Homework 7

Aleck Zhao

March 30, 2017

1. Let R be a ring, and let σ be an automorphism of R. Show that $\{a \in R \mid \sigma(a) = a\}$ is a subring of R, and a subfield if R is a field.

Proof. Call the subset S. Any automorphism must fix 1, so $1 \in S$. Now if $a, b \in S$, we have

$$\sigma(a+b) = \sigma(a) + \sigma(b) = a+b$$

$$\sigma(ab) = \sigma(a)\sigma(b) = ab$$

so $a + b, ab \in S$, so S is indeed a subring. Now, if R is a field, then for all nonzero $a \in R$,

$$1 = \sigma(1) = \sigma\left(a \cdot \frac{1}{a}\right) = \sigma(a)\sigma\left(\frac{1}{a}\right)$$

Now, if $a \in S$, then $\sigma(a) = a$, so

$$\sigma\left(\frac{1}{a}\right) = \frac{1}{\sigma(a)} = \frac{1}{a}$$

so $\frac{1}{a} \in S$ as well, and thus S is a field.

2. Let F be a finite field with p^n elements for p a prime. Show that each element $a \in F$ has a pth root in F, i.e. there exists $b \in F$ such that $b^p = a$. Is b unique? By contrast, for K := F(x) the fraction field of the polynomial ring F[x], show that x has no pth root in K.

Proof. Since $F = \mathbb{F}_{p^n}$ is the splitting field of $x^{p^n} - x$ over \mathbb{F}_p , we have $a^{p^n} = a$ for all $a \in \mathbb{F}_{p^n}$. Thus, if $b = a^{p^{n-1}}$, we have

$$b^p = (a^{p^{n-1}})^p = a^{p^n} = a$$

so b is a pth root of a. If $b^p = c^p = a$, then $\left(\frac{b}{c}\right)^p = 1$. Since the nonzero elements of F form a cyclic group of order $p^n - 1$, so since $b/c \in F^{\times}$, it must be the case that $b/c = 1 \implies b = c$ so the pth root is unique.

Suppose x had a pth root in K, so that for some $f,g \in F[x]$, we have $x = \left(\frac{f}{g}\right)^p$. Then $g^p x = f^p$. Note that $a^p \neq 0$ for any $0 \neq a \in F$ since F is a field and therefore an integral domain. Thus, if $\deg f = m, \deg g = n$, we have $\deg(g^p x) = pn + 1 = pm = \deg f^p$ which is clearly impossible. Thus, there is no pth root of x, as desired.

Section 6.4: Finite Fields

- 8. Find $[\mathbb{F}_{p^n} : \mathbb{F}_{p^m}]$ where $m \mid n$.
- 18. (a) Show that a monic irreducible polynomial $f \in F[x]$ has no repeated root in any splitting field over F if and only if $f \ncong 0$ in F[x].
 - (b) If char F = 0, show that no irreducible polynomial has a repeated root in any splitting field over F.

19. If char F = p, show that a monic irreducible polynomial $f \in F[x]$ has a repeated root in some splitting field if and only if $f = g(x^p)$ for some $g \in F[x]$. (Hint: Ex 18)

- 21. Let p be a prime and write $f = x^p x 1$. Show that the splitting field of f over \mathbb{F}_p is $\mathbb{F}_p(u)$, where u is any root of f. (Hint: Compute $f(u+a), a \in \mathbb{F}_p$) tin
- 22. (a) Let f be a monic irreducible polynomial of degree n in $\mathbb{F}_p[x]$. Show that f divides $x^{p^n} x$ in $\mathbb{F}_p[x]$. (Hint: First work over $\mathbb{F}_p(u)$, f(u) = 0. Use the uniqueness in Theorem 4 § 4.1.)
 - (b) Show that the degree of each monic irreducible divisor f of $x^{p^n} x$ is a divisor of n. (Hint: Theorem 5)
 - (c) Factor $x^8 x$ into irreducibles in $\mathbb{F}_2[x]$.

Section 4.5: Symmetric Polynomials

- 14. Given $\sigma \in S_n$, define $\theta_{\sigma} : R[x_1, \dots, x_n] \to R[x_1, \dots, x_n]$ by $\theta_{\sigma}[f(x_1, \dots, x_n)] = f(x_{\sigma_1}, \dots, x_{\sigma_n})$.
 - (a) Show that θ_{σ} is a ring automorphism of $R[x_1, \dots, x_n]$.

