MICROELETRÔNICA LISTA DE EXERCÍCIOS – UNIDADE 1

Fernando Gehm Moraes 20/ABRIL/2023

1) Explicar na tabela abaixo a influência dos principais parâmetros do transistor MOS na corrente I_{ds} (corrente dreno-source).

Parâmetro	Ação para <u>aumentar</u> o I _{ds} (duas respostas possíveis: aumentar ou diminuir)	Explicar a razão
W		
L		
Mobilidade		
Espessura óxido		

2) A figura abaixo ilustra a curva DC do inversor, para o caso que o dimensionamento Wp/Wn é equivalente ao fator de mobilidade $\mu n/\mu p$ (Wp/Wn = $\mu n/\mu p$).

V(out)

Ponto	NMOS	PMOS
1		
2		
3		
4		
5		

Pede-se:

- a) Qual o estado dos transistores N e P para cada um dos 5 pontos da curva, completando a tabela acima com as letras: C, L, S(cortado, linear (ou resistivo), saturado).
- b) Como ficaria esta curva DC no caso do dimensionamento Wp/Wn <μn/μp? Justifique, desenhando a nova curva no mesmo gráfico acima.
- 3) Explique por que em células CMOS estáticas deve haver dualidade nas conexões (série em uma plano e paralelo no outro plano). Mostrar através de exemplos os problemas que podem ocorrer.
- 4) Oscilador em anel. Considere um oscilador em anel de 7 estágios, tendo o inversor tr=2,6 / e tf=1,4 ns. Determine t1, t2, período e frequência.

5) A figura abaixo ilustra um oscilador em anel.

Pede-se:

- (a) Dado que tr=1.0 ns (tempo de propagação de subida de um inversor) e tf=0.5 ns (tempo de propagação de descida de um inversor), qual o período (unidade: ns) e a frequência (unidade: MHz) resultante no nodo S?
- (b) A figura abaixo ilustra a saída do oscilador. Determine os tempos tA, tB, tC, tD, mostrando como eles foram obtidos. Como os tempos de subida e descida são diferentes, o dutty cycle não é 50%.

6) Considere um oscilador em anel de 5 estágios, tendo o inversor **tr=3,5 ns** (tempo de propagação de subida de um inversor) e **tf=4,5ns** (tempo de propagação de descida de um inversor).

Pede-se:

- a) Determine os tempos t1 e t2 (em ns) explique o procedimento para obter os valores?
- b) Em função de t1 e t2, determine T e diga qual a frequência de oscilação (em MHz).

7) Portas NAND/NOR

- a. Considerar uma porta NAND com tamanho de transistores constantes. Trace em um mesmo gráfico os tempos de subida e descida em função do número de entradas (no eixo y o atraso da porta e no eixo x número de entradas da porta), supondo a variação de apenas uma entrada. Explique o comportamento apresentado.
- b. Repita o item anterior para a porta NOR, também com tamanho de transistores constantes.
- c. Explique o impacto da posição da entrada da porta lógica no atraso da mesma.
- 8) O gráfico abaixo apresenta no **eixo y** o **atraso** da porta lógica, e no **eixo x** o **número de entradas** variando de 2 a 6.
 - a) A qual porta lógica corresponde o gráfico?
 Fazer um diagrama de transistores para 4
 entradas
 - b) Explique o porquê do aumento do tempo de propagação de descida, e o motivo do tempo de subida ser praticante constante.

PORTAS LÓGICAS COMPLEXAS

9) Devido à limitação do número de transistores em série, portas lógicas com mais de 4 transistores não são utilizadas, devido ao aumento da tensão de *threshold*. Considere a porta lógica abaixo, uma *nor* de 5 entradas.

