Linear Algebra

Positve (Semi)Definiteness

A positive definite $\iff x^T A x > 0 \ \forall x \neq 0$ A positive semidefinite $\iff x^T A x \ge 0 \ \forall x$ If A is positive definite:

- 1. A is invertible
- 2. \forall eigenvalues λ_i , $\lambda_i > 0$
- 3. n linearly independent vectors such that $A_{ij} = x_i^T x_j$

If A is positive semidefinite:

1. $A + \gamma I$ is positive definite for any $\gamma > 0$.

Diagonalization: If $n \times n$ matrix A has n linearly independent eigenvectors, $A = PDP^{-1}$. If A is also symmetric, $P^{-1} = P^{T}$, so

Trace Properties: $Tr(A) = a_{11} + \cdots + a_{nn} = \sum_{i=1}^{n} a_{ii}$ $Tr(A+B) = Tr(A) + Tr(B)|Tr(cA) = cTr(A)|Tr(A) = Tr(A^T)$ Cyclic permutations: Tr(ABCD) = Tr(BCDA) = Tr(CDAB) = Tr(DABC) $Tr(XY^T) = \sum_{i,j} X_{ij} Y_{ij}$ If A is $n \times n$, $Tr(A) = \sum_i \lambda_i$, $det(A) = \prod_i \lambda_i$, $Tr(A^k) = \sum_i \lambda_i^k$. Let x be a scalar. Then x = Tr(x). Matrix Inversion Lemma $w = (X^TX + \lambda I)^{-1}X^Ty = X^T(XX^T + \lambda I)^{-1}y$ Rayleigh Quotient: $R(M, x) = \frac{x^T M x}{-T}$

Probability

Expectation: $E[X] = x_1 p_1 + \cdots + x_n p_n$ (Co)variance

 $Cov(X, Y) = E[(X - E[X])(Y - E[Y])^T]$ $Cov(X) = Var(X) = E[(X - E[X])(X - E[X])^{T}]$ $Var(X) = E[(X - E[X])^{2}] = E[X^{2}] - E[X]^{2}$

 $\begin{array}{l} Var(X) = E[(X - E[X])] = E[X] - E[X] \\ Var(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} Var(X_i) | Var(nX) = n^2 Var(X) \\ \textbf{Bayesian Decision Theory} \\ P(y|x) = \frac{P(x,y)}{P(x)} = P(x|y) \frac{P(y)}{P(x)} = \sum_{i} P(x|y_i) P(y_i) \\ P(x,y) = P(x|y) P(y) = P(y|x) P(x) \\ \end{array}$

Decision Boundaries

Let $P(X|w_i) \sim \mathcal{N}(\mu_i, \sigma^2)$, $P(w_1) = P(w_2) = 0.5$. Optimal bayes decision boundary occurs when $P(w_1|x) = P(w_2|x)$ (Pr of being classified in class 1 is equivalent to Pr classified in class 2 for a given x): $Pr(w_1|x) = Pr(w_2|x) \to Pr(x|w_1)Pr(w_1) = Pr(x|w_2)Pr(w_2)$ Since $Pr(w_1) = Pr(w_2), Pr(x|w_1) = Pr(x|w_2)$ We know $Pr(x|w_i) \sim \mathcal{N}(\mu_i, \sigma^2)$: $\mathcal{N}(\mu_1, \sigma^2) = \mathcal{N}(\mu_2, \sigma^2)$ Substituting equation for single-variate gaussian and cancelling terms:

 $(x-\mu_1)^2=(x-\mu_2)^2$ so $x=\frac{\mu_1+\mu_2}{2}$ or in other words the mean of the

means. Our decision becomes w_1 if $x < \frac{\mu_1 + \mu_2}{2}$ and w_2 otherwise. Bayes risk is defined as the probability of misclassification for the

Maximum a Posteriori Estimation

In MAP, we have $P(\theta)$, so we find $P(\theta|x) \propto P(x|\theta)P(\theta)$. The $\theta_{MAP} = argmax_{\theta} P(x|\theta) P(\theta)$ and can use log for MAP estimation such that $\theta_{MAP} = argmax_{\theta} \log P(x|\theta) + \log p(\theta)$

