1. Lógica proposicional

1.1. Proposiciones, conectivos, tablas de verdad y simbolización.

Definición intuitiva: Proposición. Una proposición es un enunciado que puede calificarse como falso o verdadero.

Ejemplos:

- El libro es rojo.
- 27 es par o 27 es impar.
- 5 + 3 = 17
- Si hoy es lunes entonces mañana es jueves

Ejemplos que NO son proposiciones:

- Entrega la tarea.
- ¿Estás seguro?
- 5 + 7 y 2 + 3
- Si es impar entonces es primo.

Definición intuitiva: Proposición atómica. Una proposición es atómica es representada por las variables proposicionales y las constantes lógicas Verdadero y Falso.

Notación: Las variables proposicionales se simbolizan con letras minúsculas con subíndices: p_0, p_1, p_2, \ldots , la constante lógica verdadeo se simboliza con \top y la constante lógica falso se simboliza con \bot .

Definición: Valor de verdad. Los valores de verdad son únicamente verdadero y falso.

Definición: Estado. El estado de una variable proposicional, es el valor de verdad que se le asigna.

Definición: Función de verdad. Una función de verdad es una función que toma un conjunto de valores de verdad y devuelve un valor de verdad.

Definición: Tabla de verdad. Una tabla de verdad es un arreglo en donde se muestra el comportamiento de una función de verdad en todos los posibles estados.

Definición: Conectivos lógicos. Los conectivos lógicos son funciones de verdad, utilizados para construir proposiciones compuestas.

Negación. La función de verdad negación cambia el valor de verdad. Se denota por neg. Su significado en español es no φ , no es cierto que φ , es falso que φ , no sucede que φ . Su tabla de verdad es la siguiente:

φ	$\neg \varphi$
V	F
F	V

Conjunción. La función de verdad conjunción toma dos proposiciones y regresa el valor verdadero cuando ambas son verdaderas y falso en cualquier otro caso. Se denota por Λ . Su significado en español es φ y ψ , φ pero ψ , φ además de ψ . Su tabla de verdad es la siguiente:

φ	ψ	$\varphi \wedge \psi$
V	V	V
V	F	F
F	V	F
F	F	F

Disyunción. La función de verdad disyunción toma dos proposiciones y regresa el valor falso cuando ambas son falsas y verdadero en cualquier otro caso. Se denota por \vee . Su significado en español es φ o ψ , o φ o ψ . Su tabla de verdad es la siguiente:

φ	ψ	$\varphi \lor \psi$
V	V	V
V	F	V
F	V	V
F	F	F

Implicación. La función de verdad implicación toma dos proposiciones y regresa el valor falso cuando la primera es falsa y la segunda es verdadera y verdadero en cualquier otro caso. A la primera proposicion se le conoce como antecedente y a la segunda como consecuente. Se denota por \rightarrow . Su significado en español es si φ entonces ψ , φ implica ψ , φ es condicion suficiente ψ , ψ es condicion necesaria para φ , ψ se sigue de φ , φ solo si ψ . Su tabla de verdad es la siguiente:

φ	ψ	$\varphi \to \psi$
V	V	V
V	F	V
F	V	F
F	F	V

Equivalencia. La función de verdad equivalencia toma dos proposiciones y regresa verdadero cuando ambas tienen el mismo valor de verdad y falso en cualquier otro caso. Se denota por \leftrightarrow . Su significado en español es φ si y solo si ψ , φ es equivalente a ψ , φ es condicion necesaria y suficiente para ψ . Su tabla de verdad es la siguiente:

φ	ψ	$\varphi \leftrightarrow \psi$
V	V	V
V	F	F
F	V	F
F	F	V

Con todo lo anterior definido, ahora podemos definir de manera formal las proposiciones atómicas y las proposiciones.

Definición: Proposicion atómica. Una proposición atómica es aquella que no puede subdividirse en proposiciones más simples, es decir, aquella que no tiene conectivos lógicos.

Definición: Proposición. Las proposiciones se definen de la siguiente manera:

- 1. Las proposiciones atómicas son proposiciones.
- 2. Si φ y ψ son proposiciones, entonces $(\neg \varphi)$, $(\varphi \land \psi)$, $(\varphi \lor \psi)$, $(\varphi \to \psi)$, $(\varphi \leftrightarrow \psi)$ son proposiciones.
- 3. Solo aquellas expresiones construidas en 1 y 2 son proposiciones.

