Tutorium 06: λ -Kalkül

Paul Brinkmeier

25. November 2019

Tutorium Programmierparadigmen am KIT

Heutiges Programm

Programm

- Übungsblatt 5
- Church-Zahlen
- ullet Altklausuraufgaben zum λ -Kalkül

Übungsblatt 5

2.1, 2.3 — AST: Datenstruktur

```
module AstType where
data Exp t
  = Var t
  | Const Integer
  | Add (Exp t) (Exp t)
  | Less (Exp t) (Exp t)
  | And (Exp t) (Exp t)
  | Not (Exp t)
  | If (Exp t) (Exp t) (Exp t)
```

- t ist Typvariable, um bspw. Ints als Namen zuzulassen
- Das kommt bspw. bei Compiler-Optimierungen zum Einsatz

Wiederholung

λ -Terme

Ein Term im λ -Kalkül hat eine der drei folgenden Formen:

Notation	Besteht aus	Bezeichnung
X	x : Variablenname	Variable
$\lambda p.b$	p : Variablenname	Abstraktion
	$b:\lambda$ -Term	
f a	f , a : λ -Terme	Funktionsanwendung

• "λ-Term ": rekursive Datenstruktur

Begriffe im λ -Kalkül

Begriff	Formel	Bedeutung
lpha-Äquivalenz	$t_1\stackrel{lpha}{=} t_2$	t_1 , t_2 sind gleicher
		Struktur
η -Äquivalenz	$\lambda x.f \ x \stackrel{\eta}{=} f$	"Unterversorgung"
Freie Variablen	$fv(\lambda p.b) = b$	Menge der nicht durch
		λ s gebundenen Varia-
		blen
Substitution	$(\lambda p.b)[b \rightarrow c] = \lambda p.c$	Ersetzung nicht-freier
		Variablen
Redex	(λp.b) t	"Reducible expression"
β -Reduktion	$(\lambda p.b) t \Rightarrow b[p \rightarrow t]$	"Funktionsanwendung"

Church-Zahlen im λ-Kalkül

Peano-Axiome

$$c_0 = ?$$
 $c_1 = s(c_0)$
 $c_2 = s(s(c_0))$
 $c_3 = s(s(s(s(s(s(c_0)))))))$

- 1. Die 0 ist Teil der natürlichen Zahlen
- 2. Wenn n Teil der natürlichen Zahlen ist, ist auch s(n) = n + 1 Teil der natürlichen Zahlen

Church-Zahlen

- ullet "Zahlen" im λ -Kalkül werden durch Funktionen in Normalform dargestellt
- n f x = f n-mal angewendet auf x
- Bspw. $(3 g y) = g (g (g y)) = g^3 y$ Mit $3 = \lambda f.\lambda x.f (f (f x))$
- Schreibt eine λ -Funktion succ, die eine Church-Zahl nimmt und zu deren Nachfolger auswertet

Church-Zahlen

- ullet "Zahlen" im λ -Kalkül werden durch Funktionen in Normalform dargestellt
- n f x = f n-mal angewendet auf x
- Bspw. $(3 g y) = g (g (g y)) = g^3 y$ Mit $3 = \lambda f.\lambda x.f (f (f x))$
- Schreibt eine λ -Funktion succ, die eine Church-Zahl nimmt und zu deren Nachfolger auswertet
- Übertragt die Funktion in euren Haskell-Code vom letzten Mal und wertet succ c₀ durch wiederholtes Anwenden von normal Beta aus
- Vergleicht euer Ergebnis mit dem von Wavelength
 - //pp.ipd.kit.edu/lehre/misc/lambda-ide/Wavelength. html

Klausuraufgabe 1

Klausuraufgabe 2