ELSEVIER

Contents lists available at ScienceDirect

Applied Catalysis B: Environmental

journal homepage: www.elsevier.com/locate/apcatb

Ag₂O nanoparticle/TiO₂ nanobelt heterostructures with remarkable photo-response and photocatalytic properties under UV, visible and near-infrared irradiation

Na Wei, Hongzhi Cui*, Qiang Song, Liqiang Zhang, Xiaojie Song, Ke Wang, Yanfeng Zhang, Jian Li, Jing Wen, Jian Tian*

School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China

ARTICLE INFO

Article history:
Received 16 December 2015
Received in revised form 10 May 2016
Accepted 20 May 2016
Available online 20 May 2016

Keywords: Heterostructures TiO₂ nanobelt Photocatalytic UV-vis-NIR light

ABSTRACT

Finding a novel photocatalyst that can operate over a broad range of wavelengths from UV to near-infrared (NIR) holds great potential for diverse uses. Here, an Ag₂O nanoparticle/TiO₂ nanobelt heterostructure with enhanced photocatalytic performance of degrading methyl orange (MO) under UV, visible and NIR irradiation is prepared. Such an excellent photocatalytic performance is ascribed to the synergistic effects, including highly dispersed Ag₂O nanoparticles on the surface of TiO₂ nanobelts and efficient charge separation efficiency induced by the heterostructure between Ag₂O and TiO₂. Finally, a possible photocatalytic mechanism is proposed for this novel photocatalyst. This current work can afford a new paradigm for the full utilization of solar light.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Inspired by the wide and effective utilization of solar energy in nature, photocatalytic water purification has proven to be an efficient, green and promising remedial technology for detoxifying a wide variety of organic pollutants into innocuous products (e.g. CO₂, H₂O) [1–4]. Of the well-known semiconductor photocatalysts, TiO₂ has proven itself as a representative and extensively used material, owing to its photocatalytic ability, nontoxicity, and lowcost [5–7]. However, TiO₂ possesses a large band gap of 3.2 eV and is only active under UV light, which accounts for only 5% of the total solar spectrum [8,9]. Naturally, research efforts have focused on modifying TiO₂ to enable absorption of lower-energy spectra, particularly on extension of the photocatalyst spectral response range to the visible-light region [10-14]. However, about 50% of nearinfrared (NIR) light remains beyond efficient use, the harnessing of NIR photons is therefore an important challenge for development of photocatalysis.

Up to now, the investigation about NIR light photocatalysts has focused mainly on using narrow band gap semiconductors (e.g., In₂S₃ [15], WS₂ [16], Cu₂(OH)PO₄ [17]), NIR responsive

dye sensitization (e.g., $CuPc/Bi_2MoO_6$ [18] and Zn-tri- $PcNc/gC_3N_4$ [19]), and the introduction of rare earth doped upconversion materials(e.g., CQDs/Cu₂O [20], NaYF₄:Yb³⁺,Tm³⁺@TiO₂ [21] and Er³⁺/Yb³⁺-(CaF₂@TiO₂) [22]). However, the upconversion materials usually absorb NIR light and emit UV or visible light at a certain wavelength. For example, the upconversion photocatalyst of BiVO₄/CaF₂:Er³⁺,Tm³⁺,Yb³⁺ presents the photocatalytic performance under NIR irradiation, mainly by harvesting the upconversion emissions of UV (361 and 379 nm), violet (408 nm), and blue (485 nm) [23]. In addition, the above single narrow band gap semiconductors only absorb NIR light, while their NIR photocatalytic efficiencies are not very high due to the rapid recombination of the photogenerated electron-hole pairs. Therefore, it is highly interesting and a great challenge to explore photocatalytic materials that are not only activated by a broad solar light spectrum from UV to NIR light, but which also possess higher charge separation efficiency.

Herein, we first synthesized UV, visible and NIR lights driven Ag₂O nanoparticles photocatalysts. TiO₂ nanobelts were used as a supporting material, leading to homogeneous dispersion of the prepared Ag₂O nanoparticles on its surface to form spectrum-versatile UV, visible and NIR activities of Ag₂O nanoparticle/TiO₂ nanobelt heterostructures. The photocatalytic performance of the catalysts was evaluated by decomposing methyl orange aqueous solution under UV, visible and NIR irradiation. Subsequently, a

^{*} Corresponding author.

E-mail addresses: cuihongzhi1965@163.com (H. Cui), jiantian@sdust.edu.cn

possible broad solar spectrum photocatalytic mechanism of Ag₂O nanoparticle/TiO₂ nanobelt heterostructures was proposed.

