Computer Architecture (Floating Point Arithmetic)

Subhasis Bhattacharjee

Department of Computer Science and Engineering, Indian Institute of Technology, Jammu

September 18, 2023

Outline

- Floating Point Representation Review
- Ploating Point Arithmetic
- Second Floating Point Addition
- Floating Point Multiplication
- 5 Floating Point Division
- 6 Floating Point Division Using Goldschmidt Division

Floating Point Representation - Review

Floating Point Number System - Review

- A number representation specifies some way of encoding a number, usually as a string of digits.
- floating-point number represents real numbers approximately, using an integer with a fixed precision, called the significand, scaled by an integer exponent.
- IEEE Standard for Floating-Point Arithmetic (IEEE 754) is a technical standard for floating-point number format and arithmetic established in 1985.

Single Precision Format (32 bits)

Double Precision Format (64 bits)

IEE 754 Floating Point Number System

IEEE 754 Floating Point Number provides Two Forms

- Normalized number or (Normal) form
- Denormalized numbers or (denormal) form

Normalised form of a 32 bit (normal) floating point number

$$A = (-1)^S \times P \times 2^{E-bias}$$
, $(1 \le P < 2, E \in \mathbb{Z}, 1 \le E \le 254)$

Normalised form of a 32 bit (denormal) floating point number

$$A = (-1)^S \times P \times 2^{-126}$$
, $(0 \le P < 1)$

Symbol	Meaning
S	Sign bit (0(+ve), 1(-ve))
Р	Significand (form: 1.xxx(normal) or 0.xxx(denormal))
М	Mantissa (fractional part of significand)
Е	(exponent + 127(bias))
\mathbb{Z}	Set of integers

Floating Point Arithmetic - Scope of our discussion

- We will follow IEEE 754 Single Precision (32 bits) format only.
- We will discuss 4 arithmetic operations (add, subtract, multiply and division)
- We will mostly consider only the normal form
- The algorithms / procedures are similar for denormal form (minute differences).
- Various components of a floating point number are packed into 32-bits
- Generalized Idea for each arithmetic operation:
 - Unpack various components from 32-bits format
 - 2 Do some computations on each component (depending on the operation)
 - 8 Rounding (if any)
 - Pack the result into 32-bits format
 - **6** ReNormalize the intermediate values or end result if require.
- We will also study:
 - Rounding methods
 - ReNormalization process

Addition of Two Real Numbers - TODO

- Suppose we want to add 123.45 and 3.24
- First we align the decimal points.

Addition

Add: A + B

- Unpack the E fields
 - ▶ Let E_A, E_B are E fields of A and B, respectively.
 - \blacktriangleright Let the E field of the result be \rightarrow E_C.
- Unpack the significand (P)
 - ▶ P contains \rightarrow 1 bit before the decimal point, 23 mantissa bits (24 bits)
 - ▶ Unpack to a 25 bit number (unsigned)
 - lacktriangle W ightarrow Add a leading 0 bit, 24 bits of the signficand
 - ♦ Why do we add a leading 0 bit? If we add two numbers it may generate an extra bit.
 - \blacktriangleright Let significands of A and B be P_A and P_B

Addition - Algorithm

- ullet With no loss of generality Assume $E_A>=E_B$
- $\bullet \ \, \text{Let us initially set W} \leftarrow \text{unpack (P}_{B})$
- We make their exponents equal and shift W to the right by $(E_A E_B)$ positions [Let \gg denotes the right-shift operation]

Addition Algorithm

$$W=W\gg (E_A-E_B)$$

$$W = W + P_A$$

Renormalisation

- ullet Let the significand represented by register, W, be P_W
- There is a possibility that $P_W >= 2$
- In this case, we need to renormalise
 - W ← W » 1
 - \bullet $\mathsf{E}_\mathsf{A} \leftarrow \mathsf{E}_\mathsf{A} + 1$
- The final result
 - ▶ Sign bit (same as sign of A or B)
 - ightharpoonup Significand (P_W), exponent field (E_A)

Addition Example - 1

Add the numbers: $(1.01)_2 * 2^3 + (1.11)_2 * 2^1$

Answer: Step-by-step computations:

- \bullet A = 1.01 * 2³ and B = 1.11 * 2¹
- \bullet W = 01.11 (significand of B)
- \bullet E = 3, Number of Bits to shift = (3-1) = 2
- **3** W = 01.11 » 2 = 00.0111
- \bullet W + P_A = 00.0111 + 01.0100 = 01.1011
- Result: $C = 1.011 * 2^3$

The decimal point in W is shown for enhancing readability. For simplicity, biased notation is not used.

