THERE IS NO CAZANAVE'S THEOREM FOR PUNCTURED AFFINE SPACE

THOMAS BRAZELTON AND WILLIAM HORNSLIEN

ABSTRACT. In his thesis, Cazanave proved that the set of naive \mathbb{A}^1 -homotopy classes of endomorphisms of the projective line admits a monoid structure whose group completion is genuine \mathbb{A}^1 -homotopy classes of endomorphisms of the projective line. In this very short note we show that such a statement is never true for punctured affine space $\mathbb{A}^n \setminus \{0\}$ for $n \geq 2$.

Assumption: We work over a base field k of characteristic $\neq 2$.

A foundational theorem of Morel states that the set of \mathbb{A}^1 -homotopy classes of endomorphisms of the projective line is isomorphic as a ring with $\mathrm{GW}(k) \times_{k^\times} k^\times / (k^\times)^2$ [Mor12, Theorem 7.36]. The genuine homotopy classes emerge from a localization of the category of (∞ -categorical) presheaves on smooth k-schemes, however one can consider a weaker notion of homotopy, namely identifying two maps $f,g\colon X\to Y$ if there is a map $X\times\mathbb{A}^1_k\to Y$ restricting to f and g at times $0,1\in\mathbb{A}^1_k$. This is called $naive\ \mathbb{A}^1$ -homotopy, and we denote by naive (resp. genuine) homotopy classes of maps $[X,Y]^{\mathbb{N}}$ (resp. $[X,Y]^{\mathbb{A}^1}$). In general there is a map $[X,Y]^{\mathbb{N}}\to[X,Y]^{\mathbb{A}^1}$ but it fails to be a bijection in general.

Cazanave, in his PhD thesis, proved the remarkable result that naive endomorphisms of the projective line $[\mathbb{P}^1, \mathbb{P}^1]^N$ admits a monoid structure, and the natural map

$$[\mathbb{P}^1,\mathbb{P}^1]^N\to [\mathbb{P}^1,\mathbb{P}^1]^{\mathbb{A}^1}$$

is a group completion [Caz12, Proposition 3.23]. We show that an analogous result cannot be true for the motivic spheres $\mathbb{A}^n \setminus \{0\}$ for $n \geq 2$.

Morphisms of punctured affine space $\mathbb{A}^n \setminus \{0\} \to \mathbb{A}^n \setminus \{0\}$ are given by tuples $f = (f_1, \dots, f_n)$ of polynomials in n variables, and these come in two flavors — those for which $f(0) \neq 0$, and those for which f(0) = 0.

Proposition 1. If $f = (f_1, ..., f_n)$ is an endomorphism of punctured affine space, then the ideal $\langle f_1, ..., f_n \rangle \leq k[x_1, ..., x_n]$ becomes a unimodular row after inverting x_i for any $1 \leq i \leq n$.

Proof. Since f is an endomorphism of punctured affine space, we have that its vanishing locus (which could be empty), is contained in the set containing the origin. By Nullstellensatz this implies that

$$\langle x_1,\ldots,x_n\rangle\subseteq\sqrt{\langle f_1,\ldots,f_n\rangle}.$$

Inverting x_i on either side of the equality implies that 1 is contained in $\langle f_1, \ldots, f_n \rangle$.

Date: August 2024.

¹This notion dates back to Gersten and Karoubi–Villamayor [Ger71; KV71]. It was called an *elementary homotopy* in [MV99].

We can now ask whether $\langle f_1, \ldots, f_n \rangle$ is unimodular in the polynomial algebra $k[x_1, \ldots, x_n]$ before inverting any x_i . Whether this is true of false has the following consequences.

Lemma 1. Let $f = (f_1, ..., f_n) : \mathbb{A}^n \setminus \{0\} \to \mathbb{A}^n \setminus \{0\}$ be an endomorphism of punctured affine space.

- (1) If (f_1, \ldots, f_n) is a unimodular row in $k[x_1, \ldots, x_n]$, then f is naively \mathbb{A}^1 -homotopic to a constant map.
- (2) If (f_1, \ldots, f_n) is not a unimodular row in $k[x_1, \ldots, x_n]$, then the local algebra $k[x_1, \ldots, x_n]_{(x_1, \ldots, x_n)}/(f_1, \ldots, f_n)$ is finite length. In the terminology of [KW19] this implies that f, considered as an endomorphism of affine space, has an isolated zero at the origin.

Proof. For the first statement, if we suppose (f_1, \ldots, f_n) is a unimodular row in $k[x_1, \ldots, x_n]$, then f extends to a map $\tilde{f}: \mathbb{A}^n \to \mathbb{A}^n \setminus \{0\}$. The space \mathbb{A}^n is contractible and thus $[\mathbb{A}^n, \mathbb{A}^n \setminus \{0\}]^{\mathbb{A}^1}$ is a single element. Since \mathbb{A}^n is affine and $\mathbb{A}^n \setminus \{0\}$ is \mathbb{A}^1 -naive by [AHW18, Theorem 4.2.1] there is bijection of sets $[\mathbb{A}^n, \mathbb{A}^n \setminus \{0\}]^{\mathbb{A}^1} \cong [\mathbb{A}^n, \mathbb{A}^n \setminus \{0\}]^{\mathbb{N}}$. Thus there exists a naive homotopy such that $\tilde{f} = (f_1, \ldots, f_n) \simeq (1, 0, \ldots, 0)$.

On the other hand, if (f_1, \ldots, f_n) is not unimodular in $k[x_1, \ldots, x_n]$, it is still unimodular after inverting x_i for each i by Proposition 1. In particular, this implies that there is some $d_i \in \mathbb{Z}_{\geq 0}$ for which

$$x_i^{d_i} \in \langle f_1, \dots, f_n \rangle \le k[x_1, \dots, x_n].$$

This implies that the local algebra $k[x_1,\ldots,x_n]_{(x_1,\ldots,x_n)}/\langle f_1,\ldots,f_n\rangle$ is finite-dimensional. \square

We can now prove the following theorem.

