

12th January 2006

Analysis of Iterative Multi-User Detection by Information Theory

Raavi M. Mohindar Rao

Supervisors

Dr.-Ing. Volker Kuehn

Dipl.-Ing. Petra Weitkemper

Contents

- Introduction
- Motivation
- Single Parameter Dynamical Model and Analysis Tools
 - ⇒ Extrinsic Information Transfer Charts (EXIT)
 - → Multi User Efficiency (MUE)
 - ⇒ Variance Transfer Characteristic charts (VTC)
- Circular Disk Model to Understand Cyclic Behavior
- Conclusion

Multi User Communication Model

- Let u be the user index with $1 \le u \le U$
- Information bits: $\mathbf{d}_u = [d_u[1], \dots, d_u[K]]$ where, $d_u[k] \in \{0, 1\}$ and $1 \le k \le K$.
- Coded bits: $\mathbf{b}_u = [b_u[1], \dots, b_u[N]]$ where, $b_u[n] \in \{0, 1\}$ and $1 \le n \le N$.
- Coded rate R = K/N.
- Modulated Symbols: $\mathbf{a}_u = [a_u[1], \dots, a_u[N]].$ where, $a_u[n] \in \{+1, -1\}$ and $1 \le n \le N.$
- User specific Interleavers Π_u of length L_π .
- Spreading: DS-CDMA with N_s as spreading factor and $\beta = U/N_s$.
- Spreading sequence $\mathbf{c}_u = [c_u[1], \dots, c_u[N_s]]$ where, $c_u[\ell] \in \{+1, -1\}$ and $1 \le \ell \le N_s$.
- Spreaded seq \mathbf{x}_u is of length $(N \cdot N_s) \ge 1$
- \mathbf{h}_u : Channel impulse response of user u.

Receiver Section

- Received vector $\mathbf{y} = \mathbf{H} \cdot \mathbf{x} + \mathbf{n} = \mathbf{S} \cdot \mathbf{a} + \mathbf{n}$
- \bullet $H = [T_{h_1} \dots T_{h_U}]$ and S is the Signature of all the users.
- n: AWGN with zero mean and variance σ_n^2 .
- $\bullet \ \mathsf{MF:} \ \mathbf{r} = \mathbf{S}^H \cdot \mathbf{y} = \mathbf{S}^H (\mathbf{S} \cdot \mathbf{a} + \mathbf{n}) = \mathbf{R} \cdot \mathbf{a} + \tilde{\mathbf{n}}$

•
$$\tilde{\mathbf{a}}_u = 4 \frac{E_s}{N_0} \cdot \left[\mathbf{r}_u - \sum_{\substack{v=1\\v \neq u}}^U \tanh(L_a(\hat{\mathbf{a}}_v)/2) \right]$$

ullet D: Soft-Output Decoder e.g., Max-Log-Max delivers LLR's $L(\tilde{\mathbf{a}}_u)$ of the coded bits.

 \implies How to analyze such a system ?

Single-Parameter Dynamical Model

Iterative Multiuser Joint Decoding: Unified Framework and Asymptotic Analysis (Joseph Boutros and Giuseppe Caire)

- Behavior of iterative multiuser joint decoding is approximately characterized by the stable fixed points of a simple one-dimensional non-linear dynamical systems, when making Gaussian approximation of the decoder soft-outputs.
- \bullet a is a single-parameter which describes the system of whole.
- With a as Mutual Information \implies EXIT Charts.
- With a as Multi-User Interference \Longrightarrow MUE.
- With a as Variance of the estimation error \Longrightarrow VTC.

• Extrinsic Information Transfer Characteristic Charts are obtained by plotting the exchange of Mutual-Information between the components of a iterative multiuser joint decoder.

ullet Let x be the transmitted signal and y be the received signal and the mutual information between x and y

•
$$I(x;y) = 1 + \frac{1}{2} \cdot \sum_{d=\pm 1-\infty}^{\infty} p(y|x=d)$$

× $\log \frac{p(y|x=d)}{p(y|x=+1) + p(y|x=-1)} \cdot dy$

- ullet ten's approach to model a-priori LLR's $L_a(\hat{\mathbf{a}}_u)$.
- $L_a(\hat{\mathbf{a}}_u) = \bar{n}_u b_u + n_u$ where, n_u WGN with variance σ_a^2 and the mean of $L_a(\hat{\mathbf{a}}_u)$ is $\bar{n}_u = \sigma_a^2/2$

•
$$I(L_a(\hat{\mathbf{a}}_u); \mathbf{a}) = 1 - \frac{1}{\sqrt{2\pi\sigma_a^2}} \cdot \int_{-\infty}^{+\infty} e^{-\frac{(\xi - \sigma_a^2/2)}{2\sigma_a^2}} \log(1 + e^{-\xi}) d\xi.$$

•
$$\bar{I}_e^{PIC} = \frac{1}{U} \cdot \sum_{u=1}^{U} I_{e,u}^{PIC}$$

- Mutual Information depends on SNR.
- $\bar{I}_e^{PIC}=1$ interference is totally suppressed, reaches to single-user AWGN system.

