Measuring Similarity Within Species

Rajat Sirohi

Overview and Introduction

"How similar are organisms within the same species compared to any random pair of organisms?"

- Goals
 - Devise measure of similarity
 - Calculate intraspecies similarity
- Hypotheses
 - H₀: the two organisms are no more similar than random chance would predict
 - Ha: the two organisms belong to the same species

Data Collection

- NCBI Genome Database: GenBank
- Synechococcus elongatus
- 100 random chosen samples
- Conditions:
 - Reputable database ensures non-biased samples
 - Random selection process
 - 10% condition
 - Success/failure condition

Expected Distribution

N = length of genome strand

n = number of nucleotide options = 4

S = number of simulations

 ψ = measure of similarity

 μ = mean

 σ = standard deviation

$$A = a_1 a_2 a_3 ... a_N$$

$$B = b_1 b_2 b_3 ... b_N$$

$$P(a_i == b_i) = 1/n$$

$$E(\psi) = N * P(a_i == b_i) = N/n$$

Freq
$$(\psi)$$
 = (N choose ψ) $(1/n)^{\psi}$ $((n-1)/n)^{N-\psi}$

$$\mu = Np = N/n$$

$$\sigma = \operatorname{sqrt}(\operatorname{Npq}) = \operatorname{sqrt}(\operatorname{N} * (n-1)/n/n)$$

Data Analysis

- Analyzed 100 samples, resulting in (100 choose 2) = 4950 comparisons
- Results
 - $\psi = 735$
 - Sigma ~ 23.479
 - $\psi_{\text{hat}} \sim 2880.503$
 - Z_score ~ 91.380
 - P_val ~ 0

Conclusions

- Given the extremely low p-value, we can reasonably **reject the null hypothesis** in favor of the alternative hypothesis with near
100% confidence

- Confidence interval: (-1410.503, 2880.503)

Reflection

- Extension opportunities
 - Use different measure of similarity
 - Cosine similarity
 - Compare pairs rather than singular nucleotides
 - Weighted element-wise or cosine similarity
 - Restrict random distribution to viable genomes
- Difficulties collecting data
- Unsurprising results, stepping stone for further research

Thank you