# APEACH: Attacking Pejorative Expressions with Analysis on Crowd-Generated Hate Speech Evaluation Datasets

Kichang Yang, Wonjun Jang, Won Ik Cho ENMLP 2022

발제자: 박채원

23-02-10

#### **Abstract**

- 혐오 표현 탐지에서는 다양한 도메인을 포함하는 학습, 평가 데이터를 구축하는 것이 중요
- 일반적으로 데이터셋 구축 scheme은 웹(소셜 미디어)에서 텍스트를 크롤링 하고 고용된 작업자가 이에 라벨링을 진행
- 하지만 이러한 관습적인 구축 방식에 의해 데이터가 싱글 도메인으로 한정되어 도메인 일반화가 부족한 경우가 있음 (ex 연예 섹션 뉴스 댓글만으로 구성되어 다른 도메인의 일반화에 어려움을 겪음)
- 도메인이 한정된 경우 도메인 중복으로 인해 성능이 과대평가 되기도 함
- 이러한 문제를 해결하고자 'APEACH' 제안
  - 익명의 작업자가 최소한의 post-labeling을 따라 혐오 발언 데이터를 만들도록 하는 것
  - 이 평가 데이터 구축 방식을 통해 사전학습 데이터와 평가 데이터 사이 어휘 중복에 덜 민감하게 모델의 성능을 적절히 평가할 수 있는 데이터를 구축할 수 있다.

## Introduction

- 기존 혐오 표현 데이터셋 구축은 일반적으로 텍스트에 라벨을 다는 것으로 진행됨
- 하지만 이러한 방법은 데이터셋의 신뢰를 방해하는 몇가지 제한 사항이 있음
  - 온라인 자료의 특성에서 오는 라이선스 및 개인 정보 문제의 잠재적 위험성
  - 제한된 도메인 범위에서 크롤링 되어 일부 사회적 문제에만 초점을 맞춘 평가가 될 수 있음
  - 도메인 중복으로 인한 공정하지 않은 평가
- 저자는 익명의 작업자가 혐오 표현 데이터를 생성하도록 하는 것이 적절하다고 가정
  - 작업자가 task manager로부터 제공받은 prompt를 참고해 데이터를 생성 (최소한의 지침)
  - 크라우드 소싱 플랫폼을 이용해 작업자가 익명으로 데이터를 만들 수 있도록 함 (작업자의 불명예를 방지)
- System
  - crowd, task manager
  - pseudo 혐오 표현 분류기 구축 및 모델 배포
  - user-generated 데이터 수집 및 피드백
  - 3명의 task manager의 post-labeling



#### Introduction

- 기여
  - 기존의 데이터 구축 방식과 달리 작업자가 직접 혐오 표현 데이터를 생성하는 방법 제안
  - 새로운 한국어 혐오 탐지 평가 셋 구축 및 공개 (약 3K)
    - 라이선스 및 개인정보 문제가 없어 말뭉치 도메인의 잠재적 편향을 방지
  - 기존 라벨링 방식으로 구축된 데이터셋(벤치마크 데이터셋)과 성능 기반 비교를 통해 APEACH의 일반화 가능성이 특정 사전학습 말뭉치와 중복이 적다는 점에서 암시됨을 보임
    - 즉 기존 라벨링 방식으로 구축된 데이터셋에 비해 사전학습 데이터셋과 도메인 중복이 적음으로써 도메인 일반화 가능성을 보임 (도메인 중복으로 인한 성능 향상과 같은 문제를 방지)

