1. Wellen

1.1. Allgemeines

 $f=\frac{1}{T}$ Wellengeschwindigkeit $v=\frac{\lambda}{T}=\lambda \cdot f$ z.B. $c_0=\lambda \cdot f$

$$\begin{array}{l} \textbf{1.1.1 Wellenfunktion} \\ \lambda(x,t) = A \cdot \sin(k \cdot x - \omega \cdot t) \\ \text{Kreisfrequenz } \omega = 2\pi f \quad [\omega] = \frac{1}{\mathrm{s}} \\ \text{Wellenzahl } k = \frac{2\pi}{\lambda} \quad [k] = \frac{1}{\mathrm{m}} \\ \omega = k \cdot v \end{array}$$

1.1.2 Transversalgeschwindigkeit

$$\begin{array}{l} \textbf{1.1.2 Transversalgeschwindigkeit} \\ V_y = \frac{\partial y(x,t)}{\partial t} = \frac{\partial}{\partial t} \cdot A \cdot \sin(k \cdot x - \omega t) = \\ = \underbrace{\omega \cdot A}_{\hat{V}y} \cos(k \cdot x - \omega t) \end{array}$$

1.1.3 Transversalbeschleunigung

$$a_y = \frac{\partial^2 y}{\partial t^2} = -\omega \cdot A \cdot \sin(k \cdot x - \omega t)$$

1.2. Reflexion

Reflexionskoeffizient $R = \frac{v_2 - v_1}{v_2 + v_1}$

R < 0 falls $V_1 > V_2 \Rightarrow$ Invertierung (Phasensprung) der Welle.

Transmissionskoeffizient $T=\frac{2v_2}{v_2+v_1}$ Es gilt $T\geq 0$ Energieerhaltung: $1=R^2+\frac{v_1}{v_2}\cdot T^2$

Energieerhaltung:
$$1 = R^2 + \frac{v_2 + v_1}{v_2} \cdot T^2$$

1.3. Überlagerung

$$y_1 = A \cdot \sin(k \cdot x - \omega t)$$

$$y_2 = A \cdot \sin(k \cdot x - \omega t + \delta)$$

Bei gleicher Frequenz und Amplitude:

$$y_1 + y_2 = 2A \cdot \cos(\frac{1}{2}\delta) \cdot \sin(k \cdot x - \omega t + \frac{1}{2}\delta)$$

Konstruktive Interferenz: $\delta = 0(+2k\pi) \ k \in \mathbb{Z}$

Destruktive Interferenz: $\delta = 180^{\circ} + 2k \cdot 180^{\circ} \ k \in \mathbb{Z}$

Schwebung (periodische Amplitudenänderung):

 $f_{\text{Schwebung}} = f_2 - f_1 = \Delta f$ (klein)

1.4. Phasensprung

Wenn $n_1 < n_2$, z.B. von Luft in Wasser \Rightarrow Phasensprung.

1.5. Senkrechter Einfall (kleine Winkel)

Phasendifferenz $\delta = z \cdot \Delta x = 2\pi \cdot \frac{\Delta x}{\lambda'} = 2\pi \frac{n \cdot \Delta x}{\lambda_{\text{Einfall}}}$

eventueller Phasensprung: $+\pi$ $\Delta x = 2s$ (s: Dicke der Schicht)

Konstruktive Interferenz:

Gangunterschied muss 0 (bzw. k $\cdot 2\pi$) sein. Phasensprung beachten.

Gleichung aufstellen für z.B. $\delta = k \cdot 2\pi$ und mit Gleichung von oben gle-

Bei einem Phasensprung gilt: $\lambda = \frac{2n \cdot s}{z - \frac{1}{2}}$

Bei zwei Phasensprüngen gilt: $\lambda = \frac{n \cdot 2s}{s}$

Destruktive Interferenz:

$$\delta = (z + \frac{1}{2})2\pi, z \in \mathbb{Z}$$

Mit einem Phasensprung gilt:
$$\lambda=\frac{2n\cdot s}{z}$$
 Bei zwei Phasensprüngen gilt: $\lambda=\frac{2n\cdot s}{z-\frac{1}{2}}$

2. Interferenz

Der m-te dunkle Streifen tritt auf, wenn der Gangunterschied 2s gleich m Wellenlängen beträgt.

