Part 4

Changing basis to solve sparsity promoting problems: Application to Interpolation

M D Sacchi University of Alberta

Interpolation problem

- Data to interpolate is not sparse
- Coefficients representing the data are sparse if the basis functions to represent the data are properly selected
- Let's discuss how one can solve the interpolation problem via a sparsity promoting algorithm
 - First we will use explicit operator (Matrices)
 - Then Transforms applied as implicit linear operators

Explicit

$$y = Lx \leftarrow L \leftarrow x$$

$$\tilde{x} = L'y \leftarrow L' \leftarrow y$$

Implicit

$$\tilde{\mathbf{x}} = \mathbf{L}'\mathbf{y} - \mathbf{Do_lt}$$

$$flag=a$$

f: Forward

a: Adjoint or transpose

Interpolation problem

- Given ideal data m
- Assume the data was sampled to produce observations d
- d = Sm
- Where S is the Sampling Operator that extracts N samples of the length N signal m
- $\mathbf{S} \in \mathcal{R}^{N \times M}$

Interpolation Problem: Sampling Operator

 Given ideal complete data m and a sampling operator that produce observations d which are a subset of m

- Where ${\bf S}$ is the Sampling Operator that extracts N samples of the length M signal ${\bf m}$
- $S \in \mathcal{R}^{N \times M}$. The goal is to estimate m from d (underdetermined)

Interpolation Problem: Sampling Operator

The adjoint of sampling replaces empty bins by zeros

$$\begin{bmatrix} d_1 \\ 0 \\ 0 \\ d_2 \\ 0 \\ d_3 \\ 0 \\ 0 \\ 0 \\ d_4 \end{bmatrix} = \mathbf{S}^T \begin{bmatrix} d_1 \\ d_2 \\ d_3 \\ d_4 \end{bmatrix} \longrightarrow \tilde{\mathbf{m}} = \mathbf{S}^T \mathbf{d}$$

Properties that can be easily shown: $SS^T = I$, $S^TS \neq I$

Interpolation Problem: Naive Solution

Because is an underdetermined problem, we could try the minimum norm solution:

$$\mathbf{d} = \mathbf{Sm} \longrightarrow \mathbf{m}_{mn} = \mathbf{S}^T (\mathbf{SS}^T)^{-1} \mathbf{d}$$

But
$$\mathbf{S}\mathbf{S}^T = \mathbf{I}$$
 \longrightarrow $\mathbf{m}_{mn} = \mathbf{S}^T\mathbf{d}$

(1)
$$\mathbf{m}_{mn} = \mathbf{S}^{T} \begin{bmatrix} d_{1} \\ d_{2} \\ d_{3} \\ d_{4} \end{bmatrix} = \begin{bmatrix} d_{1} \\ 0 \\ 0 \\ d_{2} \\ 0 \\ d_{3} \\ 0 \\ 0 \\ 0 \\ d_{4} \end{bmatrix} = \begin{bmatrix} m_{1} \\ 0 \\ 0 \\ m_{4} \\ 0 \\ m_{6} \\ 0 \\ 0 \\ m_{9} \end{bmatrix}$$

The interpolation via the minimum norm solution did not work. There is nothing better than zeros to make the norm of the solution small!

Interpolation Problem: Naive Solution, second attempt

Because is an underdetermined problem, we could try the minimum norm solution but on an orthogonal basis like Fourier.

$$d = Sm$$

 $\mathbf{m} = \mathbf{F}\mathbf{a}$ The Fourier inverse transform is \mathbf{F} with $\mathbf{F}\mathbf{F}^H = \mathbf{I}$

$$\mathbf{d} = \mathbf{SFa}$$
 Then, $\mathbf{a}_{mn} = \mathbf{F}^H \mathbf{S}^T (\mathbf{SFF}^H \mathbf{S}^T)^{-1} \mathbf{d} = \mathbf{F}^H \mathbf{S}^T \mathbf{d}$
$$\mathbf{m}_{mn} = \mathbf{Fa}_{mn} = \mathbf{FF}^H \mathbf{S}^T \mathbf{d} = \mathbf{S}^T \mathbf{d}$$
 See (1) in previous slide

Uppps!! again, we have replaced missing data by zeros like in the previous example

Interpolation: Sparse or Compressive Solution

- Minimum norm solution in data space or transformed domain space did not work!! So we need something else. What about using sparsity?
- Asking for the solution to be sparse does not make any sense.
 However, we can say that solution can be represented by a transform (Forward or Synthesis transform)

$$m = Fa$$

- Where ${f F}$ is the forward transform and ${f a}$ are the coefficients that model the ideal data ${f m}$
- So we have the following two problems:

Interpolation: Sparse or Compressive Solution

Find the coefficient such that

$$d = Sm, m = Fa,$$

Measurements

- The above is equivalent to d = SFa,
- Which can be solved by minimizing the I2-I1 cost function

$$J = \|\mathbf{d} - \mathbf{SFa}\|_{2}^{2} + \mu \|\mathbf{a}\|_{1}$$

Interpolation

Interpolated data if found by solving

$$\hat{\mathbf{a}} = \operatorname{argmin}_{\mathbf{a}} \|\mathbf{d} - \mathbf{SFa}\|_{2}^{2} + \mu \|\mathbf{a}\|_{1}$$

 $\hat{\mathbf{m}} = \mathbf{F}\hat{\mathbf{a}},$

- This is also the main idea behind CS (Compressive Sensing) where Sampling is Random
- Can be applied to ND-problems by using an ND transform (e.g. ND Fourier or Curvelet transforms)

Interpolated data is found by solving

$$\hat{\mathbf{a}} = \operatorname{argmin}_{\mathbf{a}} \|\mathbf{d} - \mathbf{SFa}\|_{2}^{2} + \mu \|\mathbf{a}\|_{1}$$

$$\hat{\mathbf{m}} = \mathbf{F}\hat{\mathbf{a}},$$

- I can write the transform in matrix form for some simple problems. For instance the Fourier synthesis operator can be written easily as a matrix (DFT Matrix)
- Of course, it is much faster to use the FFT rather than the DFT expressed as a matrix multiplication operation

 F is the inverse DFT, that we will call the Fourier Synthesis Operator

$$x_k = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} X_k e^{i2\pi nk/N}$$

In matrix form

$$\mathbf{x} = \mathbf{F} \mathbf{X}$$
 $\mathbf{X} = \mathbf{F}^H \mathbf{x}$

Where the elements of the Fourier operator (Matrix) are

$$F_{n,k} = \frac{1}{\sqrt{N}} e^{i2\pi nk/N}$$

Explicit DFT-matrix IRLS code

```
L = S*F  # This is the linear operator to invert
mu = 10.1

# Start IRLS

a = L'*d_obs

for k=1:10
    q = 1.0./(abs.(a).+0.001)
    Q = Diagonal(q)
a = (L'*L+mu*Q)\(L'*d_obs)

end
d_interp = F*a
```


This examples shows the initial and inverted (Sparse) Fourier Coefficients

Interpolated data if found by solving

$$\hat{\mathbf{a}} = \operatorname{argmin}_{\mathbf{a}} \|\mathbf{d} - \mathbf{SFa}\|_{2}^{2} + \mu \|\mathbf{a}\|^{2}$$

$$\hat{\mathbf{m}} = \mathbf{F}\hat{\mathbf{a}},$$

- Now in the implicit case, F is not a matrix, F = FFT
- Therefore, I can't treat the problem as before and construct operators such $((\mathbf{SF})^H\mathbf{SF} + \mu\mathbf{Q})^{-1}$ as needed by the sparse inversion solver (IRLS).

Let's review IRLS

$$\hat{\mathbf{a}} = \operatorname{argmin}_{\mathbf{a}} \|\mathbf{d} - \mathbf{SFa}\|_{2}^{2} + \mu \|\mathbf{a}\|_{1}$$

- Gradient of cost $\mathbf{g} = \mathbf{L}^H(\mathbf{La} \mathbf{d}) + \mu \mathbf{Qa}$
- With $\mathbf{L} = \mathbf{SF}$ $\mathbf{Q}_{ii} = 1/(|a|_i + \epsilon)$
- Steepest descent iteration

$$\mathbf{a}^{new} = \mathbf{a}^{old} - \lambda [\mathbf{L}^{H}(\mathbf{L}\mathbf{a}^{old} - \mathbf{d}) + \mu \mathbf{Q}\mathbf{a}^{old}]$$

Steepest descent iteration

$$\mathbf{a}^{new} = \mathbf{a}^{old} - \lambda [\mathbf{L}^{H}(\mathbf{L}\mathbf{a}^{old} - \mathbf{d}) + \mu \mathbf{Q}\mathbf{a}^{old}]$$

Replace explicit operators (Matrices) by implicit FFTs

$$L[.] = S[ifft[.]]$$

$$\mathbf{L}^{H}[.] = \mathbf{fft} [\mathbf{S}^{T}[.]]$$

 Program does not require Fourier DFT matrix and hence is faster!!

Implicit FFT code via steepest descent

Be careful with the normalization of the FFT and IFFT because I really need the adjoint not the inverse transform (above I use bfft)

Here I used the FFT to synthesize forward and adjoint operators

toy_interpolation_2.ipynb

Evolution of Fourier Coefficients and Q weights vs iteration

Two flavour of sampling operator

Flavour 1 (matrix mult)

$$d = Sm$$

$$J = \|\mathbf{d} - \mathbf{SFa}\|_{2}^{2} + \mu \|\mathbf{a}\|_{1}$$

Flavour 2 (element-to-element mult)

 $J = \|\mathbf{d} - \mathbf{s} \cdot \mathbf{Fa}\|_{2}^{2} + \mu \|\mathbf{a}\|_{1}$