

FedBABU: Toward Enhanced Representation for Federated Image Classification

Jaehoon Oh*, Sangmook Kim*, Se-Young Yun KAIST

ICLR'22

Presented by,
Pavana Prakash

Outline

- Motivation and Background
- > FedBABU
- > Experiments
- > Conclusion

Federated Learning (FL)

[1] McMahan, Brendan, et al. "Communication-Efficient Learning of Deep Networks from Decentralized Data." Artificial intelligence and statistics. PMLR, 2017.

Data Heterogeneity in FL

Data heterogeneity – As a curse: a single global model

Data Heterogeneity in FL

Data heterogeneity – As a blessing: multiple personalized models

Introduction

Problem statement: How to train a global model that can personalize

A Single Global Model

Multiple Personalized Models

Personalization of a Single Global Model

Observation 1: Effectiveness of a global single model (FedAvg)

 The trained global model can be personalized with a few epochs, particularly under large data heterogeneity.

MobileNet on CIFAR100 with 100 clients

s - Shard per client

	FL settings		s=100 (hete	erogeneity \(\psi \)	s=	s=50 $s=10$ (heterogen		
Client fraction	^{n}f	τ	Initial	Personalized	Initial	Personalized	Initial	Personalized
Local epochs	1.0	1 4 10	46.93±5.47 37.44±4.98 29.58±4.87	51.93±5.19 42.66±5.09 34.62±4.97	45.68±5.50 36.05±4.04 29.57±4.29	57.84 ± 5.08 47.17 ± 4.26 40.59 ± 5.23	37.27±6.97 24.17±5.50 17.85±7.38	77.46±5.78 70.41±6.83 63.51±7.38
	0.1	1 4 10	39.07±5.22 35.39±4.58 28.18±4.83	43.92±5.55 39.67±5.21 33.13±5.22	38.20±5.73 33.49±4.72 27.34±4.96	49.55±5.36 43.63±4.77 38.09±5.17	29.12±7.11 21.14±6.86 14.40±5.64	71.24±7.82 67.14±6.72 62.67±6.52

mean±standard deviation of the accuracies across all clients

The initial and personalized accuracy indicate the evaluated performance without fine-tuning and after five fine-tuning epochs for each client, respectively.

Personalization of a Single Global Model

Observation 2: Motivation for our study: Data sharing

Server has a small portion of p of the non-private client data of the clients

p	s=100 (het	erogeneity \(\psi \)	S	=50	$s=10$ (heterogeneity \uparrow)		
	Initial	Personalized	Initial	Personalized	Initial	Personalized	
0.00	28.18±4.83	33.13±5.22	27.34±4.96	38.09±5.17	14.40±5.64	62.67±6.52	
0.05 (Full) 0.05 (Body)	29.23±5.03 28.50±4.93	32.59±5.24 33.03±5.36	27.13±4.34 27.96±4.86	34.34±4.78 39.10±5.55	18.22±5.64 14.78±5.59	54.68±6.77 60.19±6.46	
0.10 (Full) 0.10 (Body)	30.59±4.93 32.90±4.77	33.34±5.30 36.82±4.66	29.62±4.27 32.81±4.97	35.50±4.84 40.80±5.62		49.62±7.48 60.94±7.30	

Boosting a single global model can hurt personalization

- Data sharing increases initial accuracy but decreases personalized accuracy.
- By narrowing the update parts, the personalization degradation problem is remedied significantly. It implies that training the head can deteriorate the personalization performance since head is biased.

Neural Network Layers

- Popular networks such as ResNet, MobileNet have only one linear layer at the end of the model
- This linear layer: Head → linear decision boundary learning
- All of the layers except the head : Body → representation learning

Frozen Head in the Centralized Setting

- MobileNet on CIFAR100 trained in centralized setting for 160 total epochs
- Full: accuracy when all layers are trained
- Body: accuracy when only the body of the model is trained
- Head: accuracy when only the head of the model is trained
- Model with the initialized and fixed head has comparable performance to a model that jointly learns the body and the head!

