STAT3401: Advanced data analysis Week 8: Longitudinal Data

Berwin Turlach School of Mathematics and Statistics Berwin.Turlach@gmail.com

The University of Western Australia

Longitudinal Data

Recap:

- Datasets where the dependent variable is measured once at several points in time for each unit of analysis
- Usually at least two repeated measurements made over a relatively long period
- In contrast to repeated measures data drop out of a subject is a concern
- Some times difficult to differentiate between repeated measures and longitudinal data—do not worry it is not critical if LMMs are used to analyse the data!

Examples of Longitudinal Data

repeated Systolic BP measurements

Orthodontic Data (Pinheiro and Bates)

- Subject were 27 children, 16 males and 11 females
- Measurements of the distance from the pituitary gland to the pterygomaxillary fissure were taken every two years from 8 years of age until 14 years of age.
- The data were collected by orthodontists from x-rays of the children's skulls
- The pituitary gland and the pterygomaxillary fissure are easily located points on x-rays.

```
library(nlme)
library(lattice)
head(Orthodont)
## Grouped Data: distance ~ age | Subject
    distance age Subject Sex
       26.0 8
                   M01 Male
## 2
     25.0 10 M01 Male
     29.0 12 M01 Male
## 3
## 4
     31.0 14 M01 Male
     21.5 8 MO2 Male
## 5
     22.5 10 MO2 Male
## 6
names(Orthodont)
## [1] "distance" "age"
                        "Subject" "Sex"
levels(Orthodont$Sex)
## [1] "Male" "Female"
```

plot(Orthodont)

Concentrating on females for the moment:

```
OrthoFem <- Orthodont[Orthodont$Sex == "Female", ]
fm1OrthF.lis <- lmList(distance ~ age, data = OrthoFem)</pre>
coef(fm10rthF.lis)
      (Intercept) age
## F10
          13.55 0.450
## F09
          18.10 0.275
## F06 17.00 0.375
## F01
          17.25 0.375
        19.60 0.275
## F05
## F07
          16.95 0.550
## F02
          14.20 0.800
## F08
          21.45 0.175
          14.40 0.850
## F03
## F04
          19.65 0.475
## F11
           18.95 0.675
```

```
summary(fm10rthF.lis)
## Call:
##
    Model: distance ~ age | Subject
##
     Data: OrthoFem
##
## Coefficients:
      (Intercept)
##
##
       Estimate Std. Error t value Pr(>|t|)
## F10
         13.55
                    1.677
                            8.078 5.021e-08
## F09
         18.10
                    1.677 10.791 2.970e-10
## F06
         17.00
                   1.677 10.135 9.453e-10
## F01
         17.25
                   1.677
                           10.284 7.234e-10
## F05
         19.60
                   1.677
                           11.685 6.614e-11
## F07
         16.95
                   1.677 10.105 9.975e-10
## F02
         14.20
                   1.677
                           8.466 2.279e-08
## F08
         21.45
                   1.677 12.788 1.161e-11
## F03
         14.40
                   1.677
                           8.585 1.794e-08
## F04
         19.65
                    1.677 11.715 6.300e-11
## F11
          18.95
                     1.677 11.298 1.255e-10
##
     age
       Estimate Std. Error t value Pr(>|t|)
##
## F10
         0.450
                    0.1494 3.011 6.422e-03
## F09
         0.275
                    0.1494 1.840 7.925e-02
## F06
         0.375
                    0.1494
                           2.510 1.995e-02
## F01
         0.375
                    0.1494
                            2.510 1.995e-02
## F05
         0.275
                   0.1494
                           1.840 7.925e-02
## F07
         0.550
                            3.681 1.310e-03
                    0.1494
## F02
         0.800
                   0.1494
                            5.354 2.247e-05
## F08
         0.175
                   0.1494
                            1.171 2.541e-01
## F03
         0.850
                   0.1494
                            5.688 1.013e-05
## F04
         0.475
                    0.1494
                            3.179 4.344e-03
```

```
intervals(fm10rthF.lis)
## , , (Intercept)
##
      lower est. upper
## F10 10.07 13.55 17.03
## F09 14.62 18.10 21.58
## F06 13.52 17.00 20.48
## F01 13.77 17.25 20.73
## F05 16.12 19.60 23.08
## F07 13.47 16.95 20.43
## F02 10.72 14.20 17.68
## F08 17.97 21.45 24.93
## F03 10.92 14.40 17.88
## F04 16.17 19.65 23.13
## F11 15.47 18.95 22.43
##
## , , age
##
##
       lower est. upper
## F10 0.1401 0.450 0.7599
## F09 -0.0349 0.275 0.5849
## F06 0.0651 0.375 0.6849
## F01 0.0651 0.375 0.6849
## F05 -0.0349 0.275 0.5849
## F07 0.2401 0.550 0.8599
## F02 0.4901 0.800 1.1099
## F08 -0.1349 0.175 0.4849
## F03 0.5401 0.850 1.1599
## F04 0.1651 0.475 0.7849
## F11 0.3651 0.675 0.9849
```

plot(intervals(fm10rthF.lis))

Aside: Centring Covariates (Part I)

Advantages of centering covariates:

- The intercept becomes interpretable (estimated mean response when covariates take their average value), and
- Can reduce correlation between estimated fixed effects.

Simple linear regression:

Instead of

$$\mathbf{X} = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{pmatrix} \quad \text{use} \quad \mathbf{X}_c = \begin{pmatrix} 1 & x_1 - \bar{x} \\ 1 & x_2 - \bar{x} \\ \vdots & \vdots \\ 1 & x_n - \bar{x} \end{pmatrix}$$

where $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$.

Aside: Centring Covariates (Part I, ctd)

Then

$$\mathbf{X}_c^{\mathsf{T}}\mathbf{X}_c = \begin{pmatrix} n & 0 \\ 0 & \sum_{i=1}^n (x_i - \bar{x})^2 \end{pmatrix} \quad \text{and} \quad \mathbf{X}_c^{\mathsf{T}}\mathbf{y} = \begin{pmatrix} \sum_{i=1}^n y_i \\ \sum_{i=1}^n (x_i - \bar{x})y_i \end{pmatrix}$$

Whence

$$\hat{\boldsymbol{\beta}} = \left(\mathbf{X}_c^\mathsf{T} \mathbf{X}_c\right)^{-1} \mathbf{X}_c^\mathsf{T} \mathbf{y} = \begin{pmatrix} \frac{1}{n} \sum_{i=1}^n y_i \\ \frac{\sum_{i=1}^n (x_i - \bar{x}) y_i}{\sum_{i=1}^n (x_i - \bar{x})^2} \end{pmatrix}$$

Furthermore, under a normal error model,

$$\hat{\boldsymbol{\beta}} \sim \mathcal{N}_2 \left(\boldsymbol{\beta}, \sigma^2 \left(\boldsymbol{\mathsf{X}}_c^\mathsf{T} \boldsymbol{\mathsf{X}}_c \right)^{-1} \right)$$

That is, the estimators $\hat{\beta}_0$ and $\hat{\beta}_1$ for the intercept and slope, respectively, are independent of each other

```
fm2OrthF.lis <- update(fm1OrthF.lis, distance ~ I(age - 11))
plot(intervals(fm2OrthF.lis))</pre>
```


Model specification

The general specification is given by:

$$\begin{aligned} \textit{distance}_{ti} &= \beta_0 + \beta_1 \times \textit{age}_{ti} \\ &+ \textit{u}_{0i} + \textit{u}_{1i} \times \textit{age}_{ti} + \varepsilon_{ti} \\ &= \left(\beta_0 + \textit{u}_{0i}\right) + \left(\beta_1 + \textit{u}_{1i}\right) \times \textit{age}_{ti} + \varepsilon_{ti} \end{aligned}$$

with *distance*_{ti} being the outcome at age 6 + 2t (t = 1, ..., 4) on the *i*th female (i = 1, ..., 11).

