The code in this library produces results like those in [1]. Note that results may vary depending on the random number seed. Please contact Sheila Seidel (Sheila.werth@gmail.com) with questions.

Each major experiment in the paper corresponds to a different subdirectory in paperCode/Examples. Subdirectories include:

- 1. twoTarget the test scenario where two white planar facets move past each other along arcs in the hidden scene
- 2. facetAngularSweep the test scenario where a single white planar facet is fixed in range at 1.25 m and moved in angle along an arc through the hidden scene. Here we also test the effect of frame length on the reconstruction quality.
- 3. facetRangeSweep the test scenario where a single white planar facet is fixed in angle at pi/2 and swept in range from 0.5 m to 1.75 cm
- 4. foregroundInterference the test scenario where a single white planar facet is swept in range past a large, bright object in the foreground.
- 5. modelMismatch the test scenario where we evaluate different types of hidden target. Here we test a white facet, a gray facet, a mannequin, and a non-rectangular stair-shaped facet. All targets are fixed in position at pi/2 in angle and a range of 1.25m from the occluding edge.
- Ambient light the test scenario where we test high levels of ambient light by turning on the laboratory light. The object is fixed at pi/2 in angle and at a range of 1.25m from the occluding edge.

The scripts in paperCode/Examples call functions in other major directories. These directories are:

- cornerCamera code to implement the passive corner camera in [2]
- forwardModel code to implement the fast forward model computation described in [1]
- MCMC code to estimate unknown hidden facet parameters using Markov chain Monte Carlo techniques
- objectProposal In each iteration of our MCMC parameter estimation routine, we propose different object parameters. The code in objectProposal creates an object structure, given a set of proposed parameters.
- utilities this directory contains miscellaneous utilities, including plotting tools and other useful functions.
- [1] S. W. Seidel, H. Rueda-Chacon, I. Cusini, F. Villa, F. Zappa, C. Yu, and V. K. Goyal, "Non-line-of-sight tracking and mapping with an active corner camera," arXiv:2208.01702[cs.CV], Aug. 2022.
- [2] S. W. Seidel, Y. Ma, J. Murray-Bruce, C. Saunders, W. T. Freeman, C. Yu, and C. K Goyal, "Corner occluder computational periscopy: Estimating a hidden scene from a single photograph," in *Proc. IEEE Int. Conf. Computational Photography (ICCP)*, May 2019.

How to run an example:

The main script in each subdirectory of paperCode/Examples is names inversionAlgorithm *<example name>*.m.

Change codepath and dirpath to match your local directory.

nsec is the length of each frame in units of *acquisition time*, defined in [1]. In the facetAngularSweep example, data to test three different frame lengths is provided: 10 seconds, 30 seconds, and 60 seconds. Change nsec to switch between these different test cases.

Although parameters are largely the same for all examples, copies of the scripts setupExperimentalParams.m, passiveCornerCameraParameters.m, foregroundEstimationParameters.m, and backgroundEstimationParameters.m are in each subdirectory of paperCode/Examples so that parameters can be tweaked separately for each example.

Interim result plots are saved in directories named Figures_nsecXX_bgYY, where XX is the value of nsec and YY is the value of numBackgroundInt. NumBackgroundInt is the number of 2 min long stationary scene measurements used together to estimate the stationary scene rates.

Resulting estimates are saved in directories named Results_nsecXX_bgYY, where XX and YY are defined above. Results from the pth test frame are saved in a file named Facet_pos.mat. Located in this same directory, the script plotSequence_wall_paper.m can be run to load the saved results and produce results plots. Those results plots are saved to the same directory.

The following table explains different variables defined in the code. Whether or not these variables are tuning parameters is discussed in the table.

Variable name	Explanation	Tuning parameter?
nshift	Number of time bins required to	Determined easily from data.
	shift the measured histograms so	
	that the first bounce is at time zero.	
	This is required to match our	
	forward model.	
	Parameter initialization	
thresh_mult_time	This is the multiplicative factor used	Not changed.
	to determine the threshold that is	
	applied to spatially averaged	
	measurement frame. Used to	
	determine which time bins to sum	
	together into a passive	
	measurement.	
window_grow	The number of time bins to add to	Not changed.
	either side of the interval of	
	threshold crossings in the spatially	
	averaged measurement frame. Used	
	to determine which time bins to sum	
	together into a passive	
	measurement.	
scene_recon_dim	The number of angular bins in the	Not changed.
	passive corner camera's 1D	
	reconstruction.	
hidden_scene_height	An assumed height in meters of the	Not changed.
	hidden scene used to produce the	
	passive corner camera forward	
	model	
lam2	regularization parameter for the	May be tuned for different
	passive corner camera. Larger values	datasets
	lead to more sparsity of the	
	estimated scene in the db4 wavelet	
	basis	

nds	In creating our passive corner	Not changed
1105	In creating our passive corner camera forward model, rather than	Not changed.
	describe each camera pixel as a	
	point, we describe it as nds^2	
stonsi-s	smaller sub-pixels.	Not changed
stepsize	The stepsize used for the iterative	Not changed.
	passive corner camera algorithm.	
nlter		Not changed.
threshMult	This is the multiplicative factor used	May be tuned for different
	to determine the threshold that is	datasets.
	applied to the 1D scene estimate	
	passive corner camera output.	
angle_window	The amount, in radians, to add to	Not changed.
	each side of an objects angular	
	extent. Angular extent is determined	
	by threshold crossings in the 1D	
	passive corner camera output.	
minSeparation	Threshold crossings that are not	Not changed.
	separated by more than	
	minSeparation angular bins are	
	merged together into a single	
	object.	
anglePad	Because of artifacts that typically	Not changed.
	occur at the edges of our passive	_
	corner camera reconstructions, we	nera reconstructions, we
	do not look for threshold crossings	
	that are within anglePad [radians] of	
	the reconstruction edges at 0 and pi.	
	Foreground parameter estimation	on
rmin, rmax	Min and max allowable values for	May be tuned to reflect
	object range.	reasonable experiment
amin, amax	Min and max allowable values for	specific bounds.
	object albedo.	
hmin, hmax	Min and max allowable values for	
,	object height.	
std mult	A scaling factor used to keep the	Not changed.
_	proposal acceptance rate in the	
	desired range. Every 100 iterations,	ns.
	we multiply our proposal standard	
	deviation by std mult (to decrease	
	proposal variance) if the acceptance	
	rate is too low or we multiply by	
<u> </u>	Tate is too low or we mainiply by	<u> </u>

	1/std_mult if the acceptance rate is	
	too high.	
	Background parameter estima	tion
abmin, abmax	Min and max allowable values for occluded region albedo.	May be tuned to reflect reasonable experiment
rbmin, rbmax	Min and max allowable values for occluded region range.	specific bounds.