Team name - Data Explorers.

Data Set - US Mass Shooting

Title - US Mass Shooting

Team Mates - Diksha Joshi , Jimi George, FNU Preethi Prakash, Khizra Masood, Kubra Iqbal

Contents Page:

Introduction
Methodology
Observations
Dummy Variables
Frequency
Boxplots
Interaction Variables
Model 1 – Jimi George
Model 2 – Kubra Iqbal
Model 3 – Diksha Joshi
Model 4 – Preethi Prakash
Model 5 - Khizra Masood

Abstract:

• The goal of this project is to determine if a potential male shooter can be predicted using different variables. We will analyze various variables such as race and location to see if there is a pattern to help us get a better understanding of our data.

Methodology:

• The <u>US Mass Shooting data set</u> was explored to see trends and correlations between dependent and independent variables. The dependent variable was "Males" and the independent variables were "mental health status", "race" and "region".

Introduction:

The data set compares shootings in the US with region, race and gender specifically focusing on males. The data set also gives detailed explanations about what happened during the shooting that took place and how many people were injured and killed. Our team conducted an analysis focusing on different regions and mental health and races amongst the male shooters. After analyzing five models – the best model picked was the one that focused on the Southwest region. The model specially showed that Caucasian Americans males conducted most of the shootings in that area. Even though shootings are largely happening in the US – gun control laws are trying to be implemented. This is one of the biggest debates that is occurring in the media these days and to stop it or partially make it a less of an issue in the country – gun laws should be supported. Thus, this analysis gives an overview of all the shootings that have occurred in the past few years with all the details. (DeLator 2014)

Methodology: The original data was pre processed and cleaned to add regions which were an extension to the original "location" variables. Additionally, the categorical variables such as: gender, race and mental health status was scrubbed into – U_gender, U_race, U_meantal_health_status. This was done so that the analysis could be accurate for our data.

URL of the dataset:

https://www.kaggle.com/zusmani/us-mass-shootings-last-50-years/data

Data file:

Updatedshooting.xlx

Observations:

Data set consists of 12 variables and 320 observations. (Before data cleaning)

- Title Name of mass shooting.
- Location Where the shooting occurred. (States with Cities of the United States)
- Date The date of the incident.
- Summary Description of the incident.
- Fatalities How many people were killed during the incident.
- Injured How many people were injured during the incident.
- Total victims How many people were killed and injured. (Fatalities + injured)
- Mental health issues Presence or absence of a mental health problem. (Categorized as "no", "unclear", "unknown", "yes").
- Race Race of the shooter. (Categorized as Blank, Asian, Asian-American, asian-american/some other race, black, black American or African American, black American or African American/unknown, Latino, native American or Alaska native, other, some other race, two or more races, unknown, white, white American or European American, white American or European American/some other race.
- Gender Gender of the shooter. (Male/Female/Unknown/Both)
- Latitude Coordinates of the incident.
- Longitude Coordinates of the incident.

Observations:

New data set consists of 16 variables and 320 observations. (After data scrubbing)

- Title Name of mass shooting.
- Region Where the shooting occured. (Original Location variable was categorized into different US regions, including mid-atlantic, midwest, northeast, southeast, west, and unknown).
- Date The date of the incident.
- Summary Description of the incident.
- Fatalities How many people were killed during the incident.
- Injured How many people were injured during the incident.
- Total victims How many people were killed and injured. (Fatalities + injured)
- U_Mental health Presence or absence of a mental health problem (Mental health issues were categorized into "No"/"Yes"/"Unknown")
- U_Race Race of the shooter. (Race was categorized into "asian","black american or african america", "latino", "native american or alaska native", "other", "two or more races","white american or european american" and "unknown".)
- U_Gender Gender of the shooter. (Gender was categorized as "male", "female", "unknown" or "both".)
- Latitude Coordinates of the incident.
- Longitude Coordinates of the incident.

Dummy variables:

```
d Midwest=(Region="Midwest");
d West=(Region="West");
d Northeast=(Region="Northeast");
d Southeast=(Region="Southeast");
d Southwest=(Region="Southwest");
d Female=(U Gender="Female");
d Male=(U Gender= "Male");
d Bothgender=(U Gender="Both");
d White=(U Race="White American or European American");
d Black= (U Race="Black American or African American");
d Asian=(U Race="Asian");
d Latino= (U Race="Latino");
d OtherRaces=(U Race= "Other");
d MultipleRaces= (U Race="Two or more races");
d NativeAmerican= (U Race="Native American or Alaska Native");
d positivementalhealth=(u mental health="Yes");
d negativementalhealth=(u mental health="No");
```

Frequency:

Data was explored by each member to verify the number of shooters in the data set. According to our data set 290 of the shooters were male and 5 were females.

```
Title"Frequency -Gender";

proc freq;
tables U_Gender;
run;
Title"Frequency -Gender VS fatalities ";
proc freq;
tables U_Gender*(Fatalities);
run;
```


Boxplots:

These boxplots indicates the distribution of male's vs injuries, male's vs fatalities and males vs total victims is significantly right skewed. The minimum number of fatalities that occurred due to a male shooter is 0 and the maximum number is approximately 58. The median fatalities that occurred due to a male shooter is 5. The mean for the male vs fatalities distribution is approximately 10. Since the distribution is significantly right skewed the median would be used

to describe the spread of the data. The inter-quartile range would be used to describe the variability seen in the distribution.

The minimum number of fatalities and people injured that occurred due to a male shooter is 0 whereas the minimum number of total victims occurred due to a male shooter is 1. The maximum number of injured people is approximately 550 by a male shooter. The maximum number of total victims is approximately 580.

```
proc sort;
by d Male;
run;
proc boxplot;
title"boxplot male Vs Fatalities";
plot Fatalities*d Male;
run;
proc sort;
by d Male;
run;
proc boxplot;
title"d male VS injuried";
plot Injured*d Male;
run;
proc sort;
by d Male;
run;
proc boxplot;
title "boxplot totalvictims Vs males";
plot Total victims*d Male;
run;
```


Interaction variables:

(This varies per model - rest included in Analysis section)

Each group member selected a specific region, different race and checked for positive mental health amongst males during this analysis.

data interaction terms;

set shootingproj;

Regionpostivemental health status race=(d region*d positivementalhealth*d race);

Positivementalhealthstatus race=(d positivementalhealth*d race);

Southwest white=(d Southwest*d black);

Positivemeantalhealthstatus Fatalities=(d positivementalhealth*Fatalities);

 $postive mental health status_race_fatalities = (d_positive mental health*d_race*fatalities);$

run;

Multi Collinearity:

During our initial analysis it was found that quantitative variables – fatalities, injured and total number of victims had high multicollinearity between them. Since these variables were critical for a better analysis it was decided to use the centering technique. Although the centering technique was used, multicollinearity still existed between these variables. hence, it was decided

to take the quantitative variable – injured, out of the model. Thus this helped to remove the multi collinearity.

		Parar	neter Estim	er Estimates							
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Tolerance	Variance Inflation				
Intercept	1	0.54749	0.04013	13.64	< 0001		0				
d_West	1	-0.10828	0.03448	-3.14	0.0019	0.91606	1.09163				
d_White	1	0.37837	0.04958	7.63	<.0001	0.31825	3.14221				
d_Black	1	0.43652	0.04916	8.88	<.0001	0.41068	2.43499				
d_Asian	1	0.39388	0.07724	5.10	< .0001	0.64508	1.55018				
d_Latino	1	0.45973	0.11979	3.84	0.0002	0.87710	1.14012				
d_OtherRaces	1	0.40967	0.06847	5.98	<.0001	0.64507	1.55022				
d_MultipleRaces	1	0.46631	0.15142	3.08	0.0023	0.90916	1.09992				
d_NativeAmerican	1	0.11613	0.15330	0.76	0.4493	0.88705	1.12733				
d_positivementalhealth	1	0.07517	0.03707	2.03	0.0434	0.63587	1.57264				
d_negativementalhealth	1	0.03891	0.03684	1.06	0.2918	0.70549	1.41745				
Fatalities_c	1	-0.08519	0.02560	-3.33	0.0010	0.00927	107.83132				
Total_victims_c	1	0.08601	0.02629	3.27	0.0012	0.00024651	4056.69458				
Injured_c	1	-0.08641	0.02643	-3.27	0.0012	0.00030857	3240.77879				

			Parameter E	stimates				
Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Tolerance	Variance Inflation
Intercept	Intercept	-1	0.53729	0.04024	13.35	< 0001		- 0
d_West		-1	-0.10266	0.03497	-2.94	0.0036	0.91835	1.08891
d_White		1	0.38547	0.06030	7.66	<.0001	0.31886	3.13619
d_Black		1	0.42970	0.04988	8.61	<.0001	0.41142	2.43060
d_Asian		1	0.38795	0.07843	4.95	< 0001	0.64544	1.54933
d_Latino		1	0.43052	0.12133	3.55	0.0004	0.88201	1.13378
d_OtherRaces		1	0.41014	0.06954	5.90	<.0001	0.64507	1.55022
d_MultipleRaces		1	0.45605	0.15376	2.97	0.0033	0.90955	1.09944
d_NativeAmerican		1	0.13392	0.15560	0.86	0.3901	0.88817	1.12591
d_positivementalhealth		1	0.07074	0.03763	1.88	0.0611	0.63673	1.57053
d_negativementalhealth		1	0.03870	0.03742	1.03	0.3018	0.70550	1.41744
Fatalities	Fatalities	1	0.00239	0.00381	0.63	0.5316	0.43221	2.31371
Total_victims	Total victims	4	-0.00007062	0.00061219	-0.12	0.9082	0.46906	2.13194

Model 1 – Jimi George

Analysis

The entire data set was divided into two set for training and testing. 80% of the data was used for model training and the remaining 20% was used model testing and prediction. After the split , the training set has 256 observation(see image 1). Since the response variable is binary , logistic regression was utilized to both fit and train the model. Initially a full model logistic regression was ran and then both forward and backward model selection techniques were utilized to fit the model accurately. The comparative analysis for two models fitted by forward and backward technique is given below .

