Search with Interdependent Values

Renjie Bao^{1,2} Sanxi Li² Jun Yu³

 $^{1} {\rm UPF~Barcelona}$ $^{2} {\rm Renmin~University~of~China}$ $^{3} {\rm Shanghai~University~of~Finance~and~Economics}$

Pompeu

May 3, 2022

MOTIVATION: SEARCH THEORY

SEARCH WITH INDEPENDENT VALUE

- How search frictions affect market outcomes
 - Transaction frictions
 - Informational frictions: imperfect information (prices, match quality, etc.)
 - \Rightarrow can be discovered at a search cost
- A key assumption for traditional search theory: independence

MOTIVATION: PANDORA'S BOX (WEITZMAN, 1979)

SEARCH WITH INDEPENDENT VALUE

- N Pandora's boxes indexed by i = 1, 2, ..., N
 - Payoff: box i's value $V_i \sim F_i(\cdot)$, independent of other boxes
 - Search: realization v_i can be observed only if box i is opened, incurring search cost s
- The agent sequentially opens the boxes, with questions on...
 - 1. Whether to open another box? \Rightarrow Stopping rule
 - 2. In which order to open the remaining closed boxes? \Rightarrow Search order

MOTIVATION: PANDORA'S BOX (WEITZMAN, 1979)

SEARCH WITH INDEPENDENT VALUE

• Reservation price z_i for box i: the level of current utility that makes her indifferent between whether to open it:

$$s = \int_{z_i}^{+\infty} (\varepsilon - z_i) dF_i(\varepsilon)$$

- solely depends on box i's characteristics
- Equilibrium
 - Optimal stopping rule terminate search iff the maximum sampled reward exceeds the reservation price of every closed box \Rightarrow an upper threshold captures "luck" effect
 - Optimal search order open boxes in the descending order of $z_i \Rightarrow max$. luck effect

MOTIVATION: PANDORA'S BOX (WEITZMAN, 1979)

SEARCH WITH INDEPENDENT VALUE

• Reservation price z_i for box i: the level of current utility that makes her indifferent between whether to open it:

$$s = \int_{z_i}^{+\infty} (\varepsilon - z_i) dF_i(\varepsilon)$$

- solely depends on box i's characteristics
- Equilibrium
 - Optimal stopping rule terminate search iff the maximum sampled reward exceeds the reservation price of every closed box \Rightarrow an upper threshold captures "luck" effect
 - Optimal search order open boxes in the descending order of $z_i \Rightarrow max$. luck effect
 - ▷ Corollary 1. No return (until open all boxes) not seen in experiment (Kogut, 1990)
 - ▷ Corollary 2. History-independent search order

MOTIVATION: INTERDEPENDENT VALUES SEARCH

- What if the values of boxes are correlated? For example,
 - Product market: cars using the same engine; computers using the same CPU
 - Labor market: students from the same college
 - Financial market: assets suffer from the common, aggregate shock
- We are examining the following case

$$V_i = X + E_i$$

- Common attribute $X \sim F_X(\cdot)$
- Idiosyncratic attribute $E_i \sim F_{E_i}(\cdot)$

Main Results

SEARCH WITH INTERDEPENDENT VALUE

- Two mechanisms
 - Luck effect same as the literature
 - Cockroach effect a poor realization provides information on common attribute "When we see one cockroach, there are likely many more that we have not seen"
- Optimal stopping rule
 - Luck effect \Rightarrow too good to continue
 - Cockroach effect \Rightarrow too bad to continue signal of a bad common attribute
- Optimal search order
 - Luck effect \Rightarrow prioritizing larger-variance box
 - Cockroach effect \Rightarrow prioritizing small-variance box $contains\ better\ information$

Main Results

Comparison to Pandora's Rule

	Independent values	Interdependent values
Stopping rule	terminate when $v_i > z_i$	when $v_i > \overline{v}_i$ or $v_i < \underline{v}_i$
Search order	prioritize larger- σ box	small- σ box when uncertain
Return	no return	return w/o opening all boxes
History	history-independent	history-dependent

