BSCCS2001: Graded Solutions Week 5

1. Consider relation $\mathbf{R}(P, Q, C, A, B)$ having the following functional dependencies:

$$\mathcal{F} = \{ P \to QC, CA \to B, Q \to A, B \to P \}$$

Then, which of the following is correct?

[MCQ: 2 points]

- \bigcirc P, B & Q are non-prime attributes.
- \bigcirc Only P and B are prime attribute.
- \bigcirc C, A & Q are non-prime attributes.
- $\sqrt{P, B, Q, C}$ & A are prime attributes.

Solution: Prime Attributes: The attributes that belong to any candidate key are called prime attributes.

Non-prime Attribute: The attributes that do not belong to any candidate key are called non-prime Attributes.

Find out the closure of individual attributes:

$$P^{+} = P$$

$$= PQC \{P \rightarrow QC\}$$

$$= PQCA \{Q \rightarrow A\}$$

$$= PQCAB \{CA \rightarrow B\}$$

$$Q^{+} = A$$

$$C^{+} = C$$

$$A^{+} = A$$

$$B^{+} = P$$

$$= PQC \{P \rightarrow QC\}$$

$$= PQCA \{Q \rightarrow A\}$$

$$= PQCAB \{CA \rightarrow B\}$$

Here, ${\cal P}$ and ${\cal B}$ are candidate key, means they are prime attribute .

Now, let us check the combination of Q, C and A

$$QC^{+} = QC$$

$$= QCA \{Q \rightarrow A\}$$

$$= QCAB \{CA \rightarrow B\}$$

$$= QCABP \{B \rightarrow P\}$$

```
CA^{+} = CA
= CAB \{CA \rightarrow B\}
= CABP \{B \rightarrow P\}
= CABPQ \{P \rightarrow QC\}
```

Here, CA and QC are also candidate key. Hence, $P,\ B,\ Q\ C$ and A are prime attributes.

2. Consider relation $\mathbf{Z}(P, Q, R, A, B, C)$ having functional dependencies

$$\mathcal{F} = \{P \to Q, P \to R, RA \to B, RA \to C, Q \to B\}$$

For $PA \to C$ to be the member of \mathcal{F}^+ , which of the following is true?

For $PA \to C$ to be the member of \mathcal{F}^+ , which of the following is true?

[MCQ: 2 points]

- \bigcirc By augmenting $P \to R$ with A to get $PA \to RA$, and then reflexivity with $RA \rightarrow C$.
- \bigcirc By reflexivity $P \to R$ with A to get $PA \to RA$, and then transitivity with $RA \rightarrow C$.
- $\sqrt{}$ By augmenting $P \to R$ with A to get $PA \to RA$, and then transitivity with $RA \rightarrow C$.
- \bigcirc By reflexivity $P \to R$ with A, to get $PA \to RA$, and then augmenting with $RA \rightarrow C$.

Solution:

Armstrong's Axioms:

if $\beta \subseteq \alpha$, then $\alpha \to \beta$ (reflexivity)

if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$ (augmentation)

if $\alpha \to \beta$, and $\beta \to \gamma$, then $\alpha \to \gamma$ (transitivity)

From the given set of FDs

 $P \to R$, by augmentation with A, we get $PA \to RA$

also from FDs $RA \to C$, so by transitivity $PA \to C$. Hence, option 3 is correct.

3. The information of all students who have registered for the IIT Madras Online Degree course is given by the relation **studinfo**(<u>studId</u>, name, state). The relation **enroll** (<u>studId</u>, courseId) gives the list of courses for which each student has enrolled. Let **R** be the relation resulting from the natural join of **studinfo** and **enroll**.

That is, $\mathbf{R} = \mathbf{studinfo} \bowtie \mathbf{enroll}$.

Then, which of the following statements is/are true?

[MSQ:2 points]

- $\sqrt{}$ The relations **studinfo** and **enroll** result from a lossless decomposition of relation R.
- \bigcirc The relations **studinfo** and **enroll** result from a lossy decomposition of relation R.
- $\sqrt{ }$ The number of super keys of R is 8.
- \bigcirc The number of super keys of R is 15.

Solution:

studinfo(studId, name, state)
enroll (studeId, courseId)

 $R = studinfo \bowtie enroll = R(\underline{studId}, name, state, courseId)$

Let us check, whether it is lossy or lossless decomposition:

 $studinfo \cup enroll = (studId, name, state, courseId) = R$

studinfo \cap enroll = $studId \neq \phi$, here studId is primary key. So, we can determine studinfo \cap enroll \rightarrow studinfo \cap enroll \rightarrow enroll.

Hence, The relation **studinfo** and **enroll** are lossless decomposition of relation **R**.

The number of super keys is given by 2^{n-1}

In relation \mathbf{R} , the number of attributes is 4 i.e n=4. So, the number of super keys is 8.

4. A relation $\mathbf{Z}(P,\ Q,\ R,\ S,\ T,\ U,\ V)$ has the following set of functional dependencies: $\mathcal{F} = \{P \to Q, QR \to ST, PTU \to V\}$

What is the closure of the attribute set $\{P, R\}$ under \mathcal{F} ?

[MCQ: 1 points]

- \bigcirc P, R, S, T
- \bigcirc P, R, U, S
- \bigcirc P, Q, R, S, T, U
- \sqrt{P} , R, Q, S, T

Solution:

$$(P,R)^+ = P, R$$

= $P, R, Q (P \rightarrow Q)$
= $P, R, Q, S, T (QR \rightarrow ST)$
Thus, option 4 is correct.