2. Experimental procedure

2.1. Chemicals

Titania P25 (TiO_2), sodium hydroxide (NaOH), hydrochloric acid (HCl), and silver nitrate ($AgNO_3$) were used of analytical grade and without further purification. Deionized water was used for preparation of all aqueous solutions.

2.2. Preparation of TiO₂ nanobelts

 TiO_2 nanobelts were synthesized by a hydrothermal procedure. First, P25 (1 g) and 200 mL of 10 M NaOH aqueous solutions were homogeneously mixed together. The obtained mixture was transferred to four 50 mL Teflon-lined autoclaves and heated at 200 °C for 72 h. Then, the fabricated products were collected, rinsed thoroughly with distilled water and dissolved into a 0.1 M HCl solution for 48 h. The obtained $H_2Ti_3O_7$ nanobelts were washed with deionized water several times, and dried in the oven at 70 °C overnight. Finally, TiO_2 nanobelts were obtained by annealing the $H_2Ti_3O_7$ nanobelts at 600 °C for 2 h.

2.3. Preparation of Ag_2O nanoparticle/ TiO_2 nanobelt heterostructures

Ag₂O nanoparticle/TiO₂ nanobelt heterostructures were prepared by a simple chemical precipitation method and the weight ratio was fixed to 4:1. In a typical process, 0.1 g TiO₂ nanobelts were dispersed in 50 mL of distilled water, and 0.59 g of AgNO₃ was added to the suspension. After, the mixture was stirred magnetically for 30 min, 50 mL of 0.2 M NaOH was dropped to the above mixture of AgNO₃ and TiO₂. The amount of NaOH was more than sufficient to precipitate Ag₂O from the added AgNO₃, and the final pH 14. Finally, The as-prepared Ag₂O nanoparticle/TiO₂ nanobelt heterostructures were washed with deionized water and dried in the oven at 50 °C overnight. For comparison, pure Ag₂O was also obtained in the absence of TiO₂ nanobelts during the process of preparation of Ag₂O nanoparticle/TiO₂ nanobelt heterostructures.

2.4. Sample characterization

X-ray diffraction (XRD) patterns were recorded on a Japan D/Max 2500PC Rigaku X-ray diffractometer with Cu Kα radiation $(\lambda = 0.15405 \text{ nm})$ in the range of $20-70^{\circ}$ (20). The morphologies of the samples were obtained using scanning electron microscopy (SEM, NANO FEI-450). The high-resolution transmission electron microscopy (HRTEM) images were obtained using a JEOL 2100 microscope. X-ray photoelectron spectrometry (XPS) measurements were performed on a Thermo ESCALAB 250XI XPS system with a source and a charge neutralizer. Fourier transform infrared (FTIR) spectra were recorded on a Magna-IR 750 FTIR spectrometer (Thermo Scientific) with a spectral resolution of 2 cm⁻¹. For in situ Raman measurements, the as-prepared samples powders were handed pressed on a glass substrate by a flat spoon. The photoluminescence (PL) spectra were measured with a Raman spectroscope (HR 800, JY) under a laser excitation of 325 nm. Surface areas were determined from nitrogen adsorption-desorption isotherms at liquid nitrogen temperature using a Quantachrome surface area analyzer. The Brunauer-Emmett-Teller (BET) method was used for the surface area calculation. The electronspin resonance (ESR) signals of hydroxyl radicals spin-trapped by aspin-trap reagent 5,5-dimethyl- 1-pyrroline-N-oxide (DMPO) were examined on a Bruker model ER200-SRC spectrometer equipped with a

Fig. 1. XRD patterns of the as-synthesized products: (a) TiO_2 nanobelts, (b) Ag_2O nanoparticles, and (c) Ag_2O nanoparticle/ TiO_2 nanobelt heterostructures.

quanta-Ray Nd:YAG laser system as the irradiation source. Visible light of 420 nm was used to irradiate the sample.

Photocurrent measurements were carried out using the conventional three electrode setup connected to an electrochemical station (Zennium). In this electrochemical system, the prepared catalyst/ITO was used as the working electrode; a Pt wire was used as the counter electrode and an Ag/AgCl electrode (saturated KCl) was used as the reference electrode. The electrolyte was 0.5 M Na $_2$ SO $_4$ aqueous solution. A 633 nm LED (90 W/cm $^{-2}$) lamp served as a light source. The measurements were carried out at a constant potential of 0.2 V to the working electrode.

