

FIG. 1

FIG. 2

Chlamydomonas reinhardtii chloroplast Sulfate Permease (SulP) gene structure

FIG. 3

reinhardtii chloroplast Sulfate Permease (SulP) amino acid sequence

MERVCSHQLASSRGRPCIAGVQRSPIRLGTSSVAHVQVSPAGLGRYQRQRLQVVASAAAA
AAFDPPGGVSAGFSQPQQQLPQQHPRQPQAVAEVAVAESVSAPASAAPSNDGSPTASMDG
GPSSGLSAVPAAATATDLFSAAARLRLPNLSPIITWTFMLSYMAFMLIMPITALLQKASL
VPLNVFIARATEPVAMHAYYVTFSCSLIAAAINCVFGFVLAWVLVRYNFAGKKILDAAVD
LPFALPTSVAGLTLATVYGDEFFIGQFLQAQGVQVVFTRLGVVIAMIFVSFPFVVRTMQP
VMQEIQKEMEEAAWSLGASQWRTFTDVVLPPLLPALLTGTALAFSRALGEFGSIVIVSSN
FAFKDLIAPVLIFQCLEQYDYVGATVIGTVLLLISLVMMLAVNQLQKLARK*(SEQ ID NO:1)

FIG. 4A

Coding sequence of CrcpSulP

5' UTR:173 bp, Exon1: 124 bp, intronI: 77 bp, Exon2: 78 bp, intronII: 279 bp Exon3: 620 bp, intronIII: 834 bp, Exon4: 87 bp, intronIV: 699 bp, Exon5: 327 bp, 3'UTR: 575 bp

Total length: 3873 bp

gcttagtacc	taagcaaaaa	taccaaagco	: ttatcctgag	ttgtcaacaa	gaactccago	60
ctgcgacgat	gcaaagcctt	tcttgagcgg	gttgatggac	tttgctttgt	tatctgtcca	120
gtaagccacc	agacactacc	aagtagagta	atccatttgt	ataggtacag	aatatggagc	180
gagtttgcag	ccatcagett	gaatagtaga	gagggaggcc	atgcatcgct	ggggtgcage	240
ggtcgcccat	ccgactaggg	acttcaagcg	ttgctcatgt	gcaggtctct	ccggcaggta	300
agcaccgcgc	tcggcggcgt	gtacacatgg	ggccgtcagg	ccaactgcgt	ttgttggcta	360
tgcaaccgaa	acaggeettg	ggagatatca	acggcaaaga	ctgcaagtcg	tggcgtctgc	420
agctgcggca	gcggctttcg	accctcctgg	aggtgcgtgg	cgtgagggct	gcacgggtgc	480
gggttggcct	ggaaaccaag	cctcgccacg	actacctgca	acagcattgc	ccgcatctcc	540
agcccctcac	cctcgagtgc	ctcccgaaga	cctctatccc	ctgcgcatca	ttggttcggg	600
ggcgccgcct	gcgggccttg	ggcgctggct	acgctgaccg	cacggcacga	cttggcacgg	660
cctggcgcgg	cctgagcggc	cccccctc	ctgatggccc	cacgctttgc	cgcccacgcc	720
gctccccgca	ggtgtctccg	ccgggttctc	gcagccgcaa	cagcagctgc	cacaacagca	780
cccacgccaa	ccacaggcgg	tggcggaggt	agctgtcgcc	gagtcagtct	cggcgcccgc	840
ttctgcggcg	ccctccaatg	atggctcgcc	cacggcctcc	atggacggcg	gccccagctc	900
cggcctcagc	gccgtgcccg	ccgccgccac	cgccaccgac	ctcttctccg	ccgcggcgcg	960
cctccgcctg	cccaacctct	ccccatcat	cacctggacc	ttcatgctct	cctacatggc	1020
cttcatgctc	atcatgccca	tcaccgcgct	gctgcaaaaa	gcctcgctcg	tgccgctcaa	1080
cgtcttcatc	gcgcgcgcca	ccgagccggt	ggcgatgcac	gcctactacg	tcaccttctc	1140
ctgctcgctg	atcgcggccg	ccatcaactg	cgtgtttggc	ttcgtgctgg	cctgggtgct	1200
ggtgcgctac	aatttcgcgg	ggaagaagat	cctggacgcg	gcggtggacc	tgccgttcgc	1260
gctgccgacc	tcggtggcgg	gcctcacgct	tgccacggtg	tacggcgacg	agttcttcat	1320
cggccagttc	ctgcaggcgc	agggcgtgca	ggtgcgtgcg	tatagcatag	tggagtgtgg	1380
ttagcagctg	ggggtccggc	agtagttccc	gccctagtga	ggtcgaaact	ataccagaag	1440
aagaggacga	acatggggct	atccagcaag	ctcgtctagg	gaaggaggag	tttgggagaa	1500
			ggctgggagg			
			aggatgacag			
gggaagcgga	gctggggaca	gtgcgaagag	ccgggagaga	ggggaagttt	gagtcaggaa	1680
			gctgggattt			
			cgacggggtc			
			tgctgtgcgg			
agcgagcatg	tgcagtgaac	attggtttga	ggacagggga	ctccgaggtt	gcataggcgg	1920
gccgccactg	tetetgeege	tagggtgact	agctgcctcg	aacctggcgg	tggccccata	1980
cccgcagttg	gaggatgete	cacgcgcttc	agcttgccat.	gtctggggtc	tgggtctgga	2040
cgcaatcagc	gtgtgagggt	ccaactctat	atggaattat	ggataccttc	caactaccag	2100
			gctggcctgc			

FIG. 4B

ctgtttttgt	cccctgtcca	cccaggtggt	gttcacgcgg	ctgggtgtgg	tgatcgccat	2220
gatcttcgtg	tecttecect	tcgtggtgcg	caccatgcag	cccgtcatgc	aggtgagagc	2280
gcccaggagg	cggagccatg	gcgggttggg	gcgggttggg	gcgggttggg	gcggggcgcg	2340
gatggggcgg	cttggggagt	aatgtggggc	ggatggggtg	gcagcctggc	agggtatggg	2400
agcgagagga	tagcggggac	aggggacagg	gaagggaagg	gaaggggaag	gatgccctat	2460
gcgagcaaag	ggggtatggg	aaccggcggt	tggggctggg	agcgacggga	gcagggaggg	2520
		ggcggacagg				
ggtcatgtgt	cctggtcggg	ggtgtagccg	tgggaggcgg	gcaggcagcg	tgtgttctgg	2640
cacggtgttt	tggcgaaaga	taccacggca	tggtatgggg	ccagttgggc	agggaagaac	2700
cgttggacac	gacttcgttg	acagatctag	ttcattgcac	ccgggtcgca	ccaagggtgg	2760
cggcgagccc	ggcccggcac	gtccgagtac	cccggagccg	taacgccgca	acccgccttg	2820
ttgcgcccct	tecetgetee	cctgctccgc	ataccgtgca	ccatgccctc	tgccgcccc	2880
tcaggccctc	aggccctcac	ctcccctca	cctcctccta	acgccttccc	ctcgccttcc	2940
cttcccctcc	caacgccacc	acgtgcaaca	ggaaatccaa	aaggagatgg	aggaggcggc	3000
atggtcgctg	ggcgcctcgc	agtggcgcac	cttcacagac	gtggtgctgc	cgccgctgct	3060
gcccgcgctg	ctgaccggca	cggcactggc	cttctcgcgc	gcgcttggcg	agttcggatc	3120
cattgtcatc	gtgtcctcca	actttgcctt	caaggacctg	atcgcgcccg	tgctgatctt	3180
ccagtgcctg	gagcagtacg	actacgtggg	cgccaccgtg	atcggcacag	tactgctgtt	3240
gatttcgctg	gtgatgatgt	tggcggtgaa	ccagctgcag	aagctggcgc	gcaagtgagg	3300
ggctgaggcg	tttgaggaga	gtgggcgtct	gcggaggcgc	ttgtggcgca	ggggcaggtg	3360
gaggaggttg	cagggtgagg	caggagtggc	aggtggtgga	gggtgcaggg	cggggtgttg	3420
ggatgggatg	ggatgggacc	gtgggagggg	tgggactttg	ggtgggtggg	agtgggtgct	3480
acgtattagg	atatgggagg	tggtatgcag	ttgaaggggg	gggtggcaat	ctggacgggg	3540
actcactgtt	tactaggcac	gcatgtcgca	ggagtggata	tcgatgggtg	tggggatgtc	3600
agcacgcttg	gcttgagttg	ggccatggga	cccgggacta	ggcttggttg	cgagccgagc	3660
cagtcaccag	ggagacgtac	gagcgcacac	agtgattacg	gggattgatt	aggcggcgaa	3720
ttgacgcaaa	tccacggggg	ctgtggcttg	ggggaggcag	ggattgagcg	aaggacgcac	3780
tgcaagctca	ggcagtcgca	tgcccgtacc	ctgcttctgg	tccagtgtgg	agacaagact	3840
ggcaatcgtg	gtcctttgca	attcatggcg	cgc (SEQ II	NO:2)		

