Support Vector Machines – Testing & Parameter Tuning

Emanuel Zaymus

Dataset

Kyoto - ADL Activities

Features

- 1. SECONDS FROM MIDNIGHT of the first record in the window
- 2. DAY OF THE WEEK MON..SUN => 1..7 of the last record in the window
- 3. SECONDS ELAPSED between the last and the first record of the window
- 4.-28. SIMPLE COUNTS OF THE SENSORS

(29. CLASS of the feature vector - index of the activity 0..4 - of the last record of the window)

Used library

```
Scikit-learn => sklearn.svm.SVC (C-Support Vector Classification)
```

Testing

For testing purposes I chose 5-folds cross-validation with shuffling data and fixed random state to value 0:

```
sklearn.model_selection.KFold(n_splits=5, shuffle=True,
random state=0)
```

Feature scaling

I used sklearn.preprocessing.StandardScaler to scale feature vectors and to improve the performance.

From Scikit-learn documentation:

StandardScaler - Standardize features by removing the mean and scaling to unit variance. The standard score of a sample x is calculated as: z = (x - u) / s where u is the mean of the training samples or zero if with_mean=False, and s is the standard deviation of the training samples or one if with_std=False.

Defaults I used are: with mean=True and with std=True.

Docs: https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html

Also a lot of tutorials say that scaling should be used!

I also tried to make a simple (maybe stupid) visualization of various scaling techniques – at the bottom of this document.

Window size

At the beginning it is important to try multiple window sizes of a feature vector – number of records from which a feature vector consists. Because it is the first step I am using default settings of SVC(). SVC defaults are: SVC(kernel='rbf', C=1.0, gamma='scale')

Table 1

Window size	Accuracy score	Improvement	
5	75.9229	-	
7	79.6540	3.7311	
10	83.7593	4.1053	
13	86.8080	3.0487	MAJOR
15	88.4888	1.6808	IMPROVEMENT
17	89.9049	1.4161	IIVIPKOVEIVIEIVI
20	91.1803	1.2754	
23	92.2692	1.0889	
25	92.8293	0.5601	
27	93.1864	0.3571	
30	93.7462	0.5598	
33	93.9465	0.2003	MINOR
35	93.9603	0.0138	IMPROVEMENT
37	94.1148	0.1545	
40	94.2060	0.0912	

Based on the results above I chose window size **30** as the ideal window size, because it is one of the first values with minor improvement and I wanted to keep it more or less "small".

Parameter tuning - Kernel

This parameter specifies the kernel type to be used in the algorithm. It must be one of: 'linear' (linear kernel), 'poly' (polynomial kernel), 'rbf' (radial-basis function kernel or squared-exponential kernel), 'sigmoid', 'precomputed' (needs square matrix) or a custom kernel.

More about kernel functions: https://scikit-learn.org/stable/modules/svm.html#svm-kernels

Since there are too many parameters for every kernel that can be adjusted, I decided to run a test for every kernel with its default parameters and choose the one with the best result.

Table 2

Kernel	Accuracy score
Linear	90.8536
Polynomial	92.2452
RBF	93.7462
Sigmoid	76.1413
Precomputed	needs square matrix

The best result yields RBF.

Parameter tuning – C and Gamma

The **C** is a regularization parameter or penalty parameter. It tells the SVM optimization how much error is bearable. A smaller value of C creates a small-margin hyperplane and a larger value of C creates a larger-margin hyperplane. It has to be strictly positive. Default is C=1. In general is better to select a smaller C.

The **Gamma** is a kernel coefficient. A lower value of Gamma will loosely fit the training dataset, whereas a higher value of gamma will exactly fit the training dataset, which causes over-fitting. That means that more convenient is to choose a Gamma of lower value. There are two predefined values: 'scale' (default) and 'auto'.

- 'scale' = 1 / (n_features * X.var()); where X.var() is variance of the data array
- 'auto' = 1/n_features

As we can see in the *Table 3*, accuracy scores for 'scale' and 'auto' are exactly the same. Also the best result are yielded when C is super large. High value of C causes too large margin -3 it is better to keep it the smallest possible.

