

General information

Designation

Betula alleghaniensis

Typical uses

Furniture; boxes; baskets; crates; woodenware; cooperage; interior finish; doors. As veneer in plywood: flush doors; furniture; paneling; radio & television cabinets; aircraft.

Composition overview

Compositional summary

Material family	Natural					
Base material	Wood (hardwoo	Wood (hardwood)				
Renewable content	100	%				
Composition detail (polymers	s and natural materials)					

Price	* 0.304	-	0.608	USD/lb
Price per unit volume	* 11.8	-	28.9	USD/ft^3

Physical properties

Density	0.0224	-	0.0275	lb/in^3		
---------	--------	---	--------	---------	--	--

Mechanical properties

Mechanical properties				
Young's modulus	* 0.292	-	0.325	10^6 psi
Yield strength (elastic limit)	* 0.496	-	0.609	ksi
Tensile strength	0.827	-	1.02	ksi
Elongation	* 0.84	-	1.03	% strain
Compressive strength	0.873	-	1.07	ksi
Flexural modulus	0.265	-	0.296	10^6 psi
Flexural strength (modulus of rupture)	* 0.827	-	1.02	ksi
Shear modulus	* 0.0302	-	0.0413	10^6 psi
Shear strength	* 5.09	-	6.22	ksi
Rolling shear strength	* 0.189	-	0.566	ksi
Bulk modulus	* 0.149	-	0.167	10^6 psi
Poisson's ratio	* 0.02	-	0.04	
Shape factor	5.6			
Hardness - Vickers	5.04	-	6.17	HV
Hardness - Brinell	* 27.3	-	33.3	НВ

Birch (betula alleghaniensis) (t)

EDUPACK					
Hardness - Janka		1.13e3	-	1.39e3	lbf
Fatigue strength at 10^7 cycles	* (0.248	-	0.305	ksi
Mechanical loss coefficient (tan delta)	* (0.017	-	0.021	
Differential shrinkage (radial)	(0.18	-	0.24	%
Differential shrinkage (tangential)	(0.26	-	0.31	%
Radial shrinkage (green to oven-dry)	(6.6	-	8	%
Tangential shrinkage (green to oven-dry)		8.6	-	10.5	%
Volumetric shrinkage (green to oven-dry)		15.1	-	18.5	%
Work to maximum strength	* (0.156	-	0.191	ft.lbf/in^3
Impact & fracture properties					
Fracture toughness	* (0.474	-	0.58	ksi.in^0.5
Thermal properties					
Glass temperature		171	-	216	F
Maximum service temperature		248	-	284	F
Minimum service temperature	* .	-99.4	-	-9.4	F
Thermal conductivity		0.0693	-	0.0809	BTU.ft/hr.ft^2.F
Specific heat capacity		0.396	-	0.408	BTU/lb.fF
Thermal expansion coefficient	*	17.3	-	23.2	µstrain/℉
Electrical properties					
Electrical resistivity	* 4	3.44e14	-	5.12e14	μohm.in
Dielectric constant (relative permittivity)	* ;	3.87	-	4.74	
Dissipation factor (dielectric loss tangent)	* (0.054	-	0.065	
Dielectric strength (dielectric breakdown)	* 4	25.4	-	50.8	V/mil
Magnetic properties					
Magnetic type		Non-magr	netic	.	
Optical properties					
Transparency		Opaque			
Critical materials risk					
Contains >5wt% critical elements?		No			
Durability					
Water (fresh)		Limited us	se		
Water (salt)		Limited us			
Weak acids		Limited us			
Strong acids		Unaccept			
Weak alkalis		Acceptab			

Birch (betula alleghaniensis) (t)

Strong alkalis	Unacceptable
Organic solvents	Acceptable
Oxidation at 500C	Unacceptable
UV radiation (sunlight)	Good
Flammability	Highly flammable

Primary production energy, CO2 and water

Embodied energy, primary production	4.99e3	-	5.5e3	BTU/lb
Sources				

0.5 MJ/kg (Ximenes, 2006); 2 MJ/kg (Ximenes, 2006); 9.1 MJ/kg (Hammond and Jones, 2008); 11.6 MJ/kg (Hubbard and Bowe, 2010); 23.7 MJ/kg (Ecoinvent v2.2); 26 MJ/kg (Ecoinvent v2.2)

CO2 footprint, primary production	0.574	-	0.633	lb/lb			
-----------------------------------	-------	---	-------	-------	--	--	--

Sources

0.229 kg/kg (Ecoinvent v2.2); 0.412 kg/kg (Ecoinvent v2.2); 0.862 kg/kg (Hammond and Jones, 2008); 0.909 kg/kg (Hubbard and Bowe, 2010)

Water usage	* 1.84e4	-	2.03e4	in^3/lb
-------------	----------	---	--------	---------

Processing energy, CO2 footprint & water

Coarse machining energy (per unit wt removed)	* 244	-	269	BTU/lb
Coarse machining CO2 (per unit wt removed)	* 0.0425	-	0.047	lb/lb
Fine machining energy (per unit wt removed)	* 600	-	663	BTU/lb
Fine machining CO2 (per unit wt removed)	* 0.105	-	0.116	lb/lb
Grinding energy (per unit wt removed)	* 996	-	1.1e3	BTU/lb
Grinding CO2 (per unit wt removed)	* 0.174	-	0.192	lb/lb

Recycling and end of life

Recycle		×			
Recycle fraction in current supply		8.55	-	9.45	%
Downcycle		✓			
Combust for energy recovery		✓			
Heat of combustion (net)	*	8.49e3	-	9.16e3	BTU/lb
Combustion CO2	*	1.69	-	1.78	lb/lb
Landfill		✓			
Biodegrade		✓			

Notes

Warning

All woods have properties which show variation; they depend principally on growth conditions and moisture

Links

LIIINS	
ProcessUniverse	
Reference	
Shape	

