Дипломная работа

НА ТЕМУ «АНАЛИЗ СУММЫ ПРОДАЖ АЛКОГОЛЬНОЙ ПРОДУКЦИИ В США» АВТОР: ЛАЗАРЕНКО А.Б.

Оглавление

Ведение	2
Цель	2
Задачи:	2
Выбор инструментов для выполнения работы:	2
Знакомство с данными	3
Загрузка данных	3
Предобработка данных	3
Заключение	3
EDA (exploratory data analysis) или разведочный анализ данных	4
Выполнение расчёта основных статистических метрик	4
Заключение	4
Построение моделей	5
Подготовка данных для моделей	5
Модель 1. Sarimax	ε
Построение модели	€
Выводы по работе модели	7
Модель 2. Prophet	8
Построение модели	8
Выводы по работе модели	9
Модель 3. Exponential Smoothing	9
Построение модели	9
Выводы по работе модели	11
Сравнение качества моделей	12
Ruponu	13

Ведение.

Для анализа была выбрана выборка с сумами розничных продаж алкогольной продукции в США в период с 1992 года по 2018 год. Суммы указаны в миллионах долларах.

Цель.

Проведение исследования данных и построение прогноза суммы продаж алкогольной продукции.

Задачи:

- 1. Провести анализ данных о суммах продаж алкогольной продукции;
- 2. Построить прогнозы суммы продаж алкогольной продукции, используя различные методы прогнозирования и привести их сравнительную характеристику.

Выбор инструментов для выполнения работы:

- 1. Выборка с данными по суммам продаж алкогольной продукции в формате csv Файл:
 - https://github.com/LazarenkoAB/innopolis_2/blob/384dcf11c065dbd07e45b5ee379a40068468 6013/Retail_Sales_Beer_Liquor_2018-12-01.csv
- 2. Язык программирования Phyton на базе инструмента Google Colab Файл:

https://github.com/LazarenkoAB/innopolis_2/blob/649a129054073095ca5f49d4a68cc2208259 0fb7/%D0%94%D0%B8%D0%BF%D0%BB%D0%BE%D0%BC%D0%BD%D0%B0%D1%8F_%D1%80 %D0%B0%D0%B1%D0%BE%D1%82%D0%B0_%D0%9B%D0%B0%D0%B7%D0%B0%D1%80%D0% B5%D0%BD%D0%BA%D0%BE_%D0%90_%D0%91.ipynb

Знакомство с данными

Загрузка данных

- 1. Загрузка выполнялась с помощью методов pandas, файл расположен на github.com, при запуске не требуется дополнительно его подгружать в Google Colab;
- 2. Выполнено проверка формата данных в датасете существует два поля:

a. «DATE»:

- i. При загрузке определился формат object;
- ii. В поле указаны даты в формате ГГГГ-ММ-ДД, при этом для каждого значения указан день = 01, т.е. фактически поле обозначает месяц конкретного года.

b. «MRTSSM4453USN»:

- i. При загрузке определился формат int64;
- В поле указано значение суммы продаж в миллионах долларах за месяц, соответствующий полю «DATE».

Предобработка данных

- 1. Поля переименованы в целях удобства дальнейшего использования:
 - а. «MRTSSM4453USN» переименовано в «rtlsls» (Retail sales).
 - b. «DATE» переименовано в «date»
- 2. Выполнена проверка на наличие пропусков в данных пропуски отсутствуют
- 3. Изменен формат данных поля «**date**» из object на datetime64[ns] для корректного считывания и отображения

Заключение

Выполнена первоначальная обработка данных, в качестве прогнозируемой метрики выбрана сумма розничных продаж.

Возможно переходить к следующему этапу.

EDA (exploratory data analysis) или разведочный анализ данных

Выполнение расчёта основных статистических метрик

- 1. Индексом анализируемого pandas dataframe решено сделать поле «date»;
- 2. По полю «rtisis» выполнен расчёт основных статистических метрик (таблица 1):

RTLSLS

COUNT	324.000000
MEAN	2972.895062
STD	1010.218574
MIN	1501.000000
25%	2109.000000
50%	2791.000000
75%	3627.250000
MAX	6370.000000

Таблица 1

3. Построен общий график сумм продаж алкогольной продукции по годам (рис.1)

Рисунок 1

Заключение

- 1. Наблюдается общий восходящий тренд: сумма продаж с каждым годом увеличивается;
- 2. Наблюдаются сезонные колебания суммы продаж с годовой периодичностью и пиками продаж в конце каждого года;

Выдвинута гипотеза:

Увеличение суммы продаж в будущем с сохранением сезонности.

