Primeira Avaliação - Análise na Reta

Daniel Alves de Lima

Questão 1. Óbvio que $(1+r)^1 \ge 1+r$. Suponhamos por hipótese que vale $(1+r)^n \ge 1+nr+n(n-1)\frac{r^2}{2}$. Segue que, $(1+r)^{n+1} \ge (1+nr+n(n-1)\frac{r^2}{2})(1+r) = 1+nr+n(n-1)\frac{r^2}{2}+r+nr^2+n(n-1)\frac{r^3}{2} = 1+(n+1)r+(n+1)n\frac{r^2}{2}+n(n-1)\frac{r^3}{2} \ge 1+(n+1)r+(n+1)n\frac{r^2}{2}$. Logo, a hipótese vale para todo $n \in \mathbb{N}$.

Questão 2. Pondo $x_n = \sqrt[n]{n} - 1$ (note que $x_n \ge 0$), segue que $n = (1 + x_n)^n > n(n-1)\frac{x_n^2}{2} \implies \frac{2}{n-1} > x_n^2$, ou seja, $\sqrt{\frac{2}{n-1}} > x_n$. Então, tem-se $\lim x_n = 0$, e portanto, $\lim \sqrt[n]{n} = 1 + \lim x_n = 1$.

- Questão 3. 1. Multiplicando por c^n em ambos os lados da primeira desigualdade, segue que $(x_{n+1}/x_n)c^n \le c^{n+1} \implies x_n/c^n \ge x_{n+1}/c^{n+1}$ com $x_{n_0+1}/c^{n_0+1} \ge x_n/c^n$ para todo $n > n_0$. Portanto, esta subsequencia de x_n/c^n de índices $n > n_0$ é monótona, e, limitada inferiormente por 0 (pois seus termos são positivos) e pelo seu primeiro termo. Então, existe $\lim x_{n+n_0}/c^{n+n_0}$, que implica também existir $\lim x_n/c^n$. Sabendo que $\lim c^n = 0$, e por ser $x_n = (x_n/c^n)c^n$, podemos concluir $\lim x_n = \lim (x_n/c^n) \lim c^n = 0$, isto é, $\lim x_n = 0$.
 - 2. Sejam c' = 1/c e $y_n = 1/x_n$. Segue que $(1/y_{n+1})/(1/y_n) \ge 1/c' > 1$ implica $0 < y_{n+1}/y_n \le c' < 1$ para todo $n > n_0$. Pelo o que foi provado no primeiro item, tem-se $\lim y_n = 0$, isto é, $\lim 1/x_n = 0$. Logo, $\lim x_n = \infty$.
- Questão 4. 1. Seja $b = \sup\{x_n\}$. Dado $\varepsilon > 0$, existe $n_0 \in \mathbb{N}$ tal que $b \varepsilon < x_{n_0}$. Segue que, $n > n_0 \implies b \varepsilon < x_{n_0} \le x_n \le b < b + \varepsilon \implies |x_n b| < \varepsilon$. Logo, $\lim x_n = b$.
 - 2. Vejamos, por indução, que (x_n) é não-decrescente. Simplesmente, $2 < 2 + \sqrt{2} \implies \sqrt{2} < \sqrt{2 + \sqrt{2}}$, isto é, $x_1 < x_2$. Suponhamos que vale $x_n < x_{n+1}$. Segue que, $x_n + 2 < x_{n+1} + 2 \implies \sqrt{x_n + 2} < \sqrt{x_{n+1} + 2} \implies x_{n+1} < x_{n+2}$. Novamente por indução, vejamos que (x_n) é limitada superiormente por 2. Temos que, $\sqrt{2} < 2$, isto é, $x_1 < 2$. Suponhamos que vale $x_n < 2$. Segue que, $x_n + 2 < 4 \implies \sqrt{x_n + 2} < 2 \implies x_{n+1} < 2$. Seja $b = \sup\{x_n\}$, pelo primeiro item tem-se $\lim x_n = b$. Então, segue que $x_{n+1} = \sqrt{2 + x_n} \implies x_{n+1}^2 = 2 + x_n \implies (\lim x_n)^2 = 2 + \lim x_n \implies b^2 = 2 + b$. Como a sequencia é formada apenas por termos positivos (pois é limitada inferiormente por $\sqrt{2}$) e a equação $b^2 b 2 = 0$ possui soluções b = 2 ou b = -1, só pode ser $\lim x_n = b = 2$.

