

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
09/928,766	08/13/2001	Hagai Aronowitz	INTL-0608-US (P11749)	7588
7590	04/29/2005			EXAMINER WOZNIAK, JAMES S
Timothy N. Trop TROP, PRUNER & HU, P.C. 8554 KATY FWY, STE 100 HOUSTON, TX 77024-1805			ART UNIT 2655	PAPER NUMBER

DATE MAILED: 04/29/2005

Please find below and/or attached an Office communication concerning this application or proceeding.

Office Action Summary	Application No.	Applicant(s)	
	09/928,766	ARONOWITZ, HAGAI	
	Examiner	Art Unit	
	James S. Wozniak	2655	

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If the period for reply specified above is less than thirty (30) days, a reply within the statutory minimum of thirty (30) days will be considered timely.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

- 1) Responsive to communication(s) filed on 16 February 2005.
- 2a) This action is FINAL. 2b) This action is non-final.
- 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 1-30 is/are pending in the application.
- 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
- 5) Claim(s) _____ is/are allowed.
- 6) Claim(s) 1-22 and 27-30 is/are rejected.
- 7) Claim(s) 23-26 is/are objected to.
- 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
- 10) The drawing(s) filed on 06 August 2004 is/are: a) accepted or b) objected to by the Examiner.
 Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
 Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
- 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
 - a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

1) <input checked="" type="checkbox"/> Notice of References Cited (PTO-892)	4) <input type="checkbox"/> Interview Summary (PTO-413)
2) <input type="checkbox"/> Notice of Draftsperson's Patent Drawing Review (PTO-948)	Paper No(s)/Mail Date. _____.
3) <input type="checkbox"/> Information Disclosure Statement(s) (PTO-1449 or PTO/SB/08) Paper No(s)/Mail Date _____.	5) <input type="checkbox"/> Notice of Informal Patent Application (PTO-152)
	6) <input type="checkbox"/> Other: _____.

DETAILED ACTION

Response to Amendment

1. In response to the office action from 1/24/2005, the applicant has submitted a request for continued examination, filed 2/16/2005, amending Claims 1, 11, and 27-28, while arguing to traverse the art rejection based on the limitation regarding identifying speech and noise attributes for two speech data portions for use in speaker recognition (*Amendment, Page 10*). The applicant's arguments have been fully considered but are moot with respect to the new grounds of rejection in view of Tzirkel-Hancock (*U.S. Patent: 5,960,395*).

2. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless –

(b) the invention was patented or described in a printed publication in this or a foreign country or in public use or on sale in this country, more than one year prior to the date of application for patent in the United States.

3. **Claims 1, 11, and 27** are rejected under 35 U.S.C. 102(b) as being anticipated by Tzirkel-Hancock (*U.S. Patent: 5,960,395*).

With respect to **Claims 1, 11, and 27**, Tzirkel-Hancock discloses:

Receiving, for speaker recognition, target speech data (*Col. 16, Lines 11-35, and method use in speaker dependent recognition, Col. 1, Lines 15-25*);

Selecting a pair of distinct portions of said speech data (*frame pairs, Col. 16, Lines 36-50*);

Identifying, for each portion primarily signal attributes and primarily noise attributes (identifying speech and noise frames (*Col. 13, Lines 37-41*);

Deriving a distance measure for one signal portion by using the primarily signal attributes of both signal portions (*distance between two speech frame pairs, Col. 16, Lines 36-60*).

4. **Claims 6-8 and 16-18** are rejected under 35 U.S.C. 102(b) as being anticipated by Yamaguchi et al (*U.S. Patent: 6,026,359*).

With respect to **Claim 6**, Yamaguchi discloses:

Extracting from a noisy speech signal an utterance, said noisy speech signal including a first portion with first signal-and-noise attributes and a second portion with second signal-and-noise attributes, wherein said utterance extracted from the noisy speech signal based on a first model trained on training speech data (*Col. 12, Lines 26-31; and average speech and noise spectrums and the entire speech and noise spectrums, Col. 12, Lines 14-46*);

Selectively combining across the noisy speech signal the first and second signal-and-noise attributes of both the first and second portions to derive a compensation term for the first model (*Fig. 5, Elements 9-10*).