5. Consider the relation $\mathbf{R}(A, B, C, X, Y, Z)$ having the following functional dependencies $\mathcal{F} = \{AB \to C, C \to X, X \to Y, Y \to Z, Z \to B\}$

Which of the following is/are true?

[MSQ: 3 points]

- \sqrt{AC} and AY are candidate keys.
- $\sqrt{\text{All attributes}}$ are prime attributes.
- \bigcirc AC, XY and BC are candidate keys.
- \bigcirc XY and AZ are candidate keys.

Solution: From the given sets of functional dependencies, if we individually take the closure of A, B, C, X, Y and Z, it cannot determine the relation R. Thus, alone A, B, C, X, Y and Z can't be a candidate key.

Since there is no incoming arrow to A, A will be the part of some candidate key, but by itself, it is not a candidate key.

Consider the closure of:

$$AB^+ = AB$$

$$=ABC \{AB \rightarrow C\}$$

$$=ABCX \{C \rightarrow X\}$$

$$= ABCXY \{X \to Y\}$$

$$= ABCXYZ \{Y \rightarrow Z\}$$

$$AC^+ = AC$$

$$= ACX \ \{C \to X\}$$

$$= ACXY \{X \rightarrow Y\}$$

$$= ACXYZ \{Y \rightarrow Z\}$$

$$= ACXYZB \ \{Z \to B\}$$

$$AY^+ = AY$$

$$=AYZ\ \{Y\to Z\}$$

$$=AYZB\ \{Z\to B\}$$

$$= AYZBC \{B \rightarrow C\}$$

$$= AYZBCX \ \{C \to X\}$$

$$AZ^+ = AZ$$

$$=AZB\ \{Z\to B\}$$

$$=AZBC \{AB \rightarrow C\}$$

$$=AZBCX \{C \rightarrow X\}$$

$$=AZBCXY\ \{X\to Y\}$$

Here, AB, AC, AY and AZ are candidate keys.

Prime Attributes: Attribute set that belongs to any candidate key are called Prime Attributes.

So, all attributes are prime attributes.

6. Consider a relation **student**(<u>studID</u>, <u>Sname</u>, <u>Age</u>, <u>Sex</u>) where <u>studID</u> is the primary key. Then, how many super keys are possible for **student**?

[NAT: 1 points]

Ans: 8

Solution:

Consider a relation $R(A_1, A_2, A_3, ..., A_n)$, a candidate key remaining $A_2, A_3, ..., A_n$ any subset of attribute which combine with A_1 is a superkey.

Total Keys = 2^{n-1} .

Here, n=4, So, the number of super keys are 8.

7. Which among the following is a trivial functional dependency?

[MCQ: 1 points]

- $\bigcirc AB \rightarrow BC$
- $\bigcirc \ AB \to CD$
- $\bigcirc A \rightarrow B$
- $\sqrt{AB \rightarrow B}$

Solution: In general, $\alpha \to \beta$ is trivial if $\beta \subseteq \alpha$. Hence, Option 4 is the right answer.

8. Consider a relation R(A, B, C, D, E) with the following functional dependencies:

$$\mathcal{F} = \{A \to B, A \to D, D \to C, AB \to C, B \to E\}$$

- Choose the attribute(s) that are extraneous to any of the functional dependencies in \mathcal{F} .

 [MSQ: 3 points]
 - $\bigcirc A$
 - \sqrt{B}
 - \bigcirc C
 - $\bigcirc D$

Solution: $A \to D, D \to C \Rightarrow A \to C$

It follows that in the FD $AB \rightarrow C, B$ is extraneous.

9. Given relation R(A, B, C, D, E) and a set of functional dependencies

$$\mathcal{F} = \{A \to B, A \to D, D \to C, AB \to C, B \to E, BD \to CE\}$$

find the prime attribute(s) of R.

[MSQ: 2 points]

- \sqrt{A}
- $\bigcirc B$
- \bigcirc C
- $\bigcirc D$
- $\bigcirc E$

Solution: The attribute that has A in its closure is only A itself. It follows that any candidate key must contain A as a component.

However, since $A^+ = \{ABCDE\}$, it follows that A is a candidate key and hence A is the only prime attribute.

10. Consider a relation R(A, B, C, D, E) having the following functional dependencies:

$$\mathcal{F} = \{A \to BCD, C \to E, B \to D, C \to D, E \to B\}$$

Let $R_1(A, B, C)$, $R_2(A, D, E)$ be a lossless decomposition of R. From among the given options, choose a functional dependency which may be removed from \mathcal{F} that makes the decomposition lossy.

[MCQ: 3 points]

$$\bigcirc B \to D$$

$$\sqrt{A \to C}$$

$$\bigcap A \to B$$

$$\bigcap E \to B$$

Solution: In the decomposition $R_1(A, B, C)$, $R_2(A, D, E)$ of R, $R_1 \cap R_2 = A \neq \emptyset$ and $R_1 \cup R_2 = R$ are satisfied.

We have $R_1 \cap R_2 = A$. If A functionally determines either R_1 or R_2 , then the decomposition is lossless with respect to \mathcal{F} .

We have $A^+/\mathcal{F} = ABCDE$. Hence A is a candidate key and the decomposition is lossless.

Let
$$\mathcal{F}' = \mathcal{F} \setminus \{A \to C\}$$
.

$$A^+/\mathcal{F}' = ABD$$

It follows that $R_1 \cap R_2$ does not functionally determine either R_1 or R_2 . Hence the decomposition is lossy with respect to \mathcal{F}' .

The decomposition does not become lossy if we remove any other FD. Hence Option 1 is correct.