Interpolation Error and Convergence

Main objective

Let Ω be a bounded domain of \mathbb{R}^d with Lipschitz boundary and let \mathcal{T}_h be a discretization of Ω .

Main objective

Let Ω be a bounded domain of \mathbb{R}^d with Lipschitz boundary and let \mathcal{T}_h be a discretization of Ω . The interpolation inequality claims that: $\forall K \in \mathcal{T}_h, \forall v \in H^{\ell+1}(K)$

$$|v - \tau_h(v)|_{m,K} \le c h_K^{\ell+1-m} |v|_{\ell+1,K}, \quad 0 \le m \le \ell+1$$

where, τ_h is the interpolation operator that maps $H^{\ell+1}$ into the Finite elements space.

Main objective

Let Ω be a bounded domain of \mathbb{R}^d with Lipschitz boundary and let \mathcal{T}_h be a discretization of Ω . The interpolation inequality claims that: $\forall K \in \mathcal{T}_h, \forall v \in H^{\ell+1}(K)$

$$|v - \tau_h(v)|_{m,K} \le c h_K^{\ell+1-m} |v|_{\ell+1,K}, \quad 0 \le m \le \ell+1$$

where, τ_h is the interpolation operator that maps $H^{\ell+1}$ into the Finite elements space.

This inequality can be used to prove the convergence of the finite element solution when the mesh size h goes to zero.

Preliminaries:

Theorem. (Poincaré-Wirtinger Inequality)

Let $\Omega \subset \mathbb{R}^d$ be a bounded, connected, open subset with a Lipschitz boundary, and let $1 \leq p < \infty$.

For any function $u \in W^{1,p}(\Omega)$ such that u has zero mean, i.e.,

$$\int_{\Omega} u \, dx = 0,$$

there exists a constant C depending only on Ω and p such that

$$||u||_{L^p(\Omega)} \le C||\nabla u||_{L^p(\Omega)}.$$

Preliminaries:

Theorem. (Poincaré-Wirtinger Inequality)

Let $\Omega \subset \mathbb{R}^d$ be a bounded, connected, open subset with a Lipschitz boundary, and let $1 \leq p < \infty$.

For any function $u \in W^{1,p}(\Omega)$ such that u has zero mean, i.e.,

$$\int_{\Omega} u \, dx = 0,$$

there exists a constant C depending only on Ω and p such that

$$||u||_{L^p(\Omega)} \le C||\nabla u||_{L^p(\Omega)}.$$

Theorem. (Rellich-Kondrachov)

Let $\Omega \subset \mathbb{R}^d$ be a bounded open subset with a Lipschitz boundary. For $1 \leq p < \infty$. If $\{u_k\}$ is a bounded sequence in $W^{1,p}(\Omega)$, then there exists a subsequence $\{u_{k_i}\}$ that converges in $L^q(\Omega)$ where 1/p + 1/q = 1.

For: a fixed integer m > 0 and h = 1/N, we consider the spaces of Lagrange finite elements \mathbb{P}_m :

$$V_h^m := \left\{ f \in C^0([0,1]) \mid f|_{[jh,(j+1)h]} \in \mathbb{P}_m, j = 0, \dots, N-1 \right\}$$

For: a fixed integer m > 0 and h = 1/N, we consider the spaces of Lagrange finite elements \mathbb{P}_m :

$$V_h^m := \left\{ f \in C^0([0,1]) \mid f|_{[jh,(j+1)h]} \in \mathbb{P}_m, j = 0, \dots, N-1 \right\}$$

• \mathbb{P}_m is the set of polynomials of degree less than or equal to m.

For: a fixed integer m > 0 and h = 1/N, we consider the spaces of Lagrange finite elements \mathbb{P}_m :

$$V_h^m := \left\{ f \in C^0([0,1]) \mid f|_{[jh,(j+1)h]} \in \mathbb{P}_m, j = 0, \dots, N-1 \right\}$$

- \mathbb{P}_m is the set of polynomials of degree less than or equal to m.
- The polynomials ψ_i are defined by their explicit expression:

$$\psi_i(y) = \frac{\prod_{j \neq i} (y - y_j)}{\prod_{j \neq i} (y_i - y_j)}.$$

where, for all j, $0 \le j \le m$; $y_j = j/m$

For: a fixed integer m > 0 and h = 1/N, we consider the spaces of Lagrange finite elements \mathbb{P}_m :

$$V_h^m := \left\{ f \in C^0([0,1]) \mid f|_{[jh,(j+1)h]} \in \mathbb{P}_m, j = 0, \dots, N-1 \right\}$$

