ESC101: Introduction to Computing

Multidimensional Arrays

Multidimensional arrays are defined like this:

double mat[5][6]; OR int mat[5][6]; OR float mat[5][6]; etc.

The definition states that mat is a 5 X 6 matrix of doubles (or ints or floats). It has 5 rows, each row has 6 columns, each entry is of type double.

	2.1	1.0	-0.11	-0.87	31.5	11.4
	-3.2	-2.5	1.678	4.5	0.001	1.89
mat	7.889	3.333	0.667	1.1	1.0	-1.0
	-4.56	-21.5	1.0	-1.0	5.0	-5.78
	45.7	26.9	-0.001	1000.09	15.1	1.0
Sep-15			LSCIUI, MUMIC	dys		

Accessing matrix elements-I

- 1. The (i,j)th member of mat is accessed as mat[i][j]. Note the slight difference from the matrix notation in maths.
- 2. The row and column numbering each start at 0 (not 1).
- 3. The following program prints the input matrix.

```
void print_matrix(float mat[5][6]) {
  int i,j;
                                  /* prints the ith row i = 0..4. */
  for (i=0; i < 5; i=i+1) {
   for (j=0; j < 6; j = j+1) {
                                     /* In each row, prints each of
    printf("%f", mat[i][j]);
                                       the six columns j=0..5 */
                     /* prints a newline after each row */
    printf("\n");
```

Sep <u>15</u>

LOCIOI, HOMITOY

Accessing matrix elements-II

1. Code for reading the matrix.

Sep-15

- 2. The address of the i,j th matrix element is &mat[i][j].
- 3. This works without parentheses since the array indexing operator [] has higher precedence than &.

Esc101, MDArrays

So it doesn't matter whether the entire input is given in 5

rows of 6 floats in a row or all 30 floats in a single line.

Practice Problem

We are provided with a 3x3 matrix. We should output whether it is an identity matrix or not

Input: 1 0 0 Output: It is an identity matrix

0 1 0

001

Input: 2 1 0 Output: It is not an identity matrix

001

0 1 0

Aug-15 Esc101, Programming

16/8/2016 Esc101, Programming 6

```
#include <stdio.h>
int main()
          //input read in mat
        for(int i=0; i<3; i++)
                for (int j=0; j<3; j++)
                        if(i!=j)
                                if(mat[i][j] != )
                                        flag = 0;
                                        break;
                        else
                                if (mat[i][i]!= )
                                        flag = 0;
                                        break;
       if(flag == 1)
                printf("matrix is identity\n");
        else
                printf("matrix is not identity\n");
        return 0;
```

16/8/2016

```
#include <stdio.h>
int main()
          //input read in mat
        for(int i=0; i<3; i++)
                for (int j=0; j<3; j++)
                        if(i!=j)
                                 if(mat[i][j] != 0 )
                                         flag = 0;
                                         break;
                        else
                                 if (mat[i][i]!= )
                                         flag = 0;
                                         break;
        if(flag == 1)
                printf("matrix is identity\n");
        else
                printf("matrix is not identity\n");
        return 0;
```

```
#include <stdio.h>
int main()
          //input read in mat
        for(int i=0; i<3; i++)
                for (int j=0; j<3; j++)
                        if(i!=j)
                                 if(mat[i][j] != 0)
                                         flag = 0;
                                         break;
                        else
                                 if(mat[i][i]!= 1 )
                                         flag = 0;
                                         break;
        if(flag == 1)
                printf("matrix is identity\n");
        else
                printf("matrix is not identity\n");
        return 0;
```

Coin Collection

You have an $n \times n$ grid with a certain number of coins in each cell of the grid. The grid cells are indexed by (i,j) where $0 \le i,j \le n-1$.

For example, here is a 3x3 grid of coins:

	0	1	2
0	5	8	2
1	3	6	9 🥮
2	10	15 🥮	2

Esc101, MDArrays

Coin Collection: Problem Statement

- You have to go from cell (0, 0) to (n-1, n-1).
- Whenever you pass through a cell, you collect all the coins in that cell.
- You can only move right or down from your current cell.

Goal: Collect the maximum number of coins.

