DTE 2 125

Combining Finite Element Methods and Neural Networks to Solve Elliptic Problems on 2D Geometries

Hélène Barucq², Michel Duprez¹, Florian Faucher², Emmanuel Franck³, **Frédérique Lecourtier**¹, Vanessa Lleras^{1,4}, Victor Michel-Dansac³ and Nicolas Victorion²

> ¹Project-Team MIMESIS, Inria, Strasbourg, France ²Project-Team Makutu, Inria, TotalEnergies, Pau, France ³Project-Team MACARON, Inria, Strasbourg, France ⁴IMAG, University of Montpellier, Montpellier, France

February 20, 2025

Introduction

Scientific context

Context: Create real-time digital twins of an organ (e.g. liver).

Objective : Develop an hybrid finite element / neural network method.

Parametric linear elliptic PDE : For one or several $\mu \in \mathcal{M}$, find $u : \Omega \to \mathbb{R}$ such that

$$\mathcal{L}(u; \mathbf{x}, \boldsymbol{\mu}) = f(\mathbf{x}, \boldsymbol{\mu}),$$

where ${\cal L}$ is the parametric differential operator defined by

$$\mathcal{L}(\cdot; \mathbf{x}, \boldsymbol{\mu}) : u \mapsto \mathit{R}(\mathbf{x}, \boldsymbol{\mu})u + \mathit{C}(\boldsymbol{\mu}) \cdot \nabla u - \frac{1}{\mathsf{Pe}} \nabla \cdot (\mathit{D}(\mathbf{x}, \boldsymbol{\mu}) \nabla u).$$

Ω d	Spatial domain Spatial dimension	f	Right-hand side
$\mathbf{x} = (x_1, \ldots, x_d)$	Spatial coordinates	R	Reaction coefficient
\mathcal{M}	Parameter space	D	Convection coefficient Diffusion matrix
$oldsymbol{\mu} = (\mu_1, \dots, \mu_{\scriptscriptstyle \mathcal{D}})$	Number of parameters Parameter vector	Pe	Péclet number

Pipeline of the Enriched FEM

Physics-Informed Neural Networks

Finite Element Method

How improve PINN prediction with FEM?

Additive approach

Theorerical results

Numerical results - 2D Poisson problem

2D Poisson problem

Numerical results - 2D anysotropic Elliptic problem

2D anysotropic Elliptic problem

Conclusion

Conclusion

References

Clémot and Digne. Neural skeleton: Implicit neural representation away from the surface. Computers and Graphics, 2023.

- Cotin, Duprez, Lleras, Lozinski, and Vuillemot. ϕ -fem: an efficient simulation tool using simple meshes for problems in structure mechanics and heat transfer. 2021.
- Duprez and Lozinski. ϕ -fem: A Finite Element Method on Domains Defined by Level-Sets. SIAM Journal on Numerical Analysis, 2020.
- Duprez, Lleras, and Lozinski. A new ϕ -fem approach for problems with natural boundary conditions, 2020.
- Duprez, Lleras, and Lozinski. ϕ -fem: an optimally convergent and easily implementable immersed boundary method for particulate flows and Stokes equations. *ESAIM*: *Mathematical Modelling and Numerical Analysis*, 2023.
- Raissi, Perdikaris, and Karniadakis. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. *Journal of Computational Physics*, 2019.
- Sukumar and Srivastava. Exact imposition of boundary conditions with distance functions in physics-informed deep neural networks. Computer Methods in Applied Mechanics and Engineering, 2022.
- **Lecourtier**, Victorion, Barucq, Duprez, Faucher, Franck, Lleras, and Michel-Dansac. Enhanced finite element methods using neural networks. in progress.

Appendix

bm

Inria_ MIMESIS

Appendix

Appendix 1: Standard FEM

Appendix 1: General Idea

