Probability and Statistics Assignment No. 6

1. Let (X,Y) have the joint pmf

$Y \setminus X$	-1	0	1
-2	1/6	1/12	1/6
1	1/6	1/12	1/6
2	1/12	0	1/12

Find the joint pmf of (U,V) where U = |X| and $V = Y^2$.

- 2. Projectiles are fired at the origin of an XY coordinate system. Assume that the point which is hit, say (X,Y), consists of a pair of independent standard normal r.v.'s. For two projectiles fired independently of one another, let (X_1, Y_1) and (X_2, Y_2) represent the points which are hit and Z be the distance between them. What is the distribution of Z^2 ?
- 3. Let X_1 and X_2 be independent r.v.'s each with negative exponential distribution with pdf $\lambda \exp\{-\lambda x\}$, x > 0. Find the joint and marginal distributions of $Y_1 = X_1/X_2$ and $Y_2 = X_1+X_2$.
- 4. Let X_1 , X_2 be i.i.d. N(0,1) and $Y_1 = {X_1}^2 + {X_2}^2$, $Y_2 = {X_1}/{X_2}$. Are Y_1 , Y_2 independent?
- 5. Let X_1 and X_2 have independent gamma distributions with parameters (n_1,λ) and (n_2,λ) . Find the distributions of $Y=X_1/(X_1+X_2)$. Is Y independent of $Z=X_1+X_2$? Is Z independent of $U=X_1/X_2$?
- 6. Let X_1 , X_2 , X_3 be independent exponential random variables with the probability density $f(x) = e^{-x}$, x > 0. Define random variables Y_1 , Y_2 and Y_3 as $Y_1 = X_1 + X_2 + X_3, Y_2 = \frac{X_1 + X_2}{X_1 + X_2 + X_3}, Y_3 = \frac{X_1}{X_1 + X_2}.$

Find the joint and marginal densities of Y_1 , Y_2 and Y_3 . Are they independent?

- 7. Suppose independent random variables Y_1 , Y_2 , Y_3 are such that $Y_1 = \ln X_1 \sim N(4, 1)$; $Y_2 = \ln X_2 \sim N(3, 1)$; $Y_3 = \ln X_3 \sim N(2, 0.5)$. Find the distribution and the median of $W = e^2 X_1^2 X_2^{1.5} X_3^{1.28}$. Determine L and R such that $P(L \le W \le R) = 0.90$.
- 8.Let (X, Y) have bivariate normal distribution with density function

$$f(x,y) = \frac{1}{\pi\sqrt{3}}e^{-\frac{2}{3}(x^2 - xy + y^2)}, -\infty < x, y < \infty.$$

Find the correlation coefficient between X and Y, P(-1 < X < 1|Y=1), V(2X + 3Y) and P(-5 < 2X + 3Y < 8).

9. A straight rod consists of two sections **A** and **B**, each of which is manufactured independently on a different machine. The length (in inches) of section **A** is normally distributed with mean **20** and variance **0.03** and the length of section **B** is normally distributed with mean **14** and variance **0.01**. The rod is formed by joining the two sections together as shown below:

Suppose that the rod can be used in the construction of an airplane wing if its total length is between **33.6** to **34.4** inches. What is the probability that the rod can be used in the construction?