CS 302.1 - Automata Theory

Lecture 06

Shantanav Chakraborty

Center for Quantum Science and Technology (CQST)
Center for Security, Theory and Algorithms (CSTAR)
IIIT Hyderabad

Quick Recap

Context-Free Grammars: If the *rules* of the underlying grammar G are of the form $V \to (V \cup T)^*$

then such a grammar is called Context-Free.

Parse trees: These are ordered trees that provide alternative representations of the derivation of a grammar.

Ambiguous grammars: There exists $\omega \in L(G)$, such that there are **two or more leftmost derivations for** ω (or equivalently two or more rightmost derivations) or equivalently **two or more parse trees for** ω **. Ambiguity** may not be desirable

Quick Recap

Context-Free Grammars: If the *rules* of the underlying grammar G are of the form $V \to (V \cup T)^*$

then such a grammar is called Context-Free.

Parse trees: These are ordered trees that provide alternative representations of the derivation of a grammar.

Ambiguous grammars: There exists $\omega \in L(G)$, such that there are **two or more leftmost derivations for** ω (or equivalently two or more rightmost derivations) or equivalently **two or more parse trees for** ω **. Ambiguity** may not be desirable

Chomsky Normal Form: If every rule of the CFG is of the form

 $A \rightarrow BC$ [B, C are not start variables]

 $A \rightarrow a$ [a is a terminal]

 $S \rightarrow \epsilon$ [S is the Start Variable]

- Any CFG can be converted to a grammar in CNF that generates the same language.
- The number of steps required to derive a string w = 2|w| 1.
- Is crucial for deciding whether w is generated by a CFG G.

Any CFL can be generated by a CFG written in Chomsky Normal Form.

Proof: The proof is constructive. Suppose we have a CFG G with a set of rules. To convert G into CNF, we do the following:

- 1. Add a new start variable $S' \rightarrow S$
- 2. Remove ϵ rules of the form $A \rightarrow \epsilon$
 - Remove nullable symbols/rules
- 3. Remove unit (short) rules of the form $A \rightarrow B$
 - Remove useless symbols/rules
- 4. Remove long rules of the form $A \rightarrow u_1 u_2 \cdots u_k$
 - Remove useless symbols/rules

Any CFL can be generated by a CFG written in Chomsky Normal Form.

Proof: The proof is constructive. Suppose we have a CFG G with a set of rules. To convert G into CNF, we do the following:

1. Add a new start variable $S' \rightarrow S$

2. Remove ϵ rules of the form $A \rightarrow \epsilon$

For each occurrence of A in the right side of the rule, we add a new rule with the occurrence of A deleted.

E.g.: Consider any rule $B \rightarrow uAvAw$ (u, v, w can be strings of variables and terminals)

Then new rules: $B \rightarrow uAvAw|uvAw|uAvw|uvw$

What if you had a rule such as $B \to A$? Then we would have needed to add a rule $B \to \epsilon$ (unless this rule has been already removed) as B is a **nullable variable.**

Repeat this procedure, until all ϵ -rules are removed.

Any CFL can be generated by a CFG written in Chomsky Normal Form.

Proof: The proof is constructive. Suppose we have a CFG G with a set of rules. To convert G into CNF, we do the following:

- 1. Add a new start variable $S' \rightarrow S$
- 2. Remove ϵ rules of the form $A \rightarrow \epsilon$

E.g.:
$$S \to 0|X0|ZYZ$$

 $X \to Y|\epsilon$
 $Y \to 1|X$

Any CFL can be generated by a CFG written in Chomsky Normal Form.

Proof: The proof is constructive. Suppose we have a CFG G with a set of rules. To convert G into CNF, we do the following:

Remove ϵ rules of the form $A \to \epsilon$ (For each occurrence of A in the right side of the rule, add a new rule with the occurrence of A deleted; Remove nullable variables, Repeat the procedure until all ϵ rules are removed)

E.g.:
$$S \to 0|X0|ZYZ$$

 $X \to Y|\epsilon$
 $Y \to 1|X$

To remove
$$X \to \epsilon$$
, we add new rules: $S \to 0|X0|ZYZ$
$$X \to Y$$

$$Y \to 1|X|\epsilon$$

Any CFL can be generated by a CFG written in Chomsky Normal Form.

