Acknowledgements

The slides for this lecture are a modified versions of the offering by **Prof. Sanjeev K Aggarwal**

Semantic Analysis

- Check semantics
- Error reporting
- Disambiguate overloaded operators
- Type coercion
- Static checking
 - Type checking
 - Control flow checking
 - Uniqueness checking
 - Name checks

Beyond syntax analysis

- Parser cannot catch all the program errors
- There is a level of correctness that is deeper than syntax analysis
- Some language features cannot be modeled using context free grammar formalism
 - Whether an identifier has been declared before use
 - This language is not context free

Beyond syntax ...

- Example 1
 string x; int y;
 y = x + 3
 the use of x is a type error
- int a, b;a = b + cc is not declared
- An identifier may refer to different variables in different parts of the program
- An identifier may be usable in one part of the program but not another

Compiler needs to know?

- Whether a variable has been declared?
- Are there variables which have not been declared?
- What is the type of the variable?
- Whether a variable is a scalar, an array, or a function?
- What declaration of the variable does each reference use?
- If an expression is type consistent?
- If an array use like A[i,j,k] is consistent with the declaration? Does it have three dimensions?

- How many arguments does a function take?
- Are all invocations of a function consistent with the declaration?
- If an operator/function is overloaded, which function is being invoked?
- Inheritance relationship
- · Classes not multiply defined
- Methods in a class are not multiply defined
- · The exact requirements depend upon the language

How to answer these questions?

- These issues are part of semantic analysis phase
- Answers to these questions depend upon values like type information, number of parameters etc.
- Compiler will have to do some computation to arrive at answers
- The information required by computations may be non local in some cases

How to ...?

- Use formal methods
 - Context sensitive grammars
 - Extended attribute grammars
- Use ad-hoc techniques
 - Symbol table
 - Ad-hoc code
- Something in between !!!
 - Use attributes
 - Do analysis along with parsing
 - Use code for attribute value computation
 - However, code is developed in a systematic way

What???

- The nodes in a parse tree (nonterminals in a CFG) are annotated with information
- Each production has some associated code that dictates the computation on these attributes

Why attributes?

- For lexical analysis and syntax analysis formal techniques were used.
- However, we still had code in form of actions along with regular expressions and context free grammar
- The attribute grammar formalism is important
 - However, it is very difficult to implement
 - But makes many points clear
 - Makes "ad-hoc" code more organized
 - Helps in doing non local computations

Attribute Grammar Framework

- Generalization of CFG where each grammar symbol has an associated set of attributes
- Values of attributes are computed by semantic rules
- Two notations for associating semantic rules with productions
 - Syntax directed definition
 - high level specifications
 - hides implementation details
 - explicit order of evaluation is not specified
 - Translation schemes
 - indicate order in which semantic rules are to be evaluated
 - allow some implementation details to be shown

· Conceptually both:

- parse input token stream
- build parse tree
- traverse the parse tree to evaluate the semantic rules at the parse tree nodes

Evaluation may:

- generate code
- save information in the symbol table
- issue error messages
- perform any other activity

Consider a grammar for signed binary numbers

```
Number \rightarrow sign list
sign \rightarrow + | -
list \rightarrow list bit | bit
bit \rightarrow 0 | 1
```

- Build attribute grammar that annotates Number with the value it represents
- Associate attributes with grammar symbols

symbol	attributes
Number	value
sign	negative
list	position, value
bit	position, value

production

Attribute rule

 $\begin{array}{ll} \text{number} \rightarrow \text{sign list} & \text{list.position} \leftarrow 0 \\ & \text{if sign.negative} \\ & \text{then number.value} \leftarrow - \text{list.value} \\ & \text{else number.value} \leftarrow \text{list.value} \end{array}$

 $sign \rightarrow +$ $sign.negative \leftarrow false$ $sign \rightarrow sign.negative \leftarrow true$

list → bit bit.position \leftarrow list.position

list.value ← bit.value

 $list_0 \rightarrow list_1$ bit $list_1$.position $\leftarrow list_0$.position + 1

bit.position \leftarrow list₀.position

 $list_0.value \leftarrow list_1.value + bit.value$

bit \rightarrow 0 bit.value \leftarrow 0

bit → 1 bit.value ← 2bit.position

Evaluating Attributes

• In which order should the attributes be computed?

Parse tree and the dependence graph

Dependence Graph

 If an attribute b depends on an attribute c then the semantic rule for b must be evaluated after the semantic rule for c

 The dependencies among the nodes can be depicted by a directed graph called dependency graph

Algorithm to construct dependency graph

for each node **n** in the parse tree do
for each attribute **a** of the grammar symbol do
construct a node in the dependency graph
for **a**

```
for each node n in the parse tree do for each semantic rule b = f(c_1, c_2, ..., c_k) do { associated with production at n } for i = 1 to k do construct an edge from c_i to b
```

• Suppose A.a = f(X.x, Y.y) is a semantic rule for $A \rightarrow X Y$

• If production $A \rightarrow X Y$ has the semantic rule X.x = g(A.a, Y.y)

Whenever following production is used in a parse tree

$$E \rightarrow E_1 + E_2$$
 E.val = E_1 .val + E_2 .val we create a dependency graph

 $D \rightarrow TL$ L.in = T.type

 $T \rightarrow real$ T.type = real

 $T \rightarrow int$ T.type = int

 $L \rightarrow L_1$, id L_1 .in = L.in; addtype(id.entry, L.in)

 $L \rightarrow id$ addtype (id.entry,L.in)

- dependency graph for real id1, id2, id3
- put a dummy node for a semantic rule that consists of a procedure call

Evaluation Order

 Any topological sort of dependency graph gives a valid order in which semantic rules must be evaluated

```
a4 = real

a5 = a4

addtype(id3.entry, a5)

a7 = a5

addtype(id2.entry, a7)

a9 := a7

addtype(id1.entry, a9)
```

Attributes ...

