

Chapter 5 **Advanced Query Processing**

·E5

Overview

- 5.1 Query Processing in Big Data Systems
- 5.2 Query Processing in Deductive Database Systems
- 5.3 Queries in Data Integration Systems

Literature

Karau H. & Warren, R.: High Performance Spark. O'Reilly, 2017.

Ré, C., & Salihoglu, S.: Topics in DBMS. Course at Stanford University, https://web.stanford.edu/class/cs345d-01/Bauer, A. & Günzel, H. (ed.) Data-Warehouse-Systeme: Architektur, Entwicklung, Anwendung dpunkt-Verlag, 2001 Ceri, S.; Gottlob, G. & Tanca, L. Logic programming and databases Springer Publishing Company, Incorporated, 2012

Quix, C. Metadata Management for quality-oriented Information Logistics in Data Warehouse Systems (in German) RWTH Aachen University, 2003

5.1 Query Processing in Big Data Systems

- Huge amount of data to be processed
 - For example: Google in 2003
 - 20 billion web pages → 400 TB of data
 - Requires ~4 months to read data (using a disk with ~30 MB/sec)
 - Requires ~1000 disks
 - This for just storing and reading the data, but you want to process the data, e.g.,
 - Process crawled documents
 - Process web request logs
 - Compute page rank
 - Build inverted indexes
 - **–** ...
- → Cannot be done on a single machine, needs massive parallel distributed system

Requirements for a Distributed System

- 1. Scalable
- 2. Fault-Tolerant
- 3. Easy To Program
- 4. Applicable To Many Problems

Challenges in Distributed Programming

- Lots of programming work
 - communication and coordination
 - work partitioning
 - status reporting
 - optimization
 - locality
- Needs to be repeated for every problem you want to solve
- Needs to be fault-tolerant
 - One server may stay up three years (1,000 days)
 - If you have 10,000 servers, expect to lose 10 a day

Map-Reduce

- Programming pattern for parallel computation in distributed system
- Defined by two functions:
 - Map(data) \rightarrow (key, value)
 - Reads input data and emits key-value pairs
 - Keys are not necessarily unique in emitted pairs
 - Reduce(key, values) → (key, values)
 - Gets input from Map function, a set of values for a single key
 - Input and output structure should be the same (some implementations require that output is a single value)
 - Reduce can be called multiple times for the same key
- Map and Reduce jobs can run on different nodes

Map-Reduce

Simple Example for Map-Reduce

(in MongoDB syntax)

Query: Sum of items in customers' shopping carts, grouped by product ID

Input: Customer collection

```
firstname: "John",
lastname: "Doe",
address: { ... },
cart: [ { prodid: 3456,
          qty: 2},
       { prodid: 6789,
          qty: 1}]
```

```
map=function() {
  if(this.cart!=null) {
    this.cart.forEach(function(item) {
      emit(item.prodid, { sum: item.qty });
    });
  }
}
```

```
reduce=function(key, values) {
  var s=0;
  values.forEach(function(value) {
    s+=value.sum;
  });
  return ( { sum: s} );
}
```


Example

A More Complex Example (1)

Join between customers and products

Input: Customers + products collection

```
firstname: "John",
lastname: "Doe",
address: { ... },
cart: [ { prodid: 3456,
          qty: 2},
        { prodid: 6789,
          qty: 1}]
prodid: 3456,
price: 34
prodid: 6789,
price: 23
```

Query: The sum of items and their value in all shopping carts, grouped by product ID

```
map=function() {
 if(this.cart!=null) {
  this.cart.forEach(function(item) {
    emit(item.prodid, { qty: item.qty,
                          price: null,
                          total: null });
  });
 if(this.prodid!=null) {
  emit(this.prodid, {qty: 0,
                      price: this.price,
                      total: 0 });
```


A More Complex Example (2)

Join between customers and products

Input: Customers + products collection

```
firstname: "John",
lastname: "Doe",
address: { ... },
cart: [ { prodid: 3456,
          qty: 2},
        { prodid: 6789,
          qty: 1}]
prodid: 3456,
price: 34
prodid: 6789,
price: 23
```

Query: The sum of items and their value in all shopping carts, grouped by product ID

```
man-function()
  reduce=function(key, values) {
    var res = { qty : 0, price: null, total: null };
    values.forEach(function(value) {
     res.qty+=value.qty;
     if(res.price!=null) {
       res.total+=res.price*value.qty;
     if(res.price==null && value.price!=null) {
       res.price=value.price;
       res.total=res.price * res.qty;
    return res;
```


A More Complex Example (3)

