Structural Estimation in Economics and Finance

Mehran Ebrahimian

Fall 2023

Plan

- Introduction
 - What is structural estimation?
 - terminology
 - model, data, identification
 - structural vs. reduced-form estimation
 - Why do it?
 - what structural estimation buys you?
 - how to motivate a structural estimation paper?
 - advantages and disadvantages vs. reduced-form approach
- Identification in the structural approach
 - Basic concepts, How it works in practice?
 - Examples: Identification in papers doing structural estimation
- "Light-speed" structural estimation
 - The approximate moment technique
 - Applications, Robustness checks in structural research
- Papers doing structural estimation (by you!)

1. Introduction

1a. What is structural estimation?

The big picture

Empirical research:

- Reduced-form
 - descriptive
 - clever identification
 - IV
 - Diff-in-Diff
 - Regression discontinuity
 - ...
- Structural estimation

Some terminology

- It makes no sense to say "structural model"
 - every model imposes structure on the real world
- Usually, by structural model people mean economic model
- It makes sense to say structural estimation versus reduced-form estimation
 - reduced-form estimation: uses statistical model
 - structural estimation: uses economic model
- It is about what you estimate, not how you estimate!
 wrong to say "I structurally estimate a model of..."
 correct to say "I estimate structural parameters of..."

Statistical and Economic models

 A statistical model describes the relationship between two or more random variable. Example:

$$y = xb + \epsilon$$

- An economic model makes assumptions about
 - Preferences (demand side?)
 - Production technology (supply side?)
 - Constraints
 - Institutional features and policy framework
 - Some notion of equilibrium
 - * note: a relationship between observable variables x and y is implied, regardless

What is structural estimation?

- Estimate an economic model's parameters, including
 - preference parameters (e.g. risk aversion, time discount factor)
 - technology parameters (e.g. marginal costs, production function curvature)
 - other 'deep' institutional features (e.g. agents' bargaining, financing frictions)
 - → learn/measure relevant economic forces/"economic" decomposition
- Use the model to run counterfactual experiments
 - thought experiments, example: what if there were no financing frictions?
 - deepens our understanding of relevant forces in real world
 - hints to find the optimal policy
 - what if a fundamental parameter changes? example: preferences towards minorities...
 - policy experiments
 - the ones that has been experienced in the past
 - a famous policy proposal, or author's proposed policy

Examples

- Measurement:
 - How large is the consumer surplus in the bank deposit markets?
 - What share of conditional college education gap is explained by borrowing constraints?
 - How changes in hospital ownership after private equity (PE) buyouts impact hospital-insurer price negotiations?
- Understanding economic forces:
 - Why wealth inequality is rising?
 - Why interbank lending arrangements arise?
 - What explain low stock market participation among young households?
- Policy/Counterfactual:
 - What happens to the wealth inequality by imposing capital income tax?
 - Do financially constrained students switch to high-quality colleges by making them tuition-free?
 - What is the patient-surplus gains/losses in response to restricting PE ownership/hospital mergers?

A classic example

• Demand function (from utility maximization):

$$q = -\alpha p + \omega D$$

Supply function (from production technology):

$$q = \beta p + \eta S$$

- ↑ "Structural" representation
- Solve the two equations for two unknown
- ↓ "Reduced-form" representation

$$q = \frac{\beta \omega}{\alpha + \beta} D + \frac{\alpha \eta}{\alpha + \beta} S$$

$$p = \frac{\omega}{\alpha + \beta} D - \frac{\eta}{\alpha + \beta} S$$

A classic example, cont.

- Reduced-form estimation: describes the impact of S, D on q, p
- Structural estimation: describes the underlying economics
 - supply/demand elasticity
 - measure consumer/producer surplus
 - find the impact of taxation
- Note: there is always a link between the reduced-form and the structural representation (coefficients map to each other!)

Structural vs. Reduced-form (Questions)

Reduced form:

- What is the (causal) effect of X on Y?
 - ...what would happen if certain things changes but not others

Structural estimation:

- Why does X cause Y?
- What are relevant economic forces—deep parameter magnitudes?
 "Parameters" = economic primitives
 - "Parameters" \neq regression slopes/correlations
- If an economic theory is validated with data
- How would the world look like if a (deep) parameter changes?
- What would happen if you change policy or institutional setting?
 - ...everything possibly changes in response to a policy!

