Splošna topologija

Hugo Trebše (hugo.trebse@gmail.com)

24. september 2025

Kazalo

1	Topološki prostori ter zvezne funkcije	
2	Zvezne preslikave	5
3	Homeomorfizmi	7
4	Baze in podbaze 4.1 Produktna topologija	9 12
5	Topološki podprostori	13
6	Topološke lastnosti	16
A	Opomnik teorije množic	17
В	Tabela nekaterih topoloških lastnosti	18
Lii	teratura	19

1 Topološki prostori ter zvezne funkcije

Iz metričnih prostorov vemo: $f:(X,d_x)\to (Y,d_y)$ je zvezna, če je za vsako odprto množico $U\subseteq Y$ njena praslika $f^{-1}(U)$ odprta v X. $U\subseteq X$ je odprta, če so vse točke U notranje. Točka $x\in U$ je notranja, če obstaja r>0, da je $K(x,r)\subseteq U$.

V topologiji namesto opisovanja odprtih množic glede na druge pogoje predpišemo, katere množice so odprte.

Definicija 1.1: Topologija

Topologija na množici X je družina množic $\mathcal{T} \subseteq X$, ki zadošča pogojem:

- (T0) $\emptyset \in \mathcal{T}$ ter $X \in \mathcal{T}$.
- (T1) Poljubna unija elementov \mathcal{T} je element \mathcal{T} .
- (T2) Poljuben končni presek elementov \mathcal{T} je element \mathcal{T} .

Elemente \mathcal{T} imenujemo odprte množice. Topološki prostor je množica X z neko topologijo (X, \mathcal{T}) .

Pogoj (T0) pravzaprav sledi iz pogojev (T1) in (T2) z presekom ter unijo prazne družine.

Komentar 1.2: Kako topologija meri bližino?

V metričnih prostorih odprte množice vsebujejo *okolice* vseh točk, ki jih vsebujejo, ter so zato tudi same okolice. Okolica dane točke je množica vseh točk zadosti blizu te točke - različne okolice določajo različne stopnje bližine.

Smiselno je želeti, da je unija poljubno mnogo odprtih množic (»okolic«) odprta, saj je vsak element unije vsebovan v nekem elementu družine, ki je njegova okolica, zato je tudi unija odprtih množic neka »večja« okolica.

Presek dveh odprtih množic \mathcal{O}_1 in \mathcal{O}_2 je odprta množica, saj so za vsako točko x v preseku v tem tudi vse točke, ki so 1-blizu in 2-blizu x. Preseka neskončnih družin ne dopustimo, saj je neskončno mnogo pogojev o bližini lahko preveč restriktivno - v preseku je enojec brez katerekoli »okolice«.

Primer 1.3

Metrika porodi topologijo: (X, d) metrični prostor in $\mathcal{T}_d = \{\text{vse unije odprtih krogel}\}.$

Oris dokaza. Unija unij krogel je seveda unija krogel, kar zadosti pogoju (T1). Pogoj (T2) dokažemo za presek dveh krogel, z indukcijo za končno mnogo. Presek odprtih krogel je odprta množica, zato unija odprtih krogel. □

Definicija 1.4

Topolgija je *metrizabilna*, če je porojena z neko metriko.

Primer 1.5

Če je (X,d) metrični prostor je tudi (X,d') metrični prostor, kjer je

$$d'(x, y) = \min \{ d(x, y), 1 \}.$$

Velja, da je $\mathcal{T}_d = \mathcal{T}_{d'}$, kjer vzamemo standardno topologijo porojeno z metriko. Posledično lahko različne metrike porodijo isto topologijo.

Definicija 1.6

 $\mathcal{T}_{triv} = \{\emptyset, X\}$ je trivialna topologija, $\mathcal{T}_{disc} = \mathcal{P}(X)$ pa diskretna topologija.