Using this model specification we note:

- The u_{0i} term represents the random intercept
- The u_{1i} term represents the random slope (random effect associated with the slope for female i)

Model specification (ctd)

We assume that the distribution of the random effects associated with female i, u_{0i} and u_{1i} is bivariate normal:

$$\mathbf{u}_{i} = \begin{pmatrix} u_{0i} \\ u_{1i} \end{pmatrix} \sim \mathcal{N}_{2} \left(\mathbf{0}, \mathbf{D} \right), \qquad \mathbf{D} = \begin{pmatrix} \sigma_{int}^{2} & \sigma_{int,slope} \\ \sigma_{int,slope} & \sigma_{slope}^{2} \end{pmatrix}$$

Finally

$$oldsymbol{arepsilon}_i = egin{pmatrix} arepsilon_{1i} \ arepsilon_{2i} \ arepsilon_{3i} \ arepsilon_{4i} \end{pmatrix} \sim \mathcal{N}_4(\mathbf{0}, \mathbf{R}_i)$$

where we consider $\mathbf{R}_i = \sigma^2 \mathbf{I}_4$.

Model specification: Multilevel notation

LEVEL 1 MODEL (Time):

$$distance_{ti} = \pi_{0i} + \pi_{1i} \times age_{ti} + \varepsilon_{ti}$$

where $\varepsilon_{ti} \sim N(0, \sigma^2)$

LEVEL 2 MODEL (Female):

$$\pi_{0i} = \beta_{00} + r_{0i}$$
$$\pi_{1i} = \beta_{10} + r_{1i}$$

where $\mathbf{r}_i = \left(\begin{smallmatrix} r_{0i} \\ r_{1i} \end{smallmatrix} \right) \sim \mathcal{N}(\mathbf{0},\mathbf{D})$, independent of the $arepsilon_{ti}$

Model specification: Matrix notation

Model for observation on female i:

$$\mathbf{Y}_i = \mathbf{X}_i \boldsymbol{\beta} + \mathbf{Z}_i \mathbf{u}_i + \boldsymbol{\varepsilon}_i, \quad i = 1, \dots, 11$$

where

$$\mathbf{Y}_i = \begin{pmatrix} \mathbf{Y}_{1i} \\ \mathbf{Y}_{2i} \\ \mathbf{Y}_{3i} \\ \mathbf{Y}_{4i} \end{pmatrix}, \quad \mathbf{X}_i = \begin{pmatrix} 1 & 8 \\ 1 & 10 \\ 1 & 12 \\ 1 & 14 \end{pmatrix} \quad \text{and} \quad \boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix}$$

Model specification: Matrix notation (ctd)

And for the random terms:

$$\mathbf{Z}_{i} = \begin{pmatrix} 1 & 8 \\ 1 & 10 \\ 1 & 12 \\ 1 & 14 \end{pmatrix}, \quad \mathbf{u}_{i} = \begin{pmatrix} u_{0i} \\ u_{1i} \end{pmatrix} \quad \text{and} \quad \boldsymbol{\varepsilon}_{i} = \begin{pmatrix} \varepsilon_{1i} \\ \varepsilon_{2i} \\ \varepsilon_{3i} \\ \varepsilon_{4i} \end{pmatrix}$$

where $\mathbf{u}_i \sim \mathcal{N}_2(\mathbf{0}, \mathbf{D})$ and $\varepsilon_i \sim \mathcal{N}_4(\mathbf{0}, \mathbf{R}_i)$, \mathbf{u}_i and ε_i independent of each other.

Model specification: Matrix notation (ctd)

Thus

$$Y = X\beta + Zu + \varepsilon$$

where (with $n = 11 \times 4 = 44$)

$$\mathbf{Y} = \begin{pmatrix} \mathbf{Y}_1 \\ \mathbf{Y}_2 \\ \vdots \\ \mathbf{Y}_{11} \end{pmatrix}, \quad \mathbf{X} = \begin{pmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \\ \vdots \\ \mathbf{X}_{11} \end{pmatrix}, \quad \mathbf{Z} = \begin{pmatrix} \mathbf{Z}_1 \\ & \mathbf{Z}_2 \\ & & \ddots \\ & & & \mathbf{Z}_{11} \end{pmatrix}$$
$$\mathbf{u} = \begin{pmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \\ \vdots \\ \mathbf{u}_{11} \end{pmatrix}, \quad \text{and} \quad \boldsymbol{\varepsilon} = \begin{pmatrix} \boldsymbol{\varepsilon}_1 \\ \boldsymbol{\varepsilon}_2 \\ \vdots \\ \boldsymbol{\varepsilon}_{11} \end{pmatrix}$$

Y is a 44 \times 1 vector, **X** a 44 \times 2 matrix, **Z** an 44 \times 22 matrix, **u** a 22 \times 1 vector and ε a 44 \times 1 vector.

Model specification: Matrix notation (ctd)

Thus
$$\mathbf{u} \sim \mathcal{N}(\mathbf{0},\mathbf{G}) \quad \text{ and } \quad \boldsymbol{\varepsilon} \sim \mathcal{N}(\mathbf{0},\mathbf{R})$$
 where
$$\mathbf{G} = \begin{pmatrix} \mathbf{D} & & & \\ & \mathbf{D} & & \\ & & \ddots & \\ & & & \mathbf{D} \end{pmatrix} \quad \text{and} \quad \mathbf{R} = \begin{pmatrix} \mathbf{R}_1 & & & \\ & \mathbf{R}_2 & & \\ & & \ddots & \\ & & & \mathbf{R}_{11} \end{pmatrix}$$

l.e. **G** (22×22) and **R** (44×44) are block-diagonal matrices representing the *variance-covariance matrix* for all random effects and for all residuals, respectively.

```
fm10rthF <- lme(distance ~ age, data = OrthoFem, random = ~1 | Subject)
summary(fm10rthF)
## Linear mixed-effects model fit by REML
## Data: OrthoFem
## AIC BIC logLik
## 149.2 156.2 -70.61
##
## Random effects:
## Formula: ~1 | Subject
          (Intercept) Residual
## StdDev: 2.068 0.78
##
## Fixed effects: distance ~ age
             Value Std.Error DF t-value p-value
##
## (Intercept) 17.37 0.8587 32 20.230
## age
              0.48 0.0526 32 9.119
## Correlation:
## (Intr)
## age -0.674
##
## Standardized Within-Group Residuals:
      Min
              Q1
                     Med
                             Q3
## -2.2736 -0.7090 0.1728 0.4122 1.6325
## Number of Observations: 44
## Number of Groups: 11
```

