Threshold Signatures Part 3: Quantum Resistant Schemes Bar-Ilan University Winter School on Cryptography

Rosario Gennaro

D.Boneh, G, S.Goldfeder, A.Jain, S.Kim, P.M.R. Rasmussen, A.Sahai: Threshold Cryptosystems from Threshold Fully Homomorphic Encryption. CRYPTO (1) 2018: 565-596

How to thresholdize any scheme

We are going to show how to use Threshold Fully Homomorphic Encryption (TFHE) to build a universal thresholdizer: a compiler that takes any cryptographic scheme and builds a non-interactive threshold version of it.

Recall FHE

Let's recall the GSW13 FHE Scheme

- The secret key is a vector sk∈Z_q
- A ciphertext is a matrix ct∈Z_q^{lxm}
- To decrypt we take the inner product of a column ct of ct with sk
 - If $d = \langle ct^k, sk \rangle$ is small then the plaintext bit is 0 otherwise is 1
- A *n*-out-of-<u>n</u> scheme follows:
 - Split $sk = sk_1 + ... + sk_n$
 - Party *i* outputs $d_i = \langle ct^k, sk_i \rangle + noise$
 - The noise is needed to hide the secret share from reconstruction
 - \odot $d \sim d_1 + \dots + d_n$

Threshold FHE

The problem with threshold

- If we split sk with Shamir
- Let $[sk_1 \dots sk_n]$ be the shares
- If Party *i* outputs $d_i = \langle ct^k, sk_i \rangle + noise$
 - When we interpolate with the Lagrangians ∑_{i∈S} λ_{i,S} d_i
 - The noise is the combination is not guaranteed to be small anymore
 - d is very far from ∑_{i∈S} λ_{i,S} d_i

First solution

Use Linear Secret Sharing with binary coefficients

- We split sk with a secret sharing scheme
 - Which is linear (so that we can still easily compute the inner product)
 - And reconstruction involves only 1/0 coefficients
- Let $[sk_1 \dots sk_n]$ be the shares
- Party *i* outputs $d_i = \langle ct^k, sk_i \rangle + noise$
 - We then reconstruct $\sum_{i \in S} \beta_{i,S} d_i$
 - \odot $d \sim \sum_{i \in S} \beta_{i,S} d_i$
 - Since the combined noise is small (because $\beta_{i,s}$ is binary)

First solution

How expressive are {0,1}-LSSS

- It turns out that they are quite expressive
 - They include threshold access structures
- The drawback is that they are not very efficient
 - For n players the shares grow as n⁴

Second Solution

Grow the parameters to accommodate the noise

- Split sk with Shamir
- Let $[sk_1 \dots sk_n]$ be the shares
- Party *i* outputs $d_i = \langle ct^k, sk_i \rangle + noise$
 - Remove the denominators to make the Lagrangian integers
 - \bigcirc $\sum_{i \in S} \lambda_{i,S} n! d_i$
- Choose LWE parameters large enough to accommodate the noise growth
- The issue now is that the parameters of the FHE are dependent on n

Thresholdize everything

A universal thresholdizer

- Setup: Given a secret k it outputs shares [k₁ ... k_n] and a verification key VK
- **Eval**: on input a circuit C(.,.), input x and share k_i
 - It outputs a partial evaluation y_i
- Verify: On input C(.,.),x,VK,i,yi it accepts or rejects
- Reconstruct: from t+1 accepted partial evaluations y_i it computes y=C(k,x)

A universal thresholdizer

Combine TFHE with NIZKs

- Setup:
 - The share of each party is defined as
 - sk_i the share of the TFHE
 - On input the secret k the verification key VK is defined as
- Eval: on input a circuit C(.,.), input x, VK and share ski
 - Each party evaluates FHE(C(k,x)) using the homomorphism of FHE
 - Then it produces y_i as
 - the partial decryption under sk; for the TFHE +
 - a NIZK of correctness wrt VK,C
- Verify: checks the NIZK
- Reconstruct: uses the reconstruction procedure of the TFHE

A universal thresholdizer

Applications

If *k* is the secret key for a cryptographic scheme and *C* is the circuit expressing the cryptographic computation, we obtain 1-round threshold version of any scheme

