Econometrics

Homework 4

Problem 1. Suppose that $X_1, ..., X_n$ is an i.i.d. random sample from the uniform distribution on $[0, \theta]$, where $\theta > 0$ is unknown. Denote $X_{(n)} = \max\{X_1, ..., X_n\}$. Let $Q = X_{(n)}/\theta$ and $c_n = \alpha^{1/n}$. Show that $P(Q \le c_n) = \alpha$. Note that $P(Q \le 1) = 1$ and therefore, $P(c_n \le Q \le 1) = 1 - \alpha$. Use this result to show that $[X_{(n)}, X_{(n)}/c_n]$ is a valid $1 - \alpha$ confidence interval for θ :

$$P\left(\theta \in \left[X_{(n)}, X_{(n)}/c_n\right]\right) = 1 - \alpha.$$

Problem 2. Find A-C in the Stata output below if the number of observations is 23. Justify your answer. According to the results, is x significant? The significance level is 5%. Explain.

у					[95% Conf.	_
x	•	A	1.32	0.191	В	C

Problem 3. Consider the following model: $Y = \alpha + \beta X + U$, where E(U|X) = 0, $E(U^2|X) = \sigma^2 > 0$ and the conditional distribution of U given X is $N(0, \sigma^2)$. (a) What is E(Y|X)? What is the conditional distribution of Y given X? (b) In this question, use the following result: if the conditional distribution of Y given X is $N(m(X), s(X)^2)$ (s(X) > 0), then the conditional distribution of $\frac{Y - m(X)}{s(X)}$ given X is N(0, 1) and

$$P\left(\frac{Y - m(X)}{s(X)} \le z | X\right) = \Phi(z),$$

where $\Phi\left(z\right)$ is the standard normal CDF. Here, the left hand side means the conditional probability of $\frac{Y-m(X)}{s(X)} \leq z$ given X. For a random variable Z, its τ -th quantile $(\tau \in (0,1))$ q_{τ} is defined by the equation: $P\left(Z \leq q_{\tau}\right) = \tau$. Similarly, a function $q_{\tau}\left(X\right)$ is the τ -th quantile of the conditional distribution of Y given X if

$$P\left(Y < q_{\tau}\left(X\right) | X\right) = \tau.$$

Find the expression of $q_{\tau}(X)$. Hint: Let z_{τ} denote the τ -th quantile of the standard normal distribution so that $\Phi(z_{\tau}) = \tau$. (c) Suppose that $E(U^2|X) = e^{2X}$ and the conditional distribution of U given X is $N(0, e^{2X})$. Find the expression of $q_{\tau}(X)$.

Problem 4. The variable rdintens is expenditures on research and development (R&D) as a percentage of sales. Sales are measured in millions of dollars. The variable profmarg is profits as a percentage of sales.

Using the data for 32 firms in the chemical industry, the following equation is estimated:

$$\widehat{rdintens} = 0.472 + 0.321 \log (sales) + 0.050 prof marg$$

$$(1.369) \quad (0.216) \qquad (0.046)$$

$$n = 32, R^2 = 0.099.$$

- 1. Interpret the coefficient on log(sales). In particular, if sales increases by 10%, what is the estimated percentage point change in rdintens? Is this an economically large effect?
- 2. Test the hypothesis that R&D intensity does not change with *sales* against the alternative that it does increase with sales. Do the test at the 5% and 10% levels.
- 3. Interpret the coefficient on *prof marg*. Is it economically large?
- 4. Does *prof marg* have a statistically significant effect on *rdintens*?

Problem 5. A researcher has data for 50 countries on N, the average number of newspapers purchased per adult in one year, and G, GDP per capita, measured in US \$, and fits the following regression (RSS = residual sum of squares)

$$\hat{N} = 25.0 + 0.020G, R^2 = 0.06, RSS = 4000.0.$$

The researcher believes that GDP in each country has been underestimated by 50% and that N should have been regressed on G^* , where $G^* = 2G$. Explain, how the following components of the output would have differed: (a) the coefficient of GDP; (b) R^2 .

Problem 6. Suppose we observe a random sample $\{(Y_i, D_i)\}_{i=1}^n$, where Y_i is the dependent variable and D_i is a binary independent variable: for all i = 1, 2, ..., n, $D_i = 1$ or $D_i = 0$. Suppose we regress Y_i on D_i with an intercept. Show: the LS estimate of the slope is equal to the difference between the sample averages of the dependent variable of the two groups, observations with $D_i = 1$ and observations with $D_i = 0$. Hint: The sample average of Y of observations with $D_i = 1$ can be written as $\frac{\sum_{i=1}^n D_i Y_i}{\sum_{i=1}^n D_i}$. What is the sample average of Y of observations with $D_i = 0$? Also note: $D_i = D_i^2$.

Problem 7. Consider the following model:

$$Y_i = \beta + U_i$$

where U_i are iid N(0,1) random variables, $i=1,\ldots,n$.

- 1. Find the OLS estimator of β and its mean, variance, and distribution.
- 2. Suppose that a data set of 100 observation produced OLS estimate $\hat{\beta} = 0.167$.
 - (a) Construct 90% and 95% symmetric two-sided confidence intervals for β .
 - (b) Construct a 95% one-sided confidence interval of the form $[A, +\infty)$ for β . In other words, find a random variable A such that $\Pr(\beta \in [A, +\infty)) = 1 \alpha$, where $\alpha \in (0, 0.5)$ is a known constant chosen by the econometrician.
 - (c) Construct a 95% one-sided confidence interval of the form $(-\infty, A]$ for β .