

Проверил:

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ		Фундаментальные нау	КИ		
КАФЕДРА	Прикладная математика				
	Отчёт по л	абораторной рабо	оте №1		
Прямые методы решения систем линейных алгебраических уравнений					
Студент:	ФН2-52Б		Ю. А. Сафронов		
Студент.	(Группа)	(Подпись, дата)	(И.О. Фамилия)		

(Подпись, дата)

(И.О. Фамилия)

2

Оглавление

1.	Краткое описание алгоритмов	. 3
	1.1. Метод Гаусса	. 3
2.	Исходные данные	. 6
3.	Результаты расчетов	. 7
4.	Анализ результатов	. 8
5.	Контрольные вопросы	. 9

1. Краткое описание алгоритмов

Дана система линейных алгебраических уравнений:

$$\sum_{i=1}^{n} a_{ij} x_i = f_i, \quad i = \overline{1, n}. \tag{1}$$

1.1. Метод Гаусса

Сначала система (1) приводится прямым ходом к верхнетреугольному виду:

$$\begin{cases} a_{11}^{(0)}x_1 + a_{12}^{(0)}x_2 + a_{13}^{(0)}x_3 + \dots + a_{1n}^{(0)}x_n = f_1^{(0)}, \\ a_{22}^{(1)}x_2 + a_{23}^{(1)}x_3 + \dots + a_{2n}^{(1)}x_n = f_2^{(1)}, \\ \dots & \dots & \dots \\ a_{n-1,n-1}^{(n-2)}x_{n-1} + a_{n-1,n}^{(n-2)}x_n = f_{n-1}^{(n-2)}, \\ a_{nn}^{(n-1)}x_n = f_n^{(n-1)}. \end{cases}$$

Коэффициенты $a_{ij}^{(k)}$ и $f_i^{(k)}$ вычисляются следующим образом

$$a_{ij}^{(k)} = a_{ij}^{(k-1)} - c_{ik}a_{kj}^{(k-1)}, \quad f_i^{(k)} = f_i^{(k-1)} - c_{ik}f_k^{(k-1)}$$

где

$$c_{ik} = \frac{a_{ik}^{(k-1)}}{a_{kk}^{(k-1)}}, \quad a_{ij}^{(0)} = a_{ij}, \quad f_i^{(0)} = f_i, \quad k = \overline{1, n-1}, \quad j = \overline{k, n}, \quad i = \overline{k+1, n}.$$

Далее производится обратный ход метода, во время которого определяются неизвестные x_i , начиная с i=n:

$$x_i = \left(f_i^{(i-1)} - \sum_{j=i+1}^n a_{ij}^{(i-1)} x_j\right) / a_{ii}^{(i-1)}, \quad i = \overline{n, 1}.$$

Общее количество делений и умножений в методе Гаусса: $\frac{1}{3}n(n^2+3n-1)\sim \frac{n^3}{3}$.

Метод QR-разложения

Метод QR-разложения основан на представлении матрицы системы в виде произведения ортогональной матрицы Q и верхней треугольной матрицы R. Один из способов получения такого разложения — метод вращений.

Сначала неизвестное x_1 исключается из всех уравнений, кроме первого. Это производится при помощи следующего алгоритма. Для исключения x_1 из второго уравнения вычисляются коэффициенты

$$c_{12} = \frac{a_{11}}{\sqrt{a_{11}^2 + a_{21}^2}}, \quad s_{12} = \frac{a_{21}}{\sqrt{a_{11}^2 + a_{21}^2}},$$

затем первое уравнение системы заменяется линейной комбинацией первого и второго уравнений с коэффициентами c_{12} и s_{12} , а второе уравнение — линейной комбинацией тех же уравнений, но уже с коэффициентами $(-s_{12})$ и c_{12} . Так как $-s_{12}a_{11}+c_{12}a_{21}=0$, коэффициент во втором уравнении при x_1 обратится в нуль.

В итоге исходная система будет приведена к виду:

$$\begin{cases} a_{11}^{(1)}x_1 + a_{12}^{(1)}x_2 + a_{13}^{(1)}x_3 + \dots + a_{1n}^{(1)}x_n = b_1^{(1)}, \\ a_{22}^{(1)}x_2 + a_{23}^{(1)}x_3 + \dots + a_{2n}^{(1)}x_n = b_2^{(1)}, \\ a_{31}^{(1)}x_1 + a_{32}^{(1)}x_2 + a_{33}^{(1)}x_3 + \dots + a_{3n}^{(1)}x_n = b_3^{(1)}, \\ \dots & \dots & \dots \\ a_{n1}^{(1)}x_1 + a_{n2}^{(1)}x_2 + a_{n3}^{(1)}x_3 + \dots + a_{nn}^{(1)}x_n = b_n^{(1)}. \end{cases}$$

Это преобразование эквивалентно умножению матрицы системы уравнений и вектора правой части слева на ортогональную матрицу T_{12} , имеющую вид

$$T_{12} = \begin{pmatrix} c_{12} & s_{12} & 0 & 0 & \dots & 0 \\ -s_{12} & c_{12} & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 0 & 1 & \dots & 0 \\ 0 & 0 & 0 & 0 & \dots & 1 \end{pmatrix}$$

Так как коэффициенты c_{12} и s_{12} подобраны таким образом, что $c_{12}^2+s_{12}^2=1$, то можно считать, что

$$c_{12} = \cos \varphi$$
 и $s_{12} = \sin \varphi$.

Следовательно, матрица T_{12} — это матрица поворота на угол φ по часовой стрелке в плоскости (x_1,x_2) .