FIG. 5

Full length cDNA sequence of CrcpSulP: 1984 bp

```
gettagtace taagcaaaaa taccaaagce ttateetgag ttgtcaacaa gaactecage 60
ctgcgacgat gcaaagcett tettgagegg gttgatggac tttgetttgt tatetgteca 120
gtaagccacc agacactacc aagtagagta atccatttgt ataggtacag aatatggagc 180
gagtttgcag ccatcagett geetegtege gagggaggee atgeateget ggggttgcage 240
ggtcgcccat ccgactaggg acttcaagcg ttgctcatgt gcaggtctct ccggcaggcc 300
ttgggagata tcaacggcaa agactgcaag tcgtggcgtc tgcagctgcg gcagcggctt 360
tegacectee tggaggtgte teegeegggt tetegeagee geaacageag etgecacaac 420
agcaccacq ccaaccacaq qcqqtgqcgq aggtagctgt cgccgagtca gtctcqqcqc 480
ccqcttctqc qqcqccctcc aatqatqqct cqcccacqqc ctccatqqac qqcqqcccca 540
geteeggeet cagegeegtg eeegeegeeg ceaeegeeae egaeetette teegeegegg 600
egegeeteeg cetgeecaac etetececca teateacetg gacetteatg etetectaca 660
tggccttcat gctcatcatg cccatcaccg cgctgctgca aaaagcctcg ctcgtgccgc 720
teaacqtett categegege gecaeegage eggtggegat geaegcetae tacqteacet 780
teteetgete getgategeg geegeeatea aetgegtgtt tggettegtg etggeetggg 840
tgctggtgcg ctacaatttc gcggggaaga agatcctgga cgcggcggtg gacctgccgt 900
tegegetgee gaeeteggtg gegggeetea egettgeeae ggtgtaegge gaegagttet 960
teateggeea gtteetgeag gegeagggeg tgeaggtggt gtteaegegg etgggtgtgg 1020
tgategecat gatettegtg teetteeeet tegtggtgeg caccatgeag ceegtcatge 1080
aggaaatcca aaaggagatg gaggaggcgg catggtcgct gggcgcctcg cagtggcgca 1140
cetteacaga egtggtgetg eegeegetge tgeeegeget getgaeegge aeggeaetgg 1200°
cettetegeg egegettege gagtteggat ceattgteat egtgteetee aactttgeet 1260
teaaggacet gategegeee gtgetgatet teeagtgeet ggageagtae gaetaegtgg 1320
gegecaeegt gateggeaca gtactgetgt tgattteget ggtgatgatg ttggeggtga 1380
accaqctqca qaaqctqqcq cqcaaqtqaq qggctgaggc gtttqaqqaq aqtqqqcqtc 1440
tgeggaggeg ettgtggege aggggeaggt ggaggaggtt geagggtgag geaggagtgg 1500
gtgggacttt gggtgggtgg gagtgggtgc tacgtattag gatatgggag gtggtatgca 1620
gttgaagggg ggggtggcaa tetggaeggg gaeteaetgt ttaetaggea egeatgtege 1680
aggagtggat atcgatgggt gtggggatgt cagcacgctt ggcttgagtt gggccatggg 1740
accegggact aggettggtt gegageegag ceagteacea gggagaegta egagegeaca 1800
caqtqattac qqqqattqat taqqcqqcqa attqacqcaa atccacqqqq qctqtqqctt 1860
qqqqqaqqca qqqattqaqc qaaqqacqca ctgcaagctc aggcaqtcqc atgcccqtac 1920
cctgcttctg gtccagtgtg gagacaagac tggcaatcgt ggtcctttgc aattcatggc 1980
                                                            1984
gcgc
                                                       (SEQ ID NO: 3)
```

