УДК 519.1

А.М. Магомедов

Двудольные $(6,3)_6$ -бирегулярные графы, не допускающие интервальной раскраски

Предложенный в статье алгоритм элиминации перебора свел задачу поиска нераскрашиваемого графа к построению дерева из 11645 узлов, из которых 2485 узлов – последнего уровня; узловые графы последнего уровня образуют искомое множество $(6,3)_6$ - графов M_0 . Программа обнаружила среди них точно 62 нераскрашиваемых графа, а для $n\leqslant 5$ выяснила раскрашиваемость всех графов из множеств – аналогов M_0 для рассматриваемых n. Тем самым получено уточнение наименьшего n, для которого существует нераскрашиваемый $(6,3)_6$ -граф.

Библиография: 4 названий.

The proposed in the article search elimination algorithm reduced the problem of finding a non-colorable graph to building the tree of 11645 nodes, 2485 of which are last level nodes; graph nodes form the last level of the desired set of $(6,3)_6$ -graphs M_0 . The program found among them just 62 non-colorable graph, and for $n \leq 5$ found coloring of all graphs of the sets – analog M_0 considered for $n \leq 5$. Thus obtained specification of least n, for which the non-colorable $(6,3)_6$ -graph exists.

Bibliography: 4 items.

Ключевые слова: двудольный граф, раскраска графа, теория распи-

Keywords: bipartite graph, graph coloring, job shop scheduling.

Введение

В статье использованы обозначения и определения из книги [1]. Интервальной (реберной) раскраской графа t цветами будем называть отображение множества ребер графа в множество $\{1,2,\ldots,t\}$, такое, что: 1) для каждого i, $1 \le i \le t$, найдется ребро, закрашенное в цвет i, 2) в каждой вершине графа все представленные в ней цвета попарно различны и образуют целочисленный интервал.

В [2] доказана NP-полнота задачи об интервальной (реберной) раскрашиваемости 6 цветами двудольного графа G=(X,Y,E), где степени всех вершин X равны 6, а степени всех вершин Y равны 3. Такие графы будем называть (6,3)-бирегулярными или, более кратко, (6,3)-графами; (6,3)-граф G=(X,Y,E), где |X|=n (тогда |Y|=2n), будем называть $(6,3)_n$ -графом. (6,3)-граф будем называть (ne) раскрашиваемым, если он (не) допускает интервальной раскраски 6 цветами.

Из результата [2], в частности, следует существование нераскрашиваемых $(6,3)_n$ -графов. Приведенное в [2] принципиальное решение проблемы в настоящей статье дополнено уточнением наименьшего n, для которого существует нераскрашиваемый $(6,3)_n$ -граф. Более точно, доказана следующая теорема.

ТЕОРЕМА 1. Для любого $n \geqslant 6$ найдется нераскрашиваемый $(6,3)_n$ -граф. При $n \leqslant 5$ каждый $(6,3)_n$ -граф раскрашиваем.

1. Интервальная и гармоническая раскраски

Отображение множества ребер E (6,3)-графа G=(X,Y,E) в множество из двух цветов, такое, что в каждой вершине $y\in Y$ все три инцидентных y ребра имеют одинаковые цвета, а каждой вершине $x\in X$ инцидентны по три ребра каждого из двух цветов, будем называть гармонической раскраской графа G.

Следующая лемма независимо (и в различных терминах) доказана в [2] и [3].

ЛЕММА 1. Для раскрашиваемости (6,3)-графа G необходимо и достаточно существование гармонической раскраски графа G.

Простое арифметическое упражнение с применением системы компьютерной математики Mathematica 8.0 показывает, что метод полного перебора для проверки существования $(6,3)_n$ -графа, не допускающего гармонической раскраски, бесперспективен даже при n=6. В самом деле, при n=6 полный перебор всех $(6,3)_n$ -графов, когда для каждой из шести вершин $x\in X$ в списки смежности x независимо выбираются шесть вершин из Y, потребует рассмотрения громоздкого числа вариантов — C_{12}^6 в шестой степени (через C_{12}^6 обозначено сочетание из 12 по 6). Каждый способ выбора необходимо дополнить проверкой, является ли полученный граф $(6,3)_n$ -графом, а в случае положительного результата—также и проверкой существования гармонической раскраски, что в худшем случае потребует рассмотрения для каждого графа C_{12}^6 случаев. Для компьютера, способного рассмотреть 1 млрд **случаев** в секунду, для вычислений может понадобиться

 $(C_1 2^6)^7 / (1000000000 \cdot 3600 \cdot 24 \cdot 365) \approx 18235$ лет.

