12 | 云数据库: 高歌猛进的数据库"新贵"

2020-03-30 何恺铎

深入浅出云计算 进入课程>

讲述: 何恺铎

时长 18:12 大小 16.68M

你好,我是何恺铎。

说起数据库,相信你一定不会陌生。从开源的 MySQL、PostgreSQL,到商业级的 Oracle、SQL Server,再到新兴的各类 NoSQL 数据库,都是我们应用架构中的常客。

由于数据库的产品形态天生具有独立性,容易标准化封装,而且用户侧又往往有运维复杂的痛点。所以这类数据库托管服务一经推出,很快就受到了用户的广泛欢迎,也当仁不让地成

为了云 PaaS 服务中的杰出代表。你一定要来认识它。

云上的关系型数据库

关系型数据库的应用在业界是最普遍的,也是云数据库首先进入的领域。这里的先行者同样是 AWS,早在 2009 年就发布了 RDS (Relational Database Service) ,后来其他的厂商也纷纷开始跟进。

RDS 其实并不指代单个服务,而是一般针对每个数据库引擎,都有一个对应的服务,比如 RDS for MySQL 或 RDS for PostgreSQL。并且,同一种数据库按照不同的版本,也有比较严格的分支选项,你在创建时就会被要求选定这个版本。

那么, RDS 类服务和传统关系型数据库有什么区别呢?这恐怕是一个绕不开的问题。对于云数据库,我想这样回答你,**它们既没有区别,又有很大的区别**。

怎么理解这句看似矛盾的话呢?

所谓的**没有区别**,指的是云数据库在外部交互的层面上,保持了和传统"原版"数据库几乎完全一致的编程接口和使用体验。

比如说,你针对 MySQL 编写的 SQL 代码和应用层连接代码,包括你很熟悉和经常会使用的连接管理工具,除了要更改连接字符串和参数之外,都能够几乎不经修改地在云数据库的 MySQL 服务上运行。

另外,针对某个数据库的某个具体版本,云厂商们会把它的功能、内部机制完整地保留下来,以求获得最大程度的兼容性。早期比较简单的云数据库实现原理,是充分利用云上已经提供的虚拟机、云磁盘等 laaS 层面的资源,在隔离的环境下进行数据库镜像的安装。而后来技术实力比较强大的厂商,还能够做到对数据库源码和模块的深度定制,在保证兼容性的前提下,进行许多对用户透明的云端适配和优化。

所以,云数据库尽管是一个受限的 PaaS 环境(比如它通常无法让你直接访问底层的服务器),但在使用体验上和传统数据库是相当一致的。你大可放心,之前积累的 MySQL 和 PostgreSQL 的知识,在 RDS 上也大都可以适用。在云上,你也同样能够找到和安装一些数据库的常用插件,来增强 PaaS 数据库的功能。

而同时我们又说,云数据库和传统数据库**有很大的区别**,这是指在搭建、运维、管理层面,云数据库提升了一个层次,实现了相当程度的智能化和自动化,极大地提升了用户友好度,降低了使用门槛。比如灵活的性能等级调整、详尽的监控体系、攻击防护机制等等,这些许多在传统数据库中需要借助额外工具或产品的功能,在云数据库服务是默认内置,可以开箱即用的。

除了这些基本能力外,我还想着重强调两个最具代表性的云上关系型数据库的高级特性。

一个是支持**读写分离**。当并发数量上升时,关系型数据库容易出现性能瓶颈。这时比较有用的办法,就是实现基于多库同步的读写分离。读写分离虽然是常见的架构思路,但你要是不熟悉细节的话,手工配置起来可并没有那么容易。

云数据库就帮我们解决了这个烦恼,你只要在产品后台略加操作,就可以启用这个功能:从 创建从库到建立同步,再到读写流量分发,云数据库都能自动完成。看上去高大上的架构实 践,在云数据库的帮助下,就轻松地"飞入寻常百姓家"了。

