第18-19章 d区元素(一)

- § 18.1 d区元素概述
- - § 18.4 格組稿
 - § 18.5 猛
 - § 19.1 铁钴镍

教学基本要求:

- 1. 了解过渡元素的通性。
- 2. 熟悉铬的电势图,掌握 Cr (III)、 Cr (VI) 化合物的酸碱性、氧化还原性及其相互转化。
- 3. 熟悉锰的电势图,掌握 Mn (II、IV、 VI、VII) 重要化合物的性质和反应。
- 4. 掌握 Fe (II, III)、 Co (II, III)、 Ni (II, III) 重要化合物的性质及其变化规律,以及重要配合物。

§ 18.1 d区元素概述

- 18.1.1 d区元素的原子半径和 电离能
- 18.1.2 d区元素的物理性质
- 18.1.3 d区元素的化学性质
- 18.1.4 d区元素的氧化态
- 18.1.5 d区元素离子的颜色

18.1.1 d区元素的原子半径和电离能

1. d区元素在周期表中的位置

		•				•		•	•											
周	1																	18	电子层	18族 电子数
期	IA						元	素 丿	目 1	期	表							0		-6.1 W
1	$\overset{1}{H}\overset{\frac{1}{2}}{\overset{2}{3}}$	2	16 7 12 W]。同位素的质			4	注:	94			13	14	15	16	17	2 He ³ / ₄		
	氢 1s ¹	II A	原子序数 元素符号 (紅色指放	19 39 /	(加底线的是 最大的同位 指放射性同	天然丰度 素, 红色	金 属	稀有气体	 相对原一会(IUP) 	子质量引白国际 AC) 相对原子原	量表 (2013),	删节至	III A	IV A	V A	VI A	VII A	氦 1s ² 4.0026	K	2
2	3 Li ⁶ 理 2s ¹	4 Be ⁹ 铍 _{2s²}	4 4 排作元素 排作元素 排作元素 排作元素 排作元素 排作分离 1																	
3	11 Na ²³	12 Mg 24 25 26	3	4	5	6	7	8	9	10	11	12	13 Al ²⁷	14 Si 29 30	15 P 31	16 S 32 36 S 33 34	17 Cl ½	18 36 Ar 38 40	М	8
	钓 3s ¹ 22.990	镁 3s ² 24.305	ШВ	IV B	V B	VI B	WI B		VIII		IΒ	II B	铝 3s ² 3p ¹ 26.982	佳 3s ² 3p ³ 28.085	磷 3s ² 3p ³ 30.974	硫 3s²3p² 32.06	氯 3s ³ 3p ³	氩 3s ² 3p ⁶ 39.948	L K	8 2
4	19 K ³⁹ 40 年 39,098	20 Ca 40 44 42 46 43 45 转 49	21 Sc ⁴⁵ 钪 3d ¹ 4s ²	Ti 46 49 Ti 47 50 钛 3d ² 4s ²	V 50 51 钒 3d ³ 4s ² 50.942	24 Cr <u>52</u> 含3 含3 3d'4s'	25 Mn ⁵⁵ 紙 3d ⁵ 4s ² 54.938	26 Fe 54 58 Fe 56 57 铁 3d ⁶ 4s ² 55.845(2)	27 Co ⁵⁹ 钻 3d ⁷ 4s ² 58.933	28 Ni ⁵⁸ 62 60 64 镍 3d ⁸ 4s ² 58.693	29 Cu ⁶⁵ 铜 3d ⁹ 4s ¹ 63.546(3)	30 Zn 64 68 Zn 66 70 锌 3d104s 65.38(2)	31 Ga ⁶⁰ / ₇₁ 镓 4s²4p¹ 69.723	32 Ge ⁷⁰ 74 73 76 括 4s ² 4p ² 72.630(8)	Zdz	34 Se ^{74 78} Se ^{76 80} 77 82 栖 4s²4p²	35 Br ²² 溴 4s'4p' 79.904	36 Kr ⁸⁰ ⁸⁴ 気 ^{48²4p⁴}	N M L K	8 18 8 2
5	37 Rb ⁸⁵ 如 5s ¹ 85,468	38 Sr 86 87 钽 58	39 Y ⁸⁹ 钇 4d ¹ 5s ² 88.906	40 Zr ⁹⁰ ⁹⁴ 结 _{4d²5s²}	41 Nb ⁹³ 铌 4d ⁴ 5s ¹ 92.906	42 92 97 Mo 94 98 95 100 钼 4d ³ 5s ¹ 95.95	43 Tc % 等 每 4d ⁵ 5s ²	44 96 101 Ru 98 102 Ru 99 104 钌 4d ² 5s ²	45 Rh ¹⁰³ 铑 4d ¹ 5s ¹	46 102 106 Pd 104 108 105 110 4d ¹⁰ 106.42 4d ¹⁰	47 Ag 107 银 4d ⁹ 5s ¹	48 106 11 Cd 1108 11 Cd 110 11 111 11 年 4d ¹⁰ 5s	49 In ¹¹³ 铟 5s ² 5p ¹	50 112 118 114 119 Sn 115 120 116 122 银 5s ² 5p ² 118.71	51 Sb ½1 第 5s²5p³	52 120 125 Te 122 126 Te 123 128 124 130 徐 5s²5p²	53 I ¹²⁷ 碘 5s ² 5p ³	54 124 131 126 132 134 134 134 139 136 130 131 1	O N M L K	8 18 18 8 2
6	55 Cs ¹³³ 铯 68 ¹	56 130 13 Ba 132 13 Ba 134 12 钡 6,	57-71 La-Lu 镧系	72 Hf 176 179 177 180 给 5d ² 6s ² 178.49(2)	73 Ta 180 担 5d ⁵ 6s ²	74 W 180 184 W 182 186 183 与 5d ⁴ 6s ²	75 Re 185 铼 5d'6s ²	76 184 189 Os 186 190 Os 187 192 锇 5d*6s²	77 Ir 191 铱 5d'6s ²	78 Pt 190 195 Pt 192 196 194 198 铂 5d*6s¹	79 Au ¹⁹⁷ 金 5d ¹⁰ 6s ¹		81 Tl 203 完 6s ² 6p ¹ 204.38	82 Pb ²⁰⁴ ²⁰⁸ 206 207 铅 6s²6p² 207.2	83 Bi ²⁰⁹ 秘 6s ² 6p ³ 208.98	84 Po ²⁰⁸ 209 210 年入 68 ² 6p ⁴ (209)	85 At ²¹⁰ 成 68°69°	86 211 Rn 220 222 氢 6s²6p ⁶	P O N M L K	8 18 32 18 8 2
7	87 Fr ²¹² 完 ²²² 5 78 ¹	88 223 22 Ra 224 结 78 (226)	89-103 Ac-Lr 锕系	104 Rf ²⁶⁵ 好* 6d ² 7s ²	105 Db ²⁶⁸ 270 键* 6d ¹ 7s ² (270)	106 Sg ²⁶⁹ 271 镇* 6d ⁴ 7s ² (269)	107 Bh ²⁷⁶ 按* 6d ⁵ 7s ² (270)	108 Hs ²⁶⁹ Hs ²⁷⁰ 無* 6d*7s²	109 Mt ²⁷⁶ 矮 * 6d ¹ 7s ²		111 Rg ²⁸¹ 完全 6d ¹⁰ 7s ¹		113 Nh ²⁸⁵ 软* (286)	114 F1 287 F1 288 289 铁* 7s ² 7p ²	115 Mc ²⁸⁹ 使* (289)	116 Lv ²⁹¹ Lv ²⁹² 空 ³ 较* ⁷ s² ⁷ p ⁴	117 TS 293 研*	118 Og ²⁹⁴ 氨* (294)	Q P O M L K	8 18 32 32 18 8 2

