

Introduction to Audio Content Analysis

module 10.1: alignment — dynamic time warping

alexander lerch

introduction overview

Georgia Center for Music Tech || Technology College of Design

corresponding textbook section

section 10.1

lecture content

- Dynamic Time Warping (DTW): synchronization of two sequences with similar content
- learning objectives
 - explain the standard DTW algorithm
 - discuss disadvantages of and modifications to the standard DTW algorithm
 - implement DTW

introduction overview

Georgia Center for Music Tech Technology

corresponding textbook section

section 10.1

lecture content

- Dynamic Time Warping (DTW): synchronization of two sequences with similar content
- learning objectives
 - explain the standard DTW algorithm
 - discuss disadvantages of and modifications to the standard DTW algorithm
 - implement DTW

synchronize two sequences

- similar musical content
- different tempo and timing

$$\textit{A}(\textit{n}_{\mathrm{A}}) \quad \textit{n}_{\mathrm{A}} \in [0; \mathcal{N}_{\mathrm{A}} - 1]$$

$$\textit{B(n}_{\mathrm{B}}) \quad \textit{n}_{\mathrm{B}} \in [0; \mathcal{N}_{\mathrm{B}} - 1]$$

- minimizing pairwise distance between sequences
- covering whole sequence
- moving only forward in time

dynamic time warping overview

- dynamic programming technique
- time is warped non-linearly to match sequences
- finds optimal match between two sequences given a cost function
- the overall cost indicates the overall distance between the sequences

dynamic time warping processing steps

Georgia Center for Music Tech II Technology

- extract suitable features ⇒ two series of feature vectors
- 2 compute distance matrix $D_{AB}(n_A, n_B)$
- 3 compute alignment path $p(n_{\rm P})$ with $n_{\rm P} \in [0; \mathcal{N}_{\rm P} 1]$ \Rightarrow minimal overall distance
- 4 (align sequences using dynamic time stretching)

60

120

100

dynamic time warping distance matrix computation

■ given 2 sequences of vectors,

- lacktriangle compute distance matrix $oldsymbol{D}_{
 m AB}(n_{
 m A},n_{
 m B})$
 - example $D_{AB}(1, n_B)$ is the distance of the first vector in Seq. A to all vectors in Seq. B

compute the distance between all pairs of observations

60

Georgia Center for Music

120

100

dynamic time warping path properties 1/2

Georgia Center for Music Tech Market Technology

boundaries: covers both *A*, *B* from beginning to end

$$m{
ho}(0) = [0,0] \ m{
ho}(\mathcal{N}_{
m P}-1) = [\mathcal{N}_{
m A}-1,\mathcal{N}_{
m B}-1]$$

causality: only forward movement

$$n_{\mathrm{A}}|_{\boldsymbol{p}(n_{\mathrm{P}})} \leq n_{\mathrm{A}}|_{\boldsymbol{p}(n_{\mathrm{P}}+1)}$$
 $n_{\mathrm{B}}|_{\boldsymbol{p}(n_{\mathrm{P}})} \leq n_{\mathrm{B}}|_{\boldsymbol{p}(n_{\mathrm{P}}+1)}$

continuity: no jumps

$$n_{\rm A}\big|_{m{p}(n_{
m P}+1)} \le (n_{
m A}+1)\big|_{m{p}(n_{
m P}+1)}$$
 $n_{
m B}\big|_{m{p}(n_{
m P}+1)} \le (n_{
m B}+1)\big|_{m{p}(n_{
m P}+1)}$

dynamic time warping path properties 1/2

Georgia Center for Music Tech Market Technology

boundaries: covers both *A*, *B* from beginning to end

$$m{
ho}(0) = [0,0] \ m{
ho}(\mathcal{N}_{
m P}-1) = [\mathcal{N}_{
m A}-1,\mathcal{N}_{
m B}-1]$$

causality: only forward movement

$$n_{\mathrm{A}}|_{\boldsymbol{\rho}(n_{\mathrm{P}})} \leq n_{\mathrm{A}}|_{\boldsymbol{\rho}(n_{\mathrm{P}}+1)}$$