Test and tain sets The SURVEYSELECT Procedure Selection Method Simple Random Sampling Input Data Set DATAWITHINTERACTION Random Number Seed 156575 Sampling Rate 0.8 Sample Size 256 Selection Probability 0.8 Sampling Weight 0

Image 1

Full model

Output Data Set

 $LogP(d_males=1)/1-P(d_males=0) = 1.1579 + 0.4557 \ d_Midwest + 11.8191 \ d_Latino \\ + 0.6101 positive mental health + 1.3209 d_negative mental health + 0.1251 fatalities - 0.0106 total_victi \\ ms - 3.0333 positive latinos + 0.4814 positive fatalities + e$

TRAIN TEST

Where d_Latino = 1 when u_Race = Latino; otherwise = 0
Where d_Midwest= 1 when Region = midwest, otherwise = 0
Where positivementalhealth=1 when u_mentalhealth= "Yes", otherwise=0
Where negative mentalhealth=1 when u_mentalhealth= "No", otherwise=0

R-Square 0.0778 Max-rescaled R-Square 0.1715

Analysis	of I	Maximum L	_ikelihood	Estimates	
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept	1	1.1579	0.3464	11.1746	0.0008
d_Midwest	1	0.4557	0.6620	0.4737	0.4913
d_Latino	1	11.8198	587.4	0.0004	0.9839
d_positivementalheal	1	0.6101	1.3109	0.2166	0.6417
d_negativementalheal	1	1.3209	0.5833	5.1278	0.0235
Fatalities	1	0.1251	0.1044	1.4348	0.2310
Total_victims	1	-0.0106	0.0118	0.8032	0.3701
Midwest_postive_lati	0	0	7.	9.	2-
postive_latino	1	-3.0333	835.1	0.0000	0.9971
Midwest_Latino	0	0			
postive_Fatalities	1	0.4814	0.5139	0.8778	0.3488
postive_latino_fatal	0	0			

Image2

Forward selection

		M	lodel	Fit S	tatis	tics			
	Crite	0.000		pt Oı		Inter	4.45		
	AIC			156.7	14		146.1	75	
	SC		- 6	160.2	59		156.8	11	
	-2 Lo	g L	î	154.7	14		140.1	75	
R-Sq	uare	0.0552	Max	-res	cale	d R-S	quare	0.121	
8	Testi	ng Glol	oal Nu	ıll Hy	poth	nesis:	BETA:	=0	
Tes	st		Ch	i-Sq	uare	DF	Pr > (ChiSq	
Lik	eliho	od Rati	0	14.	5388	2	C	0.0007	
Sco	Score	Score		-45	14.	3561	2	C	0008
Wa	ld		120	11.4	4895	2	0	0.0032	
		Resid	dual C	hi-S	quai	re Tes	st		
		Chi-Sc	uare	DF	Pr	> Chi			

Image 3

Analysis of Maximum Likelihood Estimates									
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq	Standardized Estimate			
Intercept	1	1.5488	0.2671	33.6330	<.0001				
d_positivementalheal	1	2.1647	0.7639	8.0309	0.0046	0.5615			
d_negativementalheal	1	1.3276	0.5791	5.2546	0.0219	0.3338			

Model equation per forward selection

 $LogP(d_males=1)/1-P(d_males=0) = 1.5488+ \\ +2.1647 \ d_positive mental health + 1.3276 \ d_negative mental health + e$

Backward Selection

	Model Fit Stati	stics
Criterion	Intercept Only	Intercept and Covariates
AIC	156.714	143.530
SC	160.259	154.166
-2 Log L	154.714	137.530

R-Square	0.0649	Max-rescaled R-Square	0.1431
----------	--------	-----------------------	--------

Testing Globa	I Null Hypoth	esis:	BETA=0
Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	17.1840	2	0.0002
Score	9.0696	2	0.0107
Wald	8.6138	2	0.0135

Image4

Analysis of Maximum Likelihood Estimates									
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq	Standardized Estimate			
Intercept	1	1.5617	0.2620	35.5265	<.0001				
d_negativementalheal	1	1.3147	0.5768	5.1943	0.0227	0.3305			
postive_Fatalities	1	0.6859	0.3211	4.5620	0.0327	1.4764			

Odd	s Ratio Estimates	3				
Effect	Point Estimate	95% Wald mate Confidence Limits				
d_negativementalheal	3.724	1.202	11.533			
postive_Fatalities	1.986	1.058	3.726			

Model equation per backward selection

 $LogP(d_males=1)/1-P(d_males=0) = 1.5617 + 1.3147 \ d_negative mental health + 0.6859 positive_fatalities + e$

Where negative mentalhealth=1 when u_mentalhealth= "No", otherwise=0

Selected model:

 $LogP(d_males = 1)/1-P(d_males = 0) = 1.5617 + 1.3147 d_negativementalhealth + 0.6859positive fatalities + e$

Where negative mentalhealth=1 when u mentalhealth="No", otherwise=0

The model fitted by the backward model technique was selected as the model had better diagnostics. The backward model had a better R2=0.0649 compared to forward model which has an R2=0.0552. An R2=0.0649 indicates that 6.49% of the variability seen in the data is explained by the model. Both the models had the same AIC and SC values at 156.714 and 160.259 respectively . Both AIC and SC are error terms and the model indicates a relatively low error terms. The pr-value for predictors in the selected model is below the 0.05 (Alpha) indicating that the predictors are significant and be included in the model . Finally the model also meets the goodness of fit test

 $H_o\beta_j$ =0 , the predictors, negative mental health status , and the interaction term :positive mental health status with fatalities has no significant relationship to the response variable , male gender. $H_a\beta_j\neq 0$, at least one of the predictors, negative mental health status ,and the interaction term :positive mental health status with fatalities , has a significant relationship to the response variable, male gender.

The likelihood Ratio for the model =17.1840 with a p-value of 0.002, which is significantly lower than the alpha =0.05 against which it is tested. This indicates that the null hypothesis indicating that the predictors have no significant relationship to the independent variable can be rejected Thus, the alternative hypothesis that at least one of the predictors has significant effect on the response variable can be accepted.

When analyzing the standardized residuals , the predictor interaction term:positive mental health status with number of fatalities. has most influence on the response variable , followed by ,negative mental health status

	egression	R						
		Hat	_		es	Covariate		
Intercept DfBeta	Matrix Diagonal	Deviance Residual		postive_Fatalities	d_negativementalhealth	Case Number		
	-0.2187	0.00984	-1.8720	-2.1833	0	0	22	
	0	0.0133	-2.4212	-4.2131	0	1.0000	23	

Image 5

Image 5

The selected model was also checked for outliers and influential points . Values given under pearson residual and deviance residual that were above +3 and -3 were marked as outliers Similarly the Dfbetas graph was analysed for influential points . $|\text{Dfbetas}| > 2/\sqrt{n}$ was the criteria used to narrow down the influential points. According to the formula Dfbetas with a value more than 0.11 will be marked as influential point. Though comparing observation against these criterias , observation 23 was removed from the model. The model was then refitted again to check for changes.

Final model

Number of Observations Read	319
Number of Observations Used	255

Model Fit Statistics					
Criterion	Intercept Only	Intercept and Covariates			
AIC	151.855	137.407			
SC	155.396	148.031			
-2 Log L	149.855	131.407			

R-Square	0.0698	Max-rescaled R-Square	0.1570
----------	--------	-----------------------	--------

Testing Global Null Hypothesis: BETA=0					
Test	Chi-Square	DF	Pr > ChiSq		
Likelihood Ratio	18.4473	2	<.0001		
Score	10.3803	2	0.0056		
Wald	9.6066	2	0.0082		

Image6

Analysis of Maximum Likelihood Estimates							
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq	Standardized Estimate	
Intercept	1	1.5617	0.2620	35.5265	<.0001		
postive_Fatalities	1	0.6859	0.3211	4.5620	0.0327	1.4787	
d_negativementalheal	1	1.6023	0.6450	6.1709	0.0130	0.4017	

Odds Ratio Estimates						
Effect	Point Estimate	95% Wald Confidence Limits				
postive_Fatalities	1.986	1.058	3.726			
d_negativementalheal	4.965	1.402	17.577			

Estimated Correlation Matrix						
Parameter	Intercept	postive_Fatalities	d_negativementalhealth			
Intercept	1.0000	-0.2928	-0.4062			
postive_Fatalities	-0.2928	1.0000	0.1189			
d_negativementalhealth	-0.4062	0.1189	1.0000			

Final Fitted model

 $LogP(d_males = 1)/1-P(d_males = 0) = 1.5617 + 0.6859positive_fatalities + 1.6023$ d negativementalhealth++e

Where negative mentalhealth=1 when u mentalhealth="No", otherwise=0

The R2 for the final fitted model is 0.0698, indicating that 6.98% of the variability is explained by the model .No other outliers were removed as the R2 had not increased significantly with the removal of the first outlier All the predictors in the model remain significant as their pr-value is less than alpha 0.05. Finally, the correlation table, indicated that there is no incidence multicollinearity between the variables.

