

Hypergraphs and Information Fusion for Term Representation Enrichment. Applications to Named Entity Recognition and Word Sense Disambiguation

Ph.D. Thesis Defense

Pavel Soriano-Morales Supervised by Sabine Loudcher and Julien Ah-Pine February 7th, 2018

Why is it useful to us to understand text?

How do we extract meaning from text?

We use **Natural Language Processing** (NLP), a field of computer science interested in making computers extract useful information from text

Feature Representation and Knowledge Discovery

How do we represent text for the machine to understand?

What techniques do we use to discover meaning from text?

Introduction

Representing Text

- \cdot Common ways to represent text
 - Lexical
 - Syntactic
 - Constituency Tree
 - Dependency Tree

Introduction

Representing Text

- Common ways to represent text
 - Lexical
 - Syntactic
 - · Constituency Tree
 - Dependency Tree

Example Phrase

Representing Text

- Common ways to represent text
 - Lexical
 - Syntactic
 - Constituency Tree
 - Dependency Tree
- Example Phrase

Representing Text

- Common ways to represent text
 - Lexical
 - Syntactic
 - Constituency Tree
 - Dependency Tree
- Example Phrase

Representing Text

- Common ways to represent text
 - Lexical
 - Syntactic
 - Constituency Tree
 - · Dependency Tree
- Example Phrase

Represention Models

- Two classic models
 - Graph-based
 - Matric
- Leveraging the Network Structure
 - We can find communities of similiar words according to their meaning

Represention Models

- · Two classic models
 - · Graph-based
 - Matric
- Leveraging the Network Structure
 - We can find communities of similiar words according to their meaning

Introduction

Main Challenges and Contributions

- 1. What type of model can we employ to represent a corpus using heterogeneous features?
 - Hypergraph linguistic model to hold different types of linguistic information

Main Challenges and Contributions

- 1. What type of model can we employ to represent a corpus using heterogeneous features?
 - Hypergraph linguistic model to hold different types of linguistic information
- 2. How can we combine these features while dealing with feature sparsity?
 - Multimedia fusion techniques to combine and densify representation spaces

Main Challenges and Contributions

- 1. What type of model can we employ to represent a corpus using heterogeneous features?
 - Hypergraph linguistic model to hold different types of linguistic information
- 2. How can we combine these features while dealing with feature sparsity?
 - Multimedia fusion techniques to combine and densify representation spaces
- 3. How can we find and employ communities existing within the language networks?
 - An alternative network-based algorithm to discover semantically related words within a text

Introduction Work Overview

Pavel SORIANO-MORALES 7/42

Contributions in Detail

Hypergraph Linguistic Model

Hypergraph Linguistic Model Introduction

We extract useful information from a text based on the distributional hypothesis (a word is defined by its surroundings)

· We choose network models

- Used in a large quantity of NLP tasks
- Graphs structures can give us a clearer view into the relations of words within a text
- Ultimately graphs are transformed to a vectorial representation through the adjacency/incidence matrices

Hypergraph Linguistic Model Classic Language Networks

Example phrase

Example phrase

The report contains copies of the minutes of these meetings

Lexical Networks

Sentence Level

Pavel SORIANO-MORALES 9/42

Example phrase

The report contains copies of the minutes of these meetings

Syntactic Networks

Dependency Tree

Example phrase

The report contains copies of the minutes of these meetings

Syntactic Networks

Constituency Tree

Hypergraph Linguistic Model Limitations and Proposition

Limitations of existing representations

- Language networks generally employ a single type of textual information
- The edges of the network may relate maximum two words at each time

Hypergraph Linguistic Model Limitations and Proposition

Limitations of existing representations

- Language networks generally employ a single type of textual information
- The edges of the network may relate maximum two words at each time

Proposition

- · Use a hypergraph model
- Link together the different types of networks
- Get a semantic overview at three different levels: short range, medium range, and long range

Lexical Networks

Sentence Level

Syntactic Networks

Constituency Tree

Syntactic Networks

Dependency Tree

Contributions in Detail

Combining Features and Dealing with Sparsity

Combining Features and Dealing with Sparsity Multimedia Fusion Techniques

Definition

- Set of techniques used in multimedia analysis tasks to integrate multiple media
- The goal is to obtain rich insights about the data being treated
- We adapt these techniques to our use case: textual information

