

Circuitos eléctricos

- Circuito RC
- Circuito RL
- Circuito LC

Serway Cap. 28.4, 32.2, 32.5,

Revisão

$$M_{12} = \mu_0 \frac{N_1 N_2}{l_1} A_2$$

Circuitos eléctricos: símbolos

Para representar componentes eléctricos usam-se diferentes símbolos:

Circuitos eléctricos: convenções

$$(\Delta V = V_b - V_a)$$

Baterias

Resistências

Condensadores

Leis de Kirchhoff

Lei dos nós: $\sum_i I_i = 0$

Lei das malhas: $\sum_i V_i = 0$

Simulador de circuitos online (Java)

https://phet.colorado.edu/en/simulation/circuit-construction-kit-dc-virtual-lab

Circuito RC

Circuito com um condensador C e uma resistência R em série

Circuito RC: carga do condensador

Circuito aberto:

• Não passa corrente: $V_C = V_R = 0$ $V_S = -\mathcal{E}$

Circuito fechado:

- Passa corrente: $V_R(t=0) = \mathcal{E}, V_S = 0$
- V_C aumenta de 0 até \mathcal{E}
- O campo eléctrico da bateria empurra as cargas através dos fios até às placas do condensador.
- Não "passa corrente" através do condensador, mas há movimento de cargas devido à força eléctrica (voltaremos a isto)
- Quando é atingida a carga final (condensador carregado), a corrente pára. Nesse momento, $V_C = \mathcal{E}, \ V_R = 0$

Circuito RC: carga do condensador

Vamos analisar o circuito de carga usando as leis de Kirchoff:

$$\mathcal{E} - \frac{Q}{C} - RI = 0$$

$$V_{\text{bat}} \quad V_{\text{C}} \quad V_{\text{R}}$$

Circuito fechado (t = 0):

- Q = 0 e $I(0) = I_0 = \mathcal{E}/R$ (corrente máxima)
- $V_C = 0$ e $V_R = \mathcal{E}$

Quando $t \rightarrow \infty$:

- I = 0 e $Q(t \rightarrow \infty) = C\mathcal{E} = Q$ (carga máxima)
- $V_C = \mathcal{E} e V_R = 0$

Circuito RC: carga do condensador

Como I = dQ/dt:

$$\mathcal{E} - \frac{Q}{C} - RI = 0 \rightarrow \frac{dQ}{dt} = \frac{\mathcal{E}}{R} - \frac{Q}{RC}$$

Para resolver esta eq. diferencial usa-se o mesmo método que para o circuito RL:

$$Q(t) = C\mathcal{E}\left[1 - \exp\left(-\frac{t}{RC}\right)\right] = Q(1 - e^{-t/\tau})$$

$$I(t) = \frac{dQ}{dt} = \frac{Q}{\tau}e^{-t/\tau} = \frac{\mathcal{E}}{R}e^{-t/\tau}$$

$$\tau = RC$$

Constante temporal [s]

A constante τ mede a rapidez com que o condensador atinge a carga final

Corrente:

$$I(t) = dQdt = \frac{Q}{\tau}e^{-t/\tau} = \frac{\mathcal{E}}{R}e^{-t/\tau}$$

rapidez com que o carga final

 $0.368 \approx e^{-1}$

Circuito RC: descarga do condensador

Circuito aberto:

• Não passa corrente: $V_C = \mathcal{E}$ $V_R = V_S = 0$

Circuito fechado:

- Passa corrente: $V_R(t=0) = \mathcal{E}, V_S = 0$
- V_C diminui de \mathcal{E} até 0
- O excesso de cargas nas placas do condensador viaja através dos fios até à placa oposta.
- Não "passa corrente" através do condensador, mas há movimento de cargas devido à força eléctrica.
- Quando é atingida a carga zero (condensador descarregado), a corrente pára. Nesse momento, $V_C=0,\ V_R=0$

Circuito RC: descarga do condensador

Vamos analisar o circuito de carga usando as leis de Kirchoff:

$$-\frac{Q}{C} - RI = 0$$

$$V_{\rm C} \quad V_{\rm R}$$

Circuito fechado (t = 0):

- Q(0) = Q e I(0) = Q/RC(corrente/carga máximas)
- $V_C = -V_R = \mathcal{E}$

Quando $t \rightarrow \infty$:

- I = 0 e Q = 0 (corrente/carga nulas)
- $V_C = V_R = 0$

Circuito RC: descarga do condensador

Como I = dQ/dt:

$$-\frac{Q}{C} - RI = 0 \quad \rightarrow \quad \frac{dQ}{dt} = -\frac{Q}{RC}$$

Esta eq. diferencial tem uma solução directa:

Carga:
$$Q(t) = Q \exp\left(-\frac{t}{RC}\right) = Q e^{-t/\tau}$$

Corrente:
$$I(t) = \frac{dQ}{dt} = -\frac{Q}{RC}e^{-\frac{t}{RC}} = -\frac{Q}{\tau}e^{-t/\tau}$$

$$\tau = RC$$
 Constante temporal [s]

A corrente tem agora o sinal oposto da corrente de carga.