FIG. 6

FIG. 8A

Nephroselmis Mesostigma Chlamydomonas Chlorella Syn.PCC7942 Marchantia Bacillus	MERVCSHQLASSRGRPCIAGVQRSPIRLGTSSVAHVQVSPAGLGRYQRQRLQVVASAAAA 60
Nephroselmis Mesostigma Chlamydomonas Chlorella Syn.PCC7942 Marchantia	AAFDPPGGVSAGFSQPQQLPQQHPRQPQAVAEVAVAESVSAPASAAPSNDGSPTASMDG 120
Nephroselmis Mesostigma Chlamydomonas Chlorella Syn.PCC7942 Marchantia	GPSSGLSAVPAAATATDLFSAARLITHKNRLVSWAWALTLMYMLVSLILPIGALLOKSSO 50 GPSSGLSAVPAAATATDLFSAARLELPNLSPIITWTEMLSYMAFMLIMPITALLOKASO 35 GPSSGLSAVPAAATATDLFSAARLELPNLSPIITWTEMLSYMAFMLIMPITALLOKASO 34
Nephroselmis Mesostigma Chlamydomonas Chlorella Syn.PCC7942 Marchantia	ESVSEFVSIATAPVAMSAYAVTLSSALIAALLINGVFGLLIAWVLVRYEFPGRRLLDAAVD 110 ELFSNFWSIAMEPAAIYAYSITLSMALIASIVNGIFFGIFIAWILVRYNFFPGKRIVDAAID 95 VPLNVFIARATEPVAMHAYYVTFSCSLIAAAINCVFGFVLAWVLVRYNFAGKKILDAAVD 240 NNWHEVLRKATDPIAVSAYLLTVQMAFYAALVNSIFGFIITWVLTRYOFWGREFIDAAVD 94 LPRIMELLARAYAAALAGSTSLAAAALNGVFGVIITAWVLTRYOFFWGKEFFDAAVD 94 OPWNILLQTALEPVVLSAYGFTFLTALLATIINAIFGLILAWVLVRYEFPGKKLLDATVD 114 MGWQAFWQAFTFEFRYALATIINAIFGLILAWVLVRYFFPGKKLLDATVD 104