Combining Features and Dealing with Sparsity Multimedia Fusion Techniques

· Definition

- Set of techniques used in multimedia analysis tasks to integrate multiple media
- · The goal is to obtain rich insights about the data being treated
- We adapt these techniques to our use case: textual information

· Main fusion operators:

- Early Fusion $E_{\alpha}(\cdot)$,
- Late Fusion $L_{\beta}(\cdot)$,
- Cross Fusion $X_{\gamma}(\cdot), X_{F}(\cdot)$

Combining Features and Dealing with Sparsity Early and Late Fusion

Combining Features and Dealing with Sparsity Early and Late Fusion

Pavel SORIANO-MORALES

Combining Features and Dealing with Sparsity

Cross Fusion

Combining Features and Dealing with Sparsity **Hybrid Fusion**

\cdot Combining fusion operators

 Application of one function to the result of another to produce a new function

- Combining fusion operators
 - Application of one function to the result of another to produce a new function
- \cdot We distinguish three levels of fusion operators

- Combining fusion operators
 - Application of one function to the result of another to produce a new function
- We distinguish three levels of fusion operators
 - · First Degree (3 operators):
 - E(M^L, M^S), L(S^S, M^L)
 - Cross Feature Fusion: X_F(S^S, M^L)
 - Cross Similarity Fusion: $X_S(S^S, S^L)$

- Combining fusion operators
 - Application of one function to the result of another to produce a new function
- We distinguish three levels of fusion operators
 - · First Degree (3 operators):
 - $E(M^L, M^S), L(S^S, M^L)$
 - Cross Feature Fusion: X_F(S^S, M^L)
 - Cross Similarity Fusion: X_S(S^S, S^L)
 - · Second Degree (4 operators, 2 shown):
 - Cross Feature Early Fusion: $X_F(S^T, E(M^L, M^S))$
 - Late Cross Feature Fusion: $L(M^T, X_F(S^T, M^T))$

Combining fusion operators

- Application of one function to the result of another to produce a new function
- We distinguish three levels of fusion operators
 - · First Degree (3 operators):
 - E(M^L, M^S), L(S^S, M^L)
 - Cross Feature Fusion: X_F(S^S, M^L)
 - Cross Similarity Fusion: X_S(S^S, S^L)
 - · Second Degree (4 operators, 2 shown):
 - Cross Feature Early Fusion: $X_F(S^T, E(M^L, M^S))$
 - Late Cross Feature Fusion: $L(M^T, X_F(S^T, M^T))$
 - · Higher Degree (2 operators, 1 shown)
 - Triple Early Double Late Cross Feature Fusion: $E(M_L, E(E(M_T, L(M^T, X_F(S^T, M^T))), L(M^L, X_F(S^S, M^L))))$

