- 1 -SEQUENCE LISTING

<110> ASTRAZENECA AB 5 <120> METHODS <130> JHU/100692-1 GB 09APR02 <140> 10 <141> <160> 17 <170> PatentIn Ver. 2.1 15 <210> 1 <211> 40 <212> DNA <213> Artificial Sequence 20 <400> 1 40 actgtaaaac gacggccagt aatgaggctt aaactgggca 25 <210> 2 <211> 40 <212> DNA <213> Artificial Sequence 30 <220> <223> Description of Artificial Sequence: PCR reverse primer OATPF-1R <400> 2 40 35 accaggaaac agctatgacc ggtagagatt gcttgcaccg <210> 3 <211> 20 40 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Validation 45 primer

	<400> 3	
	tggacacttc atccaaagaa	20
5		
	<210> 4	
	<211> 41	
	<212> DNA	
	<213> Artificial Sequence	
10		
	<220>	
	<223> Description of Artificial Sequence: PCR forward	
	primer OATPF-2F	
1 5		
13	<400> 4	4.7
	actgtaaaac gacggccagt ctatgagcca gatcttctgg c	41
	<210> 5	
20	<211> 43	
-	<212> DNA	
	<213> Artificial Sequence	
	•	
	<220>	
25	<223> Description of Artificial Sequence: PCR reverse	
	primer OATPF-2R	
	<400> 5	
	accaggaaac agctatgacc cagaagcttt gaaagatttt ccc	43
30		
	<210> 6	
	<211> 20	
	<212> DNA	
33	<213> Artificial Sequence	
	<220> <223> Description of Artificial Sequence: Validation	
	primer	
40	br + mer	
10	<400> 6	
	tattctcctt cctccaattc	20
		~0

45 <210> 7

2 0 .

- 3 -

<211> 40

<212> DNA

<213> Artificial Sequence

5 <220>

<223> Description of Artificial Sequence:PCR forward primer OATPF-3F

<400> 7

10 actgtaaaac gacggccagt tgggcaccta attgctacct

40

<210> 8

<211> 40

15 <212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: PCR reverse

20 primer OATPF-3R

<400> 8

accaggaaac agctatgacc tgagggaaca tacccttggt

40

25

<210> 9

<211> 20

<212> DNA

<213> Artificial Sequence

30

<220>

<223> Description of Artificial Sequence: Validation primer

35 <400> 9

atcagtgtgt gtggagctgc

20

<210> 10

40 <211> 40

<212> DNA

<213> Artificial Sequence

<220>

45 <223> Description of Artificial Sequence: PCR forward

WO 03/106708 PCT/GB03/02487

- 4 -

primer OATPF-4F

<400> 10
actobases geoggeout getatteteg geeascaggg

actgtaaaac gacggccagt gctgttctag gcaaacaggg

5

<210> 11

<211> 16

<212> DNA

10 <213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:PCR reverse primer OATPF-4R

