sklearn.linear_model.LinearRegression

class sklearn.linear_model.LinearRegression(*, fit_intercept=True, copy_X=True, n_jobs=None, positive=False) [source]

Ordinary least squares Linear Regression.

LinearRegression fits a linear model with coefficients w = (w1, ..., wp) to minimize the residual sum of squares between the observed targets in the dataset, and the targets predicted by the linear approximation.

Parameters:

fit_intercept : bool, default=True

Whether to calculate the intercept for this model. If set to False, no intercept will be used in calculations (i.e. data is expected to be centered).

copy_X : bool, default=True

If True, X will be copied; else, it may be overwritten.

n_jobs: int, default=None

The number of jobs to use for the computation. This will only provide speedup in case of sufficiently large problems, that is if firstly n_targets > 1 and secondly X is sparse or if positive is set to True. None means 1 unless in a joblib.parallel_backend context. -1 means using all processors. See Glossary for more details.

positive: bool, default=False

When set to True, forces the coefficients to be positive. This option is only supported for dense arrays.

New in version 0.24.

Attributes:

coef_: array of shape (n_features,) or (n_targets, n_features)

Estimated coefficients for the linear regression problem. If multiple targets are passed during the fit (y 2D), this is a 2D array of shape (n_targets, n_features), while if only one target is passed, this is a 1D array of length n_features.

rank_: int

Rank of matrix X. Only available when X is dense.

singular_: array of shape (min(X, y),)

Singular values of X. Only available when X is dense.

intercept_: float or array of shape (n_targets,)

Independent term in the linear model. Set to 0.0 if fit_intercept = False.

n_features_in_: int

Number of features seen during fit.

New in version 0.24.

feature_names_in_: ndarray of shape (n_features_in_,)

Names of features seen during fit. Defined only when X has feature names that are all strings.

New in version 1.0.

See also:

<u>Ridge</u>

Ridge regression addresses some of the problems of Ordinary Least Squares by imposing a penalty on the size of the coefficients with I2 regularization.

Lasso

The Lasso is a linear model that estimates sparse coefficients with 11 regularization.

ElasticNet

Elastic-Net is a linear regression model trained with both I1 and I2 -norm regularization of the coefficients.

Notes

From the implementation point of view, this is just plain Ordinary Least Squares (scipy.linalg.lstsq) or Non Negative Least Squares (scipy.optimize.nnls) wrapped as a predictor object.

Examples

```
>>> import numpy as np
>>> from sklearn.linear_model import LinearRegression
>>> X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])
>>> # y = 1 * x_0 + 2 * x_1 + 3
>>> y = np.dot(X, np.array([1, 2])) + 3
>>> reg = LinearRegression().fit(X, y)
>>> reg.score(X, y)
1.0
>>> reg.coef_
array([1, 2.])
>>> reg.intercept_
3.0...
>>> reg.predict(np.array([[3, 5]]))
array([[16.])
```

Methods

<pre>fit(X, y[, sample_weight])</pre>	Fit linear model.
<pre>get_metadata_routing()</pre>	Get metadata routing of this object.
<pre>get params([deep])</pre>	Get parameters for this estimator.
<pre>predict(X)</pre>	Predict using the linear model.
<pre>score(X, y[, sample_weight])</pre>	Return the coefficient of determination of the prediction.
<pre>set_fit_request(*[, sample_weight])</pre>	Request metadata passed to the fit method.
<pre>set params(**params)</pre>	Set the parameters of this estimator.
<pre>set_score_request(*[, sample_weight])</pre>	Request metadata passed to the score method.

```
fit(X, y, sample_weight=None)
[source]
```

Fit linear model.

Parameters:

X: {array-like, sparse matrix} of shape (n_samples, n_features)

Training data.

y: array-like of shape (n_samples,) or (n_samples, n_targets)

Target values. Will be cast to X's dtype if necessary.

sample_weight: array-like of shape (n_samples,), default=None

Individual weights for each sample.

