# Applied Data Science - Capstone Project

Using location based and clustering to build recommendation system

#### I. Introduction Business Problem.

Ho Chi Minh city is largest city of Vietnam which have nearly ten million in terms of population and have a lot of non-residents such as business travelers or tourists. The statistics showed that there was more than 6 million international tourist visited Ho Chi Minh city in the first nine months of 2019. This is amazing number for any related business and this is the reason why a group of young investors would like to find a good location to start their business by setting up a restaurant or coffee shop in this crowded and dynamic city. The investor would like to leverage the data analyse advise them where is good location to open their business.

From this stand point, there are several ways of approach such as identify where are the most attractives of people in the city or where are the business centres and so on. One of the approach is using available location based data to analyse it and make the recommendation.

## II. Description of Data

In solving this problem, the location data comes from a csv file which define the latitude, longitude and other information of all the cities in Vietnam as well as its neighborhoods. This is the sample data of city and its neighborhoods:

|   | city                | lat       | Ing        | country | iso2 | admin          | capital | population | population_proper |
|---|---------------------|-----------|------------|---------|------|----------------|---------|------------|-------------------|
| 0 | Ho Chi Minh<br>City | 10.776577 | 106.700850 | Vietnam | VN   | Hồ Chí<br>Minh | admin   | 5314000.0  | 3467331.0         |
| 1 | Hanoi               | 21.028167 | 105.854152 | Vietnam | VN   | Hà Nội         | primary | 4378000.0  | 1431270.0         |
| 2 | Haiphong            | 20.864807 | 106.683449 | Vietnam | VN   | Hải<br>Phòng   | admin   | 1969000.0  | 602695.0          |
| 3 | Cần Thơ             | 10.037105 | 105.788249 | Vietnam | VN   | Cần Thơ        | admin   | 1121000.0  | 259598.0          |
| 4 | Đà Nẵng             | 16.074806 | 108.223958 | Vietnam | VN   | Đà Nẵng        | admin   | 1000000.0  | 887069.0          |

 $Source\ file:\ https://raw.githubusercontent.com/dodtoan/Coursera\_Capstone/master/vn.csv$ 

Obviously, this data is raw data and need to be cleaned before actually use. The cleaned data can be used as "source" data to explore further venues in the every single neighborhood using FourSquare API. There are some unnecessary fields should be removed cause Foursquare just need the latitude and longitude of the cities only and the purpose of the analyse just focuses on the Ho Chi Minh city so other city information would be removed too. The data after cleansing would be like:

|   | city          | lat       | Ing        | admin       |
|---|---------------|-----------|------------|-------------|
| 0 | Quận Chín     | 10.839702 | 106.770930 | Hồ Chí Minh |
| 1 | Quận Mười Một | 10.763829 | 106.643552 | Hồ Chí Minh |
| 2 | Quận Mười     | 10.768234 | 106.666324 | Hồ Chí Minh |
| 3 | Quận Tân Phú  | 10.783786 | 106.637040 | Hồ Chí Minh |
| 4 | Quận Ba       | 10.774943 | 106.686280 | Hồ Chí Minh |

By exploring the venue data from Foursquare, clustering algorithm would be applied to categorize the neighborhoods in to several clusters which they have the similar properties and from that view, the good location to start cafe/restaurant business can be suggested.

To make a suggestion, some properties of data from Foursquare would be leverage to analyse to find the pattern and relation between the venues. They are:

- 1. Name of venue;
- 2. Categories;
- 3. Latitude;
- 4. Longitude;

## III. Methodology

Stated in the business problem, the expectation outcome is a recommendation where is a suitable location to settle a restaurant. This kind of question would be good use case to utilize *unsupervised* machine learning and more precise, it is *K-mean* clustering algorithm and integrate the outcome with *Foursquare API* and *folium* library to visualize the result.

Let take a detail look into the data. The source data of location based for Ho Chi Minh city and its neighborhood has the size of (19,4), it means there are 19 neighborhoods in the investigated area.

