

Sumário

- 1. O Trapézio
- 2. Áreas
- 3. A área de um retângulo
- 4. A área de paralelogramos
- 5. A área de triângulos

O Trapézio

Um quadrilátero que não é um paralelogramo

Definição 1

Um quadrilátero que tem apenas dois lados paralelos é denominado trapézio.

Os segmentos \overline{AB} e \overline{CD} são as **bases** do trapézio.

Trapézios Especiais

- O trapézio cujos lados não paralelos são congruentes é dito isósceles.
- O trapézio que possui dois ângulos retos é dito **trapézio retângulo**.

Propriedades do Trapézio

Teorema 1

No trapézio isósceles, os ângulos adjacentes à mesma base são congruentes.

Demonstração:

- $\blacktriangleright \ \, \mathsf{Hip\acute{o}tese:} \, \mathit{AB} = \mathit{CD} \, \,$
- ► Tese: $\hat{A} = \hat{D} e \hat{B} = \hat{C}$

► Trace pelo vértice *D* o segmento \overline{DE} paralelo a \overline{AB} com $E \in \overline{BC}$.

- O quadrilátero ABCD é um paralelogramo (pq?). Logo,
 - ightharpoonup AB = ED
 - ightharpoonup AB = DE = DC

► Como $\hat{B} = D\hat{E}C$ e $C\hat{E}D = \hat{C}$ (pq?), então $\hat{B} = \hat{C}$.

lacktriangle Por serem suplementos de ângulos congruentes, temos $\hat{A}=\hat{D}$.

Propriedades do Trapézio

Teorema 2

O segmento que une os pontos médios dos lados não paralelos de um trapézio é paralelo às bases e igual à sua semi-soma.

Demonstração:

- ▶ **Hipótese:** MB = MA e NC = ND.
- ► Tese: $\overline{MN} \parallel \overline{BC}$, $\overline{MN} \parallel \overline{AD}$ e $\overline{MN} = \frac{BC + AD}{2}$

Trace pelo vértice B o segmento \overline{BE} , que passa pelo ponto médio N, com $E \in \overrightarrow{AD}$.

- Os triângulos formados BCN e NDE formados são congruentes, pois
 - ightharpoonup NC = ND (hipótese)
 - $ightharpoonup B\hat{N}C = D\hat{N}E \text{ (pq?)}$
 - $\hat{C} = N\hat{D}E \text{ (pq?)}$
- ightharpoonup Assim, BC = DE e BN = NE.

▶ Dessa forma, \overline{MN} une os pontos médios dos lados \overline{AB} e \overline{BE} do $\triangle ABE$. Logo,

$$\overline{MN} \parallel \overline{AE}$$
.

- ightharpoonup Como $\overline{AE} \parallel \overline{BC}$, a primeira parte do teorema está demonstrada.
- ► Finalmente,

$$MN = \frac{AE}{2} = \frac{AD + DE}{2} = \frac{AD + BC}{2}.$$

O segmento \overline{MN} é denominado base média ou mediana do trapézio.

Áreas

Ideia Intuitiva

- ▶ Vem da ideia de medir a "ocupação" de uma região do plano por um contorno.
- ▶ Usaremos a área de um quadrado, dada axiomaticamente, para determinar algumas áreas planas, de contorno poligonal.

Região Poligonal

Definição 2

Uma região **triangular** é a figura plana formada por um triângulo e seus pontos interiores.

Região Poligonal

Definição 3

Uma região **poligonal** é a figura plana formada pela união de um número finito de regiões triangulares tais que se duas delas se interceptam, então a interseção ou é um ponto ou é um segmento.

Axioma 1

A cada região poligonal $\mathcal R$ está associado um único número real positivo, denotado por $A(\mathcal R)$.

O número $A(\mathcal{R})$ é a **área** de \mathcal{R} .

Axioma 2

Se dois triângulos são congruentes, as regiões triangulares determinadas por eles têm a mesma área.

Isso garante que a área da região poligonal não depende da sua posição no plano, mas apenas da sua forma e dos triângulos que a compõem.

Axioma 3

Se uma região \mathcal{R} é a união de duas regiões \mathcal{R}_1 e \mathcal{R}_2 , tais que \mathcal{R}_1 e \mathcal{R}_2 se interceptam em no máximo um número finito de segmentos e pontos, então

$$A(\mathcal{R}) = A(\mathcal{R}_1) + A(\mathcal{R}_2)$$

(a) É a soma de cada área triangular

(b) Não é a soma de cada área triangular

Axioma 4

A área de um quadrado é o produto do comprimento de seus lados.

Figura 2: A área de um quadrado com lados de comprimento a é $A(\Box ABCD) = a^2$

A área de um retângulo

Teorema 3

A área de um retângulo é o produto das medidas de seus lados não paralelos.

Figura 3: A área de um retângulo \mathcal{R} com lados de comprimento a e b é $A(\mathcal{R}) = ab$

A partir do retângulo dado, do lado \overline{AB} prolongue o segmento num comprimento b. Do lado \overline{BC} , prolongue o segmento num comprimento a.

Traçando em F uma paralela à \overline{BC} e traçando em I uma paralela à \overline{AB} , obtemos um quadrado FGIB, de lados com comprimento a+b.

Sua área é dada por $(a + b)^2$.

► Traçando paralelas aos lados desse quadrado em *D* subdividimos esse quadrado em quatro regiões poligonais, que se interceptam em no máximo um segmento e/ou um ponto.

