## **Exercise 6. Answer Sheet**

Student's Name: Yuta Nemoto Student's ID: s1240234

**Problem 1.** Given the graph below



a) (10 points) Fill the following matrix by putting 1 if there is an edge between nodes. Put 0 otherwise.

|   | a | b | c | d | e | f | g | h |
|---|---|---|---|---|---|---|---|---|
| a | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 |
| b | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
| С | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| d | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| e | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 |
| f | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| g | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| h | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 |

b) (40 points) Write a program implementing Warshal's algorithm. Upload your code. Use your program to create a transitive closure G\* of the graph above and show it in the space below.

|   | a | b | с | d | e | f | g | h |
|---|---|---|---|---|---|---|---|---|
| a | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| b | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
| c | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 |
| d | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 |
| e | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
| f | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
| g | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
| h | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |

<How to compile/ run>

Input of the graph data is already did in the program (initialize() method in Warshal\_Graph class). Please enter the command (Program source name is "Warshall\_Graph.java":

javac Warshall\_Graph.java java Warshall\_Graph

**Problem 2.** (50 points) Consider the following weight adjacency matrix.

|   | a        | b        | c        | d        | e        | f        | g        | h        |
|---|----------|----------|----------|----------|----------|----------|----------|----------|
| a | 0        | 48       | $\infty$ | 8        | 20       | $\infty$ | 20       | 8        |
| b | $\infty$ | 0        | 24       | $\infty$ | 9        | $\infty$ | 76       | 29       |
| c | 97       | $\infty$ | 0        | $\infty$ | $\infty$ | $\infty$ | 18       | 1        |
| d | $\infty$ | 52       | 34       | 0        | 29       | $\infty$ | 8        | $\infty$ |
| e | $\infty$ | $\infty$ | $\infty$ | $\infty$ | 0        | 10       | $\infty$ | $\infty$ |
| f | $\infty$ | 10       | 85       | 43       | $\infty$ | 0        | 41       | 29       |
| g | $\infty$ | $\infty$ | $\infty$ | 76       | 38       | $\infty$ | 0        | $\infty$ |
| h | 28       | 42       | $\infty$ | 77       | 21       | $\infty$ | 11       | 0        |

Write a program implementing Floyd's algorithm. Upload your code. Given the matrix above, calculate all pairs shortest paths using your program and fill the table below:

All pairs shortest path table

| • | a   | b  | c  | d  | e  | f  | g  | h  |
|---|-----|----|----|----|----|----|----|----|
| a | 0   | 40 | 42 | 8  | 20 | 30 | 20 | 43 |
| b | 53  | 0  | 24 | 62 | 9  | 19 | 36 | 25 |
| c | 29  | 42 | 0  | 75 | 22 | 32 | 12 | 1  |
| d | 63  | 49 | 34 | 0  | 29 | 39 | 46 | 35 |
| e | 67  | 20 | 44 | 53 | 0  | 10 | 50 | 39 |
| f | 57  | 10 | 34 | 43 | 19 | 0  | 40 | 29 |
| g | 105 | 58 | 82 | 76 | 38 | 48 | 0  | 77 |
| h | 28  | 41 | 65 | 74 | 21 | 31 | 11 | 0  |

<How to compile/ run>
Input of the graph data is already did in the program
(adjacencyMatrixOfProblem2() method in Floyd\_Graph class).
Please enter the command (Program source name is "Floyd\_Graph.java":
javac Floyd\_Graph.java
java Floyd\_Graph