28/01/2005

Algebra lineare – Corso di laurea in Informatica

Cognome:

Matricola:

Nome:

N.B.1 La risposta ad ogni singolo esercizio deve essere riportata nello spazio sottostante l'esercizio stesso.N.B.2 Gli esercizi senza giustificazione o risposta hanno valore nullo.
Esercizio 1. (punteggio $\frac{2.5}{30}$) Il numero complesso $1+i$ è una radice quarta di -4 . V F Giustificazione:
Esercizio 2. (punteggio $\frac{2.5}{30}$) $(1+i)^8=16$ V F Giustificazione:
Esercizio 3. (punteggio $\frac{2.5}{30}$) Siano z e w in $\mathbb C$ tali che $zw=0$. Allora $z=0$ oppure $w=0$. V F Giustificazione:

Esercizio 4. (punteggio $\frac{2.5}{30}$)

Siano $v_1 = (1, 2, 1)$ e $v_2 = (1, 1, -3)$ due vettori di \mathbb{R}^3 . Dopo aver verificato che v_1 è ortogonale a v_2 , costruire una base ortonormale e_1, e_2, e_3 di \mathbb{R}^3 tale che $e_1 = \frac{v_1}{\|v_1\|}$ e $e_2 = \frac{v_2}{\|v_2\|}$.

Risposta:

Esercizio 5. (punteggio $\frac{2.5}{30}$)

Siano u e v due vettori ortogonali di \mathbb{R}^n . Allora ||u+v|| = ||u|| + ||v||. **V F**

Giustificazione:

Esercizio 6. (punteggio $\frac{2.5}{30}$)

Siano $P_1 = (1, 1, 1), P_2 = (2, 1, 0), P_3 = (2, 2, 2)$ e $P_4 = (4, 2, 0)$ quattro punti di \mathbb{R}^3 . Il poligono di lati P_1P_2, P_2P_3, P_3P_4 P_1P_4 è un parallelogramma. \mathbf{V} \mathbf{F}

Giustificazione:

Esercizio 7. (punteggio $\frac{2.5}{30}$)

La matrice
$$B = \begin{pmatrix} -10 & -20 & 4 & 7 \\ 3 & 6 & -1 & -2 \\ 5 & 8 & -2 & -3 \\ 2 & 3 & -1 & 1 \end{pmatrix}$$
 è l'inversa della matrice $A = \begin{pmatrix} 1 & 2 & 1 & 0 \\ 0 & 1 & -1 & 1 \\ 1 & 3 & 1 & -2 \\ 1 & 4 & -2 & 4 \end{pmatrix}$

 \mathbf{V}

Giustificazione:

Esercizio 8. (punteggio $\frac{2.5}{30}$)

Siano $v_1=(1,0,1), v_2=(2,1,-1)$ e $v_3=(0,-1,3)$ tre vettori di \mathbb{R}^3 . I vettori v_1, v_2 e v_3 sono linearmente indipendenti. \mathbf{V} \mathbf{F}

Giustificazione:

Esercizio 9. (punteggio $\frac{2.5}{30}$)

Siano $v_1 = (1, 2, -1, 1), v_2 = (0, 2, 1, 3)$ e $v_3 = (0, 1, 1, 1)$ tre vettori di \mathbb{R}^4 . La dimensione del sottospazio di \mathbb{R}^4 generato dai vettori v_1, v_2 e v_3 è uguale a tre. \mathbf{V} \mathbf{F}

Giustificazione:

Esercizio 10. (punteggio $\frac{2.5}{30}$)

Cosa rappresenta la matrice
$$A = \frac{1}{2} \begin{pmatrix} \sqrt{3} & -1 \\ 1 & \sqrt{3} \end{pmatrix}$$
?
Risposta:

Risposta:

Esercizio 11. (punteggio $\frac{2.5}{30}$)

Sia r la retta di \mathbb{R}^2 passante per l'origine e che forma un angolo $\alpha = \frac{\pi}{8}$ con il semiasse positivo delle ascisse. Scrivere la matrice che rappresenta la simmetria piana rispetto alla retta r.

Risposta:

Esercizio 12. (punteggio $\frac{2.5}{30}$)

Trovare i valori del parametro reale λ tali che il sistema

$$\begin{cases} \lambda x + y + \lambda z = 0 \\ -x + \lambda y - z = 0 \\ \lambda x + y + (\lambda + 1)z = 0 \end{cases}$$

ammetta un unica soluzione.

Risposta: