moment generating function: $\psi(t) = E\left[e^{tX}\right] = \int e^{iX} dF(x)$

Discrete Probability Distribution	Probability Mass Function, $p(x)$	Moment Generating Function, $\phi(t)$	Mean	Variance
Binomial with parameters $n, p, 0 \le p \le 1$	$\binom{n}{x} p^{x} (1-p)^{n-x}$ $x = 0, 1, , n$	$(pe^t + (1-p))^n$	np	np(1-p)
Poisson with parameter $\lambda > 0$	$e^{-\lambda} \frac{\lambda^x}{x!},$ $x = 0, 1, 2,$	$\exp\{\lambda(e^{t}-1)\}$	λ	λ
Geometric with parameter $0 \le p \le 1$	$p(1-p)^{x-1},$ $x = 1, 2,$	$\frac{pe^t}{1-(1-p)e^t}$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
Negative binomial with parameters r, p	$ {x-1 \choose r-1} p'(1-p)^{1-r}, $ $ x = r, r+1, $	$\left(\frac{pe^t}{1-(1-p)e^t}\right)'$	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$

Conditional Expectation: $P\{X=x\mid Y=y\}=rac{P\{X=x,Y=y\}}{P\{Y=y\}}$

Exponential Distribution:

$$f(x) = egin{cases} \lambda e^{-\lambda x} & x \geq 0 \ 0 & x < 0 \end{cases}$$
 $F(x) = \int_{-\infty}^{x} f(y) dy = egin{cases} 1 - e^{-\lambda x} & x \geq 0 \ 0 & x < 0 \end{cases}$ $E\left[e'^{X}\right] = \int_{0}^{\infty} e^{ix} \lambda e^{-\lambda x} dx = rac{\lambda}{\lambda - t}$ $E[X] = 1/\lambda, \quad \operatorname{Var}(X) = 1/\lambda^{2}$

Lemma 1.7.1 Markov's Inequality

If X is a nonnegative random variable, then for any a > 0

$$P\{X \ge a\} \le E[X]/a$$

PROPOSITION 1.7.2 Chernoff Bounds

Let X be a random variable with moment generating function $M(t) = E[e^{iX}]$ Then for a > 0

$$P\{X \ge a\} \le e^{-ta}M(t)$$
 for all $t > 0$
 $P\{X \le a\} \le e^{-ta}M(t)$ for all $t < 0$.

PROPOSITION 1.7.3 Jensen's Inequality

If f is a convex function, then

$$E[f(X)] \geq f(E[X])$$

Poisson Process:

$$egin{align} P\{N(t+s)-N(s)=n\} &= e^{-\lambda t} rac{(\lambda t)^n}{n!}, \quad n=0,1 \ P\left\{X_1>t
ight\} &= P\{N(t)=0\} = e^{-\lambda t} \ S_n &= \sum_{i=1}^n X_t, \quad n\geq 1, f(t) = \lambda e^{-\lambda'} rac{(\lambda t)^{n-1}}{(n-1)'}, \quad t\geq 0 \ \end{array}$$

Nonhomogeneous Poisson Process:

$$m(t) = \int_0^t \lambda(s) ds$$

$$P\{N(t+s) - N(t) = n\} = \exp\{-(m(t+s) - m(t))\}[m(t+s) - m(t)]^n/n', n \ge 0$$

Compound Poisson Process:

$$W = \sum_{i=1}^{N} X_{t}, E[W] = \lambda E[X] \operatorname{Var}(W) = \lambda E[X^{2}]$$

 $E[Wh(W)] = \lambda E[Xh(W + X)]$

Conditional Poisson Process:

$$P\{\Lambda \leq x \mid N(t) = n\} = rac{\int_0^x e^{-\lambda t} (\lambda t)^n dG(\lambda)}{\int_0^\infty e^{-\lambda t} (\lambda t)^n dG(\lambda)}$$

Markov Chain:

$$P_{ij}^{n+m} = \sum_{k=0}^{\infty} P_{ik}^n P_{kj}^m$$

 $i \leftrightarrow j$: same class, $\mathit{irreducible}$: only one class

aperiodic: d(i) = 1

$$f_{ij}^n = P\{X_n = j, X_k \neq j, k = 1, \dots, n-1 \mid X_0 = i\}, f_{ij} = \sum_{n=1}^{\infty} f_{ij}^n$$

recurrent: $f_{jj}=1\Leftrightarrow \sum_{n=1}^{\infty}P_{jj}^n=\infty$ transient: otherwise

$$\mu_{jj} = egin{cases} \infty & ext{if } j ext{ is transient} \ \sum_{n=1}^\infty n f_{jj}^n & ext{if } j ext{ is recurrent.} \end{cases}$$

$$\pi_j = \lim_{n o \infty} P_{jj}^{nd(j)}$$

positive recurrent: $\mu_{jj} < \infty \Leftrightarrow \pi_j > 0$

null recurrent: $\mu_{jj} = \infty \Leftrightarrow \pi_j = 0$

class property: d(i) = d(j), Positive(null) recurrent

stationary:
$$P_j = \sum_{i=0}^{\infty} P_i P_{ij}, \quad j \geq 0$$

ergodic: irreducible aperiodic Markov chain, all states ate positive recurrent:

$$\pi_j = \lim_{n o \infty} P_{ij}^n > 0$$

$$\pi_j = \sum_i \pi_i P_{ij}$$

$$\sum_j \pi_j = 1$$