Agricultural activity and water quality

Group:
Status 418: I'm a teapot
Henri Liswoyo
Alzen Punio
HanByeol Yang
Moses Velano

Agricultural Activity

General workflow:

- Collecting data
- Removing irrelevant columns
- Filtering out irrelevant rows
- Standardising values and column names
- Joining the table
- Plotting

Agricultural Activity - Collecting Data

Sources:

Ministry for the Environment

StatsNZ

- Both are government sources
- Freely accessible to public
- API support

Agricultural Activity - Collecting Data

API use:

```
# A function to get data from the Ministry for the Environment database API
get data from mfe <- function(api key, data id){
    # creates a query url using inputs of api key and data-id number available on MfE website
    query <- glue('https://data.mfe.govt.nz/services;key={api key}/wfs?service=WFS&version=2.0.0&reguest=GetFeature&typeNames
    api response <- GET(query) #gets the API response from the query
    data xml <- read xml(api response) #reads the xml data from the api response
    data parsed <- xmlParse(data xml) #parses the data into an xml format that is readable in R
    data df <- glue('//data.mfe.govt.nz:{data id}') %>% # creating a node name to look for
    getNodeSet(data parsed, .) %>% # looking at nodes with the name
    xmlToDataFrame(nodes = .) #turns the data within the given node into a data frame
   return(data df) #returns the data frame
```

Agricultural Activity - Removing Irrelevant Columns

Livestock	Area	Year	Value	Flags
Total beef	Total New	As at June	5047848	
Total beef	Total New	As at June	4491281	
Total beef	Total New	As at June	4626617	

Agricultural Activity - Filtering Out Irrelevant Rows

Removing rows of aggregated data →

```
# Removing irrelevant datas by using the filter() function
latest_horti_pop <- latest_horti_pop %>%
filter(Area != "Total New Zealand") %>% # filtering unwanted areas
filter(Area != "Total North Island") %>% # filtering unwanted areas
filter(Area != "Total South Island") # filtering unwanted areas
```

```
Calves born alive to beef heifers/cows Northland 1994 136047

Calves born alive to beef heifers/cows Northland 2002 107864

Calves born alive to beef heifers/cows Northland 2003 104125

Calves born alive to beef heifers/cows Northland 2004 94213
```

```
# Removing unnecessary data

latest_livestock_pop_remove <- latest_livestock_pop %>% # creates new variable that removes irrelevant areas

filter(Livestock != "Total dairy cattle") %>% # filtering unwanted data

filter(Livestock != "Total beef cattle") %>% # filtering unwanted data

filter(Livestock != "Total sheep") %>% # filtering unwanted data

filter(Livestock != "Total deer") # filtering unwanted data
```

```
# Extracting the necessary datas/variables we want latest_livestock_pop <- latest_livestock_pop[!(latest_livestock_pop$Livestock %in% latest_livestock_pop_remove$Livestock),] latest_livestock_pop
```

← Selecting relevant rows, then removing all other rows

Agriculture Activities - Standardising values and column names

Renaming the column and the variables → contained in it.

```
Livestock

Total beef cattle

Total beef cattle

Total beef cattle
```

```
# Renaming Variables.
latest_livestock_pop <- latest_livestock_pop %>%
    rename(Activity = "Livestock")  # Renames Livestock to Activity

latest_livestock_pop$Activity <- gsub("Total dairy cattle", "Dairy Cattle", as.character(latest_livestock_pop$Activity))

latest_livestock_pop$Activity <- gsub("Total beef cattle", "Beef Cattle", as.character(latest_livestock_pop$Activity))

latest_livestock_pop$Activity <- gsub("Total sheep", "Sheep", as.character(latest_livestock_pop$Activity))

latest_livestock_pop$Activity <- gsub("Total deer", "Deer", as.character(latest_livestock_pop$Activity))</pre>
```

Agricultural Activity - Joining The Tables

From this...

Agricultural Activity - Joining The Tables

... to this

```
Rows: 351
Columns: 26
$ Area
                                  <chr>>
$ Year
                                  <dbl>
$ key
                                  <chr>>
$ `Beef Cattle`
                                  <dbl>
$ `Dairy Cattle`
                                  <dbl>
$ Deer
                                  <dbl>
$ Sheep
                                  <dbl>
$ `Total apples (hectares)`
                                  <db1>
$ `Total avocados (hectares)`
                                  <db1>
$ `Total kiwifruit (hectares)`
                                  <dbl>
$ `Total olives (hectares)`
                                  <dbl>
$ `Total onions (hectares)`
                                  <dbl>
$ `Total potatoes (hectares)`
                                  <dbl>
$ Total squash (hectares)`
                                  <dbl>
$ `Total wine grapes (hectares)` <dbl>
$ Total Hectares
                                  <dbl>
$ `Dairv area (ha)`
                                  <dbl>
$ `Floriculture area (ha)`
                                  <dbl>
$ `Forestry area (ha)`
                                  <dbl>
$ `Fruit and berry area (ha)`
                                  <dbl>
$ `Grain growing area (ha)`
                                  <dbl>
$ `Nursery and turf area (ha)`
                                  <dbl>
$ 'Other area (ha)'
                                  <db1>
$ `Other Livestock area (ha)`
                                  <dbl>
$ `Sheep and Beef area (ha)`
                                  <dbl>
$ `Vegetable growing area (ha)`
                                  <dbl>
```

Agriculture Activities - Plotting

Water Quality

General workflow

- Data collection
- Data wrangling
 - Conversion of river sites' latitudes and longitudes
 - Making sense out of the NAs
 - Standardising the units and region name
 - Selecting and renaming relevant columns
- Plotting
 - Overall plots
 - Proportion plots
 - Maps (sites exceeded the threshold and average nitrogen concentration across New Zealand)
- Data model

Conversion of Latitudes and Longitudes

```
5 # Load the tidyaeocoder package to be able to use a function to convert the given latitude and longitude
6 # to address.
7 library(tidygeocoder)
```

```
# Takes the river_ecoli dataset then take the lat and long variables
# to get the full address. Then save it as new_riverecoli.
new_riverecoli <- river_ecoli %>%
reverse_geocode(lat = lat, long = long,
method = "osm", full_results = TRUE)

# Takes the river_ecoli dataset then take the lat and long variables
# to get the full address. Then save it as new_rivernitrogen.
new_rivernitrogen <- river_nitrogen %>%
reverse_geocode(lat = lat, long = long,
method = "osm", full_results = TRUE)
```

Data Model - Water Quality

Challenges of our project

- GitHub
- Web scraping and API
- Plotting challenges
- Extreme values for water quality
- Dashboarding tool

The end product

Graphs and maps publicly accessible through a story map webpage

https://storymaps.arcgis.com/stories/846c547baaa840d3895804c58760a70c