Lanche na empresa

Nome do arquivo fonte: lanche.c, lanche.cpp ou lanche.pas

Atualmente, uma empresa precisa oferecer mais que altos salários para manter seus melhores funcionários. Um dos benefícios comumente oferecidos é acesso a um suprimento infinito de comida e bebida disponível em cozinhas, onde os funcionários podem preparar lanches e refeições.

Uma empresa de tecnologia decidiu posicionar uma cozinha em suas instalações; entretanto, essa tarefa requer um certo planejamento. Analisando a planta do prédio é possível criar um diagrama contendo todas as salas, todos os corredores que as ligam e os seus respectivos comprimentos, em metros. A cozinha deve ser posicionada em uma das salas de tal forma que a distância entre a cozinha e a sala mais distante da cozinha seja a menor possível.

Obviamente, a empresa deseja utilizar esse fato para anunciar que "nenhum de seus funcionários está a mais de X metros de uma cozinha". Eles contrataram o seu escritório de arquitetura para posicionar a cozinha na sala que minimiza X e você, como programador, deve escrever um programa que informa qual será essa distância.

Entrada

A entrada contém um único conjunto de testes, que deve ser lido do dispositivo de entrada padrão (normalmente o teclado). A primeira linha da entrada contém dois inteiros, $S \in C$, $(1 \le S \le 250, 1 \le C \le 50.000)$ indicando, respectivamente, o número de salas e o número de corredores. As C linhas seguintes contêm, cada uma, três inteiros, A, $B \in D$ ($1 \le A \le N$, $1 \le B \le N$, $1 \le D \le 100$, $A \ne B$) indicando que existe um corredor de D metros ligando a sala A à sala B. Cada corredor é informado uma única vez na entrada. Note que um corredor ligando as salas $A \in B$ pode ser percorrido nos dois sentidos (da sala A para a sala B e da sala B para a sala A).

Saída

Seu programa deve imprimir, na saída padrão, uma única linha, contendo um inteiro indicando a distância entre a cozinha e a sala mais distante, considerando que a cozinha foi posicionada na sala onde essa distância é mínima.

Exemplo de entrada	Exemplo de saída
4 6	2
1 2 1	
2 3 1	
2 4 2	
3 4 1	
1 4 1	
3 1 4	

Exemplo de entrada	Exemplo de saída
4 4 1 2 10	10
1 2 10	
2 3 1	
3 4 4	
2 4 3	

Exemplo de entrada	Exemplo de saída
5 6	11
1 2 10	
2 3 10	
2 4 11	
2 5 11	
3 4 10	
4 5 10	