Maximum Likelihood Estimation

 $\theta_{MLE} = argmax_{\theta} P_x(x|\theta) = L(\theta)$

 $p_{X_1,...,X_n|\theta}(x_1,...,x_n|\theta) = p_{X_1}(X_1|\theta)...p_{X_n}(X_n|\theta)$

Taking the log of the likelihood: $\theta_{MLE} = argmax_{\theta} \sum_{i} \log p_{X_i}(x_i|\theta)$

Union Bound $P(\bigcup_i A_i) \leq \sum_i P(A_i)$

Distributions

Single-variate Gaussian:
$$\frac{1}{\sigma\sqrt{2\pi}}\exp(-\frac{(x-\mu)^2}{2\sigma^2})$$
 Multi-variate Gaussian with $X\sim\mathcal{N}(\mu,\Sigma)$
$$f(x;\mu,\Sigma)=\frac{1}{(2\pi)^{n/2}|\Sigma|^{1/2}}\exp\left(-\frac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu)\right)$$
 Covariance Matrix: $\Sigma=E[(X-\mu)(X-\mu)^T];$ if $\mu=0,\,\Sigma=XX^T$ Shifting/Centering Distributions: If $X\sim\mathcal{N}(\mu,\Sigma),$ then $AX+b\sim\mathcal{N}(A\mu+b,A\Sigma A^T)$

 $\Longrightarrow \Sigma^{-\frac{1}{2}}(X-\mu) \sim N(0,I), \text{ where } \Sigma^{-\frac{1}{2}} = U\Lambda^{-\frac{1}{2}}$ Covariance Matrix Properties

 $x^T\Sigma^{-1}x=||Ax||_2^2$ for all vectors x when $A=(UQ)^T$ where Q is the diagonal matrix with diagonal values $\frac{1}{\sqrt(d_{i,i}}$ so we have

 $x^T \Sigma^{-1} x = x^T A^T A x = (Ax)^T A x = ||Ax||_2^2$. This is just the L2 norm of Ax which thus measures squared distance of data vector x from mean.

- 1. If $||x||_2 = 1$, we can define $||Ux||_2 = 1$ since U is orthonormal (preserving magnitiude). Let q = Ux. $||Ax||_2^2 = x^T A^T Ax = x^T U D^{-1} U^T x = q^T D^{-1} q$ Let x be e_i such that the ith element is 1 and others are 0. Max value of $||Ax||_2^2 = \frac{1}{\lambda_i}$ where λ_i is min eigenvalue and vice versa for min
- 2. If $X_i \perp X_j$, then $cov(X_i, X_j) = 0$. Thus Σ^{-1} is a diagonal matrix of values $\frac{1}{\sigma_i^2}$. Max at $\frac{1}{\sigma_i^2}$ where σ_i^2 is min variance and

Conclusion: Minimize by choosing vector x as eigenvector corresponding to max eigenvalue or maximium variance if independent.

MLE of Multi-variate Guassian Distribution

For X following the given distribution, we compute the mean and variance estimates using MLE by taking the log-likelihood, and then differentiating by μ and σ , respectively. $X \sim \mathcal{N}(\mu, \sigma^2 I_{d \times d})$

$$\begin{array}{l} \hat{\mu}_{ML} = \frac{\sum_{i=1}^{n} X_i}{n} = \bar{X}, \ \hat{\sigma^2}_{ML} = \frac{1}{nd} \sum_{i=1}^{n} (X_i - \hat{\mu}_{ML})^T (X_i - \mu_{\hat{M}L}) \\ X \sim \mathcal{N}(\mu, \Lambda) \ \text{where} \ \Lambda \ \text{is a diagonal matrix with the values} \ \sigma_1, \ldots, \sigma_d. \end{array}$$

$$\log l(\mu, \Lambda | X) = -\frac{n}{2} \log 2\pi - \frac{n}{2} \sum_{j=1}^{n} \log \sigma_{j}^{2} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{d} \frac{(X_{ij} - \mu_{j})^{2}}{\sigma_{j}^{2}}$$

 $\begin{array}{l} \hat{\mu_{ML}} = \frac{1}{n} \sum_{i=1}^n X_i, \, \sigma_{j,ML}^2 = \frac{\sum_{i=1}^n (X_{ij} - \mu_j)^2}{n} \\ X \sim \mathcal{N}(A\mu, \Lambda) \text{ assuming A is invertible and } Lambda \text{ is known} \end{array}$ $\hat{\mu_M L} = A^{-1} \frac{\sum_{i=1}^n X_i}{\sum_{i=1}^n X_i}$

