Álgebra Comutativa Notas de Aula

Maria Eugenia Martin

Universidade de São Paulo São Paulo, 23 de novembro de 2014

SUMÁRIO

1	ANÉIS E IDEAIS 2
	1.1 Teorema Chinês dos Restos 12
	1.2 Exercícios 14
2	VARIEDADES 18
	2.1 Espectro 18
	2.2 Introdução à Geometria Algébrica 26
	2.3 Exercícios 33
3	MÓDULOS 36
	3.1 Módulos Finitamente Gerados 38
	3.2 Sequências Exatas 41
	3.3 Produto Tensorial de Módulos 43
	3.4 Exercícios 51
4	LOCALIZAÇÃO 54
	4.1 Propriedades Locais 60
	4.2 Localização e Ideais Primos 61
	4.3 Exercícios 65
5	condições de cadeia 67
	5.1 Anéis Noetherianos 73
	5.2 Anéis Artinianos 76
	5.3 Exercícios 78
6	decomposição primária 80
	6.1 Decomposição Primária em Anéis Noetherianos 86
	6.2 Aplicações da Decomposição Primária em Anéis Artinia-
	nos 88
	6.3 Exercícios 93
7	extensões integrais 96
	7.1 Exercícios 111
8	TEORIA DA DIMENSÃO 113
	8.1 Anéis Graduados 114
	8.2 Função de Hilbert 115
	8.3 Teorema de dimensão de Krull 121
	8.4 Exercícios 124

- A IDENTIDADES BINOMIAIS 125
- B REFERÊNCIAS BIBLIOGRÁFICAS 127

Índice Remissivo 129

INTRODUÇÃO

Este texto corresponde à versão preliminar das notas de aula do curso MAT5737-Introdução à Álgebra Comutativa ministrado no 2º Semestre de 2014, no Instituto de Matemática e Estatística da Universidade de São Paulo, IME-USP.

O autor ficaria muito grato se lhe fossem enviadas sugestões de melhorias ou que lhe fossem apontados erros porventura encontrados.

1

Aula 1

AULA 1: 11/08/2014

Vamos começar revendo rapidamente as definições e propriedades elementares de anéis, ideais primos e maximais e várias operações elementares que podem ser realizadas em ideais.

Definição 1. Um **anel** A é um conjunto com duas operações binárias: soma e multiplicação, denotadas por $(+,\cdot)$ respetivamente e tais que:

- a. A é um grupo abeliano em relação a operação de soma "+" (logo A tem um elemento nulo, 0, e todo $a \in A$ tem um inverso aditivo, -a.)
- b. A multiplicação "·" em A é associativa $((a \cdot b) \cdot c = a \cdot (b \cdot c))$ e distributiva em relação à adição $(a \cdot (b+c) = a \cdot b + a \cdot c$ e $(b+c) \cdot a = b \cdot a + c \cdot a)$

Neste curso somente consideraremos anéis comutativos, isto é tais que:

- c. $a \cdot b = b \cdot a$ para todos $a, b \in A$ e que contenham um elemento identidade (denotado por 1):
- d. $\exists 1 \in A \text{ tal que } a \cdot 1 = 1 \cdot a = a \text{ para todo } a \in A.$ (Isto implica que o elemento identidade é único)

Observação. a. Segue de imediato das definições acima que $-1 \cdot a = -a$ e $0 \cdot a = 0$ para todo elemento $a \in A$.

b. Não excluímos a possibilidade de 1=0. Se isto acontecer então para qualquer $a \in A$ temos $a=a\cdot 1=a\cdot 0=0$ e logo A tem um único elemento, a. Neste caso a é denominado **anel nulo** e denotado por a0.

Definição 2. Um **homomorfismo de anéis** é uma aplicação f de um anel A em um anel B tal que:

- a. f(a+b) = f(a) + f(b) (logo f é um homomorfismo de grupos abelianos e logo também f(a-b) = f(a) f(b), f(-a) = -f(a), f(0) = 0),
- b. $f(a \cdot b) = f(a) \cdot f(b)$,
- c. $f(1_A) = 1_B$.

Em outras palavras, f respeita adição, multiplicação e o elemento identidade.

Um homomorfismo injetor e sobrejetor é chamado de **isomorfismo**.

Um subconjunto S de um anel A é um **subanel** de A se S é fechado sob adição e multiplicação e contém o elemento identidade de A. A aplicação identidade de S em A é então um homomorfismo de anéis injetivo que chamaremos de "**inclusão**".

Se $f:A\to B$, $g:B\to C$ são homomorfismos de anéis então sua composição $g\circ f:A\to C$ é também um homomorfismo de anéis.

Definição 3. Um **ideal** I de um anel A é um subconjunto de A que é um subgrupo aditivo e é tal que $AI \subseteq I$ ou seja se $a \in A$ e $b \in I$ implica que $a \cdot b \in I$. Um ideal I é dito **próprio** se $I \neq A$ ou equivalentemente se $1 \notin I$. Os múltiplos $x \cdot a$ de um elemento $a \in A$ formam um **ideal principal**, denotado por (a). De modo mais geral, podemos definir o **ideal de** A **gerado** pelo subconjunto $S \subseteq A$, denotado por $\langle S \rangle$, como sendo o conjunto gerado por todas as combinações A-lineares finitas:

$$\langle S \rangle = \{a_1 \cdot s_1 + \dots + a_n \cdot s_n \text{ onde } n \in \mathbb{N}, a_i \in A \text{ e } s_i \in S\}.$$

Exercício 1. Verifique que $\langle S \rangle$ é um ideal de A e que é o "menor" ideal de A que contém o subconjunto S.

O grupo quociente $A/I = \{ \overline{a} = a + I \mid a \in A \}$, onde a + I = b + I se e somente se $a - b \in I$, herda uma multiplicação de A definida de maneira única como: $\overline{a} \cdot \overline{b} = \overline{a \cdot b}$ o que o torna um anel (comutativo com unidade), chamado de **anel quociente** e denotado por A/I. A aplicação $\pi : A \to A/I$ que leva cada $a \in A$ em sua classe \overline{a} é um homomorfismo de anéis sobrejetivo que chamaremos de **projeção canônica**.

Usaremos frequentemente o seguinte fato (conhecido como "Teorema de Correspondência entre Ideais", TCI):

Teorema 4. (**Teorema de Correspondência entre Ideais**) Existe uma correspondência (que preserva ordem) um-a-um entre os ideais J de A que contém I, e os ideais \overline{J} de A/I, dada por $J = \pi^{-1}(\overline{J})$.

Se $f:A\to B$ é um homomorfismo de anéis e J é um ideal de B, então a pré-imagem $f^{-1}(J)$ é sempre um ideal de A. Mas se I é um ideal de A, o conjunto f(I) não necessariamente é um ideal de B, para que isso aconteça f deve ser sobrejetor. (prova: **Exercício 2.**)

Exemplo 5. Seja f a inclusão de \mathbb{Z} em \mathbb{Q} e seja I=(3) o ideal principal não nulo de \mathbb{Z} gerado por 3, então $f(I)\subseteq\mathbb{Q}$ é o próprio I. Se I for um ideal de \mathbb{Q} então $\mathbb{Q}I\subseteq I$ mas $\frac{1}{2}\cdot 3=\frac{3}{2}\notin (3)=\{0,\pm 3,\pm 6,\pm 9,\pm 12,\dots\}$. Logo f(I) não é um ideal de \mathbb{Q} .

Como consequência o **kernel** de f, $Ker(f) = f^{-1}(0)$, é um ideal de A mas só podemos afirmar que a **imagem** de f, Im(f) = f(A), é um subanel de B. O homomorfismo f induz um isomorfismo de anéis $A/Ker(f) \simeq Im(f)$.

Definição 6.

- a. Um **divisor de zero** num anel A é um elemento $a \in A$ o qual "divide 0", i.e., para o qual existe $b \neq 0$ em A tal que $a \cdot b = 0$. Um anel sem divisores de zero não nulos (e no qual $1 \neq 0$) é chamado de **domínio de integridade** (ou seja, num domínio de integridade se $a \cdot b = 0$ então ou a = 0 ou b = 0).
- b. Uma **unidade** em A é um elemento $a \in A$ o qual "divide 1", i.e., para o qual existe $b \in A$ tal que $a \cdot b = 1$. O elemento b é determinado de maneira única por a e é denotado por a^{-1} . As unidades em A formam um grupo abeliano (multiplicativo), A^{\times} . Um **corpo** é um anel \mathbf{k} no qual $1 \neq 0$ e todo elemento não nulo é uma unidade.

Exemplo 7. Seja **k** um corpo, então **k** e $\mathbf{k}[x_1, \dots, x_n]$ (x_i indeterminadas) são domínios de integridade. \mathbb{Z} é um domínio de integridade mas não é um corpo.

O elemento $a \in A$ é uma unidade se e somente se (a) = A = (1). (prova: **Exercício 3.**)

Proposição 8. Seja A um anel não nulo. Então as seguintes afirmações são equivalentes:

- a. A é um corpo;
- b. os únicos ideais de A são 0 e A;
- c. todo homomorfismo de A num anel não nulo B é injetivo.

Demonstração. Exercício 4.

Definição 9. Um **ideal** \mathfrak{p} de A é dito **primo** se $\mathfrak{p} \neq A$ e se $a \cdot b \in p \Rightarrow$ ou $a \in \mathfrak{p}$ ou $b \in \mathfrak{p}$. Um **ideal** \mathfrak{m} de A é dito **maximal** se $\mathfrak{m} \neq A$ e se sempre que exista um outro ideal I tal que $\mathfrak{m} \subseteq I \subseteq A$ então ou I = A ou $I = \mathfrak{m}$.

Equivalentemente às definições temos:

Proposição 10.

- a. \mathfrak{p} é um ideal primo se e somente se A/\mathfrak{p} é um domínio de integridade.
- b. m é um ideal maximal se e somente se A/m é um corpo.

¹ Note que por definição ideais primos e maximais são ideais **próprios**.

Demonstração.

a. Exercício 5.

b. Suponha que m é um ideal maximal de A. Seja $\overline{J} \subseteq A/\mathfrak{m}$ um ideal de A/\mathfrak{m} , pelo TCI (Teorema 4) $J = \pi^{-1}(\overline{J})$ é um ideal de A que contém \mathfrak{m} , ou seja $\mathfrak{m} \subseteq J \subseteq A$. Da maximalidade de \mathfrak{m} segue que ou $J = \mathfrak{m}$ ou J = A, logo ou $\overline{J} = 0$ ou $\overline{J} = A/\mathfrak{m}$. Portanto os únicos ideais de A/\mathfrak{m} são 0 e o próprio A/\mathfrak{m} . Segue da Proposição 8 que A/\mathfrak{m} é um corpo. Suponha agora que A/\mathfrak{m} é um corpo². Seja J um ideal de A tal que $\mathfrak{m} \subseteq J \subseteq A$, logo $\overline{J} = J/\mathfrak{m}$ é um ideal de A/\mathfrak{m} que é um corpo. Da Proposição 8 segue que ou $\overline{J} = 0$ ou $\overline{J} = A/\mathfrak{m}$, logo $J = \mathfrak{m}$ ou J = A o que implica que \mathfrak{m} é um ideal maximal de A.

Como consequências temos: o ideal zero (0) = 0 é primo se e somente se A é um domínio de integridade; o ideal zero (0) é maximal se e somente se A é um corpo; e se \mathfrak{m} é um ideal maximal $\Rightarrow A/\mathfrak{m}$ é um corpo $\Rightarrow A/\mathfrak{m}$ é um domínio de integridade $\Rightarrow \mathfrak{m}$ é um ideal primo, ressaltamos porém que a recíproca não é verdadeira.

Proposição 11. Se $f: A \to B$ é um homomorfismo de anéis e \mathfrak{q} é um ideal primo em B, então $f^{-1}(\mathfrak{q})$ é um ideal primo em A.

Demonstração. Como vimos anteriormente $f^{-1}(\mathfrak{q})$ é de fato um ideal de A. Vejamos agora que é próprio: de fato se $1_A \in f^{-1}(\mathfrak{q})$ então $f(1_A) = 1_B \in \mathfrak{q}$ contrariando o fato de \mathfrak{q} ser próprio. Por outro lado, se $a \cdot b \in f^{-1}(\mathfrak{q})$ então $f(a \cdot b) = f(a) \cdot f(b) \in \mathfrak{q}$, como \mathfrak{q} é primo segue que ou $f(a) \in \mathfrak{q}$ ou $f(b) \in \mathfrak{q}$, i.e., ou $a \in f^{-1}(\mathfrak{q})$ ou $b \in f^{-1}(\mathfrak{q})$, o que implica por definição que $f^{-1}(\mathfrak{q})$ é um ideal primo de A.

A proposição anterior se torna falsa se trocamos "ideal primo" por "ideal maximal", vejamos o seguinte contraexemplo:

Exemplo 12. Seja $f: \mathbb{Z} \hookrightarrow \mathbb{Q}$ o homomorfismo de anéis "inclusão". Como \mathbb{Q} é um corpo, o ideal (0) de \mathbb{Q} é maximal. Segue do fato de f ser injetora que o ideal $f^{-1}(0) = \operatorname{Ker}(f) = (0)$, mas (0) não é um ideal maximal de \mathbb{Z} pois \mathbb{Z} não é um corpo. Por outro lado, como \mathbb{Z} é um domínio de integridade então $(0) = f^{-1}(0)$ é um ideal primo.

Ideais primos são fundamentalmente importantes na álgebra comutativa. O próximo teorema garante que ideais maximais (e portanto primos) existem

² E logo por definição $1 \neq 0$, o que implica $A/\mathfrak{m} \neq 0$ ou seja $A \neq \mathfrak{m}$. Precisamos esta condição para \mathfrak{m} ser maximal.

em abundância. A prova de dito teorema é uma aplicação padrão do famoso *Lema de Zorn*. Para isso lembraremos rapidamente os conceitos necessários.

Um conjunto não vazio Ω é dito **parcialmente ordenado** se for dada uma relação \leq em Ω a qual é reflexiva, transitiva e tal que se $x \leq y$ e $y \leq x$ então x = y. Um subconjunto $S \subseteq \Omega$ é uma **cadeia** se para todo par de elementos $x, y \in S$ temos $x \leq y$ ou $y \leq x$. O *Lema de Zorn* pode ser enunciado como segue:

Lema 13. Se toda cadeia $S \subseteq \Omega$ de um conjunto parcialmente ordenado $\Omega \neq \emptyset$ tem uma cota superior em Ω (i.e., existe $x \in \Omega$ tal que $y \leq x$ para todo $y \in S$), então Ω possui pelo menos um elemento maximal.

Passamos agora ao enunciado do Teorema:

Teorema 14. Todo anel não nulo $A \neq 0$ possui pelo menos um ideal maximal.

Demonstração. Seja Ω o conjunto de todos os ideais próprios de A parcialmente ordenados por inclusão (\subseteq). Como $A \neq 0$, Ω é não vazio pois (0) $\in \Omega$. Devemos mostrar que Ω possui um elemento maximal e faremos isso aplicando o Lema de Zorn. Para isso, devemos mostrar que toda cadeia $S \subseteq \Omega$ tem uma cota superior em Ω . Seja $S = (I_{\alpha})$ uma cadeia de ideais em Ω , então para cada par de índices α , β temos uma das possibilidades: ou $I_{\alpha} \subseteq I_{\beta}$ ou $I_{\beta} \subseteq I_{\alpha}$. Denotemos por $\mathfrak{m} = \bigcup_{\alpha} I_{\alpha}$, este será o nosso candidato a cota superior de S em Ω .

Vejamos primeiramente que $\mathfrak{m} \in \Omega$, i.e., que \mathfrak{m} é um ideal próprio de A. Sejam $x,y\in \mathfrak{m}$ então existem índices α,β tal que $x\in I_{\alpha}$ e $y\in I_{\beta}$, sem perda de generalidade podemos supor que $I_{\alpha}\subseteq I_{\beta}$ logo $x+y\in I_{\beta}\subseteq \mathfrak{m}$. Por outro lado, seja $a\in A$ então $a\cdot x\in I_{\alpha}\subseteq \mathfrak{m}$. Isto mostra que \mathfrak{m} é um ideal de A. Para ver que ele é próprio só basta observar que $1\notin \mathfrak{m}$ pois $1\notin I_{\alpha}$ para todo α .

Por último, só resta observar que $I_{\alpha} \subseteq \mathfrak{m}$ para todo α , logo \mathfrak{m} é uma cota superior de S.

AULA 2

AULA 2: 13/08/2014

Lembrando a última aula. Um conjunto não vazio Ω é dito **parcialmente ordenado** se for dada uma relação \leq em Ω a qual é reflexiva, transitiva e tal que se $x \leq y$ e $y \leq x$ então x = y. Um subconjunto $S \subseteq \Omega$ é uma **cadeia** se para todo par de elementos $x, y \in S$ temos $x \leq y$ ou $y \leq x$.

O *Lema de Zorn* pode ser enunciado como segue:

Lema. Se toda cadeia $S \subseteq \Omega$ de um conjunto parcialmente ordenado $\Omega \neq \emptyset$ tem uma cota superior em Ω (i.e., existe $x \in \Omega$ tal que $y \leq x$ para todo $y \in S$), então Ω possui pelo menos um elemento maximal.

Teorema. Todo anel não nulo $A \neq 0$ possui pelo menos um ideal maximal.

Como aplicações diretas do teorema anterior temos os seguintes corolários:

Corolário 15. Todo ideal próprio I de A está contido num ideal maximal.

Demonstração. **Exercício 6.** Basta aplicar o Teorema 14 para o anel A/I no lugar de A e usar o TCI.

Corolário 16. Todo elemento de A que não é uma unidade está contido num ideal maximal.

Operações com ideais

Dados dois ideais *I* e *J* de um anel *A*, definimos os seguintes ideais:

- a. A **soma** de I e J é o conjunto de todos os elementos x+y onde $x \in I$ e $y \in J$. É o menor ideal que contém I e J, em outras palavras é o ideal gerado pela união $I \cup J$. Analogamente, podemos definir a soma $\sum_{\alpha \in \Lambda} I_{\alpha}$ de qualquer família de ideais I_{α} de A cujos elementos são todas as somas $\sum x_{\alpha}$ onde $x_{\alpha} \in I_{\alpha}$ para todo $\alpha \in \Lambda$ e quase todos os x_{α} (i.e., todos exceto um conjunto finito) são zero. É o menor ideal que contém todos os ideais I_{α} .
- b. A **interseção** de qualquer família de $(I_{\alpha})_{\alpha \in \Lambda}$ ideais é um ideal.
- c. O **produto** de dois ideais I, J de A é o ideal $I \cdot J$ gerado por todos os produtos $x \cdot y$, onde $x \in I$ e $y \in J$. É o conjunto de todas as somas finitas $\sum x_i y_j$ onde cada $x_i \in I$ e cada $y_j \in J$. Analogamente definimos o produto de qualquer família finita de ideais. Em particular, são definidas as potências I^n (n > 0) de um ideal I. Por convenção $I^0 = (1)$ e I^n é o ideal gerado por todos os produtos $x_1 \cdot x_2 \cdot \cdots \cdot x_n$ onde cada $x_i \in I$.

Observação.

- a. Em geral a união de dois ideais $I \cup I$ não é um ideal.
- b. As três operações são comutativas e associativas. Também existe uma lei distributiva $I \cdot (I + K) = I \cdot I + I \cdot K$.
- c. *Lei Modular:* Se $J \subseteq I$ ou $K \subseteq I$ então $I \cap (J + K) = I \cap J + I \cap K$. (Exercício 7.)
- d. Pela lei distributiva $(I+J)\cdot (I\cap J)=I\cdot (I\cap J)+J\cdot (I\cap J)\subseteq I\cdot J$, esta última inclusão devido a que $I\cap J\subseteq J$ e $I\cap J\subseteq I$.

e. Sempre temos a inclusão $I \cdot J \subseteq I \cap J$, a igualdade acontece se I + J = A.

Definição 17. Dois ideais I, J são ditos **coprimos** se I + J = A.

Logo para ideais coprimos temos a igualdade $I \cap J = I \cdot J$. Claramente dois ideais I e J são coprimos se e somente se existe $a \in I$ e $b \in J$ tal que a + b = 1.

Existem anéis com exatamente um ideal maximal, como os corpos. Esta ideia levou à seguinte definição.

Definição 18. Um anel A que possui exatamente um ideal maximal \mathfrak{m} é chamado de **anel local**. O corpo $\mathbf{k} = A/\mathfrak{m}$ é chamado de **corpo de resíduos** de A.

Proposição 19.

- a. Seja A um anel e \mathfrak{m} um ideal próprio de A tal que todo $a \in A \mathfrak{m}$ é uma unidade de A. Então A é um anel local e \mathfrak{m} seu ideal maximal.
- b. Seja A um anel e \mathfrak{m} um ideal maximal de A, tal que todo elemento de $1 + \mathfrak{m}$ (i.e., todo 1 + a onde $a \in \mathfrak{m}$) é uma unidade de A. Então A é um anel local.

Demonstração. Suponha que existe um ideal I tal que $\mathfrak{m} \subseteq I \subseteq A$. Então ou I = A ou I é próprio e logo consiste de elementos que não são unidades, logo (por hipótese) está contido em \mathfrak{m} e por tanto $I = \mathfrak{m}$. Por definição \mathfrak{m} é maximal. Suponha que exista outro ideal maximal $\mathfrak{m}' \subseteq A$, como ele é próprio consiste de elementos que não são unidades logo $\mathfrak{m}' \subseteq \mathfrak{m} \subseteq A$, da maximalidade de \mathfrak{m}' e do fato de \mathfrak{m} ser próprio por hipótese, segue que $\mathfrak{m}' = \mathfrak{m}$ e A é um anel local. Isto prova (a.). Para provar (b.) vamos usar o item (a.), logo considere $a \in A - \mathfrak{m}$. Logo $\mathfrak{m} \subsetneq \langle a, \mathfrak{m} \rangle \subseteq A$, onde $\langle a, \mathfrak{m} \rangle = A$. Logo existe $b \in A$ e $t \in \mathfrak{m}$ tal que $a \cdot b + t = 1$ o que implica que $a \cdot b = 1 - t \in 1 + \mathfrak{m}$ e por hipótese é uma unidade , logo a é uma unidade. Pelo item (a.) A é um anel local. \square

Exemplo 20. Todo ideal em \mathbb{Z} é principal, ou seja é da forma (m) para algum $m \geq 0$. O ideal (m) é primo se e somente se m = 0 ou um número primo. Todos os ideais (p), onde p é um número primo, são maximais pois $\mathbb{Z}/(p) = \mathbb{Z}_p$ é o corpo com p elementos.

Isto nos motiva à seguinte definição.

Definição 21. Um **domínio de ideais principais** (DIP) é um domínio de integridade no qual todo ideal é principal.

Em tal anel todo ideal primo não nulo é maximal: seja $(a) \neq 0$ um ideal primo e suponha que $(a) \subseteq (b) \subseteq A$, logo $a \in (b)$ assim $a = b \cdot c$. Mas então

 $b \cdot c \in (a)$. Suponha que $(a) \subsetneq (b)$ então $b \not\in (a)$ mas (a) é primo então deve ser $c \in (a)$ assim $c = d \cdot a$. Então $a = b \cdot c = b \cdot d \cdot a$. Isto implica que

$$0 = b \cdot d \cdot a - a = (b \cdot d - 1) \cdot a,$$

como por hipótese $a \neq 0$ e o anel A é um domínio então deve ser $(b \cdot d - 1) = 0$, logo $b \cdot d = 1$ e por tanto (b) = A. Logo (a) é maximal.

Assim provamos a seguinte proposição:

Proposição 22. Seja A um DIP e $I \neq 0$ um ideal não nulo de A. Então I é primo se e somente se I é maximal.

Definição 23. Um elemento $a \in A$ é **nilpotente** se $a^n = 0$ para algum n > 0. O conjunto \mathfrak{N} de todos os elementos nilpotentes de um anel A é um ideal (**Exercício 8.** dica: use o Binômio de Newton) chamado de **nilradical** de A.

Seja \overline{a} um elemento nilpotente do anel quociente A/\mathfrak{N} , então existe n>0 tal que $0=\overline{a}^n=\overline{a^n}$ ou seja $a^n\in\mathfrak{N}$. Logo existe k>0 tal que $(a^n)^k=0$, i.e., $a^{nk}=0$ e portanto $a\in\mathfrak{N}$ ou seja $\overline{a}=0$. Assim provamos que o anel quociente A/\mathfrak{N} não tem elementos nilpotentes não nulos.

A seguinte proposição da uma definição alternativa de nilradical:

Proposição 24. O nilradical de A é a interseção de todos os ideais primos de A.

Demonstração. Denotemos por \mathfrak{N}' à interseção de todos os ideais primos de A. Seja $a \in \mathfrak{N}$ e \mathfrak{p} qualquer ideal primo de A. Então existe n > 0 tal que $a^n = 0$, mas como $0 \in \mathfrak{p}$ temos que $a^n \in \mathfrak{p}$, segue do fato de \mathfrak{p} ser primo que ou $a \in \mathfrak{p}$ ou $a^{n-1} \in \mathfrak{p}$ (se continuarmos com o mesmo raciocínio neste último caso chegaremos a que $a^2 \in \mathfrak{p}$) e logo $a \in \mathfrak{p}$ para todo \mathfrak{p} ideal primo de A, o que implica que $a \in \mathfrak{N}'$. Provamos $\mathfrak{N} \subseteq \mathfrak{N}'$.

Por outro lado, suponha que $a \notin \mathfrak{N}$ (ou seja para todo n>0, $a^n \neq 0$). Seja Ω o conjunto dos ideais I com a seguinte propriedade "Se n>0 então $a^n \notin I$ ". Observe que $\Omega \neq \emptyset$ pois $(0) \in \Omega$. Queremos aplicar o Lema de Zorn ao conjunto não vazio Ω parcialmente ordenado por inclusão, seguindo o raciocínio da prova do Teorema 14. Então seja $S=(I_\alpha)$ uma cadeia de ideais em Ω e denotemos por $I=\bigcup_\alpha I_\alpha$. Como provamos anteriormente I é um ideal³ de A e como para cada n>0, $a^n \notin I_\alpha$ para todo α então $a^n \notin I$ e logo $I\in \Omega$ e claramente é uma cota superior da cadeia S. O Lema de Zorn nos garante que Ω tem um elemento maximal \mathfrak{p} . Queremos provar que \mathfrak{p} é um ideal primo. Sejam $x,y\notin \mathfrak{p}$, então \mathfrak{p} está estritamente contido nos ideais $\mathfrak{p}+(x)$ e $\mathfrak{p}+(y)$, logo ambos ideais não pertencem a Ω (pois isto seria uma contradição ao fato de \mathfrak{p} ser um elemento maximal de Ω), isto significa que existem m,n>0 tal que $a^m\in \mathfrak{p}+(x)$ e $a^n\in \mathfrak{p}+(y)$, ou seja

³ Observe que em geral união de ideais não é ideal mas aqui os ideais pertencem a uma *cadeia* e é este fato que faz a união ser um ideal.

podemos escrever $a^m = p' + x'$ e $a^n = p'' + y'$, onde p', $p'' \in \mathfrak{p}$, $x' \in (x)$ e $y' \in (y)$. Assim

$$a^{m} \cdot a^{n} = p' \cdot p'' + p' \cdot y' + x' \cdot p'' + x' \cdot y' = p''' + x' \cdot y',$$

segue que $a^{m+n} \in \mathfrak{p} + (x \cdot y)$ o que implica que o ideal $\mathfrak{p} + (x \cdot y)$ não pertence a Ω , logo $x \cdot y \notin \mathfrak{p}$ (caso contrário, se $x \cdot y \in \mathfrak{p}$ então $(x \cdot y) \subseteq \mathfrak{p}$, logo $\mathfrak{p} + (x \cdot y) = \mathfrak{p} \in \Omega$) e \mathfrak{p} é primo. Portanto, existe um ideal primo \mathfrak{p} tal que $a \notin \mathfrak{p}$ logo $a \notin \mathfrak{N}'$. Com isto provamos que $\mathfrak{N}' \subseteq \mathfrak{N}$.

Definição 25. O **radical de Jacobson** \Re de A é definido como sendo a interseção de todos os ideais maximais de A.

A seguinte proposição caracteriza o radical de Jacobson.

Proposição 26. $a \in \Re$ se e somente se $1 - a \cdot b$ é uma unidade de A para todo $b \in A$.

Demonstração. (⇒) Suponha que $1 - a \cdot b$ não é uma unidade. Então do Corolário 16 temos que $1 - a \cdot b$ pertence a algum ideal maximal \mathfrak{m} ; mas $a \in \mathfrak{R} \subseteq \mathfrak{m}$, logo $a \cdot b \in \mathfrak{m}$ e portanto $1 \in \mathfrak{m}$ o que é uma contradição ao fato de \mathfrak{m} ser maximal e logo próprio.

(⇐) Suponha que $a \notin \mathfrak{R}$ ou seja existe \mathfrak{m} um ideal maximal de A tal que $a \notin \mathfrak{m}$. Logo $\mathfrak{m} \subsetneq \langle \mathfrak{m}, a \rangle \subseteq A$ o que implica que $\langle \mathfrak{m}, a \rangle = A$, então existem $m \in \mathfrak{m}$ e $b \in A$ tal que $1 = m + a \cdot b$. Logo $1 - a \cdot b \in \mathfrak{m}$ e portanto não é uma unidade (se for, \mathfrak{m} não seria próprio).

AULA 3

AULA 3: 22/08/2014

Lembrando a última aula. O conjunto \mathfrak{N} de todos os elementos nilpotentes de um anel A é chamado de **nilradical** de A.

Proposição. O nilradical de A é a interseção de todos os ideais primos de A.

Definição 27. Definimos o **radical** do ideal I de A como sendo $\sqrt{I} = \{a \in A \mid a^n \in I \text{ para algum } n > 0\}.$

Se $\pi:A\to A/I$ é o homomorfismo projeção, então $\sqrt{I}=\pi^{-1}(\mathfrak{N}_{A/I})$ (provar **Exercício 9.**) e logo \sqrt{I} é um ideal (pelo Exercício 2: pré-imagem de ideal é ideal).

Proposição 28. O radical de um ideal I é a interseção de todos os ideais primos de A que contêm I.

Demonstração. Aplicando a Proposição 24 a A/I temos

$$\mathfrak{N}_{A/I} = \bigcap_{\overline{\mathfrak{p}} \text{ ideal primo de } A/I} \overline{\mathfrak{p}},$$

logo

$$\sqrt{I} = \pi^{-1}(\mathfrak{N}_{A/I})$$

$$= \bigcap_{\overline{\mathfrak{p}} \text{ ideal primo de } A/I} \pi^{-1}(\overline{\mathfrak{p}})$$

$$= \bigcap_{\mathfrak{p} \text{ ideal primo de } A \text{ que contém } I} \mathfrak{p},$$

onde na última igualdade aplicamos o TCI e a Proposição 11 (pré-imagem de ideal primo é ideal primo). \Box

Proposição 29.

- a. Sejam $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$ ideais primos e seja I um ideal contido em $\bigcup_{i=1}^n \mathfrak{p}_i$. Então $I \subseteq \mathfrak{p}_i$ para algum i.
- b. Sejam I_1, \ldots, I_n ideais e seja \mathfrak{p} um ideal primo contendo $\bigcap_{i=1}^n I_i$. Então $\mathfrak{p} \supseteq I_i$ para algum i. Se $\mathfrak{p} = \bigcap_{i=1}^n I_i$ então $\mathfrak{p} = I_i$ para algum i.

Demonstração. O primeiro item é provado por contra-positiva e indução em *n*, i.e. provaremos que

$$I \nsubseteq \mathfrak{p}_i \ (1 \le i \le n) \Rightarrow I \nsubseteq \bigcup_{i=1}^n \mathfrak{p}_i.$$

Claramente é verdadeiro para n=1. Se n>1 e o resultado verdadeiro para n-1 (ou seja é verdadeiro se considerarmos quaisquer n-1 \mathfrak{p}_i 's), então para cada i existe $a_i \in I$ tal que $a_i \notin \mathfrak{p}_j$ sempre que $j \neq i$. Agora temos duas possibilidades, se para algum i temos $a_i \notin \mathfrak{p}_i$ então acabou. Mas se $a_i \in \mathfrak{p}_i$ para todo i, então considere o elemento $b=\sum_{i=1}^n a_1 \cdot a_2 \cdots \widehat{a_i} \cdots a_n \in I$ e suponha que existe i_0 tal que $b \in \mathfrak{p}_{i_0}$. Então

$$a_1a_2\cdots \widehat{a_{i_0}}\cdots a_n=b-\sum_{\substack{i=1\\i\neq i_0}}^n a_1\cdot a_2\cdots a_{i_0}\cdots \widehat{a_i}\cdots a_n\in \mathfrak{p}_{i_0},$$

como \mathfrak{p}_{i_0} é primo então pelo menos um dos a_i com $i \neq i_0$ deve pertencer a \mathfrak{p}_{i_0} o que é uma contradição. Logo $b \notin \mathfrak{p}_i$ para todo $1 \leq i \leq n$, portanto $I \nsubseteq \bigcup_{i=1}^n \mathfrak{p}_i$.

Para provar o segundo item suponha que $\mathfrak{p} \not\supseteq I_i$ para todo i. Então para cada i existe $a_i \in I_i$ tal que $a_i \not\in \mathfrak{p}$, mas \mathfrak{p} é primo logo $a_1 a_2 \dots a_n \not\in \mathfrak{p}$. Por outro lado $a_1 \cdot a_2 \cdots a_n \in \prod_{i=1}^n I_i \subseteq \bigcap_{i=1}^n I_i \subseteq \mathfrak{p}$ o que é uma contradição.

Por último se $\mathfrak{p} = \bigcap_{i=1}^n I_i$ então $\mathfrak{p} \subseteq I_i$ para todo i. Se supomos que essa inclusão é estrita para todo i, seguindo o raciocínio do caso anterior chegaremos a uma contradição, logo $\mathfrak{p} = I_i$ para algum i.

Definição 30. Definimos o **ideal quociente** dos ideais I e J de A, como sendo o ideal $(I:J) = \{a \in A \mid a \cdot J \subseteq I\}$.

Em particular (0: J) é chamado de aniquilador de J e é frequentemente denotado por Ann(J), consiste dos elementos $a \in A$ tais que $a \cdot J = 0$. Se J é um ideal principal (a) escreveremos (I:a) ao invés de (I:(a)).

1.1 TEOREMA CHINÊS DOS RESTOS

Definimos o **produto direto** dos anéis A_1, \ldots, A_n

$$A = \prod_{i=1}^{n} A_i$$

como sendo o conjunto de todas as sequências $a=(a_1,\ldots,a_n)$ com $a_i\in A_i$ $(1\leq i\leq n)$ e adição e multiplicação componente a componente. Com essas operações A é um anel comutativo com elemento identidade $(1,1,\ldots,1)$. As projeções $p_i:A\to A_i$ definidas por $p_i(a)=a_i$ são homomorfismos de anéis sobrejetores.

O seguinte teorema é uma generalização do *Teorema Chinês dos Restos* da teoria dos números, o qual na sua versão original afirma que, dados inteiros m_1, m_2, \ldots, m_r dois a dois coprimos (i.e., $mdc(m_i, m_j) = 1$ se $i \neq j$) então o sistema de congruências

$$x \equiv a_1 \pmod{m_1}$$

$$x \equiv a_2 \pmod{m_2}$$

$$\vdots$$

$$x \equiv a_r \pmod{m_r}$$

admite solução em x que é única módulo $m_1 \cdot m_2 \dots m_r$. Na linguagem da álgebra comutativa isto se traduz como: *existe um isomorfismo de anéis*

$$\frac{\mathbb{Z}}{(m_1)} \times \frac{\mathbb{Z}}{(m_2)} \times \cdots \times \frac{\mathbb{Z}}{(m_r)} \xrightarrow{\cong} \frac{\mathbb{Z}}{(m_1 \cdot m_2 \dots m_r)}$$

$$(x \mod m_1, x \mod m_2, \dots, x \mod m_r) \longmapsto x \mod(m_1 \cdot m_2 \dots m_r).$$

O isomorfismo ainda existe quando consideramos um anel qualquer e ideais coprimos.

Teorema 31. (**Teorema Chinês dos Restos**) Seja A um anel e sejam $I_1, ..., I_n$ ideais dois a dois coprimos (i.e., $I_i + I_j = A$ para $i \neq j$). Então:

a.
$$I_1 \cap \cdots \cap I_n = I_1 \dots I_n$$

b.
$$\frac{A}{I_1 \cdot I_2 \cdot \ldots \cdot I_n} \simeq \frac{A}{I_1} \times \frac{A}{I_2} \times \cdots \times \frac{A}{I_n}$$

Demonstração.

a. Claramente para quaisquer ideais I_i , sempre temos $I_1 \dots I_n \subseteq I_1 \cap \dots \cap I_n$. Para mostrar a inclusão oposta, procedemos por indução em n sendo o caso n=1 trivial. Para n=2, como I_1 e I_2 são coprimos existem $a_i \in I_i$ tais que $1=a_1+a_2$. Assim, seja $c \in I_1 \cap I_2$ então $c=c \cdot a_1+c \cdot a_2 \in I_1 \cdot I_2$ como desejado. Vamos supor que é verdade para n-1, queremos provar que vale para n. Para isso basta mostrar que os ideais $I_1 \dots I_{n-1}$ e I_n são coprimos pois com isso e a hipótese de indução teremos

$$(I_1 \cap \cdots \cap I_{n-1}) \cap I_n \stackrel{HI}{=} (I_1 \dots I_{n-1}) \cap I_n \stackrel{n=2}{=} (I_1 \dots I_{n-1}) \cdot I_n.$$

Como I_i e I_n são coprimos para i < n, existem $a_i \in I_i$ e $b_i \in I_n$ tais que $a_i + b_i = 1$ para i = 1, ..., n - 1. Assim,

$$1 = (a_1 + b_1) \dots (a_{n-1} + b_{n-1})$$

= $a_1 \cdot a_2 \dots a_{n-1} + \sum b_j(\sharp) \in I_1 \dots I_{n-1} + I_n$

o que mostra que $I_1 \dots I_{n-1} + I_n = A$ e logo $I_1 \dots I_{n-1}$ e I_n são coprimos.

b. Para mostrar (b.) observaremos primeiramente que todo homomorfismo de anéis $f:A\to B$ induz um isomorfismo de anéis $\overline{f}:A/\operatorname{Ker}(f)\to\operatorname{Im}(f)$ dado por $\overline{f}(\overline{a})=f(a)$. (Exercício 10.)

Seja $\varphi:A\to \frac{A}{I_1}\times \frac{A}{I_2}\times\cdots\times \frac{A}{I_n}$ definida por $a\mapsto (a+I_1,a+I_2,\ldots,a+I_n)$. Logo $a\in\operatorname{Ker}(\varphi)\Leftrightarrow \varphi(a)=0\Leftrightarrow a\in I_i$ para todo $i=1,\ldots,n\Leftrightarrow a\in I_1\cap\cdots\cap I_n\stackrel{(a.)}{=}I_1\ldots I_n$. Logo $\operatorname{Ker}(\varphi)=I_1\ldots I_n$. Mostraremos a seguir que φ é sobrejetor. Para isso observamos que pelo item anterior os ideais I_i e $I_1\cap I_2\cap\cdots\cap \widehat{I_i}\cap\cdots\cap I_n$ são coprimos, logo para cada $i=1,\ldots,n$ existem $e_i\in I_1\cap I_2\cap\cdots\cap \widehat{I_i}\cap\cdots\cap I_n$ (i.e., $e_i\in I_j$ para todo $1\leq j\leq n$ com $j\neq i$) e $c_i\in I_i$ tal que $1=e_i+c_i$, assim $\overline{e_i}=0+I_j$ para todo $1\leq j\leq n$ com $1\leq i$ 0 e por outro lado $1\leq i\leq n$ 1. Dito

isto, seja $(\overline{b_1},\ldots,\overline{b_n})\in \frac{A}{I_1}\times \frac{A}{I_2}\times\cdots\times \frac{A}{I_n}$ onde $\overline{b_i}=b_i+I_i$ com $b_i\in A$ para todo i. Então existe $a\in A$ dado por $a=b_1e_1+\cdots+b_ne_n$ tal que

$$\varphi(a) = (a + I_1, a + I_2, \dots, a + I_n)
= ((b_1e_1 + \dots + b_ne_n) + I_1, \dots, (b_1e_1 + \dots + b_ne_n) + I_n)
= (b_1e_1 + I_1, \dots, b_ie_i + I_i, \dots, b_ne_n + I_n)
= (\overline{b_1}, \dots, \overline{b_n})$$

Logo φ é sobre. Segue da observação que o homomorfismo induzido $\overline{\varphi}: A/\operatorname{Ker}(\varphi) \to \operatorname{Im}(\varphi)$ é um isomorfismo, logo

$$A/\operatorname{Ker}(\varphi) \simeq \operatorname{Im}(\varphi)$$
,

ou seja

$$\frac{A}{I_1 \dots I_n} \simeq \frac{A}{I_1} \times \frac{A}{I_2} \times \dots \times \frac{A}{I_n}$$

Exemplo 32. Considere o anel dos polinômios com coeficientes no corpo dos números complexos $\mathbb{C}[x]$ e mostre que $\frac{\mathbb{C}[x]}{\langle x^2-3\rangle}\simeq \frac{\mathbb{C}[x]}{\langle x+\sqrt{3}\rangle}\times \frac{\mathbb{C}[x]}{\langle x-\sqrt{3}\rangle}$. Observe que se $a,b\in A$ então $\langle a\cdot b\rangle=\langle a\rangle\cdot\langle b\rangle$ (**Exercício 11.**). Como $x^2-3=(x+\sqrt{3})(x-\sqrt{3})\in\mathbb{C}[x]$ logo temos $\langle x^2-3\rangle=\langle x+\sqrt{3}\rangle\cdot\langle x-\sqrt{3}\rangle$. Agora observe que

$$1 = \frac{(x+\sqrt{3}) - (x-\sqrt{3})}{2\sqrt{3}} \in \left\langle x + \sqrt{3} \right\rangle + \left\langle x - \sqrt{3} \right\rangle$$

o que implica que os ideais $\left\langle x+\sqrt{3}\right\rangle$ e $\left\langle x-\sqrt{3}\right\rangle$ são coprimos. Logo pelo TCR

$$\frac{\mathbb{C}[x]}{\langle x^2 - 3 \rangle} = \frac{\mathbb{C}[x]}{\langle x + \sqrt{3} \rangle \cdot \langle x - \sqrt{3} \rangle} \simeq \frac{\mathbb{C}[x]}{\langle x + \sqrt{3} \rangle} \times \frac{\mathbb{C}[x]}{\langle x - \sqrt{3} \rangle}.$$

1.2 EXERCÍCIOS

Ex. 1 — Seja $S \subseteq A$ um subconjunto de um anel A. Mostre que:

- 1. $\langle S \rangle$ é um ideal de A .
- 2. $\langle S \rangle$ é o menor ideal de A que contém o subconjunto S.
- 3. Se $a, b \in A$ então $\langle a \cdot b \rangle = \langle a \rangle \cdot \langle b \rangle$.

Ex. 2 — Se $f: A \to B$ é um homomorfismo de anéis e J um ideal de B, então a pré-imagem $f^{-1}(J)$ é um ideal de A.

Ex. 3 — O elemento $a \in A$ é uma unidade se e somente se $\langle a \rangle = A = \langle 1 \rangle$.

Ex. 4 — Prove o *Teorema da Correspondência de Ideais*: os ideais de A/I estão em bijeção com os ideais de A que contém I. Mostre que esta bijeção preserva ideais primos e maximais.

Ex. 5 — Prove que todo ideal próprio *I* de *A* está contido num ideal maximal.

Ex. 6 — Seja *A* um anel não nulo. Mostre que as seguintes afirmações são equivalentes:

- a. A é um corpo;
- b. os únicos ideais de A são 0 e A;
- c. todo homomorfismo de A num anel não nulo B é injetivo.

Ex. 7 — Mostre que \mathfrak{p} é um ideal primo se e somente se A/\mathfrak{p} é um domínio de integridade.

Ex. 8 — Demonstre que todo homomorfismo de anéis $f: A \to B$ induz um isomorfismo de anéis $\overline{f}: A / \operatorname{Ker}(f) \to \operatorname{Im}(f)$ dado por $\overline{f}(\overline{a}) = f(a)$.

Ex. 9 — Seja A um anel, mostre que $\frac{A[x_1,...,x_n]}{\langle x_1-a_1,...,x_n-a_n\rangle} \simeq A$.

Ex. 10 — Seja ${\bf k}$ um corpo e seja $f(x) \in {\bf k}[x]$ um polinômio não nulo com fatoração

$$f(x) = a \cdot p_1(x)^{e_1} \cdots p_r(x)^{e_r},$$

em potências de polinômios mônicos irredutíveis distintos $p_i(x)$.

1. Mostre que:

$$\frac{\mathbf{k}[x]}{\langle f(x)\rangle} \simeq \frac{\mathbf{k}[x]}{\langle p_1(x)^{e_1}\rangle} \times \cdots \times \frac{\mathbf{k}[x]}{\langle p_r(x)^{e_r}\rangle}.$$

2. Conclua que $\frac{\mathbb{F}_q[x]}{\langle x^q - x \rangle} \simeq \underbrace{\mathbb{F}_q \times \cdots \times \mathbb{F}_q}_{q \text{ vezes}}$

Ex. 11 — Sejam I, J e K ideais de A. Mostre que:

- 1. I + J é o menor ideal de A contendo I e J.
- 2. $I \cap J$ é ideal de A
- 3. $I \cdot J \subseteq I \cap J$
- 4. Se I + J = A, então $I \cdot J = I \cap J$
- 5. $I \cdot (J + K) = I \cdot J + I \cdot K$
- 6. Se $J \subseteq I$ ou $K \subseteq I$ então $I \cap (J + K) = I \cap J + I \cap K$ (Lei Modular).

Ex. 12 — Seja A um anel e $f = a_0 + a_1 x + \dots + a_n x^n \in A[x]$, mostre que:

- 1. f é unidade em A[x] se e somente se a_0 é unidade em A e a_1, \ldots, a_n forem nilpotentes.
- 2. f é nilpotente em A[x] se e somente se a_0, a_1, \ldots, a_n forem nilpotentes.
- 3. f é um divisor de zero em A[x] se e somente se existe $a \neq 0$ em A tal que af = 0.

Ex. 13 — Seja $\mathfrak p$ um ideal primo e sejam I_i ideais quaisquer do anel A. Mostre que $\mathfrak p \supseteq I_1I_2\cdots I_n \Longleftrightarrow \mathfrak p \supseteq I_i$ para algum i.

Ex. 14 — Seja A o anel das funções reais contínuas em [0,1], i.e,

$$A = \{f : [0,1] \to \mathbb{R} | f \text{ \'e contínua}\}.$$

Mostre que qualquer ideal maximal de A é da forma

$$I_x = \{ f \in A | f(x) = 0 \}$$

para algum $x \in [0,1]$. Conclua que existe uma bijeção entre pontos $x \in [0,1]$ e ideais maximais de A.

Ex. 15 — Mostre que o nilradical

$$\mathfrak{N}(A) := \{ a \in A, \exists n \in \mathbb{N} > 0 : a^n = 0 \}$$

é um ideal de A.

Ex. 16 — Se I é ideal de um anel A, definimos o radical de I por

$$\sqrt{I} = \{a \in A | a^n \in I, \text{ para algum } n > 0\}$$

- 1. Mostre que \sqrt{I} é um ideal de A contendo I.
- 2. Dado $\pi:A\to A/I$ a projeção canônica. Mostre que $\sqrt{I}=\pi^{-1}\left(\mathfrak{N}(A/I)\right)$
- 3. Mostre que $\sqrt{\sqrt{I}} = \sqrt{I}$

- 4. Mostre que $\sqrt{I \cdot J} = \sqrt{I \cap J} = \sqrt{I} \cap \sqrt{J}$.
- 5. Mostre que se I é primo então $\sqrt{I^n} = I$ para todo $n \in \mathbb{N}$.

Ex. 17 — Um ideal I de um anel A é dito radical se $\sqrt{I} = I$. Mostre que

- 1. Todo ideal primo é radical.
- 2. (0) é ideal radical de $\mathbb{Z}/n\mathbb{Z}$ se, e somente se, n é livre de quadrados.⁴ Deduza que $\langle n \rangle$ é ideal radical de \mathbb{Z} se, e somente se, n é livre de quadrados.

Ex. 18 — Dado A um anel e $\mathfrak N$ o seu nilradical. Mostre que são equivalentes:

- a. A possui apenas um ideal primo;
- b. Todo elemento de A ou é uma unidade ou nilpotente;
- c. A/\mathfrak{N} é um corpo.

Ex. 19 — Sejam *I*, *J* e *K* ideais de *A*. Mostre que:

$$\sqrt{I+J\cdot K} = \sqrt{I+J\cap K} = \sqrt{I+J} \cap \sqrt{I+K}$$

Ex. 20 — Sejam I, I_i , J, J_i e K ideais de A. Definimos o **ideal quociente** de I por J como sendo $(I:J)=\{a\in A\mid a\cdot J\subseteq I\}$. Mostre que:

- 1. (I:J) é um ideal de A que contém I.
- 2. $((I:J):K) = (I:J\cdot K) = ((I:K):J)$
- 3. $(\bigcap_i I_i : J) = \bigcap_i (I_i : J)$
- 4. $(I: \sum_i J_i) = \bigcap_i (I:J_i)$

⁴ Um número natural é dito **livre de quadrados** se não for divisível pelo quadrado de nenhum número inteiro diferente de 1.

2

2.1 ESPECTRO

Definição 33. Definimos o **espectro** de um anel A, Spec(A), como sendo o conjunto de todos os ideais primos de A.

Se $\phi: A \to B$ é um homomorfismo de anéis, denotamos por

$$\operatorname{Spec}(\phi) : \operatorname{Spec}(B) \to \operatorname{Spec}(A)$$

$$\mathfrak{q} \mapsto \phi^{-1}(\mathfrak{q})$$

o morfismo entre espectros induzido por ϕ . Note que $\operatorname{Spec}(\phi)$ está bem definido pois da Proposição 11, $\phi^{-1}(\mathfrak{q})$ é um ideal primo de A.

Lema 34. Seja A um anel.

- a. Spec(A) = \emptyset se e somente se A = 0.
- b. Seja I um ideal qualquer do anel $A \in \pi : A \to A/I$ o homomorfismo projeção. Então $\operatorname{Spec}(\pi) : \operatorname{Spec}(A/I) \to \operatorname{Spec}(A)$ é injetor e sua imagem é dada por

$$V(I):=\{\mathfrak{p}\in\operatorname{Spec}(A)\mid \mathfrak{p}\supseteq I\}$$

de modo que temos uma identificação natural $\operatorname{Spec}(A/I) = V(I)$.

Demonstração. A primeira afirmação é consequência do Teorema 14 (Todo anel não nulo possui pelo menos um ideal maximal e portanto primo) e o segundo é consequência do TCI e do fato dessa "correspondência" preservar ideais primos.

Mostraremos a seguir que os conjuntos da forma V(I), para I um ideal qualquer de A, são os fechados de uma topologia em $\operatorname{Spec}(A)$, chamada **Topologia de Zariski**.

Lema 35. Seja A um anel, I, J e I_i ideais de A. Então:

a.
$$V((0)) = \operatorname{Spec}(A) e V(A) = \emptyset;$$

b.
$$V(I) \cup V(J) = V(I \cdot J);$$

c.
$$\bigcap_{i\in\Lambda}V(I_i)=V(\sum_{i\in\Lambda}I_i)$$
.

Demonstração. O primeiro item é trivial. Para ver (b.) Seja $\mathfrak{p} \in V(I) \cup V(J)$ logo ou $\mathfrak{p} \in V(I)$ ou $\mathfrak{p} \in V(J)$, ou seja, ou $I \subseteq \mathfrak{p}$ ou $J \subseteq \mathfrak{p}$. Logo $I \cdot J \subseteq \mathfrak{p}$ o que implica $\mathfrak{p} \in V(I \cdot J)$. Reciprocamente, seja $\mathfrak{p} \in V(I \cdot J)$ isto significa que $I \cdot J \subseteq \mathfrak{p}$. Suponha que $I \nsubseteq \mathfrak{p}$ logo existe $a \in I$ tal que $a \notin \mathfrak{p}$. Seja $b \in J$ um elemento qualquer então $a \cdot b \in I \cdot J \subseteq \mathfrak{p}$, como \mathfrak{p} é primo e $a \notin \mathfrak{p}$ então necessariamente $b \in \mathfrak{p}$ e logo $J \subseteq \mathfrak{p}$, logo $\mathfrak{p} \in V(J)$ e portanto $\mathfrak{p} \in V(I) \cup V(J)$. Para ver (c.) lembre que, por definição, $\sum_{i \in \Lambda} I_i$ é o menor ideal que contém todos os I_i , logo

$$\mathfrak{p} \in V(\sum_{i \in \Lambda} I_i) \Leftrightarrow \sum_{i \in \Lambda} I_i \subseteq \mathfrak{p} \Leftrightarrow I_i \subseteq \mathfrak{p} \text{ para todo } i \in \Lambda$$

 $\Leftrightarrow \mathfrak{p} \in V(I_i) \text{ para todo } i \in \Lambda \Leftrightarrow \mathfrak{p} \in \bigcap_{i \in \Lambda} V(I_i).$

AULA 4

AULA 4: 27/08/2014

Lembrando a última aula. Definimos o **espectro** de um anel A, Spec(A), como sendo o conjunto de todos os ideais primos de A.

Se $\phi: A \to B$ é um homomorfismo de anéis, denotamos por

$$\operatorname{Spec}(\phi) : \operatorname{Spec}(B) \to \operatorname{Spec}(A)$$

$$\mathfrak{q} \mapsto \phi^{-1}(\mathfrak{q})$$

o mapa entre espectros induzido por ϕ .

Seja I um ideal qualquer do anel A definimos $V(I) := \{ \mathfrak{p} \in \operatorname{Spec}(A) \mid \mathfrak{p} \supseteq I \}$, provamos que os conjuntos das forma V(I) são os fechados de uma topologia em $\operatorname{Spec}(A)$, chamada **Topologia de Zariski**.

Lema. Seja A um anel, I, J e I_i ideais de A. Então:

a.
$$V((0)) = \operatorname{Spec}(A) e V(A) = \emptyset;$$

b.
$$V(I) \cup V(J) = V(I \cdot J);$$

c.
$$\bigcap_{i \in \Lambda} V(I_i) = V(\sum_{i \in \Lambda} I_i)$$
.

Demonstração. Restava provar (c.). Lembre que, por definição, $\sum_{i \in \Lambda} I_i$ é o menor ideal que contém todos os I_i , logo

$$\mathfrak{p} \in V(\sum_{i \in \Lambda} I_i) \Leftrightarrow \sum_{i \in \Lambda} I_i \subseteq \mathfrak{p} \Leftrightarrow I_i \subseteq \mathfrak{p} \text{ para todo } i \in \Lambda$$

$$\Leftrightarrow \mathfrak{p} \in V(I_i) \text{ para todo } i \in \Lambda \Leftrightarrow \mathfrak{p} \in \bigcap_{i \in \Lambda} V(I_i).$$

Queremos ver agora algumas propriedades da Topologia de Zariski, para isso dado um elemento $a \in A$ definimos o conjunto

$$D(a) := \{ \mathfrak{p} \in \operatorname{Spec}(A) \mid a \notin \mathfrak{p} \}.$$

Teorema 36. (Topologia de Zariski) Seja A um anel. Temos:

- a. A família de subconjuntos $\{D(a)\}_{a\in A}$ de $\operatorname{Spec}(A)$ é uma base de abertos da topologia de Zariski.
- b. $D(a \cdot b) = D(a) \cap D(b)$.
- c. Se $f: A \to B$ é um homomorfismo de anéis, então $\operatorname{Spec}(f): \operatorname{Spec}(B) \to \operatorname{Spec}(A)$ é contínuo.
- d. Se $\mathfrak{p} \in \operatorname{Spec}(A)$ temos $\overline{\{\mathfrak{p}\}} = V(\mathfrak{p})$ (fecho topológico). Em particular,
 - a) $\mathfrak{m} \in \operatorname{Spec}(A)$ é um ponto fechado se, e somente se, \mathfrak{m} é um ideal maximal;
 - b) se A é um domínio de integridade, (0) é um ponto denso.
- e. Spec(A) \acute{e} compacto.

