第5章b:二次型与对称矩阵的正定性

数学系 梁卓滨

2020-2021 学年 I

• 二次型:
$$f(x) = x^T A x$$
, $x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$

• 二次型:
$$f(x) = x^T A x$$
, $x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$

定义

1. 若 $f(x) = x^T Ax > 0$, $\forall x \neq 0$

• 二次型:
$$f(x) = x^T A x$$
, $x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$

定义

1. 若 $f(x) = x^T Ax > 0$, $\forall x \neq 0$ 则称 $f \in \mathbb{L}$ 见本 $f \in \mathbb{L}$ 见来 $f \in \mathbb{L}$ 见来 f

• 二次型:
$$f(x) = x^T A x$$
, $x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$

定义

1. 若
$$f(x) = x^T Ax > 0$$
, $\forall x \neq 0$ 则称 f 是正定二次型 , A 是正定矩阵

• 二次型:
$$f(x) = x^T A x$$
, $x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$

定义

- 1. 若 $f(x) = x^T Ax > 0$, $\forall x \neq 0$ 则称 f 是正定二次型 , A 是正定矩阵
- 2. 若 $f(x) = x^T A x < 0$, $\forall x \neq 0$

• 二次型:
$$f(x) = x^T A x$$
, $x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$

定义

1. 若 $f(x) = x^T Ax > 0$, $\forall x \neq 0$ 则称 f 是正定二次型 , A 是正定矩阵

2. 若
$$f(x) = x^T A x < 0$$
, $\forall x \neq 0$ 则称 $f \in \mathbf{D}$ 则以 $f \in \mathbf{D}$ 则称 $f \in \mathbf{D}$ 则以 f

• 二次型:
$$f(x) = x^T A x$$
, $x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$

定义

1. 若 $f(x) = x^T Ax > 0$, $\forall x \neq 0$ 则称 $f \in \mathbb{Z}$ 则本 $f \in \mathbb{Z}$, $f \in \mathbb{Z}$ 则本 $f \in \mathbb{Z}$ 则为 $f \in$

2. 若
$$f(x) = x^T Ax < 0$$
, $\forall x \neq 0$

则称 f 是负定二次型,A 是负定矩阵

• 二次型:
$$f(x) = x^T A x$$
, $x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$

定义

1. 若 $f(x) = x^T Ax > 0$, $\forall x \neq 0$ 则称 f 是正定二次型 , A 是正定矩阵

2. 若 $f(x) = x^T A x < 0$, ∀x ≠ 0 则称 f 是负定二次型, A 是负定矩阵

3. 若 $f(x) = x^T Ax \ge 0$, $\forall x \ne 0$

二次型正定性 1/13 ⊲ ▷

• 二次型:
$$f(x) = x^T A x$$
, $x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$

定义

- 1. 若 $f(x) = x^T Ax > 0$, $\forall x \neq 0$ 则称 $f \in \mathbb{Z}$ 见本 $f \in \mathbb{Z}$ 以 $f \in \mathbb{Z}$ 则称 $f \in \mathbb{Z}$ 以 $f \in \mathbb{Z}$ 以
- 2. 若 $f(x) = x^T A x < 0$, $\forall x \neq 0$ 则称 f 是负定二次型, A 是负定矩阵
- 3. 若 $f(x) = x^T Ax \ge 0$, $\forall x \ne 0$ 则称 $f \in \mathcal{L}$ 里定二次型

二次型正定性 1/13 ⊲ ▷

• 二次型:
$$f(x) = x^T A x$$
, $x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$

定义

- 1. 若 $f(x) = x^T Ax > 0$, $\forall x \neq 0$ 则称 f 是正定二次型 , A 是正定矩阵
- 2. 若 $f(x) = x^T A x < 0$, ∀x ≠ 0 则称 f 是负定二次型, A 是负定矩阵
- 3. 若 $f(x) = x^T A x \ge 0$, $\forall x \ne 0$ 则称 $f \in \mathcal{L}$ 则本 $f \in \mathcal{L}$ 则为 $f \in \mathcal{L}$ 而为 $f \in \mathcal{L}$ 和 $f \in \mathcal{L}$ 和

工次型正定性 1/13 ⊲ ▷

• 二次型:
$$f(x) = x^T A x$$
, $x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$

定义

- 1. 若 $f(x) = x^T Ax > 0$, $\forall x \neq 0$ 则称 $f \in \mathbb{Z}$ 则本 $f \in \mathbb{Z}$, $f \in \mathbb{Z}$ 则本 $f \in \mathbb{Z}$ 则为 $f \in$
- 2. 若 $f(x) = x^T Ax < 0$, $\forall x \neq 0$ 则称 f 是负定二次型, A 是负定矩阵
- 3. 若 $f(x) = x^T Ax \ge 0$, $\forall x \ne 0$ 则称 $f \in \mathcal{L}$ 则本 $f \in \mathcal{L}$ 则为 $f \in \mathcal{L}$ 而为 $f \in \mathcal{L}$ 而为 f
- 4. 若 $f(x) = x^T A x \leq 0$, $\forall x \neq 0$

• 二次型:
$$f(x) = x^T A x$$
, $x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$

定义

- 1. 若 $f(x) = x^T Ax > 0$, $\forall x \neq 0$ 则称 $f \in \mathbb{Z}$ 则本 $f \in \mathbb{Z}$ 则为 $f \in \mathbb{Z}$ 则为 f
- 2. 若 $f(x) = x^T A x < 0$, ∀x ≠ 0 则称 f 是负定二次型, A 是负定矩阵
- 3. 若 $f(x) = x^T Ax \ge 0$, $\forall x \ne 0$ 则称 $f \in \mathcal{L}$ 则本 $f \in \mathcal{L}$ 则为 $f \in \mathcal{L}$ 而为 $f \in \mathcal{L}$ 而为 f
- 4. 若 $f(x) = x^T A x \le 0$, $\forall x \ne 0$ 则称 $f \in \mathbb{P}$ 是半负定二次型

二次至正定性

• 二次型:
$$f(x) = x^T A x$$
, $x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$

定义

- 1. 若 $f(x) = x^T Ax > 0$, $\forall x \neq 0$ 则称 $f \in \mathbb{Z}$ 则本 $f \in \mathbb{Z}$ 则为 $f \in \mathbb{Z}$ 则为 f
- 2. 若 $f(x) = x^T A x < 0$, $\forall x \neq 0$ 则称 f 是负定二次型, A 是负定矩阵
- 3. 若 $f(x) = x^T Ax \ge 0$, $\forall x \ne 0$ 则称 $f \in \mathcal{L}$ 则本 $f \in \mathcal{L}$ 则为 $f \in \mathcal{L}$ 而为 $f \in \mathcal{L}$ 而为 f
- 4. 若 $f(x) = x^T A x \le 0$, $\forall x \ne 0$ 则称 $f \in \mathcal{L}$ 则本 $f \in \mathcal{L}$ 则为 $f \in \mathcal{L}$ 而为 $f \in \mathcal{L}$ 而为 $f \in \mathcal{L}$ 则为 $f \in \mathcal{L}$ 而为 $f \in \mathcal{L}$ 而为 f

二次型正定性 1/13 ⊲ ▷

• 二次型:
$$f(x) = x^T A x$$
, $x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$

定义

- 1. 若 $f(x) = x^T Ax > 0$, $\forall x \neq 0$ 则称 f 是正定二次型 , A 是正定矩阵
- 2. 若 $f(x) = x^T A x < 0$, $\forall x \neq 0$ 则称 f 是负定二次型, A 是负定矩阵
- 3. 若 $f(x) = x^T Ax \ge 0$, $\forall x \ne 0$ 则称 $f \in \mathcal{L}$ 则本 $f \in \mathcal{L}$ 则为 $f \in \mathcal{L}$ 而为 $f \in \mathcal{L}$ 而为 f
- 4. 若 $f(x) = x^T A x \le 0$, $\forall x \ne 0$ 则称 $f \in \mathcal{L}$ 是 半负定二次型, $A \in \mathcal{L}$ 是 半负定矩阵

四类情况统称有定

二次型正定性

• 二次型:
$$f(x) = x^T A x$$
, $x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$

定义

- 1. 若 $f(x) = x^T Ax > 0$, $\forall x \neq 0$ 则称 $f \in \mathbb{Z}$ 则本 $f \in \mathbb{Z}$ 则为 $f \in \mathbb{Z}$ 则为 f
- 2. 若 $f(x) = x^T A x < 0$, $\forall x \neq 0$ 则称 f 是负定二次型, A 是负定矩阵
- 3. 若 $f(x) = x^T A x \ge 0$, $\forall x \ne 0$ 则称 $f \in \mathcal{L}$ 则本 $f \in \mathcal{L}$ 则为 $f \in \mathcal{L}$ 而为 $f \in \mathcal{L}$ 而为 f
- 4. 若 $f(x) = x^T A x \le 0$, $\forall x \ne 0$ 则称 $f \in \mathcal{L}$ 是 半负定二次型, $A \in \mathcal{L}$ 是 半负定矩阵

四类情况统称有定; 否则称 f 和 A 为 不定

这是当 $x \neq 0$ 时, $f(x_1, x_2, ..., x_n) = x_1^2 + x_2^2 + ... + x_n^2 > 0$ 。

这是当
$$x \neq 0$$
 时, $f(x_1, x_2, ..., x_n) = x_1^2 + x_2^2 + ... + x_n^2 > 0$ 。

例 二次型
$$f(x_1, x_2, x_3) = d_1x_1^2 + d_2x_2^2 + d_3x_3^2$$

这是当
$$x \neq 0$$
 时, $f(x_1, x_2, ..., x_n) = x_1^2 + x_2^2 + ... + x_n^2 > 0$ 。

例 二次型
$$f(x_1, x_2, x_3) = d_1x_1^2 + d_2x_2^2 + d_3x_3^2$$

- d_1 , d_2 , $d_3 > 0$
- \bullet $d_1, d_2, d_3 < 0$
- $d_1, d_2, d_3 \ge 0$
- $d_1, d_2, d_3 \leq 0$
- 其余情况

这是当
$$x \neq 0$$
 时, $f(x_1, x_2, ..., x_n) = x_1^2 + x_2^2 + ... + x_n^2 > 0$ 。

例 二次型
$$f(x_1, x_2, x_3) = d_1x_1^2 + d_2x_2^2 + d_3x_3^2$$

- *d*₁, *d*₂, *d*₃ > 0,正定
- \bullet $d_1, d_2, d_3 < 0$
- $d_1, d_2, d_3 \ge 0$
- $d_1, d_2, d_3 \leq 0$
- 其余情况

