This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

⑲ 日本国特許庁(JP)

① 特許出願公開

砂公開特許公報(A)

昭63-188964

@Int_Cl_4

識別記号

庁内整理番号

❸公開 昭和63年(1988)8月4日

H 01 L 23/28 23/50

/28 A - 6835-5F /50 Z - 7735-5F

審査請求 未請求 発明の数 1 (全9頁)

図発明の名称 集積回路パッケージ

②特 願 昭62-20990

❷出 頤 昭62(1987)1月31日

砂発 明 者 肥 田

佳 明

東京都品川区南大井3-20-8-402

砂発 明 者 後 上

昌 夫

東京都世田谷区千歳台1-33-13

⑪出 願 人 大日本印刷株式会社

東京都新宿区市谷加賀町1丁目1番1号

邳代 理 人 弁理士 小西 淳美

明 超 多

1.発明の名称

集積回路パッケージ

2.特許請求の範囲

(i) リードフレームのリード部に1Cチップを 結構した上で、リード部全面がパッケーツの裏 間に補子として作出するようにモールド研算に よりリードフレームと1Cチップが対止されて 構成される集積回路パッケーツにおいて、1C チップが電気絶縁体を介してリードフレームに 設置されていることを特徴とする集積回路パッケーツ。

は 前記リードフレームに電気追縁体または電気追縁体と I C チップを埋設するための凹部が設けられていることを特徴とする特許請求の範囲第111項記載の集後回路パッケージ。

四 前記リードフレームが無槓回路パッケージの選げに対しての補強部分を有していることを特徴とする特許請求の範囲第40項または第43項記載の集積回路パッケージ。

3.発明の詳細な説明

(産築上の利用分野)

本発明は、返積回路パッケージに関し、特に ICカードに実装される集積回路パッケージに 関する。

(従来の技術)

一般に集積回路パッケージは、ICチップ、このICチップの箱子を外部に接続するための外部箱子としてのリード部、銀積回路を機械的に支持するためのリードフレームおよびICチップとリードフレーム全体をモールド問題で封止したハウジングとしてのパッケージからなっている。

この集積回路パッケージは、サイズがコンパクトにでき集積回路の高実装密度を可能とし、 かつ製造が容易でコスト的にも利点があるため、 高実装密度が要求される集積回路に利用されて いよ

近年、このような生積回路パッケージの一つ として、リードフレームのマウント88にICチ ップを設置して、リードフレームのリード部と 1Cチップとを結蹊した上で、リード部全面が パッケージの裏面に端子として露出するように、 モールド問題によりリードフレームと1Cチッ プを封止した復積回路パッケージが開発され、 このものを1Cカード実装用の集積回路パッケージとして利用しようとする状みがなされている。

(発明が解決しようとする問題点)

らはみでで、加子となるリードフレームにかかっても、ICチップとリードフレームが導通せず、ICチップが誤動作を発生しないことを、さらには、この絶縁体が折り曲げに対してのパッケージの複強体となることを見出して本発明をなし得たものである。

すなわち、本発明は、リードフレームのリード部に1Cチップを結構した上で、リードの全国がパッケージの変面に稿子として露出するようにモールド制能によりリードフレームと1 ケージにおいて、1Cチップが電気路線体を介してリードフレームに設置されていることを特徴とする集積回路パッケージを要答とする。

以下、本発明を図画に基づいて詳細に説明する。

第1回は本発明の無稜回路パッケージの一実 統例の一部切り欠け断面図である。

リードフレーム100 の1Cチップマウント邸 101 と鴻子リード102 に形成された四部106 に、 多機能のICチップを使用することができないという問題を生じる。また、リードフレームのマウント85からはみでるような大きさのICチップを使用した場合には、リードフレームの済子となるリード部とICチップが認過して、このほこすという問題を生じる。とも厚さ0.76m以下のほいものにしなけれなったなく、この規定を満足するな検回路パッケージとのほうなく、この規定を満足するな検回路パッケージとは頂けられると、パッケージは頂けいため近りのはいると、スマッケージとは正しているモールド問題に改及を生じる。

(問題点を解決するための手段)

本免明は上記の点に指みてなされたものであ 5。

本発明者らは、無槓回路パッケージにおいて、 リードフレームと I C チップの間に絶縁体を介 すれば、 I C チップがリード部のマウント部か

絶縁体1を介して1Cチップ2が設置され、1 Cチップ2と端子であるリード部102 はワイヤ ーポンディングによる金銭3で店録されて、ト ランスファーモールド、キャスティング等によ るモールド樹脂(により全体が対止されて魚積 凹路パッケージ10が構成されている。図中の10 g はリード部102 間の空隙に充壌されたモール ド樹脂を示し、104 は1Cチップマウント0510 1 とリード部102 間の空柱に充填されたモール ド掛龍を示す。尚、周國に示されているパッケ ージ10は、モールド樹脂 4 により直方体の形状 をなして併贈封止されて形成されているが、こ の形状は特に魔定されず、円柱形のものでも四 隣の角が丸みを帯びているものでもよく、パッ ケージの製造およびカードにパッケージを実装 する際の加工のし易い形状を過重選択してモー ルド樹脂による封止をすればよい。

また、1Cチップ2とりード88102 は、37.1 図に示すようなテープキャリアー方式によるフィンガー5で結論することもでき、この方法に よる場合には、ワイヤーボンディング方式に比 致して、結蹊による高さが減少するためパッケージ厚を頂くできる利点がある。

第2図は本発明の集積回路パッケージに用いるリードフレームの一例の平面図であり、モールド制度により対止されてパッケージとなったのは、100 (図中のは線で囲まれている部分)が複数形成されている。オードフレーム200 が構成されている。本年の現に用いるリードフレーム100 が複数形成されているのを使用することが、製造上記ましいが加工機の点で問題があればパッケージ単位1つのリードフレーム100 の形状のものであってもよい。