Join between customers and products

Map Output Reduce Input Reduce Output id: 345, qty: 1, ... id: 456, qty: 1, price: null, total: null id: 345, id: 345, qty: 3, ... id: 345, qty: 1, price: null, total: null qty: 6, price: 34, id: 345, qty: 2, ... id: 345, qty: 3, price: null, total: null total: 204 id: 345, price: 34, . id: 567, qty: 2, price: null, total: null id: 456, qty: 1, ... id: 456, id: 345, qty: 2, price: null, total: null qty: 2, id: 456, qty: 1, ... id: 456, qty: 1, price: null, total: null price: 45, total: 90 id: 456, price: 45, .. id: 345, price: 34, qty: 0, total: 0 id: 567, id: 456, price: 45, qty: 0, total: 0 id: 567, qty: 2, ... qty: 2, price: 56, id: 567, price: 56, qty: 0, total: 0 id: 567, price: 56, ... total: 112

Key Points of Map-Reduce

- Map-Reduce: pattern enabling parallel query processing over a cluster
- Many implementations, e.g., in Hadoop with distributed file system or NoSQL systems with database query processing
- No coordination is required between individual map and reduce jobs
- Sharding & replication fits nicely into Map-Reduce pattern
 - Parallelism is increased: Map tasks can be distributed to different shards or their replicas
 - Availability is increased: if a node is not available, replica can take over the job
- Mapping of input data is important
 - Key determines grouping
 - Data structure of value is output

MapReduce Execution

Fault-Tolerance: Handled via re-execution

On worker failure

- Detect failure via periodic heartbeats
- Re-execute completed and in-progress map tasks
- Re-execute in progress reduce tasks
- Task completion committed through master

Master failure

- Is much more rare
- Fail-over to secondary master nodes (e.g., name node, resource manager)

Map Reduce Limitations

- Many queries/computations need multiple MR jobs
- 2-stage computation too rigid
- Example: Find the top 10 most visited pages in each category

Visits

UrlInfo

User	Url	Time
Amy	cnn.com	8:00
Amy	bbc.com	10:00
Amy	flickr.com	10:05
Fred	cnn.com	12:00

Url	Category	PageRank
cnn.com	News	0.9
bbc.com	News	8.0
flickr.com	Photos	0.7
espn.com	Sports	0.9

Example:

Top 10 most visited pages in each category

Map Reduce is not a good model for data processing

- Required
 - Support for algebra operations: join, selection, projection, group by, ...
 - More abstract language to implement data transformations and queries
- → High-level languages that are compiled into Map-Reduce jobs
 - → Apache Pig (Pig Latin)
 - → Apache Hive (HiveQL)

Apache Pig

- High-level language for analyzing large data sets
- Apache project since 2007, mainly supported by Twitter and Hortonworks
- Pig Latin: Procedural language with algebra-like operations (join, selection, projection, ...)
- Workflows can be defined as step-by-step procedural scripts
- Pig Latin can be compiled to jobs on
 - Hadoop
 - Tez
 - Spark

Based on: Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, Andrew Tomkins: Pig latin: a not-so-foreign language for data processing. SIGMOD Conference 2008: 1099-1110


```
= load '/data/visits' as (user, url, time);
visits
gVisits
            = group visits by url;
urlCounts = foreach gVisits generate url, count(visits);
urlInfo
            = load '/data/urlinfo' as (url, category, pRank);
urlCategoryCount = join urlCounts by url, urlInfo by url;
gCategories = group urlCategoryCount by category;
topUrls = foreach gCategories generate top(urlCounts,10);
store topUrls into '/data/topUrls';
```



```
= load '/data/visits' as (user, url, time);
visits
gVisits
            = group visits by url;
urlCounts = foreach gVisits generate url, count(visits);
urlInfo
            = load /data/urlinfo' as (url, category, pRank);
urlCategoryCount = join urlCounts by url, urlInfo by url;
gCategories =
               Operates directly over files
                                                 ory;
topUrls = fore
                                                 Counts,10);
store topUrls into 'data/topUrls';
```



```
= load '/data/visits' as (user, url, time);
visits
gVisits
            = group visits by url;
urlCounts = foreach gVisits generate url, count(visits);
            = load '/data/urlInfo' as (url, category, pRank);
urlInfo
urlCategoryCount = join urlCounts by url, urlinfo by url;
                   Schemas optional;
gCategories
                                                ory;
             Can be assigned dynamically
topUrls = fd
                                                Counts,10);
                   → Schema-on-Read
store topUrls into '/data/topUrls';
```



```
visits
gVisits
urlCount

• Load, Store
• Group, Filter, Foreach

urlCategoryCount = join urlCounts by url, urlInfo by url;
```

```
gCategories = group urlCategoryCount by category;
topUrls = foreach gCategories generate top(urlCounts,10);
```

store topUrls into '/data/topUrls';


```
visits = load '/data/visits' as (user, url, time);
gVisits = group visits by url;
urlCounts = foreach gVisits generate url, count(visits);
```

```
urlInfo = load '/data/urlInfo' as (url, category, pRank);
urlCategoryCount = join urlCounts by url, urlInfo by MR Job 2
```

```
gCategories = group urlCategoryCount by categor MR Job 3 topUrls = foreach gCategories generate top(urlCounts,10);
```

store topUrls into '/data/topUrls';