15

<400> 11

ccagtagttg ggttgt

16

40

20 <210> 12

<211> 20

<212> DNA

<213> Artificial Sequence

25 <220>

<223> Description of Artificial Sequence: Validation primer

<400> 12

30 cttcttctag acatatatat

20

<210> 13

<211> 40

35 <212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:PCR forward

40 primer OATPF-5F

<400> 13

actgtaaaac gacggccagt cttcagctct ttctgtgccc

40

45

-5-

```
<210> 14
    <211> 41
    <212> DNA
   <213> Artificial Sequence
 5
    <220>
    <223> Description of Artificial Sequence: PCR reverse
         primer OATPF-5R
10 <400> 14
    accaggaaac agctatgacc ttccatcaaa ctaatgaggg g
                                                                      41
    <210> 15
15 <211> 54
   <212> DNA
    <213> Homo sapiens
    <400> 15
20 atttttactt taaaaactaa ctttgacaga tcagagtcaa ggaatgtgtt tata
                                                                      54
    <210> 16
   <211> 3077
25 <212> DNA
    <213> Homo sapiens
   <400> 16
   cattgaaagg aaatggctat ctttgatctc ttcctccaga tcagagtcaa ggaatgtgtt 60
30 tataatggac acttcatcca aagaaaatat ccagttgttc tgcaaaactt cagtgcaacc 120
    tgttggaagg ccttctttta aaacagaata tccctcctca gaagaaaagc aaccatgctg 180
    tggtgaacta aaggtgttet tgtgtgeett gtettttgtt taetttgeea aageattgge 240
   agaaggctat ctgaagagca ccatcactca gatagagaga aggtttgata tcccttcttc 300
   actggtggga gttattgatg gtagttttga aattgggaat ctcttagtta taacatttgt 360
35 tagctacttt ggagccaaac ttcacaggcc aaaaataatt ggagcagggt gtgtaatcat 420
   gggagttgga acactgctca ttgcaatgcc tcagttcttc atggagcagt acaaatatqa 480
   gagatattct ccttcctcca attccactct cagcatctct ccgtgtctcc tagagtcaag 540
   cagtcaatta ccagtttcag ttatggaaaa atcaaaatcc aaaataagta acgaatgtga 600
   agtggacact agetetteea tgtggattta tgtttteetg ggcaatette ttegtggaat 660
40 aggagaaact cocattcago otttgggcat tgcctacctg gatgattttg ccagtgaaga 720
   caatgcaget ttetatattg ggtgtgtgca gacggttgca attataggae caatetttgg 780
   tttcctgtta ggctcattat gtgccaaact atatgttgac attggctttg taaacctaga 840
   tcacataacc attaccccaa aagatcccca gtgggtagga gcctggtggc ttggctatct 900
   aatagcagga atcataagtc ttcttgcagc tgtgcctttc tggtatttac caaagagttt 960
45 accaagatee caaagtagag aggattetaa ttetteetet gagaaateea agtttattat 1020
```

WO 03/106708 PCT/GB03/02487

-6-

```
agatgatcac acagactacc aaacacccca gggagaaaat gcaaaaataa tggaaatggc 1080
   aagagatttt cttccatcac tgaagaatct ttttggaaac ccagtatact tcctatattt 1140
   atgtacaagc actgttcagt tcaattctct gttcggcatg gtgacgtaca aaccaaagta 1200
   cattgagcag cagtatggac agtcatcctc cagggccaac tttgtgatcg ggctcatcaa 1260
5 cattecagea gtggcccttg gaatattete tggggggata gttatgaaaa aatteagaat 1320
   cagtgtgtgt ggagctgcaa aactctactt gggatcatct gtctttggtt acctcctatt 1380
   tettteeetg tttgeactgg getgtgaaaa ttetgatgtg geaggaetaa etgteteeta 1440
   Ccaaggaacc aaacctgtct cttatcatga acgagetete ttttcagatt gcaactcaag 1500
   atgcaaatgt tcagagacaa aatgggaacc catgtgcggt gaaaatggaa tcacatatgt 1560
10 atcagcttgt cttgctggtt gtcaaacctc caacaggagt ggaaaaaata ttatatttta 1620
   caactgcact tgtgtgggaa ttgcagcttc taaatccgga aattcctcag gcatagtggg 1680
   aagatgtcag aaagacaatg gatgtcccca aatgtttctg tatttccttg taatttcagt 1740
   catcacatcc tatactttat ccctaggtgg catacctgga tacatattac ttctgaggtg 1800
   cattaagcca cagcttaagt cttttgcctt gggtatctac acattagcaa taagagttct 1860
15 tgcaggaatc ccagctccag tgtattttgg agttttgatt gatacttcat gcctcaaatg 1920
   gggatttaaa agatgtggaa gtagaggatc atgcagatta tatgattcaa atgtcttcag 1980
   acatatatat ctgggactaa ctgtgatact gggcacagtg tcaattctcc taagcattgc 2040
   agtacttttc attttaaaga aaaattatgt ttcaaaacac agaagtttta taaccaagag 2100
   agaaagaaca atggtgtcta caagattcca aaaggaaaat tacactacaa gtgatcatct 2160
20 gctacaaccc aactactggc caggcaagga aactcaactt tagaaacatg atgactggaa 2220
   gtcatgtctt ctaattggtt gacattttgc aaacaaataa attgtaatca aaagagctct 2280
   aaatttgtaa tttctttctc ctttcaaaaa atgtctactt tgttttggtc ctaggcatta 2340
   ggtaatataa ctgataatat actgaaacat ataatggaag atgcagatga taaaactaat 2400
   tttgaacttt ttaatttata taaattattt tatatcactt acttatttca ctttattttg 2460
25 ctttgtgctc attgatatat attagctgta ctcctagaag aacaattgtc tctattgtca 2520
   cacatggtta tatttaaagt aatttctgaa ctgtgtaatg tgtctagagt aagcaaatac 2580
    tgctaacaat taactcatac cttgggttcc ttcaagtatt actcctatag tattttctcc 2640
    catagetgte tteatetgtg tattttaata atgatettag gatggageag aacatggaga 2700
   ggaagatttc attttaagct cctccttttc tttgaaatac aataatttat atagaaatgt 2760
30 gtagcagcaa attatattgg ggattagaat tttgaattaa tagctctcct actattaatt 2820
    tacatgtgct ttttgtgtgg cgctataagt gactatggtt gtaaagtaat aaaattgatg 2880
    ttaacatgcc caattattgt tcttttatga attcaatgaa tttaaaacta ttgttaaata 2940
    taatactgcc ccactttaat atatgtaagc aacttcctac ttatacacga cgtgttccta 3000
    aaacatgttt gaaaggtgaa tttctgaaag tctacaataa atgtaggtgt tacaacagga 3060
35 aaaaaaaaa aaaaaaa
                                                                      3077
```

```
<210> 17
<211> 712
40 <212> PRT
<213> Homo sapiens
```

