

Curso Métodos y Modelos

Profesora: Karen Ballesteros-González PhD.

1. Introducción a Modelado y Simulación

¿Qué es un modelo?

Representación simplificada física, matématica o representación logica de un sistema real (realidad) para entender, analizar y predecir fenómenos.

¿Qué es la simulación?

Uso de modelos para replicar el comportamiento de sistemas en el tiempo, para entender, analizar, predecir, fenómenos.

Toma de desiciones

1. Introducción a Modelado y Simulación

Representación general de un modelo.

- Modelo de caja Negra
- Volumen de control

La variable dependiente (vd) resulta de la interacción entre variables independientes (vi) y los parámetros (p).

√ Ejemplo 1: Mapa de una ciudad

- No es la ciudad real, pero nos ayuda a ubicarnos y planificar rutas.
- Ignora detalles innecesarios y se enfoca en calles y lugares clave.

Ejemplos de un modelo

√ Ejemplo 2: Modelo del Clima

- Usa ecuaciones matemáticas para predecir lluvias, temperaturas y vientos.
- No es perfecto, pero nos permite anticipar eventos climáticos.

• Conservación del momento:

$$\frac{\partial}{\partial t}\rho u_{i} + \frac{\partial}{\partial x_{j}}\rho u_{j} u_{i} = -\frac{\partial p}{\partial x_{i}} + \frac{\partial}{\partial x_{j}} \left[\mu \left(\frac{\partial u_{i}}{\partial x_{j}} + \frac{\partial u_{j}}{\partial x_{i}} \right) - \frac{2}{3} \mu \frac{\partial u_{k}}{\partial x_{k}} \delta_{ij} \right] + \rho g_{i} - 2 \rho \varepsilon_{ijk} \Omega_{j} u_{k}$$
(63)

donde μ es la viscosidad molecular del aire

 g_i es el vector aceleración de la gravedad (0,0,-g)

 Ω_i es el vector de la velocidad angular de la Tierra

 δ_{ii} es la delta de Kronecher

 ε_{iik} es el tensor de Levi-Civitta

Clasificación de los Modelos

1. Según la Naturaleza de los Modelos

- Modelos Matemáticos:
 Representan fenómenos
 mediante ecuaciones
 matemáticas
 (diferenciales, algebraicas, etc.).
- Modelos Estadísticos:

 Basados en datos y
 probabilidades para hacer
 inferencias o predicciones.
- Modelos
 Computacionales:
 Utilizan algoritmos y
 simulaciones para resolver
 problemas complejos.
- Modelos Conceptuales:
 Describen sistemas de manera cualitativa sin necesidad de ecuaciones formales.
- Modelos Gráficos:

 Representan procesos o relaciones mediante diagramas, mapas conceptuales o redes.

2. Según el Nivel de Determinismo

- Modelos Deterministas: No incluyen aleatoriedad; un mismo conjunto de condiciones iniciales siempre produce el mismo resultado (ej. ecuaciones diferenciales en dinámica de fluidos).
- Modelos Estocásticos:

 Incorporan variabilidad y
 procesos aleatorios, como los
 modelos de Monte Carlo o
 series de tiempo con ruido.

3. Según la Dinámica del Modelo

- Modelos Estáticos: No cambian con el tiempo, representan estados de equilibrio (ej. balances de masa y energía en sistemas físicos).
- Modelos Dinámicos:

 Evolucionan con el tiempo,
 pueden ser deterministas o
 estocásticos (ej. modelos de crecimiento poblacional).

Clasificación de los Modelos

4. Según la Representación del Tiempo

- Modelos Discretos: Representan el sistema en pasos de tiempo definidos (ej. modelos de autómatas celulares, simulaciones en redes).
- Modelos Continuos: Representan el sistema en un flujo de tiempo sin interrupciones, usando ecuaciones diferenciales (ej. modelos de difusión de contaminantes en ríos).

5. Según la Estructura del Modelo

- **Modelos Empíricos:** Basados en datos observacionales sin una estructura teórica clara (ej. modelos de regresión).
- Modelos Teóricos o Mecanicistas: Basados en principios fundamentales y leyes científicas (ej. ecuaciones de Navier-Stokes para fluidos).
- Modelos Semi-Empíricos o Híbridos: Combinan teoría con datos observacionales para mejorar predicciones (ej. modelos de calidad del aire que combinan meteorología y observaciones).

