UE19CS251

DESIGN AND ANALYSIS OF ALGORITHMS

Unit 5: Limitations of Algorithmic Power and Coping with the Limitations

Transitive Closure (Warshall's Algorithm)

PES University

Outline

Concepts covered

- Transitive Closure (Warshall's Algorithm)
 - Motivation
 - Algorithm
 - Example

1 Transitive Closure

- Computes the transitive closure of a relation
- Alternatively: existence of all nontrivial paths in a digraph (directed graph)
- Example of transitive closure:

2 Warshall's Algorithm

- Constructs transitive closure T as the last matrix in the sequence of $n \times n$ matrices $R^{(0)}, \ldots, R^{(k)}, \ldots, R^{(n)}$ where $R^{(k)}[i,j] = 1$ iff there is nontrivial path from i to j with only first k vertices allowed as intermediate vertices
 - $-R^{(0)} = A$ (adjacency matrix), $R^{(n)} = T$ (transitive closure)
- On the k^{th} iteration, the algorithm computes $R^{(k)}$

$$R^{(k)}[i,j] = \begin{cases} 1 & \text{if path from } i \text{ to } k \text{ and } k \text{ to } j, \text{i.e., } R^{(k-1)}[i,k] = R^{(k-1)}[k,j] = 1 \\ R^{(k-1)}[i,j] & \text{otherwise} \end{cases}$$

$$R^{(k)}[i,j] = R^{(k-1)}[i,j] \ \ {\bf or} \ \ (R^{(k-1)}[i,k] \ {\bf and} \ R^{(k-1)}[k,j])$$

3 Algorithm

```
Transitive Closure (Warshall's Algorithm)
1: procedure Warshall(()A[1 \dots n, 1 \dots n])
         ▶ Input: The adjacency matrix A of a digraph with n vertices
2:
3:
         ▷ Output: The transitive closure of the digraph
         R^{(0)} \leftarrow A
4:
         for k \leftarrow 1 to n do
5:
              for i \leftarrow 1 to n do
6:
                   \begin{array}{c} \mathbf{for} \ j \leftarrow 1 \ \mathbf{to} \ n \ \mathbf{do} \\ R^{(k)}[i,j] \leftarrow R^{(k-1)}[i,j] \ \ \mathbf{or} \ \ (R^{(k-1)}[i,k] \ \mathbf{and} \ R^{(k-1)}[k,j]); \end{array}
7:
8:
         return R^{(n)}
9:
```

4 Warshall's Algorithm

5 Think About It

- Is Warshall's algorithm efficient for sparse graphs? Why / why not?
- \bullet Can Warshall's algorithm be used to determine if a graph is a DAG (Directed Acyclic Graph)? If so, how?