Primer 1.7: Metrizabilnost trivialne in diskretne topologije

Mar sta te topologiji metrizabilni? Za trivialno topologijo to ne velja, če ima le X vsaj dva elementa. Temu je tako, ker imata vsaki točki v metričnem prostoru disjunktni okolici - obstaja taka okolica ene točke, ki ne vsebuje druge točke. Za diskretno topologijo pa je odgovor da, saj jo porodi diskretna metrika:

$$d(x,y) = \begin{cases} 0, & \text{if } x = y \\ 1, & \text{if } x \neq y \end{cases}$$

Vsak element $x \in X$ je namreč vsebovan v odprti krogli $K(x, \frac{1}{2})$, posledično lahko dobimo vsak element \mathcal{T}_{disc} z unijami.

Definicija 1.8

 $\operatorname{Int}(A) = \bigcup \{U \in \mathcal{T} \mid U \subseteq A\}$ je največja odprta podmnožica množice A. Pravimo, da je A zaprta, če je $A^T \in T$. Definiramo tudi zaprtje množice A kot $\operatorname{Cl}(A) = \overline{A} = \bigcap \{A \subset Z\}$. Le-ta je najmanjša zaprta množica, ki vsebuje A.

Primer 1.9

Na množici X lahko definiramo topologijo $\mathcal{T}_{kk} = \{U \subseteq X | X \setminus U \text{ je končna}\} \cup \emptyset$, ki ji pravimo topologija končnih komplementov. Isto topologijo dobimo, če razglasimo vse elemente X za zaprte množice.

Definiramo tudi *mejo* množice A kot $Fr(A) = Cl(A) \setminus Int(A)$. Ta ni enaka robu množice ter je venomer zaprta, saj je $Fr(A) = Cl(A) \cup (X \setminus Int(A)) = Cl(A) \cup Int(A)^c$.

2 Zvezne preslikave

Definicija 2.1

Preslikava $f: X \to Y$ je zvezna, če velja $f^{-1}(\mathcal{T}_Y) \subseteq \mathcal{T}_X$.

Obstajajo topologije, ki zagotovijo zveznost vseh funkcij.

Primer 2.2

- Če je \mathcal{T}_Y trivialna je f venomer zvezna.
- Če je \mathcal{T}_X diskretna je f venomer zvezna.

Poetično se lahko izrazimo $\check{c}e$ je topologija domene bogata glede na topologijo kodomene, potem je f zvezna.

Trditev 2.3

Konstantna funkcije je zvezna ne glede na topologijo.

Oris dokaza. Če je $f(X) = y_0$ in je $U \in \mathcal{T}_Y$ velja

$$f^{-1}(U) = \begin{cases} X|y_0 \in U\\ \emptyset|y_0 \not\in U \end{cases}$$

Ali obstaja kakšna topologija, da velja obratno?

Primer 2.4

 $f:(\mathbb{R},\mathcal{T}_{kk})\to(\mathbb{R},\mathcal{T}_{evk})$ je nezvezna, če je nekonstantna.

 $Oris\ dokaza.\ \mathcal{T}_{kk}$ ne vsebuje disjunktnih nepraznih množic. **Disjunktni množici imata** disjunktni prasliki. Ker topologija kodomene vsebuje disjunktni množici smo končali.

Pravzaprav lahko zgornji zgled posplošimo na neobstoj zvezne nekonstantne funkcije $g:(X,\mathcal{T}_{\mathrm{kk}}\to (Y,\mathcal{T})),$ kjer je \mathcal{T} metrizabilna ter X neskončna.

Vpeljemo oznako za množico zveznih preslikav med topološkima prostoroma: $C((X, \mathcal{T}_X), (Y, \mathcal{T}_Y)) = C(X, Y)$. Pogosto pišemo: $C((X, \mathcal{T}_X), (\mathbb{R}, \mathcal{T}_{evk})) = C(X)$. V topološkem kontekstu pogosto uporabimo izraz prostor za topološki prostor ter preslikava za funkcijo, ki je zvezna glede na izbrano topologijo.

