

Alunos:

Cauan Nascimento Silva Alexandre Minoru Zanoni Yassaka

Disciplina: Programação orientada a objetos

Professor: Carlos Verissimo

Centro Universitário Senac – SANTO AMARO

TEMA: Ferramenta de monitoramento de Maquinas e Equipamentos

1- Descrição do Domínio do Problema:

1.1 Descrição

Uma ferramenta que auxiliara o monitoramento de maquinas e equipamentos, armazenando informações e trabalhando com os dados de forma organizada e intuitiva, podendo acompanhar seu desempenho, estabelecendo uma comunicação entre o dispositivo e o operador.

2- Requisitos Funcionais e Não Funcionais:

2.1- Requisitos Funcionais

RF1 Registro de Dispositivos:

Permitir o cadastro de diferentes tipos de máquinas e equipamentos a serem monitorados.

RF2 Conexão e Comunicação:

Estabelecer conexão com os dispositivos para coletar dados.

Suportar diferentes protocolos de comunicação (por exemplo, TCP/IP, MQTT) para receber informações dos dispositivos.

RF3 Coleta de Dados:

Capturar dados operacionais das máquinas e equipamentos, como temperatura, pressão, velocidade, nível, etc.

Armazenar os dados coletados em um banco de dados.

RF4 Análise em Tempo Real:

Realizar análise em tempo real dos dados coletados para identificar anomalias ou condições fora do padrão.

Gerar alertas imediatos caso sejam detectadas situações críticas.

RF5 Visualização de Dados:

Fornecer uma interface gráfica para visualizar os dados coletados e o status das máquinas.

Apresentar gráficos, tabelas e indicadores de desempenho.

RF6 Histórico e Relatórios:

Manter um histórico dos dados coletados para permitir análises retrospectivas.

Gerar relatórios periódicos sobre o desempenho das máquinas e equipamentos.

RF7 Configuração de Alertas:

Permitir a configuração de parâmetros de alerta personalizados para cada dispositivo.

Notificar os usuários por meio de mensagens ou e-mails quando um alerta for acionado.

2.2- Requisitos Não Funcionais:

RNF1 Segurança:

Garantir a segurança dos dados coletados, transmitidos e armazenados, utilizando criptografia e medidas de proteção.

RNF2 Escalabilidade:

Lidar com um grande número de dispositivos e dados sem comprometer o desempenho.

RNF3 Disponibilidade:

Assegurar alta disponibilidade da ferramenta para que o monitoramento seja contínuo e confiável.

RNF4 Desempenho:

Responder às consultas e exibir dados de forma rápida, garantindo uma experiência fluida para os usuários.

RNF5 Usabilidade:

Oferecer uma interface intuitiva e de fácil uso para que os usuários possam configurar e interpretar os dados facilmente.

RNF6 Compatibilidade:

Ser compatível com diferentes dispositivos e sistemas operacionais, permitindo acesso a partir de diversas plataformas.

RNF7 Manutenção:

Facilitar a manutenção do sistema, permitindo atualizações e correções de forma eficiente.

RF8 Integração com Sistemas Externos:

Integrar-se a sistemas de gestão já existentes na organização para compartilhar informações relevantes.

3- Casos de Uso (UC)

3.1.1 - Diagrama

3.1.2 Detalhamento caso de uso 1 – Ferramenta de monitoramento de máquinas e equipamentos

Nome do caso de uso	1.1-Ligar Máquina	
Atores	Operador de Máquina	
Triggers	Necessidade de ligar a máquina	
Pré-Requisito	Estar logado	
Fluxo de eventos	O operador loga, procura pela máquina, clica sobre e ela e aperta o botão "ligar"	

Nome do caso de uso	1.2-Iniciar Monitoramento
Atores	Operador de Máquina
Triggers	Ligar a máquina
Pré-Requisito	A máquina estar ligada
Fluxo de eventos	O operador liga a máquina e
	automaticamente o sistema começa a
	monitorar a máquina(temperatura,
	tempo de uso, vibração, óleo, espessura
	e ultrassom)

Nome do caso de uso	1.3-Desligar máquina		
Atores	Operador de Máquina		
Triggers	Problema encontrado no		
	monitoramento/O operador desliga de		
	forma manual		
Pré-Requisito	A máquina estar ligada		
Fluxo de eventos	O operador loga, procura pela máquina		
	ligada, clica sobre e ela e aperta o botão		
	"Desligar"/ Durante o monitoramento for		
	encontrado alguma falha		

Nome do caso de uso	1.4- Armazenar informações de desempenho		
Atores	Operador de Máquina		
Triggers	Desligar máquina		
Pré-Requisito	Ter feito o monitoramento durante o uso		
Fluxo de eventos	Após o desligamento da máquina serão		
	armazenados no banco de dados		
	informações sobre o desempenho da		
	máquina durante se uso(Temperatura		
	média, tempo de funcionamento,		
	vibração média, ciclo de vida e nível final		
	do óleo)		

