Notes of CS 839: Advanced Nonlinear Optimization Instructor: Jelena Diakonikolas

YI WEI

$\mathrm{Sep}\ 2024$

Contents

1	Vec	etor Space	1
	1.1	Cartesian Product of Vector Space	2
	1.2	Linear Transformation	3
	1.3	The Dual Space	3
	1.4	Adjoint Transformation	4
2	Ext	sended Real-Valued Functions	4
	2.1	Closed Functions	1
		2.1.1 Related Concepts	6
		2.1.2 Operations preserving closedness	6
		2.1.3 Closedness vs Continuity	7
	2.2	Convex Function	Ć
		2.2.1 Infimal Convolution	11
		2.2.2 Continuity of convex functions	12
	2.3	Support Function	12
		2.3.1 Operations on sets	13
3	Sub	odifferentiation	14
	3.1	Directional derivative of a max-type function	15
	3.2	Subgradient	16

1 Vector Space

[YW: TODO: Notes of Sep 4.]

[**Date:** Sep 6, 2024]

Example 1.1. 1. Induced matrix norms $A \in \mathbb{R}^{m \times n}$ Let $\|\cdot\|_a$ be any norm in \mathbb{R}^n , $\|\cdot\|_b$ be any norm in R^m , $\|A\|_{a,b} = \max_{x \in \mathbb{R}^n: \|x\|_a \leqslant 1} \|Ax\|_b$ In particular, if $\|\cdot\|_a$ and $\|\cdot\|_b$ are l_p norms:

- (a) $a = b = 2 \rightarrow \text{operator/spectral norm}$
- (b) a = b = 1:

$$||A||_{1,1} = \max_{x \in \mathbb{R}^n, ||x||_1 \le 1} ||Ax||_1 \tag{1}$$

$$= \max_{1 \leqslant j \leqslant n} \sum_{i=1}^{n} |A_{ij}| \tag{2}$$

It's called "max abs column sum"

(c) $a = b = \infty$:

$$||A||_{\infty,\infty} = \max_{x \in \mathbb{R}^n, ||x||_{\infty} \le 1} ||Ax||_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^n |A_{ij}|$$

It's called "max abs row sum norm".

(d) $a = 1, b = \infty$:

$$||A||_{1,\infty} = \max_{x \in \mathbb{R}^n, ||x||_1 \le 1} ||Ax||_{\infty} = \max_{1 \le i \le m, 1 \le j \le n} |A_{ij}|$$

where
$$||Ax||_{\infty} = \begin{bmatrix} A_1x \\ A_2x \\ \vdots \\ A_nx \end{bmatrix}$$

1.1 Cartesian Product of Vector Space

Given $m \ge 2$ vector spaces $\mathbb{E}_1, \dots, \mathbb{E}_m$ equipped w/ inner products $\langle \cdot, \cdot \rangle, \dots, \langle \cdot, \cdot \rangle$, their Cartesian product is the vector space $\mathbb{E} = \mathbb{E}_1 \times \dots \times \mathbb{E}_n$ containing all m-tuples $(\mathbf{v}_1, \dots, \mathbf{v}_m)$ for which basic operations are defined as:

- 1. Addition: $(\mathbf{v}_1, \dots, \mathbf{v}_m) + (\mathbf{w}_1, \dots, \mathbf{w}_m) =$
- 2. Scaler multiplication: $\alpha \in \mathbb{R}, \alpha(\mathbf{v}_1, \dots, \mathbf{v}_m) = (\alpha \mathbf{v}_1, \dots, \alpha \mathbf{v}_m)$

The inner product on \mathbb{E} is defined by:

$$\langle (\mathbf{v}_1, \dots, \mathbf{v}_m), (\mathbf{w}_1, \dots, \mathbf{w}_m) \rangle = \sum_{i=1}^m \langle v_i, w_i \rangle_{\mathbb{E}_i}$$

If $\mathbb{E}_i, i \in \{1, \dots, m\}$ are endowed w/ norms $\|\|_{E_i}$ there a different ways of choosing a norm on \mathbb{E}

Example 1.2.

$$\|(\mathbf{v}_1, \dots, \mathbf{v}_m)\| = \left(\sum_{i=1}^m \|v_i\|_{\mathbb{E}_i}^p\right)^{\frac{1}{p}}$$
$$\|(\mathbf{v}_1, \dots, \mathbf{v}_m)\| = \left(\sum_{i=1}^m w_i\|v_i\|_{\mathbb{E}_i}^2\right)$$

1.2 Linear Transformation

Definition 1.1. Given two vector spaces \mathbb{E} , \mathbb{V} , $f:\mathbb{E}\to\mathbb{V}$ is a linear transformation if

$$\forall x, y \in \mathbb{E}, \forall \alpha, \beta \in \mathbb{R} :$$
$$A(\alpha x + \beta y) = \alpha A(x) + \beta A(y)$$

