Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Факультет інформатики та обчислювальної техніки Кафедра обчислювальної техніки

Методи наукових досліджень Лабораторна робота №5

«Проведення трьохфакторного експерименту при використанні рівняння регресії з урахуванням квадратичних членів (центральний ортогональний композиційний план)»

Виконав:

студент 2 курсу, групи IB-91 Коренюк Андрій Олександрович Залікова книжка № IB-9115 Варіант: 14

Перевірив: ас. Регіда П.Г.

Мета: провести трьохфакторний експеримент з урахуванням квадратичних членів, використовуючи центральний ортогональний композиційний план. Знайти рівняння регресії, яке буде адекватним для опису об'єкту.

Завлання

№ _{варіанта}	x	1	x	2	x	3
варіанта	min	max	min	max	min	max
114	-10	1	-6	6	-1	10

Лістинг програми

configuration.py

from math import ceil, floor

```
"""Довірча ймовірність р = 0.95 (критерій значимості 0.05)"""
variant = {"n": 114, "x1min": -10, "x1max": 1, "x2min": -6, "x2max": 6, "x3min": -1, "x3max": 10}
x_min_average = (variant["x1min"] + variant["x2min"] + variant["x3min"]) / 3
x_max_average = (variant["x1max"] + variant["x2max"] + variant["x3max"]) / 3
y_min = ceil(200 + x_min_average)
y_max = floor(200 + x_max_average)
x1_average = (variant["x1min"] + variant["x1max"]) / 2
x2_average = (variant["x2min"] + variant["x2max"]) / 2
x3_average = (variant["x3min"] + variant["x3max"]) / 2
del_x1 = variant["x1max"] - x1_average
del_x2 = variant["x2max"] - x2_average
del_x3 = variant["x3max"] - x3_average
x0 = [1, 1, 1, 1]
x1 = [-1, -1, 1, 1]
x2 = [-1, 1, -1, 1]
x3 = [1, -1, -1, 1]
nx0 = [1, 1, 1, 1]
nx1 = [variant["x1min"] if x1[i] == -1 else variant["x1max"] for i in range(4)]
nx2 = [variant["x2min"] if x2[i] == -1 else variant["x2max"] for i in range(4)]
nx3 = [variant["x3min"] if x3[i] == -1 else variant["x3max"] for i in range(4)]
sp_x0 = [1, 1, 1, 1]
sp_x1 = [-1, -1, 1, 1]
sp_x2 = [-1, 1, -1, 1]
sp_x3 = [-1, 1, 1, -1]
sp_nx0 = [1, 1, 1, 1]
sp_nx1 = [variant["x1min"] if sp_x1[i] == -1 else variant["x1max"] for i in range(4)]
sp_nx2 = [variant["x2min"] if <math>sp_x2[i] == -1 else variant["x2max"] for i in range(4)]
sp_nx3 = [variant["x3min"] if sp_x3[i] == -1 else variant["x3max"] for i in range(4)]
tp_x0 = [1, 1, 1, 1, 1, 1, 1]
tp_x1 = [-1.215, 1.215, 0, 0, 0, 0, 0]
```

```
tp_x^2 = [0, 0, -1.215, 1.215, 0, 0, 0]
tp_x3 = [0, 0, 0, 0, -1.215, 1.215, 0]
tp_nx0 = [1, 1, 1, 1, 1, 1, 1]
tp_nx1 = [tp_x1[i] * del_x1 + x1_average for i in range(7)]
tp_nx2 = [tp_x2[i] * del_x2 + x2_average for i in range(7)]
tp_nx3 = [tp_x3[i] * del_x3 + x3_average for i in range(7)]
                                                  lab 5.py
from experiment import Experiment
from linear_without_interaction import LinearWithoutInteractionModel
from linear_with_interaction import LinearWithInteractionModel
from square_central_orthogonal import SquareCentralOrthogonalModel
from configuration import *
from copy import deepcopy
import logs
x = list()
nx = list()
def get_factor_lines(x, N):
  lines = list()
  for i in range(N):
    lines.append([x[0][i], x[1][i], x[2][i], x[3][i]])
  return lines
def extend_view(step, view, N):
  if step == 2:
    for i in range(N):
      view[i].append(view[i][1] * view[i][2])
      view[i].append(view[i][1] * view[i][3])
      view[i].append(view[i][2] * view[i][3])
      view[i].append(view[i][1] * view[i][2] * view[i][3])
  elif step == 3:
    for i in range(N):
      view[i].append(view[i][1] * view[i][1])
      view[i].append(view[i][2] * view[i][2])
      view[i].append(view[i][3] * view[i][3])
def linear_model_without_interaction():
  global x
  global nx
  logs.comment(0, [])
  N, K, m = 4, 4, 3
  logs.comment(3, [N, K, m])
  x = [deepcopy(x0), deepcopy(x1), deepcopy(x2), deepcopy(x3)]
  nx = [deepcopy(nx0), deepcopy(nx1), deepcopy(nx2), deepcopy(nx3)]
  logs.comment(4, [])
  # Складання плану експерименту
  x_lines = get_factor_lines(x, N)
  nx_lines = get_factor_lines(nx, N)
  # Виконання експерименту
  experiment = Experiment(y_min, y_max, m, N)
  lm_without = LinearWithoutInteractionModel(K, N)
  experiment.do()
```

```
# Перевірка критерія Кохрена
  experiment.check_kohren()
  logs.comment(13, [experiment.m, experiment.f1, experiment.f2, experiment.Gp])
  logs.show_plan(0, 0, nx_lines, experiment)
  logs.show_plan(1, 0, x_lines, experiment)
  # Пошук коефіцієнтів
  logs.comment(5, [])
  lm_without.find_nature_cfs(nx, experiment.y_average)
  logs.comment(7, [round(el, 4) for el in lm_without.A])
  logs.comment(6, [])
  lm_without.find_encoded_cfs(x, experiment.y_average)
  logs.comment(8, [round(el, 4) for el in lm_without.B])
  logs.show_natured_checking_matrix(6, 0, nx_lines, lm_without, experiment)
  logs.show_encoded_checking_matrix(7, 0, x_lines, lm_without, experiment)
  # Перевірка критерія Стьюдента
  experiment.check_student(lm_without.K, lm_without.A, lm_without.B)
  logs.comment(14, [experiment.f3, [round(el, 4) for el in experiment.t]])
  logs.comment(15, [round(el, 4) for el in lm_without.A])
  logs.comment(16, [round(el, 4) for el in lm_without.B])
  # Перевірка критерія Фішера
  is suitable = experiment.check fisher(lm without, nx lines)
  logs.comment(21, [experiment.f3, experiment.f4, experiment.Fp])
  # Передача даних
  if is suitable:
   logs.comment(22, [])
   logs.comment(25, [])
   logs.show_natured_checking_matrix(6, 0, nx_lines, lm_without, experiment)
   logs.show_encoded_checking_matrix(7, 0, x_lines, lm_without, experiment)
   del x, nx
  else:
   logs.comment(23, [])
   logs.comment(24, [])
  # Видалення зайвого
  del lm without, experiment
  return is_suitable
def linear_model_with_interaction():
  global x
  global nx
  logs.comment(1, [])
  N, K, m = 8, 8, 3
  logs.comment(3, [N, K, m])
  x[0].extend(sp_x0)
  x[1].extend(sp_x1)
  x[2].extend(sp_x2)
  x[3].extend(sp x3)
  nx[0].extend(sp_nx0)
  nx[1].extend(sp_nx1)
  nx[2].extend(sp_nx2)
  nx[3].extend(sp_nx3)
  logs.comment(4, [])
```

```
# Складання плану експерименту
  x_lines = get_factor_lines(x, N)
  nx_lines = get_factor_lines(nx, N)
  x_{views} = deepcopy(x_{lines})
  nx_views = deepcopy(nx_lines)
  extend_view(2, x_views, N)
  extend_view(2, nx_views, N)
# Виконання експерименту
  experiment = Experiment(y_min, y_max, m, N)
  lm_with = LinearWithInteractionModel(K, N)
  experiment.do()
  # Перевірка критерія Кохрена
  experiment.check kohren()
  logs.comment(13, [experiment.m, experiment.f1, experiment.f2, experiment.Gp])
  logs.show_plan(2, 1, nx_views, experiment)
  logs.show_plan(3, 1, x_views, experiment)
  # Пошук коефіцієнтів
  logs.comment(5, [])
  lm_with.find_nature_cfs(nx, experiment.y_average)
  logs.comment(9, [round(el, 4) for el in lm_with.A])
  logs.comment(6, [])
  lm_with.find_encoded_cfs(x, experiment.y_average)
  logs.comment(10, [round(el, 4) for el in lm_with.B])
  logs.show_natured_checking_matrix(8, 1, nx_views, lm_with, experiment)
  logs.show_encoded_checking_matrix(9, 1, x_views, lm_with, experiment)
  # Перевірка критерія Стьюдента
  experiment.check_student(lm_with.K, lm_with.A, lm_with.B)
  logs.comment(14, [experiment.f3, [round(el, 4) for el in experiment.t]])
  logs.comment(17, [round(el, 4) for el in lm_with.A])
  logs.comment(18, [round(el, 4) for el in lm_with.B])
  # Перевірка критерія Фішера
  is_suitable = experiment.check_fisher(lm_with, nx_lines)
  logs.comment(21, [experiment.f3, experiment.f4, experiment.Fp])
  # Передача даних
  if is suitable:
   logs.comment(22, [])
   logs.comment(25, [])
   logs.show_natured_checking_matrix(8, 1, nx_views, lm_with, experiment)
   logs.show_encoded_checking_matrix(9, 1, x_views, lm_with, experiment)
   del x, nx
  else:
   logs.comment(23, [])
   logs.comment(24, [])
  # Видалення зайвого
  del x views, nx views, lm with, experiment
  return is suitable
def square_central_orthogonal_model():
  global x
  global nx
  logs.comment(2, [])
```

```
N, K, m = 15, 11, 3
logs.comment(3, [N, K, m])
x[0].extend(tp_x0)
x[1].extend(tp_x1)
x[2].extend(tp_x2)
x[3].extend(tp_x3)
nx[0].extend(tp_nx0)
nx[1].extend(tp_nx1)
nx[2].extend(tp_nx2)
nx[3].extend(tp_nx3)
logs.comment(4, [])
# Складання плану експерименту
x lines = get factor lines(x, N)
nx_lines = get_factor_lines(nx, N)
x_views = deepcopy(x_lines)
nx_views = deepcopy(nx_lines)
extend_view(2, x_views, N)
extend_view(2, nx_views, N)
extend_view(3, x_views, N)
extend_view(3, nx_views, N)
# Виконання експерименту
experiment = Experiment(y_min, y_max, m, N)
sq_co = SquareCentralOrthogonalModel(K, N)
experiment.do()
# Перевірка критерія Кохрена
experiment.check_kohren()
logs.comment(13, [experiment.m, experiment.f1, experiment.f2, experiment.Gp])
logs.show_plan(4, 2, nx_views, experiment)
logs.show_plan(5, 2, x_views, experiment)
# Пошук коефіцієнтів
logs.comment(5, [])
sq_co.find_nature_cfs(experiment.m, nx, experiment.y)
logs.comment(11, [round(el, 4) for el in sq_co.A])
logs.comment(6, [])
sq_co.find_encoded_cfs(experiment.m, x, experiment.y)
logs.comment(12, [round(el, 4) for el in sq_co.B])
logs.show_natured_checking_matrix(10, 2, nx_views, sq_co, experiment)
logs.show_encoded_checking_matrix(11, 2, x_views, sq_co, experiment)
# Перевірка критерія Стьюдента
experiment.check_student(sq_co.K, sq_co.A, sq_co.B)
logs.comment(14, [experiment.f3, [round(el, 4) for el in experiment.t]])
logs.comment(19, [round(el, 4) for el in sq_co.A])
logs.comment(20, [round(el, 4) for el in sq_co.B])
# Перевірка критерія Фішера
is_suitable = experiment.check_fisher(sq_co, nx_lines)
logs.comment(21, [experiment.f3, experiment.f4, experiment.Fp])
# Передача даних
if is_suitable:
  logs.comment(22, [])
  logs.comment(25, [])
  logs.show_natured_checking_matrix(10, 2, nx_views, sq_co, experiment)
  logs.show_encoded_checking_matrix(11, 2, x_views, sq_co, experiment)
```

```
del x, nx
  else:
    logs.comment(23, [])
    logs.comment(24, [])
  # Видалення зайвого
  del x_views, nx_views, sq_co, experiment
  return is_suitable
def main():
  while True:
    if linear_model_without_interaction():
      break
    elif linear_model_with_interaction():
    elif square_central_orthogonal_model():
      break
    print(logs.comment(26, []))
if __name__ == "__main__":
  main()
                                                experiment.py
from random import randint
from math import sqrt
import criterion_tables as ct
class Experiment:
  m = 0
  N = 0
  y_{min}, y_{max} = 0, 0
  y = list()
  y_average = list()
  S2_dis = list()
  f1, f2, f3, f4 = 0, 0, 0, 0
  Gp = 0
  t = list()
  Fp = 0
  d = 0
  s2b = 0
  def __init__(self, y_min, y_max, m, N):
    self.y_min = y_min
    self.y_max = y_max
    self.m = m
    self.N = N
  def __del__(self):
    del self.m, self.N, self.y_min, self.y_max
    del self.y, self.y_average, self.S2_dis
    del self.f1, self.f2, self.f3, self.f4
    del self.Gp, self.t, self.Fp, self.d, self.s2b
  def do(self):
    self.y = list()
    for i in range(self.N):
      self.y.append([randint(self.y_min, self.y_max) for _ in range(self.m)])
```

```
def do_more(self):
 for i in range(self.N):
    self.y[i].append([randint(self.y_min, self.y_max)])
def get_y(self):
  return self.y
def check_kohren(self):
  self.y_average = [0 for _ in range(self.N)]
 for i in range(self.N):
    self.y_average[i] = sum(self.y[i]) / self.m
 self.S2_dis = [0 for _ in range(self.N)]
  for i in range(self.N):
    for j in range(self.m):
      self.S2_dis[i] += (self.y[i][j] - self.y_average[i]) ** 2
    self.S2_dis[i] /= self.m
  self.Gp = max(self.S2_dis) / sum(self.S2_dis)
  self.f1 = self.m - 1
 self.f2 = self.N
 if not(ct.compare_kohren_with_table_value(self.f1, self.f2, self.Gp)):
    self.m += 1
    self.do_more()
    return self.check_kohren()
def check_student(self, K, A, B):
 self.s2b = sum(self.S2_dis) / self.N
 s2_b = self.s2b / (self.N * self.m)
 s_b = sqrt(s2_b)
  self.t = [0 for _ in range(K)]
  for i in range(K):
    self.t[i] = abs(B[i]) / s_b
 self.f3 = self.f1 * self.f2
  self.d = K
  for i in range(K):
    if not ct.compare_student_with_table_value(self.f3, self.t[i]):
      A[i] = 0
      B[i] = 0
      self.d = 1
def check_fisher(self, model, nx_lines):
 y_for_fisher = [0 for _ in range(self.N)]
  for i in range(self.N):
   y_for_fisher[i] = model.calculate_with_nature_cfs(nx_lines[i])
 s2ad = 0
  for i in range(self.N):
    s2ad += (y_for_fisher[i] - self.y_average[i]) ** 2
 s2ad = self.m * s2ad / (self.N - self.d)
 self.f4 = self.N - self.d
 self.Fp = s2ad / self.s2b
  return ct.compare_phisher_with_table_value(self.f3, self.f4, self.Fp)
```