Utilizando os teoremas de De Morgan, descritos abaixo, desenhe um circuito lógico equivalente, utilizando portas *nands, nors* e inversor, com no máximo 3 entradas.

$$not (P \ and \ Q) = (not \ P) \ or \ (not \ Q)$$

 $not (P \ or \ Q) = (not \ P) \ and \ (not \ Q)$

- 10) Implemente a seguinte função: Y = (A+B)C + BD + ACD + AC + BCD + AD com no máximo 10 transistores. Logicamente, deve-se minimizar esta equação, e depois implementá-la via portas complexas. Faça os diagramas lógicos e elétrico da função minimizada. Dica: determine a função Y minimizada (será a porta complexa) e acrescente um inversor na saída.
- 11) Considere a circuito abaixo, composto de uma porta lógica *nand* e uma porta complexa:

d) Diagrama de *stick* do circuito. Para o diagrama *stick* utilize o layout abaixo para ponto de partida. Não há necessidade de quebras nas linhas de difusão para este exemplo.

12) Considere os diagramas stick abaixo:

Para cada um deles determinar:

- a. Número de transistores total, número de transistores N, número de transistores P
- b. Diagrama de transistores
- c. Diagrama lógico
- d. Qual o número máximo de transistores há em série no plano N (conjunto de transistores N) e no plano P?
- e. Se esta mesma função fosse implementada com portas simples (*nand, nor, inversor*) quantos transistores seriam necessários? Justifique.
- 13) Considere o layout abaixo, com apenas os transistores P roteados.

- a) Determine o diagrama de transistores P do layout ao lado, e usando o princípio da dualidade de conexões série/paralelo determine o diagrama de transistores N.
- b) Complete o layout para o plano N.
- c) Qual é a função lógica desta porta complexa (na forma de uma equação lógica)?
- d) Número total de transistores, número máximo de transistores em série no plano N e número máximo de transistores em série no plano P.
- e) Quantos transistores seriam necessários para implementar esta porta lógica complexa, utilizando apenas portas lógicas NAND-NOR-INV. Justifique a resposta apresentando o diagrama lógica de ambas implementações (porta complexa e portas simples).
- 14) Considere a seguinte equação lógica: $F = ((a.b + c.d) \cdot (e.f + g.(h + i)))$. Pede-se:
 - a. Diagrama lógico
 - b. Diagrama de transistores
 - c. Número de transistores
 - d. Quantos transistores há em série no plano N (conjunto de transistores N) e no plano P?
 - e. Se esta mesma função fosse implementada com portas simples (nand, nor, inversor) quantos transistores seriam necessários? Qual seria a profundidade lógica desta implementação sem portas complexas? Desenhe o circuito lógico equivalente.
- 15) A figura abaixo representa o layout de uma porta complexa.

Pede-se:

- a) Identifique no layout acima em um transistor qualquer os parâmetros W e o L.
- b) Desenhe o diagrama de transistores (N e P) desta porta lógica
- c) Qual é a função lógica desta porta? (no formato $F = \overline{((a.b + c.d).(e.f + g.(h + i)))}$)

16) Considere o netlist spice abaixo, o qual representa uma porta lógica CMOS complexa, dual:

MN1	out	e1	3	gnd	NMOS	L=0.8U	W=8U	AD=17.6F	AS=17.6P	PD=20.4U	PS=20.4U
MN2	out	e2	3	gnd	NMOS	L=0.8U	W=8U	AD=17.6F	AS=17.6P	PD=20.4U	PS=20.4U
MN3	out	e3	3	gnd	NMOS	L=0.8U	W=8U	AD=17.6F	AS=17.6P	PD=20.4U	PS=20.4U
MN4	3	e4	4	gnd	NMOS	L=0.8U	W=8U	AD=17.6P	AS=17.6P	PD=20.4U	PS=20.4U
MN5	3	e5	4	gnd	NMOS	L=0.8U	W=8U	AD=17.6P	AS=17.6P	PD=20.4U	PS=20.4U
MN6	3	e6	4	gnd	NMOS	L=0.8U	W=8U	AD=17.6F	AS=17.6P	PD=20.4U	PS=20.4U
MN7	4	e7	gnd	gnd	NMOS	L=0.8U	W=8U	AD=17.6F	AS=17.6P	PD=20.4U	PS=20.4U
MN8	out	e8	gnd	gnd	NMOS	L=0.8U	W=8U	AD=17.6F	AS=17.6P	PD=20.4U	PS=20.4U
MP9	out	e1	5	vcc	PMOS	L=0.8U	W=8U	AD=17.6F	AS=17.6P	PD=20.4U	PS=20.4U
MP10	5	e2	6	vcc	PMOS	L=0.8U	W=8U	AD=17.6F	AS=17.6P	PD=20.4U	PS=20.4U
MP11	6	e3	9	vcc	PMOS	L=0.8U	W=8U	AD=17.6F	AS=17.6P	PD=20.4U	PS=20.4U
MP12	out	e4	7	vcc	PMOS	L=0.8U	W=8U	AD=17.6F	AS=17.6P	PD=20.4U	PS=20.4U
MP13	7	e5	8	vcc	PMOS	L=0.8U	W=8U	AD=17.6F	AS=17.6P	PD=20.4U	PS=20.4U
MP14	8	e6	9	vcc	PMOS	L=0.8U	W=8U	AD=17.6F	AS=17.6P	PD=20.4U	PS=20.4U
MP15	out	e7	9	vcc	PMOS	L=0.8U	W=8U	AD=17.6F	AS=17.6P	PD=20.4U	PS=20.4U
MP16	9	e8	vcc	vcc	PMOS	L=0.8U	W=8U	AD=17.6F	AS=17.6P	PD=20.4U	PS=20.4U

Pede-se:

- a) Diagrama de transistores (compreensível)
- b) Diagrama lógico
- c) Número de transistores total, número máximo de transistores em série no plano N, e número máximo de transistores em série no plano P.
- d) Complete o *layout* desta porta lógica, sobre o modelo apresentado na figura abaixo (esta célula tem garantidamente caminho dual em ambos os planos), diferenciando os níveis de metal. **Não** alterar a ordem dos transistores.
- e) Se esta mesma função fosse implementada com portas simples (*nand, nor, inversor*) quantos transistores seriam necessários? Justifique.

17) Considere o layout abaixo:

- a. Determine o diagrama de transistores desta porta lógica (fazer desenho compreensível)
- b. Para o vetor de entrada ABCDE = {11011} determine o valor lógico da saída.
- c. Esta porta lógica está corretamente projetada? Tanto em caso afirmativo como negativo, justificar a resposta

- 18) Considere a porta complexa ao lado.
 - a. Qual o valor observado na saída quando A='1', B='0', C='0', D='0', E='1', F='0'? Esta porta está corretamente projetada? Em caso negativo, explique o motivo.
 - b. Caso esta porta esteja mal projetada, considere que o plano P represente a função desejada pelo projetista. Como ficaria o diagrama elétrico do plano N?
- 19) Considere as equações lógicas abaixo:

Pede-se para cada função ao lado:

- a) Diagrama lógico.
- b) Diagrama de transistores.
- c) Layout (stick) de cada função.
- d) Número de transistores total, número de transistores no plano N/P, número de transistores em série em cada plano.

$$F_{1} = \overline{(a.b+c+d)}$$
de $F_{2} = \overline{(a+b).(c.d.e+.f)}$

$$F_{3} = \overline{(a.b)+(c.(d+(e.f)))}$$
ada $F_{4} = \overline{a.(b+(c.d)+(e.f))}$

$$F_{5} = \overline{(((a+b).c.)+(d.e.f)).g}$$

Utilizar o template abaixo para o diagrama stick:

Solução de F1: $F_1 = \overline{(a.b+c+d)}$

20) Outras funções de portas complexas que podem ser utilizadas como exercícios:

