Université

de Strasbourg

Introduction aux réseaux IP

Julien Montavont montavont@unistra.fr

Licence 2 d'informatique

Ce cours est construit sur la base de plusieurs supports pédagogiques parmi lesquels ceux d'Antoine Gallais, Pascal Mérindol et Jean-Jacques Pansiot. L'usage de ce support ne peut être qu'académique

Qu'est-ce qu'un réseau?

- Définition (Larousse)
 - Ensemble formé de lignes ou d'éléments qui communiquent ou s'entrecroisent

Julien Montavont

Introduction aux reseaux IP

Quel intérêt ? Pour quel besoin ?

- Mutualisation
 - · Ressources coûteuses qu'on souhaite partager
- Communications
 - Pigeons voyageurs, courrier postal, télégramme, téléphone, radio, télévision, Internet...
- Transport (de personnes, de marchandises)
 - · Routes, trains, lignes aériennes, portuaires...

Julien Montavont

Introduction aux reseaux IP

3

Naissance d'Internet

- 1958 => DARPA (Defense Advanced Research Projects) crée un supercalculateur construit par IBM
- 1962 => souhait de partager les ressources informatiques entre centres de recherches, Université et entreprises
- 1969 => premier message informatique échangé entre UCLA (*University of California in Los Angeles*) et Standford (université à Palo Alto)
 - Tentative d'émission de la chaîne « LOGIN »
 - Réception de « LO » puis crash du système

Julien Montavont

Introduction aux reseaux IP

Unités de mesure

- Bit : quantité minimale d'information ne prenant que 2 valeurs (0 ou 1)
- Octet : suite de 8 bits
- Byte : suite de bits (généralement 8, mais peut varier)
 - Octet et Byte sont abusivement considérés comme synonymes
- Multiples (unités du Système International)
 - 1000 octets = 1Ko (kilo octets) = 0,1 Mo (Méga octets)
 - 1024 octets = 2^10 = 1Kio (kilo binaire ou kibi) = 0,1 Mio

Julien Montavont

Introduction aux reseaux IP

Objectif = communiquer

- Deux axes orthogonaux
 - Qualité des communications (débit, fiabilité, sécurité, etc.)
 - Réduction des coûts (mutualisation des ressources, simplicité)

Julien Montavont

Introduction aux reseaux IP

7

Comment communiquer?

- Quel support physique?
 - Câbles
 - Métallique : coaxial, paire torsadée
 - Optique (cœur en verre) : fibre optique
 - Air émission / réception d'ondes radio, lumineuses, sonores, etc.
 - Liquide ondes sonores
- Quelle topologie ?
 - Anneau, arbre, bus, étoile, maillée...
- Quelle échelle ?
 - Du corps body area network (BAN)
 - D'un bâtiment local area network (LAN)
 - D'une ville metropolitan area network (MAN)
 - D'un continent wide area network (WAN)

Julien Montavont

Introduction aux reseaux IP

Echanger des données

- Emetteur et récepteur doivent s'accorder sur
 - L'acheminement des données (commutation)
 - · Le format des messages
 - La synchronisation (signal de départ, de fin)
- Ex: communication humaine
 - Quel moyen ? (lettre, carte, email, sms, oral, etc.)
 - Quelle langue?
 - Quel degré d'affinité (« salut » ou « cher collègue » ?)
- ⇒ Besoin de normaliser les échanges

Julien Montavont

Introduction aux reseaux IP

C

Commutation

- Définition (Larousse) :
 - Technique d'acheminement des données entre deux ordinateurs connectés par un réseau de transmission
- Ex : quelle stratégie pour acheminer des données de A vers B ?

Julien Montavont

Introduction aux reseaux IP

Commutation de circuits

- Circuit dédié entre émetteur et récepteur
 - Ex : réseaux téléphonique (RTC)
- Avantages
 - Fiable, débit élevé, peu voire pas de gigue (variation du délai)
- Inconvénients
 - Nombre de circuits (relativement) limités
 - Gaspillage en cas de communication à débit variable (e.g. Internet)
 - Non robuste face aux pannes des équipements intermédiaires
 - Délai d'établissement du circuit

Julien Montavont

Introduction aux reseaux IP

11

Commutation de messages

- Progression des messages de proche en proche
 - Pas de circuit dédié => deux messages d'une même communication peuvent emprunter des chemins différents
 - Ex : transmission des télégrammes, courrier postal
- Avantages
 - · Adapté aux communications à débit variable
 - Multiplexage de nombreuses communications simultanément
 - · Robuste face aux pannes des équipements intermédiaires
 - Pas de délais avant émission du premier message
 - · Stockage du message dans le réseau
- Inconvénients
 - · Non fiable, débit variable, gigue (variation du délai)
 - Réception de la totalité du message avant transfert
 - Inefficace pour des données de très grande taille car ajoute du délai

Julien Montavont

Introduction aux reseaux IP

Commutation de paquets

- Même paradigme que la commutation de messages mais...
- ... données découpées en paquets (segmentation)
 - Ex : Internet
- Intérêt ?
 - Efficacité ne dépend plus de la taille des données

