

COUNTRY TOURS

Fig. 3

COOKCONE, CANDON

Fig. 4

Fig. 5

0 -

S[r]

000

3 4 2

0 0

Fig. 6

CHARACTER SEQUENCE I = BDCABA

Fig. 7

Fig. 8

Fig. 9

; GDVEKGKKIFIMKCSQCHTVEGGKHKTGPNLHGLFGRK bacterium: EGDAAAGEKVSKKCLACHTFDQGGANKVGPNPNLFGVF human

: GDix3.31Gix0.11Kix0.21Kix4.01KCix2.21CHTix3.31GGix2.21K GDIX1.4)E(X0.2)KIX0.2)KIX0.4)KC(X2.2)CHT(X3.3)GG\X2.2)K rcs

homology :47%

Rat :MSLAILRVIRLVRVFRIFKLSRHSKGLQILGRTLKASMRELGLLIFFIGVV (eucinzip, L{6}L{6}L{6}L{6}L

human :GDVEK G K KIFIMKCSQCHTVEKGG KHKTGPNLHGLFGFK ... bacterium:E GDAAAGEKVSK KCLACHTFDQGGANKV GPNPN LFGVF...

12/45

Fig. 13 A

A={a1,a2,...ai....am}

Fig. 13 B

B={b1.b2....bj....bn}

Fig. 13 D

Fig. 13C

DODIODYA DYDEDI

START

cootcort.oresor

Fig. 17

Fig. 18

Fig. 19 A

Fig. 20 A

Fig. 19 B

Fig. 20 B

19/45

Fig. 22

²¹/₄₅

Fig. 23 A

AFSLFDKDGD TEEQIAEFKE V M'R S L G Q N P T GTITTKELGT 21 VDADGNGTID EAELQDMINE KMKDTDSEEE FPEFLTMMAR DGNGYISAAE IREAFRVFDK KLTDEEVDEM 101 LRHVMTNLGE QVNYEEFVQM IREANIDGDG 141 MTA

AMINO ACID SEQUENCE OF CALMODULIN (EXCERPT FROM PDB)

Fig. 23 B

FLSEEMIAEF AMDQQAEARA GGGDISTKEL KAAFDMFDAD PTKEELDAII GTVMRMLGQN IDFEEFLVM EEVDEDGSGT KSEEELADCF VRQMKEDAKG 81 IDIEELGEIL RIFDKNADGF 101 DIEDLMKDSD RATGEHVTEE 121 EFLKMMEGVQ KNNDGRIDFD 141 161

AMINO ACID SEQUENCE OF TROPONIN C (EXCERPT FROM PDB)

Fig. 24 A

CALMODULIN


```
< target >
                                                                         < probe >
                                                                                                                  < target >
                                                                                                                                       < probe
                               96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
                                                      R I F D K N A D G
R V F D K D G N G
II5 II6 II7 II8 II9 I20 I21 I22 I23
Probe site = 81-108 in Calmodulin
                                                                                                                                                                            rmsd = 0.567034
```

The second secon

		^	٨					^	^				
		< target	< probe		target >	probe >		< target	< probe		< target >	probe >	
	0 =	ш	> -		v	v	145	9	ტ		v	v	
	601	g	ß	123	⊢	_	44	۵		158	9	A	
٠.	108	۵	z	122	۷	z	141 142 143 14	Z	g	157	ш	Η	
du l ir	107		9	121	œ	—	142	z	۵	156	Σ	Σ	
almo	90	z	ъ О	120	_	Σ	14	¥		155	Σ	Σ	
ii c	105 106	쏘	\prec	6	_	>	140	۵	Z		×	œ	
143	104	٥	۵	8	ш	I	39	တ	⋖			>	
-211	103	L	<u> </u>	117	. ග	œ	138	٥	11.	152	ш		
and	100 101 102 103	_	· >	9	_1	۲				12	Ш		
801	<u></u>	<u> </u>	202	15	ш	ш	136	Σ					
8	0	<u> </u>	_ 14	4	ш : : —	۷	134 135	-		64	<u> </u>		3665
# e	8	3 0	> ⊲		· -	٠ ۵	34	2	7 LI	1 48	-		0.82
e S	7 9	}	1 OT	, <u>~</u>		ຸດ	2 2) -	ם נ	V D	-		rmsd = 0.823665
Probe site = 81-108 and 117-143 in Calmodulin	20 90	0 -	J -	- =	= -		- 55	7 -	- >	> 97	_	∠ ⊙	rms

