

误差及分析数据的统计处理

华东理工大学分析化学教研组

第2章

误差及分析数据的统计处理

- §1 分析化学中的误差
- § 2 有效数字及其运算规则
- § 3 分析结果的数据处理及评价
- §4回归分析法

§1 分析化学中的误差

- 一、误差的表示方法
- 二、准确度和精密度的关系
- 三、误差的分类及减免方法
- 四、误差的传递(自学)

一、误差的表示方法

1、准确度和误差

准确度:反映测量值与真实值的接近程度。

误差—分析结果与真实值之间的差值。

绝对误差=个别测定值-真实值 $E=x_i^-\mu$

相对误差
$$E_r = \frac{$$
绝对误差 $}{$ 真实值 $} \times 100\% = \frac{E}{\mu} \times 100\%$

误差越小,准确度越高。

一、误差的表示方法

例如:分析天平称量两物体的质量各为 1.6380g和0.1637,假设两者的真实质量分别为 1.6381g和0.1638g。

两者的绝对误差分别为

E=1.6380-1.6381=0.0001(g)

E=0.1637-0.1638=0.0001(g)

两者的相对误差分别为

Er=-0.0001/1.6381=-0.006%

Er=-0.0001/0.1638=-0.06%

绝对误差相等,相对误差并不一定相同。同样的绝对误差,当被测量的量较大时,相对误差就比较小,测定的准确度就比较高。

. 常用相对误差衡量准确度

CAN THE STATE OF SCIENCE HIS ASSESSMENT OF S

一、误差的表示方法

2. 精密度与偏差

精密度: 测定数据间的接近程度。

[重现性(同条件,本人),再现性(他人,各自条件)]

偏差—测量值与平均值的差值。

绝对偏差=个别测定值-测定的平均值

$$d=x_i-\overline{x}$$

相对偏差
$$d_r = \frac{x_i - x}{x} \times 100\%$$

偏差越小, 精密度越高

一绝对偏差: $d = x_i - x$

☞相对偏差:

☞平均偏差:

写标准偏差:

$$n=\infty$$

$$d = x_i - x$$

$$d_r = \frac{x_i - x}{x} \times 100 \%$$

$$\overline{d} = \frac{\sum_{i=1}^{n} |x_i - \overline{x}|}{n}$$

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{n}}$$

$$n < 20$$

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}}$$

写相对标准偏差(变异系数):

$$s_{\rm r} = \frac{s}{\overline{x}}$$

A SOUTH AND THE SOUTH AND THE

一、误差的表示方法

情看下面两组测定值:

甲组: 2.9 2.9 3.0 3.1 3.1

乙组: 2.8 3.0 3.0 3.0 3.2

	甲组	乙组
平均值	3.0	3.0
平均偏差	0.08	0.08
标准偏差	0.08	0.14

... 平均偏差不能很好地反映测定的精密度

一、误差的表示方法

- ●准确度常用误差来表示,误差越小,准确度 越高,而且用相对误差更为确切。
- ●精密度的大小常用偏差表示。在偏差的表示中,用标准偏差更合理,因为将单次测定值的偏差平方后,能将较大的偏差显著地表现出来。
- 在科研论文中,常用标准偏差表示精密度; 在学生实验中,常用相对平均偏差或绝对偏 差表示精密度。

二、准确度和精密度的关系

精密度高, 准确度不一定高,

...精密度是保证准确度的必要条件。

测定结果从精密度、准确度两方面评价

系统误差=可测误差影响准确度

单向性, 重复性, 可测性

误差的大小和正负有规律

随机误差=偶然误差

影响精密度

不恒定, 可变

误差值的大小和正负无一定的规律

领原统系统误差产生原因

1.方法误差: 方法不够完善而引入的误差。

如:滴定分析中指示剂选择不当等。

2.仪器误差: 使用了未经校正的仪器而造成的误差。

3.试剂误差: 使用的试剂或蒸馏水, 含有干扰测定的杂质而引起的误差。

4.操作者主观误差:如操作者对指示剂终点颜色判断的差异等因素引入的误差。

随机误差产生的原因:

•无法控制的不确定因素所引起

如环境温度、湿度、电压、污染情况等的变化引起试样质量、组成、仪器性能等的微小变化,操作人员实验过程中操作上的微小差别,以及其他不确定因素等。时大时小,时正时负,难以找到具体的原因,更无法测量它的值。