镧系	57 La 138 镧 5d/6s²	58 Ce ¹³⁶ ¹⁴² 前 ⁴⁰⁵ ⁴⁰⁵ ⁴⁰⁵ ⁴⁰ ⁴⁰ ⁴⁰ ⁴⁰ ⁴⁰ ⁴⁰ ⁴⁰ ⁴⁰	Pr 141	60 142 146 Nd 143 148 144 150 钕 41 6s ²	61 Pm ¹⁴⁵ ¹⁴⁶ 钜 4t ⁸ 6s ²	62 Sm 147 150 Sm 148 154 影 149 4F6s ³ 150.36(2)	63 Eu ¹⁵¹ 铕 41 ⁶ 6s ²	64 152 157 Gd 158 158 160 年 46°5d'682	65 Tb 159 钛 41°6s²	66 156 162 Dy 158 163 160 164 镝 4f ⁹ 6s ²	67 Ho ¹⁶⁵ 钬 4f ¹ 6s ²	68 Er 162 167 Er 164 168 166 170 铒 4f ²² 6s ²	69 Tm ¹⁶⁹ 铥 4f ¹³ 6s ²	70 168 173 Yb 170 174 Yb 171 176 镜 4646s ³ 173.05	71 Lu 175 镥 5d'6s² 174.97
锕系	89 Ac ²²⁵ 卸 _{6d'7s²} (227)	90 Th ²³⁰ 社 6d ² 7s ²	91 Pa ²³¹ 僕 5f ² 6d ¹ 7s ² 231.04	92 U 233 236 U 234 238 th 56°6d'7s² 238.03	93 Np ²³⁶ 镎 _{55°6d'7s²} (237)	94 Pu 238 241 Pu 239 242 240 244 钚 5f ⁶ 7s ²	95 Am ²⁴¹ 细* _{5f⁷7s²} (243)	96 Cm ^{243 246} 244 247 245 248 铜*5f'6d'7s²	Bk 247 432*	98 Cf ²⁴⁹ ²⁵² Cf ²⁵⁰ ²⁵¹ 钢* ^{5f°7s²}	99 Es ²⁵² 锿* 5f ⁵¹ 7s ² (252)	100 Fm 257 镄* 5f ¹² 7s ² (257)	101 Md ²⁵⁸ 旬 [*] 5f ¹³ 7s ² (258)	102 No 255 结* 5f ⁴⁷ s ² (259)	103 Lr ²⁶¹ 铹* ^{6d¹7s²}

高等教育出版社印制

2. d区元素原子的价电子层构型

 $(n-1)d^{1-10}ns^{1-2}$ (Pd为 $5s^0$)