パッケージ単位のリードフレーム100 は、中央部に 1 C チップを設置するための 1 C チップマウント部101 と、このマウント部101 を取り明んでいる 8 個のリード部102 から形成されている。本免明においては、 1 C チップはマウン

のための目印を设けることができる。こうすることにより、1 C チップのミス設定を助止することができる。またこの目印により、やはり、 銀積回路ペッケージを減子の機能に合わせた位 で、カードに実装することができる。

本発明に用いられるリードフレーム100 の材質としては、リードフレームに一般的に使用されているものを広く用いることができ、例えば42合金等の資系合金、KLP-5等の調系合金、JISのSUS304、SUS316、SUS410、SUS430等のステンレス調を用いることができ、好ましくは、1 C チップの誤動作を誤免する帯磁性の少ないオーステナイト系ステンレス調であるSUS304、SUS316等が使用される。

また、快系合金および調系合金を用いた場合 には、リード部102 の第子面となる間、すなわ ちICチップの設置面と逆面に腐蝕、酸化助止 のための金メッキ問およびニッケルメッキ庫を 下地とした金メッキ項を設けることが望ましく、

ト部101 とリード部102 の一部を深って記録体 1を介して106 の部分に設置される (図中の一 点類点で囲まれている部分)。リード部102 は 後にモールド樹脂により封止された状態を樹脂 安面、すなわちパッケージ表面から指出して塩 子となるものであるが、その個数は特に8個に 限定されず、使用されるICチップの機能に合 わせて6個でも扱うでもよい。また、その形状 は、図示されているようにパッケージ端に位立 する部分の幅し、が中央部に位置する部分の組 しょより小さくすると、パッケージ化した後、 端子となるリード部102 が民間方向に脱落する ことを防止できるという利点があるが、その形 * 杖は本実施例の形状に限定されず、例えばテー パ状のものでもよい。しかし、モールド樹脂と リードフレームの接着性が良好であれば同一幅 のストレート形状のものでもよい。

さらに、リードフレーム100 には図示はされていないが、ICチップを端子の機能に合わせた位置で、マウント部に設置する際の位置ぎめ

第3回は第2回のA-A線斯園図を示すものである。

リード部102 としてチップマウント部101 間の空球103 は、モールド樹脂により対止された時に樹脂によりほめられて樹脂とリードフレームを強固に、接着させるアンカーの似きをなすものであり、その形状は樹脂とリードフレームの接着力に大きく影響する。また、同國では図示はされていないが、リード部102 とリード部102 間の空球104 (第2図) も同様の似きでなすものである。

第3回に示されたリードフレームはスタンピング加工により製造されたもので、空陸103 はストレート形状をなしているが、より投む力をあげるためには、エッチング加工により製造されたリードフレームを使用することが好ましい。すなわち、両面エッチング、ハーフエッチング等のエッチング加工により製造されたリードフ

レームの空球103 、104 は、エッチングの方法 により種々の形状をとり、例えば、間口部が小 さくかつリードフレーム内で明口部より大きい 断面積を有する二つの部分をなす形状、(第4 図(A))、論子畷の閉口部が大きくICチッ プ面の閉口部が小さく内部に段差を有する形状 (第4図(B))、中央部が大きく閉口部が小 さい形状(第4図(C))および第5図に示す ような稿子画の間白部が大きい台形形状をとる ことができるが、いずれもモールド樹脂による 対止の際に空弦に充塡されたモールド樹脂がア ンカーの母音をするため、リードフレームから モールド出籍全体が容易に抜けることがなくな り、リードフレームと封止したモールド樹脂と の接着性が向上し、端子の別離が防止される。 さらに、対止したモールド樹脂の折り曲げに対 しての補強の効果も有する。また、上述した断 面形状は空珠103 、104 のみならずリードフレ - 4全ての防罰に付いて実施すれば一層よい。 さらに、ICチップマウント卸101 とリード邸

102 の表面に、第4回、第5回に示すような凹凸105 を設けると、リードフレームとモールド 切脂および絶媒体との接触面積が増加すると共 に、凹凸がアンカーの役目をなしリードフレー ムとモールド制脂との接着性および絶媒体との 接着性が更に向上する。本発明では使用するモ ールド開脂等に対応してこの形状を変化させて 設けることが好ましいが、モールド制脂または 絶媒体とリードフレームの接着力がよく、特に 必要がなければ当然設けることはない。

このような凹凸は、リードフレームをサンド プラシ等で研究する物理的方法、またはエッチ ング等の化学的方法の何方の方法によっても形成することができる。

また、本発明に用いられるリードフレームにおいては、第6図に示すような地様体または地様体と1 C チップを埋設するための凹部106 を設けることができる。このような凹部106 は、エッチング、エンドミル等により形成することができる。こうすることにより、気積回路パッ

ケージ全体の厚みを頂くすることができ、規格を満足した無視回路パッケージを作成しおくなる。また、凹部106 にはモールド別籍を支援することができるので、凹部を設けないリードフレームに対して別籍層の厚みを増すことができ、かつリードフレーム自体の厚さは、凹部を除いて逆に厚くすることができるので、原根回路パッケージ自体の強度を上げるという効果がある。

本発明に用いられる地球体1としては、電気 地域性のシート、フィルム等を用いることがで きるが、例えば、ポリイミド、ガラスエポキシ、 ガラス繊維、BTレジン、テフロン、ポリエス テル、セラミック等のシートまたはフィルムが 用いられる。また、シートまたはフィルムでな くとも、地球性の併悶を1Cチップの真菌また はリードフレームの変面に塗布して地球層とし たものでもよい。