实际工作中,随机误差与系统误差并无明显的界限,当对其产生的原因尚未知时,往往当作偶然误差对待,进行统计处理。

减免误差的方法

1) 系统误差的减免

对照试验: 纠正方法误差

标准试样

测定试样

同条件下平行试验, 找出校正值

空白试验: 纠正试剂、器皿带入的系统误差

不加入试样 则定试样

同条件下试验, 找出校正值

仪器校正: 求出校正值

2) 随机误差的减小

增加测定次数

一般测定3~4次, 可使随机误差减小; 高要求测定6~10次, 随机误差已减至很小。

CHINA DE SCIENCE HIGH

随机误差的分布服从正态分布

1. 服从的前提

测定次数无限多;

系统误差已经排除。

2. 定义

$$u = \frac{x - \mu}{\sigma}$$

横坐标: 偶然误差的值,

纵坐标: 误差出现的概率大小。

四、随机误差的分布服从正态分布

随机误差分布性质

- 1) 对称性 2) 单峰性
- 3) 有界性 4) 抵偿性

- 1. 大小接近的正误差和负误差出现的概率相等。误差分布曲线是对称的。
- 2. 小误差出现的概率大, 大误差出现的概率小, 很大误差出现的概率非常小。 误差分布曲线只有一个峰值。误差有明显的集中趋势。
- 3. 仅仅由于偶然误差造成的误差不可能很大, 即大误差出现的概率很小。如果发现误差很大的测定值出现, 往往是由于其他过失误差造成, 此时, 对这种数据应作相应的处理。
- 4. 误差的算术平均值的极限为零。

四、随机误差的分布服从正态分布

误差范围与出现概率的关系

x-µ	u	概率		
$[-\sigma, +\sigma]$	[-1, +1]	68.3%		
$[-1.96\sigma, +1.96\sigma]$	[-1.96, +1.96]	95%		
$[-2\sigma, +2\sigma]$	[-2, +2]	95.5%		
$[-3\sigma, +3\sigma]$	[-3, +3]	99.7%		

测定值或误差出现的概率称为置信度或置信水平(confidence level),图 2-2中68.3%,95.5%,99.7%即为置信度,其意义可以理解为某一定范围的测定值(或误差值)出现的概率。 $\mu \pm \sigma$ 、 $\mu \pm 2\sigma$ 、 $\mu \pm 3\sigma$ 等称为置信区间(confidence interval),其意义为真实值在指定概率下,分布在某一个区间。置信度选得高,置信区间就宽。

五、有限次测定中随机误差的t分布

置信度与平均值的置信区间

在分析测试中, 测定次数是有限的, 一般平行测定3-5次, 无法 计算总体标准差 σ 和总体平均值 μ ,而有限次测定的随机误差并不 完全服从正态分布, 而服从类似于正态分布的1分布, 1分布是由英 国统计学家与化学家 W.S. Gosset提出,以Student的笔名发表的。 t的定义与u一致,只是用s代替 σ ,即

$$u = \frac{x - \mu}{\sigma}$$

$$t = \frac{x - \mu}{s}$$

$$u = \frac{x - \mu}{\sigma} \qquad t = \frac{x - \mu}{s} \qquad t = \frac{\overline{x} - \mu}{s} \sqrt{n}$$

$$\mu = -\frac{ts}{\sqrt{n}}$$

在一定置信度下(如90%、95%), 真值 $\mu = x \pm \frac{tS}{\sqrt{n}}$ (总体平均值)将在测定平均值附近的一个区间 $(\bar{x} - \frac{ts}{\sqrt{n}}, \bar{x} + \frac{ts}{\sqrt{n}})$ 存在,把握程度相应地为90%、

五、有限次测定中随机误差的t分布

- 1) 若n ↑,则t ↓;于是,置信区间缩小,可信度 ↑
 即, 增加测定次数,有利于提高分析结果的可信度。但,当
 n>20时, t值减小无几,对提高分析结果的可信度已无实际意义。
- (2) 若置信度P↑,则t↑;于是,置信区间扩大,可信度↓即,提高所选置信度,置信区间扩大,分析结果的可信度差。
- (3) 若置信度P↓,则t↓;于是,置信区间缩小,可信度↑ 即, 降低所选置信度,置信区间变窄, 分析结果的可信度可 以提高,但此时估计的成功把握变小,也无实际意义。