linear_without_interaction.py

from numpy.linalg import det

```
class LinearWithoutInteractionModel:
```

```
N = 0
A = list()
B = list()
def __init__(self, K, N):
 self.K = K
 self.N = N
def __del__(self):
  del self.K, self.N, self.A, self.B
def find_nature_cfs(self, nx, y_average):
  """пх - матриця натуральних значень х"""
  mx1, mx2, mx3, my = sum(nx[1]) / self.N, sum(nx[2]) / self.N, sum(nx[3]) / self.N, sum(y_average) / self.N
 a11, a22, a33 = 0, 0, 0
 a12, a13, a23 = 0, 0, 0
 a1, a2, a3 = 0, 0, 0
  for i in range(self.N):
    a11 += nx[1][i] ** 2
    a22 += nx[2][i] ** 2
    a33 += nx[3][i] ** 2
    a12 += nx[1][i] * nx[2][i]
    a13 += nx[1][i] * nx[3][i]
    a23 += nx[2][i] * nx[3][i]
    a1 += y_average[i] * nx[1][i]
    a2 += y_average[i] * nx[2][i]
    a3 += y_average[i] * nx[3][i]
  a11, a22, a33 = a11 / self.N, a22 / self.N, a33 / self.N
 a12, a13, a23 = a12 / self.N, a13 / self.N, a23 / self.N
 a1, a2, a3 = a1 / self.N, a2 / self.N, a3 / self.N
 a21 = a12
 a31 = a13
 a32 = a23
 main_det = det([[1, mx1, mx2, mx3], [mx1, a11, a12, a13], [mx2, a21, a22, a23], [mx3, a31, a32, a33]])
 A0 = det([[my, mx1, mx2, mx3], [a1, a11, a12, a13], [a2, a21, a22, a23], [a3, a31, a32, a33]]) / main_det
 A1 = det([[1, my, mx2, mx3], [mx1, a1, a12, a13], [mx2, a2, a22, a23], [mx3, a3, a32, a33]]) / main_det
 A2 = det([[1, mx1, my, mx3], [mx1, a11, a1, a13], [mx2, a21, a2, a23], [mx3, a31, a3, a33]]) / main_det
  A3 = det([[1, mx1, mx2, my], [mx1, a11, a12, a1], [mx2, a21, a22, a2], [mx3, a31, a32, a3]]) / main_det
 self.A = [A0, A1, A2, A3]
def find_encoded_cfs(self, x, y_average):
  """х - матриця натуральных значень факторів"""
  self.B = [0 for _ in range(self.K)]
  for i in range(self.N):
    self.B[0] += y_average[i] * x[0][i]
    self.B[1] += y_average[i] * x[1][i]
    self.B[2] += y_average[i] * x[2][i]
    self.B[3] += y_average[i] * x[3][i]
  for i in range(self.K):
    self.B[i] /= self.N
def calculate_with_nature_cfs(self, nxl):
  """nxl - nature x line"""
  return self.A[0] * nxl[0] + self.A[1] * nxl[1] + self.A[2] * nxl[2] + self.A[3] * nxl[3]
def calculate_with_encoded_cfs(self, xl):
  """xl - encoded x line"""
  return self.B[0] * xl[0] + self.B[1] * xl[1] + self.B[2] * xl[2] + self.B[3] * xl[3]
                                     linear with interaction.py
```

```
class LinearWithInteractionModel:
  K = 0
  N = 0
  A = list()
  B = list()
  def __init__(self, K, N):
    self.K = K
    self.N = N
  def __del__(self):
    del self.K, self.N, self.A, self.B
  def find_nature_cfs(self, nx, y_average):
    """пх - матриця натуральних значень х"""
    m00, m10, m20, m30, m40, m50, m60, m70, k0 = 0, 0, 0, 0, 0, 0, 0, 0, 0
    m01, m11, m21, m31, m41, m51, m61, m71, k1 = 0, 0, 0, 0, 0, 0, 0, 0, 0
    m02, m12, m22, m32, m42, m52, m62, m72, k2 = 0, 0, 0, 0, 0, 0, 0, 0, 0
    m03, m13, m23, m33, m43, m53, m63, m73, k3 = 0, 0, 0, 0, 0, 0, 0, 0, 0
    m04, m14, m24, m34, m44, m54, m64, m74, k4 = 0, 0, 0, 0, 0, 0, 0, 0
    m05, m15, m25, m35, m45, m55, m65, m75, k5 = 0, 0, 0, 0, 0, 0, 0, 0, 0
    m06, m16, m26, m36, m46, m56, m66, m76, k6 = 0, 0, 0, 0, 0, 0, 0, 0, 0
    m07, m17, m27, m37, m47, m57, m67, m77, k7 = 0, 0, 0, 0, 0, 0, 0, 0, 0
    for i in range(self.N):
      m00 = self.N
      m10 += nx[1][i]
      m20 += nx[2][i]
      m30 += nx[3][i]
      m40 += nx[1][i] * nx[2][i]
      m50 += nx[1][i] * nx[3][i]
      m60 += nx[2][i] * nx[3][i]
      m70 += nx[1][i] * nx[2][i] * nx[3][i]
      k0 += y_average[i]
      m01 += nx[1][i]
      m11 += nx[1][i] ** 2
      m21 += nx[1][i] * nx[2][i]
      m31 += nx[1][i] * nx[3][i]
      m41 += (nx[1][i] ** 2) * nx[2][i]
      m51 += (nx[1][i] ** 2) * nx[3][i]
      m61 += nx[1][i] * nx[2][i] * nx[3][i]
      m71 += (nx[1][i] ** 2) * nx[2][i] * nx[3][i]
      k1 += y_average[i] * nx[1][i]
      m02 += nx[2][i]
      m12 += nx[1][i] * nx[2][i]
      m22 += nx[2][i] ** 2
      m32 += nx[2][i] * nx[3][i]
      m42 += nx[1][i] * (nx[2][i] ** 2)
      m52 += nx[1][i] * nx[2][i] * nx[3][i]
      m62 += (nx[2][i] ** 2) * nx[3][i]
      m72 += nx[1][i] * (nx[2][i] ** 2) * nx[3][i]
      k2 += y_average[i] * nx[2][i]
      m03 += nx[3][i]
      m13 += nx[1][i] * nx[3][i]
      m23 += nx[2][i] * nx[3][i]
      m33 += nx[3][i] ** 2
      m43 += nx[1][i] * nx[2][i] * nx[3][i]
      m53 += nx[1][i] * (nx[3][i] ** 2)
      m63 += nx[2][i] * (nx[3][i] ** 2)
```

```
m73 += nx[1][i] * nx[2][i] * (nx[3][i] ** 2)
  k3 += y_average[i] * nx[3][i]
  m04 += nx[1][i] * nx[2][i]
  m14 += (nx[1][i] ** 2) * nx[2][i]
  m24 += nx[1][i] * (nx[2][i] ** 2)
  m34 += nx[1][i] * nx[2][i] * nx[3][i]
  m44 += (nx[1][i] ** 2) * (nx[2][i] ** 2)
  m54 += (nx[1][i] ** 2) * nx[2][i] * nx[3][i]
  m64 += nx[1][i] * (nx[2][i] ** 2) * nx[3][i]
  m74 += (nx[1][i] ** 2) * (nx[2][i] ** 2) * nx[3][i]
  k4 += y_average[i] * nx[1][i] * nx[2][i]
  m05 += nx[1][i] * nx[3][i]
  m15 += (nx[1][i] ** 2) * nx[3][i]
  m25 += nx[1][i] * nx[2][i] * nx[3][i]
  m35 += nx[1][i] * (nx[3][i] ** 2)
  m45 += (nx[1][i] ** 2) * nx[2][i] * nx[3][i]
  m55 += (nx[1][i] ** 2) * (nx[3][i] ** 2)
  m65 += nx[1][i] * nx[2][i] * (nx[3][i] ** 2)
  m75 += (nx[1][i] ** 2) * nx[2][i] * (nx[3][i] ** 2)
  k5 += y_average[i] * nx[1][i] * nx[3][i]
  m06 += nx[2][i] * nx[3][i]
  m16 += nx[1][i] * nx[2][i] * nx[3][i]
  m26 += (nx[2][i] ** 2) * nx[3][i]
  m36 += nx[2][i] * (nx[3][i] ** 2)
  m46 += nx[1][i] * (nx[2][i] ** 2) * nx[3][i]
  m56 += nx[1][i] * nx[2][i] * (nx[3][i] ** 2)
  m66 += (nx[2][i] ** 2) * (nx[3][i] ** 2)
  m76 += nx[1][i] * (nx[2][i] ** 2) * (nx[3][i] ** 2)
  k6 += y_average[i] * nx[2][i] * nx[3][i]
  m07 += nx[1][i] * nx[2][i] * nx[3][i]
  m17 += (nx[1][i] ** 2) * nx[2][i] * nx[3][i]
  m27 += nx[1][i] * (nx[2][i] ** 2) * nx[3][i]
  m37 += nx[1][i] * nx[2][i] * (nx[3][i] ** 2)
  m47 += (nx[1][i] ** 2) * (nx[2][i] ** 2) * nx[3][i]
  m57 += (nx[1][i] ** 2) * nx[2][i] * (nx[3][i] ** 2)
  m67 += nx[1][i] * (nx[2][i] ** 2) * (nx[3][i] ** 2)
  m77 += (nx[1][i] ** 2) * (nx[2][i] ** 2) * (nx[3][i] ** 2)
  k7 += y_average[i] * nx[1][i] * nx[2][i] * nx[3][i]
main_det = det([
  [m00, m10, m20, m30, m40, m50, m60, m70],
  [m01, m11, m21, m31, m41, m51, m61, m71],
  [m02, m12, m22, m32, m42, m52, m62, m72],
  [m03, m13, m23, m33, m43, m53, m63, m73],
  [m04, m14, m24, m34, m44, m54, m64, m74],
  [m05, m15, m25, m35, m45, m55, m65, m75],
  [m06, m16, m26, m36, m46, m56, m66, m76],
  [m07, m17, m27, m37, m47, m57, m67, m77]])
det0 = det([
  [k0, m10, m20, m30, m40, m50, m60, m70],
  [k1, m11, m21, m31, m41, m51, m61, m71],
  [k2, m12, m22, m32, m42, m52, m62, m72],
  [k3, m13, m23, m33, m43, m53, m63, m73],
  [k4, m14, m24, m34, m44, m54, m64, m74],
  [k5, m15, m25, m35, m45, m55, m65, m75],
  [k6, m16, m26, m36, m46, m56, m66, m76],
  [k7, m17, m27, m37, m47, m57, m67, m77]])
det1 = det([
  [m00, k0, m20, m30, m40, m50, m60, m70],
  [m01, k1, m21, m31, m41, m51, m61, m71],
```

```
[m02, k2, m22, m32, m42, m52, m62, m72],
  [m03, k3, m23, m33, m43, m53, m63, m73],
  [m04, k4, m24, m34, m44, m54, m64, m74],
  [m05, k5, m25, m35, m45, m55, m65, m75],
  [m06, k6, m26, m36, m46, m56, m66, m76],
  [m07, k7, m27, m37, m47, m57, m67, m77]])
det2 = det([
  [m00, m10, k0, m30, m40, m50, m60, m70],
  [m01, m11, k1, m31, m41, m51, m61, m71],
  [m02, m12, k2, m32, m42, m52, m62, m72],
  [m03, m13, k3, m33, m43, m53, m63, m73],
  [m04, m14, k4, m34, m44, m54, m64, m74],
  [m05, m15, k5, m35, m45, m55, m65, m75],
  [m06, m16, k6, m36, m46, m56, m66, m76],
  [m07, m17, k7, m37, m47, m57, m67, m77]])
det3 = det([
  [m00, m10, m20, k0, m40, m50, m60, m70],
  [m01, m11, m21, k1, m41, m51, m61, m71],
  [m02, m12, m22, k2, m42, m52, m62, m72],
  [m03, m13, m23, k3, m43, m53, m63, m73],
  [m04, m14, m24, k4, m44, m54, m64, m74],
  [m05, m15, m25, k5, m45, m55, m65, m75],
  [m06, m16, m26, k6, m46, m56, m66, m76],
  [m07, m17, m27, k7, m47, m57, m67, m77]])
det4 = det([
  [m00, m10, m20, m30, k0, m50, m60, m70],
  [m01, m11, m21, m31, k1, m51, m61, m71],
  [m02, m12, m22, m32, k2, m52, m62, m72],
  [m03, m13, m23, m33, k3, m53, m63, m73],
  [m04, m14, m24, m34, k4, m54, m64, m74],
  [m05, m15, m25, m35, k5, m55, m65, m75],
  [m06, m16, m26, m36, k6, m56, m66, m76],
  [m07, m17, m27, m37, k7, m57, m67, m77]])
det5 = det([
  [m00, m10, m20, m30, m40, k0, m60, m70],
  [m01, m11, m21, m31, m41, k1, m61, m71],
  [m02, m12, m22, m32, m42, k2, m62, m72],
  [m03, m13, m23, m33, m43, k3, m63, m73],
  [m04, m14, m24, m34, m44, k4, m64, m74],
  [m05, m15, m25, m35, m45, k5, m65, m75],
  [m06, m16, m26, m36, m46, k6, m66, m76],