$$E(M_L, E(E(M^T, L(M^T, X_F(S^T, M^T))), L(M^L, X_F(S^S, M^L))))$$

Combining Features and Dealing with Sparsity **High Degree Fusion**

Higher Degree Operator

$$E(M_L, E(E(M^T, L(M^T, X_F(S^T, M^T))), L(M^L, X_F(S^S, M^L))))$$

$$E(M_L, E(E(M^T, L(M^T, X_F(S^T, M^T))), L(M^L, X_F(S^S, M^L))))$$

$$L(M^L, X_F(S^S, M^L))$$

Pavel SORIANO-MORALES 16/42

$$E(M_L, E(E(M^T, L(M^T, X_F(S^T, M^T))), L(M^L, X_F(S^S, M^L))))$$

$L(M^T, X_F(S^T, M^T)))$

$$\begin{array}{c} \overset{w_1}{\overset{w_2}{\overset{w_2}{\overset{w_3}{\overset{w_1}{\overset{w_2}{\overset{w_1}{\overset{w_2}{\overset{w_3}{\overset{w_1}{\overset{w_1}{\overset{w_1}{\overset{w_2}{\overset{w_1}}{\overset{w_1}{\overset{w_1}}{\overset{w_1}}{\overset{w_1}{\overset{w_1}}{\overset{w_1}}{\overset{w_1}{\overset{w_1}}{\overset{w_1}}{\overset{w_1}}{\overset{w_1}}{\overset{w_1}}{\overset{w_1}}{\overset{w_1}}{\overset{w_1}}}{\overset{w_1}{\overset{w_1}}{\overset{w_1}}{\overset{w_1}}{\overset{w_1}}{\overset{w_1}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} X}} X_{J} X_{J} X_{J} X_{J} X_{J}} X_{J} X_{J}} X_{J} X_{J}} X_{J}} X_{J}} X_{J} X_{J}} X_{J} X_{J}} X_{J} X_{J}} X_{J} X_{J}} X_{J} X_{J}} X_$$

Pavel SORIANO-MORALES 16/42

$$\begin{array}{c|c} \hline E(M_L, E(E(M^T, L(M^T, X_F(S^T, M^T))), L(M^L, X_F(S^S, M^L)))) \\ \hline \\ E(M^T, L(M^T, X_F(S^T, M^T))) \\ \hline \\ W_1 \\ W_2 \\ W_3 \end{array} \left(\begin{array}{c} M^T \\ M^T \end{array} \right) \\ \begin{matrix} W_1 \\ W_2 \\ W_3 \end{matrix} \left(\begin{array}{c} I_{T_1} I_{T_2} I_{T_3} \\ L(M^T, X_F(S^T, M^T)) \end{array} \right) \\ = W_1 \\ W_2 \\ W_3 \end{array} \left(\begin{array}{c} L(M^T, X_F(S^T, M^T)) \\ L(M^T, X_F(S^T, M^T)) \end{array} \right)$$

$$E(M_{L}, E(E(M^{T}, L(M^{T}, X_{F}(S^{T}, M^{T}))), L(M^{L}, X_{F}(S^{S}, M^{L}))))$$

$$E(M_{L}, E(E(M^{T}, L(M^{T}, X_{F}(S^{T}, M^{T}))), L(M^{L}, X_{F}(S^{S}, M^{L}))))$$

$$= W_{1} \begin{pmatrix} M & M \\ W_{2} \\ W_{3} \end{pmatrix} \begin{bmatrix} W_{1} & W_{2} \\ W_{3} \\ W_{3} \end{bmatrix} \begin{pmatrix} E(E(M^{T}, L(M^{T}, X_{F}(S^{T}, M^{T}))), L(M^{L}, X_{F}(S^{S}, M^{L})))) \end{pmatrix} = W_{1} \begin{pmatrix} W_{1} & W_{2} \\ W_{2} & W_{3} \\ W_{3} & W_{4} \end{pmatrix} \begin{pmatrix} E(M_{L}, E(E(M^{T}, L(M^{T}, X_{F}(S^{T}, M^{T}))), L(M^{L}, X_{F}(S^{S}, M^{L})))) \end{pmatrix}$$

Pavel SORIANO-MORALES 16/42

Contributions in Detail

Finding Communities in the Network

contributions in Detail

Finding Communities in the Network Introduction

· Language networks tend to be scale-free

 There are certain nodes (hubs) that are very well connected forming communities within the network

Finding Communities in the Network Introduction

- · Language networks tend to be scale-free
 - There are certain nodes (hubs) that are very well connected forming communities within the network
- Limitations of existing approaches
 - Single typed networks
 - Large number of parameters

Finding Communities in the Network Introduction

Language networks tend to be scale-free

 There are certain nodes (hubs) that are very well connected forming communities within the network

Limitations of existing approaches

- Single typed networks
- Large number of parameters

Proposition

- Be able to exploit different types of linguistic information (lexical or syntactic co-occurrence)
- Keep the number of parameters low and allow for their automatic adjusting according to the network's nature

Finding Communities in the Network **Proposed Method**

Applications to NLP

Hypergraph Model Instantiation

Hypergraph Model Instantiation Hypergraph Model Instantiation

- Apply our proposed linguistic model to a real world corpus
 - Use the English Wikipedia as input and generate a textual structure following the proposed network model

- Apply our proposed linguistic model to a real world corpus
 - Use the English Wikipedia as input and generate a textual structure following the proposed network model
- · Steps performed

