অনুশীলনী - ১২.৩

অনুশীলনীর সমাধান

লেখচিত্রের সাহায্যে সমাধান কর:

$$3x + 4y = 14$$
$$4x - 3y = 2$$

<u>সমাধান</u>: প্রদত্ত সমীকরণদ্বয়, 3x + 4y = 14 (i) 4x - 3y = 2 (ii)

সমীকরণ (i) থেকে পাই,

$$3x + 4y = 14$$

বা,
$$4y = 14 - 3x$$

$$4y - 14 - 3x$$

$$4x - 14 - 3x$$

সমীকরণটিতে x-এর কয়েকটি মান নিয়ে y এর অনুরূপ মান বের করি ও নিচের ছকটি তৈরি করি:

निर्देश इंगार दर्शात राजा.						
X	-2	2	4			
1/	5	2	1/2			

 \therefore সমীকরণটির লেখের উপর তিনটি বিন্দু $(-2,5),(2,2),(4,rac{1}{2})$ । আবার, সমীকরণ (ii) থেকে পাই,

$$4x - 3y = 2$$

$$4x - 3y = 2 - 4x$$

$$41, -3y - 2 - 4x - 2$$

$$4x - 2$$

সমীকরণটিতে x-এর কয়েকটি মান নিয়ে y এর অনুরূপ মান বের করি ও নিচের ছকটি তৈরি করি \cdot

1-1604 5410 6014 414.					
X	2	5	8		
y	2	6	10		

.: সমীকরণটির লেখের উপর তিনটি বিন্দু (2,2),(5,6),(8,10)। মনে করি, XOX' ও YOY' যথাক্রমে x অক্ষ ও y অক্ষ এবং O মূলবিন্দু।

ছক কাগজের উভয় অক্ষ বরাবর ক্ষুদ্রতম বর্গের প্রতিবাহুর দৈর্ঘ্যকে একক ধরি। এখন ছক কাগজে সমীকরণ (i) হতে প্রাপ্ত (-2, 5), (2, 2), $(4, \frac{1}{2})$ বিন্দুগুলো স্থাপন করি ও তাদের পরস্পর সংযুক্ত করি। লেখটি একটি সরলরেখা। একইভাবে, সমীকরণ (ii) হতে প্রাপ্ত (2, 2), (5, 6), (8, 10) বিন্দুগুলো স্থাপন করি ও তাদের পরস্পর সংযুক্ত করি। এক্ষেত্রেও

লেখিটি একটি সরলরেখা। $\frac{1}{V}$ মনে করি, রেখাদ্বয় পরস্পর P বিন্দুতে ছেদ করেছে। চিত্র থেকে দেখা যায়, P বিন্দুর স্থানাঙ্ক (2,2)।

 \therefore সমাধান (x, y) = (2, 2)

2x - y = 1 5x + y = 13

সমাধান: প্রদত্ত সমীকরণদ্বয়, 2x - y = 1 (i)

$$5x + y = 13 \dots \dots (ii)$$

সমীকরণ (i) হতে পাই, 2x - y = 1

বা,
$$-y = 1 - 2x$$

বা,
$$y = 2x - 1$$

সমীকরণটিতে x এর করে করি আন নিয়ে y-এর অনুরূপ মান বের করি ও নিচের ছকটি তৈরি করি:

	v	1	2	3
	, A	1	<u> </u>)
	1,	1	3	5
	. <i>y</i>	. 1	5	5
,	TIET CHEEK	Total familia fam. (1 1) (2 2) (2	5) .

সমীকরণটির লেখের উপর তিনটি বিন্দু (1, 1), (2, 3), (3, 5) আবার, সমীকরণ (ii) থেকে পাই, 5x + y = 13

বা,
$$y = 13 - 5x$$

সমীকরণটিতে x-এর কয়েকটি মান নিয়ে y-এর অনুরূপ মান বের করি ও নিচের ছকটি তৈরি করি:

x	1	2	3
y	8	3	-2

সমীকরণটির লেখের উপর তিনটি বিন্দু, (1, 8), (2, 3), (3, -2)।

মনে করি, XOX' ও YOY' যথাক্রমে x অক্ষ ও y অক্ষ এবং O মূলবিন্দু। ছক কাগজের উভয় অক্ষ বরাবর ক্ষুদ্রতম বর্গের প্রতিবাহুর দৈর্ঘ্যকে একক ধরি। এখন ছক কাগজে সমীকরণ (i) হতে প্রাপ্ত (1, 1), (2, 3), (3, 5) বিন্দুগুলো স্থাপন করি ও তাদের পরস্পর সংযুক্ত করি। লেখটি একটি সরলরেখা।

