

DEMOAT http://212.237.42.43:8080/

Obiettivi

Sviluppare un search engine per Wikipedia che restituisca le pagine di Wikipedia rilevanti per una richiesta sottomessa e ordini i risultati

rispetto alla rilevanza

Wikidump

Di seguito sono elencate le caratteristiche del dump preso in considerazione

enwiki-20200620-pages-articles-multistream1.xml-p1p30303.bz2 enwiki-20200620-pages-articles-multistream2.xml-p30304p88444.bz2 enwiki-20200620-pages-articles-multistream3.xml-p88445p200509.bz2

Dump size 2.7 Gb Index size 2.7 Gb

Total articles 140901 Total indexed 109965

Performance

Il processo di lettura e estrapolazione delle informazioni necessarie deve essere veloce

Memory

Il consumo di memoria deve essere il più efficente possibile.

Big files

Il processo deve potere gestire file di qualsiasi dimensione

Performance

Il processo di lettura e estrapolazione delle informazioni necessarie deve essere veloce The Ixml XML toolkit is a Pythonic binding for the C libraries libxml2 and libxslt. It is unique in that it combines the speed and XML feature completeness of these libraries with the simplicity of a native Python API

https://lxml.de

Legge tutto il file e crea l'albero xml in memoria con disastrose complicazioni di performance

Memory

Il consumo di memoria deve essere il più efficente possibile.

etree.iterparse

L'idea è quella di leggere il file iterativamente, in questo modo il file non viene caricato tutto in memoria.

```
from lmxl import etree
etree.iterparse(path, events=('end',), tag=self._base_tag,
huge_tree=True)
```


etree.iterparse

Il metodo tiene comunque i riferimenti ai nodi dell' file xml. e questi non vengono rilasciati. Con file grandi si ha un memory leak notevole e quindi é necessario togliere i riferimenti ogni volta che si finisce di parsare un nodo

Big files

Il processo deve potere gestire file di qualsiasi dimensione

```
from lxml import etree
context = etree.iterparse(path, events=('end',), tag=self._base_tag,
huge_tree=True)
   for _, root in context:
      yield root
      while root.getprevious() is not None:
         del root.getparent()[0]
      root.clear()
```

WIKIPEDIA PARSING

Wikipedia dump

```
{{short description|political movement that is skeptical towards authority and
rejects involuntary, coercive hierarchy \}
{{redirect2|Anarchist|Anarchists|other uses|Anarchists (disambiguation)}}
{{pp-move-indef}}
\{\overline{\{good article\}}\}\
{{use dmy dates|date=March 2020}}
{{use British English|date=January 2014}}
{{anarchism sidebar}}
{{basic forms of government}}
'''Anarchism''' is a [[political philosophy]] and [[Political movement|movement]]
that rejects all involuntary, coercive forms of [[hierarchy]]. It [[Radical
politics [radically]] calls for the abolition of
```

Perchè

WIKIPEDIA PARSING

Index

Il markup di wikipedia non è utile ai fini dell' indicizzazione

Link analysis

Analizzando l'abstract syntax
tree è possibile ottenere
informazioni sul testo e
interpretarlo
conseguentemente

Text extraction

La risoluzione del markup permette di ottenere un testo "pulito"

Recursive descent parser

Ogni articolo wikipedia viene compilato seguendo precise regole grammaticali

WIKIPEDIA PARSING

Markup spec

```
[[link|text]]
```

{{template|param}}

#REDIRECT

=heading=

WIKIPEDIA PARSING

```
==heading2==
```

• • • •

Evaluation

WIKIPEDIA PARSING

La fase di evaluation perlustra l'albero e ogni nodo compila il proprio sottoalbero PREPROCESSING

Statistiche

WIKIPEDIA PARSING

con 667 MB dump

Indice senza parsing wikipedia: 1.2GB

Indice con parsing wikipedia: 599MB

Text analyzer

Text pipelines

Bisogna trattare il testo prima dell'indicizzazione o durante la fase di query prepocessing

