CMSE 820 Homework 3. Due 29 September, 2020.

- I. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function and $x_0 \in \mathbb{R}^n$ be a fixed point.
- (1) Let $\alpha > 0$ be a positive real number. Prove that

$$\partial(\alpha f)(x_0) = \alpha \partial f(x_0)$$

where $\alpha \partial f(x_0)$ is defined as $\alpha \partial f(x_0) := \{\alpha s : s \in \partial f(x_0)\}.$

Solution. Let $w \in \alpha \partial f(x_0)$. Therefore, $w \in \{\alpha s : s \in \partial f(x_0)\}$. Without loss of generality, let s_0 be an element of $\partial f(x_0)$ such that $w = \alpha s_0$. From the definition of a subgradient, for any $y \in \mathcal{D}(f)$,

$$f(y) \ge f(x_0) + s_0^T (y - x_0).$$

Multiplying the expression by α , we get

$$\alpha f(y) \ge \alpha f(x_0) + (\alpha s_0)^T (y - x_0).$$

Let $\tilde{f}(x) = \alpha f(x)$. Thus,

$$\tilde{f}(y) \ge \tilde{f}(x) + (\alpha s_0)^T (y - x_0).$$

Therefore $\alpha s_0 \in \partial \tilde{f}(x_0)$, which means $\alpha s_0 = w \in \partial \tilde{f}(x_0) = \partial(\alpha f)(x_0)$ and $\alpha \partial f(x_0) \subseteq \partial(\alpha f)(x_0)$.

Now let $w \in \partial(\alpha f)(x_0)$. From the definition of a subgradient, $\forall y \in \mathcal{D}(f)$,

$$\alpha f(y) \ge \alpha f(x_0) + w^T (y - x_0).$$

Since $\alpha > 0$,

$$f(y) \ge f(x) + \left(\frac{1}{\alpha}w\right)^T (y - x_0).$$

Letting $\tilde{w} = \frac{1}{\alpha}w$,

$$f(y) \ge f(x_0) + \tilde{w}^T(y - x_0).$$

Therefore, $\tilde{w} \in \partial f(x_0)$. It follows then that $\alpha \tilde{w} = w \in \{\alpha s : s \in \partial f(x_0)\} = \alpha \partial f(x_0)$. Thus, $\partial(\alpha f)(x_0) \subseteq \alpha \partial f(x_0)$.

(2) Let $A \in \mathbb{R}^{n \times n}$ be an invertible matrix and $b \in \mathbb{R}^n$ be a vector. Define a function g(x) by g(x) := f(Ax + b). Prove that

$$\partial g(x_0) = A^T \partial f(Ax_0 + b)$$

where the right hand side is defined as $A^T \partial f(Ax_0 + b) := \{A^T s : s \in \partial f(Ax_0 + b)\}.$

Solution. Let $w \in \partial g(x_0)$. It follows that $\forall y \in \mathcal{D}(g)$,

$$g(y) \ge g(x_0) + w^T(y - x_0)$$

$$f(Ay + b) \ge f(Ax_0 + b) + w^T((Ay + b) - (Ax_0 + b))$$

$$f(Ay + b) \ge f(Ax_0 + b) + w^T A(y - x_0)$$

$$f(Ay + b) \ge f(Ax_0 + b) + (A^T w)^T (y - x_0).$$

Therefore, $A^T w \in \partial f(Ax_0 + b) \Rightarrow w \in \{A^T s : s \in \partial f(Ax_0 + b)\}$. Thus, $\partial g(x_0) \subseteq \{A^T s : s \in \partial f(Ax_0 + b)\} = A^T \partial f(Ax_0 + b)$.

Suppose now $w \in A^T \partial f(Ax_0 + b)$. This implies that $A^T w \in \partial f(Ax_0 + b)$, and thus $\forall y \in \mathcal{D}(f)$,

$$f(Ay + b) \ge f(Ax_0 + b) + (A^T w)^T (y - x_0)$$

$$f(Ay + b) \ge f(Ax_0 + b) + w^T (Ay - Ax_0)$$

$$f(Ay + b) \ge f(Ax_0 + b) + w^T ((Ay + b) - (Ax_0 + b)).$$

Since A is invertible, it follows that the column space of A is equal to \mathbb{R}^n . Therefore, $\mathcal{D}(f) = \mathcal{D}(g)$. From this and the definition of g(x),

$$g(y) \ge g(x_0) + w^T(y - x_0).$$

$$w \in \partial g(x_0) \Rightarrow A^T \partial f(Ax_0 + b) \subseteq \partial g(x_0). \blacksquare$$

II. Let $f_1(x) = (x+1)^2$ and $f_2(x) = (x-1)^2, x \in \mathbb{R}$. Define $f(x) := \max\{f_1(x), f_2(x)\}$. Compute $\partial f(x)$.