 $H_o\beta_j$ =0, the predictors, negative mental health status, and the interaction term :positive mental health status with fatalities has no significant relationship to the response variable, male gender. $H_a\beta_j\neq 0$, at least one of the predictors, negative mental health status, and the interaction term :positive mental health status with fatalities, has a significant relationship to the response variable, male gender.

The likelihood Ratio for the model =18.4473 with a p-value of less than 0.0001, which is significantly lower than the alpha =0.05 against which it is tested. Hence the null hypothesis can be rejected and the alternative hypothesis can be accepted.

The AIC and SC are relatively high indicating the error in the model is large ,and the R2 is relatively low indicating that a large part of the variability seen is not explained by the model.

Odd Ratio

Positive_fatalities = For shooters with no mental health issues , any new incidence of positive mental health problem and fatalities increases the average odd for the shooter to be male by 629% [(ex(1.986)-1)*100] with a 95% confidence interval that the average increase will be between 188%[(ex(1.058)-1)*100] and 4051%[(ex(3.726)-1)*100].

D_negative mental health= for shooter with no incidence of positive mental health problem and fatalities, any new incidence of no mental health problem increases the average odd for the shooter to be a male by 14230% [(ex(4.965)-1)*100] with a 95% confidence interval that the

average will be between 306% [(ex(1.402)-1)*100] and 4.401319253*10^9 % [(ex(17.6)-1)*100]

Prediction

			C	lassific	ation Tab	le			
	Cor	rect	Inco	rrect		Per	centage	s	
Prob Level	Event	Non- Event	Event	Non- Event	Correct	Sensi- tivity	Speci- ficity	False POS	False NEG
0.750	233	0	22	0	91.4	100.0	0.0	8.6	8
0.800	233	0	22	0	91.4	100.0	0.0	8.6	194

Image 7

LEVEL	phat	Icl	ucl	pred_Y	threshold
1	0.82660	0.74042	0.88848	1	0.75

Frequency	Table of d_Male by pred_Y			
		pre	ed_Y	
	d_Male	1	Tota	
	0	7	7	
	1	57	57	
	Total	64	64	

prediction

Using the final fitted model , predicted probability was computed for the testing model . A threshold of 0.75 was used to then computed the predicted Y. The predicted Y would equal to 1 if the predicted probability was greater than 0.75. Similarity , the predicted Y would equal to 0 if the predicted probability was less than or equal to 0.75. Performance matrix was then computed as follow

This indicates that the model is able to predict the incidence of male shooter with 89.06% precision.

Mode 2 – Kubra Iqbal

Final report analysis.

Introduction:

In Model 1 - "Male" was the dependent variable while "region" was the independent variable. The specific region picked for Model 1 was southeast. Logistic Regression was used to carry out the analysis for Model 1.

The image below shows the all the variables that were used for Model 1.

Train and Test:

A random sampling of 90-10 was used in Model 1. The training set is made of 90% of data selected through random seed. The final model is determined through this data. The left-over 10% of data is selected for Test Validation purposes and will be further used to check the model accuracy of the data.

Test and tain sets_proj			
The SURVEYS	ELECT Procedure		
Selection Method	Simple Random Sampling		
Input Data Set	INTERACTIONTERMS		
Random Number Se	ed 124575		
Sampling Rate	0.9		
Sample Size	288		
Selection Probability	0.9		
Sampling Weight	0		
Output Data Set	TRAIN_TEST123		

Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept	1	0.0343	0.3883	0.0078	0.9296
d_Southwest	1	2.0748	1.0727	3.7408	0.0531
d_Black	1	3.2058	1.0675	9.0183	0.0027
d_positivementalheal	1	2.5406	1.0255	6.1376	0.0132
d_negativementalheal	1	1.3444	0.5906	5.1822	0.0228
Fatalities	1	1.0613	0.4317	6.0437	0.0140
Total_victims	1	-0.8323	0.4621	3.2437	0.0717
Injured	1	0.8149	0.4673	3.0415	0.0812
Southwest_postive_wh	0	0			,
postive_white	1	7.6280	400.4	0.0004	0.9848
Southwest_white	1	6.7619	299.4	0.0005	0.9820
postive_Fatalities	1	-0.1406	0.2104	0.4466	0.5039
postive_white_fatali	1	-0.1459	88.7207	0.0000	0.9987

Full model

 $LogP(d_males=1)/1-P(d_males=0) = 0.0343 + 2.0748 \ d_southwest + 3.2058 \ d_black + 2.5406 \ d_positive meantal health + 1.344 \ d_negative meantal heal + 1.0613 \ fatalities -.8323 \ total_victims + 0.8149 \ injured + 7.6280 \ positive_White + 6.7619 \ southwest_white -0.1406 \ positive_fatalities -0.1459 \ positive_white_fatalities$

Where d_black = 1 when u_Race = Latino; otherwise = 0
Where d_southwest= 1 when Region = midwest, otherwise = 0
Where positivementalhealth=1 when u_mentalhealth= "Yes", otherwise=0
Where negative mentalhealth=1 when u_mentalhealth= "No", otherwise=0

Multicollinearity:

The output is as below for Multicollinearity:

			Parameter E	stimates				
Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Tolerance	Variance Inflation
Intercept	Intercept	1	0.50707	0.04090	12.40	<.0001		0
d_Southwest		1	0.10661	0.04286	2.49	0.0134	0.96082	1.04077
d_White		1	0.37457	0.05034	7.44	<.0001	0.32091	3.11612
d_Black		1	0.44070	0.05017	8.78	<.0001	0.40981	2.44016
d_Asian		1	0.36414	0.07817	4.66	<.0001	0.65473	1.52735
d_Latino		1	0.42160	0.12181	3.46	0.0006	0.88185	1.13398
d_OtherRaces		1	0.37926	0.06968	5.44	<.0001	0.64745	1.54453
d_MultipleRaces		1	0.41574	0.15437	2.69	0.0075	0.90940	1.09963
d_NativeAmerican		1	0.09551	0.15526	0.62	0.5389	0.89893	1.11243
d_positivementalhealth		1	0.06767	0.03772	1.79	0.0738	0.63850	1.56617
d_negativementalhealth		1	0.04121	0.03765	1.09	0.2745	0.70248	1.42353
Fatalities	Fatalities	1	0.00250	0.00382	0.65	0.5137	0.43226	2.31344
Total victims	Total victims	1	-0.00021336	0.00061047	-0.35	0.7270	0.47536	2.10367

Dep	M	REG Pro lodel: MOI ent Varial	DEL1	le		
Numbe	er of	Observati	ons Read	320		
Numbe	er of	Observati	ons Used	320		
	Ana	lysis of Va	riance			
Source	DF	Sum of Squares	Mean Square	F Val	ue	Pr > F
Model	12	7.41648	0.61804	9.	60	<.0001
Error 3	307	19.77102	0.06440			
Corrected Total 3	319	27.18750				
Root MSE		0.2537	7 R-Squa	are 0	.272	18
Dependent M	Mear	0.9062	Adj R-	Sq 0	244	4
Coeff Var		28.0025	2			

If the Variation Inflation is greater than 10 – it means multicollinearity exists. According to this method there are no values above than 10 which means multicollinearity doesn't exists.

Regression Model Used:

• Logistic Regression

Selection Procedures used in Model:

- Backward method
- Forward Method

Forward Selection Method:

otep 12. Enect a_positivementament is removed

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics						
Criterion	Intercept Only	Intercept and Covariates				
AIC	181.210	150.447				
SC	184.873	172.424				
-2 Log L	179.210	138.447				

R-Square 0.1320 Max-rescaled R-Square 0.2849

Testing Global Null Hypothesis: BETA=0							
Test	Chi-Square	DF	Pr > ChiSq				
Likelihood Ratio	40.7638	5	<.0001				
Score	39.8645	5	<.0001				
Wald	28.7494	5	<.0001				

Residual Chi-Square Test
Chi-Square DF Pr > ChiSq
23.1856 12 0.0262

	Summa	ry of	Backwar	d Elimination		
Step	Effect Removed	DF	Number In	Wald Chi-Square	Pr > ChiSq	Variable Label
1	postive_white_fatali	1	16	0.0000	0.9990	
2	Southwest_white	1	15	0.0003	0.9865	
3	d_Latino	1	14	0.0008	0.9780	
4	postive_Fatalities	1	13	0.0002	0.9895	
5	d_MultipleRaces	1	12	0.0004	0.9850	
6	postive_white	1	11	0.0007	0.9786	
7	d_OtherRaces	1	10	0.0013	0.9715	
8	d_Asian	1	9	0.1026	0.7487	
9	d_NativeAmerican	1	8	2.0159	0.1557	
10	d_Southwest	1	7	3.6414	0.0564	
11	d_negativementalheal	1	6	3.2181	0.0728	
12	d_positivementalheal	1	5	2.3536	0.1250	