Execution of Pig Latin Example: Compiles also to Map-Reduce jobs

Apache Hive

- Data warehouse software for large datasets in distributed storage
- Hive-QL: SQL-like declarative language
 - e.g., SELECT *, INSERT INTO, GROUP BY, SORT BY
- Compiles to
 - Hadoop
 - Tez
 - Spark

Based on: Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka, Suresh Anthony, Hao Liu, Pete Wyckoff, Raghotham Murthy: Hive - A Warehousing Solution Over a Map-Reduce Framework. PVLDB 2(2): 1626-1629 (2009)

Hive Example

INSERT TABLE UrlCounts
(SELECT url, count(*) AS count
FROM Visits
GROUP BY url)

INSERT TABLE UrlCategoryCount
(SELECT url, count, category
FROM UrlCounts JOIN UrlInfo ON (UrlCounts.url = UrlInfo
.url))

SELECT category, topTen(*)
FROM UrlCategoryCount
GROUP BY category

27

Apache Hive Architecture

Hive Execution Example: Compiles also to Map-Reduce jobs

Apache Spark

- See also chapter 4.2.2
- Queries can be also specified in Spark SQL (SQL dialect of Apache Spark)
- DataFrames represent relational tables, implemented as RDDs
- Query processing are transformations & actions on RDDs/DataFrames

Apache Spark Example

```
var visits=spark.read.format("com.databricks.spark.csv")
       .option("header", "true").load("visits.csv")
var urlinfo=spark.read.format("com.databricks.spark.csv")
       .option("header", "true").load("urlinfo.csv")
visits.createOrReplaceTempView("visits")
                                                   Create tables for
urlinfo.createOrReplaceTempView("urlinfo")
                                                     SQL queries
val q=spark.sql(,,SELECT v.url, u.category, count(*)
              FROM visits v, urlinfo u
              WHERE v.url=u.url
              GROUP BY v.url, u.category")
                              Filtering of top 10 URLs by
q.explain()
                               category has to be done
         Show query plan
                                     separately
```


Apache Spark Query Plan

```
scala> q.explain()
== Phusical Plan ==
*HashAggregate(keys=[url#13, category#40], functions=[count(1)])

    Exchange hashpartitioning(url#13, category#40, 200)

   +- *HashAggregate(keys=[url#13, category#40], functions=[partial_count(1)])
      +- *Project [url#13, category#40]
         +- *BroadcastHashJoin [url#13], [url#39], Inner, BuildRight
            :- *rroject Luri#131
              +- *Filter isnotnull(url#13)
                  +- *FileScan csv [url#13] Batched: false, Format: CSV, Location: InMemoryFileIndex
[file:/home/scala/visits.csv], PartitionFilters: [], PushedFilters: [IsNotNull(url)], ReadSchema: st
ruct<url:string
              BroadcastExchange HashedRelationBroadcastMode(List(input[0, string, true]))
               +- *Project [url#39, category#40]
                  +- *Filter isnotnull(url#39)
                     +- *FileScan csv [url#39,category#40] Batched: false, Format: CSV, Location: In
MemoryFileIndex[file:/home/scala/urlinfo.csv], PartitionFilters: [], PushedFilters: [IsNotNull(url)]
 ReadSchema: struct<url:string,category:string>
scala>
```

- Broadcast operations
 - → Shuffle data between nodes in cluster

Default Join Method: Shuffle Join

- Remember: Partitioning method assigns a partition to a data object
 - Hash, range, or custom partitioners can be chosen in Spark
- If both RDDs use different custom partitioners (semantics is unknown for Spark), data has to be shuffled with a common partitioner

Join with Shuffle for only one RDD

- If RDD A has a known partitioner, RDD B does not, then only RDD B needs to be shuffled with the partitioner of RDD A
- Narrow dependencies: a partition depends only on one or two "parent" partitions

• Wide dependencies: a partition depends on multiple parent

partitions

Co-located Join

 If both RDDs have the same partitioner, then the partitions to be joined are on the same node → join is executed on these nodes

Broadcast Hash Join

- No common partitioner for RDDs
- Smaller RDD is sent to each worker node
- In the best case, this RDD fits into memory

Retain only those columns of the RDD which are necessary for the join (like semi-join, index-only query, optimized nested loop join →

5.2 Basic Principles of Deductive DBs

Motivation (1)

- Some queries cannot be expressed in SQL or relational algebra
 - Give me a list of all parts that are required to build the component X.
 - Give me a list of all known ancestors of "John Doe".
- Recursion is required to express such queries
- Datalog is a language that allows recursion
 - Note: SQL-99 also includes recursion, but it has not been adopted to all DB systems
- Deductive DBs and their languages are the foundation for database theory

Motivation (2) - Data Warehouses (DWH)