## Out[5]:

|   | city          | lat       | Ing        | admin       |
|---|---------------|-----------|------------|-------------|
| 0 | Quận Chín     | 10.839702 | 106.770930 | Hồ Chí Minh |
| 1 | Quận Mười Một | 10.763829 | 106.643552 | Hồ Chí Minh |
| 2 | Quận Mười     | 10.768234 | 106.666324 | Hồ Chí Minh |
| 3 | Quận Tân Phú  | 10.783786 | 106.637040 | Hồ Chí Minh |
| 4 | Quận Ba       | 10.774943 | 106.686280 | Hồ Chí Minh |

```
In [164]: df.shape
Out[164]: (19, 4)
```

With the *folio* library, the data set can be represented on the map as below:



From this point, the next step is using Foursquare to explore the venues in the neighborhoods. Cause the limited of the subscription, there is maximum of 100 venues in results and the radius for the exploration was set for 700m. This make a result as below:

|                 | Neighborhood Latitude | Neighborhood Longitude | Venue | Venue Latitude | Venue Longitude | Venue Category |  |
|-----------------|-----------------------|------------------------|-------|----------------|-----------------|----------------|--|
| Neighborhood    |                       |                        |       |                |                 |                |  |
| Củ Chi          | 6                     | 6                      | 6     | 6              | 6               | 6              |  |
| Hóc Môn         | 7                     | 7                      | 7     | 7              | 7               | 7              |  |
| Nhà Bè          | 4                     | 4                      | 4     | 4              | 4               | 4              |  |
| Quận Ba         | 90                    | 90                     | 90    | 90             | 90              | 90             |  |
| Quận Bình Thạnh | 17                    | 17                     | 17    | 17             | 17              | 17             |  |
| Quận Bảy        | 4                     | 4                      | 4     | 4              | 4               | 4              |  |
| Quận Bốn        | 31                    | 31                     | 31    | 31             | 31              | 31             |  |
| Quận Chín       | 20                    | 20                     | 20    | 20             | 20              | 20             |  |
| Quận Hai        | 5                     | 5                      | 5     | 5              | 5               | 5              |  |
| Quận Mười       | 41                    | 41                     | 41    | 41             | 41              | 41             |  |
| Quận Mười Một   | 6                     | 6                      | 6     | 6              | 6               | 6              |  |
| Quận Một        | 100                   | 100                    | 100   | 100            | 100             | 100            |  |
| Quận Năm        | 45                    | 45                     | 45    | 45             | 45              | 45             |  |
| Quận Phú Nhuận  | 55                    | 55                     | 55    | 55             | 55              | 55             |  |
| Quận Sáu        | 8                     | 8                      | 8     | 8              | 8               | 8              |  |
| Quận Tân Phú    | 9                     | 9                      | 9     | 9              | 9               | 9              |  |
| Thủ Đức         | 16                    | 16                     | 16    | 16             | 16              | 16             |  |
| Tân Túc         | 4                     | 4                      | 4     | 4              | 4               | 4              |  |

print('There are {} uniques categories.'.format(len(hcm\_venues['Venue Category'].unique())))

There are 98 uniques categories.

The result showed that there were 98 venue categories found. To analyze each neighborhood and how the relative with its venues, above data need to be standardized. After applying the *get\_dummies()* method in Python and merging the result, the new dataset looks like:

|   | Neighborhood | American<br>Restaurant | Arcade | Argentinian<br>Restaurant | Arts &<br>Crafts<br>Store | Asian<br>Restaurant |   | Bakery | Bar | Basketball<br>Stadium | Bed &<br>Breakfast |   | Bistro | Bookstore | Breakfast<br>Spot | Brewery | Buffet | Burger<br>Joint | Busines<br>Servic |
|---|--------------|------------------------|--------|---------------------------|---------------------------|---------------------|---|--------|-----|-----------------------|--------------------|---|--------|-----------|-------------------|---------|--------|-----------------|-------------------|
| 0 | Quận Chín    | 0                      | 0      | 0                         | 0                         | 0                   | 0 | 0      | 0   | 0                     | 0                  | 0 | 0      | 0         | 0                 | 0       | 0      | 0               |                   |
| 1 | Quận Chín    | 0                      | 0      | 0                         | 0                         | 0                   | 0 | 0      | 0   | 0                     | 0                  | 0 | 0      | 0         | 0                 | 0       | 0      | 0               |                   |
| 2 | Quận Chín    | 0                      | 0      | 0                         | 0                         | 0                   | 0 | 0      | 0   | 0                     | 0                  | 0 | 0      | 0         | 0                 | 0       | 0      | 0               |                   |
| 3 | Quận Chín    | 0                      | 0      | 0                         | 0                         | 0                   | 0 | 0      | 0   | 0                     | 0                  | 0 | 0      | 0         | 0                 | 0       | 0      | 0               |                   |
| 4 | Quận Chín    | 0                      | 0      | 0                         | 0                         | 0                   | 0 | 0      | 0   | 0                     | 0                  | 0 | 0      | 0         | 0                 | 0       | 0      | 0               |                   |

