

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
27 November 2003 (27.11.2003)

(10) International Publication Number
WO 03/096909 A1

- (51) International Patent Classification?: **A61B 17/04**
- (21) International Application Number: **PCT/US03/15869**
- (22) International Filing Date: 19 May 2003 (19.05.2003)
- (25) Filing Language: English
- (26) Publication Language: English
- (30) Priority Data:
- | | | |
|------------|------------------------------|----|
| 60/381,601 | 17 May 2002 (17.05.2002) | US |
| 10/352,600 | 28 January 2003 (28.01.2003) | US |
| 10/378,805 | 4 March 2003 (04.03.2003) | US |
| 10/396,927 | 25 March 2003 (25.03.2003) | US |
- (71) Applicant: **ONUX MEDICAL, INC. [US/US]**; 5 Merrill Drive, Hampton, NH 03842 (US).
- (72) Inventors: **DICARLO, Joseph, A.**; 2 Litchfield Road, Londonderry, NH 03053 (US). **FIELD, Frederic, P.**; 5 Woodland Road, North Hampton, NH 03862 (US). **FOGG, Douglas, A.**; 15 South Pleasant Street, Merrimac, MA 01860 (US). **SANCOFF, Gregory, E.**; 120 Mill Road, North Hampton, NH 03862 (US).
- (74) Agent: **PANDISCO, Mark, J.**; Pandiscio & Pandiscio, 470 Totten Pond Road, Waltham, MA 02451-1914 (US).
- (81) Designated States (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
- (84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

[Continued on next page]

(54) Title: SURGICAL SUTURING INSTRUMENT AND METHOD OF USE

WO 03/096909 A1

(57) Abstract: A device (2) is disclosed for introducing a flexible elongated element (416) through at least two portions (500, 502) of a subject. In a preferred embodiment, the device includes a proximal end and a distal end, and an advancement unit for longitudinally advancing the flexible elongated element toward the distal end of the device such that a proximal end of the elongated element (416) may exit from the distal end of the device with sufficient force to pass through the subject. The device also includes a curved die at the distal end of the device for imparting a looping configuration to portions of the flexible elongated element (416) exiting the distal end of the device, and a curved guide at the distal end for receiving the looped flexible elongated element as it returns to the distal end of the device. In a further feature of the invention, a cutting mechanism is provided to permit the looped flexible elongated element to be separated from the remainder of the flexible elongated element. And in a further feature of the invention, the cutting mechanism is adapted to deform the trailing end of the looped flexible elongated element so that the trailing end is forced distally, toward the subject being sutured.

WO 03/096909 A1

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

SURGICAL SUTURING INSTRUMENT AND METHOD OF USEReference To Pending Prior Applications

This is a continuation-in-part of (1) pending
5 prior U.S. Patent Application Serial No. 10/352,600,
filed 01/28/03 by Frederic P. Field et al. for SURGICAL
SUTURING INSTRUMENT AND METHOD OF USE (Attorney's
Docket No. ONUX-22 CON); (2) pending prior U.S. Patent
Application Serial No. 10/378,805, filed 03/04/03 by
10 Gregory E. Sancoff et al. for SURGICAL SUTURING
INSTRUMENT AND METHOD OF USE (Attorney's Docket No.
ONUX-15 CON); and (3) pending prior U.S. Patent
Application Serial No. 10/396,927, filed 03/25/03 by
Frederic P. Field et al. for SURGICAL SUTURING
15 INSTRUMENT AND METHOD OF USE (Attorney's Docket No.
ONUX-31).

This patent application also claims benefit of
pending prior U.S. Provisional Patent Application
Serial No. 60/381,601, filed 05/17/02 by Joseph A.
20 DiCarlo et al. for SURGICAL SUTURING SYSTEM AND METHOD
OF USE (Attorney's Docket No. ONUX-32 PROV).

- 2 -

The four above-identified patent applications are hereby incorporated herein by reference.

Field Of The Invention

5 This invention relates to medical instruments and procedures in general, and more particularly to suturing instruments and methods for suturing.

Background Of The Invention

10 Suturing instruments are typically used to secure together two or more portions of a subject patient (e.g., tissue such as muscle or skin) or to attach an object to the patient (e.g., to attach a piece of surgical mesh to the abdominal wall of the patient during hernia repair surgery).

Certain suturing instruments employ a needle that precedes a length of suture material through a subject.

For example, U.S. Patents Nos. 3,470,875; 20 4,027,608; 4,747,358; 5,308,353; 5,674,230; 5,690,653; 5,759,188; and 5,766,186 generally disclose suturing

- 3 -

instruments in which a needle, with trailing suture material, is passed through a subject.

U.S. Patents Nos. 4,890,615; 4,935,027; 5,417,700; and 5,728,112 generally disclose suturing instruments in which suture material is passed through the end of a hollow needle after that needle has been passed through a subject.

With all of the foregoing devices, a needle must be passed through the subject in order to deploy the suture. This has the disadvantage that the needle typically leaves a larger hole in the subject than is necessary to accommodate only the suture material itself. In this respect it should be appreciated that it is generally desirable to alter each portion of the material being sutured (e.g., tissue) as little as possible during the suturing process.

A suturing instrument has been devised which permits the suture material itself to pierce the subject without the use of a needle. However, this device does not permit adequate flexibility with regard to the type of fastening which may be effected.

- 4 -

More particularly, U.S. Patent No. 5,499,990 discloses a suturing instrument having a pair of jaws at its distal end for clamping together two portions of a subject. A 0.25 mm stainless steel suturing wire 5 is advanced to the distal end of the suturing instrument, whereupon the distal end of the suturing wire is caused to travel in a spiral direction so as to create stitches joining together the two portions of the subject. After the spiral is formed, the 10 beginning and end portions of the suture may be bent toward the tissue in order to inhibit retraction of the suture wire into the tissue upon removal of the suturing instrument. The stainless steel wire is sufficiently firm to hold this locking set. In 15 addition, after the spiral is formed, the radius of the deployed suture spiral may then be decreased by advancing an outer tube over a portion of the distal end of the instrument. Again, the stainless steel wire is sufficiently firm to hold this reducing set.

20 Unfortunately, however, such a system does not permit adequate flexibility with regard to the type of

- 5 -

fastening which may be effected. More particularly,
the suturing instrument of U.S. Patent No. 5,499,990
must clamp the two portions of the subject between its
two jaws in order to effect suturing. Such a
5 construction can be inadequate where it is difficult
or even impossible to clamp the two portions of the
subject between the instrument's jaws, e.g., where the
two portions of the subject are too thick to be
spanned by the jaws, or where the angle of approach
10 prevents the jaws from clamping together the two
portions of the subject, etc.

U.S. Patent No. 4,453,661 discloses a surgical
instrument having a pair of jaws at its distal end for
clamping together two portions of a subject and
15 applying staples thereto. The staples are formed from
the distal end of a length of wire. More
particularly, the distal end of the wire is passed
through a subject and thereafter contacts a die that
causes the wire to bend, thereby forming the staple.
20 The wire is sufficiently firm to take on the set

- 6 -

imposed by the die. The staple portion is then cut away from the remainder of the wire by a knife.

Again, such a system suffers from the fact that it does not permit adequate flexibility with regard to
5 the type of fastening which may be effected, since the surgical instrument must clamp the two portions of the subject between its two jaws in order to effect stapling, and this can be difficult or even impossible to achieve in certain circumstances, e.g., where the
10 two portions of the subject are too thick to be spanned by the jaws, or where the angle of approach prevents clamping, etc.

There is a need, therefore, for a new suturing device that permits minimally disruptive suturing and
15 provides increased flexibility in the application of the suture material.

Summary Of The Invention

The present invention comprises a novel device
20 and method for deploying a flexible elongated element through a subject so as to effect suturing.

- 7 -

In one embodiment of the invention, the device includes a proximal end and a distal end, and an advancement unit for longitudinally advancing the flexible elongated element toward the distal end of the device such that a distal end of the flexible elongated element may exit from the distal end of the device with sufficient force to pass through the subject. The device also includes a curved die at the distal end of the device for imparting a looping configuration to portions of the flexible elongated element exiting the distal end of the device, and a curved guide at the distal end of the device for receiving the looped flexible elongated element as it returns to the distal end of the device. In a further feature of the invention, a cutting mechanism is provided to permit the looped flexible elongated element to be separated from the remainder of the flexible elongated element. And in a further feature of the invention, the cutting mechanism is adapted to deform the trailing end of the looped flexible

- 8 -

elongated element so that the trailing end is forced distally, toward the subject being sutured.

In another form of the invention, there is provided a suturing instrument for joining a first portion of material to a second portion of material,
5 the suturing instrument comprising:

a handle;

an end effector mounted on the handle and defining therein:

10 a channel for supporting suture wire, the channel being curved to impart a looping configuration to portions of the suture wire passed therethrough;

an end recess adapted to receive the looped suture wire emerged from the channel; and

15 a passageway for supporting a cutting bar, the passageway intersecting the channel so as to create an island between the channel and the passageway;

a wire advancing actuator mounted on the handle
20 for moving the suture wire through the channel, through the material first and second portions and

- 9 -

back into the end recess, the wire advancing actuator comprising a sliding cage adapted for distal and proximal movement within the handle, the sliding cage comprising a cam and a cam follower, and further
5 wherein (1) distal movement of the sliding cage causes the cam follower to move along the cam so as to bindingly engage the suture wire and drive it distally, and (2) proximal movement of the sliding cage causes the cam follower to move along the cam so
10 as to disengage from binding engagement with the suture wire;

a cutting bar movably disposed in the passageway for selectively engaging the suture wire, the cutting bar being adapted to (1) cut the looped suture wire
15 from the remaining portions of the suture wire; and (2) bend the trailing end of the looped suture wire around, and lift the looped suture wire over, the island; and

20 a cutting bar actuator mounted on the handle for moving the cutting bar into engagement with the suture wire.