FedBABU

- Federated Averaging with Body Aggregation and Body Update
- Decouple the entire network into the body and the head
- Body (extractor), is trained for generalization → related to universality
- Head (classifier), is then trained for specialization → related to personalization
- Federated learning:
 - never train the head in the federated training phase (i.e., develop a single global model)
 - no need to aggregate the head
 - fine-tune the head for personalization (in the evaluation process)
 - Same fixed head on all clients serves as the same criteria on learning representations across all clients

FedBABU

FedBABU based on decoupling parameters

(a) FedAvg.

(b) FedBABU.

Algorithm 1 Training procedure of FedBABU.

```
1: initialize \theta_G^0 = \{\theta_{G,ext}^0, \theta_{G,cls}^0\}
                                                           initialized global parameter
2: for each round k = 1, \dots, K do
3:
         m \leftarrow max(|Nf|, 1)
     C^k \leftarrow \text{random subset of } m \text{ clients}
5: for each client C_i^k \in C^k in parallel do
              \theta_i^k(0) \leftarrow \theta_G^{k-1} = \{\theta_{G,ext}^{k-1}, \theta_{G,cls}^0\}
              \theta_{i,ext}^k(\tau I_i^k) \leftarrow \textbf{ClientBodyUpdate}(\theta_i^k(0), \tau)
7:
8:
          end for
                                                                                       global body parameter
       \theta_{G,ext}^{k} \leftarrow \sum_{i=1}^{m} \frac{{}^{n}C_{i}^{k}}{n} \theta_{i,ext}^{k}(\tau I_{i}^{k}), n = \sum_{i=1}^{m} n_{C_{i}^{k}}^{k}
10: end for
11: return \theta_G^K = \{\theta_{G,ext}^K, \theta_{G,cls}^0\} final global parameter
12: function ClientBodyUpdate(\theta_i^k, \tau)
         I_i^k \leftarrow \lceil \frac{{}^nC_i^k}{R} \rceil
13:
14: for each local epoch 1, \dots, \tau do
15:
                for each iteration 1, \dots, I_i^k do
16:
                      \theta_{i,ext}^k \leftarrow SGD(\theta_{i,ext}^k, \theta_{G,cls}^0) local body parameter
17:
                end for
                                                           Same fixed head parameter
18:
           end for
           return \theta_{i,ext}^k
20: end function
```


Experiments

- MobileNet on CIFAR100
- Number of clients: 100
- Each client has 500 training data and 100 test data
- Shards for heterogeneity: sort the data by labels and divide the data into the same-sized shards (dataset size/(total number of clients * number of shards per user))
- Hyperparameters: client fraction ratio f, local epochs τ , and shards per user s
- Initial accuracy: the learned global model is broadcast to all clients and is then
 evaluated on the test data set of each client
- Personalized accuracy: the learned global model is personalized using the training data set of each client by fine-tuning with the fine-tuning epochs of τf ; the personalized models are then evaluated on the test data set of each client
- TITAN RTX

Evaluation

• Exp 1. Representation power of a single global model

Initial accuracy of FedAvg and FedBABU under various settings

FL	setting	gs	Fed	Avg	FedBABU		
s	f	au	w/ head	w/o head	w/ head	w/o head	
100	1.0	1 4 10	46.93±5.47 37.44±4.98 29.58±4.87	46.23±4.53 33.48±5.09 25.11±4.60	48.61±4.75 37.32±4.39 26.69±4.50	49.97±4.69 37.20±4.35 27.70±4.51	
	0.1	1 4 10	39.07±5.22 35.39±4.58 28.18±4.83	36.69±5.82 32.58±4.37 24.34±4.58	41.02±4.99 36.77±4.47 29.38±4.74	41.19±4.96 36.61±4.64 29.36±4.46	
50	1.0	1 4 10	45.68±5.50 36.05±4.04 29.57±4.29	53.87±5.39 42.65±4.76 34.13±4.44	47.19±4.77 37.27±5.25 28.43±4.72	55.70±5.48 45.25±5.45 36.19±4.93	
	0.1	1 4 10	38.20±5.73 33.49±4.72 27.34±4.96	44.57±5.34 40.01±5.49 33.10±5.08	41.33±5.10 34.68±4.58 27.91±5.27	49.18±5.73 42.43±5.11 36.49±5.37	
10	1.0	1 4 10	37.27±6.97 24.17±5.50 17.85±7.38	67.18±7.27 58.70±6.74 51.72±7.65	45.32±8.52 32.91±7.07 22.15±5.72	71.23±6.71 64.41±7.44 55.63±7.24	
10	0.1	1 4 10	29.12±7.11 21.14±6.86 14.40±5.64	60.42±7.89 54.91±6.72 50.25±6.27	35.05±7.63 25.67±7.31 18.50±7.82	65.98±6.43 59.44±6.43 54.93±7.85	