Theorem 1. For $n \geq 2$, there is no monoid structure on $[\mathbb{A}^n \setminus \{0\}, \mathbb{A}^n \setminus \{0\}]^N$ which makes $[\mathbb{A}^n \setminus \{0\}, \mathbb{A}^n \setminus \{0\}]^N \to [\mathbb{A}^n \setminus \{0\}, \mathbb{A}^n \setminus \{0\}]^{\mathbb{A}^1} \cong GW(k)$

into a monoid homomorphism (hence it can never be a group completion).

Proof. Since every endomorphism of punctured affine space extends to an endomorphism of affine space, we obtain an induced map on the homotopy cofiber which makes the diagram commute

$$\mathbb{A}^n \smallsetminus \{0\} \stackrel{\longleftarrow}{\longleftarrow} \mathbb{A}^n \stackrel{\mathbb{A}^n}{\longrightarrow} \frac{\mathbb{A}^n}{\mathbb{A}^n \smallsetminus \{0\}}$$

$$\downarrow \qquad \qquad \downarrow \\ \mathbb{A}^n \smallsetminus \{0\} \stackrel{\longleftarrow}{\longleftarrow} \mathbb{A}^n \stackrel{\mathbb{A}^n}{\longrightarrow} \frac{\mathbb{A}^n}{\mathbb{A}^n \smallsetminus \{0\}}.$$

The rightmost map is the S^1 -suspension of f. If f is a unimodular row, it is naively \mathbb{A}^1 -homotopic to a constant map, so without loss of generality we assume f is not a unimodular row, which implies it has an isolated zero at the origin by Lemma 1. In particular since there is a group isomorphism $\left[\frac{\mathbb{A}^n}{\mathbb{A}^n \setminus \{0\}}, \frac{\mathbb{A}^n}{\mathbb{A}^n \setminus \{0\}}\right]^{\mathbb{A}^1} \cong \mathrm{GW}(k)$ via Morel's local Brouwer degree at the origin, and we are in the stable range, we conclude that the \mathbb{A}^1 -degree of $\mathbb{A}^n \setminus \{0\} \xrightarrow{f} \mathbb{A}^n \setminus \{0\}$ is equal to the local \mathbb{A}^1 -Brouwer degree of f at the origin. Since f has an isolated zero at the origin, we conclude by $[\mathrm{KW}19]$ that $\deg_0^{\mathbb{A}^1}(f)$ is an EKL form.

Observe that $\langle 1 \rangle \in GW(k)$ is the \mathbb{A}^1 -Brouwer degree of the identity morphism on $\mathbb{A}^n \setminus \{0\}$. If $[\mathbb{A}^n \setminus \{0\}, \mathbb{A}^n \setminus \{0\}]^N$ admitted a monoid structure, then $2\langle 1 \rangle$ would be representable

REFERENCES 3

by an endomorphism of $\mathbb{A}^n \setminus \{0\}$, and hence would be the local \mathbb{A}^1 -Brouwer degree of an endomorphism of affine space at the origin. However since EKL forms of rank ≥ 2 must contain a hyperbolic form by a theorem of Quick, Strand, and Wilson [QSW22, Theorem 2.2], we conclude that no such endomorphism can exist.

Remark 1. It is still possible that there is a monoid structure on a subset of the naive homotopy classes $[\mathbb{A}^n \setminus \{0\}, \mathbb{A}^n \setminus \{0\}]^N$ that group completes to GW(k). For example, Quick, Strand, and Wilson show that for $u \in k^{\times}$ the quadratic forms \mathbb{H} and $\mathbb{H} + \langle u \rangle$ are representable by endomorphisms of \mathbb{A}^n . A monoid generated by these elements would group complete to GW(k).

Acknowledgements. We thank Marc Levine for helpful comments and feedback. The first named author is supported by an NSF Postdoctoral Research Fellowship (DMS-2303242).

References

- [AHW18] Aravind Asok, Marc Hoyois, and Matthias Wendt. "Affine representability results in \mathbb{A}^1 -homotopy theory, II: Principal bundles and homogeneous spaces". In: *Geom. Topol.* 22.2 (2018), pp. 1181–1225.
- [Caz12] Cristophe Cazanave. "Algebraic homotopy classes of rational functions". In: Annales scientifiques de l'École Normale Supérieure 45.4 (2012), pp. 511–534.
- [Ger71] S. M. Gersten. "Homotopy theory of rings". In: J. Algebra 19 (1971), pp. 396–415.
- [KV71] Max Karoubi and Orlando Villamayor. "K-théorie algébrique et K-théorie topologique. I". In: Math. Scand. 28 (1971), pp. 265–307.
- [KW19] Jesse Leo Kass and Kirsten Wickelgren. "The class of Eisenbud-Khimshiashvili-Levine is the local **A**¹-Brouwer degree". In: *Duke Math. J.* 168.3 (2019), pp. 429–469.
- [Mor12] Fabien Morel. A¹-algebraic topology over a field. Vol. 2052. Lecture Notes in Mathematics. Springer, Heidelberg, 2012, pp. x+259.
- [MV99] Fabien Morel and Vladimir Voevodsky. "A¹-homotopy theory of schemes". In: *Inst. Hautes Études Sci. Publ. Math.* 90 (1999), pp. 45–143.
- [QSW22] Gereon Quick, Therese Strand, and Glen Matthew Wilson. "Representability of the local motivic Brouwer degree". In: *Math. Scand.* 128.1 (2022), pp. 54–77.