1 Аннотация

Объектом исследований в нашем проекте являются металлокерамические твердые сплавы Wc-Co состоящие из керамической фазы, карбида вольфрама и кобальтовой связки. В качестве входных данных мы принимали микроструктуры которые были оцифрованы в Мисис с помощью оборудования Vega Tescan. Микроскоп с термоэмиссионным вольфрамовым катодом, позволяющий получать СЭМ-изображения и проводить анализ элементного состава в реальном времени. На каждой фотографии присутствует линейка. Ее длина для данного микроскопа 50 µм.

2 О нашем сплаве:

Имеет широкое применение в различных промышленных технологиях. Основным применением остаётся покрытие бурильных головок, сверел и всего того, что предназначено бурить твердые материалы. Сплав сочетает в себе комбинации высокой твердости, износостойкости и прочности, а также присутствует хорошая пластичность и ударная вязкость (на основе Со матрицы).

Например, повышение трещиностойкости твердого сплава определяется пластичностью кобальтовой связки. Сплавы исследовались с различным процентным содержанием, а зерна WC также имеют различную пластичность. На рисунке ниже представлен пример нашей микроструктуры.

SIMING 200 IV
SI

Изображение слева получено на основе отраженных электронов, а справа - на поглощенных.

Отраженные электроны образуются при рассеивании первичных электронов на большие (до 90°) углы в результате однократного упругого рассеивания или в результате многократного рассеивания на малые углы. В конечном итоге первичные электроны, испытав ряд взаимодействий с атомами образца и теряя при этом энергию, изменяют траекторию своего движения и покидают поверхность образца.

Поглощенные электроны. При воздействии зонда часть генерируемых электронов остается в объеме образца. При энергиях первичного пучка 10–20 кэВ примерно 50% от общего числа образующихся вторичных и отраженных электронов достигают поверхности образца и покидают ее. Оставшиеся электроны образуют ток поглощенных электронов. Разрешающая способность при получении изображений в этом случае имеет такой же порядок, как и для отраженных электронов. Данный метод получения изображений используется редко из-за малой разрешающей способности.

Зерно кобальта увидеть нельзя. Количество частичек карбида прмерно 300 на одной фотографии.

3 Образование карбидного скелета

На микроструктурах видно, что образуется «карбидный скелет» так как сплав был получен путем жидкофазного спекания, он будет представлять скелет стянутых зерен карбида вольфрама, а в зазорах расположен в виде сквозной сетки твердый раствор на основе кобальта, пронизывающий пространственный скелет карбида вольфрама.

Карбидный скелет (или псевдоскелет) получается потому что почти все границы зерен WC/WC содержат очень тонкие прослойки кобальта с толщиной от одного атомного монослоя до нескольких нанометров. Его наличие показывает, что WC/WC ГЗ характеризуются различными контактными углами с кобальтовой связкой, и только очень немногие ГЗ имеют контактные углы, равные нулю. Чистые границы WC/WC, не содержащие кобальтовой прослойки должны быть достаточно хрупкими.

На начальной стадии спекания карбидных частиц, когда жидкая фаза только что образовалась, имеются три границы: жидкость-газ, твердое тело-газ и жидкость-твердое тело. В этом случае, смачивание WC жидким кобальтом является полным, и уплотнение карбидных частиц до полной плотности происходит очень быстро в результате исчезновения границ жидкость-газ и твердое тело-газ. При этом после завершения начальной стадии спекания в спеченном карбиде вольфрама остаются только границы твердое тело-жидкость, а на границах зерен наблюдается псевдонеполное смачивание. Большие зерна WC растут при спекании за счет растворения мелких зерен WC. При этом между ними не остается толстых слоев кобальта, как это было бы в случае полного смачивания. Вместо этого, они срастаются вместе, образуя "псевдоскелет", включающий очень тонкие пленки-прекурсоры кобальта в несколько нанометров толщиной. Можно ожидать, что состав пленок-прекурсоров значительно отличается от связки в макроскопических прослойках между зернами WC. В частности, хорошо известно, что тонкие прослойки кобальта, расположенные на границах WC/WC, невозможно удалить при химическом вытравливании кобальта из полностью спеченного карбида.

