Renewable Energy and Distributed Generation

Variable-speed Synchronous Generator WECS

Zheng Wang Professor

School of Electrical Engineering Southeast University

Contact Info

Email: zwang@seu.edu.cn

Variable-speed SG WECS

Main Topics

- 1. Introduction
- 2. Control Schemes for Synchronous Generators
- 3. Control of SG WECS
- 4. DC/DC Boost Converter Fed SG WECS
- 5. Grid-side Reactive Power Control

Introduction

System Configuration

Variable speed SG based WECS

The grid and generator are "decoupled" by the power converters

3

Control Schemes for SG

Control Schemes for SG

- 1. Zero d-axis current control (ZDC)
- 2. Maximum torque per ampere control (MTPA)

Zero d-axis Current Control (ZDC)

Make the d-axis stator current zero by the controller:

$$\begin{cases} \vec{i}_{s} = i_{ds} + ji_{qs} = ji_{qs} \\ i_{s} = \sqrt{i_{ds}^{2} + i_{qs}^{2}} = i_{qs} \end{cases}$$
 for $i_{ds} = 0$

 $\vec{i}_{\scriptscriptstyle S}$ - stator current space vector

 $oldsymbol{i}_{S}$ - peak value of the stator current

With ZDC:
$$T_e = \frac{3}{2} P \lambda_r i_{qs} = \frac{3}{2} P \lambda_r i_s$$

With constant rotor flux, and torque is proportional to the stator current.

5

Control Schemes for SG

Zero d-axis Current Control (ZDC)

Vector diagram

SG steady-state model

Maximum Toque Per Ampere Control (MTPA)

$$T_e = \frac{3}{2} P \left[\lambda_r i_{qs} - \left(L_d - L_q \right) i_{ds} i_{qs} \right]$$

Analysis: For a given rotor flux, torque is a function of stator dq- axis currents

→ It is possible to produce a given torque with minimum stator current.

$$i_{ds} = \sqrt{i_s^2 - i_{qs}^2}$$

$$T_e = \frac{3}{2} P \left[\lambda_r i_{qs} - \left(L_d - L_q \right) \left(\sqrt{i_s^2 - i_{qs}^2} \right) i_{qs} \right]$$

$$\frac{dT_e}{di_{qs}} = \frac{3P}{2} \left(\lambda_r - (L_d - L_q)i_{ds} + (L_d - L_q)i_{qs}^2 \frac{1}{\sqrt{i_s^2 - i_{qs}^2}} \right) = 0$$

7

Control Schemes for SG

Maximum Toque Per Ampere Control (MTPA)

To find MTPA:

$$\lambda_r - \left(L_d - L_q\right)i_{ds} + \left(L_d - L_q\right)\frac{i_{qs}^2}{i_{ds}} = 0$$

Q: What if
$$L_d=L_q\,$$
 ?

A: It becomes ZDC

When the above condition is satisfied, the SG operates with MTPA

Q: How to find i_{qs} ? A: Solve the following equations simultaneously:

$$\begin{cases} T_{e} = \frac{3}{2} P(\lambda_{r} i_{qs} - (L_{d} - L_{q}) i_{ds} i_{qs}) \\ i_{ds} = \frac{\lambda_{r}}{2(L_{d} - L_{q})} + \sqrt{\frac{\lambda_{r}^{2}}{4(L_{q} - L_{d})^{2}} + i_{qs}^{2}} & \text{for } L_{d} \neq L_{q} \end{cases}$$
(9.13)

Maximum Toque Per Ampere Control (MTPA)

Trajectory of the stator current at $T_e = 0.8$ pu

9

Control Schemes for SG

Implementation of ZDC and MTPA

Example 1 - SG with ZDC Control

Consider a 2.45MW/4000V/490A/58.459kN.m/53.3Hz non-salient PMSG operating at the rated condition with zero d-axis current control. Generator parameters are assumed.