- \mathbb{P}_m is the set of polynomials of degree less than or equal to m.
- The polynomials ψ_i are defined by their explicit expression:

$$\psi_i(y) = \frac{\prod_{j \neq i} (y - y_j)}{\prod_{j \neq i} (y_i - y_j)}.$$

where, for all j, $0 \le j \le m$; $y_j = j/m$

We can easily construct a basis (Φ_k) of V_h^m using the basis functions ψ_j .

Basis Functions $\Phi_k(x)$

We associate with the space V_h^m the set of degrees of freedom

$$x_k = k/(Nm)$$
, where $k = 0, \dots, Nm$.

For each k = 0, ..., Nm, there exists a unique pair of integers p and q such that: $0 \le p \le N$ and $0 \le q < m$, and k = pm + q.

Basis Functions $\Phi_k(x)$

We associate with the space V_h^m the set of degrees of freedom

$$x_k = k/(Nm)$$
, where $k = 0, \dots, Nm$.

For each k = 0, ..., Nm, there exists a unique pair of integers p and q such that: $0 \le p \le N$ and $0 \le q < m$, and k = pm + q. If q = 0,

$$\Phi_k(x) = \begin{cases}
0 & \text{if } x \le ph \\
\psi_m((x - (p-1)h)/h) & \text{if } x \in [(p-1)h, ph] \\
\psi_0((x - ph)/h) & \text{if } x \in [ph, (p+1)h] \\
0 & \text{if } x \ge (p+1)h
\end{cases}$$

Basis Functions $\Phi_k(x)$

We associate with the space V_h^m the set of degrees of freedom

$$x_k = k/(Nm)$$
, where $k = 0, \dots, Nm$.

For each k = 0, ..., Nm, there exists a unique pair of integers p and q such that: $0 \le p \le N$ and $0 \le q < m$, and k = pm + q. If q = 0,

$$\Phi_k(x) = \begin{cases}
0 & \text{if } x \le ph \\
\psi_m((x - (p-1)h)/h) & \text{if } x \in [(p-1)h, ph] \\
\psi_0((x - ph)/h) & \text{if } x \in [ph, (p+1)h] \\
0 & \text{if } x \ge (p+1)h
\end{cases}$$

If $q \neq 0$,

$$\Phi_k(x) = \begin{cases} 0 & \text{if } x \le ph \\ \psi_q((x-ph)/h) & \text{if } x \in [ph, (p+1)h] \\ 0 & \text{if } x \ge (p+1)h \end{cases}$$

Interpolation Operator

The set (Φ_k) forms a basis of V_h^m .

Interpolation Operator

The set (Φ_k) forms a basis of V_h^m .

Finally, we define the interpolation operator τ_h from $H^1(0,1)$ into τ_h by

$$\tau_h u = \sum_{k=0}^{Nm} u(x_k) \Phi_k.$$

• Show that for $1 \le n \le m+1$, there exists a constant C such that for any $u \in H^n(]0,1[)$:

$$||r_1u - u||_{H^1} \le C||u^{(n)}||_{L^2}.$$

① Show that for $1 \le n \le m+1$, there exists a constant C such that for any $u \in H^n(]0,1[)$:

$$||r_1u - u||_{H^1} \le C||u^{(n)}||_{L^2}.$$

2 Deduce that for $1 \le n \le m+1$, there exists a constant C such that for any $u \in H^n(]0,1[)$:

$$\|\tau_h u - u\|_{L^2} \le Ch^n \|u^{(n)}\|_{L^2}.$$

① Show that for $1 \le n \le m+1$, there exists a constant C such that for any $u \in H^n(]0,1[)$:

$$||r_1u - u||_{H^1} \le C||u^{(n)}||_{L^2}.$$

2 Deduce that for $1 \le n \le m+1$, there exists a constant C such that for any $u \in H^n(]0,1[)$:

$$\|\tau_h u - u\|_{L^2} \le Ch^n \|u^{(n)}\|_{L^2}.$$

Similarly, show that there exists a constant C such that for any $u \in H^n(]0,1[)$:

$$\|(\tau_h u)' - u'\|_{L^2} \le Ch^{n-1} \|u^{(n)}\|_{L^2}.$$

① Show that for $1 \le n \le m+1$, there exists a constant C such that for any $u \in H^n(]0,1[)$:

$$||r_1u - u||_{H^1} \le C||u^{(n)}||_{L^2}.$$

2 Deduce that for $1 \le n \le m+1$, there exists a constant C such that for any $u \in H^n(]0,1[)$:

$$\|\tau_h u - u\|_{L^2} \le Ch^n \|u^{(n)}\|_{L^2}.$$

Similarly, show that there exists a constant C such that for any $u \in H^n(]0,1[)$:

$$\|(\tau_h u)' - u'\|_{L^2} \le Ch^{n-1} \|u^{(n)}\|_{L^2}.$$

3 Deduce an error estimate for the Lagrange finite element method \mathbb{P}_m applied to the problem:

$$-u'' = f$$
 on $]0, 1[, u(0) = u(1) = 0,$

① Show that for $1 \le n \le m+1$, there exists a constant C such that for any $u \in H^n(]0,1[)$:

$$||r_1u - u||_{H^1} \le C||u^{(n)}||_{L^2}.$$

2 Deduce that for $1 \le n \le m+1$, there exists a constant C such that for any $u \in H^n(]0,1[)$:

$$\|\tau_h u - u\|_{L^2} \le Ch^n \|u^{(n)}\|_{L^2}.$$

Similarly, show that there exists a constant C such that for any $u \in H^n(]0,1[)$:

$$\|(\tau_h u)' - u'\|_{L^2} \le Ch^{n-1} \|u^{(n)}\|_{L^2}.$$

3 Deduce an error estimate for the Lagrange finite element method \mathbb{P}_m applied to the problem:

$$-u'' = f$$
 on $]0, 1[, u(0) = u(1) = 0,$

Hint:

• Let Π_{n-1} be the L^2 orthogonal projection onto the set of polynomials of degree at most n-1. Show that for any $u \in H^n(]0,1[)$ and $n \leq m+1$, we have:

$$u - r_1 u = v - r_1 v,$$

where $v = u - \prod_{n=1} u$.

Hint:

• Let Π_{n-1} be the L^2 orthogonal projection onto the set of polynomials of degree at most n-1. Show that for any $u \in H^n(]0,1[)$ and $n \leq m+1$, we have:

$$u - r_1 u = v - r_1 v,$$

where $v = u - \prod_{n=1} u$.

Let Π_{n-1} be the orthogonal L^2 projection onto the set of polynomials of degree at most n-1.

Since

$$\tau_1 \Pi_{n-1} u = \Pi_{n-1} u \quad \text{for} \quad n \le m+1,$$

we have

$$u - \tau_1 u = v - \tau_1 v$$
, where $v = u - \prod_{n=1} u$.

By the definition of Π_{n-1} , if $u \in H^n(]0,1[)$ then $v \in \tilde{H}^n(]0,1[)$, where $\tilde{H}^n(]0,1[)$ is the set of functions in $H^n(]0,1[)$ that are L^2 -orthogonal to polynomials of degree $\leq n-1$, i.e,

$$\tilde{H}^n(]0,1[) := \left\{ v \in H^n(]0,1[); \quad \int_0^1 v(x)p_{n-1}(x) \ dx = 0, \quad \forall p_n \in \mathbb{P}_{n-1} \right\}$$

The inequality for k=0 is a Poincaré-Wirtinger inequality. Suppose that there exists a constant C>0 such that

$$\|v^{(k-1)}\|_{L^2} \le C \|v^{(k)}\|_{L^2} \quad \forall v \in \tilde{H}^n(]0,1[).$$

By the definition of Π_{n-1} , if $u \in H^n(]0,1[)$ then $v \in \tilde{H}^n(]0,1[)$, where $\tilde{H}^n(]0,1[)$ is the set of functions in $H^n(]0,1[)$ that are L^2 -orthogonal to polynomials of degree $\leq n-1$, i.e,

$$\tilde{H}^n(]0,1[) := \left\{ v \in H^n(]0,1[); \quad \int_0^1 v(x) p_{n-1}(x) \ dx = 0, \quad \forall p_n \in \mathbb{P}_{n-1} \right\}$$