- Organizations use DWHs to analyze current and historical data to identify useful patterns and support business strategies
- Emphasis is on complex, interactive, exploratory analysis of very large datasets created by integrating data from across all parts of an enterprise; data is fairly static

■ Data Warehouses

- Historical data for Decision Support
- Long-running transactions
- Huge amount of data, integrated from various sources
- Focus on queries rather than updates
- Mappings between data sources and data warehouse can be expressed as logical rules

Data Warehouse Architecture

Remember: Domain Relational Calculus

(see Chapter 2.1.4)

- Atomic formulas are $r(X_1,...,X_k)$ with r being a k-ary relation and $X_1,...,X_k$ being variables or constants
- A database can be represented in the same way
 - A database is a set of facts
 - A fact is an atomic relation predicate only with constants representing one tuple of a relation, e.g.

```
empl(122, 'Miller', 'single', 35.000,4)
empl(101, 'Meyer', 'married', 55.000,4)
dept(4, 'computer', 101)
office(2,6232, 122)
```

. . .

DB Schema:

EMPL(eno, name, marstat, salary, dno)

DEPT(dno, dname, mgr)

Integrity constraints:

 $EMPL[dno] \subseteq DEPT[dno]$

 $DEPT[mgr] \subseteq EMPL[eno]$

Rules and Queries in Deductive DBs

Rules: Horn clauses

$$p := r_1 \wedge r_2 \wedge ... \wedge r_k$$

where p and r_i are relation predicates. e.g.

Semantics:
$$p(X,Y)$$
 is true if there exist some X,Y,Z such that every r_i is true

$$p(X,Y) := r_1(X,Z) \land r_2(Z,Y)$$

manager(SSN,N) := empl(SSN,N,M,S,D) \land dept(D,DN,SSN)

- Queries
 - Pure form with "?-", e.g.

Usually, use of special query predicate, e.g.

$$q(X,Y) := r_1(X,Z) \wedge r_2(Z,Y)$$

- Constraints
 - Rules without head that must be always false, e.g.

:- empl(S,N,M,Salary,D) \(\times \) Salary<10.000

Implementation of Databases – Advanced Query Processing

More expressive constraints than PKs and FKs are possible, similar to Assertions in SQL

41

Syntax & Terminology

- Syntactic conventions
 - Predicate names start with a lower case character
 - Variable names start with an upper case character
 - String atoms are enclosed in 'single quotes'
- Terminology

```
Head Body (Consequence) (Condition)
p(X,Y) := r_1(X,Z) \wedge r_2(Z,Y)
Implication
```

- Distinguished variables: appear in head and body, e.g. X and Y (∀)
- Non-distinguished (existential) variables: appear only in body, e.g. Z (∃)
- Anonymous variable: _
- Datalog vs. Prolog
 - Prolog allows function symbols as arguments of a predicate,
 Datalog does not

Examples

Define rules for the Tax50 from chapter 3:

```
CREATE VIEW TAX50 AS SELECT e.* FROM EMPL e
WHERE (e.marstat='single' AND e.salary<40.000)
OR (e.marstat='married' AND e.salary<80.000);</pre>
```

Constraint: an employee must not earn more than his/her manager

Model-theoretic approach

- Theory: schema (S) + integrity constraints (IC)
- Interpretation: database state
- Queries search through the interpretation
- Modifications must take the theory into consideration

Proof-theoretic approach

- Theory: Facts and deduction rules (T) + integrity constraints (IC)
- Queries are theories, which must be proved by using the axioms T.
- A modification adopts a new theory (e.g., T') and it should not violate the integrity constraints, i.e.

$$T' \models IC$$

Example

```
T: empl(12, 'jim', 50000, 2).
empl(11, 'jones', 60000, 2).
dept(2, 'R&D', 11).
```

works_dir_for(X,Y) :- empl($_$,X, $_$,D), dept(D, $_$,M), empl(M,Y, $_$, $_$).

```
works\_for(X,Y) :- works\_dir\_for(X,Y).
```

works_for(X,Y) :- works_dir_for(X,Z), works_for(Z,Y).

same_manager(X,Y) :- works_for(X,M), works_for(Y,M), X<>Y.

IC: :- $empl(X,_,S,_)$, S<10000.

:- $empl(X,_,S,_), S>90000$.

Query: ? - works_for(X, jones).

DB Schema:

EMPL(<u>eno</u>, name, salary, dno) DEPT(<u>dno</u>, dname, mgr) **Integrity constraints:** EMPL[dno] ⊆ DEPT[dno]

DEPT[mgr] ⊆ EMPL[eno]

Definition of DDBs

Definition 5.1:

A *deductive database* consists of a set F of facts, a set R of deduction rules, a set IC of integrity constraints and the set F* of all explicit and derived (implicit) facts.