这是当
$$x \neq 0$$
 时, $f(x_1, x_2, ..., x_n) = x_1^2 + x_2^2 + ... + x_n^2 > 0$ 。

例 二次型
$$f(x_1, x_2, x_3) = d_1x_1^2 + d_2x_2^2 + d_3x_3^2$$

- d₁, d₂, d₃ > 0, 正定
- d₁, d₂, d₃ < 0,负定
- $d_1, d_2, d_3 \ge 0$
- $d_1, d_2, d_3 \leq 0$
- 其余情况

这是当
$$x \neq 0$$
 时, $f(x_1, x_2, ..., x_n) = x_1^2 + x_2^2 + ... + x_n^2 > 0$ 。

例 二次型
$$f(x_1, x_2, x_3) = d_1x_1^2 + d_2x_2^2 + d_3x_3^2$$

- *d*₁, *d*₂, *d*₃ > 0,正定
- $d_1, d_2, d_3 < 0$,负定,如 $f(x_1, x_2, x_3) = -x_1^2 4x_2^2 x_3^2$
- $d_1, d_2, d_3 \ge 0$
- $d_1, d_2, d_3 \leq 0$
- 其余情况

这是当
$$x \neq 0$$
 时, $f(x_1, x_2, ..., x_n) = x_1^2 + x_2^2 + ... + x_n^2 > 0$ 。

例 二次型
$$f(x_1, x_2, x_3) = d_1x_1^2 + d_2x_2^2 + d_3x_3^2$$

- *d*₁, *d*₂, *d*₃ > 0,正定
- $d_1, d_2, d_3 < 0$,负定,如 $f(x_1, x_2, x_3) = -x_1^2 4x_2^2 x_3^2$
- d₁, d₂, d₃ ≥ 0, 半正定
- $d_1, d_2, d_3 \leq 0$
- 其余情况

这是当
$$x \neq 0$$
时, $f(x_1, x_2, ..., x_n) = x_1^2 + x_2^2 + ... + x_n^2 > 0$ 。

例 二次型
$$f(x_1, x_2, x_3) = d_1x_1^2 + d_2x_2^2 + d_3x_3^2$$

- *d*₁, *d*₂, *d*₃ > 0,正定
- $d_1, d_2, d_3 < 0$, 负定, $\inf(x_1, x_2, x_3) = -x_1^2 4x_2^2 x_3^2$
- d_1 , d_2 , $d_3 \ge 0$, 半正定, $\inf(x_1, x_2, x_3) = 3x_1^2 + x_3^2$
- $d_1, d_2, d_3 \leq 0$
- 其余情况

二次型正定性

这是当
$$x \neq 0$$
 时, $f(x_1, x_2, ..., x_n) = x_1^2 + x_2^2 + ... + x_n^2 > 0$ 。

例 二次型
$$f(x_1, x_2, x_3) = d_1x_1^2 + d_2x_2^2 + d_3x_3^2$$

- *d*₁, *d*₂, *d*₃ > 0,正定
- $d_1, d_2, d_3 < 0$, 负定, $\inf(x_1, x_2, x_3) = -x_1^2 4x_2^2 x_3^2$
- d_1 , d_2 , $d_3 \ge 0$, 半正定, $\inf(x_1, x_2, x_3) = 3x_1^2 + x_3^2$
- d₁, d₂, d₃ ≤ 0, 半负定
- 其余情况

二次型正定性

这是当
$$x \neq 0$$
 时, $f(x_1, x_2, ..., x_n) = x_1^2 + x_2^2 + \cdots + x_n^2 > 0$ 。

例 二次型
$$f(x_1, x_2, x_3) = d_1x_1^2 + d_2x_2^2 + d_3x_3^2$$

- *d*₁, *d*₂, *d*₃ > 0,正定
- $d_1, d_2, d_3 < 0$, 负定, $\inf(x_1, x_2, x_3) = -x_1^2 4x_2^2 x_3^2$
- d_1 , d_2 , $d_3 \ge 0$, 半正定, $\inf(x_1, x_2, x_3) = 3x_1^2 + x_3^2$
- d_1 , d_2 , $d_3 \le 0$, #负定, $\inf(x_1, x_2, x_3) = -x_2^2 4x_3^2$
- 其余情况

例 二次型
$$f(x_1, x_2, ..., x_n) = x_1^2 + x_2^2 + ... + x_n^2$$
 是正定。

这是当
$$x \neq 0$$
 时, $f(x_1, x_2, ..., x_n) = x_1^2 + x_2^2 + ... + x_n^2 > 0$ 。

例 二次型
$$f(x_1, x_2, x_3) = d_1x_1^2 + d_2x_2^2 + d_3x_3^2$$

- *d*₁, *d*₂, *d*₃ > 0,正定
- $d_1, d_2, d_3 < 0$, 负定, $\inf(x_1, x_2, x_3) = -x_1^2 4x_2^2 x_3^2$
- d_1 , d_2 , $d_3 \ge 0$, 半正定, $\inf(x_1, x_2, x_3) = 3x_1^2 + x_3^2$
- d_1 , d_2 , $d_3 \le 0$, #负定, $\inf(x_1, x_2, x_3) = -x_2^2 4x_3^2$
- 其余情况是不定

二次型正定性

例 二次型
$$f(x_1, x_2, ..., x_n) = x_1^2 + x_2^2 + ... + x_n^2$$
 是正定。

这是当
$$x \neq 0$$
 时, $f(x_1, x_2, ..., x_n) = x_1^2 + x_2^2 + ... + x_n^2 > 0$ 。

例 二次型
$$f(x_1, x_2, x_3) = d_1x_1^2 + d_2x_2^2 + d_3x_3^2$$

- *d*₁, *d*₂, *d*₃ > 0,正定
- $d_1, d_2, d_3 < 0$,负定,如 $f(x_1, x_2, x_3) = -x_1^2 4x_2^2 x_3^2$
- d_1 , d_2 , $d_3 \ge 0$, 半正定,如 $f(x_1, x_2, x_3) = 3x_1^2 + x_3^2$
- d_1 , d_2 , $d_3 \le 0$, #负定, $\inf(x_1, x_2, x_3) = -x_2^2 4x_3^2$
- 其余情况是不定,如 $f(x_1, x_2, x_3) = 5x_2^2 x_3^2$

$$f(x_1, x_2, x_3) = -x_1^2 - 2x_1x_2 + 4x_1x_3 - x_2^2 + 4x_2x_3 - 4x_3^2$$

$$f(x_1, x_2, x_3) = -x_1^2 - 2x_1x_2 + 4x_1x_3 - x_2^2 + 4x_2x_3 - 4x_3^2$$
$$= -(x_1 + x_2 - 2x_3)^2$$

$$f(x_1, x_2, x_3) = -x_1^2 - 2x_1x_2 + 4x_1x_3 - x_2^2 + 4x_2x_3 - 4x_3^2$$
$$= -(x_1 + x_2 - 2x_3)^2$$

是半负定

$$f(x_1, x_2, x_3) = -x_1^2 - 2x_1x_2 + 4x_1x_3 - x_2^2 + 4x_2x_3 - 4x_3^2$$
$$= -(x_1 + x_2 - 2x_3)^2$$

是半负定,但不是负定。

$$f(x_1, x_2, x_3) = -x_1^2 - 2x_1x_2 + 4x_1x_3 - x_2^2 + 4x_2x_3 - 4x_3^2$$
$$= -(x_1 + x_2 - 2x_3)^2$$

是半负定,但不是负定。

$$\left(\begin{array}{cccc}
-1 & -1 & 2 \\
-1 & -1 & 2 \\
2 & 2 & -4
\end{array}\right)$$

$$f(x_1, x_2, x_3) = -x_1^2 - 2x_1x_2 + 4x_1x_3 - x_2^2 + 4x_2x_3 - 4x_3^2$$
$$= -(x_1 + x_2 - 2x_3)^2$$

是半负定,但不是负定。

从而,对应的对称矩阵

$$\left(\begin{array}{cccc}
-1 & -1 & 2 \\
-1 & -1 & 2 \\
2 & 2 & -4
\end{array}\right)$$

是半负定,但不是负定。

定理 $D = \begin{pmatrix} d_1 \\ d_2 \\ \vdots \\ d_n \end{pmatrix}$ 是正定矩阵 $\Leftrightarrow d_i > 0 \ (i = 1, 2, ..., n)$

定理
$$D = \begin{pmatrix} a_1 \\ d_2 \\ \vdots \\ d_n \end{pmatrix}$$
 是正定矩阵 $\Leftrightarrow d_i > 0 \ (i = 1, 2, ..., n)$

$$f(x) = d_1 x_1^2 + d_2 x_2^2 + \dots + d_n x_n^2$$

定理
$$D = \begin{pmatrix} d_1 \\ d_2 \\ \vdots \\ d_n \end{pmatrix}$$
 是正定矩阵 $\Leftrightarrow d_i > 0 \ (i = 1, 2, ..., n)$

显然,
$$f(x) = d_1 x_1^2 + d_2 x_2^2 + \dots + d_n x_n^2$$

 $d_1 > 0, d_2 > 0, \ldots, d_n > 0$

定理
$$D = \begin{pmatrix} a_1 \\ d_2 \\ \vdots \\ d_n \end{pmatrix}$$
 是正定矩阵 $\Leftrightarrow d_i > 0 \ (i = 1, 2, ..., n)$

显然,
$$f(x) = d_1 x_1^2 + d_2 x_2^2 + \dots + d_n x_n^2$$
 显然,
$$d_1 > 0, d_2 > 0, \dots, d_n > 0 \iff f(x) > 0 \quad \forall x \neq 0$$

定理
$$D = \begin{pmatrix} a_1 \\ d_2 \\ \vdots \\ d_n \end{pmatrix}$$
 是正定矩阵 $\Leftrightarrow d_i > 0 \ (i = 1, 2, ..., n)$

显然,
$$f(x) = d_1 x_1^2 + d_2 x_2^2 + \dots + d_n x_n^2$$
 显然,
$$d_1 > 0, d_2 > 0, \dots, d_n > 0 \quad \Leftrightarrow \quad f(x) > 0 \quad \forall x \neq 0$$

$$\Leftrightarrow \quad f \text{ 正定}$$

定理
$$D = \begin{pmatrix} a_1 \\ d_2 \\ \vdots \\ d_n \end{pmatrix}$$
 是正定矩阵 $\Leftrightarrow d_i > 0 \ (i = 1, 2, ..., n)$

显然,
$$f(x) = d_1 x_1^2 + d_2 x_2^2 + \dots + d_n x_n^2$$
 显然,
$$d_1 > 0, d_2 > 0, \dots, d_n > 0 \quad \Leftrightarrow \quad f(x) > 0 \quad \forall x \neq 0$$

$$\Leftrightarrow \quad f \text{ 正定}$$

$$\Leftrightarrow \quad D \text{ 正定}$$

定理
$$D = \begin{pmatrix} d_1 \\ d_2 \\ \vdots \\ d_n \end{pmatrix}$$
 是正定矩阵 $\Leftrightarrow d_i > 0 \ (i = 1, 2, ..., n)$