因此,<u>测定次数太多也无意义</u>,一般为3²5次;<u>所选置信度不</u> <u>宜太大、也不宜太小</u>,通常选95%或90%

§2 分析结果的数据处理及评价

- 一、可疑数据的取舍
- 二、分析方法准确性的检验

可疑数据的取舍——判断过失误差

方法:

Q检验法

格鲁布斯(Grubbs)检验法

作用:确定某个数据是否可用。

1、Q检验法

检验法: 测定次数在10次以内

步骤:

- (1) 数据排列 $x_1 x_2 \dots x_n$
- (2) 求极差 $x_n x_1$
- (3) 求可疑数据与相邻数据之差

$$x_{n} - x_{n-1} \implies x_{2} - x_{1}$$

(4) 计算:

$$Q = \frac{x_n - x_{n-1}}{x_n - x_1} \quad \text{if} \quad Q = \frac{x_2 - x_1}{x_n - x_1}$$

CHINA THE SCIENCE THE SCIENCE

1、 Q 检验法

- (5) 根据测定次数和要求的置信度(如90%), 查表2-4
- (6) 将Q与 $Q_{\&}$ (如 Q_{90})相比,若 $Q > Q_{\&}$ 舍弃该数据,(过失误差造成)若 $Q < Q_{\&}$ 保留该数据,(偶然误差所致)当数据较少时,舍去一个后,应补加一个数据。

如果测定次数在10次以内,使用Q值法比较简便。 有可能保留离群较远的值,常选用P=90%。

1, Q检验法

表 2-4 Q 值表

测定次数 n	$Q_{0.90}$	$Q_{0.95}$	$Q_{0.99}$
3	0.94	0.98	0.99
4	0.76	0.85	0.93
5	0.64	0.73	0.82
6	0.56	0.64	0.74
7	0.51	0.59	0.68
8	0.47	0.54	0.63
9	0.44	0.51	0.60
10	0.41	0.48	0.57

2、格鲁布斯(Grubbs)检验法

格鲁布斯(Grubbs)检验法

- (1) 由小到大排序: x_1 , x_2 , x_3 , x_4
- (2) 求x和标准偏差s
- (3) 计算G值: $G_{\text{计算}} = \frac{X_n \overline{X}}{S}$ 或 $G_{\text{计算}} = \frac{\overline{X} X_1}{S}$
- (4) 由测定次数和置信度要求,查表得G表
- (5) 若 $G_{\text{trip}} > G_{\text{trip}}$, 齐去可疑值, 反之保留。

格鲁布斯(Grubbs)检验法引入了标准偏差,故准确性比Q检验法高。

TO THE PROPERTY OF THE PARTY OF

2、格鲁布斯(Grubbs)检验法

表 2-3 G_(p, n)值表

n	置信度					
	95%	97.5%	99%			
3	1.15	1.15	1.15			
-	1.46	1.48	1.49			
5	1.67	1.71	1.75			
6	1.82	1.89	1.94			
7	1.94	2.02	2.10			
8	2.03	2.13	$\overline{2.22}$			
8 9	2.11	2.21	$\overline{2.32}$			
10	2.18	2.29	2.41			
11	2.23	2.36	2.48			
12	2.29	2.41	2.55			
13	2.33	2.46	2.61			
14	$\overline{2.37}$	2.51	2.66			
15	2.41	2.55	$\frac{1}{2.71}$			
$\overline{20}$	2.56	2.71	$\overline{2.88}$			

例:测定某药物中 C_0 的含量 (10^{-4}) 得到结果如下:

1.25, 1.27, 1.31, 1.40,

用Grubbs 法和 Q 值检验法判断 1.40 是否保留。

解: ① 用 Grubbs 法: $\bar{x} = 1.31$; s = 0.066

$$G_{\text{i+}} = \frac{1.40 - 1.31}{0.066} = 1.36$$

查表 2-3,置信度选 95%,n=4, $G_{\bar{*}}=1.46$ $G_{\text{tr},\bar{*}}< G_{\bar{*}}$ 故 1.40 应保留。

②用Q值检验法:可疑值 x_n

$$Q_{\text{H}} = \frac{x_n - x_{n-1}}{x_n - x_1} = \frac{1.40 - 1.31}{1.40 - 1.25} = 0.60$$