- attributes fall into two classes: synthesized and inherited
- value of a synthesized attribute is computed from the values of its children nodes
- value of an inherited attribute is computed from the sibling and parent nodes

Attributes ...

• Each grammar production $A \rightarrow \alpha$ has associated with it a set of semantic rules of the form

$$b = f(c_1, c_2, ..., c_k)$$

where f is a function, and either

- b is a synthesized attribute of A
 OR
- b is an inherited attribute of one of the grammar symbols on the right
- attribute b depends on attributes $c_1, c_2, ..., c_k$

Synthesized Attributes

 value of a synthesized attribute is computed from the values of its children nodes

Syntax Directed Definitions for a desk calculator program

```
\begin{array}{ll} \mathsf{L} \to \mathsf{E} \, \mathsf{n} & \qquad & \mathsf{Print} \, (\mathsf{E}.\mathsf{val}) \\ \mathsf{E} \to \mathsf{E} + \mathsf{T} & \qquad & \mathsf{E}.\mathsf{val} = \mathsf{E}.\mathsf{val} + \mathsf{T}.\mathsf{val} \\ \mathsf{E} \to \mathsf{T} & \qquad & \mathsf{E}.\mathsf{val} = \mathsf{T}.\mathsf{val} \\ \mathsf{T} \to \mathsf{T} \,^* \, \mathsf{F} & \qquad & \mathsf{T}.\mathsf{val} = \mathsf{T}.\mathsf{val} \,^* \, \mathsf{F}.\mathsf{val} \\ \mathsf{T} \to \mathsf{F} & \qquad & \mathsf{T}.\mathsf{val} = \mathsf{F}.\mathsf{val} \\ \mathsf{F} \to (\mathsf{E}) & \qquad & \mathsf{F}.\mathsf{val} = \mathsf{E}.\mathsf{val} \\ \mathsf{F} \to \mathsf{digit} & \qquad & \mathsf{F}.\mathsf{val} = \mathsf{digit}.\mathsf{lexval} \end{array}
```

- terminals are assumed to have only synthesized attribute values of which are supplied by lexical analyzer
- start symbol does not have any inherited attribute,

Parse tree for 3 * 4 + 5 n

Inherited Attributes

- an inherited attribute is one whose value is defined in terms of attributes at the parent and/or siblings
- Used for finding out the context in which it appears
- possible to use only S-attributes but more natural to use inherited attributes

 $D \rightarrow TL$ L.in = T.type

 $T \rightarrow real$ T.type = real

 $T \rightarrow int$ T.type = int

 $L \rightarrow L_1$, id L_1 .in = L.in; addtype(id.entry, L.in)

 $L \rightarrow id$ addtype (id.entry,L.in)

Parse tree for real x, y, z

production Attribute rule

number \rightarrow sign list list.position \leftarrow 0 if sign.negative then number.value \leftarrow - list.value

 $sign \rightarrow +$ $sign.negative \leftarrow false$ $sign \rightarrow sign.negative \leftarrow true$

list → bit bit.position \leftarrow list.position

list.value ← bit.value

 $list_0 \rightarrow list_1$ bit $list_1.position \leftarrow list_0.position + 1$

bit.position \leftarrow list₀.position

 $list_0.value \leftarrow list_1.value + bit.value$

else number.value ← list.value

bit $\rightarrow 0$ bit.value $\leftarrow 0$

bit → 1 bit.value ← 2bit.position

Important Compiler Data-Structures

- Symbol-table
- Intermediate Representations
 - Abstract Syntax Tree
 - Three Address Code

Symbol Table

- Stores information for subsequent phases
- Interface to the symbol table
 - Insert(s,t): save lexeme s and token t and return pointer
 - Lookup(s): return index of entry for lexeme s or 0 if s is not found

Implementation of symbol table

- Fixed amount of space to store lexemes. Not advisable as it waste space.
- Store lexemes in a separate array. Each lexeme is separated by eos. Symbol table has pointers to lexemes.

How to handle keywords?

- Consider token DIV and MOD with lexemes div and mod.
- Initialize symbol table with insert("div", DIV) and insert("mod", MOD).
- Any subsequent lookup returns a nonzero value, therefore, cannot be used as an identifier.

Abstract Syntax Tree

- Condensed form of parse tree,
- · useful for representing language constructs.
- The production $S \rightarrow \text{if B then s1 else s2}$ may appear as

Abstract Syntax tree ...

 Chain of single productions may be collapsed, and operators move to the parent nodes

Constructing Abstract Syntax tree for expression

- Each node can be represented as a record
- operators: one field for operator, remaining fields ptrs to operands mknode(op,left,right)
- identifier: one field with label id and another ptr to symbol table mkleaf(id,entry)
- number: one field with label num and another to keep the value of the number mkleaf(num,val)

C prototype

```
struct node {
   char op;
   struct node* left; struct node* right;
};
struct node *mknode(char op, struct node* left,
                               struct node* right)
        struct node *ptr = (struct node *)
                               malloc(sizeof(struct node));
        ptr->op = op; ptr-> left = left; ptr->right = right;
        return ptr;
```

Example

the following sequence of function calls creates a parse tree for a-4+c

 P_1 = mkleaf(id, entry.a)

 P_2 = mkleaf(num, 4)

 $P_3 = mknode(-, P_1, P_2)$

 P_4 = mkleaf(id, entry.c)

 $P_5 = mknode(+, P_3, P_4)$

A syntax directed definition for constructing syntax tree

DAG for Expressions

Expression a + a * (b - c) + (b - c) * dmake a leaf or node if not present, otherwise return pointer to the existing node

```
P_1 = makeleaf(id,a)
P_2 = makeleaf(id,a)
P_3 = makeleaf(id,b)
P_4 = makeleaf(id,c)
P_5 = makenode(-,P_3,P_4)
P_6 = makenode(*,P_2,P_5)
P_7 = makenode(+,P_1,P_6)
P_8 = makeleaf(id,b)
P_9 = makeleaf(id,c)
P_{10} = makenode(-,P_8,P_9)
P_{11} = makeleaf(id,d)
P_{12} = makenode(*, P_{10}, P_{11})
P_{13} = makenode(+, P_7, P_{12})
```


Three address code

- It is a sequence of statements of the general form X := Y op Z where
 - X, Y or Z are names, constants or compiler generated temporaries
 - op stands for any operator such as a fixed- or floating-point arithmetic operator, or a logical operator

Three address code ...

