Solubilidade

♦ PROBLEMAS

Solubilidade

- 1. A 25 ℃ disólvense un máximo de 0,07 g de ioduro de chumbo(II) en 100 mL de auga. Calcula:
 - a) A concentración de ións chumbo (II) e ións ioduro nunha disolución acuosa saturada.
 - b) O produto de solubilidade (K_{ps}) do ioduro de chumbo(II) a 25 °C.

(A.B.A.U. extr. 22)

Rta.: a) $[Pb^{2+}] = 0.00152 \text{ mol/dm}^3$; $[I^-] = 0.00304 \text{ mol/dm}^3$; b) $K_s = 1.40 \cdot 10^{-8}$.

Datos Cifras significativas: 3

Solubilidade do ioduro de chumbo(II) $s' = 0,0700 \text{ g/dm}^3$

Masa molar do ioduro de chumbo(II) $M(PbI_2) = 461 \text{ g/mol}$

Incógnitas

Concentración de ións chumbo(II) e ioduro nunha disolución saturada [Pb²+], [I-]

Produto de solubilidade do PbI_2 K_s

Outros símbolos

Concentración (mol/dm³) en de PbI₂ en auga

Ecuacións

Cantidade (número de moles) n = m / M

Concentración molar (mol/dm³) s = n / V = s' / M

Produto de solubilidade do equilibrio: $B_bA_a(s) \rightleftharpoons b B^{\beta+}(aq) + a A^{\alpha-}(aq)$ $K_s = [A^{\alpha-}]^a \cdot [B^{\beta+}]^b$

Solución:

a) Calcúlase a solubilidade do ioduro de chumbo(II):

$$[PbI_2] = s = \frac{0,070 \text{ 0g}}{100 \text{ cm}^3} \frac{10^3 \text{ cm}^3}{1 \text{ dm}^3} \frac{1 \text{ mol } PbI_2}{461 \text{ g}} = 0,00152 \text{ mol/dm}^3$$

O equilibrio de solubilidade é:

$$PbI_2(s) \rightleftharpoons Pb^{2+}(aq) + 2 I^{-}(aq)$$

Chámase s á solubilidade, que é a concentración de sólido que se disolve, e dedúcese a concentración dos ións formados, de acordo coa estequiometría da reacción.

-		PbI ₂	\rightleftharpoons	Pb ²⁺	2 I-	
Concentración no equilibrio	[X] _e			s	2 s	mol/dm³

As concentracións dos ións son:

$$[Pb^{2+}] = s = 0.00152 \text{ mol/dm}^3$$

 $[I^-] = 2 \ s = 0.00304 \text{ mol/dm}^3$

Calcúlase a constante de equilibrio K_s :

$$K_s = [Pb^{2+}]_e \cdot [I^{-}]_e^2 = s (2 s)^2 = 4 s^3 = 4 \cdot (0.00152)^3 = 1.40 \cdot 10^{-8}$$

2. a) Calcula a solubilidade en auga pura, expresada en g/dm³, do sulfato de chumbo(II). Datos: $K_{ps}(PbSO_4, 25 \, ^{\circ}C) = 1,8 \cdot 10^{-8}$. (A.B.A.U. extr. 18) **Rta.**: a) $s' = 0,041 \, \text{g/dm}^3$.

a)

Datos Cifras significativas: 2

Produto de solubilidade do sulfato de chumbo(II) $K_s = 1.8 \cdot 10^{-8}$

Masa molar do sulfato de chumbo(II) $M(PbSO_4) = 303 \text{ g/mol}$

Incógnitas

Solubilidade do sulfato de chumbo(II) en auga pura (g/dm³) s'

Ecuacións

Cantidade (número de moles) n = m / M

Concentración molar (mol/dm³) s = n / V = s' / M

Produto de solubilidade do equilibrio: $B_bA_a(s) \rightleftharpoons b B^{\beta+}(aq) + a A^{\alpha-}(aq)$ $K_s = [A^{\alpha-}]^a \cdot [B^{\beta+}]^b$

Solución:

a) O equilibrio de solubilidade é:

$$PbSO_4(s) \rightleftharpoons Pb^{2+}(aq) + SO_4^{2-}(aq)$$

Chámase s á solubilidade, que é a concentración de sólido que se disolve, e dedúcese a concentración dos ións formados, de acordo coa estequiometría da reacción.

		PbSO ₄	+	Pb ²⁺	SO ₄ ²⁻	
Concentración no equilibrio	[X] _e			s	s	mol/dm³

A constante de equilibrio K_s é:

$$K_{\rm s} = [{\rm Pb^{2+}}]_{\rm e} \cdot [{\rm SO_4^{2-}}]_{\rm e} = s \cdot s = s^2$$

Como a solubilidade s é a concentración da disolución saturada, ou o que é o mesmo, a máxima cantidade de sal que pode disolverse en 1 dm³ de disolución, calcúlase da relación anterior:

$$s = \sqrt{K_s} = \sqrt{1.8 \cdot 10^{-8}} = 1.3 \cdot 10^{-4} \text{ mol PbSO}_4/\text{dm}^3 \text{ D}$$

Calcúlase a solubilidade en gramos por decímetro cúbico:

$$s' = \frac{1,3 \cdot 10^{-4} \text{ mol PbSO}_4}{1 \text{ dm}^3 \text{ D}} = \frac{303 \text{ g PbSO}_4}{1 \text{ mol PbSO}_4} = 0,041 \text{ g PbSO}_4/\text{dm}^3 \text{ D}$$

 b) Para preparar 250 cm³ dunha disolución saturada de bromato de prata (AgBrO₃) empréganse 1,75 g do sal. Calcula o produto de solubilidade do sal.

(A.B.A.U. extr. 17)

Rta.: b) $K_s = 8.81 \cdot 10^{-4}$.

b)

Datos Cifras significativas: 3

Volume de disolución $V = 250 \text{ cm}^3$

Masa disolta de bromato de prata $m(AgBrO_3) = 1,75 g$

Masa molar do bromato de prata $M(AgBrO_3) = 236 \text{ g/mol}$

Incógnitas

Produto de solubilidade do bromato de prata K_s

Outros símbolos

Concentración (mol/dm³) de Zn(OH)₂ s

Ecuacións

Concentración molar (mol/dm³) s = n / V = s' / M

Ecuacións

Produto de solubilidade do equilibrio: $B_bA_a(s) \rightleftharpoons b B^{\beta+}(aq) + a A^{\alpha-}(aq)$

$$K_{\rm s} = [A^{\alpha-}]^{\rm a} \cdot [B^{\beta+}]^{\rm b}$$

Solución:

a) O equilibrio de solubilidade é:

$$AgBrO_3(s) \rightleftharpoons Ag^+(aq) + BrO_3^-(aq)$$

Chámase s á solubilidade, que é a concentración de sólido que se disolve, e dedúcese a concentración dos ións formados, de acordo coa estequiometría da reacción.

_		AgBrO ₃	\rightleftharpoons	Ag⁺	BrO ₃ -	
Concentración no equilibrio	[X] _e			S	s	mol/dm³

Calcúlase a solubilidade do bromato de prata:

$$s = [AgBrO_3] = \frac{1,75 \text{ g } AgBrO_3}{250 \text{ cm}^3 \text{ D}} \frac{1 \text{ mol } AgBrO_3}{235 \text{ g } AgBrO_3} \frac{10^3 \text{ cm}^3}{1,00 \text{ dm}^3} = 0,029 \text{ 7mol } AgBrO_3 / \text{dm}^3 \text{ D}$$

Calcúlase o produto de solubilidade:

$$K_s = [Ag^+]_e \cdot [BrO_3^-]_e = s \cdot s = s^2 = (0.0297)^2 = 8.81 \cdot 10^{-4}$$

4. b) Cal é o pH dunha disolución saturada de hidróxido de cinc se a súa K_s a 25 °C é 1,2·10⁻¹⁷?

(A.B.A.U. ord. 17)

Rta.: b) pH =
$$8,5$$
.

b)

Datos Cifras significativas: 2

Produto de solubilidade do Zn(OH)₂ $K_s = 1,2 \cdot 10^{-17}$

Masa molar do hidróxido de cinc $M(Zn(OH)_2) = 99 \text{ g/mol}$

Incógnitas

pH da disolución saturada pH

Outros símbolos

Concentración (mol/dm³) de Zn(OH)₂ s

Ecuacións

Concentración molar (mol/dm³) s = n / V = s' / M

pH = $-\log[H^+]$

 $pOH = -log[OH^{-}]$

Produto iónico da auga $K_{\rm w} = [{\rm H^+}]_{\rm e} \cdot [{\rm OH^-}]_{\rm e} = 1,00 \cdot 10^{-14}$ $pK_{\rm w} = p{\rm H} + p{\rm OH} = 14,00$

Produto de solubilidade do equilibrio: $B_bA_a(s) \rightleftharpoons b B^{\beta+}(aq) + a A^{\alpha-}(aq)$ $K_s = [A^{\alpha-}]^a \cdot [B^{\beta+}]^b$

Solución:

a) O equilibrio de solubilidade é:

$$Zn(OH)_2(s) \rightleftharpoons Zn^{2+}(aq) + 2 OH^{-}(aq)$$

Chámase s á solubilidade, que é a concentración de sólido que se disolve, e dedúcese a concentración dos ións formados, de acordo coa estequiometría da reacción.

_			Zn(OH) ₂	=	Zn ²⁺	2 OH-	
Concentración no equili	brio	[X] _e			s	2 s	mol/dm³

A constante de equilibrio K_s é:

$$K_s = [Zn^{2+}]_e \cdot [OH^{-}]_e^2 = s (2 s)^2 = 4 s^3 = 1,2 \cdot 10^{-17}$$

Calcúlase a solubilidade:

$$s = \sqrt[3]{\frac{K_s}{4}} = \sqrt[3]{\frac{1,2 \cdot 10^{-17}}{4}} = 1,4 \cdot 10^{-6} \text{ mol } Zn(OH)_2/dm^3 D$$

Calcúlanse o pOH e o pH:

pOH =
$$-\log[OH^{-}] = -\log(2 s) = -\log(2 \cdot 1,4 \cdot 10^{-6}) = 5,5$$

pH = 14,0 - pOH = 14,0 - 5,5 = 8,5

Análise: O pH é básico.

Efecto do ión común

- A solubilidade do hidróxido de manganeso(II) en auga é de 1,96 mg/dm³. Calcula:
 - a) O produto de solubilidade desta substancia e o pH da disolución saturada.
 - b) A solubilidade do hidróxido de manganeso(II) nunha disolución de concentración 0,10 mol/dm³ de hidróxido de sodio, considerando que este sal está totalmente disociado.

