NANYANG TECHNOLOGICAL UNIVERSITY SCHOOL OF ELECTRICAL & ELECTRONIC ENGINEERING EE4341/EE6341 ADVANCED ANALOG CIRCUITS TUTORIAL 9

- 1. Based on the bi-quadratic filter shown in Fig. 1, design the following active filters with other necessary circuits:
 - (a) Second-order low-pass filter with specifications: $Q = \sqrt{2}$ and attenuation = 18.36 dB at 60 kHz. 2000 pF capacitors are preferred in the design. Draw the final circuit and indicate the values of all the resistors and capacitors.
 - (b) Second-order band-pass filter with specifications: -3 dB bandwidth of 0.95 kHz and centre frequency of 1.9 kHz. 1000 pF capacitors are preferred in the design. Determine its upper and lower cut-off frequencies. Draw the final circuit and indicate the values of all the resistors and capacitors.

Figure 1

2. Design a low-pass Butterworth filter that has a -3dB cut-off frequency of 2 kHz and at least 43 dB attenuation at 7 kHz. 10 k Ω resistors are preferred in the design. Implement the circuit using Sallen-Key second-order low-pass filters and other necessary circuits. The transfer function of the Butterworth filter is given by:

 $T(s) = \frac{1}{B(s)}$, where B(s) for n^{th} order Butterworth filter is given in Table 1.

Table 1

n	Factors of B(s)
1	(s + 1)
2	$(s^2 + 1.4142s + 1)$
3	$(s+1)(s^2+s+1)$
4	$(s^2 + 0.7654s + 1)(s^2 + 1.8478s + 1)$
5	$(s+1)(s^2+0.6180s+1)(s^2+1.6180s+1)$
6	$(s^2 + 0.5176s + 1)(s^2 + 1.4142s + 1)(s^2 + 1.9318s + 1)$