- EDB: extensional DB
 - Relations defined as a set of facts in F
 - Base relations
 - Set of facts
- IDB: intensional DB
 - Relations defined by rules in R
 - Derived relations

Datalog and its variations

- Datalog—: Negation is allowed
- NR-Datalog: Recursion is not allowed

Semantics of Deductive Databases

Deductive database D=(F, R, IC)

Question:

- What is the formal definition of F*?
- Is F* uniquely determinable?
- What is the meaning of "derivable"?

Problems are caused by negation and recursion, therefore the classes NR-DATALOG, NR-DATALOG¬ and DATALOG¬ have to be considered separately.

Semantics of DDBs: NR-Datalog

F* is formally defined as the minimal *Herbrand model* of D.

Definition 5.2 (Herbrand Base of D):

All positive ground literals are constructable from predicates in D and constants in D.

Definition 5.3 (Herbrand Model of D):

A *Herbrand Model* is every subset M of the Herbrand Base of D, such that:

Every fact from F is contained in M. For every ground instance of a rule in D over constants in D, if M contains all literals in the body, then M contains the head as well.

A minimal model does not properly contain any other model.

Example: NR-DATALOG

F: q(a,b) t(b) R: $p(X) \leftarrow q(X,Y), t(Y)$ q(b,a)

The Herbrand base is

q(a,a)	q(a,b)	p(a)	t(a)
q(b,a)	q(b,b)	p(b)	t(b)

• The Herbrand models M_i are consequently

The ground instances of the rule are thus (blue = contained in M_i)

p(a)	\leftarrow	q(a,a), t(a)	and	p(a)	←	q(a,a), t(a)
p(a)	\leftarrow	q(a,b), t(b)	G. 1 G.	p(a)	\leftarrow	q(a,b), t(b)
p(b)	\leftarrow	q(b,a), t(a)		p(b)	\leftarrow	q(b,a), t(a)
p(b)	\leftarrow	q(b,b), t(b)		p(b)	\leftarrow	q(b,b), t(b)

Least Fixpoint for NR-Datalog

 F^* is created by the repeated (finite) application of the immediate consequence operator T_D (naive evaluation strategies) starting from F results in derivation of implicit facts from F:

$$T_D(T_D(....(T_D(F))...))$$

Definition 5.4:

For a subset S of a Herbrand Base the application of T_D to S is defined as:

 $T_D(S) := \{ H : (H \leftarrow B) \text{ is a ground instance of a rule such that } S \text{ contains all literals in } B \}$

Theorem 5.1: (v. Emden, Kowalski 1976)

The uniquely determined least fix point of T_D* is the minimal Herbrand Model of D

Compute the least fixpoint!

q(X) := r(X,Y), NOT b(X).

c(1,2).

b(3).

r(X,Y) := c(X,Y), b(Y).

c(2,3).

b(4).

r(X,Y) := c(X,Z), r(Z,Y).

c(1,4).

Semantics of DDBs: NR-DATALOG

Problem: If negation occurs in the body of a rule, then there may be <u>no</u> <u>unique</u> minimal Herbrand model any more. Which one is the "natural model" of D, and thus represents the intended semantics of D?

Example:

F:
$$q(a,b)$$
 R: $p(X) \leftarrow q(X,Y)$, NOT $t(Y)$ $q(b,a)$ $t(b)$

The minimal Herbrand models are

 M_1 : $F \cup \{p(b)\}$ M_2 : $F \cup \{t(a)\}$ p(b) is derivable from F, M₁ is the "natural" model of D

No reason why t(a) should be true.

Ground instances of the rules (in M₁, in M₂, in M₁ and M₂):

```
\begin{array}{cccc} p(a) & \leftarrow & q(a,a), \ NOT \ t(a) \\ p(a) & \leftarrow & q(a,b), \ NOT \ t(b) \\ p(b) & \leftarrow & q(b,a), \ NOT \ t(a) \\ p(b) & \leftarrow & q(b,b), \ NOT \ t(b) \end{array}
```

 Main problem in presence of negation: characterization of the "natural" model of D (representing the intended semantics of D).

Example (NR-DATALOG⁻)

Least fixpoint characterization cannot be directly adopted

F:
$$q(a,b)$$
 $s(b)$ R: $p(X) \leftarrow q(X,Y)$, NOT $t(Y)$ $q(b,a)$ $t(Y) \leftarrow s(Y)$

- First application of T_D:
 - No t-fact in F \Rightarrow p(a) and p(b) are derivable
 - s(b) in F \Rightarrow t(b) is derivable
- Second application of T_D:
 - No new fact derivable ⇒ fixpoint reached
- It follows therefore: least fixpoint of T_D^* : $F \cup \{t(b), p(a), p(b)\} \neq \text{``natural'' Herbrand model:}$
- Reason (intuitively): "t(b) arrives too late for preventing derivation of p(a)."

