Билет 1

Рациональные числа

Рациональные числа – это числа вида $\frac{p}{q}$, где р – целое число, q – натуральное число, причём два числа $\frac{p_1}{q_1}$ и $\frac{p_2}{q_2}$ считаются равными, если $p_1q_2=p_2q_1$. Все свойства натуральных, целых, рациональных чисел и операций над ними будем считать известными.

Десятичные дроби и вещественные числа

Каждое рациональное число можно представить в виде конечной или бесконечной периодической десятичной дроби, например: $\frac{1}{10} = 0.1, \frac{1}{7} = 0.(142857)$. Пусть 0.(9) = x, тогда 10x = 9 + x, значит, 0, (9) = 1, поэтому десятичные записи с периодом 9 рассматривать не будем.

Множество вещественных (действительных) чисел отождествляется с множеством всех десятичных дробей вида $\pm a_0.a_1a_2...$, где $a_0 \in \mathbb{N} \cup \{0\}$, $a_j \in \{0,...,9\}$, и записи, в которых с какого-то момента стоят одни девятки, запрещены. Число $\pm 0.00...$ совпадает с числом 0 и называется нулём. Ненулевое число называется положительным, если в его записи стоит знак + (который обычно опускается). Ненулевое число называется отрицательным, если в его записи стоит знак -. В вещественные числа естественным образом вложены рациональные.

На множестве вещественных чисел также определены операции сложения и умножения, для которых справедливы все их естественные свойства (множество вещественных чисел является полем).

На вещественных числах задано **отношение порядка** следующим образом: на положительных вещественных числах задан лексикографический порядок, т. е. $a_0.a_1a_2... \le b_0.b_1b_2...$ тогда и только тогда, когда $a_0.a_1a_2... = b_0.b_1b_2...$ или найдётся разряд k, для которого $a_0 = b_0,...,a_{k-1} = b_{k-1}$ и $a_k < b_k$, который естественным образом переносится на отрицательные.

Для вещественных чисел определён модуль числа |a|, равный -a при a<0 и a при $a\geq0$. Напомним, что для модуля выполнено **неравенство треугольника** $|a+b|\leq |a|+|b|$. Из неравенства треугольника следует, что $||a|-|b||\leq |a+b|$.

Принцип полноты

Будем говорить, что множество чисел А лежит **левее** множества B, если для каждого $a \in A$ и каждого $b \in B$ выполняется неравенство $a \le b$. Например, если $A = \{a \in \mathbb{Q} : a < 4\}$, $B = \{b \in \mathbb{Q} : b > 4\}$, то A левее B.

Если множество A левее множества B, то говорят, что число c разделяет множества A и B, если $a \le c$ для каждого $a \in A$ и $c \le b$ для каждого $b \in B$. Например, число 4 разделяет множества A и B, заданные выше.

Будем говорить, что на множестве чисел выполнен **принцип полноты**, если для произвольных непустых подмножеств A левее B нашего множества найдётся разделяющий их элемент.

Теорема. На множестве вещественных чисел выполняется принцип полноты.

Пусть A и B – непустые множества чисел, причём A левее B. Если A состоит только из неположительных чисел, а B – только из неотрицательных, то нуль разделяет множества A и B.

Предположим, что в A есть положительный элемент, тогда B состоит только из положительных чисел (случай, когда в B есть отрицательное число, рассматривается аналогично). Построим число $c=c_0.c_1c_2\ldots$, разделяющее A и B.

Рассмотрим множество всех целых неотрицательных чисел, с которых начинаются элементы множества B (это множество состоит из целых неотрицательных чисел в силу того, что в B есть только положительные числа). Пусть b_0 – наименьшее из таких чисел и положим $c_0 = b_0$. Теперь рассмотрим все числа в множестве B, начинающиеся с c_0 , и найдём у них наименьшую первую цифру после запятой. Пусть эта цифра b_1 , тогда полагаем $c_1 = b_1$. Теперь рассмотрим все числа в множестве B, начинающиеся с $c_0.c_1$, и найдём у них наименьшую вторую цифру после запятой. Пусть эта цифра b_2 , тогда полагаем $c_2 = b_2$. Аналогично ищутся остальные цифры числа c.

Таким образом построена бесконечная десятичная дробь $c_0.c_1c_2...$ Заметим, что если бы у построенной десятичной записи с какого-то момента шли бы только девятки, то и в В было бы число, в записи которого с какого-то момента участвуют только девятки, но такие записи мы запретили.

Покажем, что построенное число разделяет множества А и В.

Во-первых, по построению $c \le b$ для каждого $b \in B$. Действительно, либо b = c (тогда всё ОК), либо $b \ne c$. Во втором случае пусть $b_0 =$

 $c_0, \dots, b_{k-1} = c_{k-1}$ и $b_k \neq c_k$. Тогда, по построению числа $c, c_k < b_k$ и c < b.

Покажем, что $a \leq c$ для каждого $a \in A$. Предположим, что a > c, т. е. $a \geq c$ и $a \neq c$. Тогда найдётся позиция k, для которой $a_0 = c_0, \ldots, a_{k-1} = c_{k-1}$ и $a_k > c_k$. Но по построению числа c есть такой $b \in B$, что $b_0 = c_0, \ldots b_k = c_k$, а значит a > b, что противоречит условию A левее B.