Point fixe de KAKUTANI et sous-groupes compacts de GL(E)

Clarence Kineider

Leçons: 106, 203, 208

Référence(s): Alessandri, Thèmes de géométrie.

On commence par énoncer le théorème du point fixe de KAKUTANI:

Théorème: Soit E un espace vectoriel de dimension finie, G un sous-groupe compact de GL(E) et $K \subset E$ compact, convexe, non-vide et stable par G (i.e. $\forall g \in G, g(K) \subset K$). Alors il existe $x \in K$ tel que pour tout $g \in G, g(x) = x$.

Démonstration: Soit $||\cdot||$ une norme euclidienne sur E. Pour tout $x \in E$, on pose $N(x) = \max_{g \in G} ||g(x)||$. L'application $N: E \to \mathbf{R}^+$ est bien définie car G est compact et pour tout $x \in E, g \mapsto g(x)$ est continue. Montrons que N est une norme sur E:

- Homogénéité : immédiat
- Définition : Si N(x) = 0, alors pour tout $g \in G$, g(x) = 0. Donc x = 0.
- Inégalité triangulaire : Soit $x, y \in E$ et $g_0 \in G$ tel que $N(x+y) = ||g_0(x+y)||$. On a :

$$N(x + y) = ||g_0(x) + g_0(y)||$$

$$\leq ||g_0(x)|| + ||g_0(y)||$$

$$\leq N(x) + N(y)$$

De plus, on a N(x+y) = N(x) + N(y) si et seulement si $g_0(x)$ et $g_0(y)$ sont positivement liés, si et seulement si x et y sont positivement liés (appliquer g_0^{-1} à l'égalité $g_0(x) = \lambda g_0(y)$).

Puisque N est une norme, elle est 1-lipschitzienne (par inégalité triangulaire) donc continue. Or K est compact, donc il existe $z \in K$ de norme N minimale, i.e. $N(z) = \min_{x \in K} N(x)$. On note a = N(z).

Montrons que z est l'unique élément de norme N minimale dans K: Soit $y \in K$ tel que N(y) = a. Puisque K est convexe, $\frac{y+z}{2} \in K$. Or par inégalité triangulaire, $N(\frac{y+z}{2}) \le a$. Par minimalité de a et homogénéité de N, on a donc N(y+z) = 2a = N(y) + N(x). Donc y et z sont positivement liés et de même norme, donc y=z. Donc z est l'unique élément de norme minimale dans K.

Or pour tout $g \in G$, on a :

$$N(g(z)) = \max_{h \in G} ||gh(x)|| = \max_{h \in G} ||h(x)|| = N(z) = a$$

Donc pour tout $g \in G$, g(z) = z.

Corollaire : Soit $n \in \mathbb{N}^*$. Tout sous-groupe compact de $GL_n(\mathbb{R})$ est conjugué à un sous-groupe de $\mathcal{O}_n(\mathbb{R})$.

Démonstration : Soit H un sous-groupe compact de $GL_n(\mathbf{R})$. On fait agir H sur $S_n(\mathbf{R})$ par l'application $\rho: \begin{array}{ccc} H & \to & GL(S_n(\mathbf{R})) \\ A & \mapsto & (S \mapsto AS^{}A) \end{array}$.

C'est un morphisme de groupe continu (voir remarque), donc $G = \rho(H)$ est un sous groupe compact de $GL(\mathcal{S}_n(\mathbf{R}))$. Soit $E = \{{}^{\mathsf{t}}MM | M \in H\}$. On a $E \subset \mathcal{S}_n^{++}(\mathbf{R})$ et E compact car $M \mapsto {}^{\mathsf{t}}MM$ est continue et H est compact. L'enveloppe convexe de E, notée K est compacte (un corollaire du théorème de Carathéodory).

Soit $A, M \in H$. On a :

$$\rho(A)({}^{\mathsf{t}}MM) = A {}^{\mathsf{t}}MM {}^{\mathsf{t}}A = {}^{\mathsf{t}}(M {}^{\mathsf{t}}A)M {}^{\mathsf{t}}A \in E$$

Ainsi E est stable par G, donc K est aussi stable par G. Par le théorème de Kakutani, il existe $S \in K$ tel que pour tout $A \in H$, $\rho(A)(S) = S$. Or $E \subset \mathcal{S}_n^{++}(\mathbf{R})$, donc $K \subset \mathcal{S}_n^{++}(\mathbf{R})$. Il existe donc $R \in \mathcal{S}_n^{++}(\mathbf{R})$ tel que $S = R^2$. Soit $A \in H$. On a :

$$R^{-1}AR^{t}(R^{-1}AR) = R^{-1}AR^{2t}AR^{-1}$$

= $R^{-1}\rho(A)(S)R^{-1}$
= $R^{-1}SR^{-1}$
= I_{n}

Donc $R^{-1}AR \in \mathcal{O}_n(\mathbf{R})$. Donc H est un sous groupe de $R\mathcal{O}_n(\mathbf{R})R^{-1}$.

Remarque:

Je passe la démonstration de la continuité de ρ à l'oral. La voici, il faut être capable de la détailler si le jury le demande.

Continuité en $A \in H$: soit $B \in H$, $S \in \mathcal{S}_n(\mathbf{R})$.

$$||(\rho(A) - \rho(B))(S)|| = ||AS^{t}A - BS^{t}B||$$

$$= ||AS^{t}A - BS^{t}A + BS^{t}A - BS^{t}B||$$

$$\leq ||(A - B)S^{t}A|| + ||BS(^{t}A - ^{t}B)||$$

$$\leq ||A - B|| \cdot ||S|| \cdot (||A|| + ||B||)$$

Donc $||\rho(A) - \rho(B)||_{GL(S_n(\mathbf{R}))} \le ||A - B|| (||A|| + ||B||) \le ||A - B|| (2||A|| + ||A - B||) \underset{B \to A}{\longrightarrow} 0$