	32 bits ————————————————————————————————————						
version header length	type of service	datagram length					
iden	tifier	flags fragmentation offset					
time-to-live	upper-layer protocol	header checksum					
source address							
destination address							
options							
data							

		32 bits					
4	version	header length	type of service	datagram length			
	identifier		flags	fragmentation offset			
	time-t	o-live	upper-layer protocol	he	ader checksum		
	source address						
	destination address						
<	options						
	data						
<	>						

Can be used to prioritize some traffic

Allows splitting a packet, in case it's too large for some link layer

32 bits —							
version	header length	type of service	datagram length				
identifier			flags	fragmentation offset			
time-t	o-live	upper-layer protocol	header checksum				
source address							
destination address							
options							
data							

version header type of service datagram length identifier flags fragmentation offset time-to-live upper-layer protocol header checksum source address destination address options

data

Dealing with IPv4's Limited Address Space

There are enough IPv4 addresses that each U.S. home, say, can have one There are not enough for each *device* in each U.S. home

Dealing with IPv4's Limited Address Space

There are enough IPv4 addresses that each U.S. home, say, can have one There are not enough for each *device* in each U.S. home

Solutions:

- use a larger address space: IPv6
- make many IPv4 hosts look like one: NAT

IPv4 level: endpoint is a 32-bit address

TCP/UDP level: endpoint is a <32-bit address, 16-bit port number>

IPv4 level: endpoint is a 32-bit address

TCP/UDP level: endpoint is a <32-bit address, 16-bit port number>

A NAT router translates TCP and UDP packets to convert

 $\langle addr_{\text{inside}}, port_{\text{inside}} \rangle$

to

 $\langle addr_{\text{outside}}, port_{\text{outside}} \rangle$

where *addr*_{outside} is always the same

IPv4 level: endpoint is a 32-bit address

TCP/UDP level: endpoint is a (32-bit address, 16-bit port number)

A NAT router translates TCP and UDP packets to convert

 $\langle addr_{\text{inside}}, port_{\text{inside}} \rangle$

to

Does not work for well-known ports

 $\langle addr_{\text{outside}}, port_{\text{outside}} \rangle$

where *addr*_{outside} is always the same

IPv4 level: endpoint is a 32-bit address

TCP/UDP level: endpoint is a (32-bit address, 16-bit port number)

A NAT router translates TCP and UDP packets to convert

 $\langle addr_{\text{inside}}, port_{\text{inside}} \rangle$

to

Assumes communication starts from inside

 $\langle addr_{\text{outside}}, port_{\text{outside}} \rangle$

where *addr*_{outside} is always the same

NAT Issues

Does not work for well-known ports

Assumes communication starts from inside

NAT Issues

Does not work for well-known ports

Assumes communication starts from inside

Mixes transport and network layers

128-bit addresses instead of 32-bit addresses

172.217.164.4

VS.

2607:f8b0:4025:0815:0000:0000:0000:2004

128-bit addresses instead of 32-bit addresses

172.217.164.4

VS.

2607:f8b0:4025:0815:0000:0000:0000:2004

Eight 16-bit numbers in hexadecimal

128-bit addresses instead of 32-bit addresses

172.217.164.4

VS.

2607:f8b0:4025:815::2004

128-bit addresses instead of 32-bit addresses

172.217.164.4

VS.

2607:f8b0:4025:815::2004

Up to one contiguous sequence of : -separated 0000 s can be omitted

128-bit addresses instead of 32-bit addresses

172.217.164.4

VS.

2607:f8b0:4025:815::2004

Leading 0 s can be dropped

128-bit addresses instead of 32-bit addresses

172.217.164.4

VS.

2607:f8b0:4025:815::2004

Loopback is ::1 (instead of 127.0.0.1)

Looking up an IPv6 Address

```
$ dig www.google.com A
....
www.google.com. 216 IN A 172.217.164.4
....
```

Looking up an IPv6 Address

```
$ dig www.google.com A
....
www.google.com. 216 IN A 172.217.164.4
....
$ dig www.google.com AAAA
....
www.google.com. 250 IN AAAA 2607:f8b0:4025:803::2004
....
```


Same as "type of service"

-32 bits version traffic class flow label Length in bytes payload length next hdr hop limit after header source address (128 bits) destination address (128 bits) data

Switching to IPv6

Why don't we all switch to IPv6?

Switching to IPv6

Why don't we all switch to IPv6?

Everything has to change:

- router hardware
- router software
- name-resolver protocols
- operating-system drivers and services
- configuration tools
- applications with thin abstractions