- 10 -

In another form of the invention, there is provided a method for joining a first portion of material to a second portion of material, the method comprising:

- 5 providing a suturing instrument comprising:
 - a handle;
 - an end effector mounted on the handle and defining therein:
 - a channel for supporting suture wire,
 - 10 the channel being curved to impart a looping configuration to portions of the suture wire passed therethrough;
 - an end recess adapted to receive the looped suture wire emerged from the channel; and
 - 15 a passageway for supporting a cutting bar, the passageway intersecting the channel so as to create an island between the channel and the passageway;
 - a wire advancing actuator mounted on the handle for moving the suture wire through the channel, through the material first and second portions and

- 11 -

back into the end recess, the wire advancing actuator comprising a sliding cage adapted for distal and proximal movement within the handle, the sliding cage comprising a cam and a cam follower, and further
5 wherein (1) distal movement of the sliding cage causes the cam follower to move along the cam so as to bindingly engage the suture wire and drive it distally, and (2) proximal movement of the sliding cage causes the cam follower to move along the cam so
10 as to disengage from binding engagement with the suture wire;

a cutting bar movably disposed in the passageway for selectively engaging the suture wire, the cutting bar being adapted to (1) cut the looped
15 suture wire from the remaining portions of the suture wire; and (2) bend the trailing end of the looped suture wire around, and lift the looped suture wire over, the island; and

20 a cutting bar actuator mounted on the handle for moving the cutting bar into engagement with the suture wire;

- 12 -

positioning the end effector against at least one
of the portions to be joined;

moving the suture wire through the channel,
through the material first and second portions and
5 back into the end recess; and

moving the cutting bar in the passageway so as to
(1) cut the looped suture wire from the remaining
portions of the suture wire; and (2) bend the trailing
end of the looped suture wire around, and lift the
10 looped suture wire over, the island.

In another form of the invention, there is
provided a suturing instrument for joining a first
portion of material to a second portion of material,
the suturing instrument comprising:

15 a handle;
an end effector mounted on the handle and
defining therein:
a channel for supporting suture wire, the
channel being curved to impart a looping configuration
20 to portions of the suture wire passed therethrough;

- 13 -

an end recess adapted to receive the looped
suture wire emerged from the channel; and

a passageway for supporting a cutting bar,
the passageway intersecting the channel so as to
5 create an island between the channel and the
passageway;

a wire advancing actuator mounted on the handle
for moving the suture wire through the channel,
through the material first and second portions and
10 back into the end recess, the wire advancing actuator
comprising a sliding cage adapted for distal and
proximal movement within the handle, the sliding cage
comprising a cam and a cam follower, and further
wherein (1) distal movement of the sliding cage to a
15 first extent causes the cam follower to move along the
cam so as to bindingly engage the suture wire and
drive it distally, and (2) distal movement of the
sliding cage to a second extent causes the cam
follower to move along the cam so as to disengage from
20 binding engagement with the suture wire;

- 14 -

a cutting bar movably disposed in the passageway
for selectively engaging the suture wire, the cutting
bar being adapted to (1) cut the looped suture wire
from the remaining portions of the suture wire; and
5 (2) bend the trailing end of the looped suture wire
around, and lift the looped suture wire over, the
island; and

10 a cutting bar actuator mounted on the handle for
moving the cutting bar into engagement with the suture
wire.

In another form of the invention, there is
provided a method for joining a first portion of
material to a second portion of material, the method
comprising:

15 providing a suturing instrument comprising:
a handle;
an end effector mounted on the handle and
defining therein:
a channel for supporting suture wire,
20 the channel being curved to impart a looping

- 15 -

configuration to portions of the suture wire passed therethrough;

an end recess adapted to receive the looped suture wire emerged from the channel; and

5 a passageway for supporting a cutting bar, the passageway intersecting the channel so as to create an island between the channel and the passageway;

a wire advancing actuator mounted on the handle for moving the suture wire through the channel, through the material first and second portions and back into the end recess; the wire advancing actuator comprising a sliding cage adapted for distal and proximal movement within the handle, the sliding cage 10 comprising a cam and a cam follower, and further wherein (1) distal movement of the sliding cage to a first extent causes the cam follower to move along the cam so as to bindingly engage the suture wire and drive it distally, and (2) distal movement of the 15 sliding cage to a second extent causes the cam 20

- 16 -

follower to move along the cam so as to disengage from binding engagement with the suture wire;

a cutting bar movably disposed in the passageway for selectively engaging the suture wire, the cutting bar being adapted to (1) cut the looped suture wire from the remaining portions of the suture wire; and (2) bend the trailing end of the looped suture wire around, and lift the looped suture wire over, the island; and

10 a cutting bar actuator mounted on the handle for moving the cutting bar into engagement with the suture wire;

positioning the end effector against at least one of the portions to be joined;

15 moving the suture wire through the channel, through the material first and second portions and back into the end recess; and

moving the cutting bar in the passageway so as to (1) cut the looped suture wire from the remaining 20 portions of the suture wire; and (2) bend the trailing

- 17 -

end of the looped suture wire around, and lift the looped suture wire over, the island.

Brief Description Of The Drawings

5 These and other objects and features of the present invention will be more fully disclosed or rendered obvious by the following detailed description of the preferred embodiments of the invention, which is to be considered together with the accompanying drawings wherein like numbers refer to like parts, and
10 further wherein:

Fig. 1 is a side view showing a suturing instrument formed in accordance with the present invention;

15 Figs. 2-5 are various views showing various details of the suturing instrument's handle assembly;

Figs. 6-17 are various views showing various details of the suturing instrument's cannula assembly;

20 Figs. 18-21 are various views showing various details of the suturing instrument's wire drive assembly;

- 18 -

Figs. 22-25 are various views showing various details of the suturing instrument's wire supply cartridge;

5 Fig. 26 is a schematic view showing two portions being secured to one another with a suture loop deployed by the suturing instrument;

Figs. 27-33 show various steps in a suturing operation conducted with the suturing instrument;

10 Fig. 34 is a schematic view showing an alternative form of tissue attachment being effected with the suturing instrument;

15 Figs. 35-37 are schematic side views illustrating the interrelationship between the geometry of the cannula assembly's end effector portion and the leading tip of the suture wire;

Fig. 38 is a schematic view showing the suturing instrument securing a prosthetic cardiac valve to vascular tissue with suture loops;

20 Figs. 39 and 40 are schematic views of a cannula assembly of an alternative suturing instrument;

- 19 -

Fig. 41 is an illustration of a modified suture loop formed by the cannula assembly of the alternative suturing instrument shown in Figs. 39 and 40;

5 Figs. 42-51 are schematic views of an end effector of the alternative suturing instrument shown in Figs. 39 and 40;

Figs. 52-55 are schematic views of an alternative wire supply cartridge; and

10 Fig. 56 is a schematic side view of a suturing instrument which comprises another form of the present invention, with the instrument being shown in a first state of operation;

15 Fig. 57 is an enlarged schematic side view showing the distal end of the suturing instrument shown in Fig. 56;

Fig. 57A is an enlarged schematic top view showing the distal end of the suturing instrument shown in Fig. 56;

20 Fig. 58 is a schematic side view showing the suturing instrument of Fig. 56 in a second state of operation;

- 20 -

Fig. 59 is an enlarged schematic side view showing the distal end of the suturing instrument shown in Fig. 58;

5 Fig. 60 a schematic side view showing the suturing instrument of Fig. 56 in a third state of operation;

Fig. 61 is an enlarged schematic side view showing the distal end of the suturing instrument shown in Fig. 60; and

10 Figs. 62-64 are schematic views showing another form of wire drive assembly, with Fig. 62 being a side view with the sliding cage in a retracted position, Fig. 63 being a side view with the sliding cage in an extended position, and Fig. 64 being a perspective view with the sliding cage in a retracted position.

15

Detailed Description Of The Preferred Embodiment

Overview

20 Looking first at Figs. 1-5, there is shown a suturing instrument 2 which comprises one preferred

- 21 -

embodiment of the present invention. Suturing instrument 2 generally comprises a handle assembly 100, a cannula assembly 200, a wire drive assembly 300 (Fig. 5) and a wire supply cartridge 400, as will 5 hereinafter be described in further detail.

Among other things, handle assembly 100 comprises a handle 102 and a lever 104, and cannula assembly 200 comprises a shaft 202, an end effector 204 and a wire cutting mechanism 206, as will also hereinafter be 10 described in further detail.

As will be discussed in further detail below, generally during use, the suturing instrument's end effector 204 is positioned adjacent to the subject which is to be sutured. Then lever 104 is squeezed 15 towards handle 102, causing wire drive assembly 300 to draw suture wire out of wire supply cartridge 400 and push the suture wire distally through cannula assembly 200 to end effector 204, where the suture wire exits the instrument with sufficient force to pass through 20 the subject. End effector 204 includes a curved die for imparting a looping configuration to the portions

- 22 -

of the suture wire exiting the distal end of the instrument, and a curved guide for receiving the looped suture wire as it returns to the distal end of the instrument. The looped suture wire may then be
5 cut off, at end effector 204, from the remaining suture wire that extends back through the suturing instrument. Such cutting is preferably automatically effected by wire cutting mechanism 206 at the conclusion of the lever's stroke.

10 As will be discussed in further detail below, wire supply cartridge 400 may be supplied separately from suturing instrument 2, with wire supply cartridge 400 being loaded into suturing instrument 2 prior to commencing a suturing operation. As will also be
15 discussed in further detail below, wire supply cartridge 400 may be disposable, such that the cartridge may be discarded after use.

Handle Assembly 100

20 Still looking at Figs. 1-5, handle assembly 100 comprises a housing 106, with the aforementioned

- 23 -

handle 102 being fixedly attached to housing 106 and the aforementioned lever 104 being pivotally connected to housing 106 by a pivot pin 108.