  [m07, m17, m27, m37, m47, k7, m67, m77]])
det6 = det([
  [m00, m10, m20, m30, m40, m50, k0, m70],
  [m01, m11, m21, m31, m41, m51, k1, m71],
  [m02, m12, m22, m32, m42, m52, k2, m72],
  [m03, m13, m23, m33, m43, m53, k3, m73],
  [m04, m14, m24, m34, m44, m54, k4, m74],
  [m05, m15, m25, m35, m45, m55, k5, m75],
  [m06, m16, m26, m36, m46, m56, k6, m76].
  [m07, m17, m27, m37, m47, m57, k7, m77]])
det7 = det([
  [m00, m10, m20, m30, m40, m50, m60, k0],
  [m01, m11, m21, m31, m41, m51, m61, k1],
  [m02, m12, m22, m32, m42, m52, m62, k2],
  [m03, m13, m23, m33, m43, m53, m63, k3],
```

```
[m04, m14, m24, m34, m44, m54, m64, k4],
      [m05, m15, m25, m35, m45, m55, m65, k5],
      [m06, m16, m26, m36, m46, m56, m66, k6],
      [m07, m17, m27, m37, m47, m57, m67, k7]])
    A0 = det0 / main_det
    A1 = det1 / main_det
    A2 = det2 / main_det
    A3 = det3 / main_det
    A4 = det4 / main_det
    A5 = det5 / main_det
    A6 = det6 / main_det
    A7 = det7 / main_det
    self.A = [A0, A1, A2, A3, A4, A5, A6, A7]
  def find_encoded_cfs(self, x, y_average):
    """х - матриця натуральных значень факторів"""
    self.B = [0 for _ in range(self.K)]
    for i in range(self.N):
      self.B[0] += y_average[i] * x[0][i]
      self.B[1] += y_average[i] * x[1][i]
      self.B[2] += y_average[i] * x[2][i]
      self.B[3] += y_average[i] * x[3][i]
      self.B[4] += y_average[i] * x[1][i] * x[2][i]
      self.B[5] += y_average[i] * x[1][i] * x[3][i]
      self.B[6] += y_average[i] * x[2][i] * x[3][i]
      self.B[7] += y_average[i] * x[1][i] * x[2][i] * x[3][i]
    for i in range(self.K):
      self.B[i] /= self.N
  def calculate_with_nature_cfs(self, nxl):
    """nxl - nature x line""
    return self.A[0]*nxl[0] + self.A[1]*nxl[1] + self.A[2]*nxl[2] + self.A[3]*nxl[3] + \
        self.A[4]*nxl[1]*nxl[2] + self.A[5]*nxl[1]*nxl[3] + self.A[6]*nxl[2]*nxl[3] + 
        self.A[7]*nxl[1]*nxl[2]*nxl[3]
  def calculate_with_encoded_cfs(self, xl):
    """xl - encoded x line"""
    return self.B[0]*xl[0] + self.B[1]*xl[1] + self.B[2]*xl[2] + self.B[3]*xl[3] + \
        self.B[4]*xl[1]*xl[2] + self.B[5]*xl[1]*xl[3] + self.B[6]*xl[2]*xl[3] + 
        self.B[7]*xl[1]*xl[2]*xl[3]
                                    square central orthogonal.py
from numpy.linalg import det
class SquareCentralOrthogonalModel:
  K = 0
  N = 0
  A = list()
  B = list()
  def __init__(self, K, N):
    self.K = K
    self.N = N
  def __del__(self):
    del self.K, self.N, self.A, self.B
  def find_nature_cfs(self, m, nx, y):
    """пх - матриця натуральних значень х"""
```

```
nx.append([nx[1][i] * nx[2][i] for i in range(self.N)])
   nx.append([nx[1][i] * nx[3][i] for i in range(self.N)])
   nx.append([nx[2][i] * nx[3][i] for i in range(self.N)])
   nx.append([nx[1][i] * nx[2][i] * nx[3][i] for i in range(self.N)])
   nx.append([nx[1][i] ** 2 for i in range(self.N)])
   nx.append([nx[2][i] ** 2 for i in range(self.N)])
   nx.append([nx[3][i] ** 2 for i in range(self.N)])
   self.A = self.find_cfs_core(m, nx, y)
 def find_encoded_cfs(self, m, x, y):
   """х - матриця натуральных значень факторів"""
   x.append([x[1][i] * x[2][i] for i in range(self.N)])
   x.append([x[1][i] * x[3][i] for i in range(self.N)])
   x.append([x[2][i] * x[3][i] for i in range(self.N)])
   x.append([x[1][i] * x[2][i] * x[3][i] for i in range(self.N)])
   x.append([x[1][i] ** 2 for i in range(self.N)])
   x.append([x[2][i] ** 2 for i in range(self.N)])
   x.append([x[3][i] ** 2 for i in range(self.N)])
   self.B = self.find_cfs_core(m, x, y)
 def find_cfs_core(self, m, x, y):
   m00, m10, m20, m30, m40, m50, m60, m70, m80, m90, m100, k0 = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
   m03, m13, m23, m33, m43, m53, m63, m73, m83, m93, m103, k3 = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
   m05, m15, m25, m35, m45, m55, m65, m75, m85, m95, m105, k5 = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
   m06, m16, m26, m36, m46, m56, m66, m76, m86, m96, m106, k6 = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
   m08, m18, m28, m38, m48, m58, m68, m78, m88, m98, m108, k8 = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
   0
   for i in range(self.N):
    for j in range(m):
      m00 += x[0][i]
      m10 += x[1][i]
      m20 += x[2][i]
      m30 += x[3][i]
      m40 += x[4][i]
      m50 += x[5][i]
      m60 += x[6][i]
      m70 += x[7][i]
      m80 += x[8][i]
      m90 += x[9][i]
      m100 += x[10][i]
      k0 += y[i][i]
      m01 += x[0][i] * x[1][i]
      m11 += x[1][i] * x[1][i]
      m21 += x[2][i] * x[1][i]
      m31 += x[3][i] * x[1][i]
      m41 += x[4][i] * x[1][i]
      m51 += x[5][i] * x[1][i]
      m61 += x[6][i] * x[1][i]
      m71 += x[7][i] * x[1][i]
      m81 += x[8][i] * x[1][i]
      m91 += x[9][i] * x[1][i]
      m101 += x[10][i] * x[1][i]
      k1 += y[i][j] * x[1][i]
      m02 += x[0][i] * x[2][i]
```

```
m12 += x[1][i] * x[2][i]
m22 += x[2][i] * x[2][i]
m32 += x[3][i] * x[2][i]
m42 += x[4][i] * x[2][i]
m52 += x[5][i] * x[2][i]
m62 += x[6][i] * x[2][i]
m72 += x[7][i] * x[2][i]
m82 += x[8][i] * x[2][i]
m92 += x[9][i] * x[2][i]
m102 += x[10][i] * x[2][i]
k2 += y[i][j] * x[2][i]
m03 += x[0][i] * x[3][i]
m13 += x[1][i] * x[3][i]
m23 += x[2][i] * x[3][i]
m33 += x[3][i] * x[3][i]
m43 += x[4][i] * x[3][i]
m53 += x[5][i] * x[3][i]
m63 += x[6][i] * x[3][i]
m73 += x[7][i] * x[3][i]
m83 += x[8][i] * x[3][i]
m93 += x[9][i] * x[3][i]
m103 += x[10][i] * x[3][i]
k3 += y[i][j] * x[3][i]
m04 += x[0][i] * x[4][i]
m14 += x[1][i] * x[4][i]
m24 += x[2][i] * x[4][i]
m34 += x[3][i] * x[4][i]
m44 += x[4][i] * x[4][i]
m54 += x[5][i] * x[4][i]
m64 += x[6][i] * x[4][i]
m74 += x[7][i] * x[4][i]
m84 += x[8][i] * x[4][i]
m94 += x[9][i] * x[4][i]
m104 += x[10][i] * x[4][i]
k4 += y[i][j] * x[4][i]
m05 += x[0][i] * x[5][i]
m15 += x[1][i] * x[5][i]
m25 += x[2][i] * x[5][i]
m35 += x[3][i] * x[5][i]
m45 += x[4][i] * x[5][i]
m55 += x[5][i] * x[5][i]
m65 += x[6][i] * x[5][i]
m75 += x[7][i] * x[5][i]
m85 += x[8][i] * x[5][i]
m95 += x[9][i] * x[5][i]
m105 += x[10][i] * x[5][i]
k5 += y[i][j] * x[5][i]
m06 += x[0][i] * x[6][i]
m16 += x[1][i] * x[6][i]
m26 += x[2][i] * x[6][i]
m36 += x[3][i] * x[6][i]
m46 += x[4][i] * x[6][i]
m56 += x[5][i] * x[6][i]
m66 += x[6][i] * x[6][i]
m76 += x[7][i] * x[6][i]
m86 += x[8][i] * x[6][i]
m96 += x[9][i] * x[6][i]
m106 += x[10][i] * x[6][i]
k6 += y[i][j] * x[6][i]
m07 += x[0][i] * x[7][i]
m17 += x[1][i] * x[7][i]
m27 += x[2][i] * x[7][i]
```

```
m37 += x[3][i] * x[7][i]
    m47 += x[4][i] * x[7][i]
    m57 += x[5][i] * x[7][i]
    m67 += x[6][i] * x[7][i]
    m77 += x[7][i] * x[7][i]
    m87 += x[8][i] * x[7][i]
    m97 += x[9][i] * x[7][i]
    m107 += x[10][i] * x[7][i]
    k7 += y[i][j] * x[7][i]
    m08 += x[0][i] * x[8][i]
    m18 += x[1][i] * x[8][i]
    m28 += x[2][i] * x[8][i]
    m38 += x[3][i] * x[8][i]
    m48 += x[4][i] * x[8][i]
    m58 += x[5][i] * x[8][i]
    m68 += x[6][i] * x[8][i]
    m78 += x[7][i] * x[8][i]
    m88 += x[8][i] * x[8][i]
    m98 += x[9][i] * x[8][i]
    m108 += x[10][i] * x[8][i]
    k8 += y[i][j] * x[8][i]
    m09 += x[0][i] * x[9][i]
    m19 += x[1][i] * x[9][i]
    m29 += x[2][i] * x[9][i]
    m39 += x[3][i] * x[9][i]
    m49 += x[4][i] * x[9][i]
    m59 += x[5][i] * x[9][i]
    m69 += x[6][i] * x[9][i]
    m79 += x[7][i] * x[9][i]
    m89 += x[8][i] * x[9][i]
    m99 += x[9][i] * x[9][i]
    m109 += x[10][i] * x[9][i]
    k9 += y[i][j] * x[9][i]
    m010 += x[0][i] * x[10][i]
    m110 += x[1][i] * x[10][i]
    m210 += x[2][i] * x[10][i]
    m310 += x[3][i] * x[10][i]
    m410 += x[4][i] * x[10][i]
    m510 += x[5][i] * x[10][i]
    m610 += x[6][i] * x[10][i]
    m710 += x[7][i] * x[10][i]
    m810 += x[8][i] * x[10][i]
    m910 += x[9][i] * x[10][i]
    m1010 += x[10][i] * x[10][i]
    k10 += y[i][j] * x[10][i]
main_det = det([
  [m00, m10, m20, m30, m40, m50, m60, m70, m80, m90, m100],
  [m01, m11, m21, m31, m41, m51, m61, m71, m81, m91, m101],
  [m02, m12, m22, m32, m42, m52, m62, m72, m82, m92, m102],
  [m03, m13, m23, m33, m43, m53, m63, m73, m83, m93, m103],
  [m04, m14, m24, m34, m44, m54, m64, m74, m84, m94, m104],
  [m05, m15, m25, m35, m45, m55, m65, m75, m85, m95, m105],
  [m06, m16, m26, m36, m46, m56, m66, m76, m86, m96, m106],
  [m07, m17, m27, m37, m47, m57, m67, m77, m87, m97, m107],
  [m08, m18, m28, m38, m48, m58, m68, m78, m88, m98, m108],
  [m09, m19, m29, m39, m49, m59, m69, m79, m89, m99, m109],
  [m010, m110, m210, m310, m410, m510, m610, m710, m810, m910, m1010]
det0 = det([
  [k0, m10, m20, m30, m40, m50, m60, m70, m80, m90, m100],
```

