MATH H104: Homework 1

William Guss 26793499 wguss@berkeley.edu

September 2, 2015

1 Real Numbers

- 3. Recast the following English sentences in mathematics, using correct mathematical grammar. Preserve their meaning.
 - (a) 2 is the smallest prime number. Let $P \subset \mathbb{N}$ denote the set of prime numbers. Consider that t = 2 is clearly a member of P. Then for all $p \in P$, $t \leq P$.
 - (b) The area of any bounded plane region is bisected by some line parallel to x-axis. Before we claim the above we must first rigorize the notion of a bounded plane region. The following uses a notion of open and closed sets in \mathbb{R}^2 .

Definition 1. We say that $B_r(x_0)$ is an open ball of radius r > 0 if and only if

$$B_r(x_0) = \{ x \in \mathbb{R}^2 \mid ||x - x_0|| < r \}.$$

Furthermore $\bar{B}_r(x_0)$ is a closed ball of radius r > 0 if and only if

$$\bar{B}_r(x_0) = \{ x \in \mathbb{R}^2 \mid ||x - x_0|| \leqslant r \}.$$

Using the above definition we now give our notion of a bounded plane reigon.

Definition 2. If A is a subset of \mathbb{R}^2 we will say that A is the area of a bounded plane region if and only if for every $x \in A$, there is an open or closed ball centered at x which is a subset of A.

Lastly, we give the notion of a parallel line to the x-axis

Definition 3. We say that $L_r \subset \mathbb{R}^2$ is a line parallel to the x-axis at radius r if and only if

$$L_r = \{(x, y) \in \mathbb{R} \mid y = r\}.$$

Now it is simple to propose the theorem of symantic equivalence to the question.

Theorem 1. Let A be the area of a bounded plane region in \mathbb{R}^2 . Then, there exists some line parallel to the x-axis of height r, L_r , such that $L_r \cap A \neq \emptyset$ and both

$$A_L = \{(x, y) \in A \mid y < r\} \text{ and } A_U = \{(x, y) \in A \mid y \ge r\}$$
 (1)

are areas of bounded plane regions.

(c) "All that glitters is mot gold." Let G be the set of all object which glitter. Then let A be the set of all gold objects. $A \neq G$.

12. Prove the following.

Theorem 2. There exists no smallest positive real number.

Proof. Suppose that there exists a smallest real number, say $a \in \mathbb{R}$. Clearly a > 0 and so is $\frac{a}{2}$. Furthermore $\frac{a}{2} < a$, and hence we reach a contradiction. Therefore does not exist a smallest postivie real number.

Theorem 3. There exist no smallest positive rational number.

Proof. Suppose that there exists a smallest rational number, say $q \in \mathbb{Q}$. Clearly q > 0 and so is $\frac{q}{2}$. Furthermore $\frac{q}{2} < q$, and hence we reach a contradiction. Therefore does not exist a smallest postivie rational number.

Theorem 4. Let $x \in \mathbb{R}$. Then there does not exist a smallest real number y such that y > x.

Proof. Suppose that such a y exists. Now consider $\frac{x+y}{2} = b$. Clearly b > x, and remarkably b < y. Hence y is not the smallest real number such that y > x. This leads to a contradiction, and therefore there is no smallest y satisfying the conditions.

22. Show the following.

(a) Fixed points:

Theorem 5. The function $f: A \to A$ has a fixed point if and only if the graph of f interesects the diagonal.

Proof. We first show the right implication. If f has a fixed point, then there is some $a \in A$ such that f(a) = a. Now consider the graph of f,

$$f(A) = \{(a, f(a) \in A\}.$$

Since f has a fixed point, f(A) contains (a, a). Hence the intersection of f(A) with the diagonal of $A \times A, D$, must contain (a, a) at the least and hence is nonempty.

On the other hand if the graph of f intersects the diagonal, then there exists some $(a,a) \in D$ such that $(a,a) \in f(A)$. Then by definition of the graph of f, (a,a) = (a,f(a)), which implies that f(a) = a. This completes the proof. \square

(b) Intermediate fixed point

Theorem 6. Every continuous function $f:[0,1] \to [0,1]$ has at least one fixed-point.

