Unbounded Model Checking

Stefan Ratschan

Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Forever: Infinity

How to check that a certain model fulfills a specification?

Problem: transition systems have infinitely many paths of infinite length

Testing, bounded model checking: bounded time

Unbounded Model Checking

Today: method for proving LTL properties

So: no bound on time

Gp (safety verification)

 \dots and a little bit of $\mathbf{F}p$

... and even less of $p\mathbf{R}q$

Why?

Technical systems have limited lifetime

Why paths of infinite length??

There is only a finite number of atoms on earth

Why natural numbers? Why real numbers?

Safety Verification: **G** ok

Assume a transition system (S, S_0, R)

$$\mathcal{I}(ok) = \{A, B, C, D\}$$

How is it possible to convince somebody else that $\models \mathbf{G}$ ok?

Safety Certificates

A set of states V is a safety certificate iff

- ▶ V contains every initial state: $S_0 \subseteq V$
- No transition leads out of $V: Post_R(V) \subseteq V$ where $Post_R(V) := \{x' \mid x \in V, (x, x') \in R\}$
- ightharpoonup V contains only safe (i.e., no unsafe) states: $V \subseteq \mathcal{I}(ok)$

Three conditions: safety verification conditions

First two conditions: inductivity conditions. What do they ensure?

Inductivity Conditions

- ▶ V contains every initial state: $S_0 \subseteq V$
- ▶ No transition leads out of $V: Post_R(V) \subseteq V$

Imply that V contains all reachable states:

$$\{\pi(k) \mid \pi \text{ path}, k \in \mathbb{N}_0\} \subseteq V$$

With third condition: all reachable states are safe.

The set of all reachable states $\{\pi(k) \mid \pi \text{ path}, k \in \mathbb{N}_0\}$ is also called *reach set*

An arbitrary set that contains all reachable states, that is, any super-set of the reach set is called *invariant*.

A set that fulfills the inductivity conditions is called *inductive invariant*.

Discussion

Is every invariant inductive?

Does every set that contains all reachable states fulfill the inductivity conditions?

reach set: $\{A, B, C\}$

 $\{A, B, C, D\}$? invariant, but not inductive

Does every transition system have an inductive invariant? reach set

Trivial inductive invariant:

contains all states of the given transition system

Stefan Ratschan (FIT ČVUT)

MIE-TES 2020-8

Questions

- ► How to check the safety verification conditions?
- ► How to compute a safety certificate?

How to Check Conditions?

Sometimes we have a guess for a safety certificate V:

- \triangleright an expert can guess V, or
- can be part of documentation (see assert)

Safety verification conditions:

- $ightharpoonup S_0 \subseteq V$
- $ightharpoonup Post_R(V) \subseteq V$
- $V \subseteq \mathcal{I}(ok)$

Observation: set operations, especially subset relation

Checking: for small sets no problem

For large or infinite sets?

Symbolic Checking of Safety Verification Conditions

Assumption: Transition system, V, and ok given symbolically, using logical formulas:

$$(S, \{x \mid S_0(x)\}, \{(x, x') \mid R(x, x')\}), \{x \mid ok(x)\}, \{x \mid V(x)\}$$

	x_1	<i>x</i> ₂	<i>X</i> ₃
Α	\top	\top	$ \top $
В	Т	Т	上
C	Т	上	T
D	Т	上	上
Е	\perp	丄	

$$S_0: x_1 \wedge x_2 \wedge x_3$$

 $R: [x_1 \wedge x_2 \wedge x_3 \wedge x_1' \wedge x_2' \wedge \neg x_3'] \vee \dots$
ok: x_1
 $V: x_1 \wedge [x_2 \vee x_3]$

$$V = \{A, B, C\}$$

Symbolic Checking of Safety Verification Conditions

Assumption: Transition system, V, and ok given symbolically, using logical formulas:

$$(S, \{x \mid S_0(x)\}, \{(x, x') \mid R(x, x')\}), \{x \mid ok(x)\}, \{x \mid V(x)\}$$

After substituting:

- \triangleright $S_0 \subseteq V$
- $V \subseteq \mathcal{I}(ok)$

After simplification,

safety verification conditions in the form of predicate logical formulas:

- $\triangleright \forall x . S_0(x) \Rightarrow V(x)$
- $\blacktriangleright \forall x \forall x' . [V(x) \land R(x,x')] \Rightarrow V(x')$
- $\forall x . V(x) \Rightarrow ok(x)$

Example Continued

Safety verification conditions:

- $ightharpoonup \forall x . S_0(x) \Rightarrow V(x)$
- $\forall x . V(x) \Rightarrow \mathrm{ok}(x)$

 S_0 : $x_1 \wedge x_2 \wedge x_3$

R: ...

ok: *x*₁

 $V: x_1 \wedge [x_2 \vee x_3]$

- $[x_1 \wedge x_2 \wedge x_3] \Rightarrow [x_1 \wedge [x_2 \vee x_3]]$
- $[x_1 \wedge [x_2 \vee x_3] \wedge R(x_1, x_2, x_3, x_1', x_2', x_3')] \Rightarrow [x_1' \wedge [x_2' \vee x_3']]$
- \triangleright $[x_1 \land [x_2 \lor x_3]] \Rightarrow x_1$

What about the quantifiers? \models

Automatic Check Using Solver

We have to prove:

- $ightharpoonup S_0(x) \Rightarrow V(x)$
- $\blacktriangleright [V(x) \land R(x,x')] \Rightarrow V(x')$
- $ightharpoonup V(x) \Rightarrow \mathrm{ok}(x)$

But SAT solvers do not prove, they check satisfiability!

It suffices to check unsatisfiability of

- $ightharpoonup \neg [S_0(x) \Rightarrow V(x)]$
 - $ightharpoonup \neg [[V(x) \land R(x,x')] \Rightarrow V(x')]$
 - $ightharpoonup \neg [V(x) \Rightarrow \text{ok}(x)]$

which is

- $ightharpoonup S_0(x) \wedge \neg V(x)$
- $V(x) \wedge R(x,x') \wedge \neg V(x')$
- $V(x) \land \neg ok(x)$

Computation of Safety Certificate

If safety certificate not yet known?

In finite case, we can view transition relation as a directed graph.

So: use graph algorithms, which ones?

■ G ok? How to discover this?

Checking **G** ok by Depth-First Search

Notation: for finite path t, |t| denotes its length, last(t) = t(|t|-1)

 $\mathsf{search}(\mathsf{t},\,\mathsf{V}) \qquad \qquad // \; \mathit{modifies} \; \mathsf{V}, \; \mathit{denote input value by} \; \mathsf{V}^{\mathit{in}}$

In: finite path t, $\{t(i) \mid 0 \le i < |t| - 1\} \subseteq V \subseteq \mathcal{I}(ok)$

return $\forall s'$. $R(last(t), s') \Rightarrow search(ts', V)$

Out: if \perp then $\not\models$ **G**ok else

- $ightharpoonup V^{in} \subseteq V \subseteq \mathcal{I}(\mathsf{ok})$
- every state that can be reached from last(t) without reaching a state in Vⁱⁿ is in V

```
 \begin{array}{ll} \textbf{if } \textit{last}(t) \in \textit{V} \textbf{ then} \\ \textbf{return } \top \\ \textbf{else if } \textit{last}(t) \not\in \mathcal{I}(\textit{ok}) \textbf{ then} \\ \textbf{return } \bot \\ \textbf{else} \end{array} \hspace{0.5cm} // \textit{ counter-example found} \\ \textbf{return } \bot
```

 $V \leftarrow V \cup \{last(t)\}$

Checking **G** ok by Depth-First Search

```
Initial call:  V \leftarrow \emptyset  if for all s \in S_0, search(s, V) then return V  // reach set, hence a safety certificate else return \bot  // ideally, return counter-example here
```

Explicit State Model Checking

Checking the correctness of transition systems by going through the individual states

Basis: classical graph algorithms

Depth-first search:

- resulting counter-example tend to be long
- may get lost in irrelevant parts of graph
- does not work for systems with infinitely many states

Breadth-first, best-first:

high memory requirements (queue)

Best-first search (directed model checking) mainly useful in cases where

- there are good heuristics
- the goal is mainly to find counter-examples (see also BMC for planning)

Set Based Algorithm

- $ightharpoonup S_0 \subseteq V$
- $ightharpoonup Post_R(V) \subseteq V$
- $ightharpoonup V\subseteq \mathcal{I}(\mathtt{ok})$

Set fulfilling first condition? S_0

... second condition? Add additional states

$$V \leftarrow S_0$$
 while there is a transition (x, x') such that $x \in V$, $x' \notin V$ do
$$V \leftarrow V \cup \{x' \mid (x, x') \in R, x \in V\} \qquad // \ V \cup \textit{Post}_R(V)$$
 return V

return *v*

If resulting $V \subseteq \mathcal{I}(ok)$ then V fulfills verification conditions.

