riptografie și Securitate

- Prelegerea 21.2 -Sistemul de criptare ElGamal

Adela Georgescu, Ruxandra F. Olimid

Facultatea de Matematică și Informatică Universitatea din București

Cuprins

1. Scurt istoric

2. Sistemul de criptare ElGamal

3. Securitate

▶ 1976 - Diffie și Hellman definesc conceptul de criptografie asimetrică;

- ▶ 1976 Diffie și Hellman definesc conceptul de criptografie asimetrică;
- ▶ 1977 R.Rivest, A.Shamir şi Leonard Adleman introduc sistemul RSA;

- ▶ 1976 Diffie şi Hellman definesc conceptul de criptografie asimetrică;
- ▶ 1977 R.Rivest, A.Shamir şi Leonard Adleman introduc sistemul RSA;
- ▶ 1985 T.ElGamal propune un nou sistem de criptare.

► Se bazează pe DLP ...

- ► Se bazează pe DLP ...
- ... sau mai exact pe dificultatea problemei DDH...

- ▶ Se bazează pe DLP ...
- ... sau mai exact pe dificultatea problemei DDH...
- ... și pe următoarea observație simplă:

- ► Se bazează pe DLP ...
- ... sau mai exact pe dificultatea problemei DDH...
- ... și pe următoarea observație simplă:

Observație

Fie \mathbb{G} un grup finit și m $\leftarrow^R \mathbb{G}$. Dacă $g \leftarrow^R \mathbb{G}$, atunci $g' = m \cdot g$ rămâne aleator în \mathbb{G} :

$$Pr[m \cdot g = g'] = 1/|\mathbb{G}|$$

unde probabilitatea este dată de alegerea aleatoare a lui g.

▶ Dacă emitătorul și receptorul folosesc g drept cheie secretă, atunci un mesaj $m \in \mathbb{G}$ se criptează ca:

$$g' = m \cdot g$$

▶ Dacă emitătorul și receptorul folosesc g drept cheie secretă, atunci un mesaj $m \in \mathbb{G}$ se criptează ca:

$$g' = m \cdot g$$

Receptorul decriptează:

$$m = g' \cdot g^{-1}$$

▶ Dacă emitătorul și receptorul folosesc g drept cheie secretă, atunci un mesaj $m \in \mathbb{G}$ se criptează ca:

$$g' = m \cdot g$$

Receptorul decriptează:

$$m = g' \cdot g^{-1}$$

 Abordarea este asemănătoare cu OTP, unde se folosea grupul secvențelor de lungime fixată împreună cu operația XOR;

▶ Dacă emitătorul și receptorul folosesc g drept cheie secretă, atunci un mesaj $m \in \mathbb{G}$ se criptează ca:

$$g' = m \cdot g$$

Receptorul decriptează:

$$m = g' \cdot g^{-1}$$

- Abordarea este asemănătoare cu OTP, unde se folosea grupul secvențelor de lungime fixată împreună cu operația XOR;
- ▶ O astfel de construcție este deci perfect sigură (dacă g este total aleator!).

▶ În criptografia cu cheie publică, se folosește *g* **pseudoaleator**, deci se pierde securitatea perfectă;

- ▶ În criptografia cu cheie publică, se folosește g pseudoaleator, deci se pierde securitatea perfectă;
- ▶ Ideea de bază este alegerea lui g astfel încât la recepție să poată fi calculat pe baza cheii secrete...

- În criptografia cu cheie publică, se folosește g pseudoaleator, deci se pierde securitatea perfectă;
- ▶ Ideea de bază este alegerea lui g astfel încât la recepție să poată fi calculat pe baza cheii secrete...
- ... dar g să pară aleator pentru un adversar;

- În criptografia cu cheie publică, se folosește g pseudoaleator, deci se pierde securitatea perfectă;
- ▶ Ideea de bază este alegerea lui g astfel încât la recepție să poată fi calculat pe baza cheii secrete...
- ... dar g să pară aleator pentru un adversar;
- Pentru aceasta se folosește prezumția DDH, construcția fiind imediată din schimbul de chei Diffie-Hellman.