Structural vs. Reduced-form (Tools)

Reduced form:

Estimators:

- OLS
- IV
- Diff-in-Diff
- RD

Software:

Stata

Structural estimation:

Estimators:

- GMM
- SMM
- MLE
- SMLE
- Indirect inference

Software:

• C++, Matlab, Julia, Python

Solving the model:

- Value/policy function iteration
- ODE/PDE (continuous time models)
- Simulation

Structural vs. Reduced-form (Terminology)

- All economic models imply a "reduced-form" representation:
 - a statistical (linear) model describing the relation between observables generated by the model
- Regression slopes though are general functions of the model's deep parameters, and policy and institutional settings
 - Lucas critique
 - Limited scope of results
- The true relationship between variables (endogenous or exogenous) may be nonlinear as well
 - the noise term captures approximation error in the linear model
- A key note: we do not do structural estimation instead of reduced-form, to not be worried about identification!
 - we need a legit source of variation/piece of information anyway
 - identification is the core of a structural estimation project

Calibration vs. Structural Estimation

Both:

- have an economic model
- can ask how model fits data, given the various ingredients
- can use to run counterfactual

But,

Calibration:

- Take parameter values from other papers
- Usually have more parameters than moments of interest
- Cannot perform statistical tests
- Mainly a theoretical exercise

Structural estimation:

- Infer' parameter values from the data→ identification
- Get standard errors for parameters/objects of interest
- An empirical exercise

Structural work needs an **economic** model

Requirements for the economic model:

- An <u>economic</u> model, consisting deep parameters, not a 'statistical' model
- Should include relevant and competing economic forces
 - the model should be able to reject your prior!
- Do <u>not</u> write a big complicated model
 - minimalistic, as long as it meets the previous point
- Should produce realistic magnitudes and distributions
 - both in levels and elasticities
 - both in terms of observables and unobservables in your data

Further notes on economic model

- Make sure you understand all ingredients and mechanics of the model
 - do a lot of comparative statistics
 - plot choice/state vars against each other
 - generate a lot of graphs and tables of summary statistics and regression, before even introducing data
- Being simple and small is the <u>objective</u>, having competing forces is the constraint
- Do not name 'residuals': sometimes a block of the model is about what the other key block is not about
 - be clear with the audience; it's okay to have residuals, but your interpretation needs to be correct

Estimation

- Inferring model parameters from data...
- Econometricians define an objective function over parameters & data
- The objective function depends on the estimator you use:
 - GMM: the distance between model-generated moments and data moments...
 - MLE: the model-implied likelihood that you observe certain outcomes in the data
- Goal: find a parameter that minimizes the objective function
- A parameter is identified if there is a unique minimum
- * Identification is the core of a structural estimation project...
- * full discussion → next lecture!

Estimation (GMM), a short review

- ullet The model implies a moment condition in the form: $\mathbb{E}[g(x,p)]=0$
 - x: data. p: parameters. $g(\cdot)$: implied by model
 - ullet example, Euler eq. in Asset pricing: $\mathbb{E}[eta(c_{t+1}/c_t)^{-\gamma}(r_{t+1}-r_f)]=0$
 - example (minimum distance/usual smm): $g(\cdot) = m(p) x \Rightarrow m(p) \mathbb{E}[x] = 0$
 - note: $g(\cdot)$ can be a vector of moments: multiple moment conditions
- The corresponding sample moment restriction: $1/N \sum_{i=1}^{N} g(x_i, p) = 0$
- Find \hat{p} that gets $1/N \sum_{i=1}^{N} g(x_i, p)$ as close as possible to zero
- Do so by minimizing:

$$\hat{p} = \arg\min_{p} \left[1/N \sum_{i=1}^{N} g(x_i, p) \right]^{T} W \left[1/N \sum_{i=1}^{N} g(x_i, p) \right]$$

• W is a positive definite symmetric weight matrix

Summary — Project stages

- Develop the theory model
- Solve/simulate the model
- Understand how the model works
- Pick a bunch of moments that you think identify parameters
- Collect and clean data
- 6 Estimation
- Evaluate the fit: show targeted, and untargeted moments
- Run counterfactual/policy experiment

(And writing/making slides throughout)

Source: Michael Keane, "Practical issues in structural estimation," https://www.youtube.com/watch?v=OhazaPBAYWE

_ _

1. Introduction

1b. Why doing structural estimation?

What structural estimation does **not** buy you?

- You always need to convince audience, why you do structural estimation
- Remember: It's a lot of pain to do it; so why you do it?
- It imposes large costs on the reader as well
- ⇒ Any structural paper must put great effort into convincing reader that it's worth going structural
 - A wrong but common :(justification:
 - "...to not deal with identification challenges"
 - * Structural estimation does not substitute for identification
 - Identification is in the core of estimation anyway...

