$\sum \cup \pi$

1 οοηη ψεαηηη

Λετ΄ς σεε ηοω τηις ωορκς

1.1 Τι σιμαινει διακριτικι ικανοτιτα οργανου;

Λεγεται ι μικροτερι δινατι μεταολι τις μετρουμενις ποσοτιτας που μπορει να γινει αντιλιπτι απο το οργανο.

1.2 Τι ειναι ι πολωσι οργανου;

Λεγεται ι τασι του οργανου να δινει διαφορετικί ενδεικσί από τιν πραγματική τιμή κατά μια στατήερι ποσοτίτα. Τηετική η αρνητική.

1.3 Σε τι δαιφερει απο τιν αχριεια διασπορας;

Πολωσι περιγραφει ποσο προσεγγιζει ι ενδειχσι ενος οργανου τιν πραγματιχή τιμή του μετρουμένυ μεγετήους, ι δεφτερι περιγραφει τι στατιστιχί διασπορά που παρουσιάζουν επαναλαμανομένες μετρισείς του οργανου.

1.4 Πως οριζεται ι κλασι ενος οργανου;

Είναι ι ποσοτίτα $G=100*\frac{Dx}{xt},$ οπου $\Delta \xi$ μεγιστο απολίτο σφαλμα, ξτ μεγίστι ενδείχσι του οργανού.

1.5 Ποια ειναι τα κιριοτερα ειδι σφαλματων;

Ξωριζονται σε σιστιματικα και τψξαια. Τα σιστιματικα ξωριζονται και σε διναμικα και στατικα και οφειλονται στιν επιδρασι του περιαλλοντος, στις διαφορες ατελειες του οργανου και στις αδιναμιες των μετηοδων μετρισης.

1.6 Εαιστηισια οργανου;

Ο λογος τις μεταολις αποκρισης προς τι μεταολι τις διεγερσης.

1.7 $(\Sigma \epsilon \pi$. 2013) Ένας ηλεκτροκινητήρας για ορισμένες συνθήκες λειτουργίας απορροφά ηλεκτρική ισχύ 1KW και παράγει μηχανική ισχύ 0.9HP. Αν η μηχανική ισχύ μετρήθηκε με μέγιστο σχετικό σφάλμα 2% και η ηλεκτρική ισχύς με βαττόμετρο κλάσης 1% και μέγιστης κλίμακας 1.5KW% να υπολογιστεί το μέγιστο απόλυτο και σχετικό σφάλμα του βαθμού απόδοσης του κινητήρα.

Παρόμοια με ασκ.3 Σελ. 40, Σελ. 25-6,33 για τύπους

2 Προστασια

2.1 Ποτε γινεται το ρεμα επικινδινο; (Επικίνδυνα σε θέλω, μέσα μου κυλάαααααααας)

Για πανώ απο 100mA για διαρχεία ροης $1\ sec$ οπού πατηαινούμε καρδίαχη προσολή. Ολές οι τάσεις κατώ απο 50V τηεωρούνται αχινδίνες.

2.2 Ποια ειναι τα αποτελεσματα ιλεκτροπλικσιας;

Για ξαμιλοτερες εντασεις ρεματών, καρδιακι προσολή. Για ιπσιλοτερες, μψυική σψοτολή, σψοτολή του μψοκαρδιου (καρδιακή προσολή), αναπνεφοτικι παραλψοή, εγκαματά.

2.3 Απο ποσους παραγοντες επιρεαζεται ι αντιστασι του αντηρωπινου σωματος;

Κιριως απο τιν καταστασι του δερματος (μικροτερη αντιστασι για μικρο δερμα).

2.4 Το σινέξες η το εναλλασσομένο ρέμα είναι πιο επιχινδίνο για τον αντηρώπο;

Το εναλλασσομενο πιο επικινδινο, ειδικοτερα στις ξαμιλες σιξνοτητες.

2.5 Τι ειναι γειωσι προστασιας και γειωσι λειτουργιας;

Ο ουδετερος κομος των τριφασικων ηλεκτρικων δικτψων λεγεται γειωσι λειτουργειας. Ι γειωσι προστασιας ειναι το εκσωτερικο μεταλλικο περιλιμα μιας σισκεις.

2.6 Τι ειναι αμεσι γειωσι και τι ουδετερωσι;

Η γειωσι προστασιας γινεται ειτε με αμεσι γειωσι η ουδετερωσι. Στιν αμεσι γειωσι ο αγωγος προστασιας στον πιναχα διανομις σινδεεται μεσω ξαλχίνου αγωγου στο ιλεχτροδίο γειωσης που είναι ψτηισμένο στο εδαφος. Ο αγωγος προστασιας σινδεεται με ολές τι ρεματοληπσιές. Στιν ουδετερωσι ο αγωγος προστασιας σινδεεται στον πιναχα διανομις με τον ουδετερο αγωγο που είναι γειωμένος χοντα στιν εισοδο τις παροξίς του χαταναλωτη.

2.7 Τι λεγεται αντισταση γειωσης;

Λεγεται η αντισταση διαξψσης σε σειρα με την αντισταση του αγωγου που σινδεει τον αγωγο προστασιας με το ηλεκτροδιο γειωσης. Οσο μικροτερη τοσο καλιτερη γειωση.

2.8 Ποιος ειναι ο σκοπος εγκαταστασης μετασξηματιστων απομονωσης;

Αψτοι οι M/T ισξψως ειναι σψνητως 1:1 με αγειωτο δεψτερεων. Αν ενα στοιξειο ταση αχουμπησει το μεταλλικο περιλημα ενος οργανου, τοτε δεν διατρεξει κινδψνο καποιοώ που τηα πιασει το περιλημα του οργανου, γιατι δεν μπορει να κλεισει κψκλώμα αφού το δεφτερεών δεν είναι γειώμενο και δεν ψπαρξει γαλανική σψνδεσή πρωτεοντος με το δεφτερεών.

