

Tutorium

Wahrscheinlichketstheorie und Frequentistische Inferenz

BSc Psychologie WiSe 2022/23

Belinda Fleischmann

(6) Erwartungswert und Kovarianz

Selbstkontrollfragen

- 1. Definieren und interpretieren Sie den Erwartungswert einer Zufallsvariable.
- 2. Berechnen Sie den Erwartungswert einer Bernoulli Zufallsvariable.
- 3. Nennen Sie drei Eigenschaften des Erwartungswerts.
- 4. Definieren und interpretieren Sie die Varianz einer Zufallsvariable.
- 5. Berechnen Sie die Varianz einer Bernoulli Zufallsvariable.
- 6. Drücken Sie $\mathbb{E}(\xi^2)$ mithilfe der Varianz und des Erwartungswerts von ξ aus.
- 7. Was ist $V(a\xi)$ für konstantes $a \in \mathbb{R}$?
- 8. Definieren Sie die Kovarianz und Korrelation zweier Zufallsvariablen ξ und υ .
- 9. Geben Sie das Theorem zur Varianz von Linearkombinationen von Zufallsvariablen bei Unabhängigkeit wieder.
- 10. Definieren Sie den Begriff der Stichprobe.
- Definieren Sie den Begriff des Stichprobenmittels.
- 12. Definieren Sie Stichprobenvarianz und Stichprobenstandardabweichung.

Selbstkontrollfragen

- Erläutern Sie die Unterschiede zwischen dem Erwartungswertparameter, dem Erwartungswert und dem Stichprobenmittel von normalverteilten Zufallsvariablen.
- 14. Definieren Sie die Kovarianz und die Korrelation zweier Zufallsvariablen.
- 15. Schreiben Sie die Kovarianz zweier Zufallsvariablen mithilfe von Erwartungswerten.
- 16. Geben Sie das Theorem zur Korrelation und Unabhängigkeit zweier Zufallsvariablen wieder.
- 17. Was ist die Varianz der Summe zweier Zufallsvariablen bei Unabhängigkeit?
- 18. Was ist die Varianz der Summe zweier Zufallsvariablen im Allgemeinen?
- 19. Definieren Sie das Stichprobenmittel für eine Stichprobe zweidimensionaler Zufallsvektoren.
- 20. Definieren Sie die Stichprobenkovarianz einer Stichproben von zweidimensionaler Zufallsvektoren.
- 21. Wann ergeben sich für die Stichprobenkovarienz hohe positive oder hohe negative Werte?
- 22. Wann ergeben sich für die Stichprobenkovarianzwerte nahe Null?
- 23. Definieren Sie den Stichprobenkorrelationskoeffizienten.

Wir nehmen an, dass die BDI Score Fehler der Proband:innen Realisierungen unabhängiger und identisch normalverteilter Zufallsvariablen sind.

Wahrscheinlichkeitstheorie

$$\begin{aligned} y_{1j} &= \mu_1 + \varepsilon_{1j} \cdot \varepsilon_{1j} \sim N(0, \sigma^2), j = 1, ..., n_1 \\ y_{2j} &= \mu_2 + \varepsilon_{2j} \cdot \varepsilon_{2j} \sim N(0, \sigma^2), j = 1, ..., n_2 \\ \mathbb{E}(\varepsilon_{ij}) &= 0, \mathbb{V}(\varepsilon_{ij}) = \sigma^2 \, \forall \, i, j \\ \mathbb{C}(\varepsilon_{ij}, \varepsilon_{kl}) &= 0 \, \forall \, i \neq k, j \neq l \end{aligned}$$

Zufallsvorgang

Klinische Studie zum Vergleich der Effekte von Face-to-Face und Online PT bei Depression

SKF 1. Erwartungswert

1. Definieren und interpretieren Sie den Erwartungswert einer Zufallsvariable.

Definition (Erwartungswert)

 $(\Omega, \mathcal{A}, \mathbb{P})$ sei ein Wahrscheinlichkeitsraum und ξ sei eine Zufallsvariable. Dann ist der *Erwartungswert von* ξ definiert als

- $\bullet \ \ \mathbb{E}(\xi) := \sum\nolimits_{x \in \mathcal{X}} x \, p_{\xi}(x) \text{, wenn } \xi : \Omega \to \mathcal{X} \text{ diskret mit WMF } p_{\xi} \text{ und Ergebnisraum } \mathcal{X} \text{ ist,}$
- $\mathbb{E}(\xi) := \int_{-\infty}^{\infty} x \, p_{\xi}(x) \, dx$, wenn $\xi : \Omega \to \mathbb{R}$ kontinuierlich mit WDF p_{ξ} ist.