<400> 17

Met Asp Thr Ser Ser Lys Glu Asn Ile Gln Leu Phe Cys Lys Thr Ser 45 1 5 10 15

WO 03/106708 PCT/GB03/02487

-7-

	Val	Gln	Pro	Val 20	Gly	Arg	Pro	Ser	Phe 25	Lys	Thr	Glu	Tyr	Pro 30	Ser	Ser
5	Glu	Glu	Ъу в 35	Gln	Pro	Cys	Сув	Gly 40	Glu	Leu	Ъув	Val	Phe 45	Leu	Cys	Ala
10	Leu	Ser 50	Phe	Val	Tyr	Phe	Ala 55	Lys	Ala	Leu	Ala	Glu 60	Gly	Tyr	Leu ,	Lys
10	Ser 65	Thr	Ile	Thr	Gln	Ile 70	Glu	Arg	Arg	Phe	Авр 75	Ile	Pro	Ser	Ser	Leu 80
15	Val	Gly	Val	Ile	Asp 85	Gly	Ser	Phe	Glu	Ile 90	Gly	Asn	Leu	Leu	Val 95	Ile
	Thr	Phe	Val	Ser 100	Tyr	Phe	Gly	Ala	Lys 105	Leu	His	Arg	Pro	Lys 110	Ile	Ile
20	Gly	Ala	Gly 115	Суз	Val	Ile	Met	Gly 120	Val	Gly	Thr	Leu	Leu 125	Ile	Ala	Met
25	Pro	Gln 130	Phe	Phe	Met	Glu	Gln 135	Tyr	Lys	Tyr	Glu	Arg 140	Tyr	Ser	Pro	Ser
25	Ser 145	Asn	Ser	Thr	Leu	Ser 150	Ile	Ser	Pro	Сув	Leu 155	Leu	Glu	Ser	Ser	Ser 160
30	Gln	Leu	Pro	Val	Ser 165		Met	Glu	Lys	Ser 170	Lys	Ser	Lys	Ile	Ser 175	Asn
	Glu	Cys	Glu	Val		Thr	Ser	Ser	Ser		Trp	Ile	Tyr	Val	Phe	Leu
35	Gly	Asn	Leu 195		Arg	Gly	Ile	Gly 200		. Thr	Pro	Ile	Gln 205		Leu	Gly
40	Ile	Ala 210	_	Leu	. Asp	Asp	Phe 215		Ser	Glu	Asp	Asn 220		Ala	Phe	Tyr
40	Ile 225	_	Cys	Val	Gln	Thr 230		. Ala	Ile	: Ile	Gly 235		Ile	Phe	Gly	Phe 240
15	Leu	Leu	Gly	Ser	Leu	сув	Ala	Lys	Leu	Tyr 250		Asp	lle	Gly	Phe	