2.9 Τι ειναι οι διακοπτες διαφψγης;

Ενα ειδος προστασιας απο την ηλεκτροπληκσια. Ψπαρξουν οι διακοπτες διαφψηης τασης και εντασης $(\delta \alpha \phi \rho)$.

Ο διακοπτης διαφψγης τασης περιεξει ενα πηνιο τασης. Οταν η ταση ψπερει τα 50° , ελχει τον οπλισμο του και διακοπτει ολες τις φασεις και τον ουδετερο σε δεκατα του δεφτερολεπτου. Ο διακοπτης διαφψγης εντασης περιεξει εναν μετασξηματιστη και ενα πηνιο διακοπης/διαφψγης. Οταν δεν ψπαρξει επαφη μετακσψ στοιξειοψ με ταση και τοψ εκσωτερικου περιληματος, τα ρεματα των αγογων τροφοδοσιας ειναι ισα και διμιοψργαν αντιτηετα πολωμενα μαγνητικα πεδια τα οποία αλληλοεθοψδετερωνονται. Οταν ψπαρξει σψνδεση μετακσψ στοιξειων και περιληματος, επαγεται ταση στο δεφτερεων του M/T, ενεργοποιειται το πηνιο διαφψγης και διακοπτεται το κψκλωμα σε λιγα δεφτερολεπτα.

2.10 Πως προστατεονται τα κψκλωματα; Που πανε τα μπαλονια;

Με ασφαλειες και αφτοματοψς διακοπτες. Αν η ενταση τοψ ρεματος περασει ενα οριο, διακοπτεται το κψκλωμα. Αποφεγεται ετσι η προκληση πψρκαγιας λογω ραξψκψκλωματος και η καταστροφη των αγωγων των σψσκεων.

2.11 Αρξη λειτουργιας αφτοματων διακοπτων

Εξουν ενα τηερμικο και ενα μαγνητικο στοιξειο.

Το τηερμικό στοιξείο είναι ενα διμεταλλικό ελάσμα το οποίο όταν τηερμαντήει κατήως διαρέεται από ρεμά λιγο περισσότερο από το κανονικό, παραμορφώνεται και αναλαμάνει την διακόπη του κψκλωμάτος μετά από λιγο.

Το μαγνητικό στοιξείο είναι ενά πηνίο με πψρηνά και ενάν οπλίσμο το οποίο διεγείρεται και διακοπτεί αφτομάτα το χψκλωμά όταν το ρεμά γίνει πολψ μεγάλο.

2.12 Ποιο σκοπο εκσψπηρετουν οι αφτοματοι διακοπτες για ελλειπση τασης και ποιο οι αφτοματοι για διαδοξη φασεων;

Οι **αφτοματοι διακοπτες για ελλειπση τασης** διακοπτουν το κψκλωμα οταν η ταση πεσει κατω απο μια σψγκεκριμενη τιμη (πρεττψ σελφ εξπλανατορψ ρεαλλψ).

Οι αφτοματοι διακοπτες για διαδοξη φασεων διακοπτουν το κψκλωμα αν η τριφασικη σψνδεσμολογια εγινε λατηος και η διαδοξη των φασεων ειναι αντιτηετη απο την προλεπομενη. Εφαρμοζονται για προστασια ηλεκτροκινητηρων οι οποιοι αλλαζουν φορα περιστροφης οταν αλλαζει η διαδοξη των φασεων.

3 Ηλεκτρικός Θόρυβος

3.1 Τι λέγεται ηλεκτρικός θόρυβος;

Λέγονται οι παρενοχλήσεις από ανεπιθύμητα σήματα στο κύκλωμα που μας ενδιαφέρει.

3.2 Ποιές είναι οι κύριες πηγές ηλεκτρικού θορύβου;

Ειναι ημιαγωγοί που χρησιμοποιούνται σαν διακόπτες, οι εκκενώσεις κάθε μορφής, οι ηλεκτροκολλήσεις, οι λάμπες φθορισμού και οι λυχνίες θύρατρον.

3.3 Ποιά είναι τα είδη σύζευξης ηλεκτρικού θορύβου;

- Ηλεκτροστατική ή χωρητική σύζευξη
- Μαγνητική ή επαγωγική
- Ηλεκτρομαγνητική
- Σύζευξη κοινής αντίστασης
- Ο Merzbow (ειναι αντιSOS αυτό δεν πέφτει ποτέ)

3.4 Εξηγήστε τη φύση της ηλεκτροστατικής και της μαγνητικής σύζευξης

Λέγονται και οι δύο μικρής απόστασης σύζευξης γιατί εξανεμίζονται όταν η απόσταση μεταξύ πηγής και δέκτη του θορύβου είναι μεγάλη.

Η ηλεχτροστατική σύζευξη οφείλεται στην χωρητικότητα μεταξύ πομπού και δέκτη και ο θόρυβος λόγω της ηλεκτροστατικής σύζευξης αυξάνεται όταν:

- Αυξάνεται η συχνότητα
- Αυξάνεται η αντίσταση εισόδου του οργάνου
- Αυξάνεται η χωρητικότητα μεταξύ πομπού και δέκτη του θορύβου

Η μαγνητική σύζευξη οφείλεται στην τάση αλληλεπαγωγής μεταξύ πηγής και δέκτη, δηλαδή στις τάσεις που δημιορυγούνται από επαγωγή λόγω μεταβολής μαγνητικών πεδίων. Ο θόρυβος αυξάνεται όταν:

- Αυξάνεται η ένταση του μαγνητικού πεδίου
- Αυξάνεται ο εμπλεκόμενος με το μαγνητικό πεδίο βρόγχος του δέκτη
- Αυξάνεται η ταχύτητα μεταβολής του μαγνητικού πεδίου
- Μιχραίνει η αντίσταση εισόδου

 $\Sigma \epsilon \lambda$. 57-9

3.5 Εξηγήστε τη φύση της ηλεκτρομαγνητικής σύζευξης

Η ηλεκτρομαγνητική ακτινοβολία που εκπέμπεται από ραδιοφωνικούς και τηλεοπτικούς πομπούς μπορεί να δημιουργήσει θόρυβο κυρίως σε πολύ λεπτές μετρήσεις, ακόμα και σε περιπτώσεις που ο πομπός βρίσκεται πολύ μακριά από τον δέκτη (σύζευξη θορύβου μεγάλης απόστασης).