查表 2-4, n=4 , $Q_{0.90}=0.76$ $Q_{\text{计算}} < Q_{0.90}$

故 1.40 应保留。

讨论:

- (1) Q值法不必计算 \bar{x} 及s, 使用比较方便。
- (2) Q值法在统计上有可能保留离群较远的值。
- (3) Grubbs 法引入 S, 判断更准确。
- (4)不能追求精密度而随意丢弃数据;必须进行检验。

》二、分析方法准确性的检验

》 分析中经常遇到的两种情况:

x与 μ 不一致,准确度判断

 x_1 与 x_2 不一致,精密度判断

判断方法:利用统计学的t 检验法和F检验法,检验是否存在显著性差异。

作用: 判断分析方法的准确性, 确定某种方法是否可用, 判断实验室测定结果准确性。

CHINAL TO SCIENCE HISTORY OF SCIENCE HISTORY

1、 t 检验法

t 检验法---系统误差的检测

A) 平均值与标准值(μ)的比较

a. 计算t值
$$t_{\text{th}} = \frac{\left|\overline{x} - \mu\right|}{S} \sqrt{n}$$

b. 由要求的置信度和测定次数,查表得 t_{*}

 $c. t_{tt} > t_{tt}$, 表示有显著性差异, 存在系统误

差,被检验方法需要改进。

 $t_{\text{th}} \leq t_{\text{th}}$,表示无显著性差异,被检验方法可以采用。

CHIMIN OF SCIENCE HIM

1、t检验法

例:用一种新方法来测定试样含铜量,用含量为 11.7 mg/kg的标准试样,进行五次测定,所得数据 为:

10.9, 11.8, 10.9, 10.3, 10.0 判断该方法是否可行? (是否存在系统误差)。

解: 计算平均值 = 10.8, 标准偏差 s = 0.7

$$t = \frac{|\bar{x} - \mu|}{s} \sqrt{n} = \frac{|10.8 - 11.7|}{0.7} \sqrt{5} = 2.87$$

查t 值表, $t_{(0.95, n=5)} = 2.78$, $t_{\text{tr}} > t_{\text{表}}$ 说明该方法存在系统误差,结果偏低。

1、 t 检验法

B) 两组数据的平均值比较

新方法--经典方法(标准方法) 两个人测定的两组数据 两个实验室测定的两组数据

同一试样

a. 求合并的标准偏差:
$$s_{\ominus} = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_1 - 1)s_2^2}{n_1 + n_2 - 2}}$$

b. 计算 *t* 值:
$$t_{\triangleq} = \frac{|\bar{x}_1 - \bar{x}_2|}{S_{\triangleq}} \sqrt{\frac{n_1 n_1}{n_1 + n_2}}$$

c. 查表 (自由度
$$f = f_1 + f_2 = n_1 + n_2 - 2$$
),

比较: $t_{\text{th}} > t_{\text{b}}$, 表示有显著性差异

 $t_{\rm th} < t_{\rm t}$, 表示无显著性差异

§ 2、F检验法

F检验法-两组数据间偶然误差的检测

a. 计算 F值:
$$F_{\text{计算}} = \frac{S_{\pm}^{2}}{S_{\pm}^{2}}$$

b. 按照置信度和自由度查表2-5 (F_{*}) 比较

若 $F_{\text{trip}} < F_{\text{trip}}$, 再继续用 t 检验判断与是 否有显著性差异;

若 $F_{\text{trip}} > F_{\text{trip}}$,被检验的分析方法存在较大的系统误差。

*判断两个平均值是否有显著性差异时,首先用F检验判断这两个平均值的精密度没有大的差别,先做F检验,然后t检验

三、分析方法准确性的检验

表 2-5 置信度95%时 F 值

f_{s}	2	3	4	5	6	7	8	9	10	∞
2	19.0	19.1	19.2	19.3	19.3	19.3	19.3	19.3	19.3	19.5
3	9.55	9.28	9.12	9.01	8.94	8.88	8.84	8.81	8.78	8.53
4	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.63
5	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.36
6	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	3.67
7	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.63	3.23
8	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.34	2.93
9	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.13	2.71
10	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.97	2.54
∞	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88	1.83	1.00

 $f_{s,t}$: 方差大的数据的自由度; $f_{s,t}$: 方差小的数据的自由度。 (f=n-1)

三、分析方法准确性的检验

例:甲、乙二人对同一试样用不同方法进行测定,得 两组测定值:

甲: 1.26, 1.25, 1.22

こ: 1.35, 1.31, 1.33, 1.34

问两种方法间有无显著性差异?