- Only one operator on the right hand side is allowed
- Source expression like x + y * z might be translated into

$$t_1 := y * z$$

 $t_2 := x + t_1$

where t_1 and t_2 are compiler generated temporary names

- Unraveling of complicated arithmetic expressions and of control flow makes 3-address code desirable for code generation and optimization
- The use of names for intermediate values allows 3-address code to be easily rearranged
- Three address code is a linearized representation of a syntax tree where explicit names correspond to the interior nodes of the graph 45

Three address instructions

Assignment

$$-x = y op z$$

$$x = op y$$

$$- x = y$$

Jump

- goto L
- if x relop y goto L

Indexed assignment

$$- x = y[i]$$

$$-x[i] = y$$

Function

- param x
- call p,n
- return y

Pointer

$$\times = \&y$$

float a[20][10]; use a[i][j+2]

HIR

 $t1 \leftarrow a[i,j+2]$

MIR

†1← j+2 †2← i*20 †3← †1+†2 †4← 4*†3 †5← addr a †6← †4+†5 †7←*†6

LIR

r1← [fp-4] r2← r1+2 r3← [fp-8] r4← r3*20 r5← r4+r2 r6← 4*r5 r7←fp-216 f1← [r7+r6]

Some thoughts...

- Do we really need to build the whole parse tree?
- Can the computation on the attributes be done on-the-fly (along with parsing)?
- Can we do this at least for some restricted SDDs?

A thought...

- For constructing the parse tree, the parser traverses the nodes in the parse tree in some order...
- Let us add the sematic actions to the parse tree, so that the parser executes these actions when it visits them...
- When will the above constitute a correct translation scheme?
- When these actions, if traversed in the <u>same</u> order that the parser uses to traverse the tree, forms a <u>valid topological ordering</u> on the dependencies.

New Questions...

- What is the order in which the parser traverses the parse tree?
 - See next slide
- How should a translation scheme be represented so that semantic actions appear in the parse tree?
 - Add the semantic actions as new symbols to the production rules

Order in which parser "creates" the parse tree nodes

- When translation takes place during parsing, order of evaluation is linked to the order in which nodes are created
- What is the order in which nodes are created in LL? LR?
- A natural order in both top-down and bottom-up parsing is depth first-order
 - LL parsing expands the leftmost non-terminal first
 - (A->BC): B is expanded before C
 - LR parsing reduces the leftmost non-terminal first (thus mimicking the rightmost derivation in reverse)
 - (A->BC): the non-terminal B is generated before C

Translation schemes (SDT)

- A CFG where semantic actions occur within the rhs of production
- A translation scheme to map infix to postfix

```
E \rightarrow TR
R \rightarrow addop T \{print(addop)\}
T \rightarrow num \{print(num)\}
```

parse tree for 9 - 5 + 2

Parse tree for 9-5+2

- Assume actions are terminal symbols
- Perform depth first order traversal to obtain 9 5 - 2 +
- When designing translation scheme, ensure attribute value is available when referred to
- In case of synthesized attribute it is trivial (why?)

S-attributed Grammar: where should the actions go?

S-attributed definition

- a syntax directed definition that uses only synthesized attributes is said to be an Sattributed definition
- A parse tree for an S-attributed definition can be annotated by evaluating semantic rules for attributes
- A translation scheme for an S-attributed SDD can be obtained simply by appending the semantic actions to the right-hand-side of each production rule

- In case of both inherited and synthesized attributes
- An inherited attribute for a symbol on rhs of a production must be computed in an action before that symbol

depth first order traversal gives error undefined

 A synthesized attribute for non terminal on the lhs can be computed after all attributes it references, have been computed. The action normally should be placed at the end of rhs

Example: Translation scheme for EQN

$$S \rightarrow B$$
 $S.ht = B.ht$
 $B \rightarrow B_1 B_2$
 $B_1.pts = B.pts$
 $B_2.pts = B.pts$
 $B_2.pts = B.pts$
 $B.ht = max(B_1.ht,B_2.ht)$
 $B \rightarrow B_1 sub B_2$
 $B_1.pts = B.pts$;
 $B_2.pts = shrink(B.pts)$
 $B.ht = disp(B_1.ht,B_2.ht)$
 $B \rightarrow text$
 $B.ht = text.h * B.pts$

after putting actions in the right place

```
S \rightarrow \{B.pts = 10\}
\{S.ht = B.ht\}
B \rightarrow \{B_1.pts = B.pts\} B_1
\{B_2.pts = B.pts\} B_2
             \{B.ht = max(B_1.ht.B_2.ht)\}
B \rightarrow \{B_1.pts = B.pts\} B_1 sub \{B_2.pts = shrink(B.pts)\} B_2 \{B.ht = disp(B_1.ht,B_2.ht)\}
B \rightarrow \text{text} \{B.\text{ht} = \text{text.h} * B.\text{pts}\}
```

How to allocate memory for attributes

- The <u>lifetime</u> of an attribute is dictated by the time a respective symbol is present in the parser stack
- Why not allocate them on the parser stack?
 - saves on expensive malloc/free operations
 - allows for optimizations. Ex:
 - E->F {E.ptr = F.ptr}

Bottom-up evaluation of Sattributed definitions

- Can be evaluated while parsing
- Whenever reduction is made, value of new synthesized attribute is computed from the attributes on the stack
- Extend stack to hold the values also

ptr	value stack

The current top of stack is indicated by ptr top

- Suppose semantic rule A.a = f(X.x, Y.y, Z.z) is associated with production $A \rightarrow XYZ$
- Before reducing XYZ to A, value of Z is in val(top), value of Y is in val(top-1) and value of X is in val(top-2)
- If symbol has no attribute then the entry is undefined
- After the reduction, top is decremented by 2 and state covering A is put in val(top)

