ECo 602 - Analysis of Environmental Data

Conditional Probability

Michael France Nelson

Eco 602 – University of Massachusetts, Amherst – Fall 2021 Michael France Nelson

Key Concepts

- Conditional probability
- Bayes' Rule
- Differences between Frequentist and Bayesian perspectives

Preview of Bayesian Thinking

https://www.youtube.com/watch?v=BrK7X_XIGB8

Origin of Bayes' Theorem

https://www.youtube.com/watch?v=7GgLSnQ48os

Conditional Probability: The Sample Space

Sample Space Properties

- Total area is 1.0
- The sample space contains the set of all possible events.
- Pr(A) = 1

Conditional Probability: An Event

Event A Properties

- What's the probability of A?
 - We know it is equal to or less than 1.0

$$Pr(A) = \frac{Area\ of\ A}{Area\ of\ S} = Area\ of\ A$$

Conditional Probability: Another Event

Event A Properties

What are the event probabilities?

$$Pr(A) = \frac{Area\ of\ A}{Area\ of\ S}$$

$$\Pr(B) = \frac{Area\ of\ B}{Area\ of\ S}$$

Exclusive Events

Exclusive Events

Some different perspectives

- If event A occurs, B cannot occur
- There is no overlap between A and B
- The conditional probability of A given B is zero.
 - Pr(A|B) = 0
- The conditional probability of B given A is zero.
 - Pr(A|B) = 0

Complementary Events

Fall 2021

Complementary Events

- Complementary events are exclusive.
 - Something can be in A or B, but not both.
 - Pr(A|B) = 0, Pr(B|A) = 0
- Complementary events fill the sample space
 - If something is not in A, then it is in B
 - Pr(A) + Pr(B) = 1.0

We want to know

Conditional probability: We want to know how likely we are to observe an event in B if we've already observed an event in A.

In symbols:

Pr(B|A)

You can read this as "Probability of B given A".

ECo 602

What happens when we observe an event in A?

Our sample space changes...

What happens when we observe an event in A?

Our sample space changes... It collapses into A.

Since A contained part of B, Pr(B|A) is just:

$$\frac{\Pr(A \cap B)}{\Pr(A)}$$

Try to guess the value of Pr(B|A)

Try to guess the value of Pr(B|A)

20

ECo 602

Try to guess the value of Pr(A|B)

Try to guess the value of Pr(A|B)

22

Overlapping Events: Independent Events

If events are independent, then: Pr(B|A) = Pr(B)

In the figure, Pr(B) is 0.25

- A is ¼ of the sample space
- B is ¼ of the sample space
- $A \cap B$ is $\frac{1}{4}$ of A
- $A \cap B$ is 1/16 of the sample space

Conditional Probability: Key Points

- Sample Space
- Complementary Events
- Exclusive Events
- Overlapping Events
- To calculate a conditional probability, the sample space changes.
 - You 'collapse' the sample space into the conditioned event's space

