Course Code	Course Name	Credit
CSC304	Digital Logic & Computer Organization and Architecture	3

C	ourse Objective:
1	To have the rough understanding of the basic structure and operation of basic digital circuits and digital computer.
2	To discuss in detail arithmetic operations in digital system.
3	To discuss generation of control signals and different ways of communication with I/O devices.
4	To study the biomedical manner and retretals of advanced competition
*	To study the hierarchical memory and principles of advanced computing.
	ourse Outcome:
C	ourse Outcome: To learn different number systems and basic structure of computer system.
	ourse Outcome: To learn different number systems and basic structure of computer system. To demonstrate the arithmetic algorithms.
C	ourse Outcome: To learn different number systems and basic structure of computer system.
C 1 2	ourse Outcome: To learn different number systems and basic structure of computer system. To demonstrate the arithmetic algorithms.
1 2 3	To learn different number systems and basic structure of computer system. To demonstrate the arithmetic algorithms. To understand the basic concepts of digital components and processor organization.

Module		Detailed Content	Hour
1		Computer Fundamentals	5
	1.1	Introduction to Number System and Codes	
		Number Systems: Binary, Octal, Decimal, Hexadecimal,	
	1.3	Codes: Grey, BCD, Excess-3, ASCII, Boolean Algebra.	
	1.4	Logic Gates: AND, OR, NOT, NAND, NOR, EX-OR	
	1.5	Overview of computer organization and architecture.	
	1.6	Basic Organization of Computer and Block Level functional Units, Von- Neumann Model.	
2		Data Representation and Arithmetic algorithms	8
	2.1	Binary Arithmetic: Addition, Subtraction, Multiplication, Division using Sign Magnitude, 1's and 2's compliment, BCD and Hex Arithmetic Operation.	
	2.2	Booths Multiplication Algorithm, Restoring and Non-restoring Division Algorithm.	
	2.3	IEEE-754 Floating point Representation.	
3		Processor Organization and Architecture	6
	3.1	Introduction: Half adder, Full adder, MUX, DMUX, Encoder, Decoder(IC level).	
	3.2	Introduction to Flip Flop: SR, JK, D, T (Truth table).	
	3.3	Register Organization, Instruction Formats, Addressing modes, Instruction Cycle, Interpretation and sequencing.	
4		Control Unit Design	- 6
	4.1	Hardwired Control Unit: State Table Method, Delay Element Methods.	
	4.2	Microprogrammed Control Unit: Micro Instruction-Format, Sequencing and execution, Micro operations, Examples of microprograms.	
5		Memory Organization	6
	5.1	Introduction and characteristics of memory. Types of RAM and ROM, Memory Hierarchy, 2-level Memory Characteristic,	
	5.2	Cache Memory: Concept, locality of reference, Design problems based on	

6		mapping techniques, Cache coherence and write policies. Interleaved and Associative Memory.	
0		Principles of Advanced Processor and Buses	- 8
		Basic Pipelined Data path and control, data dependencies, data hazards, branch hazards, delayed branch, and branch prediction, Performance measures-CPI, Speedup, Efficiency, throughput, Amdhal's law.	
	6.2	Flynn's Classification, Introduction to multicore architecture.	
	6.3	Introduction to buses: ISA, PCI, USB. Bus Contention and Arbitration.	

extbooks:
R. P. Jain, "Modern Digital Electronic", McGraw-Hill Publication, 4th Edition.
William Stalling, "Computer Organization and Architecture: Designing and Performance", Pearson Publication 10 TH Edition.
John P Hayes, "Computer Architecture and Organization", McGraw-Hill Publication, 3 RD Edition.
Dr. M. Usha and T. S. Shrikanth, "Computer system Architecture and Organization", Wiley publication.
Dr. M. Usha and T. S. Shrikanth, "Computer system Architecture and Organization"
d Computer Organization", Pearson Publication.