Studying Online Behavior at Scale

COMM 4940 Kennedy Hall 213

Notes: bit.ly/36RTkdJ

J. Nathan Matias
@natematias
citizensandtech.org
natematias.com

Causal Knowledge

Studying
Online
Behavior at
Scale

Audits & Accountability

Listening
Manipulation
Or Both?

Will it Work
More Than
Once?

Interpreting,
Using,
Misusing
Results

Experiments in Democracy

Do Firms
Learn from
A/B Tests?

Scientists do Field
Research

Clickbait & Viral Content

Debriefing,
Harm &
Consent

Answering
Scientific
Questions

Experiments Per Day on bing.com

Kohavi, R., Deng, A., Frasca, B., Walker, T., Xu, Y., & Pohlmann, N. (2013, August). **Online controlled experiments at large scale**. In Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 1168-1176). ACM.

COMM 4940: Studying Online Behavior at Scale

Collect Data

Assign Interventions Deliver Interventions

Experimentation Platform

Standard Variables

Sample Calculation

Analysis Software Reporting & Archives

Kohavi, R., Deng, A., Frasca, B., Walker, T., Xu, Y., & Pohlmann, N. (2013, August). **Online controlled experiments at large scale**. In Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 1168-1176). ACM.

Technical

Operational

Business

	Category/	Crawl	Walk	Run	Fly
	Phase	17	↑	<i>3</i> °	
Technical Evolution	Technical focus of product dev.	(1) Logging of signals (2) Work on data quality issues	(1) Setting-up a reliable pipeline (2) Creation of simple metrics	(1) Learning experiments (2) Comprehensive metrics	(1) Standardized process for metric design and evaluation, and OEC improvement
	Activities	(3) Manual analysis of experiments Transitioning from the debugging logs to a format that can be used	Combining signals with analysis units. Four types of metrics are created: debug metrics (largest group), success metrics, guardrail metrics and data	Creation of comprehensive set of metrics using the knowledge from the learning experiments.	
	Experimentation	for data-driven development. No experimentation platform	quality metrics. Platform is required	New platform features	Advanced platform features
	complexity	An initial experiment can be coded manually (ad-hoc).	3 rd party platform can be used or internally developed. The following two features are required:	The experimentation platform should be extended with the following features: • Alerting	The following features are needed: Interaction control and detection Near real-time detection and automatic
	©		Pre-Experiment A/A testing	Control of carry-over effect Experiment iteration support	 shutdown of harmful experiments Institutional memory
	Experimentation	Generating management support	Experiment on individual feature level	Expanding to (1) more features and (2) other products	Experiment with every minor change to portfolio
	pervasiveness	Experimenting with e.g. design options for which it's not a priori clear which one is better. To generate management support to move to the next stage.	Broadening the types of experiments run on a limited set of features (design to performance, from performance to infrastructure experiments)	Experiment on most new features and most products.	Experiment with any change on all products in the portfolio. Even to e.g. small bug fixes on feature level.
Organizational Evolution	Engineering	Limited understanding	Creation and set-up of experiments	Creation and execution of experiments	Creation, execution and analyses of experiments
	team self- sufficiency	External Data Scientist knowledge is needed in order to set-up, execute and analyse a controlled experiment.	Creating the experiment (instrumentation, A/A testing, assigning traffic) is managed by the local Experiment Owners. Data scientists responsible for the platform supervise Experiment Owners and correct errors.	Includes monitoring for bad experiments, making ramp-up and shut-down decisions, designing and deploying experiment-specific metrics.	Scorecards showing the experiment results are intuitive for interpretation and conclusion making.
	Experimentation	Standalone	Embedded	Partnership	Partnership
	team organization	Fully centralized data science team. In product teams, however, no or very little data science skills.	Data science team that implemented the platform supports different product teams and their Experiment Owners.	Product teams hire their own data scientists that create a strong unity with business. Learning between the teams is	Small data science teams in each of the product teams.
	<u>E</u>	The standalone team needs to train the local product teams on experimentation. We introduce the role of Experiment Owner (EO).	Product teams do not have their own data scientists that would analyse experiments independently.	limited to their communication.	Learnings from experiments are shared automatically across organization via the institutional memory features.
Business Evolution	Overall Evaluation Criteria (OEC)	OEC is defined for the first set of experiments with a few key signals that will help ground expectations and evaluation of the experiment results.	OEC evolves from a few key signals to a structured set of metrics consisting of Success, Guardrail and Data Quality metrics. Debug metrics are not a part of OEC.	OEC is tailored with the findings from the learning experiments. Single metric as a weighted combination of others is desired.	OEC is stable, only periodic changes allowed (e.g. 1 per year). It is also used for setting the performance goals for teams within the organization.

Fabijan, A., Dmitriev, P., Olsson, H. H., & Bosch, J. (2017, May). The evolution of continuous experimentation in software product development: from data to a data-driven organization at scale. In 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE). IEEE.

Trapped administrators have so committed themselves in advance to the efficacy of reform that they cannot afford honest evaluation.

Experimental administrators have justified the reform on the basis of the importance of the problem, not the certainty of their answer.

Campbell, D. T. (1969). Reforms as experiments. American psychologist, 24(4), 409.

Goals for Today

- Reminders
- Upworthy / Columbia Journalism Review
- Kohavi / Online controlled experiments at large scale
- Answer questions about the assignment
- If you joined in the last week, I'l have a Q&A afterward

Upworthy Reading

Online Controlled Experiments at Large Scale

Tuesday's Assignment

For this assignment, create a report for Upworthy that describes what you learned and proposes which headline to use. You should also explain the benefits of causal inference, and argue why field experiments could help the foundation test its headlines and beyond.

Your essay should include:

- a paragraph describing the experiment design, including the intervention being tested, the outcome measures being used, and how many participants were included.
- a paragraph summarizing the findings. It should summarize the outcome variable, the means for each condition, and include a statement of the effect size.
- a paragraph that suggests a course of action, contextualizing the findings in a way that the organization would normally think about, such as the payoff per thousand people who see the headline. Think about whether the result could inform future headline writing. Make sure to reflect on the limitations of the sample, which is drawn from the Upworthy's homepage.
- include a table of results and an illustration of the average treatment effect. You could (a) show the effect with
 error bars or (b) show fitted(predicted) values for each condition, with error bars for the treatment (color). If you
 show fitted values, document details of any covariates(predictors) used to generate the fitted values (such as
 weekend).
- a paragraph that builds on this finding in the attempt to convince Upworthy to do more testing with headlines and in the organization.

COMM 4940: How Experiments Work