$$n_{\mathrm{B}}|_{\boldsymbol{\rho}(n_{\mathrm{P}})} \leq n_{\mathrm{B}}|_{\boldsymbol{\rho}(n_{\mathrm{P}}+1)}$$

continuity: no jumps

$$n_{\rm A}\big|_{m{p}(n_{
m P}+1)} \le (n_{
m A}+1)\big|_{m{p}(n_{
m P}+1)}$$
 $n_{
m B}\big|_{m{p}(n_{
m P}+1)} \le (n_{
m B}+1)\big|_{m{p}(n_{
m P}+1)}$

dynamic time warping path properties 1/2

Georgia Center for Music Tech Market Technology

boundaries: covers both A, B from beginning to end

$$m{
ho}(0) = [0,0] \ m{
ho}(\mathcal{N}_{
m P}-1) = [\mathcal{N}_{
m A}-1,\mathcal{N}_{
m B}-1]$$

causality: only forward movement

$$n_{\mathrm{A}}\big|_{\boldsymbol{\rho}(n_{\mathrm{P}})} \leq n_{\mathrm{A}}\big|_{\boldsymbol{\rho}(n_{\mathrm{P}}+1)}$$

$$n_{\mathrm{B}}\big|_{\boldsymbol{\rho}(n_{\mathrm{P}})} \leq n_{\mathrm{B}}\big|_{\boldsymbol{\rho}(n_{\mathrm{P}}+1)}$$

continuity: no jumps

$$egin{aligned} n_{\mathrm{A}}ig|_{oldsymbol{
ho}(n_{\mathrm{P}}+1)} &\leq (n_{\mathrm{A}}+1)ig|_{oldsymbol{
ho}(n_{\mathrm{P}})} \ n_{\mathrm{B}}ig|_{oldsymbol{
ho}(n_{\mathrm{P}}+1)} &\leq (n_{\mathrm{B}}+1)ig|_{oldsymbol{
ho}(n_{\mathrm{P}})} \end{aligned}$$

alignment
path properties 2/2

what is the minimum/maximum path length

alignment path properties 2/2

what is the minimum/maximum path length

$$\begin{split} \mathcal{N}_{\mathrm{P,min}} &= \mathsf{max}(\mathcal{N}_{\mathrm{A}}, \mathcal{N}_{\mathrm{B}}) \\ \mathcal{N}_{\mathrm{P,max}} &= \mathcal{N}_{\mathrm{A}} + \mathcal{N}_{\mathrm{B}} - 2 \end{split}$$

$$\mathcal{N}_{\mathrm{P.max}} = \mathcal{N}_{\mathrm{A}} + \mathcal{N}_{\mathrm{B}} - 2$$

alignment DTW: overall cost

every path has an overall cost

$$\mathfrak{C}_{\mathrm{AB}}(j) = \sum_{n_{\mathrm{P}}=0}^{\mathcal{N}_{\mathrm{P}}-1} oldsymbol{D}ig(oldsymbol{p}_{j}(n_{\mathrm{P}})ig)$$

optimal path minimizes the overall cost

$$egin{array}{lll} \mathfrak{C}_{{
m AB}, min} &=& \displaystyle \min_{orall j} \left(\mathfrak{C}_{{
m AB}}(j)
ight) \ j_{
m opt} &=& \displaystyle \operatorname{argmin} \left(\mathfrak{C}_{{
m AB}}(j)
ight) \end{array}$$

⇒ stay in the 'valleys' of distance matrix

how to determine the optimal path

alignment DTW: overall cost

every path has an overall cost

$$\mathfrak{C}_{\mathrm{AB}}(j) = \sum_{n_{\mathrm{P}}=0}^{\mathcal{N}_{\mathrm{P}}-1} oldsymbol{D}ig(oldsymbol{p}_{j}(n_{\mathrm{P}})ig)$$

optimal path minimizes the overall cost

$$egin{array}{lcl} \mathfrak{C}_{{
m AB}, {\it min}} & = & \min\limits_{orall j} \left(\mathfrak{C}_{{
m AB}}(j)
ight) \ j_{
m opt} & = & rgmin \left(\mathfrak{C}_{{
m AB}}(j)
ight) \end{array}$$