The electrical rotor speed and mechanical torque at the rated conditions:

$$\begin{cases} \omega_r = 2\pi f_s = 2\pi \times 53.3 = 334.89 \text{ rad/sec } (1.0 \text{ pu}) \\ T_m = 58.459 \text{ kN.m } (1.0 \text{ pu}) \end{cases}$$

The dq-axis stator currents:

$$\begin{cases} i_{ds} = 0 & \text{for ZDC} \\ i_{qs} = \frac{T_e}{1.5 \times P \times \lambda_r} = \frac{58.459 \times 10^3}{1.5 \times 8 \times 7.03} = 692.96 \text{ A} \end{cases}$$

The rms stator current:

$$I_s = i_s / \sqrt{2} = \sqrt{i_{ds}^2 + i_{qs}^2} / \sqrt{2} = 692.96 / \sqrt{2} = 490.0 \text{ A} \quad (1.0 \text{ pu})$$

11

Control Schemes for SG

Example 1 – SG with ZDC Control

The dq-axis stator voltages:

$$\begin{cases} v_{ds} = -I_d R_s + \omega_r L_q i_{qs} = 2279.38 \text{ V} \\ v_{qs} = -i_{qs} R_s - \omega_r L_d i_{ds} + \omega_r \lambda_r = 2338.97 \text{ V} \end{cases}$$

The rms stator voltage:

$$V_s = v_s / \sqrt{2} = \sqrt{v_{ds}^2 + v_{qs}^2} / \sqrt{2} = 3265.9 / \sqrt{2} = 2309.37 \text{ V}$$
 (1.0 pu)

The angle of the stator voltage and current vectors:

$$\begin{cases} \theta_v = \tan^{-1} \frac{v_{qs}}{v_{ds}} = 0.798 \text{ rad} & (45.74^\circ) \\ \theta_i = \tan^{-1} \frac{i_{qs}}{i_{ds}} = \pi/2 \text{ rad} & (90^\circ) \end{cases}$$

The stator power factor angle:

$$\varphi_s = \theta_v - \theta_i = -0.7725 \text{ rad} \quad (-44.26^\circ)$$

Example 1 - SG with ZDC Control

The stator power factor:

$$PF_s = \cos \varphi_s = \cos(-44.26^\circ) = 0.716$$

The stator output active power:

$$P_s = 3V_s I_s \cos \varphi_s = 2431.2 \text{ kW}$$

The above analysis can be extended to the full speed range, see next slide.

13

Control Schemes for SG

Example 1 – SG with ZDC Control

Non-salient PMSG (2.45MW/4000V)

Note: The ZDC scheme can work for the full speed range of a non-salient PMSG

Example 1 - SG with ZDC Control

Salient-pole PMSG, (2MW/690V)

Note: The ZDC scheme is NOT applicable for the salient PMSG since the full operation range cannot be achieved.

15

Control Schemes for SG

Example 2 – SG with MTPA Control

Given: 2MW/690V/1868A salient PMSG with MTPA scheme. The generator parameters are assumed.

The electrical rotor speed and mechanical torque at the rated conditions:

$$\begin{cases} \omega_r = 2 \times \pi \times 11.25 \text{ Hz} = 70.69 \text{ rad/sec } (1.0 \text{ pu}) \\ T_m = 852.78 \text{ kN.m } (1.0 \text{ pu}) \end{cases} \qquad T_e = T_m = 852.78 \text{kN.m in steady state}$$

Solve the following equations for dq-axis stator currents:

$$\begin{cases} T_e = \frac{3}{2} P(\lambda_r i_{qs} - (L_d - L_q) i_{ds} i_{qs}) \\ i_{ds} = \frac{\lambda_r}{2(L_d - L_q)} + \sqrt{\frac{\lambda_r^2}{4(L_q - L_d)^2} + i_{qs}^2} \end{cases} \text{ for } L_d \neq L_q \Rightarrow \begin{cases} i_{ds} = 892.14 \text{ A } (0.4777 \text{ pu}) \\ i_{qs} = 2486.1 \text{ A } (1.3311 \text{ pu}) \end{cases}$$