Consider the example grid

5	8	2
3	6	9
10	15	2

There are many ways to go from (0,0) to (n-1,n-1)

5	8	2	5	8	2
3	6	9	3	6	9
10	15	2	10	15	2
	Total	= 35		Total	= 25
5	8	2	5	8	2
3	6	9	3	6	9
10	15	2	10	15	2
	Total	= 30		Total	= 23

Esc101, MDArrays

5	8	2
3	6	9
10	15	2

Total = 36

Max = 36

Building a Solution

- •We cannot afford to check every possible path and find the maximum.
 - Why?

In an $n \times n$ grid, how many such paths are possible?

Instead we will iteratively try to build a solution.

Solution Idea

Consider a portion of some matrix

- What is the maximum number of coins that I can collect when I reach the blue cell?
 - This number depends only on the maximum number of coins that I can collect when I reach the two green cells.
 - Why? Because I can only come to the blue cell via one of the two green cells.

Sep-15 Esc101, MDArrays 1

Solution Idea (dynamic programming)

Max-coins (bluecell) =
max(Max-coins (greencell1),
Max-coins (greencell2))
+ No. of coins (bluecell))

Esc101, MDArrays

Solution Idea

- Let a(i,j) be the number of coins in cell(i,j)
- Let coin(i,j) be the maximum number of coins collected when travelling from (0,0) to (i,j).
- Then,

coin(i,j) = max(coin(i,j-1), coin(i-1,j)) + a(i,j)

Esc101, MDArrays

Implementation

- Use an additional two dimensional array, whose (i,j)-th cell will store the maximum number of coins collected when travelling from (0,0) to (i,j).
- Fill this array one row at a time, from left to right.
- When the array is completely filled, return the (n-1, n-1)-th element.

Implementation: boundary cases

- To fill a cell of this array, we need to know the information of the cell above and to the left of the cell.
- What about elements in the top most row and left most column?
 - Cell in top row: no cell above
 - Cell in leftmost column: no cell on left
- Before starting with the other elements, we will fill these first.

```
int coin collect(int a[][100], int n){
  int i,j, coins[100][100];
  coins[0][0] = a[0][0]; //initial cell
  for (i=1; i<n; i++) //first row
    coins[0][i] = coins[0][i-1] + a[0][i];
  for (i=1; i<n; i++) //first column
    coins[i][0] = coins[i-1][0] + a[i][0];
  for (i=1; i<n; i++) //filling up the rest of the array
    for (j=1; j < n; j++)
      coins[i][j] = max(coins[i-1][j], coins[i][j-1])
                    + a[i][j];
  return coins[n-1][n-1]; //value of last cell
```

```
int max(int a, int b) {
  if (a>b) return a;
 else return b;
int main(){
  int m[100][100],i,j,n;
  scanf("%d", &n);
  for (i=0; i<n; i++)
    for (j=0; j< n; j++)
      scanf("%d", &m[i][j]);
 printf("%d\n", coin collect(m,n));
  return 0;
```

Cor	isider th	e exam	ple grid		
	_				
		8			
	3	6	9		
	10	15	2		
			_		
Inc	rementa	l stane	s of Coin	2D array	
11101	Ciricito	ii stage.	or Com	2D diray	
	_				
	5	0	0		
	0	0	0		
	0	0	0		
Sep-15				Esc101, MDArrays	21

Coi	nsider tr	ne exam	ple grid										
	-												
	5	8	2										
	3	6	9										
	10	15	2										
Inc	rementa	al stanes	s of Coin	2D a	rrav								
1110	a ciricita	ar stages	or com		птау								
	_				_	4.0		-					
	5	0	0		5	13	1	15					
	0	0	0		8	0		0					
	0	0	0		18	0		0					
Sep-15					Esc10	01, MDA	rrays						22

Con	nsider th	e exam	ple grid							
	5	8	2							
	3	6	9							
	10	15	2							
Inci	rementa	l stages	of Coin 2	D array						
	5	0	0	5	13	15	5	13	15	
	0	0	0	8	0	0	8	19	28	
	0	0	0	18	0	0	18	0	0	
Sep-15				Esc1	01, MDArra	ys				23

