Na aula anterior falamos em erro percentual relativo, em termos do valor exato da raiz. Mas, o fato é que normalmente não conhecemos o valor da raíz. Então o mais apropriado seria falar-se em erro relativo percentual aproximado.

$$\varepsilon_{a} = \left| \frac{x_{r}^{novo} - x_{r}^{velho}}{x_{r}^{novo}} \right| \quad (1), \quad onde:$$

Onde x_r^{novo} é a raiz da iteração atual é x_r^{velho} é a raiz da iteração prévia. Quando \mathcal{E}_a se torna menor que um critério de parada pré-especificado \mathcal{E}_s , param-se os cálculos;

Estimativa de erro para a bissecção.

Exemplo: No caso do problema do paraquedista continue até que o erro aproximado fique abaixo do critério de parade $\varepsilon_s = 0,5\%$. Use (1) para calcular os erros.

Solução: Os resultados das duas primeiras iterações no exemplo da aula anterior foram 14 e 15. A susbtituição destes valores em (1) resulta:

$$\mathcal{E}_a = \left| \frac{15 - 14}{15} \right| x 100\% = 6,667\%$$

Lembrando que anteriormente o erro relativo percentual verdadeiro para a estimativa da raiz de 15 foi de 1,5%. Logo, \mathcal{E}_a é maior que \mathcal{E}_t . Esse comportamento se manifesta nas outras iterações:

Iteração	x _l	x _u	X _r	$\mathcal{E}_a(\%)$	$\mathcal{E}_{_{t}}(\%)$
1	12	16	14		5,279
2	14	16	15	6,667	1,487
3	14	15	14,5	3,448	1,896
4	14,5	15	14,75	1,695	0,204
5	14,75	15	14,875	0,840	0,641
6	14,75	14,875	14,8125	0,422	0,219

Na sexta iteração $\mathcal{E}_s = 0.5\%$ fica abaixo de $\mathcal{E}_s = 0.5\%$.

MÉTODO DA FALSA POSIÇÃO:

Motivação:

- Método da Bissecção é uma técnica perfeitamente válida para determinar raízes.
 Porém a sua abordagem do tipo "força bruta" é relativamente ineficiente.
- Uma deficiência do método da bissecção é que na divisão do intervalo de x_l e x_u em metades iguais , não são levados em conta os módulos de $f(x_l)$ e $f(x_u)$.

Por exemplo, se $f(x_l)$ estiver muito mais próxima de zero do que $f(x_u)$, será provável que a raiz esteja mais próxima de x_l do que x_u .

Vamos analisar a próxima figura

MÉTODO DA FALSA POSIÇÃO:

- Um método alternativo que explora a percepção gráfica é ligar $f(x_l)$ e $f(x_u)$ por uma reta.
- A intersecção dessa reta com o eixo x representa uma melhor estimativa da raiz.
- O fato de a substituição da curva por uma reta dar uma "falsa posição" é a origem do nome do método.
- Este método também é chamado de interpolação linear.

Usando semelhança de triângulos a partir da figura, a intersecção da reta com o eixo x pode ser calculada por:

$$\frac{f(x_l)}{x_r - x_l} = \frac{f(x_u)}{x_r - x_u} \tag{2}$$

que pode ser reescrita como:

$$x_r = x_u - \frac{f(x_u)(x_l - x_u)}{f(x_l) - f(x_u)}$$
(3)

Dedução:

A partir de (2), multiplicando-se de forma cruzada:

$$f(x_l)(x_r - x_u) = f(x_u)(x_r - x_l)$$

Agrupando os termos e reorganizando:

$$x_r \left[f(x_l) - f(x_u) \right] = x_u f(x_l) - x_l f(x_u)$$

Dividindo por $\left[f(x_l) - f(x_u) \right]$:

$$x_{r} = \frac{x_{u} f\left(x_{l}\right) - x_{l} f\left(x_{u}\right)}{f\left(x_{l}\right) - f\left(x_{u}\right)} \tag{4}$$

A equação (4) representa uma forma para o método da falsa posição:

• Observe que ela permite o cálculo da raiz x_r como uma função das aproximações inferiorres x_l e x_{ll} .