 $\Sigma \epsilon \lambda$. 60

3.6 Πότε εμφανίζεται σύζευξη κοινής αντίστασης;

Εμφανίζεται όταν 2 ή και περισσότερα κυλώματα έχουν πολλούς κοινούς αγωγούς τροφοδοσίας και κατά συνέπεια τα ρεύματα των κυκλωμάτων περνούν από κοινές σύνθετες αντιστάσεις.

 $\Sigma \epsilon \lambda$. 61

3.7 Να αναφερθούν τρόποι μείωσης του θορύβου

- Τοποθέτηση των διατάξεων μετρήσεων μαχριά από τις πηγές θορύβου (ηλεκτροστατική, μαγνητική)
- Το ¨στρίψιμο' των καλωδίων στε ευαίσθητες μετρητικές διατάξεις (ηλεκτροστατική, μαγνητική)
- Χρήση φίλτρων τροφοδοσίας αν υπάρχει θόρυβος που προέρχεται από την τροφοδοσία. Είναι χαμηλοπερατά φίλτρα που αφήνουν να περάσει η συχνότητα τροφοδοσίας και απορρίπτουν τον θόρυβο (κοινής αντίστασης)
- Χρήση θωράχισης, δηλαδή κάλυψης ενός αγωγού/στοιχείου με κάλυμα με συγκεκριμένες ηλεκτρομαγνητικές ιδιότητες που αποτρέπουν λήψη και εκπομπή ηλεκτρικού θορύβου (αγώγιμα πλέγματα για ηλεκτροστατική, σιδηρομαγνητικό υλικό για μαγνητική, αγώγιμο υλικό/στρώματα αγώγιμου και σιδηρομαγνητικού υλικού για ηλεκτρομαγνητική)

- Χρήση σωστών γειώσεων (υποθέτω για κοινή αντίστασης, μαγνητική, ηλεκτροστατική)
- Χρήση αγωγών μικρής αντίστασης (κοινής αντίστασης)
- Αποφυγή κοινών συνδέσεων (κοινής αντίστασης) (duh)

 $\Sigma \epsilon \lambda$. 63-4

4 Μέτρηση ισχύος και ενέργειας

4.1 Να περιγράψετε την αρχή λειτουργίας αντισταθμισμένων βαττόμετρων

Τα αντισταθμισμένα βαττόμετρα έχουν δύο πηνία τάσης, τα Π1 και Π2. Τα Π1 και Π2 είναι συνδεδεμένα σε σειρά μεταξύ τους και διαρρέονται με το ίδιο ρεύμα. Κατασκευαστικά, όμως, το Π2 είναι παράλληλα του πηνίου έντασης, αφαιρώντας το μαγνητικό πεδίο του Π2 από το πεδίο του πηνίου έντασης. Έτσι, στην ένδειξη του οργάνου δεν συμπεριλαμβάνεται η ισχύς που καταναλίσκεται στο πηνίο τάσης. Πρέπει όμως η σύνδεση του πηνίου τάσης να γίνει από την πλευρά της κατανάλωσης.

 $\Sigma \epsilon \lambda$. 197-8

4.2 Να περιγράψετε τη μέτρηση ενεργού ισχύος με τη διάταξη Aron σε τριφασικό σύστημα τριών αγωγών με συμμετρικές τάσεις

 $\Sigma\epsilon\lambda.$ 202-3 πάνε διάβασε το από το βιβλίο και κουράγιο, μην πανικοβληθείς

4.3 Να περιγράψετε τη μέθοδο μέτρησης άεργου ισχύος σε τριφασικό σύστημα μετρήσεων με τρία βαττόμετρα

Σχήμα 1: Μετρητής άεργου ισχύος

Η ένδειξη του βαττόμετρου 1 θα είναι: $U_{23}I_1\cos(90^\circ - \phi_1) = \sqrt{3}V_1I_1\sin(\phi_1) = \sqrt{3}Q_1$

Οι ενδείξεις των 2 και 3 αντίστοιχα:

$$U_{31}I_2\cos(90^\circ - \phi_2) = \sqrt{3}Q_2$$

$$U_{12}I_3\cos(90^\circ - \phi_3) = \sqrt{3}Q_3$$

Η τριφασική άεργος ισχύς είναι ίση με με το άθροισμα των ενδείξεων των βαττομέτρων διαιρεμένο δια $\sqrt{3}$. Σε περίπτωση συμμετρικού φορτίου, αρκεί ένα από τα τρία βαττόμετρα. Η άεργη ισχύς σε αυτή την περίπτωση θα είναι η ένδειξη του βαττομέτρου επί $\sqrt{3}$.

 $\Sigma \epsilon \lambda$. 205-6

4.4 Εξηγήστε πως μπορεί να μετρηθεί ο συντελεστής ισχύος συμμετρικού τριφασικού κυκλώματος με τη διάταξη Aron.

