$$\begin{cases} x^2 + y^2 = 17 \\ \log_2 x + \log_2 y = m. \end{cases}$$

Bài 19. Tìm các giá trị của m để hệ phương trình sau có nghiệm (x; y); x > 1, y < 4.

$$\begin{cases} x^2 - y^4 = 0 \\ \log_2 \frac{x}{y} = m \log_y x. \end{cases}$$

Bài 20. Tìm các giá trị của *m* để hệ phương trình sau có đúng bốn nghiệm

$$\begin{cases} 4^{x}.4^{y} = 8.2^{xy} \\ 3 + \log_{2} x + \log_{2} y = \log_{2}(x^{2} + y^{2} + m). \end{cases}$$

Bài 21. Cho hệ phương trình

$$\begin{cases} \sqrt{x} + 2\lg y = 3m \\ x - 3\lg y^2 = 1 \end{cases}$$

- 1) Giải hệ phương trình với m = 1;
- 2) Tìm các giá trị của m để hệ phương trình có nghiệm $(x; y); x \ge 1$.

Bài 22. Tìm các giá trị của m để hệ phương trình sau có một nghiệm duy nhất

$$\begin{cases} \lg^2 x + \lg^2 y = 1 \\ \lg \frac{x}{y} = m. \end{cases}$$

PHƯƠNG TRÌNH LƯƠNG GIÁC CHUONG VI. §1. CÁC CÔNG THỰC BIẾN ĐỔI LƯỢNG GIÁC

Ta quy ước các biểu thức trong các công thức sau đều có nghĩa.

1. Công thức cộng

 $1)\cos(a+b) = \cos a \cos b - \sin a \sin b$

 $2)\cos(a-b) = \cos a \cos b + \sin a \sin b$

 $3)\sin(a+b) = \sin a \cos b + \cos a \sin b$

 $4)\sin(a-b) = \sin a \cos b - \cos a \sin b$

5) $\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}$ 6) $\tan(a-b) = \frac{\tan a - \tan b}{1 + \tan a \tan b}$

$$6)\tan(a-b) = \frac{\tan a - \tan b}{1 + \tan a \tan b}.$$

2. Công thức nhân

2.1. Công thức nhân đôi

$$1)\cos 2a = \cos^2 a - \sin^2 a$$

$$2)\sin 2a = 2\sin a\cos a$$

3)
$$\tan 2a = \frac{2 \tan a}{1 - \tan^2 a}$$
.

2.1.1. Công thức hạ bậc

$$1)\cos^2 a = \frac{1 + \cos 2a}{2}$$

$$2)\sin^2 a = \frac{1-\cos 2a}{2}.$$

2.1.2. Công thức tính theo $\cos 2a$

1)
$$\cos^2 a = \frac{1}{2}(1 + \cos 2a)$$

$$2)\sin^2 a = \frac{1}{2}(1-\cos 2a)$$

3)
$$\tan^2 a = \frac{1 - \cos 2a}{1 + \cos 2a}$$
.

2.1.3. Công thức tính theo $\tan \frac{a}{2} = t$

$$1)\cos a = \frac{1 - t^2}{1 + t^2}$$

$$2)\sin a = \frac{2t}{1+t^2}$$

$$3) \tan a = \frac{2t}{1-t^2}.$$

2.2. Công thức nhân ba

$$1)\cos 3a = 4\cos^3 a - 3\cos a$$

$$2)\sin 3a = 3\sin a - 4\sin^3 a$$

3)
$$\tan 3a = \frac{3\tan a - \tan^3 a}{1 - 3\tan^2 a}$$
.

