Estructura de Computadores

- 7.3. Considerem un computador amb processador MIPS com l'estudiat a classe, que té una memòria cache de dades amb les següents característiques:
 - associativa per conjunts de 4 vies (és a dir, de 4 blocs per conjunt)
 - · 64 conjunts
 - · 32 bytes per bloc
 - algorisme de reemplaçament LRU

Considerem també que té un TLB de dades amb les següents característiques:

- · completament associatiu
- 32 entrades
- mida de pàgina: 8 KB
- · algorisme de reemplaçament LRU

Sobre aquest sistema s'executen 2 versions diferents d'una mateixa aplicació:

Suposant que les variables i, j, i suma s'emmagatzemen en registres, indica quantes fallades hi ha a la cache i al TLB, per a cada versió.

Problema - Parte 1

Disposem d'un processador amb sistema de memòria virtual paginada que té les següents característiques:

- Pàgines de 256 bytes
- Mida total de la taula de pagines (TP) = 256 bytes
- · Cada entrada de la TP consta dels bits P i D i del PPN.
- Espai de memòria física (MF) = 16 Kbytes
- Reemplaçament de pàgines físiques: LRU
- TLB totalment associatiu de 4 entrades

a) Omple les següents dades:

Nombre de pàgines físiques =	Nombre de bits d'una entrada de la TP =	
Nombre de pàgines lògiques=	Nombre de bits de l'adreça lògica =	

b) Considerem els següents continguts inicials del TLB i d'una part de la taula de pàgines (TP). Suposarem que la resta d'entrades de la TP estan buides (P=0 i D=0) i que les pàgines físiques que no apareixen a la taula (PPN = 5, 6, 7, etc.) estan lliures. Per a noves pàgines a carregar a MF, s'assignaran números de pàgina física (PPN) correlatius, a partir del número de pàgina física lliure major (és a dir, PPN = 5, 6, 7, etc.). Per al funcionament de l'algorisme LRU del TLB suposarem que les entrades han estat accedides en l'ordre que apareixen a la taula.

	TP				
VPN	P	D	PPN		
0	1	0	4		
1	1	0	3		
2	1	0	2		
3	1	1	1		
4 5	1	0	0		
5	0	0	-		
6	0	0	-		
	0	0	-		

	TLB					
	PPN	VPN	D	V		
(entrada més ar	3	1	0	1		
	2	2	0	1		
	1	3	1	1		
	0	4	0	1		

intiga)

La següent taula mostra una sequencia de referencies a memòria (E: escriptura/ L: lectura). Emplena la taula fent servir la informació del TLB i la taula de pàgines.

adr. lògica (hex)		VPN	TLB		fallada	es llegirà	s'escriurà	PPN
			fallada TLB? (SI/NO)	pàg. reemplaçada (VPN)	de pàg? (SI/NO)	del disc? (SI/NO)	al disc? (SI/NO)	resultant de la traducció
L	0x04F2							
Е	0x00F1							
L	0x0132							
L	0x0541							
Е	0x065A							

 Si l'accés a dades d'una instrucció produeix un encert al TLB, però el bit V val 0, llavors la instrucció causarà una excepció de fallada de pàgina.

- Si l'accés a dades d'una instrucció produeix un encert al TLB, però el bit V val 0, llavors la instrucció causarà una excepció de fallada de pàgina.
- 2. Una mateixa instrucció pot causar durant la seva execució 2 fallades de pàgina.

- Si l'accés a dades d'una instrucció produeix un encert al TLB, però el bit V val 0, llavors la instrucció causarà una excepció de fallada de pàgina.
- 2. Una mateixa instrucció pot causar durant la seva execució 2 fallades de pàgina.
- 3. Una fallada al TLB no implica que hi hagi una fallada de pàgina.

- Si l'accés a dades d'una instrucció produeix un encert al TLB, però el bit V val 0, llavors la instrucció causarà una excepció de fallada de pàgina.
- 2. Una mateixa instrucció pot causar durant la seva execució 2 fallades de pàgina.
- 3. Una fallada al TLB no implica que hi hagi una fallada de pàgina.
- 4. En memòria virtual paginada, sempre que reemplacem de la memòria física una pàgina cal escriure-la en disc.