HDL-TM-92-25

September 1992

AD-A259 136

Energy Levels and Predicted Absorption Spectra of Rare-Earth Ions in Rare-Earth Arsenides

by Donald E. Wortman and Clyde A. Morrison

U.S. Army Laboratory Command Harry Diamond Laboratories
Adelphi, MD 20783-1197

93-00632

Approved for public release; distribution unlimited.

BEST AVAILABLE COPY

98 1 11 040

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer's or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

BEST AVAILABLE COPY

Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to everage 1 hour per response, including the time for reviegathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate burden, to Washington and Budget, Paperwork Reduction Pro ne for reviewing instructions, searching existing data sources, nts reparding this burden estimate or any other aspect of this sorate for information Operations and Reports, 1215 Jefferson duction Project (0704-0188), Washington, DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 1. REPORT TYPE AND DATES COVERED September 1992 Interim, from 1 July to 30 Sept 1992 4. TITLE AND SUBTITLE S. FUNDING NUMBERS Energy Levels and Predicted Absorption Spectra of Rare-Earth Ions in Rare-Earth Arsenides 6. AUTHOR(S) Donald E. Wortman and Clyde A. Morrison 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Harry Diamond Laboratories HDL-TM-92-25 2800 Powder Mill Road Adelphi, MD 20783-1197 8. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY REPORT NUMBER U.S. Army Laboratory Command 2800 Powder Mill Road Adelphi, MD 20783-1145 11. SUPPLEMENTARY NOTES AMS code: 612120H25 HDL PR: 2R8A51 12a, DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE Approved for public release; distribution unlimited. 13. ABSTRACT (Maximum 200 words) A crystal-field Hamiltonian for octahedral symmetry was used along with free-ion parameters for aqueous solution to fit the reported optical absorption spectra of Er3+ in ErAs. Parameters obtained from this fit were then used in a model to predict optical absorption spectra of Er^{3+} for the ${}^4I_{15/2}$ to ${}^4I_{13/2}$ multiplets at 5, 74, and 300 K; these predictions showed excellent agreement with the reported experimental data at these temperatures. Consequently, we used an interpolation procedure to predict the crystal-field splittings of the lower multiplets of the rare-earth ions Tb³⁺ through Yb³⁺ in their respective arsenide compounds. The lowest multiplet energy levels predicted for Tm³⁺ and Yb³⁺ compare favorably with measurements made by inelastic neutron scattering. In addition, we calculate the absorption spectra for Tb³⁺, Dy³⁺, Ho³⁺, Tm³⁺, and Yb³⁺ in their respective arsenide compounds at 4.2, 77, and 300 K. From these calculations, we show the transitions between the levels of the lowest two J multiplets for each of the ions. 14. SUBJECT TERMS 15. NUMBER OF PAGES 29 Rare-earth arsenides, rare-earth spectra 16. PRICE CODE 18. SECURITY CLASSIFICATION OF THIS PAGE 17. SECURITY CLASSIFICATION 17. SECURITY CLASSIFICATION OF ABSTRACT 20. LIMITATION OF ABSTRACT

Unclassified

Unclassified

Unclassified

UL

Contents

	Introduction	
2.	Fitting Experimental Data	5
3.	Calculation of Magnetic Dipole Line Strengths	7
4.	Comparison with Experiment	8
	Emission Branching Ratios	
	Theoretical Predictions	10
7.	Predicted Energy Levels, g Values, Absorption Spectra, and Multiplet	
	Branching Ratios	12
	7.1 Tb in TbAs	12
	7.2 Dy in DyAs	14
	7.3 Ho in HoAs	
	7.4 Tm in TmAs	18
	7.5 Yb in YbAs	20
R.	Conclusion	22
	cknowledgements	
	eferences	
	istribution	
	Figures	
	Predicted absorption spectra of ${}^4I_{15/2}$ to ${}^4I_{13/2}$ levels of Er ³⁺ in ErAs, assuming a Lorentzian line shape with $\Delta E = 3$ cm ⁻¹	9
2.	Four largest line-to-line branching ratios at 300 K for ${}^4I_{13/2}$ to ${}^4I_{15/2}$ transitions for Er ³⁺	
	ın Eras	10
3.	Predicted absorption spectra of ${}^{7}F_{6}$ to ${}^{7}F_{5}$ levels of Tb ³⁺ in TbAs, assuming a	
	Lorentzian line shape with $\Delta E = 3 \text{ cm}^{-1}$	
4.	Multiplet-to-multiplet branching ratios for Dy ³⁺ in DyAs	15
5.	Predicted absorption spectra of ${}^6H_{15/2}$ to ${}^6H_{13/2}$ levels of Dy ³⁺ in DyAs, assuming a Lorentzian line shape with $\Delta E = 3$ cm ⁻¹	
_	a Lorentzian line shape with $\Delta E = 3 \text{ cm}^{-1}$	15
6.	Predicted absorption spectra of 5I_8 to 5I_7 levels of Ho ³⁺ in HoAs, assuming a Lorentzian line shape with $\Delta E = 3$ cm ⁻¹	17
7.	Predicted absorption spectra of 3H_6 to 3F_4 levels of ${\rm Tm}^{3+}$ in ${\rm Tm}$ As, assuming a	4 /
	Lorentzian line shape with $\Delta E = 3 \text{ cm}^{-1}$	19
8.	Lorentzian line shape with $\Delta E = 3 \text{ cm}^{-1}$	
	Lorentzian line shape with $\Delta E = 3 \text{ cm}^{-1}$	21
	-	

Tables

1.	Theoretical and experimental energy levels	6
2.	Magnetic dipole line strengths, S_{nm} , for line-to-line ${}^4I_{15/2} \leftrightarrow {}^4I_{13/2}$	7
3.	g values of ${}^4I_{15/2}$ and ${}^4I_{13/2}$ levels of Er ³⁺ in ErAs	7
4.	Lattice constants for LnAs for experimental values and interpolated	
	values for triply ionized rare-earth ions with electronic configuration 4f ^N	11
5.	Interpolated crystal-field components, A_{kq} , and crystal-field parameters, B_{nm} ,	
	for LnAs	11
6.	Predicted energy levels and free-ion mixture for Tb ³⁺ in TbAs	12
7.	Predicted g values for Γ_4 and Γ_5 levels of Tb ³⁺ in TbAs	13
8.	Predicted energy levels and free-ion mixture for Dy ³⁺ in DyAs	14
9.	Predicted g values for Γ_6 , Γ_7 , and Γ_8 levels of Dy ³⁺ in DyAs	16
10.	Predicted energy levels and free-ion mixture for Ho ³⁺ in HoAs	16
l1.	Predicted g values for Γ_4 and Γ_5 levels of Ho ³⁺ in HoAs	17
12.	Predicted energy levels and free-ion mixture for Tm ³⁺ in TmAs	18
13.	Predicted g values for Γ_4 and Γ_5 levels of Tm ³⁺ in TmAs	19
14.	Experimental energy levels of Tm ³⁺ in TmAs reported by Hulliger [10]	19
15.	Comparison of present work and Hulliger [10]	19
l6.	Predicted energy levels and free-ion mixture for Yb ³⁺ in YbAs	20
17.	Predicted g values for Γ_6 , Γ_7 , and Γ_8 of Yb ³⁺ in YbAs	21

Acces	sion For		
MTIS	GRALI	(2)	
DIIC	TAB	ā	
Unean	beoravo		
Just 1	fication		
By			
	Avail ar		
Dist	Specia	7	
	ĺ		
IN'I			
111			

DTIC QUALITY INSPECTED L

1. Introduction

Small, stable, narrow-linewidth lasers built by the doping of rare-earth ions in III-V semiconductors are of current interest for optoelectronic components and integrated optical circuits. Lasers with these desirable properties can be pumped by photons whose energies are greater than the band gap or by current injection into the region occupied by the rare-earth ions. Characteristic, narrow-line frequencies of the $4f^N$ rare-earth ions can provide direct laser output or can be used to lock III-V semiconductor laser transitions [1].