 Mutual information at the input and the output of the PIC and the Decoder.

$$\bullet \ I_{a,u}^{PIC} = I(L_a(\hat{\mathbf{a}}_u); \mathbf{a}_u)$$

•
$$I_{e,u}^{PIC} = I((L_a(\hat{\mathbf{a}}_u|\mathbf{r}) - L_a(\hat{\mathbf{a}}_u)); \mathbf{a}_u)$$

$$\bullet \ I_{a,u}^D = I_{e,u}^{PIC}$$

$$\bullet \ I_{t,u}^D = I_{a,u}^{PIC}$$

- Half loaded System
- ullet U=4, $N_s=8$ and eta=1/2

EXIT CHARTS

• $\beta = 1/2$ SNR = 3dB

EXIT CHARTS 8

- Fully loaded system.
- $\bullet \ U=8 \ {\rm and} \ N_s=8$

EXIT CHARTS 9

Concluding remarks on EXIT Charts

- EXIT charts characterize the system very well, since prediction curves are so tight.
- Convergence properties of the system can be studied very well.

•
$$\eta = \frac{\text{SINR}}{\text{SNR}} = \frac{2\sigma_d^2/(\sigma_n^2 + \sigma_{\text{MUI}}^2)}{2\sigma_d^2/\sigma_n^2}$$

- ullet σ_d^2 Variance of the desired signal.
- σ_{MUI}^2 Variance of the remaining MUI after cancellation.

$$\Longrightarrow \sigma_{\mathrm{MUI}}^2 = \sigma_d^2 \cdot \mu(U-1)/N_s$$
, where $\mu = \mathrm{E}\{|L_a(\mathbf{\hat{a}}) - \mathbf{a}|^2\}$

• σ_n^2 Variance of the noise.

$$\implies \eta = \frac{1}{1 + \beta \mu E_s / N_0}$$

•
$$\eta^{(1)} = 1/(1 + \beta E_s/N_0)$$

- The predetermination of $\mu^{(m)} = g(SINR) = g(\eta^{(m-1)}SNR)$
- \bullet Relating everything we obtain $\eta^{(m)} = f(\eta^{(m-1)})$
- Hence, single-parameter dynamical model is obtained.

- \bullet Minimum SNR required at the load $\beta=2.75$ to reach the convergence.
- MUE is one of the analysis tool gives very tight predictions curves.
- Can characterize the system very well.

Variance Transfer Characteristics

- VTC: Variance of an estimation error is exchanged between the component.
- Estimation error: $\gamma = \sum\limits_{m=1 \atop (m \neq u)}^{U} (a_m[n] \tilde{a}_m[n]) s_m[\ell]^H s_m[\ell] + \tilde{\mathbf{n}}$
- $E[\gamma] = 0$
- $\mathrm{E}[\gamma^2] = \sum_{\substack{m=1\\(m\neq u)}}^{U} \mathrm{E}\left[\left(a_m[n] \tilde{a}_m[n]\right)^2\right] \mathrm{E}\left[\left(s_m[\ell]^H s_m[\ell]\right)\right] + \sigma_n^2$
- With $P(a=1/\sqrt{N})=P(a=-1/\sqrt{N})=1/2$, $\mathrm{E}\left[(s_m[\ell]^Hs_m[\ell])\right]=1/N \text{ and } \mathrm{E}\left[(a_m[n]-\tilde{a}_m[n])^2\right]=\sigma_d^2$

$$\bullet \ \sigma_{\text{eff}}^2 = \frac{K - 1}{N} \sigma_d^2 + \sigma_n^2$$

Variance Transfer Characteristics

- Half loaded system.
- $\bullet \ U=4 \ {\rm and} \ N_s=8$

$$\mathrm{SNR} = 3\mathrm{dB}$$

$$\bullet \ \beta = 0.5$$

$$SNR = 5dB$$

Variance Transfer Characteristics

- Fully loaded system.
- $\bullet \ U=8 \ {\rm and} \ N_s=8$

Cyclic Behavior and Circular Disk Extrinsic Information granules granules Start granule granules c) micro scopic length End Middle

Cyclic Behavior and Circular Disk

Total Information

Middle

End

Analysis of Successive Interference Cancellation

- By successive treatment all users cannot be treated as same, as in case of PIC
- Hence averaging among all users is not possible.
- Due to this convergence properties cannot be plotted in 2-D plot.
 - \implies N-dimensional problem.

Conclusion

- Convergence properties of an Iterative Multi-User detector was studied.
- Various Analysis tools was proposed and studied in detail.
- Circular disk was introduced to understand the cyclic behavior.
- Analysis of SIC became infeasible, since it poses N-dimensional problem.

