Deal......

. . .

Open problems

First-order logic with self-reference

Reijo Jaakkola reijo.jaakkola@tuni.fi

Tampere University

Funding: Theory of computational logics Academy of Finland grants 324435 and 328987 • CL was introduced in [Kuusisto, 14], where it was also proved that it characterises the class Σ^0_1 (= ${\rm RE}$), i.e., the class of recursively enumerable languages.

- CL was introduced in [Kuusisto, 14], where it was also proved that it characterises the class Σ^0_1 (= RE), i.e., the class of recursively enumerable languages.
- CL extends standard first-order logic FO with two novel features.

- CL was introduced in [Kuusisto, 14], where it was also proved that it characterises the class Σ^0_1 (= ${\rm RE}$), i.e., the class of recursively enumerable languages.
- CL extends standard first-order logic FO with two novel features.
 - The ability to modify the underlying model: adding new elements to the domain of the model, new tuples to relations and even new relations.

- CL was introduced in [Kuusisto, 14], where it was also proved that it characterises the class Σ^0_1 (= RE), i.e., the class of recursively enumerable languages.
- CL extends standard first-order logic FO with two novel features.
 - The ability to modify the underlying model: adding new elements to the domain of the model, new tuples to relations and even new relations.
 - 2. The ability to use recursion (looping) via self-reference.

- CL was introduced in [Kuusisto, 14], where it was also proved that it characterises the class Σ^0_1 (= ${\rm RE}$), i.e., the class of recursively enumerable languages.
- CL extends standard first-order logic FO with two novel features.
 - The ability to modify the underlying model: adding new elements to the domain of the model, new tuples to relations and even new relations.
 - 2. The ability to use recursion (looping) via self-reference.

FO extended with just recursion (2.) is called the static CL (SCL).

- CL was introduced in [Kuusisto, 14], where it was also proved that it characterises the class Σ^0_1 (= ${\rm RE}$), i.e., the class of recursively enumerable languages.
- CL extends standard first-order logic FO with two novel features.
 - The ability to modify the underlying model: adding new elements to the domain of the model, new tuples to relations and even new relations.
 - 2. The ability to use recursion (looping) via self-reference.

FO extended with just recursion (2.) is called the static CL (SCL).

 SCL is in itself a very natural extension of FO and it bears some resembles with the programming language IND introduced in [Harel & Kozen, 84].

- CL was introduced in [Kuusisto, 14], where it was also proved that it characterises the class Σ^0_1 (= ${\rm RE}$), i.e., the class of recursively enumerable languages.
- CL extends standard first-order logic FO with two novel features.
 - The ability to modify the underlying model: adding new elements to the domain of the model, new tuples to relations and even new relations.
 - 2. The ability to use recursion (looping) via self-reference.

FO extended with just recursion (2.) is called the static CL (SCL).

- SCL is in itself a very natural extension of FO and it bears some resembles with the programming language IND introduced in [Harel & Kozen, 84].
- The purpose of this presentation is to present some very recent work on the proof theory of SCL and its bounded variant BndSCL.

▶ We fix a set $LBS = \{L_i \mid i \in \mathbb{N}\}$ of label symbols.

- ▶ We fix a set $LBS = \{L_i \mid i \in \mathbb{N}\}$ of label symbols.
- ▶ For each $L \in LBS$ we have a corresponding reference symbol C_L .

- ▶ We fix a set $LBS = \{L_i \mid i \in \mathbb{N}\}$ of label symbols.
- ▶ For each $L \in LBS$ we have a corresponding **reference symbol** C_L .

Definition

Let au be a relational vocabulary.

- ▶ We fix a set $LBS = \{L_i \mid i \in \mathbb{N}\}$ of label symbols.
- ▶ For each $L \in LBS$ we have a corresponding reference symbol C_L .

Definition

Let au be a relational vocabulary. The set of formulas SCL[au] is defined by the following grammar:

$$\varphi := R(\overline{x}) \mid C_L \mid \neg \varphi \mid \varphi \land \varphi \mid \exists x \varphi \mid L \varphi,$$

where $R \in \tau$ and $L \in LBS$.

Open problems

• We associate to each structure \mathcal{A} , assignment s and a formula φ of SCL a two-player game $\mathcal{G}_{\infty}(\mathcal{A}, s, \varphi)$.

- We associate to each structure \mathcal{A} , assignment s and a formula φ of SCL a two-player game $\mathcal{G}_{\infty}(\mathcal{A}, s, \varphi)$.
- Important: the game is not always determined.

- We associate to each structure \mathcal{A} , assignment s and a formula φ of SCL a two-player game $\mathcal{G}_{\infty}(\mathcal{A}, s, \varphi)$.
- Important: the game is not always determined.
- Positions of the game are triples $(r, \psi, \#)$, where r is the **current** assignment, ψ is a **subformula** of φ and $\# \in \{+, -\}$.

