

Project Assignment 1

MPI-programming

Håkan Grahn and Charlie Svahnberg Blekinge Institute of Technology

Task 1: Blocked Matrix-Matrix Multiplication

```
 \begin{array}{lll} 1. & \textbf{procedure MAT_MULT}\,(A,B,C) \\ \textbf{2.} & \textbf{begin} \\ 3. & \textbf{for}\,\,i:=0\,\,\textbf{to}\,\,n-1\,\,\textbf{do} \\ 4. & \textbf{for}\,\,j:=0\,\,\textbf{to}\,\,n-1\,\,\textbf{do} \\ 5. & \textbf{begin} \\ 6. & C[i,j]:=0; \\ 7. & \textbf{for}\,\,k:=0\,\,\textbf{to}\,\,n-1\,\,\textbf{do} \\ 8. & C[i,j]:=C[i,j]+A[i,k]\times B[k,j]; \\ 9. & \textbf{endfor}; \\ 10. & \textbf{end MAT_MULT} \\ \end{array}
```

Algorithm 8.2 The conventional serial algorithm for multiplication of two $n \times n$ matrices.

 Implement an MPI-version using a 2-dimensional data partitioning

Task 2: LaPlace approximation

 In a matrix, calculate an average of all neighbors for each cell.

$$V[x,y] = \frac{V[x-1,y] + V[x,y-1] + V[x+1,y] + V[x,y+1]}{4}$$

- After the matrix has been traversed, new averages might need to be calculated.
- For each traversion, the largest change for any cell is compared to an acceptance value.
- When the largest change is lower than the acceptance value, a solution is found.

0	1	2	3	4	5
1		T			4
2	-	` `	-		3
3		Ť			2
4					1
5	4	3	2	1	0

Serial (Original) solution

- · Calculate new values, row-by-row
- · This is also called a Gauss-Seidel iteration

First Parallel Approach

- · Calculate each row in parallel
- Why not each column?
 - Locality of reference will be very bad
 - Matrix is stored row-by-row in memory
- Keep a local maximum change (one per row)
 - Calculate global maximum change at the end of each completed iteration.
- Will not produce the same result twice!
 - Row-2 is depending on how far row-1 and row-3 has been computed. (use of old and new values are mixed).

3

→ 1

Second Parallel Approach

- · Keep two matrixes;
 - one for old values
 - one for new values
- Swap role after each iteration
- Memory use has been doubled!
- · A.k.a. Jacobi algorithm

Third Parallel Approach

- Make two sweeps:
 - In first sweep calculate all grey cells
 - In second sweep calculate all white cells.
- Not same algorithm any more!
- A.k.a. SOR or Red-Black solver
- Can use every second row instead in the two phases

0	1	2	3	4	5
1					4
2					3
2 3 4 5					2
4					1
5	4	3	2	1	0

Task: Implement an MPI-version of the SOR-solver!