Marco Casu

Automazione a

Facoltà di Ingegneria dell'Informazione, Informatica e Statistica Dipartimento di Informatica

Questo documento è distribuito sotto la licenza GNU, è un resoconto degli appunti (eventualmente integrati con libri di testo) tratti dalle lezioni del corso di Automazione per la laurea triennale in Informatica. Se dovessi notare errori, ti prego di segnalarmeli.

Nota bene : Essendo questi appunti di un corso esterno alla facoltà di Informatica, è presente un capitolo "Complementi" che può risultare utile al lettore.

INDICE

1	Con	mplementi	3
	1.1	La Trasformata di Laplace	3
		1.1.1 Proprietà della Trasformata	4

CAPITOLO

1

COMPLEMENTI

1.1 La Trasformata di Laplace

La trasformata di Laplace è una trasformata integrale, nello specifico, è una funzione che associa ad una funzione di variabile reale, una funzione di variabile complessa.

Definizione (Trasformata di Laplace) : Sia f una funzione di variabile reale, nulla in $(-\infty, 0)$, si chiama trasformata di Laplace di f la funzione

$$\mathcal{L}[f](p) = \int_0^{+\infty} e^{-px} f(x) \ dx \quad p \in \mathbb{C}$$

Essendo $p = \alpha + i\beta$ una variabile complessa, la funzione integranda si può riscrivere

$$\int_0^{+\infty} e^{-px} f(x) \ dx = \int_0^{+\infty} e^{-(\alpha+i\beta)x} f(x) \ dx$$

Ricordando l'identità di Eulero

$$e^{ix} = \cos(x) + i\sin(x)$$

Si ha

$$e^{-(\alpha+\beta i)x} = e^{-\alpha x} \cdot e^{-\beta ix} = \tag{1.1}$$

$$e^{-\alpha x} \cdot \left(\cos(-\beta x) + i\sin(-\beta x)\right) = e^{-\alpha x} \cdot \left(\cos(\beta x) - i\sin(\beta x)\right) = \tag{1.2}$$

$$e^{-\alpha x}\cos(\beta x) - ie^{-\alpha x}\sin(\beta x) \tag{1.3}$$

Quindi

$$\mathcal{L}[f](p) = \mathcal{L}[f](\alpha + i\beta) = \int_0^{+\infty} e^{-(\alpha + i\beta)x} f(x) \, dx =$$

$$\int_0^{+\infty} e^{-\alpha x} \cos(\beta x) f(x) - i e^{-\alpha x} \sin(\beta x) f(x) \, dx =$$

$$\int_0^{+\infty} e^{-\alpha x} \cos(\beta x) f(x) \, dx - i \int_0^{+\infty} e^{-\alpha x} \sin(\beta x) f(x) \, dx$$

Se l'integrale $\mathcal{L}[f](\alpha + i\beta)$ converge per un certo $\alpha \in \mathbb{R}$, allora converge per $p = \alpha + i\beta$ per ogni altro $\beta \in \mathbb{R}$. Se per f esiste almeno un $p \in \mathbb{C}$ tale che $\mathcal{L}[f](p) < \infty$, allora f si dice trasformabile secondo Laplace.

In generale, se $\mathcal{L}[f](p) < \infty$ per $p = p_0$, allora è definita anche nel semipiano complesso

$$\{p \in \mathbb{C} \mid \Re(p) > \Re(p_0)\}$$

Sia α_0 l'estremo inferiore dell'insieme $\{\alpha \in \mathbb{R} \mid \mathcal{L}[f](p) < \infty \land \Re(p) > \alpha\}$, allora il semipiano $\{p \in \mathbb{C} \mid \Re(p) > \alpha_0\}$ è detto **semipiano di convergenza**.