显然,
$$f(x) = d_1 x_1^2 + d_2 x_2^2 + \dots + d_n x_n^2$$
 显然,
$$d_1 > 0, d_2 > 0, \dots, d_n > 0 \quad \Leftrightarrow \quad f(x) > 0 \quad \forall x \neq 0$$

$$\Leftrightarrow \quad f \text{ 正定}$$

$$\Leftrightarrow \quad D \text{ 正定}$$

定理 设 $A \simeq B$ 。若 A 是正定矩阵,则 B 也是正定矩阵。

定理
$$D = \begin{pmatrix} a_1 \\ d_2 \\ \vdots \\ d_n \end{pmatrix}$$
 是正定矩阵 $\Leftrightarrow d_i > 0 \ (i = 1, 2, ..., n)$

显然,
$$f(x) = d_1 x_1^2 + d_2 x_2^2 + \dots + d_n x_n^2$$
 显然,
$$d_1 > 0, d_2 > 0, \dots, d_n > 0 \quad \Leftrightarrow \quad f(x) > 0 \quad \forall x \neq 0$$

$$\Leftrightarrow \quad f \text{ 正定}$$

$$\Leftrightarrow \quad D \text{ 正定}$$

定理 设 $A \simeq B$ 。若 A 是正定矩阵,则 B 也是正定矩阵。

证明 对 ∀x ≠ 0,有

$$x^T B x > 0$$

定理
$$D = \begin{pmatrix} d_1 \\ d_2 \\ \vdots \\ d_n \end{pmatrix}$$
 是正定矩阵 $\Leftrightarrow d_i > 0 \ (i = 1, 2, ..., n)$

显然,
$$f(x) = d_1 x_1^2 + d_2 x_2^2 + \dots + d_n x_n^2$$
 显然,
$$d_1 > 0, d_2 > 0, \dots, d_n > 0 \quad \Leftrightarrow \quad f(x) > 0 \quad \forall x \neq 0$$

$$\Leftrightarrow \quad f \text{ 正定}$$

$$\Leftrightarrow \quad D \text{ 正定}$$

定理 $设 <math>A \simeq B$ 。若 A 是正定矩阵,则 B 也是正定矩阵。

$$x^T B x > 0$$

定理
$$D = \begin{pmatrix} d_1 \\ d_2 \\ \vdots \\ d_n \end{pmatrix}$$
 是正定矩阵 $\Leftrightarrow d_i > 0 \ (i = 1, 2, ..., n)$

 $\mathbf{\overline{c}}\mathbf{\overline{z}}$ 设 $A \simeq B$ 。若 A 是正定矩阵,则 B 也是正定矩阵。

证明 由 $A \simeq B$,知存在可逆矩阵 C,使 $C^TAC = B$ 。对 $\forall x \neq 0$,有

$$x^T B x = x^T C^T A C x = > 0$$

显然,

定理
$$D = \begin{pmatrix} d_1 \\ d_2 \\ \vdots \\ d_n \end{pmatrix}$$
 是正定矩阵 $\Leftrightarrow d_i > 0 \ (i = 1, 2, ..., n)$

显然,
$$f(x) = d_1 x_1^2 + d_2 x_2^2 + \dots + d_n x_n^2$$
 显然,
$$d_1 > 0, d_2 > 0, \dots, d_n > 0 \quad \Leftrightarrow \quad f(x) > 0 \quad \forall x \neq 0$$

$$\Leftrightarrow \quad f \text{ 正定}$$

$$\Leftrightarrow \quad D \text{ 正定}$$

定理 设 $A \simeq B$ 。若 A 是正定矩阵,则 B 也是正定矩阵。

$$x^T B x = x^T C^T A C x = (Cx)^T > 0$$

定理
$$D = \begin{pmatrix} d_1 \\ d_2 \\ \vdots \\ d_n \end{pmatrix}$$
 是正定矩阵 $\Leftrightarrow d_i > 0 \ (i = 1, 2, ..., n)$

显然,
$$f(x) = d_1 x_1^2 + d_2 x_2^2 + \dots + d_n x_n^2$$
 显然,
$$d_1 > 0, d_2 > 0, \dots, d_n > 0 \quad \Leftrightarrow \quad f(x) > 0 \quad \forall x \neq 0$$

$$\Leftrightarrow \quad f \text{ 正定}$$

$$\Leftrightarrow \quad D \text{ 正定}$$

定理 设 $A \simeq B$ 。若 A 是正定矩阵,则 B 也是正定矩阵。

$$x^TBx = x^TC^TACx = (Cx)^TA(Cx) > 0$$

定理
$$D = \begin{pmatrix} d_1 & d_2 & \\ & \ddots & \\ & & d_n \end{pmatrix}$$
 是正定矩阵 $\Leftrightarrow d_i > 0 \ (i = 1, 2, ..., n)$

显然,
$$f(x) = d_1 x_1^2 + d_2 x_2^2 + \dots + d_n x_n^2$$
 显然,
$$d_1 > 0, d_2 > 0, \dots, d_n > 0 \quad \Leftrightarrow \quad f(x) > 0 \quad \forall x \neq 0$$

$$\Leftrightarrow \quad f \text{ 正定}$$

$$\Leftrightarrow \quad D \text{ 正定}$$

定理 设 $A \simeq B$ 。若 A 是正定矩阵,则 B 也是正定矩阵。

$$x^{T}Bx = x^{T}C^{T}ACx = (Cx)^{T}A(\underbrace{Cx}_{\neq 0}) > 0$$

定理
$$D = \begin{pmatrix} d_1 \\ d_2 \\ \vdots \\ d_n \end{pmatrix}$$
 是正定矩阵 $\Leftrightarrow d_i > 0 \ (i = 1, 2, ..., n)$

显然,
$$f(x) = d_1 x_1^2 + d_2 x_2^2 + \dots + d_n x_n^2$$
 显然,
$$d_1 > 0, d_2 > 0, \dots, d_n > 0 \quad \Leftrightarrow \quad f(x) > 0 \quad \forall x \neq 0$$

