DEEP LEARNING FOR ARTIFICIAL INTELLIGENCE

Day 5 Lecture 2

Methodology

Supporters

Google Cloud

GitHub Education

+ info: http://bit.ly/dlai2019

[course site]

Javier Ruiz Hidalgo

Associate Professor Universitat Politecnica de Catalunya Technical University of Catalonia

#DLUPC

Outline

Capacity of the network

- Underfitting
- Overfitting

Prevent overfitting

- Dropout, regularization
- Data
 - training, validation, test partitions
 - Augmentation
- Strategy

Outline

It's all about the data...

well, not only data...

Computing power: GPUs

Source: NVIDIA 2017

well, not only data...

Computing power: GPUs

- New learning architectures
 - CNN, RNN, LSTM, DBN, GNN, GAN, etc.

http://www.asimovinstitute.org/neural-network-zoo/

End-to-end learning: speech recognition

Traditional model

End-to-end learning

This works well given enough labeled (audio, transcript) data.

End-to-end learning: autonomous driving

End-to-end learning

Given the safety-critical requirement of autonomous driving and thus the need for extremely high levels of accuracy, a pure end-to-end approach is still challenging to get to work. End-to-end works only when you have enough (x,y) data to learn function of needed level of complexity.

Network capacity

- Space of representable functions that a network can potentially learn:
 - Number of layers / parameters

Generalization

The network needs to **generalize** beyond the training data to work on new data that it has not seen yet

Underfitting vs Overfitting

- Overfitting: network fits training data too well
 - Excessively complicated model
- Underfitting: network does not fit training data well enough
 - Excessively simple model

Both underfitting and overfitting lead to poor predictions on new data and they do not generalize well

Underfitting vs Overfitting

Data partition

How do we measure the generalization instead of how well the network does with the memorized data?

Split your data into two sets: training and test

TRAINING 80%	TEST 20%
-----------------	----------

Underfitting vs Overfitting

Data partition revisited

- Test set should not be used to tune your network
 - Network architecture
 - Number of layers
 - Hyper-parameters

- Failing to do so will overfit the network to your test set!
 - https://www.kaggle.com/c/higgs-boson/leaderboard

Data partition revisited (2)

Add a validation set!

 Lock away your test set and use it only as a last validation step / measure of performance

The bigger the better?

- Large networks
 - More capacity / More data
 - Prone to overfit

- Smaller networks
 - Lower capacity / Less data
 - Prone to underfit

The bigger the better?

- The probability of finding a "bad" (high value) local minimum is non-zero for small networks and decreases quickly with network size.
- In large networks, most local minima are equivalent and yield similar performance.
- Struggling to find the global minimum on the training set (as opposed to one of the many good local ones) is not useful in practice and may lead to overfitting.

Better large capacity networks and prevent overfitting

Prevent overfitting

- Early stopping
- Regularization
- Dropout
- Data augmentation
- Parameter sharing
- Adversarial training

Early stopping

Weight regularization (1)

- Control the capacity of the network to prevent overfitting
- Large weights tend to cause sharp transitions in node functions → large changes in output for small changes in inputs
 - Penalize the weights of the nodes in the network
 - Discourages learning a more complex or flexible model

Weight regularization (2)

L2-regularization (weight decay):

$$\mathcal{L}_{new} = \mathcal{L} + \frac{\lambda}{2} W^2$$

L1-regularization:

$$\mathcal{L}_{new} = \mathcal{L} + \frac{\lambda}{2}|W|$$

Weight regularization (3)

- Limit the values of parameters in the network
 - L2 vs L1 regularization

Weight regularization (4)

 L2 regularization heavily penalizes peaky weights and prefers diffuse / low value weights

 L1 regularization leads weights to become sparse (i.e. very close to exactly zero)

Activation regularization (1)

- Large activations (output values) can also denote overfitting or unstability
- Instead of controlling the weights (weight regularization) → control directly the output of nodes (activation regularization)
 - Penalize the activations of the nodes in the network
 - Encourages networks with low activations

Activation regularization (2)

- Two common methods for calculating the magnitude of the activation are:
 - Sum of absolute activation values → L1 norm
 - Sum of squared activation values → L2 norm
- L1 norm encourages sparsity
- L2 norm encourages small activations values in general

 A hyperparameter is needed to control the amount of penalty in the activation.

