EVML

ARTIFICIAL NETWORKS

JEROEN VEEN

DEADLINES

 https://gitlab.com/jeroen_veen/evml-evd3/-/blob/main/schedule.md?ref_type=heads

ADVERSARIAL SWEATER OF DOOM

CONTENTS

- Machine learning vs deep learning
- Biological neuron
- Perceptron
- Multi-layer perceptron (MLP)
- Backpropagation
- Regression and classification MLP

BACKGROUND MATERIAL

- https://deeplizard.com/learn/playlist/PLZbbT5o_s2xq7Lwl2y8_Qtvu XZedL6tQU
- https://www.3blue1brown.com/topics/neural-networks
- MIT Deep Learning 6.S191 (introtodeeplearning.com)

MACHINE LEARNING VS DEEP LEARNING

Machine Learning

Deep Learning

Feature extraction + Classification

Autonomous feature definition

DEFINING AI, DL & ML

- Strong AI vs Applied AI
- Cognitive replication
- Rational process

Machine learning

- Performs predictive analysis
- Just fancy math & pattern matching

MACHINE LEARNING APPLIED TO VISION

Classical image processing

APPLICATION AREAS OF DEEP LEARNING

- Anomaly detection, image classification, image segmentation and object recognition.
- Higher precision and greater flexibility compared to conventional image analysis methods.

COSTS OF DEEP LEARNING

- Additional hardware
 Large memory and computing capacity is required, typically outsourced to e.g. GPUs (graphic cards).
- Power consumption:
 Large memory and computing capacity increase power consumption and thus the heat generation. This can be problematic for embedded systems.
- High amount of training data:
 Large number of training images required, which is sometimes difficult in the development of a Machine Vision application.

ON THE EDGE

Source: https://medium.com/da-labs/edge-ai-the-future-of-ai-d954ebc40a46

HYBRID APPROACH

- High performance with low memory and power requirement
- Image preprocessing with conventional methods.
- An artificial neural network then delivers the desired results with the preprocessed data.
- DL mingled with expert systems

BIOLOGICAL NEURONS

NEURAL CIRCUITS

- Population of neurons interconnected by synapses to carry out a specific function when activated
- Highly complex computations can be performed by a network of fairly simple neurons

BRAINBOW OF CEREBRAL CORTEX NEURONS LABELED WITH DIFFERENT COLORS

Source: Nature, Meet Nurture - Neuroscience News credited to Lichtman Lab, Harvard University.

THRESHOLD LOGIC UNIT (TLU)

- Elementary unit of an ANN
- Simplified model of a biological neuron
- Dot product followed by a non-linear function
- Performs linear binary classification

Source: Géron, ISBN: 9781492032632

PERCEPTRON

- Single layer of TLUs
- Multioutput classifier
- Connection weights

Source: Géron, ISBN: 9781492032632

HAN_UNIVERSITY
OF APPLIED SCIENCES

OUTPUT COMPUTATION

HOW TO FIND THE OPTIMAL WEIGHTS?

- Optimization
- Cost function

HAN_UNIVERSITY
OF APPLIED SCIENCES

Source: : Creative Commons Attribution 4.0 International

PERCEPTRON TRAINING ALGORITHM

- Multi-dimensional optimization problem
- Gradient descent

EXAMPLE OF ITERATIVE UPDATING

Source: https://en.wikipedia.org/wiki/Perceptron

PERCEPTRON LIMITATIONS

Linear decision boundary

Incapable of learning complex patterns

	AND	
$I_{\mathbf{f}}=$	l ₂	out
0	0	0
0	1	0
1	0	0
1	1	1

OR	
l ₂	out
0	0
1	1
0	1
1	1
	I ₂ 0

(0, 1)

(0, 0)

Source: https://mc.ai/solving-xor-with-a-single-perceptron
--

MULTILAYER PERCEPTRON

Feedforward neural network

Source: Géron, ISBN: 9781492032632

BACKPROPAGATION

Let's now watch

MIT's intro to deep learning https://www.youtube.com/watch?v=7sB052Pz0sQ?t=35m38s

3BLUE1BROWN SERIES S3 • A3
What is backpropagation really doing?
https://www.youtube.com/watch?v=Ilg3gGewQ5U

BACKPROPAGATION

- for each training instance, the backpropagation algorithm first makes a prediction (forward pass) and measures the error,
- then goes through each layer in reverse to measure the error contribution from each connection (reverse pass),
- and finally tweaks the connection weights to reduce the error (Gradient Descent step).

break the symmetry: randomly initialize weights and biases

ACTIVATION FUNCTIONS

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

ReLU

 $\max(0, x)$

Leaky ReLU

 $\max(0.1x, x)$

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

CLASSIFICATION MLP

$$\sigma(j) = rac{\exp(\mathbf{w}_j^ op \mathbf{x})}{\sum_{k=1}^K \exp(\mathbf{w}_k^ op \mathbf{x})} = rac{\exp(z_j)}{\sum_{k=1}^K \exp(z_k)}$$

probabilities green blue purple red

Source: http://rinterested.github.io/statistics/softmax.html

HAN_UNIVERSITY
OF APPLIED SCIENCES

REGRESSION MLP

- No activation function for output neurons required
- Use functions to bound outputs, e.g. relu, softplus, logistic function

Table 10-1 summarizes the typical architecture of a regression MLP.

Table 10-1. Typical regression MLP architecture

Hyperparameter	Typical value
# input neurons	One per input feature (e.g., 28 x 28 = 784 for MNIST)
# hidden layers	Depends on the problem, but typically 1 to 5
# neurons per hidden layer	Depends on the problem, but typically 10 to 100
# output neurons	1 per prediction dimension
Hidden activation	ReLU (or SELU, see Chapter 11)
Output activation	None, or ReLU/softplus (if positive outputs) or logistic/tanh (if bounded outputs)
Loss function	MSE or MAE/Huber (if outliers)

Source: Géron, ISBN: 9781492032632

EXERCISE

• https://developers.google.com/machine-learning/crash-course/reducing-loss/playground-exercise

- How did the lower learning rate impact convergence?
- Can you find a learning rate too slow to be useful?
- Better website: https://playground.tensorflow.org