Paradigmas de Programación

Práctica 10

Expresiones Regulares

Una expresión regular es una secuencia de caracteres que define un patrón de búsqueda sobre cadenas de símbolos. Para un alfabeto de símbolos Σ las siguientes constantes son expresiones regulares:

Y dadas dos expresiones regulares r y s, las siguientes operaciones sobre ellas definen nuevas expresiones regulares:

```
\begin{array}{ll} r \cdot s & \text{concatenación} \\ r^* & \text{repetición 0 o más veces} \\ r + s & \text{or lógico (alternativa)} \\ r \& s & \text{and lógico} \end{array}
```

Por ejemplo, a^*b encaja con las cadenas b, ab, aab, etc. Para simplificar las expresiones regulares con las que trabajamos vamos a considerar tres casos adicionales:

```
\hat{c} cualquier símbolo distinto de c
. cualquier símbolo a-b cualquier símbolo entre a y b
```

que serían expresables en términos de los casos anteriores como el or de todos los símbolos de Σ excepto c para \hat{c} , el or de todos los símbolos de Σ para '.' y el or de todos los símbolos en el rango para a-b.

El estándar Posix especifica una sintaxis para expresiones regulares que utilizan muchas aplicaciones unix. En esta práctica vamos a trabajar con un subconjunto de esta sintaxis:

Por ejemplo, grep imprime las lineas de un fichero que encajen con una expresión regular:

```
$ grep -E "let" src.ml
Lineas con definiciones en un fichero .ml
$ grep -E "let ([^r]|r[^e]|re[^c])" src.ml
Lineas con definiciones no recursivas
$ grep -E "let.*in"
Lineas con un let ... in
```

Derivada de una expresión regular

Para calcular si una cadena de texto encaja con una expresión regular vamos a utilizar derivadas de expresiones regulares.

La derivada de un conjunto de cadenas S con respecto a un símbolo a es el conjunto de cadenas de S que empiezan por a sin el símbolo a inicial. Para el conjunto de cadenas aceptadas por una expresión regular, el conjunto de cadenas derivadas repecto a un símbolo es expresable también como expresión regular [1, 2].

Para calcular la derivada de una expresión regular r respecto a un caracter c definimos dos funciones. La función $\nu(r)$, cuyo valor es:

$$\nu(r) = \begin{cases} \varepsilon & \text{si } r \text{ acepta la cadena vac\'ia} \\ \emptyset & \text{si no la acepta} \end{cases}$$

y se define como:

$$\nu(\emptyset) = \emptyset
\nu(\varepsilon) = \varepsilon
\nu(a) = \emptyset
\nu(.) = \emptyset
\nu(a - b) = \emptyset
$$\nu(r \cdot s) = \begin{cases} \varepsilon & \text{si } \nu(r) = \varepsilon \text{ y } \nu(s) = \varepsilon \\ \emptyset & \text{en otro caso} \end{cases}
\nu(r^*) = \varepsilon
$$\nu(r + s) = \begin{cases} \varepsilon & \text{si } \nu(r) = \varepsilon \text{ o } \nu(s) = \varepsilon \\ \emptyset & \text{en otro caso} \end{cases}
\nu(r \& s) = \begin{cases} \varepsilon & \text{si } \nu(r) = \varepsilon \text{ y } \nu(s) = \varepsilon \\ \emptyset & \text{en otro caso} \end{cases}$$$$$$

