MATHEMATICS 1LT3E TEST 1

Evening Class Duration of Test: 75				E. Cler	nents
McMaster University	y, 29 June 201	1			
	FIR	ST NAME (pleas	se print) :	SOL NS	
		ILY NAME (plea			
45			Student 1	No.:	
THIS TEST HAS 8 SURING THAT YO					EN-
Total number of point brackets. Any Casio					quare
USE PEN TO WRIT BE ACCEPTED FO				OUR TEST WILL	NOT
	You need to	show work to i	receive full cre	edit.	
1. [2] (a) Without co	omputing the	integral, explain	why $\int_{-2}^{2} x^3 dx =$	= 0.	
$f(x) = x^3$ is the origin	s an c	odd gn so	ritiss	ymmetric	about
Since the the the net are	area al	ove the x 0 .	-axis me	atches the	ana bele
od.					
[2] (b) Without comp	outing the inte	egral, explain why	$\int_{-4}^{4} \cos x \ dx =$	$2\int_0^4 \cos x \ dx.$	
$f(x) = \cos x$ the y-axis	is any	eren gr	so it is	symmetric	about
the same	as to	he net c	area on	the y-axis the right,	is we me
Jo CODXdx		- Contract			

2. [4] (a) Find the average value of $f(x) = 10xe^{-x}$ on the interval [0, 5].

$$f = \frac{1}{5 - 0} \int_{0}^{5} 10 x e^{-x} dx$$

$$= 2 \int_{0}^{5} x e^{-x} dx$$

$$= 2 \left[e^{-x} (-x - 1) \right]_{0}^{5}$$

$$= 2 \left[e^{-5} (-6) - e^{-6} (-1) \right]$$

$$= 2 \left[1 - 6e^{-5} \right]$$

$$\approx 1.92$$

the interval
$$[0, 5]$$
.

$$u = \chi \qquad dv = e^{-\chi} dx$$

$$du = dx \qquad v = -e^{-\chi}$$

$$\int \chi e^{-\chi} dx = -\chi e^{-\chi} - \int -e^{-\chi} dx$$

$$= -\chi e^{-\chi} - e^{-\chi} + C$$

$$= e^{-\chi} (-\chi - 1) + C$$

[2] (b) On the diagram below, draw a rectangle that has the same area as the region between the curve $f(x) = 10xe^{-x}$ and the x-axis on the interval [0, 5].

3. [4] A pipe bursts in a room and water starts filling the room at a rate of $\frac{2t}{\sqrt{1+t^2}}$ litres per minute. How much water is there in the room after 10 minutes? (Assume that the time at which the pipe bursts corresponds to t=0).

Assume there is no water in the room before the pipe breaks, ie V(0)=0.

$$V(10) - V(0) = \int_{0}^{10} \frac{dV}{dt} dt$$

$$= \int_{0}^{10} \frac{2t}{1 + t^{2}} dt$$

$$= 2\sqrt{101} - 2\sqrt{1}$$

$$\approx 18.1 L$$

$$u=1+t^{2}$$

$$du=2tdt$$

$$\Rightarrow \int \frac{2t}{\sqrt{1+t^{2}}} dt = \int u^{1/2} du$$

$$= 2\sqrt{u} + C$$

$$= 2\sqrt{1+t^{2}} + C$$

Name: _____

4. Compute the following integrals.

(a)
$$[5] \int_{3}^{4} \frac{5}{x^{3} - 2x^{2}} dx$$

$$\frac{5}{\chi^{2}(\chi - 2)} = \frac{A}{\chi} + \frac{B}{\chi^{3}} + \frac{C}{\chi - 2}$$

$$= \frac{A\chi(\chi - 2) + B(\chi - 2) + C\chi^{2}}{\chi^{2}(\chi - 2)}$$

$$\Rightarrow 5 = A(\chi - 2)\chi + B(\chi - 2) + C\chi^{2}$$

$$\chi = 0 \Rightarrow 5 = B(-2) \Rightarrow B = -\frac{5}{2}$$

$$\chi = 2 \Rightarrow 5 = C(2)^{2} \Rightarrow C = \frac{5}{4}$$

$$\chi = |-5| = A(-1) + B(-1) + C$$

$$50, A = -5 - (-\frac{5}{2}) + \frac{5}{4}$$

$$\Rightarrow A = -\frac{5}{4}$$
(b) $[5] \int \frac{x^{3} + 4x^{2} - 1}{x^{2} + 5x + 6} dx$

