Федеральное государственное автономное образовательное учреждение высшего образования «Московский физико-технический институт (национальный исследовательский университет)»

Физтех-школа Радиотехники и Компьютерных Технологий Кафедра радиоэлектроники и прикладной информатики

Методические указания к лабораторной работе «Дискретизация аналоговых сигналов» по курсу «Радиофизическая лаборатория»

Составители: Тормагов Т.А. Питеримов Д.А. Леус А.В.

УДК 621.391

Дискретизация аналоговых сигналов: методические указания к лабораторной работе по курсу «Радиофизическая лаборатория» / сост. Т.А. Тормагов, Д.А. Питеримов, А.В. Леус — М.:МФТИ, 2023. — 44 с.

Методические указания к лабораторной работе «Дискретизация аналоговых сигналов» по курсу «Радиофизическая лаборатория» для студентов 3-ого курса бакалавриата и специалитета Физтех-школы Радиотехники и Компьютерных Технологий МФТИ. В работе рассматриваются вопросы, связанные с процессами дискретизации и квантования сигналов, эффектом наложения спектров. Задания выполняются с помощью компьютерного моделирования на языке программирования Руthon 3 с применением библиотек Numpy, Scipy и Matplotlib.

© Федеральное государственное автономное образовательное учреждение высшего образования «Московский физико-технический институт (национальный исследовательский университет)», 2023

Содержание

Предисловие	4
Теоретическое введение	5
Модуль 1. Классификация сигналов: аналоговые, дискр цифровые	
Модуль 2. Спектры импульсных и периодических сигнало	ов8
Преобразование Фурье	8
Свойства преобразования Фурье	10
Спектры гармонических сигналов	11
Спектры импульсных сигналов	12
Спектр пачки равноотстоящих импульсов	17
Ограничение сигнала по длительности.	19
Модуль 3. Эффект наложения спектров при дискрети сигналов	
Спектр дискретизованного сигнала	22
Эффект наложения	
Теорема Котельникова во временной области	24
Эффект наложения спектров при дискрети синусоидальных сигналов	
Оценка спектра сигнала по последовательности его от	
Задание к допуску	36
Задачи к сдаче работы	39
Модуль 1	39
Модуль 2	40
Модуль 3	41
Справочные данные	44
Литература	44

Предисловие

Дискретизация аналоговых сигналов позволяет выполнять их обработку, в частности, спектральный анализ и фильтрацию, в цифровом виде. Цифровой сигнал он представим в виде набора отсчетов в заданные моменты времени. Его можно эффективно обрабатывать с помощью различных вычислительных устройств: компьютеров, сигнальных процессоров, программируемых логических интегральных схем.

Данная лабораторная работа разделена на три модуля. В первом модуле обсуждается разница между понятиями аналогового, дискретизованного и цифрового сигналов. Во втором модуле рассматриваются основные вопросы о спектрах сигналов, которые необходимы для интерпретации процесса дискретизации в частотной области. Третий модуль посвящен эффекту наложения спектров. В частотной области при дискретизации аналогового сигнала происходит периодическое повторение копий его спектра. При дискретизации реальных аналоговых сигналов, как правило, перекрываются, что и приводит к эффекту наложения.

Практические задания лабораторной работы выполняются с помощью компьютерного моделирования на языке программирования Руthon 3 с применением библиотек Numpy, Scipy и Matplotlib. Для построения спектров в данной работе применяется в основном численное интегрирование. В действительности, более эффективным инструментом оценки спектров аналоговых сигналов является дискретное преобразование Фурье (ДПФ), для которого существуют вычислительно эффективные алгоритмы вычисления, в частности, быстрое преобразование Фурье (БПФ). Но для работы с этим инструментом сигнал необходимо правильно дискретизовать: необходимо учитывать эффект наложения спектров. Этим вопросам и посвящена данная лабораторная работа.

Основной материал, рассматриваемый в данной лабораторной работе, необходим для дальнейшего изучения различных разделов цифровой обработки сигналов, в особенности цифрового спектрального анализа, многоскоростной обработки сигналов, цифровой фильтрации сигналов.

Теоретическое введение

Модуль 1. Классификация сигналов: аналоговые, дискретные, цифровые.

Под сигналом обычно понимают величину, отражающую состояние физической системы. Поэтому естественно рассматривать сигналы как функции, заданные в физических координатах. Примером могут служить одномерные сигналы, заданные как функции времени , двумерные сигналы заданные на плоскости I(x,y). В качестве сигналов могут выступать различные величины. Пример одномерного сигнала — зависимость напряжения в сети от времени $U(t) = A \cdot \cos(2\pi f_0 t)$. Далее мы будем рассматривать в основном одномерные сигналы.

Рис. 1. Аналоговый, дискретизованной и цифровой сигналы.

Аналоговые или континуальные сигналы x(t) описываются непрерывными и кусочно-непрерывными функциями, причем как сама функция, так и ее аргумент могут принимать любые значения в пределах некоторого интервала.

Дискретные сигналы, могут быть описаны в виде счетного набора отсчетов (значений) в заданные моменты времени $k\Delta t$, $k\in Z$, где Δt — шаг дискретизации. Частота дискретизации $f_{_{\rm I\! I}}$ (размерность в Γ Ц) — это величина, обратная шагу дискретизации $f_{_{\rm I\! I}}=1/\Delta t$.

Цифровые сигналы, помимо того, что они являются дискретными, могут принимать лишь конечное число значений, соответствующих уровням квантования. Процесс преобразования аналогового сигнала в цифровой состоит из дискретизации и квантования, которые осуществляются аналого-цифровым преобразователем (АЦП). Обычно число уровней квантования 2^m , где m — разрядность АЦП.

Для дискретных сигналов будем использовать следующие описания.

1) Функция дискретного времени k.

Это описание дискретного сигнала в виде последовательности отсчетов x[k] в заданные моменты времени $k\Delta t,\ k\in\mathbb{Z}$, где Δt — шаг дискретизации. Далее мы будем использовать квадратные скобки для обозначения функций дискретного аргумента.

2) Функция непрерывного времени t (континуальная запись).

$$x_{_{\mathcal{I}}}(t) = \sum_{k=-\infty}^{\infty} x[k]\delta(t - k\Delta t) \tag{1}$$

В этой записи дискретный сигнал представляет собой последовательность дельта-функций с площадями x[k].

Рис. 2. Представление дискретизованного сигнала дельта-функциями.

Таблица 1.

таолица 1		
Описание в виде	Описание в виде	
функции дискретного времени	функции непрерывного времени	
Единичный импульс в точке 0		
$1[k] = \begin{cases} 1, \text{ при } k = 0, \\ 0, \text{ при } k \neq 0. \end{cases}$	$\delta(t)$ (дельта-функция Дирака)	
$[0, \text{ при } k \neq 0.$	1 \$(2)	
1[k] — единичный импульс		
$\uparrow 1[k]$		
1 1 1	l t	
	$0 \xrightarrow{1} 0$	
$ \qquad \qquad $	0	
0 0		
-2 -1 0 1 2		
Единичный импульс в точке т		
$1[k-m] = \begin{cases} 1, \text{ при } k = m, \\ 0, \text{ при } k \neq m. \end{cases}$	$\delta(t-m\Delta t)$	
0 , при $k \neq m$.		
	$ \uparrow^{\delta(t-m\Delta t)}_{\blacktriangle(1)} $	
$1 \uparrow^{1[k-m]} \bullet$	1	
0	\downarrow \downarrow \downarrow \uparrow	
m	$m\Delta t$	
Дискретная функция включения		
$u[k] = \begin{cases} 1, \text{ при } k \ge 0, \\ 0, \text{ при } k < 0. \end{cases}$	$\sum_{t=0}^{\infty} \delta(t - m\Delta t)$	
$u[\kappa] = 0$, при $k < 0$.	$\sum_{m=0}^{\infty} \delta(t - m\Delta t)$	
$\int u[k]$	$\uparrow u(t)$	
	(1) (1) (1) (1)	
1 -		
$0 \xrightarrow{k}$		
-4-3-2-1 0 1 2 3 4 5 6 7	$0 \Delta t 2\Delta t 3\Delta t$	

В таблице 1 приведены примеры сигналов с их описанием в виде функций дискретного и непрерывного времени.

Модуль 2. Спектры импульсных и периодических сигналов.