A equação (4) pode ser colocada em uma forma alternativa expandido-a:

$$x_r = \frac{x_u f(x_l)}{f(x_l) - f(x_u)} - \frac{x_l f(x_u)}{f(x_l) - f(x_u)}$$

e então somando e subtraindo x₁₁ no lado direito:

$$x_r = x_u + \frac{x_u f(x_l)}{f(x_l) - f(x_u)} - x_u - \frac{x_l f(x_u)}{f(x_l) - f(x_u)}$$

Agrupando os termos obtemos:

$$x_r = x_u + \frac{x_u f(x_u)}{f(x_l) - f(x_u)} - \frac{x_l f(x_u)}{f(x_l) - f(x_u)}$$

ou

$$x_r = x_u - \frac{f(x_u)(x_l - x_u)}{f(x_l) - f(x_u)}$$

que é a mesma que (3).

• Essa forma é mais usada porque envolve um cálculo de função a menos e uma multiplicação a menos que (4).

Então, (3) é a fórmula do método da falsa posição.

- O valor de x_r calculado com (3) então substitui qualquer das duas aproximações iniciais x_l ou x_u que forneça um valor da função com o mesmo sinal que $f(x_r)$.
- Dessa forma, os valores de x_l e x_u sempre delimitam a raiz verdadeira.
- O processo é repetido até que a raiz seja estimada adequadamente.
- O algoritmo é idêntico ao da bisecção, com a diferença que a equação (3) é usada no PASSO 2.

Exemplo: Use o método da falsa posição para determinar a raiz da equação investigada no caso do exemplo do paraquedista.

Solução: Começamos os cálculos com x_I = 12 e x_U =16.

Primeira iteração:

$$x_l = 12$$
 $f(x_l) = 6,0699$
 $x_u = 16$ $f(x_u) = -2,2688$
 $x_r = 16 - \frac{-2,2688(12 - 16)}{6,0669 - (-2,2688)} = 14,9113$

Que tem um erro relativo verdadeiro de 0,89%:

Segunda iteração:

$$f(x_l) f(x_r) = -1,5426$$

Portanto, a raíz está no primeiro subintervalo e x_r torna-se a a aproximação superior da próxima iteração, $x_u = 14,9113$:

$$x_l = 12$$
 $f(x_l) = 6,0699$
 $x_u = 14,9113$ $f(x_u) = -0,2543$
 $x_r = 14,9113 - \frac{-0,2543(12 - 14,9113)}{6,0669 - (-0,2543)} = 14,7942$

Que tem erros relativos verdadeiros e aproximado de de 0,09% e 0,79%. Iterações adicionais podem ser feitas para refinar a estimativa da raiz.

Armadilhas do método da falsa posição:

Embora o método possa sempre parecer ser o melhor dos métodos intervalares. Há casos em que seu desempenho é deficiente. Na verdade existe casos em que a bisecção fornece resultados melhores.

Exemplo: Use a bisecção e a falsa posição para localizar a raiz de:

$$f(x) = x^{10} - 1$$

Entre x=0 e 1,3

Usando a bisecção, os resultados podem ser resumidos por:

Iteração	x _l	X _u	X _r	$\mathcal{E}_a(\%)$	$\mathcal{E}_{t}(\%)$
1	0	1,3	0,65	100	35,0
2	0,65	1,3	0,975	33,3	2,5
3	0,975	1,3	1,375	14,3	13,8
4	0,975	1,1375	1,05625	7,7	5,6
5	0,975	1,05625	1,015625	4,0	1,6

Logo, depois de cinco iterações, o erro verdadeiro foi reduzido para menos de 2%. Na falsa posição, é obtida uma saída muito diferente:

Usando a falsa posição, éobtida uma saída muito diferente:

Iteração	x _I	x _u	X _r	$\mathcal{E}_a(\%)$	$\mathcal{E}_{t}(\%)$
1	0	1,3	0,09430		90,6
2	0,09430	1,3	0,18176	48,1	81,8
3	0,975	1,3	1,1375	14,3	73,7
4	0,26287	1,3	0,33811	22,3	66,2
5	0,33811	1,3	0,40788	17,1	59,2

Exercício 1)

Determine a primeira raíz da função de $f(x)=2,75x^3+18x^2-21x-12$:

- a) Pelo método da Falsa Posição;
- . Use as aproximações iniciais $x_1 = -1$ e $x_2 = 0$. Um critério de parada de 1%.

Exercício 2)

Determine a raíz real positiva da função de $f(x)=x^4-8x^3-35x^2+450x-1001$:

- a) Pelo método da Falsa Posição;
- . Use as aproximações iniciais $x_1 = 4.5$ e $x_2 = 6$ e faça 5 iterações. Calcule os erros verdadeiro e aproximado considerando o fato que a raíz é 5,60979.