Memoria virtual:

Paginação, segmentação - endereçamento

Fernando Pujaico Rivera¹

¹Universidade Federal de Lavras

Aula-1 2016

Memoria física [5]

Processo A: Excel

Processo B: Skype

Processo C : Firefox

Memoria física

Memoria física e memoria virtual

Memoria virtual

Memoria Virtual - Virtual Address Space

	User S.	Kernel S.
Linux 32-bit [2]	3GB	1GB
Win. 32-bit	2GB	2GB
Linux 64-bit [3]	128TB	128TB
W10 64-bit	8TB	8TB
W8S 64-bit [4]	128TB	128TB

CPUs de arquitetura x86-64, ou seja, o AMD Athlon 64 [1]

	32-bits	64-bits
End. de Mem. virtual	32-bits	48-bits ≡ 2 regiões de 47-bits
End. de Mem. real (RAM)	30-bits	40-bits [1]

```
#include <stdio.h>
int main(int argc, char** argv)
{
    char letra='a';
    printf("Conteudo: %c\n", letra );
    printf("Endereço: %p\n", &letra );
    printf("Tamanho de endereço: %u\n", sizeof(&letra) );
    return 0;
}
```

Conteúdo: a

Endereço: 0x7ffd 3e55 fabf

Tam. endereço: 8 Bytes

Segmentação e paginação

Figure : Segmentação (compilador) e paginação

Endereçamento

Na arquitetura x86 (32 e 64 bits), são usadas a segmentação e a paginação

12-bit gera 4kB espaços de memoria.

Endereçamento

Endereçamento

Endereço lógico → endereço linear

Endereço lógico → endereço linear

Endereço linear \rightarrow endereço físico

Α	Endereço linear		
3	NPV0	4	
	NPV1	2	
	NPV2	3	
	NPV3	2	

	-		•
		1	
1		1	
1		1	
7		0	

ETD DIT

Endereço lisico		
3	4	
2	2	
5	3	
13	2	
Frame	Deslocament	

NPV Deslocamento

As frames da memória física correspondem a páginas de memória virtual

Endereço linear (Virtual) \rightarrow endereço físico

Segmentação e paginação

Segmentação:

- Dividido (segmentos) analisando sua estrutura logica.
- Vários processos podem usar partes de um mesmo segmento.
- Uso de espaços livres entre segmentos.
- Segmento com níveis de privilégios de acesso.

Paginação:

- pedaços de memoria de tamanho fixo (4kB).
- Sem níveis de privilégios de acesso.
- paginas são mais pequenas que os segmentos.

Administração da memoria virtual pelo S.O.

Os dados usados de forma continua estão na memoria física.

Politicas de carga (fetch) Quando trazer uma pagina/segmento à memoria física (DEMANDA Vs. Anticipada)

Politicas de colocação (placement) Onde por a pagina/segmento na memoria física

Politicas de substituição (Replacement) Quando a memoria RAM está cheia

References I

- [1] AMD. AMD64 Architecture Programmer's Manual Volume 2: System Programming. AMD, 2013.
- [2] Mel GORMAN. Understanding the Linux virtual memory manager. Cap. 4. Upper Saddle River. Prentice Hall, 2004.
- [3] KERNEL.ORG. "www.kernel.org/doc/documentation/x86/x86_64/mm.txt".
- [4] MICROSOFT. "msdn.microsoft.com/enus/library/windows/desktop/aa366778(v=vs.85).aspx".
- [5] William Stallings. *Arquitetura e Organização de Computadores* 8 Fd. Prentice Hall.