Função
F = not ((a+b)*(c*d*e+f*g*(h+i)))
F = not ((a+b)*(c+d+e*(f*g+h*i)))
F = not ((a+b*c*(d+e))*(f+g+h+i))
F = not ((a*b+c*d)*(e*f+g*(h+i)))
F = not ((a*(b+c)+d*e*f)*(g+h+i))
F = not ((a+b+c*d)*(e+f+g*(h+i)))
F = not ((a+b+c*(d+e))*(f+g+h+i))
F = not ((a+b+c+d)*(e+f+g+h*i))
F = not (a*b*(c+(d+e+f)*(g+h+i)))
F = not (a*b*(c+d*e+f*g+h*i))

DIMENSIONAMENTO DE PORTAS LÓGICAS

- 21) Considere a rede multi-estágio abaixo. Ao invés de definirmos as capacitâncias por "C", define-se pela capacitância equivalente em x microns de gate. Pede-se:
 - a) Atraso mínimo no caminho (em unidades adimensionais de atraso)
 - b) Dimensionamento para atraso mínimo do inversor, nand e nor
 - c) Contribuição do atraso em cada porta, e verifique se o somatório dos atrasos confere com o atraso mínimo no caminho.

22) Dimensione o seguinte circuito (valores de a, b, e c) para obter o menor tempo de propagação da entrada para saída.

- 23) Considere que o caminho mais longo em um dado circuito compreenda 8 portas lógicas. O caminho crítico compreende 8 portas nand-4, todas com fan-out 3. Determine o atraso d (adimensional) desta seqüência de portas. Atenção: o fator de branch compreende o produtório de 7 saídas e a relação de carga será igual a 3.
- 24) Considere 2 formas distintas de se implementar uma porta AND-2, com uma relação de carga de 6 entre a entrada e a saída. Determine o "esforço do caminho" para ambas as configurações. Qual das duas configurações é mais rápida? Calcule o tamanho relativo *x* e *y* das portas lógicas para que se obtenha o atraso mínimo.

25) Considere o caminho lógico abaixo, entre a porta A com entrada igual a **20** unidades de W, e saída conectada a uma carga equivalente a **200** unidades de W. As portas lógicas {A,B,C,D} já estão dimensionadas, com tamanho de {**20**, **30**, **30**, **60**}.

Pede-se:

- a) Determine o atraso mínimo do caminho.
- b) Qual o dimensionamento de cada porta lógica considerando o atraso mínimo?
- c) Determine o dimensionamento do inversor E para que o atraso seja igual a 22 unidades de atraso.
- 26) Considere a rede multi-estágio abaixo, onde as capacitâncias estão definidas por x microns de gates (g_inv=1, g_nand2=4/3, g_nand3=5/3, g_nor4=9/3).

Neste exercício específico, todas as portas lógicas estão dimensionadas, exceto o inversor de saída. Supondo que o projetista determinou que o atraso neste caminho devesse ser **28** unidades de atraso de propagação, determine o dimensionamento do inversor e. (lembrando: a fórmula de báscara é $(-b + - sqrt(b^2-4ac))/2a$.

Dica: não usar a equação de atraso mínimo f. Montar equações de atraso para cada gate utilizando a equação d=g*h+p. Assim teremos $d_A+d_B+d_C+d_D+d_E=28$, resultando em uma equação de segundo grau.

Havendo duas soluções possíveis, qual seria a adotada? Por quê?

	Dimensionamento (microns)	Atraso da porta
Α	10	<determinar></determinar>
В	30	<determinar></determinar>
С	30	<determinar></determinar>
D	45	<determinar></determinar>
E	<determinar></determinar>	<determinar></determinar>
	Atraso total:	28

Qual seria o atraso mínimo no caminho, considerando apenas a relação de carga (H), derivação (B), esforço lógico (G), parasitas e número de estágios?

27) O projetista, ao utilizar uma ferramenta de síntese, obteve duas soluções distintas para um mesmo circuito, conforme abaixo. Determine a solução que teria menor área (somatório do dimensionamento dos transistores – 10/b/c/d), e o menor atraso. Justifique as escolhas.

28) Considere que um projetista necessita de uma função inversor para carregar uma carga 25 vezes superior à carga de entrada. O projetista considera 3 opções: um único inversor, três inversores em série e cinco inversores em série.