Whoosh

Index modeling

Title

L'indice deve poter ritornare un documento in base al titolo del documento. Il titolo inoltre è parte dell'URL del documento

Text

Il testo del articolo è indicizzato e viene salvato un riferimento al testo intero per potere fare ad esempio Snippet Generation o Query expansion

Categories

Dagli articoli vengono indicizzati anche le categorie a cui appartengono

Le query sono sottoposte al text prepocessing (text pipeline) come nella fase di indicizzazione

field: term | "phrase" | wildcard

Il query language supportato è quello di default di Whoosh

whoosh.readthedocs.io/en/latest/querylang.html

Perchè

Snippet generation

User

L'utente può identificare se il documento è rilevante o no evitando di visualizzarli tutti uno ad uno

Query expansion

Local context analysis (trattato in seguito)

L'algoritmo Query-dependent

Snippet generation

Ranking model

Snippet generation

$$w_p = \begin{cases} 2 & \text{p is first line} \\ 1 & \text{p is second line} \\ 0 & \text{otherwise} \end{cases}$$

 $f_q(p)$ = number of distinct matches between p and q

N = number of query terms

$$score(p) = \frac{f_q(p)^2}{N} + w_p * \frac{f_q(p)}{N}$$

Snippet generation

Esempi

Query: DNA

Google

Deoxyribonucleic acid is a molecule composed of two polynucleotide chains that coil around each other to form a double helix carrying genetic instructions for ...

Wikoogle

Deoxyribonucleic acid DNA does not usually exist as a single strand, but instead as a pair of strands that are held tightly together.

Snippet generation

Esempi

Query: Anarchism etymology Google

Etymology, terminology and definition - The etymological origin of anarchism is from the Ancient Greek anarkhia, meaning "without a ruler", composed of the prefix an-(i.e. "without") and the word arkhos (i.e. "leader" or "ruler"). ... Anarchism appears in English from 1642 as anarchisme and anarchy from 1539.

Wikoogle

Etymology, terminology and definition The etymological origin of anarchism is from the Ancient Greek anarkhia, meaning "without a ruler", composed of the prefix an-(i.e.Hence, it might be true to say that anarchism is a cluster of political philosophies opposing authority and hierarchical organization ...

SEARCHING

Query Expansion Using Local and Global Document Analysis. Jinxi Xu - W. Bruce Croft

Local context analysis

L'idea è quella di selezionare i migliori n "concetti" dai primi m documenti considerati rilevanti. Ogni documento è rappresentato da uno snippet di 300-400 parole dal quale vengono presi i concetti

Automatic query expansion

Query expansion

Espandere la query tramite WordNet. Richiede metodi di WSD per scegliere il senso dei termini correttamente

Thesaurus expansion

Concept

A noun group (phrase) is either a single noun, two adjacent nouns or three adjacent nouns.

Query Expansion Using Local and Global Document Analysis. Jinxi Xu - W. Bruce Croft

77

66

Snippet

A passage is a text window of fixed size (300 words in these experiments [Callan, 1994]). [..] Since documents can be very long and about multiple topics, a co-occurrence of a concept at the beginning and a term at the end of a long document may mean nothing and It is also more efficient

Query Expansion Using Local and Global Document Analysis. Jinxi Xu - W. Bruce Croft

Local context

analysis

L'algoritmo

Viene fatta una prima query e vengono considerati i primi 10 documenti come rilevanti

Concept 1 Concept 3 POS Document 1 Snippet tagging Concept 2 Concept 7 POS Document 2 Snippet Ranking model tagging Concept 3 Concept 5 Concept 4 Concept 2 Concept 9 POS Concept n Document 10 Snippet tagging

Local context analysis

L'algoritmo

Local context analysis

I concetti selezionati vengono classificati in base alla query e la query viene riformulata pesando i concetti opportunamente

