Project Checklist: Stage 2 - Distributed Motor Intelligence (XIAO RP2040)

- Objective

Enable per-wheel distributed control using XIAO RP2040 microcontrollers. Each wheel node will handle encoder reading, PID mo

- Preparation & Hardware Inventory
[] XIAO RP2040 (x4) received and functional [] Headers soldered on each XIAO RP2040 [] Buck converters (5V or 3.3V output) for clean MCU power [] Dupont wires, breakout cables, connectors ready [] Logic-level tools: USB-UART adapter (for testing/debug) [] Confirm availability of PWM-capable pins on each board
- Wiring & Mounting Plan
[] Design per-wheel perfboard/bracket for XIAO + TB6612FNG + AS5600 [] Wire motor outputs to TB6612FNG and to motor terminals [] Connect AS5600 (SDA/SCL) to XIAO (3.3V logic) [] Connect XIAO to Arduino Nano via I2C (shared SDA/SCL) [] Common GND for all power and communication lines [] Mount each wheel module securely on chassis
- Firmware per XIAO Node
[] Initialize I2C communication to receive velocity commands [] Read encoder data (AS5600 over I2C) [] Convert encoder angle to velocity and distance [] Implement PID loop to maintain target speed [] Output PWM to TB6612FNG motor driver [] Send feedback (speed, ticks, error) to Arduino Nano [] Optional: Add basic safety timeout if command not received in X ms
- Firmware for Arduino Nano 33 IoT
[] Master I2C interface to communicate with all 4 wheel MCUs [] Send velocity commands periodically (based on joystick, teleop, or plan) [] Receive speed and tick feedback from each wheel [] Aggregate odometry into robot-centric position estimate [] Provide heartbeat signal to detect node failures (optional) [] Log odometry or forward it to Raspberry Pi (future integration)
- Communication Protocol (Initial)
[] Define I2C address for each wheel node (e.g., 0x10 - 0x13) [] Message structure: - Command to node: [VEL_L, VEL_R] as bytes or int16 - Response from node: [Speed, TickCount, Status] [] Include basic CRC/checksum (optional) [] Timing: Commands sent at ~20Hz, feedback received at ~20Hz
- Testing & Validation
[] Test each wheel node independently [] Validate encoder reading stability and accuracy [] Tune PID control loop for smooth response

[] Validate communication (correct addressing, timely response)
[] Compare odometry with manual measurements
[] Stress test all 4 wheels operating together
- Documentation
[] Document wiring diagram per wheel node
[] Save firmware with version tags (XIAO + Nano)
[] Record PID tuning parameters and logic
[] Save schematic and logic as PDF/image
[] Capture short video demos (optional for portfolio)
- Future Upgrades & Add-ons (Post Stage 2)
[] Upgrade to CAN bus communication (requires replacing Nano or adding CAN shield)
[] Add current sensing (e.g., INA219 or ACS712) per wheel
[] Implement wheel slip or stall detection logic
[] Add IMU sensor per wheel (shock, tilt, or ground detection)
[] Enable flash logging of encoder ticks and performance per wheel
[] Replace Nano 33 IoT with central CAN-capable controller (Teensy 4.1 or STM32)
[] Integrate with Raspberry Pi (Stage 3) for ROS2-based navigation, SLAM, vision, and teleoperation

- Milestone

Completion of Stage 2 means the robot is ready for autonomous behavior layering and high-level control in Stage 3.