

Content

- O1 Introduction of problem and solution
- **02** Introduction of trading algorithms
- 03 Introduction of backtesting result and report
- **04** Introduction of platform practicability and usefulness
- **05** Introduction of front-end interface and function
- **06** Introduction of back-end interface and function
- O7 Conclusion and Outlook

Team Members

Yucheng WANG

College of Business

City University of HK

Hong Kong SAR

yuchwang-c @my.cityu.edu.hk

Yuxin HUANG

School of Data Science

City University of HK

Hong Kong SAR

yuxhuang6-c @my.cityu.edu.hk

Yinxiao WANG

Department of Computer Science

City University of HK

Hong Kong SAR

yinxiwang3-c @my.cityu.edu.hk

Chong Ki WONG

College of Business

City University of HK

Hong Kong SAR

ckwong662-c @my.cityu.edu.hk

Rui XU

Department of Computer Science

City University of HK

Hong Kong SAR

ruixu33-c @my.cityu.edu.hk

Description of problem and solution

Problem:

- 1. Traditional quantitative trading platforms require users to have financial literacy
- 2. Existing trading platforms mainly designed for professionals
- 3. Existing trading platforms only display simple data

Solution:

- 1. A comprehensive online trading platform
- 2. List simple and easy-to-understand stock selection indicators
- 3. Perform backtesting and analyse user's investment
- 4. Provide online teaching on financial literacy

Trading Algorithms

For machine learning algo 2,3,4: Considering overfitting problem, only set 2 characteristics for model building (Calculation is based on Lagged logarithmic yield)

1. Simple Moving Average (SMA)

Logic:

Short-term line > Long-term line: BUY
 Otherwise: SELL

Further Consideration:

Use Python to find the best parameter with the Maximum trading return rate

3. Naïve Bayes, Logistic Regression, SVM

Logic:

- The 2 feature mentions in Algo 2 are transformed into binary features.
- According to the two binary features from the historical observations of upward and downward movements
- Apply 3 classification method in machine learning and output the best one with its trading return rate

2. Linear OLS Regression

Logic:

- provide information to forecast future earnings. e.g., one might assume that two downward movements are more likely to be followed by an upward movement (average activity) or, conversely, another downward movement is more likely ("momentum" or "trend").
- The application of regression techniques is to normalize these informal inferences.

4. Deep Neural Network (DNN)

Logic:

- Similar to the logic of Algo 3
- DNN simulates the operation of the human brain
- Apply the MLPClassifier algorithm in scikit-learn

Strategy Return

Base Return (AAPL)

1. Simple Moving Average (SMA) -> 22.05%

3. Naïve Bayes, Logistic Reg, SVM -> 580.57%

2. Linear OLS Regression -> 272.11%

4. Deep Neural Network (DNN) -> 250.88%

Report of Backtesing

- 1. Max Drawdown
- 2. Calmar ratio

Daily/Monthly/Yearly:

- 1. Sharpe ratio
- 2. Sortino ratio
- Mean return rate
- 4. Volume
- 5. Skew
- Kurt

Interest Rate

- Start time
- 2. End time
- 3. Yield Return
- 4. CAGR

- Month to date Interest
- 2. Three month Interest
- 3. Six month Interest
- 4. Year to date Interest
- 5. 1-y, 3-y, 5-y, 10-y Interest

Daily/ Monthly/ Yearly

- 1. Worst Return
- 2. Best Return

Practicality & Usefulness

Platform Demonstration

▼ User-friendly Trading Platform

Strategy & Backtest Period					
Stock Code: AAPL Quantitative Trading Strategy: Simple moving average Linear OLS Regression Naïve Bayes, Logistic Regression, Support Vector Deep Neural Network	Machine	From: 年/月/日 To: 年/月/日	bmit		
Backtesting Report					
Basic Info Measures					
Start Date:	1578373200000		Daily	Monthly	Yearly
End Date:	1676005200000	Sharpe:	1.2667478349	1.0004056599	1.2081201881
Total Return:	2.4436048574	Sortino:	2.3283289961	4.2962348003	
CAGR (Compound annual growth rate):	0.4913475335	Mean:	0.4671058436	0.5215865781	0.1251842141
Risk-adjusted Ratios		Vol:	0.3687441421	0.5213750772	0.1036190069
Max Drawdown:	-0.2459764845	Skew:	0.5708706701	2.9522192134	1.5987645005
Calmar ratio:	1.9975386445	Daily kurt:	4.4846527296	12.2715488553	
Interest Rate					
MTD (Month to data):	_0.0177296579				

Conclusion and outlook

- √ Specify stocks
- ✓ Choose a predetermined strategy
- ✓ Set specified period

- ✓ Return Report Line Chart
- ✓ Performance Measures

Outlook

Provide users with more options to customize quantitative trading strategies.

- O Screener based on companies' financial statistics
- o Trading based on historical stock prices

