

Convergent Evolution of Specialized Phosphatase Genes THE I Following Repeated Gene Duplication and Co-Option

John V. Nahas¹, Christine L. Iosue¹, Noor F. Shaik¹, Kathleen Selhorst¹, <mark>Bin Z. He*^{, 2}, Dennis D. Wykoff*^{, 1}</sup></mark> Biology Department, Villanova University, Villanova, PA; ² Biology Department, University of Iowa, Iowa City, IA * bin-he@uiowa.edu https://binhe-lab.org * dennis.wykoff@villanova.edu

1. Divergent yeast species similarly specialize their phosphatase genes for different starvation conditions.

2. Gene duplications in the PHO5 family in S. cerevisiae and S. pombe occurred post-speciation.

3. Gene duplications and losses in the PHO5 family were prevalent throughout the history of the Ascomycetes.

Fig. 3A The number of *PHO5* family homologs vary dramatically across the Ascomycetes (fungi).

Fig. 3B Numerous duplications (D) and losses (LOST) throughout the tree. Shown is a portion of the full tree Reconciled tree by Notung 2.9

Fig. 3C Another portion showing that the duplicates in *S. pombe* and closely related species occurred after they diverged from the rest of the group.

4. C. glabrata lost the entire PHO5 family and co-opted a phosphomutase family to replace its function

5. C. glabrata specialized the PMU genes' activities for the substrates.

TPP Thiamine pyrophosphate is released by dead cells. Only after hydrolysis can it be imported and used as a source for thiamine

1-NP 1-napthyl phosphate is a commonly used laboratory organic phosphate. ScPho5 is known to hydrolyze it (red colonies).

PNPP p-nitrophenyl phosphate, another organic phosphates known to be hydrozyled by ScPho5.

Caveat: it's unclear what are the natural substrates for the phosphatases.

Conclusion

- Evolution of the *PHO5* family is highly dynamic, with repeated gene duplications and losses throughout the history of the diverse group of Ascomycetes.
- Different species that have independently expanded the PHO5 families evolved convergently to specialize their phosphatase encoding genes for phosphate and thiamine starvations respectively at the transcriptional induction level.
- Evolution can use alternative "raw materials" when the presumably favored material is not available: C. glabrata co-opted a phosphomutase family, whose ancestor (Pmu1) doesn't have activities against organic phosphates and was not secreted. The co-opted CgPmu2 performs similar functions as ScPho5.

Reference

- Orkwis et al. "Novel Acid Phosphatase in Candida Glabrata Suggests Selective Pressure and Niche Specialization in the Phosphate Signal Transduction Pathway." *Genetics* 186, no. 3 (November 2010): 885–95.
- Nahas et al. "Dynamic changes in yeast phosphatase families allow for specialization in phosphate and thiamine starvation", G3, under review 2018