



## 실습 5강 자기조직화지도

# 실습 데이터

- ❖ 아일랜드 더블린 지역의 센서스 데이터 (2011)
- 4046 records
- 14 variables



|    | Α         | В           | С                  | D                   | Е            | F           | G              | Н                    | 1                | J              | K               | L                 | M                | N             |
|----|-----------|-------------|--------------------|---------------------|--------------|-------------|----------------|----------------------|------------------|----------------|-----------------|-------------------|------------------|---------------|
| 1  | id        | avr_age     | avr_household_size | avr_education_level | avr_num_cars | avr_health  | rented_percent | unemployment_percent | internet_percent | single_percent | married_percent | separated_percent | divorced_percent | widow_percent |
| 2  | 267123023 | 40.02811245 | 2.524752475        | 3.038461538         | 1.03960396   | 4.385542169 | 6.930693069    | 15.34391534          | 71               | 53.41365462    | 33.33333333     | 4.819277108       | 2.81124498       | 5.62248996    |
| 3  | 267016001 | 35.67365967 | 3.320610687        | 3.597701149         | 1.983739837  | 4.509433962 | 4.87804878     | 12.46105919          | 72.95081967      | 49.41724942    | 44.98834499     | 1.398601399       | 0.233100233      | 3.962703963   |
| 4  | 267016002 | 35.88235294 | 3.324324324        | 4.295302013         | 1.905405405  | 4.596638655 | 1.351351351    | 10.40462428          | 83.78378378      | 47.4789916     | 43.69747899     | 3.361344538       | 0                | 5.462184874   |
| 5  | 267002034 | 38.51666667 | 3.088607595        | 3.871794872         | 1.730769231  | 4.530172414 | 3.896103896    | 8.108108108          | 78.94736842      | 47.08333333    | 48.33333333     | 0.833333333       | 1.25             | 2.5           |
| 6  | 267002029 | 24.67800454 | 3.512              | 3.93373494          | 1.112        | 4.510344828 | 20.8           | 21.81069959          | 81.30081301      | 67.12018141    | 26.98412698     | 2.267573696       | 1.587301587      | 2.040816327   |
| 7  | 267002044 | 25.13953488 | 3.136363636        | 4.496855346         | 1.109090909  | 4.419161677 | 29.35779817    | 24.15458937          | 81.9047619       | 64.24418605    | 30.23255814     | 1.453488372       | 3.488372093      | 0.581395349   |
| 8  | 267002030 | 25.05882353 | 3.441176471        | 4.726872247         | 1.558823529  | 4.68988764  | 23.52941176    | 8.680555556          | 94.11764706      | 55.5555556     | 36.81917211     | 3.703703704       | 2.832244009      | 1.089324619   |
| 9  | 267002015 | 24.43733333 | 2.861538462        | 3.973509934         | 0.969230769  | 4.580555556 | 4.6875         | 19.45701357          | 81.25            | 70.4           | 21.33333333     | 2.933333333       | 3.46666667       | 1.86666667    |
| 10 | 267002017 | 23.50530035 | 2.958762887        | 4.674242424         | 1.391752577  | 4.685920578 | 20.6185567     | 14.04494382          | 91.75257732      | 62.54416961    | 32.86219081     | 2.473498233       | 1.766784452      | 0.35335689    |
| 11 | 267002018 | 24.67355372 | 2.928571429        | 4.530769231         | 1.404761905  | 4.579831933 | 14.81481481    | 10.8974359           | 82.92682927      | 66.52892562    | 29.75206612     | 1.652892562       | 1.652892562      | 0.41322314    |
| 12 | 267002007 | 22.14421252 | 2.977653631        | 4.18                | 1.05027933   | 4.587548638 | 8.426966292    | 22.87822878          | 83.8150289       | 71.91650854    | 21.63187856     | 3.605313093       | 2.277039848      | 0.569259962   |
| 13 | 267002016 | 22.97482838 | 2.913333333        | 4.373563218         | 1.14         | 4.563380282 | 1.379310345    | 19.4214876           | 89.51048951      | 71.39588101    | 23.798627       | 2.517162471       | 1.830663616      | 0.457665904   |
| 14 | 267002014 | 26.06349206 | 2.3875             | 5.089285714         | 1.1875       | 4.60989011  | 27.27272727    | 13.86861314          | 80.26315789      | 67.1957672     | 28.04232804     | 2.645502646       | 1.058201058      | 1.058201058   |
| 15 | 267002033 | 31.42060086 | 3.178082192        | 4.125               | 1.767123288  | 4.600858369 | 10.95890411    | 15.88235294          | 93.15068493      | 54.93562232    | 41.63090129     | 2.145922747       | 0.429184549      | 0.858369099   |
| 16 | 267002012 | 23.52536232 | 3.26744186         | 4.621621622         | 1.302325581  | 4.590405904 | 31.76470588    | 19.10828025          | 89.41176471      | 60.14492754    | 33.33333333     | 2.173913043       | 3.623188406      | 0.724637681   |
|    |           |             |                    |                     |              |             |                |                      |                  |                |                 |                   |                  |               |

