# Implicaciones y derivaciones lógicas

- Un argumento lógico consta de una serie de premisas de las que se desprende una conclusión.
- Si siempre que las premisas sean verdaderas, la conclusión es verdadera, se dice que el argumento es válido. De lo contrarío es una falacia.

Ejemplo: Modus ponens

| 1. | Р                 |
|----|-------------------|
| 2. | $P \rightarrow Q$ |
| 3. | Q                 |

### Notación

 Cuando un argumento es válido se usa el símbolo ⊧, para indicar que la conclusión se sigue de las premisas.

#### Ejemplo:

$$P, P \rightarrow Q \models Q$$

(Observar que una tautología es un razonamiento lógico válido sin premisas).

# Implicaciones y Equivalencias

- Si A→B es una tautología, entonces se dice que A implica lógicamente a B y se representa A⇒B
- Si A↔B es una tautología, entonces A≡B, y las implicaciones A→B, B→A son implicaciones lógicas.

# **Ejemplos**

# Ejemplo 2: Ley de adición

$$P \Rightarrow (P \lor Q)$$

# Ejemplo 3: Ley de simplificación

$$(P \land Q) \Rightarrow P$$

# Demostración de validez mediante tabla de verdad

Un argumento lógico es válido, si las premisas implican lógicamente la conclusión

$$A_1,A_2,...,A_n \models C$$

en otras palabras, si la expresión lógica

$$A_1 \wedge A_2 \wedge \dots \wedge A_n \rightarrow C$$

es una tautología.

# Ejemplo: Silogismo hipotético

$$P \rightarrow Q$$
,  $Q \rightarrow R \models P \rightarrow R$ 

# Ejemplo: Modus Tollens

1. P→Q

2. ¬Q

3. ¬

# Ejemplo: Una falacia

P v Q
 P
 Q

# Ejemplo: Ley de casos

$$A \rightarrow B$$
,  $\neg A \rightarrow B \models B$ 

#### Derivaciones o demostraciones

En lugar de construir una tabla de verdad, muchos argumentos son en realidad una secuencia de argumentos compuestos, donde cada argumento es la premisa para el siguiente

# Ejemplo

Sea la sentencia:

if X>Max then X=Max

demostrar que después de la ejecución es imposible que X>Max.

Definamos las siguientes proposiciones:

- P: X>Max antes de la ejecución
- Q: X=Max después de la ejecución
- R: X>Max después de la ejecución

### Sentencia "if"

- Observar que P→Q es siempre verdadero.
- De forma similar,  $Q \rightarrow \neg R$  es siempre verdadero.
- Por lo tanto se puede construir el siguiente silogismo hipotético:

# Sentencia "if" (2)

También se tiene la siguiente premisa

$$\neg P \rightarrow \neg R$$

Finalmente, dadas las premisas P→¬R y
 ¬P→¬R, se puede aplicar la *ley de casos* para obtener

1. 
$$P \rightarrow \neg R$$
2.  $\neg P \rightarrow \neg R$ 

# Ejemplo

Sea la proposición:

$$n(n+1)$$
 es par

• Identificar proposiciones atómicas y premisas

# Ejemplo: Solución

#### Proposiciones atómicas

- P:nes par
- Q: n+1 es par
- R : n(n+1) es par

#### **Premisas**

- P→¬Q
- ¬P→Q
- $P \land \neg Q \rightarrow R$
- $\neg P \land Q \rightarrow R$

#### Sistemas de derivaciones

- Dado un conjunto de reglas de inferencia L, una derivación es una lista de implicaciones lógicas obtenidas mediante estas reglas.
- Para la construcción de la derivación se siguen estos pasos en general
- 1) Se parte de una lista vacía.
- 2) Se agregan las premisas iniciales.
- 3) Se agregan las conclusiones obtenidas de las premisas existentes utilizando las reglas de L, hasta llegar a la conclusión.

# Reglas de inferencia

| Ley de combinación              | $A,B \models A \land B$                                                                        |
|---------------------------------|------------------------------------------------------------------------------------------------|
| Ley de simplificación           | $A \wedge B \models B$<br>$A \wedge B \models A$                                               |
| Ley de adición                  | $A \models A \lor B$<br>$B \models A \lor B$                                                   |
| Modus ponens                    | $A, A \rightarrow B \models B$                                                                 |
| Modus tollens                   | ¬B, A→B ⊨ ¬A                                                                                   |
| Silogismo hipotético            | $A \rightarrow B$ , $B \rightarrow C \models A \rightarrow C$                                  |
| Silogismo disyuntivo            | $A \lor B$ , $\neg A \models B$                                                                |
| Ley de casos                    | $A \rightarrow B$ , $\neg A \rightarrow B \models B$                                           |
| Eliminación de la equivalencia  | $A \leftrightarrow B \models A \rightarrow B$<br>$A \leftrightarrow B \models B \rightarrow A$ |
| Introducción de la equivalencia | $A \rightarrow B$ , $B \rightarrow A \models A \leftrightarrow B$                              |
| Ley de la inconsistencia        | A, ¬A ⊨ B                                                                                      |

#### Teorema de la deducción

- Para demostrar que A→B, se suele utilizar el siguiente argumento:
- 1) Se supone A y se añade A a las premisas.
- 2) Se demuestra B utilizando A si es necesario.
- 3) Se prescinde de A, lo cual significa que A no es necesariamente verdadera, y se escribe A→B.

