Отчет по лабораторной работе №2: "Масс-спектроскопия"

Никитин Илья

18 декабря 2020 г.

Содержание

1	Зад	ачи	1
2	Оборудование		2
3	Теория		
	3.1	Масс-спектроскопия	2
	3.2	Принцип работы и устройство масс-спектрометра	
	3.3	Спектрометр SRS RGA-200	2
4	Ана	ализ составов воздуха и других газов	4
	4.1	Ход работы	4
	4.2	Обработка данных	٥
		4.2.1 Воздух	٦
		4.2.2 Гелий	٦
		4.2.3 Углекислый газ	7
		4.2.4 Сравнение углекислого газа и гелия	7
5	Вы	волы	8

1 Задачи

Проанализировать состав воздуха и других газов при помощи масс-спектрометра.

2 Оборудование

- Macc-спектрометр SRS RGA-200
- Компьютер с предустановленным программным обеспечением для массспектрометра SRS RGA-200
- Манометр Pfeiffer TPR281
- Некоторое количество гелия и углекислого газа
- Откачной пост Pfeiffer Vacuum HiCube 80 Eco
- Вакуумная арматура

3 Теория

3.1 Масс-спектроскопия

Масс-спектрометрия — метод исследования и идентификации вещества, позволяющий определять концентрацию различных компонентов в нём (изотопный, элементный или химический состав). Основой для измерения служит ионизация компонентов, позволяющая физически различать компоненты на основе характеризующего их отношения массы к заряду и, измеряя интенсивность ионного тока, производить отдельный подсчёт доли каждого из компонентов (получать масс-спектр вещества).

3.2 Принцип работы и устройство масс-спектрометра

Конструкция масс-спектрометра включает в себя ионизатор вещества образца, ускоритель ионов, источник мощного магнитного поля и набор детекторов потока ионов.

На заряженную частицу, движущуюся в магнитном поле, действует сила Лоренца, искажающая ее траекторию. Определяя разницу траекторий ионизированных атомов, движущихся в магнитном поле, можно делать выводы о соотношении массы и заряда иона.

3.3 Спектрометр SRS RGA-200

Спектрометр, использующийся в работе обладает электронным принципом ионизации. Электронная ионизация - наиболее распространённый в масс-спектрометрии метод ионизации веществ в газовой фазе.

Рис. 1: Устройство масс-спектрометра

При электронной ионизации молекулы анализируемого вещества попадают в поток электронов движущихся от эмиттирующего их катода к аноду.

Электронная ионизация происходит в вакууме, чтобы предотвратить массовое образование ионов атмосферных газов, которые могут рекомбинировать с ионами анализируемого вещества и разрушать их, поэтому для работы спектрометра необходимо подключать его к вакуумному насосу.

Квадруполь представляет собой четыре параллельно и симметрично расположенных монополя (электроды круглого сечения). К электродам попарно в противоположной полярности подаётся определённая комбинация постоянного и высокочастотного напряжения ($U_0 = U + V \cos(\omega t)$, где U- напряжение постоянного тока, $V \cos(\omega t)$ — радиочастотная компонента).

Под действием небольшого ускоряющего напряжения (10-20 В) ионы влетают параллельно осям стержней электродов. Под действием осцилирующего поля, задаваемым электродами, они начинают колебаться вдоль осей х и у. При этом амплитуда колебаний возрастает без изменения направления движения. Ионы, чьи амплитуды достигают высоких значений, нейтрализуются при столкновении с электродами. Фиксированную амплитуду приобретают только те ионы, чьи значения m/z будут отвечать определенному соотношению U/V. Последнее позволяет им свободно перемещаться в квадруполе и быть в конечном итоге детектируемыми. Таким образом, масс-спектр регистрируется путём взаимного изменения значений величин U и V.

Рис. 2: Устройство масс-спектрометра

4 Анализ составов воздуха и других газов

4.1 Ход работы

В ходе работы была собрана экспериментальная установка. К масс-спектрометр с помощью вакуумной арматуры присоединялся турбомолекулярный насос, который откачивал воздух в камере до давления в 10^{-4} Бар. В случае с воздухом, оставалось только включить в работу масс-спектрометр. Для гелия и углекислого газа в камеру после откачки воздуха закачивались непосредственно газы и затем снова откачивались до нужного давления.

Рис. 3: Устройство масс-спектрометра

4.2 Обработка данных

4.2.1 Воздух

Рис. 4: Масс-спектр воздуха

На гистограмме масс-спектра воздуха можно видеть противоречивые результаты. С одной стороны, большое количество кислорода (16 а.е.м) и азота (28 а.е.м), с другой стороны огромное количество газов, которые не могут иметь соизмеримое парциальное давление с азотом и кислородом. Например, газ с атомной массой 3 (из известных мне, это мог бы быть только тритий или гелий-3, что не очень сходится со здравым смыслом).

4.2.2 Гелий

На данном графике можно заметить, что парциальное давление гелия действительно возросло на порядок, что, тем не менее, не позволило бы утверждать, что в камере находится гелий, если бы мы не знали какой газ закачиваем в камеру, так как давление остальных газов увеличилось тоже в среднем на порядок. Судя по всему, в первый раз установившееся давление в системе

Рис. 5: Масс-спектр смеси воздуха и гелия

было ниже, чем при экспериментах с гелием (к установке добавились новые элементы, которые могли повлечь за собой образование не плотно прилегающих стыков), кроме того, гелий очень летучий

4.2.3 Углекислый газ

Рис. 6: Масс-спектр смеси воздуха и углекислого газа

Наконец, хоть какой-то адекватный результат был получен для углекислого газа. Давление всех газов в среднем возрасло на порядок по той же причине, однако давление углекислого газа изменилось несколько больше, чем давление остальных газов. Это позволило бы сказать, что в камеру был закачан углекислый газ, если бы мы этого не знали заранее.

4.2.4 Сравнение углекислого газа и гелия

Так же я решил сделать сравнение масс-спектров смесей углекислого газа и гелия, так как они были получены при схожем давлении. Как видно из графика, разница между ними действительно есть, гелия больше в гелии, углекислого газа в углекислом газе, однако судить о точности таких данных не приходится.

Рис. 7: Масс-спектр смеси воздуха и углекислого газа в сравнении со смесью с гелием

5 Выводы

В ходе работы оказалось, что масс-спектрометр выдал некорректные результаты, которые имели имели только поверхностную связь с реальностью. Тем не менее, удалось пронаблюдать отличие спектра смеси из углекислого газа от спектра смеси воздуха с гелием, хоть эта разность была и не сильно отличимы от флуктуаций давлений других газов в воздухе.