In the work reported here, we analyze the absorption spectra [2] of Er³⁺ in a 3300-Å-thick layer of ErAs to obtain phenomenological crystal-field parameters, B_{nm} , for Er³⁺ in ErAs. The B_{nm} were obtained by least-squares fitting the reported spectra on the ${}^4I_{15/2}$ and ${}^4I_{13/2}$ multiplets of Er³⁺, and these were also used to calculate the magnetic dipole line strengths for all the transitions, as well as the magnetic g factors for each level. The magnetic dipole line strengths were then used to compute the absorption spectra of Er³⁺ in ErAs; the computation results compare favorably with experiment. The line-to-line emission branching ratios were calculated as a function of temperature for the ${}^4I_{13/2}$ to ${}^4I_{15/2}$ transitions of Er³⁺ in ErAs. Using these B_{nm} for Er, we next predict the B_{nm} for the entire triply ionized rare-earth series of arsenides, LnAs(Ln = Ce to Yb). These latter B_{nm} are then used to predict the energy levels and the magnetic dipole line strengths for triply ionized Tb, Dy, Ho, Er, Tm, and Yb in their respective arsenide lattices. We present the absorption spectra calculated for transitions between the levels of the lowest two J multiplets of these ions, assuming a Lorentzian lineshape with a linewidth of 3 cm⁻¹. Much of the analysis follows the procedure used previously [3] in the investigation of the spectra of triply ionized lanthanides (rare-earth ions), Ln^{3+} , in Cs₂NaLnCl₆.

The phenomenological A_{nm} for Er^{3+} in ErAs were obtained from the relation $B_{nm} = \rho_n A_{nm}$, where the ρ_n for each rare-earth ion were given in 1979 by Morrison and Leavitt [4]. These phenomenological A_{nm} for ErAs and the 1968 x-ray data of Wyckoff [5] yielded B_{nm} , which were used to compute the energy levels and multiplet branching ratios for the triply ionized rare-earth ions, LnAs, for Tb^{3+} through Yb^{3+} . The free-ion aqueous parameters of Carnall et al [6] were used in all these calculations.

2. Fitting Experimental Data

In 1991, Schneider et al [2] reported the absorption spectra of Er³⁺ in ErAs at 5, 74, and 300 K and gave an analysis of the energy levels using the Hamiltonian of Lea et al [7] in 1962. The ErAs they investigated was a 3300-Å-thick layer grown by molecular beam epitaxy on a substrate of GaAs capped by a thin layer of GaAs.

The data of Schneider et al [2] were used along with the crystal-field Hamiltonian, H_{CEF} , for the $4f^N$ electronic configuration in O_h symmetry, given by

$$H_{CEF} = B_{40} \sum_{i=1}^{N} \left\{ C_{40}(\hat{r}_i) + \sqrt{\frac{5}{14}} \left[C_{44}(\hat{r}_i) + C_{4-4}(\hat{r}_i) \right] \right\} + B_{60} \sum_{i=1}^{N} \left\{ C_{60}(\hat{r}_i) - \sqrt{\frac{7}{2}} \left[C_{64}(\hat{r}_i) + C_{6-4}(\hat{r}_i) \right] \right\},$$

$$(1)$$

to obtain the best least-squares fit between the calculated and measured energy levels. In obtaining the best fit to the experimental data, we varied B_{40} and B_{60} as well as the calculated difference in the centroids of the $^4I_{15/2}$ and $^4I_{13/2}$ multiplets. The free-ion wavefunctions were determined from the parameters [6] for aqueous solution. Because we could not convert the parameters B_4 and B_6 of Schneider et al [2] to the form used in equation (1), we started the fit with the B_{40} and B_{60} values given elsewhere [3] for Er^{3+} in $Cs_2NaErCl_6$. The reason for this choice is that the point-group symmetry for Er^{3+} in ErAs and in $Cs_2NaErCl_6$ is the same in each material (O_h) . Again, as before [3], we label the states according to their transformation properties under the group O rather than O_h . This entails dropping the parity labels (+) or (-), which are determined by the number of f electrons. The irreducible representations of the O group are from Koster et al [8]. The resulting parameters, energy levels, and wavefunction compositions are given in table 1.

Table 1. Theoretical and experimental energy levels (cm⁻¹) and composition for Er³⁺ in ErAs^a

No.b	Centroid ^c	I. R.d	$E_{ m Theo.}$	$E_{Exp.}^{e}$		Free-ion mixture (%)
1	61	Γ ₈	0.3	0	99,99	⁴ I _{15/2}
2		Γ_{7}	26.4	27.2	99,99	$^4I_{15/2}^{15/2} + 0.01 ^4I_{13/2}$
3		$\Gamma_{8}^{'}$	28.6	27.2	99.99	$^4I_{15/2} + 0.01 ^4I_{13/2}$
4		Γ_6	126.8	129.0	100.00	4/15/2 4-15/2
5		L_{Ω}^{8}	133.5	133.5	99.99	⁴ I _{15/2}
6	6534	Γ_6	6490.7	6491.3	99.99	⁴ I _{13/2}
7		Γ_8	6505.4	6505.7	99.97	$Y_{13/2} + 0.03 Y_{11/2}$
8		Γ_7	6515.4	6515.7	99.96	$^{4}I_{13/2} + 0.03 ^{4}I_{11/2}$
9		Γ_7	6582.6	6583.0	99.99	${}^{4}I_{13/2} + 0.03 {}^{4}I_{11/2}$ ${}^{4}I_{13/2} + 0.01 {}^{4}I_{15/2}$
l O		Γ_8	6583.9	6583.0	99.99	$^{4}I_{13/2}^{13/2} + 0.01 ^{4}I_{15/2}^{13/2}$
11	10,220	Γ_6	10194.8	_	99.97	$^{4}I_{11/2} + 0.01 ^{4}I_{9/2} + 0.01 ^{4}F_{7/2}$
12		Γ_8	10201.2		99.95	$^{4}I_{11/2} + 0.04 ^{4}I_{0/2}$
3		Γ_7	10236.5	_	99,96	$^4I_{11/2} + 0.03 ^4I_{13/2}$
!4		$\Gamma_8^{'}$	10239.9	_	99.97	$^{4}I_{11/2}^{11/2} + 0.02 ^{4}I_{13/2}^{13/2}$

 $^{^{}a}B_{40} = 704.5$, $B_{60} = 51.07$ cm⁻¹, and rms = 0.870 cm⁻¹.

^bNumbers used to designate levels used in discussion.

^cIn absence of experimental data, centroids were calculated from aqueous solution parameters of Carnall et al [6].

dIrreducible representation of O group, Koster et al [8].

Tsang and Logan [1].

3. Calculation of Magnetic Dipole Line Strengths

Since the Er^{3+} ion occupies a site with O_h symmetry, the electric dipole transitions are parity forbidden. However, the magnetic dipole operator has even parity and should correspond to the experimental absorption, if we assume that the absorption is not vibrationally assisted. Because of the excellent agreement of the calculated values of the energy levels with the experimental values, we assume that all the observed levels are magnetic dipole. The operator we use for the magnetic dipole, M, is

$$\mathbf{M} = \frac{\alpha a_o}{2} (\mathbf{L} + g_e \mathbf{S}) , \qquad (2)$$

where α is the fine structure constant, a_o the Bohr radius, g_e the free-electron g-factor, and L and S are the orbital and spin operators, respectively. We then calculate the line strength given by

$$S_{nm} = \sum_{i,f} |\langle m \Gamma_f | \mathbf{M} | n \Gamma_i \rangle|^2, \qquad (3)$$

where the sum on i and f is over all the components of Γ_i and Γ_f . The wavefunctions $|n\Gamma_i\rangle$ and $|m\Gamma_f\rangle$ are obtained from the simultaneous diagonalization of the crystal field in equation (1) and the free-ion Hamiltonian with the parameters for Er^{3+} given by Carnall et al [6]. These results are given in table 2. We also calculated the g values as defined earlier [3] for the $^4I_{15/2}$ and $^4I_{13/2}$ energy levels; these results are given in table 3.

Table 2. Magnetic dipole line strengths, S_{nm} (10⁻²³ cm²), for line-to-line $^4I_{15/2} \leftrightarrow ^4I_{13/2}$

m, Γ_i	6, Γ ₆	7, Γ ₈	8, Γ ₇	9, Γ ₇	10, Γ ₈
n, Γ_j]				
1, Γ ₈	47.73	30.74	3.139	0.01178	0.3887
$2, \Gamma_7$	0	6.804	8.717	1.060	3.290
3, Γ ₈	0.0015	33.16	14.69	8.120	8.001
4, Γ ₆	0.0028	0.0032	0	0	44.75
5, Γ ₈	0.0398	0.2482	0.2345	38.43	40.15

Table 3. g values of ${}^4I_{15/2}$ and ${}^4I_{13/2}$ levels of ${\rm Er}^{3+}$ in ${\rm Er}{\rm As}^a$

No.	I. R.	81	82
1	Γ_8	4.945	-11.897
2	Γ_7	_	6.777
3	$\Gamma_{8}^{'}$	-1.194	9.697
4	Γ_6^6	-5.933	
5	Γ_{8}	-12.174	0.215
6	Γ_6	5.546	
7	Γ_8	-2.506	-5.996
8	Γ_7		-3.642
9	$\Gamma_{7}^{'}$		4.285
10	$\Gamma_{8}^{'}$	0.294	9.737

^aFor an explanation of definition of notation of g values, see Morrison et al [3].

