

TUGAS AKHIR - KI141502

SISTEM AKUISISI DATA UNTUK MEMBANTU MEMETAKAN KUALITAS ANGKUTAN UMUM DENGAN PERANGKAT ANDROID

HELMY SATRIA MARTHA PUTRA NRP 5111100031

Dosen Pembimbing I Dr. Tech. Ir. R. V. Hari Ginardi, M.Sc.

Dosen Pembimbing II Diana Purwitasari, S.Kom., M.Sc.

JURUSAN TEKNIK INFORMATIKA Fakultas Teknologi Informasi Institut Teknologi Sepuluh Nopember Surabaya 2015

TUGAS AKHIR - KI141502

SISTEM AKUISISI DATA UNTUK MEMBANTU MEMETAKAN KUALITAS ANGKUTAN UMUM DENGAN PERANGKAT ANDROID

HELMY SATRIA MARTHA PUTRA NRP 5111100031

Dosen Pembimbing I Dr. Tech. Ir. R. V. Hari Ginardi, M.Sc.

Dosen Pembimbing II
Diana Purwitasari, S.Kom., M.Sc.

JURUSAN TEKNIK INFORMATIKA Fakultas Teknologi Informasi Institut Teknologi Sepuluh Nopember Surabaya 2015

FINAL PROJECT - KI141502

ACQUISITION DATA SYSTEM FOR HELPING PUBLIC TRANSPORTATION QUALITY MAPPING IN ANDROID DEVICE

HELMY SATRIA MARTHA PUTRA NRP 5111100031

Supervisor I Dr. Tech. Ir. R. V. Hari Ginardi, M.Sc.

Supervisor II Diana Purwitasari, S.Kom., M.Sc.

DEPARTMENT OF INFORMATICS
FACULTY OF INFORMATION TECHNOLOGY
INSTITUT TEKNOLOGI SEPULUH NOPEMBER
SURABAYA 2015

LEMBAR PENGESAHAN

SISTEM AKUISISI DATA UNTUK MEMBANTU MEMETAKAN KUALITAS ANGKUTAN UMUM DENGAN PERANGKAT ANDROID

TUGAS AKHIR

Diajukan Untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Komputer pada

Bidang Studi Algoritma dan Pemrograman Program Studi S-1 Jurusan Teknik Informatika Fakultas Teknologi Informasi Institut Teknologi Sepuluh Nopember

Oleh

HELMY SATRIA MARTHA PUTRA NRP: 5111100031

Dis	setujui oleh Pembimbing Tugas Akhir:	
1.	Dr. Tech. Ir. R. V. Hari Ginardi, M.Sc.	
	NIP: 19650518 199203 1 003	(Pembimbing1)
2.	Diana Purwitasari, S.Kom., M.Sc.	
	NIP: 19780410 200312 2 001	(Pembimbing 2)
	A 1 1 1	

SURABAYA JUNI, 2015

SISTEM AKUISISI DATA UNTUK MEMBANTU MEMETAKAN KUALITAS ANGKUTAN UMUM DENGAN PERANGKAT ANDROID

Nama Mahasiswa : HELMY SATRIA MARTHA P.

NRP : 5111100031

Jurusan : Teknik Informatika FTIF-ITS
Dosen Pembimbing 1 : Dr. Tech. Ir. R. V. Hari Ginardi,

M.Sc.

Dosen Pembimbing 2 : Diana Purwitasari, S.Kom, M.Sc.

Abstrak

Dalam Tugas Akhir ini, dibuat aplikasi yang akan menghasilkan luaran berupa data. Data tersebut nantinya dapat diolah dan menjadi hal yang perlu dievaluasi untuk peningkatan pelayanan jasa transportasi terutama angkutan umum.

Dalam implementasinya, aplikasi yang dibuat terdiri dari dua aplikasi. Aplikasi pertama adalah aplikasi Android. Dengan menggunakan Location Based Service, sistem dapat mencatat rute yang didapat melalui GPS. Sensor di Android digunakan untuk mendeteksi apakah kendaraan berhenti atau bergerak serta mendeteksi jalan berlubang atau normal. Sedangkan aplikasi kedua adalah aplikasi web. Tujuan dari aplikasi ini adalah untuk mendapatkan data untuk membantu memetakan kualitas angkutan umum.

Dengan adanya aplikasi ini, diharapkan data yang digunakan untuk melakukan pengukuran aspek kualitas angkutan umum menjadi lebih baik. Selain itu, sumber daya yang digunakan untuk melakukan pengecekan menjadi lebih praktis dan efisien.

Setelah melakukan uji coba, data yang berhasil dihasilkan adalah waktu tunggu, posisi awal, posisi akhir, rute yang dilalui, kecepatan maksimal dan jalan yang rusak. Dengan menggunakan sensor di Android, aplikasi dapat merekam pergerakan dan guncangan yang terdapat pada angkutan umum.

Kata kunci: Kualitas Angkutan Umum, Location Based Service, Sensor Android

ACQUISITION DATA SYSTEM FOR HELPING PUBLIC TRANSPORTATION QUALITY MAPPING IN ANDROID DEVICE

Student's Name : HELMY SATRIA MARTHA PUTRA

Student's ID : 5111100031

Department : Teknik Informatika FTIF-ITS First Advisor : Dr. Tech. Ir. R. V. Hari Ginardi,

M.Sc.

Second Advisor : Diana Purwitasari, S.Kom, M.Sc.

Abstract

In this final project, we will make an application which produces some data. The Data will be stored and evaluate to public transporation service improvement.

In the implementatation, the application contains two applications. The first, it is Android application which measures the public transportation condition. With Location based service, the system will save the route using GPS. With Android sensor, application can detect shocks and pothole. Using Android sensor, the application can sense and detect the movement and shocks in public transportation. The second application is a web application. The objective is producing some data to mapping public transportation quality.

With this application, the data which can use to measure the public transportation service can be better. Beside of that, the resource can be more efficient.

After evaluation, data which are recorded are headway time, start position, end position, route, maximum velocity, average velocity, and pothole.

Keywords: Android Sensor, Location Based Service, Public Transportation Quality.

KATA PENGANTAR

Segala puji bagi Allah SWT, yang telah melimpahkan rahmat dan hidayah-Nya sehingga penulis dapat menyelesaikan Tugas Akhir yang berjudul "SISTEM AKUISISI DATA UNTUK MEMBANTU MEMETAKAN KUALITAS ANGKUTAN UMUM DENGAN PERANGKAT ANDROID".

Pengerjaan Tugas Akhir ini merupakan suatu kesempatan yang sangat baik bagi penulis. Dengan pengerjaan Tugas Akhir ini, penulis dapat belajar lebih banyak untuk memperdalam dan meningkatkan apa yang telah didapatkan penulis selama menempuh perkuliahan di Teknik Informatika ITS. Dengan Tugas Akhir ini penulis juga dapat menghasilkan suatu implementasi dari apa yang telah penulis pelajari.

Selesainya Tugas Akhir ini tidak lepas dari bantuan dan dukungan beberapa pihak. Sehingga pada kesempatan ini penulis mengucapkan terima kasih kepada:

- 1. Allah SWT, karena berkat ridhaNya lah penulis dapat menyelesaikan Tugas Akhir ini.
- 2. Bapak dan Ibu penulis yang telah memberikan dukungan moral dan material serta do'a yang tak terhingga untuk penulis. Serta selalu memberikan semangat dan motivasi pada penulis dalam mengerjakan Tugas Akhir ini.
- 3. Bapak Dr. Tech. Ir. R. V.Hari Ginardi, M.Sc. selaku pembimbing I dan Ibu Diana Purwitasari, S.Kom, M.Sc. yang telah membantu dan membimbing penulis dalam menyelesaikan Tugas Akhir ini.
- 4. Ibu Dr. Ir. Siti Rochimah, MT. selaku dosen wali penulis yang telah memberikan motivasi, nasehat, bimbingan, dan bantuan yang banyak kepada penulis dalam mengerjakan Tugas Akhir ini.
- 5. Bapak dan Ibu dosen Teknik Informatika yang banyak memberikan motivasi dan ilmu kepada penulis selama berkuliah di kampus.

- Ibu Dr. Eng. Nanik Suciati, S.Kom., M.Kom. selaku Kepala Jurusan Teknik Informatika ITS, Bapak Radityo Anggoro, S.Kom, M.Sc. selaku koordinator TA, dan segenap dosen Teknik Informatika yang telah memberikan ilmunya.
- 7. Angkatan 2011, yang telah membantu penulis memberikan semangat untuk berjuang di dunia perkuliahan teknik informatika ITS.
- 8. Asri Ayu Diani Putri yang dengan sabar mengantar penulis melakukan uji coba ke angkutan umum.
- Medfo 2nd Generation, Asri, Friska, Nduti, Harum, Uswah, Ossy, Wilik, Mei, Trisna, Faisal, Dwi, Fakhri, Ade, Fariz, Madis, Yutika, Deva, Adhi, Hendy, Pur, Natasha, Widdy, Wahyu dan Freeska yang menjadi penyemangat penulis di tahun ke tiga.
- 10. PH Kabinet Bersahabat HMTC Rahman, Mahen, Manda, Teteh, Galih, Aik, Suli, Nisa, Rizka, Didit, Supri, Monika, Erick, Riris, Yoga, Pundi, Asri, Dimas, dan Vivi.
- 11. Staf Penulis di Multimedia Kreatif Kominfo Kolaborasi, Adnan, Dedy, Pranawa, Irine, Nafa, dan Fakhri yang senantiasa memotivasi penulis agar terus menyelesaikan Tugas Akhir ini.
- 12. PH Kominfo, Linda, Ian, Elika, Titi, Shatila, Salomo, dan Ciput yang memotivasi penulis agar segera menyelesaikan Tugas Akhir ini.
- 13. Teman seperjuangan penulis di AP Risma dan Gani yang terus memotivasi penulis dalam pengerjaan tugas akhir ini.
- 14. Serta semua pihak yang yang telah turut membantu penulis dalam pengerjaan Tugas Akhir ini.

Penulis menyadari bahwa Tugas Akhir ini masih memiliki banyak kekurangan. Sehingga dengan kerendahan hati, penulis mengharapkan kritik dan saran dari pembaca untuk perbaikan ke depan.

Surabaya, Juni 2015

DAFTAR ISI

LEMBAR PENGESAHAN	vii
Abstrak	ix
Abstract	
KATA PENGANTAR	xiii
DAFTAR ISI	
DAFTAR GAMBAR	
DAFTAR TABEL	xxvii
BAB I PENDAHULUAN	1
1.1. Latar Belakang	1
1.2. Rumusan Masalah	2
1.3. Batasan Masalah	2
1.4. Tujuan	3
1.5. Manfaat	
1.6. Metodologi	3
1.7. Sistematika Penulisan Laporan Tugas Akhir	4
BAB II TINJAUAN PUSTAKA	7
2.1. Angkutan Umum di Surabaya	7
2.2. Aspek Kualitas Angkutan Umum	7
2.3. Activity Recognition	8
2.3.1. Data Collection	8
2.3.2. Feature Extraction	8
2.3.3. Data Interpretation	8
2.4. Sistem Pemosisisi Global	
2.4.1. LocationListener pada GPS	11
2.5. Google Maps API	11
2.6. Accelerometer	12
2.7. PHP	14
2.8. JSON	14
2.9. MySQL	15
2.10. Perhitungan Pendeteksi Pergerakan	16
2.11. Windows Sampling	
2.12. Overlapping	16

2.13.	Penghitungan Pothole Detection	17
2.14.	Android	
2.14.1.	Komponen Android	18
2.14.1.	1. Activities	18
2.14.1.	2. Services	18
2.14.1		
2.14.1.	4. Fragment	19
2.14.2.	SensorEventListener	19
2.15.	Basis Data SQLite	20
BAB II	II DESAIN DAN PERANCANGAN	21
3.1. De	eskripsi Umum	21
3.2. Aı	rsitektur Sistem	21
3.3. Pe	erancangan Proses	23
3.3.1.	Perancangan Algoritma Pendeteksi Pergerakan	
	Kendaraan	23
3.3.2.	Perancangan Algoritma untuk Pendeteksi	
	Guncangan	25
3.3.3.	Perancangan Windows Sampling dan Overlappin	g26
3.4. Pe	rancangan Kasus Penggunaan	27
3.5. Di	agram Aktivitas Sistem	28
3.4.1.	Diagram Aktivitas Memasukkan Data Angkutan	
	Umum	
3.4.2.	Diagram Aktivitas Melakukan Akuisisi Data Kua	alitas
	Angkutan Umum	29
3.4.3.	Diagram Aktivitas Melihat Hasil Akuisisi Data p	ada
	Aplikasi Android	31
3.4.4.	Diagram Aktivitas Melihat Hasil Akuisisi Data p	ada
	Website	
3.6. Ra	ancangan Antarmuka Aplikasi	33
3.5.1.	Rancangan Antarmuka Menambahkan Data Angl	kutan
	Umum	33
3.5.2.	Rancangan Antarmuka Pengujian Angkutan Umu	ım 34
3.5.3.	Rancangan Antarmuka Melihat data Pada Androi	
3.5.4.	Rancangan Antarmuka Melihat Hasil Akuisisi da	ıta
	Pada Website	37

BAB IV IMPLEMENTASI	39
4.1 Lingkungan Implementasi	.39
4.2 Implementasi Kasus Penggunaan	.39
4.2.1 Implementasi Menambah Data Angkutan Umum	.39
4.2.2 Implementasi Melakukan Pengukuran Angkutan	
Umum	.40
4.2.2.1 Implementasi Windows Sampling dan Overlapping.	.40
4.2.2.2 Implementasi Mendapatkan Data Tanggal dan	
Waktu	.43
4.2.2.3 Implementasi Mendapatkan Posisi Awal dan Posisi	
Akhir	.43
4.2.2.4 Implementasi Mendapatkan Koordinat Jalan yang	
Dilalui Angkutan Umum	.44
4.2.2.5 Implementasi Mendapatkan Jarak Tempuh	.44
4.2.2.6 Implementasi Mendapatkan Waktu Tunggu	.45
4.2.2.7 Implementasi Mendapatkan Data Kecepatan	
Maksimal	.46
4.2.2.8 Implementasi Mendapatkan Jumlah Penumpang	.46
4.2.2.9 Implementasi Mendapatkan Jumlah Berhenti	.47
4.2.2.10 . Implementasi Mendapatkan Data Jumlah	
Guncangan	.48
4.2.2.11 Implementasi Menyimpan Data di Basis Data	
Lokal	.48
4.2.2.12 Implementasi Pengiriman Data ke Server	.49
4.2.2.13 Implementasi Koneksi Basis Data	.50
4.2.2.14 Implementasi Menerima Data di Server	.51
4.2.3 Implementasi Melihat Hasil Pengukuran pada	
Android	. 52
4.2.3.1. Implementasi Sinkronisasi Data dari Basis Data	
Server ke Basis Data Lokal	.52
4.2.3.2. Implementasi Melihat Semua Data Hasil Akuisisi	
Data pada Android	
4.2.3.3. Implementasi Melihat Detil Hasil Akuisisi Data pad	
Android	.53

4.2.3.4. Implementasi Melihat Hasil Akuisisi dalam Bentuk	
Peta Pemberhentian di Android	54
4.2.3.5. Implementasi Melihat Hasil Akuisisi Data dalam	
Bentuk Peta Jalan Berlubang di Android	55
4.2.3.6. Implementasi Melihat Hasil Akuisisi Data dalam	
Bentuk Peta Kepadatan Penumpang di Android	55
4.2.4 Implementasi Melihat Hasil Akuisisi Data pada	
Website	56
4.2.4.1. Implementasi Melihat Semua Hasil Akuisisi Data	
pada Website	56
4.2.4.2. Împlementasi Melihat Detil Hasil Akuisisi Data pad	
Website	
4.2.4.3. Implementasi Melihat Hasil Akuisisi Data dalam	
Bentuk Peta Pemberhentian pada Website	57
4.2.4.4. Implementasi Melihat Hasil Akuisisi Data dalam	
Bentuk Peta Kondisi Jalan pada Website	58
4.2.4.5. Implementasi Melihat Hasil Akuisisi Data dalam	
Bentuk Peta Kepadatan Penumpang pada Website	58
4.3 Implementasi Antarmuka	
4.3.1. Implementasi Tampilan Menambahkan Data	
Angkutan Umum	59
4.3.2. Implemetasi Tampilan Pengujian Angkutan	
Umum	66
4.3.3. Implementasi Melihat Hasil Akuisisi Data pada	
Aplikasi Android	73
4.3.4. Implementasi Melihat Hasil Akuisisi Data pada	
Website	81
BAB V UJI COBA DAN EVALUASI	
5.1. Lingkungan Uji Coba	
5.2. Uji Coba Fungsionalitas	
5.2.1. Uji Coba Fungsionalitas Memasukkan Data	
Angkutan Umum	92
5.2.2. Uji Coba Fungsionalitas Melakukan Pengukuran	
Kualitas Layanan Angkutan Umum	
	70

5.2.3.	Uji Coba Fungsionalitas Melihat Data Ang	gkutan
Umu	m dengan Perangkat Android	104
5.2.4.	Uji Coba Fungsionalitas Melihat Data Ang	gkutan
Umu	m dengan Website	110
5.3. Anali	sa Data	115
5.3.1.	Analisa Data Pendeteksi Bergerak	116
5.3.2.	Analisa Data Pendeteksi Jalan Berlubang.	119
BAB VI K	XESIMPULAN dan SARAN	123
6.1. Kesir	npulan	123
6.2. Sarar	_ 	123
DAFTAR	PUSTAKA	125
LAMPIR A	AN A	129
LAMPIR A	AN B	143
BIODAT	A PENULIS	147

DAFTAR GAMBAR

Gambar 2. 1. Contoh Aplikasi GPS <i>Tracking</i>	12
Gambar 2. 2 Pergerakan Sumbu Accelerometer	
Gambar 2. 3 Sumbu Accelerometer	
Gambar 3. 1 Arsitektur Sistem2	22
Gambar 3. 2 Diagram Alir untuk Algoritma Pendetek	si
Pergerakan Angkutan Umum2	24
Gambar 3. 3. Diagram Alir Algoritma untuk Mendetek	si
Guncangan2	25
Guncangan	an
Overlapping2	26
Gambar 3. 5. Diagram Kasus Penggunaan2	27
Gambar 3. 6. Aliran Program Secara Umum	28
Gambar 3. 7. Diagram Aktivitas Memasukkan Data Angkuta	an
Umum2	29
Gambar 3. 8. Diagram Aktivitas Melakukan Pengujia	an
Angkutan Umum	30
Gambar 3. 9. Diagram Aktivitas Melihat Data pada Aplika	si
Android	
Gambar 3. 10. Diagram Aktivitas Melihat Data pada Websi	
Gambar 3. 11. Tampilan Antarmuka Awal Aplikasi	
Gambar 3. 12. Tampilan Antarmuka Menu Utama	34
Gambar 3. 13. Tampilan Antarmuka Mengisi Data Angkuta	an
Umum	34
Gambar 3. 14. Rancangan Antarmuka Memulai Pengukura	
Kualitas Angkutan Umum	
Gambar 3. 15 Rancangan Antarmuka Daftar Pengukura	an
Angutan Umum	
Gambar 3. 16 Rancangan Antarmuka Detil Hasil Evalua	
Angkutan Umum	
Gambar 3. 17 Rancangan Antarmuka Peta Kecepata	
Guncangan dan Jumlah Penumpang	36

Gambar 3. 18 Rancangan Antarmuka Daftar Pengukuran
Angkutan Umum37
Gambar 3. 19 Rancangan Antarmuka Detil Evaluasi pada
<i>Website</i> 37
Gambar 4. 1. Pseudocode Menambahkan Data Angkutan
Umum
Gambar 4. 2. Ilustrasi Windows Sampling41
Gambar 4. 3. Ilustrasi Overlapping41
Gambar 4. 4. Pseudocode Windows Sampling dan Overlapping
Gambar 4. 5. Pseudocode Mendapatkan Waktu dan Tanggal
Sekarang43
Gambar 4. 6. Pseudocode Mendapatkan Posisi Awal dan Posisi
Akhir44
Gambar 4. 7. Pseudocode Mendapatkan Koordinat Jalan yang
Dilalui Angkutan Umum44
Gambar 4. 8. Pseudocode Mendapatkan Jarak Tempuh45
Gambar 4. 9. Pseudocode Mendapatkan Waktu Tunggu dan
Waktu Tempuh46
Gambar 4. 10. Pseudocode Mendapatkan Data Kecepatan46
Gambar 4. 11. Pseudocode Mendapatkan Data Jumlah
Penumpang
Gambar 4. 12. Pseudocode Mendapatkan Jumlah Berhenti48
Gambar 4. 13. Pseudocode Mendapatkan Jumlah Guncangan
48
Gambar 4. 14. Pseudocode Menyimpan Data pada Basis Data
Lokal49
Gambar 4. 15. Pseudocode Mengirim Data ke Server50
Gambar 4. 16. Pseudocode Koneksi Basis Data51
Gambar 4. 17. Pseudocode Menerima Data di Server52
Gambar 4. 18. <i>Pseudocode</i> Sinkronisasi Data52
Gambar 4. 19. Pseudocode Melihat Semua Hasil Akuisisi Data
pada Android53
Gambar 4. 20. Pseudocode Melihat Detil Hasil Akuisisi Data
54

Gambar 4. 21. Pseudocode Melihat Hasil Akuisisi Data dalam
Bentuk Peta Berhenti54
Gambar 4. 22. Pseudocode Melihat Hasil Akuisisi Data dalam
Bentuk Peta Jalan Berlubang55
Gambar 4. 23. Pseudocode Melihat Hasil Akuisisi Data dalam
Bentuk Peta Kepadatan Penumpang56
Gambar 4. 24. Pseudocode Melihat Semua Hasil Akuisisi Data
pada Website56
Gambar 4. 25. Pseudocode Melihat Detil Hasil Akuisisi Data
pada Website57
Gambar 4. 26. Pseudocode Melihat Hasil Akuisisi Data dalam
Bentuk Peta Pemberhentian pada Website57
Gambar 4. 27. Pseudocode Melihat Hasil Akuisisi Data dalam
Bentuk Peta Kondisi Jalan pada Website58
Gambar 4. 28. Pseudocode Melihat Hasil Akuisisi Data dalam
Bentuk Peta Kepadatan Penumpang pada Website59
Gambar 4. 29. Tampilan Halaman Awal Antarmuka60
Gambar 4. 30. Tampilan Halaman Menu Utama61
Gambar 4. 31. Halaman Memasukkan Data Angkutan Umum
63
Gambar 4. 32. Tampilan Memilih Jenis Angkutan Umum64
Gambar 4. 33. Tampilan Jika Plat Nomor Belum Terisi64
Gambar 4. 34. Tampilan Jika Data Berhasil Dimasukkan65
Gambar 4. 35. Tampilan Pengukuran Angkutan Umum67
Gambar 4. 36. Tampilan Ketika GPS Belum Dinyalakan68
Gambar 4. 37. Tampilan Pengukuran dalam Keadaan
Menunggu
Gambar 4. 38. Tampilan Pengukuran Jika dalam Keadaan
Mengukur
Gambar 4. 39. Tampilan Ketika Pengukuran Telah Selesai72
Gambar 4. 40. Tampilan Melakukan Sinkronisasi Data73
Gambar 4. 41. Tampilan Semua Hasil Pengecekan Angkutan
Umum
Gambar 4. 42. Tampilan Melihat Detil Hasil Pengecekan
Angkutan Umum75

Gambar 4. 43. Tampilan Menu Memilih Jenis Peta Hasil
Pengukuran Angkutan Umum77
Gambar 4. 44. Tampilan Hasil Pengecekan Angkutan Umum
dalam Bentuk Peta Pemberhentian78
Gambar 4. 45. Tampilan Hasil Pengecekan Angkutan Umum
dalam Bentuk Peta Jalan Berlubang79
Gambar 4. 46. Tampilan Hasil Pengecekan Angkutan Umum
dalam Bentuk Peta Kepadatan Penumpang80
Gambar 4. 47. Tampilan Halaman Awal Website82
Gambar 4. 48. Tampilan Melihat Semua Hasil Data Angkutan
Umum
Gambar 4. 49. Tampilan Detil Hasil Akuisisi Data Angkutan
Umum pada Website85
Gambar 4. 50. Tampilan Hasil Akuisisi Data Angkutan Umum
dalam Bentuk Peta Pemberhentian86
Gambar 4. 51. Tampilan Hasil Akuisisi Data Angkutan Umum
dalam Bentuk Peta Jalan Berlubang87
Gambar 4. 52. Tampilan Hasil Akuisisi Data Angkutan Umum
dalam Bentuk Peta Kepadatan Penumpang88
Gambar 5. 1. Halaman Awal Aplikasi92
Gambar 5. 2. Halaman Menu Utama Aplikasi93
Gambar 5. 3 Kondisi Awal Halaman Masukkan Data Angkutan
Umum
Gambar 5. 4. Pilihan Jenis Angkutan Umum94
Gambar 5. 5. Tampilan Notifikasi Bahwa Terdapat Kotak Isian
yang Belum Terisi95
Gambar 5. 6. Tampilan Mengisi Angkutan Umum Dengan
Benar
Gambar 5. 7. Notifikasi Bahwa Data Angkutan Berhasil
Dimasukkan97
Gambar 5. 8. Tampilan Awal Melakukan Pengukuran Kualitas
Layanan Angkutan Umum101
Gambar 5. 9. Perubahan Ketika Tombol Mulai Ditekan102
Gambar 5. 10. Perubahan Keadaan Dari Menunggu Menjadi
Mengukur

