

Mining Relations among Cross-Frame Affinities for **Video Semantic Segmentation**

Guolei Sun, Yun Liu*, Hao Tang, Ajad Chhatkuli, Le Zhang, Luc Van Gool

Introduction

- Video semantic segmentation (VSS)
- VSS aims at assigning a semantic class to all the pixels of all the frames in the video
- Compared to image semantic segmentation. VSS is much less explored in literatures
- There is no tremendous progress due to the lack of large-scale and fully-annotated dataset
- Importance of VSS
- Real-life scenes are dynamic
- Temporal information is naturally used by animals in the interaction with environments
- Recent development
- Large-scale dataset VSPW [1] is proposed

Motivation

- The core of VSS lies in how to exploit the temporal information for prediction
- Previous methods

- Develop new techniques (e.g. optical flow) to compute the cross-frame
- Directly use affinities to refine the features
- Our motivation: mine the relations among multi-scale affinities computed from multi-scale intermediate

Problem Setting

- We are given video frames $\{I_{t_i} \in \mathbb{R}^{H \times W \times 3}\}_{i=1}^T$ with ground-truth masks $\{M_{t_i} \in \mathbb{R}^{H imes W}\}_{i=1}^T$. The target frame is I_{tx} , while the remainings are reference frames
- Goal: train a segmentation network which can use information of all frames (reference and target) to seament the target one

Methodology

- Mining Relations among Cross-Frame Affinities for video semantic seamentation: MRCFA Single-scale Affinity Refinement (SAR)
- Compute Cross-Frame Affinities (CFA)
- Selective Token Masking
- Multi-scale Affinity Aggregation (MAA)
- Compute Cross-Frame Affinities (CFA)

$$\boldsymbol{Q}^l = f(\boldsymbol{F}_{t_T}^l; \boldsymbol{W}_{query}^l) \quad \boldsymbol{K}_{t_i}^l = f(\boldsymbol{F}_{t_i}^l; \boldsymbol{W}_{key}^l) \quad \boldsymbol{A}_{t_i}^l = \boldsymbol{Q}^l \times \boldsymbol{K}_{t_i}^{l\top}$$

- Reference tokens for computing cross-frame affinities across scales should match
- Computing CFA for large-scale features requires large computation
- Selective Token Masking (STM)
- Downsample the multi-scale keys to the same spatial size
- Further reduce the number of tokens in keys by selecting important tokens and discarding non-important ones
- Use the affinity from the deepest features to determine the importance of tokens
- Single-scale Affinity Refinement (SAR)
- Using 3D conv to learn the correlation within the single-scale affinity suffers from two weaknesses: large computational cost and non-meaningful 3D window
- We propose to refine the affinities by common 2D convolutions
- Multi-scale Affinity Aggregation (MAA)
- The affinity from the deep layers contains more semantic but more coarse info.
- The affinity from the shallow layers has more fine-grained but less semantic info.
- We propose a MAA module to aggregate the info. from small- to large-scale affinities
- After obtaining refined affinities, we can reconstruct target features using reference features $O_{t_s} = B_{t_s}^1 \times \tilde{F}_{t_s}$
- The final features

$$oldsymbol{O}_{t_L} = rac{1}{T-1} arGamma(\sum_{i=1}^{T-1} oldsymbol{O_{t_i}}) + \hat{oldsymbol{F}}_{t_L}$$

Experiments

- Datasets: VSPW [1] dataset (largest-scale benchmark for VSS) and Cityscapes dataset
- Evaluation: mIoU & Video consistency (VC) [1,2]
- VC: evaluate the temporal consistency of predictions
- Quantitative results

Methods	Backbone	mIoU T	Weighted IoU 7	mvC ₈ ↑	mVC ₁₆ ↑	Params (M) ↓	FPS (t/s)
SegFormer [47]	MiT-B0	32.9	56.8	82.7	77.3	3.8	73.4
SegFormer [47]	MiT-B1	36.5	58.8	84.7	79.9	13.8	58.7
MRCFA (Ours)	MiT-B0	35.2	57.9	88.0	83.2	5.2	50.0
MRCFA (Ours)	MiT-B1	38.9	60.0	88.8	84.4	16.2	40.1
DeepLabv3+ [6]	ResNet-101	34.7	58.8	83.2	78.2	62.7	-
UperNet [46]	ResNet-101	36.5	58.6	82.6	76.1	83.2	-
PSPNet [52]	ResNet-101	36.5	58.1	84.2	79.6	70.5	13.9
OCRNet [50]	ResNet-101	36.7	59.2	84.0	79.0	58.1	14.3
ETC [33]	PSPNet	36.6	58.3	84.1	79.2	89.4	-
NetWarp [46]	PSPNet	37.0	57.9	84.4	79.4	89.4	-
ETC [33]	OCRNet	37.5	59.1	84.1	79.1	58.1	-
NetWarp [46]	OCRNet	37.5	58.9	84.0	79.0	58.1	-
TCB _{st-ppm} [34]	ResNet-101	37.5	58.6	87.0	82.1	70.5	10.0
TCB _{st-ocr} [34]	ResNet-101	37.4	59.3	86.9	82.0	58.1	5.5
TCB _{st-ocr-mem} [34]	ResNet-101	37.8	59.5	87.9	84.0	58.1	5.5
SegFormer [47]	MiT-B2	43.9	63.7	86.0	81.2	24.8	39.2
SegFormer [47]	MiT-B5	48.2	65.1	87.8	83.7	82.1	17.2
MRCFA (Ours)	MiT-B2	45.3	64.7	90.3	86.2	27.3	32.1
MRCFA (Ours)	MiT-B5	49.9	66.0	90.9	87.4	84.5	15.7

- MRCFA achieves SOTA results and produces the temporally consistent masks
- MRCFA adds limited model complexity and latency
- MRCFA is effective in mining the relations among affinities between target and reference

	memodo	Duckbone	moo	r enterino (rer)
	FCN [41]	MobileNetV2	61.5	9.8
	CC [42]	VGG-16	67.7	-
	DFF [56]	ResNet-101	68.7	-
	GRFP [36]	ResNet-101	69.4	-
	PSPNet [52]	MobileNetV2	70.2	13.7
	DVSN [48]	ResNet-101	70.3	-
	Accel [22]	ResNet-101	72.1	
	ETC [33]	ResNet-18	71.1	13.2
•	SegFormer [47]	MiT-B0	71.9	3.7
;	MRCFA (Ours)	MiT-B0	72.8	4.2
e	SegFormer [47]	MiT-B1	74.1	13.8
C	MRCFA (Ours)	MiT-B1	75.1	14.9

Summary

- We propose a novel framework MRCFA for VSS by mining the relations among multi-scale cross-frame affinities in two aspects: single-scale intrinsic correlations and multi-scale relations
- STM is adopted to sample important tokens in keys of the reference frames to reduce computation and facilitate MAA
- Extensive experiments demonstrate the efficiency and effectiveness of MRCFA

[1] Jiaxu Miao, Yunchao Wei, Yu Wu, Chen Liang, Guangrui Li, and Yi Yang. VSPW: A large-scale dataset for video scene parsing in the wild. In CVPR 2021 [2] Guolei Sun, Yun Liu, Henghui Ding, Thomas Probst, Luc Van Gool. Coarse-to-Fine Feature Mining for Video Semantic Segmentation. In CVPR 2022

Code: https://github.com/GuoleiSun/VSS-MRCF/

