

日本国特許庁
JAPAN PATENT OFFICE

PCT/JP2004/009546

20.07.2004

別紙添付の書類に記載されている事項は下記の出願書類に記載されて
いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed
with this Office.

出願年月日
Date of Application: 2004年 3月12日

出願番号
Application Number: 特願2004-071744
[ST. 10/C]: [JP2004-071744]

出願人
Applicant(s): ダイキン工業株式会社

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

2004年 8月27日

特許庁長官
Commissioner,
Japan Patent Office

小川

洋

【書類名】 特許願
【整理番号】 YK03-1176
【あて先】 特許庁長官殿
【国際特許分類】 C08F 2/26
【発明者】
 【住所又は居所】 大阪府摂津市西一津屋1番1号 ダイキン工業株式会社淀川製作所内
 【氏名】 中谷 英樹
【発明者】
 【住所又は居所】 大阪府摂津市西一津屋1番1号 ダイキン工業株式会社淀川製作所内
 【氏名】 藤 忠洋
【発明者】
 【住所又は居所】 大阪府摂津市西一津屋1番1号 ダイキン工業株式会社淀川製作所内
 【氏名】 塚本 充郎
【発明者】
 【住所又は居所】 大阪府摂津市西一津屋1番1号 ダイキン工業株式会社淀川製作所内
 【氏名】 乙井 健治
【発明者】
 【住所又は居所】 大阪府摂津市西一津屋1番1号 ダイキン工業株式会社淀川製作所内
 【氏名】 平賀 義之
【特許出願人】
 【識別番号】 000002853
 【氏名又は名称】 ダイキン工業株式会社
【代理人】
 【識別番号】 100086586
 【弁理士】
 【氏名又は名称】 安富 康男
【選任した代理人】
 【識別番号】 100115820
 【弁理士】
 【氏名又は名称】 渡辺 みのり
【先の出願に基づく優先権主張】
 【出願番号】 特願2003-191416
 【出願日】 平成15年 7月 3日
【手数料の表示】
 【予納台帳番号】 033891
 【納付金額】 21,000円
【提出物件の目録】
 【物件名】 特許請求の範囲 1
 【物件名】 明細書 1
 【物件名】 図面 1
 【物件名】 要約書 1

特願 2004-071744

ページ： 2/E

【包括委任状番号】 0006907

出証特 2004-3076826

【書類名】特許請求の範囲**【請求項1】**

フッ素含有界面活性剤を含有している処理対象物に物質[A]を接触させることにより前記フッ素含有界面活性剤の除去処理を行うことによる処理対象物精製方法であって、前記物質[A]は、標準状態(10^5 Pa 、 0°C)において気体であるものであることを特徴とする処理対象物精製方法。

【請求項2】

フッ素含有界面活性剤は、1分子あたりの炭素数が38個以下のフッ素含有化合物からなるものである請求項1記載の処理対象物精製方法。

【請求項3】

フッ素含有化合物は、下記一般式(1)

(式中、Yは、H又はFを表す。 x_1 は、4~13の整数を表し、 y_1 は、0~3の整数を表す。Aは、 $-\text{SO}_3\text{M}$ 又は $-\text{COOM}$ を表し、Mは、H、 NH_4 、Li、Na又はKを表す。)で表されるエーテル酸素を有しないアニオン性化合物、又は、下記一般式(2)

(式中、 x_2 は、1~5の整数を表し、 y_2 は、0~10の整数を表す。Xは、F又は CF_3 を表す。Aは、 $-\text{SO}_3\text{M}$ 又は $-\text{COOM}$ を表し、Mは、H、 NH_4 、Li、Na又はKを表す。)で表されるエーテル酸素を有するアニオン性化合物である請求項2記載の処理対象物精製方法。

【請求項4】

物質[A]は、二酸化炭素である請求項1、2又は3記載の処理対象物精製方法。

【請求項5】

フッ素含有界面活性剤の除去処理は、 20°C 以上の温度において4MPa以上の圧力下に行うものである請求項4記載の処理対象物精製方法。

【請求項6】

フッ素含有界面活性剤の除去処理は、二酸化炭素の臨界温度以上の温度において二酸化炭素の臨界圧力以上の圧力下に行うものである請求項4記載の処理対象物精製方法。

【請求項7】

処理対象物は、更に、水を含有しているものである請求項1、2、3、4、5又は6記載の処理対象物精製方法。

【請求項8】

処理対象物は、(i)水と、(ii)前記(i)水以外の非水物でありフッ素含有界面活性剤を含有しているものとから構成されるものであり、

前記(ii)非水物は、更に、ポリマーを含有しているか又は含有していないものあり、

前記(i)水は、前記(ii)非水物100質量部に対し0.1質量部を超える量である請求項7記載の処理対象物精製方法。

【請求項9】

処理対象物は、更にポリマーと水とを含有している水性分散体である請求項1、2、3、4、5、6、7又は8記載の処理対象物精製方法。

【請求項10】

処理対象物は、更にポリマーと水とを含有している水性非分散体、又は、更にポリマーと水とを含有している湿潤粉末である請求項1、2、3、4、5、6、7又は8記載の処理対象物精製方法。

【請求項11】

ポリマーは、フルオロポリマーである請求項8、9又は10記載の処理対象物精製方法。

【請求項12】

フルオロポリマーは、ポリテトラフルオロエチレン重合体である請求項11記載の処理対象物精製方法。

【請求項13】

処理対象物は、更に、水を含有しているものであり、
前記処理対象物は、実質的にポリマーを含有しないものである請求項1、2、3、4、5
又は6記載の処理対象物精製方法。

【請求項14】

請求項9、10、11又は12記載の処理対象物精製方法を用いてポリマーからなる凝集体を製造する
ことを特徴とする凝集体製造方法。

【請求項15】

請求項13記載の処理対象物精製方法を用いてフッ素含有界面活性剤の含有率を低減させたフッ素含有界面活性剤低減水を調製する
ことを特徴とするフッ素含有界面活性剤低減水調製方法。

【請求項16】

ポリマーからなる凝集体を製造するための凝集体製造方法であって、
前記凝集体製造方法は、前記ポリマーからなる粒子が分散している水性分散体に物質〔A〕を接触させることにより前記水性分散体の凝析処理を行う工程を有するものあり、
前記物質〔A〕は、標準状態(10^5 Pa 、 0°C)において気体であるものである
ことを特徴とする凝集体製造方法。

【請求項17】

水性分散体の凝析処理は、特定の処理温度($T^\circ\text{C}$)において特定の処理圧力($P\text{ Pa}$)
下に行うものであり、
前記特定の処理温度($T^\circ\text{C}$)と、物質〔A〕の臨界温度($T_c^\circ\text{C}$)との比(T/T_c)が
0.8以上であり、
前記特定の処理圧力($P\text{ Pa}$)と、前記物質〔A〕の臨界圧力($P_c\text{ Pa}$)との比(P/P_c)が0.8以上である請求項16記載の凝集体製造方法。

【請求項18】

特定の処理温度(T)は、物質〔A〕の臨界温度(T_c)以上の温度であり、
特定の処理圧力(P)は、前記物質〔A〕の臨界圧力(P_c)以上の圧力である請求項17記載の凝集体製造方法。

