APELLIDOS:

Nombre:

Nota.- Calcular un subespacio vectorial quiere decir calcular una base o unas ecuaciones implícitas independientes, es decir, tales que ninguna ecuación sea combinación lineal del resto.

Ejercicio 1.-

- A. Responder verdadero o falso a las siguientes cuestiones y razonar la respuesta:
 - 1.- Todo sistema lineal de matriz ampliada $(A|\mathbf{b})$ tal que \mathbf{b} es una columna de A es compatible.
 - 2.- Si A es una matriz cuadrada tal que AA = A entonces A es invertible.
 - 3.- Para toda matriz cuadrada de números reales, A, se verifica que $|A^t A| \ge 0$.
- B. En el \mathbb{Q} -espacio vectorial \mathbb{Q}^4 se consideran los subespacios vectoriales

$$V \colon \begin{cases} 2x_1 + 3x_2 - 3x_3 - x_4 = 0 \\ x_1 - x_3 = 0 \\ 4x_1 + 3x_2 - 5x_3 - x_4 = 0 \end{cases} \quad W = \langle (4, 1, 2, 0), (0, 0, 2, -1), (4, 1, 0, 1) \rangle.$$

Se pide:

- 1.- Calcular V+W y $V\cap W$. ¿Es $V\oplus W=\mathbb{Q}^4$?
- 2.- Sean $\mathbf{u} = (1,0,0,0)$ y $\mathbf{v} = (3,1,4,-1)$. Son $\mathbf{u} + W$ y $\mathbf{v} + W$ linealmente independientes en \mathbb{Q}^4/W ?
- 3.- Calcular una base \mathcal{B} de \mathbb{Q}^4/W que contenga a $\mathbf{u}+W$ y las coordenadas de $\mathbf{v}+W$ respecto de \mathcal{B} .

Ejercicio 2.-

- A. Sea $f: V_1 \to V_2$ un homomorfismo de k-espacios vectoriales de dimensión finita, L_1 un subespacio vectorial de V_1 , y L_2 un subespacio vectorial de V_2 . Se pide:
 - 1.- Probar que $\operatorname{Ker}(f) \subset f^{-1}(L_2)$ y $f(L_1) \subset \operatorname{Im}(f)$.
 - 2.- Probar que $L_1 + \operatorname{Ker}(f) \subset f^{-1}(f(L_1))$ y que $f(f^{-1}(L_2)) \subset L_2 \cap \operatorname{Im}(f)$.
 - 3.- Probar que $f^{-1}(f(L_1)) = L_1 + \text{Ker}(f)$ y que $f(f^{-1}(L_2)) = L_2 \cap \text{Im}(f)$.
- B. Sean V y W dos \mathbb{R} -espacios vectoriales de bases respectivas $\mathcal{E}_1 = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ y $\mathcal{E}_2 = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$, y $g: V \to W$ un homomorfismo tal que $g(\mathbf{u}_1) = g(\mathbf{u}_2) = \mathbf{v}_3 \mathbf{v}_2$, $g(\mathbf{u}_3) = \mathbf{v}_2$. Se pide:
 - 1.- Calcular el núcleo y la imagen de g.
 - 2.- Calcular $g^{-1}(\langle \mathbf{v}_2 \mathbf{v}_3 \rangle)$ y $g(g^{-1}(\langle \mathbf{v}_2 \mathbf{v}_3 \rangle))$.
 - 3.- Probar que $\mathcal{B} = \{\mathbf{u}_1 \mathbf{u}_2, \mathbf{u}_1 + \mathbf{u}_2, \mathbf{u}_3\}$ es base de V y $\mathcal{C} = \{\mathbf{v}_1 \mathbf{v}_2, \mathbf{v}_2, 2\mathbf{v}_3\}$ es base de W.
 - 4.- Calcular la matriz de g respecto de las bases \mathcal{B} y \mathcal{C} .

Ejercicio 3.-

- A. Sea k un cuerpo, V un k-espacio vectorial de dimensión finita $\dim V = n$ y $f: V \to V$ un endomorfismo tal que $f^2 = f \circ f = 0$, es decir, tal que $f(f(\mathbf{v})) = \mathbf{0}$ para todo $\mathbf{v} \in V$. Demuestra los siguientes enunciados:
 - 1.- El único autovalor de f es $\alpha = 0$.
 - 2.- El endomorfismo f es diagonalizable si y sólo si f = 0, es decir, si y sólo si $f(\mathbf{v}) = \mathbf{0}$ para todo $\mathbf{v} \in V$.
 - 3.- Se satisface la inclusión Im $f \subset \text{Ker } f$.
- B. Sea $f: \mathbb{C}^4 \to \mathbb{C}^4$ el endomorfismo de \mathbb{C} -espacios vectoriales cuya matriz respecto de la base canónica $\mathcal{C} \subset \mathbb{C}^4$ es

$$M_{\mathcal{C}}(f) = A = \left(egin{array}{cccc} 0 & 1 & 0 & 0 \ -1 & 0 & 0 & 0 \ 0 & 0 & -3 & 0 \ 0 & 0 & 1 & z \end{array}
ight),$$

donde $z \in \mathbb{C}$ es un número complejo indeterminado.

- 1.- Halla los valores de $z \in \mathbb{C}$ para los cuales f es diagonalizable.
- 2.- Para z=0, calcula una base $\mathcal{B}\subset\mathbb{C}^4$ tal que $M_{\mathcal{B}}(f)$ sea diagonal.
- 3.- Para z=0, obtén una matriz diagonal D y una matriz invertible P tales que $D=P^{-1}AP$.

Nota.- Los tres ejercicios puntúan igual (un tercio del examen). El apartado A puntúa un 40 % de cada ejercicio.

