Chapitre 14

Suites numériques

14	Suites numériques	1
	14.18Premier théorème de comparaison	2
	14.22 Unicité de la limite	2
	14.23Limite et inégalité	2
	14.24Convergence et bornitude	
	14.29Minoration d'une extraction	
	14.30Extraction d'une suite convergente	3
	14.32 Pair, impair et convergence	3
	14.34 Opérations usuelles sur les limites	4
	14.35 Conservation des inégalités larges par passage à la limite	5
	14.37Théorème d'encadrement	
	14.38Produit d'une suite bornée par une limite nulle	5
	14.39Exemple	
	14.40Comparaison puissance factorielle	6
	14.41 Caractérisation séquentielle de la borne supérieure	6
	14.42 Caractérisation séquentielle de la borne supérieure	7
	14.48Théorème de comparaison	7
	14.49Limites infinies et opérations	8
	14.50Théorème de la limite monotone	9
	14.54Exemple	9
	14.55 Convergence des suites adjacentes	
	14.56Théorème de Bolzano-Weierstrass	10
	14.63Exemple	
	14.64Exemple	
	14.66 Monotonie d'une suite récurrente définie par une relation $u_{n+1} = f(u_n)$	12
	14.68Exemple	12
	14.69Exemple	13
	14.72 Convergence et parties réelles et imaginaires	
	14.73Théorème de Bolzano-Weierstrass pour les suites complexes	

14.18 Premier théorème de comparaison

Théorème 14 18

Si à partir d'un certain rang on a

$$|u_n - l| \le v_n$$

avec
$$v_n \xrightarrow[n \to +\infty]{} 0$$
, alors $u_n \xrightarrow[n \to +\infty]{} l$.

Soit $u_n \in \mathbb{N}$ tel que :

$$\forall n \geq N_1, |u_n - l| \leq v_n$$

Comme $v_n \xrightarrow[n \to +\infty]{} 0$, pour tout $\epsilon > 0$, on choisit $N_2 \in \mathbb{N}$ tel que :

$$\forall n \ge N_2, |v_n - 0| = |v_n| < \epsilon$$

On pose $N = \max(N_1, N_2)$. Ainsi :

$$\forall n \geq \mathbb{N}, |u_n - l| \leq v_n = |v_n| < \epsilon$$

 $\operatorname{Donc}\left[u_n \underset{n \to +\infty}{\longrightarrow} l\right]$

14.22 Unicité de la limite

Propostion 14.22

Si u admet une limite $l \in \mathbb{R}$, alors celle-ci est unique.

On suppose que u admet comme limite l et l' dans \mathbb{R} . Soit $\epsilon > 0$. On choisit N et N' dans \mathbb{N} tels que :

$$\forall n \ge N, |u_n - l| < \epsilon$$
$$\forall n \ge N', |u_n - l'| < \epsilon$$

Pour tout $n \ge \max(N, N')$:

$$|l - l'| = |l - u_n + u_n - l'|$$

 $\leq |l - u_n| + |u_n - l'|$ (Inégalité triangulaire)
 $< l\epsilon$

Nécessairement :

$$|l - l'| = 0$$

14.23 Limite et inégalité

Propostion 14.23

Si u converge vers l et si $\alpha < l$, alors à partir d'un certain rang, $\alpha < u_n$. De la même manière, si $\beta > l$, alors à partir d'un certain rang, $u_n < \beta$.

On suppose que $u_n \underset{n \to +\infty}{\longrightarrow} l$. Soit $\alpha < l$. On pose $\epsilon = \frac{|l-\alpha|}{2}$. D'après la définition, on choisit $N \in \mathbb{N}$ tel que :

$$\forall n \geq N, |u_n - l| < \epsilon$$

Soit:

$$\forall n \geq N, \underbrace{u_n}_{>\alpha} \in]\underbrace{l-\epsilon}_{>\alpha}, l+\epsilon[$$

14.24 Convergence et bornitude

Propostion 14.24

Une suite convergente est bornée.

Soit u une suite convergente. Notons $l = \lim_{n \to +\infty} u_n$.

On pose $\epsilon =$.