4. Comparison with Experiment

The line strengths given in table 2 have been used to calculate the line-to-line absorption as a function of energy at 5, 74, and 300 K reported by Schneider et al [2]. The results are shown in figure 1. The quantity plotted, I(E), is

$$I(E) = \sum_{i=0}^{10} \sum_{i=1}^{5} \frac{(E_j - E_i)S_{ij} \exp\left[-(E_i - E_1)/kT\right]}{\left\{ [E - (E_j - E_i)]^2 + (\Delta/2)^2 \right\} Z_1},$$
 (4)

where

$$Z_1 = \sum_{i=1}^{5} w_i \exp \left[-(E_i - E_1)/kT \right]$$
 (5)

and Δ is the full linewidth at half maximum value, and, as suggested by Schneider et al [2], we have used $\Delta = 3$ cm⁻¹. If this figure is compared with figure 1 of Schneider et al [2], we find that every line agrees with their results, except for the splittings of the lines they label 1 and 2.

5. Emission Branching Ratios

We calculated the emission branching ratios assuming that the ${}^4I_{13/2}$ level is pumped and the population of this state is thermalized. That is, we calculate

$$\beta_{ij} = \frac{\exp[-(E_j - E_6)/kT]S_{ij} (E_j - E_i)^3}{S_o Z_2}$$
 (6)

for j = 6 to 10, i = 1 to 5, where

$$Z_2 = \sum_{j=6}^{10} w_j \exp[-(E_j - E_6)/kT]; \qquad (7)$$

 S_o is determined such that

$$1 = \sum_{i=1}^{5} \sum_{j=6}^{10} \beta_{ij},$$

and w_j is the degeneracy of each level in the ${}^4I_{13/2}$ multiplet ($w_j = 2$ for Γ_6 and Γ_7 , and 4 for Γ_8). The β_{ij} are shown in figure 2 for the four largest branching ratios at T = 300 K. At all temperatures, the largest branching ratio is from level 6 to level 1 ($\Delta E = 6491.3$ cm⁻¹). However, at room temperatures, the transition of level 7 to level 3 ($\Delta E = 6478.5$ cm⁻¹) has a large branching ratio

(13.4 percent), but since level 3 is only 27.2 cm⁻¹ above the ground level, population inversion would be difficult. Also, at room temperature, it might be possible to achieve population inversion in the transition from level 10 to level 4 (β = 12.5 percent) at 129 cm⁻¹ (ΔE = 6454.0 cm⁻¹).

Figure 1. Predicted absorption spectra of ${}^4I_{15/2}$ to ${}^4I_{13/2}$ levels of ${\rm Er}^{3+}$ in ErAs, assuming a Lorentzian line shape with $\Delta E = 3 {\rm cm}^{-1}$:

(a) $T = 5 {\rm K}$,

(b) $T = 74 {\rm K}$, and

(c) T = 300 K.

Figure 2. Four largest line-to-line branching ratios at 300 K for ${}^4I_{13/2}$ to ${}^4I_{15/2}$ transitions for Er^{3+} in ErAs.

6. Theoretical Predictions

In the three-parameter theory of crystal fields proposed in 1975 by Leavitt et al [9], the crystal-field parameters, B_{nm} , are related to the crystal-field components by

$$B_{nm} = \rho_n A_{nm} \,, \tag{8}$$

and it is assumed that the ρ_n are dependent only on the lanthanide ion and the A_{nm} are host dependent. In the cubic symmetry for the LnAs compounds, we need only ρ_4 and ρ_6 along with A_{40} and A_{60} . The values for ρ_n have been tabulated elsewhere [4], and we use these values here. Using the values of ρ_4 and ρ_6 for Er^{3+} and the values of B_{40} and B_{60} from the best fit given in table 1, we obtain experimental values of the crystal components $A_{40}(Er)$ and $A_{60}(Er)$, which can be used in equation (8) to predict the energy levels of the other lanthanides as impurities in ErAs. However, we wish to find the $A_{nm}(Ln)$ in LnAs. To obtain the $A_{nm}(Ln)$ for LnAs, we assume that the dominant contribution to the $A_{nm}(Ln)$ is given by the monopole contribution to the crystal-field components. For cubic site symmetry, the monopole A_{nm} can be written as

$$A_{nm}(Ln) = V_{nm}/a(Ln)^{n+1}, \qquad (9)$$

where a(Ln) is the lattice constant for LnAs and the V_{nm} are crystal-field components for the unit lattice constant and are the same for all cubic LnAs. The a(Ln) for a number of lanthanides are given by Wyckoff [5], and his results have been used to interpolate the lattice constants for all the LnAs from LaAs through LuAs; these results are given in table 4.

We obtain the $A_{nm}(Ln)$ for Ln As from equation (9) by using

$$A_{nm}(Ln) = A_{nm}(Er) \left[\frac{a(Er)}{a(Ln)} \right]^{n+1}$$
 (10)

with the $A_{nm}(Er)$ determined from the phenomenological B_{40} and B_{60} for Er in ErAs. These results are given in table 5, along with the B_{40} and B_{60} for all the LnAs given in table 4. If the values of B_{40} and B_{60} in table 5 are compared to the values given earlier [3] (table VI) for Ln^{3+} in $Cs_2NaLnCl_6$, we see that the B_{40} and B_{60} are much smaller for LnAs.

Table 4. Lattice constants for LnAs (Ln = La to Lu) for experimental values and interpolated values for triply ionized rare-earth ions with electronic configuration 4f^N

N	Ion	$a(\mathring{A})^a$	$a (\mathring{A})^b$
0	La	6.125	6.103
1	Ce	6.060	6.060
2	Pr	5.997	6.019
3	Nd	5.958	5.980
4	Pm	_	5.943
5	Sm	5.921	5.908
6	Eu	_	5.875
7	Gd	5.854	5.844
8	Tb	5.827	5.814
9	Dy	5.780	5.787
10	Ho	5.771	5.762
11	Er	5.732	5.738
12	Tm	5.711	5.717
13	Yb	5.698	5.697
14	Lu		5.679

^aR.W.G. Wyckoff [5].

 $^{b}a(N) = 6.103273 - 4.378697X +$

 $9.666212 X^2, X = N/100 (rms =$

 $1.326 \times 10^{-2} \text{\AA})$

Table 5. Interpolated crystal-field components, A_{kq} , and crystal-field parameters, B_{nm} , for LnAs

N	Ion	$A_{40} (\mathrm{cm}^{-1}/\mathrm{\AA}^4)$	$B_{40} (\mathrm{cm}^{-1})$	$A_{60} (\text{cm}^{-1}/\text{Å}^6)$	$B_{60} (\mathrm{cm}^{-1})$
0	La	1254		33.76	
1	Ce	1299	979.4	35.47	83.06
2	Pr	1344	869.0	37.19	69.75
3	Nd	1388	802.1	38.92	61.87
4	Pm	1432	764.8	40.65	57.79
5	Sm	1475	745.0	42.37	55.97
6	Eu	1517	733.9	44.07	55.10
7	Gd	1558	725.7	45.74	54.31
8	Тb	1598	717.6	47.38	53.22
9	Dy	1636	710.4	48.97	51.98
10	Ho	1672	705.4	50.50	51.11
11	Er	1707	704.5	51.97	51.07
12	Tm	1739	705.1	53.36	51.48
13	Yb	1770	697.0	54.66	49.85
14	Lu	1797		55.86	_

7. Predicted Energy Levels, g Values, Absorption Spectra, and Multiplet Branching Ratios

The B_{40} and B_{60} in table 5 are used in equation (1) along with the free-ion centroids of Carnall et al [6] from the aqueous data to obtain the energy levels, g values, absorption spectra, and branching ratios for Ln = Tb, Dy, Ho, Tm, and Yb in LnAs. Only the multiplets that lie in the band gap of GaAs (~11,000 cm⁻¹) are given.

