111	A 4 . OII			
Paper IMAI: 3H				
Question	Working	Answer		Notes
1		252	P1 M1 P1	For start to process eg. radius = $12 \div 4$ (=3) Method to find area of trapezium or semicircle or circle Process to find area of the shaded region
			A1	251.7 – 252
2 (a)	550 × 3.5601	1958	M1 A1	550 × 3.5601
(q)	$210 \div 7 \times 2 = 30 \times 2$ Or $60 \div 2 = 30 \text{ and } 30 \times 7 = 210$	Shown	M1 C1	For correct method to convert cost in UK to lira or vice versa, using Asif's approximation Shown with correct calculations
(၁)		Correct evaluation	C1	For an evaluation e.g. It is a sensible start to the method because he can do the calculations without a calculator and 3.5 lira to the £ is a good approximation
3 (a)	8, 13, 21,	34	B1	cao
(q)	a,b,a+b,a+2b,2a+3b	Shown	M1 C1	Method to show by adding pairs of successive terms $a + 2b,2a + 3b$ shown
(0)	3a + 5b = 29 a + b = 7 3a + 3b = 21 b = 4, a = 3	a = 3 $b=4$	P1 P1 A1	Process to set up two equations Process to solve equations

Paper 1MA1: 3H	A1: 3H			
Question	Working	Answer		Notes
4 (a)		No + reason	M1	M1 Interpret question eg. draw line of best fit
	Finds ht÷base = $\frac{85 - 20}{0 - 25}$ = -2.6		M	Start to test eg. gradient e.g. $\frac{85 - 20}{0 - 25} = -2.6$
			C1	Gradient within range $\pm (2 - 3)$ and 'no'
(q)		The LOBF would have to be used outside the data	C1	Convincing explanation
5		Have a water	P1	Process to find number of litres eg. 180 ÷ 1000
		meter	P1	Full process to find cost per day
		(from working with	P1	Full process to find total cost of water used per year (accept
		correct figures)		use of alternative time period for both options)
			P1	Full process with consistent units for total cost of water
			A 1	Correct decision from correct figures (88.13154 or correct
				figure for their time period)
9		15, 20, 24	P1	Process to start to find common multiple eg. prime factor
				decomposition of 6 and 8 or list of at least 3 multiples of all
				numbers
			P1	process to find number of packets for at least colour or 120
				Identified
			A1	

Paper 1MA1: 3H	A1: 3H			
Question	Working	Answer		Notes
7 (a)		11A	M1	For a cumulative frequency diagram with at least 5 points plotted correctly at the ends of the intervals
			CI	For correct graph with points joined by curve or straight line segments
				[SC B1 if the shape of the graph is correct and 5 points of their points are not at the ends but consistently within each interval and joined.]
(q)		26.5	B1	25 – 28
(c)	$80 \div 4 \times 3 = 60$ Draw line narallel to mark axis from	36.5	P1	For process to find number who failed eg $80 \div 4 \times 3 = 60$
	CF = 50		P1	Draw line parallel to mark axis from CF = "60" and read off
			A1	For 35 - 38
8		6.8×10^{-5}	B1	

Paper 1MA1: 3H	A1: 3H		
Question	Working	Answer	Notes
9 (a)		(y+6)(y+1)	M1 for $(y \pm 6)(y \pm 1)$
			A1
(b)	6x - x > 17 - 4	2.6	M1 for method to isolate terms in x in an inequality or an equation
			A1 oe eg. $\frac{13}{5}$
(3)		-2, -1, 0, 1, 2, 3	M1 for or $-2.5 < n \le 3$ or $-4, -2, 0, 2, 4, 6$ or $-4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6$
			A1
10 (a)		x + 1 4	M1 start to method eg. $y = 4x - 1$ or $x = \frac{y+1}{4}$
			A1 oe
(p)		$\frac{13}{16}$	P1 for start to process eg. $f(4k) = 16k - 1$ or $g(2) = \frac{12 + 1}{4}$
			A1