Преобразование Фурье

Все реальные сигналы имеют конечную удельную энергию:

$$\int_{-\infty}^{\infty} \left| x(t) \right|^2 dt < \infty.$$

Например, если x(t) — напряжение (или ток), действующее на единичном сопротивлении, то интеграл представляет собой энергию, выделяемую на единичном сопротивлении, и эта энергия конечна. В этом случае

x(t) — функция с интегрируемым квадратом на всей оси. По теореме Планшереля для функции x(t) существует функция X(f) также с интегрируемым квадратом на всей оси, связанна с x(t) соотношением:

$$\lim_{T\to\infty}\int_{-T}^{T}\left|X\left(f\right)-\int_{-T}^{T}x\left(t\right)e^{-j2\pi ft}dt\right|^{2}df=0.$$

Если функции x(t) и X(f) абсолютно интегрируемы, то

$$X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft}dt,$$
 (2)

$$x(t) = \int_{-\infty}^{\infty} X(f)e^{j2\pi\beta t} df.$$
 (3)

Формулы (2) и (3) представляют собой пару преобразования Фурье (FT), где частота f измеряется в Герцах (Гц). Для частоты циклической частоты $\omega = 2\pi f$, измеряемой в рад/с (радианы в секунду) пара преобразования Фурье имеет вид:

$$X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt,$$
 (4)

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega.$$
 (5)

Интеграл в формулах (2) и (4) называется спектральной плотностью, а в формулах (3) и (5) — интегралом Фурье. Далее будем использовать запись вида $x(t) \stackrel{FT}{\longleftrightarrow} X(f)$, что означает, что для сигнала x(t) преобразование Фурье будет X(f). В общем случае X(f) — комплексная функция частоты:

$$X(f) = \operatorname{Re} X(f) + j \operatorname{Im} X(f) = |X(f)| e^{j\varphi(f)},$$

где

Re
$$X(f) = \int_{-\infty}^{\infty} x(t) \cos(2\pi f t) dt$$
,

$$\operatorname{Im} X(f) = -\int_{0}^{\infty} x(t) \sin(2\pi f t) dt,$$

 $|X(f)| = \sqrt{\left(\text{Re} \, X(f) \right)^2 + \left(\text{Im} \, X(f) \right)^2} -$ амплитудно-частотная характеристика (AЧX),

 $\phi(f) = \arctan \frac{\operatorname{Im} X(f)}{\operatorname{Re} X(f)} - \varphi$ азочастотная характеристика (ФЧХ) сигнала.

Свойства преобразования Фурье

Предположим, что $x(t) \overset{FT}{\longleftrightarrow} X(f)$ и $y(t) \overset{FT}{\longleftrightarrow} Y(f)$. Тогда справедливы следующие свойства преобразования Фурье.

1. *Свойство линейности*. Для заданных чисел $\alpha \in C$ и $\beta \in C$

$$\alpha x(t) + \beta y(t) \stackrel{FT}{\longleftrightarrow} \alpha X(f) + \beta Y(f).$$
 (6)

2. *Теорема запаздывания*. Для заданной задержки по времени τ (или опережения в случае $\tau < 0$)

$$x(t-\tau) \stackrel{FT}{\longleftrightarrow} e^{-j2\pi f \tau} X(f). \tag{7}$$

3. Теорема смещения.

$$x(t)e^{-j2\pi f_0 t} \stackrel{FT}{\longleftrightarrow} X(f + f_0). \tag{8}$$

4. Теорема Парсеваля-Релея.

$$\int_{-\infty}^{\infty} x(t)y^*(t)dt = \int_{-\infty}^{\infty} X(f)Y^*(f)df,$$
(9)

где символ * означает комплексное сопряжение функции.

5. Теорема о спектре произведения.

$$x(t)y(t) \stackrel{FT}{\longleftrightarrow} X(f) \otimes Y(f),$$
 (10)

где символ ⊗ обозначает сверку спектров:

$$X(f) \otimes Y(f) = \int_{-\infty}^{\infty} X(\tilde{f}) Y(f - \tilde{f}) d\tilde{f}. \tag{11}$$

6. Теорема о спектре свертки.

$$x(t) \otimes y(t) \stackrel{FT}{\longleftrightarrow} X(f)Y(f),$$
 (12)

где символ ⊗ обозначает сверку сигналов:

$$x(t) \otimes y(t) = \int_{-\infty}^{\infty} x(\tau) y(t - \tau) d\tau.$$
 (13)

7. Теорема об изменении масштаба.

$$x(at) \stackrel{FT}{\longleftrightarrow} \frac{1}{a} X\left(\frac{f}{a}\right).$$
 (14)

8. Теорема о спектре производной. Если функция x(t) непрерывна и $\lim_{x \to \pm \infty} x(t) = 0$, то

$$\frac{dx(t)}{dt} \stackrel{FT}{\longleftrightarrow} j2\pi f X(f) \tag{15}$$

9. Теорема о производной спектра. Если функция X(f) непрерывна и $\lim_{f \to \pm \infty} X(f) = 0$, то

$$t \cdot x(t) \stackrel{FT}{\longleftrightarrow} \frac{1}{j2\pi} \frac{dX(f)}{df}.$$
 (16)

Докажем свойство 8. Пусть x(t) — непрерывная функция, тогда

$$\int_{-\infty}^{\infty} \frac{dx(t)}{dt} \exp(-j2\pi ft) dt = \int_{-\infty}^{\infty} \exp(-j2\pi ft) dx(t) =$$

$$= x(t) \exp(-j2\pi ft) \Big|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} x(t) d \exp(-j2\pi ft) =$$

$$= x(t) \exp(-j2\pi ft) \Big|_{-\infty}^{\infty} + j2\pi fX(f)$$

Если также $\lim_{x\to\pm\infty}x(t)=0$, то

$$\int_{-\infty}^{\infty} \frac{dx(t)}{dt} \exp(-j2\pi ft) dt = j2\pi fX(f)$$

Спектры гармонических сигналов

Вычислим обратное преобразование Фурье для $\,X(f) = \delta(f-f_0)\,,$ т.е. от дельта-функции в точке $\,f_0\,$ оси частот.

$$x(t) = \int_{-\infty}^{\infty} X(f)e^{j2\pi ft}df = \int_{-\infty}^{\infty} \delta(f - f_0)e^{j2\pi ft}df = e^{j2\pi f_0 t}.$$
 (17)

$$e^{j2\pi f_0 t} \stackrel{FT}{\longleftrightarrow} \delta(f - f_0). \tag{18}$$

Подстановкой $f_0 = 0$ в (18) получаем свойство

$$1 \stackrel{FT}{\leftrightarrow} \delta(f), \tag{19}$$

которое утверждает, что спектром сигнала, тождественного равного единице, является дельта-функция в нуле частот. Воспользуемся для сигналов следствиями формулы Эйлера

$$\cos(2\pi f_0 t) = \frac{e^{j2\pi f_0 t} + e^{-j2\pi f_0 t}}{2} , \qquad (20)$$

$$\sin(2\pi f_0 t) = \frac{e^{j2\pi f_0 t} - e^{-j2\pi f_0 t}}{2j}$$
 (21)

Из (18), (20), (21) получаем, что

$$\cos(2\pi f_0 t) \stackrel{FT}{\longleftrightarrow} \frac{1}{2} \delta(f - f_0) + \frac{1}{2} \delta(f + f_0), \tag{22}$$

$$\sin(2\pi f_0 t) \stackrel{FT}{\longleftrightarrow} \frac{1}{2j} \delta(f - f_0) - \frac{1}{2j} \delta(f + f_0). \tag{23}$$

Свойства (22) и (23) позволяют записать спектры периодической синусоиды и косинусоиды.

Пример 1. Определить спектр X(f) гармонического сигнала $x(t) = \cos(2\pi f_1 t) + 3\cos(2\pi f_2 t)$, где $f_1 = 100$ Гц, $f_2 = 200$ Гц.

Решение. По свойствам преобразования Фурье (6) (линейности) и (22) (спектра косинусоиды), получаем, что

$$X(f) = \frac{1}{2}\delta(f - f_1) + \frac{1}{2}\delta(f + f_1) + \frac{3}{2}\delta(f - f_2) + \frac{3}{2}\delta(f + f_2).$$

Спектр X(f) изображен на рисунке 3. Обратите внимание, что для дельта-функций некорректно указывать значение в точке. Для них мы будем указывать вес (в данном случае он соответствует площади фигуры под графиком) в круглых скобках.

Рис. 3. Спектр сигнала $x(t) = \cos(2\pi f_1 t) + 3\cos(2\pi f_2 t)$.

Спектры импульсных сигналов

Приведем примеры импульсных сигналов и определим их спектры.

Пример 2. Симметричный прямоугольный импульс длительностью τ

Рис. 4. Прямоугольный импульс.

Спектр сигнала (24) определим, воспользовавшись формулой преобразования Фурье (2).

$$X_{\text{np}}(f) = \int_{-\tau/2}^{\tau/2} E e^{-j2\pi f t} = \frac{E}{-j2\pi f} e^{-j2\pi f t} \Big|_{-\tau/2}^{\tau/2} = E \frac{\sin(\pi f \tau)}{\pi f} = E \tau \frac{\sin(\pi f \tau)}{\pi f \tau}.$$

$$X_{\text{np}}(f) = E \tau \frac{\sin(\pi f \tau)}{\pi f \tau}.$$
(25)

Рис. 5. Спектральная плотность прямоугольного импульса.

Спектральная плотность прямоугольного импульса обращается в нуль, когда числитель дроби равен нулю (25), а знаменатель — не равен, т.е. в точках $f=\pm m/\tau, m\in\mathbb{N}$. В точке f=0 формула (25) содержит неопределенность вида «0/0», которую можно разрешить, используя прави-

ло Лопиталя. Главным лепесток спектра прямоугольного импульса расположен на интервале частот $[-1/\tau;1/\tau]$, а за пределами этого интервала — боковые лепестки. Ширина главного лепестка прямоугольного окна на нулевом уровне составляет $2/\tau$. Прямоугольный импульс для E=1 является прямоугольным окном — функцией, умножение на которую эквивалентно ограничению сигнала по длительности. Поэтому характеристики его спектра одновременно являются характеристиками прямоугольного окна.

