Aprendizado por Reforço: conceitos, aplicações e desafios

ANNA HELENA REALI COSTA UNIVERSIDADE DE SÃO PAULO anna.reali@usp.br

Parte 3

RL Algorithms

▶ Value learning:

Find Q(s,a)

Then chose a:

$$a = \underset{a}{\operatorname{arg max}} Q(s, a)$$

► Policy learning

Find $\pi(a|s)$

Then sample a:

$$a \sim \pi(a|s)$$

Q representations

Q(s,a)

	a_1	a_2	••••	a_n	$\pi(s)$
S ₁					ai
S ₁ S ₂					Оj
					a_k
•••					
S _m					

enumerated states

factored states

Deep Q Networks (DQN)

DNN to model Q-functions

- Cannot handle continuous action spaces
- Cannot learn stochastic policies

Policy gradient in RL

▶ Policy gradient methods are a type of reinforcement learning techniques that rely upon optimizing parametrized policies with respect to the expected return (long-term cumulative reward) by gradient descent.

PG and stochastic policies

Can learn
stochastic policies

Policy gradient methods and DRL

- With PG methods we can handle continuous state and action spaces
- 1. Run a policy for a while
- Increase probability of actions that lead to high rewards
- 3. Decrease probability of actions that lead to low/no rewards

DQNxPG

	DQN	PG
Complex Q-function	Not OK	OK
Convergence Speed	Slow	Fast
Training Stability	More stable	Less stable
Stochastic Policies	Not OK	OK
Continuous Actions	Not OK	OK
Data Amount	Needs less data	Needs more data

Some Applications

Energy Management with Batch-RL

Energy Management with Batch-RL

Berlink, H; Reali Costa, AH. Batch reinforcement learning for smart home energy management, IJCAI 2015.

Energy Management with Batch-RL

% Increase of the Financial Profit (compared to the Naive-greedy Policy):

Brasil (TOU): 20.78%

USA (RTP): 14.51%

Electric Vehicle Charge with Distributed MCRL

- Battery charge for daily journey
- No transformer overload

Multi Agent Selfish-Collaborative (MASCO)

- Average energy costs and number of overloads per day
 - ► ACP: Always Charging when Plugged
 - ► MASCO: Minimizes costs while avoiding overloads

Danish Tariff	costs	overloads
ACP	0.781 ± 0.003	8.40 ± 0.21
MASCO	$\boldsymbol{0.633 \pm 0.010}$	3.76 ± 0.67
Brazilian Tariff	costs	overloads
Brazilian Tariff ACP	costs 4.07 ± 0.01	overloads 8.40 ± 0.21

Silva, FL; Nishida, CEH; Roijers, DM; Costa, AHR. Coordination of Electric Vehicle Charging through Multiagent Reinforcement Learning, IEEE Trans. Smart Grid 2019.