Ejemplo.

Si elijo a Bulbasuar, Charmander o Squirtle, viajaré por el mundo. Si yo elijo a Squirtle o a Bulbasaur ganaré facilmente el primer gimnasio, pero si elijo a Charmander, tendré que entrenar mucho. Ganaré facilmente el primer gimnasio. Por lo tanto yo no elijo a Charmander.

 p_0 : Yo elijo a Bulbasaur.

 p_1 : Yo elijo a Charmander.

 p_2 : Yo elijo a Squirtle.

 p_3 : Yo viajaré por el mundo.

 p_4 : Yo ganaré facilmente el primer gimnasio.

 p_5 : Yo tendré que entrenar mucho.

$$((((((p_0 \lor p_1) \lor p_2) \to p_3) \land (((p_2 \lor p_0) \to p_4) \land (p_1 \to p_5))) \land p_4) \to p_2)$$

1.2. Tautologías.

Definición: Tautología. Una tautología es una proposición que es verdadera para todas los estados de sus variables proposicionales.

Definición: Contradicción. Una contradicción es una proposición que es falsa para todas los estados de sus variables proposicionales.

Definición: Contingencia. Una contingencia es una proposición que no es tautología ni contradicción.

Definición: Implicación lógica. Decimos que una proposición φ implica lógicamente a una proposición ψ si y solo si todo estado que hace verdadera a φ hace verdadera a ψ .

Definición: Equivalencia lógica. Decimos que las proposiciones φ y ψ son ilógicamente equivalentes si y solo si en todo estado tienen el mismo valor de verdad.

Omitiremos la prueba de las siguientes proposiciones, ya que las notas están enfocadas a ejemplificar los temas. Las pruebas están en el libro de Mendelson.

Proposición 1:

- φ implica lógicamente a ψ si y solo si $(\varphi \to \psi)$ es una tautología.
- φ y ψ son lógicamente equivalentes si y solo si $(\varphi \leftrightarrow \psi)$ es una tautología.

En la ayudantía se verán ejemplos con detalle. Las notas de la ayudantía escritas a mano estarán disponibles al terminar la clase.

Proposición 2: Si φ y $(\varphi \to \psi)$ son tautologías entonces ψ es tautología.

Ejemplo. Notemos que $((p_0 \to p_1) \lor (p_1 \to p_0))$ y $(((p_0 \to p_1) \lor (p_1 \to p_0)) \to ((p_0 \land p_1) \to p_1))$ son tautologías. Por lo tanto $((p_0 \land p_1) \to p_1)$ es tautologías.

Proposición 3: Sea φ una tautología con variables proposicionales p_0, p_1, \ldots, p_n . Supongamos que ψ se obtiene de sustituir las variables proposicionales en φ por las proposiciones $\varphi_1, \varphi_2, \ldots, \varphi_n$, entonces ψ es una tautología.

Ejemplo. Notamos que $((p_0 \land p_1) \rightarrow p_1)$ es una tautología. Consideramos $\varphi_0 := (p_3 \land p_4)$ y $\varphi_1 := (p_3 \lor p_4)$. Por lo tanto $(((p_3 \land p_4) \land (p_3 \lor p_4)) \rightarrow (p_3 \lor p_4))$ es una tautología.

Proposición 4: Supongamos que φ y ψ son lógicamente equivalentes y supongamos que ψ_1 se obtiene de sustituir en φ_1 una o más ocurrencias de φ por ψ , entonces $((\varphi \leftrightarrow \psi) \to (\varphi_1 \leftrightarrow \psi_1))$ es una tautología.

Ejemplo. Notemos que $(\neg(p_0 \land p_1))$ y $((\neg p_0) \lor (\neg p_1))$ son lógicamente equivalentes.

Consideramos la proposición $((\neg (p_0 \land p_1)) \lor p_2)$.

