

Contents

1	Pandas	3
	1.1 Imports	3
	1.2 Introduction to Pandas	4
	1.3 The Series	5
	1.4 The DataFrame	8
	1.5 Reading and Writing Data	11
	1.5.1 Reading Data in Parts	11
	1.5.2 Writing Data to CSV	12
	1.5.3 Reading and Writing HTML and Excel Files	13
	1.6 Using Regex to Parse TXT Files	14
	1.7 Interacting with Databases	17
	1.7.1 Overview	17
	1.7.2 Interacting with SQLite Databases	18
	1.8 Pandas - Data Manipulation	19
	1.9 Merging Data	19
	1.10 Concatenation	23
	1.10.1 Concatenating Arrays	23
	1.10.2 Concatenating Series	24
	1.10.3 Concatenating DataFrames	25
	1.11 Combining	26
	1.12 Pivoting	27
	1.13 Removing Data	30
	1.13.1 Removing Columns and Rows	30
	1.13.2 Removing Duplicates	32
	1.14 Mapping and Replacing	34
	1.14.1 Definition	34
	1.14.2 Replacing Values	34
	1.14.3 Handling Missing Values	35
	1.14.4 Adding New Columns via Mapping	36
	1.15 Data Aggregation	37
	1.15.1 Grouping to a Single Column of Data	38
	1.15.2 Hierarchical Grouping	39
	1.16 Date Formatting and Parsing	40
	1.16.1 pd.read_csv()	40
	1.16.2 Parsing Dates Using parse_dates	40

1.16.3 Handling Date Formats with dayfirst	40
1.16.4 Keeping the Original Date Column	41
1.16.5 Converting the Date to a Monthly Period	41
1.17 Handling Missing Data	42
1.17.1 Overview of Missing Values	42
1.17.2 Dropping Missing Values	42
1.17.3 Filling Missing Values	42
1.17.4 Example: Filling Missing Values in Multiple Columns	43
1.18 Pandas: Comprehensive Exercise in Data Manipulation	44
1.18.1 Objective	44
1.18.2 Steps to Solution	44

Chapter 1 Pandas

1.1 Imports

- To use Pandas effectively, it is crucial to import the library using standard conventions.
- The most common imports for Pandas are:
 - import pandas as pd: This is the standard convention for importing Pandas. The alias pd is widely recognized and saves typing.
 - import numpy as np: Often used alongside Pandas for numerical computations, such as generating or manipulating numerical data.

Example 1: Standard Pandas Import.

Example 2: Using NumPy with Pandas.

```
# Import Pandas and NumPy
import pandas as pd
import numpy as np

# Create a DataFrame with random data
data = np.random.rand(3, 3)
df = pd.DataFrame(data, columns=['A', 'B', 'C'])
print(df)
```

1.2 Introduction to Pandas

- Key Features:
 - **Series:** 1D labeled array.
 - DataFrame: 2D labeled table with rows and columns.
- Installation: Use Anaconda or pip install pandas.

Code:

```
import pandas as pd
import numpy as np
```

1.3 The Series

- Creating: Use pd.Series(data, index=[]) to create a labeled 1D array.
- Operations: Supports arithmetic operations (e.g., +, -) with alignment based on labels.

• Selecting Elements:

- Use labels or indices to access elements: s['label'] or s[index].
- Use slicing for ranges: s[start:stop].
- Filtering: Use conditional statements to filter values (e.g., s[s > 5]).

• Assigning Values:

- Assign values by label: s['label'] = value.
- Assign values by index: s[index] = value.

• Mathematical Operations:

- Operators like +, -, *, / are applicable to Series.
- Mathematical functions from NumPy can also be applied.

• Missing Data:

- np.NaN: Represents missing values.
- isnull(), notnull(): Identify missing or non-missing data.

• Evaluating Values:

- unique(): Returns unique values, excluding duplicates.
- value_counts(): Counts occurrences of unique values.
- isin(): Checks if values exist in the Series and returns a boolean mask.

