Mineração de Dados

Conjunto de dados: Diamonds Prices

https://www.kaggle.com/datasets/nancyalaswad90/diamonds-prices

Marcos Geraldo Braga Emiliano 19.1.4012

Contexto geral dos dados: Dados relativos a 53,940 diamantes de corte redondo negociados em 2022, onde são descritas 10 caracteristicas sobre eles, carat, cut, color, clarity, depth, table, price, x, y, e z, descrição detalhada a frente.

Carregando os dados:

```
from google.colab import drive
drive.mount('/content/drive')
import pandas as pd
import numpy as np
import math
import pylab as plt
import seaborn as sns
from scipy import stats
from pandas.api.types import is_string_dtype
from pandas.api.types import is_numeric_dtype
from statsmodels.stats.outliers influence import variance inflation factor
from sklearn import preprocessing
from sklearn.preprocessing import PolynomialFeatures
from sklearn.preprocessing import LabelEncoder
from sklearn.model selection import train test split
from sklearn.linear_model import LinearRegression
from sklearn import metrics
from sklearn.linear_model import Ridge
from sklearn.linear_model import Lasso
from sklearn.linear_model import ElasticNet
from sklearn.ensemble import RandomForestRegressor
%matplotlib inline
     Mounted at /content/drive
data = pd.read csv('/content/drive/My Drive/TPDataMining/DiamondsPrices2022.csv')
```

```
data.shape (53943, 11)
```

Removendo uma coluna com valores de indice

```
data.drop('Unnamed: 0', axis=1, inplace=True)

numData = data.select_dtypes('number')
catData = data.select_dtypes('O')
for c in catData.columns:
    print(catData[c].unique())

    ['Ideal' 'Premium' 'Good' 'Very Good' 'Fair']
    ['E' 'I' 'J' 'H' 'F' 'G' 'D']
    ['SI2' 'SI1' 'VS1' 'VS2' 'VVS2' 'VVS1' 'I1' 'IF']

instances, features = data.shape
```

▼ Pequeno Exemplo:

```
data.head(20)
```

	carat	cut	color	clarity	depth	table	price	X	у	Z	10-
0	0.23	Ideal	Е	SI2	61.5	55.0	326	3.95	3.98	2.43	
1	0.21	Premium	Е	SI1	59.8	61.0	326	3.89	3.84	2.31	
2	0.23	Good	Е	VS1	56.9	65.0	327	4.05	4.07	2.31	
3	n 29	Premium	1	VS2	62 4	58 O	334	4 20	4 23	2 63	

Descrição dos Atributos:

- 1) index indice numerico que indentifica a entidade, dado Discreto
- 2) carat quilate, unidade de medida baseada no peso, dado Continuo
- 3) cut classificação do corte da pedra preciosa, dado categorico
- 4) color cor da pedra, dado categorico
- 5) clarity clareza da pedra, dado categorico
- 6) depth "altura" da pedra, continuo
- 7) table "largura" do topo da pedra, continuo
- 8) price preço da pedra em dolar, continuo
- 9) x medida no eixo x da pedra em mm, continuo
- 10) y medida no eixo y da pedra em mm, continuo
- 11) z medida no eixo z da pedra em mm, continuo
- Avaliando os valores contidos no banco de dados:

Quilate

```
min = np.min(data['carat'])
max = np.max(data['carat'])
```

```
media = sum(data['carat'])/instances
desv= math.sqrt(np.sum((data['carat']-media)**2)/instances)
inter=max-min
out=[]
print("Carat:")
print("Minimo: ",min)
print("Maximo: ",max)
print("Media: ",media)
print("Desvio Padrao: ", desv)
print("Intervalo: ", inter)
     Carat:
     Minimo: 0.2
     Maximo: 5.01
     Media: 0.7979346717831621
     Desvio Padrao: 0.4739941595630074
     Intervalo: 4.81
sns.histplot(numData['carat'].sort_values())
```


"Altura"

```
min = np.min(data['depth'])
max = np.max(data['depth'])
media = sum(data['depth'])/instances
desv= math.sqrt(np.sum((data['depth']-media)**2)/instances)
inter=max-min
out=[]
print("Depth:")
print("Minimo: ",min)
print("Maximo: ",max)
print("Media: ",media)
print("Desvio Padrao: ", desv)
print("Intervalo: ", inter)
```

Depth:

Minimo: 43.0 Maximo: 79.0

Media: 61.74932243293768

Desvio Padrao: 1.4326129869036368

Intervalo: 36.0

sns.histplot(numData['depth'].sort_values())