2.5. Photocatalytic activity test

The photocatalytic performance was evaluated by the degradation of MO solution under various light irradiation and experiments were carried out using a model XPA photocatalytic reactor (Xujiang Electromechanical Plant, Nanjing, China). A 300 W mercury lamp with a maximum emission at 356 nm, a 350 W xenon lamp with a UV cutoff filter ($\lambda > 420 \, \text{nm}$), and a 5 W 840 nm LED were used as UV, visible, and NIR light sources, respectively. The 350 W xenon lamp without cutoff filter was used as a simulated solar light source. In a typical photocatalytic experiment, 10 mg of sample was dispersed into 10 mL MO (20 mg/L) solution with constant stirring. The suspension was stirred in the dark for 30 min to reach the adsorption-desorption equilibrium before irradiation. At varied irradiation time intervals, an aliquot of the mixed solution was collected and centrifuged, and the residual MO concentration in the supernatant was analyzed by UV-vis-NIR spectroscopic measurements (Hitachi UV-3101).

3. Results and discussions

3.1. Characterization results

The crystal structures of the as-prepared TiO₂ nanobelts, Ag₂O nanoparticles and Ag₂O nanoparticle/TiO₂ nanobelt heterostructures have been characterized by XRD, as illustrated in Fig. 1. In curve a, the diffraction peaks at 25.28°, 36.95°, 37.80°, 38.58°, 48.05°, 53.89°, 55.06°, 62.69° and 68.76° correlate to anatase TiO₂ (JCPDS 21–1272) [24]. In pure Ag₂O nanoparticles (curve b), the diffraction peaks at 2θ of 26.7°, 32.8°, 38.1°, 54.9°, 65.4° and 68.8° are attributed to the respective (110), (111), (200), (220), (311), and (222) planes of the cubic Ag₂O crystal phase (JCPDS 41–1104) [25].

Fig. 2. SEM images of the as-synthesized products: (a) TiO₂ nanobelts, (b) Ag₂O nanoparticles, and (c) Ag₂O nanoparticle/TiO₂ nanobelt heterostructures; (d) EDS spectrum of Ag₂O nanoparticle/TiO₂ nanobelt heterostructures.

Fig. 3. Typical TEM (a), HRTEM (b) and (c-f) EDS mapping images of the as-prepared Ag₂O nanoparticle/TiO₂ nanobelt heterostructures.

For the Ag_2O/TiO_2 heterostructure (curve c), all the peaks can be assigned to TiO_2 or Ag_2O , and no other impurity peak was observed.

Both distribution and morphology of Ag_2O nanoparticles around TiO_2 nanobelts have been confirmed by scanning electron microscopy (SEM), as shown in Fig. 2. The results of SEM images in Fig. 2a show that the TiO_2 nanobelts are 50-200 nm in width and up to several micrometers in length [26]. The size range of Ag_2O nanoparticles is 100-500 nm and a plentiful aggregation of Ag_2O micrograins with a dimension of less than 10 nm appears in Fig. 2b. As shown in Fig. 2c, Ag_2O nanoparticles are uniformly loaded on TiO_2 nanobelts, while their size is much smaller than that of the

 Ag_2O nanoparticles in Fig. 2b. It is likely that TiO $_2$ nanobelts provide numerous nucleation sites for the growth of Ag_2O nanoparticles, leading to homogeneous dispersion of Ag_2O nanoparticles on the TiO $_2$ nanobelts with a smaller size [26]. As determined by the BET method at liquid-nitrogen temperature, the surface areas of TiO $_2$ nanobelts is $34.69\,\mathrm{m}^2\mathrm{g}^{-1}$, while the average surface area of the Ag_2O/TiO_2 heterostructures decreases dramatically to $7.70\,\mathrm{m}^2\mathrm{g}^{-1}$. This is due to the fact that partial obstruction of the TiO $_2$ void space by the growth of Ag_2O on the surface of TiO $_2$. Compared with pure Ag_2O (about $4.22\,\mathrm{m}^2\mathrm{g}^{-1}$), the surface areas of heterostructures increase, implying that TiO $_2$ can also facilitate dispersion

Fig. 4. XPS spectra in Ag₂O nanoparticle/TiO₂ nanobelt heterostructures: (a) full spectrum, (b) Ti 2p, (c) Ag 3d, and (d) O 1s.

of Ag₂O nanoparticles on the TiO₂ nonobelt surfaces (Table S1). Fig. 2d presents the energy-dispersive X-ray spectroscopy (EDS) of Ag₂O/TiO₂ heterostructures, which indicates the presence of elements Ti, Ag and O in the Ag₂O/TiO₂ heterostructures.