Proof: The proof is constructive. Suppose we have a CFG G with a set of rules. To convert G into CNF, we do the following:

Remove ϵ rules of the form $A \to \epsilon$ (For each occurrence of A in the right side of the rule, add a new rule with the occurrence of A deleted; Remove nullable variables, Repeat the procedure until all ϵ rules are removed)

E.g.:
$$S \to 0|X0|ZYZ$$

 $X \to Y|\epsilon$
 $Y \to 1|X$

To remove
$$X \to \epsilon$$
, we add new rules: $S \to 0|X0|ZYZ$ $X \to Y$ $Y \to 1|X|\epsilon$

To remove
$$Y \to \epsilon$$
 , we add:
$$S \to 0 |X0|ZYZ|ZZ \\ X \to Y \\ Y \to 1|X$$

Any CFL can be generated by a CFG written in Chomsky Normal Form.

Proof: The proof is constructive. Suppose we have a CFG G with a set of rules. To convert G into CNF, we do the following:

- 1. Add a new start variable $S' \rightarrow S$
- 2. Remove ϵ rules of the form $A \rightarrow \epsilon$
- 3. Remove unit rules of the form $A \rightarrow B$

We **remove the rule** $A \to B$ and **whenever a rule** $B \to u$ **appears** (u is a string of terminals and variables), we **add a new rule** $A \to u$, unless this rule was already removed.

Repeat these steps until all unit rules are removed.

Any CFL can be generated by a CFG written in Chomsky Normal Form.

Proof: The proof is constructive. Suppose we have a CFG G with a set of rules. To convert G into CNF, we do the following:

Remove unit rules of the form $A \to B$ (Whenever a rule $B \to u$ appears, we add a new rule $A \to u$, unless this rule was already removed. Repeat these steps until all unit rules are removed.)

E.g.:

$$S \to A|11$$

$$A \to B|1$$

$$B \to S|0$$

Any CFL can be generated by a CFG written in Chomsky Normal Form.

Proof: The proof is constructive. Suppose we have a CFG G with a set of rules. To convert G into CNF, we do the following:

Remove unit rules of the form $A \to B$ (Whenever a rule $B \to u$ appears, we add a new rule $A \to u$, unless this rule was already removed. Repeat these steps until all unit rules are removed.)

E.g.:

$$S \to A|11$$

$$A \to B|1$$

$$B \to S|0$$

Remove $A \rightarrow S$	Remove $S \rightarrow B$	Remove $B \rightarrow B$	Remove $B \to S$	Remove $A \rightarrow B$	Remove $S \to A$
$S \to 11 0 1$	$S \rightarrow 11 0 1$	$S \rightarrow 11 B 1$	$S \rightarrow 11 B 1$	$S \rightarrow 11 B 1$	$S \rightarrow 11 B 1$
$A \rightarrow 1 11 0$ $B \rightarrow 0 11 1$	$A \to 1 S 0$ $B \to 0 11 1$	$A \to 1 S 0$ $B \to 0 11 1$	$A \rightarrow 1 S 0$ $B \rightarrow 0 11 1 \mathbf{B}$	$A \to 1 S 0$ $B \to S 0$	$A \to B \mid 1$ $B \to S \mid 0$

Any CFL can be generated by a CFG written in Chomsky Normal Form.

Proof: The proof is constructive. Suppose we have a CFG G with a set of rules. To convert G into CNF, we do the following:

Remove unit rules of the form $A \to B$ (Whenever a rule $B \to u$ appears, we add a new rule $A \to u$, unless this rule was already removed. Repeat these steps until all unit rules are removed.)

$$S \to A|11$$

$$A \to B|1$$

$$B \to S|0$$

$$S \to 11|0|1$$

 $A \to 1|11|0$
 $B \to 0|11|1$

Any CFL can be generated by a CFG written in Chomsky Normal Form.

Proof: The proof is constructive. Suppose we have a CFG G with a set of rules. To convert G into CNF, we do the following:

- 1. Add a new start variable $S' \rightarrow S$
- 2. Remove ϵ rules of the form $A \rightarrow \epsilon$
- 3. Remove unit rules of the form $A \rightarrow B$
- 4. Remove long rules of the form $A \rightarrow u_1 u_2 \cdots u_k$

Note that each u_i could be a variable or a terminal. We do the following:

- Replace $A \to u_1 u_2 \cdots u_k$, $(k \ge 3)$ with the rules $A \to u_1 A_1$, $A_1 \to u_2 A_2$, \cdots , $A_{k-2} \to u_{k-1} u_k$
- We replace any terminal u_i in the preceding rules with the new variable U_i and add the rule $U_i
 ightarrow u_i$

Any CFL can be generated by a CFG written in Chomsky Normal Form.