<matplotlib.axes._subplots.AxesSubplot at 0x7f0fae22d610>

▼ "Largura"

```
min = np.min(data['table'])
max = np.max(data['table'])
media = sum(data['table'])/instances
desv= math.sqrt(np.sum((data['table']-media)**2)/instances)
inter=max-min
out=[]
print("Table:")
print("Minimo: ",min)
print("Maximo: ",max)
print("Media: ",media)
print("Desvio Padrao: ", desv)
print("Intervalo: ", inter)
     Table:
     Minimo: 43.0
     Maximo: 95.0
     Media: 57.45725117253402
     Desvio Padrao: 2.2345282410474523
     Intervalo: 52.0
sns.histplot(numData['table'].sort_values())
```


▼ "Preço"

```
min = np.min(data['price'])
max = np.max(data['price'])
media = sum(data['price'])/instances
desv= math.sqrt(np.sum((data['price']-media)**2)/instances)
inter=max-min
out=[]
print("Price:")
print("Minimo: ",min)
print("Maximo: ",max)
print("Media: ",media)
print("Desvio Padrao: ", desv)
print("Intervalo: ", inter)
     Price:
     Minimo: 326
     Maximo: 18823
     Media: 3932.734293606214
     Desvio Padrao: 3989.301469302266
     Intervalo: 18497
```

sns.histplot(numData['price'].sort_values())

/mathlatlih avas subhlats AvasCubhlat at Av7fAfadQ7f75A

▼ Medidas x, y e z

```
min = np.min(data['x'])
max = np.max(data['x'])
media = sum(data['x'])/instances
desv= math.sqrt(np.sum((data['x']-media)**2)/instances)
inter=max-min
out=[]
print("\nEixo x:")
print("Minimo: ",min)
print("Maximo: ",max)
print("Media: ",media)
print("Desvio Padrao: ", desv)
print("Intervalo: ", inter)
min = np.min(data['y'])
max = np.max(data['y'])
media = sum(data['y'])/instances
desv= math.sqrt(np.sum((data['y']-media)**2)/instances)
inter=max-min
out=[]
print("\n----\n")
print("Eixo y:")
print("Minimo: ",min)
print("Maximo: ",max)
print("Media: ",media)
print("Desvio Padrao: ", desv)
print("Intervalo: ", inter)
print("\n----\n")
min = np.min(data['z'])
max = np.max(data['z'])
media = sum(data['z'])/instances
desv= math.sqrt(np.sum((data['z']-media)**2)/instances)
inter=max-min
out=[]
print("Eixo z:")
print("Minimo: ",min)
print("Maximo: ",max)
print("Media: ",media)
print("Desvio Padrao: ", desv)
print("Intervalo: ", inter)
```

Eixo x:

Minimo: 0.0 Maximo: 10.74

Media: 5.731158074263461

Desvio Padrao: 1.121719188381892

Intervalo: 10.74

Eixo y: Minimo: 0.0 Maximo: 58.9

Media: 5.734526444580299

Desvio Padrao: 1.1420923330316735

Intervalo: 58.9

Eixo z: Minimo: 0.0 Maximo: 31.8

Media: 3.5387295849324203

Desvio Padrao: 0.7056729303858117

Intervalo: 31.8

sns.histplot(numData['x'].sort_values())

<matplotlib.axes._subplots.AxesSubplot at 0x7f0fad74d6d0>

sns.histplot(numData['y'].sort_values())

Qualidade do Corte

sns.countplot(catData['cut'].sort_values())

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f0fac772410>

▼ Cor

sns.countplot(catData['color'].sort_values())

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f0facefdfd0>

▼ Clareza

sns.countplot(catData['clarity'].sort_values())

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f0facd50150>

→ Limpeza de Dados

print(data.isnull().any())
print()

	_
carat	False
cut	False
color	False
clarity	False
depth	False
table	False

```
price
               False
    Χ
               False
               False
    У
               False
    Z
    dtype: bool
data.info()
     <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 53943 entries, 0 to 53942
    Data columns (total 10 columns):
        Column Non-Null Count Dtype
         carat
                  53943 non-null float64
     0
     1
        cut
                 53943 non-null object
     2 color 53943 non-null object
         clarity 53943 non-null object
     4
                 53943 non-null float64
         depth
     5
         table
                  53943 non-null float64
                  53943 non-null int64
         price
     6
     7
                  53943 non-null float64
         Х
     8
                  53943 non-null float64
         У
                  53943 non-null float64
     9
    dtypes: float64(6), int64(1), object(3)
```

