Homework 1 by 161220097 戚赟

2019年3月16日

1 [20pts] Basic Probability and Statistics

The probability distribution of random variable X follows:

$$f_X(x) = \begin{cases} \frac{1}{2} & 0 < x < 1; \\ \frac{1}{6} & 2 < x < 5; \\ 0 & \text{otherwise.} \end{cases}$$
 (1)

- (1) [5pts] Please give the cumulative distribution function $F_X(x)$ for X;
- (2) [5pts] Define random variable Y as $Y = 1/(X^2)$, please give the probability density function $f_Y(y)$ for Y;
- (3) [10pts] For some random non-negative random variable Z, please prove the following two formulations are equivalent:

$$\mathbb{E}[Z] = \int_{z=0}^{\infty} z f(z) dz, \qquad (2)$$

$$\mathbb{E}[Z] = \int_{z=0}^{\infty} \Pr[Z \ge z] dz, \tag{3}$$

Meantime, please calculate the expectation of random variable X and Y by these two expectation formulations to verify your proof.

Solution:

(1) The cumulative distribution function $F_X(x)$ fo X follows:

$$F_X(x) = \begin{cases} 0 & x \le 0 \\ \frac{x}{2} & 0 < x \le 1; \\ \frac{1}{2} & 1 < x \le 2; \\ \frac{1}{6} + \frac{1}{6}x & 2 < x \le 5; \\ 1 & 5 < x; \end{cases}$$
(4)

(2) The the probability density function $f_Y(y)$ for Y follows:

$$f_Y(y) = \begin{cases} 0 & y \le \frac{1}{25}; \\ \frac{1}{12}y^{-\frac{3}{2}} & \frac{1}{25} < y \le \frac{1}{4}; \\ 0 & \frac{1}{4} < y \le 1; \\ \frac{1}{4}y^{-\frac{3}{2}} & 1 < y; \end{cases}$$
 (5)

(3)

$$\therefore \mathbb{E}[Z] = \int_{z=0}^{\infty} \Pr[Z \ge z] dz = \int_{z=0}^{\infty} \int_{x=z}^{\infty} f_Z(z) dx dz$$
 (6)

After change the order of integration
$$(7)$$

$$\mathbb{E}[Z] = \int_{z=0}^{\infty} \int_{x=z}^{\infty} f_Z(x) dx dz = \int_{x=0}^{\infty} \int_{z=0}^{x} f_Z(x) dz dx$$
 (8)

$$= \int_{x=0}^{\infty} x f_Z(x) \mathrm{d}x \tag{9}$$

$$= \int_{z=0}^{\infty} z f(z) dz \tag{10}$$

By equation (2):

$$\mathbb{E}[X] = 2 \tag{11}$$

$$\mathbb{E}[Y] \ does \ not \ exist$$
 (12)

By equation(3):

$$\mathbb{E}[X] = 2 \tag{13}$$

$$\mathbb{E}[Y] \ does \ not \ exist \tag{14}$$

So the proof is verified

2 [20pts] Strong Convexity

Let $D \in \mathbb{R}^2$ be a finite set. Define a function $E : \mathbb{R}^3 \to \mathbb{R}$ by

$$E(a,b,c) = \sum_{x \in \mathcal{D}} (ax_1^2 + bx_1 + c - x_2)^2.$$
 (15)

- (1) [10pts] Show that E is convex.
- (2) [10pts] Does there exist a set D such that E is strongly convex? Proof or a counterexample.

Solution:

(1)To prove E is convex, according to the definition of convex. $\forall x_1, x_2, \forall t \in [0,1], f(tx_1+(1-t)x_2) \leq tf(x_1)+(1-t)f(x_2).$ Set $g(a,b,c)=\sqrt{E(a,b,c)}, \forall x_1,x_2, \forall t \in [0,1].$

$$\therefore tE(x_1) + (1-t)E(x_2) - E(tx_1 + (1-t)x_2)$$
 (16)

$$= tg(x_1)^2 + (1-t)g(x_2)^2 - (tg(x_1) + (1-t)g(x_2))^2$$
(17)

$$= t(1-t)(g(x_1) - g(x_2))^2 \ge 0 \tag{18}$$

$$\therefore tE(x_1) + (1-t)E(x_2) \ge E(tx_1 + (1-t)x_2) \tag{19}$$

$$\therefore E \text{ is convex}$$
 (20)

