	Surname	Type
Group Number	Name	Α
List Number	e-mail	$oxed{\begin{tabular}{cccccccccccccccccccccccccccccccccccc$
Student ID	Signature	

ATTENTION: Each question has only one correct answer and is worth one point. Be sure to fill in completely the circle that corresponds to your answer on the answer sheet. Use a pencil (not a pen). Only the answers on your answer sheet will be taken into account.

1. A force F acts on mass m₁ giving acceleration a₁. The same force acts on a different mass m₂ giving acceleration $a_2 = 2a_1$. If m_1 and m_2 are glued together and the same force F acts on this combination, what is the resulting acceleration?

- (a) 4/3 a_1
 - (b) $3/4 a_1$
- (c) $2/3 a_1$
- (d) $1/2 a_1$
- (e) $3/2 a_1$
- 2. A box sliding on a frictionless flat surface runs into a fixed spring, which is compressed a distance x until the box stops. If the initial speed of the box were doubled, how much would the spring compress

(a) $\sqrt{2}$ times as much

(e) Twice as much

- (b) The same amount
- (c) Half as much
- (d) Four times as much

- 3. A pendulum of length L with a bob of mass m swings back and forth. At the low point of its motion (point Q), the tension in the string is (3/2)mg. What is the speed of the bob at this point?

 - (a) $\frac{\sqrt{gL}}{2}$ (b) $2\sqrt{gL}$ (c) \sqrt{gL} (d) $\sqrt{2gL}$ (e) $\sqrt{\frac{gL}{2}}$

- (a) $v_1 = \frac{7.0}{\sqrt{2}}$ m/s; $v_2 = v_1$ (b) $v_1 = 7\sqrt{2}$ m/s; $v_2 = v_1$ (c) $v_1 = 7\sqrt{2}$ m/s; $v_2 = 2v_1$ (d) $v_1 = 7\sqrt{2}$ m/s; $2v_2 = v_1$ (e) $v_1 = \frac{7.0}{\sqrt{2}}$ m/s; $v_2 = 2v_1$

- **5.** A particle is moving along the x-axis subject to the potential energy function $U(x) = \frac{a}{x} + bx^2 + cx d$, where a = 3.00 J m, $b = 12.0 \text{ J/m}^2$, c = 7.00 J/m, and d = 20.0 J. Determine the x-component of the net force on the particle at the coordinate
 - (a) $-2.8\,10^6$ g.cm/s² (b) $2.8\,10^6$ N (c) $-2.8\,10^6$ N (d) 0 (e) $2.8\,10^6$ g.cm/s²

Questions 6-9

Two blocks shown in the figure are of mass "m" and rest on a flat frictionless air track. A spring of force constant "k" is attached to block (2). Block (1) has initial velocity in the +x direction. Block (2) is initially at rest. Block (1) also becomes attached when it hits the spring.

- **6.** What is the center of mass velocity of the system?

 - (a) $v_0/2$ (b) 0 (c) v_0 (d) $2v_0$ (e) $v_0/4$

(a) 0 (b) $mv_0^2/4$ (c) $2mv_0^2$

- 7. What is the minimum total kinetic energy consistent with the conservation laws?
 - (d) mv_0^2 (e) $mv_0^2/2$
- 8. What is the maximum compression of the spring?

- (a) $(m/2k)v_0$ (b) 0 (c) $(2k/m)v_0^2$ (d) $(m/2k)^{1/2}v_0$ (e) $(k/m)^{1/2}v_0$
- 9. What is the maximum velocity of block (1) after the collision?
 - (a) $v_0/\sqrt{2}$ (b) v_0
- (c) $v_0/2$ (d) $2v_0$ (e) 0

- 10. If a wheel of radius R rolls without slipping through an angle θ , what is the relationship between the distance the wheel rolls, x, and the product $R\theta$?

- (a) $R < x\theta$

- (b) $x < R\theta$ (c) $x > R\theta$ (d) $x = R\theta$ (e) $R > x\theta$

Questions 11-13

A typical small rescue helicopter has four blades as shown in the figure on right. Each is 5.00 m long and has a mass of 60.0 kg. The blades can be approximated as thin rods that rotate about

- (a) $1.00 \times 10^6 \text{ J}$ (b) $2.00 \times 10^5 \text{ J}$ (c) $1.00 \times 10^5 \text{ J}$ (d) $4.00 \times 10^6 \text{ J}$ (e) $2.00 \times 10^6 \text{ J}$
- 12. When the helicopter flies at 20.0 m/s, what is the ratio of the translational kinetic energy of the helicopter with respect to the rotational energy in the blades?
- (b) 0.8 (c) 2.5 (d) 0.4 (e) 1