What structural estimation buys you?

- The correct justification (from the least to the most important one):
- 1. Estimates of interesting economic primitives
- 2. Tests of economic theories (quantitative relevance, not just qualitative or direction of changes)
 - no worriers if model fails: you call it a puzzle:) a whole literature then starts
- 3a. Welfare analysis
- 3b. Interesting counterfactual and policy analysis¹

¹Reduced-form papers can also ask counterfactual questions, by changing a regressor from its actual value to a counterfactual value. But it's usually less convincing, it's hard to believe in/meaningless to say "all else equal." If you change a primitive, everything changes, nothing remains equal. Lucas critique...

What structural estimation buys you?

More **technical** notes:

- If you don't have (plausibly) exogenous variations in data; not a bold event in a Diff-in-Diff context, say
- ⇒ use an economic model to account for the *endogenous* relationship between variables in data
 - ullet If you don't have data on everything \to the issue of omitted variable...
- ⇒ Economic model would infer what's missing, by imposing the economic relationship: "marginal cost=marginal benefit"
 - + you need to know parameters/date governing marginal cost *or* marginal benefit, not both

Advantages/Disadvantages I

Reduced form:

Approach:

 regress variables of interest y on a bunch of determinants X

Data challenges:

Needs sufficient heterogeneity in X

Identifying assumptions:

- Exogenous variation in X
- Got the functional form right

Structural estimation:

Approach:

 Estimate economic parameters governing y wrt X

Data challenges:

 Do not need heterogeneity in X; can infer parameters from mean of X and y

Identifying assumptions:

- Model is true
 - Includes all determinants of y
 - Functional forms are correct
 - Rational agents...
 - ...

Advantages/Disadvantages II

Reduced form:

- "Fewer" assumptions? No...
- people forget that reduced-form approach also relies on a model,
- and specifies a relationship...
- + easier to do
- + easier to understand
- → larger audience

Structural estimation:

- The only feasible option for answering certain important questions
- applicable when it's hard to find good instruments or natural experiments
- + tight link with theory
- transparent interpretation of results with economic stories
- → results generalize better

Complements not substitutes

The structural approach complements reduced-form research by

- overcoming certain data challenges
- imposing a different type of identifying assumption
- less problematic extrapolation
- welfare analysis
- policy analysis

Concluding Remarks

- Do what lets you answer your research question most convincingly and easily
- If structural and reduced-form will both get the job done, go reduced-form!
- Going structural may be right for you if...
 - ... there's not much on your calendar for the next few years :)
- But better signal for the job market!

2. Identification in the structural approach

• •

2a. Basic concepts, How it works in practice

Identification

- Inferring model parameters from data...
- Econometrician defines an objective function over parameters and data
- The objective function depends on the estimator you use:
 - GMM
 - MLE (maximum likelihood)
 - SMM (simulated method of moments)
 - SMLE (simulated maximum likelihood)
 - Indirect Inference
 - Score estimators
 - The two-step methods used by structural IO folks...
- Goal: find a parameter that minimizes the objective function
- A parameter is identified if there is a unique minimum

Moments and Likelihoods

- The moment estimators determine whether model-implied moments match with real-data moments
 - -/+ choice of moments is subjective and arbitrary
- The likelihood estimators use the economic models to construct the likelihoods for observed patterns in data
 - + asymptotically efficient; delivers the least standard errors
 - fully parametric
- In both cases:
 - The simulation estimators (SMM and SMLE) are used with models that don't have closed-form estimating equations (extremely slow)
 - GMM and MLE are used with models that have closed-form estimating equations (fast)
- It really doesn't matter which estimator you choose, as long as the model is *well-identified*...

Identification in SMM

$$parameter \ p \rightarrow \boxed{\textit{Economic Model}} \rightarrow \textit{observable outcomes} \rightarrow \textit{moment } \textit{m}(\textit{p})$$

$$\textit{same variables in data} \rightarrow \textit{moment } \bar{\textit{m}}$$

• Estimator: tune p to get $m(\cdot)$ as close as possible to the data

Identification failure

• What if m(p) is (almost) flat in 'relevant' regions? multiple solutions for p^* , solving $m(p^*) = \bar{m}$...

- \rightarrow The model is not identified!
 - The problem is not necessarily solved by changing the estimator: *MLE* may be flat wrt *p* as well...

