

رز دانسکده علوم ریاضی و آمار

مدرس: دکتر مجتبی رفیعی نیمسال اول ۱۴۰۰–۱۴۰۱

ساختمان دادهها و الگوريتمها

جلسه ۲۴ ساختمان داده و الگوريتم ها

نگارنده: فرزانه مولایی

۷ آذر ۱۴۰۰

فهرست مطالب

١	شهود پیاده سازی لیست پیوندی با استفاده از آرایه	١
٢	۱.۱ پیادهسازی با یک آرایه	
٢	 ۲.۱ پیاده سازی با چند آرایه	
٣	داده ساختار پشته(Stack)	۲
٣	عملیات روی بشته	٣

۱ شهود پیاده سازی لیست پیوندی با استفاده از آرایه

- یادآوری: لیست پیوندی یک ترتیب خطی منطبق با یک سری اشاره گر است. زمانی که یک آرایه تعریف می کنیم منظور یک ترتیب خطی منطبق با یک سری اندیس می باشد.

prev	element	next
------	---------	------

شكل ١: قالب ليست پيوندى دو طرفه

در ادامه سعی داریم پیاده سازی لیست پیوندی را با یک آرایه و چند آرایه شرح دهیم.

۱.۱ پیادهسازی با یک آرایه

۱- نمایش null با مقدار صفر است.

است. و $perv_i$ و $perv_i$ حاوی اندیس های مناسبی از آرایه است.

شكل ٢: پيادهسازي ليست پيوندي دوطرفه با يك آرايه .

۲.۱ پیاده سازی با چند آرایه

	1	2	3	
prev				
element				
next				

شکل ۳: پیادهسازی لیست پیوندی دوطرفه با چند آرایه

چالشها: برای درج (نیازمند پیدا کردن خانه خالی برای درج)/ حذف (نیازمند بروزرسانی خانهها برای خالی بودن) / جستجو (نیازمند اشاره به نود اول) را بررسی کنید.

۲ داده ساختار پشته (Stack)

یک داده ساختار برای نگهداری مجموعه های پویاست که عناصر آن دریک ترتیب خطی قرارگرفته اند و برای حذف عناصر در آن از سیاست"آخرین ورودی، اولین خروجی"استفاده می شود. اشاره گر (top) نشان دهنده اندیس بالای پشته می باشد.

شكل ۴: نمايش گرافيكي پشته

۱.۲ عملیات روی پشته

. کند . Stack-Push(S_{cx}) اضافه می کند .

$$Stack_Push(S, x) \\ 1.S.top = S.top + 1 \\ 2.S[S.top] = x$$

يچيدگي زماني الگوريتم فوق (١) O است .

۲. (Stack-Pop(S): یک پرسمان بروزرسانی است که عنصر بالای پشته را حذف و برمیگرداند . لازم به ذکر است که اگر پشته تهی باشد پیام "underflow" برگردانده می شود .

```
1: if (S.top == 0) then
```

3: **else**

4:
$$\operatorname{return S.top} = \operatorname{S.top} - 1$$

5: return
$$S[S.top + 1]$$

پیچیدگی زمانی الگوریتم فوق (۱) O است .

^{2:} return "underflow"

۳. (Stack-Empty(S: یک پرسمان بازیابی است که تعیین می کند که آیا پشته خالی است یا نه .

- 1: **if** (S.top == 0) **then**
- 2: return True
- 3: **else**
- 4: return False

- پیچیدگی الگوریتم فوق (۱) است .
- ۵. (Stack-Top(S): یک پرسمان بازیابی است که عنصر بالایی پشته را بدون تغییر در پشته بر میگرداند . لازم به ذکر است که اگر پشته تهی باشد پیام underflow" " را برمی گرداند .
 - 1: **if** (S.top == 0) **then**
 - 2: return "underflow"
 - 3: **else**
 - 4: return S[S.top]

پیچیدگی زمانی الگوریتم فوق O(۱) است .