- Definim sistemul de criptare ElGamal pe baza ideii prezentate anterior;
 - 1. Se generează (\mathbb{G}, q, g), se alege $x \leftarrow^R \mathbb{Z}_q$ și se calculează $h = g^x$;
 - ▶ Cheia publică este: (\mathbb{G}, q, g, h) ;
 - ► Cheia privată este (\mathbb{G} , q, g, x);
 - 2. **Enc**: dată o cheie publică (\mathbb{G}, q, g, h) și un mesaj $m \in \mathbb{G}$, alege $y \leftarrow^R \mathbb{Z}_q$ și întoarce $c = (c_1, c_2) = (g^y, m \cdot h^y)$;
 - 3. **Dec**: dată o cheie secretă (\mathbb{G}, q, g, x) și un mesaj criptat $c = (c_1, c_2)$, întoarce $m = c_2 \cdot c_1^{-x}$.

Problema 1: Determinismul

▶ Întrebare: Este sistemul ElGamal determinist?

Problema 1: Determinismul

- ▶ Întrebare: Este sistemul ElGamal determinist?
- ▶ Răspuns: NU! Sistemul este nedeterminist, datorită alegerii aleatoare a lui *y* la fiecare criptare.

Problema 1: Determinismul

- ▶ Întrebare: Este sistemul ElGamal determinist?
- ▶ Răspuns: NU! Sistemul este nedeterminist, datorită alegerii aleatoare a lui y la fiecare criptare.
- ▶ Un același mesaj m se poate cripta diferit, pentru $y \neq y'$:

$$c=(c_1,c_2)=(g^y,m\cdot h^y)$$

$$c' = (c'_1, c'_2) = (g^{y'}, m \cdot h^{y'})$$

Problema 1: Determinismul

- ▶ Întrebare: Este sistemul ElGamal determinist?
- ▶ Răspuns: NU! Sistemul este nedeterminist, datorită alegerii aleatoare a lui y la fiecare criptare.
- ▶ Un același mesaj m se poate cripta diferit, pentru $y \neq y'$:

$$c=(c_1,c_2)=(g^y,m\cdot h^y)$$

$$c' = (c'_1, c'_2) = (g^{y'}, m \cdot h^{y'})$$

▶ În caz contrar, sistemul NU ar putea fi CPA-sigur.

Problema 2: Dificultatea DLP

▶ Întrebare: Rămâne ElGamal sigur dacă problema DLP este simplă?

Problema 2: Dificultatea DLP

- Întrebare: Rămâne ElGamal sigur dacă problema DLP este simplă?
- ▶ Răspuns: NU! Se determină x a.î. $h = g^x$, apoi se decriptează orice mesaj pentru că se cunoaște cheia secretă.

Problema 3: Proprietatea de homomorfism

Fie m_1, m_2 2 texte clare și $c_1 = (c_{11}, c_{12}), c_2 = (c_{21}, c_{22})$ textele criptate corespunzătoare;

Problema 3: Proprietatea de homomorfism

- Fie m_1, m_2 2 texte clare și $c_1 = (c_{11}, c_{12}), c_2 = (c_{21}, c_{22})$ textele criptate corespunzătoare;
- Atunci:

$$c_1 \cdot c_2 = (c_{11} \cdot c_{21}, c_{12} \cdot c_{22}) = (g^{y_1} \cdot g^{y_2}, m_1 h^{y_1} \cdot m_2 h^{y_2})$$

Problema 3: Proprietatea de homomorfism

- Fie m_1, m_2 2 texte clare și $c_1 = (c_{11}, c_{12}), c_2 = (c_{21}, c_{22})$ textele criptate corespunzătoare;
- Atunci:

$$c_1 \cdot c_2 = (c_{11} \cdot c_{21}, c_{12} \cdot c_{22}) = (g^{y_1} \cdot g^{y_2}, m_1 h^{y_1} \cdot m_2 h^{y_2})$$

▶ Întrebare: Dacă un adversar cunoaște c_1 și c_2 criptările lui m_1 , respectiv m_2 , ce poate spune despre $c_1 \cdot c_2$?