The rms stator current:
$$I_s = i_s / \sqrt{2} = \sqrt{i_{ds}^2 + i_{qs}^2} / \sqrt{2} = 1867.8 \,\text{A} \, (1.0 \,\text{pu})$$

Example 2 – SG with MTPA Control

The dq-axis stator voltage:

$$\begin{cases} v_{ds} = -i_{ds}R_s + \omega_r L_q i_{qs} = 405.3 \text{ V} \\ v_{qs} = -i_{qs}R_s - \omega_r L_d i_{ds} + \omega_r \lambda_r = 391.3 \text{ V} \end{cases}$$

The rms stator voltage:

$$V_s = v_s / \sqrt{2} = \sqrt{v_{ds}^2 + v_{qs}^2} / \sqrt{2} = 398.4 \text{ V} \quad (1.0 \text{ pu})$$

$$\begin{cases} \theta_{v} = \tan^{-1} \frac{v_{qs}}{v_{ds}} = 0.7678 \text{ rad} & (43.99^{\circ}) \\ \theta_{i} = \tan^{-1} \frac{i_{qs}}{i_{ds}} = 1.2263 \text{ rad} & (70.26^{\circ}) \end{cases}$$

17

Control Schemes for SG

Example 2 – SG with MTPA Control

The power factor angle and power factor:

$$\varphi_s = \theta_v - \theta_i = 0.7678 - 1.2263 = -0.4585 \text{ rad}$$
 (-26.27°)

$$PF_s = \cos \varphi_s = \cos(-26.27^\circ) = 0.8967$$

The angle of the stator current with respect to q-axis:

$$\delta = \frac{\pi}{2} - \theta_i = \frac{\pi}{2} - 1.2263 = 0.3445 \,\text{rad} \quad (19.74^\circ)$$

The stator output active power:

$$P_s = 3V_s I_s \cos \varphi_s = 2001.6 \text{ kW}$$

Example 2 – SG with MTPA Control

Characteristics of salient PMSG with MTPA scheme

19

Control Schemes for SG

Summary - ZDC and MTPA

Generator Type	Control Scheme
Non-salient generator	ZDC Scheme
Salient-pole generator	MTPA Scheme

Main Topics

- 1. ZDC control of non-salient SG WECS
- 2. MTPA control of salient SG WECS

21

Control of SG WECS

ZDC control of SG WECS

System Block Diagram

ZDC Control of SG WECS – Inverter Control

23

Control of SG WECS

ZDC Control of SG WECS – Rectifier Control

ZDC Control of SG WECS – Rectifier Control

25

Control of SG WECS

ZDC Control of SG WECS – Rectifier Control

Case Study 1 – ZDC for non-salient SG

Generator parameters (Based on generator-side per unit system)			
Rated Shaft Input Power	2.45 MW		
Rated Stator Line-Line Voltage	3950V		
Rated Stator Phase Voltage	2280 V (rms)	1.0 pu	
Rated Stator Current	490A (rms)	1.0 pu	
Rated Rotor Speed	400 rpm	1.0 pu	
Rated Torque	58.6 kN∙m	1.0 pu	
Rated Stator Frequency	53.3Hz	1.0 pu	
Number of Pole pairs P	8		
Rated Rotor Flux Linkage λ_r	7.043 Wb (peak)	0.732 pu	
Stator Resistance R _s	0.024 Ω	0.005 pu	
d-axis Synchronous Inductance L _d	9.5 mH	0.687 pu	
q-axis Synchronous Inductance L_q	9.5 mH	0.687 pu	

27

Control of SG WECS

Case Study 1 – ZDC for non-salient SG

System parameters

DC Link Parameters (Based on generator-side	e per unit system)	
DC Capacitor C	1700 μF	4.0 pu
DC Link Voltage Reference	7045 V	3.05pu
Grid-side Parameters (Based on grid-side pe	r unit system)	
Rated Active Power to the Grid (PF = 1)	2.44 MW	1.0 pu
Rated Grid Phase Voltage	2280 V (rms)	1.0 pu
Rated Stator Current	356 A	1.0 pu
Grid Frequency	60 Hz	1.0 pu
Filter Inductance	3.4 mH	0.2 pu
Line Resistance	0.032 Ω	0.005 pu

