Predictive modelling

George, John & William

11/17/2021

Data Preparation and cleaning

```
FIHI_sub2 <- FIHI_sub2 %>%
  mutate( permanent_address = factor(permanent_address, levels = 1:2,
                       labels = c("Yes", "No")),
          FI_q28= factor(FI_q28, levels = 1:2,
                       labels = c("Yes", "No")),
          FI_q30= factor(FI_q30, levels = 1:2,
                       labels = c("Yes", "No")),
          FI_q31= factor(FI_q31, levels = 1:2,
                       labels = c("Yes", "No")))
metrics <- function(model_object, response="", test_data=dat$test) {</pre>
  # response = "permanent_address"
  # model_object <- log</pre>
  if(is.null(test_data)) test_data <- testing</pre>
  # make predictions
  prediction <- predict(model_object, test_data)</pre>
  prediction_A <- predict(model_object, test_data, type="prob")</pre>
  target <- test_data[, response]</pre>
  cmat <- confusionMatrix(prediction, target, mode = "prec_recall")</pre>
  ROC <- roc(target, predictor = prediction_A[,2])</pre>
  AUC_m<-round(ROC$auc, digits=4)
  misscal<- round(mean(prediction != target), digits = 2)</pre>
 # Returned outputs
 return(list(
   accuracy = (1-misscal),
  mcr = misscal,
   sens = round(cmat$byClass[1],2),
   spec = round(cmat$byClass[2],2),
   fbeta = round(cmat$byClass[7],2),
   auc = AUC_m
))
#----- Compute performance metrics for the full models ----
eval_table <- function(model_list,response, resp_label='---')</pre>
```

```
log.metric <- metrics(model_list$glm, response)</pre>
  lda.metric <- metrics(model_list$lda, response)</pre>
  knn.metric <- metrics(model_list$knn, response)</pre>
  nnet.metric <- metrics(model_list$nnet, response)</pre>
  svc.metric <- metrics(model_list$svmLinear, response)</pre>
  svmR.metric <- metrics(model_list$svmRadial, response)</pre>
  mod.sum <- data.frame(rbind(</pre>
                             c("Logistic", log.metric$mcr, log.metric$accuracy, log.metric$sens, log.met
                             c("LDA", lda.metric$mcr, lda.metric$accuracy, lda.metric$sens, lda.metric$
                             c("KNN", knn.metric$mcr, knn.metric$accuracy, knn.metric$sens, knn.metric$s
                             c("Neural Network", nnet.metric$mcr, nnet.metric$accuracy, nnet.metric$sens
                             # c("Bagging", bag.metric$mcr, bag.metric$accuracy, bag.metric$sens, bag.me
                             c("SVM Linear", svc.metric$mcr, svc.metric$accuracy, svc.metric$sens, svc.metric
                             c("SVM Radial", svmR.metric$mcr, svmR.metric$accuracy, svmR.metric$sens, svm
  names(mod.sum) <- c("Model", "Misclassification Rate", "Accuracy",</pre>
                       "Sensitivity", "Specificity", "fbeta", "AUC")
  kable(mod.sum, align = "lcccccc", caption = paste("Evaluation metrics for", resp_label, " as a respon
    kable_paper("hover", full_width = F)%>%
         kable_styling(font_size = 12, latex_options = c("HOLD_position"))
}
# display table
# eval_table(dat$model_list, "FI_q31", "Food Insecurity 3")
```

Comparing Models

```
# ensemble_1 <- caretEnsemble(dat$model_list,
# metric = "ROC",
# trControl = trctrl)
#
# plot(ensemble_1)</pre>
```

Variable of importance obtained from the best model

```
# Var <- varImp(dat$model_list$svmR, scale = FALSE)
# plot(Var, main ="Figure: Variable of Importance")

# var_best <- as.data.frame(Var$importance) %>%

# filter(Yes > 0.52) %>%

# arrange(desc(Yes)) %>%

# dplyr::select(Yes) %>%

# rename(Importance = Yes)

#
# plot(var_best)
```

Housing Insecurity

```
dat <- modeling("permanent_address")</pre>
## Warning: Number of logged events: 25
## # weights: 58
## initial value 4429.971131
## iter 10 value 3795.646761
## iter 20 value 3681.868936
## iter 30 value 3663.194375
## iter 40 value 3654.494476
## iter 50 value 3649.830524
## iter 60 value 3649.382161
## iter 70 value 3643.761990
## iter 80 value 3638.416441
## iter 90 value 3627.761237
## iter 100 value 3618.838152
## final value 3618.838152
## stopped after 100 iterations
eval_table(dat$model_list, "permanent_address", "Permanent House Address")
## Setting levels: control = Yes, case = No
## Setting direction: controls < cases
## Setting levels: control = Yes, case = No
## Setting direction: controls < cases
## Setting levels: control = Yes, case = No
## Setting direction: controls < cases
## Setting levels: control = Yes, case = No
## Setting direction: controls < cases
## Setting levels: control = Yes, case = No
## Setting direction: controls < cases
## Setting levels: control = Yes, case = No
## Setting direction: controls < cases
```

Table 1: Evaluation metrics for Permanent House Address as a response variable

Model	Misclassification Rate	Accuracy	Sensitivity	Specificity	fbeta	AUC
Logistic	0.24	0.76	0.77	0.57	0.86	0.7197
LDA	0.22	0.78	0.79	0.59	0.87	0.7249
KNN	0.35	0.65	0.65	0.61	0.78	0.6806
Neural Network	0.17	0.83	0.85	0.41	0.91	0.6922
SVM Linear	0.23	0.77	0.78	0.57	0.87	0.7168
SVM Radial	0.17	0.83	0.85	0.47	0.91	0.7217

plot(dat\$ensemble)

Warning: Duplicated aesthetics after name standardisation: size


```
par(mfrow=c(1,2))
Var <- varImp(dat$model_list$svmRadial, scale = FALSE)
plot(Var, main ="Figure: Variable of Importance")</pre>
```

Figure: Variable of Importance

Var <- varImp(dat\$model_list\$lda, scale = FALSE)
plot(Var, main ="Figure: Variable of Importance")</pre>

Figure: Variable of Importance

dev.off()

null device
1