Typical transmission electron microscopy (TEM) images were used to further confirm the formation of the Ag_2O/TiO_2 heterostructures, as shown in Fig. 3a. As well, the high-resolution TEM image reveals the simultaneous presence of both crystalline TiO_2 and Ag_2O (Fig. 3a). The interplanar spacing of 0.274 nm corresponds to the (111) plane of Ag_2O , while 0.352 nm is attributed to the (101) plane of anatase TiO_2 (Fig. 3b). The distinguished interfaces between lattice fringes of Ag_2O and TiO_2 indicate formation of a heterostructure, which is expected to significantly increase charge separation efficiency and to enhance the photocatalytic activity [27]. Energy dispersive X-ray spectrometry (EDS) mapping analysis of the Ag_2O/TiO_2 heterostructures also confirms that Ag_2O nanoparticles are successfully assembled onto the surface of TiO_2 nanobelts (Fig. 3c–f).

Both chemical composition and elemental chemical status of Ag₂O/TiO₂ heterostructures were analyzed by XPS. Fig. 4a displays the XPS survey spectra of Ag₂O/TiO₂ heterostructures, which is composed only of Ag, Ti, and O elements. The XPS spectra of Ti 2p indicate two peaks at $\sim\!464.5\,\text{eV}$ and $\sim\!458.7\,\text{eV}$, as shown in Fig. 4b, which correspond respectively to the typical binding energies for Ti 2p_{1/2} and Ti 2p_{3/2} in TiO₂ [28]. The Ag 3d peaks of Ag₂O are located at $\sim\!368.3$ and $\sim\!374.2\,\text{eV}$ (Fig. 4c), which correspond respectively to the Ag 3d_{5/2} and Ag 3d_{3/2} binding energies [29]. It indicates that only Ti⁴⁺ and Ag⁺ exist as TiO₂ and Ag₂O in the prepared composite, which supports the results of XRD and EDS. In this case, oxygen on the sample surface exists in the form of the binding energies at 531.7 eV, 531.0 eV and 530.2 eV (Fig. 4d). The main peaks at 530.2 eV and 531.0 eV could be ascribed to the oxygen lattices in TiO₂ and Ag₂O, respectively. Beneficial to improvement of pho-

Fig. 5. UV–vis-NIR diffuse reflectance spectra (DRS) of TiO_2 nanobelts, Ag_2O nanoparticle/ TiO_2 nanobelt heterostructures, and Ag_2O nanoparticles. Inset shows the colors of the corresponding samples.

tocatalytic activity [30–32], the external —OH group or the water molecule adsorbed on the surface of the ${\rm Ag_2O/TiO_2}$ heterostructure sample is reflected by a peak at 531.7 eV.

3.2. Photocatalytic performance

The optical properties of the as-prepared pure TiO_2 nanobelts, Ag_2O nanoparticles, and Ag_2O/TiO_2 heterostructures were investigated by UV-vis-NIR DRS (Fig. 5). As shown in Fig. 5, TiO_2 nanobelts exhibit a steep absorption edge at \sim 390 nm (black line), that is to say, the bandgap energy of 3.16 eV and is consistent with the reported data [33]. DRS of pure Ag_2O nanoparticles (red line), it

Fig. 6. Photocatalytic degradation of MO aqueous solution by TiO₂ nanobelts, Ag₂O nanoparticles and Ag₂O nanoparticle/TiO₂ nanobelt heterostructures under (a) UV light, (b) visible light, (c) NIR light and (d) simulated sunlight irradiation.

Fig. 7. Ag 3d XPS spectra (a) and XRD patterns (b) of Ag₂O/TiO₂ heterostructure before and after the repeated photocatalytic degradation experiments under NIR light irradiation.

exhibits a broad and strong light absorption, while the absorption edge extends to ${\sim}956\,\mathrm{nm}$ (corresponding bandgap energy of 1.19 eV), which is in agreement with the reported value of 960 nm [34]. After Ag_O nanoparticles are assembled on the surface of TiO_2 nanobelts, the visible and NIR light responses of the composites are significantly improved in comparison with TiO_2 nanobelts. Because Ag_O and Ag_O/TiO_2 composites exhibit a broad and strong light absorption in the whole UV–vis–NIR range of 200–1800 nm, their probable photocatalytic activity of them in the UV–vis–NIR region is suggested. In addition, heavy Ag_O/TiO_2 heterostructure absorption in the red shift enhances photoexcitation efficiency and its photocatalytic activity.

Photodegradation of methyl orange (MO) under UV, visible, NIR light and simulated solar light irradiation (Fig. 6) was applied to evaluate photocatalytic activities of the prepared Ag₂O/TiO₂ heterostructures. For comparison, Ag₂O nanoparticles, TiO₂ nanobelts, and P25 were used as photocatalytic references under the same

experimental conditions. As shown in Fig. 6a, when TiO₂, P25 and Ag₂O are added, MO concentration gradually decreases and the degradation efficiencies are 35%, 47% and 61% after 35 min of UV light irradiation, respectively. But, with the Ag₂O loaded on TiO₂, the photocatalytic activities of Ag₂O/TiO₂ heterostructures are remarkably improved, with a degradation efficiency of 87%. Again, after 35 min of visible irradiation (Fig. 6b), degradation is negligible for the TiO₂ nanobelt catalyst, due to a large band gap. Surprisingly, pure Ag₂O shows good visible light photocatalytic activity, with the degradation rate reaching 71% after 35 min. Compared to Ag₂O nanoparticles, Ag₂O/TiO₂ heterostructures show much higher degradation rates, with 86% of MO degraded after 35 min of visible light irradiation.