3. d区元素的原子半径 变化不规律,不要求掌握

镧系收缩

18.1.2 d区元素的物理性质

•熔点、沸点高 熔点最高的单质: 钨(W)

•硬度大 硬度最大的金属: 铬(Cr)

•密度大 密度最大的单质: 锇(Os)

•导电性,导热性,延展性好。

4f145d46s2 最大数目未成对电子

为何汞的熔点最低? **难形成金属键**

18.1.3 d区元素的化学性质

元素	Sc	Ti	V	Cr	Mn
$E^{\ominus (M^{2+}/M)}$		-1.63	-1.2 (估算值)	-0.90	-1.18
可溶该 金属的 酸	各种酸	热 HCl HF	HNO ₃ , HF 浓 H ₂ SO ₄	稀 HCl H2SO4	稀 HCl H ₂ SO ₄ 等
元素	Fe	Co	Ni	Cu	Zn
$E^{\Theta (M^{2+}/M)} V$	-0.409	-0.282	-0.236	+0.339	-0.762
可溶该 金属的 酸	稀 HCl H ₂ SO ₄ 等	缓慢溶解 在 HC l 等 酸中	稀 HCl H ₂ SO ₄ 等	HNO3,浓 热 H ₂ SO ₄	稀 HCl H ₂ SO ₄ 等

1. 第一过渡系的单质比第二过渡系的单质活泼;

例:第一过渡系除Cu外均能与稀酸作用, 第二、三过渡系仅能溶于王水、

氢氟酸,而Ru,Rh,Os,Ir不溶于王水。

- 2. 与活泼非金属(卤素和氧)直接形成化合物。
- 3. 与氢形成金属型氢化物:

如: VH_{18} , $TaH_{0.76}$, $LaNiH_{5.7}$ 。

4. 与硼、碳、氮形成间充型化合物。

18.1.4 d区元素的氧化态

多种氧化态。例如: Mn的氧化态呈连续状,

 $Mn(CO)_5Cl(+1)$, $Mn(CO)_5$, $NaMn(CO)_5(-1)$.

注:红色为常见的氧化态。

18.1.5 d区元素离子的颜色

水合离子呈现多种颜色。

§ 18.4 格 钼 钨 多酸型配合物

- 18.3.1 铬、钼、钨的单质
- 18.3.2 铬的化合物
- *18.3.3 钼、钨的化合物
- *18.3.4 多酸型配合物 同多酸和杂多酸及其盐

18.3.1 铬、钼、钨的单质

铬分族(VIB): Cr, Mo, W

价层电子构型: (n-1)d 4-5ns¹⁻²

灰白色金属,熔沸点高,硬度大。 表面易形成氧化膜。

18.3.2 铬的化合物

Cr: 3d⁵4s¹

+6/+3/+2

Cr₂O₃(铬绿)

	颜色	熔点/℃	受热时的变化
CrO ₃ (铬酐)	暗红色	198	250℃分解为 Cr ₂ O ₃ 与O ₂
K_2CrO_4	黄色	975	熔融不分解
K ₂ Cr ₂ O ₇ (红矾)	橙红色	398	熔融不分解
Cr ₂ O ₃ (铬绿)	绿色	2330	不分解
CrCl ₃ 6H ₂ O	紫色	83	失去结晶水
KCr(SO ₄) ₂ 12H ₂ O	暗紫色	89	失去结晶水

水溶液中铬的各种离子

	颜色	存在的pH
$\operatorname{Cr}_2\operatorname{O}_7^{2-}$	橙红	<2
CrO ₄ - 铬酸	根黄	>6
Cr ³⁺ (aq)	紫色	酸性
Cr(OH) ₄	亮绿	强碱
Cr ²⁺ (aq)	蓝	酸性

 $Cr^{2+}(aq)$

 $Cr(OH)_4$

• 铬元素的电势图

$$E_{\rm A}^{\Theta}$$
/V 酸性

$$CrO_4^{2-}\frac{-0.12}{Cr(OH)_4^{-}}Cr(OH)_2^{-}\frac{-1.1}{Cr(OH)_2^{-}}Cr$$

电位越高,氧化性越强;电位越低,还原性越强

Cr(VI) 含氧酸及其离子在溶液中的转化

•H₂Cr₂O₇, H₂CrO₄均为强酸,仅存在于稀溶液

$$HCr_{2}O_{7}^{-} \Longrightarrow H^{+} + Cr_{2}O_{7}^{2-}$$
 $K_{a2}^{\ominus} = 0.85$
 $H_{2}CrO_{4} \Longrightarrow H^{+} + HCrO_{4}^{-}$ $K_{a1}^{\ominus} = 9.55$
 $HCrO_{4}^{-} \Longrightarrow H^{+} + CrO_{4}^{2-}$ $K_{a2}^{\ominus} = 3.2 \times 10^{-7}$

