DEUTSCHLAND

® BUNDESREPUBLIK ® Patentschrift <sub>®</sub> DE 3246376 C2

(5) Int. Cl. 4: E04F 13/12



**PATENTAMT** 

(2) Aktenzeichen:

P 32 46 376.6-25

Anmeldetag: Offerlegungstag:

15, 12, 82 20. 6.84

Veröffentlichungstag der Patenterteilung:

5. 2.87

innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

(73) Patentinhaber:

Ballas, Peter, 7597 Rheinau, DE

(A) Vertreter:

Schmitt, H., Dipl.-Ing.; Maucher, W., Dipl.-Ing., Pat.-Anw., 7800 Freiburg

@ Erfinder: gleich Patentinhaber

(5) Im Prüfungsverfahren antgagengehaltene Druckschriften nach § 44 PatG:

> DE-OS 29 17 025 DE-OS 27 16 676 DE-GM 74 02 354 DE-GM 71 02 476 US 37 59 007

Slechpaneel zur Bekleidung von Wänden oder Decken

32 46 376 ZEICHNUNGEN BLATT 1 Nummer: int. Cl.4: E 04 F 13/12 Veröffentlichungstag: 5. Februar 1987 Q,

## Patentansprüche

1. Blechpaneel zur Bekleidung von Wänden oder Decken von Bauwerken, wobei die beiden parallelen Längsränder des Paneels stufenartig so profiliert sind, daß der eine Längsrand eines Blechpaneels federartig in eine nutartige Verformung des Längsrandes eines Nachbarpaneels einschiebbar ist und von der Pauceloberfläche zurückgebogene Stege den stirnseitigen Abschluß bilden, dadurch 10 gekennzeichnet, daß die von der Oberfläche (3) des Paneels (1) zurückgebogenen Stege (4 u. 5) der stufenartigen Randausbildung im Querschnitt in einem spitzen Winkel zur Paneelenoberfläche (3) stehen und somit schräg geneigt sind und in Gebrauchsstellung die von diesen Stegen (4 u. 5) mit der Paneelenoberfläche (3) gebildeten Eckbereiche (11) nenachbarter Paneele (1,1a) näher aneinanderliegen als die von der Oberfläche (3) abliegenden Stegränder und daß die Querschnittslänge des federartigen Längsrandes (6) geringer als die parallel zur Paneelenoberfläche (3) verlaufende Tiefe der nutartigen Verformung (7) ist, so daß bei Berührung der Eckbereiche (11) zwischen der Stirnseite des federartigen Längsrandes (6) und dem Ende der 25 nutartigen Verformung (7) ein Zwischenraum (12) freibleibt

2. Blechpaneel nach Anspruch 1, dadurch gekennzeichnet, daß der Winkel zwischen der Paneelenoberfläche (3) und dem jeweiligen seitlichen Steg 30

jeweils etwa 85° beträgt.

3. Blechpaneel nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß in den in zusammengesteckter Position aneinanderliegenden Schenkeln (8, 9) jeweils eine sickenartige Einformung (10) für eine gegenseitige Verrastung vorgesehen ist und insbesondere der von der Paneelenoberstäche (3) am weitesten abliegende Schenkel (8) des federartigen Längsrandes (6) elastisch nachgiebig ist.

4. Blechpaneel nach einem der Ansprüche 1 bis 3, 40 dadurch gekennzeichnet, daß der zu dem federartigen Längsrand (6) gehörende freie Schenkel (8) in Ausgangsstellung mit der oberen Steg-Stirnseite des Paneels (1) einen stumpfen Winkel einschließt.

## Beschreibung

Die Erfindung betrifft ein Blechpaneel zur Bekleidung von Wänden oder Decken von Bauwerken, wobei die beiden parallelen Längsränder des Paneels stufenartig 50 so profiliert sind, daß der eine Längsrand eines Blechpaneels federartig in eine nutartige Verformung des Längsrandes eines Nachbarpaneels einschiebbar ist und von der Paneeloberfläche zurückgebogene Stege den

stirnseitigen Abschluß bilden.

Aus DE-GM 71 02 476 ist ein derartiges Paneel bekannt. Die nutartige Verformung bildet dabei gleichzeitig eine Hinterschneidung, in welche eine entsprechende
Erweiterung des federartigen Bereiches in Gebrauchsstellung rastend eingreift. Dadurch ist es bei der Montage erforderlich, das Paneel mit dem einsteckbaren
Randbereich zu verschwenken, damit der verbreiterte
Teil des Federbereiches in die Hinterschneidung des
Nachbarpaneels gelangen kann. In Gebrauchsstellung
ist Formschluß zwischen diesen Teilen hergestellt, wobei außerdem die oberflächennahen Längsränder unter
Rastspannung fest aneinanderliegen. Dadurch können
Wärmedehnungen der Paneele, die zwischen Sommer

und Winter ganz erheblichen Temperaturunterschieden ausgesetzt sind, zu Aufwölbungen, Verformungen und evtl. sogar zu großen Belastungen der Befestigungen der Paneele an ihrem Untergrund führen.

