1. Note R₊ means x > 0Show $\exists x \in R_{+} \ni x^{2} \le 1$ Proof: Assume $\forall x \in R_{+} \ni x^{2} > 1$ Let x = 1, then $(1)^{2} > 1$ 1 > 1 $\rightarrow \leftarrow$

- $\therefore \forall x \in R_+, x^2 > 1 \text{ is false}$
- \therefore By T.T. $\exists x \in R_{+} \ni x^{2} \le 1$ is true
- 3. Show $\exists x \in \mathbb{N} \ni \frac{4}{x} \in \mathbb{N}$

Proof: Assume $\forall x \in N \ni \frac{4}{x} \notin N$

Let
$$x = 1$$
, then $\frac{4}{1} \notin N$
 $4 \notin N$
 $\rightarrow \leftarrow$
 $4 \in N$

$$\therefore \ \forall \ x \in N, \ \frac{4}{x} \notin N \ \text{is false}$$

$$\therefore \text{ By T.T. } \exists \, x \in \mathbb{N} \, \ni \, \frac{4}{x} \in \mathbb{N} \text{ is true}$$

5. Show $\forall x \in R \ni \text{if } x > 2$, then $x^2 - 4 \ge 0$

Proof: Assume
$$\exists x \in R \ni x > 2$$
 and $x^2 - 4 < 0$

$$\exists \ x \in \ R \ \ \ni \ \ x > 2 \ \ and \ (x-2)(x+2) < 0$$

$$\exists x \in R \ni x > 2 \text{ and } -2 < x < 2$$

$$\rightarrow \leftarrow$$

$$\not\exists x \in R \ni x > 2 \text{ and } -2 < x < 2$$

- $\therefore \exists x \in R \ni x > 2 \text{ and } x^2 4 < 0 \text{ is false}$
- \therefore By T.T. $\forall x \in R \ni \text{ if } x > 2$, then $x^2 4 \ge 0$ is true

7. Show $\forall x \in \mathbb{N}, x^2 \ge 1$

Proof: Assume $\exists x \in N \ni x^2 < 1$

$$\exists x \in N \ni x^2 - 1 < 0$$

$$\exists x \in N \ni (x-1)(x+1) < 0$$

$$\exists x \in N \ni -1 < x < 1$$

$$\rightarrow \leftarrow$$
 $\nexists x \in N \ni -1 < x < 1$

$$\exists X \in \mathbb{N} \ni -1 <$$

- $\therefore \exists x \in N \ni x^2 < 1 \text{ is false}$
- \therefore By T.T. \forall x \in N, $x^2 \ge 1$ is true

9. Show $\exists x \in \mathbb{N} \ni x^2 \ge 0$

Proof: Assume
$$\forall x \in \mathbb{N}, x^2 < 0$$

Let $x = 1$, then $(1)^2 < 0$
 $1 < 0$
 $\rightarrow \leftarrow$
 $1 > 0$

- $\therefore \forall x \in N, x^2 < 0$ is false
- ∴ By T.T. $\exists x \in N \ni x^2 \ge 0$ is true

11. Show if x + 2 is even, then x is even. (Note this is really a "for all" case)

Proof: Assume x + 2 is even and x is odd

x is odd and x + 2 is even (swap sides)

x is odd and x + 2 = 2k, $\exists k \in Z$ by definition of even

x is odd and x = 2k - 2

x is odd and x = 2(k-1) $k-1 \in Z$, so let p = k-1 \exists $p \in Z$

x is odd and x = 2p

x is odd and x is even

$$\rightarrow \leftarrow$$

 $\not\exists x \in Z \ni x \text{ is odd and } x \text{ is even}$

- \therefore x + 2 is even and x is odd is false
- \therefore By T.T. If x + 2 is even, then x is even is true

- 13. A year has 365 days. Show at least 4 of 22 days chosen at random are the same day of the week.
- P: Show at least 4 of 22 days chosen at random are the same day of the week.
- P: 1,2 or 3 of 22 days chosen at random are the same day of the week.

A year has 365 days.