Paper 1MA1: 3H	A1:3H			
Question	Working	Answer		Notes
11	$x = \frac{5 \pm \sqrt{(-5)^2 - 4 \times 1 \times 3}}{}$	4.30 or 0.697	M1	Substitute into quadratic formula - allow sign errors
	$3 = 2$ $5 \pm \sqrt{13}$		M	Evaluate as far as $\frac{5\pm\sqrt{13}}{2}$
	2		-	
12 (a)	Draws correct Venn diagram	4 8	M1	Begin to interpret given information e.g. 3 overlapping labelled ovals with central region correct
			M1	Extend interpretation of given information e.g. 3 overlapping labelled ovals with at least 5 regions correct
			M	Method to communicate given information e.g. 3 overlapping labelled ovals with all regions correct including outside
			A1	90
(b)		$\frac{21}{44}$	P1	For correct process to identify correct regions in Venn diagram and divide by '44'
			AI	
13	DN = MB (given) $\angle NDC = \angle MBC$ (base angles of isosceles triangle) DC = BC (sides of a rhombus are equal) $\therefore \Delta DNC = \Delta BMC$ (SAS)	Proof	C C C	One correct relevant statement All correct relevant statements Correct conclusion with reasons
	T			

Paper 1MA1: 3H	A1: 3H			
Question	Working	Answer		Notes
14 (a)	$F(x) = x^3 + 4x - 1$ F(0) = -1, F(1) = 4	Shown	M1	Method to establish at least one root in $[0,1]$ e.g $x^3 + 4x - 1$ $(=0)$ and $F(0)(=-1)$. $F(1)(=4)$ oe
			A1	Since there is a sign change there must be at least one root in $0 < x < 1$ (as F is continuous)
(q)	$4x = 1 - x^3$	Shown	C1	C1 for at least one correct step and no incorrect ones
	Or $\frac{x^3}{4} + x = \frac{1}{4}$			
(c)	$x_1 = \frac{1}{4} - \frac{0}{4} = \frac{1}{4}$	0.246(09375) Or	B1	$x_1 = \frac{1}{4}$
	$x_2 = \frac{1}{4} - \left(\frac{1}{4}\right)^3 = \frac{1}{4} - \frac{1}{4}$	63 256	M	M1 for $x_2 = \frac{1}{4} - \frac{(\frac{1}{4})^{13}}{4}$
			A1	A1 for 0.246(09375) or $\frac{63}{256}$ oe
15 (a)	Number of men possible is 17 Number of women possible is 26 Each man can be paired with 26 different women 17 × 26	442	P1 A1	Process to find number of combinations
(q)		Ben with reason	C1	Convincing reason e.g. correct calculation is $17 \times 16 \div 2$

Paper 1MA1: 3H	A1: 3H			
Question	Working	Answer		Notes
16				Let X be centre of base, M be midpoint of AB
	$AC^2 = 20^2 + 20^2 = 800$	1300	P1	process to find AC or AX
	$AX^2 = 10^2 + 10^2 = 200$		P1	process to find VX or VA
	$\sqrt{200} \times \tan 55 = VX$ (= 20.19)		P1	process to find height of sloping face or angle of sloping face.
	$VM_1^2 = \sqrt{(20.19^{10.2} + 10^2)} (= 22.54)$		P1	process to find surface area of one triangular face.
	$4 \times \frac{1}{2} \times "22.54" \times 20 + 20^{2}$		A1	For 1300 – 1302
17 (a)	1000, 1500, 2250,	Correct Argument	M1 C1	M1 Method to find 1st 3 terms C1 Convincing reason e.g. common ratio is 1.5
			,	
(q)		5.0625	P1	Process to find the value of k
	$k = \frac{1.5^9}{1.5^5}$		A1	
(c)		Correct sketches	C1	Draws both exponential curves intersecting on y axis and clearly labelled

	Notes	P1 For process to start e.g. $\overrightarrow{OM} = 3a$ or	MA = 3a	P1 For process to find \overrightarrow{AB} (=6 b – 6 a)	P1 For process to find \overrightarrow{MC} (=3a + 2(6b - 6a) and	$MN (= k\mathbf{b} - 3\mathbf{a})$ P1 For correct process to find k e,g. $3k\mathbf{b} - 9\mathbf{a} = 12\mathbf{b} - 9\mathbf{a}$	A1		
	Answer	7							
A1: 3H	Working	$\overrightarrow{OM} = 3a$	$\overrightarrow{AB} = 6\mathbf{b} - 6\mathbf{a}$	$\overrightarrow{MC} = 3\mathbf{a} + 2(6\mathbf{b} - 6\mathbf{a})$	$= 12\mathbf{b} - 9\mathbf{a}$ $= 3(4\mathbf{b} - 3\mathbf{a})$	$\overrightarrow{MN} = k\mathbf{b} - 3\mathbf{a}$	MNC is a straight line so	\vec{MC} is a scalar multiple of \vec{MN}	
Paper 1MA1: 3H	Question	18							

r