Пример 3. Симметричный треугольный импульс длительностью

 $x_{\text{тp}}(t) = \begin{cases} E\left(1 - \frac{2|t|}{\tau}\right), & \text{если } |t| < \tau/2, \\ 0, & \text{если } |t| \ge \tau/2. \end{cases}$ (26)

Один из способов найти спектр треугольного импульса (26) заключается в следующем. Сначала с использованием теоремы запаздывания (7) и свойства линейности (6) определяется спектр для его производной:

$$X_{\text{произв}}(f) = \left(e^{j\pi f \tau/2} - e^{-j\pi f \tau/2}\right) \frac{2E}{\tau} \frac{\tau}{2} \frac{\sin(\pi f \tau/2)}{\pi f \tau/2}.$$

Затем применяется теорема о спектре производной (15).

τ

$$X_{\text{произв}}(f) = j2\pi f X_{\text{тр}}(f)$$
.

$$X_{\rm up}(f) = \frac{1}{j2\pi f} \left(e^{j\pi f\tau/2} - e^{-j\pi f\tau/2} \right) \frac{2E}{\tau} \frac{\tau}{2} \frac{\sin(\pi f\tau/2)}{\pi f\tau/2} = \frac{E\tau}{2} \frac{\sin^2(\pi f\tau/2)}{(\pi f\tau/2)^2}.$$
 (27)

Рис. 6. Треугольный импульс и его производная по времени.

Результат (27) можно получить и как сверку прямоугольного импульса с площадью фигуры под графиком E и прямоугольного окна, при условии, что их длительность равна $\tau/2$.

Рис. 7. Спектр треугольного импульса.

Пример 4. Косинусоидальный импульс длительностью т.

$$x_{\cos}(t) = \begin{cases} E\cos\left(\frac{\pi t}{\tau}\right), & \text{если } |t| < \tau/2, \\ 0, & \text{если } |t| \ge \tau/2. \end{cases}$$
 (28)

Запишем формулу (28), используя определение симметричного прямоугольного импульса (24).

$$x_{\cos}(t) = x_{\text{np}}(t)\cos(2\pi \frac{1}{2\tau}t) = \frac{1}{2}x_{\text{np}}(t)\left(e^{j2\pi \frac{1}{2\tau}t} + e^{-j2\pi \frac{1}{2\tau}t}\right).$$
(29)

Используя теорему смещения (8), выразим спектр косинусоидального импульса через спектр прямоугольного импульса.

$$X_{\cos}(f) = \frac{1}{2} X_{\text{np}} \left(f - \frac{1}{2\tau} \right) + \frac{1}{2} X_{\text{np}} \left(f + \frac{1}{2\tau} \right).$$

Тот же результат можно получить, используя теорему о спектре произвдения для сигнала в форме (29):

$$X_{\cos}(f) = X_{\text{np}}(f) \otimes \left(\frac{1}{2}\delta(f - \frac{1}{2\tau}) + \frac{1}{2}\delta(f + \frac{1}{2\tau})\right) =$$

$$= \frac{1}{2}X_{\text{np}}\left(f - \frac{1}{2\tau}\right) + \frac{1}{2}X_{\text{np}}\left(f + \frac{1}{2\tau}\right).$$

Пример 5. Определим спектр $W_H(f)$ аналогового окна Ханна (приподнятый косинус) длительностью τ .

$$w_{_{\! H}}(t) = \begin{cases} \frac{1}{2} \bigg(1 + \cos \bigg(\frac{2\pi t}{\tau} \bigg) \bigg), & \text{ если } \mid t \mid < \frac{\tau}{2}, \\ 0, & \text{ если } \mid t \mid \geq \frac{\tau}{2}. \end{cases}$$

Заметим, что спектр симметричного прямоугольного окна той же длительности в соответствии с

$$W(f) = \tau \frac{\sin(\pi f \tau)}{\pi f \tau}.$$

Приведем два способа решения, отличные от непосредственного вычисления преобразования Фурье по формуле.

Способ 1. Пусть w(t) — прямоугольное окно той же длительности. Тогда

$$w_H(t) = \frac{1}{2}w(t) + \frac{1}{4}w(t)\exp\left(j2\pi t\frac{1}{\tau}\right) + \frac{1}{4}w(t)\exp\left(-j2\pi t\frac{1}{\tau}\right).$$

Тогда по теореме смещения для преобразования Фурье

$$W_{H}(f) = \frac{1}{2}W(f) + \frac{1}{4}W\left(f - \frac{1}{\tau}\right) + \frac{1}{4}W\left(f + \frac{1}{\tau}\right).$$

Далее остается подставить W(f).

Способ 2. Рассмотрим сигнал

$$x(t) = \frac{1}{2} \left(1 + \cos\left(\frac{2\pi t}{\tau}\right) \right).$$

Его спектр

$$X(f) = \frac{1}{2}\delta(f) + \frac{1}{4}\delta\left(f - \frac{1}{\tau}\right) + \frac{1}{4}\delta\left(f + \frac{1}{\tau}\right).$$

При этом $w_H(t) = w(t)x(t)$ и $W_H(f) = W(f) \otimes X(f)$. Использую фильтрующее свойство δ -функции, получаем

$$W_{H}(f) = \frac{1}{2}W(f) + \frac{1}{4}W\left(f - \frac{1}{\tau}\right) + \frac{1}{4}W\left(f + \frac{1}{\tau}\right).$$

$$W_{H}(f) = \frac{\sin(\pi f \tau)}{2\pi f(1 - \tau^{2} f^{2})}.$$

Рис. 8. Спектральная плотность окна Ханна.

Пример 6. Прямоугольное окно с началом в нулевой момент времени.

$$w_{\text{пр}}(t) = \begin{cases} 1, & \text{если } 0 \le t \le \tau, \\ 0, & \text{иначе.} \end{cases}$$
 (30)

Используя теорему запаздывания для симметричного прямоугольного импульса с высотой E=1 , получаем спектр сигнала $w_{\rm mn}(t)$

$$W_{\rm np}(f) = \tau \frac{\sin(\pi f \tau)}{\pi f \tau} e^{-j\pi f \tau}$$
(31)

Спектр пачки равноотстоящих импульсов

Найдём спектр пачки из N прямоугольных импульсов длительностью с высотой E , длительностью τ , следующих через интервалы времени T .

Рис. 9. Последовательность из N прямоугольных импульсов.

Обозначим через $X_{{
m np}\,0}(f)$ спектральную плотность первого импульса. Его спектр можно записать в виде

$$X_{\text{np }0}(f) = E \cdot W_{\text{np}}(f), \tag{32}$$

где $W_{\rm np}(f)$ определяется формулой (31). Для группы из N равноотстоящих импульсов в соответствии с теоремой запаздывания

$$\begin{split} X(f) &= X_{\text{mp }0}(f) \sum_{k=0}^{N-1} e^{-j2\pi jkT} \,. \\ X(f) &= X_{\text{mp }0}(f) \Big(1 + e^{-j2\pi jT} + e^{-j4\pi jT} + \ldots + e^{-j2\pi jT(N-1)} \Big). \end{split}$$

На частотах f = n/T, где n — целое, каждое слагаемое в сумме равно единице, следовательно

$$X(f = n/T) = NX_{\text{ind } 0}(f = n/T).$$

Таким образом, на частотах f = n/T модуль спектра пачки в N раз больше модуля спектра одиночного импульса. Суммируя N членов геометрической прогрессии, получаем

$$X(f) = X_{\text{np 0}}(f) \frac{1 - e^{-j2\pi jNT}}{1 - e^{-j2\pi jT}} = X_{\text{np 0}}(f) \frac{e^{-j\pi jNT}}{e^{-j\pi jT}} \cdot \frac{e^{j\pi jNT} - e^{-j\pi jNT}}{e^{j\pi jT} - e^{-j\pi jT}}.$$

$$X(f) = X_{\text{np 0}}(f) e^{-j\pi f(N-1)T} \frac{\sin(\pi fNT)}{\sin(\pi fT)}.$$
(33)

Видно, что на частотах f = m/NT, где m — целое, X(f) = 0. Подставляя сюда значение

$$X_{\text{np }0}(f) = E\tau \frac{\sin(\pi f \tau)}{\pi f \tau} e^{-j\pi f \tau},$$

где τ – длительность отдельного импульса, получаем окончательно для спектра пачки из N равноотстоящих прямоугольных импульсов:

$$X(f) = e^{-j\pi f((N-1)T+\tau)} E \tau \frac{\sin(\pi f \tau)}{\pi f \tau} \frac{\sin(\pi f NT)}{\sin(\pi f NT)}.$$
 (34)

Пример 7. Рассмотрим случай N=3 импульсов длительностью $\tau=100$ мкс с амплитудой E=0,1В следующих через интервалы времени T=400 мкс. В этом случае $1/\tau=10$ кГц, 1/T=2,5 кГц. График сигнала и его АЧХ (модуля спектральной плотности) изображен на рисунке.

