Week 6 work: Oct. 18 — Oct. 25

9-hour week

Obligatory problems are marked with [**]

1. [Fourier Analysis of Boolean Functions.] Watch these two videos. If you really want to go crazy, you can watch this playlist.)

2. [A simple Boolean Fourier formula.] [**] Let $f:\{0,1\}^n\to\mathbb{C}$. In class we saw the following nice fact:

$$s = 000 \cdots 0 \implies \widehat{f}(s) = \underset{\boldsymbol{x} \sim \{0,1\}^n}{\mathbf{E}} [f(\boldsymbol{x})],$$

where $\mathbf{E}_{\boldsymbol{x} \sim \{0,1\}^n}[\cdot]$ denotes "the expected value, when \boldsymbol{x} is chosen uniformly at random from $\{0,1\}^n$ ". (We wrote this as $\operatorname{avg}_{\boldsymbol{x}}[\cdot]$, but same difference.)

Prove also the following formula:

$$s \neq 000 \cdots 0 \quad \Longrightarrow \quad \widehat{f}(s) = \frac{1}{2} \left(\underset{\boldsymbol{x} \sim \{0,1\}^n}{\mathbf{E}} [f(\boldsymbol{x}) \mid \chi_s(\boldsymbol{x}) = +1] - \underset{\boldsymbol{x} \sim \{0,1\}^n}{\mathbf{E}} [f(\boldsymbol{x}) \mid \chi_s(\boldsymbol{x}) = -1] \right),$$

where the | notation denotes "conditional expectation".

3. [Hands-on XOR-pattern practice.]

- (a) [**] Let $AND: \{0,1\}^2 \to \{0,1\}$ be the logical-AND function on two bits.
 - i. Write the full truth-table of AND.
 - ii. Let $and: \{0,1\}^2 \to \{\pm 1\}$ be defined by $and(x) = (-1)^{AND(x)}$. Write the full "truth-table" (table of function values) for and.
 - iii. Write the quantum state $|and\rangle$ in standard bra-ket notation.
 - iv. It's too annoying to keep including the " $\frac{1}{\sqrt{N}}$ factors" everywhere. So for this problem, if $g:\{0,1\}^n\to\mathbb{C}$ is a function, let [g] denote the column vector in \mathbb{C}^N of g's values $(N=2^n)$. Write the four length-4 column vectors $[\chi_s]$, where $\chi_s:\{0,1\}^2\to\{\pm 1\}$ are the XOR functions corresponding to the 2-bit Boolean Fourier transform.
 - v. Compute $\widehat{and}(s)$ for each $s \in \{0, 1\}^2$.
 - vi. Using your solutions to (ii), (iv), and (v), write down the explicit vector form of the true equation

$$[and] = \widehat{and}(00)[\chi_{00}] + \widehat{and}(01)[\chi_{01}] + \widehat{and}(01)[\chi_{10}] + \widehat{and}(11)[\chi_{11}];$$

then write, "Yep."

- (b) [**] Repeat parts (ii), (v), (vi) for the function $MAJ : \{0,1\}^3 \to \{0,1\}$, defined by $MAJ(x_1, x_2, x_3) =$ the majority bit-value among x_1, x_2, x_3 . (Hint for doing (v) somewhat efficiently: you might perhaps want to use the result in Problem 2.)
- (c) Repeat parts (ii), (v), (vi) for the function $SORT: \{0,1\}^4 \to \{0,1\}$, defined as follows: $SORT(x_1,x_2,x_3,x_4) = 1$ if and only if $x_1 \leq x_2 \leq x_3 \leq x_4$ or $x_1 \geq x_2 \geq x_3 \geq x_4$. (Honestly, you might want to get a computer to help you with this.)