• Creating a Series from a Dictionary:

- Keys become the index, and values become the data.
- Missing indices are filled with np.NaN.
- Operations Between Series: Aligns on labels; mismatched labels result in NaN.

Example 1: Evaluating Values Code:

Output:

```
Unique values:
[1 0 2 3]
Value counts:
    2
3
0
    1
dtype: int64
isin for values [0,3]:
white
         False
white
         True
         False
blue
green
         False
green
         False
         True
yellow
dtype: bool
```

Example 2: Handling Missing Data (NaN Values) Code:

```
# Create a Series with missing values
s2 = pd.Series([5, -3, np.NaN, 20])

print("isnull():")
print(s2.isnull())

print("notnull():")
print(s2.notnull())

# Filter non-missing values
print("Filtered non-missing values:")
print(s2[s2.notnull()])
```

```
isnull():
   False
1
    False
2
     True
    False
dtype: bool
notnull():
     True
     True
1
2
    False
     True
dtype: bool
Filtered non-missing
    values:
     5.0
0
    -3.0
1
    20.0
dtype: float64
```

Example 3: Creating a Series from a Dictionary Code:

Output:

```
Series from dictionary:
         250
red
blue
         560
         700
green
white
        1456
dtype: int64
Series with custom index:
red
         250.0
blue
         560.0
green
        700.0
white
        1456.0
purple
          NaN
dtype: float64
```

Example 4: Operations Between Series Code:

```
Result of adding two Series:
black NaN
blue NaN
green NaN
purple NaN
red 1150.0
white 1956.0
dtype: float64
```

1.4 The DataFrame

• **Definition:** A DataFrame is a tabular structure very similar to a spread-sheet, designed to extend Series to multiple dimensions.

• Structure:

- Consists of an ordered collection of columns, each of which can contain a value of a different type (numeric, string, boolean, etc.).
- Unlike Series, which have an index array, DataFrames have two index arrays for rows and columns.
- Can be understood as a dictionary of Series where the keys are column names, and the values are the Series forming the DataFrame's columns.
- Creating a DataFrame: Use pd.DataFrame() with data in the form of dictionaries, lists, or nested dictionaries.
- Selecting Columns: Use the columns parameter to select and order specific columns.
- Nested Dictionary: When a nested dictionary is passed to pd.DataFrame(), outer keys become column names, and inner keys become row labels. Missing values are filled with NaN.
- Transposition: Columns become rows and rows become columns using the .T attribute.

Example 1: Defining a DataFrame Code:

Output:

```
DataFrame:

color items price

white ball 2.50

red pen 1.50

black pencil 0.50

green paper 0.60

purple eraser 0.15
```

Example 2: Selecting Specific Columns Code:

```
DataFrame with selected columns:
   items price
0 ball 2.50
1 pen 1.50
2 pencil 0.50
3 paper 0.60
4 eraser 0.15
```

Example 3: Nested Dictionary as Input Code:

Output:

```
DataFrame from nested dictionary:
    red green blue
2008 NaN 23.0 18.0
2012 22.0 22.0 28.0
2014 45.0 17.0 19.0
```

Example 4: Transposing a DataFrame Code:

```
# Transpose the DataFrame
frame3_T = frame3.T

print("Transposed DataFrame:")
print(frame3_T)
```

1.5 Reading and Writing Data

1.5.1 Reading Data in Parts

- To read only a portion of the file, specify the number of lines to parse using nrows and skiprows.
- skiprows: Excludes specified rows from being read.
- nrows: Reads only the specified number of rows.

Example 1: Reading a CSV File in Parts Code:

```
Data read with skiprows and nrows:
               2
                    3
           1
  white red blue green animal
          5
                2
                      3
1
      1
                            car
      3
           3
                6
                       7
                          horse
```

1.5.2 Writing Data to CSV

- to_csv(): Writes a DataFrame to a CSV file.
- Use index=False and header=False to remove default indexes and headers.