 $2s = m \cdot \lambda$

2.1. Interferenz am Doppelspalt

Interferenzmaximum

$$d \cdot \sin \theta_m = m \cdot \lambda; m = 0, 1, 2, \dots$$

Anzahl der Maxima bei N>2 Lichtquellen: N-2

Interferenzminimum

 $d \cdot \sin \theta_m = (m - \frac{1}{2}) \cdot \lambda; m = 0, 1, 2, ...$

Mit Ordnung m, Abstand der beiden Spalte d und Winkel des Maximums/Minimums θ .

Phasendifferenz δ und Gangunterschied Δx :

$$\delta = 2\pi \cdot \frac{\Delta x}{\lambda} = 2\pi \cdot \frac{d \cdot \sin \theta}{\lambda}$$

$$\tan \theta_m = \frac{\lambda_n}{l}$$

Spezialfall für kleine Winkel

Interferenzmaxima bei $y_m = m \cdot \frac{\lambda \cdot l}{d}$ \Rightarrow gleiche Abstände: "Äquidistant"

2.2. Interferenz am Einzelspalt Intensitätsminima

 $a \cdot \sin \theta_m = m \cdot \lambda$; m = 1, 2, ... mit Spaltbreite a.

1. Beugungsminimum bei $\tan \theta = \frac{y_1}{r}$

 \Rightarrow Zunahme von a führt zu Abnahme von θ_1

Wenn $a < \lambda$ dann wäre $\sin \theta > 1$ d.h. kein Beugungsbild.

2.3. Gitter

Wie beim Doppelspalt: $g \cdot \sin \theta_m = m \cdot \lambda$; m = 0, 1, 2, ...mit Gitterkonstante g. [g] = m

z.B. 1800 Linien pro Millimeter: $g = \frac{1}{1800 \cdot 10^3}$ m

Bei schrägem Einfall unter Winkel φ : $g' = g \cdot \cos \varphi$

2.4. Fraunhofer'sches Beugungsmuster

Kreisförmige Öffnung mit Durchmesser D und Brechungsindex n (= 1)

1. Beugungsminimum bei $sin\theta = 1, 22 \frac{\lambda}{D_{rr}}$

2.5. Auflösung und kritischer Winkel

"Rayleigh'sches Kriterium der Auflösung" $\alpha_k = 1,22 \cdot \frac{\lambda}{D \cdot n}$ Damit Objekte unterscheidbar: $2\alpha_k$ (Alle Winkel im Bogenmaß)

Auflösungsvermögen

 $A = \frac{\lambda}{|\Delta\lambda|} = m \cdot N$ mit kleinster noch trennbarer Wellenlängendifferenz $\Delta \lambda$, Anzahl der Spalte N und Beugungsordnung m

3. Thermodynamik

Zwei Systeme im thermischen Gleichgewicht haben dieselbe Temperatur!

3.1. Konstanten

Boltzmannkonstante
$$k=\frac{R_m}{N_A}=1{,}381~\frac{\rm J}{\rm K}$$
 mit universeller Gaskonstante $R_m=8{,}314~\frac{\rm J}{\rm mol~K}$

und Avogadrokonstante (Teilchen/Mol) $N_A = 6{,}022 \cdot 10^{23} \frac{1}{\text{mol}}$ spezielle Gaskonstante $R_s = \frac{R_m}{M}$ mit molarer Masse M

3.2. Geschwindigkeitsverteilung von Teilchen

Wahrscheinlichste Geschwindigkeit
$$v_P = \sqrt{\frac{2kT}{m}}$$

mittlere Geschwindigkeit
$$v_{\mathrm{gem}} = \int\limits_0^\infty v \cdot P(v) dv = \sqrt{\frac{8kT}{\pi m}}$$

quadratisch gemittelte Geschwindigkeit $v_{
m rms}=\sqrt{(v^2)_{
m gem}}=\sqrt{\frac{3kT}{m}}$ mit Boltzmannkonstante k, Temperatur T und Masse eines Teilchens m.

Es gilt
$$v_P < v_{
m gem} < v_{
m rms}$$

Ebenso gilt: $\frac{kT}{m} = \frac{RT}{M}$

hierbei ist M die molare Masse $[\frac{\mathrm{kg}}{\mathrm{mol}}]$ und R die universelle Gaskonstante.

