MA101 Mathematics I

Department of Mathematics Indian Institute of Technology Guwahati

Jul - Nov 2013

Slides originally created by: Dr. Bikash Bhattacharjya

Instructors:

Rafikul Alam, Bhaba K. Sarma, Sriparna Bandyopadhyay, Kalpesh Kapoor

ver. 21 Sept 2013, 10:18 (bks)

1/27

Slides-3 Plan

- Linear Span
- Subspaces
- Linear Independence
- Basis, Dimension & Rank

http://www.iitg.ernet.in/maths/ext/ma101/

An example revisited:

Consider our earlier homogeneous system $A\mathbf{x} = \mathbf{0}$, where

$$A = \left[\begin{array}{rrrr} 1 & -1 & -1 & 2 \\ 2 & -2 & -1 & 3 \\ -1 & 1 & -1 & 0 \end{array} \right].$$

The solutions set for $A\mathbf{x} = \mathbf{0}$ is

$$S_h = \left\{ s \left[egin{array}{c} 1 \ 1 \ 0 \ 0 \end{array}
ight] + t \left[egin{array}{c} -1 \ 0 \ 1 \ 1 \end{array}
ight], \; s,t \in \mathbb{R}
ight\}.$$

Can we describe S_h with a few of the solutions? How? Can we derive some special properties of solution sets like S_h ?

3 / 27

Linear Combinations:

A vector \mathbf{v} in \mathbb{R}^n is a linear combination of the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ in \mathbb{R}^n if there exist real numbers c_1, c_2, \dots, c_k such that

$$\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_k \mathbf{v}_k.$$

• The numbers c_1, c_2, \ldots, c_k are called the coefficients of the linear combination.

Example

Is the vector $[1,2,3]^T$ a linear combination of $[1,0,3]^T$ and $[-1,1,-3]^T$?

Result

A system of linear equations with augmented matrix $[A \mid \mathbf{b}]$ is consistent if and only if \mathbf{b} is a linear combination of the columns of A.

Span of Vectors: Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_k\} \subseteq \mathbb{R}^n$. Then the collection of all linear combinations of the vectors $\mathbf{v}_1, \dots, \mathbf{v}_k$ is called the span of S (or span of the vectors $\mathbf{v}_1, \dots, \mathbf{v}_k$), and is denoted by $\mathrm{span}(S)$ (or $\mathrm{span}(\mathbf{v}_1, \dots, \mathbf{v}_k)$).

Thus

$$\mathsf{span}(S) = \{ \mathbf{v} \in \mathbb{R}^n | \mathbf{v} = c_1 \mathbf{v}_1 + \ldots + c_k \mathbf{v}_k \text{ for some } c_1, \ldots, c_k \in \mathbb{R} \}.$$

- Convention: $span(\emptyset) = \{0\}.$
- If span(S) = \mathbb{R}^n , then S is called a spanning set for \mathbb{R}^n .
- ullet $\mathbb{R}^2 = \operatorname{span}(\mathbf{e}_1, \mathbf{e}_2)$, where $\mathbf{e}_1 = [1, 0]^T$ and $\mathbf{e}_2 = [0, 1]^T$.

Example

Let $\mathbf{u} = [1, 2, 3]^T$ and $\mathbf{v} = [-1, 1, -3]^T$. Describe span(\mathbf{u}, \mathbf{v}) geometrically.

5 / 27

Subspaces of \mathbb{R}^n

A set $U \neq \emptyset \subseteq \mathbb{R}^n$ is called a subspace of \mathbb{R}^n if $a\mathbf{u} + b\mathbf{v} \in U$ for every $\mathbf{u}, \mathbf{v} \in U$ and for every $a, b \in \mathbb{R}$.

- $U = \{ \mathbf{0} \}$ and $U = \mathbb{R}^n$ are subspaces of \mathbb{R}^n , called the trivial subspaces of \mathbb{R}^n .
- Any subspace contains 0.
- U is a subspace iff U is closed under addition and scalar multiplication.
- For any finite subset S of \mathbb{R}^n , span(S) is a subspace of \mathbb{R}^n .