## System

- System 구성
  - pseudo 분류기 구축
  - 작업자 생성 데이터 수집 및 pseudo 분류기를 이용한 작업자로부터의 피드백
  - post-labeling
- pseudo 분류기 구축
  - 반복되는 작업으로부터 오는 집중력 저하를 방지하고 수집 과정에 적극적인 참여를 위해 pseudo 분류기를 사용함
  - 단순히 욕설 용어 사전을 만들고 이를 통해 pseudo-labeled 웹 텍스트 데이터셋을 만듦. 이를 단순 이진 분류기 학습에 사용
  - 분류기는 작업자가 생성한 text를 입력하면 텍스트가 편견이나 toxic 포함 여부 예측
- 분류기 배포 및 텍스트 수집
  - **배포**: 분류기는 작업자의 입력을 수집하고 작업자로부터 피드백을 받기 위해 배포됨
  - **피드백**: 작업자가 생성한 텍스트를 입력하면 예측 라벨이 추론되고 작업자의 의도와 일치 하는지 아닌지를 작업자가 선택 이를 통해 ground truth 설정



- 이와 같은 시스템을 이용해 작업자 생성 데이터셋 구축 (평가 데이터셋 APEACH)
- 작업자가 기초부터 혐오 표현을 생성하는 것은 어려울 수 있기 때문에 주제 제공
- Topic (10개)



- 작업자는 이 중 하나를 선택한 후 그에 따른 입력을 생성
- 주제는 랜덤한 순서로 제공됨 (잠재된 편향을 막기 위해)

- Label
  - 문장이 혐오를 표현하는지 아닌지를 라벨로 정의함
  - 작업자는 혐오가 포함된 문장을 만들어야 하는지 혹은 혐오가 포함되지 않은 문장을 만들어야 하는지에 대해 지침을 받는다.
  - 혐오가 포함되지 않는 문장의 경우 주제는 동일하지만 공격적이지 않은, 중립적이거나 논란의 여지가 있어 보이지만 혐오는 아닌 발화를 나타내야함
  - ex) 나는 BLM 운동을 비하하는 사람이 싫다
    - 이는 '인종에 따른 차별 발언'을 주제로 하지만 혐오가 아님
  - 해당 연구에선 혐오 발언과 비혐오적 데이터가 균형을 이루어 제공됨

- 세가지 요소(할당된 라벨, 모델의 예측 라벨, 작업자의 피드백)를 통해 최종 라벨 설정
- 예시
  - 할당 라벨=hate speech & 모델 예측=non-hate speech -> 작업자가 오분류로 체킹 -> ground truth는 hate speech로 저장됨
- 의심 데이터 제거
  - 이 과정에서 할당 라벨과 ground truth가 다른 데이터는 작업자의 실수로 간주되고 자동으로 제거됨
  - 즉 모델이 예측을 잘 했는데 작업자가 오분류로 체킹한 경우
- post-labeling
  - 데이터 생성 과정에서 다양한 윤리적 기준에서 비롯된 몇 의심스러운 데이터를 확인
  - 하지만 작업자 생성 데이터의 특성을 보장하기 위해 이러한 케이스의 데이터는 최소한의 task manager에 의해 확인됨
  - 이는 최종 결정에서 기존의 라벨링 및 투표 과정을 적용해 데이터의 퀄리티를 보장함
  - 세명의 task manager가 각 데이터에 대해 작업자의 피드백이 적절한지 확인함
    - task manager 모두 적절하지 않다고 판단한 데이터만 삭제함

#### Dataset collection

- Compensation through moderator
  - 혐오 발언 데이터 생성에 대한 보상을 위해서는 근로자를 식별해야 하지만 수집 단계에서 익명성을 해칠 수 있기 때문에 크라우드 소싱 플랫폼이 task manager와 작업자 사이 moderator(중재자) 역할을 할 수 있도록 함
  - 중재자만이 작업자의 프로필을 관리하는 방식으로 프로젝트가 설계됨
  - 작업자의 익명성 보장
- Worker selection for dataset quality
  - 모든 참여 희망 작업자가 해당 작업에 적절하진 않을 수 있음
  - 저품질 생성을 방지하기 위해 tutorial 과정이 존재
    - 작업자로부터 10개의 문장을 입력 받음
    - 잘못 라벨링 된 데이터의 비율을 계산 -> 이로부터 자주 실수를 만드는 작업자 제외
    - 가이드라인 예시와 입력이 동일한 경우
    - 입력이 한 글자 이하인 경우
  - 230명의 작업자 중 154명이 최종적으로 작업에 참여하도록 승인 됨