Gambar 5. 11. Tampilan <i>Activity</i> Menu Utama105
Gambar 5. 12. Tampilan Semua Hasil Akuisisi Data Angkutan
Umum106
Gambar 5. 13. Tampilan Detil Akuisisi Data Angkutan Umum
107
Gambar 5. 14. Peta Rute Angkutan Umum
Gambar 5. 15. Peta Pemberhentian Angkutan Umum 108
Gambar 5. 16. Peta Jalan Berlubang Angkutan Umum 109
Gambar 5. 17. Peta Kepadatan Penumpang Angkutan Umum
109
Gambar 5. 18. Tampilan Awal Melihat Hasil Akuisisi Data di
Website111
Gambar 5. 19. Tampilan Semua Hasil Akuisisi Data Angkutan
Umum
Gambar 5. 20. Tampilan Detil Hasil Akuisisi Angkutan Umum
112
Gambar 5. 21. Peta Hasil Uji Coba Rute Angkutan Umum 113
Gambar 5. 22. Peta Tempat Pemberhentian Angkutan Umum
114
Gambar 5. 23. Peta Kondisi Jalan Angkutan Umum114
Gambar 5. 24. Peta Hasil Uji Coba Kepadatan Penumpang
Angkutan Umum115
Gambar 5. 25. Visualisasi Titik Berhenti Angkutan Umum118
Gambar 5. 26. Visualisasi Jalan Berlubang yang Dilalui
Angkutan Umum121

DAFTAR TABEL

Tabel 4. 1. Penjelasan Tampilan Halaman Awal60
Tabel 4. 2. Penjelasan Tampilan Menu Utama62
Tabel 4. 3. Penjelasan Tampilan Memasukkan Data Angkutan
Umum
Tabel 4. 4. Penjelasan Tampilan Melakukan Pengujian
Angkutan Umum70
Tabel 4. 5. Penjelasan Tampilan Ketika Pengujian Telah
Selesai72
Tabel 4. 6. Penjelasan Tampilan Melihat Semua Hasil
Pengujian74
Tabel 4. 7. Penjelasan Tampilan Detil Hasil Akusisi Angkutan
Umum
Tabel 4. 8. Penjelasan Tampilan Menu Peta77
Tabel 4. 9. Tabel Penjelasan Peta Pemberhentian79
Tabel 4. 10. Penjelasan Implementasi Peta Jalan Berlubang 80
Tabel 4. 11. Penjelasan Peta Kepadatan Penumpang81
Tabel 4. 12. Penjelasan Tampilan Halaman Awal Website82
Tabel 4. 13. Penjelasan Tampilan Melihat Detil Angkutan
Umum pada Website83
Tabel 4. 14. Penjelasan Tampilan Melihat Peta Berhenti pada
Website86
Tabel 4. 15. Penjelasan Tampilan Peta Jalan Berlubang pada
<i>Website</i> 87
Tabel 4. 16. Penjelasan Tampilan Melihat Peta Kepadatan
Penumpang pada Website88
Tabel 5. 1. Tabel Skenario Uji Coba Memasukkan Data
Kosong Angkutan Umum94
Tabel 5. 2. Tabel Skenario Uji Coba Memasukkan Data
Angkutan Umum dengan Benar96
Tabel 5. 3. Tabel Skenario Uji Coba Melakukan Pengukuran
Kualitas Angkutan Umum98
Tabel 5. 4. Tabel Skenario Uji Coba Melihat Data Pengukuran
Layanan Angkutan Umum Melalui Perangkat Android 104

Tabel 5. 5. Tabel Skenario Uji Coba Melihat Data Pengukuran
Kualitas Angkutan Umum Melalui Website110
Tabel 5. 6. Contoh Data Sensor Accelerometer Ketika
Bergerak116
Tabel 5. 7. Contoh Data Accelerometer Ketika Berhenti 117
Tabel 5. 8. Tabel Uji Coba untuk Angkutan Umum yang Tidak
Bergerak118
Bergerak
118
Tabel 5. 10. Contoh Data Accelerometer Sumbu z dan
Perubahaannya119
Perubahaannya
Jalan Berlubang120
Tabel 5. 12. Tabel Akurasi Algoritma Pendeteksi Jalan
Berlubang dari Masing-masing Rute121
Tabel A. 1. Tabel Data Accelerometer ketika Angkutan Umum
Berjalan129
Tabel A. 2. Data Accelerometer Ketika Angkutan Umum
Berhenti
Tabel A. 3. Data Accelerometer Jalan Berlubang 1136
Tabel A. 4. Data Accelerometer Jalan Berlubang 2137
Tabel A. 5. Data Accelerometer Jalan Berlubang 3137
Tabel A. 6. Data Accelerometer Jalan Berlubang 4138
Tabel A. 7. Data Accelerometer Jalan Berlubang 5138
Tabel A. 8. Data Accelerometer Jalan Berlubang 6139
Tabel A. 9. Data Accelerometer Jalan Berlubang 7139
Tabel A. 10. Data Accelerometer Jalan Berlubang 8140
Tabel A. 11. Data Accelerometer Jalan Berlubang 9140
Tabel A. 12. Data Accelerometer Jalan Berlubang 10141
Tabel B. 1. Identitas Angkutan Umum143
Tabel B 2 Tabel Hasil Akuisisi Data Angkutan Umum 145

BAB I PENDAHULUAN

1.1. Latar Belakang

Transportasi umum merupakan sebuah kebutuhan di kotakota besar. Banyak kota-kota di dunia yang menggunakan transportasi umum untuk mengurangi kepadatan yang diakibatkan oleh kendaraan pribadi. Salah satu jenis transportasi umum yang saat ini cukup banyak digunakan adalah angkutan umum. Tidak terkecuali Surabaya yang memiliki 58 rute angkutan umum [1].

Dengan semakin banyaknya angkutan umum, maka diperlukan manajemen kualitas agar pelayanan angkutan umum dapat berjalan dengan baik. Kenyamanan dan keamanan menjadi hal yang penting agar kualitas angkutan umum dapat terjaga. Sehingga, setelah dievaluasi akan terdapat rencana strategis yang akan dilakukan oleh pihak terkait untuk meningkatkan pelayanan angkutan umum. Terdapat beberapa hal yang digunakan untuk meningkatkan kualitas angkutan umum. Beberapa di antaranya adalah pengujian terhadap posisi awal, posisi akhir, jarak, waktu tunggu, waktu tempuh, kecepatan, kenyamanan, dan jumlah penumpang [2].

Pengujian yang baik diperlukan data yang baik pula. Namun selama ini pengujian terhadap angkutan yang ada masih menggunakan kuesioner. Sehingga data yang dihasilkan masih rawan terhadap kesalahan manusia serta membutuhkan sumber daya yang cukup banyak. Oleh karena itu, diperlukan sebuah alat yang digunakan untuk dapat memproduksi data-data berkualitas lebih baik. Selain itu, proses yang ada dapat ditingkatkan menjadi lebih efisien.

Di sisi lain, dewasa ini perkembangan teknologi informasi sudah sangat pesat. Saat ini *smartphone* mulai muncul dan menggantikan eksistensi telepon genggam biasa. Smartphone sebagai terobosan canggih di dunia komunikasi memiliki banyak fitur canggih yang dapat membantu masalah manusia. Salah satu

fitur yang tersedia dan dapat dilakukan eksplorasi adalah sensor. Terdapat 13 sensor yang terdapat di *smartphone* Android [3].

Dalam Tugas Akhir ini, akan dibuat aplikasi untuk memberikan data-data yang dibutuhkan untuk mengevaluasi kualitas angkutan umum secara otomatis menggunakan data sensor yang ada di Android. Aplikasi yang dibuat dapat mendeteksi pergerakan dan kondisi jalan yang dilewati oleh angkutan umum. Data-data yang akan diproduksi adalah posisi awal, posisi akhir, jarak, waktu tunggu, waktu tempuh, jalan berlubang, dan jumlah penumpang. Diharapkan dengan adanya aplikasi ini data yang dihasilkan menjadi lebih baik, sehingga dapat meningkatkan pengendalian dan pengelolaan angkutan umum.

1.2. Rumusan Masalah

Rumusan masalah yang diangkat dalam Tugas Akhir ini adalah sebagai berikut:

- 1. Bagaimana menyediakan sebuah aplikasi yang dapat digunakan untuk membantu memetakan kualitas angkutan umum?
- 2. Bagaimana memproduksi data yang dapat digunakan untuk membantu memetakan kualitas angkutan umum?

1.3. Batasan Masalah

Permasalahan yang dibahas dalam Tugas Akhir ini memiliki beberapa batasan, di antaranya sebagai berikut:

- 1. Aplikasi dalam Tugas Akhir ini berjalan di atas perangkat bergerak dengan sistem operasi Android 2.2.
- 2. Uji coba aplikasi ini menggunakan angkutan umum dengan jenis angkutan kota di kota Surabaya.
- 3. Aplikasi ini digunakan sampai dengan penyediaan data kualitas angkutan umum.

- 4. Data-data yang akan diproduksi antara lain posisi awal, posisi akhir, jarak, waktu tunggu, waktu tempuh, kecepatan, jumlah guncangan, jumlah berhenti dan jumlah penumpang.
- 5. Aplikasi hanya dapat dijalankan jika tersambung dengan GPS.
- 6. Aplikasi memerlukan koneksi internet untuk mengirimkan data ke *server*.
- 7. Terdapat 2 aplikasi yang akan dibuat. Yaitu aplikasi Android dan *website*.

1.4. Tujuan

Tujuan dari pembuatan Tugas Akhir ini adalah sebagai berikut:

- 1. Memperoleh data yang diperlukan untuk membantu mengukur kualitas angkutan umum.
- 2. Membuat aplikasi yang dapat digunakan untuk membantu mengukur kualitas angkutan umum.

1.5. Manfaat

Manfaat dari pembuatan Tugas Akhir ini adalah untuk membantu Dinas Perhubungan untuk meningkatkan kualitas angkutan umum.

1.6. Metodologi

Ada beberapa tahap dalam proses pengerjaan Tugas Akhir ini. Berikut ini adalah tahap-tahap dalam pembuatan Tugas Akhir.

a. Studi Literatur

Pada bagian studi literatur ini nantinya akan dipelajari yaitu Pemrograman Android, Google Maps API, web service PHP, dan penggunaan accelerometer pada sistem operasi Android, algoritma Pothole Detection dan algoritma pendeteksi pergerakan untuk mendeteksi seberapa sering angkutan umum berhenti.

b. Perancangan dan Desain Sistem

Pada tahap ini dilakukan perancangan sistem dengan menggunakan studi literatur dan mempelajari konsep aplikasi yang akan dibuat. Dengan berbekal teori, metode, dan informasi yang sudah terkumpul pada tahap sebelumnya diharapkan dapat membantu dalam proses perancangan sistem. Tahap ini merupakan tahap yang paling penting pada bentuk awal atau *prototype* yang akan diimplementasikan.

c. Implementasi

Pada tahap ini dilakukan implementasi rancangan sistem yang telah dibuat. Tahapan ini merealisasikan apa yang terdapat pada tahapan sebelumnya sehingga menjadi sebuah aplikasi dengan simulasi yang digunakan sesuai dengan apa yang telah direncanakan.

d. Uji Coba dan Evaluasi

Pada tahap ini aplikasi yang telah selesai dibuat akan diuji. Pengujian dan evaluasi akan dilakukan dengan melihat kesesuaian dan ketepatan sistem mendeteksi apakah angkutan umum tersebut berjalan atau sedang berhenti.

e. Penyusunan Laporan Tugas Akhir

Pada tahap ini disusun laporan Tugas Akhir sebagai dokumentasi pelaksanaan Tugas Akhir yang mencakup seluruh konsep, teori, implementasi, dan hasil yang telah dikerjakan.

1.7. Sistematika Penulisan Laporan Tugas Akhir

Buku Tugas Akhir ini disusun dengan sistematika penulisan sebagai berikut:

BAB I. PENDAHULUAN

Bab yang berisi mengenai latar belakang, tujuan, dan manfaat dari pembuatan Tugas Akhir. Selain itu permasalahan, batasan masalah, metodologi yang digunakan, dan sistematika penulisan juga merupakan bagian dari bab ini.

BAB II. TINJAUAN PUSTAKA

Bab ini berisi penjelasan secara detail mengenai dasardasar penunjang dan teori-teori yang digunakan untuk mendukung pembuatan Tugas Akhir ini.

BAB III. DESAIN DAN PERANCANGAN

Bab ini berisi tentang desain sistem yang akan dikerjakan. Di dalamnya terdapat rancangan kasus penggunaan dan rancangan tampilan.

BAB IV. IMPLEMENTASI

Bab ini membahas implementasi dari desain yang telah dibuat pada bab sebelumnya. Penjelasan berupa *code* yang digunakan untuk proses implementasi.

BAB V. UJI COBA DAN EVALUASI

Bab ini menjelaskan kemampuan perangkat lunak dengan melakukan pengujian kebenaran dari sistem yang telah dibuat.

BAB VI. KESIMPULAN DAN SARAN

Bab ini merupakan bab terakhir yang menyampaikan kesimpulan dari hasil uji coba yang dilakukan dan saran untuk pengembangan perangkat lunak ke depannya.

BAB II TINJAUAN PUSTAKA

Bab ini berisi penjelasan teori-teori yang berkaitan dengan algoritma yang diajukan pada pengimplementasian program. Penjelasan ini bertujuan untuk memberikan gambaran secara umum terhadap program yang dibuat dan berguna sebagai penunjang dalam pengembangan perangkat lunak.

2.1. Angkutan Umum di Surabaya

Angkutan umum adalah salah satu jenis transportasi umum yang menangani perjalanan di dalam kota. Jumlah penumpang yang dapat diangkut oleh angkutan berjumlah 10-12 orang. Surabaya sebagai salah satu kota besar di Indonesia memiliki angkutan umum. Saat ini terdapat 58 rute angkutan umum yang tersebar di seluruh pelosok Surabaya [1].

2.2. Aspek Kualitas Angkutan Umum

Angkutan umum sebagai kebutuhan kota-kota besar memerlukan pengukuran agar dapat diketahui layanannya. Terdapat beberapa aspek yang dapat memengaruhi kualitas angkutan umum. Menurut World Bank, terdapat beberapa aspek yaitu minimum frekuensi, waktu tunggu, jarak mencapai pemberhentian, tingkat perpndahan, waktu perjalanan, kecepatan persyaratan kendaraan, dan khusus seperti kenyamanan, faktor lintasan, dan kemudahan [2]. Sedangkan menurut Peraturan Menteri no. 10 Tahun 2012, terdapat beberapa aspek dari kualitas angkutan umum antara lain keamanan, keselamatan, kenyamanan dan keterjangkauan. Dari aspek keteraturan, terdapat beberapa aspek yang yang menjadi standar pelayanan minimal antara lain waktu tunggu, kecepatan perjalanan, informasi pelayanan, dan sistem pembayaran [4].

Dalam Tugas Akhir ini, aspek-aspek kualitas angkutan umum yang diukur antara lain jarak, waktu tunggu, waktu tempuh,

kecepatan, jumlah guncangan, jumlah berhenti, dan jumlah penumpang.

2.3. Activity Recognition

Activity recognition merupakan teknik yang digunakan untuk proses pendeteksian aktivitas fisik pengguna. Adapun tahap-tahap dari activity recognition dapat dijelaskan pada subbab selanjutnya

2.3.1. Data Collection

Untuk melakukan sebuah identifikasi aktivitas dikatakan bergerak atau tidak, diperlukan data yang nantinya akan digunakan untuk pengolahan. Pada umumnya data diambil dengan menggunakan sebuah *device* berupa sensor. Data ini diharapkan dapat digunakan untuk dilakukan proses identifikasi yang bertujuan untuk menggambarkan sebuah entitas tertentu [5].

2.3.2. Feature Extraction

Setelah memperoleh data dari sensor *accelerometer*, proses selanjutnya adalah ekstraksi data. Data yang akan diproses terlebih dahulu diolah sedemikian hingga agar data tersebut tidak terlalu menyimpang dari hasil yang diinginkan. Salah satunya menggunakan teknik *windows sampling* dan *overlapping* [5].

2.3.3. Data Interpretation

Data Interpretation merupakan tahap paling penting dalam proses identifikasi aktivitas pengguna. Setelah memiliki data yang sudah diekstraksi maka langkah selanjutnya adalah melakukan pendeteksian dengan menggunakan algoritma pendeteksi pergerakan dan pothole detection [5].

2.4. Sistem Pemosisisi Global

Sistem Pemosisi Global atau biasa disebut dengan *Global Positioning System* (GPS) adalah sistem untuk menentukan letak di permukaan bumi dengan bantuan penyelarasan (synchronization) pada sinyal satelit. Sistem ini menggunakan 24 satelit yang mengirimkan sinyal gelombang mikro ke bumi. Sinyal ini diterima oleh alat penerima di permukaan, dan digunakan untuk menentukan letak, kecepatan, arah, dan waktu. Sistem yang serupa dengan GPS antara lain GLONASS Rusia, Galileo Uni Eropa, dan IRNSS India.

Sistem ini dikembangkan oleh Departemen Pertahanan Amerika Serikat, dengan nama lengkapnya adalah NAVSTAR GPS (kesalahan umum adalah bahwa NAVSTAR adalah sebuah singkatan, ini adalah salah, NAVSTAR adalah nama yang diberikan oleh John Walsh, seorang penentu kebijakan penting dalam program GPS). Kumpulan satelit ini diurus oleh 50th Space Wing Angkatan Udara Amerika Serikat. Biaya perawatan sistem ini sekitar US\$750 juta per tahun, termasuk penggantian satelit lama, serta riset dan pengembangan [6].

Cara kerja dari GPS adalah menggunakan sejumlah satelit yang berada di orbit bumi, yang memancarkan sinyalnya ke bumi dan ditangkap oleh sebuah alat penerima. Ada tiga bagian penting dari sistim ini, yaitu bagian kontrol, bagian angkasa, dan bagian pengguna.

1. Bagian kontrol

Seperti namanya, bagian ini untuk mengontrol. Setiap satelit dapat berada sedikit di luar orbit, sehingga bagian ini melacak orbit satelit, lokasi, ketinggian, dan kecepatan. Sinyalsinyal dari satelit diterima oleh bagian kontrol, dikoreksi, dan dikirimkan kembali ke satelit. Koreksi data lokasi yang tepat dari satelit ini disebut dengan data ephemeris, yang nantinya akan di kirimkan kepada alat navigasi kita.

2. Bagian angkasa

Bagian ini terdiri dari kumpulan satelit-satelit yang berada di orbit bumi, sekitar 12.000 mil di atas permukaan bumi. Kumpulan satelit-satelit ini diatur sedemikian rupa sehingga alat navigasi setiap saat dapat menerima paling sedikit sinyal dari empat buah satelit. Sinyal satelit ini dapat melewati awan, kaca, atau plastik, tetapi tidak dapat melewati gedung atau gunung. Satelit mempunyai jam atom, dan juga akan memancarkan informasi waktu/jam saat ini. Data ini dipancarkan dengan kode pseudo-random. Masing-masing satelit memiliki kodenya sendirisendiri. Nomor kode ini biasanya akan ditampilkan pada alat navigasi, maka kita dapat melakukan identifikasi sinyal satelit vang sedang diterima alat tersebut. Data ini berguna bagi alat navigasi untuk mengukur jarak antara alat navigasi dengan satelit, yang akan digunakan untuk mengukur koordinat lokasi. Kekuatan sinyal satelit juga akan membantu alat dalam penghitungan. Kekuatan sinyal ini lebih dipengaruhi oleh lokasi satelit, sebuah alat akan menerima sinyal lebih kuat dari satelit yang berada tepat di atasnya dibandingkan dengan satelit yang berada di garis cakrawala.

3. Bagian pengguna

Bagian ini terdiri dari alat navigasi yang digunakan. Satelit akan memancarkan data almanak dan ephemeris yang akan diterima oleh alat navigasi secara teratur. Data almanak berisikan perkiraan lokasi (approximate location) satelit yang dipancarkan terus menerus oleh satelit. Data ephemeris dipancarkan oleh satelit, dan valid untuk sekitar 4-6 jam. Untuk menunjukkan koordinat sebuah titik (dua dimensi), alat navigasi memerlukan paling sedikit sinyal dari 3 buah satelit. Untuk menunjukkan data ketinggian sebuah titik (tiga dimensi), diperlukan tambahan sinyal dari 1 buah satelit lagi.

Dari sinyal-sinyal yang dipancarkan oleh kumpulan satelit tersebut, alat navigasi akan melakukan perhitungan-perhitungan, dan hasil akhirnya adalah koordinat posisi alat tersebut. Makin banyak jumlah sinyal satelit yang diterima oleh sebuah alat, akan membuat alat tersebut menghitung koordinat posisinya dengan lebih tepat [7].

GPS digunakan untuk menentukan posisi angkutan umum yang akan direkam rutenya. Selanjutnya, rute dari angkutan umum akan direkam dan disimpan. Terdapat 3 komponen dalam GPS antara lain yaitu *latitude*, *longitude*, dan *altitude*. Namun, untuk menentukan posisi, yang perlu disimpan adalah *latitude* dan *longitude* saja.

2.4.1. LocationListener pada GPS

Agar aplikasi yang dibangun dapat berhubungan dengan GPS, LocationManager LocationListener. diperlukan dan LocationManager menyediakan akses ke layanan lokasi di Android. Salah satu layanan yang tersedia adalah memperbaharui perangkat geografis dari lokasi yang digunakan. LocationManager akan menggambarkan setiap perubahan lokasi geografis kepada LocationListener. LocationListener inilah yang nantinya akan dirubah sesuai dengan kebutuhan. Terdapat 4 method yang digunakan dalam LocationListener, yaitu:

- *onLocationChanged* digunakan saat posisi geografis pengguna mengalami perubahan,
- *onProviderDisabled* dipanggil saat provider dinon-aktifkan oleh pengguna,
- *onProviderEnabled* dipanggil saat provider diaktifkan oleh pengguna,
- *onStatusChange* dipanggil saat ada perubahan status pada provider.

Pada fungsi *onLocationChanged* inilah nilai *latitude* dan *longitude* lokasi pengguna akan diterima oleh objek *LocationListener* [8].

2.5. Google Maps API

Google Maps API merupakan *Application Programming Interface* (API) yang dapat diakses melalui Javascript agar Google Maps dapat ditampilkan pada klien yang tersambung dengan

internet [9]. Google Maps merupakan salah satu layanan gratis yang dimiliki Google untuk peta digital yang menawarkan tampilan peta dan gambar dari satelit. Google Maps API memungkinkan pengembang untuk mengintegrasikan Google Maps ke dalam situs web dan aplikasi Android. API yang telah disediakan oleh Google Maps ini juga memungkinkan untuk melakukan overlay dengan data tertentu pada peta termasuk overlay untuk menggambarkan jalan, posisi, dan beberapa objek lain.

Dalam beberapa aplikasi, Google Maps API digunakan sebagai pelacak. Aplikasi pelacak digunakan untuk menandai rute yang dilewati oleh objek. Dalam tugas akhir ini juga berfungsi sebagai *tracking* yang berfungsi untuk melacak rute angkutan umum. Gambar 2.1 merupakan contoh penerapan dari GPS *Tracking* yang divisualisasikan dalam Google Maps.

Gambar 2.1. Contoh Aplikasi GPS Tracking

2.6. Accelerometer

Sensor *accelerometer* adalah sebuah alat yang berfungsi untuk mengukur percepatan dan getaran akibat gravitasi bumi.

Percepatan merupakan suatu keadaan berubahnya kecepatan terhadap waktu dimana terjadi perubahan kecepatan yang semakin bertambah dari pada kecepatan sebelumnya. Hal ini disebut dengan *acceleration*. Percepatan juga bergantung pada arah atau orientasi karena merupakan penurunan kecepatan yang merupakan besaran vektor. Berubahnya arah pergerakan suatu benda akan menimbulkan percepatan pula [10].

