Conjuntos inductivos. Principio de Inducción Primitiva.

Pablo Verdes

LCC

15 de marzo de 2018

- Ejemplo clásico: números naturales (ℕ)
 - $0 1 \in \mathbb{N}$
 - ② si $n \in \mathbb{N}$ entonces $n+1 \in \mathbb{N}$

```
(Listo? No, obs. que podría ser \mathbb{N} = \{1, 1.5, 2, 2.5, 3, 3.5, \ldots\})
```

3 estos son los únicos elementos de N

```
(entonces ahora sí \mathbb{N} = \{1, 2, 3, 4, 5, \ldots\})
```

- Números pares (P)
 - **①** 0 ∈ *P*
 - 2 si $n \in P$ entonces $n + 2 \in P$
 - estos son los únicos elementos de P

- En términos generales, una definición inductiva de un conjunto S comprende base, inducción y clausura:
 - ▶ Base: conjunto de uno o más elementos 'iniciales' de S.
 - ▶ Inducción: una o más reglas para construir 'nuevos' elementos de *S* a partir de 'viejos' elementos de *S*.
 - Clausura: idea de que S consiste exactamente de los elementos obtenidos a partir de los básicos, aplicando las reglas de inducción.
- Matemáticamente, la manera más elegante de clausurar es hacer que S sea el **mínimo** conjunto que satisface las condiciones de base e inducción: si T también las satisface, entonces $S \subseteq T$.
- Alternativamente: *S* es la intersección de todos los conjuntos que satisfacen las condiciones de base e inducción.

En Ciencias de la Computación, los *conjuntos definidos inductivamente* (también conocidos como *definidos recursivamente*) se usan típicamente para definir:

- lenguajes de programación (via gramáticas),
- fórmulas lógicas bien formadas (o sintácticamente correctas),
- estructuras de datos dinámicas (árboles binarios, listas),
- fractales en computación gráfica,
- lenguajes en programación funcional.

Conjuntos inductivos: ejemplos

- Sea S el mínimo conjunto de números naturales tal que:
 - ▶ (Base) 3 ∈ *S*
 - ▶ (Inducción) si $x, y \in S$ entonces $x + y \in S$
- Sea Σ^* el mínimo conjunto de cadenas sobre el alfabeto Σ tal que:
 - ▶ (Base) $\lambda \in \Sigma^*$ (λ es la cadena vacía)
 - ▶ (Inducción) si $w \in \Sigma^*$ y $x \in \Sigma$ entonces $wx \in \Sigma^*$
- Sea L_1 el mínimo conj. de cadenas sobre el alfabeto $\{0,1\}$ tal que:
 - ▶ (Base) $\lambda \in L_1$
 - ▶ (Inducción) si $w \in L_1$ entonces $0w1 \in L_1$
- Sea L_2 el mínimo conj. de cadenas sobre el alfabeto $\{0,1\}$ tal que:
 - ▶ (Base) si $x \in \{\lambda, 0, 1\}$ entonces $x \in L_2$
 - ▶ (Inducción) si $w \in L_2$ y $x \in \{0,1\}$ entonces $xwx \in L_2$

Conjuntos inductivos: ejemplos

• Un conjunto de expresiones aritméticas bien formadas de 3 variables:

Sea F el mínimo conjunto de cadenas sobre el alfabeto $\{x, y, z, 0, 1, 2, \dots 9, +, -, \times, /, (,)\}$ tal que:

- ▶ (Base) si $f \in \{x, y, z, 0, 1, 2, ... 9\}$ entonces $f \in F$
- ▶ (Inducción) si $f, g \in F$ entonces $(f + g), (f g), (f \times g), (f/g) \in F$

Ejemplos:
$$2, x, (x+2), (x/y), (3/0), (x \times (y+z)), ((x \times x) \times x)$$

Árboles binarios:

Definimos al conjunto B de árboles binarios sobre un alfabeto Σ como el mínimo conjunto tal que:

- ▶ (Base) $\langle \rangle \in B$
- ▶ (Inducción) si $L, R \in B$ y $x \in \Sigma$ entonces $\langle L, x, R \rangle \in B$

Ejemplos: $\langle \langle \rangle, 1, \langle \rangle \rangle$, $\langle \langle \langle \rangle, 1, \langle \rangle \rangle, r, \langle \langle \rangle, 2, \langle \rangle \rangle \rangle$

6 / 18

Conjuntos inductivos: definición

Sean:

- *U* un conjunto, que llamaremos **universo**,
- B un subconjunto no vacío de U, que llamaremos base, y
- K un conjunto no vacío de funciones, que llamaremos **constructor**. Cada función $f \in K$ tiene cierta aridad $ar(f) = n \in \mathbb{N}$. Es decir, $f: U^n \to U$.