APELLIDOS:

NOMBRE:

Nota.- Calcular un subespacio vectorial quiere decir calcular una base o unas ecuaciones implícitas independientes, es decir, tales que ninguna ecuación sea combinación lineal del resto.

Ejercicio 1.-

- A. Responder verdadero o falso a las siguientes cuestiones y razonar la respuesta:
 - 1.- Si un sistema lineal de matriz ampliada $(A|\mathbf{b})$ es compatible entonces \mathbf{b} es combinación lineal de las columnas de A.
 - 2.- Para toda matriz cuadrada de números reales, A, se verifica que $|A^tA| \ge 0$.
 - 3.- Si A es una matriz cuadrada tal que AA = A entonces A es invertible.
- B. En el \mathbb{Q} -espacio vectorial \mathbb{Q}^4 se consideran los subespacios vectoriales

$$V: \begin{cases} x_1 - 2x_2 - x_3 - 2x_4 = 0 \\ 2x_2 - x_3 - 2x_4 = 0 \\ x_1 + 2x_2 - 3x_3 - 6x_4 = 0 \end{cases} W = \langle (1, 0, 1, -1), (0, 1, 0, 3), (3, 2, 3, 3) \rangle.$$

Se pide:

- 1.- Calcular V + W y $V \cap W$. ¿Es $V \oplus W = \mathbb{Q}^4$?
- 2.- Sean $\mathbf{u} = (1,0,0,0)$ y $\mathbf{v} = (0,1,1,2)$. Son $\mathbf{u} + W$ y $\mathbf{v} + W$ linealmente independientes en \mathbb{Q}^4/W ?
- 3.- Calcular una base \mathcal{B} de \mathbb{Q}^4/W que contenga a $\mathbf{u}+W$ y las coordenadas de $\mathbf{v}+W$ respecto de \mathcal{B} .

Ejercicio 2.-

- A. Sea $f: V_1 \to V_2$ un homomorfismo de k-espacios vectoriales de dimensión finita, L_1 un subespacio vectorial de V_1 , y L_2 un subespacio vectorial de V_2 . Se pide:
 - 1.- Probar que $\operatorname{Ker}(f) \subset f^{-1}(L_2)$ y $f(L_1) \subset \operatorname{Im}(f)$.
 - 2.- Probar que $L_1 + \operatorname{Ker}(f) \subset f^{-1}(f(L_1))$ y que $f(f^{-1}(L_2)) \subset L_2 \cap \operatorname{Im}(f)$.
 - 3.- Probar que $f^{-1}(f(L_1)) = L_1 + \text{Ker}(f)$ y que $f(f^{-1}(L_2)) = L_2 \cap \text{Im}(f)$.
- B. Sean V y W unos \mathbb{Q} -espacios vectoriales de bases respectivas $\mathcal{D}_1 = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ y $\mathcal{D}_2 = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$, y $h: V \to W$ un homomorfismo tal que $h(\mathbf{u}_1) = \mathbf{v}_1$, $h(\mathbf{u}_2) = h(\mathbf{u}_3) = \mathbf{v}_1 + \mathbf{v}_2$. Se pide:
 - 1.- Calcular el núcleo y la imagen de h.
 - 2.- Calcular $h^{-1}(\langle \mathbf{v}_1 + \mathbf{v}_2 \rangle)$ y $h(h^{-1}(\langle \mathbf{v}_1 + \mathbf{v}_2 \rangle))$.
 - 3.- Probar que $\mathcal{B} = \{\mathbf{u}_3, \mathbf{u}_1 \mathbf{u}_3, -\mathbf{u}_1 + \mathbf{u}_2\}$ es base de V y $\mathcal{C} = \{\mathbf{v}_2, 3\mathbf{v}_1 + 3\mathbf{v}_2, -\mathbf{v}_3\}$ es base de W.
 - 4.- Calcular la matriz de h respecto de las bases \mathcal{B} y \mathcal{C} .

Ejercicio 3.-

- A. Sea k un cuerpo, V un k-espacio vectorial de dimensión finita $\dim V = n$ y $f \colon V \to V$ un endomorfismo tal que $f^2 = f \circ f = 0$, es decir, tal que $f(f(\mathbf{v})) = \mathbf{0}$ para todo $\mathbf{v} \in V$. Demuestra los siguientes enunciados:
 - 1.- Se satisface la inclusión Im $f \subset \text{Ker } f$.
 - 2.- El único autovalor de f es $\alpha = 0$.
 - 3.- El endomorfismo f es diagonalizable si y sólo si f = 0, es decir, si y sólo si $f(\mathbf{v}) = \mathbf{0}$ para todo $\mathbf{v} \in V$.
- B. Sea $f: \mathbb{C}^4 \to \mathbb{C}^4$ el endomorfismo de \mathbb{C} -espacios vectoriales cuya matriz respecto de la base canónica $\mathcal{C} \subset \mathbb{C}^4$ es

$$M_{\mathcal{C}}(f) = A = \left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & z \end{array} \right),$$

donde $z \in \mathbb{C}$ es un número complejo indeterminado.

- 1.- Halla los valores de $z \in \mathbb{C}$ para los cuales f es diagonalizable.
- 2.- Para z=0, calcula una base $\mathcal{B}\subset\mathbb{C}^4$ tal que $M_{\mathcal{B}}(f)$ sea diagonal.
- 3.- Para z=0, obtén una matriz diagonal D y una matriz invertible P tales que $D=P^{-1}AP$.

Nota.- Los tres ejercicios puntúan igual (un tercio del examen). El apartado A puntúa un 40 % de cada ejercicio.