Dropout (1)

 At each training iteration, randomly remove some nodes in the network along with all of their incoming and outgoing connections (N. Srivastava, 2014)

Dropout (2)

- Why dropout works?
 - Nodes become more insensitive to the weights of the other nodes → more robust.
 - Averaging multiple models
 → ensemble.
 - Training a collection of 2ⁿ thinned networks with parameters sharing

Ensemble of subnetworks

Dropout (3)

- Every forward pass, network slightly different.
- Reduce co-adaptation between neurons
- More robust features
- Dropout is removed in validation/testing

More iterations for convergence

(a) Standard Neural Net

(b) After applying dropout.

Dropout (4)

- Dense-sparse-dense training (<u>S. Han 2016</u>)
 - a. Initial regular training
 - Drop connections where weights are under a particular threshold.
 - c. Retrain sparse network to learn weights of important connections.
 - Make network dense again and retrain using small learning rate, a step which adds back capacity.

Data augmentation (1)

- Modify input samples artificially to increase the data size
- On-the-fly while training
 - Inject Noise
 - Transformations
- Not used in testing/validation

Data augmentation (2): Image

- Noise injection
- Droput
- Blurs
- Color changes
- Contrast
- Transformations
 - GT transformed!
- Crops, shifts
- Application specific
 - Clouds, snow, etc.

Data augmentation (3): Audio

- Noise injection
- Shifting time
- Changing pitch
- Changing speed
- Crops
- Loudness
- Mask

Data augmentation (4): Text

- OCR changes
 - \circ $0 \rightarrow 0$
 - \circ i \rightarrow 1
- Keyboard changes
 - Substitute character close on keyboards
- Random changes
- Substitute entire words
 - spelling mistakes
 - word2vec distance

Data augmentation (5)

Synthetic data: Generate new input samples

Data augmentation (6)

GANs (Generative Adversarial Networks)

P. Ferreira, et.al., Towards data set augmentation with GANs, 2017.
L. Sixt, et.al., RenderGAN: Generating Realistic labeled data, ICLR 2017.

Parameter sharing

Multi-task Learning

Figure extracted from Sebastian Ruder, An Overview of Multi-Task Learning in Deep Neural Networks, 2017

FULLY CONNECTED NEURAL NET

Example: 1000x1000 image 1M hidden units 10^12 parameter: - Spatial correlation is local - Better to put resources elsewhere!

LOCALLY CONNECTED NEURAL NET

CNNs

Adversarial training

- Search for adversarial examples that network misclassifies
 - Human observer cannot tell the difference
 - However, the network can make highly different predictions.

$$+.007 \times$$

$$sign(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y))$$

"nematode" w/8.2% confidence

$$m{x} + \\ \epsilon \operatorname{sign}(\nabla_{m{x}} J(m{ heta}, m{x}, y)) \\ \operatorname{"gibbon"} \\ \operatorname{w}/ \ 99.3\% \\ \operatorname{confidence}$$

$$y$$
 ="panda" $w/57.7\%$ confidence

 \boldsymbol{x}

Strategy for machine learning (1)

Human-level performance can serve as a very reliable proxy which can be leveraged to determine your next move when training your model.

My model

Human-level accuracy

Strategy for machine learning (2)

TRAINING 60%	VALIDATION 20%	TEST 20%
Human level error	. 1%	•
Training error .	. 9%	Underfitting
Validation error	. 10%	
Test error	. 11%	

Strategy for machine learning (3)

TRAINING 60%	VALIDATION 20%	TEST 20%
-----------------	----------------	-------------

Strategy for machine learning (4)

TRAINING	VALIDATION	TEST
0070	20 /6	20 /6

Strategy for machine learning (5)

60% 20% 20%

Human level error . . 1%

Training error . . . 1.1%

Validation error . . 1.2%

Test error 1.2%

Strategy for machine learning (5)

References

Nuts and Bolts of Applying Deep Learning by Andrew Ng https://www.youtube.com/watch?v=F1ka6a13S9I

Questions?

Image Processing Group