Find 2-eigenspace	
$Z_{\lambda} = \left\{ \overrightarrow{v} \mid A \overrightarrow{v} = \lambda \overrightarrow{v} \right\}$ $= \left\{ \overrightarrow{v} \mid (A - \lambda I) \overrightarrow{v} = 0 \right\}$	7. eigenvalue - extend multiplier 3. eigenveltor - vector can be extende
$= Nul(A-\lambda 1)$ $Z_{\lambda}: \lambda$ -eigenspace	
$\nabla V_{3} = \nabla V_{3}$	N ₁
Generate Oigenvalue by Ending Characteristic	Polynomial
eigenvector \overline{x} in Nul $(A-\lambda 1)$	
eigen value > satisfies det (A - \lambda]) =	
reason: O if $\vec{x} = \vec{\delta}$ is the only solution, $(A - \lambda I)$) is linearly independent, no eigenvalue
O if $\mathcal{R}' \neq \mathcal{O}'$, then $(A - \lambda I)$ has tree column	
$p(\lambda) = \det(A - \lambda I) \qquad \text{Characteristic}$ $p(\lambda) = 0 \qquad \Rightarrow \text{get} \lambda$	Polynomial P(X)
cg. given $A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$. Find the eigenvalues and eigen	vectors
step 1. eigenvalues, $\rho(\lambda) = A - \lambda J $	
= 3-y	
$step 2 \cdot P(\lambda) = 0$	
$\lambda_1 = 2$ and $\lambda_2 = 4$ t eigenvalues	
step 3. Find eigenvectors: Mul (A-)(I) by Case	
$\lambda = 2 : \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times_{1} = -x_{2} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}$	=
	Is eigenveitor, spansfill eigenster