$$\Leftrightarrow \quad f \text{ 正定}$$

$$\Leftrightarrow \quad D \text{ 正定}$$

定理 设 $A \simeq B$ 。若 A 是正定矩阵,则 B 也是正定矩阵。

证明 由 $A \simeq B$,知存在可逆矩阵 C,使 $C^TAC = B$ 。对 $\forall x \neq 0$,有

所以 B 正定。
$$x^T B x = x^T C^T A C x = (Cx)^T A \underbrace{(Cx)}_{\neq 0} > 0$$

二次型止定性

*A*是正定 ⇔

$$A$$
是正定 ⇔ 正惯性指标 $p = n$

$$A$$
是正定 ⇔ 正惯性指标 $p = n$

$$\Leftrightarrow$$
 $A \simeq I_n$

$$A$$
是正定 ⇔ 正惯性指标 $p = n$

$$\Leftrightarrow$$
 $A \simeq I_n$

 \Leftrightarrow 存在可逆矩阵 C 使得 $A = C^T C$

定理设 <math>A 是 n 阶对称方阵,则

$$A$$
是正定 ⇔ 正惯性指标 $p = n$

$$\Leftrightarrow$$
 $A \simeq I_n$

$$\Leftrightarrow$$
 存在可逆矩阵 C 使得 $A = C^T C$

证明 一般地,

$$A \simeq \begin{pmatrix} I_{\rho} \\ -I_{r-\rho} \\ O \end{pmatrix}$$

$$A$$
是正定 ⇔ 正惯性指标 $p = n$

$$\Leftrightarrow$$
 $A \simeq I_n$

$$\Leftrightarrow$$
 存在可逆矩阵 C 使得 $A = C^T C$

证明 一般地,

$$A \simeq \begin{pmatrix} I_p \\ -I_{r-p} \\ O \end{pmatrix} = D$$

$$A$$
是正定 ⇔ 正惯性指标 $p = n$

$$\Leftrightarrow$$
 $A \simeq I_n$

$$\Leftrightarrow$$
 存在可逆矩阵 C 使得 $A = C^T C$

证明 一般地,

$$A \simeq \begin{pmatrix} I_p \\ -I_{r-p} \\ O \end{pmatrix} = D$$

$$A$$
是正定 ⇔ 正惯性指标 $p = n$

$$\Leftrightarrow$$
 $A \simeq I_n$

⇔ 存在可逆矩阵
$$C$$
 使得 $A = C^T C$

证明 一般地,

$$A \simeq \begin{pmatrix} I_p \\ -I_{r-p} \\ O \end{pmatrix} = D$$

$$A$$
是正定 $⇔$ D 是正定

$$\Leftrightarrow$$

$$A$$
是正定 ⇔ 正惯性指标 $p = n$

$$\Leftrightarrow$$
 $A \simeq I_n$

$$\Leftrightarrow$$
 存在可逆矩阵 C 使得 $A = C^T C$

证明 一般地,

$$A \simeq \begin{pmatrix} I_p \\ -I_{r-p} \\ O \end{pmatrix} = D$$

$$⇔$$
 正惯性指标 $p = n$

$$\Leftrightarrow$$

$$A$$
是正定 ⇔ 正惯性指标 $p = n$

$$\Leftrightarrow$$
 $A \simeq I_n$

⇔ 存在可逆矩阵
$$C$$
 使得 $A = C^T C$

证明 一般地,

$$A \simeq \begin{pmatrix} I_p \\ -I_{r-p} \\ O \end{pmatrix} = D$$

$$A$$
是正定 $⇔$ D 是正定

$$⇔$$
 正惯性指标 $p = n$

$$\Leftrightarrow$$
 $D = I_n$

$$\Leftrightarrow$$

$$A$$
是正定 \leftrightarrow 正惯性指标 $p = n$

$$\Leftrightarrow$$
 $A \simeq I_n$

$$\Leftrightarrow$$
 存在可逆矩阵 C 使得 $A = C^T C$

证明一般地,

$$A \simeq \begin{pmatrix} I_p \\ -I_{r-p} \\ O \end{pmatrix} = D$$

$$A$$
是正定 $⇔$ D 是正定

⇔ 正惯性指标
$$p = n$$

$$\Leftrightarrow$$
 $D = I_n$

$$\Leftrightarrow$$
 $A \simeq I_n$

$$\Leftrightarrow$$

$$A$$
是正定 \Leftrightarrow 正惯性指标 $p = n$

$$\Leftrightarrow$$
 $A \simeq I_n$

⇔ 存在可逆矩阵
$$C$$
 使得 $A = C^T C$

证明一般地,

$$A \simeq \begin{pmatrix} I_p \\ -I_{r-p} \\ O \end{pmatrix} = D$$

$$A$$
是正定 $⇔$ D 是正定

$$⇔$$
 正惯性指标 $p = n$

$$\Leftrightarrow$$
 $D = I_n$

$$\Leftrightarrow$$
 $A \simeq I_n$

$$\Leftrightarrow$$
 存在可逆矩阵 C 使得 $A = C^T I_n C$

$$A$$
是正定 \Leftrightarrow 正惯性指标 $p = n$

$$\Leftrightarrow$$
 $A \simeq I_n$

⇔ 存在可逆矩阵
$$C$$
 使得 $A = C^T C$

证明一般地,

$$A \simeq \begin{pmatrix} I_p \\ -I_{r-p} \\ O \end{pmatrix} = D$$

$$⇔$$
 正惯性指标 $p = n$

$$\Leftrightarrow$$
 $D = I_n$

$$\Leftrightarrow$$
 $A \simeq I_n$

$$\rightarrow$$
 $A \cong I_f$

$$\Leftrightarrow$$
 存在可逆矩阵 C 使得 $A = C^T I_n C = C^T C$

证明 由 A 是正定矩阵,知存在可逆矩阵 C,使得

$$A = C^T C$$

证明 由 A 是正定矩阵,知存在可逆矩阵 C,使得

$$A = C^T C$$

$$|A| = |C^T C| =$$

证明 由 A 是正定矩阵,知存在可逆矩阵 C,使得

$$A = C^T C$$

$$|A| = |C^T C| = |C^T| \cdot |C| =$$

证明 由 A 是正定矩阵,知存在可逆矩阵 C,使得

$$A = C^T C$$

$$|A| = |C^T C| = |C^T| \cdot |C| = |C|^2$$

证明 由 A 是正定矩阵,知存在可逆矩阵 C,使得

$$A = C^T C$$

$$|A| = |C^T C| = |C^T| \cdot |C| = |C|^2 > 0$$

证明 由 A 是正定矩阵,知存在可逆矩阵 C,使得

$$A = C^T C$$

所以

$$|A| = |C^T C| = |C^T| \cdot |C| = |C|^2 > 0$$

定理设 <math>A 是 n 阶对称方阵,则

证明 由 A 是正定矩阵,知存在可逆矩阵 C,使得

$$A = C^T C$$

所以

$$|A| = |C^T C| = |C^T| \cdot |C| = |C|^2 > 0$$

定理设 <math>A 是 n 阶对称方阵,则

A是正定矩阵 ⇔ A所有特征值 $λ_i > 0$

 $\overline{\mathbf{u}}$ 明 由 A 是正定矩阵,知存在可逆矩阵 C,使得

$$A = C^T C$$

所以

$$|A| = |C^T C| = |C^T| \cdot |C| = |C|^2 > 0$$

定理 设 $A \in n$ 阶对称方阵,则

A是正定矩阵 ⇔ A所有特征值 $λ_i > 0$

证明 由 A 是对称矩阵,知存在正交矩阵 Q,使得

$$Q^{-1}AQ = \begin{pmatrix} \lambda_1 \\ \ddots \\ \lambda_n \end{pmatrix}$$

 $\overline{\mathbf{u}}$ 明 由 A 是正定矩阵,知存在可逆矩阵 C,使得

$$A = C^T C$$

所以

$$|A| = |C^T C| = |C^T| \cdot |C| = |C|^2 > 0$$

定理 设 $A \in n$ 阶对称方阵,则

A是正定矩阵 ⇔ A所有特征值 $λ_i > 0$

证明 由 A 是对称矩阵,知存在正交矩阵 Q,使得

$$Q^{T}AQ = Q^{-1}AQ = \begin{pmatrix} \lambda_{1} & & \\ & \ddots & \\ & & \lambda_{n} \end{pmatrix}$$

推论 设 A 正定矩阵,则 |A| > 0

证明 由 A 是正定矩阵,知存在可逆矩阵 C,使得

$$A = C^T C$$

所以

$$|A| = |C^T C| = |C^T| \cdot |C| = |C|^2 > 0$$

定理 设 $A \in n$ 阶对称方阵,则

A是正定矩阵 ⇔ A所有特征值 $λ_i > 0$

证明 由 A 是对称矩阵,知存在正交矩阵 O,使得

$$Q^{T}AQ = Q^{-1}AQ = \begin{pmatrix} \lambda_{1} & & \\ & \ddots & \\ & & \lambda_{n} \end{pmatrix} \quad \Rightarrow \quad A \simeq \begin{pmatrix} \lambda_{1} & & \\ & \ddots & \\ & & \lambda_{n} \end{pmatrix}$$

推论 设 A 正定矩阵,则 |A| > 0

 $\overline{\mathbf{u}}$ 明 由 A 是正定矩阵,知存在可逆矩阵 C,使得

$$A = C^T C$$

所以

$$|A| = |C^T C| = |C^T| \cdot |C| = |C|^2 > 0$$

定理设 <math>A 是 n 阶对称方阵,则

A是正定矩阵 ⇔ A所有特征值 $λ_i > 0$

证明 由 A 是对称矩阵,知存在正交矩阵 Q,使得

$$Q^{T}AQ = Q^{-1}AQ = \begin{pmatrix} \lambda_{1} & & \\ & \ddots & \\ & & \lambda_{n} \end{pmatrix} \quad \Rightarrow \quad A \simeq \begin{pmatrix} \lambda_{1} & & \\ & \ddots & \\ & & \lambda_{n} \end{pmatrix}$$

所以

A正定 \iff $\begin{pmatrix} \lambda_1 \\ \ddots \\ \lambda_n \end{pmatrix}$ 正定 \iff 所有特征值 $\lambda_i > 0$

设

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

设

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

称

$$|A_k| = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ a_{21} & a_{22} & \cdots & a_{2k} \\ \vdots & \vdots & & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kk} \end{vmatrix}$$

设

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

称

$$|A_k| = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ a_{21} & a_{22} & \cdots & a_{2k} \\ \vdots & \vdots & & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kk} \end{vmatrix}$$

为 A 的 k 阶顺序主子式

设

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

称

$$|A_k| = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ a_{21} & a_{22} & \cdots & a_{2k} \\ \vdots & \vdots & & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kk} \end{vmatrix}$$

为 A 的 k 阶顺序主子式

注 k = 1, 2, ..., n,故共有 n 个顺序主子式

例 设
$$A = \begin{pmatrix} -1 & 2 & 3 \\ 2 & 0 & 1 \\ 3 & 1 & 2 \end{pmatrix}$$
,则全部的顺序主子式是

例 设
$$A = \begin{pmatrix} -1 & 2 & 3 \\ 2 & 0 & 1 \\ 3 & 1 & 2 \end{pmatrix}$$
,则全部的顺序主子式是 $|A_1| = |A_2| =$

$$|A_3| =$$

 $|A_3| =$

例 设
$$A = \begin{pmatrix} -1 & 2 & 3 \\ 2 & 0 & 1 \\ 3 & 1 & 2 \end{pmatrix}$$
,则全部的顺序主子式是 $|A_1| = -1$ $|A_2| =$

例 设
$$A = \begin{pmatrix} -1 & 2 & 3 \\ 2 & 0 & 1 \\ 3 & 1 & 2 \end{pmatrix}$$
,则全部的顺序主子式是 $|A_1| = -1$ $|A_2| = \begin{vmatrix} -1 & 2 \\ 2 & 0 \end{vmatrix}$ $|A_3| =$

例 设
$$A = \begin{pmatrix} -1 & 2 & 3 \\ 2 & 0 & 1 \\ 3 & 1 & 2 \end{pmatrix}$$
,则全部的顺序主子式是 $|A_1| = -1$ $|A_2| = \begin{vmatrix} -1 & 2 \\ 2 & 0 \end{vmatrix} = -4$ $|A_3| =$

例 设
$$A = \begin{pmatrix} -1 & 2 & 3 \\ 2 & 0 & 1 \\ 3 & 1 & 2 \end{pmatrix}$$
,则全部的顺序主子式是
$$|A_1| = -1$$

$$|A_2| = \begin{vmatrix} -1 & 2 \\ 2 & 0 \end{vmatrix} = -4$$

$$|A_3| = \begin{vmatrix} -1 & 2 & 3 \\ 2 & 0 & 1 \\ 3 & 1 & 2 \end{vmatrix}$$

例 设
$$A = \begin{pmatrix} -1 & 2 & 3 \\ 2 & 0 & 1 \\ 3 & 1 & 2 \end{pmatrix}$$
,则全部的顺序主子式是
$$|A_1| = -1$$

$$|A_2| = \begin{vmatrix} -1 & 2 \\ 2 & 0 \end{vmatrix} = -4$$

$$|A_3| = \begin{vmatrix} -1 & 2 & 3 \\ 2 & 0 & 1 \\ 3 & 1 & 2 \end{vmatrix} \xrightarrow{c_1-2c_3}$$

例 设
$$A = \begin{pmatrix} -1 & 2 & 3 \\ 2 & 0 & 1 \\ 3 & 1 & 2 \end{pmatrix}$$
,则全部的顺序主子式是
$$|A_1| = -1$$
$$|A_2| = \begin{vmatrix} -1 & 2 \\ 2 & 0 \end{vmatrix} = -4$$
$$|A_3| = \begin{vmatrix} -1 & 2 & 3 \\ 2 & 0 & 1 \\ 3 & 1 & 2 \end{vmatrix} \xrightarrow{c_1 - 2c_3} \begin{vmatrix} -7 & 2 & 3 \\ 0 & 0 & 1 \\ -1 & 1 & 2 \end{vmatrix} =$$

例 设
$$A = \begin{pmatrix} -1 & 2 & 3 \\ 2 & 0 & 1 \\ 3 & 1 & 2 \end{pmatrix}$$
,则全部的顺序主子式是
$$|A_1| = -1$$
$$|A_2| = \begin{vmatrix} -1 & 2 \\ 2 & 0 \end{vmatrix} = -4$$
$$|A_3| = \begin{vmatrix} -1 & 2 & 3 \\ 2 & 0 & 1 \\ 3 & 1 & 2 \end{vmatrix} \xrightarrow{c_1 - 2c_3} \begin{vmatrix} -7 & 2 & 3 \\ 0 & 0 & 1 \\ -1 & 1 & 2 \end{vmatrix} = - \begin{vmatrix} -7 & 2 \\ -1 & 1 \end{vmatrix}$$

