Universidad Nacional Autónoma de Honduras GEometría II Ejercicios de Repaso para el Parcial III

Profesor: Dr. Fredy Vides

- 1. Probar que si E_j es un subconjunto cerrado de X_j , $1 \le j \le n$, entonces $E_1 \times \cdots \times E_n$ es un subconjunto cerrado de $X_1 \times \cdots \times X_n$.
- 2. Probar que las componentes conexas de $X_1 \times \cdots \times X_n$ son los conjuntos de la forma $E_1 \times \cdots \times E_n$, donde E_j es una componente conexa de X_j , $1 \le j \le n$. Probar que un resultado similar es válido para componentes de trayectorias.
- 3. Probar que cada proyección π_{β} de ΠX_{α} sobre un espacio coordenado X_{β} es un mapa abierto.
- 4. Probar que el producto de espacios de Hausdorff es de Hausdorff.
- 5. Probar que el producto de espacios CPT es CPT.
- 6. Sea X/\sim el espacio cociente determinado por una relación de equivalencia \sim en un ET X. Probar las siguientes afirmaciones:
 - (a) Si X es compacto, entonces X/\sim es compacto.
 - (b) Si X es conexo, entonces X/\sim es conexo.
 - (c) Si X es CPT, entonces X/\sim es CPT.
- 7. Sea f un mapa abierto contínuo de un ET X sobre un ET Y. Probar que Y es homeomorfo al espacio cociente de X obtenido al identificar cada conjunto de nivel de f con un punto.
- 8. Sea $X = X_1 \times \cdots \times X_n$ un producto de espacios topológicos. Definir una relación de equivalencia \sim en X declarando que $(x_1, \ldots, x_n) \sim (y_1, \ldots, y_n)$ ssi $x_1 = y_1$. Probar que X/\sim es homeomorfo a X_1 . Probar un resultado análogo para un espacio producto infinito $X = \prod_{\alpha \in A} X_{\alpha}$.
- 9. Calcular $\pi_1([0,1]/(0 \iff 1))$.
- 10. Calcular $\pi_1(\mathbb{D}^2/(\partial \mathbb{D}^2 \leftrightarrow \star))$.