Zaawansowane procedury syntezy logicznej c.d.

Dekompozycja nierozłączna

Pojęcie r - przydatności

Systematyczne algorytmy dekompozycji

Dekompozycja nierozłączna

Twierdzenie o dekompozycji

Funkcję $F: \mathbf{B}^n \longrightarrow \{0,1\}^m$ można zrealizować

w strukturze: F = H(U, G(V, W))

$$P_U \cdot \Pi_G \leq P_F$$

$$V' = W \cup V$$

U

W

Dekompozycja nierozłączna

Dekompozycja rozłączna nie zawsze istnieje

Wtedy dobrym wyjściem może być dołożenie argumentów do G

Nowy problem

Rachunek podziałów umożliwia wyznaczenie zbioru W !!!

Przykład: dana funkcja opisana tablicą

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃
1	0	0	0	0	0	0	0	0
2	0	0	0	1	1	0	1	0
3	0	1	0	1	0	1	0	0
4	0	1	1	1	1	0	1	1
5	0	1	1	0	1	0	0	1
6	0	1	0	0	0	0	0	1
7	1	1	0	1	0	0	0	0
8	1	0	0	1	1	1	0	0
9	1	0	0	1	0	0	0	1
10	1	0	1	1	1	0	0	0

Najpierw dekompozycja rozłączna

dla U =
$$\{x_1, x_2, x_3\}$$
, V = $\{x_4, x_5\}$

$$P_F = (\overline{1,7,10}; \overline{2}; \overline{3,8}; \overline{4}; \overline{5,6,9})$$

Przykład

K	<i>X</i> ₁	x ₂	X ₃	<i>X</i> ₄	<i>X</i> ₅	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃
1	0	0	0	0	0	0	0	0
2	0	0	0	1	1	0	1	0
3	0	1	0	1	0	1	0	0
4	0	1	1	1	1	0	1	1
5	0	1	1	0	1	0	0	1
6	0	1	0	0	0	0	0	1
7	1	1	0	1	0	0	0	0
8	1	0	0	1	1	1	0	0
9	1	0	0	1	0	0	0	1
10	1	0	1	1	1	0	0	0

Dla U =
$$\{x_1, x_2, x_3\}$$
, V = $\{x_4, x_5\}$,

$$P_F = (\overline{1,7,10}; \overline{2}; \overline{3,8}; \overline{4}; \overline{5,6,9})$$

$$P_U = (\overline{1,2}; \overline{3,6}; \overline{4,5}; \overline{7}; \overline{8,9}; \overline{10})$$

$$P_V = (\overline{1,6}; \overline{2,4,8,10}; \overline{3,7,9}; \overline{5})$$

$$P_{U} \mid P_{F} = \{ \overline{(1)(2)}; \overline{(3)(6)}; \overline{(4)(5)}; \overline{(7)}; \overline{(8)(9)}; \overline{(10)} \}$$

Obliczamy Π_G

$$P_V = (\overline{1,6}; \overline{2,4,8,10}; \overline{3,7,9}; \overline{5})$$

Obliczamy ∏_G:

$$\begin{array}{c|c}
 \hline
 1,6 \\
 \hline
 5 \\
 \hline
 \hline
 3,7,9 \\
 \end{array}$$

Fatalnie dekompozycja rozłączna nie istnieje, bo obliczony π_G nie spełnia warunku dekompozycji

Ale nie załamujmy się może istnieje dekompozycja nierozłączna

T P W

Spróbujmy ...

$$P_{U} \mid P_{F} = \{ \overline{(1)(2)}; \overline{(3)(6)}; \overline{(4)(5)}; \overline{(7)}; \overline{(8)(9)}; \overline{(10)} \}$$

$$P_V = (\overline{1,6}; \overline{2,4,8,10}; \overline{3,7,9}; \overline{5})$$

Przyjrzyjmy się dokładniej obliczanemu π_G

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	X ₅	<i>y</i> ₁	y ₂	y ₃
1	0	0	0	0	0	0	0	0
2	0	0	0	1	1	0	1	0
3	0	1	0	1	0	1	0	0
4	0	1	1	1	1	0	1	1
5	0	1	1	0	-1	0	0	1
6	0	-1	0	0	0	0	0	1
7	1	1	0	1	0	0	0	0
8	1	0	0	1	1	1	0	0
9	1	0	0	1	0	0	0	1
10	1	0	1	1	1	0	0	0

$$3,7|9$$
 $3|9 x_1, x_2$ $7|9 x_2$

I T P W

Schemat dekompozycji należy zmodyfikować

 $P_{V'} = P_{V} \bullet P_{2}$

$$P_V = (\overline{1,6}; \overline{2,4,8,10}; \overline{3,7,9}; \overline{5})$$

$$P_{V'} = (\bar{1}; \bar{6}; \overline{2,8,10}; \bar{4}; \bar{3,7}; \bar{9}; \bar{5})$$

