1 Parameters for ...

This Section contains the parameters for ... together with explanations and sources This Section should be removed, as soon everyone is familiar with the layout.

1.1 Group your parameters intelligent

Example_parameter1= Example_parameter2=		, ,	Short Description of parameter 1 Short Description of parameter 2
Example_parameter3=	1234	[Testjournal]	Short Description of parameter 3 If your description gets very long use the thead command and then you can add line wrapping. Automatic line wrapping is theoretically possible, but I couldn't make it run.

2 Parameters for Panel(Heat)

This Section contains the parameters for the heat side of the panel together with explanations and sources

2.1 densities of the panel parts

$rho_Glass =$	3000	$[\lim 2017 { m diurnal}]$	Density of the Glass covering the Panel [kg/m ³]
$rho_PVcells =$	2330	$[\lim 2017 ext{diurnal}]$	Density of the Photovoltaik cells [kg m ⁻³]
$rho_EVA =$	960	$[\lim 2017 ext{diurnal}]$	Density of the ethylene vinyl acetate (EVA) layer [kg/m ³]
$rho_Backsheet =$	2700	[lim2017diurnal]	Density of the Metal back sheet [kg/m ³]

2.2 Thicknesses of the panel parts

$thickness_Glass =$	0.003	[lim2017diurnal]	Thickness of the Glass covering the Panel[m]
$thickness_PVcells =$	0.00022	[lim2017diurnal]	Thickness of the Photovoltaik cells[m]
$thickness_EVA =$	0.00050	[lim2017diurnal]	Thickness of the ethylene vinyl acetate (EVA) laye
$thickness_Backsheet =$	0.00001	[lim2017diurnal]	Thickness of the Metal back sheet[m]

2.3 Heat capacities for the panel

$c_{-}Glass =$	500	$[\lim 2017 ext{diurnal}]$	Specific Heat capacity of the Glass covering [J/(kg*K)]
$c_PVcells =$	677	$[\lim 2017 { m diurnal}]$	Specific Heat capacity of the PV cells $[J kg^{-1} K^{-1}]$
$c_EVA =$	2090	[lim2017diurnal]	Specific Heat capacity of the ethylene vinyl acetate (EVA) lay
$c_Backsheet =$	900	[lim2017diurnal]	Specific Heat capacity of the Glass covering [J/(kg K)]

2.4 Heat transfer to the outside and influence of wind

Usually the heat transfer is expressed as a U-Value. In this model, the influence of the wind is regarded as well. That means, the convective heat transfer coefficient needs to be used instead.

```
The convective heat transfer coefficient is given as: hw = 5.7 + 3.8 * windSpeed [doi:10.1093/ijlct/2.4.359]
```

This means $U_PA = hw$

2.5 Panel efficiency

```
eta_PV= \, 0.139 | [AnafH-NRG] | Electric efficiency of the Panel
```

2.6 Panel dimensions

```
l_collector= 1.652 | [AnafH-NRG] | Total length [m]
b_collector= 1.000 | [AnafH-NRG] | Total width [m]
```

2.7 Tubing parameters

```
A.PW= 1.46 | [AnafH-NRG] | Heat absorption area for the water[m^2] U.PW= 237 | [TEngToolB] | heat transfer coefficient Panel/water [W/(m^2 K)]
```

3 Parameters for PV Boiler

This section contains the parameters for the boiler of the PV together with explanations and sources.