(Aus dem Physiologischen Institut Göttingen.)

Atmungserregung durch Sauerstoffmangel.

Von

Th. Benzinger, E. Opitz und W. Schoedel.

Mit 6 Textabbildungen.

(Eingegangen am 2. Juli 1938.)

An Hunden, die zur Untersuchung der Wirkung der Kohlensäure und des Sauerstoffmangels auf die Gehirndurchblutung mit Morphin-Pernocton* narkotisiert wurden, fiel der eigenartige Atemtypus auf: Zwei oder mehrere, unmittelbar aufeinanderfolgende Atemzüge werden in regelmäßiger Periodenfolge von einer längeren Pause abgelöst. Bei

Abb. 1. Periodische Atmung bei Morphin-Pernoctonnarkose. Zeitmarken: 10 Sek.

Betrachtung der Abb. 1, auf der neben dem Blutdruck das Pneumogramm und die arterielle Sättigung nach Kramer² fortlaufend aufgezeichnet wurde, fällt die gleichmäßige Höhe der Sättigungsschwankungen auf, die von Kramer und Sarre² am Pernoctontier beschrieben worden sind. Hierdurch wurde der Gedanke nahegelegt, daß vielleicht hier der Tiefstand der Sättigung, also der Sauerstoffmangel das wesentliche Moment der Atemregulation sei.

Diese Vermutung bestätigte sich; denn es gelingt, die Länge der Pausen zwischen den einzelnen Atemperioden mit dem Sauerstoffgehalt der Einatmungsluft beliebig zu verändern. In Abb. 2 erhält das Versuchstier Stickstoffgemische von stufenweise abnehmendem Sauerstoffgehalt: Die Periodenlänge wird zunehmend kürzer, während die Fußpunkte nahezu unverändert bleiben. — Nach Einatmung reinen Sauerstoffes dagegen (Abb. 3) erreicht die Atempause die erstaunliche Länge von 10 Min.! Die Tiefpunkte steigen hierbei deutlich an. In dieser langen

^{* 1} ccm Pernocton, 0,01 g Morphin pro Kilogramm.

Abb. 2. Verkürzung der Atempausen durch Binatmung O₂-armer Gemische bei periodischer Pernoctonatmung. Leichtes Absinken der Tiefpunkte der arteriellen Sättigrung während der O₂-Mangel Atmung. Ausgangszustand bei Binatmung normaler Luft ebonso wie das Endstück der Abbildung (aus Platzmangel fortgelassen). Durchblutungszunahme der Art. carot. int. bei Ansteigen der CO₃-Spannung in der Atempause.

Abb. 3. Atemstillstand bei Binatmung reinen Sauerstoffs. Ansteigen der O.-Mangel-Schwelle.

Atempause muß sich die Kohlensäure im Blut außerordentlich angestaut haben, worauf auch der Anstieg des Blutdruckes und der Blutströmung durch die A. carotis int. hinweist ^{1,3}. Das ist nur möglich, wenn die Erregbarkeit des Atemzentrums auf CO₂ praktisch erloschen ist. In anderen Versuchen blieben CO₂-Gaben bis zu 12% ohne irgendeinen merkbaren Einfluß auf die Atmung.

Eine solche Lähmung der CO_2 -Erregbarkeit der Atmung konnte schon von Comroe und $Schmidt^4$ an tief mit Chloralose narkotisierten Hunden beobachtet werden.

Daß bei Lähmung der CO₂-Erregbarkeit die Erregbarkeit durch Sauerstoffmangel erhalten bleiben kann, beweist, daß es sich hierbei um zwei wesensverschiedene Dinge handelt. Im Versuch der Abb. 2 und 3 ist jedoch ein gewisser Einfluß der CO₂ erkennbar. Die O₂-Mangel-Schwelle kommt mutatis mutandis um so höher zu liegen, je höher die CO₂-Spannung anzunehmen ist, d. h. sie steigt bei Verlängerung und sinkt bei Verkürzung der Pausen (Abb. 2 und 3).

