Niveau 2ndeC

Discipline:

PHYSIQUE-CHIMIE

CÔTE D'IVOIRE - ÉCOLE NUMÉRIQUE

THÈME 1: MÉCANIQUE

TITRE DE LA LEÇON: LE MOUVEMENT

I- <u>SITUATION D'APPRENTISSAGE</u>

De retour des grandes vacances, Mory, élève en classe de seconde C, voyage à bord d'un mini car avec son grand frère. Les deux sont assis juste à côté du conducteur. Mory constate que l'aiguille d'un des compteurs du tableau de bord du véhicule se déplace quand le véhicule est en mouvement et s'arrête quand il stationne. Il interroge son grand frère. Celui-ci lui explique que cette aiguille indique la vitesse instantanée du véhicule.

Arrivé à l'école, Mory décide avec ses camarades, sous la conduite de leur professeur, de définir la vitesse moyenne et la vitesse instantanée en vue de déterminer la nature d'un mouvement.

II- CONTENU DE LA LEÇON

1. Caractère relatif du mouvement

On considère la figure suivante (l'observateur est immobile) :

- Par rapport au véhicule, le conducteur est au repos.
- Par rapport à l'observateur, le conducteur est en mouvement.

Le mouvement est donc relatif à l'objet de référence choisi.

2. Référentiel

Le référentiel est un solide indéformable par rapport auquel l'on décrit le mouvement d'un mobile.

Exemples de référentiels :

- Le référentiel de Copernic (ou référentiel héliocentrique) : utilisé pour l'étude des mouvements des astres du système solaire.
- Le référentiel géocentrique : utilisé pour l'étude des mouvements des satellites de la terre.
- Le référentiel terrestre : utilisé pour l'étude des mouvements des objets sur la terre.

3. Repérage d'un point mobile

3.1. Point mobile

Tout objet en mouvement est dit objet mobile et peut, en fonction de ses dimensions, être assimilé à un point appelé point mobile.

3.2 Repères

3.2.1 Repère d'espace

C'est un repère lié au référentiel et qui permet de définir la position du mobile par ses coordonnées. Il est en général orthonormé.

3.2.2 Repère de temps

Ce repère permet d'associer à chaque position une date. Il est défini par :

- un instantinitial, choisi arbitrairement, comme origine des dates (t = 0),
- une unité de date. L'unité légale est la seconde (s).

3.3 Vecteur-position d'un point mobile

Soit M la position d'un point mobile à une date t.

Le vecteur $\overrightarrow{\textit{oM}}$ est appelé vecteur-position du point mobile à la date t.

On a :
$$\overrightarrow{OM} = x\vec{i} + y\vec{j} + z\vec{k}$$

Soit $\overrightarrow{OM_1}$ et $\overrightarrow{OM_2}$ les vecteur-positions d'un point mobile respectivement aux dates t_1 et t_2 . On appelle vecteur déplacement du mobile le vecteur : $\overrightarrow{M_1M_2} = \overrightarrow{OM_2} + \overrightarrow{OM_1}$

Activité d'application 1

Un point mobile est repéré par ses coordonnées dans le repère d'espace représenté ci-dessous.

- 1- Donne les coordonnées du point mobile aux différentes dates.
- 2- Exprime, à chaque instant son vecteur-position.

Solution

- 1- Coordonnées du point mobile aux différentes dates.
 - À la date $t_1 : x = 1$ et y = 4.

- À la date $t_2 : x = 5$ et y = 3.

2- Vecteur-position du point mobile à chaque instant.

- À la date $t_1 : \overrightarrow{OM} = \vec{\iota} + 4\vec{\jmath}$.

- À la date t_2 : $\overrightarrow{OM} = 5\overrightarrow{\iota} + 3\overrightarrow{\jmath}$

4 Trajectoire d'un point mobile

La trajectoire est l'ensemble des positions successivement prises par le point mobile au cours de son mouvement. Elle dépend du référentiel.

La trajectoire d'un mobile peut être :

- rectiligne (une droite)
- circulaire (un cercle)
- curviligne (une courbe quelconque).