6. Según la Complejidad del Modelo

- Modelos Simplificados o de Caja Negra: Solo consideran entradas y salidas sin conocer los procesos internos (ej. redes neuronales).
- Modelos de Caja Blanca: Se conoce toda la estructura del modelo y sus relaciones internas (ej. modelos físicos basados en ecuaciones).
- Modelos de Caja Gris: Combinan aspectos de caja negra y blanca, con conocimiento parcial de los procesos internos.

Clasificación de los Modelos

Campos de aplicación

Ciencias Naturales y **Ambiente**

de cuencas

HMS.

hidrográficas,

Ejemplo: SWAT, HEC-

Ecología: Modelado de

Ejemplo: modelos de

de poblaciones.

nicho ecológico.

Ejemplo: AERMOD,

CALPUFF.

ecosistemas y dinámica

- Ingeniería Civil: Simulación de bajo diferentes
- Hidrología: Simulación predicción de caudales HFC-RAS. y calidad del agua.
 - Modelos de dinámica de fluidos computacional (CFD) para aerodinámica v transferencia de calor.
- Contaminación Atmosférica: Simulación de dispersión de de redes viales. contaminantes.

Ingeniería

Sistemas y Tecnología

Ciencias Sociales y **Economía**

Medicina y Biología

Manufactura y **Producción**

- Meteorología y Climatología: Modelos estructuras y materiales numéricos para pronósticos del tiempo condiciones. Ejemplo: y cambio climático. Modelos de elementos Ejemplo: modelos WRF finitos. y GFS.
 - Ingeniería Hidráulica: Modelado de fluios en ríos y presas. Ejemplo:
 - Ingeniería Mecánica:
 - Ingeniería de Tránsito: Simulación del tráfico urbano y optimización

- Inteligencia Artificial y **Machine Learning:** Modelado de redes neuronales y algoritmos predictivos.
- Simulación de Redes de Computadores: Modelos de comunicación v rendimiento de redes. Eiemplo: NS3.
- Realidad Virtual y Simulación 3D: Simulación de entornos virtuales para entrenamiento y diseño.

- Economía y Finanzas: Modelos de predicción de mercados y simulación de crisis económicas. Ejemplo: Modelos de series de tiempo y agentes económicos.
- Psicología v Ciencias del Comportamiento: Modelado de toma de decisiones v comportamiento humano. Ejemplo: Modelos basados en agentes.
- Urbanismo y Planificación: Simulación del crecimiento de ciudades y uso del suelo.

- Epidemiología: Modelado de la propagación de enfermedades. Ejemplo: modelos SIR y SEIR para COVID-19.
- Farmacología: Modelos de interacción de fármacos y simulaciones de pruebas clínicas.
- Biología Computacional: Simulación de procesos biológicos, como la evolución y la genética.

- Optimización de **Procesos Industriales:** Modelos para mejorar la producción y reducir costos.
- Simulación de Logística y Cadena de Suministro: Modelos de distribución y transporte de mercancías.

¿Para qué se usan los modelos?

- 1. Comparison of control policy options;
- 2. Education and training;
- 3. Engineering design;
- 4. Evaluation of decision or action alternatives;
- 5. Evaluation of strategies for transformation or change;
- 6. Forecasting;
- 7. Performance evaluation;
- 8. Prototyping and concept evaluation;
- 9. Risk/safety assessment;
- 10. Sensitivity analysis;
- 11. Support for acquisition/procurement decisions;
- 12. Uncertainty reduction in decision-making.

Características del Modelado

- **Simplificación:** No incluye todos los detalles, solo los esenciales.
- **Abstracción:** Representa lo importante de un fenómeno real.
- **Generalización:** Permite hacer predicciones o análisis en distintos escenarios.

Abstracción de la realidad =

No hay un modelo que sea capaz de explicar cada detalle de un fenómeno.

3. Variable, Modelo, Sistema y Simulación

Representación general de un modelo.

- Modelo de caja Negra
- Volumen de control

La variable dependiente (vd) resulta de la interacción entre variables independientes (vi) y los parámetros (p).

Una variable es un elemento medible o categórico que puede cambiar dentro de un modelo y que influye en el comportamiento de un sistema.