FIG. 8A

```
144444
                                                                                             222223
23224
23226
0304444
IPFODLIAPVLIFORLEQYDYSGATVIGTVVLLISLTLLLAINWIOASNRKFLG-
IPFROLTAPVLIFOKLEQYDYTGATVIGTVILSISLFILVGINIIÖSLNOMYSK-
FAFKDLIAPVLIFOKLEÖYDYGATVIGTVLLLISLVMMLAVNOLÖKLARK---
LPFKDLYSVLIFER OYDYLGASVIGAVLLIALFTLLLINAFÖIMKFRV---
IPFDDLIAPVLIFERLEÖYDYAGATVIGSVLLIFSLVILLFVINALÖNMSSRYNG-
IPMKDLVISVLLFOKLEÖYDYKSATIIASFVLIISFTALFFINKIÖLMKKTFHK-
LPMQTEITPLIIMTKLEÖFDYAGATALAAVMLIISFFMLLFFINKIÖLMKKTFHK-
LPMQTEITPLIIMTKLEÖFDYAGATALAAVMLIISFFMLLFFINKIÖLMKKTFHK-
Nephroselmis
Mesostigma
Chlamydomonas
Chlorella
Syn. PCC7942
Marchantia
Bacillus
                        ß
                                                                                        Nephroselmis
Mesostigma
Chlamydomonas
Chlorella
Syn.PCC7942
Marchantia
Bacillus
                                                                                                                                                                                 Nephroselmis
Mesostigma
Chlamydomonas
Chlorella
Syn. PCC7942
Marchantia
Bacillus
```

FIG. 8B

FIG. 9

FIG. 10

FIG. 16

FIG. 17

FIG. 19

FIG. 20

CATTCAATTTGCAGCGTTCCTAAAATGGCAAGCACACGCTGCTCCAGCCCGCGCTTGGTCTGCCCTCGCGGGTAGGG GACTCATCATCAGTTATAGAGAGCACGCTAGGGCGGCAAACATCGGTTGCCGGGAGACCATGGCTTGCACCCCGGCCT GCGCCTCAA CAAAGCCGAGGCGACCTACTGGTCTCCAAATCGGGGGCAGCAGGAGGCATGGGCGCCCATGGAGGGGG TTAGGGGAACCGGTCGATAATTGGATCAAGAAGCTACTCGTTGGTGTCGCGGCGGCGGCGTACATCGGCTTGGTCGTGCTG GTGCCCTTCCTGAATGTCTTCGTCCAGGCGTTCGCCAAGGGCATCATTCCCTTCCTGGAGCACTGCGCGGACCCGGAC TTTCTGCACGCACTCAAGATGACGCTGATGCTGGCGTTCGTGACGGTGCCGCTCAACACGGTGTTTGGCACGGTGGCC ATCAACGTGGTGTTCGCATTCACGGGCATGGCCCTGGCCACCATGTTTGTGACGCTGCCGTTCGTGGTGCGCGAGCTG ATCCCCATCCTGGAGAACATGGACCTGTCGCAGGAGGAGGCGGCGAGAACGCTGGGGGGCCAACGACTGGCAGGTGTTC TGGAACGTGACGCTGCCCAACATCCGCTGGGGCCTGCTGTACGGCGTGATCCTGTGCAACGCCCGAGCCATGGGCGAG AAGGAGTACAACACGGAGGCGGCGTTCGCGGCGGCTGTGCTGAGCGCGCTGGCGCTGGGCACCCTGTGGATCAAG GACAAGGTGGAGGAGGCGGCGGCGGCGGAGAGCCGCAAGTAGAGAGGAGCAGCGGCGCCGCCAGCGGCGCAGTGGC AGCGGCAGCGGCGGAGAGCGGCAGCTGGAGAGGAGCAGCCGGTGGCGGAGCGGCGGAAATAGAGAGGTGCAGCAA GGAGGCAGGCGCACGCGAGGGGAGGGCGTGGTGGTGGGCTTGCGTGGGTGCTTGGTCCGTGGCCAGGGTGCCTGGC AGTGCCGCAGTGACCAGCGGGTAATGGTAAGGGAGCTGACACGTGTGGCGTTCTGTTGCTGGTCGCCGCATGCTTAAC GCAGCGGGAGCAGCTTCTCTGTCTGATGTCTAACGGGGGCGTTGTATGCTGATAATAGACGGAGGGCGAAGGGAGCAG GTGTTGACGGTACAGTTATGCCGTGCCCCGTTTTACAAGCGGGATAGAGGCACACTCCACGTAGTATGCATTGAGCCC AGTAGACTCTGGTCAGAAGGCCGGTAAATTTACATGTGTCGTGGTGAACCCTGTAAGTCATGGCCCAAG (SEQ ID NO: 04)