Example 2: Writing Data to a CSV File Code:

```
DataFrame after writing and reading:
              2
     0
         1
                  3
0 red
         0
             1
                 2
1 blue
         4
             5
                 6
2 yellow 8
             9 10
3 white 12
            13 14
```

1.5.3 Reading and Writing HTML and Excel Files

- to_html(): Converts a DataFrame to an HTML table.
- read_html(): Reads tables from an HTML file and returns a list of DataFrames.
- to_excel(): Writes a DataFrame to an Excel spreadsheet.
- read_excel(): Reads data from an Excel file into a DataFrame.

Example 3: Writing and Reading HTML Code:

```
# Create a DataFrame
frame = pd.DataFrame(np.arange(4).reshape(2, 2))

# Convert to HTML
html_output = frame.to_html()
print("HTML output:")
print(html_output)
```

```
HTML output:
<thead>
>0
 1
</thead>
>0
 0
 1
1
 2
 3
```

1.6 Using Regex to Parse TXT Files

- Sometimes, files do not have clear separators such as commas or semicolons for parsing.
- \bullet Regular expressions ($\mathbf{Regex})$ can be used to define custom criteria for value separation.
- Common Regex patterns:

Pattern	Description
•	Single character, except newline
\d	Digit
\D	Non-digit character
\s	Whitespace character
\S	Non-whitespace character
\n	Newline character
\t	Tab character
\setminus uxxxx	Unicode character specified by the hexadecimal number xxxx

Example 1: Parsing a TXT File with Whitespace Code:

Output:

```
Data parsed using whitespace:
  white red blue green
0
          5
               2
      1
1
      2
          7
               8
                     5
2
      3
         3
               6
                     7
3
      2
        2
               8
                     3
4
               2
      4
                     1
```

Example 2: Extracting Numeric Data from TXT File Code:

```
Numeric data extracted from text:

0 1 2 3
0 NaN NaN NaN NaN # First line had no numeric values
1 1.0 5.0 2.0 3.0
2 2.0 7.0 8.0 5.0
3 3.0 3.0 6.0 7.0
4 2.0 2.0 8.0 3.0
5 4.0 4.0 2.0 1.0

# To avoid NaN add 'skiprows=1'
```

Example 3: Skipping Rows While Parsing Code:

```
Data after skipping rows:

0 1 2 3
0 3 3 6 7
1 2 2 8 3
2 4 4 2 1
```

1.7 Interacting with Databases

1.7.1 Overview

- pandas.io.sql module provides a unified interface independent of the database, using sqlalchemy.
- The create_engine() function is used to establish a connection to the database.
- Unified commands ensure consistency regardless of the database backend.

Example 1: Creating a Connection to Databases Code:

```
from sqlalchemy import create_engine

# For SQLite
engine_sqlite =
    create_engine('sqlite:///foo.db')
```

1.7.2 Interacting with SQLite Databases

- Create a DataFrame that will serve as a table in the SQLite database.
- Use to_sql() to write the DataFrame to the database.
- Use read_sql() to retrieve data from the database.

Example 2: SQLite Integration Code:

```
import pandas as pd
import numpy as np
from sqlalchemy import create_engine
# Create a DataFrame
frame = pd.DataFrame(np.arange(20).reshape(4, 5),
                   columns=['white', 'red', 'blue',
                       'black', 'green'])
print("DataFrame:")
print(frame)
# Connect to SQLite database
engine = create_engine('sqlite:///foo.db')
# Write the DataFrame to the database
frame.to_sql('colors', engine, if_exists='replace')
# Read data back from the database
retrieved_data = pd.read_sql('colors', engine)
print("Data retrieved from SQLite:")
print(retrieved_data)
```

```
DataFrame:
  white red blue black green
    0
       1
            2
                 3
                   8
                         9
     5
         6
              7
1
2
    10
        11
             12
                   13
                         14
3
                   18
    15
        16
             17
                         19
Data retrieved from SQLite:
  index white red blue black green
                    2
0
     0
         0 1
                         3
1
     1
           5
             6
                    7
                         8
                               9
2
     2
          10 11
                              14
                   12
                         13
3
     3
          15
             16
                 17
                         18
                              19
```

1.8 Pandas - Data Manipulation

1.9 Merging Data

• merge():

- Combines data from two DataFrames based on keys (e.g., columns or indexes).
- Default behavior merges based on common column names.
- Specify the on parameter to define custom merge keys.