Der Erwartungswert einer Zufallsvariable heißt existent, wenn er endlich ist.

Bemerkungen

- Der Erwartungswert ist eine skalare Zusammenfassung einer Verteilung.
- Intuitiv ist $\mathbb{E}(\xi) \approx \frac{1}{n} \sum_{i=1}^{n} \xi_i$ für eine große Zahl n von Kopien ξ_i von ξ .
- Für manche Verteilungen, wie etwa bei einer Normalverteilung $N(\mu, \sigma^2)$ mit Erwartungswert*parameter* μ und Varianz*parameter* σ^2 , entspricht der Erwartungswert $\mathbb{E}(\xi)$ dem Erwartungswert*parameter* μ , wie die Beweise im VL-Skript zeigen. $\mathbb{E}(\xi)$ und μ sind aber nicht das gleiche!
- Intuitiv kann der Erwartungswert als der Mittelwert von sehr vielen Realisierungen einer ZV verstanden werden.
 Anders ausgedrückt, bei einer großen Zahl an Realisierungen nähert sich der Mittelwert dem Erwartungswert an.
- Der Erwartungswert kann bestimmt werden, wenn Messraum und Verteilung einer ZV festgelegt wurden.
 - Durch den Messraum wissen wir, welche Werte die ZV annehmen kann.
 - Die Verteilung sagt uns, mit welcher Wahrscheinlichkeitsmasse /-dichte diese Werte assoziiert sind.

2. Berechnen Sie den Erwartungswert einer Bernoulli Zufallsvariable.

Es sei $\xi \sim \mathrm{Bern}(\mu)$. Dann gilt $\mathbb{E}(\xi) = \mu$.

Beweis

 ξ ist diskret mit $\mathcal{X} = \{0, 1\}$. Also gilt

$$\mathbb{E}(\xi) = \sum_{x \in \{0,1\}} x \operatorname{Bern}(x; \mu)$$

$$= 0 \cdot \mu^{0} (1 - \mu)^{1-0} + 1 \cdot \mu^{1} (1 - \mu)^{1-1}$$

$$= 1 \cdot \mu^{1} (1 - \mu)^{0}$$

$$= \mu.$$
(1)

Konkretes Beispiel:

Es sei $\xi \sim \mathrm{Bern}(\mu)$ mit $\mu=0.5$. Per Definition ist $\mathcal{X}=\{0,1\}$ gegeben. Wenn wir sagen, dass das Ergebnis $0\in\mathcal{X}$ Kopf und $1\in\mathcal{X}$ Zahl repräsentiert, können wir mit einer Bernoullig-ZV mit $\mu=0.5$ einen Münzwurf modellieren. Dann ergibt sich für den Erwartungswert

$$\mathbb{E}(\xi) = \mu = 0.5$$

Definition (Bernoulli-Zufallsvariable)

Es sei ξ eine Zufallsvariable mit Ergebnisraum $\mathcal{X}=\{0,1\}$ und WMF

$$p: \mathcal{X} \to [0, 1], x \mapsto p(x) := \mu^x (1 - \mu)^{1 - x} \text{ mit } \mu \in [0, 1].$$
 (2)

Dann sagen wir, dass ξ einer Bernoulli-Verteilung mit Parameter $\mu \in [0,1]$ unterliegt und nennen ξ eine Bernoulli-Zufallsvariable. Wir kürzen dies mit $\xi \sim \text{Bern}(\mu)$ ab. Die WMF einer Bernoulli-Zufallsvariable bezeichnen wir mit

Bern
$$(x; \mu) := \mu^x (1 - \mu)^{1 - x}$$
. (3)

3. Nennen Sie drei Eigenschaften des Erwartungswerts.

Theorem (Eigenschaften des Erwartungswerts)

