Konvergente Statistische Folgen

Philip Geißler

Man definiere sich eine Wahrscheinlichkeitsverteilungsfunktion $p_n(x)$, die über einen Parameter n verändert werden kann und auf ihrem Definitionsbereich eine Einheitsfläche einschließe:

$$p_n(x) = \frac{2^n}{x^{2^n + 1}} \qquad \qquad \int_1^\infty p_n(x) \, \mathrm{d}x = \left[-\frac{1}{x^{2^n}} \right]_1^\infty = 1 \qquad \qquad \mathrm{DB}\left(p_n(x) \right) = [1, \infty[$$

Darauffolgend definiere man durch Zweiteilung des Definitionsbereich von $p_n(x)$ zwei Ereigniswahrscheinlichkeiten $P_A^{[q]}(n)$ und $P_{\neg A}^{[q]}(n)$ dafür, dass x in, oder eben nicht in $[q, \infty[$ liegt. Außerdem bilde man eine allgemeine Bereichswahrscheinlichkeit $P^{[p,q]}(n)$:

$$P_A^{[q]}(n) = \int_q^\infty p_n(x) \, \mathrm{d}x = q^{-(2^n)}$$

$$P^{[p,q]}(n) = \int_p^q p_n(x) \, \mathrm{d}x$$

$$P^{[q]}(n) = \int_1^q p_n(x) \, \mathrm{d}x = 1 - q^{-(2^n)}$$

Zusätzlich bilde man $Q_{\neg A}^{[q]}(k)$, welches die Wahrscheinlichkeit für dauerhaftes Auftreten von $\neg A$ und damit für das Nichtauftreten von A in $p_k(x)$, $p_{k+1}(x)$, $p_{k+2}(x)$, ... angibt:

$$\Rightarrow Q_{\neg A}^{[q]}(k) = p(\neg A_k \land \neg A_{k+1} \land \dots) = \prod_{i=k}^{\infty} P_{\neg A}^{[q]}(i) = \prod_{i=k}^{\infty} 1 - q^{-(2^i)} > 0 \qquad : q > 1$$

$$\lim_{k \to \infty} Q_{\neg A}^{[q]}(k) = 1$$

Nun kann eine statistische Folge $(x_n)_{n=0}^{\infty}$ auf Basis des Wahrscheinlichkeitsmaßes erstellt werden, deren Glieder eine (unterschiedliche) Wahrscheinlichkeitsverteilung für ihre Werte besitzen:

Folge:
$$(x_n)_{n=0}^{\infty}$$
 $x_n \in \mathrm{DB}(P_n(x)) : p(x_n \in [b,d]) = P^{[b,d]}(n)$ klassische Konvergenz: $\forall \varepsilon > 0, \ \exists n_0 \in \mathbb{N}, \ \forall n \geqslant n_0 : |x_n - a| < \varepsilon$

Um schließlich das Konvergenzkiterium sinnvoll auf statistische Folgen zu erweitern, muss man noch eine beliebig kleine Wahrscheinlichkeit $\omega_n=1-Q_{\neg A}^{[\varepsilon]}(n),\ (n\geqslant n_0)$ für das zukünftige Auftreten eines Gliedwertes außerhalb der ε -Umgebung verlangen können:

statistische Konvergenz:
$$\forall \varepsilon, \omega > 0, \ \exists n_0 \in \mathbb{N}, \ \forall n \geqslant n_0 : p\left(|x_n - 1| > \varepsilon\right) = 1 - Q_{\neg A}^{[\varepsilon]}(n) < \omega$$

Unsere Folge $(x_n)_{n=0}^{\infty}$ erfüllt dies und ist damit trotz der Möglichkeit beliebig großer Werte von beliebig späten Gliedern statistisch konvergent. q.e.d.