Let's see if it can be done in a better way.

Table 3

С	Gamma	Accuracy score			
0.25	scale	91.5260			
0.25	auto	91.5260			
0.5	scale	92.6831			
0.5	auto	92.6831			
1	scale	93.7462			
1	auto	93.7462			
2	scale	94.6217			
2	auto	94.6217			
5	scale	95.2940			
5	auto	95.2940			
7	scale	95.5755			
7	auto	95.5755			
10	scale	95.8413			
10	auto	95.8413			
13	scale	96.1070			
13	auto	96.1070			
15	scale	96.3415			
15	auto	96.3415			
17	scale	96.3884			
17	auto	96.3884			
20	scale	96.4197			
20	auto	96.4197			
30	scale	96.6073			
30	auto	96.6073			
50	scale	96.8106			
50	auto	96.8106			
75	scale	97.0450			
75	auto	97.0450			
100	scale	97.0920			
100	auto	97.0920			
150	scale	97.2952			
150	auto	97.2952			
200	scale	97.3578			
200	auto	97.3578			
500	scale	97.3577			
500	auto	97.3577			
1000	scale	97.2640			
1000	auto	97.2640			

Table 4

С	Gamma	Accuracy	С	Gamma	Accuracy	С	Gamma	Accuracy
	1 0.01		13	0.01	94.4185	50	0.01	95.4191
	1 0.02		13	0.02	95.4347	50	0.02	96.3103
	1 0.05 1 0.1		13	0.05	96.5604	50 50	0.05	97.2171 97.6392
	1 0.1 1 0.15		13 13	0.1 0.15	97.2171 97.5454	50	0.1 0.15	97.6392
	1 0.13		13	0.13	97.6235	50	0.13	97.5454
	1 0.25		13	0.25	97.7173	50	0.25	97.5610
	1 0.3		13	0.3	97.7330	50	0.3	97.5297
	1 0.35		13	0.35	97.7017	50	0.35	97.4203
	1 0.4		13	0.4	97.4515	50	0.4	97.2170
	1 0.5	96.1383	13	0.5	96.7480	50	0.5	96.5760
	1 0.75		13	0.75	95.6692	50	0.75	95.6692
	1 1		13	1	93.9650	50	1	93.9494
	2 0.01		15	0.01	94.4184	75 75	0.01	95.6379
	2 0.02		15	0.02	95.5598	75 75	0.02 0.05	96.5604 97.3578
	2 0.052 0.1		15 15	0.05 0.1	96.6542 97.2640	75 75	0.05	97.6079
	2 0.15		15	0.15	97.5766	75	0.15	97.5297
	2 0.2		15	0.2	97.6548	75	0.2	97.6235
	2 0.25		15	0.25	97.7486	75	0.25	97.5297
	2 0.3	97.0450	15	0.3	97.7486	75	0.3	97.4984
	2 0.35		15	0.35	97.6548	75	0.35	97.4359
	2 0.4		15	0.4	97.4203	75	0.4	97.2014
	2 0.5		15	0.5	96.7011	75 75	0.5	96.5916
	2 0.752 1		15 15	0.75 1	95.6535 93.9181	75 75	0.75 1	95.6692 93.9337
	5 0.01		17	0.01	94.5435	100	0.01	95.8569
	5 0.02		17	0.02	95.6536	100	0.02	96.6699
	5 0.05		17	0.05	96.7324	100	0.05	97.4203
	5 0.1	96.7949	17	0.1	97.3421	100	0.1	97.5454
	5 0.15		17	0.15	97.6079	100	0.15	97.4984
	5 0.2 5 0.25		17	0.2	97.6548	100	0.2	97.6548
	5 0.255 0.3		17 17	0.25 0.3	97.7330 97.6861	100 100	0.25 0.3	97.5141 97.4828
	5 0.35		17	0.35	97.6079	100	0.35	97.4046
	5 0.4		17	0.4	97.3734	100	0.4	97.1857
	5 0.5		17	0.5	96.7011	100	0.5	96.6073
	5 0.75		17	0.75	95.6535	100	0.75	95.6692
	5 1		17	1	93.9181	100	1	93.9494
	7 0.01		20	0.01	94.7311	150	0.01	96.0289
	7 0.027 0.05		20 20	0.02 0.05	95.6693 96.8731	150 150	0.02 0.05	96.7324 97.3890
	7 0.03		20	0.03	97.4359	150	0.03	97.4047
	7 0.15		20	0.15	97.5766	150	0.15	97.4984
	7 0.2		20	0.2	97.7643	150	0.2	97.5453
	7 0.25		20	0.25	97.6861	150	0.25	97.4984
	7 0.3		20	0.3	97.6704	150	0.3	97.4515
	7 0.35		20	0.35	97.5766	150	0.35	97.4203
	7 0.4		20	0.4	97.3265	150	0.4	97.2170
	7 0.5		20	0.5	96.6073	150	0.5	96.6229
	7 0.757 1		20 20	0.75 1	95.6535 93.9337	150 150	0.75 1	95.6692 93.9181
	0.01		30	0.01	94.9813	200	0.01	96.2165
	0.02		30	0.02	95.9351	200	0.02	96.8262
	.0 0.05		30	0.05	96.9200	200	0.05	97.4046
	.0 0.1	97.2014	30	0.1	97.5298	200	0.1	97.4047
	.0 0.15		30	0.15	97.7017	200	0.15	97.4828
	0.2		30	0.2	97.6392	200	0.2	97.4984
	0.25 0 0.3		30 30	0.25 0.3	97.5923 97.5766	200 200	0.25 0.3	97.4828 97.4359
	10 0.35		30	0.35	97.5766	200	0.35	97.4359
	10 0.4		30	0.33	97.2952	200	0.33	97.2170
	.0 0.5		30	0.5	96.6385	200	0.5	96.6229
1	.0 0.75	95.7161	30	0.75	95.6379	200	0.75	95.6692
1	10 1	93.9494	30	1	93.9337	200	1	93.9337