Example

Examine whether the sets

```
S = \{[x, y, z]^T \in \mathbb{R}^3 : x = y + 1\}, T = \{[x, y, z]^T \in \mathbb{R}^3 : x = 5y\} and U = \{[x, y, z]^T \in \mathbb{R}^3 : x = z^2\} are subspaces of \mathbb{R}^3.
```

Result

Let A be an $m \times n$ matrix. Then $U = \{ \mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{0} \}$ is a subspace of \mathbb{R}^n , called the nullspace of A.

Result

Let U and V be two subspaces of \mathbb{R}^n . Then $U + V = \{\mathbf{u} + \mathbf{v} : \mathbf{u} \in U, \mathbf{v} \in V\}$ is also a subspace of \mathbb{R}^n .

If U and V are subspaces of \mathbb{R}^n such that $U \cap V = \{\mathbf{0}\}$, then U + V is called an internal direct sum. Notation: $U \oplus V$.

7 / 27

Linear Dependence

A set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ of vectors in \mathbb{R}^n is said to be linearly dependent if one of the vectors \mathbf{v}_i is a linear combination of the rest, i.e., if there are real numbers c_1, c_2, \dots, c_k , at least one of them is non-zero, such that

$$c_1\mathbf{v}_1+c_2\mathbf{v}_2+\ldots+c_k\mathbf{v}_k=\mathbf{0}.$$

- We say that the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are linearly dependent, to mean that the set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is linearly dependent.
- Any set of vectors containing the 0 is linearly dependent.

Example

Examine whether the sets $T = \{[1, 2, 0]^T, [1, 1, -1]^T, [1, 4, 2]^T\}$ and $S = \{[1, 4]^T, [-1, 2]^T\}$ are linearly dependent.

Linear Independence

A set $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ of vectors in \mathbb{R}^n is said to be linearly independent if S is not linearly dependent.

- S is linearly independent iff $c_1\mathbf{v}_1+c_2\mathbf{v}_2+\ldots+c_k\mathbf{v}_k=\mathbf{0}\Rightarrow c_1=c_2=\ldots=c_k=0.$
- We say that the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are linearly independent, to mean that the set $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ is linearly independent.

Example

Let $\mathbf{e}_i \in \mathbb{R}^n$ be the i-th column of the identity matrix I_n . Is $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ linearly independent?

9 / 27

Linear combinations of rows

Suppose
$$A = \begin{bmatrix} \mathbf{a}_1^T \\ \mathbf{a}_2^T \\ \vdots \\ \mathbf{a}_m^T \end{bmatrix}$$
 is an $m \times n$ matrix. Then

- For $c_i \in \mathbb{R}$, $\mathbf{a} = c_1 \mathbf{a}_1^T + \dots c_m \mathbf{a}_m^T$ is a linear combination of the rows of A. Note that \mathbf{a} is an $1 \times n$ matrix and $\mathbf{a}^T \in \mathbb{R}^n$.
- Note: $c_1 \mathbf{a}_1^T + \dots c_m \mathbf{a}_m^T = [c_1, \dots, c_m] A$. Thus, for any $\mathbf{c} \in \mathbb{R}^m$, $\mathbf{c}^T A$ is a linear combination of rows of A.
- The rows of A are linearly dependent iff $\mathbf{c}^T A = c_1 \mathbf{a}_1^T + \dots c_m \mathbf{a}_m^T = \mathbf{0}^T$ (zero row) for some nonzero $\mathbf{c} \in \mathbb{R}^m$.
- The rows of A are linearly dependent iff $\mathbf{a}_1, \dots, \mathbf{a}_m$ are linearly dependent, i.e., the columns of A^T are linearly dependent.

Suppose R = rref(A) has a zero row. Are the rows of $A_{m \times n}$ linearly dependent?

Yes. R = PA for some invertible P. If $[p_{m1}, p_{m2}, \dots, p_{mm}]$ is the m-th row of P, then $[p_{m1}, p_{m2}, \dots, p_{mm}]A$ is the m-th row of R.

