Continuous Random Variables

Suppose X is a random variable with cdf $F_X(x)$, that is $F_X(x) = P(X \le x)$. We say X is a continuous random variable provided that $F_X : \mathbb{R} \to \mathbb{R}$ is a continuous function.

A probability density function for a continuous random variable is a function $f_X : \mathbb{R} \to \mathbb{R}$ satisfying

$$F_X(x) = P(X \le x) = \int_{-\infty}^x f_X(t) dt.$$

We note that:

- 1. f_X need not be a continuous function for F_X to be continuous.
- 2. $P(a \le X \le b) = P(X \text{ takes values in } [a, b]) = \int_a^b f_X(x) dx$.
- 3. $P(X = a) = P(a \le x \le a) = \int_a^a f_X(x) dx = 0$. That is, the probability that X takes any fixed number equals to zero.
- 4. Via the Fundamental Theorem of Calculus, the integration and differentiation are inverse operations, that is

$$\frac{d}{dx}\left(\int_a^x f(u)\,du\right) = f(x)\,,$$

from which we obtain the following theorem:

Theorem 0.1

If the cdf is differentiable, $F'(x) = f_X(x)$. That is,

$$\frac{d}{dx} \int_{-\infty}^{x} f_X(t) dt = f_X(x).$$

- 5. From (4), to calculate the pdf of X, we can first calculate the cdf $F_X(x)$ of X, then if $F_X(x)$ is dfferentiable, $f_X(x) = F'(x)$.
- 6. We also note that the Leibniz Rule for differentiating an integral gives

$$\frac{d}{dx} \left(\int_{a(x)}^{b(x)} f(t) dt \right) = b'(x) \cdot f(b(x)) - a'(x) \cdot f(a(x)).$$

Theorem 0.2

Let $f: \mathbb{R} \to \mathbb{R}$ be a function satisfying $f_X(x) \geq 0$ for all x and $\int_{-\infty}^{\infty} f(x) dx = 1$. Then f(x) is a pdf of some random variable. On the other hand, if $f_X(x)$ is a pdf of X, then $f_X(x)$ satisfies $f_X(x) \geq 0$ for all x and $\int_{-\infty}^{\infty} f(x) dx = 1$.

Example Consider the function $f: \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} x^2(1-x) & x \in (0,1) \\ 0 & \text{otherwise} \end{cases}$$

We would like to find a constant c such that $f_X = c \cdot f$ defines a pdf of a ramdom variable. First we notice that $f(x) = x^2(1-x) \ge 0$ whenever $x \in (0,1)$. Now we compute

$$\int_{-\infty}^{\infty} f(x) \, dx = \int_{0}^{1} x^{2} (1 - x) \, dx = \int_{0}^{1} x^{2} - x^{3} \, dx = \left(\frac{x^{3}}{3} - \frac{x^{4}}{4}\right) \Big|_{0}^{1} = \frac{1}{12} \, .$$

Thus if c = 12, $f_X = 12 \cdot f$, then f_X is a pdf of a random variable with the correct normalization.

$$f_X(x) = \begin{cases} 12 \cdot x^2 (1-x) & x \in (0,1) \\ 0 & \text{otherwise} \end{cases}.$$

In this case, we can calculate

$$F_X(x) = \int_{-\infty}^x f_X(u) \, du = \int_{-\infty}^x 12 \cdot u^2 (1 - u) \, du$$

$$= 12 \cdot \lim_{c \to -\infty} \int_c^x u^2 (1 - u) \, du$$

$$= 12 \cdot \lim_{c \to -\infty} \left(\left(\frac{x^3}{3} - \frac{x^4}{4} \right) - \left(\frac{c^3}{3} - \frac{c^4}{4} \right) \right)$$

$$= 12 \left(\frac{x^3}{3} - \frac{x^4}{4} \right) .$$

Here we observer that $F'_X(x) = F_X(x)$.

Example: Consider X being a random variable with pdf F_X and cdf F_X , and let $Y = 4X^5$ be a new random variable. To calculate the pdf of Y, we first note that in general $f_Y(x) \neq 4(f(x))^5$. For $y \in \mathbb{R}$,

$$F_Y(y) = P(Y \le y) = P(4X^5 \le y) = P(X^5 \le y/4) = P(X \le (y/4)^{1/5}) = F_X((y/4)^{1/5}).$$

Now, using chain rule we can compute

$$f_Y(y) = \frac{d}{dy} (F_Y(y)) = \frac{d}{dy} \left(F_X((y/4)^{1/5}) \right) = F_X' \left((y/4)^{1/5} \right) \cdot (y/4)^{-4/5} / 20.$$

With f_X defined by the last example, we obtain

$$F_X'\left(\left(\frac{y}{4}\right)^{1/5}\right) = f_x\left(\left(\frac{y}{4}\right)^{1/5}\right) = 12 \cdot \left(\frac{y}{4}\right)^{2/5} \cdot \left(1 - \left(\frac{y}{4}\right)^{1/5}\right) \,,$$

and thus

$$f_Y(y) = \begin{cases} \frac{3}{5} \cdot \left(\frac{y}{4}\right)^{-2/5} \cdot \left(1 - \left(\frac{y}{4}\right)^{1/5}\right) & y \in (0,1) \\ 0 & \text{otherwise} \end{cases}.$$

Parameters Attached to Continuous Variables

Suppose X is a continuous random variable with pdf $f_X(x)$.

1. The expected value of X is given by

$$E(X) = \mu_X = \int_{-\infty}^{\infty} x f_X(x) dx.$$

2. If Y = h(X), then

$$E(Y) = E(h(X)) = \int_{-\infty}^{\infty} h(x) \cdot f_X(x) dx = \int_{-\infty}^{\infty} y \cdot f_Y(y) dy.$$

3. The variance of X is defined by

$$\sigma_X^2 = V(X) = \int_{-\infty}^{\infty} (x - \mu_X)^2 \cdot f_X(x) \, dx \, .$$

Note that $V(X) = E(X^2) - E(X)$ still holds.

4. The moment generating function is defined by

$$M_X(t) = E(e^{tX}) = \int_{-\infty}^{\infty} e^{tx} \cdot f_X(x) dx$$
.

- 5. For $\alpha \in (0,1)$, x_{α} is the α^{th} critical value for X is x_{α} satisfies $P(X \geq x_{\alpha}) = \alpha$, which holds iff $1 P(X \leq x_{\alpha}) = \alpha$, iff $P(X \leq x_{\alpha}) = (1 \alpha)$, iff $F_X(x_{\alpha}) = 1 \alpha$.
- 6. For $p \in (0,1)$, n_p is called the p^{th} percentile provided that $P(X \leq n_p) = p$, which is equivalent to $F_X(n_p) = p$. We note that α^{th} critical value is the same as the $(1-\alpha)^{\text{th}}$ percentile.