本見切においては、絶縁体 1 は 1 C チップマ ウント部101 と双子リード部102 の一部を使う ように数けられているので、マウント部101 よ りはみでで海子リード88102 にかかる大きさの 「Cチップを使用しても、「Cチップと海子リード88とが認過することはない。また、この能 縁体」は上述したように設けられているので、 折り曲げに聞い空間103 、104 の問題部分を補 強することができ、パッケージを折り曲げでも、 端子102 が耐難、脱離せず空隙103 、104 の間 脂類分に無数が生じさせない補強体としての間 きをなすものである。

この絶縁体 1 は、前述したように補効体としての点からその厚みは、0.05~0.2 mmであることが好ましいが、絶縁性の点では0.01~0.05 mmで十分である。

18 緑体 1 とリードフレーム100 および 1 Cチップ 2 の間には、接着別暦を介することもでき、この場合の接着剤としては、エポキシ出席系、メラミン樹脂系、ポリエステルポリイソシアネート系等の熱硬化性接着剤、ポリ酢酸ピニル系、 静酸ピニル・塩化ピニル共量合体系、アクリル 場際系、シアノアクリレート系、ポリアミド樹

特開昭63-188964(5)

語系等の然可塑性接着剤、ニトリルゴム系、ポリクロロブレン系、5BR系等のゴム系接着剤、ゴム系、アクリル系等の粘着剤およびこれらを複合した接着剤を用いることができる。このような接着剤をは、上記の接着剤を使用の塗布性によりリードフレームまたはICチップに塗布することにより形成される。また、当然絶縁体に上記接着剤を塗布または含まさせたものも用いることもできる。

本免明に用いられるモールド樹脂としては、 一般的に使用されているモールド樹脂、例えば エポキシ系樹脂、シリコーン系樹脂、エポキシ ・シリコーンハイブリット系樹脂等のものを広 く使用することができる。

第8図は、折り曲げに対して、さらに損強した例のリードフレームの平面図である。

このリードフレームは、折り曲げに対して福 独する部分110 、111 、112 、113 、を有して いる。この補独部分により、リードフレームの 空球103 、104 は直線状にリードフレームの塩 に接することが無くなり、折り曲げに対して福祉される。例えば、図中で、リードフレームを左右に折り曲げた場合には、110、112、になりを在に折り曲がた場合はなる。回線に、111、113、になり、上下の折り曲げに対して、空間103、により、上下の折り曲げに対して、空間104とという。また、このはその強度が増すこととができまた。このには発達していることができません。ことができまたができたけれるには上ができたけれるには上述した効果を表する。

また、このリードフレームにおいては、モールド出版による場別封止を点線107 のような角をとった形で行うと、パッケージの製造およびパッケージをカードに実装する際の加工がしあくなるという利点がある。

角、図中の120 は前述した位置がめ用の目印の一例であり、リードフレームを製造する際に

リードフレームと一体に設けられるものである。

第9回は第8回のリードフレームを用いた本発明の無項回路パッケージ10をプラスチックカード茶材20に組み込んでICカード30としたものの平回回であり、第10回はそのBーB線断回回である。

集復回路パッケージ10はカード基材20の所定部分に設けられた凹部にその様子面がカード基材20の表面と同一個をなすように埋め込まれて、後着剤21により強固に囲着されている。例、カード基材20には、一般的カードに推されている、例えば、近気ストライプ、ホログラム、エンポス、 餌写真、彫刻による類写真または複様、サイン類、パーコード、注意書き、デザイン等の一般印刷が抱されていてもよい。

このカードは、所定のカード処理機に挿入されると端子102 を介してカード処理機と集積回路との間では导便受が行われ、情報の処理がなったる。

また、本発明の集積回路パッケージは、カー

ド以外にも高実装密度が要求される提稿回路に 使用することができる。

(発明の効果)

本党明の銀租回路パッケージは、リードフレームとICチップの間に追議体を設けたので、 塊子となるリード部にかかる大きさのICチップを用いてもICチップとリードフレームとが 再選することがなくなり、大容量、多概能のI Cチップを任意に用いることができ、信頼性の 高いICカードを提供することができる。

さらに、本発明に用いられる地域体は折り曲 げに盛い空間103、104の出路部分を構造する 補強体としての出きをなすと同時に減子リード 部102の制理、設確防止に効果があり、本発明 の無程四路パッケージは折り曲げに対して効度 のあるものとなる。

また、本発明の好ましい態根の傾弦部を有したリードフレームを用いた場合には、いっそう 切り曲げに対して独皮のあるものとなる。

さらにまた、本発明の好ましい態限の絶縁体

または抱握体と「Cチップを埋設するための凹部を設けたリードフレームを用いた場合には、 塩積回路パッケージ全体の厚みを減くできると ともに、リードフレーム自体の厚みを凹部を決 いて逆に厚くすることができるので、 無積回路 パッケージ自体の強度を向上することができる。 以下、具体的団球例に基づいてよる細をよる

以下、具体的实施例に基づいて本発明をさらに詳細に説明する。

双缝例 i

厚み0.21mmの42合金板を用意し、スタンピング加工法により、第2回に示す8リード端子とする20mm×20mmのパッケージ単位のリードフレームが6つ連結したリードフレームの端子のによい、作成したリードフレームの端子のにより、作成したリードフレームの端子のにより、1 C チップ設置面側にはボンディングェーを応し、メッキ区み0.5 μの数質 A u メッキを応し、メッキであり、ドフレームを作成した。

次に、リードフレーム真面の裏面ICチップ

さ0.7 mmの本発明の集積回路パッケージを得た。

得られた集積回路パッケージは良好に動作するとともに、折り血げても凶脂質に危裂が生じない良好なものであった。

(実辞例2)

