GRAPHICAL MODELS:

CONDITION INDEPENDENCE (CI);

Distribution D: (x,,x2 ... xd) & {o,13d

Structure: Rooted Tree.

KL - DIVERGENCE / CROSS - ENTROPY:

Distance between 2 distributions over some Space, a -> di,dz

$$KL\left(\frac{d_{1}}{d_{2}}\right) = 2d_{1}(s) \log \frac{d_{2}(s)}{d_{1}(s)}$$

d, (s): Probability s happens under d,.

Goal: Given distribution P on $\leq d$ generated from unknown Bayes net (Tree: T^*), find the T and Bayes Net P_T Such that $K_2(P,P_T) \leq \epsilon$.

CHOW- LIV BOUND:

For any tree T,

 $k_L(P|P_T) : J_P - \angle I(x_i, x_j)$ (i,j) is an edge in T

function of P

Mutual Information:

 $I(x_i; x_j) = Measurec now much information <math>X_i$ has about X_j .

Can be estimated from samples [Independent of T_j].

CHOW- LIU ALGORITHM
 → Use samples to estimate I(X; X;)
 For all i, j.
 → Form a weighted graph where weights are exactly I(X; X;)
 → Compute the max. Spanning tree T' in G
 → Output PTI.

UNDIRECTED GRAPHICAL MODELS:

MARKOV RANDOM FIELDS:

biven $D: (x_1, x_2 \dots x_d) = \{0,1\}^d$

to: Dependencey braph for b.

a	setisfies	Pairwise Markov Property	local	6, 16 ba 1
 计 认	respect to b have no dage, then	x; Lxj Xrest	X; LX; X {neighbors of	X; LX; 1 X {any separating set }
				1

rertices removing which is; disconnected.

Global => Local => Pairwise.

Remark: We'll Soy D how dependency graph or if it satisfies Markov property with respect to Gr.

boal: Find D such that each vertex has degree < k.

Example: $(X_1 | X_2, X_5)$ independent of $(X_3 | X_2, X_5)$

Markov property: $\Theta_{ij} = 0 \Rightarrow X_i, X_j$ are independent conditioned on neighbors of i.

Structure Learning for GGMs

Given samples $X^1, X^2, ..., X^n$ from a GGM of degree $d \ll p$, can we efficiently find the dependency graph with $n \ll p$?

(Think:
$$n = O_d(\log p)$$
.)

Attractive GGMs

GGM is attractive if all covariances are non-negative.

(Equivalently, Θ has non-positive off-diagonals.)

 Θ : Precision Matrix

Ex: Gaussian Free Fields

 Many applications via Gaussian processes

Walk-Summable GGMs

GGM walk-summable if making off-diagonals of precision matrix negative preserves positive semi-definiteness.

 Θ : Precision Matrix

Offdiagonals negative ≥ 0

GREEDYPRUNE

- 1. Recover neighborhood of each vertex in parallel.
- 2. Grow a candidate neighborhood.
- 3. Prune out some vertices.

GREEDY-GROWING

- 1. Set $S \leftarrow \emptyset$
- 2. While S is small enough:
 - 1. Find j to minimize estimate of $Var(X_1 | X_{S \cup j})$.
 - **2.** $S \leftarrow S \cup \{j\}$.

→ That j and X, ore clearly dependent as j minimizes

X, 's roviance.

Intuition: Add vertex that gives maximum decrease in conditional variance.

Ly For each
$$var(x_1|x_3)$$
 be need $\frac{1}{2}$ Samples to get $(1-\xi)$ accuracy.

If $var(x_1|x_2,x_3,x_4) \rightarrow \frac{3}{2}$

GREEDY-PRUNING

- 1. For each j in S:
 - 1. If $Var(X_1 \mid X_{S \setminus \{j\}}) < (1+\tau)Var(X_1 \mid X_S)$, drop j from S.

Intuition: If dropping a vertex, does not hurt too much, drop it.

Can learn Attractive and Walk-Summable Gioms
with
$$O\left(\frac{d^2\log p}{Kb}\right)$$
 samples and quadratic
runtime.

 d - degree (max)
 p - total number of parameters

$$\kappa(\Theta) = \min_{i,j:\Theta_{ij}\neq 0} \frac{|\Theta_{ij}|}{\sqrt{\Theta_{ii}\Theta_{jj}}}$$

SUMMARY:

1. Rz- Divergence:

$$KL\left(\frac{d}{d}, \frac{d}{d}\right) = 2d_{1}(s) \log \frac{d_{2}(s)}{d_{1}(s)}$$

2. Chow- Liv Bound:

$$k_L(PIP_T) = J_P - \angle I(x_i, x_j)$$
(i,j) is an edge in T

- 3. Chow- Liv Algorithm:
 - + Find I(xi,xj) graph
 - · Max Spanning Tree -T)
- 4. Markou Random Fields:

- 5. Learning Boltzmann Machinel: 0 on $\{1,-1\}^d$ $Pr(x=x] \propto e^{(i,j)+in} x_i x_j$
- b. baussian braphical models:

$$S:=0$$
 =>independent

- 7. Attractive: Eij >0, Mij <0 +itj
- 8. Halk Summable: (Hij (Hij + i + j => Still positive Semi
- 9. Greedy Prune

For each vertex i - find neighborhood in parallel

- arg min var (x, 1 × suj)
- Nar(x, 1x) > ((1+ t)) Var(x, 1x)
- Learns 2 types O(d2)ogP/K+) Samples, quadratic time

d - max degree

p - number of parameters