Example 1.3. 1. All linear transformations from $\mathbb{R}^n \to \mathbb{R}^m$ are of the from

$$A(x) = Ax$$
 for some matrix $A \in \mathbb{R}^{m \times n}$

2. All linear transformations from $\mathbb{R}^{n \times n} \to \mathbb{R}^k$ are of the form:

$$A(X) = \begin{bmatrix} \operatorname{trace}(A_1^{\top} X) \\ \operatorname{trace}(A_2^{\top} X) \\ \vdots \\ \operatorname{trace}(A_n^{\top} X) \end{bmatrix} \quad \forall \ X \in \mathbb{R}^{m \times n}$$

some matrices $A_1, \ldots, A_k \in \mathbb{R}^{m \times n}$

3. The identity transformation $\mathcal{I}: \mathbb{E} \to \mathbb{E}$ is defined by $\mathcal{I}(x) = x$

1.3 The Dual Space

Definition 1.2. The dual space of a vector space \mathbb{E} is the space of all linear functionals on \mathbb{E}

For inner product spaces, (Riez Representation) for any linear functional f, $\exists v \in \mathbb{E}$ s.t $f(x) = \langle \mathbf{v}, \mathbf{x} \rangle \quad \forall \mathbf{x} \in \mathbb{E}$.

We write $\mathbf{v} \in \mathbb{E}^*$ (notation).

Elements of \mathbb{E}^* and \mathbb{E} are the same if \mathbb{E} we use a norm $\|\cdot\|$, then in \mathbb{E}^* we use the norm dual to it, defined by (dual norm)

$$\forall \mathbf{y} \in \mathbb{E}^* : \|\mathbf{y}\|_* := \max_{\mathbf{x} \in \mathbb{E}: \|\mathbf{x}\| \leqslant 1} \langle \mathbf{y}, \mathbf{x} \rangle$$

Theorem 1.1. Generalized Cauchy-Schwarz:

$$\forall \mathbf{x} \in \mathbb{E}, \forall \mathbf{y} \in \mathbb{E}^* : \|\langle \mathbf{x}, \mathbf{y} \rangle\| \leqslant \|\mathbf{x}\| \|\mathbf{y}\|_*$$

Theorem 1.2. Euclidean norms are self-dual. We say that Euclidean space "self-dual" and write $\mathbb{E} = \mathbb{E}^*$

Example 1.4. 1. In \mathbb{R}^d , with $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^\top \mathbf{y}$

- (a) The norm dual to l_p norm for p > 1 is the norm l_p^* where $\frac{1}{p} + \frac{1}{p^*} = 1$. l_1 and l_{∞} are dual to each other.
- (b) The norm dual to $\|\cdot\|_Q$ for Q symmetric, positive definite is $\|\cdot\|_{Q^{-1}}$

$$\|\mathbf{x}\|_{Q^{-1}} = \left(\mathbf{x}^\top Q^{-1} x\right)^{\frac{1}{2}}$$

If $Q = \operatorname{diag}(w_1, \dots, w_d)$ for positive w_1, \dots, w_d , then $\|\mathbf{x}\|_{Q^{-1}} = \left(\sum_{i=1}^d \frac{1}{w_i} \mathbf{x}_i^2\right)^{\frac{1}{2}}$

2. $E = E_1 \times \cdots \times E_m$, with $\|\cdot\|_{E_1}, \dots, \|\cdot\|_{E_m}$

$$\|(\mathbf{v}_{1}, \dots, \mathbf{v}_{m})\|_{\mathbb{E}} = \left(\sum_{i=1}^{m} w_{i} \|\mathbf{v}_{i}\|_{\mathbb{E}_{i}}^{2}\right)^{\frac{1}{2}}$$
$$\|(\mathbf{w}_{1}, \dots, \mathbf{w}_{m})\|_{\mathbb{E}^{*}} = \left(\sum_{i=1}^{m} \frac{1}{w_{i}} \|\mathbf{u}_{i}\|_{\mathbb{E}_{i}^{*}}^{2}\right)^{\frac{1}{2}}$$

Theorem 1.3. Bidual space = dual space to \mathbb{E}^* .

In finite vector space, $\mathbb{E}^{**} = \mathbb{E}$

Theorem 1.4. $\langle A\mathbf{x}, \mathbf{y} \rangle \leq ||A||_{a,b} ||\mathbf{x}||_a ||\mathbf{y}||_b$ if $||\cdot||_a$ and $||\cdot||_b$ are dual to each other.

1.4 Adjoint Transformation

Definition 1.3. Given vector space \mathbb{E} and \mathbb{V} , and a linear transformation $A : \mathbb{E} \to \mathbb{V}$, the adjoint transformation $A^{\top} : \mathbb{V}^* \to \mathbb{E}^*$ is defined by

$$\langle \mathbf{y}, A(x) \rangle = \langle A^{\top}(y), \mathbf{x} \rangle$$

Example 1.5. In particular,

- 1. If $\mathbb{E} = \mathbb{R}^n$, $\mathbb{V} = \mathbb{R}^m$, $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^\top \mathbf{y}$, then, A(x) = Ax for some $A \in \mathbb{R}^{m \times n}$ and $A^\top(y) = A^\top \mathbf{y}$
- $2. \ \mathbb{E} = \mathbb{R}^{m \times n}, \mathbb{V} = \mathbb{R}^k$