Vectors and Matrices

- $||A||_F^2 = Tr(A^T A)$
- $\begin{array}{ll} \bullet & ||x||_2^2 = \sum_{i=1}^n x_i^2 = x^T x \\ \bullet & ||x||_1 = \sum_{i=1}^n |x_i| \end{array}$

Cachy-Schwarz Inequality: $|x^Ty| = ||x||_2 ||y||_2$ Derivatives

- $\bullet \quad \frac{\partial x^T a}{\partial x} = \frac{\partial a^T x}{\partial x} = a$
- $\bullet \quad \frac{\partial a^T X b}{\partial X} = a b^T$
- $\bullet \quad \frac{\partial b^T X^T X c}{\partial x^T} = X(bc^T + cb^T)$
- $\bullet \quad \frac{\partial x^T B x}{\partial x^T} = (B + B^T) x$
- $\frac{\partial Tr(F(X))}{\partial X} = f(X)^T$
- $\bullet \quad \frac{\partial}{\partial x}||x-a||_2 = 2x$
- $\bullet \quad \frac{\partial}{\partial X} ||X||_F^2 = 2X$

Support Vector Machines

Goal: Maximize the margin of a hyperplane Margin of Hyperplane: $^{min}{}_{1\leq i\leq n}y_{i}(w^{t}x)$ $||w||_{2}^{2}$

Regression

Linear

Loss Function: $L = ||Xw - Y||_2^2$ with closed-form solution $w = (X^T X)^{-1} X^T u$

Loss Function with L2 Regularization: $L = ||Xw - Y||_2^2 + \lambda ||w||_2^2$ with closed-form solution $w = (X^T X + \lambda I)^{-1} X^T Y$

Loss Function with L1 Regularization: $L = ||Xw - Y||_2^2 + \lambda ||w||_1$

How the L1 norm encourages sparsity: $\begin{aligned} & & \text{Compair} & & & \text{Compair} & & \text{Compair} & & \text{Compair} & & \text{Compair} & & & \text{Compair} & & & \text{Compair} & & & \text{Compair} &$

If $w_i > 0$, $w_i = \frac{1}{2}(y^T X_i - \lambda)$. If $w_i < 0$, $w_i = \frac{1}{n}(y^T X_i + \lambda)$. $w_i = 0$ if $-\lambda \le y^T X_i \le \lambda$ Observing regularization paths:

Graph on the left is L1 regularization for sparser values. The graph on the right is L2 regularization, with smoother curve hitting more values. Writing w as a linear combination of α such that $w = \sum_{i=1}^n \alpha_i x_i$. $w = X^{T}(XX^{T} + \lambda I)^{-1}y$ and we know that $(XX^{T} + \lambda I)$ is diagonalizable because PD, so equals $U\Lambda U^T$ and thus has inverse

$$w = \sum_{i=1}^{n} \alpha_i x_i$$

$$\alpha_i = \sum_{i=1}^{d} y_j * u_i \Lambda^{-1} u_j^T$$

$$\begin{array}{l} \text{Logistic} \\ \text{Logit Function: } f(x) = \frac{1}{1 + exp(-x)}, \ f'(x) = f(x)(1 - f(x)) \\ f'(x) = \frac{exp(-x)}{(1 + exp(-x))^2} = \frac{exp(-x) + 1 - 1}{(1 + exp(-x))^2} = \\ \frac{1 + exp(-x)}{(1 + exp(-x))^2} - \frac{1}{(1 + exp(-x))^2} = \frac{1}{1 + exp(-x)} - \frac{1}{(1 + exp(-x))^2} = \\ \frac{1}{1 + exp(-x)} (1 - \frac{1}{1 + exp(-x)} = f(x)(1 - f(x)) \\ \text{Loss function: } L = -\sum_{i=1}^{n} y_i \log \mu_i + (1 - y_i) \log \mu_i \ \text{where} \\ \mu_i = \frac{1}{1 + exp(-\beta x)}; \ \nabla L = -X^T(Y - \mu) \\ \end{array}$$