•pH的影响

$$2CrO_{4}^{2-} + 2H^{+} \longrightarrow 2HCrO_{4}^{-} \longrightarrow Cr_{2}O_{7}^{2-} + H_{2}O$$

pH<2: Cr₂O₇²-为主, pH>6: CrO₄²-为主。

•形成难溶盐

铬酸盐比相应的重铬酸盐溶解度小。

$$K_{sp}^{\Theta}(Ag_2CrO_4)=1.1\times10^{-12}$$
 $K_{sp}^{\Theta}(Ag_2Cr_2O_7)=2.0\times10^{-7}$

$$4Ag^{+}+Cr_{2}O_{7}^{2-}+H_{2}O\longrightarrow 2Ag_{2}CrO_{4}(s,$$
模红)+2H⁺

2Pb
$$^{2+}$$
 + Cr₂O $_{7}^{2-}$ + H₂O →2PbCrO $_{4}$ (s, \sharp) + 2H $^{+}$

$$K_2Cr_2O_7$$
具有强氧化性 $E^{\Theta}(Cr_2O_7^{2-}/Cr^{3+}) = 1.33V$

$$Cr_2O_7^{2^-} + 3SO_3^{2^-} + 8H^+ \longrightarrow 3SO_4^{2^-} + 2Cr^{3^+} + 4H_2O$$
 $Cr_2O_7^{2^-} + 3H_2S + 8H^+ \longrightarrow 3S + 2Cr^{3^+} + 7H_2O$
 $Cr_2O_7^{2^-} + 6I^- + 14H^+ \longrightarrow 3I_2 + 2Cr^{3^+} + 7H_2O$
 $Cr_2O_7^{2^-} + 6Fe^{2^+} + 14H^+ \longrightarrow 6Fe^{3^+} + 2Cr^{3^+} + 7H_2O$
 $Cr_2O_7^{2^-} + 3Sn^{2^+} + 14H^+ \longrightarrow 3Sn^{4^+} + 2Cr^{3^+} + 7H_2O$
 $K_2Cr_2O_7(s) + 14HCl(浓) \longrightarrow 3Cl_2 + 2CrCl_3 + 2KCl + 7H_2O$

Cr(VI)的鉴定

$$Cr_2O_7^{2-}$$
 $\xrightarrow{H^+,H_2O_2}$ $\to 2CrO(O_2)_2$ 深紫蓝色
过氧化铬 $Cr_2O_7^{2-} + 4H_2O_2 + 2H^+ \longrightarrow 2CrO(O_2)_2 + 5H_2O$ $CrO(O_2)_2 \xrightarrow{\mathbb{Z}} CrO(O_2)_2 \xrightarrow{\mathbb{Z}} CrO(O_2)_2 \cdot (C_2H_5)_2O$

 $2K_2Cr_2O_7 + 3C_2H_5OH + 8H_2SO_4 = 2Cr_2(SO_4)_3 + 3CH_3COOH + 2K_2SO_4 + 11H_2O_4$

2. 铬(皿)的化合物

重铬酸铵受热分解可生成Cr₂O₃

$$(NH_4)_2Cr_2O_7 \xrightarrow{\triangle} Cr_2O_3 + N_2 + 4H_2O$$

Cr₂O₃是两性物质

$$Cr_2O_3 + 6H^+ \xrightarrow{\Delta} Cr^{3+} + 3H_2O$$

 $3H_2O + Cr_2O_3 + 2OH^- \rightarrow Cr(OH)_4^-$

$Cr(H_2O)_6^{3+}$ 按下式水解:

$$[Cr(H_{2}O)_{6}]^{3+} \longrightarrow [Cr(OH)(H_{2}O)_{5}]^{2+} + H^{+}$$

$$2[Cr(H_{2}O)_{6}]^{3+} \longrightarrow [(H_{2}O)_{4}Cr(OH)_{2}Cr(H_{2}O)_{4}]^{4+}$$

$$+ 2H^{+} + 2H_{2}O$$

$$2Cr^{3+} + 3S^{2-} + 6H_2O \longrightarrow Cr(OH)_3(s) + 3H_2S(g)$$
$$2Cr^{3+} + 3CO_3^{2-} + 3H_2O \longrightarrow 2Cr(OH)_3(s) + 3CO_2(g)$$

(灰绿)

$$Cr^{3+}$$
 (适量)OH⁻ $Cr(OH)_3(s)$ OH⁻ H^+ $Cr(OH)_4^-$

Cr(III)在碱性条件下易被氧化

酸性条件:
$$E^{\Theta}(Cr_2O_7^{2-}/Cr^{3+}) = 1.33V$$

 $2Cr^{3+}+3S_2O_8^{2-}+7H_2O\xrightarrow{Ag^+}Cr_2O_7^{2-}+SO_4^{2-}+14H^+$

碱性条件:
$$E^{\Theta}(\text{CrO}_{4}^{2-} / \text{Cr}(\text{OH})_{4}^{-}) = -0.12\text{V}$$

$$2Cr(OH)_{4}^{2} + 3H_{2}O_{2} + 2OH^{2} \longrightarrow 2CrO_{4}^{2} + 8H_{2}O$$