7.1 Tb in TbAs

The energy levels and free ion composition of the wavefunctions for the ${}^7\!F_J$ for J=6 through 0 are given in table 6. For most values of J, the free-ion component of the wavefunction exceeds 99 percent, and this result would indicate that the analysis of the experimental data using the operator equivalent method given by Lea et al [7] would give a good representation of the crystal-field parameters. The strongest optical absorption would be in the $2000 \, \mathrm{cm}^{-1}$ region $({}^7\!F_6 \to {}^7\!F_5)$, which is the long wavelength limit given by Schneider et al [2]. Multiplet line strengths of ${}^7\!F_6$ to higher multiplets are two

Table 6. Predicted energy levels and freeion mixture for Tb³⁺ in TbAs^a

No.b	Centroid ^c	I. R. ^d	Energy (cm ⁻¹)	Free-ion mixture (%)
1	74	Γ_1	0.0	$99.86^{7}F_{6} + 0.13^{7}F_{4}$
2		Γ_4	17.8	$99.75^{7}F_{6} + 0.16^{7}F_{5} + 0.08^{7}F_{4}$
3		Γ_5	38.6	$99.62^{7}F_{6} + 0.35^{7}F_{5} + 0.02^{7}F_{4}$
4		Γ_2	121.5	99.94 $^{7}F_{6}$ + 0.06 $^{7}F_{3}$
5		Γ_5	148.6	$99.86^{7}F_{6} + 0.09^{7}F_{5} + 0.03^{7}F_{4}$
6		Γ_3	157.6	$99.88 {}^{7}F_{6} + 0.06 {}^{7}F_{5} + 0.05 {}^{7}F_{4}$
7	2112	Γ_4	2058.3	99.84 ${}^{7}F_{5}$ + 0.11 ${}^{7}F_{6}$ + 0.04 ${}^{7}F_{1}$
8		Γ_5	2112.1	99.43 ${}^{7}F_{5}$ + 0.44 ${}^{7}F_{6}$ + 0.10 ${}^{7}F_{2}$
9		Γ_3	2160.5	$99.81^{7}F_{5} + 0.09^{7}F_{2} + 0.06^{7}F_{6}$
10		Γ_4	2177.3	$99.72^{7}F_{5} + 0.19^{7}F_{3} + 0.05^{7}F_{6}$
11	3370	Γ_1	3309.9	99.56 ${}^{7}F_{4}$ + 0.30 ${}^{7}F_{0}$ + 0.13 ${}^{7}F_{6}$
12		Γ_4	3334.7	$99.59^{7}F_{4} + 0.16^{7}F_{1} + 0.13^{7}F_{3}$
13		Γ_3	3354.9	$99.89^{7}F_{4} + 0.05^{7}F_{6} + 0.05^{7}F_{5}$
14		Γ_5	3466.0	$99.38^{7}F_{4} + 0.56^{7}F_{3} + 0.05^{7}F_{6}$
15	4344	Γ_4	4334.8	$99.30^{7}F_{3} + 0.36^{7}F_{1} + 0.20^{7}F_{5}$
16		Γ5	4360.5	$97.33^{7}F_{3} + 2.03^{7}F_{2} + 0.57^{7}F_{4}$
17		Γ_2	4395.4	99.94 ${}^{7}F_{3}$ + 0.06 ${}^{7}F_{6}$
18	5028	Γ_5	5012.1	$97.86^{7}F_{2} + 2.05^{7}F_{3} + 0.08^{7}F_{5}$
19		Γ_3	5111.1	$99.89^{7}F_{2} + 0.09^{7}F_{5} + 0.01^{7}F_{4}$
20	5481	Γ_4	5502.8	99.43 ${}^{7}F_{1}$ + 0.38 ${}^{7}F_{3}$ + 0.15 ${}^{7}F_{4}$
21	5703	Γ_1	5722.6	99.70 ${}^{7}F_{0}$ + 0.30 ${}^{7}F_{4}$

 $^{^{}a}B_{40} = 717.6$ and $B_{60} = 53.22$ cm⁻¹.

^bNumbers to designate levels used in discussion.

^cAqueous centroids.

dIrreducible representation of O group, Koster et al [8].

orders of magnitude smaller than the ${}^{7}F_{6} \rightarrow {}^{7}F_{5}$ transitions. The absorption spectra for the transitions between the energy levels of the 7F_6 to the 7F_5 were computed using equation (4) with $1 \le i \le 6, 7 \le j \le 10$ (table 6) and are shown in figure 3 for T = 4.2, 77, and 300 K. In addition, the g values for all the states are given in table 7.

Figure 3. Predicted absorption spectra of $^{7}F_{6}$ to $^{7}F_{5}$ levels of Tb³⁺ in TbAs, assuming a Lorentzian line shape with $\Delta E = 3$ cm⁻¹: (a) T = 4.2 K,

Table 7. Predicted g
values for Γ_4 and Γ_5
levels of Tb3+ in TbAs

Table 7. Predicted g	No.	I. R.	g
values for Γ_4 and Γ_5	2	Γ_{4}	1.5568
levels of Tb ³⁺ in TbAs ^a	3	Γ_5^7	5.6857
	5	Γ_5	1.7981
	7	Γ_{4}	8.9031
	8	Γ_5^7	7.4531
	10	Γ_{4}	-7.4577
	12	Γ_{4}	1.6281
	14	Γ_5	-7.1609
	15	Γ_{4}	-4.6128
^a See Morrison et al [3]	16	Γ_5^7	-1.0517
for definition of g	18	Γ_5	2.2372
values.	20	Γ_{4}^{3}	2.9733

7.2 Dy in DyAs

The energy levels and free-ion wavefunction composition for ${}^{6}H_{I}$, J=15/2through 5/2, and ${}^6F_{11/2}$, ${}^6F_{9/2}$, and ${}^6F_{7/2}$ are given in table 8. Even though the crystal-field parameters are small, the free-ion levels are mixed by the crystal field. In some cases the mixture of different states consists of 40 percent of a state. For example, one level of the labeled ${}^6F_{9/2}$ multiplet and one level in the multiplet labeled ${}^6H_{7/2}$ are only 60 percent of their respective multiplets. The multiplet-to-multiplet branching ratios for each multiplet are shown in figure 4. The absorption spectra for the transitions between the energy levels