4 «Победиты» и технические требования

Существует множество сплавов карбида вольфрама, другое их название – «победиты». В зависимости от области применения существуют технические требования к твердым сплавам, пример приведён ниже:

Свойства	СТП ОАО «ВБМ»	ΓΟCT 3882-74		
Своиства	Сплав ВК10С	BK11-BK	BK10KC	
Плотность, г/см ³	14,43–14,63	14,1–14,4	14,2–14,6	
Твердость, HRA	87,6–88,4	87,6-88,4 ≥ 87,0		
Коэрцитивность, Э	70–90	Не регламентируется		
Магнитное насыщение, Гс/г _{Со}	140–160	Не регламентируется		
σ _{изг} , МПа	≥ 2460	≥ 1900	≥ 1900	
Пористость, %, по шкалам	max 0,02 (A1, B0, D0)	max 0,2 (FOCT 9391)		
Пористость, % (С – свободный углерод)	max 0,1 (C1)	max 0,2 (C2) (FOCT 9391)		
Микроструктура	1. Микроструктура должна быть однородной, без наличия η-фазы 2. Не допускается наличие отдельных крупных зерен карбида вольфрама размером > 40 мкм 3. Не допускается скопление β-фазы (компаундирование кобальта) 4. Не допускается наличие примесей другого сорта (сегрегация)	Не допускаются в структуре включения η-фазы Не допускается наличие отдельных крупных зерен карбида вольфрама размером > 50 мкм (ГОСТ 4411) Не регламентируется Не регламентируется		
Макроструктура	Поверхность разлома не должна иметь расслойных трещин, рыхлот, пористости, избытка свободного углерода и η-фазы	Макроструктура должна быть однородной, без посторонних включений и расслоя. Не допускаются поры размером более 100 мкм (ГОСТ 4411)		

По таблице можно узнать допустимый диапазон каждого свойства, эти значения понадобятся нам для сравнения полученных результатов со шкалой нормы.

Некоторые из свойств наших микроструктур уже определены, таблица представлена ниже:

Old name	New name	Hc, Oe	Magn.Moment	Vickers Hardness
			Gcm ³ /g	(HV20)
Ultra_Co8	Coarse, 8%Co	91	12.1	1210
Coarse 25,	Coarse, 10%Co	99	15.3	1200
Ultra_Co25				
Ultra_Co15	Coarse 15%Co	72	21.6	990
Ultra_Co6_2	Ultra-coarse, 6.2%	62	8.9	1100
	Co			
ultra Co 11	Ultra-coarse, 6%	78	8.1	1180
	Co low carbon			

4 Анализ сплава и полученных фотографий

В проекте можно рассмотреть такие физические характеристики сплава, как:

- микротвердость(по Бренелю)
- ударная вязкость
- кривая наноиндентирования
- износостойкость

В качестве входных данных нейросети можно использовать следующие характеристики частиц карбида, полученные при обработке фотографий:

- количество соседей
- количество и типы дыр между частицами
- несоосность форм
- типы границ

- контактные углы
- распределение по формам (площадь, периметр, углы и тд)
- расположение

Также по микроструктуре можно определить количество зерён, их размер, неоднородность и многое другое.

Список литературы:

https://powder.misis.ru/jour/article/viewFile/59/56 «О буровых твердых сплавах на основе высокотемпературных карбидов вольфрама» Д.А. Захаров, А.П. Амосов, А.В. Сальников, М.А. Сальников

https://misis.ru/files/7794/Straumal_dis.pdf «Полное, неполное и псевдонеполное смачивание границ зерен твердой и жидкой фазой» Страумал Александр Борисович