Improved representation power under large data heterogeneity

• Exp 2. Personalization of FedBABU

FL settings		Update 1	part for person	t for personalization FL s			ettings Update part for personalizatio			alization
s	τ	Body Head Full s		τ	Body	Head	Full			
	1	44.26±5.12	49.76±5.03	49.67±4.92			1	41.00±5.35	43.18±5.34	43.92±5.55
100	4	39.61 ± 4.68	44.74 ± 5.02	44.74 ± 5.10		100	4	37.43 ± 4.98	38.29 ± 4.96	39.67 ± 5.21
	10	32.45 ± 5.42	36.48 ± 5.04	35.94 ± 5.06			10	30.62 ± 4.95	31.92 ± 5.04	33.13 ± 5.22
	1	48.54±5.23	56.76±5.68	56.69±5.16		·	1	43.61±5.54	47.51±5.61	49.55±5.36
50	4	41.27 ± 5.04	49.45 ± 5.41	49.55 ± 5.58		50	4	37.99 ± 4.68	41.48 ± 4.61	43.63 ± 4.77
	10	35.42 ± 5.60	42.55 ± 5.70	42.63 ± 5.59			10	32.20 ± 4.92	36.06 ± 5.31	38.09 ± 5.17
	1	72.81±7.32	75.97±6.29	76.02±6.29			1	56.00±8.66	69.70±7.88	71.24±7.82
10	4	69.12 ± 6.70	70.74 ± 6.47	71.00 ± 6.63		10	4	34.49 ± 7.92	65.32 ± 6.81	67.14 ± 6.72
	10	64.77 ± 7.14	66.28 ± 6.77	66.32 ± 7.02			10	27.94 ± 6.96	60.24 ± 6.16	62.67 ± 6.52

(a) FedBABU.

(b) FedAvg.

Fine-tuning epochs is 5 and f is 0.1

• Exp 3. Personalization performance comparison

FL	setting	gs		Personalized accuracy								
s	f	τ	FedBABU (Ours)	FedAvg (2017)	FedPer (2019)	LG-FedAvg (2020)	FedRep (2021)	Per-FedAvg (2020)	Ditto (2021)	Local-only		
100	1.0	1 4 10	55.79 ±4.57 44.49 ±4.91 33.20±4.54	51.93±5.19 42.66±5.09 34.62±4.97	51.95±5.30 40.87±5.05 32.91±4.97	53.01±5.26 43.09±4.74 34.64 ±5.03	18.29±3.59 15.32±3.79 13.45±3.26	47.09±7.35 39.07±7.59 30.22±6.59	39.36±4.78 31.58±5.00 21.18±4.54	20.60±3.15		
	0.1	1 4 10	49.67±4.92 44.74±5.10 35.94±5.06	43.92±5.55 39.67±5.21 33.13±5.22	45.17±4.70 39.30±4.92 32.08±4.97	40.91±5.50 37.87±4.99 30.08±5.34	23.84±3.92 16.01±3.48 11.11±3.13	48.10±7.42 33.70±7.04 25.82±5.83	45.46±4.73 32.46±5.42 23.96±4.64	20.00±3.13		
50	1.0	1 4 10	61.09±4.91 51.56±5.04 42.09±5.12	57.84±5.08 47.17±4.26 40.59±5.23	57.16±5.26 48.89±5.40 39.90±5.54	58.44±5.53 47.78±4.72 40.32±4.70	24.75±5.02 21.55±4.36 19.92±4.50	43.75±7.94 37.59±7.87 28.75±6.40	42.70±5.46 36.57±5.11 27.27±5.04	28.02±4.01		
	0.1	1 4 10	56.69±5.16 49.55±5.58 42.63±5.59	49.55±5.36 43.63±4.77 38.09±5.17	51.63±5.27 46.31±5.63 39.81±4.88	42.64±5.55 38.54±4.71 30.79±6.12	32.88±5.09 21.13±3.96 15.15±4.01	43.96±7.40 28.67±6.98 21.64±6.16	43.22±5.82 31.65±5.08 22.16±4.67			
10	1.0	1 4 10	79.17±6.51 74.60±6.69 66.64±6.84	77.46±5.78 70.41±6.83 63.51±7.38	74.71±6.35 65.61±7.13 59.71±7.35	77.49±5.60 69.97±6.42 61.50±7.28	61.28±8.27 50.59±7.94 42.13±7.53	36.59±8.98 18.31±10.57 11.54±8.87	65.33±7.49 64.47±7.45 51.68±7.44	61.52±7.22		
	0.1	1 4 10	76.02±6.29 71.00±6.63 66.32±7.02	71.24±7.82 67.14±6.72 62.67±6.52	69.36±6.77 62.62±7.63 59.50±7.33	51.75±9.32 35.80±10.55 25.04±12.02	60.13±7.72 45.91±7.68 34.30±7.84	31.21±11.66 14.34±9.51 9.17±6.95	31.91±15.10 23.70±15.84 14.24±15.67	3132112		