- 8 -

WO 03/106708 PCT/GB03/02487

	Asn	Leu	Asp	His 260	Ile	Thr	Ile	Thr	Pro 265	Lys	Asp	Pro	Gln	Trp 270	Val	Gly
5	Ala	Trp	Trp 275	Leu	Gly	Tyr	Leu	Ile 280	Ala	Gly	Ile	Ile	Ser 285	Leu	Leu	Ala
10	Ala	Val 290	Pro	Phe	Trp	Tyr	Leu 295	Pro	Lys	Ser	Leu	Pro 300	Arg	Ser	Gln	Ser
	Arg 305	Glu	Asp	Ser	Asn	Ser 310	Ser	Ser	Glu	Lys	Ser 315	Lys	Phe	Ile	Ile	Asp 320
15	Asp	His	Thr	Asp	Tyr 325	Gln	Thr	Pro	Gln	Gly 330	Glu	Asn	Ala	Lys	Ile 335	Met
	Glu	Met	Ala	Arg 340	Asp	Phe	Leu	Pro	Ser 345	Leu	Lys	Asn	Leu	Phe 350	Gly	Asn
20	Pro	Val	Туг 355	Phe	Leu	туг	Leu	Сув 360	Thr	Ser	Thr	Val	Gln 365	Phe	Asn	Ser
25	Leu	Phe 370	Gly	Met	Val	Thr	Tyr 375	Lys	Pro	Lys	Tyr	Ile 380	Glu	Gln	Gln	Tyr
23	Gly 385	Gln	Ser	Ser	Ser	Arg 390	Ala	Asn	Phe	Val	Ile 395	Gly	Leu	Ile	Asn	Ile 400
30	Pro	Ala	Val	Ala	Leu 405	Gly	Ile	Phe	Ser	Gly 410	Gly	Ile	Val	Met	Lys 415	Lys
	Phe	Arg	Ile	Ser 420	Val	Сув	Gly	Ala	Ala 425	Lys	Leu	Tyr	Leu	Gly 430	Ser	Ser
35	Val	Phe	Gly 435	Tyr	Leu	Leu	Phe	Leu 440	Ser	Leu	Phe	Ala	Leu 445	Gly	Сув	Glu
40	Asn	Ser 450	Asp	Val	Ala	Gly	Leu 455	Thr	Val	Ser	Tyr	Gln 460	Gly	Thr	Lys	Pro
40	Val 465	Ser	Tyr	His	Glu	Arg 470	Ala	Leu	Phe	Ser	Asp 475	Суз	Asn	Ser	Arg	Сув 480
45	Lys	Сув	Ser	Glu	Thr 485	Lys	Trp	Glu	Pro	Met 490	Сув	Gly	Glu	Asn	Gly 495	Ile

	Thr	Tyr	Val	Ser 500	Ala	Суз	Leu	Ala	Gly 505	Cys	Gln	Thr	Ser	Asn 510	Arg	Ser
5	Gly	Lys	Asn 515	Ile	Ile	Phe	Tyr	Asn 520	Сув	Thr	Сув	Val	Gly 525	Ile	Ala	Ala
10	Ser	Lys 530	Ser	Gly	Asn	Ser	Ser 535	Gly	Ile	Val	Gly	Arg 540	Сув	Gln	Lys	Asp
	Asn 545	Gly	Cys	Pro	Gln	Met 550	Phe	Leu	Tyr	Phe	Leu 555	Val	Ile	Ser	Val	11e
15	Thr	Ser	Tyr	Thr	Leu 565	Ser	Leu	Gly	Gly	Ile 570	Pro	Gly	Tyr	Ile	Leu 575	Lev
	Leu	Arg	Сув	11e 580	гуз	Pro	Gln	Leu	L уs 585	Ser	Phe	Ala	Leu	Gly 590	Ile	Туг
20	Thr	Leu	Ala 595	Ile	Arg	Val	Leu	Ala 600	Gly	Ile	Pro	Ala	Pro 605	Val	Tyr	Phe
25	Gly	Val 610	Leu	Ile	Asp	Thr	Ser 615	Сув	Leu	Lys	Trp	Gly	Phe	Lys	Arg	Сув
	Gly 625	Ser	Arg	Gly	Ser	Сув 630	Arg	Leu	Тут	Asp	Ser 635	Asn	Val	Phe	Arg	His
30	Ile	Tyr	Leu	Gly	Leu 645	Thr	Val	Ile	Leu	Gly 650	Thr	Val	Ser	Ile	Leu 655	Leu
	Ser	Ile	Ala	Val 660	Leu	Phe	Ile	Leu	Lys 665	Lys	Asn	Tyr	Val	Ser 670	Lys	His
35	Arg	Ser	Phe 675	Ile	Thr	ГЛS	Arg	Glu 680	Arg	Thr	Met	Val	Ser 685	Thr	Arg	Phe
40	Gln	Ъув 690	Glu	Asn	Tyr	Thr	Thr 695	Ser	Asp	Hìs	Leu	Leu 700	Gln	Pro	Asn	Туг
•	Trp 705	Pro	Gly	Lys	Glu	Thr 710	Gln	Leu						•		