H1D03 MIPI IP Packet Interface 仿真模型使用简介

1. 仿真模型功能简介

H1D03 硬件 MIPI IP 可以支持 DPI, Packet Interface 接口,另外 IP 内部寄存器是通过 APB 接口进行配置的。本仿真模型只提供了 Packet Interface 接口的仿真,不支持 DPI 接口以为 APB 接口的仿真。

仿真模型使用方法简介
 1).

打开 modesim 软件,通过命令模式切换至工程目录 h6_mipi_sim 下

```
# // LICENSORS AND IS SUBJECT TO LICENSE TERMS.

# //
ModelSim> cd c:/users/bauer/desktop/h6_mipi_sim/
# reading D:\modeltecn_IU.Ia\win32/../modelsim.ini
ModelSim>
```

2). 运行 sim.do 文件,如图所示

注:若使用第三软件,其目录下提供了sim.do及vlog_file_list.f文件可使用。

3. 仿真模型目录结构简介

其目录文件如下图所示

Src 目录文件下的文件说明:

- ▶ h6 sim lib: 其目录下的文件为 Mipi packet interface 的仿真库文件
 - mipi_host.v: Mipi packet interface 中产生 mipi rx 的仿真时序,一般需要设置其分辨率及相应 PORCH 值,如图所示【注:只需要更改 mipi_host.v 文件即可,其它文件不做更改】
 - mipi slave.v: Mipi packet interface 中产生 mipi tx 的仿真时序
 - h6_sim: 芯片所需仿真文件
 - pattern_gen.v: rgb 时序产生文件(如: HS, VS, DE)

```
//{module {mipi_host}}
module mipi_host (
    input reset_n,
    input clk,
   output
                   RxActiveHS,
   output reg [23:0] periph_rx_cmd,
   );
parameter HFP = 16'd60;
parameter HSP = 16'd6;
parameter HBP = 16'd100;
parameter H_VAL = 16'd1080;
parameter H_TOTAL = HSP + HBP + H_VAL + HFP;
parameter VFP = 16'd10;
parameter VSP = 16'd6;
parameter VBP = 16'd20;
parameter V_VAL = 16'd1920;
parameter V_TOTAL = VSP + VBP + V_VAL + VFP;
```

- ➤ TestBench: TestBench 文件 , 在 h6_mipi_sim_tb 文件中, 例化了三个模块
 - mipi_host: 产生 mipi rx 的仿真时序
 - mipi slave : 产生 mipi tx 的仿真时序
 - rx_packet_tx_packet_video_mode: 需要仿真的部分
 - ▶ video_packege: Mipi packet interface 所需的住址文件,其 TOP 文件为 rx_packet_tx_packet_video_mode.v , 如图所示:

注:本仿真模型产生了 10 帧的仿真数据,包括长包及短包的数据,如下图所示,其分别为 Mipi packet interface RX 及 TX 的时序图,具体细节部分,还请参考 HME-H1D03_mipi_dsi_transfer_User_Guide_EN_v1.pdf 文件。

Mipi packet interface RX 时序图

Mipi packet interfaceTX 时序图

关于 MIPI Packet Interface 详细的时序图可以参见: HME-H1D03_mipi_dsi_transfer_User_Guide_EN_v1.pdf