3. Công thức biến đổi tích thành tổng

1)
$$\cos a \cos b = \frac{1}{2} [\cos(a+b) + \cos(a-b)]$$

2)
$$\sin a \sin b = -\frac{1}{2} [\cos(a+b) - \cos(a-b)]$$

3)
$$\sin a \cos b = \frac{1}{2} [\sin(a+b) + \sin(a-b)].$$

4. Công thức biến đổi tổng thành tích

$$1)\cos a + \cos b = 2\cos\frac{a+b}{2}\cos\frac{a-b}{2}$$

$$2)\cos a - \cos b = -2\sin\frac{a+b}{2}\sin\frac{a-b}{2}$$

$$3)\sin a + \sin b = 2\sin\frac{a+b}{2}\cos\frac{a-b}{2}$$

$$4)\sin a - \sin b = 2\cos\frac{a+b}{2}\sin\frac{a-b}{2}.$$

Một số công thức quen thuộc

$$1)\cos a + \sin a = \sqrt{2}\cos(a - \frac{\pi}{4})$$

$$2)\cos a + \sin a = \sqrt{2}\sin(a + \frac{\pi}{4})$$

$$3)\cos a - \sin a = \sqrt{2}\cos(a + \frac{\pi}{4})$$

$$4)\cos a - \sin a = -\sqrt{2}\sin(a - \frac{\pi}{4})$$

$$5)\cos^4 a + \sin^4 a = 1 - 2\sin^2 a \cos^2 a$$

6)
$$\cos^6 a + \sin^6 a = 1 - 3\sin^2 a \cos^2 a$$
.

§2. PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN

1. Phương trình $\sin x = a$ (1)

- · Nếu |a| > 1 thì phương trình (1) vô nghiệm.
- · Nếu $|a| \le 1$ thì phương trình (1) có nghiệm.

Gọi α là số đo của góc sao cho $\sin \alpha = a$

Ta có (1)
$$\Leftrightarrow \sin x = \sin \alpha \iff \begin{bmatrix} x = \alpha + k2\pi \\ x = \pi - \alpha + k2\pi \end{bmatrix}; k \in \mathbb{Z}$$

(nếu α cho bằng radian).

Hay (1)
$$\Leftrightarrow$$

$$\begin{cases} x = \alpha + k.360^{\circ} \\ x = 180^{\circ} - \alpha + k.360^{\circ} \end{cases}; k \in \mathbb{Z}$$

(nếu α cho bằng độ).

Các trường hợp đặc biệt

$$\cdot \sin x = 1 \Leftrightarrow x = \frac{\pi}{2} + k2\pi, k \in \mathbb{Z}.$$

$$\cdot \sin x = -1 \Leftrightarrow x = -\frac{\pi}{2} + k2\pi, k \in \mathbb{Z}.$$

$$\cdot \sin x = 0 \Leftrightarrow x = k\pi, k \in \mathbb{Z}.$$

2. Phương trình $\cos x = a$ (2)

- · Nếu |a| > 1 thì phương trình (2) vô nghiệm.
- · Nếu $|a| \le 1$ thì phương trình (2) có nghiệm.

Gọi α là số đo góc sao cho $\cos \alpha = a$

Ta có
$$(2) \Leftrightarrow \cos x = \cos \alpha$$

$$\Leftrightarrow \begin{bmatrix} x = \alpha + k2\pi \\ x = -\alpha + k2\pi \end{bmatrix}; k \in \mathbb{Z}.$$

(nếu α cho bằng radian).

Hay (2)
$$\Leftrightarrow$$
 $\begin{bmatrix} x = \alpha + k.360^{\circ} \\ x = -\alpha + k.360^{\circ} \end{bmatrix}$; $k \in \mathbb{Z}$.

(nếu α cho bằng độ).

Các trường hợp đặc biệt

$$\cdot \cos x = 1 \Leftrightarrow x = k2\pi, k \in \mathbb{Z}.$$

$$\cdot \cos x = -1 \Leftrightarrow x = \pi + k2\pi, k \in \mathbb{Z}.$$

$$\cdot \cos x = 0 \Leftrightarrow x = \frac{\pi}{2} + k\pi, k \in \mathbb{Z}.$$

3. Phương trình $\tan x = a(3)$

(3) xác định với mọi $x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$.

Gọi α là số đo góc sao cho tan $\alpha = a$, thì

(3)
$$\Leftrightarrow \tan x = \tan \alpha$$

$$\Leftrightarrow x = \alpha + k\pi, k \in \mathbb{Z}$$

(nếu α cho bằng radian).

Hay (3)
$$\Leftrightarrow x = \alpha + k.180^{\circ}, k \in \mathbb{Z}$$
.