次ぎに、実施例1と同様にして、メッキ加工

設置面倒に、地球体として熱硬化型接着剤が片面に塗布されている厚さ80μのボリイミドシート(初品名:リードフレーム固定用ボリイミドテープJR - 2250. 日東電工舞製)を、温度150 でで第2回(106)の位置に加熱接着して地様体をリードフレームに形成した。

次に、上記絶縁体上のチップダイパット部に、 然硬化型エポキシダイ接着剤を堕布厚み20gで 形成して、その接着剤磨を介してICチップを リードフレームに設置した。

次に、ワイヤーポンディング機により! C チップボンディング邸と軟質金メッキされたリードフレームの箱子邸とを25μ径金ワイヤ・で結びした。

次に、結算が終了したICチップとリードフレームをトランスファーモールド注により、エボキシ系のトラスファーモールド用問題(商品名: XP-10、日東電工の型)で片面問題対止した後、パッケージ単位の所定位置でそれぞれ版録して、必要とあれば、問題面を研除して、体

を行った。

次ぎに、地球体理設用の凹部の底面に、絶球体として熱硬化型接着剤が片面に強布されている屋さ80ヶのポリイミドシート(商品名:リードフレーム固定用ポリイミドチープJR-2250. 日東電工舞製)を、温度150 でで第2回(106)の位置に加熱接着して絶球体をリードフレームに形成した。

次ぎに、実施別1と同様にして、結議、モールド制能対止の各加工を行ない、厚さ0.6 emの本発明の集積圏路パッケージを得た。

得られた集権国路パッケージは良好に動作するとともに、折り曲げても別離面に急裂が生じなく、かつ端子の銅離もない良好なものであった。

(実施例3)

厚み0.27mmの42合金坂用章し、常柱にしたがって水洗、乾燥を行った後、合金板の両面にホトレジストを皇布乾燥して所定量の窓光膜を形成した。次いで、第8回に示す複雑部を有す

特別昭63-188964(7)

る 6 リードは子とする20mm×20mmのパッケージ 単位のリードフレームが 6 つ連結したリードフレーム原版を用いて、常法により密石部光、現像を行った後、両面エッチングおよびハーフエッチングを行ない、リードフレームの各断面を第4図(B)の形状に形成するとともに、深さ0.17mmの連絡体理設用の凹部を1 Cチップマウンド部とリード海子部にかかる大きさで訊8図の106の位置に形成した。

次がに、実施例 2 と同様にして、ノッキ、1 C チップ設置、結構、モールド樹脂対止の各加工を行ない、厚さ0.6 mmの本発明の集積回過パッケージを得た。

得られた果積回路パッケージは良好に動作するとともに、折り曲げても問題面に急裂が生じなく、かつ箱子の頻解もない良好なものであった。

(実施例4)

ポリイミドフィルムをペースとした、インナーおよびアウターリード用フィンガーを有する

ームを結集した。

次ぎに、ICチップとリードフレームが結び して一体化したものを実施例3と関係にしてモールド樹脂対止加工を行ない、厚さ0.55mmの本 発明の集積回路パッケージを得た。

得られた保禄回路パッケージは良好に動作するとともに、折り曲げても樹屋面に進収が生じなく、かつ端子の割離もない良好なものであった。

4.図面の簡単な及明

テープキャリア上に、1Cチップをインナーボンディングし、次いで、インナーボンディング 面に1C回路を保護するとともに、炎面が平面 となるように、エポキン系樹脂を取み60gで煙 布し、テープキャリアと1Cチップを一体化し た後、アウターリード用フィンガーを残してカ ッティングして、リードフレーム設置用の1C チップを作成した。

次書に、作成した I C チップを実施例 3 で用いたと同様のリードフレームを用い、リードフレームの地域体理設用の凹部の底面に、地域体として熱硬化型接着層が片面に塗布されている厚さ80 M のポリイミドシート(商品名:リードフレーム固定用ポリイミドテープ J R - 2250. 日東電工物製)を、温度150 でで第8回(106)の位置に加熱接着して地域体をリードフレームに形成した。

次ぎに、メッキされたリードフレームのポンディングエリフ 邸にア ウターリード用フィンガをボンディングして、ICチップとリードフレ

出願人 大日本印刷体式会社 代理人 弁理士 小 西 淳 英

特開昭63-188964(8)

特開昭63-188964(9)

第 10 図

Japanese Kokai Patent Application No. Sho 63[1988]-188964

Job No.: 2098-96867

Ref.: 022111-000100US

Translated from Japanese by the Ralph McElroy Translation Company 910 West Avenue, Austin, Texas 78701 USA

JAPANESE PATENT OFFICE PATENT JOURNAL (A)

KOKAI PATENT APPLICATION NO. SHO 63[1988]-188964

Int. Cl.4:

H 01 L 23/28

23/50

Sequence Nos. for Office Use:

A-6835-5F

Z-7735-5F

Filing No.:

Sho 62[1987]-20990

Filing Date:

January 31, 1987

Publication Date:

August 4, 1988

No. of Inventions:

1 (Total of 9 pages)

Examination Request:

Not filed

INTEGRATED CIRCUIT PACKAGE

Inventors:

Yoshiaki Koeta

3-20-8-402 Minamioi, Shinagawa-ku, Tokyo

Masao Atogami

1-33-13 Chitose, Setagaya-ku,

Tokyo

Applicant:

Dainippon Printing Co., Ltd.

1-1-1 Ichikayakaga-cho, Shinshuku-ku, Tokyo

Agent:

Atsumi Konishi, patent attorney

[There are no amendments to this patent.]