Proof. To show this we recall the intermediate value theorem. More specifically we want to find a function whose 0 exists on [0,1] which implies the theorem. Consider that f(x) = x implies that 0 = f(x) - x, so let's simply let q(x) = f(x) - x. By definition of the bound on the codomain, $g(0) \ge 0$ and $g(1) \le 0$. Then application of the intermediate value theorem yields that there exists at $c \in [0,1]$ with g(c) = 0. Hence, f(a) = a. This completes the proof.

- (c) No, consider the case of some function for which f(x) > x on (0,1). Such a function need not attain the value f(0) = 0, f(1) = 1 because such values could not possiblt exist on its graph. Hence, $f(x) \neq x$ for all x.
- (d) No, consider the function f(x) = x + 0.5 when $0 \le x < 0.5$, and f(x) = x 0.5 when $0.5 \le x \le 1$. This function never is equivalent to g(x) = x.

23. Show the following.

(a) Dyadic squares:

Theorem 7. If x and y are two dyadic squares, then they are either identical, intersect along a common edge, intersect at a common vertex, or do not intersect at all.

Proof. Since we must show all cases, let us consider them with respect to the general definition of a planar dyadic cube. In particular, $x, y \in \mathbb{Q}_2^2$. Let us fix x such that

$$x = \left[\frac{p}{2^k}, \frac{p+1}{2^k}\right]^2 \text{ and } y = \left[\frac{q}{2^k}, \frac{q+1}{2^k}\right]^2$$

for some $p, k, q \in \mathbb{Z}$.

If q = p, then y = x naturaly. In the case that q > p + 1 or q + 1 < p, we have that $x \cap y = \emptyset$. Next consider intersections along different edges. If

$$y = \left\lceil \frac{p}{2^k}, \frac{p+1}{2^k} \right\rceil \times \left\lceil \frac{p+1}{2^k}, \frac{p+2}{2^k} \right\rceil,$$

then $y \cap x = \left[\left(\frac{p}{2^k} \frac{p+1}{2^k} \right), \left(\frac{p+1}{2^k}, \frac{p+1}{2^k} \right) \right]$. In general,

$$y = \left[\frac{p+r}{2^k}, \frac{p+r+1}{2^k}\right] \times \left[\frac{p+s}{2^k}, \frac{p+s+1}{2^k}\right]$$

implies the following intersections.

If r=1, s=0, then $x \cap y = \left[(\frac{p+1}{2^k}, \frac{p}{2^k}), (\frac{p+1}{2^k}, \frac{p+1}{2^k}) \right]$. If r=-1, s=0, then $x \cap y = \left[(\frac{p}{2^k}, \frac{p}{2^k}), (\frac{p}{2^k}, \frac{p+1}{2^k}) \right]$. If r=0, s=1, then $x \cap y = \left[(\frac{p}{2^k}, \frac{p+1}{2^k}), (\frac{p+1}{2^k}, \frac{p+1}{2^k}) \right]$. If r=0, s=-1, then $x \cap y = \left[(\frac{p}{2^k}, \frac{p}{2^k}), (\frac{p+1}{2^k}, \frac{p}{2^k}) \right]$.

Lastly we need to consider the vertex edge cases. If r=1, s=1, then $x \cap y = \{(\frac{p+1}{2^k}, \frac{p+1}{2^k})\}$. If r=-1, s=1, then $x \cap y = \{(\frac{p}{2^k}, \frac{p+1}{2^k})\}$. If r=-1, s=-1, then $x \cap y = \{(\frac{p}{2^k}, \frac{p}{2^k})\}$. If r=1, s=-1, then $x \cap y = \{(\frac{p+1}{2^k}, \frac{p}{2^k})\}$.

Furthermore if r and s attain other values, we have those cases previously considered. Hence the proof is complete.

(b) For the following problem we adopt the following notation.

Definition 4. We say that say that some $X \subset \mathbb{R}^n$ is a dyadic hyper-interval of partition $2^{-\gamma}$ if and only if

$$X \in \overline{\Delta_n^k} = \left\{ Y \subset \mathbb{R}^n \mid Y = \underset{i \in \delta_k}{\times} 2^{-\gamma} \left[(m_1, \dots, m_n), (m_1, \dots, m_i + 1, \dots, m_n) \right] \right\},\,$$

where δ_k is the index set of dimensions in which the interval is non-empty and non-singular. Furthermore, $|\delta_k| = k$, and $m_i \in \mathbb{Z}$.