Solution. Both $f_1(x)$ and $f_2(x)$ are smooth differentiable functions. We can therefore define $\nabla f_1(x) = 2(x+1)$ and $\nabla f_2(x) = 2(x-1)$. Additionally, since $\nabla(\nabla f_1(x)) = \nabla(\nabla f_2(x)) = 2 > 0$, we know that $f_1(x)$ and $f_2(x)$ are convex functions.

Suppose for a given x_0 that $f_1(x_0) < f_2(x_0)$. Therefore,

$$(x_0+1)^2 < (x_0-1)^2 \Rightarrow x_0 < 0.$$

When $x_0 < 0$, $f(x) = f_2(x)$. Since $f_2(x)$ is differentiable, it follows that $\partial f(x_0) = \nabla f_2(x_0) = 2(x_0 - 1)$ for $x_0 < 0$.

Suppose now for a given x_0 that $f_1(x_0) > f_2(x_0) \Rightarrow (x_0+1)^2 > (x_0-1)^2 \Rightarrow x_0 > 0$. Therefore, for $x_0 > 0$, $f(x) = f_1(x)$, and by the same argument as before, $\partial f(x_0) = \nabla f_1(x_0) = 2(x_0+1)$ for $x_0 > 0$.

Finally, suppose $x_0 = 0$. It follows $\forall y \in \mathcal{D}(f)$ that

$$f(y) \ge f(x_0) + s(y - x_0)$$

$$\max\{f_1(y), f_2(y)\} \ge \max\{f_1(0), f_2(0)\} + sy$$

$$\max\{f_1(y), f_2(y)\} \ge 1 + sy.$$

The subdifferential will be the collection of slopes s such that the line 1+sy lies below $\max\{f_1(x), f_2(x)\}$. For this to hold true, the slope s must be smaller than the slope of either $f_1(x)$ or $f_2(x)$. This is because f(0) = 1, therefore the term sy dictates the allowable slopes. At $x_0 = 0$, $\nabla f_1(0) = 2$ and $\nabla f_2(0) = -2$. Therefore, $\partial f(x_0) = [-2, 2]$ for $x_0 = 0$ in order for $\max\{f_1(y), f_2(y)\} \ge 1 + sy$.

We can thus write

$$\partial f(x_0) = \begin{cases} 2(x_0 + 1) & , x_0 > 0 \\ [-2, 2] & , x_0 = 0 \\ 2(x_0 - 1) & , x_0 < 0 \end{cases}$$

III. For a vector $x \in \mathbb{R}^n$, define the notation

$$||x||_0 := \#\{j : x_j \neq 0\},\$$

that is, $||x||_0$ is the number of nonzero components of x. Let $p \in \mathbb{R}$ be a real number and p > 0. Recall the following notation:

$$||x||_p^p := \sum_{j=1}^n |x_j|^p.$$

(1) Prove that $\forall x \in \mathbb{R}^n$,

$$\lim_{p \to 0^+} ||x||_p^p = ||x||_0.$$

Solution. Let $||x||_p^p = |x_1|^p + \cdots + |x_n|^p$. As $p \to 0^+$, this expression approaches $|x_1|^0 + \cdots + |x_n|^0$. For $x_j = 0$, we can define $0^0 = 0$ since $0^p = 0$ for any p > 0, so in the limit $p \to 0^+$ our definition holds. For all $x_j \neq 0$, $|x_j|^0 = 1$. Suppose there are k nonzero values of x. Then in the limit, $||x||_p^p = \sum_{j=1}^k 1 + \sum_{k=1}^n 0 = k$. Therefore, as $p \to 0^+$, $||x||_p^p$ approaches k, the number of nonzero elements of x, which we have defined as $||x||_0$.