Ranking model

$$score(Q, c) = \prod_{t_i \in Q} (\delta + log(af(c, t_i)) idf_c / log(n))^{idf_i}$$
where

$$af(c, t_i) = \sum ft_{ij}fc_j$$

 $idf_i = \max(1.0, log_{10}(N/N_i)/5.0)$
 $idf_c = \max(1.0, log_{10}(N/N_c)/5.0)$

c is a concept

 ft_{ij} is the number of occurrences of t_i in p_j fc_j is the number of occurrences of c in p_j N is the number of snippets in the collection N_i is the number of snippets containing t_i N_c is the number of snippets containing c δ is 0.1 to avoid 0

Local context analysis

$$weight(c) = 1.0 - 0.9 i_c / m$$

where

m = number of concept selectedi = position the ranking of c

I migliori concetti vengono pesati per evitare di stressare i termini dell'utente

Query weighting

Esempi Query: DNA

dna replic group singl strand dna doubl strand dna singl strand rna singl strand molecular biologi doubl helix polymerase chain gel electrophoresi dna viru

Local context analysis

agaros gel dna depend dna dna ligas origin dna complementari dna specif dna genet inform baltimor classif genet materi dna essenti deoxyribonucleic acid

Esempi Query: Microsoft

microsoft offic
offic suit
microsoft access
user interfac
first version
internet explor
microsoft word
word processor
microsoft corpor
microsoft excel

Local context analysis

graphic user databas manag version histori softwar graphic visual basic relat databas softwar develop tools.it programm languag databas engin american multin microsoft edg

Considerazioni

La presuzione di prendere come rilevanti i primi 10 documenti può essere azzardata per alcune query: query drift.

Concetti con score al di sotto un certo threshold sono scartati

La selezione dei concetti dipende dal processo di POS tag, snippet generation e da come il testo è stato parsato dal parser di Wikipedia.

Local context analysis

POS tag

```
grammar = r"""

NBAR: {<NN|JJ><|JJ|NN>} # Nouns and Adjectives, terminated with Nouns

# If pattern not found just a single NN is ok
"""
```

Thesaurus based

Global analysis

Espandere i termini della query ricercando sensi da un dizionario: Wordnet

WSD

É necessario un metodo di word sense disambiguation per selezionare il senso corretto di termini polisemici: Lesk

Adaptive LESK

Adapted/Extended Lesk (Banerjee and Pederson, 2002/2003)

L'idea è vedere termini che co-occorrono entro una certa finestra di termini presi dalla definizione o dall'albero relazionale

L'algoritmo

Thesaurus based

Una volta selezionati i sensi vengono estratti i termini dal gloss e lemmi definiti su wordnet per ogni senso

Esempi Query: dna

transmiss inform helix polymer long cell

nucleotid
doubl
biochemistri
linear
nucleu
genet
deoxyribonucleic
acid

Thesaurus based

Esempi Query: apple

Thesaurus based

malu appl

tree firm

nativ varieti

mani fruit

edibl pumila

orchard

I termini non potrebbero essere affini a quello che vuole l'utente, sopratutto con una query molto ambigua come Apple

Considerazioni

Thesaurus based

Anche il metodo thesaurus based ha problemi di query drift. Ai termini espansi viene assegnato un peso per non stressare i termini dell'utente.

Termini specifici (es.DNA) vengono espansi bene invece termini polisemici con un contesto troppo generico potrebbero degradare le performance

Potrebbe risultare più efficente utilizzare un corpus specifico basato su wikipedia costruito a index time anzichè wordnet sia per query expansion che WSD

Textual

Ranking

Okapi BM25

Ranking function used by search engines to estimate the relevance of documents to a given search query. It is based on the probabilistic retrieval framework

Terrier PL2

Link analysis

Ranking

Obiettivo implementare un modello di scoring che combinasse i valori del ranking testuale a quelli ottenuti tramite link analysis

Pagerank

I risultati ottenuti dal modello di ranking testuale vengono combinati al valore di pagerank ottenuto a index time

Hits

I risultati ottenuti dal modelli di ranking testuale vengono combinati ai valori di hub e authority calcolati sulla base del sottografo dei risultati più rilevanti.