Show at least 4 of 22 days chosen at random are the same day of the week.

Proof: Assume 1,2 or 3 of 22 days chosen at random are the same day of the week.

Since there are 7 days a week, and at most three days are chosen, then at most 21 days can be chosen.

 $\rightarrow \leftarrow$

To 22 days

- ∴ 1,2 or 3 of 22 days chosen at random are the same day of the Week is false
- ... By T.T at least 4 of 22 days chosen at random are the same day of the week is true

15.

Show If
$$x \ne 0$$
 then $10^x \ne 1$ (Note: This really a "for all" case)

Proof: Assume
$$x \neq 0$$
 and $10^x = 1$
 $x \neq 0$ and $log(10^x) = log(1)$
 $x \neq 0$ and $xlog(10) = log(1)$
 $x \neq 0$ and $x = 0$
 $x \neq 0$ and $x = 0$
 $x \neq 0$ and $x = 0$

- \therefore x \neq 0 and 10^x = 1 is false
- \therefore By T.T If $x \neq 0$ then $10^x \neq 1$ is true

17. Show
$$\exists x, y \in \mathbb{N} \ni \frac{x}{y} \in \mathbb{Q}$$

Proof: Assume
$$\forall x,y \in \mathbb{N}, \frac{x}{y} \notin \mathbb{Q}$$

Let
$$x = 1$$
, $y = 1$ then $\frac{1}{1} \notin \mathbb{Q}$

$$\rightarrow \leftarrow$$

$$\therefore \forall x,y \in \mathbb{N}, \frac{x}{y} \notin \mathbb{Q} \text{ is false}$$

$$\therefore$$
 By T.T. $\exists x, y \in \mathbb{N} \ni \frac{x}{y} \in \mathbb{Q}$ is true

19.

Show $\forall x \in \mathbb{R}$, If x > 1, then $x^3 > x^2$

Proof: Assume $\exists x \in \mathbb{R}, x > 1$ and $x^3 \le x^2$

$$\exists x \in \mathbb{R}, x > 1 \text{ and } x^3 - x^2 \leq 0$$

$$\exists x \in \mathbb{R}, x > 1 \text{ and } x^2(x-1) \leq 0$$

$$\exists x \in \mathbb{R}, x > 1 \text{ and } x \leq 1$$

$$\rightarrow \leftarrow$$

$$\exists x \in \mathbb{R}, x > 1 \text{ and } x \leq 1$$

$$\therefore \exists x \in \mathbb{R}, x > 1 \text{ and } x^3 \le x^2 \text{ is false}$$

$$\therefore$$
 By T.T. $\forall x \in \mathbb{R}$, If $x > 1$, then $x^3 > x^2$ is true

21. Show
$$\forall x \in \mathbb{R}, 3x^2 + 2x + 4 \neq 0$$

Proof: Assume $\exists x \in \mathbb{R} \ni 3x^2 + 2x + 4 = 0$

$$\exists x \in \mathbb{R} \ni x = \frac{-(2) \pm \sqrt{(2)^2 - 4(3)(4)}}{2(3)}$$

$$\exists \ x \in \mathbb{R} \ \exists \ x = \frac{-2 \pm \sqrt{-44}}{6}$$
 (This is a complex number)

$$\rightarrow \leftarrow$$

$$\exists x \in \mathbb{R} \ni x = \frac{-2 \pm \sqrt{-44}}{6}$$

(x can't be both real and complex)

$$\therefore$$
 $\exists x \in \mathbb{R} \ni 3x^2 + 2x + 4 = 0$ is false

$$\therefore$$
 By T.T. $\forall x \in \mathbb{R}, 3x^2 + 2x + 4 \neq 0$ is true

23.

Show \forall Sets A, $A \subseteq A$

Proof: Assume \exists a set $A \ni A \not\subset A$

Since $A \subseteq A$, then there is an x in A(left set A) which is not in A(right set A)

All elements in A is also in A

 \therefore \exists a set A \ni A $\not\subset$ A is false

 \therefore By T.T \forall Sets A, A \subseteq A is true