(nếu α cho bằng độ).

Chú ý. Nếu phương trình ban đầu dạng tan u = tan v(*)

Thì điều kiện là
$$u \neq \frac{\pi}{2} + k\pi$$
, $v \neq \frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$.

Khi đó (*)
$$\Leftrightarrow u = v + k\pi, k \in \mathbb{Z}$$
.

4. Phương trình $\cot x = a(4)$

(4) xác định với mọi $x \neq k\pi, k \in \mathbb{Z}$.

Gọi α là số đo góc sao cho $\cot \alpha = a$, thì

$$(4) \Leftrightarrow \cot x = \cot \alpha$$

$$\Leftrightarrow x = \alpha + k\pi, k \in \mathbb{Z}$$

(nếu α cho bằng radian).

Hay (4)
$$\Leftrightarrow x = \alpha + k.180^{\circ}, k \in \mathbb{Z}$$
.

(nếu α cho bằng độ).

Chú ý. Nếu phương trình ban đầu dạng $\cot u = \cot v$ (**)

thì điều kiện là $u \neq k\pi$, $v \neq k\pi$, $k \in \mathbb{Z}$, khi đó (**) $\Leftrightarrow u = v + k\pi$, $k \in \mathbb{Z}$.

§3. MỘT SỐ PHƯƠNG TRÌNH LƯỢNG GIÁC THƯỜNG GẶP

1. Phương trình bậc nhất, bậc hai, bậc cao đối với một hàm số lượng giác

Cách giải.

- + Đối với các phương trình bậc nhất đối với một hàm số lượng giác ta biến đổi ngay về phương trình lượng giác cơ bản.
- + Đối với các phương trình bậc hai, bậc cao đối với một hàm số lượng giác ta đặt ẩn phụ, sau đó giải phương trình theo ẩn phụ.

Chú ý. Nếu đặt $t = \cos x$ hay $t = \sin x$ thì điều kiện $|t| \le 1$.

Ví dụ 1. Giải phương trình

$$5\sin x - 2 = 3(1 - \sin x)\tan^2 x$$
 (1)

Giải.

Điều kiện: $\cos x \neq 0 \Leftrightarrow x \neq \frac{\pi}{2} + k\pi (*)$

$$(1) \Leftrightarrow 5\sin x - 2 = 3(1 - \sin x) \frac{\sin^2 x}{\cos x^2}$$

$$\Leftrightarrow 5\sin x - 2 = 3(1 - \sin x) \frac{\sin^2 x}{1 - \sin^2 x}$$

$$\Leftrightarrow 5\sin x - 2 = \frac{3\sin^2 x}{1 + \sin x}$$

$$\Leftrightarrow 2\sin^2 x + 3\sin x - 2 = 0$$

$$\Leftrightarrow \begin{bmatrix} \sin x = \frac{1}{2} \\ \sin x = -2 \end{bmatrix}$$

Ta nhận
$$\sin x = \frac{1}{2} \Leftrightarrow x = \frac{\pi}{6} + k2\pi \lor x = \frac{5\pi}{6} + k2\pi, k \in \mathbb{Z}$$
, (thỏa điều kiện (*))

Ví dụ 2. Giải phương trình

$$\sin 3x + 2\cos 2x - 2 = 0$$
. (1)

Giải.

(1)
$$\Leftrightarrow$$
 3 sin x - 4 sin³ x + 2(1 - 2 sin² x) - 2 = 0

$$\Leftrightarrow 4\sin^3 x + 4\sin^2 x - 3\sin x = 0$$

$$\Leftrightarrow \begin{cases}
\sin x = 0 \\
\sin x = \frac{-3}{2} \\
\sin x = \frac{\pi}{6} + k2\pi \\
\sin x = \frac{1}{2}
\end{cases}$$

$$\begin{cases}
x = k\pi \\
x = \frac{\pi}{6} + k2\pi \\
x = \frac{5\pi}{6} + k2\pi
\end{cases}$$

2. Phương trình bậc nhất đối với $\sin x$ và $\cos x$

Phương trình bậc nhất đối với $\sin x$ và $\cos x$ là phương trình có dạng

$$a \sin x + b \cos x = c \ (1), a, b, c \in \mathbb{R}$$

Cách giải.

