EMB06N03G

N-Channel Logic Level Enhancement Mode Field Effect Transistor

Product Summary:

BVDSS	30V
RDSON (MAX.)	$\operatorname{6m}\Omega$
lo	18A

UIS, Rg 100% Tested Pb-Free Lead Plating

ABSOLUTE MAXIMUM RATINGS (T_A = 25 °C Unless Otherwise Noted)

PARAMETERS/TEST	CONDITIO	SYMBOL	LIMITS	UNIT		
Gate-Source Voltage		V_{GS}	±20	V		
Continuous Drain Current $T_{C} = 25 ^{\circ}\text{C}$ $T_{C} = 100 ^{\circ}\text{C}$. I _D	18		
				12	Α	
Pulsed Drain Current ¹		I _{DM}	72			
Avalanche Current		I _{AS}	20			
Avalanche Energy	L = 0.1ml	H, ID=20A, RG=25 Ω	E _{AS}	20	mJ	
Repetitive Avalanche Energy ²	L = 0.05i	mH	E _{AR}	10	•	
Power Dissipation	T _A = 25 °	С	P _D	3	W	
Tower Bissipation	T _A = 100 °C			1.5		
Operating Junction & Storage Temper	T _j , T _{stg}	-55 to 175	°C			

THERMAL RESISTANCE RATINGS

THERMAL RESISTANCE	SYMBOL	TYPICAL	MAXIMUM	UNIT
Junction-to-Case	$R_{\theta JC}$		25	°C/W
Junction-to-Ambient ³	$R_{ hetaJA}$		50	C / W

¹Pulse width limited by maximum junction temperature.

²Duty cycle ≤ 1%

³50°C / W when mounted on a 1 in² pad of 2 oz copper.

ELECTRICAL CHARACTERISTICS (T_A = 25 °C, Unless Otherwise Noted)

PARAMETER	SYMBOL	TEST CONDITIONS		LIMITS		
			MIN	TYP	MAX	
		STATIC				
Drain-Source Breakdown Voltage	$V_{(BR)DSS}$	$V_{GS} = 0V$, $I_D = 250 \mu A$	30			٧
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1	1.5	3	
Gate-Body Leakage	I _{GSS}	$V_{DS} = 0V$, $V_{GS} = \pm 20V$			±100	nA
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = 24V, V_{GS} = 0V$			1	μΑ
		$V_{DS} = 20V$, $V_{GS} = 0V$, $T_{J} = 125 ^{\circ}C$			25	
On-State Drain Current ¹	I _{D(ON)}	$V_{DS} = 10V, V_{GS} = 10V$	12			Α
Drain-Source On-State Resistance ¹	R _{DS(ON)}	$V_{GS} = 10V$, $I_D = 18A$		5.3	6	mΩ
		$V_{GS} = 4.5V$, $I_{D} = 12A$		7.5	9.5	11122
Forward Transconductance ¹	g fs	$V_{DS} = 5V$, $I_{D} = 18A$		25		S
		DYNAMIC				
Input Capacitance	C _{iss}			1983		
Output Capacitance	C _{oss}	$V_{GS} = 0V$, $V_{DS} = 15V$, $f = 1MHz$		328		pF
Reverse Transfer Capacitance	C_{rss}			287		
Gate Resistance	R_{g}	V _{GS} = 15mV, V _{DS} = 0V, f = 1MHz		1.2		Ω
Total Gate Charge ^{1,2}	Q _g (V _{GS} =10V)	=10V)		41		
	Q _g (V _{GS} =4.5V)	$V_{DS} = 15V$, $V_{GS} = 10V$,		23		nC
Gate-Source Charge ^{1,2}	Q_{gs}	I _D = 18A		6		
Gate-Drain Charge ^{1,2}	Q_{gd}			13		
Turn-On Delay Time ^{1,2}	t _{d(on)}			9		
Rise Time ^{1,2}	t _r	$V_{DS} = 15V$,		20		nS
Turn-Off Delay Time ^{1,2}	t _{d(off)}	$I_D = 1A$, $V_{GS} = 10V$, $R_{GS} = 2.7\Omega$		25		
Fall Time ^{1,2}	t _f			3		
SOURCE-D	RAIN DIODE RA	TINGS AND CHARACTERISTICS (T _c = 25	°C)			
Continuous Current	I _S				4	۸
Pulsed Current ³	I _{SM}				40	A
Forward Voltage ¹	V_{SD}	$I_F = I_S$, $V_{GS} = 0V$			1.2	٧
Reverse Recovery Time	t _{rr}			32		nS
Peak Reverse Recovery Current	I _{RM(REC)}	$I_F = I_S$, $dI_F/dt = 100A / \mu S$		40		Α
Reverse Recovery Charge	Q _{rr}			12		nC

¹Pulse test : Pulse Width ≤ 300 μsec, Duty Cycle ≤ 2%.

Ordering & Marking Information:

Device Name: EMB06N03G for SOP-8

Outline Drawing

Dimension in mm

Dimension	Α	В	С	D	E	F	G	Н	I	J	K
in.	4.70	3.70	5.80	0.33		1.20	0.08	0.40	0.19	0.25	0 °
Тур.					1.27						
Max.	5.10	4.10	6.20	0.51		1.62	0.28	0.83	0.26	0.50	8°

²Independent of operating temperature.

³Pulse width limited by maximum junction temperature.

EMB06N03G

杰力科技股份有限公司 Excelliance MOS Corporation

EMB06N03G

杰力科技股份有限公司 Excelliance MOS Corporation