Deriving a second model by compensating the first model based on the compensation term (*Fig. 5, Element 10*); and

Correcting a mismatch indicative of a noise differential between the first portion and the second portion based on the second model (*Fig. 5, Element 11*).

With respect to **Claim 7**, Yamaguchi recites:

A speech model adaptation method, including using a parallel model combination mechanism to determine said mismatch as a function of the compensation term, said first model based on a plurality of recognition models including at least one speech model and at least one noise model (*updating (compensating) a noisy speech HMM, Fig. 3, Element 10, in response to a noise level difference between input and training speech, Element 9, and Col. 11, Lines 45-52. The noisy speech HMM is comprised of a combination of a clean speech HMM and a noise HMM, Element 5, a combination that is well known in the art as parallel model combination, Col. 1, Lines 53-55.*)

With respect to **Claim 8**, Yamaguchi discloses:

A speech model adaptation method, including training the at least one speech model and the at least one noise model with the training speech data (*speech and noise models comprised of training data, Col. 5, Lines 21-27*).

Claim 16 contains subject matter similar to Claim 6, and thus, is rejected for similar reasons.

Yamaguchi further discloses model adaptation system and method use with a computer readable medium (*Col. 16, Line 58- Col. 17, Line 6*).

Claim 17 contains subject matter similar to Claim 7, and thus, is rejected for similar reasons.

Claim 18 contains subject matter similar to Claim 8, and thus, is rejected for similar reasons.

Claim Rejections - 35 USC § 103

5. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.

6. **Claims 2-4, 12-14, and 28** are rejected under 35 U.S.C. 103(a) as being unpatentable over Tzirkel-Hancock in view of Porter (*U.S. Patent: 4,933,973*).

With respect to **Claim 2 and 12**, Tzirkel-Hancock teaches the method for distance comparison between speech frame pairs, as applied to Claim 1. Although Tzirkel-Hancock teaches the identification of speech and noise portions, a means of computing a relative noise measure for noise within a speech frame by distributing the speech signals over two speech signal frames is not taught by the prior art of record, however Porter teaches the averaging of a speech frame pair and the subsequent calculation of an average noise level (*Col. 10, Lines 30-51*).

Tzirkel-Hancock and Porter are analogous art because they are from a similar field of endeavor in speech recognition systems. Thus, it would have been obvious to a person of ordinary skill in the art, at the time of invention, to modify the teachings of Tzirkel-Hancock with the averaging of a speech frame pair and the subsequent calculation of an average noise level to provide necessary pre-processing for subsequent noise compensation to implement more accurate speech recognition in the presence of noise (Porter, Col. 16, Lines 24-29).

With respect to **Claims 3, 13, and 28**, Porter additionally recites:

Combining the signal attributes of the at least two signal portions into a signal content and combining the signal and noise attributes of the at least two signal portions into a signal and noise content (*relative energy and speech and noise level tracker, Col. 10, Line 30- Col. 11, Line 4; and Fig. 2, Elements 25-26*).

Calculating a compensation ratio of the signal and noise content to the signal content in order to derive the relative noise measure (signal to noise ratio, Col. 8, Lines 11-18); and

Adjusting a mismatch indicative of a noise differential between the noise components present in the training speech data and the noise attributes present in the at least two signal portions based on the relative noise measure (*modifying training speech data, Col. 8, Lines 19-22*).

With respect to **Claims 4 and 14**, Porter further recites:

Deriving from a training template, a signal profile based on a model trained on the training speech data to determine the mismatch between the noise components and the noise attributes (training template, Col. 7, Lines 59-68).

