Разработка подхода к решению задачи формирования ассортимента товаров точки розничной торговли

Аннотация

Компании розничной торговли уделяют особое внимание процессу формирования ассортимента точки розничной торговли с целью повысить прибыль компании. Данный процесс подразумевает анализ большого количества данных о продажах, отнимает у сотрудников много времени и сил. Автоматизация этого процесса позволит увеличить скорость работы не только отдельно взятого сотрудника, но и всей компании. В данной работе проведен сравнительный анализ аналогов и обоснованы преимущества использования искусственных нейронных сетей для решения такого рода задач. Разработан подход к решению, рассмотрены различные варианты организации структуры сети, а именно - входного и выходного слоев сети, и представлен наиболее содержательный способ. Сформулированы актуальные задачи для развития работы в будущем.

Введение

У компаний, занимающихся розничной торговлей, часто возникает задача анализа продаж. Анализ проводят с целью определить две группы товаров:

- 1. товары, которые продаются хорошо (например, в большом количестве и по приемлемым ценам),
- 2. товары, которые продаются плохо (например, слишком мало продаж).

Наличие товаров второй группы говорит о недополученной прибыли от продаж. По результатам анализа необходимо внести такие изменения в ассортимент товаров, чтобы недополученную прибыль свести к минимуму.

Проблема заключается в трудоемком процессе формирования ассортимента товара для точки розничной торговли, так как процесс строится на основе анализа большого количества данных о продажах. На данный момент такая задача чрезвычайно актуальна в силу того, что ее решение отнимает у сотрудников много времени и сил. Использование программного приложения, основанного на специальном подходе, для автоматизации вышеуказанного процесса позволит направлять ресурсы компании на более важные задачи, например, поиск новых клиентов, увеличение занимаемой доли рынка и другие.

Автоматизация анализа данных и процесса формирования ассортимента позволит увеличить скорость работы не только отдельно взятого сотрудника, но и всей компании. Использование нейронных сетей в качестве основы для системы формирования ассортимента - новая область применения данного инструмента.

Объектом исследования данной работы является ассортимент точки розничной торговли и связанные с ним свойства. Предмет исследования - процесс формирования ассортимента точки розничной торговли.

Цель - разработать подход к решению задачи формирования ассортимента товаров точки розничной торговли.

Для достижения поставленной цели требуется описать процесс формирования ассортимента и разработать структуру решаемых задач, пригодную для автоматизации.

Обзор предметной области

Основные группы методов

Для решения поставленной задачи формирования ассортимента можно использовать различные подходы и методы. Далее представлена группировка методов на три основные группы.

Формализованные методы

В [1] под формализованными методами подразумевают следующие:

- методы экстраполяции,
- методы из теории массового обслуживания,
- статистические методы.

Методы прогнозирования

В [2,3] выделяют в отдельную группу методы прогнозирования и включают сюда следующие:

- балансовые методы,
- методы из теории исследования операций,
- эконометрические методы.

К последней группе относят методы работы с экономическими параметрами и характеристиками [3].

Методы оптимизации

Методы оптимизации широко используются в задачах анализа поведения целевых функций. Например, методы поиска экстремума функции (градиентный спуск и др.).

Критерии сравнения аналогов

Для сравнения аналогов выделим наиболее важные на взгляд авторов критерии оценки.

Нелинейность

Формирование ассортимента - нелинейный процесс (показано на примере анализа спроса в [2,3]). Нелинейность процесса формирования ассортимента обязательно нужно учитывать.

Математическая модель

Разработка математической модели, поиск аналитического вида функции процесса формирования ассортимента - невыполнимая задача [1], поэтому нужен инструмент, не требующий наличие математической модели.

Использование опыта

При формировании ассортимента анализируется большое количество данных о продажах - так называемый опыт продаж, который играет главную роль при принятии решений.

Таблица сравнения по критериям

Результаты сравнения вышеперечисленных аналогов и исследуемого инструмента - искусственной нейронной сети - по определенным выше критериям приведены в таблице далее.

	Формализованные методы	Методы прогнозирования	Методы оптимизации	Нейронные сети
Учет нелинейности	Нет	Есть	Есть	Есть
Математическая модель	Нужна	Нужна	Нужна	Не нужна
Использование опыта	Нет	Есть	Нет	Есть

Выводы по итогам сравнения

По итогам сравнения можно сделать вывод, что для решения поставленной задачи формирования ассортимента товаров подходящим инструментом является искусственная нейронная сеть. Использование данного инструмента позволяет моделировать нелинейность исследуемого процесса, не требует наличия математической модели процесса (или аналитического вида функции), и, главное, позволяет в полной мере использовать накопленный опыт продаж.

Выбор метода решения

В результате сравнения аналогов были показаны преимущества использования искусственной нейронной сети в качестве инструмента.