Par définition, soit $N \in \mathbb{N}$ tel que :

$$\forall n \geq N, u_n \in]l-1, l+1[$$

 $\text{Donc }\{u_n,n\geq N\} \text{ est born\'e. Donc }\{u_n,n\in\mathbb{N}\} = \underbrace{\{u_n,n\in[\![0,N-1]\!]\}}_{\text{ensemble fini}} \cup \underbrace{\{u_n,n\geq N\}}_{\text{born\'e.}} \text{ est born\'e.}$

14.29 Minoration d'une extraction

Lemme 14.29

Soit $\sigma: \mathbb{N} \to \mathbb{N}$ une application strictement croissante, alors

$$\forall n \in \mathbb{N}, n < \sigma(n).$$

Par récurrence.

Comme $\sigma(0) \in \mathbb{N}$, on a bien $\sigma(0) \geq 0$.

Si $\sigma(n) \ge n$, alors $\sigma(n+1) > \sigma(n) \ge n$.

Donc $\sigma(n+1) \ge n+1$.

14.30 Extraction d'une suite convergente

Propostion 14.30

Toute suite extraite d'une suite qui tend vers $l \in \mathbb{R}$ est une suite convergente vers l.

On suppose que $u_n \underset{n \to +\infty}{\longrightarrow} l \in \mathbb{R}$ (à adapter pour $l = \pm \infty$)

Soit $\sigma: \mathbb{N} \to \mathbb{N}$ strictement croissante.

On note $v = u \circ \sigma$.

Soit $\epsilon > 0$. Soit $N \in \mathbb{N}$ tel que :

$$\forall n \geq \mathbb{N}, |u_n - l| < \epsilon$$

Pour $n \geq N$, on a :

$$\sigma(n) \underset{(14.29)}{\geq} n \geq N$$

$$\operatorname{donc} |u_{\sigma(n)} - l| < \epsilon$$

$$\operatorname{soit} |v_n - l| < \epsilon$$

$$\operatorname{donc} \left[v_n \underset{n \to +\infty}{\longrightarrow} l \right]$$

14.32 Pair, impair et convergence

Propostion 14.32

Si $\lim u_{2n} = \lim u_{2n+1} = l \in \mathbb{R}$, alors $\lim u_n = l$

Soit $\epsilon > 0$. Soit N_1 et N_2 dans $\mathbb N$ telq que :

$$\forall n \ge N_1, |u_{2n} - l| \le \epsilon$$
$$\forall n \ge N_2, |u_{2n+1} - l| \le \epsilon$$

Or pour $N = \max(2N_1, 2N_2 + 1)$. Soit n > N.

— Si n = 2p, alors $p \ge N_1$

$$|u_n - l| = |u_{2p} - l| \le \epsilon$$

— Si n = 2p + 1, alors $p \ge N_2$

$$|u_n - l| = |u_{2p+1} - l| \le \epsilon$$

Dans tous les cas, $|u_n - l| \le \epsilon$

14.34 Opérations usuelles sur les limites

Théorème 14 34

Soit u et v deux suites qui convergent respectivement vers l et l' et soit $\lambda \in \mathbb{R}$, alors

- u + v converge ver l + l'
- λu converge vers λl
- uv converge vers ll'
- Si $l \neq 0$, alors à partir d'un certain rang, la suite des termes u_n sont tous nuls et la suite $\frac{1}{u}$ converge vers $\frac{1}{l}$
- Soit $n \in \mathbb{N}$ tel que

$$\forall n \in \mathbb{N}, |u_n - l| \le \epsilon \text{ et } |v_n - l'| \le \epsilon$$

Donc:

$$\forall n \in \mathbb{N}, |u_n + v_n - (l + l')| \le |u_n - l| + |v_n - l'| \text{ (Inégalité triangulaire)}$$

$$\le \epsilon$$

- RAS $(\lambda = 0 \text{ et } \lambda \neq 0)$
- Comme u converge, u est bornée. Soit $M \in \mathbb{R}_+$ tel que :

$$\forall n \in N, |u_n| \leq M$$

Pour $n \in \mathbb{N}$:

$$|u_n v_n - ll'| = |u_n v_n - u_n l' + u_n l' - ll'|$$

$$\leq |M||v_n - l'| + |l'| \times |u_n - l|$$

$$\leq M \times \epsilon + |l'| \times \epsilon$$

$$= (M + |l'|) \times \epsilon$$

Donc
$$u_n v_n \xrightarrow[n \to +\infty]{} ll'$$
.