Another way is to proof Hessian Matrix is positive semi-definite, And

$$H(E) = \sum_{i} E_{i}, E_{i} = \begin{bmatrix} x_{i}^{4} & x_{i}^{3} & x_{i}^{2} \\ x_{i}^{3} & x_{i}^{2} & x_{i} \\ x_{i}^{2} & x_{i} & 1 \end{bmatrix}$$
(21)

Because E_i is positive semi-definite, so H(E) is positive semi-definite and E is a convex function.

(2) If the function f is twice continuously differentiable, then it is strongly convex with parameter m if and only if $\nabla^2 f(x) \succeq mI$ for all x in the domain, where I is the identity and $\nabla^2 f$ is the Hessian matrix, and the $inequality \succeq means that <math>\nabla^2 f(x) - mI$ is positive semi-definite. [1]From Wikipedia

So according to this theorem, calculate the Hessiaan matrix first.

$$H(E) = \begin{bmatrix} \frac{\partial E}{\partial a \partial a} & \frac{\partial E}{\partial a \partial b} & \frac{\partial E}{\partial a \partial c} \\ \frac{\partial E}{\partial b \partial a} & \frac{\partial E}{\partial b \partial b} & \frac{\partial E}{\partial b \partial c} \\ \frac{\partial E}{\partial c \partial a} & \frac{\partial E}{\partial c \partial b} & \frac{\partial E}{\partial c \partial c} \end{bmatrix}$$
(22)

So

$$H(E) = \begin{bmatrix} \sum_{i} x_{i}^{4} & \sum_{i} x_{i}^{3} & \sum_{i} x_{i}^{2} \\ \sum_{i} x_{i}^{3} & \sum_{i} x_{i}^{2} & \sum_{i} x_{i} \\ \sum_{i} x_{i}^{2} & \sum_{i} x_{i} & \sum_{i} 1 \end{bmatrix}$$
(23)

And set $D = \{(1,0), (2,0), (3,0)\}, m = 0.01$, the $\nabla^2 f(x) - mIis$

$$H(E) = \begin{bmatrix} 97.99 & 36 & 14 \\ 36 & 13.99 & 6 \\ 14 & 6 & 2.99 \end{bmatrix}$$
 (24)

Because H(E) is a positive semi-definite, so accroding to the therom, E is strongly convex.

3 [20pts] Transition Probability Matrix

Suppose x_k is the fraction of NJU students who prefer course A at year k. The remaining fraction $y_k = 1 - x_k$ prefers course B.

At year k+1, $\frac{1}{5}$ of those who prefer course A change their mind. Also at the same year, $\frac{1}{10}$ of those who prefer course B change their mind (possibly after taking the problem 3 last year).

Create the matrix P to give $[x_{k+1} \quad y_{k+1}]^{\top} = P[x_k \quad y_k]^{\top}$ and find the limit of $P^k[1 \quad 0]^{\top}$ as $k \to \infty$.

Solution

It's easy to get matrix P accroding to the description.

$$P = \begin{bmatrix} \frac{4}{5} & \frac{1}{10} \\ \frac{1}{5} & \frac{9}{10} \end{bmatrix} \tag{25}$$

The matrix eigenvalues of P is 1 and $\frac{7}{10}$. The corresponding vector is

$$\alpha_1 = \begin{bmatrix} 1 & 2 \end{bmatrix}^{\top}$$
 and $\alpha_2 = \begin{bmatrix} 1 & -1 \end{bmatrix}^{\top}$. Because $\begin{bmatrix} 1 & 2 \end{bmatrix}^{\top} = \frac{1}{3}(\alpha_1 + 2\alpha_2)$. So

$$\lim_{k \to +\infty} P^k [1 \quad 0]^\top = \lim_{k \to +\infty} \frac{1}{3} (1^k \alpha_1 + 2(\frac{7}{10})^k \alpha_2) = \begin{bmatrix} \frac{1}{3} & \frac{2}{3} \end{bmatrix}^\top$$
 (26)

4 [20pts] Hypothesis Testing

Yesterday, a student was caught by the teacher when tossing a coin in class. The teacher is very nice and did not want to make things difficult. S(he) wished the student to determine if the coin is biased for heads with $\alpha = 0.05$.