Ale to jest nowa sytuacja:

Nowy zbiór V, czyli V'

Ale ten podział jest drobniejszy, może teraz będzie szansa na znalezienie dobrego Π_G

Jak zwykle obliczamy Π_G

$$P_{U} \mid P_{F} = \left\{ \overline{(1)(2)}; \overline{(3)(6)}; \overline{(4)(5)}; \overline{(7)}; \overline{(8)(9)}; \overline{(10)} \right\}$$

$$P_{V'} = (\bar{1}; \bar{6}; \overline{2,8,10}; \bar{4}; \bar{3,7}; \bar{9}; \bar{5})$$

$$\Pi_G = (\overline{1,5,6,9}; \overline{2,3,4,7,8,10})$$

I spełnia warunek twierdzenia $P_U \cdot \Pi_G \le P_F$

Udało się

 $X_4 X_5 \qquad X_2$ $X_1 X_2 X_3$ Dalej standardowo; Wyznaczamy tablice prawdy funkcji G i H $y_1 y_2 y_3$

T P W

Pojęcie r-przydatności

Główny mankament dekompozycji

Nie znamy odpowiedzi na pytanie dla jakich U, V istnieje dekompozycja

R-przydatność ułatwia / wyznaczenie dobrych zbiorów U, dla których istnieje dekompozycja

I T P W

Pojęcie r-przydatności

Oznaczenia:

 $\gamma(\tau \mid \! \delta)$ liczba elementów w największym bloku ilorazu podziałów τ i δ

$$\Gamma(\tau \mid \delta) = \lceil \log_2 \gamma(\tau \mid \delta) \rceil$$

Pojęcie *r* - przydatności...

Zbiór $\{P_1,...,P_k\}$ jest r-przydatny względem P, gdzie:

$$r = k + \Gamma(P_1 ... P_k | P \cdot P_1 ... P_k)$$

$$r = k + \Gamma(P_1 ... P_k | P)$$

Pojęcie *r* - przydatności...

..będziemy interpretowali dla funkcji z tabl. 8.3, rozdz. 8.2 z książki *Synteza układów logicznych*

$P_1 = (\overline{1,2,3,4,5,6,7}; \overline{8,9,10,11,12,13,14,15})$
$P_2 = (\overline{1,2,3,13,14,15}; \overline{4,5,6,7,8,9,10,11,12})$
$P_3 = (\overline{1,2,3,7,8,9,13,14,15}; \overline{4,5,6,10,11,12})$
$P = (\overline{1,4,5,7,8,10,13}; \overline{2,3,6,9,11,12,14,15})$
$P_5 = (\overline{1,3,4,6,7,8,9,10,12,15}; \overline{2,5,11,13,14})$
PF = (1,9,14;5,7,8,13;2,6,12;4,11;3,10,15)

Przykładzik

Obliczmy *r* dla $P_1 = \{ \overline{1,2,3,4,5,6,7}; \overline{8,9,10,11,12,13,14,15} \}$

$$P = (\overline{1,9,14}; \overline{5,7,8,13}; \overline{2,6,12}; \overline{4,11}; \overline{3,10,15})$$

Mamy tu: $P \bullet P_1 = \{\overline{1}; \overline{9,14}; \overline{5,7}; \overline{8,13}; \overline{2,6}; \overline{12}; \overline{4}; \overline{11}; \overline{3}; \overline{10,15}\}$

$$P_1 \mid P \cdot P_1 = \{ (1)(2,6)(3)(4)(5,7); (8,13)(9,14)(10,15)(11)(12) \}$$

Bo 5 nawiasów

$$\gamma(P_1 \mid P \bullet P_1) = 5,$$

$$\Gamma(P_1 \mid P \bullet P_1) = \lceil \log_2 5 \rceil = 3$$

czyli
$$r = 1 + 3 = 4$$

Interpretacja r-przydatności

Jeśli $\{P_1,...,P_k\}$ jest r-przydatny (k < r) względem P_F i jeśli istnieje dekompozycja to **blok H ma dokładnie r wejść**

Przykładzik...

