## Modéliser le comportement des systèmes mécaniques dans le but d'établir une loi de comportement ou de déterminer des actions mécaniques en utilisant le PFD

Chapitre 4 - Méthodologie: détermination des équations de mouvement

l'Ingénieur

# **Application 01**



## Chaîne ouverte – Wheeling moto

Équipe PT La Martinière Monplaisir

Savoirs et compétences :

#### **Modélisation**

L'étude proposée concerne l'étude dynamique d'une moto dans une phase de wheeling. Il s'agit d'une figure acrobatique consistant à soulever la roue avant, et de ne garder que l'appui sous la roue arrière. La moto est supposée se déplacer en ligne droite, sur une route horizontale, et l'étude menée est cinématiquement plane. Le modèle d'étude est sur la figure ci-dessous.



- $\mathcal{R}_0 = (O_0; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$  est un repère supposé galiléen, où  $\overrightarrow{x_0}$  est dirigé suivant la vitesse de la moto et  $\overrightarrow{y_0}$ suivant la verticale ascendante;
- $\mathcal{R}_1 = (G_1; \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1})$  est un repère lié à l'ensemble considéré indéformable {cadre + bras arrière + fourche avant + pilote}. On note  $\theta_1 = (\overrightarrow{x_0}, \overrightarrow{x_1})$ ;
- $\mathcal{R}_2 = (O_2; \overrightarrow{x_2}, \overrightarrow{y_2}, \overrightarrow{z_2})$  est un repère lié à la roue avant (2), de rayon R et de centre  $O_2$  tel que  $\overrightarrow{z_2} = \overrightarrow{z_0}$ . On note  $\theta_2 = (\overrightarrow{x_0}, \overrightarrow{x_2});$
- $\mathcal{R}_3 = (O_3; \overrightarrow{x_3}, \overrightarrow{y_3}, \overrightarrow{z_3})$  est un repère lié à la roue arrière (3), de rayon R et de centre  $O_3$  tel que  $\overrightarrow{z_3} = \overrightarrow{z_0}$ .

On note  $\theta_3 = (\overrightarrow{x_0}, \overrightarrow{x_3})$ . Les contacts entre les roues (2) et (3) et le sol (0) sont modélisés par des liaisons ponctuelles en  $H_2$  et  $H_3$ .

#### On note:

- $\overrightarrow{OO_3} = \lambda \overrightarrow{x_0} + R \overrightarrow{y_0}$ ;
- $\overrightarrow{O_3O_2} = L_1 \overrightarrow{x_1}$ ;
- $\overrightarrow{O_3G_1} = a_1\overrightarrow{x_1} + b_1\overrightarrow{y_1}$ ;
- $\overrightarrow{H_3O_3} = R\overrightarrow{y_0}$ ;
- $\overrightarrow{H_2O_2} = R\overrightarrow{y_0}$ ;
- $G_2 = O_2$  et  $G_3 = O_3$ .

On note  $G_i$  le centre d'inertie,  $m_i$  la masse et  $C_i$  le moment d'inertie par rapport à l'axe de la pièce (i).

#### Étude dynamique

La transmission exerce sur la roue arrière un couple moteur  $\overrightarrow{C_m} = C_m \overrightarrow{z_0}$ . On suppose que l'adhérence roue/sol est suffisante pour assurer le roulement sans glissement de la roue (3) au contact en H avec le sol. La situation initiale est définie au moment où la roue avant quitte le contact avec le sol, avec  $\dot{\theta}_1 = 0$  (après  $\neq 0$ ).

**Question** 1 Construire le graphe de structure de la moto dans la phase de wheeling. Préciser le degré de mobilité de l'ensemble, compte tenu de l'hypothèse de roulement sans glissement en  $H_3$ .

**Question** 2 En se limitant à l'application des théorèmes généraux de la dynamique, définir quelles équations permettent de déterminer le mouvement de l'ensemble, en précisant:

• élément(s) isolé(s);

1

• théorème appliqué, en précisant quelle projection et quel point de réduction éventuel sont retenus.