§ 18.5 穩 P344

- * 18.5.1 锰的单质
 - 18.5.2 锰的化合物
- *18.5.3 锰的Gibbs函数变
 - -氧化值图

18.5.2 锰的化合物

Mn的价电子构型: 3d⁵4s²

KMnO₄

Mn的氧化值呈连续状:从-2~+7。

常见氧化值: +7, +6, +4 和 +2。

常见化合物: KMnO₄, K₂MnO₄, MnO₂,

MnSO₄和MnCl₂。

除MnO₂外,余者均易溶于水,相应

<mark>含锰离子分别为: MnO₄, MnO₄</mark>²⁻和Mn²+。

锰的重要化合物性质表

氧化态	+7	+6	+4	+	2
分子式	KMnO ₄	K ₂ MnO ₄	MnO ₂	MnSO ₄ •7H ₂ O	MnCl ₂ •4H ₂ O
颜色和状态	紫红色或近乎 黑色的晶体	暗绿色晶 体	黑色无定 形粉末	肉红色晶体	肉红色晶体
密度/(g•cm ⁻³)	2.71		5.08	2.09	2.01
熔点/℃ 受热时的变 化	200 ℃以上分 解为 K ₂ MnO ₄ , MnO ₂ ,O ₂	640 ℃ ~680 ℃分解为 Mn ₃ O ₄ 、O ₂ 和 K ₂ O	530℃分解 为 Mn ₃ O ₄ 和 O ₂	无水 MnSO ₄ 为 白色 ,灼烧变 为 Mn ₃ O ₄	87.5℃, 200℃~230℃ 部分分解出 HCl ,无水 MnCl₂红色片 状,熔点为 650℃
溶解度 /(g/100gH ₂ O)	6.4 溶液稀释至 1:500000 时,仍 能看出颜色	224.7g•L ⁻¹ (2MKOH) 形成绿色 溶液,静止 或水量较 多时,变为 紫红色	不溶于水	60(10℃)	143

水溶液中锰的各种离子及其性质

		$\mathbf{M} \mathbf{nO}_{\!\!4}^{\!\!-}$	MnO_4^{2-}	$Mn(H_2O)_6^{3+}$	$Mn(H_2O)_6^{2+}$
	氧化值	+7	+6	+3	+2
	颜色	紫红色	暗绿色	红色	淡红色
	d电子数	\mathbf{d}^0	\mathbf{d}^1	\mathbf{d}^4	\mathbf{d}^5
子	字在于溶液 中的条件	中性	pH>13.5	易歧化	酸性

锰元素电势图:

酸性溶液
$$E_{\rm A}^{\Theta}/{
m V}$$

碱性溶液 $E_{\rm B}^{\Theta}/{ m V}$

$$MnO_{4}^{-} \frac{0.5545}{MnO_{4}^{2-}} \frac{0.6175}{MnO_{2}^{2-}} \frac{0.6175}{MnO_{2}} \frac{-0.20}{Mn(OH)_{3}} \frac{-0.10}{Mn(OH)_{2}} \frac{-1.56}{Mn} Mn$$

$$-0.0514$$

1.锰(VII)的化合物

①强氧化性 $E_{A}^{\Theta}(MnO_{4}^{-}/Mn^{2+}) = 1.51V$

可氧化物种	SO ₃ ²⁻	I-	C1	H_2S	Fe^{2+}	Sn ²⁺
产物	SO ₄ ²⁻	I_2	Cl_2	S 或 SO ₄ ²⁻	Fe ³⁺	Sn ⁴⁺

溶液的酸度不同,MnO₄被还原的产物不同:

$$2MnO_{4}^{-} + 5SO_{3}^{2-} + 6H^{+} \longrightarrow 2Mn^{2+} + 5SO_{4}^{2-} + 3H_{2}O$$

 $2MnO_{4}^{-} + 3SO_{3}^{2-} + H_{2}O \longrightarrow 2MnO_{2} + 3SO_{4}^{2-} + 2OH^{-}$
 $2MnO_{4}^{-} + SO_{3}^{2-} + 2OH^{-}(※) \longrightarrow 2MnO_{4}^{2-} + SO_{4}^{2-} + H_{2}O$
 $2MnO_{4}^{-} + 5H_{2}C_{2}O_{4} + 6H^{+} \longrightarrow 2Mn^{2+} + 10CO_{2} + 8H_{2}O$

②不稳定性

(见光)遇酸

$$4MnO_4^- + 4H^+$$
(微酸)—— $4MnO_2 + 3O_2 + 2H_2O$

浓碱

$$4MnO_4^- + 4OH^- \longrightarrow 4MnO_4^{2-} + O_2 + 2H_2O$$

加热

$$2KMnO_4 \xrightarrow{>220^{\circ}C} K_2MnO_4 + MnO_2(s) + O_2$$

2.锰(VI)的化合物

 K_2MnO_4 暗绿色晶体,在强碱性溶液中以 MnO_4^{2-} 形式存在。

在酸性, 中性溶液中歧化

$$3MnO_4^{2-} + 4H^+ \longrightarrow MnO_2 + 2MnO_4^- + 2H_2O$$
$$3MnO_4^{2-} + 2CO_2 \longrightarrow MnO_2 + 2MnO_4^- + 2CO_3^{2-}$$

锰酸钾的水溶液是不稳定的!