1)

```
[k1, m11, m21, m31, m41, m51, m61, m71, m81, m91, m101],
  [k2, m12, m22, m32, m42, m52, m62, m72, m82, m92, m102],
  [k3, m13, m23, m33, m43, m53, m63, m73, m83, m93, m103],
  [k4, m14, m24, m34, m44, m54, m64, m74, m84, m94, m104],
  [k5, m15, m25, m35, m45, m55, m65, m75, m85, m95, m105],
  [k6, m16, m26, m36, m46, m56, m66, m76, m86, m96, m106],
  [k7, m17, m27, m37, m47, m57, m67, m77, m87, m97, m107],
  [k8, m18, m28, m38, m48, m58, m68, m78, m88, m98, m108],
  [k9, m19, m29, m39, m49, m59, m69, m79, m89, m99, m109],
  [k10, m110, m210, m310, m410, m510, m610, m710, m810, m910, m1010]
])
det1 = det([
  [m00, k0, m20, m30, m40, m50, m60, m70, m80, m90, m100],
  [m01, k1, m21, m31, m41, m51, m61, m71, m81, m91, m101],
  [m02, k2, m22, m32, m42, m52, m62, m72, m82, m92, m102],
  [m03, k3, m23, m33, m43, m53, m63, m73, m83, m93, m103],
  [m04, k4, m24, m34, m44, m54, m64, m74, m84, m94, m104],
  [m05, k5, m25, m35, m45, m55, m65, m75, m85, m95, m105],
  [m06, k6, m26, m36, m46, m56, m66, m76, m86, m96, m106],
  [m07, k7, m27, m37, m47, m57, m67, m77, m87, m97, m107],
  [m08, k8, m28, m38, m48, m58, m68, m78, m88, m98, m108],
  [m09, k9, m29, m39, m49, m59, m69, m79, m89, m99, m109],
  [m010, k10, m210, m310, m410, m510, m610, m710, m810, m910, m1010]
det2 = det([
  [m00, m10, k0, m30, m40, m50, m60, m70, m80, m90, m100],
  [m01, m11, k1, m31, m41, m51, m61, m71, m81, m91, m101],
  [m02, m12, k2, m32, m42, m52, m62, m72, m82, m92, m102],
  [m03, m13, k3, m33, m43, m53, m63, m73, m83, m93, m103],
  [m04, m14, k4, m34, m44, m54, m64, m74, m84, m94, m104],
  [m05, m15, k5, m35, m45, m55, m65, m75, m85, m95, m105],
  [m06, m16, k6, m36, m46, m56, m66, m76, m86, m96, m106],
  [m07, m17, k7, m37, m47, m57, m67, m77, m87, m97, m107],
  [m08, m18, k8, m38, m48, m58, m68, m78, m88, m98, m108],
  [m09, m19, k9, m39, m49, m59, m69, m79, m89, m99, m109],
  [m010, m110, k10, m310, m410, m510, m610, m710, m810, m910, m1010]
])
det3 = det([
  [m00, m10, m20, k0, m40, m50, m60, m70, m80, m90, m100],
  [m01, m11, m21, k1, m41, m51, m61, m71, m81, m91, m101],
  [m02, m12, m22, k2, m42, m52, m62, m72, m82, m92, m102],
  [m03, m13, m23, k3, m43, m53, m63, m73, m83, m93, m103],
  [m04, m14, m24, k4, m44, m54, m64, m74, m84, m94, m104],
  [m05, m15, m25, k5, m45, m55, m65, m75, m85, m95, m105],
  [m06, m16, m26, k6, m46, m56, m66, m76, m86, m96, m106],
  [m07, m17, m27, k7, m47, m57, m67, m77, m87, m97, m107],
  [m08, m18, m28, k8, m48, m58, m68, m78, m88, m98, m108],
  [m09, m19, m29, k9, m49, m59, m69, m79, m89, m99, m109],
  [m010, m110, m210, k10, m410, m510, m610, m710, m810, m910, m1010]
])
det4 = det([
  [m00, m10, m20, m30, k0, m50, m60, m70, m80, m90, m100],
  [m01, m11, m21, m31, k1, m51, m61, m71, m81, m91, m101],
  [m02, m12, m22, m32, k2, m52, m62, m72, m82, m92, m102],
  [m03, m13, m23, m33, k3, m53, m63, m73, m83, m93, m103],
  [m04, m14, m24, m34, k4, m54, m64, m74, m84, m94, m104],
  [m05, m15, m25, m35, k5, m55, m65, m75, m85, m95, m105],
  [m06, m16, m26, m36, k6, m56, m66, m76, m86, m96, m106],
```

```
[m07, m17, m27, m37, k7, m57, m67, m77, m87, m97, m107],
  [m08, m18, m28, m38, k8, m58, m68, m78, m88, m98, m108],
  [m09, m19, m29, m39, k9, m59, m69, m79, m89, m99, m109],
  [m010, m110, m210, m310, k10, m510, m610, m710, m810, m910, m1010]
])
det5 = det([
  [m00, m10, m20, m30, m40, k0, m60, m70, m80, m90, m100],
  [m01, m11, m21, m31, m41, k1, m61, m71, m81, m91, m101],
  [m02, m12, m22, m32, m42, k2, m62, m72, m82, m92, m102],
  [m03, m13, m23, m33, m43, k3, m63, m73, m83, m93, m103],
  [m04, m14, m24, m34, m44, k4, m64, m74, m84, m94, m104],
  [m05, m15, m25, m35, m45, k5, m65, m75, m85, m95, m105],
  [m06, m16, m26, m36, m46, k6, m66, m76, m86, m96, m106],
  [m07, m17, m27, m37, m47, k7, m67, m77, m87, m97, m107],
  [m08, m18, m28, m38, m48, k8, m68, m78, m88, m98, m108],
  [m09, m19, m29, m39, m49, k9, m69, m79, m89, m99, m109],
  [m010, m110, m210, m310, m410, k10, m610, m710, m810, m910, m1010]
det6 = det([
  [m00, m10, m20, m30, m40, m50, k0, m70, m80, m90, m100],
  [m01, m11, m21, m31, m41, m51, k1, m71, m81, m91, m101],
  [m02, m12, m22, m32, m42, m52, k2, m72, m82, m92, m102],
  [m03, m13, m23, m33, m43, m53, k3, m73, m83, m93, m103],
  [m04, m14, m24, m34, m44, m54, k4, m74, m84, m94, m104],
  [m05, m15, m25, m35, m45, m55, k5, m75, m85, m95, m105].
  [m06, m16, m26, m36, m46, m56, k6, m76, m86, m96, m106],
  [m07, m17, m27, m37, m47, m57, k7, m77, m87, m97, m107],
  [m08, m18, m28, m38, m48, m58, k8, m78, m88, m98, m108],
  [m09, m19, m29, m39, m49, m59, k9, m79, m89, m99, m109],
  [m010, m110, m210, m310, m410, m510, k10, m710, m810, m910, m1010]
])
det7 = det([
  [m00, m10, m20, m30, m40, m50, m60, k0, m80, m90, m100],
  [m01, m11, m21, m31, m41, m51, m61, k1, m81, m91, m101],
  [m02, m12, m22, m32, m42, m52, m62, k2, m82, m92, m102],
  [m03, m13, m23, m33, m43, m53, m63, k3, m83, m93, m103],
  [m04, m14, m24, m34, m44, m54, m64, k4, m84, m94, m104],
  [m05, m15, m25, m35, m45, m55, m65, k5, m85, m95, m105],
  [m06, m16, m26, m36, m46, m56, m66, k6, m86, m96, m106],
  [m07, m17, m27, m37, m47, m57, m67, k7, m87, m97, m107],
  [m08, m18, m28, m38, m48, m58, m68, k8, m88, m98, m108],
  [m09, m19, m29, m39, m49, m59, m69, k9, m89, m99, m109],
  [m010, m110, m210, m310, m410, m510, m610, k10, m810, m910, m1010]
])
det8 = det([
  [m00, m10, m20, m30, m40, m50, m60, m70, k0, m90, m100],
  [m01, m11, m21, m31, m41, m51, m61, m71, k1, m91, m101],
  [m02, m12, m22, m32, m42, m52, m62, m72, k2, m92, m102],
  [m03, m13, m23, m33, m43, m53, m63, m73, k3, m93, m103],
  [m04, m14, m24, m34, m44, m54, m64, m74, k4, m94, m104],
  [m05, m15, m25, m35, m45, m55, m65, m75, k5, m95, m105],
  [m06, m16, m26, m36, m46, m56, m66, m76, k6, m96, m106],
  [m07, m17, m27, m37, m47, m57, m67, m77, k7, m97, m107],
  [m08, m18, m28, m38, m48, m58, m68, m78, k8, m98, m108],
  [m09, m19, m29, m39, m49, m59, m69, m79, k9, m99, m109],
  [m010, m110, m210, m310, m410, m510, m610, m710, k10, m910, m1010]
])
```

```
det9 = det([
      [m00, m10, m20, m30, m40, m50, m60, m70, m80, k0, m100],
      [m01, m11, m21, m31, m41, m51, m61, m71, m81, k1, m101],
      [m02, m12, m22, m32, m42, m52, m62, m72, m82, k2, m102],
      [m03, m13, m23, m33, m43, m53, m63, m73, m83, k3, m103],
      [m04, m14, m24, m34, m44, m54, m64, m74, m84, k4, m104],
      [m05, m15, m25, m35, m45, m55, m65, m75, m85, k5, m105],
      [m06, m16, m26, m36, m46, m56, m66, m76, m86, k6, m106],
      [m07, m17, m27, m37, m47, m57, m67, m77, m87, k7, m107],
      [m08, m18, m28, m38, m48, m58, m68, m78, m88, k8, m108],
      [m09, m19, m29, m39, m49, m59, m69, m79, m89, k9, m109],
      [m010, m110, m210, m310, m410, m510, m610, m710, m810, k10, m1010]
   1)
    det10 = det([
      [m00, m10, m20, m30, m40, m50, m60, m70, m80, m90, k0],
      [m01, m11, m21, m31, m41, m51, m61, m71, m81, m91, k1],
      [m02, m12, m22, m32, m42, m52, m62, m72, m82, m92, k2],
      [m03, m13, m23, m33, m43, m53, m63, m73, m83, m93, k3],
      [m04, m14, m24, m34, m44, m54, m64, m74, m84, m94, k4],
      [m05, m15, m25, m35, m45, m55, m65, m75, m85, m95, k5],
      [m06, m16, m26, m36, m46, m56, m66, m76, m86, m96, k6],
      [m07, m17, m27, m37, m47, m57, m67, m77, m87, m97, k7],
      [m08, m18, m28, m38, m48, m58, m68, m78, m88, m98, k8],
      [m09, m19, m29, m39, m49, m59, m69, m79, m89, m99, k9],
      [m010, m110, m210, m310, m410, m510, m610, m710, m810, m910, k10]
   1)
   cfs0 = det0 / main_det
   cfs1 = det1 / main_det
    cfs2 = det2 / main_det
    cfs3 = det3 / main_det
    cfs4 = det4 / main_det
   cfs5 = det5 / main_det
   cfs6 = det6 / main_det
    cfs7 = det7 / main_det
    cfs8 = det8 / main_det
    cfs9 = det9 / main_det
    cfs10 = det10 / main_det
    return [cfs0, cfs1, cfs2, cfs3, cfs4, cfs5, cfs6, cfs7, cfs8, cfs9, cfs10]
  def calculate_with_nature_cfs(self, nxl):
    """nxl - nature x line""
    return self.A[0]*nxl[0] + self.A[1]*nxl[1] + self.A[2]*nxl[2] + self.A[3]*nxl[3] + \
       self.A[4]*nxl[1]*nxl[2] + self.A[5]*nxl[1]*nxl[3] + self.A[6]*nxl[2]*nxl[3] + 
       self.A[7]*nxl[1]*nxl[2]*nxl[3] + self.A[8]*(nxl[1] ** 2) + self.A[9]*(nxl[2] ** 2) + 
       self.A[10]*(nxl[3] ** 2)
  def calculate_with_encoded_cfs(self, xl):
    """xl - encoded x line"""
    return self.B[0]*xl[0] + self.B[1]*xl[1] + self.B[2]*xl[2] + self.B[3]*xl[3] + \setminus
       self.B[4]*xl[1]*xl[2] + self.B[5]*xl[1]*xl[3] + self.B[6]*xl[2]*xl[3] + 
       self.B[7]*xl[1]*xl[2]*xl[3] + self.B[8]*(xl[1] ** 2) + self.B[9]*(xl[2] ** 2) + 
       self.B[10]*(xl[3] ** 2)
                                          criterion_tables.py
"""Таблиця для критерія Кохрена"""
base_kohren = [
  [9985, 9750, 9392, 9057, 8772, 8534, 8332, 8159, 8010, 7880, 7341, 6602, 5813, 5000],
```

```
[9669, 8709, 7977, 7457, 7071, 6771, 6530, 6333, 6167, 6025, 5466, 4748, 4031, 3333],
   [9065, 7679, 6841, 6287, 5892, 5598, 5365, 5175, 5017, 4884, 4366, 3720, 3093, 2500],
   [8412, 6838, 5981, 5440, 5063, 4783, 4564, 4387, 4241, 4118, 3645, 3066, 2513, 2000],
   [7808, 6161, 5321, 4803, 4447, 4184, 3980, 3817, 3682, 3568, 3135, 2612, 2119, 1667],
   [7271, 5612, 4800, 4307, 3974, 3726, 3535, 3384, 3259, 3154, 2756, 2278, 1833, 1429],
   [6798, 5157, 4377, 3910, 3595, 3362, 3185, 3043, 2926, 2829, 2462, 2022, 1616, 1250],
   [6385, 4775, 4027, 3584, 3286, 3067, 2901, 2768, 2659, 2568, 2226, 1820, 1446, 1111],
   [6020, 4450, 3733, 3311, 3029, 2823, 2666, 2541, 2439, 2353, 2032, 1655, 1308, 1000],
   [5410, 3924, 3264, 2880, 2624, 2439, 2299, 2187, 2098, 2020, 1737, 1403, 1000, 833],
   [4709, 3346, 2758, 2419, 2159, 2034, 1911, 1815, 1736, 1671, 1429, 1144, 889, 667],
   [3894, 2705, 2205, 1921, 1735, 1602, 1501, 1422, 1357, 1303, 1108, 879, 675, 500],
   [3434, 2354, 1907, 1656, 1493, 1374, 1286, 1216, 1160, 1113, 942, 743, 567, 417],
   [2929, 1980, 1593, 1377, 1237, 1137, 1061, 1002, 958, 921, 771, 604, 457, 333],
   [2370, 1576, 1259, 1082, 968, 887, 827, 780, 745, 713, 595, 462, 347, 250],
   [1737, 1131, 895, 766, 682, 623, 583, 552, 520, 497, 411, 316, 234, 167],
   [998, 632, 495, 419, 371, 337, 312, 292, 279, 266, 218, 165, 120, 83],
column_kohren_f1 = \{(1,): 0, (2,): 1, (3,): 2, (4,): 3, (5,): 4, (6,): 5, (7,): 6, (8,): 7, (9,): 8, (1,0): 6, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 8, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,0): 7, (1,
                (range(10, 14)): 9, (range(14, 26)): 10, (range(26, 91)): 11, (range(91, 145)): 12}
COLUMN_KOHREN_F1_ELSE = 13
row_kohren_f2 = \{(2,): 0, (3,): 1, (4,): 2, (5,): 3, (6,): 4, (7,): 5, (8,): 6, (9,): 7,
              (range(10, 12)): 8, (range(12, 14)): 9, (range(14, 18)): 10, (range(18, 23)): 11,
              (range(23, 28)): 12, (range(28, 36)): 13, (range(36, 51)): 14, (range(51, 81)): 15,
             (range(81, 121)): 16}
ROW_KOHREN_F2_ELSE = 16
"""Таблиця для t-критерія Стьюдента"""
base_student_f3 = {(1,): 12.706, (2,): 4.303, (3,): 3.182, (4,): 2.776, (5,): 2.571, (6,): 2.447, (7,): 2.365,