Según su relación con otras variables:

- Variable Independiente: Se controla o manipula para observar su efecto en otras variables.
 - *Ejemplo:* En un modelo de dispersión de contaminantes, la **velocidad del viento** es una variable independiente.
- Variable Dependiente: Su valor depende de los cambios en las variables independientes.
 - Ejemplo: La concentración de contaminantes en el aire cambia según la velocidad del viento.

respiratorias

2 Según su tipo de datos:

- Variable Cualitativa: Representa características o categorías sin valores numéricos.
 - *Ejemplo*: Tipo de suelo en un modelo de erosión (arenoso, arcilloso, franco).
- Variable Cuantitativa: Se expresa con valores numéricos.
 - Ejemplo: Temperatura en un modelo climático (°C).

- El sexo (masculino o femenino)
- El color de ojos
- El color del Cabello
- El estado civil (soltero, casado, divorciado, viudo)
- El país de Nacimiento
- El sabor de los alimentos
- El giro de negocio de una compañía
- La marca de celular que usamos
- El deporte favorito
- El lugar de nacimiento

- Edad
- Peso
- •Estatura
- Ingresos
- Presión
- Humedad
- Cantidad de Hermanos
- •Número de quejas de clients
- •Proporción de clientes elegibles para un reembolso
- •Peso de llenado de una caja de cereales

Modelo	Modelo Variable Variable Independiente Dependiente		Cualitativa	Cuantitativa	
Hidrológico	Precipitación	Caudal del río	Tipo de cuenca	Nivel del agua	
Calidad del aire	Emisiones industriales	Concentración de NO ₂	Tipo de Fuente de emisión	Índice de calidad del aire (ICA)	
Climático	Radiación solar	Temperatura	Tipo de suelo	Humedad relativa (%)	

3. Variable, Modelo, Sistema y Simulación

Representación general de un modelo.

- Modelo de caja Negra
- Volumen de control

Sistema

La variable dependiente (vd) resulta de la interacción entre variables independientes (vi) y los parámetros (p).

Ejemplos de Sistemas

Sistema	Entradas	Procesos	Salidas	Retroalimentaci ón
Hidrológico	Precipitación, temperatura	Infiltración, escorrentía	Nivel del agua en ríos	Cambio en patrones de precipitación
Calidad del aire	Emisiones, condiciones meteorológicas	Dispersión, reacciones químicas	Niveles de contaminantes	Políticas ambientales
Energético	Combustibles, viento, sol	Generación de energía	Electricidad	Regulación de consumo
Ecosistema	Radiación solar, CO ₂ , agua	Fotosíntesis, cadenas tróficas	Biomasa, oxígeno	Cambio climático

Simulación en Modelación

¿Qué es la Simulación?

La **simulación** es una técnica que imita el comportamiento de un sistema real a través de modelos matemáticos y computacionales.

- Permite analizar escenarios sin afectar el sistema real.
- Se utiliza en diversas disciplinas como ingeniería, economía, meteorología, y transporte.
- Puede ser **determinística** (siempre da el mismo resultado con las mismas condiciones) o **estocástica** (incluye elementos aleatorios).

Ejemplos de Simulación en Diferentes Áreas

Área	Ejemplo de Simulación	Aplicación	
Climática	Modelos de cambio climático	Predicción de temperaturas y fenómenos extremos	
🚗 Tráfico y Transporte	Simulación de flujo vehicular	Diseño de semáforos y reducción de congestión	
5 Financiera	Modelos de predicción de inversiones	Análisis de riesgos y estrategias económicas	
E Industrial	Simulación de procesos de manufactura	Optimización de producción y reducción de desperdicios	
7 Ambiental	Modelos de dispersión de contaminantes	Evaluación de impacto ambiental	

Qué otros sistemas conocen en su entorno?

Sistema	Variables	Entradas	Procesos	Salidas	Retroalimen tación	Ejemplos de Simulación	Aplicación
Calidad del Aire	Independiente: Emisiones Dependiente: Concentración de PM2.5 Cualitativa: Tipo de Fuente de emisión Cuantitativa: Flujo de emission total diario.	Emisiones, condiciones meteorológicas	Dispersión, reacciones químicas	Niveles de contaminantes	Políticas ambientales	Simular la dispersion de contaminantes en una ciudad Modelos de Concentración de Contaminantes	 Evaluación de Impacto Ambiental Determinar Alertas ambientales por Calidad del aire.