**Question** 3 Mettre en place les équations précédentes. Conclure sur la possibilité d'intégration de ces équations.



Eléments de corrigé

Construire le graphe de structure de la moto dans la phase de wheeling. Préciser le degré de mobilité de l'ensemble, compte tenu de l'hypothèse de roulement sans glissement en H<sub>3</sub>.



Si un considère des liaisons parfaites, en particulier en H<sub>3</sub> (liaison sans frottement), l'ensemble modélisé en 2D est isostatique et comporte 4 mobilités :

- déplacement suivant  $\stackrel{\rightarrow}{x_0}$  du centre d'inertie  $G_1$  du cadre (1) par rapport au sol : paramètre  $\lambda_1$ ;
- position angulaire du cadre (1) par rapport au sol : paramètre  $\theta_1 = (x_0, x_1)$ ;
- position angulaire de la roue (3) par rapport au sol : paramètre  $\theta_3 = (\vec{x_0}, \vec{x_3})$ ;
- position angulaire de la roue (2) par rapport au sol : paramètre  $\theta_2 = (\vec{x_0}, \vec{x_2})$ .

La propriété de roulement sans glissement en H<sub>3</sub> entre la roue (3) et le sol (0) introduit <u>une relation entre les paramètres de</u>

Il y a donc 3 équations du mouvement issues de l'application du principe fondamental de la dynamique.

- En se limitant à l'application des théorèmes généraux de la dynamique, définir quelles équations permettent de déterminer le mouvement de l'ensemble :
  - élément(s) isolé(s);

la roue avant (2):

• théorème appliqué, en précisant quelle projection et quel point de réduction éventuel sont retenus.

Les trois équations sont obtenues en isolant successivement :

équation du moment dynamique en O2, en projection z<sub>0</sub>. Cette équation est la seule à ne faire apparaître





ensemble {roue avant (2), cadre (1)}:

équation du moment dynamique en O<sub>3</sub>, en projection sur z<sub>0</sub>. Cette équation est la seule à ne faire apparaître aucune composante d'effort de la liaison pivot (3) - (1);



ensemble {roue avant (2), cadre (1), roue arrière (3)}:
équation du moment dynamique en

H<sub>3</sub>, en projection sur z<sub>0</sub>.

Cette équation est la seule à ne faire apparaître aucune composante d'effort de la liaison ponctuelle avec RsG (0) – (3);



Q3- Mettre en place les équations précédentes.

Conclure sur la possibilité d'intégration de ces équations.

#### EQUATION (1)

Moment cinétique de la roue (2) : il est défini en O2, centre d'inertie de la roue (2), point où est supposée définie sa matrice

d'inertie : 
$$\overrightarrow{\sigma}(O_2,2/0) = \overline{\overline{I}}(O_2,2) \otimes \overrightarrow{\theta}_2 \overrightarrow{z}_0 = C_2 \overset{\bullet}{\theta}_2 \overrightarrow{z}_0$$

Moment dynamique : 
$$\overrightarrow{\delta}(O_2,2/0) = \frac{\overrightarrow{d\sigma}(O_2,2/0)}{\overrightarrow{dt}/(0)} = C_2 \overset{\bullet \bullet}{\theta_2} \overset{\rightarrow}{z_0}$$

Actions extérieures sur la roue (2) :

- pesanteur : le poids  $\vec{P_2}$  est supposé appliqué en  $O_2$ , donc de moment nul en ce point ;
- la liaison pivot (1) (2) a un moment nul en O<sub>2</sub>.

Soit l'équation (1):  $C_2 \stackrel{\bullet \bullet}{\theta}_2 = 0$ 

### EQUATION (2)

 $Moment \ dynamique \ de \ l'ensemble \ \{(1), (2)\}: il \ est \ d\'efini \ en \ O_3, \ en \ faisant \ la \ somme \ des \ moments \ dynamiques \ de \ (1) \ et \ de \ de \ (2)$ 

(2): 
$$\vec{\delta}(O_3, \{1,2\}/0) = \vec{\delta}(O_3, 1/0) + \vec{\delta}(O_3, 2/0)$$