 $[\textbf{Date:} \ \operatorname{Sep}\ 13,\ 2024] \ \operatorname{Given}\ A: \mathbb{E} \to \mathbb{V},\ \|\cdot\|_{\mathbb{E}},\ \|\cdot\|_{\mathbb{E}},\ \text{we define the norm}\ \|A\| = \sup_{x \in \mathbb{E}, \|x\|_{\mathbb{E}} \leqslant 1} \|A(x)\|_{\mathbb{V}}$

2 Extended Real-Valued Functions

Definition 2.1. functions that map some real vector space $(\mathbb{E}, \langle \cdot, \cdot \rangle), \| \cdot \|$ to the extended real line -either $\mathbb{R} \bigcup \{-\infty, +\infty\} \equiv [-\infty, +\infty]$ or $\mathbb{R} \bigcup \{+\infty\} \equiv (-\infty, +\infty]$

$$\min_{x \in \mathbb{E}} \quad f(x)$$

Consider this problem, why do we even want to include $+\infty$

1. f is not everywhere defined on \mathbb{E} , I can assign it to $+\infty$ at points where it's not defined. So when it becomes well-defined on all \mathbb{E} .

Here we define the domain = effective domain:

$$dom(f) = \{x \in \mathbb{E} : f(x) < +\infty\}$$

2. We can think of all optimization problems whether constrained or unconstrained, as unconstrained optimization problem.

$$\min_{x \in \mathcal{X}} f(x) \iff \min_{x \in \mathbb{E}} f(x) + \delta_{\mathcal{X}}(x)$$
where $\delta(x) = \begin{cases} 0, & for x \in \mathcal{X} \\ +\infty, & o.w. \end{cases}$

"Rules" for dealing with $\pm \infty$ and $a \in \mathbb{R}$:

1.
$$a + \infty = +\infty + a = +\infty$$

$$2. \ a - \infty = -\infty + a = -\infty$$

3.

$$a \cdot \infty = \begin{cases} \infty, & \text{if } a > 0 \\ -\infty, & \text{if } a < 0 \end{cases}$$

4.
$$0 \cdot \pm \infty = 0$$

5.
$$-\infty < a < \infty \quad \forall a \in \mathbb{R}$$

2.1 Closed Functions

Definition 2.2. $epi(f) := \{(x,y) : x \in \mathbb{E}, y \in \mathbb{R}, f(x) \leq y\}$

Definition 2.3. A function $f: \mathbb{E} \to [-\infty, \infty]$ is said to be closed if epi(f) is closed.

Proposition 2.1. For $C \subseteq \mathbb{E}$, $\sigma_C(x)$ is closed \iff C is closed.

Proof.
$$epi(C) = C \times \mathbb{R}_+$$

Remark. f is closed \iff dom(f) is closed.

Example 2.1.

$$f(x) = \begin{cases} \frac{1}{x}, & x > 0\\ \infty, & x \le 0 \end{cases}$$

Then $dom(f) = (0, \infty)$ is open. And we see that:

$$epi(f) = \{(x, y) \in \mathbb{R}^2 : x > 0, \frac{1}{x} \le y\}$$

2.1.1 Related Concepts

1. Lower Semicontinuity:

Definition 2.4. $f: \mathbb{E} \to [-\infty, +\infty]$ is l.s.c. at $x \in \mathbb{E}$ if

$$f(x) \leq \liminf_{n \to \infty} f(x_n)$$

for any sequence $\{x_n\}_{n\geqslant 1}\in\mathbb{E} \text{ s.t. } x_n\to x \text{ as } n\to\infty.$

f is said to be l.s.c. if it is l.s.c. at all $x \in \mathbb{E}$.

2. Level set: defined for $\alpha \in \mathbb{R}, \ f : \mathbb{E} \to [-\infty, +\infty]$.

$$Lev(f,\alpha) = \{x \in \mathbb{E} : f(x) \leq \alpha\}$$

Theorem 2.2. If $f: \mathbb{E} \to [-\infty, +\infty]$. Then all of the following statements are equivalent:

- 1. *f* is l.s.c.
- 2. f is closed.
- 3. $Lev(f, \alpha)$ is closed, $\forall \alpha \in \mathbb{R}$

2.1.2 Operations preserving closedness

1. If $f: \mathbb{V} \to [-\infty, +\infty]$ is closed, $A: \mathbb{E} \to \mathbb{V}$ is a linear transformation and $b \in \mathbb{V}$, then

$$g(x) = f(A(x) + b)$$
 is closed.

2. If $f_1, \ldots, f_m : \mathbb{E} \to (-\infty, +\infty]$ are closed and $\alpha_1, \ldots, \alpha_m \in \mathbb{R}_+$, then

$$f(x) = \sum_{i=1}^{n} \alpha_i f_i(x)$$
 is closed

6

3. Given an index set I and functions $f_i: \mathbb{E} \to (-\infty, \infty], i \in I$, that are closed, the function

$$f(x) = \sup_{i \in I} f_i(x)$$
 is closed.

2.1.3 Closedness vs Continuity

Bottom line: If f has closed domain + continuous over the domain \Longrightarrow closed.

But closed \iff continuous over the domain.

Theorem 2.3. Let $f : \mathbb{E} \to (-\infty, +\infty]$ be continuous over its domain and suppose dom(f) is closed \Longrightarrow f is closed.

Proof. Argue that epi(f) is closed.

