Nome:	R.A.:
1	1

Prova (P1)

EE530 Eletrônica Básica, Turma A 18 de outubro de 2004

Atenção: Ao receber esta prova, coloque primeiramente seu nome e R.A.. Deixe um documento de identidade sobre a mesa.

Boa prova!

- 1) O circuito mostrado na Figura 1 fornece uma implementação direta do elo de realimentação mostrado na Figura 2.
- A) Supondo que o Amplificador Operacional tem resistência de entrada infinita e resistência de saída nula, encontre o valor de B (0.5 ponto).
- B) Se A=100, qual é o ganho de tensão em malha-fechada? (0.5 ponto)
- C) Qual o ganho de malha, expresso em dB? (0.5 ponto)
- D) Para $v_S = 1$ V, encontre v_0 e v_i . (0.5 ponto)
- E) Se o valor de A diminuir em 10%, qual é a diminuição correspondente em $A_{\rm f}$? (0.5 ponto)

Figura 1 Figura 2

2) Considere o seguinte circuito:

- A) Calcule os resistores R_A , R_B e R_C de modo que os offsets sejam minimizados. (0.5 ponto)
- B) Calcule a expressão da saída v_0 em função de v_1, v_2 e v_3 . (1 ponto)
- C) Se o amp. op. usado for o 741, qual a freqüência de corte da função de transferência (encontrada no item B). (1 ponto)

3) A) Projete um integrador Miller (inversor) com constante de tempo de um segundo e uma resistência de entrada de $100 \text{ k}\Omega$. (0.5 ponto)

Sabendo que no tempo t=0 a tensão de saída v_0 =-10 V:

- B) Para a entrada v_1 =-1 V, em que instante v_0 atinge 0 V e +10 V? (0.5 ponto)
- C) Desenhe o diagrama de bode para o módulo deste integrador. (0.5 ponto)
- D) Suponha que o sinal a ser integrado tenha freqüência ω=1 rad/s. Sugira um método para limitar o ganho cc deste integrador. Indique as alterações no circuito e sua conseqüência no diagrama de Bode (aponte valores numéricos). (1 ponto)

- 4) A) Qual a condição que deve ser satisfeita para que o diagrama mostrado na Figura 2 produza um sinal senoidal auto-sustentado na saída? (1 ponto)
- B) Prove, nesta condição, que as oscilações são mantidas mesmo sem um sinal $X_{\text{s.}}$ (0.5 ponto)
- C) Esboce um circuito que satisfaça as condições acima. (1 ponto)
- OBS: 1) Use um amplificador operacional.
 - 2) Não é necessário dimensionar os componentes.