Рис. 10. Последовательность из трех прямоугольных импульсов и ее АЧХ.

Ограничение сигнала по длительности.

Ограничение некоторого сигнала x(t) по длительности эквивалентно умножению на прямоугольную оконную функцию w(t), в результате чего получается сигнал

Рис. 11. Гармонический сигнал, симметричное прямоугольное окно и сигнал, ограниченный окном.

Пусть
$$x(t) \overset{FT}{\longleftrightarrow} X(f), \ w(t) \overset{FT}{\longleftrightarrow} W(f), \ y(t) \overset{FT}{\longleftrightarrow} Y(f)$$
 . Тогда

$$w(t)x(t) \stackrel{FT}{\longleftrightarrow} W(f) \otimes X(f),$$
 (36)

где

$$W(f) \otimes X(f) \overset{FT}{\longleftrightarrow} \int_{-\infty}^{\infty} W(\tilde{f}) X(f - \tilde{f}) d\tilde{f}. \tag{37}$$

Рассмотрим к чему приводит ограничение по длительности сигнала из примера 1.

Пример 8. Определить спектр X(f) отрезка гармонического сигнала $x(t) = \cos(2\pi f_1 t) + 3\cos(2\pi f_2 t)$, где $f_1 = 100$ Гц, $f_2 = 200$ Гц, полученного при его умножении на симметричное относительно нуля прямоугольное окно длительностью τ .

Решение. По свойствам преобразования Фурье (6) (линейности) и (22) (спектра косинусоиды), получаем, что

$$X(f) = \frac{1}{2}\delta(f - f_1) + \frac{1}{2}\delta(f + f_1) + \frac{3}{2}\delta(f - f_2) + \frac{3}{2}\delta(f + f_2).$$

$$Y(f) = \frac{1}{2}W(f - f_1) + \frac{1}{2}W(f + f_1) + \frac{3}{2}W(f - f_2) + \frac{3}{2}W(f + f_2).$$

Спектр прямоугольного окна длиной τ соответствует спектру прямоугольного импульса длиной τ с высотой E=1

$$W(f) = \int_{-\tau/2}^{\tau/2} E e^{-j2\pi f t} = \frac{1}{-j2\pi f} e^{-j2\pi f t} \Big|_{-\tau/2}^{\tau/2} = \frac{\sin(\pi f \tau)}{\pi f} = \tau \frac{\sin(\pi f \tau)}{\pi f \tau}.$$

Рис. 12. График спектра сигнала, взвешенного прямоугольным окном длиной $\tau = 0.05$ с.

Рис. 13. График спектра сигнала, взвешенного прямоугольным окном длиной $\tau = 0.1 \, c$.

Если использовать вместо прямоугольного окна окно Ханна, то

$$Y(f) = \frac{1}{2}W_{H}(f - f_{1}) + \frac{1}{2}W_{H}(f + f_{1}) + \frac{3}{2}W_{H}(f - f_{2}) + \frac{3}{2}W_{H}(f + f_{2}),$$

где

Рис. 14. График спектра сигнала, взвешенного окном Ханна длиной $\tau = 0,1$ с.

Применение оконной функции приводит к эффекту растеканию спектральных компонент: дельта-функции спектра гармонического сигнала «растекаются» в спектральные максимумы. При этом также возникает эффект просачивания через боковые лепестки окна, который приводит к появлению спектральных максимумов, не соответствующих периодическим компонентам сигнала. Влияние боковых лепестков можно ослабить, например, выбрав окно Ханна вместо прямоугольного. Однако, при этом главный лепесток спектра становится шире.

Модуль 3. Эффект наложения спектров при дискретизации сигналов.

Спектр дискретизованного сигнала

Рассмотрим способы описания дискретизованного сигнала, т.е. дискретного сигнала, получаемого из аналогового с помощью дискретизации.

1) Функция дискретного времени.

Это описание дискретного сигнала в виде последовательности отсчетов x[k] в заданные моменты времени $k\Delta t$, $n\in Z$, где Δt — шаг дискретизации:

$$x[k] = Tx(k\Delta t), \ T \in \{1; \ \Delta t\}, \tag{38}$$

где T — константа с размерностью времени, равная единице или Δt . Выбор этой константы, как будет показано далее, влияет на связь между спектром дискретизованного и исходного сигнала.

2) Функция непрерывного времени (континуальная запись).

$$x_{_{\mathrm{I}}}(t) = \mathrm{T} \sum_{k=-\infty}^{\infty} x(k\Delta t) \delta(t - k\Delta t) = \sum_{k=-\infty}^{\infty} x[k] \delta(t - k\Delta t). \tag{39}$$

Рис. 15. Получение континуальной формы дискретизованного сигнала.

В этой записи дискретизованного сигнала представляется как результат умножения исходного аналогового сигнала x(t) на идеальную функцию дискретизации, представляющую собой периодическую последовательность дельта-функций Дирака с площадями T

$$D(t) = T \sum_{n = -\infty}^{\infty} \delta(t - n\Delta t). \tag{40}$$

В таком случае дискретизованный сигнал описывается последовательностью дельта-функций с площадями (весами) $x[k] = Tx(k\Delta t)$:

$$x_{_{\mathrm{I}}}(t) = \sum_{k=-\infty}^{\infty} \mathrm{T}x(k\Delta t)\delta(t - k\Delta t). \tag{41}$$

Определим спектр дискретизованного сигнала $X_{_{\! /}}(f)$, зная спектр исходного аналогового сигнала до дискретизации X(f). Воспользуемся континуальной формой записи дискретизованного сигнала

$$x_{_{\mathrm{I}}}(t) = T \sum_{k=-\infty}^{\infty} x(k\Delta t)\delta(t - n\Delta t) = D(t)x(t), \tag{42}$$

$$D(t) = T \sum_{n=-\infty}^{\infty} \delta(t - n\Delta t). \tag{43}$$

Ряд Фурье для идеальной функции дискретизации

$$D(t) = \frac{T}{\Delta t} \sum_{m=-\infty}^{\infty} \exp(jm \frac{2\pi}{\Delta t} t). \tag{44}$$

Таким образом, $x_{_{\rm H}}(t) = \frac{{
m T}}{\Delta t} \sum_{m=-\infty}^{\infty} \exp(jm\frac{2\pi}{\Delta t}t) x(t)$. Тогда по теореме

смещения для преобразования Фурье:

$$X_{_{\mathrm{I}}}(f) = \frac{\mathrm{T}}{\Delta t} \sum_{m=-\infty}^{\infty} X(f - mf_{_{\mathrm{I}}}). \tag{45}$$

При непосредственном взятии отсчетов $x[k]=x(k\Delta t)$ константа T=1, и спектр перед периодическим повторением масштабируется. При $T=\Delta t$ (когда $x[k]=\Delta t$ $x(k\Delta t)$) дискретизация аналогового сигнала x(t) по времени с шагом Δt приводит к периодическому повторению его спектра с периодом (по частоте), равным частоте дискретизации $f_{\pi}=1/\Delta t$

$$X_{_{\mathcal{I}}}(f) = \sum_{m=-\infty}^{\infty} X(f - mf_{_{\mathcal{I}}}). \tag{46}$$

Заметим, что при этом интервал $\left[-\frac{f_{\pi}}{2},\frac{f_{\pi}}{2}\right]$ является одним периодом функции $X_{\pi}(f)$. Если спектр аналогового сигнала лежит в этом интервале, то он периодически повторяется без наложения.

Рис. 16. Спектр дискретизованного сигнала в отсутствии эффекта наложения.

Эффект наложения

Если спектр аналогового сигнала до дискретизации не был ограничен интервалом $\left[-f_{_{\rm R}}/2,f_{_{\rm R}}/2\right]$, то возникает эффект наложения (англ. aliasing, элайзинг, алиасинг). В таком случае спектр аналогово и дискретизованного на этом интервале не совпадают. Частично устранить этот эффект можно примирением фильтра нижних частот с частотой среза $f_c = f_{_{\rm R}}/2$, при этом информация о высокочастотных спектральных компонентах $|f| > f_c$ не сохраняется.

Рис. 17. Эффект наложения при дискретизации аналогового сигнала.

Теорема Котельникова во временной области

Теорема отсчетов для сигнала с финитным спектром (Котельников 1933 г., Шеннон 1949 г.). Если сигнал x(t) имеет спектр, ограниченный интервалом $[-f_{\rm B},f_{\rm B}]$, и не содержит гармонических компо-

нент на частотах $\pm f_{_{\rm B}}^{-1}$, то он представим с помощью своих дискретных отсчетов $x(k\Delta t)$, взятых с шагом $\Delta t = \frac{1}{2f}$:

$$x(t) = \sum_{k=-\infty}^{\infty} x(k\Delta t) \frac{\sin(2\pi f_{\rm B}(t - k\Delta t))}{2\pi f_{\rm B}(t - k\Delta t)}.$$
 (47)

Рис. 18. Интерполяция рядом Котельникова.

Приведем две различные интерпретации этой теоремы.