Problema 3: Proprietatea de homomorfism

- Fie m_1, m_2 2 texte clare și $c_1 = (c_{11}, c_{12}), c_2 = (c_{21}, c_{22})$ textele criptate corespunzătoare;
- Atunci:

$$c_1 \cdot c_2 = (c_{11} \cdot c_{21}, c_{12} \cdot c_{22}) = (g^{y_1} \cdot g^{y_2}, m_1 h^{y_1} \cdot m_2 h^{y_2})$$

- ▶ Întrebare: Dacă un adversar cunoaște c_1 și c_2 criptările lui m_1 , respectiv m_2 , ce poate spune despre $c_1 \cdot c_2$?
- Răspuns: $c_1 \cdot c_2$ este criptarea lui $m_1 \cdot m_2$ folosind $y = y_1 + y_2$: $c_1 \cdot c_2 = (g^{y_1+y_2}, m_1m_2h^{y_1+y_2})$

Problema 3: Proprietatea de homomorfism

- Fie m_1, m_2 2 texte clare și $c_1 = (c_{11}, c_{12}), c_2 = (c_{21}, c_{22})$ textele criptate corespunzătoare;
- Atunci:

$$c_1 \cdot c_2 = (c_{11} \cdot c_{21}, c_{12} \cdot c_{22}) = (g^{y_1} \cdot g^{y_2}, m_1 h^{y_1} \cdot m_2 h^{y_2})$$

- ▶ Întrebare: Dacă un adversar cunoaște c_1 și c_2 criptările lui m_1 , respectiv m_2 , ce poate spune despre $c_1 \cdot c_2$?
- ▶ Răspuns: $c_1 \cdot c_2$ este criptarea lui $m_1 \cdot m_2$ folosind $y = y_1 + y_2$: $c_1 \cdot c_2 = (g^{y_1+y_2}, m_1m_2h^{y_1+y_2})$
- ▶ Un sistem de criptare care satisface $Dec_sk(c_1 \cdot c_2) = Dec_{sk}(c_1) \cdot Dec_{sk}(c_2)$ se numește sistem de criptare **homomorfic**. (homomorfismul este deseori o proprietate utilă în criptografie)

Problema 4: Utilizarea multiplă a parametrilor publici

Este comun în practică pentru un administrator să fixeze parametrii publici (\mathbb{G} , q, g), apoi fiecare utilizator să își genereze doar cheia secretă x și să publice $h = g^x$;

Problema 4: Utilizarea multiplă a parametrilor publici

- Este comun în practică pentru un administrator să fixeze parametrii publici (\mathbb{G}, q, g), apoi fiecare utilizator să își genereze doar cheia secretă x și să publice $h = g^x$;
- ▶ Întrebare: Este corect să se utilizeze de mai multe ori aceiași parametrii publici (\mathbb{G} , q, g)?

Problema 4: Utilizarea multiplă a parametrilor publici

- Este comun în practică pentru un administrator să fixeze parametrii publici (\mathbb{G}, q, g), apoi fiecare utilizator să își genereze doar cheia secretă x și să publice $h = g^x$;
- ▶ Întrebare: Este corect să se utilizeze de mai multe ori aceiași parametrii publici (\mathbb{G} , q, g)?
- Răspuns: Se consideră că DA. Cunoașterea parametrilor publici pare să nu conducă la rezolvarea DDH.

Problema 4: Utilizarea multiplă a parametrilor publici

- Este comun în practică pentru un administrator să fixeze parametrii publici (\mathbb{G}, q, g), apoi fiecare utilizator să își genereze doar cheia secretă x și să publice $h = g^x$;
- ▶ Întrebare: Este corect să se utilizeze de mai multe ori aceiași parametrii publici (\mathbb{G} , q, g)?
- Răspuns: Se consideră că DA. Cunoașterea parametrilor publici pare să nu conducă la rezolvarea DDH.
- Atenție! Acest lucru nu se întâmpla și la RSA, unde modulul NU trebuie utilizat de mai multe ori.

Securitate - teoremă

Teoremă

Dacă problema decizională Diffie-Hellman (DDH) este dificilă în grupul \mathbb{G} , atunci schema de criptare ElGamal este CPA-sigură.