5 Vitesse d'un point mobile

5.1. Vitesse moyenne

La vitesse moyenne est le quotient de la distance parcourue par la durée mise pour la parcourir.

$$V_m = \frac{d}{\Delta t}$$

$$\begin{vmatrix}
d(m) \\
\Delta t(s) \\
V_m(m. s^{-1})
\end{vmatrix}$$

La vitesse s'exprime en mètre par seconde noté $m. s^{-1}$ ou m/s et $1 m. s^{-1} = 3,6 km. h^{-1}$.

Activité d'application 2

Un automobiliste effectue le trajet Bouaflé-Yamoussoukro, long de d=60 km en $\Delta t=55$ min. Calcule sa vitesse moyenne V_m .

Solution

$$V_m = \frac{d}{\Delta t} = \frac{60000}{55 \times 60} = 18,18 \text{ m. s}^{-1}$$

5.2. Vitesse instantanée

La vitesse instantanée est la vitesse à un instant précis (t). On la note v(t). Elle se lit sur les compteurs des véhicules.

On évalue (on calcule) cette vitesse comme étant la vitesse moyenne entre deux instants très proches encadrant l'instant (t_i) :

$$v(t_i) = \frac{M_{i-1}M_{i+1}}{t_{i+1} - t_{i-1}}$$

Ainsi on a :
$$v_1 = \frac{M_0 M_2}{t_2 - t_0}$$
et $v_4 = \frac{M_3 M_5}{t_5 - t_3}$

5.3. Vecteur-vitesse

À chaque vitesse v(t), on associe un vecteur appelé **vecteur vitesse** $\overrightarrow{v}(t)$ dont les caractéristiques sont :

- Point d'application : la position M du mobile
- Direction : la tangente à la trajectoire au point M considéré ;
- Sens : celui du mouvement.
- la valeur : $v(t) = \|\overrightarrow{v}(t)\|$

Remarque

Sur un enregistrement, les différentes positions du point mobile sont indiquées à intervalles de temps réguliers égaux à τ . On obtient alors :

Vecteur-vitesse :
$$\overrightarrow{v}(t_i) = \frac{\overrightarrow{M_{i-1}M_{i+1}}}{2\tau}$$

Valeur du vecteur-vitesse :
$$v(t_i) = \frac{M_{i-1}M_{i+1}}{2\tau}$$

Activité d'application 3

Le document ci-dessous indique les différentes positions d'un point mobile Pà intervalles de temps réguliers égaux à τ = 20 ms.

P₀.

- 1- Numérote les différentes positions P_i du mobile à partir de P_0 .
- 2- Détermine les valeurs des vecteurs-vitesses du mobile aux dates : t1 et t3.
- 3- Représente ces vecteurs-vitesses à l'échelle : 1cm pour 0,5 m/s

Solution

1. Différentes positions

2. Valeurs des vecteurs-vitesses du mobile aux dates : t1 et t3

$$v(t_1) = \frac{M_0 M_2}{2\tau} = \frac{3.8 \cdot 10^{-2}}{2 \times 20 \cdot 10^{-3}} = 0.95 \, m. \, s^{-1}$$
$$v(t_3) = \frac{M_1 M_4}{2\tau} = \frac{3.8 \cdot 10^{-2}}{2 \times 20 \cdot 10^{-3}} = 0.95 \, m. \, s^{-1}$$

3. Représentation

$$1~cm \rightarrow 0.5~m.~s^{-1}$$

$$1.9 \ cm \rightarrow v(t_1) = v(t_3) = 0.95 \ m. \ s^{-1}$$

Pour les représentations, voir schéma ci-dessus.

6. Quelques types de mouvement

6.1.Dispositif expérimental

Les documents sont obtenus sur une table à coussin d'air.

Les différentes positions de la trajectoire du mobile A sont relevées à intervalles réguliers de temps = 30 ms.

6.2. Étude du document n°1

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11

6.2.1. Nature du mouvement à partir de la trajectoire

Les points sont alignés et équidistants : le mouvement du mobile A est rectiligne et uniforme.

