10/A/C/5-19

EE24BTECH11040 - Mandara Hosur

C. MCQs with One Correct Answer

1) If $f(x) = \cos(\ln x)$, then

$$f(x) f(y) - \frac{1}{2} \left[f\left(\frac{x}{y}\right) + f(xy) \right]$$

has the value

(1983 - 1Mark)

a) -1

c) -2

b) $\frac{1}{2}$

- d) none of these
- 2) The domain of definition of the function y = $\frac{1}{\log_{10}(1-x)} + \sqrt{x+2}$ is

(1983 - 1Mark)

- a) (-3, -2) excluding c) [-2, 1) excluding 0
 - d) none of these
- b) [0, 1] excluding 0.5
- 3) Which of the following functions is periodic? (1983 - 1Mark)
 - a) f(x) = x [x] where [x] denotes the largest integer less than or equal to the real number
 - b) $f(x) = \sin \frac{1}{x}$ for $x \neq 0$, f(0) = 0
 - c) $f(x) = x \cos x$
 - d) none of these
- 4) Let $f(x) = \sin x$ and $g(x) = \ln |x|$. If the ranges of the composition functions fog and gof are R_1 and R_2 respectively, then

(1994 - 2Marks)

a)

$$R_1 = \{u : -1 \le u < 1\},\$$

$$R_2 = \{v : -\infty < v < 0\}$$

b)

$$R_1 = \{u : -\infty < u < 0\},\$$

$$R_2 = \{v : -1 \le v \le 0\}$$

c)

$$R_1 = \{u : -1 < u < 1\},\$$

$$R_2 = \{v : -\infty < v < 0\}$$

d)

$$R_1 = \{u : -1 \le u \le 1\},$$

 $R_2 = \{v : -\infty < v \le 0\}$

5) Let $f(x) = (x+1)^2 - 1$, $x \ge -1$. Then the set ${x: f(x) = f^{-1}(x)}$ is (1995)

- a) $\left\{0, -1, \frac{-3+i\sqrt{3}}{2}, \frac{-3-i\sqrt{3}}{2}\right\}$ b) $\left\{0, 1, -1\right\}$
- c) $\{0, -1\}$
- d) empty
- 6) The function $f(x) = |px q| + r|x|, x \in (-\infty, \infty)$ where p > 0, q > 0, r > 0 assumes its minimum value only on one point if

(1995)

- a) $p \neq q$
- c) $r \neq p$
- b) $r \neq q$
- d) p = q = r
- 7) Let fx be defined for all x > 0 and be continuous. Let fx satisfy $f\left(\frac{x}{y}\right) = f(x) - f(y)$ for all x, y and f(e) = 1. Then (1995S)

 - a) f(x) is bounded 0 b) $f(\frac{1}{x}) \to 0$ as $x \to 0$ d) $f(x) = \ln x$
 - c) $xf(x) \rightarrow 1$ as $x \rightarrow$
- 8) If the function $f:[1,\infty)\to[1,\infty)$ is defined by $f(x) = 2^{x(x-1)}$, then $f^{-1}(x)$ is (1999 - 2Marks)

a)
$$\left(\frac{1}{2}\right)^{x(x-1)}$$
 c) $\frac{1}{2}\left(1 - \sqrt{1 + 4\log_2 x}\right)$ b) $\frac{1}{2}\left(1 + \sqrt{1 + 4\log_2 x}\right)$ d) not defined

- 9) Let $f: R \to R$ be any function. Define $g: R \to R$ R by g(x) = |f(x)| for all x. Then g is (2000S)
 - a) onto if f is onto
 - b) one-one if f is one-one
 - c) continuous if f is continuous
 - d) differentiable if f is differentiable

10) The domain of definition of the function f(x)given by the equation $2^x + 2^y = 2$ is

(2000S)

a)
$$0 < x \le 1$$

c)
$$-\infty < x \le 0$$

b)
$$0 \le x \le 1$$

d)
$$-\infty < x < 1$$

11) Let g(x) = 1 + x - [x] and

$$f(x) = \begin{cases} -1, & x < 0 \\ 0, & x = 0. \\ 1, & x > 0 \end{cases}$$
 (1)

Then for all x, f(g(x)) is equal to

(2001S)

a) *x*

c) f(x)

b) 1

d) g(x)

12) If $f:[1,\infty)\to [2,\infty)$ is given by $f(x)=x+\frac{1}{x}$ then $f^{-1}(x)$ equals

(2001S)

a) $\frac{(x+\sqrt{x^2-4})}{\frac{x^2}{(1+x^2)}}$ c) $\frac{(x-\sqrt{x^2-4})}{2}$ d) $1+\sqrt{x^2-4}$

c)
$$\frac{\left(x-\sqrt{x^2-4}\right)}{2}$$

d)
$$1 + \sqrt[2]{x^2 - 4}$$

13) The domain of definition of $f(x) = \frac{\log_2(x+3)}{x^2+3x+2}$ is (2001*S*)

- a) $R \setminus \{-1, -2\}$
- c) $R \setminus \{-1, -2, -3\}$
- b) $(-2, \infty)$
- d) $(-3, \infty) \setminus \{-1, -2\}$

14) Let $E = \{1, 2, 3, 4\}$ and $F = \{1, 2\}$. Then the number of onto functions from E to F is (2001S)

- a) 14
- b) 16
- c) 12
- d) 8

15) Let $f(x) = \frac{\alpha x}{x+1}$, $x \neq -1$. Then, for what value of α is f(x) = x?

(2001S)

a) $\sqrt{2}$ b) $-\sqrt{2}$ c) 1

d) -1