Example: desk calculator

```
\begin{array}{lll} L \rightarrow En & print(val(top)) \\ E \rightarrow E + T & val(ntop) = val(top-2) + val(top) \\ E \rightarrow T & val(ntop) = val(top) \\ T \rightarrow T * F & val(ntop) = val(top-2) * val(top) \\ T \rightarrow F & val(ntop) = val(top) \\ F \rightarrow (E) & val(ntop) = val(top-1) \\ F \rightarrow digit & val(ntop) = val(top) \end{array}
```

Before reduction ntop = top - r + 1After code reduction top = ntop

Example: desk calculator

Before reduction ntop = top - r + 1After code reduction top = ntop

INPUT	STATE	Val	PRODUCTION
3*5+4n			
*5+4n	digit	3	
*5+4n	F	3	F o digit
*5+4n	T	3	$T \to F$
5+4n	T*	3 -	
+4n	T*digit	3 - 5	
+4n	T*F	3 - 5	F o digit
+4n	T	15	$T \rightarrow T * F$
+4n	Ε	15	E o T
4n	E+	15 -	
n	E+digit	15 - 4	
n	E+F	15 - 4	F o digit
n	E+T	15 - 4	$T \to F$
n	E	19	$E \to E + T$
			U;

L-attributed definitions

- A natural order in both top-down and bottom-up parsing is depth first-order
- L-attributed definition
 - where attributes can be evaluated in depthfirst order
 - can have both synthesized and inherited attributes

Lattributed definitions ...

- A syntax directed definition is L-attributed if each inherited attribute of X_j ($1 \le j \le n$) at the right hand side of $A \rightarrow X_1 \ X_2 ... X_n$ depends only on
 - Attributes of symbols $X_1 X_2 ... X_{j-1}$ and
 - Inherited attribute of A
- Consider translation scheme

$$A \rightarrow LM$$
 L.i = $f_1(A.i)$
 $M.i = f_2(L.s)$
 $A_s = f_3(M.s)$

$$A \rightarrow QR$$
 $R_i = f_4(A.i)$
 $Q_i = f_5(R.s)$
 $A.s = f_6(Q.s)$

Left recursion

- A top down parser with production $A \rightarrow A \alpha$ may loop forever
- From the grammar $A \to A \alpha \mid \beta$ left recursion may be eliminated by transforming the grammar to

$$A \rightarrow \beta R$$

 $R \rightarrow \alpha R \mid \epsilon$

Parse tree corresponding to a left recursive grammar

Parse tree corresponding to the modified grammar

Both the trees generate string $\beta\alpha^*$

Removal of left recursion

Suppose we have translation scheme:

$$A \rightarrow A_1 Y$$
 $\{A = g(A_1,Y)\}$
 $A \rightarrow X$ $\{A = f(X)\}$

After removal of left recursion it becomes

$$A \rightarrow X$$
 {R.i = f(X)}
R {A.s = R.s}
R \rightarrow Y {R₁.i = g(Y,R)}
R₁ {R.s = R₁.s}
R \rightarrow ϵ {R.s = R.i}

Top down Translation

Use predictive parsing to implement Lattributed definitions

$$E \rightarrow E_1 + T$$

$$E.val := E_1.val + T.val$$

$$E \rightarrow E_1 - T$$

$$E.val := E_1.val - T.val$$

$$E \rightarrow T$$

$$T \rightarrow (E)$$

$$T \rightarrow num$$

Eliminate left recursion

```
E \rightarrow T {R.i = T.val}
R {E.val = R.s}
R \rightarrow
               T \{R_1.i = R.i + T.val\}

R_1 \{R.s = R_1.s\}
R \rightarrow
               T \qquad \{R_1.i = R.i - T.val\}
               R_1 = \{R.s = R_1.s\}
R \rightarrow \epsilon \qquad \{R.s = R.i\}
T \rightarrow (E) \{T.val = E.val\}
T \rightarrow \text{num } \{T.val = \text{num.lexval}\}\
```


When is a semantic action executed?

$$B \rightarrow X \{a\} Y$$

[Top-Down parsing]

- if Y is a non-terminal: perform 'a' just before we attempt to expand this occurance of Y (i.e. just before we pop-off Y to expand it)
- if Y is a terminal: perform 'a' just before we check for Y in the input (i.e. just before we pop-off Y from the stack matching it with the input)

[Bottom-Up parsing]

 perform action'a' as soon as this occurance of X appears on top of the parsing stack (i.e. some handle is reduced to X)

Bottom up evaluation of L-attributed SDD: when to apply the semantic actions embedded inside rules

$$A \rightarrow BC$$
 { B.i = f(A.i) }
 $A \rightarrow BD$ { B.i = g(A.i) }

- When the viable prefix on the stack is "B", it is a *possibility* to develop into one of the handles "BC" or "BD"; the respective semantic action needs to be applied
- When "B" is on the stack, we don't know what will the incoming terminals... Sobegincannotabpply the action now ...
- Defer it till we get the handle "BC"
- But, we don't know what rule does "A" get reduced to:
 - X -> ...A... { A.i = h(X) } - Y -> ...A... { A.i = k(Y) }
- Defer the decision further till we have reduced to X or Y?
- Reasoning this way, we may have to wait till the entire input is seen --- same is building the whole parse tree before semantic analysis
- Note that no problem with actions apearing at the end as a unique handle is identified by then

Two main problems

- "conflict" on semantic actions
 - Consider the state in the parser DFA
 - S -> . {S.val = "+"} aA
 - S -> . {S.val = "-"} bB
 - The parser could have simply done a shift, but now there is a conflict on which action to perform
 - Solution: use markers to "delegate" the problem to the parser (Caveat: may not always work as an LR grammar may not remain LR after introducing markers)
- No slot on the value stack for the parent
 - In the above example, question is where to store "S.val" as "S" will be pushed on the stack only after "aA" or "aB" reduces to "S".
 - Solution: Introduce a marker symbol M in the parent rule of "S" and alias this slot in the value table to store the inherited attribute of S

