Teoría de Probabilidad

Maestría en Estadística Aplicada

Julio Hurtado, Msc.

UTB

2020

Probabilidad elemental – Parte 6

- Distribuciones continuas más comunes
 - Distribución uniforme
 - Distribución Exponencial
 - Distribución Gama
 - Distribución Cauchy
 - Distribución Beta
 - Distribución Normal
 - Variables aleatorias multivariadas
- 2 Ejercicios

Distribución uniforme

Uniforme

U(a,b) $a,b \in \mathbb{R}$, a < b.

$$f(x) = \frac{1}{b-a}, \quad a \le x \le b.$$

$$E[X] = \frac{a+b}{2}; \quad Var[X] = \frac{(b-a)^2}{12}$$

Distribución uniforme

Uniforme

U(a, b) $a, b \in \mathbb{R}$, a < b.

$$f(x) = \frac{1}{b-a}, \quad a \le x \le b.$$

$$E[X] = \frac{a+b}{2}; \quad Var[X] = \frac{(b-a)^2}{12}.$$

Distribución Exponencial

Exponencial

 $Exp(\lambda) \lambda > 0.$

$$f(x) = \frac{1}{\lambda}e^{\frac{-x}{\lambda}}, \qquad x > 0.$$

$$E[X^n] = \lambda^n n!, \qquad n \ge 1.$$
 (Tarea: Calcule Var[X])

Distribución Exponencial

Exponencial

 $Exp(\lambda) \lambda > 0.$

$$f(x) = \frac{1}{\lambda}e^{\frac{-x}{\lambda}}, \qquad x > 0.$$

$$E[X^n] = \lambda^n n!, \qquad n \ge 1.$$
 (Tarea: Calcule Var[X])

Distribución Gama

Gama

 $Gama(k, \theta)$ k > 0: Parámetro de forma, $\theta > 0$: Parámetro de escala.

$$f(x) = \frac{1}{\Gamma(k)\theta^k} x^{k-1} e^{-\frac{x}{\theta}}, \qquad x > 0.$$
$$\Gamma(k) = \int_0^\infty e^{-x} x^{k-1} dx.$$

$$E[X] = k\theta, Var[X] = k\theta^2.$$

Distribución Gama

Gama

 $Gama(k, \theta)$ k > 0: Parámetro de forma, $\theta > 0$: Parámetro de escala.

$$f(x) = \frac{1}{\Gamma(k)\theta^k} x^{k-1} e^{-\frac{x}{\theta}}, \qquad x > 0.$$
$$\Gamma(k) = \int_0^\infty e^{-x} x^{k-1} dx.$$

$$E[X] = k\theta, Var[X] = k\theta^2.$$

Distribución Cauchy

Cauchy

 $Cauchy(x_0, \gamma > 0)$. $x_0 \in \mathbb{R}$: Parámetro de localización, $\gamma > 0$: Parámetro de escala.

$$f(x) = \frac{1}{\pi \gamma \left[1 + \left(\frac{x - x_0}{\gamma}\right)^2\right]}, \quad x \in \mathbb{R}.$$

E[X] = No definida.

Distribución Cauchy

Cauchy

 $Cauchy(x_0, \gamma > 0)$. $x_0 \in \mathbb{R}$: Parámetro de localización, $\gamma > 0$: Parámetro de escala.

$$f(x) = \frac{1}{\pi \gamma \left[1 + \left(\frac{x - x_0}{\gamma}\right)^2\right]}, \quad x \in \mathbb{R}.$$

E[X] = No definida.

Distribución Beta

Beta

Beta(α, β). $\alpha, \beta > 0$.

$$f(x) = \frac{x^{\alpha - 1}(1 - x)^{\beta - 1}}{B(\alpha, \beta)}, \quad 0 \le x \le 1.$$

$$B(\alpha, \beta) = \int_0^1 x^{\alpha - 1} (1 - x)^{\beta - 1} dx.$$

$$E[X] = \frac{\alpha}{\alpha + \beta}, Var[X] = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}.$$

Distribución Beta

Beta

Beta(α, β). $\alpha, \beta > 0$.

$$f(x) = \frac{x^{\alpha - 1}(1 - x)^{\beta - 1}}{B(\alpha, \beta)}, \qquad 0 \le x \le 1.$$

$$B(\alpha, \beta) = \int_0^1 x^{\alpha - 1} (1 - x)^{\beta - 1} dx.$$

$$E[X] = \frac{\alpha}{\alpha + \beta}, Var[X] = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}.$$

Distribución Normal

Normal

 $N(\mu, \sigma)$. $\mu \in \mathbb{R}$: Parámetro de localización, $\sigma > 0$: Parámetro de escala.

