2025 10 02 발표 자료

광운대학교 로봇학과 FAIR Lab

김한서

2D CNN 모델

KWANGWOON U N I V E R S I T Y

이번 주 진행사항

- 가설 설정
- 2D CNN 모델 학습
 - 필터 수 8-16 모델과 가설 적용 모델 비교
 - 시각화
- Time Series Library
 - 실험 세팅 및 결과
 - 시각화

가설 설정

- 현재 문제점: 현재 문제는 96일을 가지고 1일을 매번 예측해서 생기는 문제 과적합
- 적용 가능한 가설: 현재 모델 출력인 1을 48까지 늘려 48일을 한 번에 예측하게 해서 결과가 조금 더 좋게 나오게 하려고 함
- 변경점: Label feature 20_day_return_rate → 1_day_return_rate

 Output_window 1 → 48

모델 구조

*B: Batch Size

데이터셋 및 실험 세팅

- 사용한 종목: 514개 종목
- 데이터 기간: 2009-12-31 ~ 2023-12-31
 데이터 분할: Train, Valid, Test 6:2:2
- 전처리: 결측치 제거 및 np.inf 삭제
- 정규화: StandardScaler
- Input feature → Open, Close, High, Low, Volume,
 Vwap, Ticker
 Label feature → 1_day_return_rate

Learning rate	10-4	
Epoch	500	
Batch size	64	
Loss function	MSE Loss	
Sequence Length	96	
input_feature	7	
Output_window	48	

제안 모델

0.435151

0.000610

Label feature 20_day, 1_day 실험 결과

모델 시각화 비교

BIIB.csv 종목

모델 시각화 비교

DOV.csv 종목

정리

실험 결과 정리

- 가설 적용 전, 후 비교
 - Label feature 20_day 모델은 학습이 제대로 진행되지만 Valid Loss가 초반부터 상승하여 과적합이 일어나지만, 1_day 모델은 학습 조차 제대로 되지 않고 Test MSE가 비정상적으로 낮게 나오는 것을 확인하였습니다.
- 샘플 시각화 결과
 - Label feature 20_day의 경우 예측값이 정답값을 어느정도 따라가려는 모습을 보이고 있지만,
 1_day의 경우 예측값이 정답값을 아예 따라가지 못해 flat하게 나오는 모습을 보이고 있습니다.

모델 필터 수	Label feature	Output Window	Test MSE	학습 소요 시간
8 → 16	20_day	1	0.435151	4시간 6분 44초
8 → 16	1_day	48	0.000610	2시간 43분 0초

이후 계획

• Transformer 모델로 변경 후 진행

KWANGWOON U N I V E R S I T Y

설명 페이지

- THUML(Tsinghua University Machine Learning Group)에서 개발한 딥러닝 기반 시계열 분석을 위한 오픈소스 라이브러리, 다양한 딥러닝 시계열 모델의 성능을 평가하고, 새로운 모델을 개발 및 테스트할 수 있는 통합 환경을 제공
- 장/단기 예측, 결측치 보간, 이상치 탐지, 분류 등 시계열의 핵심 태스크를 포괄적으로 지원
- TimesNet, iTransformer, PatchTST 등 현재 가장 성능이 뛰어난 주요 모델들을 다수 포함

KWANGWOON UNIVERSITY

실험 세팅

• 사용한 모델: Transformer

• 사용한 데이터셋: weather.csv

Learning rate	10-4	
Epoch	10	
Batch size	32	
Loss function	MSE Loss	
Sequence Length	ngth 96	
input_feature	21	
Output_window	96	

Transformer 재현 실험 결과

Prediction length가 길어질수록 MSE, MAE 값이 증가하여 예측 성능이 점차 감소하는 모습을 확인하였으며, Prediction length가 96일 때가 가장 성능이 좋은 것을 확인하였습니다.

Pred_len	MSE	MAE
96	0.322	0.384
192	0.561	0.533
336	0.657	0.596
720	0.835	0.680

KWANGWOON U N I V E R S I T Y

Transformer 재현 실험 시각화

