大学物理

University Physics

华中科技大学物理学院

王宁

ningwang@hust.edu.cn

第十四章早期量子论

物理学的分支及发展的趋势

经典物理理论完美的形式和预言的正确性:

- 1. 牛顿力学预言冥王星
- 2. 热学与分子动理论
- 3. 波动光学的成就
- 4. 麦克斯韦电磁理论对电磁波的预言

"物理学的大厦已基本建成,后辈物理学家只要做些修 补工作就行了"

著名的英国物理学家J. J汤姆逊(发现电子)

经典物理的大厦基本建成……

在经典物理晴空中漂浮着两朵乌云,令人不安。

开尔文(W汤姆逊)1900新千年的祝词

- 1) 光速不随参考系运动变化;
- 2) 黑体辐射规律;

两朵乌云背后是另一片更广阔的天地

> 相对论

狭义相对论

广义相对论 ——引力、天体

▶ 量子力学

威廉·汤姆森 开尔文勋爵(1824 - 1907)

观测手段和仪器精密度的提高密不可分

Quantum mechanics, that mysterious confusing discipline, which none of us really understands, but which we know how to use.

- Murray Gell-Mann

Quantum mechanics makes absolutely no sense.
- Roger Penrose

I think I can safely say that nobody understands quantum mechanics. - Richard Feynman

We must be clear that when it comes to atoms, language can be used only as in poetry.

- Niels Bohr

I do not like it, and I am sorry I ever had anything to do with it. - Erwin Schrödinger

If you are not completely confused by quantum mechanics, you do not understand it. - John Wheeler

从经典物理学到量子力学过渡时期的几个重大问题的提出

黑体辐射问题:即所谓的"紫外灾难";

光电效应;

康普顿散射;

原子的稳定性,大小;

第一节 黑体辐射 普朗克能量子

一 热辐射

处于任一温度下的物体,其中大量的分子或原子都会往 周围空间辐射电磁波,这种以电磁波形式向外传播能量的过 程称为辐射。

热辐射:辐射能大小和辐射电磁波波长分布都与温度有关。

热辐射包含各种波长的电磁波,通常是一

种连续光谱。

100% 相 对 校 能 量 200 290 400 800 5000 被长 (nm)

平衡热辐射:物体因热辐射而消耗的能量等于从外界吸收的能量。可用一个确定的温度T来描述。

从热辐射到黑体辐射

黑体: 能够吸收各种波长的电磁波而无反射的物体。

黑体辐射指处于热力学平衡态的黑体发出的电磁辐射

黑体辐射:对任何波长的吸收系数为1

用不透明材料制成一空心容器,壁上开一小孔。 这个小孔就可以被看作黑体。

基尔霍夫证明:黑体空腔的热辐射达到平衡时,其辐射能量密度只取决于黑体的热力学温度,而与空腔的形状和组成物质没有关联——可以用于研究热辐射的普适性质。

加热空腔至某 热平衡温度

黑体辐射

黑体辐射指处于热力学平衡态的黑体发出的电磁辐射

宇宙背景辐射("大爆炸"遗留下来的 热辐射),对应到一个约3K的黑体辐射

黑体辐射本领 = 辐射体的能量密度分布(单色辐出度)

两个相关物理量:

1. 单色辐出度 $M_0(\lambda, T)$: 黑体温度为T时,单位时间内从其表面的单位面积发出的、在波长 λ 附近的单位波长区间内的电磁波的能量。

$$M_0(\lambda, T) = \frac{dM(\lambda, T)}{d\lambda}$$

2. 辐出度 M: 从温度为T的物体表面,单位面积发出的电磁波能量和。

$$M(T) = \int_0^\infty M_0(\lambda, T) \, d\lambda$$

实验曲线

在给定的温度下,对各种波长电 磁波的辐射能量不同,黑体辐射 出的电磁波有频率上的偏好。

□ 温度上升,发射的能量上升, 并且电磁波的短波成分上升, 黑体辐射能谱成分发生改变。

斯特番-玻尔兹曼定律 $M_0(T) = \sigma T^4$

$$M_0(T) = \sigma T^4$$

□ 同一温度,各种波长的电磁 波辐射能量不同

维恩位移定律

 $\lambda_{\max} T = \text{const.}$

例如:加热铁块,从红热的铁块到"炉火纯青"