               (8,): 2.306, (9,): 2.262, (10,): 2.228, (11,): 2.201, (12,): 2.179, (13,): 2.160, (14,): 2.145,
               (15,): 2.131, (16,): 2.120, (17,): 2.110, (18,): 2.101, (19,): 2.093, (20,): 2.086,
               (range(21, 25)): 2.069, (range(25, 30)): 2.060, (range(30, 40)): 2.042, (range(40, 60)): 2.021,
               (range(60, 81)): 2.000, (range(81, 111)): 1.980, (range(111, 121)): 1.960}
T_STUDENT_ELSE = 1.960
"""Таблиця для F-критерія Фішера"""
base_phisher = [
   [164.4, 199.5, 215.7, 224.6, 230.2, 234.0, 244.9, 249.0, 254.3],
   [18.5, 19.2, 19.2, 19.3, 19.3, 19.3, 19.4, 19.4, 19.5],
   [10.1, 9.6, 9.3, 9.1, 9.0, 8.9, 8.7, 8.6, 8.5],
   [7.7, 6.9, 6.6, 6.4, 6.3, 6.2, 5.9, 5.8, 5.6],
   [6.6, 5.8, 5.4, 5.2, 5.1, 5.0, 4.7, 4.5, 4.4],
   [6.0, 5.1, 4.8, 4.5, 4.4, 4.3, 4.0, 3.8, 3.7],
   [5.5, 4.7, 4.4, 4.1, 4.0, 3.9, 3.6, 3.4, 3.2],
   [5.3, 4.5, 4.1, 3.8, 3.7, 3.6, 3.3, 3.1, 2.9],
   [5.1, 4.3, 3.9, 3.6, 3.5, 3.4, 3.1, 2.9, 2.7],
   [5.0, 4.1, 3.7, 3.5, 3.3, 3.2, 2.9, 2.7, 2.5],
   [4.8, 4.0, 3.6, 3.4, 3.2, 3.1, 2.8, 2.6, 2.4],
   [4.8, 3.9, 3.5, 3.3, 3.1, 3.0, 2.7, 2.5, 2.3],
   [4.7, 3.8, 3.4, 3.2, 3.0, 2.9, 2.6, 2.4, 2.2],
   [4.6, 3.7, 3.3, 3.1, 3.0, 2.9, 2.5, 2.3, 2.1],
   [4.5, 3.7, 3.3, 3.1, 2.9, 2.8, 2.5, 2.3, 2.1],
   [4.5, 3.6, 3.2, 3.0, 2.9, 2.7, 2.4, 2.2, 2.0],
   [4.5, 3.6, 3.2, 3.0, 2.8, 2.7, 2.4, 2.2, 2.0],
   [4.4, 3.6, 3.2, 2.9, 2.8, 2.7, 2.3, 2.1, 1.9],
   [4.4, 3.5, 3.1, 2.9, 2.7, 2.6, 2.3, 2.1, 1.9],
   [4.4, 3.5, 3.1, 2.9, 2.7, 2.6, 2.3, 2.1, 1.9],
   [4.3, 3.4, 3.1, 2.8, 2.7, 2.6, 2.2, 2.0, 1.8],
   [4.3, 3.4, 3.0, 2.8, 2.6, 2.5, 2.2, 2.0, 1.7],
   [4.2, 3.4, 3.0, 2.7, 2.6, 2.5, 2.2, 2.0, 1.7],
   [4.2, 3.3, 3.0, 2.7, 2.6, 2.4, 2.1, 1.9, 1.7],
```

```
[4.2, 3.3, 2.9, 2.7, 2.5, 2.4, 2.1, 1.9, 1.6],
     [4.1, 3.2, 2.9, 2.6, 2.5, 2.3, 2.0, 1.8, 1.5],
     [4.0, 3.2, 2.8, 2.5, 2.4, 2.3, 1.9, 1.7, 1.4],
    [3.9, 3.1, 2.7, 2.5, 2.3, 2.2, 1.8, 1.6, 1.3],
    [3.8, 3.0, 2.6, 2.4, 2.2, 2.1, 1.8, 1.5, 1.0]
1
row_phisher_f3 = \{(1,): 0, (2,): 1, (3,): 2, (4,): 3, (5,): 4, (6,): 5, (7,): 6, (8,): 7, (9,): 8, (10,): 9,
                    (11,): 10, (12,): 11, (13,): 12, (14,): 13, (15,): 14, (16,): 15, (17,): 16, (18,): 17, (19,): 18,
                    (20, 21): 19, (22, 23): 20, (24, 25): 21, (26, 27): 22, (28, 29): 23, (range(30, 36)): 24,
                    (range(36, 51)): 25, (range(51, 91)): 26, (range(91, 121)): 27}
ROW_PHISHER_F3_ELSE = 28
column_phisher_f4 = \{(1,): 0, (2,): 1, (3,): 2, (4,): 3, (5,): 4, (range(6, 10)): 5, (range(10, 19)): 6, (range(10, 19)): 6,
                        (range(19, 25)): 7}
COLUMN_PHISHER_F4_ELSE = 8
def compare_kohren_with_table_value(f1, f2, Gp):
     """True, якщо дисперсія однорідна"
     row = -1
     column = -1
     for key in row_kohren_f2.keys():
         if f2 in key:
              row = row_kohren_f2[key]
              break
    if row == -1:
         row = ROW KOHREN F2 ELSE
     for key in column_kohren_f1.keys():
         if f1 in key:
              column = column_kohren_f1[key]
              break
     if column == -1:
         column = COLUMN_KOHREN_F1_ELSE
     return Gp < (base_kohren[row][column]/1000)</pre>
def compare_student_with_table_value(f3, t_exp):
      """True, якщо коефіцієнт Вs є значущим.""
     t teo = -1
     for key in base_student_f3.keys():
         if f3 in key:
              t_teo = base_student_f3[key]
              break
     if t teo == -1:
         t_teo = T_STUDENT_ELSE
     return t_exp > t_teo
def compare_phisher_with_table_value(f3, f4, Fp):
      """True, якщо отримана математична модель адекватна експериментальним даним."""
    row = -1
     column = -1
     for key in row_phisher_f3.keys():
         if f3 in key:
              row = row_phisher_f3[key]
              break
     if row == -1:
         row = ROW_PHISHER_F3_ELSE
```

```
for key in column_phisher_f4.keys():
        if f4 in kev:
             column = column_phisher_f4[key]
             break
    if column == -1:
        column = COLUMN_PHISHER_F4_ELSE
    return Fp <= base_phisher[row][column]</pre>
                                                                                                         logs.py
from beautifultable import BeautifulTable
SYSTEM_MARK_L = "Action: "
SYSTEM MARK V = "View: "
text = {
    0: "Розглянемо лінійне рівняння регресії без взаємодії факторів:\ny = b0 + b1·x1 + b2·x2 + b3·x3",
    1: "Розглянемо лінійне рівняння регресії із врахуванням взаємодії факторів:\n"
        "y = b0 + b1·x1 + b2·x2 + b3·x3 + b12·x1·x2 + b13·x1·x3 + b23·x2·x3 + b123·x1·x2·x3",
    2: "Розглянемо рівняння регресії із врахуванням квадратичних членів:\n"
        "y = b0 + b1·x1 + b2·x2 + b3·x3 + b12·x1·x2 + b13·x1·x3 + b23·x2·x3 + b123·x1·x2·x3 + " +
       b11 \cdot x1 \cdot x1 + b22 \cdot x2 \cdot x2 + b33 \cdot x3 \cdot x3,
    3: "Маємо, N = \{0\}, K = \{1\}, m = \{2\}.",
    4: "Складаємо матрицю планування і проведимо експерименти",
    5: "Розраховуємо натуральні значення коефіцієнтів.",
    6: "Розраховуємо кодовані значення коефіцієнтів.",
    7: "Рівняння регресії має вигляд (нат. знач. коеф.):\n" +
        y = \{0\} + \{1\} \cdot x1 + \{2\} \cdot x2 + \{3\} \cdot x3
    8: "Рівняння регресії має вигляд (код. знач. коеф.):\n" +
       y = \{0\} + \{1\}\cdot x1 + \{2\}\cdot x2 + \{3\}\cdot x3
    9: "Рівняння регресії має вигляд (нат. знач. коеф.):\n" +
       y = \{0\} + \{1\} \cdot x1 + \{2\} \cdot x2 + \{3\} \cdot x3 + \{4\} \cdot x1 \cdot x2 + \{5\} \cdot x1 \cdot x3 + \{6\} \cdot x2 \cdot x3 + \{7\} \cdot x1 \cdot x2 \cdot x3
    10: "Рівняння регресії має вигляд (код. знач. коеф.):\n" +
         y = \{0\} + \{1\} \cdot x1 + \{2\} \cdot x2 + \{3\} \cdot x3 + \{4\} \cdot x1 \cdot x2 + \{5\} \cdot x1 \cdot x3 + \{6\} \cdot x2 \cdot x3 + \{7\} \cdot x1 \cdot x2 \cdot x3
    11: "Рівняння регресії має вигляд (нат. знач. коеф.):\n" +
         "y = {0} + {1}·x1 + {2}·x2 + {3}·x3 + {4}·x1·x2 + {5}·x1·x3 + {6}·x2·x3 + {7}·x1·x2·x3 + " +
         {8}\cdot x1\cdot x1 + {9}\cdot x2\cdot x2 + {10}\cdot x3\cdot x3
    12: "Рівняння регресії має вигляд (код. знач. коеф.):\n" +
         "{8}\cdot x1\cdot x1 + {9}\cdot x2\cdot x2 + {10}\cdot x3\cdot x3",
    13: "Дисперсія однорідна за критерієм Кохрена при m = {0}:\n" +
         "f1 = \{1\}, f2 = \{2\}, Gp = \{3\}",
    14: "Перевіряємо нуль гіпотезу та корегуємо рівняння регресії:\n" +
         "f3 = \{0\}, t = \{1\}.",
    15: "Нове рівняння регресії має вигляд (нат. знач. коеф.):\n" +
         y = \{0\} + \{1\} \cdot x1 + \{2\} \cdot x2 + \{3\} \cdot x3
    16: "Нове рівняння регресії має вигляд (код. знач. коеф.):\n" +
         y = \{0\} + \{1\} \cdot x1 + \{2\} \cdot x2 + \{3\} \cdot x3,
    17: "Нове рівняння регресії має вигляд (нат. знач. коеф.):\n" +
         y = \{0\} + \{1\} \cdot x1 + \{2\} \cdot x2 + \{3\} \cdot x3 + \{4\} \cdot x1 \cdot x2 + \{5\} \cdot x1 \cdot x3 + \{6\} \cdot x2 \cdot x3 + \{7\} \cdot x1 \cdot x2 \cdot x3
    18: "Нове рівняння регресії має вигляд (код. знач. коеф.):\n" +
         y = \{0\} + \{1\} \cdot x1 + \{2\} \cdot x2 + \{3\} \cdot x3 + \{4\} \cdot x1 \cdot x2 + \{5\} \cdot x1 \cdot x3 + \{6\} \cdot x2 \cdot x3 + \{7\} \cdot x1 \cdot x2 \cdot x3
    19: "Нове рівняння регресії має вигляд (нат. знач. коеф.):\n" +
         "+\{8\}·x1·x1+\{9\}·x2·x2+\{10\}·x3·x3",
    20: "Нове рівняння регресії має вигляд (код. знач. коеф.):\n" +
         y = \{0\} + \{1\} \cdot x1 + \{2\} \cdot x2 + \{3\} \cdot x3 + \{4\} \cdot x1 \cdot x2 + \{5\} \cdot x1 \cdot x3 + \{6\} \cdot x2 \cdot x3 + \{7\} \cdot x1 \cdot x3 \cdot x3 + \{7\} \cdot x3 +
         "+{8}\cdot x1\cdot x1 + {9}\cdot x2\cdot x2 + {10}\cdot x3\cdot x3",
    21: "Перевіряємо адекватність моделі.\n" +
        "f3 = \{0\}, f4 = \{1\}, Fp = \{2\}",
    22: "Модель адекватна оригіналу.",
    23: "Модель не адекватна оригіналу.",
```

```
24: "Змінюємо рівняння регресії.\n",
  25: "Виводимо результати.",
  26: "Оскільки всі моделі не адекватні, то почнемо експерименти з початку.",
  27: "Перевірка критерія Кохрена займає: {0}",
  28: "Перевірка критерія Стьюдента займає: {0}",
  29: "Перевірка критерія Фішера займає: {0}"}
def comment(key, par):
  return print(SYSTEM_MARK_L + text[key].format(*par))
titles = {0: "Матриця планування експерименту (нат. знач. коеф., без взаємодії)",
     1: "Матриця планування експерименту (код. знач. коеф., без взаємодії)",
     2: "Матриця планування експерименту (нат. знач. коеф., із взаємодією)",
     3: "Матриця планування експерименту (код. знач. коеф., із взаємодією)",
     4: "Центральний ортогональний композиційний план (нат. знач. коеф.)",
     5: "Центральний ортогональний композиційний план (код. знач. коеф.)",
     6: "Перевірка знайдених коефіцієнтів (нат. знач. коеф., без взаємодії)".
     7: "Перевірка знайдених коефіцієнтів (код. знач. коеф., без взаємодії)".
     8: "Перевірка знайдених коефіцієнтів (нат. знач. коеф., із взаємодією)",
     9: "Перевірка знайдених коефіцієнтів (код. знач. коеф., із взаємодією)",
     10: "Перевірка знайдених коефіцієнтів (нат. знач. коеф., із квад. членами)",
     11: "Перевірка знайдених коефіцієнтів (код. знач. коеф., із квад. членами)"}
x_headers = {
  0: ["Nº" "X0" "X1" "X2" "X3"].
  1: ["Nº", "X0", "X1", "X2", "X3", "X1·X2", "X1·X3", "X2·X3", "X1·X2·X3"],
  2: ["Nº, "X0", "X1", "X2", "X3", "X1·X2", "X1·X3", "X2·X3", "X1·X2·X3", "X1·X2·X3", "X1·X1·X1", "X2·X2", "X3·X3"]
}
def show_plan(title_index, x_header_index, x_lines, experiment):
  print(SYSTEM_MARK_V + titles[title_index])
  plan = BeautifulTable()
  plan.max_table_width = 1000
  y_headers = [f''Y\{i + 1\}'' \text{ for } i \text{ in range(experiment.m)}]
  plan.column_headers = [*x_headers[x_header_index], *y_headers]
  for i in range(experiment.N):
    plan.append_row([i + 1, *x_lines[i], *experiment.y[i]])
  print(plan, "\n")
def show natured checking matrix(title index, x header index, x lines, model, experiment):
  print(SYSTEM_MARK_V + titles[title_index])
  natured_checking_matrix = BeautifulTable()
  natured_checking_matrix.max_table_width = 1000
  natured_checking_matrix.column_headers = [*x_headers[x_header_index], "Average Y[i]", "Exp-tal Y[i]"]
  v_average = experiment.y_average
  for i in range(experiment.N):
    y_exp = model.calculate_with_nature_cfs(x_lines[i])
    natured_checking_matrix.append_row([i+1, *x_lines[i], y_average[i], y_exp])
  print(natured_checking_matrix, "\n")
def show_encoded_checking_matrix(title_index, x_header_index, x_lines, model, experiment):
  print(SYSTEM_MARK_V + titles[title_index])
  encoded_checking_matrix = BeautifulTable()
  encoded_checking_matrix.max_table_width = 1000
  encoded_checking_matrix.column_headers = [*x_headers[x_header_index], "Average Y[i]", "Exp-tal Y[i]"]
  y_average = experiment.y_average
  for i in range(experiment.N):
```

```
y_exp = model.calculate_with_encoded_cfs(x_lines[i])
encoded_checking_matrix.append_row([i+1, *x_lines[i], y_average[i], y_exp])
print(encoded_checking_matrix, "\n")
```