阿里云 RDS 中建立的读写分离

一个是支持**自动调优**。对于数据库来说,同样和性能有关的一个重要工作,就是性能的调优。以前我们经常需要手动地观测性能瓶颈,找出热点查询,再考虑是否有改进性能的办法。而在现代云数据库中,都自带有性能分析与改进的模块,能够自动地发现性能热点,甚至还能够智能地给出调整建议,比如进行个别语句的调整,甚至添加额外的索引等等。

这个性能分析和自动调优的能力,是将生产运行数据和服务内置的 AI 模型进行了结合,是 真正的智能化运维,毫无疑问,这大大增强了云上数据库的竞争力。如果你有线上的云数据 库,一定不要忘记观察它自动给出的结果和建议,很可能会给你带来惊喜和帮助。

给你举个例子,下面这张图中是 Azure SQL Database 自动给出的性能优化建议。你可以看到,它建议我在某些表的某些列创建索引,还提醒我部分查询应当进行参数化。而且它将

各个建议还按照对性能影响程度的高低进行了排序,可以说是非常贴心了。

Azure SQL Database 中的自动性能调优建议

以上的种种特点,一起构成了云上关系型数据库的独特竞争力,也为它赢得了认可。

新一代云原生数据库有什么特征?

在通过 RDS 类关系型数据库服务,建立起公众对于云数据库的认知和信任以后,聪明的云计算工程师们又开始了新的征程。这次,云厂商们不满足于封装现有的数据库,而是极具野心地开始构建完全为云设计、能够充分发挥云的特点和优势的数据库。

这就是新一代云原生数据库的由来。

你可能也听说过 AWS Aurora、阿里 PolarDB、Azure Cosmos DB 这几个产品的鼎鼎大名,它们正是云原生数据库中的杰出代表。

出于生态发展和降低学习难度的需要,绝大多数的云原生数据库仍然保留了 SQL 等常见接口(有的还支持不同 SQL 方言的选择),但除此以外,云原生数据库大都进行了全面革新和重新设计,有的云会大刀阔斧地改造开源代码,有的甚至脱离了现有包袱,完全重新构建。

这样的尝试取得了巨大的成功,业界也逐渐形成了一系列不同领域的云原生数据库矩阵,大大拓展了云上数据库的范畴和影响力。

我这里也为你整理了一张表格,按照厂商和云数据库的类型进行了梳理和比较。其中,标红的部分是相当值得你关注的自研云原生数据库。

数据库类型	AWS	阿里云	Azure
关系型	Aurora RDS(除Aurora外)	PolarDB, OceanBase, RDS	SQL Database, Azure Database for MySQL/ PostgreSQL
键值型	DynamoDB ElastiCache	阿里云Redis	CosmosDB, Azure Cache for Redis
文档型	DocumentDB	MongoDB(官方合作)	CosmosDB
图数据库	Neptune	GDB	CosmosDB
分析型	Redshift	AnalyticDB (ADB)	SQL Data Warehouse (Synapse Analytics)

还有其他厂商也有相当出彩的云原生数据库,我没有收录到表格中,比如腾讯云的 CynosDB 和华为云的 GaussDB 等,也都是云原生数据库的杰出代表。

那么, 云原生数据库在使用时, 有什么优势和特点呢?

首先,更强的可扩展性。

得益于原生设计的计算存储分离架构,云原生数据库可以支撑更大规模的数据量,突破了传统关系数据库服务的单机单库限制。比如说,关系型云原生数据库能够脱离典型的数 TB 的容量上限,达到单库数十 TB 甚至百 TB 的级别。这和它单独专门为云设计的存储架构是分不开的。

算力方面也同样如此,云原生数据库可以利用云快速地进行水平扩展,迅速调整、提升数据库的处理能力。在分布式架构的加持下,它相比以前单机数据库的计算查询能力有了成倍的提升。所以,云原生数据库往往善于处理大并发的负载,可以提供很高的 QPS。