Trditev 2.5

- Kompozitum zveznih funkcij je zvezna.
- Naslednje trditve so ekvivalentne:
 - \dagger f je zvezna.
 - † praslika vsake zaprte množice je zaprta.
 - $\dagger f(\overline{A}) \subseteq \overline{f(A)}.$

Oris dokaza. Velja $A \subseteq f^{-1}(f(A))$ ter $f(f^{-1}(B)) \subseteq B$. Ker je $A \subseteq f^{-1}(f(A)) \subseteq f^{-1}(\overline{f(A)})$ ter ker je zaprtje A gotovo znotraj zaprte množice na desni sledi $\overline{A} \subseteq f^{-1}(\overline{f(A)})$. Naj bo B zaprta. Velja $f(\overline{f^{-1}(B)}) \subseteq \overline{f(f^{-1}(B))} \subseteq \overline{B} = B$. To pokaže, da je zaprtje praslike podmnožica praslike, kar dokaže želeno.

Zadnja karakterizacija je topološka analogija znane karakterizacije z konvergenco funkcijskih vrednosti ter funkcijsko vrednostjo limite. Elementi roba so namreč na nek način limite zaporedij. Prednost zadnje karakterizacije je tudi to, da se nam pri eksplicitno podani funkcijo f ni treba ukvarjati z računanjem praslike.

Primer 2.6

Omenimo dve »znani« topologiji.

- Naj bo $x \in X$. $\mathcal{T}_{VT} = \{U \subseteq X | x \in U \lor X = \emptyset\}$. To topologijo imenujemo topologija vsebovane točke.
- *Prostor Sierpinskega* je topologija na dveh točkah, kjer je razen prazne in polne mnozice odprta le ena izmed tock.

3 Homeomorfizmi

Definicija 3.1

 $f:(X,\mathcal{T}_X)\to (Y,\mathcal{T}_Y)$ je homeomorfizem, če je

- f je bijekcija med X in Y.
- f_* (preslikava med \mathcal{T}_X in \mathcal{T}_Y) je bijekcija.

Definicija 3.2

- $f:(X,\mathcal{T}_X)\to (Y,\mathcal{T}_Y)$ je odprta, če je slika odprte množice odprta.
- $f:(X,\mathcal{T}_X)\to (Y,\mathcal{T}_Y)$ je zaprta, če je slika odprte množice zaprta.

Trditev 3.3

Za $f:(X,\mathcal{T}_X)\to (Y,\mathcal{T}_Y)$ so ekvivalentne naslednje trditve:

- f je homeomorfizem.
- f je bijekcija, f ter f^{-1} sta zvezni.
- f je bijekcija, zvezna in odprta.
- f je bijektivna, zvezna in zaprta.

Nekatere zvezne funkcije so avtomatično zaprte oz. odprte. Primer je

$$f^{\text{zv.}}: X^{\text{komp.}} \to Y^{\text{metr.}}$$

Primer 3.4

Inverz zvezne funkcije ni nujno zvezen. Obravnavamo naravno preslikavo iz

$$[0,1) \cup \{2\} \rightarrow [0,1].$$

Preslikava je zvezna, a njen inverz ni.

Vsak končen interval na \mathbb{R} je homeomorfen enemu izmed intervalov [0,1], (0,1), [0,1). Velja tudi, da sta (-1,1) in \mathbb{R} homeomorfna, kar pokaže naslednja preslikava:

$$f(x) = \frac{x}{1 - |x|}.$$

Preslikava je homeomorfizem, saj ima zvezen inverz $f^{-1}(x) = \frac{x}{1+|x|}$

Noben izmed intervalov (0,1) in [0,1) ni homeomorfen [0,1], saj je slednji kompakten, slika kompaktne množice pod zvezno funkcijo je kompaktna, noben izmed (0,1) ter [0,1) pa ni kompakten.

Sta morda (0,1) in [0,1) homeomorfna? Denimo, da sta ter je f(0) = a. Potem moramo homeomorfno preslikati (0,1) v $(0,a) \cup (a,1)$. (0,1) je povezana s potmi, med tem ko $(0,a) \cup (a,1)$ ni, kar bomo v prihodnje pokazali, da je protislovno.

7

Pri dokazovanju da prostora nista homeomorfna se osredotočimo na iskanje lastnosti, ki jo ima le en prostor, obenem pa se ta lastnost ohranja pod homeomorfizmom (takim pravimo *topološke lastnosti*). Povezanost in kompaktnost sta topološki lastnosti, omejenost in polnost pa nista topološki lastnosti.