二 经典理论的解释

①. 瑞利和金斯用能量均分定理加麦克斯韦电磁理论得出能谱:

$$M_0(\lambda, T) = \frac{2\pi ckT}{\lambda^4}$$

只适用于长波。

--- "紫外灾难"

②. 维恩根据经典热力学和麦克斯韦分布律得出:

$$M_0(\lambda, T) = \frac{\alpha}{\lambda^5} e^{-\frac{\beta}{\lambda T}}$$

只适用于短波。

$$\alpha = 3.70 \times 10^{-16} J \cdot m^2 / s$$

 $\beta = 1.43 \times 10^{-2} m \cdot K$

三 能量子假说 普朗克公式

1. 普朗克公式

----为了解释实验结果而拼凑

$$M_0(\lambda, T) = \frac{2\pi hc^2}{\lambda^5} \cdot \frac{1}{e^{hc/(\lambda kT)} - 1}$$

$$\frac{\alpha}{\lambda^5} e^{-\frac{\beta}{\lambda T}} \xrightarrow{\lambda \to 0} M_0(\lambda, T) \xrightarrow{\lambda \to \infty} \frac{2\pi ckT}{\lambda^4}$$

1918年诺贝尔奖

在全波段与实验结果符合一致!

普朗克黑体辐射公式(1900年12月14日发表):

$$M_0(\lambda, T) = \frac{2\pi hc^2}{\lambda^5} \cdot \frac{1}{e^{hc/(\lambda kT)} - 1}$$

普朗克的能量子假说(1918年, 诺贝尔奖):

能量量子化:每个频率的光都是一份一份的发射

 $\epsilon = nhv$ "为我们打开了通往量子物理学的大门"

"……重要的是用一 种尽可能保守的方式来 进行工作,就是说,只 有那些已被证明为绝对 必要的变化才应该被引 入到现存的理论中。"

Occam's razor

奥坎姆剃刀律

黑体的概念与黑体辐射的历史

YouJEF Sili Sili

2. 普朗克能量子假说

$$E_0(\lambda, T) = \frac{2\pi hc^2}{\lambda^5} \cdot \frac{1}{e^{hc/(\lambda kT)} - 1} = \frac{2\pi hc^2}{\lambda^5} \sum_{n=1}^{\infty} e^{-\frac{nhc}{\lambda kT}}$$

a). 辐射黑体空腔可以被表示成大量谐振子。每一个都对应着空腔的本征模式。这些谐振子的能量状态是量子化的。

$$\varepsilon_0, 2\varepsilon_0, z\cdots, n\varepsilon_0, \cdots n = 1, 2, \cdots$$

能量的最小单元 ε_0 称为"能量子"。

b). 不同的本征模式,每一小份能量是不同的,与频率有关。

$$\varepsilon_0 = h\nu = \frac{hc}{\lambda}$$
 $h = 6.63 \times 10^{-34} J \cdot s$

c). 黑体只能一份一份的按不连续方式辐射或吸收能量。 物体发射或吸收电磁辐射:

$$\varepsilon = nh\nu$$
 $n = 1, 2, \cdots$

普朗克能量子

$$\varepsilon_0 = h\nu$$

$$h = 6.63 \times 10^{-34} J \cdot s$$

- 1). 能量子假设与经典理论有着本质的区别;
- 2). "h" 是区别经典物理与量子物理的一个明显标志。

例: m = 0.3kg, k = 3N/m的弹簧振子,振幅为A = 0.1m。由于摩擦系统的能量逐渐耗散。问能量减小是否连续?