其次, 更高的可用性和可靠性。

和传统 RDS 服务不同,云原生数据库往往默认就是多副本高可用的,数据同步、读写分离等高级特性是作为原生机制的一部分天生存在的。像 Amazon Aurora 中的存储部分,就自动包含了分布在 3 个可用区、多达 6 份的数据副本。

得益于原生数据同步机制的底层设计,云原生数据库还能很方便地支持跨区域的实例复制,在进一步增强冗余的同时,还能便于就近服务全球用户。比如下图所示,就是 Azure Cosmos DB 跨区域复制的设置页面,你可以在这里轻松地指定区域,让数据在全球范围流转和同步。

Azure Cosmos DB 的全球跨区域复制设置

此外,对于**多种数据模型** (multi-model) 的支持,也是云原生数据库的一大特征。除了兼容关系型数据库外,云厂商还会针对不同的场景进行针对性的研发和优化,结合数据库业界最新的流行趋势,推出适合不同形态和查询范式的云数据库,与 NoSQL 数据库进行积极竞争。

比如说,AWS 的键值型数据库 DynamoDB 和图数据库 Neptune,都是相应领域中非常优秀的产品。而 Azure 的 Cosmos DB,则采用了另外一种做法,在一个数据库产品中同时内置了多种数据模型的支持,也同样取得了成功。

云原生数据库还往往有低成本启动的优势,它能够自然地跟随业务增长。大多数的云原生数据库,在存储上不需要你预先设置容量大小,而是会随着存储占用自动扩展;在计算上,也有部分云数据库开始推出无服务器版本,比如 AWS 的 Aurora Serverless,它不需要使用固定的计算资源,这在面对间歇偶发或者难以预测的工作负载时,非常经济实用。

云数据库为什么能够不断占领市场?

不论是封装传统关系数据库的 RDS 类服务,还是新一代的云原生数据库,都是一经推出就 广受欢迎,市场占有率不断提高。而像 Oracle 这样的传统商业数据库,近几年却身影落 寞,在市场上节节败退。这是为什么呢?

除了我们前面提到的易用性和丰富功能外,在云上,云厂商还能**端到端地掌控影响一个数据库的设计和性能的所有因素**,可以为它**配备最新、最好的软硬件组合**,这也是云数据拥有旺盛生命力的根本原因之一。比如说,许多的云数据库,都会使用 RDMA 远程高速访问、NVMe SSD 等先进技术。

另外,借助云计算平台,**云数据库拥有非常好的流量入口**。云计算平台让这些新兴的企业级数据库变得触手可及,非常方便你去学习和尝试。这和同样设计精妙,但"养在深闺人未识"的一些企业级数据库形成了鲜明对比。所以现在反过来,老牌企业级数据库需要和云来合作,这就是入口效应所驱使的。

扩展:通过云平台,云数据库还能够更快地推向市场。一旦有了新的特性,可以很快地更新发布,甚至以预览形式在早期就招募用户。这还造就了云数据库的速度优势。

所以你看,一个行业的进步和颠覆,往往是从一个更高的层面来进行的,也就是我们常说的"降维打击"。云数据库之于传统数据库,是用完全不同的研发模式、商业模式和产品形态,从另一个层面发起了挑战,从而具备了竞争优势,这就像早年汽车替代了马车一样。这也是为什么 Gartner 会大胆预测,到 2023 年,全球 3/4 的数据库会跑在云上。

回到我们用户的视角,你什么时候应该考虑使用云数据库呢?

