$Subspaces \\ Computational Intelligence, Lecture 2$

by Sergei Savin

Spring 2025

DOT PRODUCT AND VECTOR NORM

Given two vectors
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix}$$
 and $\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{bmatrix}$ their dot product is:
$$\mathbf{x} \cdot \mathbf{y} = x_1 y_1 + x_2 y_2 + \dots + x_n y_n = \mathbf{x}^{\top} \mathbf{y}$$
 (1)

A 2-norm (also called Euclidean norm) of a vector is defined as:

$$||\mathbf{x}||_2 = \sqrt{\mathbf{x}^\top \mathbf{x}} = \sqrt{x_1 x_1 + x_2 x_2 + \dots + x_n x_n}$$
 (2)

MINIMIZING A SQUARE ROOT

In this course we will often have to find minimum of a square root of a function. We can make the following helpful observation:

Square of a positive-definite function

If a function $f(\mathbf{x}) \geq 0$ and $f(\mathbf{x}^*) \leq f(\mathbf{x})$ for all \mathbf{x} , then $(f(\mathbf{x}^*))^2 \leq (f(\mathbf{x}))^2$. Illustration on the next slide.

So, instead of finding minimum of the function $f(\mathbf{x})$ we can find minimum of the function $f^2(\mathbf{x})$; both minimums will correspond to the same value of the argument \mathbf{x}^* .

So, if our function takes the form $f(x) = \sqrt{g(x)}$, instead of minimizing it, we can minimize g(x) directly.

SQUARE OF POSITIVE X

Figure 1: Graph of $f(x \ge 0) = x^2$; Since the function is monotonic, larger argument implies larger output.

LEAST SQUARES AT A GLANCE (1)

Consider the following problem: find \mathbf{x} that minimizes $||\mathbf{A}\mathbf{x} - \mathbf{y}||_2$. This is the *least squares problem*.

- The value $\mathbf{e} = \mathbf{A}\mathbf{x} \mathbf{y}$ is called residual.
- Least squares problem is about finding *least residual* solution.

Note that $f(\mathbf{x}) = ||\mathbf{A}\mathbf{x} - \mathbf{y}||_2 = \sqrt{(\mathbf{A}\mathbf{x} - \mathbf{y})^{\top}(\mathbf{A}\mathbf{x} - \mathbf{y})}$; as we showed earlier, we can minimize the function $g(\mathbf{x}) = (\mathbf{A}\mathbf{x} - \mathbf{y})^{\top}(\mathbf{A}\mathbf{x} - \mathbf{y})$ to find the same optimal value of \mathbf{x} .

LEAST SQUARES AT A GLANCE (2)

We find extremum of $g(\mathbf{x}) = (\mathbf{A}\mathbf{x} - \mathbf{y})^{\top}(\mathbf{A}\mathbf{x} - \mathbf{y})$:

$$\frac{d}{d\mathbf{x}}\left((\mathbf{A}\mathbf{x} - \mathbf{y})^{\top}(\mathbf{A}\mathbf{x} - \mathbf{y})\right) = 0 \tag{3}$$

$$(\mathbf{A}^{\top}(\mathbf{A}\mathbf{x} - \mathbf{y}))^{\top} + (\mathbf{A}\mathbf{x} - \mathbf{y})^{\top}\mathbf{A} = 0$$
 (4)

$$2\mathbf{A}^{\top}(\mathbf{A}\mathbf{x} - \mathbf{y}) = 0 \tag{5}$$

$$\mathbf{A}^{\top} \mathbf{A} \mathbf{x} = \mathbf{A}^{\top} \mathbf{y} \tag{6}$$

$$\mathbf{x} = (\mathbf{A}^{\top} \mathbf{A})^{-1} \mathbf{A}^{\top} \mathbf{y} \tag{7}$$

Thus we can define a *pseudoinverse*:

$$\mathbf{A}^{+} = (\mathbf{A}^{\top} \mathbf{A})^{-1} \mathbf{A}^{\top} \tag{8}$$

PSEUDOINVERSE

Thus the least residual solution to Ax = y is written as:

$$\mathbf{x} = \mathbf{A}^{+}\mathbf{y} \tag{9}$$

We already showed that it is the least-residual solution, later we will prove that it is also the *smallest norm* solution (out of all solutions with the same residual).