Y la función que calcula la derivada de una expresión regular r con respecto a un carácter a, $\partial_a(r)$:

```
\begin{array}{rcl} \partial_a(\emptyset) & = & \emptyset \\ \partial_a(\varepsilon) & = & \emptyset \\ \partial_a(a) & = & \varepsilon \\ \partial_a(c) & = & \emptyset & \text{si } c \neq a \\ \partial_a(\widehat{\phantom{a}}a) & = & \emptyset \\ \partial_a(\widehat{\phantom{a}}c) & = & \varepsilon & \text{si } c \neq a \\ \partial_a(\widehat{\phantom{a}}c) & = & \varepsilon & \text{si } c \neq a \\ \partial_a(c-d) & = & \varepsilon & \text{si } c \leq a \leq d \\ \partial_a(c-d) & = & \emptyset & \text{si } a < c \text{ o } a > d \\ \partial_a(.) & = & \varepsilon \\ \partial_a(r) & = & \varepsilon & \text{si } c \leq a \leq d \\ \partial_a(.) & = & \varepsilon & \text{si } c \leq a \leq d \\ \partial_a(.) & = & \varepsilon & \text{si } c \leq a \leq d \\ \partial_a(.) & = & \varepsilon & \text{si } c \leq a \leq d \\ \partial_a(.) & = & \varepsilon & \text{si } c \leq a \leq d \\ \partial_a(.) & = & \varepsilon & \text{si } c \leq a \leq d \\ \partial_a(.) & = & \varepsilon & \text{si } c \leq a \leq d \\ \partial_a(.) & = & \varepsilon & \text{si } c \leq a \leq d \\ \partial_a(.) & = & \varepsilon & \text{si } c \leq a \leq d \\ \partial_a(.) & = & \varepsilon & \text{si } c \leq a \leq d \\ \partial_a(.) & = & \varepsilon & \text{si } c \leq a \leq d \\ \partial_a(.) & = & \varepsilon & \text{si } c \leq a \leq d \\ \partial_a(.) & = & \varepsilon & \text{si } c \leq a \leq d \\ \partial_a(.) & = & \varepsilon & \text{si } c \leq a \leq d \\ \partial_a(.) & = & \varepsilon & \text{si } c \leq a \leq d \\ \partial_a(.) & = & \varepsilon & \text{si } c \leq a \leq d \\ \partial_a(.) & = & \varepsilon & \text{si } c \leq a \leq d \\ \partial_a(.) & = & \varepsilon & \text{si } c \leq a \leq d \\ \partial_a(.) & = & \varepsilon & \text{si } c \leq a \leq d \\ \partial_a(.) & = & \varepsilon & \text{si } c \leq a \leq d \\ \partial_a(.) & = & \varepsilon & \text{si } c \leq a \leq d \\ \partial_a(.) & = & \varepsilon & \text{si } c \leq a \leq d \\ \partial_a(.) & = & \varepsilon & \text{si } c \leq a \leq d \\ \partial_a(.) & = & \varepsilon & \text{si } c \leq a \leq d \\ \partial_a(.) & = & \varepsilon & \text{si } c \leq a \leq d \\ \partial_a(.) & = & \varepsilon & \text{si } c \leq a \leq d \\ \partial_a(.) & = & \varepsilon & \text{si } c \leq a \leq d \\ \partial_a(.) & = & \varepsilon & \text{si } c \leq a \leq d \\ \partial_a(.) & = & \varepsilon & \text{si } c \leq a \leq d \\ \partial_a(.) & = & \varepsilon & \text{si } c \leq a \leq d \\ \partial_a(.) & = & \varepsilon & \text{si } c \leq a \leq d \\ \partial_a(.) & = & \varepsilon & \text{si } c \leq a \leq d \\ \partial_a(.) & = & \varepsilon & \text{si } c \leq a \leq d \\ \partial_a(.) & = & \varepsilon & \text{si } c \leq a \leq d \\ \partial_a(.) & = & \varepsilon & \text{si } c \leq a \leq d \\ \partial_a(.) & = & \varepsilon & \text{si } c \leq a \leq d \\ \partial_a(.) & = & \varepsilon & \text{si } c \leq a \leq d \\ \partial_a(.) & = & \varepsilon & \text{si } c \leq a \leq d \\ \partial_a(.) & = & \varepsilon & \text{si } c \leq a \leq d \\ \partial_a(.) & = & \varepsilon & \text{si } c \leq a \leq d \\ \partial_a(.) & = & \varepsilon & \text{si } c \leq a \leq d \\ \partial_a(.) & = & \varepsilon & \text{si } c \leq a \leq d \\ \partial_a(.) & = & \varepsilon & \text{si } c \leq a \leq d \\ \partial_a(.) & = & \varepsilon & \text{si } c \leq a \leq d \\ \partial_a(.) & = & \varepsilon & \text{si } c \leq a \leq d \\ \partial_a(.) & = & \varepsilon & \text{si } c \leq a \leq d \\ \partial_a(.) & = & \varepsilon & \text{si } c \leq a \leq d \\ \partial_a(.) & = & \varepsilon & \text{si } c \leq a \leq d \\ \partial_a(.) & = & \varepsilon & \text{si
```

