

# **Time Series**

Lecture 6 David Nagy, Mohan Sukumar Onest hunan potential and

#### Ціль навчання



- Робота з Датами і Часом у програмі Пайтон
- Що таке Часовий ряд (Ряд динаміки)?
- Терміналогія
- Аналіз Часових рядів
- Декомпозиція (розклад) Часових рядів
- Адитивна (додавання) та мультиплікативна (множення) моделі Часових рядів
- Стаціонарні та нестаціонарні Часові ряди
- Методи аналізу Часових рядів





## Робота з Датими і Часом у програмі Пайтон

#### Визначення Дат і Часу



Дата: Виключно дати, без часу

**POSIXct:** Дати і час у календарному форматі (ct)

**POSIXIt:** Дати і час у місцевому формати (lt)

**Hms:** Індетифікує періоди за годинами(h), хвилинами(m), і секундами(s)

Timestamp (Часовий штамп): Відокремлює Дати і час в бібліотеці «Panda»

Interval (Інтервал): Визначає відкритий або закритий діапазом між Датою і Часом



**Time delta (Дельта часу):** Обчислює різницю в часі між різними Датами

#### ISO8601 формат Дати і Часу



#### Стандартні виміри часу:

- YYYY-MM-DD HH:MM:SS TZ
  - O Y –year (рік), M-month (місяць), D-day (день),
  - H hour (години), M minute (хвилини), S second (секунди),
  - O TZ timezone (часовий пояс)



| iso                 |
|---------------------|
| 1969-07-20 20:17:40 |
| 1969-11-19 06:54:35 |
| 1971-02-05 09:18:11 |

| US                  |
|---------------------|
| 07/20/1969 20:17:40 |
| 11/19/1969 06:54:35 |
| 02/05/1971 09:18:11 |

| non_us              |
|---------------------|
| 20/07/1969 20:17:40 |
| 19/11/1969 06:54:35 |
| 05/02/1971 09:18:11 |



## Використання Дати і Часу



**Корисні бібліотеки:** datetime, time, pytz, pandas & many ... many more





### Арифметичні розрахунки з Датами і Часом



```
# Create two datetimes
      now = dt.datetime.now()
      print(now)
      then = pd.Timestamp('2021-09-15 10:03:30')
      print(then)
      # Get time elapsed as timedelta object
      print(now - then)
      # Get time elapsed in seconds
      print((now - then).total_seconds())
      # Adding a day to a datetime
      print(dt.datetime(2022,8,5,11,13,50) + dt.timedelta(days=1))
 ✓ 0.0s
2023-04-23 12:36:22.022385
2021-09-15 10:03:30
585 days 02:32:52.022385
50553172.022385
2022-08-06 11:13:50
```





#### Розбір на dates, datetimes, and times



```
# Parse dates in ISO format
      iso = pd.to_datetime('2021-09-15 10:03:30')
      print(iso)
      # Parse dates in US format
      us = pd.to_datetime('09/15/2021 10:03:30', dayfirst=False)
      print(us)
      # Parse dates in Danish format
      dk = pd.to_datetime('15-09-2021 10:03:30',dayfirst=True)
      print(dk)
 ✓ 0.0s
2021-09-15 10:03:30
2021-09-15 10:03:30
2021-09-15 10:03:30
```





#### Вилучення datetime компонентів



```
# Get year from datetime pandas series
      year = iso.year
      print(year)
      # Get day of the year from datetime pandas series
      day_of_year = iso.day_of_year
   6 print(day_of_year)
      month = iso.month_name()
      print(month)
  10 # Get day name from datetime pandas series
      day_name = iso.day_name()
      print(day_name)
      # Get datetime.datetime format from datetime pandas series
     dt_format = iso.to_pydatetime()
      print(dt_format)

√ 0.0s

2021
258
September
Wednesday
2021-09-15 10:03:30
```







# Перерва



## Що таке Часовий ряд (Ряд динаміки)?

#### Часовий Ряд



- Послідовні точки даних, упорядкованих у часі
- Зазвичай вимірюються регулярними проміжками часу
- Зобаржуються у вигдялі лінійних або часових діаграм
- Точки даних наносяться на графіку відносно часу на осі X





## Univariate (Одно-варіантний) – Multivariate (Багатоваріантний)



 Одно- або Багатовимірний (декілька зміних виміряних у часі).

