Predictor-corrector solver for ODE

Using Predictor-corrector solvers for 2- and 3- body problems

Severin Denisenko

October 15, 2024

Saint Petersburg State University

Table of contents

1. Concept

2. Interpolation Adams method

3. Predictor as initial guess for Newton method

4. Predictor as initial value for iterative process

Concept

Concept

For predictor-corrector requared:

- First explicit method (predictor)
- Second impicit method (corrector)
- Predictor-corrector scheme (explaned next)

Predictor-corrector schemes

- Using the outcome of the explicit (predictor) method as an initial guess for the corrector (impicit) method
- Using the predictor result as a beginning value in an interative substitution in impicit method

Predictor-corrector order of approximation

- \bullet Interpolation Adams method has +1 order of approximation of enterpolation Adams method
- Adams interpolation and extrapolation methods can be used as a predictor-corrector pair
- Resulting predictor-corrector method will give interpolation's method approximation

Interpolation Adams method

Table 1: Second order method precision

dt	x on $t=T$
0.01	1.01271285286200
0.001	1.00001246611392
0.0001	1.00000001277170
0.00001	1.00000000000627
exact	1.0

Predictor as initial guess for

Newton method

Table 2: Second order method precision

dt	x on $t=T$
0.01	1.0128289067605251974760657
0.001	1.0000123866279617751145113
0.0001	1.0000000128654984841376535
exact	1.0

Third order

Third order

Table 3: Third order method precision

dt	x on $t=T$
0.01	1.0009000321668760808307374
0.001	0.9999995097383831316826063
0.0001	1.0000000000000971940556261
exact	1.0

Predictor as initial value for

iterative process

First order

First order

Table 4: First order method precision

dt	x on $t=T$
0.01	0.9998399718001338786028265
0.001	0.9999993666110717067951749
0.0001	0.9999999999974467024554771
0.00001	0.999999999999997425164678
exact	1.0

Table 5: Second order method precision

dt	x on t=T
0.01	1.0126332561465809835519186
0.001	1.0000123842869742414559587
0.0001	1.0000000128654750736181803
0.00001	1.000000000128643767542211
exact	1.0

Third order

Table 6: Third order method precision

dt	x on t=T
0.01	1.0008510571890576191577368
0.001	0.9999995097322959439077395
0.0001	1.0000000000000971934471436
0.00001	1.0000000000000000009718023
exact	1.0

Fourth order

Table 7: Fourth order method precision

dt	x on t=T
0.01	0.9992814557218406133166121
0.001	0.9999994912341766587055798
0.0001	0.999999999999125275850056
0.00001	0.9999999999999999999999999999999999999
exact	1.0