Graph Theory and Applications

Lecture 9: Deep Graph Learning
Slide adapt from https://ai.tencent.com/ailab/ml/KDD-Deep-Graph-Learning.html

Ta Viet Cuong, Ph.D HMI laboratory, FIT-UET

Today

- I. Graph Neural Network
- II. Một số cấu trúc GNN cơ bản
- III. Các bài toán mở

Graph Neural Networks

Một số ứng dụng

GNNs là một nhánh quan trọng của học máy trên đồ thị:

- Dữ liệu đồ thị ngày càng phát triển
- Ảnh và Văn bản cũng có thể tính là một dạng đồ thị đặc biệt

Dữ liệu trên đồ thị

GNNs là một nhánh quan trọng của học máy trên đồ thị: G =<V, E, X>

Trong đó:

- V: Tập đỉnh
- E: Tập cạnh (có thể bao gồm cả thuộc tính)
- X: Đặc trưng của mỗi đỉnh

Mục tiêu:

- Học hàm f_{θ} : $V \to Y$ với Y là nhãn mục tiêu cần học.

Ví dụ thực tế:

Bài toán dự đoán cạnh trên mạng xã hội

- V: Tập đỉnh là người dùng của mạng xã hội
- E: Tập cạnh hiện tại, đi kèm thuộc tính có thể là: có friends hay ko có friends/lần chat gần nhất v..v...
- X: Đặc trưng của mỗi đỉnh

Mục tiêu:

- Học hàm f_{θ} : VxV \rightarrow {0, 1} Dự đoán xem hai người có là bạn bè

Ví dụ thực tế: MNIST

Bài toán phân loại ảnh

Một số bài toán học máy cơ bản

GNN

- Dữ liệu đồ thị là dạng tổng quát
- Từ 2012-2015: Mạng học sâu nhân chập xuất hiện và giải quyết được phần lớn các bài toán ảnh
- 2015-bây giờ: Các mô hình học máy hồi qui RNN/LSTM sau đó là Transformer, giải quyết được các bài toán của văn bản
- Mô hình tương tự cho đồ thị vẫn chưa xuất hiện

- Mô hình hoá hàm mục tiêu bằng tham số θ :

$$f_{\theta} \colon V \to Y$$

Có thể huấn luyện bằng gradient descent

Mô hình hoá hàm mục tiêu bằng tham số θ :

 $f_{\theta} \colon V \to Y$

Có thể huấn luyện bằng gradient descent

Mô hình hoá hàm mục tiêu bằng tham số θ :

$$f_{\theta} \colon V \to Y$$

Có thể huấn luyện bằng gradient descent

Mô hình hoá hàm mục tiêu bằng tham số θ :

 $f_{\theta} \colon V \to Y$

Có thể huấn luyện bằng gradient descent

Vấn đề với GNN:

- Tích hợp thông tin cấu trúc vào θ
- Cần bao nhiều dữ liệu để học thông tin cấu trúc
- Có thể tổng quát hoá được không?

Today

- I. Graph Neural Network
- II. Một số cấu trúc GNN cơ bản
- III. Các bài toán mở

GNN có thể xem như là RNN

Bài toán mô hình hoá chuỗi với mạng học sâu:

- Dự đoán câu kế tiếp
- Sinh câu kế tiếp
- Phân loại câu
- Sinh chú thích cho ảnh
- Sinh code (?)
- Làm toán (?)

GNN có thể xem như là RNN

- Các random walk đưa thông tin về local, có thể mô hình hoá thành các câu
- Xem các đỉnh như là các từ

DI....

Identity

0	0	0
0	1	0
0	0	0

Blur			
1	1	1	
1	1	1	
1	1	1	

Sharpen

Edge detector

0	0	0
-1	1	0
0	0	0

How to perform the convolution on graphs?

- Irregular structures.
- Weighted edges.
- No orientation or ordering (in general).

Tổng hợp và lọc thông tin:

Deep Locally Connected Networks(ICLR 2014) [1]

- Discuss two constructions on both spatial and spectral domain.
- Analog the convolution operation based on the Laplacian spectrum.
- · Additional eigen decomposition is needed.