Alat ini bekerja berdasarkan hukum fisika. Dijelaskan bahwa apabila suatu konduktor digerakkan melalui suatu medan magnet, atau jika suatu medan magnet digerakkan melalui suatu konduktor, maka akan timbul suatu tegangan induksi pada konduktor tersebut. *Accelerometer* yang diletakkan di permukaan bumi pada titik vertikal dapat mendeteksi percepatan 1g ukuran gravitasi bumi. *Accelerometer* akan mengukur percepatannya secara langsung ketika bergerak secara horizontal yang dikarenakan oleh pergerakan horizontal. Contoh pergerakan pada *accelerometer* ditunjukkan pada Gambar 2. 2.

Gambar 2. 2 Pergerakan Sumbu Accelerometer

Dalam *smartphone* Android sendiri terdapat pula *accelerometer* yang digunakan untuk mengukur akselerasi yang diaplikasikan pada sebuah perangkat. Tiga sumbu yang digunakan adalah x, y, dan z. Penggunaan *accelerometer* dalam aplikasi ini

adalah untuk mendeteksi getaran ketika kita berada di angkutan umum. Rute-rute yang memiliki getaran tersebut akan dicatat.

Gambar 2. 3 Sumbu Accelerometer

2.7. PHP

PHP adalah singkatan dari "PHP: Hypertext Prepocessor", yaitu bahasa pemrograman yang digunakan secara luas untuk penanganan pembuatan dan pengembangan sebuah situs web dan dapat digunakan bersamaan dengan HTML. PHP diciptakan oleh Rasmus Lerdorf pertama kali tahun 1994. Pada awalnya PHP adalah singkatan dari *Personal Home Page Tools*. Selanjutnya diganti menjadi FI. Sejak versi 3.0, nama bahasa ini diubah menjadi "PHP: Hypertext Prepocessor" dengan singkatannya PHP. PHP versi terbaru adalah versi ke-5. Berdasarkan survey Netcraft pada bulan Desember 1999, lebih dari sejuta laman menggunakan PHP, di antaranya adalah NASA, Mitsubishi, dan RedHat. PHP dalam Tugas Akhir ini akan digunakan untuk membuat web service yang digunakan untuk menyimpan data yang dikirim melalui aplikasi Android [11].

2.8. JSON

JSON (*JavaScript Object Notation*) adalah format pertukaran data yang ringan. JSON mudah untuk dibaca dan ditulis oleh manusia dan memudahkan mesin untuk mengurai dan menciptakan. Format ini berdasar dari himpunan bagian bahasa

pemrograman JavaScript standar ECMA-262 edisi ke-3, Desember 1999. JSON merupakan format teks yang benar – benar berbeda atau independen namun tetap menggunakan konvensi yang mudah dikenali bagi programmer yang sudah terbiasa dengan bahasa C, C++, C#, Java, JavaScript, Perl, Python, dan bahasa lainnya. Sifat JSON yang seperti ini menjadikannya format pertukaran data yang ideal.

JSON digunakan untuk format dari data yang dikirimkan baik dari aplikasi Android ke PHP maupun sebaliknya. Hal ini memungkinkan agar data yang disimpan dapat dilihat secara *realtime* pada basis data *online* [12].

2.9. MySQL

MySQL adalah sebuah perangkat lunak sistem manajemen basis data SQL (database management system) atau DBMS yang multithread, multi-pengguna, dengan sekitar 6 juta instalasi di seluruh dunia. MySQL AB membuat MySQL tersedia sebagai perangkat lunak gratis dibawah lisensi GNU General Public License (GPL), tetapi mereka juga menjual di bawah lisensi komersial untuk kasus-kasus dimana penggunaannya tidak cocok dengan penggunaan GPL.

MySQL sebenarnya merupakan turunan salah satu konsep utama dalam basis data sejak lama, yaitu SQL (*Structured Query Language*). SQL adalah sebuah konsep pengoperasian database, terutama untuk pemilihan atau seleksi dan pemasukan data, yang memungkinkan pengoperasian data dikerjakan dengan mudah secara otomatis.

Keuntungan dari MySQL adalah mendukung untuk standar SQL, berjalan di berbagai sistem informasi seperti Windows, Linux, FreeBSD dan Mac OS. Antarmuka MySQL juga tersedia untuk berbagai bahasa pemrograman antara lain C/C++, C#, Java, PHP, Phyton dan Ruby [13]. MySQL berisi tabel-tabel yang digunakan untuk menyimpan data yang akan diproduksi oleh aplikasi dalam Tugas Akhir ini [14].

2.10. Perhitungan Pendeteksi Pergerakan

Pendeteksi Pergerakan adalah sebuah teknik yang digunakan untuk mendeteksi mengetahui apakah suatu kendaraan akan berhenti atau tidak. Teknik ini digunakan dengan cara menghitung nilai signifikansi dari nilai perubahan dari sumbu x, y, dan z *accelerometer*. Persamaan dari pendeteksi pergerakan dapat dilihat pada Persamaan 2.1.

$$\alpha = \sqrt{x^2 + y^2 + z^2}$$
 (2.1)

Jika nilai dari alpha melebihi dari *threshold*, maka sistem akan mendeteksi bahwa ada pergerakan. Jika tidak, maka tidak terdapat pergerakan [15].

2.11. Windows Sampling

Keakuratan sebuah data merupakan hal yang sangat penting sebagai langkah awal dalam proses pendeteksian. Kemampuan sistem dalam melakukan komputasi kadang-kadang tidak sebanding dengan kemampuan sensor menghasilkan data. Salah satu cara untuk mengatasi hal tersebut adalah dengan menggunakan teknik ekstraksi data. Salah satu cara mengekstraksi data adalah dengan windows sampling. Teknik windows sampling yaitu suatu teknik mengekstraksi data dengan sampling data, setiap windows terdiri dari kumpulan data. Ukuran windows dapat ditentukan sesuai kebutuhan dan kemampuan sistem dalam melakukan proses komputasi [5].

2.12. Overlapping

Overlapping digunakan untuk menjaga agar data tetap konsisten sehingga data tidak terlalu divergen. Overlapping

dilakukan pada pembacaan sensor kedua. Untuk pembacaan sensor pertama tidak dilakukan teknik *overlapping*. Pengambilan data yang dilakukan adalah setengah dari ukuran *windows* pada pembacaan sensor pertama. Selanjutnya setengah data dari ukuran *windows* pertama dijumlahkan dengan setengah data dari ukuran *windows* selanjutnya [5].

2.13. Penghitungan Pothole Detection

Pothole detection adalah sebuah teknik yang digunakan untuk mendeteksi keadaan jalan apakah berlubang atau tidak. Teknik ini digunakan dengan cara menghitung nilai signifikansi dari nilai perubahan sumbu z accelerometer. Persamaan dari pothole detection dapat dilihat pada Persamaan 2.2.

$$\Delta \mathbf{z} = \mathbf{z} \mathbf{1} - \mathbf{z} \mathbf{2} \tag{2.2}$$

Jika adanya perubahan nilai z yang secara signifikan, maka sistem akan mendeteksi adanya lubang [16].

2.14. Android

Android adalah *software stack* untuk perangkat *mobile* yang mencakup sistem operasi dan *middleware*. Android menyediakan platform terbuka bagi para pengembang untuk menciptakan aplikasi mereka sendiri untuk digunakan oleh bermacam peranti bergerak. SDK Android menyediakan alat dan API yang diperlukan untuk mulai mengembangkan aplikasi pada *platform* Android menggunakan bahasa pemrograman Java. SDK Android merupakan alat kompilasi kode bersama dengan data dan sumber daya *file* ke dalam paket Android dan *file* arsip dengan akhiran APK. Semua kode dalam *file* APK tunggal dianggap satu aplikasi.

2.14.1. Komponen Android

Komponen aplikasi adalah bagian penting dari aplikasi Android. Setiap komponen memiliki titik fokus yang berbeda. Setiap komponen tidak selalu bergantung antara yang satu dengan yang lainnya, namun masing-masing merupakan entitas sendiri dan memainkan peran khusus, masing-masing membantu mendefinisikan perilaku keseluruhan aplikasi. Terdapat 4 komponen aplikasi Android, yaitu *activities, services, content providers*, dan *broadcast receivers* [17].

2.14.1.1. *Activities*

Activities merepresentasikan single screen dengan antarmuka. Sebagai contoh, aplikasi pesan elektronik memiliki satu activity yang menunjukkan list dari pesan elektronik baru serta activity lainnya berfungsi untuk membaca pesan elektronik. Meskipun kedua activities tersebut dapat bekerja bersamaan pada aplikasi pesan elektronik, setiap activity tidak bergantung dengan activity lainnya [18].

2.14.1.2. Service

Service adalah komponen yang berjalan di background untuk melakukan operasi tertentu atau melakukan pekerjaan untuk proses remote. Service tidak menyediakan antarmuka pengguna. Sebagai contoh, service mungkin memutar musik di latar belakang saat pengguna berada dalam aplikasi yang berbeda, atau mungkin mengambil data melalui jaringan tanpa menghalangi interaksi pengguna dengan suatu activity [19].

2.14.1.3. Broadcast Receivers

Broadcast receivers merupakan komponen yang merespon pengumuman broadcast ke seluruh sistem. Terdapat banyak broadcast yang berasal dari sistem, misalnya broadcast

yang mengumumkan bahwa *screen* telah dimatikan, baterai rendah, dan lain-lain. Aplikasi juga dapat memulai sistem *broadcast* misalnya untuk membiarkan aplikasi lain mengetahui bahwa beberapa data telah diunduh ke perangkat dan tersedia bagi mereka untuk dapat digunakan. Secara umum, *broadcast receivers* merupakan pintu gerbang untuk komponen lain dan dimaksudkan untuk melakukan jumlah kerja yang sangat minimum [20].

2.14.1.4. Fragment

Fragment merupakan perilaku atau sebagian dari antarmuka pengguna dalam sebuah activity. Beberapa fragment dapat digabungkan ke dalam satu activity untuk membangun multi-pane interface dan dapat menggunakannya kembali fragment tersebut ke dalam beberapa activities. Fragment dapat digunakan sebagai bagian dari modul pada sebuah activity, yangmana memiliki siklus hidup sendiri, menerima input events sendiri, dan dapat ditambah atau dipindah saat activity sedang berjalan (semacam sub activity yang dapat digunakan kembali pada activity yang berbeda) [21].

2.14.2. SensorEventListener

SensorEventListener merupakan public interface yang terdapat pada Android yang digunakan untuk menerima notifikasi dari sensorManager ketika nilai sensor yang didapatkan berubah. SensorEventListener mengambil data sensor dari hardware Android. SensorEventListener memiliki 2 public method, yaitu onAccuracyChanged dan onSensorChanged. Kedua public method tersebut memiliki fungsi yang berbeda seperti berikut:

- *onAccuracyChanged* digunakan ketika akurasi dari sensor mengalami perubahan,
- *onSensorChanged* digunakan ketika nilai dari sensor mengalami perubahan [22].

2.15. Basis Data SQLite

SQLite merupakan sebuah sistem manajemen basis data relasional yang bersifat ACID-compliant dan memiliki ukuran pustaka kode yang relatif kecil. Tidak seperti pada paradigma *client-server* umumnya, inti SQLite bukanlah sebuah sistem yang mandiri yang berkomunikasi dengan sebuah program, melainkan sebagai bagian integral dari sebuah program secara keseluruhan. Penyimpanan dari SQLite sendiri berada dalam ruang penyimpanan yang digunakan oleh aplikasi [23].

BAB III DESAIN DAN PERANCANGAN

Pada bab ini akan dijelaskan hal-hal yang berkaitan dengan perancangan sistem yang akan dibuat dalam Tugas Akhir ini, dimulai dari deskripsi umum mengenai perangkat lunak yang akan dibuat, perancangan proses-proses yang ada, dan arsitektur umum sistem.

3.1. Deskripsi Umum

Dalam Tugas Akhir ini dibangun sebuah perangkat lunak sistem akuisisi data yang dapat membantu memetakan kualitas layanan angkutan umum secara otomatis. Aplikasi ini berjalan di atas sistem operasi Android yang memiliki sensor berupa accelerometer. Hal-hal yang akan diukur adalah kecepatan, posisi awal, posisi akhir, jumlah jalan buruk dan jumlah berhenti. Sensor yang ada pada Android akan digunakan untuk mendeteksi apakah seberapa banyak jalan berlubang dan seberapa sering angkutan umum berhenti.

3.2. Arsitektur Sistem

Dalam sistem ini setiap komponen memiliki peran masingmasing dalam sistem. Komponen sistem terdiri sebagai berikut:

- > Pengguna
 - Pengguna adalah orang yang menggunakan *smartphone* berbasis Android.
- ➤ Device
 - Device yang digunakan adalah *smartphone* berbasis Android minimal versi 4.0 dan *smartphone* yang telah tertanam sensor *accelerometer*.
- > Sensor Accelerometer Sensor accelerometer merupakan hardware yang melekat pada smartphone berbasis Android.

- Micro SD Micro SD merupakan media penyimpanan eksternal yang dimiliki smartphone yang berfungsi sebagai tempat menyimpan data.
- Angkutan umum Angkutan umum merupakan objek yang akan dikenai pengujian kualitas.

Gambar 3. 1 Arsitektur Sistem

Adapun perancangan arsitektur sistem yang telah dibuat dapat dilihat pada Gambar 3.1. Berdasarkan Gambar 3.1, adapun perancangan alur arsitektur sistem Tugas Akhir ini adalah sebagai berikut:

- 1. *Smartphone* diletakkan pada *dashboard* angkutan umum atau dipangku oleh penguji kualitas angkutan umum.
- 2. Jika ditekan tombol mulai, maka aplikasi akan merekam data-data yang dibutuhkan untuk peningkatan kualitas layanan angkutan umum.

- 3. Aplikasi akan mendeteksi jika ada jalan berlubang melalui data yang didapatkan melalui sensor accelerometer pada smartphone Android.
- 4. Jika pengguna menekan tombol selesai, maka data-data yang sudah direkam akan disimpan dalam basis data lokal dan nantinya dapat dikirim ke *server* jika terhubung dengan jaringan internet.
- 5. Data-data yang sudah direkam dapat dilihat melalui portal *website* ataupun aplikasi Android.

3.3. Perancangan Proses

Terdapat 2 algoritma yang digunakan untuk mengukur kualitas angkutan umum. Algoritma yang digunakan antara lain algoritma untuk pendeteksian pergerakan dan algoritma untuk mendeteksi adanya guncangan akibat berlubang.

3.3.1. Perancangan Algoritma Pendeteksi Pergerakan Kendaraan

Pendeteksian pergerakan kendaraan dihasilkan melalui analisa data dari sensor *accelerometer*. *Accelerometer* pada dasarnya akan mendeteksi percepatan terhadap sumbu x,y dan z. Dari sumbu tersebut, maka akan diambil nilai alpha dan dihitung nilai signifikansi dari *alpha* yang sudah dihitung. Alur kerjanya dijelaskan dalam diagram alir Gambar 3. 2.

Gambar 3. 2 Diagram Alir untuk Algoritma Pendeteksi Pergerakan Angkutan Umum

3.3.2. Perancangan Algoritma untuk Pendeteksi Guncangan

Pendeteksian pergerakan kendaraan dihasilkan melalui analisa data dari sensor *accelerometer*. *Accelerometer* pada dasarnya akan mendeteksi percepatan terhadap sumbu x, y, dan z. Dari sumbu tersebut, maka akan diambil nilai perbedaan z dan dihitung nilai signifikansi dari nilai z yang sudah dihitung. Alur kerjanya dijelaskan dalam diagram alir Gambar 3. 3.

Gambar 3. 3. Diagram Alir Algoritma untuk Mendeteksi Guncangan

3.3.3. Perancangan Windows Sampling dan Overlapping

Gambar 3. 4. Diagram Alir Windows Sampling dan Overlapping

Yes ↓ End Counter = 0

Windows sampling dan overlapping digunakan agar data yang dihasilkan lebih objektif. Windows sampling digunakan untuk melakukan pengecekan data awal interval. Sedangkan

overlapping digunakan untuk melakukan pengecekan setengah data baru dan setengah data sebelumnya. Hal ini dikarenakan biasanya terdapat data yang menyebabkan kesalahan diakibatkan tidak memperhitungkan data sebelumnya. Rancangan diagram alir windows sampling dan overlapping dapat dilihat pada Gambar 3. 4.

3.4. Perancangan Kasus Penggunaan

Adapun diagram kasis penggunaan yang telah dibuat dapat dilihat pada Gambar 3. 5. Berdasarkan Gambar 3. 5, aktor pada aplikasi adalah pengguna.

Gambar 3. 5. Diagram Kasus Penggunaan

Pengguna adalah pengguna aplikasi ini. Pengguna dapat memasukkan data angkutan umum yang berisi jenis rute angkutan umum dan plat nomor angkutan umum, melihat hasil akuisisi data yang berada pada perangkat Android, melakukan akuisisi data kualitas angkutan umum dan melihat hasil akuisisi data di *website*. Secara umum, aliran dari program dilihat melalui Gambar 3. 6.

Gambar 3. 6. Aliran Program Secara Umum

3.5. Diagram Aktivitas Sistem

Diagram aktivitas adalah diagram yang menggambarkan garis besar alur dari tiap-tiap kasus penggunaan yang telah dijelaskan pada Gambar 3. 5. Diagram aktivitas menggambarkan proses atau aktivitas dari level atas secara umum. Pada subbab ini akan dijelaskan mengenai diagram aktivitas yang terdapat pada Tugas Akhir ini.

3.4.1. Diagram Aktivitas Memasukkan Data Angkutan Umum

Diagram aktivitas memasukkan data angkutan umum menjelaskan tentang bagaimana pengguna dapat memulai pengevaluasian dan memasukkan data angkutan umum yang akan diuji. Rancangan diagram aktivitasnya dilihat pada Gambar 3. 7.

Gambar 3. 7. Diagram Aktivitas Memasukkan Data Angkutan Umum

3.4.2. Diagram Aktivitas Melakukan Akuisisi Data Kualitas Angkutan Umum

Diagram aktivitas ini menjelaskan tentang bagaimana aplikasi dapat merekam data angkutan umum serta mendeteksi beberapa data pendukung untuk mengevaluasi angkutan umum secara otomatis. Rancangan diagram aktivitasnya dapat dilihat pada Gambar 3. 8.

Gambar 3. 8. Diagram Aktivitas Melakukan Pengujian Angkutan Umum

Aktivitas berjalan ketika pengguna memilih tombol mulai. Setelah itu, aplikasi dapat merekam beberapa data yang dapat mengevaluasi angkutan umum. Ketika pengguna menekan tombol selesai, maka data akan disimpan dalam basis data.

3.4.3. Diagram Aktivitas Melihat Hasil Akuisisi Data pada Aplikasi Android

Aktivitas ini menjelaskan bagaimana pengguna dapat melihat data evaluasi yang ada pada perangkat Android. Aktivitas dimulai ketika pengguna membuka menu lihat data evaluasi. Selanjutnya, pengguna dapat melihat detil data yang diinginkan dan disertai dengan pemetaan yang selanjutnya dapat menjadi data untuk peningkatan pelayanan angkutan umum. Rancangan diagram aktivitas dapat dilihat melalui Gambar 3. 9.

Gambar 3. 9. Diagram Aktivitas Melihat Data pada Aplikasi Android

3.4.4. Diagram Aktivitas Melihat Hasil Akuisisi Data pada Website

Pada Gambar 3. 10 terdapat diagram aktivitas melihat data pada evaluasi pada *website*. Aktivitas pengguna diawali dengan membuka *website* dan diakhiri dengan menampilkan hasil akuisisi data.

Gambar 3. 10. Diagram Aktivitas Melihat Data pada Website

3.6. Rancangan Antarmuka Aplikasi

Pada Tugas Akhir ini, antarmuka yang ada terbagi menjadi dua. Yang pertama yaitu antarmuka untuk pengguna Android dan yang ke dua adalah antarmuka yang dapat dilihat melalui *website*.

3.5.1. Rancangan Antarmuka Menambahkan Data Angkutan Umum

Gambar 3. 11 menunjukkan antarmuka halaman awal dari aplikasi Android sistem evaluasi angkutan umum. Selanjutnya, pengguna menekan tombol masuk.

Gambar 3. 11. Tampilan Antarmuka Awal Aplikasi

Setelah itu, pengguna akan menuju ke menu utama yang berisi menu tambah atau lihat yang terlihat pada Gambar 3. 12. Jika pengguna memilih tanda tambah, maka pengguna dapat menambah pengujian rute.

Gambar 3. 12. Tampilan Antarmuka Menu Utama

Pada Gambar 3. 13 Pengguna dapat mengisikan data angkutan umum yang berupa plat nomor dan jenis angkutan umum. Jika tombol tambah diklik maka data angkutan akan tersimpan dalam basis data.

Gambar 3. 13. Tampilan Antarmuka Mengisi Data Angkutan Umum

3.5.2. Rancangan Antarmuka Pengujian Angkutan Umum

Pada Gambar 3. 14 pengguna dapat mulai melakukan pengukuran. Setelah itu, jika pengguna memilih tombol mulai, maka aplikasi akan mulai merekam pergerakan angkutan umum. Pengguna dapat menekan tombol "+" yang mendakan bahwa ada penambahan jumlah penumpang. Jika menekan tombol "-" maka

ada penumpang yang turun. Jika menekan tombol selesai, maka data hasil akan dimasukkan dalam basis data.

Gambar 3. 14. Rancangan Antarmuka Memulai Pengukuran Kualitas Angkutan Umum

3.5.3. Rancangan Antarmuka Melihat data Pada Android

Gambar 3. 15 Rancangan Antarmuka Daftar Pengukuran Angutan Umum

Pada Gambar 3. 15 terdapat hasil evaluasi angkutan umum. Di dalamnya terdapat plat nomor dan tanggal diadakan pengevaluasian. Jika diklik, maka akan tampil detilnya.

Gambar 3. 16 Rancangan Antarmuka Detil Hasil Evaluasi Angkutan Umum

Pada Gambar 3. 16 merupakan antarmuka dari detil evaluasi angkutan umum. Terdapat tiga tombol yang menandakan 3 peta dalam aplikasi.

Gambar 3. 17 Rancangan Antarmuka Peta Kecepatan, Guncangan dan Jumlah Penumpang

Pada Gambar 3. 17 terdapat visualisasi data lokasi rute yang dilewati angkutan umum. Di dalamnya terdapat pemetaan dari peta kecepatan, guncangan, dan kepadatan penumpang.

3.5.4. Rancangan Antarmuka Melihat Hasil Akuisisi data Pada Website

DA	FTAR PENGUKUI	RAN ANGKUTA	AN UMUM
NO	PLAT NOMOR	TANGGAL	AKSI
1	L 4515 WA	17/10/2014	LIHAT DETIL
2	L 2121 WA	17/11/2014	LIHAT DETIL
3	L 9201 WA	17/04/2014	LIHAT DETIL
4	L 2132 WA	17/12/2014	LIHAT DETIL

Gambar 3. 18 Rancangan Antarmuka Daftar Pengukuran Angkutan Umum

Pada Gambar 3. 18 terlihat beberapa hasil pengukuran. Jika tombol lihat detil diklik, maka akan terdapat tampilan detil pengukuran. Pada Gambar 3. 19 terdapat hasil pengukuran secara detil dan pemetaannya.

Gambar 3. 19 Rancangan Antarmuka Detil Evaluasi pada Website

[Halaman ini sengaja dikosongkan]

BAB IV IMPLEMENTASI

Pada bab ini akan dibahas mengenai implementasi yang dilakukan berdasarkan rancangan yang telah dijabarkan pada bab sebelumnya. Sebelum penjelasan implementasi akan ditunjukkan terlebih dahulu lingkungan untuk melakukan implementasi.

4.1 Lingkungan Implementasi

Lingkungan implementasi yang akan digunakan untuk melakukan implementasi adalah sebagai berikut :

- 1. Perangkat keras
 - Prosesor: Intel® CoreTM i5-2430M CPU @ 2.40GHz (4 CPUs), ~2.4GHz
 - Memori: 4096 MB
- 2. Perangkat lunak
 - Windows 8 64 bit
 - Eclipse Juno Android Development Tools
 - Notepad++ v6.5.1

4.2 Implementasi Kasus Penggunaan

Dalam subbab ini akan diimplementasikan fungsi-fungsi utama dari aplikasi sistem akuisisi data angkutan umum. Implementasi yang ada berbentuk *pseudocode*.