Demonstração.

a. Veja que os conjuntos D(a) são abertos (**Exercício 1.**). Uma família de subconjuntos é uma base de abertos para uma topologia se todo aberto pode ser escrito como união de alguns subconjuntos da família. Todo aberto da topologia de Zariski de $\operatorname{Spec}(A)$ é da forma $\operatorname{Spec}(A) \setminus V(I)$ para algum ideal I de A, ou seja é o conjunto dos ideais primos de A que não contem I. Seja $\mathfrak{p} \in \operatorname{Spec}(A) \setminus V(I)$, então existe $a \in I$ tal que $a \notin \mathfrak{p}$ logo $\mathfrak{p} \in D(a)$ o que implica que $\mathfrak{p} \in \bigcup_{a \in I} D(a)$. Reciprocamente, seja $\mathfrak{p} \in \bigcup_{a \in I} D(a)$ então existe $a \in I$ tal que $\mathfrak{p} \in D(a)$, logo $\mathfrak{p} \in \operatorname{Spec}(A) \setminus V(I)$. Logo todo aberto da topologia de Zariski de $\operatorname{Spec}(A)$ se escreve como uma união de alguns D(a).

b. Exercício 2.

c. Lembre que um aplicação é contínua se e somente se pré-imagem de aberto é aberto. Segue do item (a.) que $\{D(a)\}_{a\in A}$ é uma base de abertos da topologia de $\operatorname{Spec}(A)$, logo basta provar que $(\operatorname{Spec}(f))^{-1}(D(a))$ é aberto. Temos

$$\mathfrak{p} \in (\operatorname{Spec}(f))^{-1}(D(a)) \Leftrightarrow \operatorname{Spec}(f)(\mathfrak{p}) \in D(a)$$
$$\Leftrightarrow f^{-1}(\mathfrak{p}) \in D(a) \Leftrightarrow a \notin f^{-1}(\mathfrak{p}) \Leftrightarrow f(a) \notin \mathfrak{p} \Leftrightarrow \mathfrak{p} \in D(f(a))$$

Logo $(\operatorname{Spec}(f))^{-1}(D(a)) = D(f(a))$ é aberto e portanto $\operatorname{Spec}(f)$ é contínuo.

d. Lembramos também que o fecho topológico de um conjunto é a intersecção de todos os fechados que o contem, assim

$$\overline{\{\mathfrak{p}\}} = \bigcap_{\mathfrak{p} \in V(I)} V(I) = \bigcap_{I \subseteq \mathfrak{p}} V(I) \stackrel{\text{(c.)}}{=} V(\sum_{I \subseteq \mathfrak{p}} I),$$

agora veja que $\mathfrak{p} \subseteq \sum_{I \subseteq \mathfrak{p}} I$ e também \mathfrak{p} contém todos os I's, mas $\sum_{I \subseteq \mathfrak{p}} I$ é o menor ideal com essa propriedade, logo $\sum_{I \subseteq \mathfrak{p}} I \subseteq \mathfrak{p}$ o que implica $\mathfrak{p} = \sum_{I \subseteq \mathfrak{p}} I$ e portanto $\overline{\{\mathfrak{p}\}} = V(\mathfrak{p})$.

- a) Seja $\mathfrak{m} \in \operatorname{Spec}(A)$ um ideal maximal então $V(\mathfrak{m}) = \{\mathfrak{p} \in \operatorname{Spec}(A) \mid \mathfrak{p} \supseteq \mathfrak{m}\} = \{\mathfrak{m}\} = \{\mathfrak{m}\}$, logo \mathfrak{m} é um ponto fechado. Reciprocamente, se $\mathfrak{m} \in \operatorname{Spec}(A)$ é um ideal próprio, logo está contido em algum ideal maximal \mathfrak{m}' (Corolário 15 e Exercício 5 da Lista 1) logo $\mathfrak{m}' \in V(\mathfrak{m}) = \{\mathfrak{m}\} = \{\mathfrak{m}\}$, por tanto \mathfrak{m} é maximal.
- b) Se $A \notin \text{um}$ domínio de integridade então $(0) \notin \text{um}$ ideal primo, logo $\overline{\{(0)\}} = V((0)) = \operatorname{Spec}(A)$.
- e. Pelo item (a.), é suficiente provar que toda cobertura de $\operatorname{Spec}(A)$ por uma família de abertos básicos $\{D(a_{\alpha}), \alpha \in \Lambda\}$, admite subcobertura finita. Assim, se $\mathfrak{p} \in \operatorname{Spec}(A)$ então existe $\alpha \in \Lambda$ tal que $\mathfrak{p} \in D(a_{\alpha})$, ou seja $a_{\alpha} \notin \mathfrak{p}$. Considere então o ideal $I = \langle a_{\alpha}, \alpha \in \Lambda \rangle$, logo $I \nsubseteq \mathfrak{p}$ para todo $\mathfrak{p} \in \operatorname{Spec}(A)$. Em particular I não vai estar contido em nenhum ideal maximal, logo segue do Corolário 15 (Exercício 5 da Lista 1) que I não é próprio, assim $A = \langle a_{\alpha}, \alpha \in \Lambda \rangle$ e portanto podemos escrever $1 = \sum_{i=1}^n b_i \cdot a_{\alpha_i}$ como combinação A-linear finita de elementos a_{α_i} , o que implica que $A = \langle a_{\alpha_i}, 1 \leq i \leq n \rangle$. Mas então cada $a_{\alpha} = \sum_{i=1}^n c_i \cdot a_{\alpha_i}$, logo se $a_{\alpha} \notin \mathfrak{p}$ então existe $1 \leq i \leq n$ tal que $c_i \cdot a_{\alpha_i} \notin \mathfrak{p}$ o que implica que $\mathfrak{p} \in D(c_i \cdot a_{\alpha_i}) = D(c_i) \cap D(a_{\alpha_i})$. Em conclusão, para cada $\mathfrak{p} \in \operatorname{Spec}(A)$ existe $1 \leq i \leq n$ tal que $\mathfrak{p} \in D(a_{\alpha_i})$, logo $\operatorname{Spec}(A) = \bigcup_{i=1}^n D(a_{\alpha_i})$.

Vejamos alguns exemplos:

Exemplo 37.

a. $(0) \in \operatorname{Spec}(A)$ se, e somente se, A é um domínio.

b. Se $A = \mathbf{k}$ é um corpo, então é um domínio e os únicos ideais são (0) e \mathbf{k} , logo Spec $(\mathbf{k}) = \{(0)\}$.

- c. Seja A um DIP. Então um ideal (a) não nulo é primo se, e somente se, a é irredutível (**Exercício 3.**) (i.e., Se A for um domínio um elemento $a \neq 0$ e $a \notin A^{\times}$ é dito **irredutível** se sempre que $a = b \cdot c$ então $b \in A^{\times}$ ou $c \in A^{\times}$). Logo Spec $(A) = \{(0)\} \cup \{(a) \mid a \text{ é irredutível}\}$.
- d. Se A for um DFU, (Domínio de Fatoração Única, i.e., se todo elemento não nulo $a \in A$ pode ser escrito como produto $a = b_1b_2...b_m$ com b_i irredutíveis e se também $a = c_1c_2...c_n$ com c_i irredutíveis então m = n e existe uma permutação $\sigma: \{1,2,...,m\} \rightarrow \{1,2,...,m\}$ tal que $b_i = uc_{\sigma(i)}$ para algum $u \in A^\times$ para todo i = 1,2,...,m) então também todo ideal principal (a) não nulo é primo se, e somente se, a é irredutível. Entretanto um DFU em geral possui diversos ideais primos que não são principais: se $A = \mathbf{k}$ for um corpo, então $(x_1), (x_1, x_2), ..., (x_1, x_2, ..., x_n) \in \operatorname{Spec}(\mathbf{k}[x_1, ..., x_n])$ já que os anéis quociente $\frac{\mathbf{k}[x_1, x_2, ..., x_n]}{(x_1, ..., x_i)}$ são domínios, pois:

$$\frac{\mathbf{k}[x_1,x_2,\ldots,x_n]}{(x_1,\ldots,x_i)} \simeq \frac{\mathbf{k}[x_1,\ldots,x_i]}{(x_1,\ldots,x_i)}[x_{i+1},\ldots,x_n] \simeq \mathbf{k}[x_{i+1},\ldots,x_n].$$

e. Seja $A = \mathbf{k} \times \mathbf{k}$ então os ideais de a são: $(0) \times (0)$, $(0) \times \mathbf{k}$, $\mathbf{k} \times (0)$, $\mathbf{k} \times \mathbf{k}$. Observe que A não é um domínio pois $(0,0) = (1,0) \cdot (0,1) \log_0(0) \times (0) \notin \operatorname{Spec}(A)$, também $\mathbf{k} \times \mathbf{k} \notin \operatorname{Spec}(A)$ pois não é próprio. Vejamos que $(0) \times \mathbf{k}$ é primo, seja $a \cdot b \in (0) \times \mathbf{k}$ logo existe $a_1, a_2, b_1, b_2, c \in \mathbf{k}$ tal que $a \cdot b = (a_1, a_2) \cdot (b_1, b_2) = (0, c)$, logo $a_1 \cdot b_1 = 0$ e como \mathbf{k} é corpo então ou $a_1 = 0$ ou $b_1 = 0$ logo ou $a \in (0) \times \mathbf{k}$ ou $b \in (0) \times \mathbf{k}$. Analogamente vemos que $\mathbf{k} \times (0)$ é primo. Logo $\operatorname{Spec}(\mathbf{k} \times \mathbf{k}) = \{(0) \times \mathbf{k}, \mathbf{k} \times (0)\}$. Observe que ambos os ideais são maximais e portanto fechados e logo abertos.

Generalizando este caso temos o seguinte exemplo

- f. (**Exercício 4.**) Mostre que:
 - a) Os ideais de $A \times B$ são da forma $I \times J$ onde I é um ideal de A e J é um ideal de B.
 - b) Conclua que os ideais primos de $A \times B$ são da forma $\mathfrak{p} \times B$ e $A \times \mathfrak{q}$ com $\mathfrak{p} \in \operatorname{Spec}(A)$ e $\mathfrak{q} \in \operatorname{Spec}(B)$. Assim temos,

$$\operatorname{Spec}(A \times B) = \operatorname{Spec}(A) \bigsqcup \operatorname{Spec}(B)$$

em que identificamos $\mathfrak{p} \times B$ com \mathfrak{p} e $A \times \mathfrak{q}$ com \mathfrak{q} .

g. Como $\mathbf{k}[t]$ é um DIP, os conjuntos $V((f)) = \{(p) \mid p \text{ é um fator irredutível de } f\}$ para $f \in \mathbf{k}[t]$ não nulo. Logo os fechados em Spec $(\mathbf{k}[t])$ são \emptyset ,

 $\operatorname{Spec}(\mathbf{k}[t])$ e uniões de um número finito de pontos (pontos=ideais primos) .

h. Seja $A = \mathbf{k}[[t]]$ o anel das séries formais $f(t) = a_0 + a_1 t + \cdots + a_n t^n +$ \cdots . Então f é uma unidade se, e somente se, a_0 é uma unidade. Como $\mathbf{k}[[t]]$ é DIP, o ideal (0) é primo. Provaremos agora que (t) é maximal. Seja I um ideal qualquer e seja $h = c_0 + c_1 t + \cdots + c_n t^n + \cdots \in I$, então se $c_0 \neq 0$ (logo c_0 é uma unidade) h é uma unidade e $I = \mathbf{k}[[t]]$. Mas se $c_0 = 0$ então $h \in (t)$ logo $I \subseteq (t)$ o que implica que (t) é maximal e portanto primo. Seja agora I um outro ideal primo com $h \in I$ então $c_0 = 0$ pois I é próprio. Logo existe $r \geq 1$ tal que $h = t^r \cdot (b_r + b_{r+1}t + \cdots)$ com $b_r \neq 0$. Se $b_r + b_{r+1}t + \cdots \in I$ como esse elemento é uma unidade $I = \mathbf{k}[[t]]$ o que é uma contradição, logo como I é primo necessariamente $t^r \in I$ do que segue que $t \in I$ e portanto $(t) \subseteq I$, mas como (t) é maximal temos I = (t) e por tanto (t)é o único ideal primo. Assim $\operatorname{Spec}(\mathbf{k}[[t]]) = \{(0)\} \cup \{(t)\}$. Por outro lado, temos que (t) é um ponto fechado (pois é maximal) enquanto que (0) é um ponto denso (pois $\mathbf{k}[[t]]$ é um domínio). Assim os fechados de Spec($\mathbf{k}[[t]]$) são: \emptyset , Spec($\mathbf{k}[[t]]$) e $\{(t)\}$

AULA 5

AULA 5: 29/08/2014

No Exemplo 5 da aula passada, (Exercício 4.) Mostre que:

- a. Os ideais de $A \times B$ são da forma $I \times J$ onde I é um ideal de A e J é um ideal de B.
- b. Conclua que os ideais primos de $A \times B$ "são da forma $\mathfrak{p} \times (0)$ e $(0) \times \mathfrak{q}$ $com \ \mathfrak{p} \in \operatorname{Spec}(A)$ $e \ \mathfrak{q} \in \operatorname{Spec}(B)$ " deve-se trocar por "são da forma $\mathfrak{p} \times B$ e $A \times \mathfrak{q}$ com $\mathfrak{p} \in \operatorname{Spec}(A)$ e $\mathfrak{q} \in \operatorname{Spec}(B)$ ". Assim temos,

$$\operatorname{Spec}(A \times B) = \operatorname{Spec}(A) \bigsqcup \operatorname{Spec}(B)$$

"em que identificamos $\mathfrak{p} \times (0)$ com \mathfrak{p} e $(0) \times \mathfrak{q}$ com \mathfrak{q} " trocar por "em que identificamos $\mathfrak{p} \times B$ com \mathfrak{p} e $A \times \mathfrak{q}$ com \mathfrak{q} ".

A forma anterior não funciona pois temos o seguinte **contraexemplo:** Seja $A = \mathbf{k} \times \mathbf{k}$ então os ideais de a são: $(0) \times (0)$, $(0) \times \mathbf{k}$, $\mathbf{k} \times (0)$, $\mathbf{k} \times \mathbf{k}$. Dado que $\operatorname{Spec}(\mathbf{k}) = \{(0)\}$ então, de acordo à primeira identificação, teríamos que o único ideal primo de $\mathbf{k} \times \mathbf{k}$ seria $(0) \times (0)$. Mas $\mathbf{k} \times \mathbf{k}$ não é um domínio pois $(0,0) = (1,0) \cdot (0,1) \log_{0}(0) \times (0) \notin \operatorname{Spec}(\mathbf{k} \times \mathbf{k})$. Vejamos então que os ideais primos de $A \times B$ de fato são dessa forma.

Seja então $I \times J$ um ideal $A \times B$, então temos um isomorfismo $\frac{A \times B}{I \times J} \xrightarrow{\cong} \frac{A}{I} \times \frac{B}{I}$ dado por $(a,b) + (I \times J) \mapsto (a+I,b+J)$. Agora observe que $A \times B$

é um domínio se e somente se (A=0 e B é um domínio) ou (B=0 e A é um domínio). Assim $I\times J$ um ideal primo $A\times B\Leftrightarrow \frac{A\times B}{I\times J}$ é um domínio $\Leftrightarrow \frac{A}{I}\times \frac{B}{J}$ é um domínio $\Leftrightarrow (\frac{A}{I}=0$ e $\frac{B}{J}$ é um domínio) ou ($\frac{B}{J}=0$ e $\frac{A}{I}$ é um domínio) $\Leftrightarrow (A=I$ e J é primo) ou (B=J e I é primo).

Exemplo 38. (Exemplo 8) Seja $A = \mathbb{C}[x,y]/(y^2-x^3+x)$. Mostraremos que

$$\operatorname{Spec}(A) = \left\{ (\overline{0}) \right\} \cup \left\{ \langle \overline{x} - a, \overline{y} - b \rangle \mid b^2 = a^3 - a \right\}.$$

Para isso seja $B=\mathbb{C}[x]$, então existe um homomorfismo $\varphi:B\to A$, dado por $x\mapsto \overline{x}$. Note que φ é injetor pois nenhum polinômio na variável x pode ser múltiplo de y^2-x^3+x . Utilizando a relação $\overline{y}^2=\overline{x}^3-\overline{x}$, temos um conjunto de representantes de classe $\frac{\mathbb{C}[x,y]}{(y^2-x^3+x)}=\mathbb{C}[\overline{x}]+\mathbb{C}[\overline{x}]\cdot \overline{y}$ formado pelos polinômios $p(\overline{x})+q(\overline{x})\overline{y}$ de grau no máximo 1 em y. Observe que y^2-x^3+x é um polinômio irredutível no DFU $\mathbb{C}[x,y]$ e assim $(y^2-x^3+x)\subseteq \mathbb{C}[x,y]$ é um ideal primo e logo $A=\mathbb{C}[x,y]/(y^2-x^3+x)$ é um domínio. Por tanto $(\overline{0})\in \mathrm{Spec}(A)$.

Seja $\operatorname{Spec}(\varphi):\operatorname{Spec}(A)\to\operatorname{Spec}(B)$ o morfismo entre espectros induzido por φ e seja $\mathfrak{q}\in\operatorname{Spec}(A)$. Como B é um DIP, segue do Exemplo (c.) que $\operatorname{Spec}(B)=\{(0)\}\cup\{(x-a)\}$, já que os elementos irredutíveis de B são da forma x-a, para $a\in\mathbb{C}$. Logo temos dois casos a analisar:

a. Spec $(\varphi)(\overline{\mathfrak{q}})=(0)$, ou seja $\varphi^{-1}(\overline{\mathfrak{q}})=(0)$ o que implica que $\overline{\mathfrak{q}}\cap\mathbb{C}[\overline{x}]=(\overline{0})$. Vamos mostrar que $\overline{\mathfrak{q}}=(\overline{0})$. Seja $a(\overline{x})+b(\overline{x})\overline{y}\in\overline{\mathfrak{q}}$ multiplicando pelo seu "conjugado", obtemos

$$\overline{\mathfrak{q}} \ni (a(\overline{x}) + b(\overline{x})\overline{y}) \cdot (a(\overline{x}) - b(\overline{x})\overline{y}) = a(\overline{x})^2 - b(\overline{x})^2 \overline{y}^2$$

$$= a(\overline{x})^2 - b(\overline{x})^2 (\overline{x}^3 - \overline{x}) \in \mathbb{C}[\overline{x}],$$

como $\overline{\mathfrak{q}} \cap \mathbb{C}[\overline{x}] = (\overline{0})$ e A é um domínio então $a(\overline{x}) = \overline{0}$ e $b(\overline{x}) = \overline{0}$ logo $\overline{\mathfrak{q}} = (\overline{0})$.

b. $\operatorname{Spec}(\varphi)(\overline{\mathfrak{q}}) = (x-a)$ para algum $a \in \mathbb{C}$, ou seja $\varphi^{-1}(\overline{\mathfrak{q}}) = (x-a)$ o que implica que $\overline{\mathfrak{q}} \cap \mathbb{C}[\overline{x}] = (\overline{x}-a) \subseteq \overline{\mathfrak{q}}$. Vamos calcular o $\operatorname{Spec}(A/(\overline{x}-a))$, pois estamos interessados em ideais primos $\overline{\mathfrak{q}}$ de A que contém $(\overline{x}-a)$. Seja $b \in \mathbb{C}$ tal que $b^2=a^3-a$, de modo que temos um isomorfismo

$$\frac{A}{(\overline{x}-a)} \simeq \frac{\mathbb{C}[x,y]}{\langle y^2 - x^3 + x, x - a \rangle} \stackrel{\overline{x} \mapsto a}{\simeq} \frac{\mathbb{C}[y]}{(y^2 - a^3 + a)} = \frac{\mathbb{C}[y]}{(y^2 - b^2)}.$$

Temos alguns sub-casos de acordo com a fatoração de $y^2 - b^2$. Primeiro, se $b \neq 0$, pelo Teorema Chinês dos Restos (Teorema 31) temos

$$\frac{\mathbb{C}[y]}{(y^2 - b^2)} = \frac{\mathbb{C}[y]}{(y - b)} \times \frac{\mathbb{C}[y]}{(y + b)} \simeq \mathbb{C} \times \mathbb{C}$$

que possui somente dois ideais primos: $(0) \times \mathbb{C}$ e $\mathbb{C} \times (0)$ que identificamos (Exemplo f.) com os ideais primos $(\overline{0})$ de $\frac{\mathbb{C}[y]}{(y+b)}$ e $(\overline{0})$ de $\frac{\mathbb{C}[y]}{(y-b)}$. Mas esses ideais correspondem aos ideais primos $(\overline{y}+b)$ e $(\overline{y}-b)$ de $\frac{A}{(\overline{x}-a)}$ que a sua vez correspondem aos ideais primos $\langle \overline{y}-b, \overline{x}-a\rangle$ e $\langle \overline{y}+b, \overline{x}-a\rangle$ de A. Logo neste caso $\overline{\mathfrak{q}}$ é da forma $\langle \overline{y}-b, \overline{x}-a\rangle$ com $b^2=a^3-a\neq 0$.

Segundo se b=0 (i.e., $a^3-a=0 \Leftrightarrow a=0$ ou $a=\pm 1$) então

$$\frac{A}{(\overline{x}-a)} = \frac{\mathbb{C}[y]}{(y^2)}$$

logo os ideais primos de $\frac{A}{(\overline{x}-a)}$ correspondem aos ideais primos de $\mathbb{C}[y]$ que contém (y^2) neste caso só há um primo (y) que corresponde ao ideal primo $(\overline{y}, \overline{x}-a)$ de A.

Resumindo: Spec($\mathbb{C}[x,y]/\langle y^2-x^3+x\rangle$) consiste no ideal $(\overline{0})$ e nos ideais $\langle \overline{y}-b,\overline{x}-a\rangle$ que estão em bijeção com os pontos (a,b) da curva $y^2=x^3-x$.

O subespaço de $\operatorname{Spec}(A)$ consistindo dos ideais maximais de A com a topologia induzida, é chamado de **espectro maximal** de A e é denotado por $\operatorname{Specm}(A)$. Para anéis comutativos arbitrários $\operatorname{Specm}(A)$ não tem as propriedades funtoriais de $\operatorname{Spec}(A)$ por causa que a imagem inversa de um ideal maximal sob um homomorfismo de anéis não é necessariamente maximal.

Como consequência do teorema de existência de ideais maximais temos que A=0 se e somente se $\operatorname{Specm}(A)=\emptyset$ e dado um ideal I qualquer de A segue do TCI que existe uma bijeção natural

$$\operatorname{Specm}(A/I) = \left\{ \mathfrak{m} \in \operatorname{Specm}(A) \mid \mathfrak{m} \supseteq I \right\}. \tag{1}$$

Do Exercício 9 da Lista 1 existe um isomorfismo $\alpha: \frac{A[x_1,...,x_n]}{\langle x_1-a_1,...,x_n-a_n\rangle} \to A$, dado por $\overline{x_i} \mapsto a_i$. Seja I um ideal de $A[x_1,...,x_n]$, dados $a_1,...,a_n \in A$ vamos mostrar que $I \subseteq \langle x_1-a_1,...,x_n-a_n\rangle$ se e somente se $f(a_1,...,a_n)=0$ para todo $f(x_1,...,x_n) \in I$ de modo que $\langle x_1-a_1,...,x_n-a_n\rangle \subseteq A[x_1,...,x_n]$ é um ideal de $A[x_1,...,x_n]/I$ se, e somente se, $(a_1,...,a_n) \in A^n$ é um ponto do **conjunto de zeros** Z(I) de I, definido por

$$Z(I) := \{(a_1, \ldots, a_n) \in A^n \mid f(a_1, \ldots, a_n) = 0 \text{ para todo } f(x_1, \ldots, x_n) \in I\}.$$

De fato, temos $I \subseteq \langle x_1 - a_1, \dots, x_n - a_n \rangle \Leftrightarrow \operatorname{para\ cada\ } f(x_1, \dots, x_n) \in I$, $\overline{f(x_1, \dots, x_n)} = \overline{0} \operatorname{em} \frac{A[x_1, \dots, x_n]}{\langle x_1 - a_1, \dots, x_n - a_n \rangle} \Leftrightarrow \operatorname{para\ cada\ } f(x_1, \dots, x_n) \in I$, $\alpha \left(\overline{f(x_1, \dots, x_n)} \right) = 0$ em $A \Leftrightarrow \operatorname{para\ cada\ } f(x_1, \dots, x_n) \in I$, $\alpha \left(\overline{f(x_1, \dots, x_n)} \right) \in I$ em $A \Leftrightarrow \operatorname{para\ cada\ } f(x_1, \dots, x_n) \in I$, $\alpha \cap A \cap A \cap A$ expans $\alpha \cap A \cap A$ for $\alpha \cap A \cap A$ expans $\alpha \cap A \cap A$ for $\alpha \cap A$ expans $\alpha \cap A$ expans $\alpha \cap A \cap A$ for $\alpha \cap A$ expans $\alpha \cap A$

Em particular se $A = \mathbf{k}$ for um corpo, $\langle x_1 - a_1, \dots, x_n - a_n \rangle \in \operatorname{Specm}(\mathbf{k}[x_1, \dots, x_n])$ para quaisquer n elementos a_i de \mathbf{k} . E logo pelo TCI temos que para todo ponto $(a_1, \dots, a_n) \in Z(I)$, $\langle \overline{x_1 - a_1}, \dots, \overline{x_n - a_n} \rangle \in \operatorname{Specm}(\mathbf{k}[x_1, \dots, x_n]/I)$.

Mais tarde, veremos que se \mathbf{k} for algebricamente fechado, a recíproca em ambos casos também é verdadeira (Nullstellensatz Hilberts). Ou seja, todo ideal maximal de $\mathbf{k}[x_1,\ldots,x_n]$ é da forma $\langle x_1-a_1,\ldots,x_n-a_n\rangle$ para $a_1,\ldots,a_n\in\mathbf{k}$. E, todo ideal maximal de $\mathbf{k}[x_1,\ldots,x_n]/I$ é da forma $\langle \overline{x_1-a_1},\ldots,\overline{x_n-a_n}\rangle$ para $(a_1,\ldots,a_n)\in Z(I)$, por tanto temos uma bijeção entre Specm $(\mathbf{k}[x_1,\ldots,x_n]/I)$ e o conjunto dos zeros Z(I) de I. Mas para isso precisaremos de alguns conceitos da Geometria Algébrica...

2.2 INTRODUÇÃO À GEOMETRIA ALGÉBRICA

Nesta seção k denotará um corpo algebricamente fechado.

Definição 39.

a. O **espaço afim** $\mathbb{A}^n_{\mathbf{k}}$ de dimensão n sobre o corpo \mathbf{k} é o conjunto

$$\mathbb{A}^n_{\mathbf{k}} := \mathbf{k}^n = \underbrace{\mathbf{k} \times \cdots \times \mathbf{k}}_{n \text{ vezes}}.$$

b. Seja $S \subseteq \mathbf{k}[x_1, \dots, x_n]$ um conjunto de polinômios. O **conjunto algébrico afim** definido por S é o subconjunto $Z(S) \subseteq \mathbb{A}^n_{\mathbf{k}}$ dos zeros comuns de todos os polinômios em S:

$$Z(S) := \{(a_1, \ldots, a_n) \in \mathbb{A}^n_{\mathbf{k}} \mid f(a_1, \ldots, a_n) = 0 \text{ para todo } f \in S\}.$$

Note que Z(-) reverte inclusões: $S \subseteq T$ então $Z(S) \supseteq Z(T)$. Além disso, se $I \subseteq \mathbf{k}[x_1,\ldots,x_n]$ é o ideal gerado por S, então Z(S) = Z(I). Assim não há perda de generalidade em definir um conjunto algébrico como o conjunto de zeros de um ideal, o que faremos de agora em diante. Mais tarde veremos que todo ideal de $\mathbf{k}[x_1,\ldots,x_n]$ é finitamente gerado (pelo Teorema da Base de Hilbert, Teorema 119) e assim todo conjunto algébrico é o conjunto de zeros de um número *finito* de polinômios.

Podemos definir também uma topologia em $\mathbb{A}^n_{\mathbf{k}}$ (e, por conseguinte, também nos conjuntos algébricos) de acordo com o seguinte Lema:

Lema 40. Os conjuntos algébricos têm as seguintes propriedades:

a.
$$Z((0)) = \mathbb{A}^n_{\mathbf{k}} \ e \ Z(\mathbf{k}[x_1, \dots, x_n]) = \emptyset$$

b.
$$Z(I) \cup Z(J) = Z(I \cdot J)$$

c.
$$\bigcap_{i \in \Lambda} Z(I_i) = Z(\sum_{i \in \Lambda} I_i)$$
.

Assim, os conjuntos algébricos são os fechados de uma topologia de $\mathbb{A}^n_{\mathbf{k}}$, chamada também de **Topologia de Zariski**.

Demonstração. Exercício 5.

AULA 6

AULA 6: 10/09/2014

Lembrando a última aula. Introdução à Geometria Algébrica.

 \mathbf{k} denotará um corpo algebricamente fechado. Definimos o espaço afim $\mathbb{A}^n_{\mathbf{k}}$ de dimensão n sobre o corpo \mathbf{k} como sendo o conjunto $\mathbb{A}^n_{\mathbf{k}} := \mathbf{k}^n = \mathbf{k} \times \cdots \times \mathbf{k}$. Definimos um conjunto algébrico afim como sendo o conjunto $\mathbb{A}^n_{\mathbf{k}} := \mathbf{k}^n = \mathbf{k} \times \cdots \times \mathbf{k}$.

dos zeros comuns de um ideal $I \subseteq \mathbf{k}[x_1, \dots, x_n]$

$$Z(I) := \{(a_1, \dots, a_n) \in \mathbb{A}^n_k \mid f(a_1, \dots, a_n) = 0 \text{ para todo } f \in I\}.$$

Os conjuntos algébricos são os fechados de uma topologia de $\mathbb{A}^n_{\mathbf{k}}$, chamada também de **Topologia de Zariski**.

Lembramos que um espaço topológico é dito **irredutível** se não pode ser escrito como união de dois fechados próprios, isto implica que quaisquer dois abertos não vazios se interceptam, logo todo aberto não vazio em um espaço irredutível *X* é denso.

Definição 41. Uma variedade algébrica é um conjunto algébrico irredutível.

O espaço afim $\mathbb{A}^n_{\mathbf{k}}$ para $n \geq 1$ é uma variedade. Para ver isso precisamos de seguinte fato: (**Exercício 6.**) Se \mathbf{k} é um corpo infinito e $f \in \mathbf{k}[x_1, \ldots, x_n]$ é tal que $f(a_1, \ldots, a_n) = 0$ para todo $(a_1, \ldots, a_n) \in \mathbb{A}^n_{\mathbf{k}}$ então f = 0. Observe que como \mathbf{k} é algebricamente fechado ele é infinito, pois suponha que ele é finito $\mathbf{k} = \{a_1, \ldots, a_n\}$ então o polinômio $f(x) = (x - a_1)(x - a_2) \ldots (x - a_n) + 1$ não tem raiz em \mathbf{k} , contradição. Segue que nenhum polinômio não nulo se anula identicamente em todo $\mathbb{A}^n_{\mathbf{k}}$. Assim $Z(I) \subsetneq \mathbb{A}^n_{\mathbf{k}}$ é um fechado próprio se, e somente se, $I \neq (0)$. Logo se $\mathbb{A}^n_{\mathbf{k}} = Z(I) \cup Z(J) = Z(I \cdot J)$ então $I \cdot J = 0$ e como $\mathbf{k}[x_1, \ldots, x_n]$ é um domínio então ou I = 0 ou J = 0, o que mostra que $\mathbb{A}^n_{\mathbf{k}}$ não é união de dois fechados próprios.

Definição 42. Sejam $X \subseteq \mathbb{A}^m_{\mathbf{k}}$ e $Y \subseteq \mathbb{A}^n_{\mathbf{k}}$ dois conjuntos algébricos afins. Um **morfismo** de conjuntos algébricos $f: X \to Y$ é uma função para a qual existem polinômios $p_1, \ldots, p_n \in \mathbf{k}[x_1, \ldots, x_m]$ tais que

$$f(a_1,\ldots,a_m)=(p_1(a_1,\ldots,a_m),\ldots,p_n(a_1,\ldots,a_m))\in Y$$

para todo $(a_1, \ldots, a_m) \in X$.

Observamos que composição de morfismos de conjuntos algébricos é também um morfismo de conjuntos algébricos.

Os polinômios p_i não são unicamente determinados por f: se X = Z(I), então somando a cada p_i um elemento de I ainda obtemos a mesma função f. Em outras palavras, os polinômios p_i só estão determinados "módulo polinômios que se anulam sobre todo o X". Isto nos leva a introduzir a seguinte definição:

Definição 43. Seja $X \subseteq \mathbb{A}^n_{\mathbf{k}}$ um conjunto algébrico. O anel (com a soma e o produto de funções induzidos pelas respetivas operações em \mathbf{k})

$$\mathbf{k}[X] := \left\{ f : X \to \mathbb{A}^1_{\mathbf{k}} = \mathbf{k} \mid f \text{ \'e um morfismo de conjuntos alg\'ebricos} \right\}$$

é chamado de **anel de funções regulares** em *X*.

Existe um morfismo sobrejetor $\mathbf{k}[x_1, \dots, x_n] \to \mathbf{k}[X]$ que leva um polinômio no morfismo correspondente. O kernel I(X) deste morfismo, i.e.,

$$I(X) := \{ f \in \mathbf{k}[x_1, \dots, x_n] \mid f(a_1, \dots, a_n) = 0 \text{ para todo } (a_1, \dots, a_n) \in X \}$$

é chamado de **ideal do conjunto algébrico** X. Pelo Teorema do Isomorfismo (Exercício 8 Lista 1) temos $\mathbf{k}[X] \simeq \frac{\mathbf{k}[x_1,...,x_n]}{I(X)}$.

Proposição 44. Sejam $X, Y \subseteq \mathbb{A}^n_k$ conjuntos algébricos temos:

- a. $X \subseteq Y$ então $I(X) \supseteq I(Y)$;
- b. Para um ideal J de $\mathbf{k}[x_1, \dots, x_n]$ temos $J \subseteq I(Z(J))$.
- c. X = Z(I(X))

Demonstração. Os itens a. e b. são triviais. A inclusão \subseteq em c. é clara, enquanto que b. implica que $Z(I(Z(J))) \subseteq Z(J)$, logo se X é conjunto algébrico então $Z(I(X)) \subseteq X$.

Em geral a inclusão em b. é estrita: considere por exemplo o ideal $J=(x^2)\subseteq \mathbf{k}[x]$, então $Z(x^2)=\left\{a\in \mathbb{A}^1_\mathbf{k}=\mathbf{k}\mid a^2=0\right\}=0$ logo $I(Z(J))=I(Z(x^2))=I(0)=\left\{f\in \mathbf{k}[x]\mid f(0)=0\right\}$, ou seja são os polinômios em uma variável com termo constante nulo. Logo $x\in I(Z(J))$ mas $x\not\in (x^2)=J$.

Diversas propriedades geométricas de um conjunto algébrico X se traduzem em propriedades algébricas de seu anel de funções regulares $\mathbf{k}[X]$ e vice-versa. Como um primeiro exemplo temos a seguinte proposição:

Proposição 45. Seja X um conjunto algébrico, então são equivalentes:

a. X é uma variedade;

- b. $\mathbf{k}[X]$ é um domínio;
- c. I(X) é um ideal primo.

Demonstração. É claro que $\mathbf{k}[X]$ é um domínio $\Leftrightarrow I(X)$ é um ideal primo. Suponha, então, que $X \subseteq \mathbb{A}^n_{\mathbf{k}}$ não seja uma variedade, i.e., X é união de dois fechados próprios:

$$X = (X \cap Z(I)) \cup (X \cap Z(J)) = X \cap (Z(I) \cup Z(J))$$

$$\Leftrightarrow X \subseteq Z(I) \cup Z(J) = Z(I \cdot J)$$

onde I e J são ideais de $\mathbf{k}[x_1,\ldots,x_n]$. Como estes fechados são próprios (i.e., $X\cap Z(I)\subsetneq X$ então $X\nsubseteq Z(I)$, idem com J), existem polinômios $f\in I$ e $g\in J$ que não se anulam sobre todo X, logo $f,g\notin I(X)$. Por outro lado, como $f\cdot g\in I\cdot J$, então $f\cdot g$ se anula identicamente sobre X (i.e., $f\cdot g\in I(X)$). Assim, as imagens $\overline{f},\overline{g}\in \mathbf{k}[X]=\frac{\mathbf{k}[x_1,\ldots,x_n]}{I(X)}$ de f e g são tais que $\overline{f}\cdot\overline{g}=0$ mas $\overline{f}\neq 0$ e $\overline{g}\neq 0$, mostrando que $\mathbf{k}[X]$ não é domínio.

Reciprocamente, suponha que $\mathbf{k}[X]$ não seja domínio e sejam $\overline{f}, \overline{g} \in \mathbf{k}[X]$ tais que $\overline{f} \cdot \overline{g} = 0$ com $\overline{f} \neq 0$ e $\overline{g} \neq 0$. Se $f, g \in \mathbf{k}[x_1, \ldots, x_n]$ são dois levantamentos de $\overline{f}, \overline{g}$ então $f \cdot g \in I(X)$ ou seja $f \cdot g$ se anula sobre todo X mas o mesmo não ocorre nem com g. Assim,

$$X \subseteq Z(f \cdot g) = Z(f) \cup Z(g) \Leftrightarrow X = (X \cap Z(f)) \cup (X \cap Z(g))$$

mostra que X é união de dois fechados próprios, ou seja, não é variedade. \square

Seja $X \subseteq \mathbb{A}^n_{\mathbf{k}}$ um conjunto algébrico e seja $P = (a_1, \dots, a_n) \in X$ um ponto¹ deste conjunto. Defina

$$\mathfrak{m}_P := I(P) = \{ f \in \mathbf{k}[x_1, \dots, x_n] \mid f(P) = f(a_1, \dots, a_n) = 0 \}.$$

Claramente, $x_i - a_i \in \mathfrak{m}_P$ para i = 1, ..., n assim $\langle x_1 - a_1, ..., x_n - a_n \rangle \subseteq \mathfrak{m}_P$. Mas $\langle x_1 - a_1, ..., x_n - a_n \rangle$ é um ideal maximal já que

$$\frac{\mathbf{k}[x_1,\ldots,x_n]}{\langle x_1-a_1,\ldots,x_n-a_n\rangle}\simeq\mathbf{k}$$

é um corpo, logo $\mathfrak{m}_P = \langle x_1 - a_1, \dots, x_n - a_n \rangle$ é um ideal maximal de $\mathbf{k}[x_1, \dots, x_n]$ que contém I(X) (pois $P \subseteq X$ implica $I(X) \subseteq I(P)$). Isto

¹ Qualquer ponto (a_1, \ldots, a_n) do espaço afim \mathbb{A}^n_k é um conjunto algébrico, pois $(a_1, \ldots, a_n) = Z(\langle x_1 - a_1, \ldots, x_n - a_n \rangle)$

implica que \mathfrak{m}_P corresponde a um ideal maximal de $\mathbf{k}[X] \simeq \frac{\mathbf{k}[x_1,...,x_n]}{I(X)}$ que denotaremos por $\overline{\mathfrak{m}}_P$. Temos então uma bijeção natural

$$X \xrightarrow{\simeq} \operatorname{Specm}(\mathbf{k}[X]) = \operatorname{Specm}(\frac{\mathbf{k}[x_1, \dots, x_n]}{I(X)})$$

$$P = (a_1, \dots, a_n) \longmapsto \overline{\mathfrak{m}}_P = \frac{I(P)}{I(X)} = \langle \overline{x}_1 - a_1, \dots, \overline{x}_n - a_n \rangle$$

Esta associação é claramente injetora pois se dois pontos $P \neq Q$ diferem nas i-ésimas coordenadas $a_i \neq b_i$ então $\overline{x_i} - a_i \in \mathfrak{m}_P \backslash \mathfrak{m}_Q$. Para ver que é sobre, ou seja que $\operatorname{Specm}(\frac{\mathbf{k}[x_1,\ldots,x_n]}{I(X)}) = \{\langle \overline{x}_1 - a_1,\ldots,\overline{x}_n - a_n \rangle \mid (a_1,\ldots,a_n) \in X\}$, basta mostrar que

$$Specm(\mathbf{k}[x_1,\ldots,x_n]) = \{\langle x_1 - a_1,\ldots,x_n - a_n \rangle \mid a_i \in \mathbf{k} \}$$

pois como observamos na aula passada: " $\langle x_1 - a_1, \ldots, x_n - a_n \rangle \subseteq \mathbf{k}[x_1, \ldots, x_n]$ corresponde a um ideal de $\mathbf{k}[x_1, \ldots, x_n] / I(X)$ se, e somente se, $(a_1, \ldots, a_n) \in Z(I(X)) = X$ ". Mas esse resultado é conhecido como **Nullstellensatz**² **Hilberts** ou **Teorema dos Zeros de Hilbert.**

Teorema 46. (Nullstellensatz Hilberts) Seja k um corpo algebricamente fechado.

- a. Todo ideal maximal do anel $\mathbf{k}[x_1,\ldots,x_n]$ é da forma $\mathfrak{m}_P=\langle x_1-a_1,\ldots,x_n-a_n\rangle$ para algum ponto $P=(a_1,\ldots,a_n)\in\mathbb{A}^n_{\mathbf{k}}$.
- b. Seja $J \subseteq \mathbf{k}[x_1, \dots, x_n]$ um ideal próprio então $Z(J) \neq \emptyset$.
- c. Para qualquer $J \subseteq \mathbf{k}[x_1, \dots, x_n]$ temos $I(Z(J)) = \sqrt{J}$.

A parte essencial do teorema é o item b. , o qual nos diz que se um ideal J não é o anel todo $\mathbf{k}[x_1,\ldots,x_n]$ então ele tem zeros em $\mathbb{A}^n_{\mathbf{k}}$. Note também que b. é completamente falso se \mathbf{k} não é algebricamente fechado, pois se $f \in \mathbf{k}[x]$ é um polinômio não-constante então ele pode não gerar o anel todo $\mathbf{k}[x]$ como um ideal, mas $Z(f) = \emptyset$ é perfeitamente possível.

Demonstração. Para provar o teorema vamos assumir o seguinte fato que provaremos mas tarde (veja Teorema 190):

Fato: "Seja **k** um corpo e $A = \mathbf{k}[a_1, \dots, a_n]$ um anel finitamente gerado³ (f.g.) sobre **k**. Se A é um corpo então A é uma extensão algébrica⁴ de **k**."

² Satz=Teorema, Nullstellen=dos zeros

³ i.e., existe um número finito de elementos a_1, \ldots, a_n tal que A é gerado como anel por \mathbf{k} e a_1, \ldots, a_n . Ou sejam os elementos de A são expressões polinomiais nos a_i 's.

⁴ Uma extensão $A \supseteq \mathbf{k}$ é dita algébrica se para todo elemento $a \in A$ existe um polinômio $f \in \mathbf{k}[x]$ não nulo tal que f(a) = 0

- a. Seja $\mathfrak{m} \subseteq \mathbf{k}[x_1,\ldots,x_n]$ um ideal maximal, como $\mathbf{k}[x_1,\ldots,x_n]$ é um anel f.g. sobre \mathbf{k} então $K = \mathbf{k}[x_1,\ldots,x_n]/\mathfrak{m}$ é um corpo (pois \mathfrak{m} é maximal) f.g. sobre \mathbf{k} (pois é gerado pelos \overline{x}_i 's). Logo segue do "Fato" que K é uma extensão algébrica de \mathbf{k} , mas \mathbf{k} é algebricamente fechado, logo $\mathbf{k} = K$. Assim, existem $a_i \in \mathbf{k}$ tais que $x_i \equiv a_i \operatorname{mod}(\mathfrak{m}) \operatorname{logo} x_i a_i \in \mathfrak{m}$ para todo $i = 1, \ldots, n$. Ou seja, $\langle x_1 a_1, \ldots, x_n a_n \rangle \subseteq \mathfrak{m}$, mas como já vimos $\langle x_1 a_1, \ldots, x_n a_n \rangle$ é um ideal maximal (Exercício 9 da Lista 1 para $A = \mathbf{k}$), $\operatorname{logo} \langle x_1 a_1, \ldots, x_n a_n \rangle = \mathfrak{m}$.
- b. Se $J \subsetneq \mathbf{k}[x_1, \dots, x_n]$ é um ideal próprio então existe um ideal maximal \mathfrak{m} de $\mathbf{k}[x_1, \dots, x_n]$ tal que $J \subseteq \mathfrak{m}$. Pelo item a. \mathfrak{m} é da forma $\mathfrak{m} = \langle x_1 a_1, \dots, x_n a_n \rangle$ para certos a_i 's $\in \mathbf{k}$. Logo $J \subseteq \mathfrak{m}$ implica que $f(a_1, \dots, a_n) = 0$ para todo $f \in J$. Logo $(a_1, \dots, a_n) \in Z(J)$.
- c. É claro que $\sqrt{J} \subseteq I(Z(J))$: se $f^n \in J \subseteq I(Z(J))$ (pela Proposição 44 b.) então $\overline{f}^n = 0$ em $\mathbf{k}[X] = \frac{\mathbf{k}[x_1, \dots, x_n]}{I(Z(J))}$ onde X = Z(J). Logo para todo $\underbrace{(a_1, \dots, a_n)} \in X$, $(\overline{f(a_1, \dots, a_n)})^n = 0 \in \mathbf{k} = \mathbb{A}^1_{\mathbf{k}}$ o que implica que $\overline{f(a_1, \dots, a_n)} = 0$ (pois \mathbf{k} é um corpo e o único elemento nilpotente é o 0). Assim $\overline{f} = 0$ em $\mathbf{k}[X]$ (como morfismo que leva todos os elementos do domínio em 0), ou seja $f \in I(X)$.

Para ver $I(Z(J)) \subseteq \sqrt{J}$ tome $f \in I(Z(J))$. Introduza uma outra variável y e considere o novo ideal $J_1 = \langle J, f \cdot y - 1 \rangle \subseteq \mathbf{k}[x_1, \dots, x_n, y]$ gerado por J e $f \cdot y - 1$. Um ponto $Q \in Z(J_1) \subseteq \mathbb{A}^{n+1}_{\mathbf{k}}$ é uma (n+1)-tupla $Q = (a_1, \dots, a_n, b)$ tal que $g(a_1, \dots, a_n) = 0$ para toda $g \in J$, i.e., $(a_1, \dots, a_n) \in Z(J)$ e $f(a_1, \dots, a_n) \cdot b = 1$, ou seja $f(a_1, \dots, a_n) \neq 0$ e $b = f(a_1, \dots, a_n)^{-1}$.

Mas como $f \in I(Z(J))$, a primeira condição acima implica que $f(a_1, \ldots, a_n) = 0$ o que contradiz a segunda, então $Z(J_1) = \emptyset$. Segue do item b. que $1 \in J_1$, i.e., existe uma expressão

$$1 = \sum g_i f_i + g_0(f \cdot y - 1) \in \mathbf{k}[x_1, \dots, x_n, y]$$

com $f_i \in J$ e $g_0, g_i \in \mathbf{k}[x_1, \dots, x_n, y]$. Agora suponha que y^N é a maior potência de y aparecendo em qualquer um dos g_0, g_i então multiplicando ambos lados por f^N temos

$$f^{N} = \sum G_{i}(x_{1}, \dots, x_{n}, f \cdot y) f_{i} + G_{0}(x_{1}, \dots, x_{n}, f \cdot y) (f \cdot y - 1)$$

onde G_i é $f^N g_i$ escrito como um polinômio em x_1, \ldots, x_n e $(f \cdot y)$, da seguinte forma:

$$G_{i}(x_{1},...,x_{n},f\cdot y) = f^{N}g_{i}(x_{1},...,x_{n},y)$$

$$= f^{N}\sum_{(\alpha_{1},...,\alpha_{n},j)} p_{\alpha_{1}...\alpha_{n}j}^{i}x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}} \cdot y^{j}$$

$$= \sum_{(\alpha_{1},...,\alpha_{n},j)} p_{\alpha_{1}...\alpha_{n}j}^{i}x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}} \cdot f^{N-j} \cdot (f\cdot y)^{j}$$

Podemos reduzir esta igualdade de polinômios em $\mathbf{k}[x_1, \dots, x_n, y]$ módulo $\langle f \cdot y - 1 \rangle$, logo $\overline{f \cdot y} = \overline{1}$ assim $\overline{G_i}(x_1, \dots, x_n, f \cdot y) = \overline{h_i}(x_1, \dots, x_n)$ e obtemos

$$\overline{f}^N = \sum \overline{h}_i(x_1,\ldots,x_n)\overline{f}_i \in \mathbf{k}[x_1,\ldots,x_n,y]/\langle f\cdot y-1\rangle;$$

ambos os lados da igualdade são imagens de elementos de $\mathbf{k}[x_1, \dots, x_n]$. Como o homomorfismo canônico $\mathbf{k}[x_1, \dots, x_n] \hookrightarrow \mathbf{k}[x_1, \dots, x_n, y] / \langle f \cdot y - 1 \rangle$ é injetivo segue que

$$f^N = \sum h_i(x_1,\ldots,x_n) f_i \in \mathbf{k}[x_1,\ldots,x_n]$$

ou seja $f^N \in J$ pois $f_i \in J$, logo $f \in \sqrt{J}$.

Aula 7

AULA 7: 12/09/2014

Como consequência do Teorema dos Zeros de Hilbert temos:

Corolário 47. As correspondências Z e I dadas por:

{ideais
$$J \subseteq \mathbf{k}[x_1, \dots, x_n]$$
} \xrightarrow{Z} {subconjuntos $X \subseteq \mathbb{A}^n_{\mathbf{k}}$ }
$$J \mapsto Z(J)$$
{ideais $J \subseteq \mathbf{k}[x_1, \dots, x_n]$ } \xleftarrow{I} {subconjuntos $X \subseteq \mathbb{A}^n_{\mathbf{k}}$ }
$$I(X) \longleftrightarrow X$$

induzem as seguintes bijeções:

$$\{ideais\ radicais\ J\subseteq \mathbf{k}[x_1,\ldots,x_n]\} \stackrel{Z,I}{\longleftrightarrow} \{conjuntos\ algébricos\ X\subseteq \mathbb{A}^n_{\mathbf{k}}\}$$
 \cup
 $\{ideais\ primos\ J\subseteq \mathbf{k}[x_1,\ldots,x_n]\} \stackrel{Z,I}{\longleftrightarrow} \{variedades\ X\subseteq \mathbb{A}^n_{\mathbf{k}}\}$

A primeira bijeção segue dos fatos Z(I(X)) = X para qualquer conjunto algébrico X (Proposição 44 c.) e I(Z(J)) = J para qualquer ideal radical J (i.e., qualquer ideal J tal que $J = \sqrt{J}$) (Teorema 46 c.). A segunda segue do fato de variedades serem conjuntos algébricos e ideais primos serem radicais (Exercício 17 Lista 1) e da Proposição 45: X é variedade se, e somente se, I(X) é um ideal primo.

A próxima proposição mostra que a topologia de Zariski do espaço afim $\mathbb{A}^n_{\mathbf{k}}$ é na verdade a topologia induzida do subespaço Specm($\mathbf{k}[X]$) de Spec($\mathbf{k}[X]$) via identificação $X = \operatorname{Specm}(\mathbf{k}[X])$ de um conjunto algébrico com o espectro maximal de seu anel de funções regulares.

Proposição 48. Seja \mathbf{k} um corpo algebricamente fechado, seja $X \subseteq \mathbb{A}^n_{\mathbf{k}}$ um conjunto algébrico e seja $\mathbf{k}[X] = \mathbf{k}[x_1, \dots, x_n] / I(X)$ seu anel de funções regulares. Se $\overline{J} \subseteq \mathbf{k}[X]$ é um ideal qualquer de $\mathbf{k}[X]$ com ideal correspondente $J \subseteq \mathbf{k}[x_1, \dots, x_n]$ no anel de polinômios, temos

$$Z(J) \cap X = V(\overline{J}) \cap \operatorname{Specm}(\mathbf{k}[X])$$

via identificação $X = \operatorname{Specm}(\mathbf{k}[X])$ dada por $P \mapsto \overline{\mathfrak{m}}_P$. Assim, a topologia de subespaço de $\operatorname{Specm}(\mathbf{k}[X]) \subseteq \operatorname{Spec}(\mathbf{k}[X])$ coincide com a topologia de Zariski de X como conjunto algébrico.

Demonstração. Seja $P=(a_1,\ldots,a_n)\in X$, temos que o ideal maximal correspondente é $\overline{\mathfrak{m}}_P=\langle \overline{x}_1-a_1,\ldots,\overline{x}_n-a_n\rangle\subseteq \mathbf{k}[X]$ e portanto

$$\overline{\mathfrak{m}}_P \in V(\overline{J}) \Leftrightarrow \overline{\mathfrak{m}}_P \supseteq \overline{J} \text{ em } \mathbf{k}[X] = \mathbf{k}[x_1, \dots, x_n] / I(X)$$

$$\Leftrightarrow \langle x_1 - a_1, \dots, x_n - a_n \rangle \supseteq J \text{ em } \mathbf{k}[x_1, \dots, x_n]$$

$$\Leftrightarrow P = (a_1, \dots, a_n) \in Z(J)$$

2.3 EXERCÍCIOS

Ex. 21 — Mostre que todo anel A possui um ideal primo minimal, ou seja, um ideal primo p tal que se $q \in \operatorname{Spec}(A)$ e $q \subseteq p \Longrightarrow q = p$. Quais são os primos minimais de $\frac{\mathbb{C}[x,y]}{(x^2-y^2)}$?

Ex. 22 — Seja A um anel. Para um subconjunto $S \subseteq A$, defina

$$V(S) := \{ p \in \operatorname{Spec}(A) \mid p \supseteq S \}$$

como o conjunto de todos os ideais primos de A que contêm S. Prove que $V(S) = V(I) = V(\sqrt{I})$, onde I representa o ideal gerado por S em A.

Ex. 23 — Seja A um anel. Para $a \in A$, defina o conjunto $D(a) := \{ \mathfrak{p} \in \operatorname{Spec}(A) \mid a \notin \mathfrak{p} \}$. Mostre que os conjuntos D(a) com $a \in A$ são abertos e formam uma base para a topologia de Zariski de $\operatorname{Spec}(A)$. Além disso, dados $a, b \in A$ mostre que:

- 1. $D(a) \cap D(b) = D(a \cdot b)$.
- 2. $D(a) = \emptyset \iff a \text{ \'e nilpotente}.$
- 3. $D(a) = \operatorname{Spec}(A) \iff a \notin \text{unidade}.$
- 4. $D(a) = D(b) \iff \sqrt{\langle a \rangle} = \sqrt{\langle b \rangle}$.