Securitate - teoremă

Teoremă

Dacă problema decizională Diffie-Hellman (DDH) este dificilă în grupul \mathbb{G} , atunci schema de criptare ElGamal este CPA-sigură.

 Notăm cu Π schema de criptare ElGamal. E suficient să arătăm că schema este sigură la interceptare simplă;

Securitate - teoremă

Teoremă

Dacă problema decizională Diffie-Hellman (DDH) este dificilă în grupul \mathbb{G} , atunci schema de criptare ElGamal este CPA-sigură.

- Notăm cu Π schema de criptare ElGamal. E suficient să arătăm că schema este sigură la interceptare simplă;
- ► Fie A un adversar PPT; notăm cu

$$\epsilon(n) = Pr[PubK_{\mathcal{A},\Pi}^{eav}(n) = 1]$$

probabilitatea ca \mathcal{A} să câstige experimentul de mai jos folosit pentru a defini securitatea la interceptare simplă.

▶ Considerăm schema modificată $\tilde{\Pi}$ care diferă de schema Π prin faptul că algoritmul de criptare alege aleator $y,z\leftarrow \mathbb{Z}_q$ și întoarce textul criptat

$$(g^y, g^z \cdot m)$$

A doua componentă a textului criptat din $\tilde{\Pi}$ este un element uniform distribuit din \mathbb{G} și independent de m;

- A doua componentă a textului criptat din $\tilde{\Pi}$ este un element uniform distribuit din \mathbb{G} și independent de m;
- ▶ Prima componentă este și ea independentă de m; rezultă că

$$Pr[PubK_{\mathcal{A},\tilde{\Pi}}^{eav}(n)=1]=rac{1}{2}$$

- A doua componentă a textului criptat din $\tilde{\Pi}$ este un element uniform distribuit din \mathbb{G} și independent de m;
- ▶ Prima componentă este și ea independentă de m; rezultă că

$$Pr[PubK^{eav}_{\mathcal{A}, ilde{\mathsf{\Pi}}}(n) = 1] = rac{1}{2}$$

Deși Π nu e o schemă de criptare (nu se poate decripta), experimentul $PubK^{eav}_{\mathcal{A},\Pi}(n)$ este bine-definit pentru că folosește doar algoritmul de criptare;

- A doua componentă a textului criptat din $\tilde{\Pi}$ este un element uniform distribuit din \mathbb{G} și independent de m;
- ▶ Prima componentă este și ea independentă de *m*; rezultă că

$$Pr[PubK_{\mathcal{A},\tilde{\Pi}}^{\mathsf{eav}}(n)=1]=rac{1}{2}$$

- ▶ Deși $\tilde{\Pi}$ nu e o schemă de criptare (nu se poate decripta), experimentul $PubK_{\mathcal{A},\tilde{\Pi}}^{eav}(n)$ este bine-definit pentru că folosește doar algoritmul de criptare;
- Aratăm că \mathcal{A} poate fi folosit de un algoritm \mathcal{D} ca o subrutină pentru a rezolva problema DDH cu probabilitate $\epsilon(n)$;

Algoritmul \mathcal{D} primește la intrare tuplul ($\mathbb{G}, q, g, g_1, g_2, g_3$), unde $g_1 = g^x, g_2 = g^y$ și $g_3 = g^{xy}$ sau $g_3 = g^z$ pentru x, y, z aleatoare, după care:

- - 1. Alege $pk = (\mathbb{G}, q, g, g_1)$ și execută $\mathcal{A}(pk)$ și obține două mesaje m_0 și m_1 ;

- - 1. Alege $pk = (\mathbb{G}, q, g, g_1)$ și execută $\mathcal{A}(pk)$ și obține două mesaje m_0 și m_1 ;
 - 2. Alege un bit aleator b și notează $c_1 = g_2$ și $c_2 = g_3 \cdot m_b$;

- - 1. Alege $pk = (\mathbb{G}, q, g, g_1)$ și execută $\mathcal{A}(pk)$ și obține două mesaje m_0 și m_1 ;
 - 2. Alege un bit aleator b și notează $c_1 = g_2$ și $c_2 = g_3 \cdot m_b$;
 - 3. Îi dă textul criptat (c_1, c_2) lui \mathcal{A} și obține de la el un bit b'. Dacă b' = b, \mathcal{D} întoarce 1, altfel întoarce 0.