·E5

Stratification

Predicates "call" each other in a hierarchical order:

- ⇒ Predicates can be *layered* (or: *stratified*); no two predicates in a layer (*stratum*) depend negatively on each other. If a predicate p depends on a negative predicate r, then r is in a lower layer.
- If application of T_D is done layer by layer, the least fixpoint of D is consequently the *natural* Herbrand model.
- It follows therefore:
 - 1. layer: F
 - 2. layer: $F \cup \{t(b)\}$
 - 3. layer: $F \cup \{t(b)\} \cup \{p(b)\}$

Least Fixpoint for Recursive Stratified DATALOG- Programs

Problem: The recursion leads possibly to more than one application of T_D per layer. If negations do not occur in the recursion cycle, there will be no problem.

Example:

F:
$$q(b,c)$$
 $s(c)$ R: $p(X)$ $\leftarrow q(X,Y)$, NOT $t(Y)$ $q(b,a)$ $t(Y)$ $\leftarrow q(Y,Z)$, $t(Z)$ $t(Y)$ $\leftarrow s(Y)$

- From this it follows:
 - 1. layer: F
 - 2. layer: $F \cup \{t(c)\}$

 $F \cup \{t(c)\} \cup \{t(b)\}$

3. layer: $F \cup \{t(c)\} \cup \{t(b)\} \cup \{p(b)\}$

Non-stratified DATALOG¬ Programs

Problem: Negation in the recursion cycle violates the stratification condition.

Example:

F:
$$q(a,b)$$
 $s(c)$ R: $p(X) \leftarrow q(X,Y)$, NOT $t(Y)$ $q(b,a)$ $t(Y) \leftarrow q(Y,Z)$, NOT $t(Z)$ $t(Y) \leftarrow s(Y)$

- Even when applying T_D for t-rules only results in "anomalies":
 - t(a) is generated, as t(b) is initially missing
 - t(b) is generated, as t(a) is initially missing

Do t(a) and t(b) belong to the "natural" Herbrand model now? Is there
any reasonable "natural" Herbrand model at all?

Example (cont.)

t(a) and t(b) are not "natural" consequences of R ∪ F:

t(a)
$$\leftarrow$$
 q(a,Z), NOT t(Z)
b b
t(b) \leftarrow q(b,Z), NOT t(Z)
a a

Consequently it results in two exclusive cases:

```
either NOT t(b), consequently t(a) or NOT t(a), consequently t(b).
```

• So that it yields also two different models:

```
F \cup \{p(a),\,t(a)\} \qquad \text{, also NOT } t(b) or F \cup \{p(b),\,t(b)\} \qquad \text{, also NOT } t(a).
```


Local Stratification

Example DATALOG[¬] [cont.]:

```
F: q(a,b) R: t(X,Y) \leftarrow q(X,Y), NOT t(Y,X) q(b,c) t(X,Y) \leftarrow t(X,Z), t(Z,Y), NOT t(Y,X)
```

R is not stratified, but "locally stratified":

"Reachable" instances of R:

```
t(a,b) \leftarrow q(a,b), NOT t(b,a)

t(b,c) \leftarrow q(b,c), NOT t(c,b)

t(a,c) \leftarrow t(a,b), t(b,c), NOT t(c,a)
```

- No recursion cycle involves negation among "reachable" instances.
- Test for local stratification expensive, but can be computed "on the fly", i.e., during evaluation of the rules without computing the (local) stratification [Bry, 1989]

Are these programs stratified?

Program 1

q(X) := NOT p(X), t(X).

p(X) := s(X,X), NOT r(X).

s(X,Y) := s(Y,X), t(Y).

r(X) :- t(X), NOT s(X,X).

Program 2

p(X) := q(X,Y), NOT t(Y).

t(Y) := q(Y,Z), NOT t(Z).

t(Y) := s(Y).

Bottom-Up vs. Top-Down Evaluation

Bottom-Up (Forward Chaining):

- Generation of implicit facts at evaluation-time
- Evaluation of the query against temporarily materialized implicit databases.
 (direct implementation of least fixpoint computation)
- Drawback: when materializing F*, the particular query Q is not considered → many irrelevant answers and intermediate results may be generated.

Top-Down (Backward Evaluation):

- Generation of subqueries until queries to base relations are reached
- Evaluation of base subqueries against F and upward propagation of answers to the top query
- As opposed to bottom-up approach: constants in top query and subqueries are passed downwards and provide restrictions while evaluating base queries.
- Drawback: Inefficient (or not terminating) for recursive queries

Example: Top-Down Evaluation

F:
$$q(a,b)$$
 $q(a,c)$ $t(d)$ R: $p(X,Y) \leftarrow q(X,Z)$, $r(Z,Y)$ $q(b,c)$ $q(b,d)$ $r(Z,Y) \leftarrow q(Z,Y)$, NOT $t(Y)$

Q: p(a,Y)

Match query with head of 1st rule and generate subqueries for body:

- \rightarrow q(a,Z), r(Z,Y)
 - q(a,Z) can be proven with facts from F, e.g., take q(a,c)
- \rightarrow q(a,c), r(c,Y) prove r(c,Y) by using second rule
- q(c,Y), NOT t(Y) q(c,Y) can be proven by q(c,a) in F
- \longrightarrow q(c,a), NOT t(a)
 - NOT t(a) can be also proven by F, thus, r(c,a) and p(a,c) are true
- derivation of one result finished: p(a,c)
- backtrack to choice point and generate next result (if required)

Choice

Point

Example: Bottom-Up Evaluation

Example: Bottom-Up Evaluation

Integrity Constraints

Definition 5.5:

Integrity constraints (IC) are conditions that have to be satisfied by a database at any point in time (expressing general laws which cannot be used as derivation rules).