Analysis of Maximum Likelihood Estimates									
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq	Standardized Estimate			
Intercept	1	0.4115	0.3461	1.4138	0.2344				
d_White	1	1.5782	0.5003	9.9512	0.0016	0.4345			
d_Black	1	3.4592	1.0515	10.8234	0.0010	0.8348			
Fatalities	1	1.0812	0.4145	6.8058	0.0091	3.4064			
Total_victims	1	-0.8837	0.4366	4.0962	0.0430	-17.2810			
Injured	1	0.8668	0.4407	3.8678	0.0492	15.1023			

Association of Pred Observed			and
Percent Concordant	80.3	Somers' D	0.610
Percent Discordant	19.3	Gamma	0.612
Percent Tied	0.3	Tau-a	0.104
Pairs	7047	С	0.805

Estimated Correlation Matrix									
Parameter	Intercept	d_White	d_Black	Fatalities	Total_victims	Injured			
Intercept	1.0000	-0.3645	-0.2628	-0.1959	0.0631	-0.0584			
d_White	-0.3645	1.0000	0.1385	0.1019	-0.1357	0.1354			
d_Black	-0.2628	0.1385	1.0000	0.0519	-0.0304	0.0277			
Fatalities	-0.1959	0.1019	0.0519	1.0000	-0.9719	0.9661			
Total_victims	0.0631	-0.1357	-0.0304	-0.9719	1.0000	-0.9990			
Injured	-0.0584	0.1354	0.0277	0.9661	-0.9990	1.0000			

The Backward method shows that there are 6 variables selected in this section procedure. R2= 0.1320 i.e. 13% approximately of data variation will be explained by this model. Log(P(1-P) = 1 - 0.3645 d_white -0.2628 d_black -0.1959 fatalaities + 0.0631 total_victims -0.0584 injured

Backward Selection Method:

Model Fit Statistics						
Criterion	Intercept Only	Intercept and Covariates				
AIC	181.210	137.085				
SC	184.873	162.725				
-2 Log L	179.210	123.085				

R-Square 0.1771 Max-rescaled R-Square 0.3822

Testing Global Null Hypothesis: BETA=0							
Test	Chi-Square	DF	Pr > ChiSq				
Likelihood Ratio	56.1257	6	<.0001				
Score	66.0992	6	<.0001				
Wald	38.0886	6	<.0001				

Residual C	hi-S	quare Test
Chi-Square	DF	Pr > ChiSq
13.9283	11	0.2370

Note: No (additional) effects met the 0.05 significance level for entry into the model.

	Summary of Forward Selection								
Step	Effect Entered	DF	Number In	Score Chi-Square	Pr > ChiSq	Variable Label			
1	d_Black	1	1	7.5463	0.0060				
2	d_White	1	2	15.6120	<.0001				
3	d_OtherRaces	1	3	8.1386	0.0043				
4	d_Asian	1	4	5.5587	0.0184				
5	d_Southwest	1	5	5.0597	0.0245				
6	d_positivementalheal	1	6	4.4665	0.0346				

Analysis of Maximum Likelihood Estimates									
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq	Standardized Estimate			
Intercept	1	-0.0485	0.3442	0.0198	0.8881				
d_Southwest	1	2.2364	1.0837	4.2588	0.0390	0.4316			
d_White	1	2.3275	0.5194	20.0764	<.0001	0.6408			
d_Black	1	4.0847	1.0621	14.7915	0.0001	0.9857			
d_Asian	1	2.2846	1.0973	4.3348	0.0373	0.2804			
d_OtherRaces	1	14.8792	448.1	0.0011	0.9735	2.0890			
d positivementalheal	1	1.3441	0.6724	3.9960	0.0456	0.3481			

Odds Ratio Estimates							
Effect	Point Estimate	95% Wald Confidence Limits					
d_Southwest	9.359	1.119	78.283				
d_White	10.252	3.704	28.377				
d_Black	59.424	7.412	476.436				
d_Asian	9.822	1.143	84.374				
d_OtherRaces	>999.999	<0.001	>999.999				

Estimated Correlation Matrix									
Parameter	Intercept	d_Southwest	d_White	d_Black	d_Asian	d_OtherRaces	d_positivementalhealth		
Intercept	1.0000	-0.2593	-0.5856	-0.3112	-0.2915	-0.0007	-0.2253		
d_Southwest	-0.2593	1.0000	0.1161	0.0703	0.0539	0.0001	0.0471		
d_White	-0.5856	0.1161	1.0000	0.1949	0.1913	0.0004	-0.1465		
d_Black	-0.3112	0.0703	0.1949	1.0000	0.0939	0.0002	0.0284		
d_Asian	-0.2915	0.0539	0.1913	0.0939	1.0000	0.0002	-0.0013		
d_OtherRaces	-0.0007	0.0001	0.0004	0.0002	0.0002	1.0000	0.0001		
d positivementalhealth	-0.2253	0.0471	-0.1465	0.0284	-0.0013	0.0001	1.0000		

R2= 0.1771 i.e. 17% approximately of data variation will be explained by this model.

Model equation per forward selection

 $LogP(d_males = 1)/1-P(d_males = 0) = 1.000 - 0.2593 d_southwest - 0.5856 d_white -0.3112 d_black -0.2915 d_asian -0.0007 d_otherrace -0.2253 d_postivemeantalheath$

Method Selected: (When compared to Backward and Forward) Backward Selection Method

Model equation backward selection

 $LogP(d_males = 1)/1-P(d_males = 0) = 1.000 - 0.2593 d_southwest - 0.5856 d_white -0.3112 d black -0.2915 d asian -0.0007 d otherrace -0.2253 d postivemeantalheath$

R2= 0.177 i.e. 17% approximately of data variation will be explained by this model.

The model fitted by the forward model was selected as it had a better diagnosis. The backward model had a better R2 if compared to the forward model. R2 for the forward model was 13% approximately but R2 for the backward model was 17%. The AIC and SC values were the same for both of the models. The Pr-value in the selected model is below 0.05 which shows that the predictors are significant and can be included in the model and the Backward Selection model also meets the goodness of fit test.

The selected model was also further checked for outliers and influential points. Values given under the pearson residual and deviance residual that were above +3 and -3 were marked as outliers. Similarly the Dfbetas graph was analyzed. After checking the model, observation 1,22 and 24 were removed from the model. The model was then refitted again to check for the changes.

Final Model:

Number of Observations Read	317
Number of Observations Used	285

Model Fit Statistics							
Criterion	Intercept Only	Intercept and Covariates					
AIC	166.693	116.268					
SC	170.345	138.183					
-2 Log L	164.693	104.268					

R-Square	0.1910	Max-rescaled R-Square	0.4353	
----------	--------	-----------------------	--------	--

Testing Globa	I Null Hypoth	esis:	BETA=0
Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	60.4242	5	<.0001
Score	52.4807	5	<.0001
Wald	24.4538	5	0.0002

			0. 1 1	107 11		0. 1 11 1
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq	Standardized Estimate
Intercept	1	-0.2125	0.5833	0.1327	0.7157	
d_White	1	1.6431	0.5596	8.6203	0.0033	0.4525
d_Black	1	14.5629	241.0	0.0037	0.9518	3.5108
Fatalities	1	2.1609	0.7449	8.4153	0.0037	6.7868
Total_victims	1	-1.8052	0.7593	5.6520	0.0174	-35.4547
Injured	1	1.8530	0.7746	5.7220	0.0168	32.4404

Estimated Correlation Matrix										
Parameter	Intercept	d_White	d_Black	Fatalities	Total_victims	Injured				
Intercept	1.0000	-0.2447	-0.0008	-0.2301	0.1065	-0.1915				
d_White	-0.2447	1.0000	0.0006	0.0560	-0.0765	0.0777				
d_Black	-0.0008	0.0006	1.0000	0.0004	-0.0003	0.0003				
Fatalities	-0.2301	0.0560	0.0004	1.0000	-0.9813	0.9813				
Total_victims	0.1065	-0.0765	-0.0003	-0.9813	1.0000	-0.9929				
Injured	-0.1915	0.0777	0.0003	0.9813	-0.9929	1.0000				

Final Fitted Model:

ogP(d_males = 1)/1-P(d_males = 0) = 1 -0.2447 d_white -0.0008 d_black -0.2301 fatalities +0.1065 total victims -0.1915 injured

Where negative mentalhealth=1 when u_mentalhealth="No", otherwise=0

The R2 for the final fitted model is 0.1910, indicating that 19% of the variability is explained by the model .No other outliers were removed as the R2 had not increased significantly with the removal of the first outlier All the predictors in the model remain significant as their pr-value is less than alpha 0.05. Finally, the correlation table, indicated that there is no incidence multicollinearity between the variables.

Frequency Table:

prediction analysis

The FREQ Procedure

Frequency

Table of d	Ma	le by	pred_y			
	pred_y					
d_Male	0	1	Total			
0	2	1	3			
1	2	27	29			
Total	4	28	32			

	Classification Table										
Cor		rect	Inco	rrect	Percentages						
Prob Level	Event	Non- Event	Event	Non- Event	Correct	Sensi- tivity	Speci- ficity	False POS	False NEG		
0.200	261	2	22	0	92.3	100.0	8.3	7.8	0.0		
0.250	261	2	22	0	92.3	100.0	8.3	7.8	0.0		
0.300	261	2	22	0	92.3	100.0	8.3	7.8	0.0		
0.350	261	2	22	0	92.3	100.0	8.3	7.8	0.0		
0.400	261	2	22	0	92.3	100.0	8.3	7.8	0.0		
0.450	261	2	22	0	92.3	100.0	8.3	7.8	0.0		
0.500	258	2	22	3	91.2	98.9	8.3	7.9	60.0		
0.550	255	7	17	6	91.9	97.7	29.2	6.3	46.2		
0.600	251	13	11	10	92.6	96.2	54.2	4.2	43.5		

Using the final fitted model, predicited probability was computed for the testing model. A threshold of 0.550 was used to then compute the predicted value of Y. The predicted Y would be equal to 1 if the predicted probability was greater than 0.550. Similarity, the predicted Y would equal to 0

Precision = TP/(TP+FP)

=27/(28)*100

= **96.42%**

This indicates that the model is able to predict the value of the male shooter with the precision of 96.42%

Model 3 – Diksha Joshi

Analysis Report – Diksha Joshi

In this model: "Males" is the dependent variable and "Region" is the independent variable. In my analysis, I chose to focus on males, in the Northeast region who were "White" with "positive mental health", this was done using logistic regression.