3.锰(Ⅳ)的化合物: MnO₂

•强氧化剂 $E_A^{\Theta}(MnO_2/Mn^{2+}) = 1.229V$

$$MnO_2 + 4HCl(浓)$$
 → $Cl_2 + MnCl_2 + 2H_2O$
 $2MnO_2 + 2H_2SO_4(浓)$ → $2MnSO_4 + O_2 + 2H_2O$

•还原性(碱性)

$$MnO_2 + 2MnO_4^- + 4OH^- \longrightarrow 3MnO_4^{2-} + 2H_2O$$

•制取低氧化值锰化合物的原料

$$3MnO_2 \xrightarrow{530^{\circ}C} Mn_3O_4 + O_2$$

$$MnO_2 + H_2 \xrightarrow{450^{\circ}C \sim 500^{\circ}C} MnO + H_2O$$

4.锰(II)的化合物

• Mn(H₂O)₆²⁺的水解

$$[Mn(H_2O)_6]^{2+} \longrightarrow [Mn(OH)(H_2O)_5]^+ + H^+$$
 $K^{\Theta} = 10^{-10.6}$

在碱性条件下:

$$Mn^{2+} + 2OH^{-} \xrightarrow{\mathcal{E}O_{2}} Mn(OH)_{2}(s, \boxminus)$$

$$2Mn(OH)_2 + O_2 \longrightarrow 2MnO(OH)_2(s, 棕黄色)$$

$$Mn(OH)_2 \xrightarrow{O_2} Mn_2O_3 \cdot xH_2O \xrightarrow{O_2} MnO_2 \cdot yH_2O$$

Mn(OH)2为碱性

$$Mn(OH)_2 + 2H^+ \longrightarrow Mn^{2+} + 2H_2O$$

• Mn²⁺的还原性弱

$$2Mn^{2+} + 5NaBiO_{3}(s) + 14H^{+} \longrightarrow 2MnO_{4}^{-} + 5Bi^{3+} + 5Na^{+} + 7H_{2}O$$

$$2Mn^{2+} + 5PbO_{2}(s) + 4H^{+} \longrightarrow 2MnO_{4}^{-} + 5Pb^{2+} + 2H_{2}O$$

$$2Mn^{2+} + 5S_{2}O_{8}^{2-} + 8H_{2}O \xrightarrow{Ag^{+}} 2MnO_{4}^{-} + 10SO_{4}^{2-} + 16H^{+}$$

$$2Mn^{2+} + 5H_{5}IO_{6}(s) \longrightarrow 2MnO_{4}^{-} + 5HIO_{3} + 7H_{2}O + 6H^{+}$$

鉴定Mn²⁺常用NaBiO₃,介质用HNO₃,Mn²⁺量不宜多。

$$3Mn^{2+} + 2MnO_4^- + 2H_2O \longrightarrow 5MnO_2 + 4H^+$$

课后作业

1	分别写出溶液中	下列离子的颜色:
Ι,	刀刑可叫俗似下	「グリ内」「別外口:

2. 高锰酸钾是_______剂,它在酸性溶液中与 H_2O_2 反应的主要产物是_______,它在中性或弱碱性溶液中与 Na_2SO_3 反应的主要产物为_______和_____。

3.在强碱性条件下, $KMnO_4$ 溶液与 MnO_2 反应生成_____色的____。 在该产物中加入硫酸后生成_____色的____和____色的____。

- 4. MnO_2 不能与下列溶液反应的是: ()
 - (A)浓HCl (B)浓H₂SO₄ (C)稀HI (D)稀NaOH

- 5. 写出高锰酸钾与亚硫酸钠溶液反应的化学反应方程式, 并配平。
 - 1. 在酸性介质中;
 - 2. 在中性或弱碱性介质中;
 - 3. 在强碱性介质中。

§ 19.1 铁钴镍

- 1 铁、钴、镍的单质
- 2 铁、钴、镍的化合物
- 3 铁、钴、镍的配合物

WI族 Fe Co Ni 铁系
Ru Rh Pd
Os Ir Pt 铂系

铁系元素的相关矿物:

•赤铁矿: Fe₂O₃; 磁铁矿: Fe₃O₄;

·菱铁矿: FeCO3; 黄铁矿: FeS2;

•辉钴矿: CoAsS;

•镍黄铁矿: NiS FeS;

19.1.1 铁、钴、镍的单质

化学性质:中等活泼的金属

1. 与稀酸反应

$$M + 2H^{+}(稀) \rightarrow M^{2+}(aq) + H_{2}$$

 $4Fe + 10H^{+} + NO_{3}^{-}(稀,冷) \rightarrow 4Fe^{2+} + NH_{4}^{+} + H_{2}O$
 $Fe + 4H^{+} + NO_{3}^{-}(较浓) \rightarrow Fe^{3+} + NO + 2H_{2}O$

2. 与浓酸的作用

Fe+6H⁺+3NO₃(热,浓)
$$\rightarrow$$
 Fe³⁺+3NO₂+3H₂O
冷浓HNO₃使Fe, Co, Ni钝化。

18.5.2 铁、钴、镍的化合物

	价电子 构型	常见 氧化值	最高氧化值 及其化合物
Fe	$3d^64s^2$	+2,+3	+6(+8) Na ₂ FeO ₄ (FeO ₄)
Co	$3d^74s^2$	+2,+3	$+5$ K_3CoO_4
Ni	$3d^84s^2$	+2,+3	$+4$ K_2NiF_6

除Fe以外,最高氧化值都没有达到3d和4s电子数的总和。

1. 铁、钴、镍的氧化物和氢氧化物

(1) 铁、钴、镍的氧化物

Fe₂O₃红棕色,FeO黑色,Fe₃O₄黑色;