একইভাবে, সমীকরণ (ii) হতে প্রাপ্ত (1,8), (2,3), (3,-2) বিন্দুগুলো স্থাপন করি ও তাদের পরস্পর সংযুক্ত করি। এক্ষেত্রেও লেখটি একটি সরলরেখা। মনে করি, সরলরেখাদ্বয় পরস্পর P বিন্দুতে ছেদ করেছে। চিত্র থেকে দেখা যায়, P বিন্দুর স্থানান্ধ (2,3)।

∴ সমাধান (x, y) = (2, 3)

$$2x + 5y = 1$$
$$x + 3y = 2$$

সমাধান: প্রদত্ত সমীকরণদ্বয়, $2x + 5y = 1 \dots \dots (i)$

$$x + 3y = 2 \dots \dots (ii)$$

সমীকরণ (i) থেকে পাই, 2x + 5y = 1বা, 5y = 1 - 2x

$$at, y = \frac{1 - 2x}{5}$$

সমীকরণটিতে x এর কয়েকটি মান নিয়ে y-এর অনুরূপ মান বের করি ও নিচের ছকটি তৈরি করি:

190 11 7 110					
х	-7	-2	3		
<i>y</i>	3	1	– 1		

সমীকরণটির লেখের উপর তিনটি বিন্দু (-7, 3), (-2, 1), (3, -1)

আবার, সমীকরণ (ii) থেকে পাই, x + 3y = 2

বা,
$$3y = 2 - x$$

বা,
$$y = \frac{2-x}{3}$$

সমীকরণটিতে x-এর কয়েকটি মান নিয়ে y-এর অনুরূপ মান বের করি ও নিচের ছকটি তৈরি করি:

X	- 1	-4	-7
y	1	2	3
সমীকরণটির লেখের উপর তিনটি বিন্দু (-1, 1), (-4, 2), (-7, 3)			

মনে করি, XOX'' ও YOY' যথাক্রমে x অক্ষ ও y অক্ষ এবং O মূলবিন্দু। ছক কাগজের উভয় অক্ষ বরাবর ক্ষুদ্রতম বর্গের প্রতি দুই বাহুর দৈর্ঘ্যকে একক ধরি। এখন ছক কাগজে সমীকরণ (i) হতে প্রাপ্ত (-7, 3), (-2, 1), (3, -1) বিন্দুগুলো স্থাপন করি ও তাদের পরম্পর সংযুক্ত করি। লেখটি একটি সরলরেখা। একইভাবে, সমীকরণ (ii) হতে প্রাপ্ত (-1, 1), (-4, 2), (-7, 3) বিন্দুগুলো স্থাপন করি ও তাদের পরম্পর সংযুক্ত করি। এক্ষেত্রেও লেখটি একটি সরলরেখা। মনে করি, সরলরেখাত্বয় পরম্পর P বিন্দুতে ছেদ করেছে। চিত্র থেকে দেখা যায়, P বিন্দুর স্থানাঙ্ক (-7, 3)।

$$\therefore$$
 সমাধান $(x, y) = (-7, 3)$

$$\begin{array}{c|c}
8 & 3x - 2y = 2 \\
5x - 3y = 5
\end{array}$$

মাধানঃ প্রদত্ত সমীকরণদ্বয়, 3x-2y=2 (i)

$$5x - 3y = 5$$
 (ii) সমীকরণ (i) থেকে পাই, $3x - 2y = 2$ বা, $-2y = 2 - 3x$ বা, $2y = 3x - 2$

বা,
$$y = \frac{3x - 2}{2}$$

সমীকরণটিতে x-এর কয়েকটি মান নিয়ে y-এর অনুরূপ মান বের করি ও

1 160 4 2 110 6014 1	.14.		
X	2	4	6
y	2	5	8

সমীকরণটির লেখের উপর তিনটি বিন্দু: (2,2),(4,5),(6,8)। আবার, সমীকরণ (ii) থেকে পাই, 5x - 3y = 5

বা,
$$-3y = 5 - 5x$$

বা, $3y = 5x - 5$

বা,
$$y = \frac{5x-5}{3}$$

স্মীকরণটিতে x-এর কয়েকটি মান নিয়ে y-এর অনুরূপ মান বের করি ও নিচের ছকটি তৈরি করি:

X	4	7	10
y	5	10	15
সমীকবণটিব লেখেব	টেপব তিনটি বিন্দ:	(4 5) (7 10)	(10, 15)

মনে করি, XOX' ও YOY' যথাক্রমে x অক্ষ ও y অক্ষ এবং O মূলবিন্দু। ছক কাগজের উভয় অক্ষ বরাবর ক্ষুদ্রতম বর্গের প্রতি দুই বাহুর দৈর্ঘ্যকে একক ধরি। এখন ছক কাগজে সমীকরণ (i) ও (ii) হতে প্রাপ্ত বিন্দুগুলো স্থাপন করি ও (i) ও (ii) नः এর বিন্দুগুলো যথাক্রমে যোগ করি। ফলে দুটি সরলরেখা পাওয়া গেল। মর্নে করি, সরলরেখাদ্বয় পরস্পর P বিন্দুতে ছেদ করেছে। চিত্র থেকে দেখা যায়, P বিন্দুর স্থানাঙ্ক (4, 5)।

∴ সমাধান (x, y) = (4, 5)

$$\frac{x}{2} + \frac{y}{3} = 2$$
$$2x + 3y = 13$$

<u>সমাধান</u>: প্রদত্ত সমীকরণদ্বয়, $\frac{x}{2} + \frac{y}{3} = 2$ (i) 2x + 3y = 13 (ii)

$$2x + 3y = 13 \dots \dots (ii)$$

সমীকরণ (i) থেকে পাই, $\frac{x}{2} + \frac{y}{3} = 2$

বা,
$$\frac{y}{3} = 2 - \frac{x}{2}$$

বা,
$$y = 6 - \frac{3x}{2}$$

সমীকরণটিতে x-এর কয়েকটি মান নিয়ে y-এর অনুরূপ মান বের করি ও নিচের ছকটি তৈরি করি:

X	2	4	6
y	3	0	-3

সমীকরণটির লেখের উপর তিনটি বিন্দু: (2, 3), (4, 0), (6, -3)। আবার, সমীকরণ (ii) থেকে পাই, 2x + 3y = 13

বা,
$$3y = 13 - 2x$$

$$4x, y = \frac{13 - 2x}{3}$$

সমীকরণটিতে χ -এর কয়েকটি মান নিয়ে γ -এর অনুরূপ মান বের করি ও নিচের ছকটি তৈরি করি:

X	2	5	8
у	3	1	-1

সমীকরণটির লেখের উপর তিনটি বিন্দু: (2,3),(5,1),(8,-1) ।

মনে করি, *XOX'* ও YOY' যথাক্রমে x অক্ষ ও y অক্ষ এবং O মূলবিন্দু। ছক কাগজের উভয় অক্ষ বরাবর ক্ষুদ্রতম বর্গের প্রতিবাহুর দৈর্ঘ্যকে একক ধরি। এখন ছক কাগজে সমীকরণ (i) হতে প্রাপ্ত (2, 3), (4, 0),

(6, -3) বিন্দুগুলো স্থাপন করি ও তাদের পরস্পর সংযুক্ত করি। লেখটি একটি সরলরেখা।

একইভাবে, সমীকরণ (ii) হতে প্রাপ্ত (2, 3), (5, 1), (8, -1) বিন্দুগুলো স্থাপন করি ও তাদের পরস্পর সংযুক্ত করি। এক্ষেত্রেও লেখটি একটি সরলরেখা। মনে করি, সরলরেখাদ্বয় পরস্পর P বিন্দুতে ছেদ করেছে। চিত্র থেকে দেখা যায়, P বিন্দুর স্থানান্ধ (2, 3)।

$$\therefore$$
 সমাধান $(x, y) = (2, 3)$

$$3x + y = 6$$
$$5x + 3y = 12$$

সমাধান: প্রদত্ত সমীকরণদ্বয়, $3x + y = 6 \dots \dots (i)$

$$5x + 3y = 12 \dots \dots (ii)$$

সমীকরণ (i) থেকে পাই, 3x + y = 6

বা,
$$y = 6 - 3x$$

সমীকরণটিতে χ -এর কয়েকটি মান নিয়ে γ -এর অনুরূপ মান বের করি ও নিচের ছকটি তৈরি করি:

x	2	1	3
y	0	3	-3

সমীকরণটির লেখের উপর তিনটি বিন্দু: (2, 0), (1, 3), (3, -3) ।

আবার, সমীকরণ (ii) থেকে পাই, 5x + 3y = 12

বা,
$$3y = 12 - 5x$$

বা,
$$y = \frac{12 - 5x}{3}$$

সমীকরণটিতে x-এর কয়েকটি মান নিয়ে y-এর অনুরূপ মান বের করি ও নিচের ছকটি তৈরি করি:

х	0	3	6
y	4	-1	-6

সমীকরণটির লেখের উপর তিনটি বিন্দু: $(0,\overline{4}),(3,-1),(6,-6)$ ।

মনে করি, XOX' ও YOY' যথাক্রমে x অক্ষ ও y অক্ষ এবং O মূলবিন্দু। ছক কাগজের উভয় অক্ষ বরাবর ক্ষুদ্রতম বর্গের বাহুর দৈর্ঘ্যের দ্বিগুণকে একক ধরে প্রথম সমীকরণের লেখের (2,0),(1,3),(3,-3) বিন্দুগুলো ছক কাগজে স্থাপন করে তাদের সংযোগকারী সরলরেখাকে উভয় দিকে বর্ধিত করে। আবার একই অক্ষযুগল ও একক নিয়ে দ্বিতীয় সমীকরণের লেখের (0,4),(3,-1),(6,-6) বিন্দুগুলো ছক কাগজে স্থাপন করি। এদের সংযোগকারী রেখাংশকে উভয় দিকে বর্ধিত করি। উল্লেখ্য, দুইটি লেখই সরলরেখা। সরলরেখা দুইটি পরস্পর P বিন্দুতে ছেদ করে। P বিন্দু উভয় সরলরেখাই সাধারণ বিন্দু বলে এই বিন্দুর স্থানাঙ্ক উভয় সমীকরণকে সিদ্ধ করে। লেখ থেকে

দেখা যায় যে, P বিন্দুর ভুজ ও কোটি যথাক্রমে $1.5=rac{3}{2}$ এবং $1.5=rac{3}{2}$ ।

∴ সমাধান,
$$(x, y) = (1.5, 1.5)$$
 বা $(\frac{3}{2}, \frac{3}{2})$

$$9 \quad 3x + 2y = 4$$
$$3x - 4y = 1$$

সমাধান: প্রদত্ত সমীকরণদ্বয়,
$$3x + 2y = 4 \dots \dots (i)$$

বা,
$$2y = 4 - 3x$$

বা, $y = \frac{4 - 3x}{2}$

সমীকরণটিতে x-এর কয়েকটি মান নিয়ে y-এর অনুরূপ মান বের করি ও নিচের ছকটি তৈরি করি:

. 100 11 - 11- 0-				
X	0	1	8	-4
У	2	1/2	-10	8

সমীকরণটির লেখের উপর চারটি বিন্দু: (0,2), $(1,\frac{1}{2})$, (8,-10), (-4,8) আবার, সমীকরণ (ii) নং হতে পাই, 3x-4y=1

বা,
$$-4y = 1 - 3x$$

বা, $4y = 3x - 1$

সমীকরণটিতে x-এর কয়েকটি মান নিয়ে y-এর অনুরূপ মান বের করে নিচের ছকটি তৈরি করি:

х	1	-5	7	11
У	1/2	-4	5	8

সমীকরণটির লেখের উপর চারটি বিন্দু: $(1, \frac{1}{2}), (-5, -4), (7, 5), (11, 8)$ ।

মনে করি, XOX'' ও YOY'' যথাক্রমে x অক্ষ ও y অক্ষ এবং O মূলবিন্দু । ছক কাগজের উভয় অক্ষ বরাবর ক্ষুদ্রতম এক বর্গের বাহুর দৈর্ঘ্যকে একক ধরে (i) নং সমীকরণের লেখের উল্লিখিত বিন্দুগুলো ছক কাগজে স্থাপন করে যোগ করি । লেখিট একটি সরলরেখা । (ii) নং সমীকরণের লেখের উল্লিখিত বিন্দুগুলো একই ছক কাগজে স্থাপন করে যোগ করি । এই লেখটিও একটি সরলরেখা ।

সরলরেখা দুইটি পরস্পর P বিন্দুতে ছেদ করে। যেহেতু P বিন্দু উভয় সরলরেখায় অবস্থিত, সেহেতু, P বিন্দুর ভুজ ও কোটি উভয় সমীকরণকে সিদ্ধ করে। লেখ