⇒ stay in the 'valleys' of distance matrix

how to determine the optimal path

alignment DTW: accumulated cost 1/2

Georgia Center for Music Tech Technology

accumulated cost: cost matrix

$$oldsymbol{C}_{ ext{AB}}(n_{ ext{A}},n_{ ext{B}}) = oldsymbol{D}_{ ext{AB}}(n_{ ext{A}},n_{ ext{B}}) + \min \left\{ egin{array}{l} oldsymbol{C}_{ ext{AB}}(n_{ ext{A}}-1,n_{ ext{B}}-1) \ oldsymbol{C}_{ ext{AB}}(n_{ ext{A}}-1,n_{ ext{B}}) \ oldsymbol{C}_{ ext{AB}}(n_{ ext{A}},n_{ ext{B}}-1) \end{array}
ight.$$

initialization

alignment DTW: accumulated cost 2/2

alignment DTW: algorithm description 1/2

■ initialization:

$$oldsymbol{\mathcal{C}}_{\mathrm{AB}}(0,0) = oldsymbol{\mathcal{D}}_{\mathrm{AB}}(0,0), oldsymbol{\mathcal{C}}_{\mathrm{AB}}(n_{\mathrm{A}},-1) = \infty, oldsymbol{\mathcal{C}}_{\mathrm{AB}}(-1,n_{\mathrm{B}}) = \infty$$

recursion:

$$C_{AB}(n_{A}, n_{B}) = D_{AB}(n_{A}, n_{B}) + \min \left\{ egin{array}{l} C_{AB}(n_{A} - 1, n_{B} - 1) \\ C_{AB}(n_{A} - 1, n_{B}) \\ C_{AB}(n_{A}, n_{B} - 1) \end{array}
ight.$$
 $j = \operatorname{argmin} \left\{ egin{array}{l} C_{AB}(n_{A} - 1, n_{B} - 1) \\ C_{AB}(n_{A} - 1, n_{B}) \\ C_{AB}(n_{A}, n_{B} - 1) \end{array}
ight.$
 $C_{AB}(n_{A}, n_{B} - 1) = \left\{ egin{array}{l} [-1, -1] & \text{if } j = 0 \\ [-1, 0] & \text{if } j = 1 \\ [0, -1] & \text{if } j = 2 \end{array}
ight.$

initialization:

$$oldsymbol{\mathcal{C}}_{\mathrm{AB}}(0,0) = oldsymbol{\mathcal{D}}_{\mathrm{AB}}(0,0), oldsymbol{\mathcal{C}}_{\mathrm{AB}}(n_{\mathrm{A}},-1) = \infty, oldsymbol{\mathcal{C}}_{\mathrm{AB}}(-1,n_{\mathrm{B}}) = \infty$$

recursion:

alignment DTW: algorithm description 2/2

■ termination:

$$n_{
m A}=\mathcal{N}_{
m A}-1\wedge n_{
m B}=\mathcal{N}_{
m B}-1$$

path backtracking:

$$p(n_{\rm P}) = p(n_{\rm P}+1) + \Delta p(p(n_{\rm P}+1)), \ n_{\rm P} = \mathcal{N}_{\rm P} - 2, \mathcal{N}_{\rm P} - 3, \dots, 0$$

alignment DTW: algorithm description 2/2

■ termination:

$$n_{
m A}=\mathcal{N}_{
m A}-1\wedge n_{
m B}=\mathcal{N}_{
m B}-1$$

path backtracking:

$$p(n_{\rm P}) = p(n_{\rm P}+1) + \Delta p(p(n_{\rm P}+1)), \ n_{\rm P} = \mathcal{N}_{\rm P} - 2, \mathcal{N}_{\rm P} - 3, \dots, 0$$