Pseudoinverse - Orthonormal Matrix

Let matrix \mathbf{M} be orthonormal (not necessarily square), meaning $\mathbf{M}^{\top}\mathbf{M} = \mathbf{I}$. Its pseudoinverse can be simplified:

$$\mathbf{M}^{+} = (\mathbf{M}^{\top} \mathbf{M})^{-1} \mathbf{M}^{\top} = \mathbf{M}^{\top}$$
 (10)

Then least squares solution to the equation $\mathbf{M}\mathbf{x} = \mathbf{y}$ can be found as:

$$\mathbf{x}_{LS} = \mathbf{M}^{\mathsf{T}} \mathbf{y} \tag{11}$$

If **M** is orthonormal and square, then $\mathbf{M}^{\top} = \mathbf{M}^{-1}$.

Computing the residual

Given an equation $\mathbf{A}\mathbf{x} = \mathbf{y}$ and least squares solution $\mathbf{x}_{LS} = \mathbf{A}^+\mathbf{y}$, let us compute the residual $\mathbf{e} = \mathbf{y} - \mathbf{A}\mathbf{x}_{LS}$. We substitute the solution:

$$\mathbf{e} = \mathbf{y} - \mathbf{A}\mathbf{A}^{+}\mathbf{y} \tag{12}$$

We observe that:

- The residual can be found as $\mathbf{e} = (\mathbf{I} \mathbf{A}\mathbf{A}^+)\mathbf{y}$.
- The closest $\mathbf{A}\mathbf{x}$ can get to \mathbf{y} is $\mathbf{y}^* = \mathbf{A}\mathbf{A}^+\mathbf{y}$.
- Later we will find that $\mathbf{A}\mathbf{A}^{+}\mathbf{y}$ is a *projection* of \mathbf{y} onto a *column space* of \mathbf{A} .

FOUR FUNDAMENTAL SUBSPACES

One of the key ideas in Linear Algebra is that every linear operator has four fundamental subspaces:

- Null space
- Row space
- Column space
- Left null space

Our goal is to understand them. The usefulness of this concept is enormous.

NULL SPACE Definition

Consider the following task: find all solutions to the system of equations $\mathbf{A}\mathbf{x} = \mathbf{0}$.

It can be re-formulated as follows: find all elements of the null space of A.

Definition 1

Null space of A is the set of all vectors x that A maps to 0

We will denote null space as $\text{null}(\mathbf{A})$. Null space of an operator is sometimes called kernel and denoted as $\ker(\mathbf{A})$.

NULL SPACE Calculation

We can find all solutions of the system of equations $\mathbf{A}\mathbf{x} = \mathbf{0}$ by using functions that generate an *orthonormal basis* in the null space of \mathbf{A} . In MATLAB we can use the function null, in Python/Scipy - null_space:

- \blacksquare N = null(A).
- N = scipy.linalg.null_space(A).

NULL SPACE PROJECTION

Local coordinates

Let N be the orthonormal basis in the null space of matrix A. Then, if a vector \mathbf{x} lies in the null space of A, it can be represented as:

$$\mathbf{x} = \mathbf{N}\mathbf{z} \tag{13}$$

where \mathbf{z} are coordinates of \mathbf{x} in the basis \mathbf{N} .

However, there are vectors which not only are not lying in the null space of \mathbf{A} , but the closest vector to them in the null space is the zero vector.

CLOSEST ELEMENT FROM A LINEAR SUBSPACE

$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
. Its null space has orthonormal basis $\mathbf{N} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

- $\begin{bmatrix} -2 \\ 0 \end{bmatrix} = -2\mathbf{N}, \begin{bmatrix} 10 \\ 0 \end{bmatrix} = 10\mathbf{N},$ both are in the null space.
- for $\mathbf{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ the closest vector in the null space is $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$.
- for $\mathbf{y} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$ the closest vector in the null space is $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

ORTHOGONALITY, DEFINITION (1)

Definition

Any two vectors, \mathbf{x} and \mathbf{y} , whose dot product is zero are said to be *orthogonal* to each other.

Definition

Vector \mathbf{y} , whose dot product with any $\mathbf{x} \in \mathcal{L}$ is zero is orthogonal to the subspace \mathcal{L}

Definition (equivalent, see Appendix A)

If for a vector \mathbf{y} , the closest vector to it from a linear subspace \mathcal{L} is zero vector, \mathbf{y} is called orthogonal to the subspace \mathcal{L} .