Nenhum valor nulo encontrado

memory usage: 4.1+ MB

```
data.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 53943 entries, 0 to 53942
    Data columns (total 10 columns):
         Column Non-Null Count Dtype
                  -----
     0
         carat
                  53943 non-null float64
     1
         cut
                  53943 non-null object
     2
         color
                  53943 non-null object
         clarity 53943 non-null object
     3
     4
                  53943 non-null float64
         depth
     5
        table
                  53943 non-null float64
                  53943 non-null int64
         price
     6
                  53943 non-null float64
     7
         Х
     8
                  53943 non-null float64
         У
                  53943 non-null float64
    dtypes: float64(6), int64(1), object(3)
    memory usage: 4.1+ MB
```

▼ Buscando valores duplicados

```
print(f'The number of duplicate rows : {data.duplicated().sum()}')
```

The number of duplicate rows : 149

▼ Buscando Outliers

```
i = 1
plt.figure(figsize=(19, 12))
for c in numData.columns:
    plt.subplot(3, 3, i)
    sns.boxplot(x=data[c])
    i+=1
```


▼ Fazendo o tratamento dos Outliers

```
uara = uara[(iih.anz(2rar2.52coi.e(iiniiinara)) < 2).att(axt2=t)]</pre>
```

```
numData = data.select_dtypes('number')
i = 1
plt.figure(figsize=(19, 12))
for c in numData.columns:
    plt.subplot(3, 3, i)
    sns.boxplot(x=data[c])
    i+=1
```


▼ Correlação dos demais atributos com o preço

data.corrwith(data.price)

carat 0.922409

```
depth -0.001882
    table 0.131667
    price 1.000000
          0.890451
    Χ
           0.891716
    У
           0.887339
    dtype: float64
data['table_xy'] = (data['table'].mean()*(data['x']*data['y']).mean()-data['table']*(data[
data['depth_z'] = (data['depth'].mean()*data['z'].mean()-data['depth']*data['z'])
print("\n",data['table_xy'])
print("\n-----\n")
print("\n",data['depth_z'])
            1036.549639
     0
    1
            990.011039
    3
           870.776639
    4
            806.222639
          1011.867839
    53938 -281.799361
           18.989139
    53939
    53940
             73.301639
    53941 -137.987761
    53942
            -39.281761
    Name: table_xy, Length: 51593, dtype: float64
     0
            66.359088
    1
            77.666088
    3
           51.692088
           41.729088
           60.060088
    53938 -12.335912
    53939 -10.603912
    53940
            4.659088
    53941
            10.690088
    53942
            5.869088
    Name: depth_z, Length: 51593, dtype: float64
```

▼ Distribuição de valores

```
numData = data.select_dtypes('number')
plt.figure(figsize=(19, 12))
for c in numData.columns:
    plt.subplot(3, 3, i)
    sns.histplot(x = data[c])
    i+=1
```


▼ Fazendo o tratamento dos atributos categoricos

```
data['cut'] = data['cut'].map({'Fair':0, 'Good':1, 'Very Good':2, 'Premium':3, 'Ideal':4})
data['color'] = data['color'].map({'J':0, 'I':1, 'H':2, 'G':3, 'F':4, 'E':5, 'D':6})
data['clarity'] = data['clarity'].map({'II':0, 'SI2':1, 'SI1':2, 'VS2':3, 'VS1':4, 'VVS2':
```

▼ Resultado das operações

data.describe()

	carat	cut	color	clarity	depth	tal
count	51593.000000	51593.000000	51593.000000	51593.000000	51593.000000	51593.0000
mean	0.759929	2.952532	3.433625	3.086950	61.752751	57.3692
std	0.424971	1.070644	1.694679	1.642551	1.269271	2.1000
min	0.200000	0.000000	0.000000	0.000000	57.500000	51.0000
25%	0.390000	2.000000	2.000000	2.000000	61.100000	56.0000
50%	0.700000	3.000000	3.000000	3.000000	61.800000	57.0000
75%	1.020000	4.000000	5.000000	4.000000	62.500000	59.0000
.head()						

data.head()