The inner end of lever 104 includes a slot 110 for receiving a roll pin 112 therein. Roll pin 112 is also secured to a rack 114. Rack 114 is connected to a compression spring 116 at its distal end. Rack 114 includes a length of teeth 118 intermediate its length, followed by a smooth wall 120 adjacent to its proximal end. As a result of this construction, compression spring 116 normally biases rack 114 proximally, so that lever 104 is biased away from handle 102; however, lever 104 may be squeezed toward handle 102 so as to overcome the force of spring 116, whereby to move rack 114 distally. A pawl 122 (Fig. 3), riding on lever 104 and engaging a set of teeth 124, ensures that lever 104 cannot return to its proximal starting position without moving through one complete stroke. A removable shroud 126 selectively closes off the proximal end of housing 106. The removable nature of shroud 126 permits a fresh wire

- 24 -

supply cartridge 400 to be loaded into the suturing instrument and an exhausted wire supply cartridge to be removed from the instrument, as will hereinafter be discussed in further detail.

5

Cannula Assembly 200

Cannula assembly 200 is shown in greater detail in Figs. 6-16. As noted above, cannula assembly 200 (Fig. 6) comprises shaft 202, end effector 204 and
10 wire cutting mechanism 206.

More particularly, shaft 202 comprises a tube 208 having a distal end 210 and a proximal end 212. A mount 214 is secured to tube 208 near its proximal end whereby shaft 202, and hence the entire cannula
15 assembly 200, may be removably attached to housing 106 of handle assembly 100. Mount 214 includes a flushing port 216 (Fig. 7), communicating with the interior of tube 208 via an opening 218 (Fig. 8), for cleaning the interior of cannula assembly 200. A cap 220
20 selectively closes off flushing port 216.

- 25 -

End effector 204 is secured to the distal end of tube 208.

End effector 204 is configured so as to form a modified suture loop 422 (Fig. 26), sometimes referred 5 to as a "suture clip" or a "Q-form loop" or a "Q-form clip", as will hereinafter be discussed.

More particularly, end effector 204 comprises a fixed first portion 222 (Figs. 10, 11 and 12) and a fixed second portion 224 (Figs. 10, 11, and 17).

As seen in Fig. 12, fixed first portion 222 includes a first channel 226 for receiving the distal end of the aforementioned wire supply cartridge 400, a smaller diameter second channel 228 for supporting suture wire as the suture wire emerges from wire supply cartridge 400, and a third channel 230 for receiving the suture wire after the suture wire passes by cutting bar channel 232 and for imparting a selected curvature to the suture wire, whereby to form the suture loop, as will hereinafter be discussed in further detail. Second channel 228 and third channel 230 are coplanar. In addition to the foregoing,

- 26 -

material is removed from fixed first portion 222 at the location 234 so as to effectively form an island 236 at the distal end of end effector 204.

In order to assist the controlled retention of suture wire during its travel within second channel 228 and third channel 230, one or both of these channels may be given an undercut profile such as the dovetail profile 238 shown in Fig. 13 with respect to third channel 230. At the same time, in order to minimize harmful friction between the suture wire and fixed first portion 222, second channel 230 may be widened slightly at locations other than 240 (Fig. 12); locations 240 are, for this particular clip form, the operative contact points for effecting wire bending (in this respect it should be appreciated that other particular clip forms may have other contact points). In addition, in order to facilitate the release of a formed suture clip from the instrument, the proximal end of island 236 may be relieved slightly at 242 (Fig. 12).

- 27 -

In addition to the foregoing, fixed first portion
222 may be relieved as shown as 244 (Fig. 10) so as to
form a curved guide at the distal end of the
instrument for receiving the looped suture wire as it
5 returns to the distal end of the instrument.

Wire cutting mechanism 206 comprises a cutting
bar 246 (Figs. 8, 12 and 14-16). The distal end of
cutting bar 246 is disposed in the aforementioned
cutting bar channel 232 (Fig. 12) and the proximal end
10 of cutting bar 246 protrudes from the proximal end 212
of tube 208 (Fig. 8).

The distal end of cutting bar 246 (Figs. 12, and
14-16) preferably comprises a plurality of distinct
faces, i.e., a cutting face 248 defining a cutting
edge 250, a relief face 252 set at an angle α to
cutting face 248, an ejection ramp face 254, and an
ejection push face 258. As will hereinafter be
discussed in further detail, when cutting bar 246 is
driven distally so as to encounter suture wire
15 extending between second channel 228 and third channel
230 (and hence across cutting bar channel 232),

- 28 -

cutting edge 250 will sever the suture wire, ejection ramp face 254 will lift the trailing end of the severed suture wire out of cutting bar channel 232 and up over island 236 so that the loop may be released
5 from the distal end of the suturing instrument, and ejection push face 258 will push the suture loop free from the distal end of suturing instrument 2.

The proximal end of cutting bar 246 comprises a pusher element 260 (Figs. 2 and 8) adapted to be
10 engaged by lever 104 when cannula assembly 200 is mounted to handle assembly 100 and lever 104 is pulled toward handle 102, whereby to move cutting bar 246 distally within cannula assembly 200. A compression spring 262 is located between pusher element 260 and
15 mount 214 so as to bias cutting bar 246 proximally.
As will hereinafter be discussed in further detail,
the operations of lever 104 and wire cutting mechanism
206 are preferably coordinated with one another so
that pusher element 260 is not engaged by lever 104
20 until the later part of the lever's stroke, so that

- 29 -

advancement of the suture wire will have ceased by the time cutting bar 246 is activated.

Looking next at Figs. 10, 11 and 17, fixed second portion 224 includes the second half of the aforementioned first channel 226 for receiving the distal end of the aforementioned wire supply cartridge 400, the second half of the aforementioned cutting bar channel 232, and a slot 264 which extends proximally from the distal end of the instrument. Slot 264 is sized so that when first fixed portion 222 is engaging second fixed portion 224, a gap slightly wider than the diameter of the suture wire will be formed between the top of island 236 and the opposing material of fixed second portion 224, in order to permit a formed loop of suture wire to be released from the end of the suturing instrument, as will also hereinafter be discussed in further detail. Slot 264 is configured so that the suture wire will be maintained in third channel 230 until after the suture wire has been cut and partially bent so as to keep the suture wire in position for proper cutting and bending.

- 30 -

Fixed first portion 222 and fixed second portion 224 are preferably formed out of material which is harder than the suture wire passing through channels 228 and 230, so as to minimize wear on the instrument.

5 In one preferred form of the invention, first fixed portion 222 and fixed second portion 224 are formed out of a carbide alloy.

Preferably a loading guide 268 (Figs. 8, 9 and 11) is positioned in tube 208 between end effector 204 and mount 214, so as to provide guidance and support for cutting bar 246 and the distal end of wire supply cartridge 400.

In one preferred form of the invention, end effector 204 includes a recess 270 (Figs. 12 and 17) 15 at its front end. Recess 270 permits soft tissue to protrude into the interior of end effector 204 (see Fig. 27) and provides a pair of projections 272, 274 for pressing into the tissue and stabilizing the suturing instrument thereagainst. If desired, one or both of the projections 272, 274 can be made 20 relatively sharp so as to enhance tissue engagement or

- 31 -

manipulation of prosthetic material (e.g., surgical mesh), and/or one of the projections (e.g., projection 274) can be made slightly longer than the other projection, so as to facilitate an oblique approach to 5 a tissue surface (see, for example, Fig. 26).

Wire Drive Assembly 300

Looking next at Figs. 4, 5 and 18-21, wire drive assembly 300 comprises a fixed block 302, a movable block 304, a first drive shaft roller 306 connected to a spur gear 308 via an axle 310 passing through fixed block 302 and a one way clutch 312, and a second drive shaft roller 314 connected to a spur gear 316 via an axle 318 and a one way clutch 320. A pair of capture 10 blocks 322 and 324 rotatably capture drive shaft rollers 306 and 314 to blocks 302 and 304, respectively.

Movable block 304 is slidably mounted to fixed block 302 via a pair of rods 326 and 328 that pass 20 through movable block 304, fixed block 302 and are secured to a cam follower 330, with springs 332 and

- 32 -

334 biasing movable block 304 into engagement with fixed block 302. A lever 336 and cam 338 are provided for manually forcing movable block 304 away from fixed block 302, and hence drive shaft roller 314 away from drive shaft roller 306, and hence spur gear 316 away from spur gear 308.

5 Wire drive assembly 300 is normally disposed in handle assembly 100 so that spur gears 308 and 316 engage the teeth 118 of rack 114, and so that drive shaft roller 314 is in substantial engagement with drive shaft roller 306.

10 However, depressing lever 336 will cause cam follower 338 to pivot, whereby to force movable block 304 away from fixed block 302 and whereby to separate roller 314 from roller 306 (and to separate spur gear 316 from spur gear 308). Wire supply cartridge 400 may then be inserted between rollers 314 and 306 and, 15 by then restoring lever 336 to its inboard position, cause the suture wire to be gripped by rollers 306 and 314, whereupon the suture wire may be driven by

- 33 -

rollers 306 and 314 out the distal end of the suturing instrument.

More particularly, after a fresh wire supply cartridge 400 has been installed in the instrument,
5 suture wire may be driven out the distal end of the instrument by depressing lever 104 toward handle 102. Depressing lever 104 toward handle 102 causes roll pin 112 (Fig. 2) to ride within slot 110. More
10 particularly, as the top end of lever 104 moves about pivot pin 108, roll pin 112 moves through slot 110. This causes rack 114 to move distally, which in turn causes spur gears 308 and 316 to rotate, which in turn causes rollers 306 and 314 to rotate, which in turn causes a length of suture wire to be advanced out the
15 distal end of the suturing instrument.

