Лабораторная работа 8. Регрессионный анализ. Модели и методы.

Авторы: Балаев Жамал, Васильева Марина, Иванов Никита, Максим Шардт

Формулировка задания лабораторной работы

Задание 1

Изучить теоретический материал

Задание 2

Построить уравнение регрессии оценить его качество.

Задание 2.1

Построить график зависимости между переменными, по которому необходимо подобрать модель регрессии.

Задание 2.2

Рассчитать параметры уравнения регрессии методом наименьших квадратов.

Задание 2.3

Оценить качество уравнения с помощью средней ошибки аппроксимации.

Задание 2.4

Найти коэффициент эластичности.

Задание 2.5

Оценить тесноту связи между переменными с помощью показателей корреляции и детерминации.

Задание 2.6

Оценить значимость коэффициентов корреляции и регрессии о критерию t-Стьюдента при уровне значимости $\alpha = 0.05$.

Задание 2.7

Охарактеризовать статистическую надежность результатов регрессионного анализа с использованием критерия F-Фишера при уровне значимости $\alpha = 0.05$.

Задание 2.8

Определить прогнозное значение результативного признака, если возможное значение факторного признака составит 1.2 от его среднего уровня по совокупности.

Стр. 1 из 7 25.04.2023, 22:30

Задание 3.

Результаты выполненной работы разместить в Moodle.

Решение

Импортируются необходимые модули и библиотеки

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import csv
sns.set(style="darkgrid")
```

Проходит считыввание значений у и х

```
In [125... with open('data.csv', newline='') as csvfile:
    reader = csv.reader(csvfile)
    y, x = reader
    x = np.array(x[1:], int)
    y = np.array(y[1:], float)
```

На график наносятся точки, значения которых соответсвует х и у. Храрактер расположени точек на графике показывает, что связь между переменными может выражаться линейным уравнением регрессии.

```
In [126... plt.figure()
    plt.plot(x, y, 'o', label='visualization of dependency')
    z = np.polyfit (x, y, 1)
    p = np.polyld(z)
    plt.plot (x, p(x))
```

Out[126]: [<matplotlib.lines.Line2D at 0x7fe356439db0>]

Стр. 2 из 7 25.04.2023, 22:30

Для проведения всех расчетов строится вспомогательная таблица. Все средние находятся по формуле средней арифметической простой, также производится суммирование элементов таблицы:

Стр. 3 из 7 25.04.2023, 22:30

```
x^2
                             y^2
                                      ху
           Χ
N₂
        33.0
             13.8 1089.0 190.4
1
                                   455.4
2
        40.0
             13.8 1600.0 190.4
                                   552.0
3
        36.0 14.0 1296.0
                           196.0
                                   504.0
        60.0 22.5 3600.0
                           506.2 1350.0
4
5
        55.0 24.0 3025.0 576.0
                                  1320.0
6
        80.0 28.0 6400.0 784.0
                                  2240.0
7
        95.0 32.0 9025.0 1024.0
                                  3040.0
8
        70.0 20.9 4900.0
                           436.8
                                  1463.0
9
        48.0 22.0 2304.0 484.0 1056.0
10
        53.0 21.5 2809.0 462.2
                                  1139.5
        95.0 32.0 9025.0 1024.0
11
                                  3040.0
12
        75.0 35.0 5625.0 1225.0
                                  2625.0
13
        63.0 24.0 3969.0 576.0 1512.0
14
       112.0 37.9 12544.0 1436.4 4244.8
15
        70.0 27.5 4900.0
                           756.2
                                  1925.0
       985.0 368.9 72111.0 9867.9 26466.7
total
average 65.7 24.6 4807.4 657.9 1764.4
```

Затем производится подтсановка полученных сумм в систему уравнений:

Таким образом уравнение имеет вид:

$$y' = 4,7743 + 0,3018x$$

Коэффицент регрессии показывает, что при увелиении общей площади квартиры на 1 квадратный метр стоимость квартиры в среднем увеличвается на 0.3018 тыс. у.е.

Для проведения всех расчетов строится вспомогательная таблица. Все средние находятся по формуле средней арифметической простой, также производится суммирование элементов таблицы:

```
In [130... df = df[:15]

df["y'"] = b0 + b1 * x

df["y-y'"] = y - y_

df["(y-y')^2"] = (y - y_) ** 2

df["A"] = abs((y - y_) / y)

df.loc['total'] = df.sum()