Take any sequence $\{(x_n, y_n)\}_{n \ge 1} \in epi(f)$ that converges to some (x_*, y_*) as $n \longrightarrow \infty$

To argue: $(x_*, y_*) \in epi(f)$: we know that $x_n \in dom(f), x_n \longrightarrow x_*, dom(f)$ is closed $\Longrightarrow x_* \in dom(f)$

By the definition of epi(f):

$$f(x_n) \leqslant y_n$$

Since f is continuous over dom(f) and $\{x_n\}_n, x_* \in dom(f)$ we can take the limit $n \longrightarrow \infty$

$$f(x_*) \leqslant y_*$$

$$\Longrightarrow (x_*, y_*) \in epi(f)$$

Example 2.2 (closed \Longrightarrow continuous on its domain).

$$f_{\alpha}(x) = \begin{cases} \alpha, & x = 0 \\ x, & 0 < x \le 1 \\ \infty, & elsewhere \end{cases}$$
 (3)

When $\alpha < 0$, then it's l.s.c., i.e., closed, but it's not continuous. l_0 "norm"

$$f(x) = \|\mathbf{x}\|_0 = |\{i : \mathbf{x}_i \neq 0\}|$$

f is not continuous but it's closed.

$$f(x) = \sum_{i=1}^{d} I(\mathbf{x}_i)$$

where

$$I(y) = \begin{cases} 0, & y = 0 \\ 1, & y \neq 0 \end{cases}$$

We know

$$Lev(I,\alpha) = \begin{cases} \emptyset, & \alpha < 0 \\ \{0\}, & 0 \le \alpha < 1 \\ \mathbb{R}, & \alpha \ge 1 \end{cases}$$

Then I is closed. \Longrightarrow the sum of them is closed.

[**Date:** Sep 16, 2024]

Theorem 2.4 (Weierstrass theorem for closed functions). Let $f: \mathbb{E} \to (-\infty, \infty]$ be a proper , $dom(f) \neq \emptyset$ closed function and let $C \subseteq \mathbb{E}$ be a compact set such that $C \cap dom(f) \neq \emptyset$. Then:

- 1. f is bounded below on C.
- 2. f attains its minimal value over C.

Proof. 1. Suppose for the purpose of contradiction (FPOC) that f is not bounded below on C. Then \exists a sequence $\{x_n\}_{n\geqslant 1}, x_n \in C \forall n, \text{ s.t.}$

$$\lim_{n \to \infty} f(x_n) = -\infty$$

By Bolzano-Weierstrass, since C is compact, there exists a subsequence $\{x_{n_k}\}_{k\geqslant 1}$ that converges to a point $\bar{x}\in C$. Since

$$f$$
 is closed $\iff f$ is l.s.c.

We know

$$f(\bar{x}) \leqslant \lim_{k \to \infty} f(x_{n_k}) = -\infty$$

 $\Longrightarrow f(\bar{x}) = -\infty$

Contradiction.

2. Let $f_* = \inf_{x \in C} f(x) > -\infty$.

Claim 2.5. \exists a sequence $\{x_n\}_{n\geqslant 1}$ s.t.

$$f(x_n) \to f_* \text{ as } n \to \infty$$

Then $(x_n, f(x_n)) \in epi(f)$. Then take a subsequence $\{x_{n_k}\}_{k \geqslant 1}$ s.t. $x_{n_k} \to \bar{x}$. Then

$$f(\bar{x}) \leq \lim \inf_{k \to \infty} f(n_k) = f_*$$

$$\Longrightarrow \bar{x} \text{ minimizes } f$$

What is we are not optimizing over a compact set.

Definition 2.5. A proper function $f: \mathbb{E} \to (-\infty, \infty]$ is said to be coercive if

$$\lim_{x \in \mathbb{E}: ||x|| \to \infty} f(x) = +\infty$$

Theorem 2.6. Let $f: \mathbb{E} \to (-\infty, \infty]$ be a proper, closed and coercive function, and let $S \subseteq \mathbb{E}$ be a nonempty closed set that satisfy $S \cap dom(f) \neq \emptyset$. Then f attains the minimum over set S.

Proof. Let x_0 be an arbitrary point

2.2 Convex Function

Definition 2.6 (Equivalent definitions of convexity). f is convex if

- 1. epi(f) is convex
- 2. $\forall x, y \in \mathbb{E}, \forall \alpha \in (0, 1)$:

$$f((1-\alpha)x + \alpha y) \le (1-\alpha)f(x) + \alpha f(y)$$

Remark. Notice this induces Jensen's inequality: $\forall x_1, \dots, x_m \in \mathbb{E}, \forall \lambda_1, \dots, \lambda_m \geq 0, \sum_{i=1}^n \lambda_i = 1$

$$f(\sum_{i=1}^{m} \lambda_i x_i) \leqslant \sum_{i=1}^{m} \lambda_i f(x_i)$$

3. if f is continuously differentiable: $\forall x, y \in \mathbb{E}$

$$f(y) \geqslant f(x) + \langle \nabla f(x), y - x \rangle$$

4. if $f \in C^2$: $\forall x \in \mathbb{E}$:

$$\nabla^2 f(x) \geqslant 0$$

Theorem 2.7 (Operations preserving convexity). 1. If $A : \mathbb{E} \to \mathbb{V}$ liner transform, $b \in \mathbb{V}$, and $f : \mathbb{V} \to (-\infty, \infty]$ is convex, then f(A(x) + b) is convex.