ORTHOGONALITY, DEFINITION (2)

Definition

The space of all vectors \mathbf{y} , orthogonal to a linear subspace \mathcal{L} is called *orthogonal complement* of \mathcal{L} and is denoted as \mathcal{L}^{\perp} .

Definition (equivalent)

The space of all vectors \mathbf{y} , such that $dot(\mathbf{y}, \mathbf{x}) = 0$, $\forall \mathbf{x} \in \mathcal{L}$ is called *orthogonal complement* of \mathcal{L} .

Therefore $\mathbf{x} \in \mathcal{L}$ and $\mathbf{y} \in \mathcal{L}^{\perp}$ implies $dot(\mathbf{y}, \mathbf{x}) = 0$.

Projection, 1

Let **L** be an orthonormal basis in a linear subspace \mathcal{L} . Take vector $\mathbf{a} = \mathbf{x} + \mathbf{y}$, where \mathbf{x} lies in the subspace \mathcal{L} , and \mathbf{y} lies in the subspace \mathcal{L}^{\perp} .

Definition

We call such vector \mathbf{x} an orthogonal projection of \mathbf{a} onto subspace \mathcal{L} , and such vector \mathbf{y} an orthogonal projection of \mathbf{a} onto subspace \mathcal{L}^{\perp}

Orthogonal projection maps a vector to the element in the subspace closest to that vector. Orthogonal projection of \mathbf{a} onto \mathcal{L} can be found as:

$$\mathbf{x} = \mathbf{L}\mathbf{L}^{+}\mathbf{a} \tag{14}$$

Since L is orthonormal, this is the same as $\mathbf{x} = \mathbf{L}\mathbf{L}^{\top}\mathbf{a}$

PROJECTION, 2

Since $\mathbf{a} = \mathbf{x} + \mathbf{y}$, and $\mathbf{x} = \mathbf{L}\mathbf{L}^{+}\mathbf{a}$, we can write:

$$\mathbf{a} = \mathbf{L}\mathbf{L}^{+}\mathbf{a} + \mathbf{y} \tag{15}$$

from which it follows that the projection of **a** onto \mathcal{L}^{\perp} can be found as:

$$\mathbf{y} = (\mathbf{I} - \mathbf{L}\mathbf{L}^{+})\mathbf{a} \tag{16}$$

where **I** is an identity matrix. Since **L** is orthonormal, this is the same as $\mathbf{y} = (\mathbf{I} - \mathbf{L} \mathbf{L}^{\top}) \mathbf{a}$

ROW SPACE

Definition

Let \mathcal{N} be null space of \mathbf{A} . Then orthogonal complement \mathcal{N}^{\perp} is called *row space* of \mathbf{A} .

Row space of **A** is the space of all smallest-norm solutions of $\mathbf{A}\mathbf{x} = \mathbf{y}$, for $\forall \mathbf{y}$. We will denote row space as $\text{row}(\mathbf{A})$.

VECTORS IN NULL AND ROW SPACES

Given vector \mathbf{x} , matrix \mathbf{A} and its null space basis \mathbf{N} , we check if \mathbf{x} is in the null space of \mathbf{A} . The simplest way is to check if $\mathbf{A}\mathbf{x} = 0$. But sometimes we may want to avoid computing $\mathbf{A}\mathbf{x}$, for example if the number of elements of \mathbf{A} is much larger than the number of elements of \mathbf{N} .

If \mathbf{x} is in the null space of \mathbf{A} , it will have zero projection onto the row space of \mathbf{A} . This gives us the condition we can check:

$$(\mathbf{I} - \mathbf{N}\mathbf{N}^{\top})\mathbf{x} = 0 \tag{17}$$

By the same logic, condition for being in the row space is as follows:

$$\mathbf{N}\mathbf{N}^{\mathsf{T}}\mathbf{x} = 0 \tag{18}$$

COLUMN SPACE

Given a matrix **A** find all linear combinations of its columns: $C = \{y : y = Ax, \forall x\}.$

It can be re-formulated as follows: find all elements of the $column\ space$ of ${\bf A}.$

Definition - column space

Column space of \mathbf{A} is the set of all outputs of the matrix \mathbf{A} , for all possible inputs.

We will denote column space as $col(\mathbf{A})$. It is often called an *image* of \mathbf{A} .

COLUMN SPACE BASIS

The problem of finding orthonormal basis in the column space of a matrix is often called *orthonormalization* of that matrix. Hence in MATLAB and Python/Scipy the function that does it is called **orth**:

- \blacksquare C = orth(A).
- C = scipy.linalg.orth(A).