Pavel SORIANO-MORALES 19/42

Hypergraph Model Instantiation SAEWD: Parsed sample

FILENAME wiki_oo.parsed

token	lemma	POS	constituency	head	dependency
%%#PAGE	Anarchism				
:	:	:	:	:	:
%%#SEN 2	5 9				
Α	a	DT	NP_22,S_97	3	det
great	great	JJ	NP_22,S_97	3	amod
brigand	brigand	NN	NP_22,S_97	4	nsubj
becomes	become	VBZ	VP_44,S_97	0	root
a	a	DT	NP_18,NP_20,VP_44,S_97	6	det
ruler	ruler	NN	NP_18,NP_20,VP_44,S_97	4	xcomp
of	of	IN	PP_57,NP_20,VP_44,S_97	9	case
a	a	DT	NP_18,PP_57,NP_20,VP_44,S_97	9	det
Nation	nation	NN	NP_18,PP_57,NP_20,VP_44,S_97	6	nmod

h

Hypergraph Model Instantiation Hypergraph Incidence Matrix

-		CO	NSTITUEN	T	DEPEN	DENCY	SENTENCE
		NP ₁ DT:NN	NP ₂ NP:PP:PP	NP₃ NNS	nsubj contains	dobj contains	$S_{\scriptscriptstyle 1}$
	report	1			1		1
NN	copies		1	1		1	1
ININ	minutes		1				1
	meetings		1				1
VB	contains						1

	Lexical Features (5.49%) M ¹	Syntactic Features (4.97%) M ^s	Early Fusion (5.23%) $E(M^{L}, M^{S})$	X_F Fusion (16.75%) $X_F(S^s, M^t)$	X_F Fusion (13.45%) $X_F(S^{L}, M^{S})$
priest	priests	monk	sailor	vassal	sailor
	nun	regent	regent	regent	fluent
	canton	aedile	nuclei	nun	dean
	sailor	seer	nun	sailor	nuclei
	burial	meek	relic	monk	chorus

Applications to NLP

Solving Named Entity Recognition

Solving Named Entity Recognition Introduction

· NER Objective

 The goal is to automatically discover mentions that belong to a well-defined semantic category.

Solving Named Entity Recognition Introduction

NER Objective

 The goal is to automatically discover mentions that belong to a well-defined semantic category.

· Classic entities types

- · Location (LOC)
- Organization (ORG)
- · Person (PER)
- Miscellaneous (MISC)
- None (O)

Solving Named Entity Recognition Introduction

NER Objective

 The goal is to automatically discover mentions that belong to a well-defined semantic category.

· Classic entities types

- · Location (LOC)
- · Organization (ORG)
- · Person (PER)
- Miscellaneous (MISC)
- None (O)

· Our goal

 We assess the effectiveness of the classic fusion methods and propose new hybrid combinations

Solving Named Entity Recognition Representation Spaces

Lexical Space (L)

Word	Features
Australian	word:Australian, word+1:scientist, word+2:discovers
scientist	word-1:Australian, word:scientist, word+1:discovers, word+2:star
discovers	word-2:Australian, word-1:scientist, , word+2:telescope
star	word-2:scientist, word-1:discovers, word:star, , word+2:telescope
with	word-2:discovers, word-1:star, word:with, word+1:telescope
telescope	word-2:star, word-1:with, word:telescope

Solving Named Entity Recognition Representation Spaces

Syntactic Space (S)

Word	Contexts
Australian	scientist/NN/amod_inv
scientist	Australian/JJ/amod, discovers/VBZ/nsubj_inv
discovers	scientist/NN/nsubj, star/NN/dobj, telescope/NN/nmod:with
star	discovers/VBZ/dobj_inv
telescope	discovers/VBZ/nmod:with_inv

Standard Features Space (T)

- Each word
- Whether it is capitalized
- Prefix and suffix (of each word their surroundings)
- Part of Speech tag

- Preprocessing
 - · Normalize numbers

· Preprocessing

- Normalize numbers
- · Test Corpora
 - CoNLL-2003 (CONLL) [SM03]: Train: 219,554 lines. Test: 50,350
 - Wikiner (WNER) [NMC09]: 3.5 million words.
 - Wikigold (WGLD) [Bal+09]: 41,011 words.