Bottom up evaluation of inherited attributes

- Remove embedded actions from translation scheme
- Make transformation so that embedded actions occur only at the ends of their productions
- Replace each action by a distinct marker non terminal M and attach action at end of M $\rightarrow \epsilon$

```
Therefore,
E \rightarrow TR
R \rightarrow + T \{ print (+) \} R
R \rightarrow - T \{ print (-) \} R
R \rightarrow \epsilon
T \rightarrow \text{num \{print(num.val)\}}
transforms to
\mathsf{E} \to \mathsf{T} \mathsf{R}
R \rightarrow + T M R
R \rightarrow - TNR
\mathsf{R} 	o oldsymbol{arepsilon}
T \rightarrow num
                                      {print(num.val)}
\mathsf{M} \to \boldsymbol{\epsilon}
                                      {print(+)}
                                      {print(-)}
N \to \epsilon
```

Markers

- Markers are terminals that
 - derive only ϵ
 - appear only once among all bodies of all productions

Theorem: When a grammar is LL, marker nonterminals can be added at any position in the body, and the resulting grammar will still be LR. (Why?: Homework -- see book)

Inheriting attribute on parser stacks

- bottom up parser reduces rhs of $A \rightarrow XY$ by removing XY from stack and putting A on the stack
- synthesized attributes of Xs can be inherited by Y by using the copy rule Y.i=X.s

```
Example :take string real p,q,r

D \rightarrow T {L.in = T.type}

T \rightarrow int {T.type = integer}

T \rightarrow real {T.type = real}

L \rightarrow \{L_1.in = L.in\}
L_1 , \{addtype(id.entry, L_{in})\}

L \rightarrow id {addtype(id.entry, L_{in})}
```

State stack	INPUT real p,q,r	PRODUCTION
real	p,q,r	
T	p,q,r	T o real
Тр	,q,r	
TL	,q,r	$L \rightarrow id$
TL,	q,r	
TL,q	,r	
TL	,r	$L \rightarrow L,id$
TL,	r	
TL,r	-	
TL	-	$L \rightarrow L,id$
D	-	$D \to TL$

Every time a string is reduced to L, T.val is just below it on the stack

Example ...

- Every tine a reduction to L is made value of T type is just below it
- Use the fact that T.val (type information) is at a known place in the stack
- When production $L \rightarrow id$ is applied, id.entry is at the top of the stack and T.type is just below it, therefore,

```
addtype(id.entry, L.in) \Leftrightarrow addtype(val[top], val[top-1])
```

• Similarly when production $L \to L_1$, id is applied id.entry is at the top of the stack and T.type is three places below it, therefore,

```
addtype(id.entry, L.in) \Leftrightarrow addtype(val[top],val[top-3])
```

Example ...

Therefore, the translation scheme becomes

$$D \rightarrow TL$$

$$T \rightarrow int$$

$$T \rightarrow real$$

$$L \rightarrow L,id$$

$$L \rightarrow id$$

Simulating the evaluation of inherited attributes

- The scheme works only if grammar allows position of attribute to be predicted.
- Consider the grammar

$$S \rightarrow \alpha AC$$
 $C_i = A_s$
 $S \rightarrow bABC$ $C_i = A_s$
 $C \rightarrow c$ $C_s = q(C_i)$

- C inherits A_s
- there may or may not be a B between A and C on the stack when reduction by rule $C \rightarrow c$ takes place
- When reduction by $C \to c$ is performed the value of C_i is either in [top-1] or [top-2]

Simulating the evaluation ...

 Insert a marker M just before C in the second rule and change rules to

$$S \rightarrow \alpha AC$$
 $C_i = A_s$
 $S \rightarrow bABMC$ $M_i = A_s$; $C_i = M_s$
 $C \rightarrow c$ $C_s = g(C_i)$
 $M \rightarrow \epsilon$ $M_s = M_i$

- When production $M \rightarrow \varepsilon$ is applied we have $M_s = M_i = A_s$
- Therefore value of C_i is always at [top-1]

Simulating the evaluation ...

 Markers can also be used to simulate rules that are not copy rules

$$S \rightarrow \alpha AC$$
 $C_i = f(A.s)$

using a marker

$$S \rightarrow \alpha ANC$$
 $N_i = A_s; C_i = N_s$
 $N \rightarrow \epsilon$ $N_s = f(N_i)$

General algorithm

- Algorithm: Bottom up parsing and translation with inherited attributes
- **Input**: L attributed definitions
- Output: A bottom up parser
- Assume every non terminal has one inherited attribute and every grammar symbol has a synthesized attribute
- For every production $A \to X_1 ... X_n$ introduce n markers $M_1 ... M_n$ and replace the production by

$$A \rightarrow M_1 \times_1 \dots M_n \times_n$$

 $M_1 \dots M_n \rightarrow \epsilon$

- Synthesized attribute $X_{j,s}$ goes into the value entry of X_j
- Inherited attribute $X_{j,i}$ goes into the value entry of M_j

Algorithm ...

• If the reduction is to a marker M_j and the marker belongs to a production

$$A \rightarrow M_1 X_1 ... M_n X_n$$
 then

 A_i is in position top-2j+2 $X_{1,i}$ is in position top-2j+3 $X_{1,s}$ is in position top-2j+4

• If reduction is to a non terminal A by production $A \to M_1 X_1 ... M_n X_n$ then compute A_s and push on the stack

Space for attributes at compile time

- Lifetime of an attribute begins when it is first computed
- Lifetime of an attribute ends when all the attributes depending on it, have been computed
- Space can be conserved by assigning space for an attribute only during its lifetime

Example

· Consider following definition

Consider string int x[3], y[5] its parse tree and dependence graph

Resource requirement

Allocate resources using life time information

R1 R1 R2 R3 R2 R1 R1 R2 R1

Allocate resources using life time and copy information

R1 =R1 =R1 R2 R2 =R1 =R1 R2 R1 93

Space for attributes at compiler Construction time

- Attributes can be held on a single stack. However, lot of attributes are copies of other attributes
- For a rule like $A \rightarrow B$ C stack grows up to a height of five (assuming each symbol has one inherited and one synthesized attribute)
- Just before reduction by the rule $A \rightarrow B C$ the stack contains I(A) I(B) S(B) I(C) S(C)
- After reduction the stack contains I(A) S(A)

Example

- Consider rule B \rightarrow B1 B2 with inherited attribute ps and synthesized attribute ht
- The parse tree for this string and a snapshot of the stack at each node appears as

Example ...