Kinetische Energie eines Teilchens $E_{\rm kin}=rac{1}{2}\cdot m\cdot v_{
m rms}^2=rac{3}{2}kT$

Kinetische Energie von N Teilchen: $E_{kin} = N \cdot \frac{3}{2}kT$

Kinetische Energie von vielen Teilchen: $E_{\rm kin} = \frac{3}{2} m_{\rm ges} \cdot R_s T$

Mit spezifischer Gaskonstante $R_s = \frac{R}{M} \left[\frac{J}{\log K} \right]$

Es gilt $m_{\text{ges}} \cdot R_s = N \cdot k = n \cdot R$ wobei n die Anzahl der Mole ist.

3.3. Druck

$$\begin{array}{l} \text{Druck } p = \frac{\text{Kraft}}{\text{Fläche}} = \frac{F}{A} \, ; \quad \left[\frac{\text{N}}{\text{m}^2}\right] = [\text{Pa}] \\ p = \frac{N \cdot k \cdot T}{\text{m}^2} = \frac{n \cdot R \cdot T}{\text{m}^2} = \frac{m_{\text{ges}} \cdot R_s \cdot T}{\text{m}^2} \\ \end{array}$$

Druck $p = \frac{\text{Kraft}}{\text{Fläche}} = \frac{F}{A}$; $[\frac{N}{m^2}] = [\text{Pa}]$ $p = \frac{N \cdot k \cdot T}{V} = \frac{n \cdot R \cdot T}{V} = \frac{m_{\text{ges}} \cdot R_s \cdot T}{V}$ mit Boltzmann-Konstante k, Anzahl der Mole n, Anzahl der Teilchen N, universeller Gaskonstante R_s spezifischer Gaskonstante R_s

3.4. ideales Gas (niedriger Druck, hohe Temperatur)

 $p \cdot V = n \cdot R \cdot T$

mit Druck p, Volumen V, Anzahl Mole n, universeller Gaskonstante R und Temperatur T.

Es gilt ebenfalls:

$$p \cdot V = \frac{m}{M} \cdot R \cdot T$$
$$p \cdot V = N \cdot k \cdot T$$

$$p \cdot V = m \cdot R_s \cdot T$$

mit molarer Masse M. Teilchenanzahl N. Boltzmannkonstante k. Dichte ρ und spezifischer Gaskonstante R_s .

$$\frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2}
p = \rho \cdot R_s \cdot T$$

3.5. Röntgen

Planck

Energie eines Photons $E = hf = \frac{hc}{\lambda} (= e \cdot U)$

Duane-Hunt

$$v_{\text{max}} = \frac{eV}{h}$$

 $\lambda_{\text{min}} = \frac{hc}{eV}$

mit plankschem Wirkungsquantum

 $h \approx 6.626 \cdot 10^{-34} \,\mathrm{J}\,\mathrm{s} \approx 4.136 \cdot 10^{-15} \,\mathrm{eV}\,\mathrm{s}$

Elektronenladung

 $e \approx 1,602 \cdot 10^{-19} \, \text{C}$

Lichtgeschwindigkeit $c \approx 299792458 \stackrel{\text{m}}{=}$

Bragg-Gleichung

$$n \cdot \lambda = 2d \sin \theta \quad n \in \mathbb{N}$$

Mit Gitterebenenabstand d und Glanzwinkel (zwischen Kristall-Netzebene und Röntgenstrahl) θ .

3.6. Thermodynamik - Prozesse

3.6.1 Allgemeines

$$\Delta U = Q - \int p dV$$
$$Q = m \cdot c_p \cdot \Delta T$$

mit innerer Energie U, Wärme Q und spezifischer Wärmekapazität $c[\frac{\mathrm{J}}{\log \mathrm{K}}]$ $c_p=c_v+R_s=(\frac{f}{2}+1)\cdot R_s$

$$c_v = \frac{f}{2} \cdot R_s$$

Enthalpie
$$H = U + p \cdot V$$

 $H = \mathsf{innere} \; \mathsf{Energie} + "\mathsf{Platz"} \; \mathsf{für} \; \mathsf{System}$

$$\Delta U = c_V \cdot m(T_2 - T_1) = Q + W_V$$

$$\Delta H = c_p \cdot m(T_2 - T_1) = Q + W_t$$

$$p \cdot V = \overset{r}{R} \cdot T$$

$$c_p = \frac{\kappa}{\kappa - 1} \cdot R_s = \kappa \cdot c_V = c_V + R_s$$

$$c_V = \frac{1}{\kappa - 1} \cdot R_s$$

3.7. Technische Arbeit (Wellenarbeit / reversibler Anteil)

Arbeit, die beim Verschieben eines Volumens gegen den Druck der Umgebung geleistet wird.