Preprocessing

- · Normalize numbers
- Test Corpora
 - CoNLL-2003 (CONLL) [SM03]: Train: 219,554 lines. Test: 50,350
 - Wikiner (WNER) [NMC09]: 3.5 million words.
 - Wikigold (WGLD) [Bal+09]: 41,011 words.
- · Learning Algorithm
 - Structured Perceptron [Colo2]

Preprocessing

- · Normalize numbers
- Test Corpora
 - CoNLL-2003 (CONLL) [SM03]: Train: 219,554 lines. Test: 50,350
 - Wikiner (WNER) [NMCo9]: 3.5 million words.
 - Wikigold (WGLD) [Bal+09]: 41,011 words.
- Learning Algorithm
 - Structured Perceptron [Colo2]
- · Evaluation Metric
 - F-measure
 - Evaluated in a 5-fold CV (WNER and WGLD)

Solving Named Entity Recognition **Evaluation**

A	В		Early	Fusion (EF
		CONLL	WNER	WGLD
M^L	M^s	72.01	70.59	59.38
M^L	M^{T}	78.13	79.78	61.96
Ms	\mathbf{M}^{T}	77.70	78.10	60.93
M^L	$E(M^S, M^T)$	78.90	80.04	63.20

	CONLL	WGLD		
S^{L} S^{S}	61.65	58.79	44.29	
$S^L - S^T$	55.64	67.70	48.00	
S^s S^T	50.21	58.41	49.81	

Solving Named Entity Recognition Evaluation

A	В		Early	Fusion (EF
		CONLL	WNER	WGLD
M^L	M^s	72.01	70.59	59.38
M^L	M^T	78.13	79.78	61.96
Ms	M^T	77.70	78.10	60.93
M^L	$E(M^S, M^T)$	78.90	80.04	63.20

		Late	Fusion (LF)
	CONLL	WNER	WGLD
$S^L - S^S$	61.65	58.79	44.29
$S^L - S^T$	55.64	67.70	48.00
S^s S^T	50.21	58.41	49.81

	Cross	Feature !	Fusion (X _F
	CONLL	WNER	WGLD
$S^L M^T$	49.90	70.27	62.69
S ^s M ^T	47.27	51.38	48.53
S^T $b_{X_FF}^*$	52.89	62.21	50.15
	Cross Si	imilarity l	Fusion (X _S
	CONLL	WNER	WGLD
$S^L = S^T$	27.75	59.12	38.35
S^s $b_{x_S^F}^*$	36.87	40.92	39.62
S^T $b_{X_SF}^*$	41.89	52.03	39.92

$$b_{X_FF}^* \in \{M^{\scriptscriptstyle L}, M^{\scriptscriptstyle T}\} \\ b_{X_SF}^* \in \{S^{\scriptscriptstyle L}, S^{\scriptscriptstyle S}\}$$

Solving Named Entity Recognition

Evaluation

$$E(M_L, E(E(M^T, L(M^T, X_F(S^T, M^T))), L(M^L, X_F(S^S, M^L))))$$

$$E(M_L, E(E(M^T, L(M^T, X_F(S^T, M^T))), L(M^L, X_F(S^S, M^L))))$$

Triple Early Double Late Cross Feature Fusion (EEEL X_FLX_F)

M^{L} $\hat{b}_{EEELX_{F}LX_{F}}$ 65.01 78.02 $M^{L}_{\alpha=0.95}$ $\hat{b}_{EEELX_{F}LX_{F}}$ 79.67 81.79	62.34
ML 6 81 70	
$M_{\alpha=0.95}^{L}$ $\hat{b}_{EEELX_FLX_F}$ 79.67 81.79	67.05
EF Baseline 78.90 80.04	63.20

 Understand how the evolution towards and enriched space helps the model take the correct decision

- Understand how the evolution towards and enriched space helps the model take the correct decision
 - Decompose the large fusion operator into 4 separate representations

- Understand how the evolution towards and enriched space helps the model take the correct decision
 - Decompose the large fusion operator into 4 separate representations
 - Train a model with each individual operator (4 models: M₁, M₂, M₃, M₄)