(A.B.A.U. extr. 23)

Rta.: a) $K_s = 4.28 \cdot 10^{-14}$; pH = 9.64; b) $s_2 = 4.28 \cdot 10^{-12}$ mol/dm³.

Datos	Cifras significativas: 3
Solubilidade do hidróxido de manganeso(II)	$s' = 1,96 \text{ mg/dm}^3$
Concentración da disolución de hidróxido de sodio	$[NaOH] = 0.100 \text{ mol/dm}^3$
Incógnitas	
Produto de solubilidade do hidróxido de manganeso(II)	K_{s}
Solubilidade do hidróxido de manganeso(II) en D NaOH 0,1 mol/dm³	S_2
Masa molar do hidróxido de manganeso(II)	$M(Mn(OH)_2) = 89.0 \text{ g/mol}$
Ecuacións	
Cantidade (número de moles)	n = m / M
Concentración molar (mol/dm³)	s = n / V = s' / M
pH	$pH = -log[H^+]$

pOH $pOH = -log[OH^{-}]$

 $K_{\rm w} = [{\rm H}^+]_{\rm e} \cdot [{\rm OH}^-]_{\rm e} = 1,00 \cdot 10^{-14}$ Produto iónico da auga $pK_{w} = pH + pOH = 14,00$

Produto de solubilidade do equilibrio: $B_bA_a(s) \rightleftharpoons b B^{\beta+}(aq) + a A^{\alpha-}(aq)$ $K_s = [A^{\alpha-}]^a \cdot [B^{\beta+}]^b$

Solución:

a) O equilibrio de solubilidade é:

$$Mn(OH)_2(s) \rightleftharpoons Mn^{2+}(aq) + 2 OH^{-}(aq)$$

Chámase s á solubilidade, que é a concentración de sólido que se disolve, e dedúcese a concentración dos ións formados, de acordo coa estequiometría da reacción.

		Mn(OH) ₂	\rightleftharpoons	Mn ²⁺	2 OH-	
Concentración no equilibrio	[X] _e			S	2 s	mol/dm³

Calcúlase a concentración molar dunha disolución saturada de hidróxido de manganeso(II) en auga:

$$s = \frac{1,96 \text{ mg Mn}(OH)_2}{1 \text{ dm}^3 \text{ D}} \frac{10^3 \text{ g}}{1 \text{ mg}} \frac{1 \text{ mol Mn}(OH)_2}{89,0 \text{ g Mn}(OH)_2} = 2,20 \cdot 10^{-5}$$

Calcúlase a constante de equilibrio K_s :

$$K_s = [Mn^{2+}]_e \cdot [OH^-]_e^2 = s(2 s)^2 = 4 s^3 = 4 \cdot (2,20\cdot10^{-5})^3 = 4,28\cdot10^{-14}$$

Calcúlanse o pOH e o pH:

pOH =
$$-\log[OH^{-}] = -\log(2 \text{ s}) = -\log(2 \cdot 2,20 \cdot 10^{-5}) = 4,36$$

pH = $14,00 - \text{pOH} = 14,00 - 4,36 = 9,64$

Análise: O pH é básico.

b) O hidróxido de sodio está totalmente disociado.

$$NaOH(s) \rightarrow Na^{+}(aq) + OH^{-}(aq)$$

A concentración de ión hidróxido é:

$$[OH^{-}] = [NaOH] = 0,100 \text{ mol } OH^{-}/dm^{3} D$$

Chámase s_2 á solubilidade, que é a concentración de sólido que se disolve, e dedúcese a concentración dos ións formados, de acordo coa estequiometría da reacción.

		Mn(OH) ₂	\rightleftharpoons	Mn ²⁺	2 OH-	
Concentración inicial	[X] ₀			0	0,100	mol/dm³
Concentración que reacciona ou se forma	[X] _r	S_2	\rightarrow	S_2	2 s ₂	mol/dm³
Concentración no equilibrio	[X] _e			S_2	$0,100 + 2 s_2$	mol/dm³

A constante de equilibrio K_s é:

$$K_s = [Mn^{2+}]_e \cdot [OH^-]_e^2 = s_2 \cdot (0.100 + 2 s_2)^2 = 4.28 \cdot 10^{-14}$$

En primeira aproximación, pódese considerar desprezable s_2 fronte a 0,100, ($s_2 \ll 0,100$). Entón:

$$s_2 \cdot (0.100)^2 \approx 4.28 \cdot 10^{-14}$$

$$s_2 = \frac{4.24 \cdot 10^{-14}}{(0.100)^2} = 4.28 \cdot 10^{-12} \text{ mol/dm}^3$$

Compróbase que é desprezable.

Análise: A solubilidade do hidróxido de manganeso(II) na disolución de hidróxido de sodio é menor que a solubilidade en auga, debido ao efecto do ión común hidróxido.

- 2. A solubilidade do BaF₂ en auga é de 1,30 g/dm³. Calcula:
 - a) O produto de solubilidade do sal.
 - b) A solubilidade do BaF₂ nunha disolución acuosa de concentración 1 mol/dm³ de BaCl₂, considerando que este sal está totalmente disociado.

(A.B.A.U. ord. 22)

Rta.: a) $K_s = 1,63 \cdot 10^{-6}$; b) $s_2 = 6,38 \cdot 10^{-4} \text{ mol/dm}^3$.

Datos Cifras significativas: 3

Solubilidade do Ba F_2 $s' = 1,30 \text{ g/dm}^3$

Concentración da disolución do $BaCl_2$ [BaCl₂] = 1,00 mol/dm³

Masa molar do fluoruro de bario $M(BaF_2) = 175 \text{ g/mol}$

Incógnitas

Produto de solubilidade do BaF₂

 $K_{\rm s}$

Solubilidade do BaF₂ na disolución BaCl₂ de concentración 1 mol/dm³

 S_2

Outros símbolos

Concentración (mol/dm³) do BaF₂ en auga

S

Ecuacións

Cantidade (número de moles)

n = m / M

Concentración molar (mol/dm³)

$$s = n / V = s' / M$$

Produto de solubilidade do equilibrio: $B_bA_a(s) \rightleftharpoons b B^{\beta+}(aq) + a A^{\alpha-}(aq)$

$$K_s = [A^{\alpha-}]^a \cdot [B^{\beta+}]^b$$

Solución:

a) Calcúlase a solubilidade do fluoruro de bario:

$$[BaF_2] = s = \frac{1.3 \text{ g/dm}^3}{175 \text{ g/mol}} = 0.00741 \text{ mol/dm}^3$$

O equilibrio de solubilidade é:

$$BaF_2(s) \rightleftharpoons Ba^{2+}(aq) + 2 F^{-}(aq)$$

Chámase s á solubilidade, que é a concentración de sólido que se disolve, e dedúcese a concentración dos ións formados, de acordo coa estequiometría da reacción.

		BaF ₂	\rightleftharpoons	Ba ²⁺	2 F-	
Concentración no equilibrio	[X] _e			s	2 s	mol/dm³

Calcúlase a constante de equilibrio K_s :

$$K_s = [Ba^{2+}]_e \cdot [F^{-}]_e^2 = s (2 s)^2 = 4 s^3 = 4 \cdot (0,00741)^3 = 1,63 \cdot 10^{-6}$$

- b) Suponse que a concentración de cloruro de bario ten tres cifras significativas.
- O cloruro de bario está totalmente disociado.

$$BaCl_2(s) \rightarrow Ba^{2+}(aq) + 2 Cl^{-}(aq)$$

A concentración de ión bario é:

$$[Ba^{2+}] = [BaCl_2] = 1,00 \text{ mol } Ba^{2+}/dm^3 D$$

Chámase s_2 á solubilidade, que é a concentración de sólido que se disolve, e dedúcese a concentración dos ións formados, de acordo coa estequiometría da reacción.

		BaF ₂	=	Ba ²⁺	2 F-	
Concentración inicial	[X] ₀			1,00	0	mol/dm³
Concentración que reacciona ou se forma	[X] _r	s_2	\rightarrow	S_2	$2 s_2$	mol/dm³
Concentración no equilibrio	[X] _e			$1,00 + s_2$	$2 s_2$	mol/dm³

A constante de equilibrio K_s é:

$$K_s = [Ba^{2+}]_e \cdot [F^-]_e^2 = (1.00 + s_2) (2 s_2)^2 = 1.63 \cdot 10^{-6}$$

En primeira aproximación, pódese considerar desprezable s_2 fronte a 1,00, ($s_2 \ll 1,00$). Entón:

$$1,00 \cdot (2 \ s_2)^2 \approx 1,63 \cdot 10^{-6}$$

$$s_2 = \sqrt{\frac{1,63 \cdot 10^{-6}}{1,00 \cdot 4}} = 6,38 \cdot 10^{-4} \text{ mol/dm}^3$$

Compróbase que é desprezable.

Se se quere, pódese calcular a solubilidade en g/dm³, que sería

$$s'_{2} = 6.38 \cdot 10^{-4} \text{ mol/dm}^{3} \cdot 175 \text{ g/mol} = 0.112 \text{ g/dm}^{3}$$

Análise: A solubilidade do fluoruro de bario na disolución de cloruro de bario é menor que a solubilidade en auga, debido ao efecto do ión común bario.

- 3. O produto de solubilidade, a 20 ℃, do sulfato de bario é 8,7·10⁻¹¹. Calcula:
 - a) Os gramos de sulfato de bario que se poden disolver en 0,25 dm³ de auga.
 - b) Os gramos de sulfato de bario que se poden disolver en 0,25 dm³ dunha disolución de sulfato de sodio de concentración 1 mol/dm³, considerando que este sal está totalmente disociado.

