

Génie Logiciel Elements of a software project

Sylvain Lobry

25/09/2023

Before we start...

Wooclap

https://www.wooclap.com/L3GL233

What is a software project?

Definition:

A software project is the complete procedure and activities to achieve an intended software product.

What is a software project?

Definition:

A software project is the complete procedure and activities to achieve an intended software product.

- Functional objectives
- Technical specifications

What is a software project?

Definition:

A software project is the complete procedure and activities to achieve an intended software product.

- Functional objectives
- Technical specifications
- Definition of the scope
- Planning
- Development
- Risk analysis
- Management
- Monitoring

Some people of a software project

- Maître d'ouvrage (= project owner or client): stakeholder that benefits from the project's results
 - Identifies the needs
 - Defines the goals
 - Finances the project
 - Oversees the project's planning and realization
 - Take general decisions if needed
- Maître d'oeuvre (= contractor): proposes and implements a solution to realize the project

Definition of the scope

- Scope must be a balance of:
 - Time
 - Cost
 - Quality

Software processes

Defintion:

a software process is a set of interrelated activities and tasks that transform input work products into output work products, SWEBOK v3

Main software activities

- List of activities to be conducted during a software project
- Each can be seen as a process

Main software activities

- Objectives definition
- Requirement analysis
- Feasibility analysis
- Requirements specifications
- Design
- Implementation
- Unit testing
- Integration
- Validation
- Deployment
- Maintenance

Main software activities

 Objectives defintion: understanding what will be the usage (in its context) of the software

Main software activities

Requirement analysis: determining the needs of the stakeholders

Main software activities

 Feasability analysis: determining which outcomes can be achieved in the specific context of the project

Main software activities

 Requirements specifications: formalization of the requirements in the form of a document that can be systematically reviewed, evaluated and approved

Main software activities

 Design: precise definition of the components of the software based on the requirements

Main software activities

• Implementation: building-up the program following the design and instructions.

Main software activities

• Unit testing: verifying individually that each component of your software answer its specification.

Main software activities

• Integration: connection of the different sub components of the program.

Main software activities

- Validation: validation that the software, as a whole, is answering the initial objectives and expectations from the customer.
- Not to be confused with verification!
- Verification = analysis (often without executing code) during development period to check whether a specific requirement is met

Main software activities

• Deployment: activities to make the software available for use.

Main software activities

 Maintenance: to modify the application after its deployment to fix bugs, improve performance or improve functionalities

Main software activities

- Objectives definition
- Requirement analysis
- Feasibility analysis
- Requirements specifications
- Design
- Implementation
- Unit testing
- Integration
- Validation
- Deployment
- Maintenance

Software Development Life Cycle

- A software Development Life Cycle (SDLC) puts the different processes in order
- Also know as Software process model
- Chosen at the start of the project
- Brings discipline to software development
- 4 SDLC models today

Waterfall model

- Simplest SDLC model
- Proposed by Royce in 1970

Waterfall model

UNIVERSITÉ DE PARIS

- + Easy to plan and to follow
- +- Requirements cannot change
- Mistakes are accumulating, not realistic for complex projects

• What happens if validation shows a fundamental flaw that requires a design change?

<u>Maintenance</u>

26

V-model

Extension of waterfall

V-model

- Extension of waterfall
- Still simple
- With each components, verification (downward phase) or validation (upward) procedures are defined
- Still not flexible enough for complex projects
- In general, what you have been doing

Incremental model

Incremental model

- Software broken down in sub-components
- First increment: core functionality
- Subsequent increments take into account feedback
- + Aligns better with the customer needs
- + Fast delivery
- - Fundamental flaws can exist

Spiral model

- Based on 4 quadrants
- Can be seen as a generalization of previous models
- Risk driven model
- + Suitable for complex projects
- Requires experience, costly

Boehm, 1988

SDLC models

- 4 models
- Different levels of complexity
- Relatively rigid
- Solution since 2000s : Agile (coming up later in this class)