Definicija 3.5

- $B^n = \{x \in \mathbb{R}^n | ||x|| \le 1\}$ je enotska n krogla.
- $\mathring{B}^n = \{x \in \mathbb{R}^n | ||x|| < 1\}$ je odprta enotska n krogla.
- $S^{n-1} = \{x \in \mathbb{R}^n | ||x|| = 1\}$ je enotska sfera.

Primer 3.6

 $\mathring{B}^n \cong \mathbb{R}^n$. Homeomorfizem je namreč:

$$f(\vec{x}) = \frac{\vec{x}}{1 - \|\vec{x}\|}$$

Primer 3.7

 $S^n \setminus \{t\} \cong \mathbb{R}^n$, kjer je t poljubna točka S^n . Žarki, definirani z točko t ter poljubno od t različno točko na S^n sekajo ekvator kroglo B^n v točno definirani točki. Funkcija je zvezna, prav tako je tudi njen inverz zvezen - majhne spremembe v argumentu dajo majhne spremembe v funkcijskih vrednostih.

Formalno podamo homeomorfizem kot: $f: S^n \setminus \{(0, \dots, 1)\} \to \mathbb{R}^n$, kjer je

$$f(x_1, \dots, x_{n+1}) = \frac{(x_1, \dots, x_n)}{1 - x_{n+1}},$$

ter je inverz $f^{-1}:\mathbb{R}^n\to S^n\setminus\{(\vec{0},1)\}$ podan s predpisom

$$f^{-1}(\vec{x}) = \left(\frac{2\vec{x}}{\|\vec{x}\| + 1}, \frac{\|\vec{x}\| - 1}{\|\vec{x}\| + 1}\right)$$

Primer 3.8

Denimo, da je f homeomorfizem med \mathbb{R}^2 in \mathbb{R} . Naj bo f(0,0)=a. Protislovje po povezanosti s potmi.

Trditev 3.9

Restrikcija zvezne funkcije je zvezna.

4 Baze in podbaze

Definicija 4.1

Družina $\mathcal{P} \subseteq \mathscr{P}(X)$ je predbaza za topologijo na X, če pokrije X.

Predbazo definiramo, saj je topologija generirana s predbazo tista topologija, ki jo dobimo z dodajanjem pogojev iz definicije topološkega prostora neki družini.

Definicija 4.2

 $\mathcal{B} \subseteq \mathscr{P}(X)$ je baza za topologijo na X, če:

- \mathcal{B} je predbaza (pokritje).
- Za poljubni množici $U, V \in \mathcal{B}$ in poljubno točko $x \in U \cap V$ obstaja takšna množica $W \in \mathcal{B}$, da je $x \in W \subset U \cap V$.

Trditev 4.3

Za poljubno množico X velja:

- Če je \mathcal{B} baza za topologijo na X, potem je $\mathcal{T} = \{ \cup \mathcal{U} | \mathcal{U} \subset \mathcal{B} \}$ topologija na X, ki jo imenujemo topologija generirana z \mathcal{B} . Ta je najmajša med vsemi topologijami na X v katerih so vsi elementi baze \mathcal{B} odprti. $U \in \mathcal{B}$ je odprta v tej topologiji, natantko tedaj, ko za vsak $x \in U$ obstaja množica $V \in \mathcal{B}$, da je $x \in V \subset U$.
- Če je \mathcal{P} predbaza za topologijo na X, potem je

$$\mathcal{B} = \{ \cap \mathcal{U} | \mathcal{U} \subset \mathcal{P}, \mathcal{U} \text{ neprazna in končna} \},$$

baza za topologijo na X, ki jo imenujemo baza generirana s predbazo \mathcal{P} . Topologija generirana z bazo \mathcal{B} je najmanjša med vsemi topologijami na X vsebujoč elemente \mathcal{P} .

Primer 4.4

- Na realni premici odprti intervali tvorijo bazo.
- V vsakem metričnem prostoru odprte krogle sestavljajo bazo za topologijo, ki jo inducira metrika.

