数学实验 Project 2

2021年12月20日

1 问题 1

1.1 第一问

首先写一个生成高斯勒让德求积的系数和根的函数,即 Gauss.m, 通过输入整数 N 生成对应的系数和根。再生成 P_i , 最后求出所有的 P 的和。整个代码在 $\exp 1$ 1.m 中。

通过计算得到对于所有的 n, $\sum_{i=1}^{n+1} P_i = 1$. 下面给出证明:

$$\sum_{i=1}^{n+1} P_i = \sum_{i=1}^{n+1} \frac{W_i \sum_{j=0}^n \phi_j^2(x_i)}{n+1} = \frac{\sum_{i=1}^{n+1} W_i \sum_{j=0}^n \phi_j^2(x_i)}{n+1}$$
(1)

把分母单独提出来,即证分母等于 n+1 即可。交换两求和符号顺序得

$$\sum_{i=1}^{n+1} W_i \sum_{i=0}^{n} \phi_j^2(x_i) = \sum_{i=0}^{n} \sum_{i=1}^{n+1} W_i \phi_j^2(x_i)$$
 (2)

注意到里面的求和即是对每个 ϕ_j 作 [0,1] 上的高斯求积,即值为 1. 而外面的求和做了 n+1 次,因此分母的和为 n+1. 所以最终求得 $\sum_{i=1}^{n+1} P_i = 1$.

1.2 第二问

观察需要优化的式子即可知道这是一个二次型最优化,而二次型优化的标准式为

$$\min_{x} \frac{1}{2} x^T H x + f^T x \tag{3}$$

则我们只需要算出二次型优化中的 H,f即可.

$$\sum_{i=1}^{n+1} \left| \sum_{j=0}^{n} c_j \phi_j(x_i) - f(x_i) \right|^2 = |\mathbf{\Phi}\hat{\mathbf{c}} - \mathbf{F}|^2$$
 (4)

1 问题 1 2

这里 **Φ** 的每个元素为 $\Phi_{ij} = \phi_{j-1}(x_i)$, 且 **Φ** 为 $(n+1) \times (n+1)$ 的矩阵。 $\hat{\mathbf{c}}$, **F** 分别代表 系数与每个 x_i 对应的 f 的值。

把上面的式子变为二次型标准型:

$$|\mathbf{\Phi}\hat{\mathbf{c}} - \mathbf{F}|^2 = (\mathbf{\Phi}\hat{\mathbf{c}} - \mathbf{F})'(\mathbf{\Phi}\hat{\mathbf{c}} - \mathbf{F}) = (\hat{\mathbf{c}}'\mathbf{\Phi}' - \mathbf{F}')(\mathbf{\Phi}\hat{\mathbf{c}} - \mathbf{F}) = \hat{\mathbf{c}}'\mathbf{\Phi}'\mathbf{\Phi}\hat{\mathbf{c}} - 2\mathbf{F}'\mathbf{\Phi}\hat{\mathbf{c}} + \mathbf{F}'\mathbf{F}$$
(5)

则令 $\mathbf{H} = \mathbf{\Phi}'\mathbf{\Phi}$, $\mathbf{f} = -\mathbf{\Phi}'\mathbf{F}$. 在代码中用循环生成 $\mathbf{\Phi}$, 把它存在 legendre_matrix 中。之后相继生成 \mathbf{H} , \mathbf{f} , 并存在 \mathbf{H} 和 \mathbf{f} _value 中。用 'quadprog' 函数对其进行优化,即可得到 $\hat{\mathbf{c}}$.

将 c_k 与 $\sum_{i=1}^{n+1} f(x_i) w_i \phi_k(x_i)$ 进行比较,发现

$$c_k = \sum_{i=1}^{n+1} f(x_i) w_i \phi_k(x_i), \ k = 0, 1 \dots n$$
 (6)

相关程序在 exp1 23.m 中。下面给出数学证明。

首先注意到 **H** 必定为正定矩阵,因为 $\Phi'\Phi$ 的所有特征值必定都大于 0. 则该二次型的最优解为 $\hat{\mathbf{c}} = \mathbf{H}^{-1}(-\mathbf{F})$, 即 $\hat{\mathbf{c}} = \Phi'\Phi^{-1}\Phi'\mathbf{F}$. 接下来只需证明 $\Phi'\Phi^{-1}\Phi'\mathbf{F} = \Phi'\mathrm{diag}(\mathbf{W})F$ 即可。其中 $\mathrm{diag}(\mathbf{W})$ 指的是对角线全为 **W** 的元素的 $(n+1)\times(n+1)$ 的矩阵。

可以验证 Φ' diag(**W**)**F** 的第 k 个元素为 $\sum_{i=1}^{n+1} f(x_i) w_i \phi_k(x_i)$.