- 2. $f_1, \ldots, f_m : \mathbb{E} \to (-\infty, +\infty]$ are convex, $\lambda_1, \ldots, \lambda_n \in \mathbb{R}_+$, then $f(x) = \sum_{i=1}^m \lambda_i f_i(x)$ is convex.
- 3. $I: \text{ inded set, } f_i: \mathbb{E} \to (-\infty, \infty] \text{ convex } \forall i \in I, \text{ then } f(x) = \sup_{i \in I} f_i(x) \text{ is convex.}$

Example 2.3. Given $C \subseteq \mathbb{E}$ that is nonempty (but not necessarily convex), let

$$d_C(x) = \inf_{y \in C} \|y - x\|$$

If $\mathbb E$ is Euclidean, then $\varphi_C(x) = \frac{1}{2}(\|x\|^2 - d_C^2(x))$ is convex. Notice that

$$\begin{split} d_C^2(x) &= \inf_{y \in C} \|y - x\|^2 = \inf_{y \in C} \{\|x\|^2 - 2\langle x, y \rangle + \|y\|^2 \} \\ &= \|x\|^2 - \sup_{y \in C} \{2\langle y, x \rangle - \|y\|^2 \} \end{split}$$

Theorem 2.8 (Convexity under partial minimization). Let $f : \mathbb{E} \times \mathbb{V} \to (-\infty, \infty]$ be a convex function s.t. $\forall x \in \mathbb{E}, \exists y \in \mathbb{V} : f(x,y) < \infty$. Let $g : \mathbb{E} \to [-\infty, \infty)$ be defined

$$g(x) := \inf_{y \in \mathbb{V}} f(x, y)$$

Then g is convex.

Proof. To show $\forall x_1, x_2 \in \mathbb{E}, \forall \alpha \in (0,1)$:

$$g((1-\alpha)x_1 + \alpha x_2) \leqslant (1-\alpha)g(x_1) + \alpha g(x_2)$$

Case 1: $g(x_1), g(x_2) > -\infty$. Take any $\epsilon > 0$, then $\exists y_1, y_2 \in \mathbb{E}$ s.t.

$$f(x_1, y_1) \leqslant g(x_1) + \epsilon$$
$$f(x_2, y_2) \leqslant g(x_2) + \epsilon$$

f is convex so:

$$f((1 - \alpha)x_1 + \alpha x_2, (1 - \alpha)y_1 + \alpha y_2) \leq (1 - \alpha)f(x_1, y_1) + \alpha f(x_2, y_2)$$

$$\leq (1 - \alpha)g(x_1) + \alpha g(x_2) + \epsilon$$

Then by the definition of g, we have:

$$g((1-\alpha)x_1 + \alpha x_2) \le (1-\alpha)g(x_1) + \alpha g(x_2) + \epsilon \quad \forall \epsilon > 0$$

Case 2: Assume at least one of $g(x_1), g(x_2)$ is equal $-\infty$. Want to show:

$$g((1-\alpha)x_1 + \alpha x_2) = -\infty$$

Take any $M \in \mathbb{R}$, then $\exists y_1 \text{ s.t. } f(x_1, y_1) \leq M$. And $\exists y_2 \text{ s.t. } f(x_2, y_2) < \infty$. Since f is convex

$$f((1 - \alpha)x_1 + \alpha x_2, (1 - \alpha)y_1, \alpha y_2)$$

$$\leq (1 - \alpha)f(x_1, y_1) + \alpha f(x_2, y_2)$$

$$\leq (1 - \alpha)M + \alpha f(x_2, y_2)$$

Then by the definition of g, we have

$$g((1-\alpha)x_1 + \alpha x_2) \leq (1-\alpha)M + \alpha f(x_2, y_2)$$

M is arbitrary.

2.2.1 Infimal Convolution

Definition 2.7. $h_1, h_2 : \mathbb{E} \to (-\infty, \infty]$, both proper

$$h_1 \circ h_2(x) = \inf_{u \in \mathbb{E}} \{h_1(u) + h_2(x - u)\}$$

Remark. It's important for proximal point method. You smoothe functions by infimal convolution with some good functions like quadratic functions.

[**Date:** Sep 20, 2024]

Theorem 2.9. Let $h_1 : \mathbb{E} \to (-\infty, \infty]$ be proper and convex, $h_2 : \mathbb{E} \to \mathbb{R}$ be a real-valued convex function. Then $h_1 = h_2$ is convex.

Proof. Define
$$f(x,y) = h_1(y) + h_2(x-y), g(x) = \inf_{y \in \mathbb{E}} f(x,y) = (h_1 \circ h_2)(x)$$

Notice that f is convex since it's the sum of two convex functions, and $h_2 : \mathbb{E} \times \mathbb{E} \to \mathbb{R}$ is convex since x - y is a linear transform of x, y.

Want to show that $\forall \mathbf{x} \in \mathbb{E}, \exists \mathbf{y} \in \mathbb{E} \text{ s.t.}$

$$h_1(y) + h_2(x - y) < \infty \tag{4}$$

It's obvious since h_1 is proper and h_2 is real-valued.