- - 1. Alege $pk = (\mathbb{G}, q, g, g_1)$ și execută $\mathcal{A}(pk)$ și obține două mesaje m_0 și m_1 ;
 - 2. Alege un bit aleator b și notează $c_1 = g_2$ și $c_2 = g_3 \cdot m_b$;
 - 3. Îi dă textul criptat (c_1, c_2) lui \mathcal{A} și obține de la el un bit b'. Dacă b' = b, \mathcal{D} întoarce 1, altfel întoarce 0.
- În continuare, analizăm comportamentul lui 𝒯 considerând două cazuri:

▶ **Cazul 1:** Să presupunem că tuplul pe care \mathcal{D} îl primește la intrare este generat alegând aleator $x, y, z \leftarrow \mathbb{Z}_q$ și calculând $g_1 = g^x, g_2 = g^y$ și $g_3 = g^z$.

- ▶ Cazul 1: Să presupunem că tuplul pe care \mathcal{D} îl primește la intrare este generat alegând aleator $x, y, z \leftarrow \mathbb{Z}_q$ și calculând $g_1 = g^x, g_2 = g^y$ și $g_3 = g^z$.
- Atunci \mathcal{D} execută \mathcal{A} cu cheia publică $pk = (\mathbb{G}, q, g, g^x)$ și textul criptat construit $(c_1, c_2) = (g^y, g^z \cdot m_b)$;

- ▶ Cazul 1: Să presupunem că tuplul pe care \mathcal{D} îl primește la intrare este generat alegând aleator $x, y, z \leftarrow \mathbb{Z}_q$ și calculând $g_1 = g^x, g_2 = g^y$ și $g_3 = g^z$.
- Atunci \mathcal{D} execută \mathcal{A} cu cheia publică $pk = (\mathbb{G}, q, g, g^x)$ și textul criptat construit $(c_1, c_2) = (g^y, g^z \cdot m_b)$;
- În acest caz, \mathcal{A} nu poate distinge între cele două situații: atunci când este executat ca o subrutină a lui \mathcal{D} interacționând cu el sau atunci când efectuează experimentul $PubK_{A\ \tilde{\Pi}}^{eav}(n)$

- ▶ Cazul 1: Să presupunem că tuplul pe care \mathcal{D} îl primește la intrare este generat alegând aleator $x, y, z \leftarrow \mathbb{Z}_q$ și calculând $g_1 = g^x, g_2 = g^y$ și $g_3 = g^z$.
- Atunci \mathcal{D} execută \mathcal{A} cu cheia publică $pk = (\mathbb{G}, q, g, g^{\times})$ și textul criptat construit $(c_1, c_2) = (g^y, g^z \cdot m_b)$;
- În acest caz, \mathcal{A} nu poate distinge între cele două situații: atunci când este executat ca o subrutină a lui \mathcal{D} interacționând cu el sau atunci când efectuează experimentul $PubK_{A\ \tilde{\Pi}}^{eav}(n)$
- ▶ Cum \mathcal{D} întoarce 1 exact atunci când output-ul b' al lui \mathcal{A} este egal cu b, rezultă că:

$$Pr[D(\mathbb{G},q,g,g^x,g^y,g^z)=1]=Pr[PubK_{\mathcal{A}, ilde{\mathsf{\Pi}}}^{eav}(n)=1]=rac{1}{2}$$

$$Pr[D(\mathbb{G}, q, g, g^{\mathsf{x}}, g^{\mathsf{y}}, g^{\mathsf{z}}) = 1] = Pr[PubK_{\mathcal{A}, \tilde{\Pi}}^{\mathsf{eav}}(n) = 1] = \frac{1}{2}$$

▶ Cazul 2: Să presupunem că tuplul pe care \mathcal{D} îl primește la intrare este generat alegând aleator $x, y \leftarrow \mathbb{Z}_q$ și calculând $g_1 = g^x, g_2 = g^y$ și $g_3 = g^{xy}$.