Computation of Safety Certificates

Analyis of Algorithm

$$V \leftarrow S_0$$
 while there is a transition (x, x') such that $x \in V$, $x' \notin V$ do $V \leftarrow V \cup \{x' \mid (x, x') \in R, x \in V\}$ return V

The resulting set V is an inductive invariant (and so contains all reachable states)

Will it also fulfill the third verification condition $V \subseteq \mathcal{I}(ok)$?

In k-th cycle, V is the set of states reachable in k steps.

During algorithm execution V never contains unreachable states

The algorithm computes the set of reachable states

Conclusion: If the property $\mathbf{G}p$ holds, then the result is a safety certificate

Algorithm Termination

Algorithm for computing inductive invariants:

$$V \leftarrow S_0$$
 while there is a transition (x, x') such that $x \in V$, $x' \notin V$ do $V \leftarrow V \cup \{x' \mid (x, x') \in R, x \in V\}$ return V

- ► If *V* does not yet contain all reachable states, the algorithm continues further.
- ► The algorithm always terminates (for finite transition systems)

Efficient Computation of Inductive Invariants

Problems:

- ▶ Slow convergence, non-termination of infinite systems
- Complex sets

In practice:

```
let V be a superset of S_0 while there is a transition (x,x') such that x \in V, x' \notin V do let V be a superset of V \cup \{x' \mid (x,x') \in R, x \in V\} return V
```

Still we have:

- ▶ If the algorithm terminates, then *V* is an inductive invariant
- ▶ In k-th cycle, V is a superset of the set of states reachable in k steps.

But: In general, result is a superset of reachable states.

Efficient Computation of Inductive Invariants

How much to overapproximate?

- ▶ Too much overapproximation might result in violation of $V \subseteq \mathcal{I}(ok)$
- ► Too small overapproximation might result in termination problems (in infinite state case) or set representation blows up

Special data structures for compact set representation: BDD (Binary Decision Diagram)

symbolic model checking

Backward Computation

Instead of a set such that fulfills the safety verification conditions we can also compute its complement.

Especially: set of states that leads to an unsafe state: backward reach set

If the result does not contain any initial state, safety proven.

Backward Computation

For all the above algorithms there are versions that work in opposite direction: backwards from set of unsafe states to set of initial states.

No need to re-implement: Use transition system (S, S_0^-, R^-) where

$$\blacktriangleright \ S_0^- = S \setminus \mathcal{I}(\mathtt{ok}) = \{ s \mid s \models \neg \mathtt{ok} \}$$

$$ightharpoonup R^- = \{(x',x) \mid (x,x') \in R\}$$

Check $\models \mathbf{G} \neg \mathtt{ok}^-$, where $\mathcal{I}(\mathtt{ok}^-) = S_0$.

Certificate for **F** goal

How is it possible to convince somebody else that $(S, S_0, R) \models \mathbf{F}$ goal?

 \models **F** goal where $\mathcal{I}(goal) = \{E\}$?

topological sort, strict linear (total) order on all states

 \models **F** goal where $\mathcal{I}(goal) = \{C, E\}$? topological sort?

But in state C we already reached the goal!

Strict linear order on $\{A, D, B\}$, leaving set reaches goal.

Certificate for Fgoal:

pair (V, \succ) where \succ is a strict linear order on V s.t.

- $ightharpoonup S_0 \subseteq V \subseteq S$
- ▶ for all $(s, s') \in R$, $s \in V$, $s' \notin V$ implies $s' \in \mathcal{I}(goal)$
- ▶ for all $(s, s') \in (R \cap V \times V)$, $s \succ s'$

Similar objects:

- ranking function for proving program termination
- Lyapunov functions for proving stability of continuous systems

 MIE-TES 2020-8

pair (V, \succ) where \succ is a strict linear order on V s.t.