4.2.1 Implementasi Menambah Data Angkutan Umum

Menambah data angkutan umum berfungsi untuk menambahkan data angkutan umum yang akan diukur kualitasnya. Data-data yang dibutuhkan antara lain plat nomor angkutan dan jenis angkutan. Plat nomor angkutan umum dapat diambil dengan cara memasukkan data plat nomor pada kolom yang telah disediakan. Sedangkan untuk jenis angkutan umum diambil dengan cara memilih jenisnya pada *dropdown* yang tersedia.

Data yang sudah ada akan diberikan ke halaman selanjutnya untuk digabungkan dengan data pengukuran angkutan umum yang lainnya. Implementasi berupa *pesudocode* untuk menambah data angkutan umum dapat dilihat pada Gambar 4. 1.

```
INPUT platNomor
2
   INPUT jenisAngkutan
3
   IF tombolMulaiUkur CLICKED THEN
4
          IF platNomor != NULL
5
          THEN
6
                 SEND DATA TO Ukur Activity
7
   ELSE
8
          THEN
9
                 DISPLAY Peringatan
```

Gambar 4. 1. *Pseudocode* Menambahkan Data Angkutan Umum

4.2.2 Implementasi Melakukan Pengukuran Angkutan Umum

Melakukan pengukuran angkutan umum digunakan untuk mengambil data yang ada pada pengujian angkutan umum secara otomatis dengan fitur yang ada pada telepon seluler dengan sistem operasi Android.

4.2.2.1 Implementasi Windows Sampling dan Overlapping

Windows sampling diambil melalui sejumlah data accelerometer awal dari aplikasi. Sedangkan overlapping diambil melalui setengah data accelerometer sebelumnya digabung dengan data accelerometer saat ini. Setelah itu data yang sudah terkumpul dapat dilakukan pengecekan. Ilustrasi dari windows sampling dapat dilihat pada Gambar 4. 2 dan ilustrasi overlapping dapat dilihat pada .Gambar 4. 3.

Gambar 4. 2. Ilustrasi Windows Sampling

Pada Gambar 4. 2 dijelaskan aplikasi akan mengambil data secara terus menerus. Untuk 10 data awal yang disimpan, maka akan dihitung dan akan dicek keadaannya.

Gambar 4. 3. Ilustrasi Overlapping

Pada Gambar 4. 3 dijelaskan akan diambil 5 data sebelumnya digabungkan dengan 5 data saat ini. 10 data tersebut kemudian dikalkulasi keadaannya. Pengambilan data tersebut dilakukan secara terus menerus hingga aplikasi berhenti dijalankan. Implementasi berupa *pseudocode* dari *windows sampling* dan *overlapping* dapat dilihat pada Gambar 4. 4.

```
INITIALIZE xTemp
2
    INITIALIZE yTemp
3
    INITIALIZE zTemp
4
    INITIALIZE xTemp2
5
    INITIALIZE yTemp2
    INITIALIZE zTemp2
6
7
8
    WHILE OnSensorChanged
           ADD x TO xTemp
9
           ADD y TO yTemp
10
           ADD z TO zTemp
11
12
           ADD x ke xTemp2
13
           ADD y ke yTemp2
14
15
           ADD z ke zTemp2
16
17
           counter++
18
           IF counter := interval/2:
19
                  THEN
20
                  flag++;
21
                  IF flag >= 2:
22
                         THEN
23
                         cekPergerakan()
24
25
                  xTemp2 := xTemp
                  yTemp2 := yTemp
26
27
                  zTemp2 := zTemp
28
29
                  CLEAR xTemp
30
                  CLEAR yTemp
31
                  CLEAR zTemp
                  counter = 0
32
```

Gambar 4. 4. Pseudocode Windows Sampling dan Overlapping

4.2.2.2 Implementasi Mendapatkan Data Tanggal dan Waktu

Data tanggal dan waktu cek dapat diambil melalui fungsi kelas *SimpleDateFormat()* yang ada pada Android. Implementasi berupa *pseudocode* untuk mendapatkan data tanggal dan waktu dapat dilihat pada **Error! Reference source not found.**

```
1 INITIALIZE SimpleDateFormat TO ("dd/MM/yyyy")
FOR DATE
2 INITIALIZE SimpleDateFormat TO ("HH/mm/ss") FOR
TIME
3
4 SET DATE
5 SET TIME
```

Gambar 4. 5. *Pseudocode* Mendapatkan Waktu dan Tanggal Sekarang

4.2.2.3 Implementasi Mendapatkan Posisi Awal dan Posisi Akhir

Posisi awal adalah posisi di mana awal dari pengukuran. Sedangkan untuk posisi akhir adalah posisi kendaraan ketika selesai melakukan pengukuran. Posisi akhir didapatkan ketika pengguna menekan tombol selesai dan posisi akhir akan tersimpan. Posisi didapatkan melalui sistem pemosisi global. Cara untuk mendapatkan posisi awal dan posisi akhir berupa *pseudocode* dapat dilihat pada Gambar 4. 6.

```
INITIALIZE LocationManager
INITIALIZE Location
INITIALIZE LocationListener

WHILE onLocationChange THEN
IF isAwal = TRUE THEN
IF latitude != null AND longitude != null
THEN posisiAwal = latitude,longitude
IF selesaiButton CLICKED
```

10	<pre>IF latitude != null AND longitude != null</pre>
	THEN posisiAkhir = latitude,longitude

Gambar 4. 6. *Pseudocode* Mendapatkan Posisi Awal dan Posisi Akhir

4.2.2.4 Implementasi Mendapatkan Koordinat Jalan yang Dilalui Angkutan Umum

Koordinat angkutan akan selalu direkam ketika alat dijalankan. Koordinat angkutan umum dapat diambil jika GPS telah dinyalakan. Implementasi berupa *pseudocode* dari mendapatkan koordinat jalan yang dilalui angkutan umum dapat dilihat pada Gambar 4. 7.

```
INITIALIZE LocationManager
2
    INITIALIZE Location
3
    INITIALIZE LocationListener
4
   koordinat = ""
5
6
    isBerhenti := FALSE
7
   isGuncangan := FALSE
8
   WHILE onLocationChange
9
10
          THEN
11
          SET koordinat += latitude, longitude
```

Gambar 4. 7. *Pseudocode* Mendapatkan Koordinat Jalan yang Dilalui Angkutan Umum

4.2.2.5 Implementasi Mendapatkan Jarak Tempuh

Jarak tempuh angkutan umum dihitung melalui perpindahan kendaraan. Hasil dari perpindahan dapat dihitung melalui rumus *great circle distance*. Implementasi berupa *pseudocode* untuk mendapatkan jarak dapat dilihat pada Gambar 4.8.

```
INPUT latitudeAwal
2
    INPUT longitudeAwal
3
    INPUT latitudeAkhir
4
   INPUT longitudeAkhir
5
6
    X1 := latitudeAwal
7
   Y1 := longitudeAwal
8
   X2 := latitudeAkhir
9
   Y2 := longitudeAkhir
10
11
    x1 := x1 * PI / 180
12
   y1 := y1 * PI / 180
   x2 := x2 * PI / 180
13
   y2 := y2 * PI / 180
14
15
   lonDelta := y2 - y1
16
17
18
       := POW(COS(x2) * SIN(lonDelta)
    POW(COS(x1) * SIN(x2) - SIN(x1) * COS(x2)
   COS(lonDelta), 2)
19
   b := SIN(x1) * SIN(x2) + COS(x1) * COS(x2) *
20
   COS(lonDelta)
21
   distance := ATAN2(SQRT(a) , b) * 6371
22
23
24
   RETURN distance
```

Gambar 4. 8. Pseudocode Mendapatkan Jarak Tempuh

4.2.2.6 Implementasi Mendapatkan Waktu Tunggu

Waktu tunggu didapatkan melalui waktu mulai pengecekan hingga waktu kendaraan berjalan. Implementasi berupa *pseudocode* untuk mendapatkan waktu tunggu dilihat pada Gambar 4. 9. Waktu yang terus berjalan didapatkan dari *widget Chronometer* yang ada pada Android.

1	IF tombolMulai CLICKED THEN
2	START CHRONOMETER TICK
3	WHILE CHRONOMETER TICK
4	THEN
5	SET waktuSekarang
6	IF tombolUkur CLICKED THEN
7	waktuTunggu = waktuSekarang
8	IF tombolSelesai CLICKED THEN
9	waktuTempuh = waktuSekarang

Gambar 4. 9. *Pseudocode* Mendapatkan Waktu Tunggu dan Waktu Tempuh

4.2.2.7 Implementasi Mendapatkan Data Kecepatan Maksimal

Data kecepatan didapatkan melalui kecepatan tiap perpindahan lokasi. Data kecepatan dapat diambil melalui fungsi getSpeed() yang ada pada location yang mengimplementasikan LocationListener yang diambil dari Sistem Pemosisi Global. Implementasi berupa pseudocode untuk mendapatan data kecepatan dapat dilihat pada Gambar 4. 10.

Gambar 4. 10. Pseudocode Mendapatkan Data Kecepatan

4.2.2.8 Implementasi Mendapatkan Jumlah Penumpang

Jumlah penumpang dapat diambil melalui sebuah button plus yang ada pada aplikasi. Ketika ada penumpang yang masuk ke dalam angkutan, maka tombol plus ditekan dan jumlah penumpang akan bertambah. Implementasi berupa *pseudocode* dari mendapatkan jumlah penumpang dilihat pada Gambar 4. 11.

```
WHILE mulai = TRUE:
2
       THEN
3
       IF tombolPlus CLICKED
4
          THEN
5
           jumlahPenumpang:= jumlahPenumpang + 1
6
           penumpangSekarang:=penumpangSekarang +1
7
       IF tombolMinus CLICKED
8
           THEN
           penumpangSekarang:=penumpangSekarang -1
9
10
```

Gambar 4. 11. *Pseudocode* Mendapatkan Data Jumlah Penumpang

4.2.2.9 Implementasi Mendapatkan Jumlah Berhenti

Untuk melakukan evaluasi angkutan umum, aplikasi perlu mengetahui di mana saja angkutan tersebut akan berhenti. Pada menerima awalnya, aplikasi input dari accelerometer. Selanjutnya, jika nilai acceleration melebihi threshold, maka akan nilai signifikansi akan bertambah. Selanjutnya, akan dibandingkan dengan seberapa banyak aplikasi membaca input accelerometer. Jika kurang dari threshold, maka dapat disimpulkan bahwa kendaraan sedang berhenti. Implementasi berupa pseudocode dari mendapatkan jumlah berhenti dapat dilihat pada Gambar 4. 12. Selain itu, koordinat tempat angkutan berhenti tersebut juga akan disimpan.

```
1  x := INPUT sensor accelerometer sumbu x
2  y := INPUT sensor accelerometer sumbu y
3  z := INPUT sensor accelerometer sumbu z
4
5  acceleration := sqrt( x^2+y^2+z^2)
6
7  IF acceleration > 10.1
```

```
8 THEN signifikansi:=signifikansi + 1
9 IF signifikansi/10 < threshold
10 THEN
11 jumlahBerhenti := jumlahBerhenti + 1
12 statusberhenti SET TO "berhenti"
13 SAVE koordinat
```

Gambar 4. 12. Pseudocode Mendapatkan Jumlah Berhenti

4.2.2.10. Implementasi Mendapatkan Data Jumlah Guncangan

Untuk melakukan evaluasi angkutan umum, aplikasi perlu mengetahui di mana saja angkutan tersebut akan mengalami guncangan. Pada awalnya, aplikasi menerima input dari accelerometer. Selanjutnya, jika nilai acceleration melebihi threshold, maka akan nilai signifikansi akan bertambah. Selanjutnya, akan dibandingkan dengan seberapa banyak aplikasi membaca masukan accelerometer. Jika lebih dari threshold, maka dapat disimpulkan bahwa kendaraan sedang mengalami guncangan. Implementasi berupa pseudocode untuk mendapatkan jumlah guncangan dapat dilihat pada Gambar 4. 13. Selain itu, data koordinat jalan berlubang juga disimpan.

```
1  X := INPUT sensor accelerometer sumbu x
2  Y := INPUT sensor accelerometer sumbu y
3  Z := INPUT sensor accelerometer sumbu z
4
5  IF abs(zSekarang-zSebelum) > threshold
6  THEN jumlahGuncangan := jumlahGuncangan + 1
7  SAVE koordinat
8  zSebelum := zSekarang
```

Gambar 4. 13. Pseudocode Mendapatkan Jumlah Guncangan

4.2.2.11 Implementasi Menyimpan Data di Basis Data Lokal

Setelah melakukan pengukuran, pengguna menyimpan datanya pada basis data lokal terlebih dahulu. Hal ini dilakukan

ketika tombol selesai diklik. Implementasi berupa *pseudocode* untuk menyimpan data pada basis data lokal dapat dilihat pada Gambar 4. 14.

1	IF selesaiButton CLICKED
2	THEN
3	SET idRute
4	SET platNomor
5	SET tanggalCek
6	SET waktuCek
7	SET jenisAngkutan
8	SET posisiAwal
9	SET posisiAkhir
10	SET jarakRute
11	SET waktuTunggu
12	SET waktuTempuh
13	SET kecepatan
14	SET jumlahPenumpang
15	SET koordinat
16	SET jumlahGuncangan
17	SET jumlahBerhenti
18	INSERT ALL DATA

Gambar 4. 14. *Pseudocode* Menyimpan Data pada Basis Data Lokal

4.2.2.12 Implementasi Pengiriman Data ke Server

Data yang sudah terkumpul, selanjutnya akan dikirim ke server. Pengiriman data ke server menggunakan JSON yang dibantu dengan class JSONParser. Sehingga format data dapat diterima oleh berkas PHP yang menerima data tersebut. Selanjutnya data dimasukkan dalam basis data server. Jalannya fungsi mengirim data ke server berupa pseudocode dijelaskan pada Gambar 4. 15.

1	IF kirimButton CLICKED
2	THEN

3	GET idRute
4	GET platNomor
5	GET tanggalCek
6	GET waktuCek
7	GET jenisAngkutan
8	GET posisiAwal
9	GET posisiAkhir
10	GET jarakRute
11	GET waktuTunggu
12	GET waktuTempuh
13	GET kecepatan
14	GET jumlahPenumpang
15	GET koordinat
16	GET jumlahGuncangan
17	GET jumlahBerhenti
18	SET idRute
19	SET platNomor
20	SET tanggalCek
21	SET waktuCek
22	SET jenisAngkutan
23	SET posisiAwal
24	SET posisiAkhir
25	SET jarakRute
26	SET waktuTunggu
27	SET waktuTempuh
28	SET kecepatan
29	SET jumlahPenumpang
30	SET koordinat
31	SET jumlahGuncangan
32	SET jumlahBerhenti
33	JSON DECODE
34	SEND ALL DATA

Gambar 4. 15. Pseudocode Mengirim Data ke Server

4.2.2.13 Implementasi Koneksi Basis Data

Koneksi basis data digunakan untuk menghubungkan *website* dengan basis data *online*. Dengan adanya koneksi basis data, data

yang dikirim dapat disimpan dalam basis data. Hal ini berguna dalam hal menerima data di *server* maupun untuk *website* yang digunakan untuk menampilkan hasil akuisisi data. Implementasi berupa *pseudocode* koneksi basis data dapat dilihat pada Gambar 4. 16.

```
1 SET namaHost
2 SET username
3 SET password
4 SET namaDatabase
6 IF namaHost, username, password, namaDatabase
EXIST THEN CONNECT
7 ELSE
8 ERROR
```

Gambar 4, 16, Pseudocode Koneksi Basis Data

4.2.2.14 Implementasi Menerima Data di Server

Setelah data dikirim dari aplikasi Android, maka data disimpan di basis data. Implementasi berupa *pseudocode* untuk menerima data di *server* dapat dilihat pada Gambar 4. 17.

```
INCLUDE koneksi
2
   GET idRute
3
   GET platNomor
   GET tanggalCek
5
   GET waktuCek
6
   GET jenisAngkutan
7
   GET posisiAwal
   GET posisiAkhir
   GET jarakRute
9
  GET waktuTunggu
10
11
   GET waktuTempuh
12
   GET kecepatan
13
   GET jumlahPenumpang
   GET koordinat
14
   GET jumlahGuncangan
15
```

16	GET jumlahBerhenti
17	INSERT ALL DATA

Gambar 4. 17. Pseudocode Menerima Data di Server

4.2.3 Implementasi Melihat Hasil Pengukuran pada Android

Hasil akuisisi data dapat dilihat pada aplikasi Android. Awalnya pengguna harus melakukan sinkronisasi sehingga data yang ada pada basis data *online* dapat disimpan dalam basis data lokal. Selanjutnya, pengguna dapat melihat semua hasil akuisisi data, detil akuisisi data dan penggambaran hasil akuisisi dalam bentuk peta.

4.2.3.1. Implementasi Sinkronisasi Data dari Basis Data Server ke Basis Data Lokal

Sebelum melihat data hasil akuisisi data pada perangkat Android, pengguna dapat melakukan sinkronisasi dari data yang ada pada basis data *online* pada basis data lokal. Implementasi berupa *pseudocode* untuk melakukan sinkronisasi data dapat dilihat pada Gambar 4. 18.

1	IF tombolSinkronisasi CLICKED THEN
2	delete data local
3	SELECT ALL DATA
4	INSERT ALL DATA TO databaseLocal

Gambar 4. 18. Pseudocode Sinkronisasi Data

4.2.3.2. Implementasi Melihat Semua Data Hasil Akuisisi Data pada Android

Hasil akuisisi data dapat dilihat pada aplikasi Android. Dalam pengaplikasiannya, pengguna mengambil data dahulu dari basis data lokal. Selanjutnya, data semua hasil akuisisi data dapat ditampilkan dalam bentuk *Listview* yang di dalamnya terdapat 3

TextView. TextView1 berisi data plat nomor angkutan umum, TextView2 berisi data tanggal pengecekan dan TextView3 berisi waktu pengecekan. Implementasi berupa *pseudocde* untuk melihat hasil akuisisi data dapat dilihat pada Gambar 4. 19.

1	IF tombolLihat CLICKED THEN
2	
3	GET ALL DATA
4	FOR EACH DATA
5	SET textView1 WITH platNomor
6	SET textView2 WITH tanggalCek
7	SET textView3 WITH waktuCek

Gambar 4. 19. *Pseudocode* Melihat Semua Hasil Akuisisi Data pada Android

4.2.3.3. Implementasi Melihat Detil Hasil Akuisisi Data pada Android

Pengguna dapat melihat detil akuisisi data pada aplikasi Android. Dalam pengapilkasiannya, data yang ada pada basis data lokal diambil terlebih dahulu berdasarkan idRute angkutan unun. Selanjutnya, aplikasi akan menampilkan hasil akuisisi data dalam bentuk *TextView*. Implementasi berupa *pseudocode* untuk melihat detil akuisisi data pada Android dapat dilihat pada Gambar 4. 20.

1	IF tombolRute CLICKED THEN
2	SET idRute
3	GET ALL DATA BY idRute
4	<pre>INITIALIZE textView1, textView2, textView3</pre>
5	INITIALIZE textView4, textView5, textView6
6	INITIALIZE textView7, textView8, textView9
7	INITIALIZE textView10, textView11
8	INITIALIZE textView12, textView13
9	INITIALIZE textView14
10	SET textView1 WITH platNomor
11	SET textView2 WITH tanggalCek
12	SET textView3 WITH waktuCek

13	SET textView4 WITH jenisRute
14	SET textView5 WITH posisiAwal
15	SET textView6 WITH posisiAkhir
16	SET textView7 WITH perpindahan
17	SET textView8 WITH kecepatanMaksimal
18	SET textView9 WITH kecepatan
19	SET textView10 WITH waktuTunggu
20	SET textView11 WITH waktuTempuh
21	SET textView12 WITH jumlahPenumpang
22	SET textView13 WITH jumlahGuncangan
23	SET textView14 WITH jumlahBerhenti

Gambar 4. 20. Pseudocode Melihat Detil Hasil Akuisisi Data

4.2.3.4. Implementasi Melihat Hasil Akuisisi dalam Bentuk Peta Pemberhentian di Android

Dalam data yang ada pada aplikasi, terdapat data koordinat berupa *latitude* dan *longitude* yang dapat ditampilkan dalam bentuk peta yang ada pada Android. Selain itu terdapat status pemberhentian yang dapat ditampilkan dalam bentuk *marker*. Implementasi berupa *pseudocode* untuk melihat hasil akuisisi data dalam bentuk peta berhenti dapat dilihat pada Gambar 4. 21.

1	IF tombolPetaBerhenti CLICKED THEN
2	SET idRute
3	GET koordinat BY idRute
4	INITIALIZE map
5	FOR EACH koordinat THEN
5	ADD POLYLINE BY latitude, longitude TO MAP
7	IF statusBerhenti = TRUE THEN
8	ADD MARKER BY latitude, longitude TO MAP

Gambar 4. 21. *Pseudocode* Melihat Hasil Akuisisi Data dalam Bentuk Peta Berhenti

4.2.3.5. Implementasi Melihat Hasil Akuisisi Data dalam Bentuk Peta Jalan Berlubang di Android

Dalam data yang ada pada aplikasi, terdapat data koordinat berupa *latitude* dan *longitude* yang dapat ditampilkan dalam bentuk peta yang ada pada Android. Selain itu terdapat status kondisi jalan yang dapat ditampilkan dalam bentuk *marker*. Implementasi berupa *pseudocode* dari melihat hasil akuisisi data dalam bentuk peta berhenti dapat dilihat pada Gambar 4. 22.

1	IF tombolPetaJalanBerlubang CLICKED THEN
2	
3	GET koordinat BY idRute
4	INITIALIZE map
5	FOR EACH koordinat THEN
6	ADD POLYLINE BY latitude,longitude TO MAP
7	<pre>IF statusberlubang = TRUE THEN</pre>
8	ADD MARKER BY latitude, longitude TO MAP

Gambar 4. 22. *Pseudocode* Melihat Hasil Akuisisi Data dalam Bentuk Peta Jalan Berlubang

4.2.3.6. Implementasi Melihat Hasil Akuisisi Data dalam Bentuk Peta Kepadatan Penumpang di Android

Dalam data yang ada pada aplikasi, terdapat data koordinat berupa *latitude* dan *longitude* yang dapat ditampilkan dalam bentuk peta yang ada pada Android. Selain itu terdapat status kepadatan penumpang yang dapat ditampilkan dalam bentuk marker. Implementasi berupa *pseudocode* dari melihat hasil akuisisi data dalam bentuk peta berhenti dapat dilihat pada Gambar 4. 23.

```
1 IF tombolKepadatan CLICKED THEN
2 SET idRute
3 GET koordinat BY idRute
4 INITIALIZE map
5 FOR EACH koordinat THEN
```

6	ADD POLYLINE BY latitude, longitude TO MAP
7	<pre>IF statuspenuh = TRUE THEN</pre>
8	ADD MARKER BY latitude, longitude TO MAP

Gambar 4. 23. *Pseudocode* Melihat Hasil Akuisisi Data dalam Bentuk Peta Kepadatan Penumpang

4.2.4 Implementasi Melihat Hasil Akuisisi Data pada Website

Selain dalam aplikasi Android, hasil akuisisi data dapat dilihat melalui aplikasi *website*. Data yang diambil didapatkan dari basis data *online* yang ada di *server*.

4.2.4.1. Implementasi Melihat Semua Hasil Akuisisi Data pada *Website*

Pengguna dapat melihat semua hasil akuisisi data melalui *website*. Hal ini diawali ketika pengguna menekan tombol masuk pada halaman beranda. Implementasi melihat semua hasil akuisisi data pada *website* dapat dilihat pada Gambar 4. 24.