COLUMN AND NULL SPACES

Let **A** be a square matrix, a map from $\mathbb{X} = \mathbb{R}^n$ to $\mathbb{Y} = \mathbb{R}^n$. Notice that if it has a non-trivial null space, it follows that multiple unique inputs are being mapped by it to the same output:

$$\mathbf{y} = \mathbf{A}\mathbf{x}_r = \mathbf{A}(\mathbf{x}_r + \mathbf{x}_n),$$

$$\mathbf{x}_r \in \text{row}(\mathbf{A})$$

$$\forall \mathbf{x}_n \in \text{null}(\mathbf{A})$$
(19)

In fact, if null space of **A** has k dimensions, it implies that an k-dimensional subspace of \mathbb{X} is mapped to a single element of \mathbb{Y} .

It follows that in this case the dimensionality of the column space could not exceed n - k.

PROJECTOR ONTO COLUMN SPACE

Given vector \mathbf{y} and matrix \mathbf{A} , let us find \mathbf{y}_c - projection of \mathbf{y} onto the column space of \mathbf{A} .

Since $\mathbf{y}_c \in \text{col}(\mathbf{A})$, we can find such \mathbf{x} that $\mathbf{A}\mathbf{x} = \mathbf{y}_c$; so, the problems is to minimize the residual $e = ||\mathbf{y}_c - \mathbf{y}||$ or equivalently $e = ||\mathbf{A}\mathbf{x} - \mathbf{y}||$, which is least squares problem: $\mathbf{x} = \mathbf{A}^+\mathbf{y}$. So:

$$\mathbf{y}_c = \mathbf{A}\mathbf{A}^+\mathbf{y} \in \operatorname{col}(\mathbf{A}) \tag{20}$$

Remember that computing the pseudoinverse is based on SVD decomposition, same as finding a basis in the null space or the column space, so in terms of computational expense, all projections we discussed are similar.

PROJECTOR ONTO ROW SPACE

Similarly we can define a projector onto the row space. Given vector \mathbf{x} and matrix \mathbf{A} , let us find projector of \mathbf{x} onto the row space of \mathbf{A} :

$$\mathbf{x}_r = \mathbf{A}^+ \mathbf{A} \mathbf{x} \in \text{row}(\mathbf{A}) \tag{21}$$

You can think of this in the following terms: first we find output $\mathbf{A}\mathbf{x}$, then we find the smallest norm vector that produces this same output; this vector 1) has the same row space projection (because output is the same), 2) has zero null space projection. Hence it is the row space projector of \mathbf{x} .

Notice that we implicitly used the fact that columns of \mathbf{A}^+ lie in the row space of \mathbf{A} . We will prove this fact later. Additionally, we will prove that row space of \mathbf{A} is equivalent to the column space of \mathbf{A}^\top .

LEFT NULL SPACE

The subspace, orthogonal to the column space is called *left null* space.

Definition

Space of all vectors \mathbf{y} orthogonal to the columns of \mathbf{A} is called left null space: $\mathbf{y}^{\top} \mathbf{A} = 0$

You can think of left null space as a space of vectors that not only cannot be produced (as an output) by the operator \mathbf{A} , but the closest vector to them that can be produced is the zero vector.

Notice that $\mathbf{y}^{\top} \mathbf{A} = 0$ implies $\mathbf{A}^{\top} \mathbf{y} = 0$, meaning that left null space of \mathbf{A} is equivalent to the null space of \mathbf{A}^{\top} .

LEFT NULL SPACE PROJECTOR

If we want to project vector \mathbf{y} onto the left null space of \mathbf{A} , we project it onto the column space, and subtract the result from \mathbf{y} :

$$\mathbf{y}_l = (\mathbf{I} - \mathbf{A}\mathbf{A}^+)\mathbf{y} \in \text{left null}(\mathbf{A})$$
 (22)

If C is an orthonormal basis in the column space of A, the projection can be found the following way:

$$\mathbf{y}_l = (\mathbf{I} - \mathbf{C}\mathbf{C}^\top)\mathbf{y} \in \text{left null}(\mathbf{A})$$
 (23)

SINGULAR VALUE DECOMPOSITION

Given $\mathbf{A} \in \mathbb{R}^{n,m}$ we can find its Singular Value Decomposition (SVD):

$$\mathbf{A} = \begin{bmatrix} \mathbf{C} & \mathbf{L} \end{bmatrix} \begin{bmatrix} \mathbf{\Sigma} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{R}^{\top} \\ \mathbf{N}^{\top} \end{bmatrix}$$
 (24)

$$\mathbf{A} = \mathbf{C} \mathbf{\Sigma} \mathbf{R}^{\top} \tag{25}$$

where C, L, R and N are column, left null, row and null space bases (orthonormal), Σ is the diagonal matrix of singular values. The singular values are positive and are sorted in the decreasing order.

