1.3 Изучение рассеяния медленных электронов на атомах (эффект Рамзауэра)

Александр Романов Б01-110

1 Введение

1.1 О работе

Исследуется энергетическая зависимость вероятности рассеяния электронов атомами ксенона, определяются энергии электронов, при которых наблюдается "просветление" ксенона, и оцениваетчя размер его внешней электронной оболочки.

Рис. 1: Схематическое изображение тиратрона (слева) и его конструкция (справа): 1, 2, 3 — сетки; 4 — внешний металлический циллиндр; 5 — катод; 6 — анод; 7 — накаливаемая спираль

2 Работа

Включив все приборы переведём осциллограф в режим внешней развёртки и установим напряжение накала на уровень $2.5\ V$. Пронаблюдаем картину вольт-амперной характеристики эффекта Рамзауэра.

Рис. 2: ВАХ эффекта Рамзауэра

На изображении отчётливо видны максимумы и минимумы (Отметим что развёртка производится справа налево).

Проведём расчёт размера электронной оболочки атома инертного газа, заполняющего лампу:

$$R = \frac{1}{2} \frac{h}{\sqrt{2m(E_1 + U_0)}} = (3.07 \pm 0.05) \ 10^{-10} m$$

Также вычислим глубину потенциальной ямы исходя из данных с осциллографа для двух значений напряжения накала. $V=2.56\ V$:

$$U_0 = \frac{4}{5}E_2 - \frac{9}{5}E_1 = 2.00 \pm 0.01 \ V$$

 $V = 2.93 \ V$:

$$U_0 = \frac{4}{5}E_2 - \frac{9}{5}E_1 = 1.56 \pm 0.01 \ V$$

Запишем значения напряжения пробоя. $U_b=18.6\pm0.1~eV$ для $U_h=2.56~V$ и $U_b=18.6\pm0.1~eV$ для $U_h=2.93~V$. Полученные значения свопадают друг с другом и лучше всего соотносятся с таковым значением для аргона (15.6~eV)

Проведём измерения ВАХ тиратрона в статическом режиме установки для двух значений напряжения накала: $2.53\ V$ и $2.97\ V$. Результаты занесём в таблицу и построим графики:

V, V	I, mA
0.51	0.062
1.00	0.651
1.15	0.994
1.25	1.167
1.50	1.446
1.60	1.570
1.75	1.615
1.80	1.613
2.00	1.498
2.50	1.197
3.00	0.923
3.50	0.762
3.99	0.665
4.50	0.591
5.00	0.550
5.51	0.523
6.00	0.523
6.50	0.541
7.00	0.551
7.50	0.567
8.00	0.586
8.50	0.641
9.00	0.706
9.51	0.814
10.00	0.892
10.50	0.963
11.00	0.109
11.50	1.322
11.90	1.432

Таблица 1: 2.53V

Рис. 3: ВАХ при $2.53\ V$

V_c, V	I, mA
0.13	0.006
0.25	0.025
0.38	0.065
0.50	0.134
0.63	0.265
0.75	0.457
0.88	0.696
0.99	0.951
1.13	1.218
1.25	1.417
1.37	1.574
1.50	1.672
1.63	1.726
1.75	1.740
1.87	1.727
2.00	1.694
2.12	1.650
2.12	1.609
2.38	1.543
2.40	1.531
2.40	1.331 1.452
2.80	
	1.380
3.00	1.322
	1.274
3.40	1.239
3.59	1.210
3.80	1.187
4.00	1.168
4.20	1.150
4.51	1.133
5.00	1.134
5.50	1.137
6.00	1.180
6.50	1.243
6.99	1.312
7.50	1.403
8.02	1.520
8.51	1.650
9.00	1.813
9.50	2.080
10.00	2.300
10.60	2.600
11.07	2.900
11.50	3.300
11.50	3.300
	3.300

Таблица 2: 2.97 V

Рис. 4: ВАХ при 2.97 V

В приведённых выше данных везде погрешность составляет $\Delta V=0.01~V$ и $\Delta I=0.001~mA$. Оценим при каких напряжениях должны появиться максимумы в коэффициенте прохождения электронов. Используем формулу:

$$k_2 R = \sqrt{\frac{2m(E_n + U_0)}{\hbar^2}} R = n\pi$$

$$n = \sqrt{\frac{E_n + U_0}{E_1 + U_0}}$$

$$E_n = n^2 (E_1 + U_0) - U_0$$

$$E_2 = 4 (E_1 + U_0) - U_0 = (14.0 \pm 0.1)eV$$

$$E_3 = 4 (E_1 + U_0) - U_0 = (34.0 \pm 0.1)eV$$

Вычислим зависимость вероятности рассеяния электрона от его энергии из соотношения (Возьмём C=1):

$$\omega(V) = -\frac{1}{C} \ln I(V) / I_0$$

Рис. 5: $\omega\left(V\right)$ при $U_{h}=2.53~V$

Рис. 6: $\omega\left(V\right)$ при $U_{h}=2.97~V$

3 Выводы

В ходе выполнения работы:

1. Был измерен размер внешней электронной оболочки ксенона $((3.07\pm0.05)~10^{-10}m)$. Полученной значение выглядит крайне правдоподобным.

2. Бфли оценены значения максимумов просветления ксенона:

$$E_2 = (14.0 \pm 0.1) \ eV$$

$$E_3 = (34.0 \pm 0.1) \ eV$$

3. Была измерена зависимость вероятности рассеяния электрона от его энергии.