Proposition 0.1 Eisenstein's Criterion: Suppose R is an integral domain with a prime ideal P, and $b(x) = x^m + b_{m-1}x^{m-1} + \ldots + b_0$ is a monic polynomial with coefficients in R satisfying $\{b_0, \ldots, b_{m-1}\} \subseteq P$ and $b_0 \notin P^2$. Then b(x) is irreducible.

(Recall that prime ideals are, by definition, proper ideals.)

Proof. Contradiction. Suppose b(x) = c(x)e(x), a non-trivial factorization of b(x). Since b(x) is monic, neither c(x) nor e(x) can be constants (i.e., degree 0): for example, if c(x) = c is constant, then its product awith the leading coefficient of e(x) would be 1 (since b(x) is monic). But c(x) = c is a unit of R and of R[x], and the factorization b(x) = c(x)e(x) is a trivial factorization.

 $deg(b(x)) > \max(deg(c(x), deg(e(x)))$. Let $c(x) = c_k x^k + \ldots + c_0$ and let $e(x) = e_j x^j + \ldots + e_0$. So $c_0 e_0 = b_0 \in P - P^2$. That P is a prime ideal implies that exactly one of $\{c_0, e_0\}$ is in P. Without loss of generality, assume $c_0 \in P$ so $e_0 \notin P$. Now consider $b_1 = c_0 e_1 + e_0 c_1$. Since $b_1 \in P$ and $c_0 \in P$, it follows that $e_0 c_1 \in P$. But $e_0 \notin P$ and that P is prime implies that $c_1 \in P$.

The claim is that for $i=0,\ldots,k-1,$ c_i is in P, a claim proved by induction. The base step is proven—in fact both c_0 and c_1 are in P. Suppose that there exists a positive integer j such that for all i such that j>i, $c_i\in P$. To complete the induction proof, it must be shown that $c_j\in P$. We have $b_j=c_0e_j+c_1e_{j-1}+\ldots c_je_0(=\sum_{n=0}^{n=j}c_ne_{j-n})$. By the induction hypothesis, and using that P is an ideal and that $b_j\in P$, it follows that $c_je_0\in P$. Since $e_0\notin P$ (see above) and P is prime, we have $c_j\in P$. This completes the proof of the claim.

But now $c_k \in P$, and $b_m = c_k e_{m-k}$ implies that $b_m \in P$. However, b(x) is monic, so $b_m = 1$, and we have $1 \in P$. Of course $1 \in P$ implies P = R, and P is not proper, a contradiction. This completes the proof. \square

The following comes out of the proof above.

Lemma 0.2 Eisenstein's Criterion 2 If R is a PID, P is a prime ideal of R, $b(x) = b_m x^m + \ldots + b_0 \in R[x]$ with $\{b_0, \ldots, b_{m-1}\} \subseteq P$, $b_0 \notin P^2$, and $gcd(b_0, \ldots, b_m) = 1$, then b(x) is irreducible over R.

Proof. In the notation of the proof by contradiction above, with b(x) = c(x)e(x), again show that the coefficients of c(x) are all contained in P, and therefore that coefficients of b(x) are all contained in P. Since R is a PID, any finitely generated ideal $I = (r_1, \ldots, r_k)$ is equal to (d), for some $d \in R$ with $d = \gcd(r_1, \ldots, r_k)$. Returning to b(x), $1 = \gcd(b_0, \ldots, b_m)$, $(1) = (b_0, \ldots, b_m) \subseteq P$, contradicting that P is proper. \square