Rank of the matrix is computed as the size of Σ . Note that numeric tolerance applies when deciding if the singular value is non-zero.

SVD of a transpose

Let us find SVD decomposition of a \mathbf{A}^{\top} :

$$\mathbf{A}^{\top} = \begin{bmatrix} \mathbf{C}_t & \mathbf{L}_t \end{bmatrix} \begin{bmatrix} \mathbf{\Sigma}_t & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{R}_t^{\top} \\ \mathbf{N}_t^{\top} \end{bmatrix}$$
 (26)

Let us transpose it (remembering that transpose of a diagonal matrix the original matrix $\Sigma_t^{\top} = \Sigma_t$):

$$\mathbf{A} = \begin{bmatrix} \mathbf{R}_t & \mathbf{N}_t \end{bmatrix} \begin{bmatrix} \mathbf{\Sigma}_t & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{C}_t^{\top} \\ \mathbf{L}_t^{\top} \end{bmatrix}$$
 (27)

Thus we can see that the row space of the original matrix \mathbf{A} is the column space of the transpose \mathbf{A}^{\top} . And the left null space of the original matrix \mathbf{A} is the null space of the transpose \mathbf{A}^{\top} .

PSEUDOINVERSE VIA SVD, 1

Let us compute least squares - minimum of $e = ||\mathbf{A}\mathbf{x} - \mathbf{y}||_2$. We find extremum:

$$\frac{d}{d\mathbf{x}}\left((\mathbf{A}\mathbf{x} - \mathbf{y})^{\top}(\mathbf{A}\mathbf{x} - \mathbf{y})\right) = 0$$
 (28)

$$2\mathbf{A}^{\top}(\mathbf{A}\mathbf{x} - \mathbf{y}) = 0 \tag{29}$$

$$\mathbf{A}^{\top} \mathbf{A} \mathbf{x} = \mathbf{A}^{\top} \mathbf{y} \tag{30}$$

We find SVD decomposition of $\mathbf{A} = \mathbf{C} \mathbf{\Sigma} \mathbf{R}^{\top}$:

$$\mathbf{R} \mathbf{\Sigma} \mathbf{C}^{\mathsf{T}} \mathbf{C} \mathbf{\Sigma} \mathbf{R}^{\mathsf{T}} \mathbf{x} = \mathbf{R} \mathbf{\Sigma} \mathbf{C}^{\mathsf{T}} \mathbf{y} \tag{31}$$

$$\mathbf{R} \mathbf{\Sigma} \mathbf{\Sigma} \mathbf{R}^{\top} \mathbf{x} = \mathbf{R} \mathbf{\Sigma} \mathbf{C}^{\top} \mathbf{y} \tag{32}$$

PSEUDOINVERSE VIA SVD, 2

Since both sides lie in the column space of \mathbf{R} , we can multiply by \mathbf{R}^{\top} :

$$\mathbf{R}^{\top} \mathbf{R} \mathbf{\Sigma} \mathbf{\Sigma} \mathbf{R}^{\top} \mathbf{x} = \mathbf{R}^{\top} \mathbf{R} \mathbf{\Sigma} \mathbf{C}^{\top} \mathbf{y}$$
 (33)

$$\mathbf{\Sigma}\mathbf{\Sigma}\mathbf{R}^{\top}\mathbf{x} = \mathbf{\Sigma}\mathbf{C}^{\top}\mathbf{y} \tag{34}$$

$$\mathbf{R}^{\top} \mathbf{x} = \mathbf{\Sigma}^{-1} \mathbf{C}^{\top} \mathbf{y} \tag{35}$$

