NEURAL DATA ANALYSIS

ALEXANDER ECKER, PHILIPP BERENS, MATTHIAS BETHGE

COMPUTATIONAL VISION AND NEUROSCIENCE GROUP

NOT ALL CODE RUNS ON ALL CELLS

THE WINNER IS...

STIMULUS

Drifting gratings presented in trials

Parameters:

- 2 sec per trial
- 16 directions of motion
- Diameter: 2 deg
- Eccentricity: ~2-3 deg
- Speed: 3.4 cycles / sec
- Spatial frequency: 3 cycles / deg

STRATEGIES FOR ANALYZING DATA

Look at raw data

Visualize spikes

Do not look at

- Fitted tuning functions
- Adaptation indices
- Population averages
- Population histograms

until you spent considerable time looking at raw data and examples

SPIKE RASTERS

PERI-STIMULUS TIME HISTOGRAM

PSTH & SPIKE RASTERS

- Repeated measurements of spike trains with a reference time to align on
 - Stimulus
 - Onset of Movement/Saccade
- Event-related single neuron rate dynamics
- Population raster plot
 - population dynamics
- Align on LFP phase?

PSTH/SDF – HOW TO

1. Average firing rate in a bin

2. Directly estimate spike density

WINDOW SIZE

Optimal gaussian window

Gaussian process

BARS

Bayesian binning

BIN SIZE SELECTION

$$\theta = \frac{1}{\Delta} \int_0^{\Delta} \lambda_t dt$$

$$\hat{\theta} = \frac{k}{n\Delta}$$

BIN SIZE SELECTION

- Divide the observation period T into N bins of width Δ.
- Count the number of spikes k_i from all n trials that fall into i-th bin
- Compute $k = \frac{1}{N} \sum_{i}^{N} k_{i}$ and $v = \frac{1}{N} \sum_{i}^{N} (k_{i} \overline{k})^{2}$
- Compute $C_n(\Delta) = \frac{2\overline{k} v}{(n\Delta)^2}$ 2*mean- variance, and normalized with bin size?
- Search for Δ^* that minimizes $C_n(\Delta)$

BIN SIZE SELECTION

OPTIMAL KERNEL WIDTH

$$n^{2}C_{n}(\omega) = \frac{N}{\omega} + \frac{2}{\omega} \sum_{i \leq j} \left[\exp\left(-\frac{\left(t_{i} - t_{j}\right)^{2}}{4\omega^{2}}\right) - 2\sqrt{2} \exp\left(-\frac{\left(t_{i} - t_{j}\right)^{2}}{2\omega^{2}}\right) \right]$$

PROBLEMS WITH PSTH/SDF

- Problems with PSTH approaches
 - Sharp transients
 - Many bins where rate is constant
- Problems with SDFs
 - Sharp transients are blurred

BAYESIAN BINNING

 Model PSTH as sequence of intervals with constant firing probability

$$P(\vec{z}^{i}|\{f_{m}\},\{k_{m}\},M) = \prod_{m=0}^{M} f_{m}^{s(\vec{z}^{i},m)} (1-f_{m})^{g(\vec{z}^{i},m)}$$

- Bayesian inference for model parameters by computing posterior
- Dynamic programming
- Code online: http://mloss.org/software/view/67/

LATENCY DETECTION

"Latency is where is the signal starts"

LATENCY DETECTION

- Non-parametric estimation as half height of peak firing rate
- Threshold criterion above spontaneous firing

LATENCY DETECTION

Change point detection
$$s(t) = Poisson(\lambda_1), t \in [0, \theta)$$

$$s(t) = Poisson(\lambda_2), t \in [\theta, \kappa)$$

Bayesian binning

 $P(\text{excitatory latency at } t | \{k_m\}, \{f_m\}, M, S)$ 1 if $\exists k_j \in \{k_m\} : k_j + 1 = t$ and $f_j \geqslant S$ and $\forall i < j : f_i < S$ 0 otherwise

SIMPLE OR COMPLEX CELL?

Simple cells:

- Selective for spatial frequency and orientation
- Modulated by phase of a grating

Complex cells:

- Selective for spatial frequency and orientation
- Invariant to phase of the grating

Circuit Building a Simple Cell from LGN Cells

Building a Complex Cell from Simple Cells

LINEARITY INDEX

Compare oscillation at stimulus frequency to DC component

$$LI = \frac{F_1}{F_0}$$

SIMPLE OR COMPLEX?