GTACTTCAATTGTCAGAATGGCGTCGCTGCTCGCTCAAACAACATCGCGCCTTGGCGCTCGCCCAGCTGCGCAA GCTGGCCCTGTCGCCCAAATGGCACCGATGGCAAGCCGAGTGCAGCGCGGCGATGCCTAGCGCGCTGCTCCCACT GCACGCCAGAGCGACAACATCAGTCGCTTGCCGGGCAGCAGCATCGACAAACCTGTCGTTTACACTCCTC GAGATTCGTCGCAACAGTCCTCCAATGGGGCAGGAGAAGTGTCCATGTCCATATCATCCATGGACGAGGTTGGA CCCTCTTATGAGGGAATCATTACAGACGCGCCTACACGACCAACGGGGCTTTATGTGCGGGTGCGCAACATGGT GAAGCACTTCAGCACCGCCAAAGGCCTGTTCAGGGCGGTGGACGTGGACGTGGACATCGAGCCCAGCTCCA GTTCCAGAGCTATGCGCTGTTCAACCACAAGACAGTTGCGGAGAACATCAAGTTTGGACTGGAGGTGCGCAAGC TCAACATCGACCACGACAAGCGCGTGGCGGAGCTGCTGGCGCTGGTGCAGCTCACCGGCCTGGGCGACCGCTAC $\tt CCGCGCCAACTGTCGGGCGGCCAGCGGCAGCGTGTGGCGCTGGCGCGCCTCCCAACCGCGGCTGCT$ GCTGCTGGACGAGCCCTTTGGCGCGCTGGACGCGGTGGTGCGCAAGCAGCTGCGCACGGGGCTGCGCGAGATCG TGCGCAGCGTGGCCGTGACCACCATCATTGTGACGCACCAGGAGGAGGCGTTCGACCTGGCGGACAAGGTG GTGGTGTTCAACAGGGGCCTGGTGGAGCAGCAGGGCAGCCCCACCGAGATCATCAAGCGGCCGCGCACGCCCTT CATTATGAAGTTCGTGGGCGAGACCAACGTGGTGCCGGCCACGTCGCTGCTGGCCAAGCGCATGCGCTTCAACA CCTCCAAGACCAGCGTCATGTTCCGGCCGCACGACATTAAGCTGTTCAAGACGGTGCCGCCGGAGAGCGGCGAG GGCGCGCTGACCACGGTGGGCGCCAACGTGGCGGACAAAGCCAACCTGGGCTGGGTGGTCAAGTACACGCTGCG CTTCGATGACGACGTGGAGTGCGAGCTGCAGCTCAGCCGCGACCAGGACGAGCGCGAGTACAACCTGGTGGTGG GCAGCCGCGTGTTCGTGCACGTGCCGCACCGCACCATGATGGGCTTCAACGCCAGCGACGTGGACAGCACGCCC ATCGTGTAATGTGCGGGGTTGGCGGCTGTGGCCAGCGATTGTTGCAATGCAGTCCAGCGTGCTCTTGGTTTGGT TCCAGTGACACCCATCCAGGGCACAGGTCCCTGAGCAGCGGGTGTTGGTGATGGGTTGGAGCAGTTGTACCCGA TTCTCGCATGCAAGGGGGGGGGGCGCCCACGGGGTGGGAAGGCGGAATGGCGGTGAGGTGGGCTACTGCATGCG TTGGGGGTGGAGGCCGTGCAGACTGGTTGGGATACTGACAGATCAATGAGCGGCGTCTGCTCCATGGGTCAGTA CGTCTGCGGGCGCTGTCGGAGACGGGCGATGTACATGAAGCTGGACCTGGGCCTGTCTCACAAATATCCCTTAT GTTAATAGTAGGATGTCGCAATCGTGCCTTGGAGCCCACCTGATGTGTGTCACAGGTGGCAGTAGTTTGGCC TTGCGGGAGGTAGCACGTCTTTCATGAGAGTGCGTGTGCGTGACCGCTTTTACATTGCCAATCACGCTGGAAGG TGAAACCATGCATCATGCGTGCTATCAGGAGATGCAGACGGCGGATTGCTGCCAAAATGTTCTGTTGTTGGTGT GCAGACTTGGTGGCGAAGGGGCCAGGCGCCCAGGGGTATGCTGCGTGCCAAGGAGCTGCTGCCGCCACGAGTGA CCAGCGAAACTTGTAAATTGAATATTGTATCCT (SEQ ID NO: 05)