6.2.2. Nature du mouvement à partir du vecteur-vitesse

➤ Calculons les vitesses instantanées aux dates t2, t6 et t10.

$$v_2 = \frac{A_1 A_3}{t_3 - t_1} = \frac{A_1 A_3}{2\tau} = \frac{2,75. \, 10^{-2}}{60. \, 10^{-3}} = 0,46 \, ms^{-1}$$

$$v_6 = \frac{A_5 A_7}{t_7 - t_5} = \frac{A_5 A_7}{2\tau} = \frac{2,75. \, 10^{-2}}{60. \, 10^{-3}} = 0,46 \, ms^{-1}$$

$$v_{10} = \frac{A_9 A_{11}}{t_{11} - t_9} = \frac{A_9 A_{11}}{2\tau} = \frac{2,75. \, 10^{-2}}{60. \, 10^{-3}} = 0,46 \, ms^{-1}$$

 $\underline{\text{Remarque}}: v_2 = v_6 = v_{10}$

La vitesse instantanée est constante dans le temps.

Représentons les vecteurs-vitesses à l'échelle : 1 cm pour 0,25 m.s⁻¹

On constate que : $\overrightarrow{v_2} = \overrightarrow{v_6} = \overrightarrow{v_{10}}$

Au cours d'un mouvement rectiligne et uniforme, le vecteur-vitesse est constant ;il conserve sa direction, son sens et sa valeur.

6.3. Étude du document n° 6 (voir document en annexe)

$$B_1$$
 B_2 B_3 B_4 B_5 B_6 B_7

6.3.1. Nature du mouvement à partir de la trajectoire

Les points sont alignés et la distance entre deux points varie (augmente) progressivement : le mouvement du mobile B estrectiligne etvarié.

6.3.2. Nature du mouvement à partir du vecteur-vitesse

Calculons les vitesses instantanées aux dates t₂, t₄et t₆.

$$v_{2} = \frac{B_{1}B_{3}}{t_{3} - t_{1}} = \frac{B_{1}B_{3}}{2\tau} = \frac{3.10^{-2}}{60.10^{-3}} = 0,5 \text{ ms}^{-1}$$

$$v_{4} = \frac{B_{3}B_{5}}{t_{5} - t_{3}} = \frac{B_{3}B_{5}}{2\tau} = \frac{5.10^{-2}}{60.10^{-3}} = 0,83 \text{ ms}^{-1}$$

$$v_{6} = \frac{B_{5}B_{7}}{t_{7} - t_{5}} = \frac{B_{5}B_{7}}{2\tau} = \frac{7.10^{-2}}{60.10^{-3}} = 1,16 \text{ ms}^{-1}$$

Remarque:

$$\sqrt{v_2} < v_4 < v_6$$

La vitesse instantanée n'est pas constante : On dit que le mouvement est varié (accéléré dans le cas présent).

$$\checkmark$$
 $v_4 - v_2 = v_6 - v_4 = 0.33 \, m. \, s^{-1}$

La vitesse augmente uniformément. Le mouvement estrectiligne et uniformément varié.

➤ Représentons les vecteurs-vitesses à l'échelle : 1 cm pour 0,5 m.s⁻¹

Au cours d'un mouvement rectiligne uniformément varié, le vecteur-vitesse n'est pas constant. Il conserve au cours du temps, sa direction et son sens mais sa valeur varie.

6.4. Étude du document n° 4

6.4.1. Nature du mouvement à partir de la trajectoire

Les points forment un cercle et sont équidistants : le mouvement du mobile M est circulaire et uniforme.