df.loc['average'] = df[:15].sum() / n

print(df)
```

Стр. 4 из 7 25.04.2023, 22:30

```
y-y' (y-y')^2
                      x^2
                             y^2
                                           у'
                                     ΧV
           Χ
N₂
        33.0
             13.8 1089.0 190.4
1
                                  455.4 14.7
                                               -0.9
                                                         0.9 0.1
2
        40.0
             13.8 1600.0 190.4
                                  552.0 16.8
                                              -3.0
                                                         9.3 0.2
             14.0 1296.0 196.0
3
        36.0
                                  504.0
                                        15.6 -1.6
                                                         2.7 0.1
        60.0 22.5 3600.0 506.2 1350.0
                                         22.9
4
                                              -0.4
                                                         0.1 0.0
5
        55.0 24.0 3025.0 576.0 1320.0 21.4
                                               2.6
                                                         6.9 0.1
6
        80.0 28.0 6400.0 784.0 2240.0 28.9
                                              -0.9
                                                         0.8 0.0
7
        95.0 32.0 9025.0 1024.0
                                 3040.0
                                        33.4
                                              -1.4
                                                         2.1 0.0
8
        70.0 20.9 4900.0
                          436.8 1463.0 25.9
                                              -5.0
                                                        25.0 0.2
                                                         7.5 0.1
9
        48.0 22.0 2304.0 484.0 1056.0 19.3
                                              2.7
10
        53.0 21.5 2809.0 462.2 1139.5 20.8
                                              0.7
                                                         0.5 0.0
        95.0 32.0 9025.0 1024.0 3040.0 33.4 -1.4
                                                         2.1 0.0
11
12
        75.0 35.0 5625.0 1225.0
                                 2625.0 27.4
                                               7.6
                                                        57.6 0.2
        63.0 24.0 3969.0 576.0 1512.0 23.8
13
                                               0.2
                                                         0.0 \ 0.0
14
       112.0 37.9 12544.0 1436.4 4244.8 38.6
                                              -0.7
                                                         0.5 0.0
15
        70.0 27.5 4900.0
                          756.2
                                 1925.0 25.9
                                               1.6
                                                         2.6 0.1
       985.0 368.9 72111.0 9867.9 26466.7 368.9
total
                                               0.0
                                                       118.6 1.4
average 65.7 24.6 4807.4 657.9 1764.4 24.6
                                               0.0
                                                         7.9 0.1
```

С помощью формулы срденей ошибки аппроксимации оценивается качество уравнения:

```
In [131... a = float((df.loc[['total'], 'A'] / n * 100).iloc[0])
print(f'A = {a:.3f} %')

A = 9.031 %
```

Находится коэффициент эластичности при линейной форме:

```
In [132... e = b1 * float((df.loc[['average'], 'x'] / df.loc[['average'], 'y']).iloc
print(f'9 = {e:.3f}%')

9 = 0.806%
```

Коэффициент эластичности показывает насколько увеличивается цена квартиры при изменении площади на 1%

Затем с помощью коэффициента корелляции определяется тесность связи между переменными X и Y:

Значение кореляции близкое к единице говороит о том, что зависимость между переменными X и Y очень сильная, близкая к функциональной.

Коэффициент детерминации показывает, что на 85% различие стоимостей квартир определеяет их площадь, а оставшиеся 15% неуказанные факторы.

Стр. 5 из 7 25.04.2023, 22:30

Учитывая что данные являются выборочными необходимо оценить существенность или значимость величины корлляции, для этого выдвигается гипотеза: коэффициент кореляции в генеральной совокупности равен нулю и изучаемые признак не оказывает ощутимого влияния на результат.

$$H_0: r_s = 0,$$
при $H_1: r_s \neq 0$

Проверка гипотеза будет осуществляется с помощью t-критерия Стьюдента:

tpac4 = 8.6 tpac4 = 8.6

По таблице находится значение при уровне значимости a=0.05 и числе степеней свободы k=n-2=13

Критерий таблицы Стьюдента tкр = 2.16

Сравнив значение tрасч и tкр получим, что tрасч, при вычислении обоими методами, значительно больше, чем tкр, а значит нулевая гипотез отвергается, следовательно площадь квартир оказывает существенное влияние на стоимость.

С помощью критерия F-Фишера проверяется надежность уравнения:

```
In [135... f_calc = r ** 2 / (1 - r ** 2) * (n - 2) 
k1 = k = 1 
k2 = n - k - 1 
print(f'Fpac4 = {f_calc:.2f}')
```

Fpac4 = 74.16

Используя данные таблицы было найдено значение F-критерия Фишера при уровне значимости a = 0.05 и числе стпеней свободы k1 = k = 1, k2 = n - k - 1 = 13

$$F_{\text{KD}} = F_{0.05;1;13} = 4.67$$

Так как значение Fрасч > Fкр, то уравнение статистически значимое или надежное

Подставив значение прогнозного или возможного значения факторного признака x = 65.67, определяется прогнозное значение рузультативного признака:

Стр. 6 из 7 25.04.2023, 22:30

```
In [136... xp = float((df.loc[['average'], 'x'] * 1.2).iloc[0])
    yp = b0 + b1 * xp
    print(f"y'p = {yp:.2f}")

y'p = 28.56
```

Полученное значение означает, что при x = 65.67 возможное значение стоимости квартиры составит 28.56 тыс. у.е.

Стр. 7 из 7 25.04.2023, 22:30