## Laboratório de Redes

## Experimentação e Aprendizado de Máquina em Redes de Computadores

Alunos: Wagner Porto Ferreira

Willen Borges Coelho
Vitor Fontana Zanotelli

Prof.: Rodolfo da Silva Villaça



# Previsões mostram que o número de usuários de internet continuará crescendo nos próximos anos

- <sup>2</sup>/<sub>3</sub> da população mundial terá acesso à internet até 2023;
- São 5.3 bilhões de usuários, um aumento de 35% em relação a 2018



# O número de dispositivos conectados em redes IP também

- Até 2023, o número de dispositivos conectados será maior que três vezes a população mundial (~ 3.6 dispositivos por usuário);
- Um aumento de 50% em relação ao valor de 2018 (~ 2.4 dispositivos por usuário).



#### Os crimes cibernéticos evoluíram ao longo do tempo



### Objetivo: Predição de tráfego maligno (botnets)



## Árvore de decisão



### Floresta aleatória (Bagging Ensamble)



### XGBoost (eXtreme Gradient Boosting - Boosting Ensamble)



## Capacidade de predição x explicabilidade



#### Datasets de trace

Figura 1 – Dificuldade em reproduzir datasets de traces de pacotes.



Fonte: Produzido pelo autor, 2022.

#### Elementos para a pesquisa aberta

- Dados <u>abertos</u>
- Código fonte <u>aberto</u>
- Hardware <u>aberto</u>
- Acesso <u>aberto</u>
- Cadernos <u>abertos</u>



#### Dado



The Turing Way: A Handbook for Reproducible Data Science

#### **CTU-13**

- Conjunto de datasets de tráfego de botnet capturado pela Universidade CTU em 2011.
- O objetivo é construir base de dados com uma grande captura de tráfego real contendo fluxo de botnet misturado com tráfego normal e de fundo.
- https://www.stratosphereips.org/datasets-ctu13
- "An empirical comparison of botnet detection methods" Sebastian Garcia, Martin Grill, Jan Stiborek and Alejandro Zunino. Computers and Security Journal, Elsevier. 2014. Vol 45, pp 100-123. http://dx.doi.org/10.1016/j.cose.2014.05.011

## Lista de datasets (Cenários)

| Id | IRC          | SPAM         | CF           | PS           | DDoS         | FF | P2P          | US           | HTTP         | Note                             |
|----|--------------|--------------|--------------|--------------|--------------|----|--------------|--------------|--------------|----------------------------------|
| 1  | √            | √            | √            |              |              |    |              |              |              |                                  |
| 2  | V            | V            | V            |              |              |    |              |              |              |                                  |
| 3  | V            | •            | •            | $\checkmark$ |              |    |              | $\checkmark$ |              |                                  |
| 4  | V            |              |              |              | $\checkmark$ |    |              | V            |              | UDP and ICMP DDoS.               |
| 5  |              | $\checkmark$ |              | √            |              |    |              | 3            | $\checkmark$ | Scan web proxies.                |
| 6  |              |              |              | V            |              |    |              |              |              | Proprietary C&C. RDP.            |
| 7  |              |              |              | 1000         |              |    |              |              | √            | Chinese hosts.                   |
| 8  | - 20         |              |              | V            |              |    |              |              |              | Proprietary C&C. Net-BIOS, STUN. |
| 9  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |    |              |              |              |                                  |
| 10 | $\checkmark$ |              |              |              | $\checkmark$ |    |              | $\checkmark$ |              | UDP DDoS.                        |
| 11 | $\checkmark$ |              |              |              | $\checkmark$ |    |              | $\checkmark$ |              | ICMP DDoS.                       |
| 12 |              |              |              |              |              |    | $\checkmark$ |              |              | Synchronization.                 |
| 13 |              | <b>v</b>     |              | 1/           |              |    |              |              | 1/           | Captcha. Web mail.               |

Table 2. Characteristics of botnet scenarios

#### CTU-Malware-Capture-Botnet-48 (ld 7)

- Nome: Sogou
- Duração: 0 horas, 21 minutos e 0 segundos
- Binário utilizado: sogou\_explorer\_silent\_1.4.0.418\_2136.exe
- Host infectado
  - o IP: 147.32.84.165
  - OS: Windows XP
  - English version Name: SARUMAN
  - Label: Botnet
- Número de features: 32
- Número de observações: 114077
- Alvo:
  - Tráfego normal 114014 (~ 0.99%)
  - Tráfego botnet63 (~ 0.01%)