Proof. First we show this is a ring homomorphism. Clearly $\theta_{\sigma}(1) = 1$. Now, for $f, g \in R[x_1, \dots, x_n]$,

$$\theta_{\sigma} [f(x_1, \dots, x_n) + g(x_1, \dots, x_n)] = \theta_{\sigma} [(f+g)(x_1, \dots, x_n)]$$

$$= (f+g)(x_{\sigma 1}, \dots, x_{\sigma n})$$

$$= f(x_{\sigma 1}, \dots, x_{\sigma n}) + g(x_{\sigma 1}, \dots, x_{\sigma n})$$

$$= \theta_{\sigma} (f) + \theta_{\sigma} (g)$$

$$\theta_{\sigma} [f(x_1, \dots, x_n) \cdot g(x_1, \dots, x_n)] = \theta_{\sigma} [(fg)(x_1, \dots, x_n)]$$

$$= (fg)(x_{\sigma 1}, \dots, x_{\sigma n})$$

$$= f(x_{\sigma 1}, \dots, x_{\sigma n}) \cdot g(x_{\sigma 1}, \dots, x_{\sigma n})$$

$$= \theta_{\sigma} (f) \cdot \theta_{\sigma} (g)$$

Now if

$$\theta_{\sigma}(f) = f(x_{\sigma 1}, \cdots, x_{\sigma n}) = g(x_{\sigma 1}, \cdots, x_{\sigma n}) = \theta_{\sigma}(g)$$

then consider σ^{-1} and its associated $\theta_{\sigma^{-1}}$. Then applying $\theta_{\sigma^{-1}}$ to both of these polynomials,

$$\begin{aligned} &\theta_{\sigma^{-1}}\left[f(x_{\sigma 1},\cdots,x_{\sigma n})\right] = f(x_{\sigma^{-1}\sigma 1},\cdots,x_{\sigma^{-1}\sigma n}) = f(x_{1},\cdots,x_{n}) \\ = &\theta_{\sigma^{-1}}\left[g(x_{\sigma 1},\cdots,x_{\sigma n})\right] = g(x_{\sigma^{-1}\sigma 1},\cdots,x_{\sigma^{-1}\sigma n}) = g(x_{1},\cdots,x_{n}) \end{aligned}$$

so θ_{σ} is injective. Now, for any $f(x_1, \dots, x_n)$, we have

$$\theta_{\sigma}[f(x_{\sigma^{-1}1},\cdots,x_{\sigma^{-1}n})] = f(x_1,\cdots,x_n)$$

so θ_{σ} is surjective. Thus, θ_{σ} is a bijective ring homomorphism from $R[x_1, \dots, x_n]$ to itself, so it is a ring automorphism.

(b) Show that $\sigma \mapsto \theta_{\sigma}$ is a group homomorphism $S_n \to \text{aut } R[x_1, \cdots, x_n]$, which is injective.

Proof. Let $\sigma, \tau \in S_n$. Then consider $\theta_{\sigma\tau}$. For some $f(x_1, \dots, x_n) \in R[x_1, \dots, x_n]$, we have

$$\theta_{\sigma\tau} [f(x_1, \dots, x_n)] = f(x_{\sigma\tau 1}, \dots, x_{\sigma\tau n})$$

$$= \theta_{\sigma} [f(x_{\tau 1}, \dots, x_{\tau n})]$$

$$= \theta_{\sigma} (\theta_{\tau} [f(x_1, \dots, x_n)])$$

$$= (\theta_{\sigma} \circ \theta_{\tau}) [f(x_1, \dots, x_n)]$$

so $(\sigma\tau) \mapsto \theta_{\sigma\tau} = \theta_{\sigma} \circ \theta_{\tau}$ and this is indeed a group homomorphism. Now consider the kernel of this homomorphism. The identity in aut $R[x_1, \dots, x_n]$ is the identity map, which is

$$\theta_{\varepsilon}[f(x_1,\cdots,x_n)]=f(x_1,\cdots,x_n)$$

So the kernel only contains the identity permutation, ε . Thus, we have $S_n/\{\varepsilon\} \cong S_n$ which is isomorphic to the image of this homomorphism, so it is indeed injective.

(c) If $G \subseteq \text{aut } R[x_1, \cdots, x_n]$ is a subgroup, show that $S_G = \{f \mid \theta(f) = f, \forall \theta \in G\}$ is a subring of $R[x_1, \cdots, x_n]$.

Proof. Clearly $1 \in S_G$ since all automorphisms must fix 1. Now if $f, g \in S_G$, then.

$$\theta(f+g) = \theta(f) + \theta(g) = f + g$$

$$\theta(f \cdot q) = \theta(f) \cdot \theta(q) = f \cdot q$$

so $f + g, fg \in S_G$, and thus S_G is indeed a subring of $R[x_1, \dots, x_n]$.