Aus den bisher mitgeteilten Versuchen läßt sich entnehmen, daß die periodische, durch Sauerstoffmangel gesteuerte Atmung dann eintritt, wenn durch Ausbleiben der CO₂-Erregung die Voraussetzung gegeben ist zur Entstehung von Atempausen und damit zum Absinken der Sauerstoffsättigung auf die "O₂-Mangel-Schwelle". O₂-Mangel in der eingeatmeten Luft ist dabei nicht nötig; er entsteht im Alveolarraum bei Gegenwart von N₂ von selbst durch die Atempause. Bei hohem O₂-Gehalt ist die Atempause am längsten, die Periodik also am deutlichsten, weil hier die Sauerstoffspannung im Alveolarraum nur langsam abfällt, und daher die Schwelle erst nach einer langen Pause erreicht wird.

Wenn die Auffassung richtig ist, daß die Atmung durch Sauerstoffmangel gesteuert wird und periodisch verläuft, sobald das Atemzentrum nicht durch CO₂ erregt wird, so muß es gelingen, bei erhaltener CO₂-Erregbarkeit des Atemzentrums eine periodische Atmung durch CO₂-Mangel hervorzurufen.

Im Versuch der Abb. 4 wurde ein Hund mit der Starling-Pumpe künstlich hyperventiliert; er hatte vor der künstlichen Beatmung unter Morphin-Urethannarkose* eine frequente und regelmäßige, durch CO₂ gesteuerte Atmung mit entsprechend gleichmäßiger arterieller Sättigung. Nach Absetzen der künstlichen Hyperventilation treten dieselben Sättigungsschwankungen auf wie in Abb. 1—3; die Atmung wird vorübergehend durch O₂-Mangel gesteuert, der periodisch im Alveolarraum entsteht. Dieser Atemtypus besteht, solange die Hypokapnie anhält.

Die beiden chemischen Steuereinrichtungen der Atmung können einander ablösen und vielgestaltige Bilder periodischer Atmung hervorrufen. Bei einem nicht zu tief mit Pernocton narkotisierten Hund, der durch

^{* 0,75} g Urethan, 0,01 g Morphin pro Kilogramm.

O₂-Mangelreiz atmete, löst die Zugabe von 12% CO₂ zur Einatmungsluft eine regelmäßige Folge von Atemzügen aus (Abb. 5). Die Atemsteuerung ist vom O₂-Mangel an die CO₂ übergegangen. Zwischen arterieller Sättigung und Atmung ist keine Beziehung mehr zu erkennen. — Die Atmung wird jedoch an einzelnen Stellen wieder unterbrochen, ohne daß die Zufuhr von CO₂ aufgehört hätte. Vorübergehend bildet der O₂-Mangel nach dieser Pause den wirksamen Atemreiz (in Abb. 5: tiefer Atemzug mit besonders hohem Anstieg der arteriellen Sättigung); währenddessen

Abb. 4. Periodische Atmung infolge Hypokapnie. Hund, Morphin-Urethannarkose. Zu Beginn künstliche Überventilation. Bei Signal Pumpe ab. 85 sek. Atempause mit Absinken der arteriellen Sättigung auf die O₂-Mangel-Schwelle. Dann periodische Atmung mit entsprechenden Schwankungen der arteriellen Sättigung, des CO₂-Gehaltes der Ausatmungsluft (Mitte) und der Durchblutung der Art. carot. interna (unten). Rückkehr zu frequenter CO₂-gesteuerter Atmung mit gleichmäßiger arterieller Sättigung bei Wiederanstieg der O₂-Spannung.

wird die Kohlensäure im Blut so angereichert, daß sie wieder eine zusammenhängende Reihe von Atemzügen auslöst.

Während der pausenlosen " CO_2 -Atmung" muß eine Hyperventilation bestanden haben, die eine Senkung der CO_2 -Spannung unter die " CO_2 -Schwelle" zur Folge hatte; sonst wäre die darauf folgende Atempause unerklärlich. Diese periodisch eintretende Hyperventilation kann durch eine überdauernde Nachwirkung des Sauerstoffmangels erklärt werden, der jeder Atemperiode vorausgeht. Während der Mehratmung wird das Blut mit Nachlassen der O_2 -Mangel-Einwirkung relativ zur Sättigung hypokapnisch: es erfolgt die Atempause, in der erneut O_2 -Mangel eintritt.