Claims

1. An integrated circuit package characterized by the fact that in the integrated circuit package constituted by sealing a lead frame and an IC chip with a molding resin in such a way

that the entire surface of the lead part of the lead frame is exposed on the surface of the package as the terminal after the IC chip is connected to the lead part, the IC chip is arranged on the lead frame via an electric insulator.

- 2. The integrated circuit package described in Claim 1 characterized by the fact that a concave part used for embedding the electric insulator or the electric insulator and the IC chip is formed on the aforementioned lead frame.
- 3. The integrated circuit package described in Claim 1 or 2 characterized by the fact that the aforementioned lead frame has a reinforcing part with respect to bending of the integrated circuit package.

Detailed explanation of the invention

Industrial application field

The present invention pertains to an integrated circuit package, especially an integrated circuit package mounted on an IC card.

Prior art

An integrated circuit package is usually comprised of an IC chip, a lead part used as an external terminal for connecting the terminals of the IC chip to the outside, a lead frame used for mechanically supporting the integrated circuit, and a package used as a housing formed by sealing the IC chip and the entire lead frame with a molding resin.

Because such an integrated circuit package is compact, allowing integrated circuits to be assembled at high density, and because it can be manufactured easily at low cost, it has been used for integrated circuits that require high assembly density.

In one of the integrated circuit packages developed in recent years, an IC chip is arranged in the mounting part of a lead frame. After the lead part of the lead frame is connected to the IC chip, the lead frame and the IC chip are sealed with a molding resin in such a way that the entire surface of the lead part is exposed as a terminal on the surface of the package. Such integrated circuit packages have been used for assembly of IC cards.

Problems to be solved by the invention

However, IC cards must meet the IC card specification (ISO/DP7816/2). If the specification is not satisfied, the IC card cannot be used in practical applications. When the aforementioned conventional integrated circuit package is used to manufacture an IC card that satisfies the specification, the size of the lead frame used for the integrated circuit package is limited by regulation of the "positions of the terminals on the card surface, and areas of the terminals" in the specification. As a result, the size of the IC chip set in the mounting part of the

lead frame is also limited, which makes it impossible to use multi-functional high-capacity IC chips. If an IC chip is used of such a size that it sticks out from the mounting part of the lead frame, it might electrically connect the IC chip and the lead part acting as the terminal of the lead frame to cause malfunction of the IC chip.

Also, since the thickness of the card main body specified in the specification is $0.76 \pm 10\%$ mm, the integrated circuit package mounted on the card must be reduced in thickness to at least 0.76 mm or less. Since the integrated circuit package that satisfies the specification is so thin, cracks will develop in the molding resin that seals the package when it is bent.

Means to solve the problems

The purpose of the present invention is to solve the aforementioned problems.

The present inventors found that, if an insulator is placed between the lead frame and the IC chip in the integrated circuit package, the IC chip and the lead frame will not be electrically connected to each other even when the IC chip sticks out from the mounting part in the lead part and the IC chip will not malfunction. The insulator can also act as a package reinforcing part against bending. The present invention was achieved based on this research.

In other words, the present invention provides an integrated circuit package characterized by the fact that in the integrated circuit package constituted by sealing a lead frame and an IC chip with a molding resin in such a way that the entire surface of the lead part of the lead frame is exposed on the surface of the package as the terminal after the IC chip is connected to the lead part, the IC chip is arranged on the lead frame via an electric insulator.

In the following, the present invention will be explained in more detail based on figures. Figure 1 is a partially cut-away oblique view illustrating an application example of the integrated circuit package disclosed in the present invention.

IC chip (2) is set via an insulator (1) in the concave part (106) formed in the IC chip mounting part (101) and terminal lead (102) of lead frame (100). IC chip (2) is connected to lead part (102) acting as a terminal with a gold wire (3) by means of wire bonding. The entire body is sealed with molding resin (4) by means of transfer molding or casting, etc., to form integrated circuit package (10). In the figure, (107) represents the molding resin filled in the space between lead parts (102), and (108) represents the molding resin filling the space between IC chip mounting part (101) and lead part (102). The package (10) shown in the figure has a rectangular shape formed by molding resin (4). The package, however, is not limited to this shape. The package may also be formed in a cylindrical shape or have the four corners rounded. The shape should be selected appropriately so that the processing can be facilitated when manufacturing the package and when mounting the package on a card.

IC chip (2) and lead part (102) can also be connected with a finger (5) by means of the tape carrier method shown in Figure 7. By using this method, the height of the wiring can be reduced compared with that in the wire bonding method, so that the thickness of the package can be reduced.

Figure 2 is a plan view illustrating an example of the lead frame used in the integrated circuit package of the present invention. A lead frame (200), used for manufacturing multiple lead frames (100) for the package units (the part encircled by the broken line in the figure) sealed by the molding resin, is constituted. It is preferred in manufacturing to use multiple lead frames (100) for the package units as the lead frame used in the present invention. However, if the manufacturing machine is unable to handle this, it is also possible to use one lead frame (100) for the package unit.

The lead frame (100) of the package unit comprises IC chip mounting part (101) used for setting IC chip in the central part and 8 lead parts (102) that surround said mounting part (101). In the present invention, an IC chip is set in part (106) (the area encircled by the dot-dash line in the figure) via insulator (1) and covers mounting part (101) and part of lead parts (102). Lead parts (102) are exposed from the resin surface, that is, from the back side of the package, when the lead frame is later sealed by the molding resin and act as terminals. However, the number of the lead parts is not limited to 8. It is also possible for them to be 6 depending on the function of the IC chip used. As shown in the figure, the width L_1 of the part located at the edge of the package is smaller than the width L_2 of the part located toward the center. In this way, it is possible to prevent the lead parts (102) acting as the terminals from peeling off in the side surface direction after the package is formed. However, the shape of the lead parts is not limited to that adopted in this application example. The lead part can also be formed with a tapered shape. The lead part can also be formed with a straight shape with a uniform width as long as the adhesion between the molding resin and the lead frame is good.