Table 8. Predicted
energy levels and free-
ion mixture for Dy ³⁺
in DyAsa

Table 8. Predicted energy levels and free-ion mixture for Dy ³⁺	No.b	Centroid ^c	I. R.ª	Energy (cm ⁻¹)	Free-ion mixture (%)
in DyAs ^a	1	40	Γ_6	0.0	99.99 $^{6}H_{15/2} + 0.01 ^{6}F_{11/2}$
in Dj. ii	2		Γ_8	12.8	99.98 $^{6}H_{15/2}^{13/2} + 0.02 ^{6}H_{13/2}^{13/2}$
	3		Γ_7	85.5	$99.90 \ ^{6}H_{15/2}^{13/2} + 0.09 \ ^{6}H_{13/2}^{13/2}$
•	4		$\Gamma_{8}^{'}$	139.2	99.95 $^{\circ}H_{160} + 0.03 ^{\circ}H_{120} + 0.01 ^{\circ}F_{00}$
	5		$\Gamma_{\rm o}^8$	174.0	99.95 $^{6}H_{15/2}^{15/2} + 0.03 ^{6}F_{11/2}^{15/2} + 0.01 ^{6}H_{13/2}^{9/2}$
	6	3505	Γ_{g}	3530.2	99.93 $^{6}H_{13/2} + 0.03 ^{6}H_{15/2} + 0.02 ^{6}H_{11/2}$
	7		Γ_7	3532.1	$99.88 ^{\circ}H_{120} + 0.08 ^{\circ}H_{150} + 0.02 ^{\circ}H_{110}$
	8		Γ_7	3566.4	99.68 ${}^{\circ}H_{13D} + 0.23 {}^{\circ}H_{11D} + 0.06 {}^{\circ}F_{11D}$
	9		Γ_8	3576.4	$99.79 ^{\circ}H_{13/2} + 0.12 ^{\circ}H_{11/2} + 0.04 ^{\circ}F_{11/2}$
	10		Γ_6	3 <i>5</i> 89.8	99.95 ${}^{6}H_{13/2}^{1.5/2} + 0.02 {}^{6}H_{11/2}^{1.11/2} + 0.02 {}^{6}H_{9/2}^{1.11/2}$
	11	5833	Γ_{6}	5860.9	99.84 $^{6}H_{11/2} + 0.07 ^{6}F_{11/2} + 0.03 ^{6}H_{7/2}$
	12		Γ_8	5867.6	$99.72 {}^{\circ}H_{11D} + 0.09 {}^{\circ}H_{9D} + 0.08 {}^{\circ}F_{9D}$
	13		Γ_7	5896.5	99.62 $^{\circ}H_{11D} + 0.24 ^{\circ}H_{13D} + 0.09 ^{\circ}F_{11D}$
	14		L ⁸	5909.0	99.77 $^{6}H_{11/2}^{13/2} + 0.09 ^{6}H_{13/2}^{13/2} + 0.06 ^{6}F_{11/2}^{13/2}$
	15 ^e		<u>r</u> 8	7707.9	$78.72 ^{6}H_{9/2} + 21.04 ^{6}F_{11/2} + 0.13 ^{6}F_{9/2}$
	16		Γ_8	7729.1	$90.43 ^{\circ}H_{0D} + 3.03 ^{\circ}F_{11D} + 0.26 ^{\circ}F_{0D}$
	17		Γ_8	7749.0	$98.36 \text{ W}_{110} + 1.31 \text{ H}_{00} + 0.05 \text{ H}_{110}$
	18		Γ_{6}	7754.5	$82.88 {}^{\circ}H_{9D} + 16.83 {}^{\circ}F_{11D} + 0.24 {}^{\circ}F_{9D}$
	19		Γ_7	<i>7</i> 758.4	$99.83 ^{\circ}T_{110} + 0.09 ^{\circ}H_{110} + 0.07 ^{\circ}H_{120}$
	20		Γ_6	7847.3	$82.99 {}^{\circ}F_{11p} + 16.74 {}^{\circ}H_{0p} + 0.13 {}^{\circ}H_{7p}$
$^{a}B_{40} = 710.4$ and $B_{60} = 48.97$ cm ⁻¹ .	21		$\Gamma_{\mathbf{g}}$	7851.6	77.12 ${}^{6}F_{11/2}^{11/2} + 22.69 {}^{6}H_{9/2}^{1/2} + 0.12 {}^{6}H_{11/2}^{1/2}$
bNumbers to designate	22		Γ_{8}	9080.5	$59.91 \ ^{6}F_{9/2} + 39.95 \ ^{6}H_{7/2} + 0.05 \ ^{6}H_{9/2}$
levels used in	23		Γ_8	9149.8	99.34 ${}^{6}F_{9/2} + 0.40 {}^{6}H_{7/2} + 0.11 {}^{6}H_{9/2}$
discussion.	24		Γ_7	9150.1	99.39 $^{6}H_{7/2}^{7/2} + 0.30 ^{6}H_{5/2}^{7/2} + 0.28 ^{6}F_{7/2}^{7/2}$
^c Aqueous centroids.	25		$\Gamma_{6}^{'}$	9162.2	$88.08 \ ^{6}F_{9/2} + 11.55 \ ^{6}H_{7/2} + 0.30 \ ^{6}H_{9/2}$
dIrreducible represen-	26		Γ_6°	9196.9	$88.06 ^{6}H_{7/2}^{1/2} + 11.63 ^{6}F_{9/2} + 0.16 ^{6}F_{7/2}$
tation of O group,	27		Γ8	9214.4	$59.02 \ ^{6}H_{7/2}^{1/2} + 40.10 \ ^{6}F_{9/2} + 0.43 \ ^{6}H_{5/2}^{2}$
Koster et al [8].	28	10169	Γ ₈	10200.2	00 22 64 . 0 25 64 . 0 15 65
Levels 15 through 27	29	7070)	Γ ₇	10265.9	99.22 $^{6}H_{5/2} + 0.35 ^{6}H_{7/2} + 0.15 ^{6}F_{7/2}$
are mixed. Centroids are ⁶ H _{9/2} = 7692;			* 7	10203.7	98.37 $^{6}H_{5/2}^{3/2} + 1.15 ^{6}F_{7/2}^{1/2} + 0.24 ^{6}H_{7/2}^{1/2}$
$^{6}F_{11/2} = 7730;$	30	11025	Γ_7	11061.7	$98.54 \ ^{6}F_{7/2} + 1.09 \ ^{6}H_{5/2} + 0.34 \ ^{6}H_{7/2}$
$^{6}F_{9/2} = 9087$; and	31		Γ_8	11089.9	99.78 ${}^{6}F_{70}$ + 0.16 ${}^{6}H_{60}$ + 0.03 ${}^{6}H_{60}$
$^{6}H_{7/2} = 9115 \text{ cm}^{-1}.$	32		Γ_6	11105.6	$99.75 \ ^{6}F_{7/2}^{1/2} + 0.19 \ ^{6}H_{7/2}^{3/2} + 0.02 \ ^{6}H_{9/2}^{9/2}$

of the ${}^6H_{15/2}$ to the ${}^6H_{13/2}$ were computed using equation (4) with $1 \le i \le 5$ and $6 \le j \le 10$ (table 8) and are shown in figure 5 for T = 4.2, 77, and 300 K. The g values for each state are given in table 9.

Figure 4. Multiplet-tomultiplet branching ratios for Dy³⁺ in DyAs.

Figure 5. Predicted absorption spectra of $^6H_{15/2}$ to $^6H_{13/2}$ levels of Dy³⁺ in DyAs, assuming a Lorentzian line shape with $\Delta E = 3$ cm⁻¹;

(a) T = 4.2 K,(b) T = 77 K, and

(c) T = 300 K.

Table 9. Predicted g
values for Γ_{ϵ} , Γ_{7} , and
values for Γ_6 , Γ_7 , and Γ_8 levels of Dy ³⁺ in
DyAs ⁴

No.	1. R.	g 1	82	No.	I. R.	g 1	82
1	Γ_6	-6.624		17	Γ_8	0.314	-10.742
2	Γ_8^8	-12.035	-0.908	18	Γ_6	2.415	_
3	Γ_7		7.514	19	Γ_7	_	-5.288
4	Γ_8	-5.335	10.394	20	Γ_{6}	-3.668	_
5	Γ_8	8.074	-11.703	21	Γ_{g}	8.544	2.668
6	Γ_8	0.525	11.245	22	$\Gamma_{\mathbf{g}}$	-6.729	1.490
7	Γ_7		4.599	23	Γ_8	8.363	0.382
8	Γ_7		-3.723	24	Γ_7		2.303
9	Γ_8	-3.074	-6.908	25	Γ_{6}	4.330	
10	$\Gamma_{\rm o}^{6}$	6.339	_	26	Γ_6	-1.159	_
11	Γ_{6}	-4.387	_	27	$\Gamma_{\rm g}^{\rm g}$	-5.507	0.051
12	Γ_8	7.100	3.166	28	Γ_8	0.078	1.320
13	Γ_7		-4.442	29	Γ_7	-	-0.264
14	Γ_8	0.938	-9.698	30	Γ_7		4.124
15	Γ_8	5.879	2.836	31	Γ_8	-5.101	-1.358
16	Γ_8	-5.722	-0.403	32	Γ_6	-3.230	_

^aSee Morrison et al [3] for definition of g values.

7.3 Ho in HoAs

The energy levels and free-ion wavefunction composition for the 5I_J multiplet of Ho³⁺ in HoAs for J = 8 to 5 are given in table 10. For each ${}^{5}I_{I}$ level, the composition of that state is practically 100 percent. The absorption spectra for the transitions between the energy levels of the 5I_8 to 5I_7 were computed using equation (4) with $1 \le i \le 7$ and $8 \le j \le 13$ (table 10) and are shown in figure 6 for T = 4.2, 77, and 300 K. The g values for each state are given in table 11.

Table 10. Predicted energy levels and freeion mixture for Ho³⁺ in HoAsa

Table 10. Predicted energy levels and free-	No.b	Centroid ^c	I. R.d	Energy (cm ⁻¹)	F	ree-ion mixture (%)
ion mixture for Ho ³⁺	1	80	Γ3	0.0	99.99	5/8
in HoAsa	2		Γ_4	2.3	100.00	5/8
	3		Γ_1	7.5	100.00	5/8
	4		Γ_4	88.0	99.98	${}^{5}I_{8}^{\circ} + 0.01 {}^{5}I_{7}$
	5		Γ_5	93.6	99.99	${}^{5}I_{8} + 0.01 {}^{5}I_{7}$
	6		Γ_3	116.3	99.99	5/ ₈
	7		Γ_5	117.9	99.99	5 ₁₈
	8	5116	Γ_4	5065.7	99.98	${}^{5}I_{7} + 0.01 {}^{5}I_{8}$
	9		Γ_5^{7}	5068.9	99.99	${}^{5}I_{7}^{'} + 0.01 {}^{5}I_{8}^{"}$
	10		Γ_2	5110.2	99.97	${}^{5}I_{7} + 0.02 {}^{5}I_{6}$
	11		Γ_5	5120.6	99.97	${}^{5}I_{7} + 0.02 {}^{5}I_{6}$
	12		Γ_3	5127.0	99.97	${}^{5}I_{7} + 0.02 {}^{5}I_{6}$
	13		Γ_4	5139.7	99.99	${}^{5}I_{7} + 0.01 {}^{5}F_{5}$
	14	8614	Γ_3	8570.7	99.97	$^{5}I_{6} + 0.02 ^{5}I_{7}$
$^{a}B_{40} = 705.4$ and $B_{60} =$	15		Γ_5	8574.6	99.96	
51.11 cm^{-1} .	16		Γ_2	8590.8	99.97	
bNumbers to designate	17		Γ_5^-	8615.4	99.92	${}^{5}I_{6} + 0.07 {}^{5}I_{5}$
levels used in	18		Γ_4	8625.7	99.94	${}^{5}I_{6} + 0.04 {}^{5}I_{5}$
discussion.	19		Γ_1	8634.6	99.98	${}^{5}I_{6} + 0.01 {}^{5}I_{4} + 0.01 {}^{5}F_{4}$
^c Aqueous centroids.	20	11164	Γ_{4}	11127.2	99.94	⁵ / ₅ + 0.04 ⁵ / ₆
dIrreducible represen-	21		Γ_5	11144.8	99.92	$\frac{51}{5} + 0.07 \frac{51}{6}$
tation of O group,	22		Γ_3	11166.5	99.88	${}^{5}I_{5} + 0.11 {}^{5}I_{4} + 0.01 {}^{5}F_{4}$
Koster et al [8].	23		Γ_4	11174.1	99.9	$5I_5 + 0.07 5I_4 + 0.01 5I_6$