7. **Claims 5 and 15** are rejected under 35 U.S.C. 103(a) as being unpatentable over Tzirkel-Hancock in view of Porter, and further in view of Yamaguchi et al (*U.S. Patent: 6,026,359*)

With respect to **Claims 5 and 15**, Tzirkel Hancock in view of Porter teaches the method and system for speech model compensation according to a noise level, as applied to Claim 3. Tzirkel-Hancock in view of Porter does not specifically suggest the use of parallel model combination, however Yamaguchi discloses such a method (*(noisy speech HMM is comprised of*

a combination of a clean speech HMM and a noise HMM, Element 5, a combination that is well known in the art as parallel model combination, Col. 1, Lines 53-55).

Tzirkel-Hancock, Porter, and Yamaguchi are analogous art because they are from a similar field of endeavor in speech recognition systems. Thus, it would have been obvious to a person of ordinary skill in the art, at the time of invention, to modify the teachings of Tzirkel-Hancock in view of Porter with the use of parallel model combination as taught by Yamaguchi in order to provide an efficient means of quickly adapting recognition models to changing background noise to improve speech recognition accuracy (*Yamaguchi, Col. 2, Lines 20-28*).

8. **Claims 9, 10, 19, 20, and 22** are rejected under 35 U.S.C. 103(a) as being unpatentable over Yamaguchi et al.

With respect to **Claim 9**, Yamaguchi teaches the speech model adaptation method featuring means to determine and compensate for a mismatch between noise levels of a speech input and training HMM. Yamaguchi does not specifically suggest generating absolute scores for speech and noise attributes of a noisy speech signal, however, the examiner takes official notice that it is well known in the art to calculate the absolute value (actual amount of difference between noise and speech, whether speech exceeds noise or vice versa) of speech and noise attributes in order to determine an absolute difference amount between speech and noise for comparison to a training HMM, to determine a compensation amount to account for the noise level difference between a training HMM and input speech. Thus, in order to determine an absolute amount of noise differential to be compared with an initial noise model to further calculate a mismatch compensation, it would have been obvious to one of ordinary skill in the art

at the time of invention to calculate absolute scores to describe speech and noise portions of a speech signal.

With respect to **Claim 10**, Yamaguchi further recites:

A speech model adaptation method of Claim [9], wherein combining further includes:

Normalizing the absolute scores to generate normalized absolute scores for the first and second signal-and-noise attributes of both the first and second portions of the noisy speech signal (*calculating the average spectrum SNR to determine an error amount (compensation), Col. 12, Lines 32-46*); and

Calculating the compensation term from the normalized absolute scores (*calculating the average spectrum SNR to determine an error amount (compensation), Col. 12, Lines 32-46*).

It would have been obvious to one of ordinary skill in the art, at the time of invention, that an SNR, a well-known factor in the calculation of noise compensation, of input speech would function as the normalized value since it represents signal level with respect to the noise level of a noisy speech signal.

Claim 19 contains subject matter similar to Claim 9, and thus, is rejected for similar reasons.

Claim 20 contains subject matter similar to Claim 10, and thus, is rejected for similar reasons.

With respect to **Claim 22**, Yamaguchi discloses:

Using a training template including a plurality of frames each frame including one or more channels each channel including first segments with lower signal-to-noise portions and second segments with higher signal-to-noise portions; and compensate the model for the

mismatch in the utterance and the training template based on the compensation term by counting over all the frames of the plurality of frames both the first segments with lower signal-to-noise portions and the second segments with higher signal-to-noise portions in the utterance of the noisy speech signal (*calculating the average spectrum SNR to determine an error amount (compensation), Col. 12, Lines 32-46*).

It would have been obvious to one of ordinary skill in the art, at the time of invention, that the calculation of an average spectrum SNR would function as counting the number of frames with lower and higher SNRs since both determine the overall difference between training HMMs and input speech.

9. **Claim 21** is rejected under 35 U.S.C. 103(a) as being unpatentable over Yamaguchi in view of Kanevsky et al (*U.S. Patent: 5,897,616*).