【請求項19】

ポリマーは、フルオロポリマーである請求項16、17又は18記載の凝集体製造方法。

【請求項20】

フルオロポリマーは、ポリテトラフルオロエチレン重合体である請求項19記載の凝集体
製造方法。

【書類名】明細書

【発明の名称】処理対象物精製方法及び凝集体製造方法

【技術分野】

【0001】

本発明は、処理対象物精製方法及び凝集体製造方法に関する。

【背景技術】

【0002】

フッ素含有界面活性剤は、ポリマー等の乳化重合の乳化剤、凝析安定剤として利用されてきた。近時、製品中におけるフッ素含有界面活性剤の含有率の低減について盛んに開発されており、例えば、水溶液中のフッ素含有界面活性剤を回収する方法として、逆浸透膜法（例えば、特許文献1参照。）、イオン交換膜法（例えば、特許文献2参照。）等が検討されてきた。しかしながら、これらの膜を用いる方法は、未凝析ポリマーを含むフッ素含有界面活性剤溶液を処理すると、膜が汚染されやすく、その度に膜の交換が必要となり、コスト面に問題があった。

【0003】

ポリマーは、乳化重合等により水性分散体として得ることができるが、粉末等に製品化するための凝析方法としては、従来、この水性分散体に電解質、水溶性有機溶剤等の凝析助剤を添加して攪拌することにより、凝析する方法が確立され、長年行われてきた。

【0004】

【特許文献1】特開2002-58966号公報

【特許文献2】特開2002-59160号公報

【発明の開示】

【発明が解決しようとする課題】

【0005】

本発明の目的は、上記現状に鑑み、フッ素含有界面活性剤を含有している処理対象物からフッ素含有界面活性剤を除去する方法、及び、水性分散体からポリマーからなる凝集体を製造する方法を提供することにあり、後者の方法は、新規の凝析方法を用いることによる方法を含む。

【課題を解決するための手段】

【0006】

本発明は、フッ素含有界面活性剤を含有している処理対象物に物質[A]を接触させることにより上記フッ素含有界面活性剤の除去処理を行うことによる処理対象物精製方法であって、上記物質[A]は、標準状態(10^5 Pa、0℃)において気体であるものであることを特徴とする処理対象物精製方法である。

本発明は、上記処理対象物精製方法を用いてポリマーからなる凝集体を製造することを特徴とする凝集体製造方法である。

本発明は、上記処理対象物精製方法を用いてフッ素含有界面活性剤の含有率を低減させたフッ素含有界面活性剤低減水を調製することを特徴とするフッ素含有界面活性剤低減水調製方法である。

本発明は、ポリマーからなる凝集体を製造するための凝集体製造方法であって、上記凝集体製造方法は、上記ポリマーからなる粒子が分散している水性分散体に物質[A]を接触させることにより上記水性分散体の凝析処理を行う工程を有するものであり、上記物質[A]は、標準状態(10^5 Pa、0℃)において気体であるものであることを特徴とする凝集体製造方法である。

以下に本発明を詳細に説明する。

【0007】

本発明の処理対象物精製方法は、フッ素含有界面活性剤を含有している処理対象物に物質[A]を接触させることにより上記フッ素含有界面活性剤の除去処理を行うことによるものである。

【0008】

上記処理対象物は、上記除去処理において物質〔A〕を接触させる対象となるものである。上記処理対象物は、20℃、10⁵Paのような常温常圧において、固体であってもよいし、液体であってもよい。

上記処理対象物は、フッ素含有界面活性剤を含有しているものである。

【0009】

上記フッ素含有界面活性剤は、分子構造内にフッ素原子を有し、ミセル形成能更に親水基と疎水基とを有するものである。

上記フッ素含有界面活性剤は、1分子あたりの炭素数が38個以下であるフッ素含有化合物からなるものであることが好ましい。1分子あたりの炭素数が38個を超えると界面活性剤能が低下する場合がある。上記1分子あたりの炭素数のより好ましい上限は、14個、更に好ましい上限は10個であり、好ましい下限は4個、より好ましい下限は6個である。上記1分子あたりの炭素数は、8個が好ましい。上記フッ素含有化合物は、ヘテロ原子を含むものであってもよい。本明細書において、上記「ヘテロ原子」は、炭素でも水素でもない原子であり、上記原子としては、例えば、酸素、窒素、フッ素、塩素、臭素、ヨウ素等が挙げられる。上記酸素原子は、エーテル結合を形成しているものであってもよい。

【0010】

上記フッ素含有化合物は、下記一般式(1)

(式中、Yは、H又はFを表す。x₁は、4～13の整数を、y₁は、0～3の整数を表す。Aは、-SO₃M又は-COOMを表し、Mは、H、NH₄、Li、Na又はKを表す。)で表されるエーテル酸素を有しないアニオン性化合物、又は、下記一般式(2)

(式中、x₂は、1～5の整数を、y₂は、0～10の整数を表す。Xは、F又はCF₃を表す。Aは、上記の通り。)で表されるエーテル酸素を有するアニオン性化合物であることが好ましい。

【0011】

上記エーテル酸素を有しないアニオン性化合物としては、下記一般式(1a)

(式中、x₃は、6～10の整数を表し、y₃は、0～2の整数を表す。Y及びAは、上記の通り。)で表される化合物がより好ましく、下記一般式(1b)

(式中、x₄は、6～10の整数を表す。Y及びAは、上記の通り。)で表される化合物であることが更に好ましい。

【0012】

上記エーテル酸素を有するアニオン性化合物としては、下記一般式(2a)

(式中、x₅は、1～5の整数を、y₄は、0～3の整数を表す。X及びMは、上記の通り。)で表される化合物がより好ましく、下記一般式(2b)

(式中、x₆は、1～3の整数を、y₅は、0～3の整数を表す。Mは、上記の通り。)で表される化合物が更に好ましい。

上記Mは、フルオロポリマーから容易に除去しうる点で、NH₄が好ましい。

【0013】

本発明において、上記フッ素含有界面活性剤としては特に限定されず、例えば、水性媒体中におけるラジカル重合によりポリマーを得るに際し、乳化剤として上記水性媒体中に存在させたものであってもよい。上記ラジカル重合としては、乳化重合、懸濁重合等が挙げられるが、乳化重合が好ましい。上記水性媒体は、重合を行わせる反応媒体であって、水を含む液体を意味する。上記水性媒体は、水を含むものであれば特に限定されず、水と、例えば、アルコール、エーテル、ケトン等のフッ素非含有有機溶媒、及び／又は、沸点が

40℃以下であるフッ素含有有機溶媒とを含むものであってもよい。例えば、懸濁重合を行うとき、C318等のフッ素含有有機溶媒を用いることができる。

【0014】

本発明の処理対象物精製方法における処理対象物は、上記フッ素含有界面活性剤と、更に、水とを含有しているものが好ましい。

上記フッ素含有界面活性剤と水とを含有しているものとしては、例えば、水からなる水性媒体中に分散質が上記フッ素含有界面活性剤の存在下に分散している水性分散体、水性非分散体、湿潤粉末、後述の処理対象物(3)等が挙げられる。