Diremos que un conjunto A está **definido inductivamente** por B, K, U si es el mínimo conjunto que satisface:

- B ⊆ A
- si $a_1, \ldots a_n \in A$ y $f(a_1, \ldots a_n) = a$ entonces $a \in A$, donde $f \in K$ con ar(f) = n.

Diremos también que el conjunto A fue **generado** por la base B y las **reglas de inducción** $f \in K$.

Principio de Inducció

• Definición: Secuencia de Formación

Sean U, B, K como en la definición anterior. Una secuencia $a_1, \ldots a_m$ de elementos de U es una **secuencia de formación** para a_m si $\forall i = 1, \ldots m$ se tiene que:

- ▶ $a_i \in B$, o bien
- ▶ $\exists f \in K, ar(f) = n$, y $0 < i_1, \dots i_n < i$ tales que $f(a_{i_1}, \dots a_{i_n}) = a_i$.

Principio de Inducció

 Se puede probar que el conjunto A definido inductivamente por B, K, U en la slide anterior está formado exactamente por todos aquellos elementos de U que poseen una secuencia de formación.

Conjuntos inductivos: pertenencia

 Para probar que un elemento pertenece a un conjunto inductivo debemos dar su secuencia de formación.

• Ejemplo:

Habíamos definido L_2 como el mínimo conjunto de cadenas sobre el alfabeto $\{0,1\}$ tal que:

- ▶ (Base) si $x \in \{\lambda, 0, 1\}$ entonces $x \in L_2$
- ▶ (Inducción) si $w \in L_2$ y $x \in \{0, 1\}$ entonces $xwx \in L_2$

 $110111011 \in L_2$ pues posee la siguiente secuencia de formación:

$$1\Rightarrow 111\Rightarrow 01110\Rightarrow 1011101\Rightarrow 110111011$$

Conjuntos inductivos: pertenencia

- Para probar que un elemento no pertenece a un conjunto inductivo, podemos:
 - mostrar que no existe una secuencia de formación para el elemento en cuestión, o
 - mostrar que si se quita al elemento del conjunto se siguen cumpliendo las cláusulas, o
 - ▶ probar cierta propiedad del conjunto que sirva para excluir al elemento.
- Esta última será la estrategia preferida. Por ejemplo, para probar que $110111010 \not\in L_2$, podríamos probar que todas las cadenas de L_2 comienzan y terminan con el mismo caracter.
- Para demostrar que los elementos de un conjunto inductivo satisfacen cierta propiedad, conviene usar el Principio de Inducción Primitiva que veremos a continuación.

Principio de Inducció

- Idea intuitiva: sabemos exactamente cómo se construyen los elementos de un conjunto inductivo, entonces podemos usar esta información para demostrar propiedades sobre ellos.
- **Ejemplo:** habíamos definido a S como el mínimo conjunto de números naturales tal que:
 - ▶ (Base) $3 \in S$
 - ▶ (Inducción) si $x, y \in S$ entonces $x + y \in S$

Para probar que todos los elementos de S son múltiplos de 3, debemos probar:

- (Base) 3 es múltiplo de 3
- (Inducción) si x, y son múltiplos de 3, entonces x + y es múltiplo de 3

Más generalmente, para probar que todos los elementos de S cumplen cierta propiedad P, debemos probar:

- ▶ (Base) *P*(3)
- ► (Inducción) $P(x), P(y) \Rightarrow P(x+y)$

11 / 18

Podemos entonces enunciar el:

Principio de Inducción Primitiva para S

Sea P una propiedad que verifica:

- P(3) se cumple.
- ▶ Si P(x), P(y) se cumplen, entonces P(x + y) se cumple.

Entonces P(x) se cumple para todo $x \in S$.