1	INCLUDE koneksi		
2	IF tombolMasuk CLICKED THEN		
3	GET ALL DATA		
4	SHOW platNomor, tanggalCek, waktuCek		

Gambar 4. 24. *Pseudocode* Melihat Semua Hasil Akuisisi Data pada *Website*

4.2.4.2. Implementasi Melihat Detil Hasil Akuisisi Data pada *Website*

Pengguna dapat melihat detil hasil akuisisi data melalui website. Hal ini dimulai ketika pengguna menekan tombol detil pada salah satu angkutan yang sudah melalui proses akuisisi data. Implementasi berupa pseudocode dari melihat detil hasil akuisisi data pada website dapat dilihat pada Gambar 4. 25.

```
1 INCLUDE koneksi
2 IF tombolRute CLICKED THEN
3 SET idRute
4 GET DATA BY idRute
5 SHOW platNomor, tanggalCek, waktuCek,
6 jenisRute, posisiAwal, posisiAkhir, perpindahan, kecepatanMaksimal, kecepatan, waktuTunggu, waktuTempuh, jumlahPenumpang, jumlahGuncangan, jumlahBerhenti
```

Gambar 4. 25. *Pseudocode* Melihat Detil Hasil Akuisisi Data pada *Website*

4.2.4.3. Implementasi Melihat Hasil Akuisisi Data dalam Bentuk Peta Pemberhentian pada Website

Dalam data yang ada pada aplikasi, terdapat data koordinat berupa *latitude* dan *longitude* yang dapat ditampilkan dalam bentuk peta yang ada pada *website*. Selain itu terdapat tempat mana saja tempat pemberhentian angkutan umum yang dapat ditampilkan dalam bentuk *marker*. Implementasi berupa *pseudocode* untuk melihat hasil akuisisi data dalam bentuk peta berhenti dapat dilihat pada Gambar 4. 26.

```
INCLUDE koneksi
2
   IF tombolRute CLICKED THEN
3
      SET idRute
4
      GET koordinat BY idRute
5
      INITIALIZE map
6
      FOR EACH koordinat THEN
7
         ADD POLYLINE BY latitude, longitude TO MAP
         IF statusberhenti = TRUE THEN
8
           ADD MARKER BY latitude, longitude TO MAP
```

Gambar 4. 26. *Pseudocode* Melihat Hasil Akuisisi Data dalam Bentuk Peta Pemberhentian pada *Website*

4.2.4.4. Implementasi Melihat Hasil Akuisisi Data dalam Bentuk Peta Kondisi Jalan pada *Website*

Dalam data yang ada pada aplikasi, terdapat data koordinat berupa *latitude* dan *longitude* yang dapat ditampilkan dalam bentuk peta yang ada pada *website*. Selain itu terdapat tempat mana saja jalan berlubang yang dilalui angkutan umum yang dapat ditampilkan dalam bentuk *marker*. Implementasi berupa *pseudocode* untuk melihat hasil akuisisi data dalam bentuk peta berhenti dapat dilihat pada Gambar 4. 27.

1	INCLUDE koneksi
2	IF tombolRute CLICKED THEN
3	SET idRute
4	GET koordinat BY idRute
5	INITIALIZE map
6	FOR EACH koordinat THEN
7	ADD POLYLINE BY latitude, longitude TO MAP
8	<pre>IF statusberlubang = TRUE THEN</pre>
9	ADD MARKER BY latitude, longitude TO MAP

Gambar 4. 27. *Pseudocode* Melihat Hasil Akuisisi Data dalam Bentuk Peta Kondisi Jalan pada *Website*

4.2.4.5. Implementasi Melihat Hasil Akuisisi Data dalam Bentuk Peta Kepadatan Penumpang pada *Website*

Dalam data yang ada pada aplikasi, terdapat data koordinat berupa *latitude* dan *longitude* yang dapat ditampilkan dalam bentuk peta yang ada pada *website*. Selain itu terdapat tempat mana saja yang mengalami kepadatan penumpang yang dilalui angkutan umum yang dapat ditampilkan dalam bentuk *marker*. Implementasi *pseudocode* melihat hasil akuisisi data dalam bentuk peta berhenti dapat dilihat pada Gambar 4. 28.

INCLUDE koneksi
IF tombolRute CLICKED THEN

SET idRute

GET koordinat BY idRute

INITIALIZE map

FOR EACH koordinat THEN

ADD POLYLINE BY latitude, longitude TO MAP

IF statuspenuh = TRUE THEN

ADD MARKER BY latitude, longitude TO MAP

Gambar 4. 28. *Pseudocode* Melihat Hasil Akuisisi Data dalam Bentuk Peta Kepadatan Penumpang pada *Website*

4.3 Implementasi Antarmuka

Pada subbab ini akan dijelaskan mengenai implementasi antarmuka tampilan dari aplikasi.

4.3.1. Implementasi Tampilan Menambahkan Data Angkutan Umum

Tampilan ini digunakan untuk menambahkan data angkutan umum. Tampilan ini dibangun dengan bahasa XML dan diatur dengan Java yang ditampilkan dalam aplikasi Android. Implementasinya dapat dilihat pada Gambar 4. 29, Gambar 4. 30 dan Gambar 4. 31. Ketika membuka aplikasi, pengguna akan diperlihatkan tampilan seperti Gambar 4. 29.

Gambar 4. 29. Tampilan Halaman Awal Antarmuka

Ketika tombol masuk ditekan, maka akan tampil halaman menu utama aplikasi yang dapat dilihat pada Gambar 4. 30. Penjelasan dari tampilan halaman awal dijelaskan pada Tabel 4. 1.

Tabel 4. 1. Penjelasan Tampilan Halaman Awal

No	Nama	Jenis	Keterangan
1	Masuk	Tombol	Tombol yang digunakan untuk masuk ke aplikasi dan menuju ke menu utama.

61

Gambar 4. 30. Tampilan Halaman Menu Utama

Pada Gambar 4. 30 terlihat beberapa tombol yang dapat ditekan oleh pengguna. Yaitu tombol mulai, lihat, penyimpanan lokal dan sinkronisasikan. Tombol mulai digunakan ketika pengguna ingin melakukan akuisisi data angkutan umum. Ketika tombol mulai ditekan, maka akan tampil halaman memasukkan data angkutan umum. Tombol lihat digunakan ketika pengguna ingin melihat hasil akuisisi data angkutan umum. Tombol lihat dapat digunakan ketika kita sudah menekan tombol sinkronisasikan yang artinya kita mengambil data dari server dan melakukan sinkronisasi pada basis data lokal. penyimpanan lokal digunakan untuk melihat hasil akuisisi data yang sebelumnya telah dilakukan namun terdapat pada basis data lokal. Ketika tombol penyimpanan lokal ditekan maka akan tampil halaman hasil akuisisi dan langkah lanjutan untuk mengirimkan data ke server ketika sudah tersambung dengan internet atau akuisisi data dalam bentuk peta. hasil sinkronisasikan digunakan untuk mengambil data dari internet dan mensinkronisasikan dengan basis data lokal.

Ketika kita menekan tombol mulai, maka akan tampil halaman Masukkan Data yang dapat dilihat pada Gambar 4. 31. Terdapat beberapa isian yang harus diisi. Isian yang harus diisi antara lain plat nomor dan jenis angkutan. Plat nomor angkutan umum diisi melalui kotak teks, sedangkan jenis angkutan umum berupa pilihan yang berisi 58 jenis angkutan umum di Surabaya. Implementasi pilihan jenis angkutan umum dapat dilihat pada Gambar 4. 32. Setelah itu, pengguna dapat menekan tombol mulai ukur yang nantinya akan membuka halaman pengukuran yang berfungsi untuk memulai akuisisi data angkutan umum. Penjelasan tampilan menu utama dijelaskan pada Tabel 4. 2.

Tabel 4. 2. Penjelasan Tampilan Menu Utama

No	Nama	Jenis	Keterangan
1	Mulai	Tombol	Tombol yang ketika diklik
			maka akan menuju ke halaman
			menambahkan data angkutan
			umum yang akan dilakukan
			pengukuran.
2	Lihat	Tombol	Tombol yang ketika diklik
			maka akan menuju ke halaman
			melihat hasil akuisisi data
			angkutan umum yang telah
			dilakukan evaluasi
			sebelumnya. Sebelum
			menekan tombol ini, perlu
			menekan tombol
			sinkronisasikan terlebih dahulu
			agar basis data yang online
			diambil dan dimasukkan ke
			basis data lokal.
3	Penyimpanan	Tombol	Tombol yang ketika diklik
	Lokal		maka akan menampilkan data
			yang telah diukur dan disimpan
			di penyimpanan lokal.
			Selanjutnya, data yang ada
			dalam penyimpanan lokal

No	Nama	Jenis	Keterangan
			dapat dikirim ke basis data online.
4	Sinkronisasikan	Tombol	Tombol yang digunakan untuk mensinkronisasikan data yang ada pada basis data online dengan basis data yang lokal.

Gambar 4. 31. Halaman Memasukkan Data Angkutan Umum

Gambar 4. 32. Tampilan Memilih Jenis Angkutan Umum

Gambar 4. 33. Tampilan Jika Plat Nomor Belum Terisi

Jika tombol mulai ukur ditekan, maka otomatis akan dicek terlebih dahulu apakah pengguna sudah mengisi plat nomor angkutan umum. Jika belum, maka akan muncul peringatan seperti dapat dilihat pada Gambar 4. 33. Sedangkan, jika berhasil maka pengguna akan mendapat notifikasi bahwa data angkutan umum berhasil dimasukkan.

Gambar 4. 34. Tampilan Jika Data Berhasil Dimasukkan

Penjelasan implementasi tampilan memasukkan data angkutan umum dijelaskan pada Tabel 4. 3.

Tabel 4. 3. Penjelasan Tampilan Memasukkan Data Angkutan Umum

1 Plat Nomor EditText Kotak isian yang digun untuk menampung data be plat nomor angkutan untuk menampung akan diuji. Peng	
dapat mengisinya dengan memasukkan plat no	rupa num guna

No	Nama	Jenis	Keterangan
			melihat plat nomor angkutan umum sebelum melakukan pengujian.
2	Jenis Rute Angkutan	Dropdown	Dropdown yang digunakan untuk memilih jenis rute angkutan umum. Terdapat 58 jenis rute angkutan umum yang dapat dipilih oleh pengguna sesuai dengan jenis rute angkutan umum yang ada di Surabaya.
3	Mulai Ukur	Tombol	Tombol yang digunakan untuk mengirimkan data angkutan umum yang akan diukur. Data plat nomor dan jenis rute angkutan umum dikirimkan ke activity selanjutnya yaitu melakukan pengukuran kualitas angkutan umum.

4.3.2. Implemetasi Tampilan Pengujian Angkutan Umum

Tampilan ini digunakan untuk mengukur kualitas angkutan umum. Tampilan ini dibangun dengan bahasa XML dan diatur dengan Java yang ditampilkan dalam aplikasi Android. Implementasinya dapat dilihat pada Gambar 4. 35.

Implementasi pengukuran data kualitas angkutan umum dapat dilihat pada Gambar 4. 35. Pada halaman tersebut, pengguna dapat melihat status pengukuran. Terdapat 3 status pengukuran yaitu berhenti, sedang menunggu dan sedang mengukur. berhenti berarti tidak terjadi apapun. sedangkan jika statusnya menjadi sedang menunggu berarti sudah mulai dihitung waktu tunggunya. Jika statusnya sedang mengukur, berarti angkutan umum sedang berjalan dan proses akusisi data sedang berjalan. Selain itu terdapat juga waktu dengan satuan detik yang akan terus bertambah ketika kita sudah menekan tombol mulai. Selanjutnya terdapat teks

jumlah penumpang yang menandakan berapa jumlah penumpang yang sedang berada dalam angkutan umum. Jumlah angkutan bertambah ketika pengguna menekan tombol + dan akan berkurang ketika menekan tombol -. Selain itu terdapat juga teks jumlah guncangan dan jumlah berhenti. Selanjutnya terdapat koordinat yang berisi *latitude* dan *longitude* yang menunjukkan koordinat lokasi angkutan umum. Tombol mulai digunakan ketika pengguna sudah berada dalam angkutan umum dan status akan berubah menjadi sedang menunggu yang dapat dilihat pada Gambar 4. 37.

Gambar 4. 35. Tampilan Pengukuran Angkutan Umum

Gambar 4. 36. Tampilan Ketika GPS Belum Dinyalakan

Gambar 4. 37. Tampilan Pengukuran dalam Keadaan Menunggu

Gambar 4. 38. Tampilan Pengukuran Jika dalam Keadaan Mengukur

Jika GPS belum diaktifkan, maka pengguna diharuskan untuk mengaktifkan GPS. Implementasi untuk memanggil pengaturan GPS dapat dilihat pada Gambar 4. 36. Setelah itu, jika sudah diaktifkan, maka pengguna dapat menekan tombol ukur yang menyebabkan status pengukuran menjadi sedang mengukur yang ditunjukkan pada Gambar 4. 37. jika angkutan umum melakukan pergerakan, maka status pemberhentian akan berubah menjadi bergerak dan jika terjadi guncangan maka status akan berubah menjadi guncangan. setelah selesai pengguna dapat menekan tombol selesai dan menuju ke halaman baru yang menunjukkan bahwa pengukuran telah selesai. terdapat tombol lihat semua hasil dan kembali ke menu awal.

Penjelasan implementasi tampilan melakukan pegujian angkutan umum dapat dilihat pada Tabel 4. 4. Penjelasan implementasi tampilan ketika pengukuran telah selesai dapat dilihat pada Tabel 4. 5.

Tabel 4. 4. Penjelasan Tampilan Melakukan Pengujian Angkutan Umum

No	Nama	Jenis	Keterangan
1	Status	TextView	Teks yang berisi status
	Pengecekan		pengecekan angkutan umum.
			Terdapat 3 jenis status dari
			pengecekan angkutan umum.
			Yaitu berhenti, sedang
			menunggu, dan sedang
			mengukur. Ketika awal
			dijalankan status pengecekan
			akan menampilkan status
			"BERHENTI". Setelah tombol
			mulai ditekan, maka status
			akan berubah menjadi
			"SEDANG MENUNGGU"
			yang menandakan bahwa
			angkutan umum sedang
			menunggu untuk berjalan.
			Setelah itu, ketika tombol ukur
			ditekan, maka status
			pengecekan akan
			menampilkan status
			"SEDANG MENGUKUR"
			yang berarti sedang melakukan
			pengukuran.
2	Jumlah	TextView	Teks yang berfungsi
	Penumpang		menampilkan jumlah
			penumpang yang ada di
			angkutan umum.
3	Waktu	TextView	Teks yang berfungsi untuk
			menampilkan waktu
			pengujian.
4	Latitude	TextView	Teks yang berfungsi untuk
			menampilkan koordinat
			<i>latitude</i> yang dilalui oleh
			angkutan umum.

No	Nama	Jenis	Keterangan
5	Longitude	TextView	Teks yang berfungsi untuk menampilkan koordinat longitude yang dilalui oleh angkutan umum.
6	Jumlah Guncangan	TextView	Teks yang berfungsi untuk menampilkan jumlah jalan berlubang yang ada dideteksi oleh aplikasi.
7	Jumlah Berhenti	TextView	Teks yang berfungsi untuk menampilkan jumlah banyaknya angkutan umum yang dideteksi oleh aplikasi.
8	Plus	Tombol	Tombol yang digunakan untuk menambah jumlah penumpang jika ada penumpang masuk ke angkutan umum.
9	Minus	Tombol	Tombol yang digunakan untuk mengurangi jumlah penumpang jika ada penumpang yang turun dari angkutan umum.
10	Mulai	Tombol	Tombol yang digunakan untuk memulai proses dari sebelum melakukan pengukuran menjadi menunggu angkutan umum berjalan.
11	Ukur	Tombol	Tombol yang digunakan untuk memulai proses dari menunggu menjadi mengukur.
12	Reset	Tombol	Tombol yang digunakan untuk mengembalikan status ke kondisi awal.
13	Selesai	Tombol	Tombol yang digunakan untuk mengakhiri melakukan pengujian angkutan umum.
14	Status	TextView	Teks yang berfungsi untuk menampilkan status apakah

No	Nama	Jenis	Keterangan
	Pergerakan Angkutan		angkutan umum sedang bergerak atau berhenti.
	Umum		oorgoran ataa oornonti.
15	Status Kondisi Jalan	TextView	Teks yang berfungsi untuk menampilkan status apakah sedang guncangan atau tidak.

Gambar 4. 39. Tampilan Ketika Pengukuran Telah Selesai

Tabel 4. 5. Penjelasan Tampilan Ketika Pengujian Telah Selesai

No	Nama	Jenis	Keterangan
1	Lihat Semua	Tombol	Tombol yang berfungsi untuk
	Hasil		membuka halaman melihat
			hasil pengujian.
2	Kembali ke	Tombol	Tombol yang berfungsi untuk
	Menu Awal		kembali ke halaman awal
			aplikasi.

4.3.3. Implementasi Melihat Hasil Akuisisi Data pada Aplikasi Android

Tampilan ini digunakan untuk melihat hasil pengukuran kualitas layanan angkutan umum. Tampilan ini dibangun dengan bahasa XML dan diatur dengan Java yang ditampilkan dalam aplikasi Android.

Hasil akuisisi data dapat dilihat dengan menekan tombol lihat yang ada pada halaman menu utama yang terdapat pada Gambar 4. 30. Sebelumnya, pengguna diharuskan untuk melakukan sinkronisasi data yang diambil dari *server* dan dimasukkan dalam basis data lokal. Implementasi tampilan sinkronisasi dapat dilihat pada Gambar 4. 40. Setelah itu, akan terlihat beberapa hasil akuisisi data yang dapat dilihat pada Gambar 4. 41. Tampilan Penjelasan implementasi melihat hasil semua pengujian dapat dilihat pada Tabel 4. 6.

Gambar 4. 40. Tampilan Melakukan Sinkronisasi Data

Gambar 4. 41. Tampilan Semua Hasil Pengecekan Angkutan Umum

Tabel 4. 6. Penjelasan Tampilan Melihat Semua Hasil Pengujian

No	Nama	Jenis	Keterangan
1	Plat Nomor	TextView	Teks yang berfungsi untuk menampilkan plat nomor hasil
			dari pengujian.
2	Tanggal	TextView	Teks yang berfungsi untuk menampilkan tanggal pengujian.
3	Waktu	TextView	Teks yang berfungsi untuk menampilkan waktu pengujian.

Pengguna dapat memilih salah satu angkutan umum. Hasil pengecekan dapat dilihat pada Gambar 4. 42. Terdapat data yang ditunjukkan pada halaman detil hasil akuisisi data. Data-data yang ada adalah plat nomor, tanggal pengecekan, waktu pengecekan, jenis angkutan, kecepatan maksimum (Km/jam), perpindahan (Km) waktu tunggu dan waktu tempuh(detik), jumlah penumpang,

jumlah guncangan dan jumlah berhenti. Setelah itu, pengguna dapat menekan tombol lihat peta yang akan membuka halaman menu hasil akusisi data dalam bentuk peta. Peta yang ada adalah peta pemberhentian, peta kondisi jalan dan peta kepadatan penumpang. Implementasi tampilan menu peta dapat dilihat pada Gambar 4. 43. Penjelasan implementasi melihat detil pengujian angkutan umum dapat dilihat pada Tabel 4. 7. Penjelasan implementasi tampilan menu peta dapat dilihat pada Tabel 4. 8.

Gambar 4. 42. Tampilan Melihat Detil Hasil Pengecekan Angkutan Umum

Tabel 4. 7. Penjelasan Tampilan Detil Hasil Akusisi Angkutan Umum

No	Nama	Jenis	Keterangan
1	Plat Nomor	TextView	Teks yang berfungsi untuk menampilkan plat nomor hasil dari pengujian.

No	Nama	Jenis	Keterangan
2	Tanggal	TextView	Teks yang berfungsi untuk menampilkan tanggal
			pengujian.
3	Waktu	TextView	Teks yang berfungsi untuk menampilkan waktu
			pengujian.
4	Jenis Rute	TextView	Teks yang berfungsi untuk
	Angkutan		menampilkan jenis rute
			pengujian.
5	Posisi Awal	TextView	Teks yang berfungsi untuk
			menampilkan posisi awal
			angkutan umum.
6	Posisi Akhir	TextView	Teks yang berfungsi untuk
			menampilkan posisi akhir
			angkutan umum.
7	Perpindahan	TextView	Teks yang berfungsi untuk
	_		menampilkan jarak
			perpindahan angkutan umum.
8	Kecepatan	TextView	Teks yang berfungsi untuk
			menampilkan kecepatan rata-
			rata angkutan umum.
9	Kecepatan	TextView	Teks yang berfungsi untuk
	Maksimal		menampilkan kecepatan
			maksimal angkutan umum.
11	Waktu Tunggu	TextView	Teks yang berfungsi untuk
			menampilkan waktu tunggu
			angkutan umum.
12	Waktu Tempuh	TextView	Teks yang berfungsi untuk
			menampilkan waktu tempuh
			angkutan umum.
13	Jumlah	TextView	Teks yang berfungsi untuk
	Penumpang		menampilkan jumlah
			penumpang angkutan umum.
14	Jumlah	TextView	Teks yang berfungsi untuk
	Guncangan		menampilkan jumlah
			guncangan angkutan umum.

No	Nama	Jenis	Keterangan
15	Jumlah Berhenti	TextView	Teks yang berfungsi untuk menampilkan jumlah berhenti
			angkutan umum.
16	Lihat peta	Tombol	Tombol yang berfungsi untuk melihat hasil akusisi dalam bentuk peta

Gambar 4. 43. Tampilan Menu Memilih Jenis Peta Hasil Pengukuran Angkutan Umum

Tabel 4. 8. Penjelasan Tampilan Menu Peta

No	Nama	Jenis	Keterangan
1	Pemberhentian	Tombol	Tombol yang berfungsi untuk membuka activity baru yang berfungsi untuk melihat hasil akuisisi data dalam bentuk peta pemberhentian.
2	Kondisi Jalan	Tombol	Tombol yang berfungsi untuk membuka activity baru yang berfungsi untuk melihat hasil

No	Nama	Jenis	Keterangan
			akuisisi data dalam bentuk peta kondisi jalan.
3	Kepadatan Penumpang	Tombol	Tombol yang berfungsi untuk membuka activity baru yang berfungsi untuk melihat hasil akuisisi data dalam bentuk peta kepadatan penumpang.

Gambar 4. 44. Tampilan Hasil Pengecekan Angkutan Umum dalam Bentuk Peta Pemberhentian

Jika tombol pemberhentian ditekan, maka akan muncul peta rute yang menunjutkan di mana saja angkutan umum berhenti. *Marker* hijau menunjukkan posisi awal dan *marker* hijau menunjukkan posisi akhir. *Marker* merah menunjukkan di mana saja angkutan umum berhenti. Penjelasan implementasi melihat visualisasi pemberhentian angkutan umum dapat dilihat pada Tabel 4. 9.

No	Nama	Jenis	Keterangan
1	Peta Berhenti	Fragment	Peta yang menampilkan hasil akuisisi data dalam bentuk peta pemberhentian
2	Marker Hijau	Marker	Marker yang berfungsi menandai posisi awal.
3	Marker Biru	Marker	Marker yang berfungsi menandai posisi akhir.
4	Marker Merah	Marker	Marker yang berfungsi menandai titik berhenti

angkutan umum.

Tabel 4. 9. Tabel Penjelasan Peta Pemberhentian

Gambar 4. 45. Tampilan Hasil Pengecekan Angkutan Umum dalam Bentuk Peta Jalan Berlubang

Jika tombol kondisi jalan ditekan, maka akan tampil peta jalan berlubang yang dapat dilihat pada Gambar 4. 45. *Marker* hijau menunjukkan posisi awal dan *marker* hijau menunjukkan posisi akhir. *Marker* ungu menunjukkan di mana saja angkutan umum mengalami guncangan akibat jalan berlubang. Penjelasan

implementasi melihat visualisasi jalan berlubang yang dilalui angkutan umum dapat dilihat pada Tabel 4. 10.

Tabel 4. 10. Penjelasan Implementasi Peta Jalan Berlubang

No	Nama	Jenis	Keterangan
1	Peta Jalan	Fragment	Peta yang menampilkan hasil
	Berlubang		akuisisi data dalam bentuk peta
			jalan berlubang
2	Marker Hijau	Marker	Marker yang berfungsi
			menandai posisi awal.
3	Marker Biru	Marker	Marker yang berfungsi
			menandai posisi akhir.
4	Marker Ungu	Marker	Marker yang berfungsi
			menandai titik jalan berlubang
			yang dilalui angkutan umum.

Gambar 4. 46. Tampilan Hasil Pengecekan Angkutan Umum dalam Bentuk Peta Kepadatan Penumpang

Jika tombol kepadatan penumpang ditekan, maka akan tampil peta ketika angkutan umum mengalami kelebihan

penumpang. Secara ideal, jumlah penumpang yang ada adalah 13 penumpang. Implementasinya dapat dilihat pada Gambar 4. 46. *Marker* hijau menunjukkan posisi awal dan *marker* hijau menunjukkan posisi akhir. *Marker* kuning menunjukkan di mana saja angkutan umum mengalami kelebihan penumpang.

No Nama Jenis Keterangan Peta yang menampilkan hasil 1 Peta Jalan Fragment akuisisi data dalam bentuk peta Berlubang jalan berlubang. 2 Marker Hijau Marker Marker berfungsi yang menandai posisi awal. 3 Marker Biru berfungsi Marker Marker yang menandai posisi akhir. 4 Marker Kuning Marker Marker berfungsi yang menandai titik tempat angkutan umum mengalami kelebihan kapasitas.

Tabel 4. 11. Penjelasan Peta Kepadatan Penumpang

4.3.4. Implementasi Melihat Hasil Akuisisi Data pada Website

Tampilan ini digunakan untuk melihat hasil pengukuran angkutan umum yang terdapat pada *website*. Tampilan ini dibangun dengan bahasa HTML dan CSS dan diatur dengan PHP.