— On suppose $l \neq 0$. D'après (14.23), à partir d'un certain rang $u_n > 0$ (ou $u_n < 0$). Il existe en outre $N \in \mathbb{N}$ tel que :

$$0 < \frac{l}{2} < u_n$$
 et $|u_n - l| < \epsilon$

Pour $n \geq N$:

$$\left| \frac{1}{u_n} - \frac{1}{l} \right| = \frac{|l - u_n|}{|u_n l|}$$

$$\leq 2 \frac{|l - u_n|}{l^2}$$

$$< \frac{2\epsilon}{l^2}$$

14.35 Conservation des inégalités larges par passage à la limite

Théorème 14.35

Soit u et v deux suites réelles. Si u converge vers l et v converge vers l' et si à partir d'un certain rang $u_n \le v_n$ alors $l \le l'$.

On raisonne par l'absurde : $l>l^{\prime}.$

On pose $\epsilon = \frac{|l'-l|}{2}$.

On choisit $N \in \mathbb{N}$ tel que :

$$\forall n \geq N, u_n \in]l - \epsilon, l + \epsilon[$$
 et $v_n \in]l' - \epsilon, l' + \epsilon[$

En particulier:

$$\forall n \geq N, u_n > v_n$$

Absurde.

14.37 Théorème d'encadrement

Théorème 14.37

Soit u, v et w trois suites réelles. Si u et v convergent vers l et si à partir d'un certain rang, $u_n \le w_n \le v_n$, alors w converge vers l.

Soit $\epsilon > 0$, on choisit $N \in \mathbb{N}$ tel que :

$$\forall n \geq N, u_n \in]l - \epsilon[$$
 et $v_n \in]l - \epsilon, l + \epsilon[$

A partir d'un certain rang M, par connexité de l'intervalle $]l - \epsilon, l + \epsilon[$:

$$\forall n \geq M, w_n \in]l - \epsilon, l + \epsilon[$$

14.38 Produit d'une suite bornée par une limite nulle

Théorème 14 38

Soit u et v deux suites réelles. Si u converge vers 0 et si v est bornée, alors w converge vers 0.

Soit $M \in \mathbb{R}_+$ telq ue:

$$\forall n \in \mathbb{N}, |v_n| \leq M$$

Alors:

$$\forall n \in \mathbb{N}, |u_n v_n| \le M \times |u_n| \underset{n \to +\infty}{\longrightarrow} 0$$

Donc:

$$|u_n v_n| \underset{n \to +\infty}{\longrightarrow} 0$$

Soit:

$$u_n v_n \xrightarrow[n \to +\infty]{} 0$$

14.39 Exemple

Exemple 14.39

Soit (u_n) une suite strictement positive et $\eta \in]0;1[$. On suppose qu'à partir d'un certain rang, on a $\frac{u_{n+1}}{u_n} \leq \eta$. Alors $\lim u_n = 0$.

On suppose que :

$$\forall n \ge n_0, \frac{u_{n+1}}{u_n} \le 2$$

Donc $(u_n > 0)$:

$$\forall n \ge n_0, 0 < u_n < \underbrace{\eta^{n-n_0}}_{\substack{n \to +\infty}} \times u_{n_0}$$

Par encadrement:

$$\boxed{u_n \underset{n \to +\infty}{\longrightarrow} 0}$$

14.40 Comparaison puissance factorielle

Théorème 14.40

$$\forall x \in \mathbb{R}, \lim_{n \to +\infty} \frac{x^n}{n!} = 0.$$

Pour $x \in \mathbb{R}$ fixé, non nul.

On note pour tout $n \in \mathbb{N}$:

$$u_n = \frac{|x|^n}{n!} > 0$$

Or:

$$\frac{u_{n+1}}{u_n} = \frac{|x|}{n+1} \underset{n \to +\infty}{\longrightarrow} 0$$

A partir d'un certain rang:

$$\frac{u_{n+1}}{u_n} \le \frac{1}{2}$$

Donc (14.39):

$$u_n \underset{n \to +\infty}{\longrightarrow} 0$$

14.41 Caractérisation séquentielle de la borne supérieure

Théorème 14.41

Soit A une partie non vide de \mathbb{R} et soit $M \in \mathbb{R}$. Alors M est la borne supérieure (resp. inférieure) de A si et seulement si M majore (resp. minore) A et s'il existe une suite d'éléments de A qui converge vers M.

