微纳光电子材料与器件工艺原理

Etching Part I: Wet Etching 湿法刻蚀

Xing Sheng 盛 兴

Department of Electronic Engineering Tsinghua University

xingsheng@tsinghua.edu.cn

Pattern Formation

Subtractive Process

Additive Process

Pattern transfer by etching

Pattern transfer by lift off

Etching vs. Corrosion

Etching (刻蚀)

wanted

Corrosion (腐蚀)

unwanted

Wet vs. Dry

liquid source

gas source

Dry Etch

- Control parameters
 - Etch rate
 - Selectivity
 - Anisotropy / Isotropy

Trends of Etching

Isotropic vs. Anisotropic

Figure 10–3 Etch profiles for different degrees of anisotropic, or directional, etching: (a) purely isotropic etching; (b) anisotropic etching; (c) completely anisotropic etching.

chemical

physical

Wet Etching

diffusion - reaction - diffusion

- 1. chemical reactions occur
- 2. products should be dissolvable

Metal Dissolution in Acids

Metal Dissolution in Acids

Strong Acids + Strong Oxidants

Piranha H_2SO_4 : H_2O_2 = 3:1 dissolves most metals and organics

Aqua Regia (王水) HCI: HNO3 = 3:1 even dissolves Au, Pt

Selectivity for Wet Etch

Films	Etchant	Mask	
SiO ₂	HF	PR	
Si	KOH	KOH Si ₃ N ₄	
GaAs	H ₃ PO ₄ + H ₂ O ₂	PR	
GaP	KOH + SiO ₂ K ₃ [Fe(CN) ₆]		
Cu	FeCl ₃	PR	
Au	KI + I ₂	PR	

most wet etch recipes are isotropic, except KOH etch for Si

References

- Etch Rates for Micromachining Processing
- Etch Rates for Micromachining Processing-Part II

http://ieeexplore.ieee.org/iel4/84/11954/00546406.pdf http://ieeexplore.ieee.org/iel4/84/11954/01257354.pdf

Guide to references on III-V semiconductor chemical etching

http://www.sciencedirect.com/science/article/pii/S0927796X00000279

SiO₂ etching

- Alkali (NaOH, etc) slowly etches SiO₂
 - \square SiO₂ + 2NaOH = Na₂SiO₃ + H₂O
- HF strongly etches SiO₂
 - \Box SiO₂ + 6HF = H₂SiF₆ + 2H₂O

glass art by HF etch

- Buffered HF (BHF/BOE)
 - HF + NH₄F
 - smaller etch rate
 - safer for use

Cu etching

• $Cu + 2FeCl_3 = CuCl_2 + 2FeCl_2$

- HNO₃ + HF
 - **□** isotropic etch

Isotropic wet etching: Agitation

Isotropic wet etching: No Agitation

Q: why?

Si etching

KOH

- anisotropic etch
- □ etch rate (111):(110):(100) ~ 1:600:400
- □ mask: SiO₂, Si₃N₄, Cr/Au, ...

Anisotropic wet etching: (100)

Anisotropic wet etching: (110)

Other chemistries

- TMAH: Tetramethyl ammonium hydroxide
- Ethylene diamine pyrochatecol

- Single Crystalline Si Solar Cells
 - KOH anisotropic etch

optical trapping and antireflection

- Si cantilever beam
 - KOH anisotropic etch

Micro-Electro-Mechanical Systems (MEMS)

III-V etching

- GaAs, AlGaAs, InGaAs

 - \square NH₄OH + H₂O₂
- AlGaAs
 - when AI > 70%, HF and HCI etch
- InP, InGaP, InAIP
 - HCI
- GaN, InGaN
 - no reliable wet etchants ...

Etch Stops

InGaP / GaAs

lattice matched epitaxy

□ $H_3PO_4 + H_2O_2$ only etches GaAs

HCI only etches InGaP

Emitter

Etch Stops

highly p-dope Si is resistant to KOH

Etch Stops

Silicon based 'Michigan Probe' for neuroscience

Electrochemical Etch

Anodization (阳极氧化) - Porous Si

Anodization - Porous Al₂O₃

Aluminum

Aluminum

Barrier

layer

Thin-Film Si from SOI wafers

compound eyes

'epidermal' electronics

Thin-Film Si from Si (111)

KOH etches faster for Si (100) than (111)

- Thin-film Si solar cells
 - High efficiency (Single Crystal)
 - Flexible
 - Low cost (wafer reuse)

GaN on Si (111)

KOH etches faster for Si (100) than (111)

Release; transfer

GaAs Device Liftoff

- GaAs and AlAs
 - lattice matched growth
 - AlAs is selectively etched by HF
- flexible III-V devices

GaAs

solar cells

LED

S. I. Park, et al., Science **325**, 977 (2009) J. Yoon, et al., Nature **465**, 329 (2010)

Epitaxy Liftoff

Materials	Sacrificial layers	Substrates	Release methods
Si	SiO ₂	Si	HF wet etch
Si (111)	-	Si (111)	KOH wet etch
Ge	SiO ₂	Si	HF wet etch
SiC	SiO ₂	Si	HF wet etch
GaAs / InGaP	AlAs	GaAs	HF / HCI wet etch
GaAs / InGaP	InAIP	GaAs	HCI wet etch
InGaAs / InP	InGaAs	InP	FeCl ₃ wet etch
GaN	ZnO	sapphire	HCI wet etch
GaN	-	Si (111)	KOH wet etch
InAs	InGaSb	GaSb	NH₄OH wet etch

Bio-degradable Materials

Materials that can be dissolved in the body.

Biodegradable Suture

Cardiovascular Stent

Bone Scaffold

Biocompatible and Degradable Materials

Organic: PLGA, PLA, silk, ...

□ Metals: Mg, Ca, Zn, Fe, ...

□ Semiconductors: Si, Ge, ...

Bio-degradable Electronics

Si devices that can be dissolved by body fluids.

Thank you for your attention