Ex.No: 8 Roll No: 210701159

Implement SVM and Decision Tree Classification Techniques

AIM:

To implement SVM / Decision Tree Classification Techniques in Python.

PROCEDURES:

- 1. Collect and load the dataset from sources like CSV files or databases.
- 2. Clean and preprocess the data, including handling missing values and encoding categorical variables.
- 3. Split the dataset into training and testing sets to evaluate model performance.
- 4. Normalize or standardize the features, especially for SVM, to ensure consistent scaling.
- 5. Choose the appropriate model: SVM for margin-based classification, Decision Tree for rule-based classification.
- 6. Train the model on the training data using the `fit` method.
- 7. Make predictions on the testing data using the `predict` method.
- 8. Evaluate the model using metrics like accuracy, confusion matrix, precision, and recall.
- 9. Visualize the results with plots, such as decision boundaries for SVM or tree structures for Decision Trees.
- 10. Fine-tune the model by adjusting hyperparameters like `C` for SVM or `max_depth` for Decision Trees.

CODE:

SVM.py

Install and load the e1071 package (if not already installed)

library(e1071)

Load the iris dataset

data(iris)

Inspect the first few rows of the dataset

head(iris)

Split the data into training (70%) and testing (30%) sets

```
set.seed(123) # For reproducibility
sample_indices <- sample(1:nrow(iris), 0.7 * nrow(iris))</pre>
train_data <- iris[sample_indices, ]</pre>
test_data <- iris[-sample_indices, ]
# Fit the SVM model
svm_model <- svm(Species ~ ., data = train_data, kernel = "radial")</pre>
# Print the summary of the model
summary(svm_model)
# Predict the test set
predictions <- predict(svm_model, newdata = test_data)</pre>
# Evaluate the model's performance
confusion_matrix <- table(Predicted = predictions, Actual = test_data$Species)
print(confusion_matrix)
# Calculate accuracy
accuracy <- sum(diag(confusion_matrix)) / sum(confusion_matrix)</pre>
cat("Accuracy:", accuracy * 100, "%\n")
DecisionTree.py
# Install and load the rpart package (if not already installed)
library(rpart)
# Load the iris dataset
data(iris)
# Split the data into training (70%) and testing (30%) sets
set.seed(123) # For reproducibility
sample_indices <- sample(1:nrow(iris), 0.7 * nrow(iris))</pre>
train_data <- iris[sample_indices, ]</pre>
test_data <- iris[-sample_indices, ]
# Fit the Decision Tree model
tree_model <- rpart(Species ~ ., data = train_data, method = "class")
# Print the summary of the model
summary(tree_model)
# Plot the Decision Tree
plot(tree_model)
```

```
text(tree_model, pretty = 0)
# Predict the test set
predictions <- predict(tree_model, newdata = test_data, type = "class")
# Evaluate the model's performance
confusion_matrix <- table(Predicted = predictions, Actual = test_data$Species)
print(confusion_matrix)
# Calculate accuracy
accuracy <- sum(diag(confusion_matrix)) / sum(confusion_matrix)
cat("Accuracy:", accuracy * 100, "%\n")</pre>
```

OUTPUT:


```
rpart(formula = Species ~ ., data = train_data, method = "class")
 n= 105
        CP nsplit rel error
                               xerror
                                             xstd
                0 1.00000000 1.2058824 0.06232572
1 0.5294118
                1 0.47058824 0.5441176 0.07198662
2 0.3970588
                2 0.07352941 0.1176471 0.03997857
3 0.0100000
Variable importance
Petal.Width Petal.Length Sepal.Length Sepal.Width
         34
                      32
                                   21
Node number 1: 105 observations, complexity param=0.5294118
 predicted class=virginica expected loss=0.647619 P(node) =1
   class counts:
                   36
                         32
                               37
  probabilities: 0.343 0.305 0.352
 left son=2 (36 obs) right son=3 (69 obs)
 Primary splits:
     Petal.Length < 2.45 to the left, improve=35.54783, (0 missing)
     Petal.Width < 0.8 to the left, improve=35.54783, (0 missing)
     Sepal.Length < 5.45 to the left, improve=24.79179, (0 missing)
     Sepal.Width < 3.25 to the right, improve=12.34670, (0 missing)
 Surrogate splits:
     Petal.Width < 0.8 to the left, agree=1.000, adj=1.000, (0 split)
     Sepal.Length < 5.45 to the left, agree=0.924, adj=0.778, (0 split)
     Sepal.Width < 3.25 to the right, agree=0.819, adj=0.472, (0 split)
```

```
Node number 2: 36 observations
  predicted class=setosa
                           expected loss=0 P(node) =0.3428571
   class counts:
                    36
                           0
                                0
  probabilities: 1.000 0.000 0.000
Node number 3: 69 observations,
                                complexity param=0.3970588
  predicted class=virginica expected loss=0.4637681 P(node) =0.6571429
   class counts:
                    0
                               37
                          32
  probabilities: 0.000 0.464 0.536
  left son=6 (35 obs) right son=7 (34 obs)
  Primary splits:
     Petal.Width < 1.75 to the left, improve=25.291950, (0 missing)
     Petal.Length < 4.75 to the left, improve=25.187810, (0 missing)
     Sepal.Length < 6.15 to the left, improve= 5.974246, (0 missing)
                                      improve= 2.411006, (0 missing)
     Sepal.Width < 2.45 to the left,
  Surrogate splits:
     Petal.Length < 4.75 to the left, agree=0.913, adj=0.824, (0 split)
     Sepal.Length < 6.15 to the left, agree=0.696, adj=0.382, (0 split)
     Sepal.Width < 2.65 to the left, agree=0.638, adj=0.265, (0 split)
Node number 6: 35 observations
  predicted class=versicolor expected loss=0.1142857 P(node) =0.3333333
                               4
                         31
   class counts: 0
  probabilities: 0.000 0.886 0.114
Node number 7: 34 observations
 predicted class=virginica expected loss=0.02941176 P(node) =0.3238095
   class counts: 0 1
  probabilities: 0.000 0.029 0.971
           Actual
Predicted setosa versicolor virginica
                14
                           0
                                     0
  setosa
  versicolor
                0
                           18
                                     1
  virginica
                            0
                                    12
                 0
Accuracy: 97.77778 %
```

DECITE.	
RESULT:	
Thus, to implement the SVM / Decision Tree Classification Techniques are completed	
Thus, to implement the SVM / Decision Tree Classification Techniques are completed	
6.11	
successfully.	
-	