Problem 1: Suppose P is a probability measure defined on $S = \{1, 2, 3, 4, 5\}$ with mass function

$$\begin{array}{c|cc} s & p(s) \\ \hline 1 & 0.1 \\ 2 & 0.3 \\ 3 & 0.2 \\ 4 & 0.3 \\ 5 & 0.1 \\ \end{array}$$

Compute the information content I(s) of each sample point and the entropy H(P).

We compute

$$\begin{array}{c|cccc} s & p(s) & I(s) \\ \hline 1 & 0.1 & 3.322 \\ 2 & 0.3 & 1.737 \\ 3 & 0.2 & 2.322 \\ 4 & 0.3 & 1.737 \\ 5 & 0.1 & 3.322 \\ \end{array}$$

where the surprisals are rounded to three places after the decimal point. The entropy is $H(P) \approx 2.171$.

Problem 2: Let $X \sim \mathcal{B}er(\theta)$ for $\theta \in [0,1]$. Compute a formula for H(X) in terms of θ .

We compute:

$$H(X) = -\sum_{x=0}^{1} p(x) \log_2(p(x)) = -(1-\theta) \log_2(1-\theta) - \theta \log_2(\theta).$$

Problem 3: Suppose P and Q are probability measures defined on $S = \{1, 2, 3, 4, 5\}$ with mass functions

Compute the cross entropies $H_P(Q)$ and $H_Q(P)$.

$$H_P(Q) = -\sum_{s=1}^{5} p(s) \log_2(q(s)) \approx 3.258, \quad H_Q(P) = -\sum_{s=1}^{5} q(s) \log_2(p(s)) \approx 2.337.$$

Problem 4: Suppose P and Q are probability measures defined on $S = \{1, 2, 3, 4, 5\}$ with mass functions

Compute $D(P \parallel Q)$ and $D(Q \parallel P)$.

$$D(P \parallel Q) = \sum_{s=1}^{5} p(s) \log_2 \left(\frac{p(s)}{q(s)} \right) \approx 1.087 \quad \text{and} \quad D(Q \parallel P) = \sum_{s=1}^{5} q(s) \log_2 \left(\frac{q(s)}{p(s)} \right) \approx 0.929.$$

Problem 5: While it is **not** true that $D(P \parallel Q) = D(Q \parallel P)$ for **all** P and Q, there are examples of special distributions P and Q for which equality does hold. Find examples.

For $\theta \in [0,1]$, define P_{θ} and Q_{θ} on the sample space $S = \{0,1\}$ by

$$\begin{array}{c|cccc}
s & p_{\theta}(s) & q_{\theta}(s) \\
\hline
0 & \theta & 1 - \theta \\
1 & 1 - \theta & \theta
\end{array}$$

One then easily proves $D(P_{\theta} \parallel Q_{\theta}) = D(Q_{\theta} \parallel P_{\theta}).$