- 1) Если сигнал x(t) дискретизован с частотой $f_{\scriptscriptstyle \rm II}$, а его спектр ограничен интервалом $\left[-\frac{f_{_{A}}}{2}, \frac{f_{_{A}}}{2} \right]$, его можно представить с помощью дискретных отсчетов $x(k\Delta t)$. Частота $f_{_{\! I\! I}}$ / 2, равная половине частоты дискретизации, называется частотой Найквиста.
- 2) Отсчеты $x(k\Delta t)$ являются коэффициентами Фурье разложения сигнала x(t) по базису из функций отсчетов:

$$\varphi_k(t) = \frac{\sin(2\pi f_{\rm B}(t - k\Delta t))}{2\pi f_{\rm B}(t - k\Delta t)}, \, \Delta t = \frac{1}{2f_{\rm B}}.$$
(48)

¹ Без этой оговорки теорема Котельникова не выполняется, например, для случая дискретизации сигнала $x(t) = \sin(2\pi f_{\rm B} t)$ с шагом $\Delta t = \frac{1}{2f}$.

В пространстве сигналов из $L_2(-\infty,\infty)$ с спектром, ограниченным интервалом $\left[-\frac{f_{_{\! A}}}{2},\frac{f_{_{\! A}}}{2}\right]$, система функций $\{\phi_k(t)\}_{k\in Z}$ полна и ортогональна.

Для сигнала x(t) с финитным спектром X(f) запишем представление по функциям отсчетов:

$$x(t) = \sum_{k=-\infty}^{\infty} c_k \frac{\sin(2\pi f_{\rm B}(t - k\Delta t))}{2\pi f_{\rm B}(t - k\Delta t)},\tag{49}$$

где

$$c_{k} = \frac{(\mathbf{x}, \mathbf{\phi}_{k})}{(\mathbf{\phi}_{k}, \mathbf{\phi}_{k})} = \frac{1}{\Delta t} \int_{-\infty}^{\infty} x(t) \frac{\sin(2\pi f_{\mathrm{B}}(t - k\Delta t))}{2\pi f_{\mathrm{B}}(t - k\Delta t)} dt$$
 (50)

есть коэффициенты Фурье и $\Delta t = 1/2 f_{\scriptscriptstyle g}$. Спектр функции отсчётов

$$\int_{0}^{\infty} \varphi_k(t) e^{-j2\pi f t} dt = \Pi_{2f_{\mathbf{B}}}(f) \exp(-j2\pi f k \Delta t)$$
(51)

имеет фазовый множитель из-за сдвига по времени на $k\Delta t$. Модуль этого спектра $\Pi_{2f_{\rm B}}(f)$ является прямоугольной функцией с единичной площадью. С учётом обобщённого равенства Парсеваля

$$\int_{-\infty}^{\infty} x(t)y^*(t)dt = \int_{-\infty}^{\infty} X(f)Y^*(f)df$$
 (52)

выражение для коэффициента c_{ι} можем записать в виде

$$c_k = \frac{1}{\Delta t} \int_{-\infty}^{\infty} X(f) \Pi_{2f_g}(f) e^{j2\pi f k \Delta t} df.$$
 (53)

Произведение под интегралом при $-f_{\epsilon} < f < f_{\epsilon}$

$$X(f)\Pi_{2f_{g}}(f) = X(f)\frac{1}{2f_{g}} = X(f)\Delta t.$$
 (54)

Поэтому $c_k = x(k\Delta t)$. Отсюда вывод: если сигнал имеет спектр, ограниченный интервалом $\left[-f_{g},\,f_{g}\right]$ и шаг дискретизации $\Delta t = 1/2f_{g}$, то коэффициенты Фурье c_k разложения сигнала по функциям отсчётов $\phi_k(t)$ являются выборками сигнала $x(k\Delta t)$ и для x(t) имеет место представление рядом Котельникова (47).

Рис. 19. Функция отсчетов и ее модуль спектра.

Алгоритм передачи непрерывного сигнала с помощью его отсчетов.

- Взять отсчеты $x(k\Delta t)$, $k = 0, \pm 1, \pm 2,...$
- Передать величины этих отсчетов.
- На приемном конце сформировать короткие импульсы с площадями $\Delta t x(k \Delta t)$.
- Восстановить сообщение с помощью фильтра нижних частот с полосой пропускания $[-f_s, f_s]$, подавая на вход сформированные короткие импульсы

Недостатки подхода.

- Спектры реальных сигналов ограничены по частоте приближено.
- Невозможно измерить отсчеты сигнала за бесконечно малый промежуток времени.
- Реальные фильтры восстановления отличаются от идеального фильтра нижних частот.
- Короткие импульсы отличны от дельта-функций.

Эффект наложения спектров при дискретизации синусоидальных сигналов

Дискретизация сигнала x(t) по времени с шагом Δt приводит к периодическому повторению исходного спектра X(f) с периодом, равным частоте дискретизации $f_{\rm g}=1/\Delta t$. Полезная информация содержится в полосе $[-f_{\rm g}/2,\,f_{\rm g}/2]$. Если не принять специальных мер, возникает эффект наложения, в результате которого все частоты в спектре сигнала,

превышающие половинную частоту дискретизации, как бы отражаются от этой частоты и переносятся на более низкие частоты, искажая исходный спектр. Для устранения этого эффекта сигнал перед дискретизацией предварительно пропускают через низкочастотный фильтр, частота среза которого равна $f_{\rm c}=1/2\Delta t$. Частота $f_{\rm g}/2$ в зарубежной литературе называется частотой Найквиста.

Рис. 20. Исходный и прореженный сигналы.

При дискретизации синусоидальных сигналов необходимо следить за тем, чтобы частоты синусоид не превосходили половину частоты дискретизации, как того требует теорема Котельникова. Несоблюдение этого условия приводит к парадоксальным результатам, например, при наблюдении восстановленных синусоид в цифровом осциллографе.

Пусть сигнал $x(t) = \sin \pi f_0 t$ дискретизуется с частотой $f_{\rm д}$ отсчетов в секунду, т. е. через равные интервалы времени $\Delta t = 1/f_{\rm д}$. Для последовательности отсчетов можем записать

$$x[k] = \sin(2\pi f_0 k \Delta t) = \sin(2\pi f_0 k \Delta t + 2\pi m) = \sin 2\pi (f_0 + m/k \Delta t) k \Delta t.$$

Если выберем m кратным k, m = nk, мы можем заменить отношение m/k целочисленной переменной n, так что

$$x[k] = \sin(2\pi f_0 k\Delta t) = \sin 2\pi (f_0 + n/\Delta t) k\Delta t = \sin 2\pi (f_0 + nf_{\perp}) k\Delta t.$$

Следовательно, частоты f_0 и $f_0 + n f_{\rm д}$ дают одинаковый результат. Это выражение показывает, что последовательность цифровых отсче-

тов x(k), представляющая синусоиду с частотой f_0 Гц, точно так же представляет синусоиды с другими частотами $f_0 + n f_{\rm д}$. Это одно из важнейших соотношений в области цифровой обработки сигналов.

Вывод. При дискретизации с частотой $f_{\rm д}$ отсчетов в секунду мы не можем различить дискретизованные значения синусоиды частотой $f_{\rm 0}$ Γ ц и синусоиды частотой $(f_{\rm 0}+nf_{\rm d})$ Γ ц, если n-любое положительное или отрицательное целое число.

Рис. 21. Исходный, прореженный сигналы и их спектры

Оценка спектра сигнала по последовательности его отсчетов

Рис. 22. Отсчеты аналогового сигнала.

Пусть есть последовательность выборок $x(k\Delta t), k\in Z$ некоторого аналогового сигнала x(t), где Δt — шаг дискретизации — интервал времени между каждой парой соседних эквидистантных отсчетов, $k\in Z$ — номер отсчета. $f_{\pi}=1/\Delta t$ — частота дискретизации — величина, обратная шагу дискретизации (размерность $[\Gamma \mathfrak{q}]=[\mathfrak{c}^{-1}]$). Будем считать, что спектр исходного аналогового сигнала ограничен интервалом $\left[-f_{\pi}/2;\,f_{\pi}/2\right]$, а соответственно при дискретизации не наблюдается эффект наложения спектров ($f_{\pi}>2f_{\pi}$).

Рассмотрим последовательность отсчетов (дискретный сигнал) x[k], которую будем определять через выборки следующим образом

$$x[k] = \mathrm{T}x(k\Delta t),\tag{55}$$

где $T=\Delta t$. Как ранее было установлено, при $T=\Delta t$ спектр дискретизованного сигнала x[k] представляет собой периодическое повторение исходного спектра $X_a(f)$ аналогового сигнала x(t) с периодом, равным частоте дискретизации f_a :

$$X_{_{\pi}}(f) = \sum_{n=-\infty}^{\infty} X_{_{a}}(f - nf_{_{\pi}}). \tag{56}$$

Необходимая спектральная информация будет содержаться в полосе $\left[-f_{_{\rm H}}/2;\,f_{_{\rm H}}/2\right]$. Теперь оценим спектр исходного сигнала по его выборкам в этой полосе.