Case Study 1 - ZDC for non-salient SG

Operating Conditions:

- 1) The system starts when the speed of the turbine is brought to its rated value by the wind, at which the power converter system is activated.
- 2) To start the system smoothly, the torque reference is increased linearly from zero to its rated value in 1.0sec
- 3) The wind speed is rated. The SG operates at the rated condition after the start.

Assumption:

All the power losses in the system are neglected.

29

Control of SG WECS

At t = 0.25 sec, the torque reference T_e^* starts to increase. The generator torque T_e follows its reference and ramps up to its rated value (1pu) at 1.25 sec.

Case Study 1 - ZDC for non-salient SG

Control of SG WECS

Case Study 1 – ZDC for non-salient SG

Boost Converter Fed SG WECS

Block Diagram

33

Boost Converter Fed SG WECS

Control of Boost Converter

Main function of the boost converter?

Boost Converter Fed SG WECS

Control of Grid-side Converter

35

Boost Converter Fed SG WECS

Steady-state Waveforms (simulation)

Grid-side Reactive Power Control

Block Diagram

37

Grid-side Reactive Power Control

Case Study 4 – Reactive Power Analysis

Given: Inverter power rating: 2.44MVA/690V

Assumption:

Inverter is ideal with no power losses

For a rotor speed of 0.8 pu, the grid-side active power and maximum reactive power that the inverter can provide can be calculated by

$$\begin{cases} P_g = (\omega_{r,pu})^3 = 0.8^3 = 0.512 \text{ pu} & (1.25\text{MW}) \\ Q_{g,\text{max}} = \pm \sqrt{S_g^2 - P_g^2} = \pm \sqrt{1 - P_g^2} = \pm 0.859 \text{ pu} & (\pm 2.10\text{MVAR}) \end{cases}$$

Grid-side Reactive Power Control

Case Study 4 – Reactive Power Analysis

Grid-side Reactive Power Control

39

Case Study 4 – Reactive Power Analysis Rectifier Non-salient Inverter v_{ag} , i_{ag} (pu) Leading PF (-Q) (-120.8°) φ_{S} 1.020 1.025 a) Lagging power factor (inductive) v_{ag}, i_{ag} (pu) (120.8°) Lagging PF 1.0 (+Q)-1.0 c) Phasor diagram 2,000 2.005 2.015 2.020 t (sec) b) Leading power factor (capacitive)

Grid-side Reactive Power Control

Case Study 4 – Reactive Power Analysis

Maximum Reactive Power

$$Q_g = \pm \sqrt{S^2 - P^2} = \pm \sqrt{1 - P^2}$$
 pu

S is the power rating of the grid-side converter

Point A:
$$\omega_r = 0.5$$
pu,
 $P = (\omega_r)^3 = 0.125$ pu, $Q = 0.992$ pu

Point B:
$$\omega_r = 0.8$$
pu,
 $P = (\omega_r)^3 = 0.512$ pu, $Q = 0.859$ pu

Point C:
$$\omega_r = 1$$
pu,
 $P = (\omega_r)^3 = 1$ pu, $Q = 0$ pu

Q: Why
$$P = (\omega_r)^3$$
?

41

Summary

- 1. Control Schemes for Synchronous Generators
 Principle of two schemes: ZDC and MTPA controls
- 2. Control of SG WECS
- ZDC control of non-salient SG WECS
 Control block diagram, transient analysis, steady state analysis
- MTPA control of salient SG WECS
 Control block diagram, transient analysis, steady state analysis
- 3. Boost Converter Fed SG WECS

 System configuration, control block diagram, simulations
- 4. Grid-side Reactive Power Control Control block diagram, inductive/capacitive reactive power, case study, simulations

Thanks

