Sprawozdanie - laboratorium nr 6

Wyznaczanie zer wielomianu metodą siecznych

Marek Kiełtyka

4 kwietnia 2019

1 Wstęp

1.1 Metoda siecznych

Jest to jedna z iteracyjnych metod numerycznych służących do wyznaczania pierwiastków równań nieliniowych. Opiera się na założeniu o ciągłości niektórych funkcji wielomianowych. Każdą taką funkcję można przybliżyć w sposób liniowy na odcinku dążącym w swej długości do zera. W miejscu przyjętego przedziału $[x_i, x_j]$ krzywą reprezentującą przebieg funkcji zastępuje się sieczną, którą prowadzi się do momentu przecięcia jej z osią OX. Kolejne coraz dokładniejsze przybliżenia dążą do ściśle określonego punktu przecięcia, który de facto jest poszukiwanym miejscem zerowym.

1.1.1 Niemodyfikowana metoda siecznych

Klasyczna wersja metody opiera się o zastosowanie iteracyjnego wzoru:

$$x_{k+1} = x_k - \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})} f(x_k), \tag{1}$$

gdzie k - numer iteracji. Konieczne jest spełnienie założenia twierdzenia Bezoute'a, które narzuca warunek

$$f(x_k)f(x_{k-1}) < 0, (2)$$

gdyż tylko wtedy sieczna przechodząca przez punkty $(x_k, f(x_k))$ i $(x_{k-1}, f(x_{k-1}))$ przetnie oś OX. Zwykle stosuje się kryterium zbieżności, aby nie iterować w nieskończoność i szybko otrzymać niezaburzone wyniki.

1.1.2 Modyfikowana metoda siecznych

Odnosząc się do klasycznej metody polega ona na tym samym wzorze z jedną zasadniczą różnicą. Badaną funkcję f zastępujemy inną, która za przykładem laboratorium może powstać np. z dokonywania operacji na f. W tym przypadku wykorzystano przepis:

$$u(x) = \frac{f(x)}{f'(x)} \tag{3}$$

i wstawiono go w odpowiednie miejsce wzoru (1). Przy komputerowych obliczeniach numerycznych warto wykorzystać przybliżenie pochodnej funkcji ilorazem różnicowym

$$f'(x) = \frac{df(x)}{dx} = \frac{f(x + \Delta x) - f(x - \Delta x)}{2\Delta x} \tag{4}$$

aniżeli obliczać ręcznie pochodną wielomianu wysokiego stopnia.

2 Zadanie do wykonania

2.1 Opis problemu

Celem laboratorium było wyznaczenie pierwiastków funkcji wielomianowej

$$f(x) = (x - 1.2)(x - 2.3)(x - 3.3)^{2}$$
(5)

opisywanymi metodami:

- niemodyfikowaną dla wszystkich miejsc zerowych,
- modyfikowaną dla pierwiastków o krotności większej od 1 z krokiem $\Delta x = 0.1$ oraz $\Delta x = 0.001$.

Wzór (1) wymaga warunków początkowych, toteż dla widocznych z postaci (5) szukanych rozwiązań założono odpowiednio

- 1. $x_0 = 0.9, x_1 = 1.0$
- 2. $x_0 = 1.7, x_1 = 1.75$
- 3. $x_0 = 3.7, x_1 = 3.65.$

Ponadto przyjęto warunek zbieżności na poziomie

$$\epsilon_{k+1} = |x_{k+1} - x_k| < 10^{-6}. (6)$$

2.2 Wyniki

Korzystając z programu napisanego w języku C++ zaimplementowano obie metody dla wymienionych przypadków. Sporządzono wykres funkcji i jej pochodnej, a także osobne tabele w celu śledzenia postępów i czasu osiągania zbieżności. Dokonano obliczeń dla podwójnej precyzji.

Tablica 1: Tabele przybliżeń pierwszych dwóch miejsc zerowych wyszukiwanych **niemodyfikowaną metodą siecznych**; w kolumnach kolejno: k – numer iteracji, x_{k+1} – przybliżenie miejsca zerowego w danej iteracji, ϵ_{k+1} – różnica między dwoma ostatnimi przybliżeniami, $f(x_{k+1})$ – wartość funkcji w punkcie x_{k+1} .

k	x_{k+1}	ϵ_{k+1}	$f(x_{k+1})$
1	1.13177	0.131769	0.374736
2	1.18111	0.0493456	0.0948721
3	1.19784	0.0167279	0.0105107
4	1.19993	0.00208415	0.000358444
5	1.2	7.35846e-005	1.43563e-006
6	1.2	2.95904e-007	1.97418e-010

k	x_{k+1}	ϵ_{k+1}	$f(x_{k+1})$
1	2.63105	0.88105	0.212
2	2.43208	0.198968	0.122586
3	2.1593	0.272784	-0.17563
4	2.31995	0.160652	0.0214606
5	2.30246	0.0174929	0.00269569
6	2.29994	0.00251296	-6.13175e-005
7	2.3	5.58899 e-005	1.65087e-007
8	2.3	1.5007e-007	1.00372 e-011