解: 弹簧振子的振动频率
$$v = \frac{\omega}{2\pi} = \frac{1}{2\pi} \sqrt{k/m} = 0.5 \text{Hz}$$

系统的总能量:
$$E = \frac{1}{2}kA^2 = 1.5 \times 10^{-2}J$$

能量减小可以 看成连续变化

能量跳变:
$$\Delta E = h\nu = 3.3 \times 10^{-34} J$$

相对能量间隔:
$$\Delta E/E = 2.2 \times 10^{-32}$$

宏观经典物理是量子 物理的极限形式。

物理史最强朋友圈合影一决战量子之巅

A. PICCARD

M. KNUDSEN

H.A. KRAMERS

N. BOHR

I. LANGMUIR

P. DEBYE

M. PLANCK

Mme CURIE

H.A. LORENTZ

A. EINSTEIN

P. LANGEVIN

Ch.E. GUYE C.T.R. WILSON O.W. RICHARDSON

Absents : Sir W.H. BRAGG, H. DESLANDRES et E. VAN AUBEL

通往量子物理学的大门

Max Planck

1930年 尼尔斯·波尔 1931年 阿诺·索末菲 1932年 马克思·冯·劳厄 1933年 维尔纳·海森堡 1937年 埃尔文·薛定谔 1938年 路易·德布罗意

普朗克授予爱因斯坦"马克斯-普朗克奖章"

第二节 光电效应

光照射金属表面,会有电子逃逸的现象。

①存在截止频率

只有当入射光频率 ν 大于一定的频率 ν_0 时,才会有光电效应。

②存在截止电压

反映光电子初动能的大小 频率变化,截止电压随之变化

$$\frac{1}{2}mv_{max}^2 = |U_a|$$
$$|U_a| = kv - U_0$$

③饱和电流

饱和光电流强度→与入射光强度成正比

④光电效应具有瞬时性

弛豫时间不超过10⁻9 s

第二节 光电效应

光照射金属表面,会有电子逃逸的现象。

经典理论无法解释的现象包括:

截止频率: 当频率小于截止频率时无光电子逸出。

光电子能量:用反向遏制电压测定。只 与频率有关。

光强只影响电子数目,必须提高频率才 能有电子出射。

光电效应的瞬时性

爱因斯坦光量子理论

1905年,爱因斯坦在能量子假说的基础上提出光子理论:

- 1. 光子: 一束光是以光速c运动的粒子流,这些粒子称为光子(光量子)。
- 2. 光子具有能量,动量。

光子能量:
$$\varepsilon_0 = h\nu = \frac{h\nu}{c}$$

光子能量只与光的频率有关

$$\varepsilon_0 = mc^2 \to m = \frac{\varepsilon_0}{c^2} = \frac{h\nu}{c^2}$$

光子动量: $p = mc = \frac{h}{\lambda}$

光的波粒 二象性

1921年诺贝尔奖

光量子理论很好的解释了光电效应。

$$\varepsilon_0 = h\nu$$
$$p = \frac{h}{\lambda}$$

爱因斯坦光子方程

利用光量子理论解释光电效应

当频率为 ν 的光照射在金属表面时,电子吸收一个光子,获得能量 $h\nu$ 。其中一部分用以脱离金属表面,剩余部分转化为光电子的初动能:

$$\frac{1}{2}mv^2 = hv - A$$
 一光电效应方程

当 $\nu < A/h$ 时,不发生光电效应。

红限频率: $\nu_0 = \frac{A}{h}$ 红限波长: $\lambda_0 = \frac{hc}{A}$

遏制电压 U_0 : 光电流为零时,外加电压的绝对值。

$$eU_0 = \frac{1}{2}mv^2$$

第三节 康普顿散射

一 X射线的散射实验

X射线经过金属,石墨等物质时,发生 波长改变的散射称为康普顿散射。

1927年诺贝尔奖

实验结论

- (1) 散射的射线中有与入射波长 λ_0 相同的射线, 也有波长 $\lambda > \lambda_0$ 的射线。
- (2) 散射线波长的改变量 $\Delta \lambda = \lambda \lambda_0$ 随散射角的增加而增加。

$$\Delta \lambda = \lambda - \lambda_0 = \lambda_c (1 - \cos \theta)$$

康普顿波长 $\lambda_c = 0.024263$ Å

- (3) 在同一散射角下 $\Delta\lambda$ 相同,与散射物质无关。
- (4)原子量较小的物质,康普顿散射较强。

二 康普顿效应的理论解释

1. 经典理论波动说的困难

入射光频率 = 粒子做受迫振动频率 = 散射光频率

2. 量子理论的成功

频率为 ν 的X射线,是能量为 $\varepsilon = h\nu$ 的光子流

光子与自由电子发生弹性碰撞时, $\lambda = \frac{c}{\nu}$ 要传递一部分能量给电子 $\lambda = \frac{c}{\nu}$ $\lambda > \lambda_0$