Con	sider th	e exam	ple grid							
	5	8	2							
	3	6	9							
	10	15	2							
Incr	ementa	l stages	of Coin	2D array						
	5	0	0	5	13	15	5	13	15	
	0	0	0	8	0	0	8	19	28	
	0	0	0	18	0	0	18	0	0	
	5	13	15							
	8	19	28							
	18	34	0							
Sep-15				Esc1	01, MDArra	ays				24

Со	nsider th	ne exam	ple grid								
	5	8	2								
	3	6	9								
	10	15	2								
Inc	crementa	al stages	of Coin	2D	array						
	5	0	0		5	13	15	5	13	15	
	0	0	0		8	0	0	8	19	28	
	0	0	0		18	0	0	18	0	0	
	5	13	15		5	13	15				
	8	19	28		8	19	28				
	18	34	0		18	34	36				
	10	54			10	3 +					
Sep-15					Esc1	01, MDArra	iys				25

Со	nsider th	ne exam	ple grid							
	5	8	2							
	3	6	9							
	10	15	2							
Ind	crementa	al stages	s of Coin	2D arra	У					
	5	0	0	5	13	15	5	5 13	15	
	0	0	0	8	0	0	8	3 19	28	
	0	0	0	18	0	0	1	8 0	0	
	5	13	15	5	13	15		5 8	2	
	8	19	28	8	19	28		3 6	9	
	18	34	0	18	34	36	1	.0 15	2	
								To	otal = 36	
Sep-15				E	sc101, MDAr	rays				26

Passing two dimensional arrays as parameters

Write a program that takes a two dimensional array of type double [5] [6] and prints the sum of entries in each row.

```
int i,j; double rowsum;
for (i=0; i < 5; i=i+1) {
  rowsum = 0.0;
   for (j=0; j < 6; j = j+1) {
  rowsum = rowsum+mat[i][j];
  printf("%lf ", rowsum);
```

Question?

But suppose we have read only the first 3 rows out of the 5 rows of mat. And we would like to find the marginal sum of the first 3 rows.

Answer:

That's easy, we can take an additional parameter nrows and run the loop for i=0.. (nrows-1) instead of 0..5.

The slightly generalized program would be:

```
void marginals(double mat[5][6], int nrows) {
 int i,j; double rowsum;
 for (i=0; i < nrows; i=i+1) {
    rowsum = 0.0;
     for (j=0; j < 6; j = j+1) {
    rowsum = rowsum+mat[i][j];
   printf("%If ", rowsum);
```

In parameter double mat[5][6], C completely ignores the number of rows 5.
It is only interested in the number of cols: 6.

Let's see more examples...

We declared mat to be of type double [5][6]. Does this mean that nrows should be <= 5? We are not checking for it!

The following program is exactly identical to the previous one.

```
void marginals(double mat[][6], int nrows)
 int i,j; int rowsum;
 for (i=0; i < nrows; i=i+1) {
    rowsum = 0.0;
     for (j=0; j < 6; j = j+1) {
    rowsum = rowsum+mat[i][j];
   printf("%lf ", rowsum);
```

- 1. Why? because C does not care about the number of rows, only the number of cols.
- 2. And why is that? We'll have to understand 2-dim array Example...

This means that the above program works with a k X 6 matrix where k could be passed for nrows.

```
void marginals(double mat[ ][6], int nrows);
void main() {
    double mat[9][6];
   /* read the first 8 rows into mat */
  marginals(mat,8);
void marginals(double mat[][6], int nrows);
void main() {
   double mat[9][6];
  /* read 9 rows into mat */
                                  UNSAFE
  marginals(mat, 10);
```

Example calls for marginals

The 10th row of mat[9][6] is not defined. So we may get a segmentation fault when marginals() processes the 10th row, i.e., i becomes 9.

As with 1 dim arrays, allocate your array and stay within the limits allocated.

Number of columns

Why is the number of columns required?

- The memory of a computer is a 1D array!
- 2D (or >2D) arrays are "flattened" into 1D to be stored in memory
- In C (and most other languages), arrays are flattened using Row-Major order
 - In case of 2D arrays, knowledge of number of columns is required to figure out where the next row starts.
 - Last n-1 dimensions required for nD arrays

Esc101, MDArrays

Layout of mat[3][5] in memory

