Complex Roots of the Characteristic Equation

Vivian Duong

Prove that $y_1 = cost$ and $y_2 = sint$ are a fundamental set of solutions of y'' + y = 0 and that the Wronskian isn't zero.

Definition 1 (characteristic equation). The characteristic equation of a 2^{nd} order differential equation is ay'' + by' + cy = 0

$$y" + y = 0 \tag{1}$$

is a characteristic equation where a = 1, b = 0, c = 1.

Theorem 0.1. Suppose the characteristic equation: ay'' + by' + cy = 0

Then,
$$y = e^{rt}$$
 where r is defined as $ar^2 + br + c = 0$

Solving for r and finding the solutions for equation (1)

$$y" + y = 0$$

$$r^{2} + r = 0$$

$$r^{2} = -1$$

$$r_{1} = i, r_{2} = -i$$

$$y_{1} = ce^{it} \text{ and } y_{2} = ce^{-it}$$

Theorem 0.2 (Euler's Formula). $e^{it} = cost + isint$

$$y_1 = c_1 cost + c_2 i sint$$
 and $y_2 = c_3 cos(-t) + c_4 sin(-t)$

Theorem 0.3 (Trigonometric Formulas). sin(-t) = -sin(t)cos(-t) = cos(t)

Definition 2 (General Solution of a Homogeneous Differential Equation). The general solution of a homgeneous differential equation is the sum of its solutions. So if y_1 and y_2 is a solution, the general solution, y, is $y = y_1 + y_2$

```
y = c_1 cost + c_2 sint
 c_3 and c_4 is absorbed by c_1 and c_2
```