(A.B.A.U. ord. 21)

s = n / V = s' / M $K_s = [A^{\alpha-}]^a \cdot [B^{\beta+}]^b$

Rta.: a) $m(BaSO_4) = 5.4 \cdot 10^{-4} \text{ g en } 0.25 \text{ dm}^3 \text{ H}_2\text{O}; \text{ b}) \ m'(BaSO_4) = 5.1 \cdot 10^{-9} \text{ g en } 0.25 \text{ dm}^3 \text{ D Na}_2\text{SO}_4.$

Datos	Cifras significativas: 2
Produto de solubilidade do BaSO ₄	$K_{\rm s} = 8.7 \cdot 10^{-11}$
Temperatura	$T = 20 ^{\circ}\text{C} = 293 \text{ K}$
Concentración da disolución do Na ₂ SO ₄	$[Na2SO4] = 1,0 \text{ mol/dm}^3$
Volume de auga	$V = 0.25 \text{ dm}^3$
Volume de disolución de sulfato de sodio	$V = 0.25 \text{ dm}^3$
Masa molar do sulfato de bario	$M(BaSO_4) = 233 \text{ g/mol}$
Incógnitas	
Masa (g) do BaSO ₄ que se disolve en 0,25 dm³ de auga	m
Masa (g) do BaSO ₄ que se disolve en 0,25 dm³ de D [Na ₂ SO ₄] = 1 mol/dm³	m_2
Outros símbolos	
Concentración (mol/dm³) en de BaSO ₄ en auga	S
Concentración (g/dm³) en de BaSO₄ en auga	s'
Concentración (mol/dm³) en de BaSO $_4$ en D [Na $_2$ SO $_4$] = 1 mol/dm³	S_2
Concentración (g/dm³) en de BaSO $_4$ en D [Na $_2$ SO $_4$] = 1 mol/dm³	S_2
Ecuacións	
Cantidade (número de moles)	n = m / M

Solución:

a) O equilibrio de solubilidade é:

Concentración molar (mol/dm³)

Produto de solubilidade do equilibrio: $B_bA_a(s) \rightleftharpoons b B^{\beta+}(aq) + a A^{\alpha-}(aq)$

$$BaSO_4(s) \rightleftharpoons Ba^{2+}(aq) + SO_4^{2-}(aq)$$

Chámase s á solubilidade, que é a concentración de sólido que se disolve, e dedúcese a concentración dos ións formados, de acordo coa estequiometría da reacción.

_		BaSO ₄	\rightleftharpoons	Ba ²⁺	SO ₄ ²⁻	
Concentración no equilibrio	[X] _e			s	s	mol/dm³

A constante de equilibrio K_s é:

$$K_{\rm s} = [{\rm Ba^{2+}}]_{\rm e} \cdot [{\rm SO_4^{2-}}]_{\rm e} = s \cdot s = s^2 = 8.7 \cdot 10^{-11}$$

Calcúlase a solubilidade:

$$s = \sqrt{K_s} = \sqrt{8.7 \cdot 10^{-11}} = 9.3 \cdot 10^{-6} \text{ mol BaSO}_4/\text{dm}^3 \text{ D}$$

$$s' = 9.3 \cdot 10^{-6} \text{ mol/dm}^3 \cdot 233 \text{ g/mol} = 0.0022 \text{ g BaSO}_4 / \text{ dm}^3 \text{ D}$$

En 0,25 dm³ de auga disólvense:

$$m = 0.0022 \text{ g BaSO}_4 / \text{ dm}^3 \text{ D} \cdot 0.25 \text{ dm}^3 = 5.4 \cdot 10^{-4} \text{ g} = 0.54 \text{ mg BaSO}_4$$

b) O sulfato de sodio está totalmente disociado.

$$Na_2SO_4(s) \rightarrow 2 Na^+(aq) + SO_4^{2-}(aq)$$

A concentración de ión sulfato é:

$$[SO_4^{2-}] = [Na_2SO_4] = 1,0 \text{ mol } SO_4^{2-}/dm^3 D$$

Chámase s_2 á solubilidade, que é a concentración de sólido que se disolve, e dedúcese a concentración dos ións formados, de acordo coa estequiometría da reacción.

		BaSO ₄	\rightleftharpoons	Ba ²⁺	SO ₄ ²⁻	
Concentración inicial	[X] ₀			0	1,0	mol/dm³
Concentración que reacciona ou se forma	[X] _r	S_2	\rightarrow	S_2	S_2	mol/dm³
Concentración no equilibrio	[X] _e			S_2	$1,0 + s_2$	mol/dm³

A constante de equilibrio K_s é:

$$K_s = [Ba^{2+}]_e \cdot [SO_4^{2-}]_e = s_2 \cdot (1.0 + s_2) = 8.7 \cdot 10^{-11}$$

En primeira aproximación, pódese considerar s_2 desprezable s fronte a 1,0, ($s_2 \ll 1,0$). Entón:

$$s_2 \approx 8.7 \cdot 10^{-11} \text{ mol/dm}^3$$

É desprezable fronte a 1,0.

Análise: A solubilidade do sulfato de bario na disolución de sulfato de sodio é menor que a solubilidade en auga, debido ao efecto do ión común sulfato.

Calcúlase a solubilidade en gramos por decímetro cúbico.

$$s_2' = 8.7 \cdot 10^{-11} \text{ mol/dm}^3 \cdot 233 \text{ g/mol} = 2.0 \cdot 10^{-8} \text{ g BaSO}_4 / \text{dm}^3 \text{ D}$$

En 0,25 dm³ de auga disólvense:

$$m_2 = 2.0 \cdot 10^{-8} \text{ g BaSO}_4 / \text{ dm}^3 \text{ D} \cdot 0.25 \text{ dm}^3 = 5.1 \cdot 10^{-9} \text{ g} = 5.1 \text{ ng BaSO}_4$$

- 4. A 25 °C a solubilidade en auga do bromuro de calcio é 2,0·10⁻⁴ mol/dm³.
 - a) Calcula K_{ps} para o sal á devandita temperatura.
 - b) Calcula a solubilidade do CaBr₂ nunha disolución acuosa de concentración 0,10 mol/dm³ de NaBr considerando que este sal está totalmente disociado.

(A.B.A.U. extr. 20)

Rta.: a) $K_s = 3.2 \cdot 10^{-11}$; b) $s_2 = 3.2 \cdot 10^{-9} \text{ mol/dm}^3$.

Datos Cifras significativas: 3

Solubilidade do $CaBr_2$ $s = 2,00 \cdot 10^{-4} \text{ mol/dm}^3$

Concentración da disolución do NaBr [NaBr] = 0,100 mol/dm³

Incógnitas

Produto de solubilidade do $CaBr_2$ K_s

Solubilidade do CaBr₂ en NaBr 0,1 mol/dm³

Ecuacións

Cantidade (número de moles) n = m / M

Concentración molar (mol/dm³) s = n / V = s' / M

Produto de solubilidade do equilibrio: $B_bA_a(s) \rightleftharpoons b B^{\beta+}(aq) + a A^{\alpha-}(aq)$ $K_s = [A^{\alpha-}]^a \cdot [B^{\beta+}]^b$

Solución:

a) O equilibrio de solubilidade é:

$$CaBr_2(s) \rightleftharpoons Ca^{2+}(aq) + 2 Br^{-}(aq)$$

Chámase s á solubilidade, que é a concentración de sólido que se disolve, e dedúcese a concentración dos ións formados, de acordo coa estequiometría da reacción.

		CaBr ₂	\Rightarrow	Ca^{2+}	2 Br ⁻	
Concentración no equilibrio	[X] _e			S	2 s	mol/dm³

Calcúlase a constante de equilibrio K_s é:

$$K_s = [Ca^{2+}]_e \cdot [Br^{-}]_e^2 = s(2 s)^2 = 4 s^3 = 4 \cdot (2,00 \cdot 10^{-4})^3 = 3,20 \cdot 10^{-11}$$

b) O bromuro de sodio está totalmente disociado.

$$NaBr(s) \rightarrow Na^{+}(aq) + Br^{-}(aq)$$

A concentración de ión bromuro é:

$$[Br^{-}] = [NaBr] = 0,100 \text{ mol } Br^{-}/dm^{3} D$$

Chámase s_2 á solubilidade, que é a concentración de sólido que se disolve, e dedúcese a concentración dos ións formados, de acordo coa estequiometría da reacción.

		CaBr ₂	\rightleftharpoons	Ca ²⁺	2 Br ⁻	
Concentración inicial	[X] ₀			0	0,100	mol/dm³
Concentración que reacciona ou se forma	[X] _r	S_2	\rightarrow	S_2	2 s ₂	mol/dm³
Concentración no equilibrio	[X] _e			S_2	$0,100 + 2 s_2$	mol/dm³

A constante de equilibrio K_s é:

$$K_s = [Ca^{2+}]_e \cdot [Br^-]_e^2 = s_2 \cdot (0.100 + 2 s_2)^2 = 3.20 \cdot 10^{-11}$$

En primeira aproximación, pódese considerar desprezable s_2 fronte a 0,100, ($s_2 \ll 0,100$). Entón:

$$s_2 \cdot (0.100)^2 \approx 3.20 \cdot 10^{-11}$$

$$s_2 = \frac{3,20 \cdot 10^{-11}}{(0,100)^2} = 3,20 \cdot 10^{-9} \text{ mol/dm}^3$$

Compróbase que é desprezable.

Análise: A solubilidade do bromuro de calcio na disolución de bromuro de sodio é menor que a solubilidade en auga, debido ao efecto do ión común bromuro.

- 5. a) Determina a solubilidade en auga do cloruro de prata a 25 °C, expresada en g/dm³, se o seu K_{ps} é $1.7\cdot10^{-10}$ a devandita temperatura.
 - b) Determina a solubilidade do cloruro de prata nunha disolución de concentración 0,5 mol/dm³ de cloruro de calcio, considerando que este sal atópase totalmente disociado.

(A.B.A.U. extr. 19)

Rta.: a) $s' = 1.9 \cdot 10^{-3} \text{ g/dm}^3$; b) $s_2' = 2.4 \cdot 10^{-8} \text{ g/dm}^3$.

Datos Cifras significativas: 2

Produto de solubilidade do AgCl $K_{ps} = 1,7 \cdot 10^{-10}$

Temperatura $T = 25 \text{ }^{\circ}\text{C} = 298 \text{ K}$

Concentración da disolución do $CaCl_2$ [CaCl₂] = 0,50 mol/dm³

Masa molar do cloruro de prata M(AgCl) = 143 g/mol

s

Incógnitas

Solubilidade (g/dm³) do AgCl en auga

Solubilidade (g/dm³) do AgCl en CaCl₂ 0,5 mol/dm³ s₂

Outros símbolos

Concentración (mol/dm³) en de AgCl en auga

Concentración (mol/dm³) en de AgCl en CaCl₂ 0,5 mol/dm³ s₂

Ecuacións

Cantidade (número de moles) n = m / M

Concentración molar (mol/dm³) s = n / V = s' / M

Produto de solubilidade do equilibrio: $B_bA_a(s) \rightleftharpoons b B^{\beta+}(aq) + a A^{\alpha-}(aq)$ $K_s = [A^{\alpha-}]^a \cdot [B^{\beta+}]^b$

Solución:

a) O equilibrio de solubilidade é:

$$AgCl(s) \rightleftharpoons Ag^{+}(aq) + Cl^{-}(aq)$$

Chámase s á solubilidade, que é a concentración de sólido que se disolve, e dedúcese a concentración dos ións formados, de acordo coa estequiometría da reacción.

