Predictive Analytics

Abhimanyu Gupta

What is Predictive Analytics?

Applications of Predictive Analytics

 Government body and their policy **Politics** Financial support Government initiatives Inflation and interest rates Economy ·Labour and energy costs Population, Lifestyle, Culture Social Education, Media New technology Technology Information and communication system •Regulations and employment Legal Government Law and standards Environment Weather, pollutiom, waste, recycling

What is Machine Learning?

What is Machine Learning?

Types of Machine Learning

Classical Machine Learning

CLASSICAL MACHINE LEARNING

Supervised Learning

Supervised Learning Algorithms

Algorithm	Problem Type	Assumptions	Results interpretable?	Easy to explain?	Predictive accuracy	Training speed	Prediction speed	Amount of parameter tuning?	Performance with small datasets?
Linear Regression	Regression	Normality & Linearity	Yes	Yes	Lower	Fast	Fast	None	Yes
Logistic Regression	Classification	Binary classes only!	Somewhat	Somewhat	Lower	Fast	Fast	None	Yes
Linear Discriminant Analysis	Classification	Normality	Yes	Yes	Lower	Fast	Fast	None	Yes
Decision trees	Either	None	Somewhat	Somewhat	Lower	Fast	Fast	Some	No
Random Forests	Either	None	A little	No	Higher	Slow	Moderate	Some	No
k-Nearest Neighbor	Classification	None	Yes	Yes	Lower	Fast	Depends on k	Minimal	No
Support Vector Machine	Either	None	Yes	Yes	Lower	Fast	Fast	Some	No
Naive Bayes	Classification	None	Somewhat	Somewhat	Lower	Fast	Fast	Some	Yes
Neural networks	Either	None	No	No	Higher	Slow	Fast	Lots	No

Regression Accuracy with R-squared

Classification Accuracy with Confusion Matrix

	Predicted:	Predicted:	
n=165	NO	YES	
Actual:			
NO	TN = 50	FP = 10	60
Actual:			
YES	FN = 5	TP = 100	105
	55	110	

Training & Testing Data

Steps for Prediction

Choose a data set

Load the data set

Select the dependent variable

Select all independent variables

Select a subset of the data set as training data

Determine testing data as the complementary subset of the training data

If the dependent variable is numeric then

Fit a Regression model on the training data

Predict the value of dependent variable in the training data using the fitted model

Determine accuracy as the R-squared value between actual and predicted values of dependent variable If the dependent variable is NOT numeric then

Fit a Classification model on the training data

Predict the class of dependent variable in the training data using the fitted model

Create a confusion matrix to determine the actual and predicted classes of the training data

Determine accuracy as the proportion of correct predictions of dependent variable

Predict the value of dependent variable in the testing data using the fitted model

Save the testing data, with predicted values, in the local drive