Пусть T – помеченное дерево, $VT = \{1, 2, ..., n\}$. Сопоставим дереву код $a = (a_1, a_2, ..., a_{n-1})$ следующим образом.

- 1. Полагаем $T_0 = T$.
- 2. Для любого $1 \leqslant i \leqslant n-1$ в T_{i-1} находим висячую вершину v_i с наименьшим номером и полагаем a_i номер её соседа, $T_i = T_{i-1} v_i$.

Заметим, что кортеж а обладает следующими свойствами

- 1. $a_i \in \{1, 2, ..., n\}$;
- 2. $a_{n-1} = n$.

Теорема 1 (о коде Прюфера). Если кортеж $a = (a_1, ..., a_{n-1})$ обладает свойствами 1. и 2., то существует и единственное помеченное дерево T, для которого а является кодом Прюфера.

Доказательство. Существование. Построим кортеж $b = (b_1, \dots, b_{n-1})$ такой, что

$$b_i = \min\{1, 2, \dots, n\} \setminus \{b_1, \dots, b_{i-1}, a_i, \dots, a_{n-2}\},\$$

 $i=1,2,\ldots,n-1$. Рассмотрим граф T такой, что $VT=\{1,2,\ldots,n\},\ ET=\{a_ib_i\,|\,i=1,2,\ldots,n-1\}.$ Докажем, что

- 1. *T* дерево;
- 2. кортеж a является кодом Прюфера дерева T.

Для этого рассмотрим последовательность графов

$$T_0 = T, T_1, T_2, \ldots, T_{n-1},$$

где $T_i = T_{i-1} - b_i, \ 1 \le i \le n-1$. Заметим, что $T_{n-1} = O_1$ – дерево.

По построению

$$\{1, 2, \dots, n\} = \{b_1, \dots, b_{n-1}, a_{n-1}\},$$
 (1)

и для любого $i, 1 \le i \le n-1$ имеем

$$VT_{i-1} = \{b_i, b_{i+1}, \dots, b_{n-1}, a_{n-1}\}$$
(2)

$$ET_{i-1} \subseteq \{b_i a_i, b_{i+1} a_{i+1}, \dots, b_{n-1} a_{n-1}\}$$
(3)

По построению $b_i \neq b_j$ при $i \neq j$ и $b_i \notin \{a_i, \dots, a_{n-1}\}$. Следовательно вершина b_i в графе T_{i-1} висячая. Таким образом, граф T_i получен из T_{i-1} выбрасыванием висячей вершины b_i , значит, если T_i является деревом, то и T_{i-1} – дерево. Индукцией получаем, что деревом является $T_0 = T$.

Поскольку T_i , $1 \le i \le n-1$, является деревом, то из (3) имеем

$$ET_{i-1} = \{b_i a_i, b_{i+1} a_{i+1}, \dots, b_{n-1} a_{n-1}\}$$

$$(4)$$

Из (4) для любой вершины $v \in VT_{i-1}$ степень $\deg_{T_{i-1}} v$ равна числу появлений v в последовательности $b_i, b_{i+1}, \ldots, b_{n-1}, a_i, a_{i+1}, \ldots, a_{n-1}$. Тогда из (2) получаем, что $\deg_{T_{i-1}} v > 1$ тогда и только тогда, когда $v \in \{a_i, \ldots, a_{n-2}\}$. Следовательно множество $\{b_i, \ldots, b_{n-1}, a_{n-1}\}\setminus \{a_i, \ldots, a_{n-2}\}$ — множество висячих вершин графа T_{i-1} . Но по построению и, учитывая (1), получаем

$$b_{i} = \min\{1, 2, \dots, n\} \setminus \{b_{1}, \dots, b_{i-1}, a_{i}, \dots, a_{n-2}\} =$$

$$= \min\{b_{1}, \dots, b_{n-1}, a_{n-1}\} \setminus \{b_{1}, \dots, b_{i-1}, a_{i}, \dots, a_{n-2}\} =$$

$$= \min\{b_{i}, \dots, b_{n-1}, a_{n-1}\} \setminus \{a_{i}, \dots, a_{n-2}\}.$$

Таким образом b_i висячая вершина с наименьшим номером в T_{i-1} и, следовательно, по определению кортеж a является кодом Прюфера графа T.

Единственность. Пусть T – дерево с кодом Прюфера $a=(a_1,\ldots,a_{n-1})$. Пусть c_1,c_2,\ldots,c_{n-1} порядок удаления вершин в T при построении a. Докажем, что v – висячая вершина в $T\setminus\{c_1,c_2,\ldots,c_{i-1}\}$ тогда и только тогда, когда $v\notin\{c_1,\ldots,c_{i-1},a_i,\ldots,a_{n-2}\}$. Действительно:

Необходимость очевидна, так как a_i, \ldots, a_{n-2} не висячие.

Достаточность. Если v не висячая, то $v = a_t$ для некоторого $t \ge i$. получили противоречие.

По определению кода Прюфера $c_i = \min\{1,2,\ldots,n\} \setminus \{c_1,\ldots,c_{i-1},a_i,\ldots,a_{n-2}\},\ (a_i,c_i) \in ET.$ Получим, что c_1,c_2,\ldots,c_{n-1} определяются однозначно по a, следовательно T – единственно.