	carat	cut	color	clarity	depth	table	price	x	у	Z	table_xy	de
0	0.23	4	5	1	61.5	55.0	326	3.95	3.98	2.43	1036.549639	66.3
1	0.21	3	5	2	59.8	61.0	326	3.89	3.84	2.31	990.011039	77.6
3	0.29	3	1	3	62.4	58.0	334	4.20	4.23	2.63	870.776639	51.6
4	0.31	1	0	1	63.3	58.0	335	4.34	4.35	2.75	806.222639	41.7
5	0.24	2	0	5	62.8	57.0	336	3.94	3.96	2.48	1011.867839	60.0
4												•

```
print(data.sort_values('carat', ascending=False).head(5)['carat'])
print(data.sort_values('carat', ascending=True).head(5)['carat'])
     25250
              2.21
     24072
              2.21
     24922
              2.21
     26321
              2.21
     25506
              2.21
     Name: carat, dtype: float64
     31598
              0.2
     31591
              0.2
     31592
              0.2
     31593
              0.2
     31594
              0.2
     Name: carat, dtype: float64
```

print(data.sort_values('depth', ascending=False).head(5)['depth'])
print(data.sort_values('depth', ascending=True).head(5)['depth'])

```
2534
         66.0
1523
         66.0
46742
         66.0
15331
         66.0
1097
         66.0
Name: depth, dtype: float64
5481
         57.5
50486
         57.5
         57.5
11639
34938
         57.5
```

50211

57.5

```
Name: depth, dtype: float64
print(data.sort_values('table', ascending=False).head(5)['table'])
print(data.sort_values('table', ascending=True).head(5)['table'])
     4582
              64.0
     10570
              64.0
     20481
              64.0
     24787
              64.0
     3595
              64.0
     Name: table, dtype: float64
     46040
             51.0
     47630
              51.0
     33586
              51.0
              51.0
     3979
     45798
              51.0
     Name: table, dtype: float64
print(data.sort_values('price', ascending=False).head(5)['price'])
print(data.sort_values('price', ascending=True).head(5)['price'])
     26393
              15898
     26392
              15897
     26391
              15897
     26390
           15897
     26389
              15889
     Name: price, dtype: int64
         326
     1
         326
     3
          334
     4
          335
     5
          336
     Name: price, dtype: int64
print(data.sort_values('x', ascending=False).head(5)['x'])
print(data.sort_values('x', ascending=True).head(5)['x'])
     24739
              8.60
     22140
              8.57
     25562
              8.57
     25749
              8.54
     23121
             8.52
     Name: x, dtype: float64
     31596
             3.73
     31600
           3.73
           3.74
     31598
     31599
              3.76
     31601
              3.77
     Name: x, dtype: float64
print(data.sort_values('y', ascending=False).head(5)['y'])
print(data.sort_values('y', ascending=True).head(5)['y'])
```

```
26242 8.55
    24739 8.53
    25717 8.53
    22140 8.53
    26223 8.51
    Name: y, dtype: float64
    31600 3.68
    31598 3.71
    31596 3.71
    31601 3.72
    31599 3.73
    Name: y, dtype: float64
print(data.sort_values('z', ascending=False).head(5)['z'])
print(data.sort_values('z', ascending=True).head(5)['z'])
    23194
            5.30
    23690
            5.23
    13118 5.23
           5.23
    25305
    23513 5.23
    Name: z, dtype: float64
          1.53
    20694
    39246 2.06
    31592 2.24
    47138 2.25
    31591
           2.26
    Name: z, dtype: float64
```

Tratamento dos dados continuos para intervalos

▼ Carat

```
bins=1000
min = np.min(data['carat'])
max = np.max(data['carat'])
inter=max-min
print("\nIntervalo dos Valores:",inter)
gaps=inter/bins
print("\nTamanho das Bins:",gaps)
data['carat'] = data['carat'] //gaps
print("\n",(data.sort_values('carat', ascending=True).head(10)['carat']))
print("\n",(data.sort_values('carat', ascending=False).head(10)['carat']))
     Intervalo dos Valores: 2.01
     Tamanho das Bins: 0.002009999999999996
      31598
              99.0
     31591
              99.0
     31592
              99.0
              99.0
     31593
```

```
31594
         99.0
31595
        99.0
         99.0
31596
31597
         99.0
31599
         99.0
31600
         99.0
Name: carat, dtype: float64
 25250
         1099.0
24072
         1099.0
24922
        1099.0
26321
        1099.0
25506
        1099.0
25106 1099.0
25306
        1099.0
24153
        1099.0
25330
        1099.0
25089
         1099.0
Name: carat, dtype: float64
```

