Introduction to Machine Learning

Advanced Risk Minimization Properties of Loss Functions

Learning goals

- Statistical properties
- Robustness
- Optimization properties
- Some fundamental terminology

THE ROLE OF LOSS FUNCTIONS

- Should be designed to measure errors appropriately
- **Statistical** properties: choice of loss implies statistical assumptions about the distribution of $y \mid \mathbf{x} = \tilde{\mathbf{x}}$ (see *maximum likelihood vs. empirical risk minimization*)
- Robustness properties: some losses more robust towards outliers than others
- Optimization properties: computational complexity of

$$\underset{\boldsymbol{\theta} \in \Theta}{\operatorname{arg\,min}} \, \mathcal{R}_{\mathsf{emp}}(\boldsymbol{\theta})$$

is influenced by choice of the loss

LOSSES WITH ONE ARGUMENT

- Regr. losses often only depend on **residuals** $r(\mathbf{x}) := y f(\mathbf{x})$
- Classif. losses usually in terms of **margin**: $\nu(\mathbf{x}) := y \cdot f(\mathbf{x})$

0

- 0-1

Hinge

- Squared hinge

SOME BASIC PROPERTIES

A loss is

- symmetric if $L(y, f(\mathbf{x})) = L(f(\mathbf{x}), y)$
- translation-invariant if $L(y + a, f(\mathbf{x}) + a) = L(y, f(\mathbf{x})), a \in \mathbb{R}$
- **distance-based** if it can be written in terms of residual $L(y, f(\mathbf{x})) = \psi(r)$ for some $\psi : \mathbb{R} \to \mathbb{R}$, and $\psi(r) = 0 \Leftrightarrow r = 0$

ROBUSTNESS

Outliers (in y) have large residuals $r(\mathbf{x}) = y - f(\mathbf{x})$. Some losses are more affected by large residuals than others. If loss goes up superlinearly (e.g. L2) it is not robust, linear (L1) or even sublinear losses are more robust.

$y - f(\mathbf{x})$	<i>L</i> 1	L2	Huber ($\epsilon=5$)
1	1	1	0.5
5	5	25	12.5
10	10	100	37.5
50	50	2500	237.5

As a consequence, a model is less influenced by outliers than by "inliers" if the loss is **robust**.

Outliers e.g. strongly influence L2.

OPTIMIZATION PROPERTIES: SMOOTHNESS

- Measured by number of continuous derivatives
- ullet Usually want to have at least gradients in optimization of $\mathcal{R}_{\mathsf{emp}}(oldsymbol{ heta})$
- If loss is not differentiable, might have to use derivative-free optimization (or worse, in case of 0-1)
- Smoothness of $\mathcal{R}_{emp}(\theta)$ not only depends on L, but also requires smoothness of $f(\mathbf{x})$!

Squared loss, exponential loss and squared hinge loss are continuously differentiable. Hinge loss is continuous but not differentiable. 0-1 loss is not even continuous.

OPTIMIZATION PROPERTIES: CONVEXITY

• $\mathcal{R}_{\mathsf{emp}}(\theta)$ is convex if

$$\mathcal{R}_{\mathsf{emp}}\left(t\cdot oldsymbol{ heta} + (\mathsf{1}-t)\cdot ilde{oldsymbol{ heta}}
ight) \leq t\cdot \mathcal{R}_{\mathsf{emp}}\left(oldsymbol{ heta}
ight) + (\mathsf{1}-t)\cdot \mathcal{R}_{\mathsf{emp}}\left(ilde{oldsymbol{ heta}}
ight)$$

 $\forall t \in [0, 1], \ \theta, \tilde{\theta} \in \Theta$ (strictly convex if above holds with strict inequality)

- In optimization, convex problems have several convenient properties, e.g. all local minima are global
- Strictly convex function has at most one global min (uniqueness)
- For $\mathcal{R}_{\mathsf{emp}} \in \mathcal{C}^2$, $\mathcal{R}_{\mathsf{emp}}$ is convex iff Hessian $\nabla^2 \mathcal{R}_{\mathsf{emp}}(\theta)$ is psd
- Above holds for arbitrary functions, not only risks

OPTIMIZATION PROPERTIES: CONVEXITY

- Convexity of $\mathcal{R}_{\text{emp}}(\theta)$ depends both on convexity of $L(\cdot)$ (given in most cases) and $f(\mathbf{x} \mid \theta)$ (often problematic)
- If we model our data using an exponential family distribution, we always get convex losses

 Wedderburn 1976
- For $f(\mathbf{x} \mid \boldsymbol{\theta})$ linear in $\boldsymbol{\theta}$, linear/logistic/softmax/poisson/. . . regression are convex problems (all GLMs)!

Li et al., 2018: Visualizing the Loss Landscape of Neural Nets. The problem on the bottom right is convex, the others are not (note that very high-dimensional surfaces are coerced into 3D here).