Testing

$$H_0: \mathbf{D} = \begin{pmatrix} \sigma_{int}^2 & 0 \\ 0 & 0 \end{pmatrix}$$
 against $H_1: \mathbf{D} = \begin{pmatrix} \sigma_{int}^2 & \sigma_{int,slope} \\ \sigma_{int,slope} & \sigma_{slope}^2 \end{pmatrix}$

```
coef(fm10rthF)
       (Intercept)
                      age
## F10
            13.37 0.4795
## F09
            15.90 0.4795
## F06
            15.90 0.4795
## F01
            16.14 0.4795
## F05
            17.35 0.4795
## F07
            17.71 0.4795
## F02
            17.71 0.4795
## F08
            18.08 0.4795
## F03
            18.44 0.4795
## F04
            19.52 0.4795
## F11
             20.97 0.4795
```

plot(augPred(fm10rthF), aspect = "xy", grid = T)


```
coef(fm20rthF)
       (Intercept)
                     age
## F10
            14.48 0.3759
## F09
            17.27 0.3530
## F06
            16.77 0.3987
## F01
            16.96 0.4041
## F05
            18.36 0.3856
## F07
            17.28 0.5194
## F02
            16.05 0.6337
## F08
            19.40 0.3562
## F03
            16.36 0.6728
## F04
            19.02 0.5259
## F11
            19.14 0.6499
```

plot(augPred(fm2OrthF), aspect = "xy", grid = T)

Orthodontic Data (full data, lm())

```
fm10rth.lm <- lm(distance ~ age, Orthodont)
fm10rth.lm
##
## Call:
## lm(formula = distance ~ age, data = Orthodont)
##
## Coefficients:
## (Intercept) age
## 16.76 0.66</pre>
```

```
par(mfrow = c(2, 2))
plot(fm10rth.lm)
```



```
anova(fm10rth.lm, fm20rth.lm)
## Analysis of Variance Table
##
## Model 1: distance ~ age
## Model 2: distance ~ Sex + age + Sex:age
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 106 682
## 2 104 530 2 153 15 1.9e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

bwplot(getGroups(Orthodont) ~ resid(fm2Orth.lm))

As

```
getGroupsFormula(Orthodont)
## "Subject
## <environment: 0x41ac8a8>
```

these two commands are equivalent

```
fm10rth.lis <- lmList(distance ~ age | Subject, Orthodont)
fm10rth.lis <- lmList(distance ~ age, Orthodont)</pre>
```

And since

```
formula(Orthodont)
## distance ~ age | Subject
```

we could have just issued the command:

```
fm10rth.lis <- lmList(Orthodont)</pre>
```

```
summary(fm10rth.lis)
                                                     summary(fm10rth.lis)
## Call:
     Model: distance ~ age | Subject
                                                     ## F03
                                                                                  4.3793 5.510e-05
                                                               14.40
                                                                          3.288
                                                     ## F04
                                                               19.65
                                                                          3.288
                                                                                  5.9760 1.864e-07
##
      Data: Orthodont
##
                                                     ## F11
                                                               18.95
                                                                          3.288
                                                                                 5.7631 4.078e-07
  Coefficients:
                                                           age
                                                            Estimate Std. Error t value Pr(>|t|)
##
      (Intercept)
##
       Estimate Std. Error t value Pr(>|t|)
                                                    ## M16
                                                               0.550
                                                                         0.2929
                                                                                  1.8776 6.585e-02
## M16
          16.95
                     3.288 5.1548 3.695e-06
                                                     ## MO5
                                                               0.850
                                                                         0.2929
                                                                                  2.9017 5.362e-03
          13.65
                            4.1512 1.182e-04
                                                                                  2.6456 1.066e-02
## MO5
                     3.288
                                                     ## M02
                                                               0.775
                                                                         0.2929
## MO2
          14.85
                     3.288
                            4.5162 3.459e-05
                                                    ## M11
                                                               0.325
                                                                         0.2929
                                                                                 1.1095 2.721e-01
## M11
          20.05
                     3.288
                            6.0976 1.189e-07
                                                    ## MO7
                                                               0.800
                                                                         0.2929
                                                                                  2.7310 8.511e-03
## MO7
          14.95
                     3.288
                            4.5466 3.117e-05
                                                    ## MO8
                                                               0.375
                                                                         0.2929
                                                                                 1.2802 2.060e-01
## MO8
          19.75
                     3.288
                            6.0064 1.666e-07
                                                    ## MO3
                                                               0.750
                                                                         0.2929
                                                                                  2.5603 1.329e-02
## MO3
          16.00
                     3.288
                            4.8659 1.028e-05
                                                    ## M12
                                                               1.000
                                                                         0.2929
                                                                                  3.4137 1.222e-03
## M12
          13.25
                     3.288
                            4.0296 1.763e-04
                                                               1.950
                                                                         0.2929
                                                                                  6.6568 1.486e-08
                                                    ## M13
## M13
          2.80
                     3.288
                            0.8515 3.982e-01
                                                               0.525
                                                                         0.2929
                                                     ## M14
                                                                                  1.7922 7.870e-02
## M14
          19.10
                     3.288
                            5.8087 3.450e-07
                                                    ## M09
                                                               0.975
                                                                         0.2929
                                                                                  3.3284 1.578e-03
## MO9
          14.40
                     3.288
                            4.3793 5.510e-05
                                                    ## M15
                                                               1.125
                                                                         0.2929
                                                                                  3.8405 3.247e-04
## M15
          13.50
                     3.288
                            4.1056 1.374e-04
                                                     ## M06
                                                               0.675
                                                                         0.2929
                                                                                  2.3043 2.508e-02
## M06
          18.95
                     3.288
                            5.7631 4.078e-07
                                                    ## MO4
                                                               0.175
                                                                         0.2929
                                                                                  0.5974 5.527e-01
## MO4
          24.70
                     3.288
                            7.5118 6.082e-10
                                                    ## MO1
                                                               0.950
                                                                         0.2929
                                                                                  3.2431 2.030e-03
## MO1
          17.30
                     3.288
                            5.2613 2.524e-06
                                                    ## M10
                                                               0.750
                                                                         0.2929
                                                                                  2.5603 1.329e-02
## M10
          21.25
                     3.288
                            6.4626 3.066e-08
                                                    ## F10
                                                               0.450
                                                                         0.2929
                                                                                 1.5362 1.303e-01
## F10
          13.55
                     3.288
                            4.1208 1.307e-04
                                                    ## F09
                                                               0.275
                                                                         0.2929
                                                                                  0.9388 3.520e-01
## F09
          18.10
                     3.288
                            5.5046 1.048e-06
                                                    ## F06
                                                               0.375
                                                                         0.2929
                                                                                  1.2802 2.060e-01
## F06
          17.00
                     3.288
                           5.1700 3.500e-06
                                                    ## F01
                                                               0.375
                                                                         0.2929
                                                                                 1.2802 2.060e-01
```



