# MCS 2018

Adversarial Attacks on Black Box Face Recognition

atmyre, mortido, snakers41, stalkermustang

June 7, 2018

Homeless Nonames

# Competition overview

How is it this competition different?

- Adequately good baseline solution
- Relatively small attack dataset (1000 pairs, 1000 unique images)
- Small images (250x250, attacks performed on 112x112 images)
- Compiled black box models (which do not always work)



## **Student Model Results**

Table 1: Student Model distillation results

| Architecture | Pre-trained (*) | LR regime | Best MSE    | Epochs |
|--------------|-----------------|-----------|-------------|--------|
| ResNet18     | Yes             | (1)       | 4.51 * 1e-4 | 25     |
| ResNet34     | Yes             | (1)       | 3.36 * 1e-4 | 25     |
| DenseNet161  | Yes             | (2)       | 3.08 * 1e-4 | 25     |
| XCeption     | No              | (4)       | 4.57 * 1e-4 | 23     |
| ResNet50     | No              | (4)       | 4.07 * 1e-4 | 11     |

- (1) 1e-3 + pre-trained on ImageNet + LR decay + adam
- (2) 1e-4 + pre-trained on ImageNet + LR decay + adam
- (3) 1e-3 + pre-trained on ImageNet + LR decay + adam
- (4) manual adjustments each epoch

## Attack results

| Attack              | Hack | Student CNNs | BB score | LB pub | LB priv |
|---------------------|------|--------------|----------|--------|---------|
| FGSM                | -    | DenseNet161  | 1.25     | -      | -       |
| FGSM                | (1)  | DenseNet161  | 1.16     | -      | -       |
| FGVM                | (3)  | 2 CNNs       | 0.97     | 1.05   | -       |
| FGVM                | (4)  | 5 CNNs       | 0.91     | -      | -       |
| $FGVM + 1 \ pixel$  | (4)  | 5 CNNs       | 0.90     | 0.99   | -       |
| FGVM + 6 pixel      | (4)  | 5 CNNs       | 0.87     | -      | -       |
| $FGVM + 16 \ pixel$ | (5)  | 5 CNNs       | 0.87     | -      | 0.96    |
|                     |      |              |          |        |         |

FGSM - Fast Gradient Sign Method FGVM - Fast Gradient Value Method

### **Final heuristics**

#### **FGVM**

- Noise eps \* clamp(grad / grad.std(), -2, 2)
- Ensemble of several CNNs via weighting their gradients
- Save changes only if it reduces mean loss
- Use target combinations for more robust targeting

#### Genetic One Pixel

- popsize = 30
- max\_iter = 5

## Student CNN distillation

#### What worked

- Transfer learning
- ADAM + clever LR regime to avoid under-fitting
- Best architectures are reasonably heavy ResNet34 and DenseNet161

#### What did not

- Inception-based architectures (not-suitable due to high down-sampling)
- VGG based architectures (overfitting)
- "Light" architectures (SqueezeNet / MobileNet underfitting)
- Image augmentations (w/o modifying descriptors)
- Working with 224x224 images

# **Other Attack Approaches**

#### We also tried:

- FGVM with momentum https://arxiv.org/abs/1710.06081v3
- CW good for white-box attacks https://arxiv.org/abs/1608.04644

# End-to-end architectures (1)

- Key ideas use a mixture of VAE / Siamese LinkNet
- ullet 2 part loss PyTorch SSIM + Eucledian distance



# **End-to-end architectures (2)**

### Key take-aways

- Performs well on WB and poorly on BB
- Difficult to balance Loss

   use running mean
   scaling
- Problems with scaling images back - use some eps
- Model parametrization open question
- Pass image as skip connection





## Some fun illustrations



9