# Ejemplo 1

 Demostrar el silogismo hipotético utilizando derivaciones lógicas

$$A \rightarrow B$$
,  $B \rightarrow C \models A \rightarrow C$ 

# Ejemplo 2

Demostrar la ley asociativa

$$A \wedge (B \wedge C) \equiv (A \wedge B) \wedge C$$

# Ejemplo: n(n+1) es par

3. 
$$P \land \neg Q \rightarrow R$$
 Premisa

4. 
$$\neg P \land Q \rightarrow R$$

Premisa

12.¬P ∧ Q

13.R

14.¬P→R

2,9 MP

9,10 Combinación

11,4 MP

10,13 TD

8. R

9. P→R

#### Supuesto TD

1,5 MP

5,6 Combinación

3,7 MP

5,8 TD

15.R

9,14 Ley de casos

# Ejemplo 3

Demostrar la ley de D'Morgan

$$\neg(A \land B) \equiv \neg A \lor \neg B$$

# Ejemplo 3: Solución

#### Considerando el sentido $\neg (A \land B) \Rightarrow \neg A \lor \neg B$

# Demostración por contradicción (reductio ad absurdum)

- Se tiene como premisa algún hecho verdadero
- Se quiere demostrar una proposición Q.
- Si se tuviese el condicional P→Q, aplicando modus ponens se concluye Q.
- En muchas situaciones comprobar el condicional P→Q no es sencillo.

# Demostración por contradicción

- En su lugar se puede utilizar el siguiente procedimiento:
  - Se asume ¬Q para aplicar TD
  - Se llega a ¬P
  - Por TD se concluye  $\neg Q \rightarrow \neg P$
  - Pero además se tiene como premisa: P.
  - Por modus tollens se concluye: Q

# Demostración por contradicción: Irracionalidad de raíz de 2

Demostrar:

$$\sqrt{2}$$
 es irracional

Sabemos:

Números racionales son aquellos que se pueden escribir como una fracción irreducible de dos enteros:

p/q

# Demostración por contradicción: Existen infinitos primos

- Euclides, cerca del año 300ac probó que existen infinitos números primos en su texto Elementos.
- Este es un resultado fundamental de la Teoría de números, con muchas aplicaciones en informática (e.g. criptografía)
- Existen varias demostraciones, una de las más sencillas es por contradicción:

Asumamos que los números primos son finitos. En ese caso los podemos nombrar:

$$p_1, p_2, ... p_n$$

## Demostración por contradicción: Teorema fundamental de la aritmética

- También tiene sus orígenes en los Elementos de Euclides. Formalizado por Gauss.
- Establece que cada natural mayor a 1 se puede descomponer como un único producto de primos:

$$n = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot \dots \cdot p_k^{\alpha_k}$$

- Más detalles: Wikipedia
- Ver demostración por F. Zapata

# Sistema de derivaciones válidos y completos

- No debe ser posible demostrar una falacia dentro de un sistema de derivación válido.
- El sistema es completo si es posible demostrar toda conclusión que se derive lógicamente de las premisas.

## Teorías, Axiomas, Teoremas

- Una teoría es el conjunto de premisas y conclusiones que se derivan de ellas.
- Las premisas de una teoría se denominan axiomas o postulados.
- Todas las conclusiones que pueden derivarse a partir de los axiomas se denominan teoremas.
   Teoremas intermedios suelen denominarse lemas, y conclusiones posteriores corolarios.

# Ejemplo: Geometría euclidiana Postulados de Euclides

- 1) Entre dos puntos se puede trazar un segmento de recta.
- 2) Un segmento de recta se puede extender indefinidamente en ambas direcciones.
- 3) Dado un segmento de recta, se puede trazar un círculo usando el segmento como radio y un extremo como centro.
- 4) Todos los ángulos rectos son congruentes.
- 5) Si dos líneas intersectan una tercera y la suma de los ángulos interiores es menor a dos rectos, entonces las dos lineas eventualmente se intersectan.

# Ejemplo: Teoría de números Axiomas de Peano

- Define los números naturales y sus propiedades.
- Parte de los axiomas de Peano, publicados en 1889.
- Originalmente, son 9 axiomas.

# Ejemplo: Teoría de Conjuntos de Zermelo-Fraenkel

- Define la teoría de conjuntos a partir de 9 axiomas + axioma de elección.
- Para más detalles ver Wikipedia.

### Referencias adicionales

- Grassman & Tremblay, Sección 1.6
- Levin, Sección 3.2