Train and Test

A random sampling of 85-15 is used for this section. For the training set, 85% of the data was used through a random seed number of 27435. The remaining 15% of the data is what is going to be used for the testing aspect of the analysis. The test validation is what will be used to help check the accuracy of the model. The training set had 272 observations, as shown below. Logistic regression was used due to the response variable being binary.

A full model logistic regression was ran initially. The results are shown below:

Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept	1	1.1747	0.3519	11.1445	0.0008
d_Northeast	1	0.9439	1.0791	0.7651	0.3817
d_White	1	0.5413	0.6135	0.7785	0.3776
d_positivementalheal	1	12.1707	215.9	0.0032	0.9550
d_negativementalheal	1	0.7542	0.5496	1.8835	0.1699
Fatalities	1	0.1499	0.1105	1.8402	0.1749
Total_victims	1	-0.00997	0.0195	0.2613	0.6093
Northeast_postive_wh	1	-0.2784	447.4	0.0000	0.9995
postive_white	1	-11.6638	215.9	0.0029	0.9569
Northeast_white	1	9.7153	308.1	0.0010	0.9748
postive_Fatalities	1	-0.1375	24.7840	0.0000	0.9956
postive_white_fatali	1	0.1495	24.7846	0.0000	0.9952

Full model

 $LogP(d_males = 1)/1-P(d_males = 0) = 1.14747 + 0.9439 d_Northeast + 0.5413 d_White + 12.1707 positivementalhealth + 0.7542 d_negativementalhealth + 0.1499 fatalities -0.00997 total_victims - 0.2784 Northeast_positive_white -11.6638 positive_white + 9.7153 Northeast white - 0.1375 positive fatalities + 0.1495 positive white fatalities + e$

Where d_White = 1 when u_Race = Latino; otherwise = 0 Where d_Northeast= 1 when Region = midwest, otherwise = 0 Where positivementalhealth=1 when u_mentalhealth= "Yes", otherwise=0 Where negative mentalhealth=1 when u_mentalhealth= "No", otherwise=0

Variable Selection Method

The method used is logistic regression. For the process of variable selection method, backward selection and then forward selection was used.

Backward Selection

		Analysis	of Maximu	m Lik	elihood	Estimates	
Parameter	DF	Estimate	Standard Error	Chi-	Wald Square	Pr > ChiSq	Standardized Estimate
Intercept	1	1.6446	0.3194		26.5052	<.0001	
Fatalities	1	0.2144	0.0934		5.2652	0.0218	0.7077
			Odds Rat	io Es	timates		
		Effect	Point Estima			6 Wald ence Limits	
		Fatalities		239	1 03	2 1,488	

The Model equation for the backward selection:

$$LogP(d_males = 1)/1-P(d_males = 0) = 1.6446 + 0.2144$$
 fatalities + e

Forward Selection

Parameter		DF	Estimate	Standard Error	Chi-	Wald Square	Pr > ChiSq	Standardized Estimate
Intercept		1	2.0369	0.2320	7	77.0736	<.0001	
d_positivementalheal		1	1.3304	0.6314		4.4399	0.0351	0.3458
			Odd	ls Ratio Est	imate	S		
	Effect	Effect			Point Estimate Conf		% Wald lence Limits	
	d positivementalheal		3,783 1.0		1.09	7 13.039		

The Model equation for the forward selection:

$$LogP(d_males = 1)/1-P(d_males = 0) = 2.0369 + 1.3304$$

d_positivementalhealth + e

The Selected Model

The Model equation for the backward selection:

$$LogP(d males = 1)/1-P(d males = 0) = 1.6446 + 0.2144 fatalities + e$$

The model that was fitted by the backward selection technique was selected as this model had better diagnostics. In the backward model, R2=0.0276, which is higher than the forward selection model where R2=0.0213. The R2 value of 0.0267 shows that 2.67% of the variability in the data is explained by the model. The AIC and SC values for both forward and backward selection were the same, they had values of 164.349 and 167.955 respectively. These values are error terms and the models show that the error terms are relatively low. The p-value for the predictor shows is less than 0.05 (Alpha), which indicates that the predictor left is significant and should be included in the model. The model also meets the goodness of fit test. Once the backward selection was run, the only remaining variable left was fatalities. All other variables showed they were insignificant, hence removed from the tables.

The likelihood ratio for the selected model is 7.6248 and has a p value of 0.0058. This shows that it is much lower than alpha=0.05. This shows us that the null hypothesis that indicates that the predictors have no significant relationship to the independent variable and can be rejected. Therefore, the alternative hypothesis that at least one predictor has a significant effect on the response variable can be accepted.

Using backward selection to remove outliers and influential points

The selected model (backward selection) was used to check for possible outliers and influential points. The values that were given under Pearson and deviance residuals were observed and those that were above +3 and -3 were marked as outliers. The Dfbetas graph was also analyzed simultaneously to check for any influential points. $|Dfbetas| > 2/\sqrt{n}$ was the criteria used to

narrow down the influential points. According to the formula Dfbetas with a value more than 0.11 will be marked as influential point.

Observation 22 was removed from the data set as it was the largest outlier value. The model was refitted and then checked again.

The R2 value increased from 0.0276 to 0.0532. The AIC value decreased from 164.349 to 159.455 and the SC value also decreased from 167.955 to 163.057. The likelihood ratio also increased from 7.6248 to 14.8194. Due to the increase in the R2 value and likelihood ratio and the decrease in both AIC and SC values, this shows that the model is closer to a goodness of fit.

	Odds Ratio Est	timates	
Effect	Point Estimate	95% W Confidence	
Fatalities	1.439	1.146	1.808

After removing 2nd outlier, which was observation 27, the R2 value increased from 0.0532 to 0.0680. The AIC value decreased from 159.455 to 154.481 and the SC value also decreased from 163.057 to 158.080. The likelihood ratio also increased from 14.8194 to 19.0192. Due to the increase in the R2 value and likelihood ratio and the decrease in both AIC and

SC values, this shows that the model is even closer to a better goodness of fit.

The Final Model

	Odds Ratio Es	timates	
Effect	Point Estimate	95% W Confidence	
Fatalities	1.583	1.219	2.054

Estimated	Correlatio	n Matrix
Parameter	Intercept	Fatalities
Intercept	1.0000	-0.6950
Fatalities	-0.6950	1.0000

The final fitted model:

$$LogP(d males = 1)/1-P(d males = 0) = 1.2412 + 0.4590 fatalities + e$$

The R2 for the final fitted model is 0.0680, indicating that 6.80% of the variability is explained by the model. 2 very large outliers were removed and that corresponded to an increase in the overall R2 value. The predictor in the model remains significant as their pr-value is less than alpha 0.05. All other predictors were removed as the pr-value was greater than 0.05, hence being insignificant. The correlation table indicated that there is no incidence multicollinearity between the variables. The null hypothesis can be rejected as the likelihood ratio for the model is 19.0192 and the p-value is less than 0.0001. Because the p value is significantly lower than 0.05, we accept the alternate hypothesis. Due to having large AIC and SC values, this shows that the error in the model is also large. Having such a low R2 value of 0.0680 indicates that a large part of the variability is not being explained by the model.

Odds Ratio

Fatalities: The incidences that resulted in fatalities increases the average odds of the shooter being male by 387% [(ex(1.583)-1)*100], with a 95% confidence interval that he average will be between 238%[(ex(1.219)-1)*100] and 680%[(ex(2.054)-1)*100].

Prediction

With the classification table shown below, the threshold is 0.30. This was calculated with the sum of each specificity and sensitivity row. The highest sum equals the probability level that shows the threshold

Classifica					ation Tab	le			
	Correct		Incorrect		Percentages				
Prob Level	Event	Non- Event	Event	Non- Event	Correct	Sensi- tivity	Speci- ficity	False POS	False NEG
0.300	248	0	22	0	91.9	100.0	0.0	8.1	
0.350	248	0	22	0	91.9	100.0	0.0	8.1	
0.400	248	0	22	0	91.9	100.0	0.0	8.1	

ucl	Icl	phat
0.89891	0.77122	0.84556

Frequency	Table of d_Male by pred_y			
		pred_y		
	d_Male	1	Total	
	0	6	6	
	1	42	42	
	Total	48	48	

By using the final fitted model, the predicted probability is computed for the testing model. Due to the threshold being 0.30, it was used to compute the predicted Y. If the probability is greater than 0.30, the predicted Y would equal 1. Similarly, the predicted Y would equal 0 if the predicted probability was less than or equal to 0.30. The performance matrix:

This indicates that the model is able to predict the incidence of a male shooter with 87.50% precision.