Trditev 4.5

Naj bo $f: X \to Y$ prelikava med topološkima prostoroma ter \mathcal{B} baza prostora X in \mathcal{P} podbaza Y.

- Preslikava f je zvezna natanko tedaj, ko je $f^{-1}(V)$ odprta v X za vsako množico V iz \mathcal{P} .
- Preslikava f je odprta natanko tedaj, ko je f(U) odprta v Y za vsako množico U iz \mathcal{B} .

Zanima nas kardinalnost baze, ki generira topologijo v okolici neke točke, ter kardinalnost baze, ki generira celotno topologijo.

Definicija 4.6

Naj bo (X, \mathcal{T}) topološki prostor.

- 1. aksiom števnosti: \mathcal{T} ima števne lokalne baze: $\forall x \in X$ obstaja družina okolic U_1, U_2, \ldots z lastnostjo, da za vsako okolico U, katere element je x, obstaja $U_n \subseteq U$. Rečemo, da je prostor 1-števen.
- 2. aksiom števnsoti: \mathcal{T} ima števno bazo. Rečemo, da je prostor 2-števen.

Ker lahko namesto U_2 vzamemo $U_1 \cap U_2$, namesto U_3 vzamemo $U_1 \cap U_2 \cap U_3$ itd. dobimo »padajoče« koncentrične množice, ki tvorijo lokalno bazo.

Primer 4.7

- (X, \mathcal{T}) ima končno bazo natanko tedaj, ko je \mathcal{T} končna.
- Metrični prostori so 1-števni: $\{K(x,\frac{1}{n})\}_{n\in\mathbb{N}}$.
- Neštevna množica z diskretno topologijo je 1-števna, ni pa 2-števna.
- Očitno: 2-števnost \implies 1-števnost.

V topoloških prostorih, ki so 1-števni lastnosti karakteriziramo z zaporedji.

Trditev 4.8

Naj bo prostor (X, \mathcal{T}) 1-števen.

- Za vsak $A \subseteq X$ je $\overline{A} = \mathcal{L}(A) = \{x | x \text{ je limita zaporedja v } A.\}$
- $f:(X,\mathcal{T}_X)\to (Y,\mathcal{T}_Y)$ je zvezna $\iff f(\mathcal{L}(A))\subseteq \mathcal{L}(f(A)).$

Dokaz. Očitno je $A \subseteq \overline{A} = \mathcal{L}(A)$. Naj bo $x \in \overline{A}$ ter $\{U_i\}$ števna lokalna baza.

Primer 4.9

 $(\mathbb{R}, \mathcal{T}_{\text{evkl}})$ je 2-števna. S spodnjo idejo gostosti ustvarimo števno bazo.

Če najdemo števno množico, ki je gosto razporejena po topološkem prostoru, ter napravimo unijo števnih lokalnih baz, bomo morda dobili števno bazo?

Definicija 4.10

 (X, \mathcal{T}) je separabilen, če v X obstaja števna gosta podmnožica. Podmnožica je gosta, če je zaprtje množice cel prostor.

Primer je \mathbb{Q} v \mathbb{R} , ter \mathbb{Q}^n v \mathbb{R}^n . Žal separabilnost nima povezave z ločevanjem točk...

Primer 4.11

Neštevna množica z diskretno topologijo ni separabilna. Dodamo neko novo točko u, ter pravimo, da so v novi topologiji odprte množice, ki vsebujejo u ali so prazne. u je očitno gosta v novi topologiji. Topologija, ki jo inducira je diskretna, zato ni separabilna.

Diskretna topologija na neštevni množici seveda ni separabilna.

Izrek 4.12

- 2-števnost \implies 1-števnost.
- 2-števnost \Longrightarrow separabilnost.

Ali separabilnost ter 1-števnost implicirata 2-števnost?. Žal ne. Res pa je, da 2-števnost implicira separabilnost.

Trditev 4.13

Metričen prostor je 2-števen natanko tedaj, ko je separabilen.