Skoro P₁ (z przykładziku) jest 4-przydatny to możemy się spodziewać tylko takiej dekompozycji:

w której liczba wejść do bloku h jest dokładnie 4!!!

Przykładzik...

Natomiast gdyby P₁ był 3-przydatny, to moglibyśmy się spodziewać dekompozycji z trzema! tylko wejściami do h

T P W

ZPT

Twierdzenia o r - przydatności

Jeśli $\{P_1,...,P_k\}$ jest *r*-przydatny (k < r) względem P, to istnieje zbiór podziałów $\{P_{k+1},...,P_r\}$, dla których:

$$P_1...P_k \cdot P_{k+1},...,P_r \leq P$$

natomiast nie istnieje $\{P'_{k+1},...,P'_{r-1}\}$ taki, że:

$$P_1...P_k \cdot P'_{k+1},...,P'_{r-1} \leq P$$

Inaczej mówiąc, warunkiem koniecznym i wystarczającym na to, aby:

$$P_1...P_k \cdot P_{k+1},...,P_m \leq P$$

jest m-przydatność zbioru $\{P_1,...,P_k\}$ względem P.

Przykład 8.2 i 8.3 (z książki SUL)

	$\boldsymbol{x}_1 \boldsymbol{x}_2 \boldsymbol{x}_3 \boldsymbol{x}_4 \boldsymbol{x}_5$	$y_1y_2y_3$
1	00000	000
2	00011	010
3	00010	100
4	01100	011
5	01101	001
6	01110	010
7	01000	001
8	11000	001
9	11010	000
10	11100	100
11	11111	011
12	11110	010
13	10001	001
14	10011	000
15	10010	100
10		100

$P_1 = (\overline{1,2,3,4,5, 6,7}; \overline{8,9,10,11, 12,13,14,1 5})$	r = 4
$P_2 = (\overline{1,2,3,13,14,15}; \overline{4,5,6,7,8,9,10,11,12})$	r = 4
$P_3 = (\overline{1,2,3,7,8}, 9,13,14,15; \overline{4,5,6,10,1}, 1,12)$	r = 3
$P_4 = (\overline{1,4,5,7,8}, 10,13; \overline{2,3,6,9,11,12,14,15})$	r = 3
$P_5 = (\overline{1,3,4,6,7, 8,9,10,12, 15}; \overline{2,5,11,13, 14})$	r = 4
$P_F = (\overline{1,9,14}; \overline{5,7,8,13}; \overline{2,6,12}; \overline{4,11}; \overline{3,10,15})$	

P₃, P₄, są 3-przydatne względem P_F

Obliczmy r-przydatność dla zbioru {P₃, P₄}

$$P_3 \cdot P_4 = \{ \overline{(1)(7,8,13)}; \overline{(9,14)(2)(3,15)}; \overline{(4)(5)(10)}; \overline{(11)(6,12)} \}$$

czyli
$$r\{P_3, P_4\} = 2 + \lceil \log_2 3 \rceil = 4$$

I T P W

ZPT

Przykład ...

Skoro $\{P_3, P_4\}$ jest 4-przydatny, to przyjmując x_3, x_4 jako wejścia

do pełnej realizacji funkcji potrzebne są jeszcze dwa wejścia.

Z poprzedniego wykładu wiemy, że taka dekompozycja istnieje

A może uda nam się znaleźć zbiór $\{P_i, P_j, P_k\}$, który byłby 4-przydatny.

Bardzo ciekawy schemat, 4 wejścia jak poprzednio, ale prostsza G – zaledwie dwu-wejściowa, czyli jakaś prosta bramka

Pożyteczne fakty

Można wykazać, że jeśli $P = \{P_1, ..., P_k\}$ jest m-przydatny względem P_F , to każdy podzbiór z P jest m'-przydatny, gdzie $m' \le m$.