Now we take a look at the *Table 4*. I tested the C parameter for values: 1, 2, 5, 7, 10, 13, 15, 17, 20, 30, 50, 75, 100, 150 and 200 while Gamma parameter was having values: 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4 and 0.45.

Little explanation for the table:

- Lines in red color have accuracy more than 97.5 %
- Bold lines in darkred color have accuracy more than 97.7 %

Best accuracy I could get was 97.7643 % with C = 20 and Gamma = 0.2. But my humble opinion is that C = 13 and Gamma = 0.3 is a better parameter choice. I am having this impression because this part of the table has the most accuracy scores over 97.7 % => C = 13 and Gamma = 0.25, 0.3, 0.35 (see the table).

Conclusion

There are a lot more into SVM, but I think this is maximum I could do for now. There are even more parameters in sklearn.svm.svC I was leaving by default. It could be investigated deeper.

Best result I reached are:

- 97.7643 % with C = 20 and Gamma = 0.2
- 97.7330 % with C = 13 and Gamma = 0.3

Reports and confusion matrices or every fold are in the files:

- report_conf_matrix_c20_g02.txt
- report_conf_matrix_c13_g03.txt

Github

https://github.com/emanuelzaymus/ActivityRecognition

Possible visualization of the data

I tried to visualize the dataset based on splitting the features into two groups:

- Count of all ITEM sensors
- Count of all MOTION sensors

Used features are created with window size of 30.

Tried also various scaling options by sklearn.preprocessing: StandardScaler, RobustScaler, MinMaxScaler and MaxAbsScaler

Explanation for legend – Activities:

- 0 Clean
- 1 Cook
- 2 Eat
- 3 Phone Call
- 4 Wash_Hand

I used these numbers from 0 to 4 to represent the real activities in the feature vectors as well.

Data without scaling, of course, creates a line x + y = 30 because window size is equal to 30.

Min-Max Scaler was giving exactly the same graph like Max-Abs Scaler.