

Entrega final - Detección de Empleados sin Casco en Áreas de Trabajo

Presentado por:

Laura Carolina Mateus Agudelo Andrés Felipe Sainea Rojas Daniel Antonio Pérez Beltrán

Gerencia de Proyectos para Ciencia de Datos

SOMOS LA U. DEL EMPRENDIMIENTO.

Objetivo General

Desarrollar un modelo de reconocimiento de imágenes que identifique automáticamente empleados que no usan casco de seguridad en áreas de trabajo.

Objetivos Específicos

- •Recopilar y preprocesar un dataset de imágenes con empleados usando y sin usar casco.
- •Entrenar un modelo de machine learning basado en YOLO v11.
- •Evaluar la precisión y rendimiento del modelo en escenarios de prueba.

Metodología OSEMN aplicada

Obtener:

- Fuentes de datos, datasets públicos y generación (si es necesario)
- Volumen de datos: Almenos 5000 empleados utilizando y sin utilizar casco.
- Diversidad: Imágenes en diferentes ángulos, iluminación y co Limpiar:

- Remoción de imágenes borrosas e irrelevantes.
- · Etiquetado de imágenes con bounding boxes.
- Balanceo de clases para evitar sesgos en el modelo.

Explorar:

- Análisis exploratorio de datos (EDA):
 Distribución de imágenes por clases,
 variables condiciones de iluminación.
- · Visualización de datos.

Modelar:

- Utilizando YOLO v11 para detección de objetos.
- Entrenamiento del model: Uso de Dataset procesado, evaluación con métricas de precisión, recall y F1-score.

Intepretar:

- Evauación modelo: Confusion matrix, curva ROC, métricas de validación.
- · Reporte final.

Metodología (OSEMN)

¿Por qué OSEMN?

Porque ofrece un **flujo práctico y flexible** para proyectos de visión por computadora, abarcando desde la obtención y limpieza de datos hasta su interpretación final. Su carácter iterativo facilita la mejora continua de modelos como YOLO v11, adaptándose mejor que metodologías más generales.

- 📂 train/ # Imágenes y etiquetas para entrenam — images/ - labels/
- b val/ # Imágenes y etiquetas para validación – images/
- labels/

datasets/

- 📂 test/ # Imágenes y etiquetas para prueba
 - images/
- labels/

Naturaleza de los Datos

- Datos Crudos
- Datos procesados
- Datos Enriquecidos
- Datos de Validación

Pipeline de Datos

- Ingesta y transformación de datos:
- Google Images y datasets públicos <u>roboflow</u>.
- Eliminación de imágenes corruptas, redimensionamiento a 640x640 píxeles y corrección de etiquetas incorrectas.
- H Almacenamiento y disponibilidad:
- GitHub
- Google Drive
- Plan de monitoreo del pipeline
- · Script de validación de etiquetas de las imágenes.
- · Evaluación del modelo.

Entrenamiento del modelo

Se utilizo el modelo Yolo nano versión 11 para entrenar el

modelo.

model = YOLO("yolo11n.pt")

results = model.train(data="data.yaml", epochs=90, imgsz=640, plots=True, batch=64, lr0=0.0005, optimizer="AdamW", patience=15)

Resultados

Resultados

Análisis de resultados.

Estadísticos

Precision: 0.9429

Recall: 0.9256

F1 - Score: 0.9341

mAP: 0.6902

- Precisión: Un 94.29% de los casos clasificados como positivos realmente pertenecen a la clase correcta.
- Recall: (Sensibilidad) un 92.56% de las instancias reales positivas fueron correctamente identificadas.
- F1-score: F1-score de 93.41% indica un buen equilibrio entre precisión y recall.
- mAP (Mean Average Precision): mAP de ~68% indica que hay margen de mejora en la detección y localización de objetos.

Análisis de resultados.

Predicciones correctas

- 1,725 casos correctamente identificados como "Sin casco"
- 4,668 casos correctamente clasificados como "casco"

Errores (FN y FP)

FN:

- 28 con casco, se clasificaron como sin casco
- 439 personas con casco no se detectaron.

FP:

- 14 sin casco, se clasificaron como con casco
- 160 sin casco no se detectaron

Análisis de resultados.

- El área de bajo la curva es de 0.91, esto indica que el modelo tiene un excelente desempeño para la tarea de detección de casco.
- La curva se mantiene bien alejada de la diagonal lo que confirma una buena discrimación entre clases.
- En la parte izquierda de la curva (Tasa de Falsos Positivos baja), el modelo mantiene una alta TPR (~0.9), lo cual es positivo.

Conclusiones

El modelo propuesto demuestra su utilidad en la detección automatizada de empleados sin casco, lo que se traduce en un avance para la seguridad laboral y prevención de accidentes. Los resultados obtenidos, con una F1-score por encima del 90%, validan el enfoque adoptado. No obstante, es importante mencionar ciertas áreas de oportunidad:

- Ampliación del Dataset: Recoger más imágenes y situaciones distintas (entornos nocturnos, diferentes tipos de casco, industrias variadas) para robustecer la red.
- Optimización del Modelo: Evaluar la implementación de versiones más ligeras de YOLO o aplicar técnicas como pruning y cuantización, especialmente para la ejecución en dispositivos de bajo rendimiento.
- Refinamiento en el Postprocesamiento: Explorar algoritmos avanzados de filtrado para reducir falsos positivos, particularmente en entornos llenos de objetos similares al casco.