例 设
$$A = \begin{pmatrix} -1 & 2 & 3 \\ 2 & 0 & 1 \\ 3 & 1 & 2 \end{pmatrix}$$
,则全部的顺序主子式是
$$|A_1| = -1$$

$$|A_2| = \begin{vmatrix} -1 & 2 \\ 2 & 0 \end{vmatrix} = -4$$

$$|A_3| = \begin{vmatrix} -1 & 2 & 3 \\ 2 & 0 & 1 \\ 3 & 1 & 2 \end{vmatrix} \xrightarrow{c_1 - 2c_3} \begin{vmatrix} -7 & 2 & 3 \\ 0 & 0 & 1 \\ -1 & 1 & 2 \end{vmatrix} = - \begin{vmatrix} -7 & 2 \\ -1 & 1 \end{vmatrix} = 5$$

定理 设 A 是 n 阶对称方阵,则

A正定 ⇔

定理 设 $A \in n$ 阶对称方阵,则

A正定
$$\iff$$
 $|A_k| > 0$, $\forall k = 1, 2, ..., n$

假设
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}$$
为正定,则

• $|A_1| > 0$

• $|A_2| > 0$

• $|A_3| > 0$

假设
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}$$
 为正定,则

• $|A_1| > 0$

• $|A_2| > 0$

• $|A_3| > 0$

假设 $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}$ 为正定,则

• $|A_1| > 0$

• $|A_2| > 0$

假设
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}$$
为正定,则

$$|A_1| = \alpha_{11}$$

• $|A_2| > 0$

假设
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}$$
为正定,则

$$|A_1| = a_{11} = (1, 0, 0) \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} =$$

• $|A_2| > 0$

假设
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}$$
为正定,则

$$|A_1| = a_{11} = (1, 0, 0) \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = f(1, 0, 0)$$

• $|A_2| > 0$

假设 $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}$ 为正定,则

• $|A_1| > 0$:

$$|A_1| = a_{11} = (1, 0, 0) \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = f(1, 0, 0) > 0$$

• $|A_2| > 0$

假设
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}$$
为正定,则

$$|A_1| = a_{11} = (1, 0, 0) \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = f(1, 0, 0) > 0$$

• $|A_2| > 0$

$$\left(\begin{array}{cc}a_{11} & a_{12} \\ a_{12} & a_{22}\end{array}\right)$$

假设
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}$$
为正定,则

$$|A_1| = a_{11} = (1, 0, 0) \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = f(1, 0, 0) > 0$$

• $|A_2| > 0$

$$(x_1,x_2)\Big(\begin{smallmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{12} & \alpha_{22} \end{smallmatrix}\Big)\Big(\begin{smallmatrix} x_1 \\ x_2 \end{smallmatrix}\Big)$$

假设
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}$$
为正定,则

$$|A_1| = a_{11} = (1, 0, 0) \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = f(1, 0, 0) > 0$$

•
$$|A_2| > 0$$
: $\mathbb{R} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \neq 0$, $\mathbb{R} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0$, $\mathbb{R} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$

假设
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}$$
为正定,则

$$|A_1| = a_{11} = (1, 0, 0) \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = f(1, 0, 0) > 0$$

• $|A_2| > 0$: $\mathbb{R} \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) \neq 0$, \mathbb{Q}

$$(x_1, x_2) \begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$= (x_1, x_2, 0) \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix} =$$

假设
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}$$
为正定,则

$$|A_1| = a_{11} = (1, 0, 0) \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = f(1, 0, 0) > 0$$

• $|A_2| > 0$: $\mathbb{R} \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) \neq 0$, \mathbb{Q}

$$(x_1, x_2) \begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

=
$$(x_1, x_2, 0)$$
 $\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix} = f(x_1, x_2, 0)$

假设
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}$$
为正定,则

$$|A_1| = a_{11} = (1, 0, 0) \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = f(1, 0, 0) > 0$$

• $|A_2| > 0$: $\mathbb{R} \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) \neq 0$, \mathbb{Q}

$$(x_1, x_2)$$
 $\begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix}$ $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$

$$= (x_1, x_2, 0) \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix} = f(x_1, x_2, 0) > 0$$

假设
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}$$
为正定,则

$$|A_1| = a_{11} = (1, 0, 0) \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = f(1, 0, 0) > 0$$

• $|A_2| > 0$: $\mathbb{R} \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) \neq 0$, \mathbb{Q}

$$(x_1, x_2) \left(\begin{array}{cc} a_{11} & a_{12} \\ a_{12} & a_{22} \end{array} \right) \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right)$$

$$= (x_1, x_2, 0) \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix} = f(x_1, x_2, 0) > 0$$

说明
$$A_2 = \begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix}$$
为正定,从而 $|A_2| = \begin{vmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{vmatrix} > 0$

例1 t 为何值时, $\begin{pmatrix} 1 & 1 & 1 \\ 1 & t & -1 \\ 1 & -1 & t \end{pmatrix}$ 是正定矩阵?

例 1 t 为何值时, $\begin{pmatrix} 1 & 1 & 1 \\ 1 & t & -1 \\ 1 & -1 & t \end{pmatrix}$ 是正定矩阵?

解 正定的充分必要条件是顺序主子式 > 0:

例 1
$$t$$
 为何值时, $\begin{pmatrix} 1 & 1 & 1 \\ 1 & t & -1 \\ 1 & -1 & t \end{pmatrix}$ 是正定矩阵?

解 正定的充分必要条件是顺序主子式 > 0:

$$|A_1| =$$

$$|A_2| =$$

$$|A_3| =$$

例 1
$$t$$
 为何值时, $\begin{pmatrix} 1 & 1 & 1 \\ 1 & t & -1 \\ 1 & -1 & t \end{pmatrix}$ 是正定矩阵?

解 正定的充分必要条件是顺序主子式 > 0:

$$|A_1| = 1$$

$$|A_2| =$$

$$|A_3| =$$

例1
$$t$$
 为何值时, $\begin{pmatrix} 1 & 1 & 1 \\ 1 & t & -1 \\ 1 & -1 & t \end{pmatrix}$ 是正定矩阵?

$$|A_1| = 1$$

$$|A_2| = \begin{vmatrix} 1 & 1 \\ 1 & t \end{vmatrix} =$$

$$|A_3| =$$

例1
$$t$$
 为何值时, $\begin{pmatrix} 1 & 1 & 1 \\ 1 & t & -1 \\ 1 & -1 & t \end{pmatrix}$ 是正定矩阵?

$$|A_{1}| = 1$$

$$|A_{2}| = \begin{vmatrix} 1 & 1 \\ 1 & t \end{vmatrix} =$$

$$|A_{3}| = \begin{vmatrix} 1 & 1 & 1 \\ 1 & t & -1 \\ 1 & -1 & t \end{vmatrix}$$

例1
$$t$$
 为何值时, $\begin{pmatrix} 1 & 1 & 1 \\ 1 & t & -1 \\ 1 & -1 & t \end{pmatrix}$ 是正定矩阵?

$$|A_{1}| = 1$$

$$|A_{2}| = \begin{vmatrix} 1 & 1 \\ 1 & t \end{vmatrix} = t - 1$$

$$|A_{3}| = \begin{vmatrix} 1 & 1 & 1 \\ 1 & t & -1 \\ 1 & -1 & t \end{vmatrix}$$

例1
$$t$$
 为何值时, $\begin{pmatrix} 1 & 1 & 1 \\ 1 & t & -1 \\ 1 & -1 & t \end{pmatrix}$ 是正定矩阵?

$$|A_{1}| = 1$$

$$|A_{2}| = \begin{vmatrix} 1 & 1 \\ 1 & t \end{vmatrix} = t - 1 > 0$$

$$|A_{3}| = \begin{vmatrix} 1 & 1 & 1 \\ 1 & t & -1 \\ 1 & -1 & t \end{vmatrix}$$

例1
$$t$$
 为何值时, $\begin{pmatrix} 1 & 1 & 1 \\ 1 & t & -1 \\ 1 & -1 & t \end{pmatrix}$ 是正定矩阵?

$$|A_{1}| = 1$$

$$|A_{2}| = \begin{vmatrix} 1 & 1 \\ 1 & t \end{vmatrix} = t - 1 > 0$$

$$|A_{3}| = \begin{vmatrix} 1 & 1 & 1 \\ 1 & t & -1 \\ 1 & -1 & t \end{vmatrix} \frac{r_{2} - r_{1}}{r_{3} - r_{1}}$$

例1
$$t$$
 为何值时, $\begin{pmatrix} 1 & 1 & 1 \\ 1 & t & -1 \\ 1 & -1 & t \end{pmatrix}$ 是正定矩阵?

$$|A_{1}| = 1$$

$$|A_{2}| = \begin{vmatrix} 1 & 1 \\ 1 & t \end{vmatrix} = t - 1 > 0$$

$$|A_{3}| = \begin{vmatrix} 1 & 1 & 1 \\ 1 & t & -1 \\ 1 & -1 & t \end{vmatrix} = \frac{r_{2} - r_{1}}{r_{3} - r_{1}} \begin{vmatrix} 1 & 1 & 1 \\ 0 & t - 1 & -2 \\ 0 & -2 & t - 1 \end{vmatrix}$$

例1
$$t$$
 为何值时, $\begin{pmatrix} 1 & 1 & 1 \\ 1 & t & -1 \\ 1 & -1 & t \end{pmatrix}$ 是正定矩阵?

$$|A_{1}| = 1$$

$$|A_{2}| = \begin{vmatrix} 1 & 1 \\ 1 & t \end{vmatrix} = t - 1 > 0$$

$$|A_{3}| = \begin{vmatrix} 1 & 1 & 1 \\ 1 & t & -1 \\ 1 & -1 & t \end{vmatrix} \frac{r_{2} - r_{1}}{r_{3} - r_{1}} \begin{vmatrix} 1 & 1 & 1 \\ 0 & t - 1 & -2 \\ 0 & -2 & t - 1 \end{vmatrix} = \begin{vmatrix} t - 1 & -2 \\ -2 & t - 1 \end{vmatrix}$$

工次型正定性 11/13 ⊲ ▷

例1
$$t$$
 为何值时, $\begin{pmatrix} 1 & 1 & 1 \\ 1 & t & -1 \\ 1 & -1 & t \end{pmatrix}$ 是正定矩阵?