Σελ. 208 ντου δις λειτερ

Μέρος Β

5 Εισαγωγή στα Συστήματα Μετρήσεων

5.1 Ποιες συνθήκες πρέπει να πληρούνται ώστε η έξοδος ενός του μετρητικού συστήματος να έχει το ίδιο σχήμα με την είσοδο;

Αν η είσοδος αποτελείται από ένα φάσμα αρμονικών, η έξοδος θα έχει το ίδιο σχήμα με την είσοδο αν το κέρδος του συστήματος είναι σταθερό για όλες τις αρμονικές της εισόδου και αν η διαφορά φάσης φ αυξάνει γραμμικά με τη συχνότητα. Τότε, η έξοδος θα είναι ίδιο σχήμα με την είσοδο, αλλά χρονικά μετατοπισμένη.

 $\Sigma \epsilon \lambda$. 299

6 Μέτρηση Θέσης

6.1 Να υπολογιστεί η συνάρτηση μεταφοράς ενός ΓΜΔΜ ως προς την είσοδο διαμόρφωσης και να περιγραφεί η αρχή λειτουργίας ΓΜΔΜ

(Δεν ξέρω πόσο ρεαλιστικό είναι το να πέσει ο υπολογισμός της συνάρτησης μεταφοράς του ΓΜΔΜ σαν ερώτηση θεωρίας τβη, μπορεί να το βάλω για λόγους πληρότητας, αν δεν το έβαλα τότε απλά βαριόμουν να το κάνω, σόρρυ)

Ο γραμμικός μεταβλητός διαφορικός μετασχηματιστής $(\Gamma M \Delta M)$ είναι ένας μετατροπέας διαφορικού μετασχηματιστή που παράγει στην έξοδό του ένα ηλεκτρικό σήμα το οποίο είναι ανάλογο με την μετατόπιση ή περιστροφή του οπλισμού. Ο $\Gamma M \Delta M$ έχει ένα πρωτεύον τύλιγμα και δύο δευτερεύοντα τα οποία συνδέονται σε σειρά αλλά έτσι ώστε οι τάσεις τους να αφαιρούνται. Η συχνότητα λειτουργίας των $\Gamma M \Delta M$ είναι 60Hz-20KHz και η τάση εισόδου είναι 3V εώς 15V συνήθως. Όταν ο οπλισμός είναι συμμετρικά τοποθετημένος η τάση εξόδου θεωρητικά είναι μηδενική (πρακτικά πολύ μικρή). Η θέση αυτή ορίζεται σαν μηδενική θέση. Αν ο πυρήνας κινηθεί από τη μηδενική θέση ο συντελεστής ζέυξης του ενός δευτερεύοντος τυλίγματος αυξάνει ενώ του άλλου μειώνεται και έτσι εμφανίζεται μια τάση στην έξοδο η οποία είναι ανάλογη της μετατόπισης.

Ο ΓΜΔΜ λειτουργεί σαν ένας διαμορφωτής. Το φέρον σήμα είναι η τάση τροφοδοσίας και διαμορφωνεται κατά πλάτος από τη θέση του πυρήνα.

Βασικά χαρακτηριστικά των ΓΜΔΜ:

- Γραμμικότητα μέτρησης.
- Η ευαισθησία των των ΓΜΔΜ έιναι συνήθως μεταξύ 0,6 και 30mV/0,001 ίντσες. Ένας ΓΜΔΜ με μεγαλύτερη τάσης πρωτεύοντος και με μικρότερη διαδρομή του πυρήνα είναι πιο ευαίσθητος.
- Η δυναμική συμπεριφορά του ΓΜΔΜ περιορίζεται κυρίως από την συχνότητα της τάσης τροφοδοσίας του πρωτεύοντος. Για καλή αποδιαμόρφωση της τάσης εξόδου, θα πρέπει συχνότητα τάσης του πρωτεύοντος μέγιστη συχνότητα κίνησης του πυρήνα ≥ 10

- Μεγάλη διακριτική ικανότητα.
- Μεγάλη διάρχεια ζωής.
- Αντοχή σε κραδασμούς και δεν χρειάζονται συντήρηση.
- Γαλβανική απομόνωση μεταξύ πρωτεύοντος και δευττερευόντων τυλιγμάτων.
- Η έξοδος τους ειναι αρετά ισχυρή.

Σχ. 2.24. Σχηματική παράσταση ΓΜΔΜ. a) Για μέτρηση μετατόπισης. β) Για μέτρηση γωνίας.

Σχ. 2.26. Διάταξη τυλιγμάτων ΓΜΔΜ.

 $\Sigma \epsilon \lambda$. 329-33

6.2 Περιγράψτε τη λειτουργία των οπτικών κωδικοποιητών μεταβολής

Οι οπτιχοί χωδιχοποιητές μεταβολής αποτελούνται από ένα δίσχο ο οποίος αποτελείται από διαδοχιχούς διαφανείς και αδιαφανείς τομείς. Πολλές φορές φέρουν δόντια, ώστε οι προεξοχές να έχουν τον ρόλο του αδιαφανούς και οι εσοχές τον ρόλο του διαφανούς τομέα.

Ο κωδικοποιητής προσαρμόζεται σε έναν άξονα και ακολουθεί την περιστροφή του. Από τη μια πλευρά του κωδικοποιητή υπάρχει μια πηγή φωτός και από την άλλη ένας δέκτης φωτός. Καθώς περιστρέφεται ο δίσκος περιστρέφεται ο δίσκος εναλλάσονται οι διαφανείς και αδιαφανείς τομείς με αποτέλεσμα να παράγεται μια αλληλουχία παλμών το άθροισμα των οποίων δείχνει την γωνιακή θέση του άξονα.

Η διαχριτική ικανότητα ενός κωδικοποιητή εξαρτάται από τον αριθμό των παλμών (άρα των διαφανών και αδιαφανών τομέων του δίσκου). Πολλοί κωδικοποιητές χρησιμοποιούν και δεύτερο ζεύγος πομπού και δέκτη, δίνοντας παλμό για κάθε περιστροφή και τρίτο ζεύγος για προσδιορισμό της φοράς περιστροφής.