下面接着证明 $\Phi'\Phi^{-1}\Phi'\mathbf{F} = \Phi'\operatorname{diag}(\mathbf{W})\mathbf{F}$.

$$\Phi'\Phi^{-1}\Phi'F = \Phi'\operatorname{diag}(\mathbf{W})\mathbf{F}$$

$$\Phi'F = \Phi'\Phi\Phi'\operatorname{diag}(\mathbf{W})\mathbf{F}$$

$$\mathbf{F} = \Phi\Phi'\operatorname{diag}(\mathbf{W})\mathbf{F}$$

$$\mathbf{I} = \Phi\Phi'\operatorname{diag}(\mathbf{W})$$
(7)

第三个等式能消去 Φ' 的原因是因为可逆,第四个等式能消去 \mathbf{F} 的原因是 Φ , diag(\mathbf{W}) 都与 \mathbf{F} 无关且 \mathbf{F} 可以几乎取任意的值(由函数 f(x) 而定)。

最后 $\Phi\Phi'$ diag(**W**) 即是 $\int_{-1}^{1} \phi_i(x)\phi_j(x)dx$. 则对角元上 i=j, 为 1,非对角元上 $i\neq j$, 为 0. 因此,最后等于单位矩阵,因此,上式的第四个等式成立,从而第一个式子成立,即猜想正确。

1.3 第二问

紧接着上述的程序(即相关代码在 $\exp 1_23.m$ 中)。 Φ_i 即是 Φ 的第 i 行的数据,即 legendre matrix 的第 i 行。之后开始每次迭代,把每次计算出的误差存入变量 e 中。这

1 问题 1 3

里并没有计入第一次随机生成 c 时的误差,因此 e 为 $(n+1) \times 1$ 的向量。下面分别是 f(x) = x, $f(x) = \sin(x)$, $f(x) = e^x$ 的误差图像。(此时 n 都取的是 10)

可以看出误差都呈下降趋势,且当 i = n + 1 时,误差非常小,达到了 10^{-20} 的数量级或者更小。因此,猜想是当 i = n + 1 时, $\mathbf{C}^{(i)}$ 几乎达到真实值 $\hat{\mathbf{c}}$.

下面给出证明:

注意到递推式与牛顿法的形式很相近,因此考虑用牛顿法证明该数列收敛且收敛到 **ĉ**. 牛顿法的原始形式为

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \tag{8}$$

令 $g(\hat{\mathbf{c}}) = (\mathbf{c} \cdot \Phi_i - f(x_i))\Phi_i$, 则 $\frac{\partial g}{\partial \hat{\mathbf{c}}} = \Phi_i \cdot \Phi_i = ||\Phi_i||^2$, 正好等于分母。

因此该递推式收敛的条件为分子有零点,即

$$g(\hat{\mathbf{c}}) = (\mathbf{c} \cdot \Phi_i - f(x_i))\Phi_i \tag{9}$$

有零点。

注意到

$$\mathbf{\hat{c}} = \mathbf{\Phi}'\mathbf{\Phi}^{-1}\mathbf{\Phi}\mathbf{F}'$$

两边同时左乘 Φ 得

$$\mathbf{\Phi}\mathbf{\hat{c}} = \mathbf{\Phi}\mathbf{\Phi}'\mathbf{\Phi}^{-1}\mathbf{\Phi}\mathbf{F}'$$

因为 Φ 是可逆的,因此括号中的项可以提出,得

$$\mathbf{\Phi}\mathbf{\hat{c}} = \mathbf{\Phi}\mathbf{\Phi}^{-1}\mathbf{\Phi}'^{-1}\mathbf{\Phi}'\mathbf{F}\mathbf{\Phi}\mathbf{\hat{c}} = \mathbf{F}$$

所以 **F** 的第 i 个元素为 **Φ** 的第 i 行乘以 $\hat{\mathbf{c}}$. 即 $\Phi_i \cdot \hat{\mathbf{c}}$.

所以 (9) 式有解,也就是说 $\mathbf{c}^{(i)}$ 收敛于 $\hat{\mathbf{c}}$.