Cách 1. Chia hai vế của (1) cho $\sqrt{a^2 + b^2}$, ta được

$$\frac{a}{\sqrt{a^2 + b^2}} \sin x + \frac{b}{\sqrt{a^2 + b^2}} \cos x = \frac{c}{\sqrt{a^2 + b^2}} (2)$$

Đặt
$$\cos \beta = \frac{a}{\sqrt{a^2 + b^2}}, \sin \beta = \frac{b}{\sqrt{a^2 + b^2}}$$

Khi đó (2) trở thành $\cos \beta \sin x + \sin \beta \cos x = \frac{c}{\sqrt{a^2 + b^2}}$

Hay
$$\sin(x+\beta) = \frac{c}{\sqrt{a^2+b^2}}(3)$$

(3) có nghiệm
$$\Leftrightarrow \left| \frac{c}{\sqrt{a^2 + b^2}} \right| \le 1 \Leftrightarrow a^2 + b^2 \ge c^2$$

Phương trình (3) đã biết cách giải trong §1.

Cách 2. Chia hai vế của (1) cho a rồi đặt $\frac{b}{a} = \tan \alpha$

Ta được
$$\sin x + \tan \alpha \cos x = \frac{c}{a}$$

$$\Leftrightarrow \sin x \cos \alpha + \sin \alpha \cos x = \frac{c}{a} \cos \alpha$$

$$\Leftrightarrow \sin(x+\alpha) = \frac{c}{a}\cos\alpha$$
 (*)

Đây là phương trình đã xét trong §1.

Chú ý rằng (*) có nghiệm khi và chỉ khi $\left| \frac{c}{a} \cos \alpha \right| \le 1$.

Ví dụ. Giải phương trình

$$3\sin 3x - \sqrt{3}\cos 9x = 1 + 4\sin^3 3x$$
 (1)

Giải.

Ta có (1)
$$\Leftrightarrow$$
 $(3\sin 3x - 4\sin^3 3x) - \sqrt{3}\cos 9x = 1$

$$\Leftrightarrow \sin 9x - \sqrt{3}\cos 9x = 1$$

$$\Leftrightarrow \frac{1}{2}\sin 9x - \frac{\sqrt{3}}{2}\cos 9x = \frac{1}{2}$$

$$\Leftrightarrow \sin(9x - \frac{\pi}{3}) = \frac{1}{2}$$

$$\Leftrightarrow \begin{bmatrix} 9x - \frac{\pi}{3} = \frac{\pi}{6} + k2\pi \\ 9x - \frac{\pi}{3} = \frac{5\pi}{6} + k2\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = \frac{\pi}{18} + \frac{k2\pi}{9}, k \in \mathbb{Z} \\ x = \frac{7\pi}{54} + \frac{k2\pi}{9}, k \in \mathbb{Z}. \end{bmatrix}$$

3. Phương trình thuần nhất bậc hai đối với $\sin x$ và $\cos x$

Đó là phương trình dạng

$$a\sin^2 x + b\sin x\cos x + c\cos^2 x = 0$$
 (2), $a,b,c \in \mathbb{R}$

Cách giải.

- · Xét $x = \frac{\pi}{2} + k\pi$ xem có phải là một nghiệm của phương trình không.
- · Xét $x \neq \frac{\pi}{2} + k\pi$, khi đó $\cos^2 x \neq 0$, chia 2 vế phương trình cho $\cos^2 x$ ta được

$$a \tan^2 x + b \tan x + c = 0.$$

Đây là phương trình bậc hai đối với tan x ta đã biết cách giải.

Chú ý.

· Nếu phương trình với vế phải khác 0

$$a\sin^2 x + b\sin x\cos x + c\cos^2 x = d$$

Ta viết phương trình dạng

$$a\sin^2 x + b\sin x\cos x + c\cos^2 x = d\left(\cos^2 x + \sin^2 x\right)$$

rồi chuyển vế phải sang vế trái.

