COM 205 - Digital Logic Design Digital Systems and Binary Numbers

Assist. Prof. Özge ÖZTİMUR KARADAĞ ALKÜ

Academic Staff

• Instructor: Özge Öztimur Karadağ

• Email: ozge.karadag@alanya.edu.tr

• Ofis: 217

Assistant: Gürkan Çelik

• Email: gurkan.celik@alanya.edu.tr

Book

• Digital Design, Morris Mano, Michael D. Ciletti

Weekly Plan

Week	Content
1	Introoduction to Digital Logic Design
2	Binary Numbers – Number-Base Conversions, Complements
3	Binary Numbers – Signed binary numbers, binary codes, binary logic
4	Boolean Algebra and Logic Gates – Axiomatic Definitions, basic theorems and properties, Boolean Functions
5	Boolean Algebra and Logic Gates – Canonical and Standard Forms, digital logic Gates, integrated circuits
6	Gate-Level Minimization – The Map Method, Product-of-Sums Simplification
7	Gate-Level Minimization – Don't-Care Conditions, NAND and NOR Implementation
8	Midterm
9	Combinational Logic – Adders,Subtractors, Toplayıcılar, Çıkarıcılar, Kod Dönüştürme, Analysis Procedure
10	Combinational Logic – Other Two Level Implementations, Exclusive-OR Function
11	MSI Elements – Binary Adder-Subtractor, Decimal Adder, Magnitude Comparator
12	MSI Elements – Decoders, Encoders, Multiplexers
13	Problem Solving on Combinational Logic
14	Problem Solving on MSI elements
15	Review

Grading

• Midterm 40%

• Final 60%

Lab Work

• Schedule and details will be announced soon.

Digital Systems

- Represent and manipulate discrete elements of information.
 - Examples of discrete sets:
 - 10 decimal digits
 - 26 letters of the alphabet
 - 52 playing cards
- Today, electronic digital systems use two discrete value; 0 and 1
 binary
- Digital system is a system that manipulates discrete elements of information represented internally in binary form.

Binary Numbers

• Powers of two:

n	2 ⁿ	n	2 ⁿ	n	2 ⁿ
0	1	8	256	16	65,536
1	2	9	512	17	131,072
2	4	10	1,024 (1K)	18	262,144
3	8	11	2,048	19	524,288
4	16	12	4,096 (4K)	20	1,048,576 (1M)
5	32	13	8,192	21	2,097,152
6	64	14	16,384	22	4,194,304
7	128	15	32,768	23	8,388,608

Binary Numbers

- Base conversion
 - Binary number 11010.11 is equivalent to:

$$1 \times 2^{4} + 1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{\circ} + 1 \times 2^{-1} + 1 \times 2^{-2} = 26.75$$

Examples to Base Conversions

- Ex: Convert decimal 41 to binary.
 - $(41)_{10} = (101001)_2$

Convert decimal 153 to octal.

- Convert 0.6875 to binary.
 - $(0.1011)_2$

Integer	Remainder
41	
20	I
10	0
5	0
2	1
1	0
0	1 101001 = answer

$$\begin{array}{c|cccc}
153 & & & & \\
19 & & & 1 \\
2 & & & 3 \\
0 & & 2 = (231)_8
\end{array}$$

	Integer		Fraction	Coefficient
$0.6875 \times 2 =$	1	+	0.3750	$a_{-1} = 1$
$0.3750 \times 2 =$	0	+	0.7500	$a_{-2} = 0$
$0.7500 \times 2 =$	1	+	0.5000	$a_{-3} = 1$
$0.5000 \times 2 =$	1	+	0.0000	$a_{-4} = 1$

Numbers with Different Bases

Decimal (base 10)	Binary (base 2)	Octal (base 8)	Hexadecimal (base 16)
00	0000	00	0
01	0001	01	1
02	0010	02	2
03	0011	03	3
04	0100	04	4
05	0101	05	5
06	0110	06	6
07	0111	07	7
08	1000	10	8
09	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F

Octal and Hexadecimal Numbers

- Conversion from Binary to octal:
 - Partition Binary number into groups of three digits each
 - Start from Binary point proceed to left and right
 - Ex:

```
(10 \quad 110 \quad 001 \quad 101 \quad 011 \quad \cdot \quad 111 \quad 100 \quad 000 \quad 110)_2 = (26153.7406)_8
2 \quad 6 \quad 1 \quad 5 \quad 3 \quad 7 \quad 4 \quad 0 \quad 6
```

Octal and Hexadecimal Numbers

- Conversion from octal to Binary:
 - Do the reverse:
 - Ex:

$$(673.124)_8 = (110 \quad 111 \quad 011 \quad \cdot \quad 001 \quad 010 \quad 100)_2$$
 $6 \quad 7 \quad 3 \quad 1 \quad 2 \quad 4$

Complements

- Used to simplify subtraction and for logical manipulation
- Diminished Radix Complement ((r-1)'s complement)
 - For a number N (with n digits) in base r, its (r-1)'s complement is:
 - (rⁿ-1)-N

Ex: 9's complement of 546700 is 999999-546700 = 453299 1's complement of 1011000 is 0100111.

- Radix Complement (r's complement)
 - Obtained by adding 1 to (r-1)'s complement
 - rⁿ-N

Ex: 10's complement of 012398 → 987601+1= 987602 2's complement of 1101100 is 0010100

Subtraction with Complements

- Subtraction of two n-digit unsigned numbers M-N in base r:
- 1. Add the minuend M to the r's complement of the subtrahend N. $M+(r^n-N)=M-N+r^n$
- 2. if M>=N the sum will produce an end carry rⁿ which can be discarded, what is left is the result M-N
- 3. if M<N, the sum does not produce an end carry and is equal to $r^n (N-M)$, which is the r's complement of (N-M). To obtain the answer in familiar form, take the r's complement of the sum and place a negative sign in front.

Subtraction with Complements

• Ex:Using 10's complement, subtract 72532-3250

M = 72532

10's complement of 03250 \rightarrow 96749+1 = 96750

sum = 169282

discard end carry 10⁵=-100000

Answer = 69282

Subtraction with Complements

• Ex: Using 10's complement subtract 3250 – 72532

M = 3250

10's complement of 72532 = 27468

Sum=30718

No end carry! Answer is –(10's complement of 30718)=-69282

Signed Binary Numbers

- Signed magnitude representation: number consists of a magnitude and a symbol(+ or -) or bit (0 or 1)
- Signed 1's complement representation
- Signed 2's complement representation
- Ex: -9 $9=(00001001)_2$
 - Signed magnitude: 10001001
 - Signed 1's complement: 11110110
 - Signed 2's complement: 11110111

Signed Binary Numbers

Decimal	Signed-2's Complement	Signed-1's Complement	Signed Magnitude
+7	0111	0111	0111
+6	0110	0110	0110
+5	0101	0101	0101
+4	0100	0100	0100
+3	0011	0011	0011
+2	0010	0010	0010
+1	0001	0001	0001
+0	0000	0000	0000
-0	_	1111	1000
-1	1111	1110	1001
-2	1110	1101	1010
-3	1101	1100	1011
-4	1100	1011	1100
-5	1011	1010	1101
-6	1010	1001	1110
-7	1001	1000	1111
-8	1000	_	-

References

• Digital Design, Morris Mano, Michael D. Ciletti