Nome do caso de uso	1.5-Checar informações anteriores de	
	desempenho	
Atores	Operador de Máquina	
Triggers	Necessidade de checar desempenho e	
	status da máquina	
Pré-Requisito	Estar logado	
Fluxo de eventos	O operdador loga, clica sobre a máquina	
	e clica no botão "detalhes", então uma	
	nova tela aparece com todas as	
	informações sobre a máquina e seu	
	último desempenho	

Nome do caso de uso	1.6- Contatar equipe de manutenção	
Atores	Operador de Máquina	
Triggers	Ao analisar as informações na máquina o operador encontra algum defeito	
Pré-Requisito	Ser operador, estar logado	
Fluxo de eventos	Após o checar as informações da	
	máquina, o operador pode clicar no	
	botão: "Contatar manutenção" então	
	uma janela será aberta e ele poderá criar	
	um chamado que será enviado a equipe	
	de manutenção	

3.2- Casos de Uso

3.2.1- Diagrama 2

3.2.2- Detalhamento caso de uso 2 – Registro de máquinas

Nome do caso de uso	2.1 – Registrar Máquina
Atores	Operador de Máquina

Triggers	Necessidade de registrar uma nova máquina	
Pré-Requisito	Estar logado	
Fluxo de eventos	Na lista de máquinas, o operador clicará no botão: "Nova máquina" onde será redirecionado para uma página que ele informará informações sobre ela e efetuará o registro(Marca, função, descrição, local, cor)	

Nome do caso de uso	2.2 – Visualizar máquinas		
Atores	Operador de Máquina		
Triggers	Necessidade de visualizar as máquinas		
Pré-Requisito	Estar logado		
Fluxo de eventos	O operador entra no sistema e uma lista de máquinas aparecerá. Será filtrada por região da fábrica e o operador poderá clicar sobre a máquina para ver mais informações		

Nome do caso de uso	2.3 – Excluir Máquina	
Atores	Operador de Máquina	
Triggers	Necessidade de excluir uma máquina	
Pré-Requisito	Estar logado	
Fluxo de eventos	O operador entra no sistema, clica sobre	
	a máquina e clica no botão "Deletar",	
	informa sua senha para confirmar a ação	

Nome do caso de uso	2.3 – Alterar Máquina		
Atores	Operador de Máquina		
Triggers	Necessidade de alterar alguma informação sobre a máquina		
Pré-Requisito	Estar logado		
Fluxo de eventos	O operador entra no sistema, clica sobre a máquina e clica no botão "Modificar", uma tela para modificar as informações será apresentada e ao final o operador deverá apertar no botão "confirmar" e inserir sua senha para confirmar a ação.		

4. Casos de uso

Monitoramento de Máquinas

Maquinas

- tipo: String
- protocolo: String
- dadoOpercional: DadoOperacional

+Maquinas()
+gettipo():String
+settipo(String)
+getprotocolo():String
+setprotocolo():String
+setprotocolo():TodoOperacional
+setdadoOperacional():DadoOperacional
+setdadoOperacional():DadoOperacional)

Monitoramento

- maquina: Maquina []
- bancoDados: BancoDados

+Monitoramento()
+ cadastrarMaquina()
+ armazenarDados()
+ gerarAlerta()
+ crlarRelatorio()

5. Encapsulamento e acoplamento do código

5.1 Classe Monitoramento:

Esta classe um alto nível de acoplamento, pois ele depende das classes Maquina e BancoDados

Encapsulando os atributos através dos modificadores de acessso private Getters e setters para encapsulamento e manipulação dos atributos da classe.

```
package Monitoramentos;
import DadoOperacional.DadoOperacionais;
import Maquinas.Maquina;
import BancoDados.BancoDados;
//Esta classe um alto nível de acoplamento, pois ele depende das classes Maquina e BancoDados
```

```
public class Monitoramento {
//<u>Encapsulando os atributos</u> <u>através</u> <u>dos</u> <u>modificadores</u> <u>de</u> <u>acessso</u> private
private Maquinas.Maquina[] maquinas;
private BancoDados bancoDados;
public Monitoramento (int CapacidadeBancoDados, int CapacidadeMaquina) {
maquinas = new Maquina[CapacidadeMaquina];
bancoDados = new BancoDados(CapacidadeBancoDados);
public void CadastrarMaquina(String tipo, String protocolo, DadoOperacionais[]
DadoOperacional) {
for(int i = 0; i < maquinas.length; i++) {</pre>
if(maquinas[i] == null) {
Maquina maquina = new Maquina();
maquina.setTipo(tipo);
maquina.setProtocolo(protocolo);
maquina.setDadoOperacional(DadoOperacional);
maquinas[i] = maquina;
break;
public void ArmazenarDados() {
for (int i = 0; i < maquinas.length;i++) {</pre>
Maquina maquina = maquinas[i];
if (maquina != null) {
maquina.getDadoOperacional();
bancoDados.setDadosArmazenados(null);
```

```
public void gerarAlerta() {
System.out.println("Alerta!!!");
}
public void CriarRelatorio() {
DadoOperacionais exibe = new DadoOperacionais();
System.out.println("Tempo de Funcionamento: " + exibe.getTempoFuncionamento());
System.out.println("\nVibração: " + exibe.getVibracao());
System.out.println("\nTemperatura: " + exibe.getTemperatura());
System.out.println("\nNivel de Fluídos: " + exibe.getNivelFluido());
System.out.println("\nPressão: " + exibe.getPressao());
System.out.println("\nCombustível Gasto: " + exibe.getCombustivelGasto());
System.out.println("\nNivel de Ruído: " + exibe.getNivelRuido());
System.out.println("\nNivel de Ruído: " + exibe.getNivelRuido());
System.out.println("\nStatus: " + exibe.isStatus());
}
}
```