#### Calcul pour le cadre (1):

Moment cinétique du cadre (1) : il est défini en  $G_1$ , centre d'inertie du cadre (1), point où est supposée définie sa matrice

d'inertie: 
$$\overrightarrow{\sigma}(G_1,1/0) = \overline{\overrightarrow{I}(G_1,1)} \otimes \overset{\bullet}{\theta_1} \overset{\rightarrow}{z_0} = C_1 \overset{\bullet}{\theta_1} \overset{\rightarrow}{z_0}$$

Moment dynamique : 
$$\overrightarrow{\delta}(G_1,1/0) = \frac{\overrightarrow{d\sigma}(G_1,1/0)}{\overrightarrow{dt}/(0)} = C_1 \overset{\bullet \bullet}{\theta}_1 \overset{\rightarrow}{z}_0$$

Calcul en 
$$O_3$$
:  $\overrightarrow{\delta}(O_3,1/0) = \overrightarrow{\delta}(G_1,1/0) + m_1 \overrightarrow{\Gamma}(G_1,1/0) \wedge \overrightarrow{G_1O_3}$ 

Calcul de l'accélération  $\Gamma(G_1,1/0)$ : pour ce calcul, il est plus adroit de repérer la position du cadre (1) par rapport au sol (0) en définissant comme paramètre  $\lambda_1$ :  $\overrightarrow{OO_3} = \lambda_1 \overset{\rightarrow}{x_0}$ .

Le point O est un point lié au sol, situé à la distance R du plan de contact de la roue avec la chaussée.



$$\begin{split} \overrightarrow{OG}_1 &= \overrightarrow{OO}_3 + O_3\overrightarrow{G}_1 = \lambda_1\overrightarrow{x_0} + a_1\overrightarrow{x_1} + b_1\overrightarrow{y_1} \\ \overrightarrow{\lor}(G_11/0) &= \overset{\star}{\lambda_1}\overrightarrow{x_0} + \overset{\star}{\theta}_1(a_1\overrightarrow{y_1} - b_1\overrightarrow{x_1}) \\ \overrightarrow{\Gamma}(G_11/0) &= \overset{\star}{\lambda_1}\overrightarrow{x_0} + \overset{\star}{\theta}_1(a_1\overrightarrow{y_1} - b_1\overrightarrow{x_1}) - \overset{\star}{\theta}_1^2(a_1\overrightarrow{x_1} + b_1\overrightarrow{y_1}) \\ \overrightarrow{\Gamma}(G_11/0) &= \overset{\star}{\lambda_1}\overrightarrow{x_0} + \overset{\star}{\theta}_1(a_1\overrightarrow{y_1} - b_1\overrightarrow{x_1}) - \overset{\star}{\theta}_1^2(a_1\overrightarrow{x_1} + b_1\overrightarrow{y_1}) \\ \overrightarrow{OG}_1 &= \overset{\star}{OG}_1 + \overset{\star}$$

#### Calcul pour la roue avant (2):

$$\overrightarrow{\delta}(O_3,2/0) = \overrightarrow{\delta}(O_2,2/0) + m_2 \overrightarrow{\Gamma}(O_2,2/0) \wedge \overrightarrow{O_2O_3}$$

Calcul de l'accélération  $\overrightarrow{\Gamma}(O_2,2/0)$ 

$$\overrightarrow{OO_2} = \lambda_1 \overrightarrow{x_0} + L_1 \overrightarrow{x_1}$$

$$\overrightarrow{V}(O_2, 2/0) = \lambda_1 \overrightarrow{x_0} + \theta_1 L_1 \overrightarrow{y_1}$$

$$\overrightarrow{\Gamma}(O_2, 2/0) = \lambda_1 \overrightarrow{x_0} + \theta_1 L_1 \overrightarrow{y_1} - \theta_1^2 L_1 \overrightarrow{x_1}$$

$$\begin{aligned} &\text{Moment dynamique en } O_3: \quad \overrightarrow{\delta}(O_3,2/0) = C_2 \overset{\bullet \bullet}{\theta_2} \overset{\rightarrow}{z_0} + m_2 \begin{bmatrix} \overset{\bullet \bullet}{\lambda_1} \overset{\rightarrow}{x_0} + \overset{\bullet \bullet}{\theta_1} \overset{\bullet}{L_1} \overset{\rightarrow}{y_1} - \overset{\bullet}{\theta_1} \overset{\rightarrow}{L_1} \overset{\rightarrow}{x_1} \\ &\overrightarrow{\delta}(O_3,2/0) = C_2 \overset{\bullet \bullet}{\theta_2} \overset{\rightarrow}{z_0} - m_2.L_1 \begin{bmatrix} \overset{\bullet \bullet}{\lambda_1} \sin \theta_1 - \overset{\bullet}{\theta_1} L_1 \end{bmatrix} \overset{\rightarrow}{z_0} \end{aligned}$$

