TOTIMERSØVING NR 5 FLUIDMEKANIKK

Utført av: (alle i gruppa)

Oppgave 1

An airflow drives a liquid film along a surface by means of a constant viscous shear τ_0 on the surface of the film. In order to find the velocity u of the liquid, we need two boundary conditions. Which?

Sketch possible velocity profiles so that

- \bullet Q=0
- $\bullet \quad \tau_w = \tau \big|_{v=0} = 0$

Oppgave 2

Place a control volume on the interior of a pipe and find the relation between the pressure gradient $\frac{\partial p}{\partial x} \left(= \frac{\Delta p}{L} \right)$ and the wall shear stress τ_w .

Which assumptions must be made?

Does it matter if the flow is laminar or turbulent?

Oppgave 3

Assume that the velocity profile changes from a uniform incoming profile to the well known parabolic profile over a length L_e . Why is it no longer possible to find a simple relation between Δp and τ_w ?

Oppgave 4

A perforated pipe has length L = 100 m and diameter d = 5 cm. 100 liters of water flow out per hour. If we want to model this as a line-sink, what should be the strength m of the sink?

Oppgave 5

Sketch some stream lines from the combination of a sink -m in (0,0), source +m in (a,0) og source +m in (4a,0). (A circle should appear.)

Oppgave 6

Sketch some stream lines from the combination of a vortex +K in (0,0), +K in (4a,0) and -K in (a,0). (A circle should appear.)

Oppgave 7

A 2D-flow over a corner is sought solved numerically by solving the Laplace equation $\nabla^2 \psi = 0$. The velocity is constant, $v_1 = 1$ m/s, across the height $H_1 = 1$ m, and at the outlet, $v_2 = 2$ m/s, where $H_2 = 1/2$ m. Find the boundary

conditions for ψ at all four surfaces of the domain.