```
fm2Orth.lis <- update(fm1Orth.lis, distance ~ I(age - 11))
pairs(fm2Orth.lis, id = 0.01, adj = -0.5)</pre>
```



```
intervals(fm20rth.lis)
## , , (Intercept)
       lower est. upper
## M16 21.69 23.00 24.31
## M05 21.69 23.00 24.31
## MO2 22.06 23.38 24.69
## M11 22.31 23.62 24.94
## MO7 22.44 23.75 25.06
## MO8 22.56 23.88 25.19
## MO3 22 94 24 25 25 56
## M12 22.94 24.25 25.56
## M13 22.94 24.25 25.56
## M14 23.56 24.88 26.19
## M09 23.81 25.12 26.44
## M15 24.56 25.88 27.19
## M06 25.06 26.38 27.69
## MO4 25 31 26 62 27 94
## MO1 26.44 27.75 29.06
## M10 28.19 29.50 30.81
## F10 17.19 18.50 19.81
## F09 19.81 21.12 22.44
## F06 19.81 21.12 22.44
## F01 20.06 21.38 22.69
## F05 21.31 22.62 23.94
## F07 21.69 23.00 24.31
## F02 21.69 23.00 24.31
```

```
intervals(fm20rth.lis)
## , , I(age - 11)
         lower est. upper
## M16 -0.0373 0.550 1.1373
## MO5
       0.2627 0.850 1.4373
      0.1877 0.775 1.3623
  M11 -0.2623 0.325 0.9123
       0.2127 0.800 1.3873
## M08 -0.2123 0.375 0.9623
## M03 0.1627 0.750 1.3373
## M12 0.4127 1.000 1.5873
## M13 1.3627 1.950 2.5373
## M14 -0.0623 0.525 1.1123
## M09 0.3877 0.975 1.5623
## M15 0.5377 1.125 1.7123
## MO6
      0.0877 0.675 1.2623
## M04 -0.4123 0.175 0.7623
## M01 0.3627 0.950 1.5373
       0.1627 0.750 1.3373
  F10 -0.1373 0.450 1.0373
## F09 -0.3123 0.275 0.8623
## F06 -0.2123 0.375 0.9623
## F01 -0.2123 0.375 0.9623
## F05 -0.3123 0.275 0.8623
## F07 -0.0373 0.550 1.1373
```

plot(intervals(fm20rth.lis))

Model specification

The general specification is given by:

$$\begin{aligned} \textit{distance}_{ti} &= \beta_0 + \beta_1 \times (\textit{age}_{ti} - 11) + \beta_2 \times \textit{sex}_i \\ &+ \beta_3 \times (\textit{age}_{ti} - 11) \times \textit{sex}_i \\ &+ \textit{u}_{0i} + \textit{u}_{1i} \times (\textit{age}_{ti} - 11) + \varepsilon_{ti} \end{aligned}$$

with *distance*_{ti} being the outcome at age 6 + 2t (t = 1, ..., 4) on the *i*th child (i = 1, ..., 27) and sex_i is the sex of that child.

Using this model specification we note:

- The u_{0i} term represents the random intercept
- The u_{1i} term represents the random slope (random effect associated with the slope for child i)

Model specification (ctd)

We assume that the distribution of the random effects associated with child i, u_{0j} and u_{1j} is bivariate normal:

$$\mathbf{u}_{i} = \begin{pmatrix} u_{0i} \\ u_{1i} \end{pmatrix} \sim \mathcal{N}_{2} \left(\mathbf{0}, \mathbf{D} \right), \qquad \mathbf{D} = \begin{pmatrix} \sigma_{int}^{2} & \sigma_{int,slope} \\ \sigma_{int,slope} & \sigma_{slope}^{2} \end{pmatrix}$$

Finally

$$oldsymbol{arepsilon}_i = egin{pmatrix} arepsilon_{1i} \ arepsilon_{2i} \ arepsilon_{3i} \ arepsilon_{4i} \end{pmatrix} \sim \mathcal{N}_4(\mathbf{0}, \mathbf{R}_i)$$

where we consider $\mathbf{R}_i = \sigma^2 \mathbf{I}_4$.

We will also consider $\mathbf{R}_i = \sigma_{male}^2 \mathbf{I}_4$ and $\mathbf{R}_i = \sigma_{female}^2 \mathbf{I}_4$ depending on whether the sex of child i is male or female

Model specification: Multilevel notation (homogeneous residual error structure)

LEVEL 1 MODEL (Time):

$$distance_{ti} = \pi_{0i} + \pi_{1i} \times (age_{ti} - 11) + \varepsilon_{ti}$$

where $\varepsilon_{ti} \sim N(0, \sigma^2)$

LEVEL 2 MODEL (Child):

$$\pi_{0i} = \beta_{00} + \beta_{01} \times sex_i + r_{0i}$$

 $\pi_{1i} = \beta_{10} + \beta_{11} \times sex_i + r_{1i}$

where $\mathbf{r}_i = \left(\begin{smallmatrix} r_{0i} \\ r_{1i} \end{smallmatrix} \right) \sim \mathcal{N}(\mathbf{0}, \mathbf{D})$, independent of the ε_{ti}

Model specification: Matrix notation

Model for observation on child *i*:

$$\mathbf{Y}_i = \mathbf{X}_i \boldsymbol{\beta} + \mathbf{Z}_i \mathbf{u}_i + \boldsymbol{\varepsilon}_i, \quad i = 1, \dots, 27$$

where

$$\mathbf{Y}_{i} = \begin{pmatrix} \mathbf{Y}_{1i} \\ \mathbf{Y}_{2i} \\ \mathbf{Y}_{3i} \\ \mathbf{Y}_{4i} \end{pmatrix}, \quad \boldsymbol{\beta} = \begin{pmatrix} eta_{0} \\ eta_{1} \\ eta_{2} \\ eta_{3} \end{pmatrix}$$

and

$$\mathbf{X}_{i} = \begin{pmatrix} 1 & -3 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 3 & 0 & 0 \end{pmatrix} \quad \text{or} \quad \mathbf{X}_{i} = \begin{pmatrix} 1 & -3 & 1 & -3 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & 1 & 1 \\ 1 & 3 & 1 & 3 \end{pmatrix}$$

depending on whether child i is male or female, respectively

Model specification: Matrix notation (ctd)

And for the random terms:

$$\mathbf{Z}_{i} = \begin{pmatrix} 1 & -3 \\ 1 & -1 \\ 1 & 1 \\ 1 & 3 \end{pmatrix}, \quad \mathbf{u}_{i} = \begin{pmatrix} u_{0i} \\ u_{1i} \end{pmatrix} \quad \text{and} \quad \varepsilon_{i} = \begin{pmatrix} \varepsilon_{1i} \\ \varepsilon_{2i} \\ \varepsilon_{3i} \\ \varepsilon_{4i} \end{pmatrix}$$

where $\mathbf{u}_i \sim \mathcal{N}_2(\mathbf{0}, \mathbf{D})$ and $\varepsilon_i \sim \mathcal{N}_4(\mathbf{0}, \mathbf{R}_i)$, \mathbf{u}_i and ε_i independent of each other.

Model specification: Matrix notation (ctd)

Thus

$$Y = X\beta + Zu + \varepsilon$$

where (with $n = 27 \times 4 = 108$)

$$\mathbf{Y} = \begin{pmatrix} \mathbf{Y}_1 \\ \mathbf{Y}_2 \\ \vdots \\ \mathbf{Y}_{27} \end{pmatrix}, \quad \mathbf{X} = \begin{pmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \\ \vdots \\ \mathbf{X}_{27} \end{pmatrix}, \quad \mathbf{Z} = \begin{pmatrix} \mathbf{Z}_1 \\ & \mathbf{Z}_2 \\ & & \ddots \\ & & & \mathbf{Z}_{27} \end{pmatrix}$$
$$\mathbf{u} = \begin{pmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \\ \vdots \\ \mathbf{u}_{27} \end{pmatrix}, \quad \text{and} \quad \boldsymbol{\varepsilon} = \begin{pmatrix} \boldsymbol{\varepsilon}_1 \\ \boldsymbol{\varepsilon}_2 \\ \vdots \\ \boldsymbol{\varepsilon}_{27} \end{pmatrix}$$

Y is a 108×1 vector, **X** a 108×4 matrix, **Z** an 108×54 matrix, **u** a 54×1 vector and ε a 108×1 vector.

Model specification: Matrix notation (ctd)

Thus
$$\mathbf{u} \sim \mathcal{N}(\mathbf{0},\mathbf{G}) \qquad \text{and} \qquad \boldsymbol{\varepsilon} \sim \mathcal{N}(\mathbf{0},\mathbf{R})$$
 where

$$\textbf{G} = \begin{pmatrix} \textbf{D} & & & \\ & \textbf{D} & & \\ & & \ddots & \\ & & & \textbf{D} \end{pmatrix} \quad \text{and} \quad \textbf{R} = \begin{pmatrix} \textbf{R}_1 & & & \\ & \textbf{R}_2 & & \\ & & \ddots & \\ & & & \textbf{R}_{27} \end{pmatrix}$$

I.e. **G** (54×54) and **R** (108×108) are block-diagonal matrices representing the variance-covariance matrix for all random effects and for all residuals, respectively.

Aside: Centring Covariates (Part II)

Remember from week 6:

$$\operatorname{var}[\hat{\boldsymbol{\beta}}] = \left(\sum_{i=1}^{m} \mathbf{X}_{i}^{\mathsf{T}} \hat{\mathbf{V}}_{i}^{-1} \mathbf{X}_{i}\right)^{-1}$$

where $\hat{\mathbf{V}}_i = \mathbf{Z}_i \hat{\mathbf{D}} \mathbf{Z}_i^\mathsf{T} + \hat{\mathbf{R}}_i$. Thus, benefit of centring not immediately obvious.

- Should we centre around the grand-mean $(x_{ti} \bar{x}_{\bullet \bullet})$ or the group-mean $(x_{ti} \bar{x}_{\bullet i})$?
- If a multilevel/mixed model has random slopes, then centring a level-1 predictor variable can change some elements of the model (and not just the interpretation of the transformed variable).

Aside: Centring Covariates (Part II, ctd)

- Always base centring decisions on theoretical grounds. Although centring can have statistical consequences, these should be of secondary concern compared to the scientific goals of the analysis
- If any of the predictor variables do not have meaningful zero-points, they should be centred so that the intercepts in the multilevel model will be interpretable.
 - For example, a Likert-type variable scored from $\bf 1$ to $\bf 7$ should not be used in its raw form. If it were, the intercept would be interpreted as the expected value when the scale is $\bf 0$, which is an impossible value.
- Binary or indicator variables can also be centred. By adjusting for the grand-mean of a binary variable, you are, in effect, removing the effects of that variable when interpreting the intercept...
- Grand-mean centring of a level-1 predictor affects only the parts of the model associated with the intercept.
- Group-mean centring can be useful in certain situations, but it should be employed only when necessary.

Luke, D.A. (2004). *Multilevel Modeling*, Quantitative Applications in the Social Sciences **143**, Sage Publications, Thousand Oaks

Orthodontic Data (full data, lme())

