CS510	Intro	\mathbf{to}	Multimedia	Networking:	Homework	#2
			Due on September	30, 2015 at 2:00pm		

Wu-chi Feng Fall 2015

Konstantin Macarenco

Problem 1

Knowing distribution we can estimate approximate size of the encoded string. First we need to build encoding tree.

- A 10
- B 111
- C 010
- D 110
- E 00
- F 011

Considering a text that contains 100 characters, each character 8 bits 100 * 8 = 800 bits total. With Huffman compression we get 20 * 2 + 10 * 3 + 15 * 3 + 10 * 3 + 30 * 2 + 15 * 3 = 250 bits, we get compression ratio 3.2:1 However this calculation doesn't account for the size of encoding table.

Problem 2

(a) What is the maximum frame rate that we can achieve over this channel?

frame size = $640 \times 480 \ times3 = 921600 \ bits$

Bandwidth = $11 \times 10^6 = 11000000$ bits

 $\mbox{Maximum fps} = \frac{Bandwidth}{framesize} = \frac{11000000}{921600} \approx 11.93576$

Answer: maximum frame rate ≈ 11.93576 fps

(b) What compression ratio would we need to achieve 30 fps? One frame size at 30 fps is $640 \times 480 \times 3 \times 30 =$

To be able to transmit it over USB we have to compress it to $\frac{27648000}{11000000} \approx 2.514$ times.

Answer: maximum frame rate ≈ 11.93576 fps

(c) What is the maximum sized 4:3 aspect ratio video that can be captured over the USB channel?

Maximum px =
$$\frac{11000000}{30 \times 3} \approx 122222.222$$

where
$$x \times y = 122222.222$$
 and $\frac{4}{3} = \frac{x}{y}$,

Solving for :
$$x = \frac{4}{3} \times y$$

 $\frac{4}{3} \times y \times y = 122222.222$
 $\frac{4}{3} \times y^2 = 122222.222$
 $y^2 = \frac{3}{4} \times 122222.222$
 $y^2 = \frac{3}{4} \times 122222.222$
 $y^2 = 91666.666$
 $y = \sqrt{91666.666}$
 $y \approx 302.765$

$$\label{eq:And} \text{And } x = \frac{302.765*4}{3} \approx 403.686$$

$$\textbf{Answer: Max sized aspect} \approx 403:302$$

Problem 3

 $A \ B \ C \ A \ C \ A \ B \ C \ B \ A \ B$

w	k	dictionary entries	output	
	A			
A	В	< 256 > AB	A	
В	С	< 257 > BC	В	
С	A	< 258 > CA	С	
A	С	< 259 > AC	A	
С	A	exists		
CA	В	< 260 > CAB	< 258 >	
В	С	exists		
ВС	В	< 261 > BCB	< 257 >	
В	A	< 262 > BA	В	
A	В	exists		
AB			AB	

Problem 4

Decompress:

w	k	entry	dictionary	output
F	F	F		F
F	A	A	< 256 > FA	A
A	В	В	< 257 > AB	В
В	-	-	$< 258 > B_{-}$	-
_	L	L	$< 259 > \bot$	L
L	< 257 >	AB	< 260 > LA	AB
AB	_	_	$< 261 > AB_{-}$	-
_	С	С	$< 262 > \bot$	С
С	< 261 >	AB_{-}	< 263 > CA	AB_{-}
AB_{-}	< 264 >	AB_A	$< 264 > AB_A$	AB_A
AB_A	Т	Т	$< 265 > AB_AT$	Т
Т	< 257 >	AB	< 266 > TA	AB