In addition, although not shown in the figure, positioning marks for setting the IC chip in the mounting part can also be formed on lead frame (100) at positions suitable for the functions of the terminals. In this way, dislocation of the IC chip can be prevented. Depending on these marks, the integrated circuit package can also be mounted on a card at a position suitable for the functions of the terminals.

The material of lead frame (100) used in the present invention can be any material that is generally used for lead frames. Examples include 42 alloy or another iron-type alloy, KLF-5 or another copper-type alloy, JIS SUS304, SUS316, SUS410, SUS430 or another stainless steel. It is preferred to use an austenitic stainless steel, such as SUS 304 or SUS 316, which has little magnetism that will induce malfunctions of the IC chip.

When an iron-type alloy or a copper-type alloy is used, it is desirable to form a gold plating layer, or a gold plating layer using a nickel plating layer as the primer, to prevent oxidation and corrosion of the surfaces acting as the terminal surfaces of lead parts (102), that is, the surface for setting the IC chip and the opposite surface. It is preferred to form a gold plating layer with high resistance to scratches as the outermost layer.

Figure 3 shows the cross section along line A-A in Figure 2.

The space (103) between lead part (102) and IC chip mounting part (101) is filled by the resin when the lead frame is sealed by the molding resin. It acts as an anchor for firmly adhering the resin and the lead frame to each other. Its shape has great influence on the adhesion between the resin and the lead frame. Also, although not shown in this figure, the space (104) between lead part (102) and lead part (102) (Figure 2) has the same function.

The lead frame shown in Figure 3 is manufactured by means of stamping. Space (103) has a straight shape. In order to increase the adhesive force, it is preferred to use a lead frame manufactured by means of etching. The spaces (103), (104) of a lead frame manufactured by means of two-sided etching, half etching, or another etching process can have various shapes depending on the etching method. Examples include a shape with a small opening part and two parts inside the lead frame with a larger cross-sectional area than the opening part (Figure 4(A)), a shape with a step inside such that there is a large opening part on the terminal side and a small. opening part on the IC chip side (Figure 4(B)), a shape with a large central part and small opening parts (Figure 4(C)), and a trapezoidal shape with a large opening part on the terminal side as shown in Figure 5. In all of these cases, since the molding resin filling the space when the lead frame is sealed by the molding resin acts as an anchor, the entire molding resin will not come off from the lead frame easily, and the adhesion between the lead frame and the molding resin can be improved to prevent the terminals from peeling off. Such a design also has an effect of reinforcing the molding resin against bending. It would be better if the aforementioned cross-sectional shape could be adopted not only for spaces (103), (104) but also for the cross section of the entire lead frame. When the bumps and dips (105) shown in Figures 4 and 5 are formed on the surfaces of IC chip mounting part (101) and lead parts (102), the contact area between the lead frame, the molding resin, and insulator is increased. Also, since these bumps and dips act as anchors, the adhesion between the lead frame and the molding resin as well as the adhesion with the insulator can be further improved. In the present invention, it is preferred to change the shape of the bumps and dips according to the molding resin used. However, these bumps and dips can be omitted if the adhesion between the molding resin or the insulator and the lead frame is good, especially when they are not needed.

These bumps and dips can be formed using either a physical method, for example, by sand blasting the lead frame or by using a chemical method such as etching.

The concave part (106) for embedding the insulator or the insulator and the IC chip as shown in Figure 6 can be formed on the lead frame used in the present invention. Said concave part (106) can be formed by means of etching or using an end mill. In this way, the thickness of the entire integrated circuit package can be reduced, and it is easy to form an integrated circuit package that satisfies the specification. Also, since the molding resin can fill in concave part (106), the thickness of the resin layer can be increased by comparison to the lead frame with no concave part. Conversely, since the thickness of the lead frame itself, except for the concave part, can be increased, the strength of the integrated circuit package itself can be increased.

Electrically insulating sheet, film, etc., can be used as insulator (1) in the present invention. Examples include films or sheets made of polyimide, glass epoxy, glass fibers, BT resin, Teflon, polyester, ceramic, etc. Instead of using sheet or film, it is also possible to coat the back side of the IC chip or the surface of the lead frame with an insulating resin to form an insulating layer.

In the present invention, since insulator (1) covers IC chip mounting part (101) and parts of terminal lead parts (102), even if a large IC chip is used that sticks out from mounting part (101) and overhangs terminal lead parts (102), the IC chip and the terminal lead part will not be electrically connected to each other. Also, since insulator (1) is arranged as described above, it can reinforce the resin parts in spaces (103), (104) that are weak against bending. The insulator acts as a reinforcing part so that terminals (102) will not peel off or separate and the resin parts in spaces (103), (104) will not develop cracks even when the package is bent.

When using insulator (1) as the reinforcing part as described above, its thickness is preferred to be in the range of 0.05-0.2 mm. From the point of view of insulation, a thickness in the range of 0.01-0.05 mm is sufficient.

It is also possible to form an adhesive layer between insulator (1) and lead frame (100) and IC chip (2). Examples of the adhesives that can be used include epoxy resin adhesives, melamine resin adhesives, polyester polyisocyanate adhesives, and other thermosetting adhesives, polyvinyl acetate adhesives, vinyl acetate/vinyl chloride copolymer adhesives, acrylic resin adhesives, cyanoacrylate adhesives, polyamide resin adhesives, and other thermoplastic adhesives, nitrile rubber adhesives, polychloroprene adhesives, SBR adhesives and other rubber type adhesives, rubber type binding agents, acrylic binding agents, and their composite adhesives, etc. The adhesive layer can be formed by coating the lead frame or IC chip with the aforementioned adhesives using a conventional coating method. Of course, it is also possible to coat the adhesives on the insulator or impregnate the insulator with the adhesives.

