Cosmology — Assignment 4 — Lorentz Transformations, The Torus

- 1. L-6(a) Angled Meter Stick (write up what we started in class)
- 2. L-8 Angled Velocity (use the authors' hint)
- 3. L-9 The Headlight Effect

4. The Torus

 $In[\ \circ\]:=$ Graphics3D[ResourceFunction["Torus"][{0, 0, 0}, {8, 2}, {0, 0, 1}], Axes \rightarrow True] $Out[\ \circ\]=$

A torus has two radii. Let's call them R and r. Locating a place on the surface of the torus requires two angles, ϕ , and θ . Let's have ϕ be the angle that takes you around the big radius, R, and θ be the angle that takes you around the little radius r.

- (a) It will probably be necessary to draw a cross-section of the torus to figure this out, like our authors did in Chapter 2, Figure 7. Do that.
- (b) How far from the axis of the torus is a point?
- (c) Use your answer to (b) to determine how much distance is swept out when ϕ changes by $\Delta \phi$.
- (d) How much distance is swept out when θ changes by $\Delta \theta$?
- (e) Use your answers to (c) and (d) to write down the metric for this embedding of the 2-d torus in 3-d

Euclidean space.