【0015】

本発明の処理対象物精製方法における処理対象物は、上記フッ素含有界面活性剤と、更に、ポリマーと水とを含有しているものであってもよい。

上記フッ素含有界面活性剤とポリマーと水とからなる処理対象物(以下、「処理対象物(1)」)といふことがある。)としては、例えば、水からなる水性媒体中に上記ポリマーが上記フッ素含有界面活性剤の存在下に分散している水性分散体等が挙げられる。本明細書において、上記処理対象物(1)並びに後述の処理対象物(2)及び処理対象物(3)のように(1)、(2)又は(3)を付すことなく単に「処理対象物」というときは、特に別の記載をしない限り、上記処理対象物(1)、処理対象物(2)又は処理対象物(3)を区別することなくこれら3つを含む概念である。

【0016】

上記水性分散体としては、上述の水性媒体中においてフッ素含有界面活性剤の存在下にラジカル重合を行うことにより得られたポリマーからなる粒子(一次粒子)が上記フッ素含有界面活性剤の存在下に上記水性媒体中に分散している水性分散体(以下、「水性分散体(1)」)といふことがある。)等が挙げられる。上記水性分散体(1)としては、濃縮操作を経たものであってもよい。上記水性分散体(1)は、通常、更に凝析等の操作を行うが、上記一次粒子は、上記凝析等の操作により、通常、凝集して粒子径が増大した粒子(二次粒子)を形成する。上記処理対象物(1)としては、上記凝析等の操作を行う前の水性分散体(1)であってもよいが、フッ素含有界面活性剤の除去効率等の点で、上記凝析等の操作を行った後の水性分散体(以下、「水性分散体(2)」)といふことがある。)が好ましい。上記凝析の方法としては特に限定されず、例えば、電解質、水溶性有機溶剤等の凝析助剤を添加する、酸を添加する等の従来公知の方法等が挙げられる。

【0017】

上記処理対象物(1)としては、また、上記フッ素含有界面活性剤と、更にポリマーと水とを含有しているものであり水性非分散体又は湿潤粉末であるものであってもよい。

本明細書において、上記「水性非分散体又は湿潤粉末」は、上記水性分散体ではないものであり、かつ、液状体、固体、又は、液状体と固体との2層分離体であるものである。本明細書において、上記「水性非分散体」は、沈殿物を有するものであってもよい。

上記水性非分散体としては、固体とフッ素含有界面活性剤水溶液とが肉眼で層分離が観察される程度に混じりあわずに存在しているもの等が挙げられる。上記水性非分散体は、例えば、上記水性分散体(1)に対して攪拌による機械的剪断、上述の凝析助剤の添加等を行うことによりポリマーを沈殿させたもの、また、ポリマーとフッ素含有界面活性剤とからなる粉末に水を上記層分離が崩壊しない程度に添加してなる液状体等であってもよい。上記水性非分散体において、フッ素含有界面活性剤は主に、沈殿等したポリマーに付着していると考えられる。

上記湿潤粉末は、フッ素含有界面活性剤と水とを含有しポリマーからなる粉末である。上記湿潤粉末は、水が、水以外の非水物100質量部に対し0.1質量部を超えるものが好ましく、1質量部を超えるものがより好ましい。上記湿潤粉末としては、例えば、上記水性非分散体から濾別して得られるもの等が挙げられる。

上記処理対象物(1)としては、フッ素含有界面活性剤の除去効率の点で、上述の水性非分散体又は湿潤粉末が好ましい。水性非分散体又は湿潤粉末は、フッ素含有界面活性剤が付着しているポリマー粒子の表面積が凝析等により水性分散体よりも通常低減しているの

で、物質〔A〕を接触させた際、物質〔A〕側にフッ素含有界面活性剤が移動しやすい結果、フッ素含有界面活性剤の抽出速度が高く、効率良く除去できるものと考えられる。

【0018】

上記処理対象物（1）は、例えば後述の物質〔A〕として超臨界二酸化炭素を用いる場合、例えば、上記水性分散体（1）を凝析、沈殿させ濾過等により水（水性媒体）をあらく切ってなる湿潤粉末に超臨界二酸化炭素を吹き込む方法等を用いることにより上記フッ素含有界面活性剤を効率的に除去することができ、含水率等の条件によっては実質的に完全に除去することも可能であり、また、凝析後に通常行う乾燥工程が不要となる点で工程を簡便化することにもなる。

【0019】

上記処理対象物は、また、上記フッ素含有界面活性剤と、更に、ポリマーとを含有しているものであり、上記処理対象物は、実質的に水を含有していないものであってもよい。本明細書において、上記フッ素含有界面活性剤とポリマーとからなり実質的に水を含有していない処理対象物（以下、「処理対象物（2）」ということがある。）について上記「実質的に水を含有していない」とは、ポリマーとフッ素含有界面活性剤との合計質量に対する水の含有量が、好ましくは、1%以下であることを意味する。

【0020】

上記処理対象物（2）としては、例えば、上記ポリマーからなる粉末であって、上記フッ素含有界面活性剤が混在しているもの等が挙げられる。上記粉末は、上述した湿潤粉末を乾燥して得られる乾燥粉末であってよい。上記粉末は、凝析等の操作を行った後の水性分散体（2）から得られるものであり、上記凝析等の操作により形成された二次粒子からなるものである。

【0021】

上記処理対象物（1）及び処理対象物（2）におけるポリマーは、フルオロポリマーであることが好ましい。

上記フルオロポリマーがエラストマー性である場合、本発明における処理対象物は、通常、上記二次粒子が水性媒体中に存在しているもの、即ち、上記処理対象物（1）として本発明を適用することができる。上記フルオロポリマーが樹脂状である場合、本発明における処理対象物は、二次粒子が水性媒体中に存在しているものであってもよいし、二次粒子からなる粉末であってもよく、即ち、その何れであるかに応じて上記処理対象物（1）又は上記処理対象物（2）として本発明を適用することができる。

【0022】

本明細書において、上記「フルオロポリマー」は、炭素原子に結合しているフッ素原子を有する重合体である。本発明において、上記フルオロポリマーは、フッ素含有単量体の1種又は2種以上を重合することにより得られるものであるが、フッ素原子を有しない非フッ素系の単量体をも共重合させて得られるものであってもよい。上記「フッ素含有単量体」は、炭素原子に結合しているフッ素原子を少なくとも1個有する単量体である。上記フルオロポリマーについては、後述する。

【0023】

上記処理対象物は、また、上記フッ素含有界面活性剤と、更に、水を含有しているものであり、上記処理対象物は、実質的に上述したポリマーを含有しないものであってもよい。上記フッ素含有界面活性剤と水とからなり、実質的に上述したポリマーを含有しない処理対象物（以下、「処理対象物（3）」ということがある。）としては、例えば、フッ素含有界面活性剤によって水中に分散しているポリマーを、凝析させた後の上澄み液であってもよいし、単にフッ素含有界面活性剤を水に溶解して得られたフッ素含有界面活性剤溶液であってもよい。前者の上澄み液としては、例えば、上述の水性分散体（1）に対し凝析操作を行うことにより得られる上澄み液等が挙げられる。

【0024】

本発明の処理対象物精製方法における処理対象物は、（i）水と、（ii）上記（i）水以外の非水物でありフッ素含有界面活性剤を含有しているものとから構成されるものであ

り、上記(i i)非水物は、更に、ポリマーを含有しているか又は含有していないものであり、上記(i)水は、上記(i i)非水物100質量部に対し0.1質量部を超える量であるものが好ましい。水が少なすぎても多すぎても、フッ素含有界面活性剤の除去が不充分となりやすい。より好ましい下限は、100質量部、更に好ましい下限は、400質量部である。上記(i)水は、上記範囲内であれば、接触させる物質[A]の量にもよるが、フッ素含有界面活性剤の除去効率の点で好ましい上限を、 $10^{1\sim 2}$ 質量部とすることができる。