Hieraus und aus den Abb. 2 und 3 geht hervor, daß in diesen Versuchen Kohlensäure und Sauerstoff gleichzeitig auf die Atmung wirken, indem die Spannung des einen Gases die Schwelle des anderen beeinflußt. Aus Untersuchungen in skandinavischen Ländern ist bereits bekannt, daß O_2 -Mangel die atemsteigernde Wirkung der CO_2 erhöht und Zunahme der O_2 -Spannung sie wieder vermindert (Hasselbalch und Lindhard; Lit.: s. M. Nielsen 8).

Von der Art des jeweils überwiegend wirksamen Atemreizes unabhängig ist der Abstand der einzelnen Atemzüge zwischen den Atempausen. Die Atmung verhält sich wie ein Wechselstrom, der von der chemischen Steuerung aus- und eingeschaltet wird. Die Frequenz des Stromes bleibt in diesen Versuchen von der Art des chemischen Reizes unberührt, nur die Dauer der Ein- und Ausschaltung ist jeweils verschieden.

Die Ähnlichkeit der in Abb. 5 im Tierversuch beschriebenen Atmung mit periodischer Atmung unter extremen physiologischen und unter pathologischen Bedingungen legt den Gedanken nahe, auch diese aus dem Zusammenwirken beider Atemreize, des Sauerstoffmangels und der Kohlensäure abzuleiten. Die hier beschriebenen Versuche stellen also wohl nur einen Sonderfall dar.

Aus den mitgeteilten Versuchen geht hervor, daß die Atmung auch unter normalen atmosphärischen Verhältnissen durch O_2 -Mangel dann gesteuert werden kann, wenn die Erregbarkeit des Atemzentrums für CO_2 herabgesetzt ist, oder wenn so wenig CO_2 vorhanden ist, daß die arterielle Sättigung unter die O_2 -Mangel-Schwelle abfällt.

Wenn aus irgendeinem Grunde die Atmung nicht durch CO₂ erregt wird und der Sauerstoffgehalt des Blutes bedrohlich absinkt, setzt als Notfallsfunktion die Erregung durch den Sauerstoffmangel ein. Der Ort, an dem die Gaszusammensetzung als Reiz für die Atmung wirksam wird, ist nach Comroe und Schmidt⁴ anatomisch für beide Mechanismen verschieden. Die Kohlensäure greift im

Zentrum an. Als Empfangsapparat für den Sauerstoffmangelreiz kommen in erster Linie die Chemoreceptoren des Carotissinus und des Aortenbogens in Betracht, worauf zuerst von $Heymans^7$ hingewiesen wurde. Die Ausschaltung dieser Organe führt bei Tieren mit gelähmter ${\rm CO_2\text{-}Regulation}$ zum Atemstillstand. Auch in den vorliegenden Versuchen konnte durch Cocainisierung der Carotissinusnerven am vagotomierten Tier ein Atemstillstand mit Exitus hervorgerufen werden.

Schließlich enden beide Mechanismen der Erregung an ein und demselben Erfolgsorgan, der Atemmuskulatur. Wo die gemeinsame Endstrecke beginnt, kann hier nicht erörtert werden. Es gibt Zustände,

Abb. 6. Periodische Atmung beim Menschen im Hochgebirge. Bei "O₂ on" Sauerstoffgabe; vorübergehende Verlängerung der Atempausen, daraufhin Einsetzen von regelmäßiger Atmung. Aus Douglas, Haldane, Henderson u. Schneider: Philos. Trans. roy. Soc. Lond. B 203, 185 (1913).

in denen beide Arten der Atemsteuerung gleichzeitig (damit ist nicht gesagt additiv) wirksam sind. Ob man dann von einer Erregbarkeitssteigerung des Atemzentrums durch O_2 -Mangel der CO_2 gegenüber sprechen kann, läßt sich solange nicht experimentell entscheiden, als es nicht gelingt, den Faktor der CO_2 überhaupt auszuschalten. Im Falle der Atmung unter Morphin-Pernoctonnarkose liegen jedenfalls die quantitativen Verhältnisse so, daß man eher versucht wäre zu sagen, daß hier die Erregbarkeit gegenüber O_2 -Mangel durch CO_2 gesteigert sei.