Etwas ähnliches gilt für die Ausbildung der Panoele gem. der DE-OS 27 16 676, bei welchen die federartigen Ausformungen jeweils aus einem einzigen Blechflansch bestehen, die nicht wieder zurückgebogen sind. Entsprechend schmal muß die federartige Einformung des gegenüberliegenden Längsrandes sein. Dies erschwert das Zusammenstecken und kann entweder zu Verformungen führen oder bei schon vorhandenen Verformungen das Einstecken zunächst sogar unmöglich machen. Darüberhinaus ergibt sich eine flächige Anlage der Längsränder, so daß bei Wärmedehnungen wiederum das Paneel aufgewölbt wird, hzw. in den Randbereichen Fugen aufklaffen, wenn aufgrund von Kälte die Abmessungen der Pancele schwinden.

Es besteht deshalb die Aufgabe, ein Blechpaneel der eingangs erwähnten Art zu schaffen, mit welchem im gesamten Stirnflächenbereich aneinanderstoßender Paneele Wärmedehnungen ausgeglichen werden können, ohne daß ein Auseinanderklaffen der aneinanderstoßenden Paneelkanten in der Sichtebene der Paneele eintritt.

Zur Lösung dieser Aufgabe ist ein Blechpaneel der eingangs erwähnten Art dadurch gekennzeichnet, daß die von der Oberfläche des Paneels zurückgebogenen Stege der stufenartigen Randausbildung im Querschnitt in einem spitzen Winkel zur Paneelenoberfläche stehen und somit schräg geneigt sind und in Gebrauchsstellung die von diesen Stegen mit der Paneelenoberfläche gebildeten Eckbereiche benachbarter Paneele näher aneinanderliegen als die von der Oberfläche abliegenden Stegränder und daß die Querschnittslänge des federartigen Längsrandes geringer als die parallel zur Paneelenoberfläche verlaufende Tiefe der nutartigen Verformung ist, so daß bei Berührung der Eckbereiche zwischen der Stirnseite des federartigen Längsrandes und dem Ende der nutartigen Verformung ein Zwischenraum freibleibt. Somit hat der federartige Längsrand bei Wärmebewegungen innerhalb der nutartigen Verformung ausreichend Platz. Ferner können die Längsränder ohne gegenseitige Verschwenkung der Paneele und aufgrund ihrer relativ großen lichten Weite ohne Ge-45 fahr von Verklemmungen bei der Montage leicht ineinandergeschoben werden. Gleichzeitig bleibt der Vorteil erhalten, daß auch in den Randbereichen der Paneele genügend Platz für eine möglichst dicke Isolierschicht aus Schaumstoff an der Innenseite der Pancele verbleibt. Ein Aufklaffen der Längsränder läßt sich auf einfache Weise dadurch vermeiden, daß die einander benachbarten Stege in Montagestellung unter Vorspannung gegeneinanderstehen können, was durch die geneigte Formgebung erleichtert ist. Ziehen sich die Pa-55 neele bei Kälte zusammen, ist aufgrund dieser Vorspannung eine gewisse Nachgiebigkeit gegeben, die bis zur Aufhebung dieser Spannung gehen kann. Bei Wärmedehnungen vergrößert sich diese Vorspannung entsprechend.

Eine besonders günstige Ausführungsform nach der Erfindung kann darin bestehen, daß der Winkel zwischen der Paneelenoberfläche und dem jeweiligen seitlichen Steg jeweils etwa 85° beträgt. Dies ergibt eine genügend deutliche Dichtkante nahe der Paneelenoberfläche und gleichzeitig eine genügend einfache Herstellbarkeit beispielsweise durch eine Profilierwalzenmaschine. Darüberhinaus ergibt sich so auf der Rückseite der Paneelenoberfläche genügend Platz für die schon

上書の名を行いて

.

Für eine Rastverbindung kann in den in zusammengesteckter Position aneinanderliegenden Schenkeln jeweils eine sikkenartige Einformung für eine gegenseitige Verrastung vorgesehen sein und insbesondere kann der von der Pancelenoberfläche am weitesten abliegende Schenkel des federartigen Längsrandes elastisch nachgiebig sein. Beim Einführen des federartigen Schenkel des federartigen Längsrandes etwas eingedrückt und kann aufgrund der sickenartigen Einformung an dem entsprechenden Gegenstück der nutartigen Verformung einrasten.

Dabei kann der zu dem federartigen Längsrand gehö- 15 rende freie Schenkel in Ausgangsstellung - also vor dem Zusammenstecken - mit der oberen Stegstirnseite des Paneels einen stumpfen Winkel einschließen. Dadurch kommt er beim Einstecken in die nutartige Verformung des Nachbarpaneels unter Spannung, wodurch 20 die gewünschte Rastkraft erzeugt wird. Die sickenartigen Einformungen haben dabei den weiteren Vorteil, daß die Biegesteifigkeit der mit ihnen versehenen Schenkel vergrößert wird, so daß unbeabsichtigte Verformungen dieser für das Zusammenstecken bei der 25 Montage wichtigen Teile bei der Lagerung und beim Transport zumindest erschwert sind.