Результат виконання роботи

Примітка: оскільки для заданого варіанту більшість експериментів закінчується підтвердження адекватності лінійного рівняння регресії без взаємодії факторів, то робимо висновок, що ймовірність перевірити всю послідовність операції надзвичайно мала. Тому робимо припущення, що лінійне рівняння регресії без взаємодії факторів та лінійне рівняння регресії із взаємодією факторів виявились неадекватними для того, що продемонструвати, як проводяться обчислення при рівнянні регресії із квадратичними коефіцієнтами.

```
Action: Розглянемо рівняння регресії із врахуванням квадратичних членів:
y = b0 + b1·x1 + b2·x2 + b3·x3 + b12·x1·x2 + b13·x1·x3 + b23·x2·x3 + b123·x1·x2·x3 + b11·x1·x1 + b22·x2·x2 + b33·x3·x3
Action: Маємо, N = 15, K = 11, m = 3.
Action: Складаємо матрицю планування і проведимо експерименти
Action: Дисперсія однорідна за критерієм Кохрена при m = 3:
f1 = 2, f2 = 15, Gp = 0.17819148936170212
View: Центральний ортогональний композиційний план (нат. знач. коеф.)
```

·	+	+	+	+	Ļ	+	+	+	+	+	+	+	·	+
						•	•	X1·X2·X3	•	•	•			
1	1	-10	-6	10	60	-100	-60	600 	100	36	100	198	198	199
	1	-10	6	-1	-60	10	-6	•	100	36	1	199	200	203
	1	1	-6	-1	-6	-1	6	6	1	36	1	198	196	205
4	1	1	6	10	6	10	60	60 	1	36	100	197	196	198
5	1	l -10	-6	-1	60	10	6	-60	100	36	1	197	198	203
6	1	-10	6	10	-60	-100	60	•	100	36	100	199	195	196
7	1	1	-6	10	-6	10	-60	•	1	36	100	201	196	203
8	1			-1	6	-1	-6	-6 	1	36	1	198	195	195
9	1	-11.183	0.0	4.5	-0.0	-50.321	0.0	-0.0 	125.048	0.0	20.25	202	196	203
10	1	2.183	0.0	4.5	0.0	9.821	0.0	0.0	4.763	0.0	20.25	195	196	197
11	1	-4.5	-7.29	4.5	32.805	-20.25	-32.805	147.623	20.25	53.144	20.25	195	204	197
		-	-				•	+		-			-	
12	1	-4.5	7.29	4.5	-32.805	-20.25	32.805	-147.623	20.25	53.144	20.25	201	205	202
13	1	-4.5	0.0	-2.183	-0.0	9.821	-0.0	0.0 	20.25	0.0	4.763	200	195	195
14	1	-4.5	0.0	11.183	-0.0	-50.321	0.0	-0.0 -0.0	20.25	0.0	125.048	199	200	204
15	1	-4.5	0.0	4.5	-0.0	-20.25	0.0	-0.0	20.25	0.0	20.25	198	202	204
4				+		+	+	+	+	+	+	+	+	+

View:	Центральний	ортогональний	композиційний	план	(код.	знач.	коеф.)

								+						
l Nº	X0	X1	X2	X3	X1·X2	X1·X3	X2·X3	X1·X2·X3 	X1·X1	X2·X2	X3·X3	Y1	Y2	Y3
1	1	-1	-1	1	1	-1	-1	 1 +	1	1	1	198	198	199
2	1	-1	1	-1	-1	1	-1	 1 +	1	1	1	199	200	203
3	1	1	-1	-1	-1	-1	1	 1 +	1	1	1	198	196	205
4	1	1	1	1	1	1		 1 +	1	1	1	197	196	198
5	1	-1	-1	-1	1	1	1	 -1 +	1	1	1	197	198	203
6	1	-1	1	1	-1	-1	1	 -1 +	1	1	1	199	195	196
7	1	1	-1	1	-1	1	-1	 -1 +	1	1	1	201	196	203
8	1	1	1	-1	1	-1	-1	 -1 +	1	1	1	198	195	195
9	1	-1.215	0	0	-0.0	-0.0	0	-0.0 -0.0	1.476	0	0	202	196	203
10	1	1.215	0	0	0.0	0.0	0	+ 0.0 +	1.476	0	0	195	196	197
11	1	0	-1.215	0	-0.0	0	-0.0	- -0.0 +	0	1.476	0	195	204	197
12	1	0	1.215	0	0.0	0	0.0	 0.0 +	0	1.476	0	201	205	202
13	1	0	0	-1.215	0	-0.0	-0.0	+ -0.0 +	0	0	1.476	200	195	195
								+						
		-		-				0.0 +						
15	1	0	0	0	0	0	0	0 +	0	0	0	198	202	204
	-	-	-	-		-		-	-	-				

Action: Розраховуємо натуральні значення коефіцієнтів.

Action: Puspakouspeno malypanioni snavenna koespitania.
Action: Pispakouspeno malypanioni snavenna koespitania.

y = 197.7057 + -0.674·x1 + -0.1519·x2 + 0.44·x3 + -0.0354·x1·x2 + 0.0262·x1·x3 + 0.0025·x2·x3 + 0.0025·x1·x2·x3 + -0.0478·x1·x1 + 0.0069·x2·x2 + -0.0329·x3·x3

Action: Розраховуємо кодовані значення коефіцієнтів.

Action: Рівняння регресії має вигляд (код. знач. коеф.): y = 200.5558 + -0.6938·x1 + -0.1954·x2 + 0.1459·x3 + -0.7917·x1·x2 + 0.7917·x1·x3 + -0.2917·x2·x3 + 0.4583·x1·x2·x3 + -1.4456·x1·x1 + 0.2479·x2·x2 + -0.994·x3·x3 . View: Перевірка знайдених коефіцієнтів (нат. знач. коеф., із квад. членами)

											4	
					X1·X3	X2·X3	X1·X2·X3	X1·X1	X2·X2	X3 · X3	Average Y[j]	Exp-tal Y[j]
1	-10	-6	10	60	-100	l -60	600	100	36	100	198.333	198.566
	•			•	10	l -6	60	100	36	1	200.667	201.05
					-1	I 6	6	1	36	1	199.667	197.887
1	1	6	10	6	10	60	60	1	36	100	197.0	197.788
1	-10	-6	-1	60	10	6	-60	100	36	1	199.333	198.357
1	-10	6	10	-60	-100	60	-600	100	36	100	196.667	198.258
	•	•	•	•	•	•			•		•	199.428
								-		_		195.579
1	-11.183	0.0	4.5	-0.0	-50.321	0.0	-0.0	125.048	0.0	20.25	200.333	199.265
1	2.183	0.0	4.5	0.0	9.821	0.0	0.0	4.763	0.0	20.25	196.0	+ 197.579
												+
1	-4.5	-7.29	4.5	32.805	-20.25	-32.805	147.623	20.25	53.144	20.25	198.667	201.159
1	-4.5	7.29	4.5	-32.805	-20.25	32.805	-147.623	20.25	53.144	20.25	202.667	200.684
1	-4.5	0.0	-2.183	-0.0	9.821	-0.0	0.0	20.25	0.0	4.763	196.667	198.911
1	-4.5	0.0	11.183	-0.0	-50.321	0.0	-0.0	20.25	0.0	125.048	201.0	199.266
												+
	1	1 -10 1 -10 1 1 1 1 1 1 1 1	1 -10 -6 1 1 0 6 1 1 1 -6 1 1 1 6 1 1 1 7 1 1 1 6 1 1 1 7 1 1 1 6 1 1 1 1 1 1 1 1 6 1 1 1 1 1 1 1 1 1 1	1 -10 -6 10	1	1	1	1	1	1	1	1