Example

$$A = \begin{bmatrix} 1 & 2 & 0 \\ 1 & 1 & -1 \\ 1 & 4 & 2 \end{bmatrix} \xrightarrow{E_{21}(-1)} \begin{bmatrix} 1 & 2 & 0 \\ 0 & -1 & -1 \\ 0 & 2 & 2 \end{bmatrix}$$

$$\xrightarrow{E_{32}(2)} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & -1 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{E_{2}(-1)} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} = R.$$

So,
$$PA = R$$
 where $P = \begin{bmatrix} 3 & 2 & 0 \\ 1 & -1 & 0 \\ -3 & 2 & 1 \end{bmatrix}$. Verify that $-3\mathbf{a}_1^T + 2\mathbf{a}_2^T + \mathbf{a}_3^T = \mathbf{0}^T$.

11/27

Result

Let $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\} \subseteq \mathbb{R}^n$ and $A = [\mathbf{v}_1 \cdots \mathbf{v}_m]$. Then the following are equivalent.

- S is linearly dependent.
- 2 Columns of A are linearly dependent.
- **3** Ax = 0 has a nontrivial solution.
- Rows of A^T are linearly dependent.
- $oldsymbol{o}$ rank $(A^T) < m$.
- \bullet rref(A^T) has a zero row.

Result

If m > n then any set of m vectors in \mathbb{R}^n is linearly dependent.

Basis:

Let U be a subspace of \mathbb{R}^n and $B \subseteq U$. Then B is said to be a basis for U if B is linearly independent and $\mathrm{span}(B) = U$.

- The set $\{1\}$ is a basis for \mathbb{R}^1 (= \mathbb{R}).
- Let $\mathbf{e}_i \in \mathbb{R}^n$ be the *i*-th column of the identity matrix I_n . The set $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ is a basis for \mathbb{R}^n . The vectors \mathbf{e}_i (for $i = 1, 2, \dots, n$) are called the standard unit vectors.

Result

For a subspace U, a subset $B = \{v_1, \dots, \mathbf{v}_r\} \subseteq U$ is a basis of U iff every element of U is a unique linear combination of v_1, \dots, \mathbf{v}_r .

Example

Find a basis for the subspace $U = \{ \mathbf{x} \in \mathbb{R}^4 : A\mathbf{x} = \mathbf{0} \}$, where

$$A = \left[\begin{array}{rrrr} 1 & -1 & -1 & 2 \\ 2 & -2 & -1 & 3 \\ -1 & 1 & -1 & 0 \end{array} \right].$$

13 / 27

Result

Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_r\} \in \mathbb{R}^n$ and $T \subseteq span(S)$ such that m = |T| > r. Then T is linearly dependent.

Proof. Let $T = \{\mathbf{u}_1, \dots, \mathbf{u}_m\}$. Write

$$\mathbf{u}_{i} = a_{i1}\mathbf{v}_{1} + a_{i2}\mathbf{v}_{2} + \cdots + a_{ir}\mathbf{v}_{r}, \ 1 \leq i \leq m.$$

Let
$$A = \begin{bmatrix} a_{11} & \cdots & a_{1r} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mr} \end{bmatrix} = \begin{bmatrix} \mathbf{a}_1^T \\ \vdots \\ \mathbf{a}_m^T \end{bmatrix}$$
. So $u_i = \mathbf{a}_i^T \begin{bmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_r \end{bmatrix}$.

Since m > r, the rows of A are linearly dependent. Suppose $\alpha_1 \mathbf{a}_1^T + \cdots + \alpha_m \mathbf{a}_m^T = \mathbf{0}^T$. Then

$$\sum_{i=1}^{m} \alpha_i \mathbf{u}_i = \sum_{i=1}^{m} \alpha_i \mathbf{a}_i^T \begin{bmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_r \end{bmatrix} = \mathbf{0}^T \begin{bmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_r \end{bmatrix} = \mathbf{0}^T.$$

Result

Let U be a subspace of \mathbb{R}^n . Then U has a basis and any two bases for S have the same number of elements.

Dimension: The number of elements in a basis for U (a subspace of \mathbb{R}^n) is called the dimension, denoted $\dim(U)$, of U.