 \Rightarrow

On suppose que $M = \sup A$. Donc M majore A.

On rappelle que:

$$\forall \epsilon > 0, \exists a \in A, M - \epsilon < a$$

Donc:

$$\forall n \in \mathbb{N}, \exists a \in A, M - \frac{1}{n+1} < a_n \leq M \ (M \text{ est un majorant})$$

D'après la suite $(a_n) \in A^{\mathbb{N}}$ étant ainsi définie, d'après le théorème d'encadrement :

$$a_n \xrightarrow[n \to +\infty]{} M$$

On choisit $(a_n) \in A^{\mathbb{N}}$ telle que :

$$a_n \xrightarrow[n \to +\infty]{} M$$
 (majorant de A)

Soit $\epsilon > 0$. On choisit $a_n \in A$ tel que:

$$a_n \in]M - \epsilon, M + \epsilon[$$

Donc $M - \epsilon$ ne majore pas A.

Donc:

$$M = \sup A$$

Caractérisation séquentielle de la borne supérieure 14.42

Soit A une partie non vide de \mathbb{R} , alors A est dense dans \mathbb{R} si et seulement si pour tout $x \in \mathbb{R}$, il existe une suite d'éléments de A qui converge vers x.

 \Rightarrow

On suppose que A est dense dans \mathbb{R} . Soit $x \in \mathbb{R}$.

$$\forall \epsilon > 0, \exists a \in A, a \in]x - \epsilon, x + \epsilon[$$

En particulier:

$$\forall n \in \mathbb{N}, \exists a_n \in A, x - \frac{1}{n+1} < a_n < x + \frac{1}{n+1}$$

La suite $(a_n) \in A^{\mathbb{N}}$ étant fixée ainsi :

$$a_n \xrightarrow[n \to +\infty]{} x$$
 (théorème d'encadrement)

Soit]x,y[un intervalle non vide de \mathbb{R} . On pose $z = \frac{x+y}{2}$. On pose $\epsilon = \frac{|y-x|}{2}$. On choisit $(a_n) \in A^{\mathbb{N}}$ telle que :

$$a_n \xrightarrow[n \to +\infty]{} z$$

On choisit $N \in \mathbb{N}$ tel que :

$$a_n \in]z - \epsilon, z + \epsilon[=]x, y[$$

Donc:

$$A\cap]x,y[\neq\emptyset$$

Théorème de comparaison 14.48

Soit u et v deux suites réelles.

- 1. Si $\lim u = +\infty$ et si à partir d'un certain rang on a $u_n \leq v_n$, alors $\lim v = +\infty$;
- 2. Si $\lim v = -\infty$ et si à partir d'un certain rang on a $u_n \le v_n$, alors $\lim u = -\infty$;
- 3. Si $\lim u = +\infty$ (resp. $-\infty$) et si v est minorée (resp. majorée), alors $\lim u + v = +\infty$ (resp. $-\infty$).

1. Soit $A \geq 0$. On choisit $n \in \mathbb{N}$ tel que :

$$\forall n \geq N, A \leq u_n \text{ et } u_n \leq v_n$$

Donc:

$$\begin{array}{|c|c|}
\hline v_n \xrightarrow[n \to +\infty]{} +\infty
\end{array}$$

- 2. RAS
- 3. Si (v_n) est minorée, alors à partir d'un certain rang :

$$m + u_n \le u_n + v_n$$

En adaptant le premier point (A' = A - m), on a :

$$u_n + v_n \xrightarrow[n \to +\infty]{} + \infty$$

14.49 Limites infinies et opérations

Théorème 14.49

Soit u et v deux suites réelles de limites respectives l et l' dans $\overline{\mathbb{R}}$ et soit $\lambda \in \mathbb{R}$. On a