US mass Shooting - Analysis

Preethi Prakash

The complete dataset is about 320 observations out of which the data is divided into two parts which is training and testing. I have divided my training into 83% of the data and 17% of the data is taken for testing and prediction. The seed value I have for the training set is 76598. Once I split my data into training and testing it has about 266 observations (Fig-1).

As the response variable is binary, I used **logistic regression model** to fit and train the model. Firstly I have ran the entire model using logistic regression and then used forward and backward model techniques to fit the model accordingly.

The figure below shows the comparative analysis for two models fitted by forward and backward technique.

```
Code Snippet
title"Test and tain sets";
proc surveyselect data=InteractionShootingData out=traintest_data seed=76598
samprate=0.83 outall;
run;
proc print data=traintest_data;
run;
data traintest_data;
set traintest_data;
if selected then d_NewMale=d_Male;
run;
proc print data=traintest_data;
```

run;

	nd tain sets SELECT Procedure	
Selection Method	Simple Random Sampling	
Input Data Set	INTERACTIONSHOOTINGDATA	
Random Number Seed	76598	
Sampling Rate	0.83	
Sample Size	266	
Selection Probability	0.83125	
Sampling Weight	(
Output Data Set	TRAINTEST DATA	

Fig-1

Full model

```
Code snippet
title "fullmodel with my race and region";
proc logistic data=traintest_data;
model d_NewMale(event='1')= d_Southeast d_Asian d_positivementalhealth
d_negativementalhealth Fatalities Total_victims Injured
```

d_Southeast_postive_Asian postive_Asian d_Southeast_Asian postive_Fatalities postive_Asian_fatalities / rsquare;

run;

proc logistic data=traintest data;

 $LogP(d_males=1)/1-P(d_males=0) = 1.0646+0.4469 \ d_Southeast+-0.3372 \ d_Asian \\ +2.2823d_positive mental health+102286d_negative mental health+0.9262 Fatalities-0.8868 tot \\ al victims+0.8868 injured 10.4139 positive Asian+-0.0504 positive fatalities+e$

```
Where d_Southeast = 1 when u_Race = Asian; otherwise = 0
Where d_Southeast= 1 when Region = Asian otherwise = 0
Where positivementalhealth=1 when u_mentalhealth= "Yes", otherwise=0
Where negative mentalhealth=1 when u_mentalhealth= "No", otherwise=0
```

Analysis	of I	Maximum I	Likelihood	Estimates	
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept	1	1.0646	0.3535	9.0699	0.0026
d_Southeast	1	0.4469	0.5001	0.7984	0.3716
d_Asian	1	-0.3372	1.1595	0.0846	0.7712
d_positivementalheal	1	2.2823	1.2512	3.3276	0.0681
d_negativementalheal	1	1.2286	0.5658	4.7156	0.0299
Fatalities	1	0.9262	0.3840	5.8172	0.0159
Total_victims	1	-0.8868	0.3966	4.9983	0.0254
Injured	1	0.8868	0.3993	4.9326	0.0264
d_Southeast_postive_	1	-0.4469	830.3	0.0000	0.9996
postive_Asian	1	10.4139	513.7	0.0004	0.9838
d_Southeast_Asian	0	0	62	+1	8.4
postive_Fatalities	1	-0.0504	0.2046	0.0608	0.8053
postive Asian fatali	1	0.0110	39.7645	0.0000	0.9998

Fig-2

Forward Selection

```
Code Snippet
title "model selection forward";
proc logistic data=traintest_data;
model d_NewMale(event='1')= d_Southeast d_Asian d_positivementalhealth
d_negativementalhealth Fatalities Total_victims
d_Southeast_postive_Asian postive_Asian d_Southeast_Asian postive_Fatalities
postive_Asian_fatalities /selection=forward rsquare influence iplots corrb stb;
run;
```

According to my forward selection model, equation can be written as,

 $LogP(d_males=1)/1-P(d_males=0) = 1.5404 + 2.2207 d_positivementalhealth + 11.28 d_positivementalhealth + e$

Step 8. Effect Fatalities is removed:

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics						
Criterion	Intercept Only	Intercept and Covariates				
AIC	167.804	157.031				
SC	171.388	167.782				
-2 Log L	165.804	151.031				

R-Square	0.0540	Max-rescaled R-Square	0.1165
----------	--------	-----------------------	--------

Testing Globa	I Null Hypoth	esis:	BETA=0
Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	14.7728	2	0.0006
Score	14.1071	2	0.0009
Wald	11.1817	2	0.0037

Residual C	hi-S	quare Test
Chi-Square	DF	Pr > ChiSq
1.7632	8	0.9874

Analysis of Maximum Likelihood Estimates							
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq	Standardized Estimate	
Intercept	1	1.5404	0.2597	35.1758	<.0001		
d_positivementalheal	1	2.2207	0.7610	8.5164	0.0035	0.5771	
d_negativementalheal	1	1.1128	0.5306	4.3983	0.0360	0.2777	

Odd	s Ratio Estimates	5	
Effect	Point Estimate		Wald ce Limits
d_positivementalheal	9.214	2.073	40.941
d_negativementalheal	3.043	1.076	8.609

Association of Pred Observe			and
Percent Concordant	54.0	Somers' D	0.419
Percent Discordant	12.1	Gamma	0.634
Percent Tied	33.8	Tau-a	0.072
Pairs	6025	С	0.710

Estimated Correlation Matrix							
Parameter	Intercept	d_positivementalhealth	d_negativementalhealth				
Intercept	1.0000	-0.3413	-0.4895				
d_positivementalhealth	-0.3413	1.0000	0.1671				
d_negativementalhealth	-0.4895	0.1671	1.0000				

Fig-3

```
Backward Selection
```

```
Code snippet
```

```
title "model selection backward";

proc logistic data=traintest_data;

model d_NewMale(event='1')= d_Southeast d_Asian d_positivementalhealth

d_negativementalhealth Fatalities Total_victims

d_Southeast_postive_Asian postive_Asian d_Southeast_Asian postive_Fatalities

postive_Asian_fatalities /selection=backward rsquare influence iplots corrb stb;

run;
```

According to my backward selection model, equation can be written as,

```
LogP(d\_males=1)/1-P(d\_males=0) = 1.5404 + 2.2207 \ d\_positive mentalhealth + 11.28 \ d\_negative mentalhealth + e e
```

Where we can say that the negative mental health=1 when u_mentalhealth="No", otherwise=0

	Odds	s Rat	tio Esti	mates	\$		
Effec	t	Poi	nt Esti	mate	_	5% Wa dence	
d_po	sitivementalheal	9.214		2.0	73	40.941	
d_ne	gativementalheal			3.043	1.0	76	8.609
			d Resp		11222	0.419	
	Percent Concord	lant	54.0	Som	ers' D	0.419	
	Percent Discordant	12.1	Gam	ma 0.63		L.	
	Percent Tied		33.8	Tau-	а	0.072	
	Pairs		6025			0.710	

Estimated Correlation Matrix								
Parameter	Intercept	d_positivementalhealth	d_negativementalhealth					
Intercept	1.0000	-0.3413	-0.4895					
d_positivementalhealth	-0.3413	1.0000	0.1671					
d_negativementalhealth	-0.4895	0.1671	1.0000					

Fig-4

Model selected

According to both my backward and forward selection model my R square (i.e 0.0540) values and AIC,SC, Variables etc, so there is no different for choosing either one of the model here.

So the model equation for the both my forward and backward model selection can be written as follows,

According to my both my models selection model, equation can be written as,

 $LogP(d_males=1)/1-P(d_males=0) = 1.5404 + 2.9131 d_positivementalhealth + 1.1128 d_positivementalhealth + e$

Where negative mental health= 1 when U_mental health="No",otherwise=0

R2=0.0540

AIC=167.804

SC=171.388 Both AIC and SC are error terms and the model indicates a relatively low error terms

The pr-value for predictors in the selected model is below the 0.06 (Alpha) indicating that the predictors are significant and be included in the model .Model also meets the goodness of fit test. $H_o\beta_j=0$, the predictors,positive mental health status and negative mental health status has no significant relationship to the response variable i,e Male.

The likelihood ratio for my model is 14.7728

P- Value of 0.006, by looking at the above hypothesis we can say that the predictors has no relationships to the independent variable can be rejected. So the alternative hypothesis that at least one of the predictors has significant effect on the response variable can be accepted.

					1	Regression Dia	agnostics					
	Cova	nriates							Confidence	Confidence Interval		
Case Number	d_positivementalhealth	d_negativementalhealth	Pearson Residual	Deviance Residual	Hat Matrix Diagonal	Intercept DfBeta		d_negativementalhealth DfBeta		Displacement CBar	Delta Deviance	Delta Chi- Square
27	0	1.0000	-3.7683	-2.3329	0.0132	5.06E-17	-173E-19	-0.3820	0.1919	0.1893	5.6319	14.3893
28	1.0000	0	-6.5572	-2.7510	0.0114	0	-0.6646	0	0.4999	0.4942	8.0625	43.4911
29	1.0000	0	-6.5572	-2.7510	0.0114	0	-0.6646	0	0.4999	0.4942	8.0625	43.4911

Fig-5

Finally I checked to see if there are any outliers and found one to be at observation 28 and deleted the outliers, after which I noticed that my R square value to be decreasing, The model was then refitted again to check for changes.

