RDFS Entailment

G. Falquet

Semantic web technologies

• RDF is intended for use as a base notation for a variety of extended notations such as RDFS, OWL, RIF, ... whose expressions can be encoded as RDF graphs which use a particular vocabulary with a specially defined meaning. [1]

```
# OWL

:VegPizza rdf:type owl:Class;

owl:equivalentClass [ rdf:type

owl:Restriction;

:VegPizza rdfs:subClassOf :Pizza

owl:onProperty :hasTopping;

owl:allValuesFrom :VegTopping
```

1. https://www.w3.org/TR/rdf11-mt/#entailment-rules-informative

Semantics

- For each notation there is a notion of interpretation
 - associates IRIs and blank nodes to domain objects
 - associates literals to values in a datatype domain
 - associates the interpretation of properties to binary relations over domain objects (extensions)
- An interpretation a graph is true if it satisfies
 - some semantic conditions
 - e.g. the extension of the interpretation of rdfs:subClassOf is a transitive relation
 - some axiomatic triples

RDF Interpretations

A simple interpretation I is a structure consisting of:

an interpretation domain IR (set of resources)

a set of properties IP

an extension mapping IEXT

associates a binary relation over IR to each p in IP

an IRI interpretation mapping IS from IRIs to IR union IP

a litterals mapping IL from typed literals to IR

RDF Interpretations

6

Interpretation (denotation) I of a ground graph (no blank nodes)

- if E is a typed literal then I(E) = IL(E)
 - non typed literals are interpreted as the string itself
- if E is an IRI then I(E) = IS(E)
- the interpretation of a **triple** s p o is a value in {true, false}

```
I(s p o) = true if
```

- I(p) is in IP
- (I(s), I(o)) is in IEXT(I(p)) otherwise I(s p o) =**false**.
- if E is a ground RDF graph then I(E) = false if I(E') = false for some triple E' in E, otherwise I(E) = true.

Graphs with blank nodes

Semantic condition for a graph E with blank nodes

- I(E) = true if
 - $\boldsymbol{\mathsf{-}}$ there is a mapping A from the blank nodes of E to IR
 - I augmented with A is a true interpretation of E
- otherwise I(E)= false.

A true interpretation

on représente les noeuds blancs

Another choice for A

en RDF on a de la peine à dire que bob a 2 amis, meme avc des URI's, il peuvent pc

A graph may have several true interpretation

General Notion of Entailment

A relation X between RDF graphs

Represents the notion of logical consequence

X-Entailment for a graph

y a une conséquence logique si E vrai implique F v

A graph E X-entails a graph F

iff

Each true X-interpretation of E is also a true X-interpretation of F.

 $(X \text{ is a notation such as RDF, RDFS, OWL, } \dots)$

= The usual notion of logical consequence

RDFS Interpretations - definitions

```
RDFS = RDF + class + domaine/range + subclass + subproperty
```

- ICEXT(c) := $\{ x : (x,c) \text{ is in IEXT}(I(rdf:type)) \}$ extension de class -> regarder slide d'apres pour voir la
- IC := ICEXT(I(rdfs:Class))
- LV := ICEXT(I(rdfs:Literal))
- ICEXT(I(rdfs:Resource)) = IR
- ICEXT(I(rdf:langString)) := {I(E) : E a language-tagged string }

For a set D of datatype IRIs

- for every IRI t in D $\{rdf:langString\}$, ICEXT(I(t)) is the value space of I(t)
 - the range of the lexical-to-value mapping of I(t)
- for every IRI t in D, I(t) is in ICEXT(I(rdfs:Datatype))

A Theoretical Point

- The interpretation of a class is indirect
 - it is not a subset of IP
 - it is an element of IP that has an extension
- Reason: to be consistent with set theory
 - c rdf:type rdfs:Class. c rdf:type c is legal RDF
 - a direct interpretation would lead to
 - $I(c) \in I(c) \times forbidden in set theory$ en théorique des ensembles, l'ensemble X ne peut

RDFS - Entailment

Université de Genève - G. Falquet

RDFS Interpretations – semantic conditions

-> interpretation de c2 doit contenir I interpretation de c1 c1 subclass c2

- If $(c_1,c_2) \in IEXT(I(rdfs:subClassOf))$ then c_1 and $c_2 \in IC$ and $ICEXT(c_1) \subseteq ICEXT(c_2)$
- IEXT(I(rdfs:subClassOf)) is transitive and reflexive on IC si c1 est subclass de c2 et c2 subclass c1

- If (p, q) is in IEXT(I(rdfs:subPropertyOf)) then p and $q \in IP$ and IEXT(p) \subseteq IEXT(q)
- IEXT(I(rdfs:subPropertyOf)) is transitive and reflexive on IC

meme chose que avant, mais pour les

RDFS Interpretations – semantic conditions

• If $(p, c) \in IEXT(I(rdfs:domain))$ and $(u,v) \in IEXT(p)$ then u is in ICEXT(c)

• If $(p, c) \in IEXT(I(rdfs:range))$ and $(u,v) \in IEXT(p)$ then $v \in ICEXT(c)$

RDFS interpretation – axiomatic triples

- An RDFS interpretation must satisfy a set of axiomatic triples
 - Each axiomatic triple must have a true interpretation