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad -\infty < x < \infty.$$

$$E[X] = \mu, Var[X] = \sigma^2.$$

Distribución Normal

Normal

 $N(\mu, \sigma)$. $\mu \in \mathbb{R}$: Parámetro de localización, $\sigma > 0$: Parámetro de escala.

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad -\infty < x < \infty.$$

$$E[X] = \mu, Var[X] = \sigma^2.$$

Variables aleatorias multivariadas

Variables aleatorias multivariadas

Sean X, Y dos variables aleatorias con esperanza finita, la covarianza de X y Y está dada por

$$Cov(X, Y) = E[(X - \mu_X)(Y - \mu_Y)]$$

La covarianza busca medir el grado de dependencia (lineal) entre dos variables, sin embargo, al ser una cantidad no acotada y que depende de las unidades de las variables involucradas, su interpretación es difícil. Una forma de solucionar es a través del coeficiente de variación, el cual se define como

$$\rho(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}}.$$

Utilizando la desigualdad de Schwarz es fácil ver que $-1 \le \rho(X, Y) \le 1$.

• **Ejercicio**: Demuestre que $Cov(X, Y) = E[XY], \neg F[X]F[Y],$

Variables aleatorias multivariadas

Variables aleatorias multivariadas

Sean X,Y dos variables aleatorias con esperanza finita, la covarianza de X y Y está dada por

$$Cov(X, Y) = E[(X - \mu_X)(Y - \mu_Y)]$$

La covarianza busca medir el grado de dependencia (lineal) entre dos variables, sin embargo, al ser una cantidad no acotada y que depende de las unidades de las variables involucradas, su interpretación es difícil. Una forma de solucionar es a través del coeficiente de variación, el cual se define como

$$\rho(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}}.$$

Utilizando la desigualdad de Schwarz es fácil ver que $-1 \le \rho(X, Y) \le 1$.

• **Ejercicio**: Demuestre que Cov(X, Y) = E[XY] - E[X]E[Y].

9990

Variables independientes

• Variables independientes Sean X_1, X_2, \ldots, X_k variables aleatorias definidas sobre el mismo espacio Ω . Decimos que las variables X_1, X_2, \ldots, X_k son independientes si

$$\mathbb{P}(X_1 = x_1, X_2 = x_2, \dots, X_k = x_k) = \mathbb{P}(X_1 = x_1) \cdot \mathbb{P}(X_2 = x_2) \cdot \dots \cdot \mathbb{P}(X_k = x_k).$$

• **Ejercicio:** Suponga que X, Y son variables aleatorias independientes con funciones de densidad f_X, f_Y respectivamente. Demuestre que para cualesquiera subconjuntos $A, B \in \mathcal{F}$, se tiene que

$$\mathbb{P}(X \in A, Y \in B) = \mathbb{P}(X \in A)\mathbb{P}(Y \in B)$$

Variables independientes

• Variables independientes Sean X_1, X_2, \ldots, X_k variables aleatorias definidas sobre el mismo espacio Ω . Decimos que las variables X_1, X_2, \ldots, X_k son independientes si

$$\mathbb{P}(X_1 = x_1, X_2 = x_2, \dots, X_k = x_k) = \mathbb{P}(X_1 = x_1) \cdot \mathbb{P}(X_2 = x_2) \cdot \dots \cdot \mathbb{P}(X_k = x_k).$$

• **Ejercicio:** Suponga que X, Y son variables aleatorias independientes con funciones de densidad f_x, f_y respectivamente. Demuestre que para cualesquiera subconjuntos $A, B \in \mathcal{F}$, se tiene que

$$\mathbb{P}(X \in A, Y \in B) = \mathbb{P}(X \in A)\mathbb{P}(Y \in B)$$

• **Ejercicio:** Suponga que las variables $X_1, X_2, ..., X_n$ son variables independientes con esperanza finita. Demuestre la igualdad

$$E[\prod_{i=1}^n X_i] = \prod_{i=1}^n E[X_i].$$

- **Ejercicio:** Sean X, Y variables aleatorias independientes.
- **Ejercicio:** Encuentre la distribución de min(X, Y).
- **Ejercicio:** Encuentre la distribución de max(X, Y).
- **Ejercicio:** Encuentre $\mathbb{P}(\min(X, Y) = X) = \mathbb{P}(Y \ge X)$.
- Encuentre la distribución de X + Y.

