Tema 4 - Aplicaciones lineales entre espacios vectoriales

- 1. Aplicaciones lineales, definición y propiedades básicas. [Apuntes de clase y Lay [1], cáp. 1-5] Teorema – Sean V y W espacios vectoriales y $T:V \longmapsto W$ una aplicación lineal.
 - (1) $T\left(\sum_{k=1}^{p} \lambda_k v_k\right) = \sum_{k=1}^{p} \lambda_k T(v_k)$ En particular, T(-v) = -T(v) y $T(\vec{\mathbf{0}}_V) = \vec{\mathbf{0}}_W$
 - (2) T conserva la dependencia lineal.
 - (3) T transforma subespacios de V en subespacios de W (bases en sistemas generadores).
 - (4) La imagen inversa de un subespacio de W es un subespacio de V.
- 2. Núcleo e imagen de una aplicación lineal. Aplicaciones lineales inyectivas.
 - a) Teorema $\dim(V) = \dim(\ker(T)) + \dim(\operatorname{Im}(T))$.
 - b) Teorema Las siguientes afirmaciones son equivalentes:
 - (1) T es inyectiva.
 - (2) $\ker(T) = \{\vec{\mathbf{0}}_V\}.$
 - (3) $\dim(V) = \dim(\operatorname{Im}(T))$.
 - (4) T transforma las bases de V en bases de Im(T).
 - (5) T conserva la independencia lineal.
- 3. La matriz $[T]_{\mathcal{B}_V,\mathcal{B}_W}$ de $T:V\longmapsto W$ lineal referida a las bases \mathcal{B}_V y \mathcal{B}_W . [Apuntes de clase]
 - a) Significado de las columnas de la matriz $[T]_{\mathcal{B}_V,\mathcal{B}_W}$ de la aplicación lineal T.
 - b) Relaciones entre el rango y el espacio nulo de la matriz [T] y el núcleo y la imagen de T.
 - c) Cambios de base.
 - d) Operaciones con aplicaciones lineales.
 - e) Los espacios $\mathcal{L}(V, W)$ y $\mathbb{M}_{m \times n}$ con $n = \dim(V)$ y $m = \dim(W)$.
 - f) Endomorfismos de un espacio. Endomorfismos inyectivos.
 - $g)\,$ Matriz de un endomorfismo. Rango e inyectividad.
 - h) Cambios de base en un endomorfismo: matrices semejantes.
- 4. Autovalores y autovectores. [Apuntes de clase y Lay, pág. 267-270 y 276-277]
 - a) Autovectores y autovalores de un endomorfismo (de una matriz cuadrada).
 - b) Subespacio asociado a un autovalor: propiedades.
 - c) El polinomio característico y la ecuación característica de un endomorfismo (de una matriz).
 - d) El teorema de Cayley-Hamilton. Aplicación al cálculo de A^{-1} .
- 5. Diagonalización de endomorfismos (de matrices) y algunas aplicaciones.
 - a) Endomorfismos (matrices) diagonalizables. Matriz de paso. [LAY, pág. 282-285]
 - b) Potencia n-ésima de una matriz diagonalizable. [Apuntes de clase]
 - $\it c)$ Procesos de Markov. [LAY, pág. 253-259]
 - d) Ecuaciones en diferencias. [LAY, pág. 244-253]
 - e) Sistemas depredador-presa. [LAY, pág. 302-305]
 - f) Otras aplicaciones de la diagonalización. [Apuntes de clase]

^[1] En el texto de LAY no hay un capítulo dedicado específicamente a las aplicaciones lineales.