## Amendments to the Claims:

This listing of the claims will replace all prior versions, and listings, of claims in the application:

## **Listing of the Claims:**

1. (currently amended) A method of identifying biological samples comprising:

providing a microarray including a substrate having no preselected sites for association with micro-spheres coated with a composition including a population of micro-spheres dispersed in a fluid containing a gelling agent gelatin and immobilized in a single layer at random positions with a uniform density on the substrate, at least one sub-population of said population of micro-spheres containing an optical barcode generated from at least one colorant associated with the micro-spheres and including a biological probe;

contacting said array with a biological target sample;

detecting the optical barcode of said sub-population of microspheres due to the interaction of said biological probe and said biological target sample; and

identifying said biological sample.

- 2. (previously presented) The method of claim 1 wherein said microarray population of micro-spheres includes a plurality of sub-populations of micro-spheres, wherein each said sub-population of micro-spheres obtains a unique optical barcode and has a unique biological probe.
- 3. (original) The method of claim 1 wherein said optical barcode is generated by two or more colorants.
- 4. (original) The method of claim 1 wherein said optical barcode is generated by a mixture of red (R), green (G), and blue (B) colorants.
- 5. (previously presented) The method of claim 1 wherein said at least one sub-population of micro-spheres has a luminescent property to produce a luminescent image and wherein said detecting includes:

- (a) whole frame imaging capture of the luminescent image resulting from said interaction of said biological probe and said biological target sample to produce a first image;
- (b) whole frame imaging capture of said microarray under bright field illumination to obtain the micro-sphere optical barcode to produce a second image; and
- (c) processing said first and second images to obtain identification of said biological target sample.
- 6. (original) The method of claim 5 wherein said processing uses a pattern recognition algorithm to obtain said identification.
- 7. (previously presented) The method of claim 1 wherein said at least one sub-population of micro-spheres has a fluorescent property and wherein said detecting includes:
- (a) whole frame imaging capture of the fluorescent image resulting from said interaction of said probe and said target to produce a first image;
- (b) whole frame imaging capture of said microarray under bright field illumination to obtain the micro-sphere optical barcode to produce a second image; and
- (c) processing said first and second images to obtain identification of said sample.
- 8. (original) The method of claim 1 wherein said substrate is characterized by an absence of specific sites capable of interacting physically or chemically with the micro-spheres.
- 9. (previously presented) The method of claim 1 wherein said micro-spheres bear surface active sites which contain said probe.
- 10. (previously presented) The method of claim 1 wherein said micro-spheres have a mean diameter between 1 and 50 microns.

- 11. (original) The method of claim 1 wherein said micro-spheres have a mean diameter between 3 and 30 microns.
- 12. (original) The method of claim 1 wherein said micro-spheres have a mean diameter between 5 and 20 microns.
- 13. (original) The method of claim 1 wherein said micro-spheres in the composition are immobilized on the substrate in a concentration between 100 and 1 million micro-spheres per cm<sup>2</sup>.
- 14. (original) The method of claim 1 wherein said micro-spheres in the composition are immobilized on the substrate in a concentration between 1000 and 200,000 micro-spheres per cm<sup>2</sup>.
- 15. (original) The method of claim 1 wherein said micro-spheres in the composition are immobilized on the substrate in a concentration between 10,000 and 100,000 micro-spheres per cm<sup>2</sup>.
- 16. (original) The method of claim 1 wherein said micro-spheres comprise a synthetic or natural polymeric material.
- 17. (original) The method of claim 16 wherein said polymeric material is an amorphous polymer.
- 18. (original) The method of claim 17 wherein said amorphous polymer is polystyrene.
- 19. (original) The method of claim 1 wherein said micro-spheres contain a polymeric material and less than 30 weight percent of a crosslinking agent.
- 20. (original) The method of claim 1 wherein said micro-spheres are prepared by emulsion polymerization or limited coalescence.

21. (currently amended) A method of identifying biological samples comprising:

providing a microarray including a substrate coated with a composition including a population of micro-spheres dispersed in a fluid containing a gelling agentgelatin and immobilized in a single layer at random positions with a uniform density on the substrate having no preselected sites for association with micro-spheres, at least one sub-population of said population of micro-spheres containing an optical barcode generated from at least one colorant associated with the micro-spheres, having one of a luminescent or fluorescent property and including a biological probe sequence;

contacting said microarray with a biological target sample; and detecting the optical barcode of said sub-population of microspheres due to the interaction of said probe and said target by:

- (a) whole frame imaging of the luminescent or fluorescent image resulting from said interaction to produce a first image;
- (b) whole frame imaging capture of said microarray under bright field illumination to obtain the micro-sphere optical barcode to produce a second image; and
- (c) processing said first and second images to obtain identification of said biological sample.
- 22. (original) The method of claim 21 wherein said processing uses a pattern recognition algorithm to obtain said identification.
- 23. (previously presented) The method of claim 21 wherein said microarray population of micro-spheres includes a plurality of sub-populations of micro-spheres, wherein each said sub-population of micro-spheres contains a unique optical barcode and has a unique probe.
- 24. (original) The method of claim 21 wherein said optical barcode is generated by two or more colorants.
- 25. (original) The method of claim 21 wherein said optical barcode is generated by a mixture of red (R), green (G), and blue (B) colorants.