- Understand how the evolution towards and enriched space helps the model take the correct decision
 - Decompose the large fusion operator into 4 separate representations
 - Train a model with each individual operator (4 models: M₁, M₂, M₃, M₄)
 - Investigate how the features added at each step help the model predict the correct class

Understand how the evolution towards and enriched space helps the model take the correct decision

- Decompose the large fusion operator into 4 separate representations
- Train a model with each individual operator (4 models: M₁, M₂, M₃, M₄)
- Investigate how the features added at each step help the model predict the correct class

We focus on the word *Kory*, and its performance from model M_1 to M_2

We focus on the word *Green*, and its performance from model M_3 to M_4

Applications to NLP

Solving Word Sense Induction and Disambiguation

Solving Word Sense Induction and Disambiguation Introduction

WSI/WSD Objective

 The goal is to determine a set of possible senses to a given word according to its possible contexts (WSI). Then, assigning a correct sense to a particular instance of said word

Solving Word Sense Induction and Disambiguation **Introduction**

WSI/WSD Objective

 The goal is to determine a set of possible senses to a given word according to its possible contexts (WSI). Then, assigning a correct sense to a particular instance of said word

Our goal

 Again, to assess the effectiveness of the fusion enriched spaces and to evaluate the pertinence of our community discovering algorithm

- Preprocessing
 - Remove very frequent and very infrequent words

- Preprocessing
 - Remove very frequent and very infrequent words
- Test Corpora
 - Semeval 2007 [SM03]: Train: 219,554 lines. Test: 50,350

- Preprocessing
 - Remove very frequent and very infrequent words
- Test Corpora
 - Semeval 2007 [SM03]: Train: 219,554 lines. Test: 50,350
- Clustering Algorithm
 - Spectral Clustering [SMoo]
 - Proposed Community Algorithm

- Preprocessing
 - Remove very frequent and very infrequent words
- Test Corpora
 - Semeval 2007 [SM03]: Train: 219,554 lines. Test: 50,350
- Clustering Algorithm
 - Spectral Clustering [SMoo]
 - Proposed Community Algorithm
- Evaluation Metrics
 - · Supervised Recall
 - · Unsupervised F-measure

Solving Word Sense Induction and Disambiguation

Experimental Protocol

- Preprocessing
 - · Remove very frequent and very infrequent words
- Test Corpora
 - Semeval 2007 [SM03]: Train: 219,554 lines. Test: 50,350
- Clustering Algorithm
 - Spectral Clustering [SMoo]
 - Proposed Community Algorithm
- Evaluation Metrics
 - · Supervised Recall
 - · Unsupervised F-measure
 - · Proposed: H-measure

$$H\text{-measure} = \frac{1}{2} \left(2 * \frac{SR * UF}{SR + UF} + \frac{\delta}{\delta + |\#cl - \delta|} \right)$$

 δ is the average true number of senses of the words in a test corpus

Solving Word Sense Induction and Disambiguation Spectral Clustering Evaluation

	X _S F)	sion (X ₁	larity Fu	ross Simi	Cross Feature C		
	3.11	76.10	80.40	78.40	$X_F(X_S(S^L, S^s), M^L)$		
	3.16	75.60	81.80	78.90	$X_F(X_S(S^L, S^s), M^s)$		
	EX _F F)	usion (I	eature F	ly Cross F	Ear		
2F	3-57	75.70	82.40	79.20	$E(M^L, X_F(S^L, M^L))$		
	1.95	75.80	80.50	78.30	$E(M^s, X_F(S^L, M^L))$		
	X _F F)	Late Cross Feature Fusion (LX _F F)					
	4.22	75.80	81.10	78.60	$L(M^s, X_F(S^L, M^s))$		
	3.96	75.70	82.80	79.50	$L(M^L, X_F(S^L, M^L))$		
	X _F F)	sion (EI	ature Fu	Cross Fe	Early Late		
HF	4.26	75.40	81.40	78.50	$E(M^L, L(M^s, X_F(S^L, M^s)))$		
	3.99	75.90	82.70	79.50	$E(M^L, L(M^L, X_F(S^L, M^L)))$		
	1.00	76.20	80.90	78.70	Baseline MFS		