- $\dim(\mathbb{R}^n) = n$.
- $dim(\{0\}) = 0$, since $span(\{\}) = \{0\}$).
- If $\mathbf{v}_1, \dots, \mathbf{v}_m$ are linearly dependent, then $\dim(\operatorname{span}(\mathbf{v}_1, \dots, \mathbf{v}_m)) = m$.
- A set $S = \{\mathbf{v}_1, \dots, \mathbf{v}_n\} \subseteq \mathbb{R}^n$ is a basis of \mathbb{R}^n iff S is linearly independent iff S is a spanning set of \mathbb{R}^n , i.e., $\operatorname{span}(S) = \mathbb{R}^n$.

15 / 27

Fundamental subspaces associated to a matrix

Definition

Let A be an $m \times n$ matrix.

- 1 The column space / range space of A, denoted col(A), is the subspace of \mathbb{R}^m spanned by the columns of A. In other words, $col(A) = \{A\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n\}$.
- 2 The row space of A, denoted row(A), is the subspace of \mathbb{R}^n spanned by the rows of A. In other words, $row(A) = \{\mathbf{x}^T A \mid \mathbf{x} \in \mathbb{R}^m\}$ [Here, elements of row(A) are row vectors. How can they be elements of \mathbb{R}^n . In strict sense, $row(A) := col(A^T)$.]
- The null space of A, denoted $\operatorname{null}(A)$, is the subspace of \mathbb{R}^n consisting of the solutions of the homogeneous linear system $A\mathbf{x} = \mathbf{0}$. In other words, $\operatorname{null}(A) = \{\mathbf{x} \in \mathbb{R}^n \mid A\mathbf{x} = \mathbf{0}\}$
- **4** The null space of A^T : null $(A^T) = \{ \mathbf{x} \in \mathbb{R}^m \mid A^T \mathbf{x} = \mathbf{0} \}$

Result

If two matrices A and B are row equivalent, then row(B) = row(A).

Proof. A and B are row equivalent \Rightarrow B = PA, for some invertible P. Thus,

$$row(B) = \{\mathbf{x}^T B \mid \mathbf{x} \in \mathbb{R}^n\} = \{(\mathbf{x}^T P) A \mid \mathbf{x} \in \mathbb{R}^n\} \subseteq row(A).$$

Similarly, $row(A) \subseteq row(B)$, since $A = P^{-1}B$.

Corollary

For any A, row(A) = row(rref(A)).

Corollary

For any A, the non-zero rows of rref(A) forms a basis of row(A).

17 / 27

Suppose A and B are row-equivalent. Are col(A) and col(B) equal? No. Take $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$.

Suppose A and B are row-equivalent. Do col(A) and col(B) have same dimension? Yes. We will see soon.

Result

Let P be an invertible matrix. Then a set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$ in \mathbb{R}^n is linearly independent iff the set $\{P\mathbf{v}_1, P\mathbf{v}_2, \dots, P\mathbf{v}_m\}$ is linearly independent.

Corollary

Let $A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \dots \ \mathbf{a}_n]$ and $R = [\mathbf{b}_1 \ \mathbf{b}_2 \ \dots \ \mathbf{b}_n] = rref(A)$. If the leading columns of R are $\mathbf{b}_{j_1}, \mathbf{b}_{j_2}, \dots, \mathbf{b}_{j_r}$, then $\{\mathbf{a}_{j_1}, \mathbf{a}_{j_2}, \dots, \mathbf{a}_{j_r}\}$ is a basis for col(A).

A way of Computing a basis of null(R):

INPUT: An $m \times n$ matrix A.

Output: A full column rank matrix X whose columns span the null space of A.

- 1. Compute R = rref(A).
- 2. Suppose that R has p-nonzero rows. So it has p-pivot columns. Interchange columns of R (this means choose a permutation matrix P) so that

$$RP = \begin{bmatrix} I_p & F \\ 0 & 0 \end{bmatrix} = \text{column interchanged form of } R,$$

where I_p is the identity matrix of size p.

19 / 27

Computing a basis of null space (cont.)

- 3. Set $Y := \begin{bmatrix} -F \\ I_{n-p} \end{bmatrix}$, where I_{n-p} is the identity matrix of size n-p.
- 4. Now interchange rows of Y according to the permutation P. This means compute

$$X := PY$$
.

Then rank(X) = n - p and RX = RPY = 0. Thus columns of X span the null space of R and hence the null space of A.