So now we need to operationalize this proof. If x and y are two dyadic squares, then they are either identical, intersect along a common edge, intersect at a common vertex, or do not intersect at all.

Theorem 8. In other words, if $X, Y \in \overline{\Delta_n^n}$ are of the same partition, $2^{-\gamma}$, let

$$Y = \sum_{i=1}^{k} 2^{-\gamma} \left[(m_1 + r_1, \dots, m_n + r_n), (m_1 + r_1, \dots, m_i + 1 + r_i, \dots, m_n + r_n) \right],$$

where the m_j are those which define X, and $r_j \in \mathbb{Z}$. Then, if $|r_j| \leq 1$ for all j, the following two results hold. If $k = n - \sum_i |r_i| > 0$, $X \cap Y \in \overline{\Delta_n^k}$. If k = 0, $X \cap Y \subset \mathbb{Q}_2^n$ with $|X \cap Y| = 1$. Otherwise if there exists some j such that $|r_j| > 1$, then $X \cap Y = \emptyset$.

Proof. We denote X_j, Y_j as the j^{th} interval composing X and Y. In the above definition of Y we wish to explore a multitude of different r_j values so as to express the theorem.

In the simplest case, $|r_i| > 1$ for some j then

$$y_j = 2^{-k} [(m_1 + r_1, \dots, m_j + r_j, \dots, m_1 + r_1), (m_1 + r_1, \dots, m_j + r_j + 1, \dots, m_n + r_n)].$$

Clearly $m_j + 1 < m_j + r$ or $m_j > m_j + r_j + 1$, and thus $y_j \cap x_j = \emptyset$, we have that the whole cartesian product,

$$X \cap Y = \emptyset \times \left(\underset{i \neq j}{\overset{n}{\times}} x_j \cap y_j \right) = \emptyset,$$

because $\emptyset \times B$ cannot form any pair (a, b) as there is no $a \in \emptyset$.

We claim that when $|r_i| \leq 1$, $X \cap Y \in \overline{\Delta_n^k}$ for $k = n - \sum_{i=1}^n |r_i| > 0$. Let (n_p) denote the finite (possibly empty) list of indices for which $|r_j| = 1$. In other words, for all p, $|r_{n_p}| = 1$, else $|r_j| = 0$. The intersection as aforementioned is the cartesian product of all x_j, y_j . Hence for $j \notin \{n_p\}, x_j \cap y_j \in \overline{\Delta_n^1}$ with $\delta_1 = j$. Hence, the cartesian product of all such j is $X^* \cap Y^* \in \overline{\Delta_n^c}$ with $\delta_c = \{j \neq n_p \forall p\}$, and $c = n - |\{n_p\}|$. We claim that $X \cap Y$ cannot exist in any higher dimenisonality than $X^* \cap Y^*$.

Suppose $X \cap Y \in \overline{\Delta_n^d}$, with $n \ge d > c$. This implies that there exists a $q \in \{n_p\}$ such that $x_q \cap y_q = z_q$ is non-singular and non-empty. We have that

$$z_{q} = [(m_{1}, \dots, m_{q}, \dots, m_{n}), (m_{1}, \dots, m_{q} + 1, \dots, m_{n})]$$

$$\cap [(m_{1}, \dots, m_{q} \pm 1, \dots, m_{n}), (m_{1}, \dots, m_{q} + 1 \pm 1, \dots, m_{n})]$$

$$= \left\{ \left(m_{1}, \dots, m_{q} + \frac{1 \pm 1}{2}, \dots, m_{n}\right) \right\}$$

is singular. Hence we reach a contradiction and $X \cap Y \in \overline{\Delta_n^c}$.

24. Show the following

(a) Dyadic squares in the unit ball.

Theorem 9. Given $\epsilon > 0$, show that the unit disc contains finitely many dyadic squares whose total area exceeds $\pi - \epsilon$, and which intersect with each other only along their boundries.

