

Linear Algebra 2

Assignments 4: Linear Transformations, Kernels, Ranges, and Quotient Maps, the Isomorphosm Theorem (§3.3, 3.5)

Alexander Heinlein

Q1 2022/2023

Delft University of Technology

Linear Transformations (§3.3)

Assignment 4.1

Exercise (5) from page 50 of the book.

On $\mathbb{R}_2[t]$, let L be the operator $(L\mathbf{p})(t) = \mathbf{p}(t-1)$. Find the matrix form of L relative to the basis $\mathcal{B} = (t^2 + t + 1, t^2 + 3t + 2, t^2 + 2t + 1)$.

Assignment 4.2

Let the linear transformation

- (a) $L: M_{2,2}(\mathbb{R}) \to M_{2,2}(\mathbb{R})$ be defined by $L(A) = A^{\top}$. Compute $[L]_{\mathcal{E}}$ in the standard basis of $M_{2,2}(\mathbb{R})$. Is the so-defined L a bijective mapping?
- (b) $L: M_{2,2}(\mathbb{R}) \to M_{2,2}(\mathbb{R})$ be defined by $L(A) = A + A^{\top}$. Compute $[L]_{\mathcal{E}}$ in the standard basis of $M_{2,2}(\mathbb{R})$. Is the so-defined L a bijective mapping?
- (c) $L: M_{2,2}(\mathbb{R}) \to \mathbb{R}$ be defined by $L(A) = \operatorname{tr}(A)$, where $\operatorname{tr}(A)$ is the **trace** of a matrix A, which is defined as the sum of the diagonal entries. Compute $[L]_{\&'\&}$ in the standard bases of $M_{2,2}(\mathbb{R})$ and \mathbb{R} , respectively. Is the so-defined L a bijective mapping?

Assignment 4.3 (for submission)

Let the linear transformation $L: \mathbb{R}_3[t] \to \mathbb{R}_2[t]$ be defined by

$$L(\boldsymbol{p}(t)) = \frac{d}{dt}\boldsymbol{p}(t) + t\frac{d^2}{dt^2}\boldsymbol{p}(t)$$

- (a) Give the linear transformation matrices of L relative to
 - the standard bases for $\mathbb{R}_2[t]$ and $\mathbb{R}_3[t]$, and
 - the bases

$$\mathcal{B}_2 = (t^2 - t + 1, t + 1, t^2 + 1)$$
 for $\mathbb{R}_2[t]$,

and

$$\mathcal{B}_3 = (t^2 - t + 1, t + 1, t^2 + 1, t^3)$$
 for $\mathbb{R}_3[t]$.

- (b) Give the coordinates of a polynomial $\mathbf{p}(t) \in \mathbb{R}_3[t]$ relative to the standard basis for $\mathbb{R}_3[t]$ such that it satisfies $[L(\mathbf{p}(t))]_{\mathcal{B}_2} = (-12, -8, 21)^\top$.
- (c) Is p(t) determined uniquely? Give an argument why or why not.

Kernels, Ranges, and Quotient Maps (§3.5)

Assignment 4.4

Prove the following statements:

- (a) A linear mapping $L: V \to W$ is 1-1 (injective) if and only if $\ker L = \{0\}$.
- (b) A linear mapping $L: V \to W$ is onto (surjective) if and only if range (L) = W.

Assignment 4.5

Exercise (3) from page 56 of the book:

Consider the operator
$$L:\mathbb{R}^2 o\mathbb{R}^2,\ L(m{x})=egin{pmatrix}1&1\\1&1\end{pmatrix}m{x}.$$

Find the kernel and the range of L, and construct an explicit isomorphism between $\mathbb{R}^2/\ker L$ and range (L).

Assignment 4.6

Exercise (5) from page 56 of the book:

Let L be the operator on $M_{2,2}$ given by $L(A) = A + A^{\top}$. Find bases for ker L and range (L). What is the rank of L?

Assignment 4.7 (for submission)

Let $L: \mathbb{R}_2[t] \to \mathbb{R}_3[t]$ be the linear transformation defined by

$$L(\boldsymbol{p}(t)) = 2\boldsymbol{p}'(t) + \int_0^t 3\boldsymbol{p}(\tau)d\tau.$$

Show that L is 1-1 (injective) but not onto (surjective).

Assignment 4.8

Let $L: M_{3,3} \to \mathbb{R}$ be the linear transformation defined by

$$L(A) = \operatorname{tr}(A) = \sum_{i=1}^{3} A_{ii}.$$

Show that L is not 1-1 (injective) but onto (surjective).

Assignment 4.9 (for submission)

Let the vector space $V=W_1\oplus W_2$ be given by the direct sum of the subspaces W_1 and W_2 and define the operator $L:V\to V$ as the projection on W_1 along W_2 .

- (a) Show that L is linear and $W_1 = \{ \mathbf{v} \in V : L(\mathbf{v}) = \mathbf{v} \}.$
- (b) Show that $W_1 = \text{range}(L)$ and $W_2 = \text{ker } L$.

Assignment 4.10

With the knowledge of the previous assignment define a linear mapping $L: M_{2,2}(\mathbb{R}) \to M_{2,2}(\mathbb{R})$ such that its kernels is given by the set of all symmetric matrices. What is rank (L)?