This dataset is still complicated to analyze cause there are 98 venues categories which most of them may not relevant to the features need to analyse then it would be transform to the new shape. The good idea is shorten the result into the top 5 common venues. After transforming the dataset, the new result would be:

|    | Neighborhood    | 1st Most Common Venue      | 2nd Most Common Venue         | 3rd Most Common Venue      | 4th Most Common Venue | 5th Most Common Venue         |
|----|-----------------|----------------------------|-------------------------------|----------------------------|-----------------------|-------------------------------|
| 0  | Củ Chi          | Coffee Shop                | Café                          | Pharmacy                   | Vietnamese Restaurant | Arts & Crafts Store           |
| 1  | Hóc Môn         | Vietnamese Restaurant      | Hotel                         | Café                       | Seafood Restaurant    | Market                        |
| 2  | Nhà Bè          | Vietnamese Restaurant      | Mobile Phone Shop             | Rest Area                  | Market                | Cupcake Shop                  |
| 3  | Quận Ba         | Vietnamese Restaurant      | Café                          | Coffee Shop                | Asian Restaurant      | Vegetarian / Vegan Restaurant |
| 4  | Quận Bình Thạnh | Vietnamese Restaurant      | Seafood Restaurant            | Supermarket                | Convenience Store     | Coffee Shop                   |
| 5  | Quận Bảy        | Coffee Shop                | Café                          | Shopping Mall              | Food                  | Fast Food Restaurant          |
| 6  | Quận Bốn        | Seafood Restaurant         | Hotel                         | Bar                        | Coffee Shop           | Vietnamese Restaurant         |
| 7  | Quận Chín       | Café Vietnamese Restaurant |                               | Coffee Shop                | Restaurant            | Fast Food Restaurant          |
| 8  | Quận Hai        | Vietnamese Restaurant      | Café                          | Seafood Restaurant         | Noodle House          | Electronics Store             |
| 9  | Quận Mười       | Vietnamese Restaurant      | Café                          | Coffee Shop                | Asian Restaurant      | Ice Cream Shop                |
| 10 | Quận Mười Một   | Café                       | Pizza Place                   | Theme Park                 | Basketball Stadium    | Flea Market                   |
| 11 | Quận Một        | Café                       | Coffee Shop                   | Hotel                      | Vietnamese Restaurant | Massage Studio                |
| 12 | Quận Năm        | Dim Sum Restaurant         | Asian Restaurant              | Chinese Restaurant         | Vietnamese Restaurant | Noodle House                  |
| 13 | Quận Phú Nhuận  | Café                       | Coffee Shop                   | Vietnamese Restaurant      | Chinese Restaurant    | Bar                           |
| 14 | Quận Sáu        | Dessert Shop               | Brewery                       | Noodle House               | Cantonese Restaurant  | Café                          |
| 15 | Quận Tân Phú    | Vietnamese Restaurant      | Café                          | Fried Chicken Joint        | Restaurant            | Business Service              |
| 16 | Thủ Đức         | Coffee Shop                | Ice Cream Shop                | Asian Restaurant           | Electronics Store     | Vietnamese Restaurant         |
| 17 | Tân Túc         | Vietnamese Restaurant      | Vegetarian / Vegan Restaurant | Tourist Information Center | Brewery               | Flower Shop                   |

It is obviously found that now the dataset had only 18 cities in stead of 19 cities at the beginning. This missing will be discussed later but the new dataset is good enough to analyse.

It is time to apply the K-mean clustering algorithm. Before running the K-mean to the dataset, it would be necessary to find out what is best K. Using the Elbow method, the result showed that the K would be 3 or 4 but let's take 3.