Tym samym warunkiem koniecznym na to, aby $P = \{P_1, ..., P_k\}$ był m-przydatny względem P_F , jest r-przydatność podzbiorów z P taka, że dla każdego P' zawartego w P, $r(P') \le m$.

r-przydatności par {P_i, P_i}

Co najwyżej 4-przydatnymi parami są tylko:

$$\{P_1, P_3\}, \{P_1, P_4\}, \{P_2, P_3\}, \{P_2, P_4\}, \{P_3, P_4\}, \{P_3, P_5\} \text{ oraz } \{P_4, P_5\}.$$

W związku z tym 4-przydatnymi trójkami mogą być tylko:

a)
$$\{P_1, P_3, P_4\}$$
 b) $\{P_2, P_3, P_4\}$ c) $\{P_3, P_4, P_5\}$

T P W

Przykład

W tym celu liczymy odpowiednie iloczyny podziałów

$$P_{1} \cdot P_{3} \cdot P_{4} = \{ \overline{(1)(7)}, \overline{(8,13)}, \overline{(2)(3)}, \overline{(9,14)(15)}, \overline{(4)(5)}, \overline{(10)}, \overline{(6)}, \overline{(11)(12)} \}$$

$$P_2 \cdot P_3 \cdot P_4 = \{ (1)(13); (2)(3,15)(14); (4)(5)(10); (6,12)(11); (7,8); (9) \}$$

$$P_3 \cdot P_4 \cdot P_5 = \{ (1)(7,8); (13); (9)(3,15); (14)(2); (4)(10); (5); (6,12); (11) \}$$

są 4-przydatne

$$r\{P_1, P_3, P_4\} = 3 + \lceil \log_2 2 \rceil = 4$$

Skoro $\{P_1, P_3, P_4\}$ oraz $\{P_3, P_4, P_5\}$ są 4-przydatne to mogą istnieć dekompozycje:

$$P_U = P_1 P_3 P_4 = \{ \overline{1,7}; \overline{8,13}; \overline{2,3}; \overline{9,14,15}; \overline{4,5}; \overline{10}; \overline{6}; \overline{11,12} \}$$

$$\mathsf{P}_{\cup} \; | \mathsf{P}_{\mathsf{F}} = \; \left[\overline{(1),(7)}; \; \overline{(8,13)}; \; \overline{(2),(3)}; \; \overline{(9,14),(15)}; \; \overline{(4),(5)}; \; \overline{(10)}; \; \overline{(6)}; \; \overline{(11),(12)} \right]$$

$$P_{V} = \left\{ 1,3,15; \overline{2,13,14}; \overline{4,6,7,8,9,10,12}; \overline{5,11} \right\}$$

$$\Pi_{\mathbf{G}} = (1,3,5,11,15; \ 2,4,6,7,8,9,10,12,13,14)$$

Czy potrafimy bezpośrednio z podziału P_V obliczyć funkcję G

$$G = x_2 \oplus x_5$$

Systematyczne algorytmy dekompozycji

Obliczanie podziału Π_G metodą przenoszenia bloków P_V na podstawie podziału ilorazowego $P_U \mid \Pi_G$ jest trudne do zalgorytmizowania.

Szczęśliwie jednak algorytm obliczania Π_G można sprowadzić do algorytmu obliczania MKZ.

T P W

ZPT

Systematyczne procedury dekompozycji

$$\Pi_{G} \ge P_{V} : P_{U} \cdot \Pi_{G} \le P_{F}$$

Sklejanie bloków z P_V. Tak wielu jak to tylko możliwe.

Dwa bloki B_i i B_j podziału P_V są zgodne, jeśli podział γ_{ij} uzyskany z P_V przez sklejenie Bi oraz Bj w jeden blok spełnia warunek Twierdzenia, tzn., jeśli $P_U \bullet \gamma_{ij} \leq P_F$.

W przeciwnym przypadku B_i oraz B_i są niezgodne.

Podzbiór δ bloków podziału wejściowego P_V nazywamy zgodną klasą bloków jeśli bloki w δ są parami zgodne.

Zgodna klasa bloków jest nazywana maksymalną, jeśli nie jest zawarta w żadnej innej klasie zgodnej.

