Calculo I

FUNÇÕES E MODELOS Prof. Pablo Vargas

Tópicos Abordados

- Introdução
- Noções sobre conjuntos
- Intervalos
- Função
- Representando uma função
- Modelos matemáticos
- Tipos de Funções
- Combinando Funções
- Funções Compostas
- Propriedades das Funções

- Função é quando um valor depende de outro valor.
- Função possuem um Domínio, Imagem,
 Variável dependente e Variável independente.

Exemplo: Um avião que viaja a 300 km/h percorre uma distância s (espaço) em t horas. Ou seja,

$$s = 300t$$

Se o avião partindo de PVH para BSB demora cerca de 3 horas para chegar em seu destino, qual a distancia percorrida?

Exemplo: A equação $y = \sqrt{30 - x}$ define y como função de x.

O valor da raiz quadrada não pode ser menor que zero. Portanto,

$$30 - x \ge 0$$
$$30 \ge x$$
$$x \le 30$$

y=raiz30-x.ggb

Conjunto: é estabelecido quando agrupamos elementos com as mesmas características.

- Existem diversas formas de representar um conjunto. Exemplos:
 - ❖Os elementos do conjunto A são os números naturais pares menores que 10.

$$A = \{0, 2, 4, 6, 8\}$$

$$A = \{x \in N \mid x \text{ \'e par menor que 10}\}$$

❖x tal que x é par menor que 10

$$A=\{x \in N : x \in par \ e \ x < 10\}$$

Diagrama de Venn-Euler

Relação de pertinência: mostra se um elemento está dentro ou não de um conjunto, ou seja, se ele pertence ou não pertence a um conjunto.

∉ → Não Pertence

Exemplo: Considere o conjunto $B = \{-5, -3, -1, 1, 3, 5\}$.

Note que o valor de 5 pertence ao conjunto B, ou seja,

Note que o valor 0 não pertence ao conjunto B, ou seja,

$$0 \notin B$$

Relação de inclusão: mostra-nos se um conjunto está contido ou não dentro de outro.

$$C \rightarrow Contido$$
 $\not\subset \rightarrow N\~ao\ Contido$

Exemplo: Considere os conjuntos A = {1, 2, 3, 4, 5}, B = {2, 3} e C = {5, 6, 7}

Conjunto B está por completo dentro do conjunto A, portanto, o conjunto B está contido no conjunto A.

 $B \subset A$

❖Obs: podemos dizer que B é um subconjunto de A.

Exemplo: Considere os conjuntos A = {1, 2, 3, 4, 5}, B = {2, 3} e C = {5, 6, 7}

Entretanto, o conjunto C não está por completo no conjunto A, logo, o conjunto C não está contido no conjunto A.

 $C \not\subset A$

Conjunto unitário: quando possui um único elemento.

Exemplo: $A = \{5\}$

Conjunto vazio: quando não possui nenhum elemento.

Exemplo: $A = \{ \} \text{ ou } A = \{\emptyset\}$

Conjunto universo: é o que contém todos os outros conjuntos.

Exemplo: considere os conjuntos $A = \{-1, -2, 1, 2\}$, $B = \{0, 1, 2, 3\}$ e $C = \{1, -1, 2, -2\}$, veja que todos eles são compostos por números inteiros, ou seja:

$$A \subset \mathbb{Z}$$

$$B \subset \mathbb{Z}$$

$$\mathcal{C} \subset \mathbb{Z}$$

Conjunto complementar: é formado pela diferença B – A, ou seja, tomamos os elementos de B e retiramos os elementos de A contidos em B.

Obs: É um conceito que diz respeito apenas a uma relação de conjunto e subconjunto!

Exemplo: considere os conjuntos $A = \{1, 2\}$ e $B = \{0, 1, 2, 3\}$, calcule C = B - A.

$$C = \{0,3\}$$

Conjuntos das partes: conjunto das partes de A é formado por todos os possíveis subconjuntos dos elementos do conjunto A.

Exemplo: determine o conjunto das partes do conjunto $A = \{1, 2, 3\}$.

Obs: número de elementos do conjunto das partes de A é equivalente a 2^n .

Operações com conjuntos: podem ser dos tipos união ou intersecção ou diferença de conjuntos.

União: será um novo conjunto constituído por elementos que pertencem a, pelo menos, um dos conjuntos em questão.

$$A \cup B = \{x \mid x \in A \text{ ou } x \in B\}$$

Exemplo (União de conjuntos): Considere os conjuntos A = {0, 2, 4, 6, 8, 10} e B = {1, 3, 5, 7, 9, 11}:

A U B = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

Intersecção de conjuntos: será um novo conjunto formado por elementos que pertencem, ao mesmo tempo, a todos os conjuntos envolvidos.