#### Actions extérieures appliquées à l'ensemble {1, 2} :

pesanteur sur (2): le poids P<sub>2</sub> appliqué en O<sub>2</sub>, de moment en O<sub>3</sub>:

$$\overrightarrow{O_3O_2} \wedge \overrightarrow{-P_2} \stackrel{\rightarrow}{y_0} = \overrightarrow{L_1} \stackrel{\rightarrow}{x_1} \wedge -\overrightarrow{P_2} \stackrel{\rightarrow}{y_0} = -\overrightarrow{L_1P_2} \cos\theta_1 \stackrel{\rightarrow}{z_0}$$

• pesanteur sur (1) : le poids  $\overrightarrow{P_1}$  appliqué en  $G_1$ , de moment en  $O_3$  :

$$\overrightarrow{O_3G_1} \wedge -\overrightarrow{P_1} \overset{\rightarrow}{y_0} = (\overrightarrow{a_1} \overset{\rightarrow}{x_1} + \overrightarrow{b_1} \overset{\rightarrow}{y_1}) \wedge -\overrightarrow{P_1} \overset{\rightarrow}{y_0} = -\overrightarrow{P_1} (\overrightarrow{a_1} \cos\theta_1 - \overrightarrow{b_1} \sin\theta_1) \overset{\rightarrow}{z_0}$$

- le moteur agit sur le cadre (1) en exerçant un couple de moment  $-C_{\rm m} \overset{\rightarrow}{z_0}$
- la liaison pivot (3) (2) a un moment nul en O<sub>3</sub>.

#### Soit l'équation (2) :

$$\begin{bmatrix} \vdots \\ C_1 \overset{\bullet}{\theta_1} - m_1 \begin{bmatrix} \overset{\bullet}{\lambda}_1 (a_1 \sin \theta_1 + b_1 \cos \theta_1) + \overset{\bullet}{\theta_1} (a_1^2 + b_1^2) \end{bmatrix} + C_2 \overset{\bullet}{\theta_2} - m_2 L_1 \begin{bmatrix} \overset{\bullet}{\lambda}_1 \sin \theta_1 - \overset{\bullet}{\theta_1} L_1 \end{bmatrix} = -L_1 P_2 \cos \theta_1 - P_1 (a_1 \cos \theta_1 - b_1 \sin \theta_1) - C_m \begin{bmatrix} \overset{\bullet}{\lambda}_1 \cos \theta_1 - d_1 \cos \theta_1 - d_1 \sin \theta_1 \end{bmatrix} = -L_1 P_2 \cos \theta_1 - P_1 (a_1 \cos \theta_1 - b_1 \sin \theta_1) - C_m \begin{bmatrix} \overset{\bullet}{\lambda}_1 \cos \theta_1 - d_1 \cos \theta_1 - d_1 \sin \theta_1 \end{bmatrix} = -L_1 P_2 \cos \theta_1 - P_1 (a_1 \cos \theta_1 - b_1 \sin \theta_1) - C_m \begin{bmatrix} \overset{\bullet}{\lambda}_1 \cos \theta_1 - d_1 \cos \theta_1 - d_1 \sin \theta_1 \end{bmatrix} = -L_1 P_2 \cos \theta_1 - P_1 (a_1 \cos \theta_1 - b_1 \sin \theta_1) - C_m \begin{bmatrix} \overset{\bullet}{\lambda}_1 \cos \theta_1 - d_1 \cos \theta_1 - d_1 \cos \theta_1 - d_1 \sin \theta_1 \end{bmatrix} = -L_1 P_2 \cos \theta_1 - P_1 (a_1 \cos \theta_1 - b_1 \sin \theta_1) - C_m \begin{bmatrix} \overset{\bullet}{\lambda}_1 \cos \theta_1 - d_1 \cos \theta_1 - d_1 \cos \theta_1 - d_1 \cos \theta_1 - d_1 \cos \theta_1 \end{bmatrix} = -L_1 P_2 \cos \theta_1 - P_1 (a_1 \cos \theta_1 - b_1 \sin \theta_1) - C_m \begin{bmatrix} \overset{\bullet}{\lambda}_1 \cos \theta_1 - d_1 \cos \theta_1 - d_1 \cos \theta_1 - d_1 \cos \theta_1 - d_1 \cos \theta_1 \end{bmatrix} = -L_1 P_2 \cos \theta_1 - P_1 (a_1 \cos \theta_1 - b_1 \sin \theta_1) - C_m \begin{bmatrix} \overset{\bullet}{\lambda}_1 \cos \theta_1 - d_1 \cos \theta_1 - d_1 \cos \theta_1 - d_1 \cos \theta_1 - d_1 \cos \theta_1 \end{bmatrix} = -L_1 P_2 \cos \theta_1 - P_1 (a_1 \cos \theta_1 - d_1 \cos \theta_1) - C_m \begin{bmatrix} \overset{\bullet}{\lambda}_1 \cos \theta_1 - d_1 \cos \theta_1 \end{bmatrix} = -L_1 P_2 \cos \theta_1 - P_1 \cos \theta_1 - C_1 \cos \theta_1 + C_1 \cos \theta_1 - C_1$$