6.4.2. Nature du mouvement à partir du vecteur-vitesse

Calculons les vitesses instantanées aux dates t₁, t₃, t₅ett₇.

$$v_{1} = \frac{M_{0}M_{2}}{t_{2} - t_{0}} = \frac{M_{0}M_{2}}{2\tau} = \frac{2,65.10^{-2}}{60.10^{-3}} = 0,44ms^{-1}$$

$$v_{3} = \frac{M_{2}M_{4}}{t_{4} - t_{2}} = \frac{M_{2}M_{4}}{2\tau} = \frac{2,65.10^{-2}}{60.10^{-3}} = 0,44ms^{-1}$$

$$v_{5} = \frac{M_{6}M_{7}}{t_{7} - t_{6}} = \frac{M_{6}M_{7}}{2\tau} = \frac{2,65.10^{-2}}{60.10^{-3}} = 0,44ms^{-1}$$

$$v_{7} = \frac{M_{6}M_{8}}{t_{8} - t_{6}} = \frac{M_{6}M_{8}}{2\tau} = \frac{2,65.10^{-2}}{60.10^{-3}} = 0,44ms^{-1}$$

Remarque:

 $v_1 = v_3 = v_5 = v_7$: La vitesse instantanée est constante.

➤ Représentons les vecteurs-vitesses à l'échelle : 1 cm pour 0,2 m.s⁻¹

Au cours d'un mouvement circulaire et uniforme, le vecteur-vitesse n'est pas constant ; sa direction change.

Activité d'application 2

Associe le type de mouvement aux caractéristiques de son vecteur-vitesse en mettant une croix dans la case qui convient.

caractéristique de la vitesse Mouvement	Direction du vecteur-vitesse \overrightarrow{v} constante	Norme du vecteur-vitesse \overrightarrow{v} constante	Vecteur- vitesse \overrightarrow{v} constant
Rectiligne uniforme			
Rectiligne varié			
Circulaire uniforme			

Solution

Caractéristiques de la vitesse Mouvement	Direction du vecteur-vitesse \overrightarrow{v} constante	Norme du vecteur-vitesse \overrightarrow{v} constante	Vecteur– vitesse \overrightarrow{v} constant
Rectiligne uniforme	X	X	X
Rectiligne et varié	X		
Circulaire uniforme		X	

SITUATION D'EVALUATION

Au cours d'une séance de TP, le professeur de Physique Chimie de la classe de 2nde A demande aux élèves de caractériser le mouvement d'un palet autoporteur. L'enregistrement ci-dessous fourni par le professeurest celui du mouvement d'un mobile autoporteur S avec un intervalle de temps $\tau = 60 \, ms$ entre chaque position.

.

Tu es sollicité par ton groupe pour conduire les travaux.

- 1. Nomme les points A₀, A₁, A₂, ... (A₀ étant le premier point de la trajectoire à partir de la gauche)
- 2. Donne la trajectoire du mobile. Justifie ta réponse.
- 3. Calcule les vitesses instantanées du mobile aux positions A₁, A₃, A₇.

4.

- 4.1. Représente le vecteur-vitesse du mobile aux positions A_1 , A_3 , A_7 à l'échelle 1 $cm \leftrightarrow 0.28 ms^{-1}$
- 4.2. Déduis des questions précédentes la nature du mouvement du mobile.

Solution

1.

$$A_0$$
 A_1 A_2 A_3 A_4 A_5 A_6 A_7 A_8 A_9

2. Trajectoire du mobile

Les points A₀, A₁, A₂, ...étant alignés, la trajectoire du mobile est rectiligne.

3. Calcul des vitesses instantanées

$$v_{1} = \frac{A_{0}A_{2}}{t_{2} - t_{0}} = \frac{A_{0}A_{2}}{2\tau} = \frac{3,4.10^{-2}}{60.10^{-3}} = 0,56 \, ms^{-1}$$

$$v_{3} = \frac{A_{2}A_{4}}{t_{4} - t_{2}} = \frac{A_{2}A_{4}}{2\tau} = \frac{3,4.10^{-2}}{60.10^{-3}} = 0,56 \, ms^{-1}$$

$$v_{7} = \frac{A_{6}A_{8}}{t_{8} - t_{6}} = \frac{A_{6}A_{8}}{2\tau} = \frac{3,4.10^{-2}}{60.10^{-3}} = 0,56 \, ms^{-1}$$

4.