Then by Theorem 2.8, f is convex.

Example 2.4.

If $C \subseteq \mathbb{E} \neq \emptyset$ is convex, then

$$d_C(x) = \inf_{y \in C} \|\mathbf{y} - \mathbf{x}\|$$

is convex. (This holds for any norm.)

Remark. $\|\cdot\|$ is convex.

We write

$$d_C(x) = \inf_{\mathbf{y} \in \mathbb{E}} \{ \|\mathbf{y} - \mathbf{x}\| + \delta_C(y) \}$$

$$= \underbrace{\delta_C}_{\text{convex \& proper convex \& real-valued}}$$

Notice that $\delta_C(\cdot)$ is convex when C is a convex set.

2.2.2 Continuity of convex functions

Theorem 2.10. Let $f: \mathbb{E} \to (-\infty, \infty]$ be convex. let $x_0 \in intdom(f)$. Then $\exists \epsilon > 0$ and L > 0 s.t. $B[x_0, \epsilon] \subseteq dom(f)$ and

closed ball, centered at x_0 of radius ϵ

$$\forall x \in B[x_0, \epsilon] : |f(x) - f(x_0)| \le L \|\mathbf{x}_0 - \mathbf{x}_0\|$$

2.3 Support Function

Definition 2.8. Let $C \subseteq \mathbb{E}$ be nonempty. Then the support function of C is defined by

$$\sigma_C : \mathbb{E}^* \to (-\infty, \infty]$$

$$\sigma_C(y) = \sup_{\mathbf{x} \in C} \langle \mathbf{x}, \mathbf{y} \rangle$$
Or: $\sigma_C(y) = \sup_{\mathbf{x} \in \mathbb{E}} \{ \langle \mathbf{x}, \mathbf{y} \rangle - \delta_C(x) \}$

Lemma 2.11. Let $C \subseteq \mathbb{E}$ be a nonempty set. Then σ_C is both closed and convex.

2.3.1 Operations on sets

1. Minkowski sum:

$$A, B \subseteq \mathbb{E}, A + B = \{a + b : a \in A, b \in B\}$$

2. for $\alpha \in \mathbb{R}$, $A \subseteq \mathbb{E}$:

$$\alpha A = \{ \alpha a : a \in A \}$$

Proposition 2.12 (Properties of support functions:). 1. positive homogeneity:

$$\forall C \subseteq \mathbb{E}, C \neq \emptyset, \forall \mathbf{y} \in \mathbb{E}^*, \forall \alpha \geqslant 0 :$$

$$\sigma_C(\alpha y) = \alpha \sigma_C(y)$$

$$\sigma_{\alpha C}(\mathbf{y}) = \alpha \sigma_C(\mathbf{y})$$

2. subadditivity: $\forall C \subseteq \mathbb{E}, C \neq \emptyset$,

$$\forall vy_1, vy_2 \in \mathbb{E}^* : \sigma_C(vy_1 + vy_2) \leq \sigma_C(\mathbf{y}_1) + \sigma_C(\mathbf{y}_2)$$

3. $\forall A, B \subseteq \mathbb{E}, A \bigcup B \neq \emptyset, \forall \mathbf{y} \in \mathbb{E}^*$:

$$\sigma_{A+B}(\mathbf{y}) = \sigma_A(\mathbf{y}) + \sigma_B(\mathbf{y})$$

Example 2.5. 1. $C = conv\{b_1, \ldots, b_m\}, b_i \in \mathbb{E} \quad \forall i$, then

$$\sigma_C(\mathbf{y}) = \max_{1 \leq i \leq m} \langle \boldsymbol{b}_i, \mathbf{y} \rangle$$

2. Let $K \subseteq \mathbb{E}$ be a cone set s.t. if $\mathbf{x} \in K$, then $\forall r > 0, r\mathbf{x} \in K$.

The polar cone of K is defined by:

$$K^o := \{ \mathbf{y} \in \mathbb{E}^* : \langle \mathbf{y}, \mathbf{x} \rangle \leq 0, \ \forall \, \mathbf{x} \in K \}$$

Then $\sigma_K(\mathbf{y}) = \delta_{K^o}(y)$

3. $\mathbb{E} = \mathbb{R}^d$, $C = \mathbb{R}^d_+$

$$\sigma_{\mathbb{R}^d_+}(\mathbf{y}) = \delta_{\mathbb{R}^d_-}(\mathbf{y})$$

4. $\mathbb{E} = \mathbb{R}^d$, $A \in \mathbb{R}^{n \times d}$, $S = \{ \mathbf{x} \in \mathbb{R}^d : Ax \leq 0 \}$

$$\sigma_S(\mathbf{y}) = \delta_{S^o}(\mathbf{y})$$

where
$$S^o = \{A^\top \lambda : \lambda \in \mathbb{R}^n_+\}$$

5. $C = B_{\|\cdot\|}[0,1] = \{\mathbf{x} \in \mathbb{E} : \|\mathbf{x}\| \le 1\}$

$$\sigma_C(\mathbf{y}) = \sup_{\mathbf{x} \in \mathbb{E}: \|\mathbf{x}\| \leqslant 1} \langle \mathbf{y}, \mathbf{x} \rangle = \|\mathbf{y}\|_*$$