9

- a) Para a escolha, calcule a contribuição de cada estágio. O que significa este valor no dimensionamento do transistor?
- b) Calcule o atraso mínimo do caminho. Através deste cálculo, diga qual a melhor escolha para o projetista.
- c) Verifique se a fórmula para o número de estágios N ≅ log 4 F confere com o resultado obtido.

29) Considere que um projetista necessita de uma função inversor para carregar uma carga 800 vezes superior à carga de entrada (isto ocorre, por exemplo, em circuitos de entrada e saída). O projetista considera 4 opções: um único inversor, três inversores em série, cinco inversores em série e sete inversores em série. A figura ao lado ilustra a configuração para 3 inversores em série. Pede-se

- a) Calcule o atraso mínimo do para as 4 configurações (1-3-5-7). Através deste cálculo, diga qual a melhor escolha para o projetista.
- b) Para a configuração escolhida, determine o dimensionamento de cada inversor.

Fórmulas úteis:

- atraso mínimo em um caminho: $\hat{D} = N.F^{\frac{1}{N}} + P$, onde N corresponde ao número de estágios e F o esforço docaminho.
- $\mathbf{F} = \mathbf{G.B.H}$, onde:
 - G é o esforço lógico do caminho: $G = \prod g_i$
 - B é a influência da derivações no caminho: $B = \prod b_i$, onde $b_i = \frac{C_{total}}{C_{useful}}$
 - H é a relação entre a capacitância de saída pela capacitância de entrada
- a contribuição de cada estágio ao longo de um caminho para se obter o atraso mínimo é dado por:

$$\hat{f} = g_i.h_i = F^{\frac{1}{N}}$$

- de posse da contribuição de cada estágio, dimensiona-se a porta lógica: $C_{in} = \frac{g_i \cdot C_{out}}{f}$
- atraso de uma porta: d = g.h + p (onde g é o esforço lógico)

g (esforço Lógico)	1	2	3	4	5	n
Inversor	1					
Nand		4/3	5/3	6/3	7/3	(n+2)/3
Nor		5/3	7/3	9/3	11/3	(2n+1)/3

INTEGRANDO OS TÓPICOS

- 30) Considere o layout abaixo, composto por portas lógicas NAND, NOR e INVERSOR, entradas {a,b,c,d,e}, nodos internos {N1,N2,N3} e saídas {S1,S2}. Neste layout não há utilização de METAL2, nem VIAS.
 - a. Faça o diagrama de portas lógicas do layout. Para cada porta lógica, indicar as entradas e saídas com o labels do layout ({a,b,c,d,e,N1,N2,N3,S1,S2}).
 - b. A partir do diagrama lógico obtido, indicar qual a parte deste circuito que pode ser **otimizada** com uma **porta complexa**.
 - b.1) Determine o diagrama de transistores desta porta lógica complexa e o correspondente diagrama lógico..
 - b.2) Apresente o diagrama stick desta porta lógica, indicando as camadas utilizadas.
 - b.3) Qual o número total de transistores do circuito com e sem a otimização proposta?
 - c. Considerar que o dimensionamento da porta lógica com entradas {a,b} no layout apresentado seja de 2 (2 unidades de dimensionamento) e que a carga de saída seja 5 vezes superior a este dimensionamento.
 - c.1) Determine o atraso mínimo do caminho mais longo (saídas de portas lógicas com labels N1, N2, N3, S1). Considerar na derivação portas de mesmo dimensionamento. (g_inv=1, g_nand2=4/3, g_nand3=5/3, g_nor2=5/3, g_nor3=7/3).
 - c.2) Determine o dimensionamento das portas lógicas neste caminho.
 - c.3) Determine o atraso de cada porta lógica.

LÓGICA DINÂMICA

31) Explique a operação de portas com lógica dinâmica utilizando o exemplo ao lado.

