Face detection with a sliding window

Assignment 3

Steps:

- Extract fixed-sized window at each position and scale
- 2. Compute HOG (histogram of gradient) features within each window
- 3. Score the window with a linear SVM classifier
- 4. Perform non-maxima suppression to remove overlapping detections with lower scores
- 5. Evaluate performance

Sliding window

Test image patch at each location and scale

Sliding window:

A simple alignment solution

Sliding window

Test image patch at each location and scale

Window size does not change when scale changes

Non-max suppression

Resolving detection scores

Non-max suppression

Resolving detection scores

"Overlap" score is below some threshold

Each window is separately classified

Linear SVM classifier

- 1. Use "VL Feat" Matlab toolbox
- 2. "vl_trainsvm" returns a confidence value
- 3. This confidence value is used to score the decision

How to measure performance?

1. *Precision-Recall* curve (generated based on confidence scores)

$$Precision = TP / (TP+FP)$$

$$Recall = TP / (TP+FN)$$

TP: True positives, FP: False Positives, FN: False Negatives

2. Average Precision

Histogram of gradient orientations (HOG)

Orientation: 9 bins (for unsigned angles)

Histograms in k x k pixel cells

- Votes weighted by magnitude
- Bilinear interpolation between cells
- Use "vl_hog" function

Design challenges

- How to efficiently search for likely objects
 - Even simple models require searching hundreds of thousands of positions and scales
- Feature design and scoring
 - How should appearance be modeled? What features correspond to the object?
- How to deal with different viewpoints?
 - Often train different models for a few different viewpoints
- Implementation details
 - Window size
 - Aspect ratio
 - Translation/scale step size
 - Non-maxima suppression