Континуальная запись дискретного сигнала x[k] в данном случае

$$x_{_{\mathrm{I}}}(t) = \sum_{k=-\infty}^{\infty} x[k]\delta(t - k\Delta t). \tag{57}$$

Вычислим его спектр (преобразование Фурье)

$$X_{\pi}(f) = \int_{-\infty}^{\infty} x_{\pi}(t) \exp(-j2\pi ft) dt = \int_{-\infty}^{\infty} \sum_{k=-\infty}^{\infty} x[k] \delta(t - k\Delta t) \exp(-j2\pi ft) dt =$$

$$= \sum_{k=-\infty}^{\infty} x[k] \int_{-\infty}^{\infty} \delta(t - k\Delta t) \exp(-j2\pi f t) dt = \sum_{k=-\infty}^{\infty} x[k] \exp(-j2\pi f k\Delta t),$$

Таким образом, спектр дискретного сигнала определяется через его отсчёты по формуле

$$X_{_{\mathrm{I}}}(f) = \sum_{k=-\infty}^{\infty} x[k] \exp(-j2\pi f k \Delta t). \tag{58}$$

Эта формула определяет прямое дискретное во времени преобра-

зование Фурье (ДВПФ). Учитывая, что (58) представляет собой ряд Фурье для периодической функции $X_{_{\rm II}}(f)^2$, получаем, что отсчётные значения дискретного сигнала соответствуют коэффициентам Фурье в этом ряде:

$$x[k] = c_{-k} = \frac{1}{f_{\pi}} \int_{-f_{\pi}/2}^{f_{\pi}/2} X(f) \exp(j2\pi f k \Delta t) df.$$
 (59)

В итоге получаем пару формул (58) и (59), определяющих прямое и обратное дискретное во времени преобразование Фурье (ДВПФ). ДВПФ в свою очередь показывает, каким является спектр дискретного сигнала x[k], который на отрезке оси частот $\left[-f_{_{\rm H}}/2;\,f_{_{\rm H}}/2\right]$ в отсутствии наложения совпадает со спектром исходного аналогового сигнала. При этом важно помнить, что в данном случае выборки аналогового сигнала связаны с дискретной последовательностью как $x[k] = \Delta t x(k \Delta t)$.

Пример 9. Выбрать шаг дискретизации Δt прямоугольного импульса длительностью τ с высотой E. В качестве верхней граничной частоты спектра f_s принять значение частоты, при котором спектральная плотность обращается в нуль и при $f > f_s$ значение спектральной плотности не превышает 0,1 от максимального значения. Записать ряд Котельникова для этого случая. Определить спектр дискретизованного сигнала. Считать, что отсчеты дискретизованного сигнала определяются как $x[k] = \Delta t x (k \Delta t)$.

Решение. Спектр прямоугольного импульса до дискретизации можно определить с помощью преобразования Фурье:

$$X_{\rm np}(f) = \int_{-\tau/2}^{\tau/2} E e^{-j2\pi f t} = \frac{E}{-j2\pi f} e^{-j2\pi f t} \Big|_{-\tau/2}^{\tau/2} = E \frac{\sin(\pi f \tau)}{\pi f} = E \tau \frac{\sin(\pi f \tau)}{\pi f \tau}.$$

Максимальное значение $X_{\text{\tiny IID}}(f)$ достигается на нулевой частоте и равно

$$X_{\text{np}}(0) = \lim_{f \to 0} E \tau \frac{\sin(\pi f \tau)}{\pi f \tau} = \lim_{f \to 0} E \tau \frac{\pi \tau \cos(\pi f \tau)}{\pi \tau} = E \tau.$$

 $^{^2}$ Напоминание. Для 2l - периодической функции f(x) , абсолютно интегрируемой на интервале (-l;l) ряд Фурье по системе функций $\phi_m(x) = \exp(jm\frac{\pi}{l}x) \;,\; m \in Z \;:\; f(x) = \sum_{m=-\infty}^{+\infty} c_m \exp(jm\frac{\pi}{l}x) \;,\; \text{где коэффициенты}$ Фурье $c_m = \frac{1}{2l} \int_{-l}^{l} f(x) \exp(-jm\frac{\pi}{l}x) dx$

Нули функции $X_{\rm np}(f)$ совпадают с нулями $\sin(\pi f \tau)$, за исключением точки 0, где находится неопределённость «0/0». Соответственно, они находятся в точках

$$f_m = \pm \frac{m}{\tau}, m \in \mathbb{N}. \tag{60}$$

По условию требуется, чтобы f_{s} совпадала с одним из нулей и для любого $f>f_{s}$ выполнялось

Рис. 23. Спектр прямоугольного импульса.

Рис. 24. Левая и правая часть неравенства (61) как функции от частоты.

Преобразуем неравенство к виду

$$\sin(\pi f \tau) \le 0.1\pi f \tau. \tag{61}$$

Функция $\sin(\pi f \tau)$ достигает максимального значения при

$$\pi f \tau = \frac{\pi}{2} + 2\pi m$$

Найдем $f_m=f_s$, потребовав, чтобы значение линейной функции $0,1\pi f \tau$ для $f=(0,5+2m)/\tau$ (максимума синусоиды) превышало единицу, что является необходимым условием для выполнения (61) для всех $f>(0,5+2m)/\tau$. Минимально возможное значение m для этого случая m=2. Заметим, что для всех $f>3/\tau$ неравенство (61) выполнено. Тогда $f_s=3/\tau$. Поскольку рассматривается сигнал, со спектром, сосредоточенным вокруг нулевой частоты (видеосигнал), то $f_{\pi}=2f_s=6/\tau$. Шаг дискретизации равен $\Delta t=1/f_{\pi}=\tau/6$. Дискретизуем сигнал таким шагом, получаем 7 ненулевых отсчетов прямоугольного импульса, симметрично расположенных относительно нуля времени. С учетом нулевых слагаемых и выбора частоты дискретизации ряд Котельникова принимает вид

$$x_{\text{np}}(t) = \sum_{k=-3}^{3} E \frac{\sin\left(\frac{6\pi}{\tau}(t - k\Delta t)\right)}{\frac{6\pi}{\tau}(t - k\Delta t)}.$$
 (62)

Отсчеты дискретизованного сигнала

$$x[k] = \Delta t x(k\Delta t) = \begin{cases} E\Delta t, |k| \le 3, \\ 0, |k| > 3. \end{cases}$$

$$(63)$$

Рис. 25. Прямоугольный импульс, его отсчеты и сигнал, восстановленный рядом Котельникова.

Спектр дискретизованного сигнала

$$X_{_{\pi}}(f) = \sum_{k=-\infty}^{\infty} x[k] \exp(-j2\pi f k \Delta t) = E \Delta t \sum_{k=-3}^{3} \exp(-j2\pi f k \Delta t)$$

Используя формулу суммы геометрической прогрессии со знаменателем $\exp(-j2\pi f \Delta t)$, получаем

$$X_{_{\mathrm{II}}}(f) = E\Delta t \exp(j6\pi f \Delta t) \frac{1 - \exp(-j14\pi f \Delta t)}{1 - \exp(-j2\pi f \Delta t)}.$$

Обозначим $\theta = 2\pi f \Delta t$ (нормированный угол в радианах). Для числителя и знаменателя вынесем половину степени экспоненты за скобки.

$$X_{_{\mathrm{II}}}(\theta) = E\Delta t \exp(j3\theta) \frac{1 - \exp(-j7\theta)}{1 - \exp(-j\theta)} = E\Delta t e^{j3\theta} \frac{e^{-j7\theta/2} \left(e^{j7\theta/2} - e^{-j7\theta/2}\right)}{e^{-j\theta/2} \left(e^{j\theta/2} - e^{-j\theta/2}\right)}.$$

Воспользуемся следствием из формулы Эйлера (как и в формуле (21))

$$X_{_{\pi}}(\theta) = E\Delta t \frac{\sin(7\theta/2)}{\sin(\theta/2)}.$$
 (64)

Тогда в переменных f

$$X_{_{\pi}}(f) = E\Delta t \frac{\sin(7\pi f \Delta t)}{\sin(\pi f \Delta t)}.$$
 (65)

Функция $X_{_{\rm J}}(f)$ является периодической с периодом, равным $f_{_{\rm J}}=1/\Delta t$. С учетом выбора шага дискретизации

$$X_{_{\mathrm{I}}}(f) = \frac{E\tau}{6} \frac{\sin(7\pi f \tau/6)}{\sin(\pi f \tau/6)}$$
(66)

Заметим, что из-за влияния эффекта наложения значения $X_{\rm np}(f)$ и $X_{_{\rm II}}(f)$ не являются строго равными на интервале частот от $-f_{_{\it e}}$ до $f_{_{\it e}}$. В частности, $X_{_{\rm II}}(f)=\frac{7}{6}E\tau$.

Рис. 26. Спектры исходного и дискретизованного сигналов.

Задания на компьютерное моделирование

Задание на компьютерное моделирование содержится в .ipynb файле и состоит из следующих задач.

- 1.1. Дискретизация и квантование.
- **1.2.** Декодирование .wav файла.
- 2.1. Спектры симметричных оконных функций.
- 2.2. Теорема запаздывания для преобразования Фурье.
- 2.3. Спектр отрезка синусоиды.
- 2.4. Спектр пачки равноотстоящих импульсов.
- **3.1.** Эффект наложения при дискретизации прямоугольного импульса.
 - 3.2. Эффект наложения при прореживании сигнала.