Para o diagrama de tempos apresentados, indicar o valor esperado em 'S', indicando se as transições em 'X' são válidas ou não ('Z' está em '1')

32) Explique o que é lógica dinâmica DOMINÓ, e onde a mesma é utilizada.

ALGUMAS SOLUÇÕES

QUESTÃO 4 – Oscilador em anel

QUESTÃO 5 – Oscilador em anel

t subida - 1 ns t descia = 0.5 ns

PARA SUBIR
$$1 + 0.5 + 1 + 0.5 + 1 + 0.5 + 1 = 5.5 \text{ NS}$$

PARA DESCER
$$0.5 + 1 + 0.5 + 1 + 0.5 + 1 + 0.5 = 5 \text{ NS}$$

$$TA = 5.5$$
 $TB = 10.5$ $TC = 16$ NS etc

QUESTÃO 9 – NOR de 5 entrads

QUESTÃO 10 – Minimização e porta complexa

$$F = AC + BC + BD + ACD + AC + BCD + AD = AC + BC + BD + AD = (A+B).(C+D)$$

A porta lógica terá 8 transistores + 2 inversores → total 10 transistores.

OUESTÃO 11

Porta lógica XNOR, com 10 transistores

Solução: lâminas microel_slides_03 - Lâmina 21 - exercício 1/8

QUESTÃO 12

Solução A: lâminas microel slides 03 – Lâmina 22 – exercício 2/8

Solução B: lâminas microel slides 03 – Lâmina 25 – exercício 3/8

QUESTÃO 13

Solução A: lâminas microel slides 03 – Lâmina 34– exercício 8/8

QUESTÃO 14 – porta complexa - $F = \overline{((a.b + c.d).(e.f + g.(h + i)))}$

18 transistores. Sem portas complexas 34 transistores, com profundidade lógica igual a 4 (sem considerar inversores)

QUESTÃO 15 - Porta complexa

Solução da porta complexa F = not ((((AB+C).D)+E).F))

QUESTÃO 16 - Porta complexa

Solução B: lâminas microel_slides_03 - Lâmina 30- exercício 6/8

QUESTÃO 17 - Porta complexa

Solução B: lâminas microel_slides_03 - Lâmina 28- exercício 5/8

QUESTÃO 19 - Porta complexas

$$F_2 = \overline{(a+b) \cdot (c.d.e+.f)}$$

$$F_3 = \overline{(a.b) + (c.(d+(e.f)))}$$

$$F_4 = \overline{a \cdot (b + (c \cdot d) + (e \cdot f))}$$

$$F_5 = (\overline{((a+b).c.) + (d.e.f)).g}$$

QUESTÃO 21 – rede multi-estágio inv nor nand inv

- G = 1. (5/3). (4/3). 1 = 20/9 = 2,22
- B = 1
- H = 20/10 = 2
- F = GBH = 40/9 = 4.44
- (a) $\mathbf{D} = \text{N.F exp} (1/\text{N}) + P = 4 \cdot (40/9) \exp (1/4) + 6 = 11.8$
- (b) $f = (40/9) \exp(1/N) = 1,452$
 - -z=1.20/1,452=13,77=13,77
 - $y = (4/3) \cdot 13,77 / 1,452 = 12,8 = 12,65$
 - $x = (5/3) \cdot 12,65 / 1,452 = 14,9 = 14,52$
 - entrada, para conferir = 1.14,52 / 1.452 = 10 (ok)
- (c) Atrasos individuais (d = gh + p):
 - a. $d inv = 1 \cdot (20/13,77) + 1 = 2,45$
 - b. d nand = (4/3)(13,77/12,65) + 2 = 3,45
 - c. d nor = (5/3) (12,65/14,52) + 2 = 3,45
 - d. d inv = 1. (14,52/10) + 1 = 2,45
 - Somando os atrasos individuais: 11,8 → confere!

