Workshop 18 settembre

Il dataset Iris

Vogliamo costruire un'intelligenza artificiale da allenare su uno storico di classificazioni già effettuate in passato. Lo storico è nella tabella dbo.lrisTraining. Non considerare la colonna bias.

L'IA dovrà predire con la massima accuratezza possibile le specie degli iris raccolti in futuro.

```
acknowledgements
Fisher,R. A.. (1988). Iris. UCI Machine Learning Repository. https://doi.org/10.24432/C56C76.

sepal_length;sepal_width;petal_length;petal_width;class
4;3.5;1.4;0.2;Iris setosa
4.2;3.0;1.4;0.2;Iris setosa
4.7;3.2;1.3;0.2;Iris setosa
4.6;3.1;1.5;0.2;Iris setosa
7.0;3.2;4.7;1.4;Iris versicolor
6.4;3.2;4.5;1.5;Iris versicolor
5.7;2.8;4.1;1.3;Iris versicolor
6.3;3.3;6.0;2.5;Iris virginica
5.8;2.7;5.1;1.9;Iris virginica
7.1;3.0;5.9;2.1;Iris virginica
```

Premessa: formula matematica della distanza

Sia v = (v1, v2, v3, v4) un vettore numerico (come il contenuto delle quattro colonne di una particolare riga della tabella dbo.IrisTraining

Sia w = (w1, w2, w3, w4) un secondo vettore numerico

La distanza tra v e w è data dalla formula radice quadrata di $(v1-w1)^2 + (v2-w2)^2 + (v3-w3)^2 + (v4-w4)^2$

Algoritmo 1-Neighbour – parte 1

Prendiamo il nuovo iris nella tabella *dbo.Nuovolris* (di cui facciamo finta di non conoscere la classe).

Nuovo iris

sepal_length	sepal_width	petal_length	petal_width	class
4,2	3,1	1,6	0,4	<mark>?</mark>

Algoritmo 1-Neighbour – parte 2

Calcoliamo la distanza da tutti gli iris presenti nello storico e già classificati.

sepal_length	sepal_width	petal_length	petal_width	class	distanze
4	3,5	1,4	0,2	Iris setosa	0,529150262
4,2	3	1,4	0,2	Iris setosa	0,3
4,7	3,2	1,3	0,2	Iris setosa	0,6244998
7	3,2	4,7	1,4	Iris versicolor	4,296510212
6,4	3,2	4,5	1,5	Iris versicolor	3,80394532
6,9	3,1	4,9	1,5	Iris versicolor	4,403407771
6,3	3,3	6	2,5	Iris virginica	5,312249994
5,8	2,7	5,1	1,9	Iris virginica	4,149698784
7,1	3	5,9	2,1	Iris virginica	5,458937626

Algoritmo 1-Neighbour – parte 1

Consideriamo l'iris dello storico con distanza minore. Quella sarà la nostra previsione.

sepal_length	sepal_width	petal_length	petal_width	class	distanze
4	3,5	1,4	0,2	Iris setosa	0,529150262
4,2	3	1,4	0,2	Iris setosa	0,3
4,7	3,2	1,3	0,2	Iris setosa	0,6244998
7	3,2	4,7	1,4	Iris versicolor	4,296510212
6,4	3,2	4,5	1,5	Iris versicolor	3,80394532
6,9	3,1	4,9	1,5	Iris versicolor	4,403407771
6,3	3,3	6	2,5	Iris virginica	5,312249994
5,8	2,7	5,1	1,9	Iris virginica	<mark>4,149698784</mark>
7,1	3	5,9	2,1	Iris virginica	5,458937626

Algoritmo 5-Neighbours – parte 1

Consideriamo l'iris dello storico con distanza minore. Quella sarà la nostra previsione.

sepal_length	sepal_width	petal_length	petal_width	class	distanze
4	<mark>3,5</mark>	<mark>1,4</mark>	<mark>0,2</mark>	Iris setosa	0,529150262
<mark>4,2</mark>	3	<mark>1,4</mark>	<mark>0,2</mark>	Iris setosa	<mark>0,3</mark>
<mark>4,7</mark>	3,2	<mark>1,3</mark>	<mark>0,2</mark>	Iris setosa	0,6244998
7	3,2	4,7	1,4	Iris versicolor	4,296510212
<mark>6,4</mark>	<mark>3,2</mark>	<mark>4,5</mark>	<mark>1,5</mark>	Iris versicolor	3,80394532
6,9	3,1	4,9	1,5	Iris versicolor	4,403407771
6,3	3,3	6	2,5	Iris virginica	5,312249994
<mark>5,8</mark>	<mark>2,7</mark>	<mark>5,1</mark>	<mark>1,9</mark>	Iris virginica	<mark>4,149698784</mark>
7,1	3	5,9	2,1	Iris virginica	5,458937626

Algoritmo 5-Neighbours – parte 2

Tra i cinque iris più vicini abbiamo 3 Iris setosa, 1 Iris virginica e 1 Iris versicolor. L'algoritmo predice dunque Iris setosa

sepal_length	sepal_width	petal_length	petal_width	class	distanze
4	<mark>3,5</mark>	<mark>1,4</mark>	<mark>0,2</mark>	Iris setosa	0,529150262
<mark>4,2</mark>	3	<mark>1,4</mark>	<mark>0,2</mark>	Iris setosa	0,3
<mark>4,7</mark>	3,2	<mark>1,3</mark>	<mark>0,2</mark>	Iris setosa	0,6244998
7	3,2	4,7	1,4	Iris versicolor	4,296510212
<mark>6,4</mark>	<mark>3,2</mark>	<mark>4,5</mark>	<mark>1,5</mark>	Iris versicolor	3,80394532
6,9	3,1	4,9	1,5	Iris versicolor	4,403407771
6,3	3,3	6	2,5	Iris virginica	5,312249994
<mark>5,8</mark>	2,7	<mark>5,1</mark>	<mark>1,9</mark>	Iris virginica	4,149698784
7,1	3	5,9	2,1	Iris virginica	5,458937626

Generalizziamo a un dataset di Test

Vogliamo calcolare ora la predizione per tutte le 30 righe della tabella dbo.lrisTest

Generalizza prima la versione 1-neighbour e poi la versione 5-neighbours.

Quale tecnica vuoi usare per lavorare su tutte le 30 righe?

Un'idea potrebbe essere usare un cursore, ma non è la più efficiente!

Traccia soluzione

- 1) Effettuare una CROSS JOIN tra le due tabelle in modo da creare tutte le combinazioni possibili
- 2) Inserire nella SELECT il calcolo della distanza. Utilizzare le funzione SQRT e POWER.
- Consolidiamo questo step in una CTE o in una Tabella temporanea?
- 3) Utilizziamo la Window Function RANK() per calcolare per ogni riga di test le 5 righe di training più vicine. Per far ciò aggiungiamo prima la RANK nella SELECT di una CTE e poi filtramo su questa nuova colonna (<=5)

Traccia soluzione

- 4) Raggruppiamo i dati per Id di test e predizione. Contiamo dunque quante righe sono presenti per ogni combinazione
- 5) Utilizziamo nuovamente la window function RANK() per calcolare per ogni ID di Test la predizione più ricorrente
- 6)Verifichiamo quante predizioni sono effettivamente uguali alla colonna class originale.