CSE215 Foundations of Computer Science

Instructor: Zhoulai Fu

State University of New York, Korea

Today

 homework the week 02 (mistakenly named as homework01.md on Brightspace)

Last homework

Standard Deviation: 28.4 %

Exercise 1. (score = 5)

Check if the two statement forms below are logically equivalent. Explanation is needed (e.g. based on the truth table).

- p ∨ q -> r
- $(p -> r) \land (q -> r)$

Solution

р	q	r	p->q	q->r	r->p	p->q ^ q->r	p->q \(\cdot \)	p v q v r
Т	Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	F	Т	F	Т	F	F	F
Т	F	Т	F	Т	Т	F	F	F
Т	F	F	F	Т	Т	F	F	F
F	F	F	Т	Т	Т	Т	Т	F
F	F	Т	Т	Т	F	Т	F	F
F	Т	F	Т	F	Т	F	F	F
F	Т	Т	Т	Т	F	Т	F	F

Not equivalent

Exercise 2 (score = 5)

Check if the two statement form are equivalent. Explanation is needed (e.g. based on the truth table).

- $(p \rightarrow q) \land (q \rightarrow r) \land (r \rightarrow p)$
- p / q / r

Solution

р	q	r	~p	~q	~r	p->q	q->r	r->p	(p->q)/\(q->r)/\(r->p)	p∧q∧r
Т	Т	Т	F	F	F	Т	Т	Т	Т	Т
Т	Т	F	F	F	Т	Т	F	Т	F	F
Т	F	Т	F	Т	F	F	Т	Т	F	F
Т	F	F	F	Т	Т	F	Т	Т	F	F
F	Т	Т	Т	F	F	Т	Т	F	F	F
F	Т	F	Т	F	Т	Т	F	Т	F	F
F	F	Т	Т	Т	F	Т	Т	F	F	F
F	F	F	Т	Т	Т	Т	Т	Т	Т	F

The two are not equivalent, as shown when p, q, r are all False (last row).

Exercise 3 (score = 10)

Explanation can be omitted for this exercise.

Consider six statement forms (a-f):

- (a) p -> q
- (b) q -> p
- (c) ~p ∨ q
- (d) ~q ∨ p
- (e) ~q -> ~p
- (f) ~p -> ~q
- 1. Find all statement forms that are equivalent to (a), expect (a) itself.
- 2. Find all statement forms that are equivalent to (b), expect (b) itself.

Solution

- (a) and (c) (e)
- (b) and (d) (f)

Exercise 4 (score = 15)

Consider the proposition $\sim P \land (Q \rightarrow P)$. What can you conclude about P and Q if you know the statement is true? Explanation is needed (e.g. based on the truth table).

Solution

Р	Q	~P	Q->P	~P ∧ (Q->P)
Т	Т	F	Т	F
Т	F	F	Т	F
F	F	Т	Т	Т
F	Т	Т	F	F

P and Q are false.

Exercise 5 (score = 15)

For each statement form below, determine if it is a tautology, contradiction, or neither. Explanation is needed (e.g. based on the truth table).

- 1. $(\sim p \lor q) \lor (p \land \sim q)$
- 2. (p /\ ~q) ∧ (~p ∨ q)
- 3. $(p \land q) \lor (\sim p \lor (p \land \sim q))$

Р	Q	~PVQ	P∧~Q	(~P∨Q) ∨(P∧~Q)
Т	Т	Т	F	Т
Т	F	F	Т	Т
F	Т	Т	F	Т
F	F	Т	F	Т

(~PVQ)V(P∧~Q) is a tautology.

Р	Q	P∧~Q	~PVQ	(P∧~Q) ∧(~P∨Q)
Т	Т	F	Т	F
Т	F	Т	F	F
F	Т	F	Т	F
F	F	F	Т	F

(P∧~Q)∧(~PVQ) is a contradiction.

Р	Q	P∧Q	P∧~Q	~PV(P^~Q)	(P∆Q)V(~PV(P∆~Q))
Т	Т	Т	F	F	Т
Т	F	F	Т	Т	Т
F	т	F	F	Т	Т
F	F	F	F	Т	Т

 $(P \land Q) \lor (\neg P \lor (P \land \neg Q))$ is a tautology.

Exercise 6 (score = 20)

Determine whether the argument form below is valid. Explanation is needed (e.g. based on the truth table).

(1)

- premises: p -> q, q
- conclusion: p

(2)

- premises: p-> q, ~p
- conclusion: ~q

(3)

- premises: p-> q, p
- conclusion: q

(4)

- premises: p-> q, ~q
- conclusion: ~p

• premises: p -> q, q

• conclusion: p

• Not valid

р	q	p->q	q	р
Т	Т	Т	ТТ	
Т	F	F	F	Т
F	Т	Т	Т	F
F	F	Т	F	F

(3)

• premises: p-> q, p

• conclusion: q

Valid

р	q	p->q	р	q
Т	Т	Т	Т	Т
Т	F	F	Т	F
F	Т	Т	F	Т
F	F	T	F	F

(2)

• premises: p-> q, ~p

• conclusion: ~q

Not valid

р	q	p->q	~p	~q
Т	Т	Т	F	F
Т	F	F	F	Т
F	Т	Т	Т	F
F	F	Т	Т	Т

(4)

• premises: p-> q, ~q

• conclusion: ~p

Valid

р	q	p->q	~q	~p
Т	Т	Т	F	F
Т	F	F	Т	F
F	Т	Т	F	Т
F	F	Т	Т	Т

Exercise 7 (score = 30)

Use truth tables to determine whether the argument form below is valid. Explanation is needed (e.g. based on the truth table).