Definition 5.6:

Integrity-checking tests, whether a particular update is going to violate any constraint.

Main problem for IC-tests:

Full evaluation of all ICs before every update would be very expensive and would decrease update performance significantly.

Solution:

Determine a reduced set of **simplified ICs** for which the checking guarantees satisfaction of **all ICs**.

This approach leads to a specialization of constraints.

Representation of Constraints and Updates

- Integrity constraints expressed as **Datalog**¬ rules for a meta predicate "inconsistent".
- Updates are either **atomic** insertions / deletions of facts or **general** updates (depending on a condition, which is a Datalog query to be evaluated before the update).

Example:

```
inconsistent ← employee(X), works_for(X,X)

(original constraint: no employee works for himself)
```

```
insert works_for(john, jim)
```

delete employee(X) where works_for(X, john)

Constraint Specialization

Input:

- Update U={delete L, insert L}
- Integrity constraints IC (satisfied before the update)
- IC is affected by U, if IC contains a literal L* that is unifiable with L (resp. NOT L), if U is an insertion (resp. deletion).
- 2. For every such L*, IC $_{\sigma}$ is a relevant instance of IC with respect to U. (where σ is a most-general-unifier of L and L*)
- Simplified relevant instances of IC with respect to U are obtained by deleting L* from relevant instances.

So far, generalized updates, derivation rules and negations have not been taken into account yet.

Example: Constraint Specialization

IC: inconsistent \leftarrow p(X,Y), NOT s(X) (corresponding: FORALL X,Y: p(X,Y) \Rightarrow s(X))

- insert p(a,b) IC affected! inconsistent $\leftarrow p(a,b)$, NOT s(a)
- delete p(a,b)
- insert s(a)
- delete s(a)
 inconsistent ←p(a,Y), NOT s(a)

IC affected!

Generalized Updates

Example:

IC: inconsistent \leftarrow p(X,Y), NOT s(X)

- Insert p(X,b) where r(X)
- 1. IC is affected by U, if IC contains a literal L* that is unifiable with L (resp. NOT L), if U is an insertion (resp. deletion).
- 2. For every such L* IC_{σ} is a relevant instance of IC regarding U.
- Simplified relevant instances of IC regarding U are obtained by deleting L* from relevant instances.

Instead of a simplified relevant instance, we end up with a specialized constraint:

inconsistent \leftarrow r(X), NOT s(X)

5.3 Queries in Data Integration Systems

Definition 5.7:

Data integration is the problem of providing unified and transparent access to a collection of data stored in multiple, autonomous, and heterogeneous data sources

Motivations for data integration

- Company mergers
- Reorganization of companies
- Restructuring of databases in an organization
- Combination of data from several internal and external sources for data analysis (e.g. data warehousing, OLAP)

General Integration Architecture

[Quix, 2003]

Data Integration Approaches

- Distributed databases
 - Data sources are homogeneous DBs under central control
- Multidatabase or federated databases
 - Data sources are autonomous, heterogeneous databases
- (Mediator-based) Data Integration
 - Access through a global schema mapped to autonomous and heterogeneous data sources
- Data Exchange
 - Mapping between a source and a target system
 - source may specify data in target only partially
- Peer-to-peer data integration:
 - Network of autonomous systems mapped one to each other, without a global schema

Challenges

- Modeling of the global schema, the sources, and the mappings between the two
 - Construction of the global schema
 - Discovering mappings between sources and global schema
- Legacy databases: DBs are used for many applications, structure cannot be changed.
- Heterogeneity & Conflicts
 - Data Types & Structures
 - Semantics: Meaning of terms on schema- and instance-level
- Answering queries expressed on the global schema
- Data extraction, cleaning, and reconciliation
- Processing of updates expressed on the global schema and/or the sources ("read/write" vs. "read-only" data integration)
- Optimization of queries across data sources

Querying Problem

- A query expressed in terms of the global schema must be reformulated in terms of (a set of) queries over the sources and/or materialized views
- The computed sub-queries are shipped to the sources, and the results are collected and assembled into the final answer
- The computed query plan should guarantee:
 - completeness of the obtained answers wrt the semantics
 - efficiency of the whole query answering process
 - efficiency in accessing sources

Mappings

How to specify the mapping between the data sources and the global schema?

