كد فرم : FR/FY/11

(فرم طرح سئوالات امتحانات پایان ترم) دانشکده ریاضی

گروه آموزشی: **ریاضی** امتحان درس: **ریاضی۱-فنی (۱۲ گروه هماهنگ**) نیمسال (ا**ول**/دوم) ۹۰-۱۳۸۹ نام مدرس: نام و نام خانوادگی: شماره دانشجویی: تاریخ: ۱۳۸۹/۱۰/۲۵ وقت: ۱۳۵ دقیقه

توجه :

مطالب صفحه اول پاسخنامه را به دقت مطالعه نمایید. در طول برگزاری امتحان به هیچ سوالی پاسخ داده نمی شود.

-		
۱۰ نمره ۱۵ نمره	$l=\lim_{x o\infty}(x^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{$	سوال ۱–
۱۵ نمره	بازه همگرایی سری توانی $\sum_{k=1}^{\infty} (-1)^k \left(\frac{7}{4}\right)^k (7x-1)^k$ را بیابید.	سوال۲-
۱۵ نمره	$x=y^{T}$ و $x^{T}+y=T$ حجم حاصل از دوران سطح محصور به دو منحنی $x=y^{T}$ و $x=y^{T}$ حول محور x ها را محاسبه کنید.	سوال۳–
۲۰ نمره	در مورد همگرایی یا واگرایی سری $\frac{1}{n(\ln n)^p}$ بحث کنید.	سوال۴–
۱۵ نمره	انتگرال نامعین $\ln(x+x^{^{\intercal}})dx$ را بیابید.	سوال۵–
۱۵ نمره	انتگرال مثلثاتی $\frac{dx}{\operatorname{asec} x - \operatorname{r}}$ را حل کنید.	سوال ۶–
۱۵ نمره	طول قوس منحنی $y=e^x$ را در بازه $[\cdot, \cdot]$ محاسبه کنید.	سوال٧-

موفق باشيد

$$\int_{\gamma}^{\infty} \frac{dx}{x(\ln x)^{p}} = \frac{(\ln x)^{1-p}}{1-p} \Big|_{\gamma}^{\infty} = \infty \text{ obsid} \quad p < 1 \text{ obsid} \quad p > 1 \text{ obsid} \quad p > 1 \text{ obsid} \quad p < 1 \text{ obsid} \quad p > 1 \text{ obsid} \quad p >$$

$$\ln l = \lim_{x \to \infty} \ln(x^{\gamma} + a^{\gamma})^{\frac{1}{x^{\gamma}}} = \lim_{x \to \infty} \frac{\ln(x^{\gamma} + a^{\gamma})}{x^{\gamma}} \left(-\frac{1}{x^{\gamma}} - \frac{1}{x^{\gamma}} - \frac{1}{x^{\gamma}} - \frac{1}{x^{\gamma}} \right) \left(-\frac{1}{x^{\gamma}} - \frac{1}{x^{\gamma}} - \frac{1}{x^{\gamma}} - \frac{1}{x^{\gamma}} - \frac{1}{x^{\gamma}} - \frac{1}{x^{\gamma}} \right) \left(-\frac{1}{x^{\gamma}} - \frac{1}{x^{\gamma}} - \frac{1}{x^{\gamma}} - \frac{1}{x^{\gamma}} - \frac{1}{x^{\gamma}} \right) \left(-\frac{1}{x^{\gamma}} - \frac{1}{x^{\gamma}} - \frac{1}{x^{$$

سیدرضا موسوی - ۱۳۸۹/۱۰/۲۵