Oris dokaza. Naj bo A števna gosta podmnožica. Trdimo, da je $\{K(a,r)|a\in A, r\in \mathbb{Q}\}$ baza topologije. Naj bo K(x,r) poljubna krogla. Za vsak $x'\in K(x,r)$ izberemo $a\in A$, za katerega je $d(x',a)<\frac{r-d(x,x')}{3}$. Krogla z radijem $q\in \mathbb{Q}$, za katero velja

$$\frac{r - d(x, x')}{3} < q < \frac{2}{3}(r - d(x, x'))$$

vsebuje x' ter je znotraj K(x,r). Sledi, da unija krogel K(a,q) števna baza.

Primer 4.14

Weierstraßov izrek pravi, da lahko vsako zvezno funkcijo iz $\mathcal{C}[0,1]$ enakomerno aproksimirano s polinomi. Vsak polinom pa lahko enakomerno aproksimiramo z polinomom iz $\mathbb{Q}[X]$. Ker je $\mathcal{C}[0,1]$ separabilen (saj vsebuje števno gosto podmnožico $\mathbb{Q}[X]$) ter metričen (za sup metriko), sledi da je 2-števen.

4.1 Produktna topologija

Če sta $f: X' \to X$ ter $g: Y' \to Y$ funkciji, potem označimo z $f \times g = (f \circ \operatorname{pr}_1, g \circ \operatorname{pr}_2): X' \times Y' \to X \times Y$, ki deluje na elementih $X \times Y$ na pričakovan način. Če je $A \subset X$ in $B \subset Y$, potem podmnožici $A \times B \subset X \times Y$ pravimo *škatlasta* podmnožica.

Definicija 4.15

Naj sta X in Y topološka prostora. $Produktna \ topologija$ na množici $X \times Y$ je topologija generirana z bazo

$$\{U \times V | U \in \mathcal{P}(X), V \in \mathcal{P}(Y), \text{ kjer sta } V \text{ in } U \text{ odprti } v \text{ ustreznih prostorih.} \}$$

Katerzični produkt množic skupaj z produktno topologijo je produkt topoloških prostorov.

Trditev 4.16

Za poljubna topološka prostora X in Y velja:

- Produktna topologija je najmanjša med vsemi topologijami na množici $X \times Y$, za katere sta projekciji pr₁ in pr₂ zvezni.
- Projekciji pr₁ in pr₂ sta odprti. Neprazna škatlasta podmnožica $A \times B$ je odprta v $X \times Y$, natanko tedaj, ko sta odprti A in B v X in Y.
- Če je \mathcal{P}_1 podbaza X in \mathcal{P}_2 podbaza Y, potem je

$$\mathcal{P} = \{U \times Y | U \in \mathcal{P}_1\} \cup \{X \times V | V \in \mathcal{P}_2\}$$

podbaza prostora $X \times Y$.

• Če je \mathcal{B}_1 baza X ter \mathcal{B}_2 baza Y, potem je

$$\mathcal{B} = \{U \times V | U \in \mathcal{B}_1, V \in \mathcal{B}_2\}$$

baza prostora $X \times Y$.

Trditev 4.17

Naj bosta $f:Z\to X$ in $G:Z\to Y$ preslikavi med topološkimi prostori. Potem je preslikava $(f,g):Z\to X\times Y$ zvezna natanko tedaj, ko sta zvezni f in g.

Oris dokaza. Iz desne proti levi očitno, saj je $f = \operatorname{pr}_1 \circ (f, g)$ ter $g = \operatorname{pr}_2 \circ (f, g)$. V drugo smer preverimo na škatlastih odprtih množicah: $(f, g)^{-1}(U \times V) = f^{-1}(U) \cap g^{-1}(V)$. \square

5 Topološki podprostori

Definicija 5.1: Topološki podprostori

Naj bo (X, \mathcal{T}) topološki prostor ter $A \subseteq X$. Topologija na A je $\mathcal{T}_A = \{A \cap U | U \in \mathcal{T}\}$, pravimo ji *inducirana* topologija na A. (A, \mathcal{T}_A) je *podprostor* (X, \mathcal{T}_X) .

