# Modern Computational Economics and Policy Applications

A workshop for the IMF's Institute for Capacity Development

Chase Coleman and John Stachurski

March 2024

### **Topics**

These introductory slides provide background on modern scientific computing.

#### We will discuss

- Traditional compiled languages
- Modern JIT compilers
- Al-driven scientific computing
- Where are we heading?
- Economic applications

Sides, code:

https://github.com/QuantEcon/imf\_2024

### Some trends:



Source: Stackoverflow Trends

### Stack Overflow 2023 Developer Survey (50 languages)



— https://survey.stackoverflow.co/2023/

# A review of some scientific computing environments

### General purpose scientific computing environments:

- 1. Fortran / C / C++
- 2. MATLAB ( $\approx$  Python + NumPy)
- 3. Julia ( $\approx$  Python + Numba)
- 4. Python + Google JAX ( $\approx$  Python + PyTorch)

# Fortran / C / C++ — static types and AOT compilers

Example. Suppose we want to compute the sequence

$$k_{t+1} = sk_t^\alpha + (1-\delta)k_t$$

from some given  $k_0$ 

Let's write a function in C that

- 1. implements the loop
- 2. returns the last  $k_t$

```
#include <stdio.h>
#include <math.h>
int main() {
    double k = 0.2:
    double alpha = 0.4;
    double s = 0.3:
    double delta = 0.1;
    int i:
    int n = 1000;
    for (i = 0; i < n; i++) {
        k = s * pow(k, alpha) + (1 - delta) * k;
    printf("k = %f \setminus n", k);
```

- $\varphi$  john on gz-precision .../imf\_2024 on  $\beta$  main )> gcc solow.c -o out -lm
- $\varphi$  john on gz-precision .../imf\_2024 on  $\beta$  main  $\rangle\rangle$  ./out

x = 6.240251

### Pros

fast

### Cons

- time consuming to write
- lack of portability
- hard to debug
- hard to parallelize
- low interactivity

For comparison, the same operation in Python:

```
α = 0.4
s = 0.3
δ = 0.1
n = 1_000
k = 0.2

for i in range(n-1):
    k = s * k**α + (1 - δ) * k

print(k)
```

### Pros

- easy to write
- high portability
- easy to debug
- high interactivity

### Cons

slow

Why is pure Python slow?

### Pros

- easy to write
- high portability
- easy to debug
- high interactivity

#### Cons

slow

Why is pure Python slow?

# Problem 1: Type checking

### Consider the Python code snippets

$$x, y = 1, 2$$
  
 $z = x + y$  #  $z = 3$ 

$$x, y = 1.0, 2.0$$
  
 $z = x + y$  #  $z = 3.0$ 

```
x, y = 'foo', 'bar'
z = x + y  # z = 'foobar'
```

How does Python know which operation to perform?

Answer: Python checks the type of the objects first

```
>> x = 1
>> type(x)
int
```

```
>> x = 'foo'
>> type(x)
str
```

In a large loop, this type checking generates massive overhead

# Problem 2: Memory management

```
>>> import sys
>>> x = [2.56, 3.21]
>>> sys.getsizeof(x) * 8  # number of bits
576  # whaaaat???
>>> sys.getsizeof(x[0]) * 8  # number of bits
192  # whaaaat???
```

Also, lists of numbers are pointers to dispersed int/float objects — not contiguous data

So how can we get

good execution speeds and high productivity / interactivity?

### **MATLAB**

$$A = [2.0, -1.0 \\ 5.0, -0.5];$$

$$b = [0.5, 1.0]';$$

$$x = inv(A) * b$$



# Python + NumPy

### import numpy

$$A = ((2.0, -1.0), (5.0, -0.5))$$

$$b = (0.5, 1.0)$$

$$A, b = np.array(A), np.array(b)$$

$$x = np.inv(A) @ b$$



# Julia — rise of the JIT compilers

### Can do MATLAB / NumPy style vectorized operations

$$A = \begin{bmatrix} 2.0 & -1.0 \\ 5.0 & -0.5 \end{bmatrix}$$

$$b = [0.5 \ 1.0]$$

$$x = inv(A) * b$$

But also has fast loops via an efficient JIT compiler

Example. Suppose, again, that we want to compute

$$k_{t+1} = s k_t^\alpha + (1-\delta) k_t$$

from some given  $k_0$ 

• Iterative, not easily vectorized

```
function solow(k0, \alpha=0.4, \delta=0.1, n=1_000) 
 k = k0 
 for i in 1:(n-1) 
 k = s * k^\alpha + (1 - \delta) * k 
 end 
 return k 
end 
solow(0.2)
```

Julia accelerates solow at runtime via a JIT compiler

# Python + Numba copy Julia

```
from numba import jit
@jit(nopython=True)
def solow(k0, \alpha=0.4, \delta=0.1, n=1_000):
    k = k0
    for i in range(n-1):
         k = s * k**\alpha + (1 - \delta) * k
    return k
solow(0.2)
```

Runs at same speed as Julia / C / Fortran

### **Parallelization**

For tasks that can be divided across multiple "workers,"

execution time = time per worker / number of workers

So far we have been discussing time per worker

running code fast along a single thread

The other option for speed gains is

- divide up the execution task
- spread across multiple threads / processes

### Parallelization is the big game changer powering the AI revolution



### What economists need: software that will parallelize for us

- automated intelligent parallelization
- JIT compiled
- portable
- seamlessly supports most CPUs / GPUs / hardware accelerators