Insgesamt ergibt sich vor allem bei Kombination einzelner oder mehrerer der vorbeschriebenen Merkmale und Maßnahmen ein Blechpaneel, welches eine gute 30 Isolierung mit einer dicken Isolierschicht auf der Rückseite erlaubt, leicht montiert werden kann, dabei eine gute Verbindung der ineinandersteckbaren Längsränder erlaubt, wobei in vorteilhafter Weise eine erhebliche wohl dennoch Vorsorge für Wärmebewegungen getrof-

Nachstehend ist ein Ausführungsbeispiel der Erfindung anhand der Zeichnung noch näher beschrieben. Die einzige Figur zeigt

in schematisierter, teilweise schaubildlicher Darstellung eine schräg auf die Stirnseite eines erfindungsgemäßen Blechpaneels gerichtete Ansicht des Paneels, wobei der Randbereich eines damit 45 verbundenen Nachbarpaneels angedeutet ist.

Ein im ganzen mit 1 bezeichnetes Blechpaneel, im folgenden auch kurz Pancel 1 genannt, soll mit entsprechenden Nachbarpaneelen 1a durch Zusammenstecken 50 verbunden werden, um Wände oder Decken zu bekleiden und zu isolieren. Auf der Rückseite des Paneels 1 befindet sich deshalb eine entsprechende Isoliermasse 2.

Die von der Oberfläche 3 des Paneels 1 ausgehenden, zurückgebogenen Stege 4 u. 5 der stufenartigen Rand- 55 ausbildung stehen beide zu dieser Oberfläche 3, im Querschnitt gesehen, unter einem spitzen Winkel von etwa 85°, so daß sie schräg zueinandergeneigt sind, was im Bereich der Berührung der beiden einander benachbarten Paneele 1 und 1a erkennbar ist.

Der eine Rand des Paneels 1 hat dabei einen federartigen Längsrand 6, der in eine nutartige Verformung 7 am entsprechenden gegenüberliegenden Längsrand des Nachbarpaneels 1 einschiebbar ist. Durch das gestrichelt angedeutete Nachbarpaneel 1a wird deutlich, daß 65 auf diese Weise mehrere Pancele 1 gut zusammengesteckt werden können, indem jeweils ein federartiger Längsrand 6 in eine entsprechende nutartige Verformung 7 gesteckt werden kann.

An den in zusammengesteckter Position anginanderliegenden freien Schenkein 8 und 9 des federartigen Langsrandes 6 und der nutartigen Verformung 7 erkennt man jeweils eine in Längsrichtung des Pancels 1 verlaufende Sicke 10 und nach dem Zusammenstecken der Paneele 1 sind die Sicken 10 der Schenkel 8 u. 9 miteinander verrastet.

In dieser Position berühren sich die Eckbereiche 11. Längsrandes in die nutartige Verformung wird der freie 10 die die Stege 4 u. 5 mit der jeweiligen Paneelenoberfläche 3 bilden, während hinter diesen Eckbereichen 11 die Stege 4 u. 5 voneinander zurückweichen. Ferner erkennt man, daß die Querschnittslänge des federartigen Längsrandes 6 geringer als die parallel zur Paneelenoberfläche 3 verlaufende Tiefe der nutartigen Verformung 7 ist, so daß nach dem Zusammenstecken bei Berührung der Eckbereiche 11 zwischen der Stirnseite des federartigen Längsrandes 6 und dem Ende der nutartigen Verformung 7 ein Zwischenraum 12 freibleibt Haben die Stege 4 u. 5 in montiertem Zustand eine gewisse Vorspannung, können Wärmebewegungen gewissermaßen unter der Oberfläche 3 des Pancels 1 ausgeglichen werden, indem bei einer Zusammenziehung des Paneels 1 die Vorspannung nachläßt, während sie bei einer Erwärmung zunehmen kann, so daß im Berührungsbereich benachbarter Paneele 1 eine gute Dichtigkeit erhalten

Auch kann der Zwischenraum zwischen den einander benachbarten Stegen 4 u. 5 durch diese Dichtigkeit im Bereich der Oberflächen 3 eine Isolierwirkung ausüben, selbst wenn er nicht mit Isoliermasse gefüllt ist. Dadurch und durch die relativ große Isolierdicke selbst im Verbindungsbereich zwischen nutartiger Verformung 7 und federartigem Längsrand 6 werden Kältebrücken weit-Dichtigkeit im Fugenbereich erzielt werden kann, ob- 35 gehend ausgeschlossen. Es kann somit eine Bekleidung von Wänden mit Hilfe der erfindungsgemäßen Paneelen gebildet werden, die selbst bei starkem Wind und gro-Ber Kälte, bei welcher sich solche Paneele in der Regel unter Bildung von Fugen zusammenziehen, eine dahinter befindliche Wand gut abschirmt.

Hierzu 1 Blatt Zeichnungen