2. Нераскрашиваемые $(6,3)_n$ -графы

2.1. Граф G_0 , (6,3)-надграф которого не допускает гармонической раскраски. Всюду в дальнейшем выберем значения цветов в определении гармонической раскраски равными +1 и -1.

Замечание 1. Тогда при любой гармонической раскраске: 1) для любой вершины $x \in X$ сумма цветов ребер, инцидентных x, равна нулю (csoucmsouchset counting co

Обозначим через $G_0=(X_0,Y_0,E_0)$ двудольный граф, где $_0=\{x_1,x_2,x_3\}$, $Y_0=\{y_1,\ldots,y_{12}\}$, а множество ребер E_0 задано списками смежности вершин множества X_0 : $x_1(y_1,y_2,y_3,y_4,y_5,y_6)$, $x_2(y_1,y_2,y_3,y_7,y_8,y_9)$, $x_3(y_1,y_2,y_3,y_{10},y_{11},y_{12})$ (рис.1а).

а) двудольный граф $G_0 = (X_0, Y_0, E_0)$; б) двудольный граф $G_1 = (X_1, Y_1, E_1)$, пример 6-дополнения

Рис. 1.

 Π ЕММА 2. Если (6,3)-граф G=(X,Y,E) является надграфом для G_0 , то G не допускает гармонической раскраски.

Доказательство. Допустим противное: пусть существует некоторая гармоническая раскраска **c** графа G. Цвет ребер, инцидентных вершине $y_i \in Y$, будем обозначать через c_i , $1 \le i \le 12$. Выполнив почленное сложение равенств, выражающих свойство гармоничности для вершин x_1, x_2 и x_3 соответственно:

$$c_1 + c_2 + c_3 + c_4 + c_5 + c_6 = 0,$$

$$c_1 + c_2 + c_3 + c_7 + c_8 + c_9 = 0,$$

$$c_1 + c_2 + c_3 + c_{10} + c_{11} + c_{12} = 0,$$

получим: $(c_1 + \cdots + c_{12}) + 2(c_1 + c_2 + c_3) = 0.$

Так как, согласно замечанию 1, $c_1 + \cdots + c_{12} = 0$, то отсюда: $c_1 + c_2 + c_3 = 0$, что невозможно ввиду принадлежности c_1, c_2, c_3 множеству $\{-1, +1\}$. Полученное противоречие доказывает, что гармоническая раскраска графа G не существует. Лемма доказана.

2.2. Теорема о нераскрашиваемых (6,3)-графах. Пусть задано натуральное $n,\ n\geqslant 6$. Любой двудольный граф $G_1=(X_1,Y_1,E_1),\$ где $X_1=\{x_4,x_5,\ldots,x_n\},\ Y_1=\{y_4,y_5,\ldots,y_{2n}\},$

$$d(y_4) = \cdots = d(y_{12}) = 2, \ d(y_{13}) = \cdots = \ d(y_{2n}) = 3, \ d(x_4) = \cdots = d(x_n) = 6, \ (2.1)$$

будем называть дополнительным графом (или – дополнением) для G_0 .

В описанном ниже алгоритме построения дополнительного графа mexyщue значения степеней вершин v обозначены через $D\left(v\right)$, разности $d\left(v\right)-D\left(v\right)$ названы $de\phiuqu-mamu$ вершин v, а вершины с дефицитами, (не) равными нулю, названы (ne) насыщенными.

Алгоритм построения дополнительного графа

Вход: граф $G_0 = (X_0, Y_0, E_0)$, натуральное $n, n \ge 6$, списки $d(y_4), \ldots, d(y_{2n})$ и $d(x_4), \ldots, d(x_n)$ со значениями элементов, заданными в (2.1); элементы списков приобретут смысл степеней соответствующих вершин лишь после завершения алгоритма.

Выход: – дополнение для G_0 .

1. <u>Инициализация</u>: $X_1:=\{x_4,x_5,\ldots,x_n\}$; $Y_1:=\{y_4,y_5,\ldots,y_{2n}\}$; D(v):=0 для всех $v\in X_1\cup Y_1$;

{Легко видеть, что после инициализации

- 1) сумма дефицитов вершин каждого из множеств X_1 и Y_1 равна 6n-18;
- 2) разность любых двух элементов следующего списка:

$$d(y_4) - D(y_4), \ldots, d(y_{2n}) - D(y_{2n})$$
 (2.2)

равна -1, 0 или 1 («свойство близости элементов списка»)}

1. <u>Цикл</u>: **пока** в множестве X_1 имеется ненасыщенная вершина x, соединить x рёбрами с каждой из шести вершин множества Y_1 , имеющих наибольшие значения дефицитов

{проведение ребра сопровождается увеличением текущих степеней его концевых вершин}

Конец алгоритма.