4.1) Représentation

$$\begin{cases}
1 \ cm &\longleftrightarrow 0.28ms^{-1} \\
\frac{1\times0.56}{0.28} = 2 \ cm &\longleftrightarrow 0.56 \ ms^{-1}
\end{cases}$$
(voir figure ci-dessus)

4.2) Nature du mouvement

Le mouvement est rectiligne et uniforme (vecteur-vitesse instantanée constante)

IV. EXERCICES

Exercice 1

Complète le texte ci-dessous avec les mots suivants :

curviligne-rectiligne-référentiel-circulaire.

Solution

La trajectoire d'un point mobile est l'ensemble des positions qu'il occupe successivement lors de son mouvement. Sa nature dépend du **référentiel** choisi. Elle est dite **rectiligne** lorsque le mobile se déplace sur une droite. Si la trajectoire est un cercle, le mouvement est **circulaire.** Une trajectoire non rectiligne est dite **curviligne**.

Exercice 2

Soient les affirmations suivantes :

- 1) Si la valeur du vecteur-vitesse est constante, le mouvement est rectiligne et uniforme.
- 2) Si un mobile est animé d'un mouvement circulaire et uniforme, le vecteur-vitesse est constant.
- 3) Si, au cours d'un mouvement, le vecteur-vitesse conserve la même direction, le mouvement est rectiligne.
- 4) Pour déterminer une vitesse instantanée, on calcule en fait une vitesse moyenne sur un petit intervalle de temps.

Recopie les numéros de ces affirmations, suivis de la lettre V si elle est vraie ou la lettre F si elle est fausse.

Solution

1) F

2) F

3) V

V

Exercice 3

Bouabré glisse sur le toboggan de son école maternelle. Aux points A, B, C et Dles valeurs de sa vitesse sont respectivement : $V_A = 0.25 \text{ m/s}$, $V_B = 0.75 \text{ m/s}$, $V_C = 1.25 \text{ m/s}$ et $V_D = 1.50 \text{ m/s}$.

Représenteen chacun des points A, B, C et D, le vecteur-vitesse de Bouabré.

Échelle: 1 cm pour 0,25 m/s

Solution

Representations (voir figure ci-contre): $1 \text{ cm} \leftrightarrow 0.25 \text{ m/s}$

Exercice 4

Une personne part de Treichville pour Bouaké distant de 340 km par le train. Le départ du train s'effectue à 8 h 45 min. Le train arrive à Dimbokro à 11h 50 min où il s'arrête pendant 20 min. Le train poursuit ensuite le parcours sans arrêt et arrive à Bouaké 2h 35 min après.

Il te sollicite pour déterminer la vitesse moyenne du train.

- 1) Définis la vitesse moyenne d'un mobile.
- 2) Détermine la durée du parcours Treichville-Bouaké.
- 3) Déduis, en m.s⁻¹, la vitesse moyenne du train sur ce parcours.

Solution

- 1. La vitesse moyenne est le quotient de la distance parcourue par la durée mise pour la parcourir.
- 2. Durée du parcours :

$$\Delta t = (11 \, h \, 50 min - 8 \, h \, 45 min) + 20 min + 2h \, 35 min = 6h = 21600 s$$

3. Vitesse moyenne du train :

$$V_m = \frac{d}{\Delta t} = \frac{340000}{21600} = 15.7 \text{m. s}^{-1}$$

Exercice 5

Au cours d'une séance de TP, ton groupe se propose de caractériser le mouvement d'un solide autoporteur sur une table à coussin d'air.

L'enregistrement du mouvement du solide autoporteur, supposé ponctuel, a donné la figure cidessous à l'échelle 1. La durée de marquage de deux points successifs est $\tau = 10$ ms.

Tu es invité à conduire les travaux du groupe.

1. Indique la nature de la trajectoire du mobile de A₁ à A₉ puis de A₁₀ à A₁₅.

- 2. 2.1. Donne les expressions des vitesses instantanées au point A₁₂ et A₁₄.
- 2.2 Calcule les vitesses instantanées aux points A₁₂ et A₁₄
- 3. Déduis-en la nature du mouvement du mobile entre A₁₀ et A₁₅.