Podemos concluir que ((($\neg (p_0 \land p_1)$) \leftrightarrow (($\neg p_0$) \lor ($\neg p_1$))) \rightarrow ((($\neg (p_0 \land p_1)$) \lor p_2) \leftrightarrow ((($\neg p_0$) \lor ($\neg p_1$)) \lor p_2))) es una tautología.

1.3. Eliminación de paréntesis

Harémos convenciones para eliminar la mayor cantidad posible de paréntesis y así poder simplificar expresiones complicadas para hacer sencilla su lectura.

- Podemos eliminar los paréntesis exteriores de toda proposición.
- Definimos la precedencia para los operadores lógicos de mayor a menos como sigue: \neg , \wedge , \vee , \rightarrow , \leftrightarrow .

NOTA: La precedencia considerada en el libro de Mendelson difiere con respecto a la de otros libros. Mendelson considera que la conjunción tiene mayor precedencia que la disyunción, mientras que usualmente tienen la misma precedencia.

Ahora describimos un algoritmo para restaurar los paréntesis.

- 1. Se busca el conectivo con mayor precedencia más a la izquierda.
- 2. Si el conectivo es \neg y le precede una proposición φ , restauramos los paréntesis para obtener $(\neg \varphi)$.
- 3. Si el conectivo es binario \star , a la izquierda tiene una proposición φ y a la derecha tiene una proposición ψ , restauramos los paréntesis ($\varphi \star \psi$).
- 4. Si no suceden 2 o 3, ignoramos el conectivo temporalmente y buscamos el siguiente conectivo de mayor precedencia sin procesar más a la izquierda posible y repetimos los pasos anteriores.

NOTA: El algoritmo anterior para restaurar los parentesis, da como resultado que los conectivos asocian a la izquierda. En general, en otros libros de texto la implicación asocia a la derecha.

Es decir, con el algoritmo, $p_0 \to p_1 \to p_2$ queda parentizado como $(p_0 \to p_1) \to p_2$, pero en otros libros de texto debe quedar parentizado como $p_0 \to (p_1 \to p_2)$

Ejemplo:
$$p_0 \to p_1 \lor p_2 \leftrightarrow p_3 \land \neg p_4$$

 $p_0 \to p_1 \lor p_2 \leftrightarrow p_3 \land (\neg p_4)$
 $p_0 \to p_1 \lor p_2 \leftrightarrow (p_3 \land (\neg p_4))$
 $p_0 \to (p_1 \lor p_2) \leftrightarrow (p_3 \land (\neg p_4))$
 $(p_0 \to (p_1 \lor p_2)) \leftrightarrow (p_3 \land (\neg p_4))$
 $((p_0 \to (p_1 \lor p_2)) \leftrightarrow (p_3 \land (\neg p_4)))$

En la ayudantía se verán más ejemplos con detalle. Las notas de la ayudantía escritas a mano estarán disponibles al terminar la clase.

1.4. Equivalencias lógicas

Vamos a enlistar algunas equivalencias lógicas. Es fácil demostrarlas, por lo que omitiremos eso en estas notas, únicamnete hay que probar que el si y solo si entre ellas es una tautología.

- $\neg \neg p \equiv p$
- $p \lor p \equiv p$
- $p \land p \equiv p$
- $p \land q \equiv q \land p$
- $p \land (q \land r) \equiv (p \land q) \land r$
- $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
- $p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$
- $\neg (p \lor q) \equiv \neg p \land \neg q$
- $\neg (p \land q) \equiv \neg p \lor \neg q$

Ejemplo $\neg((p \rightarrow q) \rightarrow (r \rightarrow s) \rightarrow p \land q \rightarrow q \land s)$

$$(p \rightarrow q) \land \neg ((r \rightarrow s) \rightarrow p \land q \rightarrow q \land s)$$

$$(p \rightarrow q) \land ((r \rightarrow s) \land \neg (p \land q \rightarrow q \land s))$$

$$(p \to q) \land ((r \to s) \land ((p \land q) \land \neg (q \land s)))$$

$$(p \rightarrow q) \land (r \rightarrow s) \land (p \land q) \land \neg (q \land s)$$

$$(\neg p \lor q) \land (\neg r \lor s) \land (p \land q) \land (\neg q \lor \neg s)$$