Построение моделей

Подготовка данных для моделей

- 1. Сформированы тестовая и обучающая выборки:
 - а. Тестовая: 1 год;
 - b. Обучающая выборка: остальные 26 лет.
- 2. Создана структура для будущего сравнительного анализа качества моделей, заполняемая в ходе построения моделей.
- 3. Выполнена декомпозиция временного ряда с использованием аддитивной модели (рис.3)

- а. Наблюдается положительный (восходящий) тренд;
- b. Наблюдается годовая сезонность.

Модель 1. Sarimax

тестовой выборке.

Построение модели

- 1. Выполнен автоматический подбор параметров модели с входными настройками подбора на всем датасете с включением сезонности перидом в 1 год. В результате определена модель: SARIMAX(4, 1, 3)x(2, 1, [1], 12);
- 2. Модель обучена на обучающей выборке и построен прогноз на период, соответствующий
- 3. Построены графики для визуального сравнения прогнозных данных с тестовой выборкой (рис.4)

Рисунок 4

- 4. Рассчитаны значения критериев оценки качества модели:
 - a. MAE: 66.06013915
 b. MSE: 7896.543616
 c. RMSE: 88.86249837
 d. MAPE: 1.441353299
- 5. Указанные выше значения добавлены в структуру сравнительного анализа качества моделей.

6. Построен и визуализирован прогноз на год вперед (рис.5)

Выводы по работе модели

Модель показала себя хорошо:

- RMSE=88.86 это очень хороший показатель.
- МАРЕ=1.44% это хороший результат.

Согласно графику, на будущее видим, что тренд и высота амплитуда были отображены корректно, общая динамика прослеживается.

Модель 2. Prophet

Построение модели

- 1. Подготовлены данные для построения модели;
- 2. Выполнен автоматический подбор параметров модели с входными настройками мультипликативной сезонности.
 - В результате алгоритм проигнорировал недельную и дневную сезонность, но обнаружил годовую сезонность и использовал её при настройке модели;
- 3. Модель обучена на обучающей выборке и построен прогноз на период, соответствующий тестовой выборке.
- 4. Построены графики для визуального сравнения прогнозных данных с тестовой выборкой (рис.6).

Рисунок 6

5. Временной ряд разложен на основные компоненты – тренд и сезонность (рис.7).

Наблюдается возрастающий тренд продаж и годовая сезонность.

- 6. Рассчитаны значения критериев оценки качества модели:
 - a. MAE: 98.73289647b. MSE: 17973.33688

c. **RMSE**: 134.0646743 d. **MAPE**: 1.947700413

- 7. Указанные выше значения добавлены в структуру сравнительного анализа качества моделей.
- 8. Построен и визуализирован прогноз на год вперед (рис.8).

Выводы по работе модели

Модель показала себя хорошо:

- **RMSE**=134.06 хороший показатель.
- MAPE=1.95% хороший результат.

Согласно графику, на будущее видим, что тренд и высота амплитуда были отображены корректно, общая динамика прослеживается.

Модель 3. Exponential Smoothing

Построение модели

- 1. Рассмотрено 4 модели Хольта-Винтерса (т.к. они позволяют учесть тренд и сезонность) со следующими настройками:
 - a. Holt-Winters (add-add-seasonal):
 - і. Период сезонности = 12 месяцев,
 - іі. Тренд аддитивный,
 - ііі. Сезонность аддитивная,
 - iv. Использование преобразование Боса-Кокса
 - b. Holt-Winters (add-mul-seasonal) RMSE:
 - і. Период сезонности = 12 месяцев,
 - іі. Тренд аддитивный,
 - ііі. Сезонность мультипликативная,
 - iv. Использование преобразование Боса-Кокса
 - c. Holt-Winters (mul-add-seasonal) RMSE:
 - і. Период сезонности = 12 месяцев,
 - іі. Тренд мультипликативный,
 - ііі. Сезонность аддитивная,
 - iv. Использование преобразование Боса-Кокса
 - d. Holt-Winters (mul-mul-seasonal) RMSE:

