C. Les systèmes linéaires forcés à un degré de liberté

- Force d'excitation
- Equation de Lagrange pour les systèmes forcés
- Equation du mouvement
- Résonance
- Bande passante et facteur de qualité

Force d'excitation

- La force de frottement est responsable de la perte et la dissipation de l'énergie du système.
- Pour éviter tout ralentissement du système, une force d'excitation F(t) est appliquée.
- Le rôle de cet excitateur est de fournir à tout moment de l'énergie au système.

Force d'excitation

• La grandeur décrivant l'évolution du mouvement par rapport au temps:

$$\ddot{q}(t) + 2\lambda \dot{q}(t) + \omega 0^{2} q(t) = f_{0} \cos(\omega t)$$

- Le système est appelé un oscillateur forcé.
- L'oscillateur commence à osciller suivant un régime transitoire puis permanant.

Force d'excitation

• La grandeur décrivant l'évolution du mouvement par rapport au temps:

$$\ddot{q}(t) + 2\lambda \dot{q}(t) + \omega 0^{2} q(t) = f_{0} \cos(\omega t)$$

où f_0 est homogène à une accélération si x est homogène à une longueur $(f_0 = \frac{F_0}{m})$, ou à une accélération angulaire si x (noté θ) est un angle $(f_0 = \frac{C_0}{I})$, I étant le moment d'inertie.

Différentes excitations

Equation de Lagrange

L'équation de Lagrange pour un système forcé est

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q} = -\frac{\partial D}{\partial \dot{q}} + F(t)$$

- \circ En translation : q = x
- En rotation : $q = \theta$ et $F(t) = M_0(F)$

L'équation du mouvement :

$$\ddot{q}(t) + 2\lambda \dot{q}(t) + \omega 0^2 q(t) = F(t)$$

La solution de l'équation :

$$q(t) = q_g(t) + q_p(t)$$

- qg(t): régime transitoire
- qp(t): régime permanant

La solution générale dépend du discriminant réduit :

$$\rightarrow$$
 qg(t) = $e^{-\lambda t}$ (A $e^{\sqrt{\Delta t}}$ + B $e^{-\sqrt{\Delta t}}$)

Si
$$\Delta'=0$$
 \rightarrow Critique

$$\rightarrow$$
 q_g(t) = $e^{-\lambda t}$ (A + Bt)

Si
$$\Delta' < 0$$
 \Rightarrow pseudopériodique \Rightarrow $q_g(t) = q_m e^{-\lambda t} \cos(\Omega t + \varphi)$

La solution particulière de l'équation est de la forme :

$$q_p(t) = A \cos (\Omega t + \varphi)$$

 \circ La notation complexe de la force d'excitation $f_{\circ}cos(\Omega t)$ est de la forme : $f_{\circ}e^{i\Omega t}$

La notation complexe de la solution est de la forme:

$$\overline{\mathbf{x}} = \overline{\mathbf{x}}_0 \ \mathbf{e}^{i\Omega t}$$

$$\dot{\overline{\mathbf{x}}} = \overline{\mathbf{x}}_0 \ i\Omega \mathbf{e}^{i\Omega t}$$

$$\dot{\overline{\mathbf{x}}} = -\overline{\mathbf{x}}_0 \ \Omega^2 \mathbf{e}^{i\Omega t}$$

L'équation de mouvement devient:

$$(-\Omega^2 + 2\lambda i\Omega + \omega 0^2) \overline{x_0} = f_0$$

• L'amplitude complexe :
$$\overline{A} = \frac{10}{(-\Omega^2 + 2\lambda i\Omega + \omega 0^2)}$$

L'amplitude réelle du mouvement :

$$A = |\overline{A}| = \frac{f_0}{\sqrt{(\omega 0^2 - \Omega^2)^2 + 4\lambda^2 \Omega^2}}$$

• La phase du mouvement: $\tan \varphi = \frac{Im}{r + el} = \frac{-2\lambda\Omega}{(\omega 0^2 - \Omega^2)}$

L'équation du mouvement en régime permanant:

$$x(t) = x_0 \cos (\omega t + \varphi)$$

Avec l'amplitude réelle du mouvement :

$$A = \frac{f_0}{\sqrt{(\omega 0^2 - \Omega^2)^2 + 4\lambda^2 \Omega^2}}$$

• La phase du mouvement: $\varphi = \operatorname{Arctan} \frac{-2\lambda\Omega}{(\omega_0^2 - \Omega^2)}$