- $p \to q \equiv \neg p \lor q$
- $\neg (p \rightarrow q) \equiv p \land \neg q$
- $p \leftrightarrow q \equiv (p \to q) \land (q \to p) \equiv (\neg p \lor q) \land (\neg q \lor p)$
- $\neg (p \leftrightarrow q) \equiv \neg (p \rightarrow q) \lor \neg (q \rightarrow p) \equiv (p \land \neg q) \lor (q \land \neg p)$
- $p \land T \equiv p$
- $p \lor T \equiv T$
- $p \land \bot \equiv \bot$
- $p \lor \bot \equiv p$
- $p \lor \neg p \equiv T$
- $p \land \neg p \equiv \bot$

2. Lógica de primer orden

Para poder representar enunciados en lógica de primer orden, necesitamos considerar los siguientes símbolos:

- Los conectivos lógicos y cuantificadores: $\neg, \land, \lor, \rightarrow, \leftrightarrow, \forall, \exists$
- Símbolos de puntuación: () ,
- Variables: $x_0, x_1, \ldots, x_n, \ldots$
- Símbolos de función: f_k^n con n, k enteros positivos.
- Símbolos de predicado: A_k^n con n, k enteros positivos.

En los símbolos de predicado y de función, k es un entero positivo que se utiliza como identificador para cada símbolo distinto y n es la aridad.

Definición: Aridad La aridad de una función, o de un símbolo de predicado, es el número de argumentos que utilizan.

2.1. Términos y fórmulas

Definición: Términos. Los términos se definen de manera recursiva como sigue:

- 1. Las variables son términos.
- 2. Si f_k^n es un símbolo de aridad n y t_1, t_2, \ldots, t_n son términos, entonces $f_k^n(t_1, t_2, \ldots, t_n)$ es un término.
- 3. Únicamente las expresiones construidas en 1 y 2 son términos.

Ejemplos: x_1 es término. $f_1^1(x_1)$ es término. $f_5^2(x_1, f_1^1(x_1))$ es término.

Definición: Fórumlas atómicas. Si A_k^n es un símbolo de predicado y t_1, t_2, \ldots, t_n son términos, entonces $A_k^n(t_1, t_2, \ldots, t_n)$ es una fórmula atómica.

Ejemplos: $A_1^1(x_1)$ es fórmula atómica. $A_2^3(x_1, f_1^1(x_1), f_5^2(x_1, f_1^1(x_1)))$ es fórmula atómica.

Definición: Fórmulas bien formadas. Las fórmulas bien formadas para lenguajes de primer orden se definen recursivamente como sigue:

- 1. Las fórmulas atómicas son fórmulas bien formadas.
- 2. Si φ y ψ son fórmulas bien formadas, entonces $(\neg \varphi)$, $(\varphi \land \psi)$, $(\varphi \lor \psi)$, $(\varphi \leftrightarrow \psi)$ son fórmulas bien formadas.
- 3. Si φ es una fórmula bien formada y x una variable, entonces $((\forall x)\varphi), ((\exists x)\varphi)$ son fórmulas bien formadas.
- 4. Únicamente las expresiones construidas en 1, 2 y 3 son fórmulas bien formadas.

Ejemplos: $\forall x(A_1^1(x)) \rightarrow \exists y(A_2^1(y)), \ \forall x(\forall y(A_3^2(x,y)))$

Definición: Alcance de un cuantificador. Definimos como el alcance de un cuantificador a la fórmula bien formada más pequeña a la derecha de dicho cuantificador.

Ejemplos: El alcance de $\forall x$ en $\forall x (A_1^1(x)) \rightarrow \exists y (A_2^1(y))$ es $(A_1^1(x))$.

El alcance de $\forall x$ en $\forall x(A_1^1(x) \to \exists y(A_2^1(y)))$ es $(A_1^1(x) \to \exists y(A_2^1(y)))$.

Definición: Variable libre. Una variable se dice que es libre si no está dentro del alcance de un cuantificador.

Definición: Variable ligada. Una variable es ligada si está dentro del alcance de un cuantificador, y coincide con la variable sobre la cual se está cuantificando.

Ejemplo: En $\forall x (A_3^2(x,y))$, la variable x es ligada y la variable y es libre.