ЛЕММА 3. Для любого заданного натурального $n, n \geqslant 6$, алгоритм построения дополнительного графа генерирует – дополнение $G_1 = (X_1, Y_1, E_1)$ для графа G_0 .

Доказательство. Выполнение каждой итерации цикла уменьшает на единицу шесть наибольших элементов списка (2.2), что, очевидно, сохраняет свойство близости элементов списка. Отсюда следует, что пока дефицит хотя бы одной вершины множества Y_1 превышает 1, дефицит любой из вершин Y_1 не меньше 1.

Рис. 2. Нераскрашиваемый $(6,3)_6$ -граф G

Последнее, ввиду очевидных соотношений: $|Y_1|=2n-3$ и $2n-3\geqslant 6$, обеспечивает возможность насыщения очередной выбранной вершины $x\in X_1$.

Обозначим через k наименьший номер итерации, после выполнения которой дефицит каждой вершины множества Y_1 равен 0 или 1. Тогда количество вершин Y_1 , имеющих дефицит 1, равно, как легко видеть, 6(n-3)-6k, а количество ненасыщенных вершин (с дефицитом 6 каждая) в множестве X_1 составляет (n-3)-3. Выполнимость заключительных (n-3)-k итераций цикла очевидна: каждая из них заключается в соединении ненасыщенной вершины множества X_1 с шестью вершинами множества Y_1 , дефициты которых равны 1. Лемма доказана.

Замечание 2. Если частное и остаток от целочисленного деления 2n-12 на 6 обозначить через p и q соответственно, то можно показать, что наименьший номер итерации k, после которой дефициты вершин Y_1 не превышают 1, равен 2p+2 (при q=0) или 2p+1 (при $q\neq 0$).

ТЕОРЕМА 2. Для любого $n\geqslant 6$ существует $(6,3)_n$ -граф G=(X,Y,E), не допускающий гармонической раскраски.

Доказательство. В качестве графа G можно взять объединение G_0 и его – дополнения G_1 . Теорема доказана.

Следствие 1. Для любого $n\geqslant 6$ существует нераскрашиваемый $(6,3)_n$ -граф G=(X,Y,E).

На рис.2 приведен $(6,3)_6$ -граф G, не допускающий гармонической раскраски (следовательно, граф G нераскрашиваем).

3. Элиминация перебора множества неизоморфных $(6,3)_n$ -графов

3.1. Дерево сокращенного перебора T. Начало построения. Отметим, что граф $G_0=(X_0,Y_0,E_0)$, сыгравший ключевую роль в доказательстве теоремы 2, был построен нами в результате компьютерных вычислений. Но если происхождение графа G_0 для доказательства теоремы 2, составляющей первую часть утверждения теоремы 1, несущественно, то вторая часть утверждения теоремы 1 всецело получена «компьютерным» путем. В разделе 2 обсуждались трудности перебора $(6,3)_n$ -графов при n=6; проблема перебора сохраняет остроту и для значения n=5, хотя вычислительные трудности не столь велики, как в случае n=6. Изложим подход, который позволяет существенно сократить перебор.

Отношение изоморфизма разбивает множество M всех $(6,3)_n$ -графов на классы эквивалентности (классы попарно неизоморфных графов). Если M_0 – подмножество множества M, включающее не менее одного представителя из каждого класса эквивалентности, то проверка существования нераскрашиваемого $(6,3)_n$ -графа сводится к аналогичной проверке для графов из M_0 .