		AgCl	\rightleftharpoons	Ag+	Cl-	
Concentración no equilibrio	[X] _e			s	s	mol/dm³

A constante de equilibrio K_{ps} é:

$$K_{ps} = [Ag^+]_e \cdot [Cl^-]_e = s \cdot s = s^2 = 1,7 \cdot 10^{-10}$$

Calcúlase a solubilidade:

$$s = \sqrt{K_s} = \sqrt{1.7 \cdot 10^{-10}} = 1.3 \cdot 10^{-5} \text{ mol AgCl/dm}^3 \text{ D}$$

$$s' = 1.3 \cdot 10^{-5} \text{ mol/dm}^3 \cdot 143 \text{ g/mol} = 1.9 \cdot 10^{-3} \text{ g AgCl / dm}^3 \text{ D}$$

b) O cloruro de calcio atópase totalmente disociado:

$$CaCl_2(s) \rightarrow Ca^{2+}(aq) + 2 Cl^{-}(aq)$$

A concentración de ión cloruro é:

$$[Cl^{-}] = 2 \cdot [CaCl_{2}] = 2 \cdot 0,50 = 1,0 \text{ mol/dm}^{3}$$

Chámase s_2 á solubilidade, que é a concentración de sólido que se disolve, e dedúcese a concentración dos ións formados, de acordo coa estequiometría da reacción.

		AgCl	\rightleftharpoons	Ag^+	Cl-	
Concentración inicial	[X] ₀			0	1,0	mol/dm³
Concentración que reacciona ou se forma	[X] _r	S_2	\rightarrow	S_2	S_2	mol/dm³
Concentración no equilibrio	[X] _e			S_2	$1,0 + s_2$	mol/dm³

A constante de equilibrio K_{ps} é:

$$K_{ps} = [Ag^+]_e \cdot [Cl^-]_e = s_2 \cdot (1.0 + s_2) = 1.7 \cdot 10^{-10}$$

En primeira aproximación, pódese considerar s_2 desprezable fronte a 1,0, ($s_2 \ll 1,0$). Entón:

$$1.0 \ s_2 \approx 1.7 \cdot 10^{-10}$$

$$s_2 \approx 1.7 \cdot 10^{-10} \text{ mol/dm}^3$$

Este valor é desprezable fronte a 1,0. Calcúlase a solubilidade en g/dm³.

$$s_2' = 1.7 \cdot 10^{-10} \text{ mol/dm}^3 \cdot 143 \text{ g/mol} = 2.4 \cdot 10^{-8} \text{ g AgCl / dm}^3 \text{ D}$$

Análise: A solubilidade do cloruro de prata na disolución de cloruro de calcio é menor que a solubilidade en auga debido ao efecto do ión común cloruro.

- 6. A 25 °C o produto de solubilidade do Ba $(IO_3)_2$ é $6.5 \cdot 10^{-10}$. Calcula:
 - a) A solubilidade do sal e as concentracións molares dos ións iodato e bario.
 - b) A solubilidade do citado sal, en g/dm³, nunha disolución de concentración 0,1 mol/dm³ de KIO₃ a 25 ℃ considerando que este sal se atopa totalmente disociado.

(A.B.A.U. ord. 19)

Rta.: a) $s = [Ba^{2+}] = 5.5 \cdot 10^{-4} \text{ mol/dm}^3$; $[(IO_3)^-] = 1.1 \cdot 10^{-3} \text{ mol/dm}^3$; b) $s' = 3.2 \cdot 10^{-5} \text{ g/dm}^3$.

Datos Cifras significativas: 2

Produto de solubilidade do Ba $(IO_3)_2$ $K_s = 6.5 \cdot 10^{-10}$

Concentración da disolución do KIO_3 [KIO_3] = 0,10 mol/dm³

Masa molar do iodato de bario $M(Ba(IO_3)_2) = 487 \text{ g/mol}$

Incógnitas

Solubilidade (mol/dm³) do Ba(IO₃)₂ en auga

Concentracións (mol/dm³) dos ións [IO₃], [Ba²+]

Solubilidade (g/dm³) do Ba(IO₃)₂ en KIO₃ 0,1 mol/dm³ s

Ecuacións

Produto de solubilidade do equilibrio: $B_bA_a(s) \rightleftharpoons b B^{\beta+}(aq) + a A^{\alpha-}(aq)$ $K_s = [A^{\alpha-}]^a \cdot [B^{\beta+}]^b$

Solución:

a) O equilibrio de solubilidade do iodato e bario é:

$$Ba(IO_3)_2(s) \rightleftharpoons Ba^{2+}(aq) + 2 IO_3^{-}(aq)$$

Chámase s á solubilidade, que é a concentración de sólido que se disolve, e dedúcese a concentración dos ións formados, de acordo coa estequiometría da reacción.

		Ba(IO ₃) ₂	=	Ba ²⁺	2 IO ₃	
Concentración no equilibrio	[X] _e			S	2 s	mol/dm³

A constante de equilibrio K_s é:

$$K_s = [Ba^{2+}]_e \cdot [IO_3^-]_e^2 = s (2 s)^2 = 4 s^3 = 6.5 \cdot 10^{-10}$$

Calcúlase a solubilidade do iodato de bario en auga:

$$s_a = \sqrt[3]{\frac{K_s}{4}} = \sqrt[3]{\frac{6.5 \cdot 10^{-10}}{4}} = 5.5 \cdot 10^{-4} \text{ mol Ba}(IO_3)_2 / \text{dm}^3 D$$

As concentracións dos ións valen:

$$[Ba^{2+}]_e = s = 5.5 \cdot 10^{-4} \text{ mol/dm}^3;$$

$$[IO_3^-] = 2 \ s = 1,1 \cdot 10^{-3} \ \text{mol/dm}^3$$

b) O iodato de potasio está totalmente disociado.

$$KIO_3(s) \longrightarrow K^+(aq) + IO_3^-(aq)$$

A concentración de ión iodato é:

$$[IO_3^-] = [KIO_3] = 0.10 \text{ mol } IO_3^-/dm^3 D$$

Chámase s_b á solubilidade, que é a concentración de sólido que se disolve, e dedúcese a concentración dos ións formados, de acordo coa estequiometría da reacción.

		Ba(IO ₃) ₂	\rightleftharpoons	Ba ²⁺	2 IO ₃	
Concentración inicial	[X] ₀			0	0,10	mol/dm³
Concentración que reacciona ou se forma	[X] _r	S _b	\rightarrow	S _b	2 s _b	mol/dm³
Concentración no equilibrio	[X] _e			S _b	$0.10 + 2 s_b$	mol/dm³

Este valor é desprezable fronte a 0,10.

Calcúlase a solubilidade en gramos por decímetro cúbico:

$$s' = \frac{6.5 \cdot 10^{-8} \text{ mol}}{1 \text{ dm}^3} \cdot \frac{487 \text{ g Ba} (IO_3)_2}{1 \text{ mol Ba} (IO_3)_2} = 3.2 \cdot 10^{-5} \text{ g/dm}^3$$

Análise: A solubilidade do iodato de bario na disolución de iodato de potasio é menor que a solubilidade en auga, debido ao efecto do ión común iodato.

♦ CUESTIÓNS

1. Disponse dunha disolución acuosa saturada de $CaCO_3$ en equilibrio co seu sólido. Indica como se verá modificada a súa solubilidade ao engadirlle Na_2CO_3 , considerando este sal totalmente disociado. Razoa a resposta indicando o equilibrio e a expresión da constante do produto de solubilidade (K_{ps}) (A.B.A.U. extr. 21)

Solución:

A solubilidade do CaCO₃ será menor que antes por efecto do ión común. O Na₂CO₃ soluble disociarase totalmente:

$$Na_2CO_3(s) \rightarrow 2 Na^+(aq) + CO_3^{2-}(aq)$$

o que produce un aumento na concentración do ión CO_3^{2-} na disolución. Isto provocará un desprazamento do equilibrio

$$CaCO_3(s) \rightleftharpoons Ca^{2+}(aq) + CO_3^{2-}(aq)$$

cara á formación do sal sólido, xa que na expresión do produto de solubilidade,

$$K_{\rm s} = [{\rm Ca^{2+}}]_{\rm e} \cdot [{\rm CO_3^{2-}}]_{\rm e}$$

un aumento na concentración do ión CO_3^{2-} terá que ser compensada cunha diminución na concentración do ión Ca^{2+} para manter constante o valor do produto de solubilidade, que é unha constante de equilibrio que só cambia coa temperatura.

É dicir, o sal estará menos disociado e a solubilidade será menor.

 b) Razoa como varía a solubilidade do FeCO₃ (sal pouco soluble) ao engadir Na₂CO₃ a unha disolución acuosa do devandito sal.

(A.B.A.U. extr. 18)

Solución:

b) A solubilidade diminúe en presenza dun ión común.

Para un sal pouco soluble como o carbonato de ferro(II) o sólido atópase en equilibrio cos ións disolvidos.

$$FeCO_3(s) \rightleftharpoons Fe^{2+}(aq) + CO_3^{2-}(aq)$$

A solubilidade s (concentración da disolución saturada), pódese calcular da expresión da constante de equilibrio:

		FeCO ₃	\rightleftharpoons	CO ₃ ²⁻	Fe ²⁺	
Concentración no equilibrio	[X] _e			S	s	mol/dm³

$$K_s = \lceil CO_3^{2-} \rceil \cdot \lceil Fe^{2+} \rceil = s \cdot s = s^2$$

O carbonato de sodio é un electrólito forte que, en disolucións diluídas, está totalmente disociado.

$$Na_2CO_3(aq) \rightarrow 2 Na^+(aq) + CO_3^{2-}(aq)$$

Ao engadir a unha disolución de carbonato de ferro(II) en equilibrio unha disolución acuosa de carbonato de sodio, que se disolve totalmente, o equilibrio desprázase, seguindo a lei de Le Chatelier, no sentido de consumir o ión carbonato extra e de formar maior cantidade de precipitado de carbonato de ferro(II), deixando menos ións ferro(II) na disolución.

3. b) Razoa se é correcta a seguinte afirmación: a solubilidade do cloruro de prata (sal pouco soluble) é igual en auga pura que nunha disolución de cloruro de sodio.