Co₂O₃ xH₂O暗褐色,CoO灰绿色;

Ni₂O₃ 2H₂O灰黑色,NiO绿色。

 $Co_2O_3 + 6HCl \rightarrow 2CoCl_2 + Cl_2 + 3H_2O$

(2) 铁、钴、镍的氢氧化物

Fe²⁺ + 2OH⁻
$$\xrightarrow{\Xi O_2}$$
 Fe(OH)₂ (s, 白)
$$\xrightarrow{O_2}$$
 Fe(OH)₃ (s, 红棕)
Fe₂O₃·xH₂O

$$4\text{Fe}(\text{OH})_2 + \text{O}_2 + 2\text{H}_2\text{O} \longrightarrow 4\text{Fe}(\text{OH})_3$$

$$Fe^{3+} + 3OH^{-} \rightarrow Fe(OH)_3(s, 红棕)$$

$$Fe(OH)_3 + 3HCl \longrightarrow FeCl_3 + 3H_2O$$

$$Co^{2+} + 2OH^{-} \longrightarrow Co(OH)_{2}(s, 粉红)$$

$$\xrightarrow{O_{2}} Co(OH)_{3}(s, 暗棕色)$$

$$Co_{2}O_{3} \cdot xH_{2}O$$
 (慢)

还原性: Fe(II)>Co(II)>Ni(II)

2. 铁、钴、镍的盐

FeCl₃ 6H₂O红棕色,Fe(NO₃)₃ 9H₂O淡紫色, FeCl₂ 4H₂O淡蓝色,FeSO₄ 7H₂O淡绿—

(NH₄)₂Fe(SO₄)₂ 6H₂O(Mohr盐)淡绿色, CoSO₄ 7H₂O淡紫色, CoCl₂ 6H₂O粉红色, NiCl₂ 6H₂O草绿色, NiSO₄ 7H₂O暗绿色。 Ni(NO₃)₂ 6H₂O青绿色。

(1) FeCl3有明显的共价性,易潮解

蒸汽中形成双聚分子

(2) CoCl₂·6H₂O变色硅胶。

实验室中使用的变色	。硅胶中	含有少量的	,	
烘干后的硅胶呈	色,	这实际上呈现的是		_的
颜色。				

什么是变色硅胶?并说明其循环利用方法及显色原理。

实验室中常用的变色硅胶是在硅胶中加入了少量的 $CoCl_2$,此物质为蓝色,当硅胶在使用过程中吸收的水分 到了一定程度时, $CoCl_2$ 中 Co^2 +形成不同配位数的配离子,最终形成粉红色的 $[Co(H_2O)_6]^{2+}$ 。

当硅胶干燥剂失去了作用时,可加热使配离子脱水,恢复为CoCl₂表现出的蓝色,因此可以通过加热来循环利用变色硅胶。

(3) 水溶液中水解 Fe3+比Fe2+易水解

[Fe(H₂O)₆]²⁺
$$\Longrightarrow$$
 [Fe(OH)(H₂O)₅]⁺ + H⁺

$$K^{\Theta} = 10^{-9.5}$$

[Fe(H₂O)₆]³⁺
$$\Longrightarrow$$
 [Fe(OH)(H₂O)₅]²⁺ + H⁺

$$K^{\Theta} = 10^{-3.05}$$

[Fe(OH)(H₂O)₅]²⁺ [Fe(OH)₂(H₂O)₄]⁺ + H⁺

$$K^{\Theta} = 10^{-3.26}$$

水合铁离子双聚体

2[Fe(H₂O)₆]³⁺ == [(H₂O)₄ Fe(OH)₂Fe(H₂O)₄]⁴⁺

$$K^{\Theta} = 10^{-2.91} + 2H^{+} + 2H_{2}O$$

结构:

Fe³⁺水解最终产物: Fe(OH)₃

[Co(H₂O)₆]²⁺ === [Co(OH)(H₂O)₅]⁺ + H⁺
粉红色
$$K^{\Theta} = 10^{-12.20}$$

[Ni(H₂O)₆]²⁺
$$\longrightarrow$$
 [Ni(OH)(H₂O)₅]⁺ + H⁺

$$K^{\Theta} = 10^{-10.64}$$

分别写出溶液中下列离子的颜色:

(4) 在酸性溶液中,Fe3+为中等强度氧化剂

$$2Fe^{3+} + Cu \longrightarrow Cu^{2+} + 2Fe^{2+}$$
 (FeCl₃烂板剂)
 $2Fe^{3+} + Fe \longrightarrow 3Fe^{2+}$
 $2Fe^{3+} + Sn^{2+} \longrightarrow Sn^{4+} + 2Fe^{2+}$
 $2Fe^{3+} + H_2S \longrightarrow 2Fe^{2+} + S + 2H^+$
 $2Fe(OH)_3 + 3ClO^- + 4OH^- \longrightarrow$
 $2FeO_4^{2-} + 3Cl^- + 5H_2O$
红

