Bit bifurcation by cotranscriptional folding

Bit bifurcation by cotranscriptional folding

May 1, 2017

Oritatami system

Oritatami Systems operate on the triangular grid.

secondary structure.

Oritatami system

Oritatami Systems operate on the triangular grid. RNA primary structure is modeled as a sequence over Σ . Ex). A primary structure GCAAGCUCUACG may take this

Oritatami system

Oritatami Systems operate on the triangular grid.

RNA primary structure is modeled as a sequence over Σ .

Ex). A primary structure GCAAGCUCUACG may take this secondary structure.

- Hydrogen bonds

An oritatami system is a 6-tuple $\Xi = (\Sigma, \mathcal{H}, \alpha, \delta, \sigma, w)$, where w A primary sequence.

 $\mathcal{H} \subseteq \Sigma \times \Sigma$ Specifying between which types of beads can form a hydrogen-bond-based interaction.

 $\delta \geq 1$ delay time.

 σ An initial conformation called *seed*.

 $\alpha \in \mathbb{N}$ Beads can form at most α bonds.

Elongation

Ex.) $\mathcal{H} = \{(a, a), (b, b), (c, c), (d, d)\}, \text{ delay time } \delta = 3,$ primary structure $w = b \bullet ac \bullet bd \bullet c \cdots$.

---- Hydrogen bonds

- seed

Elongation

Ex.) $\mathcal{H} = \{(a, a), (b, b), (c, c), (d, d)\}, \text{ delay time } \delta = 3, \text{ primary structure } w = b \bullet ac \bullet bd \bullet c \cdots$.

---- Hydrogen bonds
----- seed

Elongation

Ex.) $\mathcal{H} = \{(a, a), (b, b), (c, c), (d, d)\}, \text{ delay time } \delta = 3,$ primary structure $w = b \bullet ac \bullet bd \bullet c \cdots$.

---- Hydrogen bonds

-----seed

Elongation

Ex.) $\mathcal{H} = \{(a, a), (b, b), (c, c), (d, d)\}, \text{ delay time } \delta = 3,$ primary structure $w = b \bullet ac \bullet bd \bullet c \cdots$.

---- Hydrogen bonds

Elongation

Ex.) $\mathcal{H} = \{(a, a), (b, b), (c, c), (d, d)\}, \text{ delay time } \delta = 3,$ primary structure $w = b \bullet ac \bullet bd \bullet c \cdots$.

Hydrogen bonds

seed

Elongation

Ex.) $\mathcal{H} = \{(a, a), (b, b), (c, c), (d, d)\}, \text{ delay time } \delta = 3, \text{ primary structure } w = b \bullet ac \bullet bd \bullet c \cdots$.

Elongation

Ex.) $\mathcal{H} = \{(a, a), (b, b), (c, c), (d, d)\}, \text{ delay time } \delta = 3,$ primary structure $w = b \bullet ac \bullet bd \bullet c \cdots$.

---- Hydrogen bonds

---- seed

Elongation

Ex.) $\mathcal{H} = \{(a, a), (b, b), (c, c), (d, d)\}, \text{ delay time } \delta = 3,$ primary structure $w = b \bullet ac \bullet bd \bullet c \cdots$.

---- Hydrogen bonds

--- seed

Elongation

Ex.) $\mathcal{H} = \{(a, a), (b, b), (c, c), (d, d)\}, \text{ delay time } \delta = 3,$ primary structure $w = b \bullet ac \bullet bd \bullet c \cdots$.

---- Hydrogen bonds

Elongation

Ex.) $\mathcal{H} = \{(a, a), (b, b), (c, c), (d, d)\}, \text{ delay time } \delta = 3,$ primary structure $w = b \bullet ac \bullet bd \bullet c \cdots$.

---- Hydrogen bonds

Binary counter

Figure: Oritatami binary counter.

Theme

We design an oritatami system that self-assembles an n-bit fraction of the Heighway dragon.