• join():

- Used to merge data using indexes.
- More convenient for merging when indexes are used as keys.

• Options:

- left_index and right_index: Use indexes as merge keys.
- how: Defines merge type ('inner', 'outer', 'left', 'right').

Example 1: Simple Merge Code:

```
import pandas as pd

# Create first DataFrame
frame1 = pd.DataFrame({
    'id': ['ball', 'pencil', 'pen', 'mug', 'ashtray'],
    'price': [12.33, 11.44, 33.21, 13.23, 33.62]
})

# Create second DataFrame
frame2 = pd.DataFrame({
    'id': ['pencil', 'pencil', 'ball', 'pen'],
    'color': ['white', 'red', 'red', 'black']
})

# Merge the DataFrames
merged = pd.merge(frame1, frame2)
print(merged)
```

```
id price color
0 ball 12.33 red
1 pencil 11.44 white
2 pencil 11.44 red
3 pen 33.21 black
```

Example 2: Specifying Merge Key Code:

```
# Create additional DataFrames
frame3 = pd.DataFrame({
    'id': ['ball', 'pending', 'pen', 'mug', 'ashtray'],
    'color': ['white', 'red', 'red', 'black', 'green'],
    'brand': ['OMG', 'ABC', 'ABC', 'POD', 'POD']
})

frame4 = pd.DataFrame({
    'id': ['pencil', 'pencil', 'ball', 'pen'],
    'brand': ['OMG', 'POD', 'ABC', 'POD']
})

# Merge on specific key
merged_on_brand = pd.merge(frame3, frame4, on='brand')
print(merged_on_brand)
```

```
id_x color brand id_y
0 ball white OMG pencil
1 pending red ABC ball
2 pen red POD pen
3 mug black POD pen
4 ashtray green POD pen
```

Example 3: Using Indexes Code:

```
Merged with Indexes:
     id_x color brand_x brand_y
     ball white
                  OMG
                         OMG
                         POD
1 pending
            red
                  ABC
                  ABC
                         POD
     pen
            red
3
            black POD
                         POD
     mug
Using join():
     id color brand brand2
    ball white
                  OMG pencil
                              \mathsf{OMG}
                  ABC pencil POD
1 pending
            red
                  ABC
                        ball
                               POD
     pen
           red
    mug black
                  POD
                         pen
                              POD
4 ashtray green
                  POD
                         {\tt NaN}
                              NaN
```

1.10 Concatenation

1.10.1 Concatenating Arrays

- **Definition:** Concatenation combines arrays along a specified axis.
- np.concatenate(): Combines two or more arrays along a given axis.

Code:

```
import numpy as np

# Create two 3x3 arrays
array1 = np.arange(9).reshape((3, 3))
array2 = np.arange(9).reshape((3, 3)) + 6

# Concatenate along axis 1
result_axis1 = np.concatenate([array1, array2], axis=1)
print("Concatenation along axis 1:")
print(result_axis1)

# Concatenate along axis 0
result_axis0 = np.concatenate([array1, array2], axis=0)
print("Concatenation along axis 0:")
print("Concatenation along axis 0:")
print(result_axis0)
```

```
Concatenation along axis 1:

[[ 0 1 2 6 7 8]
        [ 3 4 5 9 10 11]
        [ 6 7 8 12 13 14]]

Concatenation along axis 0:

[[ 0 1 2]
        [ 3 4 5]
        [ 6 7 8]
        [ 6 7 8]
        [ 9 10 11]
        [ 12 13 14]]
```

1.10.2 Concatenating Series

• pd.concat(): Combines multiple Series objects, with options for hierarchical indexing using the keys parameter.

