Probabilistic Algorithms

Paul Cotofrei

information management institute

PA 2016

Outline

Direct methods for stochastic search

Random search with noise-free measurements

Pattern search

Introduction

- Direct random search for minimizing L(d) subject to parameter vector d lying in some set D
- Information required:
 - ▶ Input **d**; Output *L*(**d**) (noise free)
 - no requirements about the gradient of L
 - no requirement about local/global minima
 - Zero-th order methods
- Stopping criteria
 - the "budget" criterion : stops after N evaluations of $L(\mathbf{d})$
 - ▶ the "stable" criteria (at least one must hold at iteration $n \ge N$, for all $1 \le j \le N$):

$$|L(\hat{\mathbf{d}}_n) - L(\hat{\mathbf{d}}_{n-j})| \le \eta$$

 $\|\hat{\mathbf{d}}_n - \hat{\mathbf{d}}_{n-j}\| \le \eta$

where $\eta > 0$ fixed

No one guarantees that dn close to d*!

Some Attributes of Direct Random Search

- Easy to program
- Works for:
 - non-convex, non-differentiable L() over a continuous, discrete, or mixed continuous-discrete domain
 - non-numeric L (the only constraint: each pair of solutions can be compared)
- Reasonable computational efficiency (if the problem dimension p = dim(d) is not too large)
- Provide a means of finding "good" initial conditions for more sophisticated algorithms
- Generality: algorithms apply to virtually any function
- Theoretical foundation
 - Performance guarantees, sometimes in finite samples
 - Polynomial time if the goal is a solution with a high probability to be optimal
 - Global convergence in some cases

Outline

Direct methods for stochastic search
Random search with noise-free measurements
Pattern search

Classification of Random Search Methods

Classification:

- Random Jump: generates huge number of data points assuming uniform distribution of decision variables and selects the best one
- Random Walk: generates trial solution with sequential improvements using scalar step length and unit random vector.
- Random Walk with Direction Exploitation: Improved version of random walk search, successful direction of generating trial solution is found out and steps are taken along this direction

Algorithm A: Simple Random ("Blind") Search

- Step 0. (Initialization) Choose an initial value of \mathbf{d} , $\hat{\mathbf{d}}_0 \in \mathbf{D}$. Calculate $L(\hat{\mathbf{d}}_0)$. Set k = 0.
- Step 1. (Candidate value) Generate a new independent value $\mathbf{d}_{new} \in \mathbf{D}$, according to the chosen probability distribution. If $L(\mathbf{d}_{new}) < L(\hat{\mathbf{d}}_k)$, set $\hat{\mathbf{d}}_{k+1} = \mathbf{d}_{new}$. Else take $\hat{\mathbf{d}}_{k+1} = \hat{\mathbf{d}}_k$.
- Step 2. (Return or Stop) Stop if maximum number of L evaluations has been reached or user is satisfied with the current estimate for \mathbf{d} ; else, k = k + 1 and return to Step 1.
- ▶ Batch implementation: generate N candidate values $\hat{\mathbf{d}}_i \in \mathbf{D}$ and takes $Min_i\{L(\hat{\mathbf{d}}_i)|i=1...N\}$
- ▶ Random sampling: easy for D a hypercube (a p-fold cartesian product of intervals on the real line). If D irregular shape, generate from a hypercube superset containing D and reject sample points outside D.

Random walk algorithms

- For algorithm A, the sampling does not take account of where the previous estimates of d have been ("blind" search).
- Ameliorate the search by random sampling depending of the position of the current best estimate for d.
 - Localized algorithms
 - the search is more localized in the neighborhood of that estimate
 - allows for a better exploitation of information about L

