ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (государственный технический университет)

Кафедра 304

(вычислительные машины, системы и сети)

Лабораторная работа по курсу «Автоматизация проектирования»

Отчёт по ј	работе <u>№3</u> .	
<u>Волновые и лучевые алгор</u> (наимен	<u>итмы трассиро</u> иование работы)	овки соединений
Вариант з	адания <u>№2</u> .	
Лабораторную работу выполнил студент гр. 13-501, Резвяков До (должность)		<u>(подпись)</u>
Лабораторную работу принял: <u>доцент каф. 304, Силаева Татья</u> (должность)	яна Александров 5. и. о.)	ЗН а (подпись)
	«»	2010 г (дата приёма)

Цель работы: Изучить и практически овладеть волновыми и лучевыми алгоритмами трассировки соединений в БИС и печатных платах.

Задание

Протрассировать соединения в следующей БИС из точки A в точку B:

Порядок выполнения работы

1. Построить кратчайший путь с минимальным количеством изломов, соединяющий две заданные точки ДРП, с помощью следующих четырёх методов: волнового, встречных волн,

2. Проанализировать результаты и сформулировать выводы.

1-1. Построение кратчайшего пути волновым алгоритмом

Распространяя волну из точки A, достигаем точки B.

Проанализировав полученную последовательность фронтов волны, находим путь от точки A до точки B с наименьшим числом изломов:

	1	2	3	4	5	6	7	8	9	10	11	12	13
1	18	17	16	15	14	×	6	5	4	3	2	1	$\mathbf{A}_{\!\scriptscriptstyle \diamond}$
2	17	16	×	14	13	×	7	6	2	4	3	2	1
3	16	15	×	13	12	×	8	7	6	5	4	3	2
4	15	14	13	12	11	10	9	8	7	6	5	4	3
5	16	15	14	13	12	×	10	9	8	×	×	×	4
6	17	16	15	14	13	×	11	10	9	8	7	6	5
7	18	17	16	15	14	×	12	11	10	9	8	7	6
8	19	18	17	16	15	14	13	12	11	10	9	8	7
9	20	19	18	17	16	15	14	13	12	11	10	9	8
10	21	20	19	18	17	16	15	14	13	12	11	10	9
11	22	21	20	19	18	17	16	15	14	13	12	11	10
12	B	22	21	20	19	×	17	16	15	×	×	×	×
13		23	22	21	20	×	×	×	16	17	18	19	20

1-2. Построение пути алгоритмом встречных волн

Распространяем волны из точек A и B до момента встречи двух волн. Проанализировав полученные последовательности фронтов волн, находим путь от точки A до точки B с наименьшим числом изломов:

	1	2	3	4	5	6	7	8	9	10	11	12	13
1	11					×	6	5	4	3	2	1	$\mathbf{A}_{\!\scriptscriptstyle \circ}$
2	10	11	×			×	7	6	5	4	3	2	1
3	9	10	×			×	8	7	6	5	4	3	2
4	8_	9	10	11	11	10	9	8	7	6	5	4	3
5	7	8	9	10	11	×	10	9	8	×	×	×	4
6	6	7	8	9	10	×	11	10	9	8	7	6	5
7	5	6	7	8	9	×	11	11	10	9	8	7	6
8	4	5	6	7	8	9	10	11	11	10	9	8	7
9	3	4	5	6	7	8	9	10	11	11	10	9	8
10	2	3	4	5	6	7	8	9	10	11	11	10	9
11	1	2	3	4	5	6	7	8	9	10	11	11	10
12	B	1	2	3	4	×	8	9	10	×	×	×	×
13	1	2	3	4	5	×	×	×	11				

1-3. Построение пути однолучевым алгоритмом

Распространяем по одному лучу из точек A и B по соответствующим приоритетам направлений до их пересечения (или вырождения). Находим путь от точки A до точки B:

1-4. Построение пути двухлучевым алгоритмом

Распространяем по два луча из точек A и B по соответствующим приоритетам направлений до пересечения двух лучей из разных точек (или их вырождения). Находим путь от точки A до точки B:

2. Анализ результатов и выводы

Волновой алгоритм дал идеальный вариант проведения соединения с минимальным числом изломов, однако на трассировку этим методом ушло достаточно много времени и пришлось проанализировать почти все дискреты рабочего поля.

Алгоритм встречного распространения волн дал такой же результат. На его выполнение потребовалось немного меньше времени и анализа дискретов.

Однолучевой алгоритм дал вариант проведения соединения такой же длины, но с чуть большим количеством изломов, что тоже является хорошим результатов. А времени на его выполнение понадобилось гораздо меньше.

Двухлучевой алгоритм дал другое положение соединения, но такое же по длине и количеству изломов. Однако времени на последний алгоритм было потрачено практически в два раза больше, чем на однолучевой алгоритм из-за одновременного проведения двух лучей из источника и из цели.

Волновые алгоритмы, в отличие от лучевых: просты; решение дают всегда, если оно существует; позволяют найти кратчайший путь. Лучевые алгоритмы, в отличие от волновых: быстры; требуют гораздо меньше времени и ресурсов памяти.

Лучевой алгоритм может не дать решения, если на рабочем поле имеется много занятых ячеек, а волновой алгоритм работает очень долго, если на рабочем поле много свободных ячеек.

В результате можно сформулировать следующие принципы:
Целесообразнее всего, для трассировки первых по очерёд-
ности соединений, когда на дискретном рабочем поле очень
мало препятствий, использовать однолучевой алгоритм трасси-
ровки. Затем, когда число препятствий несколько увеличится,
следует использовать двухлучевой алгоритм. Когда препятствий
станет достаточно много, следует переключиться на метод
встречных волн. И, если при трассировании последних по оче-
рёдности соединений будет совсем мало свободных дискретов,
то целесообразнее будет использовать обычный волновой
алгоритм, т.к. для него в такой ситуации потребуется меньше
вычислительных затрат.