Tópicos - 2018 Aula 05

Silvia Lorenz-Martins

A Lua

- Lua: corpo celeste mais próximo => movimentos mais notáveis
- Distância média: 384.000 km (laser)
- Plano orbital: inclinação 5°9' (eclíptica*)
- Diâmetro aparente: 31'5", o mesmo diâmetro aparente do Sol
- Massa: 1/81 da massa da Terra

Movimentos da Lua

• A Lua tem três movimentos principais: rotação em torno de seu próprio eixo, revolução em torno da Terra e translação em torno do Sol junto com a Terra, mas existe também um pequeno movimento de libração.

O Sol e a Lua

- Venerados pelos povos antigos como deuses irmãos, geralmente consortes, o Sol e a Lua influenciam-nos bem mais do que a imaginação da humanidade supunha.
 - Os principais efeitos astronômicos no planeta são justamente produzidos pelo Sol, pela Lua ou por ambos.
 - Embora tenham tamanho aparente similar na esfera celeste, tratam-se de corpos completamente distintos, tanto em composição quanto em escala de tamanho.

Lunações

- Além da passagem do dia, o período lunar era facilmente mensurável pela variação das fases lunares.
- Intervalo entre duas fases lunares iguais consecutivas (i.e., dois novilúnios ou dois plenilúnios, por exemplo) correspondia 29.5 dias aproximadamente.
- O ciclo de fases lunares é chamado de lunação. O tempo correspondente a uma lunação é chamado de mês sinódico. Sua duração real vale 29.530589 dias.
- A lunação motivou os antigos a agrupar a contagem dos dias em blocos de 29 e 30 dias que coincidissem com a lunação. Daí surgiu o mês lunar.

Lua

- O ciclo completo dura aproximadamente 29,5 dias.
- Esse fenômeno é bem compreendido desde a Antiguidade.
- O grego Anaxágoras (430 a.C.), já conhecia sua causa, e Aristóteles (384 322 a.C.) registrou a explicação correta do fenômeno: as fases da Lua resultam do fato de que ela não é um corpo luminoso, e sim um corpo iluminado pela luz do Sol.

Lunações

- Como todos os corpos celestes a Lua nasce no leste, se pondo no oeste. Da mesma forma que os planetas e o Sol, a Lua varia sua posição em relação à estrelas de fundo de oeste para leste.
- Se a Lua estiver próxima a uma estrela brilhante podemos acompanhar este movimento em apenas alguns minutos (a Lua desloca-se de uma distância aproximadamente igual ao seu diâmetro angular em cerca de uma hora).
- Um dos aspectos mais marcantes da Lua é o chamado "ciclo de fases lunar", com duração de aproximadamente 30 dias. Neste período a lua passa por invisibilidade (nova), crescente, cheia e decrescente.

Agosto 2016						
Domingo	Segunda	Terça	Quarta	Quinta	Sexta	Sábado
	1	2	3	4	5	6
7	8	9	10	11	12	13
14	15	16	17	18	19	20
21	22	23	24	25	26	27
28	29	30	31			

Lunações

- A causa deste ciclo e da variação na posição da Lua em relação as estrelas é o movimento orbital desta em torno da Terra.
- A <u>Lua nova</u> ocorre quando a <u>Lua localiza-se</u> ~ entre a Terra e o Sol (dia, nasce e se põe junto com o Sol).
- A <u>Lua cheia</u> ocorre quando a Lua encontra-se do lado oposto (com a Terra entre o Sol e a Lua - noite).
- As mudanças na aparência da Lua não são causadas pela sombra da Terra na Lua, mas sim pelo fato de que com o movimento da Lua vemos diferentes partes de sua metade iluminada.

Movimentos da Lua

- Se observarmos a Lua por algumas noites podemos perceber seu deslocamento em relação as estrelas, enquanto orbita a Terra.
- O mês sideral é o tempo necessário para a Lua completar uma volta em torno da Terra, em relação a uma estrela: 27.32 dias
- A Lua se move 360° em relação às estrelas para leste a cada 27,32 dias, deduz-se que ela se desloca para leste 13° por dia (360°/27,32)

- O período sinódico da Lua, com duração de aproximadamente 29,5 dias (variando entre 29,26 e 29,80 dias), é, em média, 2,25 dias maior do que o período sideral da Lua
- porque nos 27,32 dias em que a Lua faz uma volta completa em relação às estrelas (o período sideral da Lua), o Sol de desloca [360°/ (365,25 dias)]
- aproximadamente 27°=(27 dias × 1°/dia) para leste e, portanto, é necessário mais 2 dias [27°/ (360°/27,32 dias)] para a Lua se deslocar estes 27° e estar na mesma posição em relação ao Sol, que define a fase.