- $\lim u + v = l + l'$ (sauf si $l = +\infty$ et $l' = -\infty$ ou inversement)
- $\lim \lambda u = \lambda l$ sauf si $\lambda = 0$ auquel cas la suite λu est la suite nulle.
- $\lim u \times v = l \times l'$ sauf si $\lambda = 0$ et $l' = \pm \infty$ ou inversement
- Si à partir d'un certain rang, la suite u ne s'annule pas, alors la suite $\frac{1}{u}$:
 - si $l \in \mathbb{R}^*$, tend vers \bar{l} ;
 - si $l = \pm \infty$, tend vers 0;
 - si l = 0 et $u_n > 0$, tend vers $+\infty$;
 - si l = 0 et $u_n < 0$, tend vers $-\infty$;
 - n'a pas de limite dans les autre cas
- On suppose $l' \in \mathbb{R}$ et $l = +\infty$. Donc v est bornée. Donc (14.48):

$$u_n + v_n \xrightarrow[n \to +\infty]{} +\infty$$

- $\lambda \neq 0, \lambda > 0$ et $l = +\infty$. Pour $A \in \mathbb{R}$, on choisit un rang à partir duquel $u_n > \frac{A}{\lambda}$.
- On suppose l > 0 et $l' = +\infty$.

Comme $u_n \underset{n \to +\infty}{\longrightarrow} l$, alors à partir d'un certain rang, $u_n > m$ avec $m = \begin{cases} 1 \text{ si } l = +\infty \\ \frac{l}{2} \text{ sinon} \end{cases}$

$$u_n v_n > m v_n \xrightarrow[n \to +\infty]{} +\infty$$

Donc:

$$u_n v_n \underset{n \to +\infty}{\longrightarrow} +\infty$$
 (14.48)

 $-l = +\infty.$

Soit $\epsilon > 0$, à partir d'un certain rang :

$$u_n > \frac{1}{\epsilon} > 0$$

Donc:

$$0 < \frac{1}{u_n} < \epsilon$$

$$\frac{1}{u_n} \underset{n \to +\infty}{\longrightarrow} 0$$

Si l = 0 et $u_n > 0$ à partir d'un certain rang. Pour $A \in \mathbb{R}_+^*$, à partir d'un certain rang :

$$u_n > 0$$
 et $u_n < \frac{1}{A}$
donc $\frac{1}{u_n} > A$
 $\frac{1}{u_n} \underset{n \to +\infty}{\longrightarrow} +\infty$

14.50 Théorème de la limite monotone

Théorème 14.50

Si u est une suite croissante et majorée (resp. décroissante et minorée), alors u converge vers $\sup_{n\in\mathbb{N}}(u_n)$ (resp. vers $\inf_{n\in\mathbb{N}}(u_n)$).

Si u est une suite croissante et non majorée (resp. décroissante et non minorée) alors u tend vers $+\infty$ (resp. vers $-\infty$).

— On suppose u croissante et majorée.

L'ensemble $A = \{u_n | n \in \mathbb{N}\}$ est non vide et majoré. Cet ensemble possède une borne supérieure notée l (propriété fondamentale de \mathbb{R}).

Soit $\epsilon >$. Comme $l - \epsilon < u_n$ ne majore pas A, on choisit $N \in \mathbb{N}$ tel que $l - \epsilon < u_n$.

Or (u_n) est croissante donc :

$$\forall n \ge N, l - \epsilon < u_N \le u_n \le l$$

Donc:

$$\forall n \geq N, u_n \in]l - \epsilon, l + \epsilon[$$

Soit:

$$u_n \underset{n \to +\infty}{\longrightarrow} l$$

— On suppose u croissante et non majorée.