- LAV (local-as-view, source-centric):
 The sources are defined in terms of the global schema (i.e. as view on the global schema)
- GAV (global-as-view, global-schema-centric):
 The global schema is defined in terms of the sources (i.e. as view on the source schemas)
- GLAV (combination of GAV and LAV)

Example

- Source Schema S
 - em50(Title, Year, Director)European movies since 1950
 - rv10(Movie, Review)reviews since 2000
- ullet Global Schema G
 - movie(Title, Director, Year)
 - ed(Name, Country, Dob) (European directors)
 - rv(Movie, Review)

Global and

What does

Query q

SELECT M.title, R.review
FROM Movie M, RV R
WHERE M.title=R.title AND M.year = 2000

Questions

- Can we rewrite q as a query over the source schema S?
- Is there a unique solution?
- If not, can we characterize a best solution?
- What is the semantics of a query?
- And how do we specify the mapping between S and G?

Problem: Expressivity

- In order to answer such questions, we have to prove that queries are equivalent or contained in each other
 - Query Equivalence
 - q and q' are equivalent if they produce the same result for all legal databases
 - Query Containment
 - q is contained in q' if the result of q is a subset of the result for q' for all legal databases
- Undecidable for many query languages
- Restriction to conjunctive queries
 - → Tableau Method

GAV Example

- movie(Title, Year, Director) :em50(Title, Year, Director).
- ed(Name) :em50(_,_,Name).
- rv(Movie, Review) :rv10(Movie, Review).

Query Rewriting in GAV

Queries over *G* can be rewritten as queries over *S* by unfolding

```
q(Title, Review) :-
movie(Title, 2000,__),
rv(Title,Review).
```


q'(Title, Review):em50(Title, 2000,__), rv10(Title,Review).

LAV Example

- em50(Title,Year,Director): movie(Title,Year,Director),
 ed(Director,Country,Dob),
 Year ≥ 1950.
- rv10(Movie,Review) :rv(Movie,Review), movie(Movie,Year,Director), Year ≥ 2000.

Query Rewriting in LAV

- Sources are views
- Answer queries on the basis of available data in the views
- Research area: Answering queries using views
 - → Query Optimization: Answer a query using a materialized view!

• **Idea:** Try to cover the predicates of the query by predicates in the bodies of the source views

Query Rewriting in LAV Example

- q(Title, Review) : movie(Title, Year,_),
 rv(Title, Review),
 Year = 2000.
- em50(Title, Year, Director): movie(Title, Year, Director),
 ed(Director, Country, Dob),
 Year ≥ 1950.
- rv10(Movie,Review): rv(Movie,Review),
 movie(Movie,Year,Director),
 Year ≥ 2000.

Summary

- Query Processing in Big Data
 - Data partitions & replications enable parallel, distributed, fault-tolerant query processing
 - Map-Reduce is a generic programming pattern for distributed computation, but often too rigid for complex data analysis
 - High-Level languages enable declarative query processing in distributed systems
- Deductive databases are the logical basis for relational databases
 - Herbrand model corresponds to least fixpoint of T_D
 - Negation and recursion require stratified computation of fixpoints
 - Integrity constraints are a special form of rules
- Application in Information Integration
 - Mappings between data sources and integrated schema can be represented as logical rules
 - Queries to integrated schema have to be rewritten into queries for data sources
 - Mappings can be specified as LAV or GAV mappings

Review Questions

- Explain the Map-Reduce programming pattern? What is done in the Map function, what is done in Reduce?
- What are the problems of the Map-Reduce programming pattern?
- What is the goal of systems like Pig Latin or Hive?
- What is a broadcast hash join in Spark?
- When do you need to do shuffling in Spark? What are narrow and wide dependencies?
- Sketch and explain the data warehouse architecture!
- What is the Herbrand Base and the Herbrand Model?
- How can you compute the minimal Herbrand Model?
- Translate a RA query into Datalog and vice versa!
- What is stratification?
- Explain top-down and bottom-up evaluation of Datalog programs!
- Show an example for a mapping between a source schema and an integrated schema using the Datalog notation.
- What is the difference of GAV and LAV mappings?

References

- [Bauer & Günzel, 2013] Bauer, A. & Günzel, H. (ed.) Data-Warehouse-Systeme: Architektur, Entwicklung, Anwendung dpunkt-Verlag, 2001
- [Bry, 1989] Bry, F. Logic programming as constructivism: A formalization and its application to databases Proceedings of the eighth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems, 1989, 34-50
- [Gottlob et al, 2012] Ceri, S.; Gottlob, G. & Tanca, L. Logic programming and databases Springer Publishing Company, Incorporated, 2012
- [Quix, 2003] Quix, C. Metadata Management for quality-oriented Information Logistics in Data Warehouse Systems (in German) RWTH Aachen University, 2003

[Schöning, 2000] Schöning, U. Logik für Informatiker Spektrum Akademischer Verlag, 2000