

Informatique @ SupOptique

Réforme 1A Institut d'Optique

Julien VILLEMEJANE

Devenir de l'informatique

- Langage C / C++
- Microcontrôleur / Embarqué
 - Intérêts pour un.e SupOpticien.ne ?
- Python / Langage à tout faire

May 2024	May 2023	Change	Programming Language	Ratings	Change
1	1		Python	16.33%	+2.88%
2	2		G c	9.98%	-3.37%
3	4	^	⊘ C++	9.53%	-2.43%
4	3	~	Java	8.69%	-3.53%
5	5		© C#	6.49%	-0.94%

Index TIOBE / Mai 2024

- Gestion des versions de code
- Intelligence Artificielle
 - Machine Learning: Intégration dans la formation (obligatoire)?

Utilisation de **l'IA générative** :

- pratique en entreprise ?

Etat de l'art @ SupOptique

Modules d'informatique à SupOptique

Ne sont pas inclus l'apprentissage sur des logiciels de conception optique

Jusqu'en juin 2023

Besoins des industriels, embauches, enquêtes

Informatique chez les jeunes diplômé.es

Côté Industriels

Enquête Novembre 2022 / Forum de la Photonique

	NB	Python	Matlab	C++
Autres produits (Mesures, Analyses)	5	4		
Logiciels Acquisition Données	2	2		
Logiciels Simulation	2	1		1
Logiciels Traitement de données	5	4		1
Systèmes acquisition de données	6	4	2	
Système temps réel	6	3	1	1
	26	18	3	3

				Open		
	NB	Objets	IA	Lib	Embarqué	
						PC
Autres produits (Mesures, Analyses)		1	1	3	1	embarqué
Logiciels Acquisition Données		2		2		
Logiciels Simulation		1				
Logiciels Traitement de données		3	4	4		
Systèmes acquisition de données		2	3	5	2	FPGA
						FPGA,
Système temps réel	6	5	3	4	2	Micro
	26	14	11	18	5	

Côté Industriels

Enquête Novembre 2022 / Forum de la Photonique

Les usages principaux de l'informatique dans ces sociétés sont les suivants (dans l'ordre décroissant du nombre de réponses par item)

- traitement des données / calculs
- simulation/modélisation de systèmes physiques
- acquisition de données via des appareils d'instrumentation ou des cartes d'acquisition (protocole RS232/485, Ethernet, USB)
- automatisation de banc de mesures (répétabilité des mesures et acquisition en masse)
- acquisition d'images via des capteurs CMOS
- interface graphique
- développement de systèmes embarqués

Langages utilisés (dans l'ordre décroissant du nombre de réponses par item):

- **Python** pour le **traitement de données** (numpy, pandas...)
- **Python** pour l'**IA** (pytorch, tensorflow...)
- **Python** pour **l'interfaçage d'appareil** (de plus en plus de bibliothèques python développées par les fabricants de capteurs...)
- **Matlab** (dans le cas de pilotage de matériel spécifique driver non disponible ou historique des services/départements)
- C++ (pour le traitement d'images plus spécifique rendu 3D par exemple - ou cible matérielle type microcontroleur)
- Verilog-A (pour FPGA embarqué)

Réforme en première année

Outils Numériques pour l'Ingénieur.e en Photonique

Autres langages / Applications

- Anaconda 3
- Python 3.9 (ou supérieur)
- Spyder 5

Outils Numériques pour l'Ingénieur.e en Photonique

 $I_0(z)$

Semestre 5

Être capable d' **écrire un script réutilisable** dans un langage de haut niveau (à but scientifique)

Être capable de **générer des graphiques** scientifiques légendés

Être capable de **valider un modèle physique simple et fourni** à l'aide d'un outil de calcul scientifique

Être capable de **calculer**, d' **afficher** et d' **utiliser la transformée de Fourier discrète** d'un signal (AM)

Être capable de **traiter une série de données sous forme d'images** (Laser)

2 séances introductives (2h/séance)

2 blocs de 5 séances (2h/séance)

Bloc AM: Traitement de données 1D

Problème 1 : signal modulé en amplitude / acquisition numérique

Bloc Laser: Traitement de données 2D

Problème 2: images d'un faisceau LASER en différents points d'un chemin optique

Outils Numériques pour l'Ingénieur.e en Photonique

Semestre 6 - Classique

Être capable d' écrire une application simple selon les règles de la programmation objet

Être capable de **mettre en œuvre un modèle physique simple et fourni** à l'aide d'un outil de calcul scientifique

Projet A

Carte d'éclairement de sources incohérentes

1 séance introductive (2h)

5 séances « Mini-Projet » (2h/séance)

Projet B

Tracé de rayons

Retours ONIP-1 et 2

Etudiant.es

Facilité de prise en main du langage (vu par 95% des étudiant.es dans leurs précédentes formations)

Intérêt pour les « projets » proposés car en lien avec des pratiques de leur future vie d'ingénieur.e

Encadrant.es

Plaisir à encadrer sur des sujets proches de la vie professionnelle

Vacataires plus à l'aise pour encadrer (habitué.es à Python depuis quelques années)

Premières approches transverses

Problématiques approfondies dans les semestres suivants

Retours ONIP-1 et 2

Etudiant.es

Facilité de prise en main du langage (vu par 95% des étudiant.es dans leurs précédentes formations)

Intérêt pour les « projets » proposés car en lien avec des pratiques de leur future vie d'ingénieur.e

Encadrant.es

Plaisir à encadrer sur des sujets proches de la vie professionnelle

Vacataires plus à l'aise pour encadrer (habitué.es à Python depuis quelques années)

Premières approches transverses

Problématiques approfondies dans les semestres suivants

Pratiques industrielles

Comment évaluer qu'un code est de bonne qualité ? (critères) Quelle place à la modularité ? A la documentation ?

Prochaines évolutions

Evolutions pour 2024-2025

Questions ouvertes

Questions ouvertes

- Langage C / C++
- Microcontrôleur / Embarqué
 - Intérêts pour un.e SupOpticien.ne ?
- Intelligence Artificielle
 - Machine Learning : Intégration dans la formation (obligatoire) ?
 - Utilisation de **l'IA générative** :
 - pratique en entreprise ?
- Gestion des versions de code