(1) (Linear-affine Transformation) Für eine Zufallsvariable ξ und $a,b\in\mathbb{R}$ gilt

$$\mathbb{E}(a\xi + b) = a\mathbb{E}(\xi) + b. \tag{4}$$

(2) (Linearkombination) Für Zufallsvariablen $\xi_1,...,\xi_n$ und $a_1,...,a_n\in\mathbb{R}$ gilt

$$\mathbb{E}\left(\sum_{i=1}^{n} a_i \xi_i\right) = \sum_{i=1}^{n} a_i \mathbb{E}(\xi_i). \tag{5}$$

(3) (Faktorisierung bei Unabhängigkeit) Für unabhängige Zufallsvariablen $\xi_1,...,\xi_n$ gilt

$$\mathbb{E}\left(\prod_{i=1}^{n} \xi_i\right) = \prod_{i=1}^{n} \mathbb{E}(\xi_i). \tag{6}$$

4. Definieren und interpretieren Sie die Varianz einer Zufallsvariable.

Definition (Varianz und Standardabweichung)

Es sei ξ eine Zufallsvariable mit Erwartungswert $\mathbb{E}(\xi)$. Die Varianz von ξ ist definiert als

$$\mathbb{V}(\xi) := \mathbb{E}\left(\left(\xi - \mathbb{E}(\xi)\right)^2\right),\tag{7}$$

unter der Annahme, dass dieser Erwartungswert existiert. Die Standardabweichung von ξ ist definiert

$$\mathbb{S}(\xi) := \sqrt{\mathbb{V}(\xi)}.\tag{8}$$

Bemerkungen

- Die Varianz misst die Streuung (Breite) einer Verteilung.
- Quadration ist nötig wegen $\mathbb{E}(\xi \mathbb{E}(\xi)) = \mathbb{E}(\xi) \mathbb{E}(\xi) = 0$.
- Intuitiv quantifiziert die Varianz, wie viel die Werte, die eine ZV annehmen kann "variieren", besser gesagt vom Erwartungswert abweichen, oder anders ausgedrückt um den Erwartungswert streuen.

5. Berechnen Sie die Varianz einer Bernoulli Zufallsvariable.

Es sei $\xi \sim \text{Bern}(\mu)$. Dann ist die Varianz von ξ gegeben durch $\mathbb{V}(\xi) = \mu(1-\mu)$.

Beweis

 ξ ist eine diskrete Zufallsvariable und es gilt $\mathbb{E}(\xi)=\mu$. Also gilt

$$V(\xi) = \mathbb{E}\left((\xi - \mu)^2\right)$$

$$= \sum_{x \in \{0,1\}} (x - \mu)^2 \operatorname{Bern}(x; \mu)$$

$$= (0 - \mu)^2 \mu^0 (1 - \mu)^{1-0} + (1 - \mu)^2 \mu^1 (1 - \mu)^{1-1}$$

$$= \mu^2 (1 - \mu) + (1 - \mu)^2 \mu$$

$$= \left(\mu^2 + (1 - \mu)\mu\right) (1 - \mu)$$

$$= \left(\mu^2 + \mu - \mu^2\right) (1 - \mu)$$

$$= \mu(1 - \mu).$$
(9)

Konkretes Beispiel:

Es sei $\xi \sim \text{Bern}(\mu)$ mit $\mu = 0.5$. Dann ergibt sich für die Varianz

$$V(\xi) = \mu(1 - \mu) = 0.5(0.5) = 0.25$$

Weitere Beispiele

SKF 6. Erwartungswert einer quadrierten ZV

6. Drücken Sie $\mathbb{E}(\xi^2)$ mithilfe der Varianz und des Erwartungswerts von ξ aus.

Gemäß Varianzverschiebungssatz gilt $\mathbb{V}(\xi) = \mathbb{E}\left(\xi^2\right) - \mathbb{E}(\xi)^2$.

