UNIVERSITATEA BABEȘ-BOLYAI FACULTATEA DE MATEMATICĂ ȘI INFORMATICĂ

Concurs Mate-Info – 26 martie 2023 Proba scrisă la Informatică

NOTĂ IMPORTANTĂ:

În lipsa altor precizări:

- presupuneți că toate operațiile aritmetice se efectuează pe tipuri de date nelimitate (nu există *overflow / underflow*).
- numerotarea indicilor tuturor șirurilor/vectorilor începe de la 1
- toate restricțiile se referă la valorile parametrilor actuali la momentul apelului inițial.
- **1.** Se consideră algoritmul f(a, b), unde $a \le b$ sunt numere naturale nenule $(1 \le a, b \le 10^9)$.

```
1: Algorithm f(a, b):
      If a = b then
2:
          Return a
3:
4:
      FndTf
5:
      If a > b then
          Return f(a - b, b)
6:
7:
      EndIf
8:
      Return f(a, b - a)
9: EndAlgorithm
```

Precizați care dintre următoarele afirmații sunt adevărate.

- A. În urma apelului f(2000, 21) algoritmul returnează 1.
- B. În cazul apelului f(2000, 21) algoritmul nu își termină execuția din cauza condiției de pe linia 2.
- C. Pentru ca algoritmul să returneze cel mai mare divizor comun al lui $a \neq b$, linia 8 ar trebui schimbată astfel: Return f(b a, b).
- D. Pentru ca în cazul apelului f(2000, 21) algoritmul să returneze valoarea 1, linia 8 ar trebui schimbată astfel: Return f(b a, b a).
- 2. Se consideră următoarea secvență de algoritm, unde a este un vector de n numere naturale ($a[1], a[2], ..., a[n], 1 \le a[i] \le 10^4$, pentru i = 1, 2, ..., n), iar n este un număr natural nenul ($1 \le n \le 10^4$):

```
For i ← 1, n - 1 execute
    poz ← i

For j ← i + 1, n execute
        If a[j] < a[poz] then
            poz ← j
        EndIf

EndFor

If poz ≠ i then
        temp ← a[i]
        a[i] ← a[poz]
        a[poz] ← temp
EndIf</pre>
EndFor
```

Care dintre următoarele afirmații sunt adevărate în momentul în care *i* devine 2?

```
A. a[1] \le a[k] pentru orice k \in \{1, 2, ..., n\}
```

B.
$$a[n] \le a[k]$$
 pentru orice $k \in \{1, 2, ..., n\}$

C.
$$a[1] \ge a[k]$$
 pentru orice $k \in \{1, 2, ..., n\}$

D.
$$a[k] \le a[k+1]$$
 pentru orice $k \in \{1, 2, ..., n-1\}$

3. Se consideră algoritmul alg(n), unde n este un număr natural $(0 \le n \le 10^9)$.

```
Algorithm alg(n):
    If n MOD 2 = 0 then
        Return n + alg(n - 1)
    Else
        Return n
    EndIf
EndAlgorithm
```

- A. Dacă n = 4, valoarea returnată de algoritm este 7.
- B. Algoritmul returnează suma numerelor naturale mai mici decât *n*.
- C. Algoritmul returnează suma numerelor naturale mai mici sau egale cu *n*.
- D. Dacă n = 7, valoarea returnată de algoritm este 7.

4. Se consideră algoritmul f(nr), unde nr este un număr întreg $(-10^4 \le nr \le 10^4)$.

```
Algorithm f(nr):
    If nr < 0 then
        Return f(-nr)
    EndIf
    If (nr = 0) OR (nr = 7) then
        Return 1
    EndIf
    If nr < 10 then
        Return 0
    EndIf
    Return f((nr DIV 10) - 2 * (nr MOD 10))
EndAlgorithm</pre>
```

Pentru ce valori ale lui *nr* algoritmul returnează valoarea 1?

1 200

- A. 308
- B. -7
- C. 7098
- D. 57

5. Se consideră algoritmul afis(n), unde n este un număr natural $(1 \le n \le 10^4)$:

```
Algorithm afis(n):
   If n > 9 then
        If n MOD 2 = 0 then
            afis(n DIV 100)
            Write n MOD 10, " "
        Else
            afis(n DIV 10)
        EndIf
EndIf
```

Pentru care dintre următoarele apeluri se afișează valorile **2 4**, în această ordine?