Algorithm B: Localized Random Search

- Step 0. (Initialization) Choose an initial value of $\mathbf{d} = \hat{\mathbf{d}}_0 \in \mathbf{D}$ (randomly or with prior information). Set k = 0.
- Step 1. (Candidate value) Generate a random vector \mathbf{v}_k . Check if $\hat{\mathbf{d}}_k + \mathbf{v}_k \in \mathbf{D}$. If not, generate a new \mathbf{v}_k or move $\hat{\mathbf{d}}_k + \mathbf{v}_k$ to nearest valid point in \mathbf{D} . Let $\mathbf{d}_{new} \in \mathbf{D}$ be $\hat{\mathbf{d}}_k + \mathbf{v}_k$ or the modified point.
- Step 2. (Check for improvement) If $L(\mathbf{d}_{new}) < L(\hat{\mathbf{d}}_k)$ set $\hat{\mathbf{d}}_{k+1} = \mathbf{d}_{new}$. Else take $\hat{\mathbf{d}}_{k+1} = \hat{\mathbf{d}}_k$.
- Step 3. (Return or Stop) Stop if maximum number of L evaluations has been reached or user satisfied with current estimate; else, set k = k + 1 and return to Step 1.

Generating deviation vector \mathbf{v}_k

- Standard distribution: multivariate normal distribution $N(0, \rho^2 I_p)$
- General distribution:
 - should have mean zero
 - each component should have a variation consistent with the magnitude of the corresponding d elements
 - example: $\mathbf{d} = [d_1, d_2]$, where $d_1 \in [0, 0.05]$ and $d_2 \in [0, 500]$; the distribution for generating \mathbf{v}_k may be

$$N\left(\left(\begin{array}{c}0\\0\end{array}\right),\left(\begin{array}{cc}\rho^2&0\\0&100^2\rho^2\end{array}\right)\right)$$

- ▶ In practice, the variability in \mathbf{v}_k is reduced as k increase
 - focus the search more tightly on the location of the solution

Algorithm C: Enhanced Localized Random Search

- Similar to algorithm B
- Exploits knowledge of good/bad directions
- If move in one direction produces decrease in loss, add bias to next iteration to continue algorithm moving in "good" direction
- If move in one direction produces increase in loss, add bias to next iteration to move algorithm in opposite way
- Slightly more complex implementation than algorithm B

Algorithm C: Enhanced Localized Random Search

- Step 0. (Initialization) Choose an initial value of $\mathbf{d}=\hat{\mathbf{d}}_0\in\mathbf{D}.$ Set k=0. Set bias vector $\mathbf{b}_0=0$
- Step 1. Generate a random vector \mathbf{v}_k . Check if $\hat{\mathbf{d}}_k + \mathbf{b}_k + \mathbf{v}_k \in \mathbf{D}$. If not, generate a new \mathbf{v}_k or move $\hat{\mathbf{d}}_k + \mathbf{b}_k + \mathbf{v}_k$ to nearest valid point in \mathbf{D} . Let \mathbf{d}_{new} be $\hat{\mathbf{d}}_k + \mathbf{b}_k + \mathbf{v}_k$ or the modified point.
- Step 2. If $L(\mathbf{d}_{new}) < L(\hat{\mathbf{d}}_k)$ then set $\hat{\mathbf{d}}_{k+1} = \mathbf{d}_{new}$, $\mathbf{b}_{k+1} = 0.2\mathbf{b}_k + 0.4\mathbf{v}_k$ and go to Step 5. Else go to Step 3.
- Step 3. Let $\mathbf{d}'_{new} = \hat{\mathbf{d}}_k + \mathbf{b}_k \mathbf{v}_k \in \mathbf{D}$ or the nearest valid point in \mathbf{D} . If $L(\mathbf{d}'_{new}) < L(\hat{\mathbf{d}}_k)$ then set $\hat{\mathbf{d}}_{k+1} = \mathbf{d}'_{new}$, $\mathbf{b}_{k+1} = \mathbf{b}_k 0.4\mathbf{v}_k$ and go to Step 5. Else go to Step 4.
- Step 4. Set $\hat{\mathbf{d}}_{k+1} = \hat{\mathbf{d}}_k$ and $\mathbf{b}_{k+1} = 0.5\mathbf{b}_k$. Go to Step 5.
- Step 5. Stop if max. number of L evaluations has been reached or user satisfied with current estimate; else set k = k + 1 and go to Step 1.