Some axiomatic triples

```
rdf:type rdfs:domain rdfs:Resource .
rdfs:domain rdfs:domain rdf:Property .
rdfs:range rdfs:domain rdf:Property .
rdfs:subPropertyOf rdfs:domain rdf:Property .
rdfs:subClassOf rdfs:domain rdfs:Class .
rdf:first rdfs:domain rdf:List .
rdf:rest rdfs:domain rdf:List .
rdfs:seeAlso rdfs:domain rdfs:Resource .
rdfs:isDefinedBy rdfs:domain rdfs:Resource .
rdfs:comment rdfs:domain rdfs:Resource .
rdfs:label rdfs:domain rdfs:Resource .
rdf:value rdfs:domain rdfs:Resource .
rdf:type rdfs:range rdfs:Class .
```

RDFS-Entailments

Any true interpretation of A is also an true interpretation of B and a true interpretation of C

Exercises

cours @ 3h00 for example

1. find 3 different true RDF interpretations G with IR = $\{0, 1, 2, 3, 4\}$ G = :a :p :b . :b :q :c

- 2. find a true RDF interpretation of G that is a false RDFS interpretation of G $G = a \cdot a \cdot b \cdot c$ interpretation of G. : w rdf:type : a .
- 3. prove that the graph

```
G = @prefix a : <http://a.a>.

a rdfs:subClassOf :b . :w rdf:type :a .:w :p :z . :p rdfs:range :a .

RDFS-entails

G' = G U :z rdf:type a . :w rdf:type :b . :z rdf:type b .
```

4. prove that G does not entail $G'' = G \cup a$ rdf:type :b

Computing RDFS-Entailment

RDFS entailment can be computed by

- 1. adding the axiomatic triples to the graph
- 2. applying inference patterns

Inference patterns (rules)

	If S contains:	then S RDFS entails recognizing D:
rdfs1	any IRI t in D	t rdf:type rdfs:Datatype .
rdfs2	p rdfs:domain x . y p z .	y rdf:type x .
rdfs3	p rdfs:range x . y p z .	z rdf:type x .
rdfs4a	хру.	x rdf:type rdfs:Resource .
rdfs4b	хру.	y rdf:type rdfs:Resource .
rdfs5	x rdfs:subPropertyOf y . y rdfs:subPropertyOf z .	x rdfs:subPropertyOf z . (transitivity)
rdfs6	x rdf:type rdf:Property .	x rdfs:subPropertyOf x . (reflexivity)

(cont)

	If S contains:	then S RDFS entails recognizing D:
rdfs6	x rdf:type rdf:Property .	x rdfs:subPropertyOf x . (reflexivity)
rdfs7	p rdfs:subPropertyOf q . x p y .	xqy.
rdfs8	x rdf:type rdfs:Class .	x rdfs:subClassOf rdfs:Resource .
rdfs9	x rdfs:subClassOf y . z rdf:type x .	z rdf:type y .
rdfs10	x rdf:type rdfs:Class .	x rdfs:subClassOf x . (reflexivity)
rdfs11	x rdfs:subClassOf y . y rdfs:subClassOf z .	x rdfs:subClassOf z . (transitivity)
rdfs12	x rdf:type rdfs:ContainerMembershipProperty .	x rdfs:subPropertyOf rdfs:member .
rdfs13	x rdf:type rdfs:Datatype .	x rdfs:subClassOf rdfs:Literal .

Example

- 1. :q rdfs:range :d .
- 2. :p rdfs:subPropertyOf :q .
- 3. :d rdfs:subClassOf e .
- 4. :a :p :b

RDFS Entails

- 5. :a :q :b by 4. and 2. and rdfs7
- 6. :b rdf:type :d by 5. and 1. and rdfs3
- 7. :b rdf:type :e by 6. and 3. and rdfs9

The rules are consistent

If G' is inferred by applying the rules to G

then G' is RDFS-entailed by G

The rules are not complete

one ne peut pas tout déduire

```
:p rdfs:subPropertyOf _:b .
  _:b rdfs:domain :c .
:d :p :e .
entails
:d rdf:type :c .
```

But cannot be obtained by applying the rules

rdfs7 would produces :d :b :e

which is not legal in RDF (blanks not allowed as predicates)

The rules become complete on generalized RDF graphs with

- blanks allowed as predicates
- literals allowed as subjects

la on peut tout déduire

deduire*

Semantic web tools that compute entailments

- Triple stores
 - may automatically generate the entailed triples when new triples are added
 - and retract them when triples are removed
 - the entailment regime is usually selected at repository creation
- Reasoners
 - tools that perform entailment (or other reasoning tasks) on existing graphs
 - do not automatically add the entailed triples to the graph
- SPARQL query engines
 - either make use of the entailed triples during the querying process
 - or call a reasoner before (or while) executing queries

Entailment and Linked Data

- Other graphs may contain RDF triples that could be used in entailments
- There is not "import" statement in RDF
- There is no automatic import of triples/graphs related to the used vocabularies
- ⇒ Triples to use in reasoning must be copied into the working graph

```
My Graph

Operfix time: http://www.w3.org/2006/time#.
...
:worldCup19 time:hasBeginning :t1
...

Time Graph

Time Graph
```

Summary

- The semantics of RDF is defined by graph interpretations
- Interpretations are used to define the notion of entailment (logical consequence)
- RDFS interpretations are RDF interpretations with additional constraints
- RDFS entailment can be computed by applying inferrence rules
- SW tools perform some form of entailment
 - but they do not import statements about the used vocabulary