QUESTÃO 22 — rede multi-estágio com derivação

- $G = 1 \cdot (4/3) \cdot (5/3) \cdot 1 = 20/9$
- B = 2 ← devido à derivação na nand
- -H=9
- F = GBH = 40
- **D** = N.F exp (1/N) + P = 4. (40) exp (1/4) + 6 = **16,059**
- $f = (40) \exp(1/N) = 2.515$
- Dimensionamentos
 - c = 1.9 / 2,51 = 3,58
 - b = (5/3) . 3,57/2,51 = 2,37

$$- c = (4/3) \cdot (2.2,37) / 2,51 = 2,51$$

- inversor, conferindo: 1 . 2,51 / 2.51 = 1 (ok)

- Tempos (d = gh + p)

- d Inversor: =
$$1.(9/3,57) + 1 = 3,51$$

- d Nor =
$$(5/3)(3,57/2,37) + 2 = 4,51$$

- d Nand =
$$(4/3)(2*2,37/2,51) + 2 = 4,51$$

-
$$d Inv = 1 \cdot (2,51/1) + 1 = 3,51$$

- delay total = $\frac{16,059}{1}$ unidades de tempo (ok)

QUESTÃO 23 – Solução da sequência de 8 nands 4:

$$G = 2^8 = 256$$
 (G nand4 = 2)

$$B = 3^7 = 2187$$

H = 3

$$P = 8 * 4 = 32$$

$$F = GBH = 1.679.616$$

 $D = 8. (1.679.616) \exp (1/8) + 32 = 80$ unidades de atraso

QUESTÃO 24 - Dimensionamento ANDs

	G	В	Н	F=GBH	P	N	D min	f	у
а	1,33	1,00	6,00	8,00	3,00	2,00	8,66	2,83	2,12
b	1,67	1,00	6,00	10,00	3,00	2,00	9,32	3,16	3,16

QUESTÃO 26 - Dimensionamento de um dado gate

$$dA = 1 * (30/20) + 1 = 4$$

$$dB = (4/3) * (90/30) + 2 = 6$$

$$dC = (5/3) * (45/30) + 3 = 5.5$$

$$dD = (9/3) * (x/45) + 4 = x/15 + 4$$

$$dE = 1 * (200/x) + 1 = 200/x + 1$$

$$4+6+5,5+(x/15+1)+(200/x+1)=28$$

$$x/15 + 200/x - 7.5 = 0$$

$$x^2 - 112.5x + 3000 = 0$$

raiz 1 69,0586885

raiz 2 43,4413115

A escolha é pela solução 43,44 → menos área de silício

delays 5,603913

6,896087

5,5

6

4

28

QUESTÃO 27 – Opções de dimensionamento

	opção 1	opção 2
G	5,333333	10
В	2	1
Н	40	40
F (GBH)	426,6667	400
N	4	4
atraso	27,17951	28,88854
f	4,544877	4,472136
d	264,03	89,44
С	77,46	40,00
b	45,45	26,83
in	10,00	10,00
área	396,94	166,28

QUESTÃO 28 – inversores com carga 25 vezes na saída

 $D1 = 1 \cdot 25^{1} + 1 = 26$

 $D2 = 3 \cdot 25^{-1/3} + 3 = 11,772 \leftarrow \text{ três tem o atraso mínimo}$

 $D2 = 5 \cdot 25^{1/5} + 5 = 14,518$

Contribuição de cada estágio: $f = 25^{-1/3} = 2,92$ cada inversor deve ser 2,92 vezes maior no estágio seguinte.

 $N = \log_4 F = \log_{4} 25/\log_{4} = 2{,}32 \implies 3 \text{ estágios}$

QUESTÃO 29 – inversores com carga 800 vezes na saída

Solução da sequência de inversores → cinco ESTÁGIOS tem o atraso mínimo

carga	800	5 estágios		
	atraso	f =	3.807308	
1	801.00	Inv5	210.12	
3	30.85	Inv4	55.19	
5	24.04	Inv3	14.50	
7	25.19	Inv2	3.81	
		Inv1	1.00	

Cada inversor deve ser 3,8 vezes maior no estágio seguinte.