Depth

```
bins=1000
min = np.min(data['depth'])
max = np.max(data['depth'])
inter=max-min
print("\nIntervalo dos Valores:",inter)
gaps=inter/bins
print("\nTamanho das Bins:",gaps)
data['depth'] = data['depth'] //gaps
print("\n",(data.sort_values('depth', ascending=True).head(10)['depth']))
print("\n",(data.sort_values('depth', ascending=False).head(10)['depth']))
```

Intervalo dos Valores: 8.5

Tamanho das Bins: 0.0085

```
5481
          6764.0
50486
         6764.0
11639
         6764.0
34938
         6764.0
50211
         6764.0
34024
         6764.0
46085
         6764.0
25562
         6764.0
12641
         6764.0
12692
         6764.0
Name: depth, dtype: float64
 2534
          7764.0
1523
         7764.0
46742
         7764.0
15331
         7764.0
1097
         7764.0
15139
         7764.0
```

7764.0

17716

```
49151 7764.0
49328 7764.0
3115 7764.0
```

Name: depth, dtype: float64

▼ Table

```
bins=1000
min = np.min(data['table'])
max = np.max(data['table'])
inter=max-min
print("\nIntervalo dos Valores:",inter)
gaps=inter/bins
print("\nTamanho das Bins:",gaps)
data['table'] = data['table'] //gaps
print("\n",(data.sort_values('table', ascending=True).head(10)['table']))
print("\n",(data.sort_values('table', ascending=False).head(10)['table']))
     Intervalo dos Valores: 13.0
     Tamanho das Bins: 0.013
              3923.0
      46040
     47630
              3923.0
     33586
              3923.0
     3979
             3923.0
     45798
           3923.0
     1515
              3923.0
     26387
              3923.0
     4150
             3923.0
              3969.0
     24815
     5144
              4000.0
     Name: table, dtype: float64
      4582
              4923.0
     10570
              4923.0
     20481
             4923.0
     24787
             4923.0
     3595
             4923.0
     17781
              4923.0
     13749
              4923.0
     14861
              4923.0
              4923.0
     30409
     19089
              4923.0
     Name: table, dtype: float64
```

Price

```
bins=1000
min = np.min(data['price'])
max = np.max(data['price'])
inter=max-min
print("\nIntervalo dos Valores:",inter)
```

```
gaps=inter/bins
print("\nTamanho das Bins:",gaps)
data['price'] = data['price'] //gaps
print("\n",(data.sort_values('price', ascending=True).head(10)['price']))
print("\n",(data.sort_values('price', ascending=False).head(10)['price']))
    Intervalo dos Valores: 15572
    Tamanho das Bins: 15.572
           20.0
    1
          20.0
          21.0
    11
    10
          21.0
    9
          21.0
    8
          21.0
    12
          21.0
    6
          21.0
    5
          21.0
    4
          21.0
    Name: price, dtype: float64
     26393
             1020.0
    26392
            1020.0
    26391
           1020.0
          1020.0
    26390
    26389 1020.0
    26387 1020.0
    26386
           1020.0
    26382
            1019.0
    26383 1019.0
            1019.0
    26381
    Name: price, dtype: float64
Χ
bins=1000
min = np.min(data['x'])
max = np.max(data['x'])
inter=max-min
print("\nIntervalo dos Valores:",inter)
gaps=inter/bins
print("\nTamanho das Bins:",gaps)
data['x'] = data['x'] //gaps
print("\n",(data.sort_values('x', ascending=True).head(10)['x']))
print("\n",(data.sort_values('x', ascending=False).head(10)['x']))
    31596
             765.0
            765.0
    31600
    31598
            767.0
```

```
31599 772.0
     31601
             774.0
             778.0
     31591
     14
             778.0
     31592
             782.0
     31593
             782.0
     31597
             782.0
     Name: x, dtype: float64
      24739
              1765.0
     22140
             1759.0
     25562
             1759.0
     25749 1753.0
     23121 1749.0
     22251
            1749.0
     26242 1747.0
     25250 1747.0
     24211
            1743.0
     25717
             1741.0
     Name: x, dtype: float64
Υ
bins=1000
min = np.min(data['y'])
max = np.max(data['y'])
inter=max-min
print("\nIntervalo dos Valores:",inter)
gaps=inter/bins
print("\nTamanho das Bins:",gaps)
data['y'] = data['y'] //gaps
print("\n",(data.sort_values('y', ascending=True).head(10)['y']))
print("\n",(data.sort_values('y', ascending=False).head(10)['y']))
     Intervalo dos Valores: 4.870000000000001
     Tamanho das Bins: 0.00487000000000001
              755.0
      31600
     31598
             761.0
     31596
             761.0
             763.0
     31601
     31599
             765.0
     14
             770.0
     31591
             774.0
     31597
             774.0
     31593
             776.0
     38276
             776.0
     Name: y, dtype: float64
      26242
              1755.0
     24739
             1751.0
     25717
             1751.0
     22140
             1751.0
     26223
             1747.0
     22251
             1745.0
```