Το μειονέκτημά τους είναι ότι δεν δείχνουν την απόλυτη θέση του άξονα, για αυτό απαιτούνται εξωτερικά κυκλώματα τα οποία μετρούν τους παλμούς και προσδιορίζουν τη θέση του άξονα κάθε στιγμή.

 $\Sigma \epsilon \lambda$. 333-4

7 Μέτρηση Ταχύτητας και Επιτάχυνσης

7.1 Περιγράψτε τη στροβοσκοπική μέθοδο μέτρησης περιστροφής ενός άξονα

Ας υποθέσουμε ότι ένας άξονας περιστρέφεται με ταχύτητα περιστροφής $n\ r/sec$ και ότι μία λάμπα που φωτίζει τον άξονα αναβοσβήνει με συχνότητα f. Αν υπάρχει κάποιο σημάδι επάνω στον άξονα θα φαίνεται αχίνητο στην περίπτωση που n=kf, με k αχέραιο. Η μέτρηση γίνεται μεταβάλλοντας την συχνότητα f έως ότου κάποιο σημάδι του άξονα που ορίζεται για αυτό το σκοπό φανεί αχίνητο. Συνήθως η συχνότητα κυμαίνεται από 2 έως 400Hz.

 $\Sigma \epsilon \lambda$. 362-3

7.2 Εξηγήστε πότε ένας μετατροπέας ταχύτητας λέγεται σχετικός και πότε απόλυτος

Σχήμα 2: Βασικού τύπου επιταχυνσιόμετρο

- Ο απόλυτος μετατροπέας ταχύητας αποτελείται από ένα επιταχυνσιόμετρο (Σχ. ;;) και έναν μετατροπέα θέσης. Γίνεται χρήση της αδρανειαχής δύναμης που ασκείται στη μάζα Μ του επιταχυνσιόμετρου για τη μέτρηση της ταχύτητας.
- Σχετικός λέγεται ο μετατροπέας ταχύτητας που μετρά τη σχετική ταχύτητα ενός τμήματος του μετατροπέα ως προς ένα άλλο.

 $\Sigma \epsilon \lambda$. 369

7.3 Να υπολογίσετε τη συνάρτηση μεταφοράς ενός επιταχυνσιόμετρου βασικού τύπου $(\Sigma \chi, 2)$

(Και πάλι δεν ξέρω κατά πόσο πιθανό είναι να πέσει αυτό σαν ερώτηση θεωρίας)

Έστω $x_{\epsilon\iota\sigma}$ η μετατόπιση του περιβλήματος, $x_{\epsilon\xi}$ η μετατόπιση της μάζας M ως προς το περίβλημα και x_M η μετατόπιση της M ως προς το σύστημα αναφοράς. Οι δυνάμεις που επενεργούν πάνω στη M όταν υπάρξει κάποια κίνηση της επιφάνειας στήριξης είναι:

Η αντίδραση του ελατηρίου:

$$F_1 = Kx_{\epsilon \xi}$$

και η αντίδραση του αποσβεστήρα:

$$F_2 = B \frac{dx_{\epsilon\xi}}{dt}$$

Το άθροισμα των δυνάμεων προχαλεί επιτάχυνση στο σώμα:

$$Kx_{\epsilon\xi} + B\frac{dx_{\epsilon\xi}}{dt} = M\frac{d^2x_M}{dt^2}$$

Ισχύει, όμως, ότι:

$$x_M = x_{\epsilon\iota\sigma} - x_{\epsilon\xi} \Rightarrow Kx_{\epsilon\xi} + B\frac{dx_{\epsilon\xi}}{dt} = M * \left(\frac{d^2x_{\epsilon\iota\sigma}}{dt^2} - \frac{d^2x_{\epsilon\xi}}{dt^2}\right)$$

Παίρνοντας τον μετασχηματισμό Laplace προχύπτει η συνάρτηση μεταφοράς του συστήματος:

$$\frac{X_{\epsilon\xi}}{X_{\epsilon\iota\sigma}} = \frac{s^2M}{s^2M + sB + K} = \frac{s^2}{s^2 + s\frac{B}{M} + \frac{K}{m}}$$

Θέτοντας:

$$\omega_n = \sqrt{\frac{K}{M}}$$

$$\zeta = \frac{B}{2\sqrt{KM}}$$

έχουμε:

$$\frac{X_{\epsilon\xi}}{X_{\epsilon\iota\sigma}} = \frac{1}{s^2 + 2s\zeta\omega_n + \omega^2}$$

Όπου $ω_n$ η κυκλική φασική συχνότητα και ζ ο συντελεστής απόσβεσης του συστήματος. Η $ω_n$ είναι η συχνότητα που ϑ α ταλαντωνόταν το σύστημα αν B=0.

 $\Sigma \epsilon \lambda$. 366-8

8 Μέτρηση Θερμοκρασίας

8.1 Να αναφέρετε και να εξηγήσετε πέντε βασικές ιδιότητες χρήσης θερμοζευγών

 Αν τα δύο υλικά του θερμοζεύγους είναι ομοιογενή, η θερμοηλεκτρεγερτική του δύναμη δεν εξαρτάται από την θερμοκρασία κανενός σημείου εκτός από τις θερμοκρασίες των ενώσεων 1 και 2. • Ας υποθέσουμε ότι η θερμοχρασία της ένωσης 1 είναι T_1 και της 2 είναι T_2 , όπως στο σχήμα ;; και η θερμοηλεκτρεγερτική δύναμη είναι E. Έστω ότι καταστρέφεται η ένωση 1 και μεταξύ των υλικών A και B παρεμβάλλεται ένα άλλο υλικό Γ . Aν η θερμοχρασία των νέων ενώσεων $B\Gamma$ και $A\Gamma$ είναι T_1 , τότε η θερμοηλεκτρεγερτική δύναμη θα είναι ίση με E αχόμα και αν η θερμοχρασία των τμημάτων του Γ έξω από τις ενώσεις $A\Gamma$ και $B\Gamma$ είναι διαφορετική από την T_1 .