Soit $A \in \mathbb{R}_+$. Soit $N \in \mathbb{N}$ tel que :

$$u_N \ge A \ (u \text{ non major\'ee})$$

Donc:

$$\forall n \geq N, A \leq u_N \leq u_n \ (u \text{ croissante})$$

Soit:

$$u_n \xrightarrow[n \to +\infty]{} +\infty$$

14.54 Exemple

Exemple 14.54

Soit u et v les suites définies par

$$\forall n \in \mathbb{N}^*, u_n = \sum_{k=0}^n \frac{1}{k!} \text{ et } v_n = u_n + \frac{1}{n \times n!}$$

Ces deux suites sont adjacentes.

$$\forall n \in \mathbb{N}^*, u_{n+1} - u_n = \frac{1}{(n+1)!} \ge 0$$

Donc (u_n) est croissante.

$$\forall n \in \mathbb{N}^* v_{n+1} - v_n = u_{n+1} - u_n + \frac{1}{(n+1)(n+1)!} - \frac{1}{nn!}$$

$$= \frac{1}{(n+1)!} + \frac{1}{(n+1)(n+1)!} - \frac{1}{nn!}$$

$$= \frac{1}{n!} \left[\frac{1}{n+1} + \frac{1}{(n+1)^2} - \frac{1}{n} \right]$$

$$= \frac{1}{n!(n+1)^2 n} [(n+1)n + n - (n+1)^2]$$

$$= -\frac{1}{n!(n+1)^2 n}$$

$$\leq 0$$

$$\forall n \in \mathbb{N}^*, v_n - u_n = \frac{1}{n \times n!}$$

Donc:

$$v_n - u_n \xrightarrow[n \to +\infty]{} 0$$

Donc u et v sont adjacentes et convergent alors vers une limite commune. (TCSA)

14.55 Convergence des suites adjacentes

Théorème 14.55

Deux suites adjacentes convergent vers une limite commune.

Soit u et v deux suites adjacentes avec u croissante et v décroissante.

Soit w = v - u. Par opération, w est décroissante.

Par hypothèse:

$$w_n \underset{n \to +\infty}{\longrightarrow} 0$$

Donc $w \le 0$, soit $u \le v$.

La suite u est donc majorée par v_0 , et croissante donc convergente d'après le théorème de la limite monotone. Pour les mêmes raisons, v converge.

Or, par théorème d'opérations :

$$\lim_{n \to +\infty} v_n - \lim_{n \to +\infty} u_n = \lim_{n \to +\infty} (v_n - u_n) = 0$$

14.56 Théorème de Bolzano-Weierstrass

Théorème 14.56

On peut extraire de toute suite réelle bornée une suite convergente.

Soit u une suite bornée. On note a et b un minorant et majorant de u. On construit deux suites (a_n) et (b_n) par récurrence de la manière suivante :

- On initialise $a_0 = a$ et $b_0 = b$.
- Si l'intervalle $\begin{bmatrix} a_0, \frac{a_0+b_0}{2} \end{bmatrix}$ contient une infinité de valeurs de la suite (u_n) , alors $a_1 = a_0$ et $b_1 = \frac{a_0+b_0}{2}$. Sinon, l'intervalle $\begin{bmatrix} \frac{a_0+b_0}{2}, b_0 \end{bmatrix}$ contient une infinité de valeurs, alors $a_1 = \frac{a_0+b_0}{2}$ et $b_1 = b_0$. On note $\sigma(0) = 0$ et comme $[a_1, b_1]$ contient une infinité de valeurs, on dixe $u_{n_1} \in [a_1, b_1]$ avec $n_1 > 0$. On pose alors $\sigma(1) = n_1$.
- Supposons construits (a_n) , (b_n) et σ avec le principe précédent :

$$\forall n \in \mathbb{N}, \begin{cases} a_{n+1} = a_n \text{ et } b_{n+1} = \frac{a_n + b_n}{2} \\ \text{ou} \\ a_{n+1} = \frac{a_n + b_n}{2} \text{ et } b_{n+1} = b_n \end{cases}$$

Selon que $\left[a_n, \frac{a_n+b_n}{2}\right]$ contient une infinité de valeurs ou $\left[\frac{a_n+b_n}{2}, b_n\right]$ et v(n+1) > v(n) et $u_{\sigma(n+1)} \in [a_{n+1}, b_{n+1}]$.

$$\forall n \in \mathbb{N}, a_n \le u_{\sigma(n)} \le b_n$$

$$\forall n \in \mathbb{N}, |b_{n+1} - a_{n+1}| = \frac{|b_n - a_n|}{2}$$

$$\forall n \in \mathbb{N}, |b_n - a_n| = \frac{|b_0 - a_0|}{2^n} \underset{n \to +\infty}{\longrightarrow} 0$$

Donc (a_n) et (b_n) sont adjacentes donc convergent vers la même limite (TCSA) donc $(u_{\sigma(n)})$ converge (TE).