$$W_t = \int_{p_1}^{p_2} V dp \qquad |W_t| = Q_{\mathrm{zu}} - Q_{\mathrm{ab}}$$

3.8. Verschiebearbeit

Arbeit, die das Gas gegen den Umgebungsdruck leisten muss.

$$W_{VA} = p_1 \cdot V_1 - p_2 \cdot V_2$$

3.9. Volumenänderungsarbeit

Arbeit, die zu leisten ist, um ein Volumen V_1 auf ein Volumen V_2 zu bringen. Wird einem Gas mechanische Energie zugeführt, so ist die Arbeit als **positiv** definiert.

$$W_V = -\int\limits_{V_1}^{V_2} p dV$$

3.10. Zusammenhang der Arten von Arbeit

$$W_t = W_V - W_{VA}$$

3.11. 1. Hauptsatz

In einem abgeschlossenen System ist die Gesamtenergie konstant.

$$\Delta U_{12} = Q_{12} + W_{V,12} = Q_{12} - \int_{V_1}^{V_2} p dV$$

3.12. 2. Hauptsatz

Es kann niemals Wärme aus einem kälteren in einen wärmeren Körper übergehen, wenn nicht gleichzeitig eine andere damit zusammenhängende Änderung eintritt

3.13. 3. Hauptsatz

Es ist unmöglich, durch irgendeinen Prozess, und sei er noch so idealisiert, die Temperatur irgendeines Systems in einer endlichen Anzahl von Schritten auf den absoluten Temperaturnullpunkt 0K zu senken.

3.14. Kreisprozesse

3.14.1 isotherm
$$T = \text{const.}$$

 $p \cdot v = \text{const.} \Rightarrow p \propto \frac{1}{V}$
 $p_1 \cdot V_1 = p_2 \cdot V_2$

Volumenänderungsarbeit

$$W_{V,12} = -\int_{V_1}^{V_2} p dV = -\int_{V_1}^{V_2} \frac{n \cdot R \cdot T}{V} dV = \underbrace{-n \cdot R \cdot T}_{-mR \cdot T} \cdot \ln \frac{V_2}{V_1} \quad \left(\frac{V_2}{V_1} = \frac{p_1}{p_2}\right)$$

Technische Arbeit

$$W_t = W_{V,12} - (\underbrace{p_1 V_1 - p_2 V_2}_{-0}) = W_{V,12}$$

Aus dem 1. Hauptsatz folgt zudem:

$$\Delta U_{12} = \Delta Q_{12} + W_{V,12} = 0$$

 $\Rightarrow \Delta Q_{12} = -W_{V,12}$

3.14.2 isochor V = const.

$$\frac{p}{T} = \text{const.} \quad \Rightarrow \quad p \propto T \quad \Rightarrow \quad \frac{p_1}{T_1} = \frac{p_2}{T_2}$$

Volumenänderungsarbeit

$$W_{V,12} = -\int_{V_1}^{V_2} p dV = 0$$

Technische Arbeit

$$W_t = W_{V,12} - (p_1V_1 - p_2V_2) = V \cdot (p_2 - p_1)$$

Aus dem 1. Hauptsatz folgt:

$$\Delta U_{12} = \Delta Q_{12} + W_{V,12} = \Delta Q_{12} = c_V \cdot m \cdot \Delta T$$

$\begin{array}{lll} \textbf{3.14.3 isobar} \ p = \text{const.} \\ p \cdot V = n \cdot R \cdot T & \Rightarrow & \frac{V}{T} = \text{const.} & \Rightarrow & V \propto T \end{array}$

$$\frac{V_1}{T_1} = \frac{V_1}{T_1}$$

Volumenänderungsarbeit
$$W_{V,12} = -\int\limits_{V_1}^{V_2} p dV = p \cdot (V_1 - V_2)$$

Technische Arbeit

$$\begin{aligned} W_t &= W_{V,12} - (p_1 V_1 - p_2 V_2) = -p \Delta V + p \Delta V = 0 \\ \text{Aus dem 1. Hauptsatz folgt: } &\Delta U_{12} = \Delta Q_{12} + W_{V,12} \\ &\Delta Q_{12} = c_p \cdot m \cdot (T_2 - T_1) \\ &\Rightarrow \Delta U_{12} = c_p \cdot m \cdot (T_2 - T_1) - p \Delta V = c_V \cdot m \cdot (T_2 - T_1) \end{aligned}$$