Final fitted Model

Code Snippet

```
proc logistic data=traintest_data;
title "Data set after removing the outlier 29";
model d_NewMale(event='1')= d_negativementalhealth d_positivementalhealth / rsquare
influence iplots corrb stb;
run;
```

According to my final model I see increase in my R square value which is 0.0663 and even see a increased likelihood ratio of 18.1774 and two significant values d_Positive mental health and d_negative mental health.

The estimates from the regression for these predictions are:

 $LogP(d_males = 1)/1-P(d_males = 0) = 1.0000 + -0.2500 d_positivementalhealth + -0.4895 d negativementalhelath +e$

So we can say that the person with mental health disorder has more part in the shooting when compared to other factors among male in southeast region who are asian americans.

Number of Observations Read	319
Number of Observations Used	265

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

	Model Fit Statis	stics
Criterion	Intercept Only	Intercept and Covariates
AIC	163.038	148.861
SC	166.618	159.600
-2 Log L	161.038	142.861

Testing Globa	I Null Hypoth	esis:	BETA=0
Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	18.1774	2	0.0001
Score	16.3097	2	0.0003
Wald	10.9915	2	0.0041

	Estima	ted Correlation Matrix	
Parameter	Intercept	d_positivementalhealth	d_negativementalhealth
Intercept	1.0000	-0.2500	-0.4895
d_positivementalhealth	-0.2500	1.0000	0.1224
d_negativementalhealth	-0.4895	0.1224	1.0000

Fig- 6

```
Threshold Value
Code Snippet
Title "Threshold value";
proc logistic data=traintest data;
        d NewMale(event='1')=
                                    d positivementalhealth
                                                                d negativementalhealth
model
/selection=forward rsquare influence iplots corrb stb;
run;
Proc Print;
Run;
proc logistic data=traintest data;
model d NewMale (event='1') = d positivementalhealth d negativementalhealth / ctable
pprob = (0.4 to 0.9 by 0.05);
run;
proc logistic data=traintest data;
model d NewMale (event='1') = d positivementalhealth d negativementalhealth;
output out =outpred(where=(d NewMale=.)) p=phat lower=lcl upper=ucl
predprobs=(individual);
Run;
```

proc print; run;

Probability range I choose here is between 0.4 to 0.9, where increment is by 0.05 it helps in classifying the data to get the best threshold.

			C	Classific	ation Tab	le			
Prob Level Ev	Cor	Correct Incorrect Percentages							
	Event	Non- Event	Event	Non- Event	Correct	Sensi- tivity	Speci- ficity	False POS	False NEG
0.400	241	0	24	0	90.9	100.0	0.0	9.1	1
0.450	241	0	24	0	90.9	100.0	0.0	9.1	
0.500	241	0	24	0	90.9	100.0	0.0	9.1	
0.550	241	0	24	0	90.9	100.0	0.0	9.1	
0.600	241	0	24	0	90.9	100.0	0.0	9.1	,
0.650	241	0	24	0	90.9	100.0	0.0	9.1	
0.700	241	0	24	0	90.9	100.0	0.0	9.1	
0.750	241	0	24	0	90.9	100.0	0.0	9.1	
0.800	241	0	24	0	90.9	100.0	0.0	9.1	
0.850	157	18	6	84	66.0	65.1	75.0	3.7	82.4
0.900	157	18	6	84	66.0	65.1	75.0	3.7	82.4

Fig-7

LEVEL	phat	Icl	ucl	pred_y	threshold
1	0.82353	0.73718	0.88590	0	0.85
1	0.82353	0.73718	0.88590	0	0.85

Fig-8

Fig -8 table shows the lower level (lcl),upper level (ucl) and selected threshold value 0.85

```
Prediction
Code Snippet
data final;
set outpred;
pred_y=0;
threshold=0.85;
if phat>threshold then pred_y=1;
run;
proc print;
run;
title"prediction";
proc freq data=final;
tables d_Male*pred_Y/norow nocol nopercent;
run;
```

Predicted y can be calculated based on the threshold value, I have taken my cut off threshold value to be 0.85.

Fig-8

Using the final fitted model, predicted probability was computed for the testing model. we had 54 in total records of male asian shooters who were from South-East region in our dataset. The model predicted 35 records out of 54 records correctly i.e, 35 records were male shooters from Southeast region who are asian americans and Predicted 19 out of 54 records correctly that male shooters from Southeast region who are not asian americans

A threshold of 0.85 was used to then computed the predicted Y. The predicted Y would equal to 1 if the predicted probability was greater than 0.85. Similarity, the predicted Y would equal to 0 if the predicted probability was less than or equal to 0.85. Performance matrix was then computed as follow

```
Recall(Sensitivity)= TP/(TP+FN)
=4 / 5
=0.8
=0.8*100
=80%
Precision= TP/ (TP+FP)
=4 / 5
=0.8
=0.8*100
=80%
F-Matrix= 2 (0.8 * 0.8) / 0.8 + 0.8
=80%
```

The model is 80% sensitive and precise for the predicted data that the male from the southeast region are the shooters.

Model 5 - Khizra Masood

• Training and Testing

The entire data set was divided into two set for training and testing. 75% of the data was used for model training and the remaining 25% was used model testing and prediction. As you can see below, after the split, the training set has 240 observations. Since the response variable is binary, logistic regression was utilized to both fit and train the model. Initially a full model logistic regression was ran and then both forward and backward model selection techniques were utilized to fit the model accurately. The comparative analysis for two models fitted by forward and backward technique is given below.

Traini	ng a	nd test
The SURVEY	SELE	CT Procedure
Selection Method	Sim	ple Random Sampling
Input Data Set		REGIONWITHRACE
Random Number S	Seed	17489
Sampling Rate		0.75
Sample Size		240
Selection Probabi	lity	0.75
Sampling Weight		0
Output Data Set		TRAINING

• Full Model Analysis- Specific West region and African American Race

			Mo	del Fit Statis	tics		7.0
c	rite	rion	Inte	ercept Only		cept an	
-	AIC SC		139.681 143.162			69	
5					166.318		18
-	2 Lo	g L		137.681		95.06	69
≀-Squ T				Max-rescale			0.3727
Test				Chi-Square	DF	Pr > C	hiSq
Like	liho	od R	atio	42.6120	12	<.0001	
Scor	е			41.4571	12	<	0001
Wal	-1			25 0623	12	0	0145

Analysis	s of I	Maximum I	Likelihood	Estimates	
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept	1	0.6583	0.4679	1.9796	0.1594
d_West	1	-1.3183	0.6599	3.9913	0.0457
d_Black	1	2.5764	1.0811	5.6792	0.0172
d_positivementalheal	1	4.3515	1.8128	5.7617	0.0164
d_negativementalheal	1	1.8917	0.7670	6.0827	0.0137
Fatalities	1	1.1629	0.4544	6.5495	0.0105
Total_victims	1	-0.9692	0.4817	4.0478	0.0442
Injured	1	0.9482	0.4871	3.7890	0.0516
West_postive_black	1	-8.2351	714.8	0.0001	0.9908
postive_black	1	5.9297	391.9	0.0002	0.9879
west_black	1	9.8684	502.1	0.0004	0.9843
postive_Fatalities	1	-0.2482	0.2346	1.1199	0.2899
postive black fatali	1	-0.0110	79.2342	0.0000	0.9999

Full Model Equation

 $\label{eq:logP} LogP(d_males=1)/1-P(d_males=0) = 0.6583 -1.3183 \ d_west + 2.5764 \ d_black \\ + 4.3515 \ positive mental health + 1.8917 \ d_negative mental health + 1.1629 \ fatalities -0.9692 \\ total_victims + 0.9482 \ injured - 8.2351 \ west_positive_black + 5.9297 \ positive_black + 9.8684 \\ west_black - 0.2482 \ positive_fatilites - 0.0110 \ positive_black_fatalities + e \\ \end{cases}$

Where d_black = 1 when u_Race = black; otherwise = 0 Where d_west= 1 when Region = West, otherwise = 0 Where positivementalhealth=1 when u_mentalhealth= "Yes", otherwise=0 Where negative mentalhealth=1 when u_mentalhealth= "No", otherwise=0

• Backwards testing selection

			Mo	del Fit Statis	tics		
	Crite	rion	Inte	ercept Only	Inter		
	AIC SC -2 Log L			139.681	113.874		74
				143.162 134.758		58	
				137.681	101.87		74
R-Sq	uare	0.13	86	Max-rescale	d R-S	quare	0.31
R-Sq				Max-rescale		£14	
R-Sq Te	Testi				hesis:	BETA=	=0
Te	Testi	ng G	loba	I Null Hypot	hesis:	BETA=	=0
Te	Testi st	ng G	loba	Null Hypot	hesis: DF	BETA=	=0 ChiSc

Analysis of Maximum Likelihood Estimates								
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq	Standardized Estimate		
Intercept	1	0.7277	0.4312	2.8478	0.0915			
d_West	1	-1.2238	0.6099	4.0256	0.0448	-0.2746		
d_Black	1	2.5039	1.0681	5.4956	0.0191	0.6206		
d_positivementalheal	1	2.7956	1.0782	6.7235	0.0095	0.7210		
d_negativementalheal	1	1.6655	0.7162	5.4087	0.0200	0.4146		
Fatalities	1	0.2457	0.1143	4.6190	0.0316	0.6639		