The ordinary molding resins can be used in the present invention. Examples include epoxy resins, silicone resins, epoxy/silicone hybrid resins, etc.

Figure 8 is a plan view illustrating a lead frame that is further reinforced against bending.

The lead frame has parts (110), (111), (112), (113) for reinforcing against bending. Depending on the reinforcing parts, the spaces (103) and (104) of the lead frame will not come into contact with the ends of the lead frame in a linear form and can be reinforced against bending. For example, when the lead frame shown in the figure is bent in the left and right directions, spaces (103) are reinforced by (110) and (112) so that no cracks occur in spaces (103). Similarly, spaces (104) are reinforced by (111), (113) against bending in the vertical direction. Of course, the strength of the entire package is also increased. The cross section of the lead frame can be formed with the aforementioned shape, and said concave part (106) (the part encircled by the dot-dash line in the figure) used for embedding the insulator or the insulator and the IC chip can be formed on the lead frame. In that case, the aforementioned effect can be realized.

When the lead frame is sealed by the molding resin in a square shape as indicated by broken line (107), processing for manufacturing the package and processing for mounting the package on a card can be facilitated.

Also, (120) in the figure is an example of the aforementioned positioning mark. It is arranged integrally with the lead frame when manufacturing the lead frame.

Figure 9 is the plan view of an IC card (30), wherein the integrated circuit package (10) of the present invention using the lead frame shown in Figure 8 is assembled in plastic card base material (20). Figure 10 is the cross section along line B-B.

Integrated circuit package (10) is embedded in a concave part formed in a prescribed area of card base material (20) in such a way that the terminal side of the integrated circuit package is on the same side as the surface of card base material (20). The integrated circuit package is fixed firmly using an adhesive (21). Said card base material (20) may also have magnetic strips, holograms, embossing, a photo of a person's face formed by engraving, or patterns, logos, barcodes, notes, designs, etc., formed by means of general printing.

When this card is inserted into a prescribed card processor, signals can be transferred between the card processor and the integrated circuit via terminals (102) to process the information.

Besides being used for cards, the integrated circuit package of the present invention can also be used for other integrated circuits that require high assembly density.

Effects of the invention

Since an insulator is arranged between the lead frame and the IC chip in the integrated circuit package of the present invention, even if the IC chip is large and overhangs the lead part acting as the terminal, the IC chip and the lead frame will not be electrically connected to each

other. Therefore, any multi-functional large-capacity IC chip can be used to provide an IC card with high reliability.

The insulator used in the present invention can also act as a reinforcing part for reinforcing the resin parts in spaces (103), (104) that are weak against bending. The insulator can also prevent terminal lead parts (102) from peeling or falling off. The integrated circuit package of the present invention has good strength against bending.

When a lead frame having the reinforcing part disclosed in a preferred embodiment of the present invention is used, the strength against bending can be further improved.

When a lead frame is used having the concave part, used for embedding the insulator or the insulator and the IC chip, disclosed in a preferred embodiment of the present invention, the thickness of the entire integrated circuit package can be reduced, while conversely the thickness of the lead frame itself, except for the concave part, can be increased. Therefore the strength of the integrated circuit package itself can be increased.

In the following, the present invention will be explained in more detail with reference to application examples.

Application Example 1

A 42 alloy sheet 0.21 mm thick was stamped to form a lead frame having 6 lead frames for package units with a size of 20 mm x 20 mm and having 8 lead terminals, as shown in Figure 2.

After 5-µm-thick Ni was plated on the terminal side of the formed lead frame, 1-µm-thick hard Au was plated. Then, 0.5-µm-thick soft Au was plated only in the bonding area on the side where the IC chip was to be placed. As a result, a plated lead frame was obtained.

Then, an 80-µm-thick polyimide sheet (commodity name: Polyimide Tape JR-2250 for fixing lead frames, manufactured by Nitto Electric Industrial Co., Ltd.), with a thermosetting adhesive coated on one side, was bonded by heating at 150°C to the position (106) shown in Figure 2 on the side of the lead frame where the IC chip was to be placed, to form an insulator on the lead frame.

A thermosetting epoxy die adhesive was then applied to a thickness of 20 μm in the chip die part on the aforementioned insulator. An IC chip was placed on the lead frame via this adhesive layer.

The IC chip bonding part and the terminal part of the soft gold-plated lead frame were then connected to each other by a wire bonding machine using gold wires with a diameter of $25 \, \mu m$.

The connected IC chip and the lead frame were then sealed on one side by an epoxy type transfer molding resin (commodity name: MP-10, produced by Nitto Electric Industrial Co.,

Ltd.) by means of transfer molding. After that, the lead frame was cut at the prescribed positions of the package units. If necessary, the resin surface was ground to obtain the integrated circuit package of the present invention with a thickness of 0.7 mm.

The integrated circuit package obtained functions well, and there are no cracks in the resin surface even when the package is bent.

Application Example 2

A 0.27-mm-thick 42 alloy sheet was prepared. After it was rinsed and dried according to the conventional method, a photoresist was coated and dried on both sides of the alloy sheet to form a photosensitive film in a prescribed thickness. A lead frame plate having 6 lead frames for package units with a size of 20 mm x 20 mm and having 8 lead terminals, as shown in Figure 2, was then exposed and developed according to the conventional method, followed by two-side etching and half etching. As a result, each cross-sectional surface of the lead frame was formed into the shape shown in Figure 4(B), and a 0.17-mm-deep concave part for embedding the insulator was formed at position (106), shown in Figure 2, with a size that covered the IC chip mounting part and the lead terminal parts.