Given $x_1, \ldots, x_n, y = f(x) + \epsilon$, (y) = h(x), and $\epsilon \sim \mathcal{N}(0, \sigma^2)$. $E[(h(x) - y)^{2}] = E[(h(x) - f(x) + \epsilon)^{2}] = E[((h(x) - f(x)) + \epsilon)^{2}] =$ $E[(h(x) - f(x))^{2}] - 2E[(h(x) - f(x))\epsilon] + E[\epsilon^{2}]$ We know that $E[\epsilon] = 0$ so $Var(\epsilon) = E[\epsilon^2] + E[\epsilon]^2$ and thus $Var(\epsilon) = E[\epsilon^2]$. Also ϵ is independent of h(x) - f(x) so the middle term $E[(h(x) - f(x))^{2}] + Var(\epsilon) =$ $E[(h(x) - E[h(x)] + E[h(x)] - f(x))^{2}] + Var(\epsilon) =$ $E[((h(x)-E[h(x)])+(E[h(x)]-f(x)))^{2}]+Var(\epsilon) = E[(h(x)-E[h(x)])^{2}]+$ $2E[(h(x) - E[h(x)])(E[h(x)] - f(x))] + E[(E[h(x)] - f(x))^{2}] + Var(\epsilon)$ We know $E[x - \mu] = 0$, so the middle term again disappears. $E[||h(x) - E[h(x)]||^2] + E[||E[h(x)] - f(x)||^2] + Var(\epsilon)$ We can now define the following:

- Bias: $E[||E[h(x)] f(x)||^2] = ||E[\hat{\mu}] \mu||^2$
- Variance: $E[||h(x) E[h(x)]||^2] = E[||\hat{m}u E[\hat{\mu}]||^2]$
- Error: $Var(\epsilon)$

Neural Networks

Convolutional NN

- Apply filter for example an array [−1, 0, 1].
- Multiply pointwise and sum. Output gets weighted sum.
- Pooling to reduce dimensionality. For example max pooling takes max over every block of 4 pixels.
- Convolving dimension reduction. $n \times m$ filter reduces the dimensions of the height and width of the matrix $d \times d$ matrix to $d - (n-1) \times d - (m-1)$.
- Number of parameters at each level are the parameters in the $n \times n$, times number of matrix-matrix pair, plus a bias unit for each matrix in the output.

Kernels

$$min||Xw - y||_2^2 + \lambda||w||$$

 $\min ||Xw-y||_2^2 + \lambda ||w||_2^2$ $w = (X^TX+\lambda I)^{-1}X^Ty = X^T(XX^T+\lambda I)^{-1}y \text{ and let } XX^T \text{ define}$ our kernel matrix K. $\min_{w} \sum_{i=1}^{n} loss(w^T x_i, y_i) + \lambda ||w||_2^2 \text{ with } w = \sum_{j=1}^{n} \alpha_j x_j + v. \text{ We are}$

writing w in terms of linear combinations of α where $\forall i, v^T x_i = 0$.

$$\min_{\alpha} \sum_{i=1}^{n} loss(\sum_{j=1}^{n} \alpha_{j} x_{j}^{T} x_{i}, y_{i}) + \lambda ||\sum_{j=1}^{n} \alpha_{j} x_{j}||_{2}^{2}$$

Now define $K_{ij} = x_i^T x_j$.

$$\min_{\alpha} \sum_{i=1}^{n} loss(\sum_{j=1}^{n} [K\alpha]_{i}, y_{i}) + \lambda \alpha^{T} K\alpha$$

For predicting new x, $f(x) = w^T x = \sum_{i=1}^{n} \alpha_i x_i^T x$, basically computing the similarity between every sample point x_i to x. You can replace $x_i^T x$ with any appropriate kernel function k(x, z).

Kernel Functions

- 1. linear: $k(x, z) = x^T z$
- 2. quadratic: $k(x, z) = (1 + x^T z)^2$
- 3. gaussian: $k(x, z) = exp(\gamma ||x z||^2)$

With matrix notation, we can write the kernel function as $min||K\alpha - y||^2 + \lambda \alpha^T K\alpha$ with the solution $\alpha = (K + \lambda I)^{-1} y$. We can also define $K = \phi(x)\phi(x)^T$ where $\phi(x)$ is some feature mapping for example $\phi(x) = \begin{bmatrix} 1 & \sqrt{2} & x^2 \end{bmatrix}^T$

Nearest Neighbors

Find k-closest training points and classify as most likely label by some voting scheme such as mean or median.