Formal Convergence of Random Search Algorithms

- Well-known results on convergence of random search
 - Applies to convergence of d and/or L values
 - Applies when noise-free L measurements used in algorithms
- Algorithm A (blind random search) converges under very general conditions
 - Applies to continuous or discrete functions
- Conditions for convergence of algorithms B and C somewhat more restrictive, but still quite general
- Convergence rate theory also exists: how fast to converge?
 - Algorithm A generally slow in high-dimensional problems

Convergence/Nonconvergence of Blind Random Search

- Convergence condition: $P(\mathbf{d}_{new} : L(\mathbf{d}_{new}) < L(\mathbf{d}^*) + \delta) > 0$ (the probability to select a better solution than $\mathbf{d} \neq \mathbf{d}^*$ is positive)
 - a) for any $d \neq d^*$, $\exists [d_1, d_2]$ such that $\forall d_{new} \in [d_1, d_2]$, $L(d_{new}) < L(d)$
 - b) if $d \neq d^*$, the set $S = \{d_{new} | L(d_{new}) < L(d)\}$ contains at least $d_i = d^*$, and P(S) > 0
 - c) $S = \{d^*\}$, but P(S) = 0

Outline

Direct methods for stochastic search

Random search with noise-free measurements

Pattern search

Compass search

- ▶ Consider $L(\mathbf{d}), \mathbf{d} \in R^n$
- Let be the set of directions $E = \{\mathbf{e}_1, \mathbf{e}_2, ..., \mathbf{e}_n, -\mathbf{e}_1, ..., -\mathbf{e}_n\}$ (denoted *coordinate directions*), where \mathbf{e}_i is the unit coordinate vector (all coordinates are zero, except on i position, which is 1)
- Let α_k denote the *step-length control parameter* that controls the lengths of the steps taken during k iteration.
 - $\alpha_{\it err}$ the tolerance used for convergence test;
 - $\alpha_{\rm 0}>\alpha_{\it err}$ the initial value of the step-length control parameter.

For each iteration k = 0, 1, ...

Step 0. If $\alpha_k \leq \alpha_{err}$ then STOP;

Step 1. If there exists $\mathbf{e}_i \in E$ such that $L(\hat{\mathbf{d}}_k + \alpha_k \mathbf{e}_i) < L(\hat{\mathbf{d}}_k)$, then do:

- $\alpha_{k+1} = \alpha_k$ (keep step-length control param.)

Step 2. Else do:

- $ightharpoonup \hat{\mathbf{d}}_{k+1} = \hat{\mathbf{d}}_k \ (keep \ iterate)$
- $\alpha_{k+1} = \frac{1}{2}\alpha_k$ (contract step-length control param.)

Compass search in 2D

Neighbors evaluation

- ► How one does the evaluations to determine if there exists a e_i ∈ E satisfying the simple decrease condition?
 - 1. Select a deterministic order for the elements of E (as $\mathbf{e}_1, \mathbf{e}_2, ..., \mathbf{e}_{2n}$), or
 - 2. select a random order or dynamic order (step *k* dependent).
 - Stop at the first neighbor satisfying the decrease condition, or
 - 4. Evaluates all 2*n* neighbors and choose those that yields the greatest decrease in *L*.
- The compass algorithm use only exploratory moves!
 - Theorem. If d ∈ Rⁿ and ∇L(d) (the gradient of L in d) is not null, then at least one of the coordinate directions must be a descent direction.