Model Setup

SETUP

- Two boxes: $V_i = X + E_i, i \in \{1, 2\}$
- The densities $\{f_X(\cdot|V_i=v)\}$ and $\{f_{E_i}(\cdot|V_i=v)\}$ have the strict monotone likelihood ratio property (MLRP)
 - \Rightarrow a better realization implies better belief for both common and idiosyncratic attributes
- \bullet Sequential search, search cost s, with first sampling free
- After opening box i, only the gross value v_i is observable

TIMING

1. The consumer chooses box $a \in \{1, 2\}$ to sample (first free) \Rightarrow search order

$$U = \max_{a \in \{1,2\}} \left\{ \mathbb{E}_{v_a} \left[U_1 \left(v_a; a \right) \right] \right\}$$

2. Observing v_a , she decides whether to stop \Rightarrow subgame: stopping rule

$$U_{1}(v_{a};a) = \max \Big\{ \underbrace{\max\{0,v_{a}\}}_{\text{Stop}}, \underbrace{-s + \mathbb{E}_{V_{b}}\left[U_{2}\left(v_{a},V_{b}\right)|V_{a}=v_{a}\right]}_{\text{Continue}} \Big\}$$

3. If she samples box b in stage 2, she will choose the best option

$$U_2(v_a, v_b) = \max \left\{ 0, v_a, v_b \right\}$$

Optimal Stopping Rule

GENERAL DESCRIPTION

- Given the observed value of box a as v_a
- Keep searching iff incremental benefit exceeds additional search cost:

$$g_a(v_a) := \underbrace{\mathbb{E}_{V_b} \Big[\max\{0, v_a, V_b\} \Big| V_a = v_a \Big]}_{\text{(A) Information}} - \underbrace{\max\{0, v_a\}}_{\text{(B) Outside option}} > s$$

- Two channels of v_a
 - (A) Information: influence belief on X and E_a , and hence V_b
 - (B) Outside option: when $v_a > 0$, better v_a means better outside option

Lower Threshold - when $v_a < 0$

- When $v_a < 0$, box a has no influence over outside option $\Rightarrow \max\{0, v_a\} = 0$
- Equivalent condition for searching:

$$g_a(v_a) = \mathbb{E}_{V_b} \left[\max\{0, \underbrace{X + E_b}_{V_b}\} \middle| V_a = v_a \right] > s \quad , \quad \forall v_a \le 0$$

• MLRP
$$\Rightarrow$$
 $g_a(-\infty) = 0$ and $g'_a(v_a) > 0, \forall v_a < 0$

Lower Threshold - when $v_a < 0$

- When $v_a < 0$, box a has no influence over outside option $\Rightarrow \max\{0, v_a\} = 0$
- Equivalent condition for searching:

$$g_a(v_a) = \mathbb{E}_{V_b} \left[\max\{0, \underbrace{X + E_b}_{V_b}\} \middle| V_a = v_a \right] > s \quad , \quad \forall v_a \le 0$$

- MLRP \Rightarrow $g_a(-\infty) = 0$ and $g'_a(v_a) > 0, \forall v_a < 0$
- \therefore If $s < g_a(0)$, \exists a unique $\underline{v}_a < 0$ such that she will stop sampling iff $v_a < \underline{v}_a$

UPPER THRESHOLD - WHEN $v_a > 0$

- When $v_a > 0$, both information and outside option channels function
- Equivalent condition for searching:

$$g_a(v_a) = \mathbb{E}_{E_b} \left[\max\{0, \underbrace{E_b - E_a}_{V_b - V_a}\} \middle| V_a = v_a \right] > s \quad , \quad \forall v_a \ge 0$$