One interesting application is the "compression" of the non-succinct Shamir-based TFHE we showed earlier

- Our Shamir-based TFHE scheme had parameters growing with n
- We can build a non-succinct universal thresholdizer using this non-succinct TFHE scheme
- But then this UT can be used to thresholdize a succinct FHE
 - Reminds me of the boosting step for FHE

Hard Homogenous Spaces

- A set \(\mathcal{E} \) endowed with a group action \(\mathcal{G} \)
 - If $g \in G$ and $E \in \mathcal{E}$ there is an operation $g^*E = E' \in \mathcal{E}$
 - Hard problems:
 - Given E,E' find g such that $g^*E=E'$ (discrete log)
 - Given $E,E'=g^*E,F$ find $F'=g^*F$ (CDH)
 - \odot The main difference with cyclic groups and discrete log based schemes is that there is no "structure" on the set \mathcal{E}
 - Which is the source of the conjecture quantum hardness
 - In isogeny-based instantiations
 - E is a set of elliptic curves
 - The operation * brings you from one curve to another

A signature scheme based on HHS

- A rift on Schnorr's. Let E be a "base" curve and assume $G=(Z_q, +)$
- Alice knows g∈G such that F=g*E
- To prove this in ZK she runs the following protocol:
 - She chooses $a \in G$ at random and sends F'=a*E
 - The verifier sends a bit b
 - If **b=0**
 - Alice answers with c=a
 - The verifier checks that $c^*E=F'$
 - If b=1
 - Alice answers with c=ag⁻¹
 - The verifier checks that c*F=F'
- This proof can be turned into a signature scheme via the Fiat-Shamir heuristic

A threshold signature scheme based on HHS

- O Alice knows g∈G: F=g*E
 - \odot \$a \in G\$ sends $F' = a \times E$
 - The verifier sends a bit b
 - If b=0
 - Alice answers c=a
 - Verifier checks c*E=F'
 - If b=1
 - Alice answers c=ag⁻¹
 - Verifier checks c*F=F'

- Assume a dealer has shared g via Shamir among n parties with threshold t
- When t+1 parties want to sign they map their shares to additive ones $g = g_1 + ... + g_{t+1}$
- Each party selects a random value a_i
 - The computation of F' is performed sequentially
 - The first party computes $F_1=a_1*E$
 - Each next party i computes F_i=a_i*F_{i-1}
 - F'=F_{t+1}
 - Compute the challenge b via hashing
 - Each party outputs c_i=a_i-g_i
 - And $c = c_1 + ... + c_{t+1}$

Note the sequential computation You cannot combine two separate isogeny computations

A DKG for isogenies

- Assume a dealer has shared g via Shamir among n parties with threshold t
- When t+1 parties want to sign they map their shares to additive ones $g = g_1 + ... + g_{t+1}$
- Each party selects a random value a_i
 - The computation of F' is performed sequentially
 - The first party computes $F_1=a_1*E$
 - Each next party i computes F_i=a_i*F_{i-1}
 - **F'=F**_{t+1}
 - Compute the challenge b via hashing
 - Each party outputs c_i=a_i-g_i
 - And $c = c_1 + ... + c_{t+1}$

- The generation of the nonce can be used as a DKG
- As in FROST
 - Use the same ZK proof to prove knowledge of the contribution
 - Malicious security with abort

A Robust DKG for isogenies

- What if we want robustness (guaranteed termination)
 - With honest majority
- Note that in the setting of isogenies there is no equivalent of a Pedersen's VSS
 - Since it require combining two separate isogeny computations
- It is possible however for each party to do a non-malleable VSS via ZK proofs
 - Providing the non-malleable and recoverable properties of the commitment that we need to make the joint-VSS work
- The combination of the secret keys into a unique public key however remains sequential

The end

A non-exhaustive list of open problems

- DKG: truly scalable, without quadratic communication
 - Can we use recent advances in SNARKs?
- Better proofs:
 - We have UC proofs for Threshold DSA
 - FROST has a proof for concurrent security but not a full UC proof
- How inefficient is the FHE based UT?
 - FHE has been making great strides. At what point it pays off to build threshold schemes just by calling (a tailored version of) UT?
 - A similar question can be made for MPC
- Can we have threshold isogeny-based schemes without having to pay sequential rounds?