Even more interesting is that the Ag₂O and Ag₂O/TiO₂ heterostructures were detected as possessing a rather high NIR light photocatalytic activity. As indicated in Fig. 6c, the photodegradation of MO by Ag₂O/TiO₂ heterostructures and Ag₂O nanoparticles

Fig. 8. Photoluminescence (PL) spectra of TiO_2 nanobelts and Ag_2O nanoparticle/ TiO_2 nanobelt heterostructures, $\lambda ex = 325$ nm.

is similar over the initial 20 min. However, Ag₂O/TiO₂ heterostructures exhibit better photocatalytic activity after extended NIR light irradiation, about 65% of MO degraded within 80 min.

Moreover, Ag₂O/TiO₂ heterostructures demonstrate exemplary photocatalytic activity under simulated sunlight irradiation. As shown in Fig. 6d, the MO degradation rate for Ag₂O/TiO₂ heterostructures increases to 73% after 80 min of simulated sunlight. In contrast, the corresponding MO degradation rates for P25, TiO₂ nanobelts and Ag₂O nanoparticles are only 17%, 10%, and 67% after 80 min of simulated sunlight irradiation.

In order to investigate the stability of Ag₂O/TiO₂ heterostructures under UV, visible and NIR light irradiation, the same samples were recycled four times after separation by centrifugation, and the results are shown in Fig. S1. Amazingly, after the excitation of UV, visible and NIR lights, the degradation rate of MO is slightly decreased after four repeated trials, which is still higher than that of TiO₂.

To further find the above reason, Ag_2O/TiO_2 heterostructures after photocatalytic reaction under NIR irradiation were characterized by XPS and XRD (Fig. 7). With the results shown in Fig. 7a, a Ag 3d peak shows a larger full width at half maximum compared with the fresh Ag_2O/TiO_2 heterostructures. The Ag $3d_{5/2}$ and $3d_{3/2}$ peaks could be further divided into two different peaks. The peaks at $368.3 \, \text{eV}$ and $374.2 \, \text{eV}$ are assigned to Ag^+ of Ag_2O , and the peaks at $368.9 \, \text{eV}$ and $374.6 \, \text{eV}$ are assigned to metallic Ag^0 . Meanwhile, the Ag amount is continually increased with repeated times and simultaneously, the Ag_2O peaks are continually weakened (Fig. 7b). These results suggest that partial Ag_2O are reduced to metallic Ag in the process of photocatalytic reaction, which are responsible for the reduced activity after several recycles.

Since photoluminescent (PL) spectra emission arises from the recombination of free carriers, PL spectra are first choice to explore the mitigation, transfer and recombination processes of photogenerated electron-hole pairs in semiconductors. The PL results are presented in Fig. 8, wherein TiO₂ clearly exhibits much stronger intensity than Ag₂O/TiO₂ heterostructures, further indicating that the recombination of photo-induced electrons and holes in Ag₂O/TiO₂ heterostructures can be effectively inhibited, while photocatalytic activity can be further improved.

In addition to PL, photocurrent response can also provide evidence for the separation rate of the photogenerated e^-/h^+ pairs in heterojunctions. Fig. 9 illustrates the photocurrent responses of bare TiO₂ and Ag₂O/TiO₂ heterostructures under NIR light irradiation at 0.2 V bias versus that of SCE. Under illumination, the

Fig. 9. Photocurrent responses of bare TiO_2 and Ag_2O nanoparticle/ TiO_2 nanobelt heterostructures in the dark and under NIR light irradiation in $0.5\,M$ Na_2SO_4 solutions.

photocurrent response of Ag_2O/TiO_2 heterostructures is as high as $10.1\,\text{uA/cm}^2$. By contrast, no significant current is observed for the bare TiO_2 sample, which confirms that the narrow band gap Ag_2O can effectively absorb NIR light to offer plentiful photogenerated electrons, and thus facilitate NIR photocatalytic activity [35].