Tampilan awal aplikasi *website* dapat dilihat pada Gambar 4. 47. Setelah itu pengguna dapat menekan tombol masuk yang dapat dilihat pada Gambar 4. 48. Penjelasan implementasi tampilan halaman awal *website* dapat dilihat pada Tabel 4. 12. Penjelasan implementasi tampilan melihat semua hasil akuisisi data pada *website* dapat dilihat pada

Gambar 4. 47. Tampilan Halaman Awal Website

Tabel 4. 12. Penjelasan Tampilan Halaman Awal Website

No	Nama	Jenis	Keterangan
1	Masuk	Tombol	Tombol yang digunakan untuk masuk ke aplikasi dan menuju ke menu utama.

Nomor	Plat Nomor	Tanggal Evaluasi	Waktu Evaluasi	Jenis	Aksi
1	L 6207 NU	16/02/2015	17/33/01	С	LIHAT
2	L 2223 NJ	16/02/2015	17/52/28	С	LIHAT
3	L 3243 JA	18/02/2015	14/39/27	С	LIHAT
4	L 3213 WZ	23/02/2015	15/56/09	S	LIHAT
5	L 3243 JA	02/03/2015	11/50/56	С	LIHAT
6	L 1027 UA	25/03/2015	16/47/34	S	LIHAT
7	L 3176 NI	31/03/2015	07/40/34	М	LIHAT
8	L 3211 BJ	31/03/2015	07/44/02	М	LIHAT
9	L1096 OI	05/04/2015	10/24/15	М	LIHAT
10	L 1069 OI	05/04/2015	11/32/17	М	LIHAT
11	L 1136 UB	01/06/2015	12/36/04	S	LIHAT
12	L 1119 AU	03/06/2015	09/45/09	S	LIHAT
13	L 1287 UC	03/06/2015	14/52/54	S	LIHAT
14	L 1291 UA	04/06/2015	12/28/43	S	LIHAT

Gambar 4. 48. Tampilan Melihat Semua Hasil Data Angkutan Umum

No	Nama	Jenis	Keterangan
1	Plat Nomor	Teks	Teks yang berfungsi untuk
			menampilkan plat nomor hasil
			dari pengujian.
2	Tanggal	Teks	Teks yang berfungsi untuk
	Evaluasi		menampilkan tanggal
			pengujian.
3	Waktu Evaluasi	Teks	Teks yang berfungsi untuk
			menampilkan waktu
			pengujian.
4	Jenis Rute	Teks	Teks yang berfungsi untuk
			menampilkan waktu jenis rute
			angkutan umum yang diuji.
5	Lihat	Tautan	Tautan yang berfungsi untuk
			melihat detil hasil akuisisi
			data.

Pada gambar Gambar 4. 48 ditunjukkan seluruh hasil akuisisi angkutan umum. Pada halaman ini, pengguna akan diperlihatkan ringkasan hasil akuisisi data angkutan umum. Pengguna dapat memilih salah satunya dan menekan tombol lihat yang terdapat pada bagian kanan dari angkutan umum. penjelasan tampilan melihat detil angkutan umum pada Tabel 4. 13.

Tabel 4. 13. Penjelasan Tampilan Melihat Detil Angkutan Umum pada Website

No	Nama	Jenis	Keterangan
1	Plat Nomor	Teks	Teks yang berfungsi untuk
			menampilkan plat nomor hasil
			dari pengujian.
2	Tanggal	Teks	Teks yang berfungsi untuk
			menampilkan tanggal
			pengujian.
3	Waktu	Teks	Teks yang berfungsi untuk
			menampilkan waktu
			pengujian.

No	Nama	Jenis	Keterangan
4	Jenis Rute	Teks	Teks yang berfungsi untuk
	Angkutan		menampilkan jenis rute
			pengujian.
5	Posisi Awal	Teks	Teks yang berfungsi untuk
			menampilkan posisi awal
			angkutan umum.
6	Posisi Akhir	Teks	Teks yang berfungsi untuk
			menampilkan posisi akhir
			angkutan umum.
7	Perpindahan	Teks	Teks yang berfungsi untuk
			menampilkan jarak
			perpindahan angkutan umum.
8	Kecepatan	Teks	Teks yang berfungsi untuk
			menampilkan kecepatan rata-
			rata angkutan umum.
9	Kecepatan	Teks	Teks yang berfungsi untuk
	Maksimal		menampilkan kecepatan
			maksimal angkutan umum.
11	Waktu Tunggu	Teks	Teks yang berfungsi untuk
			menampilkan waktu tunggu
			angkutan umum.
12	Waktu Tempuh	Teks	Teks yang berfungsi untuk
			menampilkan waktu tempuh
			angkutan umum.
13	Jumlah	Teks	Teks yang berfungsi untuk
	Penumpang		menampilkan jumlah
L			penumpang angkutan umum.
14	Jumlah	Teks	Teks yang berfungsi untuk
	Guncangan		menampilkan jumlah
1.			guncangan angkutan umum.
15	Jumlah	TextView	Teks yang berfungsi untuk
	Berhenti		menampilkan jumlah berhenti
			angkutan umum.

85

Atribut	Nilai	
Plat Nomor	L 1119 AU	
Tanggal Cek	03/06/2015	
Waktu Cek	09/45/09 WIB	
Jenis Rute Angkutan	S	
Posisi Awal	-7.2993541452602475,112.76120969966297	
Posisi Akhir	-7.290233519396342,112.7962617144921	
Jarak Tempuh	6.958788642058618 Km	
Kecepatan Maksimum	45.14856262Km/h	
Kecepatan Rata-rata	13.074968221km/h	
Waktu Tunggu	23 detik	
Waktu Tempuh	1916 detik	
Jumlah Penumpang	16 orang	
Jumlah Guncangan	7 jalan berlubang	
Jumlah berhenti	48 berhenti	

Gambar 4. 49. Tampilan Detil Hasil Akuisisi Data Angkutan Umum pada Website

Setelah pengguna memilih salah satu angkutan, maka akan ditunjukkan hasil akuisisi data yang dapat dilihat pada Gambar 4. 49. Plat nomor menunjukkan plat nomor angkutan yang Tanggal cek menunjukkan tanggal dilakukannya diukur. pengecekan. Waktu cek menunjukkan waktu pengecekan. Jenis angkutan menunjukkan jenis angkutan umum yang dikenai pengecekan. Posisi awal menunjukkan titik keberangkatan angkutan umum. Posisi akhir menunjukkan titik tujuan angkutan umum. Posisi awal dan Posisi akhir berbentuk koordinat latitude Jarak tempuh merupakan jarak yang dilalui dan *longitude*. angkutan umum dalam satuan Km. Waktu tunggu menunjukkan waktu yang diperlukan ketika pengguna mulai melakukan pengukuran sampai angkutan tersebut bergerak. Waktu tempuh menunjukkan waktu yang diperlukan dari angkutan umum bergerak sampai ke tujuan. Waktu tunggu dan waktu tempuh terdapat dalam satuan detik. Jumlah penumpang menunjukkan jumlah penumpang angkutan umum. Jumlah guncangan menunjukkan jumlah guncangan yang diakibatkan jalan berlubang yang dilalui angkutan umum. Jumlah berhenti menunjukkan jumlah berhenti dari angkutan umum. Penjelasan implementasi tampilan melihat peta berhenti pada *website* dapat dilihat pada Tabel 4. 14.

Gambar 4. 50. Tampilan Hasil Akuisisi Data Angkutan Umum dalam Bentuk Peta Pemberhentian

Tabel 4. 14. Penjelasan Tampilan Melihat Peta Berhenti pada Website

No	Nama	Jenis	Keterangan
1	Peta Berhenti	Peta	Peta yang menampilkan hasil akuisisi data dalam bentuk peta pemberhentian
2	Marker Hijau	Marker	Marker yang berfungsi menandai posisi awal.
3	Marker Biru	Marker	Marker yang berfungsi menandai posisi akhir.
4	Marker Merah	Marker	Marker yang berfungsi menandai titik berhenti angkutan umum.

Selanjutnya, terdapat peta rute menunjutkan di mana saja angkutan umum berhenti. *Marker* hijau menunjukkan posisi awal dan *marker* hijau menunjukkan posisi akhir. *Marker* merah

menunjukkan di mana saja angkutan umum berhenti. Implementasinya dapat dilihat pada Gambar 4. 50.

Setelah itu, terdapat peta jalan berlubang yang dapat dilihat pada Gambar 4.51. *Marker* hijau menunjukkan posisi awal dan *marker* hijau menunjukkan posisi akhir. *Marker* ungu menunjukkan di mana saja angkutan umum mengalami guncangan akibat jalan berlubang. Penjelasan implementasi tampilan melihat peta jalan berlubang pada *website* dapat dilihat pada Tabel 4.15.

Gambar 4. 51. Tampilan Hasil Akuisisi Data Angkutan Umum dalam Bentuk Peta Jalan Berlubang

Tabel 4. 15. Penjelasan Tampilan Peta Jalan Berlubang pada Website

No	Nama	Jenis	Keterangan
1	Peta Jalan	Peta	Peta yang menampilkan hasil
	Berlubang		akuisisi data dalam bentuk peta jalan berlubang.
2	Marker Hijau	Marker	Marker yang berfungsi
			menandai posisi awal.
3	Marker Biru	Marker	Marker yang berfungsi
			menandai posisi akhir.
4	Marker Ungu	Marker	Marker yang berfungsi
			menandai titik jalan berlubang
			yang dilalui angkutan umum.

Selanjutnya terdapat peta ketika angkutan umum mengalami kelebihan penumpang. Secara ideal, jumlah penumpang yang ada adalah 13 penumpang. Implementasinya dapat dilihat pada Gambar 4. 52. *Marker* hijau menunjukkan posisi awal dan *marker* hijau menunjukkan posisi akhir. *Marker* kuning menunjukkan di mana saja angkutan umum mengalami kelebihan penumpang. Penjelasan implementasi tampilan melihat peta kepadatan penumpang pada *website* dapat dilihat pada Tabel 4. 16.

Gambar 4. 52. Tampilan Hasil Akuisisi Data Angkutan Umum dalam Bentuk Peta Kepadatan Penumpang

Tabel 4. 16. Penjelasan Tampilan Melihat Peta Kepadatan Penumpang pada Website

No	Nama	Jenis	Keterangan
1	Peta Kepadatan Penumpang	Peta	Peta yang menampilkan hasil akuisisi data dalam bentuk peta kepadatan penumpang.
2	Marker Hijau	Marker	Marker yang berfungsi menandai posisi awal.
3	Marker Biru	Marker	Marker yang berfungsi menandai posisi akhir.

No	Nama	Jenis	Keterangan
4	Marker Kuning	Marker	Marker yang berfungsi menandai titik yang dilalui angkutan umum dan jumlah penumpangnya melebihi
			kapasitas normal.

[Halaman ini sengaja dikosongkan]

BAB V UJI COBA DAN EVALUASI

Pada bab ini akan dibahas mengenai uji coba dari segi fungsionalitas aplikasi. Uji coba fungsionalitas dibagi menjadi beberapa skenario fungsionalitas yang terdapat pada aplikasi.

5.1. Lingkungan Uji Coba

Dalam proses pengujian aplikasi dibutuhkan lingkungan uji coba yang disesuaikan standar kebutuhan. Uji coba aplikasi ini dilakukan dengan menggunakan satu buah *smartphone*. Adapun spesifikasi *smartphone* yang digunakan adalah sebagai berikut:

- > Smartphone Samsung Core 2
 - a. Sistem Operasi: Android versi 4.4 (Kit Kat),
 - b. Prosesor: 1.5 GHz Dual-Core,
 - c. Memory Card Slot: microSD up to 32GB,
 - d. Memory internal: 4GB,
 - e. RAM: 768MB

5.2. Uji Coba Fungsionalitas

Uji coba fungsionaliatas merupakan uji coba aplikasi terhadap fungsi-fungsi yang berjalan pada aplikasi. Uji coba fungsionalitas terbagi menjadi beberapa skenario pengujian.

- Uji coba memasukkan data angkutan umum Menguji apakah penambahan data angkutan umum dapat berjalan dengan baik.
- Uji coba melakukan akuisisi data angkutan umum Menguji apakah proses pengukuran dapat berjalan dengan baik.
- Uji coba menampilkan hasil akuisisi data pada aplikasi Android
 Menguji apakah hasil pengukuran dapat ditampilkan dalam Android.
- Uji coba menampilkan hasil akusisi data pada website

Menguji apakah hasil pengukuran dapat ditampilkan dengan baik pada website.

5.2.1. Uji Coba Fungsionalitas Memasukkan Data Angkutan Umum

Uji coba fungsionalitas memasukkan data angkutan umum dimulai dengan membuka aplikasi dan menekan tombol masuk ke aplikasi. Selanjutnya, pengguna dapat memilih apakah pengguna akan melakukan pengukuran atau melihat data. Ketika menekan tombol Mulai, maka pengguna masuk ke menu memasukkan data angkutan umum. Data-data yang dimasukkan adalah plat nomor angkutan umum dan jenis angkutan umum.

Gambar 5. 1. Halaman Awal Aplikasi

Gambar 5. 2. Halaman Menu Utama Aplikasi

Gambar 5. 3 Kondisi Awal Halaman Masukkan Data Angkutan Umum

Gambar 5. 4. Pilihan Jenis Angkutan Umum

Pengguna mengawali membuka aplikasi dan akan terlihat tampilan seperti pada Gambar 5. 1. Selanjutnya ketika tombol masuk diklik, maka akan tampil menu utama aplikasi yang terlihat pada Gambar 5. 2. Setelah itu, pengguna menekan tombol mulai dan akan tampil halaman awal memasukkan data angkutan umum yang ditunjukkan dalam Gambar 5. 3. Kolom yang harus diisi dalam memasukkan data angkutan umum adalah plat nomor angkutan umum dan jenis angkutan umum. Jenis angkutan umum yang harus dipilih berbentuk *dropdown* yang terilhat pada Gambar 5. 4. Selanjutnya pengguna menekan tombol masuk dan Tabel uji skenario uji coba dapat dilihat di Tabel 5. 1.

Tabel 5. 1. Tabel Skenario Uji Coba Memasukkan Data Kosong Angkutan Umum

Nama uji coba	Memasukkan data kosong angkutan
	umum
Kondisi awal	Terdapat kotak isian yang harus diisi yaitu plat nomor angkutan umum dan jenis angkutan umum

Aksi yang dilakukan	Menekan tombol mulai ukur namun
	masih kotak isian masih kosong
Hasil yang	Terdapat notifikasi bahwa pengisian
diharapkan	salah
Hasil yang diperoleh	Terdapat notifikasi bahwa pengisian
	salah karena ada data yang belum terisi
Status	Berhasil

Hasil dari percobaan pengisian data kosong angkutan umum dapat dilihat pada Gambar 5. 5.

Gambar 5. 5. Tampilan Notifikasi Bahwa Terdapat Kotak Isian yang Belum Terisi

Skenario selanjutnya ketika kotak isian diisi dengan benar, maka hasil yang diharapkan adalah terdapat notifikasi bahwa pengisian data angkutan umum telah berhasil dan dapat melanjutkan ke langkah selanjutnya yaitu melakukan pengukuran angkutan umum. Tabel skenario memasukkan data angkutan umum dengan benar dapat dilihat pada Tabel 5. 2.

Tabel 5. 2. Tabel Skenario Uji Coba Memasukkan Data Angkutan Umum dengan Benar

Nama uji coba	Memasukkan data angkutan umum					
	dengan benar					
Kondisi awal	Terdapat kotak isian yang harus diisi					
	yaitu plat nomor angkutan umum dan					
	jenis angkutan umum					
Aksi yang dilakukan	Pengguna mengisi data angkutan					
	umum yang berisi plat nomor angkutan					
	umum dan jenis angkutan umum.					
	Selanjutnya pengguna menekan					
	tombol mulai ukur.					
Hasil yang	Terdapat notifikasi bahwa pengisian					
diharapkan	berhasil dan menuju ke aktivitas					
	selanjutnya yaitu melakukan					
	pengukuran angkutan umum					
Hasil yang diperoleh	Terdapat notifikasi bahwa pengisian					
	berhasil dan menuju ke aktivitas					
	selanjutnya yaitu melakukan					
	pengukuran angkutan umum					
Status	Berhasil					

Cara mengisi data dengan benar terdapat pada Gambar 5. 6. Data yang diisi adalah plat nomor angkutan umum dan jenis angkutan umum. Selanjutnya, pengguna menekan tombol mulai ukur dan akan terdapat notifikasi bahwa proses telah dilakukan. Notifikasi bahwa pengisian telah berhasil dapat dilihat pada Gambar 5. 7.

Gambar 5. 6. Tampilan Mengisi Angkutan Umum Dengan Benar

Gambar 5. 7. Notifikasi Bahwa Data Angkutan Berhasil Dimasukkan

5.2.2. Uji Coba Fungsionalitas Melakukan Pengukuran Kualitas Layanan Angkutan Umum

Uji coba fungsionalitas melakukan pengukuran angkutan umum dimulai dengan membuka halaman pengukuran. Selanjutnya, pengguna dapat menekan tombol mulai. Ketika melihat tombol mulai, maka mulai dihitung waktu tunggu angkutan umum. Jika sudah mulai berjalan, pengguna akan menekan tombol ukur. Jika ada penumpang masuk, maka pengguna dapat menekan tombol "-". Jika telah selesai, pengguna dapat menekan tombol selesai.

Skenario dari melakukan pengukuran kualitas layanan angkutan umum melalui pengguna angkutan umum dapat dilihat melalui Tabel 5. 3.

Tabel 5. 3. Tabel Skenario Uji Coba Melakukan Pengukuran Kualitas Angkutan Umum

Nama uji coba	Melakukan pengukuran kualitas						
	layanan angkutan umum						
Kondisi awal	Terdapat tombol untuk mulai, selesai dan ukur yang berfungsi untuk memulai, mengukur dan mengirim hasil dari pengukuran kualitas layanan angkutan umum. Selain itu terdapat pula tombol + dan – yang digunakan untuk menambah dan mengurangi jumlah penumpang. Terdapat textview yang berisi status dari kendaraan dan status pengukuran.						
Aksi yang dilakukan	Pengguna membuka <i>activity</i> Ukur. Selanjutnya, pengguna menekan tombol "mulai" untuk memulai penghitungan waktu tunggu.						

		Selanjutnya, pengguna menekan tombol ukur untuk mulai melakukan pengukuran. Setelah itu, pengguna dapat menekan tombol "+" jika ada penumpang yang masuk dan tombol "-" ketika terdapat pengguna yang keluar dari kendaraan.
Hasil diharapkan	yang	 Jika pengguna menekan tombol "MULAI" maka waktu tunggu akan mulai dihitung. Status akan menjadi "SEDANG MENUNGGU". Jika pengguna menekan tombol "UKUR", maka pengukuran dimulai. Status alat menjadi "SEDANG MENGUKUR" Jika pengguna menekan tombol "+" maka jumlah penumpang akan bertambah Jika pengguna menekan tombol "-" maka jumlah penumpang akan berkurang Jika melalui jalan berlubang, maka status akan menjadi "GUNCANGAN" jika tidak, akan menjadi "NORMAL" Jika kendaraan berhenti, status kendaraan akan menjadi "BERHENTI", jika bergerak, maka status kendaraan akan menjadi "BERGERAK" Jika pengguna menekan tombol "SELESAI", maka pengguna berhenti melakukan pengukuran, aplikasi akan mengirim data

	pengukuran, dan terdapat notifikasi bahwa pengiriman telah selesai.				
Hasil yang diperoleh	1. Jika pengguna menekan tombol "MULAI" maka waktu tunggu akan mulai dihitung. Status akan menjadi "SEDANG MENUNGGU".				
	2. Jika pengguna menekan tombol "UKUR", maka pengukuran dimulai. Status alat menjadi "SEDANG MENGUKUR"				
	3. Jika pengguna menekan tombol "+" maka jumlah penumpang akan bertambah				
	4. Jika pengguna menekan tombol "-" maka jumlah penumpang akan berkurang				
	5. Jika melalui jalan berlubang, maka status akan menjadi "GUNCANGAN" jika tidak, akan menjadi "NORMAL"				
	6. Jika kendaraan berhenti, status kendaraan akan menjadi "BERHENTI", jika bergerak, maka status kendaraan akan "BERGERAK"				
	7. Jika pengguna menekan tombol "SELESAI", maka pengguna				
	berhenti melakukan pengukuran, aplikasi akan mengirim data pengukuran, dan terdapat notifikasi				
	bahwa pengiriman telah selesai.				
Status	Berhasil				

Pada saat pertama kali dibuka, pengguna akan ditampilkan *activity* yang berisi tombol yang digunakan untuk memulai menunggu, memulai pengukuran, dan menyelesaikan pengukuran. Tampilan untuk *activity* awal dapat dilihat pada Gambar 5. 8.

Gambar 5. 8. Tampilan Awal Melakukan Pengukuran Kualitas Layanan Angkutan Umum

Selanjutnya, pengguna dapat menekan tombol mulai yang berarti mulai untuk menunggu. Atribut yang didapat dari kegiatan ini adalah waktu tunggu yang mulai bergerak dan terdapat status bahwa alat sedang menunggu angkutan umum untuk bergerak. Tampilan ketika tombol mulai ditekan dapat dilihat pada Gambar 5. 9.

Gambar 5. 9. Perubahan Ketika Tombol Mulai Ditekan

Ketika tombol mulai ditekan, tombol tersebut otomatis akan berubah menjadi tombol ukur. Selanjutnya, waktu tunggu akan berjalan dan status akan berubah menjadi sedang menunggu.

Ketika dalam keadaan menunggu, pengguna dapat menekan tombol ukur ketika pengguna merasa sudah dapat melakukan pengukuran. Hal ini ditandai dengan angkutan umum yang mulai berjalan.

Selanjutnya, pengguna dapat menekan tombol ukur ketika kendaraan mulai berjalan. Pendeteksian keadaan kendaraan akan mulai berjalan. Tampilan perubahan keadaan dari menunggu menjadi mengukur dapat dilihat pada Gambar 5. 10.

103

Gambar 5. 10. Perubahan Keadaan Dari Menunggu Menjadi Mengukur

Ketika tombol ukur ditekan, maka otomatis tombol tersebut akan berubah menjadi tombol reset yang berfungsi untuk mengembalikan aplikasi ke posisi semula. Selain itu, waktu tunggu mulai disimpan. Pada saat ini, status pemberhentian kendaraan dan status kondisi jalan akan dicatat.

Ketika angkutan umum berhenti, maka status angkutan umum akan menjadi berhenti. Koordinat di mana tempat berhenti tersebut akan dicatat dan ditambahkan dalam jumlah berhenti. Jika berjalan, status angkutan umum akan berubah menjadi bergerak. Ketika angkutan umum mengalami guncangan akibat jalan berlubang, status dari angkutan akan menjadi guncangan dan aplikasi akan mencatat koordinat (*latitude* dan *longitude*) tempat jalan berlubang tersebut dan menambahkan jumlah jalan berlubang.

5.2.3. Uji Coba Fungsionalitas Melihat Data Angkutan Umum dengan Perangkat Android

Uji coba fungsionalitas melihat data angkutan umum bertujuan untuk melihat data pengujian. Hal ini dimulai dengan menekan tombol lihat. Selanjutnya, pengguna akan ditampilkan semua evaluasi angkutan umum. Setelah itu, pengguna dapat memilih angkutan umum mana yang akan dilihat hasil evaluasinya. Tabel skenario uji coba melihat data pengukuran layanan angkutan umum melalui perangkat Android dapat dilihat pada Tabel 5. 4.

Tabel 5. 4. Tabel Skenario Uji Coba Melihat Data Pengukuran Layanan Angkutan Umum Melalui Perangkat Android

Nama uji coba	Melihat data evaluasi angkutan umum						
	dengan perangkat Android						
Kondisi awal	Activity yang terdapat tombol "LIHAT"						
	serta tampilan semua hasil evaluasi						
	angkutan umum.						
Aksi yang dilakukan	Pengguna menekan tombol "LIHAT".						
	Selanjutnya pengguna memilih angkutan						
	umum mana yang ingin dilihat						
	evaluasinya.						
Hasil yang	 Aplikasi dapat menampilkan 						
diharapkan	data-data evaluasi angkutan						
	umum						
	2. Aplikasi dapat menampilkan rute						
	perjalanan, tempat jalan						
	berlubang, posisi awal, posisi						
	akhir, tempat berhenti dan tempat						
	kepadatan penumpang dalam						
	bentuk peta						

105

Hasil yang diperoleh		Aplikasi dapat menampilkan data-data evaluasi angkutan				
		umum				
	2.	Aplikasi dapat menampilkan rute				
		perjalanan, tempat jalan				
	:	berlubang, posisi awal, posisi				
		akhir, tempat berhenti dan tempat				
		kepadatan penumpang dalam				
		bentuk peta				
Status	Berhasil					

Pada awalnya, pengguna menekan tombol "LIHAT" pada *activity* menu utama. Tombol "LIHAT" dapat dilihat pada Gambar 5. 11. Sebelumnya, pengguna diharuskan untuk melakukan sinkronisasi yang berfungsi untuk pemutakhiran data dari internet sehingga dapat disimpan dalam basis data lokal. Tampilan sinkronisasi akan berjalan ketika pengguna menekan tombol "SINKRONISASIKAN"

Gambar 5. 11. Tampilan Activity Menu Utama

Selanjutnya ketika pengguna menekan tombol lihat maka akan ditampilkan semua hasil evaluasi dari seluruh angkutan umum. Tampilan seluruh hasil evaluasi dapat dilihat pada Gambar 5. 12.