5.2 Classe Máquina:

Esta classe tem um médio nível de acoplamento, por ter uma dependência da classe DadoOperacionais.

Encapsulando os atributos através dos modificadores de acessso private.

Getters e setters para encapsulamento e manipulação dos atributos da classe.

```
package Maquinas;

//Esta classe tem um médio nível de acoplamento, por ter uma dependência da classe
DadoOperacionais

public class Maquina {

//Encapsulando os atributos através dos modificadores de acessso private

private String tipo;

private String protocolo;

private DadoOperacional.DadoOperacionais [] DadoOperacional;

public Maquina() {
```

```
//Getters e setters <u>para encapsulamento</u> e <u>manipulação</u> <u>dos</u> <u>atributos</u> <u>da classe</u>.
public String getTipo() {
return tipo;
public void setTipo(String tipo) {
this.tipo = tipo;
public String getProtocolo() {
return protocolo;
public void setProtocolo(String protocolo) {
this.protocolo = protocolo;
public DadoOperacional.DadoOperacionais[] getDadoOperacional() {
return DadoOperacional;
public void setDadoOperacional(DadoOperacional.DadoOperacionais[] dadoOperacional)
```

5.3 Classe DadoOperacional:

Esta classe tem um baixo acoplamento, por ser baixa/ nula interdepêndecia de outras classes Encapsulando os atributos através dos modificadores de acessso private Getters e setters para encapsulamento e manipulação dos atributos da classe.

```
package DadoOperacional;
//<u>Esta classe tem um baixo acoplamento, por ser baixa/ nula interdepêndecia de</u>
outras classes
<u>//Encapsulando os atributos através dos modificadores de acessso</u> private
private int tempoFuncionamento;
private int vibracao;
private int temperatura;
private int nivelFluido;
private int pressao;
private int combustivelGasto;
private int nivelRuido;
private boolean status;
public DadoOperacionais() {
//Getters e setters <u>para encapsulamento</u> e <u>manipulação dos atributos da classe</u>.
public int getTempoFuncionamento() {
return tempoFuncionamento;
public void setTempoFuncionamento(int tempoFuncionamento) {
this.tempoFuncionamento = tempoFuncionamento;
public int getVibracao() {
return vibracao;
public void setVibracao(int vibracao) {
this.vibracao = vibracao;
public int getTemperatura() {
return temperatura;
```

```
public void setTemperatura(int temperatura) {
this.temperatura = temperatura;
public int getNivelFluido() {
return nivelFluido;
public void setNivelFluido(int nivelFluido) {
this.nivelFluido = nivelFluido;
public int getPressao() {
return pressao;
public void setPressao(int pressao) {
this.pressao = pressao;
public int getCombustivelGasto() {
return combustivelGasto;
public void setCombustivelGasto(int combustivelGasto) {
this.combustivelGasto = combustivelGasto;
public int getNivelRuido() {
return nivelRuido;
public void setNivelRuido(int nivelRuido) {
this.nivelRuido = nivelRuido;
public boolean isStatus() {
return status;
```

```
public void setStatus(boolean status) {
this.status = status;
}
```

5.4 Classe BancoDados:

Esta classe tem um médio nível de acoplamento, por ter uma dependência da classe DadoOperacionais

Encapsulando os atributos através dos modificadores de acessso private Getters e setters para encapsulamento e manipulação dos atributos da classe.

```
package BancoDados;
import DadoOperacional.DadoOperacionais;
DadoOperacionais
public class BancoDados {
//Encapsulando os atributos através dos modificadores de acessso private
private DadoOperacionais[] dadosArmazenados;
private int tamanho;
public BancoDados (int capacidade) {
dadosArmazenados = new <u>DadoOperacionais</u>[capacidade];
//Getters e setters <u>para encapsulamento</u> e <u>manipulação dos atributos da classe</u>.
public DadoOperacionais[] getDadosArmazenados() {
return dadosArmazenados;
public void setDadosArmazenados(DadoOperacionais dadoOperacional) {
if(tamanho < dadosArmazenados.length) {</pre>
dadosArmazenados[tamanho] = dadoOperacional;
tamanho++;
}else {
System.out.println("Banco de dados Cheio...");
```

}			
}			
}			