Hometask 1

1. Let
$$g(n) = 1 + c + \cdots + c^n$$
 for $c \in \mathbb{R}$, $c > 0$:

a.
$$g(n) = \Theta(1)$$
 for $c < 1$

b.
$$g(n) = \Theta(n)$$
 for $c = 1$

c.
$$g(n) = \Theta(c^n)$$
 for $c > 1$

2. Solve recurrent equations:

a.
$$a_{n+2} = 5a_{n+1} - 6a_n$$
, $a_1 = 2$, $a_2 = 1$

b.
$$a_n = 4a_{n-1} - 4a_{n-2}, a_1 = 2, a_2 = 1$$

c.
$$a_n = 4a_{n-2}, a_1 = a_2 = 1$$

Remember: for root multiplicity 2: $a_n = C_1 t^{n-1} + C_2 n t^{n-1}$.

3. Who is faster: $\sum_{i=1}^{n} i^k$ or n^{k+1} .