Задание на компьютерное моделирование выполняется по вариантам, закреплённым в лабораторном журнале группы. Отчет о выполнении задания на моделирования (ipynb файл) должен содержать все необходимые графики. Допускается наличие программного кода, выполненного с предупреждениями (Warning). Основные требования к оформлению графиков следующие.

- а) График должен содержать заголовок (либо подпись к рисунку).
- б) Должны присутствовать шкала и корректные подписи осей.
- в) Желательно использовать сетку графика.
- г) Шаг точек при построении графиков по времени и по частоте для непрерывных функций должен быть выбран так, чтобы эффект дискретности заметно не проявлялся.
 - д) Графики должны сопровождаться ответами на вопросы зада-

ния, которые записываться в тетради либо в отчете в файле ipynb.

Задание к допуску

- № 1. Объясните, в чем заключается отличие между аналоговым, дискретным и цифровым сигналом.
- № 2. Приведите формулировку теоремы Котельникова для сигнала с финитным спектром.
- № 3. Запишите формулы прямого и обратного преобразования Фурье a) для частотной переменной f, измеряемой в Γ ц, б) для частотной переменной $\omega = 2\pi f$, измеряемой в рад/с.
 - № 4. Сформируйте и докажите свойства преобразования Фурье:
 - а) свойство линейности,
 - б) теорему запаздывания,
 - в) теорему смешения,
 - г) теорему об изменении масштаба,
 - д) теорему о спектре производной,
 - е) теорему о производной спектра.
- № 5. Объясните, в чем заключается эффект наложения спектров при дискретизации аналогового сигнала и при каких условиях он возникает.
- № 6. Определите аналитические формулы для спектров следующих импульсов.

а) Симметричный прямоугольный импульс длительностью
$$\tau$$

$$x_1(t) = \begin{cases} E, & \text{если } |t| < \tau/2, \\ 0, & \text{если } |t| \geq \tau/2. \end{cases}$$

б) Прямоугольный импульс длительностью т с началом в нулевой момент времени

$$x_2(t) = \begin{cases} E, & \text{ если } 0 \leq t \leq \tau, \\ 0, & \text{ иначе.} \end{cases}$$

в) Симметричный косинусоидальный импульс длительностью т.

$$x_3(t) = \begin{cases} E\cos\left(\frac{\pi t}{\tau}\right), & \text{если } \mid t \mid <\tau/2, \\ 0, & \text{если } \mid t \mid \geq\tau/2. \end{cases}$$

г) Косинусоидальный импульс длительностью т с началом в нулевой момент времени

$$x_4(t) = \begin{cases} E\cos\bigg(\frac{\pi t}{\tau}\bigg), & \text{ если } 0 \leq t \leq \tau, \\ 0, & \text{ иначе.} \end{cases}$$

д) Симметричный импульс вида «приподнятый косинус» (аналоговое окно Ханна) длительностью τ

$$x_{5}(t) = \begin{cases} \frac{1}{2} \left(1 + \cos\left(\frac{2\pi t}{\tau}\right) \right), & \text{если } |t| < \frac{\tau}{2}, \\ 0, & \text{если } |t| \geq \frac{\tau}{2}. \end{cases}$$

е) Импульс вида «приподнятый косинус» (аналоговое окно Ханна) длительностью τ с началом в нулевой момент времени

$$x_6(t) = \begin{cases} \frac{1}{2} \left(1 + \cos\left(\frac{2\pi t}{\tau}\right)\right), & \text{ если } 0 \leq t \leq \tau, \\ 0, & \text{ иначе.} \end{cases}$$

№ 7 (выполняется на компьютере). Постройте графики сигналов $x_i(t)$ из задания к допуску №6 и их АЧХ $|X_i(f)|$, i=1,2,...,6, с использованием Python и библиотек Matplotlib и Numpy. Проводить численное интегрирование при вычислении спектра не требуется, достаточно построить график для аналитического выражения АЧХ. Принять E=4 В, длительность $\tau=100$ мкс . График должен удовлетворять следующим требованиям.

а) Заголовок графика должен содержать информацию о сигнале, например

- б) Должны присутствовать подписи осей абсцисс и ординат (plt.xlabel и plt.ylabel).
- в) На графике должна отображаться сетка. plt.grid()
- д) Шаг дискретизации при построении графиков по времени и по частоте должен быть выбран так, чтобы эффект дискретности заметно не проявлялся.
- е) При вычислении должна учитываться неопределённость вида «0/0» (устранить, используя правило Лопиталя).

Пример построения.

Предположим, что импульс имеет вид.

$$x_0(t) = egin{cases} E \, rac{2 \mid t \mid}{ au}, & ext{ если } \mid t \mid < au/2, \ 0, & ext{ если } \mid t \mid \geq au/2. \end{cases}$$

Его можно представить как прямоугольный импульс с вычетом треугольного. Спектр имеет вид

$$X_0(f) = E\tau \frac{\sin(\pi f \tau)}{\pi f \tau} - \frac{E\tau}{2} \frac{\sin^2(\pi f \tau/2)}{(\pi f \tau/2)^2}.$$

Рис. 27. Пример графика для задания к допуску.

```
import numpy as np
import matplotlib.pyplot as plt
tau=100e-6
E=4
def impulse(t, E, tau):
    if abs(t)>tau/2:
        return 0.0
    return 2*E/tau*abs(t)
def spectrum(f, E, tau):
    if np.isclose(f, 0):
        return E*tau/2
    return E*tau*((np.sin(np.pi*f*tau)/
```

```
(np.pi*f*tau)) -0.5*(np.sin(np.pi*f*tau/2)/
(np.pi*f*tau/2))**2)
t band = np.linspace(-tau, tau, num=2**14)
f band = np.linspace(-10/\tan, 10/\tan, num=2**14)
x = \text{np.array}([\text{impulse}(t, E, tau) \text{ for t in t band}])
Xf = np.array([spectrum(f, E, tau) for f in f band])
plt.figure()
plt.subplot(2, 1, 1)
plt.plot(t band*1e6, x)
plt.title("Импульс $x 0(t)$")
plt.xlabel("$t$, mkc")
plt.ylabel("$x 0(t)$, B")
plt.tight layout()
plt.grid()
plt.subplot(2, 1, 2)
plt.title("AЧX импульса $x 0(t)$")
plt.plot(f band*1e-3, abs(\overline{X}f)*1e6)
plt.ylabel("\$|X \ O(f)|\$, MKB/\GammaL")
plt.xlabel("$f$, кГц")
plt.tight layout()
plt.grid()
```

Задачи к сдаче работы

Модуль 1

- № 1.1. Имеется одноканальная (моно) аудиозапись с битовой глубиной 16 бит на отсчёт (разрядность АЦП равна 16), представленная в виде .wav файла. Частота дискретизации 44100 Гц. Определите число уровней квантования АЦП и шаг дискретизации Δt . Оцените длительность сигнала, если объем файла составляет 280 КБ и никакое дополнительное сжатие не производится.
- **№ 1.2.** Приведите континуальную запись (в виде последовательности дельта-функций) для следующих сигналов:
- а) единичного импульса, задержанного на семь тактов дискретизации x[k] = 1[k-7],

б) дискретизованной синусоиды с относительной частотой $v_0 = \frac{1}{4}$

$$y[k] = \sin\left(2\pi \frac{1}{4}k\right),\,$$

в) последовательности из пяти единичных импульсов

$$x[k] = \sum_{m=0}^{4} \mathbf{1}[k-m],$$

г) дискретной экспоненты вида

$$x[k] = \begin{cases} (-0.5)^k, \text{ при } k \ge 0, \\ 0, \text{ при } k < 0. \end{cases}$$

Модуль 2

- № 2.1. Определите спектр X(f) аналогового гармонического сигнала $x(t) = \sin(2\pi f_1 t) + \cos(2\pi f_2 t)$, $f_1 = 100$ кГц, $f_2 = 250$ кГц.
- **№ 2.2.** Предположим, что сигнал $x(t) = \cos(2\pi f_0 t)$, $f_0 = 100$ Гц наблюдается с момента времени t = 0 с в течении $\tau = 0,1$ с. Найти спектр наблюдаемого участка сигнала.
 - **№ 2.3.** Гармонический сигнал x(t) имеет вид

$$x(t) = \cos(2\pi f_1 t) + 2\cos(2\pi f_2 t)$$

где $f_1 = 100~\Gamma$ ц, $f_2 = 200~\Gamma$ ц. а) Изобразить график спектра сигнала x(t). б) Определить, какой вид будет иметь спектр для сигнала x(t)w(t), где w(t) — симметричное относительно t=0 окно Ханна длительностью $\tau=0,1~c$.

№ 2.4. Гармонический сигнал x(t) имеет вид

$$x(t) = \cos(2\pi f_1 t) + 4\cos(2\pi f_2 t)$$

где $f_1=100~\Gamma$ ц, $f_2=400~\Gamma$ ц. Предположим, что сигнал x(t) наблюдается с момента времени t=0 с в течении времени $\tau=0,1$ с. Найти спектр наблюдаемого участка сигнала.

