TSDA Lecture 5

For more notes on the discrete FT, see the pdf titled 05_discrete-fourier-transform.pdf in Lecture notes

For all work on Fourier series, see vanderplas_lombscargle.pdf in Reading.

In this lecture:

- 1. The discrete Fourier transform
- 2. The Nyquist frequency
- 3. What is aliasing?
- 4. The periodogram
- 5. Lomb Scargle for unevenly sampled data

Discrete Fourier transforms

Take board notes from here.

Nyquist frequency & aliasing

Suveges (LSST data science)

The highest detectable frequency in a time series sampled at f_s is $f_s/2 = f_c$ (Nyquist frequency).

Nyquist frequency & aliasing

Nyquist frequency

$$f_c \equiv \frac{1}{2\Delta}$$

where Δ is the sampling interval.

If a sine wave of frequency f_c is sampled at its positive peak value, the next sample in Δ will be at the trough.

Critical sampling of a sine wave is 2 points per cycle.

Undersampling of the sinusoid allows there to be a lower-frequency alias, which is a different function that produces the same set of samples.

DFT - sampling

Fast Fourier Transform

- Algorithm that does the transform of N points in a time proportion to N log N, rather than the N² timing of a brute force implementation. Cooley & Tukey 1965
- Probably one of the most well used transforms on the planet.

Exercise

Use direct numerical integration to do a numerical FT of a sine wave.

Compare the timing with an off-the-shelf FFT routine.

How many oscillations can you fit into your region of integration before the FFT accelerates away from the direct method?

Nyquist good news: Sampling theorem

- If a continuous function h(t), which is sampled at an interval Δ , happens to be bandwidth limited to frequencies $f < f_c$, then h(t) is completely determined by its samples h_n .
- This is the **sampling theorem**.
- Think about a signal passed through an amplifier with a known frequency response.

Nyquist bad news: Aliasing

- If you sample a continuous function that is **not** bandwidth limited to less than the Nyquist frequency, then power at frequencies outside the range $-f_c < f < f_c$ is spuriously moved into that range.
- This is called aliasing

Nyquist bad news: Aliasing

- Consider two signals of frequencies f₁ and f₂
- These signals give the same samples only if f_1 and f_2 differ by multiples of $1/\Delta$.
- In our example: f₂ = 3 f₁

Nyquist bad news: Aliasing

- Consider a real signal (red) of frequency 9 cycles per 10 seconds, i.e. fred = 0.9.
- You are sampling at $\Delta = 1s$, i.e. $f_s = 1$.
- The real frequency (f_{red}) is above the Nyquist frequency ($f_c = 0.5$) so you don't detect it
- But the real period can beat with the sampling period to give a frequency below the Nyquist frequency $f_{blue} = f_s f_{red}$
- So power from a frequency outside your critical range has "leaked" or "aliased" into your range.

Power Spectral Density & Periodogram

• The power spectral density (or power spectrum) is given by:

$$\mathcal{P}_g \equiv |\mathcal{F}\{g\}|^2$$

where $F(g) = \hat{g}$ (see earlier in course notes) is the Fourier transform of g (a function of t)

• The classical periodogram is defined by Schuster (1898) as:

$$P_S(f) = \frac{1}{N} \Big| \sum_{n=1}^{N} g_n e^{-2\pi i f t_n} \Big|^2$$

while having a similar form as above, it's defined in the context of the discrete Fourier transform.

Power Spectral Density & Periodogram

- While astronomers often use the terms *power spectrum* and *periodogram* interchangeably, we should be aware that the periodogram is an <u>estimate</u> of the power spectrum.
- This is because we're estimating the power spectrum (which is for a continuous underlying function) by discrete samples of this continuous function.
- Also, there are a few other quirks related to periodograms...

Lomb-Scargle periodogram

- Widely used in astronomy
- Can deal with uneven sampling

Lomb-Scargle periodogram

$$\begin{split} P_{LS}(f) &= \frac{1}{2} \Bigg\{ &\qquad \bigg(\sum_n g_n \cos(2\pi f[t_n - \tau]) \bigg)^2 \bigg/ \sum_n \cos^2(2\pi f[t_n - \tau]) \\ &\qquad + \bigg(\sum_n g_n \sin(2\pi f[t_n - \tau]) \bigg)^2 \bigg/ \sum_n \sin^2(2\pi f[t_n - \tau]) &\qquad \bigg\} \\ &\qquad \qquad \tau &= \frac{1}{4\pi f} \tan^{-1} \bigg(\frac{\sum_n \sin(4\pi f t_n)}{\sum_n \cos(4\pi f t_n)} \bigg) \end{split}$$

where tau is specified for each f to ensure time-shift invariance

- 1. Periodogram reduces to classical form in the case of equally spaced observations
- 2. Periodogram's statistics are analytically computable
- 3. Periodogram is insensitive to global time-shifts in data

Lomb-Scargle periodogram

• Remember the effect of sampling? (DFT, convolution)

Lomb-Scargle periodogram

- FT of sampling looks like random noise
- No exact aliasing of the true signal

Lomb-Scargle periodogram

Denser sampling helps, but doesn't get rid of the noise in the FT.

Lomb-Scargle periodogram

- Does the Nyquist limit exist in unevenly sampled data?
- Not in the same sense as for the DFT it is a direct result of the even sampling of a Dirac comb.
- Some kinds of aliasing can still occur though, so best to be careful and use simulations.

Mean sampling 7 days

Period recovered 2.58 hours!

Lomb Scargle Periodogram

The non-uniform Nyquist limit

Eyer & Bartholdi (1999), Koen (2006)

$$\Delta t_i = t_i - t_0 = n_i p$$

Choose p to the largest value that allows each time interval to be written as an exact integer multiple of this factor p.

An exercise

- 1. Use an FFT algorithm to make a periodogram of the AirPassengers.csv dataset.
 - 1.1. What is the Nyquist frequency?
 - 1.2.Do you detect any frequencies in the data?
- 2. Run the F86_ogle234.dat file through a Lomb-Scargle routine and plot the periodogram.