上記処理対象物が上記(i i)非水物がポリマーを含有している上述の処理対象物(1)である場合、上記(i)水の上記(i i)非水物100質量部に対するより好ましい下限は、10質量部、更に好ましい下限は、150質量部、より好ましい上限は、 10^6 質量部、更に好ましい上限は、 $10^{4\sim 5}$ 質量部、特に好ましい上限は、5000質量部である。上記処理対象物が上記(i i)非水物がポリマーを含有していないもの、即ち、上述の処理対象物(3)である場合、上記(i)水の上記(i i)非水物100質量部に対するより好ましい下限は、100質量部、更に好ましい下限は、400質量部、より好ましい上限は、 $10^{1\sim 2}$ 質量部、更に好ましい上限は、 $10^{1\sim 3}$ 質量部である。

【0025】

本発明の処理対象物精製方法は、上記処理対象物に物質[A]を接触させることにより、フッ素含有界面活性剤の除去処理を行うこととなるものである。

上記フッ素含有界面活性剤の除去処理は、処理対象物に含有されているフッ素含有界面活性剤の一部又は全部を上記処理対象物から除去するための処理である。上記フッ素含有界面活性剤の除去処理は、処理対象物に物質[A]を接触させることにより行うものであり、フッ素含有界面活性剤は、物質[A]に溶解させ抽出し、物質[A]とともに処理対象物から分離させることにより、上記処理対象物から除去されることとなる。上記フッ素含有界面活性剤の除去処理の方法としては特に限定されず、例えば、処理対象物(1)や処理対象物(3)については、図1の模式図に示すような回分式の装置を用いて行ってよいし、フッ素含有界面活性剤を抽出した後、物質[A]と分離し、物質[A]を再度除去処理に用いる半流通式装置を用いて行ってよい。例えば、樹脂やエラストマーの湿潤粉末等の処理対象物(2)については、押し出し機内で行ってよい。

【0026】

上記物質[A]は、標準状態(10^5 Pa、0℃)において気体であるものである。

上記標準状態は、物性値を定めるための基準となる温度及び圧力で規定される状態である。

上記物質[A]としては、例えば、エタン、プロパン、一酸化二窒素、アンモニア、フロロホルム等のフロン、二酸化炭素等が挙げられ、なかでも、化学的に安定で、安価であり比較的低温低圧で超臨界状態を実現することができる点で、二酸化炭素が好ましい。

二酸化炭素は、上記標準状態(10^5 Pa、0℃)において液体である物質、例えば、有機溶媒、水等の液体溶媒とは異なり、温度と圧力との2変数を変えることにより密度等の溶媒物性を幅広く制御することができる。

また二酸化炭素は、無毒であるので、環境調和型溶媒として好適である。

【0027】

フッ素含有界面活性剤の除去処理の過程において、処理対象物が水を含有しているものである場合、上記二酸化炭素は、水に溶解して上記処理対象物が酸性の水溶液となることにより、又は、更にHCl等の酸性物質を添加して上記処理対象物を酸性の水溶液とすることにより、例えば、パーフルオロオクタン酸アンモニウム[APFO]等の塩型のフッ素含有界面活性剤は、比較的抽出されやすいパーフルオロオクタン酸[PFOA]等の酸型のフッ素含有界面活性剤に変換されていると考えられる。

【0028】

上記フッ素含有界面活性剤の除去処理は、物質[A]として二酸化炭素を用いる場合、上記二酸化炭素が気体である処理温度と処理圧力において、二酸化炭素を接触させることにより行うものであってもよいが、生産性や効率の点で、20℃以上の温度において4MP

a 以上の圧力下に行うものであることが好ましく、二酸化炭素の臨界温度以上の温度において二酸化炭素の臨界圧力以上の圧力下に行うものであることがより好ましい。上記二酸化炭素の臨界温度は、31.1℃、臨界圧力は、7.38 MPa である。

【0029】

上記フッ素含有界面活性剤の除去処理は、物質[A]として超臨界状態における二酸化炭素を用いる場合、二酸化炭素の密度を高くすることにより、フッ素含有界面活性剤の除去効率を向上することができる。この機構としては明確ではないが、二酸化炭素の密度が高い方がAPFO等のフッ素含有界面活性剤の二酸化炭素に対する溶解度が上昇するからと考えられる。

【0030】

フッ素含有界面活性剤の除去処理に要する二酸化炭素の量は、図2及び図3のグラフに示すように二酸化炭素の消費量に対してフッ素含有界面活性剤の濃度が指数関数的に減少する関係があることから、目安としてはフッ素含有界面活性剤の濃度をX倍率に希釈するため、X倍量の二酸化炭素を要するとみればよい。

【0031】

図4のグラフに示すように、縦軸を、二酸化炭素消費量、横軸を、二酸化炭素消費量をフッ素含有界面活性剤の量で除した無次元量、として整理すると、一般的に超臨界二酸化炭素を用いた抽出では抽出物の量は上記無次元量が50～60となったところでほぼ平衡に達する。本明細書において、上記「平衡」に達した状態は、二酸化炭素の消費量を増やしてもフッ素含有界面活性剤の濃度が低下しなくなった状態である。

【0032】

フッ素含有界面活性剤の除去処理に要する二酸化炭素の量は、処理対象物によって変わり、例えば、処理対象物が上述のポリマーと水とからなる水性分散体である場合、上述の実質的にポリマーを含有しないフッ素含有界面活性剤の溶液よりも、平衡に達するまでに要する二酸化炭素の消費量が少ない傾向がある。この傾向は、二酸化炭素によりポリマーが凝析しやすく、この凝析粒子に吸着する等して、水中に存在していたフッ素含有界面活性剤が処理対象物から除去されやすくなることによると考えられる。

【0033】

本発明の凝集体製造方法は、上記処理対象物精製方法を用いてポリマーからなる凝集体を製造することを特徴とするものである。本明細書において、上記処理対象物精製方法を用いる本発明の凝集体製造方法を、以下、本発明の「凝集体製造方法(1)」ということがある。

【0034】

本発明の凝集体製造方法(1)は、上記処理対象物精製方法として処理対象物(1)又は処理対象物(2)を用いるものである。上記処理対象物(1)としては、上述のポリマーからなる一次粒子がフッ素含有界面活性剤の存在下に水性媒体中に分散している水性分散体(1)であってもよいが、上述の水性分散体(2)が好ましい。上記処理対象物(2)としては、上述のポリマーからなる粉末であって、フッ素含有界面活性剤が混在しているものが好ましい。

【0035】

本発明の凝集体製造方法(1)は、上記処理対象物(1)又は処理対象物(2)に上述の物質[A]を接させて上述のフッ素含有界面活性剤の除去処理を行うことにより、ポリマーからなる凝集体(以下、「ポリマー凝集体」という。)を製造するものである。上記物質[A]としては、本発明の処理対象物精製方法におけるものと同様、二酸化炭素が好ましい。

【0036】

上記ポリマー凝集体は、上記一次粒子が水性媒体中に分散している水性分散液(1)に対して凝析等の操作を行う工程を経て得られるものであり、上記凝析等の操作を行うことにより形成された二次粒子からなるものである。上記ポリマー凝集体は、水性媒体中に存在している二次粒子であってもよいし、二次粒子からなる粉末であってもよい。