- A. afis(1234)
- B. afis(1224)
- C. afis(4224)
- D. afis(4321)

6. Se consideră algoritmul Afișare(a), unde a este un număr natural $(1 \le a \le 10^4)$.

```
Algorithm Afişare(a):

If a < 9000 then

Write a, " "

Afişare(3 * a)

Write a, " "

EndIf
EndAlgorithm
```

EndAlgorithm

Ce se afișează pentru apelul Afișare(1000)?

- A. 1000 3000 9000 9000 3000 1000
- B. 1000 3000 9000 3000 1000
- C. 1000 3000 3000 1000
- D. 1000 3000 9000

7. Se consideră algoritmul f(n, x), unde n este un număr natural $(3 \le n \le 10^4)$, iar x este un vector de n numere naturale $(x[1], x[2], ..., x[n], 1 \le x[i] \le 10^4$, pentru i = 1, 2, ..., n):

```
Algorithm f(n, x):

For i ← 1, n - 2 execute

If x[i] + x[i + 1] ≠ x[i + 2] then

Return False

EndIf

EndFor

Return True

EndAlgorithm
```

Pentru care dintre următoarele apeluri algoritmul va returna *True*?

- A. f(3, [10, 15, 25])
- B. f(4, [0, 0, 0, 0])
- C. f(5, [100, 535, 635, 1170, 1805])
- D. f(4, [0, 1, 0, 1])
- **8.** Care este rezultatul conversiei numărului zecimal $2^{10} 2^5 1$ în baza 2?
 - A. 1111011111
 - B. 1010011001
 - C. 1000011001
 - D. Niciunul dintre răspunsurile A, B, C

9. Se consideră algoritmii one(a, b) și two(n, m) unde parametrii de intrare a, b, n și m sunt numere naturale $(2 \le a, b, n, m \le 10^6, n < m)$.

```
Algorithm one(a, b):
                                                           Algorithm two(n, m):
    s ← 0
                                                                For i ← n, m execute
                                                                    If one(i, i) = 2 * i + 2 then
    For i \leftarrow 1, a execute
                                                                         Write i, " "
         If a MOD i = 0 then
             s \leftarrow s + i
                                                                    EndIf
         FndTf
                                                                EndFor
    EndFor
                                                           EndAlgorithm
    For i \leftarrow 1, b execute
         If b MOD i = 0 then
             s \leftarrow s + i
         EndIf
    EndFor
    Return s
EndAlgorithm
```

Care dintre afirmațiile de mai jos sunt adevărate?

- A. Algoritmul two(n, m) nu afișează nimic, indiferent de valoarea parametrilor de intrare.
- B. Algoritmul two(n, m) afișează numerele prime din intervalul [n, m].
- C. Algoritmul two(n, m) afișează numerele divizibile cu 2 din intervalul [n, m].
- D. Nici una din celelalte variante nu este corectă.
- 10. Se consideră algoritmul decide(n, x), unde n este un număr natural nenul $(1 \le n \le 10^4)$, iar x este un vector cu n elemente numere naturale $(x[1], x[2], ..., x[n], 0 \le x[i] \le 100$, pentru i = 1, 2, ..., n).

```
Algorithm decide(n, x):

i ← 1

j ← n

While i < j AND x[i] = x[j] execute

i ← i + 1

j ← j - 1

EndWhile

If i ≥ j then

Return True

Else

Return False

EndIf

EndAlgorithm
```

Când returnează *True* algoritmul decide(n, x)?

- A. Întotdeauna
- B. Dacă elementele vectorului x sunt [1, 2, 3]
- C. Dacă elementele vectorului x sunt [1, 1, 1]
- D. Dacă elementele vectorului x formează un palindrom, adică x[i] = x[n-i+1] pentru orice i = 1, 2, ..., n

11. Se consideră algoritmul alg(a, b), unde a și b sunt numere naturale $(1 \le a, b \le 10^3)$.

```
Algorithm alg(a, b):
    If b = 0 then
        Return 1
    Else
        Return a * alg(a, b - 1)
    EndIf
EndAlgorithm
```

- A. Pentru apelul alg(2, 3) algoritmul returnează 7.
- B. Pentru apelul alg(2, 3) algoritmul se apelează de 4 ori, luând în calcul și apelul inițial.
- C. Algoritmul calculează și returnează valoarea a^{b-1} .
- D. Algoritmul calculează și returnează valoarea a^b .