To investigate the reactive oxygen species generated during the photodegradation of the MO, and thus discover the reaction mechanism, the ESR (electron spin resonance) spin-trap technique (with DMPO, 5,5-dimethyl-1-pyrroline N-oxide) was employed on Ag₂O/TiO₂ heterostructures (Fig. 10). There is no signal when the system in the dark, while both signals of DMPO- $^{\bullet}$ O₂ and DMPO- $^{\bullet}$ OH could be clearly observed once Ag₂O/TiO₂ heterostructures are irradiated under light irradiation. As well, the $^{\bullet}$ O₂ and $^{\bullet}$ OH signal intensities of the system increase with extended irradiation time, as shown in Fig. 10a and b. Therefore, a dual mechanism in the photocatalytic process is predicted, involving oxidation of both $^{\bullet}$ OH radicals and $^{\bullet}$ O₂ radicals.

3.3. Photocatalytic mechanism

According to the above mentioned experimental results, a possible mechanism for photocatalytic degradation of MO by the Ag_2O/TiO_2 heterostructure photocatalyst under UV, visible and NIR light is proposed, as shown in Fig. 11. The Ag_2O/TiO_2 heterostructures are believed to exhibit cooperative or synergetic effects between TiO_2 and Ag_2O . To clarify the separation and migration of e^-/h^+ pairs at the Ag_2O/TiO_2 interface, it is necessary to ascertain the respective band structures of Ag_2O and TiO_2 , respectively. The conduction band (CB) edge of a semiconductor can be calculated by the following equation [36]:

$$E_{CB} = X - E_C - 0.5E_g \tag{1}$$

wherein, X is the absolute electronegativity of a semiconductor, expressed as the geometric mean of the absolute electronegativity of constituent atoms; E_c is the energy of free electrons on the hydrogen scale (ca. 4.5 eV), and Eg is the semiconductor band gap. Fig. 11 depicts the calculated band edge positions of TiO₂ and Ag₂O, based on the estimated E_g in DRS spectra (Fig. 5). The conduction band bottom of TiO₂ is higher than that of Ag₂O, while the valence band top is lower than that of Ag₂O. In addition, an electric field can be built at the Ag₂O/TiO₂ heterojunction and along the inner electric field direction: TiO₂ \rightarrow Ag₂O. Considering the inner electric field and energy band structure, it is reasonable to conclude that electron transfer between TiO₂ and Ag₂O is partially restricted.

Fig. 10. DMPO spin-trapping ESR spectra of Ag₂O nanoparticle/TiO₂ nanobelt heterostructures (a) in methanol dispersion for DMPO-*O₂⁻ and (b) in aqueous dispersion for DMPO-*OH under light irradiation.

Fig. 11. Schematic diagrams for the possible photocatalytic mechanism of the Ag₂O nanoparticle/TiO₂ nanobelt heterostructures under UV-vis-NIR light irradiation.

However, hole transfer can be accelerated, causing an efficient separation of photogenerated electrons and holes while enhancing the photocatalytic activities [30,32].

On the other hand, Ag_2O nanoparticles are unstable and easily be reduced to metallic Ag by photogenerated electrons, as confirmed by XRD and XPS results after reaction (Fig. 7). Similar results of this self-stable Ag_2O mechanism have been revealed in previous works [37–39]. Due to Schottky barriers at the metal-semiconductor interface, photogenerated electrons tend to transfer from TiO_2 to Ag_2O , which efficiently inhibits the recombination of the photoexcited electrons and holes.

As shown in Fig. 11a, both TiO_2 and Ag_2O can be excited to generate electrons (e⁻) and holes (h⁺) under UV light irradiation, which photogenerated electrons and holes in TiO_2 migrate towards to Ag_2O , according to the above analysis of band structure. The electrons of TiO_2 can be further captured by Ag. Also illustrated in Fig. 11a, the captured electrons in Ag are trapped by O_2 to produce O_2 , then combine with O_2 to be further transformed into O_2 , then combine with O_3 to be further transformed into O_3 transfer to the photocatalyst surface and directly oxidize the organic pollutants, resulting in markedly improved photocatalytic activity. Improved activity is due to greater positive potentials of O_3 (O_3) O_4 (O_4) O_4) O_4 (O_4) O_4) O_4 (O_4) O_4) O_4 0 (O_4) O_4 0 (O_4 0) O_4 0) O_4 0) O_4 0 (O_4 0) O_4 0

When the Ag_2O/TiO_2 heterostructure is irradiated by visible and NIR light, only the electrons in the VB of Ag_2O can be excited, as shown in Fig. 11b. The electrons in the CB of Ag_2O migrate to Ag to combine with oxygen, leading to the separation of carriers. In addition, the photocatalytic mechanism of photogenerated holes in Ag_2O under visible and NIR light are similar to irradiation by UV light (Fig. 11a).