Actividad en Clase:

https://docs.google.com/spreadsheets/d/1TUPITN89v8EqqwOZTDuG-9Bt6Di7hF7HYnU_dZa3WVg/edit?gid=0#gid=0

Marco formal para el modelado y la simulación

1. Definición del problema

- Identificar el sistema a modelar.
- Definir los objetivos del modelo y las preguntas a responder.

2. Conceptualización del modelo

- Crear una representación simplificada del sistema.
- Identificar variables clave, relaciones y supuestos.

3. Formulación matemática o computacional

 Expresar el modelo en ecuaciones matemáticas, reglas lógicas o algoritmos computacionales.

4. Implementación y simulación

- Codificar el modelo en software o herramientas computacionales.
- Ejecutar simulaciones con distintos escenarios.

5. Validación y verificación

- Comparar los resultados del modelo con datos reales para asegurar su precisión.
- Ajustar parámetros y corregir errores.

6. Análisis e interpretación de resultados

- Evaluar los escenarios simulados y extraer conclusiones.
- Usar los resultados para la toma de decisiones.

Vamos a la practica: Aplicaciones de Modelos

Considere la siguiente situación:

 Suponga que una compañía de bungee-jumping lo contrata para que estime la velocidad de la persona que salta como una función del tiempo durante la porción del salto que corresponde a la caída libre.

Esta información servirá como parte de un análisis más completo para determinar la longitud y resistencia de la cuerda para personas de diferentes pesos.

Modelo del Bungee Jumping

La formulación matemática de un **modelo de caída en Bungee Jumping** se basa en la segunda ley de Newton:

$$F = m * a$$

y considera fuerzas como la gravedad, la resistencia del aire y la fuerza elástica de la cuerda. Se puede modelar como un sistema de ecuaciones diferenciales no lineales:

Modelo del Bungee Jumping **Primer Planteamiento:** Modelo Básico con Solo la Gravedad

Primero, consideremos que el único factor que afecta al saltador es la gravedad. Aplicamos la segunda ley de Newton:

$$F_g = ma$$

F = Fuerza de arrastre

m = Peso del saltador

a = aceleración por la fuerza de gravedad (g)

Cómo la fuerza es constante, la aceleración también lo será:

$$a = g = 9.81 \ m/s^2$$

Modelo del Bungee Jumping **Primer Planteamiento:** Modelo Básico con Solo la Gravedad

Modelo del Bungee Jumping **Primer Planteamiento:** Modelo Básico con Solo la Gravedad

1. Según la Naturaleza del Modelo

Modelo Determinístico

- Las ecuaciones no incluyen incertidumbre ni variabilidad aleatoria.
- Dado un conjunto de condiciones iniciales (y0, v0), el resultado siempre será el mismo.
- La ecuación diferencial dv/dt = g tiene una solución única.

Modelo Continuo

- La evolución del sistema se describe mediante ecuaciones diferenciales continuas en el tiempo.
- El tiempo y las variables del sistema toman valores en un dominio continuo

Modelo Analítico

 Como el sistema es relativamente simple (sin términos no lineales), tiene solución analítica con integración directa:

$$v(t) = gt$$
$$y(t) = \frac{1}{2}gt^2$$

2. Según el Tipo de Fenómeno Físico Modelado

Modelo Mecánico

- Es un modelo basado en las leyes del movimiento de Newton.
- Modela el comportamiento de un objeto en caída libre bajo la influencia de una fuerza externa (gravedad).

Modelo Dinámico

- Describe la evolución de las variables en el tiempo.
- La posición y la velocidad cambian con el tiempo, por lo que no es un sistema estático.

Modelo de Movimiento Vertical

 Específico para el estudio de la cinemática y dinámica de un objeto en caída libre.

3. Según la Complejidad y Nivel de Aproximación

Modelo Simplificado

- Solo considera la fuerza gravitacional.
- No tiene resistencia del aire ni efectos adicionales (como elasticidad o interacción con el entorno).