- 4. [Deutsch-Jozsa.] David and Richard enjoy the fact that one can easily take a classical circuit computing a Boolean function F, and convert it into a quantum circuit which implements the same Boolean function when given "classical inputs" but which also can accept quantum superpositions of classical inputs. David and Richard did this for a bunch of Boolean functions, including:
 - The constantly-0 function $F: \{0,1\}^n \to \{0,1\}$, satisfying F(x) = 0 for all x.
 - Various balanced functions, meaning F having F(x) = 0 for 50% of inputs x and F(x) = 1 for 50% of inputs x.

Unfortunately, David and Richard forgot to label their quantum circuits, and now they forget which ones compute what! David and Richard run across an old circuit Q^{\pm} they built which evidently "sign-implements" some $F: \{0,1\}^n \to \{0,1\}$, but they're not sure if F is all-0, or if it's balanced.

- (a) [**] Show that it is possible for David and Richard to tell whether F is all-0 or balanced by just using Q^{\pm} once. (Hint: The good old Fourier sampling paradigm. Which outcome s tells you about the balancedness of F?)
- (b) [**] Suppose now you only have access to a classical circuit C computing a Boolean function F, promised to be either all-0 or else balanced. Show that if you act deterministically, there is no way you can tell the difference unless you apply C to more than 2^{n-1} inputs.
- (c) [**] On the other hand, suppose that you have the classical C but you may use randomness. Show that by applying C to only T classical inputs, you can tell the difference between all-0 F and balanced F with one-sided error 2^{-T} .

5. [Translated Fourier coefficients.] [**] Let $f: \{0,1\}^n \to \mathbb{C}$. Now for $y \in \{0,1\}^n$, define the function $f^{+y}: \{0,1\}^n \to \mathbb{C}$ by $f^{+y}(x) = f(x+y)$. (Here the addition is in \mathbb{F}_2^n ; i.e., coordinate-wise mod 2.) Compute $\widehat{f^{+y}}(s)$ in terms of $\widehat{f}(s)$. How does performing Fourier sampling of f^{+y} compare to performing Fourier sampling on f?

6. [Complex roots of unity.]

- (a) Review, if necessary, Problem 2 on Weekly Work 2.
- (b) [**] Let M be a positive integer and let $\omega_M \in \mathbb{C}$ be the primitive Mth root of unity. Let $0 \le t < M$ be an integer. Compute

$$\underset{u \in \{0,1,2,\dots,M-1\}}{\text{avg}} \{\omega^{tu}\}.$$

There should be two possible outcomes, depending on t. (Hint.)

- 7. [Subspaces and Fourier transforms.] Recall our discussion from the last homework about the vector space \mathbb{F}_2^n , the *n*-dimensional vector space over the field $\mathbb{F}_2 = \{0, 1\}$.
 - (a) Suppose $A \subseteq \mathbb{F}_2^n$ is a linear subspace of dimension k; that is, A is the span of k linearly independent vectors. Let A^{\perp} denote the set $\{s \in \mathbb{F}_2^n : s \cdot x = 0 \ \forall x \in A\}$, where $s \cdot x$ denotes the dot product. Show that A^{\perp} is a subspace; specifically, a subspace of dimension n k.
 - (b) Just so you don't get too comfortable thinking that things are exactly the same as in \mathbb{R}^n or \mathbb{C}^n : give an example, when n=2, of a subspace A of dimension k=1 such that $A^{\perp}=A$.
 - (c) Show that $(A^{\perp})^{\perp} = A$.
 - (d) [**] Given subspace A of dimension k (and hence cardinality 2^k), define the function

$$g: \{0,1\}^n \to \mathbb{C}, \qquad f(x) = \begin{cases} \sqrt{\frac{N}{2^k}} & \text{if } x \in A, \\ 0 & \text{if } x \notin A, \end{cases}$$

where $N=2^n$ as usual. (The constant $\sqrt{\frac{N}{2^k}}$ is chosen so that $\arg_x\{|g(x)|^2\}=1$ and hence $|f\rangle$ is a quantum state.)

Compute $H^{\otimes n}|g\rangle$; equivalently, compute $\hat{g}(s)$ for each $s \in \{0,1\}^n$.