$$\begin{array}{r}
 \chi^{2} + 5\chi + 6 \overline{\smash)} \chi^{3} + 4\chi^{2} + 0\chi - 1 \\
 -\chi^{3} + 5\chi^{2} + 6\chi \downarrow \\
 -\chi^{2} - 6\chi - 1 \\
 -\chi^{2} - 5\chi - 6 \\
 -\chi + 5
 \end{array}$$

$$\frac{\chi^{3}+4\chi^{2}-1}{\chi^{2}+5\chi+6} = \chi-1 + \frac{-\chi+5}{\chi^{2}+5\chi+6}$$

$$\frac{-\chi+5}{\chi^{2}+5\chi+6} = \frac{A}{\chi+2} + \frac{B}{\chi+3}$$

$$\Rightarrow -\chi+5 = A(\chi+3) + B(\chi+2)$$

$$\chi=-3 \Rightarrow 8 = B(-1) \Rightarrow B = -8$$

$$\chi=-2 \Rightarrow 7 = A(1) \Rightarrow A = 7$$

$$So_{1} \int_{3}^{4} \frac{5}{x^{3}-2x^{3}} dx = \dots$$

$$= \int_{3}^{4} \left(-\frac{5}{4} - \frac{5}{4} - \frac{5}{4} + \frac{5}{4} - \frac{5}{4}\right) dx$$

$$= \left[-\frac{5}{4} \ln |x| + \frac{5}{4} \cdot \frac{1}{4} + \frac{5}{4} \ln |x-a| \right]_{3}^{4}$$

$$= \left[\frac{5}{4} \ln \frac{x-2}{x} + \frac{5}{8} - \frac{5}{4} \ln \frac{1}{3} + \frac{5}{6}\right]$$

$$= \left[\frac{5}{4} \ln \frac{1}{2} + \frac{5}{8}\right] - \left[\frac{5}{4} \ln \frac{1}{3} + \frac{5}{6}\right]$$

$$= \frac{5}{4} \ln \frac{3}{2} - \frac{5}{24}$$

$$So_{1} \int \frac{\chi^{2}+4\chi^{2}-1}{\chi^{2}+5\chi+6} d\chi = \dots$$

$$= \int \left(\chi-1 + \frac{7}{\chi+2} - \frac{8}{\chi+3}\right) d\chi$$

$$= \frac{\chi^{2}}{2} - \chi + 7 \ln|\chi+2| - 8 \ln|\chi+3| + C$$

- 5. Let $f(x) = \arctan x$.
- [3] (a) Determine the 3rd degree Taylor polynomial of f(x) with base point a = 1.

$$f''(x) = \frac{1}{1+x^2}$$

$$f'''(x) = \frac{-2x}{(1+x^2)^2}$$

$$f'''(x) = -\frac{2(1+x^2)^2 + 2x(2)(1+x^2)(2x)}{(1+x^2)^4}$$

$$= \frac{-2(1+x^2) + 8x^2}{(1+x^2)^3}$$

$$= \frac{6x^2 - 2}{(1+x^2)^3}$$

$$f(1) = \arctan 1 = \frac{1}{4}$$

$$f'(1) = \frac{1}{1+1^2} = \frac{1}{2}$$

$$f''(1) = \frac{-2}{(1+1)^2} = \frac{1}{2}$$

$$f'''(1) = \frac{6-2}{(1+1)^3} = \frac{1}{2}$$

$$P_{3}(x) = \frac{1}{2} (\chi - 1)^{3} - \frac{1}{2} (\chi - 1)^{2} + \frac{1}{2} (\chi - 1) + \frac{1}{4}$$

$$= \frac{1}{12} (\chi - 1)^{3} - \frac{1}{4} (\chi - 1)^{2} + \frac{1}{2} (\chi - 1) + \frac{1}{4}$$

[2] (b) Use part (a) to estimate $\arctan 0.5$ and $\arctan 2$. Which estimation is closer to the actual value? Explain. $\arctan 0.5 \approx \beta_3(0.5) \approx \frac{1}{12}(0.5-1)^3 - \frac{1}{4}(0.5-1)^2 + \frac{1}{5}(0.5-1) + \frac{1}{4} \approx 0.4625$

Actual: (arctan 0.5 \approx 0.4636)

This estimate is close to the actual value because 0.5 is close to the base point 1 well around which the estimate is best arctan $2 \approx \frac{1}{12}(2-1)^3 - \frac{1}{4}(2-1)^2 + \frac{1}{2}(2-1) + \frac{1}{4} \approx (1.119)$ Actual: (arctan $2 \approx 1.107$)

[3] (c) Suppose you want to find the approximate the value of $\int_3^4 \sqrt{1+x^2} \, dx$ using a 3rd degree Taylor polynomial. What would be a reasonable base point for you to use and why? How could you improve your estimate?