Modelo Base

- Se usa como **punto de partida** para incrementar la complejidad (por ejemplo, luego agregaremos resistencia del aire y la fuerza elástica de la cuerda).
- Ideal para una primera aproximación antes de refinar el modelo.

En caída libre con resistencia del aire, tenemos dos fuerzas actuando sobre el objeto:

El peso del objeto, que siempre apunta hacia abajo:

$$F_g = mg$$

La resistencia del aire, que siempre se opone al movimiento y depende de la velocidad:

$$F_a = cv^2$$

Donde:

C:

coeficiente de resistencia aerodinámica (depende de la forma del objeto y del aire).

v2:

se usa porque la resistencia del aire crece con el cuadrado de la velocidad.

Coeficiente de arrastre - C

Es un valor que depende de la forma y tamaño del objeto, así como de la densidad del aire. Y se calcula de la siguiente manera:

$$c = \frac{1}{2}C_d \rho A$$

Donde:

A: Área frontal del cuerpo expuesta al viento.

 ρ : Densidad del aire $\approx 1.225 \ kg/m^3$ al nivel del mar.

 C_d : Coeficiente de forma aerodinámica coeficiente de arrastre, que varía según si el cuerpo es esférico, cilíndrico, plano, etc., típicamente entre 0.5 y 1.5 para un humano en caída libre.

¿Por qué v|v| y no solo v^2 ?

- La resistencia del aire depende del cuadrado de la velocidad (v^2) , lo que significa que aumenta rápidamente a medida que el cuerpo se mueve más rápido.
- El término v|v| nos ayuda a mantener el signo correcto en la ecuación:
- Si el saltador **baja** (v > 0), $v|v| = v^2$ y la resistencia del aire es negativa (opuesta a la caída).
- Si el saltador <u>sube</u> (v < 0), $v|v| = -v^2$ y la resistencia del aire es positiva (opuesta al ascenso).

Esto nos asegura que la fuerza siempre se opone al movimiento, sin importar la dirección.

1. Según la Naturaleza del Modelo

Modelo Determinístico

- No hay aleatoriedad en la ecuación.
- Dado un conjunto de condiciones iniciales (y_0, v_0) , el comportamiento es siempre el mismo.

Modelo Continuo

- La velocidad y la posición cambian de manera continua en el tiempo.
- Se usa una ecuación diferencial para describir la evolución del sistema.

Modelo Numérico

- Aunque la ecuación se puede escribir en forma analítica, al incluir la resistencia del aire no siempre tiene solución exacta en forma cerrada.
- Por eso, usamos el método de integración numérica
 Runge-Kutta de 4to orden (RK45) para resolverla.

Modelo No Lineal

- La ecuación de la aceleración incluye el término v|v|, que hace que el sistema **no sea lineal**.
- Esta no linealidad introduce una dinámica más realista y compleja.

2. Según el Tipo de Fenómeno Físico

Modelo Mecánico

- Se basa en las leyes del movimiento de Newton.
- Modela la dinámica de un cuerpo en caída sometido a fuerzas físicas.

Modelo Dinámico

- Describe cómo cambian las variables con el tiempo (posición y velocidad).
- Es un sistema donde la evolución depende de la velocidad actual.

Modelo de Movimiento Vertical con Resistencia

 Específico para el estudio de la cinemática y dinámica vertical con influencia del aire.

3. Según la Complejidad y Nivel de Aproximación

Modelo Intermedio

- Este modelo es más realista que la caída libre, pero aún no incluye la elasticidad de la cuerda.
- Es una buena aproximación para un paracaidista antes de abrir el paracaídas o un bungee jumper antes de que la cuerda se tense.

Modelo de Velocidad Terminal

• Como la resistencia del aire aumenta con la velocidad, el saltador eventualmente alcanza una velocidad terminal (v_t) , donde la aceleración neta es cero:

$$v_t = \sqrt{\frac{mg}{c}}$$

Esto significa que después de un tiempo, la velocidad deja de aumentar y el movimiento se estabiliza.

Modelo del Bungee Jumping <u>Tercer Planteamiento:</u> Gravedad + Resistencia del Aire + Fuerza elástica de la cuerda

Primer planteamiento: Modelo básico con solo la gravedad:

$$F_g = mg$$

Segundo planteamiento: Gravedad + Resistencia del Aire

$$F_g = mg F_a = cv^2$$

Tercer planteamiento: Gravedad + Resistencia del Aire + Fuerza elástica de la cuerda.