 \mathbf{E} 下定的充分必要条件是顺序主子式 > 0:

$$|A_{1}| = 1$$

$$|A_{2}| = \begin{vmatrix} 1 & 1 \\ 1 & t \end{vmatrix} = t - 1 > 0$$

$$|A_{3}| = \begin{vmatrix} 1 & 1 & 1 \\ 1 & t & -1 \\ 1 & -1 & t \end{vmatrix} = \frac{r_{2} - r_{1}}{r_{3} - r_{1}} \begin{vmatrix} 1 & 1 & 1 \\ 0 & t - 1 & -2 \\ 0 & -2 & t - 1 \end{vmatrix} = \begin{vmatrix} t - 1 & -2 \\ -2 & t - 1 \end{vmatrix}$$

$$= (t - 1)^{2} - 4 =$$

11/13 ⊲ ⊳

例1
$$t$$
 为何值时, $\begin{pmatrix} 1 & 1 & 1 \\ 1 & t & -1 \\ 1 & -1 & t \end{pmatrix}$ 是正定矩阵?

$$|A_{1}| = 1$$

$$|A_{2}| = \begin{vmatrix} 1 & 1 \\ 1 & t \end{vmatrix} = t - 1 > 0$$

$$|A_{3}| = \begin{vmatrix} 1 & 1 & 1 \\ 1 & t & -1 \\ 1 & -1 & t \end{vmatrix} = \frac{r_{2} - r_{1}}{r_{3} - r_{1}} \begin{vmatrix} 1 & 1 & 1 \\ 0 & t - 1 & -2 \\ 0 & -2 & t - 1 \end{vmatrix} = \begin{vmatrix} t - 1 & -2 \\ -2 & t - 1 \end{vmatrix}$$

$$= (t - 1)^{2} - 4 = (t - 3)(t + 1)$$

工次型正定性 11/13 ⊲ ▷

例1
$$t$$
 为何值时, $\begin{pmatrix} 1 & 1 & 1 \\ 1 & t & -1 \\ 1 & -1 & t \end{pmatrix}$ 是正定矩阵?

$$|A_{1}| = 1$$

$$|A_{2}| = \begin{vmatrix} 1 & 1 \\ 1 & t \end{vmatrix} = t - 1 > 0$$

$$|A_{3}| = \begin{vmatrix} 1 & 1 & 1 \\ 1 & t & -1 \\ 1 & -1 & t \end{vmatrix} = \frac{r_{2} - r_{1}}{r_{3} - r_{1}} \begin{vmatrix} 1 & 1 & 1 \\ 0 & t - 1 & -2 \\ 0 & -2 & t - 1 \end{vmatrix} = \begin{vmatrix} t - 1 & -2 \\ -2 & t - 1 \end{vmatrix}$$

$$= (t - 1)^{2} - 4 = (t - 3)(t + 1) > 0$$

二次型正定性 11/13 ⊲ ▷

例1
$$t$$
 为何值时, $\begin{pmatrix} 1 & 1 & 1 \\ 1 & t & -1 \\ 1 & -1 & t \end{pmatrix}$ 是正定矩阵?

$$|A_{1}| = 1$$

$$|A_{2}| = \begin{vmatrix} 1 & 1 \\ 1 & t \end{vmatrix} = t - 1 > 0$$

$$|A_{3}| = \begin{vmatrix} 1 & 1 & 1 \\ 1 & t & -1 \\ 1 & -1 & t \end{vmatrix} = \frac{r_{2} - r_{1}}{r_{3} - r_{1}} \begin{vmatrix} 1 & 1 & 1 \\ 0 & t - 1 & -2 \\ 0 & -2 & t - 1 \end{vmatrix} = \begin{vmatrix} t - 1 & -2 \\ -2 & t - 1 \end{vmatrix}$$

$$= (t - 1)^{2} - 4 = (t - 3)(t + 1) > 0$$

所以t > 3

$$f(x_1, x_2, x_3) = x_1^2 + 2x_1x_2 + 4x_1x_3 + 2x_2^2 + 6x_2x_3 + \lambda x_3^2$$
 是正定?

$$f(x_1, x_2, x_3) = x_1^2 + 2x_1x_2 + 4x_1x_3 + 2x_2^2 + 6x_2x_3 + \lambda x_3^2$$
 是正定?

$$\mathbf{F}$$
 二次型 f 对应的矩阵是 $\mathbf{A} = \begin{pmatrix} \mathbf{F} & \mathbf{F} & \mathbf{F} \\ \mathbf{F} & \mathbf{F} \end{pmatrix}$

$\boxed{\textbf{M} 2 \lambda}$ 为何值时,二次型

$$f(x_1, x_2, x_3) = x_1^2 + 2x_1x_2 + 4x_1x_3 + 2x_2^2 + 6x_2x_3 + \lambda x_3^2$$
 是正定?

$$\mathbf{F}$$
 二次型 f 对应的矩阵是 $\mathbf{A} = \begin{pmatrix} & & \\ & & \end{pmatrix}$,只需判断何时 \mathbf{A} 是正定矩

$$f(x_1, x_2, x_3) = x_1^2 + 2x_1x_2 + 4x_1x_3 + 2x_2^2 + 6x_2x_3 + \lambda x_3^2$$
 是正定?

$$\mathbf{F}$$
 二次型 \mathbf{f} 对应的矩阵是 $\mathbf{A} = \begin{pmatrix} 1 \\ \end{pmatrix}$,只需判断何时 \mathbf{A} 是正定矩

$$f(x_1, x_2, x_3) = x_1^2 + 2x_1x_2 + 4x_1x_3 + 2x_2^2 + 6x_2x_3 + \lambda x_3^2$$
 是正定?

$$\mathbf{H}$$
 二次型 f 对应的矩阵是 $A = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$,只需判断何时 A 是正定矩

$$f(x_1, x_2, x_3) = x_1^2 + 2x_1x_2 + 4x_1x_3 + 2x_2^2 + 6x_2x_3 + \lambda x_3^2$$
 是正定?

$$\mathbf{H}$$
 二次型 f 对应的矩阵是 $A = \begin{pmatrix} 1 & 2 & \\ & 2 & \\ & & \lambda \end{pmatrix}$,只需判断何时 A 是正定矩

$$f(x_1, x_2, x_3) = x_1^2 + 2x_1x_2 + 4x_1x_3 + 2x_2^2 + 6x_2x_3 + \lambda x_3^2$$
 是正定?

$$\mathbf{H}$$
 二次型 f 对应的矩阵是 $A = \begin{pmatrix} 1 & 1 \\ & 2 \\ & & \lambda \end{pmatrix}$,只需判断何时 A 是正定矩

$$f(x_1, x_2, x_3) = x_1^2 + 2x_1x_2 + 4x_1x_3 + 2x_2^2 + 6x_2x_3 + \lambda x_3^2$$
 是正定?

$$\mathbf{H}$$
 二次型 f 对应的矩阵是 $A = \begin{pmatrix} 1 & 1 & 2 \\ & 2 & \\ & & \lambda \end{pmatrix}$,只需判断何时 A 是正定矩

$$f(x_1, x_2, x_3) = x_1^2 + 2x_1x_2 + 4x_1x_3 + 2x_2^2 + 6x_2x_3 + \lambda x_3^2$$
 是正定?

$$\mathbf{H}$$
 二次型 f 对应的矩阵是 $A = \begin{pmatrix} 1 & 1 & 2 \\ & 2 & 3 \\ & & \lambda \end{pmatrix}$,只需判断何时 A 是正定矩

$\boxed{\textbf{M} 2 \lambda}$ 为何值时,二次型

$$f(x_1, x_2, x_3) = x_1^2 + 2x_1x_2 + 4x_1x_3 + 2x_2^2 + 6x_2x_3 + \lambda x_3^2$$
 是正定?

$$\mathbf{K}$$
 二次型 f 对应的矩阵是 $A = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & \lambda \end{pmatrix}$,只需判断何时 A 是正定矩

$\boxed{\textbf{M2} \lambda$ 为何值时,二次型

$$f(x_1, x_2, x_3) = x_1^2 + 2x_1x_2 + 4x_1x_3 + 2x_2^2 + 6x_2x_3 + \lambda x_3^2$$
 是正定?

$$\mathbf{H}$$
 二次型 f 对应的矩阵是 $A = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & \lambda \end{pmatrix}$,只需判断何时 A 是正定矩

$$|A_1| =$$

$$|A_2| =$$

$$|A_3| =$$

$\boxed{\textbf{M2} \lambda$ 为何值时,二次型

$$f(x_1, x_2, x_3) = x_1^2 + 2x_1x_2 + 4x_1x_3 + 2x_2^2 + 6x_2x_3 + \lambda x_3^2$$
 是正定?

$$\mathbf{K}$$
 二次型 f 对应的矩阵是 $A = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & \lambda \end{pmatrix}$,只需判断何时 A 是正定矩

$$|A_1| = 1$$

$$|A_2| =$$

$$|A_3| =$$

例2λ为何值时,二次型

$$f(x_1, x_2, x_3) = x_1^2 + 2x_1x_2 + 4x_1x_3 + 2x_2^2 + 6x_2x_3 + \lambda x_3^2$$
 是正定?

$$\mathbf{H}$$
 二次型 f 对应的矩阵是 $A = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & \lambda \end{pmatrix}$,只需判断何时 A 是正定矩

$$|A_1| = 1$$

$$|A_2| = \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} =$$

$$|A_3| =$$

$$f(x_1, x_2, x_3) = x_1^2 + 2x_1x_2 + 4x_1x_3 + 2x_2^2 + 6x_2x_3 + \lambda x_3^2$$
 是正定?

$$\mathbf{H}$$
 二次型 f 对应的矩阵是 $A = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & \lambda \end{pmatrix}$,只需判断何时 A 是正定矩

$$|A_{1}| = 1$$

$$|A_{2}| = \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & \lambda \end{vmatrix}$$

$$f(x_1, x_2, x_3) = x_1^2 + 2x_1x_2 + 4x_1x_3 + 2x_2^2 + 6x_2x_3 + \lambda x_3^2$$
 是正定?

$$\mathbf{H}$$
 二次型 f 对应的矩阵是 $A = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & \lambda \end{pmatrix}$,只需判断何时 A 是正定矩

$$|A_1| = 1$$
 $|A_2| = \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} = 1$
 $|A_3| = \begin{vmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & \lambda \end{vmatrix}$

$$f(x_1, x_2, x_3) = x_1^2 + 2x_1x_2 + 4x_1x_3 + 2x_2^2 + 6x_2x_3 + \lambda x_3^2$$
 是正定?

$$\mathbf{H}$$
 二次型 f 对应的矩阵是 $A = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & \lambda \end{pmatrix}$,只需判断何时 A 是正定矩

$$|A_{1}| = 1$$

$$|A_{2}| = \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} = 1 > 0$$

$$|A_{3}| = \begin{vmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & \lambda \end{vmatrix}$$

$$f(x_1, x_2, x_3) = x_1^2 + 2x_1x_2 + 4x_1x_3 + 2x_2^2 + 6x_2x_3 + \lambda x_3^2$$
 是正定?

$$\mathbf{H}$$
 二次型 f 对应的矩阵是 $A = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & \lambda \end{pmatrix}$,只需判断何时 A 是正定矩

$$|A_{1}| = 1$$

$$|A_{2}| = \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} = 1 > 0$$

$$|A_{3}| = \begin{vmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & \lambda \end{vmatrix} \xrightarrow{\frac{r_{2} - r_{1}}{r_{3} - 2r_{1}}}$$

$$f(x_1, x_2, x_3) = x_1^2 + 2x_1x_2 + 4x_1x_3 + 2x_2^2 + 6x_2x_3 + \lambda x_3^2$$
 是正定?