- 13. To what height could the helicopter be raised if all of the rotational kinetic energy could be used to lift it?
 - (a) 500.0 m (b) 50.0 m (c) 5.0 m (d) 25.0 m

Exam Type A

Page 1 of 2

Questions 14-17

A projectile of mass m=1 kg is fired from the ground with an initial position $\vec{r_o} = \vec{0}$ and initial velocity of $\vec{v_o} = 8 \ (m/s)\hat{i} + 15 \ (m/s)\hat{j}$. Acceleration due to gravity is $\vec{g} = -10 \ (m/s^2)\hat{j}$. Answer the following for

- 14. Which of the following is the linear momentum of the particle in kg m/s?

- (a) $5\hat{i} + 8\hat{j}$ (b) $8\hat{i} 10\hat{j}$ (c) $5\hat{i} 8\hat{j}$ (d) $8\hat{i} + 5\hat{j}$ (e) $8\hat{i} 5\hat{j}$

Final Exam

- 15. Which of the following is the angular momentum of the particle in kg m²/s?

- (b) $-80\hat{k}$ (c) $-160\hat{k}$ (d) $80\hat{i} 80\hat{j}$ (e) $-80\hat{j}$
- 16. Which of the following is the rate of change of angular momentum of the particle in kg m²/s²?
- (b) $-80\hat{k}$
 - (c) $-80\hat{j}$ (d) $80\hat{i} 80\hat{j}$
- (e) $160\hat{k}$
- 17. Which of the following is the net torque acting on the particle in N m?
 - (a) $-80\hat{k}$

- (b) $160\hat{k}$ (c) $-160\hat{k}$ (d) $-80\hat{j}$ (e) $80\hat{i} 80\hat{j}$

Questions 18-21

A uniform disk of mass "M", radius "R" and moment of inertia $I = MR^2/2$ is spining around its axis with angular speed ω . The system is frictionless.

- **18.** What is its angular momentum L?
 - (a) $MR^2\omega^2$
- (b) $MR^2\omega$
- (c) $2MR^2\omega$ (d) $MR\omega^2/2$ (e) $MR^2\omega/2$

A second, identical disk is on the same axis, which is initially not spinning. It is allowed drop on the first disk. The two disks soon start turning together.

- 19. What quantity / quantities is /are conserved during the collision?

 - (b) Mechanical energy only. mechanical energy. (e) L and kinetic energy.
- (c) Kinetic energy only.
- (d) L and

- **20.** What is the angular momentum L_f after the collision?

- (a) $MR\omega^2/2$ (b) $MR^2\omega/2$ (c) $MR^2\omega$ (d) 0 (e) $2MR^2\omega$
- **21.** What is the final kinetic energy KE_f after the collision?
- (a) $MR^2\omega^2/2$ (b) 0 (c) $MR^2\omega^2/4$ (d) $MR^2\omega^2/8$
- (e) $MR^2\omega^2$

- I) It takes the earth less time to complete one full revolution in its orbit around the sun than it takes Jupiter.
- II) A planet moving in an orbit around the sun experiences zero net external torque.
- III) Time needed by a planet to complete one full revolution around the sun increases with the mass of the planet.

- (b) I and II (c) I and III (d) II and III
- (e) I, II, and III

- (a) $L = M_{\rm E} \sqrt{2gR_{\rm E}^3}$ (b) $L = m\sqrt{GgR_{\rm E}^3}$ (c) L = 0 (d) $L = (m + M_{\rm E})\sqrt{2gR_{\rm E}^3}$ (e) $L = m\sqrt{2gR_{\rm E}^3}$

Questions 24-25

Consider a binary star system with stars of masses $m_1 = 3M$ and $m_2 = M$, separated by distance R (see figure). The stars are in circular orbits around the center of mass of the system labeled "cm", with respective orbital speeds v_1 and v_2 .

- **24.** What is the ratio of orbital speeds v_1/v_2 of the two stars?

 - (a) 1/3 (b) 1/9 (c) 3 (d) 9 (e) 1

25. What is the orbital period of each star (symbol G stands for the gravitational constant)?

- (a) $\frac{1}{2\pi} \frac{GM^2}{R^2}$ (b) $\frac{2\pi GM}{R}$ (c) $\sqrt{\frac{\pi^2 R^3}{GM}}$ (d) $3\sqrt{\frac{\pi^2 R^3}{GM}}$ (e) $\frac{1}{3}\sqrt{\frac{\pi^2 R^3}{GM}}$

