Math 298 Fundamental Concepts in Computational and Applied Mathematics

Class 2

Recap

- Beware catastrophic cancellation know limits of precision
- Ask about conditioning of a problem
- Choose stable algorithms so as to not introduce any more loss of precision than is necessary
- Conditioning is fundamentally a characteristic of the problem, while stability is related to algorithms

Discussion of Bailey's paper

- Climate modeling
 - "almost all numerical variation occurred in one inner product loop ... and in a similar operation in a large conjugate gradient calculation"
- N–Body atomic system simulations
 - "solve the generalized eigenvalue problem (Ĥ- EŜ)C = 0, where the matrices Ĥ and Ŝ are large ... and very nearly degenerate"
- Computational Geometry and Grid Generation
 - "small numerical errors in the computation of the point nearest to a given point on a line intersecting two planes can result in the computed point being so far from either plane as to rule out the solution being correct for a reasonable perturbation of the original problem"

Dense Linear Algebra

- Basic Linear Algebra
 - dot products, saxpy, matvec
 - Solve Ax = b
 - Solve $Ax = \lambda x$
- We cannot solve anything except linear systems
- Various standard methods.
 - LU
 - Cholesky
 - QR
 - SVD
- Your choice will depend on the application and time constraints

Some useful facts

Define the condition number of a matrix A by:

•
$$\kappa(A) = ||A|| \cdot ||A^{-1}||$$

 Best possible error bound for solving a system of linear equations can be given by

$$\frac{||x - \hat{x}||_{\infty}}{||x||_{\infty}} \le 4\mu\kappa_{\infty}(A)$$

- Problems for which $\mu \kappa_{\infty}(A) \approx 1$ are considered ill-conditioned
- Gaussian elimination always produces solutions with relatively small residuals (minor caveats)

Stable/Unstable? Well conditioned/III conditioned?

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Comparison of algorithms

Algorithm	Work	Advantages	Disadvantages
LU	$\mathcal{O}(n^3)$	Simple	Unstable
LU w/PP	$\mathcal{O}(n^3)$	(Usually) stable Depends on growth factor ρ	Growth factor; pivoting will change structure
LU w/FP	$\mathcal{O}(n^3)$	Stable	More work than PP
QR	$\mathcal{O}(n^3)$	Stable	Twice the work of LU
SVD	$\mathcal{O}(n^3)$	Stable	More than twice the work

LU with partial pivoting

 Can show that LU/PP generates exact solution to a perturbed problem (A + E) x = b, such that

$$||E||_{\infty} \le 8n^3 \rho ||A||_{\infty} \mu$$

- The growth factor ρ can grow exponentially, but in practice is usually or order 10
- Consider the residual, b Ax:

$$||b - Ax||_{\infty} = ||Ex||_{\infty}$$

$$\leq 8n^{3}\rho||A||_{\infty}\mu||x||_{\infty}$$

$$\approx \mu||A||_{\infty}||x||_{\infty}$$

MODEL PROBLEM

- POISSON'S EQUATION
 - Steady state heat flow
 - Electrostatics
 - Simple diffusion
 - Simple fluid flow
- 3-Dimensional Geometry
- 30,000 Nodes

