What is claimed is:

1	 A structure for providing resilient interconnections in a wafer level
2	package, comprising a conductive pad that overlays an air space, wherein at
3	least a portion of the air space extends laterally beyond the conductive pad.

2. The structure as claimed in claim 1, wherein the air space comprises a geometric structure having a plurality of perimeter interconnect support structures for the conductive pad.

3. The structure as claimed in claim 2, wherein at least one perimeter interconnect support structure also supports a conductive line electrically connected to the conductive pad.

4. The structure as claimed in claim 3, wherein the conductive line is a metal wire.

5. The structure as claimed in claim 1, wherein a major axis of the air space is radial to a center of the wafer level package.

6. The structure as claimed in claim 1, wherein a major axis of the air space is not radial to a center of the wafer level package.

1	7. ₹ h€	e structure as claimed in claim 2, wherein at least one perimeter
2	interconnect sup	port structure also supports a conductive line electrically
3	connected to the	conductive pad.
1		
1	8. The	e structure as claimed in claim 7, wherein the at least one
2	perimeter interco	onnect support structure is positioned relative to a center of the
3	conductive pad l	ess than or equal to about 60 degrees of the major axis.
1		
1	9. An	nethod for making a structure for providing resilient
2	interconnections	in a wafer level package, comprising the steps of:
3	А	forming a cavity having a first area on a semiconductor
4	substrate	»;
5	В	filling the cavity with a removable material;
6	C	forming a conductive layer over the removable material;
7		patterning the conductive layer to form a conductive pad;
8	E	removing the removable material to form an air space below
9	the cond	luctive pad; and
10	F	forming an interconnection material on the conductive pad,
11	whereby at least	t a portion of the air space extends laterally beyond the
12	conductive pad.	\R
1		
1	10. Th	ie method as claimed in claim $rac{1}{2}$ wherein the removable material
2	is planarized be	fore forming the conductive layer

1	11.	The method as claimed in claim 10, wherein the planarization is	
2	carried out b	y either an etch-back process or a CMP process.	
1			
1	12.	The method as claimed in claim 9, wherein the removable material	
2	is material s	elected from the group consisting of a monomeric material, a	
3	polymeric m	aterial, and an elastomeric material.	
1			
1	13.	The method as claimed in claim 9, wherein the removable materia	
2	is a B-stage	-able material. \	
1			
1	14.	The method as claimed in claim 9, wherein the cavity is formed by	
2	depositing a	dielectric layer and thereafter patterning the dielectric layer.	
1			
1	15.	The method as claimed in claim 14, wherein the patterning of the	
2	dielectric la	ver is carried out using a photolithographic process.	
1			
1	16.	The method as claimed in claim 9, wherein after forming the	
2	conductive	ayer, a dielectric layer is deposited over the conductive layer.	
1		B	
1	17.	The method as claimed in claim 9, wherein after forming the air	
2	space, a pro	otective layer is deposited on a top and bottom surface of the	
3	conductive pad.		
1			

	· ·
l	18. The method as claimed in claim 17, wherein the protective layer is
2	carried out by an electroless plating method.
1	
1	19. The method as claimed in claim 18, wherein the protective layer is
2	formed using a metal.
1	
1	20. The method as claimed in claim 19, wherein the metal is selected
2	from the group consisting of gold and nickel.