• A órbita lunar tem uma inclinação de ~5° relativo a órbita terrestre em relação ao Sol, sendo também inclinada em relação ao equador terrestre.

Movimentos da Lua

Enquanto orbita a Terra a Lua mantém sempre o mesmo lado em direção a Terra.

Isso é consequência do fato do período de rotação lunar ser exatamente igual ao seu período orbital, uma condição conhecida por rotação síncrona.

Com rotação sincronizada

Rotação sincronizada

- É muito improvável que essa sincronização seja casual.
- Resultado → forças de maré exercidas pela Terra na Lua no tempo em que a Lua era jovem e mais elástica.

Imagem do lado oculto (esquerda) e iluminado (direita) da Lua, fotografada pela missão Clementine, da NASA.

- Eclipses: movimento da Lua
- Eclipse ocorre quando a Lua, a Terra e o Sol estão alinhados.
- Eclipse solar => Lua entre o Sol e a Terra.
- •Eclipse lunar => Terra entre o Sol e a Lua.

Eclipses

- Um eclipse acontece sempre que um corpo entra na sombra de outro
- Eclipse solar: passagem da Terra pelo cone de sombra da Lua
- Eclipse lunar: passagem da Lua pelo cone de sombra da Terra

Eclipse Total, Parcial ou Anular

 O eclipse será total, parcial ou anular se o corpo obscurecido for observado desde a umbra, penumbra ou antumbra do corpo interposto, respectivamente.

http://www.skyandtelescope.com/press-releases/october-2014-lunar-eclipse/

Eclipse da Lua

Eclipse da Lua

Condições para Eclipses

- Apesar da Lua orbitar a Terra num ciclo aproximado de 30 dias não ocorrem tantos eclipses
- A razão para tal é que a órbita lunar é inclinada em relação a órbita terrestre, de forma tal que, em geral, a Lua encontra-se acima ou abaixo da órbita terrestre.
- Em função disso, mesmo que a Lua seja nova (entre nós e o Sol) a sombra lunar pode passar abaixo ou acima da Terra, de forma que não ocorrem eclipses.

Condições para Eclipses

- De maneira análoga a sombra terrestre pode passar acima ou abaixo da Lua, quando esta for cheia.
- Um eclipse ocorre somente quando um <u>alinhamento</u> quase exato entre a Terra, Lua e o Sol ocorre.
- Em outras palavras, um eclipse ocorre se a extensão do plano orbital da Lua intercepta o Sol.

A órbita da Terra em torno do Sol, e a órbita da Lua em torno da Terra, <u>não estão</u> no mesmo plano, ou ocorreria um eclipse da Lua a cada Lua Cheia, e um eclipse do Sol a cada Lua Nova.

- O plano da órbita da Lua está inclinado 5,2 ° em relação ao plano da órbita da Terra.
- Portanto só ocorrem eclipses quando a Lua está na fase de Lua Cheia ou Nova, e quando o Sol está sobre a linha dos nodos, que é a linha de intersecção do plano da órbita da Terra em torno do Sol com o plano da órbita da Lua em torno da Terra.

Eclipses lunares

Total Lunar Eclipse - 2000 Jan 20-21

www.MrEclipse.com

⊗2000 by F. Espenak

- A Terra se interpõe entre a Lua e o Sol.
- Pode ser total ou parcial, jamais anular.
- Durante o eclipse lunar, é possível constatar a esfericidade da superfície terrestre a partir da sombra da Terra.

Condições para eclipses

- Por conservação do momento angular a inclinação da órbita lunar é mantida aproximadamente fixa.
- Como consequência, duas vezes por ano o plano orbital da Lua (se extendido) intercepta o Sol. Estas épocas são chamadas de temporadas de eclipses. Estes então ocorrerão quando a Lua cruzar o plano orbital terrestre (a eclíptica).
- Quando um eclipse solar ocorre na Lua nova, as condições existem para que um eclipse lunar ocorra na Lua cheia, anterior ou próxima.

Condições para eclipses

Portanto, os eclipses, geralmente, ocorrem em pares, com um eclipse solar sendo seguido 14 dias depois por um lunar, ou vice-versa.

- Este padrão (de temporadas de eclipses) só não é totalmente verdadeiro porque a inclinação da órbita lunar não é totalmente fixa. O eixo de rotação lunar varia lentamente, precessionando em cerca de 18.6 anos.
- Por causa disso as datas das temporadas de eclipses variam por 1/18.6 ano (cerca de 20 dias) a cada ano.