erview intro DTW distance path cost **example** variants summar 0 0 0 0 0 0

dynamic time warping DTW: example

Georgia Center for Music Tech (Technology

dynamic time warping example

$$A = [1, 2, 3, 0],$$

 $B = [1, 0, 2, 3, 1],$

dynamic time warping example

$$A = [1, 2, 3, 0],$$

 $B = [1, 0, 2, 3, 1],$

$$m{D}_{\mathrm{AB}} = \left[egin{array}{cccc} 0 & 1 & 2 & 1 \ 1 & 2 & 3 & 0 \ 1 & 0 & 1 & 2 \ 2 & 1 & 0 & 3 \ 0 & 1 & 2 & 1 \ \end{array}
ight]$$

dynamic time warping example

$$A = [1, 2, 3, 0],$$

 $B = [1, 0, 2, 3, 1],$

$$m{D}_{\mathrm{AB}} = \left[egin{array}{cccc} 0 & 1 & 2 & 1 \ 1 & 2 & 3 & 0 \ 1 & 0 & 1 & 2 \ 2 & 1 & 0 & 3 \ 0 & 1 & 2 & 1 \end{array}
ight]$$

$$m{D}_{\mathrm{AB}} = \left[egin{array}{cccc} 0 & 1 & 2 & 1 \ 1 & 2 & 3 & 0 \ 1 & 0 & 1 & 2 \ 2 & 1 & 0 & 3 \ 0 & 1 & 2 & 1 \end{array}
ight] \qquad m{C}_{\mathrm{AB}} = \left[egin{array}{ccccc} 0 & \leftarrow 1 & \leftarrow 3 & \leftarrow 4 \ \uparrow 1 & \nwarrow 2 & \nwarrow 4 & \nwarrow 3 \ \uparrow 2 & \nwarrow 1 & \leftarrow 2 & \leftarrow 4 \ \uparrow 4 & \uparrow 2 & \nwarrow 1 & \leftarrow 4 \ \uparrow 4 & \uparrow 3 & \uparrow 3 & \nwarrow 2 \end{array}
ight]$$

dynamic time warping example

$$A = [1, 2, 3, 0],$$

 $B = [1, 0, 2, 3, 1],$

$$\mathbf{D}_{AB} = \begin{bmatrix} 0 & 1 & 2 & 1 \\ 1 & 2 & 3 & 0 \\ 1 & 0 & 1 & 2 \\ 2 & 1 & 0 & 3 \\ 0 & 1 & 2 & 1 \end{bmatrix}$$

$$\mathbf{D}_{AB} = \begin{bmatrix} 0 & 1 & 2 & 1 \\ 1 & 2 & 3 & 0 \\ 1 & 0 & 1 & 2 \\ 2 & 1 & 0 & 3 \\ 0 & 1 & 2 & 1 \end{bmatrix} \qquad \mathbf{C}_{AB} = \begin{bmatrix} 0 & \leftarrow 1 & \leftarrow 3 & \leftarrow 4 \\ \uparrow 1 & \nwarrow 2 & \nwarrow 4 & \nwarrow 3 \\ \uparrow 2 & \nwarrow 1 & \leftarrow 2 & \leftarrow 4 \\ \uparrow 4 & \uparrow 2 & \nwarrow 1 & \leftarrow 4 \\ \uparrow 4 & \uparrow 3 & \uparrow 3 & \nwarrow 2 \end{bmatrix}$$

