



# 实验八移位寄存和串行累加











## 实验中可能出现的问题——仪器问题















### 电子信息与光学工程学院







### 电子信息与光学工程学院











# 实验中可能出现的问题——实验箱问题







## 实验中可能出现的问题——连线问题















# 实验中可能出现的问题——器件插接问题







### 实验九 移位寄存和串行累加

### 实验目的

学习用触发器构成移位寄存器的原理,了解累加器工作原理。

### 实验原理

数据的存储和移动是对数字信号的一种常见操作,能实现这种操作的器件有数据寄存器和移位寄存器,它们同计数器一样是数字电路中不可缺少的时序逻辑器件。

触发器具有存储信息的功能,利用这一特点,将四D触发器74175 链型连接,构成一个四位的串行移位寄存器。一个时钟脉冲可以将数据向右或者向左移动一位,经过四个时钟脉冲,就可以将一个四位二进制数存储在74175构成的寄存器中,74175管脚图如图9-1所示,构成的移位寄存器逻辑图如图9-2所示。

(实验原理)



图9-1 四D触发器74175管脚图



图9-2 74175构成四位移位寄存器

#### (实验原理)

74194是一个双向移位寄存器,并且可以并行输入,其管脚图如图 9-3所示。其中A~D为并行输入端,QA~QD为并行输出端,CLOCK为时钟输入端,CLEAR为异步清零端,SHIFT RIGHT SERIAL INPUT为串行右移输入端,SHIFT LEFT SERIAL INPUT为串行左移输入端,S0、S1为工作模式控制端,通过设置S0和S1,可以使其工作在保持(S0=0,S1=0)、串行左移(S0=0,S1=1)、串行右移(S0=1,S1=0)或并行(S0=1,S1=1)输入输出状态。



实验九 移位寄存和串行累加(考核)

#### 逻辑图

### (实验原理)



图9-4 74194内部逻辑图

#### (实验原理)

串行累加电路结构简单,运算由低位开始,两个最低位相加产生和与进位,当次低位相加时要考虑最低位的进位,所以用D触发器7474来存放进位,全加器电路如图9-5所示。

利用74175构成的移位寄存器和74194作两个四位的移位寄存器, 经过全加器将两个寄存器连接起来构成一个系统,数据先进入低四位 寄存器,然后经全加器和高四位(为0)相加后进入高四位,这时候低 四位存储了新的四位二进制数,再经过四个时钟脉冲后,和高四位的 四位二进制数相加,并将结果存储在高四位寄存器中。



# 实验内容

- 1、将四D触发器74175连接成串行移位寄存器,并调试其正常工作。
- 2、熟悉双向移位寄存器74194的功能,并调试使其正常工作。
- 3、搭建全加器电路,并将进位寄存器7474添加进来,调试电路使其可以正常工作。
- 4、将移位寄存器和全加器连接起来构成一个移位寄存和串行累加系统,调试电路使其可以正常工作。
- 5、完成1010+0011=1101的加法运算。

实验箱

"逻辑开关"

寄存器B FA 74194 CP Cn Cn-1 CLEAR 数据输入 Q D 寄存器A 7474 时钟 74175 CP

(实验内容)

注: 1、74194的控制端S0=1, S1=0; 7474的异步置1端要接高电平,不能悬空。

2、每次加法前,要对整个电路清零;数据从低位到高位输入,每按一次"逻辑开关",1位数据进入移位寄存器;8位数据输入完,再按4次,完成加法。

 $\bar{R}$ 

- 清零

### (实验内容)

#### **SN74LS194A**

#### MODE SELECT — TRUTH TABLE

| OPERATING MODE | INPUTS |                |                |                 |                 |    | OUTPUTS                          |                                  |                                  |                                  |
|----------------|--------|----------------|----------------|-----------------|-----------------|----|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
|                | MR     | S <sub>1</sub> | S <sub>0</sub> | D <sub>SR</sub> | D <sub>SL</sub> | Pn | Qo                               | Q <sub>1</sub>                   | Q <sub>2</sub>                   | Q <sub>3</sub>                   |
| Reset          | L      | X              | X              | X               | X               | X  | L                                | L                                | L                                | L                                |
| Hold           | Н      | I              | I              | Х               | Х               | X  | q <sub>0</sub>                   | q <sub>1</sub>                   | $q_2$                            | $q_3$                            |
| Shift Left     | H      | h<br>h         |                | X<br>X          | l<br>h          | X  | q <sub>1</sub><br>q <sub>1</sub> | q <sub>2</sub><br>q <sub>2</sub> | q <sub>3</sub><br>q <sub>3</sub> | L<br>H                           |
| Shift Right    | H      | 0              | h<br>h 1       | l<br>h          | X               | X  | L<br>H                           | q <sub>0</sub>                   | q <sub>1</sub>                   | q <sub>2</sub><br>q <sub>2</sub> |
| Parallel Load  | Н      | h              | h              | Х               | Х               | Pn | Po                               | P <sub>1</sub>                   | P <sub>2</sub>                   | P <sub>3</sub>                   |

L = LOW Voltage Level

H = HIGH Voltage Level

#### **SN74LS194A**

#### CONNECTION DIAGRAM DIP (TOP VIEW)





# THE END

谢谢大家!