- Diversity of crowd-generated hate speech
  - 기존 익명 데이터 수집과 달리, 제안하는 방식은 주제 선택지를 사용해 다양한 주제의 텍스트를 생성하도록 요청할 수 있음
  - 작업자의 텍스트 생성을 가이드하고 이전의 혐오 발언 연구에서 덜 고려되었던 비혐오 발언 데이터를 수집하도록 함
  - heavy worker로부터의 데이터가 편향되는 것을 막기 위해 작업자 당 텍스트 생성을 최대 40개로 제한함
- Dataset summary
  - 해당 데이터셋 구축 scheme은 크라우드 소싱 플랫폼의 moderator를 통해 데이터 퀄리티, 주제 다양성, 데이터의 윤리적 문제를 보장할 수 있다.
  - 메인 단계에서 task manager 간 의견 불일치는 반대 클래스로 레이블 지정됨

|        | Tutorial session |      | Main session |      |
|--------|------------------|------|--------------|------|
|        | Non-hate         | Hate | Non-hate     | Hate |
| Accept | 453              | 478  | 1386         | 1499 |
| Reject | 38               | 52   | 116          | 1    |
| Total  | 491              | 530  | 1502         | 1500 |

- 길이 분포
  - hate speech와 non-hate speech의 길이 분포가 유사
  - 이로써 암시적인 길이 편향을 방지
- 주제 분포
  - topic prompt를 랜덤한 순서로 제공함으로써 습관적으로 상위 후보를 선택하는 경향에서 오는 편향을 방지





- 혐오 발언 탐지 모델 평가
  - 한국어 혐오 발언 벤치마크 데이터셋인 BEEP! 데이터로 학습된 모델을 APEACH를 사용해 평가
  - 또한 BEEP!의 dev set과 APEACH를 평가 corpus로써 비교를 통해 일반화 가능성과 성능 경향을 확인

- Korean Pretrained Language Models (PLM)
  - 공개된 한국어 사전학습 언어 모델을 사용
  - KoBERT
    - BERT 학습 scheme을 따르는 PLM (**한국어 위키피디아** 데이터로 사전 학습)
  - DistilKoBERT
    - DistilBERT의 distillation 기법을 이용한 KoBERT의 경량화 버전
  - KoELECTRA
    - 국립국어원이 발표한 **모두의 말뭉치, 한국어 위키피디아, 나무위키, 뉴스 기사** 등의 corpus로 사전 학습된 PLM
  - KcBERT
    - 12GB의 네이버 정치 뉴스 댓글로 사전 학습된 한국어 BERT 모델
  - SoongsilBERT
    - KcBERT에서 사용된 **정치 뉴스 댓글**에 더해 **대학교 커뮤니티**와 **모두의 말뭉치 데이터**를 사용해 사전학습한 RoBERTa 기반 모델

- 학습 데이터
  - 파인튜닝에 BEEP! 데이터를 사용
    - BEEP!: 한국어 연예 뉴스 댓글에 hate, offensive, none 삼진으로 annotation 된 한국어 혐오 탐지 벤치마크 데이터셋
  - BEEP! 데이터셋 구축 scheme이 APEACH와 다르지만 두 데이터가 모델을 평가하는 경향을 확인하고 싶어 두 데이터셋을 모두 활용함
  - 두 데이터 모두 이진으로 동일하게 변형
    - BEEP! 에서 hate와 offensive를 합쳐 이진 데이터('hate+offensive', 'none')로 변형
- 평가
  - BEEP!의 dev set과 APEACH 사용
  - f1 score 계산