Figure 1: Supervised Recall

Solving Word Sense Induction and Disambiguation Spectral Clustering Evaluation

Baseline MFS	78.70	80.90	76.20	1.00	
$E(M^L, L(M^L, X_F(S^L, M^L)))$	79.50	82.70	75.90	3.99	
$E(M^L, L(M^s, X_F(S^L, M^s)))$	78.50	81.40	75.40	4.26	HF
Early Late	Cross Fe	ature Fu	sion (El	LX _F F)	
$L(M^L, X_F(S^L, M^L))$	79.50	82.80	75.70	3.96	
$L(M^s, X_F(S^L, M^s))$	78.60	81.10	75.80	4.22	
Late Cross Feature Fusion (LX _F F)					
$E(M^s, X_F(S^L, M^L))$	78.30	80.50	75.80	1.95	
$E(M^L, X_F(S^L, M^L))$	79.20	82.40	75.70	3-57	2F
Ear	ly Cross F	eature F	usion (l	EX _F F)	
$X_F(X_S(S^L, S^S), M^S)$	78.90	81.80	75.60	3.16	
$X_F(X_S(S^L, S^s), M^L)$	78.40	80.40	76.10	3.11	
Cross Feature C	ross Simi	larity Fu	sion (X	_F X _S F)	

Figure 1: Supervised Recall

	Fusion (EF)		
	71.11 4.46	74.00	$E(M^L, M^s)$
	usion (X _F F)	Cross Fea	
	72.50 3.63	76.20	$X_F(S^L, M^L)$
τF	73.90 3.08	74.60	$X_F(S^L, M^S)$
11	76.90 1.08	78.90	$X_F(S^s, M^L)$
	70.00 2.72	73.70	$X_F(S^s, M^s)$
	ısion (X _S F)	Cross Simila	
	76.80 1.01	78.90	$X_S(S^s, S^L)$
	76.80 1.33	78.70	$X_S(S^L, S^S)$

Figure 2: Unsupervised F-measure

Solving Word Sense Induction and Disambiguation **Spectral Clustering Evaluation**

Figure 3: Proposed H-measure

Solving Word Sense Induction and Disambiguation **Proposed Algorithm Evaluation**

		Earl	Fusior	(EF)	
E(M ^L , M ^S)	78.80	81.00	76.40	2.43	
	Cross	Feature	Fusion	(X _F F)	
$X_F(S^L, M^L)$	78.70	80.90	76.20	3.11	
$X_F(S^L, M^s)$	78.50	81.10	75.60	1.92	1F
$X_F(S^s, M^L)$	79.10	81.60	76.40	1.73	11
$X_F(S^s, M^s)$	78.60	80.90	76.00	1.81	
	Cross Sin	milarity	Fusion	(X_SF)	
$X_S(S^s, S^L)$	78.60	80.80	76.20	1.44	
$X_S(S^L, S^S)$	78.70	80.90	76.20	1.10	

Figure 4: Supervised Recall

Solving Word Sense Induction and Disambiguation **Proposed Algorithm Evaluation**

		Earl	y Fusior	(EF)	
$E(M^{L}, M^{S})$	78.80	81.00	76.40	2.43	
	Cross	Feature	Fusion	(X _F F)	
$X_F(S^L, M^L)$	78.70	80.90	76.20	3.11	
$X_F(S^L, M^S)$	78.50	81.10	75.60	1.92	1F
$X_F(S^s, M^L)$	79.10	81.60	76.40	1.73	11
$X_F(S^s, M^s)$	78.60	80.90	76.00	1.81	
	Cross Sin	milarity	Fusion	(X_SF)	
$X_S(S^s, S^L)$	78.60	80.80	76.20	1.44	
$X_S(S^L, S^s)$	78.70	80.90	76.20	1.10	