Com isso, a área de $\Box FGIB$ pode ser determinada pela soma das áreas $A(\mathcal{R}_1)$, $A(\mathcal{R}_2)$, $A(\mathcal{R}_3)$ e $A(\mathcal{R}_4)$, onde:

- $ightharpoonup \mathcal{R}_1$ é o retângulo original *ABCD*;
- $ightharpoonup \mathcal{R}_2$ é o quadrado *CDHI*;
- $ightharpoonup \mathcal{R}_3$ é o retângulo *DEGH*;
- $ightharpoonup \mathcal{R}_4$ é o quadrado *ADEF*.

▶ Já sabemos que $A(\mathcal{R}_1) = a^2$ e $A(\mathcal{R}_4) = b^2$.

$$A(\mathcal{R}_2) = A(\mathcal{R}_3)$$
, pois

- $A(\mathcal{R}_1) = A(\triangle ADC) + A(\triangle ABC);$
- $ightharpoonup A(\mathcal{R}_3) = A(\triangle EDG) + A(\triangle HGD);$
- Os 4 triângulos são congruentes (pq?).
- Pelos Axioma 2 e 3, os retângulos possuem a mesma área.

► Com isso,

$$(a+b)^2 = a^2 + b^2 + 2(A(\mathcal{R}_1)),$$

de onde segue que

$$A(\mathcal{R}_1) = \frac{a^2 + 2ab + b^2 - a^2 - b^2}{2} = ab.$$

Área de Triângulos Retângulos

Corolário 1

A área de um triângulo retângulo é a metade do produto das medidas dos seus catetos.

Figura 4: $A(\triangle ABC) = \frac{bc}{2}$

Demonstração do Corolário 1

A partir do triângulo dado, construa um retângulo de lados *b* e *c*.

- ▶ Os triângulos *ABC* e *DCB* são congruentes (pq?), logo possuem mesma área.
- ▶ Como a área do retângulo é igual à soma das áreas dos dois triângulos, obtemos

$$bc = A(\triangle ABC) + A(\triangle DCB) = 2A(\triangle ABC)$$
$$\Rightarrow A(\triangle ABC) = \frac{bc}{2}.$$

A área de paralelogramos

Antes de calcular a área de um paralelogramo, vamos estabelecer alguma nomenclatura.

- Costumamos designar um de seus lados como uma base.
- Fixada a base, dizemos que a distância entre a reta suporte deste lado e a reta suporte do seu lado oposto é a **altura** do paralelogramo relativa a esta base.

Na figura abaixo:

- $ightharpoonup h_1$ é a altura relativa à base \overline{AB} ;
- $ightharpoonup h_2$ é a altura relativa à base \overline{AD} .

Teorema 4

A área de um paralelogramo é o produto de qualquer uma de suas bases pela altura correspondente.

Figura 5: A área pode ser encontrada através das fórmulas $AB * h_1$ ou $AD * h_2$

1

- Escolha uma base e uma altura.
- ► A partir delas, construa um retângulo, como a seguir.

Figura 6: Base escolhida: \overline{AB} . Os lados \overline{AE} e \overline{CF} têm comprimento h

• Queremos provar que A(ABCD) = bh.

► A área do retângulo *AFCE* é dada por

$$A(AEFC) = (b + BF)h = bh + BF * h,$$

com b = AB.

Figura 7: Base escolhida: \overline{AB} . Os lados \overline{AE} e \overline{CF} têm comprimento h

Além disso, tal retângulo é composto por 3 regiões poligonais que se interceptam em no máximo um segmento.

► Então $A(AFCE) = A(\triangle ADE) + A(ABCD) + A(\triangle BFC)$.

▶ Os triângulos $\triangle ADE$ e $\triangle BFC$ são congruentes (pq?).

► Com isso, $A(\triangle ADE) = A(\triangle BFC) = \frac{BF*h}{2}$.

Portanto,

$$bh + BF * h = A(AFCE) = A(\triangle ADE) + A(ABCD) + A(\triangle BFC)$$
$$= \frac{BF * h}{2} + A(ABCD) + \frac{BF * h}{2}$$
$$= A(ABCD) + BF * h,$$

de onde segue que

$$A(ABCD) = bh + BF * h - BF * h$$
$$= bh$$
$$= AB * h.$$

A área de triângulos

- Antes de calcular a área de um triângulo qualquer, vamos estabelecer alguma nomenclatura.
- Novamente, costumamos designar um de seus lados como uma base.
- Fixada a base, dizemos que a distância entre esta e o vértice oposto é a **altura** do triângulo relativa a esta base.

- Se todos os ângulos de um triângulo são agudos, então todas as alturas são interiores;
- se um dos ângulos é obtuso, então a altura correspondente a este vértice é interior, e as outras duas são exteriores;
- se o triângulo é retângulo, então duas altura coincidem com os catetos, e a altura correspondente à hipotenusa é interior.

Áreas de Triângulos

Teorema 5

A área de um triângulo é a metade do produto da medida de qualquer um de seus lados escolhido como base pela altura correspondente.

Figura 8: A área do $\triangle ABC$, de lado AC = b e altura relativa ao mesmo igual à h, é $A(\triangle ABC) = \frac{bh}{2}$

Áreas de Triângulos

A partir da região dada, construímos um paralelogramo com lados paralelos aos lados AC e CB.

- ► Os triângulos *ADB* e *ABC* são congruentes (pq?).
- ▶ Assim, $A(\triangle ADB) = A(\triangle ABC)$.

Áreas de Triângulos

- ▶ Por outro lado, A(ACBD) = bh e $A(ACBD) = A(\triangle ADB) + A(\triangle ABC)$.
- Portanto,

$$bh = A(\triangle ADB) + A(\triangle ABC) = 2A(\triangle ABC)$$
$$\Rightarrow A(\triangle ABC) = \frac{bh}{2}.$$

Referencias I