As lever 104 continues to rotate, the toothless region of rack 114 (i.e., the smooth wall 120 at the proximal end of rack 114) is advanced to spur gears 308 and 316, whereby rotation of rollers 306 and 314
20 will cease and suture wire will no longer be advanced out the distal end of the suturing instrument. Thus

- 34 -

it will be seen that by carefully regulating the length of the rack's teeth 118, the length of suture wire ejected from the instrument can also be regulated.

5 Further movement of lever 104 will then cause the cutting bar's pusher element 260 (Fig. 2) to be engaged, whereby cutting bar 246 will be advanced distally so as to sever the formed loop of suture wire from the suture wire remaining in the instrument, lift
10 the trailing end of the suture loop over island 236 and then push the suture loop free from the suturing instrument.

At the completion of the stroke, lever 104 is released, thereby allowing the aforementioned parts to return to their starting position under the influence
15 of spring 116. However, one way clutches 312 and 320 (Fig. 19) interposed between drive rollers 306 and 314, and the drive rollers 306 and 314, respectively, prevent reverse movement of the drive rollers, thereby
20 preventing any retraction of the suture wire.

- 35 -

Thus, a single throw of lever 104 will result in a pre-determined degree of movement of drive rollers 306 and 314, which will in turn result in a pre-determined length of suture wire being advanced 5 out of the distal end of the suturing instrument.

It should be appreciated that each drive roller and axle assembly (i.e., drive roller 306 and axle 310, and drive roller 314 and axle 318) is preferably machined (i.e., turned) from a single, continuous 10 piece of metal, using the same tool setup, so that the alignment of both is immune from the inaccuracies which might occur if they were turned at different occasions and assembled using holes and holding means. This construction is important, because the drive 15 rollers are approximately 30 times the diameter of the suture wire they are driving and even the slightest alignment inaccuracies can rotate the wire as it is moved forward. Since the wire is permanently curved by the exit path in the end effector 204, any such 20 wire rotation may cause the wire to swerve from its normal trajectory from the end effector and possibly

- 36 -

prevent the leading tip of the wire from properly returning to the end effector after it has passed through the subject.

It should also be appreciated that peripheral grooves may be formed in drive rollers 306 and 314. Such grooves provide a seat for the suture wire being driven and help increase the surface area contact between the drive rollers and the suture wire.

10

Wire Supply Cartridge 400

15

Looking next at Figs. 22-25, wire supply cartridge 400 generally comprises a spool housing 402, a wire spool 404, a spool retainer spring 406, a spool cover 408, a molded tube support 410 and a wire support tube 412. A length of suture wire 416 extends from spool 404 and through molded tube support 410 and wire support tube 412.

20

More particularly, a supply coil of suture wire 416 (comprising wire formed of metal or any other suitable material having the required flexibility and stiffness) may be supplied in the base of cartridge

- 37 -

400 and is fed into wire support tube 412. Wire support tube 412 surrounds suture wire 416 from spool housing 402 to the distal end of suturing instrument 2 where, with the distal end of wire support tube 412 received in channel 226 (Fig. 12), the suture wire enters second channel 228 in end effector 204. Wire support tube 412 ensures that suture wire 416 does not bend or buckle as the suture wire is pushed through handle assembly 100 and cannula assembly 200. More particularly, wire support tube 412 preferably forms a sufficiently close sliding fit with suture wire 416 such that suture wire 416 cannot bend or buckle as the suture wire is advanced through suturing instrument 2. At the same time, wire support tube 412 is also formed so as to present a minimum of friction to suture wire 416 as the suture wire is advanced through the instrument. The foregoing characteristics are important, inasmuch as suture wire 416 is extremely thin and flexible and highly susceptible to bending or buckling in the absence of some sort of lateral support.

- 38 -

By way of example but not limitation, where suture wire 416 is formed out of stainless steel and has a diameter of 0.017 inch, wire support tube 412 might have an inside diameter of 0.185 inch and an 5 outside diameter of 0.050 inch. In addition, wire support tube 412 is preferably formed out of 316 stainless steel, however, it may alternatively be formed out of some other material. If desired, the interior of wire support tube 412 may be coated with a 10 lubricant so as to facilitate closely-supported, low-friction passage of the suture wire through the wire support tube.

Wire support tube 412 and its surrounding molded tube support 410 have aligned openings 418 and 420, 15 respectively, on opposite sides thereof. Openings 418 and 420 expose diametrically opposed portions of the suture wire 416 so that rollers 306 and 314 may contact suture wire 416 and urge the suture wire forward toward the distal end of suturing instrument 20 2, as will hereinafter be discussed in further detail.

- 39 -

As noted above, wire supply cartridge 400 may be loaded into wire drive assembly 300 by actuating lever 336 so as to force movable block 304 away from fixed block 302 and thereby separate rollers 306 and 314.

5 Once roller 314 is separated from roller 306 by a sufficient distance, wire support tube 412 may be inserted between rollers 306 and 314, and then roller 314 returned towards roller 306 such that rollers 306 and 314 contact either side of suture wire 416 through
10 the aligned openings 418 and 420 formed in either side of wire support tube 412 and its surrounding molded support tube 410, respectively.

Operation

15 Suturing instrument 2 may be used to apply loops 422 (Fig. 26) of wire suture 416 to a subject so as to effect a desired suturing operation.

By way of example but not limitation, and looking now at Figs. 26-33, suturing instrument 2 may be used
20 to suture together two portions 500, 502 of a subject which is to be sutured. In a typical case, portions

- 40 -

500, 502 might comprise two sections of severed tissue which need to be re-attached to one another, or two pieces of previously unattached tissue which need to be attached to one another. However, one or the other
5 of the portions 500, 502 might also comprise artificial mesh or some other object which is to be attached to tissue, etc. (e.g., it might comprise "hernia mesh" of the sort attached to the interior of the abdominal wall during hernia repair surgery). In
10 addition, in a typical case, portions 500, 502 might be located relatively deep within a patient, and might be accessed during an endoscopic or a so-called "minimally invasive" or a so-called "closed surgery", procedure; however, in other circumstances, portions
15 500, 502 might be accessed during a conventional, or so-called "open surgery", procedure. This latter situation might include procedures done at the outer surface of the patient's body, i.e., where portions 500, 502 comprise surface elements.
20 In any case, suturing instrument 2 is initially prepared for use by installing a wire supply cartridge

- 41 -

400 into the suturing instrument, if a cartridge 400
is not yet installed. As noted above, wire supply
cartridge 400 is installed in suturing instrument 2 by
10 (1) removing shroud 126, (2) moving the wire drive
assembly's release lever 336 to its open position, so
as to move rollers 306 and 314 apart; (3) passing the
distal end of the cartridge (i.e., the distal end of
wire support tube 412) through wire drive assembly 300
and cannula assembly 200 until the distal end of wire
support tube 412 is located in the end effector's
15 first channel 226, at which point the cartridge's
molded tube support 410 will be positioned
intermediate rollers 306 and 314; and (4) moving the
wire drive assembly's release lever 336 back to its
closed position, so that rollers 306 and 314 engage
the suture wire 416 through openings 420 and 418, and
so that spur gears 308 and 316 engage the teeth 118 of
rack 114.

At this point suturing instrument 2 will be ready
20 for use.

- 42 -

When suturing instrument 2 is to apply a suture loop 422 to a subject, the distal end of the suturing instrument is positioned against the subject, e.g., it is positioned against portions 500, 502 (Figs. 26 and 27).

Once the distal end of suturing instrument 2 has been placed against subject portions 500, 502, lever 104 is pulled back against handle 102. As the top end of lever 104 moves distally, rack 114 is also moved distally, whereby rack teeth 118 will cause spur gears 308 and 316, and hence rollers 306 and 314, to rotate. Rotation of rollers 306 and 314 in turn causes suture wire 416 to advance out of the distal end of wire support tube 412 (Fig. 27). The suture wire advances down second channel 228, across cutter bar channel 232 (Fig. 28), through second channel 230 and then out of the instrument (Fig. 29). Due to the curved geometry of channel 230, the suture wire emerging from end effector 204 will take on a set, causing it to curl in a loop fashion, whereby the suture wire will pass through the material to be sutured and then back into

- 43 -

slot 264 in the end effector's fixed second portion 224 (Fig. 30). To assist the returning wire into slot 264, the guide surface 244 may be provided at the distal end of end effector 204.

5 If desired, the proximal end 276 (Fig. 17) of slot 264 in the end effector's fixed second portion 224 can act as a sort of deflecting anvil to receive and redirect the suture wire 416 received from third channel 230. In such a case, slot 264 actually helps 10 form loop 422. However, in accordance with the present invention, it is not necessary for slot 264 to act as a deflecting anvil for suture wire 416, since the curvature of loop 422 can be imparted solely by the geometry of third channel 230 if desired.

15 Suture wire 416 is advanced a predetermined amount, i.e., the correct amount to form the desired loop construct. In other words, where a "Q-form loop" 422 is to be formed, suture wire 416 is advanced so that the leading end 424 (Fig. 30) of the 20 suture wire passes across cutting bar passageway 232 (Fig. 31) and back out of the instrument until the

- 44 -

leading end 424 of the suture wire is intermediate the front end of the tool (Fig. 32). At this point the advancement of suture wire 416 is stopped.

As noted above, in the preferred embodiment of
5 the invention, the length of suture wire advanced out of the distal end of the instrument is regulated by the length of the teeth 118 placed on rack 114. More particularly, the initial movement of lever 104 toward handle 102 causes the toothed portion 118 of rack 114
10 to move past spur gears 308 and 316, whereby to rotate drive rollers 306 and 314 and hence advance suture wire 416. Further movement of lever 104 toward handle 102 causes the smooth wall 120 of rack 114 to move past spur gears 308 and 316, which results in no
15 movement of spur gears 308 and 316 and hence no advancement of suture wire 416. Thus, the length of toothed portion 118 of rack 114 regulates the extent of suture wire drive.