Since **R** and **N** are orthogonal compliments, we can represent **x** as its decomposition: $\mathbf{x} = \mathbf{Nz} + \mathbf{R}\zeta$:

$$\mathbf{R}^{\top} \mathbf{N} \mathbf{z} + \mathbf{R}^{\top} \mathbf{R} \zeta = \mathbf{\Sigma}^{-1} \mathbf{C}^{\top} \mathbf{y}$$
 (36)

$$\zeta = \mathbf{\Sigma}^{-1} \mathbf{C}^{\top} \mathbf{y} \tag{37}$$

With that we can compute \mathbf{x} :

$$\mathbf{x} = \mathbf{N}\mathbf{z} + \mathbf{R}\mathbf{\Sigma}^{-1}\mathbf{C}^{\mathsf{T}}\mathbf{y} \tag{38}$$

PSEUDOINVERSE VIA SVD, 3

Expression $\mathbf{x} = \mathbf{N}\mathbf{z} + \mathbf{R}\mathbf{\Sigma}^{-1}\mathbf{C}^{\top}\mathbf{y}$ gives us all least-residual solutions.

Since Nz is orthogonal to $R\Sigma^{-1}C^{\top}y$, we conclude that least-norm solution is given as:

$$\mathbf{x} = \mathbf{R} \mathbf{\Sigma}^{-1} \mathbf{C}^{\top} \mathbf{y} \tag{39}$$

With that we can define pseudoinverse matrix A^+ as:

$$\mathbf{A}^{+} = \mathbf{R} \mathbf{\Sigma}^{-1} \mathbf{C}^{\top} \tag{40}$$

Note that this proves that A^+ lies in the row space of A.

Projectors (1)

Let us prove that AA^+ is equivalent to CC^\top :

$$\mathbf{A}\mathbf{A}^{+} = \mathbf{C}\mathbf{\Sigma}\mathbf{R}^{\top}\mathbf{R}\mathbf{\Sigma}^{-1}\mathbf{C}^{\top} \tag{41}$$

$$\mathbf{A}\mathbf{A}^{+} = \mathbf{C}\mathbf{\Sigma}\mathbf{\Sigma}^{-1}\mathbf{C}^{\top} \tag{42}$$

$$\mathbf{A}\mathbf{A}^+ = \mathbf{C}\mathbf{C}^\top \tag{43}$$

Projectors (2)

Let us prove that A^+A is equivalent to RR^\top :

$$\mathbf{A}^{+}\mathbf{A} = \mathbf{R}\mathbf{\Sigma}^{-1}\mathbf{C}^{\top}\mathbf{C}\mathbf{\Sigma}\mathbf{R}^{\top} \tag{44}$$

$$\mathbf{A}^{+}\mathbf{A} = \mathbf{R}\mathbf{\Sigma}^{-1}\mathbf{\Sigma}\mathbf{R}^{\top} \tag{45}$$

$$\mathbf{A}^{+}\mathbf{A} = \mathbf{R}\mathbf{R}^{\top} \tag{46}$$

Projectors (3)

Let us denote $P = AA^+$. Let's prove that PP = P:

$$\mathbf{A}\mathbf{A}^{+}\mathbf{A}\mathbf{A}^{+} = \mathbf{C}\mathbf{\Sigma}\mathbf{R}^{\top}\mathbf{R}\mathbf{\Sigma}^{-1}\mathbf{C}^{\top}\mathbf{C}\mathbf{\Sigma}\mathbf{R}^{\top}\mathbf{R}\mathbf{\Sigma}^{-1}\mathbf{C}^{\top}$$
(47)

$$\mathbf{A}\mathbf{A}^{+}\mathbf{A}\mathbf{A}^{+} = \mathbf{C}\boldsymbol{\Sigma}\boldsymbol{\Sigma}^{-1}\boldsymbol{\Sigma}\boldsymbol{\Sigma}^{-1}\mathbf{C}^{\top}$$
(48)

$$\mathbf{A}\mathbf{A}^{+}\mathbf{A}\mathbf{A}^{+} = \mathbf{C}\mathbf{C}^{\top} \tag{49}$$

$$\mathbf{A}\mathbf{A}^{+}\mathbf{A}\mathbf{A}^{+} = \mathbf{A}\mathbf{A}^{+} \tag{50}$$

The same is true for $P = A^+A$: we can prove that $A^+AA^+A = A^+A$.

Transpose of a projector

Let's prove that $\mathbf{P}^{\top} = \mathbf{P}$.