Proof: The proof is constructive. Suppose we have a CFG G with a set of rules. To convert G into CNF, we do the following:

Add a new start variable $S' \rightarrow S$

Remove ϵ rules of the form $A \to \epsilon$ (For each occurrence of A in the right side of the rule, add a new rule with the occurrence of A deleted; Remove nullable variables, Repeat the procedure until all ϵ rules are removed).

Remove unit rules of the form $A \to B$ (Whenever a rule $B \to u$ appears, we add a new rule $A \to u$, unless this rule was already removed. Repeat these steps until all unit rules are removed.)

Remove long rules of the form $A \to u_1 u_2 \cdots u_k$ (Replace $A \to u_1 u_2 \cdots u_k$, $(k \ge 3)$ with the rules $A \to u_1 A_1$, $A_1 \to u_2 A_2, \cdots, A_{k-2} \to u_{k-1} u_k$; Replace any terminal u_i in the preceding rules with the new variable U_i and add the rule $U_i \to u_i$).

CNF:

$$A \rightarrow BC$$

 $A \rightarrow BC$ [B, C are not start variables]

$$A \rightarrow a$$

 $A \rightarrow a$ [a is a terminal]

$$S \rightarrow \epsilon$$

 $S \rightarrow \epsilon$ [S is the Start Variable]

Convert the CFG

$$S \rightarrow ASA|aB$$

$$A \rightarrow B|S$$

$$B \rightarrow b | \epsilon$$

to CNF.

1. Add a new start variable

2a. Remove ϵ rules ($B \rightarrow \epsilon$)

2b. Remove ϵ rules (A $\rightarrow \epsilon$)

$$S' \to S$$

$$S \to ASA|aB$$

$$A \to B|S$$

$$B \to b|\epsilon$$

$$S' \to S$$

$$S \to ASA|aB|\mathbf{a}$$

$$A \to B|S|\mathbf{\epsilon}$$

$$B \to b$$

$$S' \to S$$

$$S \to ASA|aB|a|AS|SA|S$$

$$A \to B|S$$

$$B \to b$$

CNF:

$$A \rightarrow BC$$

[B, C are not start variables]

$$A \rightarrow a$$

 $A \rightarrow a$ [a is a terminal]

$$S \rightarrow \epsilon$$

[S is the Start Variable]

Convert the CFG

$$S \rightarrow ASA|aB$$

$$A \rightarrow B|S$$

$$B \rightarrow b | \epsilon$$

to CNF.

3a. Remove $S \rightarrow S$

3b. Remove $S' \rightarrow S$

3c. Remove $A \rightarrow B$

3d. Remove $A \rightarrow S$

$$S' \to S$$

$$S \to ASA|aB|a|AS|SA$$

$$A \to B|S$$

$$B \to b$$

$$S' \rightarrow ASA|aB|a|AS|SA$$

 $S \rightarrow ASA|aB|a|AS|SA$
 $A \rightarrow B|S$
 $B \rightarrow b$

$$S' \to ASA|aB|a|AS|SA$$

$$S \to ASA|aB|a|AS|SA$$

$$A \to S|\mathbf{b}$$

$$B \to b$$

$$S' \rightarrow ASA|aB|a|AS|SA$$

 $S \rightarrow ASA|aB|a|AS|SA$
 $A \rightarrow b|ASA|aB|a|AS|SA$
 $B \rightarrow b$

CNF: $A \rightarrow BC$ [B, C are not start variables]

 $A \rightarrow a$ [a is a terminal]

 $S \rightarrow \epsilon$ [S is the Start Variable]

Convert the CFG

 $S \rightarrow ASA|aB$ $A \rightarrow B|S$ $B \rightarrow b|\epsilon$

to CNF.