Code:

```
import pandas as pd
import numpy as np
# Create two Series
ser1 = pd.Series(np.random.rand(4),
   index=[1, 2, 3, 4])
ser2 = pd.Series(np.random.rand(4),
   index=[5, 6, 7, 8])
# Concatenate Series
combined = pd.concat([ser1, ser2])
print("Concatenated Series:")
print(combined)
# Hierarchical indexing with keys
combined_hierarchical =
   pd.concat([ser1, ser2],
   keys=["Group1", "Group2"])
print("Hierarchical concatenation:")
print(combined_hierarchical)
```

```
Concatenated Series:
    0.326100
    0.983239
3
    0.306811
    0.149875
    0.221997
    0.687002
    0.499663
    0.857193
dtype: float64
Hierarchical concatenation:
Group1 1
           0.326100
            0.983239
       3
            0.306811
            0.149875
Group2 5
            0.221997
            0.687002
       7
            0.499663
       8
            0.857193
dtype: float64
```

1.10.3 Concatenating DataFrames

- Concatenating DataFrames: The same logic of concatenating Series applies to DataFrames.
- Use the axis parameter to specify concatenation direction.

Code

```
Concatenated along axis 0:
         Α
                   В
1 0.976314 0.748882 0.955794
2 0.046396 0.449692 0.867622
3 0.433338 0.986343 0.323115
4 0.802874 0.773448 0.922387
5 0.580696 0.584984 0.276520
6 0.725205 0.017955 0.974704
Concatenated along axis 1:
         Α
                  В
                            C
                                               В
                                                         C
                                      Α
1 0.976314 0.748882 0.955794
                                    NaN
                                              NaN
                                                       NaN
2 0.046396 0.449692 0.867622
                                    NaN
                                             NaN
                                                       NaN
3 0.433338 0.986343 0.323115
                                    NaN
                                             NaN
                                                       NaN
4
       {\tt NaN}
                 {\tt NaN}
                          NaN 0.802874 0.773448 0.922387
5
       {\tt NaN}
                 NaN
                          NaN 0.580696 0.584984 0.276520
6
                 {\tt NaN}
                          NaN 0.725205 0.017955 0.974704
       NaN
```

1.11 Combining

- **Definition:** When neither merging nor concatenation achieves the desired result, combining can be used.
- combine_first(): This function combines two Series or DataFrames, using the values from the calling object if they exist; otherwise, it takes values from the passed object.
- Use Case: Useful for combining datasets with partially or entirely overlapping indexes.

Code:

```
import pandas as pd
import numpy as np
# Create two Series
   pd.Series(np.random.rand(5),
   index=[1, 2, 3, 4, 5])
ser2 =
   pd.Series(np.random.rand(4),
   index=[2, 4, 5, 6])
# Combine ser1 with ser2
combined_ser1_first =
   ser1.combine_first(ser2)
print("Combining ser1 with
   ser2:")
print(combined_ser1_first)
# Combine ser2 with ser1
combined_ser2_first =
   ser2.combine_first(ser1)
print("Combining ser2 with
   ser1:")
print(combined_ser2_first)
```

```
Combining ser1 with
    ser2:
    0.598546
    0.172542
3
    0.738250
    0.682647
    0.013372
    0.107031
dtype: float64
Combining ser2 with
    ser1:
    0.598546
    0.504086
    0.738250
    0.421815
    0.970975
    0.107031
dtype: float64
```

1.12 Pivoting

• **Definition:** Pivoting is the process of rearranging or reorganizing data by converting columns into rows and vice versa.

• Operations:

- stack(): Rotates or pivots the data structure, converting columns to rows
- unstack(): Converts rows back to columns.
- Use Case: Useful for restructuring datasets for better readability and understanding.