Alternatively, we can approximate $|x|^p = \exp(p \log |x|) \approx 1 + p \log |x|$ for small p. Therefore,

$$||x||_p^p \approx \sum_{j=1}^n 1 + p \log |x_j| = n + np \sum_{j=1}^n \log |x_j| = n + np \log \left(\prod_{j=1}^n |x_j| \right).$$

In this expression, if any $x_j = 0$, then $\prod_{j=1}^n |x_j| = 0$ and $\log(0)$ is undefined. Therefore, this expression requires $x_j \neq 0$ for all j. But, as $p \to 0^+$, then $||x||_p^p \to n$. Since no $x_j = 0$, then $||x||_0 = n$.

(2) Prove that $||x||_p$ is a convex function of x if and only if $p \ge 1$.

Solution. We write $||x||_p = \left(\sum_{j=1}^n |x_j|^p\right)^{1/p}$. For a function f to be convex, we need $f(\lambda x + (1-\lambda)y) \le \lambda f(x) + (1-\lambda)f(y)$ for $\lambda \in [0,1]$ and $x,y \in \mathcal{D}(f)$. For $p \ge 1$, we know from the definition of a norm that $\|\bullet\|_p$ satisfies the triangle inequality. Namely, for two vectors $x,y \in \mathbb{R}^n$,

$$\|x+y\|_p \leq \|x\|_p + \|y\|_p \Rightarrow \|\lambda x + (1-\lambda)y\|_p \leq \|\lambda x\|_p + \|(1-\lambda)y\|_p = \lambda \|x\|_p + (1-\lambda)\|y\|_p.$$

Therefore, $f_p(x) = ||x||_p$ is convex for $p \ge 1$.

Suppose p < 1. Let $x = (1, 0, 0, ..., 0)^T$ and $y = (0, 1, 0, ..., 0)^T$ be vectors in \mathbb{R}^n each with a single non-zero element (which we have set to 1). We can explicitly calculate $||x + y||_p$,

$$||x + y||_p = (1^p + 1^p)^{1/p} = (2)^{1/p},$$

since $1^p = 1$ for any p. Additionally, we know that $||x||_p = ||y||_p = (1^p)^{1/p} = 1$. Therefore, $||x||_p + ||y||_p = 2$. Since p < 1, it follows that 1/p > 1. Thus, $2^{1/p} > 2$. Since $||x + y||_p \nleq ||x||_p + ||y||_p$, $|| \bullet ||_p$ does not satisfy the triangle inequality for p < 1. It follows then that f_p is not convex for p < 1.

Name: Nathaniel Hawkins

IV. Suppose $X \in \mathbb{R}^{p \times n}$ and $XX^T = I_p$, where I_p is the $p \times p$ identity matrix. Define β_0 by $\beta_0 := \arg\min_{\beta} \|y - X^T \beta\|^2 + \lambda \|\beta\|_2^2 + \tau \|\beta\|_1,$

where $\lambda > 0$ and $\tau > 0$ are two positive constants. Find an expression of β_0 in terms of the soft thresholding function.

Solution. This solution follows the derivation we did in class for β^{lasso} .

$$\beta_{0} = \arg\min_{\beta} \|y - X^{T}\beta\|^{2} + \lambda \|\beta\|_{2}^{2} + \tau \|\beta\|_{1}$$

$$= \arg\min_{\beta} (y - X^{T}\beta)^{T} (y - X^{T}\beta) + \lambda \beta^{T}\beta + \tau \|\beta\|_{1}$$

$$= \arg\min_{\beta} y^{T}y - 2(Xy)^{T}\beta + \beta^{T}\beta + \lambda \beta^{T}\beta + \tau \|\beta\|_{1}$$

$$= \arg\min_{\beta} y^{T}y - 2(\beta^{ls})^{T}\beta + (1 + \lambda)\beta^{T}\beta + \tau \|\beta\|_{1}$$

$$= \arg\min_{\beta} \left(\sum_{j=1}^{p} (1 + \lambda)\beta_{j}^{2} - 2\beta_{j}^{ls}\beta_{j} + \tau |\beta_{j}| \right) + y^{T}y.$$