3d. Remove $A \rightarrow S$

 $S' \to ASA|aB|a|AS|SA$ $S \to ASA|aB|a|AS|SA$ $A \to b|ASA|aB|a|AS|SA$ $B \to b$

4a. Remove long rules

 $S' \to ASA|aB|a|AS|SA$ $S \to ASA|aB|a|AS|SA$ $A \to b|ASA|aB|a|AS|SA$ $B \to b$

There are other rules of the form: $Var \rightarrow ASA$

4b. Remove long rules

 $S' \rightarrow A\mathbf{U}|aB|a|AS|SA$ $S \rightarrow A\mathbf{U}|aB|a|AS|SA$ $A \rightarrow b|A\mathbf{U}|aB|a|AS|SA$ $U \rightarrow SA$ $B \rightarrow b$

4c. Remove long rules

 $S' \to AU|VB|a|AS|SA$ $S \to AU|VB|a|AS|SA$ $A \to b|AU|VB|a|AS|SA$ $U \to SA$ $V \to a$ $B \to b$

CNF: $A \rightarrow BC$ [B, C are not start variables]

 $A \rightarrow a$ [a is a terminal]

 $S \rightarrow \epsilon$ [S is the Start Variable]

Convert the CFG

 $S \rightarrow ASA|aB$

 $A \rightarrow B|S$

 $B \rightarrow b | \epsilon$

to CNF.

 $S' \rightarrow AU|VB|\alpha|AS|SA$

 $S \rightarrow AU|VB|\alpha|AS|SA$

 $A \rightarrow b|AU|VB|\alpha|AS|SA$

 $U \rightarrow SA$

 $V \rightarrow a$

 $B \rightarrow b$

- For regular languages we had
 - Designed Finite automata (DFA, NFA) that recognize the strings by the language. Helped us decide whether a given string ω belongs to the language.

- For regular languages we had
 - Designed Finite automata (DFA, NFA) that recognize the strings by the language. Helped us decide whether a given string ω belongs to the language.
 - Developed regular expressions/linear grammar that can generate all the strings in the language.

- For regular languages we had
 - Designed Finite automata (DFA, NFA) that recognize the strings by the language. Helped us decide whether a given string ω belongs to the language.
 - Developed regular expressions/linear grammar that can generate all the strings in the language.
- For context free languages,
 - Context Free Grammars generate all the strings in the language

- · For regular languages we had
 - Designed Finite automata (DFA, NFA) that recognize the strings by the language. Helped us decide whether a given string ω belongs to the language.
 - Developed regular expressions/linear grammar that can generate all the strings in the language.
- For context free languages,
 - Context Free Grammars generate all the strings in the language
 - Can we build an automata that recognizes **exactly** context free languages?

- For regular languages we had
 - Designed Finite automata (DFA, NFA) that recognize the strings by the language. Helped us decide whether a given string ω belongs to the language.
 - Developed regular expressions/linear grammar that can generate all the strings in the language.
- For context free languages,
 - Context Free Grammars generate all the strings in the language
 - Can we build an automata that recognizes **exactly** context free languages?
- Finite Automaton model recognizes ALL regular languages
- Any automata that recognizes **ALL** context free languages will need unbounded memory.

- Finite Automaton model recognizes ALL regular languages
- Any automata that recognizes ALL context free languages will need unbounded memory.

Intuition to build an Automata for CFL

• It should be some **Finite State Machine** that has access to a memory device with infinite memory, i.e.

Automata for CFL = FSM + Memory device

- FSM may choose to ignore the memory device completely in which case it behaves like a DFA/NFA.
- FSM makes use of the Memory device to recognize "non-Regular" CFLs.

E.g.:
$$\{0^n1^n, n \in \mathbb{N}\}$$

Intuition to build an Automata for CFL

- Automata for CFL = FSM + Memory device
- FSM may choose to ignore the memory device completely in which case it behaves like a DFA/NFA.
- FSM makes use of the Memory device to recognize "non-Regular" CFLs.

E.g.:
$$\{0^n 1^n, n \in \mathbb{N}\}$$

The memory device

• Simple memory device with unbounded memory.

The memory device

- Simple memory device with unbounded memory.
- Consider a **STACK**
- At any stage, new elements can be added to the Stack (PUSH).
- At any stage, the element at the **top** of the STACK can be read by removing it from the stack (**POP**).

The memory device

- Simple memory device with unbounded memory.
- Consider a **STACK**
- At any stage, elements can be pushed or popped.

PUSH

New symbols can be pushed in to the STACK.

E.g: PUSH 1

The Top of the STACK now covers the old stack top, i.e.

$$TOP = TOP + 1$$

• The size of the stack keeps growing.

