

PENDING CLAIMS

1 – 8. (Cancelled)

9. (Previously Presented) A blue colored dye mixture which contains from 10 to 60 wt% with respect to the total pigment fraction of a blue pigment which is a mixture of the two isomers represented by structural formula (1)

(1)

wherein one of X¹ and X² represents NO₂ and the other represents OH, from 60 to 10 wt% with respect to the total pigment fraction of a blue pigment represented by structural formula (2)

(2)

wherein R¹ represents -C₃H₆OCH₃, -C₃H₆OC₂H₅ or -C₃H₆OC₂H₄OCH₃, and from 10 to 30 wt% with respect to the total pigment fraction of the blue pigment which can be represented by structural formula (3)

(3)

10. (Previously Presented) A dye composition which comprises the blue dye mixture according to claim 9, and a yellow dye mixture and/or a red dye mixture, wherein

the yellow dye mixture contains from 25 to 75 wt% with respect to the whole pigment fraction of the yellow pigment represented by structural formula (5)

(5)

from 60 to 20 wt% with respect to the whole pigment fraction of the yellow pigment represented by structural formula (6)

and from 15 to 5 wt% with respect to the whole pigment fraction of the yellow pigment represented by structural formula (7)

Me represents CH_3 ,

and the red dye mixture contains from 30 to 60 wt% with respect to the whole pigment fraction of a red pigment represented by structural formula (8)

wherein R^4 represents a C_1 to C_3 alkoxy C_1 to C_3 alkyl group,

from 70 to 20 wt% with respect to the whole pigment fraction of the red pigment represented by the structural formula (9)

and from 0 to 20 wt% with respect to the whole pigment fraction of a red pigment represented by structural formula (10)

wherein R⁵ represents a hydrogen atom, a chlorine atom or a bromine atom, or by the structural formula (11)

wherein one of R⁶ and R⁷ is a hydrogen atom and the other is hydroxyethoxyethyl, hydroxybutoxypropyl, acetoxyethoxyethyl or acetoxybutoxypropyl.

11. (Previously presented) A method of dyeing polyester-based fibers which comprises contacting the fibers with the blue dye mixture as claimed in claim 9 with the fibers.

12. (Previously presented) A method of dyeing polyester-based fibers which comprises contacting the fibers with the composition as claim in claim 10.

13. (Previously presented) A dyed polyester-based fiber material which has been dyed using a blue dye mixture as claimed in claim 9.

14. (Previously presented) A dyed polyester-based fiber material which has been dyed using the dye composition as claimed in claim 10.

15. (Previously presented) A method of dyeing polyester-based fibers according to claim 14 in which the polyester-based fibers are mixed fibers of different fineness.

16. (Previously presented) A dyed polyester-based fiber material according to claim 15 in which the polyester-based fibers are mixed fibers of different fineness.

17. (Previously presented) A method of dyeing polyester-based fibers according to claim 15 in which the polyester-based fibers are mixed fibers comprising polyester-based fibers which can be dyed with a cationic dye and regular polyester-based fibers.

18. (Previously presented) A dyed polyester-based fiber material according to claim 16 in which the polyester-based fibers are mixed fibers comprising polyester-based fibers which can be dyed with a cationic dye and regular polyester-based fibers.

19. (Previously presented) A blue colored dye mixture which consists essentially of from 10 to 60 wt% with respect to the total pigment fraction of a blue pigment which is a mixture of the two isomers represented by structural formula (1)

wherein one of X¹ and X² represents NO₂ and the other represents OH, from 60 to 10 wt% with respect to the total pigment fraction of a blue pigment represented by structural formula (2)

wherein R^1 represents $-\text{C}_3\text{H}_6\text{OCH}_3$, $-\text{C}_3\text{H}_6\text{OC}_2\text{H}_5$ or $-\text{C}_3\text{H}_6\text{OC}_2\text{H}_4\text{OCH}_3$, and from 10 to 30 wt% with respect to the total pigment fraction of the blue pigment which can be represented by structural formula (3)

(3)