$$=\bigcap_{i\in I}$$

Definition 0.1. A requirement, ρ , is said to be *separable* if and only if it can be written as $\rho(x) = \prod_{i \in I} \rho_i(x)$, where $\forall i \in I$, $\rho_i(x)$, is a requirement with required set X.

Definition 0.2. A requirement operator is a mapping, $\mathbf{Req} : \mathbf{Set} \to \mathbf{Set}$, such that,

$$\mathbf{Req}_{\rho}(X) := \{\ x \in X \ | \ \rho(x) = 1\ \}.$$

Proposition 0.1. Given requirement ρ , if $\rho = \rho_1 \cdot \rho_2$, where ρ_1 and ρ_2 are requirements with required set X, then

$$\mathbf{Req}_{\rho}(X) = \mathbf{Req}_{\rho_1}(X) \cdot \mathbf{Req}_{\rho_2}(X)$$

Proof. The proof of this proposition is very straightforward. Let X be a set and ρ be a requirement with required set X. Then,

$$\mathbf{Req}_{o}(X) = \{ x \in X \mid \rho(x) = 1 \}$$
 (1)

$$= \{ x \in X \mid \rho_1(x)\rho_2(x) = 1 \}$$
 (2)

$$= \{ x \in X \mid \rho_1(x) = 1 \text{ and } \rho_2(x) = 1 \}$$
 (3)

$$= \{ x \in X \mid \rho_1(x) = 1 \} \cdot \{ x \in X \mid \rho_2(x) = 1 \}$$
 (4)

$$= \operatorname{\mathbf{Req}}_{\rho_1}(X) \cdot \operatorname{\mathbf{Req}}_{\rho_2}(X) \tag{5}$$

Remark. The binary operation between two requirements is the same as the symbol, \wedge , used in boolean algebra to represent the join, and, between two boolean statements.

Proposition 0.2. Given requirement $\rho = \prod_{i \in I} \rho_i$, where ρ_i are requirements all with required set X,

$$\mathbf{Req}_{\rho}(X) = \bigcap_{i \in I} \mathbf{Req}_{\rho_i}(X)$$

0.1 Specification

Definition 0.3. A set, X, is said to be inspectable if and only if, there exists a function, $\psi: X \to \prod_{i \in I} X_i$, where $X \neq X_i, \forall i \in I$. This function is referred to as an *inspection function* of X.

Remark. The inspection function may also be expressed as, $\psi(x) = (\psi_i(x))_{i \in I}$.

Definition 0.4. A specification is a requirement, $\phi: X \to \mathbb{B}$, such that the following conditions hold:

2 Consumer

Definition 2.1. A consumer, c, is a triple (k, ϕ, t) , where $k \in \mathbb{N}$, ϕ is a specification, and $t \in \mathbb{R}^+$. The consumer C is the subset of consumer c which defined such that:

$$c = (\phi, \sigma_m)$$
$$C = 2^{\phi} * [0, \sigma_m)$$

Definition 2.2. Let *service* v be the available resource can be provide which related with a subset of resource R' and a boolean variable β can be defined such that:

$$v := (R', \beta)$$

$$V = 2^R * \mathfrak{G}$$

Part II

Scheduling Process

3 Process Decomposition

Definition 3.1. let a represent the arriving process $a = (c, t_a)$. Then the assignment action A defined as:

$$A = C * [0, \infty)$$

Definition 3.2. let g represent the assignment process, $g = (c, \sigma_w, v)$. Then the assignment action G can be defined as:

$$G = C * [0, \sigma_m) * V$$

Definition 3.3. let d represent the departure process $d = (c, t_d)$, we also defined $\gamma(c) = min\sigma_r, \sigma_m$. Then the departure action D defined as:

$$D = C * [t_a, t_a + \sigma_w + \gamma(c)]$$

Part III Schedule Learning

4 Policy Routing

4.1 Policy Graph

Definition 4.1. Let G = (V, E, src, tgt) be a graph. A path of length n in G, denoted $p \in \mathbf{Path}_G^{(n)}$, is a head-to-tail sequence:

$$p = (v_1 \xrightarrow{a_1} v_2 \xrightarrow{a_2} \cdots \xrightarrow{a_{n-2}} v_{n-1} \xrightarrow{a_{n-1}} v_n)$$

The $set\ of\ all\ paths\ on\ G$ is defined such that:

$$\mathbf{Path}_G := igsqcup_{n \in \mathbb{N}} \mathbf{Path}_G^{(n)}$$

Definition 4.2. let $\mathbf{Path}_G(v)$ be the all path from v back to v. The set of all path on G is defined such that:

$$\mathbf{Path}_G(s,t) = \mathbf{Path}_G(s,v) \sqcup \mathbf{Cycle}_G(v) \sqcup \mathbf{Path}_G(v,t).$$

The \mathbf{Cycle}_G is defined as that:

$$\mathbf{Cycle}_G(v) = \mathbf{Path}_G(v, v)$$