Plating was then carried out in the same way as described in Application Example 1.

Then, on the bottom of the concave part for embedding the insulator, an 80-µm-thick polyimide sheet (commodity name: Polyimide Tape JR-2250 for fixing lead frames, produced by Nitto Electric Industrial Co., Ltd.) with a thermosetting adhesive coated on one side was bonded by heating at 150°C to the position (106), shown in Figure 2, to form an insulator on the lead frame.

Subsequently, wire connection and mold resin sealing were carried out in the same way as described in Application Example 1 to obtain the integrated circuit package of the present invention with a thickness of 0.6 mm.

The integrated circuit package obtained functions well, and there are no cracks in the resin surface even when the package is bent. Also, the terminals do not peel off.

Application Example 3

A 0.27-mm-thick 42 alloy sheet was prepared. After it was rinsed and dried according to the conventional method, a photoresist was coated and dried on both sides of the alloy sheet to form a photosensitive film in a prescribed thickness. Then, a lead frame plate having 6 lead frames of package unit in a size of 20 mm x 20 mm and having 6 lead terminals as well as the reinforcing parts shown in Figure 8 was exposed and developed according to the conventional method, followed by two-side etching and half etching. As a result, each cross-sectional surface of the lead frame was formed into the shape shown in Figure 4(B), and a 0.17-mm-deep concave

part for embedding the insulator was formed at position (106), shown in Figure 8, with a size that covered the IC chip mounting part and the lead terminal parts.

Plating, IC chip setting, wire connection, and mold resin sealing were then carried out in the same way as described in Application Example 2 to obtain the integrated circuit package of the present invention with a thickness of 0.6 mm.

The integrated circuit package obtained functions well, and there are no cracks in the resin surface even when the package is bent. Also, the terminals do not peel off.

Application Example 4

An IC chip was inner-bonded to a tape carrier having fingers for inner and outer leads and using a polyimide film as the base. An epoxy resin was then coated to a thickness of 60 μm to protect the IC circuit on the inner bonding surface and to planarize the surface. After the tape carrier and the IC chip were integrated, it was cut with the fingers for outer leads left. As a result, an IC chip was obtained that can be set in a lead frame.

The lead frame used for the obtained IC chip was the same as that used in Application Example 3. On the bottom of the concave part for embedding the insulator, an 80-µm-thick polyimide sheet (commodity name: Polyimide Tape JR-2250 for fixing lead frames, produced by Nitto Electric Industrial Co., Ltd.) with a thermosetting adhesive coated on one side was bonded by heating at 150°C to the position (106), shown in Figure 8, on the side of the lead frame where the IC chip was to be placed to form an insulator on the lead frame.

Then, the fingers for outer leads were bonded to the bonding area of the plated lead frame to connect the IC chip to the lead frame.

The connected and integrated IC chip and lead frame were then sealed by a molding resin, in the same way as described in Application Example 3, to obtain the integrated circuit package of the present invention with a thickness of 0.55 mm.

The obtained integrated circuit package functions well, and there are no cracks in the resin surface even when the package is bent. Also, the terminals do not peel off.

Brief description of the figures

Figure 1 is a partially cut-away oblique view illustrating an example of the integrated circuit package disclosed in the present invention. Figures 2 and 8 are plan views illustrating the lead frame used in the present invention. Figure 3 is the cross section along line A-A in Figure 2. Figures 4, 5, and 6 are cross sections illustrating the other lead frames used in the present invention. Figure 7 is a cross section illustrating another example of the integrated circuit package disclosed in the present invention. Figure 9 is a plan view illustrating an example of the

IC card into which the integrated circuit package of the present invention is assembled. Figure 10 is the cross section along line B-B in Figure 9.

1	Insulator
2	IC chip
4	Molding resin
10	Integrated circuit package
30	IC card
100	Lead frame
101	IC chip mounting part
102	Lead part
103, 104	Spaces between lead frames
106	Concave part

Figure 3

Key: 1 (Resin mold side)

2 (Terminal side)

(1) (MIRREGIF BAN)

(2) (10) 3 (0) 103 (0

Figure 4a

Key: 1 (Resin mold side) 2 (Terminal side)

Key: 1 (Terminal side)

(I) (IM + 10 M)
Figure 4c

Key: 1 (Terminal side)

Key: 1 (Terminal side)

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

63-188964

(43) Date of publication of application: 04.08.1988

(51)Int.Cl.

H01L 23/28 H01L 23/50

not become conductive to the lead frame and a malfunction of the IC chip is not caused.

(21)Application number : 62-020990

(71)Applicant : DAINIPPON PRINTING CO LTD

(22) Date of filing:

31.01.1987

(72)Inventor: HIDA YOSHIAKI

GOKAMI MASAO

(54) INTEGRATED CIRCUIT PACKAGE

(57) Abstract:

PURPOSE: To obtain a highly reliable IC chip by a method wherein an insulator is installed between a lead frame and the IC chip so that the big-capacity and multifunctional IC chip can be used.

CONSTITUTION: An IC chip 2 is installed at a recessed part 106 which is constituted at an IC-chip mounting part 101 of a lead frame and a terminal lead 102; the IC chip 2 and the lead 102 acting as a terminal are connected by using a gold wire 3 by a wire bonding process; a package 10 for an integrated circuit is constituted after the whole assembly has been sealed by using a mold resin 4 by a transfer mold method, a casting method or the like. By this setup, even when the IC chip protrudes from the mounting part at the lead part, the IC chip does

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than

the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office