FONDAMENTI DI AUTOMATICA

Federico Mainetti Gambera

19 luglio 2020

Indice

I	Prima parte del corso	2
II	Seconda parte del corso	3
1	Schema fondamentale di un anello di controllo (SD LTI a TC, SISO) 1.1 Schema completo	3
2	Stabilità asintotica di sistemi retroazionati (SD LTI a TC SISO) 2.1 Diagramma di Nyquist	6
Ш	I Esercitazioni	g

Parte I Prima parte del corso

Parte II

Seconda parte del corso

LEZIONE 18 9/04/2020 link clicca qui

1 Schema fondamentale di un anello di controllo (SD LTI a TC, SISO)

1.1 Schema completo

[immagine dagli appunti del prof]

Ogni blocco rappresenta una funzione di trasferimento e prendiamo come presupposto che tutti i blocchi singoli blocchi non abbiano parti nascoste, anche se il complessivo potrebbe averne.

 $\tilde{P}(s)$ prende il nome di **processo**. La funzione di trasferimento A(s) prende il nome di **attuatore** che ha in ingresso il segnale di controllo u e che in base ad esso invia al processo un segnale m.

Abbiamo poi il **regolatore** (o controllore) R(s). Prima del regolatore è presente un **nodo formatore** (o comparatore) che prende in ingresso il **segnale di riferimento** w (output desiderato).

Dopo il processo è presente un nodo sommatore che aggiunge un **disturbo** esterno \tilde{d}_a che segue la sua dinamica H(s).

Infine abbiamo il blocco $M_y(s)$, che prende il nome di **trasduttore**. A sua volta il traduttore ha dei disturbi esterni che indichiamo con d_r e solo ora abbiamo la **variabile controllata** y_m .

Definiamo ora l'**errore** come w-y, che in generale non è il segnale in ingresso nel regolatore, in quanto non lavoriamo con la quantità y, ma con la misurazione y_m .

1.2 Schema semplificato

Facciamo delle semplificazioni di questo schema:

- consideriamo l'attuatore parte del processo: P(s) è la serie di A(s) e $\tilde{P}(s)$;
- consideriamo H parte del modello del disturbo: $d_a = H\tilde{d}_a$;
- consideriamo un trasfuttore ideale: non c'è errore ed è infinitamente veloce, $M_{\eta}(s)=1$.

Quindi lo schema semplificato che useremo sarà così: [immagine dagli appunti del prof]

oss. d_a fa raramente cambiare y, d_r no, si limita a corromperne la misura.

In questo schema semplificato le funzioni di trasferimento di interesse sono:

- L(s) = R(s)P(s) che è la funzione di trasferimento di anello (aperto);
- $S(s)=rac{1}{1+L(s)}$, che prende il nome di **funzione di sensitività**, notiamo che $S=rac{Y}{D_a}$;
- $T(s) = \frac{L(s)}{1+L(s)}$, che prende il nome di funzione di sensitività complementare, in cui il termine "complementare" viene da fatto che S+T=1, notiamo che $T=\frac{Y}{W}$;
- $Q(s) = \frac{R(s)}{1+L(s)}$, che prpende il nome di **funzione di sensitività del controllo**, ed è l'unica a non dipendere soltanto da L.

Analiziamo l'influenza del disturbo d_r , abbiamo che:

$$T = \frac{L}{1+L} = \frac{Y}{W};$$

$$\begin{split} T &= \frac{L}{1+L} = \frac{Y}{W}; \\ S &= \frac{1}{1+L} = \frac{Y}{D_a}; \\ \frac{Y}{D_r} &= -\frac{L}{1+L} = -T; \end{split}$$

 $\bar{\mathsf{da}}$ cui deduciamo che, a meno del segno, w e d_r hanno lo stesso effetto su y. Infatti se analiziamo il nodo in cui entra w otteniamo il seguente schema:

dove ricordiamo che ϵ è diverso dall'errore w-y e vale:

$$\epsilon = w - (y + d_r) = (w - d_r) - y$$

da cui vediamo che d_r influisce direttametne su w.

Riassumendo:

$$Y = \frac{Y}{W} \cdot W + \frac{Y}{D_a} \cdot D_a + \frac{Y}{D_r} \cdot D_r = TW + SD_a - TD_r, \text{ perchè } T = \frac{Y}{W} \text{ e } S = \frac{Y}{D_a} \text{ e } - T = \frac{Y}{D_r}.$$
 Notiamo che nell'espressione precedente nel termine, per esempio, $\frac{Y}{W} \cdot W$, non si semplificano le W , perchè $\frac{Y}{W}$ va interpretato come " $\frac{\text{EFFETTO di } W \text{ su "Y"}}{W}$ ", cioè $\frac{\mathcal{L}[Y_F]}{\mathcal{L}[W]}_{D_a = D_r = 0}$.