Link pipelines

Dopo aver analizzato tutti gli articoli viene generata una lista delle adiacenze con i link tra le varie pagine di wikipedia

Link pipelines

Link Analysis

Vengono scritti su file i collegamenti tra le varie pagine man mano che gli articoli vengono analizzati

Adjacency list

La lista delle adiacenze viene salvata su file per motivi di robustezza e ottimizzazione della memoria con un risparmio notevole.

Link cleanup

Per ottenere valori più affidabili e un grafo più leggero è necessario ripulire la lista delle adiacenze ai soli articoli presenti nel dump

~ 173 Mb

~ 43 Mb

Link pipelines

Viene trasformata la lista delle adiacenze in formato graphml per poter operare in modo efficiente sul grafo

NetworkX

NetworkX is a Python package for the creation, manipulation, and study of the structure, dynamics, and functions of complex networks.

python-igraph

igraph is a collection of network analysis tools with the emphasis on efficiency, portability and ease of use

Modello di ranking

Come andare a integrare uno score query-independent con uno score query-dependent per ottenere risultati sensati?

Okapi BM25 + Pagerank

Estensione del modello di ranking BM25 mediante combinazione lineare al valore di pagerank relativo all'articolo

$$R(p,Q) = \alpha BM25(p,Q) + (1-\alpha)PageRank(p)$$

Modern information retrieval - R.Baeza Yates, B.Riberio Neto

Okapi BM25 + Pagerank

Problema

I valori di pagerank non sono uniformati allo score di BM25. Nemmeno normalizzando i valori è possibile raggiungere un risultato ottimale dato che sono molto distanti tra loro.

Vengono privilegiati gli articoli con un valore di pagerank altro e di conseguenza vengono visualizzati risultati non rilevanti.

Pagerank sorting

Viene ordinata una finestra M = 30 di risultati rilevanti determinati attraverso il modello di ranking testuale predefinito sulla base del relativo score e il valore di pagerank. In alcune query è stato possibile ottenere una precisione migliore mentre in altri casi i valori sono peggiorati.

Si è concluso che potrebbe avere senso un modello di ranking che prenda in considerazione una serie di parametri come il valore di pagerank, la similarità del documento e del topic con la query (document clustering).

The authors used a Bayesian network to combine the different signals and showed that the combination leads to far better results than those produced by any of the combining ranking function in isolation

Esempio pagerank

list_of_portuguese_monarchs 1.1719406346447165e-05

portugal 0.00033106614157568534

kings_of_naples 2.8733564451697862e-06

list_of_monarchs_of_brazil 3.720489975538177e-06

manuel_i_of_portugal 2.6250022072998636e-05

john_iv_of_portugal 8.084313578111862e-06

list_of_counties_in_vermont 5.6548672061798485e-06

county_(united_states) 0.0004142097455776016

Modello di ranking

Come andare a calcolare e integrare lo score hits query-dependent allo score del modello di ranking per ottenere risultati sensati?

Hits sorting

Vengono ordinati i risultati rilevanti determinati attraverso il modello di ranking predefinito sulla base del relativo score e i valori di hub, authority.

$$h, a = Hits(p, S)$$

$$R(p, Q) = BM25(p, Q) * (max(h, a))$$

Esempio hits

† steve_wozniak	(0.61)	7.90	4.83
apple_i	(0.33)	7.87	2.62
↑ next	(0.77)	7.66	5.94
next_computer	(0.29)	7.57	2.24
john_sculley	(0.52)	7.54	3.93
↓ fruitarianism	(0.06)	7.49	0.47
↑ apple_ii	(1.0)	7.14	7.14
↓ danny_boyle	(0.07)	7.11	0.54
↓ kate_winslet	(0.01)	7.10	0.10
jef_raskin	(0.33)	7.07	2.36
apple_lisa	(0.46)	7.04	3.29
↑ apple_inc.	(1.0)	6.85	6.85
↓ pixar	(0.17)	6.77	1.21
× bloom_county	(O)	6.40	0.0
x steve_martin	(O)	6.40	0.0