Identification diagnostics

- Reduce model ingredients, get more data and target a relevant moment:
- Pick a moment that is sensitive to economic parameter
- Good news: if the model is not identified, standard errors are arbitrary large²

$$Var(p) = (J'\Omega^{-1}J)^{-1}$$

- where J = dm/dp. So $J = 0 \Rightarrow se(p) = \infty$
- Bad news:
 - you may get finite SEs, just because of numerical/simulation errors in calculating J
 - 2 It's all based on local deviations anyway...
- Better to use economic intuition first; then plot m(p) for a wide range, all before getting to data...

²This is the formula for SEs when the weight matrix is efficient (see the next slide). but SE is infinity if J = 0 regardless.

Identification in SMM, general form

- Usually models have multiple parameters to be estimated: trade-off between two econ. forces, e.g.
- Pick a set of moments that are collectively informative about the set of parameters.
- Form $\mathbf{m}(\mathbf{p})$, where both \mathbf{m} and \mathbf{p} are vectors. Tune \mathbf{p} to get $\mathbf{m}(\cdot)$ as close as possible to the vector of data moments $\bar{\mathbf{m}}$ with the metric W

$$\mathbf{p}^* = \arg\min ||\mathbf{m}(\mathbf{p}) - \mathbf{\bar{m}}||_W = \arg\min [(\mathbf{m}(\mathbf{p}) - \mathbf{\bar{m}})^T W(\mathbf{m}(\mathbf{p}) - \mathbf{\bar{m}})]$$

Identification diagnostics, cont.

- A sufficient condition for identification:
 one-to-one mapping; moment i is strictly increasing (or decreasing) in
 parameter i, independent of other parameters
 - matching moment $m_i(\cdot)$ with data counterpart \bar{m}_i identifies p_i
- Usually, there is no one-to-one mapping between parameters and moments; every moment depend on every parameters
- The mapping needs to be onto
- Hard to check in reality, involves an inversion → more on this in the next lecture!
- Do a lot of comparative statistics, think a lot on the choice of moments, rely on economic intuition, read papers in the literature to get identification idea...
- Make sure the model is identified, before getting to data!

"Over-identified" models

• Target more moments than parameters, to ensure identification

The choice of weight matrix W / Standard errors

- How to reflect prediction error regarding various moments
- Irrelevant, if #moments = #parameters (exactly identified-)
- The efficient choice: inverse var-cov matrix of targeted moments
- The Robust choice: diagonal, appropriately scaled
- Standard errors (general representation):

$$Var(p) = (J'WJ)^{-1}(J'W\Omega WJ)(J'WJ)^{-1}$$

2. Identification in the structural approach

2b. Examples

Example 1: "Household Finance"

Catherine, 2022

A simplified version:

The individual maximize

$$\mathbb{E}\sum_{t=t0}^{T}\beta^{t}(\prod_{k=t0}^{t-1}(1-m_{k}))\frac{C_{it}^{1-\gamma}}{1-\gamma}$$

such that

$$W_{it+1} = \{W_{it} + L_{it} - C_{it} - f_{it}\}[\pi_{it}r_{t+1} + (1 - \pi_{it})r_f]$$

- C is consumption and π is risky share in portfolio (choice variables), W is wealth at time t
- m is age-dependent mortality rate, L_{it} is labor income (plus social security/retirement benefit minus taxes), r_t is the risky stock return and r_f is the risk free rate \rightarrow all calibrated from data
- $f_{it} = \Phi L_{it}$ is the participation fee (in the stock market), only if $\pi_{it} > 0$

Example 1: "Household Finance"

Catherine, 2022

- Deep parameters to be estimated:
 - β : patience
 - γ : risk aversion
 - Φ: participation cost
- Identifying moments:
 - **1** Average wealth (normalized by wage): $\mathbb{E}[W/L]$
 - ② Average risky share in portfolio (conditional): $\mathbb{E}[\pi|\pi>0]$
 - **③** Fraction of population who hold stocks: $\mathbb{E}[\pi > 0]$

Example 1: "Household Finance"

Catherine, 2022

Moments are informative about parameters + onto mapping!

Example 2: "Corporate Finance"

Hennessy and Whited, 2007

A simplified version:

The firm maximize

$$V(k,A) = \max_{i} Ak^{\alpha} - i + \frac{1}{1+r} \cdot \mathbb{E}_{A'}[V(k',A')|A]$$

such that

$$k' = (1 - \delta)k + i$$

- V is the market cap
- k is the stock of capital
- i is investment, builds tomorrow's capital k'
- A is realized TFP
- A' is TFP, tomorrow; usually we consider AR(1) spec. $a' = \rho a + \sigma \epsilon$; little a is log A

Example 2: "Corporate Finance"