(A.B.A.U. ord. 18)

Solución:

b) Incorrecta. A solubilidade diminúe en presenza dun ión común.

Para un sal pouco soluble, por exemplo o cloruro de prata, o sólido atópase en equilibrio cos ións disoltos.

$$AgCl(s) \rightleftharpoons Ag^{+}(aq) + Cl^{-}(aq)$$

A solubilidade s (concentración da disolución saturada), pódese calcular da expresión da constante de equilibrio:

		AgCl	\rightleftharpoons	Cl-	Ag+	
Concentración no equilibrio	[X] _e			s	s	mol/dm³

$$K_s = [Cl^-] \cdot [Ag^+] = s \cdot s = s^2$$

O cloruro de sodio é un electrolito forte que, en disolucións diluídas, está totalmente disociado.

$$NaCl(aq) \rightarrow Na^{+}(aq) + Cl^{-}(aq)$$

Ao engadir a unha disolución de cloruro de prata en equilibrio unha cantidade de cloruro de sodio, que se disolve totalmente, o equilibrio desprázase, seguindo a lei de Le Chatelier, no sentido de consumir o ión cloruro extra e de formar maior cantidade de precipitado de cloruro de prata, deixando menos ións prata na disolución.

♦ LABORATORIO

- 1. Mestúranse 20 cm³ dunha disolución de cloruro de bario de concentración 1,0 mol/dm³ con 50 cm³ dunha disolución de sulfato de potasio de concentración 1,0 mol/dm³, obténdose cloruro de potasio e un precipitado de sulfato de bario.
 - a) Escribe a reacción que ten lugar e calcula o rendemento da reacción se se obteñen 3,5 g de sulfato de bario.
 - b) Explica detalladamente como procederías no laboratorio para levar a cabo a separación do precipitado obtido empregando unha filtración a baleiro, indicando todo o material necesario.

(A.B.A.U. ord. 24)

Rta.: a) Rendemento = 75 %

Solución:

a) Escríbese a reacción da reacción química axustada:

Ionízanse os compostos solubles e escríbese a reacción iónica de precipitación do carbonato de calcio:

$$\frac{2 \text{ K}^{+}(\text{aq}) + \text{SO}_{4}^{2-}(\text{aq}) + \text{Ba}^{2+}(\text{aq}) + \frac{2 \text{ Cl}^{-}(\text{aq})}{\text{Cl}^{-}(\text{aq})} \longrightarrow \text{BaSO}_{4}(\text{s}) + \frac{2 \text{ K}^{+}(\text{aq}) + 2 \text{ Cl}^{-}(\text{aq})}{\text{SO}_{4}^{2-}(\text{aq}) + \text{Ba}^{2+}(\text{aq}) \longrightarrow \text{BaSO}_{4}(\text{s})}$$

Cálculo da cantidade de precipitado (supoñendo 2 cifras significativas).

Calcúlase a masa de sulfato de bario que debería obterse a partir dos datos das disolucións de cloruro de bario e sulfato de potasio.

Para a determinación do reactivo limitante, calcúlanse as cantidades iniciais dos reactivos.

Calcúlase a cantidade dun deles necesaria para reaccionar completamente co outro, mirando a ecuación axustada da reacción.

Identifícase ao reactivo limitante, comprobando se a cantidade necesaria é maior ou menor que a que hai. Calcúlanse as cantidades iniciais dos reactivos:

$$n_0(\text{BaCl}_2) = 20 \text{ cm}^3 \text{ D} \frac{1 \text{ dm}^3}{10^3 \text{ cm}^3} \frac{1.0 \text{ mol}}{1 \text{ dm}^3} = 0,020 \text{ mol BaCl}_2$$

$$n_0(K_2SO_4) = 50 \text{ cm}^3 D \frac{1 \text{ dm}^3}{10^3 \text{ cm}^3} \frac{1.0 \text{ mol}}{1 \text{ dm}^3} = 0,050 \text{ mol } K_2SO_4$$

Calcúlase a cantidade de sulfato de potasio necesaria para reaccionar co cloruro de bario, mirando a ecuación axustada da reacción:

$$n(K_2SO_4) = 0.020 \text{ mol BaCl}_2 \frac{1 \text{ mol } K_2SO_4}{1 \text{ mol BaCl}_2} = 0.020 \text{ mol } K_2SO_4$$

Como a cantidade necesaria, 0,020 mol, é menor que a inicial, 0,050 mol, o reactivo limitante non é o sulfato de potasio senón o cloruro de bario.

Calcúlase a masa de sulfato de bario que se espera obter, mirando a ecuación axustada da reacción:

$$m=0,020 \text{ mol BaCl}_2$$
 $\frac{1 \text{ mol BaSO}_4}{1 \text{ mol BaCl}_2}$ $\frac{233 \text{ g BaSO}_4}{1 \text{ mol BaSO}_4}=4,7 \text{ g BaSO}_4$

Calcúlase o rendemento da reacción dividindo a masa obtida, 3,5 g, entre a calculada, e exprésase o resultado en tanto por cento.

$$Rto. = \frac{3.5 \text{ g BaSO}_4 \text{ obtidos}}{4.7 \text{ g BaSO}_4 \text{ teóricos}} = 0,75 = 75 \%$$

Procedemento

Para separar o precipitado, colócase un papel de filtro circular nun funil büchner, axustándoo para non deixar orificios libres, e humedécese con auga para que quede adherido.

Axústase o funil büchner sobre un matraz kitasato e conéctase a rama lateral do kitasato a unha trompa de baleiro.

Ábrese a billa e vértese o contido do vaso (precipitado e líquido) no funil.

Bótase máis auga sobre o precipitado que aínda queda no vaso para levalo ao funil.

Quítase o papel de filtro e déixase a secar un día ou dous.

Material

Vasos de precipitados (2), variña de vidro, funil büchner, matraz kitasato, papel de filtro.

- a) Escribe a reacción química que ten lugar, nomea e calcula a cantidade en gramos do precipitado obtido.
- b) Describe o procedemento que levaría a cabo no laboratorio para separar o precipitado, debuxando a montaxe que empregarías e nomeando o material.

(A.B.A.U. extr. 23)

Rta.: a) $m = 0.050 \text{ g CaCO}_3$.

Solución:

a) Escríbese a reacción da reacción química axustada:

$$Na_2CO_3(aq)$$
 + $CaCl_2(aq)$ \rightarrow $CaCO_3(s)$ + $2 NaCl(aq)$ carbonato de sodio cloruro de calcio carbonato de calcio cloruro de sodio

Ionízanse os compostos solubles e escríbese a reacción iónica de precipitación do carbonato de calcio:

$$\frac{2 \text{ Na}^{+}(\text{aq}) + \text{CO}_{3}^{2-}(\text{aq}) + \text{Ca}^{2+}(\text{aq}) + \frac{2 \text{ Cl}^{-}(\text{aq})}{\text{CO}_{3}^{2-}(\text{aq}) + \text{CaCO}_{3}(s)} + \frac{2 \text{ Na}^{+}(\text{aq}) + 2 \text{ Cl}^{-}(\text{aq})}{\text{CO}_{3}^{2-}(\text{aq}) + \text{CaCO}_{3}(s)}$$

Cálculo da masa de precipitado (supoñendo 2 cifras significativas).

Para a determinación do reactivo limitante, calcúlanse as cantidades iniciais dos reactivos.

Calcúlase a cantidade dun deles necesaria para reaccionar completamente co outro, mirando a ecuación axustada da reacción.

Identifícase ao reactivo limitante, comprobando se a cantidade necesaria é maior ou menor que a que hai. Calcúlanse as cantidades iniciais dos reactivos:

$$n_0(\text{CaCl}_2) = 25 \text{ cm}^3 \frac{1 \text{ dm}^3}{10^3 \text{ cm}^3} \frac{0,020 \text{ mol CaCl}_2}{1 \text{ dm}^3} = 5,0 \cdot 10^{-4} \text{ mol CaCl}_2$$

$$n_0(\text{Na}_2\text{CO}_3) = 25 \text{ cm}^3 \frac{1 \text{ dm}^3}{10^3 \text{ cm}^3} \frac{0,03 \text{ mol Na}_2\text{CO}_3}{1 \text{ dm}^3} = 7,5 \cdot 10^{-4} \text{ mol Na}_2\text{CO}_3$$

Calcúlase a cantidade de carbonato de sodio necesaria para reaccionar co cloruro de calcio, mirando a ecuación axustada da reacción:

$$n(\text{Na}_2\text{CO}_3) = 5,0 \cdot 10^{-4} \text{ mol CaCl}_2 \frac{1 \text{ mol Na}_2\text{CO}_3}{1 \text{ mol CaCl}_2} = 5,0 \cdot 10^{-4} \text{ mol Na}_2\text{CO}_3$$

Como a cantidade necesaria, $5.0\cdot10^{-4}$ mol, é menor que a inicial, $7.5\cdot10^{-4}$ mol, o reactivo limitante non é o carbonato de sodio, senón o cloruro de calcio.

Calcúlase a masa de carbonato de calcio que se obtén, mirando a ecuación axustada da reacción:

$$m=5.0 \cdot 10^{-4} \text{ mol CaCl}_2 \frac{1 \text{ mol CaCO}_3}{1 \text{ mol CaCl}_2} \frac{100 \text{ g CaCO}_3}{1 \text{ mol CaCl}_2} = 0.050 \text{ g CaCO}_3$$

Procedemento

Para separar o precipitado, colócase un papel de filtro circular nun funil büchner, axustándoo para non deixar orificios libres, e humedécese con auga para que quede adherido.

Axústase o funil büchner sobre un matraz kitasato e conéctase a rama lateral do kitasato a unha trompa de baleiro.

Ábrese a billa e vértese o contido do vaso (precipitado e líquido) no funil. Bótase máis auga sobre o precipitado que aínda queda no vaso para levalo ao funil

á trompa de baleiro kitasato

Cando xa non gotee máis auga no interior do kitasato, desencáixase o funil e péchase a billa. Quítase o papel de filtro e déixase a secar un día ou dous.

- 3. Disólvense 3,0 g de SrCl₂ en 25 cm³ de auga e 4,0 g de Li₂CO₃ noutros 25 cm³ de auga. A continuación, mestúranse as dúas disolucións, levándose a cabo a formación dun precipitado do que se obteñen 1.55 g.
 - a) Escribe a reacción que ten lugar, identificando o precipitado, e calcula o rendemento da mesma.
 - b) Describe o procedemento que empregaría no laboratorio para separar o precipitado obtido, debuxando a montaxe e o material que precisa empregar.