№ 2.5. а) Вычислите спектр $X_1(f)$ одностороннего экспоненциального импульса для случая $\alpha > 0$

$$x_{1}(t) = \begin{cases} E \exp(-\alpha t), & \text{ если } t \geq 0, \\ 0, & \text{ если } t < 0. \end{cases}$$

Найдите амплитудный $|X_{\mathbf{l}}(f)|$ и фазовый $\varphi_{\mathbf{l}}(f)$ спектры этого

сигнала.

- б) Воспользовавшись этим результатом, определите спектральную плотность для двухстороннего экспоненциального импульса $x_2(t) = E \exp(-\alpha \mid t \mid) = x_1(t) + x_1(-t)$.
- в) Используя свойство преобразования Фурье теорему о производной спектра, определить для случая $\alpha>0$ спектральную плотность сигнала

$$x_3(t) = \begin{cases} t \exp(-\alpha t), & \text{ если } t \ge 0, \\ 0, & \text{ если } t < 0. \end{cases}$$

№ 2.6. Показать, что спектральная плотность гауссова импульса $x(t) = \exp(-\beta^2 t^2)$ является гауссовой функцией частоты

$$X(f) = \frac{\sqrt{\pi}}{\beta} e^{-\left(\frac{\pi f}{\beta}\right)^{2}}.$$

Примечание. Возможно, что при решении потребуется табличный интеграл $\int_{-\infty}^{\infty} e^{-\xi^2} d\xi = \sqrt{\pi}$. Отдельно его определять не требуется.

- № 2.7. Получить и изобразить спектр пачки из N=3 симметрично расположенных относительно нуля прямоугольных импульсов высотой $E=1\,\mathrm{B}$, длительностью $\tau=1\,\mathrm{mkc}$ и интервалом следования в пачке $T_0=10\,\mathrm{mkc}$.
- № 2.8. Пусть X(f) спектр некоторого сигнала x(t) конечной длительности. Определить спектр сигнала $x(t)\cos(2\pi f_0 t)$, где $f_0=10$ кГц.

Модуль 3

- - а) используя ряд Котельникова

$$x_a(t) = \sum_{k=-\infty}^{\infty} x_a(k\Delta t) \frac{\sin 2\pi f_{\scriptscriptstyle g}(t-k\Delta t)}{2\pi f_{\scriptscriptstyle g}(t-k\Delta t)};$$

- б) восстановив аналоговый сигнал, используя значения ДВПФ последовательности x[k] на периоде $\left[-f_{_{\rm II}}/2,\ f_{_{\rm II}}/2\right]$.
- **№ 3.2.** Воспользовавшись равенством Парсеваля для преобразования Фурье, показать, что функции отсчетов

$$\varphi_{k}(t) = \frac{\sin 2\pi f_{e}(t - k\Delta t)}{2\pi f_{e}(t - k\Delta t)}, \ \Delta t = \frac{1}{2f_{B}},$$

имеют конечную удельную энергию $\int_{-\infty}^{\infty} |x(t)|^2 dt$, и доказать их ортогональность в $L_2(-\infty,\infty)$.

- **№** 3.3. Определить, будут ли различимы синусоиды с частотами $f_1 = 20~$ к Γ ц и $f_2 = 80~$ к Γ ц при их дискретизации с частотой $f_{\pi} = 60~$ к Γ ц. Будет ли наблюдаться эффект наложения?
- № 3.4. Предположим, что проводится дискретизация с частотой $f_{\pi} = 1 \, \mathrm{M}\Gamma$ ц гармонических сигналов $x_1(t) = \cos\left(2\pi f_1 t\right), \ f_1 = 150 \, \mathrm{k}\Gamma$ ц, $x_2(t) = \cos\left(2\pi f_2 t\right), \ f_2 = 650 \, \mathrm{k}\Gamma$ ц, $x_3(t) = \left(\cos 2\pi f_3 t\right), \ f_3 = 1050 \, \mathrm{k}\Gamma$ ц. Установить для каждого из этих сигналов, будет ли наблюдаться эффект наложения.
- №3.4. Определить частоту дискретизации, необходимую для возможности последующего точного восстановления сигнала

$$x(t) = \frac{\sin\left(6280t\right)}{6280t}.$$

№3.5. Записать спектр периодического сигнала

$$x(t) = 10\cos(1000t + \pi/3) + 20\cos(2000t + \pi/6) + 125.$$

Определить частоту дискретизации, необходимую для возможности его последующего точного восстановления.

- №3.6. Найти и изобразить спектральную плотность группы из (2N+1) дельта-импульсов, симметрично расположенных относительно начала координат с шагом Δt . Отметить величины главных максимумов в спектре и их частоты. Указать частоты, на которых спектральная плотность принимает нулевые значения. График изобразить для N=1 и для N=2.
 - №3.6. Экспоненциальный импульс

$$x(t) = e^{-\alpha t}, t \ge 0, \alpha = 20$$
 кГц.

дискретизован с шагом $\Delta t = 10$ мкс . Найти и изобразить по модулю спектральную плотность дискретизованного сигнала.

- №3.7. Определить и изобразить спектр дискретизованного с шагом $\Delta t = \tau/5$ симметричного треугольного импульса высотой E и длительностью τ .
- №3.8. Пусть спектр действительного видеосигнала x(t) равен нулю вне полосы частот 1 МГц, а спектр видеосигнала y(t) равен нулю

вне полосы частот 2 МГц. В соответствии с теоремой отсчетов определить минимальный шаг дискретизации следующих сигналов

a)
$$x(t)$$
, δ) $y(t)$, g) $y(5t)$, g) $x(t) + y(t)$, g) $x(t)y(t)$, g) $x(t) \otimes y(t)$.

- №3.9. Основываясь на теореме отсчетов, рассчитать полосу частот, необходимую для передачи черно-белого изображения, если принять, что разрешающая способность телевизионного изображения 500 строк с числом элементов в строке 650, скорость передачи 25 кадров в секунду и яркость каждой точки передается амплитудой видеосигнала.
- №3.10. Доказать теорему отсчетов в частотной области: если сигнал x(t) тождественно равен нулю вне промежутка $t_1 \le t \le t_2$, то спектральная плотность X(f) однозначно определяется последовательностью своих значений в точках, следующих с шагом $|t_2 t_1|^{-1}$ Гц. Записать интерполяционный ряд для восстановления спектральной плотности X(f) по отсчетным значениям.
- **№3.11.** Сигнал x(t) имеет спектр, ограниченный полосой $|f| \le f_e$. Доказать, что

$$\int_{-\infty}^{\infty} x(t)dt = \Delta t \sum_{k=-\infty}^{\infty} x(k\Delta t), \, \Delta t = \frac{1}{2f_s}.$$

- №3.12. Прямоугольный импульс x(t), $t \in [-\tau/2, \tau/2]$ дискретизован с шагом Δt так, что получилось 2N+1 ненулевых отсчетов, симметрично расположенных относительно t=0. Найти спектральную плотность дискретизованного сигнала и изобразить ее для случая 2N+1=9, отметив все особые точки.
- №3.13. Выбрать шаг дискретизации Δt прямоугольного импульса длительностью $\tau = 100\,$ мкс. В качестве верхней граничной частоты спектра f_e принять значение частоты, при котором спектральная плотность обращается в нуль и при $f>f_e$ значения спектральной плотности не превышают $0,1\,$ от максимального значения. Записать ряд Котельникова для этого случая.
- №3.14. Рассмотреть вопрос о дискретизации колокольного (гауссова) импульса $x(t) = e^{-(\beta t)^2}$. В качестве верхней граничной частоты спектра f_s принять значение частоты, при котором спектральная плотность в 10 раз меньше максимального значения. Определить шаг дискретизации Δt .

№3.15. Выбрать шаг дискретизации Δt симметричного треугольного импульса длительностью $2\tau = 100$ мкс. В качестве верхней граничной частоты спектра f_s принять значение частоты, при котором спектральная плотность обращается в нуль и при $f > f_s$ значения спектральной плотности не превышают 0,1 от максимального значения. Записать ряд Котельникова для этого случая.

Справочные данные

1. Формула суммы N членов геометрической прогрессии:

$$S_N = \frac{b_1(1 - q^N)}{(1 - q)},$$

где b_1 — первый член прогрессии, q — знаменатель прогрессии.

2. Табличный интеграл

$$\int_{-\infty}^{\infty} e^{-\xi^2} d\xi = \sqrt{\pi} .$$

3. Формула Эйлера и ее следствия

$$e^{j\varphi} = \cos\varphi + j\sin\varphi,$$

$$\sin\varphi = \frac{e^{j\varphi} - e^{-j\varphi}}{2j}, \cos\varphi = \frac{e^{j\varphi} + e^{-j\varphi}}{2}.$$

Литература

- 1. Романюк Ю.А. Основы цифровой обработки сигналов. В 3-х ч. Ч.1. Свойства и преобразования дискретных сигналов: учебное пособие. 2-е изд., перераб. М.: МФТИ, 2007. 332 с.
- 2. Романюк Ю.А. Дискретное преобразование Фурье в цифровом спектральном анализе: учебное пособие. М.: МФТИ, 2007. 120 с.
- 3. Солонина А.И. Цифровая обработка сигналов в зеркале Matlab. СПб.: БХВ-Петербург, 2021. 560 с.