Gambar 5. 12. Tampilan Semua Hasil Akuisisi Data Angkutan Umum

Setelah itu, pengguna memilih salah satu angkutan umum yang selanjutnya dapat akan menuju ke detil data evaluasi. Tampilan untuk seluruh data detil hasil akuisisi data dapat dilihat pada Gambar 5. 13.

107

Gambar 5. 13. Tampilan Detil Akuisisi Data Angkutan Umum

Ketika pengguna menekan tombol lihat peta, pengguna akan ditampilkan pilihan rute angkutan umum. Antara lain pemberhentian, kondisi jalan dan kepadatan penumpang. Di setiap berisi rute, posisi awal dan posisi akhir dari rute angkutan umum. Peta rute angkutan umum dapat dilihat pada Gambar 5. 14. Jika menekan tombol pemberhentian, maka akan terlihat di mana saja angkutan umum berhenti. Peta pemberhentian angkutan umum dapat dilihat pada Gambar 5. 15. Jika menekan tombol kondisi jalan, maka akan terlihat di mana saja tempat yang terdapat jalan berlubang. Peta jalan berlubang dapat dilihat pada Gambar 5. 16. Jika menekan tombol kepadatan penumpang, maka terdapat tempat mana saja rute yang melebihi kapasitas angkutan umum. Tampilan peta kepadatan penumpang angkutan umum dapat dilihat pada Gambar 5. 17.

Gambar 5. 14. Peta Rute Angkutan Umum

Gambar 5. 15. Peta Pemberhentian Angkutan Umum

Gambar 5. 15 menjelaskan tentang rute-rute yang dilalui angkutan umum disertai jalan mana tempat angkutan umum berhenti. *Marker* hijau menunjukkan posisi awal, *marker* biru menunjukkan posisi akhir dan *marker* merah menunjukkan posisi angkutan umum berhenti.

Gambar 5. 16. Peta Jalan Berlubang Angkutan Umum

Gambar 5. 16 menjelaskan tentang rute-rute yang dilalui angkutan umum disertai jalan mana yang berlubang. *Marker* hijau menunjukkan posisi awal, *marker* biru menunjukkan posisi akhir dan *marker* merah menunjukkan posisi angkutan umum mengalami guncangan.

Gambar 5. 17. Peta Kepadatan Penumpang Angkutan Umum

Gambar 5. 17 menjelaskan tentang rute-rute yang dilalui angkutan umum disertai jalan mana tempat angkutan umum mengalami kelebihan muatan. *Marker* hijau menunjukkan posisi awal, *marker* biru menunjukkan posisi akhir dan *marker* kuning menunjukkan posisi angkutan umum yang memiliki penumpang lebih dari 13.

5.2.4. Uji Coba Fungsionalitas Melihat Data Angkutan Umum dengan Website

Uji coba fungsionalitas angkutan umum di *website* dimulai dengan membuka *website* evaluasi angkutan umum. Setelah masuk, pengguna dapat melihat semua evaluasi. Setelah itu, pengguna dapat memilih angkutan mana yang akan dilihat. Tabel skenario uji coba melihat data angkutan umum melalui *website* dapat dilihat pada Tabel 5. 5.

Tabel 5. 5. Tabel Skenario Uji Coba Melihat Data Pengukuran Kualitas Angkutan Umum Melalui *Website*

Nama uji	Melihat data evaluasi angkutan umum dengan website
coba	
Kondisi	Activity yang terdapa tombol "LIHAT" serta tampilan
awal	semua hasil evaluasi angkutan umum.
Aksi yang	Pengguna menekan tombol "LIHAT". Selanjutnya
dilakukan	pengguna memilih angkutan umum mana yang ingin
	dilihat evaluasinya.
Hasil yang	Aplikasi dapat menampilkan data-data evaluasi
diharapkan	angkutan umum
	2. Aplikasi dapat menampilkan rute perjalanan,
	tempat jalan berlubang, posisi awal, posisi akhir,
	tempat berhenti dan tempat kepadatan penumpang
	dalam bentuk peta
Hasil yang	Aplikasi dapat menampilkan data-data evaluasi
diperoleh	angkutan umum

	2. Aplikasi dapat menampilkan rute perjalanan, tempat jalan berlubang, posisi awal, posisi akhir, tempat berhenti dan tempat kepadatan penumpang dalam bentuk peta
Status	Berhasil

Pada awalnya, pengguna menuju ke alamat *website* sistem akuisisi data. Selanjutnya pengguna menekan tombol masuk. Tampilan awal dapat dilihat pada Gambar 5. 18.

Gambar 5. 18. Tampilan Awal Melihat Hasil Akuisisi Data di Website

Selanjutnya ketika pengguna menekan tombol lihat maka akan ditampilkan semua hasil akusisi data dari seluruh angkutan umum. Tampilan seluruh hasil akusisi data dapat dilihat pada Gambar 5. 19.

		Hasil Akuisisi Data Um	um		
Nomor	Plat Nomor	Tanggal Evaluasi	Waktu Evaluasi	Jenis	Aksi
1	L 1027 UA	25/03/2015	16/47/34	S	LIHAT
2	L 1136 UB	01/06/2015	12/36/04	S	LIHAT
3	L 1119 AU	03/06/2015	09/45/09	S	LIHAT
4	L 1287 UC	03/06/2015	14/52/54	S	LIHAT
5	L 1291 UA	04/06/2015	12/28/43	S	LIHAT
6	L 1049 UF	04/06/2015	16/43/14	s	LIHAT
7	L 1159 UA	25/05/2015	16/47/34	S	LIHAT
8	L 1091 UB	26/05/2015	12/36/04	s	LIHAT
9	L 1016 UA	27/05/2015	12/21/04	s	LIHAT
10	L 1291 UA	24/05/2015	11/01/04	s	LIHAT
11	L 1154 UD	24/05/2015	14/13/14	S	LIHAT
12	L 1241 UE	22/05/2015	16/00/34	S	LIHAT
	1 4000 110	20.000.0045	110151		1000

Gambar 5. 19. Tampilan Semua Hasil Akuisisi Data Angkutan Umum

Setelah itu, pengguna memilih salah satu angkutan umum yang selanjutnya dapat akan menuju ke detil data evaluasi. Tampilan untuk seluruh data detil akusisi dapat dilihat pada Gambar 5, 20.

Atribut	Nilai	
Plat Nomor	L 1119 AU	
Tanggal Cek	03/06/2015	
Waktu Cek	09/45/09 WIB	
Jenis Rute Angkutan	2	
Posisi Awal	-7.2993541452602475,112.76120969966297	
Posisi Akhir	-7.290233519396342.112.7962617144921	
Jarak Tempuh	6.958788642058618 Km	
Kecepatan Maksimum	45.14856262Km/h	
Kecepatan Rata-rata	13.074968221km/h	
Waktu Tunggu	23 detik	
Waktu Tempuh	1916 detik	
Jumlah Penumpang	16 orang	
Jumlah Guncangan	7 jalan berlubang	

Gambar 5. 20. Tampilan Detil Hasil Akuisisi Angkutan Umum

Plat nomor menunjukkan plat nomor angkutan yang dilakukannya Tanggal cek menunjukkan tanggal pengecekan. Waktu cek menunjukkan waktu pengecekan. Jenis angkutan menunjukkan jenis angkutan umum yang dikenai pengecekan. Posisi awal menunjukkan titik keberangkatan angkutan umum. Posisi akhir menunjukkan titik tujuan angkutan umum. Posisi awal dan Posisi akhir berbentuk koordinat latitude dan *longitude*. Jarak tempuh merupakan iarak yang dilalui angkutan umum dalam satuan Km. Waktu tunggu menunjukkan waktu yang diperlukan ketika pengguna mulai melakukan pengukuran sampai angkutan tersebut bergerak. Waktu tempuh menunjukkan waktu yang diperlukan dari angkutan umum bergerak sampai ke tujuan. Waktu tunggu dan waktu tempuh terdapat dalam satuan detik. Jumlah penumpang menunjukkan jumlah penumpang angkutan umum. Jumlah guncangan menunjukkan jumlah guncangan yang diakibatkan jalan berlubang yang dilalui angkutan umum. Jumlah berhenti menunjukkan jumlah berhenti dari angkutan umum.

Gambar 5. 21. Peta Hasil Uji Coba Rute Angkutan Umum

Gambar 5. 21 menjelaskan tentang rute mana saja yang dilewati oleh angkutan umum. *Marker* biru menunjukkan posisi

awal dan *marker* hijau menunjukkan posisi akhir dari angkutan umum.

Gambar 5. 22. Peta Tempat Pemberhentian Angkutan Umum

Gambar 5. 22 menjelaskan tentang rute-rute yang dilalui angkutan umum disertai jalan mana tempat angkutan umum berhenti. *Marker* biru menunjukkan posisi awal, *marker* hijau menunjukkan posisi akhir dan *marker* merah menunjukkan posisi angkutan umum berhenti.

Gambar 5. 23. Peta Kondisi Jalan Angkutan Umum

Gambar 5. 23 menjelaskan tentang rute-rute yang dilalui angkutan umum disertai jalan mana yang berlubang. *Marker* biru menunjukkan posisi awal, *marker* hijau menunjukkan posisi akhir dan *marker* merah menunjukkan posisi angkutan umum mengalami guncangan.

Gambar 5. 24. Peta Hasil Uji Coba Kepadatan Penumpang Angkutan Umum

Gambar 5. 24 menjelaskan tentang rute-rute yang dilalui angkutan umum disertai jalan mana tempat angkutan umum mengalami kelebihan muatan. *Marker* biru menunjukkan posisi awal, *marker* hijau menunjukkan posisi akhir dan *marker* kuning menunjukkan posisi angkutan umum yang memiliki penumpang lebih dari 13.

5.3. Analisa Data

Dalam sistem akuisisi data angkutan dibutuhkan beberapa algoritma yang digunakan. Algoritma yang digunakan antara lain pendeteksi pemberhentian dan pendeteksian jalan berlubang.

5.3.1. Analisa Data Pendeteksi Bergerak

Pendeteksi bergerak digunakan untuk mendeteksi kapan angkutan umum berhenti atau sedang berjalan. Pendeteksi jalan berlubang diambil dari data sensor *accelerometer*. Terdapat 3 nilai yang diambil dalam sensor *accelerometer* yaitu nilai dari sumbu x,y dan z. Selanjutnya, dihitung nilai α didapatkan melalui Persamaan 5.1. Setelah itu dihitung nilai signifikansinya dengan cara menjumlahkan berapa data yang melebihi nilai 10.1 [15]. Data contoh pergerakan dari sensor *accelerometer* dapat dilihat pada Tabel 5. 6 dan Tabel 5. 7. Status didapatkan melalui hasil α apakah melebihi nilai 10.1. Jika lebih dari 10.1, maka status akan bernilai 1, jika kurang dari 10.1 status akan bernilai 0.

$$\alpha = \sqrt{x^2 + y^2 + z^2} \tag{5.1}$$

Tabel 5. 6. Contoh Data Sensor *Accelerometer* Ketika Bergerak

No	X	у	Z	α	Status
1	-2,57616	-4,66391	7,450756	9,159824	0
2	-2,49955	-5,05655	7,651869	9,506186	0
3	-3,09331	-4,68306	8,619126	10,28537	1
4	-3,40934	-5,34386	9,050082	11,04918	1
5	-3,53384	-4,86502	8,159439	10,13572	1
6	-3,26569	-5,3247	8,149862	10,26827	1
7	-3,02627	-4,11803	7,508216	9,082388	0
8	-3,69665	-5,56412	8,303091	10,65674	1
9	-3,82115	-3,97437	7,843405	9,587274	0
10	-3,69665	-4,69264	8,39886	10,30664	1

117

No Х y Z Status α -0,50757 -0.01915 9,672575 9.685902 1 0 2 -0.47884 -0,00958 9,710882 9,722685 0 3 -0,49799 -0.00958 9.710882 9,723647 0 4 -0,49799 -0,01915 9,730036 9,74279 0 5 -0,00958 9,730036 9,743774 -0,51715 0 6 -0,49799 -0.00958 9,749189 9,761904 0 -0.49799 7 -0,00958 9,749189 9,761904 0 8 -0,49799 0.009577 9.691729 9,70452 0 -0,52672 -0,00958 9,730036 9,744287 9 0 -0.48842 -0.00958 9.739613 9,751856 10 0

Tabel 5. 7. Contoh Data Accelerometer Ketika Berhenti

Dari contoh data sensor pada Tabel 5. 6 dan Tabel 5. 7 dapat dihitung jumlah nilai signifikansinya dengan cara menjumlahkan seluruh status yang ada dibagi dengan jumlah data yang diambil. Untuk contoh di atas, dapat dihitung nilai signifikansi untuk Tabel 5. 6 adalah 6/10 = 0.6. Sedangkan nilai signifikansi untuk tabel 5.14 adalah 0/10 = 0.

Selanjutnya, nilai signifikansi tersebut dibandingkan dengan nilai threshold. Dalam 10 data yang dibaca didapatkan 1 hasil apakah jalan bergerak atau tidak. 10 data diambil karena agar tidak ada data yang menyebabkan derau akibat data yang dihitung di perhitungan selanjutnya seharusnya dihitung bersamaan dengan data yang ada saat ini. Dari 100 data bergerak dan berhenti yang diambil, maka dapat diperoleh akurasi untuk dari beberapa threshold yang digunakan. Akurasi didapatkan dari banyaknya jumlah yang sesuai dengan nilai sebenarnya dibagi dengan jumlah data yang diuji. Hasil percobaan threshold beserta akurasinya dapat dilihat pada Tabel 5. 8 dan Tabel 5. 9.

Tabel 5. 8. Tabel Uji Coba untuk Angkutan Umum yang Tidak Bergerak

No	Threshold	Akurasi
1	0,1	100 %
2	0,2	100 %
3	0,3	100 %
4	0,4	100 %

Tabel 5. 9. Tabel Uji Coba Angkutan Umum yang Bergerak

No	Threshold	Akurasi
1	0,1	100%
2	0,2	100%
3	0,3	94,74 %
4	0,4	78,95%

Dalam aplikasi, hasil dari pendeteksian pergerakan angkutan umum ditunjukkan dengan jumlah angkutan umum berhenti dan divisualisasikan dalam peta yang ditunjukkan pada Gambar 5. 25 yang diwakili dengan adanya penanda berwarna merah.

Gambar 5. 25. Visualisasi Titik Berhenti Angkutan Umum

5.3.2. Analisa Data Pendeteksi Jalan Berlubang

Pendeteksian jalan berlubang digunakan untuk mendeteksi apakah terdapat jalan berlubang. Pendeteksi jalan berlubang diambil dari data sensor *accelerometer*. Terdapat 3 nilai yang diambil dalam sensor *accelerometer* yaitu nilai dari sumbu x,y dan z. Sedangkan yang diambil dalam pendeteksi jalan berlubang adalah sumbu z. Jalan berlubang dapat dihitung melalui perbedaan sumbu z yang berubah secara drastis.

Jalan berlubang angkutan angkutan umum dapat dideteksi dengan cara menghitung angka perbedaan sumbu z pada setiap 10 data yang diambil. 10 data diambil agar tidak ada data yang terbuang karena tidak diukur serta agar tidak menimbulkan derau akibat satu lubang yang menyebabkan banyak perubahan nilai z. Contoh data yang dihitung dapat dilihat pada Tabel 5. 10. Rumus menghitung perbedaan pada sumbu z dapat dilihat pada Persamaan 5.2.

$$\Delta z = z1 - z2 \tag{5.2}$$

Tabel 5. 10. Contoh Data *Accelerometer* Sumbu z dan Perubahaannya

No	Z	Δz
1	9,14585	-
2	9,107543	0,038307
3	7,402872	1,704671
4	9,969456	2,566584
5	4,328717	5,640739
6	10,46745	6,138733
7	3,8403	6,62715
8	7,824251	3,983951
9	6,473921	1,35033
10	6,090849	0,383072

Tabel 5. 11. Tabel Perubahan Sumbu z di Beberapa Uji Coba Jalan Berlubang

No	Δz
1	10,90798
2	12,11466
3	4,539406
4	14,35563
5	15,53358
6	4,232949
7	5,832275
8	6,196195
9	5,45878
10	7,278372

Setelah melalui beberapa percobaan, maka hasilnya dapat dilihat pada Tabel 5. 11. Pada tabel tersebut dijelaskan berapa nilai Δz yang diperlukan untuk mendeteksi jalan berlubang. Hasilnya, Δz minimum yang dibutuhkan untuk mendeteksi jalan berlubang adalah 4.23.

Dalam aplikasi, hasil dari pendeteksian jalan berlubang ditunjukkan dengan jumlah guncangan dan divisualisasikan dalam peta yang ditunjukkan pada Gambar 5. 26 yang dilambangkan dengan penanda berwarna ungu.

Gambar 5. 26. Visualisasi Jalan Berlubang yang Dilalui Angkutan Umum

Percobaan dilakukan di dua rute angkutan kota. Rute 1 adalah rute angkutan kota jenis S, sedangkan untuk rute 2 adalah rute angkutan kota jenis M. Setelah melakukan percobaan di dua rute tersebut, maka didapatkan akurasi dari algoritma pendeteksi jalan berlubang. Akurasi didapatkan dari rata-rata dari jumlah lubang yang terdeteksi dibagi dengan jumlah lubang sebenarnya. Tabel rata-rata, jumlah lubang sebenarnya dapat dilihat pada Tabel 5. 12.

Tabel 5. 12. Tabel Akurasi Algoritma Pendeteksi Jalan Berlubang dari Masing-masing Rute

No	Rata-rata Jumlah	Jumlah Lubang	Akurasi
	Lubang Terdeteksi	Sebenarnya	
1	10,95	14	0,78
2	9,8	11	0,89

Dari rute pertama, didapatkan rata-rata jumlah lubang yang terdeteksi adalah 10,95 lubang. Sedangkan jumlah lubang yang sebenarnya adalah 14 lubang. Dari hasil tersebut, maka didapatkan akurasi sebesar 78 %. Dari rute kedua, didapatkan rata-rata jumlah berlubang yang terdeteksi adalah 9,8 lubang.

Sedangkan jumlah lubang yang sebenarnya adalah 11 lubang. Dari hasil tersebut, maka didapatkan akurasi sebesar 89%.

BAB VI KESIMPULAN dan SARAN

Bab ini membahas mengenai kesimpulan yang dapat diambil dari hasil uji coba yang telah dilakukan sebagai jawaban dari rumusan masalah yang dikemukakan. Selain kesimpulan, juga terdapat saran yang ditujukan untuk pengembangan penelitian lebih lanjut.

6.1. Kesimpulan

Dari aplikasi dari Tugas Akhir ini, maka dapat disimpulkan bahwa:

- a. Seluruh fitur dalam Sistem Akuisisi Data dapat berjalan.
- b. Sensor Android dapat digunakan untuk mendeteksi kendaraan berhenti atau sedang berjalan.
- c. Sensor Android dapat digunakan untuk mendeteksi kondisi jalan berlubang yang dilalui angkutan umum.
- d. Algoritma pendeteksi pergerakan angkutan umum dapat digunakan untuk mendeteksi apakah angkutan umum berjalan atau berhenti dengan *threshold* signifikansi sebesar 0,2.
- e. Algoritma pendeteksi jalan berlubang dapat digunakan untuk mendeteksi jalan berlubang dengan *threshold* sebesar 4,32 dan menghasilkan akurasi 89%.

6.2. Saran

Saran yang dapat digunakan untuk penelitian lebih lanjut adalah sebagai berikut:

 Dalam penelitian selanjutnya dapat menggunakan sensor lain dalam Android untuk membantu mengukur kualitas layanan angkutan umum. Seperti contohnya adalah sensor suhu dan kelembapan. b. Dengan adanya Tugas Akhir ini, diharapkan pihak-pihak terkait dapat menggunakannya dengan bijak agar evaluasi angkutan umum dapat lebih mudah.

DAFTAR PUSTAKA

- [1] P. K. Surabaya, "Surabaya," Pemerintah Kota Surabaya, 30 September 2014. [Online]. Available: http://www.surabaya.go.id/infokota/index.php?id=7. [Diakses 30 September 2014].
- [2] S. Rauf, "Analisis Kinerja dan Pemetaan Angkutan Umum di Kota Makassar," dalam *Konferensi Nasional Teknik Sipil*, Surakarta, 2013.
- [3] Android Developer, "Sensor Overview Android Developer," Android, 1 Juni 2015. [Online]. Available: http://developer.android.com/guide/topics/sensors/sensors_overview.html. [Diakses 1 Juni 2015].
- [4] Dinas Perhubungan, Standar Pelayanan Minimal Angkutan Masal, Jakarta: Dinas Perhubungan, 2012.
- [5] W. W. B. A. P. Dedy Nur Arifin, Rancang Bangun Sistem Fall Detection Untuk Pengguna Bergerak Berbasis Sensor Accelerometer dan Sensor Gyroscope pada Perangkat Mobile, Surabaya: ITS, 2013.
- [6] Navstar, "Navstar GPS User Equipment Introduction," dalam *Navstar GPS User Equipment Introduction*, Chicago, NASA, 1996, p. 215.
- [7] W. Indonesia, "Sistem Pemosisi Global," Wikipedia, 15 March 2015. [Online]. Available: http://id.wikipedia.org/wiki/Sistem_Pemosisi_Global. [Diakses 2015 6 15].
- [8] Android Developer, "Location Listener Android Developer," Android, 15 Juni 2015. [Online]. Available: http://developer.android.com/reference/android/location/LocationListener.html. [Diakses 15 Juni 2015].
- [9] G. Svensberg, Beginning Google Maps API 3, USA: Appress, 2010.

- [10] G. Millette, Android Sensor Programming, Indianapolis: John Wiley & Sons Inc., 2012.
- [11] L. J. Mitchell, PHP Web Services, Sebastopol: O Reilly Media, 2013.
- [12] Chandra, "Penjelasan Struktur Data JSON," 12 Juni 2014. [Online]. Available: http://candra.web.id/2014/06/12/penjelasan-struktur-data-json/. [Diakses 15 Juni 2015].
- [13] M. M. Lynn Beighley, Head First PHP & MySQL, Sebasthopol: O'Reilly Media, 2008.
- [14] W. Indonesia, "MySQL," Wikipedia, 2015. [Online]. Available: http://id.wikipedia.org/wiki/MySQL. [Diakses 15 6 2015].
- [15] A. Zlosek, "Android Accelerometer GPS," 27 Mei 2015. [Online]. Available: http://alanszlosek.com/android-accelerometer-gps. [Diakses 27 Mei 2015].
- [16] A. Mednis, "Real Time Pothole Detection using Android," dalam *Distributed Computing in Sensor Systems and Workshops*, Barcelona, 2011.
- [17] Android Developer, "Application Fundamentals," Android, 15 Juni 2015. [Online]. Available: http://developer.android.com/guide/components/fundament als.html. [Diakses 15 Juni 2015].
- [18] Android Developer, "Activity," Android, 15 Juni 2015. [Online]. Available: http://developer.android.com/reference/android/app/Activit y.html. [Diakses 15 Juni 2015].
- [19] A. Developer, "Services," Android, 2015. [Online]. Available: http://developer.android.com/guide/components/services.ht ml. [Diakses 15 Juni 2015].
- [20] Android Developer, "Broadcast Receiver," Android, 15 Juni 2015. [Online]. Available:

- http://developer.android.com/reference/android/content/Br oadcastReceiver.html. [Diakses 15 Juni 2015].
- [21] Android Developer, "Fragments," Android, 15 Juni 2015. [Online]. Available: http://developer.android.com/guide/components/fragments. html. [Diakses 15 Juni 2015].
- [22] Android Developer, "Sensor Event Listener," Android, 15 Juni 2015. [Online]. Available: http://developer.android.com/reference/android/hardware/S ensorEventListener.html. [Diakses 15 Juni 2015].
- [23] SQlLite, "About SQLite," SQLite, 7 Juni 2015. [Online]. Available: https://www.sqlite.org/about.html. [Diakses 7 Juni 2015].