(A.B.A.U. ord. 22)

Rta.: Rendemento do 56 %.

Solución:

a) Escríbese a reacción da reacción química axustada:

$$SrCl_2(aq)$$
 + $Li_2CO_3(aq)$ \rightarrow $SrCO_3(s)$ + 2 $LiCl(aq)$ cloruro de estroncio carbonato de litio carbonato de estroncio cloruro de litio

Ionízanse os compostos solubles e escríbese a reacción iónica de precipitación do carbonato de estroncio:

$$Sr^{2+}(aq) + \frac{2 \text{ Cl}^{-}(aq)}{2 \text{ Li}^{+}(aq)} + \frac{2 \text{ Li}^{+}(aq)}{2 \text{ Cl}^{-}(aq)} + \frac{2 \text{ Cl}^{-}(aq)}{2 \text{ Cl}^{$$

Cálculo da cantidade de precipitado (tomando 2 cifras significativas).

Calcúlase a masa de sulfato de bario que debería obterse a partir dos datos das disolucións de cloruro de bario e sulfato de calcio.

Para a determinación do reactivo limitante, calcúlanse as cantidades iniciais dos reactivos.

Calcúlase a cantidade dun deles necesaria para reaccionar completamente co outro, mirando a ecuación axustada da reacción.

Identifícase ao reactivo limitante, comprobando se a cantidade necesaria é maior ou menor que a que hai. Calcúlanse as cantidades iniciais dos reactivos:

$$n_0(SrCl_2) = \frac{3.0 \text{ g SrCl}_2}{159 \text{ g/mol}} = 0.019 \text{ mol SrCl}_2$$

$$n_0(\text{Li}_2\text{CO}_3) = \frac{4.0 \text{ g Li}_2\text{CO}_3}{73.9 \text{ g/mol}} = 0.054 \text{ mol Li}_2\text{CO}_3$$

Calcúlase a cantidade de carbonato de litio necesaria para reaccionar co cloruro de estroncio, mirando a ecuación axustada da reacción:

$$n(\text{Li}_2\text{CO}_3) = 0.019 \text{ mol SrCl}_2 \frac{1 \text{ mol Li}_2\text{CO}_3}{1 \text{ mol SrCl}_2} = 0.019 \text{ mol Li}_2\text{CO}_3$$

Como a cantidade necesaria, 0,019 mol, é menor que a inicial, 0,054, o reactivo limitante non é o carbonato de litio, senón o cloruro de estroncio.

Calcúlase a masa de carbonato de estroncio que se espera obter, mirando a ecuación axustada da reacción:

$$m=0.019 \text{ mol SrCl}_2$$
 $\frac{1 \text{ mol Sr}_2\text{CO}_3}{1 \text{ mol SrCl}_2}$ $\frac{148 \text{ g Sr}_2\text{CO}_3}{1 \text{ mol Sr}_2\text{CO}_3} = 2.8 \text{ g Sr}_2\text{CO}_3$

Calcúlase o rendemento da reacción dividindo a masa obtida, 1,55 g, entre a calculada, e exprésase o resultado en tanto por cento.

$$Rto. = \frac{1,55 \text{ g SrCO}_3 \text{ obtidos}}{2,8 \text{ g SrCO}_3 \text{ teóricos}} = 0,56 = 56 \%$$

Procedemento

Para separar o precipitado, colócase un papel de filtro circular nun funil büchner, axustándoo para non deixar orificios libres, e humedécese con auga para que quede adherido.

Axústase o funil büchner sobre un matraz kitasato e conéctase a rama lateral do kitasato a unha trompa de baleiro.

Ábrese a billa e vértese o contido do vaso (precipitado e líquido) no funil.

Bótase máis auga sobre o precipitado que aínda queda no vaso para levalo ao funil

Cando xa non gotee máis auga no interior do kitasato, desencáixase o funil e péchase a billa. Ouítase o papel de filtro e déixase a secar un día ou dous.

- 4. Mestúranse 20 cm³ dunha disolución acuosa de BaCl₂ de concentración 0,5 mol/dm³ con 80 cm³ dunha disolución acuosa de CaSO₄ de concentración 0,04 mol/dm³.
 - a) Escribe a reacción química que ten lugar, nomea os compostos e calcula a cantidade en gramos do precipitado obtido.
 - b) Nomea e debuxa o material e describa o procedemento que empregaría no laboratorio para separar o precipitado.

(A.B.A.U. extr. 21)

Rta.: a) $m = 0.75 \text{ g BaSO}_4$.

Solución:

a) Escríbese a reacción da reacción química axustada:

$$BaCl_2(aq)$$
 + $CaSO_4(aq)$ \rightarrow $BaSO_4(s)$ + $CaCl_2(aq)$ cloruro de bario sulfato de calcio sulfato de bario cloruro de calcio

Ionízanse os compostos solubles e escríbese a reacción iónica de precipitación do sulfato de bario:

$$Ba^{2+}(aq) + \frac{2 \text{ Cl}^-(aq)}{2 \text{ Cl}^-(aq)} + \frac{2 \text{ Cl}^-(a$$

Cálculo da cantidade de precipitado (supoñendo 2 cifras significativas).

Calcúlase a masa de sulfato de bario que debería obterse a partir dos datos das disolucións de cloruro de bario e sulfato de calcio.

Para a determinación do reactivo limitante, calcúlanse as cantidades iniciais dos reactivos.

Calcúlase a cantidade dun deles necesaria para reaccionar completamente co outro, mirando a ecuación axustada da reacción.

Identifícase ao reactivo limitante, comprobando se a cantidade necesaria é maior ou menor que a que hai. Calcúlanse as cantidades iniciais dos reactivos:

$$n_0(\text{BaCl}_2) = 20 \text{ cm}^3 \text{ D} \frac{1 \text{ dm}^3}{10^3 \text{ cm}^3} \frac{0,50 \text{ mol}}{1 \text{ dm}^3} = 10 \cdot 10^{-3} \text{ mol BaCl}_2$$

 $n_0(\text{CaSO}_4) = 80 \text{ cm}^3 \text{ D} \frac{1 \text{ dm}^3}{10^3 \text{ cm}^3} \frac{0,040 \text{ mol}}{1 \text{ dm}^3} = 3,2 \cdot 10^{-3} \text{ mol CaSO}_4$

Calcúlase a cantidade de sulfato de calcio necesaria para reaccionar co cloruro de bario, mirando a ecuación axustada da reacción:

$$n(\text{CaSO}_4) = 10 \cdot 10^{-3} \text{ mol BaCl}_2 \frac{1 \text{ mol CaSO}_4}{1 \text{ mol BaCl}_2} = 10 \cdot 10^{-3} \text{ mol CaSO}_4$$

Como a cantidade necesaria, $10\cdot10^{-3}$ mol, é maior que a inicial, $10\cdot10^{-3}$ mol, o reactivo limitante é o sulfato de calcio.

Calcúlase a masa de carbonato de estroncio que se obtén, mirando a ecuación axustada da reacción:

$$m=3.2 \cdot 10^{-3} \text{ mol CaSO}_4 \frac{1 \text{ mol BaSO}_4}{1 \text{ mol CaSO}_4} \frac{233 \text{ g BaSO}_4}{1 \text{ mol BaSO}_4} = 0.75 \text{ g BaSO}_4$$

Procedemento

Para separar o precipitado, colócase un papel de filtro circular nun funil büchner, axustándoo para non deixar orificios libres, e humedécese con auga para que quede adherido.

Axústase o funil büchner sobre un matraz kitasato e conéctase a rama lateral do kitasato a unha trompa de baleiro.

Ábrese a billa e vértese o contido do vaso (precipitado e líquido) no funil. Bótase máis auga sobre o precipitado que aínda queda no vaso para levalo ao funil.

Cando xa non gotee máis auga no interior do kitasato, desencáixase o funil e péchase a billa. Quítase o papel de filtro e déixase a secar un día ou dous.

- 5. No laboratorio mestúranse 20,0 cm³ dunha disolución de concentración 0,03 mol/dm³ de cloruro de bario e 15 cm³ dunha disolución de concentración 0,1 mol/dm³ de sulfato de cinc.
 - a) Escribe a reacción que ten lugar e calcula o rendemento se se obtiveron 0,10 g de sulfato de bario.
 - b) Describe o procedemento e indica o material que empregaría para separar o precipitado.

(A.B.A.U. ord. 20)

Rta.: Rendemento do 71 %.

Solución:

a) Escríbese a reacción da reacción química axustada:

$$BaCl_2(aq)$$
 + $ZnSO_4(aq)$ \rightarrow $BaSO_4(s)$ + $ZnCl_2(aq)$ cloruro de bario sulfato de cinc sulfato de bario cloruro de cinc

Ionízanse os compostos solubles e escríbese a reacción iónica de precipitación do sulfato de bario:

$$Ba^{2+}(aq) + \frac{2 Cl^{-}(aq)}{2 Cl^{-}(aq)} + SO_{4}^{2-}(aq) \rightarrow BaSO_{4}(s) + \frac{2 Cl^{-}(aq)}{2 Cl^{-}(aq)} + SO_{4}^{2-}(aq) \rightarrow BaSO_{4}(s)$$

Cálculo do rendemento (supoñendo 2 cifras significativas)

Calcúlase a masa de sulfato de bario que debería obterse a partir dos datos das disolucións de cloruro de bario e sulfato de cinc.

Para a determinación do reactivo limitante, calcúlanse as cantidades iniciais dos reactivos.

Calcúlase a cantidade dun deles necesaria para reaccionar completamente co outro, mirando a ecuación axustada da reacción.

Identifícase ao reactivo limitante, comprobando se a cantidade necesaria é maior ou menor que a que hai. Calcúlanse as cantidades iniciais dos reactivos:

$$n_0(\text{BaCl}_2) = 20 \text{ cm}^3 \text{ D} \frac{1 \text{ dm}^3}{10^3 \text{ cm}^3} \frac{0,030 \text{ mol}}{1 \text{ dm}^3} = 6,0 \cdot 10^{-4} \text{ mol BaCl}_2$$

 $n_0(\text{ZnSO}_4) = 15 \text{ cm}^3 \text{ D} \frac{1 \text{ dm}^3}{10^3 \text{ cm}^3} \frac{0,10 \text{ mol}}{1 \text{ dm}^3} = 1,5 \cdot 10^{-3} \text{ mol ZnSO}_4$

Calcúlase a cantidade de sulfato de cinc necesaria para reaccionar co cloruro de bario, mirando a ecuación axustada da reacción:

$$n(\text{ZnSO}_4) = 6,0 \cdot 10^{-4} \text{ mol BaCl}_2 \frac{1 \text{ mol ZnSO}_4}{1 \text{ mol BaCl}_2} = 6,0 \cdot 10^{-4} \text{ mol ZnSO}_4$$

Como a cantidade necesaria, $6.0\cdot10^{-4}$ mol, é menor que a inicial, $1.5\cdot10^{-3}$ mol, o reactivo limitante non é o sulfato de cinc senón o cloruro de bario.