View: Перевірка знайдених коефіцієнтів (код. знач. коеф., із квад. членами) | N° | X0 | X1 | X2 | X3 | X1·X2 | X1·X3 | X2·X3 | X1·X2·X3 | X1·X1 | X2·X2 | X3·X3 | Average Y[j] | Exp-tal Y[j] | -+-------+-| 6 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 196.667 | 198.258 | | 9 | 1 | -1.215 | 0 | 0 | -0.0 | -0.0 | 0 | -0.0 | 1.476 | 0 | 0 | 200.333 | 199.265 | --+----+------+-----| 10 | 1 | 1.215 | 0 | 0 | 0.0 | 0.0 | 0.0 | 1.476 | 0 | 0 | 196.0 | 197.579 | -----+------------| 11 | 1 | 0 | -1.215 | 0 | -0.0 | 0 | -0.0 | 0 | 1.476 | 0 | 198.667 | 201.159 | | 12 | 1 | 0 | 1.215 | 0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 1.476 | 0 | 202.667 | 200.684 | | 13 | 1 | 0 | 0 | -1.215 | 0 | -0.0 | -0.0 | -0.0 | 0 | 0 | 1.476 | 196.667 | 198.911 | | 14 | 1 | 0 | 0 | 1.215 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 1.476 | 201.0 | 199.266 | Action: Перевіряємо нуль гіпотезу та корегуємо рівняння регресії: $\texttt{f3} = \texttt{30}, \ \texttt{t} = [570.0323, \ 1.9718, \ 0.5553, \ 0.4148, \ 2.2501, \ 2.2501, \ 0.829, \ 1.3027, \ 4.1087, \ 0.7047, \ 2.8251].$ Action: Нове рівняння регресії має вигляд (нат. знач. коеф.): $y = 197.7057 + 0 \cdot x1 + 0 \cdot x2 + 0 \cdot x3 + -0.0354 \cdot x1 \cdot x2 + 0.0262 \cdot x1 \cdot x3 + 0 \cdot x2 \cdot x3 + 0 \cdot x1 \cdot x2 \cdot x3 + -0.0478 \cdot x1 \cdot x1 + 0 \cdot x2 \cdot x2 + -0.0329 \cdot x3 \cdot x3 + 0 \cdot x1 \cdot x1 \cdot x1 + 0 \cdot x2 \cdot x2 + 0 \cdot x1 \cdot x1 \cdot x1 + 0 \cdot x2 \cdot x3 + 0 \cdot x1 \cdot x1 \cdot x1 + 0 \cdot x2 \cdot x2 + 0 \cdot x1 \cdot x1 \cdot x1 + 0 \cdot x2 \cdot x3 + 0 \cdot x1 \cdot x1 \cdot x1 + 0 \cdot x2 \cdot x3 + 0 \cdot x1 \cdot x1 \cdot x1 + 0 \cdot x2 \cdot x3 + 0 \cdot x1 \cdot x1 \cdot x1 + 0 \cdot x2 \cdot x3 + 0 \cdot x1 \cdot x1 \cdot x1 + 0 \cdot x2 \cdot x3 + 0 \cdot x1 \cdot x1 \cdot x1 + 0 \cdot x2 \cdot x3 + 0 \cdot x1 \cdot x1 \cdot x1 + 0 \cdot x2 \cdot x3 + 0 \cdot x1 \cdot x1 \cdot x1 + 0 \cdot x2 \cdot x3 + 0 \cdot x1 \cdot x1 \cdot x1 + 0 \cdot x2 \cdot x3 + 0 \cdot x1 \cdot x1 \cdot x1 + 0 \cdot x2 \cdot x3 + 0 \cdot x1 \cdot x1 \cdot x1 + 0 \cdot x2 \cdot x3 + 0 \cdot x1 \cdot x1 \cdot x1 + 0 \cdot x2 \cdot x3 + 0 \cdot x1 \cdot x1 \cdot x1 + 0 \cdot x2 \cdot x3 + 0 \cdot x1 \cdot x1 + 0 \cdot x2 \cdot x3 + 0 \cdot x1 \cdot x1 + 0 \cdot x2 \cdot x3 + 0 \cdot x1 \cdot x1 + 0 \cdot x2 \cdot x3 + 0 \cdot x1 \cdot x1 + 0 \cdot x2 \cdot x3 + 0 \cdot x1 \cdot x1 + 0 \cdot x2 \cdot x3 + 0 \cdot x1 \cdot x1 + 0 \cdot x2 \cdot x3 + 0 \cdot x1 \cdot x1 + 0 \cdot x2 \cdot x3 + 0 \cdot x1 \cdot x1 + 0 \cdot x2 \cdot x3 + 0 \cdot x1 \cdot x1 + 0 \cdot x2 \cdot x3 + 0 \cdot x1 \cdot x1 + 0 \cdot x2 \cdot x3 + 0 \cdot x1 \cdot x1 + 0 \cdot x1 \cdot x1 + 0 \cdot x2 \cdot x1 + 0 \cdot x1 + 0 \cdot x1 \cdot$ Action: Нове рівняння регресії має вигляд (код. знач. коеф.): $y = 200.5558 + 0 \cdot x1 + 0 \cdot x2 + 0 \cdot x3 + -0.7917 \cdot x1 \cdot x2 + 0.7917 \cdot x1 \cdot x3 + 0 \cdot x2 \cdot x3 + 0 \cdot x1 \cdot x2 \cdot x3 + -1.4456 \cdot x1 \cdot x1 + 0 \cdot x2 \cdot x2 + -0.994 \cdot x3 \cdot x3 + 0 \cdot x1 \cdot x2 \cdot x3 + 0 \cdot x1 \cdot x3 + 0 \cdot x1 \cdot x3 \cdot x3$ Action: Перевіряємо адекватність моделі. f3 = 30, f4 = 10, Fp = 35.97540530635607Action: Модель не адекватна оригіналу. Action: Змінюємо рівняння регресії. Action: Оскільки всі моделі не адекватні, то почнемо експерименти з початку. Action: Розглянемо рівняння регресії із врахуванням квадратичних членів: $y = b0 + b1 \cdot x1 + b2 \cdot x2 + b3 \cdot x3 + b12 \cdot x1 \cdot x2 + b13 \cdot x1 \cdot x3 + b23 \cdot x2 \cdot x3 + b123 \cdot x1 \cdot x2 \cdot x3 + b11 \cdot x1 \cdot x1 + b22 \cdot x2 \cdot x2 + b33 \cdot x3 \cdot x3 \cdot x3 + b123 \cdot x1 \cdot x2 \cdot x3 + b11 \cdot x1 \cdot x1 + b22 \cdot x2 \cdot x2 + b33 \cdot x3 \cdot x3 \cdot x3 + b123 \cdot x1 \cdot x2 + b13 \cdot x1 \cdot x3 + b123 \cdot x1 \cdot x3 + b13 \cdot x1 \cdot x3 + b13 \cdot x3 \cdot x3 + b13$ Action: Маємо, N = 15, K = 11, m = 3. Action: Складаємо матрицю планування і проведимо експерименти Action: Дисперсія однорідна за критерієм Кохрена при m = 3: f1 = 2, f2 = 15, Gp = 0.14726027397260275 View: Центральний ортогональний композиційний план (нат. знач. коеф.) View: Центральний ортогональний композиційний план (нат. знач. коеф.) $\mid \mathsf{N}^0 \mid \mathsf{X}0 \mid \mathsf{X}1 \quad \mid \mathsf{X}2 \quad \mid \mathsf{X}3 \quad \mid \mathsf{X}1 \cdot \mathsf{X}2 \quad \mid \mathsf{X}1 \cdot \mathsf{X}3 \quad \mid \mathsf{X}2 \cdot \mathsf{X}3 \quad \mid \mathsf{X}1 \cdot \mathsf{X}2 \cdot \mathsf{X}3 \quad \mid \mathsf{X}1 \cdot \mathsf{X}1 \quad \mid \mathsf{X}2 \cdot \mathsf{X}2 \quad \mid \mathsf{X}3 \cdot \mathsf{X}3 \quad \mid \mathsf{Y}1 \quad \mid \mathsf{Y}2 \quad \mid \mathsf{Y}3 \quad \mid \mathsf{Y}1 \quad \mid \mathsf{Y}2 \quad \mid \mathsf{Y}3 \quad \mid \mathsf{Y}3 \quad \mid \mathsf{Y}4 \quad \mid$ | 1 | 1 | -10 | -6 | 10 | 60 | -100 | -60 | 600 | 100 | 36 | 100 | 202 | 205 | 202 | ----------

| 2 | 1 | -10 | 6 | -1 | -60 | 10 | -6 | 60 | 100 | 36 | 1 | 202 | 199 | 195 |

	L 1	:		L			+-			+	L			-1		1 ·
	3	1		-6		-6	5		6	6 	1	36	1 1			205
	4		1										100	199	198	205
	5		-10							-60 +			1	198	203	199
	6 	1	-10	6	10	-6	60	-100	60	-600 -600	100	36	100	202	200	195
		1	1	-6	10	-6	5	10	-60		1	36	100	199	198	199
										-6 +		•	•	•	•	
										-0.0 +						
										0.0						
										147.623 +						
										-147.623 +						
										0.0 +						
										-0.0 +						
										-0.0 +						
			тральний (•												
	l Nº	X0	l X1	X2	X3	- 1	X1 · X2	X1·X3	X2·X3	+ X1·X2·X3	X1·X1	X2·X2	X3·X3	Y1	Y2	Y3
	1	1	-1	-1	1	Ī	1	-1	-1	+ 1	1	1	1	202	205	202
	2	1	-1	1	-1	Ī	-1	1	-1	+ 1	1	1	1	202	199	195
		1	1	-1	-1	Ī	-1	-1	1	+ 1 +	1	1	1	199	199	205
	4	1	1	1	1	Ī	1	1	1	1	1	1	1	199	198	205
	5	1	-1	-1	-1	i	1	1	1 1	•	1	1	1	198	203	199
	6	1	-1	1	1	Ī	-1	-1	1	•	1	1	1	202	200	195
		1	1	-+ -1	1	+- 	-1		-1	+ -1	1	+ 1				++ 199
	+ 8	1	-+ 1	-+ 1	-1	+- 	1			+ -1			++ 1			
			-1.215							+ -0.0						+ 204
			1.215		0					+ 0.0			++ 0			
										+ -0.0						
										+ 0.0						
	+ 13									+ -0.0						
										+						
	14	1	0	0	1.215	5	0	0.0	0.0	0.0	0	0	1.476	198	197	198
	15	1	0	0	0	-1	0	0	0	0	0	0	0	200	200	200
4		+	+	+	+	+-		+	++		++	+	+	+	+	+

Action: Розраховуємо натуральні значення коефіцієнтів.
Action: Рівняння регресії має вигляд (нат. знач. коеф.):
y = 200.5977 + 0.2572·x1 + 0.1523·x2 + -0.2889·x3 + 0.0317·x1·x2 + -0.0358·x1·x3 + -0.0064·x2·x3 + 0.0014·x1·x2·x3 + 0.015·x1·x1 + 0.0189·x2·x2 + 0.0038·x3·x3 Action: Розраховуємо кодовані значення коефіцієнтів.

Action: Рівняння регресії має вигляд (код. знач. коеф.): y = 199.2453 + -0.2133·x1 + -0.2827·x2 + -0.5154·x3 + 1.25·x1·x2 + -1.0833·x1·x3 + -0.4167·x2·x3 + 0.25·x1·x2·x3 + 0.4532·x1·x1 + 0.679·x2·x2 + 0.1145·x3·x3

1	1	-10	-6	10	60	-100	-60	600	100	36	100	203.0	203.473
2	1		 6	-1	-60	10	-6	60	100 	36	1 	198.667	199.271
3	1 		-6	-1	+ -6	-1		 6	 1	+ 36	1 1	201.0	200.743
4	1	1 1	6 	10	 6	10	 60	 60	1	 36	100 	200.667	199.48
5	1	-10	-6	-1	60	10	6	-60	100	36	1 1	200.0	201.003
6	1 1	-10	6	10	-60	-100	60 	-600	100 	 36	100 	199.0	199.074
7	1	1	-6	10	+ -6	10	-60	-60	1 1	36	100 	198.667	197.879
8	1	1	6 	-1	 6	-1	-6	 -6	1	 36	1 	203.667	203.011
9		-11.183	•	•	-0.0	•	•	•	125.048	•	20.25	•	200.174
10					0.0 			0.0 	 4.763				199.655
11	1	-4.5	-7.29	4.5	32.805	-20.25	-32.805	147.623 	20.25	53.144	20.25	•	200.591
	1	-4.5	7.29	4.5	-32.805	-20.25	32.805	-147.623 	20.25	•	•	199.0	199.904
-	1	-4.5	0.0	-2.183	-0.0	9.821	-0.0		20.25	•	4.763	•	200.041
14		•	•	-		•	•	-0.0	•	•	•	•	198.788
			0.0				 0.0	-0.0		 0.0	 20.25	200.0	199.245
+	+	+	+	+	+	+	+	+	+	+	+	+	+

View: Перевірка знайдених коефіцієнтів (код. знач. коеф., із квад. членами)

								+					
l Nº	X0						X2·X3	X1·X2·X3	X1·X1	X2·X2	X3·X3	Average Y[j]	
				+	+	+	· +	+				+	+
	1 +		-1 +			-1 +		•	1 +		1 +	203.0 +	203.473 +
2	1		1		-1	1	-1	1	1	1	1	198.667	199.271
3	1		-1 +		•	-1	1	1 1	1	1	1	201.0	200.743
4	1	1	1	1	1	1	1	1	1	1	1	200.667	199.48 +
5	1		-1 	-1	1 1	1 1	1	-1	1 1	1 1	1 1	200.0 	201.003 +
6	1	-1	1	1	-1	-1	1 1	-1	1	1	1 1	199.0 	199.074
7	1	1 1	-1	1	-1	1	-1	-1	1	1	1 1	198.667	197.879
8	1	1 1	1	-1	1	-1	-1	-1	1	1	1 1	203.667	203.011
	•	-1.215		0	•	-0.0	•	-0.0 -0.0	1.476	0 	0 	202.0	200.174
10	1	1.215	0	0	0.0	0.0	0	0.0	1.476	•	+ 0	197.333 	199.655
11	1	0	-1.215	0	-0.0	0	-0.0	-0.0	0	1.476	0	201.0 	200.591
	1	•	1.215	0	0.0	0	0.0		0	1.476	0	•	199.904
13	+ 1	+ 0	+ 0	-1.215	•			+ -0.0			+ 1.476	200.667	+ 200.041
14	+ 1	+ 0	+ 0	1.215	+ 0	+ 0.0		•	+ 0	+ 0	+ 1.476	+ 197.667	+ 198.788
	1		+ 0	0	+ 0	0	0	0	0	+ 0	+ 0	200.0	+ 199.245
	+	+	+	+	+	+	+	+	+	+	+	+	+

Action: Перевіряємо нуль гіпотезу та корегуємо рівняння регресії:

f3 = 30, t = [642.6209, 0.6881, 0.9119, 1.6623, 4.0316, 3.494, 1.3439, 0.8063, 1.4616, 2.1899, 0.3692].

Action: Нове рівняння регресії має вигляд (нат. знач. коеф.):

 $y = 200.5977 + 0 \cdot x1 + 0 \cdot x2 + 0 \cdot x3 + 0.0317 \cdot x1 \cdot x2 + -0.0358 \cdot x1 \cdot x3 + 0 \cdot x2 \cdot x3 + 0 \cdot x1 \cdot x2 \cdot x3 + 0 \cdot x1 \cdot x1 + 0.0189 \cdot x2 \cdot x2 + 0 \cdot x3 \cdot x3$

Action: Нове рівняння регресії має вигляд (код. знач. коеф.):

 $y = 199.2453 + 0 \cdot x1 + 0 \cdot x2 + 0 \cdot x3 + 1.25 \cdot x1 \cdot x2 + -1.0833 \cdot x1 \cdot x3 + 0 \cdot x2 \cdot x3 + 0 \cdot x1 \cdot x2 \cdot x3 + 0 \cdot x1 \cdot x1 + 0.679 \cdot x2 \cdot x2 + 0 \cdot x3 \cdot x3$

Action: Перевіряємо адекватність моделі.

f3 = 30, f4 = 11, Fp = 5.723950269124205

Action: Модель не адекватна оригіналу.

Action: Змінюємо рівняння регресії.

Action: Оскільки всі моделі не адекватні, то почнемо експерименти з початку.

Action: Оскільки всі моделі не адекватні, то почнемо експерименти з початку.

Action: Розглянемо рівняння регресії із врахуванням квадратичних членів:

 $y = b0 + b1 \cdot x1 + b2 \cdot x2 + b3 \cdot x3 + b12 \cdot x1 \cdot x2 + b13 \cdot x1 \cdot x3 + b23 \cdot x2 \cdot x3 + b123 \cdot x1 \cdot x2 \cdot x3 + b11 \cdot x1 \cdot x1 + b22 \cdot x2 \cdot x2 + b33 \cdot x3 \cdot x3 \cdot x3 + b11 \cdot x1 \cdot x1 + b22 \cdot x2 \cdot x2 + b33 \cdot x3 \cdot x3 \cdot x3 + b11 \cdot x1 \cdot x1 + b22 \cdot x2 \cdot x2 + b33 \cdot x3 \cdot x3 \cdot x3 + b11 \cdot x1 \cdot x1 + b22 \cdot x2 \cdot x2 + b11 \cdot x1 \cdot x1 + b22 \cdot x2 \cdot x3 + b11 \cdot x1 \cdot x1 + b22 \cdot x2 \cdot x1 + b11 \cdot x1 + b22 \cdot x2 \cdot x1 + b11 \cdot x1 + b22 \cdot x2 \cdot x1 + b11 \cdot x1$

Action: Maemo, N = 15, K = 11, m = 3.