```
fm1Orth.lme <- lme(distance ~ I(age - 11), data = Orthodont, random = ~I(age - 11) | Subject)</pre>
```

Or just:

```
fm10rth.lme <- lme(distance ~ I(age - 11), data = Orthodont)
fm10rth.lme
## Linear mixed-effects model fit by REML
## Data: Orthodont
## Log-restricted-likelihood: -221.3
## Fixed: distance ~ I(age - 11)
## (Intercept) I(age - 11)
##
      24 0231 0 6602
##
## Random effects:
## Formula: ~I(age - 11) | Subject
## Structure: General positive-definite
              StdDev Corr
##
## (Intercept) 2.1343 (Intr)
## I(age - 11) 0.2264 0.503
## Residual 1.3100
##
## Number of Observations: 108
## Number of Groups: 27
```

Orthodontic Data (full data, lme(), ctd)

```
fm2Orth.lme <- update(fm1Orth.lme, fixed = distance ~ Sex * I(age - 11), random = ~I(age - 11))
summary(fm20rth.lme)
## Linear mixed-effects model fit by REML
## Data: Orthodont
## AIC BIC logLik
    448.6 469.7 -216.3
##
## Random effects:
## Formula: ~I(age - 11) | Subject
## Structure: General positive-definite, Log-Cholesky parametrization
             StdDev Corr
##
## (Intercept) 1.8303 (Intr)
## I(age - 11) 0.1803 0.206
## Residual 1.3100
##
## Fixed effects: distance ~ Sex + I(age - 11) + Sex:I(age - 11)
##
                     Value Std.Error DF t-value p-value
## (Intercept)
                   24.969 0.4860 79 51.38 0.0000
## SexFemale
                 -2.321 0.7614 25 -3.05 0.0054
## I(age - 11) 0.784 0.0860 79 9.12 0.0000
## Correlation:
                     (Intr) SexFml I(-11)
##
## SexFemale
                   -0.638
## I(age - 11)
                    0.102 -0.065
## SexFemale:I(age - 11) -0.065 0.102 -0.638
##
## Standardized Within-Group Residuals:
##
                 01
                                   03
                                          Max
        Min
                         Med
## -3.168078 -0.385939 0.007104 0.445155 3.849463
##
```

Orthodontic Data (full data, lme(), ctd)

Recall, fitted() and resid() have a level argument, so has predict():

