

Naïve Bayes 1/11

D.E. Brown

Naïve Bayes

Naïve Bayes

Donald E. Brown

School of Data Science University of Virginia Charlottesville, VA 22904

Why use Naïve Bayes

Naïve Bayes 2/11

- Assumes features of a multidimensional likelihood are independent even when they are not
- Suppose likelihood is $\mathfrak{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ of dimension M
- Parameter estimation is $O(\frac{M^2}{2})$
- Complexity of parameter estimation can be worse with other joint distributions
- Suboptimal approaches with good parameter estimates are better than optimal approaches with bad parameter estimates

Naïve Bayes Classifier

Naïve Bayes 3/11

D.E. Brown

Naïve Bayes

• Approximate $f(x|g_i)$ for i = 1, ..., p using an independence assumption

$$f(\mathbf{x}|g_i) = \prod_{k=1}^p f(x_k|g_i)$$

- Estimate or assume the form of $f(x_k|g_i)$
 - Assume each of the class conditional densities is Gaussian.
 - Use kernel or mixture model estimates for $f(x_k|g_i)$.
 - Categorical variables with Bernoulli or mulitnomial estimates.

Naïve Bayes, Gaussian

Naïve Bayes 4/11 D.E. Brown

Naïve Bayes

For
$$i \in \{1, ..., K\}, j \in \{1, ..., p\}, x = \{x_1, ..., x_N\}$$

$$f(\mathbf{x}|g_i) \sim \mathcal{N}(\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$$
$$= \prod_{i=1}^p \mathcal{N}(\mu_{ji}, \sigma_{ji})$$

For $i, k \in \{1, \dots, K\}$ choose $G = g_i$ if

$$\frac{f(\mathbf{x}|g_i)}{f(\mathbf{x}|g_k)} > \frac{Pr[G = g_k]}{Pr[G = g_i]}$$

$$\frac{\prod_{j=1}^{p} \mathcal{N}(\mu_{ji}, \sigma_{ji})}{\prod_{j=1}^{p} \mathcal{N}(\mu_{jk}, \sigma_{jk})} > \frac{Pr[G = g_k]}{Pr[G = g_i]}$$

BTA

Example Predictions

Naïve Bayes 5/ 11

D.E. Brown

Naïve Bayes, Bernoulli

Naïve Bayes 6/11 D.E. Brown

Naïve Bayes

For
$$i \in \{1, ..., K\}, j \in \{1, ..., p\}, \theta_{ji} \in (0, 1), \mathbf{x} = \{\mathbf{x}_1, ..., \mathbf{x}_N\}$$

$$f(\mathbf{x}_h|g_i) = \prod_{j=1}^p \theta_{ji}^{x_{hj}} (1 - \theta_{ji})^{(1-x_{hj})}, h = 1, \dots, N$$

For $i, k \in \{1, \dots, K\}$ choose $G = g_i$ if

$$\frac{f(\mathbf{x}|g_i)}{f(\mathbf{x}|g_k)} > \frac{Pr[G = g_k]}{Pr[G = g_i]}$$

$$\frac{\prod_{j=1}^{p} \theta_{ji}^{x_j} (1 - \theta_{ji})^{(1 - x_j)}}{\prod_{j=1}^{p} \theta_{jk}^{x_j} (1 - \theta_{jk})^{(1 - x_j)}} > \frac{Pr[G = g_k]}{Pr[G = g_i]}$$

BTA

Example - Text Classification

Naïve Bayes 7/ 11

D.E. Brown

- Suppose we have a corpus, \mathcal{D} , of documents and we want to classify them into class labels $c \in \mathcal{C}$
- Examples:
 - $\bullet \ \, \mathbb{D} \ \, \text{may be reviews and} \ \, \mathcal{C} = \{positive, neutral, negative} \}$
 - \mathcal{D} may be email and $\mathcal{C} = \{ham, spam\}$
- Bag of words, so W is the vocabulary and W_j are the words in document j, j = 1, ..., |D|
- Bayes optimal classifier: for some document d

$$c^* = \underset{c_i \in \mathcal{C}}{\operatorname{argmax}} P(\mathcal{W}_d | c_i) P(c_i))$$

Example - Naïve Bayes Likelihood Estimation

Naïve Bayes 8/11

Naïve Bayes

Likelihood - Independence assumption

$$P(\mathcal{W}_d|c_i)P(c_i) = \prod_{w_j \in \mathcal{W}_d} P(w_j|c_i)P(c_i)$$
$$\hat{P}(w_j|c_i) = \frac{\sharp (w_j, c_i)}{\sum_{w \in \mathcal{W}} \sharp (w, c_i)}$$

- A word, w_j associated with a class may not appear in the training set, so $P(w_j|c_i) = 0$, which makes the likelihood zero.
- Naïve Bayes smoothing: add $\alpha > 0$

$$\hat{P}(w_j|c_i) = \frac{\sharp (w_j, c_i) + \alpha}{\sum_{w \in \mathcal{W}} (\sharp (w, c_i) + \alpha)}$$
$$= \frac{\sharp (w_j, c_i) + \alpha}{\sum_{w \in \mathcal{W}} \sharp (w, c_i) + \alpha |\mathcal{W}|}$$

Example - Supervised Learning with Naïve Bayes

Naïve Bayes 9/11

Naïve Bayes

- Obtain a training corpus of restaurant reviews, \mathcal{D}_T , with labels from \mathcal{C}
- Priors: Let $d(c_i) \in \mathcal{D}_T$ be a document of class, c_i

$$P(c_i) = \frac{\sharp (d(c_i))}{|\mathcal{D}_{\mathcal{T}}|}$$

• Likelihoods: Let $W_{d(c_i)}$ be words in all $d(c_i) \in \mathcal{D}_T$ and $v = |W_{d(c_i)}|$

$$\hat{P}(w_j|c_i) = \frac{\sharp \left(w_j \in \mathcal{W}_{d(c_i)}\right) + \alpha}{\sum_{k=1}^{\nu} \sharp \left(w_k \in \mathcal{W}_{d(c_i)}\right) + \alpha \nu}$$

Example Words in Reviews

Naïve Bayes 10/11

Naïve Bayes

Words	$\sharp (w_j Positive)$	$\sharp (w_j Neutral)$	$\sharp (w_j Negative)$
we	1254	612	1478
I	1090	312	856
you	347	121	538
they	1688	976	2005
horrible	0	2	883
bad	362	439	3795
good	2183	729	691
liked	2847	837	114
tasty	884	33	17
salmon	158	26	39
tuna	112	15	137
calamari	2	0	0

Let $\alpha = 1.5$

Restaurant Review Posteriors

Naïve Bayes 11/11 D.E. Brown

Text	$f(w_j \text{Positive})$	$f(w_j Neutral)$	$f(w_j Negative)$
I	1.09E-2	3.13E-3	8.57E-3
liked	2.84E-2	8.38E-3	1.15E-3
the	NA	NA	NA
tasty	8.85E-3	3.35E-4	1.85E-4
calamari	3.5E-5	1.5E-5	1.5E-5
Priors	0.33	0.33	0.33
$P(\mathcal{W}_d c_i)P(c_i)$	3.16E-8	4.35E-14	9.03E-15
$Log_{10}()$	-10.50	-13.36	-14.04