MATH 210B

Name: Quin Darcy
Due Date: 3/4/20
Instructor: Dr. Shannon
Assignment: Homework 5

4. Assume that in the equation of a line, y = mx + b, $m, b \in \mathbb{Q}$, and that in the equation of a circle $(x-h)^2 + (y-k)^2 = r^2$, $h, k, r \in \mathbb{Q}$. Assuming that the line and the circle intersect, explain why the coordinates of the points of intersection are elements of an extension, $\mathbb{Q}(\sqrt{g})$, of \mathbb{Q} , where $[\mathbb{Q}(\sqrt{g}): \mathbb{Q}] = 2$ or = 1.

Solution. Given that y = mx + b, we can substitute this in for the equation of the circle. Obtaining,

$$(x-h)^{2} + (y-k)^{2} - r^{2} = \left[x^{2} - 2hx + h^{2}\right] + \left[y^{2} - 2ky + k^{2}\right] - r^{2}$$

$$= \left[x^{2} - 2hx + h^{2}\right] + \left[(mx+b)^{2} - 2k(mx+b) + k^{2}\right] - r^{2}$$

$$= (1+m^{2})x^{2} + (2mb - 2mk - 2h)x + (h^{2} - 2bk + k^{2} - r^{2})$$

$$= 0.$$

Using the quadratic formula to solve for x we get

$$x = \frac{-(2mb - 2mk - 2h) \pm \sqrt{(2mb - 2mk - 2h)^2 - 4(1 + m^2)(h^2 - 2bk + k^2 - r^2)}}{2(1 + m^2)}.$$

Let $g = (2mb - 2mk - 2h)^2 - 4(1+m^2)(h^2 - 2bk + k^2 - r^2)$. Then if $\sqrt{g} \in \mathbb{Q}$, we have that $x \in \mathbb{Q}$ and $[\mathbb{Q}(\sqrt{g}): \mathbb{Q}] = 1$. Otherwise, we have that $\sqrt{g} \in \mathbb{Q}(\sqrt{g})$ and since

$$\frac{-(2mb - 2mk - 2h)}{2(1+m^2)} = \frac{-mb + mk + h}{1+m^2} \in \mathbb{Q}$$

and $2(1+m^2) \in \mathbb{Q}$, then both of these rational numbers are elements of $\mathbb{Q}(\sqrt{g})$. Hence, $x \in \mathbb{Q}(\sqrt{g})$. Moreover, if $\sqrt{g} \notin \mathbb{Q}$, then $[\mathbb{Q}(\sqrt{g}) : \mathbb{Q}] = 2$ since $\{1, \sqrt{g}\}$ is a basis for $\mathbb{Q}(\sqrt{g})$ over \mathbb{Q} . By the same argument we can show that $y \in \mathbb{Q}(\sqrt{g})$. Therefore, the coordinates of the two intersection points of the line with the circle are elements of $\mathbb{Q}(\sqrt{g})$.

MATH 210B Darcy

5. Recall that an automorphism of F is an isomorphism of F onto F. Find all the automorphisms of $\mathbb{Q}(\sqrt[3]{2},\omega)$.

Solution. We have that $\sqrt[3]{2}$ is algebraic over \mathbb{Q} since it is a root of x^3-2 . Thus, $\mathbb{Q}(\sqrt[3]{2})\cong\mathbb{Q}[x]/(x^3-2)_i$. Now note that a basis for $\mathbb{Q}[x]/(x^3-2)_i$ is $\{(x^3-2)_i+1,(x^3-2)_i+x,(x^3-2)_i+x^2\}$. It follows from this that $[\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}]=3$. Additionally, a basis for this extension is $\{1,\sqrt[3]{2},\sqrt[3]{4}\}$. Similarly, ω is algebraic over \mathbb{Q} since it is a root of x^2+x+1 and by the same reasoning as above, it follows that $[\mathbb{Q}(\omega):\mathbb{Q}]=2$ and a basis for this extension is $\{1,\omega\}$. Thus, $[\mathbb{Q}(\sqrt[3]{2},\omega):\mathbb{Q}]=6$ and a basis for this extension is $\{1,\sqrt[3]{2},\sqrt[3]{4},\omega,\omega\sqrt[3]{2},\omega\sqrt[3]{4}\}$. Now consider some $\alpha\in\mathbb{Q}(\sqrt[3]{2},\omega)$. Given our basis, it can be expressed as