12. Se consideră algoritmul ceFace(a, b), unde a și b sunt numere naturale ($1 < a, b \le 10^5$). Algoritmul prim(n) returnează *True* dacă numărul a > 1 este prim și *False* altfel.

```
Algorithm ceFace(a, b):
    If prim(a) = True then
        Write a, " "
    Else
        If prim(b) ≠ True then
            ceFace(a, b + 1)
        Else
            If b > a then
                Write a, " "
            Else
                If a MOD b = 0 then
                    Write b, " "
                    ceFace(a DIV b, b)
                Else
                    ceFace(a, b + 1)
                Endif
            EndIf
        EndIf
    EndIf
EndAlgorithm
```

Ce se afișează pentru apelul ceFace(100, 2)?

- A. 2555
- B. 5522
- C. 2225
- D. 2255

13. Se consideră algoritmul f(n, p) unde n este un număr natural nenul $(1 \le n \le 10^9)$, iar p este un număr natural $(0 \le p \le 10^9)$:

```
Algorithm f(n, p):
    If n ≤ 9 then
        If n MOD 2 = 0 then
            Return 10 * p + n
        Else
            Return p
        EndIf
    Else
        If n MOD 2 = 0 then
            p ← p * 10 + n MOD 10
        EndIf
        Return f(n DIV 10, p)
        EndIf
EndAlgorithm
```

Care din următoarele apeluri vor returna valoarea 22?

- A. f(23572, 0)
- B. f(23527, 0)
- C. f(2, 0)
- D. f(1242, 0)

14. Se consideră algoritmul cifre(n), unde n este un număr natural $(0 \le n \le 10^3)$.

```
Algorithm cifre(n):

If n ≥ 1 then

If (n * 5) MOD 10 = 0 then

Return cifre(n DIV 10)

Else

Return n MOD 10

EndIf

Else

Return -1

EndIf

EndAlgorithm
```

- A. Algoritmul returnează întotdeauna un număr mai mic decât 10.
- B. Algoritmul returnează -1 dacă și numai dacă valoarea inițială a lui *n* este 0.
- C. Pentru $n \ge 1$, algoritmul returnează cifra cea mai puțin semnificativă a lui n care este impară, sau -1, dacă aceasta nu există.
- D. Pentru $n \ge 1$ algoritmul returnează cifra cea mai semnificativă a lui n care este impară, sau -1, dacă aceasta nu există.

15. Se consideră algoritmul ceFace(a, b), unde a și b sunt două numere naturale ($0 \le a, b \le 10^6$).

```
Algorithm ceFace(a, b):
    c ← 0
    p ← 1
    While a * b ≠ 0 execute
         If (a MOD 10) = (b MOD 10) then
              c \leftarrow (a MOD 10) * p + c
         Else
              If (a MOD 10) < (b MOD 10) then
                  c \leftarrow ((b \text{ MOD } 10 - a \text{ MOD } 10) \text{ DIV } 2) * p + c
              F1se
                   c \leftarrow ((a MOD 10 - b MOD 10) DIV 2) * p + c
              EndIf
         EndIf
         p ← p * 10
         a ← a DIV 10
         b ← b DIV 10
    EndWhile
    Return c
EndAlgorithm
```

Care dintre următoarele afirmații sunt corecte?

```
A. Dacă \mathbf{a} = 0 și \mathbf{b} = 0, algoritmul returnează 1.
```

- B. Dacă a = 11 și b = 111, algoritmul returnează 11.
- C. Dacă a = 5678 și b = 5162738, algoritmul returnează 1024.
- D. Dacă a = 112233 și b = 331122, algoritmul returnează 110000.
- **16.** Se consideră algoritmii ceva(n, m) și altceva(n, m), unde n și m sunt numere naturale nenule $(1 \le n, m \le 10^{12}$ și $m \le n$).

```
Algorithm ceva(n, m):
                                                           Algorithm altceva(n, m):
    nc ← n
                                                               c ← 0
    mc ← m
                                                               While ceva(n, m) = False execute
                                                                   m \leftarrow m * 10 + 1
    While nc > 0 AND mc > 0 execute
        nc ← nc DIV 10
                                                                    c \leftarrow c + 1
        mc ← mc DIV 10
                                                               EndWhile
                                                               Write n, " ", m
    EndWhile
    If nc = mc then
                                                               Return c
                                                           EndAlgorithm
        Return True
    Else
        Return False
    EndIf
EndAlgorithm
```