光子与<mark>束缚电</mark>子发生弹性碰撞时, 不改变能量,故 ν 不变, λ 也不变。 $\lambda = \lambda_0$

康普顿散射公式的理论解释

$$\Delta \lambda = \lambda - \lambda_0 = \lambda_c (1 - \cos \theta)$$

hν

X射线光子与"静止"的"自由电子"弹性碰撞:

碰撞过程中能动量守恒:(必须考虑相对论效应)

$$\begin{cases} h\nu_0 + m_0c^2 = h\nu + mc^2 \\ \frac{h\nu_0}{c} = \frac{h\nu}{c}\cos\theta + m\nu\cos\varphi & \frac{h\nu}{c}\sin\theta = m\nu\sin\varphi \end{cases}$$

$$\left(\frac{h\nu_0}{c} - \frac{h\nu}{c}\cos\theta\right)^2 + \left(\frac{h\nu}{c}\sin\theta\right)^2 = p^2$$

$$h^2 \nu_0^2 - 2h^2 \nu_0 \nu \cos \theta + h^2 \nu^2 = p^2 c^2$$

$$m_0^2 c^4 + p^2 c^2 = m^2 c^4 \implies m_0 c^2 (\nu_0 - \nu) = h \nu_0 \nu (1 - \cos \theta)$$

$$\lambda = \lambda - \lambda_0 = \lambda_c (1 - \cos \theta)$$
 $\lambda_c = \frac{h}{m_0 c} = 2.43 \times 10^{-12} m$ 康普顿波长

 $\Delta \lambda = \lambda \lambda$ 人名人人人人人人人,只有数别角 θ 有关,与被散射物质无关。 $\theta \uparrow \Delta \lambda \uparrow$

结论

(1). *X*射线光子与"静止"的"自由电子"弹性碰撞

$$\lambda = \lambda_0 + \Delta \lambda$$

(2). X射线光子与"束缚电子"弹性碰撞 $\lambda = \lambda_0$

原子量较小的物质,电子束缚很弱 — 自由电子原子量较大的物质,电子束缚很强 — 康普顿散射较弱

康普顿散射实验的意义

康普顿散射进一步证实了光子论,证明了光子能量、动量 表示式的正确性,光确实具有波粒两象性,证明在光电相 互作用的过程中严格遵守能量、动量守恒定律。

吴有训

吴有训(1897年4月26日-1977年11月30日),字正之, 汉族,江西高安人。闻名世界的物理学家中国近代物 理学奠基人,科学家,教育家,1921年赴美入芝加哥 大学,随康普顿从事物理学研究,1926年获博士学位。 1926年秋回国,先后在江西大学和国立中央大学(今 南京大学)任教,1928年秋起任清华大学教授,物理 系主任、理学院院长(包括1938年以后在西南联合大 学的8年)。1945年10月任中央大学(今南京大学) 校长。

在参与康普顿的X射线散射研究的开创工作时,他以精湛的实验技术和卓越的理论分析,验证了康普顿效应。

1924年他与康普顿合作发表《经过轻元素 散射后的钼Ka射线的波长》 例:波长为2Å的X射线射到碳块上,由于康普顿散射,频率改变为 0.04%。求(1)该光子的散射角,(2)反冲电子的动能。

解:

(1)
$$\Delta \nu = \nu_0 - \nu = 0.04\%\nu_0 \longrightarrow \nu = 99.96\%\nu_0$$

$$\lambda = \frac{c}{\nu} \longrightarrow \lambda = 100.04\%\lambda_0 \longrightarrow \Delta \lambda = 0.04\%\lambda_0 = 8 \times 10^{-14}m$$

$$\Delta \lambda = \lambda - \lambda_0 = \lambda_c (1 - \cos \theta)$$

$$\therefore \cos \theta = 1 - \frac{\Delta \lambda}{\lambda_c} = 0.967 \qquad \theta = 14.75^\circ$$