### IV. Result:

Applying K-mean algorithm with K=3, merged with the original data, the result showed in the table below with 3 clusters:

|    | city               | lat       | Ing        | admin          | Cluster<br>Labels | 1st Most Common<br>Venue | 2nd Most Common<br>Venue         | 3rd Most Common<br>Venue      | 4th Most Common<br>Venue | 5th Most Common<br>Venue         |
|----|--------------------|-----------|------------|----------------|-------------------|--------------------------|----------------------------------|-------------------------------|--------------------------|----------------------------------|
| 0  | Quận Chín          | 10.839702 | 106.770930 | Hổ Chí<br>Minh | 2                 | Café                     | Vietnamese Restaurant            | Coffee Shop                   | Restaurant               | Fast Food Restaurant             |
| 1  | Quận Mười<br>Một   | 10.763829 | 106.643552 | Hổ Chí<br>Minh | 2                 | Café                     | Pizza Place                      | Theme Park                    | Basketball Stadium       | Flea Market                      |
| 2  | Quận Mười          | 10.768234 | 106.666324 | Hổ Chí<br>Minh | 0                 | Vietnamese<br>Restaurant | Café                             | Coffee Shop                   | Asian Restaurant         | Ice Cream Shop                   |
| 3  | Quận Tân Phú       | 10.783786 | 106.637040 | Hổ Chí<br>Minh | 2                 | Vietnamese<br>Restaurant | Café                             | Fried Chicken Joint           | Restaurant               | Business Service                 |
| 4  | Quận Ba            | 10.774943 | 106.686280 | Hổ Chí<br>Minh | 2                 | Vietnamese<br>Restaurant | Café                             | Coffee Shop                   | Asian Restaurant         | Vegetarian / Vegan<br>Restaurant |
| 5  | Quận Bình<br>Thạnh | 10.803251 | 106.696665 | Hồ Chí<br>Minh | 0                 | Vietnamese<br>Restaurant | Seafood Restaurant               | Supermarket                   | Convenience Store        | Coffee Shop                      |
| 6  | Tân Túc            | 10.695412 | 106.591281 | Hồ Chí<br>Minh | 0                 | Vietnamese<br>Restaurant | Vegetarian / Vegan<br>Restaurant | Tourist Information<br>Center | Brewery                  | Flower Shop                      |
| 8  | Thủ Đức            | 10.848627 | 106.772089 | Hồ Chí<br>Minh | 0                 | Coffee Shop              | Ice Cream Shop                   | Asian Restaurant              | Electronics Store        | Vietnamese Restaurant            |
| 9  | Quận Sáu           | 10.746795 | 106.649032 | Hồ Chí<br>Minh | 0                 | Dessert Shop             | Brewery                          | Noodle House                  | Cantonese Restaurant     | Café                             |
| 10 | Quận Năm           | 10.755665 | 106.667451 | Hồ Chí<br>Minh | 0                 | Dim Sum Restaurant       | Asian Restaurant                 | Chinese Restaurant            | Vietnamese<br>Restaurant | Noodle House                     |
| 11 | Quận Một           | 10.780687 | 106.699444 | Hồ Chí<br>Minh | 0                 | Café                     | Coffee Shop                      | Hotel                         | Vietnamese<br>Restaurant | Massage Studio                   |

Using folium library to visualize the result on the map, the clusters will be represented:



By exploring more detail on each cluster, the data showed that, it is recommended:

(i) to open the restaurant, the good location is in the *Cluster 0* which contains the neighborhoods as below:

|    | city            | admin       | Cluster Labels | 1st Most Common Venue | 2nd Most Common Venue         | 3rd Most Common Venue      | 4th Most Common Venue | 5th Most Common Venue |
|----|-----------------|-------------|----------------|-----------------------|-------------------------------|----------------------------|-----------------------|-----------------------|
| 2  | Quận Mười       | Hồ Chí Minh | 0              | Vietnamese Restaurant | Café                          | Coffee Shop                | Asian Restaurant      | Ice Cream Shop        |
| 5  | Quận Bình Thạnh | Hồ Chí Minh | 0              | Vietnamese Restaurant | Seafood Restaurant            | Supermarket                | Convenience Store     | Coffee Shop           |
| 6  | Tân Túc         | Hồ Chí Minh | 0              | Vietnamese Restaurant | Vegetarian / Vegan Restaurant | Tourist Information Center | Brewery               | Flower Shop           |
| 8  | Thủ Đức         | Hồ Chí Minh | 0              | Coffee Shop           | Ice Cream Shop                | Asian Restaurant           | Electronics Store     | Vietnamese Restaurant |
| 9  | Quận Sáu        | Hồ Chí Minh | 0              | Dessert Shop          | Brewery                       | Noodle House               | Cantonese Restaurant  | Café                  |
| 10 | Quận Năm        | Hồ Chí Minh | 0              | Dim Sum Restaurant    | Asian Restaurant              | Chinese Restaurant         | Vietnamese Restaurant | Noodle House          |
| 11 | Quận Một        | Hồ Chí Minh | 0              | Café                  | Coffee Shop                   | Hotel                      | Vietnamese Restaurant | Massage Studio        |
| 13 | Quận Bốn        | Hồ Chí Minh | 0              | Seafood Restaurant    | Hotel                         | Bar                        | Coffee Shop           | Vietnamese Restaurant |
| 17 | Quận Hai        | Hồ Chí Minh | 0              | Vietnamese Restaurant | Café                          | Seafood Restaurant         | Noodle House          | Electronics Store     |
| 18 | Hóc Môn         | Hồ Chí Minh | 0              | Vietnamese Restaurant | Hotel                         | Café                       | Seafood Restaurant    | Market                |

(ii) to open the coffee shop, the good location is in the *Cluster 2* which contains the neighborhoods as below:

|    | city           | admin       | Cluster Labels | 1st Most Common Venue | 2nd Most Common Venue | 3rd Most Common Venue | 4th Most Common Venue | 5th Most Common Venue         |
|----|----------------|-------------|----------------|-----------------------|-----------------------|-----------------------|-----------------------|-------------------------------|
| 0  | Quận Chín      | Hổ Chí Minh | 2              | Café                  | Vietnamese Restaurant | Coffee Shop           | Restaurant            | Fast Food Restaurant          |
| 1  | Quận Mười Một  | Hổ Chí Minh | 2              | Café                  | Pizza Place           | Theme Park            | Basketball Stadium    | Flea Market                   |
| 3  | Quận Tân Phú   | Hổ Chí Minh | 2              | Vietnamese Restaurant | Café                  | Fried Chicken Joint   | Restaurant            | Business Service              |
| 4  | Quận Ba        | Hổ Chí Minh | 2              | Vietnamese Restaurant | Café                  | Coffee Shop           | Asian Restaurant      | Vegetarian / Vegan Restaurant |
| 12 | Quận Phú Nhuận | Hổ Chí Minh | 2              | Café                  | Coffee Shop           | Vietnamese Restaurant | Chinese Restaurant    | Bar                           |
| 15 | Quận Bảy       | Hổ Chí Minh | 2              | Coffee Shop           | Café                  | Shopping Mall         | Food                  | Fast Food Restaurant          |
| 16 | Củ Chi         | Hổ Chí Minh | 2              | Coffee Shop           | Café                  | Pharmacy              | Vietnamese Restaurant | Arts & Crafts Store           |

#### V. Discussion

Even though the algorithm generated the recommendation but actually there are several points need to be considered.

Firstly, from the data source point of view, it was not rich enough to analyse. It is both from the city data. To improve this barrier, the more detail data source would be collected, such as location of neighborhood at the ward level instead of district level as current situation.

Secondly, the business proposal used the simple features to analyse, that is venue categories. It would be suggested that the more features will be applied in the future version of the solution, such as *venue price*, *venue like*, *venue rate*,..

These above limitation can obviously found in the report when there is one missing city in the final result and the optimal K in the Elbow method looked not really good.

#### VI. Conclusion

Absolutely, machine learning could resolve many business problem nowadays but by this study, the important thing is the data for analyzing would be detail enough and also requires the analyst pay pretty much attention on exploring the data. Almost of the algorithms are integrated in the libraries and save a lot of effort in the data science project. In this example project, despite the are several aspects need to be improved but it definitely showed the result to audience in a pretty much visual way.