Σχήμα 3: Θερμοστοιχείο με τρία υλικά και τρείς ενώσεις

• Αν κοπεί ένα από τα δύο υλικά και παρεβληθεί ένα άλλο υλικό Γ , η ηλεκτρεγερτική δύναμη δεν μεταβάλλεται με την προϋπόθεση ότι οι ενώσεις π.χ. Α Γ και Γ Α έχουν την ίδια θερμοκρασία T_3 ακόμη και αν η θερμοκρασία εκτός του Γ έξω από τις ενώσεις είναι διαφορετική από T_3 .

Σχήμα 4: Θερμοστοιχείο με τρία υλικά και τέσσερεις ενώσεις

- Έστω ένα θερμοζεύγος παράγει μια θερμοηλεχτρεγερτική δύναμη E_1 όταν οι θερμοκρασίες των ενώσεων 1 και 2 είναι T_1 και T_2 αντίστοιχα. Όταν οι θερμοκρασίες των ενώσεων 1 και 2 είναι T_2 και T_3 αντίστοιχα, έστω η παραγόμενη θερμοηλεχτρεγερτική δύναμη είναι E_2 . Αν οι θερμοκρασίες των ενώσεων 1 και 2 είναι T_1 και T_3 αντίστοιχα, η θερμοηλεχτρεγερτική δύναμη που θα παραχθεί θα είναι $E_1 + E_2$.
- Αν η θερμοηλεκτρεγερτική δύναμη μεταξύ των υλικών A και Γ είναι $E_{A\Gamma}$ και μεταξύ των υλικών Γ και B είναι $E_{\Gamma B}$ η θερμοηλεκτρεγερτική δύναμη των υλικών A και B θα είναι $E_{A\Gamma} + E_{\Gamma B}$.

 $\Sigma \epsilon \lambda$. 422-3

8.2 Περιγράψτε τους δύο τρόπους γραμμικοποίησης ενός θερμίστορ

Τα θερμίστορ κατασκευάζονται από οξειδια μετάλλων και η αντίστασή τους μειώνεται καθώς η θερμοκρασία αυξάνει.

Ένας τρόπος γραμμικοποίησης φαίνεται στο σχήμα ;;α. Οι τάσεις V1 και V2 εμφανίζουν γραμμική μεταβολή στο μέσον της περιοχής μέτρησης. Η V1 έχει θετική κλίση και η V2 αρνητική. Η διάταξη

αυτή χρησιμοποιείται κυρίως σαν διαιρέτης τάσης που εξαρτάται από τη θερμοκρασία, δηλαδή η V2 εξαρτάται γραμμικά από τη θερμοκρασία. Η διάταξη στο σχήμα ;; β χρησιμοποείται σαν αντίσταση που μεταβάλλεται γραμμικά με τη θερμοκρασία.

(Πώς γίνεται μια ερώτηση θεωρίας να έχει ως απάντηση δύο σχήματα; Πιθανό αλλά μου φαίνεται λίγο περίεργο)

Σχήμα 5: Δύο τρόποι γραμμικοποίησης ενός θερμίστορ

 $\Sigma \epsilon \lambda$. 432

8.3 Ένα θερμοζεύγος έχει τη μία ένωση σε $25^{\circ}C$ και την άλλη σε T_1 . Αν η μετρούμενη τάση είναι $E_2=3,991mV$ ποιά είναι η τάση στο άκρο T_1 ;

Μεταξύ T_1 και T_2 υπάρχει θερμοηλεκτρεργετική δύναμη $E_1=3,991mV$. Αν θεωρήσουμε $T_3=0$ °C μεταξύ T_2 και T_3 θα έχουμε $E_2=1,277mV$ άρα μεταξύ T_1 και T_3 θα έχουμε $E=E_1+E_2=5,268mV$ άρα από τον πίνακα $T_1=100$ °C.

Aσκ. 2, $\Sigma \epsilon \lambda$. 434

9 Συστήματα προσαρμογής

9.1 Ένας μονοπολικός μετατροπέας έχει εύρος μετατροπής 0-25V. Για έξοδο των $12\ bits$ να υπολογισθεί η διακριτική ικανότητα του μετατροπέα για την περίπτωση του δυαδικού κώδικα και του BCD.

Για την περίπτωση του δυαδιχού χώδιχα αν ο μετατροπέας έχει n bits, η έξοδος μπορεί να πάρει $N=2^n$ διαφορετιχές τιμές. Έτσι αν το εύρος μετατροπής είναι E, η διαχριτιχή ιχανότητα του μετατροπέα θα είναι $E/2^n$. Στον χώδιχα BCD χάθε ψηφίο σε έναν δεχαδιχό αριθμό παριστάνεται από 4 bits. Μετατροπείς που χρησιμοποιούν BCD έχουν αριθμό bits που έιναι πολλαπλάσιο του 4. Αν ο μετατροπέας BCD έχει 4 bits, η έξοδος μπορεί να πάρει N=10 διαφορετιχές τιμές ενώ αν έχει 8 bits η έξοδος μπορεί να πάρει N=100 διαφορετιχές τιμές, άρα η διαχριτιχή ιχανότητα για 12 bits θα είναι $\Delta E_{BCD}=\frac{2.5}{1000}$.