解:
$$n_{\oplus} = 3$$
 $\bar{x}_{\oplus} = 1.24$ $s_{\oplus} = 0.021$

$$n_{\subset} = 4$$
 $\bar{x}_{\subset} = 1.33$ $s_{\subset} = 0.017$

$$F_{\oplus \oplus} = \frac{s_{\pm}^2}{s_{\pm}^2} = \frac{(0.021)^2}{(0.017)^2} = 1.53$$

查表2-5, F 值为 9.55, 说明两组的方差无显著性差异进一步用 t 公式进行计算。

三、分析方法准确性的检验

再进行
$$t$$
 检验:
$$t = \frac{\left|\overline{x}_1 - \overline{x}_2\right|}{S_{\triangleq}} \sqrt{\frac{n_1 n_2}{n_1 + n_2}}$$

$$s_{\triangleq} = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$$

$$= \sqrt{\frac{(3 - 1)(0.021)^2 + (4 - 1)(0.017)^2}{3 + 4 - 2}} \approx 0.020$$

$$t = \frac{|1.24 - 1.33|}{0.020} \sqrt{\frac{3 \times 4}{3 + 4}} = 5.90$$

查表 2-2 t 值表 $f = n_1 + n_2 - 2 = 3 + 4 - 2 = 5$, 置信度 95% $t_{\pm} = 2.57$, $t_{++++} > t_{\pm}$ 甲乙二人采用的不同方法间存在显

著性差异。

三、分析方法准确性的检验

讨论:

- (1) 计算表明甲乙二人采用的不同方法间存在显著性差异; 系统误差有多大?如何进一步查明哪种方法可行?
- (2) 分别与标准方法或使用标准样品进行对照试验, 根据实验结果进行判断。
 - (3) 本例中两种方法所得平均值的差为: $\left|\overline{x}_1 \overline{x}_2\right| = 0.09$ 其中包含了系统误差和偶然误差。
 - (4) 根据 t 分布规律,偶然误差允许最大值为:

$$\left| \overline{x}_1 - \overline{x}_2 \right| = t \times s \times \sqrt{\frac{n_1 + n_2}{n_1 \times n_2}} = 2.57 \times 0.02 \times \sqrt{\frac{3+4}{3\times 4}} \approx 0.04$$

说明可能有0.05的值由系统误差产生。

§ 3 有效数字及其运算规则

- 一、有效数字概念
- 二、有效数字位数
- 三、有效数字的修约规则

四、有效数字的运算规则

一、有效数字概念

咖啡 实验过程中常遇到两类数字:

- (1) 测量值或计算值, 数据的位数与测 定的准确度有关。
- (2) 表示数目(非测量值), 如测定次数; 倍数; 系数; 分数

记录的数字不仅表示数量的大小,还要正确地反映测量的精确程度。

结果	绝对误差	相对误差	有效数字位数
0.50400	± 0.00001	$\pm 0.002\%$	5
0.5040	± 0.0001	$\pm 0.02\%$	4
0.504	± 0.001	$\pm 0.2\%$	3

§ 3 有效数字及其运算规则

一、有效数字概念

有效数字=全部确定的数字+一位可疑数字

(正负一个单位的误差)

$$t = 14.55 \, ^{\circ}\text{C}$$
$$\pm 0.01 \, ^{\circ}\text{C}$$

$$t = 14.5$$
 °C ± 0.1 °C

二、有效数字位数

有效数字的位数由测量中仪器的精度确定

仪器	精度	有效数字		
如:分析天平	0.1mg	0.1012g		
天平	0.1g	12.1g		
滴定管	0.01mL	24.28mL		
量	0.1mL	24.3mL		

1 二、有效数字位数

1) 数字 "()"在数据中具有双重作用:

☆若作为普通数字使用,是有效数字 如 3.180 4位有效数字

☆若只起定位作用,不是有效数字。 如 0.0318 3位有效数字 3.18×10^{-2}

- 2) 指数表示时, "10"不包括在有效数字中 如: 2.308×10⁻⁸ 四位有效数字
- 3) 对数表示时, 有效数字位数由小数部分决定, 首数 (整数部分) 只起定位作用。