Hennessy and Whited, 2007

- Deep parameters to be estimated:
 - α : return to scale
 - δ : capital depreciation
 - ρ, σ : persistence and volatility of TFP
 - * we usually calibrate r
- Straightforward to show (analytically!):

$$k' = \left\{\frac{\alpha \mathbf{E}[A'|A]}{r+\delta}\right\}^{1/(1-\alpha)}, y' = A' \left\{\frac{\alpha \mathbf{E}[A'|A]}{r+\delta}\right\}^{\alpha/(1-\alpha)} \Rightarrow y'/k' = \frac{A'(r+\delta)}{\alpha \mathbf{E}[A'|A]}$$
$$\mathbf{E}[k'] = \mathbf{E}[k] \Rightarrow \mathbf{E}[i] = \delta \mathbf{E}[k]$$

- Identifying moments:
 - profitability: mean(y/k)
 - 2 investment ratio: mean(i/k)
 - 3 volatility/autcorr of operating profit Std(y), $Corr(y, y_{-1})$

Example 2: "Corporate Finance"

Hennessy and Whited, 2007

- The original model includes capital adjustment cost C(i, k)...
- ...and equity issuance cost $-\xi D\mathbf{1}\{D<0\}$, for $D=Ak^{\alpha}-i-C$ \triangleright financing frictions!

No analytical solution, but the intuition holds...

- Target benchmark moments, plus...
 - **1** auto-correlation of investment: $Corr(i, i_{-1})$
 - ② mean equity issuance: $mean(-D\mathbf{1}\{D<0\}/k)$

Example 3: "Discrete-choice models"

Berry, Levinsohn, Pakes, 1995, 2004

• Consumer s has the utility v_{su} for product u:

$$v_{su} = -\alpha p_u + \beta \cdot X_u + \xi_u + \epsilon_{su}$$

- p_u : price. α : price-elasticity
- X_u: vector of product characteristics
- ξ_u : common residual taste shock
- ϵ_{su} : iid random shock across consumers/products
- tag the outside option "u=0" with $p_u = X_u = \xi_u = 0$
- Discrete choice model: consumer s chooses product u iff

$$\forall u': v_{su} > v_{su'}$$

• Analytical solution for $Prob[v_{su}>v_{su'}]$ if $\epsilon_{su}\sim$ type 1 extreme value distribution (logit shock)

$$prob_{su} = \frac{\exp(-\alpha p_u + \beta \cdot X_u + \xi_u)}{1 + \sum_u \exp(-\alpha p_u + \beta \cdot X_u + \xi_u)}$$

Example 3: "Discrete-choice models"

Berry, Levinsohn, Pakes, 1995, 2004

Define
$$\delta_u = -\alpha p_u + \beta \cdot X_u + \xi_u$$

- prob_{su} is independent of s
- market share of product u is

$$mktsh_u = \exp(\delta_u)/(1 + \sum_u \exp(\delta_u))$$

- Identify $\{\delta_u\}$ via the observed market shares in data (a standard fixed-point algorithm converges)
- How to identify coefficients β , α ?
 - \bullet $\xi_u \perp X_u$ (like in OLS regr of δ_u on X_u)
 - 2 Find an \overline{IV} to estimate α ...
 - $Cov(C_u, \xi_u) = 0 \rightarrow \alpha = \frac{-Cov(C_u, \delta_u)}{Cov(C_u, p_u)}$, for some cost-shifter C_u

Example 3: "Discrete-choice models"

Berry, Levinsohn, Pakes, 1995, 2004

Can be generalized for α , β depending on s (demographics, D_s):

- $\alpha_s = \alpha + \Gamma D_s$, $\beta_s = \beta + \Lambda D_s$
- $prob_{su}$ follows the same eq., but it depends on s
- $mktsh_u$ is derived numerically (by taking the sum over the population with heterogeneous D_s)
- ullet Same approach to identify mean-tastes $\{\delta_u\}$ and mean coefficient lpha,eta
- Plus, target as the identifying moment the covariance between demographics and choice characteristics: $cov(D_s, X_{u(s)})$

Example 4: "Student Loans and Social Mobility"

Ebrahimian, 2022

A simplified version:

• Students of different backgrounds with cash-in-pocket *m* and college-related ability *A* pursue higher education

$$\max Ah^{\alpha} - R(h-m)$$

h: investment in human capital, proxy with college tuition

 $A = \exp(a_0 + a_1 * SAT + \sigma * \nu)$: proxy ability with observed SAT score, and an observable shock