Ex. 24 — Seja A um anel e $I \subseteq A$ um ideal qualquer. Prove que o morfismo entre espectros

$$\operatorname{Spec}(\pi) : \operatorname{Spec}(A/I) \to V(I) \subseteq \operatorname{Spec}(A)$$

induzido pela projeção canônica $\pi:A\to A/I$ é um homeomorfismo.

Ex. 25 — Um espaço topológico X é dito irredutível se $X \neq \emptyset$ e se todo par de conjuntos abertos não vazios em X se interceptam, ou equivalentemente, todo aberto não vazio é denso em X. Mostre que $\operatorname{Spec}(A)$ é irredutível se e somente se o nilradical de A, $\mathfrak{N}(A)$, é um ideal primo.

Ex. 26 — Sejam A e B dois anéis. Mostre que:

- 1. $A \times B$ é um domínio se e somente se A = 0 e B é um domínio ou B = 0 e A é um domínio.
- 2. Os ideais de $A \times B$ são da forma $I \times J$ onde I é um ideal de A e J é um ideal de B.
- 3. $\operatorname{Spec}(A \times B) = \operatorname{Spec}(A) \sqcup \operatorname{Spec}(B)$.

Ex. 27 — Mostre que

- 1. Se *A* é um Domínio de Fatoração Única (DFU), então um ideal principal (*a*) não nulo é primo se, e somente se, *a* é irredutível.
- 2. Todo Domínio de Ideais Principais (DIP) é DFU.
- 3. Conclua que Spec(DIP) = $\{(0)\} \cup \{(a) \mid a \text{ \'e irredut\'ivel}\}.$

Ex. 28 — Mostre que os conjuntos algébricos são os fechados de uma topologia de \mathbb{A}^n_k (Topologia de Zariski), i.e., têm as seguintes propriedades:

1.
$$Z((0)) = \mathbb{A}^n_{\mathbf{k}} e Z(\mathbf{k}[x_1, \dots, x_n]) = \emptyset$$

- $2. \ Z(I) \cup Z(J) = Z(I \cdot J)$
- 3. $\bigcap_{i\in\Lambda}Z(I_i)=Z(\sum_{i\in\Lambda}I_i).$

Ex. 29 — Seja **k** um corpo infinito e $f \in \mathbf{k}[x_1, \dots, x_n]$. Mostre que se $f(a_1, \dots, a_n) = 0$ para todo $(a_1, \dots, a_n) \in \mathbb{A}^n_{\mathbf{k}}$ então f = 0. Encontre um contraexemplo no caso em que **k** é um corpo finito.

Ex. 30 — Seja **k** um corpo algebricamente fechado, $f \in \mathbf{k}[x_1, \dots, x_n]$. Prove que o conjunto algébrico $Z(f) \subseteq \mathbb{A}^n_{\mathbf{k}}$ é uma variedade se, e somente se, existe um polinômio irredutível $g \in \mathbf{k}[x_1, \dots, x_n]$ tal que $f = g^n$ para algum n > 0.

Ex. 31 — Para cada um dois anéis A a seguir determine o grupo das unidades de A, Spec(A), ideais maximais e os abertos e fechados do Spec(A).

- 1. Z
- 2. **Z**/3**Z**
- $\mathbb{Z}/6\mathbb{Z}$
- 4. $\mathbb{C}[x]$
- 5. $\mathbb{C}[x]/\langle x^{13}\rangle$
- 6. $\mathbb{R}[x]/\langle x^2+1\rangle$
- 7. $\mathbb{C}[[x]]/\langle x^2+1\rangle$
- 8. $\mathbb{Z}[x]/\langle x^2+1\rangle$
- 9. $\mathbb{C}[x,y]/\langle x^2+y^2+1\rangle$
- 10. $\mathbb{R}[x,y]/\langle x^2 + y^2 + 1 \rangle$

Definição 49. Seja A um anel. Um A-módulo é um par (M, μ) onde M é um grupo abeliano e $\mu: A \times M \to M$ é uma aplicação que leva $(a, m) \mapsto am$ e satisfaz:

$$a(m+n) = am + an$$

$$(a+b)m = am + bm$$

$$(ab)m = a(bm)$$

$$1m = m$$

para todo $a, b \in A$ e $m, n \in M$.

Ou, equivalentemente, M é um grupo abeliano juntamente com um homomorfismo de anéis $A \to \operatorname{End}(M)$ onde $\operatorname{End}(M)$ é o anel dos endomorfismos do grupo abeliano M.

Exemplo 50.

- a. Um ideal *I* de *A* é um *A*-módulo. Em particular, *A* é um *A*-módulo.
- b. Se $A = \mathbf{k}$ é um corpo, então um A-módulo é um \mathbf{k} -espaço vetorial.
- c. Se $A = \mathbb{Z}$ então um A-módulo é um grupo abeliano, onde definimos $nm = \underbrace{m + \cdots + m}_{n \text{ vezes}}$.
- d. Se $A = \mathbf{k}[x]$ onde \mathbf{k} é um corpo, então um A-módulo é um \mathbf{k} -espaço vetorial com uma transformação linear.

Sejam M e N dois A-módulos. Uma aplicação $f:M\to N$ é um **homomorfismo** de A-módulos (ou um A-homomorfismo) se

$$f(m_1 + m_2) = f(m_1) + f(m_2)$$
$$f(am_1) = af(m_1)$$

para todo $a \in A$ e $m_1, m_2 \in M$. Ou seja, f é um homomorfismo de grupos abelianos que comuta com a ação de cada $a \in A$.

O conjunto de todos os homomorfismos de A-módulos de M em N pode ser visto como um A-módulo se definimos soma e produto pelas regras

$$(f+g)(m) = f(m) + g(m)$$
$$(af)(m) = af(m)$$

para todo $m \in M$. Denotamos este A-módulo por $Hom_A(M, N)$.

Sejam $u:M'\to M$ e $v:N\to N''$ dois homomorfismos de A-módulos, então eles induzem aplicações

$$\overline{u}: \operatorname{Hom}_A(M,N) \to \operatorname{Hom}_A(M',N) \ \operatorname{e} \ \overline{v}: \operatorname{Hom}_A(M,N) \to \operatorname{Hom}_A(M,N'')$$

definidas como $\overline{u}(f)=f\circ u$ e $\overline{v}(f)=v\circ f$. Estas aplicações são também homomorfismos de A-módulos.

Para todo módulo M existe um isomorfismo natural $\operatorname{Hom}_A(A,M) \simeq M$ pois todo homomorfismo de A-módulos $f:A\to M$ é determinado de maneira única por $f(1)\in M$.

Definição 51. Um **submódulo** M' de M é um subgrupo de M que é fechado em relação à multiplicação por elementos de A.

O grupo abeliano M/M' herda uma estrutura de A-módulo de M, definida por a(m+M')=am+M'. Logo M/M' é o A-módulo **quociente** de M por M'.

O TCI é um caso particular do seguinte fato: a projeção canônica $M \rightarrow M/M'$ é um homomorfismo de A-módulos que induz uma correspondência um-a-um (que preserva ordem) entre submódulos de M que contém M' e submódulos de M/M'.

Se $f: M \to N$ é um homomorfismo de A-módulos, então o $\mathrm{Ker}(f)$ é um submódulo de M e a $\mathrm{Im}(f)$ é um submódulo de N. Denotamos o **cokernel** de f como sendo $\mathrm{Coker}(f) = N / \mathrm{Im}(f)$.

Se $M'\subseteq M$ é um submódulo de M tal que $M'\subseteq \operatorname{Ker}(f)$ então f induz um homomorfismo $\overline{f}:M/M'\to N$ definido como segue: se $\overline{m}\in M/M'$ é imagem de $m\in M$ então $\overline{f}(\overline{m})=f(m)$. O $\operatorname{Ker}(\overline{f})=\operatorname{Ker}(f)/M'$, em particular tomando $M'=\operatorname{Ker}(f)$ temos um isomorfismo de A-módulos

$$\frac{M}{\mathrm{Ker}(f)} \simeq \mathrm{Im}(f).$$

Definição 52. Seja M um A-módulo e $(M_i)_{i \in I}$ uma família de submódulos de M. Definimos

- a. A **soma** $\sum M_i$ como sendo o conjunto de todas as somas (finitas) $\sum m_i$, onde $m_i \in M_i$ para todo $i \in I$ e quase todos (i.e., todos exceto um número finito) os m_i são zero. A soma $\sum M_i$ é o menor submódulo de M que contém todos os M_i .
- b. A **interseção** $\bigcap M_i$ é um submódulo de M.
- c. Em geral não podemos definir o produto de dois submódulos, mas podemos definir o **produto** IM onde I é um ideal e M um A-módulo, como sendo o conjunto de todas as somas finitas $\Sigma a_i m_i$ com $a_i \in I$ e $m_i \in M_i$. O produto IM é um submódulo de M.

Proposição 53.

- a. Se $L \supseteq M \supseteq N$ são A-módulos, então $(L/N)/(M/N) \simeq L/M$.
- b. Se M₁ e M₂ são submódulos de M, então

$$\frac{(M_1+M_2)}{M_1}\simeq \frac{M_2}{(M_1\cap M_2)}.$$

Demonstração. Exercício 1.

Se N, P são submódulos de M definimos (N:P) como sendo o conjunto de todos os $a \in A$ tais que $aP \subseteq N$, logo (N:P) é um ideal de A. Em particular, (0:M) é o conjunto de todos os $a \in A$ tais que aM = 0, este ideal é chamado **aniquilador** de M e é denotado por Ann(M). Se $I \subseteq Ann(M)$ podemos considerar M como um (A/I)-módulo: se $\overline{a} \in A/I$ é representado por $a \in A$, defina $\overline{a}m$ como sendo am, $m \in M$. Observe que esta definição é independente da escolha do representante a de \overline{a} pois a poi

Definição 54. Um *A*-módulo M é dito fiel se Ann(M) = 0.

Segue da definição que todo módulo M é fiel como um $\frac{A}{Ann(M)}$ -módulo. Se m é um elemento de M, o conjunto de todos os múltiplos am, com $a \in A$, é um submódulo de M, denotado por Am ou $\langle m \rangle$. Se um módulo $M = \sum_{i \in I} Am_i$ dizemos que os m_i 's formam um **conjunto de geradores** de M, isto significa que todo elemento de M pode ser expresso (não necessariamente de maneira única) como uma combinação linear finita dos m_i 's com coeficientes em A. Um A-módulo é dito **finitamente gerado** (f.g.) se ele tem um conjunto finito de geradores.

Definição 55. Se $(M_i)_{i \in I}$ é uma família de A-módulos, definimos:

- a. A **soma direta** $\bigoplus_{i \in I} M_i$ como sendo o conjunto das famílias $(m_i)_{i \in I}$ tais que $m_i \in M_i$ para cada $i \in I$ e quase todos os m_i 's são zero.
- b. O **produto direto** $\prod_{i \in I} M_i$ como sendo o conjunto das famílias $(m_i)_{i \in I}$ tais que $m_i \in M_i$ para cada $i \in I$ (aqui descartamos a restrição dos m_i 's serem quase todos zero).

3.1 MÓDULOS FINITAMENTE GERADOS

Definição 56. Um A-módulo **livre** é um A-módulo isomorfo a $\bigoplus_{i \in I} M_i$ onde cada $M_i \simeq A$ como um A-módulo. Um A-módulo **livre f.g.** é isomorfo a $A^n = \underbrace{A \oplus \cdots \oplus A}_{n \text{ vezes}}$, para algum n > 0.

Proposição 57. M é um A-módulo f.g. se, e somente se, M é isomorfo a um quociente de A^n para algum inteiro n > 0.

Demonstração. (⇒) Sejam $m_1, ..., m_n$ os geradores de M. Defina $f: A^n \to M$ por $f(a_1, ..., a_n) = a_1 m_1 + \cdots + a_n m_n$. Então f é um homomorfismo de A-módulos sobrejetor e logo $M = A^n / \operatorname{Ker}(f)$.

(\Leftarrow) Temos que $A^n/N \stackrel{\varphi}{\simeq} M$ para algum A-módulo N, logo existe um homomorfismo de A-módulos sobrejetor $f:A^n \to M$ onde $f=\pi \circ \varphi$ com $\pi:A^n \to A^n/N$ a projeção canônica. Se $e_i=(0,\ldots,0,1,0,\ldots,0)$ (com 1 na i-ésima posição) então e_i ($1 \le i \le n$) geram A^n , ou seja $A^n=Ae_1+\cdots+Ae_n$. Como f é sobre então $f(A^n)=M=Af(e_1)+\cdots+Af(e_n)$ e logo $f(e_i)$ geram M.

O nosso objetivo agora é provar uma versão do Lema de Nakayama, para isso precisaremos dos seguintes resultados:

Proposição 58. Seja M um A-módulo f.g., I um ideal de A e f um endomorfismo do A-módulo M tal que $f(M) \subseteq IM$. Então f satisfaz uma equação da forma $f^n + a_1 f^{n-1} + \cdots + a_n$ id = 0 onde $a_i \in I$.

Demonstração. Seja m_1, \ldots, m_n o conjunto de geradores de M. Então cada $f(m_i) \in IM \log_{i} f(m_i) = \sum_{j=1}^{n} a_{ij} m_j \text{ com } 1 \leq i \leq n \text{ e } a_{ij} \in I$, i.e.,

$$\sum_{j=1}^{n} (\delta_{ij}f - a_{ij}\operatorname{id})m_j = 0$$
(2)

onde δ_{ij} é o delta de Kronecker. Seja B a matriz $(\delta_{ij}f - a_{ij}\operatorname{id})_{ij}$ então

$$B = \begin{bmatrix} f - a_{11} & id & -a_{12} & id & \cdots & -a_{1n} & id \\ -a_{21} & id & f - a_{22} & id & \cdots & -a_{2n} & id \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ -a_{n1} & id & -a_{n2} & id & \cdots & f - a_{nn} & id \end{bmatrix}$$

Multiplicando o lado esquerdo de (2) pela adjunta de B segue que B ·

$$\operatorname{Adj}(B) \left(\begin{array}{c} m_1 \\ \vdots \\ m_n \end{array}\right) = 0, \text{ mas } B \cdot \operatorname{Adj}(B) = \det(B) \cdot \cdot \cdot I_n \text{ isto implica que } \det(B)$$

anula cada m_i , logo é o endomorfismo nulo de M. Expandindo o determinante, obtemos uma equação da forma requerida. \Box

Corolário 59. Seja M um A-módulo f.g. e seja I um ideal de A tal que IM = M. Então existe $a \equiv 1 \mod I$, $a \in A$, tal que aM = 0.

Demonstração. Considere $f = \operatorname{id}$, então $\operatorname{id}(M) \subseteq IM$ por hipótese. Pela proposição anterior existem $a_1, \ldots, a_n \in I$ tais que $\operatorname{id} + a_1 \operatorname{id} + \cdots + a_n \operatorname{id} = 0$. Seja $a = 1 + a_1 + \cdots + a_n \in A$, claramente $a \equiv 1 \operatorname{mod} I$ e se $m \in M$ temos

$$am = (1 + a_1 + \dots + a_n)m = m + a_1m + \dots + a_nm = (id + a_1id + \dots + a_nid)m = 0$$

Aula 8

AULA 8: 17/09/2014

Lembrando a última aula. Queremos provar uma versão do Lema de Nakayama, para isso precisaremos dos seguintes resultados da última aula:

- a. **Proposição.** Seja M um A-módulo f.g., I um ideal de A e f um endomorfismo do A-módulo M tal que $f(M) \subseteq IM$. Então f satisfaz uma equação da forma $f^n + a_1 f^{n-1} + \cdots + a_n$ id = 0 onde $a_i \in I$.
- b. **Corolário.** Seja M um A-módulo f.g. e seja I um ideal de A tal que IM = M. Então existe $a \equiv 1 \mod I$, $a \in A$, tal que aM = 0.

E de alguns resultados das primeiras aulas como a definição do **radical de Jacobson** \Re de um anel A: que é a interseção de todos os ideais maximais de A. E da Proposição 26 que o caracteriza:

Proposição. $r \in \Re$ se e somente se $1 - r \cdot a$ é uma unidade de A para todo $a \in A$. Agora sim, estamos prontos para enunciar o

Lema 60. (Lema de Nakayama) Seja M um A-módulo f.g. e I um ideal de A contido no radical de Jacobson \Re de A. Se IM = M então M = 0.

Demonstração. Pelo Corolário 59 existe um elemento $a \in A$ tal que $a \equiv 1 \mod I$, ou seja a = 1 + r para algum $r \in I \subseteq \Re$ e a é tal que aM = 0. Pela Proposição 26 a é uma unidade de A, logo $M = (a^{-1}a)M = a^{-1}(aM) = 0$.

Como consequência do Lema de Nakayama temos:

Corolário 61. Seja M um A-módulo f.g., N um submódulo de M, $I \subseteq \Re$ um ideal de A. Se M = IM + N então M = N.

Demonstração. Como M é f.g. então M/N também é f.g com conjunto de geradores as imagens dos geradores de M. Sabemos que $I(\frac{M}{N}) \subseteq \frac{M}{N}$ é um submódulo, queremos ver que $\frac{M}{N} \subseteq I(\frac{M}{N})$. Seja $\overline{m} \in \frac{M}{N}$, como M = IM + N por hipótese, temos que $\overline{m} = \sum a_i m_i + n$ logo $m - \sum a_i m_i - n \in N$ o que implica $m - \sum a_i m_i \in N$, assim $\overline{m} = \overline{\sum} a_i m_i = \sum \overline{a_i} \overline{m_i} = \sum a_i \overline{m_i} \in I(\frac{M}{N})$ onde a última igualdade deve-se à definição de ação do módulo quociente. Segue que $I(\frac{M}{N}) = \frac{M}{N}$ e logo, pelo Lema de Nakayama (Lema 60), aplicado a $\frac{M}{N}$ temos que $\frac{M}{N} = 0$ ou seja M = N.

Seja A um anel local (i.e., um anel com um único ideal maximal), \mathfrak{m} seu ideal maximal e $\mathbf{k} = A/\mathfrak{m}$ seu corpo de resíduos. Seja M um A-módulo f.g., então $M/\mathfrak{m}M$ é aniquilado por \mathfrak{m} , logo é um A/\mathfrak{m} -módulo, ou seja um \mathbf{k} -espaço vetorial e como tal tem dimensão finita.

Proposição 62. Sejam m_i $(1 \le i \le n)$ os elementos de M cujas imagens em $M/\mathfrak{m}M$ formam uma base deste espaço vetorial. Então m_i geram M.

Demonstração. Seja N o submódulo de M gerado pelos m_i e seja $f:N\subseteq M\to \frac{M}{\mathfrak{m}M}$ o homomorfismo de A-módulos dado por $n\mapsto \overline{n}$. Vejamos que f é sobrejetor: seja $\overline{m}\in \frac{M}{\mathfrak{m}M}$, como $\frac{M}{\mathfrak{m}M}$ é um \mathbf{k} -espaço vetorial com base $\{\overline{m}_1,\ldots,\overline{m}_n\}$ temos que existem $k_1,\ldots,k_n\in \mathbf{k}$ tais que $\overline{m}=k_1\overline{m}_1+\cdots+k_n\overline{m}_n$. Sejam agora $a_i\in A$ representantes das classes $k_i\in A/\mathfrak{m}$ para $i=1,\ldots,n$ então $\overline{m}=\overline{a}_1\overline{m}_1+\cdots+\overline{a}_n\overline{m}_n$. Pela definição da ação de A/\mathfrak{m} em $\frac{M}{\mathfrak{m}M}$ temos que $\overline{a}_i\overline{m}_i=a_i\overline{m}_i$ e pela ação de A em $\frac{M}{\mathfrak{m}M}$ temos $a_i\overline{m}_i=\overline{a}_i\overline{m}_i$ logo $\overline{m}=\overline{a}_1\overline{m}_1+\cdots+\overline{a}_n\overline{m}_n$, assim existe $a_1m_1+\cdots+a_nm_n\in N$ tal que $f(a_1m_1+\cdots+a_nm_n)=\overline{m}$. Por outro lado, $n\in \mathrm{Ker}(f)\Leftrightarrow n\in N$ e $\overline{n}=\overline{0}\Leftrightarrow n\in N$ e $n\in \mathfrak{m}M$ logo $\mathrm{Ker}(f)=N\cap\mathfrak{m}M$. Segue do Teorema de Isomorfismos que \overline{N} 0 e \overline{N} 1 m \overline{M} 2 e da Proposição 53 temos que \overline{N} 1 m \overline{M} 2 m \overline{M} 3 agora como \overline{M} 3 m \overline{M} 4 e da Proposição 53 que

$$rac{rac{M}{\mathfrak{m}M}}{rac{M}{\mathfrak{m}M}} \simeq rac{M}{\mathfrak{m}M+N}'$$

mas $\frac{M}{\mathfrak{m}M} \simeq \frac{\mathfrak{m}M+N}{\mathfrak{m}M}$ logo $\frac{M}{\mathfrak{m}M+N} = 0$ e $\mathfrak{m}M+N=M$. Aplicando o Corolário anterior a M e N com $I=\mathfrak{m}$ (o único ideal maximal de A) então $I\subseteq\mathfrak{R}$ (interseção de todos os ideais maximais de A) logo M=N.

3.2 SEQUÊNCIAS EXATAS

Definição 63. Uma sequência de *A*-módulos e *A*-homomorfismos

$$\cdots \longrightarrow M_{i-1} \xrightarrow{f_i} M_i \xrightarrow{f_{i+1}} M_{i+1} \longrightarrow \cdots$$
 (3)

é dita exata em M_i se $Im(f_i) = Ker(f_{i+1})$. A sequência é **exata** se é exata em cada M_i .

Em particular:

a.
$$0 \rightarrow M' \xrightarrow{f} M$$
 é exata $\Leftrightarrow f$ é injetiva;

b.
$$M \stackrel{g}{\rightarrow} M'' \rightarrow 0$$
 é exata $\Leftrightarrow g$ é sobrejetiva;

c. $0 \to M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0$ é exata $\Leftrightarrow f$ é injetiva, g é sobrejetiva e $\operatorname{Im}(f) = \operatorname{Ker}(g)$.

Uma sequência do tipo c. é chamada de **sequência exata curta**. Toda sequência exata longa do tipo (3) pode ser dividida em sequências exatas curtas: se $N_i = \operatorname{Im}(f_i) = \operatorname{Ker}(f_{i+1})$ temos $0 \to N_i \overset{\operatorname{incl}}{\hookrightarrow} M_i \overset{f_{i+1}}{\twoheadrightarrow} N_{i+1} \to 0$ para cada i.

Proposição 64.

- a. Seja $M' \xrightarrow{u} M \xrightarrow{v} M'' \to 0$ uma sequência de A-módulos e A-homomorfismos. Então essa sequência é exata se, e somente se, para todo A-módulo N a sequência $0 \to \operatorname{Hom}_A(M'', N) \xrightarrow{\overline{v}} \operatorname{Hom}_A(M, N) \xrightarrow{\overline{u}} \operatorname{Hom}_A(M', N)$ é exata.
- b. Seja $0 \to N' \xrightarrow{u} N \xrightarrow{v} N''$ uma sequência de A-módulos e A-homomorfismos. Então essa sequência é exata se, e somente se, para todo A-módulo M a sequência $0 \to \operatorname{Hom}_A(M,N') \xrightarrow{\overline{u}} \operatorname{Hom}_A(M,N) \xrightarrow{\overline{v}} \operatorname{Hom}_A(M,N'')$ é exata.

Demonstração.

- a. (\Rightarrow) Suponha que $M' \stackrel{u}{\to} M \stackrel{v}{\to} M'' \to 0$ é uma sequência exata, queremos provar que \overline{v} é injetiva e $\operatorname{Im}(\overline{v}) = \operatorname{Ker}(\overline{u})$.
 - a) \overline{v} é injetiva: Seja $f \in \operatorname{Ker}(\overline{v})$ então $0 = \overline{v}(f) = f \circ v : M \to N$ ou seja f(v(M)) = 0, mas v é sobre logo v(M) = M'' assim f = 0.
 - b) $\operatorname{Im}(\overline{v}) \subseteq \operatorname{Ker}(\overline{u})$: Seja $f \in \operatorname{Im}(\overline{v})$, então existe $g: M'' \to N$ tal que $f = \overline{v}(g) = g \circ v$. Por outro lado $\overline{u}(f) = f \circ u = g \circ v \circ u$, mas $\operatorname{Im}(u) = \operatorname{Ker}(v)$ o que implica $v \circ u = 0$ logo $\overline{u}(f) = 0$ e por tanto $f \in \operatorname{Ker}(\overline{u})$.
 - c) $\operatorname{Im}(\overline{v}) \supseteq \operatorname{Ker}(\overline{u})$: Seja $g \in \operatorname{Ker}(\overline{u})$, então $\overline{u}(g) = g \circ u = 0$. Queremos provar que existe $f: M'' \to N$ tal que $g = \overline{v}(f) = f \circ v$. Dado $m'' \in M''$ como v é sobre existe $m \in M$ tal que m'' = v(m), defina então f(m'') := g(m). Vejamos que f está bem definida. Suponha que existam $m_1, m_2 \in M$ tais que $m'' = v(m_1) = v(m_2)$, logo $m_1 m_2 \in \operatorname{Ker}(v) = \operatorname{Im}(u)$ então existe $m' \in M'$ tal que $u(m') = m_1 m_2$, aplicando g a ambos lados temos $0 = g \circ u(m') = g(m_1) g(m_2)$ logo $g(m_1) = g(m_2)$. Vejamos agora que $f \in \operatorname{Hom}_A(M'', N)$: sejam $m_1'', m_2'' \in M''$ então existem $m_1, m_2 \in M$ tais que $m_1'' = v(m_1)$ o que implica que $m_1'' + m_2'' = v(m_1) + v(m_2) = v(m_1 + m_2)$ logo

$$f(m_1'' + m_2'') = g(m_1 + m_2) = g(m_1) + g(m_2) = f(m_1'') + f(m_2'').$$

Por outro lado, se $a \in A$ então $am_1'' = av(m_1) = v(am_1)$ logo

$$f(am_1'') = g(am_1) = ag(m_1) = af(m_1'').$$

(⇐)Suponha que $0 \to \operatorname{Hom}_A(M'', N) \xrightarrow{\overline{v}} \operatorname{Hom}_A(M, N) \xrightarrow{\overline{u}} \operatorname{Hom}_A(M', N)$ é uma sequência exata para todo A-módulo N. Queremos provar que v é sobre e $\operatorname{Im}(u) = \operatorname{Ker}(v)$.

- a) v é sobre: ($f: X \to Y$ é sobre $\Leftrightarrow g_1 \circ f = g_2 \circ f$ para aplicações $g_1, g_2: Y \to Z$ implica $g_1 = g_2$). Suponha que existem homomorfismos $g_1, g_2: M'' \to N$ tais que $g_1 \circ v = g_2 \circ v$, i.e., $\overline{v}(g_1) = \overline{v}(g_2)$ como \overline{v} é injetiva então $g_1 = g_2$ e v é sobre.
- b) $\operatorname{Im}(u) \subseteq \operatorname{Ker}(v)$: Temos que $\overline{u} \circ \overline{v} = 0$, i.e., $f \circ v \circ u = 0$ para todo $f : M'' \to N$. Tomando N = M'' e $f = \operatorname{id}$ segue que $v \circ u = 0$ e $\operatorname{logo} \operatorname{Im}(u) \subseteq \operatorname{Ker}(v)$.
- c) $\operatorname{Im}(u) \supseteq \operatorname{Ker}(v)$: Seja $N = \frac{M}{\operatorname{Im}(u)}$ e $\pi: M \to N$ a projeção canônica. Então $\overline{u}(\pi)(m') = \pi \circ u(m') = u(m') + \operatorname{Im}(u) = 0$ para todo $m' \in M'$ então $\pi \in \operatorname{Ker}(\overline{u}) = \operatorname{Im}(\overline{v})$, logo existe $f: M'' \to N$ tal que $\pi = \overline{v}(f) = f \circ v$. Consequentemente, $\operatorname{Ker}(v) \subseteq \operatorname{Ker}(\pi) = \operatorname{Im}(u)$.

b. Exercício 2.

3.3 PRODUTO TENSORIAL DE MÓDULOS

Sejam M, N, P três A-módulos. Uma aplicação $f: M \times N \rightarrow P$ é chamada A-bilinear se ela satisfaz:

a.
$$f(m+m',n) = f(m,n) + f(m',n)$$

b.
$$f(m, n + n') = f(m, n) + f(m, n')$$

c.
$$f(am, n) = f(m, an) = af(m, n)$$

para todo $m, m' \in M, n, n' \in N$ e $a \in A$.

Proposição 65. Sejam M e N dois A-módulos. Então existe um A-módulo T junto com uma aplicação A-bilinear $g: M \times N \to T$ com a seguinte propriedade: dados um A-módulo P e uma aplicação A-bilinear $f: M \times N \to P$, existe uma única aplicação A-linear $f': T \to P$ tal que $f = f' \circ g$.

Alem disso, se (T,g) e (T',g') são dois pares que satisfazem essa propriedade, então existe um único isomorfismo $j: T \to T'$ tal que $j \circ g = g'$.

$$M \times N \xrightarrow{g} T$$

$$f \downarrow \qquad \qquad \exists ! f'$$

Demonstração. Unicidade. Substituindo (P, f) por (T', g') temos que existe uma única $j: T \to T'$ tal que $g' = j \circ g$.

$$M \times N \xrightarrow{g} T$$

$$g' \downarrow \qquad \exists ! j$$

Intercambiando os papéis de T e T' temos que existe um único $j': T' \to T$ tal que $g = j' \circ g'$.

Logo $g' = j \circ j' \circ g'$ e $g = j' \circ j \circ g$, assim as composições $j \circ j' : T' \to T'$ e $j' \circ j : T \to T$ devem ser a identidade, logo j é um isomorfismo.

Existência. Denote por C o A-módulo livre $A^{|M\times N|}$ cujos elementos são combinações lineares formais de elementos de $M\times N$ com coeficientes em A, i.e., são expressões da forma $\sum_{(m_i,n_i)\in M\times N}a_i(m_i,n_i)$ com $a_i\in A$, $m_i\in M$ e $n_i\in N$. Seja D o submódulo de C gerado por todos os elementos de C do seguinte tipo

$$(m+m',n) - (m,n) - (m',n)$$

 $(m,n+n') - (m,n) - (m,n')$
 $(am,n) - a(m,n)$
 $(m,an) - a(m,n)$.

Seja T = C/D. Para cada elemento base (m, n) de C, denote por $m \otimes n$ sua imagem em T. Então T é gerado pelos elementos da forma $m \otimes n$. Estes elementos satisfazem

$$(m+m')\otimes n = m\otimes n + m'\otimes n$$
 $m\otimes (n+n') = m\otimes n + m\otimes n'$
 $(am)\otimes n = m\otimes (an) = a(m\otimes n).$

Equivalentemente, a aplicação $g: M \times N \to T$ definida por $g(m,n) = m \otimes n$ é A-bilinear.

Queremos ver que (T,g) satisfazem as condições da proposição. Observe que qualquer aplicação f de $M \times N$ em um A-módulo P estende-se por linearidade a um homomorfismo de A-módulos $\overline{f}: C \to P$. Suponha em particular que f é A-bilinear então, segue das definições, que \overline{f} anula-se em todos os geradores de D e, logo, em todo D ou seja $D \subseteq \operatorname{Ker}(\overline{f})$. Portanto, \overline{f} induz um A-homomorfismo bem definido $f': T = C/D \to P$ tal que $f'(m \otimes n) = \overline{f}(m,n) = f(m,n)$. A aplicação f' é definida de maneira única por esta condição, e logo o par (T,g) satisfaz as condições da proposição. \square

O módulo T construído na proposição anterior é chamado de **produto tensorial** de M e N, e será denotado por $M \otimes_A N$. Ele é gerado pelos elementos $m \otimes n$ com $m \in M$ e $n \in N$, chamaremos um elemento deste tipo de **tensor elementar**. Se $(m_i)_{i \in I}$ e $(n_j)_{j \in J}$ são famílias de geradores de M e N, respetivamente, então os elementos $m_i \otimes n_j$ geram $M \otimes_A N$. Em particular, se M e N são f.g. então também o é $M \otimes_A N$.

AULA 9

AULA 9: 19/09/2014

Observação 66. Podemos generalizar a noção de produto tensorial a qualquer número finito de módulos, definindo aplicações multilineares $f: M_1 \times \cdots \times M_r \to P$ como sendo aplicações lineares em cada variável e seguindo a prova da Proposição 65 deveríamos chegar a um "**produto multi-tensorial**" $T = M_1 \otimes_A \cdots \otimes_A M_r$ gerado por todos os produtos $m_1 \otimes \cdots \otimes m_r$, com $m_i \in M_i$ para todo $i = 1, \ldots, r$.

Proposição 67. (Propriedades do Produto Tensorial) Sejam M, N e P A-módulos, então:

- a. Comutatividade: $M \otimes_A N \simeq N \otimes_A M$;
- b. Associatividade: $(M \otimes_A N) \otimes_A P \simeq M \otimes_A (N \otimes_A P)$;
- c. Distributividade: $(M \oplus N) \otimes_A P \simeq (M \otimes_A P) \oplus (N \otimes_A P)$;
- *d.* Elemento unidade: $A \otimes_A M \simeq M$
- e. Quocientes: Seja I \subseteq A um ideal então $M \otimes_A A/I \simeq M/IM$.

Demonstração. A técnica da demonstração é construir aplicações bilineares ou multilineares e usar a Proposição 65 para deduzir a existência de homomorfismos de produtos tensoriais e logo construir morfismos inversos explícitos para estes mapas. Os itens a. , b. e c. são deixados como **Exercício 3.**

Para ver d. defina a aplicação A-bilinear $\varphi: A \times M \to M$ dada por $(a,m) \mapsto am$. Pela Proposição 65 existe um A-homomorfismo $\varphi': A \otimes_A M \to M$ dado por $\varphi'(a \otimes m) = am$. Seja agora o A-homomorfismo $\psi: M \to A \otimes_A M$ dado por $m \mapsto 1 \otimes m$, então $\varphi' \circ \psi: M \to M$ satisfaz $\varphi' \circ \psi(m) = \varphi'(1 \otimes m) = 1m = m$ para todo $m \in M \log \varphi' \circ \psi = \mathrm{id}_M$. Por outro lado $\psi \circ \varphi': A \otimes_A M \to A \otimes_A M$ satisfaz $\psi \circ \varphi'(a \otimes m) = \psi(am) = 1 \otimes am = a \otimes m$ para todo tensor elementar $a \otimes m$ com $a \in A$ e $m \in M$, como estes tensores elementares geram $A \otimes_A M$ temos que $\psi \circ \varphi' = \mathrm{id}_{A \otimes_A M}$. Portanto $A \otimes_A M \simeq M$.

Para provar e. defina a aplicação A-bilinear $\varphi: M \times A/I \to M/IM$ dada por $(m, \overline{a}) \mapsto \overline{am}$. Observe que esta aplicação está bem definida, i.e., o elemento \overline{am} não depende da escolha do representante de classe de \overline{a} : Suponha que $\overline{a} = \overline{b}$ então $a - b \in I$ logo $(a - b)m \in IM$ ou seja $am - bm \in IM$ logo $\overline{am} = \overline{bm}$. Pela Proposição 65 existe um A-homomorfismo $\varphi': M \otimes_A A/I \to M/IM$ dado por $\varphi'(m \otimes \overline{a}) = \overline{am}$. Seja agora o A-homomorfismo $\psi: M \to M \otimes_A A/I$ dado por $m \mapsto m \otimes \overline{1}$, vejamos que $IM \subseteq \operatorname{Ker}(\psi)$. Seja $m \in IM$, então $m = \Sigma a_i m_i$ com $a_i \in I$ e $m_i \in M$ logo temos

$$\psi(m) = \psi(\sum_{i} a_{i} m_{i}) = (\sum_{i} a_{i} m_{i}) \otimes \overline{1} = \sum_{i} a_{i} (m_{i} \otimes \overline{1})$$
$$= \sum_{i} (m_{i} \otimes a_{i} \overline{1}) = \sum_{i} (m_{i} \otimes \overline{a_{i}}) = 0$$

pois $a_i \in I$, logo $m \in \operatorname{Ker}(\psi)$. Assim ψ induz um A-homomorfismo $\overline{\psi}: M/IM \to M \otimes_A A/I$ dado por $\overline{m} \mapsto m \otimes \overline{1}$. Vejamos que $\varphi' \circ \overline{\psi}$ são inversos um do outro. Temos que $\varphi' \circ \overline{\psi}: M/IM \to M/IM$ satisfaz $\varphi' \circ \overline{\psi}(\overline{m}) = \varphi'(m \otimes \overline{1}) = \overline{1m} = \overline{m}$ para todo $\overline{m} \in M/IM$ logo $\varphi' \circ \overline{\psi} = \operatorname{id}_{M/IM}$. Por outro lado $\overline{\psi} \circ \varphi' : M \otimes_A A/I \to M \otimes_A A/I$ satisfaz $\overline{\psi} \circ \varphi'(m \otimes \overline{a}) = \overline{\psi}(\overline{am}) = am \otimes \overline{1} = m \otimes \overline{a}$ para todo tensor elementar $m \otimes \overline{a}$ com $\overline{a} \in A/I$ e $m \in M$, como estes tensores elementares geram $M \otimes_A A/I$ temos que $\overline{\psi} \circ \varphi' = \operatorname{id}_{M \otimes_A A/I}$. Portanto $M \otimes_A A/I \simeq M/IM$.

Exemplo 68. Se m, n são coprimos então $(\mathbb{Z}/m\mathbb{Z}) \otimes_{\mathbb{Z}} (\mathbb{Z}/n\mathbb{Z}) = 0$. Como $\mathrm{mdc}(m,n) = 1$ então existem $x,y \in \mathbb{Z}$ tais que 1 = mx + ny. Seja agora $a \otimes b$ um gerador de $(\mathbb{Z}/m\mathbb{Z}) \otimes_{\mathbb{Z}} (\mathbb{Z}/n\mathbb{Z})$ então

$$a \otimes b = 1(a \otimes b) = (mx + ny)(a \otimes b)$$
$$= ((mx + ny)a) \otimes b = ((mx)a + (ny)a) \otimes b$$
$$= (ny)a \otimes b = a \otimes (ny)b = a \otimes 0 = 0.$$

Logo $(\mathbb{Z}/m\mathbb{Z}) \otimes_{\mathbb{Z}} (\mathbb{Z}/n\mathbb{Z}) = 0.$

Seja $f:A\to B$ um homomorfismo de anéis e seja N um B-módulo. Então N tem uma estrutura de A-módulo definida como segue: se $a\in A$ e $n\in N$

então definimos an como sendo f(a)n. Neste caso dizemos que o A-módulo N é obtido de N por **restrição de escalares**. Em particular, f define desta maneira uma estrutura de A-módulo em B.

Proposição 69. Seja $f: A \to B$ um homomorfismo de anéis e seja N um B-módulo f.g. Suponha que B é f.g. como um A-módulo. Então N é f.g. como um A-módulo.

Demonstração. Sejam n_1, \ldots, n_r os geradores de N como B-módulo e sejam b_1, \ldots, b_k os geradores de B como A-módulo. Então os rk produtos n_ib_j são os geradores de N como A-módulo: $N \ni n = \sum_{i=1}^r x_i n_i$ onde $x_i \in B$, logo $x_i = \sum_{j=1}^k a^i_j b_j$ com $a^i_j \in A$ assim $n = \sum_{i=1}^r \sum_{j=1}^k a^i_j (b_j n_i)$.

Seja M um A-módulo, podemos formar o A-módulo $M_B \simeq B \otimes_A M$ pois, como observamos antes, B tem estrutura de A-módulo. De fato M_B carrega também uma estrutura de B-módulo dada por $b(b' \otimes m) = bb' \otimes m$ para todo $b, b' \in B$ e $m \in M$. Dizemos que o B-módulo M_B é obtido de M por extensão de escalares.

Proposição 70. Seja $f: A \to B$ um homomorfismo de anéis. Se M é um A-módulo f.g., então M_B é f.g. como um B-módulo.

Demonstração. Sejam m_1, \ldots, m_r os geradores de M sobre A e seja $b \otimes m$ um tensor elementar de M_B então $b \otimes m = b(1 \otimes m) = b(1 \otimes \sum_{i=1}^r a_i m_i) = \sum_{i=1}^r a_i b(1 \otimes m_i)$, onde a ação de A em B foi definida por $a_i b = f(a_i)b \in B$. Logo os $1 \otimes m_i$'s geram M_B sobre B.

Proposição 71. Sejam M, N, P A-módulos então

$$\operatorname{Hom}_A(M \otimes_A N, P) \simeq \operatorname{Hom}_A(M, \operatorname{Hom}_A(N, P)).$$

Demonstração. Seja $f: M \times N \to P$ uma aplicação A-bilinear. Para cada $m \in M$ a aplicação $n \mapsto f(m,n)$ de N em P é A-linear (logo A-homomorfismo), logo f da origem a uma aplicação $φ: M \to \operatorname{Hom}_A(N,P)$ a qual é A-linear (logo A-homomorfismo) pois f é linear na variável m. Reciprocamente, qual-quer A-homomorfismo $φ: M \to \operatorname{Hom}_A(N,P)$ define uma aplicação bilinear $f: M \times N \to P$ dada por $(m,n) \mapsto φ(m)(n)$. Logo o conjunto S de todas as aplicações A-bilineares $M \times N \to P$ está em correspondência um-a-um com $\operatorname{Hom}_A(M,\operatorname{Hom}_A(N,P))$. Por outro lado, S está em correspondência um-a-um com $\operatorname{Hom}_A(M \otimes N,P)$ pela Proposição 65. Logo temos um isomorfismo canônico $\operatorname{Hom}_A(M \otimes N,P) \simeq \operatorname{Hom}_A(M,\operatorname{Hom}_A(N,P))$.

Sejam $f: M \to M'$ e $g: N \to N'$ homomorfismos de A-módulos. Defina $h: M \times N \to M' \otimes_A N'$ por $h(m,n) = f(m) \otimes g(n)$, é fácil ver que h é A-bilinear e logo induz um homomorfismo de A-módulos $h': M \otimes_A N \to M' \otimes_A N'$ tal que $h'(m \otimes n) = f(m) \otimes g(n)$ para todo $m \in M$ e $n \in N$. Denote h' por $f \otimes g$.

Em particular, fixado um A-módulo N temos um funtor $T_N = _ \otimes_A N$ da categoria dos A-módulos e A-homomorfismos nela mesma, que associa a cada A-módulo M o A-módulo $M \otimes_A N$ e leva o A-homomorfismo $f:M \to M'$ no A-homomorfismo $f \otimes \mathrm{id}:M \otimes_A N \to M' \otimes_A N$. Uma das propriedades mais importantes deste funtor é que ele é exato à direita:

Proposição 72. ($_{\bigcirc \otimes_A} N$ é Exato à Direita) Seja

$$M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0 \tag{4}$$

uma sequência exata de A-módulos e A-homomorfismos, e seja N um A-módulo qualquer. Então a sequência

$$M' \otimes_A N \xrightarrow{f \otimes \mathrm{id}_N} M \otimes_A N \xrightarrow{g \otimes \mathrm{id}_N} M'' \otimes_A N \to 0 \tag{5}$$

é exata.

Demonstração. Denote por E a sequência (4) e por $E \otimes_A N$ a sequência (5). Seja P um A-módulo qualquer. Como E é exata, a sequência $\operatorname{Hom}_A(E,\operatorname{Hom}_A(N,P))$ é exata pela Proposição 64, logo a sequência $\operatorname{Hom}_A(E \otimes_A N,P)$ é exata pela Proposição 71. Novamente, pela Proposição 64 segue que $E \otimes_A N$ é exata. □

Em geral não é verdade que se $M' \stackrel{f}{\to} M \stackrel{g}{\to} M''$ é uma sequência exata então $M' \otimes_A N \stackrel{f \otimes \mathrm{id}}{\to} M \otimes_A N \stackrel{g \otimes \mathrm{id}}{\to} M'' \otimes_A N$ é exata, pois produtos tensoriais podem, por exemplo, destruir injetividade, vejamos:

Exemplo 73. Considere o anel $A = \mathbb{Z}$ e a sequência exata $0 \to \mathbb{Z} \xrightarrow{f} \mathbb{Z}$ onde f(x) = 2x para todo $x \in \mathbb{Z}$. Seja $N = \mathbb{Z}/2\mathbb{Z}$ então a sequência $0 \to \mathbb{Z} \otimes_{\mathbb{Z}} (\mathbb{Z}/2\mathbb{Z}) \xrightarrow{f \otimes \mathrm{id}} \mathbb{Z} \otimes_{\mathbb{Z}} (\mathbb{Z}/2\mathbb{Z})$ não é exata, pois para qualquer $x \otimes y \in \mathbb{Z} \otimes_{\mathbb{Z}} (\mathbb{Z}/2\mathbb{Z})$ temos

$$(f \otimes id)(x \otimes y) = 2x \otimes y = x \otimes 2y = x \otimes 0 = 0,$$

logo $f \otimes id$ é a aplicação nula enquanto que $\mathbb{Z} \otimes_{\mathbb{Z}} (\mathbb{Z}/2\mathbb{Z}) \simeq \mathbb{Z}/2\mathbb{Z} \neq 0$.

Definição 74. Um A-módulo M é dito **plano** se o funtor $_ \otimes_A M$ é exato.

Note que como o produto tensorial é exato à direita, M é plano sobre A se, e somente se, o funtor $_ \otimes_A M$ preserva injeções, ou seja, $N \hookrightarrow N'$ injetor implica $N \otimes_A M \hookrightarrow N' \otimes_A M$ injetor.

Exemplo 75.

a. Módulos livres são sempre planos: se $M = \bigoplus_{i \in I} A$, para qualquer morfismo de A-módulos $f: N \to N'$ temos a aplicação

$$N \otimes_A \left(\bigoplus_{i \in I} A \right) \stackrel{f \otimes \mathrm{id}}{\longrightarrow} N' \otimes_A \left(\bigoplus_{i \in I} A \right),$$
 (6)

mas pela propriedade distributiva e elemento unidade do produto tensorial (Proposição 67 c. e d.) temos: $N \otimes_A (\bigoplus_{i \in I} A) \simeq \bigoplus_{i \in I} (N \otimes_A A) \simeq \bigoplus_{i \in I} N$, assim o seguinte diagrama comuta

$$N \otimes_A (\bigoplus_{i \in I} A) \xrightarrow{f \otimes \mathrm{id}} N' \otimes_A (\bigoplus_{i \in I} A)$$

$$\simeq \bigvee_{\bigoplus_{i \in I} N} \xrightarrow{\bigoplus_{i \in I} f} \bigoplus_{i \in I} N'$$

Logo se f é injetor então $\oplus f$ também é injetor o que implica que $f \otimes id$ é injetor, mostrando que M é um A-módulo plano.

b. Se I é um ideal próprio de um domínio A, então A/I é um A-módulo plano se, e somente se, I=0. (Exercício 4.)

Álgebras

Seja $f:A\to B$ um homomorfismo de anéis. Se $a\in A$ e $b\in B$ defina o produto ab=f(a)b. Logo B tem estrutura de A-módulo e estrutura de anel. Chamamos ao anel B equipado com sua estrutura de A-módulo de A-álgebra.

Definição 76. Uma *A*-álgebra é um anel *B* junto com um homomorfismo de anéis $f: A \rightarrow B$.

Se $f:A\to B$ e $g:A\to C$ são dois homomorfismos de anéis, um **homomorfismo de** A**-álgebras** $h:B\to C$ é um homomorfismo de anéis que também é um homomorfismo de A-módulos.

Dizemos que um homomorfismo de anéis $f:A\to B$ é **finito** e B é uma A-álgebra **finita** se B é f.g. como um A-módulo. Dizemos que o homomorfismo f é de **tipo finito** e B é uma A-álgebra f.g. se existe um conjunto finito de elementos $b_1, \ldots, b_n \in B$ tal que todo elemento de B pode ser escrito como um polinômio em b_1, \ldots, b_n com coeficientes em f(A), ou equivalentemente, se existe um homomorfismo de A-álgebras sobrejetor do anel dos polinômios $A[x_1, \ldots, x_n]$ em B.

Aula 10

AULA 10: 24/09/2014

Lembrando a última aula. Definimos uma A-álgebra como sendo um anel B equipado com uma estrutura de A-módulo definida por um homomorfismo de anéis $f: A \to B$ dada por ab = f(a)b.

Dadas duas A-álgebras B, C podemos formar seu produto tensorial $D=B\otimes_A C$ que é um A-módulo. Vamos definir uma multiplicação em D. Considere a aplicação $B\times C\times B\times C\to D$ definida por $(b,c,b',c')\mapsto bb'\otimes cc'$. Claramente esta aplicação é A-multilinear e logo induz um homomorfismo de A-módulos $B\otimes_A C\otimes_A B\otimes_A C\to D$, pela Proposição 67 b. podemos associar, então temos um homomorfismo de A-módulos $D\otimes_A D\to D$ que corresponde a uma aplicação A-bilinear $\mu:D\times D\to D$ tal que $\mu(b\otimes c,b'\otimes c')=bb'\otimes cc'$. Com esta multiplicação e a soma definida por $\mu^+(b\otimes c,b'\otimes c')=(b+b')\otimes (c+c')$, o produto tensorial $D=B\otimes_A C$ é um anel comutativo com elemento identidade $1\otimes 1$. Mais ainda, D é uma A-álgebra: a aplicação $a\mapsto f(a)\otimes g(a)$ é um homomorfismo de anéis de A em D.

Definição 77. Uma *A*-álgebra *B* é **plana** se *B* é plano como *A*-módulo.

Proposição 78. Seja $f: A \to B$ uma A-álgebra plana, $g: B \to C$ uma B-álgebra plana, então $g \circ f: A \to C$ é uma A-álgebra plana.

Demonstração. Temos que provar que *C* é um *A*-módulo plano. É claro que *C* é um *A*-módulo com ação de *A* dada por $ac = g(f(a))c = (g \circ f)(a)c$, só resta provar que o funtor $_ \otimes_A C$ é exato. Seja $j: N \hookrightarrow N'$ um homomorfismo de *A*-módulos injetivo, então como *B* é um *A*-módulo plano $j \otimes id_B: N \otimes_A B \hookrightarrow N' \otimes_A B$ é um homomorfismo de *A*-módulos injetivo. Mas $N_B = N \otimes_A B$ é um *B*-módulo (obtido de *N* por extensão de escalares) com ação de *B* dada por $b(n \otimes b') = n \otimes bb'$ para todo $b, b' \in B$ e $n \in N$, logo $j \otimes id_B: N \otimes_A B \hookrightarrow N' \otimes_A B$ é um homomorfismo de *B*-módulos injetivo. Como *C* é um *B*-módulo plano então $(j \otimes id_B) \otimes id_C: (N \otimes_A B) \otimes_B C \hookrightarrow (N' \otimes_A B) \otimes_B C$ é um homomorfismo de *B*-módulos injetivo. Como o seguinte diagrama

comuta (pelo Exercício 9 da Lista 3 : (Lei do **Cancelamento**) Seja $f:A \to B$ uma A-álgebra, M um A-módulo e N um B-módulo. Mostre que existe isomorfismo de B-módulos: $(M \otimes_A B) \otimes_B N \simeq M \otimes_A N$.) temos

50

que $j \otimes \operatorname{id}_C : N \otimes_A C \hookrightarrow N' \otimes_A C$ é um homomorfismo de *B*-módulos injetivo. Como *B* é uma *A*-álgebra todo *B*-módulo é um *A*-módulo (obtido de por restrição de escalares) com ação de *A* dada por an = f(a)n. Assim $j \otimes \operatorname{id}_C : N \otimes_A C \hookrightarrow N' \otimes_A C$ é um homomorfismo de *A*-módulos injetivo. Logo *C* é um *A*-módulo plano.

Proposição 79. (Mudança de Base) Seja $f: A \to B$ uma A-álgebra plana, M um A-módulo plano então $B \otimes_A M$ é um B-módulo plano.

Demonstração. Seja $j:N\hookrightarrow N'$ um homomorfismo de B-módulos injetivo. Como B é uma A-álgebra todo B-módulo é um A-módulo, assim $j:N\hookrightarrow N'$ é um homomorfismo de A-módulos injetivo. Como M é um A-módulo plano então $j\otimes \operatorname{id}_M:N\otimes_A M\hookrightarrow N'\otimes_A M$ é um homomorfismo de A-módulos injetivo. Mas $N\otimes_A M$ também tem estrutura de B-módulo com ação de B dada por $b(n\otimes m)=bn\otimes m$, assim $j\otimes \operatorname{id}_M:N\otimes_A M\hookrightarrow N'\otimes_A M$ é um homomorfismo de B-módulos injetivo. Analogamente à proposição anterior temos que o seguinte diagrama

$$\begin{array}{ccc}
N \otimes_B (B \otimes_A M) & \xrightarrow{j \otimes \mathrm{id}} & N' \otimes_B (B \otimes_A M) \\
\downarrow^{\simeq} & & \simeq^{\uparrow} \\
N \otimes_A M & \xrightarrow{j \otimes \mathrm{id}} & N' \otimes_A M
\end{array}$$

comuta, logo $j \otimes id : N \otimes_B (B \otimes_A M) \hookrightarrow N' \otimes_B (B \otimes_A M)$ é um homomorfismo de B-módulos injetivo. Logo $B \otimes_A M$ é um B-módulo plano. \square

3.4 EXERCÍCIOS

Ex. 32 — Prove que

- 1. Se $L \supseteq M \supseteq N$ são A-módulos, então $(L/N)/(M/N) \simeq L/M$.
- 2. Se M_1 e M_2 são submódulos de M, então

$$\frac{(M_1+M_2)}{M_1}\simeq \frac{M_2}{(M_1\cap M_2)}.$$

Ex. 33 — Seja $0 \to N' \stackrel{u}{\to} N \stackrel{v}{\to} N''$ uma sequência de A-módulos e A-homomorfismos. Mostre que essa sequência é exata se, e somente se, para todo A-módulo M a sequência

$$0 \to \operatorname{Hom}_A(M, N') \xrightarrow{\overline{u}} \operatorname{Hom}_A(M, N) \xrightarrow{\overline{v}} \operatorname{Hom}_A(M, N'')$$

é exata.

Ex. 34 — Seja $0 \to M' \to M \to M''$ uma sequência exata de *A*-módulos. Mostre que se M' e M'' são f.g. então M é f.g.

Ex. 35 — Seja A um anel não nulo. Mostre que se $A^m \simeq A^n$ então m = n.

Ex. 36 — Se I é um ideal próprio de um domínio A, então A/I é um A-módulo plano se, e somente se, I=0.

Ex. 37 — **(Propriedades do Produto Tensorial)** Sejam M, N e P A-módulos, mostre que:

- 1. $M \otimes_A N \simeq N \otimes_A M$;
- 2. $(M \otimes_A N) \otimes_A P \simeq M \otimes_A (N \otimes_A P)$;
- 3. $(M \oplus N) \otimes_A P \simeq (M \otimes_A P) \oplus (N \otimes_A P)$;

Ex. 38 — **(Lema de Nakayama II)** Sejam *A* um anel local, **k** seu corpo de resíduos, *M* e *N A*-módulos f.g. Prove que:

- 1. Se $M \otimes_A \mathbf{k} = 0$ então M = 0.
- 2. Se $M \otimes_A N = 0$ então M = 0 ou N = 0.
- 3. Seja $\phi: N \to M$ um morfismo de A-álgebras. Então ϕ é sobrejetor se, e somente se, a aplicação \mathbf{k} -linear $\phi \otimes \mathrm{id}: N \otimes_A \mathbf{k} \to M \otimes_A \mathbf{k}$ é sobrejetora.