Замечание 3. Сложность построения множества M_0 , включающего из каждого класса эквивалентности точно одного представителя, объясняется трудностью задачи об изоморфизме графов, которая была опубликована в [4] как «открытая» задача, относительно которой неизвестно, является ли она NP-полной. Насколько нам известно, за истекшие четыре десятилетия успех в решении проблемы не достигнут.

```
Обозначения: X=\{x_0,\ x_1,\ \dots,\ x_{n-1}\},\ Y=\{y_0,\ y_1,\ \dots,\ y_{2n-1}\}; X_i=\{x_0,\ x_1,\ \dots,\ x_i\},\ 0\leqslant i\leqslant n-1;;\ \ Y_j=\{y_0,\ y_1,\ \dots,\ y_j\}, 0\leqslant j\leqslant 2n-1.
```

Построение множества M_0 опишем в виде процесса построения корневого дерева T глубины n-1, узлы которого представлены графами (в дальнейшем – «узловые графы»):

- а) каждый узел V последнего, (n-1)-го уровня представлен некоторым $(6,3)_n$ -графом $G=G_{n-1}^V$, а множество M_0 определяется как множество всех узловых графов (n-1)-го уровня;
- б) каждый узел v уровня i-1, принадлежащий пути от корня к вершине последнего уровня V, представлен порожденным на множестве вершин $X_{i-1} \cup Y$ подграфом $G_{i-1}^{(v)}$ графа $G_{n-1}^{(V)}$;
- в) в качестве узлового графа для корня дерева T можно без ограничения общности выбрать двудольный граф $G_0=(X_0,\ Y,\ E_0),\$ где $E_0=\{(x_0,y_0),\dots,(x_0,y_5)\},\$ поскольку выбор для вершины x_0 любого иного списка смежности приводит к графу, изоморфному G_0 .
- **3.2.** Три правила сокращения узлов в дереве T. С каждым порожденным на множестве вершин $X_i \cup Y$ подграфом $G_i^{(\omega)}$ графа $G_{n-1}^{(V)}$ будем связывать термин «наследник узла v», где v некоторый узел (i-1)-го уровня. Сформулируем условия, при которых наследник включается в дерево T и, таким образом, становится потомком некоторого узла v (более точно, его непосредственным потомком). Пусть построены все узлы v дерева T до (i-1)-го уровня включительно, i < n. Если в

узловом графе $G_{i-1}^{(v)}$ все вершины некоторого подмножества $Y'\subseteq Y$: а) имеют степени меньше 3; б) обладают идентичными списками смежности, то подмножество Y' будем называть npednonem, а предполе, не являющееся собственным подмножеством никакого другого предполя, будем называть nonem (узла v). Количество полей рассматриваемого узла v обозначим через N, поля – через F_1, \ldots, F_N , их мощности – через I_1, \ldots, I_N , индексы первых элементов полей – через s_1, \ldots, s_N .

<u>Пример</u>. Для узлового графа G_{i-1}^v , изображенного на рис.3 слева, N=4, $F_1=\{y_1,\ y_2\}$, $F_2=\{y_3,y_4,y_5,y_6\}$, $F_3=\{y_7,y_8,y_9,\ y_{10}\}$, $F_4=\{y_{11},y_{12}\}$, $l_1=2$, $l_2=4$, $l_3=4$, $l_4=2$; $s_1=1$, $s_2=3$, $s_3=7$, $s_4=11$.

С точностью до изоморфизма наследник ω узла v определяется количеством a_k вершин списка смежности вершины x_i узлового графа $G_i^{(\omega)}=(X_i,Y,E_\omega)$, принадлежащих полям F_k :

$$a_1 + \dots + a_N = 6,$$
 (3.1)

$$0 \leqslant a_k \leqslant l_k; \ k = 1, \dots, \ N. \tag{3.2}$$

Отсюда следует корректность следующего правила.

Правило 1. Из рассмотрения удаляются все наследники ω узла v за исключением тех, для которых список смежности вершины x_i в графе $G_i^{(\omega)}$ содержит точно a_k начальных вершин поля F_k , $k=1,\ldots,N$; таким образом, количество наследников, подлежащих дальнейшему рассмотрению, равно количеству наборов целых чисел, удовлетворяющих системе (3.1)–(3.2).

Рис. 3. Изображены два узла 1-го уровня: v и v'. Поля выделены.

Узловые графы, соответствующие наследникам одного и того же родительского узла, неизоморфны; однако узловые графы наследников разных узлов одного уровня могут оказаться изоморфными. Так, изображенные на рис. 4a и 4b наследники узлов 1-го уровня v и v', чьи узловые графы изображены на рис.3, изоморфны.

Правило 2. Из наследников ω узла v, удовлетворяющих правилу 1, для дальнейшего рассмотрения выбираются лишь те, у которых список смежности вершины x_i в графе $G_i^{(\omega)}$ имеет не больше общих вершин с Y_5 , чем список смежности вершины x_{i-1}

в узловом графе родительской вершины v. В самом деле, данное правило равносильно требованию упорядочить вершины x_0, \ldots, x_{n-1} по принципу невозрастания в их списках смежности количеств вершин, принадлежащих Y_5 .