- 결과
  - BEEP!으로 학습된 모델이 APEECH 에서도 합리적인 성능을 보여주었다.
  - 이는 해당 연구의 데이터셋 생성 기준이 기존 연구와 유사함(aligned)을 의미

| Model              | BEEP! dev set          | APEACH (ours)   | Relative difference |
|--------------------|------------------------|-----------------|---------------------|
| KoBERT             | 0.8030                 | 0.7885          | -1.81%              |
| DistillKoBERT      | 0.7570                 | 0.7715          | 1.92%               |
| KoELECTRA-V3       | 0.7920                 | 0.8101          | 2.29%               |
| KcBERT-Base        | 0.8088                 | 0.8086          | -0.02%              |
| KcBERT-Large       | 0.8295                 | 0.8116          | -2.16%              |
| SoongsilBERT-Base  | 0.8261                 | 0.8424          | 1.97%               |
| SoongsilBERT-Small | 0.8149                 | 0.8228          | 0.97%               |
|                    | Hate + Offensive : 311 | Hate: 1,922     |                     |
| Composition        | None : 160             | Non-hate: 1,848 |                     |
|                    | Total : 471            | Total: 3770     |                     |

- 코퍼스 도메인의 영향
  - BEEP!의 경우 KcBERT-Large에서 크게 좋은 성능을 보임
  - APEACH에서 KoELECTRA(BEEP! dev set에선 낮은 성능)가 KcBERT와 유사한 성능을 냄
  - 이는 사전학습에 사용된 데이터의 도메인과 스타일이 다운스트림 태스크 성능 측정에 영향을 미친다는 것을 의미함

- 주제별 성능
  - 주제별 정확도 확인
  - 편차는 학습 셋과 평가 셋의 구성 방식 차이에서 비롯된 것으로 보임
  - BEEP!에는 Gender stereotypes과 Sexual harassment를 다수 포함하는데 topic별 성능에서는 낮게 나옴
  - 명확한 이유는 알 수 없으나 학습셋과 평가셋 간에 텍스트 스타일 불일치가 원인으로 추측됨

| Topic                 | F1 Score |
|-----------------------|----------|
| Nationality           | 0.8519   |
| Age and social status | 0.8700   |
| Eating habits         | 0.8182   |
| Appearance            | 0.8114   |
| Gender stereotypes    | 0.7993   |
| Sexual harassment     | 0.7610   |
| Racism                | 0.8511   |
| Origin and residence  | 0.8393   |
| Disabled              | 0.8525   |
| Education             | 0.9035   |

Table 2: SoongsilBERT-Base's F1 score of binary classification according to topics.

- 도메인 일반화 가능성
  - APEACH는 도메인 의존성 문제를 해결
    - prompt에 기반해 작업자가 혐오 발언을 생성하도록 함
    - 생성할 텍스트의 스타일을 지정하지 않음
    - 이 둘은 기존 annotation scheme에서 보장되지 않음 -> 이는 BEEP!의 단점
    - BEEP!은 뉴스 댓글이지만 사전 학습 과정에서 뉴스 댓글이 포함되지 않은 KoELECTRA에서 상대적으로 낮은 성능을 보여줌. 반면에 APEACH에서는 다른 경향을 보임
    - APEACH는 모델 사전학습에 사용된 corpus의 도메인에 의존성을 덜 갖고 성능을 평가할 수 있다.
  - SoongsilBERT
    - BEEP!과 APEACH에 대한 경향이 다름
    - KcBERT에서 BEEP이 도메인 특화로 인해 이득을 봄. 즉 더 좋은 성능을 냄
    - BEEP 에서 KcBERT의 좋은 성능은 기존 annotation scheme이 특정 도메인에 의존성을 가져다 주었기 때문일 수 있음
    - 이는 평가에서 도메인 일반화 가능성의 한계로 작용함

- 도메인 일반화 가능성에 대한 분석
  - 각 평가셋과 PLM 사전학습 데이터 사이 TF-IDF 유사도를 계산함으로써 각 평가셋의 도메인 일반화 가능성을 검증함
  - 두 개의 사전학습 말뭉치와 두 개의 평가 데이터셋을 사용해 총 4개의 score를 계산했고, 이를 최대값으로 정규화
  - TF-IDF 단어 사전은 4개의 코퍼스의 whitespaced 단어를 기반으로 구축
  - 평가셋과의 코사인 유사도 계산의 타당성을 위해 KcBERT와 SoongsilBERT 사전학습 데이터의 1%를 무작위 샘플링
  - 결과
    - BEEP!에서는 두 사전학습 코퍼스 사이 뚜렷한 갭이 있지만 반면에 APEACH는 상대적으로 작은 갭을 보여준다.
    - 이는 APEACH가 도메인 중복에 덜 민감함을 의미하며 평가의 일반화 가능성을 시사함