Calcúlase a masa de sulfato de bario que se espera obter, mirando a ecuación axustada da reacción:

$$m=6.0 \cdot 10^{-4} \text{ mol BaCl}_2 \frac{1 \text{ mol BaSO}_4}{1 \text{ mol BaCl}_2} \frac{233 \text{ g BaSO}_4}{1 \text{ mol BaSO}_4} = 0.14 \text{ g BaSO}_4$$

Calcúlase o rendemento da reacción dividindo a masa obtida, 0,10 g, entre a calculada, e exprésase o resultado en tanto por cento.

$$Rto. = \frac{0.10 \text{ g obtidos}}{0.14 \text{ g teóricos}} = 0.71 = 71 \%$$

Procedemento

Para separar o precipitado, colócase un papel de filtro circular nun funil büchner, axustándoo para non deixar orificios libres, e humedécese con auga para que quede adherido.

Axústase o funil büchner sobre un matraz kitasato e conéctase a rama lateral do kitasato a unha trompa de baleiro.

Ábrese a billa e vértese o contido do vaso (precipitado e líquido) no funil. Bótase máis auga sobre o precipitado que aínda queda no vaso para levalo ao funil.

Cando xa non gotee máis auga no interior do kitasato, desencáixase o funil e péchase a billa. Quítase o papel de filtro e déixase a secar un día ou dous.

Material

Vasos de precipitados (2), variña de vidro, funil büchner, matraz kitasato, papel de filtro.

- 6. No laboratorio mestúranse 30 cm³ dunha disolución de concentración 0,1 mol/dm³ de Pb(NO₃)₂ e 40 cm³ dunha disolución de concentración 0,1 mol/dm³ de KI, obténdose 0,86 gramos dun precipitado de Pbl₂.
 - a) Escribe a reacción que ten lugar e calcula a porcentaxe de rendemento da mesma.
 - b) Indica o material e o procedemento que empregarías para separar o precipitado formado.

(A.B.A.U. ord. 19)

Rta.: Rendemento do 93 %.

Solución:

a) Escríbese a reacción da reacción química axustada:

$$Pb(NO_3)_2(aq)$$
 + $2 KI(aq)$ \rightarrow $PbI_2(s)$ + $2 KNO_3(aq)$ nitrato de plomo(II) ioduro de potasio ioduro de chumbo(II) nitrato de potasio

Ionízanse os compostos solubles e escríbese a reacción iónica de precipitación do ioduro de chumbo(II):

$$Pb^{2+}(aq) + 2 \frac{NO_3(aq)}{(aq)} + 2 \frac{K^{+}(aq)}{(aq)} + 2 I^{-}(aq) \longrightarrow PbI_2(s) + 2 \frac{NO_3(aq)}{(aq)} + 2 \frac{K^{+}(aq)}{(aq)} + 2 I^{-}(aq) \longrightarrow PbI_2(s)$$

Cálculo do rendemento (supoñendo 2 cifras significativas).

Calcúlase a masa de ioduro de chumbo(II) que debería obterse a partir dos datos das disolucións de ioduro de potasio e nitrato de chumbo(II).

Para a determinación do reactivo limitante, calcúlanse as cantidades iniciais dos reactivos.

Calcúlase a cantidade dun deles necesaria para reaccionar completamente co outro, mirando a ecuación axustada da reacción.

Identifícase ao reactivo limitante, comprobando se a cantidade necesaria é maior ou menor que a que hai. Calcúlanse as cantidades iniciais dos reactivos:

$$n_0(\text{KI}) = 40 \text{ cm}^3 \frac{1 \text{ dm}^3}{10^3 \text{ cm}^3} \frac{0,10 \text{ mol KI}}{1 \text{ dm}^3} = 4,0 \cdot 10^{-3} \text{ mol KI}$$

$$n_0(\text{Pb}(\text{NO}_3)_2) = 30 \text{ cm}^3 \frac{1 \text{ dm}^3}{10^3 \text{ cm}^3} \frac{0,10 \text{ mol Pb}(\text{NO}_3)_2}{1 \text{ dm}^3} = 3,0 \cdot 10^{-3} \text{ mol Pb}(\text{NO}_3)_2$$

Calcúlase a cantidade de nitrato de chumbo(II) necesaria para reaccionar co ioduro de potasio, mirando a ecuación axustada da reacción:

$$n(Pb(NO_3)_2)=4,0\cdot10^{-3} \text{ mol KI } \frac{1 \text{ mol } Pb(NO_3)_2}{2 \text{ mol KI}}=2,0\cdot10^{-3} \text{ mol Pb}(NO_3)_2$$

Como a cantidade necesaria, $2,0\cdot 10^{-3}$ mol, é menor que a inicial, $3,0\cdot 10^{-3}$ mol, o reactivo limitante non é o nitrato de chumbo(II) senón o ioduro de potasio.

Calcúlase a cantidade de ioduro de chumbo(II) que se espera obter, mirando a ecuación axustada da reacción:

$$n=4.0 \cdot 10^{-3} \text{ mol KI } \frac{1 \text{ mol PbI}_2}{2 \text{ mol KI}} = 2.0 \cdot 10^{-3} \text{ mol PbI}_2$$

A masa que se pode obter é:

$$m=2,0\cdot10^{-3} \text{ mol PbI}_2 \frac{461 \text{ g PbI}_2}{1 \text{ mol PbI}_2} = 0,92 \text{ g PbI}_2$$

Calcúlase o rendemento da reacción dividindo a masa obtida, 0,86 g, entre a calculada, e exprésase o resultado en tanto por cento.

$$Rto. = \frac{0.86 \text{ g obtidos}}{0.92 \text{ g máximo}} = 0.93 = 93 \%$$

Procedemento

Para separar o precipitado, colócase un papel de filtro circular nun funil büchner, axustándoo para non deixar orificios libres, e humedécese con auga para que quede adherido.

Axústase o funil büchner sobre un matraz kitasato e conéctase a rama lateral do kitasato a unha trompa de baleiro.

Ábrese a billa e vértese o contido do vaso (precipitado e líquido) no funil. Bótase máis auga sobre o precipitado que aínda queda no vaso para levalo ao funil.

Cando xa non gotee máis auga no interior do kitasato, desencáixase o funil e péchase a billa.

Quítase o papel de filtro e déixase a secar un día ou dous.

- 7. Mestúranse 20 cm³ de disolución de Na₂CO₃ de concentración 0,15 mol/dm³ e 50 cm³ de disolución de CaCl₂ de concentración 0,10 mol/dm³, obténdose 0,27 g dun precipitado de CaCO₃.
 - a) Escribe a reacción que ten lugar e calcula a porcentaxe de rendemento da reacción.
 - b) Describe o procedemento que empregarías no laboratorio para separar o precipitado obtido, facendo un esquema da montaxe e o material que hai que empregar.

(A.B.A.U. extr. 18)

Rta.: Rendemento do 90 %.

Solución:

a) Escríbese a reacción da reacción química axustada:

$$Na_2CO_3(aq)$$
 + $CaCl_2(aq)$ \rightarrow $CaCO_3(s)$ + $2 NaCl(aq)$ carbonato de sodio cloruro de calcio carbonato de calcio cloruro de sodio

Ionízanse os compostos solubles e escríbese a reacción iónica de precipitación do carbonato de calcio:

$$\frac{2 \text{ Na}^{+}(aq)}{2 \text{ Na}^{+}(aq)} + \text{CO}_{3}^{2-}(aq) + \text{Ca}^{2+}(aq) + \frac{2 \text{ Cl}^{-}(aq)}{2 \text{ Cl}^{-}(aq)} \rightarrow \text{CaCO}_{3}(s) + \frac{2 \text{ Na}^{+}(aq)}{2 \text{ Na}^{+}(aq)} + \frac{2 \text{ Cl}^{-}(aq)}{2 \text{ CO}_{3}^{2-}(aq)} \rightarrow \text{CaCO}_{3}(s)$$

Cálculo do rendemento (supoñendo 2 cifras significativas).

Calcúlase a masa de carbonato de calcio que debería obterse a partir dos datos das disolucións de cloruro de calcio e carbonato de sodio.

Para a determinación do reactivo limitante, calcúlanse as cantidades iniciais dos reactivos.

Calcúlase a cantidade dun deles necesaria para reaccionar completamente co outro, mirando a ecuación axustada da reacción.

Identifícase ao reactivo limitante, comprobando se a cantidade necesaria é maior ou menor que a que hai. Calcúlanse as cantidades iniciais dos reactivos:

$$n_0(\text{CaCl}_2) = 50 \text{ cm}^3 \frac{1 \text{ dm}^3}{10^3 \text{ cm}^3} \frac{0,10 \text{ mol CaCl}_2}{1 \text{ dm}^3} = 5,0 \cdot 10^{-3} \text{ mol CaCl}_2$$

 $n_0(\text{Na}_2\text{CO}_3) = 20 \text{ cm}^3 \frac{1 \text{ dm}^3}{10^3 \text{ cm}^3} \frac{0,15 \text{ mol Na}_2\text{CO}_3}{1 \text{ dm}^3} = 3,0 \cdot 10^{-3} \text{ mol Na}_2\text{CO}_3$

Calcúlase a cantidade de carbonato de sodio necesaria para reaccionar co cloruro de calcio, mirando a ecuación axustada da reacción:

$$n(\text{Na}_2\text{CO}_3) = 5.0 \cdot 10^{-4} \text{ mol CaCl}_2 \frac{1 \text{ mol Na}_2\text{CO}_3}{1 \text{ mol CaCl}_2} = 5.0 \cdot 10^{-4} \text{ mol Na}_2\text{CO}_3$$

Como a cantidade necesaria, $5,0\cdot10^{-4}$ mol, é maior que a inicial, $3,0\cdot10^{-3}$ mol, o reactivo limitante é o carbonato de sodio.