- $ightharpoonup S_0 \subseteq V \subseteq S$
- ▶ for all $(s, s') \in R$, $s \in V$, $s' \notin V$ implies $s' \in \mathcal{I}(goal)$
- ▶ for all $(s, s') \in (R \cap V \times V)$, $s \succ s'$

Algorithm principles:

- depth-first traversal,
- stop in goal states,
- \blacktriangleright for cycles return \bot .

Checking F goal by Depth-First Search

```
search(t,V) // modifies V, denote input value by V^{in}
In: finite path t, list V
```

- Out: if \perp then $\not\models \mathbf{F}$ goal else
 - $\triangleright V^{in}$ is a suffix of V
 - ▶ for all $(s, s') \in R$, s.t. $s \in V$, $s' \in V$, $s' \notin \mathcal{I}(goal)$, s occurs in the list V before s'.
 - Pevery state that can be reached from last(t) without reaching a state in $\mathcal{I}(goal)$ or V^{in} is in V

```
if last(t) \not\in \mathcal{I}(goal) \land \exists i \in \{0, \dots, |t| - 2\}. t(i) = last(t) then return \bot else if last(t) \in \mathcal{I}(goal) \lor last(t) \in V then return \top
```

else

return
$$r$$
 $r \leftarrow \forall s' . R(last(t), s') \Rightarrow search(ts', V)$
 $V \leftarrow last(t) :: V$

Stefan Ratschan (FIT ČVUT)

Checking F goal by Depth-First Search

Checking F goal by Depth-First Search

```
\begin{aligned} & \mathsf{search}(\mathsf{t}, \mathsf{V}) \\ & \mathbf{if} \ \mathit{last}(t) \not\in \mathcal{I}(\mathit{goal}) \land \exists i \in \{0, \dots, |t| - 2\} \ . \ \mathit{t(i)} = \mathit{last}(t) \ \mathbf{then} \\ & \mathbf{return} \ \bot \\ & \mathbf{else} \ \mathbf{if} \ \mathit{last}(t) \in \mathcal{I}(\mathit{goal}) \lor \mathit{last}(t) \in V \ \mathbf{then} \\ & \mathbf{return} \ \top \end{aligned}
```

else

$$r \leftarrow \forall s' . R(last(t), s') \Rightarrow search(ts', V)$$

 $V \leftarrow last(t) :: V$
return r

Certificate for $p\mathbf{R}q$

$$\pi \models p\mathbf{R}q$$
 iff for all j , [if for all $i < j$, $\pi^i \not\models p$, then $\pi^j \models q$]

- q:

$\mathbf{G}\phi$ is equivalent to $\perp\mathbf{R}\phi$

Certificate for Gok:

- $ightharpoonup \forall x . S_0(x) \Rightarrow V(x)$
- $\blacktriangleright \forall x \forall x' . [V(x) \land R(x,x')] \Rightarrow V(x')$
- $ightharpoonup \forall x . V(x) \Rightarrow \mathrm{ok}(x)$

If $p \neq \bot$, weaker conditions will suffice:

- $ightharpoonup \forall x . S_0(x) \Rightarrow V(x)$
- $\blacktriangleright \forall x \forall x' . [V(x) \land R(x,x') \land \neg p(x)] \Rightarrow V(x')$
- $\blacktriangleright \forall x . V(x) \Rightarrow g(x)$

Certificate for $p\mathbf{R}q$: Example

 $\pi \models p\mathbf{R}q$ iff for all j, [if for all i < j, $\pi^i \not\models p$, then $\pi^j \models q$]

$$\mathcal{I}(p) = \{C, D, E\}$$
$$\mathcal{I}(q) = \{A, B, C, D\}$$

- $\blacktriangleright \forall x . S_0(x) \Rightarrow V(x)$
- $\forall x \forall x' . [V(x) \land R(x,x') \land \neg p(x)] \Rightarrow V(x')$
- $\forall x . \ V(x) \Rightarrow q(x)$

Certificate: $\{A, B, C\}$

Arbitrary LTL formulas

In the case of a finite number of states there are methods for checking arbitrary LTL (CTL) formulas.