Durch Umstellen der Gleichung erhalten wir

$$\mathbb{V}(\xi) = \mathbb{E}\left(\xi^2\right) - \mathbb{E}(\xi)^2$$

$$\Leftrightarrow \mathbb{V}(\xi) + \mathbb{E}(\xi)^2 = \mathbb{E}\left(\xi^2\right)$$

Somit können wir $\mathbb{E}(\xi^2)$ mithilfe der Varianz einer quadrierten ZV ξ^2 ($\mathbb{V}(\xi)$) und des Erwartungswerts von ξ ($\mathbb{E}(\xi)$), wobei wir den Erwartungswert in Quadrat nehmen, formal

$$\mathbb{E}\left(\xi^2\right) = \mathbb{V}(\xi) + \mathbb{E}(\xi)^2$$

SKF 7. Varianzeigenschaften

7. Was ist $\mathbb{V}(a\xi)$ für konstantes $a \in \mathbb{R}$?

Nach dem ersten Satz (Linear-affine Transformation) des Theorems zu Varianzeigenschaften gilt für eine Zufallsvariable ξ und $a,b\in\mathbb{R}$

$$\mathbb{V}(a\xi+b)=a^2\mathbb{V}(\xi) \text{ und } \mathbb{S}(a\xi+b)=|a|\mathbb{S}(\xi).$$

Somit gilt

$$\mathbb{V}(a\xi) = a^2 \mathbb{V}(\xi)$$

8. Definieren Sie die Kovarianz und Korrelation zweier Zufallsvariablen ξ und v.

Definition (Kovarianz und Korrelation)

Die Kovarianz zweier Zufallsvariablen ξ und υ ist definiert als

$$\mathbb{C}(\xi, \upsilon) := \mathbb{E}\left(\left(\xi - \mathbb{E}(\xi)\right)\left(\upsilon - \mathbb{E}(\upsilon)\right)\right). \tag{10}$$

Die Korrelation zweier Zufallsvariablen ξ und υ ist definiert als

$$\rho(\xi, \upsilon) := \frac{\mathbb{C}(\xi, \upsilon)}{\sqrt{\mathbb{V}(\xi)}\sqrt{\mathbb{V}(\upsilon)}} = \frac{\mathbb{C}(\xi, \upsilon)}{\mathbb{S}(\xi)\mathbb{S}(\upsilon)}.$$
 (11)

Bemerkungen

• Die Kovarianz von ξ mit sich selbst ist die Varianz von ξ ,

$$\mathbb{C}(\xi,\xi) = \mathbb{E}\left(\left(\xi - \mathbb{E}(\xi)\right)^2\right) = \mathbb{V}(\xi). \tag{12}$$

- $\rho(\xi, v)$ wird auch Korrelationskoeffizient von ξ und v genannt.
- Wenn $\rho(\xi, v) = 0$ ist, werden ξ und v unkorreliert genannt.

SKF 9. Varianz von ZV-Linearkombinationen bei Unabhängigkeit

9. Geben Sie das Theorem zur Varianz von Linearkombinationen von Zufallsvariablen bei Unabhängigkeit wieder.

Theorem (Korrelation und Unabhängigkeit)

 ξ und υ seien zwei Zufallsvariablen. Wenn ξ und υ unabhängig sind, dann ist $\mathbb{C}(\xi,\upsilon)=0$ und ξ und υ sind unkorreliert. Ist dagegen $\mathbb{C}(\xi,\upsilon)=0$ und sind ξ und υ somit unkorreliert, dann sind ξ und υ nicht notwendigerweise unabhängig.

SKF 10. Stichprobe.

10. Definieren Sie den Begriff der Stichprobe.

 $\xi_1,...,\xi_n$ seien Zufallsvariablen. Dann nennt man $\xi_1,...,\xi_n$ auch eine $\it Stichprobe.$

11. Definieren Sie den Begriff des Stichprobenmittels.

Das $\mathit{Stichprobenmittel}$ von $\xi_1, ..., \xi_n$ ist definiert als der arithmetische Mittelwert

$$\bar{\xi}_n := \frac{1}{n} \sum_{i=1}^n \xi_i.$$
 (13)

Bemerkungen

- $\mathbb{E}(\xi)$, $\mathbb{V}(\xi)$, und $\mathbb{S}(\xi)$ sind Kennzahlen einer Zufallsvariable ξ .
- $\bullet \ \ \bar{\xi}_n, S^2_n$, und S_n sind Kennzahlen einer Stichprobe $\xi_1, ..., \xi_n.$
- $\bar{\xi}_n, S_n^2$, und S_n sind Zufallsvariablen, ihre Realisationen werden mit \bar{x}_n, s_n^2 , und s_n bezeichnet.
- Hingegen sind Erwartungswert $\mathbb{E}(\xi)$ und Varianz $\mathbb{V}(\xi)$ nicht zufällig.
- Stichprobenkennzahlen können berechnet werden, wenn wir Realisierungen einer ZV haben.