Solution

- 1. Nature de la trajectoire du mobile
- de A₁ à A₉ : la trajectoire est curviligne
- de A₁₀ à A₁₅: la trajectoire est rectiligne.
- 2.1 Expressions des vitesses instantanées :
- au point A_{12} : $v_{12} = \frac{A_{11}A_{13}}{2\tau}$; au point A_{14} : $v_{14} = \frac{A_{13}A_{15}}{2\tau}$
- 2.2 Vitesses instantanées aux points A₁₂ et A₁₄

$$A_{11}A_{13} = 2 \times 1 \text{ cm} \implies v_{12} = \frac{2 \cdot 10^{-2} \cdot 1}{2 \cdot 10 \cdot 10^{-3}} = 1 \text{ m/s}$$
 $A_{13}A_{15} = 2 \times 1 \text{ cm} \implies v_{14} = \frac{2 \cdot 10^{-2} \cdot 1}{2 \cdot 10 \cdot 10^{-3}} = 1 \text{ m/s}$

3) Nature du mouvement entre A₁₀ à A₁₅:

On constate qu'à partir du point A_{10} :

- •Les points sont alignés ⇒ la trajectoire est une droite;
- •la vitesse instantanée est constante (voir 2.2) ⇒ le mouvement est uniforme
- •Le mouvement du mobile est donc rectiligne etuniforme à partir de A₁₀.

IV. <u>DOCUMENTS</u>

Quels sont les différents types d'orbites?

Une orbite est une trajectoire ovale ou circulaire décrite par un objet se déplaçant dans l'espace. Celle des planètes s'inscrit autour du soleil, celle des satellites autour des planètes. Des satellites ont été mis en orbite autour de la Terre. Mais pour pouvoir sortir de l'atmosphère, un engin spatial doit atteindre au moins une vitesse de 28 200 km/h soit 8 m/s. Sinon il retombe sur Terre

Il existe différents types d'orbites. Le type d'orbite dans lequel on met un satellite varie selon la nature de la mission.

L'orbite terrestre basse (OTB) est la plus accessible. La majorité des objets artificiels en orbite autour de la Terre se trouvent dans cette zone, qui s'étend de 160 km à 1 000 km au-dessus de la surface terrestre.

Une orbite polaire passe au-dessus des pôles de la Terre. Ainsi, l'objet se déplace du nord au sud. Une orbite héliosynchrone est un type d'OTB polaire. En orbite héliosynchrone, un satellite tourne sur son axe à une vitesse d'un tour par an, sous l'effet du champ gravitationnel irrégulier de la Terre. Par conséquent, le plan orbital du satellite maintient toujours le même angle par rapport au Soleil. De plus, le satellite traverse l'équateur à la même heure locale lors de chaque orbite. Ainsi, le satellite connaît les mêmes conditions de lumière chaque fois qu'il passe au-dessus d'un point particulier sur la surface de la Terre. Les missions météorologiques, de télédétection (observation à distance) et de **reconnaissance** (observation militaire) utilisent donc des orbites héliosynchrones. Cela permet aux satellites de détecter le mouvement en observant les changements dans les ombres.

Une **orbite géostationnaire** (GEO) correspond à une altitude d'environ 35 700 km. Un satellite en GEO suit l'équateur terrestre au même rythme que la rotation de la Terre. Vu depuis la Terre, le satellite semble stationnaire. La majorité des satellites de communication et de nombreux satellites météorologiques sont placés en orbite géostationnaire.

Depuis le lancement de Spoutnik 1 en 1957, les scientifiques et les ingénieurs ont lancé en viron 8 000 objets artificiels dans l'espace. Heureusement pour nous, ces objets n'échappent pas aux lois de la physique. Car grâce à la physique, ils restent dans l'espace au lieu de nous tomber sur la tête!

Source: https://parlonssciences.ca/ressources-pedagogiques/documents-dinformation/mecanique-orbitale