### 데이터 전처리

```
# 패키지 읽기
library(kohonen)
library(dummies)
# 팔레트 불러오기
pretty_palette <- c("#1f77b4", '#ff7f0e', '#2ca02c',
'#d62728', '#9467bd', '#8c564b', '#e377c2')
# 데이터 불러오기
data <- read.csv('dublin.csv', header=TRUE)</pre>
# 분석에 사용할 변수 선정
data_train \leftarrow data[, c(2,4,5,8)]
# 정규화 후, 매트릭스 만들기
data_train_matrix <- as.matrix(scale(data_train))</pre>
```

### SOM 학습

```
# 20 X 20
```

Som\_grid <- somgrid(xdim = 20, ydim=20, topo="hexagonal")</pre>

※ somgrid() 함수의 주요 요소

• xdim: x 차원 수

• ydim: y 차원 수

• Topo: 형태 ("hexagonal", "rectangular")

### SOM 학습

#### ※ som() 함수의 주요 요소

- data: 학습할 데이터
- grid: 출력층 표현 (보통 somgrid()함수의 출력값)
- rlen: 학습횟수
- alpha: 학습율 (보통 0.5 기준으로 학습횟수가 증가할수록 점진적 감소)
- radius: 이웃 노드의 반경
- Keep.data: 원 자료를 같이 저장할지 여부

## custom palette as per kohonen package (not compulsory)

source('coolBlueHotRed.R')
plot(som\_model, type = "changes")



#### #counts within nodes

plot(som\_model, type = "counts", main="Node Counts",
palette.name=coolBlueHotRed)



#### #map quality

plot(som\_model, type = "quality", main="Node
Quality/Distance", palette.name=coolBlueHotRed)



#### #neighbour distances

plot(som\_model, type="dist.neighbours", main = "SOM
neighbour distances", palette.name=grey.colors)



```
#code spread
plot(som_model, type = "codes")
```

#### Codes plot



```
# Plot the heatmap for a variable at scaled / normalised
values
var <- 4 #define the variable to plot
plot(som_model,
     type = "property",
     property = getCodes(som_model)[,var],
     main=colnames(getCodes(som_model))[var],
     palette.name=coolBlueHotRed)
                                             unemployment percent
```

#plot a variable from the original data set (will be uncapped etc.)
# This function produces a menu for multiple heatmaps if a factor or
character is chosen
source('plotHeatMap.R')

```
# A menu of all variables should be displayed if variable=0
# (note on Mac this will required working XQuartz installation.)
plotHeatMap(som_model, data, variable=2)
plotHeatMap(som_model, data, variable=3)
plotHeatMap(som_model, data, variable=4)
plotHeatMap(som_model, data, variable=5)
plotHeatMap(som_model, data, variable=6)
plotHeatMap(som_model, data, variable=7)
plotHeatMap(som_model, data, variable=8)
plotHeatMap(som_model, data, variable=9)
plotHeatMap(som_model, data, variable=10)
plotHeatMap(som_model, data, variable=11)
plotHeatMap(som_model, data, variable=12)
plotHeatMap(som_model, data, variable=13)
plotHeatMap(som_model, data, variable=14)
```

### 군집화

```
# Form clusters on grid
## use hierarchical clustering to cluster the codebook vectors
som_cluster <- cutree(hclust(dist(getCodes(som_model))), 6)</pre>
```

# Show the map with different colours for every cluster
plot(som\_model, type="mapping", bgcol = pretty\_palette[som\_cluster],
main = "Clusters")
add.cluster.boundaries(som\_model, som\_cluster)



### 군집화

#show the same plot with the codes instead of just colours
plot(som\_model, type="codes", bgcol = pretty\_palette[som\_cluster],
main = "Clusters")
add.cluster.boundaries(som\_model, som\_cluster)





## 군집화 결과의 시각화

Clustered Map of Dublin (example)

