Chapitre 5 : Applications de la dérivation

Soit I un intervalle et f une fonction dérivable sur I. On note \mathscr{C}_f la courbe représentative de f dans le plan muni d'un repère.

1 Dérivée et sens de variation

Théorème 1

- Si f est **croissante** sur I, alors, pour tout nombre réel x de I, $f'(x) \ge 0$.
- Si f est **décroissante** sur I, alors, pour tout nombre réel x de I, $f'(x) \leq 0$.
- Si f est constante sur I, alors, pour tout nombre réel x de I, f'(x) = 0.

Exemple 1

Soit f la fonction définie sur \mathbb{R} par, pour tout $x \in \mathbb{R}$, $f(x) = x^2 - 3$, dont la courbe \mathscr{C}_f est donnée ci-contre.

- La fonction est décroissante sur $]-\infty;0]$, donc en chaque point de la courbe \mathscr{C}_f sur cet intervalle, la pente de la tangente est **négative**.
- La fonction est croissante sur $[0; +\infty[$, donc en chaque point de la courbe \mathscr{C}_f sur cet intervalle, la pente de la tangente est **positive**.

Application 2

Soit \mathcal{C}_g la courbe représentative d'une fonction g définie et dérivable sur [-3;4].

Donner graphiquement, suivant les valeurs de x, le signe de g'(x).

Théorème 2 (admis)

- Si, pour tout réel x de I, $f'(x) \ge 0$, alors f est **croissante** sur I.
- Si, pour tout réel x de I, $f'(x) \leq 0$, alors f est décroissante sur I.
- Si, pour tout réel x de I, f'(x) = 0, alors f est constante sur I.

Exemple 3

Soit f la fonction définie sur \mathbb{R} par, pour tout $x \in \mathbb{R}$, $f(x) = x^3 - 3x$. La fonction f est un polynôme donc est dérivable sur \mathbb{R} et pour tout $x \in \mathbb{R}$, on a

$$f'(x) = 3x^{2} - 3$$
$$= 3(x^{2} - 1)$$
$$= 3(x - 1)(x + 1).$$

On en déduit le tableau de signe suivant.

x	$-\infty$		-1		1		$+\infty$
f'(x)		+	0	_	0	+	

Puis, en utilisant le Théorème 2, on en déduit le tableau de variation suivant.

Application 4

Soit f la fonction définie sur \mathbb{R} par, pour tout $x \in \mathbb{R}$, $f(x) = -x^3 - 2x + 5$.

- 1. Calculer la dérivée de f.
- 2. Donner le signe de f'.
- 3. Donner le tableau de variations de f.

2 Extremums d'une fonction

2.1 Extremum local

Définition 1 (Extremum local)

Soient I un intervalle ouvert et $c \in I$. On considère une fonction f définie sur I. On dit que f(c) est un **maximum local** (respectivement **minimum local**) de f au voisinage de c si et seulement si il existe deux réels a et b dans I tels que $c \in]a; b[$ et, pour tout réel $x \in]a; b[$, $f(x) \leq f(c)$ (respectivement $f(x) \geq f(c)$).

Un extremum local est un maximum ou un mimumum local.

Exemple 5

Soit h une fonction définie sur $\mathbb R$ dont on donne la courbe représentative ci-contre.

- Le nombre h(2) est un minimum local de h.
- Le nombre h(1) = 2 est un maximum local de h.
- Le nombre h(-1) est un autre minimum local de h, il est aussi le minimum global de la fonction h.
- Il ne semble pas y avoir de maximum global.

2.2 Lien avec la dérivation

Propriété 3 (admise)

Soient I un intervalle ouvert, f une fonction dérivable sur I et c un réel de I.

- Si f(c) est un extremum local de f, alors f'(c) = 0.
- Si f' s'annule en c en changeant de signe, alors f(c) est un extremum local de f.

Remarque

Attention, la condition de changement de signe est importante. Par exemple la fonction $f: x \mapsto x^3$ a une dérivée qui s'annule en 0 mais n'admet pas d'extremum local en 0.

Exemple 6

On reprend l'exemple de la fonction $f: x \mapsto x^3 - 3x$ vu précédemment, dont on a donné le tableau de variation cidessous et la représentation graphique ci-contre.

x	$-\infty$		-1		1		$+\infty$
f'(x)		+	0	_	0	+	
f(x)			f(-1)		f(1)		

On voit que f(-1) = f(1) = 0, et que la dérivée change de signe aux points -1 et 1. On en conclut que f admet deux extremum locaux.

Application 7

On pose $f: x \mapsto \frac{3-x}{x-2}$.

- 1. Donner l'ensemble de définition et l'ensemble de dérivabilité de f.
- 2. Dériver f sur son ensemble de dérivabilité.
- 3. Faire le tableau de signe de f' et en déduire le tableau de variations de f.
- 4. La fonction f admet-elle des extremums locaux?