EE 671 VLSI DESIGN

COURSE PROJECT I REPORT

Submitted by:

Nikita Suresh Madavi (23M1160) Anupam Pandey (24M1197) Harsh Pujare (21D180015)

Under the supervision of Prof. Laxmeesha Somappa

• CIRCUIT DIAGRAM

Figure 1: INVERTER

Figure 2: NAND

Figure 3: DFF

• DESIGN PARAMETER TABLE

NMOS	Width (µm)	Length (µm)
Inverter	0.45	0.15
Nand	0.9	0.15
DFF	0.45	0.15

PMOS	Width (µm)	Length (µm)
Inverter	1.33768	0.15
Nand	0.81	0.15
DFF	1.34	0.15

• PEX

```
| Pie | Sein Sein | Sei
```

Figure 4: INVERTER PEX

```
| The continue of the continue
```

Figure 5: NAND PEX

```
| Part |
```

Figure 6: DFF PEX

• DRC

Figure 7: INVERTER DRC

Figure 8: NAND DRC

Figure 9: DFF DRC

• LVS

```
Model skyl30.fd.pr_pfet_0lv8 pin 1 == 3
No property mult found for device skyl30.fd_pr_pfet_0lv8
No property sa found for device skyl30.fd_pr_pfet_0lv8
No property sa found for device skyl30.fd_pr_pfet_0lv8
No property so found for device skyl30.fd_pr_pfet_0lv8
No property in found for device skyl30.fd_pr_pfet_0lv8
No property not found for device skyl30.fd_pr_pfet_0lv8
No property prise found for device skyl30.fd_pr_pfet_0lv8
N
```

Figure 10: INVERTER LVS

```
Circuit 1 contains 2 devices, Circuit 2 contains 2 devices.
Circuit 1 contains 4 nets, Circuit 2 contains 4 nets.

Final result:
Circuits match uniquely.
.
Logging to file "comp.out" disabled
LVS Done.
```

Figure 11: NAND LVS

```
Class: sky130_fd_pr_pfet_0lv8 instances: 1
Circuit 1 contains 2 devices, Circuit 2 contains 2 devices.
Circuit 1 contains 6 nets,

Contents of circuit 1: Circuit: 'dff2'
Circuit dff2 contains 8 device instances.

Class: inverter instances: 4
Class: tg instances: 2
Class: tg1 instances: 2
Circuit contains 11 nets.

Contents of circuit 2: Circuit: 'dff'
Circuit dff contains 8 device instances: 2
Class: tg1 instances: 2
Class: tg1 instances: 2
Class: tg1 instances: 2
Class: tg2 instances: 2
Class: tg2 instances: 4
Class: tg2 instances: 4
Class: tg2 instances: 4
Class: tg2 instances: 2
Class: tg3 inverter instances: 2
Class: tg1 instances: 2
Class: tg2 instances: 2
Class: tg3 instances: 2
Class: tg1 instances: 2
Class: tg2 instances: 2
Class: tg3 instances: 2
Class: tg4 instances: 2
Class: tg5 instances: 2
Class: tg6 instances: 2
Class: tg7 instances: 3
Class: inverter instances: 4
Class: tg7 instances: 4
Class:
```

Figure 12: DFF LVS

WAVEFORM

Figure 13: INVERTER WAVEFORM

Figure 14: NAND WAVEFORM

Figure 15: DFF WAVEFORM

• TABLE OF CONTRIBUTION

Contributor	Contributions	
Anupam	• Inverter design and layout	
	Post-layout code contribution	
	VHDL code contribution	
Harsh	NAND gate design and layout	
	Post-layout code contribution	
	Verilog code contribution	
Nikita	• D Flip-Flop (DFF) design and layout	
	Post-layout code contribution	
	Verilog code contribution	

Table 1: Project Contributions