25749 1743.0 26133 1743.0

```
25562
          1741.0
    26321
          1741.0
    Name: y, dtype: float64
Ζ
bins=1000
min = np.min(data['z'])
max = np.max(data['z'])
inter=max-min
print(inter)
gaps=inter/bins
print(gaps)
data['z'] = data['z'] //gaps
print((data.sort_values('z', ascending=True).head(10)['z']))
print((data.sort_values('z', ascending=False).head(10)['z']))
    3.769999999999996
    0.003769999999999995
    20694
            405.0
    39246 546.0
    31592 594.0
    47138
            596.0
    31591 599.0
    14
            602.0
    31594
             604.0
    38278 607.0
    31595 610.0
    38279 610.0
    Name: z, dtype: float64
    23194
           1405.0
    23690 1387.0
    13118 1387.0
    25305 1387.0
    23513 1387.0
    24536 1387.0
    24396 1384.0
    24857
          1384.0
    25225
          1384.0
    23841
             1381.0
    Name: z, dtype: float64
```

▼ Relação entre o preço e os demais atributos

```
i = 1
plt.figure(figsize=(19, 16))
for c in data.columns:
    plt.subplot(4, 3, i)
    sns.scatterplot(x=data[c], y=data['price'])
    i+=1
```


Inicio da Fase 2

```
<bound method NDFrame.head of</pre>
                                          carat cut color clarity
                                                                       depth
                                                                               table
                 Х
                         У
                           \
                            5
     0
            114.0
                     4
                                     1 7235.0 4230.0
                                                         20.0
                                                                811.0
                                                                        817.0
                            5
     1
            104.0
                                     2 7035.0 4692.0
                                                         20.0
                                                                798.0
                                                                        788.0
                     3
     3
            144.0
                     3
                            1
                                     3 7341.0 4461.0
                                                         21.0
                                                                862.0
                                                                        868.0
     4
            154.0
                                     1 7447.0
                                               4461.0
                                                         21.0
                                                                        893.0
                     1
                            0
                                                                891.0
     5
            119.0
                     2
                            0
                                     5
                                       7388.0 4384.0
                                                         21.0
                                                                809.0
                                                                        813.0
                                   . . .
                                           . . .
                                                          . . .
     53938 427.0
                     3
                            2
                                     1
                                       7176.0
                                               4461.0 177.0
                                                               1262.0
                                                                       1256.0
     53939
           373.0
                    4
                            6
                                     1 7317.0 4230.0 177.0
                                                              1197.0
                                                                       1205.0
     53940 353.0
                    3
                            5
                                     2 7117.0 4230.0
                                                       176.0
                                                               1188.0
                                                                       1178.0
     53941
           353.0
                     3
                            4
                                     2
                                       7035.0 4769.0
                                                       176.0
                                                               1178.0
                                                                       1176.0
     53942
           348.0
                            5
                                     3
                                       7117.0 4538.0 177.0 1172.0
                                                                       1182.0
                     table_xy
                                depth_z
                Z
     0
            644.0 1036.549639 66.359088
     1
            612.0
                   990.011039 77.666088
     3
            697.0
                    870.776639 51.692088
     4
            729.0
                    806.222639 41.729088
     5
            657.0 1011.867839 60.060088
             . . .
                  -281.799361 -12.335912
     53938 992.0
     53939 965.0
                    18.989139 -10.603912
     53940 925.0
                    73.301639
                                4.659088
     53941
           909.0 -137.987761 10.690088
     53942 920.0
                    -39.281761
                                 5.869088
     [51593 rows x 12 columns]>
num_col=[]
cat_col=[]
for col in data.columns:
    plt.figure(col, figsize=(5,5))
    plt.title(col)
    if is_numeric_dtype(data[col]):
        data[col].plot(kind="hist")
        num_col.append(col)
    if is_string_dtype(data[col]):
        sns.countplot(x=col, data=data, order=data[col].value counts().index)
        plt.show()
        cat_col.append(col)
```


Como vamos utilziar regressão devemos transformas as variaveis de categoricas para numericas

