

STODENT ID NO								

STUDENT ID NO

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 2, 2019/2020

EEM1026 – ENGINEERING MATHEMATICS II

(ME/ TE/ RE)

MARCH 2020

a.m. - a.m.

(2 Hours)

INSTRUCTIONS TO STUDENTS:

- 1. This exam paper consists of 4 pages (including cover page) with 4 Questions only.
- 2. Attempt all the questions. All questions carry equal marks and the distribution of marks for each question is given.
- 2. Please write all your answers in the Answer Booklet provided. Show all relevant steps to obtain maximum marks.
- 3. Only NON-PROGRAMMABLE calculator is allowed.

Question 1

(a) By using the method of undetermined coefficients, solve the following inhomogeneous differential equation.

$$y'' + 4y' + 4y = 8\sin 3x + 5x$$
 [12 marks]

(b) Consider the solution of y''-3xy'+2y=0 in the form of power series in x about $x_0=0$, i.e., $y=\sum_{n=0}^{\infty}c_nx^n$. Find the first five nonzero terms of this series solution.

[13 marks]

Question 2

Consider a rod of length l coincides with the interval [0,l] on the x-axis. The left end of the rod is held at zero temperature and the right end is insulated. The initial temperature is T_0 throughout.

- (a) Set-up the initial boundary value problem for the temperature u(x,t) for the above. [5 marks]
- (b) Hence, by using the method of separation of variables and λ as the separation constant, find all possible solutions for Case i: $\lambda = p^2$, Case ii: $\lambda = -p^2$ and Case ii: $\lambda = 0$. [10 marks]
- (c) From (b), by considering only solution for Case ii: $\lambda = -p^2$, show that

$$u(x,t) = \sum_{n=0}^{\infty} \frac{2T_0}{\left(n + \frac{1}{2}\right)\pi} e^{-\left(\frac{\left(n + \frac{1}{2}\right)\pi}{l}\right)^2 k^2 t} \sin\frac{\left(n + \frac{1}{2}\right)\pi}{l} x.$$

(Hint: if $\cos x = 0$, then $x = \left(n + \frac{1}{2}\right)\pi$, n = 0,1,2,...) [10 marks]

Continued...

Question 3

(a) Solve the following initial-value problem by Laplace transform.

$$y'' + 5y' + 6y = 4 \cosh t$$
, $y(0) = 0$ and $y'(0) = 0$. [13 marks]

(b) Find the Fourier transform of

$$f(x) = \begin{cases} 1+x, & -1 \le x \le 0\\ 1-x, & 0 \le x \le 1\\ 0, & otherwise. \end{cases}$$
 [12 marks]

[Hint: Formula of Fourier transform is $F(w) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-i\alpha x} dx$]

Question 4

- (a) An electrical company manufactures a plastic connector module that have depths that is approximately normally distributed with a standard deviation of 0.0015 inch.
 - (i) If a random sample of 75 modules has an average depth of 0.310 inch, find a 95% confidence interval for the mean of the depths of all connector modules produced by this company. [6 marks]
 - (ii) How large a sample is needed if we wish to be 95% confident that our sample mean will be within 0.0005 inch of the true mean? [3 marks]
- (b) Ten bearings made by a certain process have a mean diameter of 0.5060 cm and a standard deviation of 0.0040 cm. Assuming that the data may be looked upon as a random sample from a normal population, construct a 95% confidence interval for the actual average diameter of bearings made by this process. [6 marks]
- (c) The specifications for a certain kind of energy drink has an average sugar content of 14.0 grams. In an attempt to show that it differs from this value, a random sample of five energy drinks are selected from different cartons to measure its sugar content (grams per bottle).

Based on this sample, is the production under control?

Use a 0.05 level of significance and assume that the distribution of sugar content is normally distributed. [10 marks]

Continued...

A STATE OF THE STA	
f(t)	$F(s) = \mathcal{L}\{f(t)\} = \int_{0}^{\infty} e^{-st} f(t) dt$
1	$ \begin{array}{c} 1/s \\ 1/s^2 \\ n!/s^{n+1} \\ 1 \end{array} $
t	$1/s^2$
$t^{n}(n=1,2,3,)$ e^{at}	$n!/s^{n+1}$
e^{at}	$\frac{1}{s-a}$
te ^{at}	$\frac{1}{(s-a)^2}$
$t^{n-1}e^{at}$	$\frac{(n-1)!}{(s-a)^n}$, $n=1,2,$
cos at	$\frac{s}{s^2+a^2}$
sin at	$\frac{a}{s^2 + a^2}$
cosh at	$\frac{1}{s^2-a^2}$
sinh at	$\frac{a}{s^2-a^2}$
u(t-a)	$\frac{a}{s^2 - a^2}$ $\frac{e^{-as}}{s}, a \ge 0$
$f(t-a)\ u(t-a)$	$\frac{e^{-as}L(f)}{e^{-as}f(a)}$
$f(t) \delta(t-a)$	$e^{-as}f(a)$
f'(t)	$s\mathcal{L}(f) - f(0)$
$f(t) \delta(t-a)$ $f'(t)$ $f''(t)$	$s\mathcal{L}(f) - f(0)$ $s^2\mathcal{L}(f) - sf(0) - f'(0)$

End of paper.