### Features Selecionadas (24)

- Proto
- State
- sTos
- dTos
- sHops
- dHops
- sTtl
- dTtl

- TcpRtt
- SynAck
- AckDat
- SrcPkts
- DstPkts
- SrcBytes
- DstBytes
- SAppBytes
- DAppBytes

- Dur
- TotPkts
- TotBytes
- TotAppByte
- Rate
- SrcRate
- DstRate

## Visualização 3D (t-SNE)



## Visualização 2D (t-SNE)



## Resultados

|                                       | precision    | recall       | f1-score             | support                 |
|---------------------------------------|--------------|--------------|----------------------|-------------------------|
| 0<br>1                                | 1.00<br>1.00 | 1.00<br>0.60 | 1.00<br>0.75         | 21274<br>15             |
| accuracy<br>macro avg<br>weighted avg | 1.00         | 0.80<br>1.00 | 1.00<br>0.87<br>1.00 | 21289<br>21289<br>21289 |

## Interpretando modelos de aprendizado de máquinas, SHapley Additive exPlanations



#### Análise dos resultados



#### Análise dos resultados



### Um exemplo de observação y = 1



#### Um exemplo para y = 0



#### 1a tentativa de reprodução

- Aprendizado Profundo para a Predição de Ataques de Negação de Serviço Distribuído
- https://sol.sbc.org.br/index.php/sbrc/article/view/21191/21016
- Utilizar os PCAPs oriundos dos do portal Stratosphere Lab
- Injeção do tráfego utilizando o TCPdump

#### 1a tentativa de reprodução - Resultados

- Não foi possível reproduzir o experimento do artigo.
  - Causas
    - Falta de informações sobre o experimento tanto no artigo quanto no repositório do dataset gerado.
    - Problema de sincronização e retransmissão.

#### 2a tentativa

- Reproduzir o cenário proposto por Sebastian Garcia, Martin Grill, Jan Stiborek and Alejandro Zunino no artigo.
  - "An empirical comparison of botnet detection methods" Sebastian Garcia, Martin Grill, Jan Stiborek and Alejandro Zunino. Computers and Security Journal, Elsevier. 2014. Vol 45, pp 100-123. http://dx.doi.org/10.1016/j.cose.2014.05.011
- Criação de um novo dataset com as mesma features
  - A coleta durou 13 horas e 06 minutos
  - Produzindo um total de 2.212.874 de fluxos
    - Normal: 2.205.550 (99,67%)
    - Botnet: 7.324 (0,33%)

#### Cenário do Ambiente - Laboratório LabNerds

- Dell PowerEdge T430
  - Processador Intel Xeon E5-2620
  - Memória RAM 32GB
  - Armazenamento de 1TB
- Proxmox Virtual Environment
  - KVM hypervisor
  - Linux Containers (LXC)

#### Proxmox VE



#### Cenário Virtual

- No experimento foram utilizadas 12 máquinas virtuais.
  - Firewall SO Rocky Linux 9
  - Zeek Rocky Linux 9
  - DNS/DHCP Rocky Linux 9
  - Snort Rocky Linux 9
  - Argus Rocky Linux 9
  - 5 Maquinas com Siege Rocky Linux 9
  - Windows 10
  - Windows 10 infectada com a botnet Sogou

#### Proxmox Virtual Environment Siege Promiscuous Siege Client Siege Client Siege Client Argus Siege Client Zeek Siege Client Snort Windows Services Windows 10 DNS/DHCP Windows 10 Infected



# argus



# Rocky Linux<sup>tm</sup>



### Descrição das aplicações.

- Firewall para garantir a segurança e a segmentação do ambiente
- Zeek para monitorar todo o tráfego do ambiente
- DNS e DHCP para prover infraestrutura e o funcionamento da rede
- Argus para gerar os fluxos de redes
- Snort para analisar o tráfego da botnet com assinaturas já existentes
- Siege para simular o tráfego normal

## Visualização 3D (t-SNE)





## Visualização 2D (t-SNE)



#### Resultados

|                                       | precision | recall | f1-score             | support          |
|---------------------------------------|-----------|--------|----------------------|------------------|
| 0<br>1                                | 1.00      | 1.00   | 1.00                 | 440370<br>1396   |
| accuracy<br>macro avg<br>weighted avg | 1.00      | 1.00   | 1.00<br>1.00<br>1.00 | 441766<br>441766 |

#### Análise dos resultados



#### Análise dos resultados



## Um exemplo de observação y = 1



#### Um exemplo para y = 0

-10.74

-10.70

higher wer



-10.56

base value