Example 1: Stacking and Unstacking Code:

```
import pandas as pd
import numpy as np
# Create DataFrame
frame1 = pd.DataFrame(
   np.arange(9).reshape(3, 3),
   index=['white', 'black', 'red'],
   columns=['ball', 'pen', 'pencil']
)
# Stack the DataFrame
ser5 = frame1.stack()
print("Stacked DataFrame:")
print(ser5)
# Unstack the DataFrame
print("\nUnstacked DataFrame:")
print(ser5.unstack())
# Unstack with a different level
print("\nUnstacked with level 0:")
print(ser5.unstack(0))
```

```
Stacked DataFrame:
white ball
     pen
             2
     pencil
black ball
     pen
     pencil
     ball
             6
red
     pen
             7
             8
     pencil
dtype: int32
Unstacked DataFrame:
     ball pen pencil
white
       0 1
                 2
        3 4
black
                  5
red
        6
Unstacked with level 0:
     white black red
ball
        0 3 6
                       28
pen
        1
              4 7
        2
              5 8
pencil
```

Example 2: Pivoting from Long to Wide Format Code:

```
# Create a long DataFrame
longframe = pd.DataFrame({
   'color': ['white', 'white', 'white',
               'red', 'red', 'red',
               'black', 'black', 'black'],
   'item': ['ball', 'pen', 'mug',
           'ball', 'pen', 'mug',
           'ball', 'pen', 'mug'],
   'value': np.random.rand(9)
})
print("Long format DataFrame:")
print(longframe)
# Pivot to wide format
widetable = longframe.pivot(index='color', columns='item',
   values='value')
print("\nWide format DataFrame:")
print(widetable)
```

```
Long format DataFrame:
  color item value
0 white ball 0.587818
1 white pen 0.490479
2 white mug 0.912572
3
   red ball 0.423560
4
   red pen 0.446265
5
   red mug 0.711930
6 black ball 0.524044
7 black pen 0.812680
8 black mug 0.541409
Wide format DataFrame:
item
         ball
                  mug
color
black 0.524044 0.541409 0.812680
red 0.423560 0.711930 0.446265
white 0.587818 0.912572 0.490479
```

1.13 Removing Data

1.13.1 Removing Columns and Rows

- **Definition:** Columns and rows can be removed from a DataFrame using specific commands.
- Removing Columns: Use the del command with the column name to remove a specific column from the DataFrame.
- Removing Rows: Use the drop() function with the label of the corresponding index to remove a specific row.

Code:

```
import pandas as pd
import numpy as np
# Creating a DataFrame
frame1 = pd.DataFrame(
   np.arange(9).reshape(3, 3),
   index=['white', 'black', 'red'],
   columns=['ball', 'pen', 'pencil']
print("Initial DataFrame:")
print(frame1)
# Removing a column
del frame1['ball']
print("After removing column 'ball':")
print(frame1)
# Removing a row
frame1 = frame1.drop('white')
print("After removing row 'white':")
print(frame1)
```

```
Initial DataFrame:
      ball pen pencil
        0
             1
white
        3
             4
                    5
black
        6
             7
red
                    8
After removing column 'ball':
      pen pencil
white
        1
black
        4
                5
red
        7
                8
After removing row 'white':
      pen pencil
black
        4
                5
        7
                8
red
```

1.13.2 Removing Duplicates

- **Definition:** Identifying and removing duplicate rows in a DataFrame can clean the dataset and avoid redundancy.
- duplicated(): Returns a boolean Series indicating whether each row is a duplicate.
- drop_duplicates(): Removes duplicate rows and returns a DataFrame without duplicates.

Code:

```
Initial DataFrame:
  color
0 white
1 white
    red
3
    red
4 white
Duplicate rows detected:
   False
    True
  False
     True
     True
dtype: bool
DataFrame after removing duplicates:
  color
0 white
    red
```

1.14 Mapping and Replacing

1.14.1 Definition

Mapping involves creating associations between values using key-value pairs, enabling transformations or additions to data based on predefined mappings.

1.14.2 Replacing Values

• replace(): Replaces values in a DataFrame or Series based on a specified mapping.