Proof. Let B_c^2 be a disk of radius $\sqrt{\frac{\epsilon}{\pi}} \leqslant c < 1$. Then consider the finite set S_k of all dyadic squares of partition $2^{-\gamma} = \frac{1-c}{2}$ such that $B^2 \supset \bigcup S_k \supset B_c^2$. Clearly the area of $\bigcup S_k > \pi - \epsilon$ but less that π . Hence for any $\epsilon > 0$, take S_k as aforementioned, and these satisfying squares do not intersect. The proof is complete.

(b) Disjoint dyadic squares.

Theorem 10. Given $\epsilon > 0$, show that the unit disc contains finitely many dyadic squares whose total area exceeds $\pi - \epsilon$, and which are disjoint.

Proof. For any $\epsilon > 0$, let $r = \frac{1+\sqrt{\frac{\epsilon}{\pi}}}{2}$. Clearly such a point is the average radfius of the unit ball and the unit ball with radius r. Now as before, divide the inside into pices of side length $2^{-n+1} = 1 - \sqrt{\frac{\epsilon}{\pi}}$. If only every second square in every direction is selected, that set, say S_1 , is clearly disjoint. Furthermore the total area of this set is at least

$$a_1 = \frac{\alpha_0}{4} = \frac{\pi r^2}{4}.$$

Now for those dyadics not selected, subdivide those sets into 8 pieces in basis direction, and choose every other dyadic which is disjoint from S_1 and dyadics of the same class. Let S_2 be the set of S_1 union with this new set. The area of S_2 is at least

$$a_2 = a_1 + \frac{\alpha_0 - a_1}{4}.$$

Upon repeating this process we yield the following recurrence relation,

$$a_n = a_{n-1} + \frac{\alpha_0 - a_{n-1}}{4}.$$

Hence, we apply the methods of non-homogeneous recurrence relations and find that the general solution is clearly $a_n = c_1 \left(\frac{3}{4}\right)^n$. Then we solve for the particular solution, and yield that $a_n^p = \pi r^2$. So we simply solve $a_1 = \frac{\alpha_0}{4} = c_1 \frac{3}{4} + \alpha_0$ for c_1 . Upon yielding $c_1 = -\alpha_0$, we find the total solution to the area upon n repitions of the process is

$$a_n = -\alpha_0 \left(\frac{3}{4}\right)^n + \alpha_0.$$

Now we show that there exists an N such that for some n > N, $a_n > \pi - \epsilon$. Observe,

$$\alpha_0 - \alpha_0 \left(\frac{3}{4}\right)^n < \pi - \epsilon$$

$$\left(\frac{3}{4}\right)^n > \frac{\epsilon - \pi}{\alpha_0} + 1$$

$$n \ln\left(\frac{3}{4}\right) > \ln\left(\frac{\epsilon - \pi}{\alpha_0} + 1\right).$$
(2)

Hence, let $N(\epsilon) = \frac{\ln\left(\frac{\epsilon-\pi}{\alpha_0}+1\right)}{\ln\left(\frac{3}{4}\right)}$. By the logic of derivation for N, for every $\epsilon > 0$ and for all $n > N(\epsilon)$, $a_n > \pi - \epsilon$.

Take the first such n. Then the set of disjoint dyadics, S_n , which induce the area a_n is finite, and the proof is complete.

(c) Dyadic hypercubes filling a ball.

Theorem 11. Given $\epsilon > 0$, show that the unit ball contains finitely many dyadic hypercubes whose total hypervolume exceeds $V_m(1) - \epsilon = \frac{\pi^{m/2}}{\Gamma(\frac{m}{2}+1)} - \epsilon$, and which intersect with eachother only along their boundries.