【0037】

上記ポリマーとしては、フルオロポリマーが好ましい。

上記フルオロポリマーは、フッ素含有単量体を重合することにより得られるものであり、目的に応じて、フッ素非含有単量体をも共重合させたものであってもよい。

【0038】

上記フッ素含有単量体としては、フルオロオレフィン、好ましくは炭素原子2～10個を有するフルオロオレフィン；環式のフッ素化された単量体；式 $CY_2 = CYOR$ 又は $CY_2 = CYOR^1 OR$ （Yは、H又はFであり、Rは、水素原子の一部又は全てがフッ素原子で置換されている炭素数1～8のアルキル基であり、 R^1 は、水素原子の一部又は全てがフッ素原子で置換されている炭素数1～8のアルキレン基である。）で表されるフッ素化アルキルビニルエーテル等が挙げられる。

【0039】

上記フルオロオレフィンは、好ましくは、炭素原子2～6個を有するものである。上記炭素原子2～6個を有するフルオロオレフィンとしては、例えば、テトラフルオロエチレン[TFE]、ヘキサフルオロプロピレン[HFP]、クロロトリフルオロエチレン[CTFE]、フッ化ビニル、フッ化ビニリデン[VdF]、トリフルオロエチレン、ヘキサフルオロイソブチレン及びパーカーフルオロプロピルエチレン等が挙げられる。上記環式のフッ素化された単量体としては、好ましくは、パーカーフルオロー-2, 2-ジメチル-1, 3-ジオキソール[PDD]、パーカーフルオロー-2-メチレン-4-メチル-1, 3-ジオキソラン[PMD]等が挙げられる。

上記フッ素化アルキルビニルエーテルにおいて、上記Rは、好ましくは、炭素原子1～4個を有するものであり、より好ましくは水素原子の全てがフッ素によって置換されているものであり、上記 R^1 は、好ましくは、炭素原子2～4個を有するものであり、より好ましくは、水素原子の全てがフッ素原子によって置換されているものである。

【0040】

上記フッ素非含有単量体としては、上記フッ素含有単量体と反応性を有する炭化水素系単量体等が挙げられる。上記炭化水素系単量体としては、例えば、エチレン、プロピレン、ブチレン、イソブチレン等のアルケン類；エチルビニルエーテル、プロピルビニルエーテル、ブチルビニルエーテル、イソブチルビニルエーテル、シクロヘキシリビニルエーテル等のアルキルビニルエーテル類；酢酸ビニル、プロピオン酸ビニル、n-酪酸ビニル、イソ酪酸ビニル、吉草酸ビニル、ピバリン酸ビニル、カプロン酸ビニル、カプリル酸ビニル、カプリン酸ビニル、バーサチック酸ビニル、ラウリン酸ビニル、ミリスチン酸ビニル、パルミチン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、パラ-*t*-ブチル安息香酸ビニル、シクロヘキサンカルボン酸ビニル、モノクロロ酢酸ビニル、アジピン酸ビニル、アクリル酸ビニル、メタクリル酸ビニル、クロトン酸ビニル、ソルビン酸ビニル、桂皮酸ビニル、ウンデシレン酸ビニル、ヒドロキシ酢酸ビニル、ヒドロキシプロピオン酸ビニル、ヒドロキシ酪酸ビニル、ヒドロキシ吉草酸ビニル、ヒドロキシイソ酪酸ビニル、ヒドロキシシクロヘキサンカルボン酸ビニル等のビニルエステル類；エチルアリルエーテル、プロピルアリルエーテル、ブチルアリルエーテル、イソブチルアリルエーテル、シクロヘキシリアリルエーテル等のアルキルアリルエーテル類；エチルアリルエステル、プロピルアリルエステル、ブチルアリルエステル、イソブチルアリルエステル、シクロヘキシリアリルエステル等のアルキルアリルエステル類等が挙げられる。

【0041】

上記フッ素非含有単量体としては、また、官能基含有炭化水素系単量体であってもよい。上記官能基含有炭化水素系単量体としては、例えば、ヒドロキシエチルビニルエーテル、ヒドロキシプロピルビニルエーテル、ヒドロキシブチルビニルエーテル、ヒドロキシイソブチルビニルエーテル、ヒドロキシシクロヘキシリビニルエーテル等のヒドロキシアルキルビニルエーテル類；イタコン酸、コハク酸、無水コハク酸、フマル酸、無水フマル酸、クロトン酸、マレイン酸、無水マレイン酸、パーカーフルオロプロテン酸等のカルボキシル基を有するフッ素非含有単量体；グリシジルビニルエーテル、グリシジルアリルエーテル等の

グリシジル基を有するフッ素非含有単量体；アミノアルキルビニルエーテル、アミノアルキルアリルエーテル等のアミノ基を有するフッ素非含有単量体；（メタ）アクリルアミド、メチロールアクリルアミド等のアミド基を有するフッ素非含有単量体等が挙げられる。

【0042】

上記フッ素非含有単量体を重合してなるフルオロポリマーとして、例えば、重合体における単量体のモル分率が最も多い単量体（以下、「最多単量体」）がT F EであるT F E重合体、最多単量体がV d FであるV d F重合体、及び、最多単量体がC T F EであるC T F E重合体等が挙げられる。

【0043】

T F E重合体としては、好適には、T F E単独重合体であってもよいし、（1）T F E、（2）炭素原子2～8個を有する1つ又は2つ以上のT F E以外のフッ素含有単量体、特にH F P若しくはC T F E、及び、（3）その他の単量体からなる共重合体であってもよい。上記（3）その他の単量体としては、例えば、炭素原子1～5個、特に炭素原子1～3個を有するアルキル基を持つフルオロ（アルキルビニルエーテル）；フルオロジオキソール；パーフルオロアルキルエチレン； ω -ヒドロパーフルオロオレフィン等が挙げられる。

T F E重合体としては、また、T F Eと、1つ又は2つ以上のフッ素非含有単量体との共重合体であってもよい。上記フッ素非含有単量体としては、例えば、エチレン、プロピレン等のアルケン類；ビニルエステル類；ビニルエーテル類が挙げられる。T F E重合体としては、また、T F Eと、炭素原子2～8個を有する1つ又は2つ以上のフッ素含有単量体と、1つ又は2つ以上のフッ素非含有単量体との共重合体であってもよい。

【0044】

V d F重合体としては、好適には、V d F単独重合体[P V d F]であってもよいし、（1）V d F、（2）炭素原子2～8個を有する1つ又は2つ以上のV d F以外のフルオロオレフィン、特にT F E、H F P若しくはC T F E、及び、（3）炭素原子1～5個、特に炭素原子1～3個を有するアルキル基を持つパーフルオロ（アルキルビニルエーテル）[P A V E]からなる共重合体等であってもよい。

【0045】

C T F E重合体としては、好適には、C T F E単独重合体であってもよいし、（1）C T F E、（2）炭素原子2～8個を有する1つ又は2つ以上のC T F E以外のフルオロオレフィン、特に、T F E若しくはH F P、及び、（3）炭素原子1～5個、特に炭素原子1～3個を有するアルキル基を持つパーフルオロ（アルキルビニルエーテル）からなる共重合体であってもよい。