3.14.4 Mischung / Kalorimeter

$$Q_{\text{abgegeben}} = Q_{\text{aufgenommen}}$$

$$m_1 \cdot c_1 \cdot (T_1 - T_m) = m_2 \cdot c_2 \cdot (T_m - T_2)$$

$T_{m} = \frac{m_{1} \cdot c_{1} \cdot T_{1} + m_{2} \cdot c_{2} \cdot T_{2}}{m_{1} \cdot c_{1} + m_{2} \cdot c_{2}}$

Wärmekapazität Kalorimeter

$$m_1 c_1(T_1 - T_m) = m_2 c_2(T_m - T_2) + C_{cal}(T_m - T_2)$$

$$\Rightarrow C_{cal} = \frac{m_2 c_2(T_2 - T_m) + m_1 c_1(T_1 - T_m)}{T_m - T_1}$$

3.14.5 isentrop/adiabatisch $\Delta Q = 0$

$$p_1 \cdot V_1^{\kappa} = p_2 \cdot V_2^{\kappa} T_1 \cdot V_1^{\kappa - 1} = T_2 \cdot V_2^{\kappa - 1}$$

$$\frac{T_2}{T_1} = \left(\frac{p_2}{p_1}\right)^{\left(\frac{\kappa-1}{\kappa}\right)}$$

$$c = \frac{c_p}{c_V} > 1$$

 $p \propto \frac{1}{V^{\kappa}}$ (isentrope steiler als isotherme) $\Delta Q = 0$

Volumenänderungsarbeit

$$W_{V,12} = c_V(T_2 - T_1) = \frac{R_s}{\kappa - 1}(T_2 - T_1)$$

$$WV, 12 = \frac{R_s \cdot T_1}{\kappa - 1} \cdot \left(\left(\frac{p_2}{p_1} \right)^{\frac{\kappa - 1}{\kappa}} \right) = \frac{R_s \cdot T_1}{\kappa - 1} \left(\left(\frac{V_1}{V_2} \right)^{\kappa - 1} \right)$$

$$\begin{array}{l} \text{mit } R_s \cdot T_1 = p_1 \cdot v_1 \\ W_{V,12} = \frac{1}{\kappa} W_t \end{array}$$

Technische Arbeit
$$W_t = c_p \cdot (T_2 - T_1) = R_s \frac{\kappa}{\kappa - 1} (T_2 - T_1)$$

$$W_t = \frac{\kappa}{\kappa - 1} R_s \cdot T_1 \left(\left(\frac{p_2}{p_1} \right)^{\frac{\kappa - 1}{\kappa}} - 1 \right)$$

$$W_t = \frac{\kappa}{\kappa - 1} R_s \cdot T_1 \left(\left(\frac{V_1}{V_2} \right)^{\kappa - 1} - 1 \right)$$

$$W_t = \kappa \cdot W_{V,12}$$

3.14.6 Wirkungsgrad

$$\eta_{\mathrm{th}} = \frac{|V_t|}{Q_{zy}}$$

Carnotscher Wirkungsgrad $\eta_C = \frac{T_{\max} - T_{\min}}{T_{\max}} = 1 - \frac{T_{\min}}{T_{\max}}$

3.14.7 Stirling-Motor

 $\eta_{\text{Stirling}} = \eta_C$

3.14.8 Ottomotor

 $\eta=1-rac{1}{arepsilon^{\kappa-1}}$ mit Verdichtung (Hubraum V_h , komprimiert V_k) $arepsilon=rac{V_h+V_k}{V_k}$

3.15. Reale Gase

Binnendruck

$$\underbrace{\left(p + a \cdot \left(\frac{n}{V}\right)^{2}\right)}_{\text{Druck}} \cdot \underbrace{\left(V - b \cdot n\right)}_{\text{Volumen}} = n \cdot R \cdot T$$

3.16. Phasenübergänge

Schmelzwärme $Q_S=m\cdot\lambda_S$ mit spezifischer Schmelzwärme λ_S Verdampfungswärme $Q_P=m\cdot\lambda_D$

2/2

mit spezifischer Verdampfungswärme λ_D

$$Q_{\text{ges}} = Q_1 + Q_2 + Q_3 + \dots$$

Stefan Kuntz Last revised: July 10, 2016