Requisiti del controllo 1.3

- Anello chiuso asintoticamente stabile (AS).
- **Precisione statica**, cioè che se si impongono ingressi costanti $(w(t) = \bar{w}, d_a(t) = \bar{d}_a, d_r(t) = 0)$, allora, assunto anche il punto precedente, esiste finito il limite $\lim_{t\to\infty}e(t)=e_\infty$, dove e_∞ prende il nome di errore a regime.

Detto in maniera più semplice possiamo dire che precisione statica significa che presi degli ingressi costanti, a transitorio esaurito, l'errore deve essere piccolo.

Tipicamente viene richiesto che proprio questo errore a regime sia $e_{\infty}=0$ oppure $e_{\infty}<$ tot. oss. questi concetti possono poi essere estesi a segnali canonici.

• Precisione dinamica, cioè quando cambio w, y lo deve raggiungere "presto e bene", per esempio senza oscillazioni eccessive.

- **Grado di stabilità**. Il sistema deve essere "abbastanza lontano" dal perdere la stabilità asintotica a seguito di variazioni di qualche suo parametro fisico.
- Moderazione del controllo. A parità delle altre proprietà è preferibile il controllore che sollecita meno l'attuatore.

2 Stabilità asintotica di sistemi retroazionati (SD LTI a TC SISO)

[immagine dagli appunti del prof]

Poichè la stabilità non dipende dagli ingressi, posso studiare questo schema: [immagine dagli appunti del prof]

Posto $L(s)=\frac{L_n(s)}{L_d(s)}$ con L_n e L_s polinomi (cioè, per ora li stiamo considerando senza ritardi), allora definendo q possiamo dire:

[immagine dagli appunti del prof]

$$\begin{array}{l} -Lq=q\\ q+Lq=0\Rightarrow q+\frac{L_n}{L_d}q=0\\ (1+\frac{L_n}{L_d})q=0\Rightarrow \frac{L_n+L_d}{L_d}q=0\\ \text{da cui ricaviamo che} \end{array}$$

$$L_n + L_d = 0$$

che prende il nome di **equazione caratteristica del sistema in anello chiuso (AC)** e le sue radici sono i poli del sistema in AC.

Ci occorrono quindi criteri per studiare la stabilità asintotica dell'anello **chiuso** osservando la funzione di trasferimento L(s) dell'anello **aperto**, perchè, siccome L=RP, se trovo una "buona" \bar{L} è immediato calcolare $R=\frac{\bar{L}}{P}$.

Per farlo vedremo due criteri: Nyquist e Bode.

2.1 Diagramma di Nyquist

Definiamo il **diagramma di Nyquist** di una funzione di trasferimento G(s) come l'immagine secondo G(s) del percorso di Nyquist relativo a G(s).

Definiamo il percorso di Nyquist come segue:

Si identificano (con le crocette rosse) eventuali poli di G(s) sull'asse J. Il percorso è composto dall'asse immaginario percorso dal basso verso l'alto, i poli vengono "schivati" con delle semicirconferenze infinitesime, e il percorso di conclude con una semicirconferenza all'infinito.

oss. il percorso di Nyquist circonda in senso orario il semipiano destro.

Poichè $G(-j\omega)=\bar{G}(j\omega)$, il diagramma di Nyquist (DN) è simmetrico rispetto all'asse reale ed è fatto dal percorso di Nyquist completato appunto con tale simmetrico.

2.1.1 **Esempi**

es.

[immagine dagli appunti del prof]

(diagramam polare in rosso, diagramma di Nyquist in rosso+blu, completato a partire da quello polare con il suo simmetrico)

es.

[immagine dagli appunti del prof]

(diagramam polare in rosso, diagramma di Nyquist in rosso+blu, completato a partire da quello polare con il suo simmetrico)

es.

[immagine dagli appunti del prof]

(diagramam polare in rosso, diagramma di Nyquist in rosso+blu, completato a partire da quello polare con il suo simmetrico).

Correzione della lezione successiva su questo esercizio: [immagine dagli appunti del prof]

LEZIONE 19 15/04/2020 link clicca qui

Parte III **Esercitazioni**