Problem 6

Provide one example for each of the following cases, where A,B are 2×2 matrices.

1.
$$(A+B)^2 \neq A^2 + 2AB + B^2$$

2.
$$AB = 0, A \neq 0, B \neq 0$$

Solution

1. For $(A+B)^2 \neq A^2 + 2AB + B^2$, the left side of the equation is $(A+B)^2$:

$$(A + B)^2 = (A + B)(A + B)$$

= $A(A + B) + B(A + B)$
= $A^2 + AB + BA + B^2$

We must find a matrix such that $AB \neq BA$. It is clear with these two matrices:

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

$$B = \begin{bmatrix} -1 & -1 \\ 1 & 1 \end{bmatrix}$$

2. For $AB=0, A\neq 0, B\neq 0$, we simply need to find a matrix that cancels each other out during matrix multiplication:

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

$$B = \begin{bmatrix} -1 & -1 \\ 1 & 1 \end{bmatrix}$$