Задача 0.1. Нека X е крайно множество. Базис за матроид (X, \mathcal{F}) наричаме максимално по включване множество за $\mathcal{P}(X) \cap \mathcal{F}$. $C \mathcal{B}(\mathcal{F})$ означаваме множеството от базиси за (X, \mathcal{F}) .

- 1. Ако B_1 и B_2 са базиси, да се докаже, че $|B_1| = |B_2|$.
- 2. Нека $w', w'' : X \to \mathbb{Q}$, като w'(x) w''(x) = w'(y) w''(y) за всеки $x, y \in X$. Да се докаже, че за всеки два базиса $B_1, B_2 \in \mathcal{F}$ е в сила, че:

$$w'(B_1) - w'(B_2) = w''(B_1) - w''(B_2).$$

Заключете, че ако B^* е решение на оптимизационния проблем:

$$\max\{w'(B) \mid B \in \mathcal{B}(\mathcal{F})\}, \ m.e. \ w'(B^*) = \max\{w'(B) \mid B \in \mathcal{B}(\mathcal{F})\},\$$

mo:

$$w''(B^*) = \max\{w''(B) \mid B \in \mathcal{B}(\mathcal{F})\}.$$

3. Аргументирайте, че алчният алгоритъм, приложен за $w:X\to \mathbb{Q}$ ще намери решение на оптимизационния проблем:

$$\max\{w(B) \mid B \in \mathcal{B}(\mathcal{F})\}.$$

4. Да се модифицира алчният алгоритъм така, че да при дадена $w: X \to \mathbb{Q}$ да намира решение на оптимизационния проблем:

$$\min\{w(B) \mid B \in \mathcal{B}(\mathcal{F})\}.$$

Задача 0.2. Нека X е крайно множество, а $\mathcal{F} \subseteq \mathcal{P}(X)$ е затворена надолу фамилия от подмножества на X. За естествено число $k \ge 1$ казваме, че (X, \mathcal{F}) е k-матроид, ако за всеки $A, B \in \mathcal{F}$ е изпълнено, че:

$$|A| > k|B| \Rightarrow \exists a \in A \setminus B(B \cup \{a\} \in \mathcal{F}).$$

За естествено число $k \ge 1$ казваме, че (X, \mathcal{F}) е k-балансирано, ако за всяко $Y \subseteq X$ и всеки две максимални по включване подмножества $A, B \in \mathcal{F} \cap \mathcal{P}(Y)$ е изпълнено, че $|A| \le k|B|$.

- 1. Да се докаже, че (X,\mathcal{F}) е k-матроид точно когато \mathcal{F} е k-балансирано.
- 2. Да се докаже, че за всеки k-матроид (X, \mathcal{F}) и всяка $w : X \to \mathbb{Q}^+$, алчният алгоритъм приложен за (X, \mathcal{F}) и w, връща множество $A \in \mathcal{F}$, за което:

$$kw(A) \ge \max |\{w(B) \mid B \in \mathcal{F}\}|.$$

3. Нека G = (V, E) е ориентиран граф, а $\mathcal{F} \subseteq \mathcal{P}(E)$ е множеството от всички хамилтонови цикли и всички обединения от непресичащи се прости пътища. Да се докаже, че (E, \mathcal{F}) е 3-матроид. Следва ли оттук, че алчният алгоритъм за (E, \mathcal{F}) ще намери 3-апроксимация на задачата за максимален хамилтонов цикъл? Защо?

Упътване 0.1. 1. Всеки матроид е балансирано множество.

- 2. Това, което трябва да се докаже е еквивалентно на $w'(B_1) w''(B_1) = w'(B_2) w''(B_2)$. От друга страна, даденото е еквивалентно на w'(x) w''(x) = w'(y) w''(y) = c, където c не зависи от $x, y \in X$. Заключете, че $w'(B_1) w''(B_1) = c|B_1$ и $w'(B_2) w'(B_2'') = c|B_2|$. Довършете, като използвате първата част.
- 3. Приложете предишната подточка.
- 4. Първо, аргументирайте, че алчният алгоритъм (при неотрицателна функция w) намира базис. След това, разгледайте:

$$w'(x) = w(x) - c$$
, където $c = \min\{w(y) \mid y \in X\}$.