Positive spanning sets

- Each iteration in "compass search" algorithm uses directions from the set of coordinates directions E
- ▶ Consider a general set $\mathcal{E} = \{\mathbf{v}_1, \dots, \mathbf{v}_p\}$, with $p \ge n + 1$
- ▶ \mathcal{E} is a positive spanning set if, for any vector $\mathbf{x} \in R^n$, there exist $\lambda_i \geq 0, i = 1..p$ such that $\mathbf{x} = \sum_{i=1}^p \lambda_i \mathbf{v}_i$.
 - i.e., non-negative linear combinations of the elements of \mathcal{E} span \mathbb{R}^n
- Examples:

Principle of pattern search

- ▶ Perform a sequence of exploratory moves around a base estimator $\hat{\mathbf{d}}_k$; if successful, perform a pattern move.
- Exploratory moves acquire information about the function $L(\mathbf{d})$ in the neighbourhood of the current base estimator $\hat{\mathbf{d}}_k$
 - ▶ a fixed number of directions \mathbf{v}_i generates a fixed number of neighbors $\{\hat{\mathbf{d}}_k + \alpha_k \mathbf{v}_i, i = 1..m\}$ (α_k is the step size).
 - if for any i = 1..m we have $L(\hat{\mathbf{d}}_k + \alpha_k \mathbf{v}_i) > L(\hat{\mathbf{d}}_k)$ then $\hat{\mathbf{d}}_{k+1} = \hat{\mathbf{d}}_k$ and $\alpha_{k+1} = \lambda \alpha_k \ (\lambda < 1)$.
 - ▶ if exist $j \in \{1..m\}$ such that $L(\hat{\mathbf{d}}_k + \alpha_k \mathbf{v}_j) < L(\hat{\mathbf{d}}_k)$ then move toward $\tilde{\theta}_k = \hat{\mathbf{d}}_k + \alpha_k \mathbf{v}_j$.
- Pattern move attempts to speed up the search by using the information already acquired about L(d)
 - the new base estimator $\hat{\mathbf{d}}_{k+1} = \hat{\mathbf{d}}_k + \beta_k \mathbf{v}_j$, with $\beta_k > \alpha_k$
 - ▶ perform exploratory moves around $\tilde{\mathbf{d}}_{k+1}$ using step-length $\alpha_{k+1} = \beta_k$; if a better solution is found, then this solution becomes $\hat{\mathbf{d}}_{k+1}$; if not, $\hat{\mathbf{d}}_{k+1} = \tilde{\theta}_k$

Basic Pattern Search Algorithm

Init Set $\mathcal{E} = \{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ a positive spanning set, $\hat{\mathbf{d}}_0$ the initial approximation, α_0 the initial step-length parameter, α_{err} the tolerance parameter, $\gamma > 1$ the increasing constant and $\lambda < 1$ the decreasing constant.

Repeat

Step1 If exists
$$\mathbf{v}_j \in \mathcal{E}$$
 such that $L(\hat{\mathbf{d}}_k + \alpha_k \mathbf{v}_j) < L(\hat{\mathbf{d}}_k)$ then do: $\hat{\mathbf{d}}_{k+1} = \hat{\mathbf{d}}_k + \alpha_k \mathbf{v}_j$ $\alpha_{k+1} = \gamma \alpha_k$ Step2 If not, $\hat{\mathbf{d}}_{k+1} = \hat{\mathbf{d}}_k$ $\alpha_{k+1} = \lambda \alpha_k$

While
$$\alpha_{k+1} > \alpha_{err}$$

Example

Nonlinear Simplex (Nelder-Mead) Algorithm

- Nonlinear simplex method is a popular search method
- Simplex is convex hull of p + 1 points in R^p
 - Convex hull is smallest convex set enclosing the p + 1 points
 - For p = 2 convex hull is a triangle
 - For p = 3 convex hull is a pyramid
- Algorithm searches for d* by moving convex hull within D
- If algorithm works properly, convex hull shrinks/collapses onto d*
- No injected randomness (contrast with algorithms A, B, and C)
- ► Frequently effective, but no general convergence theory and many numerical counterexamples to convergence

Basic ideas

- At each iteration a new point is generated in or near the current simplex
- The new point replaces one of the current simplex vertices, yielding a new simplex
- ► The reflection step: the new point is the reflection (across the hyperplane spanned by the other vertices) of the vertex that currently has the highest value of *L*(**d**)
- So the simplex is moved in a direction away from the high values of the loss function and toward the lowest values of the loss
- Repeat until the simplex size is sufficiently small