Code:

```
import pandas as pd

# Create a DataFrame
frame = pd.DataFrame({
    'item': ['ball', 'mug', 'pen', 'pencil', 'ashtray'],
    'color': ['white', 'rosso', 'verde', 'black', 'yellow'],
    'price': [5.56, 4.20, 1.30, 0.56, 2.75]
})

# Define the mapping
newcolors = {'rosso': 'red', 'verde': 'green'}

# Replace incorrect color values
frame['color'] = frame['color'].replace(newcolors)
print(frame)
```

```
item color price

0 ball white 5.56

1 mug red 4.20

2 pen green 1.30

3 pencil black 0.56

4 ashtray yellow 2.75
```

1.14.3 Handling Missing Values

• replace(): Replace missing values (NaN) with specified values.

Code:

```
import numpy as np
import pandas as pd

# Create a Series with NaN values
ser = pd.Series([1, 3, np.nan, 4, 6, np.nan, 3])

# Replace NaN values with 0
ser_filled = ser.replace(np.nan, 0)
print(ser_filled)
```

```
0 1.0
1 3.0
2 0.0
3 4.0
4 6.0
5 0.0
6 3.0
dtype: float64
```

1.14.4 Adding New Columns via Mapping

• map(): Adds a new column to a DataFrame by mapping values from another column to predefined values in a dictionary.

Code:

```
# Define a mapping for item prices
prices = {
    'ball': 5.26, 'mug': 4.20, 'pen': 1.30,
    'pencil': 0.56, 'ashtray': 2.75
}

# Map prices to the 'price' column
frame['price'] = frame['item'].map(prices)
print(frame)
```

```
item color price

0 ball white 5.26

1 mug red 4.20

2 pen green 1.30

3 pencil black 0.56

4 ashtray yellow 2.75
```

1.15 Data Aggregation

- **Definition:** The final stage of data manipulation involving the transformation of data into aggregated values like sums, means, or other metrics.
- **GroupBy:** A versatile tool in pandas for data aggregation, split into three phases:
 - **Splitting:** Divide data into groups based on key columns.
 - **Applying:** Apply a function to each group.
 - Combining: Combine the results into a single structure.

1.15.1 Grouping to a Single Column of Data

Code:

```
import pandas as pd
# Create a DataFrame
frame = pd.DataFrame({
   'color': ['white', 'red', 'green', 'red', 'green'],
   'object': ['pen', 'pencil', 'pen', 'ashtray', 'pencil'],
   'price1': [5.56, 4.20, 1.30, 0.56, 2.75],
    'price2': [4.75, 4.12, 1.60, 0.75, 3.15]
})
# Group data by 'color' column
group = frame['price1'].groupby(frame['color'])
# Apply aggregation functions
mean_price = group.mean()
sum_price = group.sum()
print("Group Mean:")
print(mean_price)
print("\nGroup Sum:")
print(sum_price)
```

```
Group Mean:
color
green
        2.025
red
        2.380
white 5.560
Name: price1, dtype: float64
Group Sum:
color
        4.05
green
        4.76
red
white 5.56
Name: price1, dtype: float64
```

1.15.2 Hierarchical Grouping

Code:

```
Hierarchical Grouping Sum:
color object
green pencil
                1.30
               2.75
      pen
red
      ashtray 0.56
               4.20
      pencil
white pen
                5.56
Name: price1, dtype: float64
Group Mean of Multiple Columns:
      price1 price2
color
green 2.025 2.375
       2.380 2.435
white 5.560 4.750
```

1.16 Date Formatting and Parsing

1.16.1 pd.read_csv()

- The pd.read_csv() function is a core function in pandas for loading CSV files into a DataFrame.
- Provides multiple options for customizing the way data is read.

Code:

```
# Basic syntax for reading a CSV file
df = pd.read_csv('filename.csv')
```

1.16.2 Parsing Dates Using parse_dates

- Ensures that date columns are interpreted as datetime objects rather than strings.
- Enables operations like filtering, extracting specific time periods, and plotting time-series data.
- Use the parse_dates argument to specify columns to convert into datetime objects automatically.

Code:

```
# Parse the 'Date' column as datetime objects
df = pd.read_csv('shopping.csv', parse_dates=['Date'])
```

1.16.3 Handling Date Formats with dayfirst

- $\bullet~$ By default, pand as assumes the MM/DD/YYYY format (common in the U.S.).
- For DD/MM/YYYY format, use the dayfirst=True argument.

