

Example 5: Isotropic Hardening Plasticity

Governing Equations

• Elasticity:

$$\sigma_{ij} = \lambda \delta_{ij} \varepsilon_{kk}^{el} + 2\mu \varepsilon_{ij}^{el},$$

or in a Jaumann (corotational) rate form:

$$\dot{\sigma}_{ij}^{J} = \lambda \delta_{ij} \dot{\varepsilon}_{kk}^{el} + 2\mu \dot{\varepsilon}_{ij}^{el}.$$

The Jaumann rate equation is integrated in a corotational framework:

$$\Delta \sigma_{ij}^{J} = \lambda \delta_{ij} \Delta \varepsilon_{kk}^{el} + 2\mu \Delta \varepsilon_{ij}^{el}.$$

- Plasticity:
 - Yield function:

$$\sqrt{\frac{3}{2}S_{ij}S_{ij}} - \sigma_y(\bar{\varepsilon}^{pl}) = 0, \qquad S_{ij} = \sigma_{ij} - \frac{1}{3}\delta_{ij}\sigma_{kk}.$$

- Equivalent plastic strain:

$$\bar{\mathbf{\varepsilon}}^{pl} = \int_{0}^{t} \dot{\bar{\mathbf{\varepsilon}}}^{pl} dt, \qquad \dot{\bar{\mathbf{\varepsilon}}}^{pl} = \sqrt{\frac{2}{3}} \dot{\mathbf{\varepsilon}}_{ij}^{pl} \dot{\mathbf{\varepsilon}}_{ij}^{pl}.$$

– Plastic flow law:

$$\dot{\varepsilon}_{ij}^{pl} = \frac{3}{2} \frac{S_{ij}}{\sigma_y} \dot{\bar{\varepsilon}}^{pl}.$$

Integration Procedure

• We first calculate the von Mises stress based on purely elastic behavior (elastic predictor):

$$\bar{\sigma}^{pr} = \sqrt{\frac{3}{2}S_{ij}^{pr}S_{ij}^{pr}}, \qquad S_{ij}^{pr} = S_{ij}^o + 2\mu\Delta e_{ij}.$$

- If the elastic predictor is larger than the current yield stress, plastic flow occurs. The backward Euler method is used to integrate the equations.
 - After some manipulation we can reduce the problem to a single equation in terms of the incremental equivalent plastic strain:

$$\bar{\sigma}^{pr} - 3\mu\Delta\bar{\varepsilon}^{pl} = \sigma_{v}(\bar{\varepsilon}^{pl}).$$

- This equation is solved with Newton's method.

• After the equation is solved, the following update equations for the stress and the plastic strain can be used:

$$\sigma_{ij} = \eta_{ij}\sigma_y + \frac{1}{3}\delta_{ij}\sigma_{kk}^{pr}, \qquad \Delta \varepsilon_{ij}^{pl} = \frac{3}{2}\eta_{ij}\Delta \bar{\varepsilon}^{pl}$$

$$\eta_{ij} = S_{ij}^{pr}/\bar{\sigma}^{pr}.$$

• In addition, you can readily obtain the consistent Jacobian:

$$\Delta \dot{\sigma}_{ij} = \lambda^* \delta_{ij} \Delta \dot{\epsilon}_{kk} + 2\mu^* \Delta \dot{\epsilon}_{ij} + \left(\frac{h}{1 + h/3\mu} - 3\mu^*\right) \eta_{ij} \eta_{kl} \Delta \dot{\epsilon}_{kl}$$
$$\mu^* = \mu \sigma_y / \bar{\sigma}^{pr}, \quad \lambda^* = k - \frac{2}{3}\mu^*, \quad h = d\sigma_y / d\bar{\epsilon}^{pl}.$$

 A detailed discussion about the isotropic plasticity integration algorithm can be found in Section 4.2.2 of the ABAQUS Theory Manual.

The appropriate coding is shown on the following pages.