Una cadena formada por $c_1c_2...c_n$ encaja con una expresión regular r si la derivada de r para toda la cadena acepta ε , esto es:

$$\nu(\partial_{c_n}(\dots\partial_{c_2}(\partial_{c_1}(r)))) = \varepsilon$$

Instrucciones

Con la práctica se incluye un parser que interpreta expresiones regulares en formato Posix, y construye valores de tipo Regexp.regexp utilizando las funciones especificadas en regexp.mli:

```
type symbol
type regexp
val symbol_of_char : char -> symbol
val symbol_of_range : char -> char -> symbol
val empty
              : regexp
val empty_string : regexp
val single : symbol -> regexp
val except
                : symbol -> regexp
               : regexp
val anv
val concat
              : regexp -> regexp -> regexp
val repeat
              : regexp -> regexp
val alt
               : regexp -> regexp -> regexp
val all
                : regexp -> regexp -> regexp
```

Defina en regexp.ml el tipo symbol para representar carácteres individuales o rangos de caracteres, y el tipo regexp que representa expresiones regulares. Defina las funciones especificadas en regexp.mli que construyen valores de esos tipos. Modifique el fichero regexp.mli para incluir las definiciones de los tipos symbol y regexp.

Defina en un nuevo fichero derive.ml las funciones especificadas en derive.mli:

• regexp_of_string : string ->Regexp.regexp, que construye un valor de tipo regexp a partir de un string con una expresión regular en formato Posix utilizando el parser:

- nullable : Regexp.regexp ->Regexp.regexp, que para una expresión regular r devuelva $\nu(r)$
- derive : char ->Regexp.regexp ->Regexp.regexp, que para un caracter c y una expresión regular r devuelva $\partial_c(r)$
- matches_regexp : string ->Regexp.regexp ->bool, que calcula si una cadena encaja con una expresión regular
- matches : string ->string ->bool, donde matches str1 str2 calcula si str1 encaja con la expresión regular en formato posix str2.

Optimización

Varias de las reglas de derivación producen una expresión regular más compleja que la originaria, y el rendimiento con cadenas largas se resiente. Añada a derive.ml una función simplify: Regexp.regexp ->Regexp.regexp que simplifique recursivamente una expresión regular, teniendo en cuenta las reglas:

- $\bullet \emptyset \cdot r = \emptyset, r \cdot \emptyset = \emptyset$
- $r \cdot \epsilon = r, \ \epsilon \cdot r = r$
- $\quad \bullet \quad \epsilon^* = \epsilon$
- $\bullet \emptyset^* = \emptyset$
- $\emptyset + r = r, r + \emptyset = r$
- $\emptyset \& r = \emptyset, r \& \emptyset = \emptyset$

Y modifique las funciones matches y matches_regexp para que simplifiquen la expresión regular después de cada derivación.

Grep

Con la práctica se incluye un programa grep que utilizando los módulos de la práctica implementa una versión simplificada del comando grep -E. Una vez implementados regexp.ml y derive.ml puede compilarlo con make grep.

Implementar find (opcional)

Escriba en find.ml un programa que dados un directorio y una expresión regular, recorra recursivamente el directorio e imprima todos los elementos cuyo nombre encaje con la expresión regular. Por ejemplo:

```
$ find prueba ".*ml"
prueba/caml
prueba/p9/gtree.ml
prueba/p10/derive.ml
prueba/p10/regexp.ml
```

Para garantizar la portabilidad, utilice el módulo Sys para obtener los contenido de los directorios, y el módulo Filename para componer las rutas.

Referencias

- [1] Janusz A. Brzozowski. Derivatives of regular expressions. In Journal of the ACM, 1964.
- [2] Scott Owens, John Reppy, and Aaron Turon. Regular-expression derivatives re-examined. Journal of Functional Programming, 19(2):173–190, 2009.