Link Analysis

User interface

- 1. Schermata home
- 2. Risultati ricerca
- 3. Impostazioni

L'interfaccia proposta è molto semplice, accessibile dall'utente finale attraverso un browser e molto simile a quella dei moderni search engine come Google

Q

Search

https://en.wikipedia.org/wiki/DNA

1. DNA

Deoxyribonucleic acid (; **DNA** does not usually exist as a single strand, but instead as a pair of strands that are held tightly together.

https://en.wikipedia.org/wiki/Genetics

2. Genetics

Diploid organisms form haploids by dividing, without replicating their **DNA**, to create daughter cells that randomly inherit one of each pair of chromosomes. Some bacteria can undergo Bacterial conjugation, transferring a small circular piece of **DNA** to another bacterium.

https://en.wikipedia.org/wiki/Cell_(biology)

3. Cell (biology)

The **DNA** of a prokaryotic cell consists of a single Circular prokaryote chromosome that is in direct contact with the cytoplasm.an organelle that houses the cell & #39; s **DNA**.

https://en.wikipedia.org/wiki/Biochemistry

4. Biochemistry

The **DNA** polymerase of the thermophile bacteria Thermus aquaticus, extracted in 1968 and named Taq polymerase, is a biochemical **DNA** replicator resistant to relative high temperatures (50-80 °C), which has allowed molecular biologists to ease complications in the Polymerase chain reaction method.

ikoogle

Search

Settings

X

Settings

https://en.wikipedia. 1. DNA

Deoxyribonucleic strands that are he

https://en.wikipedia.

2. Genetics

Diploid organisms that randomly inhe conjugation, transf

https://en.wikipedia. 3. Cell (biolog The DNA of a prok contact with the c

https://en.wikipedia.

4. Biochemist

The **DNA** polymera Taq polymerase, is which has allowed method.

https://en.wikipedia.

5. Acid

Nucleic acids are

Results limit

Query expansion

Local Context Analysis query expansion

Query expansion based on local context analysis algorithm. The main idea is to expand a query by selecting key "concepts" from the first 10 documents. These concepts are ranked accordingly with the query and the top ones are added in the query vector space with a specific weight. Based on the following paper by Jinxi Xu and W. Bruce Croft

Thesaurus based query expansion

Query expansion based on a thesaurus (Wordnet). The query is expanded with the gloss of each disambiguated synset. Wordnet is generic corpus that might not be suited to expand queries for wikipedia(a wikipedia corpus could be better) so query drift might be behind the corner with polysemic and very general queries.

No query expansion

Disable query expansion

Architettura

Flask Web Server

Flask is a lightweight WSGI web application framework. It is designed to make getting started quick and easy, with the ability to scale up to complex applications.

+ Jinja Templates

Jinja is a modern and designer-friendly templating language for Python, modelled after Django's templates. It is fast, widely used and secure with the optional sandboxed template execution.

Live server

L'applicazione è stata eseguita su una macchina cloud VPS configurata ad-hoc per superare limitazioni di memoria e potenza di calcolo.