The memory device

- Simple memory device with unbounded memory.
- Consider a **STACK**
- At any stage, elements can be pushed or popped.

PUSH

New symbols can be pushed in to the STACK.

E.g: PUSH 1

• The Top of the STACK now covers the old stack top, i.e.

$$TOP = TOP + 1$$

• The size of the stack keeps growing.

The memory device

- Simple memory device with unbounded memory.
- Consider a **STACK**
- At any stage, elements can be pushed or popped.

PUSH

New symbols can be pushed in to the STACK.

E.g: PUSH 0

• The Top of the STACK now covers the old stack top, i.e.

$$TOP = TOP + 1$$

• The size of the stack keeps growing.

The memory device

- Simple memory device with unbounded memory.
- Consider a **STACK**
- At any stage, elements can be pushed or popped.

PUSH

- New symbols can be **pushed** in to the STACK.
- The Top of the STACK now covers the old stack top, i.e.

$$TOP = TOP + 1$$

The size of the stack keeps growing.

The memory device

- Simple memory device with unbounded memory.
- Consider a **STACK**
- At any stage, elements can be pushed or popped.

Memory device

POP

• The element from the TOP of the stack can be **popped** out

E.g.: **POP 0**

$$TOP = TOP - 1$$

- Successive **POP** operations shrink the stack size. Elements can be popped until EMPTY.
- Last In First Out (LIFO): The last element that was pushed is the first to be popped out

The memory device

- Simple memory device with unbounded memory.
- Consider a **STACK**
- At any stage, elements can be pushed or popped.

Memory device

POP

• The element from the TOP of the stack can be **popped** out

E.g.: **POP 0**

$$TOP = TOP - 1$$

- Successive POP operations shrink the stack size. Elements can be popped until EMPTY.
- Last In First Out (LIFO): The last element that was pushed is the first to be popped out

The memory device

- Simple memory device with unbounded memory.
- Consider a STACK
- At any stage, elements can be pushed or popped.

Memory device

POP

The element from the TOP of the stack can be popped out

E.g.: **POP 1**

$$TOP = TOP - 1$$

- Successive **POP** operations shrink the stack size. Elements can be popped until EMPTY.
- Last In First Out (LIFO): The last element that was pushed is the first to be popped out

The memory device

- Simple memory device with unbounded memory.
- Consider a STACK
- At any stage, elements can be pushed or popped.

Memory device

POP

The element from the TOP of the stack can be popped out

E.g.: **POP 1**

$$TOP = TOP - 1$$

- Successive **POP** operations shrink the stack size. Elements can be popped until EMPTY.
- Last In First Out (LIFO): The last element that was pushed is the first to be popped out

The memory device

- Simple memory device with unbounded memory.
- Consider a **STACK**
- Last In First Out (LIFO)

POP

- The element from the TOP of the stack can be **popped** out.
- TOP = TOP 1
- Elements can be popped until STACK is EMPTY.
- How would you know that the STACK is EMPTY?

The memory device

- Simple memory device with unbounded memory.
- Consider a STACK
- Last In First Out (LIFO)

POP

- The element from the TOP of the stack can be **popped** out.
- TOP = TOP 1
- Elements can be popped until STACK is EMPTY.
- How would you know that the STACK is EMPTY?
- There is generally some special symbol (say \$) that demarcates the bottom of the STACK.
- This element is Pushed at the very beginning. Whenever the popped element = \$, the STACK is EMPTY.

Memory device

Memory device of PDA: STACK

- STACK is a **LIFO** data structure of unbounded memory
- Only the TOP element can be read from the STACK.
- The bottom of the STACK contains a special symbol (\$)
- Characterized by two operations:

PUSH

- New symbols can be **pushed** in to the STACK.
- TOP = TOP + 1

POP

- The element from the TOP of the stack can be **popped** out.
- TOP = TOP 1
- Elements can be popped until STACK is EMPTY.

- A Pushdown Automata (PDA) is a finite automaton that has access to a stack.
- The FSM:

- A Pushdown Automata (PDA) is a finite automaton that has access to a stack.
- The FSM:
 - Transitions based on the Input symbol and the element at the top of the stack (e.g.: If I/P symbol = 0 & 0 is popped, transition from i to j)

- A Pushdown Automata (PDA) is a finite automaton that has access to a stack.
- The FSM:
 - Transitions based on the Input symbol and the element at the top of the stack (e.g.: If I/P symbol = 0 & POP 0, transition from i to j)
 - Pushes new elements into the Stack (e.g.: If I/P symbol = 0, PUSH 0, transition from i to j).

