

ROS Movelt

Nicolas Limpert MASKOR May 31, 2017

Outlook

▶ Motivation

Motivation

Task

Provide a high level abstraction to perform motion planning for robot arms including collision avoidance.

Options:

- Implement your own IK Solver
- Try to forward desired poses to hardware onboard IK Solvers and stop on collision

Classic robot programming

Source: http://aeswiki.datasys.swri.edu

- Motion Types: limited, but well-defined. One motion task.
- Environemnt Model: none
- Execution Monitor: application-specific

ROS Movelt planning concepts

Source: http://aeswiki.datasvs.swri.edu

- Motion Types: flexible, goal-driven, with constraints.
- Environemnt Model: automatic, based on live sensor feedback
- Execution Monitor: detects changes during motion

ROS Movelt planning components

Source: http://aeswiki.datasys.swri.edu

Source: http://aeswiki.datasvs.swri.edu

ROS Movelt nodes

Source: http://aeswiki.datasvs.swri.edu

Robot integration

A Movelt Package...

- includes all required nodes, config, launch files
 - motion planning, filtering, collision detection, etc.
- is unique to each individual robot model
 - includes reference to URDF information
- uses a standard interface to robots
 - publish trajectory, listen to joint angles
 - similar to move base publishing velocity commands and observing localisation
- can (optionally) include workcell geometry
 - e.g. for collision checking

Source: http://aeswiki.datasys.swri.edu