 \cdot Cũng có thể giải phương trình (2) bằng cách biến đổi về phương trình bậc nhất đối với $\sin 2x$ và $\cos 2x$, nhờ các công thức

$$\cos^2 x = \frac{1 + \cos 2x}{2}$$

$$\sin^2 x = \frac{1 - \cos 2x}{2}$$

$$\sin x \cos x = \frac{1}{2} \sin 2x$$

 \cdot Đối với phương trình thuần nhất bậc ba đối với $\sin x$ và $\cos x$

$$a\cos^3 x + b\cos^2 x\sin x + c\sin^2 x\cos x + d\sin^3 x = 0$$

Ta cũng biến đổi đưa về phương trình bậc ba đối với tan x.

Ví dụ 1. Giải phương trình

$$\cos^2 x - \sqrt{3} \sin 2x = 1 + \sin^2 x (1)$$

Giải.

Vì $\cos x = 0$ không là nghiệm nên chia hai vế của (1) cho $\cos^2 x \neq 0$, ta được $1 - 2\sqrt{3} \tan x = (1 + \tan^2 x) + \tan^2 x$

$$\Leftrightarrow 2 \tan^2 x + 2\sqrt{3} \tan x = 0$$

$$\Leftrightarrow \begin{bmatrix} \tan x = 0 \\ \tan x = -\sqrt{3} \end{cases} \Leftrightarrow \begin{bmatrix} x = k\pi \\ x = -\frac{\pi}{3} + k\pi \end{cases}, k \in \mathbb{Z}.$$

Ví dụ 2. Giải phương trình

$$\cos^3 x - 4\sin^3 x - 3\cos x \sin^2 x + \sin x = 0$$
 (1)

Giải.

Vì $\cos x = 0$ không thỏa phương trình nên chia hai vế của (1) cho $\cos^3 x \neq 0$ ta được

$$1 - 4\tan^3 x - 3\tan^2 x + \tan x (1 + \tan^2 x) = 0$$

$$\Leftrightarrow 3\tan^3 x + 3\tan^2 x - \tan x - 1 = 0$$

$$\Leftrightarrow (\tan x + 1)(3\tan^2 x - 1) = 0$$

$$\Leftrightarrow \begin{bmatrix} \tan x = -1 \\ \tan x = \pm \frac{\sqrt{3}}{3} \Leftrightarrow \begin{bmatrix} x = -\frac{\pi}{4} + k\pi \\ x = \pm \frac{\pi}{6} + k\pi \end{bmatrix}; k \in \mathbb{Z}.$$

Ví dụ 3. Giải phương trình $\sin^3\left(x - \frac{\pi}{4}\right) = \sqrt{2} \sin x$ (1)

Giải.

$$(1) \Leftrightarrow \frac{1}{2\sqrt{2}} \left(\sin x - \cos x \right)^3 = \sqrt{2} \sin x$$

$$\Leftrightarrow \sin^3 x - 3\sin^2 x \cdot \cos x + 3\sin x \cdot \cos^2 x - \cos^3 x = 4\sin x$$
 (2)

Vì $\cos x = 0$ không là nghiệm nên chia hai vế của (2) cho $\cos^3 x \neq 0$, ta được

$$(2) \Leftrightarrow \tan^3 x - 3\tan^2 x + 3\tan x - 1 = 4\left(\tan^2 x + 1\right)\tan x.$$

$$\Leftrightarrow$$
 3 tan³ x + 3 tan² x + tan x + 1 = 0

$$\Leftrightarrow \tan x = -1 \Leftrightarrow x = -\frac{\pi}{4} + k\pi, k \in \mathbb{Z}.$$

Ví du 4. Giải phương trình

$$3\cos^4 x - 4\sin^2 x \cos^2 x + \sin^4 x = 0$$
 (1)

Giải. Đây là phương trình thuần nhất bậc bốn đối với $\sin x$ và $\cos x$ Do $\cos = 0$ không là nghiệm nên chia hai vế của (1) cho $\cos^4 x \neq 0$ Ta được

$$3 - 4 \tan^2 x + \tan^4 x = 0$$

$$\Leftrightarrow \begin{bmatrix} \tan^2 x = 1 \\ \tan^2 x = 3 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = \pm \frac{\pi}{4} + k\pi \\ x = \pm \frac{\pi}{3} + k\pi \end{bmatrix}, k \in \mathbb{Z}.$$