However, in accordance with the present
20 invention, continued movement of lever 104 toward handle 102 causes the distal end of the lever to

- 45 -

engage the proximal end 260 of the cutting bar 246, whereby to drive the cutting bar distally (Fig. 32). This causes the cutting bar 246 to (i) first encounter, and then sever, the proximalmost portion 426 of the suture wire extending across cutting bar passageway 232, whereby to separate loop 422 from the remainder of the suture wire carried by the suturing tool, and (ii) then drive against the end 426 of loop 422 whereby, with the assistance of island 236, to bend the end 426 toward the material being joined.

Significantly, at the same time that this bending is occurring, inasmuch as cutting bar 246 includes ejection ramp face 254 and ejection push face 258 at the distal end thereof, and inasmuch as the end effector's fixed second portion 224 includes the slot 264 to form a gap in the end of the end effector, distal movement of cutting bar 246 will also serve to lift loop 422 up over island 236 and push it free from the suturing instrument, whereby to disengage the formed loop 422 from the distal end of suturing instrument 2. Furthermore, if desired, cutting bar

- 46 -

channel 232 may be offset from the plane of wire channels 228 and 232 so as to further assist lifting loop 422 up over island 236. In addition, if desired, island 236 may be formed so as to be mechanically 5 retractable into the body of fixed first portion 222, whereby to further facilitate disengagement of the formed loop 422 from the suturing instrument.

Due to the manner in which loop 422 is formed, the trailing end 426 of the loop will project 10 distally, into the material being formed (Fig. 33). This feature is generally highly desirable, since it produces a secure, low profile fixation.

Various factors can affect how the wire element loops in the tissue. These factors include 15 instrument-related factors (e.g., the curvature of third channel 230, etc.), wire-related factors (e.g., wire tensile strength, wire yield stress, wire diameter, etc.) and tissue-related factors (e.g., tissue density, tissue elasticity, tissue thickness, 20 tissue stabilization, etc.).

- 47 -

The aforementioned factors are preferably taken into account when forming wire loops in tissue. For example, when forming a loop in intestine, which tends to be a relatively delicate tissue, it is generally preferable to use a relatively "soft" wire; correspondingly, when forming a loop in the abdominal wall, which tends to be a relatively tough tissue, it is generally preferable to use a relatively "hard" wire.

In general, it has been found that suture wire formed out of 316 LVM stainless steel, having a tensile strength of 230-260 kpsi and a diameter of about 0.006-0.019 inch, is advantageous in particular applications. In general, when forming suture loops with a diameter of about 0.140-0.165 inch, it has been found acceptable to provide third channel 230 with a radius of 0.050-0.075 inch.

It should be appreciated that the suture loop 422 can, if desired, have a diameter which exceeds the diameter of suturing instrument.

- 48 -

It should also be appreciated that, due to the fact that cannula assembly 200 can be dismounted from handle assembly 100, a set of different cannula assemblies, each having different loop-forming characteristics, can be provided to the user for appropriate selection at the time of use.

In a similar fashion, due to the fact that wire supply cartridge 400 can be dismounted from suturing instrument 2, a set of different wire supply cartridges, each having different suture wire characteristics (e.g., material, hardness, diameter, etc.) can be provided to the user for appropriate selection at the time of use.

If desired, loop 422 can be used to secure mesh 502 to tissue 500, or to attach other objects to tissue, or to attach objects other than tissue together, etc. In this respect it should be appreciated that where the suturing instrument is to be used to secure mesh to tissue, and where end effector 204 is provided with stabilizing projections 272, 274 (Figs. 12 and 17), projections 272, 274 are

- 49 -

preferably formed narrow enough and long enough to extend completely through the mesh and contact the underlying tissue.

In addition to the foregoing, in Figs. 26-33,
5 suturing instrument 2 is shown securing one layer of material 502 to an underlying layer of material 500. However, it should also be appreciated that other types of attachments may also be formed with suture loop 422. Thus, for example, in Fig. 34 two portions
10 500, 502 are shown being secured to one another in a so-called "end to end" configuration.

As noted above, channels 228 and 230 are positioned on opposing sides of cutting bar channel 232, whereby a length of suture wire 416, extending
15 between channels 228 and 230, may be severed by cutting bar 246. In this respect it will be appreciated that the angle at which cutting bar channel 232 intersects channel 228 has a bearing on the angle imparted to the leading tip 424 of suture
20 wire 416. More particularly, in Fig. 35 it will be seen that cutting bar channel 232 intersects second

- 50 -

channel 228 at the angle θ ; as a result, the leading tip of suture wire 416 will also be set at the angle θ .

In general, when considered solely from the standpoint of tissue penetration, it is typically desirable that the angle θ be as small as possible, in order that the suture wire have the sharpest possible tip to facilitate tissue penetration. At the same time, however, it must also be appreciated that the leading tip of suture wire 416 must traverse the substantial curvature of third channel 230 and, if the angle θ is too small, the sharp leading tip of the suture wire will strike the wall of third channel 230 (Fig. 36) and thereby become damaged and/or blunted.

On the other hand, if the angle θ is increased, the heel of the tip will engage the wall of third channel 230 (Fig. 37), thereby leaving the sharp tip of the suture wire undamaged. Thus, it is generally preferred that the angle θ be set so that the leading tip of suture wire 416 be formed as sharp as possible

- 51 -

while still being able to traverse the curvature of third channel 230 without damage.

As noted above, suture loop 422 can be used to secure tissue to tissue, or to secure an inanimate object to tissue, or to secure an inanimate object to an inanimate object, etc. In this respect it should be appreciated that one anticipated application for suture loop 422 is to secure a prosthetic cardiac valve to a valve seat within the heart. See, for example, Fig. 38, where suturing instrument 2 is shown securing a prosthetic cardiac valve 504 to vascular tissue 508 (in this respect it should be appreciated that in Fig. 38, a portion of the vascular tissue 508 has been removed so as to illustrate how suture loops 422 penetrate a portion of cardiac valve 504).

In the foregoing description, suture wire 416 is described as comprising an elongated length which is cut into specific lengths at the time of use by the action of cutting bar 246. In this respect it should also be appreciated, however, that suture wire 416 may be pre-cut into selected lengths prior to use, and the

- 52 -

pre-cut lengths then stored in a magazine or the like,
for deployment at the time of use. In such a case,
cutting bar 246 will act as a forming and ejecting
tool rather than as a cutting, forming and ejecting
5 tool.

As noted above, suture wire 416 may comprise a
wire formed out of a metal or any other suitable
material having the required flexibility and
stiffness. By way of example but not limitation,
10 suture wire 416 may comprise stainless steel,
titanium, tantalum, etc.

If desired, suture wire 416 may also be coated
with various active agents. For example, suture wire
416 may be coated with an anti-inflammatory agent, or
15 an anti-coagulant agent, or an antibiotic, or a
radioactive agent, etc.

- 53 -

Cannula Assembly 200A

In an alternative form of the invention, cannula assembly 200 may be replaced by a cannula assembly 200A. Cannula assembly 200A is substantially the same as cannula assembly 200 described above, except as will hereinafter be described. Cannula assembly 200A is shown in greater detail in Figs. 39 and 40. Cannula assembly 200A comprises shaft 202, end effector 204A and wire cutting mechanism 206A.

Shaft 202 is substantially the same as the shaft 202 discussed above with respect to cannula assembly 200.

End effector 204A is secured to the distal end of shaft tube 202.

End effector 204A is configured so as to form a modified suture loop 422A (Fig. 41), sometimes referred to as a "modified suture clip" or a "modified Q-form loop" or a "Q-form clip", as will hereinafter be discussed.

- 54 -

More particularly, end effector 204A comprises a fixed first portion 222A (Figs. 39 and 40) and a fixed second portion 224A.

As seen in Figs. 42 and 43, fixed first portion 222A includes a first channel 226A for receiving the distal end of the aforementioned wire supply cartridge 400, a smaller diameter second channel 228A for supporting suture wire as the suture wire emerges from wire supply cartridge 400, and a third channel 230A for receiving the suture wire after the suture wire passes by cutting bar channel 232A and for imparting a selected curvature to the suture wire, whereby to form the suture loop, as will hereinafter be discussed in further detail. Second channel 228A and third channel 230A are coplanar. Third channel 230A and cutting bar channel 232A effectively form an island 236A at the distal end of end effector 204A.

In order to assist the controlled retention of suture wire during its travel within second channel 228A and third channel 230A, one or both of these channels may be given an undercut profile such as the

- 55 -

dovetail profile 238A shown in Fig. 43 with respect to third channel 230A. At the same time, in order to minimize harmful friction between the suture wire and fixed first portion 222A, second channel 230A may be 5 widened slightly at locations other than 240A (Fig. 42); locations 240A are, for this particular clip form, the operative contact points for effecting wire bending (in this respect it should be appreciated that other particular clip forms may have other contact 10 points).

In addition, in order to facilitate the release of a formed suture clip from the instrument, the proximal end of island 236A may be relieved at 242A (Fig. 42), and the remaining portions of island 236A 15 may be radiused as shown at 243A so as to facilitate the release of a formed suture clip from the instrument.

In addition to the foregoing, fixed first portion 222A may be relieved as shown as 244A (Fig. 43) so as 20 to form a curved guide at the distal end of the

- 56 -

instrument for receiving the looped suture wire as it returns to the distal end of the instrument.

Wire cutting mechanism 206A comprises a cutting bar 246A (Figs. 44-47). The distal end of cutting bar 246A is disposed in the aforementioned cutting bar channel 232A and the proximal end of cutting bar 246A protrudes from the proximal end 212 of tube 208 (Fig. 8).