Coding for Isotropic Mises Plasticity

```
LOCAL ARRAYS
C
    EELAS - ELASTIC STRAINS
    EPLAS - PLASTIC STRAINS
C
C
    FLOW
            - DIRECTION OF PLASTIC FLOW
     DIMENSION EELAS(6), EPLAS(6), FLOW(6), HARD(3)
C
      PARAMETER (ZERO=0.D0, ONE=1.D0, TWO=2.D0, THREE=3.D0, SIX=6.D0,
                ENUMAX=.4999D0, NEWTON=10, TOLER=1.0D-6)
C
C
    UMAT FOR ISOTROPIC ELASTICITY AND ISOTROPIC MISES PLASTICITY
    CANNOT BE USED FOR PLANE STRESS
C
    PROPS(1) - E
C
    PROPS(2) - NU
C
    PROPS (3..) - SYIELD AN HARDENING DATA
C
    CALLS UHARD FOR CURVE OF YIELD STRESS VS. PLASTIC STRAIN
C
```



```
C
C
     ELASTIC PROPERTIES
C
      EMOD=PROPS (1)
      ENU=MIN(PROPS(2), ENUMAX)
      EBULK3=EMOD/(ONE-TWO*ENU)
      EG2=EMOD/(ONE+ENU)
      EG=EG2/TWO
      EG3=THREE*EG
      ELAM= (EBULK3-EG2) / THREE
C
C
     ELASTIC STIFFNESS
C
      DO K1=1, NDI
        DO K2=1, NDI
          DDSDDE(K2, K1)=ELAM
        END DO
        DDSDDE(K1, K1)=EG2+ELAM
      END DO
      DO K1=NDI+1, NTENS
        DDSDDE(K1, K1)=EG
      END DO
```



```
RECOVER ELASTIC AND PLASTIC STRAINS AND ROTATE FORWARD
C
     ALSO RECOVER EQUIVALENT PLASTIC STRAIN
C
C
                                1), DROT, EELAS, 2, NDI, NSHR)
      CALL ROTSIG(STATEV(
      CALL ROTSIG(STATEV(NTENS+1), DROT, EPLAS, 2, NDI, NSHR)
      EQPLAS=STATEV (1+2*NTENS)
C
C
     CALCULATE PREDICTOR STRESS AND ELASTIC STRAIN
C
      DO K1=1, NTENS
        DO K2=1, NTENS
          STRESS(K2) = STRESS(K2) + DDSDDE(K2, K1) * DSTRAN(K1)
        END DO
        EELAS (K1) = EELAS (K1) + DSTRAN (K1)
      END DO
C
C
     CALCULATE EQUIVALENT VON MISES STRESS
C
      SMISES=(STRESS(1)-STRESS(2))**2+(STRESS(2)-STRESS(3))**2
     1
                                      + (STRESS(3)-STRESS(1)) **2
      DO K1=NDI+1,NTENS
        SMISES=SMISES+SIX*STRESS(K1)**2
      END DO
      SMISES=SQRT(SMISES/TWO)
```



```
C
C
     GET YIELD STRESS FROM THE SPECIFIED HARDENING CURVE
C
      NVALUE=NPROPS/2-1
      CALL UHARD (SYIELO, HARD, EQPLAS, EQPLASRT, TIME, DTIME, TEMP,
           DTEMP, NOEL, NPT, LAYER, KSPT, KSTEP, KINC, CMNAME, NSTATV,
     1
           STATEV, NUMFIELDV, PREDEF, DPRED, NVALUE, PROPS (3))
C
     DETERMINE IF ACTIVELY YIELDING
C
C
      IF (SMISES.GT.(ONE+TOLER)*SYIELO) THEN
C
C
       ACTIVELY YIELDING
C
       SEPARATE THE HYDROSTATIC FROM THE DEVIATORIC STRESS
C
       CALCULATE THE FLOW DIRECTION
C
        SHYDRO= (STRESS(1)+STRESS(2)+STRESS(3))/THREE
        DO K1=1,NDI
          FLOW(K1) = (STRESS(K1) - SHYDRO) / SMISES
        END DO
        DO K1=NDI+1, NTENS
          FLOW(K1) = STRESS(K1) / SMISES
        END DO
```



```
C
C
       SOLVE FOR EQUIVALENT VON MISES STRESS
C
       AND EQUIVALENT PLASTIC STRAIN INCREMENT USING NEWTON ITERATION
C
        SYIELD=SYIEL0
        DEQPL=ZERO
        DO KEWTON=1, NEWTON
          RHS=SMISES-EG3*DEQPL-SYIELD
          DEQPL=DEQPL+RHS/(EG3+HARD(1))
           CALL UHARD (SYIELD, HARD, EQPLAS+DEQPL, EQPLASRT, TIME, DTIME, TEMP,
           DTEMP, NOEL, NPT, LAYER, KSPT, KSTEP, KINC, CMNAME, NSTATV,
     1
           STATEV, NUMFIELDV, PREDEF, DPRED, NVALUE, PROPS (3))
          IF(ABS(RHS).LT.TOLER*SYIEL0) GOTO 10
        END DO
C
       WRITE WARNING MESSAGE TO THE .MSG FILE
C
C
        WRITE(7,2) NEWTON
          FORMAT(//,30X,'***WARNING - PLASTICITY ALGORITHM DID NOT ',
    2
                         'CONVERGE AFTER ', 13,' ITERATIONS')
     1
        CONTINUE
   10
```



```
C
C
       UPDATE STRESS, ELASTIC AND PLASTIC STRAINS AND
C
       EQUIVALENT PLASTIC STRAIN
C
        DO K1=1, NDI
           STRESS(K1)=FLOW(K1)*SYIELD+SHYDRO