Julien Montavont

Introduction aux reseaux IP

13

Procédure de communications - définition

- Ensemble de règles d'émission et de réception des messages
 - ⇒ Structurer l'information : différencier les données utiles des données de contrôle (en-tête)
 - ⇒ Gérer les événements / états
 - ⇒ Description par automate

• Ex : bit alterné

Julien Montavont

Protocole - définition

- Spécification d'un couple de procédures
 - Pas nécessairement identiques
 - · Appelant / appelé
 - · Client / serveur
- Assure un service entre deux ou plusieurs extrémités

Julien Montavont

Introduction aux reseaux IP

15

Protocoles réseaux

- Répondre aux problèmes « pratiques » posés dans les systèmes distribués
 - Moyen de transmission non fiable
 - Pas de mémoire commune
 - Evénements inattendus (panne, erreur, etc.)
 - Hétérogénéité des matériels, logiciels, données
 - Nécessité de partager les ressources

Julien Montavont

Introduction aux reseaux IP

Normalisation / standardisation

- De manière générale
 - · Harmoniser l'activité d'un secteur
 - Assurée par des organismes nationaux / internationaux
- En informatique
 - Normaliser les protocoles de communication... mais aussi
 - · Les matériels
 - La diffusion de l'information (ex : draft, RFC)
 - Les ressources communes (ex : fréquences radio)

Julien Montavont

Introduction aux reseaux IP

17

Organismes de normalisation

- UIT (créée en 1932)
 - Union nationale des télécommunications
 - Règlementation des télécommunications, établissement de normes, diffusion d'informations techniques
 - Ex: recommandation IMT-2000 pour la téléphonie 3G
- ISO (créée en 1974)
 - International Organization for Standardization
 - Règlementation des télécommunications, établissement de normes, diffusion d'informations techniques
 - Ex : ISO 9001 (gestion de la qualité), ISO 14001 (management environnemental)

Julien Montavont

Introduction aux reseaux IP

Organismes de normalisation

- IEEE (créé en 1963)
 - Institute of Electrical and Electronics Engineers
 - Rédaction de normes, diffusion des connaissances
 - Ex : conférences, journaux, IEEE 802.3
- IETF (créé en 1986)
 - Internet Engineering Task Force
 - Rédaction de normes pour l'Internet
 - Propositions et débats de drafts, puis diffusion des normes RFC (Request for Comments)
 - Ex: RFC 675 (protocole TCP)

Julien Montavont

Introduction aux reseaux IP

19

Organismes de normalisation

- IANA (créée en 1988)
 - Internet Assigned Numbers Authority
 - Attribution des noms et identifiants des protocoles Internet
 - Ex :adresse IP, numéros de port, etc.
 - · Collaboration étroite avec l'IETF
- ARCEP (créée en 1997)
 - Autorité de Régulation des Communications Electroniques et des Postes
 - Régulation des télécommunication et des activités postales, attribution des fréquences, assure le respect de la neutralité du net

Julien Montavont

Introduction aux reseaux IP

Organisation d'une architecture réseau

- Modèle en couche
 - Dégager les principales fonctions liées à la communication
 - ⇒ Les hiérarchiser en couche
 - ⇒ Abstraction couche / service / protocole
 - Analogie avec des paradigme de programmation
 - ⇒ type abstrait (file, graphe, liste, etc.)
 - ⇒ programmation objet

Julien Montavont

Introduction aux reseaux IP

21

Analogie avec les réseaux de distribution

- Indépendance
 - Vendeur peut changer de transporteur
 - Transporteur peut transporter des produits différents
 - Une commande peut être livrée en plusieurs colis
- Adressage
 - Utilisateur final (adresse de livraison, de facturation)
 - Prochain entrepôt
- Différentiation entre bout en bout et proche en proche
- Fiabilité
 - Accusé de réception, bon de livraison, etc.

Julien Montavont

Introduction aux reseaux IP

Organisation en couches

- Chaque couche traite une ou plusieurs fonctionnalités
- Chaque couche rend des services à la couche de niveau supérieur
- Chaque couche utilise des services de la couche inférieure
- Définitions

Service : ce qu'offre une coucheInterface : utilisation d'une couche

· Protocole: comment

Julien Montavont

Introduction aux reseaux IP

Modèle OSI

- Norme ISO 7488
 - Modèle de référence pour l'interconnexion des systèmes ouverts (Open System Interconnection)
 - Décrit l'architecture des communications en réseau
- Objectifs
 - Principales fonctions liées à la communication
 - Hiérarchiser les couches : modularité
 - Abstractions : couche, service, protocole

Julien Montavont

Introduction aux reseaux IP

Modèle OSI

- Interface
 - Ensemble de fonctions et appels systèmes dans un programme
- Service
 - Description abstraite de fonctionnalités à l'aide de primitives (commandes ou événements)
- Protocole
 - Définit le format, la signification des messages, etc.
 - Indépendant du service fourni par la couche dans laquelle il fonctionne

Julien Montavont

Introduction aux reseaux IP

Modèle TCP/IP

- Besoin de simplification, souplesse et robustesse
 - Fusion des couches session, présentation et application
- Abstraction de la technologie de communication (couche physique et liaison)
- Impose le protocole TCP pour la couche transport et IP pour la couche réseau
- Centré autour du protocole IP (Internet Protocol)
 - · Langage universel

⇒ Modèle utilisé actuellement sur Internet!