Аргументирайте, че $w'(x) \ge 0$ и резултатът от алчния алгоритъм за (X, \mathcal{F}, w) и (X, \mathcal{F}, w') е един и същ. Използвайте предишната подточка, за да завършите.

5. Сменете знака функцията.

Упътване 0.2. 1. Симулирайте доказателството, че матроид е точно балансирано множество.

- Ако (X, \mathcal{F}) е k-балансирано и $A, B \in \mathcal{F}$, за които |A| > k|B|, разгледайте $Y = A \cup B$. Аргументирайте, че ако B не е максимално по включване подмножество за $\mathcal{P}(Y) \cap \mathcal{F}$, то наистина има $a \in A \setminus B$, за което $B \cup \{a\} \in \mathcal{F}$.
- Аргументирайте, че ако B е максимално по включване подмножество за $\mathcal{P}(Y) \cap \mathcal{F}$, то има A', което е максимално по включване за $\mathcal{P}(Y) \cap \mathcal{F}$ и съдържа A. Заключете, че $|A'| \geq |A|$ и стигнете до противоречие.
- В обратната посока, ако (X, \mathcal{F}) е k-матроид и $A, B \in \mathcal{P}(Y) \cap \mathcal{F}$ са максимални по включване, съобразете, че ако |A| > k|B|, то има $a \in A \setminus B$, за което $B \cup \{a\} \in \mathcal{P}(Y) \cap \mathcal{F}$.
- 2. Както и в доказателството за матроиди, разгледайте $X = \{x_1, x_2, \dots, x_n\}$, така че:

$$w(x_1) \ge w(x_2) \ge \cdots \ge w(x_n)$$
 и $Y_i = \{x_1, x_2, \dots, x_i\}.$

и за $B \subseteq X$, дефинирайте $B_i = B \cap Y_i$.

• Покажете, че:

$$w(B) = \sum_{x \in B} w(x) = \sum_{i=1}^{n} w(x_i)(|B_i| - |B_{i-1}|) = \sum_{i=1}^{n-1} |B_i|(w(x_i) - w(x_{i+1})) + |B_n|w(x_n).$$

- Покажете, че ако A е резултатът от алчния алгоритъм за (X,\mathcal{F}) и w, то $A_i \in \mathcal{P}(Y_i) \cap \mathcal{F}$ е максимално по включване
- Заключете, че за всяко $B \in \mathcal{F}$, е в сила, че $k|A_i| \ge |B_i|$.
- Заместете в изразите от точка 1 и довършете.
- 3. Разгледайте $A, B \in \mathcal{F}$, за които |A| > 3|B|. Съобразете, че B не е хамилтонов цикъл, а обединение от непресичащи се пътища B_1, B_2, \ldots, B_m . Нека $B^+ = \{u \in V \mid \exists v((u,v) \in B)\}$. Аналогично, нека $B^- = \{u \in V \mid \exists v((v,u) \in B)\}$ са множеството от върхове, в които влиза ребро от B.
 - Покажете, че $|B^-| = |B^+| = |B|$.
 - Разгледайте ребро $a \in A \setminus B$, ако a не е допустимо да се добави към B, то a = (u, v), тогава $u \in B^+$ или $v \in B^-$.
 - Аргументирайте, че при горното разсъждение всеки връх $u \in B^+$ ($v \in B^-$) е съпоставен най-много на едно ребро $a \in A \setminus B$.
 - Заключете, че $|A \setminus B| < |B^+| + |B^-| < 2|B|$. Довършете.

За последния въпрос, задължително ли е алчният алгоритъм да върне хамилтонов цикъл?