$$\mathbf{K}$$
 二次型 f 对应的矩阵是 $A = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & \lambda \end{pmatrix}$,只需判断何时 A 是正定矩

$$|A_{1}| = 1$$

$$|A_{2}| = \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} = 1 > 0$$

$$|A_{3}| = \begin{vmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & \lambda \end{vmatrix} = \begin{vmatrix} \frac{r_{2} - r_{1}}{r_{3} - 2r_{1}} & \begin{vmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 1 & \lambda - 4 \end{vmatrix}$$

$$f(x_1, x_2, x_3) = x_1^2 + 2x_1x_2 + 4x_1x_3 + 2x_2^2 + 6x_2x_3 + \lambda x_3^2$$
 是正定?

$$\mathbf{H}$$
 二次型 f 对应的矩阵是 $A = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & \lambda \end{pmatrix}$,只需判断何时 A 是正定矩

阵:

$$|A_{1}| = 1$$

$$|A_{2}| = \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} = 1 > 0$$

$$|A_{3}| = \begin{vmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & \lambda \end{vmatrix} \xrightarrow{\frac{r_{2} - r_{1}}{r_{3} - 2r_{1}}} \begin{vmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 1 & \lambda - 4 \end{vmatrix} = \begin{vmatrix} 1 & 1 \\ 1 & \lambda - 4 \end{vmatrix}$$

$$f(x_1, x_2, x_3) = x_1^2 + 2x_1x_2 + 4x_1x_3 + 2x_2^2 + 6x_2x_3 + \lambda x_3^2$$
 是正定?

$$\mathbf{H}$$
 二次型 f 对应的矩阵是 $A = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & \lambda \end{pmatrix}$,只需判断何时 A 是正定矩

阵:

$$|A_{1}| = 1$$

$$|A_{2}| = \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} = 1 > 0$$

$$|A_{3}| = \begin{vmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & \lambda \end{vmatrix} \xrightarrow{\frac{r_{2} - r_{1}}{r_{3} - 2r_{1}}} \begin{vmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 1 & \lambda - 4 \end{vmatrix} = \begin{vmatrix} 1 & 1 \\ 1 & \lambda - 4 \end{vmatrix}$$

$$= \lambda - 5$$

$$f(x_1, x_2, x_3) = x_1^2 + 2x_1x_2 + 4x_1x_3 + 2x_2^2 + 6x_2x_3 + \lambda x_3^2$$
 是正定?

$$\mathbf{H}$$
 二次型 f 对应的矩阵是 $A = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & \lambda \end{pmatrix}$,只需判断何时 A 是正定矩

阵:

$$|A_{1}| = 1$$

$$|A_{2}| = \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} = 1 > 0$$

$$|A_{3}| = \begin{vmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & \lambda \end{vmatrix} \xrightarrow{\frac{r_{2} - r_{1}}{r_{3} - 2r_{1}}} \begin{vmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 1 & \lambda - 4 \end{vmatrix} = \begin{vmatrix} 1 & 1 \\ 1 & \lambda - 4 \end{vmatrix}$$

$$= \lambda - 5 > 0$$

例2λ为何值时,二次型

$$f(x_1, x_2, x_3) = x_1^2 + 2x_1x_2 + 4x_1x_3 + 2x_2^2 + 6x_2x_3 + \lambda x_3^2$$
 是正定?

$$\mathbf{F}$$
 二次型 f 对应的矩阵是 $A = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & \lambda \end{pmatrix}$,只需判断何时 A 是正定矩

阵:

$$|A_{1}| = 1$$

$$|A_{2}| = \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} = 1 > 0$$

$$|A_{3}| = \begin{vmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & \lambda \end{vmatrix} \frac{r_{2} - r_{1}}{r_{3} - 2r_{1}} \begin{vmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 1 & \lambda - 4 \end{vmatrix} = \begin{vmatrix} 1 & 1 \\ 1 & \lambda - 4 \end{vmatrix}$$

$$= \lambda - 5 > 0$$

所以 $\lambda > 5$

例3 t 为何值时,二次型

$$f(x_1, x_2, x_3) = t(x_1^2 + x_2^2 + x_3^2) + 2x_1x_2 + 2x_1x_3 - 2x_2x_3$$
 是正定?

例 3 t 为何值时,二次型 $f(x_1, x_2, x_3) = t(x_1^2 + x_2^2 + x_3^2) + 2x_1x_2 + 2x_1x_3 - 2x_2x_3$ 是正定?

$$\mathbf{R}$$
 二次型 f 对应的矩阵是 $\mathbf{A} = \begin{pmatrix} \mathbf{B} & \mathbf{B} & \mathbf{B} \\ \mathbf{B} & \mathbf{B} \end{pmatrix}$

例 3 t 为何值时,二次型 $f(x_1, x_2, x_3) = t(x_1^2 + x_2^2 + x_3^2) + 2x_1x_2 + 2x_1x_3 - 2x_2x_3$ 是正定?

$$\mathbf{F}$$
 二次型 f 对应的矩阵是 $\mathbf{A} = \begin{pmatrix} & & \\ & & \end{pmatrix}$,只需判断何时 \mathbf{A} 是正定

矩阵:

$$\mathbf{M}$$
 二次型 f 对应的矩阵是 $A = \begin{pmatrix} t \\ t \\ t \end{pmatrix}$,只需判断何时 A 是正定

$$\mathbf{R}$$
 二次型 f 对应的矩阵是 $A = \begin{pmatrix} t & 1 \\ t & t \end{pmatrix}$,只需判断何时 A 是正定

$$\mathbf{H}$$
 二次型 f 对应的矩阵是 $A = \begin{pmatrix} t & 1 & 1 \\ & t & \\ & & t \end{pmatrix}$,只需判断何时 A 是正定

$$\mathbf{m}$$
 二次型 f 对应的矩阵是 $A = \begin{pmatrix} t & 1 & 1 \\ t & -1 \\ t \end{pmatrix}$,只需判断何时 A 是正定

$$\mathbf{R}$$
 二次型 f 对应的矩阵是 $A = \begin{pmatrix} t & 1 & 1 \\ 1 & t & -1 \\ 1 & -1 & t \end{pmatrix}$,只需判断何时 A 是正定

例 3 t 为何值时,二次型

$$f(x_1, x_2, x_3) = t(x_1^2 + x_2^2 + x_3^2) + 2x_1x_2 + 2x_1x_3 - 2x_2x_3$$
 是正定?

解 二次型
$$f$$
 对应的矩阵是 $A = \begin{pmatrix} t & 1 & 1 \\ 1 & t & -1 \\ 1 & -1 & t \end{pmatrix}$,只需判断何时 A 是正定

$$|A_1| =$$

$$|A_2| =$$

$$|A_3| =$$

例 3 *t* 为何值时,二次型

$$f(x_1, x_2, x_3) = t(x_1^2 + x_2^2 + x_3^2) + 2x_1x_2 + 2x_1x_3 - 2x_2x_3$$
 是正定?

解 二次型
$$f$$
 对应的矩阵是 $A = \begin{pmatrix} t & 1 & 1 \\ 1 & t & -1 \\ 1 & -1 & t \end{pmatrix}$,只需判断何时 A 是正定

$$|A_1| = t$$

$$|A_2| =$$

$$|A_3| =$$

$$\mathbf{H}$$
 二次型 f 对应的矩阵是 $A = \begin{pmatrix} \mathbf{T} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & t & -\mathbf{I} \\ \mathbf{I} & -\mathbf{I} & t \end{pmatrix}$,只需判断何时 A 是正定

$$|A_1| = t$$

$$|A_2| = \begin{vmatrix} t & 1 \\ 1 & t \end{vmatrix} =$$

$$|A_3| =$$

$$\mathbf{H}$$
 二次型 f 对应的矩阵是 $A = \begin{pmatrix} t & 1 & 1 \\ 1 & t & -1 \\ 1 & -1 & t \end{pmatrix}$,只需判断何时 A 是正定

矩阵:

 $|A_1| = t$

$$|A_2| = \begin{vmatrix} t & 1 \\ 1 & t \end{vmatrix} =$$

$$|A_3| = \begin{vmatrix} t & 1 & 1 \\ 1 & t & -1 \\ 1 & -1 & t \end{vmatrix}$$

$$\mathbf{H}$$
 二次型 f 对应的矩阵是 $A = \begin{pmatrix} t & 1 & 1 \\ 1 & t & -1 \\ 1 & -1 & t \end{pmatrix}$,只需判断何时 A 是正定

$$|A_1| = t > 0$$

$$|A_2| = \begin{vmatrix} t & 1 \\ 1 & t \end{vmatrix} =$$

$$|A_3| = \begin{vmatrix} t & 1 & 1 \\ 1 & t & -1 \\ 1 & -1 & t \end{vmatrix}$$

$$\mathbf{H}$$
 二次型 f 对应的矩阵是 $A = \begin{pmatrix} t & 1 & 1 \\ 1 & t & -1 \\ 1 & -1 & t \end{pmatrix}$,只需判断何时 A 是正定

$$|A_{1}| = t > 0$$

$$|A_{2}| = \begin{vmatrix} t & 1 \\ 1 & t \end{vmatrix} = t^{2} - 1$$

$$|A_{3}| = \begin{vmatrix} t & 1 & 1 \\ 1 & t & -1 \\ 1 - 1 & t \end{vmatrix}$$

$$\mathbf{H}$$
 二次型 f 对应的矩阵是 $A = \begin{pmatrix} \mathbf{T} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & t & -\mathbf{I} \\ \mathbf{I} & -\mathbf{I} & t \end{pmatrix}$,只需判断何时 A 是正定

$$|A_{1}| = t > 0$$

$$|A_{2}| = \begin{vmatrix} t & 1 \\ 1 & t \end{vmatrix} = t^{2} - 1 > 0$$

$$|A_{3}| = \begin{vmatrix} t & 1 & 1 \\ 1 & t & -1 \\ 1 & -1 & t \end{vmatrix}$$

$$\mathbf{H}$$
 二次型 f 对应的矩阵是 $A = \begin{pmatrix} \mathbf{T} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & t & -\mathbf{I} \\ \mathbf{I} & -\mathbf{I} & t \end{pmatrix}$,只需判断何时 A 是正定

矩阵:

 $|A_1| = t > 0$

$$|A_{2}| = \begin{vmatrix} t & 1 \\ 1 & t \end{vmatrix} = t^{2} - 1 > 0$$

$$|A_{3}| = \begin{vmatrix} t & 1 & 1 \\ 1 & t & -1 \\ 1 - 1 & t \end{vmatrix} = \frac{r_{3} - r_{2}}{t}$$

$$\mathbf{H}$$
 二次型 f 对应的矩阵是 $A = \begin{pmatrix} t & 1 & 1 \\ 1 & t & -1 \\ 1 & -1 & t \end{pmatrix}$,只需判断何时 A 是正定

$$|A_{1}| = t > 0$$

$$|A_{2}| = \begin{vmatrix} t & 1 \\ 1 & t \end{vmatrix} = t^{2} - 1 > 0$$

$$|A_{3}| = \begin{vmatrix} t & 1 & 1 \\ 1 & t & -1 \\ 1 - 1 & t \end{vmatrix} \xrightarrow{r_{3} - r_{2}} \begin{vmatrix} t & 1 & 1 \\ 1 & t & -1 \\ 0 - 1 - t & t + 1 \end{vmatrix}$$

例 3 *t* 为何值时,二次型

$$f(x_1, x_2, x_3) = t(x_1^2 + x_2^2 + x_3^2) + 2x_1x_2 + 2x_1x_3 - 2x_2x_3$$
 是正定?