The distal end of cutting bar 246A (Figs. 43-46) preferably comprises a plurality of distinct faces, i.e., a cutting face 248A defining a cutting edge 250A, a relief face 252A set at an angle α to cutting face 248A, and an ejection ramp face 254A. When cutting bar 246A is driven distally so as to encounter suture wire extending between second channel 228A and third channel 230A (and hence across cutting bar channel 232A), cutting edge 250A will sever the suture wire, ejection ramp face 254A will, in conjunction with the island's relieved surface 242A, lift the trailing end of the severed suture wire out of cutting bar channel 232A and up over island 236A so that the

- 57 -

loop may be released from the distal end of the suturing instrument.

Looking next at Figs. 39, 40 and 48, fixed second portion 224A includes the second half of the

5 aforementioned first channel 226A for receiving the distal end of the aforementioned wire supply cartridge 400, the second half of the aforementioned cutting bar channel 232A, and a relief 264A which extends proximally from the distal end of the instrument.

10 Relief 264A is sized so that when first fixed portion 222A is engaging second fixed portion 224A, third channel 230A and island 236A will be exposed, in order to permit a formed loop of suture wire to be released from the end of the suturing instrument.

15 Fixed first portion 222A and fixed second portion 224A are preferably formed out of material which is harder than the suture wire passing through channels 228A and 230A, so as to minimize wear on the instrument. In one preferred form of the invention, 20 first fixed portion 222A and fixed second portion 224A are formed out of a carbide alloy.

- 58 -

In one preferred form of the invention, fixed first portion 222A includes a recess 270A (Fig. 39) at its front end. Recess 270A in fixed first portion 222A and relief 264A in fixed second portion 224A together permit soft tissue to protrude into the interior of end effector 204A. If desired, one or both of fixed first portion 222A and/or fixed second portion 224A can be relieved such as is shown at 271A in Fig. 40 so as to facilitate engagement of the instrument with the material to be joined.

If desired, and looking now at Figs. 29-56, the floor 231A of third channel 230A may be inclined so as to move the looping suture wire out of the plane of second channel 228A, whereby to facilitate forming the loop of suture wire. By way of example, the distal end of the floor 231A can be inclined so as to move the looping suture wire out of the plane of the floor of second channel 228A (see Figs. 49-51).

- 59 -

Wire Supply Cartridge 400A

In an alternative form of the invention, wire supply cartridge 400 may be replaced by a wire supply cartridge 400A. Looking next at Figs. 52-55, wire supply cartridge 400A generally comprises a spool housing 402, a wire spool 404, a spool retainer spring 406, a spool cover 408, a molded tube support 410A and a wire support tube 412A. A length of suture wire 416 extends from spool 404 and through molded tube support 410A and wire support tube 412A.

More particularly, a supply coil of suture wire 416 (comprising wire formed of metal or any other suitable material having the required flexibility and stiffness) may be supplied in the base of cartridge 400A and is fed into wire support tube 412A. Wire support tube 412A surrounds suture wire 416 from molded tube support 410A to the distal end of suturing instrument 2 where, with the distal end of wire support tube 412A received in channel 226 (Fig. 12), the suture wire enters second channel 228 in end effector 204. Wire support tube 412A ensures that

- 60 -

suture wire 416 does not bend or buckle as the suture
wire is pushed through handle assembly 100 and cannula
assembly 200. More particularly, wire support tube
412A preferably forms a sufficiently close sliding fit
5 with suture wire 416 such that suture wire 416 cannot
bend or buckle as the suture wire is advanced through
suturing instrument 2. At the same time, wire support
tube 412A is also formed so as to present a minimum of
friction to suture wire 416 as the suture wire is
10 advanced through the instrument. The foregoing
characteristics are important, inasmuch as suture wire
416 is extremely thin and flexible and highly
susceptible to bending or buckling in the absence of
some sort of lateral support.

15 By way of example but not limitation, where
suture wire 416 is formed out of stainless steel and
has a diameter of 0.018 inch, wire support tube 412A
might have an inside diameter of 0.020 inch and an
outside diameter of 0.050 inch. In addition, wire
20 support tube 412A is preferably formed out of 316
stainless steel, however, it may alternatively be

- 61 -

formed out of some other material. If desired, the interior of wire support tube 412A may be coated with a lubricant so as to facilitate closely-supported, low-friction passage of the suture wire through the
5 wire support tube.

Wire support tube 412A begins at an opening 418A adjacent to an opening 420A of molded tube support 410A. Opening 420A exposes diametrically opposed portions of the suture wire 416 so that rollers 306
10 and 314 may contact suture wire 416 and urge the suture wire forward toward the distal end of suturing instrument 2, as hereinabove discussed in further detail.

As noted above, wire supply cartridge 400A may be
15 loaded into wire drive assembly 300 by actuating lever 336 so as to force movable block 304 away from fixed block 302 and thereby separate rollers 306 and 314. Once roller 314 is separated from roller 306 by a sufficient distance, wire support tube 412A may be
20 inserted between rollers 306 and 314, and then roller 314 returned towards roller 306 such that rollers 306

- 62 -

and 314 contact either side of suture wire 416 through the opening 420A formed in molded support tube 410A.

In other alternative forms of the invention (not shown), wire supply cartridge 400 may be replaced by a
5 wire supply cartridge which does not include a spool retainer spring, and/or the wire supply may be provided as a coil within a housing and the spool itself omitted.

10

Additional Embodiment

15

Looking next at Figs. 56-61, there is shown a suturing instrument 2B which comprises another preferred form of the present invention. Suturing instrument 2B is particularly well suited for use as a disposable instrument, although it may also be used as a reusable instrument, and generally comprises a handle assembly 100B, a cannula assembly 200B, a wire drive assembly 300B, and a wire supply 400B, as will hereinafter be described in further detail.

20

Handle assembly 100B generally comprises a handle 102B and a lever 104B. Handle 102B is fixedly

- 63 -

connected to the housing 106B, and lever 104B is pivotally connected to housing 106B by the pivot pin 108B. A stop 109B limits counterclockwise (as seen from the angle of view of Fig. 56) motion of lever 104B, and a stop 111B limits clockwise (as seen from angle of view of Fig. 56) motion of lever 104B. A pivot arm 113B is pivotally connected to housing 106B by a pivot pin 115B. A stop 117B limits counterclockwise (as seen from the angle of view of Fig. 56) motion of pivot arm 113B. A spring 119B is connected between the proximal end of housing 106B and pivot arm 113B, and a spring 121B is connected between pivot arm 113B and lever 104B, whereby pivot arm 113B and lever 104B are normally biased in a clockwise (as seen from the angle of view of Fig. 56) direction, with lever 104B resting against stop 111B.

Cannula assembly 200B comprises shaft 202, end effector 204 or 204A, and a wire cutting mechanism 206B. To the extent not otherwise described, shaft 202, end effector 204 or 204A, and wire cutting mechanism 206B are generally configured and/or

- 64 -

function in the manner previously described. In this respect it should be noted that the wire cutting mechanism 206B comprises the cutting bar 246B. The distal end of cutting bar 246B is generally similar to 5 the distal end of cutting bar 246 or 246A. The proximal end of cutting bar 246B includes a flange 247B. A spring 249B is positioned coaxially around the proximal end of cutting bar 246B and extends between flange 247B and the distal end of housing 10 106B, whereby to bias cutting bar 246B proximally.

Wire drive assembly 300B comprises a push rod 301B which has its proximal end connected to pivot arm 113B and its distal end connected to a sliding cage 303B. Sliding cage 303B includes a window 305B having 15 a camming surface 307B formed therein. A puck or disc 309B is slidably positioned within window 305B so as to rest against camming surface 307B. A spring 311B biases puck 309B proximally. As a result of this construction, when push rod 301B advances sliding cage 20 303B distally within shaft 202, puck 309B will ride proximally along camming surface 307B so that the puck

- 65 -

moves into secure engagement with the suture wire 416 extending through shaft 202, whereby to advance suture wire 416 distally. However, when push rod 301B retracts sliding cage 303B proximally within shaft 5 302, spring 311B will yield so that puck 309B can ride distally along camming surface 307B so that the puck moves out of driving engagement with the suture wire 416 extending through shaft 202, thus imparting stationary no motion to suture wire 416 during the 10 cage's return stroke.

Wire drive assembly 300B also comprises a stationary cage 313B disposed near the distal end of shaft 202, adjacent to end effector 204 or 204A. Stationary cage 313B includes a window 315B having a 15 camming surface 317B formed therein. A flexible finger 319B (preferably formed out of a short length of wire) is secured to shaft 202 and extends through window 315B. As a result of this construction, when sliding cage 303B advances suture wire 416 distally, 20 flexible finger 319B will ride distally along camming surface 317B, so that the flexible finger 319B moves

- 66 -

out of binding engagement with suture wire 416,
thereby allowing suture wire 416 to advance
substantially unimpeded by stationary cage 313B.
However, when sliding cage 303B is moved through its
5 return stroke, any proximal movement of suture wire
416 will cause flexible finger 319B to ride proximally
along camming surface 317B, so that the flexible
finger moves into tighter engagement with suture wire
416 and prevents substantial proximal movement of the
10 suture wire.

Thus it will be seen that sliding cage 303B and
stationary cage 313B together act as a one-way wire
advancement mechanism, permitting suture wire 416 to
be advanced distally within shaft 202 in response to
15 distal movement of push rod 301B but preventing
substantial proximal motion of suture wire 416 when
push rod 301B moves proximally.

Wire supply 400B comprises a length of suture
wire 416 disposed within shaft 202.

20 Suturing instrument 200B preferably operates as
follows.

- 67 -

First, with suturing instrument 200B in the condition shown in Fig. 56 (i.e., with lever 104B set against stop 111B and with a supply of suture wire 416 in shaft 202), the distal end of the instrument is 5 placed against the subject. Then the free end of lever 104B is moved toward handle 102B, causing lever 104B to move counterclockwise. As this occurs, spring 121B causes pivot arm 113B to move counterclockwise, which in turn causes push rod 301B to move distally.

