The Industrial Fluid Properties Simulation Challenge: Force field parameterized with isooctane REFPROP equation of state

Andrei Kazakov¹, J. Richard Elliott², S. Mostafa Razavi², and Richard Messerly¹

¹Thermodynamics Research Center (TRC), National Institute of Standards and Technology (NIST), Boulder, Colorado, 80305, USA

²Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio, 44325, USA

ABSTRACT

Accurate prediction of viscosity (η) at high pressures (P) necessitates an extremely reliable force field for at least two reasons. First, the viscosity at a given density (ρ) is highly sensitive to the non-bonded function form and associated parameters. Second, the viscosity depends strongly on the predicted density, which is also very sensitive to the force field.

Since the challenge compound is 2,2,4-trimethylhexane (TMH), we chose 2,2,4-trimethylpentane (TMP, a.k.a. isooctane) as a surrogate molecule. Specifically, the optimal non-bonded parameters are obtained empirically by minimizing the deviation between the predicted and REFPROP $P\rho T$ and caloric properties for TMP. The CH₃, CH₂, CH, and C non-bonded parameters are optimized simultaneously. This high-dimensional parameterization is possible by reweighting configurations using Multistate Bennett Acceptance Ratio (MBAR) and by including several properties over a wide range of state points.

Uncertainties in the estimated TMH viscosity are obtained using three complementary methods. First, we use the deviation between the simulated and REFPROP η values for the surrogate compound, TMP, at the target temperatures and pressures. Second, we account for the uncertainty in η that is associated with uncertainties in ρ for a given P. Third, we propagate the uncertainty in the force field non-bonded parameters using Bayesian inference.