14.63 Exemple

Exemple 14.63

La suite (u_n) définie par $u_0 = 1$ et pour tout $n \in \mathbb{N}, u_{n+1} = u_n + e^{u_n}$ diverge vers $+\infty$.

 R_+ est stable par $f: x \mapsto x + e^x$. Comme $0 \in \mathbb{R}_+$, la suite (u_n) est bien définie.

$$\forall n \in \mathbb{N}, u_{n+1} = f(u_n) = u_n + e^{u_n} \ge u_n$$

Donc (u_n) est croissant.

Supposeons que $u_n \underset{n \to +\infty}{\longrightarrow} l \in \mathbb{R}_+$.

Par théorème d'opération, $l = l + e^l$.

Absurde.

Donc d'après le TLM :

$$u_n \xrightarrow[n \to +\infty]{} +\infty$$

14.64 Exemple

Exemple 14.64

La suite (u_n) défine par $u_0=1$ et pour tout $n\in\mathbb{N}, u_{n+1}=\frac{u_n}{1+u_n^2}$ converge vers 0.

[0,1] est stable par $f: x \mapsto \frac{x}{x^2+1}$ et $1 \in [0,1]$.

Donc (u_n) est bien définie et est minorée.

Or:

$$\forall n \in \mathbb{N}, u_{n+1}) f(u_n) = \frac{u_n}{u_n^2 + 1} \le u_n$$

Donc (u_n) est décroissante donc converge vers $l \in [0,1]$ d'après le TLM. Par théorème d'opération :

$$l = \frac{l}{l^2 + 1}$$

donc
$$l^2 = 0$$

donc
$$l=0$$

14.66 Monotonie d'une suite récurrente définie par une relation $u_{n+1} = f(u_n)$

Théorème 14.66

Soit D une partie de \mathbb{R} , $u_0 \in D$ et $f: D \to D$ une fonction (autrement dit, D est stable par f). On note (u_n) l'unique suite définie sur \mathbb{N} par $u_{n+1} = f(u_n)$.

- 1. Si pour tout $x \in D$, $f(x) \ge x$, alors (u_n) est croissante. Si pour tout $x \in D$, $f(x) \le x$, alors (u_n) est décroissante. Le signe de la fonction $x \mapsto f(x) x$ renseigne donc sur la monotonie de la suite (u_n) .
- 2. Si f est croissante, alors (u_n) est monotone. Son sens de variation dépend alors du signe de $u_1 u_0$.
- 3. Si f est décroissante, alors (u_{2n}) et (u_{2n+1}) sont monotones et de sens contraires. Leur sens de variation est entièrement déterminé par le signe de $u_2 u_0$.
- 1. Si:

$$\forall n \in D, f(x) \ge x$$

Alors:

$$\forall n \in \mathbb{N}, f(u_n) = u_{n+1} > u_n$$

Donc (u_n) est croissante.

2. On suppose f croissate et $u_0 \leq u_1$. Alors :

$$u_1 = f(u_0) \le f(u_1) = u_2$$

On termine par récurrence.

3. Si f est décroissante, alors $f^2 = f \circ f$ est croissante. Or :

$$\forall n \in \mathbb{N}, u_{2n+2} = f^2(u_{2n})$$
$$u_{2n+1} = f^2(u_{2n-1})$$

Donc (14.66.2) (u_{2n}) et (u_{2n+1}) sont monotones. Or, si $u_2 \le u_0$, alors $u_3 = f(u_2) \le f(u_0) = u_1$

14.68 Exemple

Exemple 14.68

On note (u_n) la suite définie par $u_0 = 1$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n^2 + u_n$ et notons $f : x \mapsto 1 + \frac{1}{x}$. Etudier la convergence de la suite (u_n) .

 \mathbb{R}_+ est stable par $f: x \mapsto x^2 + x$ et $1 \in \mathbb{R}_+$.

Donc (u_n) est bien définie.

Comme:

$$\forall x \in \mathbb{R}_+, f(x) - x > 0$$

 (u_n) est croissante.