• Principio de Inducción Primitiva para L_1

Sea P una propiedad que verifica:

- \triangleright $P(\lambda)$ se cumple.
- ▶ Si P(w) se cumple, entonces P(0w1) se cumple.

Entonces P(x) se cumple para todo $x \in L_1$.

Árboles binarios:

Habíamos definido al conjunto B de árboles binarios sobre un alfabeto Σ como el mínimo conjunto tal que:

- ▶ (Base) $\langle \rangle \in B$
- ▶ (Inducción) si $L, R \in B$ y $x \in \Sigma$ entonces $\langle L, x, R \rangle \in B$

Principio de Inducción Primitiva para B

Sean $L, R \in B$ y $x \in \Sigma$. Sea P una propiedad que verifica:

- \triangleright $P(\langle \rangle)$ se cumple.
- ▶ Si P(L) y P(R) valen, entonces $P(\langle L, x, R \rangle)$ vale.

Entonces P(x) se cumple para todo $x \in B$.

- En la inducción primitiva o estructural, la estructura de la demostración de que cada elemento de un conjunto inductivo S cumple con cierta propiedad P es análoga a la estructura de la definición inductiva de S.
- Más precisamente, dicha demostración consta de dos partes:
 - Base: probar que cada elemento del conjunto B cumple la propiedad P.

Principio de Inducció

Inducción: suponiendo que todos los argumentos de una función constructora cumplen la propiedad P, probar que el elemento construido también cumple la propiedad P.

Teorema: Principio de Inducción Primitiva (PIP)

Sea $A \subseteq U$ definido inductivamente por la base B y el constructor K. Sea P una propiedad que verifica:

- **1** (Base) Vale $P(x) \forall x \in B$.
- (Inducción) Para cada $f \in K$, si $f(a_1, a_2, ..., a_{ar(f)}) = a$ y vale Ppara $a_1, a_2, \ldots, a_{ar(f)} \in A$, entonces vale P(a).

Entonces vale $P(x) \ \forall x \in A$.

D/ Sea C el conjunto de todos los elementos de A que satisfacen la propiedad *P*:

$$C = \{a \in A \mid P(a)\}.$$

Queremos probar que C = A.

• *C* ⊆ *A*:

Trivial por definición del conjunto $C = \{a \in A \mid P(a)\}.$

• *A* ⊆ *C*:

Veamos que C satisface las cláusulas de la definición inductiva de A:

- ▶ (B) Sea $x \in B$. Por (1), vale P(x). Entonces $x \in C$. Luego $B \subseteq C$.
- ▶ (I) Sea $f \in K$ con ar(f) = n, $a_1, \ldots a_n \in C$ y $f(a_1, \ldots a_n) = a$. Queremos probar que $a \in C$.

Por definición de C, valen $P(a_1), \dots P(a_n)$.

Por (2), vale P(a).

Por definición de C, $a \in C$.

Dado que A es el mínimo conjunto que cumple las cláusulas de su definición inductiva, $A \subseteq C$.

Principio de Inducció

Por lo tanto A = C.

Elementos esenciales de una demostración por inducción estructural:

- Identificar claramente la propiedad P que se pretende demostrar por inducción estructural. Debe tratarse de una afirmación sobre todos los elementos de un conjunto inductivo.
- Etiquetar claramente los casos base e inductivo como tales.
- Al discutir el caso inductivo propiamente dicho, enunciar claramente la Hipótesis de Inducción (H.I.) y lo que se pretende demostrar.
- En la demostración, indicar explícitamente dónde se utiliza la H.I..
 Si no la utiliza en ninguna parte, es probable que la demostración sea incorrecta.

Ejemplo:

- Habíamos definido a S como el mínimo conj. de núm. nat. tal que:
 - ▶ (Base) $3 \in S$
 - ▶ (Inducción) si $x \in S$ e $y \in S$ entonces $x + y \in S$
- Principio de Inducción Primitiva para S

Sea P una propiedad que verifica:

- \triangleright P(3) se cumple.
- ▶ Si P(x), P(y) se cumplen, entonces P(x + y) se cumple.

Entonces P(x) se cumple para todo $x \in S$.

Veamos que todos los elementos de S son múltiplos de 3 (pizarrón).