Mutations, Substitutions, & Polymorphisms

BIOL 435/535: Bioinformatics

Feb 8, 2022

Some terminology

• Mutation: A inherited change in nucleotide sequence (rate = μ)

• <u>Substitution</u>: A mutational change that has replaced an ancestral nucleotide (rate = d or K)

• <u>Polymorphism</u>: A site in the genome that has more than one allele in the population (rate = π or θ)

Transitions
purine-to-purine
pyrimidine-to-pyrimidine

COMMON

Transversions:

purine-to-pyrimidine

pyrimidine-to-purine

RARE

Ind. 1 Ind. 2 Ind. 3 Ind. 4

Past ACTCTGA ACTCTGA ACTCTGA ACTCTGA

ACTCTGA ACTCTGA ACTTTGA ACTTTGA

ACTCTGA ACTCTGA ACTTTGA ACTTTGA

ACTCTGA ACTTTGA ACTTTGA ACTTTGA

ACTTTGA ACTTTGA ACTTTGA ACTTTGA

ACTTTGA ACTTTGA ACTTTGA ACTTTGA

	Ind. 1	Ind. 2	Ind. 3	Ind. 4	
Past	ACTCTGA	ACTCTGA	ACTCTGA	ACTCTGA	
Time	ACTCTGA	ACTCTGA	ACTTTGA	ACTCTGA	
	ACTCTGA	ACTCTGA	ACTTTGA	ACTTTGA	$C \rightarrow T$ substitution
	ACTCTGA	ACTTTGA	ACTTTGA	ACTTTGA	
	ACTTTGA	ACTTTGA	ACTTTGA	ACTTTGA	
	ACTTTGA	ACTATGA	ACTTTGA	ACTTTGA	
	ACTATGA	ACTATGA	ACTTTGA	ACTTTGA	$T \rightarrow A$ substitution
	ACTATGA	ACTATGA	ACTATGA	ACTTTGA	
esent	ACTATGA	ACTATGA	ACTATGA	ACTATGA	

	Ind. 1	Ind. 2	Ind. 3	Ind. 4	
Past	ACTCTGA	ACTCTGA	ACTCTGA	ACTCTGA	
	ACTCTGA	ACTCTGA	ACTTTGA	ACTCTGA	
	ACTCTGA	ACTCTGA	ACTTTGA	ACTTTGA	
	ACTCTGA	ACTTTGA	ACTTTGA	ACTTTGA	$C \rightarrow T$ substitution
Time	ACTTTGA	ACTTTGA	ACTTTGA	ACTTTGA	
Ф	ACTTTGA	ACTATGA	ACTTTGA	ACTTTGA	
	ACTATGA	ACTATGA	ACTTTGA	ACTTTGA	T > ^
	ACTATGA	ACTATGA	ACTATGA	ACTTTGA	$T \rightarrow A$ substitution
Present V	ACTATGA	ACTATGA	ACTATGA	ACTATGA	Multiply hit site

Polymorphisms – Intraspecific variation in nucleotide sequence

Single Nucleotide Polymorphisms (SNPs)

Population

Single Nucleotide Polymorphisms (SNPs)

- Synonymous (sSNP) SNP in coding region that does not have any effect on amino acid sequence
- Nonsynonymous SNP (nsSNP) SNP in coding region that results in a different amino acid compared to the other allele

Population history based on SNPs

Population history based on SNPs

- Genotyping-by-sequencing (GBS)
 - Obtain SNP genotypes by sequencing whole genomes (or specific regions)
 - Lots of data, potentially more complicated dataset
- SNP array (e.g., 23 & Me, Bird Genoscape Project)
 - Simple dataset/analysis, high throughput
 - Not very flexible

Many different kinds of mutations

Types of Variants

Transposable elements (TEs)

- "Genomic parasites" or "jumping genes"
- Discovered by Barbara McClintock in 1940s
- Can have potentially harmful consequences on host genome

Transposable elements (TEs)

- "Genomic parasites" or "jumping genes"
- Discovered by Barbara McClintock in 1940s
- Can have potentially harmful consequences on host genome
- Growing appreciation for important but complex role in evolution
 - Genome architecture
 - Adaptation

oi:10.1038/nature17951

The industrial melanism mutation in British peppered moths is a transposable element

DNA transposon: "cut and paste"

DNA transposon: "cut and paste"

DNA transposon: "cut and paste"

DNA transposon: "cut and paste" Retrotransposon: "copy and paste"

DNA transposon: "cut and paste"

Classes of TEs

Slide by Kyle E. McElroy

Identifying, annotating, and characterizing Transposable Elements

PiRATE

Evolutionary dynamics and diversity of TEs vary greatly across species

Evolutionary dynamics and diversity of TEs vary greatly across species

Evolutionary dynamics and diversity of TEs vary greatly across species