Proposition 2.13. If $A \subseteq \mathbb{E}$, $A \neq \emptyset$, then

- 1. $\sigma_A = \sigma_{cl}(A)$ where cl(A) = closure of A
- 2. $\sigma_A = \sigma_{conv}(A)$ where conv(A) = convex hull of A

If $A, B \subseteq \mathbb{E}$ are closed, convex and nonempty, then

$$A = B \iff \sigma_A = \sigma_B$$

3 Subdifferentiation

Definition 3.1. The directional derivative of a function $f : \mathbb{E} \to [-\infty, \infty]$ at $\bar{\mathbf{x}} \in \mathbb{E}$ in a direction $z \in \mathbb{E}$ is:

$$f'(\bar{\mathbf{x}}; z) = \lim_{\alpha \to 0} \frac{f(\bar{\mathbf{x}} + \alpha z) - f(\bar{\mathbf{x}})}{\alpha}$$

when this limit exists.

When the directional derivative $f'(\bar{\mathbf{x}}; \mathbf{z})$ is linear in \mathbf{z} , then we say that f is Gateaux differentiable.

 $\mathbb{E} = \mathbb{R}^d$. $\exists g \in \mathbb{E}^*$ s.t. $f'(\mathbf{x}, \mathbf{z}) = \langle g, \mathbf{z} \rangle$, we say g is the Gateaux derivative.

If f is differentiable on every point of $C \subseteq \mathbb{E}$, we say that f is differentiable on C.

Theorem 3.1. Let $f : \mathbb{E} \to (-\infty, \infty]$ be a proper convex function and let $\mathbf{x} \in intdom(f)$. Then $\forall zin\mathbb{E}$, the directional derivative $f'(\mathbf{x}; z)$ exists.

Exercise 3.1. Show that if f attains $-\infty$, then it would be $-\infty$ anywhere.

Lemma 3.2. Let $f: \mathbb{E} \to (-\infty, \infty]$ be a proper convex function and let $\mathbf{x} \in intdom(f)$. Then

- 1. $z \mapsto f'(\mathbf{x}; z)$ is convex;
- 2. $\forall \lambda > 0, \forall z \in \mathbb{E} : f'(\mathbf{x}; \lambda z) = \lambda f'(\mathbf{x}; z)$

Proof. 1. Take $z_1; z_2 \in \mathbb{E}$ and $\lambda \in (0, 1)$.

$$f'(\mathbf{x}; \lambda \mathbf{z} + (1 - \lambda)) = \lim_{\alpha \to 0} \frac{f(\mathbf{x} + \alpha(\lambda \mathbf{z}_1 + (1 - \lambda)\mathbf{z}_2) - f(\mathbf{x}))}{\alpha}$$
$$= \lim_{\alpha \to 0} \frac{f(\lambda(\mathbf{x} + \alpha \mathbf{z}_1) + (1 - \lambda)(\mathbf{x} + \alpha \mathbf{z}_2)) - f(\mathbf{x})}{\alpha}$$

$$\leq \lambda \lim_{\alpha \to 0} \frac{f(\mathbf{x} + \alpha z_1) - f(x)}{\alpha} + (1 - \lambda) \lim_{\alpha \to 0} \frac{f(\mathbf{x} + \alpha z_2) - f(x)}{\alpha}$$
$$= \lambda f'(\mathbf{x}; z_1) + (1 - \lambda) f'(\mathbf{x}; z_2)$$

2. $\lambda = 0$ Trivial. Assume $\lambda > 0$:

$$f'(\mathbf{x}; \lambda \mathbf{z}) = \lambda \lim_{\alpha \to 0} \frac{f(\bar{\mathbf{x}} + \lambda \alpha \mathbf{z}) - f(\bar{\mathbf{x}})}{\lambda \alpha}$$

Lemma 3.3. Let $f: \mathbb{E} \to (-\infty, \infty]$ be a proper convex function and let $\mathbf{x} \in intdom(f)$. Then:

$$f(\mathbf{y}) \geqslant f(\mathbf{x}) + f'(\mathbf{x}; \mathbf{y} - \mathbf{x}) \quad \forall \ \mathbf{y} \in dom(f)$$

Proof.

$$f'(\mathbf{x}; \mathbf{y} - \mathbf{x}) = \lim_{\alpha \to 0} \frac{f((1 - \alpha)\mathbf{x} + \alpha\mathbf{y}) - f(\mathbf{x})}{\alpha}$$
$$\leq f(\mathbf{y}) - f(\mathbf{x})$$