10 As push rod 301B moves distally, it causes sliding cage 303B to also move distally, whereby suture wire 416 is advanced distally.

Pivot arm 113B rotates counterclockwise until it engages stop 117B, whereupon distal movement of push 15 rod 301B ceases, thus halting advancement of suture wire 416. See Figs. 58 and 59. This distal advancement of suture wire 416 is sufficient to form the suture loop 422 (if the instrument's end effector is the end effector 204 described above) or the suture loop 422A (if the instrument's end effector is the end effector 204A described above).

20

- 68 -

However, even as pivot arm 113B engages stop 117B, lever 104B is free to continue rotating in a counterclockwise direction, whereupon it engages flange 247B on the distal end of cutting bar 246B, 5 thereby driving cutting bar 246B distally. This motion continues until lever 104B engages stop 109B, whereupon distal movement of cutting bar 246B ceases. See Figs. 60 and 61. This distal movement of cutting bar 246B is sufficient to sever the formed suture loop 10 (422 or 422A) from the remainder of the suture wire 416 and eject the formed suture loop from the instrument.

At this point lever 104B is released, whereupon springs 119B, 121B, and 249B return the instrument to 15 the condition shown in Fig. 56. As this occurs, stationary cage 313B will prevent suture wire 416 from being retracted within shaft 202, due to the cammed engagement of flexible finger 319B with suture wire 416.

20 Thereafter, the foregoing process may be repeated, until the desired number of suture loops has

- 69 -

been deployed or until the supply of suture wire 416
is exhausted.

Figs. 62-64 show a similar wire drive assembly
300B, except that the sliding cage 303B is configured
5 to have its puck or disc 309B released from wire
engagement at the end of its stroke, rather than upon
the retraction of sliding cage 303B (as with the
embodiment shown in Figs. 56-61).

More particularly, with the construction shown in
10 Figs. 62-64, the sliding cage 303B has a bottom groove
351B (Fig. 64) which receives a tongue 353B (Fig. 64)
when the sliding cage 303B advances from its retracted
position (Fig. 62) to its extended position (Fig. 63).
Sliding cage 303B also includes a release lever 355B
15 that pivots about a pin 357B. When the sliding cage
303B is in its retracted position (Fig. 62), release
lever 355B is withdrawn from puck or disc 309B, and
spring 311B and camming surface 307B keep puck 309B
engaged with suture wire 416 during the drive stroke.
20 However, at the end of the drive stroke, tongue 353B
will enter bottom groove 351B and cause release lever

- 70 -

355B to pivot, whereby to move puck 309B forward against the bias of spring 311B, and thus move puck 309B out of driving engagement with suture wire 416. When the sliding cage 303B is thereafter returned to its retracted position, a stop 359B will cause release lever 355B to return to its starting position, ready for another drive stroke.

Modifications

10 It will be appreciated by those skilled in the art that numerous modifications and variations may be made to the above-disclosed embodiments without departing from the spirit and scope of the present invention.

15 Thus, for example, shaft 202 has been shown as being substantially straight; however, it is also anticipated that shaft 202 may be curved along its length. Furthermore, shaft 202 may be substantially rigid, or it may be flexible so that it can be bent
20 along its length. It is also possible to form shaft

- 71 -

202 so that it has two or more articulating sections so as to aid in the positioning of end effector 204.

Furthermore, with respect to suturing instrument 2B shown in Figs. 56-61, sliding cage 303B and/or 5 stationary cage 313B may be located within housing 106B rather than within shaft 202. Such a construction may be particularly advantageous where suturing instrument 2B is intended to be reusable.

Also, with respect to suturing instrument 2B 10 shown in Figs. 56-61, a ratchet mechanism (e.g., similar to the ratchet mechanism 122, 124 shown in Fig. 3) may be incorporated into the device so as to ensure a complete suture loop 422 or 422A is formed and released before another suture loop 422 or 422A is 15 begun.

- 72 -

What Is Claimed Is:

1. A suturing instrument for joining a first portion of material to a second portion of material,
5 said suturing instrument comprising:
 - a handle;
 - an end effector mounted on said handle and defining therein:
 - a channel for supporting suture wire, said channel being curved to impart a looping configuration to portions of the suture wire passed therethrough;
 - an end recess adapted to receive the looped suture wire emerged from said channel; and
 - a passageway for supporting a cutting bar, 15 said passageway intersecting said channel so as to create an island between said channel and said passageway;
 - a wire advancing actuator mounted on said handle for moving the suture wire through said channel, 20 through the material first and second portions and back into said end recess, said wire advancing

- 73 -

actuator comprising a sliding cage adapted for distal and proximal movement within said handle, said sliding cage comprising a cam and a cam follower, and further wherein (1) distal movement of said sliding cage causes said cam follower to move along said cam so as to bindingly engage said suture wire and drive it distally, and (2) proximal movement of said sliding cage causes said cam follower to move along said cam so as to disengage from binding engagement with said suture wire;

10 a cutting bar movably disposed in said passageway for selectively engaging the suture wire, said cutting bar being adapted to (1) cut the looped suture wire from the remaining portions of the suture wire; and
15 (2) bend the trailing end of the looped suture wire around, and lift the looped suture wire over, said island; and

20 a cutting bar actuator mounted on said handle for moving the cutting bar into engagement with the suture wire.

- 74 -

2. A suturing instrument according to claim 1
wherein said handle comprises a housing and a shaft,
and further wherein said end effector is disposed at
said distal end of said shaft.

5

3. A suturing instrument according to claim 2
wherein said sliding cage is disposed in said shaft.

4. A suturing instrument according to claim 1
10 wherein said sliding case comprises a spring to bias
said cam follower into engagement with said suture
wire.

5. A suturing instrument according to claim 1
15 wherein said wire advancing actuator further comprises
a stationary cage, said stationary cage comprising a
cam and a cam follower, and further wherein (1)
proximal movement of said suture wire causes said cam
follower to move along said cam so as to bindingly
20 engage said suture wire and hold it stationary, and
(2) distal movement of said suture wire causes said

- 75 -

cam follower to move along said cam so as to disengage from binding engagement with said suture wire.

6. A suturing instrument according to claim 1
5 wherein at least a portion of said end recess extends out of the plane of said channel.

7. A suturing instrument according to claim 1
wherein said end recess includes a curved surface for
10 guiding the looped suture wire emerged from said
channel.

8. A suturing instrument according to claim 1
wherein said end effector is provided with an inclined
15 surface for guiding the looped suture wire out of the
plane of said channel.

9. A suturing instrument according to claim 1
wherein said end effector is provided with a recessed
20 cutout therein such that pressing said end effector
against a pliable portion of material causes the

- 76 -

bulging portion of material into the recessed cutout,
to permit deep penetration of the suture wire.

10. A suturing instrument according to claim 1
5 wherein said end effector includes at least one
projection extending out of said end effector for
engaging the portion of material.

11. A suturing instrument according to claim 10
10 wherein said end effector includes two projections
extending out of said end effector for engaging the
portion of material.

12. A suturing instrument according to claim 11
15 wherein one of said projections is longer than the
other of said projections.

13. A suturing instrument according to claim 1
wherein said island comprises a relieved surface
20 thereon.

- 77 -

14. A suturing instrument according to claim 13
wherein said cutting bar comprises (1) a cutting edge
for cutting the looped suture wire from the remaining
portions of the suture wire; (2) a relief face for
5 bending the trailing end of the looped suture wire
around said island; and (3) an ejection ramp face for
lifting the looped suture wire over said island,
wherein the looped suture wire is lifted over said
island with said ejection ramp in conjunction with a
10 relieved surface of said island.

15. A suturing instrument according to claim 1
wherein said first portion of material comprises
tissue and said second portion of material comprises
15 tissue.

16. A suturing instrument according to claim 1
wherein said first portion of material comprises a
prosthesis and said second portion of material
20 comprises tissue.

- 78 -

17. A suturing instrument according to claim 16
wherein said first portion of material comprises
surgical mesh and said second portion of material
comprises tissue.

5

18. A suturing instrument according to claim 1
wherein said island is separated from said passageway
by at least the thickness of the suture wire.

10

19. A suturing instrument according to claim 1
wherein said channel is undercut so as to help retain
the suture wire in said channel.

15

20. A suturing instrument according to claim 1
wherein said wire advancing actuator is adapted to
advance a predetermined length of suture wire.

20

21. A suturing instrument according to claim 1
wherein said wire advancing actuator and said cutting
bar actuator are sequentially activated by a single
element.

- 79 -

22. A suturing instrument according to claim 1
wherein said end recess has a geometry such that the
suture wire is maintained in said channel until after
5 the suture wire has been cut and partially bent.

23. A suturing instrument according to claim 1
wherein said cutting bar cuts the suture wire so as to
form a sharp point.

10

24. A suturing instrument according to claim 1
wherein said end effector is detachable from said
handle so as to allow a different end effector to be
mounted to said handle.

15

25. A suture instrument according to claim 1
further comprising an inclined portion of said channel
for supporting the suture wire, said inclined portion
being configured distal of said passageway for
20 supporting said cutting bar, wherein said inclined
portion projects the suture wire out of the plane of

- 80 -

said channel proximal of said passageway for supporting said cutting bar.