Tools:

► SPIN: http://spinroot.com

SAL: http://sal.csl.sri.com

NuSMV: http://nusmv.fbk.eu

Turing Award 2007: Clarke/Emerson/Sifakis

Infinite Number of States

Principle also works for infinite state space

Example:

Flat computer programs over integers:

state space $\{1, \ldots, loc\} \times \mathbb{N}^k$,

where k is number of program variables, loc is the number of program lines

Here, and in several other cases:

safety verification undecidable.

But: Often works in practice, see area of "software model checking" (see MI-FME)

Better than modeling the problem using variables with finite domain $\{0,\dots,2^{64}-1\}$

Further examples till end of semester

Model Checking for Planning

Here: Non-determinism corresponds to decisions we can take. Example: Should we switch on coal-fired power station? Yes/no

Given:

- ► Transition system $(S, \{s_0\}, R)$, where s_0 is the current state of the system, a
- ightharpoonup LTL formula ϕ ,

```
Find: path \pi, s.t. \pi \models \phi (plan what to do from current state s_0)
```

Idea: Such a path is a counter-example to $\models \neg \phi$

Find plan by applying a method for checking $\models \neg \phi$

Unbounded Model Checking for Planning: Examples

We want a plan fulfilling Gok

- Method: Check ¬Gok, that is F¬ok
- ▶ Result: counter-example to $\mathbf{F} \neg \mathsf{ok}$, that is, path, that will cycle outside of $\{s \mid s \models \neg \mathsf{ok}\}$, in $\mathcal{I}(\mathsf{ok})$

We want a plan fulfilling Fgoal

- ▶ Method: Check ¬Fgoal, that is **G**¬goal
- Result: counter-example to G¬goal, that is, path, that will reach *I*(goal)

When using BMC:

If BMC($\neg \phi$, n) holds, then there is no plan of length n, that ensures that the requirement holds forever.

There might be a longer plan

Unbounded model checking finds plans of arbitrary length

Dynamic programming, reinforcement learning ...

Stefan Ratschan (FIT ČVUT)

Relationship to Mathematical Induction

 $\mathbf{G}p$, where p describes the property we want to prove.

Example:
$$\mathcal{I}(p) = \{n \mid P\}$$
, where $P \equiv 0 + 1 + \cdots + n = \frac{n(n+1)}{2}$

 $\forall x \in \mathbb{N}_0 . P(x) \Leftrightarrow \models \mathbf{G}p \Leftrightarrow \text{ all reachable sets are green:}$

Relationship to Mathematical Induction

Verification conditions (formulation based on logical formulas):

- $ightharpoonup \forall x . S_0(x) \Rightarrow V(x)$
- $\blacktriangleright \forall x \forall x' . [V(x) \land R(x,x')] \Rightarrow V(x')$
- $\blacktriangleright \forall x . V(x) \Rightarrow P(x)$

For V = P:

- \blacktriangleright $\forall x . S_0(x) \Rightarrow P(x)$
- $\blacktriangleright \forall x \forall x' . [P(x) \land R(x,x')] \Rightarrow P(x')$
- $ightharpoonup \forall x . P(x) \Rightarrow P(x)$

Final condition holds trivally, the rest is classical mathematical induction!

Relationship to Mathematical Induction

- $ightharpoonup S_0 \subseteq V$
- $V \subseteq \mathcal{I}(p)$

Why not, in general, choose V as $\mathcal{I}(p)$?

Cannot happen for standard mathematical induction on natural numbers.

In different mathematical structures a different choice is used, i.e., for proving a certain property a different property is proven that implies the given property.

Elevator example

https://youtu.be/pRSZTuEPacU

https:

//www.thyssenkrupp-elevator.com/uk/products/elevators/twin

Conclusion

Certificates

It is possible to check an infinite number of paths of infinite length!

Principles: induction, linear orders, etc.

Literature: Principles are used all over computer science/mathematics, but are hardly every explicitly explained.

Now:

- ► We know finite state models, we are able to specify properties, and to check them (automatically).
- Rest of semester: more expressive models (infinite number of states, probability etc.)