[Halaman ini sengaja dikosongkan]

LAMPIRAN A

Tabel A. 1. Tabel Data *Accelerometer* ketika Angkutan Umum Berjalan

No	X	у	Z
1	-4,11803	-5,38217	6,742072
2	-2,31759	-4,45322	7,25922
3	-3,40934	-5,17148	9,739613
4	-3,10289	-5,56412	8,724471
5	-3,48596	-4,13718	6,971915
6	-4,28083	-6,11958	7,603985
7	-3,25611	-5,29597	6,119579
8	-4,52025	-5,80355	7,479486
9	-3,74453	-5,77481	7,805098
10	-3,29442	-5,75566	8,820239
11	-2,01113	-4,45322	5,659893
12	-5,43005	-5,89931	6,80911
13	-4,64475	-5,54497	7,52737
14	-5,02782	-6,50265	6,282385
15	-4,01268	-6,75165	5,813122
16	-3,81157	-5,01825	5,803545
17	-4,16591	-6,47392	7,718906
18	-4,28083	-4,04141	7,469909
19	-4,69264	-5,47793	6,38773
20	-5,15232	-6,72292	7,613562
21	-4,03184	-6,6463	5,688623
22	-4,02226	-3,62961	6,426037
23	-4,28083	-4,77883	8,485051
24	-4,6256	-5,19063	7,795521

No	Х	у	z
25	-4,46279	-6,00466	8,743625
26	-3,67749	-4,51068	6,368577
27	-4,2138	-4,76925	7,28795
28	-4,23295	-4,81713	5,841852
29	-4,17549	-3,63919	6,138733
30	-6,08127	-6,58884	7,843405
31	-5,54497	-6,33985	7,479486
32	-4,98952	-6,29196	7,671022
33	-4,51068	-5,66947	6,684611
34	-4,75967	-6,17704	7,833828
35	-5,65989	-6,05254	8,2169
36	-4,39575	-6,25366	7,192182
37	-2,25055	-5,83228	7,49864
38	-2,59531	-6,359	6,636727
39	-3,055	-5,21936	5,257667
40	-3,45723	-6,03339	5,736507
41	-4,17549	-5,6982	6,550536
42	-5,97593	-7,06768	7,939173
43	-4,63517	-6,79953	7,584831
44	-4,2138	-6,97192	6,856994
45	-3,80199	-6,25366	5,621585
46	-4,15633	-6,7325	6,866571
47	-4,58729	-6,92403	6,531382
48	-3,38061	-6,47392	5,851429
49	-4,53941	-6,49308	6,560113
50	-3,79242	-6,82826	6,205771
51	-4,05099	-6,95276	5,966351
52	-4,61602	-8,02536	6,895301

No	X	у	Z
53	-4,51068	-6,68461	7,364564
54	-4,22337	-6,49308	7,49864
55	-4,90333	-6,26323	7,872135
56	-4,77883	-6,33027	8,379706
57	-4,96079	-7,12514	6,483498
58	-5,20021	-7,50822	7,785944
59	-4,19464	-6,22492	6,330269
60	-3,80199	-5,72693	7,04853
61	-3,16035	-3,82115	5,602432
62	-4,85544	-6,24408	6,971915
63	-4,40533	-5,42047	7,441179
64	-4,36702	-7,19218	6,847417
65	-4,31914	-6,05254	7,354988
66	-3,56257	-5,46836	5,152322
67	-4,7501	-5,76524	6,330269
68	-5,23851	-7,04853	7,364564
69	-3,79242	-6,04297	6,435614
70	-3,39019	-5,1619	6,033388
71	-4,97994	-7,34541	6,991069
72	-6,57927	-6,2345	6,397307
73	-1,09176	-0,58419	8,973468
74	-10,8122	-8,04452	1,714248
75	-4,04141	-6,20577	9,672575
76	-5,47793	-5,78439	6,100426
77	-4,7501	-5,8227	6,828263
78	-5,65032	-5,97593	6,770803
79	-5,15232	-5,36301	6,761226
80	-5,1619	-5,70778	6,904878

No	X	у	Z
81	-4,98952	-5,64074	6,119579
82	-5,42047	-5,62159	6,38773
83	-5,22894	-5,46836	6,426037
84	-4,67348	-5,71735	6,588843
85	-5,4492	-6,53138	7,364564
86	-5,23851	-6,01423	7,000646
87	-4,33829	-5,84185	5,956774
88	-4,9129	-5,43963	6,38773
89	-3,65834	-5,08528	5,410896
90	-5,33428	-5,60243	6,828263
91	-4,90333	-5,58328	6,349423
92	-5,59286	-6,25366	7,536947
93	-6,05254	-7,2688	7,10599
94	-4,64475	-7,3933	6,215348
95	-4,26168	-5,10444	6,531382
96	-4,01268	-6,14831	6,042965
97	-4,97994	-6,54096	6,59842
98	-4,40533	-6,02381	5,679047
99	-5,22894	-6,31112	7,067683
100	-5,09486	-5,99508	6,339846

Tabel A. 2. Data *Accelerometer* Ketika Angkutan Umum Berhenti

No	X	у	Z
1	-0,50757	-0,01915	9,672575
2	-0,47884	-0,00958	9,710882
3	-0,49799	-0,00958	9,710882

No	X	y	Z
4	-0,49799	-0,01915	9,730036
5	-0,51715	-0,00958	9,730036
6	-0,49799	-0,00958	9,749189
7	-0,49799	-0,00958	9,749189
8	-0,49799	0,009577	9,691729
9	-0,52672	-0,00958	9,730036
10	-0,48842	-0,00958	9,739613
11	-0,5363	-0,00958	9,749189
12	-0,47884	-0,02873	9,691729
13	-0,50757	0,009577	9,739613
14	-0,51715	-0,00958	9,710882
15	-0,50757	-0,00958	9,739613
16	-0,48842	-0,01915	9,720459
17	-0,48842	-0,01915	9,720459
18	-0,49799	-0,00958	9,710882
19	-0,48842	-0,00958	9,739613
20	-0,47884	-0,01915	9,758766
21	-0,49799	0,019154	9,710882
22	-0,49799	-0,01915	9,720459
23	-0,50757	-0,01915	9,749189
24	-0,48842	-0,01915	9,691729
25	-0,45011	-0,01915	9,77792
26	-0,49799	-0,01915	9,749189
27	-0,49799	0,019154	9,691729
28	-0,46926	-0,00958	9,691729
29	-0,47884	-0,00958	9,787497
30	-0,49799	-0,02873	9,730036
31	-0,45969	-0,00958	9,730036

No	X	у	Z
32	-0,48842	-0,00958	9,720459
33	-0,49799	-0,00958	9,730036
34	-0,49799	0,02873	9,730036
35	-0,45969	-0,00958	9,720459
36	-0,47884	-0,03831	9,730036
37	-0,46926	-0,00958	9,768343
38	-0,46926	-0,00958	9,682152
39	-0,45969	-0,00958	9,730036
40	-0,50757	-0,04788	9,672575
41	-0,45969	-0,02873	9,701305
42	-0,48842	-0,02873	9,758766
43	-0,46926	0,009577	9,749189
44	-0,48842	-0,02873	9,787497
45	-0,50757	-0,00958	9,672575
46	-0,48842	-0,00958	9,749189
47	-0,47884	-0,00958	9,758766
48	-0,48842	-0,01915	9,720459
49	-0,46926	-0,01915	9,701305
50	-0,45011	-0,01915	9,768343
51	-0,47884	-0,00958	9,730036
52	-0,47884	-0,01915	9,768343
53	-0,47884	-0,00958	9,739613
54	-0,48842	-0,00958	9,730036
55	-0,46926	-0,02873	9,710882
56	-0,47884	-0,02873	9,701305
57	-0,45011	-0,03831	9,701305
58	-0,43096	-0,03831	9,701305
59	-0,48842	-0,02873	9,710882

No	X	у	Z
60	-0,45011	-0,02873	9,787497
61	-0,44053	-0,01915	9,758766
62	-0,44053	-0,01915	9,758766
63	-0,50757	-0,02873	9,730036
64	-0,47884	-0,02873	9,739613
65	-0,46926	-0,00958	9,720459
66	-0,50757	-0,00958	9,739613
67	-0,48842	-0,02873	9,739613
68	-0,45011	0,009577	9,758766
69	-0,46926	-0,01915	9,77792
70	-0,47884	0,019154	9,730036
71	-0,46926	-0,02873	9,701305
72	-0,48842	-0,00958	9,739613
73	-0,47884	-0,00958	9,77792
74	-0,49799	-0,00958	9,768343
75	-0,46926	-0,02873	9,730036
76	-0,45969	-0,02873	9,739613
77	-0,45011	-0,02873	9,749189
78	-0,45011	-0,03831	9,691729
79	-0,45969	0,009577	9,825804
80	-0,45969	-0,01915	9,739613
81	-0,46926	-0,02873	9,739613
82	-0,46926	-0,01915	9,710882
83	-0,44053	-0,00958	9,768343
84	-0,46926	-0,01915	9,739613
85	-0,48842	-0,01915	9,739613
86	-0,46926	-0,01915	9,768343
87	-0,48842	-0,00958	9,758766

No	X	у	Z
88	-0,48842	-0,00958	9,758766
89	-0,45969	-0,02873	9,768343
90	-0,48842	-0,01915	9,720459
91	-0,48842	-0,01915	9,739613
92	-0,45011	-0,02873	9,80665
93	-0,47884	-0,03831	9,701305
94	-0,48842	0,009577	9,768343
95	-0,45011	-0,03831	9,710882
96	-0,45011	-0,01915	9,797073
97	-0,45969	0,009577	9,758766
98	-0,43096	-0,01915	9,758766
99	-0,46926	-0,01915	9,739613
100	-0,45969	-0,01915	9,730036

Tabel A. 3. Data Accelerometer Jalan Berlubang 1

No	X	у	Z
1	-3,21781	-4,77883	9,308656
2	-3,18908	-6,13873	7,307104
3	-8,37013	-14,1162	11,84651
4	-1,16837	0,756568	0,938527
5	-8,19775	-16,9031	-4,00311
6	-3,12204	-2,34632	3,476381
7	-3,98395	-10,4196	12,38281
8	-4,58729	-6,7325	6,349423
9	-4,18507	-5,11401	9,442732
10	-4,1276	-3,40934	8,264784

Tabel A. 4. Data Accelerometer Jalan Berlubang 2

No	X	Y	Z
1	-1,5706	-2,02071	4,644751
2	-11,2623	-10,0556	16,75941
3	-3,91691	-6,19619	5,209783
4	-1,26414	-5,93762	2,384625
5	-5,76524	-9,42358	3,600879
6	-5,23851	-2,35589	10,67814
7	-3,52426	-4,29041	6,493075
8	-4,96079	-4,9129	7,594408
9	-3,70622	-5,25767	6,359
10	-4,53941	-7,54652	7,058106

Tabel A. 5. Data Accelerometer Jalan Berlubang 3

No	X	Y	Z
1	-6,15789	-4,94163	7,70933
2	-6,11	-5,45878	7,910442
3	-4,7884	-6,12916	6,320693
4	-3,39019	-1,82917	4,204218
5	-4,96079	-10,7643	5,707777
6	-6,87615	-4,86502	5,525817
7	-6,16746	-10,2759	8,418014
8	-2,68151	-4,89375	4,453215
9	-8,02536	-8,71489	8,992621
10	-4,88417	-5,09486	5,870583

Tabel A. 6. Data Accelerometer Jalan Berlubang 4

No	X	y	Z
1	-2,44209	-4,27126	6,253655
2	1,149217	-0,52672	-0,31603
3	3,256114	0,785298	0,90022
4	-13,9055	-12,1434	15,25585
5	-5,53539	-10,1993	9,586384
6	-2,78685	-3,94564	1,532289
7	-2,77727	-3,4668	6,14831
8	-0,36392	-6,95276	7,134721
9	-1,5706	-2,18351	2,317587
10	-2,44209	-7,84341	6,981492

Tabel A. 7. Data Accelerometer Jalan Berlubang 5

No	X	y	Z
1	-2,13563	-7,16345	8,781932
2	-1,99198	-5,74608	5,564125
3	-2,66235	-4,20422	7,163452
4	0,067038	-2,21224	1,043872
5	-6,42604	-11,2623	10,43872
6	-6,80911	-2,55701	15,44739
7	-0,46926	-4,27126	1,005565
8	-4,82671	-12,8042	16,53915
9	-3,73495	-4,06057	11,0229
10	-1,47483	-3,03585	13,7906

Tabel A. 8. Data Accelerometer Jalan Berlubang 6

No	X	y	Z
1	-3,66792	-4,80756	7,096414
2	-3,16992	-4,56814	8,2169
3	-3,15077	-4,45322	8,360553
4	-2,99754	-3,63919	7,335834
5	-3,25611	-4,27126	8,025364
6	-3,21781	-4,33829	6,732495
7	-5,81312	-5,64074	10,96544
8	-4,70221	-3,99353	8,762778
9	-3,66792	-5,38217	8,418014
10	-2,9305	-2,68151	5,401319

Tabel A. 9. Data Accelerometer Jalan Berlubang 7

No	X	у	Z
1	-1,68552	-4,40533	4,548983
2	-2,83474	-3,92649	7,345411
3	-2,8922	-4,90333	5,861006
4	0,086191	-1,65679	4,041412
5	-1,39821	-8,39886	1,072602
6	-5,40132	-3,4285	6,904878
7	-3,20823	-6,76123	6,991069
8	-3,62003	-5,45878	6,789956
9	-3,58173	-7,31668	8,810662
10	-3,39019	-6,08127	7,297527

Tabel A. 10. Data Accelerometer Jalan Berlubang 8

No	X	y	Z
1	0,785298	-3,83072	5,497087
2	-4,88417	-3,25611	6,588843
3	-9,414	-11,4922	12,32535
4	-5,58328	-9,42358	6,129156
5	-4,75967	-6,08127	7,058106
6	-4,15633	-6,09085	6,856994
7	-6,19619	-7,29753	8,063671
8	-3,53384	-5,07571	6,062119
9	-2,66235	-5,14275	3,744531
10	-7,33583	-13,5703	9,270349

Tabel A. 11. Data Accelerometer Jalan Berlubang 9

No	X	y	Z
1	-4,14676	-4,39575	7,517793
2	-4,3766	-4,83629	7,603985
3	-3,70622	-2,48039	5,93762
4	-3,72538	-7,37414	8,916007
5	-4,17549	-0,09577	6,502652
6	-1,0726	-5,38217	4,625598
7	-4,10845	-5,33428	8,580819
8	-2,02071	-7,52737	3,888184
9	-7,18261	-8,30309	9,346964
10	-3,97437	-4,99909	5,755661

Tabel A. 12. Data Accelerometer Jalan Berlubang 10

No	X	У	Z
1	-5,06613	-4,22337	6,799533
2	-6,61757	-3,94564	8,437167
3	-5,87058	-5,65989	8,073248
4	-3,32315	0,009577	4,022259
5	-7,50822	-4,7501	9,279925
6	-0,73741	-3,15077	2,001553
7	-4,38618	-6,25366	4,845864
8	-8,38928	-10,8122	1,781286
9	-2,02071	-2,33674	4,242526
10	-5,48751	-7,33583	7,019799

[Halaman ini sengaja dikosongkan]

LAMPIRAN B

Tabel B. 1. Identitas Angkutan Umum

No Uji	Plat Nomor	Tanggal	Waktu	Jenis
Coba	Piat Nomoi	Cek	Cek	Angkutan
1	L 1027 UA	25/03/2015	16/47/34	S
2	L 1136 UB	1/6/2015	12/36/04	S
3	L 1119 AU	3/6/2015	09/45/09	S
4	L 1287 UC	3/6/2015	14/52/54	S
5	L 1291 UA	4/6/2015	12/28/43	S
6	L 1049 UF	4/6/2015	16/43/14	S
7	L 1159 UA	25/5/2015	16/47/34	S
8	L 1091 UB	26/5/2015	12/36/04	S
9	L 1016 UA	27/5/2015	12/21/04	S
10	L 1291 UA	24/5/2015	11/01/04	S
11	L 1154 UD	24/5/2015	14/13/14	S
12	L 1241 UE	22/5/2015	16/00/34	S
13	L 1238 UD	22/5/2015	11/31/54	S
14	L 1018 UE	20/5/2015	12/11/31	S
15	L 1564 UF	19/5/2015	13/45/14	S
16	L 1235 UA	15/5/2015	16/00/34	S
17	L 1128 UD	13/5/2015	10/31/07	S
18	L 1073 UE	12/5/2015	11/25/04	S
19	L 1172 UF	10/5/2015	14/43/14	S
20	L 1064 UD	7/5/2015	11/30/04	S
21	L 1587 UE	17/5/2015	10/37/14	M
22	L 1399 UT	8/6/2015	10/53/30	M
23	L 1118 US	28/5/2015	09/09/36	M
24	L 1069 UF	21/5/2015	11/24/09	M
25	L 1139 US	9/5/2015	10/39/55	M
26	L 1304 UE	29/4/2015	10/37/14	M
27	L 1035 UT	23/4/2015	08/53/30	M
28	L 1119 UR	24/4/2015	11/09/36	M

No Uji Coba	Plat Nomor	Tanggal Cek	Waktu Cek	Jenis Angkutan		
29	L 1422 UT	20/4/2015	09/24/09	M		
30	L 1123 UR	21/4/2015	11/39/55	M		

Tabel B. 2. Tabel Hasil Akuisisi Data Angkutan Umum

No	Posisi Awal	Posisi Akhir	Jarak	Waktu	Waktu	Kecepatan	Kecepatan	Jumlah	Jumlah	Jumlah
	L: Latitude, B = Longitude	L: Latitude, B = Longitude	Tempuh	Tunggu	Tempuh	(km/jam)	Maksimal	Penumpang	Jalan	Berhenti
			(km)	(detik)	(detik)		(km/jam)		Berlubang	
1	L:-7,299412842268957	L:-7,290252495159251,	6,9587	116	1905	13,1502	37,3699	11	9	41
	B: 112,76137991856312	B: 112,79521105124662								
2	L:-7,299268734241989	L:-7,290271518240934	6,9324	1448	1659	15,0432	43,2190	10	7	39
	B: 112,76141006792889	B: 112,79520672029954								
3	L:-7,2993541452602475	L:-7,290233519396342	6,9588	23	1916	13,0750	45,1486	16	7	48
	B: 112,76120969966297	B:112,7952617144921								
4	L:-7,29929038303752	L:-7,290230606271217	6,9276	278	1487	16,7715	45,6142	10	10	50
	B: 112,76134954867186	B: 112,79517474212906								
5	L:-7,299137975250645	L:-7,2902333857063	6,9303	1209	1660	15,0296	41,1128	8	4	38
	B: 112,76125695772684	B: 112,7952164391591								
6	L:-7,2992587569167372	L:-7,290237274263593	6,9316	15	1694	14,7307	43,7922	10	12	40
	B: 112,76127734366115	B:112,79514126175613								
7	L:-7,2992687342419891	L:-7,290231518240934	6,9587	276	1735	14,4387	37,3799	11	13	41
	B: 112,76134006792819	B:112,79520672029954								
8	L:-7,299290383037521	L:-7,290230606271223	6,9487	1231	1805	13,8588	42,2190	12	12	39
	B: 112,76134954867116	B:112,79517474212906								
9	L:-7,2993541452602432	L:-7,290233519396331	6,9584	980	1650	15,1820	40,2190	12	13	42
	B: 112,76134969966247	B: 112,7952617144921								
10	L:-7,299258756916713	L:-7,290237274263524	6,9584	12	1490	16,8123	44,1591	12	12	42
	B: 112,76134734366145	B:112,79514126175613								
11	L:-7,299137975250646	L:-7,2902033857065	6,9316	15	1594	15,6548	37,7919	10	8	37
	B: 112,76134695772689	B: 112,7952164391592								
12	L: -7,2993541452602475	L:-7,290233519396378	6,9587	90	1405	17,8300	37,3699	11	13	41
	B: 112,76134969966297	B: 112,7952617144924								
13	L:-7,29929038303752	L:-7,290230606271219	6,9587	325	1805	13,8788	34,2190	12	13	39
	B: 112,76134954867111	B: 112,79517474212901								
14	L:-7,299268734241932	L:-7,290271518240976	6,9584	453	1660	15,0906	35,2130	12	13	33
	B: 112,76134006792813	B: 112,79520672029931								
15	L:-7,299137975250645	L:-7,2902033857063	6,9316	898	1194	20,8993	38,7919	10	11	38
	B:112,76134695772687	B: 112,7952164391598								
16	L:-7,2993541452602475,	L:-7,290233519396342	6,9587	112	1923	13,0272	37,3699	11	13	41
	B: 112,76134969966298	B: 112,7952617144921								

	L:-7,29929038303752	L:-7,290230606271213	6,9587	134	1805	13,8788	31,2190	12	12	39
17	B:112,76134954867186	B: 112,79517474212931								
	L:-7,299258756916738	L:-7,290237274263534	6,9584	231	1660	15,0906	40,2190	12	13	42
18	B: 112,761377343661851	B: 112,79614126175611								
19	L:-7,299268734241989	L:-7,290271518240936	6,9316	15	1694	14,7307	47,7919	10	12	40
	B: 112,76134006792887	B: 112,79520672029998								
20	L:-7,299290383037511	L:-7,290230606271214	6,9584	120	1490	16,8123	44,2191	12	12	39
	B: 112,76134954867188	B: 112,79517474212909								
21	L:-7,2363656285675073	L:-7,2410012848301	2,4041	105	649	13,3357	34,2309	4	10	6
	B:112,73743911281621	B: 112,74583528240716								
22	L:-7,236309881507202	L:-7,240926170716297	2,4010	16	624	13,8519	44,1136	7	10	10
	B: 112,73745957664411	B: 112,74576481718426								
23	L:-7,23639803548632	L:-7,240986898744390	2,4057	13	686	12,6248	41,4208	10	10	10
	112,73745579322217	B: 112,74581379300831								
24	L:-7,236388492616905	L:-7,241036494869232	2,4079	120	670	12,9377	39,9940	11	8	12
	B:112,73739653821491	B: 112,7458210171259								
25	L:-7,236412049069432	L:-7,241023410540866	2,4093	30	675	12,8496	30,8522	4	9	8
	B: 112,73737187157221	B: 112,74585721585589								
26	L:-7,23639803548632	L:-7,240986898744397	2,4041	26	689	12,5615	34,2309	6	10	8
	B: 112,73745579322217	B: 112,74581279300845								
27	L:-7,236388492716981	L:-7,241036494869232	2,4010	16	676	12,7863	34,1136	12	10	11
	B: 112,73739663821411	B: 112,7458210171259								
28	L:-7,236388492616911	L:-7,241036494869232	2,4057	13	596	14,5312	34,0836	10	10	10
	B: 112,73739653821498	B: 112,7458210171259								
29	L:-7,236309881507210	L:-7,240926170716298	2,4079	9	671	12,9184	32,9940	11	10	5
	B: 112,73745957664419	B: 112,74576481718424								
30	L:-7,2363656285675076	L:-7,2410012848312	2,4013	360	701	12,3319	30,8522	11	11	8
	B: 112,73743911281623	B: 112,74583528240713								

BIODATA PENULIS

Helmy Satria Martha Putra, biasa dipanggil Helmy, dilahirkan di kota Mojokerto pada tanggal 31 Maret 1993. Penulis adalah anak pertama dari dua bersaudara dan dibesarkan di kota Surabaya, Jawa Timur. Penulis menempuh pendidikan di SDN Simokerto 7/140 Surabaya, **SMP** Negeri 9 Surabaya dan SMA Negeri 5 Surabaya. Pada tahun 2011, penulis mengikuti SNMPTN Undangan dan

diterima di Teknik Informatika Institut Teknologi Sepuluh Nopember Surabaya yang terdaftar dengan NRP 5111100031. Di jurusan teknik informatika ini, penulis mengambil rumpun mata kuliah Algoritma dan Pemrograman. Selama di kuliah, penulis banyak belajar mengenai pemrograman Java, PHP, pemrograman perangkat bergerak dan pernah menciptakan beberapa permainan. Penulis juga pernah menjadi assiten praktikum mata kuliah Sistem Digital dan menorehkan beberapa prestasi di bidang pengembangan website dan permainan. Selain itu, penulis aktif di beberapa organisasi di antaranya Staf Media dan Informasi HMTC Bersatu, Ketua website ITS EXPO, Staf Komunikasi dan Informasi BEM ITS Mahakarya, Kepala Departemen Media Informasi HMTC Bersahabat dan Dirjen Multimedia Kreatif di BEM ITS Kolaborasi.