Figure: 6-bit Heighway dragon by the proposed oritatami system.

What is Heighway dragon?

Heighway dragon

The heighway dragon is a kind of self-similar fractal dragon curve. It can be described by a binary sequence that is called "paperfolding sequence".

Figure: 6-bit Heighway dragon.

└-Heighway dragon

Paperfolding sequence

Paperfolding sequence

1-bit Heighway Dragon

Paper folding sequence : P

$$P = R$$

Heighway dragon

∟Paperfolding sequence

2-bit Heighway Dragon

Paper folding sequence : ${\cal P}$

$$P = R R L$$

Heighway dragon

∟Paperfolding sequence

3-bit Heighway Dragon

Paper folding sequence : ${\cal P}$

$$P = RRLRRLL$$

6-bit Heighway Dragon

Paperfolding sequence : P

$$P = RRLRRLL \dots$$

Figure: 6-bit Heighway dragon.

Bit bifurcation by cotranscriptional folding

└─Heighway dragon

└─DFAO

DFAO

The paperfolding sequence can be generated by the deterministic finite automaton with output (DFAO).

Bit bifurcation by cotranscriptional folding

Heighway dragon

DFAO

DFAO

Input : $i = 0 1 2 3 4 5 \dots$

Output : P_i (Paperfolding sequence)

Figure: DFAO for Paperfolding sequence.

Figure: DFAO for Paperfolding sequence.

Paperfolding sequence

$$i = 0 1 2 3 4 5 \dots$$

 $P_i =$

* Input the base-2 representation of i from its LSB. $0 \rightarrow 0$

Figure: DFAO for Paperfolding sequence.

Paperfolding sequence

$$i = 0 \ 1 \ 2 \ 3 \ 4 \ 5 \dots$$

 $P_i = R$

* Input the base-2 representation of i from its LSB. $0 \rightarrow 0$

Figure: DFAO for Paperfolding sequence.

Paperfolding sequence

$$i = 0 \, 1 \, 2 \, 3 \, 4 \, 5 \, \dots$$
 $P_i = R$

* Input the base-2 representation of i from its LSB. $1 \rightarrow 1$

Figure: DFAO for Paperfolding sequence.

Paperfolding sequence

$$i = 0 \ 1 \ 2 \ 3 \ 4 \ 5 \dots$$

 $P_i = R \ R$

* Input the base-2 representation of i from its LSB. $1 \rightarrow 1$

Figure: DFAO for Paperfolding sequence

Paperfolding sequence

$$i = 0 1 2 3 4 5 \dots$$

 $P_i = R R$

* Input the base-2 representation of i from its LSB. $2 \rightarrow 10$

Figure: DFAO for Paperfolding sequence

Paperfolding sequence

$$i = 0 1 2 3 4 5 \dots$$

 $P_i = R R$

* Input the base-2 representation of i from its LSB. $2 \rightarrow 10$

Figure: DFAO for Paperfolding sequence.

Paperfolding sequence

$$i = 0 1 2 3 4 5 \dots$$

$$P_i = R R L$$

* Input the base-2 representation of i from its LSB. $2 \rightarrow 10$

Figure: DFAO for Paperfolding sequence.

Paperfolding sequence

$$i = 0 1 2 3 4 5 \dots$$

 $P_i = R R L$

* Input the base-2 representation of i from its LSB. $3 \rightarrow 11$

Figure: DFAO for Paperfolding sequence.

Paperfolding sequence

$$i = 0 1 2 3 4 5 \dots$$

 $P_i = R R L R$

* Input the base-2 representation of i from its LSB. $3 \rightarrow 11$

Figure: DFAO for Paperfolding sequence.

Paperfolding sequence

$$i = 0 1 2 3 4 5 6...$$

 $P_i = R R L R R L L...$

Bit bifurcation by cotranscriptional folding

Heighway dragon

Main results

Implementation

The paperfolding sequence can be generated by the deterministic finite automaton with output (DFAO).