4. Phương trình đối xứng đối với $\sin x$ và $\cos x$

Phương trình đối xứng đối với $\sin x$ và $\cos x$ là phương trình dạng

$$a(\sin x + \cos x) + b\sin x \cos x + c = 0 (3), a, b, c \in \mathbb{R}$$

Cách giải. Đặt
$$t = \sin x + \cos x = \sqrt{2} \sin \left(x + \frac{\pi}{4} \right)$$
, điều kiện $|t| \le \sqrt{2}$.

Khi đó $t^2 = 1 + 2\sin x \cos x$

Suy ra
$$\sin x \cos x = \frac{t^2 - 1}{2}$$
.

Thay vào phương trình (3) ta được

$$at + \frac{b(t^2 - 1)}{2} + c = 0$$
 hay $bt^2 + 2at + (2c - b) = 0$. (*)

Giải phương trình (*) tìm t và chọn nghiệm thỏa $|t| \le \sqrt{2}$.

Chú ý. Phương pháp giải đã trình bày ở trên cũng có thể áp dụng cho phương trình

$$a(\sin x - \cos x) - b\sin x \cos x + c = 0$$

bằng cách đặt $t = \sin x - \cos x = \sqrt{2} \sin \left(x - \frac{\pi}{4} \right)$, điều kiện $|t| \le \sqrt{2}$.

Khi đó $\sin x \cos x = \frac{1-t^2}{2}$.

Ví dụ 1. Giải phương trình

$$2(\sin x + \cos x) + 6\sin x \cos x - 2 = 0$$
 (1)

Giải.

Đặt
$$t = \sin x + \cos x = \sqrt{2} \sin \left(x + \frac{\pi}{4} \right)$$
, điều kiện $|t| \le \sqrt{2}$.

$$(1) \Leftrightarrow 2t + 6\frac{\left(t^2 - 1\right)}{2} - 2 = 0$$

$$\Leftrightarrow 3t^2 + 2t - 5 = 0$$

$$\Leftrightarrow \boxed{t=1}$$
$$t = \frac{-5}{3}.$$

Ta chọn
$$t = 1 \Rightarrow \sqrt{2} \sin\left(x + \frac{\pi}{4}\right) = 1 \Leftrightarrow \sin\left(x + \frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$$

$$\Leftrightarrow \sin\left(x + \frac{\pi}{4}\right) = \sin\frac{\pi}{4}$$

$$\Leftrightarrow \begin{bmatrix} x + \frac{\pi}{4} = \frac{\pi}{4} + k2\pi \\ x + \frac{\pi}{4} = \pi - \frac{\pi}{4} + k2\pi \end{bmatrix} \Rightarrow \begin{bmatrix} x = k2\pi \\ x = \frac{\pi}{2} + k2\pi \end{bmatrix}, k \in \mathbb{Z}$$

Ví dụ 2. Giải phương trình

$$\sin 2x + 2\sqrt{2} (\sin x - \cos x) - 3 = 0 (1)$$

Giải.

Đặt
$$t = \sin x - \cos x = \sqrt{2} \sin \left(x - \frac{\pi}{4} \right)$$
, điều kiện $|t| \le \sqrt{2}$.

(1) trở thành
$$1-t^2 + 2\sqrt{2}t - 3 = 0$$

$$\Leftrightarrow t^2 - 2\sqrt{2}t + 2 = 0 \Leftrightarrow t = \sqrt{2}$$

$$\Rightarrow \sqrt{2} \sin\left(x - \frac{\pi}{4}\right) = \sqrt{2}$$

$$\Leftrightarrow \sin\left(x - \frac{\pi}{4}\right) = 1 \Leftrightarrow x - \frac{\pi}{4} = \frac{\pi}{2} + k2\pi \iff x = \frac{3\pi}{4} + k2\pi, \ k \in \mathbb{Z}.$$