- We associate to each structure \mathcal{A} , assignment s and a formula φ of SCL a two-player game $\mathcal{G}_{\infty}(\mathcal{A}, s, \varphi)$.
- Important: the game is not always determined.
- Positions of the game are triples $(r, \psi, \#)$, where r is the current assignment, ψ is a subformula of φ and $\# \in \{+, -\}$.

 $\mathcal{A}, s \vDash \varphi \iff \text{Verifier has a winning strategy in the game } \mathcal{G}_{\infty}(\mathcal{A}, s, \varphi).$

First-order logic with self-reference

reijo.jaakkola@tuni.f

Background

Syntax and semantics

O----

• Rules of the game $\mathcal{G}_{\infty}(\mathcal{A},s,arphi)$ are very natural.

Open problems

- Rules of the game $\mathcal{G}_{\infty}(\mathcal{A},s,arphi)$ are very natural.
 - Game starts from the position $(s, \varphi, +)$.

- ▶ Rules of the game $\mathcal{G}_{\infty}(\mathcal{A}, s, \varphi)$ are very natural.
 - Game starts from the position $(s, \varphi, +)$.
 - First-order connectives are standard. E.g. in a position $(r, \psi \land \chi, +)$ Falsifier chooses whether the game continues from position $(r, \psi, +)$ or position $(r, \chi, +)$.

- ▶ Rules of the game $\mathcal{G}_{\infty}(\mathcal{A}, s, \varphi)$ are very natural.
 - Game starts from the position $(s, \varphi, +)$.
 - First-order connectives are standard. E.g. in a position $(r, \psi \land \chi, +)$ Falsifier chooses whether the game continues from position $(r, \psi, +)$ or position $(r, \chi, +)$.
 - From $(r, L\psi, \#)$ the game proceeds to $(r, \psi, \#)$.

- Rules of the game $\mathcal{G}_{\infty}(\mathcal{A}, s, \varphi)$ are very natural.
 - Game starts from the position $(s, \varphi, +)$.
 - First-order connectives are standard. E.g. in a position $(r, \psi \land \chi, +)$ Falsifier chooses whether the game continues from position $(r, \psi, +)$ or position $(r, \chi, +)$.
 - From $(r, L\psi, \#)$ the game proceeds to $(r, \psi, \#)$.
 - From $(r, C_L, \#)$ the game can continue in two different ways.

- Rules of the game $\mathcal{G}_{\infty}(\mathcal{A}, s, \varphi)$ are very natural.
 - Game starts from the position $(s, \varphi, +)$.
 - First-order connectives are standard. E.g. in a position $(r, \psi \land \chi, +)$ Falsifier chooses whether the game continues from position $(r, \psi, +)$ or position $(r, \chi, +)$.
 - From $(r, L\psi, \#)$ the game proceeds to $(r, \psi, \#)$.
 - From (r, C_L, #) the game can continue in two different ways.
 - 1. If C_L does not refer to a subformula of φ , then the game stops and neither player wins.

- Rules of the game $\mathcal{G}_{\infty}(\mathcal{A}, s, \varphi)$ are very natural.
 - Game starts from the position $(s, \varphi, +)$.
 - First-order connectives are standard. E.g. in a position $(r, \psi \land \chi, +)$ Falsifier chooses whether the game continues from position $(r, \psi, +)$ or position $(r, \chi, +)$.
 - From $(r, L\psi, \#)$ the game proceeds to $(r, \psi, \#)$.
 - From $(r, C_l, \#)$ the game can continue in two different ways.
 - 1. If C_L does not refer to a subformula of φ , then the game stops and neither player wins.
 - 2. If refers to a subformula ψ of φ , then the game proceeds to position $(r,\psi,\#).$

Background

Syntax and semantics

Open problems

Example

The formulas C_L and LC_L are undetermined in every structure.

Example

The formulas C_L and LC_L are undetermined in every structure.

Example

The formula

$$\neg \exists x L \exists y (y < x \land \exists x (x = y \land C_L))$$

expresses that < is well-founded.

The satisfiability problem of SCL is $\Sigma^1_2\text{-complete}.$

The satisfiability problem of SCL is Σ_2^1 -complete.

On the positive side, the validity problem for SCL is in Σ_1^0 .

The satisfiability problem of SCL is Σ_2^1 -complete.

- On the positive side, the validity problem for SCL is in Σ^0_1 .
- We were able to design a proof system ${\mathcal S}$ with the following property: for every set Σ of FO-formulas and an SCL formula φ we have that

$$\Sigma \vDash \varphi \Leftrightarrow \Sigma \vdash_{\mathcal{S}} \varphi.$$

The satisfiability problem of SCL is Σ_2^1 -complete.