dynamic time warping variants

transition weights: favor specific path directions

$$oldsymbol{\mathcal{C}}_{\mathrm{AB}}(n_{\mathrm{A}},n_{\mathrm{B}}) = \min \left\{ egin{array}{lll} oldsymbol{\mathcal{C}}_{\mathrm{AB}}(n_{\mathrm{A}}-1,n_{\mathrm{B}}-1) & + & \lambda_{\mathrm{d}} \cdot oldsymbol{\mathcal{D}}_{\mathrm{AB}}(n_{\mathrm{A}},n_{\mathrm{B}}) \ oldsymbol{\mathcal{C}}_{\mathrm{AB}}(n_{\mathrm{A}}-1,n_{\mathrm{B}}) & + & \lambda_{\mathrm{v}} \cdot oldsymbol{\mathcal{D}}_{\mathrm{AB}}(n_{\mathrm{A}},n_{\mathrm{B}}) \ oldsymbol{\mathcal{C}}_{\mathrm{AB}}(n_{\mathrm{A}},n_{\mathrm{B}}-1) & + & \lambda_{\mathrm{h}} \cdot oldsymbol{\mathcal{D}}_{\mathrm{AB}}(n_{\mathrm{A}},n_{\mathrm{B}}) \end{array}
ight.$$

step types

dynamic time warping variants

transition weights: favor specific path directions

$$m{C}_{
m AB}(n_{
m A}, n_{
m B}) = \min \left\{ egin{array}{lll} m{C}_{
m AB}(n_{
m A} - 1, n_{
m B} - 1) & + & \lambda_{
m d} \cdot m{D}_{
m AB}(n_{
m A}, n_{
m B}) \\ m{C}_{
m AB}(n_{
m A} - 1, n_{
m B}) & + & \lambda_{
m v} \cdot m{D}_{
m AB}(n_{
m A}, n_{
m B}) \\ m{C}_{
m AB}(n_{
m A}, n_{
m B} - 1) & + & \lambda_{
m h} \cdot m{D}_{
m AB}(n_{
m A}, n_{
m B}) \end{array}
ight.$$

step types

- **challenge**: distance matrix dimensions $\mathcal{N}_A \cdot \mathcal{N}_B$
- ⇒ DTW *inefficient* for long sequences
 - high memory requirements
 - large number of operations

- maximum time and tempo deviation
- 2 sliding window
- 3 multi-scale DTW (severa downsampled iterations)

- **challenge**: distance matrix dimensions $\mathcal{N}_A \cdot \mathcal{N}_B$
- ⇒ DTW *inefficient* for long sequences
 - high memory requirements
 - large number of operations

- maximum time and tempo deviation
- 2 sliding window
- multi-scale DTW (severa downsampled iterations)

- **challenge**: distance matrix dimensions $\mathcal{N}_A \cdot \mathcal{N}_B$
- ⇒ DTW *inefficient* for long sequences
 - high memory requirements
 - large number of operations

- maximum time and tempo deviation
- 2 sliding window
- multi-scale DTW (severa downsampled iterations)

¹S. Dixon and G. Widmer, "MATCH: A Music Alignment Tool Chest," in *Proceedings of the 6th International Conference on Music Information Retrieval (ISMIR)*, London, Sep. 2005.

- **challenge**: distance matrix dimensions $\mathcal{N}_A \cdot \mathcal{N}_B$
- ⇒ DTW *inefficient* for long sequences
 - high memory requirements
 - large number of operations

- maximum time and tempo deviation
- 2 sliding window
- 3 multi-scale DTW (several downsampled iterations)

¹M. Müller, H. Mattes, and F. Kurth, "An Efficient Multiscale Approach to Audio Synchronization," in *Proceedings of the International Society for Music Information Retrieval Conference (ISMIR)*, Victoria, 2006.

dynamic time warping DTW vs. Viterbi

Georgia Center for Music Tech Market Technology

similarities and differences of DTW and the Viterbi algorithm

dynamic time warping DTW vs. Viterbi

similarities and differences of DTW and the Viterbi algorithm

commonalities

- find path through matrix
- maximizes overall probability/minimizes overall cost
- based on dynamic programming principles

differences

- DTW has more constraints: start/end in corner, move only to neighbor
- DTW is not usually parametrized by training data (transition probs, construction of distance/emission prob matrix)
- Viterbi path length is predefined, DTW path length is not

summary lecture content

- dynamic time warping
 - find globally optimal alignment path between two sequences
- processing steps
 - 1 compute distance matrix
 - 2 compute cost matrix
 - 3 back-track path