Primer 5.2

- Evklidska topologija na $\mathbb{R} \cong \mathbb{R} \times \{0\}$ je inducirana z evklidsko topologijo na \mathbb{R}^2 .
- Če je d metrika na X ter $A \subset X$, potem velja, da je topologija inducirana z inducirano metriko na A enaka topologiji, ki jo inducira začetna topologija na X.
- Če je $B \subseteq A \subseteq X$, potem je $\mathcal{T}_{B} = (\mathcal{T}_{A})_{B}$

Trditev 5.3

Zaprte množice v \mathcal{T}_A so preseki A z zaprtimi podmnožicami v X.

Oris dokaza. Naj bo F zaprta v $(X.\mathcal{T}_X)$. Sledi, da je F = X - U, kjer je $U \in (\mathcal{T}_X)$. $F \cap A = A - U \cup A$, kjer je $U \cup A \in \mathcal{T}_A$. Naj bo B zaprta v (A, \mathcal{T}_A) . $B = A - U \cap A$, kjer je $U \in \mathcal{T}_X$. Sledi, da je $B = A \cap (X - i, U)$

V splošnem ne velja, da je odprta/zaprta množica v podprostoru odprta/zaprta v prostoru.

Trditev 5.4

- B je baza za $\mathcal{T} \implies B_A = \{A \cap U | U \in B\}$ je baza za \mathcal{T}_A .
- Če je (X, \mathcal{T}_X) 1-števen/2-števen $\implies (A, \mathcal{T}_A)$ je 1-števen/2-števen.

Pravimo, da je topološka lastnost dedna, če iz tega, da ima (X, \mathcal{T}_X) dano lastnost, sledi, da lastnost imajo tudi vsi podprostori.

Primer 5.5

- 1-števnost in 2-števnost sta dedni topološki lastnosti.
- Diskretnost in trivialnost sta dedni lastnosti.
- Metrizabilnost je dedna lastnost.
- Separabilnost ni dedna lastnost.
- Odprt podprostor separabilnega prostora je separabilen. (podprostor (A, \mathcal{T}_A) je odprt, če je $A \in \mathcal{T}_X$)

Naj bo X neštevna in diskretna, sledi, da ni separabilna. $X' = X \cup \{a\}$, kjer a ni v X, edina okolica a naj bo cel X'. Sledi, da je $\{a\}$ števna gosta podmnožica, sledi, da je X' separabilen, X pa je podprostor, ki ni separabilen.

Trditev 5.6

 $B \subseteq A \subseteq X$. Velja:

- $\operatorname{Cl}_A(B) = \operatorname{Cl}_X(B) \cap A$.
- $\operatorname{Int}_X(B) \cap A \subseteq \operatorname{Int}_A(B)$.
- $\operatorname{Fr}_A(B) \subseteq \operatorname{Fr}_X(B) \cap A$.

Dokaz.

$$\operatorname{Cl}_A(B) = \bigcap \{Z \text{ zaprta v } A | B \subseteq Z\} = \bigcup \{A \cap Z' | Z' \text{ zaprta v } X, B \subseteq Z'\} = A \cap \{Z' | Z' \text{ zaprta v } X, B \subseteq Z'\}$$

Trditev 5.7

Denimo, da je A odprt v X in je B odprt v A. Sledi, da je B odprt v X, saj je $B = A \cap X$. Analogen razmislek velja za zaprte množice.

Primer 5.8

Naj bo A odprta v X ter opazujmo inducirano topologijo na A, $\mathcal{T}_A = \{U \cap A | U \in \mathcal{T}\}$. Enostavno preverimo, da je inkluzija zvezna. Hkrati je \mathcal{T}_A najmanjša topologija, za katero je inkluzija $i: A \to X$ zvezna. Če je f zvezna preslikava na X je tudi $f \circ i$ zvezna, zato je zvezna tudi $f \mid_A$. Sledi: **Zožitev zvezne funkcije je zvezna**.

Morda bi lahko definirali zvezne funkcije na odprtih množicah, ki pokrivajo X in bi se zveznost prenesla na njihovo unijo?