Steps of Nonlinear Simplex Algorithm

- Step 0 (Initialization) Generate initial set of p+1 points in $\mathbf{D} \in \mathcal{R}^p$, $\mathbf{d}_i, i=1,\ldots,p+1$, vertices of initial simplex. (Any vertex generated outside \mathbf{D} is moved to the nearest point in \mathbf{D}). Calculate $L(\mathbf{d}_i)$. Set $\alpha=1.0, \beta=0.5, \gamma=2.0, \delta=0.5$ (default setting, not compulsory).
- Step 1 (Reflection) Identify where max, second highest, and min loss values occur; denote them by \mathbf{d}_{max} , \mathbf{d}_{2max} , and \mathbf{d}_{min} , respectively. Let $\mathbf{d}_{cent} =$ centroid (mean) of all \mathbf{d}_i except for \mathbf{d}_{max} . Generate candidate vertex \mathbf{d}_{refl} by reflecting \mathbf{d}_{max} through \mathbf{d}_{cent} using $\mathbf{d}_{refl} = (1 + \alpha)\mathbf{d}_{cent} \alpha\mathbf{d}_{max}$, $(\alpha > 0)$.
- Step 1a (Accept reflection) If $L(\mathbf{d}_{min}) \leq L(\mathbf{d}_{refl}) < L(\mathbf{d}_{2max})$, then replaces \mathbf{d}_{max} with \mathbf{d}_{refl} and proceed to Step 5; else go to Step 2.

Steps of Nonlinear Simplex Algorithm

- Step 2 (Expansion) If $L(\mathbf{d}_{refl}) < L(\mathbf{d}_{min})$, then expand reflection using $\mathbf{d}_{exp} = \gamma \mathbf{d}_{refl} + (1 \gamma) \mathbf{d}_{cent}$, $\gamma > 1$ and go to Step 2a; else go to Step 3.
- Step 2a (Check expansion) If $L(\mathbf{d}_{exp}) < L(\mathbf{d}_{refl})$, then replaces \mathbf{d}_{max} with \mathbf{d}_{exp} ; otherwise reject expansion and replace \mathbf{d}_{max} by \mathbf{d}_{refl} . Go to Step 5.
 - Step 3 (Contraction) If $L(\mathbf{d}_{refl}) < L(\mathbf{d}_{max})$ (outside contraction), the contraction point is $\mathbf{d}_{cont} = \beta \mathbf{d}_{refl} + (1 \beta) \mathbf{d}_{cent}$, $0 \le \beta \le 1$. If $L(\mathbf{d}_{max}) \le L(\mathbf{d}_{refl})$ (inside contraction), then $\mathbf{d}_{cont} = \beta \mathbf{d}_{max} + (1 \beta) \mathbf{d}_{cent}$.

Steps of Nonlinear Simplex Algorithm

- Step 3a Check contraction If outside contraction, replace \mathbf{d}_{max} with the point minimizing $\{L(\mathbf{d}_{cont}), L(\mathbf{d}_{refl})\}$. If inside contraction and $L(\mathbf{d}_{cont}) < L(\mathbf{d}_{max})$ then replace \mathbf{d}_{max} by \mathbf{d}_{cont} and go to Step 5; otherwise go to Step 4.
 - Step 4 (Shrink) Shrink entire simplex using a factor $0 < \delta < 1$, retaining only \mathbf{d}_{min} (replace each vertex $\mathbf{d}_{(i)}$ (except \mathbf{d}_{min}) with $\delta \mathbf{d}_{(i)} + (1 \delta)\mathbf{d}_{min}$. Go to Step 5.
 - Step 5 (Termination) Stop if convergence criterion or maximum number of function evaluations is met; else return to Step 1.

Illustration of Steps of Nonlinear Simplex Algorithm with p = 2

A Run of Nonlinear Simplex Algorithm for p = 2

- (1) Expansion;
- (2) Expansion;
- (3) Outer contraction;
- (4) Reflection;
- (5) Inner contraction;
- (6) Inner contraction;
- (7) Reflection;