 However, if different stacks are maintained for the inherited and synthesized attributes, the stacks will normally be smaller

Type system

- A type is a set of values
- Certain operations are legal for values of each type
- A language's type system specifies which operations are valid for a type
- The aim of type checking is to ensure that operations are used on the variable/expressions of the correct types

Type system ...

- Languages can be divided into three categories with respect to the type:
 - "untyped"
 - · No type checking needs to be done
 - Assembly languages
 - Statically typed
 - · All type checking is done at compile time
 - Algol class of languages
 - Also, called strongly typed
 - Dynamically typed
 - Type checking is done at run time
 - · Mostly functional languages like Lisp, Scheme etc.

Type systems ...

- Static typing
 - Catches most common programming errors at compile time
 - Avoids runtime overhead
 - May be restrictive in some situations
 - Rapid prototyping may be difficult
- Most code is written using static types languages
- In fact, most people insist that code be strongly type checked at compile time even if language is not strongly typed (use of Lint for C code, code compliance checkers)

Type System

- A type system is a collection of rules for assigning type expressions to various parts of a program (often shown as an logical inference rules)
- Different type systems may be used by different compilers for the same language
- In Pascal type of an array includes the index set. Therefore, a function with an array parameter can only be applied to arrays with that index set
- Many Pascal compilers allow index set to be left unspecified when an array is passed as a parameter

Utility of a (static) type system

- Type-checking is performed at compile time to prevent something "bad" from happening at run-time!
- For example,
 - A pointer should not be added to another pointer
 - An uninitialized variable must not be used
 - A null-pointer should not be dereferenced
 - A closed file is not written into

Properties of a type-system

- Soundness: A type-correct program cannot violate the property
- Completeness: All correct programs will be declared type-correct (or, if a program is found to be not typecorrect, it will surely violate the property)

Typing Rules

• If both the operands of arithmetic operators +, -, x are integers then the result is of type integer

$$\frac{\Gamma \succ e1 : \text{int} \quad \Gamma \succ e2 : \text{int}}{\Gamma \succ e1 + e2 : \text{int}}$$

- The result of unary & operator is a pointer to the object referred to by the operand.
 - If the type of operand is X the type of result is **pointer to** X
 - We may need to construct such types from the basic-types

$$\frac{\Gamma \succ x : ptr(\tau) \quad \Gamma \succ y : \tau}{\Gamma \succ x = \& y : stmt}$$

Type system and type checking

Please Note: Read | for >

- Basic types: integer, char, float, boolean
- Sub range type: 1 ... 100
- Enumerated type: (violet, indigo, red)
- Constructed type: array, record, pointers, functions

Type expression

- Type of a language construct is denoted by a type expression
- It is either a basic type, or,
 it is formed by applying operators called type constructor to other type expressions
- A type constructor applied to a type expression is a type expression
- A basic type is type expression. There are two other special basic types:
 - type error: error during type checking (failed typing derivation)
 - void: no type value (shown as α in the typing rules)

Type Constructors

 Array: if T is a type expression then array(I, T) is a type expression denoting the type of an array with elements of type T and index set I

var A: array [1 .. 10] of integer

A has type expression array(1 .. 10, integer)

 Product: if T1 and T2 are type expressions then their Cartesian product T1 x T2 is a type expression

Type constructors ...

 Records: it applies to a tuple formed from field names and field types. Consider the declaration

Type constructors ...

- Pointer: if T is a type expression then pointer(T)
 is a type expression denoting type pointer to an
 object of type T
- Function: function maps domain set to range set. It is denoted by type expression $D \rightarrow R$
 - For example mod has type expression int x int \rightarrow int
 - function f(a, b: char): ^ integer; is denoted by
 - char **x** char → pointer(integer)

Specifications of a type checker

 Consider a language which consists of a sequence of declarations (D) followed by a sequence of statements (P)

```
S \rightarrow D; P

D \rightarrow D; D \mid id : T

T \rightarrow char \mid integer \mid array [num] of <math>T \mid ^T

E \rightarrow literal \mid num \mid E \mod E \mid E [E] \mid E ^T

P \rightarrow id := E \mid if E then P \mid while E P \mid P; P
```

Specifications of a type checker ...

A program generated by this grammar is

```
key: integer;
key=key mod 1999
```

- Assume following:
 - basic types are char, int, type-error
 - all arrays start at 1
 - array[256] of char has type expression array(1.. 256, char)

Type System

 A program is a set of declarations (D) followed by a set of statements (P)

 Check if the program type-checks under an empty context (symbol-table)

$$. \succ \{D; P\} : \alpha$$

Type System

Process the declarations to build the symbol table (typing assumptions)

$$\frac{\Gamma, x : \tau \succ \{D; P\} : \alpha}{\Gamma \succ \{x : \tau; D; P\} : \alpha}$$

Type System

$$\frac{\Gamma \succ stm: \alpha \quad \Gamma \succ P: \alpha}{\Gamma \succ \{stm; P\}: \alpha}$$

$$\frac{\Gamma \succ x: \tau \quad \Gamma \succ e: \tau}{\Gamma \succ \{x:=e\}: \alpha} [stm = \{x:=e\}]$$

$$\frac{x: \tau \in \Gamma}{\Gamma \succ x: \tau}$$

$$\frac{\Gamma \succ e1: \text{int} \quad \Gamma \succ e2: \text{int}}{\Gamma \succ e1: \text{mod} \quad e2: \text{int}}$$