Trditev 5.9

Naj bo $\{X_{\lambda}\}$ odprto pokritje X. Velja: $A \subseteq X$, $A \cap X_{\lambda}$ je odprta v X_{λ} za vse λ natanko tedaj, ko je A odprta v X.

Definicija 5.10

Pokritje $\{X_{\lambda}\}$ je lokalno končno, če $\forall x \in X$ obstaja odprta množica U vsebujoč x, da je $X_{\lambda} \cap U \neq \emptyset$ za le končno mnogo λ .

Trditev 5.11

 $\{X_{\lambda}\}$ zaprto in lokalno končno pokritje X. $A \subseteq X$,

$$A \cap X_{\lambda}$$
 zaprta v $X_{\lambda} \iff A$ zaprta v X .

Seveda je še nek pogoj kot na primer lokalna končnost potreben, saj bi lahko X pokrili z točkami, ki so npr. v metričnem prostoru zaprte. Sledilo bi, da so vse množice zaprte.

Izrek 5.12

Naj bo $\{X_{\lambda}\}$ pokritje X, ki je bodisi odprto ali lokalno končno zaprto. Potem je

$$f: X \to Y$$
 zvezna $\iff f\mid_{X_{\lambda}}$ zvezna za vsak λ .

Alternativno: Če so $\{f_{\lambda}:X_{\lambda}\to Y\}$ zvezne in velja

$$f_{\lambda} \mid_{X_{\lambda} \cap X_{\lambda'}} = f_{\lambda'} \mid_{X_{\lambda} \cap X_{\lambda'}} \forall \lambda, \lambda',$$

potem obstaja natanko ena zvezna funkcija $f:X\to Y,$ da je $f\mid_{X\lambda}=f_{\lambda}$ $\forall\lambda.$

Dokaz. Pogoj pri alternativni formulaciji zagotavlja, da je $f: X \to Y$ enolično definirana. Zveznost f: Če je $\{X_{\lambda}\}$ odprto pokritje in je U odp. $\subseteq Y$ sledi, $f^{-1}(U) = \bigcup_{\lambda} f^{-1}(U) \cap X_{\lambda} = \bigcup_{\lambda} (f|_{X_{\lambda}})^{-1}(U)$. \square

6 Topološke lastnosti

Naloga 6.1

Denimo, da $\mathcal T$ ostro loči vsaki dve disjunktni množici. Potem je $\mathcal T$ diskretna topologija.

Oris dokaza. A in A^c sta obe odprti za vsak $A \in \mathcal{P}(X)$.

A Opomnik teorije množic

Trditev A.1

Naj so R, S in T množice. Velja:

$$R \cap (S \cup T) = (R \cap S) \cup (R \cap T)$$
$$R \cup (S \cap T) = (R \cup S) \cap (R \cup T)$$

Naj boIindeksna množica ter $\{A_i\}_{i\in I}$ družina podmnožic
 množice S ter $B\subseteq S.$ Velja:

$$\bigcap_{i \in I} (A_i \cup B) = \left(\bigcap_{i \in I} A_i\right) \cup B$$
$$\bigcup_{i \in I} (A_i \cap B) = \left(\bigcup_{i \in I} A_i\right) \cap B$$

Trditev A.2

Naj bo $f:A\to B$. Velja:

$$f(A \cup B) = f(A) \cup f(B)$$
$$f(A \cap B) \subseteq f(A) \cap f(B)$$
$$f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$$
$$f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$$

Praslike se obnašajo lepo za unije in preseke, slike pa le za unije.

B Tabela nekaterih topoloških lastnosti

Tabela 1: Tabela topoloških lastnosti in njihovih lastnosti

Lastnost	Dednost	Multiplikativnost
Metrizabilnost	Da	Da
1-števnost	Da	Da
2-števnost	Da	Da
Separabilnost	Na odprte	Da
Hausdorffova	Da	Da
Fréchetova	Da	Da
Regularnost	Da	Da
Normalnost	Na zaprte	Produkt je regularen
Povezanost	Ne	Da
Povezanost s potmi	Ne	Da
Kompaktnost	Na zaprte	Da

Literatura

[1] Petar Pavešić. Splošna topologija. 2017.