 Шаблон або тенденція в даних (сезонні коливання або довгострокові тенденції)







Time interval (Часовий інтерал): Частота з якою збираються дані, наприклад щогодини, щотижня тд

Time stamp (Часовий штамп): Конкретний час і дата коли було зібрано дані

**Trend** (**Тенденція**): Довгострокове збільшення або зменшення даних протягом часу

**Seasonality (Сезонність)**: Регулярні або передбачуванні коливання, які відбуваються у фіксований період часу. Наприклад щодня, щотижня чи щомісяця

**Cyclicity (Циклічність)**: Довготривалі переодичні коливання, які виникають в НЕ фіксований проміжок часу

**Stationarity (Стаціонарність)**: Часовий ряд є стаціонарним, якщо його статичні властивості, такі як середнє значення або дисперсія, залишається незміним протягом часу

**Autocorrelation (Автокореляція)**: Кореляція між часовим рядом і його запізнілою (тобто переміщеною в часі) версією

White noise (Білий шум): Часовий ряд де кожна точка даних є випадковим некорельованим значанням з постійним середнім значенням і дисперсією

**Moving average (Рухоме середнє):** Техніка згладжування, яка усереднює коливання даних, щоб виділити основні тенденції

















## Аналіз Часових рядів



## Перерва



## Декомпозиція (розклад) Часових рядів

#### Декомпозиція Часових рядів

ReDI

Процес розбиття спрострежувальних даних на складові частини, такі як тренди, сезонність та випадкові компоненти







# Адитивна (додавання) та мультиплікативна (множення) моделі Часових рядів

#### Адитивний Часовий ряд

ReDI

Модель припускає що тред, сезонність і випадкові компоненти шуму часового ряду є адитивними

Decomposition of additive time series



$$Y(t) = T(t) + S(t) + e(t)$$





## Мультиплікативний Часовий ряд



Модель припускає що тред, сезонність і випадкові компоненти шуму часового ряду є мультиплікативними



#### Decomposition of multiplicative time series

$$Y(t) = T(t) * S(t) * e(t)$$





## Стаціонарні та нестаціонарні Часові ряди

## Різниця між стаціонарними чи нестаціонарними Часовими ряди





#### Non-stationary Time Series





# Стаціонарний Часовий ряд

#### Стаціонарний Часовий ряд



Статичні властивості, такі як середнє значення та дисперсія, залишаються постійними з часом

#### Чому це важливо?

• Легше аналізувати

• Більшість статистичних моделей і методів припускають що отримані дані є

стаціонарні





## Нестаціонарний Часовий ряд

#### Нестаціонарний Часовий ряд



Статичні властивості, такі як середнє значення або дисперсія, змінюються з часом

#### Чому це важливо?

• Осановий звязок між точками даними може фальсифікувати результати моделювання

Trending time series: зростаючий або спадаючий тренд

Seasonal time series: регулярні сезонні моделі

Cyclical time series: нерегулярні, несезонні цикли

Random walk time series (Випадкове блукання): кожне спостереження є

випадковим відхиленням від попереднього спостереження



## Як перевірити стаціонарність?

## Як перевірити стаціонарність?



- Дивдячись на сюжет ряду
- Розібарати ряд на 2 або більше безпреревних частин та обчислити статичтні підсумки і автокореляцію
- Існує декілька методів які можна використати щоб визначити чи ряд стаціонарний чи ні:
  - Augmented Dickey Fuller test (<u>ADF Test</u>)
  - Kwiatkowski-Phillips-Schmidt-Shin KPSS test (trend stationary)
  - Philips Perron test (<u>PP Test</u>)







## Перерва



## Методи аналізу Часових рядів

# Differencing (Розрізнення)

#### Розрізнення



Техніка, яка використовується в аналізі часових рядів з усуненням залежності від часу спостереження.



- Стабілізує середнє значення часового ряду задопомогою видалення тренду
- Допомогає прибрати сезонні компоненти
- Після застосування розрізнення, часовий ряд називають стаціонарним



#### Розрізнення

ReDI

Різниця першого порядку – це різниця між поточним та попереднім спостереженням



Різниця другого порядку – це різниця між різницею першого порядку та попередньою різницею першого порядку тощо...

diff() method in pandas to perform differencing.

(the default value of periods=1 is used to compute the difference between consecutive

values)

```
import pandas as pd
import random

df = pd.DataFrame({"ts": random.sample(range(10, 30), 8)})

df["diff"] = df.diff()

df
```





# Усунення тренду чи сезонності

### Усунення тренду



#### Має на увазі видадення компоненту тренду з часового ряду









#### Усунення тренду



Має на увазі видадення компоненту тренду з часового ряду



```
#-Using-statmodels:-Subtracting-the-Trend-Component
from statsmodels.tsa.seasonal import seasonal_decompose
result_mul = seasonal_decompose(df['#Passengers'], model='multiplicative', period=30)
detrended = df['#Passengers'].values - result_mul.trend
plt.plot(detrended)
plt.title('Air Passengers detrended by subtracting the trend component', fontsize=16)
```



### Усунення сезонності



Має на увазі видадення сезонної складової з часового ряду







### Повне розкладання





# Автокореляція

#### Автокореляція та Часткова автокореляція









#### Ми це зробили!

