Método de Krylov y Método de Potencias

PROFESOR:
GERARDO FLORES DELGADO

INTEGRANTES:

MURRIETA VILLEGAS ALFONSO REZA CHAVARRIA SERGIO GABRIEL VALDESPINO MENDIETA JOAQUIN

Valores Característicos

Sea V un espacio vectorial de dimensión finita definido sobre un campo K y sea

 $T: V \rightarrow V$ un operador lineal para el cual:

$$\mathsf{T}(\bar{v}) = \lambda \bar{v} \qquad \qquad ; \ \forall \, \bar{v} \in V \ con \ \ \overline{v} \neq \overline{0} \\ \forall \, \lambda \in K$$

- Al escalar λ se le llama valor característico de T
- Al vector v diferente de 0 se le conoce como vector característico de T correspondiente al valor λ

MÉTODO DE KRYLOV

Método de Krylov

Este método se fundamenta en la aplicación del *Teorema de Cayley-Hamilton*, mismo que establece que toda matriz A verifica su ecuación característica:

$$F(A) = 0$$

$$A - \lambda I = \begin{bmatrix} -1 & 1 \\ 3 & 2 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 - \lambda & 1 \\ 3 & 2 - \lambda \end{bmatrix}$$

$$A - \lambda I = (-1 - \lambda)(2 - \lambda) - 3 = -2 - 2\lambda + \lambda + \lambda^2 - 3 = \boxed{\lambda^2 - \lambda - 5}$$

$$P(A) = \boxed{A^2 - A - 5I = 0}$$

Método de Krylov

Polinomio obtenido de la Ecuación característica.

$$\lambda^{n} + b_{1}\lambda^{n-1} + b_{2}\lambda^{n-2} + \dots + b_{n-1}\lambda + b_{n} = 0$$

La matriz A es de orden n, por lo cual la sustitución arrojará un sistema de n ecuaciones lineales; en consecuencia, el coeficiente a_0 deberá ser diferente de cero.

$$F(A) = A^{n} + b_1 A^{n-1} + b_2 A^{n-2} + \dots + b_{n-1} A + b_n I = 0$$

Una forma sencilla de realizar este procedimiento es simplificar la elevación de la matriz A a las potencias necesarias. Esto se logra multiplicando la matriz A por un vector v y compatible diferente de cero.

$$y = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

$$A^{n}\bar{y} + b_{1}A^{n-1}\bar{y} + b_{2}A^{n-2}\bar{y} + \dots + b_{n-1}A\bar{y} + b_{n}\bar{y}I = 0$$

Ejemplo:

$$A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 0 & 1 \\ -2 & 3 & -1 \end{bmatrix}$$

$$y = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

$$\lambda^3 + b_1 \lambda^2 + b_2 \lambda + b_3 = 0$$

$$A^{3}\bar{y} + b_{1} A^{2} \bar{y} + b_{2}A\bar{y} + b_{3} \bar{y} = 0$$

$$Ay = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 0 & 1 \\ -2 & 3 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ -2 \end{bmatrix}$$

$$A^{2}y = AAy = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 0 & 1 \\ -2 & 3 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ -2 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ 6 \end{bmatrix}$$

$$A^{3}y = A^{2}Ay = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 0 & 1 \\ -2 & 3 & -1 \end{bmatrix} \begin{bmatrix} -1 \\ 0 \\ 6 \end{bmatrix} = \begin{bmatrix} -1 \\ 4 \\ -4 \end{bmatrix}$$

Sustituyendo:

$$\begin{bmatrix} -1 \\ 4 \\ -4 \end{bmatrix} + \begin{bmatrix} -1 \\ 0 \\ 6 \end{bmatrix} * b_1 + \begin{bmatrix} 1 \\ 2 \\ -2 \end{bmatrix} * b_2 + * \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} b_3 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$-b_1 + b_2 + b_3 = 1$$

=-4
 $6b_1 - 2b_2 = 4$

$$b_1 = 0$$
 $b_2 = -2$
 $b_3 = 3$

Ecuación característica:

$$\lambda^{3}$$
-2 λ +3=0

MÉTODO DE POTENCIA

Método de Potencias

El método de las potencias ofrece una opción para obtener el mayor y el menor valor característico de la matriz A de orden nxn sin la necesidad de disponer de la ecuación característica

Mayor valor característico

- El método propone utilizar un vector inicial X(0)≠
 0 compatible y multiplicarlo por la matriz A.
- El resultado será un nuevo vector X(1)el cual será normalizado utilizando su elemento mayor.
- El *proceso se repetirá* hasta que la diferencia entre dos aproximaciones cumpla con una tolerancia preestablecida.

$$A\bar{X} - \lambda\bar{X} = 0$$

$$A\bar{X} = \lambda \bar{X}$$

Menor valor característico

Para la obtención del menor valor se premultiplicará la matriz inversa y que el factor de normalización representa al recíproco del menor valor característico de la matriz A.