- A. Complexitatea timp a algoritmului ceva(n, m) este $O(\log m)$.
- B. Algoritmul altceva(n, m) returnează 0 dacă și numai dacă n = m.
- C. Avem nevoie de precondiția $m \le n$ din enunț, deoarece dacă m > n algoritmul altceva(n, m) intră întotdeauna în ciclu infinit.
- D. Există numere n și m (care respectă precondiția) pentru care algoritmul altceva(n, m) afișează două valori în ordine crescătoare.

17. Se consideră algoritmul h(s, d, A), unde s și d sunt numere naturale nenule $(1 \le s, d \le 10^3)$ și A este un vector de n numere naturale nenule $(A[1], A[2], ..., A[n], 1 \le A[i] \le 10^3$, pentru i = 1, 2, ..., n).

```
Algorithm h(s, d, A):
    If s = d then
         x \leftarrow A[s]
         y \leftarrow x MOD 10
         x ← x DIV 10
         While x > 0 execute
              z \leftarrow x MOD 10
              If z - y \neq 2 then
                   Return 0
              EndIf
              y ← z
              x \leftarrow x DIV 10
         EndWhile
         Return 1
         Return h(s, (s + d) DIV 2, A) + h((s + d) DIV 2 + 1, d, A)
    EndIf
EndAlgorithm
```

Pentru ce valori ale numărului *n* și a vectorului *A* apelul h(1, n, A) va returna valoarea 5?

```
A. n = 7, A = (20, 53, 10, 42, 31, 131, 42)
B. n = 10, A = (420, 75, 68, 86, 97, 975, 53, 64, 24, 57)
C. n = 10, A = (402, 75, 6, 86, 7, 9, 35, 46, 24, 57)
D. n = 10, A = (642, 97, 6, 64, 7, 9, 75, 4, 53, 31)
```

18. Se consideră algoritmul f(a, x), unde x este un număr natural nenul $(1 \le x \le 10^4)$ și a este un vector cu 10 numere naturale nenule (a[1], a[2], ..., a[10]).

```
Algorithm f(a, x):
    i ← 1, j ← 10
    k ← 1
    While a[k] ≠ x AND i < j execute
        k ← (i + j) DIV 2
        If a[k] < x then
              i ← k
        Else
              j ← k
        EndIf
    EndWhile
    If a[k] = x then
        Return True
    Else
        Return False
    EndIf
EndAlgorithm
```

Pentru care dintre următoarele date de intrare algoritmul intră în ciclu infinit?

```
A. a = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3] şi x > 3

B. a = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] şi x < 10

C. a = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20] şi 1 < x < 20, x - \text{număr impar}

D. a = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20] şi 1 < x < 20, x - \text{număr par}
```

19. Se consideră algoritmul f(a), unde a este un număr natural $(1 \le a \le 10^9)$.

```
Algorithm f(a):
    x ← a MOD 10
    If x = a then
        If x MOD 2 = 0 then
            Return a
        Else
            Return 0
        EndIf
    If x MOD 2 = 0 then
        Return 10 * f(a DIV 10) + x
    EndIf
    Return f(a DIV 10)
EndAlgorithm
```

- A. Pentru a = 253401976 algoritmul f(a) se apelează de 8 ori. Se numără și apelul inițial.
- B. Pentru a = 253401976 algoritmul f(a) se apelează de 9 ori. Se numără și apelul inițial.
- C. Pentru a = 253401976 rezultatul returnat de algoritm este 2406.
- D. Rezultatul returnat de algoritmul f(a) pentru numărul a format doar din cifre pare este egal cu a.

20. Se consideră algoritmul A(k), unde parametrul k este un număr natural nenul $(1 \le k \le 10^9)$.

```
Algorithm A(k):
    gr ← (-1 + radical(1 + 8 * k)) / 2
    If gr = [gr] then
        p ← gr
    Else
        p ← [gr] + 1
    EndIf
    Return p - (k - p * (p - 1) DIV 2 - 1)
EndAlgorithm
```

- Cu [gr] s-a notat partea întreagă din gr.
- Algoritmul radical(x) returnează valoarea radicalului lui x.
- Operatorul / reprezintă împărțirea numerelor reale, de exemplu: 7 / 2 = 3.5

Care dintre următoarele afirmații sunt corecte?