• **Ejercicio:** Suponga que las variables $X_1, X_2, ..., X_n$ son variables independientes con esperanza finita. Demuestre la igualdad

$$E[\prod_{i=1}^n X_i] = \prod_{i=1}^n E[X_i].$$

- **Ejercicio:** Sean X, Y variables aleatorias independientes.
- **Ejercicio:** Encuentre la distribución de min(X, Y).
- **Ejercicio:** Encuentre la distribución de max(X, Y).
- **Ejercicio:** Encuentre $\mathbb{P}(\min(X, Y) = X) = \mathbb{P}(Y \ge X)$.
- Encuentre la distribución de X + Y.

• **Ejercicio:** Suponga que las variables $X_1, X_2, ..., X_n$ son variables independientes con esperanza finita. Demuestre la igualdad

$$E[\prod_{i=1}^n X_i] = \prod_{i=1}^n E[X_i].$$

- **Ejercicio:** Sean X, Y variables aleatorias independientes.
- **Ejercicio:** Encuentre la distribución de min(X, Y).
- **Ejercicio:** Encuentre la distribución de max(X, Y).
- **Ejercicio:** Encuentre $\mathbb{P}(\min(X, Y) = X) = \mathbb{P}(Y \ge X)$.
- Encuentre la distribución de X + Y.

• **Ejercicio:** Suponga que las variables $X_1, X_2, ..., X_n$ son variables independientes con esperanza finita. Demuestre la igualdad

$$E[\prod_{i=1}^n X_i] = \prod_{i=1}^n E[X_i].$$

- **Ejercicio:** Sean X, Y variables aleatorias independientes.
- **Ejercicio:** Encuentre la distribución de min(X, Y).
- **Ejercicio:** Encuentre la distribución de max(X, Y).
- **Ejercicio:** Encuentre $\mathbb{P}(\min(X, Y) = X) = \mathbb{P}(Y \ge X)$.
- Encuentre la distribución de X + Y.

• **Ejercicio:** Suponga que las variables $X_1, X_2, ..., X_n$ son variables independientes con esperanza finita. Demuestre la igualdad

$$E[\prod_{i=1}^n X_i] = \prod_{i=1}^n E[X_i].$$

- **Ejercicio:** Sean X, Y variables aleatorias independientes.
- **Ejercicio:** Encuentre la distribución de min(X, Y).
- **Ejercicio:** Encuentre la distribución de max(X, Y).
- **Ejercicio:** Encuentre $\mathbb{P}(\min(X, Y) = X) = \mathbb{P}(Y \ge X)$.
- Encuentre la distribución de X + Y.

• **Ejercicio:** Suponga que las variables $X_1, X_2, ..., X_n$ son variables independientes con esperanza finita. Demuestre la igualdad

$$E[\prod_{i=1}^n X_i] = \prod_{i=1}^n E[X_i].$$

- **Ejercicio:** Sean X, Y variables aleatorias independientes.
- **Ejercicio:** Encuentre la distribución de min(X, Y).
- **Ejercicio:** Encuentre la distribución de max(X, Y).
- **Ejercicio:** Encuentre $\mathbb{P}(\min(X, Y) = X) = \mathbb{P}(Y \ge X)$.
- Encuentre la distribución de X + Y.

• **Ejercicio:** Suponga que las variables X_1, X_2, \ldots, X_n son independientes. Demuestre

$$Var(X_1 + X_2 + \ldots + X_n) = \sum_{i=1}^n Var(X_i).$$

• **Ejercicio:**Sean X_1, X_2, \ldots, X_n variables independientes con varianza común $\sigma^2 < \infty$. Sea $\bar{X} = \frac{\sum_{i=1}^n X_i}{n}$, demuestre que

$$Var(\bar{X}) = \frac{\sigma^2}{n}$$

Eiercicios

• **Ejercicio:** Suponga que las variables X_1, X_2, \dots, X_n son independientes. Demuestre

$$Var(X_1+X_2+\ldots+X_n)=\sum_{i=1}^n Var(X_i).$$

• **Ejercicio:**Sean X_1, X_2, \dots, X_n variables independientes con varianza común $\sigma^2 < \infty$. Sea $\bar{X} = \frac{\sum_{i=1}^n X_i}{n}$, demuestre que

$$Var(\bar{X}) = \frac{\sigma^2}{n}$$