Addition Example - 2

Add: $(1.01)_2 * 2^3 + (1.11)_2 * 2^2$

Answer: Step-by-step computations:

- \bullet A = 1.01 * 2³ and B = 1.11 * 2²
- ② W = 01.11 (significand of B)
- \bullet E = 3, Number of Bits to shift = (3 2) = 1
- $\mathbf{9} \ \mathsf{W} = 01.11 \ \mathsf{m} \ \mathbf{1} = 00.111$
- \bullet W + P_A = 00.111 + 01.0100 = 10.001
- Normalisation: $W = 10.001 \times 1 = 1.0001$, E = 4
- Result: C = 1.0001 * 2⁴

Rounding

- Assume that we were allowed only two mantissa bits in the previous example
- We need to perform rounding
- Consider the sum(W) of the significands after we have normalised the result
- W \leftarrow (P + R) * 2⁻²³, (R < 1)
- P represents the significand of the temporary result
- R (is a residue)

Rounding Objectives

Rounding Goal

- Modify P to take into account the value of R
- Then, discard R
- ullet Process of rounding : $P \rightarrow P'$

IEEE 754 Rounding Modes

Truncation

- P' = P
- Example in decimal: $9.5 \rightarrow 9$, $9.6 \rightarrow 9$

Round to $+\infty$

- P' = [P + R]
- \bullet Example in decimal: 9.5 \rightarrow 10, -3.2 \rightarrow -3

Round to $-\infty$

- \bullet P' = [P + R]
- \bullet Example in decimal: 9.5 \rightarrow 9, -3.2 \rightarrow -4

IEEE 754 Rounding - II

Round to nearest

- P' = [P + R]
- Example in decimal :
- ullet 9.4 ightarrow 9 , 9.5 ightarrow 10 (even)
- ullet 9.6 ightarrow 10 , -2.3 ightarrow -2
- $-3.5 \to -4 \text{ (even)}$

Rounding Modes – Summary - TODO Overfull hbox

Notation: ∧ (logical AND), R (residue), P (significand)				
Rounding Mode	enting the significand			
	Sign of the result (+ve)	Sign of the result (-ve)		
Truncation				
Round to $+\infty$	R > 0			
Round to $-\infty$		R > 0		
Round to Nearest	$(R > 0.5) (R = 0.5 \land lsb(P) = 1)$	$(R > 0.5) (R = 0.5 \land lsb(P) = 1)$		

Implementing Rounding

We need three bits for Implementation

- lsb(P)
- msb of the residue (R) \rightarrow r (round bit)
- ullet OR of the rest of the bits of the residue (R) o s (sticky bit)

Notation: \land (logical AND), \lor (logical OR), r (round bit), s(sticky bit)				
Condition on Residue	Implementation			
R > 0	$r \lor s = 1$			
R = 0.5	$r \wedge s = 1$			
R > 0.5	$r \wedge s = 1$			

Renormalisation after Rounding

- In rounding: we might increment the significand
- We might need to renormalise
- After renormalisation
- Possible that E becomes equal to 255
- In this, case declare an overflow16

Addition of Numbers (Opposite Signs)

$$C = A + B$$

Same assumption $E_A >= E_B$. Step-by-step computations:

- Load W with the significand of B (P_B)
- \bigcirc W \leftarrow W \Rightarrow (E_A E_B)
- $\textcircled{0} \ \ W \leftarrow W + P_A$
- If (W < 0) replace it with its 2's complement. Flip the sign of the result.
 - Normalise the result
 - ▶ Possible that W < 1
 - ▶ In this case, **keep shifting W** to the left till it is in normal form. (simultaneously decrement E_A)
 - Round and Renormalise