Personalized accuracy comparison

• Exp4. Personalization speed of FedAvg and FedBABU

Performance according to the fine-tune epochs (FL setting: f=0.1, and $\tau=10$).

s Alg	Algorithm	Fine-tune epochs (au_f)								
	· · · · · · · · · · · · · · · · · · ·	0 (Initial)	1	2	3	4	5	10	15	20
50	FedAvg FedBABU					36.78±5.13 42.74±5.60	38.09±5.17 42.63±5.59	Andrew State of the Control of the C	41.20±5.51 41.19±5.52	40.86±5.13 40.61±5.28
10	FedAvg FedBABU	14.40±5.64 18.50±7.82	27.43±6.46 63.29±7.55	48.63±7.30 66.05±6.93	58.08±6.11 66.10±6.54	61.27±6.15 66.40±7.24	62.67 ± 6.52 66.32 ± 7.02	63.91±6.49 66.07±7.57	64.56±6.45 66.24±7.67	64.89±6.53 66.32±7.71

FedBABU achieves better accuracy with a small number of epochs \rightarrow can personalize accurately and rapidly, especially when fine-tuning is either costly or restricted.

• Exp 5. Body aggregation and body update on the FedProx

Algorithm	τ	s=100 (het	erogeneity \(\psi \)	s:	=50	s =10 (heterogeneity \uparrow)		
	·	Initial	Personalized	Initial	Personalized	Initial	Personalized	
FedProx	1 4 10	46.52±4.56 36.54±4.74 28.63±4.40	50.95±4.65 39.83±4.71 31.90±4.16	42.20 ± 4.90 33.59 ± 4.80 26.88 ± 4.59	51.29 ± 5.20 40.17 ± 5.11 32.92 ± 5.00	28.16±9.00 18.20±7.62 13.62±7.73	66.39±7.79 41.56±9.34 43.48±9.32	
FedProx +BABU	1 4 10	48.53±5.15 37.17±4.41 27.79±3.95	57.44±4.72 45.26±4.76 35.68±4.34	46.25±5.31 33.86±5.44 27.48±5.22	63.12±5.25 50.18±5.14 42.37±6.10	33.13 ± 8.11 22.94 ± 9.90 15.66 ± 8.29	78.86±5.70 75.71±5.33 67.15±7.10	

Initial and personalized accuracy of FedProx and FedProx+BABU with μ =0.01

FedProx+BABU performs better than the personalization of FedAvg!

Conclusion

- Investigate the connection between a single global model and fine-tuned personalized models by analyzing the FedAvg algorithm at the client level and show that training the head using centralized data has a negative impact on personalization.
- Demonstrate that a fixed random classifier can have comparable performance to a learned classifier.
- Propose a novel algorithm, FedBABU, that reduces the update and aggregation parts from the entire model to the body of the model during federated training.
- Show that FedBABU is efficient, particularly under more significant data heterogeneity.
- Adapt the body update and body aggregation idea to the regularization-based federated learning algorithm (such as FedProx).

Pavana Prakash

UNIVERSITY of

Department of Electrical and Computer Engineering

University of Houston

Houston, TX

UNIVERSITY of HOUSTON ENGINEERING