$$A^{-1}A\bar{X} = A^{-1}\lambda\bar{X}$$

$$\bar{X} = A^{-1}\lambda \bar{X}$$

$$\frac{1}{\lambda}\bar{X} = A^{-1}\bar{X}$$

$$A^{-1}\bar{X}_{(k)} = \frac{1}{\lambda_{(k+1)}}\bar{X}_{(k+1)}$$

Ejemplo – Mayor valor característico:

$$A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$$

$$\mathsf{X}_{(0)} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

$$A \cdot X_{(0)} = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$$

$$\lambda_0 = 2$$

$$\mathbf{X}_{(1)} = \begin{bmatrix} 1\\0.5\\0.5 \end{bmatrix}$$

Ejemplo – Mayor valor característico:

$$A \cdot X_{(1)} = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0.5 \\ 0.5 \end{bmatrix} = \begin{bmatrix} 3.5 \\ 3 \\ 3 \end{bmatrix} \qquad \lambda_1 = 3.5 \qquad X_{(1)} = \begin{bmatrix} 1 \\ 0.8571 \\ 0.8571 \end{bmatrix}$$

• Cálculo del error absoluto: $\lambda_1 - \lambda_0 = 1.5$

	X_0		X_1		X_2		X_3		X_4
	1,00000	2,00000	1,00000	3,50000	1,00000	4,57143	1,00000	4,90625	1,00000
	0,00000	1,00000	0,50000	3,00000	0,85714	4,42857	0,96875	4,87500	0,99363
	0,00000	1,00000	0,50000	3,00000	0,85714	4,42857	0,96875	4,87500	0,99363
$\lambda_{(k)}$		2,00000		3,50000		4,57143		4,90625	
Tol				1,50000		1,07143		0,33482	

Cuadro 2 Iteraciones 4 a 8

	X_4		X_5		X_6		X_7		X_8
	1,00000	4,98089	1,00000	4,99616	1,00000	4,99923	1,00000	4,99985	1,00000
	0,99363	4,97452	0,99872	4,99488	0,99974	4,99898	0,99995	4,99980	0,99999
	0,99363	4,97452	0,99872	4,99488	0,99974	4,99898	0,99995	4,99980	0,99999
$\lambda_{(k)}$		4,98089		4,99616		4,99923		4,99985	
Tol		0,07464		0,01527		0,00307		0,00061	
		-				•		•	

Cuadro 3 Iteraciones 4 a 8

	X_8		X_9
	1,00000	4,99997	1,00000
	0,99999	4,99996	1,00000
	0,99999	4,99996	1,00000
$\lambda_{(k)}$		4,99997	
$rac{\lambda_{(k)}}{ ext{Tol}}$		0,00012	
		-	

Con una tolerancia de 0.00012

$$\lambda = 4.99997 \approx 5$$

$$X = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

EJERCICIO DE CLASE – Menor valor característico:

$$A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix} \qquad A^{-1} = \begin{bmatrix} 0.8 & -0.4 & -0.2 \\ -0.2 & 0.6 & -0.2 \\ -0.2 & -0.4 & 8.8 \end{bmatrix} \qquad \mathsf{X}_{(0)} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

Tolerancia: ...

EJERCICIO DE CLASE – Menor valor característico:

	X_0		X_1		X_2		X_3		X_4	
	1,00000	0,80000	1,00000	0,95000	1,00000	0,98947	1,00000	0,99787	1,00000	
	0,00000	-0,20000	-0,25000	-0,30000	-0,31579	-0,32632	-0,32979	-0,33191	-0,33262	
	0,00000	-0,20000	-0,25000	-0,30000	-0,31579	-0,32632	-0,32979	-0,33191	0,33262	
$\frac{1}{\lambda_{(k)}}$		0,80000		0,95000		0,98947		0,99787		
Tol				$0,\!15000$		0,03947		0,00840		

	X_4		X_5		X_6		X_7
1,	00000	0,99957	1,00000	0,99991	1,00000	0,99998	1,00000
-0,	33262	-0,33305	-0,33319	-0,33328	-0,33330	-0,33332	-0,33333
-0,	33262	-0,33305	-0,33319	-0,33328	-0,33330	-0,33332	-0,33333
$\frac{1}{\lambda_{(k)}}$		0,99957		0,99991		0,99998	
Tol		0,00170		0,00034		0,00007	

$$\left| \frac{1}{\lambda_1} - \frac{1}{\lambda_0} \right| = |0,95 - 0,8| = 0,15$$

Con una tolerancia de 0.00007

$$\frac{1}{\lambda} = 0.99998$$
; $\lambda = \frac{1}{0.99998}$; $\lambda = 1.00002 \approx 1$

$$X = \begin{bmatrix} 1 \\ -\frac{1}{3} \\ -\frac{1}{3} \end{bmatrix}$$

Conclusiones

El método de Potencias, junto con el Método de Krilov, permite obtener, a través de recursos de computo, los resultados característicos de matrices.

Es necesario cumplir con los requisitos específicos del álgebra matricial.

Referencia

- 1. Douglas Burden, Richard. Faires. Análisis Numérico. 2002.
- 2. Curtis F. Gerald. Análisis numérico. Segunda edición, 1991.
- 3. Burden Richard. Faires Douglas. Análisis Numérico. Madrid 2002.
- 4. Transformaciones Lineales. Valores y Vectores Característicos. Barrera del Rayo Francisco. México 2018.