HW 1 Complex Analysis Spring 2024

Exercise 1. Describe using a drawing in \mathbb{C} the following sets:

- (a) $|z z_1| = |z z_2|$ for fixed $z_1, z_2 \in \mathbb{C}$;
- (b) $\frac{1}{z} = \overline{z};$
- (c) $\operatorname{Re}(z) > c, c \in \mathbb{R};$
- (d) Re(z) = 3;
- (e) $\operatorname{Re}(az+b) > 0$, $a, b \in \mathbb{C}$;
- (f) |z| = Re(z) + 1;
- (g) $\operatorname{Re}(z) = c, c \in \mathbb{R}$.

Exercise 2. Show that the Cauchy-Riemann Equations can be re-written in polar form as:

$$u_r = r^{-1}v_\theta, r^{-1}u_\theta = -v_r. (0.1)$$

Exercise 3. Define the function $f: \mathbb{C} \to \mathbb{C}$ by letting $f(x+iy) = \sqrt{|x||y|}$. Show that f satisfies the Cauchy-Riemman Equations at 0 but f is not holomorphic in any neighborhood of 0.

Exercise 4. Determine the radius of convergence for the following power series:

- (a) $\sum_{n=1}^{\infty} (\log n)^2 z^n;$
- (b) $\sum_{n=1}^{\infty} n! z^n$;
- (c) $\sum_{n=1}^{\infty} \frac{n^2}{4^n + 3n} z^n$.

Exercise 5. Define the function $f : \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} 0 & \text{if } x \le 0\\ e^{-1/x^2}. & \text{otherwise} \end{cases}$$
 (0.2)

Prove that f is infinitely differentiable in \mathbb{R} and that $f^{(n)}(0) = 0$ for all $n \geq 1$. Conclude that f doesn't have a converging power series expansion around 0.