```
newOrth <- data.frame(Subject = rep(c("M11", "F03"), c(3, 3)),</pre>
                       Sex = rep(c("Male", "Female"), c(3, 3)),
                       age = rep(16:18, 2))
predict( fm2Orth.lme, newdata = newOrth, level = 0:1 )
     Subject predict.fixed predict.Subject
## 1
         M11
                      28.89
                                      26.97
## 2
         M11
                      29.68
                                      27.61
## 3
         M11
                      30.46
                                      28.26
         F03
                      25.05
                                      26.61
## 4
## 5
         F03
                      25.53
                                      27.21
## 6
         F03
                      26.00
                                      27.80
```

Orthodontic Data (full data, lme()←→lmList())

```
compOrth <- compareFits(coef(fm2Orth.lis), coef(fm1Orth.lme))</pre>
```

compOrth		
	(Intercept)	
##		
##	<pre>coef(fm2Orth.lis)</pre>	coef(fm10rth.lme)
## M16	23.00	23.08
## MO5	23.00	23.13
## MO2	23.38	23.46
## M11	23.62	23.61
## MO7	23.75	23.80
## MO8	23.88	23.84
## MO3	24.25	24.24
## M12	24.25	24.29
## M13	24.25	24.44
## M14	24.88	24.77
## MO9	25.12	25.07
## M15	25.88	25.78
## M06	26.38	26.16
## MO4	26.62	26.30
## MO1	27.75	27.45
## M10	29.50	29.00
## F10	18.50	18.99
## F09	21.12	21.33
## F06	21.12	21.35
## F01	21.38	21.58
## F05	22.62	22.69

```
compOrth
## F11
                    26.38
                                       26.16
  , , I(age - 11)
       coef(fm20rth.lis) coef(fm10rth.lme)
## M16
                    0.550
                                      0.5913
## MO5
                    0.850
                                      0.6858
## MO2
                    0.775
                                      0.6747
## M11
                    0.325
                                      0.5414
## MO7
                    0.800
                                      0.6951
## M08
                    0.375
                                      0.5654
## MO3
                    0.750
                                      0.6960
## M12
                    1.000
                                      0.7747
## M13
                    1.950
                                      1.0739
## M14
                    0.525
                                      0.6461
## M09
                    0.975
                                      0.7961
## M15
                    1.125
                                      0.8684
## M06
                    0.675
                                      0.7434
                    0.175
                                      0.5943
## MO4
## MO1
                    0.950
                                      0.8759
## M10
                    0.750
                                      0.8713
                    0.450
                                      0.4096
## F10
## F09
                    0.275
                                      0.4421
```

Orthodontic Data (full data, lme()←→lmList(), ctd)

plot(compOrth, mark = fixef(fm1Orth.lme))

Orthodontic Data (full data, lme()←→lmList(), ctd)

```
plot(comparePred(fm2Orth.lis, fm2Orth.lme, length.out = 2), layout = c(8,4),
    between = list(y = c(0, 0.5)))
```


Orthodontic Data (full data, random effects structure)

```
fm40rth.lm <- lm(distance ~ Sex * I(age - 11), Orthodont)
summary(fm40rth.lm)
##
## Call:
## lm(formula = distance ~ Sex * I(age - 11), data = Orthodont)
##
## Residuals:
     Min 10 Median 30 Max
## -5.616 -1.322 -0.168 1.330 5.247
## Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
## (Intercept) 24.969 0.282 88.50 < 2e-16 ***
## SexFemale
             -2.321 0.442 -5.25 8.1e-07 ***
## I(age - 11) 0.784 0.126 6.22 1.1e-08 ***
## SexFemale:I(age - 11) -0.305 0.198 -1.54 0.13
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '. 0.1 ' 1
##
## Residual standard error: 2.26 on 104 degrees of freedom
## Multiple R-squared: 0.423, Adjusted R-squared: 0.406
## F-statistic: 25.4 on 3 and 104 DF. p-value: 2.11e-12
anova(fm20rth.lme, fm40rth.lm)
           Model df AIC BIC logLik Test L.Ratio p-value
## fm20rth.lme 1 8 448.6 469.7 -216.3
## fm40rth.lm 2 5 493.6 506.8 -241.8 1 vs 2 50.98 <.0001
```

Orthodontic Data (full data, error structure)

plot(fm20rth.lme, Subject ~ resid(.), abline = 0)

Orthodontic Data (full data, error structure, ctd)

```
plot(fm20rth.lme, resid(., type = "p") ~ fitted(.) | Sex, id = 0.05, adj = -0.3)
```


Orthodontic Data (full data, error structure, ctd)

Orthodontic Data (full data, error structure, ctd)

```
plot(fm30rth.lme, resid(., type = "p") ~ fitted(.) | Sex, id = 0.05, adj = -0.3)
```



```
plot(fm30rth.lme, distance ~ fitted(.), id = 0.05, adj = -0.3, abline = c(0, 1))
```


qqnorm(fm30rth.lme, ~resid(.) | Sex)

qqnorm(fm20rth.lme, ~ranef(.), id = 0.1, cex = 0.7)

pairs(fm2Orth.lme, ~ranef(.) | Sex, id = ~Subject == "M13", adj = -0.3)

qqnorm(fm30rth.lme, ~ranef(.), id = 0.1, cex = 0.7)

pairs(fm30rth.lme, ~ranef(.) | Sex, id = ~Subject == "M13", adj = -0.3)

In mixed-effects estimation, there is a trade-off between the within-group variability and the between-group variability, when accounting for the overall variability in the data. The use of a common within-group variance in fm20rth.lme leads to an increase in the estimated between-group variability, which in turn allows the random-effects estimates to be pulled away by outliers. The heteroscedastic model in fm30rth.lme accommodates the impact of the boys outlying observations in the within-group variances estimation and reduces the estimated between-group variability, thus increasing the degree of shrinkage in the random-effects estimates. In this case, the use of different within-group variances by gender adds a certain degree of robustness to the lme fit.

Pinheiro, J.C. and Bates, D. M. (2000). *Mixed-Effects Models in S and S-PLUS*, Statistics and Computing, Springer-Verlag, New York.

Patterned Variance-Covariance Matrices for Random Effects

We may wish to restrict **D** to special forms of variance-covariance matrices that are parametrised by fewer parameters

The nlme package provides the following classes of positive definite matrices by default

pdBlocked block-diagonal
pdCompSymm compound-symmetry structure
pdDiag diagonal
pdIdent multiple of an identity
pdSymm general positive-definite matrix

Patterned Variance-Covariance Matrices for Random Effects (ctd)

```
fm40rth.lme <- lme(distance ~ Sex*I(age-11), data=Orthodont,
                  random = pdDiag(~I(age-11)))
fm40rth.lme
## Linear mixed-effects model fit by REML
    Data: Orthodont
## Log-restricted-likelihood: -216.4
## Fixed: distance ~ Sex * I(age - 11)
            (Intercept)
                                   SexFemale
                                                       I(age - 11) SexFemale: I(age - 11)
##
                24 9688
##
                                    -2.3210
                                                            0.7844
                                                                                -0.3048
##
## Random effects:
## Formula: ~I(age - 11) | Subject
## Structure: Diagonal
          (Intercept) I(age - 11) Residual
## StdDev: 1.83 0.1803 1.31
##
## Number of Observations: 108
## Number of Groups: 27
```