3.1 Directional derivative of a max-type function

Theorem 3.4. Suppose that $f(\mathbf{x}) = \max_{1 \le i \le m} f_i(\mathbf{x})$ where $f_1, \dots, f_m : (-\infty, \infty]$ are proper. Let $\mathbf{x} \in \bigcap_{i=1}^m intdom(f_i)$ and let $\mathbf{z} \in \mathbb{E}$. Assume that $f_i'(\mathbf{x}; \mathbf{z})$ exists, $\forall i \in \{1, \dots, m\}$. Then:

$$f'(\mathbf{x}; \mathbf{z}) = \max_{i \in I(\mathbf{x})} f'_i(\mathbf{x}; \mathbf{z}),$$

where $I(\mathbf{x}) = \{i : s.t \ f_i(\mathbf{x}) = f(\mathbf{x})\}\$

Proof. For any $i \in \{1, \ldots, m\}$:

$$\lim_{\alpha \to 0^{+}} f_{i}(\mathbf{x} + \alpha \mathbf{z}) = \lim_{\alpha \to 0} \left\{ \alpha \frac{f_{i}(\mathbf{x} + \alpha \mathbf{z}) - f_{i}(\mathbf{x})}{\alpha} + f_{i}(\mathbf{x}) \right\}$$
$$= 0 \cdot f'_{i}(\mathbf{x}; \mathbf{z}) + f_{i}(\mathbf{x})$$
$$= f_{i}(\mathbf{x})$$

By the definition of $I(\mathbf{x})$, $f_i(\mathbf{x}) > f_j(\mathbf{x})$, $\forall i \in I(\mathbf{x})$, $j \neq I(\mathbf{x})$, $\Longrightarrow \exists \epsilon > 0, \ \forall \alpha \in (0, \epsilon] \text{ s.t.}$

$$f_i(\mathbf{x} + \alpha \mathbf{z}) > f_j(\mathbf{x} + \alpha \mathbf{z}) \quad \forall i \in I(\mathbf{x}), j \notin I(\mathbf{x})$$

 $\Longrightarrow \forall \alpha \in (0, \epsilon] : f(\mathbf{x} + \alpha \mathbf{z}) = \max_{i \leq i \leq m} f_i(\mathbf{x} + \alpha \mathbf{z})$

$$= \max_{i \in I(\mathbf{x})} f_i(\mathbf{x} + \alpha \mathbf{z})$$

$$\Longrightarrow \forall \alpha \in (0, \epsilon] :$$

$$\frac{f(\mathbf{x} + \alpha \mathbf{z}) - f(\mathbf{x})}{\alpha} = \frac{\max_{i \in I(\mathbf{x})} (f_i(\mathbf{x} + \alpha \mathbf{z}) - f_i(\mathbf{x}))}{\alpha}$$

We obtain:

$$\lim_{\alpha \to 0} \frac{f(\mathbf{x} + \alpha \mathbf{z}) - f(\mathbf{x})}{\alpha} = \lim_{\alpha \to 0} \max_{i \in I(\mathbf{x})} \frac{f_i(\mathbf{x} + \alpha \mathbf{z}) - f_i(\mathbf{x})}{\alpha}$$
$$= \max_{i \in I(\mathbf{x})} \lim_{\alpha \to 0} \frac{f_i(\mathbf{x} + \alpha \mathbf{z}) - f_i(\mathbf{x})}{\alpha}$$
$$= \max_{i \in I(\mathbf{x})} f'_i(\mathbf{x}; \mathbf{z})$$

3.2 Subgradient

Definition 3.2. Let $f : \mathbb{E} \to (-\infty, \infty]$ be a proper function and let $\mathbf{x} \in dom(f)$. A vector $g \in \mathbb{E}^*$ is a subgradient of f at x if

$$\forall \mathbf{y} \in \mathbb{E} : \underbrace{f(\mathbf{y}) \geqslant f(\mathbf{x}) + \langle g, \mathbf{y} - \mathbf{x} \rangle}_{\text{subgradient inequality}}$$

The set of all subgradient of f at \mathbf{x} is called the subdifferential of f at \mathbf{x} and denoted by $\partial f(\mathbf{x})$. If $\partial f(\mathbf{x}) \neq \emptyset$, we say that f is subdifferentiable at \mathbf{x} .

$$\partial f(\mathbf{x}) = \{ g \in \mathbb{E}^* : f(\mathbf{y}) \geqslant f(\mathbf{x}) + \langle g, \mathbf{y} - \mathbf{x} \rangle, \quad \forall \mathbf{y} \in \mathbb{E} \}$$

Example 3.1. 1. Let $f: \mathbb{E} \to \mathbb{R}$ be defined by

$$f(\mathbf{x}) = ||\mathbf{x}||, \text{ where } ||\cdot|| \text{ is the norm at } \mathbb{E}$$

Then:

$$\partial f(\vec{0}) = B_{\|\cdot\|_*}[0,1] = \{g \in \mathbb{E}^* : \|g\|_* \le 1\}$$

Proof. By the def of a subgradient and subdifferential, $g \in \partial f(\vec{0})$ if and only if

$$\forall \mathbf{y} \in \mathbb{E} : \ f(\mathbf{y}) \geqslant f(\vec{0}) + \langle g, \mathbf{y} \rangle$$
$$\iff \langle g, \mathbf{y} \rangle \leqslant \|\mathbf{y}\|$$

$$(\Longrightarrow)$$
 want to show: $\|g\|_* \leqslant 1 \Longrightarrow \langle g, \mathbf{y} \rangle \leqslant \|\mathbf{y}\|$

$$(\longleftarrow)$$
 want to show: $\|g\|_* \leqslant 1 \longleftarrow \langle g, \mathbf{y} \rangle \leqslant \|\mathbf{y}\|$