Искусственная нейронная сеть не требует наличия математической модели процесса или наличия аналитического представления функции зависимости параметров исследуемого процесса. Искусственная нейронная сеть позволяет моделировать нелинейность поведения исследуемого процесса формирования ассортимента точки розничной торговли. Моделирование нелинейности процесса в некоторых случаях позволяет выявлять *шаблоны поведения* процесса в определенных условиях. Выявленные шаблоны поведения могут помочь при исследовании временных рядов один из видов представления данных о продажах. Временные ряды, в свою очередь, подвержены влиянию эффектов сезонности и наличия трендов, искажающих действительную картину (на основе выявленных шаблонов можно проводить десезонализацию и детрендинг). Главное преимущество использования искусственной нейронной сети заключается в том, что этот инструмент позволяет в полной мере использовать накопленный опыт продаж (после предварительной обработки данных можно формировать обучающие выборки и выборки для тестирования).

Более того, как показано в [4], использование искусственной нейронной сети при решении задач прогнозирования продаж (с целью определить оптимальный ассортимент с точки зрения увеличения прибыли) может обеспечить разницу между прогнозируемыми результатами и фактическими данными всего лишь на 10%.

Однако, использование искусственной нейронной сети требует от разработчиков точно определиться с архитектурой сети (например, рекуррентные сети, сети Хопфилда, или сети на основе метода обратного распространения ошибки).

Построим подход к задаче формирования ассортимента на основе использования нейронной сети. Архитектуру нейронной сети будем рассматривать с точки зрения количества нейронов на входном и выходном слоях, зависящего от объекта исследования и его свойств. Другие ключевые элементы архитектуры (количество внутренних слоев, функции активации нейронов и пр.) будут рассмотрены в других работах в качестве продолжения данного исследования.

Описание метода решения

При решении задачи формирования ассортимента товаров анализируют историю поведения товара, например, как этот товар покупался в прошлом (до момента начала анализа) [1,2]. Прогнозируя поведение товара в будущем, можно делать выводы, увеличит ли изменение количества товара суммарную прибыль точки розничной торговли [2].

Множество факторов, с помощью которых можно описать товар, условно разделим на внешние и внутренние [3]. Внешние факторы характеризуют особенности точки реализации товара: место расположения (шаговая доступность, наличие каких-либо элементов инфраструктуры поблизости); средний финансовый уровень покупателей; вкусовые предпочтения, сформированные с течением времени и др. К внутренним факторам можно отнести себестоимость товара, закупочную и продажную цены, физические размеры товара (высота, ширина, емкость или объем упаковки) и др.

Общий подход к решению

Решение задачи формирования ассортимента путем использования искусственных нейронных сетей, в первую очередь, требует определиться с количеством нейронов на входном и выходом слоях [4].

Количество нейронов на входном слое может быть определено на основании выделенных факторов (свойств *p-i*, как показано на рис. 1), описывающих товар конкретной точки реализации (внутренние и внешние факторы, как упоминалось ранее). Количество факторов может быть достаточно велико, возможно потребуется прибегнуть к снижению размерности факторного пространства. Снижение может быть произведено путем экспертной оценки факторов в отдельности и их взаимного влияния друг на друга. После отсеивания факторов экспертом не исключено использование методов статистического анализа для демонстрации состоятельности обозначенного набора факторов. В дополнение к методу экспертной оценки (в некоторых случаях - вместо) могут использоваться методы линейного дискриминантного анализа.

Рисунок 1. Общее представление о структуре нейронной сети

На рис. 1 представлен случай, когда на входном слое количество нейронов определяется количеством свойств p-1, p-2, ..., p-N, характеризующих товар.

Количество нейронов на выходном слое зависит от цели применения искусственной нейронной сети. Например, необходимо принять решение в отношении каждого товара: оставлять данный товар или убирать. При такой постановке задачи выходной нейрон - один с бинарным результатом (на рис. 1 отмечен как *R*): 1 - товар оставлять, 0 - товар убирать. Если же рассматривать задачу прогнозирования (какой-либо характеристики товара, например, маржинальности или прибыли) тогда нейрон на выходном слое потребуется тоже один, а ответ для этой задачи *R* - вещественное число, соответствующее будущему значению спроса, прибыли и пр.

Особый подход к решению

Особый интерес представляет задача подробного анализа товаров. Подробный анализ подразумевает исследование товаров с двух точек зрения:

- 1. Что продается хорошо (что можно продублировать)?
- 2. Что продается плохо (что необходимо удалить)?

Решение первой задачи на выходе дает перечень товаров, для которых необходимо найти место в точке реализации (множество необходимых мест обозначим M-1). Решение второй дает перечень товаров, которые необходимо удалить, то есть освобождаются определенные места (множество освобождающихся мест - M-2).

Освобождение мест может проходить по двум сценариям:

- 1. товар удаляется полностью (больше в этой точке реализации не будет продаваться),
- 2. товар удаляется частично (например, когда товар занимал несколько мест, и продажи товара были не со всех мест некоторые места простаивали имеет место недополученная прибыль).