          EPLAS(K1) = EPLAS(K1) + THREE / TWO*FLOW(K1) * DEQPL
          EELAS (K1) = EELAS (K1) - THREE/TWO*FLOW(K1) *DEQPL
        END DO
        DO K1=NDI+1, NTENS
          STRESS(K1)=FLOW(K1)*SYIELD
          EPLAS(K1) = EPLAS(K1) + THREE * FLOW(K1) * DEQPL
          EELAS (K1) = EELAS (K1) - THREE * FLOW (K1) * DEQPL
        END DO
        EQPLAS=EQPLAS+DEQPL
C
C
       CALCULATE PLASTIC DISSIPATION
C
        SPD=DEQPL*(SYIELO+SYIELD)/TWO
```



```
C
C
       FORMULATE THE JACOBIAN (MATERIAL TANGENT)
C
       FIRST CALCULATE EFFECTIVE MODULI
C
        EFFG=EG*SYIELD/SMISES
        EFFG2=TWO*EFFG
        EFFG3=THREE/TWO*EFFG2
        EFFLAM=(EBULK3-EFFG2)/THREE
        EFFHRD=EG3*HARD(1)/(EG3+HARD(1))-EFFG3
        DO K1=1, NDI
          DO K2=1, NDI
            DDSDDE(K2, K1)=EFFLAM
          END DO
          DDSDDE(K1, K1) = EFFG2 + EFFLAM
        END DO
        DO K1=NDI+1, NTENS
          DDSDDE(K1, K1) = EFFG
        END DO
        DO K1=1, NTENS
          DO K2=1, NTENS
            DDSDDE(K2, K1) = DDSDDE(K2, K1) + EFFHRD*FLOW(K2) *FLOW(K1)
          END DO
        END DO
      ENDIF
```



```
C
C
     STORE ELASTIC AND (EQUIVALENT) PLASTIC STRAINS
C
     IN STATE VARIABLE ARRAY
C
      DO K1=1, NTENS
        STATEV (K1) = EELAS (K1)
        STATEV (K1+NTENS) = EPLAS (K1)
      END DO
      STATEV (1+2*NTENS) = EQPLAS
C
      RETURN
      END
      SUBROUTINE UHARD (SYIELD, HARD, EQPLAS, EQPLASRT, TIME, DTIME, TEMP,
           DTEMP, NOEL, NPT, LAYER, KSPT, KSTEP, KINC,
     1
            CMNAME, NSTATV, STATEV, NUMFIELDV,
            PREDEF, DPRED, NVALUE, TABLE)
     3
      INCLUDE 'ABA PARAM.INC'
      CHARACTER*80 CMNAME
      DIMENSION HARD(3), STATEV(NSTATV), TIME(*),
                 PREDEF (NUMFIELDV), DPRED(*)
     1
```



```
C
      DIMENSION TABLE (2, NVALUE)
C
      PARAMETER (ZERO=0.D0)
C
     SET YIELD STRESS TO LAST VALUE OF TABLE, HARDENING TO ZERO
C
C
      SYIELD=TABLE(1, NVALUE)
      HARD(1) = ZERO
     IF MORE THAN ONE ENTRY, SEARCH TABLE
C
C
      IF (NVALUE.GT.1) THEN
        DO K1=1, NVALUE-1
          EQPL1=TABLE(2,K1+1)
          IF (EQPLAS.LT.EQPL1) THEN
            EQPL0=TABLE(2, K1)
            IF (EQPL1.LE.EQPL0) THEN
              WRITE(7, 1)
              FORMAT(//, 30X, '***ERROR - PLASTIC STRAIN MUST BE ',
    1
                               'ENTERED IN ASCENDING ORDER')
     1
              CALL XIT
            ENDIF
```



```
C
C
           CURRENT YIELD STRESS AND HARDENING
C
            DEQPL=EQPL1-EQPL0
            SYIEL0=TABLE(1, K1)
            SYIEL1=TABLE(1, K1+1)
            DSYIEL=SYIEL1-SYIEL0
            HARD(1) = DSYIEL/DEQPL
            SYIELD=SYIEL0+(EQPLAS-EQPL0)*HARD(1)
            GOTO 10
          ENDIF
        END DO
   10
        CONTINUE
      ENDIF
      RETURN
      END
```


Remarks

- This **UMAT** yields exactly the same results as the *PLASTIC option with ISOTROPIC hardening.
 - This result is also true for large-strain calculations. The necessary rotations of stress and strain are taken care of by ABAQUS.
 - The rotation of elastic and plastic strain, prior to integration, is accomplished by the calls to **ROTSIG**.

- The routine calls user subroutine **UHARD** to recover a piecewise linear hardening curve.
 - It is straightforward to replace the piecewise linear curve by an analytic description.
 - A local Newton iteration is used to determine the current yield stress and hardening modulus.
 - If the data are not given in ascending order of strain, the routine
 xIT is called, which closes all files and terminates execution.