Example

Find bases for the column, row and null spaces of

$$A = \left[\begin{array}{rrrr} 1 & 3 & 5 & 2 \\ 2 & 6 & 9 & 7 \\ -1 & -3 & 3 & 4 \end{array} \right].$$

We have
$$R = \text{rref}(A) = \begin{bmatrix} 1 & 3 & 0 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
. Therefore

- $\{[1,3,0,-1],[0,0,1,1]\}$ is a basis for the row space of A.
- $\left\{ \begin{bmatrix} 1\\2\\-1 \end{bmatrix}, \begin{bmatrix} 3\\9\\3 \end{bmatrix} \right\}$ is a basis for the column space of A.
- Solve $R\mathbf{x} = \mathbf{0}$ and find a basis for null(R), or use the previous algorithm.

21/27

Example (contd.)

Note that
$$RE_{23} = \begin{bmatrix} 1 & 0 & 3 & -1 \\ 0 & 1 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} I_2 & F \\ \mathbf{0} & \mathbf{0} \end{bmatrix}.$$

Put
$$Y = \begin{bmatrix} -F \\ l_2 \end{bmatrix} = \begin{bmatrix} -3 & 1 \\ 0 & -1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$
.

Note that $R(E_{23}Y) = (RE_{23})Y = \mathbf{0}$. Therefore, the columns of

$$E_{23}Y = \begin{bmatrix} -3 & 1\\ 1 & 0\\ 0 & -1\\ 0 & 1 \end{bmatrix}$$
 give a basis for null(A).

Example

Find bases for the row space, column space and null space of the following matrix:

$$A = \left[\begin{array}{rrr} 1 & 2 & -1 \\ 2 & 2 & 4 \\ 4 & 6 & 2 \end{array} \right].$$

23 / 27

Result

The row space and the column space of a matrix A have the same dimension, and dim(row(A)) = dim(col(A)) = rank(A).

So, we have several definitions for rank(A).

Result

For any matrix A, we have $rank(A^T) = rank(A)$.

Nullity: The nullity of a matrix A is the dimension of its null space, and is denoted by nullity(A).

Result (Rank Nullity Theorem)

Let A be an $m \times n$ matrix. Then

$$rank(A) + nullity(A) = n.$$

Result (The Fundamental Theorem of Invertible Matrices: Version II)

Let A be an $n \times n$ matrix. Then the following statements are equivalent.

- 1. A is invertible.
- 2. $A\mathbf{x} = \mathbf{b}$ has a unique solution for every \mathbf{b} in \mathbb{R}^n .
- 3. Ax = 0 has only the trivial solution.
- 4. The reduced row echelen form of A is I_n .
- 5. A is a product of elementary matrices.
- 6. rank(A) = n.

25 / 27

- 7. $\operatorname{nullity}(A) = 0$.
- 8. The column vectors of A are linearly independent.
- 9. The column vectors of A span \mathbb{R}^n .
- 10. The column vectors of A form a basis for \mathbb{R}^n .
- 11. The row vectors of A are linearly independent.
- 12. The row vectors of A span \mathbb{R}^n .
- 13. The row vectors of A form a basis for \mathbb{R}^n .

Example

Show that the vectors $[1,2,3]^T$, $[-1,0,1]^T$ and $[4,9,7]^T$ form a basis for \mathbb{R}^3 .

Result

Let A be an $m \times n$ matrix. Then

- $rank(A^TA) = rank(A)$.
- 2 The $n \times n$ matrix $A^T A$ is invertible if and only if rank(A) = n.

Proof.

1 $A\mathbf{x} = \mathbf{0}$ and $A^T A\mathbf{x} = \mathbf{0}$ are equivalent:

Note that $A\mathbf{x}_0 = \mathbf{0} \Rightarrow A^T A\mathbf{x}_0 = \mathbf{0}$. On the other hand $A^T A y_0 = \mathbf{0} \Rightarrow \mathbf{y}_0^T A^T A \mathbf{y}_0 = \mathbf{0} \Rightarrow (A\mathbf{y}_0)^T (A\mathbf{y}_0) = \mathbf{0} \Rightarrow A\mathbf{y}_0 = \mathbf{0}$, because $\mathbf{x}^T \mathbf{x} = 0 \Rightarrow \mathbf{x} = 0$.

2 Follows from the first part.