Vediamo un esempio di trasformata, si consideri

$$H(x) = \begin{cases} 1 \text{ se } x \ge 0\\ 0 \text{ altrimenti} \end{cases}$$

Figura 1.1: Funzione di Heaviside

Si calcola

$$\mathcal{L}[H](p) = \int_0^{+\infty} e^{-px} \cdot 1 \ dx = \lim_{T \to +\infty} \mathcal{L}[H](p) = \int_0^T e^{-px} \cdot 1 \ dx = \lim_{T \to +\infty} \left[-\frac{e^{-px}}{p} \right]_0^T = \lim_{T \to +\infty} -\frac{e^{-pT}}{p} - \left[-\frac{e^{-p0}}{p} \right] = \lim_{T \to +\infty} -\frac{e^{-pT}}{p} + \frac{1}{p} = \frac{1}{p}$$

Il cui semipiano di convergenza risulta essere $\Re(p) > 0$.

1.1.1 Proprietà della Trasformata

Linearità

La trasformazione di Laplace gode della proprietà di linearità, siano f(p) e g(p) due funzioni trasformabili, siano $\lambda, \mu \in \mathbb{C}$ due costanti complesse, se la funzione $\lambda \cdot f(p) + \mu \cdot g(p)$ è trasformabile, allora

$$\mathcal{L}[\lambda \cdot f + \mu \cdot g](p) = \lambda \mathcal{L}[f](p) + \mu \mathcal{L}[g](p)$$

Il semipiano di convergenza sarà uguale all'intersezione dei due semipiani di convergenza delle funzioni di partenza, più precisamente se

- f ha come semipiano di convergenza $\Re(p) > \alpha$
- gha come semipiano di convergenza $\Re(p)>\beta$
- allora $\lambda \cdot f + \mu \cdot g$ ha come semipiano di convergenza $\Re(p) > \max\{\beta, \alpha\}$

Ritardo

Sia f una funzione trasformabile, si consideri una costante reale a > 0, la funzione g(x) = f(x - a) è detta funzione ritardata.

Figura 1.2: funzione ritardata

Per il calcolo della trasformata di g(x) = f(x - a) si considera il cambio di variabile

$$t = x - a$$

Si ricordi come, se f è nulla in $(-\infty,0)$, allora g sarà nulla in (0,a).

$$\mathcal{L}[g](p) = \int_0^{+\infty} e^{-px} g(x) \ dx = \int_a^{+\infty} e^{-px} f(x-a) \ dx = \int_a^{+\infty} e^{-p(t+a)} f(t) \ dx =$$

$$\int_a^{+\infty} e^{-pt-pa} f(t) \ dx = \int_a^{+\infty} e^{-pt} e^{-pa} f(t) \ dx = e^{-pa} \int_a^{+\infty} e^{-pt} f(t) \ dx = e^{-pa} \mathcal{L}[f](p)$$

Dunque si ricavano le cosiddette formule del ritardo :

$$\mathcal{L}[f(x-a)](p) = e^{-pa}\mathcal{L}[f(x)](p)$$
$$\mathcal{L}[e^{ax}f(x)](p) = \mathcal{L}[f](p-a)$$

Trasformazione di una derivata e di una primitiva

La seguente proprietà risulta cruciale nell'utilizzo della trasformata di Laplace per la risoluzione di equazioni differenziali. Le dimostrazioni dei seguenti risultati non saranno trattate in quanto non sono argomento di questo corso.

Sia f una funzione derivabile, la cui derivata è continua in $[0, \infty)$. Sia inoltre f' trasformabile, con semipiano di convergenza $\Re(p) > \alpha$, allora anche f è trasformabile, ha semipiano di convergenza $\Re(p) > \max\{\alpha, 0\}$, e vale la seguente identità :

$$\mathcal{L}[f'](p) = p\mathcal{L}[f](p) - f(0)$$

Si generalizza per derivate di ordine maggiore

$$\mathcal{L}[f''](p) = p^2 \mathcal{L}[f](p) - pf(0) - f'(0)$$

Analogamente, sia $F(x) = \int_0^x f(t) dt$, se f è trasformabile ed ha semipiano di convergenza $\Re(p) > \alpha$, allora anche F lo è, ha semipiano di convergenza $\Re(p) > \max\{\alpha, 0\}$ e vale che

$$\mathcal{L}[F](p) = \frac{1}{p}\mathcal{L}[f](p)$$