Also, according to the student's desk mate, the coin was tossed for 50 times and it got 35 heads.

- (1) [10pts] Show all calculate and rules (hint: using z-test).
- (2) [10pts] Calculate the p-value and interpret it.

Solution

(1) By using Z-test, we assume $H_0=0.5, H_1>0.5.$ So

$$Z = \frac{\overline{X} - \mu}{S/\sqrt{n}} = \frac{\frac{35}{50} - \frac{1}{2}}{\sqrt{p(1-p)}/\sqrt{n}} = \frac{\frac{1}{5}}{\frac{1}{2}/\sqrt{50}} = 2\sqrt{2} = 2.8284$$
 (27)

(2)According to the Z-table, $-z \le -2.8284$, $P(Z \ge z) = 0.0023 < \alpha = 0.05$, that means we refuse the H_0 hypothesis and the coin is biased for heads with $\alpha = 0.05$. The meanings of P is to decide if null hypothesis is acceptable. Because P < 0.05, the null hypothesis is not the same as reality and the coins is biased for heads.

5 [20pts] Performance Measures

We have a set of samples that we wish to classify in one of two classes and a ground truth class of each sample (denoted as 0 and 1). For each example a classifier gives us a score (score closer to 0 means class 0, score closer to 1 means class 1). Below are the results of two classifiers (C_1 and

 C_2) for 8 samples, their ground truth values (y) and the score values for both classifiers $(y_{C_1}$ and $y_{C_2})$.

\overline{y}	1	0	1	1	1	0	0	0
	0.5							
y_{C_2}	0.04	0.1	0.68	0.22	0.4	0.11	0.8	0.53

- (1) [8pts] For the example above calculate and draw the ROC curves for classifier C_1 and C_2 . Also calculate the area under the curve (AUC) for both classifiers.
- (2) [8pts] For the classifier C_1 select a decision threshold $th_1 = 0.33$ which means that C_1 classifies a sample as class 1, if its score $y_{C_1} > th_1$, otherwise it classifies it as class 0. Use it to calculate the confusion matrix and the F_1 score. Do the same thing for the classifier C_2 using a threshold value $th_2 = 0.1$.
- (3) [4pts] Prove Eq.(2.22) in Page 35. (AUC = $1 \ell_{rank}$).

Solution

(1)

(a) ROC of y_{C_1} , x means FPR

(b) ROC of y_{C_2} , x means FPR

图 1: pics

AUC of
$$C_1 = \frac{1}{2} \sum_{i=1}^{m-1} (x_{i+1} - x_i)(y_i + y_{i+1}) = \frac{11}{16}$$
 (28)

$$AUC \ of \ C_2 = \frac{1}{2} \sum_{i=1}^{m-1} (x_{i+1} - x_i)(y_i + y_{i+1}) = \frac{7}{16}$$
 (29)

(2) The confusion matrix of C_1 and C_2 is:

表 1:

Reality	Production				
пеанту	positive	negative			
positive	3	1			
negative	1	3			

表 2: 2

Reality	Production						
пеанту	positive	negative					
positive	3	1					
negative	3	1					

$$F_{C_1} = \frac{2PR}{P+R} = \frac{3}{4}$$
 when $th1 = 0.33$.
 $F_{C_2} = \frac{2PR}{P+R} = \frac{3}{5}$ when the $th2 = 0.1$.

$$F_{C_2} = \frac{2PR}{P+R} = \frac{3}{5}$$
 when the $th2 = 0.1$.

(3) We just need to prove the ℓ_{rank} is the area above the ROC. Because the x_{max} and y_{max} is 1. So set $x = x \times m^-, y = y \times m^+$. And x of one point means the curruent numbers of false positive. So count of x reperesents the area of unique y as each rectangle's width and height is 1.