In questo modo è stato possibile indicizzare più parti del wikidump

S.O.
Debian

CPU quad core

RAM 12 GB SSD

60GB

Live server

Sessione utente

Ogni utente detiene una propria sessione sulla quale vengono memorizzate le impostazioni di ricerca

Oggetti condivisi

Per motivi di performance e utilizzo della memoria vengono mantenuti oggetti condivisi quali IndexReader e Searcher

~ 4 Gb di RAM utilizzata con il dump di riferimento

Preprocessing

Ottimizzazioni

out-of-memory exceptions nella fase di indicizzazione

Durante la fase di indicizzazione si sono verificati problemi causati da un utilizzo eccessivo della memoria disponibile. In particolare questo era dovuto al fatto che Whoosh mantiene in memoria i documenti da indicizzare fino a quando l'indice non viene scritto.

Preprocessing

Ottimizzazioni

out-of-memory exceptions nella fase di indicizzazione

Dopo diversi tentativi è stato possibile determinare una configurazione ottimale per garantire velocità nella fase di indicizzazione e un corretto utilizzo della memoria.

L'indice viene costruito mediante scritture multiple ogni 20k articoli processati che consentono di liberare la memoria centrale con un utilizzo minimo di 500 Mb fino a un picco massimo di 4 Gb.

Preprocessing

Ottimizzazioni

bottleneck nella fase di compilazione degli articoli

Si è notata la presenza di un collo di bottiglia nella fase di compilazione degli articoli che rallenta notevolmente il processo di indicizzazione. Questa fase viene eseguita in modo sequenziale e pertanto non consente di sfruttare al meglio architetture a multiprocessore.

Per via delle caratteristiche architetturali del progetto non è stato possibile applicare migliorie che consentano di ovviare al problema in tempi rapidi.

Ottimizzazioni

fault-tolerance nella fase di link analysis

Per garantire una maggiore tolleranza ai rischi nella fase di link analysis si è deciso di scrivere su file la lista delle adiacenze man mano che gli articoli vengono processati. Questa modifica ha inoltre consentito un notevole risparmio in termini di utilizzo della memoria.

Senza questa miglioria in caso di errore nella fase di indicizzazione sarebbe stato necessario ri-processare tutti gli articoli per determinare nuovamente la matrice delle adiacenze.

Ottimizzazioni

poor-performance nella fase di link analysis cleanup

La fase di pulizia della lista delle adiacenze si è rivelata molto onerosa in termini di tempo e computazione, per questo motivo si è deciso di parallelizzare tale parte di codice.

Per ridurre ulteriormente il tempo computazionale dedicato a questa fase si è pensato di effettuare la ricerca degli articoli mediante tabella di hash piuttosto che all'interno di un array con una conseguente riduzione del costo da O(n) a O(1).

Ottimizzazioni

Architettura

microservizi e job code

Sulla base delle criticità evidenziate nelle slide precedenti si è pensato ad una architettura orientata a microservizi con i job distribuiti su diverse code.

Questo tipo di architettura avrebbe consentito di ridurre notevolmente la complessità del sistema con conseguenti vantaggi di scalabilità e manutenibilità.

Architettura

microservizi e job code

Ottimizzazioni

I componenti del sistema sono tra loro indipendenti e non dipendono da implementazione specifiche

Test suite

Scraper

La creazione del test suite è stata effettuata tramite uno scraper che effettua query su google selezionando solamente gli articoli presenti nel dump.

Una volta trovati 30 articoli per ogni query viene calcolata la MAP

Google è molto dinamico (i risultati dipendono dall'utente, history, posizione, ecc..), quindi la costruzione del test set è stata fatta attraverso un ambiente isolato per evitare che i risultati venissero influenzati da parametri estern

EVALUATION

EVALUATION

bm25	33,41515152
bm25_lca	29,54848485
bm25_thesaurus	33,23939394
bm25_page_rank	23,96363636
bm25_hits_rank	27,33333333
bm25_lca_page_rank	17,86060606
bm25_lca_hits_rank	24,15151515
bm25_thesaurus_page_rank	20,98484848
bm25_thesaurus_hits_rank	25,89090909
pl2	33,88181818
pl2_lca	33,29393939
pl2_thesaurus	30,16969697
pl2_page_rank	25,1969697
pl2_hits_rank	27,58181818
pl2_lca_page_rank	22,65151515
pl2_lca_hits_rank	26,38484848
pl2_thesaurus_page_rank	19,35151515
pl2_thesaurus_hits_rank	27,39393939