Proof. Let B_c^m be a ball of hypervolume $\epsilon < v < V_m(1)$, and therefore radius $\frac{\left(\epsilon\Gamma\left(\frac{m}{2}+1\right)\right)^{1/m}}{\sqrt{\pi}} \leqslant c < 1$. Then consider the finite set $S_k \subset \overline{\Delta_m^m}$ of all dyadic hypercubes of partition $2^{-\gamma} = \frac{1-c}{2}$ such that $B^m \supset \bigcup S_\gamma \supset B_c^m$. These cubes will fill the ball of radius $\frac{\left(\epsilon\Gamma\left(\frac{m}{2}+1\right)\right)^{1/m}}{\sqrt{\pi}}$ at least. Clearly the hypervolume of $\bigcup S_k > V_m(1) - \epsilon$ but less than $V_m(1)$. Hence for any $\epsilon > 0$, take S_γ as aforementioned, and these satisfying hypercubes do not intersect except along common edges (as proved in 23. The proof is complete.

(d) Proof. Given $\epsilon > 0$. Let $B_{-\gamma/2}^2$ denote the disk inscribed in the dyadic square $\delta \in \overline{\Delta_2^2}$ of partition $2^{-\gamma}$ at some position in \mathbb{Q}_2^2 . Now consider the unit square and the square at the origin of area ϵ_2 and sidelength $\sqrt{\epsilon} + c$. Define γ to be the rounded solution of $2^{-\gamma} = \frac{1-\sqrt{\epsilon}+c}{2}$. Then let S_1 be the family of every other dyadic square of partition $2^{-\gamma}$ filling the square of area ϵ_2 completely and then some. The area of such squares is at least $a_1 = \frac{\epsilon_2}{4}$. Then the area of union of the family of ball inscribing all dyadic squares in S_1 is $b_1 = \frac{\epsilon_2}{8}$.

For those squares not selected subdivide them into 16 dyadic squares and choose every other such that these squares are disjoint from one another and their family is disjoint from S_1 . Take the union of their family and S_1 to produce S_2 whose area is at least $a_2 = a_1 + \frac{\epsilon_2 - a_1}{8}$. Taking those circles inscribed yields that $b_2 = b_1 + \frac{\epsilon_2 - a_1}{32}$.

Repeating this process yields a geometric series b_n similar to a_n in part (b). By the same logic in part (b), there will exist an n such that $b_n > \epsilon$ and hence a finite disjoint dyadic partitioning of the unit square such that the area of disk inscription of this partitioning has area greater than ϵ which approaches ϵ_2 . This completes the proof.

- 32. Suppose that E is a convex region in the plane bounded by a curve C.
 - (a) Show the following

Theorem 12. The curve C has a unique tangent line except at a countable number of points.

Proof. We first show that their exists a tangent line for every point $c \in C$. Let

$$T_c = \left\{ x \in \mathbb{R}^2 \mid x = c + rt, t \in \mathbb{R} \right\},\,$$

for some slope vector r such that $T_c \cap (E \setminus C) = \emptyset$. We show that $\forall c, T_c \cap E \neq \emptyset$. Take some $c \in C$ and fix it. Then for some sequence of points on the curve, q_n , which start at some other point c' and increase monotonically with respect to angle from the center of E such that $q_n \to c$. Let the secant line to c at some point q be denoted,

$$S_q = \left\{ x \in \mathbb{R}^2 \mid q + \frac{(c-q)}{\|c-q\|} t, t \in \mathbb{R} \right\}.$$

Consider that $[q_n,c] \subset S_{q_n}$, and $S_{q_n} \setminus [q_n,c] \cap E = \emptyset$. For all n, $[q_n,c]$ is clearly non-empty (it contains at least, c), so $\bigcap_n [q_n,c]$ is also non-empty. Therefore, as $q_n \to c$, $S_{q_n} \to S_c \supset \bigcap_n S_{q_n} = c$. S_c could not possibly contain an element of $E \setminus C$. Suppose it contains, $e \in E \setminus C$, for the purpose of reaching a contradiction. Then $e \in [c,c]$ such that $e \neq c$, which leads to a contradiction. Therefore, $S_c = T_c$ for some tangent line satisfying the definition.

Now we show that T_c is unique except at countably many points. Let us define the function $\tau:C\to [0,2\pi]$ which assigns to every point on the curve C the angle of its tangent line. By the logic above, for every p $\tau(p)$ exists. Let $\phi:\mathbb{R}\to C$ be a bijective parameterization of C starting at some point q such that one walks counter clockwise with respect to q a distance t and yields $\phi(t)$. We show that $\tau\circ\phi$ is monotonic.