First Name:	Last Name:	Student ID:

Identities and Equations (2)

- **1.** Use an appropriate double angle formula to rewrite each expression as a single trigonometric ratio.
- a. $6\sin(3x)\cos(3x)$

b. $1-2\cos^2(\frac{\alpha}{2})$

c.
$$\frac{\tan \theta}{\tan^2(\theta) - 1}$$

$$d.\frac{\cos^2(3y)-\sin^2(3y)}{\sin(3y)\cos(3y)}$$

- 2. Derive a formula for
- a. $sin(3\theta)$ in terms of $sin(\theta)$
- b. $cos(4\theta)$ in terms of $cos(\theta)$
- c. $cot(2\theta)$ in terms of $cot(\theta)$

3. Simplify each of the following trigonometric expressions using an appropriate double angle formula, then determine the exact value of the expression.

a.
$$1-2\sin^2(\frac{11\pi}{8})$$

$$d. \frac{1-tan^2(\frac{\pi}{12})}{\tan(\frac{\pi}{12})}$$

e.
$$\cos^2(\frac{11\pi}{12})$$

4. a. Given $\sin(\theta) = \frac{3}{4}$ where $\frac{\pi}{2} \le \theta \le \pi$, determine the exact value of $\sin(2\theta)$.

b. Given $\cos{(2\theta)} = -\frac{7}{8}$, where 2θ is an angle in standard position with a terminal arm in quadrant 3, determine the exact value of $\cos{(\theta)}$ and $\sin{(\theta)}$

- **5.** Determine the exact value of each.
- a. cos(22.5°)

b. $\sin(\frac{7\pi}{12})$

c. $tan(\frac{5\pi}{8})$

- **6.** Solve for x within the specified domain. Keep answers exact whenever possible.
- a. $tan(x)cos(x) = 0, 0 \le x \le 2\pi$

b. $(2\cos(x)+\sqrt{3})(\csc(x)-\sqrt{2}) = 0$, $0 \le x \le 2\pi$

- c. $2\cos^2(x) + \sqrt{3}\cos(x) = 0$, $-\pi \le x \le \pi$ d. $2\sin(x)\sec(x) = 6\sin(x)$, $0^\circ \le x \le 360^\circ$

7. Determine the exact values of a and b such that the quadratic trigonometric equation $a\cos^2(x) + b\cos(x) - 3 = 0$ has the solutions $\frac{\pi}{4}$, $\frac{2\pi}{3}$, $\frac{4\pi}{3}$, $\frac{7\pi}{4}$ in the interval $0 \le x \le 2\pi$.

8. Determine roots of $sin(x) + cos(x) = \sqrt{\frac{3}{2}}$ for $0 \le x \le 2\pi$.