With respect to **Claim 21**, Yamaguchi teaches the noise model adaptation device as applied to Claim 20. Yamaguchi does not teach model adaptation for use in a speaker verification and recognition application, however Kanevsky discloses:

The model adaptation device, further storing instructions that enable the processor-based system to:

Compare the normalized absolute scores with a threshold associated with a speech profile to verify a speaker of the utterance against the speech profile (*compare a speaker score to a threshold to implement speaker verification, Abstract*); and

Compare the normalized absolute scores with a database including a plurality of speech profiles associated with one or more registered speakers to identify the speaker of the utterance

against the database (*identification of a speaker through information contained in a user database, Abstract, and Fig. 2, Element 18*).

Yamaguchi and Kanevsky are analogous art because they are from a similar field of endeavor in speech recognition. Thus, it would have been obvious to a person of ordinary skill in the art, at the time of invention, to combine the means of speaker verification and recognition through threshold comparison with user data contained in a database as taught by Kanevsky with the noise model adaptation device as taught by Yamaguchi in order to increase the speaker recognition accuracy in a variable noisy environment that causes lower recognition accuracy (*Yamaguchi, Col. 1, Lines 48-52*). Therefore, it would have been obvious to combine Kanevsky with Yamaguchi for the benefit of obtaining higher recognition accuracy in a noisy speech environment through model adaptation, to obtain the invention as specified in Claim 21.

10. **Claims 29-30** is rejected under 35 U.S.C. 103(a) as being unpatentable over Yamaguchi in view of Eberman et al (*U.S. Patent: 5,924,065*).

With respect to **Claim 29**, Yamaguchi teaches the model adaptation method utilizing a storage medium as applied to Claim 6. Yamaguchi does not teach method use in a wireless device or in a speaker recognition system, however Eberman teaches such an embodiment (*Col. 4, Lines 26-30; Col. 8, Lines 55-65*).

Yamaguchi and Eberman are analogous art because they are from a similar field of endeavor in speech model adaptation. Thus, it would have been obvious to a person of ordinary skill in the art, at the time of invention, to modify the teachings of Yamaguchi with the use of noise compensation in a wireless device or in a speaker adaptation system in order to implement

the model compensation method taught by Yamaguchi in order to provide a well-known use for the method taught by Yamaguchi to further determine the identity of an unknown speaker (*Eberman, Col. 4, Liens 24-30*).

With respect to **Claim 30**, Eberman teaches the cellular communication network as applied to Claim 29.

Allowable Subject Matter

11. **Claims 23-26** are objected to as being dependent upon a rejected base claim, but would be allowable if rewritten in independent form including all of the limitations of the base claim and the intervening claims.

12. The following is a statement of reasons for the indication of allowable subject matter: the prior art does not teach:

- With respect to **Claim 23**, a noise model mismatch compensation, in a device utilizing parallel model combination, derived from the ratio of the number of frames containing a high SNR and a low SNR over all of the frames.
- **Claims 24-26** contain allowable subject matter because they further limit their parent claims.

Conclusion

13. The prior art made of record and not relied upon is considered pertinent to applicant's disclosure:

Ariyoshi (*U.S. Patent: 5,212,764*)- teaches a method of noise reduction that extracts noise and speech data for a number of data channels.

Gong (*U.S. Patent: 6,418,411*)- teaches a speech recognition system utilizing speaker adaptation and noise compensation.

McArthur et al (*U.S. Patent: 6,473,733*)- teaches a method for two-channel noise suppression.

14. Any inquiry concerning this communication or earlier communications from the examiner should be directed to James S. Wozniak whose telephone number is (571) 272-7632 and email is James.Wozniak@uspto.gov. The examiner can normally be reached on Mondays-Fridays, 8:30-4:30.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Doris To can be reached at (703) 305-4827. The fax/phone number for the Technology Center 2600 where this application is assigned is (703) 872-9306.

Any inquiry of a general nature or relating to the status of this application or proceeding should be directed to the technology center receptionist whose telephone number is (703) 306-0377.

James S. Wozniak
4/5/2005

DAVID L. OMETZ
PRIMARY EXAMINER