COSCOTS ATTACK

26_{/45}

00010071 070001

Fig. 28


```
energeneral ATP/GTP binding site energy energy and ATP/GTP binding site
                                                                                                                                                                                                 8 9 10 11 12 13 14 15
G A P G K G K T < probe >
rmsd=0.648732 adenylate kinase
                                                                                                        7 8.9 10 11 12 13 14
G H V D H G K T < probe >
                                                 Probe = (elongation factor)
```


²⁹/₄₅

09910071.078301

Fig. 34

Fig. 35 A

A={a1.a2....am}

Fig. 35 B

B={b1.....bi.....bj.....bn}

START

PREPARE TABLE OF DISTANCE AMONG POINTS OF THE POINT SETS A.B.

FIND DISTANCE BETWEEN TWO POINTS AT BOTH ENDS OF POINT SET A FROM DISTANCE TABLE AND DENOTE IT AS d.

bj-bi=d±alpha m<=j-i<=2m

SELECT THE ONE HAVING MAXIMUM JOUT OF dJ THAT SATISFY THE ABOVE CONDITIONS.

 $B' = \{bi, bi+1, \dots bj-1, bj\}$

DETERMINATION OF CORRESPONDENCE BETWEEN POINT SET A AND POINT SET B'.

b IS A FINAL
ELEMENT OF THE
POINT SET B.

CORRESPONDENCE
BETWEEN ELEMENTS OF POINT
SETS A,B' IS DETERMINED.

YES

i=i+1

i=k+1 WHERE POINT THAT IS RELATED TO al, IS bk.

Fig. 38 A

	N. C	ı
1 21 41 61 81 101 121 141 161 181 201	I V G G Y T C C A N I G Y H F C G G S L I C Y K S G I Q V S K A A S L C L L I S K A G T Q K C L S N S R S G C K C S A G T Q K K T S G A G T Q K C L S N S C S G C K S F C A G S G C K C C C S G C K C C C S G C K C C C C S G C K C C C C C C C C C C C C C C C C C	
221	A 3 11	

AMINO ACID SEQUENCE OF TRYPSIN (EXCERPT FROM PDB)

Fig. 38 B

```
SWPSQ
GGTLI
LTFRV
YVGVQ
                T
S
              G
S
                                           TFGDVGVVH
                   w
                      A
V
                            Т
                              С
21
                         D
T
              A H C V
Q N N G
41
                                                 Q A P T Y
                            E Q
      N L
P Y
61
                                        Y D
G V
              TDD
                                      G
              N
T
           w
 81
                                                               Ι
                                      LGPSP
101
                                                    RAGV
            N S
Q T
121
                                                          C
                                                      I
G
                                        Т
            Q
Y
         Α
141
                                                 Ā
      SSRS
161
                                                       N
            Ġ
181
                                      R L G
S W I
                                                      T
                                              C
                                                 ΝV
         v
            Ĥ
201
                                               ÑŃV
       TVF
221
```

AMINO ACID SEQUENCE OF ELASTASE (EXCERPT FROM PDB)

Fig. 39 A

```
Key site number 36 - 41 in Trypsin

41 42 43 44 45 46

M T A A H C \langle trype try
```

RETRIEVED RESULTS OF HISTIDINE ACTIVE SITES

Fig. 39 B

```
Key site number 175 - 179 in Trypsin
186 187 188 189 190
                      < target >
                G
  G
      D
          s
              G
                      obe >
                  G
              G
  G
      D
d = 8.922721 [A]
r.m.s.d. = 0.092879 [A]
The number of atoms in a probe = 5
The number of atoms in PDB = 240
The number of combination = 1
Time = 1sec
```

RETRIEVED RESULTS OF SERINE ACTIVE SITES

Fig. 40

00010074 070201

Fig. 43

162

	10,2	
)	TYPE
SUBSET	COORDINATES	
S1	{X1,X2,X3,X4,Xa}	a - HELIX
S2	{Xa+1, Xa+2,Xb}	α — HELIX
S3	{Xb+1.Xb+2Xc}	β - SHEET
S4	{Xc+1,Xc+2,Xd}	β - SHEET :
Sn	; {X1+1•X1+2•····Xm}	3 — TURN

43/45

Fig. 47 A

Fig. 47 B

PROTEIN B HAVING A SIMILAR STRUCTURE

KEY PROTEIN A