C T F E重合体としては、また、C T F Eと、1つ又は2つ以上のフッ素非含有単量体との共重合体であってもよく、上記フッ素非含有単量体としては、エチレン、プロピレン等のアルケン類；ビニルエステル類；ビニルエーテル類等が挙げられる。

【0046】

上記フルオロポリマーは、樹脂状、エラストマー性等であり得る。

上記フルオロポリマーがエラストマー性である場合、好ましいモノマーの組み合わせとしては、T F E/P A V E共重合体、V d F/H F P共重合体、V d F/T F E/H F P共重合体、V d F/P A V E/T F E共重合体、V d F/パーフルオロ（メチルビニルエーテル）[P M V E]共重合体、V d F/H F P/P M V E共重合体、V d F/T F E/P M V E共重合体、V d F/P M V E/H F P/T F E共重合体、T F Eとプロピレン[P r]とその他の単量体との共重合体等が挙げられる。

上記T F E/P A V E共重合体における組成は、40～90/10～60（モル%）であることが好ましく、上記V d F/T F E/H F P共重合体における組成は、30～85/0～30/15～40（モル%）であることが好ましく、上記V d F/P A V E/T F Eにおける組成は、10～90/10～40/0～80（モル%）であることが好ましい。また、上記V d F/P M V E共重合体における組成は、65～90/10～35（モル%）、上記V d F/H F P/P M V E共重合体における組成は、65～90/3～25/3

～25（モル%）、上記VdF/TFE/PMVE共重合体における組成は、40～80/3～40/15～35（モル%）、上記VdF/PMVE/HFP/TFE共重合体における組成は、40～80/3～25/3～25/3～40（モル%）であることが好ましい。また、上記TFEとPrとその他の単量体との共重合体における組成は、40～70/30～60/0～20（モル%）であることが好ましい。

【0047】

本発明において、上記フルオロポリマーは、ポリテトラフルオロエチレン重合体であることが好ましい。

本明細書において、ポリテトラフルオロエチレン重合体 [PTFE重合体] は、TFE単独重合体のみならず、TFEと変性モノマーとの共重合体であって、非溶融加工性であるもの（以下、「変性PTFE」という。）をも含む概念である。

上記変性モノマーとしては、例えば、HFP、CTFE等のパーサロオレフィン；炭素原子1～5個、特に炭素原子1～3個を有するアルキル基を持つフルオロ（アルキルビニルエーテル）；フルオロジオキソール等の環式のフッ素化された単量体；パーサロアルキルエチレン； ω -ヒドロパーサロオレフィン等が挙げられる。

変性PTFE中の変性モノマー含有率は、通常、0.001～2モル%の範囲である。

【0048】

本発明の凝集体製造方法（1）は、上述の処理対象物精製方法を用いるものであるので、上記ポリマー凝集体として、フッ素含有界面活性剤の含有量を充分に低減したものを得ることができる。

【0049】

本発明のフッ素含有界面活性剤低減水調製方法は、上述した処理対象物精製方法を用いてフッ素含有界面活性剤の含有率を低減させたフッ素含有界面活性剤低減水を調製するものである。上記フッ素含有界面活性剤低減水調製方法は、上述の処理対象物精製方法における処理対象物（3）について行うことができる。上記フッ素含有界面活性剤低減水は、上記処理対象物（3）に上述の物質[A]を接触させることによりフッ素含有界面活性剤の除去処理を行うことにより、フッ素含有界面活性剤の含有率を低減させたものである。

本明細書において、上記「フッ素含有界面活性剤の含有率を低減」するとは、上記処理対象物精製方法によりフッ素含有界面活性剤の除去処理を行った後の処理対象物の総質量に占めるフッ素含有界面活性剤の含有率を1000ppm以下、好ましくは、100ppm以下、より好ましくは、10ppm以下にすることを意味する。

【0050】

本発明のフッ素含有界面活性剤低減水調製方法によれば、本発明の処理対象物精製方法について上述したように、処理対象物から除去したフッ素含有界面活性剤を物質[A]を分離して回収することも容易に行うことができる。

本発明の処理対象物精製方法は、上記範囲内のようにフッ素含有界面活性剤の含有率を充分に低減させることができるので、例えば、水性媒体中においてフッ素含有界面活性剤の存在下に重合して得られたポリマーからなる粒子が分散している水性分散体を凝析させて回収した上澄みは、上記フッ素含有界面活性剤と水とからなり実質的にポリマーを含有しないものである。ところが、凝析剤を用いて凝析させて回収した上澄みには水性分散体が実質的に残るため、従来、産業廃棄物として廃棄する際には、フッ素含有界面活性剤と水性分散体の両者を分離・回収しなくてはならず、非常に手間がかかった。

本発明のフッ素含有界面活性剤低減水調製方法を用いることにより、一般的な実験室で汎用されている装置を用いて上記フッ素含有界面活性剤を除去・回収することができ、上記上澄みの廃棄を容易に行うことができる。

【0051】

本発明の凝集体製造方法は、ポリマーからなる凝集体を製造するための方法であって、上記凝集体製造方法は、上記ポリマーからなる粒子が分散している水性分散体に物質[A]を接触させることにより上記水性分散体の凝析処理を行う工程を有するものである。本明細書において、上記凝析処理を行う工程を有する本発明の凝集体製造方法を、以下、本発

明の「凝集体製造方法（2）」ということがある。

【0052】

上記物質〔A〕は、標準状態（ 10^5 Pa、0°C）において気体であるものであり、本発明の処理対象物精製方法について上述した物質〔A〕と同じものであり、好ましくは二酸化炭素である。

上記「ポリマーからなる粒子が分散している水性分散体」としては、ポリマーからなる一次粒子が水性媒体中に分散している水性分散体が好ましい。上記「物質〔A〕を接触させる」方法は、上述の本発明の処理対象物精製方法において、処理対象物（1）に物質〔A〕を接触させる方法と同じであり、上記処理対象物（1）として、上記一次粒子が水性媒体中に分散している水性分散体を用いることが好ましい。

【0053】

上記「ポリマーからなる粒子が分散している水性分散体」としては、ポリマーからなる一次粒子が水性媒体中に分散している水性分散体が好ましい。上記水性分散体は、フッ素含有界面活性剤を含有しているものである必要はないが、フッ素含有界面活性剤を含有しているものであってもよい。上記水性分散体がフッ素含有界面活性剤を含有しているものである場合、上記水性分散体の凝析処理とともに、本発明の処理対象物精製方法において上述したフッ素含有界面活性剤の除去処理をも行うことができる。

【0054】

水性分散体中に分散しているポリマーからなる粒子は、上記物質〔A〕を接触させることにより、凝集させポリマー凝集体を形成することができる。水性分散体中に分散しているポリマーからなる粒子は、上記水性分散体がフッ素含有界面活性剤を含有しているものである場合、上述の処理対象物（1）に物質〔A〕を接触させることによって水性分散体中のフッ素含有界面活性剤の含有率が低減する結果、水性分散体中における分散力が低下し、粒子同士が寄り集まって凝集体を形成するものと考えられる。上記フッ素含有界面活性剤を含有している水性分散体としては、ラジカル重合を行うことにより得られた水性分散体（1）を用いることができる。この水性分散体（1）は、通常、濃縮しない状態で含水率が約70質量%程度であり、この含水率は上述の（i i）非水物に対する（i）水の好ましい量の範囲に入り、フッ素含有界面活性剤を効率良く除去し得る含水率の範囲と重なる。上記凝集体の形成は、また、攪拌による機械的剪断にもよると考えられる。上記凝集体を取り除いた後、水性分散体は透明になる。