SKF 12. Stichprobenvariaz und -standardabweichung

12. Definieren Sie Stichprobenvarianz und Stichprobenstandardabweichung.

Die Stichprobenvarianz von $\xi_1, ..., \xi_n$ ist definiert als

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (\xi_i - \bar{\xi}_n)^2. \tag{14}$$

Die Stichprobenstandardabweichung ist definiert als

$$S_n := \sqrt{S_n^2}. (15)$$

Stichprobenmittel, -varianz und -standardabweichung

- Es seien $\xi_1, ..., \xi_{10} \sim N(1, 2)$.
- Wir nehmen die folgenden Realisationen an

· Die Stichprobenmittelrealisation ist

$$\bar{x}_{10} = \frac{1}{10} \sum_{i=1}^{10} x_i = \frac{6.88}{10} = 0.68.$$
 (16)

Die Stichprobenvarianzrealisation ist

$$s_{10}^2 = \frac{1}{9} \sum_{i=1}^{10} (x_i - \bar{x}_{10})^2 = \frac{1}{9} \sum_{i=1}^{10} (x_i - 0.68)^2 = \frac{25.37}{9} = 2.82.$$
 (17)

Die Stichprobenstandardabweichungrealisation ist

$$s_{10} = \sqrt{s_{10}^2} = \sqrt{2.82} = 1.68.$$
 (18)

13. Erläutern Sie die Unterschiede zwischen dem Erwartungswertparameter, dem Erwartungswert und dem Stichprobenmittel von normalverteilten Zufallsvariablen.

- Der Erwartungswertparameter, so wie wir ihn für die Normalverteilung $N(\mu,\sigma^2)$ definieren, ist eine im Modell gegebene Größe, welche die funktionale Form (i.e. $\frac{1}{\sqrt{2\pi\sigma^2}}\exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$) der Normalverteilung bestimmt.
 - ullet Unterschiedliche Werte für den Parameter μ ergeben unterschiedliche funktionale Formen (vgl. Einheit (4) Zufallsvariablen)
- Der Erwartungswert $\mathbb{E}(\xi)$ ist eine Kennzahl einer Zufallsvariable ξ .
 - Für eine gegebene ZV mit definiertem Messraum und Verteilung ergibt sich immer der gleiche Erwartungswert.
- Das Stichprobenmittel $\bar{\xi}_n$ ist eine Kennzahle einer Stichprobe $\xi_1, ..., \xi_n$.
 - $\bar{\xi}_n$ ist eine Zufallsvariable, dessen Realisation mit \bar{x}_n bezeichnet wird; so wie die Realisation einer Stichprobe mit x_1, \dots, x_n bezeichnet wird.
 - Für eine gegebene Stichprobe $\xi_1,...,\xi_n$ ist das Stichprobenmittel $\bar{\xi}_n$ immer der gleiche Wert.
 - Jede Realisation einer Stichprobe (x1,...,xn) hat zugehörige Stichprobenkennzahlen, zu denen auch das Stichprobenmittel x

 n z

 ählt. Dieser Wert ist bei gegebener Stichprobenrealisation immer der gleiche.
 - Verschiedenen Realisationen einer Stichprobe ξ₁, ..., ξ_n können (und werden aller Wahrscheinlichkeit nach) verschiedene Werte für ξ̄_n ergeben.