#### EQUATION (3)

Moment dynamique de l'ensemble {(1), (2), (3)} : il est défini en H<sub>3</sub>, en faisant la somme des moments dynamiques de (1), de

(2) et de (3): 
$$\overrightarrow{\delta}(H_3,\{1,2,3\}/0) = \overrightarrow{\delta}(H_3,1/0) + \overrightarrow{\delta}(H_3,2/0) + \overrightarrow{\delta}(H_3,3/0)$$

## Calcul pour le cadre (1):

$$\begin{aligned} & \text{Moment dynamique en H}_3: \quad \overrightarrow{\delta}(\textbf{H}_3.1/0) = \overrightarrow{\delta}(\textbf{G}_1.1/0) + \textbf{m}_1 \overrightarrow{\Gamma}(\textbf{G}_1.1/0) \wedge \overrightarrow{\textbf{G}_1 H}_3 \\ & \overrightarrow{\delta}(\textbf{H}_3.1/0) = \textbf{C}_1 \overset{\bullet \bullet}{\theta}_1 \overset{\bullet}{\textbf{z}_0} + \textbf{m}_1 \begin{bmatrix} \overset{\bullet \bullet}{\lambda}_1 \overset{\bullet}{\textbf{x}_0} + \overset{\bullet \bullet}{\theta}_1 (\textbf{a}_1 \overset{\rightarrow}{\textbf{y}_1} - \textbf{b}_1 \overset{\rightarrow}{\textbf{x}_1}) - \overset{\bullet^2}{\theta}_1 (\textbf{a}_1 \overset{\rightarrow}{\textbf{x}_1} + \textbf{b}_1 \overset{\rightarrow}{\textbf{y}_1}) \end{bmatrix} \wedge (-\textbf{R} \overset{\rightarrow}{\textbf{y}_0} - \textbf{a}_1 \overset{\rightarrow}{\textbf{x}_1} - \textbf{b}_1 \overset{\rightarrow}{\textbf{y}_1}) \end{aligned}$$

#### Calcul pour la roue avant (2):

$$\begin{aligned} & \text{Moment dynamique en H}_3: \quad \overrightarrow{\delta}(\text{H}_3\text{,2/0}) = \overrightarrow{\delta}(O_2\text{,2/0}) + + \text{m}_2\overrightarrow{\Gamma}(O_2\text{,2/0}) \land O_2\overrightarrow{\text{H}}_3 \\ & \overrightarrow{\delta}(H_3\text{,2/0}) = C_2 \overset{\bullet}{\theta_2} \overset{\rightarrow}{z_0} + m_2.L_1. \\ & \overset{\bullet}{\lambda}_1 \overset{\bullet}{x_0} + \overset{\bullet}{\theta_1} L_1 \overset{\bullet}{y_1} - \overset{\bullet}{\theta_1} L_1 \overset{\rightarrow}{x_1} \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$