如: pH=2.68 则: [H⁺]=2.1×10⁻³mol·L 2位有效数字

夏三、有效数字的修约规则

修约规则:"四舍六入五留双"

- (1) 当多余尾数≤4时舍去,尾数≥6时进位。
- (2) 尾数正好是5时分两种情况:

PS/TY OF SCIEN

- a. 若5后数字不为0, 一律进位, 0.1067534
 - b. 5后天数或为0, 5前是奇数则将5进位 "奇进偶舍" 5前是偶数则把5舍弃

注意:一次修约到位,不能连续多次的修约

 $2.3457 \rightarrow 2.346 \rightarrow 2.35 \rightarrow 2.4$

四、有效数字的运算规则

1) 在加減法运算中,以绝对误差最大的数 为准,即以小数点后位数最少的数为准,确 定有效数字中小数点后的位数。

1到: 12.27 + 7.2 + 1.134 = ? 0.01 0.001

12.27

7.2 +1.134 有效数字表达=20.6

20.604

TO THE PROPERTY OF THE PROPERT

四、有效数字的运算规则

2) 乘除运算中,以有效数字位数最少的数,即相对误差最大的数为准,来确定结果的有效数字位数。

例:
$$\frac{6.25 \times 0.21334}{1.200 \times 100}$$
 的结果

0.21334

 $\frac{\times \quad 6.25}{106670}$

计算器计算=0.011111458

42668

有效数字表达 = 0.0111

128004

1.3333750

四、有效数字的运算规则

4) 有些分数可视为足够有效

例如: 250mL容量瓶中移取25mL溶液, 取值为1/10, 10不影响有效数字的确定。

- 5) 在运算中,数据首位 ≥ 8 ,可多算一位有效数字。
- 6) 误差、偏差一般取一、二位有效数字
- 7) 高含量 (>10%) 四位有效数字中等含量 (1~10%) 二位有效数字
 低含量 (<1%) 二位有效数字

§ 4 标准曲线的回归分析

分析化学中经常使用标准曲线来获得试样中某组 分的量。例如:

光度分析中的浓度-吸光度曲线;

电位法中的浓度-电位值曲线;

色谱法中的浓度-峰面积(或峰高)曲线。

回归分析:用数字统计方法找出各实验点误差最小的直线

§4 标准曲线的回归分析

回归分析法:

作用: 得到用于定量分析的标准曲线

方法: 线性方程的最小二乘法拟合

线性方程: y = a + bx

使各实验点到直线的距离最短(误差最小)。

利用最小二乘法计算系数anb, 得y对x的回归方程。相应的直线称为回归直线。

THE STATE OF SCIENTIFIED AND SCIENTIF

₹ § 4 标准曲线的回归分析

1、最小二乘法拟合线性方程

由最小二乘法关系,将实验数据代入,可求得线性方程中的截距a、斜率b;

$$b = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2} \implies b = \frac{\sum_{i=1}^{n} x_i y_i - (\sum_{i=1}^{n} x_i)(\sum_{i=1}^{n} y_i)/n}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$$

$$a = \overline{y} - b\overline{x}$$

建立: y = a + bx

CHINA COLEMAN COLEMA C

§ 4 标准曲线的回归分析

2、相关系数r

判断y与x之间的相关性好坏的尺度

$$r = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x}) \sum_{i=1}^{n} (y_{i} - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2} \sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}} \frac{\sum_{i=1}^{n} x_{i} y_{i} - n \overline{x} \overline{y}}{\sqrt{\left(\sum_{i=1}^{n} x_{i}^{2} - n \overline{x}^{2}\right) \left(\sum_{i=1}^{n} y_{i}^{2} - n \overline{y}^{2}\right)}}$$

 $r = \pm 1$; 存在线性关系, 无实验误差;

r=0; 无线性关系;

0 < |r| < 1时,y与x有相关性,r愈接近1,相关性愈好

§ 4 标准曲线的回归分析

例: 电位法测定测定氯离子的含量:

标准曲线实验数据:

氯含量 (pCl) x	1	2	3	4	5
电位值 (mV) y	51	102	155	201	235

氯离子标准曲线

P29

2, 3, 6, 7, 10, 11