Course: Deep Learning

Unit 2: Computer Vision

Convolutional Neural Networks (II): Regularization

Luis Baumela

Universidad Politécnica de Madrid

Convolutional Neural Networks (II)

- 1. Introduction
 - Why regularize?
- 2. Regularization techniques
 - Data augmentation
 - Dropout
 - Transfer learning
 - Label Smoothing

Introduction

• Why regularize?

ILSVRC: 1.2 M training images

How many parameters in Alexnet CNN?

Conv Layers: 3.7 M params

ffNN Layers: 58.6 M params

Total: 62.3 M params

94% of params

Introduction

• Why regularize?

How many parameters in Alexnet CNN? 62.3 M How many training images? 1.2 M

What will happen if we do not care at all?

Overfit the training data set → poor generalization

Solution:

Reduce the degrees of freedom in your model → Regularize

Data augmentation

Scarce data is the main bottleneck in deep models.

- CNNs have some built-in invariances: small translations due to convolution and max pooling
- Not invariant to other important variations such as rotations, scale, colour changes, noise, etc..
- However, it's easy to artificially generate data with such transformations
 - → use such data as additional training data
 - → NN will learn to be invariant to such transformations

- Data augmentation (different pixels, same label)
 - Translation, rotation, scale, shear changes:

- Data augmentation (different pixels, same label)
 - Translation, rotation, scale, shear changes
 - Horizontal flips

- Data augmentation (different pixels, same label)
 - Translation, rotation, scale, shear changes
 - Horizontal flips
 - Pixel value manipulation

- Data augmentation (different pixels, same label)
 - Translation, rotation, scale, shear changes
 - Horizontal flips
 - Pixel value manipulation
 - Random pixel erasing (CutOut)

- Data augmentation (different pixels, same label)
 - Translation, rotation, scale, shear changes
 - Horizontal flips
 - Pixel value manipulation
 - Random pixel erasing
 - Synthetic data generation

- Data Augmentation.
 - MixUp

Obtaining new training data through convex combinations of pairs of examples and their labels.

Builds synthetic training examples by

$$\tilde{x} = \lambda x_i + (1 - \lambda)x_j$$
, where x_i, x_j are raw input vectors $\tilde{y} = \lambda y_i + (1 - \lambda)y_j$, where y_i, y_j are one-hot label encodings

$$\tilde{x} =$$

$$\tilde{y} = 0.3 * y_{cat} + 0.7 * y_{dog}$$

Data Augmentation. CutMix
 Overlays random regions in training images with a patch of from another.

$$\tilde{x} = \mathbf{M} \odot x_A + (\mathbf{1} - \mathbf{M}) \odot x_B$$

 $\tilde{y} = \lambda y_A + (1 - \lambda) y_B,$

where (x_A, y_A) and (x_B, y_B) training samples (\tilde{x}, \tilde{y}) generated data $\mathbf{M} \in \{0, 1\}^{W \times H}$ binary matrix λ combination ratio

The rectangular masc is given by

$$\begin{split} r_x \sim & \text{Unif } \left(0, W \right), \quad r_w = W \sqrt{1 - \lambda}, \\ r_y \sim & \text{Unif } \left(0, H \right), \quad r_h = H \sqrt{1 - \lambda} \\ \frac{r_w r_h}{W H} = 1 - \lambda \end{split}$$

where

W: image width
H: image heigth
r_x: x cut co-ordinate
r_y: y cut co-ordinate
r_w: cut width
r_h: cut heigth

Data Augmentation. CutMix vs. MixUp vs. CutOut

Image	ResNet-50	Mixup	Cutout	CutMix
Label	Dog 1.0	Dog 0.5 Cat 0.5	Dog 1.0	Dog 0.6 Cat 0.4
ImageNet	76.3	77.4	77.1	78.4
Cls (%)	(+0.0)	(+1.1)	(+0.8)	(+2.1)
ImageNet	46.3	45.8	46.7	47.3
Loc (%)	(+0.0)	(-0.5)	(+0.4)	(+1.0)
Pascal VOC	75.6	73.9	75.1	76.7
Det (mAP)	(+0.0)	(-1.7)	(-0.5)	(+1.1)

- Data augmentation (different pixels, same label)
 - Translation, rotation, scale, shear changes
 - Horizontal flips
 - Pixel value manipulation
 - Random pixel erasing
 - Synthetic data generation

At testing

Average network response at a fixed set of tranformations

Data augmentation (different pixels, same label)
 Some support from Keras

keras.preprocessing.image.ImageDataGenerator(featurewise_center=False, samplewise_center

- featurewise_center: Boolean. Set input mean to 0 over the dataset, feature-wise.
- samplewise_center: Boolean. Set each sample mean to 0.
- featurewise_std_normalization: Boolean. Divide inputs by std of the dataset, feature-wise.
- samplewise_std_normalization: Boolean. Divide each input by its std.
- zca_epsilon: epsilon for ZCA whitening. Default is 1e-6.
- zca_whitening: Boolean. Apply ZCA whitening.
- rotation_range: Int. Degree range for random rotations.
- width_shift_range: Float, 1-D array-like or int
- horizontal_flip: Boolean. Randomly flip inputs horizontally.
- vertical_flip: Boolean. Randomly flip inputs vertically.
- rescale: rescaling factor. Defaults to None. If None or 0, no rescaling is applied, otherwise we multiply the data by the value provided (after applying all other transformations).
- preprocessing_function: function that will be implied on each input. The function will run after the image is resized and augmented. The function should take one argument: one image (Numpy tensor with rank 3), and should output a Numpy tensor with the same shape.

