Security Protocols and Verification

Design and Analysis of Cryptographic Protocols

Garance Frolla Ely Marthouret Ewan Decima

September / November 2025

Contents

1	Assumptions	2
2	Ely the big frog	2
3	Protocol Description	3
4	Security Properties	4

1 Assumptions

We assume that at the beginning of the protocol agents A and B know the public key $K_{pub(C)}$ of any agent C. Moreover, we assume that all agents C shared a symmetric key with a trusted server S, named K_{CS} . N_a is a nonce generated by A, and N_b is a nonce generated by B. τ and λ respectively denote a timestamp and a lifetime. A generates K_{AB} with perfect randomness at each session.

2 Ely the big frog

- 1. $A \to B : \{|A, N_A|\}_{K_{AB}}$
- 2. $A \rightarrow S : \{|B, \tau, \lambda, K_{AB}|\}_{K_{AS}}$
- 3. $S \rightarrow B : \{|A, \tau, \lambda, K_{AB}|\}_{K_{BS}}$
- 4. $B \to A : \{|N_A + 1|\}_{K_{AB}}$

3 Protocol Description

This protocol begins with entity A generating a nonce, denoted as N_A . A then encrypts her identity together with the nonce using the freshly generated session key K_{AB} . The transmitted data is structured as follows: $\{|A, N_A|\}_{K_{AB}}$. This message costs **63**.

After sending the first message, A sends to the honest and trusted server S, using the shared key K_{AS} , the identity of B, a timestamp τ , a lifetime period to confirm the key λ and the session key K_{AB} . The transmitted data is structured as follows: $\{|B, \tau, \lambda, K_{AB}|\}_{K_{AS}}$. This message costs **166**.

Then S, using the shared key K_{BS} , sends to B essentially the same message, but with A replaced by B. The transmitted data is structured as follows: $\{|A, \tau, \lambda, K_{AB}|\}_{K_{BS}}$. This message costs: **166**.

B receives the message $\{|A, \tau, \lambda, K_{AB}|\}_{K_{BS}}$ and obtains the session key K_{AB} . He also learns the validity period λ , starting from time τ , during which A will accept his response. This measure provides protection against ticket theft. Indeed, even if an attacker manages to intercept a ticket, they will not be able to use it after its expiration.

Then B respond to the first message of A, he can decrypt the nonce $\{|N_A|\}_{K_{AB}}$ with the session key. Key confirmation lies in the fact that B sends back $N_A + 1$ to A. In this way, A knows that B has successfully retrieved the key. This allows combining key confirmation with the challenge–response mechanism for the authentication of B with respect to A. The transmitted data is structured as follows: $\{|N_A + 1|\}_{K_{AB}}$. This message costs 12.

The total cost is: 409.

4 Security Properties

- Authentification: When B receives the first message $\{|A, N_A|\}_{K_{AB}}$, he can't be sure that A sends it to him. But after receiving $\{|A, \tau, \lambda, K_{AB}|\}_{K_{BS}}$ from S he can be sure of the origin of the first message. Indeed, A uses S to authenticate to B. Since the message containing A's identity is encrypted with K_{BS} , B can be sure that A initiated the conversation.
- Key confirmation: After receiving the third message, B obtains the session key K_{AB} from S. To confirm possession of this key, B sends back to A the value $N_A + 1$, encrypted under K_{AB} . This proves to A that B has indeed obtained the correct key.
- Secrecy: Nobody except for agents A and B know the session key K_{AB} .
- Integrity: Each message is encrypted with a symmetric key, ensuring that only an entity possessing the corresponding key $(K_{AB}, K_{AS}, \text{ or } K_{BS})$ can modify its contents.