Для исключения x_1 из третьего уравнения, используются коэффициенты c_{13} и s_{13} :

$$c_{13} = \frac{a_{11}^{(1)}}{\sqrt{(a_{11}^{(1)})^2 + a_{31}^{(1)})^2}}, \ s_{13} = \frac{a_{31}^{(1)}}{\sqrt{(a_{11}^{(1)})^2 + a_{31}^{(1)})^2}},$$

Далее первое и третье уравнение заменяются своими линейными комбинациями. Эта операция равносильна умножению слева матрицы $A^{(1)}=T_{12}A$ и вектора правой части $b^{(1)}=T_{12}b$ на ортогональную матрицу, имеющую вид

$$T_{13} = \begin{pmatrix} c_{13} & 0 & s_{13} & 0 & \dots & 0 \\ 0 & 1 & 0 & 0 & \dots & 0 \\ -s_{13} & 0 & c_{13} & 0 & \dots & 0 \\ 0 & 0 & 0 & 1 & \dots & 0 \\ 0 & 0 & 0 & 0 & \dots & 1 \end{pmatrix}$$

Аналогично неизвестная x_1 исключается из остальных уравнений, затем x_2 – из всех уравнений, кроме первого и второго, при этом используются матрицы $T_{23}, T_{24}, \ldots, T_{2n}$ и так далее. Процесс продолжается, пока система не будет приведена к верхней треугольной форме. То есть $T = T_{n-1,n} \cdot T_{24} \cdot T_{23} \cdot T_{1n} \cdot \ldots \cdot T_{13} \cdot T_{12}$. Причём, R = TA, где R – полученная верхнетреугольная матрица и $Q = T^{-1} = T^T$.

2. Исходные данные

В вариантах 20, 23 даны 2 СЛАУ, которые имеют вид:

$$A_{20} = \begin{pmatrix} 28.8590 & -0.0080 & 2.4060 & 19.2400 \\ 14.4360 & -0.0010 & 1.2030 & 9.6240 \\ 120.2040 & -0.0320 & 10.0240 & 80.1440 \\ -57.7140 & 0.0160 & -4.8120 & -38.4780 \end{pmatrix}, \quad b_{20} = \begin{pmatrix} 30.4590 \\ 18.2480 \\ 128.1560 \\ -60.9080 \end{pmatrix},$$

$$A_{23} = \begin{pmatrix} 3676.7530 & 35.0160 & -525.2500 & -245.1040 \\ 9055.6200 & 86.2450 & -1293.6600 & -603.6800 \\ 26303.4240 & 250.5040 & -3757.6290 & -1753.4720 \\ 70.3500 & 0.6700 & -10.0500 & -4.6850 \end{pmatrix}, \quad b_{23} = \begin{pmatrix} 245.2070 \\ 604.0000 \\ 1754.1910 \\ 4.7350 \end{pmatrix}$$

3. Результаты расчетов

4. Анализ результатов

5. Контрольные вопросы

1. Каковы условия применимости метода Гаусса без выбора и с выбором ведущего элемента?

Метод Гаусса применим тогда и только тогда, когда все угловые миноры матрицы \mathcal{A} ненулевые, что равносильно условию $a_{ii}^{(i-1)} \neq 0$ для всех i=1,2,...,n, где $a_{ii}^{(i-1)}$ - элементы матрицы на главной диагонали после приведения ее к ступенчатому виду. Соотвественно, в противном случае метод Гаусса без выбора главного элемента в ходе работы может привести к делению на ноль, при этом матрица может быть и невырождена. Метод Гаусса с выбором главного элемента можно применять для любой невырожденной матрицы. Если матрица будет вырожденной, то в какой-то момент главный элемент будет равен нулю, что недопустимо.

2. Докажите, что если $\det A \neq 0$, то при выборе главного элемента в столбце среди элементов, лежащих не выше главной диагонали, всегда найдется хотя бы один элемент, отличный от нуля.

Докажем от противного. Допустим, что возможна такая ситуация, когда при условии $\det \mathcal{A} \neq 0$, существует такой шаг k, для которого, соотвественно, в k-ом столбце все элементы не выше главной диагонали нулевые (на примере матрицы $n \times n$):

$$\mathcal{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1,k-1} & a_{1k} & \dots & a_{1,n-1} & a_{1n} \\ 0 & a_{22} & \dots & a_{2,k-1} & a_{2k} & \dots & a_{2,n-1} & a_{2n} \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & a_{k-1,k-1} & a_{k-1,k} & \dots & a_{k,n-1} & a_{kn} \\ 0 & 0 & \dots & 0 & 0 & \dots & a_{k+1,n-1} & a_{k+1,n} \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 0 & 0 & \dots & a_{n-1,n-1} & a_{n-1,n} \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 & a_{nn} \end{pmatrix}.$$

Определитель ступенчатой матрицы равен произведению элементов ее главной диагонали:

$$\det \mathcal{A} = a_{11} * a_{22} * \dots * a_{k-1,k-1} * 0 * a_{k+1,k+1} * \dots * a_{nn}, \quad a_{kk} = 0.$$

Противречие. Следовательно, либо матрица вырождена, либо существует ненулевой элемент не выше главной диагонали.

3. В методе Гаусса с полным выбором ведущего элемента приходится не только переставлять уравнения, но и менять нумерацию неиз-

вестных. Предложите алгоритм, позволяющий восстановить первоначальный порядок неизвестных.

Данную проблему можно решить вводом косвенной индексации. Вместо $\mathcal{A}[i][j]$ использовать $\mathcal{A}[row(i)][col(j)]$, где row и col — массивы (по сути своей являющиеся подстановками), в которых, например, для перемены местами двух строк или столбцов нужно поменять местами соотвествующие индексы.