L := h - m is student loans

• $R=R_0$: 10yr treasury (risk-neutral agents) if $L\leq \bar{L}$ and $R_0+\eta$ if $L>\bar{L}$: friction wedge on taking private loans

off the loan limit:
$$h^* = (\alpha A/R)^{1/(1-\alpha)}$$

Example 4: "Student Loans and Social Mobility"

Ebrahimian, 2022

• Suppose we knew η , so R(L)

$$\log(h^*) = \frac{1}{1 - \alpha} [\log \alpha - \log R_0 - \mathbf{1}\{L > \bar{L}\} \log(1 + \frac{\eta}{R_0}) + a_0 + a_1 SAT + \sigma \nu]$$

- Simulate a set of random shocks ν , m, model the tuition
- Run the regression of log of tuition on SAT, and a loan level indicator $\mathbf{1}\{L>\bar{L}\}$ in the model, for those with $L\neq\bar{L}$
- Run the same regression for log of tuition in the data
- Identify a_1, α, σ : regression slope of SAT and $\mathbf{1}\{L > \bar{L}\}$, the variance of regression residual
 - identifying moments: the average of log tuition, for subsamples $L > \bar{L}$ and $L < \bar{L}$, covariance of log tuition and SAT, and std of log tuition
- Note: L and so $\mathbf{1}\{L > \bar{L}\}$ is endogenous: it covaries with $\nu!$ and m... no worries:) same endogeneity is in the simulated regression...

Example 4: "Student Loans and Social Mobility"

Ebrahimian, 2022

- How to estimate η ? Bunching: mass in population with L=L
- Intuition: costly private loans hinders students from increasing leverage beyond federal cap
- Math: $L = \bar{L}$ if $A \in [A_d, A_u]$, where $m + \bar{L} = (\alpha A_d/R_0)^{1/(1-\alpha)}$ and $m + \bar{L} = (\alpha A_u/(R_0 + \eta))^{1/(1-\alpha)}$, $A_u - A_d$ increases with η

(a) low-income students

(b) high-income students

Example 5: "Intermediation in the Interbank Lending Market" Craig and Ma, 2022

- "A small subset of banks intermediate between all other banks that almost exclusively lend or borrow and that are not directly connected with each other."
- Why the interbank intermediation arrangement arises? Quantify systemic risks in the interbank lending network...
- Model: a set of borrowers and lenders connected through intermediaries → delegated monitoring (Diamond, 1984). Lenders perform costly state verification over (partially) diversified intermediaries (Townsend, 1979)
- A borrower forming links to intermediaries: extra monitoring cost (k), but more bargaining power
- An intermediary forming links with borrowers: extra cost for monitoring, but better diversified \rightarrow less premium for CSV (c)

Example 5: "Intermediation in the Interbank Lending Market" Craig and Ma, 2022

- Take the observed network as the equilibrium outcome and find parameter values that best "rationalize" the observed existing/non-existing links
- 1. Take a parameter set $\{k, c\}$
- 2. For any observed/unobserved link, check whether the borrower has incentive to drop/form the link
- 3. Count the number of "correct" predictions: the score Q(k, c)
- 4. Search over parameter space to obtains the maximum score!
- ullet Consistent estimation of CSV & monitoring cost $\{\hat{k},\hat{c}\}=\max Q(c,k)$
- Standard errors are obtained by bootstrap method

Example 5: "Intermediation in the Interbank Lending Market" Craig and Ma, 2022

The sources of variations that identify model parameters:

• # of connections to intermediaries formed by a borrowing bank identifies monitoring cost relative to bank's profitability.

directly estimated

② # of connections to borrowers formed by an intermediary bank identifies CSV relative to monitoring cost.

Further notes: "Identification is not causality, and vice versa"

Kahn and Whited, 2017, Review of Corporate Finance Studies

- "Exogenous" variation is:
 - Always necessary to identify a causal relation
 - Never sufficient for identifying an economically interesting parameter
 - You need an economic model (either mathematical or verbal)
 - Only sometimes necessary to identify an economically interesting parameter
- Parameters may be identified without exogenous variation!