FIG. 22

GGGCAGCGTATAAGTAATGTCGTTCTTGGCTCCCAGCTTAGGCGTCGCGGGGGGATTCTGGAGCCGGCGAGTGC AGCGAGGCCGCCTGCGCACGCGGCCGGTCACGCACCCGTTCTAACAAGCGATAGGACTGGTGGACCTGCCGCTAA TCATGACAGGCCTGCCGGTGCTCCCAGCCCCCATGCGGCGTCGTTGACGCCCTCCAGCAGCGAGCCAAGCCA CCAATCACACCTCATCACCGCGGCCACGCTGCTGCCAGCCCTGCCGCCTCCCGGCGGCGAACGGCGACGG CGATGGCGGCGAAGCTGCGGGGCCGCAGCCGCTCGCGGACGTCGCGGCTCAGCCGCCGGAGGTTGTGCTGACGCT GGCGTCGTT CGCGGTGAC CAAGCTGGCGTACGTGCGTGTGACGCGCGCGTTCCGGGAGTGGTACGAGCGCACGAA GGGCGTGGATGTGCGCTTCCGCCTCACCTTCGCCGCCAGTGGCGTGCAGGCCCGCGCCGTGATCGATGGCCTGCC CGCCGACATCGTGGCCCTGGCGTGCCTCTGGACCTGGACAAGATCGTGTCGGCGGGGCTGATCCGGCCCGACTG GCGCAGCGCCTACCCGGCAGCCAGCGTGGTGTGCGAGACCACCGTGGCGTTCGTGGTGCGCCAGGGCAACCCCAA GAACATCCGCACCTGGGAGGACCTCACGCGGGCGGGTGTGGAGGTGGTGCTGGCCAACCCCAAGACCGCCGGAGT GGCCAGGTGGATCTTCCTGGCCCTGTGGGGCGCCAAGATGAAGAAGGGCAACGCCGCCGCGCTGGCGTATGTGCA GCGCGTGTTCGAGAACGTGGTGCTGCAGCCGCGTGATGCGCGCGAGGCGTCGGACGTGTTCTATAAGCAGAAGGT GGGCGACGTGCTGTTGACGTACGAGAACGAGGTGATCCTGACCAACGAGGTGTACGGCGACAAGGCGCTGCCGTA GCAGGTGGACAAGGAGCTGGGCGGCTGGGCTGCGGCCCAGAAGAAGTTTTTCGACGCTGGCGCCATCCTTGACGA CATCCAGTCCGCCGTGGGCAAGCTGCGTGTGGAGCAGCGCAGGCGCGCAGGCGGCGGCGCGCAGGCGGTAGAGAGA CGCGGTACAAGTGCTCGGGTGCTCAGCAGGAGCTGCAGCAGGGGCAGCAAGAGGGGCCTTGACAGGAGGGAATGGT AGGCAAAGGCGGCAGGGGAGGCGGGATGGCGGGATGAAGTGAGGTGTGCAAGCAGCGATGTGTGCCAAGGACGG TGTCGGCGATGTACATGATAACATGAGGAGACAGGAGCATCTCCTGGCAGGAGGCGGCAACCGTGGAGTGTCTGA TCTATGGGGAGGCCTGACTGCATTGGGGGCGACGTAGTGTGATGGCCGCTACACGCTTGCTCGGAACTGACATAA ACAGGCGTTCAGGCCATGGCTGCATGAGGCTTGATGTCGTATCGCGGACTGTC (SEQ ID NO: 06)