Graph Convolutional Network (ICLR 2017)

Approximate 1-order Chebyshev polynomial the in spatial domain. Layer-wise convolution to extend receptive field.

The practical convolutional model for graphs.

Tổng hợp và lọc thông tin:

- Sử dụng attention score như trong mạng biến đổi
- Các đỉnh giống nhau thì sẽ có nhiều ảnh hưởng hơn

Replace the fixed aggregation weight a_{ij} to the learnable self-attention.

$$\begin{aligned} & \boldsymbol{h}_{i}^{(l+1)} = \sigma(\sum_{j \in N(v_i)} \boldsymbol{a_{ij}} \, \boldsymbol{W}^{(l)} \boldsymbol{h}_{j}^{(l)}) \\ & \boldsymbol{a_{ij}} = \exp(\frac{\sigma\left(\boldsymbol{\alpha}^{\mathrm{T}} \big[\boldsymbol{W} \boldsymbol{h}_{i} \big| \big| \boldsymbol{W} \boldsymbol{h}_{j} \big]\right)\right)}{\sum_{k \in N(v_i)} \boldsymbol{\alpha}^{\mathrm{T}} \big[\boldsymbol{W} \boldsymbol{h}_{i} \big| \big| \boldsymbol{W} \boldsymbol{h}_{k} \big])} \end{aligned}$$

Tổng hợp và lọc thông tin:

- Dữ liệu trên đồ thị thường có tính cong nhất định
- Sử dụng mạng nhân chập trong miền Hyperbolic

Construct the GCN in hyperbolic space.

- · Smaller distortion.
- Suitable for scale-free and hierarchical structure.
- Hyperbolic feature transform.

$$\boldsymbol{h}_{i}^{(l+1),H} = (\boldsymbol{W}^{(l+1)} \otimes^{K_{l}} \boldsymbol{h}_{i}^{(l),H}) \oplus^{K_{l}} \boldsymbol{b}^{(l+1)}$$

Attention-based hyperbolic aggregation.

$$\mathbf{y}_{i}^{(l+1),H} = \mathrm{AGG}^{K_{l}}(\mathbf{h}^{(l),H})_{i}$$

GNN với Transformer

Có một số biến thể của Transformer cho đồ thị:

- Mã hoá cấu trúc
- Lan truyền thông tin

Cài đặt GNN

- Message Passing Framework:
 - Step 1: Gather and transform the messages from neighbors:

 $\mathbf{n}_{i}^{(l+1)} = \overline{\text{AGG}}\left(\left\{M^{(l+1)}(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{i}^{(l)}, \mathbf{e}_{i,j}) \middle| j \in N(v_{i})\right\}\right)$

• Step 2: Update the state of the target node.

The aggregation function.
E.g. SUM/MEAN/LSTM

The message generation function.

Input: the state of current node, the state

of the neighbor node and the edge features.

The neighborhood set of node. E.g. 1-hop neighbors.

$$= \underbrace{U^{(t+1)}(\boldsymbol{h}_i^{(t)}, \boldsymbol{m}_i^{(t+1)})}_{\text{The state update function.}}$$

Most of current spatial GNNs can be formulated as a message passing process.

Today

- I. Graph Neural Network
- II. Một số cấu trúc GNN cơ bản
- III. Các bài toán mở

Một số bài toán mở

Given any two graphs, can GNN determine if they are isomorphic or not?

Một số bài toán mở

For any function on graphs, if there is a GNN approximating it up to an arbitrary accuracy?

$$\exists GNN, s. t. ||GNN - f|| < \epsilon$$
?

This kind of universality theorem has been proved for typical DNNs (Cybenko, 1989; Hornik, 1991)

Một số bài toán mở

Are GNNs expressive enough to solve the following problems?

Finding the shortest path?

If a graph contains a circle?

Yes, if the **depth** and **width** are beyond certain bounds, with sufficiently discriminative node attributes (Loukas 2020)

Tuần tới

- Nghỉ 30/04-01/05
- Tuần 10/05: Ví dụ về GNN trên đồ thị
- Tuần 17/05: Vấn đáp bài cuối kì