A reasonable basepoint would be any X-value between 3 and 4 (or even 3 or 4).

The estimate cereld be improved by increasing the degree of the Taylor polynomial.

6. Try to compute the following integrals to determine whether they converge or diverge. (Even if you know the integral is divergent, work through the calculations to show you obtain an answer of infinity).

$$[4] (a) \int_0^\infty \frac{1}{(1+3x)^2} dx$$

$$\int_0^\infty \frac{1}{(1+3x)^2} dx = \lim_{T \to \infty} \int_0^T (1+3x)^2 dx$$

$$= \lim_{T \to \infty} \left[-\frac{1}{3} \cdot \frac{1}{1+3x} \right]_0^T$$

$$= \lim_{T \to \infty} \left[-\frac{1}{3} \cdot \frac{1}{1+3T} + \frac{1}{3} \cdot \frac{1}{1+3(0)} \right]$$

$$= -\frac{1}{3} \cdot \frac{1}{1+3} \cdot \frac{1}{3} \cdot \frac{1}{1+3(0)}$$

$$= \frac{1}{3} \cdot \frac{1}{1+3(0)} \cdot \frac{1}{3} \cdot \frac{1}{1+3(0)} \cdot \frac{1}{3} \cdot \frac{1}{1+3(0)}$$

$$= \frac{1}{3} \cdot \frac{1}{1+3(0)} \cdot \frac{1}{1+3(0)} \cdot \frac{1}{1+3(0)} \cdot \frac{1}{1+3(0)} \cdot \frac{1}{1+3(0)} \cdot \frac{1}{1+3(0)} \cdot \frac{1}{1+$$

$$\begin{array}{ll}
[4] \text{ (b) } \int_{0}^{1} \frac{1}{x^{3} + x^{\frac{1}{3}}} dx \\
f & = \frac{1}{(x^{3} + x^{\frac{1}{3}})_{0}} = \frac{1}{x^{\frac{1}{3}}} \\
\int_{0}^{1} \frac{1}{x^{\frac{1}{3}}} dx = \lim_{\varepsilon \to 0^{+}} \int_{\varepsilon}^{1} x^{\frac{1}{3}} dx \\
& = \lim_{\varepsilon \to 0^{+}} \left[\frac{3}{2} x^{\frac{3}{3}} \right]_{\varepsilon}^{1} \\
& = \lim_{\varepsilon \to 0^{+}} \left[\frac{3}{2} x^{\frac{3}{3}} - \frac{3}{2} \varepsilon^{\frac{3}{3}} \right] \\
& = \frac{3}{2} - \frac{3}{2} \cdot 0^{\frac{3}{3}}
\end{array}$$

 $\int_0^1 \frac{1}{\chi''_3} dx$ converges also.

6. continued...

$$[3] (c) \int_{1}^{\infty} 2e^{-0.8x} dx = \lim_{T \to \infty} \int_{1}^{T} 2e^{-0.8x} dx$$

$$= \lim_{T \to \infty} \left[\frac{2}{-0.8}e^{-0.8x} \right]^{T}$$

$$= \lim_{T \to \infty} \left[-\frac{5}{2}e^{-0.8T} + \frac{5}{2}e^{-0.8} \right]$$

$$= -\frac{5}{2}e^{-0.8}$$

$$= \frac{5}{2}e^{-0.8}$$

: CONVERGENT

[2] (d) Even though we cannot find the exact value of $\int_1^\infty 2e^{-0.8x^2} dx$ how do we know that this integral is convergent?

The graph of $f(x) = 2e^{-0.8 x^2}$ lies below the graph of $f(x) = 2e^{-0.8 x}$ on $[1,\infty)$ and since $\int_{0}^{\infty} 2e^{-0.8 x} dx$ is convergent (the area under the graph on 1 to ∞ is finite) $\int_{0}^{\infty} 2e^{-0.8 x^2} dx$ is also convergent 'the area under its graph on 1 to ∞ is even smaller t is 'finite as well.

$$0 < \int_{1}^{\infty} 2e^{-0.8x^{2}} dx < \int_{1}^{\infty} 2e^{-0.8x} dx = \frac{5}{2e^{0.8}}$$
real #
$$: convergent = 6$$