Decision Trees

Entropy is the expected value of surprise: $e = -\sum_{i=1}^{n} p_i \log_b(p_i)$ If $p_1 = 1$ and $p_2 = 0$, then $e = -(p_1 \log_2 p_1 + p_2 \log_2 p_2) = -(1 * \log_2 1 + 0) = 0.$ If $p_1 = p_2 = 0.5$ and $p_0 = 0$, then $e=-(p_1\log_2 p_1+p_2\log_2 p_2)=-(0.5*\log_2 0.5+0.5*\log_2 0.5)=1.$ Maximize information gain for classification. With entropy H at current

- . Info gain at root is not necessarily greater than info gain at a lower level; consider the XOR function.
- The same feature can be split on twice.

node with $n_1 + n_2$ samples: $maxH - \frac{n_1H_- + n_2H_+}{n_1 + n_2}$

· Entropy is always nonnegative.

Principle Components Analysis Singular Value Decomposition

$$X = USV^T = \sum_{i=1}^{d} \sigma_i u_i v_i^T$$

- 1. U is $d \times d$ with the left singular vectors
- 2. S is $d \times d$ with the singular values on the diagonal
- 3. V is $n \times d$ with the right singular vectors
- 4. $U^T U = I$ and $V^T V = I$ since both U and V contain orthogonal vectors
- 5. $S = Diag(\sigma_i)$ where singular values ordered from greatest to least $\sigma_1 \geq \cdots \geq 0$.

The singular values of X are the square roots of the eigenvalues for X^TX or XX^T . The left singular vectors are the eigenvectors of XX^T and the right singular vectors are the eigenvectors of $X^T X$. Norms in terms of SVD

 $||A||_F^2 = Trace(A^T A) = Trace(VS^T U^T USV^T) = Trace(VSSV^T) =$ $Trace(V^T VSS) = Trace(SS) = \sum_i \sigma_i^2$

 $||A||_2^2=sup_{||x||=1}||Ax||_2=sup_{||x||=1}x^TA^TAx$ We see that we are just finding the suprenum of the Raleigh quotient, which is maximized with the largest eigenvalue of $A^T A$ which is equivalent to σ_1^2 PCA Algorithm

Center X, compute SVD of X, then return $\hat{X} = S_r V_r^T$, U_r , μ_r Latent Factor Analysis

Goal: Factor X in AB^T . $min_{A,B}||X - AB^T||_F^2$. The solution is $A = U_r S_r^{\frac{1}{2}}$ and $B = V_r S_r^{\frac{1}{2}}$.

Clustering

K-means Clustering

$$J = \sum_{j=1}^{k} \sum_{i=1}^{k} n||x_i^{(j)} - c_j||^2$$

For each cluster, for each point, compute distance to the assigned mean. Algorithm: Fix points, update means to be mean of assigned points. Fix means, reassign points to new closest mean. Repeat until convergence. Spectral Clustering

Weighted undirected graph G = (V, E) where edge (i, j) represents similarities between points x_i and x_j . Cut graph into 2 pieces, cutting minimum edge weight each time: $min\frac{Cut(G_1,G_2)}{Mass(G_1)Mass(G)}$ We define the Laplacian as:

$$L_{ij} = -\begin{cases} \sum_{j} a_{ij} & \text{if i=j} \\ -a_{ij} & \text{o.w.} \end{cases}$$

Let v be a vector indicating whether v_i is in graph V_1 or V_2 . $Cut(V_1, V_2) = \sum_{i,j} \frac{1}{4} (v_i - v_j)^2 w_{ij} =$ $\frac{1}{4}\sum_{i,j}w_{ij}v_i^2+w_{ij}v_j^2-2v_iv_jw_{ij}=\frac{1}{4}v^TLv$. We can approximate this with the following: $min \frac{1}{4}v^T Lv$ such that $||v||^2 = n$ and $1^T v = 0$. The solution here is the second smallest eigenvalue. Without constraint $1^{T}v = 0$, the solution would be smallest eigenvalue because it is a Rayleigh quotient, $1^T v$ indicates you are orthogonal to the all 1's vector which corresponds to the smallest eigenvalue, so we take the second smallest.