#### Calcul pour la roue arrière (3):

Moment cinétique de la roue (3) : il est défini en O<sub>3</sub>, centre d'inertie de la roue (3), point où est supposée définie sa matrice d'inertie.

$$\overrightarrow{\sigma}(O_3,3/0) = \overline{\overrightarrow{I}}(O_3,3) \otimes \overrightarrow{\theta}_3 \ \overrightarrow{z_0} = C_3 \overset{\bullet}{\theta}_3 \ \overrightarrow{z_0}$$

Moment dynamique: 
$$\overrightarrow{\delta}(O_3,3/0) = \frac{\overrightarrow{d\sigma}(O_3,3/0)}{\overrightarrow{dt}/(0)} = C_3 \overset{\bullet\bullet}{\theta} \overset{\bullet}{3} \overset{\bullet}{z_0}$$

Moment dynamique en  $H_3$ :  $\overrightarrow{\delta}(H_3,3/0) = \overrightarrow{\delta}(O_3,3/0) + m_3 \overrightarrow{\Gamma}(O_3,3/0) \wedge \overrightarrow{O_3H_3}$ , avec  $O_3 = G_3$ , centre d'inertie de la roue (3).

Calcul de l'accélération  $\overrightarrow{\Gamma}(O_3,3/0)$ 

$$\overrightarrow{OO_3} = \lambda_1 \overset{\rightarrow}{x_0}$$

$$\overrightarrow{V}(O_3,3/0) = \overset{\bullet}{\lambda_1} \overset{\rightarrow}{x_0}$$

$$\overrightarrow{\Gamma}(O_3,3/0) = \overset{\bullet}{\lambda}_1 \overset{\rightarrow}{\times}_0$$

$$\operatorname{En} \operatorname{H}_3 \colon \overset{\rightarrow}{\delta} (\operatorname{H}_3, 3/0) = \operatorname{C}_3 \overset{\bullet}{\theta} \overset{\rightarrow}{3} \overset{\rightarrow}{\mathsf{z}_0} + \operatorname{m}_3 \overset{\bullet}{\lambda} \overset{\rightarrow}{1} \overset{\rightarrow}{\mathsf{x}_0} \wedge - \operatorname{R} \overset{\rightarrow}{\mathsf{y}_0} = (\operatorname{C}_3 \overset{\bullet}{\theta} \overset{\bullet}{3} - \operatorname{m}_3 \overset{\bullet}{\lambda} \overset{\rightarrow}{1} \operatorname{R}) \overset{\rightarrow}{\mathsf{z}_0}$$

## Actions extérieures appliquées à l'ensemble {1, 2, 3} :

- pesanteur sur (2): le poids  $\overrightarrow{P_2}$  appliqué en  $O_2$ , de moment en  $H_3: H_3 \overrightarrow{O_2} \land -P_2 \overrightarrow{y_0} = -L_1 P_2 \cos \theta_1 \overrightarrow{z_0}$
- pesanteur sur (1): le poids  $\overrightarrow{P_1}$  appliqué en  $G_1$ , de moment en  $H_3: H_3 \overset{\rightarrow}{G_1} \land -P_1 \overset{\rightarrow}{y_0} = -P_1(a_1 \cos \theta_1 b_1 \sin \theta_1) \overset{\rightarrow}{z_0}$
- pesanteur sur (3): le poids P<sub>3</sub> appliqué en O<sub>3</sub>, a un moment nul en H<sub>3</sub>;
- le contact ponctuel du sol sur la roue (3) a un moment nul en H<sub>3</sub>.

Nota: le moteur est interne à l'ensemble isolé...

#### Soit l'équation (3):

Il reste à conclure...

Le système d'équations n'est pas intégrable dans le cas général.

Seule l'équation (1) indépendante des deux autres donne un résultat simple :

 $C_2\stackrel{\bullet\bullet}{\theta_2}=0$  , soit  $\stackrel{\bullet}{\theta_2}=$  C te : la vitesse de rotation de la roue avant est constante...