Calcúlase a masa de carbonato de calcio que se obtén, mirando a ecuación axustada da reacción:

$$m=3.0 \cdot 10^{-3} \text{ mol Na}_2\text{CO}_3 \quad \frac{1 \text{ mol CaCO}_3}{1 \text{ mol Na}_2\text{CO}_3} \quad \frac{100 \text{ g CaCO}_3}{1 \text{ mol CaCO}_3} = 0.30 \text{ g CaCO}_3$$

Calcúlase o rendemento da reacción dividindo a masa obtida, 0,27 g, entre a calculada, e exprésase o resultado en tanto por cento.

$$Rto. = \frac{0.27 \text{ g obtidos}}{0.30 \text{ g máximo}} = 0.90 = 90 \%$$

Para separar o precipitado, colócase un papel de filtro circular nun funil büchner, axustándo para non deixar orificios libres, e humedécese con auga para que quede adherido.

Axústase o funil büchner sobre un matraz kitasato e conéctase a rama lateral do kitasato a unha trompa de baleiro.

Ábrese a billa e vértese o contido do vaso (precipitado e líquido) no funil.

Bótase máis auga sobre o precipitado que aínda queda no vaso para levalo ao funil.

Cando xa non gotee máis auga no interior do kitasato, desencáixase o funil e péchase a billa. Quítase o papel de filtro e déixase a secar un día ou dous.

- 8. Ao mesturar 25 cm³ dunha disolución de AgNO₃ de concentración 0,01 mol/dm³ con 10 cm³ dunha disolución de NaCl de concentración 0,04 mol/dm³ obtense un precipitado de cloruro de prata.
 - a) Escribe a reacción que ten lugar e calcula a cantidade máxima de precipitado que se podería obter.
 - b) Describe o procedemento e nomea o material que utilizarías no laboratorio para separar o precipitado.

(A.B.A.U. ord. 18)

Rta.: m = 0.036 g AgCl.

Solución:

a) Escríbese a reacción da reacción química axustada:

$$Na_2CO_3(aq)$$
 + $CaCl_2(aq)$ \rightarrow $CaCO_3(s)$ + $2 \ NaCl(aq)$ carbonato de sodio cloruro de calcio carbonato de calcio cloruro de sodio

Ionízanse os compostos solubles e escríbese a reacción iónica de precipitación do carbonato de calcio:

$$Na^+(aq) + Cl^-(aq) + Ag^+(aq) + NO_3^-(aq) \longrightarrow AgCl(s) + Na^+(aq) + NO_3^-(aq)$$

$$Cl^-(aq) + Ag^+(aq) \longrightarrow AgCl(s)$$

Cálculo da cantidade máxima de precipitado (supoñendo 2 cifras significativas)

Calcúlase a masa de cloruro de prata que debería obterse a partir dos datos das disolucións de cloruro de sodio e nitrato de prata.

Para a determinación do reactivo limitante, calcúlanse as cantidades iniciais dos reactivos.

Calcúlase a cantidade dun deles necesaria para reaccionar completamente co outro, mirando a ecuación axustada da reacción.

Identifícase ao reactivo limitante, comprobando se a cantidade necesaria é maior ou menor que a que hai. Calcúlanse as cantidades iniciais dos reactivos:

$$n_0(\text{NaCl}) = 10 \text{ cm}^3 \frac{1 \text{ dm}^3}{10^3 \text{ cm}^3} \frac{0,040 \text{ mol NaCl}}{1 \text{ dm}^3} = 4,0 \cdot 10^{-3} \text{ mol NaCl}$$

 $n_0(\text{AgNO}_3) = 25 \text{ cm}^3 \frac{1 \text{ dm}^3}{10^3 \text{ cm}^3} \frac{0,010 \text{ mol AgNO}_3}{1 \text{ dm}^3} = 2,5 \cdot 10^{-4} \text{ mol AgNO}_3$

Calcúlase a cantidade de nitrato de prata necesaria para reaccionar co cloruro de sodio, mirando a ecuación axustada da reacción:

$$n(\text{AgNO}_3) = 4.0 \cdot 10^{-3} \text{ mol NaCl } \frac{1 \text{ mol AgNO}_3}{1 \text{ mol NaCl}} = 4.0 \cdot 10^{-3} \text{ mol AgNO}_3$$

Como a cantidade necesaria, $4,0\cdot10^{-3}$ mol, é maior que a inicial, $2,5\cdot10^{-4}$ mol, o reactivo limitante é o nitrato de prata.

Calcúlase a masa de cloruro de prata que se espera obter, mirando a ecuación axustada da reacción:

$$m=2,5\cdot 10^{-4} \text{ mol AgNO}_3$$
 $\frac{1 \text{ mol AgCl}}{1 \text{ mol AgNO}_3}$ $\frac{143 \text{ g AgCl}}{1 \text{ mol AgCl}}=0,036 \text{ g AgCl}$

Procedemento

Para separar o precipitado, colócase un papel de filtro circular nun funil büchner, axustándoo para non deixar orificios libres, e humedécese con auga para que quede adherido.

Axústase o funil büchner sobre un matraz kitasato e conéctase a rama lateral do kitasato a unha trompa de baleiro.

Ábrese a billa e vértese o contido do vaso (precipitado e líquido) no funil.

Bótase máis auga sobre o precipitado que aínda queda no vaso para levalo ao funil.

Cando xa non gotee máis auga no interior do kitasato, desencáixase o funil e péchase a billa. Quítase o papel de filtro e déixase a secar un día ou dous.

- 9. Mestúranse 10 cm³ dunha disolución de BaCl₂ de concentración 0,01 mol/dm³ con 40 cm³ dunha disolución de sulfato de sodio de concentración 0,01 mol/dm³ obténdose cloruro de sodio e un precipitado de sulfato de bario.
 - a) Escribe a reacción que ten lugar e indica a cantidade de precipitado que se obtén.
 - b) Indica o material e o procedemento que empregarías para separar o precipitado formado.

(A.B.A.U. extr. 17)

Rta.: m = 0.023 g BaSO₄.

Solución:

a) Escríbese a reacción da reacción química axustada:

Ionízanse os compostos solubles e escríbese a reacción iónica de precipitación do carbonato de calcio:

$$\frac{2 \text{ Na}^{+}(aq)}{2 \text{ Na}^{+}(aq)} + \text{SO}_{4}^{2-}(aq) + \text{Ba}^{2+}(aq) + \frac{2 \text{ Cl}^{-}(aq)}{2 \text{ Cl}^{-}(aq)} \rightarrow \text{BaSO}_{4}(s) + \frac{2 \text{ Na}^{+}(aq)}{2 \text{ Na}^{+}(aq)} + \frac{2 \text{ Cl}^{-}(aq)}{2 \text{ Cl}^{-}(aq)} \rightarrow \text{BaSO}_{4}(s)$$

Cálculo da cantidade de precipitado (supoñendo 2 cifras significativas).

Calcúlase a masa de sulfato de bario que debería obterse a partir dos datos das disolucións de cloruro de bario e sulfato de sodio.

Para a determinación do reactivo limitante, calcúlanse as cantidades iniciais dos reactivos.

Calcúlase a cantidade dun deles necesaria para reaccionar completamente co outro, mirando a ecuación axustada da reacción.

Identifícase ao reactivo limitante, comprobando se a cantidade necesaria é maior ou menor que a que hai. Calcúlanse as cantidades iniciais dos reactivos:

$$n_0(\text{BaCl}_2) = 10 \text{ cm}^3 \text{ D} \frac{1 \text{ dm}^3}{10^3 \text{ cm}^3} \frac{0,010 \text{ mol}}{1 \text{ dm}^3} = 1,0 \cdot 10^{-4} \text{ mol BaCl}_2$$

$$n_0(\text{Na}_2\text{SO}_4) = 40 \text{ cm}^3 \text{ D} \frac{1 \text{ dm}^3}{10^3 \text{ cm}^3} \frac{0,010 \text{ mol}}{1 \text{ dm}^3} = 4,0 \cdot 10^{-4} \text{ mol Na}_2\text{SO}_4$$

Calcúlase a cantidade de sulfato de sodio necesaria para reaccionar co cloruro de bario, mirando a ecuación axustada da reacción:

$$n(\text{Na}_2\text{SO}_4) = 1,0 \cdot 10^{-4} \text{ mol BaCl}_2 \frac{1 \text{ mol Na}_2\text{SO}_4}{1 \text{ mol BaCl}_2} = 1,0 \cdot 10^{-4} \text{ mol Na}_2\text{SO}_4$$

Como a cantidade necesaria, $1,0\cdot10^{-4}$ mol, é menor que a inicial, $4,0\cdot10^{-4}$ mol, o reactivo limitante non é o sulfato de sodio senón o cloruro de bario.

Calcúlase a masa de sulfato de bario que se espera obter, mirando a ecuación axustada da reacción:

$$m=1,0\cdot 10^{-4} \text{ mol BaCl}_2 \ \frac{1 \text{ mol BaSO}_4}{1 \text{ mol BaCl}_2} \ \frac{233 \text{ g BaSO}_4}{1 \text{ mol BaSO}_4} = 0,023 \text{ g BaSO}_4$$

Procedemento

Para separar o precipitado, colócase un papel de filtro circular nun funil büchner, axustándo para non deixar orificios libres, e humedécese con auga para que quede adherido.

Axústase o funil büchner sobre un matraz kitasato e conéctase a rama lateral do kitasato a unha trompa de baleiro.

Ábrese a billa e vértese o contido do vaso (precipitado e líquido) no funil. Bótase máis auga sobre o precipitado que aínda queda no vaso para levalo ao funil.

Cando xa non gotee máis auga no interior do kitasato, desencáixase o funil e péchase a billa. Quítase o papel de filtro e déixase a secar un día ou dous.

Material

Vasos de precipitados (2), variña de vidro, funil büchner, matraz kitasato, papel de filtro.

Cuestións e problemas das <u>Probas de avaliación de Bacharelato para o acceso á Universidade</u> (A.B.A.U. e P.A.U.) en Galiza.

Respostas e composición de Alfonso J. Barbadillo Marán.

Sumario

<u>SOLUBILIDADE</u>	
PROBLEMAS	
	4
CUESTIÓNS	
LABORATORIO	
Índias da nyahas A.D.A.U	
2017	
	3
` '	2, 23
2018	
,	14, 22
2. (extr.)	
2019	
1. (ord.)	11, 20
2. (extr.)	9
2020	
1. (ord.)	
2. (extr.)	8
2021	
1. (ord.)	7
	13, 17
2022	
	5, 16
	1
2023	
	4 15