Ex. 39 — Seja A um anel, $f:A\to B$ uma A-álgebra, M um A-módulo e N um B-módulo. Mostre que

$$\operatorname{Hom}_B(B \otimes_A M, N) \simeq \operatorname{Hom}_A(M, N).$$

Ex. 40 — (Cancelamento) Seja $f:A\to B$ uma A-álgebra, M um A-módulo e N um B-módulo. Mostre que existe isomorfismo de B-módulos:

$$(M \otimes_A B) \otimes_B N \simeq M \otimes_A N.$$

Ex. 41 — Sejam M_i e M_i' A-módulos. Suponha que as linhas do diagrama comutativo

$$M_{1} \xrightarrow{g} M_{2} \xrightarrow{h} M_{3} \xrightarrow{j} M_{4}$$

$$\downarrow m \qquad \qquad \downarrow \qquad \qquad \downarrow q \qquad$$

são exatas e que m e p são A-homomorfismos sobrejetivos e q é um A-homomorfismo injetivo, mostre que n é um A-homomorfismo sobrejetivo.

Ex. 42 — Seja B uma A-álgebra e seja $f(x) \in A[x]$. Mostre que existem isomorfismos de B-álgebras:

1.
$$A[x] \otimes_A B \simeq B[x]$$

2.
$$\frac{A[x]}{(f(x))A[x]} \otimes_A B \simeq \frac{B[x]}{(f(x))B[x]}.$$

Como uma generalização da forma em que construímos o corpo de frações de um domínio, podemos construir a localização de um subconjunto multiplicativo de um anel como sendo o anel obtido invertendo formalmente os elementos deste subconjunto.

Definição 8o. Seja A um anel. Um **conjunto multiplicativo** $S \subseteq A$ é um subconjunto que é fechado por produto, ou seja se $s, t \in S$ então $st \in S$, e tal que $1 \in S$.

Defina uma relação \equiv em $A \times S$ como segue:

$$(a,s) \equiv (a',s') \Leftrightarrow (as'-a's)u = 0$$
 para algum $u \in S$.

Claramente, esta relação é reflexiva e simétrica. Para ver que é transitiva, suponha que $(a,s) \equiv (b,t)$ e $(b,t) \equiv (c,u)$. Então existem $v,w \in S$ tais que (at-bs)v=0 e (bu-ct)w=0. Eliminando b destas duas equações temos (au-cs)tvw=0. Como S é fechado sob multiplicação temos que $tvw \in S$, logo $(a,s) \equiv (c,u)$. Portanto, \equiv é uma relação de equivalência.

Denotemos por $\frac{a}{s}$ a classe de equivalência de (a,s) e seja $S^{-1}A = (A \times S)/\equiv$ o conjunto das classes de equivalências. Vamos colocar uma estrutura de anel $S^{-1}A$ definindo adição e multiplicação da maneira usual¹:

$$\frac{a_1}{s_1} + \frac{a_2}{s_2} = \frac{a_1 s_2 + a_2 s_1}{s_1 s_2} e \frac{a_1}{s_1} \cdot \frac{a_2}{s_2} = \frac{a_1 a_2}{s_1 s_2}.$$

Com estas operações, $S^{-1}A$ é um anel comutativo com elemento nulo $\frac{0}{1}$ e elemento identidade $\frac{1}{1}$ que chamaremos de **localização** de A com respeito a S.

Associado a $S^{-1}A$ temos um homomorfismo de anéis $\rho:A\to S^{-1}A$ dado por $a\mapsto \frac{a}{1}$ chamado de **mapa de localização**.

Observação 81. Quando A é um domínio de integridade e $S=A-\{0\}$ então $S^{-1}A$ é o corpo de frações de A e neste caso o mapa de localização é a inclusão $A\subseteq S^{-1}A$. Entretanto, para anéis gerais, o mapa de localização nem sempre é injetivo.

Teorema 82. (Propriedade Universal da Localização) Seja $g:A\to B$ um homomorfismo de anéis tal que $g(s)\in B^\times$ para todo $s\in S$. Então existe um único

¹ Estas operações estão bem definidas, i.e., não dependem dos representantes de classe utilizados. Verifique!

homomorfismo de anéis $h: S^{-1}A \to B$ tal que $g = h \circ \rho$ (onde ρ é o mapa de localização).

Demonstração. Unicidade. Se h satisfaz a condição, então $h(\frac{a}{1})=h\rho(a)=g(a)$ para todo $a\in A$, logo se $s\in S$

$$h(\frac{1}{s}) = h((\frac{s}{1})^{-1}) = h(\frac{s}{1})^{-1} = g(s)^{-1}$$

e logo $h(\frac{a}{s}) = h(\frac{a}{1})h(\frac{1}{s}) = g(a)g(s)^{-1}$, logo h é univocamente determinado por g.

Existência. Seja $h(\frac{a}{s}) = g(a)g(s)^{-1}$. Então h será claramente um homomorfismo de anéis desde que esteja bem definido. Suponha então que $\frac{a}{s} = \frac{a'}{s'}$ então existe $t \in S$ tal que (as' - a's)t = 0, logo aplicando g temos

$$(g(a)g(s') - g(a')g(s))g(t) = 0,$$

agora g(t), g(s) e g(s') são unidades em B, então $g(a)g(s)^{-1}=g(a')g(s')^{-1}$, logo $h(\frac{a}{s})=h(\frac{a'}{s'})$.

O anel $S^{-1}A$ e o mapa de localização $\rho:A\to S^{-1}A$ têm as seguintes propriedades:

- a. Se $s \in S$ então $\rho(s)$ é uma unidade em $S^{-1}A$;
- b. Se $\rho(a) = 0$ então as = 0 para algum $s \in S$;
- c. Todo elemento de $S^{-1}A$ é da forma $\rho(a)\rho(s)^{-1}$ para certos $a\in A$ e $s\in S$.

Reciprocamente, esta três condições determinam o anel $S^{-1}A$ a menos de isomorfismo. Mais precisamente:

Corolário 83. Se $g: A \rightarrow B$ é um homomorfismo de anéis tal que:

- a. Se $s \in S$ então g(s) é uma unidade em B;
- b. Se g(a) = 0 então as = 0 para algum $s \in S$;
- c. Todo elemento de B é da forma $g(a)g(s)^{-1}$ para certos $a \in A$ e $s \in S$.

Então existe um único isomorfismo $h: S^{-1}A \to B$ tal que $g = h \circ \rho$.

Demonstração. Segue do item a. e da Propriedade Universal da Localização (Teorema 82) que existe um único homomorfismo de anéis $h: S^{-1}A \to B$ definido por $h(\frac{a}{s}) = g(a)g(s)^{-1}$ tal que $g = h \circ \rho$. Vejamos que h é um isomorfismo. Pelo item c. h é sobrejetor. Para ver que h é injetor, seja $\frac{a}{s} \in \operatorname{Ker}(h)$ então $h(\frac{a}{s}) = 0$ logo g(a) = 0, segue do item b. que at = 0 para algum $t \in S$, logo $\frac{a}{s} = \frac{0}{1}$.

Lema 84. Seja A um anel e seja $S \subseteq A$ um conjunto multiplicativo. Então $S^{-1}A = 0$ se e somente se $0 \in S$.

Demonstração. Temos que $S^{-1}A=0$ se, e somente se, $\frac{0}{1}=\frac{1}{1}$ em $S^{-1}A$ (veja a Observação 2 logo após a Definição 1), ou seja, se e somente se, existe $s \in S$ tal que $(0 \cdot 1 - 1 \cdot 1) \cdot s = 0$, i.e., se e somente se, $s = 0 \in S$.

Exemplo 85. Seja $\mathfrak p$ um ideal primo de A. Então $S=A\setminus \mathfrak p$ é um conjunto multiplicativo: $s,s'\in S$ então $s,s'\notin \mathfrak p$ logo $s\cdot s'\notin \mathfrak p$ portanto $s\cdot s'\in S$. Neste caso denotaremos por $A_{\mathfrak p}$ ao anel $S^{-1}A=\{\frac{\overline{a}}{b}\mid a\in A,b\notin \mathfrak p\}$. Os elementos $\frac{a}{s}$ com $a\in \mathfrak p$ formam um ideal $\mathfrak m$ em $A_{\mathfrak p}$. Se $\frac{b}{t}\notin \mathfrak m$ então $b\notin \mathfrak p$, logo $b\in S$ e logo $\frac{b}{t}$ é uma unidade em $A_{\mathfrak p}$. Segue da Proposição 19 a. (Proposição da **Aula 2** que diz: Seja A um anel e $\mathfrak m$ um ideal próprio de A tal que todo $a\in A-\mathfrak m$ é uma unidade de A. Então A é um anel local e $\mathfrak m$ seu ideal maximal) que $A_{\mathfrak p}$ é um anel local e $\mathfrak m$ é seu único ideal maximal.

Podemos também localizar módulos (em particular, ideais) e álgebras: dado um A-módulo (ou A-álgebra) M, a **localização** $S^{-1}M$ de M com relação a um subconjunto multiplicativo S de A é o $S^{-1}A$ -módulo (ou $S^{-1}A$ -álgebra) cujos elementos são as frações $\frac{m}{s}$ com $m \in M$ e $s \in S$ com identificação:

$$\frac{m_1}{s_1} = \frac{m_2}{s_2}$$
 em $S^{-1}M \Leftrightarrow \exists t \in S \text{ tal que } t(s_2m_1 - s_1m_2) = 0$ em M

e operações de soma e multiplicação por escalar dadas por

$$\frac{m_1}{s_1} + \frac{m_2}{s_2} = \frac{s_2 m_1 + s_1 m_2}{s_1 s_2} \qquad \frac{a}{t} \cdot \frac{m}{s} = \frac{am}{ts},$$

para todo $a \in A$, $s, t \in S$ e $m_1, m_2 \in M^2$.

Dado um morfismo de A-módulos $f: M \to N$ temos um morfismo de $S^{-1}A$ -módulos induzido $S^{-1}f: S^{-1}M \to S^{-1}N$ dado por $\frac{m}{s} \mapsto \frac{f(m)}{s}$ para todo $m \in M$ e $s \in S$. Este morfismo satisfaz $S^{-1}(f \circ g) = (S^{-1}f) \circ (S^{-1}g)$.

Logo "localização" é na verdade um funtor da categoria de A-módulos e na categoria de $S^{-1}A$ -módulos. Uma das propriedades mais importantes deste funtor é que ele é exato:

Proposição 86. (S^{-1} **é exato)** Seja A um anel, S um conjunto multiplicativo e $M' \xrightarrow{f} M \xrightarrow{g} M''$ uma sequência exata de A-módulos. Então $S^{-1}M' \xrightarrow{S^{-1}f} S^{-1}M''$ é uma sequência exata de $S^{-1}A$ -módulos.

Demonstração. Como $g\circ f=0$ então $(S^{-1}g)\circ (S^{-1}f)=S^{-1}(g\circ f)=0$, logo ${\rm Im}(S^{-1}f)\subseteq {\rm Ker}(S^{-1}g)$. Para mostrar a inclusão oposta, seja $\frac{m}{s}\in$

² Verifique que estas operações estão bem definidas

 $\operatorname{Ker}(S^{-1}g)$, então $\frac{g(m)}{s}=0$ em $S^{-1}M''$, logo existe $t\in S$ tal que tg(m)=0 em M''. Mas tg(m)=g(tm) pois g é um homomorfismo de A-módulos, logo $tm\in \operatorname{Ker}(g)=\operatorname{Im}(f)$ e logo tm=f(m') para algum $m'\in M'$. Então em $S^{-1}M$ temos $\frac{m}{s}=\frac{f(m')}{st}=(S^{-1}f)(\frac{m'}{st})\in \operatorname{Im}(S^{-1}f)$. Logo $\operatorname{Ker}(S^{-1}g)\subseteq \operatorname{Im}(S^{-1}f)$.

AULA 11

AULA 11: 26/09/2014

Como consequências da exatidão de S^{-1} temos:

Corolário 87. Seja A um anel, S um conjunto multiplicativo e $f: M \to N$ um A-homomorfismo. Temos:

- a. Se f é injetor (respetivamente sobrejetor, bijetor) então $S^{-1}f$ é injetor (respetivamente sobrejetor, bijetor).
- b. Localização comuta com kernels, cokernels e imagens, i.e., temos isomorfismos:
 - a) $\operatorname{Ker}(S^{-1}f) \simeq S^{-1}(\operatorname{Ker}(f))$
 - b) $\operatorname{Coker}(S^{-1}f) \simeq S^{-1}(\operatorname{Coker}(f))$
 - c) $Im(S^{-1}f) \simeq S^{-1}(Im(f))$
- c. Localização comuta com quocientes: Se N é um submódulo de M então $S^{-1}(\frac{M}{N})\simeq \frac{S^{-1}(M)}{S^{-1}(N)}.$

Demonstração. Exercício 1.

Segue do primeiro item que se N é um submódulo de M a aplicação $S^{-1}N \to S^{-1}M$ é injetiva e logo $S^{-1}N$ pode ser considerado com um submódulo de $S^{-1}M$, i.e. localização preserva inclusões. Com esta convenção temos:

Corolário 88. Se N e P são submódulos de um A-módulo M, então:

a.
$$S^{-1}(N+P) = S^{-1}(N) + S^{-1}(P);$$

b.
$$S^{-1}(N \cap P) = S^{-1}(N) \cap S^{-1}(P)$$
.

Demonstração. Exercício 2.

Proposição 89. Seja M um A-módulo então existe um isomorfismo de $S^{-1}A$ -módulos $S^{-1}A \otimes_A M \simeq S^{-1}M$.

Demonstração. O anel $S^{-1}A$ junto com o homomorfismo de anéis "mapa de localização" $\rho:A\to S^{-1}A$ é uma A-álgebra e logo todo $S^{-1}A$ -módulo é um A-módulo, em particular $S^{-1}M$ é um A-módulo. A aplicação $f:S^{-1}A\times M\to S^{-1}M$ definida por $(\frac{a}{s},m)\mapsto \frac{am}{s}$ é A-bilinear e logo, pela propriedade universal do produto tensorial (Proposição 65), induz um A-homomorfismo $f':S^{-1}A\otimes_A M\to S^{-1}M$ satisfazendo $f'(\frac{a}{s}\otimes m)=\frac{am}{s}$ para todo $a\in A, m\in M$ e $s\in S$. Por outro lado, $S^{-1}A\otimes_A M$ é o $S^{-1}A$ -módulo obtido de M por extensão de escalares. Logo f' é um homomorfismo de $S^{-1}A$ -módulos. Claramente, f' é sobrejetiva.

Seja, agora, $\Sigma_i(\frac{a_i}{s_i}\otimes m_i)$ um elemento de $S^{-1}A\otimes_A M$. Se denotamos $s=\Pi_i s_i\in S$ e $t_i=\Pi_{i\neq i} s_i$ então temos

$$\sum_{i} \frac{a_i}{s_i} \otimes m_i = \sum_{i} \frac{a_i t_i}{s} \otimes m_i = \sum_{i} \frac{1}{s} \otimes a_i t_i m_i = \frac{1}{s} \otimes \sum_{i} a_i t_i m_i,$$

logo todo elemento de $S^{-1}A\otimes_A M$ é da forma $\frac{1}{s}\otimes m$. Suponha que $f'(\frac{1}{s}\otimes m)=0$, então $\frac{m}{s}=0$ logo tm=0 para algum $t\in S$ e portanto

$$\frac{1}{s} \otimes m = \frac{t}{st} \otimes m = \frac{1}{st} \otimes tm = \frac{1}{st} \otimes 0 = 0.$$

Logo f' é injetiva e logo é um isomorfismo de $S^{-1}A$ -módulos.

Corolário 90. $S^{-1}A$ é um A-módulo plano.

Demonstração. Seja $j:N\hookrightarrow N'$ um homomorfismo de A-módulos injetivo, como S^{-1} é um funtor exato (Proposição 86) então $S^{-1}j:S^{-1}N\hookrightarrow S^{-1}N'$ é um homomorfismo de $S^{-1}A$ -módulos injetivo. Pela proposição anterior $N\otimes_A S^{-1}A\simeq S^{-1}N$ como $S^{-1}A$ -módulos e o seguinte diagrama

$$S^{-1}N \xrightarrow{S^{-1}j} S^{-1}N'$$

$$\simeq \uparrow \qquad \qquad \downarrow \simeq \qquad \qquad \downarrow \simeq$$

$$N \otimes_A S^{-1}A \xrightarrow{j \otimes \mathrm{id}} N' \otimes_A S^{-1}A$$

comuta. Logo $j\otimes \operatorname{id}:N\otimes_AS^{-1}A\hookrightarrow N'\otimes_AS^{-1}A$ é um homomorfismo de $S^{-1}A$ -módulos injetivo. Mas $\rho:A\to S^{-1}A$ é uma A-álgebra e logo todo $S^{-1}A$ -módulo é um A-módulo. Assim $j\otimes \operatorname{id}:N\otimes_AS^{-1}A\hookrightarrow N'\otimes_AS^{-1}A$ é um homomorfismo de A-módulos injetivo e por tanto $S^{-1}A$ é um A-módulo plano. \square

Proposição 91. Se M e N são A-módulos então existe um isomorfismo de $S^{-1}A$ -módulos $S^{-1}(M \otimes_A N) \simeq (S^{-1}M) \otimes_{S^{-1}A} (S^{-1}N)$. Em particular, se $\mathfrak{p} \in \operatorname{Spec}(A)$ então $(M \otimes_A N)_{\mathfrak{p}} \simeq M_{\mathfrak{p}} \otimes_{A_{\mathfrak{p}}} N_{\mathfrak{p}}$ como $A_{\mathfrak{p}}$ -módulos.

Proposição 92. Seja M um A-módulo f.g., S um subconjunto multiplicativo de A. Então $S^{-1}(Ann(M)) = Ann(S^{-1}M)$.

Demonstração. Para provar este resultado utilizaremos os seguintes fatos (verifique) onde M, N e P são A-módulos:

a.
$$Ann(M + N) = Ann(M) \cap Ann(N)$$
.

b.
$$(N : P) = Ann((N + P)/N)$$
.

Vejamos primeiramente que se o resultado vale para dois submódulos M_1 e M_2 de M então vale para a soma $M_1 + M_2$:

$$S^{-1}(\operatorname{Ann}(M_1 + M_2)) \stackrel{\text{fato}}{=} S^{-1}(\operatorname{Ann}(M_1) \cap \operatorname{Ann}(M_2))$$

$$\stackrel{\text{Cor}}{=} {}^{88} S^{-1}(\operatorname{Ann}(M_1)) \cap S^{-1}(\operatorname{Ann}(M_2))$$

$$\stackrel{\text{hip}}{=} \operatorname{Ann}(S^{-1}(M_1)) \cap \operatorname{Ann}(S^{-1}(M_2))$$

$$\stackrel{\text{fato}}{=} \operatorname{Ann}(S^{-1}M_1 + S^{-1}M_2)$$

$$\stackrel{\text{Cor}}{=} {}^{88} \operatorname{Ann}(S^{-1}(M_1 + M_2)).$$

Logo é suficiente provar o resultado para um A-módulo M gerado por somente um elemento m. Seja $f:A\to M=(m)$ o homomorfismo de A-módulos dado por $a\mapsto am$ então claramente f é sobre e $\mathrm{Ker}(f)=\{a\in A\mid am=0\}=\mathrm{Ann}(M)$, logo $M\simeq A/\mathrm{Ann}(M)$ como A-módulos. Então $S^{-1}M\simeq S^{-1}A/S^{-1}(\mathrm{Ann}(M))$ pelo Corolário 87 c. , assim $\mathrm{Ann}(S^{-1}M)=S^{-1}(\mathrm{Ann}(M))$.

Corolário 93. Se N, P são submódulos de um A-módulo M e se P é f.g. então $S^{-1}(N:P) = (S^{-1}N:S^{-1}P)$.

Demonstração. Como (N:P) = Ann((N+P)/N) e (N+P)/N é f.g. então

$$S^{-1}(N:P) = S^{-1}(\text{Ann}((N+P)/N))$$

$$= \text{Ann}(S^{-1}((N+P)/N))$$

$$= \text{Ann}(S^{-1}(N+P)/S^{-1}N)$$

$$= \text{Ann}((S^{-1}N+S^{-1}P)/S^{-1}N)$$

$$= (S^{-1}N:S^{-1}P).$$

4.1 PROPRIEDADES LOCAIS

Uma propriedade \mathcal{P} de um anel A (ou de um A-módulo M) é dita uma propriedade local se:

"A (ou M) tem $\mathcal{P} \Leftrightarrow A_{\mathfrak{p}}$ (ou $M_{\mathfrak{p}}$) tem \mathcal{P} para todo ideal $\mathfrak{p} \in \operatorname{Spec}(A)$ " As seguintes proposições são exemplos de propriedades locais:

Proposição 94. Seja M um A-módulo, então são equivalentes:

- a. M = 0;
- *b.* $M_{\mathfrak{p}} = 0$ para todo $\mathfrak{p} \in \operatorname{Spec}(A)$;
- *c.* $M_{\mathfrak{m}} = 0$ para todo $\mathfrak{m} \in \operatorname{Specm}(A)$;

Demonstração. Claramente (a.)⇒(b.)⇒(c.). Suponha que acontece (c.) e que $M \neq 0$. Seja m um elemento não nulo de M e seja $I = \operatorname{Ann}(m)$ (i.e., o conjunto de todos os $a \in A$ tais que am = 0), então I é um ideal próprio de A e logo está contido em um ideal maximal \mathfrak{m} (Corolário 15). Considere o elemento $\frac{m}{1} \in M_{\mathfrak{m}}$, como $M_{\mathfrak{m}} = 0$ temos que $\frac{m}{1} = 0$ e logo tm = 0 para algum $t \in S = A - \mathfrak{m}$, mas então t aniquila m e logo $t \in I \subseteq \mathfrak{m}$ o que é um contradição.

Temos ainda uma importante recíproca da Proposição 86:

Teorema 95. O complexo de A-módulos $M' \xrightarrow{f} M \xrightarrow{g} M''$ (i.e., uma sequência de A-módulos tal que $\operatorname{Im}(f) \subseteq \operatorname{Ker}(g)$) é exato, se e somente se, suas localizações $M'_{\mathfrak{m}} \xrightarrow{f_{\mathfrak{m}}} M_{\mathfrak{m}} \xrightarrow{g_m} M''_{m}$ são exatas para todo $\mathfrak{m} \in \operatorname{Specm}(A)$. Analogamente para todo $\mathfrak{p} \in \operatorname{Spec}(A)$.

Demonstração. Considere o A-módulo $\operatorname{Ker}(g)/\operatorname{Im}(f)$. Segue do Corolário 87 que

$$\left(\frac{\operatorname{Ker}(g)}{\operatorname{Im}(f)}\right)_{\mathfrak{m}} \stackrel{\text{(3)}}{\simeq} \frac{(\operatorname{Ker}(g))_{\mathfrak{m}}}{(\operatorname{Im}(f))_{\mathfrak{m}}} \stackrel{\text{(2)}}{\simeq} \frac{\operatorname{Ker}(g_{\mathfrak{m}})}{\operatorname{Im}(f_{\mathfrak{m}})}.$$

Observe que, como o funtor localização preserva inclusões, $\operatorname{Im}(f_{\mathfrak{m}}) \subseteq \operatorname{Ker}(g_{\mathfrak{m}})$ e os quocientes acima estão bem definidos. Agora o complexo é exato se, e somente se, o A-módulo $\frac{\operatorname{Ker}(g)}{\operatorname{Im}(f)} = 0$. Segue da Proposição anterior que $\frac{\operatorname{Ker}(g)}{\operatorname{Im}(f)} = 0$ se, e somente se, $\left(\frac{\operatorname{Ker}(g)}{\operatorname{Im}(f)}\right)_{\mathfrak{m}} = 0$ para todo $\mathfrak{m} \in \operatorname{Specm}(A)$ se, e somente se, $\frac{\operatorname{Ker}(g_{\mathfrak{m}})}{\operatorname{Im}(f_{\mathfrak{m}})} = 0$ para todo $\mathfrak{m} \in \operatorname{Specm}(A)$ se, e somente se, $M'_{\mathfrak{m}} \xrightarrow{f_{\mathfrak{m}}} M_{\mathfrak{m}} \xrightarrow{g_{\mathfrak{m}}} M''_{\mathfrak{m}}$ é exata para todo $\mathfrak{m} \in \operatorname{Specm}(A)$.

Como consequência disso temos:

Proposição 96. Seja $f: M \to N$ um A-homomorfismo, então são equivalentes:

- a. f é injetiva (sobrejetiva, bijetiva)
- b. $f_{\mathfrak{p}}: M_{\mathfrak{p}} \to N_{\mathfrak{p}}$ é injetiva (sobrejetiva, bijetiva) para todo $\mathfrak{p} \in \operatorname{Spec}(A)$;
- c. $f_{\mathfrak{m}}: M_{\mathfrak{m}} \to N_m$ é injetiva (sobrejetiva, bijetiva) para todo $\mathfrak{m} \in \operatorname{Specm}(A)$;

Demonstração. Exercício 4.

A propriedade de um *A*-módulo ser plano é local:

Proposição 97. Para qualquer A-módulo M, as seguintes afirmações são equivalentes:

- a. M é um A-módulo plano;
- *b.* $M_{\mathfrak{p}}$ é um $A_{\mathfrak{p}}$ -módulo plano para todo $\mathfrak{p} \in \operatorname{Spec}(A)$;
- c. $M_{\mathfrak{m}}$ é um $A_{\mathfrak{m}}$ -módulo plano para todo $\mathfrak{m} \in \operatorname{Specm}(A)$;

Demonstração. Exercício 5.

4.2 LOCALIZAÇÃO E IDEAIS PRIMOS

Uma das ventagens da localização é que os elementos de S passam a ser unidades de $S^{-1}A$, e como consequência deste aumento de unidades temos uma redução na quantidade de ideais primos.

Teorema 98. Seja A um anel, $S \subseteq A$ um conjunto multiplicativo e $\rho : A \to S^{-1}A$ o mapa de localização.

- a. Se $I \subseteq A$ é um ideal de A, então $S^{-1}I \subseteq S^{-1}A$ é um ideal de $S^{-1}A$. Reciprocamente, todo ideal $J \subseteq S^{-1}A$ é da forma $S^{-1}I$ para algum ideal $I \subseteq A$.
- b. O mapa de espectros induzido por ρ , $\operatorname{Spec}(\rho) : \operatorname{Spec}(S^{-1}A) \hookrightarrow \operatorname{Spec}(A)$ é injetor e tem como imagem o conjunto

$$D_S := \{ \mathfrak{p} \in \operatorname{Spec}(A) \mid \mathfrak{p} \cap S = \emptyset \}$$

dos primos \mathfrak{p} que não interceptam S. A pré-imagem de $\mathfrak{p} \in D_S$ é dada por $S^{-1}\mathfrak{p}$. (i.e., os ideais primos de $S^{-1}A$ estão em correspondência um-a-um com os ideais primos de A que não interceptam S).

Demonstração.

- a. Como localização é um funtor exato, preserva injetividade, assim se $I\subseteq A$ é um ideal de A então $S^{-1}I\subseteq S^{-1}A$ é um ideal de $S^{-1}A$. Reciprocamente, dado um ideal $J\subseteq S^{-1}A$, temos que $I=\rho^{-1}(J)$ é um ideal de A. Vejamos que $S^{-1}I=J$:
 - a) (\subseteq) se $\frac{a}{s} \in S^{-1}I$ com $a \in A$ e $s \in S$ então existe $i \in I$ e $s' \in S$ tal que $\frac{a}{s} = \frac{i}{s'}$. Então existe $t \in S$ tal que $tas' = tsi \in I$, logo $\rho(ats') \in J \subseteq S^{-1}A$ i.e., $\frac{ats'}{1} \in J$. Mas $ts' \in S$ é unidade em $S^{-1}A$ então posso multiplicar pelo inverso $\frac{1}{ts'}\frac{ats'}{1} \in J$ (e ainda pertence a J por ser ideal) assim $\frac{a}{1} = \rho(a) \in J$. Logo segue que $\frac{a}{s} = \frac{1}{s} \cdot \rho(a) \in J$.
 - b) (\supseteq) se $\frac{b}{s} \in J$ com $b \in A$ e $s \in S$ então $\rho(b) = \frac{s}{1} \cdot \frac{b}{s} \in J$, ou seja, $b \in I$ e portanto $\frac{b}{s} \in S^{-1}I$.

AULA 12

AULA 12: 01/10/2014

Lembrando a última aula.

Teorema. Seja A um anel, $S \subseteq A$ um conjunto multiplicativo $e \rho : A \to S^{-1}A$ o mapa de localização.

- a. Se $I \subseteq A$ é um ideal de A, então $S^{-1}I \subseteq S^{-1}A$ é um ideal de $S^{-1}A$. Reciprocamente, todo ideal $J \subseteq S^{-1}A$ é da forma $S^{-1}I$ para algum ideal $I \subseteq A$.
- b. O mapa de espectros $\operatorname{Spec}(\rho):\operatorname{Spec}(S^{-1}A)\hookrightarrow\operatorname{Spec}(A)$ é injetor e tem como imagem o conjunto

$$D_S := \{ \mathfrak{p} \in \operatorname{Spec}(A) \mid \mathfrak{p} \cap S = \emptyset \}$$

dos primos \mathfrak{p} que não interceptam S. A pré-imagem de $\mathfrak{p} \in D_S$ é dada por $S^{-1}\mathfrak{p}$. (i.e., os ideais primos de $S^{-1}A$ estão em correspondência um-a-um com os ideais primos de A que não interceptam S).

Restava provar o item *b*.

Demonstração.

• Inicialmente, observe que: para $\mathfrak{p} \in D_S$, $a \in A$ e $s \in S$ temos

$$\frac{a}{s} \in S^{-1} \mathfrak{p} \Leftrightarrow a \in \mathfrak{p}. \tag{7}$$

A implicação (\Leftarrow) é obvia. Por outro lado, se $\frac{a}{s} \in S^{-1}\mathfrak{p}$ então existem $p \in \mathfrak{p}$ e $t \in S$ tais que $\frac{a}{s} = \frac{p}{t}$ em $S^{-1}A$, logo existe $r \in S$ tal que r(at - ps) = 0 logo $rta = rsp \in \mathfrak{p}$. Como \mathfrak{p} é primo ou $r \in \mathfrak{p}$ ou $t \in \mathfrak{p}$ ou $a \in \mathfrak{p}$, mas $\mathfrak{p} \in D_S$ logo $\mathfrak{p} \cap S = \emptyset$ assim $r, t \notin \mathfrak{p}$ então necessariamente $a \in \mathfrak{p}$ o que prova (\Rightarrow) .

- $\operatorname{Im}(\operatorname{Spec}(\rho)) \subseteq D_S$: seja $\mathfrak{p} \in \operatorname{Im}(\operatorname{Spec}(\rho))$, então existe $\mathfrak{q} \in \operatorname{Spec}(S^{-1}A)$ tal que $\mathfrak{p} = \operatorname{Spec}(\rho)(\mathfrak{q})$ então $\mathfrak{p} = \rho^{-1}(\mathfrak{q})$. Suponha que existe $s \in S \cap \mathfrak{p}$ então $\rho(s) \in \mathfrak{q}$, o que é absurdo pois $\rho(s) \in (S^{-1}A)^{\times}$.
- Se $\mathfrak{p} \in D_S$ então $S^{-1}\mathfrak{p} \in \operatorname{Spec}(S^{-1}A)$: note que $S^{-1}\mathfrak{p}$ é um ideal próprio de $S^{-1}A$ pois caso contrário $\frac{1}{1} \in S^{-1}\mathfrak{p}$ e isto implica pela observação inicial (7) que $1 \in \mathfrak{p}$, um absurdo. Agora, dados $a, a' \in A$ e $s, s' \in S$ temos

$$\frac{a}{s} \cdot \frac{a'}{s'} \in S^{-1} \mathfrak{p} \Leftrightarrow \frac{aa'}{ss'} \in S^{-1} \mathfrak{p}$$

$$\stackrel{(7)}{\Leftrightarrow} aa' \in \mathfrak{p}$$

$$\Leftrightarrow a \in \mathfrak{p} \text{ ou } a' \in \mathfrak{p}$$

$$\Leftrightarrow \frac{a}{s} \in S^{-1} \mathfrak{p} \text{ ou } \frac{a'}{s'} \in S^{-1} \mathfrak{p}$$

o que mostra que $S^{-1}\mathfrak{p}$ é um ideal primo de $S^{-1}A$.

• Por último, mostraremos que o mapa $\operatorname{Spec}(\rho):\operatorname{Spec}(S^{-1}A)\to D_S$ é uma bijeção com inversa $\mathfrak{p}\mapsto S^{-1}\mathfrak{p}$: A composição

$$D_S \to \operatorname{Spec}(S^{-1}A) \to D_S$$

 $\mathfrak{p} \mapsto S^{-1}\mathfrak{p} \mapsto \operatorname{Spec}(\rho)(S^{-1}\mathfrak{p})$

é a identidade em D_S , já que

$$\operatorname{Spec}(\rho)(S^{-1}\mathfrak{p}) = \rho^{-1}(S^{-1}\mathfrak{p}) = \left\{ a \in A \mid \rho(a) \in S^{-1}\mathfrak{p} \right\}$$
$$= \left\{ a \in A \mid \frac{a}{1} \in S^{-1}\mathfrak{p} \right\} \stackrel{\text{(7)}}{=} \mathfrak{p}$$

pela observação inicial. Da mesma forma, a composição

$$\operatorname{Spec}(S^{-1}A) \to D_S \to \operatorname{Spec}(S^{-1}A)$$

$$\mathfrak{q} \mapsto \rho^{-1}\mathfrak{q} \mapsto S^{-1}(\rho^{-1}(\mathfrak{q}))$$

é a identidade em Spec $(S^{-1}A)$, pois $\mathfrak{q} = S^{-1}(\rho^{-1}(\mathfrak{q}))$ pelo item a.

Corolário 99. Seja A um anel. Se $\mathfrak{p} \in \operatorname{Spec}(A)$, temos uma bijeção

$$\{\mathfrak{q} \in \operatorname{Spec}(A) \mid \mathfrak{q} \subseteq \mathfrak{p}\} \xrightarrow{\simeq} \operatorname{Spec}(A_{\mathfrak{p}})$$
$$\mathfrak{q} \mapsto \mathfrak{q}A_{\mathfrak{p}}.$$

Demonstração. Tome $S = A - \mathfrak{p}$ no teorema anterior.

Como consequência a passagem de A a $A_{\mathfrak{p}}$ elimina todos os ideais primos excepto aqueles contidos em \mathfrak{p} . Por outro lado, a passagem de A a A/\mathfrak{p} elimina todos os ideais primos excepto aqueles que contêm \mathfrak{p} . Logo se \mathfrak{p} e \mathfrak{q} são ideais primos tais que $\mathfrak{q} \subseteq \mathfrak{p}$, então localizando em relação a \mathfrak{p} e tomando o quociente Mod \mathfrak{q} (ou ao contrário, pois essas operações comutam), restringimos nossa atenção a aqueles ideais primos que se encontram entre \mathfrak{p} e \mathfrak{q} . Em particular, se $\mathfrak{p} = \mathfrak{q}$ chegaremos ao corpo de resíduos do anel local $A_{\mathfrak{p}}$ o qual também pode ser obtido como o corpo de frações do domínio A/\mathfrak{p} .

Exemplo 100. Como A/\mathfrak{p} é um domínio então a localização por $S=(A/\mathfrak{p})-\mathfrak{p}$ coincide com o corpo de frações de A/\mathfrak{p} , i.e. $(A/\mathfrak{p})_{\mathfrak{p}}=\operatorname{Frac}(A/\mathfrak{p})$ (veja a Observação 81) e o mapa de localização neste caso é a inclusão. Logo, dada a composição $A \stackrel{\pi}{\to} A/\mathfrak{p} \stackrel{\rho}{\hookrightarrow} \operatorname{Frac}(A/\mathfrak{p})$ o mapa entre espectros induzido $\operatorname{Spec}(\rho \circ \pi): \operatorname{Spec}(\operatorname{Frac}(A/\mathfrak{p})) \hookrightarrow \operatorname{Spec}(A)$ tem como imagem exatamente o primo \mathfrak{p} , pois $\operatorname{Spec}(\rho \circ \pi)$ é a composição

$$\operatorname{Spec}(\operatorname{Frac}(A/\mathfrak{p})) \overset{\operatorname{Spec}(\rho)}{\hookrightarrow} \operatorname{Spec}(A/\mathfrak{p}) \overset{\operatorname{Spec}(\pi)}{\hookrightarrow} \operatorname{Spec}(A)$$

(onde $\operatorname{Spec}(\rho)$ é injetor pelo teorema anterior e $\operatorname{Spec}(\pi)$ é injetor pelo Lema 34) e como $\operatorname{Frac}(A/\mathfrak{p})$ é um corpo, seu único ideal primo é (0), assim $\operatorname{Spec}(\operatorname{Frac}(A/\mathfrak{p}))=(0)$ e a imagem do primeiro mapa $\operatorname{Spec}(\rho)(0)=\rho^{-1}(0)$ é o ideal $(\overline{0})$ de A/\mathfrak{p} , que é levado em \mathfrak{p} pelo segundo mapa. Em outras palavras, como o quociente e a localização "filtram" os primos que contêm e que estão contidos em \mathfrak{p} o que sobra é apenas o primo \mathfrak{p} .

Para finalizar esta seção veja que podemos dar uma prova alternativa à Proposição 24 (que caracteriza o nilradical de um anel A, Aula 2.) utilizando localização. Lembremos os conceitos:

Definição. O ideal \mathfrak{N} de todos os elementos nilpotentes de um anel A é chamado de **nilradical** de A.

Proposição. O nilradical de A é a interseção de todos os ideais primos de A.

Demonstração. A prova de que o nilradical está contido na interseção de todos os ideais primos é a mesma, mostraremos a outra inclusão. Seja $a \in A$ um elemento que não é nilpotente, vamos provar que existe um ideal

primo $\mathfrak p$ de A que não contem a. O conjunto $S=(a^n)_{n\geq 0}$ é um conjunto multiplicativo que não contém o elemento nulo 0. Segue do Lema 84 que o anel $S^{-1}A$ é não nulo e logo (Teorema 14) tem um ideal maximal $\mathfrak m$. Segue o Teorema 98 que $\mathfrak m$ corresponde a um ideal primo $\mathfrak p$ de A que não intercepta S, logo $a \notin \mathfrak p$.

4.3 EXERCÍCIOS

Ex. 43 — Seja A um anel, S um conjunto multiplicativo e $f: M \to N$ um A-homomorfismo. Mostre que:

- 1. Se f é injetor (respetivamente sobrejetor, bijetor) então $S^{-1}f$ é injetor (respetivamente sobrejetor, bijetor).
- 2. Localização comuta com kernels, cokernels e imagens, i.e., temos isomorfismos:
 - a) $\operatorname{Ker}(S^{-1}f) \simeq S^{-1}(\operatorname{Ker}(f))$
 - b) $\operatorname{Coker}(S^{-1}f) \simeq S^{-1}(\operatorname{Coker}(f))$
 - c) $Im(S^{-1}f) \simeq S^{-1}(Im(f))$
- 3. Localização comuta com quocientes: Se N é um submódulo de M então $S^{-1}\left(\frac{M}{N}\right)\simeq \frac{S^{-1}(M)}{S^{-1}(N)}.$

Ex. 44 — Se N e P são submódulos de um A-módulo M, mostre que:

- 1. $S^{-1}(N+P) = S^{-1}(N) + S^{-1}(P);$
- 2. $S^{-1}(N \cap P) = S^{-1}(N) \cap S^{-1}(P)$.

Ex. 45 — Se M e N são A-módulos mostre que existe um isomorfismo de $S^{-1}A$ -módulos $S^{-1}(M\otimes_A N)\simeq (S^{-1}M)\otimes_{S^{-1}A}(S^{-1}N)$.

Ex. 46 — Seja $f: M \to N$ um A-homomorfismo, prove que são equivalentes:

- 1. *f* é injetiva (sobrejetiva, bijetiva)
- 2. $f_{\mathfrak{p}}: M_{\mathfrak{p}} \to N_{\mathfrak{p}}$ é injetiva (sobrejetiva, bijetiva) para todo $\mathfrak{p} \in \operatorname{Spec}(A)$;
- 3. $f_{\mathfrak{m}}: M_{\mathfrak{m}} \to N_m$ é injetiva (sobrejetiva, bijetiva) para todo $\mathfrak{m} \in \operatorname{Specm}(A)$;

Ex. 47 — Para qualquer A-módulo M, mostre que são equivalentes:

- 1. *M* é um *A*-módulo plano;
- 2. $M_{\mathfrak{p}}$ é um $A_{\mathfrak{p}}$ -módulo plano para todo $\mathfrak{p} \in \operatorname{Spec}(A)$;

- 3. $M_{\mathfrak{m}}$ é um $A_{\mathfrak{m}}$ -módulo plano para todo $\mathfrak{m} \in \operatorname{Specm}(A)$;
- **Ex.** 48 Seja I um ideal de A, mostre que $S^{-1}\sqrt{I}=\sqrt{S^{-1}I}$. Em particular, se \mathfrak{N}_A é o nilradical de A então $\mathfrak{N}_{S^{-1}A}=S^{-1}\mathfrak{N}_A$.
- **Ex.** 49 Seja A um anel. Suponha que, para cada $\mathfrak{p} \in \operatorname{Spec}(A)$, o anel local $A_{\mathfrak{p}}$ não tenha elementos nilpotentes não nulos. Mostre que A não tem elementos nilpotentes não nulos. Se cada $A_{\mathfrak{p}}$ for um domínio de integridade, então necessariamente A é um domínio de integridade?
- **Ex. 50** Seja M um A-módulo e I um ideal de A. Suponha que $M_{\mathfrak{m}}=0$ para todo $\mathfrak{m}\in \operatorname{Specm}(A)$ tal que $\mathfrak{m}\supseteq I$. Prove que M=IM.
- **Ex.** 51 Seja A um anel e seja F o A-módulo livre A^n . Mostre que todo conjunto de n geradores de F é uma base de F (i.e. é LI sobre A).

CONDIÇÕES DE CADEIA

Seja Ω um conjunto parcialmente ordenado por uma relação \leq . As seguintes condições em Ω são equivalentes:

- a. Toda sequência crescente $x_1 \le x_2 \le \cdots$ em Ω é estacionária, i.e., existe n tal que $x_n = x_{n+1} = \cdots$.
- b. Todo subconjunto não vazio de Ω tem um elemento maximal.

Demonstração. (a.) \Rightarrow (b.) Seja T um subconjunto não vazio de Ω e seja $x_1 \in T$. Se x_1 é maximal em T acabou. Caso contrário existe $x_2 \in T$ tal que $x_1 \lneq x_2$. Se x_2 é maximal em T acabou, caso contrário repita o processo. Eventualmente, este processo termina, já que caso contrário obteríamos uma cadeia ascendente $x_1 \lneq x_2 \lneq x_3 \lneq \cdots$ estrita, o que contradiz a hipótese. Por tanto T tem um elemento maximal.

(a.) \Leftarrow (b.) Seja $x_1 \le x_2 \le \cdots$ uma sequência crescente em Ω , então o conjunto $(x_m)_{m\ge 1}$ tem um elemento maximal x_n e logo a sequência é estacionária.

Se Ω é o conjunto de submódulos de um módulo M, ordenado pela relação \subseteq , então (a.) é chamada de **condição de cadeia ascendente** (cca) e (b.) de **condição maximal**. Um módulo M que satisfaz qualquer uma de estas condições equivalentes é chamado de **Noetheriano**. Se Ω é ordenado por \supseteq , então (a.) é chamada de **condição de cadeia descendente** (ccd) e (b.) de **condição minimal**. Um módulo M que satisfaz qualquer uma de estas condições equivalentes é chamado de **Artiniano**.

Proposição 101. *M é um A-módulo Noetheriano se e somente se todo submódulo de M é f.g.*

Demonstração. (\Rightarrow): Seja N um submódulo de M, e seja Ω o conjunto de todos os submódulos f.g. de N. Então Ω é um conjunto não vazio, pois $0 \in \Omega$, de submódulos de M e logo tem um elemento maximal N_0 . Se $N_0 \neq N$, considere o submódulo $N_0 + An$ onde $n \in N$ e $n \notin N_0$. Este submódulo é f.g. e contém estritamente N_0 o que é uma contradição. Logo $N = N_0$ e logo N é f.g.

(⇐): Seja $M_1 \subseteq M_2 \subseteq \cdots$ uma cadeia ascendente de submódulos de M. É fácil ver que $N = \bigcup_{n=1}^{\infty} M_n$ é um submódulo de M (usando a condição de cadeia) e logo é f.g. Sejam x_1, \ldots, x_r os geradores de N tal que $x_i \in M_{n_i}$ e seja $n = \max_{1 \le i \le r} n_i$. Então cada $x_i \in M_n$, logo $N = M_n$ e portanto a cadeia é estacionária.

É esta última proposição que torna os módulos Noetherianos mais úteis que os módulos Artinianos. Porém, muitas propriedades formais elementares aplicam-se igualmente a módulos Artinianos e Noetherianos.

Proposição 102. Seja $0 \to M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0$ uma sequência exata de A-módulos. Então

- a. M é Noetheriano ⇔M' e M" são Noetherianos;
- b. $M \notin Artiniano \Leftrightarrow M' \in M''$ são Artinianos;

Demonstração. Faremos a prova para módulos Noetherianos, o caso Artiniano é similar (**Exercício 1**).

(⇒): Sejam $M_1' \subseteq M_2' \subseteq \cdots$ e $M_1'' \subseteq M_2'' \subseteq \cdots$ cadeias ascendentes de submódulos de M' e M'' respetivamente. Logo $f(M_1') \subseteq f(M_2') \subseteq \cdots$ e $g^{-1}(M_1'') \subseteq g^{-1}(M_2'') \subseteq \cdots$ são cadeias ascendentes de submódulos de M. Como M é Noetheriano estas cadeias são estacionárias logo $f(M_k') = f(M_{k+1}') = \cdots$ para algum k e $g^{-1}(M_n'') = g^{-1}(M_{n+1}'') = \cdots$ para algum n. Agora segue do fato de f ser injetiva que $f^{-1}f(M_i') = M_i'$ para todo f0 e logo f1 e logo f2 e sobrejetiva temos f3 e sobrejetiva que f3 para todo f4 e logo f5 sobrejetiva temos f6 sobrejetiva temos f6 sobrejetiva temos f6 sobrejetiva temos f8 e sobrejetiva temos f9 e sob

(\Leftarrow): Suponha que M' e M'' são Noetherianos. Seja $M_1 \subseteq M_2 \subseteq \cdots$ uma cadeia ascendente de submódulos de M; então $(f^{-1}(M_i))$ é uma cadeia em M' e $(g(M_i))$ é uma cadeia em M''. Para um n suficientemente grande ambas cadeias são estacionárias, logo $f^{-1}(M_n) = f^{-1}(M_{n+1}) = \cdots$ e $g(M_n) = g(M_{n+1}) = \cdots$. Queremos provar que sob estas condições $M_n = M_{n+1}$, mas como $M_n \subseteq M_{n+1}$ basta mostrar a inclusão oposta. Seja $x \in M_{n+1}$ então existe $y \in M_n$ tal que g(y) = g(x) logo g(x-y) = 0 por tanto $x-y \in \operatorname{Ker}(g) = \operatorname{Im}(f)$. Isto implica que existe $z \in M'$ tal que $f(z) = x-y \in M_{n+1}$, logo $z \in f^{-1}(M_{n+1}) = f^{-1}(M_n)$ e logo $f(z) \in M_n$, i.e. $x-y \in M_n$ mas como $y \in M_n$ segue que $x \in M_n$. Logo $M_{n+1} \subseteq M_n$ e a cadeia ascendente é estacionária. Segue que M é Noetheriano.

AULA 13

AULA 13: 03/10/2014

Na última aula provamos que

Proposição. Seja $0 \to M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0$ uma sequência exata de A-módulos. Então: M é Noetheriano (Artiniano) $\Leftrightarrow M'$ e M'' são Noetherianos (Artinianos).

Note que em particular, quocientes e submódulos de módulos Noetherianos (resp. Artinianos) são Noetherianos (resp. Artinianos).

Como corolário da proposição anterior temos

Corolário 103. Se M_i para $1 \le i \le n$ são A-módulos Noetherianos (resp. Artinianos) então $\bigoplus_{i=1}^{n} M_i$ é um A-módulo Noetheriano (resp. Artiniano).

Demonstração. Faremos a prova por indução em n. O caso n=1 é trivial. Suponha que o resultado vale para n=k, i.e. se M_1, \dots, M_k são A-módulos Noetherianos (resp. Artinianos) então $\bigoplus_{i=1}^k M_i$ é um A-módulo Noetheriano (resp. Artiniano). Considere, agora, a sequência

$$0 \to M_{k+1} \stackrel{f}{\to} \bigoplus_{i=1}^{k+1} M_i \stackrel{g}{\to} \bigoplus_{i=1}^k M_i \to 0,$$

onde f, dada por $m_{k+1}\mapsto (0,\cdots,0,m_{k+1})$, é claramente injetiva e g, dada por $(m_1,\cdots,m_k,m_{k+1})\mapsto (m_1,\cdots,m_k)$, é sobre. Agora, temos que $g\circ f(m_{k+1})=g(0,\cdots,0,m_{k+1})=(0,\cdots,0)$ logo $\mathrm{Im}(f)\subseteq \mathrm{Ker}(g)$. Seja $(m_1,\cdots,m_{k+1})\in \mathrm{Ker}(g)$ então $m_i=0$ para $i=1,\ldots,k$ logo $(m_1,\cdots,m_{k+1})=(0,\cdots,0,m_{k+1})=f(m_{k+1})\in \mathrm{Im}(f)$. Portanto a sequência é exata. Como M_{k+1} e $\bigoplus_{i=1}^k M_i$ são Noetherianos (resp. Artinianos), segue da Proposição 102 que $\bigoplus_{i=1}^{k+1} M_i$ é um A-módulo Noetheriano (resp. Artiniano).

Definição 104. Um anel *A* é dito **Noetheriano** (resp. **Artiniano**) se é Noetheriano (resp. Artiniano) como *A*-módulo, i.e., se satisfaz a cca (resp. ccd) em ideais.

Exemplo 105.

- a. Todo corpo **k** é ambos Noetheriano e Artiniano, pois somente tem dois ideais (0) e **k**.
- b. O anel \mathbb{Z} satisfaz cca mas não ccd, pois se $a \in \mathbb{Z}$ e $a \neq 0$ temos $(a) \supset (a^2) \supset \cdots \supset (a^n) \supset \cdots$ (inclusões estritas). Logo é Noetheriano mas não Artiniano.
- c. Todo DIP é Noetheriano, pois todo ideal é f.g.
- d. O anel dos polinômios $\mathbf{k}[x_1, x_2, \dots, x_n, \dots]$ em um número infinito de indeterminadas não satisfaz nenhuma das condições de cadeia: a sequência $(x_1) \subset (x_1, x_2) \subset \cdots$ é estritamente crescente e a sequência $(x_1) \supset (x_1^2) \supset (x_1^3) \supset \cdots$ é estritamente decrescente. Logo não é Noetheriano nem Artiniano.

Proposição 106. Seja A um anel Noetheriano (resp. Artiniano), M um A-módulo f.g. Então M é Noetheriano (resp. Artiniano).

Demonstração. Sejam m_1, \ldots, m_n os geradores de M, defina $f: A^n \to M$ por $f(a_1, \ldots, a_n) = a_1 m_1 + \cdots + a_n m_n$. Então f é um homomorfismo de A-módulos sobrejetor. Segue do Corolário 103 que A^n é Noetheriano (resp. Artiniano) e logo pela Proposição 102 M é um A-módulo Noetheriano (resp. Artiniano). □

Proposição 107. Seja A um anel Noetheriano (resp. Artiniano), I um ideal de A. Então A/I é um anel Noetheriano (resp. Artiniano).

Demonstração. Como a projeção canônica $\pi:A\to A/I$ é um homomorfismo de A-módulos sobrejetor e A é um A-módulo Noetheriano (resp. Artiniano), segue da Proposição 102 que A/I é Noetheriano (resp. Artiniano) como um A-módulo e logo também como um A/I-módulo pois, segue do Teorema da Correspondência versão para Submódulos (Aula 7, logo após a definição de submódulo, Definição 51), que os A-submódulos de A/I correspondem aos A-submódulos de A/I.

Uma **cadeia** de submódulos de um módulo M é uma sequência $(M_i)_{i=0}^n$ de submódulos de M tais que

$$M = M_n \supseteq M_{n-1} \supseteq \cdots \supseteq M_0 = 0$$
 (inclusões estritas).

O **comprimento** da cadeia é n. Uma **série de composição** de M é uma cadeia maximal, ou seja uma cadeia na qual não podem ser insertados submódulos extras, isto é equivalente a dizer que cada quociente M_{i+1}/M_i com $0 \le i \le n$ é **simples** (i.e., não tem outros submódulos além de 0 e ele mesmo).

Definimos o **comprimento** de M sobre A, denotado por $\ell_A(M)$, como sendo o mínimo entre todos os comprimentos das séries de composição de M ou ∞ se M não admite série de composição.

Exemplo 108. Seja **k** um corpo. Um **k**-espaço vetorial é simples se, e somente se, tem dimensão 1. Assim, uma série de composição para um espaço vetorial *V* é uma sequência

$$V = V_n \supsetneq V_{n-1} \supsetneq \cdots \supsetneq V_1 \supsetneq V_0 = 0$$

onde $\dim_{\mathbf{k}} V_i = i$. Logo $\ell_{\mathbf{k}}(V) = n = \dim_{\mathbf{k}} V$.

Uma importante caracterização de um módulo simples é dada pelo seguinte lema.

Lema 109. Um A-módulo M é simples se, e somente se, $M \simeq A/\mathfrak{m}$ (como A-módulos) para algum ideal maximal $\mathfrak{m} \subset A$.

Demonstração. Se m é um ideal maximal de A, então M = A/m é simples pelo Teorema da Correspondência versão para Submódulos, pois A-submódulos de A/m correspondem a A-submódulos de A (ideais) que contém m, como m é maximal estes ideais são A e m e correspondem aos A-submódulos A/m e 0 de A/m, o que implica que A/m é simples. Reciprocamente, se M é simples e $m \in M$ é qualquer elemento não nulo então

M = Am = (m). Logo a aplicação $f : A \to M$ dada por $a \mapsto am$ é sobrejetiva é induz um isomorfismo de A-módulos $M \simeq A / \operatorname{Ker}(f)$ e novamente pelo TCS, os A-submódulos de M (0 e M) correspondem aos A-submódulos de A (ideais) que contém $\operatorname{Ker}(f)$, logo os únicos ideais de A que contém $\operatorname{Ker}(f)$ são $\operatorname{Ker}(f)$ e A, logo $\operatorname{Ker}(f)$ deve ser maximal.

Proposição 110. Suponha que M tem uma série de composição de comprimento n. Então toda série de composição de M comprimento n e toda cadeia em M pode ser estendida a uma série de composição.