Further notes: Identification and Endogeneity

- Endogeneity is not necessarily a problem in structural estimation
- Structural estimation <u>accounts for</u> and <u>exploits</u> endogeneity within the model
 - economic model would tell you what the relationship between endogenous variables ought to be, given the parameter values
 - tune the economic parameter to get the same relationship between endog. vars as in data
 - remember: we can learn from wrong regressions
- Note: we rely on the economic model to specify the relationship between endogenous vars
- An important, common criticism: "The economic model omits an important aspect of reality."
 - Do a lot of robustness checks on model specification

Further notes: Identification with Exogeneity

- Exogenous variations can be helpful in structural work
- If an (unimportant) part of the model is specified via regressions
 - \rightarrow A *hybrid* approach.
- Or in identification: compare causal relationship in data with the same simulated regression result in model
 - ightarrow Both regression in data/model may have omitted variable and economic force and have "endogeneity problems" ightarrow apple-to-apple comparison

Identification: Concluding remarks

- No one cares about estimation details/method, as long as you convince readers that the model is well-identified...
- Pick some moments/data patterns that are <u>sensitive</u> to economic parameter
- If not, you will get large standard errors, so the issue is detected. But not always in practice...
- Do a lot of comparative statistics, think a lot on the choice of moments, rely on economic intuition, read papers in the literature to get identification idea...
- Recall: you can exploit relationship between endogenous variables (identification is not causality and vice versa)
- Finally, make sure the model is identified, before getting to data!

3. "Light-speed" structural estimation

Robustness Checks

The computational burden

Standard practices in reduced-form work:

- Alternative specifications
- Sub-sample analyses
- Alternative mechanisms

Not much in structural works...

Opaque identification

- No clear understanding of the mapping between inputs (empirical moments) and findings (parameter estimates/policy recommendations)
- No clear understanding of how moment selection matters for estimation (i.e. targeted vs. non-targeted moments)
- Main practical challenge: computational burden

Why there is a challenge?

- Estimating an economic model requires an inversion
 - we can simulate m(p) in a few seconds/minutes,
 - but estimation needs finding \hat{p} that solves $m(\hat{p}) = \hat{m}$
- We wish we knew the function p = g(m), $g := m(\cdot)^{-1}$
- Note: Inversion is needed in reduced-form work as well: $(X'X)^{-1}$, but it's easy and fast there
- Note: There was no issue if evaluating $m(\cdot)$ was fast \rightarrow inversion is done in an outer loop iterating over possible p
- Note: the issue is more severe, if a large number of parameters (unknowns) are to be estimated
 - time to co nverge might go crazy even with $n_p \sim 5$
- → limited economic forces can be modeled
- \rightarrow even a slight modification would keep your PC busy for a week

Local approximation

Measuring the Sensitivity of Parameters to Moments, Andrews, Gentzkow, and Shapiro, 2017, The Quarterly Journal of Economics

• A solution to this challenge: linear (first-order) approximation

$$\delta \hat{p} = -(J'WJ)^{-1}J'W * \delta \hat{m}$$

- Limitations:
 - works locally
 - works only in the intensive margin

"Robustness Checks in Structural Analysis"

Catherine, Ebrahimian, Sraer, Thesmar, 2022

• An alternative Solution:

"Light-speed" structural estimation, allowing for extensive robustness analysis in structural work

• Key insight:

- Do not spend your computational budget on finding \hat{p}
- Spend your budget on finding a good approximation of $\mathit{m}(\cdot) o \tilde{\mathit{m}}(\cdot)$
- Then use the approximation of m to run as many SMMs as you wish

$$\min_{p}(\tilde{m}(p)-\hat{m})'W(\tilde{m}(p)-\hat{m})$$

How it works in practice

The exact relationship m(p):

Approximate SMM via m_1 :

Random parameter draws p:

Approximate SMM via m_2 :

What we are approximating

• The approximation $\tilde{m}(p)$ is <u>not</u> an approximation of the economic model

Relationships between state variables and the agent's decisions are generally not well-behaved because of inaction bands (eg transaction costs), discrete choices (eg renting/owning), corner solutions (eg collateral constraints), institutions (eg policy eligibility threshold) ...

• The approximation $\tilde{m}(p)$ is a set of equations predicting moments as a function of parameters

Each moment is generally a well-behaved function of parameters, a condition for the method of moments to be valid

Summary — "Approximate SMM" stages

- Build a training set:
 - set a reasonably wide range for parameters
 - draw (semi-) random points in this space of parameters (Halton?)
 - use the true economic model to build the set of moments
 - store the set of parameters and moments on disk
- Generate the approximate moment function:
 - make a fit for each of the targeted moments based on input parameters
 - higher order polynomial, (deep) neural net, kernel smoothing, etc.
 - weight observations in the fit based on proximity to data target
 - sometime better to make fits over a transform of parameters/moments
 - note: evaluate your fit using an out-of-sample set before moving on
- Do SMM with the approximate moment function
 - use generous global optimization routines
 - once you converge, you can further iterate locally with true SMM

Application: Life-cycle portfolio choice model

Out-of-sample performance of approximate SMM:

Illustrating identification (1)

- How do moments affect parameter estimation? often opaque in structural estimation
- Best practice: report local comparative statics. How simulated moments vary for local variations of θ around estimation: $p \to m(p)$ around \hat{p}
- With the approximate approach, easy to show how estimated parameters depend on empirical moments: $\hat{m} \to \hat{p}$
 - (1) fix all moments but one (2) vary moment around empirical value (3) re-estimate parameters
 - computationally, this approach is prohibitively expensive without an approximation

Identification: how does m_2 =mean cond. equity share affect risk aversion γ ?