Julien Montavont

Introduction aux reseaux IP

transport

réseau

Modèle TCP/IP vs modèle OSI

- Modèle OSI
 - Modèle théorique conçu avant les protocoles
 - Pas de protocole imposé à chaque couche
 - Objectif d'abstraction satisfait
 - Utile pour décrire différentes piles de protocoles (généricité)
- Modèle TCP/IP
 - Conçu après les protocoles
 - Adéquation parfaite à la pile de protocoles définis
 - Ne convient pas pour décrire d'autres piles

Julien Montavont

Introduction aux reseaux IP

Internet – bref historique

 Réseau ARPANET de DARPA (début 1970) ©Alex Mckenzie • Defense Advanced Research Projects (DARPA) 940 Advanced Research Projects Agency Network (ARPANET) • Création d'un réseau informatique pour partager des ressources informatiques entre universités

Pile TCP/IP: début 1980

Julien Montavont

Introduction aux reseaux IP

DEC 1964

THE ARPA NETWORK

4 Noses

Internet – bref historique

- Evolution des besoins, des technologies et des coûts
 - Toujours plus de noeuds connectés à ARPANET
 - Développement du système UNIX de Berkeley
 - · API socket, utilitaires et outils de gestion
 - UNIX BSD 4.2 avec TCP/IP (pile presque complète)
 - 1980 : création du système de nommage (DNS) pour localiser les hôtes
- Parallèlement
 - Fin 1970: NSFNET (National Science Foundation)
 - 1980: 1^{er} Wide Area Network TCP/IP

Julien Montavont

Introduction aux reseaux IP

Internet – bref historique

- ARPANET se sépare des forces armées (1983)
- ARPANET + NSFNET => inter-réseau => Internet
- Se connecter à Internet demande de
 - Posséder une adresse IP
 - Supporter la pile TCP/IP
 - Être connecté physiquement au réseau
- Ouverture du réseau au public début 1990

Julien Montavont

Introduction aux reseaux IP

33

Internet – historique français

- 1973 : réseau CYCLADES Louis Pouzin (base de la pile TCP/IP actuelle !)
 - FNET (1983): connexion vers Internet (CNAM)
 - CNAM, INRIA, IRCAM (1984) : connexion aux USA via Amsterdam, par liaison téléphonique puis X.25
 - INRIA (1988): 1^{er} paquet IP arrive directement pas liaison satellite entre Nice-Sophia et Princeton
 - Strasbourg: réseau OSIRIS connecté en 1989 via INRIA
 - RENATER (1982): créé par le CEA, CNES, CNRS, INRIA, EDF, Ministère Education Nationale
 - S'ouvre aux industriels en 1985

Julien Montavont

Introduction aux reseaux IP

Internet – évolution

- 1995 : 50 000 réseaux, 4 millions d'ordinateurs, 100 pays, celullaire / GSM
- 31 mars 2011 : 2 millards d'utilisateurs (30% de la population mondiale)
- Problème d'échelle (NAT?) et migration lente vers IP version 6
 - Attribution des dernières adresses IP version 4 disponibles par l'IANA (2011)

Julien Montavont

Introduction aux reseaux IP

35

Internet – aujourd'hui

- 2012 : plus de 6 milliards d'objets connectés
 - D'ici à 2020 : plus de 50 milliards (prévisions Cisco)
- Très haut débit > Gb/s
- Réseaux d'accès haut débit (ADSL, Fibre, Câble)
- Réseaux sans fil (WiFi, 802.15.4, LoRa, 5G, etc.)
- Tout IP (triple play)
 - Télévision, Internet, Téléphone
- Tout connecté
 - Mobiles, capteurs, montres, frigos, etc.

Julien Montavont

Introduction aux reseaux IP

Internet – résumé

- Interconnexion de réseaux (locaux, métropolitains, etc.) qui utilisent le même langage (protocole IP)
- Interconnexion mondiale gérée par de multiples entités autonomes (AS)
 - Coordination et coopération de tous autour de consensus / normes opérationnelles
- Nombreuses difficultés
 - Internet est étendu (nb d'équipements, distances géographiques)
 - Acteurs sont multiples (constructeurs, opérateurs, utilisateurs, etc.)
 - Matériel est hétérogène (nœuds et liaisons)
 - Données et applications sont variées (texte, images, vidéos, etc.)
- Comment s'adapter aux différents besoins et proposer une qualité de service adéquate ? (au mieux ? Classe premium ?)

Julien Montavont Introduction aux reseaux IP