Commutative rings and nilpotents

- ▶ A commutative ring is a set *R* equipped with elements 0,1 and rules for addition, multiplication, satisfying all the usual rules including *ab* = *ba*.
- ▶ Examples: integers \mathbb{Z} , real numbers \mathbb{R} , modular numbers \mathbb{Z}/n , polynomials $\mathbb{Z}[x]$. Not \mathbb{N} (no subtraction) or $M_n(\mathbb{R})$ (matrices; $ab \neq ba$).
- An element $x \in R$ is *nilpotent* if $x^{n+1} = 0$ for some $n \ge 0$. Example: 20^3 is divisible by 1000, so 20 is nilpotent in $\mathbb{Z}/1000$. We define Nil(R) to be the set of nilpotent elements, so Nil($\mathbb{Z}/1000$) = $\{0, 10, 20, \dots, 990\}$.
- If x and y are nilpotent then so is x + y. Example: if $x^3 = y^4 = 0$ then

$$(x+y)^6 = x^6 + 6x^5y + 15x^4y^2 + 20x^3y^3 + 15x^2y^4 + 6xy^5 + y^6$$

= $(x^3 + 6x^2y + 15xy^2 + 20y^3)x^3 + (15x^2 + 6xy + y^2)y^4$
= $(\cdots)0 + (\cdots)0 = 0$

- ▶ Easier facts: 0 is nilpotent, and if x is nilpotent, then so is xy.
- An *ideal* is a subset $I \subseteq R$ such that (i) $0 \in I$ and (ii) when $x, y \in I$ we have $x + y \in I$ and (iii) when $x \in I$ and $y \in R$ we have $xy \in I$. Easy example: the even numbers form an ideal in \mathbb{Z} .
- ▶ The above facts show that Nil(R) is an ideal in R.