

MLLIB:

- Spark package for Machine Learning with resilient distributed datasets (RDD)
- Partly based on Python's 'scipy' package
- Some key ML algorithms (and growing)

```
[screen 0: bash] etrain102@comet-05-25:~/SI2016ML/SPML
Kill is control-H (^H).
[etrain102@comet-05-25 ~]$ ls
SI2016ML vis
[etrain102@comet-05-25 ~]$ cd SI2016ML/SPML/
[etrain102@comet-05-25 SPML]$ source Setup_pyspark.sh
n102@comet-in2 ~ $
```


Enter:

> pyspark

after startup logs ...

Welcome to

Using Python version 2.6.6 (r266:84292, Feb 22 2013 00:00:18) SparkContext available as sc, HiveContext available as sqlCtx.

In [1]:

Spark MLLIB Data Types

- MLLIB works with RDD of:
 - Arrays
 - **Vectors**
 - **Labeled Points**

Numpy package: Arraysimport numpy as np

x = np.array([1,2,3,4])

x[0]

Out[]: 1

```
    Array of arrays

x = np.array([[1,2],[3,4]])
Out[]: array([1, 2])
                           A row
X[:,1]
                           A column
Out[]: array([2,4])
```

MLLIB package: Vectors

from pyspark.mllib.linalg import Vectors

x = Vectors.dense([1,2,3,4])

x[0]

Out[]: 1

numpy arrays are interchangeable with mllib Vectors

MLLIB package: RDD of Vectors

x = [Vectors.dense([1,2,3,4]),

Vectors.dense([5,6,7,8])]

xrdd = sc.parallelize(x)

xrdd

Out[]: <Python RDD >

now 'xrdd' has RDD actions available

MLLIB linalg package notes:

SparseVectors also possible

Distributed Matrix support in later pyspark releases (but some available in Scala)

```
    MLLIB package: LabeledPoint

from pyspark.mllib.regression import LabeledPoint
my_pt = LabeledPoint(1.0, Vectors.dense([1.0, 0.0, 3.0]))
my_pt.label
                     Class Label
Out[]: 1.0
my_pt.features
Out[]: [1.0, 0.0, 3.0]
                      Array
```

use this for setting up a class variable

RDD partitioning is along rows:

Spark MLLIB Clustering

MLLIB package: Kmeans

Assign points to 'closest' cluster mean, Update cluster mean, Iterate until assignments converge

Needs to iterate over data, and calculate distance to cluster centers

Generating Random data:

```
from pyspark.mllib.random import RandomRDDs
                            normal distribution
c1_v=RandomRDDs.normalVectorRDD(
    sc,20,2,
                       20 rows, 2 columns
    numPartitions=2,
    seed=1L).
    map(lambda v:np.add([1,5],v))
      center points around [1,5] by adding [1,5] to each point
```

Generating Random data:

```
print c1_v.stats()
```

Ask for stats of the RandomRDD

Out[]: (count: 20, mean: [1.15426378 4.90223615],

max: [3.01083638 8.46783831],

min: [-1.08338413 2.83934928])

You get basic stats by column

Generate 2 more classes and concatenate:

```
c2 v=RandomRDDs .... np.add([5,1],v))
c3 v=RandomRDDs ... np.add([4,6],v))
   =c1_v.union(c2_v)
my data=c12.union(c3 v)
```

MLLIB package:Kmeans

from pyspark.mllib.cluster import Kmeans, Kmeansmodel

```
    MLLIB package:Kmeans

my_kmmodel = KMeans.train(my_data,
                          number of clusters
    maxIterations=10,
    runs=2,
    initializationMode='k-means||')
   use k-means over small, sample
   to initialize (other option is 'random')
```

Kmeans model functions:

```
#Sum Square Error of points to their cluster's center my_kmmodel.computeCost(my_data)
```

```
# get cluster centers my_kmmodel.clusterCenters
```

Out: [arrav([5.0476959 . 1.277292091). arrav([3.99839705, 6.28073879]), array([0.95767935, 4.69770646])]

Note: with big data you sometimes only keep the cluster centers for further analysis

Spark MLLIB Classification

MLLIB package: Decision Tree

Decision Tree induction:

At each node, partition data into bins based on attribute values

MLLIB package: Decision Tree

Decision Tree induction:

At each node, partition data into bins based on attribute values

Needs to iterate over data,
collect metrics,
choose nodes,
update current tree across

weather data example

import numpy as np

Import modules

from pyspark.mllib.linalg import Vectors

from pyspark.mllib.regression import LabeledPoint

```
rawdata=[

['sunny',85,85,'FALSE',0]

['sunnv'.80.90.'TRUE'.0].

['overcast',83,86,'FALSE',1],

['rainy',70,96,'FALSE',1],....
```

Raw data

```
data_df=sqlContext.createDataFrame(rawdata,
                     ['outlook', 'temp', 'humid', 'windy', 'play'])
#make RDD of labeled vectors (ie using only numbers!)
# build a dictionary to map outlook to new values
out2index={'sunny':0,'overcast':1,'rainy':2}
                                                            Convert categorical
                                                            data (e.g. outlook=
def newrow(dfrow):
                                                            1,2 or 3) and make
  outnum = out2index.get(dfrow[0])
                                                            labeled points
  outrow=list([outnum])
  outrow.append(dfrow[1])
                          #temp
   return (LabeledPoint(dfrow[4],outrow))
datax_rdd=data_df.map(newrow)
```


MLLIB package:DecisionTree

from pyspark.mllib.classification import DecisionTree

MLLIB package:DecisionTree

from pyspark.mllib.classification import DecisionTree


```
Confusion Matrix:
predictions
             = dt_model.predict(datax_rdd.map(lambda
                                        x: x.features))
labelsAndPredictions = datax_rdd.map(lambda lp:
                                   lp.label).zip(predictions
Confusion_mat= [[ 5. 0.]
                [ 2. 7.]]
                         12 of 14 correct
```


Decision Tree output:

print dt_model.toDebugString()

IF-THEN-ELSE rules are nodes

Out[]: DecisionTreeModel classifier of depth 3 with 9 nodes

If (feature 2 <= 80.0)

If (feature 1 <= 65.0)

Predict: 0.0

Else (feature 1 > 65.0)

Predict: 1.0

Else (feature 2 > 80.0)

If (feature 0 in {0.0})

feat 2 is humid, feat 1 is 'temp'

leaf node is prediction

pause