Orange: $p \to m(p)$ – "standard" identification graph Blue: $m \to \hat{p}(m)$ – "each obs." is a new estimation

⇒ Similar conclusion from two approaches

Identification: how does m_2 =mean cond. equity share affect time discount factor β ?

- \Rightarrow "Standard" identification graph says m_2 not useful for β :
 - most value of β leads to similar m_2 close to empirical value
 - **not true**: variations in $m_2 \to \text{changes in } \hat{\gamma} \to \text{changes in other}$ moments $\to \text{changes in estimated } \beta$
 - **note**: local linear approximation (AGS) not accurate

What about moment selection?

- Standard critique of structural approach: difficult to evaluate the importance of moment selection for estimation
- Let's consider the dozen of moments used in this literature. How do estimates and findings depend on moment selection?
- To do this, need to re-estimate the model with different combinations of moments

What about moment selection? Life-cycle portfolio choice model

What about moment selection? Life-cycle portfolio choice model

What about moment selection? Life-cycle portfolio choice model

Application: Corporate Finance Model

Out-of-sample performance of approximate SMM (I):

Application: Corporate Finance Model

Out-of-sample performance of approximate SMM (II):

Standard robustness check: subsample analyses

Corporate Finance Model (I):

• Estimate the model for 10-year rolling sub-periods.

Standard robustness check: sample splits

Corporate Finance Model (II):

• Estimate the model for various industries:

	ρ_z	σ_z	γ	λ	ξ	α	δ	Value Loss
benchmark (all) - std	.7130 .0067	.2141	.0423 .0025	.1085 .0032	.0348 .0022	.8149 .0076	.0670 .0008	.0650 .0062
manufacturing - std	.6921	.2102	.0403	.0730	.0115	.7512	.0542	.0146
	.0089	.0024	.0037	.0039	.0026	.0092	.0007	.0035
retail trade	.8637	.1347	.0846	.1870	.1696	.8295	.0939	.1174
- std	.0140	.0042	.0108	.0096	.0490	.0145	.0022	.0250
services	.7995	.2161	.0277	.0563	.0635	.7488	.0575	.1130
- std	.0166	.0044	.0045	.0096	.0077	.0176	.0020	.0150
${\it transportation} \\ {\it - std}$.7374	.1673	.0390	.3102	.0893	.9000	.0955	.2246
	.0253	.0075	.0072	.0139	.0122	.0238	.0037	.0634
mining - std	.6945	.2575	.0194	.3776	.1218	.9000	.1088	.4835
	.0362	.0170	.0036	.0181	.0110	.0363	.0059	.1910

References I

- Berry, S., J. Levinsohn, and A. Pakes (1995). Automobile prices in market equilibrium. *Econometrica* 63(4), 841–890.
- Berry, S., J. Levinsohn, and A. Pakes (2004). Differentiated products demand systems from a combination of micro and macro data: The new car market. *Journal of political Economy 112*(1), 68–105.
- Catherine, S. (2022). Countercyclical labor income risk and portfolio choices over the life cycle. *The Review of Financial Studies* 35(9), 4016–4054.
- Craig, B. and Y. Ma (2022). Intermediation in the interbank lending market. *Journal of Financial Economics* 145(2), 179–207.
- Diamond, D. W. (1984). Financial intermediation and delegated monitoring. *The review of economic studies* 51(3), 393–414.
- Ebrahimian, M. (2022). Student loans and social mobility. *Jacobs Levy Equity Management Center for Quantitative Financial Research Paper*.
- Hennessy, C. A. and T. M. Whited (2007). How costly is external financing? evidence from a structural estimation. *The Journal of Finance 62*(4), 1705–1745.

References II

- Kahn, R. and T. M. Whited (2018). Identification is not causality, and vice versa. *Review of Corporate Finance Studies* 7(1), 1–21.
- Keane, M. "practical issues in structural estimation". https://www.youtube.com/watch?v=0hazaPBAYWE.
- Townsend, R. M. (1979). Optimal contracts and competitive markets with costly state verification. *Journal of Economic theory* 21(2), 265–293.