Demonstração. Dividiremos a prova em quatro partes:

- a. Vejamos que se $N \subsetneq M$ então $\ell_A(N) < \ell_A(M)$. Seja (M_i) uma série de composição de M de comprimento minimal, e considere os submódulos $N_i = N \cap M_i$ de N. Como $N_{i+1}/N_i \subseteq M_{i+1}/M_i$ e o último é um módulo simples, temos duas possibilidades $N_{i+1}/N_i = M_{i+1}/M_i$ ou $N_{i+1} = N_i$. Logo removendo os termos repetidos temos uma série de composição de N e logo $\ell_A(N) \le \ell_A(M)$. Se $\ell_A(N) = \ell_A(M) = n$, então $N_{i+1}/N_i = M_{i+1}/M_i$ para cada $i = 0, \ldots, n-1$. Isto implica que $M_1 = N_1$ e logo $M_2 = N_2, \cdots$, e finalmente M = N.
- b. Toda cadeia em M tem comprimento $\leq \ell_A(M)$. Seja $M=M_k\supsetneq M_{k-1}\supsetneq \cdots \supsetneq M_0=0$ uma cadeia de comprimento k. Então pelo item (a.) temos $\ell_A(M)>\ell_A(M_{k-1})>\ell_A(M_{k-2})>\cdots>\ell_A(M_0)=0$, $\log_2 \ell_A(M)\geq k$.
- c. Considere qualquer série de composição de M. Se tem comprimento k então $k \leq \ell_A(M)$ pelo item (b.), mas por definição $\ell_A(M) \leq k$ logo $\ell_A(M) = k$. Segue que toda série de composição tem o mesmo comprimento.
- d. Finalmente, considere qualquer cadeia. Se seu comprimento é $\ell_A(M)$ então é uma série de composição por (b.) (suponha que não é então posso insertar pelo menos um submódulo, logo essa cadeia tem comprimento maior que uma série de composição que é uma cadeia maximal, Contradição!). Se se comprimento é $<\ell_A(M)$ não é uma série de composição ou seja não é maximal e por tanto novos termos podem ser inseridos até o comprimento ser $\ell_A(M)$ e, portanto, até chegarmos a uma série de composição.

AULA 14

AULA 14: 08/10/2014 PROVA 1

Aula 15

AULA 15: 10/10/2014

Proposição 111. M tem uma série de composição se, e somente se, M satisfaz ambas condições de cadeia.

Demonstração. (\Rightarrow) Todas as cadeias de *M* tem comprimento finito, logo ambas condições cca e ccd são satisfeitas. \bigcirc

 (\Leftarrow) Construiremos uma série de composição para M. Temos que M satisfaz a *condição maximal*: "todo subconjunto não vazio de Ω tem um elemento maximal". Em particular Ω , o conjunto de todos os submódulos de M, tem um elemento maximal. Logo M tem um submódulo maximal N, $N \subset M$. Similarmente, se considerarmos o conjunto de todos os submódulos de N, então N tem um submódulo maximal P, $P \subset N \subset M$ e assim por diante. Observe que segue do fato dos submódulos serem maximais que não podem ser insertados submódulos extras, logo os quocientes de módulos consecutivos são simples. Dando continuidade a esse processo obtemos uma cadeia estritamente descendente $M \supset N \supset P \supset \cdots$ que se interrompe pela ccd em Q = 0. Então essa cadeia é uma série de composição.

Observe que a proposição anterior é equivalente a dizer que $\ell_A(M) < \infty$ se, e somente se, M é Artiniano e Noetheriano.

Definição 112. Um módulo que satisfaz ambas condições, cca e ccd, é chamado de **módulo de comprimento finito**.

Analogamente ao caso de grupos finitos podemos aplicar o Teorema de Jordan-Hölder a módulos de comprimento finito:

Teorema 113. (Teorema de Jordan-Hölder) Seja M um módulo de comprimento finito. Se $(M_i)_{i=0}^n$ e $(M_i')_{i=0}^n$ são duas séries de composição de M então existe uma permutação σ dos índices $1, \ldots, n$ tal que $M_{i+1}/M_i \simeq M_{\sigma(i)+1}'/M_{\sigma(i)}'$ para todo $i=1,\ldots,n$.

Demonstração. Exercício 2.

Proposição 114. Seja $0 \to M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0$ uma sequência exata de A-módulos. Então $\ell_A(M) < \infty$ se, e somente se, $\ell_A(M') < \infty$ e $\ell_A(M'') < \infty$. Neste caso $\ell_A(M) = \ell_A(M') + \ell_A(M'')$.

Demonstração. Pela Proposição (102) temos que M é Noetheriano (resp. Artiniano) se, e somente se, M' e M'' são Noetherianos (resp. Artinianos). Assim pela Proposição (111), M possui comprimento finito se, e somente se, M' e M'' possuem comprimento finito. Sejam agora, $M' = M'_n \supseteq M'_{n-1} \supseteq \cdots \supseteq M'_0 = 0$ e $M'' = M''_k \supseteq M''_{k-1} \supseteq \cdots \supseteq M''_0 = 0$ séries de composição

de M' e M'' respetivamente. Tome a imagem por f da primeira, $(f(M'_i))_{i=0}^n$, e a imagem inversa por g da segunda, $(g^{-1}(M''_i))_{i=0}^k$. Basta combiná-las em uma cadeia de M de tamanho n+k:

$$M = g^{-1}(M'') = g^{-1}(M''_k) \supseteq g^{-1}(M''_{k-1}) \supseteq \cdots \supseteq g^{-1}(M''_0) = g^{-1}(0) = \operatorname{Ker}(g)$$

= $\operatorname{Im}(f) = f(M') = f(M'_n) \supseteq f(M'_{n-1}) \supseteq \cdots \supseteq f(M'_0) = f(0) = 0.$

Vejamos que é uma série de composição de *M*:

- a. Vejamos que não tem nenhum termo repetido, ou seja que as inclusões são mesmo estritas: como $M_i'' \subsetneq M_{i+1}''$ existe $m_{i+1}'' \in M_{i+1}''$ tal que $m_{i+1}'' \notin M_i''$. Como g é sobre existe $m \in M$ tal que $g(m) = m_{i+1}''$, logo $m \in g^{-1}(M_{i+1}'')$. Suponha que $m \in g^{-1}(M_i'')$ então $m_{i+1}'' = g(m) \in M_i''$ o que é uma contradição, logo $g^{-1}(M_i'') \subsetneq g^{-1}(M_{i+1}'')$, para cada $i = 0, \ldots, n-1$. Por outro lado, temos que $M_i' \subsetneq M_{i+1}'$ e logo existe $m_{i+1}' \in M_{i+1}'$ tal que $m_{i+1}' \notin M_i'$. Logo $f(m_{i+1}') \in f(M_{i+1}')$ e suponha que também $f(m_{i+1}') \in f(M_i')$, isto implica que existe $m_i' \in M_i'$ tal que $f(m_{i+1}') = f(m_i')$. Como f é injetiva segue que $m_{i+1}' = m_i' \in M_i'$ o que é uma contradição. Logo $f(M_i') \subsetneq f(M_{i+1}')$, para cada $i = 0, \ldots, n-1$.
- b. Vejamos que a cadeia é maximal, ou seja que os quocientes de termos consecutivos são simples. Defina a aplicação sobrejetora g_i como sendo a composição das aplicações $g^{-1}(M_{i+1}'') \stackrel{g}{\to} M_{i+1}'' \stackrel{\pi}{\to} M_{i+1}'' / M_i''$ (onde a primeira aplicação é a restrição de g a $g^{-1}(M_{i+1}'')$ e é sobre pois satisfaz $g(g^{-1}(M_{i+1}'')) = M_{i+1}''$ pois g é sobre). Agora $m \in \operatorname{Ker}(g_i) \Leftrightarrow g(m) \in M_i'' \Leftrightarrow m \in g^{-1}(M_i'')$, logo pelo teorema de isomorfismos $\frac{g^{-1}(M_{i+1}'')}{g^{-1}(M_i'')} \simeq \frac{M_{i+1}''}{M_i''}$ como este último é simples temos que os quocientes $\frac{g^{-1}(M_{i+1}'')}{g^{-1}(M_i'')}$ são simples.

Por outro lado, defina a aplicação sobrejetora f_i como sendo a composição das aplicações $M'_{i+1} \stackrel{f}{\twoheadrightarrow} f(M'_{i+1}) \stackrel{\pi}{\twoheadrightarrow} f(M'_{i+1}) / f(M'_i)$ (onde a primeira aplicação é a restrição de f a M'_{i+1} e é claramente sobre). Agora $m' \in \operatorname{Ker}(f_i) \Leftrightarrow f(m') \in f(M'_i) \Leftrightarrow m' \in f^{-1}(f(M'_i)) = M'_i$ pois f é injetiva, logo pelo teorema de isomorfismos $\frac{f(M'_{i+1})}{f(M'_i)} \simeq \frac{M'_{i+1}}{M'_i}$ como este último é simples temos que os quocientes $\frac{f(M'_{i+1})}{f(M'_i)}$ são simples.

5.1 ANÉIS NOETHERIANOS

Recordamos que um anel A é dito **Noetheriano** se satisfaz as seguintes três condições equivalentes:

- a. Todo conjunto não vazio de ideais de *A* tem um elemento maximal (condição maximal).
- b. Toda cadeia ascendente de ideais de *A* é estacionária (cca).
- c. Todo ideal de *A* é f.g.

Vimos na aula passada que:

Proposição. Seja A um anel Noetheriano.

- a. Se M um A-módulo f.g., então M é Noetheriano.
- b. Se I um ideal de A, então A/I é um anel Noetheriano.

Provaremos que a propriedade de ser "Noetheriano" é preservada por várias outras operações.

Proposição 115. Se A é um anel Noetheriano $e \phi : A \rightarrow B$ é um homomorfismo de anéis sobrejetor, então B é Noetheriano.

Demonstração. Como $B \simeq A / \operatorname{Ker}(\phi)$ segue da Proposição 107 (item b.) que B é um anel Noetheriano.

Proposição 116. Seja A um subanel de B; suponha que A é Noetheriano e que B é f.g. como um A-módulo. Então B é Noetheriano como anel.

Demonstração. Como *A* é um subanel de *B*, podemos considerar *B* junto com o homomorfismo inclusão como um *A*-módulo. Segue da Proposição 106 (item *a*.) que *B* é Noetheriano como um *A*-módulo. Mas os ideais *B* são *B*-submódulos de *B* por tanto também são *A*-submódulos de *B* e por tanto toda cadeia de ideais de *B* estabiliza-se, logo *B* é Noetheriano como anel. □

Proposição 117. Se A é um anel Noetheriano e S um conjunto multiplicativo de A, então $S^{-1}A$ é Noetheriano.

Demonstração. Pelo Teorema 98 item (a.) um ideal de $S^{-1}A$ é da forma $S^{-1}I$ para algum ideal I de A. Se I é f.g., digamos $I = \langle a_1, \ldots, a_n \rangle$ então $S^{-1}I$ também é f.g. por $\frac{a_1}{1}, \ldots, \frac{a_n}{1}$. Assim A Noetheriano implica $S^{-1}A$ Noetheriano.

Corolário 118. Se A é Noetheriano e \mathfrak{p} é um ideal primo de A, então $A_{\mathfrak{p}}$ é Noetheriano.

Agora sim estamos em condições de provar que conjuntos algébricos podem ser sempre definidos por um número finito de polinômios.

Lembrando: Dado um subconjunto $S \subseteq \mathbf{k}[x_1, \dots, x_n]$, na Seção 2.2, definimos um conjunto algébrico como sendo o subconjunto $Z(S) \subseteq \mathbb{A}^n_{\mathbf{k}}$ dos zeros

comuns de todos os polinômios em S e provamos que se $I \subseteq \mathbf{k}[x_1, \ldots, x_n]$ é o ideal gerado por S, então Z(S) = Z(I). Assim podemos definir um conjunto algébrico como o conjunto de zeros de um ideal. Provaremos agora que todo ideal de $\mathbf{k}[x_1, \ldots, x_n]$ é finitamente gerado e assim todo conjunto algébrico é o conjunto de zeros de um número *finito* de polinômios. Mais geralmente, provaremos que:

Teorema 119. (Teorema da Base de Hilbert) Se A é Noetheriano, então o anel de polinômios A[x] é Noetheriano.

Demonstração. Seja I um ideal em A[x], vamos mostrar que I é f.g. Seja $J_0 = I \cap A$ vejamos que J_0 é um ideal de A:

- a. Se $a, b \in J_0$ então $a, b \in I$ e $a, b \in A$ logo $a + b \in I \cap A = J_0$;
- b. Se $a \in J_0$ e $r \in A$ então $a \in I$, $a \in A$ e $r \in A \subset A[x]$ logo $ra \in I \cap A = J_0$.

Como A é Noetheriano J_0 é f.g., sejam a_1, \ldots, a_n os geradores. Seja $I_0 = J_0 A[x]$ o ideal de A[x] gerado por J_0 . Agora, se $y \in I_0$ então $y = \sum_{i=1}^l f_i(x) j_i$, com $j_i \in J_0$ e $f_i(x) \in A[x]$. Logo $j_i = \sum_{k=1}^n a_k b_k^i$, com $b_k^i \in A$, assim $y = \sum_{i=1}^l f_i(x) (\sum_{k=1}^n a_k b_k^i) = \sum_{k=1}^n (\sum_{i=1}^l f_i(x) b_k^i) a_k$ onde $\sum_{i=1}^l f_i(x) b_k^i \in A[x]$, logo I_0 é f.g em A[x] pelos a_1, \ldots, a_n .

Temos duas possibilidades:

- a. ou $I_0 = I$ e logo I é f.g.;
- b. ou $I_0 \neq I$, logo $I_0 \subsetneq I$. Seja $g \in I I_0$ tal que o grau de g é minimal em I. Então se $g = b_m x^m + b_{m-1} x^{m-1} + \cdots + b_0$ temos que $b_m \notin J_0$ (pois se $b_m \in J_0$ então $b_m x^m \in I_0$ e logo $g b_m x^m \notin I_0$ contradição pois o grau de g é minimal). Seja então $J_1 = \langle J_0, b_m \rangle$ o ideal de A gerado por J_0 e b_m e seja $I_1 = J_1 A[x]$ o ideal de A[x] gerado por J_1 , analogamente ao caso anterior como J_1 é f.g. em A também I_1 é f.g. em A[x]. Novamente temos dois casos:
 - a) ou $I_1 = I$ e logo I é f.g.;
 - b) ou $I_1 \neq I$ e repetimos o processo obtendo, assim, uma cadeia ascendente $J_0 \subsetneq J_1 \subsetneq J_2 \subsetneq \cdots$ de ideais de A e logo, como A é Noetheriano, essa cadeia é estacionária, ou seja existe N tal que $J_N = J_{N+1} = \cdots$. Logo $J_N = \langle J_{N-1}, c_N \rangle = \langle J_N, c_{N+1} \rangle = J_{N+1}$ o que implica que $c_{N+1} \in J_N$. Suponha então que $I_N \neq I$ então, seguindo o raciocínio anterior, existe $g' \in I I_N$ tal que o grau de g' é minimal em I e tal que c_{N+1} é o coeficiente líder de g', mas isto implica que $c_{N+1} \notin J_N$, o que é uma contradição. Logo $I_N = I$ e portanto I é f.g.

Corolário 120. Se A é Noetheriano então $A[x_1, ..., x_n]$ é Noetheriano.

Demonstração. Segue do teorema anterior por indução em n.

Note que também é verdade que se A é Noetheriano então o anel das séries de potências formais em x com coeficientes em A, A[[x]], é Noetheriano. A prova é análoga, excepto que deve ser considerado o coeficiente do termo de menor grau. (Exercício 3.)

Corolário 121. Seja B uma A-álgebra f.g. Se A é Noetheriano, então também o é B. Em particular, todo anel e toda álgebra f.g. sobre um corpo são Noetherianos.

Demonstração. Lembramos a definição de A-álgebra f.g. (Aula 9, logo após a Definição 76): $f: A \to B$ é uma A-álgebra f.g. se existe um conjunto finito de elementos $b_1, \ldots, b_n \in B$ tal que todo elemento de B pode ser escrito como um polinômio em b_1, \ldots, b_n com coeficientes em f(A), ou equivalentemente, se existe um homomorfismo de A-álgebras sobrejetor do anel dos polinômios $A[x_1, \ldots, x_n]$ em B. Esse homomorfismo $A[x_1, \ldots, x_n] \to B$ é dado por $x_i \mapsto b_i$. Como o anel de polinômios $A[x_1, \ldots, x_n]$ que é Noetheriano pelo Teorema da Base de Hilbert (Teorema 119), segue da Proposição 115 que B é um anel Noetheriano.

AULA 16: 15/10/2014

5.2 ANÉIS ARTINIANOS

Aula 16

Recordamos que um anel A é dito **Artiniano** se satisfaz uma das seguintes condições equivalentes:

- a. Todo conjunto não vazio de ideais de *A* tem um elemento minimal (condição minimal).
- b. Toda cadeia descendente de ideais de *A* é estacionária (ccd).

Proposição 122. Em um anel Artiniano A todo ideal primo é maximal. Isto é Spec(A) = Specm(A).

Demonstração. Seja $\mathfrak p$ um ideal primo de A. Então $B=A/\mathfrak p$ é um domínio de integridade Artiniano (pela Proposição 107). Seja $b\in B$, $b\neq 0$, então pela ccd temos que $(b^n)=(b^{n+1})$ para algum n e logo $b^n=b^{n+1}x$ para algum $x\in B$. Logo $b^n(1-bx)=0$, como B é um domínio e $b\neq 0$ segue bx=1. Ou seja b tem um inverso em b, e portanto b é um corpo o que implica que b é um ideal maximal.

Corolário 123. Em um anel Artiniano o nilradical M é igual ao radical de Jacobson R.

Lembramos uma proposição provada na Aula 3 (também é o Exercício 13 da Lista 1) que usaremos na prova da Proposição seguinte:

Proposição. Sejam I_1, \ldots, I_n ideais e seja \mathfrak{p} um ideal primo contendo $\bigcap_{i=1}^n I_i$. Então $\mathfrak{p} \supset I_i$ para algum i.

Proposição 124. Um anel Artiniano $A \neq 0$ tem somente um número finito de ideais maximais.

Demonstração. Considere o conjunto de todos os ideais do anel A que são interseções finitas $\mathfrak{m}_1 \cap \mathfrak{m}_2 \cap \cdots \cap \mathfrak{m}_r$ de ideais maximais. Como A é Artiniano e este conjunto é não vazio (pois A tem pelo menos um ideal maximal) ele tem um elemento minimal: $I = \mathfrak{m}_1 \cap \mathfrak{m}_2 \cap \cdots \cap \mathfrak{m}_n$. Logo para qualquer ideal maximal \mathfrak{m} temos que $\mathfrak{m} \cap I$ é uma interseção finita de ideais maximais que está contida em I, logo $\mathfrak{m} \cap I = I$ pela minimalidade de I, o que implica que $\mathfrak{m} \supseteq I$. Pela Proposição 29 temos que $\mathfrak{m} \supseteq \mathfrak{m}_i$ para algum i, e logo $\mathfrak{m} = \mathfrak{m}_i$ pois \mathfrak{m}_i é maximal. □

Proposição 125. Em um anel Artiniano o nilradical \mathfrak{N} (e logo também o radical de Jacobson \mathfrak{R}) é nilpotente.

Demonstração. Como as potências de $\mathfrak M$ formam uma cadeia descendente de ideais, pela ccd, temos que existe um k>0 tal que $\mathfrak M^k=\mathfrak M^{k+1}=\cdots=I$. Suponha que $I\neq 0$ e seja Ω o conjunto de todos os ideais J de A tais que $IJ\neq 0$. Então Ω é não vazio pois $I\in \Omega$ ($I^2=\mathfrak M^{2k}=I\neq 0$). Seja K o elemento minimal de Ω , então existe $x\in K$ tal que $xI\neq 0$ mas $(x)\subseteq K$ logo (x)=K pela minimalidade de K. Mas $(xI)I=xI^2=xI\neq 0$ e $xI\subseteq (x)$, logo xI=(x). Isto implica que existe $y\in I$ tal que xy=x e por tanto $x=xy=xy^2=\cdots=xy^n=\cdots$, mas $y\in I=\mathfrak M^k\subseteq \mathfrak M$ e logo $y\in \mathbb M$ nilpotente o que implica $x=xy^n=0$. Isto contradiz a escolha do $x\in \mathbb M$ portanto I=0.

Definição 126. Definimos uma **cadeia de ideais primos** de um anel A como sendo uma sequência estritamente crescente e finita $\mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \cdots \subsetneq \mathfrak{p}_n$ onde cada \mathfrak{p}_i é um ideal primo de A. O **comprimento** da cadeia é n. Definimos a **dimensão** de um anel $A \neq 0$ como sendo o supremo dos comprimentos de todas as cadeias de ideais primos de A.

Assim, por exemplo um corpo tem dimensão 0 e um DIP tem dimensão 1, pois em um DIP (0) é um ideal primo e os ideais primos não nulos são maximais (Proposição 22) ou seja se $(0) \subsetneq (p) \subseteq (p_1)$ é uma cadeia de primos isto implica que $(p) = (p_1)$. Logo todas as cadeias de primos de um DIP têm comprimento ≤ 1 .

Corolário 127. Seja A um anel Artiniano então dim A = 0.

Demonstração. Segue do fato de que em um anel Artiniano todo ideal primo é maximal (Proposição 122) e logo toda cadeia de primos de A tem comprimento 0.

5.3 EXERCÍCIOS

Ex. 52 — Seja $0 \to M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0$ uma sequência exata de *A*-módulos. Mostre que *M* é Artiniano se, e somente se, *M'* e *M''* são Artinianos.

Ex. 53 — **(Teorema de Jordan-Hölder)** Seja M um módulo de comprimento finito. Se $(M_i)_{i=0}^n$ e $(M_i')_{i=0}^n$ são duas séries de composição de M mostre que existe uma permutação σ dos índices $1,\ldots,n$ tal que $M_{i+1}/M_i \simeq M_{\sigma(i)+1}'/M_{\sigma(i)}'$ para todo $i=1,\ldots,n$.

Ex. 54 — Mostre que se A é Noetheriano então A[[x]] é Noetheriano.

Ex. 55 — Mostre que para o caso particular de módulos sobre um corpo \mathbf{k} , i.e., \mathbf{k} -espaços vetoriais V as seguintes condições são equivalentes: V tem dimensão finita $\Leftrightarrow V$ tem comprimento finito $\Leftrightarrow V$ é Noetheriano $\Leftrightarrow V$ é Artiniano.

Ex. 56 — Prove que $\mathbb{Z}[i]$, o anel dos inteiros Gaussianos, é um anel Noetheriano.

Ex. 57 — Mostre que A é um anel Artiniano e um domínio se, e somente se, A é um corpo.

Ex. 58 — Seja *M* um *A*-módulo Noetheriano. Se todo conjunto não vazio de submódulos f.g. de *M* tem um elemento maximal, mostre que *M* é Noetheriano.

Ex. 59 — Um espaço topológico X é dito **Noetheriano** se os subconjuntos abertos de X satisfazem a cca ou, equivalentemente, se os subconjuntos fechados de X satisfazem a ccd. Mostre que:

- 1. Se A é um anel Noetheriano então $\operatorname{Spec}(A)$ é um espaço topológico Noetheriano.
- 2. Se A é um anel qualquer, então Spec(A) é um espaço Noetheriano se, e somente se, o conjunto de ideias primos de A satisfaz a cca.

- **Ex. 60** Seja *A* um anel Noetheriano. Mostre que:
 - 1. Todo ideal $I \subseteq A$ contém um produto finito de ideais primos.
 - 2. A possui apenas um número finito de ideais primos minimais.
- **Ex. 61** Seja M um A-módulo Noetheriano e $f: M \to M$ um homomorfismo de A-módulos sobrejetor. Mostre que f é um isomorfismo.
- **Ex. 62** Seja M um A-módulo Artiniano e $f: M \to M$ um homomorfismo de A-módulos injetor. Mostre que f é um isomorfismo.
- Ex. 63 Seja A um anel tal que:
 - 1. o anel local $A_{\mathfrak{m}}$ é Noetheriano para todo $\mathfrak{m} \in \operatorname{Specm}(A)$ e
 - 2. para cada $a \neq 0$ em A, o conjunto de ideais maximais de A que contém a é finito.

Mostre que *A* é Noetheriano.

- **Ex. 64** Prove que se todos os elementos de Spec(A) são f.g. então o anel A é Noetheriano.
- **Ex. 65** Prove que um domínio Noetheriano *A* é um DIP se, e somente se, todos seus ideais primos são principais.

DECOMPOSIÇÃO PRIMÁRIA

A decomposição primária de um ideal é nada mais que a generalização da fatoração de um inteiro como produto de potências de números primos. Um ideal primo de um anel *A* é, em algum sentido, a generalização de um número primo. A correspondente generalização de uma potência de um número primo é um ideal "primário":

Definição 128. Um ideal q em um anel A é **primário** se $q \neq A$ e se $ab \in q$ então ou $a \in q$ ou $b^n \in q$ para algum n > 0.

Em outras palavras, \mathfrak{q} é primário se, e somente se, $A/\mathfrak{q} \neq 0$ e todo divisor de zero em A/\mathfrak{q} é nilpotente.

Segue que todo ideal primo (e maximal) é primário.

Proposição 129. Seja q um ideal primário em um anel A. Então $\sqrt{\mathfrak{q}}$ é o menor ideal primo de A contendo \mathfrak{q} .

Demonstração. Como $\sqrt{\mathfrak{q}}$ é a interseção de todos os ideais primos de A que contêm \mathfrak{q} (Proposição 28, Aula 3), é suficiente provar que $\sqrt{\mathfrak{q}}$ é primo. Sejam $ab \in \sqrt{\mathfrak{q}}$, então existe m > 0 tal que $(ab)^m \in \mathfrak{q}$. Como \mathfrak{q} é primário ou $a^m \in \mathfrak{q}$ ou $b^{mn} \in \mathfrak{q}$ para algum n > 0, i.e. ou $a \in \sqrt{\mathfrak{q}}$ ou $b \in \sqrt{\mathfrak{q}}$.

Se \mathfrak{q} é primário e $\mathfrak{p}=\sqrt{\mathfrak{q}}$ então dizemos que \mathfrak{q} é \mathfrak{p} -primário.

Exemplo 130.

- a. Os ideais primários de \mathbb{Z} são (0) e (p^n) , onde p é um número primo.
- b. Seja $A = \mathbf{k}[x,y]$ e $\mathfrak{q} = (x,y^2)$. Então $A/\mathfrak{q} \simeq \mathbf{k}[y]/(y^2)$ neste anel os divisores de zero são os múltiplos de y e logo são nilpotentes. Segue que \mathfrak{q} é primário e seu radical \mathfrak{p} é (x,y). Temos então que $\mathfrak{p}^2 \subsetneq \mathfrak{q} \subsetneq \mathfrak{p}$ logo um ideal primário não é necessariamente uma potência de um primo.

Proposição 131. Se \sqrt{I} é maximal, então I é primário. Em particular, as potências de um ideal maximal $\mathfrak m$ são $\mathfrak m$ -primárias.

Demonstração. Seja $\mathfrak{m}=\sqrt{I}$. Se $\pi:A\to A/I$ é o homomorfismo projeção, então segue do Exercício 16.2 da Lista 1 que $\sqrt{I}=\pi^{-1}(\mathfrak{N}_{A/I})$, ou seja a imagem de \mathfrak{m} em A/I é o nilradical de A/I e logo $\mathfrak{N}_{A/I}$ é maximal. Assim dado um ideal primo \mathfrak{p} de A/I segue que $\mathfrak{N}_{A/I}\subseteq\mathfrak{p}$ o que implica $\mathfrak{N}_{A/I}=\mathfrak{p}$ e logo o anel A/I tem somente um ideal primo. Então todo elemento de

A/I ou é uma unidade ou é nilpotente (Exercício 18 Lista 1), e logo todo divisor de zero de A/I é nilpotente. Isto implica que I é primário. Por outro lado se \mathfrak{m} é maximal (logo primo) $\mathfrak{m} = \sqrt{\mathfrak{m}^n}$ para todo n > 0 (Exercício 16.5 Lista 1), logo \mathfrak{m}^n é \mathfrak{m} -primário para todo n > 0.

Por outro lado, as potências de um ideal primo não necessariamente são primárias: no anel $A = \mathbf{k}[x,y,z]/(z^2-xy)$ o ideal $p = (\overline{x},\overline{z})$ é primo mas p^2 não é primário.

Estudaremos a seguir presentações de um ideal como uma interseção de ideais primários. Mas antes, enunciaremos um par de lemas técnicos:

Lema 132. Se \mathfrak{q}_i com $1 \leq i \leq n$ são \mathfrak{p} -primários então $\mathfrak{q} = \bigcap_{i=1}^n \mathfrak{q}_i$ é \mathfrak{p} -primário.

Demonstração.
$$\sqrt{\mathfrak{q}} = \sqrt{\bigcap_{i=1}^n \mathfrak{q}_i} \stackrel{\text{Ex16.4 L1}}{=} \cap_{i=1}^n \sqrt{\mathfrak{q}_i} = \mathfrak{p}$$
. Seja $xy \in \mathfrak{q}$ e suponha que $y \notin \mathfrak{q}$, então para algum i temos que $xy \in \mathfrak{q}_i$ e $y \notin \mathfrak{q}_i$, logo $x \in \mathfrak{p} = \sqrt{\mathfrak{q}_i} = \sqrt{\mathfrak{q}}$ (pois \mathfrak{q}_i é \mathfrak{p} -primário) e logo \mathfrak{q} é \mathfrak{p} -primário.

Lema 133. Seja q um ideal p-primário e a um elemento de A. Então:

- a. Se $a \in \mathfrak{q}$ então $(\mathfrak{q} : a) = A$.
- b. Se $a \notin \mathfrak{q}$ então $(\mathfrak{q} : a)$ é \mathfrak{p} -primário.
- c. Se $a \notin \mathfrak{p}$ então $(\mathfrak{q} : a) = \mathfrak{q}$.

Demonstração. Como (q : a) := {b ∈ A | ab ∈ q}, o primeiro item segue da definição. Para o segundo, se b ∈ (q : a) então ab ∈ q e logo, como $a \notin q$, temos que b ∈ p. Logo q ⊆ (q : a) ⊆ p, tomando radicais ($\sqrt{preserva}$ inclusões e $\sqrt{\sqrt{I}} = \sqrt{I}$ Ex. 16 Lista 1) temos $\sqrt{(q : a)} = p$. Seja agora bc ∈ (q : a) e suponha que $b \notin p$, então abc ∈ q logo ac ∈ q o que implica que c ∈ (q : a). Logo (q : a) é p-primário. No terceiro item, como $a \notin p$ então se b ∈ (q : a) então ab ∈ q logo b ∈ q.

Definição 134. Uma **decomposição primária** de um ideal I de A é uma expressão de I como uma interseção finita de ideais primários, $I = \bigcap_{i=1}^{n} \mathfrak{q}_i$.

Note que em geral, uma tal decomposição primária não precisa existir. Diremos que um ideal *I* é **decomponível** se *I* admite uma decomposição primária.

Se um ideal *I* for decomponível e ainda:

- a. todos os $\sqrt{\mathfrak{q}_i}$ são distintos, e
- b. temos que $\bigcap_{i \neq i} \mathfrak{q}_i \nsubseteq \mathfrak{q}_i$ para $1 \leq i \leq n$

a decomposição primária é dita **minimal**. Em vista do Lema 132, podemos interceptar todos os ideais \mathfrak{p} -primários e obter um novo ideal \mathfrak{p} -primário tendo assim a condição (a.) satisfeita sem mudar a decomposição de I, feito isso podemos omitir qualquer termo supérfluo para obter a condição (b.) da seguinte forma: suponha que $\bigcap_{j\neq i}\mathfrak{q}_j\subseteq\mathfrak{q}_i$ então $\bigcap_{j\neq i}\mathfrak{q}_j=\bigcap_j\mathfrak{q}_j=I$, então podemos tirar \mathfrak{q}_i . Logo toda decomposição primária pode ser reduzida a uma minimal.

AULA 17: 17/10/2014

Lembrando a última aula. Provamos que:

Aula 17

Lema.

- a. Se \mathfrak{q}_i com $1 \leq i \leq n$ são \mathfrak{p} -primários então $\mathfrak{q} = \bigcap_{i=1}^n \mathfrak{q}_i$ é \mathfrak{p} -primário.
- b. Seja q um ideal \mathfrak{p} -primário e $a \in A$. Então:
 - a) Se $a \in \mathfrak{q}$ então $(\mathfrak{q} : a) = A$.
 - b) Se $a \notin \mathfrak{q}$ então $(\mathfrak{q}:a)$ é \mathfrak{p} -primário.
 - c) Se $a \notin \mathfrak{p}$ então $(\mathfrak{q}:a) = \mathfrak{q}$.

Definimos uma decomposição primária de um ideal I como sendo uma expressão $I = \bigcap_{i=1}^n \mathfrak{q}_i$, onde os \mathfrak{q}_i são primários. Diremos que I é decomponível se I admite uma decomposição primária. Neste se caso, se

- a. todos os $\sqrt{\mathfrak{q}_i}$ são distintos, e
- b. temos que $\bigcap_{j\neq i} \mathfrak{q}_j \nsubseteq \mathfrak{q}_i$ para $1 \le i \le n$

a decomposição primária é dita **minimal**. E observamos que, em vista do Lema anterior, toda decomposição primária pode ser reduzida a uma minimal.

Teorema 135. (1° **Teorema de Unicidade**) Seja I um ideal decomponível e seja $I = \bigcap_{i=1}^n \mathfrak{q}_i$ uma decomposição primária minimal de I. Seja $\mathfrak{p}_i = \sqrt{\mathfrak{q}_i}$ para $1 \le i \le n$. Então os \mathfrak{p}_i 's são precisamente os ideais primos que ocorrem no conjunto de ideais $\sqrt{(I:a)}$ com $a \in A$, e portanto não dependem da decomposição particular de I.

Demonstração. Para cada $a \in A$ temos $(I:a) = (\bigcap_{i=1}^n \mathfrak{q}_i:a) = \bigcap_{i=1}^n (\mathfrak{q}_i:a)$ (Ex. 20.3 L1), logo $\sqrt{(I:a)} = \bigcap_{i=1}^n \sqrt{(\mathfrak{q}_i:a)} = \bigcap_{a \notin \mathfrak{q}_j}^n \mathfrak{p}_j$ (Ex. 16.4 L1 e Lema 133) . Suponha que $\sqrt{(I:a)}$ seja primo então, segue da Proposição 29 (Lembrando: Se $\mathfrak{p} = \bigcap_{i=1}^n I_i$ então $\mathfrak{p} = I_i$ para algum i), que $\sqrt{(I:a)} = \mathfrak{p}_j$ para algum j. Logo todo ideal primo da forma $\sqrt{(I:a)}$ é um dos \mathfrak{p}_j . Reciprocamente, para cada i existe $a_i \notin \mathfrak{q}_i$ e $a_i \in \bigcap_{j \neq i} \mathfrak{q}_j$ pois a decomposição é minimal, logo temos que $\sqrt{(I:a_i)} = \mathfrak{p}_i$.

Note que não é verdade que todas as componentes primárias são independentes da decomposição. Por exemplo, $(x^2, xy) = (x) \cap (x^2, y) = (x) \cap (x, y)^2$ são duas decomposições primárias minimais distintas.

Da prova anterior, temos que para cada i existe $a_i \in A$ tal que $a_i \notin \mathfrak{q}_i$ e $a_i \in \cap_{j \neq i} \mathfrak{q}_j$ assim $(I, a_i) = \cap_{j=1}^n (\mathfrak{q}_j : a_i) = (\mathfrak{q}_i : a_i)$ pois pelo lema anterior $(\mathfrak{q}_j : a_i) = A$ para todo $j \neq i$ e logo (também pelo lema anterior) (I, a_i) é \mathfrak{p}_i -primário.

Dizemos que os ideais primos \mathfrak{p}_i do 1º Teorema de Unicidade (Teorema 135) são **associados** a I, e os denotaremos por $\mathrm{Assoc}(I) = \{\mathfrak{p}_1, \ldots, \mathfrak{p}_n\}$. Segue que um ideal I é primário se, e somente se, ele tem um único ideal primo associado.

Os elementos minimais do conjunto $\operatorname{Assoc}(I)$ são chamados de ideais primos **isolados** de I, i.e., um ideal primo $\mathfrak{p} \in \operatorname{Assoc}(I)$ é isolado se sempre que exista $\mathfrak{p}' \in \operatorname{Assoc}(I)$ tal que $\mathfrak{p}' \subseteq \mathfrak{p}$ então $\mathfrak{p}' = \mathfrak{p}$. Ideais primos de $\operatorname{Assoc}(I)$ que não são isolados são chamados de **embutidos**. Ou seja, um ideal primo $\mathfrak{p} \in \operatorname{Assoc}(I)$ é embutido se existe um ideal primo $\mathfrak{p}' \in \operatorname{Assoc}(I)$ tal que $\mathfrak{p}' \subsetneq \mathfrak{p}$. Segue do fato de $\operatorname{Assoc}(I)$ ser finito que todo ideal embutido contém um ideal isolado.

Proposição 136. Seja I um ideal decomponível. Então todo ideal primo $\mathfrak{p} \supseteq I$ contém um ideal primo isolado associado a I. Logo os ideais primos isolados de I são precisamente os elementos minimais do conjunto V(I).

Demonstração. Se $\mathfrak{p} \supseteq I = \bigcap_{i=1}^n \mathfrak{q}_i$ então $\mathfrak{p} = \sqrt{\mathfrak{p}} \supseteq \bigcap_{i=1}^n \sqrt{\mathfrak{q}_i} = \bigcap_{i=1}^n \mathfrak{p}_i$. Logo temos que $\mathfrak{p} \supseteq \mathfrak{p}_i$ para algum i e portanto \mathfrak{p} contém um ideal primo isolado de I. Por outro lado temos que, como $I = \bigcap_{i=1}^n \mathfrak{q}_i$ então $I \subseteq \sqrt{I} = \bigcap_{i=1}^n \mathfrak{p}_i \subseteq \mathfrak{p}_i$ para todo $i = 1, \ldots, n$. Logo $\mathfrak{p}_i \in V(I)$ para todo $i = 1, \ldots, n$. Ou seja Assoc $(I) \subseteq V(I)$. Vejamos que os isolados de I são os elementos minimais de V(I). Seja \mathfrak{p}_i ideal isolado de I, suponha que existe em V(I) um ideal primo \mathfrak{p} de A tal que $\mathfrak{p} \subseteq \mathfrak{p}_i$. Pela primeira parte desta proposição existe um ideal isolado \mathfrak{p}_j tal que $\mathfrak{p}_j \subseteq \mathfrak{p} \subseteq \mathfrak{p}_i$, mas como \mathfrak{p}_i é isolado temos que $\mathfrak{p}_i = \mathfrak{p}_j$ e portanto $\mathfrak{p} = \mathfrak{p}_i$. Logo \mathfrak{p}_i é um elemento minimal de V(I). Seja agora \mathfrak{p} um elemento minimal de V(I) logo pela minimalidade de \mathfrak{p} devemos ter $\mathfrak{p} = \mathfrak{p}_i$.

Exemplo 137. Queremos achar os ideais primos minimais de $A = \mathbb{C}[x,y]/(x^2,xy)$. Pelo TCI os ideais primos minimais de A correspondem aos ideais primos minimais de $\mathbb{C}[x,y]$ que contém (x^2,xy) , i.e., correspondem aos elementos minimais do conjunto $V(x^2,xy)$. Segue da proposição anterior que estes elementos são os ideais isolados de (x^2,xy) . Seja $(x^2,xy)=(x)\cap(x,y)^2$ uma decomposição primária minimal qualquer de (x^2,xy) (Verifique), então os ideais primos associados são:

a. $\sqrt{(x)} = (x)$ pois (x) é primo por ser x irredutível no DFU $\mathbb{C}[x,y]$.

b. $\sqrt{(x,y)^2} = (x,y)$ pois (x,y) é um ideal maximal de $\mathbb{C}[x,y]$ (Nullstellensatz Hilbert, Teorema 46) e toda potência de um maximal \mathfrak{m} é \mathfrak{m} -primário (Proposição 131).

Logo Assoc $(x^2, xy) = \{(x), (x,y)\}$ como $(x) \subsetneq (x,y)$ temos que o único ideal isolado de (x^2, xy) é (x). Logo (\overline{x}) é o único ideal primo minimal de $\mathbb{C}[x,y]/(x^2,xy)$.

Proposição 138. Seja I um ideal decomponível e $I = \bigcap_{i=1}^n \mathfrak{q}_i$ uma decomposição primária minimal com $\sqrt{\mathfrak{q}_i} = \mathfrak{p}_i$. Então $\bigcup_{i=1}^n \mathfrak{p}_i = \{a \in A \mid (I:a) \neq I\}$.

Demonstração. (Exercício 1.)

Logo, no caso em que o ideal zero é decomponível temos que o conjunto dos divisores de zero $D=\cup$ todos os ideais primos associados a (0) e o nilradical $\mathfrak{N}=\cap$ todos os primos isolados associados a (0). (Exercício 2.)

A seguinte proposição resume o comportamento de ideais primários sob localização.

Proposição 139. Seja S um subconjunto multiplicativo de A e seja q um ideal p-primário.

a. Se
$$S \cap \mathfrak{p} \neq \emptyset$$
, então $S^{-1}\mathfrak{q} = S^{-1}A$.

b. Se
$$S \cap \mathfrak{p} = \emptyset$$
, então $S^{-1}\mathfrak{q} \notin S^{-1}\mathfrak{p}$ -primário.

Demonstração. Se $s \in S \cap \mathfrak{p}$ então existe n > 0 tal que $s^n \in S \cap \mathfrak{q}$. Logo $S^{-1}\mathfrak{q}$ contém o elemento $\frac{s^n}{1}$ que é uma unidade de $S^{-1}A$ (é uma das três propriedades do mapa de localização (Aula 10): Se $s \in S$ então $\rho(s)$ é uma unidade em $S^{-1}A$). Para o segundo item observe que $\sqrt{S^{-1}\mathfrak{q}} = S^{-1}(\sqrt{\mathfrak{q}}) = S^{-1}\mathfrak{p}$ (Ex. 6 Lista 4) e como $S \cap \mathfrak{p} = \emptyset$ segue que $S^{-1}\mathfrak{p}$ é de fato um ideal primo de $S^{-1}A$ (Teorema 98: os ideais primos de $S^{-1}A$ estão em correspondência um-a-um com os ideais primos de $S^{-1}A$ estão em correspondência um-a-um com os ideais primos de $S^{-1}A$ estão em correspondência um-a-um com os ideais primos de $S^{-1}A$ estão em correspondência um-a-um com os ideais primos de $S^{-1}A$ estão em correspondência um-a-um com os ideais primos de $S^{-1}A$ estão em correspondência um-a-um com os ideais primos de $S^{-1}A$ estão em correspondência um-a-um com os ideais primos de $S^{-1}A$ estão em correspondência um-a-um com os ideais primos de $S^{-1}A$ estão em correspondência um-a-um com os ideais primos de $S^{-1}A$ estão em correspondência um-a-um com os ideais primos de $S^{-1}A$ estão em correspondência um-a-um com os ideais primos de $S^{-1}A$ estão em correspondência um-a-um com os ideais primos de $S^{-1}A$ estão em correspondência um-a-um com os ideais primos de $S^{-1}A$ estão em correspondência um-a-um com os ideais primos de $S^{-1}A$ estão em correspondência um-a-um com os ideais primos de $S^{-1}A$ estão em correspondência um-a-um com os ideais primos de $S^{-1}A$ estão em correspondência um-a-um com os ideais primos de $S^{-1}A$ estão em correspondência um-a-um com os ideais primos de $S^{-1}A$ estão em correspondência um-a-um com os ideais primos de $S^{-1}A$ estão em correspondência um-a-um com os ideais primos de $S^{-1}A$ estão em correspondência um-a-um com os ideais primos de $S^{-1}A$ estão em correspondência um-a-um com os ideais primos de $S^{-1}A$ estão em correspondência um-a-um com os ideais primos de $S^{-1}A$ estão em

Proposição 140. Seja S um subconjunto multiplicativo de A e seja I um ideal decomponível. Seja $I = \bigcap_{i=1}^n \mathfrak{q}_i$ uma decomposição primária minimal com $\sqrt{\mathfrak{q}_i} = \mathfrak{p}_i$. Suponha ainda que os \mathfrak{q}_i 's são numerados de tal forma que S intercepta $\mathfrak{p}_{m+1}, \ldots, \mathfrak{p}_n$ mas não intercepta $\mathfrak{p}_1, \ldots, \mathfrak{p}_m$. Então $S^{-1}I = \bigcap_{i=1}^m S^{-1}\mathfrak{q}_i$ e essa decomposição primária é minimal.

Demonstração. Temos que $S^{-1}I = S^{-1}(\bigcap_{i=1}^n \mathfrak{q}_i) \stackrel{\text{Ex2.2 L4}}{=} \bigcap_{i=1}^n S^{-1}\mathfrak{q}_i$, agora pela proposição anterior $S^{-1}\mathfrak{q}_i = S^{-1}A$ para $i = m+1,\ldots,n$. Logo $S^{-1}I = \bigcap_{i=1}^m S^{-1}\mathfrak{q}_i$ e $S^{-1}\mathfrak{q}_i$ é $S^{-1}\mathfrak{p}_i$ -primário para $i = 1,\ldots,m$. Vejamos que essa decomposição é minimal:

- a. Suponha que existam $1 \le i, j \le m$ tais que $S^{-1}\mathfrak{p}_i = S^{-1}\mathfrak{p}_j$. Como $\mathfrak{p}_i \ne \mathfrak{p}_j$ existe $a \in \mathfrak{p}_i$ tal que $a \notin \mathfrak{p}_j$, logo para $s \in S$, $\frac{a}{s} \in S^{-1}\mathfrak{p}_i = S^{-1}\mathfrak{p}_j$. Segue que existe $b \in \mathfrak{p}_j$ e $s' \in S$ tal que $\frac{a}{s} = \frac{b}{s'}$ em $S^{-1}A$, ou seja existe $t \in S$ tal que $ts'a = tsb \in \mathfrak{p}_j$, como \mathfrak{p}_j é primo e $a \notin \mathfrak{p}_j$ então devemos ter $ts' \in \mathfrak{p}_j$ mas $S \cap \mathfrak{p}_j = \emptyset$, contradição. Logo os $S^{-1}\mathfrak{p}_i$'s com $1 \le i \le m$ são todos distintos.
- b. Suponha que existe $1 \le i \le m$ tal que $\bigcap_{j \ne i} S^{-1} \mathfrak{q}_j \subseteq S^{-1} \mathfrak{q}_i$, i.e., $S^{-1}(I_i) \subseteq S^{-1} \mathfrak{q}_i$ onde $I_i = \bigcap_{j \ne i} \mathfrak{q}_j$. Como $I_i \nsubseteq \mathfrak{q}_i$ temos que existe $a \in I_i$ tal que $a \notin \mathfrak{q}_i$, logo para $s \in S$, $\frac{a}{s} \in S^{-1}I_i \subseteq S^{-1} \mathfrak{q}_i$. Seguindo o raciocínio anterior temos que existe $t \in S$ tal que $ta \in \mathfrak{q}_i$, como \mathfrak{q}_i é primário e $a \notin \mathfrak{q}_i$ então devemos ter $t \in \mathfrak{p}_i$ mas $S \cap \mathfrak{p}_i = \emptyset$, contradição. Logo $\bigcap_{j \ne i} S^{-1} \mathfrak{q}_j \nsubseteq S^{-1} \mathfrak{q}_i$ para cada $i = 1, \ldots, m$.

AULA 18: 22/10/2014

• Aviso: Lista 5 disponível no site.

Um subconjunto $\Sigma \subseteq \operatorname{Assoc}(I)$ do conjunto dos ideais primos associados a I é dito **isolado** se satisfaz a seguinte condição: se $\mathfrak{p}' \in \operatorname{Assoc}(I)$ e $\mathfrak{p}' \subseteq \mathfrak{p}$ para algum $\mathfrak{p} \in \Sigma$, então $\mathfrak{p}' \in \Sigma$.

Para o que segue lembremos um resultado da Aula 3: Sejam $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$ ideais primos e seja I um ideal contido em $\bigcup_{i=1}^n \mathfrak{p}_i$. Então $I \subseteq \mathfrak{p}_i$ para algum i.

Seja, então Σ um conjunto isolado de ideais primos associados a I e seja $S=A-\cup_{\mathfrak{p}\in\Sigma}\mathfrak{p}$. Então S é um conjunto multiplicativo e, para qualquer ideal primo $\mathfrak{p}'\in \mathrm{Assoc}(I)$, temos que: se $\mathfrak{p}'\in\Sigma$ então $\mathfrak{p}'\cap S=\emptyset$ e se $\mathfrak{p}'\not\in\Sigma$ então $\mathfrak{p}'\not\subseteq\cup_{\mathfrak{p}\in\Sigma}\mathfrak{p}$ (pois se $\mathfrak{p}'\subseteq\cup_{\mathfrak{p}\in\Sigma}\mathfrak{p}$ segue da Proposição 29 que $\mathfrak{p}'\subseteq\mathfrak{p}$ para algum $\mathfrak{p}\in\Sigma$, mas como Σ é conjunto isolado então $\mathfrak{p}'\in\Sigma$, contradição) o que implica que $\mathfrak{p}'\cap S\neq\emptyset$.

Teorema 141. (2º Teorema de Unicidade) Seja I um ideal decomponível de um anel A, $I = \bigcap_{i=1}^n \mathfrak{q}_i$ uma decomposição primária minimal de I e $\Sigma = \{\mathfrak{p}_{i_1}, \ldots, \mathfrak{p}_{i_m}\}$ um conjunto isolado de ideais primos associados a I. Então $\mathfrak{q}_{i_1} \cap \cdots \cap \mathfrak{q}_{i_m}$ é independente da decomposição.

Demonstração. Faremos a prova em 4 partes. Para isso considere S um conjunto multiplicativo qualquer de A.

Aula 18

- a. Vejamos que se J é um ideal de A então $\rho^{-1}(S^{-1}J) = \bigcup_{s \in S}(J:s)$. De fato $a \in \rho^{-1}(S^{-1}J) \Leftrightarrow \rho(a) = \frac{a}{1} \in S^{-1}J \Leftrightarrow \frac{a}{1} = \frac{x}{s}$ para algum $x \in J$ e $s \in S \Leftrightarrow (as x)t = 0$ para algum $t \in S \Leftrightarrow ast \in J \Leftrightarrow a \in \bigcup_{s \in S}(J:s)$.
- b. Se \mathfrak{q} é um ideal \mathfrak{p} -primário e $S \cap \mathfrak{p} = \emptyset$ então $\rho^{-1}(S^{-1}(\mathfrak{q})) = \mathfrak{q}$. Do item anterior segue que $\rho^{-1}(S^{-1}(\mathfrak{q})) = \bigcup_{s \in S} (\mathfrak{q}:s)$, agora se $s \in S$ então $s \notin \mathfrak{p}$ pela hipótese, logo do Lema 133 temos que $(\mathfrak{q}:s) = \mathfrak{q}$ para todo $s \in S$. Portanto $\rho^{-1}(S^{-1}(\mathfrak{q})) = \mathfrak{q}$.
- c. Suponha nas hipóteses do teorema que os \mathfrak{q}_i 's são numerados de tal forma que S intercepta $\mathfrak{p}_{m+1},\ldots,\mathfrak{p}_n$ mas não intercepta $\mathfrak{p}_1,\ldots,\mathfrak{p}_m$. Então provaremos que $\rho^{-1}(S^{-1}I)=\cap_{i=1}^m\mathfrak{q}_i$, de fato segue da Proposição 140 que $\rho^{-1}(S^{-1}I)=\rho^{-1}(\cap_{i=1}^mS^{-1}\mathfrak{q}_i)=\cap_{i=1}^m\rho^{-1}(S^{-1}\mathfrak{q}_i)$ e, do item anterior, $\rho^{-1}(S^{-1}\mathfrak{q}_i)=\mathfrak{q}_i$ para todo $i=1,\ldots,m$.
- d. Por último, seja $S = A \cup_{\mathfrak{p} \in \Sigma} \mathfrak{p}$ então segue da observação prévia ao teorema que S intercepta os $\mathfrak{p} \in \mathrm{Assoc}(I) \Sigma$ e não intercepta os $\mathfrak{p} \in \Sigma$. Logo, segue do item c., que $\rho^{-1}(S^{-1}I) = \cap_{j=1}^m \mathfrak{q}_{i_j}$ e logo a interseção dos \mathfrak{q}_{i_j} depende somente de I pois pelo 1°TU os \mathfrak{p}_i 's dependem somente do ideal I e não da decomposição primária específica de I.

Corolário 142. As componentes primárias isoladas (i.e., as componentes primárias \mathfrak{q}_i correspondentes aos ideais primos isolados \mathfrak{p}_i) são univocamente determinadas por I.

Demonstração. Aplique o teorema ao conjunto isolado $\Sigma = \{\mathfrak{p}\}$ onde \mathfrak{p} é um ideal isolado de I. Neste caso a componente primária \mathfrak{q} correspondente ao ideal primo isolado \mathfrak{p} satisfaz $\mathfrak{q} = \rho^{-1}(I_{\mathfrak{p}})$ (aqui $S = A - \mathfrak{p}$).

Por outro lado, as componentes primárias embutidas, em geral, não são univocamente determinadas por I. Se A é um anel Noetheriano, existe de fato uma quantidade infinita de escolhas para as componentes embutidas.

6.1 DECOMPOSIÇÃO PRIMÁRIA EM ANÉIS NOETHERIANOS

Mostraremos a seguir que todo ideal próprio em um anel Noetheriano admite decomposição primária.

Definição 143. Dizemos que um ideal I é **irredutível** se sempre que $I = J \cap K$ então ou I = J ou I = K.

Lema 144. Em um anel Noetheriano A todo ideal é uma interseção finita de ideais irredutíveis.

Demonstração. Suponha que não, então o conjunto de ideais de A para os quais o lema é falso é não vazio, logo tem um elemento maximal I. Como I é redutível, temos que $I = J \cap K$ onde $J \supset I$ e $K \supset I$. Da maximalidade de I segue que J e K são interseções finitas de ideais irredutíveis e portanto o é I, contradição.

Lema 145. Em um anel Noetheriano todo ideal irredutível é primário.

Demonstração. Passando ao anel quociente, é suficiente mostrar que se o ideal nulo é irredutível então ele é primário. Seja então $xy \in (0)$ com $y \neq 0$, e considere a cadeia de ideais $\mathrm{Ann}(x) \subseteq \mathrm{Ann}(x^2) \subseteq \cdots$. Pela cca, esta cadeia é estacionária, i.e., existe n>0 tal que $\mathrm{Ann}(x^n)=\mathrm{Ann}(x^{n+1})=\cdots$. Segue que $(x^n)\cap (y)=(0)$ pois se $a\in (y)$ então ax=a'yx=0 e se $a\in (x^n)$ então $a=bx^n\log ax=bx^{n+1}=0$ o que implica que $b\in \mathrm{Ann}(x^{n+1})=\mathrm{Ann}(x^n)$ assim $bx^n=0$, i.e., a=0. Como (0) é irredutível e $(y)\neq 0$ então devemos ter $x^n=0$, e isto mostra que (0) é primário. \square

Segue diretamente destes dois lemas que

Teorema 146. Em um anel Noetheriano A todo ideal admite uma decomposição primária.

Proposição 147. Seja A um anel Noetheriano.

- a. Todo ideal I contém uma potência de seu radical.
- b. O nilradical de A é nilpotente.