Distribuição de valores de Preços

```
data["log_price"]=np.log2(data["price"]+1)
data["log_price"].plot(kind="hist")
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f0fabf6acd0>

Analise de Correlação

plt.figure(figsize=(10,10))
sns.heatmap(data.corr(), annot=True, cmap="GnBu")
plt.show()

→ Abaixo estão os atributos com mais de 50% de correlação

```
# Next, Get the variables which has correlation more than 50%
diamond_corr=data.corr()[["log_price"]]
diamond_corr_hi=diamond_corr.loc[diamond_corr["log_price"]>0.5]
print(diamond_corr_hi)
                log_price
     carat
                 0.931003
     price
                 0.907942
                 0.961694
     Х
                 0.962143
                 0.958906
     log_price 1.000000
```

Buscando por multicolinearidade

```
X=data[['carat','cut','color','clarity', 'x','y','z', 'table', 'depth']]
#VIF DataFrame
vif_data=pd.DataFrame()
vif_data['features']=X.columns
#calculating VIF for each feature
vif_data["VIF"]=[variance_inflation_factor(X.values,i) for i in range(len(X.columns))]
vif_data
```

	features	VIF	
0	carat	128.610656	
1	cut	11.926322	
2	color	5.689119	
3	clarity	5.543326	
4	х	13615.173569	
5	У	11572.010189	
6	Z	5575.561623	
7	table	996.507428	
8	depth	1492.813962	

Inicio da implementação do modelo

```
y=data['log_price'] #Dependent variable
X=data[['carat','color','clarity', 'cut','x','y','z', 'table', 'depth']] #independent vari
```

```
# Next, we devide our dataset into training and testing datasets, in 70 and 30 ratio.
# Use model_selection.train_test_split from sklearn to split the data into training and te
X_train, X_test, y_train, y_test=train_test_split(X,y,test_size=0.3)
```

▼ Treinando o modelo

Regressão Linear

```
lr=LinearRegression(normalize=True)
lr.fit(X_train, y_train)

coeffecients = pd.DataFrame(lr.coef_,X_train.columns)
coeffecients.columns = ['Coeffecient']
print("Intercept value is {}".format(lr.intercept_))
coeffecients

    Intercept value is -8.13963648753174
    /usr/local/lib/python3.7/dist-packages/sklearn/linear_model/_base.py:145: FutureWarni
    If you wish to scale the data, use Pipeline with a StandardScaler in a preprocessing
    from sklearn.pipeline import make_pipeline

    model = make_pipeline(StandardScaler(with_mean=False), LinearRegression())

If you wish to pass a sample_weight parameter, you need to pass it as a fit parameter
    kwargs = {s[0] + '__sample_weight': sample_weight for s in model.steps}
    model.fit(X, y, **kwargs)
```

FutureWarning,
i acai chai niing)

	Coeffecient	1
carat	-0.003090	
color	0.112217	
clarity	0.172063	
cut	0.036276	
x	0.005159	
у	0.002592	
z	0.002722	
table	0.000188	
depth	0.000430	
4		

sns.barplot(x=X_train.columns, y=lr.coef_)

pred=lr.predict(X_test)

Mean Square Error: Erro para cada conjunto x - x', sendo x o previsto e x' o predito, onde o Mean Square Error = $(x - x')^{**}2$

Root Mean Square Error: np.sqrt(Mean Square Error) R Square: Pode ser vista como a distancia entre a "curva" da regressão e os valores reais

```
plt.figure()
sns.histplot((y_test-pred))

# MAE, MSE, RMSE & R-square
lr_rsquare=metrics.r2_score(y_test, pred)
#print('Mean Square Error:',metrics.mean_absolute_error(y_test, pred))
print('Mean Square Error:',metrics.mean_squared_error(y_test, pred))
print('Root Mean Square Error:',np.sqrt(metrics.mean_squared_error(y_test, pred)))
print('R Square:', metrics.r2_score(y_test,pred))
```

Mean Square Error: 0.04209241766750902 Root Mean Square Error: 0.20516436744110567

R Square: 0.9787385471749861

▼ Validação do modelo

#1. Plot between predicted vs actual values

