Работа с выбросами и пропущенными значениями

Кантонистова Елена

elena.kantonistova@yandex.ru

27 октября 2017

План лекции

- 🕕 Виды признаков
- Работа с пропущенными значениями
 - Типы пропусков
 - Простые методы работы с пропусками
 - Заполнение пропусков методом ближайших соседей
 - Модель для предсказания пропусков
- Работа с выбросами
 - Поиск выбросов
 - Методы машинного обучения и выбросы
 - Поиск выбросов: методы sklearn
- Масштабирование признаков

Виды признаков

Признаки бывают трех видов:

- Числовые (дискретные: оценка за экзамен и непрерывные: вес)
- Порядковые (номер дома)
- Категориальные (адрес)

Виды признаков

Типы пропусков

- Пропуск появился случайно
- Пропуск можно объяснить, исходя из смысла переменных и задачи
- Вероятность появления пропуска зависит от наблюдаемых переменных

Простые методы работы с пропусками

- Удалить все строки в данных, содержащие пропуски
- Заменить пропущенные значения:
 - а) самым частотным значением
 - b) средним или медианой
 - с) нулем
 - d) некоторым уникальным значением (например, -999999)

Заполнение пропусков методом ближайших соседей

Идея: посмотреть на ближайших соседей и взять среднее

- Для каждого объекта находим k ближайших соседей без пропусков
- Усредняем полученные значения по соседям

Модель для предсказания пропусков

Идея: возьмем строки данных, не содержащие пропусков, и обучимся на них с целью предсказать пропуски. То есть столбцы с пропусками - это целевые переменные.

Поиск выбросов: интуитивный и работающий подход

- визуализация данных (например, объекты на карте)
- построение распределений исходных данных
- поиск редких / ошибочных значений

Методы, чувствительные к выбросам:

• Линейная регрессия и другие методы, оптимизирующие ошибку R^2

• Все остальные методы (менее чувствительны к выбросам, но выбросы так или иначе влияют на них)

Поиск выбросов: методы sklearn

- Robust covariance: этот метод используется в предположении, что данные имеют нормальное распределение. Основан на аппроксимации данных эллипсоидом нормального распределения.
- One-class SVM: этот метод предпочтительнее использовать в случае, если данные не распределены нормально (например, если в данных есть два хорошо разделенных кластера). Данный метод это специальный случай применения метода опорных векторов.
- Isolation forest: метод основан на концепции random forests, поэтому он хорошо работает на данных с большим количеством признаков.
- и другие (см. sklearn)

Масштабирование признаков

Почти всегда стоит масштабировать данные. Распространенные варианты масштабирования:

MinMaxScaler:

$$x o \frac{x - min(x)}{max(x) - min(x)}$$

StandardScaler:

$$x \to \frac{x - mean(x)}{std(x)}$$