Demonstração. Exercício 3.

Proposição 148. Seja I um ideal próprio de um anel Noetheriano. Então os ideais primos associados a I são precisamente os ideais primos que ocorrem no conjunto de ideais (I:a) com $a \in A$.

 \Box

Demonstração. Observamos que o 1°TU (Teorema 135) nos diz que os ideais primos associados a I são os ideais primos que ocorrem no conjunto de ideais $\sqrt{(I:a)}$ com $a \in A$. Logo se (I:a) é um ideal primo $\mathfrak p$ de A então $\sqrt{(I:a)} = (I:a) = \mathfrak p$ e portanto (I:a) é um ideal primo associado a I.

Reciprocamente, seja $I = \bigcap_{i=1}^n \mathfrak{q}_i$ uma decomposição primária minimal de I e seja $\mathfrak{p}_i = \sqrt{\mathfrak{q}_i}$. Denote por $I_i = \bigcap_{j \neq i} \mathfrak{q}_j \neq I$. Então, pela prova do 1°TU, temos que $\mathfrak{p}_i = \sqrt{(I:a)}$ para qualquer $a \in I_i$ e $a \notin \mathfrak{q}_i$, logo $(I:a) \subseteq \mathfrak{p}_i$. Agora, como \mathfrak{q}_i é \mathfrak{p}_i -primário e todo ideal (em um anel Noetheriano) contém uma potência de seu radical (Proposição 147) existem um inteiro m tal que $\mathfrak{p}_i^m \subseteq \mathfrak{q}_i$, e logo $I_i\mathfrak{p}_i^m \subseteq I_i \cap \mathfrak{p}_i^m \subseteq I_i \cap \mathfrak{q}_i = I$. Seja $m \geq 1$ o menor inteiro tal que $I_i\mathfrak{p}_i^m \subseteq I$ e seja $b \in I_i\mathfrak{p}_i^{m-1} \subseteq I_i \cap \mathfrak{p}_i^{m-1}$ tal que $b \notin I$. Então $\mathfrak{p}_ib \subseteq I$, logo para esse b temos $(I:b) \supseteq \mathfrak{p}_i$ e logo, como $b \in I_i$ e $b \notin I$ então $b \notin \mathfrak{q}_i$, pelo anterior $(I:b) \subseteq \mathfrak{p}_i$.

Observação 149. Observamos que para o caso particular de módulos sobre um corpo \mathbf{k} , i.e. \mathbf{k} -espaços vetoriais V, as seguintes condições são equivalentes: V tem dimensão finita $\Leftrightarrow V$ tem comprimento finito $\Leftrightarrow V$ é Noetheriano $\Leftrightarrow V$ é Artiniano. (Exercício 4 da Lista 5)

Vejamos que existem anéis nos quais, assim como os espaços vetoriais, as condições de ser Noetheriano ou Artiniano são equivalentes. Para provar a seguinte proposição usaremos a Proposição 102 (Seja $0 \to M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0$ uma sequência exata de A-módulos. Então: M é Noetheriano (Artiniano) $\Leftrightarrow M'$ e M'' são Noetherianos (Artinianos))

Proposição 150. Seja A um anel no qual o ideal zero \acute{e} um produto $\mathfrak{m}_1 \cdots \mathfrak{m}_n$ de ideais maximais (não necessariamente distintos). Então A \acute{e} Noetheriano se, e somente se, A \acute{e} Artiniano.

Demonstração. Considere a cadeia de ideais (A-módulos): $A \supseteq \mathfrak{m}_1 \supseteq \mathfrak{m}_1 \mathfrak{m}_2 \supseteq \cdots \supseteq \mathfrak{m}_1 \cdots \mathfrak{m}_n = 0$. Denote por $M_i = \mathfrak{m}_1 \cdots \mathfrak{m}_i$, para $i = 1, \ldots, n$. Cada módulo quociente M_{i-1}/M_i é um A/\mathfrak{m}_i -módulo pois é um A-módulo aniquilado por \mathfrak{m}_i . Logo M_{i-1}/M_i é um espaço vetorial sobre o corpo A/\mathfrak{m}_i . Portanto, M_{i-1}/M_i é um A/\mathfrak{m}_i -módulo Artiniano se, e somente se, é um A/\mathfrak{m}_i -módulo Noetheriano (pela Observação anterior). Como seus A/\mathfrak{m}_i -submódulos são exatamente os mesmos que seus A-submódulos, M_{i-1}/M_i é um A-módulo Artiniano se, e somente se, é um A-módulo Noetheriano.

Considere as sequências exatas curtas:

$$0 \to M_{1} \stackrel{i}{\hookrightarrow} A \stackrel{\pi}{\twoheadrightarrow} A/M_{1} \to 0$$

$$0 \to M_{2} \stackrel{i}{\hookrightarrow} M_{1} \stackrel{\pi}{\twoheadrightarrow} M_{1}/M_{2} \to 0$$

$$\vdots$$

$$0 \to M_{i} \stackrel{i}{\hookrightarrow} M_{i-1} \stackrel{\pi}{\twoheadrightarrow} M_{i-1}/M_{i} \to 0$$

$$\vdots$$

$$0 \to M_{n-1} \stackrel{i}{\hookrightarrow} M_{n-2} \stackrel{\pi}{\twoheadrightarrow} M_{n-2}/M_{n-1} \to 0$$

$$0 \to M_{n} \stackrel{i}{\hookrightarrow} M_{n-1} \stackrel{\pi}{\twoheadrightarrow} M_{n-1}/M_{n} \to 0$$

Suponha que A seja A-módulo Noetheriano então M_1 e A/M_1 são A-módulos Noetherianos, isto implica que M_2 e M_1/M_2 são A-módulos Noetherianos, continuando com esse raciocínio temos que M_i e M_{i-1}/M_i são A-módulos Noetherianos para todo $i=1,\ldots,n$. Logo os quocientes M_{i-1}/M_i são A-módulos Artinianos para todo $i=1,\ldots,n$. Em particular para i=n temos que M_{n-1}/M_n é A-módulo Artiniano, mas $M_n=0$ logo

 M_{n-1} é A-módulo Artiniano e M_{n-2}/M_{n-1} é A-módulo Artiniano, o que implica que M_{n-2} é A-módulo Artiniano. Continuando com esse raciocínio temos que A é A-módulo Artiniano. Analogamente se trocarmos os termos "Artiniano" e "Noetheriano".

AULA 19: 24/10/2014

AULA 19

Lembramos da última aula:

Proposição. Seja A um anel no qual o ideal zero \acute{e} um produto finito $\mathfrak{m}_1 \cdots \mathfrak{m}_n$ de ideais maximais (não necessariamente distintos). Então A \acute{e} Noetheriano se, e somente se, A \acute{e} Artiniano.

Mostraremos a seguir que todo anel Artiniano é Noetheriano. Mas para que um anel Noetheriano seja Artiniano precisamos adicionar mais alguma condição:

Teorema 151. A é um anel Artiniano se, e somente se, A é Noetheriano e dim A = 0.

 $Demonstração. \ (\Rightarrow)$: Como A é Artiniano segue do Corolário 127 que dim A=0 e da Proposição 124 que A tem um número finito de ideais maximais: $\mathfrak{m}_1, \ldots, \mathfrak{m}_n$. Como o radical de Jacobson \mathfrak{R} de A é nilpotente (Corolário 123) e Proposição 125) existe k>0 tal que $\mathfrak{R}^k=0$. Então $\prod_{i=1}^n\mathfrak{m}_i^k\subseteq (\cap_{i=1}^n\mathfrak{m}_i)^k=0$ $\mathfrak{R}^k = 0$, podemos escrever o zero como produto de ideais maximais (não necessariamente distintos), segue da proposição anterior que A é Noetheriano. (\Leftarrow) : Suponha que p seja um ideal primo de A e seja I um ideal próprio de A tal que $\mathfrak{p} \subset I$, então existe um ideal maximal \mathfrak{m} tal que $\mathfrak{p} \subset I \subset \mathfrak{m}$. Segue do fato da dim A = 0 que $\mathfrak{p} = \mathfrak{m} = I$, ou seja os ideais primos de A são maximais. Analogamente vemos que todos os ideais primos também são ideais primos minimais. Como A é Noetheriano, todo ideal tem decomposição primária (Teorema 146). Em particular o ideal nulo tem uma decomposição primária, logo os ideais primos isolados associados a (0) (que são os elementos minimais de $V(0) = \operatorname{Spec}(A)$ (Proposição 136)) são os ideais primos (minimais) de A, segue que A tem um número finito de ideais primos (e, portanto, maximais): $\mathfrak{m}_1, \ldots, \mathfrak{m}_n$. Assim $\mathfrak{N} = \bigcap_{i=1}^n \mathfrak{m}_i$. Segue da Proposição 147 que $\mathfrak N$ é nilpotente, logo existe k>0 tal que $\Pi_{i=1}^n\mathfrak m_i^k\subseteq$ $(\bigcap_{i=1}^n \mathfrak{m}_i)^k = \mathfrak{N}^k = 0$, ou seja, podemos escrever o zero como produto de ideais maximais, segue da proposição anterior que A é Artiniano.

Como consequências do fato de todo anel Artiniano ser Noetheriano temos:

Corolário 152. Em um anel Artiniano A todo ideal admite uma decomposição primária.

Demonstração. Segue dos Teoremas 151 e 146.

Corolário 153. *Um anel A é Artiniano se, e somente se,* $\ell_A(A) < \infty$.

Demonstração. Segue da Proposição 111 e do Teorema 151. □

Observamos que no caso de módulos o teorema anterior não é válido pois existem módulos Artinianos que não são Noetherianos, como mostra o exemplo a seguir:

Exemplo 154. Seja G o subgrupo de \mathbb{Q}/\mathbb{Z} que consiste de todos os elementos de ordem potência de p, onde p é um número primo fixo. Então G tem exatamente um subgrupo G_n de ordem p^n para cada $n \ge 0$ e $G_0 \subset G_1 \subset \cdots \subset G_n \subset \cdots$ (inclusões estritas) então G não satisfaz a cca, logo não é Noetheriano como \mathbb{Z} -módulo. Por outro lado, os únicos subgrupos próprios de G são os G_n , logo G satisfaz a ccd e logo é Artiniano como \mathbb{Z} -módulo.

Proposição 155. Seja A um anel Noetheriano local e m seu ideal maximal. Então exatamente uma das seguintes condições é verdadeira:

a.
$$\mathfrak{m}^n \neq \mathfrak{m}^{n+1}$$
 para todo n;

b. $\mathfrak{m}^n = 0$ para algum n, neste caso A é um anel Artiniano local.

Demonstração. Suponha que $\mathfrak{m}^n = \mathfrak{m}^{n+1}$ para algum n. Como A é Noetheriano, \mathfrak{m}^n é um ideal f.g. e como A é local $\mathfrak{R} = \mathfrak{m}$, pelo lema de Nakayama (Lema 60) com $M = \mathfrak{m}^n$ e $I = \mathfrak{m}$, temos que $\mathfrak{m}^n = 0$. Seja \mathfrak{p} um ideal primo de A, como $0 \in \mathfrak{p}$ então $\mathfrak{m}^n \subseteq \mathfrak{p}$ logo, tomando radicais, temos $\sqrt{\mathfrak{m}^n} = \mathfrak{m} \subseteq \mathfrak{p} = \sqrt{\mathfrak{p}}$, da maximalidade de \mathfrak{m} segue que $\mathfrak{m} = \mathfrak{p}$. Logo \mathfrak{m} é o único primo de A o que implica que dim A = 0, como A é Noetheriano então A é Artiniano (Teorema 151).

Se A é um anel Artiniano local, então \mathfrak{m} é o único ideal primo de A e logo \mathfrak{m} é o nilradical de A. Segue que todo elemento de \mathfrak{m} é nilpotente e o mesmo \mathfrak{m} é nilpotente. Além disso, todo elemento de A ou é uma unidade ou é nilpotente. (Exercício 18 Lista 1).

Teorema 156. (Teorema de Estrutura de Anéis Artinianos) Todo anel Artiniano A é um produto direto finito de anéis Artinianos locais determinados de maneira única (a menos de isomorfismo).

Demonstração. Sejam \mathfrak{m}_i com $i=1,\ldots,n$ os ideais maximais distintos de A. Da prova do Teorema 151 temos que $\Pi_{i=1}^n\mathfrak{m}_i^k=0$ para algum k>0. Vejamos que os ideais \mathfrak{m}_i^k são dois-a-dois coprimos. Primeiramente observe que:

a.
$$\sqrt{I} = A \Leftrightarrow I = A e$$

b.
$$\sqrt{I+J} = \sqrt{\sqrt{I} + \sqrt{J}}$$
 (Verifique!)

Seja $I = \mathfrak{m}_i + \mathfrak{m}_j$ para $i \neq j$ logo $\mathfrak{m}_i \subsetneq I$, segue da maximalidade de \mathfrak{m}_i que I = A. Por outro lado

$$\sqrt{\mathfrak{m}_i^k + \mathfrak{m}_j^k} \stackrel{\mathrm{b.}}{=} \sqrt{\sqrt{\mathfrak{m}_i^k} + \sqrt{\mathfrak{m}_j^k}} = \sqrt{\mathfrak{m}_i + \mathfrak{m}_j} = \sqrt{A} = A,$$

isto implica por a. que $\mathfrak{m}_i^k+\mathfrak{m}_j^k=A$ e logo são coprimos. Segue do Teorema Chinês dos Restos (Teorema 31) que:

a. $\bigcap_{i=1}^n \mathfrak{m}_i^k = \prod_{i=1}^n \mathfrak{m}_i^k = 0$ e é uma decomposição primária minimal do 0: potências de maximais são primários, os $\sqrt{\mathfrak{m}_i^k} = \mathfrak{m}_i$ são todos distintos por hipótese e ainda se $\bigcap_{j \neq i} \mathfrak{m}_j^k \subseteq \mathfrak{m}_i^k$ tomando radicais teríamos $\bigcap_{j \neq i} \mathfrak{m}_j \subseteq \mathfrak{m}_i$ (Interseção finita de ideais contida em um primo) logo $\mathfrak{m}_j \subseteq \mathfrak{m}_i$ para algum j, como \mathfrak{m}_j é maximal e $\mathfrak{m}_i \neq A$ então $\mathfrak{m}_j = \mathfrak{m}_i$, contradição. Logo $\bigcap_{j \neq i} \mathfrak{m}_i^k \nsubseteq \mathfrak{m}_i^k$ para todo $i = 1, \ldots, n$.

b.
$$A = \underbrace{\frac{A}{\mathfrak{m}_1^k \cdot \mathfrak{m}_2^k \cdot \ldots \cdot \mathfrak{m}_n^k}}_{=0} \simeq \frac{A}{\mathfrak{m}_1^k} \times \frac{A}{\mathfrak{m}_2^k} \times \cdots \times \frac{A}{\mathfrak{m}_n^k}.$$

Cada quociente A/\mathfrak{m}_i^k é um anel Artiniano (quociente de Artiniano por um ideal). Para ver que cada quociente é local, seja $\overline{\mathfrak{m}}$ um ideal maximal de A/\mathfrak{m}_i^k , então $\overline{\mathfrak{m}}$ corresponde a um ideal maximal de A que contém \mathfrak{m}_i^k , suponha que $\mathfrak{m}_i^k \subseteq \mathfrak{m}_j$ tomando radicais temos $\mathfrak{m}_i \subseteq \mathfrak{m}_j$ segue que j=i e logo existe somente um ideal maximal de A que contém \mathfrak{m}_i^k o que implica que A/\mathfrak{m}_i^k é local com ideal maximal $\overline{\mathfrak{m}_i}$. Logo A é um produto direto finito de anéis Artinianos locais.

Para a unicidade, suponha que $A \simeq \prod_{i=1}^m A_i$, onde A_i são anéis Artinianos locais. Então para cada i temos um homomorfismo sobrejetor natural $\pi_i: A \to A_i$ que é a projeção na i-ésima coordenada. Seja $I_i = \operatorname{Ker}(\pi_i)$, então pelo teorema de isomorfismo temos $A_i \simeq A/I_i$.

Por outro lado $\bigcap_{i=1}^m I_i = 0$, é claro que $0_A \in I_i$ para todo i e reciprocamente se $a \in \bigcap_{i=1}^m I_i$ então $0_i = \pi_i(a) = a_i$ para todo i então $a = 0_A$. Vejamos que esta é uma decomposição primária do (0): seja \mathfrak{q}_i o único ideal primo de A_i (veja observação previa ao teorema) e seja $\mathfrak{p}_i = \pi_i^{-1}(\mathfrak{q}_i)$ então \mathfrak{p}_i é um ideal primo de A e logo maximal (Proposição 122). Como \mathfrak{q}_i é o nilradical de A_i segue que I_i é \mathfrak{p}_i -primário, vejamos: $a \in \sqrt{I_i} \Leftrightarrow \text{existe } l > 0$ tal que $a^l \in I_i \Leftrightarrow 0_i = \pi_i(a^l) = \pi_i(a)^l \Leftrightarrow \pi_i(a) \in \mathfrak{q}_i \Leftrightarrow a \in \pi_i^{-1}(\mathfrak{q}_i) = \mathfrak{p}_i$. Logo $\sqrt{I_i} = \mathfrak{p}_i$ (que é maximal) logo segue da Proposição 131 (Se \sqrt{I} é maximal, então I é primário) que I_i é \mathfrak{p}_i -primário. Isto implica que a expressão $\bigcap_{i=1}^m I_i = 0$ é uma decomposição primária do ideal zero de A.

Vejamos que a decomposição primária é minimal, para isso provaremos primeiramente que os \mathfrak{p}_i 's são coprimos dois-a-dois: seja $i \neq j$ então existe

 $a=(a_1,\ldots,1_i,\ldots,0_j,\ldots,a_m)\in A$ tal que $\pi_i(a)=1_i$ e $\pi_j(a)=0_j$, logo $1_A-a\in I_i$ e $a\in I_j$ assim $1_A=(1_A-a)+a\in I_i+I_j$. Logo os I_i 's são coprimos. Isto implica que para $i\neq j$, $\sqrt{\mathfrak{p}_i+\mathfrak{p}_j}=\sqrt{\sqrt{I_i}+\sqrt{I_j}}\stackrel{\text{b.}}{=}\sqrt{I_i+I_j}=\sqrt{A}\stackrel{\text{a.}}{=}A$ segue de a. que $\mathfrak{p}_i+\mathfrak{p}_j=A$ e logo os \mathfrak{p}_i 's são coprimos dois-a-dois. Como consequência eles são todos distintos pois se dois deles forem iguais $\mathfrak{p}_i=\mathfrak{p}_j$ então $A=\mathfrak{p}_i+\mathfrak{p}_j=\mathfrak{p}_i$, contradição. Por outro lado, $\bigcap_{j\neq i}I_j\nsubseteq I_i$ para cada $i=1,\ldots,m$ pois se, para algum $i,\bigcap_{j\neq i}I_j\subseteq I_i$ tomando radicais temos $\bigcap_{j\neq i}\mathfrak{p}_j\subseteq\mathfrak{p}_i$ e logo existiria j tal que $\mathfrak{p}_j\subseteq\mathfrak{p}_i$, como \mathfrak{p}_j é maximal isto implicaria $\mathfrak{p}_j=\mathfrak{p}_i$, contradição. Logo a decomposição primária $\bigcap_{i=1}^m I_i=0$ é minimal.

Assim temos que Assoc $(0) = \{\mathfrak{p}_1, \ldots, \mathfrak{p}_m\} = \{\mathfrak{m}_1, \ldots, \mathfrak{m}_n\}$, logo segue do 1°TU que m = n. Além disso, como consequência da maximalidade dos primos associados a (0) temos que todos eles são isolados e logo todas as componentes primárias são isoladas e, consequentemente, determinadas de maneira única por A pelo 2°TU (Teorema 141). Logo existe uma permutação σ dos índices $1, \ldots, n$ tal que $I_i \simeq \mathfrak{m}_{\sigma(i)}^k$ para todo $i = 1, \ldots, n$.

Assim os anéis Artinianos locais $A_i \simeq A/I_i \simeq A/\mathfrak{m}_{\sigma(i)}^k$ são determinados de maneira única por A, para todo $i=1,\ldots,n$.

Se A é um anel local, \mathfrak{m} seu ideal maximal, $\mathbf{k} = A/\mathfrak{m}$ seu corpo de resíduos e M um A-módulo então o A-módulo $M/\mathfrak{m}M$ é aniquilado por \mathfrak{m} e portanto tem estrutura de \mathbf{k} -espaço vetorial. Se, alem disso M é f.g. por m_i ($1 \le i \le n$) então $M/\mathfrak{m}M$ também é f.g. como A-módulo. Assim se $x \in M/\mathfrak{m}M$ então $x = \sum_{i=1}^n a_i \overline{m_i} = \sum_{i=1}^n \overline{a_i} \overline{m_i}$ (pela definição da ação de A/\mathfrak{m} em $M/\mathfrak{m}M$), logo $M/\mathfrak{m}M$ é f.g. como \mathbf{k} -espaço vetorial, assim $\dim_{\mathbf{k}}(M/\mathfrak{m}M) \le n$.

Lembramos a Proposição 62, da Aula 8 que é corolário do Lema de Nakayama e diz o seguinte: Sob as hipóteses anteriores, seja M um A-módulo f.g. e sejam m_i ($1 \le i \le n$) os elementos de M cujas imagens em $M/\mathfrak{m}M$ formam uma base deste espaço vetorial. Então os m_i 's geram M.

Proposição 157. Seja A um anel Artiniano local. Então são equivalentes:

- a. todo ideal de A é principal;
- b. o ideal maximal m é principal;
- c. $\dim_{\mathbf{k}}(\mathfrak{m}/\mathfrak{m}^2) \leq 1$.

Demonstração. (a.)⇒(b.) é claro. (b.)⇒(c.) segue da observação prévia à proposição. Vejamos que (c.)⇒(a.): Se $\dim_{\mathbf{k}}(\mathfrak{m}/\mathfrak{m}^2)=0$, então $\mathfrak{m}=\mathfrak{m}^2$ e \mathfrak{m} é f.g. por A ser Artiniano (e logo Noetheriano), e por A ser local temos que $\mathfrak{m}=\mathfrak{R}$, segue do Lema de Nakayama que $\mathfrak{m}=0$ e logo A é um corpo e seus ideias (1) e (0) são principais. Se $\dim_{\mathbf{k}}(\mathfrak{m}/\mathfrak{m}^2)=1$, então \mathfrak{m} é um

ideal principal pela Proposição 62, logo $\mathfrak{m}=(a)$. Seja $I\neq (0)$ um ideal próprio de A, então $I\subseteq \mathfrak{m}$. Temos ainda que $\mathfrak{m}\stackrel{\text{local}}{=}\mathfrak{R}\stackrel{\text{Arti}}{=}\mathfrak{N}$ e logo \mathfrak{m} é nilpotente (Proposição 125), portanto existe um inteiro r>0 tal que $I\subseteq \mathfrak{m}^r$ e $I\nsubseteq \mathfrak{m}^{r+1}$ (suponha que não, que para todo r>0, $I\subseteq \mathfrak{m}^r$ então I=(0) pela nilpotência de \mathfrak{m} , contradição). Logo existe $b\in I$ e $b\notin (a^{r+1})=\mathfrak{m}^{r+1}$ com $b=xa^r$, consequentemente $x\notin (a)=\mathfrak{m}$, i.e., x não é nilpotente logo (pela observação previa à ao Teorema de Estrutura de Anéis Artinianos) x é uma unidade de A. Logo $a^r\in I$, portanto $\mathfrak{m}^r=(a^r)\subseteq I$ e logo $I=\mathfrak{m}^r=(a^r)$. Segue que I é principal.

6.3 EXERCÍCIOS

Ex. 66 — Seja A um anel, D o conjunto dos divisores de zero de A e $\mathfrak N$ o nilradical de A. Mostre que:

- 1. $D = \bigcup_{a \neq 0} \sqrt{(0:a)}$
- 2. $\mathfrak{N} = \sqrt{(0)}$
- 3. Use o item anterior para mostrar que, se o ideal zero (0) é decomponível, então:
 - a) D é a união de todos os ideais primos associados a (0);
 - b) \mathfrak{N} é a interseção de todos os ideais primos isolados associados a (0).
- 4. Se I é um ideal de A decomponível então $\bigcup_{i=1}^n \mathfrak{p}_i = \{a \in A \mid (I:a) \neq I\}$, onde os \mathfrak{p}_i 's são os ideais primos associados a I.

Ex. 67 — Seja A um anel Noetheriano. Mostre que:

- 1. Todo ideal contém uma potência de seu radical.
- 2. O nilradical de *A* é nilpotente.

Ex. 68 — Seja A um anel Noetheriano, \mathfrak{m} um ideal maximal de A, \mathfrak{q} um ideal qualquer de A. Mostre que são equivalentes:

- 1. q é m-primário;
- 2. $\sqrt{\mathfrak{q}} = \mathfrak{m}$;
- 3. $\mathfrak{m}^n \subseteq \mathfrak{q} \subseteq \mathfrak{m}$ para algum n > 0.

Ex. 69 — Seja A um anel Noetheriano e \mathfrak{m} um ideal maximal. Mostre que A/\mathfrak{m}^n é Artiniano para todo $n \geq 0$

Ex. 70 — Mostre que se I é um ideal radical (i.e., $I = \sqrt{I}$) então I é decomponível e não tem ideais primos embutidos.

Ex. 71 — Seja I um ideal decomponível de um anel A e seja $\mathfrak p$ um elemento maximal do conjunto de ideais (I:a) onde $a\in A$ e $a\notin I$. Mostre que $\mathfrak p$ é um ideal primo associado a I.

Ex. 72 — Se A é um anel no qual todo ideal tem uma decomposição primária, mostre que toda localização de A por um conjunto multiplicativo S, $S^{-1}A$, tem a mesma propriedade.

Ex. 73 — Sejam $\mathfrak{p}_1 = (x,y)$, $\mathfrak{p}_2 = (x,z)$ e $\mathfrak{p}_3 = (x,y,z)$ ideais do anel de polinômios $\mathbf{k}[x,y,z]$, onde \mathbf{k} é um corpo. Seja $I = \mathfrak{p}_1\mathfrak{p}_2$:

- 1. Mostre que $I=\mathfrak{p}_1\cap\mathfrak{p}_2\cap\mathfrak{p}_3^2$ é uma decomposição primária minimal de I
- 2. Encontre os ideais primos minimais do anel $\mathbf{k}[x,y,z]/(x,y)\cdot(x,z)$.

Ex. 74 — Seja $I = (xy, x^3 - x^2, x^2y - xy)$ um ideal do anel de polinômios $\mathbf{k}[x, y]$, onde \mathbf{k} é um corpo.

- 1. Mostre que $I=(x)\cap (x-1,y)\cap (x^2,y)$ é uma decomposição primária minimal de I.
- 2. Encontre os ideais primos minimais do anel $\mathbf{k}[x,y]/(xy,x^3-x^2,x^2y-xy)$.

Ex. 75 — Um espaço topológico *X* é dito **discreto** se todo subespaço de *X* é fechado. Seja *A* um anel Noetheriano. Mostre que as seguintes condições são equivalentes:

- 1. *A* é Artiniano;
- 2. Spec(A) é finito e discreto;
- 3. Spec(A) é discreto.

Ex. 76 — Seja $A = \mathbf{k}[x_1, ..., x_n]/I$, onde I é um ideal. Mostre que dim(A) = 0 se e somente se A é um \mathbf{k} -espaço vetorial de dimensão finita.

Ex. 77 — Seja A uma k-álgebra Noetheriana local com ideal maximal \mathfrak{m} e corpo de resíduos k. Sabendo que $\dim_k(\mathfrak{m}/\mathfrak{m}^2)=2002$, qual é o número mínimo de geradores para o ideal \mathfrak{m} ?

Ex. 78 — Seja A um anel Noetheriano e \mathfrak{q} um ideal \mathfrak{p} -primário de A. Considere cadeias de ideais primos de \mathfrak{q} até \mathfrak{p} . Mostre que todas tais cadeias

tem comprimento finito e que todas as cadeias maximais tem o mesmo comprimento.

7

AULA 20: 29/10/2014

AULA 20

Extensões finitas e integrais de anéis generalizam os conceitos de extensões finitas e algébricas de corpos.

Definição 158. Seja $B \supseteq A$ uma extensão de anéis (i.e., B é um anel, A um subanel de B, de modo que $1 \in A$). Um elemento $b \in B$ é dito **integral** sobre A se b é uma raiz de um polinômio mônico com coeficientes em A, i.e., b satisfaz uma equação da forma

$$b^n + a_1 b^{n-1} + \dots + a_n = 0 (8)$$

onde os $a_i \in A$. Dizemos que a extensão $B \supseteq A$ é **integral** se todo elemento $b \in B$ é integral sobre A.

No caso geral em que $f:A\to B$ é uma A-álgebra, dizemos que f é integral e B é uma A-álgebra integral se $B\supseteq f(A)$ é uma extensão integral.

Definição 159. Uma extensão de anéis $B \supseteq A$ é dita **finita** se B, visto como A-módulo é f.g. Analogamente, uma A-álgebra $f: A \to B$ é dita **finita** se B é um A-módulo f.g.

Exemplo 160. Uma extensão integral de corpos é o mesmo que uma extensão algébrica e uma extensão de corpos $L \supseteq \mathbf{k}$ é finita se, e somente se, $[L:\mathbf{k}] = \dim_{\mathbf{k}} L < \infty$. Desta forma, as definições anteriores generalizam para anéis os conceitos familiares de elemento algébrico e extensões finitas e algébricas de corpos.

Diretamente das definições obtemos:

Lema 161.

- a. Seja I um ideal de A. O quociente A/I é uma A-álgebra finita.
- b. Se $f:A\to B$ e $g:B\to C$ são álgebras finitas, então $g\circ f:A\to C$ é finita.
- c. Se $f:A\to B$ é uma álgebra finita e $g:A\to C$ é uma álgebra qualquer então a álgebra obtida por mudança de base $f\otimes \operatorname{id}:A\otimes_A C\simeq C\to B\otimes_A C$ dada por $c\mapsto 1\otimes c$ é finita. Em particular, se $S\subseteq A$ é um conjunto multiplicativo, a localização $S^{-1}f:S^{-1}A\to S^{-1}B$ é uma álgebra finita.

Demonstração. Exercício 1.

Proposição 162. Seja $A \subseteq B$ uma extensão de anéis e seja $b \in B$. As seguintes afirmações são equivalentes:

- a. b é integral sobre A;
- b. $A[b] \supseteq A$ é uma extensão finita.
- c. $A[b] \subseteq C$ tal que $C \subseteq B$ é um subanel de B que é f.g. como A-módulo.

Demonstração. (a.)⇒(b.) Como b é integral sobre A, multiplicando (8) por b^r , temos $b^{n+r} = -(a_1b^{n+r-1} + \cdots + a_nb^r)$ para todo $r \ge 0$. Logo, por indução, todas as potencias positivas de b pertencem ao A-módulo gerado por $1, b, \ldots, b^{n-1}$. Logo A[b] é gerado como A-módulo por $1, b, \ldots, b^{n-1}$, i.e., $A[b] \supseteq A$ é uma extensão finita.

(b.) \Rightarrow (c.) Basta tomar C = A[b].

(c.) \Rightarrow (a.) Sejam $c_1, \ldots, c_n \in C$ os geradores de C como A-módulo. Como $b \cdot c_i \in C$ para todo i (pois $b \in A[b] \subseteq C$ por hipótese), temos que $b \cdot c_i = \sum_{j=1}^n a_{ij}c_j$ assim temos o seguinte "sistema linear" nas "variáveis" c_i e "coeficientes" $a_{ij} \in A$:

$$b \cdot c_1 = a_{11}c_1 + \dots + a_{1n}c_n$$

$$\vdots$$

$$b \cdot c_n = a_{n1}c_1 + \dots + a_{nn}c_n$$

Logo b é raiz do polinômio característico da matriz (a_{ij}) que é mônico e possui coeficientes em A. Segue que b é integral sobre A.

Corolário 163. Sejam b_i com $1 \le i \le n$ elementos de B, cada um dos quais é integral sobre A. Então $A[b_1, \ldots, b_n] \supseteq A$ é uma extensão finita.

Demonstração. Por indução em n. O caso n=1 é a proposição anterior. Assuma n>1 e seja $A_r=A[b_1,\ldots,b_r]$, então pela hipóteses indutiva $A_{n-1}\supseteq A$ é uma extensão finita. Por outro lado, como b_n é integral sobre A então é integral sobre A_{n-1} , assim pelo caso n=1, $A_n=A_{n-1}[b_n]\supseteq A_{n-1}$ é uma extensão finita. Segue da transitividade do Lema 161 que $A_n\supseteq A$ é uma extensão finita.

Corolário 164. Se $B \supseteq A$ é uma extensão finita então é integral. Reciprocamente, se $B \supseteq A$ é integral e B é f.g. como A-álgebra, então $B \supseteq A$ é uma extensão finita.

Demonstração. Seja $b \in B$, então $A[b] \subseteq B$ e como $A \subseteq B$ é finita B é f.g. como A-módulo, segue da Proposição 162 (c.) que b é integral sobre A. Logo a extensão $A \subseteq B$ é integral. Reciprocamente como B é uma A-álgebra f.g. existem $b_1, \ldots, b_n \in B$, cada um deles integrais sobre A por hipótese, tais que $B = A[b_1, \ldots, b_n]$. Logo segue do corolário anterior que $B \supseteq A$ é uma extensão finita. □

A seguinte definição é uma generalização da noção de fecho algébrico para extensões de corpos.

Definição 165. Seja $B \supseteq A$ uma extensão de anéis. O conjunto $\mathcal{C}(A, B)$ dos elementos de B que são integrais sobre A é chamado de **fecho integral** ou **normalização** de A em B. Se $\mathcal{C}(A, B) = A$, então A é dito **integralmente fechado** em B.

Observe que C(A, B) = B se, e somente se, B é integral sobre A.

Lema 166. Seja $B \supseteq A$ uma extensão de anéis. O fecho integral de A em B, C(A,B), é um subanel de B que contém A.

Demonstração. Como todo elemento de A é integral sobre A, segue $A \subseteq \mathcal{C}(A,B)$. Dados $a,b \in \mathcal{C}(A,B)$ devemos mostrar que $a \pm b$ e ab também pertencem a $\mathcal{C}(A,B)$, ou seja, são integrais sobre A. Como $a \pm b$, $ab \in A[a,b]$, então $A[a \pm b] \subseteq A[a,b]$ e $A[ab] \subseteq A[a,b]$. Por outro lado, como a,b são integrais sobre A, segue do Corolário 163 que $A[a,b] \supseteq A$ é uma extensão finita. Logo, da Proposição 162 (c.) segue que $a \pm b$ e ab são integrais sobre A. □

Proposição 167. Sejam $A \subseteq B \subseteq C$ extensões de anéis. Se B é integral sobre A e C é integral sobre B então C é integral sobre A.

Demonstração. Dado $c \in C$ devemos mostra que c é integral sobre A. Por hipótese existe uma equação $c^n + b_1c^{n-1} + \cdots + b_n = 0$, com $b_i \in B$. Por outro lado, cada b_i é integral sobre A. Assim, segue do Corolário 163, que $A[b_1, \ldots, b_n] \supseteq A$ é uma extensão finita. Mas agora c é integral sobre $A[b_1, \ldots, b_n]$ (pois os coeficientes b_i do polinômio mônico do qual c é raiz pertencem a $A[b_1, \ldots, b_n]$), logo $A[b_1, \ldots, b_n, c] \supseteq A[b_1, \ldots, b_n]$ é uma extensão finita (Proposição 162 b.). Segue da transitividade do Lema 161 que $A[b_1, \ldots, b_n, c] \supseteq A$ é uma extensão finita. Assim A[c] está contido em $A[b_1, \ldots, b_n, c]$ que é um subanel de C, f.g. como A-módulo, portanto c é integral sobre A como consequência do item (c.) da Proposição 162. \Box

Corolário 168. Seja $B \supseteq A$ uma extensão de anéis. O fecho integral de A em B, C(A, B), é integralmente fechado em B.

Mostraremos a seguir que extensões integrais são preservadas por quocientes e localização:

Proposição 169. Seja $B \supseteq A$ uma extensão integral de anéis.

- a. Se I é um ideal de B então B/I é integral sobre $A/A \cap I$.
- b. Se S é um subconjunto multiplicativo de A, então $S^{-1}B$ é integral sobre $S^{-1}A$.

Demonstração.

- a. Seja $\overline{b} \in B/I$, então $\overline{b} = b + I$ com $b \in B$ logo existe uma expressão $b^n + a_1b^{n-1} + \cdots + a_n = 0$ com $a_i \in A$. Reduzindo esta equação módulo I temos $\overline{b}^n + \overline{a}_1\overline{b}^{n-1} + \cdots + \overline{a}_n = \overline{0}$ com $\overline{a}_i \in A/A \cap I$. Logo \overline{b} é integral sobre $A/A \cap I$.
- b. Seja $\frac{b}{s} \in S^{-1}B$ com $b \in B$ e $s \in S$, logo existe uma expressão $b^n + a_1b^{n-1} + \cdots + a_n = 0$ em B, com $a_i \in A$. Agora como $s \in S$ então $s^n \in S$ e logo $\frac{s^n}{1}$ é uma unidade em $S^{-1}B$, logo $\frac{1}{s^n}(b^n + a_1b^{n-1} + \cdots + a_n) = 0$ em $S^{-1}B$. Assim temos a expressão $\left(\frac{b}{s}\right)^n + \frac{a_1}{s}\left(\frac{b}{s}\right)^{n-1} + \cdots + \frac{a_n}{s^n} = 0$ onde os coeficientes $\frac{a_i}{s^i} \in S^{-1}A$. Logo $\frac{b}{s}$ é integral sobre $S^{-1}A$.

Proposição 170. Sejam $A \subseteq B$ domínios de integridade, B integral sobre A. Então B é um corpo se, e somente se, A é um corpo.

Demonstração. Suponha que A seja um corpo e seja $b \in B$, $b \neq 0$. Como B é integral sobre A, seja $b^n + a_1b^{n-1} + \cdots + a_n = 0$ com $a_i \in A$ uma equação para a dependência integral de b do menor grau possível. Suponha que $a_n = 0$ então $b(b^{n-1} + a_1b^{n-2} + \cdots + a_{n-1}) = 0$, como B é um domínio de integridade e $b \neq 0$ então devemos ter $b^{n-1} + a_1b^{n-2} + \cdots + a_{n-1} = 0$ o que contradiz o fato de n ser o grau mínimo de uma equação para a dependência integral de b, logo $a_n \neq 0$ e como A é corpo, a_n é uma unidade. Agora como $a_n = -b^n - a_1b^{n-1} - \cdots - a_{n-1}b = b(-b^{n-1} - a_1b^{n-2} - \cdots - a_{n-1})$ temos que $1 = b(-a_n^{-1}b^{n-1} - a_1a_n^{-1}b^{n-2} - \cdots - a_{n-1}a_n^{-1})$, logo b é uma unidade

de *B* o que implica que *B* é um corpo.

Reciprocamente, suponha que B seja um corpo e seja $a \in A$, $a \neq 0$. Então $a^{-1} \in B$ e portanto é integral sobre A, assim temos uma equação $a^{-m} + a'_1 a^{-m+1} + \cdots + a'_m = 0$ com $a'_i \in A$. Multiplicando essa expressão por a^{m-1} temos $a^{-1} + a'_1 + a'_2 a + \cdots + a'_{m-1} a^{m-2} + a'_m a^{m-1} = 0$, logo

$$a^{-1} = -a'_1 - a'_2 a - \dots - a'_{m-1} a^{m-2} - a'_m a^{m-1} \in A$$
,

logo A é um corpo.

AULA 21: 31/10/2014

AULA 21

Lembrando a última aula. Provamos:

Proposição. Seja $B \supseteq A$ uma extensão integral de anéis.

- a. Se I é um ideal de B então B/I é integral sobre $A/A \cap I$.
- b. Se S é um subconjunto multiplicativo de A, então $S^{-1}B$ é integral sobre $S^{-1}A$.
- c. Se B é um domínio, então B é um corpo se, e somente se, A é um corpo.

Corolário 171. Seja $B \supseteq A$ uma extensão integral. Seja \mathfrak{q} um ideal primo de B e seja $\mathfrak{p} = \mathfrak{q} \cap A$. Então \mathfrak{q} é maximal se, e somente se, \mathfrak{p} é maximal.

Demonstração. Primeiramente, observe que \mathfrak{p} é um ideal primo de A pois se $i:A\hookrightarrow B$ é o homomorfismo inclusão então $\mathfrak{p}=\mathfrak{q}\cap A=i^{-1}(\mathfrak{q})$. Logo os anéis B/\mathfrak{q} e A/\mathfrak{p} são domínios de integridade e da Proposição 169 segue que B/\mathfrak{q} é integral sobre A/\mathfrak{p} . Logo, da proposição anterior temos que B/\mathfrak{q} é um corpo se, e somente se, A/\mathfrak{p} é um corpo. Portanto \mathfrak{q} é maximal se, e somente se, \mathfrak{p} é maximal.

Teorema 172. (Incomparabilidade) Seja $A \subseteq B$ uma extensão integral. Se $\mathfrak{q} \subseteq \mathfrak{q}'$ são ideais primos de B tais que $\mathfrak{q} \cap A = \mathfrak{q}' \cap A$ então $\mathfrak{q} = \mathfrak{q}'$.

Demonstração. Seja $\mathfrak{p}=\mathfrak{q}\cap A$, então pela prova do Corolário anterior \mathfrak{p} é um ideal primo de A e seja $S=A-\mathfrak{p}$. Temos que a localização $A_{\mathfrak{p}}=S^{-1}A$ é um anel local (veja Exemplo 85 Aula 10) com único ideal maximal $S^{-1}\mathfrak{p}$: Como o único ideal maximal de $A_{\mathfrak{p}}$ é primo, ele é $S^{-1}\mathfrak{p}'$ onde \mathfrak{p}' é um ideal primo de A que não intercepta S, logo $\mathfrak{p}'\subseteq\mathfrak{p}$. Como localização preserva inclusões temos que $S^{-1}\mathfrak{p}'\subseteq S^{-1}\mathfrak{p}$, segue da maximalidade de $S^{-1}\mathfrak{p}'$ que $S^{-1}\mathfrak{p}'=S^{-1}\mathfrak{p}$.

Por outro lado, segue da Proposição 169 que $S^{-1}A\subseteq S^{-1}B$ é uma extensão integral. Mais ainda, $S^{-1}\mathfrak{q}\subseteq S^{-1}\mathfrak{q}'$ são ambos ideais primos de $S^{-1}B$ já que $S\cap\mathfrak{q}=S\cap\mathfrak{q}'=\emptyset$ (suponha que existe $x\in S\cap\mathfrak{q}$ então $x\in S$ e $x\in\mathfrak{q}$ logo $x\in A$ e $x\in\mathfrak{q}$ e $x\notin\mathfrak{p}$ ou seja $x\in\mathfrak{p}$ e $x\notin\mathfrak{p}$, contradição) e $S^{-1}\mathfrak{p}=S^{-1}(\mathfrak{q}\cap A)=S^{-1}(\mathfrak{q}'\cap A)$ ou seja $S^{-1}\mathfrak{p}=S^{-1}\mathfrak{q}\cap S^{-1}A=S^{-1}\mathfrak{q}'\cap S^{-1}A$. Segue do Corolário 171 que $S^{-1}\mathfrak{q}$ e $S^{-1}\mathfrak{q}'$ são ideais maximais de $S^{-1}B$, mas $S^{-1}\mathfrak{q}\subseteq S^{-1}\mathfrak{q}'$ o que implica $S^{-1}\mathfrak{q}=S^{-1}\mathfrak{q}'$. Seja $\rho:B\to S^{-1}B$ o mapa de localização então $\rho^{-1}(S^{-1}\mathfrak{q})=\rho^{-1}(S^{-1}\mathfrak{q}')$ segue da prova do Teorema 98 (Teorema de Localização e Ideais primos) que $\mathfrak{q}=\mathfrak{q}'$.

Teorema 173. (Lying Over) Seja $B \supseteq A$ uma extensão integral e seja $\mathfrak p$ um ideal primo de A. Então existe um ideal primo $\mathfrak q$ de B tal que $\mathfrak q \cap A = \mathfrak p$.

$$\begin{array}{ccc} B & \supset & \exists \operatorname{\mathsf{q-primo}} \mid \operatorname{\mathsf{q}} \cap A = \mathfrak{p} \\ \cup & integral & \uparrow \\ A & \supset & \mathfrak{p-primo} \end{array}$$

Demonstração. Como \mathfrak{p} é um ideal primo de A então a localização de A por $S = A - \mathfrak{p}$, $A_{\mathfrak{p}} = S^{-1}A$ é um anel local com único ideal maximal $S^{-1}\mathfrak{p}$ (veja a prova do Teorema de Incomparabilidade).

Por outro lado, o seguinte diagrama

$$A \xrightarrow{i} B$$

$$\rho_A \downarrow \qquad \qquad \downarrow \rho_B$$

$$S^{-1}A \xrightarrow{i_S} S^{-1}B$$

comuta, i.e., $i_S \circ \rho_A = \rho_B \circ i$. Segue da Proposição 169 que $S^{-1}B$ é integral sobre $S^{-1}A$, logo se $\mathfrak n$ é um ideal maximal de $S^{-1}B$ ($\mathfrak n$ existe pois $0 \notin S = A - \mathfrak p$ e logo $S^{-1}B \neq 0$ e logo tem um ideal maximal) então segue do Corolário anterior que $\mathfrak m = \mathfrak n \cap S^{-1}A = i_S^{-1}(\mathfrak n)$ é um ideal maximal de $S^{-1}A$. Como $S^{-1}A$ é local segue que $\mathfrak m = S^{-1}\mathfrak p$. Seja $\mathfrak q = \rho_B^{-1}(\mathfrak n)$, então $\mathfrak q$ é ideal primo de B e temos que $\mathfrak q \cap A = i^{-1}(\mathfrak q) = i^{-1}(\rho_B^{-1}(\mathfrak n)) = (\rho_B \circ i)^{-1}(\mathfrak n) = (i_S \circ \rho_A)^{-1}(\mathfrak n) = \rho_A^{-1}(i_S^{-1}(\mathfrak n)) = \rho_A^{-1}(\mathfrak m) = \rho_A^{-1}(S^{-1}\mathfrak p) = \mathfrak p$ onde a última igualdade segue da prova do Teorema 98 (Teorema de Localização e Ideais primos) pois $\mathfrak p$ é um ideal primo de A tal que $S \cap \mathfrak p = \emptyset$.

Teorema 174. (Going-Up) Seja $B \supseteq A$ uma extensão integral. Seja $\mathfrak{p}_1 \subsetneq \cdots \subsetneq \mathfrak{p}_n$ uma cadeia de ideais primos de A e $\mathfrak{q}_1 \subsetneq \cdots \subsetneq \mathfrak{q}_m$, com m < n, uma cadeia de ideais primos de B tais que $\mathfrak{q}_i \cap A = \mathfrak{p}_i$ para todo $i = 1, \ldots, m$. Então a cadeia $\mathfrak{q}_1 \subsetneq \cdots \subsetneq \mathfrak{q}_m$ pode ser estendida a uma cadeia $\mathfrak{q}_1 \subsetneq \cdots \subsetneq \mathfrak{q}_n$ tal que $\mathfrak{q}_i \cap A = \mathfrak{p}_i$ para todo $i = 1, \ldots, n$.

Demonstração. Usaremos a Lei Modular: Se $J \subseteq I$ ou $K \subseteq I$ então $I \cap (J + K) = I \cap J + I \cap K$ (Aula 2 e Ex. 11.6 Lista 1). E os isomorfismo da Proposição 53: $(L/N)/(M/N) \simeq L/M$ e $\frac{(M_1+M_2)}{M_1} \simeq \frac{M_2}{(M_1\cap M_2)}$ (Aula 7, Ex 1. Lista 3).

Por indução podemos reduzir ao caso m=1 e n=2. Sejam $\overline{A}=A/(\mathfrak{q}_1\cap A)$ e $\overline{B}=B/\mathfrak{q}_1$ então $\overline{A}\subseteq \overline{B}$ e \overline{B} é integral sobre \overline{A} pela Proposição 169 e $\overline{\mathfrak{p}}_2=\mathfrak{p}_2/(\mathfrak{q}_1\cap A)$ é um ideal primo de \overline{A} . Logo pelo Teorema Lying Over (Teorema 173) existe um ideal primo $\overline{\mathfrak{q}}_2$ de \overline{B} tal que $\overline{\mathfrak{q}}_2\cap \overline{A}=\overline{\mathfrak{p}}_2$. Pelo TCI o ideal primo $\overline{\mathfrak{q}}_2$ de \overline{B} corresponde a um ideal primo \mathfrak{q}_2 de B tal que $\mathfrak{q}_1\subseteq\mathfrak{q}_2$. Logo $(\mathfrak{q}_2/\mathfrak{q}_1)\cap (A/(\mathfrak{q}_1\cap A))=\mathfrak{p}_2/(\mathfrak{q}_1\cap A)$.

Observe que como $A \cap \mathfrak{q}_1 = \mathfrak{p}_1 \subsetneq \mathfrak{p}_2$ então $\mathfrak{q}_1 \cap \mathfrak{p}_2 = \mathfrak{q}_1 \cap (\mathfrak{p}_2 \cap A) = A \cap \mathfrak{q}_1$. Agora, temos

Segue do Teorema de Isomorfismos que
$$\mathfrak{p}_2 + \mathfrak{q}_1 \stackrel{iso}{=} \frac{\mathfrak{p}_2}{\mathfrak{q}_1} \cap (A + \mathfrak{q}_1) = \mathfrak{q}_2 \cap (A + \mathfrak{q}_1) \cap (A$$

mos que

$$\mathfrak{p}_{2} \stackrel{\mathfrak{p}_{1} \subseteq \mathfrak{p}_{2}}{=} \mathfrak{p}_{2} + \mathfrak{p}_{1} \stackrel{\mathfrak{p}_{1} = A \cap \mathfrak{q}_{1}}{=} \mathfrak{p}_{2} + (A \cap \mathfrak{q}_{1}) \stackrel{\mathfrak{p}_{2} \subseteq A}{=} (A \cap \mathfrak{p}_{2}) + (A \cap \mathfrak{q}_{1}) \stackrel{LM}{=} A \cap (\mathfrak{p}_{2} + \mathfrak{q}_{1}) \stackrel{(*)}{=} A \cap \mathfrak{q}_{2} \cap (A + \mathfrak{q}_{1}) = A \cap \mathfrak{q}_{2} \text{ pois } A \cap \mathfrak{q}_{2} \subseteq A \subseteq A + \mathfrak{q}_{1}.$$

Por último, resta ver que a inclusão $\mathfrak{q}_1 \subseteq \mathfrak{q}_2$ é estrita. Suponha que $\mathfrak{q}_1 = \mathfrak{q}_2$ então $\mathfrak{p}_1 = \mathfrak{q}_1 \cap A = \mathfrak{q}_2 \cap A = \mathfrak{p}_2$, contradição.

Corolário 175. Seja $A \subseteq B$ uma extensão integral de anéis. Então dim $A = \dim B$ (veja Definição 126).

Demonstração. Dada uma cadeia de ideais primos em $A: \mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \cdots \subsetneq \mathfrak{p}_n$ então pelo Teorema Going-Up existe uma cadeia de ideais primos em $B: \mathfrak{q}_0 \subsetneq \mathfrak{q}_1 \subsetneq \cdots \subsetneq \mathfrak{q}_n$ com $\mathfrak{q}_i \cap A = \mathfrak{p}_i$ para $i = 0, \ldots, n$ e por tanto dim $B \geq \dim A$.

Reciprocamente, dada uma cadeia de ideais primos em $B: \mathfrak{q}_0 \subsetneq \mathfrak{q}_1 \subsetneq \cdots \subsetneq \mathfrak{q}_n$ segue da prova do Corolário 171 que os ideais $\mathfrak{p}_i = A \cap \mathfrak{q}_i$ são ideais primos de A para todo $i = 0, \ldots, n$ e claramente $\mathfrak{p}_0 \subseteq \mathfrak{p}_1 \subseteq \cdots \subseteq \mathfrak{p}_n$. Segue do Teorema de Incomparabilidade (Teorema 172) que os \mathfrak{p}_i 's são todos distintos e logo definem uma cadeia $\mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \cdots \subsetneq \mathfrak{p}_n$ de ideais primos de A o que mostra que dim $A \ge \dim B$.

Proposição 176. Sejam $A \subseteq B$ anéis e C(A, B) o fecho integral de A em B. Seja S um subconjunto multiplicativo de A. Então $S^{-1}C(A, B)$ é o fecho integral de $S^{-1}A$ em $S^{-1}B$.

Demonstração. Queremos provar que $S^{-1}\mathcal{C}(A,B)=\mathcal{C}(S^{-1}A,S^{-1}B)$. Segue da definição de fecho integral que $A\subseteq\mathcal{C}(A,B)$ é uma extensão integral, logo da Proposição 169 temos que $S^{-1}A\subseteq S^{-1}\mathcal{C}(A,B)$ é também uma extensão integral. Logo dado um elemento $x\in S^{-1}\mathcal{C}(A,B)\subseteq S^{-1}B$ então x é integral sobre $S^{-1}A$ logo $x\in\mathcal{C}(S^{-1}A,S^{-1}B)$ e temos $S^{-1}\mathcal{C}(A,B)\subseteq\mathcal{C}(S^{-1}A,S^{-1}B)$. Reciprocamente, se $\frac{b}{s}\in S^{-1}B$ é integral sobre $S^{-1}A$ então existe uma equação da forma $\left(\frac{b}{s}\right)^n+\frac{a_1}{s_1}\left(\frac{b}{s}\right)^{n-1}+\cdots+\frac{a_n}{s_n}=0$ onde $a_i\in A$ e $s_i\in S$ para todo $i=1,\ldots,n$. Então multiplicando a equação por s^n temos $b^n+\frac{sa_1}{s_1}b^{n-1}+\cdots+\frac{s^{n-1}a_{n-1}}{s_{n-1}}b+\frac{s^na_n}{s_n}=0$. Seja $t=s_1\cdot\dots\cdot s_n$ então multiplicando novamente por t^n temos: $(bt)^n+(s(\widehat{s_1}\cdot\dots\cdot s_n)a_1)(bt)^{n-1}+\cdots+(s^{n-1}t^{n-2}(s_1\cdot\dots\cdot \widehat{s_{n-1}}\cdot s_n)a_{n-1})(bt)+(s^nt^{n-1}(s_1\cdot\dots\cdot \widehat{s_n})a_n)=0$ que é uma equação para a dependência integral de bt sobre A. Logo $bt\in\mathcal{C}(A,B)$ o portanto $\frac{b}{s}=\frac{bt}{st}\in S^{-1}\mathcal{C}(A,B)$, assim $\mathcal{C}(S^{-1}A,S^{-1}B)\subseteq S^{-1}\mathcal{C}(A,B)$. \square

Definição 177. Um domínio de integridade A é dito **integralmente fechado** (sem qualificação) ou **normal** se ele é integralmente fechado sobre seu corpo de frações, i.e., se $\mathcal{C}(A,\operatorname{Frac}(A)) = A$.

Proposição 178. *Todo DFU é integralmente fechado.*

Demonstração. Exercício 1.

AULA 22: 05/11/2014

AULA 22

Na última aula provamos que:

Proposição. Se $A \subseteq B$ são anéis e S é um subconjunto multiplicativo de A, então $S^{-1}C(A,B) = C(S^{-1}A,S^{-1}B)$.

e definimos:

Definição. Um domínio de integridade A é dito **integralmente fechado** (sem qualificação) ou **normal** se ele é integralmente fechado sobre seu corpo de frações, i.e., se $C(A, \operatorname{Frac}(A)) = A$.