(5) Fe²⁺具有还原性:

$$4Fe^{2+} + O_2 + 4H^+ \longrightarrow 4Fe^{3+} + 2H_2O$$

保存 Fe^{2+} 溶液应加入 Fe

$$6Fe^{2+} + Cr_2O_7^{2-} + 14H^+ \longrightarrow 6Fe^{3+} + 2Cr^{3+} + 7H_2O$$

 $5Fe^{2+} + MnO_4^- + 8H^+ \longrightarrow 5Fe^{3+} + Mn^{2+} + 4H_2O$

18.5.3 铁、钴、镍的配合物

1. 铁的配合物

高自旋: [FeF₆]³⁻, [Fe(NCS)_n(H₂O)_{6-n}]³⁻ⁿ

低自旋: [Fe(CN)₆]³⁻, [Fe(CN)₆]⁴⁻

 $[Fe(CN)_5NO]^{2-}$

鉴定
$$Fe^{3+}$$
 $Fe^{3+} + nSCN^- \longrightarrow Fe(NCS)_n^{3-n}$ (血红) 的反应 异硫氰合铁(III)配离子

$$Fe^{2+} + 2CN^{-} \rightarrow Fe(CN)_{2}(s, 白色)$$

$$Fe(CN)_2 + 4CN^- \rightarrow [Fe(CN)_6]^{4-}$$

$$2\text{Fe(CN)}_{6}^{4-} + \text{Cl}_{2} \longrightarrow 2[\text{Fe(CN)}_{6}]^{3-} + 2\text{Cl}^{-}$$

K₄[Fe(CN)₆] 黄血盐, 黄色;

K₃[Fe(CN)₆] 赤血盐,晶体为红色。

 $xFe^{3+} + x[Fe(CN)_6]^{4-} + xK^+ \rightarrow [KFe(CN)_6Fe]_x(s)$ 该反应用于 Fe^{3+} 的鉴定(酸性条件)。普鲁士蓝

 $xFe^{2+} + x[Fe(CN)_6]^{3-} + xK^+ \rightarrow [KFe(CN)_6Fe]_x(s)$ 该反应用于 Fe^{2+} 的鉴定(酸性条件)。 腾氏蓝

Prussian's蓝,Turnbull's蓝组成均为:

 $[KFe^{III}(CN)_6Fe^{II}]_x$

$$3Fe^{2+} + NO_3^- + 4H^+ \rightarrow 3Fe^{3+} + NO + 2H_2O$$

 $[Fe(H_2O)_6]^{2+} + NO \rightarrow [Fe(NO)(H_2O)_5]^{2+} + H_2O$
用于 NO_3^- 鉴定: "棕色环",

 $2NO2-+2Fe2++4H+==2NO\uparrow+Fe3++H2O$ 亦用于NO₂鉴定: 棕色物质。Fe2++NO+SO42-==Fe(NO)SO4(棕色)

$$[Fe(CN)_6]^{4-} + 4H^+ + NO_3^- \rightarrow [Fe(CN)_5 NO]^{2-} + CO_2 + NH_4^+$$

Na₂[Fe(CN)₅NO] 2H₂O 五氰亚硝酰合铁(II)酸钠

Fe(III) 的配合物比Fe(II)的配合物稳定,相应电对的标准电极电势低于 $E^{\Theta}(Fe^{3+}/Fe^{2+})$ 。

[Fe(phen)
$$_3$$
] $^{2+}$ [Fe(phen) $_3$] $^{3+}$ 源色
 $1gK_f^{\ominus}$ 21.3 14.10
[Fe(CN) $_6$] $^{4-}$ [Fe(CN) $_6$] $^{3-}$
 $1gK_f^{\ominus}$ 45.623 52.613

2. 钴的配合物

Co(III)的配合物大多是低自旋的([CoF_6]³⁻除外),

例如: $[Co(NH_3)_6]^{3+}$, $[Co(CN)_6]^{3-}$, $[Co(NO_2)_6]^{3-}$ 在溶液中或固态时十分稳定。

鉴定K+:

$$3K^{+} + [Co(NO_{2})_{6}]^{3-} + Na^{+} \rightarrow K_{2}Na[Co(NO_{2})_{6}](s)$$
 黄色 六亚硝酸根合钴(III)酸钠钾

Co(II)的配合物分为两类,一类是粉红色的八面体配合物,另一类是蓝色的四面体配合物。

Co(**Ⅱ**)的八面体配合物大多是高自旋的,低自旋的配合物是少见的。

Co(II)的配合物具有强还原性

 $[Co(CN)_5H_2O)]^{3-}$:

 $4[Co(NH_3)_6]^{2+} + O_2 + 2H_2O \rightarrow 4[Co(NH_3)_6]^{3+} + 4OH^{-1}$

Co(II)的配合物在水溶液中稳定性较差

鉴定Co²⁺的反应

实验中用固体KSCN或NH₄SCN

3. 镍的配合物

八面体构型配合物,如 $[Ni(NH_3)_6]^{2+}$,采用 sp^3d^2 杂化轨道成键。

平面正方形配合物,如[Ni(CN)₄]²⁻,二丁二肟合镍(II)采用dsp²杂化轨道成键。

水合硝酸镍 $Ni(NH_3)_6^{2+}$ 及其溶液

·Ni离子的鉴定

$$Ni^{2+} + 2DMG + 2NH_3 \longrightarrow Ni(DMG)_2(s) + 2NH_4^+$$

丁二肟 鲜红色

$$CH_3C = NOH$$

 $CH_3C = NOH$

Ni(DMG)₂:

