Programming Assignment Report

EE5121: Convex Optimization – Logistic Regression

[Keshaw Choudhary EE21B069]

May 2, 2025

Objective

The goal of this assignment is to implement logistic regression from scratch using gradient descent. We study the sigmoid function and evaluate performance on synthetic and real-world datasets.

Problem Statement

Given the logistic regression loss function:

$$L(\theta) = -\frac{1}{n} \sum_{i=1}^{n} \left[y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i) \right], \text{ where } \hat{y}_i = \sigma(x_i^{\top} \theta) = \frac{1}{1 + e^{-x_i^{\top} \theta}}$$

we are asked to:

- 1. Derive the gradient of $L(\theta)$
- 2. Plot the sigmoid function
- 3. Implement logistic regression using gradient descent
- 4. Analyze convergence
- 5. Test the model on synthetic and real-world data

Gradient Derivation

Let $\hat{y}_i = \sigma(x_i^{\top}\theta)$. The gradient is:

$$\nabla_{\theta} L(\theta) = \frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i) x_i$$

or in vectorized form:

$$\boxed{\nabla_{\theta} L(\theta) = \frac{1}{n} X^{\top} (\hat{y} - y)}$$

Sigmoid Function

The sigmoid function is defined as:

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

It maps real-valued inputs to (0, 1). It is commonly used to represent probability in classification tasks. The function is S-shaped and centered at $\sigma(0) = 0.5$.

Figure 1: Sigmoid function $\sigma(z)$

Implementation Summary

The logistic regression model is trained using the following steps:

- Initialize θ
- For each iteration:
 - a) Compute $\hat{y} = \sigma(X\theta)$
 - b) Compute loss and gradient
 - c) Update: $\theta \leftarrow \theta \alpha \nabla_{\theta} L(\theta)$

Experiments and Results

Synthetic Dataset

- Generated using make_classification() from scikit-learn
- Input: 2 features + intercept
- Gradient descent shows smooth convergence

Real-World Dataset: Breast Cancer

- Used sklearn.datasets.load_breast_cancer
- Applied feature scaling and added bias term
- \bullet Achieved test accuracy: 97–99%

Figure 2: Loss vs. Iteration (Convergence Plot)

Conclusion

- Successfully derived and implemented gradient of logistic regression loss
- Built gradient descent from scratch
- Validated the model on synthetic and real-world datasets
- Observed strong convergence behavior and high accuracy on test data