Rules for Symbol Table entry

```
D \rightarrow id : T addtype(id.entry, T.type)

T \rightarrow char T.type = char

T \rightarrow integer T.type = int

T \rightarrow ^T_1 T.type = pointer(T_1.type)

T \rightarrow array [ num ] of T_1 T.type = array(1..num, T_1.type)
```

Type checking of functions

Type checking for expressions

```
E \rightarrow literal
                         E.type = char
E \rightarrow num
                         E.type = integer
E \rightarrow id
                         E.type = lookup(id.entry)
E \rightarrow E_1 \mod E_2 E.type = if E_1.type == integer and
                                          E<sub>2</sub>.type==integer
                                   then integer
                                   else type_error
E \rightarrow E_1[E_2]
                         E.type = if E_2.type==integer and
                                         E_1.type==array(s,t)
                                    then t
                                    else type_error
E \rightarrow E_1^{\bullet}
                         E.type = if E_1.type==pointer(t)
                                      then t
                                      else type_error
```

Type checking for statements

• Statements typically do not have values. Special basic type void can be assigned to them.

```
S \rightarrow id := E
                                  S.Type = if id.type == E.type
                                                      then void
                                                      else type_error
S \rightarrow if E then S1
                                  S. Type = if E. type == boolean
                                                      then S1.type
                                                      else type_error
S \rightarrow \text{while F do } S1
                                  S.Type = if E.type == boolean
                                                      then S1.type
                                                      else type_error
                                  S.Type = if S1.type == void
S \to S1 : S2
                                                         and S2.type == void
                                                      then void
                                                      else type_error
                                                                              116
```

Example

• $\{int x; x = x \mod 2;\}$

• Interesting observation: A typing derivation follows the shape of the abstract syntax tree

Homework

- For the following questions, provide both the changed typing rule and the required modification in the implementation (SDD)
 - How to handle implicit type conversions?
 - Is addition of pointers prevented?

Equivalence of Type expression

- Structural equivalence: Two type expressions are equivalent if
 - either these are same basic types
 - or these are formed by applying same constructor to equivalent types
- Name equivalence: types can be given names
 - Two type expressions are equivalent if they have the same name

Function to test structural equivalence

```
function sequiv(s, t): boolean;
  If s and t are same basic types
    then return true
      elseif s == array(s1, s2) and t == array(t1, t2)
        then return sequiv(s1, \pm1) && sequiv(s2, \pm2)
          elseif s == s1 \times s2 and t == t1 \times t2
             then return sequiv(s1, \pm1) && sequiv(s2, \pm2)
               elseif s == pointer(s1) and t == pointer(t1)
                 then return sequiv(s1, t1)
                    elseif s == s1 \rightarrow s2 and t == t1 \rightarrow t2
                       then return sequiv(s1,t1) && sequiv(s2,t2)
                          else return false:
                                                                     120
```

Efficient implementation

• Bit vectors can be used to represent type expressions. Refer to: A Tour Through the Portable C Compiler: S. C. Johnson, 1979.

Basic type	Encoding
Boolean	0000
Char	0001
Integer	0010
real	0011

Type constructor	encoding
pointer	01
array	10
function	11

Efficient implementation ...

```
Type expression encoding char 000000 0001 function( char ) 00001 0001 0001 0001 pointer( function( char ) 000111 0001 array( pointer( function( char) ) 100111 0001
```

This representation saves space and keeps track of constructors

Checking name equivalence

Consider following declarations

```
type link = ^cell;
var next, last : link;
p, q, r : ^cell;
```

- Do the variables next, last, p, q and r have identical types?
- Type expressions have names and names appear in type expressions.
- Name equivalence views each type name as a distinct type

Name equivalence ...

variable type expression
next link
last link
p pointer(cell)
q pointer(cell)
r pointer(cell)

- Under name equivalence next = last and p = q = r, however, next ≠ p
- Under structural equivalence all the variables are of the same type

Name equivalence ...

- Some compilers allow type expressions to have names.
- However, some compilers assign implicit type names to each declared identifier in the list of variables.
- Consider

```
type link = ^ cell;
var next : link;
    last : link;
    p : ^ cell;
    q : ^ cell;
    r : ^ cell;
```

 In this case type expression of p, q and r are given different names and therefore, those are not of the same type

Name equivalence ...

```
The code is similar to
type link = ^ cell
     np = ^ cell;
     ng = ^ cell;
     nr = ^ cell;
var next : link;
     last: link;
     p : np;
     q: nq;
     r:nr;
```

Cycles in representation of types

- Data structures like linked lists are defined recursively
- Implemented through structures which contain pointers to structures
- Consider following code

```
type link = ^ cell;
cell = record
info : integer;
next : link
end;
```

 The type name cell is defined in terms of link and link is defined in terms of cell (recursive definitions)

Cycles in representation of ...

- Recursively defined type names can be substituted by definitions
- · However, it introduces cycles into the type graph

Cycles in representation of ...

- C uses structural equivalence for all types except records
- It uses the acyclic structure of the type graph
- Type names must be declared before they are used
 - However, allow pointers to undeclared record types
 - All potential cycles are due to pointers to records
- Name of a record is part of its type
 - Testing for structural equivalence stops when a record constructor is reached

Type conversion

- Consider expression like x + i where x is of type real and i is of type integer
- Internal representations of integers and reals are different in a computer
 - different machine instructions are used for operations on integers and reals
- The compiler has to convert both the operands to the same type
- Language definition specifies what conversions are necessary.

Type conversion ...