Przykład

		THE PART OF THE PARTY OF THE	
	$\boldsymbol{x}_1 \boldsymbol{x}_2 \boldsymbol{x}_3 \boldsymbol{x}_4 \boldsymbol{x}_5$	$y_1y_2y_3$	
1	00000	000	
2	00011	010	
3	00010	100	
4	01100	011	
5	01101	001	
6	01110	010	
7	01000	001	
8	11000	001	
9	11010	000	
10	11100	100	
11	11111	011	
12	11110	010	
13	10001	001	
14	10011	000	
15	10010	100	
STAL			

$$U = \{x_3, x_4\} \text{ oraz } V = \{x_1, x_2, x_5\}.$$

$$P_F = \overline{1,9,14}; \overline{5,7,8,13}; \overline{2,6,12}; \overline{4,11}; \overline{3,10,15}$$

$$P_V = \overline{1,3}; \ \overline{2}; \overline{4,6,7}; \overline{5}; \overline{8,9,10,12}; \overline{11}; \overline{13,14}; \overline{15}$$

$$U = \{x_3, x_4\} \text{ oraz } V = \{x_1, x_2, x_5\}.$$

$$P_F = \overline{1,9,14}; \overline{5,7,8,13}; \overline{2,6,12}; \overline{4,11}; \overline{3,10,15}$$

Numerujemy bloki P_V

$$P_{V} = \frac{B_{1}}{1,3}, \frac{B_{2}}{2}, \frac{B_{3}}{4,6,7}, \frac{B_{4}}{5}, \frac{B_{5}}{8,9,10,12}, \frac{B_{6}}{11}, \frac{B_{7}}{13,14}, \frac{B_{8}}{15}$$

I wyznaczamy wszystkie pary zgodne (B_i, B_i)

Przykład c.d.

$$P_{V} = \frac{B_{1}}{1,3}; \ \frac{B_{2}}{2}; \frac{B_{3}}{4,6,7}; \frac{B_{4}}{5}; \frac{B_{5}}{8,9,10,12}; \frac{B_{6}}{11}; \frac{B_{7}}{13,14}; \frac{B_{8}}{15}$$

$$P_{\cup}|P_{F}=\overline{(1)(7,8,13)};\overline{(2)(9,14)(3,15)};\overline{(4)(5)(10)};\overline{(11)(6,12)}$$

Niezgodna!

$$B_1$$
, B_2
 P_1 \bullet $(\overline{1,2,3}; \overline{4,6,7}; \overline{5};...) $\not\leq P_F$$

E₁, B₄

$$P_{U} \bullet (\overline{1,3,5}; \overline{2}; \overline{4,6,7}; ...) \leq P_{F}$$

Przykład c.d.

Pary zgodne: (B_1, B_4) , (B_1, B_6) , (B_1, B_8) , (B_2, B_3) , (B_2, B_4) , (B_2, B_6) , (B_3, B_7) , (B_3, B_8) , (B_4, B_6) , (B_4, B_7) , (B_4, B_8) , (B_5, B_7) , (B_6, B_7) , (B_6, B_8) .

Doskonale wiemy jak obliczać Maksymalne Klasy Zgodne MKZ

$$P_{V} = \frac{B_{1}}{1,3}; \ \frac{B_{2}}{2}; \frac{B_{3}}{4,6,7}; \frac{B_{4}}{5}; \frac{B_{5}}{8,9,10,12}; \frac{B_{6}}{11}; \frac{B_{7}}{13,14}; \frac{B_{8}}{15}$$

$$\Pi_{G} = \{B_{2}, B_{3}\}; \{B_{5}, B_{7}\}$$

Klasy maksymalne:

$$\{B_1, B_4, B_6, B_8\}$$

$$\{B_4, B_6, B_7\}$$

$$\{B_2, B_4, B_6\}$$

$$\{B_3, B_8\}$$

$$\{B_3, B_7\}$$

$$\{B_1, B_4, B_6, B_8\} \mid \{B_2, B_3\}$$

$$\{B_5, B_7\}$$

Przykład c.d.

$$P_{V} = \overline{1,3}; \ \overline{2}; \overline{4,6,7}; \overline{5}; \overline{8,9,10,12}; \overline{11}; \overline{13,14}; \overline{15}$$

Klasy maksymalne:

$$\{B_3, B_7\}$$

$$\{B_2, B_3\}$$

$$\{B_5, B_7\}$$

Ten sam rezultat co na poprzednim wykładzie

W