A constante τ mede a rapidez com que o condensador descarrega

Carga:

$$Q(t) = Qe^{-t/\tau}$$

Corrente:

$$|I(t)| = \frac{Q}{\tau}e^{-t/\tau}$$

Aplicações de circuitos RC

Além das aplicações dos condensadores (cf. Aula 7) o ciclo de **carga / descarga** e a **constante temporal** dos circuitos RC tem duas aplicações muito importantes:

- desfibrilador
- pacemaker

Comparação: circuito RL vs circuito RC

Circuito LC

Circuito com um indutor L e um condensador C em série

Inicialmente o condensador está carregado (Q_{max}) e o interruptor está aberto.

Quando se fecha o interruptor, verifica-se que:

- A corrente no circuito oscila entre um máximo e um mínimo
- A carga no condensador oscila entre um máximo e um mínimo

Não existindo uma resistência, nenhuma energia é dissipada: oscila entre totalmente **eléctrica** e totalmente **magnética**

O que sucede quando se fecha o interruptor?

Circuito LC

t < 0:

- C armazena toda a energia, $W_e = \frac{Q_{max}^2}{2C}$
- Não existe corrente

t > 0:

- C descarrega e Q diminui
- Corrente no circuito varia na mesma proporção
- Energia é transferida do C para o L
- Quando C descarrega completamente, a corrente atinge o valor máximo
- C é carregado *no sentido oposto*, e o processo repete-se

O que sucede quando se fecha o interruptor?

Oscilações no circuito LC

Em qualquer instante, a energia total é:

$$U = U_e + U_m = \frac{1}{2} \frac{Q^2}{C} + \frac{1}{2} LI^2$$

Como não existem perdas:

$$\frac{dU}{dt} = \frac{Q}{C}\frac{dQ}{dt} + LI\frac{dI}{dt} = 0$$

Usando I = dQ/dt:

$$\frac{Q}{C}\frac{dQ}{dt} + L\frac{dQ}{dt}\frac{d^2Q}{dt^2} = 0 \quad \Rightarrow \quad \frac{d^2Q}{dt^2} = -\frac{1}{LC}Q \quad \text{Eq. do oscilador harmónico simples}$$

 $+Q_{\rm max}$

A eq. tem a mesma forma que a de uma massa + mola

Oscilações no circuito LC

$$\frac{d^2Q}{dt^2} = -\frac{1}{LC}Q \qquad \qquad \frac{d^2x}{dt^2} = -kx$$

$$\frac{d^2x}{dt^2} = -kx$$

A solução tem uma forma periódica:

Frequência de oscilação

$$Q(t) = Q_{max} \cos(\omega t + \phi)$$
 $\omega = \frac{1}{\sqrt{LC}}$

$$\omega = \frac{1}{\sqrt{LC}}$$

Usando I = dQ/dt:

$$I(t) = -\omega Q_{max} \sin(\omega t + \phi) = -I_{max} \sin(\omega t + \phi)$$

A corrente está desfasada de 90° com a carga.

Se $Q(0) = Q_{max}$, podemos fazer $\phi = 0$.

Período: $T = 2\pi/\omega$

Oscilações no circuito LC

Substituindo na expressão da energia total:

$$U = \frac{1}{2C} Q_{max}^2 \cos^2(\omega t) + \frac{1}{2} L I_{max}^2 \sin^2(\omega t)$$
$$\rightarrow U = U_C + U_L$$

- A energia do circuito alterna entre totalmente eléctrica $\left(\frac{Q_{max}^2}{2C}\right)$ e totalmente magnética $\left(\frac{LI_{max}^2}{2}\right)$
- Em qualquer instante, a soma das duas formas de energia é constante
- O sistema é análogo às trocas de en. potencial $\left(\frac{kx^2}{2}\right)$ e cinética $\left(\frac{mv^2}{2}\right)$ num oscilador mecânico *

* Cf. Serway pg. 1017

Oscilações num circuito LC

Conclusões

Circuito RC: carga $I(t) = \frac{\mathcal{E}}{R} e^{-t/\tau}$

Frequência de oscilação

$\omega = \frac{1}{\sqrt{LC}}$