Condições para eclipses

Curiosidades sobre eclipses

Os eclipses <u>não</u> são visíveis de todas as partes da Terra.

- Eclipses solares podem ser vistos somente numa faixa estreita.
- Já eclipses lunares podem ser vistos de qualquer local onde a Lua esteja acima do horizonte no período do eclipse.

Curiosidades

- Entre dois e sete eclipses ocorrem anualmente. Em cada temporada usualmente acontece um eclipse solar e um anular, mas podem acontecer três eclipses por temporada, numa sucessão de eclipse solar, lunar e solar novamente, ou lunar, solar e lunar novamente.
- Quando acontecem dois eclipses lunares na mesma temporada os dois são penumbrais.
- As temporadas de eclipses são separadas por 173 dias [(1 ano - 20 dias)/2].

Curiosidades sobre eclipses

Eclipses são impressionantes! Durante um eclipse solar podemos ter céu escuro como noite por alguns minutos. Durante um eclipse lunar a Lua pode desaparecer por mais de uma hora, ou tomar uma aparência avermelhada, em função de luz solar espalhada pela atmosfera terrestre e projetada

na Lua.

Total Solar Eclipse of 1994 Nov 03

Geocentric Conjunction = 13:47:06.8 UT J.D. = 2449660.074385 Greatest Eclipse = 13:39:05.4 UT J.D. = 2449660.068813

Eclipse Magnitude = 1.0535 Gan

Gamma = -0.3521

F. Espenak, NASA's GSFC - 2004 Jul 07 sunearth.gsfc.nasa.gov/eclipse/eclipse.html

Caminho do Eclipse

Total Lunar Eclipse of 2008 Feb 21

Geocentric Conjunction = 03:48:27.4 UT J.D. = 2454517.65865 Greatest Eclipse = 03:26:04.8 UT J.D. = 2454517.64311 Penumbral Magnitude = 2.1707 P. Radius = 1.2473° Gamma = -0.3993Umbral Magnitude = 1.1110 U. Radius = 0.6973° $Axis = 0.3802^{\circ}$ Saros Series = 133 Member = 26 of 71Sun at Greatest Eclipse Moon at Greatest Eclipse (Geocentric Coordinates) (Geocentric Coordinates) R.A. = 22h15m30.0sR.A. = 10h14m48.4s $Dec. = -10^{\circ}48^{\circ}31.5^{\circ}$ $Dec. = +10^{\circ}28^{\circ}07.7^{\circ}$ Farth Penumbra $S.D. = 00^{\circ}16^{\circ}10.5^{\circ}$ $S.D. = 00^{\circ}15^{\circ}34.2^{\circ}$ $H.P. = 00^{\circ}00^{\circ}08.9^{\circ}$ $H.P. = 00^{\circ}57^{\circ}08.5^{\circ}$ Earth Umbra E -Ecliptic Eclipse Semi-Durations Eclipse Contacts S Penumbral = 02h51m09sP1 = 00:34:59 UTUmbral = 01h43m04sU1 = 01:42:59 UT00h25m29s U2 = 03:00:34 UT15 30 45 Arc-Minutes U3 = 03:51:32 UTU4 = 05:09:07 UTEph. = Newcomb/ILE F. Espenak, NASA's GSFC - 2004 Jul 07 P4 = 06:17:16 UT $\Delta T = 65.2 \text{ s}$ http://sunearth.gsfc.nasa.gov/eclipse/eclipse.html 30° N 0° U3 U2 30° S 60° S

120° E

180° E

60° E

Latitude

180° W

120° W

60° W

Longitude

Visibilidade de um Eclipse lunar

Total Eclipse of The Moon

Eclipses solares

- A Lua se interpõe entre a Terra e o Sol.
- Pode ser total, parcial ou anular.

Eclipses do Sol

Fenômenos durante eclipses

- O momento em que o Sol começa a despontar de um eclipse solar costuma ser chamado de "anel de diamante"
- Antes e após a totalidade de um eclipse solar, a luz solar chega num padrão de interferência, que pode ser observado no solo.

Total and Annular Solar Eclipse Paths: 1901 - 1920

O eclipse de 1912

 O eclipse de 1912 foi um grande evento para a elite carioca. Houve muitos comentários na imprensa e o próprio presidente foi observá-lo. Mas choveu, no dia...