Planification

- Planification is an essential component of a successful project
- Remember: scope of a project depends on Quality, Time, Cost
- We know the main tasks from our SDLC model. We need to decompose them in smaller, achievable tasks
- Work Breakdown Structure (WBS) or Organigramme des Tâches (OT)
- Tree structure with at least 3 levels:
 - Level 1: name of the project
 - Level 2: main activities seen before
 - Level 3 and more: sub tasks

Example of a WBS

WBS rules

5 rules to follow:

- 1) It has to be a tree structure
- 2) Each task should be clearly defined, including potential deliverables
- 3) Each task should have a clear finsihing action
- 4) Each deliverable should be associated to a task
- 5) Achievement of every sub-task implies the achievement of the parent task

- Program Evaluation and Review Technique (PERT) is a method of analyzing the different tasks in the project.
- In particular, allows to analyze:
 - Dependencies between tasks
 - Duration of the tasks
 - Duration of the project (through critical path)
- Often represented as a diagram

Task name	Time allocated	Predecessor(s)	
Α	8		
В	5		
С	6	В	
D	7	А, В	
E	5	C, D	
F	4	Е	
G	3	E	
Н	7	G	

Wooclap

https://www.wooclap.com/L3GL233

Estimating time

- Comes with experience
- In practice, we tend to underestimate the time necessary
- in PERT, we can compute the expected time as a weighted average of
 - o, the optimistic time (everything goes perfectly) weight = 1
 - p, the pessimistic time (everything goes wrong) weight = 1
 - m, the most likely time, weight = 4
- expected time = $\frac{o+p+4m}{6}$
- Derivated from Beta distribution

Task name	Time allocated	Predecessor(s)	
Α	8		
В	5		
С	6	В	
D	7	А, В	
E	5	C, D	
F	4	Е	
G	3	Е	
Н	7	G	

Task name	Time allocated	Predecessor(s)
А	8	
В	5	
С	6	В
D	7	А, В
E	5	C, D
F	4	E
G	3	Е
Н	7	G

Task name	Time allocated	Predecessor(s)	
А	8		
В	5		
С	6	В	
D	7	А, В	
E	5	C, D	
F	4	E	
G	3	E	
Н	7	G	

Task name	Start date	End date
А		
В		
С		
D		
Е		
F		
G		
Н		

Task name	Time allocated	Predecessor(s)	
А	8		
В	5		
С	6	В	
D	7	А, В	
E	5	C, D	
F	4	E	
G	3	E	
Н	7	G	

Task name	Start date	End date
А	0	8
В	0	5
С	5	11
D	8	15
E	15	20
F	20	24
G	20	23
Н	23	30

Critical Path

- Critical path: the set of tasks that allow to obtain the shortest time to finish the project
- Consequence: if one of the tasks from the critical path takes longer to be performed, the project will take longer to finish
- Algorithm for critical path:
 - 1) Select the taks with the latest finish date
 - 2) Put the selected task in the critical path
 - 3) Select the predecessor(s) of the selected task with the latest finishing date
 - 4) Repeat 2-3 until reaching starting node(s)

- .) Select the taks with the latest finish date
- 2) Put the selected task in the critical path
- 3) Select the predecessor(s) of the selected task with the latest finishing date
- 4) Repeat 2-3 until reaching starting node(s)

Task name	Time allocated	Predecessor(s)
Α	8	
В	5	
С	6	В
D	7	А, В
Е	5	C, D
F	4	E
G	3	E
Н	7	G

Task name	Start date	End date	Critical path
Α	0	8	
В	0	5	
С	5	11	
D	8	15	
E	15	20	
F	20	24	
G	20	23	
Н	23	30	

Task name	Time allocated	Predecessor(s)
А	8	
В	5	
С	6	В
D	7	А, В
E	5	C, D
F	4	Е
G	3	Е
Н	7	G

Task name	Start date	End date	Critical path
Α	0	8	Χ
В	0	5	
С	5	11	
D	8	15	X
Е	15	20	X
F	20	24	
G	20	23	X
Н	23	30	Х

Task name	Start date	End date	Critical path
Α	0	8	X
В	0	5	
С	5	11	
D	8	15	Χ
E	15	20	X
F	20	24	
G	20	23	X
Н	23	30	X