Tablica 2: Tabele przybliżeń trzeciego miejsca zerowego wyszukanego **niemodyfikowaną metodą** siecznych; w kolumnach kolejno: k – numer iteracji, x_{k+1} – przybliżenie miejsca zerowego w danej iteracji, ϵ_{k+1} – różnica między dwoma ostatnimi przybliżeniami, $f(x_{k+1})$ – wartość funkcji w punkcie x_{k+1} .

k	x_{k+1}	ϵ_{k+1}	$f(x_{k+1})$
1	3.51916	0.130842	0.135802
2	3.45319	0.0659641	0.0609795
3	3.39943	0.0537603	0.0239082
4	3.36476	0.0346713	0.00966736
5	3.34123	0.0235366	0.00378918
6	3.32605	0.0151721	0.00148075
7	3.31632	0.00973224	0.000572969
8	3.31018	0.00614271	0.000220855
9	3.30633	0.00385286	8.48219 e-005
10	3.30392	0.00240241	3.25142e- 005
11	3.30243	0.00149333	1.24463e- 005
12	3.3015	0.000926181	4.76059 e - 006
13	3.30093	0.00057368	1.81991e-006
14	3.30058	0.000355037	6.9551 e-007
15	3.30036	0.000219611	2.65747e-007

16	3.30022	0.000135798	1.01527e-007
17	3.30014	8.39552e- 005	3.87845e-008
18	3.30008	5.18976e-005	1.48155e-008
19	3.30005	3.20784 e-005	5.65929e-009
20	3.30003	1.98271 e-005	2.16172e-009
21	3.30002	1.22544 e - 005	8.25718e-010
22	3.30001	7.57385 e-006	3.154 e-010
23	3.30001	4.68098e-006	1.20473e-010
24	3.3	2.89304 e - 006	4.60167e-011
25	3.3	1.78801e-006	1.75769e-011
26	3.3	1.10505 e- 006	6.71378e-012
27	3.3	6.82963e- 007	2.56444e-012
28	3.3	4.22095e-007	9.79529e-013

Tablica 3: Tabele przybliżeń dwukrotnego miejsca zerowego x=3.3, wyszukiwanego **modyfikowaną metodą siecznych**; w kolumnach kolejno: k – numer iteracji, x_{k+1} – przybliżenie miejsca zerowego w danej iteracji, ϵ_{k+1} – różnica między dwoma ostatnimi przybliżeniami, $f(x_{k+1})$ – wartość funkcji w punkcie x_{k+1} . Tabele:

po lewej: iloraz różnicowy obliczany z krokiem $\Delta x=0.1,$ po prawej: iloraz różnicowy obliczany z krokiem $\Delta x=0.001.$

k	x_{k+1}	ϵ_{k+1}	$f(x_{k+1})$
1	3.25065	0.399349	0.0047475
2	3.32054	0.0698935	0.000913445
3	3.30675	0.0137991	9.65125e-005
4	3.30297	0.00377639	1.85962e-005
5	3.30161	0.00136042	5.44866e-006
6	3.30091	0.000694918	1.7565e-006
7	3.30054	0.00037378	6.13227e-007
8	3.30032	0.000215585	2.21348e-007
9	3.3002	0.000127248	8.17992e-008
10	3.30012	7.66162 e-005	3.06083e-008
11	3.30007	4.65704 e-005	1.15467e-008
12	3.30005	2.84972e- 005	4.37654e-009
13	3.30003	1.75031 e-005	1.6638e-009
14	3.30002	1.07765e- 005	6.33659e-010
15	3.30001	6.64457 e-006	2.416e-010
16	3.30001	4.10062e-006	9.21802e-011
17	3.3	2.53205e-006	3.51855e-011
18	3.3	1.56403e-006	1.34339e-011
19	3.3	9.66291e-007	5.12996e-012
20	3.3	5.97074e-007	1.95915e-012

k	x_{k+1}	ϵ_{k+1}	$f(x_{k+1})$
1	3.24179	0.408215	0.00651669
2	3.31242	0.0706299	0.000329644
3	3.30056	0.0118593	6.49539e-007
4	3.3	0.000560219	3.87543e-011
5	3.3	5.18779e-006	1.67059e-012
6	3.3	4.46132e-007	4.17323e-013

Wykres 1: Wykres funkcji $f(x) = (x-1.2)(x-2.3)(x-3.3)^2$ oraz jej pochodnej f'(x) w przedziale $x \in [0.9, 3.7]$

3 Wnioski

Niemodyfikowana metoda siecznych dała skuteczne rezultaty w stosunkowo krótkim okresie iterowania. Założenie progu zbieżności rzędu 10^{-6} było bardzo rozsądne, jeśli spojrzeć na wartości $f(x_{k+1})$ w każdej tabeli. Można było co prawda dalej dążyć do zera, lecz przybliżenia są na tyle satysfakcjonujące, że z oszczędności czasu wręcz należy poprzestać na takim wyniku.

Ciekawie prezentuje się modyfikacja metody. Dla niej co prawda duży krok ilorazu różnicowego nie gwarantuje znaczących usprawnień, lecz potencjał ujawnia się w momencie założenia niskiej jego wartości. Miejsca zerowe są wyznaczane ponad 3 razy szybciej, nie tracąc na dokładności.

Tabele i wykres kończą dowód na poprawność przeprowadzonych obliczeń.