- On the positive side, the validity problem for SCL is in Σ^0_1 .
- We were able to design a proof system ${\mathcal S}$ with the following property: for every set Σ of FO-formulas and an SCL formula φ we have that

$$\Sigma \vDash \varphi \Leftrightarrow \Sigma \vdash_{\mathcal{S}} \varphi$$
.

▶ Main technical tool are FO-formulas that "approximate" SCL formulas.

▶ For every $n \in \mathbb{N}$ the game $\mathcal{G}_n(\mathcal{A}, s, \varphi)$ is obtained from $\mathcal{G}_{\infty}(\mathcal{A}, s, \varphi)$ by requiring that looping can happen at most n-times.

- For every $n \in \mathbb{N}$ the game $\mathcal{G}_n(\mathcal{A}, s, \varphi)$ is obtained from $\mathcal{G}_{\infty}(\mathcal{A}, s, \varphi)$ by requiring that looping can happen at most n-times.
- ▶ For every $n \in \mathbb{N}$ the nth approximant Φ_{φ}^{n} of φ describes the game \mathcal{G}_{n} .

- ▶ For every $n \in \mathbb{N}$ the game $\mathcal{G}_n(\mathcal{A}, s, \varphi)$ is obtained from $\mathcal{G}_{\infty}(\mathcal{A}, s, \varphi)$ by requiring that looping can happen at most n-times.
- For every $n \in \mathbb{N}$ the nth approximant Φ_{φ}^{n} of φ describes the game \mathcal{G}_{n} .
- Φ_{φ}^{n} is a first-order formula!

- ▶ For every $n \in \mathbb{N}$ the game $\mathcal{G}_n(\mathcal{A}, s, \varphi)$ is obtained from $\mathcal{G}_{\infty}(\mathcal{A}, s, \varphi)$ by requiring that looping can happen at most n-times.
- For every $n \in \mathbb{N}$ the *n*th approximant Φ_{φ}^n of φ describes the game \mathcal{G}_n .
- Φ_{φ}^{n} is a first-order formula!

Proposition

Eloise has a winning strategy in $G_n(A, s, \varphi)$ if and only if $A, s \models \Phi_{\varphi}^n$.

First-order logic with self-reference

Reijo Jaakkola reijo.jaakkola@tuni.fi

Background

Proof system for SCL

Theorem

Let φ be a formula of SCL. Suppose that for every $n \in \mathbb{N}$ there exists a structure \mathcal{A} and an assignment s such that Eloise does not have a winning strategy in the game $\mathcal{G}_n(\mathcal{A}, s, \varphi)$. Then there exists a structure \mathcal{A} and an assignment s such that Eloise does not have a winning strategy in the game $\mathcal{G}_{\infty}(\mathcal{A}, s, \varphi)$.

First-order logic with self-reference

Reijo Jaakkola reijo.jaakkola@tuni.fi

Background

Proof system for SCL

Theorem

Let φ be a formula of SCL. Suppose that for every $n \in \mathbb{N}$ there exists a structure \mathcal{A} and an assignment s such that Eloise does not have a winning strategy in the game $\mathcal{G}_n(\mathcal{A},s,\varphi)$. Then there exists a structure \mathcal{A} and an assignment s such that Eloise does not have a winning strategy in the game $\mathcal{G}_{\infty}(\mathcal{A},s,\varphi)$.

Corollary

A formula of SCL is valid if and only if one of its approximants is.

 Make the proof system FO-complete so that we can deduce all the valid approximants.

- Make the proof system FO-complete so that we can deduce all the valid approximants.
- Add enough rules so that we can deduce from approximants the corresponding SCL formulas.

- Make the proof system FO-complete so that we can deduce all the valid approximants.
- Add enough rules so that we can deduce from approximants the corresponding SCL formulas.
- Unfortunately not so straightforward...

 ${\ }^{\blacktriangleright}$ What is the complexity of the satisfiability problem of ${\rm SCL}^2?$ In particular, is it decidable?

- ${}^{\blacktriangleright}$ What is the complexity of the satisfiability problem of ${\rm SCL}^2?$ In particular, is it decidable?
- Design a useful model comparison game (or EF-game) for SCL.

- ${}^{\blacktriangleright}$ What is the complexity of the satisfiability problem of ${\rm SCL}^2?$ In particular, is it decidable?
- Design a useful model comparison game (or EF-game) for SCL.
- Developing simpler weakly complete proof systems for SCL.

Thanks for listening! :) Questions?

First-order logic with self-reference

Reijo Jaakkola reijo.jaakkola@tuni.fi

Backgroun

Syntax and semanti

Open problems