A. Algoritmul A1(k), definit mai jos, este echivalent cu algoritmul A(k).

```
Algorithm A1(k):
    c ← 0
    i ← 1
    While c < k execute
         j ← 1
         While j ≤ i execute
              If c < k then
                  c \leftarrow c + 1
                  If c = k then
                       Return j
                  Else
                       j \leftarrow j + 1
                  EndIf
              Else
                  Return j
              EndIf
         EndWhile
         i \leftarrow i + 1
    EndWhile
EndAlgorithm
```

B. Algoritmul A2(k), definit mai jos, este echivalent cu algoritmul A(k).

```
Algorithm A2(k):
    c ← 0
    i ← 1
    While c < k execute
         j ← i
         While j \ge 1 execute
             If c < k then
                  c \leftarrow c + 1
                  If c = k then
                       Return j
                  Else
                       j ← j - 1
                  EndIf
             Else
                  Return j
             EndIf
         EndWhile
         i \leftarrow i + 1
    EndWhile
EndAlgorithm
```

- C. Algoritmul A(k) returnează al k-lea termen din șirul format din concatenarea șirurilor de forma [1, 2, ..., i], pentru fiecare i = 1, 2, ..., k, în această ordine (adică șirul [1, 1, 2, 1, 2, 3, 1, 2, 3, 4, ...]).
- D. Algoritmul A(k) returnează al k-lea termen din șirul format din concatenarea șirurilor de forma [i, ..., 2, 1] pentru fiecare i = 1, 2, ..., k, în această ordine (adică șirul [1, 2, 1, 3, 2, 1, 4, 3, 2, 1, ...])
- **21.** Se consideră algoritmul ceFace(a, lung), unde *lung* este un număr natural $(1 \le lung \le 10^5)$, iar a este un vector cu *lung* elemente numere întregi (a[1], a[2], ..., a[lung]). În vectorul a se află cel puțin un număr pozitiv.

```
Algorithm ceFace(a, lung):

value1 ← 0

value2 ← 0

For i ← 1, lung execute

value2 ← value2 + a[i]

If value1 < value2 then

value1 ← value2

EndIf

If value2 < 0 then

value2 ← 0

EndIf

EndFor

Return value1

EndAlgorithm
```

Știind că o subsecvență a vectorului x = [x[1], x[2], ..., x[n]] este formată din elemente ale vectorului x care ocupă poziții consecutive (de exemplu y = [x[3], x[4], x[5], x[6]]) este o subsecvență a vectorului x de lungime 4) precizați care dintre următoarele afirmații sunt adevărate:

- A. Dacă în vectorul *a* există un singur număr pozitiv, algoritmul returnează valoarea acestuia.
- B. Algoritmul returnează lungimea uneia dintre subsecvențele care au suma maximă în vectorul *a*.
- C. Algoritmul returnează suma uneia dintre subsecvențele care au sumă maximă în vectorul *a*.
- D. Algoritmul returnează suma numerelor pozițive aflate pe poziții consecutive la finalul vectorului *a*.

22. Se consideră algoritmul ceFace(sir, a, b), unde sir este un vector format din n ($1 \le n \le 100$) numere naturale nenule distincte ordonate crescător (sir[1], sir[2], ..., sir[n]), $a ext{ si } b$ sunt numere naturale ($1 \le a, b \le n$).

```
Algorithm ceFace(sir, a, b):

If a > b then

Return a

EndIf

c ← a + (b - a) DIV 2

If sir[c] = c then

Return ceFace(sir, c + 1, b)

Else

Return ceFace(sir, a, c - 1)

EndIf

EndAlgorithm
```

Care dintre următoarele afirmații sunt adevărate, considerând că apelul inițial este ceFace(sir, 1, n)?