Figure 6. Predicted absorption spectra of 5I_8 to 5I_7 levels of ${}^{Ho^{3+}}$ in HoAs , assuming a Lorentzian line shape with $\Delta E = 3 \text{ cm}^{-1}$:
(a) T = 4.2 K,
(b) T = 77 K, and

(c) T = 300 K.

Table 11. Predicted g values for Γ_4 and Γ_5 levels of Ho^{3+} in $\mathrm{Ho}\mathrm{As}^a$

No.	I. R.	8
2	Γ_4	-0.4529
4	Γ_4	-8.245
5	Γ_5	-9.6228
7	Γ_{5}	8.3998
8	Γ_4	-8.2079
9	Γ_5	-7.4662
11	Γ_5	-3.1396
13	Γ_4	9.3763
15	Γ_5	2.0476
17	Γ_5	3.2855
18	Γ_4	1.0616
20	Γ_4	5.4363
21	Γ_5	4.6125
23	Γ_4	-4.4706

^aSee Morrison et al [3] for definitions of g values.

7.4 Tm in TmAs

The energy levels and free-ion wavefunction composition for the 3H_6 , 3F_4 , and 3H_5 multiplet of Tm³⁺ in TmAs are given in table 12. Each of the $3H_J$ and 3F_4 consist of 100 percent of the free-ion level. These results indicate that the method of Lea et al [7] would be applicable to all the multiplets. The absorption spectra for the transitions between the energy levels of 3H_6 to the 3F_4 were computed using equation (4) with $1 \le i \le 6$ and $7 \le j \le 10$ (table 12) and are shown in figure 7 for T = 4.2, 77, and 300 K. The g values for all the levels are given in table 13.

In 1979, Hulliger [10] listed four different sets of experimental energy levels for the 3H_6 multiplet as given in table 14. Table 15 compares our results with Hulliger's. In almost all cases, our predicted values lie within the variance of the experimental energy levels given in table 14.

Table 12. Predicted energy levels and freeion mixture for Tm³⁺ in TmAs^a

No.b	Centroid ^c	I. R. ^d	Energy (cm ⁻¹)	F	Pree-ion mixture (%)
1	202	Γ_1	0.0	99.91	$^{3}H_{6} + 0.08 ^{3}F_{4}$
2		Γ_{4}	28.7	99.95	$^{3}H_{6}^{"} + 0.04 ^{3}F_{4}^{"}$
3		$\Gamma_5^{'}$	62.9	99.98	${}^{3}H_{6}^{"} + 0.01 {}^{3}F_{4}^{"} + 0.01 {}^{3}H_{5}^{"}$
4		Γ_2	145.7	100.00	$^{3}H_{6}$
5		Γ_5^2	201.9	99,99	$^{3}H_{6}^{\circ}$
6		Γ_3	215.5	99.98	$^{3}H_{6}^{\circ} + 0.01 ^{3}F_{4}$
7	5812	Γ_{5}	5620.6	99.98	${}^{3}F_{4} + 0.01 {}^{3}H_{6} + 0.01 {}^{3}H_{4}$
8		Γ_3	5750.3	99.91	${}^{3}F_{4} + 0.07 {}^{3}H_{5} + 0.01 {}^{3}H_{6}$
9		Γ_{4}	5778.2	99.91	
10		Γ_1^{v}	5815.6	99.91	
11	8390	Γ_{9}	8225.6	99.90	$^{3}H_{5} + 0.05 ^{3}F_{4} + 0.03 ^{3}H_{4}$
12		Γ_3	8244.8	99.83	
13		Γ_5^3	8331.5	99.96	
14		Γ_4	8380.2	99.97	$^{3}H_{5}^{3} + 0.02 ^{3}H_{4}^{2}$
15	12720	Γ_5	12569.9	99.63	${}^{3}H_{4} + 0.33 {}^{3}F_{3} + 0.04 {}^{3}F_{2}$
16		Γ_3	12622.4	99.81	$^{3}H_{4}^{7} + 0.11 ^{3}F_{2}^{7} + 0.08 ^{3}H_{5}^{2}$
17		Γ_{A}^{J}	12664.3	99.85	
18		Γ_1	12724.4	99.99	$^{3}H_{4}$

 $^{^{}a}B_{40} = 705.1$ and $B_{60} = 51.48$ cm⁻¹.

bNumbers to designate levels used in discussion.

^cAqueous centroids.

^dIrreducible representation of O group, Koster et al [8].

Figure 7. Predicted absorption spectra of ${}^{3}H_{6}$ to ${}^{3}F_{4}$ levels of ${}^{7}Tm^{3+}$ in ${}^{7}Tm^{3+}$ in ${}^{7}Tm^{3+}$ assuming a Lorentzian line shape with $\Delta E = 3 \text{ cm}^{-1}$:

(a) T = 4.2 K,

(b) T = 77 K, and

(c) T = 300 K.

Table 13. Predicted g values for Γ_4 and Γ_5 levels of Tm^{3+} in $\mathrm{Tm}\mathrm{As}^a$

No.	I. R.	g
2	Γ_4	1.1755
3	Γ_5^7	3.5743
5	Γ_5	2.2514
7	Γ_5	-5.6900
9	Γ_4	1.1394
11	Γ_4	-5.0612
13	Γ_5	5.1658
14	Γ_4	6.0613

^aSee Morrison et al [3] for definitions of g values.

Table 14. Experimental energy levels (cm⁻¹) of Tm³⁺ in TmAs reported by Hulliger [10]^a

			·	·	
No.b	I. R.	1	2	3	4
2	$\Gamma_{\!\scriptscriptstyle A}$	21.5	21.5	19.5	23.6
3	Γ_5	46.5	48.7	41.7	50.7
4	Γ_2	139	101	124	152
5	Γ,	165	162	148	181
6	Γ_3	174	174	156	190

^aSee Hulliger [10] for references to experimental data. Hulliger's data are multiplied by 0.6950 cm⁻¹/K.

^bNumbers correspond to table 12: ground state is Γ_{1} .

Table 15. Comparison of present work and Hulliger [10]

Energy levels (cm ⁻¹)						
Level	Present work	1979, Hulliger				
$2(\Gamma_4)$	28.7	19.5-23.6				
$3(\Gamma_5)$	62.9	41.7-50.7				
$4(\Gamma_2)$	145.7	101-152				
$5(\Gamma_5)$	201.9	148-181				
6 (Γ ₃)	215.5	156–190				

7.5 Yb in YbAs

The energy levels and free-ion wavefunction composition for the two multiplets, ${}^2F_{7/2}$ and ${}^2F_{5/2}$, of Yb³⁺ in YbAs are given in table 16. The J mixing by the crystal field is negligible, and each level is practically 100 percent of that multiplet (99.99 percent). The absorption spectra for the transitions between the energy levels of the ${}^2F_{7/2}$ to the ${}^2F_{5/2}$ were computed using equation (4) with $1 \le i \le 3$ and $4 \le j \le 5$ (table 16) and are shown in figure 8 for T = 4.2, 77, and 300 K. The g values for each level are given in table 17. The energy levels of the ${}^4F_{7/2}$ have recently been determined by inelastic neutron scattering in 1990 by Kohgi et al [11]. They report the first excited state, Γ_8 , at 144 cm⁻¹ at T = 14 K, and at 200 K they report the Γ_8 at 152 cm⁻¹ and the Γ_7 at 340 cm⁻¹. In 1991, Donni et al [12] reported the Γ_8 at 141 cm⁻¹ and the Γ_7 at 331 cm⁻¹; these measurements were made over a temperature range of 40 to 295 K. Both Kohgi et al [11] and Donni et al [12] found their experimental data consistent with a Γ_6 ground level. We calculated the line strength for the $\Gamma_6 \to \Gamma_8$ to be 558×10^{-23} cm² and the $\Gamma_8 \to \Gamma_8$ line strength to be 358×10^{-23} cm², which qualitatively agrees with the plots of Donni et al [12].