So after one step of increasing th, set $a = \triangle x$, $b = \triangle y$.

case one: a = 0, the area increase $1 \times x = x$, means count of x whose value is less than y's, just the $\sum x^- \in D^ \mathbb{I}(f(y) < f(x^-))$ (The area A in (a) for the same y).

case two: b = 0, the area increase 0.

case three: $a \neq 0$, $b \neq 0$, the area increase $x + \frac{ab}{2}$, the $\frac{ab}{2}$ means the count of $f(x^+) = f(y^-)$ (like the area B). So the increase is $\sum x^- \in D^-$ ($\mathbb{I}(f(y) < x^-)$ $f(x^{-})) + \frac{1}{2} \mathbb{I}(f(y) = f(x^{-})).$

To conclue, the ℓ_{rank} is $\frac{1}{m^+m^-} \sum x^+ \in D^+ \sum x^- \in D^- (\mathbb{I}(f(x^+) < f(x^-)) + \mathbb{I}(f(x^+)))$ $\frac{1}{2} \mathbb{I}(f(x^+) = f(x^-)))$. And AUC = $1 - \ell_{rank}$.

6 [Bonus 10pts]Expected Prediction Error

For least squares linear regression problem, we assume our linear model as:

$$y = x^T \beta + \epsilon, \tag{30}$$

where ϵ is noise and follows $\epsilon \sim N(0, \sigma^2)$. Note the instance feature of training data \mathcal{D} as $\mathbf{X} \in \mathbb{R}^{p \times m}$ and note the label as $\mathbf{Y} \in \mathbb{R}^n$, where n is the number of instance and p is the feature dimension. So the estimation of model parameter is:

$$\hat{\beta} = (\boldsymbol{X}\boldsymbol{X}^T)^{-1}\boldsymbol{X}\boldsymbol{Y}.\tag{31}$$

For some given test instance x_0 , please proof the expected prediction error $\mathbf{EPE}(x_0)$ follows:

$$\mathbf{EPE}(x_0) = \sigma^2 + \mathbb{E}_{\mathcal{D}}[x_0^T (\boldsymbol{X} \boldsymbol{X}^T)^{-1} x_0 \sigma^2]. \tag{32}$$

Please give the steps and details of your proof.(Hint: $\mathbf{EPE}(x_0) = \mathbb{E}_{y_0|x_0}\mathbb{E}_{\mathcal{D}}[(y_0 - \hat{y}_0)^2]$, you can also refer to the proof progress of variance-bias decomposition on the page 45 of our reference book)

Solution:

$$\hat{y}_0 = x_0^T \hat{\beta} = x_0^T (X X^T)^{-1} X Y$$
(33)

$$= x_0^T (\boldsymbol{X} \boldsymbol{X}^T)^{-1} \boldsymbol{X} (\boldsymbol{X}^T \boldsymbol{\beta} + \boldsymbol{\epsilon})$$
 (34)

$$= x_0^T \beta + x_0^T (\boldsymbol{X} \boldsymbol{X}^T)^{-1} \boldsymbol{X} \epsilon \tag{35}$$

So $\mathbb{E}_{\mathcal{D}}[\hat{y_0}] = \mathbb{E}_{\mathcal{D}}[x_0^T \beta + x_0^T (\boldsymbol{X} \boldsymbol{X}^T)^{-1} \boldsymbol{X} \epsilon]$ Because $\epsilon \sim N(0, \sigma^2)$, $\mathbb{E}_{\mathcal{D}}[x_0^T (\boldsymbol{X} \boldsymbol{X}^T)^{-1} \boldsymbol{X} \epsilon] = 0$ and $\mathbb{E}_{\mathcal{D}}[\hat{y_0}] = x_0^T \beta$.

$$\mathbb{E}_{\mathcal{D}}[(y_0 - \hat{y}_0)^2] = \mathbb{E}_{\mathcal{D}}[(y_0 - \mathbb{E}\hat{y}_0 + \mathbb{E}_{\mathcal{D}}\hat{y}_0 - \hat{y}_0)^2]$$
(36)

$$= \mathbb{E}_{\mathcal{D}}[(y_0 - \mathbb{E}_{\mathcal{D}}\hat{y}_0)^2 + (\mathbb{E}_{\mathcal{D}}\hat{y}_0 - \hat{y}_0)^2 + 2(y_0 - \mathbb{E}_{\mathcal{D}}\hat{y}_0)(\mathbb{E}_{\mathcal{D}}\hat{y}_0 - \hat{y}_0)]$$
(37)

