The subspace topology

2016-02-02 11:00 -0500

Definition (Subspace topology)

Let (X, τ) be a topological space and $Y \subseteq X$. Then

$$\tau_Y = \{ Y \cap U \mid U \in \tau \}$$

is a topology on Y, called subspace topology.

Definition (Subspace topology)

Let (X, τ) be a topological space and $Y \subseteq X$. Then

$$\tau_Y = \{ Y \cap U \mid U \in \tau \}$$

is a topology on Y, called subspace topology.

Proof

Definition (Subspace topology)

Let (X, τ) be a topological space and $Y \subseteq X$. Then

$$\tau_Y = \{Y \cap U \mid U \in \tau\}$$

is a topology on Y, called subspace topology.

Proof

• Since $\emptyset = Y \cap \emptyset$, and $Y = Y \cap X$, we have (T1).

Definition (Subspace topology)

Let (X, τ) be a topological space and $Y \subseteq X$. Then

$$\tau_Y = \{Y \cap U \mid U \in \tau\}$$

is a topology on Y, called subspace topology.

Proof

- Since $\emptyset = Y \cap \emptyset$, and $Y = Y \cap X$, we have (T1).
- Let $V_{\alpha} \in \tau_{Y}$ for $\alpha \in I$. For each $\alpha \in I$, there is $U_{\alpha} \in \tau$ such that $V_{\alpha} = Y \cap U_{\alpha}$.

Definition (Subspace topology)

Let (X, τ) be a topological space and $Y \subseteq X$. Then

$$\tau_Y = \{Y \cap U \mid U \in \tau\}$$

is a topology on Y, called subspace topology.

Proof

- Since $\emptyset = Y \cap \emptyset$, and $Y = Y \cap X$, we have (T1).
- Let $V_{\alpha} \in \tau_{Y}$ for $\alpha \in I$. For each $\alpha \in I$, there is $U_{\alpha} \in \tau$ such that $V_{\alpha} = Y \cap U_{\alpha}$.
- Then:

$$Y \cap (\cup U_{\alpha}) = \cup (Y \cap U_{\alpha}) = \cup V_{\alpha},$$

and we obtain (T2). The proof of (T3) is an exercise.

Open sets relative to Y

If Y is a subspace of X, and $U \subseteq Y$, it could be that U is open in Y but not open in X.

Base of the subspace topology

Lemma

Let \mathcal{B} be a base for the topology of X. Then

$$\mathcal{B}_Y = \{ Y \cap B \mid B \in \mathcal{B} \}$$

is a base for the subspace topology on Y.

Base of the subspace topology

Lemma

Let $\mathcal B$ be a base for the topology of X. Then

$$\mathcal{B}_{Y} = \{ Y \cap B \mid B \in \mathcal{B} \}$$

is a base for the subspace topology on Y.

Proof

Let U be open in X and $y \in Y \cap U$. Let $B \in \mathcal{B}$ such that $y \in B \subseteq U$. Then $Y \cap B \in \mathcal{B}_Y$, and $y \in Y \cap B \subseteq Y \cap U$. \square

Subspace of the real line

• Consider $Y = [0, 1] \subseteq X = \mathbb{R}$, where X has the standard topology.

- Consider $Y = [0, 1] \subseteq X = \mathbb{R}$, where X has the standard topology.
- A base for the subspace topology on Y is the collection of all sets of the form $(a, b) \cap Y$.

- Consider $Y = [0, 1] \subseteq X = \mathbb{R}$, where X has the standard topology.
- A base for the subspace topology on Y is the collection of all sets of the form $(a, b) \cap Y$.
- They all are of one of the following forms: (a, b), [0, b), (a, 1], Y, \emptyset .

- Consider $Y = [0, 1] \subseteq X = \mathbb{R}$, where X has the standard topology.
- A base for the subspace topology on Y is the collection of all sets of the form $(a, b) \cap Y$.
- They all are of one of the following forms: (a, b), [0, b), (a, 1], Y, \emptyset .
- We obtain that these elements generate the order topology on [0, 1].

Subspace and order topology not always the same

Subspace and order topology not always the same

• Consider now $Y = [0, 1) \cup \{2\} \subseteq X = \mathbb{R}$.

Subspace and order topology not always the same

- Consider now $Y = [0, 1) \cup \{2\} \subset X = \mathbb{R}$.
- In the subspace topology, the set {2} is open.

Subspace and order topology not always the same

- Consider now $Y = [0, 1) \cup \{2\} \subseteq X = \mathbb{R}$.
- In the subspace topology, the set {2} is open.
- But in the order topology on Y, considering that 2 is max Y, any open set that contains 2 has to contain other points.

Order topology in intervals

Lemma (Order topology in intervals)

If X is an ordered set that has the order topology, and $Y \subseteq X$ is an interval, then the order topology and the subspace topology on Y are the same.

Order topology in intervals

Lemma (Order topology in intervals)

If X is an ordered set that has the order topology, and $Y \subseteq X$ is an interval, then the order topology and the subspace topology on Y are the same.

Proof.

Exercise

1. Show that if we consider in $\mathbb R$ the usual topology, then the topology on $\mathbb N$ as a subspace of $\mathbb R$ is discrete.

- 1. Show that if we consider in \mathbb{R} the usual topology, then the topology on \mathbb{N} as a subspace of \mathbb{R} is discrete.
- 2. Let $Y \subseteq X$ be open. Show that $A \subseteq Y$ is open in Y if and only if it is open in X.

- 1. Show that if we consider in $\mathbb R$ the usual topology, then the topology on $\mathbb N$ as a subspace of $\mathbb R$ is discrete.
- 2. Let $Y \subseteq X$ be open. Show that $A \subseteq Y$ is open in Y if and only if it is open in X.
- 3. Let $A \subseteq Y \subseteq X$, where X is a topological space. Show that the topology of A as a subspace of X is the same as $(\tau_Y)_A$.

- 1. Show that if we consider in $\mathbb R$ the usual topology, then the topology on $\mathbb N$ as a subspace of $\mathbb R$ is discrete.
- 2. Let $Y \subseteq X$ be open. Show that $A \subseteq Y$ is open in Y if and only if it is open in X.
- 3. Let $A \subseteq Y \subseteq X$, where X is a topological space. Show that the topology of A as a subspace of X is the same as $(\tau_Y)_A$.
- 4. Show that if X is a topological space, and $A \subseteq Y \subseteq X$, then the topology of A as a subspace of Y is the same as a subspace of X (Y is a subspace of X).

Links

• Subspace topology - Wikipedia, the free encyclopedia