Data augmentation (different pixels, same label)
 Some support from Keras

keras.preprocessing.image.ImageDataGenerator(featurewise_center=**False**, samplewise_center

```
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
y_train = np_utils.to_categorical(y_train, num_classes)
v test = np utils.to categorical(v test, num classes)
datagen = ImageDataGenerator(
    featurewise center=True,
    featurewise_std_normalization=True,
    rotation_range=20,
    width_shift_range=0.2,
    height_shift_range=0.2,
    horizontal_flip=True)
# compute quantities required for featurewise normalization
# (std, mean, and principal components if ZCA whitening is applied)
datagen.fit(x_train)
# fits the model on batches with real-time data augmentation:
model.fit_generator(datagen.flow(x_train, y_train, batch_size=32),
                    steps_per_epoch=len(x_train) / 32, epochs=epochs)
```

Dropout

Prune the NN by ramdomly discarding hidden units

The output of each hidden unit is multiplied by "0" with a probability p (for example p=0.5)

Dropout

Prune the NN by ramdomly discarding hidden units

The output of each hidden unit is multiplied by "0" with a probability p (for example p=0.5)

Dropout

Prune the NN by ramdomly discarding hidden units

The output of each hidden unit is multiplied by "0" with a probability p (for example p=0.5). Now

- Hidden units cannot co-adapt
- Hidden units must learn more general features

Changes on the **training algorithm**:

- Forwprop. Each layer includes a random [0,1] mask that multiplies each activation.
- <u>Backprop.</u> Hidden units multiplied by "0" do not contribute to the gradient backprop.

Dropout, in Keras

```
keras.layers.Dropout(rate, noise_shape=None, seed=None)
```

Applies Dropout to the input.

Dropout consists in randomly setting a fraction rate of input units to 0 at each update during training time, which helps prevent overfitting.

Arguments

- rate: float between 0 and 1. Fraction of the input units to drop.
- noise_shape: 1D integer tensor representing the shape of the binary dropout mask that will be multiplied with the input. For instance, if your inputs have shape (batch_size, timesteps, features) and you want the dropout mask to be the same for all timesteps, you can use noise_shape=(batch_size, 1, features).
- seed: A Python integer to use as random seed.

Transfer learning (pre-training)

What to do if we have a problem with a small data set.

- 1. Use another (similar) large data set to train a large CNN.
- 2. Re-train the large CNN with your small data set.

Take advantage of

- Keras applications package
- pyTorch, Tensor Flow, Caffe model zoo models in the net
- Follow procedures to convert from one model to another

Transfer learning (pre-training)

Transfer learning (pre-training)

	very similar dataset	very different dataset
very little data	Use Linear Classifier on top layer	You're in trouble Try linear classifier from different stages
quite a lot of data	Finetune a few layers	Finetune a larger number of layers

Transfer learning as representation learning

Transfer learning in Keras

```
from keras.applications.inception_v3 import InceptionV3
from keras.preprocessing import image
from keras.models import Model
from keras.layers import Dense, GlobalAveragePooling2D
from keras import backend as K
# create the base pre-trained model
base_model = InceptionV3(weights='imagenet', include_top=False)
# add a global spatial average pooling layer
x = base model.output
x = GlobalAveragePooling2D()(x)
# let's add a fully-connected layer
x = Dense(1024, activation='relu')(x)
# and a logistic layer -- let's say we have 200 classes
predictions = Dense(200, activation='softmax')(x)
# this is the model we will train
model = Model(inputs=base model.input, outputs=predictions)
# first: train only the top layers (which were randomly initialized)
# i.e. freeze all convolutional InceptionV3 layers
for layer in base model.layers:
    layer.trainable = False
# compile the model (should be done *after* setting layers to non-trainable)
model.compile(optimizer='rmsprop', loss='categorical crossentropy')
# train the model on the new data for a few epochs
model.fit_generator(...)
```

Label smoothing

A model is *overconfident* when its confidence on its predictions is higher that the actual accuracy.

Label Smoothing is a regularization technique that introduces noise in the labels.

Label smoothing

A model is *overconfident* when its confidence on its predictions is higher that the actual accuracy. **Label Smoothing** is a regularization technique that introduces noise in the labels.

Benefits:

- Prevents overfitting.
- Improves generalization.
- Stabilizes training.
- Enhanced Calibration.

Drawbacks:

- One extra hyperparameter to tune
- May not be beneficial highly imbalanced data sets.

Label smoothing in Keras

tf.keras.losses.CategoricalCrossentropy

Computes the crossentropy loss between the labels and predictions.

View aliases

```
tf.keras.losses.CategoricalCrossentropy(
    from_logits=False, label_smoothing=0, reduction=losses_utils.ReductionV2.AUTO,
    name='categorical_crossentropy'
)
```