$$= \mathbb{E}_{\mathcal{D}}[(y_0 - \mathbb{E}_{\mathcal{D}}\hat{y}_0)^2 + (\mathbb{E}_{\mathcal{D}}\hat{y}_0 - \hat{y}_0)^2]$$
(38)

$$= \mathbb{E}_{\mathcal{D}}[(y_0 - \mathbb{E}_{\mathcal{D}}\hat{y}_0)^2] + \mathbb{E}_{\mathcal{D}}[(\mathbb{E}_{\mathcal{D}}\hat{y}_0 - \hat{y}_0)^2]$$
(39)

$$= \mathbb{E}_{\mathcal{D}}[(\mathbb{E}_{\mathcal{D}}\hat{y}_0 - \hat{y}_0)^2] + \mathbb{E}_{\mathcal{D}}[(y_0 - x_0^T \beta + x_0^T \beta - \mathbb{E}_{\mathcal{D}}\hat{y}_0)^2]$$
(40)

$$= \mathbb{E}_{\mathcal{D}}[(\mathbb{E}_{\mathcal{D}}\hat{y}_0 - \hat{y}_0)^2] + \mathbb{E}_{\mathcal{D}}[(y_0 - x_0^T \beta)^2 + (x_0^T \beta - \mathbb{E}_{\mathcal{D}}\hat{y}_0)^2 + 2(y_0 - x_0^T \beta)(x_0^T \beta - \mathbb{E}_{\mathcal{D}}\hat{y}_0)]$$
(41)

$$= \mathbb{E}_{\mathcal{D}}[(\mathbb{E}_{\mathcal{D}}\hat{y}_0 - \hat{y}_0)^2] + \mathbb{E}_{\mathcal{D}}[(y_0 - x_0^T \beta)^2] + \mathbb{E}_{\mathcal{D}}[(x_0^T \beta - \mathbb{E}_{\mathcal{D}}\hat{y}_0)^2]$$
(42)

$$= \mathbb{E}_{\mathcal{D}}[(\mathbb{E}_{\mathcal{D}}\hat{y}_0 - \hat{y}_0)^2] + \mathbb{E}_{\mathcal{D}}[(y_0 - x_0^T \beta)^2]$$
(43)

(44)

So
$$\mathbf{EPE}(x_0) = \mathbb{E}_{y_0|x_0} \mathbb{E}_{\mathcal{D}}[(y_0 - \hat{y}_0)^2] = var(\hat{y}_0) + \sigma^2$$

$$var(\hat{y}_0) = \mathbb{E}_{\mathcal{D}}[(\mathbb{E}_{\mathcal{D}}\hat{y}_0 - \hat{y}_0)^2] \tag{45}$$

$$= \mathbb{E}_{\mathcal{D}}[(x_0^T \beta + x_0^T (XX^T)^{-1} X \epsilon - x_0^T \beta)^2]$$
 (46)

$$= \mathbb{E}_{\mathcal{D}}[(x_0^T (XX^T)^{-1} X \epsilon)^2] \tag{47}$$

$$\therefore x_0^T (XX^T)^{-1} X \epsilon \text{ is a number}$$
 (48)

$$\therefore \mathbb{E}_{\mathcal{D}}[(x_0^T (XX^T)^{-1} X \epsilon)^2] \tag{49}$$

$$= \mathbb{E}_{\mathcal{D}}[x_0^T (XX^T)^{-1} X \epsilon \epsilon^T X^T (XX^T)^{-1} x_0]$$
 (50)

$$= \mathbb{E}_{\mathcal{D}}[x_0^T (XX^T)^{-1} X I I^T X^T (XX^T)^{-1} x_0 \sigma^2]$$
 (51)

$$= \mathbb{E}_{\mathcal{D}}[x_0^T (XX^T)^{-1} x_0 \sigma^2] \tag{52}$$

So
$$\mathbf{EPE}(x_0) = \sigma^2 + \mathbb{E}_{\mathcal{D}}[x_0^T (XX^T)^{-1} x_0 \sigma^2]$$

Reference:

[1] Wikipedia's introduction of convex function https://en.wikipedia.org/wiki/Convex_function