- і. Период сезонности = 12 месяцев,
- іі. Тренд мультипликативный,
- ііі. Сезонность мультипликативная,
- іv. Использование преобразование Боса-Кокса
- 2. Каждая из моделей обучена на обучающей выборке и для каждой построен прогноз на период, соответствующий тестовой выборке.
- 3. Построены графики для визуального сравнения прогнозных данных с тестовой выборкой (рис.9).

Рисунок 9

- 4. Рассчитаны значения критериев оценки качества модели:
 - a. Holt-Winters (add-add-seasonal):

i. MAE: 103.56ii. MSE: 21686.45iii. RMSE: 147.26iv. MAPE: 2.02

b. Holt-Winters (add-mul-seasonal):

i. MAE: 100.31ii. MSE: 19156.13iii. RMSE: 138.41iv. MAPE: 1.97

c. Holt-Winters (mul-add-seasonal):

i. MAE: 109.37ii. MSE: 25021.60iii. RMSE: 158.18iv. MAPE: 2.13

d. Holt-Winters (mul-mul-seasonal):

i. MAE: 101.94ii. MSE: 20312.10iii. RMSE: 142.52iv. MAPE: 2.00

- 5. Указанные выше значения добавлены в структуру сравнительного анализа качества моделей.
- 6. Построены и визуализированы прогнозы на год вперед (рис.10).

Рисунок 10

Выводы по работе модели

Все 4 модели экспоненциального сглаживания показали себя неплохо:

- 1. Хорошие показатели RMSE:
 - a. Holt-Winters (add-add-seasonal) RMSE: 147.26
 - b. Holt-Winters (add-mul-seasonal) RMSE: 138.41
 - c. Holt-Winters (mul-add-seasonal) RMSE: 158.18
 - d. Holt-Winters (mul-mul-seasonal) RMSE: 142.52
- 2. Не высокие проценты рассчитанной ошибки МАРЕ:
 - a. Holt-Winters (add-add-seasonal) MAPE: 2.02
 - b. Holt-Winters (add-mul-seasonal) MAPE: 1.97
 - c. Holt-Winters (mul-add-seasonal) MAPE: 2.13
 - d. Holt-Winters (mul-mul-seasonal) MAPE: 2.00

Согласно графикам на будущее видим, что тренд и высота амплитуда были отображены корректно, общая динамика прослеживается.

Сравнение качества моделей

1. Построены данные для сравнения качества построенных моделей (табл.2)

Модель	MAE	MSE	RMSE	MAPE	
SARIMAX(4, 1, 3)x(2, 1, [1], 12)	66.060139	7896.543616	88.862498	1.441353	
PROPHET	98.732896	17973.336882	134.064674	1.947700	
Holt-Winters (add-add-seasonal)	103.564704	21686.456703	147.263223	2.020403	
Holt-Winters (add-mul-seasonal)	100.308709	19156.133642	138.405685	1.968399	
Holt-Winters (mul-add-seasonal)	109.370491	25021.595428	158.182159	2.125332	
Holt-Winters (mul-mul-seasonal)	101.944204	20312.101779	142.520531	1.995114	
Tabauua 2					

Таблица 2

2. На основании указанных выше данных сделан вывод, что модель SARIMAX является наиболее качественной, т.к. дает наилучшие показатели по каждому из оценочных критериев.

Выводы

- Проведен анализ данных с использованием различных методов обработки статистической информации.
- Рассчитаны основные статистические метрики, позволяющие судить о характере исследуемого явления.
- Прогнозные модели позволили выявить тенденцию роста суммы розничных продаж по сравнению с предыдущим годом, а также сохранение характера амплитудных колебаний в разрезе каждого года с пиками продаж в период новогодних праздников.
- Сравнительный анализ значений критериев качества построенных моделей показал, что наиболее качественной из построенных является модель SARIMAX.