本発明の凝集体製造方法は、上記水性分散体がフッ素含有界面活性剤を含有しているものである場合、フッ素含有界面活性剤の除去処理と凝析処理とを同時に進行させることも可能とするものである。即ち、従来、酸を添加して凝析を行っていたときのように凝析体を取り除いた後の残液に対して改めてフッ素含有界面活性剤の除去処理を行わなくとも凝析処理の過程でフッ素含有界面活性剤が実質的に除去されているので、凝析排水をそのまま廃棄することができる。

【0055】

本発明の凝集体製造方法によって得られる上記凝集体の粒径は、従来公知の凝析方法によって得られる粒子の粒径と同程度とすることができ、通常 $10 \sim 2000 \mu\text{m}$ である。好ましい下限は、 $180 \mu\text{m}$ 、より好ましい下限は、 $200 \mu\text{m}$ 、好ましい上限は、 $700 \mu\text{m}$ である。

【0056】

本発明の凝集体製造方法において、水性分散体の凝析処理は、特定の処理温度（T°C）において特定の処理圧力（P Pa）下に行うものであることが好ましく、上記特定の処理温度（T°C）と、物質〔A〕の臨界温度（Tc°C）との比（T/Tc）が0.8以上であり、上記特定の処理圧力（P Pa）と、上記物質〔A〕の臨界圧力（Pc Pa）との比（P/Pc）が0.8以上であることが好ましい。

【0057】

特定の処理温度（T）は、物質〔A〕の臨界温度（Tc）以上の温度であり、特定の処理圧力（P）は、上記物質〔A〕の臨界圧力（Pc）以上の圧力であることがより好ましい。

【0058】

本発明の凝集体製造方法において、ポリマーは、フルオロポリマーであることが好ましく、フルオロポリマーは、テトラフルオロエチレン重合体であることが好ましい。上記フルオロポリマー及びテトラフルオロエチレン重合体は、本発明の凝集体製造方法（1）において上述した通りである。

【発明の効果】

【0059】

本発明の処理対象物精製方法は、上述の構成よりなるので、フッ素含有界面活性剤を含有している処理対象物からフッ素含有界面活性剤を回収すると同時にポリマーからなる凝集体を得ることができる。

【発明を実施するための最良の形態】

【0060】

以下に実施例を挙げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。

実施例1 フッ素含有界面活性剤水溶液からのフッ素含有界面活性剤の除去処理

(1) 実験装置は図1の概略図に示すような流通式装置を用いて行った。即ち、CO₂ポンベ1から供給される二酸化炭素ガスを冷却器2で冷却した後、圧力と温度とを超臨界状態となるように調整し、得られた超臨界二酸化炭素を、スター（攪拌速度800 rpm）で攪拌したフッ素含有界面活性剤水溶液（界面活性剤名：パーフルオロオクタン酸アンモニウム [APFO]、初期界面活性剤濃度=550 ppm）に流量12.2 g／分で4000 gの二酸化炭素を流通させた。流通後の超臨界二酸化炭素を含む流体は、排圧弁を通して圧力を0.1 MPaまで下げ、密度ρを2.0 g／lまで低下させ、水浴中でフッ素含有界面活性剤を回収した。

以上の除去処理操作を圧力又は温度の一方を固定し、他方を変えて、除去処理前後のフッ素含有界面活性剤濃度（前：C₀、後：C）[ppm]を調べた。上記フッ素含有界面活性剤濃度は、高速液体クロマトグラフ[HPLC]（東ソー社製 本体ユニットSC8010）を用いて測定した。結果を図2及び図3に示す。

フッ素含有界面活性剤の抽出効率（速度）は、実験した範囲において、図2から、温度を下げるにより、また図3から、圧力を上昇させることにより、それぞれ向上する傾向があることがわかった。

(2) 処理対象物として、実施例1(1)にて超臨界二酸化炭素を流通させる前のフッ素含有界面活性剤水溶液と同じもの（界面活性剤名：パーフルオロオクタン酸アンモニウム、初期界面活性剤濃度=1855 ppm）を66.5 g用い、超臨界二酸化炭素（ρ=6.62 g/l）を表1に示す消費量とする以外は、実施例1(1)と同様に流通式装置を用いて流通させ、流通前後のフッ素含有界面活性剤水溶液中のフッ素含有界面活性剤濃度を測定した。結果を表1及び図4に示す。

表1と図4に示すように、例えば、フッ素含有界面活性剤水溶液を用いた場合、除去処理前に1855 ppmあったものが、二酸化炭素を4000 g消費した時点で、3.2 ppmにまで低下した。表1のうちフッ素含有界面活性剤水溶液におけるフッ素含有界面活性剤濃度の対数を縦軸に、二酸化炭素濃度を横軸にとった片対数プロットを図5に示す。図5に示すように、二酸化炭素消費量が250 g以上、3500 g以下の領域でほぼ直線に乗っており、この領域においては、同じ倍率を希釈するためには同じ量の二酸化炭素を用いればよいことがわかった。直線の傾きの値から、例えば、フッ素含有界面活性剤の水溶液を10倍希釈するためには1280 gの二酸化炭素が必要であることがわかった。図6は、横軸を無次元量q（被抽出物たるフッ素含有界面活性剤量に対する二酸化炭素消費量）として整理したものである。図6から、qが50付近で定常状態に達していることがわかった。

実施例2 水性分散体からのフッ素含有界面活性剤の除去処理

【0061】

処理対象物として、フッ素含有界面活性剤水溶液の代わりに、フッ素含有界面活性剤としてパーカルオロオクタン酸アンモニウムを147.0 ppm含むフルオロポリマー（TFE単独重合体）水性分散体（フルオロポリマー濃度0.2質量%）を51.3g用い、超臨界二酸化炭素（密度662g/1.9MPa、35℃）の流量を12.3g/分とした以外は、実施例1(1)と同様にして除去処理を行った。結果を実施例1(2)の結果とともに表1、図7及び図8に示す。表1から、水性分散体中のフッ素含有界面活性剤は、実施例1(1)と同様に二酸化炭素により抽出されており、二酸化炭素を1500g消費した時点でフッ素含有界面活性剤濃度は、0.6ppmであった。また、図7からフッ素含有界面活性剤水溶液に除去処理を行った場合よりも水性分散体に除去処理を行った場合の方が、抽出効率が高く、平衡に達するまでに要する二酸化炭素量が少ないことがわかった。更に、除去処理前後の溶液の様子を写真で比較したところ、除去処理後の溶液は透明になっており、フッ素含有界面活性剤の抽出と同時に凝析が進行していることがわかった。

実施例3 フルオロポリマー粉末中からのフッ素含有界面活性剤の除去処理

【0062】

処理対象物として、フッ素含有界面活性剤〔APFO〕を含むフルオロポリマー粉末1.86gを用いた以外は実施例2と同様にして除去処理を行った。除去処理前後のフルオロポリマー中のフッ素含有界面活性剤濃度は、ポリマーからアセトンで界面活性剤を抽出し、45℃でアセトンを蒸発させた後、水を加え、HPLCを用いて測定した。結果を実施例1(2)及び実施例2の結果とともに表1及び図8に示す。フルオロポリマー中のフッ素含有界面活性剤の除去処理を行った結果、最初443.0ppmあったフッ素含有界面活性剤が二酸化炭素を1000g使用した時点で86.5ppmまで低下したことがわかった。