Figure	٨.٠	Supervised	Recall
liguic	4.	Juperviseu	Necall

	y Fusion (EF)		
	20 73.10 2.43	76.90	E(M ^L , M ^s)
	Fusion (X _F F)	Cross Fea	
	10 74.20 3.11	71.00	$X_F(S^L, M^L)$
ıF	60 75.50 1.92	77.70	$X_F(S^L, M^s)$
11	0 74.90 1.73	75.20	$X_F(S^s, M^t)$
	50 74.30 1.81	77.60	$X_F(S^s, M^s)$
	Fusion (X _S F)	Cross Simila	
	10 76.50 1.44	74.10	$X_S(S^s, S^L)$
	70 76.80 1.10	78.30	$X_s(S^L, S^s)$

Figure 5: Unsupervised F-measure

Solving Word Sense Induction and Disambiguation **Proposed Algorithm Evaluation**

Figure 6: Proposed H-measure

Conclusions

Conclusions

Insights From our Contributions

- Hypergraph Linguistic Model
 - Considering heterogeneous features to link words together at once using a hypergraph structure
 - Yields a multi-layered representation of text

Insights From our Contributions

- Hypergraph Linguistic Model
 - Considering heterogeneous features to link words together at once using a hypergraph structure
 - Yields a multi-layered representation of text
- Combining Features and Dealing with Sparsity
 - Using fusion operators
 - Intuitive way to leverage the different points of view of each heterogeneous feature while increasing the density of the representation

Insights From our Contributions

Hypergraph Linguistic Model

- Considering heterogeneous features to link words together at once using a hypergraph structure
 - Yields a multi-layered representation of text

Combining Features and Dealing with Sparsity

- Using fusion operators
 - Intuitive way to leverage the different points of view of each heterogeneous feature while increasing the density of the representation

Applications to NLP

- Solving NER and WSI/WSD with fusion enriched representations and our community-driven algorithm
 - A high degree combination of fusion operators are the ones that yield the improvements
 - The community finding algorithm improves over similar algorithms while being simpler and allows for heterogeneous features
 - The Wikipedia-based instantiation serves as a NLP system starting point

Pavel SORIANO-MORALES

Conclusions Future Work

· Hypergraph Linguistic Model

 Implementing a dataframe-like structure allowing for queries and exploration of large corpora using the proposed model

Hypergraph Linguistic Model

 Implementing a dataframe-like structure allowing for queries and exploration of large corpora using the proposed model

Combining Features and Dealing with Sparsity

- Finding a more principled way to determine what type of context with what type of fusion operation according to the task at hand
- Exploring with other modal features

Hypergraph Linguistic Model

 Implementing a dataframe-like structure allowing for queries and exploration of large corpora using the proposed model

Combining Features and Dealing with Sparsity

- Finding a more principled way to determine what type of context with what type of fusion operation according to the task at hand
- Exploring with other modal features

Applications to NLP

- Using the large Wikipedia-based network as a background corpus to further enrich domain-specific corpora
- Test more feature weighting schemes, validate findings on more datasets

Publications Produced by our Research

- Edmundo-Pavel Soriano-Morales, Julien Ah-Pine, Sabine Loudcher: Fusion Techniques for Named Entity Recognition and Word Sense Induction and Disambiguation. DS 2017
- Edmundo-Pavel Soriano-Morales, Julien Ah-Pine, Sabine Loudcher: Using a Heterogeneous Linguistic Network for Word Sense Induction and Disambiguation. CICLING 2016
- Edmundo-Pavel Soriano-Morales, Julien Ah-Pine, Sabine Loudcher: Hypergraph Modelization of a Syntactically Annotated English Wikipedia Dump. LREC 2016
- Adrien Guille, Edmundo-Pavel Soriano-Morales, Ciprian-Octavian Truica: Topic modeling and hypergraph mining to analyze the EGC conference history. EGC 2016
- Adrien Guille, Edmundo-Pavel Soriano-Morales: TOM: A library for topic modeling and browsing. EGC 2016
- Julien Ah-Pine, Edmundo-Pavel Soriano-Morales: A Study of Synthetic Oversampling for Twitter Imbalanced Sentiment Analysis. DMNLP@PKDD/ECML 2016
- Sabine Loudcher, Wararat Jakawat, Edmundo-Pavel Soriano-Morales, Cécile Favre: Combining OLAP and information networks for bibliographic data analysis: a survey. Scientometrics 103(2)

Pavel SORIANO-MORALES 41/42

Thank you for your attention