In the above, we substituted $\beta^{ls} = Xy$ for the least squares solution and converted all of the terms pertaining to β into a summation. Since y^Ty effects the minimum value, but not the minimization, it follows that we need only minimize the sum term. We can do this by minimizing $(1 + \lambda)\beta_j^2 - 2\beta_j^{ls}\beta_j + \tau|\beta_j|$ for $j = 1, \ldots, p$. For a fixed j,

$$\begin{split} \partial((1+\lambda)\beta_{j}^{2} - 2\beta_{j}^{ls}\beta_{j} + \tau|\beta_{j}|)(\beta_{y}) &= \partial((1+\lambda)\beta_{j}^{2})(\beta_{y}) - \partial(2\beta_{j}^{ls}\beta_{j})(\beta_{y}) + \partial(\tau|\beta_{j}|)(\beta_{y}) \\ &= 2(1+\lambda)\beta_{y} - 2\beta_{j}^{ls} + \begin{cases} \tau &, \beta_{y} > 0 \\ \tau[-1,1] &, \beta_{y} = 0 \\ -\tau &, \beta_{y} < 0 \end{cases} \\ &= \begin{cases} 2(1+\lambda)\beta_{y} - 2\beta_{j}^{ls} + \tau &, \beta_{y} > 0 \\ 2(1+\lambda)\beta_{y} - 2\beta_{j}^{ls} + \tau[-1,1] &, \beta_{y} = 0 \\ 2(1+\lambda)\beta_{y} - 2\beta_{j}^{ls} - \tau &, \beta_{y} < 0 \end{cases} \end{split}$$

We can minimize the expression for β_0 by satisfying the minimization condition, $0 \in \partial((1+\lambda)\beta_j^2 - 2\beta_j^{ls}\beta_j + \tau|\beta_j|)(\beta_y)$. For $\beta_y > 0$,

$$0 \in \partial((1+\lambda)\beta_j^2 - 2\beta_j^{ls}\beta_j + \tau|\beta_j|)(\beta_y)$$

$$\Leftrightarrow 0 = 2(1+\lambda)\beta_y - 2\beta_j^{ls} + \tau$$

$$\Leftrightarrow \beta_y = \frac{1}{1+\lambda}(\beta_j^{ls} - \tau/2)$$

$$\Leftrightarrow \beta_j^{ls} > \tau/2.$$

For $\beta_y < 0$,

$$0 \in \partial((1+\lambda)\beta_j^2 - 2\beta_j^{ls}\beta_j + \tau|\beta_j|)(\beta_y)$$

$$\Leftrightarrow 0 = 2(1+\lambda)\beta_y - 2\beta_j^{ls} - \tau$$

$$\Leftrightarrow \beta_y = \frac{1}{1+\lambda}(\beta_j^{ls} + \tau/2)$$

$$\Leftrightarrow \beta_j^{ls} < -\tau/2.$$

For $\beta_y = 0$,

$$0 \in \partial((1+\lambda)\beta_j^2 - 2\beta_j^{ls}\beta_j + \tau|\beta_j|)(\beta_y)$$

$$\Leftrightarrow 0 \in [2(1+\lambda)\beta_y - 2\beta_j^{ls} - \tau, 2(1+\lambda)\beta_y - 2\beta_j^{ls} + \tau]$$

$$\Leftrightarrow [2(1+\lambda)\beta_y - 2\beta_j^{ls} - \tau \le 0, \ 2(1+\lambda)\beta_y - 2\beta_j^{ls} + \tau \ge 0.$$

The final condition yields 0 for $-\tau/2 \le \beta_j^{ls} \le \tau/2$. Thus, the jth component of β_0 can be written as

$$\beta_{j0} = \begin{cases} \frac{\beta_{j}^{ls}}{1+\lambda} + \frac{\tau}{2(1+\lambda)} &, \beta_{j}^{ls} < -\tau/2\\ \frac{\beta_{j}^{ls}}{1+\lambda} - \frac{\tau}{2(1+\lambda)} &, \beta_{j}^{ls} > \tau/2\\ 0 &, -\tau/2 \le \beta_{j}^{ls} \le \tau/2 \end{cases}$$
$$= \frac{(|\beta_{j}^{ls}| - \tau/2)_{+}}{1+\lambda} \operatorname{sgn}(\beta_{j}^{ls})$$
$$= \frac{1}{1+\lambda} S_{\tau/2}(\beta_{j}^{ls}). \blacksquare$$