Fuerza elástica de la cuerda – Siguiendo la ley de Hooke:

$$F_e = -k(y - L)H(y - L)$$

Donde:

k: es la constante elástica de la cuerda.

L: es la longitud natural de la cuerda (antes de estirarse).

H(y-L): es la función de Heaviside, que asegura que la fuerza elástica solo actúe cuando la cuerda está estirada (y > L).

$$\frac{dv}{dt} = g - \frac{c}{m}v^2 - \frac{k}{m}(y - L)H(y - L)$$

Antes de que la cuerda se tense $(y \le L)$:

Solo actúan la gravedad y la resistencia del aire.

Cuando la cuerda se estira (y > L):

- La fuerza elástica empieza a actuar y jala al saltador hacia arriba.
- El sistema ahora es un oscilador amortiguado.
- El saltador oscila varias veces antes de detenerse debido a la resistencia del aire.

Modelo del Bungee Jumping

<u>Tercer Planteamiento:</u> Gravedad + Resistencia del Aire + Fuerza elástica de la cuerda

Primer planteamiento: Modelo básico con solo la gravedad:

$$F_g = mg$$

Segundo planteamiento: Gravedad + Resistencia del Aire

$$F_g = mg F_a = cv^2$$

Tercer planteamiento: Gravedad + Resistencia del Aire + Fuerza elástica de la cuerda.

Fuerza elástica de la cuerda – Siguiendo la ley de Hooke:

$$F_{\rho} = -k(y - L)H(y - L)$$

Donde:

k: es la constante elástica de la cuerda.

L: es la longitud natural de la cuerda (antes de estirarse).

H(y-L): es la función de Heaviside, que asegura que la fuerza elástica solo actúe cuando la cuerda está estirada (y > L).

$$\frac{dv}{dt} = g - \frac{c}{m}v^2 - \frac{k}{m}(y - L)H(y - L)$$

Conclusiones del Ejercicio del Bungee Jumper:

- Primer Modelo: Solo caída libre con gravedad (modelo determinístico, continuo, analítico).
- Segundo Modelo: Se agrega la resistencia del aire (modelo no lineal, numérico, más realista).
- **Tercer Modelo:** Se agrega la **fuerza elástica de la cuerda**, lo que convierte el modelo en un **sistema oscilatorio amortiguado** (Modelo determinista, dinámico y continuo).
 - Determinista:

Porque no hay elementos de azar o incertidumbre. Dado un conjunto de condiciones iniciales, el resultado del modelo es siempre el mismo.

Dinámico:

Porque describe cómo cambia el sistema con el tiempo. El movimiento del saltador varía con el tiempo según las fuerzas que actúan sobre él.

Continuo:

Porque las variables (posición, velocidad, etc.) cambian de manera continua a lo largo del tiempo, y el modelo se describe con **ecuaciones diferenciales**.

Mensaje para llevar a casa:

- Todo modelo parte de una pregunta concreta: El punto de partida es siempre el problema: ¿cómo se comporta el salto? ¿Qué queremos predecir o entender?
- Modelar es simplificar la realidad para entenderla mejor: No necesitamos todos los detalles del mundo real, solo los que afectan el comporta miento que nos interesa.
- Las leyes físicas (como la gravedad o la fuerza elástica) nos permiten construir modelos que se pueden resolver matemáticamente: La física se convierte en ecuaciones, y esas ecuaciones nos permiten simular el mundo.
- Los supuestos del modelo determinan sus límites: ¿Qué pasa si ignoramos la resistencia del aire? ¿Y si asumimos que la cuerda es perfecta? Cada decisión tiene consecuencias.
- Un modelo no es la realidad, pero puede acercarse mucho si está bien construido: La calidad del modelo se mide por qué tan útil es para predecir, no por qué tan complejo sea.
- El pensamiento matemático permite hacer predicciones incluso antes de probar en la realidad: Podemos "ver el salto" con números y fórmulas antes de que alguien se amarre la cuerda.
- Modelar también es una forma de contar historias, con ecuaciones como lenguaje: ¿Qué historia cuenta nuestro modelo del salto? ¿Es creíble, útil, precisa?