Questão 5. (a) Primeiramente, observe que $(a-b)^2 = a^2 - 2ab + b^2 \ge 0 \implies a^2 + b^2 \ge 2ab \implies a^2 + 2ab + b^2 \ge 4ab \implies (a+b)^2 \ge 4ab \implies \frac{a+b}{2} \ge \sqrt{ab}$. Suponhamos que vale $x_n \le y_n$. Segue que, $y_n - x_n \ge 0 \implies (y_n - x_n)^2 \ge 0 \implies x_n^2 - 2x_ny_n + y_n^2 \ge 0 \implies x_n^2 + y_n^2 \ge 2x_ny_n \implies x_n^2 + 2x_ny_n + y_n^2 \ge 4x_ny_n \implies (x_n + y_n)^2 \ge 4x_ny_n \implies \frac{x_n + y_n}{2} \ge \sqrt{x_ny_n}$, ou seja, $x_{n+1} \le y_{n+1}$.

- (b) Simplesmente, $x_{n+1} = \sqrt{x_n y_n} = \sqrt{x_n} \sqrt{\frac{x_{n-1} + y_{n-1}}{2}} \ge \sqrt{x_n} \sqrt{\sqrt{x_{n-1} y_{n-1}}} = \sqrt{x_n} \sqrt{x_n} = x_n$, ou seja, $x_{n+1} \ge x_n$. Por (a), tem-se $y_{n+1} = \frac{x_n + y_n}{2} \le \frac{2y_n}{2} = y_n$. As sequências são limitadas, pois $\sqrt{ab} \le x_n \le y_n \le \frac{a+b}{2}$.
- (c) Por (b), existem $\lim x_n e \lim y_n$. Então, segue que $\lim y_n = \frac{\lim x_n + \lim y_n}{2} \implies \lim y_n = \lim x_n$.

Questão 6. Sabendo que $\lim \sqrt[n]{n} = 1 < e/2$, existe $n_0 \in \mathbb{N}$ tal que $n > n_0 \implies \sqrt[n]{n} < e/2 \implies \ln \sqrt[n]{n} < \ln(e/2) = 1 - \ln(2) < 1 \implies \frac{\ln n}{n} < 1 - \ln(2) < 1$. Pelo teste da raiz, temos que $\sum \left(\frac{\ln n}{n}\right)^n$ converge.

Questão 7. Caso $r \leq 1$: Temos que $n > n^r \implies \frac{1}{n} < \frac{1}{n^r}$. Pelo teste da comparação, $\sum \frac{1}{n^r}$ diverge. Caso r > 1: Como a sequência das reduzidas é monótona, para ver que esta sequência é limitada bastar mostrar que há uma subsequência limitada. Daí, sendo monótona e limitada, a sequencia das reduzidas converge (isto é, a série converge). Vejamos que S_{2n+1} é limitada. Simplesmente, $S_{2n+1} = 1 + \sum_{k=1}^{n} \left(\frac{1}{(2k)^r} + \frac{1}{(2k+1)^r}\right) < 1 + \sum_{k=1}^{n} \frac{2}{(2k)^r} = 1 + 2^{1-r} \sum_{k=1}^{n} \frac{1}{k^r} = 1 + 2^{1-r} S_n < 1 + 2^{1-r} S_{2n+1}$, ou seja, $S_{2n+1} < 1 + 2^{1-r} S_{2n+1}$. Resolvendo a desigualdade, tem-se $S_{2n+1} < \frac{1}{1-2^{1-r}}$ como queríamos.

Questão 8. • Verdadeiro.

Considere a função sobrejetiva $f: \mathbb{Z} \times \mathbb{N} : \to \mathbb{Q}$, definida por $f(p,q) = \frac{p}{q}$. Como $\mathbb{Z} \times \mathbb{N}$ é enumerável, então \mathbb{Q} é enumerável.

• Verdadeiro.

Seja um intervalo aberto (a,b) qualquer. Basta mostrar que existe irracional x em (a,b). Caso a seja irracional: Temos que existe $n \in \mathbb{N}$ tal que $\frac{1}{n} < b - a$, ou seja, $a < a + \frac{1}{n} < b$ (pois $\frac{1}{n} > 0$). Tomando $x = a + \frac{1}{n}$, temos $x \in (a,b)$ com x irracional. Caso a seja racional: Existe natural $n \in \mathbb{N}$ tal que $\frac{\sqrt{3}}{n} < b - a$, ou seja, $a < a + \frac{\sqrt{3}}{n} < b$. Tomando $x = a + \frac{\sqrt{3}}{n}$, temos $x \in (a,b)$ com x irracional.

