D-MATH Prof. M. Struwe

Exercise 5.1 Let $X = L^2((0,1),\mathbb{R})$. On $D_A := C_c^{\infty}((0,1),\mathbb{R}) \subset X$ consider the derivative operator

$$A: D_A \to X, \quad A(f) = f'.$$

Recall that A is closable. Show that the domain $D_{\overline{A}}$ of its closure is contained in

$$C_0^0([0,1],\mathbb{R}) = \{ f \in C^0([0,1],\mathbb{R}) \mid f(0) = 0 = f(1) \}.$$

Note: Do not forget that L^2 -convergence does *not* imply pointwise convergence.

Exercise 5.2 Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be Banach spaces. Let $A: D_A \subset X \to Y$ be a linear operator with closed graph. Show that the following statements are equivalent:

- (i) A is injective and its range $W_A := A(D_A)$ is closed in $(Y, \|\cdot\|_Y)$.
- (ii) There exists C > 0 so that $||x||_X \le C||Ax||_Y$ for every $x \in D_A$.

Exercise 5.3 (Hörmander). Let $(X_0, \|\cdot\|_{X_0})$, $(X_1, \|\cdot\|_{X_1})$ and $(X_2, \|\cdot\|_{X_2})$ be Banach spaces and let

$$T_1: D_1 \subset X_0 \to X_1$$
, and $T_2: D_2 \subset X_0 \to X_2$

be linear operators with closed graphs such that $D_1 \subset D_2$. Prove that there exists a constant C > 0 so that

$$||T_2x||_{X_2} \le C(||T_1x||_{X_1} + ||x||_{X_0})$$
 for every $x \in D_1$.

Exercise 5.4 Let $(H, (\cdot, \cdot))$ be a Hilbert space and let $A: H \to H$ be a symmetric linear operator that is *coercive*, i.e. such that there exists $\lambda > 0$ so that

$$(Ax, x) \ge \lambda ||x||^2$$
 for every $x \in H$.

Show that A is an isomorphism of normed spaces and $||A^{-1}|| \leq \lambda^{-1}$.

Hints to Exercises.

- **5.1** Given $f \in D_{\overline{A}}$ consider a sequence $(f_n)_{n \in \mathbb{N}}$ in D_A which converges to f in X. Compare $f_n(t)$ to $g(t) := \int_0^t \overline{A} f \, \mathrm{d}x$.
- **5.2** One implication follows from the Inverse Mapping Theorem.
- **5.3** Recall that, if $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be Banach spaces and $A: D_A \subset X \to Y$ is a linear operator with closed graph, then $(D_A, \|\cdot\|_{\Gamma_A})$ is a Banach space, where $\|x\|_{\Gamma_A} = \|x\|_X + \|Ax\|_Y$ is the graph norm.
- **5.4** To prove surjectivity, i. e. $W_A := A(H) = H$, consider an element $x \in W_A^{\perp}$ and recall that $(W_A^{\perp})^{\perp} = \overline{W_A}$.