(2) 根据能量守恒定律

$$E = h(\nu_0 - \nu) = 0.04\%h\nu_0 = 0.04\%\frac{hc}{\lambda_0}$$
$$= 3.98 \times 10^{-19}J = 2.49eV$$

例:试证明康普顿散射中光子不能完全被自由电子吸收。

(反证法)假设自由电子可以完全吸收一个光子, 根据能量守恒定律

$$h\nu = (m - m_0)c^2 = (\gamma - 1)m_0c^2 \qquad \gamma = \frac{1}{\sqrt{1 - v^2/c^2}}$$

散射后电子的动量 $p_e = mv = \gamma m_0 v$

$$h\nu$$

而散射前光子的动量 $p_c = \frac{h\nu}{c} = (\gamma - 1)m_0c$

 $\beta = \frac{v}{c}$

$$p_c - p_e = (\gamma - 1)m_0c - \gamma\beta m_0c$$

$$= \left(\sqrt{\frac{1 - v/c}{1 + v/c}} - 1\right) m_0 c \neq \mathbf{0} \qquad 动量不守恒$$

因此自由电子不可能完全吸收一个光子。

小结

光的波粒二象性: 光具有波动和微粒的双重性质

$$\varepsilon_0 = h\nu$$
 $p = \frac{h}{\lambda}$

$$h = 6.63 \times 10^{-34} J \cdot s$$

第四节 玻尔氢原子理论

原子结构的发现

卢瑟福α粒子散射实验

卢瑟福

原子结构的行星模型

经典理论的困难

卢瑟福原子有核模型: 原子核+核外电子

原子能量:

$$E = E_k + E_p = \frac{1}{2} m_e v^2 - \frac{e^2}{4\pi \varepsilon_0 r} = -\frac{e^2}{8\pi \varepsilon_0 r}$$

库仑力提供有心力: $m_e \frac{v^2}{r} = \frac{e^2}{4\pi \varepsilon_0 r^2}$

有心力使电子加速运动 \longrightarrow 辐射电磁波 $\longrightarrow E \downarrow r \downarrow$

电子变的不稳定, 最终会落到原子核上

一 氢原子光谱

热原子发出的光通过光栅后分解成一系列离散的条纹, 称为原子光谱。

巴耳末系

$$3645 \cdot 6 = \lambda_{\infty}$$
 4101 · 20 4340 · 10 4860 · 74 6562 · 10 A^{0} 红 外 区 H_{∞} H_{δ} H_{γ} H_{β} H_{α} 可见光区

巴耳末公式
$$\lambda = B \frac{n^2}{n^2 - 4}$$
 $(n = 3, 4, 5, 6, \cdots)$ $B = 364.6nm$

$$\tilde{v} = \frac{1}{\lambda} = R\left(\frac{1}{2^2} - \frac{1}{n^2}\right)$$
 里德伯常量: $R = \frac{4}{B} = 1.09678 \times 10^7 m^{-1}$

里德伯公式(广义巴耳末公式)

$$\tilde{v} = \frac{1}{\lambda} = R\left(\frac{1}{k^2} - \frac{1}{n^2}\right)$$

$$k = 1, 2, 3, \cdots$$

 $n = k + 1, k + 2, \cdots$

其中 R/k^2 和 R/n^2 被称为光谱项, $\tilde{\nu}$ 是波数

实验表明:

原子具有线光谱

各谱线之间具有一定的关系

每一个谱线的波数都可以表达为两个光谱项之差

二 玻尔的基本假设

1. 对有核模型的质疑

从原子离散的线光谱 中得到启发

$$\tilde{v} = \frac{1}{\lambda} = R\left(\frac{1}{k^2} - \frac{1}{n^2}\right)$$

$$\nu = \frac{c}{\lambda} = c\tilde{\nu} \implies h\nu = hRc\left(\frac{1}{k^2} - \frac{1}{n^2}\right)$$

光子能量的取值不能是连续的。

2. 玻尔对原子系统的假设

(1). 定态假设:原子处于一系列能量不连续的稳定态。

$$E_1, E_2, E_3, \cdots, E_n, \cdots$$
 $(E_1 < E_2 < E_3 < \cdots)$

(2). 跃迁假设:只有原子从较高能量 E_n 的稳定态跃迁到较低能量 E_k 的稳定态时,才会辐射出光子,其频率为

$$u = \frac{E_n - E_k}{h}$$
 ——跃迁定则

(3). 轨道量子化假设:只有电子角动量 等于 $h/2\pi$ 的整数倍的那些轨道上运动才是稳定的。

三 玻尔对氢原子的解释

1. 氢原子的轨道半径

$$E = E_k + E_p = -\frac{e^2}{8\pi\varepsilon_0 r}$$

$$m_e \frac{v^2}{r} = \frac{e^2}{4\pi\varepsilon_0 r^2}$$

$$L = m_e v r = n\hbar$$

$$r_n = \frac{4\pi\varepsilon_0 \hbar^2}{e^2 m_e} n^2 \qquad n = 1, 2, 3, \cdots$$

轨道是量子化的

$$n = 1$$
 $r_1 = 0.53$ Å 第一玻尔轨道半径

其它可能的轨道半径: $r_n = n^2 r_1$

2. 氢原子的能级

电子在半径为 r_n 的轨道上运动时,原子系统的总能量为:

$$E = E_k + E_p = -\frac{e^2}{8\pi\varepsilon_0 r_n} \qquad r_n = \frac{4\pi\varepsilon_0 \hbar^2}{e^2 m_e} n^2$$

$$E_n = -\frac{e^4 m_e}{8\varepsilon_0^2 h^2} \frac{1}{n^2} \qquad n = 1, 2, 3, \dots$$

$$n = 1$$
 第一玻尔轨道的能量: $E_1 = -13.6eV$ ---基态

$$n > 1$$
 $E_n = -\frac{13.6}{n^2}eV > E_1$ ——激发态

3. 氢原子光谱的理论解释

原子从外界吸收一定的 能量时,会从较低能级 跃迁到较高能级。

(激发态)

自发辐射

处在激发态的 原子不稳定 原子自发的从 较高能级<mark>跃迁</mark> 到较低能级。

(激发态或基态)

根据玻尔氢原子理论,当原子从第n个能级跃迁到第k(k < n)个能级时,会发射出单色光,其频率为:

$$\nu = \frac{E_n - E_k}{h} = \frac{e^4 m_e}{8\varepsilon_0^2 h^3} \left(\frac{1}{k^2} - \frac{1}{n^2} \right) = Rc \left(\frac{1}{k^2} - \frac{1}{n^2} \right)$$

$$R = \frac{e^4 m_e}{8\varepsilon_0^2 h^3 c} = 1.097373 \times 10^7 m^{-1}$$
 广义巴耳末公式

实验值: $R = 1.096776 \times 10^7 m^{-1}$

解释了分离的谱线

$$\nu = \frac{E_n - E_k}{h}$$

能级不连续 ν不连续

不同的业对应不同的谱线。

解释谱线系

问题: 为什么存在谱线系?

为什么有些谱线在短波区? 有些在长波区?

取决于
$$\Delta E = E_n - E_k$$

$$\Delta E \uparrow \nu \uparrow \lambda \downarrow$$

氢原子能级图

四 玻尔理论的成功与局限性

成功 (对氢原子,碱金属等)

- 1). 成功预言了 r_n , E_n , R
- 2). 定义了定态, 跃迁频率的概念
- 3). 推导出了广义巴耳末公式

局限性

- 1). 对稍复杂的原子光谱,例如多电子原子,定性和定量都不能解释
- 2). 对氢原子谱线的强度,宽度,偏振等问题的解释遇到了难以克服的困难。

作业: Chap.14—T1、T2、T3、T4、T5 T6、T7

- 1. 独立完成作业。
- 2. 图和公式要有必要的标注或文字说明。
- 3. 通过学习通提交作业。
- 4. 作业缺交三分之一及以上者按规定不能参加考试。