থেকে দেখা যায় যে, P বিন্দুর ভুজ ও কোটি যথাক্রমে 1 এবং $0.5=\frac{1}{2}$ ।

∴ সমাধান,
$$(x, y) = (1, 0.5)$$
 বা $(1, \frac{1}{2})$

$$\frac{x}{2} + \frac{y}{3} = 3$$

$$x + \frac{y}{6} = 3$$

<u>সমাধান</u>: প্রদত্ত সমীকরণদ্বয়, $\frac{x}{2} + \frac{y}{3} = 3 \dots \dots (i)$

$$x + \frac{y}{6} = 3 \dots \dots \dots (ii)$$

সমীকরণ (i) থেকে পাই, $\frac{x}{2} + \frac{y}{3} = 3$

বা,
$$\frac{y}{3} = 3 - \frac{x}{2}$$

$$4x = 9 - \frac{3x}{2}$$

সমীকরণটিতে x-এর কয়েকটি মান নিয়ে y-এর অনুরূপ মান বের করি ও নিচের ছকটি তৈরি করি:

	х	2	4	6
Γ	y	6	3	0

সমীকরণটির লেখের উপর তিনটি বিন্দু: (2,6),(4,3),(6,0)।

আবার, সমীকরণ (ii) থেকে পাই, $x + \frac{y}{6} = 3$

বা,
$$\frac{y}{6} = 3 - x$$

বা,
$$y = 18 - 6x$$

সমীকরণটিতে x-এর কয়েকটি মান নিয়ে y-এর অনুরূপ মান বের করি ও নিচের ছকটি তৈরি করি:

х	1	2	3
у	12	6	0
G 6	~ ~ ~ ~		

সমীকরণটির লেখের উপর তিনটি বিন্দু: (1, 12), (2, 6), (3, 0)।

মনে করি, XOX' ও YOY' যথাক্রমে x অক্ষ ও y অক্ষ এবং O মূলবিন্দু। ছক কাগজের উভয় অক্ষ বরাবর ক্ষুদ্রতম বর্গের প্রতিবাহুর দৈর্ঘ্যকে একক ধরি। এখন ছক কাগজে সমীকরণ (i) হতে প্রাপ্ত (2, 6), (4, 3), (6, 0) বিন্দুগুলো স্থাপন করি ও তাদের পরস্পর সংযুক্ত করি। লেখটি একটি সরলরেখা।

একইভাবে, সমীকরণ (ii) হতে প্রাপ্ত (1,12), (2,6), (3,0) বিন্দুগুলো স্থাপন করি ও তাদের পরস্পর সংযুক্ত করি। এক্ষেত্রেও লেখটি একটি সরলরেখা। মনে করি, সরলরেখাদ্বয় পরস্পর P বিন্দুতে ছেদ করেছে। চিত্র থেকে দেখা যায়, P বিন্দুর স্থানাম্ক (2,6)।

$$\therefore$$
 সমাধান $(x, y) = (2, 6)$

3x + 2 = x - 2

সমাধান: প্রদত্ত সমীকরণ, 3x + 2 = x - 2

ধরি, প্রদত্ত সমীকরণের উভয়পক্ষ γ এর সমান

$$\therefore y = 3x + 2 \dots \dots (i)$$

এবং y = x - 2 (ii)

এখন সমীকরণ (i) এ x এর কয়েকটি মান নিয়ে y-এর অনুরূপ মান বের করি ও নিচের ছকটি তৈরি করি:

x	2	-2	-4
y	8	-4	-10

সমীকরণটির লেখের উপর তিনটি বিন্দু: (2,8),(-2,-4),(-4,-10) ।

আবার, সমীকরণ (ii) এ x এর কয়েকটি মান নিয়ে y-এর অনুরূপ মান বের করি ও নিচের ছকটি তৈরি করি:

х	2	-2	-6
У	0	-4	-8

সমীকরণটির লেখের উপর তিনটি বিন্দু: (2,0), (-2,-4), (-6,-8)

মনে করি, XOX' ও YOY' যথাক্রমে x অক্ষ ও y অক্ষ এবং O মূলবিন্দু। ছক কাগজের উভয় অক্ষ বরাবর ক্ষুদ্রতম বর্গের প্রতি দুই বাহুর দৈর্ঘ্যকে একক ধরি। এখন ছক কাগজে সমীকরণ (i) হতে প্রাপ্ত (2,8), (-2,-4), (-4,-10) বিন্দুগুলো স্থাপন করি ও তাদের পরস্পর সংযুক্ত করি। লেখটি একটি সরলরেখা। একইভাবে, সমীকরণ (ii) হতে প্রাপ্ত (2,0), (-2,-4), (-6,-8) বিন্দুগুলো স্থাপন করি ও তাদের পরস্পর সংযুক্ত করি। এক্ষেত্রেও লেখটি একটি সরলরেখা।