```
getVarCov(fm40rth.lme)
## Random effects variance covariance matrix
## (Intercept) I(age - 11)
## (Intercept) 3.35 0.00000
## I(age - 11) 0.00 0.03252
## Standard Deviations: 1.83 0.1804
```

```
getVarCov(fm20rth.lme)
## Random effects variance covariance matrix
## (Intercept) I(age - 11)
## (Intercept) 3.35010 0.06814
## I(age - 11) 0.06814 0.03252
## Standard Deviations: 1.83 0.1804
```

Patterned Variance-Covariance Matrices for Random Effects (ctd)

```
fm40rth.lme <- lme(distance ~ Sex*I(age-11), data=Orthodont,
                  random = pdIdent(~I(age-11)))
fm40rth.lme
## Linear mixed-effects model fit by REML
## Data: Orthodont
## Log-restricted-likelihood: -240.6
## Fixed: distance ~ Sex * I(age - 11)
            (Intercept)
                                   SexFemale
                                                     I(age - 11) SexFemale: I(age - 11)
##
                                 -2.3210
##
                24.9688
                                                          0.7844
                                                                               -0.3048
##
## Random effects:
## Formula: ~I(age - 11) | Subject
## Structure: Multiple of an Identity
          (Intercept) I(age - 11) Residual
##
## StdDev:
            1.116
                           1.116 1.399
##
## Number of Observations: 108
## Number of Groups: 27
```

```
getVarCov(fm40rth.lme)
## Random effects variance covariance matrix
## (Intercept) I(age - 11)
## (Intercept) 1.246 0.000
## I(age - 11) 0.000 1.246
## Standard Deviations: 1.116 1.116
```

Class room data revisited

We have k = 1, ..., 107 schools, $j = 1, ..., m_k$ classrooms in school k, $i = 1, ..., n_{jk}$ students in classroom j in school k. Write the model for school k in matrix form:

$$\mathbf{Y}_k = \mathbf{X}_k \boldsymbol{\beta} + \mathbf{Z}_k \mathbf{u}_k + \boldsymbol{\varepsilon}_k, \qquad k = 1, \dots, 107$$

where with $n_{\bullet k} = \sum_{j=1}^{m_k} n_{jk}$, the number of students in the sample from school k:

- \mathbf{Y}_k are the $n_{\bullet k}$ observations in school k
- X_k is a n_{•k} × p design matrix, which represents the known values of the covariates
- β is a vector of p unknown regression coefficients (or fixed-effect parameters)
- \mathbf{Z}_k is a $n_{\bullet k} \times 313$ known matrix (the *random effects design matrix*), namely a column of ones in the first column and the remaining columns the indicator variables for the 312 classes.
- $\mathbf{u}_i \sim \mathcal{N}_{313}(\mathbf{0}, \mathbf{D})$ a vector of 313 random effects, and
- $\varepsilon_k \sim \mathcal{N}_{n_{\bullet k}}(\mathbf{0}, \mathbf{R}_k)$ is a vector of $n_{\bullet k}$ residuals

Specifically,

$$\mathbf{Y}_{k} = \begin{pmatrix} \mathbf{Y}_{11k} \\ \mathbf{Y}_{21k} \\ \vdots \\ \mathbf{Y}_{n_{1k}1k} \\ \mathbf{Y}_{12k} \\ \vdots \\ \mathbf{Y}_{n_{2k}2k} \\ \vdots \\ \mathbf{Y}_{n_{m_{k}}k}m_{k}k \end{pmatrix}, \quad \varepsilon_{k} = \begin{pmatrix} \varepsilon_{11k} \\ \varepsilon_{21k} \\ \vdots \\ \varepsilon_{n_{1k}1k} \\ \varepsilon_{12k} \\ \vdots \\ \varepsilon_{n_{2k}2k} \\ \vdots \\ \varepsilon_{n_{m_{k}}k}m_{k}k \end{pmatrix}$$

and

$$\mathbf{D} = \begin{pmatrix} \sigma_{int:school}^2 & 0 & \dots & 0 \\ 0 & \sigma_{int:classroom}^2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \sigma_{int:classroom}^2 \end{pmatrix} = \begin{pmatrix} \sigma_{int:school}^2 & \mathbf{0} \\ \mathbf{0} & \sigma_{int:classroom}^2 \mathbf{I}_{312} \end{pmatrix}$$

Thus

$$Y = X\beta + Zu + \varepsilon$$

where (with $n = \sum_{k=1}^{107} n_{\bullet k}$)

$$\mathbf{Y} = \begin{pmatrix} \mathbf{Y}_1 \\ \mathbf{Y}_2 \\ \vdots \\ \mathbf{Y}_{107} \end{pmatrix}, \quad \mathbf{X} = \begin{pmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \\ \vdots \\ \mathbf{X}_{107} \end{pmatrix}, \quad \mathbf{Z} = \begin{pmatrix} \mathbf{Z}_1 \\ & \mathbf{Z}_2 \\ & & \ddots \\ & & & \mathbf{Z}_{107} \end{pmatrix}$$

$$\mathbf{u} = \begin{pmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \\ \vdots \\ \mathbf{u}_{107} \end{pmatrix}, \quad \text{and} \quad \boldsymbol{\varepsilon} = \begin{pmatrix} \boldsymbol{\varepsilon}_1 \\ \boldsymbol{\varepsilon}_2 \\ \vdots \\ \boldsymbol{\varepsilon}_{107} \end{pmatrix}$$

Y is a $n \times 1$ vector, **X** a $n \times p$ matrix, **Z** an $n \times 33491$ matrix, **u** a 33491×1 vector and ε a $n \times 1$ vector.

Thus

$$\mathbf{u} \sim \mathcal{N}(\mathbf{0}, \mathbf{G}) \qquad \text{and} \qquad \boldsymbol{\varepsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{R})$$

where

$$\mathbf{G} = \begin{pmatrix} \mathbf{D} & & & \\ & \mathbf{D} & & \\ & & \ddots & \\ & & & \mathbf{D} \end{pmatrix} \quad \text{and} \quad \mathbf{R} = \begin{pmatrix} \mathbf{R}_1 & & & \\ & \mathbf{R}_2 & & \\ & & \ddots & \\ & & & \mathbf{R}_{107} \end{pmatrix}$$

I.e. **G** and **R** are block-diagonal matrices representing the *variance-covariance matrix* for all random effects and for all residuals, respectively.

We can check the size of the estimate $\hat{\mathbf{D}}$ for \mathbf{D} :

```
dim(getVarCov(fm2))
## [1] 313 313
nlevels(classroom$classid)
## [1] 312
```

If we want to have $\hat{\mathbf{V}}_i = \mathbf{Z}_i \hat{\mathbf{D}} \mathbf{Z}_i^\mathsf{T} + \hat{\mathbf{R}}_i$ for school i:

```
getVarCov(fm2, type = "marginal")
## schoolid 1
## Marginal variance covariance matrix
                                                                                   10
##
                                                                                           11
      1205.00
              176.72
                       176.72
                                77.49
                                        77.49
                                                77.49
                                                        77.49
                                                                77.49
                                                                        77.49
                                                                                77.49
                                                                                        77.49
       176.72 1205.00
                       176.72
                                77.49
                                        77.49
                                                77.49
                                                        77.49
                                                                77.49
                                                                        77.49
                                                                                77.49
                                                                                        77.49
       176.72 176.72 1205.00
                                        77.49
                                                        77.49
                                                                                77.49
## 3
                                77.49
                                                77.49
                                                                77.49
                                                                        77.49
                                                                                        77.49
## 4
       77.49
               77.49
                       77.49 1205.00
                                       176.72
                                              176.72
                                                       176.72
                                                              176.72
                                                                       176.72
                                                                               176.72
                                                                                       176.72
## 5
       77 49
               77.49
                        77.49
                              176 72 1205 00
                                              176.72
                                                       176.72
                                                              176.72
                                                                       176.72
                                                                                       176.72
## 6
       77.49
               77 49
                       77.49
                              176.72
                                      176 72 1205 00
                                                       176.72 176.72
                                                                       176.72
                                                                               176.72
                                                                                       176.72
       77.49
               77.49
                       77.49
                              176.72
                                      176.72
                                              176.72 1205.00
                                                              176.72
                                                                       176.72
                                                                               176.72
                                                                                       176.72
## 7
               77.49
                                      176.72
                                              176.72
                                                       176.72 1205.00
                                                                               176.72
## 8
       77.49
                       77.49
                              176.72
                                                                       176.72
                                                                                       176.72
## 9
       77.49
               77.49
                        77.49
                              176.72
                                      176.72
                                              176.72
                                                       176.72
                                                               176.72 1205.00
                                                                               176.72
                                                                                       176.72
       77.49
               77.49
                        77.49
                              176.72
                                      176.72 176.72
                                                       176.72
                                                              176.72 176.72 1205.00
## 10
## 11
        77.49
               77.49
                        77.49 176.72 176.72 176.72 176.72 176.72 176.72 176.72 1205.00
     Standard Deviations: 34 71 34 71 34 71 34 71 34 71 34 71 34 71 34 71 34 71 34 71 34 71 34 71 34 71
```

The estimate $\hat{\mathbf{R}}_i$ for \mathbf{R}_i for school i is:

```
getVarCov(fm2, type = "conditional")

## schoolid 1

## Conditional variance covariance matrix

## 1 2 3 4 5 6 7 8 9 10 11

## 1 1028 0 0 0 0 0 0 0 0 0 0 0 0 0

## 2 0 1028 0 0 0 0 0 0 0 0 0 0 0

## 3 0 0 1028 0 0 0 0 0 0 0 0 0 0

## 4 0 0 0 1028 0 0 0 0 0 0 0 0 0

## 5 0 0 0 0 1028 0 0 0 0 0 0 0 0

## 6 0 0 0 0 1028 0 0 0 0 0 0 0 0

## 6 0 0 0 0 0 1028 0 0 0 0 0 0 0

## 7 0 0 0 0 0 1028 0 0 0 0 0 0

## 8 0 0 0 0 0 0 1028 0 0 0 0 0

## 9 0 0 0 0 0 0 1028 0 0 0 0

## 9 0 0 0 0 0 0 0 0 1028 0 0 0

## 10 0 0 0 0 0 0 0 0 1028 0 0

## 11 0 0 0 0 0 0 0 0 0 0 1028 0

## Standard Deviations: 32.07 32.07 32.07 32.07 32.07 32.07 32.07 32.07 32.07 32.07 32.07 32.07 32.07
```

If we want to have $\hat{\mathbf{V}}_i = \mathbf{Z}_i \hat{\mathbf{D}} \mathbf{Z}_i^\mathsf{T} + \hat{\mathbf{R}}_i$ for school i:

```
getVarCov(fm2, individual = 2, type = "marginal")
## schoolid 2
## Marginal variance covariance matrix
                                                                                 10
     1205.00 176.72
                       77.49
                               77.49
                                       77.49
                                               77.49
                                                       77.49
                                                               77.49
                                                                      77.49
                                                                              77.49
## 2
      176.72 1205.00
                       77.49
                              77.49
                                       77.49
                                               77.49
                                                      77.49
                                                               77.49
                                                                      77.49
                                                                              77.49
## 3
       77.49
              77.49 1205.00
                              176.72
                                      176.72
                                            176.72
                                                      77.49
                                                               77.49
                                                                      77.49
                                                                             77.49
              77.49 176.72 1205.00
                                                      77.49
                                                                             77.49
## 4
       77.49
                                      176.72
                                              176.72
                                                              77.49
                                                                      77.49
       77.49
               77.49
                      176.72
                             176.72 1205.00
                                              176.72
                                                      77.49
                                                              77.49
                                                                      77.49
                                                                             77.49
## 5
       77.49
              77.49
                      176.72
                              176.72
                                     176.72 1205.00
                                                       77.49
                                                              77.49
                                                                      77.49
                                                                             77.49
## 6
       77.49
              77.49
                      77.49
                               77.49
                                       77.49
                                               77.49 1205.00
## 7
                                                             176.72
                                                                     176.72
                                                                             176.72
## 8
       77.49
               77.49
                      77.49
                               77.49
                                       77.49 77.49
                                                      176.72 1205.00
                                                                      176.72
                                                                             176.72
       77.49
               77.49
                       77.49
                              77.49
                                       77.49 77.49
                                                      176.72
                                                             176.72 1205.00
## 9
## 10
       77.49
               77.49
                       77.49
                              77.49
                                       77.49
                                               77.49
                                                     176.72 176.72 176.72 1205.00
    Standard Deviations: 34.71 34.71 34.71 34.71 34.71 34.71 34.71 34.71 34.71 34.71 34.71
```

The estimate $\hat{\mathbf{R}}_i$ for \mathbf{R}_i for school i is:

```
getVarCov(fm2, individual = 2, type = "conditional")

## schoolid 2

## Conditional variance covariance matrix

## 1 2 3 4 5 6 7 8 9 10

## 1 1028 0 0 0 0 0 0 0 0 0 0

## 2 0 1028 0 0 0 0 0 0 0 0 0

## 3 0 0 1028 0 0 0 0 0 0 0 0

## 4 0 0 0 1028 0 0 0 0 0 0 0

## 5 0 0 0 0 1028 0 0 0 0 0 0 0

## 6 0 0 0 0 1028 0 0 0 0 0 0

## 6 0 0 0 0 0 1028 0 0 0 0 0

## 7 0 0 0 0 0 0 1028 0 0 0 0

## 8 0 0 0 0 0 0 1028 0 0 0 0

## 8 0 0 0 0 0 0 1028 0 0 0

## 9 0 0 0 0 0 0 1028 0 0 0

## 9 0 0 0 0 0 0 0 1028 0 0

## 9 Standard Deviations: 32.07 32.07 32.07 32.07 32.07 32.07 32.07 32.07 32.07 32.07
```