Table 16. Predicted energy levels and freeion mixture for Yb³⁺ in YbAs^a

No.b	Centroid ^c	I. R. ^d	Energy (cm ⁻¹)	Free-ion mixture (%)
1 2 3	250	Γ ₆ Γ ₈ Γ ₇	0.0 128.6 293.7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
4 5	10450	Γ ₈ Γ ₇	10272.9 10471.8	99.99 ${}^{2}F_{5/2} + 0.01 {}^{2}F_{7/2}$ 99.99 ${}^{2}F_{5/2} + 0.01 {}^{2}F_{7/2}$

 $^{^{}a}B_{40} = 697.0 \text{ and } B_{60} = 49.85 \text{ cm}^{-1}.$

^bNumbers to designate levels used in discussion.

^cAqueous centroids.

^dIrreducible representation of O group, Koster et al [8].

Figure 8. Predicted absorption spectra of ${}^2F_{7/2}$ to ${}^2F_{5/2}$ levels of Yb³⁺ in YbAs, assuming a Lorentzian line shape with $\Delta E = 3 \text{ cm}^{-1}$:

- (a) T = 4.2 K,
- (b) T = 77 K, and
- (c) T = 300 K.

Table 17. Predicted g values for Γ_6 , Γ_7 , and Γ_8 of Yb³⁺ in YbAs^a

No.	I. R.	81	82
1	Γ_6	-2.667	
2	Γ_8	-4.179	-1.155
3	Γ_7		3.419
4	$\Gamma_{8}^{'}$	0.8442	3.153
5	Γ_7		-1.417

^aSee Morrison et al [3] for definitions of g values.

8. Conclusion

We have used a crystal-field Hamiltonian appropriate for a rare-earth ion in octahedral cubic symmetry and varied two crystal-field parameters, B_{40} and B_{60} , to obtain the best fit to the experimental data of Schneider et al [2] taken on $\rm Er^{3+}$ in $\rm ErAs$. We also calculated the optical absorption data and obtained excellent agreement with the results of their traces taken at 5, 74, and 300 K.

Using scaling and interpolation procedures, we obtained phenomenological A_{nm} for the entire LnAs series (Ln = La to Lu). No attempt at a more fundamental theory of the A_{nm} (such as given in 1991 by Stevens and Morrison [13]) was considered. The phenomenological A_{nm} then yielded B_{nm} for the LnAs series from which energy levels below the band gap of GaAs, g values, and multiplet branching ratios were calculated for the rare-earth ions Tb^{3+} through Yb^{3+} . The energy levels of the ground multiplet of Tm^{3+} and Yb^{3+} in their respective arsenide compounds are in reasonable agreement with the energy levels determined by inelastic neutron scattering experiments. Calculated absorption spectra at 4.2 to 300 K are also given for the lowest lying multiplets for Tb^{3+} through Yb^{3+} in their respective arsenide compounds. The g values for all the levels in all the compounds are calculated.

Acknowledgements

Greg Turner, Wayne Lee, and Baruch Sheinson are thanked for their help with the calculations and graphing.

References

- 1. W. T. Tsang and R. A. Logan, Appl. Phys. Lett. 49 (1986), 1686.
- 2. J. Schneider, H. D. Müller, J. D. Ralston, F. Fuchs, A. Dörnen, and K. Thonke, Crystal-Field Splittings of Er³⁺ (4f¹) in Molecular Beam Epitaxially Grown ErAs/GaAs, Appl. Phys. Lett. **59** (1991), 34.
- 3. C. A. Morrison, D. E. Wortman, and R. P. Leavitt, J. Chem. Phys. 73 (1980), 2580. (This paper should be consulted for a complete detailed description of the methods used in the analysis presented here.)
- 4. C. A. Morrison and R. P. Leavitt, J. Chem. Phys. 71 (1979), 2366.
- 5. R.W.G. Wyckoff, Crystal Structures, vol.1 (1968), 85-91.
- 6. W. T. Carnall, P. R. Fields, and K. Rajnak, J. Chem. Phys. 49 (1968), 4412, 4424, 4443, 4447, and 4450 (five consecutive papers).
- 7. K. R. Lea, M.J.M. Leask, and W. P. Wolf, J. Phys. Chem. Solids 23 (1962), 1381.
- 8. G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz, *Properties of the Thirty-Two Point Groups*, MIT Press, Cambridge, Massachusetts (1963).
- 9. R. P. Leavitt, C. A. Morrison, and D. E. Wortman, Rare Earth Ion-Host Crystal Interactions 3. Three Parameter Theory of Crystal Fields, Harry Diamond Laboratories, HDL-TR-1673 (June 1975).
- 10. F. Hulliger, Rare Earth Pnictides, in Handbook on the Physics and Chemistry of Rare Earths, ed. K. A. Gschneidner, Jr., and L. Eyring, vol. 4 (1979), 153.
- 11. M. Kohgi, K. Ohoyama, A. Oyamada, T. Suzuki, and M. Arai, Physica B163 (1990), 625.
- 12. A. Donni, A. Furrer, P. Fischer, F. Hulliger, and P. Wachter, Physica B171 (1991), 353.
- 13. Sally B. Stevens and Clyde A. Morrison, *Theoretical Crystal-Field Calculations for Rare-Earth Ions in III-V Semiconductor Compounds*, Harry Diamond Laboratories, HDL-TM-91-16 (October 1991).

Distribution

Administrator

Defense Technical Information Center

Attn: DTIC-DDA (2 copies) Cameron Station, Building 5 Alexandria, VA 22304-6145

Director

Defense Advanced Research Projects Agency

Attn: A. Yang 1400 Wilson Blvd Arlington, VA 22290

Defense Nuclear Agency Attn: TITL, Tech Library 6801 Telegraph Road

Alexandria, VA 22310-3398

Under Secretary of Defense Research &

Engineering

Attn: Technical Library, 3C128

Washington, DC 20301

Commander

Atmospheric Sciences Laboratory

Attn: Technical Library

White Sands Missile Range, NM 88002

Director

Night Vision & Electro-Optics Lab,

LABCOM

Attn: A. Pinto (2 copies)

Attn: J. Daunt Attn: L. Merkel Attn: R. Buser

Attn: Technical Library

Attn: W. Tressel Attn: B. Zandi

FT Belvoir, VA 22060

Office of the Deputy Chief of Staff for Res,

Devl. & Acq

Attn: DAMA-ARZ-B, I. R. Hershner

Department of the Army Washington, DC 20310

Director

US Army Ballistics Research Laboratory

Attn: SLCBR-DD-T (STINFO)

Aberdeen Proving Ground, MD 21005

Director

US Army Electronics Warfare Laboratory

Attn: C. Thornton
Attn: T. Aucoin

Attn: AMSEL-DD, M. Thompsett

FT Monmouth, NJ 07703

Commander

US Army Materials & Mechanics Research

Center

Attn: SLCMT-TL, Tech Library

Watertown, MA 02172

Commander

US Army Missile & Munitions Center &

School

Attn: AMSMI-TB, Redstone Sci Info Center

Attn: ATSK-CTD-F

Redstone Arsenal, AL 35809

Commander

US Army Research Office Durham

Attn: J. Mink
Attn: G. Iafrate
Attn: M. Ciftan
Attn: M. Strosio
Attn: R. Guenther
PO Box 12211

Research Triangle Park, NJ 27709

Commander

US Army Test & Evaluation Command

Attn: D. H. Sliney
Attn: Tech Library

Aberdeen Proving Ground, MD 21005

Commander

US Army Troop Support Command Attn: STRNC-RTL, Tech Library

Natick, MA 01762

Commanding Officer

US Foreign Science & Technology Center

Attn: AIAST-BS, Basic Science Div

Federal Office Building Charlottesville, VA 22901

Director

Naval Research Laboratory

Attn: A. Rosenbaum

Attn: Code 2620, Tech Library Br

Attn: Code 5554, F. Bartoli Attn: Code 5554, L. Esterowitz

Attn: Code 5554, R. E. Allen

Attn: G. Risenblatt

Washington, DC 20375

Commander

Naval Weapons Center

Attn: Code 3854, M. Hills

Attn: Code 3854, M. Nader

Attn: Code 3854, R. L. Atkins

Attn: Code 3854, R. Schwartz

Attn: DOCE343, Technical Information Dept

China Lake, CA 93555

National Institute of Standards & Technology

Attn: Library

Gaithersburg, MD 20899

Ames Laboratory Dow Iowa State University

Attn: K. A. Gschneidner, Jr. (2 copies)