14. Definieren Sie die Kovarianz und die Korrelation zweier Zufallsvariablen.

Definition (Kovarianz und Korrelation)

Die Kovarianz zweier Zufallsvariablen ξ und υ ist definiert als

$$\mathbb{C}(\xi, \upsilon) := \mathbb{E}\left(\left(\xi - \mathbb{E}(\xi)\right)\left(\upsilon - \mathbb{E}(\upsilon)\right)\right). \tag{19}$$

Die Korrelation zweier Zufallsvariablen ξ und υ ist definiert als

$$\rho(\xi, v) := \frac{\mathbb{C}(\xi, v)}{\sqrt{\mathbb{V}(\xi)}\sqrt{\mathbb{V}(v)}} = \frac{\mathbb{C}(\xi, v)}{\mathbb{S}(\xi)\mathbb{S}(v)}.$$
 (20)

Bemerkungen

• Die Kovarianz von ξ mit sich selbst ist die Varianz von ξ ,

$$\mathbb{C}(\xi,\xi) = \mathbb{E}\left(\left(\xi - \mathbb{E}(\xi)\right)^2\right) = \mathbb{V}(\xi). \tag{21}$$

- $\rho(\xi, \upsilon)$ wird auch Korrelationskoeffizient von ξ und υ genannt.
- Wenn $\rho(\xi, v) = 0$ ist, werden ξ und v unkorreliert genannt.
- Es gilt $-1 \le \rho(\xi, \upsilon) \le 1$.

SKF 15. Kovarianzverschiebungssatz

15. Schreiben Sie die Kovarianz zweier Zufallsvariablen mithilfe von Erwartungswerten.

Gemäß Kovarianzverschiebungssatz gilt für zwei Zufallsvariablen ξ und υ

$$\mathbb{C}(\xi,\upsilon) = \mathbb{E}(\xi\upsilon) - \mathbb{E}(\xi)\mathbb{E}(\upsilon)$$

Die Kovarianz ergibt sich aus der Differenz von dem Erwartungswert des Produktes und dem Produkt beider Erwartungswerte.

SKF 16. Korrelation und Unabhgk. zweier ZVen

16. Geben Sie das Theorem zur Korrelation und Unabhängigkeit zweier Zufallsvariablen wieder.

Theorem (Korrelation und Unabhängigkeit)

 ξ und υ seien zwei Zufallsvariablen. Wenn ξ und υ unabhängig sind, dann ist $\mathbb{C}(\xi,\upsilon)=0$ und ξ und υ sind unkorreliert. Ist dagegen $\mathbb{C}(\xi,\upsilon)=0$ und sind ξ und υ somit unkorreliert, dann sind ξ und υ nicht notwendigerweise unabhängig.

SKF 17. Varianz der Summe zweier ZVen bei Unabhgk.

17. Was ist die Varianz der Summe zweier Zufallsvariablen bei Unabhängigkeit?

Generell gilt

$$\mathbb{V}(a\xi + b\upsilon + c) = a^2 \mathbb{V}(\xi) + b^2 \mathbb{V}(\upsilon) + 2ab\mathbb{C}(\xi, \upsilon).$$

Da bei bei Unabhängigkeit $\mathbb{C}(\xi, v) = 0$, ist die Varianz der Simmer zweier ZVen gegeben durch die Summe der Varianzen, formal

$$\mathbb{V}(\xi + \upsilon) = \mathbb{V}(\xi) + \mathbb{V}(\upsilon).$$

18. Was ist die Varianz der Summe zweier Zufallsvariablen im Allgemeinen?

Theorem (Varianzen von Summen und Differenzen von Zufallsvariablen)

 ξ und υ seien zwei Zufallsvariablen und es seien $a,b,c\in\mathbb{R}$. Dann gilt

$$\mathbb{V}(a\xi + b\upsilon + c) = a^2 \mathbb{V}(\xi) + b^2 \mathbb{V}(\upsilon) + 2ab\mathbb{C}(\xi, \upsilon). \tag{22}$$

Speziell gelten

$$\mathbb{V}(\xi + \upsilon) = \mathbb{V}(\xi) + \mathbb{V}(\upsilon) + 2\mathbb{C}(\xi, \upsilon)$$
(23)

und

$$\mathbb{V}(\xi - \upsilon) = \mathbb{V}(\xi) + \mathbb{V}(\upsilon) - 2\mathbb{C}(\xi, \upsilon)$$
 (24)

Bemerkungen

- Varianzen von Zufallsvariablen addieren sich nicht einfach. (Außer die ZVen sind unabhängig, dann gilt der zweite Satz des Theorems zu Eigenschaften der Varianz (Linearkombination bei Unabhängigkeit)
- Die Varianz der Summe zweier Zufallsvariablen hängt von ihrer Kovarianz ab.