- A Pushdown Automata (PDA) is a finite automaton that has access to a stack.
- The FSM:
 - Transitions based on the Input symbol and the element at the top of the stack
 - Pops the element at the top of the Stack.
 - Pushes new elements into the Stack.

PDAs are non-deterministic.

- Missing transitions
- ϵ -transitions
- Multiple transitions/input symbol possible

How to represent a transition in a PDA?

If input symbol = a, Stack top = b (if b is popped), Push c onto the Stack a remain in S

How to represent a transition in a PDA?

If input symbol = a, and b is popped, remain in S.

(If the symbol read is a and the element at the Stack TOP = b, then remain in S)

How to represent a transition in a PDA?

If input symbol = a, then Push c

• How to represent a transition in a PDA?

- (i) If input symbol = a, and a is popped, then Push a and remain in S.
- (ii) Push a on to the stack and remain in S.

Through Steps (i) and (ii), the PDA pushes a onto the stack if it reads a on the input tape and the element at the stack top = a.

How to represent a transition in a PDA?

If input symbol = 0, Push 0 onto the Stack irrespective of the element at the top of the stack

How to represent a transition in a PDA?

Without reading the input symbol and the Stack top, Push 0 onto the Stack

• How to represent a transition in a PDA?

If the input symbol is 1, and the element 0 is popped (Pop 0), then transition from S to T

• How to represent a transition in a PDA?

If the input symbol is 1, transition to T by ignoring the stack completely.

If this happens at every step of the execution of the PDA, then it is as powerful as an NFA.

• How to represent a transition in a PDA?

Empty stack: If \$ is popped, push the \$ back onto the stack and transition to F from T, without reading the input

• How to represent a transition in a PDA?

Empty stack: If \$ is popped, push the \$ back onto the stack and transition to F from T, without reading the input

How to represent a transition in a PDA?

How to represent a transition in a PDA?

What is the language recognized by this PDA?

Verify that it is $L = \{ \mathbf{0}^n \mathbf{1}^n, n \geq 1 \}$

What is the language recognized by this PDA?

What is the language recognized by this PDA?

\$ TOP

The language recognized by the PDA: $L=\{\mathbf{0}^n\mathbf{1}^n, n\geq \mathbf{1}\}$

What is the language recognized by this PDA?

In some references (such as Sipser):

• The transitions of the PDA are labelled as " $a, b \to c$ ", implying: If the input symbol read is a, and the element at the top of the stack is b (b is popped), then push c on to the Stack.

What is the language recognized by this PDA?

In some references (such as Sipser):

- The transitions of the PDA are labelled as " $a, b \to c$ ", implying: If the input symbol read is a, then pop b (the element at the top of the stack is b) and push c on to the Stack.
- The label " $a, b \to \epsilon$ " implies that if the input symbol is a then pop b.

What is the language recognized by this PDA?

In some references (such as Sipser):

- The transitions of the PDA are labelled as " $a, b \rightarrow c$ ", implying: If the input symbol read is a, the element at the top of the stack is b, then pop b and push c on to the Stack.
- The label " $a, b \rightarrow \epsilon$ " implies that if the input symbol is a and b is popped.
- The symbol signifying the bottom of the Stack \$ is pushed at the very beginning.

Formally, a PDA M is a 6-tuple (Q, Σ , Γ , δ , q_0 , F) where

- *Q* is a finite set called the **states**.
- Σ is the set of input *alphabets*.
- Γ is the set of **Stack alphabets**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the **transition function**

$$[\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\} \text{ and } \Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}]$$

- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.

Formally, a PDA M is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where

- Q is a finite set called the states.
- Σ is the set of input *alphabets*.
- Γ is the set of **Stack alphabets**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the **transition function**
- $[\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\} \text{ and } \Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}]$

- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.

A PDA accepts a string $w \in L$, if there exists a run such that

• It **reaches a final state** when the entire string is read.

OR

• The **stack is empty** when the entire string is read.

Formally, a PDA M is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where

- Q is a finite set called the states.
- Σ is the set of input *alphabets*.
- Γ is the set of **Stack alphabets**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the *transition function*
- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.

$$[\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\} \text{ and } \Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}]$$

A PDA accepts a string $w \in L$, if there exists a run such that

• It **reaches a final state** when the entire string is read.