$$Pr[D(\mathbb{G}, q, g, g^{\mathsf{x}}, g^{\mathsf{y}}, g^{\mathsf{z}}) = 1] = Pr[PubK_{\mathcal{A}, \tilde{\Pi}}^{eav}(n) = 1] = \frac{1}{2}$$

- ▶ Cazul 2: Să presupunem că tuplul pe care \mathcal{D} îl primește la intrare este generat alegând aleator $x, y \leftarrow \mathbb{Z}_q$ și calculând $g_1 = g^x, g_2 = g^y$ și $g_3 = g^{xy}$.
- ▶ Atunci \mathcal{D} execută \mathcal{A} cu cheia publică $pk = (\mathbb{G}, q, g, g^x)$ și textul criptat construit

$$(c_1, c_2) = (g^y, g^{xy} \cdot m_b) = (g^y, (g^x)^y \cdot m_b)$$

$$Pr[D(\mathbb{G},q,g,g^{\mathsf{x}},g^{\mathsf{y}},g^{\mathsf{z}})=1]=Pr[PubK_{\mathcal{A},\tilde{\Pi}}^{\mathsf{eav}}(n)=1]=rac{1}{2}$$

- ▶ Cazul 2: Să presupunem că tuplul pe care \mathcal{D} îl primește la intrare este generat alegând aleator $x, y \leftarrow \mathbb{Z}_q$ și calculând $g_1 = g^x, g_2 = g^y$ și $g_3 = g^{xy}$.
- Atunci \mathcal{D} execută \mathcal{A} cu cheia publică $pk = (\mathbb{G}, q, g, g^x)$ și textul criptat construit

$$(c_1, c_2) = (g^y, g^{xy} \cdot m_b) = (g^y, (g^x)^y \cdot m_b)$$

▶ În acest caz, \mathcal{A} nu poate distinge între următoarele două situații: atunci când este executat ca o subrutină a lui \mathcal{D} sau atunci când efectuează experimentul $PubK_{\mathcal{A},\Pi}^{eav}(n)$

▶ Cum \mathcal{D} întoarce 1 exact atunci când output-ul b' al lui \mathcal{A} este egal cu b, rezultă că:

$$Pr[D(\mathbb{G},q,g,g^x,g^y,g^{xy})=1]=Pr[PubK_{\mathcal{A},\Pi}^{eav}(n)=1]=\epsilon(n)$$

▶ Cum \mathcal{D} întoarce 1 exact atunci când output-ul b' al lui \mathcal{A} este egal cu b, rezultă că:

$$Pr[D(\mathbb{G},q,g,g^{\mathsf{x}},g^{\mathsf{y}},g^{\mathsf{x}\mathsf{y}})=1]=Pr[Pub\mathcal{K}^{\mathsf{eav}}_{\mathcal{A},\Pi}(n)=1]=\epsilon(n)$$

Dar cum problema DDH este dificilă, rezultă că există o funcție neglijabilă negl a.î.

$$\operatorname{negl}(n) \ge |Pr[D(\mathbb{G}, q, g, g^x, g^y, g^z) = 1] - Pr[D(\mathbb{G}, q, g, g^x, g^y, g^{xy}) = 1]|$$

$$=\left|\frac{1}{2}-\epsilon(n)\right|$$

▶ Cum \mathcal{D} întoarce 1 exact atunci când output-ul b' al lui \mathcal{A} este egal cu b, rezultă că:

$$Pr[D(\mathbb{G},q,g,g^{ imes},g^{ imes},g^{ imes y})=1]=Pr[PubK_{\mathcal{A},\Pi}^{eav}(n)=1]=\epsilon(n)$$

Dar cum problema DDH este dificilă, rezultă că există o funcție neglijabilă negl a.î.

$$\operatorname{negl}(n) \ge |Pr[D(\mathbb{G}, q, g, g^x, g^y, g^z) = 1] - Pr[D(\mathbb{G}, q, g, g^x, g^y, g^{xy}) = 1]|$$

$$=\left|\frac{1}{2}-\epsilon(n)\right|$$

Adică $\epsilon(n) \leq \frac{1}{2} + \operatorname{negl}(n)$

 \Box .

Important de reținut!

- ► Sistemul de criptare ElGamal
- ► Proprietatea de homomorfism