• MLRP
$$\Rightarrow$$
 $g_a(+\infty) = 0$ and $g'_a(v_a) < 0, \forall v_a > 0$

Upper Threshold - when $v_a > 0$

- When $v_a > 0$, both information and outside option channels function
- Equivalent condition for searching:

$$g_a(v_a) = \mathbb{E}_{E_b} \Big[\max\{0, \underbrace{E_b - E_a}_{V_b - V_a} \} \Big| V_a = v_a \Big] > s \quad , \quad \forall v_a \ge 0$$

- MLRP \Rightarrow $g_a(+\infty) = 0$ and $g'_a(v_a) < 0, \forall v_a > 0$
- \therefore If $s < g_a(0)$, \exists a unique $\overline{v}_a > 0$ such that she will stop sampling iff $v_a > \overline{v}_a$

Information Value

Information Value

Information Value

Optimal Search Order

EXPECTED UTILITY

• Take the first best case with s = 0 as benchmark, we have:

$$\mathbb{E}_{v_a}[U_1(v_a;a)] = U^{fb} - \int_0^s \left[F_{V_a}(\overline{v}_a(t)) - F_{V_a}(\underline{v}_a(t)) \right] dt$$

 \Rightarrow Difference in expected utility between first sampling box 2 and 1:

$$\Delta U = \underbrace{\int_0^s \left[F_{V_1}(\overline{v}_1(t)) - F_{V_2}(\overline{v}_2(t)) \right] dt}_{\Delta \text{ Luck effect}} + \underbrace{\int_0^s \left[F_{V_2}(\underline{v}_2(t)) - F_{V_1}(\underline{v}_1(t)) \right] dt}_{\Delta \text{ Cockroach effect}}$$

OPTIMAL SEARCH ORDER

When Variances Differ - $\sigma_1 < \sigma_2$

- Assume $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$ and $E_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$
- Differ in idiosyncratic variances: $\mu_i = 0$ and $\sigma_1 < \sigma_2$
- Trade-off between the two effects: when $\mu_X > \sqrt{\frac{\sigma_X^2(\sigma_1^2 + \sigma_2^2) + \sigma_1^2 \sigma_2^2}{\sigma_1^2 + \sigma_X^2}}$,
 - Luck effect: the larger-variance box 2 dominates $\Leftarrow F_{V_1}(\overline{v}_1(t)) > F_{V_2}(\overline{v}_2(t))$
 - Cockroach effect: the smaller-variance box 1 dominates $\Leftarrow F_{V_1}(\underline{v}_1(t)) > F_{V_2}(\underline{v}_2(t))$

OPTIMAL SEARCH ORDER

When Variances Differ - $\sigma_1 < \sigma_2$

- Depending on the variance of common attribute σ_X ...
 - when σ_X is small enough, sampling box 2 first is optimal \Rightarrow already has good ex-ante information on X
 - when σ_X is large enough, sampling box 1 first is optimal \Rightarrow need better information on X from searching

EXTENSION

SIMULATION IN THREE-BOX MODEL

RETURN W/O SAMPLING ALL GOODS

AN EXAMPLE WITH THREE BOXES

• After sampling box a and seeing $v_a = 3...$

HISTORY-DEPENDENT SEARCH ORDER

AN EXAMPLE WITH THREE BOXES

• When σ_X is large, $\sigma_a \to +\infty$ and $\sigma_b < \sigma_c...$

TAKEAWAYS

SEARCH WITH INTERDEPENDENT VALUES

- Luck effect and cockroach effect
 - ⇒ Two cutoff values in the optimal stopping rule
 - \Rightarrow Trade-off in choosing search order
 - ⇒ Return without sampling all boxes
 - \Rightarrow History-dependent search order

FUTURE WORK

- Generalize the model: issues to overcome
 - N boxes: correlated bandits problem hard to solve analytically
 - using general distribution in search order hard to compare expected utility
- Empirical evidence

Search with Interdependent Values

Renjie Bao^{1,2} Sanxi Li² Jun Yu³

¹UPF Barcelona ²Renmin University of China ³Shanghai University of Finance and Economics

Pompeu

May 3, 2022