Predictions and Interpretation for Random Effects Models

STAT 245

Our RE model for whale dive duration and sonar

summary(rem4)

```
## Family: gaussian ( identity )
## Formula:
## DurAvg ~ DepthAvg + TransClass + SonarA + (1 | TagID/TagDayPeriod)
## Data: zc dives
##
       AIC
                BIC logLik deviance df.resid
   36240.5 36301.1 -18111.3 36222.5
                                         6174
## Random effects:
## Conditional model:
## Groups
                     Name
                                 Variance Std.Dev.
## TagDayPeriod:TagID (Intercept) 9.33
                                         3.055
## TagID
                     (Intercept) 3.28
                                        1.811
                                          3.789
## Residual
                                 14.35
## Number of obs: 6183, groups: TagDayPeriod:TagID, 2143; TagID, 15
## Dispersion estimate for gaussian family (sigma^2): 14.4
## Conditional model:
                   Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                 10.6143686 0.5522635
                                       19.22 < 2e-16 ***
## DepthAvg
            0.0399694 0.0005071
                                        78.83 < 2e-16 ***
## TransClassDay -0.1605063 0.2540850
                                        -0.63 0.527581
## TransClassDusk -1.2486613 0.3384696
                                        -3.69 0.000225 ***
## TransClassNight -2.3023830 0.2554556
                                        -9.01 < 2e-16 ***
## SonarA1
                  2.8549470 0.6902208
                                        4.14 3.53e-05 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```

Typical (average) RE Group vs. Population Average

- Random effects models provide predictions for the average or typical RE group.
- For a linear regression model (or any model with the identity link function, that is, no link function), the predicted values for the population average and typical-RE-group average are the same.
- But with a link function in the mix, it's different.

Typical (average) RE Group vs. Population Average

Predictions with CIs for Typical (average) RE Group

Easily done, but do not include random effects variability

$$egin{aligned} y &= eta_0 + eta_1 x_1 + \ldots eta_k x_k + \epsilon_{RE} + \epsilon_{resid}, \ &\epsilon_{RE} \sim N(0,\sigma_{RE}); \epsilon_{resid} \sim N(0,\sigma_{resid}) \end{aligned}$$

Pred. plot w/ ggpredict()

Pred. plot w/ ggeffects::ggpredict()

BUT: What uncertainty is included here? Is ϵ_{RE} included?

Including ϵ_{RE}

Should you do this? Depends if want to include variation across RE groups (whale/hours)

Including ϵ_{RE}

Should you do this? Depends if want to include variation across RE groups (whale/hours)

Parametric bootstrap to the rescue!

How can we get population average predictions?

- simulate data, based on our model, for (simulated) new RE groups.
 (Include uncertainty related to random effects, AND intercept/slope estimates)
- re-fit the model to the simulated data
- make predictions from the re-fitted-to-simulated-data model
- repeat LOTS of times to get a distribution of predicted values
- take a point-wise average over all those RE groups (and also use them to find a CI)
- result: population average predictions and confidence intervals.

To obtain population-average predictions with CIs

We can do this with help from the function bootMer() from the lme4 package.

1. create function that makes predictions from our model.

```
predict rem4 <- function(model){</pre>
  new dat <- data grid(</pre>
    model,
    terms = 'SonarA',
    condition = c(TagID = "14",
                   TagDayPeriod = "2011-01-06.(18,20]")
  return(predict(model,
                  newdata = new_dat,
                  type = "response",
                  allow.new.levels = TRUE))
```

2. Simulate, make predictions for many new fake individuals

```
library(lme4)
# this will take a while
boot rem4 <- bootMer(rem4,</pre>
                       FUN = predict rem4,
                       nsim = 1000,
                       type = "parametric",
                       use u = FALSE)
```

Simulation Results

```
glimpse(boot rem4$t)
   num [1:1000, 1:2] 20.1 19.5 13.6 21.3 18.2 ...
# show the first few rows of results
head(boot rem4$t)
            [,1] \qquad [,2]
  [1,] 20.12762 22.54999
## [2,] 19.48603 22.91929
## [3,] 13.56932 16.81862
```

3. Compute CIs from simulated-individual predictions

```
new_data_pboot <- data_grid(rem4,</pre>
                        terms = 'SonarA') |>
  mutate(pred = apply(boot_rem4$t, 2, mean),
         CIlow = apply(boot rem4$t, 2,
                        quantile, probs = 0.025),
         CIhigh = apply(boot_rem4$t, 2,
                         quantile, probs = 0.975)
```

glimpse(new_data_pboot)

3. Compute CIs from simulated-individual predictions

4. Plot results

4. Plot results (& compare w/ ave. RE group)