Based on the above discussion, it can be concluded that the enhanced photocatalytic activity of the prepared Ag₂O/TiO₂ derives

from three aspects. The first enhancement is the improved dispersion and smaller particle size of Ag_2O . Second is the improved optical absorption property arising from the heterostructure between TiO_2 and Ag_2O . Third, Ag^+ in Ag_2O is partially reduced to metallic Ag^0 by photogenerated electrons, which works as an electron pool and transfers photogenerated electrons from Ag_2O to combine with O_2 , resulting in the high separation rate of photogenerated electrons and holes.

4. Conclusions

In summary, one dimensional TiO_2 nanobelts were successfully fabricated by a hydrothermal procedure that provides numerous nucleation sites for Ag_2O nanoparticles loading, thereby forming Ag_2O nanoparticle/ TiO_2 nanobelt heterostructures. The novel Ag_2O nanoparticle/ TiO_2 nanobelt heterostructures show highly efficient photocatalytic performance in degradation of MO degradation under UV, visible, NIR light and simulated sunlight irradiation. Such an excellent performance results from synergy, including induction of the heterostructure between TiO_2 and Ag_2O by the higher charge separation efficiency of photo-induced electron-hole pairs, plus absorption of visible and NIR light absorption due to the highly dispersed Ag_2O nanoparticles.

Acknowledgments

The authors are thankful for fundings from the National Natural Science Foundation of China (Nos. 51272141 and 51502160), Taishan Scholars Project of Shandong Province (No. TS20110828), National High Technology Research and Development Program of China (863 Program, No. 2015AA034404), Natural Science Foun-

dation of Shandong Province (No. ZR2015EQ001), and SDUST Research Fund (No. 2015JOJH101).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.apcatb.2016. 05.040.

References

- [1] L. Zhu, B. Wei, L.L. Xu, Z. Lü, H.L. Zhang, H. Gao, J.X. Che, CrystEngComm 14 (2012) 5705–5709.
- [2] J.X. Low, J.G. Yu, Q. Li, B. Cheng, Phys. Chem. Chem. Phys. 16 (2014) 1111–1120.
- [3] Y.H. Cao, Q.Y. Li, Y.Y. Xing, L.L. Zong, J.J. Yang, Appl. Surf. Sci. 341 (2015) 190–195.
- [4] Y. Wang, Y.Z. Zheng, S. Lu, X. Tao, Y. J.F. Chen Che, ACS Appl. Mater. Interfaces (2015) 6093–6101.
- [5] L.C. Kao, C.J. Lin, C.L. Dong, C.L. Chen, S.Y.H. Liou, Chem. Commun. 51 (2015) 6361–6364.
- [6] S.I. Mogal, V.G. Gandhi, M. Mishra, S. Tripathi, T. Shripathi, P.A. Joshi, O.S. Dinesh, Ind. Eng. Chem. Res. 53 (2014) 5749–5758.
- [7] P.A. Neale, K. A. Jämting, E.O. Malley, J. Herrmann, B.I. Escher, Environ. Sci. Nano 2 (2015) 86–93.
- [8] H. Ghassemi, W. Harlow, O. Mashtalir, M. Beidaghi, M.R. Lukatskaya, Y. Gogotsi, M.L. Taheri, J. Mater. Chem. A 2 (2014) 14339–14343.
- [9] Q. Dong, W. Liao, B. Wang, Z.Q. Liu, RSC Adv. 5 (2015) 33869–33877.
- [10] B. Xue, T. Sun, J.K. Wu, F. Mao, W. Yang, Ultrason. Sonochem. 22 (2015) 1-6.
- [11] J.W.J. Hamilton, J.A. Byrne, P.S.M. Dunlop, D.D. Dionysiou, M. Pelaez, K.O. Shea, S. Damian, S.C. Pillai, J. Phys. Chem. C 118 (2014) 12206–12215.
- [12] J. Tian, Y.H. Leng, H.Z. Cui, H. Liu, J. Hazard. Mater. 299 (2015) 165-173.
- [13] G.Z. Zhang, F. Teng, Y.Q. Wang, P. Zhang, C.S. Gong, L.L. Chen, C.H. Zhao, E.Q. Xie, RSC Adv. 3 (2013) 24644–24649.
- [14] Z.H. Zhao, J. Tian, D. Wang, X.L. Kang, Y.H. Sang, H. Liu, J.Y. Wang, S.W. Chen, R.I. Boughtond, H.D. Jiang, J. Mater. Chem. 22 (2012) 23395–23403.
- [15] W.W. Gao, W.X. Liu, Y.H. Leng, X.W. Wang, X.Q. Wang, B. Hu, D.H. Yu, Y.H. Sang, H. Liu, Appl. Catal. B Environ. 176-177 (2015) 83-90.