Flowchart of Adding of Two FP Numbers

Newton Raphson Method - Pictorial

Floating Point Multiplication

Multiplication of Two FP Numbers

Multiplication: C = A * B

Step-by-step computations:

- \bullet E \leftarrow E A + E_B bias
- \bigcirc W \leftarrow P A * P_B
- Normalise (shift left or shift right)
- Round
- Renormalise

Flowchart of Multiplication of Two FP Numbers

Multiplication Example - 1 (Same sign)

Multiplication Example - 2 (Opposite sign)

Multiplication Example - 3

3 Examples TODO

Case: 1st Normalize

Case: Normalize, Round

Case: Normalize, Round, Renormalize

Floating Point Division

Few points on FP Division

- Divide A/B to produce C
- There is no notion of a remainder in FP division

Simple Division Algorithm

- $\bullet \ \, \mathsf{E} \leftarrow \mathsf{E}_\mathsf{A} \mathsf{E}_\mathsf{B} \, + \, \mathsf{bias}$
- $② \ W \leftarrow P_A \ / \ P_B$
- 3 normalise, round, renormalise (as needed).

Complexity : $O(n \log(n))$

Floating Point Division Using Goldschmidt Division

Goldschmidt Division

Division: C = A / B

Step-by-step computations:

- Compute the B' = reciprocal of B (i.e., 1/B)
- ullet Using the standard floating point multiplication algorithm compute A * (1/B)

Computing Reciprocal

Computing (1/B) - the reciprocal of B

- Ignoring the exponent.
- Let us compute (1/P_B)
- If B is a normal floating point number
 - ▶ 1 <= P_B < 2
 - ▶ $P_B = 1 + X$, where (X < 1)

Computing Reciprocal - 1/P_B - Page 1

$$\frac{1}{P_{B}} = \frac{1}{1+X}, (P_{B} = 1+X, 0 < X < 1)$$

$$= \frac{1}{1+1-X'}, (X' = 1-X, X' < 1)$$

$$= \frac{1}{2-X'}$$

$$= \frac{1}{2} * \frac{1}{1-\frac{X'}{2}}$$

$$= \frac{1}{2} * \frac{1}{1-Y}, (Y = \frac{X'}{2}, Y < \frac{1}{2})$$
(1)

Computing Reciprocal - Page 2 - $\frac{1}{1-Y}$

$$\frac{1}{1-Y} = \frac{1+Y}{1-Y^2}
= \frac{(1+Y)(1+Y^2)}{1-Y^4}
= \frac{(1+Y)(1+Y^2)(1+Y^4)}{1-Y^8}
= \cdots
= \frac{(1+Y)(1+Y^2)(1+Y^4)\cdots(1+Y^{16})}{1-Y^{32}}
\approx (1+Y)(1+Y^2)(1+Y^4)\cdots(1+Y^{16})$$

How long to continue this series expansion

- No point considering Y³². It needs 31 leading 0's.
- Cannot be represented in IEEE 754 format (mantissa contains only 23 bits).

Generating $\frac{1}{1-Y}$

$$\frac{1}{1-Y} = (1+Y)(1+Y^2)(1+Y^4)\cdots(1+Y^{16}) \tag{3}$$

How to compute this long series - Using FP Multiplier

- We can compute Y² using a FP multiplier.
- Again square it to obtain Y⁴, Y⁸, and Y¹⁶
- We Need 4 multiplications, and 5 additions, to generate all the terms
- Need 4 more multiplications to generate the final result $\frac{1}{1-Y}$.

Computing $\frac{1}{P_B}$

Recall derivation of $\frac{1}{P_B}$

$$\frac{1}{P_{\mathsf{B}}} = \frac{1}{2} * \frac{1}{1 - Y} \tag{4}$$

- \bullet A single Right shift (i.e., 1 bit right-shift) of $\frac{1}{1-Y}$
- $\bullet \ \, \tfrac{1}{P_B} \leftarrow \tfrac{1}{1-Y} >> 1$

GoldSchmidt Division Summary

- Time complexity of finding the **reciprocal** $O(\log(n))^2$
- Time required for all the multiplications and additions $O(\log(n))^2$
- Total Time : $O(\log(n))^2$