 3.2 we derive that $g^{-1}(E)$ is pro-constructible subset of W. Thus replacing f by $f\cdot g$ we may assume that X is affine. In this case E is an intersection of constructible subsets of X according to Corollary 3.3. Corollary 2.3 implies that we can further assume that E=X. Hence it suffices to show that the image of a morphism $f:X\to Y$ of affine schemes is an intersection of constructible sets. By Lemma 3.4.1 there exists a filtered diagram $\{f_i:X_i\to Y\}_{i\in I}$ of morphisms of finite presentation such that

$$\operatorname{colim}_{i \in I} \Gamma(X_i, \mathcal{O}_{X_i}) = \Gamma(X, \mathcal{O}_X)$$

in the category of $\Gamma(Y, \mathcal{O}_Y)$ -algebras. By [Monygham, 2018, Corollary 3.4] we deduce that $f_i(X_i)$ is constructible in Y for each $i \in I$. Proposition 2.1 implies that

$$f(X) = \bigcap_{i \in I} f_i(X_i)$$

This finishes the proof.

Corollary 3.5 (Characterization of pro-constructible sets on qcqs schemes). *Let X be a quasi-compact and quasi-separated scheme. Then the following are equivalent.*

- (i) E is pro-constructible.
- **(ii)** *E is an intersection constructible subsets in X.*
- (iii) There exists an affine scheme Z and a morphism $f: Z \to X$ such that E = f(Z).

Proof. Assume that *E* is pro-constructible subset of *X*. Corollary 3.3 implies *E* is an intersection of constructible subsets of *X*. Thus (i) \Rightarrow (ii) is true.

If (i) holds, then Corollary 2.3 gives an affine scheme Z and a morphism $f: Z \to X$ such that E = f(Z). This implies that (ii) \Rightarrow (iii).

For the proof of (iii) \Rightarrow (i) note that such f is quasi-compact (this follows because X is quasi-separated) and hence the implication follows from Theorem 3.4.

4. OPEN AND CLOSED SUBSETS OF SCHEMES

Definition 4.1. Let *X* be a topological space and let η be a point of *X*. Every point *x* in **cl** ($\{\eta\}$) is called *a specialization of* η . If *x* is a specialization of η , then η is called *a generization of x*.

Definition 4.2. Let X be a topological space and Z be its subset. We say that Z is *closed under specialization (generization)* if Z contains all specializations (generizations) of its points.

Theorem 4.3. Let X be a scheme and $f: Z \to X$ be a quasi-compact morphism of schemes. Then the following are equivalent.

- (i) f(Z) is a closed subset of X.
- (ii) f(Z) is closed under specialization.

For the proof we need the following result.

Lemma 4.3.1. Let $f: A \to B$ be a morphism of rings. If the image of Spec $f: \operatorname{Spec} B \to \operatorname{Spec} A$ is closed under specialization, then it is closed.

Proof of the lemma. The image of Spec f is equal to the image of its factor Spec $B \to \operatorname{Spec}(A/\ker(f))$. Therefore, we may additionally assume that f is injective. We prove that under this extra assumption Spec f is surjective. For this assume that $\mathfrak{p} \in \operatorname{Spec} A$ is a prime ideal. Then f induces

an injective map $A_{\mathfrak{p}} \to B_{\mathfrak{p}}$. Thus $B_{\mathfrak{p}}$ is nonzero. Hence Spec $B_{\mathfrak{p}}$ is nonempty. We also have a commutative square

$$\emptyset \neq \operatorname{Spec} B_{\mathfrak{p}} \longrightarrow \operatorname{Spec} A_{\mathfrak{p}}$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$\operatorname{Spec} B \xrightarrow{\operatorname{Spec} f} \operatorname{Spec} A$$

of topological spaces. This imply that there exists a prime ideal $\mathfrak{q} \in \operatorname{Spec} B$ such that \mathfrak{p} is a specialization of $(\operatorname{Spec} f)(\mathfrak{q})$. Since the image of $\operatorname{Spec} f$ is closed under specialization, we derive that \mathfrak{p} is contained in the image of $\operatorname{Spec} f$.

Proof. Closed subsets are closed under specialization. Hence (i) \Rightarrow (ii) holds. Now assume (ii) i.e. f(Z) is closed under specialization. Fix open affine U in X. Since f is quasicompact, we derive that $f^{-1}(U)$ is quasi-compact. Write $f^{-1}(U) = \bigcup_{j=1}^m W_j$ for open affine subsets W_j of $f^{-1}(U)$. Let $W = \coprod_{j=1}^m W_j$ and consider a morphism $g: W \to U$ given as the composition

$$\coprod_{j=1}^{m} W_{j} \longrightarrow f^{-1}(U) \longrightarrow U$$

where the first arrow is induced by inclusions $\{W_j \hookrightarrow f^{-1}(U)\}_{1 \le j \le m}$ and the second is the restriction of f. Note that $g(W) = f(Z) \cap U$ and hence g(W) is closed under specialization in U. By Lemma 4.3.1 we deduce that g(W) is closed in U and hence $f(X) \cap U$ is closed in U. Since this holds for every open affine U in X, we infer that f(X) is closed in X. This proves (i).

Corollary 4.4. *Let X be a scheme and E be its subset. Then the following are equivalent.*

- (i) E is a closed subset of X.
- (ii) *E* is pro-constructible and closed under specialization.

Proof. Suppose that E is closed subset of X and let U be an open affine subset of X. Then $E \cap U$ is the image of some closed affine subscheme of U. By Corollary 3.5 we deduce that $E \cap U$ is an intersection of constructible subsets of U. Thus E is pro-constructible. Since E is closed, it is also closed under specialization. Hence (i) \Rightarrow (ii).

Assume that (ii) holds. Then for every open affine subset U of X set $E \cap U$ is pro-constructible and closed under specialization in U. By Corollary 3.5 and Theorem 4.3 we derive that $E \cap U$ is closed subset of U. Since U is arbitrary, we derive that E is closed. This is (i).

Definition 4.5. Let X be a topological space. A subset E of X is called *ind-constructible in* X if $X \setminus E$ is pro-constructible in X.

Corollary 4.6. *Let X be a scheme and E be its subset. Then the following are equivalent.*

- (i) E is an open subset of X.
- (ii) *E* is ind-constructible and closed under generization.

Proof. This is a consequence of Corollary 4.4. Details are left to the reader.

REFERENCES

[Monygham, 2018] Monygham (2018). Constructible and locally constructible sets. github repository: "Monygham/Pedomellon-a-minno".