- 9.2 Για τη μετατροπή αναλογικού σήματος 7V χρησιμοποιείται ένας μετατροπέας A/D κλιμακωτής ανόδου και ένας μετατροπέας A/D διαδοχικών προσεγγίσεων. Και οι δύο έχουν έξοδο $10\ bit,\ D/A$ με χρόνο μετατροπής $2\mu s$ και το εύρος μετατροπής τους είναι 0-12V. Να υπολογισθεί ο χρόνος μετατροπής και των δύο μετατροπέων A/D αν θεωρήσουμε ότι ο χρόνος μετατροπής τους εξαρτάται μόνο από τον χρόνο μετατροπής του D/A
 - Για την κλιμακωτή άνοδο έχουμε ότι $LSB=\frac{12}{2^{10}}=11.71875mV$ και εφόσον η έξοδος του D/A θα αυξάνει συνεχώς κατά την τιμή ενός LSB μέχρι να φτάσει τα 7V, θα έχουμε $x=|\frac{7000}{LSB}|=598$ επαναλήψεις, άρα ο χρόνος μετατροπής θα είναι $598*2\mu s=1.169ms$
 - Η τεχνική των διαδοχικών προσεγγίσεων απαιτεί όσες μετατροπές όσα τα bits στην έξοδο του A/D, άρα x=n=10 και $\Delta t=x*2\mu s=20\mu s$

 $\Sigma \epsilon \lambda$. 462-3

9.3 Περιγράψτε τη λειτουργία του μετατροπέα A/D διπλής ολοκλήρωσης

Σχήμα 6: Μετατροπέας Α/D διπλής ολοκλήρωσης απλής μορφής

Μόλις δοθεί το ΣE ο διαχόπτης Δ πηγαίνει στη θέση 1. Η ολοχλήρωση διαρχεί για ένα χρονιχό διάστημα T το οποίο μετριέται στον απαριθμητή και αντιστοιχεί σε N_1 . N_1 είναι το μέγιστο περιεχόμενο του απαριθμητή. Μετά την παρέλευση του χρονιχού διαστήματος T η έξοδος του ολοχληρωτή είναι:

$$V_o = -\frac{1}{RC} \int_0^T v dt = -\frac{v}{RC} T$$

Στη συνέχεια ο διακόπτης Δ πηγαίνει στη θέση 2 και ο απαριθμητής μηδενίζεται. Έτσι ο απαριθμητής αρχίζει να μετράει από το μηδέν ενώ η έξοδος του ολοκληρωτή μειώνεται γραμμικά δεδομένου ότι η είσοδός του είναι η αρνητική τάση αναφοράς. Όταν μηδενισθεί η έξοδος του ολοκληρωτή τελειώνει η μετατροπή. Το περιεχόμενο N_2 του απαριθμητή έιναι η ψηφιακή παράσταση της αναλογικής εισόδου.Η έξοδος του ολοκληρωτή είναι:

$$V_o = -\frac{v}{RC}T + \frac{1}{RC}\int_0^t E_{ref}dt = -\frac{v}{RC}T + \frac{E_{ref}}{RC}t$$

Όταν $V_o=0$, τότε $t=rac{v}{E_{ref}}T$ και $N_2=rac{v}{E_{ref}}N_1$.

Σε αυτόν τον μετατροπέα οι μεταβολές με το χρόνο ή την θερμοκρασία των R, C και της συχνότητας του ρολογιού δεν παίζουν ρόλο (εκτός αν αλλάξουν κατά τη διάρκεια μιας μετατροπής). Η γραμμικότητα αυτού του μετροπέα είναι πολύ καλή, αλλά ο χρόνος μετατροπής είναι πολύ μεγάλος.

 $\Sigma \epsilon \lambda$. 464-5

9.4 Πρόκειται να σχεδιαστεί ένα σύστημα μετατροπής A/D με εύρος μετατροπής -10V εώς 10V και 10~bits που μπορεί να μετατρέπει αναλογικά σήματα με μέγιστη ταχύτητα 5kHz και ταχύτητα δειγματοληψίας 100~samples/sec. Να υπολογισθεί ο απαιτούμενος χρόνος συγκράτησης του S/H και ο χρόνος μετατροπής του μετατροπέα A/D

$$\Delta E = \frac{20}{2^{10}} = 19,53125*10^{-3} \ (\rm den) \ καταλαβαίνω γιατί αυτό είναι απαραίτητο)$$

Χρόνος συγκράτησης:

$$\Delta t = \frac{1}{2\pi 5 * 10^3 * 2^{10}}$$

Χρόνος μετατροπής:

$$f_{conv} = \frac{100}{100^{-3}} = 100kHz \Rightarrow \Delta t = \frac{1}{100 * 10^3} = 10^{-5}s$$

 $\Sigma \epsilon \lambda$. 467

9.5 Για έναν μονοπολικό μετατροπέα A/D με $n\ bits$ και κύκλωμα συγκράτησης S/H να υπολογίσετε τη μέγιστη συχνότητα που μπορεί να μετατρέψει χωρίς σφάλμα

Έστω πλάτος σήματος E_{FS} . Αν ΔE το αναλογικό σήμα που αντιπροσωπεύει ένα LSB μετατροπής, τότε η μέγιστη επιτρεπτή μεταβολή του σήματος προς μετατροπή είναι $\frac{\Delta E}{2}$. Αν το σήμα εισόδου είναι ημιτονοειδές με πλάτος E_{FS} και φάση του είναι $2\pi ft$, ο μέγιστος ρυθμός μεταβολής εμφανίζεται για t=0 και είναι $2\pi fE_{FS}$. Τότε, $2*2\pi fE_{FS}\leq \Delta E$. Αφού έχουμε μονοπολικό μετατροπέα, $\Delta E=\frac{E_{FS}}{2^n}$ άρα έχουμε ότι $f\leq \frac{1}{4\pi 2^n \Delta t}$ όπου Δt ο χρόνος συγκράτησης του κυκλώματος S/H.