 $\alpha = a + b\sqrt[3]{2} + c\sqrt[3]{4} + d\omega + e\omega\sqrt[3]{2} + f\omega\sqrt[3]{4},$

for $a,b,c,d,e,f\in\mathbb{Q}$. Now let $\sigma\colon\mathbb{Q}(\sqrt[3]{2},\omega)\to\mathbb{Q}(\sqrt[3]{2},\omega)$ be an automorphism. Since \mathbb{Q} is a subfield of $\mathbb{Q}(\sqrt[3]{2},\omega)$ and σ is an automorphism, then it follows that $\mathbb{Q}\cong\sigma(\mathbb{Q})$. However, by HW1, σ can only be the identity map on \mathbb{Q} . In other words, $\sigma(q)=q$ for all $q\in\mathbb{Q}$. From this it follows that

$$\sigma(\alpha) = \sigma(a + b\sqrt[3]{2} + c\sqrt[3]{4} + d\omega + e\omega\sqrt[3]{2} + f\omega\sqrt[3]{4})$$
$$= a + b\sigma(\sqrt[3]{2}) + c\sigma(\sqrt[3]{4}) + d\sigma(\omega) + e\sigma(\omega\sqrt[3]{2}) + f\sigma(\omega\sqrt[2]{4}).$$

Thus, any such automorphism is uniquely determined by where it sends the basis elements. Now if we consider the polynomial $x^3 - 2 = (x - \sqrt[3]{2})(x - \omega\sqrt[3]{2})(x - \omega^2\sqrt[3]{2})$, and let $\theta \colon \mathbb{Q}(\sqrt[3]{2},\omega)[x] \to \mathbb{Q}(\sqrt[3]{2},\omega)[x]$ be the isomorphism given on Exam 1, then given any root, call it α , of $x^3 - 2$ must give that $\sigma(\alpha)$ is a root of $\theta(x^3 - 2)$. Similarly, each root, α , of $x^2 + x + 1 = (x - \omega)(x - \omega^2)$ must correspond to a root $\sigma(\alpha)$ of the same polynomial. With these restrictions, we can conclude that there are 6 possible automorphisms:

$$\sigma_{1} := \begin{cases} \sqrt[3]{2} \mapsto \sqrt[3]{2} \\ \omega \mapsto \omega \end{cases} \qquad \sigma_{2} := \begin{cases} \sqrt[3]{2} \mapsto \omega \sqrt[3]{2} \\ \omega \mapsto \omega \end{cases} \qquad \sigma_{3} := \begin{cases} \sqrt[3]{2} \mapsto \omega^{2} \sqrt[3]{2} \\ \omega \mapsto \omega \end{cases}$$

$$\sigma_{4} := \begin{cases} \sqrt[3]{2} \mapsto \sqrt[3]{2} \\ \omega \mapsto \omega^{2} \end{cases} \qquad \sigma_{5} := \begin{cases} \sqrt[3]{2} \mapsto \omega \sqrt[3]{2} \\ \omega \mapsto \omega^{2} \end{cases} \qquad \sigma_{6} := \begin{cases} \sqrt[3]{2} \mapsto \omega^{2} \sqrt[3]{2} \\ \omega \mapsto \omega^{2} \end{cases}$$

6. Find (with proof) γ such that $\mathbb{Q}(\gamma) = \mathbb{Q}(\sqrt{2}, \sqrt[3]{5})$.

Proof. Consider $\mathbb{Q}(\sqrt{2}\sqrt[3]{5})$. Since $\sqrt{2}, \sqrt[3]{5} \in \mathbb{Q}(\sqrt{2}, \sqrt[3]{5})$ and this set is closed under multiplication, then $\sqrt{2}\sqrt[3]{5} \in \mathbb{Q}(\sqrt{2}, \sqrt[3]{5})$. Thus, $\mathbb{Q}(\sqrt{2}\sqrt[3]{5}) \subseteq \mathbb{Q}(\sqrt{2}, \sqrt[3]{5})$. Next, we note that $(\sqrt{2}\sqrt[3]{5})^3 = 10\sqrt{2}$ and so $\sqrt{2} \in \mathbb{Q}(\sqrt{2}\sqrt[3]{5})$. Similarly, $(\sqrt{2}\sqrt[3]{5})^4 = 20\sqrt[3]{5}$ and so $\sqrt[3]{5} \in \mathbb{Q}(\sqrt{2}\sqrt[3]{5})$. Thus, $\mathbb{Q}(\sqrt{2}, \sqrt[3]{5}) \subseteq \mathbb{Q}(\sqrt{2}, \sqrt[3]{5})$. Therefore, $\mathbb{Q}(\sqrt{2}\sqrt[3]{5}) = \mathbb{Q}(\sqrt{2}, \sqrt[3]{5})$.