$$A \cap B = \{x \mid x \in A \ e \ x \in B\}$$

Exemplo (Intersecção de conjuntos): Considere os conjuntos A = $\{1, 2, 3, 4, 5, 6\}$, B = $\{0, 2, 4, 6, 8, 10\}$ e C = $\{0, -1, -2, -3\}$

$$A \cap B = \{2, 4, 6\}$$

 $A \cap C = \{\} \text{ ou } \emptyset$
 $B \cap C = \{0\}$

Diferença de conjuntos: a diferença entre dois conjuntos, A e B, é dada pelos elementos que pertencem a A e não pertencem a B.

$$A - B = \{x \mid x \in A \ e \ x \notin B\}$$

Exemplo (Diferença de conjuntos): Considere os conjuntos $A = \{0, 1, 2, 3, 4, 5, 6, 7\}, B = \{0, 1, 2, 3, 4, 6, 7\} e C = \{\}.$

$$A - B = \{5\}$$

$$A - C = \{0, 1, 2, 3, 4, 5, 6, 7\}$$

$$C - A = \{\}$$

...significa que o conjunto possui cada número real entre dois extremos indicados, seja numericamente ou geometricamente.

Exemplos:

$$A = \{x \in \mathbb{R} : 1 < x < 2\} =]1, 2[$$

Notações: uma forma de representar os intervalos.

I. Intervalo aberto: quando seus extremos não estão incluídos.

$$]a,b[=\{x \in \mathbb{R}: a < x < b\}$$

$$]a,+\infty[=\{x\in\mathbb{R}:x>a\}$$

$$]-\infty, a[=\{x\in \mathbb{R}: x< a\}$$

Notações: uma forma de representar os intervalos.

I. Intervalo fechado: quando seus extremos estão incluídos.

$$[a,b]=\{x\in\mathbb{R}:a\leq x\leq b\}$$

Notações: uma forma de representar os intervalos.

I. Intervalo semiaberto/semifechado: quando um dos seus extremos são incluídos.

Função

"Chama-se função a toda correspondência f que atribui a cada valor de uma variável x em seu domínio um e um só valor de uma variável y num certo conjunto Y" (AVILA, 2014)

Função

Exemplo: Vamos representar uma função de números naturais de forma que, para cada número natural escolhido, obtenha-se o seu dobro. Ou seja, se escolhermos o **1**, teremos o número **2. Portanto..**

"...são conjuntos importantes para definirmos o que é função e compreendermos melhor o seu comportamento."

Domínio: é formado pelos valores que o x pode assumir.

Normalmente, o domínio e o contradomínio é conjunto dos números reais, entretanto, pode ser que haja algumas restrições para o domínio.

$$f: A \rightarrow B$$

A: é o domínio.

B: é o contradomínio.

```
Exemplo 1(Domínio): f(x) = 2x e f: A \rightarrow B, A = {1, 2, 3, 4, 5} e B = {1, 2, 3, 4, 5, 6, 7, 8, 9,10}. f: A \rightarrow B
```

D(f): {1, 2, 3, 4, 5}

Exemplo 2(Domínio): determine o domínio da função $y=\frac{1}{x}$

Note que o x **não** pode ser igual a 0, já que isso causaria uma indeterminação. Nesse caso o domínio da minha função não pode ser 0, então:

$$D(f) = R*$$

$$D(f) = \{x \in R : x \neq 0\}$$

$$D(f) =]-\infty, 0[U]0, +\infty[$$

Exemplo 3(Domínio): determine o domínio da função $y = \sqrt{x-5}$

Note que os valores que estão dentro da raiz não podem ser negativos, já que isso acarretaria em números complexos. Nesse caso o domínio da minha função não pode ser menor 0, ou seja:

$$x - 5 \ge 0$$

$$x \ge 5$$

$$D(f) = \{x \in R : x \ge 5\}$$

$$D(f) = [5, \infty[$$

Contradomínio: o contradomínio de uma função $f: A \rightarrow B$ é o conjunto B.

Exemplo: $f(x) = x^2 \text{ com } f: R \rightarrow R$

Note que por mais que nessa função a imagem nunca seja negativa, ainda sim o contradomínio pode ser os números reais.

Imagem: é um subconjunto do contradomínio formado por todos os elementos correspondentes de algum elemento do domínio.

Exemplo 1 (Imagem): Encontre a imagem da função $f(x) = x^2$ f: $R \rightarrow R$

 $f(1) = 1^2 = 1$, a imagem da função quando x é igual a 1 é 1.

 $f(2) = 2^2 = 4$, a imagem da função quando x é igual a 2 é 4.

Analisando a função de forma geral, para encontrarmos o conjunto imagem, sabemos que x² com x pertencente ao real sempre será um número positivo, logo, o conjunto imagem será:

Im(f) = R⁺ (conjunto dos números reais positivos).

Domínio, imagem e contradomínio

Exemplo 2 (Imagem): Seja f = 2x - 1 $f: A \rightarrow B$ em que $A = \{0, 1, 2, 3\}$ e $B = \{-1, 0, 1, 2, 3, 4, 5, 6, 7\}$, qual será o conjunto imagem?

