Classification Examples

Quach Dinh Hoang

Dataset

Attributes

Class

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Decision Tree Induction

Entropy - Class

Info(buys_computer) = -P(no)* $log_2(P(no))$ - P(yes)* $log_2(P(yes))$ = -(5/14) $log_2(5/14)$ - (9/14) $log_2(9/14)$ = 0.94

AVC (Attribute, Value, Class) Table

		buys_computer	
		Yes	No
	<=30	2	3
Age	3140	4	0
	>40	3	2

		buys_computer		
		Yes	No	
	low	3	1	
Income	medium	4	2	
	high	2	2	

		buys_computer	
		Yes	No
Student	no	3	4
Student	yes	6	1

		buys_computer	
		Yes	No
Credit	fair	6	2
rating	excellent	3	3

Information Gain - Age

		buys_co		
		Yes	No	
	<=30	2	3	5
Age	3140	4	0	4
	>40	3	2	5
				14

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

Info_A(D) =
$$\sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times Info(D_j)$$

$$Gain(A) = Info(D) - Info_A(D)$$

$$Info_{Age}$$
(buy_computer) = P(<=30)*Info(2,3) + P(31...40)*Info(4,0) + P(>40)*Info(3,2) = (5/14)*0.971 + (4/14)*0.0 + (5/14)*0.971 = 0.693

Information Gain

		buys_computer		
		Yes	No	
	<=30	2	3	
Age	3140	4	0	
	>40	3	2	
Gain = 0.247				

		buys_computer	
		Yes	No
	low	3	1
Income	medium	4	2
	high	2	2
Gain = 0.029			

		buys_co	omputer
		Yes	No
Student	no	3	4
Student	yes	6	1
Gain = 0.151			

		buys_computer		
		Yes	No	
Credit	fair	6	2	
rating	excellent	3	3	
Gain = 0.048				

Decision Tree – Root Node

Dataset – Sort by Root Node

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	high	no	fair	yes
3140	low	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
				-
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
>40	medium	yes	fair	yes
>40	medium	no	excellent	no

Age = 31...40

age	income	student	credit_rating	buys_computer
3140	high	no	fair	yes
3140	low	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes

Age <= 30

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
<=30	medium	yes	excellent	yes

		buys_computer		
		Yes	No	
	low	1	0	
Income	medium	1	1	
	high	0	2	
Gain = 0.57				

		buys_computer		
		Yes	No	
Ctudont	no	0	3	
Student	yes	2	0	
Gain = 0.97				

		buys	_computer	
		Yes	No	
Credit	fair	1	2	
rating	excellent	1	1	
Gain = 0.02				

Age <= 30

Age > 40

age	income	student	credit_rating	buys_computer
>40	medium	no	fair	yes
>40 >40 >40 >40 >40	low	yes	fair	yes
>40	low	yes	excellent	no
>40	medium	yes	fair	yes
>40	medium	no	excellent	no

		buys_computer	
		Yes	No
lnaama	low	1	1
Income	medium	2	1
Gain = 0.57			

		buys_co	mputer	
		Yes	No	
01 1 1	no	1	1	
Student	yes	2	1	
Gain = 0.02				

		buys_computer	
		Yes	No
Credit	fair	3	0
rating	excellent	0	2
Gain = 0.97			

Age > 40

Decision Rules

R1: IF (Age <= 30 And Student = Yes) THEN buy_computer = Yes

R2: IF (Age <= 30 And Student = No) THEN buy_computer = No

R3: IF (Age = 31...40) THEN buy_computer = Yes

R4: IF (Age > 40 And CreditRating = Fair) THEN buy computer = Yes

R5: IF (Age <= 30 And CreditRating = Excellent) THEN buy_computer = Yes

Naive Bayesian Classifier – NBC

• Bayes' theorem $P(C_i|\mathbf{X}) = \frac{P(\mathbf{X}|C_i)P(C_i)}{P(\mathbf{X})}$

 Since P(X) is constant for all classes, we only need maximize

$$P(C_i|\mathbf{X}) = P(\mathbf{X}|C_i)P(C_i)$$

 Assumption: attributes are conditionally independent (i.e., no dependence relation between attributes):

$$P(\mathbf{X}|C_i) = \prod_{k=1}^{n} P(x_k | C_i) = P(x_1 | C_i) \times P(x_2 | C_i) \times ... \times P(x_n | C_i)$$

AVC (Attribute, Value, Class) Table

		buys_co	omputer
		Yes	No
	<=30	2	3
Age	3140	4	0
	>40	3	2

		buys_computer	
		Yes	No
	low	3	1
Income	medium	4	2
	high	2	2

		buys_computer	
		Yes	No
Student	no	3	4
Student	yes	6	1

		buys_computer	
		Yes	No
Credit	fair	6	2
rating	excellent	3	3

Likelihood Tables

		buys_computer	
		Yes	No
Age	<=30	2/9	3/5
	3140	4/9	0
	>40	3/9	2/5

		buys_computer	
		Yes	No
Income	low	3/9	1/5
	medium	4/9	2/5
	high	2/9	2/5

		buys_computer	
		Yes	No
Student	no	3/9	4/5
	yes	6/9	1/5

		buys_computer	
		Yes	No
Credit rating	fair	6/9	2/5
	excellent	3/9	3/5

P(Student = yes | buy_computer = yes) = 6/9

NBC – Prediction

- X = (age <= 30, income = medium, student = yes, credit_rating = fair)
- P(X|C_i)

```
P(X | buys_computer = yes) =
P(age <=30 | buys_computer = yes) *
P(income = medium | buys_computer = yes) *
P(student = yes | buys_computer = yes) *
P(credit_rating = fair | buys_computer = yes)

P(X | buys_computer = no) =
P(age <=30 | buys_computer = no) *
P(income = medium | buys_computer = no) *
P(student = yes | buys_computer = no) *
P(credit_rating = fair | buys_computer = no)
```

NBC – Prediction

- X = (age <= 30, income = medium, student = yes, credit_rating = fair)
- P(C_i)

```
P(buys_computer = yes) = 9/14
P(buys_computer = no) = 5/14
```

P(X|C_i) * P(C_i)

```
P(X | buys_computer = yes) * P(buys_computer = yes)
P(X | buys_computer = no) * P(buys_computer = no)
```