MATH 210B Darcy

7. Assume that K/F, K/E, K/F'. Assume that F'/F is algebraic and E/F. Let E' be the smallest subfield of K which contains E and E'. Prove that E'/E is algebraic.

Proof. Let $M = \bigcup \{E(a_1, \ldots, a_n) : a_i \in F', n \in \mathbb{Z}^+\}$. Then since for every $n \in \mathbb{Z}^+$, $E(a_1, \ldots, a_n) \subseteq E'$ for $a_i \in F'$. Thus, $M \subseteq E'$. Now let $c, d \in M$. Then for some $i, j \in \mathbb{Z}^+$, $c \in E(a_1, \ldots, a_i)$ and $d \in E(b_1, \ldots, b_j)$. If c and d are in the same extension, then c - d and cd are in that extension as well. Otherwise, we let $c = t_1 a_1 + \cdots + t_i a_i$ and $d = r_1 b_1 + \cdots + r_j b_j$, where $t_i, r_i \in E$. Then (assuming $j \geq i$) $c - d = (t_1 a_1 - r_1 b_1) + \cdots + (t_i a_i - r_i b_i) - \cdots - r_j b_j$. It follows that $c - d \in E(a_1, \ldots, a_i, b_1, \ldots, b_j)$ and thus $c - d \in M$. Similarly, $cd \in E(a_1 b_1, a_1 b_2, \ldots, a_1 b_j, \ldots, a_i b_j)$ and so $cd \in M$. Note commutativity of addition and multiplication, multiplicative inverses, and no zero divisors are all inherited from the fields over which d is the union. Thus, d is a field. Finally, since d is an d if d is the smallest subfield which contains d and d is an d is a field. Then d is an d is an d is a field. Then d is an d is an d is an d is a field. Then d is an d in d is an d in d is an d in d in

8.

- (a) Determine, with explanation, if the following are splitting fields for $x^3 2$ over \mathbb{Q} :
 - (i) $\mathbb{Q}(\sqrt[3]{2},\omega)$

Solution. Note that $x^3-2=(x-\sqrt[3]{2})(x-\omega\sqrt[3]{2})(x-\omega^2\sqrt[3]{2})$ and so any splitting field must contain these roots. Clearly, $\sqrt[3]{2}, \omega \in \mathbb{Q}(\sqrt[3]{2}, \omega)$ and so $\omega\sqrt[3]{2}, \omega^2\sqrt[3]{2} \in \mathbb{Q}(\sqrt[3]{2}, \omega)$. Now note that $\mathbb{Q}(\sqrt[3]{2}, \omega\sqrt[3]{2}, \omega^2\sqrt[3]{2})$ is a splitting field for x^3-2 since its the smallest field containing all the roots. Then $[\mathbb{Q}(\sqrt[3]{2})\colon\mathbb{Q}]=3$ since $\sqrt[3]{2}$ is a root of the third degree irreducible polynomial x^3-2 . And $[\mathbb{Q}(\sqrt[3]{2},\omega\sqrt[3]{2})\colon\mathbb{Q}(\sqrt[3]{2})]=2$ since ω is a root of the irreducible polynomial $x^2+x+1\in\mathbb{Q}(\sqrt[3]{2})[x]$. Finally, $[\mathbb{Q}(\sqrt[3]{2},\omega\sqrt[3]{2},\omega^2\sqrt[3]{2})\colon\mathbb{Q}(\sqrt[3]{2},\omega\sqrt[3]{2})]=1$ since $\omega^2\sqrt[3]{2}$ can be generated from $\sqrt[3]{2}$ and $\omega\sqrt[3]{2}$. Thus, the degree of the splitting field is $[\mathbb{Q}(\sqrt[3]{2},\omega\sqrt[3]{2},\omega^2\sqrt[3]{2})\colon\mathbb{Q}]=6$. From problem 5. we saw that $[\mathbb{Q}(\sqrt[3]{2},\omega)\colon\mathbb{Q}]=6$ and so $\mathbb{Q}(\sqrt[3]{2},\omega)$ is a splitting field for x^3-2 over \mathbb{Q} .