• Verdadeiro.

Suponhamos que há $r \in \mathbb{Q}$ tal que $r^2 = 2$. Ponhamos r na forma de fração, de modo que r = p/q seja uma fração irredutível, onde $p \in \mathbb{Z}$ e $q \in \mathbb{Z}/\{0\}$. Segue que, $(p/q)^2 = 2 \implies p^2 = 2q^2$. Então, p deve ser par sob a forma p = 2k. Mas daí, poderíamos também concluir que $(2k)^2 = 2q^2 \implies 4k^2 = 2q^2 \implies 2k^2 = q^2$, isto é, q também é par, e portanto, a fração p/q não seria irredutível, um absurdo. Logo, não existe $r \in \mathbb{Q}$ tal que $r^2 = 2$.

• Falso.

A sequência de termos $x_n = \frac{1 + (-1)^n}{2}$ é limitada e possui duas subsequências convergindo para valores diferentes. Basta ver que $x_{2n} = 1$ e $x_{2n-1} = 0$.

• Verdadeiro.

Irei simplesmente demonstrar a questão 15 do capitulo 4 do livro "curso de análise real":

Dada uma sequência (x_n) , um termo x_p chama-se um "termo destacado" quando $x_p \ge x_n$ para todo n > p. Seja $P = \{p \in \mathbb{N}; x_p \text{ \'e destacado}\}$. Se $P = \{p_1 < p_2 < ...\}$ for infinito, $(x_p)_{p \in P}$ \'e uma subsequência não-crescente de (x_n) . Se P for finito (em particular, vazio), mostre que existe uma subsequência crescente de (x_n) . Conclua que toda sequência possui uma subsequência monótona.

Demonstração. O caso P infinito é óbvio. Vejamos o caso P finito: Tome $t = \max P$. Temos que x_n não é destacado, para todo n > t. Portanto, se $n_1 > t$ então existe $n_2 > n_1$ tal que $x_{n_1} < x_{n_2}$. Novamente, por ser $n_2 > t$, existe $n_3 > n_2$ tal que $x_{n_2} < x_{n_3}$. Assim sucessivamente, podemos obter um subconjunto infinito $N' = \{n_1 < n_2 < n_3 < ...\}$ dos naturais com $x_{n_1} < x_{n_2} < x_{n_3} < ...$, isto é, uma subsequência crescente de (x_n) .

Dada uma sequência (x_n) , P pode ser finito ou infinito. Em qualquer caso, temos a existência de uma subsequência monótona.

Falso.

A sequência $x_n = n + \frac{1}{n}$ diverge para $+\infty$, e $y_n = -n$ diverge para $-\infty$. Mas, sua soma $x_n + y_n = \frac{1}{n}$ converge para 0.

• Falso.

As sequências de termos $x_n = \frac{1}{n^2 + n}$ e $y_n = \frac{1}{n}$ são tais que $x_n < y_n$ para todo $n \in \mathbb{N}$, mas $\lim x_n = \lim y_n = 0$.

• Falso.

A sequência $x_n = (-1)^n$ possui valores de aderência 1 e -1 (ou seja, não converge), mas $|x_n| = 1$ obviamente converge para 1.

• Verdadeiro.

Simplesmente, $(a_n - b_n)^2 = a_n^2 - 2a_nb_n + b_n^2 \ge 0 \implies (a_n^2 + b_n^2)(1/2) \ge a_nb_n$. Pelo teste da comparação, temos que $\sum a_nb_n$ converge.

• Verdadeiro.

Basta usar a designaldade $(|a_n| - \frac{1}{n})^2 \ge 0$ e usar o teste da comparação. Segue que, $(|a_n| - \frac{1}{n})^2 = a_n^2 - \frac{2|a_n|}{n} + \frac{1}{n^2} \ge 0 \implies (a_n^2 + \frac{1}{n^2})(1/2) \ge \frac{|a_n|}{n}$. Como $\sum a_n^2$ e $\sum \frac{1}{n^2}$ convergem, logo $\sum \frac{a_n}{n}$ é (absolutamente) convergente.