 $R^2 = 0.1386$

AIC and SC = 139.681 and 143.162

LR = 35.8070 and PR > Chisqr = <0.001

5 significant variables: d_black, d_black, d_positivementalhealth, and d_negativementalhealth, fatalities, and total victims

Model Equation – Backwards selection

 $LogP(d_males = 1)/1-P(d_males = 0) = 0.7277 -1.2238 d_west + 2.5039 d_black + 2.7956 d$ positivementalhealth + 1.6655 d negativementalhealth + 0.2457 fatalities + e

Where d_west = 1 when u_Region=West; otherwise 0 Where d_black = 1 when u_Race = black; otherwise = 0 Where positivementalhealth=1 when u_mentalhealth="Yes", otherwise=0 Where negative mentalhealth=1 when u_mentalhealth="No", otherwise=0

• Forwards testing selection

			Mo	del Fit Statis	stics		
	Criterion AIC SC -2 Log L		Inte	Intercept Only		Intercept and Covariate	
			139.681 143.162		119.594 133.510		94
							16
				137.681	111.594		94
₹-Sc	quare Testi	0.10		Max-rescale			0.2359
Test			Chi-Square	e DF	Pr > (ChiSq	
1.6	Likelihood Ratio			26 087	6 3	<.0001	
100	keliho	od R	auo				
Li	keliho ore	od R	atio	23.149	9 3	<	.0001

Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq	Standardized Estimate
Intercept	1	1.1891	0.2915	16.6366	<.0001	
d_Black	1	2.3734	1.0452	5.1570	0.0232	0.5882
d_positivementalheal	1	2.9734	1.0478	8.0519	0.0045	0.7668
d_negativementalheal	1	1.4822	0.6601	5.0412	0.0248	0.3690

 $R^2 = 0.1030$

AIC and SC = 139.681 and 143.162

LR = 26.0876 and PR > Chisqr = <0.001

3 significant variables: d black, d positivementalhealth, and d negativementalhealth

Model Equation – Forward selection

 $LogP(d_males = 1)/1-P(d_males = 0) = 1.1891 + 2.3734 d_black + 2.9734 d_positivementalhealth + 1.4822 d_negativementalhealth + e$

Where d_black = 1 when u_Race = black; otherwise = 0 Where positivementalhealth=1 when u_mentalhealth= "Yes", otherwise=0 Where negative mentalhealth=1 when u_mentalhealth= "No", otherwise=0

• Model Selection = Backwards

 $LogP(d_males = 1)/1-P(d_males = 0) = 0.7277 -1.2238 d_west + 2.5039 d_black + 2.7956 d$ positivementalhealth + 1.6655 d negativementalhealth + 0.2457 fatalities + e

Where d_west = 1 when u_Region=West; otherwise 0

Where d black = 1 when u Race = black; otherwise = 0

Where positivementalhealth=1 when u_mentalhealth="Yes", otherwise=0

Where negative mentalhealth=1 when u mentalhealth="No", otherwise=0

A good model consists of a maximized R² value and minimized AIC and SC. Comparing the two methods of selection, even though backwards selection had more variables, it had a higher R² value and likelihood ratio value which mean it is a better to use. The AIC and SC show errors terms and both values remained the same for both.

• Removing Outliers-Using backwards testing model - found observation 28 to be an outlier

	Model Fit Statistics								
	Criterion AIC SC -2 Log L		134.665 138.141		Intercept and Covariates 102.939 123.798		100000		
							39		
							98		
				132.665	90.939		39		
₹-Sq	uare Testi	1		Max-rescale					
Test			Chi-Square	e DF	Pr > (ChiSq			
Likelihood Ratio			41.7260	0 5	5	<.0001			
Lik	Score			24 550	7 6	, <	<.0001		
100000	ore			31.550		'			

After removing observation 28,

 $R^2 = 0.1602$ (increased)

AIC and SC = 134.665 and 138.141 (decreased)

LR = 41.7260 and PR > Chisqr = <0.001

Comparing this to the backwards selection model, the r² increased and the AIC/SC values decreased. The Liklihood ratio value also increased which shows the model is getting closer to goodness of fit

New Final Model

Analysis of Maximum Likelihood Estimates									
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq	Standardized Estimate			
Intercept	1	0.5298	0.4490	1.3925	0.2380				
d_West	1	-1.0335	0.6490	2.5364	0.1112	-0.2305			
d_Black	1	2.6112	1.0743	5.9076	0.0151	0.6480			
d_positivementalheal	1	13.6408	238.3	0.0033	0.9543	3.5096			
d_negativementalheal	1	1.5808	0.7172	4.8578	0.0275	0.3941			
Fatalities	1	0.3132	0.1324	5.5918	0.0180	0.8471			

 $LogP(d_males = 1)/1-P(d_males = 0) = 0.5298 - 1.0335 d_west + 2.6112 d_black + 13.6408 d$ positivementalhealth + 1.5808 d negativementalhealth + 0.3132 fatalities + e

Where d_west = 1 when u_Region=West; otherwise 0 Where d_black = 1 when u_Race = black; otherwise = 0 Where positivementalhealth=1 when u_mentalhealth= "Yes", otherwise=0 Where negative mentalhealth=1 when u_mentalhealth= "No", otherwise=0

• Prediction

In the chart above,

 $0\rightarrow 0$ Correctly rejected (TN) True negative = 3

 $1\rightarrow 0$ Mistakenly rejected (FN) False negative = 6

```
0\rightarrow 1 Mistakenly selected (FP) False positive = 2
```

 $1 \rightarrow 1$ Correctly Selected (TP) = 68

Sensitivity or Recall = TP/(TP+FN)

Proportion of correctly classified positives

Accuracy = (TP + TN) / (TP + TN + FP + FN)

Proportion of correctly classified positives and negatives Sensitivity or Recall = 68/68+6 = 91.2%

Precision = TP / (TP + FP) Accuracy = (68+3)/(68+3+2+6) = 89.9%

Proportion of true positives among all predicted positives

Precision = 68/ (68+2) = 97.1%

Specificity = TN / (TN + FP)

Proportion of correctly classified negatives

Specificity = 3/(3+2) = 60%

F-Metric = 2(Precision*Recall)/(Precision + Recall)

- = 2(0.971*0.912)/(0.971+0.912)
- = 1.771104/1.883 = 94.1%

The F-Score above is the measure of the test's accuracy. It considers all samples that are positive (Reall and precision). The best value is at 1 and worst value is at 0. With 94%, this test is very accurate because it is close to 1.

Final Model:

We picked the Southwest region as our Final Model because it had the highest R^2 value compared to all other values. The model was compared with Southwest region to Caucasian American Males. Compared to other models, the AIC and SC values were lower which showed that there were less lower error terms compared to the others. Lastly, the selected model showed less significant predictors when compared to every other model showing that it's the best fit model for the analysis. In order to get a better prediction for male shooters, more indicators are indicated such as : presence of guns, gun laws within regions, what part of regions the shooters live in and we also had many unknown values within our variables.

Conclusion/Future Work:

For future work: within our model we will be comparing either positive or negative mental health status rather than combining both positive and negative.

The Philadelphia Tribune talked about how most of the shootings are carried out by Caucasian American male shooters – this is because they are more in number in the US. Which concludes that we can not specify a race that conducts more shootings.

The CNN talked about the shootings that have happened in 2018 in the United States (Saeed Ahmed and Christina Walker, 2018). The map showed the most shootings had occurred in the East/South East region. The article only talks about shootings happened in 2018 but the data that we picked shows how many shootings have happened over the years and gives a wider time frame about these particular shootings.

According to – Mass Shootings of America, had also come to a similar conclusion that no significant evidence could be drawn from limited variables. In order to have a better understanding, other phenomenon needs to be explored. (Jiang, 2016)

. Even though shootings are largely happening in the US – gun control laws are trying to be implemented. This is one of the biggest debates that is occurring in the media these days and to stop it or partially make it a less of an issue in the country – gun laws should be supported. Thus, this analysis gives an overview of all the shootings that have occurred in the past few years with all the details. (DeLator 2014)

Lastly, the article – Contagion in Mass Killings and School shootings talks about how it is very important to have health care facilities for every citizen of the US(Towers, Gomez-Lievano, Khan, Mubayi & Castillo-Chavez, 2015). According to the results of multiple surveys conducted – it has shown a significant difference in the incidents of shooting within areas that have mental health facilities.

References

Fox, J., & DeLateur, M. (2013). Mass Shootings in America. Homicide Studies, 18(1), 125-145. doi: 10.1177/1088767913510297

Jiang, P. (2016). Analysis of Mass Shootings in America. Retrieved from http://rstudio-pubs-static.s3.amazonaws.com/190570_10e739afeb21496f94d38acf0138a2b7.html

Mitchell, J. (2018). Retrieved from

http://www.phillytrib.com/news/majority-of-mass-shootings-carried-out-by-white-men/article_8 b8b0145-c512-525a-8a7d-256bfb3a959f.html

Saeed Ahmed and Christina Walker, C. (2018). There has been, on average, 1 school shooting every week this year. Retrieved from https://www.cnn.com/2018/03/02/us/school-shootings-2018-list-trnd/index.html

Towers, S., Gomez-Lievano, A., Khan, M., Mubayi, A., & Castillo-Chavez, C. (2015). Contagion in Mass Killings and School Shootings. PLOS ONE, 10(7), e0117259. doi: 10.1371/journal.pone.0117259