The inequality for k=0 is a Poincaré-Wirtinger inequality. Suppose that there exists a constant C>0 such that

$$\|v^{(k-1)}\|_{L^2} \le C \|v^{(k)}\|_{L^2} \quad \forall v \in \tilde{H}^n(]0,1[).$$

Let us show that there exists $\tilde{C} > 0$ such that

$$\|v^{(k)}\|_{L^2} \le \tilde{C} \|v^{(k+1)}\|_{L^2} \quad \forall v \in \tilde{H}^n(]0,1[).$$

If this were not the case, then there would exist a sequence $v_{\ell} \in \tilde{H}^{n}(]0,1[)$ such that

$$\|v_{\ell}^{(k)}\|_{L^2} = 1 \text{ and } \|v_{\ell}^{(k+1)}\|_{L^2} \to 0 \text{ as } \ell \to \infty.$$

By the recurrence hypothesis, (v_{ℓ}) is thus a bounded sequence in $H^{k+1}(]0,1[)$.

If this were not the case, then there would exist a sequence $v_{\ell} \in \tilde{H}^{n}(]0,1[)$ such that

$$\left\|v_{\ell}^{(k)}\right\|_{L^{2}}=1 \text{ and } \left\|v_{\ell}^{(k+1)}\right\|_{L^{2}} \rightarrow 0 \text{ as } \ell \rightarrow \infty.$$

By the recurrence hypothesis, (v_{ℓ}) is thus a bounded sequence in $H^{k+1}(]0,1[)$.

The Rellich Lemma tells us that there exists a subsequence (which we denote by (v_{ℓ})) converging in $H^{k}(]0,1[)$.

Since $||v_{\ell}^{(k+1)}||_{L^2} \to 0$, we deduce that (v_{ℓ}) is a Cauchy sequence, and therefore convergent, in $H^{k+1}(]0,1[)$ to a function $v \in H^{k+1}(]0,1[)$. The limit satisfies $v^{(k+1)} = 0$ and is also L^2 -orthogonal to polynomials of degree $\leq n-1$. Thus, v = 0, which contradicts $||v^{(k)}||_{L^2} = 1$.

• We deduce that for $1 \le n \le m+1$,

$$||v||_{H^1} \le C ||v^{(n)}||_{L^2}.$$

Since $H^1(]0,1[)$ is continuously embedded in $C^0([0,1])$, we conclude the existence of a constant \tilde{C} such that

$$\|\tau_1 v\|_{H^1} \le \tilde{C} \|v\|_{H^1}.$$

The desired inequality is then obtained through a simple triangular inequality.

For all $v \in H^1(]0,1[)$, we have

$$\|\tau_h v - v\|_{L^2(0,1)}^2 = \sum_{j=0}^{N-1} \int_{j/N}^{(j+1)/N} |\tau_h v(x) - v(x)|^2 dx.$$

For each $j \in \{0, \ldots, N-1\}$, let

$$w_j(x) = v((x+j)/N)$$

then

$$\tau_1 w_j(x) = (\tau_h v) \left((x+j)/N \right)$$

and by a change of variable,

$$\int_{j/N}^{(j+1)/N} |\tau_h v(x) - v(x)|^2 dx = h \int_0^1 |\tau_1 w_j - w_j|^2 dx.$$

Thus,

$$\|\tau_h v - v\|_{L^2(0,1)}^2 = h \sum_{j=0}^{N-1} \|\tau_1 w_j - w_j\|_{L^2(0,1)}^2.$$

From the inequality established in question 2, we deduce that

$$\|\tau_h v - v\|_{L^2(0,1)}^2 \le Ch \sum_{j=0}^{N-1} \int_0^1 \left| w_j^{(n)} \right|^2 dx.$$

Combining this inequality with the equation, we obtain the desired estimate.

By Céa's Lemma we have

$$||u - u_h||_{H^1} \le Cte \inf_{v_h \in V_h^m} ||u - v_h||_{H^1}$$

Take

$$v_h = \tau_h u$$

then,

$$||u - u_h||_{H^1} \le Cteh^m |u|_{m+1}$$