可以这样说,云数据库现在已经进入了相当成熟的时期。所以,在云上大多数的场合,我都推荐你使用云数据库,而不是用虚拟机自建数据库。**你更多需要考虑的是,如何在云数据库**中选择匹配你需求的型号,同时要注意可迁移性和厂商绑定的问题。

如果是老的应用迁移,或者是其他需要与自建数据库保持高度兼容性的场合,你不妨使用经典的 RDS 服务,实现平滑上云;如果你的应用场景中数据量大、性能要求高,或者是没有历史负担,那你可以考虑直接"一步到位",拥抱理念更加先进的云原生数据库。

课堂总结与思考

今天,我们主要学习和讨论了云数据库,它完全改变了数据库的产品形态,既大幅减轻了部署维护负担,也让云计算的弹性计算和存储能力得以充分施展。

云上的关系型数据库在保证接口兼容性的同时,还拥有智能化和自动化的特点,能够帮我们进一步地减轻管理压力,以及提出性能优化建议。而全新一代的云原生数据库,更是放开手脚实现了面向云的原生架构,在性能、可用性和可扩展性上,都展现出了巨大优势。

在前面 Ø 第 9 讲关于 PaaS 服务的问题回复中,许多同学都提到了在使用云数据库,我想也正是被它的这些特点所吸引。

这一讲,我还埋下了一个伏笔。在前面的云数据库对比表格中,最后一行对应着云上的**分析型数据库**,这也是云数据库很重要的一个分支。在下一讲讨论云上大数据时,我会更详细地给你介绍。

今天我留给你课后思考的问题是:

近期某著名的 SaaS 服务商遭遇了人为数据删除,造成了很大损失。在这里,我们不深究这个事故的细节,但从云数据库的角度,你知道如何充分利用云数据库的特性,来尽量避免"删库跑路"的事情发生吗?

分区是传统数据库设计和性能优化的常用手段。对于能够支撑很大数据量级的云原生数据库,分区技术还有没有应用的价值和必要呢?

欢迎给我留言,如果你觉得有收获,也欢迎你把这篇文章分享给你的朋友。谢谢你的阅读,我们下期再见。

© 版权归极客邦科技所有,未经许可不得传播售卖。页面已增加防盗追踪,如有侵权极客邦将依法追究其法律责任。

上一篇 11 | 应用托管服务: Web应用怎样在云上安家?

下一篇 13 | 云上大数据:云计算遇上大数据,为什么堪称天作之合?

精选留言 (8)

写留言

[上讲问题参考回答]

1. 部署槽功能,能够让我们在一个应用服务实例内,部署和划分出多个使用不同版本的Web应用,并同时对外服务。这对于需要程序不同版本同时在线的场景非常有用,比如区分生产测试环境、灰度上线、进行AB测试等。部署槽功能一般还支持流量的比例分配,和瞬时的槽位切换。...

展开~

怀朔

2020-03-30

问题一

- 1、 开启 rds 逻辑全备
- 2、开启 rds 日志 row格式 物理备份
- 3、在ecs层面搭建从库 被设置延迟时间为1-24小时不等

这种我觉得也不是云特有 常规的idc机器也可以....该问题我觉得讨论 权限控制 人员管控 ... 展开 >

leslie

2020-03-30

云数据库用了有些时间:针对以及内容从2个问题谈谈吧;

云数据库的删库问题:云端的删除无法做到彻底删除log文件;删除容易,彻底删除难;这个在本地云是可以做到的,原因不多解释;打了多年交道太清楚了。

云数据库的分库分表: 这个云服务器端和本地没什么区别, 云数据库的分库分表实际做过。...

展开~

作者回复: 老司机

感谢老师,之前真不知道有这种服务的存在。。。

展开٧

一天到晚游泳的鱼

啊小雄

2020-03-30

刚好用的azure哈。

第一问题,要用云,先管好云的权限。管理者和运维者权限分开。原则上不允许数据删除。真要担心的话,把数据再备份一份到datalake上,价格便宜,不干别的,就当买了个保险。

第二个问题,分区肯定合理啊,在cosmos中,我就把分区键当索引用了。

展开٧

qinsi

2020-03-30

使用云原生数据库会比传统数据库更需要担心vendor lock-in

作者回复: 的确如此。当然, 也可以在使用时注意不使用专有特性。

Christopher

2020-03-30

云数据库确实提升了我对云的认识,新项目可以考虑充分用云上的资源了。