解 二次型 f 对应的矩阵是 $A = \begin{pmatrix} t & 1 & 1 \\ 1 & t & -1 \\ 1 & -1 & t \end{pmatrix}$,只需判断何时 A 是正定

$$|A_{1}| = t > 0$$

$$|A_{2}| = \begin{vmatrix} t & 1 \\ 1 & t \end{vmatrix} = t^{2} - 1 > 0$$

$$|A_{3}| = \begin{vmatrix} t & 1 & 1 \\ 1 & t & -1 \\ 1 - 1 & t \end{vmatrix} = \frac{r_{3} - r_{2}}{t} \begin{vmatrix} t & 1 & 1 \\ 1 & t & -1 \\ 0 - 1 - t & t + 1 \end{vmatrix} = (t+1) \begin{vmatrix} t & 1 & 1 \\ 1 & t & -1 \\ 0 - 1 & 1 \end{vmatrix}$$

解 二次型
$$f$$
 对应的矩阵是 $A = \begin{pmatrix} t & 1 & 1 \\ 1 & t & -1 \\ 1 & -1 & t \end{pmatrix}$,只需判断何时 A 是正定

矩阵:

$$|A_{1}| = t > 0$$

$$|A_{2}| = \begin{vmatrix} t & 1 \\ 1 & t \end{vmatrix} = t^{2} - 1 > 0$$

$$|A_{3}| = \begin{vmatrix} t & 1 & 1 \\ 1 & t & -1 \\ 1 & -1 & t \end{vmatrix} = \frac{r_{3} - r_{2}}{0 - 1 - t} \begin{vmatrix} t & 1 & 1 \\ 1 & t & -1 \\ 0 & -1 & t \end{vmatrix} = (t + 1) \begin{vmatrix} t & 1 & 1 \\ 1 & t & -1 \\ 0 & -1 & 1 \end{vmatrix}$$

$$\frac{c_{2} + c_{3}}{0 - 1 - t}$$

例3 t 为何值时,二次型

$$f(x_1, x_2, x_3) = t(x_1^2 + x_2^2 + x_3^2) + 2x_1x_2 + 2x_1x_3 - 2x_2x_3$$
 是正定?

解 二次型 f 对应的矩阵是 $A = \begin{pmatrix} t & 1 & 1 \\ 1 & t & -1 \\ 1 & -1 & t \end{pmatrix}$,只需判断何时 A 是正定

$$|A_{1}| = t > 0$$

$$|A_{2}| = \begin{vmatrix} t & 1 \\ 1 & t \end{vmatrix} = t^{2} - 1 > 0$$

$$|A_{3}| = \begin{vmatrix} t & 1 & 1 \\ 1 & t & -1 \\ 1 - 1 & t \end{vmatrix} = \frac{r_{3} - r_{2}}{t} \begin{vmatrix} t & 1 & 1 \\ 1 & t & -1 \\ 0 - 1 - t & t + 1 \end{vmatrix} = (t+1) \begin{vmatrix} t & 1 & 1 \\ 1 & t & -1 \\ 0 - 1 & 1 \end{vmatrix}$$

$$\frac{c_{2} + c_{3}}{t} (t+1) \begin{vmatrix} t & 2 & 1 \\ 1 & t & -1 \\ 0 & 0 & 1 \end{vmatrix}$$

$$\mathbf{H}$$
 二次型 f 对应的矩阵是 $A = \begin{pmatrix} t & 1 & 1 \\ 1 & t & -1 \\ 1 & -1 & t \end{pmatrix}$,只需判断何时 A 是正定

矩阵:

$$|A_{1}| = t > 0$$

$$|A_{2}| = \begin{vmatrix} t & 1 \\ 1 & t \end{vmatrix} = t^{2} - 1 > 0$$

$$|A_{3}| = \begin{vmatrix} t & 1 & 1 \\ 1 & t & -1 \\ 1 - 1 & t \end{vmatrix} = \frac{r_{3} - r_{2}}{t} \begin{vmatrix} t & 1 & 1 \\ 1 & t & -1 \\ 0 - 1 - t & t + 1 \end{vmatrix} = (t+1) \begin{vmatrix} t & 1 & 1 \\ 1 & t & -1 \\ 0 - 1 & 1 \end{vmatrix}$$

$$\frac{c_{2} + c_{3}}{t} (t+1) \begin{vmatrix} t & 2 & 1 \\ 1 & t & -1 \\ 0 & 1 & 1 \end{vmatrix} = (t+1) \begin{vmatrix} t & 2 \\ 1 & t - 1 \end{vmatrix}$$

解 二次型
$$f$$
 对应的矩阵是 $A = \begin{pmatrix} t & 1 & 1 \\ 1 & t & -1 \\ 1 & -1 & t \end{pmatrix}$,只需判断何时 A 是正定

矩阵:

$$|A_{1}| = t > 0$$

$$|A_{2}| = \begin{vmatrix} t & 1 \\ 1 & t \end{vmatrix} = t^{2} - 1 > 0$$

$$|A_{3}| = \begin{vmatrix} t & 1 & 1 \\ 1 & t & -1 \\ 1 - 1 & t \end{vmatrix} = \frac{r_{3} - r_{2}}{1 - 1} \begin{vmatrix} t & 1 & 1 \\ 1 & t & -1 \\ 0 - 1 - t & t + 1 \end{vmatrix} = (t + 1) \begin{vmatrix} t & 1 & 1 \\ 1 & t & -1 \\ 0 - 1 & 1 \end{vmatrix}$$

$$= \frac{c_{2} + c_{3}}{1 - 1} (t + 1) \begin{vmatrix} t & 2 & 1 \\ 1 & t & -1 \\ 0 & 0 & 1 \end{vmatrix} = (t + 1) \begin{vmatrix} t & 2 \\ 1 & t - 1 \end{vmatrix}$$

$$= (t + 1)(t^{2} - t - 2)$$

解 二次型
$$f$$
 对应的矩阵是 $A = \begin{pmatrix} t & 1 & 1 \\ 1 & t & -1 \\ 1 & -1 & t \end{pmatrix}$,只需判断何时 A 是正定

矩阵:

$$|A_{1}| = t > 0$$

$$|A_{2}| = \begin{vmatrix} t & 1 \\ 1 & t \end{vmatrix} = t^{2} - 1 > 0$$

$$|A_{3}| = \begin{vmatrix} t & 1 & 1 \\ 1 & t & -1 \\ 1 - 1 & t \end{vmatrix} = \frac{r_{3} - r_{2}}{0 - 1 - t} \begin{vmatrix} t & 1 & 1 \\ 1 & t & -1 \\ 0 - 1 - t & t + 1 \end{vmatrix} = (t + 1) \begin{vmatrix} t & 1 & 1 \\ 1 & t & -1 \\ 0 - 1 & 1 \end{vmatrix}$$

$$= \frac{c_{2} + c_{3}}{0} (t + 1) \begin{vmatrix} t & 2 & 1 \\ 1 & t & -1 \\ 0 & 1 & 1 \end{vmatrix} = (t + 1) \begin{vmatrix} t & 2 \\ 1 & t - 1 \end{vmatrix}$$

$$= (t + 1)(t^{2} - t - 2) = (t + 1)^{2}(t - 2)$$

解 二次型
$$f$$
 对应的矩阵是 $A = \begin{pmatrix} t & 1 & 1 \\ 1 & t & -1 \\ 1 & -1 & t \end{pmatrix}$,只需判断何时 A 是正定

$$|A_{1}| = t > 0$$

$$|A_{2}| = \begin{vmatrix} t & 1 \\ 1 & t \end{vmatrix} = t^{2} - 1 > 0$$

$$|A_{3}| = \begin{vmatrix} t & 1 & 1 \\ 1 & t & -1 \\ 1 - 1 & t \end{vmatrix} = \frac{r_{3} - r_{2}}{0 - 1 - t} \begin{vmatrix} t & 1 & 1 \\ 1 & t & -1 \\ 0 - 1 & t \end{vmatrix} = (t + 1) \begin{vmatrix} t & 1 & 1 \\ 1 & t & -1 \\ 0 - 1 & 1 \end{vmatrix}$$

$$= \frac{c_{2} + c_{3}}{0} (t + 1) \begin{vmatrix} t & 2 & 1 \\ 1 & t & -1 \\ 0 & 1 & 1 \end{vmatrix} = (t + 1) \begin{vmatrix} t & 2 \\ 1 & t - 1 \end{vmatrix}$$

$$= (t + 1)(t^{2} - t - 2) = (t + 1)^{2}(t - 2) > 0$$

解 二次型 f 对应的矩阵是 $A = \begin{pmatrix} t & 1 & 1 \\ 1 & t & -1 \\ 1 & -1 & t \end{pmatrix}$,只需判断何时 A 是正定矩阵:

$$|A_1| = t > 0$$

 $|A_2| = \begin{vmatrix} t & 1 \\ 1 & t \end{vmatrix} = t^2 - 1 > 0$

$$|A_3| = \begin{vmatrix} t & 1 & 1 \\ 1 & t & -1 \\ 1 & -1 & t \end{vmatrix} \xrightarrow{r_3 - r_2} \begin{vmatrix} t & 1 & 1 \\ 1 & t & -1 \\ 0 & -1 - t & t + 1 \end{vmatrix} = (t+1) \begin{vmatrix} t & 1 & 1 \\ 1 & t & -1 \\ 0 & -1 & 1 \end{vmatrix}$$
$$\frac{c_2 + c_3}{2} (t+1) \begin{vmatrix} t & 2 & 1 \\ 1 & t & -1 \\ 0 & 1 & 1 \end{vmatrix} = (t+1) \begin{vmatrix} t & 2 \\ 1 & t - 1 \end{vmatrix}$$
$$= (t+1)(t^2 - t - 2) = (t+1)^2(t-2) > 0$$