Prof. Yinyu Ye

Winter 2013-2014 Jan 10, 2014

Homework Assignment 1 Discussed Friday Jan 24, 2014

Optional Reading. Read Luenberger and Ye's *Linear and Nonlinear Programming Third Edition* Chapter 1 and Appendices A and B.

Solve the following problems:

1. Consider the SOCP problem

min
$$2x_1 + x_2 + x_3$$

s.t. $x_1 + x_2 + x_3 = 1$,
 $x_1 - \sqrt{x_2^2 + x_3^2} > 0$.

Try to find a minimizer and argue why it is a global minimizer.

- 2. Prove that every local minimizer is also a global minimizer for convex optimization problems. Convex optimization is a problem minimize a continuous convex objective function value over a feasible region that is a convex set
- 3. Prove the dual cone of the *p*-order cone, $p=1,...,\infty$, is the *q*-order cone where $\frac{1}{q}+\frac{1}{p}=1$.
- 4. When C is a cone, the dual of C is the closed convex cone

$$C^* = \{y: y \bullet x \geq 0 \quad \forall x \in C\},$$

where \bullet denotes the inner product. In the following, let all cones be defined in a same metric space, and both C_1 and C_2 are closed convex cones. Show

- (i) $(C_1^*)^* = C_1$.
- (ii) $C_1 \subset C_2 \Longrightarrow C_2^* \subset C_1^*$.
- (iii) $(C_1 + C_2)^* = C_1^* \cap C_2^*$.
- (iv) $C_1^* + C_2^* \subset (C_1 \cap C_2)^*$.
- (v) Let C be the cone of positive semidefinite matrices whose every entry is also nonnegative. What is C^* ?

Note: If S and T are subsets of n-dimensional symmetric matrices, then by definition

$$S + T = \{s + t : s \in S, \ t \in T\}.$$

- 5. (20pts.) Let $f(x): R_{++}^n \to R$ be a given convex function. Show that the function $g: R_{++}^{n+1} \to R$ given by $g(\tau; x) = \tau \cdot f(x/\tau)$ (called the homogenized version of f) is also a convex function in the domain of $(\tau; x) \in R_{++}^{n+1}$. Now, suppose that f(x) is twice-differentiable. Write out the gradient vector and Hessian matrix of g.
- 6. (20pts.) Let g_1, \ldots, g_m be a collection of concave functions on \mathbb{R}^n such that

$$S = \{x : g_i(x) > 0 \text{ for } i = 1, \dots, m\} \neq 0.$$

Show that for any positive constant μ and any convex function f on \mathbb{R}^n , the function

$$h(x) = f(x) - \mu \sum_{i=1}^{m} \ln g_i(x)$$

is convex over S.

- 7. Prove that the set $\{Ax: x \geq 0 \in \mathbb{R}^n\}$ is closed and convex.
- 8. Farkas' lemma can be used to derive many other (named) theorems of the alternative. This problem concerns a few of these pairs of systems. Using Farkas's lemma, prove each of the following results.
 - (a) Gordan's Theorem. Exactly one of the following systems has a solution:

(i)
$$Ax > 0$$

(ii) $y^T A = 0, y \ge 0, y \ne 0.$

(b) Stiemke's Theorem. Exactly one of the following systems has a solution:

(i)
$$Ax \ge 0$$
, $Ax \ne 0$

(ii)
$$y^T A = 0$$
, $y > 0$

(c) Gale's Theorem. Exactly one of the following systems has a solution:

(i)
$$Ax \le b$$

(ii) $y^T A = 0$, $y^T b < 0$, $y \ge 0$