মনে করি, সরলরেখাদ্বয় পরস্পর P বিন্দুতে ছেদ করেছে। চিত্র থেকে দেখা যায়, ছেদবিন্দুটির স্থানান্ধ (–2, –4)।

 \therefore সমাধান x = -2

3x - 7 = 3 - 2x

সমাধান: প্রদত্ত সমীকরণ, 3x - 7 = 3 - 2x ধরি, প্রদত্ত সমীকরণের উভয়পক্ষ y এর সমান

$$\therefore y = 3x - 7 \dots (i)$$

এবং
$$y = 3 - 2x$$
 (ii)

এখন সমীকরণ (i) এ x এর কয়েকটি মান নিয়ে y-এর অনুরূপ মান বের করি ও নিচের ছকটি তৈরি করি:

х	0	1	2
у	- 7	-4	-1

সমীকরণটির লেখের উপর তিনটি বিন্দু: (0,-7), (1,-4), (2,-1)। আবার, সমীকরণ (ii) এ x এর কয়েকটি মান নিয়ে y-এর অনুরূপ মান বের করি ও নিচের ছকটি তৈরি করি:

х	0	2	4
y	3	-1	-5

সমীকরণটির লেখের উপর তিনটি বিন্দু: (0, 3), (2, -1), (4, -5)।

মনে করি, XOX' ও YOY' যথাক্রমে x অক্ষ ও y অক্ষ এবং O মূলবিন্দু। ছক কাগজের উভয় অক্ষ বরাবর ক্ষুদ্রতম বর্গের প্রতি বাহুর দৈর্ঘ্যকে একক ধরি। এখন ছক কাগজে সমীকরণ (i) হতে প্রাপ্ত (0, -7), (1, -4), (2, -1) বিন্দুগুলো স্থাপন করি ও তাদের পরস্পর সংযুক্ত করি। লেখটি একটি সরলরেখা।

একইভাবে, সমীকরণ (ii) হতে প্রাপ্ত (0,3),(2,-1),(4,-5) বিন্দুগুলো স্থাপন করি ও তাদের পরস্পর সংযুক্ত করি। এক্ষেত্রেও লেখটি একটি সরলরেখা। মনে করি, সরলরেখাদ্বয় পরস্পর P বিন্দুতে ছেদ করেছে। চিত্র থেকে দেখা যায়, P বিন্দুর স্থানাম্ক (2,-1)।

ছেদ বিন্দুর ভুজ 2, যা প্রদত্ত সমীকরণের সমাধান।

 \therefore সমাধান x=2

পাঠ্যবইয়ের কাজের সমাধান

কাজ

পাঠ্যবই পৃষ্ঠা-২৪২

2x - y - 3 = 0 সমীকরণের লেখের উপর ছকের মাধ্যমে চারটি বিন্দু নির্ণয় কর। অতঃপর ছক কাগজে নির্দিষ্ট দৈর্ঘ্যের একক নিয়ে বিন্দুগুলো স্থাপন কর ও এদের পরস্পর সংযুক্ত কর। লেখটি কি সরলরেখা হয়েছে?

সমাধান: প্রদত্ত সমীকরণটি,

$$2x - y - 3 = 0 \dots \dots (i)$$

সমীকরণ (i) হতে পাই,

$$2x - y - 3 = 0$$

বা,
$$-y = 3 - 2x$$

বা, y = 2x - 3 [উভয়পক্ষকে (-1) দ্বারা গুণ করে]

সমীকরণটিতে x-এর কয়েকটি মান নিয়ে y এর অনুরূপ মান বের করি ও নিচের ছকটি তৈরি করি:

х	0	1	2	3
y	-3	-1	1	3

 \therefore সমীকরণটির লেখের উপর চারটি বিন্দু (0, -3), (1, -1), (2, 1), (3, 3)

মনে করি, ছক কাগজে XOX' ও YOY' যথাক্রমে x-অক্ষ ও y-অক্ষ এবং O মূল বিন্দু ।

ছক কাগজের উভয় অক্ষ বরাবর ক্ষুদ্রতম বর্গক্ষেত্রের প্রতিবাহুর দৈর্ঘ্যকে একক ধরে সমীকরণ (i) হতে প্রাপ্ত (0,-3), (1,-1), (2,1), (3,3) বিন্দুগুলো স্থাপন করি ও তাদের পরস্পার যোগ করি। প্রাপ্ত লেখটি একটি সরলরেখা।