26. A method for joining a first portion of
5 material to a second portion of material, said method comprising:

providing a suturing instrument comprising:
a handle;
an end effector mounted on said handle and
10 defining therein:

a channel for supporting suture wire,
said channel being curved to impart a looping configuration to portions of the suture wire passed therethrough;

15 an end recess adapted to receive the looped suture wire emerged from said channel; and
a passageway for supporting a cutting bar, said passageway intersecting said channel so as to create an island between said channel and said
20 passageway;

- 81 -

a wire advancing actuator mounted on said handle for moving the suture wire through said channel, through the material first and second portions and back into said end recess; said wire advancing actuator comprising a sliding cage adapted for distal and proximal movement within said handle, said sliding cage comprising a cam and a cam follower, and further wherein (1) distal movement of said sliding cage causes said cam follower to move along said cam so as to bindingly engage said suture wire and drive it distally, and (2) proximal movement of said sliding cage causes said cam follower to move along said cam so as to disengage from binding engagement with said suture wire;

15 a cutting bar movably disposed in said passageway for selectively engaging the suture wire, said cutting bar being adapted to (1) cut the looped suture wire from the remaining portions of the suture wire; and (2) bend the trailing end of the looped suture wire around, and lift the looped suture wire over, said island; and

- 82 -

a cutting bar actuator mounted on said handle for moving the cutting bar into engagement with the suture wire;

5 positioning said end effector against at least one of the portions to be joined;

moving the suture wire through said channel, through the material first and second portions and back into said end recess; and

10 moving the cutting bar in said passageway so as to (1) cut the looped suture wire from the remaining portions of the suture wire; and (2) bend the trailing end of the looped suture wire around, and lift the looped suture wire over, said island.

15 27. A method according to claim 26 wherein said handle comprises a housing and a shaft, and further wherein said end effector is disposed at said distal end of said shaft.

20 28. A method according to claim 26 wherein said sliding cage is disposed in said shaft.

- 83 -

29. A method according to claim 26 wherein said sliding case comprises a spring to bias said cam follower into engagement with said suture wire.

5

30. A method according to claim 26 wherein said wire advancing actuator further comprises a stationary cage, said stationary cage comprising a cam and a cam follower, and further wherein (1) proximal movement of said suture wire causes said cam follower to move along said cam so as to bindingly engage said suture wire and hold it stationary, and (2) distal movement of said suture wire causes said cam follower to move along said cam so as to disengage from binding engagement with said suture wire.

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
9170
9175
9180
9185
9190
9195
9200
9205
9210
9215
9220
9225
9230
9235
9240
9245
9250
9255
9260
9265
9270
9275
9280
9285
9290
9295
9300
9305
9310
9315
9320
9325
9330
9335
9340
9345
9350
9355
9360

- 84 -

said recess includes moving a portion of the suture wire out of the plane of said channel.

32. A method according to claim 26 wherein said
5 end recess includes a curved surface for guiding the looped suture wire emerged from said channel, and further wherein the step of moving the suture wire through said channel, through the material first and second portions and back into said recess includes
10 engaging said curved surface with a portion of the suture wire.

33. A method according to claim 26 wherein said end effector is provided with an inclined surface for
15 guiding the looped suture wire out of the plane of said channel, and further wherein the step of moving the suture wire through said channel, through the material first and second portions and back into said recess includes engaging said inclined surface with a
20 portion of the suture wire.

- 85 -

34. A method according to claim 26 wherein said
end effector is provided with a recessed cutout
therein, and further wherein the step of positioning
said end effector against at least one of the portions
5 to be joined causes a bulging portion of material to
enter the recessed cutout, to permit deep penetration
of the suture wire

35. A method according to claim 26 wherein said
10 end effector includes at least one projection
extending out of said end effector for engaging the
portion of material, and further wherein the step of
positioning said end effector against at least one of
the portions to be joined includes engaging said at
15 least one of the portions with said at least one
projection.

36. A method according to claim 26 wherein the
step of positioning said end effector against at least
20 one of the portions to be joined includes positioning

- 86 -

said end effector at an acute angle to the surface of
the portion.

37. A method according to claim 26 wherein said
5 first portion of material comprises tissue and said
second portion of material comprises tissue.

38. A method according to claim 26 wherein said
first portion of material comprises a prosthesis and
10 said second portion of material comprises tissue.

39. A method according to claim 26 wherein said
first portion of material comprises surgical mesh and
said second portion of material comprises tissue.
15

40. A method according to claim 26 wherein said
island is separated from said passageway by at least
the thickness of the suture wire, and further wherein
the step of moving the cutting bar in said passageway
20 includes bending the trailing end of the looped suture

- 87 -

wire so that the trailing end of the suture wire is located between said island and said passageway.

41. A method according to claim 26 wherein the
5 step of moving said suture wire includes advancing a predetermined length of suture wire.

42. A method according to claim 26 wherein said
wire advancing actuator and said cutting bar actuator
10 are sequentially activated by a single element.

43. A method according to claim 26 wherein the
suture wire is cut so as to form a sharp point.

15 44. A suturing instrument for joining a first
portion of material to a second portion of material,
said suturing instrument comprising:

a handle;
an end effector mounted on said handle and
20 defining therein:

- 88 -

a channel for supporting suture wire, said
channel being curved to impart a looping configuration
to portions of the suture wire passed therethrough;

5 an end recess adapted to receive the looped
 suture wire emerged from said channel; and

 a passageway for supporting a cutting bar,
said passageway intersecting said channel so as to
create an island between said channel and said
passageway;

10 a wire advancing actuator mounted on said handle
for moving the suture wire through said channel,
through the material first and second portions and
back into said end recess, said wire advancing
actuator comprising a sliding cage adapted for distal
15 and proximal movement within said handle, said sliding
 cage comprising a cam and a cam follower, and further
wherein (1) distal movement of said sliding cage to a
first extent causes said cam follower to move along
said cam so as to bindingly engage said suture wire
20 and drive it distally, and (2) distal movement of said
 sliding cage to a second extent causes said cam

- 89 -

follower to move along said cam so as to disengage from binding engagement with said suture wire;

a cutting bar movably disposed in said passageway for selectively engaging the suture wire, said cutting bar being adapted to (1) cut the looped suture wire from the remaining portions of the suture wire; and (2) bend the trailing end of the looped suture wire around, and lift the looped suture wire over, said island; and

10 a cutting bar actuator mounted on said handle for moving the cutting bar into engagement with the suture wire.

45. A method for joining a first portion of material to a second portion of material, said method comprising:

providing a suturing instrument comprising:
a handle;
an end effector mounted on said handle and
20 defining therein:

- 90 -

a channel for supporting suture wire,
said channel being curved to impart a looping
configuration to portions of the suture wire passed
therethrough;

5 an end recess adapted to receive the
looped suture wire emerged from said channel; and

 a passageway for supporting a cutting
bar, said passageway intersecting said channel so as
to create an island between said channel and said
10 passageway;

 a wire advancing actuator mounted on said
handle for moving the suture wire through said
channel, through the material first and second
portions and back into said end recess; said wire
15 advancing actuator comprising a sliding cage adapted
for distal and proximal movement within said handle,
said sliding cage comprising a cam and a cam follower,
and further wherein (1) distal movement of said
sliding cage to a first extent causes said cam
20 follower to move along said cam so as to bindingly
engage said suture wire and drive it distally, and (2)

- 91 -

distal movement of said sliding cage to a second extent causes said cam follower to move along said cam so as to disengage from binding engagement with said suture wire;

5 a cutting bar movably disposed in said passageway for selectively engaging the suture wire, said cutting bar being adapted to (1) cut the looped suture wire from the remaining portions of the suture wire; and (2) bend the trailing end of the looped suture wire around, and lift the looped suture wire over, said island; and

10 a cutting bar actuator mounted on said handle for moving the cutting bar into engagement with the suture wire;

15 positioning said end effector against at least one of the portions to be joined;

 moving the suture wire through said channel, through the material first and second portions and back into said end recess; and

20 moving the cutting bar in said passageway so as to (1) cut the looped suture wire from the remaining

- 92 -

portions of the suture wire; and (2) bend the trailing end of the looped suture wire around, and lift the looped suture wire over, said island.

FIG. 1

FIG. 2

FIG. 3

FIG. 4

FIG. 5

FIG. 6

FIG. 7

FIG. 8

FIG. 9

FIG. 11

FIG. 12

FIG. 13

FIG. 14

FIG. 15

FIG. 16

FIG. 17

FIG. 18

FIG. 19

FIG. 20

FIG. 21

FIG. 24

FIG. 25

FIG. 26

FIG. 27

FIG. 28

FIG. 29

FIG. 30

FIG. 31

FIG. 32

FIG. 33

FIG. 34

FIG. 35

FIG. 36

FIG. 37

FIG. 38

FIG. 39

FIG. 40

422A

FIG. 41

Fig. 42

Fig. 43

FIG. 44

FIG. 45

FIG. Hb

FIG. 4/7

FIG. 48

FIG. 49

FIG. 50

FIG. 52

52/57

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US03/15869

A. CLASSIFICATION OF SUBJECT MATTER

IPC(7) : A61B 17/04

US CL : 606/148

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 606/148, 142, 104, 139, 144, 103

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US 5,911,727 A (TAYLOR) 15 June 1999; see column 1, lines 53-67; Figures 1 and 7.	1, 2, 26, 44, 45
Y	US 5,458,609 A (GORDON et al.) 17 October 1995; see column 3 line 51 to Column 4 line 6, Column 13 lines 27-50; Figures 1D, 22.	1, 2, 26, 44, 45
Y, P	US 6,454,778 B2 (KORTENBACH) 24 September 2002, see column 2, lines 28-34; Column 6, lines 65-67; Figures 5A, 1B, 1C.	1, 2, 26, 44, 45

 Further documents are listed in the continuation of Box C.

See patent family annex.

• Special categories of cited documents:	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"A" document defining the general state of the art which is not considered to be of particular relevance	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"E" earlier application or patent published on or after the international filing date	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"&"	document member of the same patent family
"O" document referring to an oral disclosure, use, exhibition or other means		
"P" document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search

09 September 2003 (09.09.2003)

Date of mailing of the international search report

20 OCT 2003

Name and mailing address of the ISA/US
Mail Stop PCT, Attn: ISA/US
Commissioner for Patents
P.O. Box 1450
Alexandria, Virginia 22313-1450
Facsimile No. (703)305-3230

Authorized officer

Bradford C Pantuck

Telephone No. (703) 308-1148

Deane Resende for

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.