Рис. 4. Изоморфные наследники узлов v и v', приведенных на рис.3.

Правило 3. Наследник ω промежсуточного уровня i (i < n-1), удовлетворяющий правилам 1-2, включить в дерево T в качестве потомка узла v лишь если в узловом графе $G_i^{(\omega)}$ не менее шести вершин множества Y имеют степени меньше 3; легко видеть, что в противном случае достройка узлового графа $G_i^{(\omega)}$ до $(6,3)_n$ -графа невозможна.

Для реализации правила 1 используется рекурсивная процедура MakeSplit (value, k, a, l, s, N), где a и l – векторы из N целых неотрицательных и целых положительных чисел соответственно, которая по заданным value, N, l, s и k генерирует все разбиения заданного натурального value на слагаемые $a_k + \cdots + a_N$, не превышающие соответствующих l_k, \ldots, l_N .

Процедура MakeSplit (value, k, a, l, s, N)

если k=N, то begin a_k :=value; <u>Добавление</u> end {о процедуре <u>Добавление</u> см. ниже в п.4.3}

иначе

для j от $max(0, value - (a_{k+1} + \cdots + a_N))$ до $min (value, l_k)$ выполнить begin $a_k := j$; MakeSplit (value - j, k + 1, a, l, s, N) end; Конец процедуры

3.3. Построение узлов очередного уровня дерева T. Построение узлов очередного,i-го уровня дерева T выполняется следующим образом. Для графа $G_{i-1}^{(v)}$ каждого узла v уровня i-1 определяется множество полей графа $(N, l_1, \ldots, l_N$ и $s_1, \ldots, s_N)$, после чего вызовом MakeSplit (value, 1, a, l, s, N), где значение фактического параметра value предварительно установлено в значение 6, генерируются разбиения числа 6, удовлетворяющие (3.1)- (3.2); затем для каждого из разбиений процедура \mathcal{A} обавляет ω в дерево \mathcal{A} в качестве потомка вершины v: количество узлов \mathcal{A} в построенной части дерева \mathcal{A} увеличивается на единицу, узлу с номером \mathcal{A} приписывается граф $G_i^{(\omega)}$, после чего выполняются действия сопроводительного характера: i, N, номер родительского узла v и векторы a, b и b заносятся в соответствующие массивы с позиции b.

Заключение

Предложенный алгоритм элиминации перебора свел задачу к построению дерева из 11645 узлов, из которых 2485 узлов – последнего уровня; узловые графы последнего уровня образуют искомое множество $(6,3)_6$ -графов M_0 . Программа обнаружила среди них точно 62 нераскрашиваемых графа (включая изображенный на рис.2), а для $n \leq 5$ выяснила раскрашиваемость всех графов из множеств – аналогов M_0 для рассматриваемых n. Тем самым доказано и второе утверждение теоремы 1.

Область практического применения – оптимизация «школьного» расписания. Пусть рассматривается однодневное расписание учебных занятий: X – множество классов, Y – множество учителей, исходные данные к расписанию заданы (6,3)-графом G=(X,Y,E) – каждому классу запланированы 6 уроков, а каждому учителю – 3 урока. Если цвету $t\in\{1,\ldots,6\}$ каждого ребра $(x_i,y_j)\in E$ соотнести номер академического часа – занятия j-го учителя в i-м классе, то задача о раскрашиваемости графа G преобразуется в задачу о существовании расписания длительности 6 без «окон» у учителей и классов.

Список литературы

- [1] Свами М., Тхуласираман К. Графы, сети и алгоритмы. М.: Мир, 1984. 455 с.
- [2] Casselgren C.J. On Some Graph Coloring Problems // Doctoral Thesis No. 48. Department of Mathematics and Mathematical Statistics Umea University, 2011.
- [3] Магомедов А.М. К вопросу об условиях уплотнимости матрицы из 6 столбцов // Деп. в ВИНИТИ, 1991.
- [4] Karp R.M. Reducibility among combinatorial problems // in R.E. Miller and J.W. Thatcher (eds.), Complexity of Computer Computations, Plenum Press, New York, 1972. P. 85–103.

А. М. Магомедов (**A.** M. Magomedov) Дагестанский научный центр РАН Поступила в редакцию 20.11.2013

E-mail: magomedtagir1@yandex.ru