R=O conjunto imagem será formado pelos valores de cada um dos elementos do conjunto substituídos em f .

$$f(0) = 2 \cdot 0 - 1 = 0 - 1 = -1$$
 $f(2) = 2 \cdot 2 - 1 = 4 - 1 = 3$ $f(3) = 2 \cdot 3 - 1 = 6 - 1 = 5$ $Im(f) = \{-1, 1, 3, 5\}$

Domínio, imagem e contradomínio

Graficamente:

a)
$$\int (x)=2x-1$$

b)
$$(x)=x^2$$

$$c) f(x) = \frac{1}{x-7}$$

$$d) g(x) = \frac{3}{\sqrt{3-x}}$$

a)
$$\int (x)=2x-1$$

$$D=\{x \in R\}$$

$$D=(-\infty,\infty)=]-\infty,\infty[$$

X	f(x)
-2	f(-2) = 2.(-2) - 1 = -5
-1	$f(-1) = 2 \cdot (-1) - 1 = -3$
0	f(0) = 2.0 - 1 = -1
1	f(1) = 2.1 - 1 = 1
2	f(2) = 2.2 - 1 = 3

a)
$$\int (x)=2x-1$$

$$D=\{x\in R\}$$

b)
$$\int (x) = x^2$$

D=(-
$$\infty$$
, ∞)
 $f(0) = 0^2 = 0$
 $f(-2) = (-2)^2 = 4$
 $f(-3) = (-3)^2 = 9$
I=[0, ∞)

c)
$$f(x) = \frac{1}{x-7}$$

$$x - 7 \neq 0$$

$$x \neq 7$$

$$D = \{x \in R \mid x \neq 7\}$$

$$D =] - \infty, 7[U]7, \infty[$$

d)
$$g(x) = \frac{3}{\sqrt{3-x}}$$

 $3 - x > 0$
 $3 > x$
 $D = \{x \in R \mid x < 3\}$
 $D =] - \infty, 3[$

Exemplo

Qual o domínio de
$$h(x) = \frac{\sqrt{6+x}}{\sqrt{x-2}}$$

$$6 + x \ge 0$$

$$x \ge -6$$

$$x - 2 > 0$$

$$D=\{x \in R \mid x > 2\}$$

- Verbal
- Numérica
- Visual
- Algébrica

Verbal

- "C" é o custo de enviar uma carta de peso "g" pelos correios.
- 1 dollar custa 2,30 reais.

Numérica

C (Reais)	g (gramas)
20	0 <g<500< td=""></g<500<>
40	500 <g<1000< td=""></g<1000<>
80	g<1000

Visual

Algébrica

$$A = \pi r^2$$

Funções definidas por partes

$$f(x) = \begin{cases} 1 - x & se \ x \le 1 \\ x^2 & se \ x > 1 \end{cases}$$

Funções definidas por partes

Esboce o gráfico dos itens abaixo: † y

a)
$$f(x) = x + 2$$

x	f(x) = x + 2
-2	0
-1	1
0	2
1	3
2	4
3	5

Esboce o gráfico dos itens abaixo: † y

b)
$$f(x) = \frac{1}{x^2 - 1}$$

x	$f(x) = \frac{1}{x^2 - 1}$
-2	$f(x) = \frac{1}{(-2)^2 - 1} = \frac{1}{4 - 1} = \frac{1}{3}$
-1	$f(x) = \frac{1}{(-1)^2 - 1} = \frac{1}{1 - 1} = \frac{1}{0} = \nexists$
0	$f(x) = \frac{1}{0^2 - 1} = \frac{1}{0 - 1} = \frac{1}{-1} = -1$
1	$f(x) = \frac{1}{1^2 - 1} = \frac{1}{1 - 1} = \frac{1}{0} = \nexists$
2	$f(x) = \frac{1}{2^2 - 1} = \frac{1}{4 - 1} = \frac{1}{3} =$

Esboce o gráfico dos itens abaixo: 🕴 y

b)
$$f(x) = \frac{1}{x^2 - 1}$$

Esboce o gráfico dos itens abaixo: † y

c)
$$f(x) = \begin{cases} x, & 0 \le x \le 1 \\ 2 - x, & 1 < x \le 2 \end{cases}$$

$$D = [0,2]$$

$$f(x) = \begin{cases} x, & 0 \le x \le 1 \\ 2 - x, & 1 < x \le 2 \end{cases}$$

х	$f(x) = \begin{cases} x, & 0 \le x \le 1 \\ 2 - x, & 1 < x \le 2 \end{cases}$	
-2	∄	
-1	∄	
0	0	
1	1	
2	0	

Esboce o gráfico dos itens abaixo:

c)
$$f(x) = \begin{cases} x, & 0 \le x \le 1 \\ 2 - x, & 1 < x \le 2 \end{cases}$$

Exercícios (retorno 10:25)

Esboce o gráfico dos itens abaixo:

d)

C (Reais)	g (gramas)
20	0 <g<500< td=""></g<500<>
40	500 <g<1000< td=""></g<1000<>
80	g<1000

Esboce o gráfico dos itens abaixo:

e)
$$f(x) = |x| = \begin{cases} x & se \ x \ge 0 \\ -x & se \ x < 0 \end{cases}$$