< 유사도 계산 결과 >

- 정성 분석
  - APEACH에서 BEEP!에서 가장 많이 관찰된 'Gender stereotypes'와 'Sexual harassment'에 대해 조사함
  - 첫 두 개의 text는 웹 댓글 스타일(BEEP!과 유사)이며 나머지는 일반적인 스타일의 text
    - 1. "ㅅㅂ옷 꼬라지 하고는.. 게이냐?"
    - 2. "여자 연예인들은 다들 뒤로 스폰끼고 구멍 장사하는거 아닌가?"
    - 3. "아무래도 아이를 돌보거나 그 밖의 집안일 에 관해서는 남성들보다는 여성들이 좀 더 신경 써야 하는 것이 당연하다고 생각 합니다."
    - 4. "남자면 그냥 해도 될텐데 고집을 많이 부리네요. 불편해도 좀 참아야 다들 편한데"
  - BEEP!으로 파인튜닝된 숭실버트가 1,2번은 제대로 toxicity를 추론했으나, 3,4번 추론엔 실패함
  - 정중한 매너로 고정관념을 내포한 댓글인 3,4번을 제대로 추론 못함
  - 즉 학습된 데이터셋과 유사한 댓글 스타일에 대해서는 추론을 제대로 했으나, 스타일이 다른 텍스트에 대해선 그러지 못함

- APEACH로 학습
  - APEACH로 학습한 모델의 낮은 성능
  - 추정 원인
    - 훈련 데이터셋의 크기 차이
      - BEEP-8K / APEACH-3.7K
    - BEEP!과 composition(style 등)이 다름

|             | Validation           |                      |  |
|-------------|----------------------|----------------------|--|
| Train       | APEACH               | BEEP! dev            |  |
| APEACH      |                      | KoELECTRA: 0.7502    |  |
|             | -                    | KcBERT-Large: 0.7893 |  |
| BEEP! train | KoELECTRA: 0.8101    | KoELECTRA: 0.7916    |  |
|             | KcBERT-Large: 0.8116 | KcBERT-Large: 0.8295 |  |

## Conclusion

#### • 결론

- 크롤링 및 라벨링 기반의 기존 데이터셋 구축 방식과 달리 작업자 기반 데이터 구축 방식을 소개
- 작업자의 익명성과 데이터의 신뢰성을 모두 보장하는 작업자 기반 데이터셋 구축 이후, 이전 연구와의 비교를 통해 분석을 제시
- APEACH는 작업자 기반 데이터 구축 기법이 도메인 일반화(domain generalizability)와 주제 다양성(topic variety)을 이룸

## 추가

- Train-Test 중복 완화
  - BEEP!이 연예 섹션의 뉴스 댓글을 다루고, KcBERT가 정치 뉴스 댓글을 기반으로 사전학습 되었다는 점에서 유사한 도메인을 공유
  - 그러므로 잠재적인 토큰 중복이 존재할 것
  - 그렇다면 KcBERT에서 BEEP! 평가셋을 사용했을 때 좋은 성능을 낼 것이다. 하지만 이는 적절치 않음
  - 이를 방지하기 위해 도메인 중복을 고려한 APEACH를 제안
  - 그렇기 때문에 APEACH가 더 넓은 범위의 말뭉치로 사전학습 된 PLM(soongsil BERT) 평가에 더 적합할 것으로 생각
  - 또한 기존 annotation scheme에서 train과 test 셋 중복의 위험을 강조하고 APEACH가 이러한 점을 완화할 수 있다는 것을 강조
  - 이러한 점은 APEACH의 훈련 셋으로서의 유용성을 보장함