New in version 0.17: parameter sample_weight support to LinearRegression.

Returns:

self: object

Fitted Estimator.

get_metadata_routing()

[source]

Get metadata routing of this object.

Please check <u>User Guide</u> on how the routing mechanism works.

Returns:

routing: MetadataRequest

A **MetadataRequest** encapsulating routing information.

get params(deep=True)

[source]

Get parameters for this estimator.

Parameters:

deep: bool, default=True

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns:

params: dict

Parameter names mapped to their values.

predict(X)

[source]

Predict using the linear model.

Parameters:

X: array-like or sparse matrix, shape (n_samples, n_features)

Samples.

Returns:

C: array, shape (n_samples,)

Returns predicted values.

score(X, y, sample_weight=None)

[source]

Return the coefficient of determination of the prediction.

The coefficient of determination R^2 is defined as $(1-\frac{u}{v})$, where u is the residual sum of squares $((y_true - y_pred)**2).sum()$ and v is the total sum of squares $((y_true - y_true.mean()) **2).sum()$. The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters:

X: array-like of shape (n_samples, n_features)

Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape (n_samples, n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for the estimator.

y: array-like of shape (n_samples,) or (n_samples, n_outputs)

True values for X.

sample_weight: array-like of shape (n_samples,), default=None

Sample weights.

Returns:

score: float

 R^2 of self.predict(X) w.r.t. y.

Notes

The R^2 score used when calling score on a regressor uses multioutput='uniform_average' from version 0.23 to keep consistent with default value of <u>r2_score</u>. This influences the score method of all the multioutput regressors (except for MultiOutputRegressor).

set fit request(*, sample_weight: <u>Union[bool, None, str]</u> = '\$UNCHANGED\$') → <u>LinearRegression</u>

[source]

Request metadata passed to the fit method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

- · True: metadata is requested, and passed to fit if provided. The request is ignored if metadata is not provided.
- False: metadata is not requested and the meta-estimator will not pass it to fit.
- · None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.
- str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.

New in version 1.3.

Note: This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a Pipeline. Otherwise it has no effect.

Parameters:

sample_weight: str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for sample_weight parameter in fit.

Returns:

self: object

The updated object.

set_params(**params)
[source]

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as <u>Pipeline</u>). The latter have parameters of the form component>_componentc

Parameters:

**params: dict

Estimator parameters.

Returns:

self: estimator instance

Estimator instance.

 $set_score_request(*, sample_weight: \underline{Union[bool, None, str]} = '$UNCHANGED$') \rightarrow \underline{LinearRegression}$

[source]

Request metadata passed to the score method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

- True: metadata is requested, and passed to score if provided. The request is ignored if metadata is not provided.
- False: metadata is not requested and the meta-estimator will not pass it to score.
- · None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.
- str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.

New in version 1.3.

Note: This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a Pipeline. Otherwise it has no effect.

Parameters:

sample_weight: str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for sample_weight parameter in score.

Returns:

self: object

The updated object.

Examples using sklearn.linear_model.LinearRegression

Principal Component

Plot individual and

Comparing Linear

Linear Regression

Logistic function

Regression vs Partial Least Squares Regression voting regression predictions

Bayesian Regressors

Example

Non-negative least squares

Ordinary Least Squares and Ridge Regression Variance

Quantile regression

Robust linear estimator fitting

Robust linear model estimation using RANSAC

Sparsity Example: Fitting only features 1 and 2

Theil-Sen Regression

Failure of Machine Learning to infer causal effects

Face completion with a multi-output estimators

Isotonic Regression

Metadata Routing

Plotting Cross-Validated Predictions

Underfitting vs. Overfitting

Using KBinsDiscretizer to discretize continuous features

Toggle Menu

© 2007 - 2023, scikit-learn developers (BSD License). Show this page source