- [16] Y.H. Sang, Z.H. Zhao, M.W. Zhao, P. Hao, Y.H. Leng, H. Liu, Adv. Mater. 27 (2015) 363–369.
- [17] Z.J. Li, Y. Dai, X.C. Ma, Y.T. Zhu, B.B. Huang, Phys. Chem. Chem. Phys. 16 (2014) 3267–3273.
- [18] Z.J. Zhang, W.Z. Wang, D. Jiang, J.Y. Xu, Catal. Commun. 55 (2014) 15–18.
- [19] X.H. Zhang, L.J. Yu, C.S. Zhuang, T.Y. Peng, R.J. Li, X.G. Li, ACS Catal. 4 (2014) 162–170.
- [20] H.T. Li, R.H. Liu, Y. Liu, H. Huang, H. Yu, H. Ming, S.Y. Lian, S.T. Lee, Z.H. Kang, J. Mater. Chem. 22 (2012) 17470–17475.
- [21] W. Wang, M.Y. Ding, C.H. Lu, Y.R. Ni, Z.Z. Xu, Appl. Catal. B Environ. 144 (2014) 379–385.
- [22] S.Q. Huang, L. Gu, C. Miao, Z.Y. Lou, N.W. Zhu, H.P. Yuan, A.D. Shan, J. Mater. Chem. A. 1 (2013) 7874–7879.
- [23] S.Q. Huang, N.W. Zhu, Z.Y. Lou, L. Gu, C. Miao, H.P. Yuan, A.D. Shan, Nanoscale 6 (2014) 1362–1368.
- [24] J. Tian, Y.H. Sang, Z.H. Zhao, W.J. Zhou, D.Z. Wang, X.L. Kang, H. Liu, J.Y. Wang, S.W. Chen, H.Q. Cai, H. Huang, Small 9 (2013) 3864–3872.
- [25] S.S. Ma, J.J. Xue, Y.M. Zhou, Z.W. Zhang, RSC Adv. 5 (2015) 40000-40006.
- [26] W.J. Zhou, H. Liu, J.Y. Wang, D. Liu, G.J. Du, J.J. Cui, ACS Appl. Mater. Interfaces 2 (2010) 2385–2392.
- [27] X.H. Hu, Q. Zhu, X.L. Wang, N. Kawazoe, Y.N. Yang, J. Mater. Chem. A 3 (2015) 17858–17865.
- [28] J.H. Li, X.Y. Liu, Y.Q. Qiao, H.Q. Zhu, C.X. Ding, Colloids Surf. B Biointerfaces 113 (2014) 134–145.
- [29] R.J. Zhang, J. Zhang, B.S. Wang, S.L. Zheng, H. Xia, Y. Qu, Energy Environ. Focus 4 (2015) 164–169.
- [30] M. Xu, L. Han, S.J. Dong, ACS Appl. Mater. Interfaces 5 (2013) 12533–12540.
- [31] W. Yua, X.J. Liu, H.P. Chu, G. Zhu, J.L. Lia, J.Y. Liu, L.Y. Niu, Z. Sun, L.K. Pan, J. Mol Catal, A Chem. 407 (2015) 25–31.
- [32] L. Shi, L. Liang, J. Ma, F.X. Wang, J.M. Sun, Catal. Sci. Technol. 4 (2014) 758-765.
- [33] J. Tian, P. Hao, N. Wei, H.Z. Cui, H. Liu, ACS Catal. (2015) 1-7.
- [34] W. Jiang, X.Y. Wang, Z.M. Wu, X.N. Yue, S.J. Yuan, H.F. Lu, B. Liang, Ind. Eng. Chem. Res. 54 (2015) 832–841.
- [35] C.B. Liua, C.H. Cao, X.B. Luo, S.L. Luo, J. Hazard. Mater. 285 (2015) 319-324.
- [36] N. Liang, M. Wang, L. Jin, S.S. Huang, W.L. Chen, M. Xu, Q.Q. He, J.T. Zai, N.H. Fang, X.F. Qian, ACS Appl. Mater. Interfaces 6 (2014) 11698–11705.
- [37] H.T. Ren, S.Y. Jia, Y. Wu, S.H. Wu, T.H. Zhang, X. Han, Ind. Eng. Chem. Res. 53 (2014) 17645–17653.
- [38] X.F. Wang, S.F. Li, H.G. Yu, J.G. Yu, S.W. Liu, Chemistry 17 (2011) 7777–7780.
- [39] H.G. Yua, R. Liu, X.F. Wang, P. Wang, J.G. Yu, Appl. Catal. B Environ. 111-112 (2012) 326-333.