On suppose que:

$$u_n \xrightarrow[n \to +\infty]{} l \ge 1 = u_0$$

Comme $f \in \mathcal{C}^{\infty}(\mathbb{R}_+, \mathbb{R}_+)$.

On a f(l) = l donc $l^2 = 0$.

Absurde.

Donc, d'après le TLM :

$$u_n \xrightarrow[n \to +\infty]{} +\infty$$

14.69 Exemple

Exemple 14.69

On note (u_n) la suite définie apr $u_0 = 1$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = 1 + \frac{1}{u_n}$, et notons $f : x \mapsto 1 + \frac{1}{x}$. Etudier la convergence de la suite (u_n) .

[1,2] est stable par $f: x \mapsto 1 + frac1x$ et $1 \in [1,2]$.

Donc (u_n) est bien définie et est bornée.

Comme f est décroissante sur [1,2], (u_{2n}) et (u_{2n+1}) sont monotones de monoties contraires.

Comme $u_0 = 1 = \min([1, 2]), (u_{2n})$ est croissante et (u_{2n+1}) décroissante, puis convergentes (TLM) vers des points fixes de f^2 (car f^2 est continue sur [1, 2])

Soit $x \in [1, 2]$.

$$f^{2}(x) = x \Leftrightarrow 1 + \frac{1}{1 + \frac{1}{x}} = x$$

$$\Leftrightarrow x + 1 + x = x(x + 1)$$

$$\Leftrightarrow x^{2} - x - 1 = 0$$

$$\Leftrightarrow \left(x - \underbrace{\frac{1 + \sqrt{5}}{2}}_{\in [1, 2]}\right) \left(x - \underbrace{\frac{1 - \sqrt{5}}{2}}_{\notin [1, 2]}\right) = 0$$

$$\Leftrightarrow x = \underbrace{\frac{1 + \sqrt{5}}{2}}_{=0}$$

Donc (u_{2n}) et (u_{2n+1}) convergent nécessairement vers $\frac{1+\sqrt{5}}{2}$. Donc :

$$u_n \underset{n \to +\infty}{\longrightarrow} \frac{1 + \sqrt{5}}{2}$$

14.72 Convergence et parties réelles et imaginaires

Théorème 14.72

Soit u une suite complexe et $l \in \mathcal{C}$. Alors la suite u converge vers l si et seulement si la suite $(Re(u_n))$ converge vers Re(l) et $(Im(u_n))$ converge vers Im(l).

 \Rightarrow

Pour tout $n \in \mathbb{N}$:

$$|Re(u_n) - Re(l)| \le |u_n - l| \underset{n \to +\infty}{\longrightarrow} 0$$

 $|Im(u_n) - Im(l)| \le |u_n - l| \underset{n \to +\infty}{\longrightarrow} 0$

Ainsi, $Im(u_n) \underset{n \to +\infty}{\longrightarrow} Im(l)$ et $Re(u_n) \underset{n \to +\infty}{\longrightarrow} Re(l)$.

← On a :

$$|u_n - l| = \sqrt{(Im(u_n) - Im(l))^2 + (Re(u_n) - Re(l))^2}$$

$$\underset{n \to +\infty}{\longrightarrow} 0 \text{ (théorème d'opérations)}$$

14.73 Théorème de Bolzano-Weierstrass pour les suites complexes

Remarque 14.73

Si u est bornée, on peut en extraire une suite convergente (Bolzano-Weierstrass).

```
\begin{array}{l} u_n=a_n+b_n \ {\rm born\acute{e}e}.\\ (a_n)\ {\rm et}\ (b_n)\ {\rm sont}\ {\rm born\acute{e}s}.\\ (a_n)\ {\rm born\acute{e}\'e}\ {\rm donc}\ (a_{\sigma(n)})\ {\rm converge}.\\ (b_{\sigma(n)})\ {\rm born\acute{e}\'e}\ {\rm donc}\ (b_{\sigma\circ\varphi(n)})\ {\rm converge}.\\ (a_{\sigma\circ\varphi(n)})\ {\rm extraite}\ {\rm de}\ (a_{\sigma(n)})\ {\rm donc}\ {\rm converge}.\\ (u_{\sigma\circ\varphi(n)})\ {\rm converge}. \end{array}
```