Code:

Note: For a date like "15/01/2023", dayfirst=True will interpret it as January 15, 2023.

1.16.4 Keeping the Original Date Column

Create a backup of the original Date column for future reference or operations.

Code:

```
# Create a backup of the original date column
df['Date_original'] = df['Date']
```

1.16.5 Converting the Date to a Monthly Period

- Use .dt.to_period('M') to convert datetime values into monthly periods.
- Enables grouping data by months or other time intervals.

Code:

```
# Convert dates to monthly periods
df['Month'] = df['Date_original'].dt.to_period('M')
```

- Example: If Date_original is 2023-01-15, the resulting value in Month will be 2023-01.
- Common use cases include grouping by months for analysis or visualization of trends over time.

1.17 Handling Missing Data

1.17.1 Overview of Missing Values

- In pandas, missing values are typically represented as NaN (Not a Number).
- Identifying Missing Data:
 - df.isnull().sum() Displays the count of missing values in each column
 - df.info() Provides a summary of the DataFrame, including counts of non-null entries.

1.17.2 Dropping Missing Values

• Drop rows containing missing data:

```
df.dropna(inplace=True)
```

• Drop columns containing missing data:

```
df.dropna(axis=1, inplace=True)
```

1.17.3 Filling Missing Values

- Filling with a Specific Value:
 - Replace missing values with predefined values:

```
df.fillna({'Column1': 0, 'Column2': 'Unknown'},
   inplace=True)
```

- Filling with Mean, Median, or Mode:
 - Replace missing numerical values with statistical measures:

```
df['Price'].fillna(df['Price'].mean(),
    inplace=True)
df['Quantity'].fillna(df['Quantity'].median(),
    inplace=True)
```

1.17.4 Example: Filling Missing Values in Multiple Columns Code:

```
# Filling missing values in specific columns
df.fillna({
    'Product': 'Unknown',
    'Quantity': 0,
    'Price': 0.0,
    'Total': 0.0
}, inplace=True)

# Printing the cleaned DataFrame
print(df.head())
```

1.18 Pandas: Comprehensive Exercise in Data Manipulation

1.18.1 Objective

The goal of this exercise is to integrate and apply all key Pandas data manipulation techniques, including:

- 1. Loading a dataset from a file (shopping.csv).
- 2. Handling missing values effectively.
- 3. Calculating a new column based on existing data.
- 4. Creating visualizations for data analysis, including a bar chart and a line chart.

1.18.2 Steps to Solution

Step 1: Load the Dataset

Key Points:

- Use pd.read_csv() to load data from a CSV file.
- Parse the Date column into a datetime object for proper date handling.
- Specify dayfirst=True for date formats where the day appears first (e.g., DD/MM/YYYY).

Step 2: Handle Missing Values

Key Points:

- Use fillna() to handle missing data.
- Fill string columns (e.g., Product) with a placeholder value like 'Unknown'.
- Fill numeric columns (e.g., Quantity, Price, Total) with 0 or 0.0.
- Use inplace=True to apply the changes directly to the DataFrame.

```
# Handle missing values
df.fillna({
    'Product': 'Unknown',
    'Quantity': 0,
    'Price': 0.0,
    'Total': 0.0
}, inplace=True)
```

Step 3: Calculate a New Column

Key Points:

- Create a new column called Total.
- The Total column is calculated as Quantity * Price.
- Perform the calculation directly on the DataFrame columns.

```
# Calculate a new column
df['Total'] = df['Quantity'] * df['Price']
```

Step 4: Visualize Data

Bar Chart for Product Sales: Key Points:

- Use groupby() to group data by the Product column.
- Aggregate the Quantity values for each product.
- Plot a bar chart to visualize the total sales per product.

Line Chart for Total Sales Over Time: Key Points:

- Convert the Date column to monthly periods using dt.to_period('M').
- Use groupby() to aggregate total sales by month.
- Plot a line chart to visualize the total sales over time.