(ii) $\mathbb{Q}(\omega\sqrt[3]{2},\omega)$

Solution. This is a splitting field. Since ω is an element, then ω^{-1} is an element and so $\sqrt[3]{2}$ is therefore an element. Thus, $\mathbb{Q}(\sqrt[3]{2},\omega) \subseteq \mathbb{Q}(\omega\sqrt[3]{2},\omega)$. Similarly, $\omega\sqrt[3]{2},\omega \in \mathbb{Q}(\sqrt[3]{2},\omega)$ and so $\mathbb{Q}(\omega\sqrt[3]{2},\omega)$. Therefore, $\mathbb{Q}(\omega\sqrt[3]{2},\omega) = \mathbb{Q}(\sqrt[3]{2},\omega)$.

(iii) $\mathbb{Q}(\sqrt[3]{2}, \omega\sqrt[3]{2}, \omega^2\sqrt[3]{2}).$

Solution. This is a splitting field. As mentioned in part (i), this is, by definition, the smallest field which contains \mathbb{Q} and all the roots of $x^3 - 2$ and is therefore the splitting field of $x^3 - 2$.

MATH 210B Darcy

(iv) $\mathbb{Q}(\sqrt[3]{2}, i\sqrt{3})$.

Solution. This is a splitting field. Since $i\sqrt{3}$ is an element, then $-1/2 + i\sqrt{3}/2$ is an element. Thus, $\omega \in \mathbb{Q}(\sqrt[3]{2}, i\sqrt{3})$ and since $\sqrt[3]{2}$ is also an element, then $\mathbb{Q}(\sqrt[3]{2}, \omega) \subseteq \mathbb{Q}(\sqrt[3]{2}, i\sqrt{3})$. Similarly, from ω we can add 1/2 and multiply by 2 to obtain $i\sqrt{3}$ and thus $i\sqrt{3} \in \mathbb{Q}\sqrt[3]{2}, \omega$) and since $\sqrt[3]{2}$ is also an element, then $\mathbb{Q}(\sqrt[3]{2}, i\sqrt{3}) \subseteq \mathbb{Q}(\sqrt[3]{2}, \omega)$. Therefore, $\mathbb{Q}(\sqrt[3]{2}, i\sqrt{3}) = \mathbb{Q}(\sqrt[3]{2}, \omega)$.

(b) Find, with explanation, the splitting field of $x^6 + 1$ over \mathbb{Q} , and find the degree of the splitting field over \mathbb{Q} .

Solution. Consider $x^{12}-1=(x^6+1)(x^6-1)$. This shows that $x^{12}-1$ contains the roots of x^6+1 . Using De Moivere's Theorem, we can obtain the 12^{th} roots of unity. However, we will first look at the roots of x^6-1 since these roots are distinct from those in x^6+1 . We have: $1, \frac{1}{2}+i\frac{\sqrt{3}}{2}, \omega, -1, \omega^2$. Thus, the roots of x^6+1 are $e^{2k\pi/12}$, where k is odd. However, letting $\zeta=\frac{\sqrt{3}}{2}+\frac{i}{2}$, then we observe that ζ generates all 12 roots. Thus, and extension of $\mathbb Q$ which contains ζ allows x^12-1 and thus x^6+1 to split completely. Now note that $x^6+1=(x^2+1)(x^4-x^2+1)$ and so the minimal polynomial associated with the desired splitting field is of degree 2 or 4. It cannot be degree 2 since x^2+1 has roots i and -i, but x^6+1 does not split over $\mathbb Q(i)$. Thus, x^4-x^2+1 is the minimal polynomial. Moreover, since the splitting field must contain ζ and ζ generates all 12 roots, then the splitting field is $\mathbb Q(\zeta)$ and $[\mathbb Q(\zeta):\mathbb Q]=4$.