- A. Dacă vectorul *sir* este format din primele n numere naturale distincte, atunci algoritmul returnează valoarea n + 1.
- B. Algoritmul returnează cea mai mare poziție p mai mică sau egală cu n DIV 2 pentru care sir[p] = p sau 1, dacă nu există o astfel de poziție $(1 \le p \le n)$.
- C. Algoritmul returnează cea mai mare poziție p mai mică sau egală cu n DIV 2 pentru care $sir[p] \neq p$ sau n+1, dacă nu există o astfel de poziție $(1 \leq p \leq n)$.
- D. Algoritmul returnează cel mai mic număr natural nenul care nu apare în vectorul sir.
- 23. Se consideră algoritmul ceFace(s, x, c, y, n, m, k), unde s este șir de caractere (s[1], s[2], ..., s[x]) de lungime x, iar c este șir de caractere (c[1], c[2], ..., c[y]) de lungime y. Identificatorii x, y, n, m și k memorează numere naturale nenule ($1 \le x, y, n, m, k \le 100$).

```
1. Algorithm ceFace(s, x, c, y, n, m, k):
        If (n \ge 0) AND (m \ge 0) AND (n \le x) AND (m \le y) then
3.
            If k \text{ MOD } 2 = 0 \text{ then}
4.
                 Write s[(n + k) MOD x + 1]
5.
6.
                 ceFace(s, x, c, y, n - 1, m, k)
7.
            EndIf
            If k \text{ MOD } 2 = 1 \text{ then}
8.
                 Write c[(m + k) MOD y + 1]
9.
10.
                 ceFace(s, x, c, y, n, m - 1, k)
11.
12.
            EndIf
13.
        EndIf
14. EndAlgorithm
```

Dorim, ca în urma apelului ceFace("+-", 2, "123", 3, 2, 2, 4) să obținem o expresie aritmetică validă (adică o expresie aritmetică reprezentând o alternanță din câte un operator și câte un operand; poate să înceapă cu unul din operatorii '+' sau '-' și trebuie să se termine cu un operand). Care dintre următoarele afirmații **NU** sunt adevărate?

- A. Liniile 5 si 10 pot fi completate cu instructiunea $k \leftarrow k + 7$.
- B. Linia 5 poate fi completată cu instrucțiunea k ← k + 2, iar linia 10 cu instrucțiunea k ← k + 5.
- C. Liniile 5 și 10 pot fi completate cu instrucțiunea $k \leftarrow k + 2$.
- D. Linia 5 poate fi completată cu instrucțiunea k ← k + 7, iar linia 10 cu instrucțiunea k ← k 1.
- **24.** Se consideră numărul natural n ($1 \le n \le 50$) și vectorul x având n elemente numere întregi (x[1], x[2], ..., x[n]). Care dintre următoarele afirmații sunt adevărate, indiferent de valoarea lui n și de valorile elementelor vectorului?
 - A. Există un număr natural k $(1 \le k \le n)$, astfel încât suma x[1] + x[2] + ... + x[k] să fie divizibilă cu n.
 - B. Există (i,j), $0 \le i < j \le n$, astfel încât suma x[i+1] + x[i+2] + ... + x[j] să fie divizibilă cu n.
 - C. Niciuna dintre afirmațiile A și B nu este adevărată.
 - D. Știind că o subsecvență a vectorului x = [x[1], x[2], ..., x[n]] este formată din elemente ale vectorului x care ocupă poziții consecutive (de exemplu, y = [x[3], x[4], x[5], x[6]] este o subsecvență a vectorului x de lungime 4), există un număr natural k, $(1 \le k \le n)$, astfel încât în vectorul x există o subsecvență de k elemente $(1 \le k \le n)$ a căror sumă este divizibilă cu n.

UNIVERSITATEA BABEȘ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ȘI INFORMATICĂ

Concurs Mate-Info — 26 martie 2023 Proba scrisă la INFORMATICĂ

BAREM ŞI REZOLVARE

OFI	CI	U:	10	puncte
-----	----	----	----	--------

1	Α	3.75 puncte
2	Α	3.75 puncte
3	AD	3.75 puncte
4	ABC	3.75 puncte
5	ABC	3.75 puncte
6	С	3.75 puncte
7	AC	3.75 puncte
8	Α	3.75 puncte
9	В	3.75 puncte
10	CD	3.75 puncte
11	BD	3.75 puncte
12	D	3.75 puncte
13	AB	3.75 puncte
14	AC	3.75 puncte
15	BD	3.75 puncte
16	AD	3.75 puncte
17	AC	3.75 puncte
18	AC	3.75 puncte
19	BCD	3.75 puncte
20	BD	3.75 puncte
21	AC	3.75 puncte
22	AD	3.75 puncte
23	ВС	3.75 puncte
24	BD	3.75 puncte