MASTTLLQPALGLPSRVGPRSPLSLPKIPRVCTHTSAPSTSKYCDSSSVIESTLGRQTSV
AGRPWLAPRPAPQQSRGDLLVSKSGAAGGMGAHGGGLGEPVDNWIKKLLVGVAAAYIGLV
VLVPFLNVFVQAFAKGIIPFLEHCADPDFLHALKMTLMLAFVTVPLNTVFGTVAAINLTR
NEFPGKVFLMSLLDLPFSISPVVTGLMLTLLYGRTGWFAALLRETGINVVFAFTGMALAT
MFVTLPFVVRELIPILENMDLSQEEAARTLGANDWQVFWNVTLPNIRWGLLYGVILCNAR
AMGEFGAVSVISGNIIGRTQTLTLFVESAYKEYNTEAAFAAAVLLSALALGTLWIKDKVE
EAAAAESRK* (SEQ ID NO: 07)

MASLLAQTTSRLGARPAAQAGPVAQMAPMASRVQPAMPSALLPLHARATTTSVAC
RAASIDKPVVYTPRDSSQQSSNGAGEVSMSISSMDEVGPSYEGIITDAPTRPTGL
YVRVRNMVKHFSTAKGLFRAVDGVDVDIEPSSIVALLGPSGSGKTTLLRLIAGLE
QPTGGNIYFDDTDATNLSVQDRQIGFVFQSYALFNHKTVAENIKFGLEVRKLNID
HDKRVAELLALVQLTGLGDRYPRQLSGGQRQRVALARALASNPRLLLLDEPFGAL
DAVVRKQLRTGLREIVRSVGVTTIIVTHDQEEAFDLADKVVVFNRGLVEQQGSPT
EIIKRPRTPFIMKFVGETNVVPATSLLAKRMRFNTSKTSVMFRPHDIKLFKTVPP
ESGEGALTTVGANVADKANLGWVVKYTLRFDDDVECELQLSRDQDEREYNLVXGS
RVFVHVPHRTMMGFNASDVDSTPIV* (SEQ ID NO: 08)

MSFLAPSLGVARGILEPASAARPPAHAAGHAPVLTSDRTGGPAANHDRPAGAPSPH AASLTPSSSGQASQQGDPQRSQHQQAQRQDQQQSQSRSLQSHLITAATLLPALPPPP PGGNGDGDGGEAAGPQPLADVAAQPPEVVLTLASFAVTKLAYVRVTRAFREWYE RTKGVDVRFRLTFAASGVQARAVIDGLPADIVALALPLDLDKIVSAGLIRPDWRSA YPAASVVCETTVAFVVRQGNPKNIRTWEDLTRAGVEVVLANPKTAGVARWIFLAL WGAKMKKGNAAALAYVQRVFENVVVQPRDAREASDVFYKQKVGDVLLTYENEV ILTNEVYGDKALPYLVPSYNIRIECPLALVDKVVDARGPEVREAASEFCRFLFTPAA QHEFARLGFRVNPRTCKEVAAQQTGLPPANLWQVDKELGGWAAAQKKFFDAGAI LDDIQSAVGKLRVEQRKAAQAAARR* (SEQ ID NO: 09)

FIG. 27

Chloroplast Sulfate Transport System