Provaremos a seguir que a propriedade de um domínio ser "integralmente fechado" é local.

Proposição 179. Seja A um domínio de integridade. Então as seguintes afirmações são equivalentes:

- a. A é integralmente fechado;
- b. $A_{\mathfrak{p}}$ é integralmente fechado para todo ideal primo \mathfrak{p} de A;
- c. $A_{\mathfrak{m}}$ é integralmente fechado para todo ideal maximal \mathfrak{m} de A;

Demonstração. Primeiramente provaremos que se *A* é um domínio e *S* ⊆ *A* um subconjunto multiplicativo tal que $0 \notin S$, então $S^{-1}A$ é também um domínio (observe que se $0 \in S$ então $S^{-1}A = 0$ que não é domínio pois 1 = 0). Sejam $\frac{a}{s}$, $\frac{b}{t} \in S^{-1}A$ (com $a, b \in A$ e $s, t \in S$) elementos tais que $\frac{a}{s} \cdot \frac{b}{t} = \frac{ab}{st} = \frac{0}{1}$ em $S^{-1}A$, então existe $s' \in S$ tal que s'ab = 0 em *A*, como *A* é domínio e $0 \notin S$ então ou a = 0 ou b = 0. Logo ou $\frac{a}{s} = \frac{0}{1}$ ou $\frac{b}{s} = \frac{0}{1}$ e por tanto $S^{-1}A$ é um domínio. Alem disso, o mapa de localização $\rho : A \to S^{-1}A$ é injetivo, pois se $\rho(a) = \rho(b)$ então $\frac{a}{1} = \frac{b}{1}$ em $S^{-1}A$ logo existe $s \in S$ tal que sa = sb em *A*, logo s(a - b) = 0 e como *A* é domínio e $0 \notin S$ então a = b. Logo $A \simeq \rho(A) \subseteq S^{-1}A$, em particular podemos identificar os elementos $s \in S$ com $\frac{s}{1} \in \rho(S)$.

Vejamos que S^{-1} Frac(A) = Frac $(S^{-1}A)$. Chamaremos de $S_0 = A - 0$ então Frac $(A) = S_0^{-1}A$ e analogamente $S_0' = S^{-1}A - \frac{0}{1}$, logo Frac $(S^{-1}A) = (S_0')^{-1}(S^{-1}A)$. Observe que $\frac{a}{s} = \frac{0}{1}$ em $S^{-1}A \Leftrightarrow$ existe $t \in S$ ($t \neq 0$) tal que ta = 0 em A (domínio) $\Leftrightarrow a = 0$. Isto implica que $S_0' = \{\frac{a}{s} \text{ com } a \in S_0, s \in S\}$. Seja agora, $\frac{a}{s} \in S^{-1}$ Frac(A) logo $s \in S$ e $a \in \text{Frac}(A)$, ou seja $a = \frac{a'}{s_0}$ com $a' \in A$ e $s_0 \in S_0$. Logo $\frac{a}{s} = \frac{\frac{a'}{s_0}}{\frac{s}{1}} = \frac{a'}{s_0s} = \frac{\frac{a'}{s}}{\frac{s}{0}} \in (S_0')^{-1}(S^{-1}A) = \text{Frac}(S^{-1}A)$. Por outro lado se, $\frac{a}{s'_0} \in \text{Frac}(S^{-1}A)$ então $a \in S^{-1}A$ e $s'_0 \in S'_0$. Logo $a = \frac{a'}{s}$

com $a' \in A$ e $s \in S$ e $s'_0 = \frac{s_0}{s'}$ com $s_0 \in S_0$ e $s' \in S$, assim $\frac{a}{s'_0} = \frac{\frac{a'}{s}}{\frac{s_0}{s'}} = \frac{a's'}{ss_0} = \frac{\frac{a's'}{s}}{\frac{s_0}{s}} \in S^{-1}\operatorname{Frac}(A)$.

Segue que se A é um domínio e $S = A - \mathfrak{p}$ onde \mathfrak{p} é um ideal primo de A então $0 \notin S$ e logo $S^{-1}A = A_{\mathfrak{p}}$ é um domínio, primeira condição para ser integralmente fechado.

Seja $i:A\hookrightarrow \mathcal{C}(A,\operatorname{Frac}(A))$ a inclusão de A em $\mathcal{C}(A,\operatorname{Frac}(A))$. Segue da Proposição 176 e a observação anterior que $S^{-1}\mathcal{C}(A,\operatorname{Frac}(A))=\mathcal{C}(S^{-1}A,S^{-1}\operatorname{Frac}(A))=\mathcal{C}(S^{-1}A,\operatorname{Frac}(S^{-1}A))\log S^{-1}i:S^{-1}A\hookrightarrow \mathcal{C}(S^{-1}A,\operatorname{Frac}(S^{-1}A)).$ Então A é integralmente fechado se, e somente se, $i(A)=A=\mathcal{C}(A,\operatorname{Frac}(A))$ se, e somente se, i é sobrejetiva. Segue da propriedade local dos homomorfismo sobrejetivos (Proposição 96) que i é sobrejetiva se, e somente se, $S^{-1}i$ é sobrejetiva para todo ideal primo \mathfrak{p} de A, mas isto acontece se, e somente se, $S^{-1}A=A_{\mathfrak{p}}$ é integralmente fechado para todo ideal primo \mathfrak{p} de A. Analogamente se considerarmos todos os ideais maximais \mathfrak{m} de A.

Definição 180. Sejam $A \subseteq B$ anéis e seja I um ideal de A. Um elemento de B é dito **integral** sobre I se satisfaz uma equação de dependência integral sobre A na qual todos os coeficientes (não "mônicos") pertencem a I. O **fecho integral** ou **normalização** C(I,B) do ideal I em B é o conjunto dos elementos de B que são integrais sobre I.

Lema 181. Seja I um ideal de A com $A \subseteq B$ anéis. Então o fecho integral de I em B, C(I,B), é o radical de IC(A,B) (e logo é fechado sob adição e multiplicação, pois $\sqrt{IC(A,B)}$ é um ideal de B).

Demonstração. Seja $b \in B$ um elemento integral sobre I (i.e. $b \in C(I,B)$) então temos que existe uma equação da forma $b^n + a_1b^{n-1} + \cdots + a_n = 0$ com $a_i \in I \subseteq A \subseteq C(A,B)$. Logo $b \in C(A,B)$ e como $b^n = -a_1b^{n-1} - \cdots - a_n \in IC(A,B)$ (pois cada $a_ib^{n-i} \in IC(A,B)$) e o termo constante $a_n = a_n1_A \in IC(A,B)$) temos que $b \in \sqrt{IC(A,B)}$. Reciprocamente, se $b \in \sqrt{IC(A,B)}$ então existe n > 0 tal que $b^n \in IC(A,B)$ logo $b^n = \sum_{i=1}^m a_ix_i$ onde $a_i \in I$ e $x_i \in C(A,B)$. Como cada x_i é integral sobre A segue do Corolário 163 que $M = A[x_1,\ldots,x_m]$ é um A-modulo f.g. Logo podemos usar a Proposição 58 (Seja M um A-módulo f.g., I um ideal de A e f um endomorfismo do A-módulo M tal que $f(M) \subseteq IM$. Então f satisfaz uma equação da forma $f^k + c_1 f^{k-1} + \cdots + c_k$ id = 0 onde $c_i \in I$) com $f : M \to M$ como sendo a multiplicação por b^n . Vejamos que $f(M) \subseteq IM$, seja $p(x_1,\ldots,x_m) \in M = A[x_1,\ldots,x_m]$ então $b^n p(x_1,\ldots,x_m) = \sum_{i=1}^m \underbrace{a_i x_i p(x_1,\ldots,x_m)}_{\in I} \in IM$. Logo

 $f^k + c_1 f^{k-1} + \dots + c_k$ id = 0 para certos $c_i \in I$ aplicando isto em b^n temos $b^{n^{k+1}} + c_1 b^{n^k} + \dots + c_k b^n = 0$ logo b é integral sobre $I, b \in \mathcal{C}(I, B)$.

Proposição 182. Sejam $A \subseteq B$ domínios de integridade, A integralmente fechado e seja $b \in B$ um elemento integral sobre um ideal I de A. Então b é um elemento algébrico sobre o corpo de frações $\mathbf{k} = \operatorname{Frac}(A)$ de A e se seu polinômio minimal¹ sobre \mathbf{k} é $p(x) = x^n + a_1 x^{n-1} + \cdots + a_n$ então $a_1, \ldots, a_n \in \sqrt{I}$.

Demonstração. Claramente, como b é integral sobre $I \subseteq A \subseteq \mathbf{k}$ então b é algébrico sobre \mathbf{k} . Seja L uma extensão de corpos de \mathbf{k} a qual contem todas as raízes $b = b_1, \ldots, b_n$ de p(x) em $\overline{\mathbf{k}}$ (onde $\overline{\mathbf{k}}$ é o fecho algébrico de \mathbf{k}). Seja f(x) uma equação da dependência integral de b sobre I, então f é um polinômio em $\mathbf{k}[x]$ que tem b como raiz, logo $p(x) \mid f(x)$ em $\mathbf{k}[x]$. Como $p(b_i) = 0$ então $f(b_i) = 0$, logo b_i é integral sobre I para todo $i = 1, \ldots, n$.

Agora $p(x) = \prod_{i=1}^{n} (x - b_i) = x^n + a_1 x^{n-1} + \cdots + a_n$, então os coeficientes a_i 's são polinomiais nos b_i 's e pelo Lema 181 o conjunto dos elementos de B integrais sobre I é fechado sob adição e multiplicação, logo os $a_i \in \mathbf{k} = \operatorname{Frac}(A)$ são integrais sobre I e portanto integrais sobre A, assim $a_i \in \mathcal{C}(A,\operatorname{Frac}(A))$. Mas A é integralmente fechado, logo $\mathcal{C}(A,\operatorname{Frac}(A)) = A$ e $a_i \in A$ para todo $i = 1, \dots, n$. Finalmente, aplicando novamente o Lema 181 com B = A temos: $a_i \in \mathcal{C}(I,A) = \sqrt{I\mathcal{C}(A,A)} = \sqrt{IA} = \sqrt{I}$.

A nossa intenção agora é provar o "**Teorema Going-down**", mas para isso precisaremos provar antes alguns lemas técnicos.

Vimos na Aula 1 que se $f: A \to B$ é um homomorfismo de anéis e J é um ideal de B, então a pré-imagem $f^{-1}(J)$ é sempre um ideal de A. Mas se I é um ideal de A, o conjunto f(I) não necessariamente é um ideal de B. Por isso consideraremos nos lemas seguintes o ideal Bf(I) que é o ideal de B gerado por f(I).

Lema 183. Seja $f: A \to B$ um homomorfismo de anéis e sejam I um ideal de A e I um ideal de B. Então:

```
a. I \subseteq f^{-1}(Bf(I));
```

b.
$$Bf(f^{-1}(J)) \subseteq J$$
;

c.
$$f^{-1}(J) = f^{-1}(Bf(f^{-1}(J)));$$

d.
$$Bf(I) = Bf(f^{-1}(Bf(I)));$$

Demonstração. Para qualquer função $f: A \to B$ e subconjuntos $I \subseteq A$ e $J \subseteq B$ vale $f(f^{-1}(J)) \subseteq J$ e $I \subseteq f^{-1}(f(I))$. Agora se I é um ideal de A então $f(I) \subseteq Bf(I)$ logo $I \subseteq f^{-1}(f(I)) \subseteq f^{-1}(Bf(I))$ e se J é um ideal de B então $Bf(f^{-1}(J)) \subseteq BJ = J$, provamos (a.) e (b.). Aplicando f^{-1} a (b.) segue que $f^{-1}(Bf(f^{-1}(J))) \subseteq f^{-1}(J)$ e fazendo $I = f^{-1}(J)$ em (a.) temos $f^{-1}(J) \subseteq f^{-1}(Bf(f^{-1}(J)))$, assim provamos o item (c.). Por último, aplicando f a

¹ i.e., polinômio mônico como coeficientes em \mathbf{k} de menor grau que admite b como raiz. Ele é irredutível e divide qualquer outro polinômio em $\mathbf{k}[x]$ que tenha b como raiz.

(a.) temos $f(I) \subseteq f(f^{-1}(Bf(I)))$ e logo $Bf(I) \subseteq Bf(f^{-1}(Bf(I)))$ e fazendo J = Bf(I) em (b.) segue que $Bf(f^{-1}(Bf(I))) \subseteq Bf(I)$, assim temos (d.). \square **Lema 184.** Seja $f: A \to B$ um homomorfismo de anéis e seja $\mathfrak p$ um ideal primo de A. Então $\mathfrak{p}=f^{-1}(\mathfrak{q})$ para algum ideal primo \mathfrak{q} de B se, e somente se, $f^{-1}(Bf(\mathfrak{p}))=\mathfrak{p}$. Demonstração. Se $\mathfrak{p} = f^{-1}(\mathfrak{q})$ para algum ideal primo \mathfrak{q} de B então segue do Lema 183 (c.) que $f^{-1}(Bf(f^{-1}(\mathfrak{q}))) = f^{-1}(\mathfrak{q})$, ou seja $f^{-1}(Bf(\mathfrak{p})) = \mathfrak{p}$. Reciprocamente, se *I* denota o ideal $Bf(\mathfrak{p})$ de *B*, então $\mathfrak{p}=f^{-1}(I)$, mas *I* não é necessariamente primo. Seja $S = f(A - \mathfrak{p})$, então S é um subconjunto multiplicativo de B: sejam $s_1, s_2 \in S$ então existem $a_1, a_2 \in A - \mathfrak{p}$ tal que $s_i = f(a_i)$ para $i = 1, 2 \log_0 s_1 s_2 = f(a_1) f(a_2) = f(a_1 a_2)$, como $A - \mathfrak{p}$ é um conjunto multiplicativo então $a_1a_2 \in A - \mathfrak{p}$ logo $s_1s_2 \in S$. Por outro lado, $S^{-1}J$ é um ideal próprio de $S^{-1}B$: suponha que $S^{-1}J=S^{-1}B$ então $\frac{1}{1} \in S^{-1}J$ logo existe $s \in S$ e $b \in J$ tal que $\frac{1}{1} = \frac{b}{s}$ logo existe $t \in S$ tal que $S \ni ts = tb \in I$ o que implica que $S \cap I \neq \emptyset$. Mas se $s \in S \cap I$ então existe $a \in A - \mathfrak{p}$ tal que s = f(a) e por outro lado $a \in f^{-1}(s) \in f^{-1}(J) = \mathfrak{p}$, que é uma contradição. Logo $S^{-1}J$ é um ideal próprio de $S^{-1}B$ e $S \cap J = \emptyset$. Isto implica que $S^{-1}J$ está contido num ideal maximal \mathfrak{m} de $S^{-1}B$. Seja \mathfrak{q} o ideal primo de B que não intercepta S e que satisfaz $\mathfrak{m} = S^{-1}\mathfrak{q}$, queremos provar que $\mathfrak{p}=f^{-1}(\mathfrak{q})$. Vejamos que $J\subseteq\mathfrak{q}$: suponha que não, então existe $j \in J$ tal que $j \notin \mathfrak{q}$ logo $\frac{j}{1} \in S^{-1}J$ mas $\frac{j}{1} \notin S^{-1}\mathfrak{q}$ (pois se $\frac{j}{1} \in S^{-1}\mathfrak{q}$ então $\frac{1}{1} = \frac{q}{s}$ para certos $q \in \mathfrak{q}$ e $s \in S$, logo existe $t \in S$ tal que $tjs = tq \in \mathfrak{q}$ e como $j \notin \mathfrak{q}$ e \mathfrak{q} é primo então necessariamente $ts \in \mathfrak{q}$ o que contradiz o fato de $\mathfrak{q} \cap S = \emptyset$), o que contradiz o fato de $S^{-1}J$ estar contido em $S^{-1}\mathfrak{q}$. Logo, temos que $\mathfrak{p}=f^{-1}(J)\subseteq f^{-1}(\mathfrak{q})$. Suponha que $\mathfrak{p}\subsetneq f^{-1}(\mathfrak{q})$, isto implica que existe $a \in f^{-1}(\mathfrak{q})$ tal que $a \notin \mathfrak{p}$, i.e., $a \in A - \mathfrak{p}$. Logo $f(a) \in \mathfrak{q}$ e $f(a) \in f(A - \mathfrak{p}) = S$, o que contradiz o fato de $\mathfrak{q} \cap S = \emptyset$. Logo $\mathfrak{p} = f^{-1}(\mathfrak{q}).$

AULA 23: 07/11/2014

Na última aula provamos:

Lema 1. Seja I um ideal de A com $A \subseteq B$ anéis. Então o fecho integral de I em B, C(I,B), é o radical de IC(A,B) (e logo é fechado sob adição e multiplicação, pois $\sqrt{IC(A,B)}$ é um ideal de B).

Lema 2. Seja $f: A \to B$ um homomorfismo de anéis e seja $\mathfrak p$ um ideal primo de A. Então $\mathfrak p = f^{-1}(\mathfrak q)$ para algum ideal primo $\mathfrak q$ de B se, e somente se, $f^{-1}(Bf(\mathfrak p)) = \mathfrak p$.

Proposição 3. Sejam $A \subseteq B$ domínios de integridade, A integralmente fechado e seja $b \in B$ um elemento integral sobre um ideal I de A. Então b é um elemento algébrico sobre o corpo de frações $\mathbf{k} = \operatorname{Frac}(A)$ de A e se seu polinômio minimal sobre \mathbf{k} é $p(x) = x^n + a_1 x^{n-1} + \cdots + a_n$ então $a_1, \ldots, a_n \in \sqrt{I}$.

AULA 23

Teorema 185. (**Going-down**) Sejam $A \subseteq B$ domínios de integridade, A integralmente fechado, B integral sobre A. Seja $\mathfrak{p}_1 \supsetneq \cdots \supsetneq \mathfrak{p}_n$ uma cadeia de ideais primos de A e seja $\mathfrak{q}_1 \supsetneq \cdots \supsetneq \mathfrak{q}_m$ com m < n uma cadeia de ideais primos de B tais que $\mathfrak{q}_i \cap A = \mathfrak{p}_i$ para $i = 1, \ldots, m$. Então a cadeia $\mathfrak{q}_1 \supsetneq \cdots \supsetneq \mathfrak{q}_m$ pode ser estendida a uma cadeia $\mathfrak{q}_1 \supsetneq \cdots \supsetneq \mathfrak{q}_n$ tal que $\mathfrak{q}_i \cap A = \mathfrak{p}_i$ para todo $i = 1, \ldots, n$.

Demonstração. Como na prova do Teorema Going-Up reduzimos imediatamente ao caso m=1 e n=2. Então temos que mostrar que se $\mathfrak{p}_1\supseteq\mathfrak{p}_2$ são ideais primos de A e \mathfrak{q}_1 um ideal primo de B tal que $\mathfrak{q}_1 \cap A = \mathfrak{p}_1$, então existe um ideal primo \mathfrak{q}_2 de B tal que $\mathfrak{q}_1 \supseteq \mathfrak{q}_2$ e $\mathfrak{q}_2 \cap A = \mathfrak{p}_2$. Agora, como observamos na prova da Proposição 179, B é um domínio logo o mapa de localização $\rho: B \to B_{\mathfrak{q}_1}$ é injetivo e podemos identificar $B \simeq \rho(B) \subseteq B_{\mathfrak{q}_1}$. Defina, então $f:A \hookrightarrow B_{\mathfrak{q}_1}$ como sendo a composição dos homomorfismos injetivos $A\stackrel{i}{\hookrightarrow} B\stackrel{\rho}{\hookrightarrow} B_{\mathfrak{q}_1}$. Aplicando o Lema 184 a f temos que $\mathfrak{p}_2=f^{-1}(J_2)=
ho^{-1}(J_2)\cap A$ para algum ideal primo J_2 de $B_{\mathfrak{q}_1}$ se, e somente se, $f^{-1}(B_{\mathfrak{q}_1}f(\mathfrak{p}_2))=\mathfrak{p}_2$. Agora, um ideal primo J_2 de $B_{\mathfrak{q}_1}$ corresponde a um ideal primo \mathfrak{q}_2 de B contido em \mathfrak{q}_1 (Corolário 99), logo $J_2 = S^{-1}\mathfrak{q}_2$ onde $S = B - \mathfrak{q}_1$. Reescrevendo o anterior temos que $\mathfrak{p}_2 = \rho^{-1}(S^{-1}\mathfrak{q}_2) \cap A = \mathfrak{q}_2 \cap A$ para algum ideal primo \mathfrak{q}_2 de B contido em \mathfrak{q}_1 se, e somente se, $f^{-1}(B_{\mathfrak{q}_1}f(\mathfrak{p}_2))=\mathfrak{p}_2$. Sem perda de generalidade podemos supor que f é a inclusão de A em $B_{\mathfrak{q}_1}$, assim só basta provar que $\mathfrak{p}_2 = f^{-1}(B_{\mathfrak{q}_1} f(\mathfrak{p}_2)) = B_{\mathfrak{q}_1} \mathfrak{p}_2 \cap A.$

Como $\mathfrak{p}_2\subseteq A$ e $\mathfrak{p}_2\subseteq B_{\mathfrak{q}_1}\mathfrak{p}_2$ (que é o ideal de $B_{\mathfrak{q}_1}$ gerado por \mathfrak{p}_2) então claramente $\mathfrak{p}_2 \subseteq B_{\mathfrak{q}_1}\mathfrak{p}_2 \cap A$. Seja $x \in B_{\mathfrak{q}_1}\mathfrak{p}_2 \cap A$, então $x = \sum_{i=1}^k \frac{b_i}{s_i}p_i$ onde $b_i \in B$, $s_i \in S = B - \mathfrak{q}_1$ e $p_i \in \mathfrak{p}_2$. Logo tomando denominador comum $x = \frac{\sum_{i=1}^k s_1 \cdots \widehat{s_i} \cdots s_n b_i p_i}{s_1 \cdots s_n} = \frac{\sum_{i=1}^k b_i' p_i}{s_1 \cdots s_n} \text{ onde } s = s_1 \cdots s_n \in S \text{ e } y = \sum_{i=1}^k b_i' p_i \in B\mathfrak{p}_2.$ Como $A\subseteq B$ é uma extensão integral e logo $\mathcal{C}(A,B)=B$, segue do Lema 181 que $\mathcal{C}(\mathfrak{p}_2,B)=\sqrt{B\mathfrak{p}_2}\supseteq B\mathfrak{p}_2\ni y$ logo y é integral sobre \mathfrak{p}_2 . Segue da Proposição 182 que y é um elemento algébrico sobre o corpo de frações $\mathbf{k} = \operatorname{Frac}(A)$ de A e sua equação minimal sobre \mathbf{k} é da forma $y^r + u_1 y^{r-1} + u_1 y^{r-1}$ $\cdots + u_r = 0$ (*) com $u_1, \ldots, u_r \in \sqrt{\mathfrak{p}_2} = \mathfrak{p}_2$. Agora como também $x \in A$ então $x^{-1} \in \mathbf{k}$, logo multiplicando a equação (*) por $x^{-r} \in \mathbf{k}$ obtemos $(yx^{-1})^r + u_1x^{-1}(yx^{-1})^{r-1} + \dots + u_rx^{-r} = 0 \text{ com } u_ix^{-i} \in \mathbf{k}.$ Seja f(t) = $t^r + u_1 x^{-1} t^{r-1} + \dots + u_r x^{-r}$ então $f(s) = f(yx^{-1}) = 0$, logo s é um elemento algébrico sobre \mathbf{k} e seu polinômio minimal $p(t) = t^m + \sum_{i=0}^{m-1} h_{m-i} t^i$ com $h_i \in \mathbf{k}$ é tal que $m \le r$. Mas se m < r então $0 = p(s) = p(yx^{-1}) = r$ $x^{-m}y^m + \sum_{i=0}^{m-1} h_{m-i}x^{-i}y^i$ contradiz que (*) é a equação minimal para a dependência integral de y sobre k, logo o grau do polinômio minimal se sdeve ser m = r o que implica que f(t) (polinômio mônico como coeficientes em k de menor grau que admite s como raiz.) é o polinômio minimal

de s. Agora $s \in B$ logo é integral sobre A, assim aplicando novamente a Proposição 182 com I = A temos que $u_i x^{-i} \in \sqrt{A} = A$ para todo i = 1, ..., r.

Suponha agora que $x \notin \mathfrak{p}_2$. Então $x^i \notin \mathfrak{p}_2$, pois \mathfrak{p}_2 é primo de A, logo $\mathfrak{p}_2 \ni u_i = \underbrace{(u_i x^{-i})}_{\in A}\underbrace{x^i}_{\in A}$ isto implica que $u_i x^{-i} \in \mathfrak{p}_2$ (aqui usamos o que

acabamos de provar, que os $u_i x^{-i} \in A$ pois como \mathfrak{p}_2 é primo de A precisamos que ambos fatores pertençam a A para poder concluir que um deles tem que estar em \mathfrak{p}_2) e segue de f(s)=0 que $s^r=-u_1x^{-1}s^{r-1}-\cdots-u_rx^{-r}\in B\mathfrak{p}_2\subseteq B\mathfrak{p}_1=B(\mathfrak{q}_1\cap A)\subseteq B\mathfrak{q}_1=\mathfrak{q}_1$ o que implica (por \mathfrak{q}_1 ser primo) que $s\in\mathfrak{q}_1$, contradição. Logo $x\in\mathfrak{p}_2$ e por tanto $\mathfrak{p}_2=B\mathfrak{q}_1\mathfrak{p}_2\cap A$ como requerido. \square

Por último, resta ver que a inclusão $\mathfrak{q}_2 \subseteq \mathfrak{q}_1$ é estrita. Suponha que $\mathfrak{q}_2 = \mathfrak{q}_1$ então $\mathfrak{p}_2 = \mathfrak{q}_2 \cap A = \mathfrak{q}_1 \cap A = \mathfrak{p}_1$, contradição.

Provaremos a seguir o **Teorema de Normalização de Noether** o qual descreve a estrutura básica de uma álgebra f.g. sobre um corpo, para isso precisaremos do seguinte lema.

Lema 186. Sejam \mathbf{k} um corpo infinito e $f \in \mathbf{k}[x_1, ..., x_n]$ qualquer polinômio homogêneo² não nulo, então existem elementos $\lambda_1, ..., \lambda_{n-1} \in \mathbf{k}$ tal que $f(\lambda_1, ..., \lambda_{n-1}, 1) \neq 0$.

Demonstração. Note que se $f(x_1,\ldots,x_n)\in\mathbf{k}[x_1,\ldots,x_n]$ é um polinômio homogêneo de grau d não nulo então $g(x_1,\ldots,x_{n-1})=f(x_1,\ldots,x_{n-1},1)\in\mathbf{k}[x_1,\ldots,x_{n-1}]$ é um polinômio não necessariamente homogêneo³ e não nulo. Esta última condição é consequência de f ser homogêneo⁴, se g for nulo então deveriam existir termos em g tais que $ax_1^{\alpha_1}x_2^{\alpha_2}\cdots x_{n-1}^{\alpha_{n-1}}=-bx_1^{\beta_1}x_2^{\beta_2}\cdots x_{n-1}^{\beta_{n-1}}$, mas isto implica a=b e $\alpha_i=\beta_i$ para todo $i=1,\ldots,n-1$ e logo a potência de x_n em f seria a mesma em ambos termos $d-\sum_{i=1}^{n-1}\alpha_i$ e logos os termos seriam cancelados na expressão de f implicando que f=0, o que é uma contradição. Segue do Execício 9 Lista 2: "Seja \mathbf{k} um corpo infinito e $f\in\mathbf{k}[x_1,\ldots,x_n]$ tal que $f(a_1,\ldots,a_n)=0$ para todo $(a_1,\ldots,a_n)\in\mathbf{k}^n$ então f=0" que existe $(\lambda_1,\ldots,\lambda_{n-1})\in\mathbf{k}^{n-1}$ tal que $0\neq g(\lambda_1,\ldots,\lambda_{n-1})=f(\lambda_1,\ldots,\lambda_{n-1},1)$.

Lembramos que uma **k**-álgebra A é f.g. sobre o corpo **k** se $A = \mathbf{k}[a_1, \dots, a_n]$ para algum conjunto finito de elementos $a_1, \dots, a_n \in A$.

Precisaremos da seguinte definição:

² Um polinômio homogêneo é um polinômio cujos termos não nulos tem todos o mesmo grau.

³ Por exemplo $f(x,y,z)=xyz+z^2x+xy^2$ então $f(x,y,1)=xy+x+xy^2$ não é homogêneo.

⁴ Note que de fato para $f(x,y,z) = xyz - xyz^2$ não nulo e não homogêneo temos g(x,y) = f(x,y,1) = xy - xy = 0.

Definição 187. Dizemos que os elementos a_1, \ldots, a_k de uma álgebra sobre um corpo \mathbf{k} são **algebricamente independentes** sobre \mathbf{k} se $p(a_1, \ldots, a_k) \neq 0$ para qualquer polinômio não nulo $p \in \mathbf{k}[x_1, \ldots, x_k]$. No caso k = 1 dizemos que a_1 é **transcendente** sobre \mathbf{k} .

Teorema 188. (**Teorema de Normalização de Noether**) Seja **k** um corpo infinito e seja $A \neq 0$ uma **k**-álgebra f.g. Então existem elementos $a_1, \ldots, a_k \in A$ que são algebricamente independentes sobre **k** e tal que A é integral sobre **k** $[a_1, \ldots, a_k]$.

Demonstração. Sejam b_1,\ldots,b_n os geradores de A como uma \mathbf{k} -álgebra. Então podemos renumerar os b_i 's tal que b_1,\ldots,b_r são algebricamente independentes sobre \mathbf{k} mas b_1,\ldots,b_r,b_i (para todo $r+1\leq i\leq n$) não o são, ou seja existe um polinômio $p_i\in\mathbf{k}[x_1,\ldots,x_r,x_{r+1}]$ tal que $p_i(b_1,b_2,\ldots,b_r,b_i)=0$ (para todo $r+1\leq i\leq n$), logo b_{r+1},\ldots,b_n são algébricos sobre $\mathbf{k}[b_1,\ldots,b_r]$. Agora procedendo por indução sobre n, temos: Se n=r não tem nada a fazer. Suponha então que n>r e o resultado é verdadeiro para n-1 geradores. O gerador b_n é algébrico sobre $\mathbf{k}[b_1,\ldots,b_{n-1}]$ logo existe um polinômio $f\neq 0$ com coeficientes em \mathbf{k} em n variáveis tal que $f(b_1,\ldots,b_{n-1},b_n)=0$. Seja F a parte homogênea de maior grau d de f, como \mathbf{k} é infinito, segue do lema anterior que existem $\lambda_1,\ldots,\lambda_{n-1}\in\mathbf{k}$ tal que $F(\lambda_1,\ldots,\lambda_{n-1},1)\neq 0$. Sejam agora $b_i'=b_i-\lambda_i b_n$ para $i=1,\ldots,n-1$. Defina $G(x_1,\ldots,x_{n-1},x_n)=f(x_1+\lambda_1x_n,\ldots,x_{n-1}+\lambda_{n-1}x_n,x_n)$. Então G tem a forma

 $G(x_1,...,x_{n-1},x_n) = F(\lambda_1,...,\lambda_{n-1},1)x_n^d + p_1(x_1,...,x_{n-1})x_n^{d-1} + \cdots + p_d(x_1,...,x_{n-1})$ para certos $p_1,...,p_d \in \mathbf{k}[x_1,...,x_{n-1}]$. Como $F(\lambda_1,...,\lambda_{n-1},1) \neq 0$ então podemos supor G mônico pois podemos multiplicar por seu inverso. Logo $G(b'_1,...,b'_{n-1},b_n) = f(\underbrace{b'_1 + \lambda_1 b_n}_{b_1},...,\underbrace{b'_{n-1} + \lambda_{n-1} b_n}_{b_{n-1}},b_n) = 0$ é uma

equação para a dependência integral de b_n sobre $A' = \mathbf{k}[b'_1, \dots, b'_{n-1}]$, logo b_n é integral sobre o anel $A' \subseteq A = \mathbf{k}[b_1, \dots, b_n]$. Temos também que a \mathbf{k} -álgebra $A = A'[b_n]$ é gerada sobre A' pelo elemento b_n que é integral sobre A' e logo A e integral sobre A' (pela Proposição 162 Aula 20: " b_n é integral sobre $A' \Leftrightarrow A'[b_n] \supseteq A'$ é uma extensão finita"+ Corolário 164 Aula 20: "extensão finita implica integral").

Por outro lado, a hipótese indutiva fornece $a_1, \ldots, a_k \in A' \subseteq A$ algebricamente independentes sobre \mathbf{k} tais que A' é integral sobre a \mathbf{k} -álgebra que eles geram $\mathbf{k}[a_1, \ldots, a_k]$. Assim cada extensão $\mathbf{k}[a_1, \ldots, a_k] \subseteq A' \subseteq A$ é integral e logo pela propriedade transitiva da Proposição 167 $\mathbf{k}[a_1, \ldots, a_k] \subseteq A$ é uma extensão integral.

Ressaltamos que o Teorema de Normalização de Noether é verdadeiro para qualquer corpo \mathbf{k} (não necessariamente infinito). Neste caso usamos o mesmo argumento exceto que definimos os $x_i' = x_i - x_n^{r_i}$ para inteiros r_i suficientemente grandes e adequadamente escolhidos.

Ainda, também é verdadeiro um resultado mais geral:

Teorema 189. (**Teorema de Normalização de Noether**, versão II) Seja **k** um corpo e seja $A \neq 0$ uma **k**-álgebra f.g. Então existem elementos $a_1, \ldots, a_k \in A$ que são algebricamente independentes sobre **k** e tal que $\mathbf{k}[a_1, \ldots, a_k] \subseteq A$ é uma extensão finita.

Demonstração. Exercício 2.

AULA 24: 12/11/2014

AULA 24

Lembramos a última aula: provamos o Teorema de Normalização de Noether e enunciamos uma versão mais geral:

Teorema. (**Teorema de Normalização de Noether**, versão II) Seja **k** um corpo e seja $A \neq 0$ uma **k**-álgebra f.g. Então existem elementos $a_1, \ldots, a_k \in A$ que são algebricamente independentes sobre **k** e tal que $\mathbf{k}[a_1, \ldots, a_k] \subseteq A$ é uma extensão finita.

Na Seção 2.2: "Introdução à Geometria Algébrica" do Capítulo 2 provamos o Teorema dos Zeros de Hilbert ou Nullstellensatz Hilberts (Teorema 46) e na prova de tal teorema assumimos como verdadeiro um fato que dizemos provaríamos mais tarde. Tendo em vista o Teorema de Normalização de Noether (Teorema 188) estamos em condições de finalizar a prova do Nullstellensatz e provar o "FATO" o qual é chamado de "Weak Nullstellensatz":

Teorema 190. (Weak Nullstellensatz) Seja \mathbf{k} um corpo e A uma álgebra f.g. sobre \mathbf{k} . Se A é um corpo então A é uma extensão algébrica de \mathbf{k} . (mais ainda provaremos que $\mathbf{k} \subseteq A$ é uma extensão de corpos finita).

Demonstração. Pelo Teorema de Normalização de Noether versão II (Teorema 189) existem elementos $a_1,\ldots,a_k\in A$ que são algebricamente independentes sobre \mathbf{k} e tal que A é finita (e logo integral) sobre $\mathbf{k}[a_1,\ldots,a_k]$. Mas agora estamos na situação da Proposição 170 (Aula 20: "Sejam $A\subseteq B$ domínios de integridade, B integral sobre A. Então B é um corpo se, e somente se, A é um corpo."), logo $\mathbf{k}[a_1,\ldots,a_k]$ é um corpo. Segue do fato dos $a_1,\ldots,a_k\in A$ serem algebricamente independentes sobre \mathbf{k} que $p(a_1,\ldots,a_k)\neq 0$ para qualquer polinômio não nulo $p\in \mathbf{k}[x_1,\ldots,x_k]$. Logo a aplicação $\alpha:\mathbf{k}[x_1,\ldots,x_k]\to\mathbf{k}[a_1,\ldots,a_k]$ dada por $p(x_1,\ldots,x_k)\mapsto p(a_1,\ldots,a_k)$ é claramente sobrejetora e $\mathrm{Ker}(\alpha)=0$. Logo $\mathbf{k}[a_1,\ldots,a_k]$ é o anel dos polinômios em k indeterminadas.

Agora $\mathbf{k}[x_1,...,x_k]$ é um corpo, logo todo $0 \neq f(x_1,...,x_k) \in \mathbf{k}[x_1,...,x_k]$ é uma unidade. Generalizando por indução em k o Exercício 12 da Lista 1, temos que f é uma unidade se, e somente se, o termo constante $b_0 \in \mathbf{k}$ é uma unidade e o resto dos coeficientes $b_i \in \mathbf{k}$ são nilpotentes, ou seja se, e somente se, $b_0 \neq 0$ e o resto dos coeficientes $b_i = 0$ (pois 0 é o único

elemento nilpotente de um corpo). Logo se $f(x_1,...,x_k) \in \mathbf{k}[x_1,...,x_k]$ então $f(x_1,...,x_k) \in \mathbf{k}$, o que implica que $\mathbf{k}[x_1,...,x_k] = \mathbf{k}$ e logo A é finito sobre o próprio \mathbf{k} e por tanto $\mathbf{k} \subseteq A$ é uma extensão algébrica.

7.1 EXERCÍCIOS

Ex. 79 — Mostre que:

- 1. Se I um ideal de A, então o quociente A/I é uma A-álgebra finita.
- 2. Se $f:A\to B$ e $g:B\to C$ são álgebras finitas, então $g\circ f:A\to C$ é finita.
- 3. Se $f:A\to B$ é uma álgebra finita e $g:A\to C$ é uma álgebra qualquer então a álgebra obtida por mudança de base $f\otimes \mathrm{id}:A\otimes_A C\simeq C\to B\otimes_A C$ dada por $c\mapsto 1\otimes c$ é finita. Em particular, se $S\subseteq A$ é um conjunto multiplicativo, a localização $S^{-1}f:S^{-1}A\to S^{-1}B$ é uma álgebra finita.
- Ex. 80 Mostre que todo DFU é integralmente fechado.
- **Ex. 81** Sejam $A \subseteq B \subseteq C$ anéis. Suponha que A é Noetheriano, que C é f.g. como A-álgebra e que C é f.g. como um B-módulo ou integral sobre B. Então B é f.g. como A-álgebra.
- **Ex. 82** (**Teorema de Normalização de Noether**, versão II, corpo infinito) Seja **k** um corpo infinito e seja $A \neq 0$ uma **k**-álgebra f.g. Prove que existem elementos $a_1, \ldots, a_k \in A$ que são algebricamente independentes sobre **k** e tal que $\mathbf{k}[a_1, \ldots, a_k] \subseteq A$ é uma extensão finita.
- **Ex. 83** Sejam $B_1, B_2, ..., B_n$ A-álgebras integrais, mostre que $B_1 \times B_2 \times ... \times B_n$ é uma A-álgebra integral.
- **Ex. 84** Sejam $B \supseteq A$ anéis tais que B A é um conjunto multiplicativo, então A é integralmente fechado em B.
- **Ex. 85** Sejam $B \supseteq A$ uma extensão integral, \mathfrak{m} um ideal maximal de B e $\mathfrak{n} = \mathfrak{m} \cap A$. Nesse caso $B_{\mathfrak{m}} \supseteq A_{\mathfrak{n}}$ é necessariamente integral?
- **Ex. 86** Seja A um subanel de um domínio de integridade B e seja C(A, B) o fecho integral de A em B.
 - 1. Sejam f e g polinômios mônicos em B[x] tal que $f \cdot g \in C(A, B)[x]$. Mostre que $f, g \in C(A, B)[x]$.

2. Prove que C(A, B)[x] é o fecho integral de A[x] em B[x].

Ex. 87 — Seja $A = \mathbb{C}[x,y]/(y^2 - x^2(x+1))$. Mostre que as localizações $A_{\mathfrak{m}}$ são integralmente fechadas para todos os ideais maximais \mathfrak{m} de A com exceção de $\mathfrak{m} = (\overline{y}, \overline{x})$.

Ex. 88 — Mostre que $\mathbb{C}[x,y]/(y^2-x^3+x)$ é integralmente fechado.

Ex. 89 — Mostre que todas as cadeias maximais de primos de $\mathbf{k}[x_1, \dots, x_n]$ tem o mesmo comprimento. Conclua que dim $\mathbf{k}[x_1, \dots, x_n] = n$.

Vamos lembrar a definição de dimensão de um anel dada no Capítulo 5.

Definimos uma **cadeia de ideais primos** de um anel A como sendo uma sequência estritamente crescente e finita $\mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \cdots \subsetneq \mathfrak{p}_n$ onde cada \mathfrak{p}_i é um ideal primo de A. O **comprimento** da cadeia é n. Definimos a **dimensão** ou **dimensão de Krull** de um anel $A \neq 0$ como sendo o supremo dos comprimentos de todas as cadeias de ideais primos de A.

Se existem cadeias arbitrariamente longas de ideais primos de A, então dizemos que dim $A=\infty$.

Assim, por exemplo um corpo tem dimensão 0, um DIP tem dimensão 1 e anéis Artinianos tem também dimensão 0. Segue do Exercício 11 da Lista 7 que dim $\mathbf{k}[x_1, \dots, x_n] = n$ e ainda que toda cadeia maximal de ideais primos de $\mathbf{k}[x_1, \dots, x_n]$ tem comprimento n.

Definição 191. Seja $\mathfrak p$ um ideal primo de A, então a **altura** de $\mathfrak p$ é o comprimento da maior cadeia de ideais primos de A contidos em $\mathfrak p$: $\mathfrak p_0 \subsetneq \mathfrak p_1 \subsetneq \cdots \subsetneq \mathfrak p_n = \mathfrak p$, ou seja $\mathsf{ht}(\mathfrak p) = n$.

Segue diretamente da definição anterior que $ht(\mathfrak{p}) = \dim A_{\mathfrak{p}}$ e que $ht(\mathfrak{p}) = 0$ se, e somente se, \mathfrak{p} é um ideal primo minimal de A.

Proposição 192. Seja $A = \mathbf{k}[x_1, \dots, x_n]/\mathfrak{p}$ onde \mathfrak{p} é um ideal primo de $\mathbf{k}[x_1, \dots, x_n]$, então dim $A = n - \text{ht}(\mathfrak{p})$.

Demonstração. Como os ideais primos de A correspondem aos ideais primos de $B = \mathbf{k}[x_1, \dots, x_n]$ que contém \mathfrak{p} e dim $B = n < \infty$ então dim $A < \infty$, suponhamos que dim A=d. Seja então $0=\overline{\mathfrak{q}}_0\subsetneq\overline{\mathfrak{q}}_1\subsetneq\cdots\subsetneq\overline{\mathfrak{q}}_d$ (*) uma cadeia maximal de ideais primos de A, observamos que como p é primo então A é um domínio e logo 0 é um ideal primo de A e ele pertence a toda cadeia maximal. Segue do TCI que os $\overline{\mathfrak{q}}_i$ correspondem a ideais primos \mathfrak{q}_i de B que contém \mathfrak{p} : $\mathfrak{p}=\mathfrak{q}_0\subsetneq\mathfrak{q}_1\subsetneq\cdots\subsetneq\mathfrak{q}_d$ e esse trecho de cadeia é maximal (se não fosse existiria $\mathfrak{p} \subsetneq \mathfrak{q}_i \subsetneq \mathfrak{q} \subsetneq \mathfrak{q}_{i+1}$ então $\overline{\mathfrak{q}}_i \subseteq \overline{\mathfrak{q}} \subseteq \overline{\mathfrak{q}}_{i+1}$ segue da maximalidade de (*) que ou $\overline{\mathfrak{q}}_i = \overline{\mathfrak{q}}$ ou $\overline{\mathfrak{q}}_{i+1} = \overline{\mathfrak{q}}$ mas então existiria um ideal primo de A que corresponde a dois ideais primos de B que contêm \mathfrak{p} , contradição). Seja $t=\operatorname{ht}(\mathfrak{p})$ (aqui de novo usamos que dim $B<\infty$ para concluir que $ht(\mathfrak{p}) < \infty$) logo existe uma cadeia maximal de ideais primos de *B* contidos em \mathfrak{p} de comprimento t: $\mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \cdots \subsetneq \mathfrak{p}_t = \mathfrak{p}$. Isto implica que existe uma cadeia maximal de ideais primos de B dada por: $\mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq$ $\cdots \subsetneq \mathfrak{p}_t = \mathfrak{p} = \mathfrak{q}_0 \subsetneq \mathfrak{q}_1 \subsetneq \cdots \subsetneq \mathfrak{q}_d$, logo ela tem comprimento n (Ex 11 Lista 7) e, portanto, $n = t + d \log_0 d = n - t$, i.e., $\dim_0 A = n - \operatorname{ht}(\mathfrak{p})$.

O objetivo deste capítulo é provar o Teorema de Krull (veja Teorema 213) que afirma que a dim A, para $(A, \mathfrak{m}, \mathbf{k})$ um anel Noetheriano local qualquer, é sempre finita e coincide com outras duas medidas: a cardinalidade mínima δ de um sistema de parâmetros $a_1, \ldots, a_{\delta} \in A$ (elementos tais que $\sqrt{(a_1, \ldots, a_{\delta})} = \mathfrak{m}$) e o grau do polinômio de Hilbert-Samuel $h_A(n) = \ell_A(A/\mathfrak{m}^n)$ (para $n \gg 0$ natural). Para isso precisamos das seguintes definições e resultados:

8.1 ANÉIS GRADUADOS

Definição 193. Um **anel graduado** é um anel A junto com uma família $(A_n)_{n\geq 0}$ de subgrupos do grupo aditivo A, tal que $A=\bigoplus_{n=0}^{\infty}A_n$ e $A_mA_n\subseteq A_{m+n}$ para todo $m,n\geq 0$ (i.e., se $a\in A_m$ e $b\in A_n$ então $ab\in A_{m+n}$).

Segue da definição que A_0 é um subanel de A e cada A_n é um A_0 -módulo.

Exemplo 194. $A = \mathbf{k}[x_1, \dots, x_n]$ é um anel graduado $A = \bigoplus_{d=0}^{\infty} A_d$ onde cada A_d é o conjunto de todos os polinômios homogêneos de grau d, é um espaço vetorial sobre \mathbf{k} (pois é A_0 -módulo com $A_0 = \mathbf{k}$) e dim $_{\mathbf{k}} A_d = \binom{n+d-1}{n-1}$.

Exemplo 195. Dado um anel A não graduado e um ideal I de A, podemos formar um anel graduado $A^* = \bigoplus_{n=0}^{\infty} I^n$, com $I^0 = A$. Se A for Noetheriano então I é f.g. por a_1, \ldots, a_s , então $A^* = A[a_1, \ldots, a_s]$ é Noetheriano pelo Teorema da Base de Hilbert (Teorema 119).

Se A é um anel graduado, um A-módulo graduado é um A-módulo M junto com uma família $(M_n)_{n\geq 0}$ de subgrupos de M tais que $M=\bigoplus_{n=0}^{\infty}M_n$ e $A_mM_n\subseteq M_{m+n}$ para todo $m,n\geq 0$. Logo cada M_n é um A_0 -módulo.

Dizemos que um elemento $m \in M$ é **homogêneo** se $m \in M_n$ para algum n, neste caso diremos que n é o **grau** de m.

Qualquer elemento $m \in M$ pode ser escrito de maneira única como uma soma $\sum_{n\geq 0} m_n$, onde $m_n \in M_n$ para todo $n\geq 0$ e todos excepto um número finito de m_n são 0. As componentes m_n não nulas são chamadas de **componentes homogêneas** de m.

Se M e N são A-módulos graduados um homomorfismo de A-módulos graduados é um homomorfismo de A-módulos $f: M \to N$ tal que $f(M_n) \subseteq N_n$ para todo $n \ge 0$.

Se A é um anel graduado definimos o ideal A_+ de A como sendo $A_+ = \bigoplus_{n>0} A_n$.

Proposição 196. Seja A um anel graduado. Então A é Noetheriano se, e somente se, A_0 é Noetheriano e A é f.g. como uma A_0 -álgebra.

Demonstração. (\Leftarrow) Como A é uma A_0 -álgebra f.g. e A_0 é Noetheriano segue de um Corolário do Teorema da Base de Hilbert (Corolário 121) que A é Noetheriano.

(⇒) Como $A_0 = A/A_+$ com A Noetheriano e A_+ ideal de A, segue da Proposição 107 que A_0 é Noetheriano. Segue também que A_+ é f.g. como ideal de A por $a_1, \dots a_s \in A^+$ os quais podem ser escolhidos como sendo elementos homogêneos de A (suponha que a_i não é homogêneo então a_i é soma de homogêneos, pegue as componentes homogêneas de a_i , que são finitas, como geradores), de graus $k_1, \ldots, k_s > 0$. Seja A' o subanel de Agerado por a_1, \ldots, a_s sobre A_0 , i.e. $A' = A_0[a_1, \ldots, a_s]$. Mostraremos que $A_n \subseteq A'$ para todo $n \ge 0$, por indução em n. Para n = 0 então claramente $A_0 \subseteq A'$. Seja n > 0 e suponha que $A_k \subseteq A'$ para todo k < n. Seja $a \in A_n$, então a é homogêneo de grau n. Como $a \in A_+$ (pois n > 0), a é uma combinação linear dos a_i 's: $a = \sum_{i=1}^s b_i a_i$, com $b_i \in A$. Agora $grau(a) = n = grau(b_i a_i)$, pois se os somandos não tivessem grau n então a não seria homogêneo. Logo, se $b_i a_i \neq 0$ como $a_i \in A_{k_i}$ e $b_i a_i \in A_n$ então necessariamente $b_i \in A_{n-k_i}$ (por convenção $A_m = 0$ se m < 0). Como cada $k_i > 0$ então $n - k_i < n$ e a hipótese indutiva mostra que $A_{n - k_i} \subseteq A'$, logo $b_i \in A'$, i.e., b_i é um polinômio nos a_i 's com coeficientes em A_0 . Logo o mesmo acontece com a o que implica $a \in A'$. Logo $A_n \subseteq A'$ (e isto acontece para todo $n \ge 0$) e portanto A = A' e A é f.g. como A_0 -álgebra.

8.2 FUNÇÃO DE HILBERT

Definição 197. Seja C uma classe de A-módulos e seja $\lambda: C \to \mathbb{Z}$ uma função. Dizemos que a função λ é **aditiva** se, para cada sequência exata curta $0 \to M' \to M \to M'' \to 0$ na qual todos os termos pertencem a C temos $\lambda(M') - \lambda(M) + \lambda(M'') = 0$.

Segue da definição aplicada à sequência $0 \to 0 \to 0 \to 0 \to 0$ que $\lambda(0) = 0$ onde 0 é o A-módulo nulo.

Exemplo 198. Seja **k** um corpo e C a classe de todos os **k**-espaços vetoriais V de dimensão finita. Então a função dim : $C \to \mathbb{Z}$ dada por $V \mapsto \dim V$ é uma função aditiva, pois se $0 \to U \to V \to W \to 0$ é uma sequência exata pelo teorema de núcleo e da imagem segue que dim $V = \dim U + \dim W$.

Exemplo 199. Seja C a classe de todos os A-módulos de comprimento finito. Então a função $\ell:C\to \mathbb{Z}$ dada por $M\mapsto \ell_A(M)$ é uma função aditiva como consequência da Proposição 114 (Aula 15: Seja $0\to M'\xrightarrow{f} M\xrightarrow{g} M''\to 0$ uma sequência exata de A-módulos. Então $\ell_A(M)<\infty$ se, e somente se, $\ell_A(M')<\infty$ e $\ell_A(M'')<\infty$. Neste caso $\ell_A(M)=\ell_A(M')+\ell_A(M'')$).

Proposição 200. Seja $0 o M_0 \xrightarrow{f_1} M_1 \xrightarrow{f_2} \dots \xrightarrow{f_n} M_n o 0$ uma sequência exata de A-módulos na qual todos os módulos M_i e os kernels de todos os homomorfismos pertencem a uma certa classe de A-módulos C. Então para qualquer função aditiva λ em C temos $\sum_{i=0}^{n} (-1)^i \lambda(M_i) = 0$.

Demonstração. Como vimos na Aula 8, toda sequência exata pode ser dividida em sequências exatas curtas: se $N_i = \operatorname{Im}(f_i) = \operatorname{Ker}(f_{i+1})$ temos que $0 \to N_i \overset{\operatorname{incl}}{\hookrightarrow} M_i \overset{f_{i+1}}{\twoheadrightarrow} N_{i+1} \to 0$ é exata para cada $0 \le i \le n$, onde $N_0 = N_{n+1} = 0$. Por hipótese, todos os M_i e os N_i pertencem a mesma classe de módulos C, então temos que $\lambda(M_i) = \lambda(N_i) + \lambda(N_{i+1})$, $\log_{i=0} \sum_{i=0}^{n} (-1)^i \lambda(M_i) = \sum_{i=0}^{n} (-1)^i \lambda(N_i) + \sum_{i=1}^{n+1} (-1)^{i-1} \lambda(N_i) = \lambda(N_0) + (-1)^n \lambda(N_{n+1}) = \lambda(0) + (-1)^n \lambda(0) = 0$.

AULA 25: 14/11/2014

AULA 25

Lembramos a última aula, provamos:

Proposição 1: Seja A um anel graduado. Então A é Noetheriano se, e somente se, A_0 é Noetheriano e A é f.g. como uma A_0 -álgebra.

Proposição 2: Seja $0 o M_0 \xrightarrow{f_1} M_1 \xrightarrow{f_2} \dots \xrightarrow{f_n} M_n o 0$ uma sequência exata de A-módulos na qual todos os módulos M_i e os kernels de todos os homomorfismos pertencem a uma certa classe de A-módulos C. Então para qualquer função aditiva λ em C temos $\sum_{i=0}^{n} (-1)^i \lambda(M_i) = 0$.

Seja $A = \bigoplus_{n=0}^{\infty} A_n$ um anel graduado Noetheriano. Segue da prova da Proposição 196 (Prop 1) que A_0 é um anel Noetheriano e A uma A_0 -álgebra f.g. pelos elementos $a_1, \ldots, a_s \in A$ os quais podem ser escolhidos como sendo homogêneos e de graus $k_1, \ldots, k_s > 0$.

Seja M um A-módulo graduado f.g., então cada que M_n (a componente homogênea de M de grau n) é f.g. como um A_0 -módulo. De fato, M é gerado sobre A por um número finito de elementos que podem ser escolhidos homogêneos m_1,\ldots,m_k com $r_j=\operatorname{grau}(m_j), M=Am_1+\cdots+Am_k$. Agora, todo elemento y de M_n é da forma $y=\sum_{j=1}^k c_j m_j$ onde $c_j\in A$, então definindo b_j como o termo homogêneo de grau $n-r_j$ de c_j (com $b_j=0$ se $n-r_j<0$), temos $y=\sum_j b_j m_j$. Agora como os $b_j\in A=A_0[a_1,\ldots,a_s]$ então $b_j=f^j(a_1,\ldots,a_s)$ é um polinômio nos a_i 's com coeficientes em A_0 , logo y é uma combinação A_0 -linear dos elementos $g^j(a_1,\ldots,a_s)m_j$ onde $g^j(a_1,\ldots,a_s)$ é um monômio nos a_i 's de grau total $n-r_j$. Logo M_n é um A_0 -módulo f.g.