Action: Складаємо матрицю планування і проведимо експерименти

Action: Дисперсія однорідна за критерієм Кохрена при m = 3:

f1 = 2, f2 = 15, Gp = 0.14823008849557526

View: Центральний ортогональний композиційний план (нат. знач. коеф.)

+	4		+	+	+	L	+	±	+	+	+	+	<u> </u>	+	++
l N	ا ۹								X1·X2·X3						Y3
1	L		•	•			•	-60	•	•	36	•	197	205	200
2	2	1	-10	6	-1	-60	10	-6	60	100	36	-	199	196	204
3	3	1	1	-6	-1	-6	-1	 6	 6 +	1	+ 36	1	200	199	205
4		1		6 	10 	6 	10 	60	+ 60 +	1	36	100	196	203	200
5		1	-10	-6	-1	60	10	6	+ -60 +	100	36	1	198	203	198
1 6	5		+ -10	6 	10 		+ -100		+ -600		36		200	202	201
7	7	1	+ 1	-6	10	-6	10	-60	+ -60	+ 1	36	100	205	197	201
8		1		6	-1		-1	-6	+ -6 +	•			200	198	204
9	9	1	-11.183	0.0	4.5	-0.0	-50.321	0.0	-0.0 +	125.048	0.0	20.25	195	202	204
	L0	1	2.183	0.0	4.5	0.0	9.821	0.0	+	4.763	0.0	20.25	203	203	200
	l1	1	-4.5	-7.29	4.5	32.805	-20.25	-32.805	147.623 	20.25	53.144	20.25	205	197	197
1	L2	1	-4.5	7.29	4.5	-32.805	-20.25	32.805	-147.623	20.25	53.144	20.25	203	204	200
1	13	1	-4.5	0.0	-2.183	-0.0	9.821	-0.0	+ 0.0 +	20.25	0.0	4.763	200	204	201
1	L4	1	-4.5	0.0	11.183	-0.0	-50.321	0.0	+	20.25	0.0	125.048	203	202	201
-			-	-	•		•	-	+	•	-	-	-	-	
			•						-0.0 +						

View: Центральний ортогональний композиційний план (код. знач. коеф.)

+	+	-+-		+		+		+	+	+	+	+	+	+	+	·	++
	X0			•							X1·X2·X3						
1	1	1	-1	I	-1	I	1	1	-1	-1	1 +	1	1	1	197	205	200
2	1	1	-1	l	1	I	-1	-1	1	-1	1 	1	1	1	199	196	204
3	1	Ī	1	Ī	-1	l	-1	-1	-1	1	1	1	1	1	200	199	205
4	1	Ī	1	I	1	I	1	1	1	1	+ 1	1	1	1	196	203	200
5	1	I	-1	I	-1	I	-1	1	1 1	1	+ -1	1	1	1	198	203	198
6	1	1	-1	l	1	I	1	-1	-1	1	+	1	1	1	200	202	201
7	1	I	1	I	-1	I	1	-1	1	-1	-1 +	1	1	1	205	197	201
8	1	I	1	I	1	I	-1	1	-1	-1	-1	1	1	1	200	198	204
9	1	1	-1.215	I	0	I	0	-0.0	-0.0	0	+	1.476	0	0	195	202	204
10	1	Ī	1.215	İ	0	İ	0	0.0	0.0	0		1.476	0	0	203	203	200

	0	-1.2	15	0 -	0.0	0 -	0.0	-0.0	0	1.476		5 197 19
1	0	1.21	+ 5	0	0.0	0	0.0 (0.0	0	1.476		3 204 20
	0	0	-1	.215	0 -	0.0 -	0.0	-0.0	0	0	1.476 200	0 204 20
+ 1	0	0	1.	+ 215	0	+ 0.0	0.0 (0.0	0	0		+ 3 202 20
+ 1	-+ 0	0	+ 	+ 0	0	+ 0	0	0	+ 0	0		++ L 204 20
Рівнян 9335 н Розрах Рівнян 9584 н гревірн	ння регресії + -0.0494·х1 ковуємо кодов ння регресії + 0.3371·х1 + ка знайдених	має вигляд + 0.0038·х: вані значен має вигляд - 0.1437·х2 коефіцієнт	(нат. знач 2 + -0.000 ня коефіцію (код. знач + 0.1283 ів (нат. зы	ч. коеф.): 4·x3 + -0.00 єнтів. ч. коеф.): x3 + -0.2917 нач. коеф.,	7·x1·x2 + -0 із квад. члю	.4583·x1·x3 енами)	+ -0.0417·x2·	x3 + -0.125	·x1·x2·x3 +	-0.6011·x1		
(0	X1 X2	X3	X1·X2	X1·X3	X2 · X3 3	X1·X2·X3	X1·X1 X2·X	2 X3·X3	Average	Y[j] Exp		
1	-10	+- -6	10	60 l	-100	-60	600	+ 100	36	100	200.667	200.225
1	+ -10	6	-1	-60	10	-6	60	+ 100	36	1	199.667	199.922
1	1	+- -6	-1	-6	-1	6	6	+ 1 +	36	1	201.333	201.142
1	1	6 +-	10	6 	10	60	60	1	36	100	199.667	200.186
1	-10	-6 +-	-1 +	60 +	10	6	-60 -+	100 +	36 -+	1 -+	199.667 +	199.218 +
1	-10 +	6 +-	10	-60 +	-100	60	+	100 +	36	100	201.0	201.262
1	1	-6 +-	10 +	-6 +	10	-60 	+	1 +	36 -+	100 -+	201.0	200.815
+		+-	+	6				•	36 -+	1	200.667	201.179
+	+	+-		+		·	+	+	+	+	+	200.661
+	+	+-		+			+	+	+	+	+	201.48 + 200.73
+	+	+-	+	+			+	+	+	+	+	+
+	+	+-	+	+			+	+	+	+	+	201.582
1												+ 201.893
1	-4.5	0.0	4.5	-0.0	-20.25	0.0	-0.0	20.25	0.0	20.25	201.667	201.958
									-+	-+	+	+
	+	·	-+				+	+	+			
1	+ -1	 -1	-+ 1	+ 1	-+ -1	+ -1	+ 1	+ 1	+ 1	1	200.667	200.225
1	+ -1 + -1	-1 -1 	1 -+ -1	+ 1 + -1	-+ -1 -+ 1	+ -1 + -1	+ 1 + 1	+	++ 1 ++ 1	1 + 1	200.667	+
1	+	-1 1 	1 -+ -1 -1	1 -+ -1 -1	-1 	+	1 1 1 1 1	+	+ 1 + 1 +	1 + 1 + 1	200.667	+
1 1 1 1 1 1 1	+	-1 -1 1 -1 -1	1 -1 -1 -1	1 -1 -1 -1	-1 -1 1 -1 1	+	1 1 1 1 1	+	1 	1 + 1 + 1 + 1	200.667	200.225
1 1 1 1 1 1	+	-1 1 -1 -1 1	1 -1 -1 -1 1 1	1 -1 -1 -1 1	-1 -1 1 -1 -1 1	+	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+	1 1 1 1 1 1 1 1 1 1	1 + 1 1 + 1 + 1	200.667 199.667 201.333 199.667	+
1 1 1 1 1 1 1 1	-1 -1 -1 1 1 1 -1	-1 -1 -1 -1	1	1 -1 -1 -1 1 1 1	-1 -1 1 -1 -1 1 1	+	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	200.667 199.667 201.333 199.667 201.0	+
1 1 1 1 1 1 1 1	+	-1 -1 -1 -1 -1 -1 -1 -1	1 -1 -1 1 1 1	1 -1 -1 -1 1 1 1 -1 -1	-1 -1 1 -1 -1 1 1 -1 1	-1 -1 -1 -1 1 1 1 1 1 -1	1	1	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	200.667 199.667 201.333 199.667 199.667 201.0	+
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+	-1	1	1 -1 -1 -1 1 1 1 -1 -1	-1 -1 -1 -1 -1 1 -1 1	+	1	1	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	200.667 199.667 201.333 199.667 199.667 201.0	+
	1 1 1 1 1 1 1 1 1 1	1	1	1	1	1	1	1	1	1	1	1

| 11 | 1 | 0 | -1.215 | 0 | -0.0 | 0 | -0.0 | 0 | 1.476 | 0 | 199.667 | 200.73 | | 12 | 1 | 0 | 1.215 | 0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 1.476 | 0 | 202.333 | 201.079 | | 13 | 1 | 0 | 0 | -1.215 | 0 | -0.0 | -0.0 | -0.0 | 0 | 0 | 1.476 | 201.667 | 201.582 | | 14 | 1 | 0 | 0 | 1.215 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 1.476 | 202.0 | 201.893 |

Action: Перевіряємо нуль гіпотезу та корегуємо рівняння регресії:

f3 = 30, t = [523.5411, 0.8738, 0.3724, 0.3325, 0.7561, 1.1881, 0.108, 0.324, 1.5583, 1.851, 0.3876].

Action: Нове рівняння регресії має вигляд (нат. знач. коеф.):

 $y = 201.9335 + 0 \cdot x1 + 0 \cdot x2 + 0 \cdot x3 + 0 \cdot x1 \cdot x2 + 0 \cdot x1 \cdot x2 + 0 \cdot x1 \cdot x3 + 0 \cdot x2 \cdot x3 + 0 \cdot x1 \cdot x2 \cdot x3 + 0 \cdot x1 \cdot x1 + 0 \cdot x2 \cdot x2 + 0 \cdot x3 \cdot x3$

Action: Нове рівняння регресії має вигляд (код. знач. коеф.):

 $y = 201.9584 + 0 \cdot x1 + 0 \cdot x2 + 0 \cdot x3 + 0 \cdot x1 \cdot x2 + 0 \cdot x1 \cdot x3 + 0 \cdot x2 \cdot x3 + 0 \cdot x1 \cdot x2 \cdot x3 + 0 \cdot x1 \cdot x1 + 0 \cdot x2 \cdot x2 + 0 \cdot x3 \cdot x3$

Action: Перевіряємо адекватність моделі. f3 = 30, f4 = 14, Fp = 0.9196402821996418 Action: Модель адекватна оригіналу.

Action: Виводимо результати.

View: Перевірка знайдених коефіцієнтів (нат. знач. коеф., із квад. членами)

N ⁰	X0	X1	X2	X3	X1·X2	X1·X3	X2·X3	X1·X2·X3	X1·X1	X2·X2	X3•X3	Average Y[j]	Exp-tal Y[j
1	1	 -10	+ -6	10	60	-100	-60	+	100	36	100	200.667	201.933
2	1	+ -10	+ 6	+ -1	+ -60	10	+ -6	+ 60	+ 100	+ 36	1	199.667	+ 201.933
	1 1	1 1	+ -6	-1	-6 -6	 -1 	6		1	 36	1	201.333	201.933
4	1	1 1	6	10	6 6	10	60	60 	 1	36 	100 	199.667	201.933
	1		-6	-1 	60	10 	6	-60 	100 	36 	1	199.667	201.933
6	1	-10	6	10	•	-100	60	-600 +	100	36	100	201.0	201.933
7	1	•	-6	10	-6	10	-60	+ -60	1 1	 36	100	201.0	201.933
8	1	•	6	-1	6	-1	-6 +	+ -6	1	36	1	200.667	201.933
	1		0.0	4.5	•	-50.321	0.0	-0.0 	125.048	0.0	20.25	200.333	201.933
		•		4.5	0.0	9.821	0.0	0.0 		0.0	20.25	202.0	201.933
				4.5	32.805	-20.25	-32.805	147.623 	20.25				201.933
12	1	-4.5	7.29	4.5	-32.805	-20.25	32.805	-147.623 +	20.25	53.144	20.25	202.333	201.933 +
13	1	-4.5	0.0	-2.183	-0.0	9.821	-0.0		20.25	0.0	4.763	201.667	+ 201.933
14	1	-4.5	0.0	11.183	-0.0	-50.321	0.0	-0.0	20.25	0.0	125.048		201.933
					+ -0.0			+ -0.0				+ 201.667	+ 201.933

Nº	+ X0		X2									Average Y[j]	
1		-1	-1	1	1	-1	-1	1 1	1	1	1		201.958
2	1	-1	1	-1	-1	1 1	-1	1	1	1	1		201.958
3	1	1	-1	-1	-1	-1	1	1	1	1	1		201.958
4	1	1 1	1	1	1	1	1	1	1	1	1		201.958
5	1	-1	-1	-1	1	1	1	-1	1	1	1		201.958
6	1		1	1	-1	-1	1		1	1	1	201.0	201.958
7	1	1 1	-1	1	-1	1 1	-1	-1	1	1	1	201.0	201.958

1	8	1	Ī	1	1	-1	1	-1	-1	-1	1	1	1	200.667	201.958
1	9	1	I	-1.215	0	0	-0.0	-0.0	0	-0.0	1.476	0	0	+ 200.333	201.958
Ì	10	1	Ì	1.215	0	0	0.0	0.0	0	0.0	1.476	0	0	202.0	201.958
Ī	11	1	Í	0	-1.215	0	-0.0	0	-0.0	-0.0	0	1.476	0	199.667	201.958
1	12	1	Ī	0	1.215	0	0.0	0	0.0	0.0	0	1.476	0		201.958
1	13	1	Ī	0	0	-1.215	0	-0.0	-0.0	-0.0	0	0	1.476	201.667	201.958
1	14	1	I	0	0	1.215	0	0.0	0.0	0.0	0	0	1.476		201.958
İ	15	1	ĺ	0	0	0	0	0	0	0	0	0	0	201.667	201.958

Висновки

В ході виконання лабораторної роботи було розглянуто проведення трьохфакторного експерименту при використанні рівняння регресії з урахуванням квадратичних членів (центральний ортогональний композиційний план).

Вказане вище рівняння регресії застосовується в тому випадку, коли рівняння регресії без урахування взаємодії факторів та рівняння регресії з урахуванням взаємодії факторів ϵ неадекватними за критерієм Фішера.