Considerazioni

Dopo una analisi dei risultati e sulla base di come i valori di precision e recall cambiano all'interno dei vari sistemi sono state tratte le seguenti considerazioni

Query

Query con più parole hanno scarse performance perchè non viene tenuto in considerazione la proximity tra i termini. L'effetto si amplifica ancora di più con query expansion LCA o in generale con query expansion

Expansion

Non ha senso espandere tutte le query. Query specifiche sono espanse bene e migliorano le performance. In altri casi degradano notevolmente, in particolare su query generiche.

Considerazioni

Link analysis

Ordinare i risultati sulla base di una data finestra funziona bene per certe query ma peggiore in altri casi. Limitando la finestra a 10 risultati si ottiene un ranking più affidabile e affine al sistema di base. Si è notato come spesso alcune pagine, seppur non rilevanti, vengono messe in risalto e altre considerate rilevanti perdono la loro posizione.

Pagerank e Hits

Utilizzare un modello di score dove il risultato finale è ottenuto attraverso una somma pesata di diverse *features* potrebbe portare a risultati migliori rispetto ad un semplice ordinamento. Google ad esempio utilizza più di 200 features per definire il ranking di una pagina.

	wikoogle_base	wikoogle_optimized	wikoogle_window_10
bm25	33,41515152	36,84545455	33,29393939
bm25_lca	29,54848485	28,2666667	23,5
bm25_thesaurus	33,23939394	31,44242424	29,75151515
bm25_page_rank	23,96363636	27,6030303	33,88181818
bm25_hits_rank	27,3333333	30,63939394	33,00909091
bm25_lca_page_rank	17,86060606	16,20909091	17,26969697
bm25_lca_hits_rank	24,15151515	26,26969697	22,5
bm25_thesaurus_page_rank	20,98484848	23,51515152	32,8333333
bm25_thesaurus_hits_rank	25,89090909	30,28787879	33,18787879
pl2	33,88181818	35,99090909	29,96666667
pl2_lca	33,29393939	27,9	25,03939394
pl2_thesaurus	30,16969697	30,32121212	28,98787879
pl2_page_rank	25,1969697	26,62121212	30,73636364
pl2_hits_rank	27,58181818	31,14545455	30,16969697
pl2_lca_page_rank	22,65151515	17,73636364	23,87575758
pl2_lca_hits_rank	26,38484848	27,56666667	26,36060606
pl2_thesaurus_page_rank	19,35151515	16,8969697	27,69090909
pl2_thesaurus_hits_rank	27,39393939	29,36666667	28,51212121

Wikoogle window_10

Tech stack

Wikoogle

WIKIPEDIA PARSING

Fonti differenti hanno grammatiche incomplete, ambigue o inconsistenti tra di loro

Per questo motivo è stata definita una grammatica interna che fosse la meno ambigua, più completa e semplice possibile ai fini di indicizzazione e analisi

```
template = "{{", title, { "|", part }, "}}";
part = [ name, "=" ], value;
title = text;
```

WIKIPEDIA PARSING

So far progress has been made in both grammar definition and parser behaviour. Although none of the descriptions seems to be complete, some have achieved to describe a good part of the language.Current parser descriptions tried to do its best to follow the MediaWiki's parser behaviour.

mediawiki.org/wiki/Markup_spec

```
EBNF
start link
             = "[[";
              = "]]";
end link
internal link = start link, full
pagename, ["|", label], end link, label
extension;
```

```
ABNF
link = "[["wikitext-L3"]]"
wikitext-L3
               = literal / template /
tplarg / link / comment /
                 line-eating-comment /
unclosed-comment / xmlish-element /
                 *wikitext-L3
```