Ames, IA 50011

Argonne National Laboratory

Attn: W. T. Carnall

9700 South Cass Avenue

Argonne, IL 60439

Oak Ridge National Laboratory

Attn: R. G. Haire

Oak Ridge, TN 37839

Allied Signal Inc

Attn: R. Morris

POB 1021 R

Morristown, NJ 07960

NASA Langley Research Center

Attn: C. Bair

Attn: E. Filer

Attn: G. Armagen

Attn: J. Barnes

Attn: M. Buoncristiani

Attn: N. P. Barnes (2 copies)

Attn: P. Cross

Attn: D. Getteny

Hampton, VA 23665

National Oceanic & Atmospheric

Adm Environmental Research Labs

Attn: Library, R-51, Tech Rpts

Boulder, CO 80302

Arizona State University Dept of Chemistry

Attn: L. Eyring

Tempe, AZ 85281

Colorado State University

Physics Department

Attn: S. Kern

FT Collins, CO 80523

Departmento De Química Fundamental and

Departmento de Fisica

Attn: A. da Gama

Attn: G. F. de Sá

Attn: O. L. Malta

da UFPE, Cidade Universitaria

50,000, Recife, Pe, Brasil

Howard University Department of Physics

Attn: Prof. V. Kushamaha

25 Bryant St., NW

Washington, DC 20059

Johns Hopkins University Dept of Physics

Attn: B. R. Judd

Baltimore, MD 21218

Kalamazoo College Dept of Physics

Attn: K. Rajnak

Kalamazoo, MI 49007

Massachusetts Institute of Technology

Crystal Physics Laboratory

Attn: H. P. Jenssen

Cambridge, MA 02139

Pennsylvania State University

Materials Research Laboratory

Attn: W. B. White

University Park, PA 16802

Princeton University

Department of Chemistry

Attn: D. S. McClure

Attn: C. Weaver

Princeton, NJ 08544

San Jose State University

Department of Physics

Attn: J. B. Gruber

San Jose, CA 95192

Seton Hall University

Chemistry Department

Attn: H. Brittain

South Orange, NJ 07099

U.P.R 210 C.N.R.S

Attn: M. Faucher

Attn: P. Caro

Attn: P. Porcher

1 Place A-Briand, 92195 Meudon Cédex,

France

University of Connecticut

Department of Physics

Attn: R. H. Bartram

Storrs, CT 06269

University of Dayton

Department of Chemistry

Attn: S. P. Sinha

300 College Park

Dayton, OH 45469-2350

University of Illinois Everitt Lab

Attn: J. G. Eden

1406 W. Green St

Urbana, IL 61801

University of Illinois

Gaseous Electronics Laboratory

Attn: S. B. Stevens

607 E. Healey St

Champaign, IL 61820

University of Michigan

Dept of Physics

Attn: S. C. Rand

Ann Arbor, MI 48109

University of Minnesota, Duluth

Department of Chemistry

Attn: L. C. Thompson

Duluth, MN 55812

University of South Florida

Physics Department

Attn: R. Chang

Attn: Sengupta

Tampa, FL 33620

University of Southern California

Attn: M. Birnbaum

Los Angeles, CA 90089

University of Virginia Dept of Chemistry

Attn: F. S. Richardson (2 copies)

Attn: J. Quagliano

Charlottesville, VA 22901

University of Wisconsin Chemistry Department

Attn: B. Tissue Attn: J. Wright Madison, WI 53706

Aerospace Corporation Attn: N. C. Chang PO Box 92957 Los Angeles, CA 90009

Department of Mech, Indus, & Aerospace Eng Attn: S. Temkin PO Box 909

Piscataway, NJ 08854

Engineering Societies Library Attn: Acquisitions Department 345 East 47th St. New York, NY 10017

Fibertech, Inc.

Attn: H. R. Verdin (3 copies) 510-A Herdon Pkwy Herdon, VA 22070

Hughes Aircraft Company

Attn: D. Sumida

3011 Malibu Canyon Rd Malibu, CA 90265

IBM Research Division Almaden Research Center Attn: R. M. Macfarlane, Mail Stop K32 802(d) 650 Harry Road

San Jose, CA 95120

ul. Okólna 2, Poland

Institute for Low Temp & Struc Rsch Polish Academy of Sciences Attn: R. Troc 50-950 Wroclaw, PO Box 937, Lawrence Berkeley Laboratory Attn: N. Edelstein, MS70A-1150 Berkeley, CA 94720

Director

Lawrence Radiation Laboratory

Attn: H. A. Koehler Attn: M. J. Weber Attn: W. Krupke Livermore, CA 94550

Lightning Optical Corp

Attn: G. Quarles 431 East Spruce St.

Tarpon Springs, FL 34689

LTV

Attn: M. Kock (WT-50) PO Box 650003

Dallas, GX 75265

Martin Marietta Attn: P. Caldwell Attn: F. Crowne Attn: J. Little

Attn: T. Worchesky 1450 South Rolling Rd Baltimore, MD 21227

McDonnell Douglass Electronic Systems

Company

Attn: Dept Y440 Bldg. 101, Lev. 2Rm/PTB54,

D. M. Andrauskas, MS-2066267

PO Box 516

ST Louis, MO 63166

MIT Lincoln Lab Attn: B. Aull PO Box 73 Lexington, MA 02173

Montana Analytic Services

Attn: M. Schwan 325 Icepond Rd Bozeman, MT 59715

Science Applications International Corp

Attn: T. Allik

1710 Goodridge Drive McLean, VA 22102

Southwest Research Institute

Attn: M. J. Sablik PO Brawer 28510

San Antonio, TX 78228-0510

Swartz Electro-Optic, Inc

Attn: G. A. Rines 45 Winthrop Street Concord, MA 01742

Union Carbide Corp Attn: M. R. Kokta 50 South 32nd Street Washougal, WA 98671

W. J. Schafer Assoc Attn: J. W. Collins 321 Ballerica Road Chelmsford, MA 01824

US Army Laboratory Command Attn: AMSLC-DL, Dir Corp Labs

Installation Support Activity
Attn: SLCIS-CC-IP, Legal Office

USAISC

Attn: AMSLC-IM-VA, Admin Ser Br Attn: AMSLC-IM-VP, Tech Pub Br

(2 copies)

Harry Diamond Laboratories Attn: Laboratory Directors

Attn: SLCHD-CS, Chief Scientist Attn: SLCHD-NW-EH, Chief

Attn: SLCHD-NW-EP, C. S. Kenyon

Attn: SLCHD-NW-EP, Chief

Attn: SLCHD-NW-EP, J. R. Miletta

Attn: SLCHD-NW-ES, Chief Attn: SLCHD-NW-P, Chief Attn: SLCHD-NW-RF, Chief

Attn: SLCHD-NW-RP, B. McLean Attn: SLCHD-NW-RP, Chief

Attn: SLCHD-NW-RS, L. Libelo Attn: SLCHD-NW-TN, Chief Attn: SLCHD-NW-TS, Chief

Attn: SLCHD-PO, Chief

Attn: SLCHD-SD-TL, Library (3 copies)
Attn: SLCHD-SD-TL, Library (Woodbridge)
Attn: SLCHD-ST-AP, C. Morrison (10 copies)

Attn: SLCHD-ST-AP, D.Wortman

(10 copies)

Attn: SLCHD-ST-AP, E. Harris
Attn: SLCHD-ST-AP, G. Simonis
Attn: SLCHD-ST-AP, J. Bradshaw
Attn: SLCHD-ST-AP, J. Bruno
Attn: SLCHD-ST-AP, J. Pham
Attn: SLCHD-ST-AP, M. Stead
Attn: SLCHD-ST-AP, M. Tobin
Attn: SLCHD-ST-AP, R. Leavitt
Attn: SLCHD-ST-AP, R. Tober

Attn: SLCHD-ST-AP, R. Tober Attn: SLCHD-ST-AP, T. Bahder Attn: SLCHD-ST-OP, C. Garvin Attn: SLCHD-ST-OP, J. Goff

Attn: SLCHD-ST-R, A. A. Bencivenga

Attn: SLCHD-ST-SP, Chief

Attn: SLCHD-ST-SP, J. Nemarich

Attn: SLCHD-ST-SS, Chief Attn: SLCHD-TA-AS, G. Turner

Attn: SLCHD-TA-ET, B. Zabludowski