 $\Sigma \epsilon \lambda$. 467

9.6 Να εξηγήσετε τη χρησιμότητα ενός κυκλώματος συγκράτησης (S/H) και του πολυπλέκτη

Κύχλωμα συγκράτησης: Για να γίνει σωστή η μετατροπή A/D, η αναλογική είσοδος δεν πρέπει να μεταβάλλεται πάνω από το όριο μεταβολής 1/2LSB. Παρατηρούμε ότι κανονικά, πολύ χαμηλές συχνότητες θα μπορούσαν να μετατραπούν από τους γρηγορότερους μετατροπείς. Για να ξεπερασθεί αυτό το πρόβλημα, η είσοδος πρέπει να κρατηθεί σταθερή. Για αυτό το λόγο χρησιμοποιούνται τα κυκλώματα συγκράτησης, τα οποία κρατούν την έξοδό τους σταθερή (είσοδος του μετατροπέα) όταν λαβουν εντολή συγκράτησης. Υπάρχει, βέβαια χρόνος συγκράτησης, όμως είναι πολύ μικρός σε σχέση με το χρόνο μετατροπής, επτρέποντας την μετατροπή υψηλότερων συχνοτήτων.

Πολυπλέχτης: Έαν θέλουμε να μετατρέψουμε πολλά αναλογικά σήματα σε ψηφιακά, θα μπορούσαμε να χρησιμοποιήσουμε έναν μετατροπέα A/D γαι κάθε σήμα. Όμως αυτή η λύση είναι πολύ ακριβή, για αυτό έναν μετατροπέα A/D μετά από έναν πολυπλέχτη. Η μετατροπή των σημάτων γίνεται διαδοχικά, με την προϋπόθεση ότι η ταχύτητα δειγματοληψίας που απαιτείται για κάθε σήμα είναι τέτοια, ώστε να προλαβαίνει να ανταποκρίνεται ο μετατροπέας A/D.

Όταν έρθει η εντολή εκκίνησης στον πολυπλέκτη, η τιμή στην είσοδο των διευθύνσεων τη στιγμή εκείνη καθορίζει ποιά αναλογική είσοδος θα περάσει στην έξοδο, ενώ οι υπόλοιπες αναλογικές εισόδοι θα απομονωθούν.

 $\Sigma \epsilon \lambda$. 467-8

9.7 Περιγράψτε την αρχή λειτουργίας ενός μετατροπέα D/A ρεύματος

Οι μετατροπείς D/A ρεύματος λειτουργούν μέσω χυχλωμάτων που δημιουργούν ρεύματα i,i/2,i/4 χλπ. τα οποία αθροίζονται στην έξοδο (Σχήμα ;;). Αν μία δίοδος συνδεθεί σε λογικό 0, άγει και βραχυχυχλώνει το αντίστοιχο τρανζίστορ από το οποίο δεν περνάει ρεύμα. Αν μία δίοδος συνδεθεί σε λογικό 1, δεν άγει και το ρεύμα περνάει από το αντίστοιχο τρανζίστορ. Έτσι, το ρεύμα εξοδου εξαρτάται από την ψηφιαχή είσοδο και η τιμή του καθορίζεται από τη σχέση (υποθέτουμε ότι η ψηφιαχή λέξη είναι 8bit):

$$I = KE_{ref} \left(\frac{b_7}{2} + \frac{b_6}{4} + \frac{b_5}{8} + \frac{b_4}{16} + \frac{b_3}{32} + \frac{b_2}{64} + \frac{b_1}{128} + \frac{b_0}{256} \right)$$

 $\Sigma \epsilon \lambda$. 470-1

Σχήμα 7: Απλός μετατροπέας D/A ρεύματος. Έχει πολλά μειονεχτήματα, όπως σημαντική εξάρτηση από θερμοκρασία, μεγάλη διαφορά στις τιμές των αντιστάσεων κλπ.

9.8 Να περιγραφεί η αρχή λειτουργίας ενός μετατροπέα D/A τάσης

Οι μετατροπείς D/A μετατρέπουν ένα ψηφιακό σήμα σε αναλογικό συκγρίνοντας την αναλογική τάση που αντιπροσωπεύει το ψηφιακό σήμα με την τάση αναφοράς. Για ψηφιακή λέξη 8bit έχουμε έξοδο:

$$v = KE_{ref} (b_7/2 + b_6/4 + b_5/8 + b_4/16 + b_3/32 + b_2/64 + b_1/128 + b_0/256)$$

Έστω ότι η είσοδος είναι Έστω ότι η είσοδος είναι 00000001. Ένα δυαδικό 1 συνδέει τον αντίστοιχο διακόπτη στη θέση 1 (δηλαδή στο αρνητικό άκρο της πηγής αναφοράς, Σχήμα ;;). Έτσι μόνο η 1η αντίσταση συνδέεται στην πηγή αναφοράς ενώ οι άλλες αντιστάσεις συνδέονται στη γη. Κατά συνέπεια η έξοδος θα είναι $v=-\frac{E_{ref}}{256R}R_o$. Αν η είσοδος είναι 00000011, $v=-3\frac{E_{ref}}{256R}R$. Σ ελ. 469-70

9.9 Τι είναι χρόνος αποκατάστασης σε έναν μετατροπέα D/A;

Ο χρόνος που μεσολαβεί εώς ότου η έξοδος φτάσει την τελική τιμή με ακρίβεια $\pm 1/2LSB$. Αυτόν τον χρόνο εννοούμε όταν λέμε χρόνος μετατροπής. Εξαρτάται από το είδος των διακοπτών, το είδος των αντιστατών (αν έχουν αυτεπαγωγή ή όχι) και από τον ενισχυτή εξόδου (αν υπάρχει). Προδιαγράφεται για μια ορισμένη χωρητικότητα στην έξοδο.

 $\Sigma \epsilon \lambda$. 473

Σχήμα 8: Μια απλή διάταξη μετατροπέα D/A τάσης