

Dual 4-Input Schmitt-Trigger Positive NAND Gate

ELECTRICALLY TESTED PER: MIL-M-38510/31301

The 54LS13 contains logic gates which accept standard TTL input signals and provide standard TTL output levels. It is capable of transforming slowly changing input signals into sharply defined, jitter-free output signals. Additionally, it has greater noise margin than conventional inverters.

Each circuit contains a Schmitt trigger followed by a Darlington level shifter and a phase splitter driving a TTL totem pole output. The Schmitt trigger uses positive feedback to effectively speed-up slow input transitions, and provide different input threshold voltages for positive and negative-going transitions. This hysteresis between the positive-going and negative-going input thresholds is determined internally by resistor ratios and is essentially insensitive to temperature and supply voltage variations.

LOGIC DIAGRAM

Military 54LS13

AVAILABLE AS:

1) JAN: JM38510/31301BXA

2) SMD: N/A 3) 883: 54LS13/BXAJC

X = CASE OUTLINE AS FOLLOWS: PACKAGE: CERDIP: C **CERFLAT: D** LCC: 2

THE LETTER "M" APPEARS BEFORE THE / ON LCC.

PIN ASSIGNMENTS									
FUNCT.	DIL 632-08	FLATS 717-04		BURN-IN (COND. A)					
A1	1	1	2	GND					
B1	2	2	3	Vcc					
NC	3	3	4	GND					
C1	4	4	6	Vcc					
D1	5	5	8	GND					
Y1	6	6	9	Vcc					
GND	7	7	10	GND					
Y2	8	8	12	VCC					
A2	9	9	13	GND					
B2	10	10	14	v_{CC}					
NC	11	11	16	GND					
C2	12	12	18	VCC					
D2	13	13	19	GND					
Vcc	14	14	20	VCC					
BURN-	IN CONE	DITIONS	:						

V_{CC} = 5.0 V MIN/6.0 V MAX

MOTOROLA MILITARY FAST/LS/TTL DATA 5-22

54LS13

AC TEST CIRCUIT

(LOAD FOR OUTPUT UNDER TEST)

WAVEFORMS

NOTES:

- 1. Pulse generator has the following characteristics: $t_f \le 15$ ns, $t_f \le 6.0$ ns, PRR ≤ 1.0 MHz and $Z_{OUT} \approx 50~\Omega$.
- Terminal conditions (pins not designated may be high ≥ 1.4 V, low ≤ 1.0 V, or open).
- 3. C_L = 50 pF ± 10%, including scope probe, wiring and stray capacitance.
- 4. R_L = $2.0 \text{ k}\Omega \pm 5.0\%$.
- 5. Voltage measurements are to be made with respect to network ground terminal.

54LS13

Symbol	Parameter Static Parameters:		Limits						Test Condition (Unless Otherwise Specified)
		+ 25°C Subgroup 1		+ 125°C Subgroup 2		– 55°C Subgroup 3			
		Min	Max	Min	Max	Min	Max		
VOH1	Logical "1" Output Voltage	2.5		2.5		2.5		v	$V_{CC} = 4.5 \text{ V, } I_{OH} = -0.4 \text{ mA,}$ $V_{IL} = 0.5 \text{ V,V}_{IN} = 1.9 \text{ V on other inputs.}$
V _{OL1}	Logical "0" Output Voltage		0.4		0.4		0.4	V	V_{CC} = 4.5 V, I_{OL} = 4.0 mA, V_{IH} = 1.9 V on all inputs.
V _{OH2}	Logical "1" Output Voltage	2.5		2.5		2.5		٧	V _{CC} = 5.0 V, I _{OH} = -0.4 V, V _{IL} = (See Note 2) all other inputs = 1.9 V.
V _{OL2}	Logical "0" Output Voltage		0.4		0.4		0.4	V	V _{CC} = 5.0 V, I _{OL} = 4.0 mA, V _{IN} = (See Note 3).
VIC	Input Clamping Voltage		-1.5					٧	$V_{CC} = 4.5 \text{ V}, I_{ N} = -18 \text{ mA},$ other inputs are open.
lH1	Logical "1" Input Current		20		20		20	μА	V _{CC} = 5.5 V, V _{IN} = 2.7 V, other inputs = 0 V.
lH2	Logical "1" Input Current		100		100		100	μА	V _{CC} = 5.5 V, V _{IN} = 5.5 V, other inputs = 0 V.
ΙΙL	Logical "0" Input Current	- 0.12	- 0.36	- 0.12	- 0.36	- 0.12	- 0.36	mA	$V_{CC} = 5.5 \text{ V}, V_{ N} = 0.4 \text{ V},$ other inputs = 5.5 V.
los	Output Short Circuit Current	- 15	100	- 15	- 100	- 15	- 100	mA	V _{CC} = 5.5 V, V _{IN} = 0 V (all inputs), V _{OUT} = 0 V.
Іссн	Power Supply Current		6.0		6.0		6.0	mA	V _{CC} = 5.5 V, V _{IN} = 0 V (all inputs).
ICCL	Power Supply Current		7.0		7.0		7.0	· mA	V _{CC} = 5.5 V, V _{IN} = 5.5 V (all inputs).
VIH	Logical "1" Input Voltage	1.9		1.9		1.9		٧	V _{CC} = 4.5 V.
VIL	Logical "0" Input Voltage		0.5		0.5		0.5	V	V _{CC} = 4.5 V.
	Functional Tests	Subgroup 7		Subgroup 8A		Subgroup 8B			per Truth Table with V _{CC} = 5.0 V, V _{INL} = 0.5 V, and V _{INH} = 2.5 V.

Symbol	Parameter	Limits						Unit	Test Condition (Unless Otherwise Specified)
	Switching Parameters:	+ 25°C Subgroup 9		+ 125°C Subgroup 10		− 55°C Subgroup 11			
		Min	Max	Min	Max	Min	Max		
^t PHL ^t PHL	Propagation Delay /Data-Output Output <u>High-Low</u>	5.0	32 27	5.0 —	52 47	5.0 —	52 47	ns	$\begin{array}{c} V_{CC} = 5.0 \text{ V, } C_L = 50 \text{ pF, } R_L = 2.0 \text{ k}\Omega. \\ V_{CC} = 5.0 \text{ V, } C_L = 15 \text{ pF, } R_L = 2.0 \text{ k}\Omega. \end{array}$
tPLH tPLH	Propagation Delay /Data-Output Output <u>Low-High</u>	5.0 —	32 22	5.0 —	52 47	5.0 —	52 47	ns	$\begin{array}{c} V_{CC} = 5.0 \text{ V, } C_L = 50 \text{ pF, } R_L = 2.0 \text{ k}\Omega. \\ V_{CC} = 5.0 \text{ V, } C_L = 15 \text{ pF, } R_L = 2.0 \text{ k}\Omega. \end{array}$

NOTES:

- The limits specified for C_L = 15 pF are guaranteed but not tested.
 Momentary 0.5 V, then 1.4 V without overshoot during test.
 Momentary 1.9 V, then 1.0 V (all inputs) without undershoot during test.

MOTOROLA MILITARY FAST/LS/TTL DATA 5-24