Pulsation de résonnance

 La pulsation de résonance est la pulsation pour laquelle l'amplitude A atteint son maximum est appelée pulsation de résonnance de l'amplitude Ω r

• A est maximale :
$$\frac{\partial A}{\partial \Omega} = 0$$
 $\Rightarrow \Omega = \Omega r = \sqrt{\omega 0^2 - 2\lambda^2}$

Pulsation de résonnance

• En introduisant le facteur de qualité Q = $\frac{\omega 0}{2\lambda}$:

Pour qu'il y ait résonance, il faut que:

$$\omega 0^2 - 2 \lambda > 0 \rightarrow 1 - \frac{1}{2Q^2} > 0 \rightarrow Q > \frac{1}{\sqrt{2}}$$

Etude de la phase

 \circ La pulsation de **résonance** Ω r **augmente** lorsque λ diminue.

• La relation: φ =Arctan $\frac{-2\lambda\Omega}{(\omega 0^2 - \Omega^2)}$ montre que l'oscillateur est toujours en **retard** de phase par rapport à l'excitation et ce **retard** augmente lorsque la pulsation de l'excitation augmente.

Bande passante et facteur de qualité

La puissance instantanée fournie par la force d'excitation est:

$$P = \frac{dW}{dt} = \frac{F \, dq}{dt} = F \dot{q}$$

Soit F = fo cos (
$$\Omega$$
t)
q(t)= Acos (Ω t + φ)

Donc P= -fo cos (
$$\Omega$$
t). Asin (Ω t + φ) = - $\frac{1}{2}$ Afo Ω [sin(φ)+sin (2Ω t + φ)]

La puissance moyenne est:

$$= \int_0^T Pdt = -\frac{1}{2} Afo \Omega sin\varphi$$

Bande passante et facteur de qualité

Ωc1 et Ωc2 pour lesquels <P> est à son moitié de maximum sont appelés pulsations de coupure;

La largeur Ω c2 - Ω c1 = B est appelée bande passante.

$$B = 2\lambda$$

Le facteur de qualité: $Q = \frac{\omega_0}{2\lambda} = \frac{\omega_0}{B}$

Principe de Rayleigh

En faisant l'hypothèse qu'il n'y a pas d'énergie dissipée

• Energie potentielle en fonction du temps :

$$U(t) = \int_{0}^{x} k \,\alpha \,d\alpha = \frac{1}{2}k \,x^{2} = \frac{1}{2}k \,A^{2} \sin^{2}(\omega_{0}t + \phi)$$

Energie cinétique en fonction du temps :

$$T(t) = \frac{1}{2} m \dot{x}^2 = \frac{1}{2} m \omega_0^2 A^2 \cos^2(\omega_0 t + \phi)$$

• En considérant $k = m\omega_0^2$:

$$U(t) + T(t) = \frac{1}{2}m\omega_0^2 A^2 \left[\sin^2(\omega_0 t + \phi) + \cos^2(\omega_0 t + \phi) \right] = \frac{1}{2}m\omega_0^2 A^2 = \frac{1}{2}k A^2$$

$$x(t) = A \sin (\omega t + \phi)$$

 $\dot{x}(t) = A \omega \cos (\omega t + \phi)$

Principe de Rayleigh

 \circ L'énergie totale instantanée du système conservatif en mouvement est proportionnelle à A^2 et indépendante du temps t:

$$U(t)+T(t)=$$
Cte, $\forall t$

- Deux conséquences importantes :
 - La dérivée de l'énergie totale (potentielle + cinétique) est nulle:

$$\frac{\mathrm{d}(U(t)+T(t))}{\mathrm{d}t}=0$$

>A deux instants t1 et t2 quelconques :

$$U(t_1)+T(t_1)=U(t_2)+T(t_2)$$

Principe de Rayleigh

On obtient alors:

 $U_{max} = T_{max}$

valable pour les systèmes conservatifs soumis à des mouvements harmoniques. Ce principe de conservation est utilisé :

- o pour obtenir des équations du mouvement,
- o pour calculer directement la pulsation naturelle des systèmes.