Computer Networks

Error Detection and Correction

Amitangshu Pal
Computer Science and Engineering
IIT Kanpur

Types of Errors

 An error occurs when a bit is altered between transmission and reception

Single bit error:

- Isolated error that alters one bit but does not affect nearby bits
- Can occur in presence of white noise

Burst error:

- Contiguous sequence of B bits in which the first and last bits and any number of intermediate bits are received in error
- Can occur due to impulse noise or fading in wireless environment
- Effects are greater at higher data rates

Types of Errors

Error Detection

Parity Check

- The simplest error detecting scheme is to append a parity bit to the end of a block of data
 - Even parity: Total number of ones will be odd
 - Odd parity: Total number of ones will be even

If any even number of bits are inverted due to error, an undetected error occurs

Two-dimensional Parity Check

parity error

(d) Uncorrectable error pattern

The Internet Checksum

- Error detecting code used in many Internet standard protocols, including IP, TCP, and UDP
- Ones-complement operation
 - Replace 0 digits with 1 digits and 1 digits with 0 digits
- Ones-complement addition
 - The two numbers are treated as unsigned binary integers and added
 - If there is a carry out of the leftmost bit, add 1 to the sum (end-around carry)

The Internet Checksum

00 01 F2 03 F4 F5 F6 F7 00 00

Partial sum	0001
	<u>F203</u>
	F204
	F204
Partial sum	<u>F4F5</u>
	1E6F9
	E6F9
Carry	1
	E6FA
Partial sum	E6FA
	<u> F6F7</u>
	1DDF1
Carry	DDF1
	1
	DDF2
	220D
Ones complement of the result	

	0001
Partial sum	F203
	F204
Partial sum	F204
	F4F5
	<u>1E6F9</u>
Carry	E6F9
	1
	E6FA
Partial sum	E6FA
	_F6F7
	1DDF1
Carry	DDF1
	1
	DDF2
Partial sum	DDF2
	<u>220D</u>
	FFFF

- One of the most common and powerful errordetecting codes
- Given a block of bits, the transmitter generates an bit frame check sequence (FCS) which is exactly divisible by some predetermined number
- Receiver divides the incoming frame by that number
 - If there is no remainder, assume there is no error

Name	Binary	Application
CRC-8	100000111	ATM header
CRC-10	11000110101	ATM AAL
CRC-16	10001000000100001	HDLC
CRC-32	100000100110000010001110110110111	LANs

Src: https://www.minitool.com/lib/ethernet-frame.html

- Backword error correction: Correction of detected errors usually requires data blocks to be retransmitted
- Not appropriate for wireless applications:
 - The bit error rate (BER) on a wireless link can be quite high, which would result in a large number of retransmissions
 - Propagation delay is very long compared to the transmission time of a single frame

 Forward error correction: Need to correct errors on basis of bits received

- Hamming distance
 - □ $d(v_1, v_2)$ —bit binary sequences v_1 and v_2 is the number of bits in which v_1 and v_2 disagree

- Any valid codeword
 - Any corrupted codeword with 1 to s errors

- Valid/Legal and invalid/illegal codeword
- Hamming distance of the codewords: Smallest Hamming distance in between any two valid codewords

- Any valid codeword
- Any corrupted codeword with 1 to s errors

- To detect d bit errors, we need a distance of d+1 code
 - With such a code, there is no way that a d single bit error can change a valid codeword to another valid codeword

- Any valid codeword
 - Any corrupted codeword with 1 to s errors

- To correct d bit errors, we need a distance of 2d + 1 code
 - With such a code, the legal codewords are so far apart that even d changes, the original codeword is still closer, than any other codeword
 - □ Original codeword can be uniquely detected based on the assumption that a larger number of errors are less likely → time consuming search

- Any valid codeword
 - Any corrupted codeword with 1 to *s* errors

- Codeblock of n bits = m message bit + r check bit
- We want to design a code that allows all single bit error to be corrected
 - □ Each of the 2^m legal messages \rightarrow there is n illegal codewords at a distance 1 from it
 - \Box As there are 2^n total number of bit patterns

$$2^{m}(n+1) \le 2^{n}$$
 $\therefore n+1 \le 2^{n-m} = 2^{r}$ $\therefore m+r+1 \le 2^{r}$

- ullet So, given m, this put a lower bound on the check bits that are needed to correct single bit errors
 - So for m = 4, r = 3
 - For m = 7, r = 4

Hamming Code

Hamming Code

Hamming Code

Error Correction Codes

- Convolution codes: GSM mobile phone system, satellite communications, 802.11
- Reed-Solomon code: DSL, data over cable, satellite communications, CDs
- Low-density parity check: Digital video broadcasting,
 Ethernet, 802.11

THANK YOU

QUESTIONS???