OR

• The **stack is empty** when the entire string is read.

These two notions of acceptance are equivalent

Formally, a PDA M is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where

- *Q* is a finite set called the *states*.
- Σ is the set of input *alphabets*.
- Γ is the set of **Stack alphabets**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the **transition function**

$$[\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\} \text{ and } \Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}]$$

- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.

Transition function:

• $\delta(q_i, a, b) = (q_j, c)$: If the input symbol read is a and b is popped, then push c onto the stack and transition from q_i to q_j

Formally, a PDA M is a 6-tuple (Q, Σ , Γ , δ , q_0 , F) where

- *Q* is a finite set called the **states**.
- Σ is the set of input *alphabets*.
- Γ is the set of **Stack alphabets**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the **transition function**

$$[\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\} \text{ and } \Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}]$$

- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.

- $\delta(q_i, a, b) = (q_j, c)$: If the input symbol read is a and b is popped, then push c onto the stack and transition from q_i to q_j
- $\delta(q_i, a, \epsilon) = (q_i, c)$:

Formally, a PDA M is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where

- *Q* is a finite set called the **states**.
- Σ is the set of input *alphabets*.
- Γ is the set of **Stack alphabets**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the **transition function** $[\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\} \text{ and } \Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}]$

$$[~\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}$$
 and $\Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}~]$

- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.

- $\delta(q_i, a, b) = (q_j, c)$: If the input symbol read is a and b is popped, then push c onto the stack and transition from q_i to q_i
- $\delta(q_i, a, \epsilon) = (q_j, c)$: If the input symbol read is a, then push c onto the stack and transition from q_i to q_j

Formally, a PDA M is a 6-tuple (Q, Σ , Γ , δ , q_0 , F) where

- *Q* is a finite set called the *states*.
- Σ is the set of input *alphabets*.
- Γ is the set of **Stack alphabets**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the **transition function**

$$[\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\} \text{ and } \Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}]$$

- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.

- $\delta(q_i, a, b) = (q_j, c)$: If the input symbol read is a and b is popped, then push c onto the stack and transition from q_i to q_j
- $\delta(q_i, a, \epsilon) = (q_j, c)$: If the input symbol read is a, then push c onto the stack and transition from q_i to q_j
- $\delta(q_i, a, b) = (q_i, \epsilon)$:

Formally, a PDA M is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where

- *Q* is a finite set called the *states*.
- Σ is the set of input *alphabets*.
- Γ is the set of **Stack alphabets**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the **transition function**

$$[\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\} \text{ and } \Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}]$$

- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.

- $\delta(q_i, a, b) = (q_j, c)$: If the input symbol read is a and b is popped, then push c onto the stack and transition from q_i to q_j
- $\delta(q_i, a, \epsilon) = (q_i, c)$: If the input symbol read is a, then push c onto the stack and transition from q_i to q_j
- $\delta(q_i, a, b) = (q_j, \epsilon)$: If the input symbol read is a, and the stack top = b (b is popped) then transition from q_i to q_j
- $\delta(q_i, \epsilon, \$) = (q_i, \$)$:

Formally, a PDA M is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where

- *Q* is a finite set called the *states*.
- Σ is the set of input *alphabets*.
- Γ is the set of **Stack alphabets**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the **transition function**

$$[\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\} \text{ and } \Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}]$$

- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.

- $\delta(q_i, a, b) = (q_j, c)$: If the input symbol read is a and b is popped, then push c onto the stack and transition from q_i to q_j
- $\delta(q_i, a, \epsilon) = (q_i, c)$: If the input symbol read is a, then push c onto the stack and transition from q_i to q_j
- $\delta(q_i, a, b) = (q_j, \epsilon)$: If the input symbol read is a, and the stack top = b, then pop b and transition from q_i to q_j
- $\delta(q_i, \epsilon, \$) = (q_j, \$)$: Transition from q_i to q_j if the stack is empty.

Formally, a PDA M is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where

- *Q* is a finite set called the **states**.
- Σ is the set of input *alphabets*.
- Γ is the set of **Stack alphabets**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the **transition function** $[\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\} \text{ and } \Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}]$

$$[~\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}$$
 and $\Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}~]$

- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.