Bei der periodischen Atmung höhenkranker Personen, wie sie von Mosso, Haldane u. a. beschrieben worden ist, ist die Voraussetzung gegeben, die im Versuch der Abb. 4 die periodische Atmung hervorgerufen hat: Eine herabgesetzte CO_2 -Spannung im Blut und Alveolarluft. Mosso hat berichtet, daß sich diese periodische Atmung nicht unmittelbar durch O_2 beseitigen läßt. Auch auf den Kurven von Haldane (Abb. 6) ist zu sehen, daß O_2 -Gabe zunächst lange Atempausen hervorruft, genau so, wie am Tier im Versuch der Abb. 3. Wenn die O_2 -Gabe schließlich die Atempausen beseitigt, so tut sie es dadurch, daß sie über den langen Atemstillstand die Akapnie vermindert. Die gegensätzlichen Auffassungen

von Mosso und Haldane lassen sich so vereinen. Sowohl CO_2 als auch O_2 ist imstande, schließlich die periodische Atmung zu beseitigen; es kommt nur darauf an, daß durch die CO_2 -Atmung die O_2 -Sättigung dauernd über der O_2 -Mangel-Schwelle gehalten wird.

Die Feststellung, daß bei narkotisierten Hunden die Atmung für Kohlensäure nahezu unerregbar werden kann, ist für die Anwendung der Kohlensäure bei der chirurgischen Narkose von Belang. Man darf wohl annehmen, daß auch hier gerade eine verminderte Erregbarkeit Kohlensäure zum Atemstillstand führt. In der Kohlensäure verwendet man also dasjenige Mittel zur Therapie, auf welches die Zentren in ihrem augenblicklichen Zustand am wenigsten antworten. Man muß dieses Mittel deswegen hoch überdosieren. Wohl kann man dann als sichtbaren Erfolg eine vermehrte Atembewegung feststellen. Unsichtbar bleibt die anderweitige Wirkung der Kohlensäure. Je schlechter der Erfolg der CO, auf die Atmung, desto stärker werden ihre unerwünschten Nebenwirkungen sein. Das Ziel der Behandlung ist aber nicht eine bestimmte Atmungsgröße oder ein bestimmter Atmungsrhythmus, sondern eine gleichmäßige, volle Sauerstoffsättigung des arteriellen Blutes und eine gleichbleibende alveolare bzw. arterielle Kohlensäurespannung von physiologischer Höhe.

Zusammenfassung.

Durch Morphin-Pernoctonnarkose kann man bei Hunden die Empfindlichkeit des Atemzentrums für CO_2 weitgehend herabsetzen. Die Erregbarkeit der Atmung durch O_2 -Mangel bleibt erhalten. Bei einem solchen Tier wird die Atmung durch den periodisch im Alveolarraum bei Anwesenheit von Stickstoff entstehenden O_2 -Mangel gesteuert. Die Pausenlänge der periodischen Atmung wächst mit steigendem O_2 -Gehalt der eingeatmeten. Luft. Die gleichen Bilder erhält man, wenn man statt der Erregbarkeit für CO_2 die Spannung der CO_2 heruntersetzt (Hypokapnie durch Überbeatmung).

Schrifttum.

Benzinger, Opitz u. Schoedel: Luftf. Med. 3, 46 (1938). — ² Kramer, K. u. H. Sarre:
Biol. 96, 76, 89, 101 (1935). — Kramer, K.: Z. Biol. 96, 61 (1935). — ³ Schneider,
M. u. D.: Arch. f. exper. Path. 175, 606 (1934). — Ber. Physiol. 81, 378 (1934). — ⁴ Comroe, J. H. jr. and C. F. Schmidt: Amer. J. Physiol. 121, 75 (1938). — ⁵ Douglas, Haldane, Henderson and Schneider: Philos. Trans. roy. Soc. Lond. B 203, 185—318 (1913). — ⁶ Mosso: Der Mensch auf den Hochalpen. Leipzig 1899. — ⁷ Heymans, C., J. Bouckaert et P. Regniers: Le sinus carotidien. Paris: Gastou Doin 1933. — ⁸ Nielsen, M.: Skand. Arch. Physiol. (Berl. u. Lpz.) 74, 83 (1936).