O presidente Hermes da Fonseca na fazenda do Sr. Hess, em Passa Quatro Fotografia de Olyntho Barreto Fonte: Fon-fon, 19/10/1912 / Arquivo: BN

Total and Annular Solar Eclipse Paths: 2001 — 2020

Total and Annular Solar Eclipse Paths: 2021 -2040

Total and Annular Solar Eclipse Paths: 2041 — 2060

Total and Annular Solar Eclipse Paths: 2061-2080

Total and Annular Solar Eclipse Paths: 2101-2120

Total and Annular Solar Eclipse Paths: 2281-2300

Esse eclípse Lunar Total ou Lua de Sangue foi visto em Abril de 2015, como podemos ver na figura abaixo. Ele ficou na totalidade somente 5 minutos e 43 segundos.

Azul escuro-rosa: 100% visible (start to end).

Azul_roxinho: More than 75% of the event is visible.

Less than 75% of the event is visible.

Less than 50% of the event is visible.

Fora das cores: Eclipse is not visible at all

http://www.timeanddate.com/eclipse/in/brazil/rio-de-janeiro?iso=20150404

A variação regular na altura do oceano é chamada de maré, sendo causada principalmente pela Lua.

- <u>Causas das marés:</u> Da mesma forma que a Terra atrai a Lua, esta exerce uma atração gravitacional na Terra e seus oceanos. A atração é mais forte no lado da Terra mais próximo da Lua porque a força da gravidade varia inversamente com o quadrado da distância. A diferença entre as forças dos dois lados da Terra é chamada de **força gravitacional diferencial**.
- A gravidade diferencial faz com que a água dos oceanos gere um **bojo de maré** no lado da Terra voltado para a Lua. No outro lado da Terra também é criado um bojo de maré, como se a Terra *fosse puxada* por sob a água.

A ação gravitacional de um corpo sobre o outro deforma ligeiramente a forma de ambos: os corpos se esticam ao longo da linha que une os dois centros de massa. Essa deformação é chamada de "bojo mareal

A ação da Lua sobre a Terra provoca o surgimento de bojos oceânicos .

Ademais, a Terra rotaciona mais velozmente do que a revolução lunar, de modo que os bojos oceânicos mudam de posição, acarretando o fenômeno das marés.

Para o entendimento do efeito de marés também devemos considerar a <u>rotação terrestre</u>. Os bojos de maré estão aproximadamente alinhados com a Lua, mas a Terra gira.

Sendo assim, nós somos levados a um bojo e depois a outro. Na medida que entramos num bojo o nível da água sobe; descendo quando o deixamos.

Como existem dois bojos somos levados a águas altas duas vezes por dia, criando duas marés altas. Quando saímos destes bojos temos duas marés baixas por dia.

Na maioria dos locais os efeitos de maré levam a variações de 2 m, mas em algumas baías longas estas mudanças podem alcançar 10 m.

O movimento da Lua em sua órbita faz com que o bojo de maré desloque-se de um dia pro outro, de forma que as marés altas ocorrem cerca de 50 minutos mais tarde a cada dia.

Marés solares: O sol também cria marés na Terra, mas apesar de muito mais massivo que a Lua, está muito mais distante. Como consequência a força de maré solar é aproximadamente ¼ da lunar.

- No entanto, o efeito da maré solar é visível nas Luas nova e cheia quando acumula-se com a maré lunar, causando marés muito maiores. Nestes períodos os bojos de maré causados pela Lua e Sol acumulam-se, criando um efeito maior.
- Por outro lado no primeiro e terceiro quartos os efeitos de maré da Lua e do Sol geram bojos de maré com ângulos retos entre eles. A maré resultante acaba sendo menor que as regulares.

Tanto a Lua quanto o Sol produzem marés.

As marés provocadas na Terra pela gravidades dos outros planetas é desprezível.

Evolução mareal das órbitas

Uma vez que a Terra está se movendo, seus bojos mareais são arrastados para fora da linha que une os centros de massa da Terra e da Lua.

Os bojos mareais terrestres acabam por afetar a órbita lunar, arrastando a Lua consigo. O efeito global destas forças é levar a Lua para uma órbita cada vez mais distante.

Simultaneamente, a Lua atrai o bojo mareal terrestre, diminuindo lentamente a velocidade de rotação da Terra.

Evolução mareal das órbitas

O atrito das águas com o fundo dos oceanos causa desaceleração da rotação da Terra: há 400 milhões de anos o dia tinha 22 horas.

Em função disso, daqui a milhões de anos, o dia terá bem mais do que 24 horas e a Lua estará mais distante.

A Lua se afasta da Terra cerca de 3 cm por ano.

O lado oculto da Lua

A Lua mostra sempre o mesmo lado de sua superfície para observadores da Terra. Qual o motivo disto?