【0063】

【表1】

CO ₂ 消費量[g]	フッ素含有界面活性剤濃度[ppm]		
	界面活性剤溶液	ポリマー	水性分散体
0	1855	443.0	147.0
250	1865	—	141.8
500	1546	—	102.2
750	800.8	—	13.9
1000	359.9	86.5	1.4
1250	271.8	—	0.9
1500	140.8	—	0.6
2000	—	—	—
2500	52.4	—	—
3000	19.1	—	—
3500	10.5	—	—
4000	3.2	—	—

【0064】

実施例4 水性分散体からのフルオロポリマーの凝析処理

【0065】

図1の流通式装置を用い、水性分散体100g（フルオロポリマー濃度30質量%）に9MPa、35℃の超臨界二酸化炭素を245.3g流通することによって、水性分散体中

のフルオロポリマーの25.2%が凝析した。

凝析したフルオロポリマーを走査型電子顕微鏡〔SEM〕で観察したところ、既製品（商品名：ポリフロンPTFEファインパウダーF-104、ダイキン工業社製）と同程度の粒径（平均粒径=200μm）であることがわかった。

実施例5 処理対象物の含水率とフッ素含有界面活性剤抽出率との関係

【0066】

図1の流通式装置を用い、容器内に処理対象物としてフルオロポリマー（TFE単独重合体）乾燥粉末（フッ素含有界面活性剤〔APFO〕を含む）3gとともに表2に示す量の水を予め入れ、容器内を15MPa、35℃の超臨界状態に調整して超臨界二酸化炭素（密度815g/1）を流量12.2g/分にて500g流通させることにより、フルオロポリマー乾燥粉末に含まれるフッ素含有界面活性剤の抽出を行った。処理対象物の含水率とフッ素含有界面活性剤の抽出率との関係を調べた結果を表2及び図9に示す。

なお、上記フッ素含有界面活性剤の抽出率は、下記式

$$\text{抽出率} [-] = 1 - (C_{APFO}/C_0, APFO)$$

上記式中、 C_0 、 $APFO$ は、抽出前のフルオロポリマー乾燥粉末 a_0 グラム中に存在するフッ素含有界面活性剤 b_0 グラムの濃度 (b_0/a_0 ppm) を表す。上記 C_0 、 $APFO$ としては、処理対象物として用いたフルオロポリマー乾燥粉末0.5gにメタノール5gを加え、遠心分離(10000rpm、30分間)を行い、得られた上澄みに含まれるフッ素含有界面活性剤の濃度をHPLCにより定量し得られた値を用いた。 C_{APFO} は、処理対象物から抽出した後におけるフルオロポリマー a グラムに対する残存するフッ素含有界面活性剤 b グラムの濃度 (b/a ppm) を表す。 C_{APFO} は、フルオロポリマー乾燥粉末の代わりに、処理対象物から抽出した後の残存物（フルオロポリマーとフッ素含有界面活性剤とを含む）を用い、上記 C_0 、 $APFO$ と同様に求めた。

【0067】

【表2】

フルオロポリマー乾燥粉末:水 〔質量比〕	処理対象物の含水率 〔質量%〕	フッ素含有界面 活性剤抽出率 〔-〕
9:1	10	0.119
8:2	20	0.404
6:4	40	0.699
4:6	60	0.926
1:4	79.5	1
1:9	90	1

【0068】

表2及び図9に示すように、処理対象物の含水率の増加に伴い、一定量のCO₂消費に対するフッ素含有界面活性剤の抽出率が向上することがわかった。

実施例6 処理対象物の含水率とフッ素含有界面活性剤抽出率とCO₂消費量との関係

【0069】

二酸化炭素ガスの消費量（流通量）を300g、1000gにえた以外は実施例5と同様にして、フッ素含有界面活性剤の抽出を行い、フッ素含有界面活性剤の抽出率を求めた。結果を実施例5の結果とともに図10に示す。

図10から、実験した処理対象物の含水率の範囲内では、CO₂消費量が多く、処理対象物の含水率が多いほどフッ素含有界面活性剤の抽出率が向上する傾向にあることがわかった。

【産業上の利用可能性】

【0070】

本発明の処理対象物精製方法は、フッ素含有界面活性剤を含有している処理対象物からフッ素含有界面活性剤を効率的に除去する方法として好適に用いることができる。

【図面の簡単な説明】

【0071】

【図1】図1は、超臨界抽出実験装置の模式図である。

【図2】図2は、9 MPaにおけるフッ素含有界面活性剤の抽出速度の温度依存性を表すグラフである。

【図3】図3は、35℃におけるフッ素含有界面活性剤の抽出速度の圧力依存性を表すグラフである。

【図4】図4は、二酸化炭素の消費量に対するフッ素含有界面活性剤の濃度変化を示したグラフである。

【図5】図5は、図4の縦軸を対数軸に変えたグラフである。

【図6】図6は、図4において、横軸を無次元量化（フッ素含有界面活性剤量に対する二酸化炭素消費量）して整理したグラフである。

【図7】図7は、二酸化炭素の消費量に対する、フッ素含有界面活性剤水溶液中、及び、水性分散体中におけるフッ素含有界面活性剤の濃度変化を対数軸で示したグラフである。

【図8】図8は、二酸化炭素の消費量に対する、フッ素含有界面活性剤水溶液中、水性分散体中、及び、フルオロポリマー中のフッ素含有界面活性剤の濃度変化を表すグラフである。

【図9】図9は、処理対象物の含水率とフッ素含有界面活性剤抽出率との関係を表すグラフである。

【図10】図10は、処理対象物の含水率と二酸化炭素の消費量とフッ素含有界面活性剤抽出率との関係を表すグラフである。

【符号の説明】

【0072】

- 1 CO₂ ボンベ
- 2 冷却器
- 3 界面活性剤溶液
- 4 水浴
- 5 スターラー
- 6 ヒーター
- 7 自動排圧弁
- 8 氷浴

【書類名】 図面
【図 1】

【図 2】

【図3】

【図4】

【図 5】

【図 6】

【図7】

【図8】

【図 9】

【図 10】

【書類名】要約書

【要約】

【課題】 フッ素含有界面活性剤を含有している処理対象物からフッ素含有界面活性剤を除去する方法、及び、水性分散体からポリマーからなる凝集体を製造する方法を提供する。

【解決手段】 フッ素含有界面活性剤を含有している処理対象物に物質〔A〕を接触させることにより上記フッ素含有界面活性剤の除去処理を行うことによる処理対象物精製方法であって、上記物質〔A〕は、標準状態 (10^5 Pa, 0°C) において気体であるものであることを特徴とする処理対象物精製方法。

【選択図】 なし

認定・付加情報

特許出願の番号	特願2004-071744
受付番号	50400417120
書類名	特許願
担当官	第六担当上席 0095
作成日	平成16年 3月17日

<認定情報・付加情報>

【提出日】	平成16年 3月12日
-------	-------------

特願 2004-071744

出願人履歴情報

識別番号 [000002853]

1. 変更年月日 1990年 8月22日

[変更理由] 新規登録

住所 大阪府大阪市北区中崎西2丁目4番12号 梅田センタービル
氏名 ダイキン工業株式会社