В связи с наличием у товара физических характеристик множества *М-1* и *М-2* могут полностью совпадать (необходимые места *М-1* автоматически компенсируются освобождающимися местами *М-2*), но и могут не пересекаться вовсе. Последний случай (обозначим как *Х-случай*) усложняет анализ, и возникают дополнительные задачи:

- 1. Найти место для установки товаров-дубликатов.
- 2. Найти товары, которые целесообразно поставить на места удаляемых товаров.

На рис. 2 представлен случай с пересечением множеств М-1 и М-2.

Рисунок 2. Представление задачи в виде множеств

Пусть M-U - пересечение множеств, определяемое так: M-U = M-1 \cap M-2. M-1 и M-2 могут совпадать частично, то есть множество M-U не пусто (см. рис. 2).

Формируя полный список задач, отсортируем их по возрастанию сложности:

- 1. Распределение товаров-дубликатов на места M-U дублировать известные товары на известные места.
- 2. Рассмотреть *X-случай* для множеств: { (*M-1 M-U*), (*M-2 M-U*) }, а именно:
 - 1. Найти места для товаров, которые требуется продублировать (необходимо так организовать дополнительный поиск мест, чтобы освободить места *М-1 М-U*, на которые установка дубликатов целесообразна).
 - 2. Задача поиска товаров на замену для заполнения мест M-2 M-U.

Задача поиска товаров на замену включает рассмотрение не только товаров конкретной точки реализации, но и товары других аналогичных точек, и, более того, все товары конкретной компании, занимающейся розничной торговлей.

В искусственной нейронной сети, решающей вышеописанный подход, на входном слое должно быть столько нейронов, сколько товаров рассматривается для конкретной точки реализации (как сообщать нейронной сети характеристики этих товаров - *открытая задача*). На выходном слое количество нейронов то же, что и на входном, но каждый нейрон отвечает за соответствующий товар и несет информацию из следующего списка (в скобках указан код результата для примера):

- 3. Данный товар оставить без изменений (0).
- 4. Данный товар необходимо удалить в количестве N штук (-N).
- 5. Данный товар надо дублировать и поставить на место M-i (i целочисленная характеристика места, например, номер).

Выдача информации в таком виде однозначно определяет перечень действий по формированию ассортимента товара точки реализации.

Представляет интерес для дальнейшего исследования вопрос предоставления информации о причинах дублирования или удаления товаров. Так же требуется в дальнейшем решить такие задачи: выбор количества внутренних слоев и количества нейронов на них, выбор функций активации, реализация и апробирование искусственной нейронной сети, моделирующей логику, представленную выше.

Заключение

В данной статье представлен подход к решению задачи формирования ассортимента товаров точки розничной торговли с примерами формирования архитектуры искусственной нейронной сети. Выделены критерии оценки и обоснованы основные преимущества искусственных нейронных сетей перед аналогами: возможность моделирования нелинейных процессов, отсутствие необходимости иметь аналитический вид зависимости или математическую модель, и, главное, возможность учитывать накопленный опыт.

В качестве примеров формирования архитектуры нейронной сети были рассмотрены различные варианты количества нейронов на входном и выходном слое, начиная от простых случаев: N нейронов на входном слое (отвечают за N характеристик товара) и 1 нейрон на выходном слое (значение зависит от задачи), заканчивая сложными - количество нейронов на входном и на выходном слоях соответствуют количеству рассматриваемых товаров. Также было отмечено, что в последнем случае возникают дополнительные задачи: передача характеристик товаров нейронной сети и получение по результатам работы информации о причинах тех или иных действий в отношении товара (оставление без изменений, удаление или дублирование).

Следует заметить, что особый интерес для дальнейшего исследования представляют практические задачи разработки и апробирования искусственной нейронной сети, реализующей представленный в работе подход.

Список литературы

1. Тихонов Э.Е. Методы прогнозирования в условиях рынка: учебное пособие. – Невинномысск, 2006. – 221 с.

- 2. Бугорский В.Н., Никитин Н.А. Нейронные сети в управлении розничной торговлей // IT-менеджмент. Реальная коммерция. Прикладная информатика 2006. № 2. С. 34 41.
- 3. Ибрагимов А.У., Ибрагимова Л.А., Гильмуллина Г.И. Применение методов искусственного интеллекта для анализа и прогноза товарооборота розничного торгового предприятия // Вестник Самарского государственного аэрокосмического университета 2012. № 1 (32). С. 233-241.
- 4. Penpece D. Elma O.E. Predicting Sales Revenue by Using Artificial Neural Network in Grocery Retailing Industry: A Case Study in Turkey / International Journal of Trade, Economics and Finance. October 2014. Vol. 5. No. 5. PP. 435 440.