Again, we use the fact that $\mathbf{P} = \mathbf{C}\mathbf{C}^{\top}$.

$$\mathbf{P}^{\top} = (\mathbf{C}\mathbf{C}^{\top})^{\top} = \mathbf{C}\mathbf{C}^{\top} = \mathbf{P}. \quad \Box$$
 (51)

PSEUDOINVERSE OF A PROJECTOR

Let's prove that $\mathbf{P}^+ = \mathbf{P}$.

First, we find a basis in the linear space where \mathbf{P} projects onto: $\mathbf{C} = \operatorname{col}(\mathbf{P})$, therefore $\mathbf{P} = \mathbf{C}\mathbf{C}^{\top} = \mathbf{C}\mathbf{I}\mathbf{C}^{\top}$, which is an SVD decomposition of \mathbf{P} . But we know how to find a pseudoinverse of a linear operator, given its SVD decomposition:

$$\mathbf{P} = \mathbf{C}\mathbf{I}\mathbf{C}^{\top},\tag{52}$$

$$\mathbf{P}^+ = \mathbf{C}\mathbf{I}^{-1}\mathbf{C}^\top,\tag{53}$$

$$\mathbf{P}^+ = \mathbf{C}\mathbf{C}^\top,\tag{54}$$

$$\mathbf{P}^+ = \mathbf{P}. \quad \Box \tag{55}$$

FURTHER READING

- Minimum Norm Solutions, Math 484: Nonlinear Programming, Mikhail Lavrov
- Orthogonality, Math 484: Nonlinear Programming, Mikhail Lavrov
- Data Driven Science & Engineering. Machine Learning, Dynamical Systems, and Control, Steven L. Brunton, J. Nathan Kutz, chapter Singular Value Decomposition (SVD)

EXERCISE

- Matrix **M** is orthonormal and square, prove that $\mathbf{M}^{\top} = \mathbf{M}^{-1}$.
- Find minimum of $||\mathbf{A}\mathbf{x} \mathbf{y}||_2$ when columns of \mathbf{A} are not linearly independent.
- Given an equation $\mathbf{A}\mathbf{x} = \mathbf{y}$ with a square matrix \mathbf{A} , prove that: either that equation has an exact solution for any \mathbf{y} or a related homogeneous equation $\mathbf{A}\mathbf{x} = 0$ has a non-trivial solution.

Lecture slides are available via Github, links are on Moodle:

github.com/SergeiSa/Computational-Intelligence-2025

APPENDIX A

We have two definitions of orthogonality of a vector and a subspace:

- Vector \mathbf{y} , whose dot product with any $\mathbf{x} \in \mathcal{L}$ is orthogonal to the subspace \mathcal{L}
- ② If for a vector \mathbf{y} , the closest vector to it from a linear subspace \mathcal{L} is zero vector, \mathbf{y} is called orthogonal to the subspace \mathcal{L} .

Let us prove their equivalence. First we show that 1) implies 2). Let \mathbf{L} be orthonormal basis in \mathcal{L} . To find the closest element \mathbf{y}^* of \mathcal{L} to \mathbf{y} , we need to solve the least squares problem $\mathbf{Lz} = \mathbf{y}$, and multiply the solution by \mathbf{L} :

$$\mathbf{z}_{LS} = \mathbf{L}^{\top} \mathbf{y} = \mathbf{0} \tag{56}$$

$$\mathbf{y}^* = \mathbf{L}\mathbf{z}_{LS} = \mathbf{L}\mathbf{L}^{\top}\mathbf{y} = \mathbf{0} \tag{57}$$

APPENDIX A

Second, let us prove that 2) implies 1). Given that $\mathbf{y}^* = \mathbf{L}\mathbf{z}_{LS} = \mathbf{L}\mathbf{L}^{\mathsf{T}}\mathbf{y} = \mathbf{0}$ we need to prove that $\mathbf{L}^{\mathsf{T}}\mathbf{y} = \mathbf{0}$. We start by multiplying the last equation by \mathbf{L}^{T} :

$$\mathbf{L}\mathbf{L}^{\top}\mathbf{y} = \mathbf{0} \tag{58}$$

$$\mathbf{L}^{\top}\mathbf{L}\mathbf{L}^{\top}\mathbf{y} = \mathbf{0} \tag{59}$$

$$\mathbf{L}^{\top}\mathbf{y} = \mathbf{0} \quad \text{since } \mathbf{L}^{\top}\mathbf{L} = \mathbf{I}. \quad \Box$$
 (60)