- $\delta(q_i, a, b) = (q_i, c)$: If the input symbol read is a and b is popped, then push c onto the stack and transition from q_i to q_j
- If the input symbol read is a and a is popped, then Push a and remain at q_i : $\ref{eq:continuous}$

Formally, a PDA M is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where

- *Q* is a finite set called the **states**.
- Σ is the set of input *alphabets*.
- Γ is the set of **Stack alphabets**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the **transition function** $[\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\} \text{ and } \Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}]$

$$[\ \Sigma_{\epsilon} = \Sigma \cup \{\epsilon\} \ \mathsf{and} \ \Gamma_{\!\epsilon} = \Gamma \cup \{\epsilon\} \]$$

- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.

- $\delta(q_i, a, b) = (q_j, c)$: If the input symbol read is a and b is popped, then push c onto the stack and transition from q_i to q_i
- If the input symbol read is a and a is popped, then Push a and remain at q_i : $\delta(q_i, a, a) = (q_i, a)$

Formally, a PDA M is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where

- *Q* is a finite set called the *states*.
- Σ is the set of input *alphabets*.
- Γ is the set of **Stack alphabets**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the **transition function** $[\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\} \text{ and } \Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}]$

[
$$\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}$$
 and $\Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}$]

- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.
- The Language of the PDA P is the set of strings the PDA accepts, i.e.

$$L = \{w | P \text{ accepts } w\}$$

There exists an accepting run for w on P

• If $\mathcal{L}(P) = L$, then the PDA P recognizes L

Formally, a PDA M is a 6-tuple (Q, Σ , Γ , δ , q_0 , F) where

- *Q* is a finite set called the **states.**
- Σ is the set of input *alphabets*.
- Γ is the set of **Stack alphabets**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the **transition function**

 $[\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\} \text{ and } \Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}]$

- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.
- The Language of the PDA P is the set of strings the PDA accepts, i.e.

$$L = \{w | P \text{ accepts } w\}$$

- If $\mathcal{L}(P) = L$, then the PDA P recognizes L
- Stack alphabet can be different from the input alphabet

Formally, a PDA M is a 6-tuple (Q, Σ , Γ , δ , q_0 , F) where

- *Q* is a finite set called the **states.**
- Σ is the set of input *alphabets*.
- Γ is the set of **Stack alphabets**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the **transition function**

 $[\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\} \text{ and } \Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}]$

- $q_0 \in Q$ is the *start state*.
- $F \subseteq Q$ is the set of *accepting states*.
- The Language of the PDA P is the set of strings the PDA accepts, i.e.

$$L = \{w | P \text{ accepts } w\}$$

- If $\mathcal{L}(P) = L$, then the PDA P recognizes L
- Stack alphabet can be different from the input alphabet

Formally, a PDA M is a 6-tuple (Q, Σ , Γ , δ , q_0 , F) where

- *Q* is a finite set called the **states.**
- Σ is the set of input *alphabets*.
- Γ is the set of **Stack alphabets**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the **transition function**
- $\alpha \in \Omega$ is the start state
- $q_0 \in Q$ is the **start state**.

accepts, i.e.

- $F \subseteq Q$ is the set of *accepting states*.
- The Language of the PDA P is the set of strings the PDA

$$L = \{w | P \text{ accepts } w\}$$

- If $\mathcal{L}(P) = L$, then the PDA P recognizes L
- Stack alphabet can be different from the input alphabet

 $[\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\} \text{ and } \Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}]$

$$\delta(S, 0, \epsilon) = (S, X)$$

$$\delta(S, 1, X) = (T, \epsilon)$$

Formally, a PDA M is a 6-tuple (Q, Σ , Γ , δ , q_0 , F) where

- *Q* is a finite set called the **states.**
- Σ is the set of input *alphabets*.
- Γ is the set of **Stack alphabets**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the **transition function**
- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.

$$[\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\} \text{ and } \Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}]$$

The Language of the PDA P is the set of strings the PDA accepts, i.e.

$$L = \{w | P \text{ accepts } w\}$$

- If $\mathcal{L}(P) = L$, then the PDA P recognizes L
- Stack alphabet can be different from the input alphabet

$$\delta(S, 0, \epsilon) = (S, X)$$

$$\delta(S, 1, X) = (T, \epsilon)$$

$$\delta(T, 1, X) = (T, \epsilon)$$

$$\delta(T, \epsilon, \$) = (F, \$)$$

Thank You!