```
f=plt.figure(figsize=(14,5))
ax=f.add subplot(131)
sns.scatterplot(y_test, pred)
#plt.hlines(y=0, xmin= -1000, xmax=5000)
ax.set title('1a. Check for Linearity:\n Actual Vs Predicted value')
# 2. Check for Residual normality & mean : The residual error plot should be normally dist
# & The mean of residual error should be 0 or close to 0 as much as possible
ax=f.add_subplot(132)
sns.distplot(y test-pred)
ax.axvline((y_test-pred).mean())
ax.set_title('1b. Residual Plot')
#3 Homoscedasticity -The data are homoscedastic meaning the residuals are equal across the
#We can look at residual Vs fitted value scatter plot.
#If heteroscedastic plot would exhibit a funnel shape pattern
ax=f.add subplot(133)
sns.scatterplot(x=pred, y=(y_test-pred))
plt.title('1c. Check for Homoscedasticity: \nResidual Vs Predicted')
plt.show()
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass FutureWarning

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: warnings.warn(msg, FutureWarning)

Regressão Ridge

Adiciona um termo de penalização para evitar overfitting

```
ridgeReg=Ridge(alpha=0.05, normalize=True)
ridgeReg.fit(X train, y train)
rid_pred=ridgeReg.predict(X_test)
rid_rsquare=metrics.r2_score(y_test, rid_pred)
print('Mean Squared Error:',metrics.mean_squared_error(y_test, rid_pred))
print(' Root Mean Squared Error:',np.sqrt(metrics.mean_squared_error(y_test, rid_pred)))
print('R Squared:', metrics.r2_score(y_test,rid_pred))
#plotting
#1. Plot between predicted vs actual values
f=plt.figure(figsize=(14,5))
ax=f.add_subplot(131)
sns.scatterplot(y_test, rid_pred)
ax.set_title('1a. Check for Linearity:\n Actual Vs Predicted value')
# 2. Check for Residual normality & mean : The residual error plot should be normally dist
# & The mean of residual error should be 0 or close to 0 as much as possible
ax=f.add_subplot(132)
sns.distplot(y_test-rid_pred)
ax.axvline((y_test-rid_pred).mean())
ax.set_title('1b. Residual Plot')
#3 Homoscedasticity -The data are homoscedastic meaning the residuals are equal across the
#We can look at residual Vs fitted value scatter plot.
#If heteroscedastic plot would exhibit a funnel shape pattern
ax=f.add subplot(133)
sns.scatterplot(x=rid_pred, y=(y_test-rid_pred))
plt.title('1c. Check for Homoscedasticity: \nResidual Vs Predicted')
plt.show()
```

```
/usr/local/lib/python3.7/dist-packages/sklearn/linear model/ base.py:145: FutureWarni
If you wish to scale the data, use Pipeline with a StandardScaler in a preprocessing
from sklearn.pipeline import make_pipeline
model = make pipeline(StandardScaler(with mean=False), Ridge())
If you wish to pass a sample_weight parameter, you need to pass it as a fit parameter
kwargs = {s[0] + '__sample_weight': sample_weight for s in model.steps}
model.fit(X, y, **kwargs)
Set parameter alpha to: original_alpha * n_samples.
  FutureWarning,
/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass
  FutureWarning
/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning:
  warnings.warn(msg, FutureWarning)
Mean Squared Error: 0.05832176533212648
 Root Mean Squared Error: 0.24149899654476098
R Squared: 0.9705408828716985
```

Regressão Elasticnet

```
W
Adiciona dupla penalização, um metodo hibrido entre o Ridge e o Lasso
                    · *689-89*
                                               ENReg=ElasticNet(alpha=0.05, l1_ratio=0.5, normalize=False)
ENReg.fit(X_train, y_train)
EN_pred=ENReg.predict(X_test)
EN_rsquare=metrics.r2_score(y_test, EN_pred)
print('Mean Squared Error:',metrics.mean_squared_error(y_test, EN_pred))
print(' Root Mean Squared Error:',np.sqrt(metrics.mean_squared_error(y_test, EN_pred)))
print('R Squared:', metrics.r2_score(y_test,EN_pred))
#Plotting
#1. Plot between predicted vs actual values
f=plt.figure(figsize=(14,5))
ax=f.add_subplot(131)
sns.scatterplot(y_test, EN_pred)
ax.set title('1a. Check for Linearity:\n Actual Vs Predicted value')
# 2. Check for Residual normality & mean : The residual error plot should be normally dist
# & The mean of residual error should be 0 or close to 0 as much as possible
ax=f.add subplot(132)
sns.distplot(y test-EN pred)
ax.axvline((y_test-EN_pred).mean())
ax.set_title('1b. Residual Plot')
#3 Homoscedasticity -The data are homoscedastic meaning the residuals are equal across the
#We can look at residual Vs fitted value scatter plot.
```

#If heteroscedastic plot would exhibit a funnel shape pattern