Definição 201. Seja A um anel graduado Noetheriano, M um A-módulo graduado f.g. e seja λ uma função aditiva na classe de todos os A_0 -módulos f.g. A **série de Poincaré** de M com respeito a λ é a série de potências $P(M,t) = \sum_{n=0}^{\infty} \lambda(M_n) t^n \in \mathbb{Z}[[t]].$

Exemplo 202. Seja $A = \mathbf{k}[x_1, \dots, x_n]$, segue do Exemplo 194 que $A = \bigoplus_{d=0}^{\infty} A_d$ é um anel graduado e Noetheriano onde cada termo A_d é o conjunto de todos os polinômios homogêneos de grau d e é um $A_0 = \mathbf{k}$ -módulo, i.e., um espaço vetorial sobre \mathbf{k} e $\dim_{\mathbf{k}} A_d = \binom{n+d-1}{n-1} < \infty$, logo os A_d são A_0 -módulos f.g. Considere M = A, claramente M é f.g sobre A (com gerador 1). Seja então $\lambda(A_d) = \dim_{\mathbf{k}} A_d$ temos $P(A,t) = \sum_{i=0}^{\infty} \binom{n+i-1}{n-1} t^i = \frac{1}{(1-t)^n}$.

Teorema 203. Sob as hipóteses anteriores, P(M,t) é uma função racional em t da forma $P(M,t) = \frac{f(t)}{\prod_{i=1}^{s}(1-t^{k_i})}$ onde $f(t) \in \mathbb{Z}[t]$ e $k_i = \operatorname{grau}(a_i)$ onde a_i são os geradores de A como A_0 =álgebra, para $i=1,\ldots,s$.

Demonstração. Procederemos por indução em s, o número de geradores de A sobre A_0 . Caso s=0, isto significa que $A=A_0$, logo $A_n=0$ para todo n>0. Agora M é um A_0 -módulo f.g., ou seja tem um número finito de geradores homogêneos sobre A_0 , $M=A_0m_1+\cdots+A_0m_k$, o que implica que $M_n=0$ para todo n>N onde $N=\max\{r_1,\ldots,r_k\}$. Logo $\lambda(M_n)=0$ para todo n>N, desta forma $P(M,t)=\sum_{n=0}^{\infty}\lambda(M_n)t^n=\sum_{n=0}^{N}\lambda(M_n)t^n$ é um polinômio de grau N.

Suponha s>0 e que o teorema vale para s-1. Considere o homomorfismo de A-módulos $\varphi_n:M_n\to M_{n+k_s}$ dado por $m\mapsto a_s m$ (φ_n é a multiplicação pelo gerador a_s de A) então temos a seguinte sequência exata $0\to K_n=\ker \varphi_n \overset{\text{incl}}{\hookrightarrow} M_n \overset{\varphi_n}{\to} M_{n+k_s} \overset{\pi}{\to} I_{m+k_s}=\operatorname{Coker}(\varphi_n)=\frac{M_{n+k_s}}{\to}\to 0$.

 $0 \to K_n = \ker \varphi_n \overset{\text{incl}}{\hookrightarrow} M_n \overset{\varphi_n}{\longrightarrow} M_{n+k_s} \overset{\pi}{\twoheadrightarrow} L_{n+k_s} = \operatorname{Coker}(\varphi_n) = \frac{M_{n+k_s}}{\varphi_n(M_n)} \to 0.$ Sejam $K = \bigoplus_{n=0}^{\infty} K_n$ e $L = \bigoplus_{n=0}^{\infty} L_n$, ambos são A-módulos f.g. pois K é um submódulo de M e $L = \bigoplus_{n=0}^{\infty} \frac{M_n}{\varphi_{n-k_s}(M_{n-k_s})} = \bigoplus_{n=0}^{\infty} \frac{M_n}{a_s M_{n-k_s}} = \bigoplus_{n=0}^{\infty} \frac{M_n}{(M_n \cap a_s M)} = \bigoplus_{n=0}^{\infty} \frac{M_n + a_s M}{a_s M} = \frac{M}{a_s M}$ é um módulo quociente de M.

Aplicando λ à sequência exata temos $\lambda(K_n) - \lambda(M_n) + \lambda(M_{n+k_s}) - \lambda(L_{n+k_s}) = 0$ (pela Proposição 200) e multiplicando por t^{n+k_s} temos: $\lambda(K_n)t^{n+k_s} - \lambda(M_n)t^{n+k_s} + \lambda(M_{n+k_s})t^{n+k_s} - \lambda(L_{n+k_s})t^{n+k_s} = 0$ para todo $n \geq 0$. Logo, somando sobre n:

$$\sum_{n=0}^{\infty} \lambda(K_n) t^{n+k_s} - \sum_{n=0}^{\infty} \lambda(M_n) t^{n+k_s} + \sum_{n=0}^{\infty} \lambda(M_{n+k_s}) t^{n+k_s} - \sum_{n=0}^{\infty} \lambda(L_{n+k_s}) t^{n+k_s} = 0,$$

isto é $P(K,t)t^{k_s} - P(M,t)t^{k_s} + \sum_{n=k_s}^{\infty} \lambda(M_n)t^n - \sum_{n=k_s}^{\infty} \lambda(L_n)t^n = 0$, ou seja $P(K,t)t^{k_s} - P(M,t)t^{k_s} + P(M,t) - \sum_{n=0}^{k_s} \lambda(M_n)t^n - P(L,t) = 0$, pois $L = \bigoplus_{n=0}^{\infty} \operatorname{Coker}(\varphi_{n-k_s}) = \bigoplus_{n=k_s}^{\infty} \operatorname{Coker}(\varphi_{n-k_s})$. Logo $P(M,t)(1-t^{k_s}) = P(L,t) + \sum_{n=0}^{k_s} \lambda(M_n)t^n - P(K,t)t^{k_s}$.

Para poder aplicar a hipótese indutiva temos que mostrar que K e L são $A_0[a_1,\ldots,a_{s-1}]$ -módulos f.g. É suficiente mostrar que ambos módulos são

aniquilados por a_s pois como eles são A-módulos f.g. cada elemento se escreve como uma soma finita $\sum_{i \in I} a_0^i a_1^{\alpha_1^i} \cdots a_s^{\alpha_s^i} x_i$ onde $a_0^i \in A_0$ e $x_i \in K$ (resp. $x_i \in L$), mas $a_s x_i = 0$ logo o elemento se escreve na verdade como uma soma finita $\sum_{j \in I} a_0^j a_1^{\alpha_1^{j}} \cdots a_{s-1}^{\alpha_{s-1}^{j}} x_j$. Logo ambos módulos devem ser $A_0[a_1, \dots, a_{s-1}]$ módulos f.g. Vejamos que, de fato $a_sK=a_sL=0$: seja $x\in K$ então $x=\sum x_n$ com $x_n \in \ker \varphi_n$, logo $\varphi_n(x_n) = a_s x_n = 0$ portanto $a_s x = \sum a_s x_n = 0$. Seja $x \in L$, então $x = \sum \overline{x}_n \operatorname{com} \overline{x}_n \in L_n = \frac{M_n}{\varphi_{n-k_s}(M_{n-k_s})}$ tal que $\overline{x}_n = x_n + 1$ $\varphi_{n-k_s}(M_{n-k_s})$ com $x_n \in M_n$. Agora $a_s x_n + a_s \underbrace{\varphi_{n-k_s}(M_{n-k_s})}_{\subseteq M_n} \in \frac{M_{n+k_s}}{\varphi_n(M_n)} = L_{n+k_s}$ pois $a_s M_n = \varphi_n(M_n)$, logo $a_s \overline{x}_n \in L_{n+k_s}$. Mas $a_s x_n = \varphi_n(x_n) \in \varphi_n(M_n)$, logo $a_s\overline{x}_n=\overline{0}\in L_{n+k_s}$, para todo $n\geq 0$. Logo $a_sx=0$, como queríamos

Aplicando então a hipótese de indução temos $P(M,t)(1-t^{k_s}) = \frac{f(t)}{\prod_{s=1}^{s-1}(1-t^{k_s})} +$

$$\underbrace{\sum_{n=0}^{k_s} \lambda(M_n) t^n}_{=h(t)} - \underbrace{\frac{g'(t)}{\prod_{i=1}^{s-1} (1-t^{k_i})}}_{=h(t)}. \text{ Mas isto } \acute{e} P(M,t) [1-t^{k_s}] = \frac{f(t)-g'(t)+h(t)(\prod_{i=1}^{s-1} (1-t^{k_i}))}{\prod_{i=1}^{s-1} (1-t^{k_i})} = \underbrace{\frac{F(t)}{\prod_{i=1}^{s-1} (1-t^{k_i})}}_{=h(t)}.$$

Definição 204. A ordem do polo de P(M,t) em t=1 será denotada por d = d(M).

Lembrando que uma função racional R(t) tem um **polo** de ordem n em t = a se podemos escrever $R(t) = \frac{1}{(t-a)^n} T(t)$ (para $t \neq a$), onde $T(t) = \frac{f(t)}{g(t)}$ é uma função racional tal que f(a) é um valor finito não nulo e $t-a \nmid g(t)$

Exemplo 205. Nas hipóteses do último exemplo, $M = A = \mathbf{k}[x_1, \dots, x_n]$ e $\lambda(A_d) = \dim_{\mathbf{k}} A_d \text{ temos } P(A, t) = \frac{1}{(1-t)^n}. \text{ Logo } d(A) = n.$

O caso em que todos os $k_i = 1$ é especialmente simples:

Corolário 206. Se cada $k_i = 1$, então para todo n suficientemente grande, $\lambda(M_n)$ é um polinômio em n (com coeficientes racionais) de grau¹ d-1.

Demonstração. Segue do teorema anterior que $P(M,t) = \frac{f(t)}{\prod_{i=1}^{s} (1-t^{k_i})} \stackrel{k_i=1}{=}$ $\frac{f(t)}{\prod_{i=1}^{s}(1-t)}=\frac{f(t)}{(1-t)^{s}}$. Cancelando potências de (1-t) assumimos que s=d=d(M) e $f(1)\neq 0$. Agora $\frac{1}{(1-t)^d}=\sum_{k=0}^{\infty} \left(\begin{array}{c} d+k-1 \\ d-1 \end{array}\right) t^k$ e suponha que

¹ aqui adotamos a convenção que o grau do polinômio nulo é -1 e também que o coeficiente binomial $\begin{pmatrix} n \\ -1 \end{pmatrix} = 0$ para todo $n \ge 0$ e $\begin{pmatrix} -1 \\ -1 \end{pmatrix} = 1$.

 $f(t) = \sum_{k=0}^{N} b_k t^k \operatorname{com} b_k \in \mathbb{Z}$, logo temos que $P(M,t) = (\sum_{j=0}^{N} b_j t^j) (\sum_{k=0}^{\infty} \binom{d+k-1}{d-1} t^k) = \sum_{k=0}^{\infty} (\sum_{j=0}^{N} b_j \binom{d+k-1}{d-1} t^k) f^j t^k$. Pela definição de série de Poincaré $\lambda(M_n)$ é o coeficiente de t^n em P(M,t), logo (para k=n-j) temos que $\lambda(M_n) = \sum_{j=0}^{N} b_j \binom{d+n-j-1}{d-1}$ para todo $n \geq N$ e a soma do lado direito é um polinômio φ em n com coeficientes racionais tal que $\varphi(x) = \frac{f(1)}{(d-1)!} x^{d-1} +$ (termos de menor grau).

Observação 207. Para um polinômio f(x) tal que f(n) é um inteiro para todo inteiro n, não é necessário que todos os coeficientes de f sejam inteiros, por exemplo: $\frac{1}{2}x(x+1)$.

O polinômio do Corolário 206 é chamado de **função** ou **polinômio de Hilbert** do módulo graduado M em relação a λ .

Proposição 208. Seja $x \in A$ um elemento homogêneo de grau positivo. Se x não é um divisor de zero de M (i.e., se xm = 0 então m = 0) então d(M/xM) = d(M) - 1.

Demonstração. Considere o homomorfismo de A-módulos $\varphi_n: M_n \to M_{n+k}$ (onde $k=\operatorname{grau}(x)$) dado por $m\mapsto xm$ então temos a seguinte sequência exata $0\to K_n=\ker \varphi_n\stackrel{\operatorname{incl}}{\hookrightarrow} M_n\stackrel{\varphi_n}{\longrightarrow} M_{n+k}\stackrel{\pi}{\longrightarrow} L_{n+k}=\frac{M_{n+k}}{\varphi_n(M_n)}\to 0$. Seguindo a prova do Teorema 203 temos $P(M,t)(1-t^k)=P(L,t)-P(K,t)t^k+g(t)$, mas como x não é divisor de zero $K_n=\ker \varphi_n=0$ para todo n, logo $\lambda(K_n)=0$ para todo n o que implica P(K,t)=0. Por outro lado $1-t^k=(1-t)(1+t+t^2+\cdots+t^{k-1})=(1-t)f(t)$ onde $f(1)=k\neq 0$, assim P(M,t)f(t)(1-t)-g(t)=P(L,t). Por tanto d(L)=d(M)-1 (resultado de funções complexas), mas $L=\frac{M}{xM}$ (segue da prova do Teorema 203) logo $d(\frac{M}{xM})=d(M)-1$.

AULA 26: 19/11/2014

AULA 26

Definição 209. Seja $(A, \mathfrak{m}, \mathbf{k})$ um anel local Noetheriano. Então definimos a **função de Hilbert-Samuel** como sendo $h_A(n) = \ell_A(A/\mathfrak{m}^n)$, para $n \in \mathbb{N}$.

Observe $\ell_A(A/\mathfrak{m}^n)$ < ∞ para todo $n \ge 0$, pois como A é Noetheriano então A/\mathfrak{m}^n é Noetheriano e pelo Exercício 4 da Lista 6 também é Artiniano, o resultado segue da Proposição 111.

Seja A um anel e I um ideal de A. Definimos o **anel graduado associado** a A como sendo $G(A) = \bigoplus_{n=0}^{\infty} G_n(A)$, onde $G_n(A) = I^n/I^{n+1}$ com $I^0 = A$. Este é um anel graduado no qual a multiplicação é dada por: para cada

 $x_n \in I^n$, seja \overline{x}_n a imagem de x_n em $\frac{I^n}{I^{n+1}}$, defina $\overline{x}_m \overline{x}_n = \overline{x_m x_n}$, i.e., a imagem de $x_m x_n$ em $\frac{I^{n+m}}{I^{n+m+1}}$ (verifique que o produto está bem definido, ou seja não depende da escolha dos representantes das classes).

Segue da Proposição 196 que se A é noetheriano, então G(A) é Noetheriano pois $G_0(A) = A/I$ é Noetheriano por ser quociente de um anel Noetheriano por um ideal (Proposição 107). Por outro lado, um elemento de $G_n(A) = I^n/I^{n+1}$ pode ser escrito como uma combinação linear de produtos de n elementos de $G_1(A) = I/I^2$, logo G(A) é gerado sobre $G_0(A)$ por elementos de $G_1(A)$. Como A é Noetheriano I é f.g. por a_1, \ldots, a_s então se $\overline{a}_1, \ldots, \overline{a}_s$ são as imagens de a_i em $\frac{I}{I^2} = G_1(A)$ então G(A) é gerado como uma $G_0(A)$ -álgebra por $\overline{a}_1, \ldots, \overline{a}_s$ e cada \overline{a}_i tem grau 1. Logo $G(A) = (A/I)[\overline{a}_1, \ldots, \overline{a}_s]$ é Noetheriano pelo Corolário 121 do Teorema da Base de Hilbert. Segue desta última observação que podemos considerar G(A) como uma $G_0(A)$ -álgebra f.g. por elementos que podem ser escolhidos como sendo homogêneos e de grau 1.

Agora se $(A, \mathfrak{m}, \mathbf{k})$ é um anel Noetheriano local então, fazendo $I = \mathfrak{m}$ no anel graduado associado a A temos que cada $G_n(A) = \frac{\mathfrak{m}^n}{\mathfrak{m}^{n+1}}$ é um \mathbf{k} -espaço vetorial de dimensão finita (como A Noetheriano então \mathfrak{m}^n é f.g. como A-módulo (ideal) então $\mathfrak{m}^n/\mathfrak{m}^{n+1}$ também é f.g. como A-módulo e como $\mathfrak{m}^n/\mathfrak{m}^{n+1}$ é aniquilado por \mathfrak{m} , tem estrutura de \mathbf{k} -espaço vetorial e como tal tem dimensão finita), logo $\dim_{\mathbf{k}} G_n(A) < \infty$.

Proposição 210. Seja $(A, \mathfrak{m}, \mathbf{k})$ um anel local Noetheriano.

- a. Para todo $n \ge 0$, temos $h_A(n+1) h_A(n) = \dim_{\mathbf{k}}(\mathfrak{m}^n/\mathfrak{m}^{n+1})$.
- b. Existe um polinômio $p(x) \in \mathbb{Q}[x]$ de grau d(G(A)), tal que $h_A(n) = p(n)$ para $n \gg 0$. Este polinômio é chamado de **polinômio de Hilbert-Samuel**.
- Demonstração. a. Segue da sequência exata $0 \to \frac{\mathfrak{m}^n}{\mathfrak{m}^{n+1}} \overset{inc}{\longleftrightarrow} \frac{A}{\mathfrak{m}^{n+1}} \to \frac{A}{\mathfrak{m}^n} \to 0$ que $\ell_A(\mathfrak{m}^n/\mathfrak{m}^{n+1}) = \ell_A(A/\mathfrak{m}^{n+1}) \ell_A(A/\mathfrak{m}^n) = h_A(n+1) h_A(n)$. Agora observe que $\ell_A(\mathfrak{m}^n/\mathfrak{m}^{n+1}) = \dim_{\mathbf{k}}(\mathfrak{m}^n/\mathfrak{m}^{n+1})$ já que $\mathfrak{m}^n/\mathfrak{m}^{n+1}$ é aniquilado por \mathfrak{m} , e pode ser visto como um módulo sobre $\mathbf{k} = A/\mathfrak{m}$, logo toda série de composição de $\mathfrak{m}^n/\mathfrak{m}^{n+1}$ como A-módulo é uma série de composição de $\mathfrak{m}^n/\mathfrak{m}^{n+1}$ como \mathbf{k} -módulo, pois todos os A-submódulos também são aniquilados por \mathfrak{m} e logo são \mathbf{k} -submódulos.
 - b. Pelo item anterior, $h_A(n+1) h_A(n)$ é $\lambda(G_n(A))$ em relação a $\lambda = \dim_{\mathbf{k}}$. Dado que G(A) é uma **k**-álgebra f.g. por elementos que podem ser escolhidos como sendo homogêneos e de grau 1, segue do Corolário 206 que existe um polinômio $q(x) \in \mathbb{Q}[x]$ de grau d(G(A)) 1, tal que para n suficientemente grande $q(n) = h_A(n+1) h_A(n)$. Isto implica que existe um polinômio $p(x) \in \mathbb{Q}[x]$ de grau d(G(A)) tal que $h_A(n) = p(n)$ para todo inteiro $n \gg 0$ (veja Apêndice A).

Segue da proposição anterior que podemos escrever a função de Hilbert-Samuel como $h_A(n) = \sum_{i=0}^{n-1} [h_A(i+1) - h_A(i)] + h_A(0) = \sum_{i=0}^{n-1} \dim_{\mathbf{k}}(\mathfrak{m}^i/\mathfrak{m}^{i+1})$, já que $h_A(0) = \ell_A(A/\mathfrak{m}^0) = \ell_A(A/A) = \ell_A(0) = 0$.

Definição 211. Seja $(A, \mathfrak{m}, \mathbf{k})$ um anel local Noetheriano. Dizemos que $a_1, a_2, \ldots, a_n \in A$ é um **sistema de parâmetros** se $\sqrt{(a_1, \ldots, a_n)} = \mathfrak{m}$. Denotaremos por δ_A o tamanho mínimo de um sistema de parâmetros de A.

Note que qualquer conjunto de geradores de \mathfrak{m} é um sistema de parâmetros de A. Assim segue da Proposição 62 (Sejam m_i ($1 \le i \le k$) os elementos de M cujas imagens em $M/\mathfrak{m}M$ formam uma base deste espaço vetorial. Então m_i geram M), com $M=\mathfrak{m}^n$ que $\delta_A \le \dim_{\mathbf{k}}(\frac{\mathfrak{m}^n}{\mathfrak{m}^{n+1}})$.

8.3 TEOREMA DE DIMENSÃO DE KRULL

Lema 212. (Lema principal) Sejam $(A, \mathfrak{m}, \mathbf{k})$ um anel local Noetheriano, $a \in \mathfrak{m}$ $e \ B = A/aA$. Então:

a.
$$d(G(B)) \ge d(G(A)) - 1$$
.

b. Se $a \in A$ não é divisor de zero, então d(G(B)) = d(G(A)) - 1.

Demonstração. Denote por $\overline{\mathbb{m}}$ a imagem de \mathbb{m} em B. O anel B é um anel local (TCI leva maximal em maximal) Noetheriano com ideal maximal $\overline{\mathbb{m}}$ e corpo de resíduos $B/\overline{\mathbb{m}} = \frac{A/aA}{\mathfrak{m}/aA} = A/\mathfrak{m} = \mathbf{k}$. Temos os isomorfismos $\frac{B}{\overline{\mathfrak{m}}^n} = \frac{A/aA}{\mathfrak{m}^n + aA/aA} = \frac{A}{aA+\mathfrak{m}^n}(^{**})$ e $\frac{aA+\mathfrak{m}^n}{\mathfrak{m}^n} = \frac{aA}{aA\cap\mathfrak{m}^n}$ e portanto uma sequência exata $0 \to \frac{AA}{aA\cap\mathfrak{m}^n} \to \frac{A}{\mathfrak{m}^n} \to \frac{B}{\overline{\mathfrak{m}}^n} \to 0$ (onde a primeira aplicação é a inclusão de $\frac{aA+\mathfrak{m}^n}{\mathfrak{m}^n} \subseteq \frac{A}{\mathfrak{m}^n}$ e a segunda é dada por $x+\mathfrak{m}^n \mapsto x+(aA+\mathfrak{m}^n)$) de modo que $\ell_A(A/\mathfrak{m}^n) = \ell_A(B/\overline{\mathfrak{m}}^n) + \ell_A(\frac{aA}{aA\cap\mathfrak{m}^n})$ i.e. $h_A(n) = h_B(n) + \ell_A(\frac{aA}{aA\cap\mathfrak{m}^n})$ (note que $\ell_A(B/\overline{\mathfrak{m}}^n) = \ell_B(B/\overline{\mathfrak{m}}^n)$ pois $\frac{B}{\overline{\mathfrak{m}}^n} = \frac{A}{aA+\mathfrak{m}^n}$ é um A-módulo que é aniquilado por a logo é um A/aA-módulo, i.e., um B-módulo e logo os comprimentos coincidem). Seja agora φ o seguinte mapa sobrejetor, induzido pela multiplicação por $a \in \mathfrak{m}$: $\varphi: \frac{A}{\mathfrak{m}^{n-1}} \to \frac{aA}{aA\cap\mathfrak{m}^n}$ dado por $x+\mathfrak{m}^{n-1} \mapsto ax+(aA\cap\mathfrak{m}^n)$. Completando a uma sequência exata temos: $0 \to \ker \varphi \overset{inc}{\hookrightarrow} \frac{A}{\mathfrak{m}^{n-1}} \xrightarrow[a]{aA\cap\mathfrak{m}^n} \to 0$ então para todo $n \geq 1$, temos $\ell_A(\frac{aA}{aA\cap\mathfrak{m}^n}) \leq \ell_A(\frac{A}{\mathfrak{m}^{n-1}}) = h_A(n-1)$. Assim obtemos $h_B(n) \geq h_A(n) - h_A(n-1)$ segue da prova da Proposição 210 que, para $n \gg 0$, $p_B(n) \geq q_A(n)$ onde $p_B(x)$ é o polinômio de Hilbert-Samuel de B e $q_A(x)$ é o polinômio de Hilbert do módulo graduado G(A) em relação a $\lambda = \dim_{\mathbf{k}}$. Logo grau $(p_B(x)) \geq \operatorname{grau} q_A(x)$, ou seja $d(G(B)) \geq d(G(A)) - 1$. A igualdade é um caso particular da Proposição 208.

Teorema 213. (Teorema de Krull) Seja $(A, \mathfrak{m}, \mathbf{k})$ um anel local Noetheriano. Então dim $A < \infty$ e, além disso, dim $A = \delta_A = d(G(A))$.

Demonstração. Vamos mostrar uma sequência de desigualdades dim $A \le d(G(A)) \le \delta_A \le \dim A$. Observe que a primeira desigualdade mostra que dim A é finita.

- a. Queremos provar que dim $A \leq d(G(A))$, faremos isto por indução em d(G(A)). Se d(G(A)) = 0, então $h_A(n) = \ell_A(A/\mathfrak{m}^n)$ é constante para $n \gg 0$, i.e., $\dim_{\mathbf{k}} \frac{\mathfrak{m}^n}{\mathfrak{m}^{n+1}} = h_A(n+1) - h_A(n) = 0$ para $n \gg 0$ (Proposição 210). Logo $\mathfrak{m}^n = \mathfrak{m}^{n+1}$, segue da Proposição 155 ("Seja A um anel Noetheriano local e m seu ideal maximal. Então exatamente uma das seguintes condições é verdadeira: (i) $\mathfrak{m}^n \neq \mathfrak{m}^{n+1}$ para todo n; ou (ii) $\mathfrak{m}^n = 0$ para algum n, neste caso A é um anel Artiniano local") que $\mathfrak{m}^n = 0$ para $n \gg 0$ e A é Artiniano logo dim A = 0 = d(G(A)). Suponha agora que d(G(A)) > 0, e seja $\mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \cdots \subsetneq \mathfrak{p}_r$ uma cadeia de ideais primos de A de comprimento r (todos os $\mathfrak{p}_i \subseteq \mathfrak{m}$, pois são ideais próprios e logo estão contidos em um maximal). Seja $A' = A/\mathfrak{p}_0$ então A' é um domínio Noetheriano local (com maximal $\overline{\mathfrak{m}} = \frac{\mathfrak{m}}{\mathfrak{n}_0}$) que contém uma cadeia de ideais primos de comprimento $r: \overline{0} \subsetneq \overline{\mathfrak{p}}_1 \subsetneq \cdots \subsetneq \overline{\mathfrak{p}}_r$ e ainda $h_{A'}(n) \leq h_A(n)$ para todo n, pois: $h_{A'}(n) = \ell_{A'}(\frac{A'}{\overline{\mathfrak{m}}^n}) \stackrel{(**)}{=} \ell_{A'}(\frac{A}{\mathfrak{p}_0 + \mathfrak{m}^n}) = \ell_A(\frac{A}{\mathfrak{p}_0 + \mathfrak{m}^n}) \text{ (pois } \frac{A}{\mathfrak{p}_0 + \mathfrak{m}^n} \text{ \'e um } A$ módulo que é aniquilado por \mathfrak{p}_0 logo é um A'-módulo), agora $\mathfrak{m}^n \subseteq \mathfrak{p}_0 + \mathfrak{m}^n$ logo se \overline{I} é um ideal de $\frac{A}{\mathfrak{p}_0 + \mathfrak{m}^n}$ então corresponde a um ideal de A que contém $\mathfrak{p}_0 + \mathfrak{m}^n$ e logo contém \mathfrak{m}^n e logo corresponde a um ideal de $\frac{A}{\mathfrak{m}^n}$, assim $h_{A'}(n) = \ell_A(\frac{A}{\mathfrak{p}_0 + \mathfrak{m}^n}) \leq \ell_A(\frac{A}{\mathfrak{m}^n}) = h_A(n)$. Logo $d(G(A')) \le d(G(A))$. Seja $0 \ne a \in \overline{\mathfrak{p}}_1 \subseteq \overline{\mathfrak{m}} \ (\overline{\mathfrak{p}}_1 \ne 0 \text{ pois se não } \mathfrak{p}_1 = \mathfrak{p}_0)$ e B = A'/aA', como A' é um domínio a não é divisor de zero e logo, segue do Lema Principal (Lema 212) que $d(G(B)) = d(G(A')) - 1 \le$ d(G(A)) - 1 < d(G(A)). Aplicando a hipótese de indução temos que dim $B \leq d(G(B))$. Por outro lado, as imagens de $\overline{\mathfrak{p}}_1, \ldots, \overline{\mathfrak{p}}_r$ em B formam uma cadeia de tamanho r-1, assim $r-1 \le \dim B \le$ $d(G(A)) - 1 \log_{10} r \le d(G(A))$, em particular dim $A \le d(G(A))$.
- b. Queremos provar que $d(G(A)) \leq \delta_A$, faremos isto por indução em δ_A . Se $\delta_A = 0$, então o sistema de parâmetros é vazio, então $\mathfrak{m} = \sqrt{(\emptyset)} = \sqrt{0} = \mathfrak{N}_A$, como A é Noetheriano, segue do Exercício 2 Lista 6 que o nilradical é nilpotente, logo existe $r \in \mathbb{N}$ tal que $\mathfrak{m}^r = 0$. Logo $h_A(n) = \ell_A(A/\mathfrak{m}^n) = \ell_A(A)$ é constante para $n \geq r$ e assim d(G(A)) = 0. Seja agora $\delta_A > 0$. Tome $a \in A$ pertencente a um sistema de parâmetros de cardinalidade δ_A (logo $a \in \mathfrak{m} = \sqrt{(a,a_2,\ldots,a_{\delta_A})}$) e seja B = A/aA. Então $\delta_B \leq \delta_A 1$ e pela hipótese de indução $d(G(B)) \leq \delta_B$. Assim, pelo Lema Principal (Lema 212), $d(G(A)) 1 \leq d(G(B)) \leq \delta_B \leq \delta_A 1$, logo $d(G(A)) \leq \delta_A$.

c. Queremos provar que $\delta_A \leq \dim A$, faremos isto por indução em dim A(que já sabemos que é finita). Se dim A = 0, então $Spec(A) = \{m\}$ (A local e todo primo p está contido em m), logo $\mathfrak{N} = \sqrt{0} = \mathfrak{m}$, existe um sistema de parâmetros vazio pois $0 = (\emptyset)$ e portanto $\delta_A = 0$. Agora suponha que dim A > 0. Como A é Noetheriano, A possui apenas um número finito de ideais primos minimais $\mathfrak{p}_0, \ldots, \mathfrak{p}_k$ (Exercício 9.2 Lista 5). Logo como $\mathfrak{p} \subseteq \mathfrak{m}$ para todo \mathfrak{p} primo então $\bigcup_{i=0}^k \mathfrak{p}_i \subseteq \mathfrak{m}$, suponha que $\cup_{i=0}^k \mathfrak{p}_i = \mathfrak{m}$, segue da Proposição 29 que $\mathfrak{m} \subseteq \mathfrak{p}_i$ para algum $0 \le i \le k$, logo $\mathfrak{m} = \mathfrak{p}_i$ é um primo minimal. Ou seja \mathfrak{m} contém todos os primos e é minimal, logo $\mathfrak{m} = \mathfrak{p}$ para todo \mathfrak{p} primo. Logo A tem um único primo o que implica dim A = 0, contradição. Logo $\bigcup_{i=0}^{k} \mathfrak{p}_i \subsetneq \mathfrak{m}$, assim podemos escolher $a \in \mathfrak{m}$ que não pertence a nenhum primo minimal. Logo se B = A/aA, temos dim $B \le \dim A - 1$ (pois dada uma cadeia maximal de primos de $A: \mathfrak{p}_0 \subsetneq \mathfrak{p}'_1 \subsetneq \cdots \subsetneq \mathfrak{p}'_r =$ m ela começa em um primo minimal e acaba em m e alem disso $a \in \mathfrak{m}$ e $a \notin \mathfrak{p}_0$ logo $aA \subseteq \mathfrak{p}_0$ e portanto \mathfrak{p}_0 não corresponde a um primo de B, assim dim $B \leq \dim A - 1$). Aplicando a hipótese de indução $\delta_B \leq \dim B$. Note ainda que se $a_1, \ldots, a_s \in A$ são elementos cujas imagens em B formam um sistema de parâmetros de B, então a, a_1, \ldots, a_s formam um sistema de parâmetros de A, logo $\delta_A \leq \delta_B + 1$. Assim, $\delta_A - 1 \le \delta_B \le \dim B \le \dim A - 1$, logo $\delta_A \le \dim A$.

Um importante corolário de Teorema de Krull é o seguinte resultado conhecido como Krull Hauptidealsatz ou Teorema do Ideal Principal de Krull.

Teorema 214. (Krull Hauptidealsatz) Seja A um anel Noetheriano e $a_1, \ldots, a_n \in A$. Seja $\mathfrak p$ um ideal primo de A minimal com a propriedade que $(a_1, \ldots, a_n) \subseteq \mathfrak p$, então $\operatorname{ht}(\mathfrak p) \leq n$. Em particular se $a \in A$ é um elemento que não é um divisor de zero nem uma unidade então todo ideal primo minimal que contém (a) tem altura 1.

Demonstração. Considere $A_{\mathfrak{p}}$, que é um anel Noetheriano local com único ideal maximal $S^{-1}\mathfrak{p}$. O ideal $S^{-1}[(a_1,\ldots,a_n)A]$ é $S^{-1}\mathfrak{p}$ -primário e é gerado por n elementos. Daí, pelo Teorema de Krull temos $n \geq \delta_{A_{\mathfrak{p}}} = \dim A_{\mathfrak{p}} = \operatorname{ht}(\mathfrak{p})$.

Para a segunda parte, sabemos que $\operatorname{ht}(\mathfrak{p}) \leq 1$. Suponha que $\operatorname{ht}(\mathfrak{p}) = 0$, então \mathfrak{p} é um ideal primo minimal de A, i.e., \mathfrak{p} é um elemento minimal de $V(0) = \operatorname{Spec}(A)$ e logo é um primo isolado associado a (0) (Proposição 136). Segue do Exercício 1 Lista 6 que todo elemento de \mathfrak{p} é um divisor de zero mas $a \in \mathfrak{p}$, contradição. Logo $\operatorname{ht}(\mathfrak{p}) = 1$.

8.4 EXERCÍCIOS

Ex. 90 — Calcule a dimensão de $\mathbf{k}[[t]]$ e de $\mathbf{k}[x_1, x_2, \dots]$.

Ex. 91 — Seja A um anel e $\mathfrak{p} \in \operatorname{Spec}(A)$ então dim $A \ge \operatorname{ht}(\mathfrak{p}) + \operatorname{dim} A/\mathfrak{p}$.

Ex. 92 — Prove que se $f \in \mathbf{k}[x_1, \dots, x_n]$ é irredutível então dim $\mathbf{k}[x_1, \dots, x_n]/(f) = n-1$.

Ex. 93 — Seja $A = \mathbf{k}[x_1, ..., x_n]/\mathfrak{p}$, \mathfrak{p} um ideal primo de $\mathbf{k}[x_1, ..., x_n]$ e \mathfrak{p}' um ideal primo de A. Mostre que $\dim(A/\mathfrak{p}') = \dim(A) - \operatorname{ht}(\mathfrak{p}')$.

Ex. 94 — Para cada um dos anéis locais Noetherianos a seguir, determine: um sistema de parâmetros minimal, o polinômio de Hilbert-Samuel e a dimensão de Krull:

- 1. k um corpo
- 2. $\mathbb{Z}_{(p)}$
- 3. $\mathbb{C}[x,y]_{(x,y)}$
- 4. $A_{\mathfrak{m}}$, onde $A = \mathbb{C}[x,y]/(y^2 x^2(x+1))$ e $\mathfrak{m} = (\overline{x} + 1, \overline{y})$.
- 5. $A_{\mathfrak{m}}$, onde $A = \mathbb{C}[x,y]/(y^2 x^2(x+1))$ e $\mathfrak{m} = (\overline{x}, \overline{y})$.

AULA 27: 24/11/2014 AULA DE EXERCÍCIOS

AULA 28: 26/11/2014 PROVA 2

IDENTIDADES BINOMIAIS

Seja $f: \mathbb{Z} \to \mathbb{Z}$ uma função. Definimos a **derivada discreta** de f, $\Delta f: \mathbb{Z} \to \mathbb{Z}$, pela regra $\Delta f(x) := f(x+1) - f(x)$. Chamamos um polinômio $p(x) \in \mathbb{Q}[x]$ de **numérico** se $p(m) \in \mathbb{Z}$ para todo $m \gg 0$ (isto significa que existe um $l \in \mathbb{Z}$ tal que $p(m) \in \mathbb{Z}$ para todo m > l). Definimos também um **polinômio binomial** como sendo um polinômio da forma $\binom{x}{n} := \frac{x(x-1)\cdots(x-n+1)}{n!} \in \mathbb{Q}[x]$, para algum $n \in \mathbb{Z}$ (por convenção $\binom{x}{0} = 1$ e $\binom{x}{n} = 0$ para n < 0).

Proposição 215. $\binom{x}{n} \in \mathbb{Q}[x]$ é um polinômio numérico e $\Delta\binom{x}{n} = \binom{x}{n-1}$.

Demonstração. Temos que

$$\Delta \binom{x}{n} = \frac{(x+1)x(x-1)\cdots(x-n+2)}{n!} - \frac{x(x-1)\cdots(x-n+1)}{n!} = \frac{x(x-1)\cdots(x-n+2)}{(n-1)!} \cdot \frac{(x+1)-(x-n+1)}{n} = \binom{x}{n-1}.$$

Sabemos que $\binom{m}{n} \in \mathbb{Z}$ para todo $m \ge n$ pois $\binom{m}{n} = n^{\circ}$ de subconjuntos $S \subseteq \{1, \ldots, m\}$ com |S| = n.

Proposição 216. Todo polinômio numérico $p(x) \in \mathbb{Q}[x]$ tem a forma $p(x) = a_n \binom{x}{n} + a_{n-1} \binom{x}{n-1} + \cdots + a_0$ onde $a_i \in \mathbb{Z}$.

Demonstração. Faremos a prova por indução sobre n = grau(p). O caso i fatores

n=0 é claro. Como $\binom{x}{i}=\overbrace{x(x-1)\cdots(x-(i-1))\atop i!}$ tem grau i para $i\in\mathbb{N}$, os polinômios binomiais $\binom{x}{i}$ formam uma base de $\mathbb{Q}[x]$ sobre \mathbb{Q} e assim podemos escrever

$$p(x) = a_n \binom{x}{n} + a_{n-1} \binom{x}{n-1} + \dots + a_1 \binom{x}{1} + a_0 \binom{x}{0}, \text{ com } a_i \in \mathbb{Q}.$$

Temos que mostrar que $a_i \in \mathbb{Z}$, para isso considere:

$$\Delta p(x) = a_n \binom{x}{n-1} + a_{n-1} \binom{x}{n-2} + \dots + a_1 \binom{x}{0}.$$

Então $\Delta p(x)$ é um polinômio de grau n-1, tal que $\Delta p(m) = p(m+1) - p(m) \in \mathbb{Z}$ para todo inteiro $m \gg 0$, logo pela hipótese de indução

 $a_n, \ldots, a_1 \in \mathbb{Z}$. Mas então $a_0 = p(x) - a_n \binom{x}{n} - a_{n-1} \binom{x}{n-1} - \cdots - a_1 \binom{x}{1}$ é um polinômio constante que assume valores inteiros nos inteiros, logo $a_0 \in \mathbb{Z}$.

Proposição 217. Seja $f: \mathbb{Z} \to \mathbb{Z}$ uma função. Suponha que exista um polinômio $h(x) \in \mathbb{Q}[x]$ tal que $\Delta f(m) = h(m)$ para todo $m \gg 0$. Então existe um polinômio $p(x) \in \mathbb{Q}[x]$ tal que $\operatorname{grau}(p) = 1 + \operatorname{grau}(h)$ e f(m) = p(m) para todo $m \gg 0$.

Demonstração. Segue da hipótese que h(x) é um polinômio numérico, logo da proposição anterior $h(x) = a_n \binom{x}{n} + a_{n-1} \binom{x}{n-1} + \cdots + a_0$ onde $a_i \in \mathbb{Z}$. Seja $q(x) := a_n \binom{x}{n+1} + a_{n-1} \binom{x}{n} + \cdots + a_0 \binom{x}{1}$, então grau $(q) = n+1 = \operatorname{grau}(h) + 1$, $q: \mathbb{Z} \to \mathbb{Z}$ e $\Delta q(x) = h(x)$. Temos que $\Delta (f-q)(m) = 0$ para todo $m \gg 0$. Em outras palavras, f(m) - q(m) é constante e inteiro para $m \gg 0$, digamos c = f(m) - q(m), assim f(m) = q(m) + c para $m \gg 0$, logo p(x) = q(x) + c e o resultado segue.

REFERÊNCIAS BIBLIOGRÁFICAS

- [1] W. W. Adams e P. Loustaunau, *An introduction to gröbner bases, volume* 3 *of graduate studies in mathematics,* American Mathematical Society, Providence, RI, 24 (1994), p. 47.
- [2] A. Ananin, Álgebra Comutativa Notas de Aulas, 1998.
- [3] R. B. Ash, *A course in commutative algebra*, Department of Mathematics, University of Illiois at Urbana-Champaign, 2003.
- [4] M. F. ATIYAH E I. G. MACDONALD, *Introduction to commutative algebra*, vol. 2, Addison-Wesley Reading, 1969.
- [5] N. Bourbaki, Commutative algebra, vol. 8, Hermann Paris, 1972.
- [6] D. A. Cox, J. Little, E D. OSHEA, Ideals, varieties, and algorithms: an introduction to computational algebraic geometry and commutative algebra, Springer, 2007.
- [7] D. EISENBUD ET AL., Commutative algebra with a view toward algebraic geometry, vol. 27, Springer New York, 1995.
- [8] R. Hartshorne, Algebraic geometry, no. 52, Springer, 1977.
- [9] G. Kemper, A Course in Commutative Algebra, vol. 256, Springer, 2010.
- [10] E. Kunz, Introduction to commutative algebra and algebraic geometry, Springer, 2012.
- [11] T.-Y. LAM, Lectures on modules and rings, no. 189, Springer, 1999.
- [12] H. Matsumura, *Commutative algebra*, Benjamin/Cummings Publishing Company Reading, Massachusetts, 1980.
- [13] —, Commutative ring theory, vol. 8, Cambridge university press, 1989.
- [14] M. Reid, *Undergraduate commutative algebra*, vol. 29, Cambridge University Press, 1995.
- [15] S. Roman, Advanced linear algebra, vol. 135, Springer, 2007.
- [16] J. J. Rotman, *Advanced modern algebra*, American Mathematical Soc., 2002.

- [17] J. J. ROTMAN E J. J. ROTMAN, *An introduction to homological algebra*, vol. 2, Springer, 2009.
- [18] R. Y. Sharp, *Steps in commutative algebra*, no. 51, Cambridge university press, 2000.
- [19] E. Tengan, Álgebra Comutativa: um tour ao redor dos anéis comutativos, Em preparação, 2000.
- [20] C. A. Weibel, *An introduction to homological algebra*, no. 38, Cambridge university press, 1995.
- [21] O. Zariski e P. Samuel, Commutative algebra. vol. 1. with the cooperation of is cohen. corrected reprinting of the 1958 edition, Graduate Texts in Mathematics, 28 (1975).
- [22] O. Zariski, P. Samuel, e I. S. Cohen, *Commutative algebra II*, vol. 2, Springer, 1960.

ÍNDICE REMISSIVO

álgebra, 49 plana, 50 altura, 113 anéis extensão, 96 anel, 2 Artiniano, 69, 76 de funções regulares, 28 dimensão, 77, 113 de Krull, 113 graduado, 114 associado, 119 homomorfismo, 2 local, 8 Noetheriano, 69, 73 quociente, 3 aniquilador, 38 C C cadeia, 70 comprimento, 70 de ideais primos, 77, 113 comprimento, 77, 113 comp
altura, 113 anéis extensão, 96 anel, 2 Artiniano, 69, 76 de funções regulares, 28 dimensão, 77, 113 de Krull, 113 graduado, 114 associado, 119 homomorfismo, 2 local, 8 Noetheriano, 69, 73 quociente, 3 aniquilador, 38 C C Cadeia, 70 comprimento, 70 de ideais principais, 8 de integridade, 4 integralmente fechado, 102 normal, 102 E elemento homogêneo, 114 grau, 114 nilpotente, 9 trascendente, 109 elementos C cadeia, 70 comprimento, 70 de ideais primos, 77, 113 comprimento, 77, 113 comprimento, 77, 113 cokernel, 37
anéis de um anel, 77, 113 extensão, 96 divisor de zero, 4 domínio Artiniano, 69, 76 de ideais principais, 8 de integridade, 4 dimensão, 77, 113 integralmente fechado, 102 normal, 102 E elemento homogêneo, 114 associado, 119 homomorfismo, 2 local, 8 Noetheriano, 69, 73 quociente, 3 aniquilador, 38 C C Cadeia, 70 comprimento, 70 de ideais primos, 77, 113 comprimento, 77, 113 cokernel, 37 de um anel, 77, 113 divisor de zero, 4 domínio E eletente fechado, 102 normal, 102 E elemento homogêneo, 114 grau, 114 nilpotente, 9 trascendente, 109 elementos algebricamente independentes, 109 espaço afim, 26 espectro, 18 espectro maximal, 25 extensão de escalares, 47
extensão, 96 anel, 2 Artiniano, 69, 76 de funções regulares, 28 dimensão, 77, 113 de Krull, 113 graduado, 114 associado, 119 homomorfismo, 2 local, 8 Noetheriano, 69, 73 quociente, 3 aniquilador, 38 C cadeia, 70 comprimento, 70 de ideais principais, 8 de integridade, 4 integralmente fechado, 102 normal, 102 E elemento homogêneo, 114 grau, 114 nilpotente, 9 trascendente, 109 elementos algebricamente independentes, 109 espaço afim, 26 espectro, 18 espectro maximal, 25 extensão de escalares, 47
anel, 2 Artiniano, 69, 76 de funções regulares, 28 dimensão, 77, 113 de Krull, 113 graduado, 114 associado, 119 homomorfismo, 2 local, 8 Noetheriano, 69, 73 quociente, 3 aniquilador, 38 C C cadeia, 70 comprimento, 70 de ideais principais, 8 de integridade, 4 integralmente fechado, 102 normal, 102 E elemento homogêneo, 114 nilpotente, 9 trascendente, 109 elementos algebricamente independentes, 109 espaço afim, 26 espectro, 18 espectro maximal, 25 extensão de escalares, 47
Artiniano, 69, 76 de ideais principais, 8 de funções regulares, 28 dimensão, 77, 113 de Krull, 113 graduado, 114 associado, 119 homomorfismo, 2 local, 8 Noetheriano, 69, 73 quociente, 3 aniquilador, 38 C C cadeia, 70 comprimento, 70 de ideais primcipais, 8 de integridade, 4 integralmente fechado, 102 normal, 102 E elemento homogêneo, 114 grau, 114 nilpotente, 9 trascendente, 109 elementos algebricamente independentes, 109 espaço afim, 26 espectro, 18 espectro maximal, 25 extensão de escalares, 47
de funções regulares, 28 dimensão, 77, 113 de Krull, 113 graduado, 114 associado, 119 homomorfismo, 2 local, 8 Noetheriano, 69, 73 quociente, 3 aniquilador, 38 C cadeia, 70 comprimento, 70 de ideais primos, 77, 113 comprimento, 77, 113 comprimento, 77, 113 cokernel, 37 de integridade, 4 integralmente fechado, 102 normal, 102 E elemento homogêneo, 114 grau, 114 nilpotente, 9 trascendente, 109 elementos algebricamente independentes, 109 espaço afim, 26 espectro, 18 espectro maximal, 25 extensão de escalares, 47
dimensão, 77, 113 integralmente fechado, 102 de Krull, 113 normal, 102 graduado, 114 associado, 119 homomorfismo, 2 local, 8 Noetheriano, 69, 73 quociente, 3 aniquilador, 38 C cadeia, 70 comprimento, 70 de ideais primos, 77, 113 comprimento, 77, 113 cokernel, 37 integralmente fechado, 102 normal, 102 E elemento homogêneo, 114 nilpotente, 9 trascendente, 109 elementos algebricamente independentes, 109 espectro, 18 espectro maximal, 25 extensão de escalares, 47
de Krull, 113 graduado, 114 associado, 119 homomorfismo, 2 local, 8 Noetheriano, 69, 73 quociente, 3 aniquilador, 38 C cadeia, 70 comprimento, 70 de ideais primos, 77, 113 comprimento, 77, 113 consprimento, 77, 113 grau, 114 nilpotente, 9 trascendente, 109 elementos algebricamente independentes, 109 espaço afim, 26 espectro, 18 espectro maximal, 25 comprimento, 77, 113 extensão de escalares, 47
graduado, 114 associado, 119 homomorfismo, 2 local, 8 Noetheriano, 69, 73 quociente, 3 aniquilador, 38 C cadeia, 70 comprimento, 70 de ideais primos, 77, 113 comprimento, 77, 113 cokernel, 37 E elemento homogêneo, 114 prau, 114 nilpotente, 9 trascendente, 109 elementos algebricamente independentes, 109 espaço afim, 26 espectro, 18 espectro maximal, 25 extensão de escalares, 47
associado, 119 homomorfismo, 2 local, 8 Noetheriano, 69, 73 quociente, 3 aniquilador, 38 C cadeia, 70 comprimento, 70 de ideais primos, 77, 113 comprimento, 77, 113 conprimento, 77, 113 cokernel, 37 E elemento homogêneo, 114 grau, 114 nilpotente, 9 trascendente, 109 elementos algebricamente independentes, 109 espaço afim, 26 espectro, 18 espectro maximal, 25 extensão de escalares, 47
associado, 119 homomorfismo, 2 local, 8 Noetheriano, 69, 73 quociente, 3 aniquilador, 38 C cadeia, 70 comprimento, 70 de ideais primos, 77, 113 comprimento, 77, 113 cokernel, 37 elemento homogêneo, 114 grau, 114 nilpotente, 9 trascendente, 109 elementos algebricamente independentes, 109 espaço afim, 26 espectro, 18 espectro maximal, 25 extensão de escalares, 47
homogêneo, 114 Noetheriano, 69, 73 quociente, 3 aniquilador, 38 C cadeia, 70 comprimento, 70 de ideais primos, 77, 113 comprimento, 77, 113 cokernel, 37 homogêneo, 114 grau, 114 nilpotente, 9 trascendente, 109 elementos algebricamente independentes, 109 espaço afim, 26 espectro, 18 espectro maximal, 25 extensão de escalares, 47
Noetheriano, 69, 73 quociente, 3 aniquilador, 38 C cadeia, 70 comprimento, 70 de ideais primos, 77, 113 comprimento, 77, 113 cokernel, 37 grau, 114 nilpotente, 9 trascendente, 109 elementos algebricamente independentes, 109 espaço afim, 26 espectro, 18 espectro maximal, 25 extensão de escalares, 47
quociente, 3 aniquilador, 38 C cadeia, 70 comprimento, 70 de ideais primos, 77, 113 comprimento, 77, 113 cokernel, 37 nilpotente, 9 trascendente, 109 elementos algebricamente independentes, 109 espaço afim, 26 espectro, 18 espectro maximal, 25 extensão de escalares, 47
aniquilador, 38 C adeia, 70 espaço afim, 26 comprimento, 70 espectro, 18 de ideais primos, 77, 113 espectro maximal, 25 comprimento, 77, 113 extensão de escalares, 47
elementos C algebricamente independentes, 109 cadeia, 70 espaço afim, 26 comprimento, 70 espectro, 18 de ideais primos, 77, 113 espectro maximal, 25 comprimento, 77, 113 extensão de escalares, 47 cokernel, 37
cadeia, 70 espaço afim, 26 espectro, 18 de ideais primos, 77, 113 extensão de escalares, 47 cokernel, 37
cadeia, 70 espaço afim, 26 comprimento, 70 espectro, 18 de ideais primos, 77, 113 espectro maximal, 25 comprimento, 77, 113 extensão de escalares, 47 cokernel, 37
comprimento, 70 espectro, 18 de ideais primos, 77, 113 espectro maximal, 25 comprimento, 77, 113 extensão de escalares, 47 cokernel, 37
de ideais primos, 77, 113 espectro maximal, 25 comprimento, 77, 113 extensão de escalares, 47 cokernel, 37
comprimento, 77, 113 extensão de escalares, 47 cokernel, 37
cokernel, 37
cokerner, 37
componente homogênea, 114
condição fecho integral, 98, 104
de cadeia fiel, 38
ascendente, 67 finita
descendente, 67 álgebra, 96
maximal, 67 extensão, 96
minimal, 67 função
conjunto algébrico afim, 26 aditiva, 115
conjunto de zeros, 25 de Hilbert, 119
conjunto multiplicativo, 54 de Hilbert-Samuel, 119
continue 8
Gorno A
corpo, 4 graduado corpo de resíduos, 8

anel, 114	integralmente fechado, 98
módulo, 114	intersecção
***	de ideais, 7
H	de módulos, 37
Hilbert	irredutível, 27
função, 119	isomorfismo, 3
polinômio, 119	_
Hilbert-Samuel	K
função, 119	Krull
polinômio, 120	dimensão, 113
homogêneo	Hauptidealsatz, 123
elemento, 114	Teorema, 121
polinômio, 108	T
homomorfismo, 2	L
de álgebras, 49	Lema
de módulos, 36	de Nakayama, 40
т	Principal, 121
I	local
ideais	propriedade, 60
intersecção, 7	localização, 54
primos	Exatidão, 56
associados, 83	Propriedade Universal, 54
embutidos, 83	M
isolados, 83	
produto, 7	mapa
soma, 7	de localização, 54
ideal, 3	módulo, 36
decomponível, 81	Artiniano, 67
do conjunto algébrico, 28	comprimento, 70
gerado, 3	de comprimento finito, 72
irredutível, 86	fiel, 38
p-primário, 80	finitamente gerado, 38
maximal, 4	graduado, 114
primário, 80	livre, 38
primo, 4	Noetheriano, 67
altura, 113	plano, 48
principal, 3	quociente, 37
quociente, 12	simples, 70
integral	módulos
álgebra, 96	intersecção, 37
elemento, 96	produto, 37
sobre um ideal, 104	soma, 37
extensão, 96	morfismo
fechho, 98	de conjuntos algébricos, 27

N nilradical, 9 normalização, 98, 104 P polinômio de Hilbert, 119 de Hilbert-Samuel, 120 homogêneo, 108 polo, 118 primo, 4 produto de módulos, 37 tensorial, 45 produto direto de anéis, 12 projeção canônica, 3 Q quociente, 3 de módulo, 37 R radical de Jacobson, 10 restrição de escalares, 47	de Correspondência entre Ideais, 3 de Estrutura de Anéis Artinianos, 90 de Jordan-Hölder, 72 de Krull, 121 do Ideal Principal, 123 de Normalização de Noether, 109 versão II, 110 de Unicidade (Primeiro), 82 de Unicidade (Segundo), 85 Going-Down, 107 Going-Up, 101 Incomparabilidade, 100 Lying-Over, 100 Nullstellensatz, 30 Topologia de Zariski, 20 Weak Nullstellensatz, 110 Topologia de Zariski, 18, 20 U unidade, 4 V variedade algébrica, 27
sequência exata, 41 série de composição, 70 série de Poincaré, 116 sistema de parâmetros, 121 soma de ideais, 7 de módulos, 37 subanel, 3 subconjunto isolado, 85 submódulo, 37 T tensor elementar, 45 Teorema chinês dos restos, 13 da Base de Hilbert, 75 da Mudança de Bases, 51	