Le problème du rectangle inscrit

7 Juillet 2025

Introduction

« Toute courbe de Jordan admet-elle un carré inscrit ? »

Introduction

« Toute courbe de Jordan admet-elle un carré rectangle inscrit ? »

Définitions

Définition

Une partie C de \mathbb{R}^2 est une courbe de Jordan s'il existe une application continue $\gamma:[0,1]\to\mathbb{R}^2$:

- C est une courbe : $im(\gamma) = C$.
- C est fermée : $\gamma(0) = \gamma(1)$.
- C est simple : γ est injective sur [0, 1[.

Définitions

Définition

Un rectangle (a, b, c, d) de \mathbb{R}^2 est inscrit dans une courbe de Jordan C si $a, b, c, d \in C$.

Théorème

Théorème

Toute courbe de Jordan admet un rectangle inscrit.

Dans la suite on considère une courbe de Jordan C.

Reformulation

On représente un rectangle par 2 paires de sommets de $C \times C$ formant les diagonales :

Reformulation

On représente un rectangle par 2 paires de sommets de $C \times C$ formant les diagonales :

Proposition

2 paires de sommets de $C \times C$ non-ordonnées forment un rectangle si et seulement si elles sont distinctes, ont le même milieu et ont la même distance.

Reformulation

On représente un rectangle par 2 paires de sommets de $C \times C$ formant les diagonales :

Proposition

2 paires de sommets de $C \times C$ non-ordonnées forment un rectangle si et seulement si elles sont distinctes, ont le même milieu et ont la même distance.

Remarque

2 paires de sommets ordonnées pourraient être distinctes et former la même diagonale, pour éviter ça on étudie le quotient Q de $C \times C$ par la relation d'équivalence $(a, b) \sim (b, a)$.

On définit une application qui regroupe ces informations :

$$f: C \times C \to \mathbb{R}^2 \times \mathbb{R} \simeq \mathbb{R}^3; (u, v) \mapsto \left(\frac{u+v}{2}, d(u, v)\right)$$

On définit une application qui regroupe ces informations :

$$f: C \times C \to \mathbb{R}^2 \times \mathbb{R} \simeq \mathbb{R}^3; (u, v) \mapsto \left(\frac{u+v}{2}, d(u, v)\right)$$

Elle décrit une surface dans \mathbb{R}^3 :

On définit une application qui regroupe ces informations :

$$f: C \times C \to \mathbb{R}^2 \times \mathbb{R} \simeq \mathbb{R}^3; (u, v) \mapsto \left(\frac{u+v}{2}, d(u, v)\right)$$

Elle décrit une surface dans \mathbb{R}^3 :

- *f* est continue.
- f passe au quotient pour \sim et induit une application continue $\varphi:Q\to\mathbb{R}^3$.

Proposition

2 paires de sommets $p, q \in Q$ forment un rectangle si et seulement si $p \neq q$ et $\varphi(p) = \varphi(q)$.

Donc la courbe de Jordan C admet un rectangle inscrit si et seulement si φ n'est pas injective.

Dans la suite on suppose par l'absurde que φ est injective.

Puisque Q est compact et que la restriction $\varphi:Q\to\varphi(Q)$ est une bijection continue, on en déduit que $\varphi:Q\to\varphi(Q)$ est un homéomorphisme.

Dans la suite on suppose par l'absurde que φ est injective.

Puisque Q est compact et que la restriction $\varphi:Q\to\varphi(Q)$ est une bijection continue, on en déduit que $\varphi:Q\to\varphi(Q)$ est un homéomorphisme.

Par définition C est paramétrée par une <u>application</u> continue $\gamma:[0,1]\to\mathbb{R}^2$, donc on peut paramétrer Q par l'application continue $\mu:=\overline{(\gamma,\gamma)}:[0,1]^2\to\big(\mathbb{R}^2\times\mathbb{R}^2\big)/\sim$:

Mais il y a 2 problèmes avec ce paramétrage :

- Puisque $\gamma(0) = \gamma(1)$, on a $\mu(0, t) = \mu(1, t)$ et $\mu(t, 0) = \mu(t, 1)$.
- Puisque les paires sont non-ordonnées, on a $\mu(a,b) = \mu(b,a)$.

Mais il y a 2 problèmes avec ce paramétrage :

- Puisque $\gamma(0) = \gamma(1)$, on a $\mu(0, t) = \mu(1, t)$ et $\mu(t, 0) = \mu(t, 1)$.
- Puisque les paires sont non-ordonnées, on a $\mu(a,b) = \mu(b,a)$.

Pour régler ces problèmes on étudie le quotient de $[0,1]^2$ par les relations d'équivalences :

• $(0,t) \sim_1 (1,t) \text{ et } (t,0) \sim_1 (t,1),$

Mais il y a 2 problèmes avec ce paramétrage :

- Puisque $\gamma(0) = \gamma(1)$, on a $\mu(0, t) = \mu(1, t)$ et $\mu(t, 0) = \mu(t, 1)$.
- Puisque les paires sont non-ordonnées, on a $\mu(a,b) = \mu(b,a)$.

Pour régler ces problèmes on étudie le quotient de $[0,1]^2$ par les relations d'équivalences :

- $(0,t) \sim_1 (1,t) \text{ et } (t,0) \sim_1 (t,1),$
- et $(a, b) \sim_2 (b, a)$.

On découpe le triangle pour recoller les flèches :

On découpe le triangle pour recoller les flèches :

et on obtient une bande de Möbius M.

On découpe le triangle pour recoller les flèches :

et on obtient une bande de Möbius M.

- Les déformations sont continues.
- μ passe au quotient pour \sim_1 et \sim_2 , et induit un homéomorphisme $\lambda:M\to Q$.

Par composition $\varphi \circ \lambda : M \to \varphi(Q)$ est un homéomorphisme.

Absurdité

L'application $\varphi \circ \lambda$ vérifie $(\varphi \circ \lambda)(\partial M) = C \subset \mathbb{R}^3$:

Absurdité

L'application $\varphi \circ \lambda$ vérifie $(\varphi \circ \lambda)(\partial M) = C \subset \mathbb{R}^3$:

De plus C est homéomorphe à \mathbb{S}^1 et la partie D de \mathbb{R}^2 délimitée par C est homéomorphe à \mathbb{B}^2 . L'espace obtenu en recollant la bande de Möbius M à D le long de leur bord C est homéomorphe au plan projectif réel $\mathbb{P}^2_{\mathbb{R}}$. Donc $\varphi \circ \lambda$ induit un plongement du plan projectif réel $\mathbb{P}^2_{\mathbb{R}}$ dans \mathbb{R}^3 .

Mais il n'existe pas de plongement du plan projectif réel $\mathbb{P}^2_{\mathbb{R}}$ dans \mathbb{R}^3 , d'où une contradiction!

Conclusion

Donc φ n'est pas injective et la courbe de Jordan C admet un rectangle inscrit.