(1)

- Premises: p -> q, ~p -> ~q
- Conclusion: p ∨ q

(2)

- Premises: p ∨ q, p -> ~q, ~r -> ~p
- Conclusion: r

(3)

- Premises: p, ~q -> ~p, ~q ∨ r
- Conclusion r

(4)

- Premises: p/\q -> ~r, p \/ ~q, ~q -> p
- Conclusion: ~r

(5)

- Premises: p -> r, q -> r
- Conclusion: (p ∨ q) -> r

(6)

- Premises: p -> (q ∨ r), ~q ∨ ~r
- Conclusion: ~p ∨ ~r

(1)

• Premises: p -> q, ~p -> ~q

Conclusion: p ∨ q

Not valid

р	q	~p	~q	p->q	~p->~q	p∨q
Т	Т	F	F	Т	Т	Т
Т	F	F	Т	F	Т	Т
F	Т	Т	F	Т	F	Т
F	F	Т	Т	Т	Т	F

(2)

• Premises: p V q, p -> ~q, ~r -> ~p

Conclusion: rNot valid

р	q	r	~p	~q	~r	p∨q	p->~q	~r->~p	r
Т	Т	Т	F	F	F	Т	F	Т	Т
Т	Т	F	F	F	Т	Т	F	F	F
Т	F	Т	F	Т	F	Т	Т	Т	Т
Т	F	F	F	Т	Т	Т	Т	F	F
F	Т	Т	Т	F	F	Т	Т	Т	Т
F	Т	F	Т	F	Т	Т	Т	Т	F
F	F	Т	Т	Т	F	F	Т	Т	Т
F	F	F	Т	Т	Т	F	Т	Т	F

(3)

• Premises: p, ~q -> ~p, ~q \text{\ti}\text{\ti}\text{\ti}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\tilit{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi{\text{\text{\text{\text{\ti}\text{\text{\ti}\tilit{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\text{\text{\text{\text{\text{\text{\texi}\til\til\til\til\titit{\text{\text{\text{\text{\text{\texi}\text{\tii}\text{\tilit}\tint{\text{\text{\texit{\text{\texi}\text{\texi}\text{\text{\tii

• Conclusion: r

Valid

р	q	r	~q	~p	~q->~p	~q V r	р	r
Т	Т	Т	F	F	Т	Т	Т	Т
Т	Т	F	F	F	Т	F	Т	F
Т	F	Т	Т	F	F	Т	Т	Т
Т	F	F	Т	F	F	Т	Т	F
F	Т	Т	F	Т	Т	Т	F	Т
F	Т	F	F	Т	Т	F	F	F
F	F	Т	Т	Т	Т	Т	F	Т
F	F	F	Т	Т	Т	Т	F	F

(4)

Premises: p/\q -> ~r, p V ~q, ~q -> p

• Conclusion: ~r

Not valid

р	q	r	~q	~r	р∧q	p/\q ->~r	pV~q	~q->p	~r
Т	Т	Т	F	F	Т	F	Т	Т	F
Т	Т	F	F	Т	Т	Т	Т	Т	Т
Т	F	Т	Т	F	F	Т	Т	Т	F
Т	F	F	Т	Т	F	Т	Т	Т	Т
F	Т	Т	F	F	F	Т	F	Т	F
F	Т	F	F	Т	F	Т	F	Т	Т
F	F	Т	Т	F	F	Т	Т	F	F
F	F	F	Т	Т	F	Т	Т	F	Т

(5)

Premises: p -> r, q -> rConclusion: (p V q) -> r

Valid

р	q	r	p V q	p -> r	q -> r	p V q -> r
Т	Т	Т	Т	Т	Т	Т
Т	Т	F	Т	F	F	F
Т	F	Т	Т	Т	Т	Т
Т	F	F	Т	F	Т	F
F	Т	Т	Т	Т	Т	Т
F	Т	F	Т	Т	F	F
F	F	Т	F	Т	Т	Т
F	F	F	F	Т	Т	Т

(6)

Premises: p -> (q V r), ~q V ~r

Conclusion: ~p V ~r

Not valid

р	q	r	~p	~q	~r	q V r	p->(qVr)	~q V ~r	~p \/ ~r
Т	Т	Т	F	F	F	Т	Т	F	F
Т	Т	F	F	F	Т	Т	Т	Т	Т
Т	F	Т	F	Т	F	Т	Т	Т	F
Т	F	F	F	Т	Т	F	F	Т	Т
F	Т	Т	Т	F	F	Т	Т	F	Т
F	Т	F	Т	F	Т	Т	Т	Т	Т
F	F	Т	Т	Т	F	Т	Т	Т	Т
F	F	F	Т	Т	Т	F	Т	Т	Т