- Usually conversion is to the type of the left hand side
- Type checker is used to insert conversion operations:

```
x + i \forall x real + inttoreal(i)
```

- Type conversion is called implicit/coercion if done by compiler.
- It is limited to the situations where no information is lost
- Conversions are explicit if programmer has to write something to cause conversion

Type checking for expressions

```
E \rightarrow num
             E.type = int
E \rightarrow num.num E.type = real
E \rightarrow id E.type = lookup(id.entry)
E \rightarrow E_1 op E_2 E.type = if E_1.type == int && E_2.type == int
                              then int
                         elseif E_1.type == int && E_2.type == real
                              then real
                         elseif E_1.type == real && E_2.type == int
                              then real
                         elseif E<sub>1</sub>.type == real && E<sub>2</sub>.type==real
                              then real
```

Overloaded functions and operators

- Overloaded symbol has different meaning depending upon the context
- In maths + is overloaded; used for integer, real, complex, matrices
- In Ada () is overloaded; used for array, function call, type conversion
- Overloading is resolved when a unique meaning for an occurrence of a symbol is determined

Overloaded functions and operators ...

- In Ada standard interpretation of * is multiplication
- · However, it may be overloaded by saying

```
function "*" (i, j: integer) return complex; function "*" (i, j: complex) return complex;
```

Possible type expression for "*" are

```
integer \mathbf{x} integer \rightarrow integer integer \mathbf{x} integer \rightarrow complex complex \mathbf{x} complex
```

Overloaded function resolution

- Suppose only possible type for 2, 3 and 5
 is integer and Z is a complex variable
 - then 3*5 is either integer or complex depending upon the context
 - in 2*(3*5)
 - 3*5 is integer because 2 is integer
 - in Z*(3*5)
 - 3*5 is complex because Z is complex

Type resolution

- Try all possible types of each overloaded function (possible but brute force method!)
- Keep track of all possible types
- Discard invalid possibilities
- At the end, check if there is a single unique type
- Overloading can be resolved in two passes:
 - Bottom up: compute set of all possible types for each expression
 - Top down: narrow set of possible types based on what could be used in an expression

Determining set of possible types

```
E' \rightarrow E
```

 $E \rightarrow id$

 $E \rightarrow E_1(E_2)$

E'.types = E.types

E.types = lookup(id)

E.types = { $t \mid \text{there exists an } s \text{ in } E_2.\text{types}$ and $s \rightarrow t \text{ is in } E_1.\text{types}}$

Narrowing the set of possible types

- Ada requires a complete expression to have a unique type
- Given a unique type from the context we can narrow down the type choices for each expression
- If this process does not result in a unique type for each sub expression then a type error is declared for the expression

Narrowing the set of ...

```
E' \rightarrow E
                            E'.types = E.types
                             E.unique = if E'.types=={t} then t
                                                   else type_error
E \rightarrow id
                             E.types = lookup(id)
E \rightarrow E_1(E_2)
                             E.types = \{ t \mid \text{there exists an s in } E_2.\text{types} \}
                                                   and s \rightarrow t is in E_1. types
                             t = E.unique
                             S = \{s \mid s \in E2. \text{ types and } (s \rightarrow t) \in E1. \text{ types} \}
                             E_2.unique = if S==\{s\} then s else type_error
                             E_1.unique = if S==\{s\} then s \rightarrow t else type_error
```

Is the grammar L-attributed?

```
E' \rightarrow E
                             E'.types = E.types
                             E.unique = if E'.types=={t} then t
                                                   else type_error
E \rightarrow id
                             E.types = lookup(id)
E \rightarrow E_1(E_2)
                             E.types = \{ t \mid \text{there exists an s in } E_2.\text{types} \}
                                                   and s \rightarrow t is in E_1. types
                             t = E.unique
                             S = \{s \mid s \in E2. \text{ types and } (s \rightarrow t) \in E1. \text{ types} \}
                             E_2.unique = if S==\{s\} then s else type_error
                             E_1.unique = if S==\{s\} then s \rightarrow t else type_error
```

Polymorphic functions

- A function can be invoked with arguments of different types
- Built in operators for indexing arrays, applying functions, and manipulating pointers are usually polymorphic
- Extend type expressions to include expressions with type variables
- Facilitate the implementation of algorithms that manipulate data structures (regardless of types of elements)
 - Determine length of the list without knowing types of the elements

Polymorphic functions ...

- Strongly typed languages can make programming very tedious
- Consider identity function written in a language like Pascal function identity (x: integer): integer;
- This function is the identity on integers identity: int → int
- In Pascal types must be explicitly declared
- If we want to write identity function on char then we must write function identity (x: char): char;
- This is the same code; only types have changed. However, in Pascal a new identity function must be written for each type

Type variables

- Variables can be used in type expressions to represent unknown types
- Important use: check consistent use of an identifier in a language that does not require identifiers to be declared
- An inconsistent use is reported as an error
- If the variable is always used as of the same type then the use is consistent and has lead to type inference
- Type inference: determine the type of a variable/language construct from the way it is used
 - Infer type of a function from its body

- Consider
 function deref(p);
 begin
 return p^
 end;
- When the first line of the code is seen nothing is known about type of p
 - Represent it by a type variable
- Operator ^ takes pointer to an object and returns the object
- Therefore, p must be pointer to an object of unknown type α
 - If type of p is represented by β then β =pointer(α)
 - Expression p^ˆ has type α
- Type expression for function deref is for any type α pointer(α) $\rightarrow \alpha$
- For identity function for any type α $\alpha \rightarrow \alpha$

Assignment: Extend the scheme which has a rule number \rightarrow sign list. List replacing number \rightarrow sign list (DUE 5 days from today)

```
number \rightarrow sign list
                                list.position \leftarrow 0
                                if sign.negative
                                    then number.value ← - list.value
                                    else number.value ← list.value
                                sign.negative \leftarrow false
sign \rightarrow +
                                sign.negative ← true
sign \rightarrow -
list \rightarrow bit
                                bit.position ← list.position
                                list.value ← bit.value
                                list_1.position \leftarrow list_0.position + 1
list_0 \rightarrow list_1 bit
                                bit.position \leftarrow list<sub>0</sub>.position
                                list_0.value \leftarrow list_1.value + bit.value
bit \rightarrow 0
                                bit.value \leftarrow 0
bit \rightarrow 1
                                bit value ← 2bit.position
```