Nama: Prames Ray Lapian NPM : 140810210059

Soal:

Misalkan p = 31, a = 1 dan b = 6 sehingga didapat kurva elips: $y2 \equiv x3 + x + 6 \pmod{31}$ Lakukan proses enkripsi dan dekripsi menggunakan kriptografi kurva elips Menezes-Vanstone untuk plainteks = (7, 8) dan fungsi pembangkit α = (3, 6) dengan α = 2 dan r = 3.

Jawaban:

Enkripsi:

```
Menghitung y0:
        = q \cdot \alpha
        = 2(3, 6)
2α
       = \alpha + \alpha
        = (3, 6) + (3, 6)
λ
        = (3x1 2 + a) (2y1)-1 \mod 31
        = 3(3)2 + 1)(2(6)) - 1 \mod 31
        = (3(9) + 1)(12)-1 \mod 31
        = (3(9) + 1)(13) \mod 31
        = 28(13) \mod 31
        = 364 \mod 31
        = 23
x3 = (\lambda 2 - x1 - x2) \mod 31
x3 = (232 - 3 - 3) \mod 31
x3 = (529 - 6) \mod 31
x3 = 27
y3 = (\lambda(x1 - x3() - y1) \mod 31
y3 = (23(3 - 27) - 6) \mod 31
y3 = (-558) \mod 31
y3 = 0
```

Maka didapat y0 = 2α = (27, 0)

Menghitung r α yang dapat didefinisikan menjadi β , dimana $\beta = 3\alpha$. $3\alpha = 2\alpha + \alpha =$ (27, 0) + (3, 6) $= (y2 - y1) (x2 - x1) - 1 \mod 31$ λ $= (6 - 0)(3 - 27) - 1 \mod 31$ $= (6)(-24) -1 \mod 31$ $= (6)(7)-1 \mod 31$ $= (6)(9) \mod 31$ $= 54 \mod 31$ = 23

x3 =
$$(\lambda 2 - x1 - x2) \mod 31$$

= $(232 - 27 - 3) \mod 31$
= $(529 - 30) \mod 31$
= 3
y3 = $(\lambda (x1 - x3) - y1) \mod 31$
= $(23(27 - 3) - 0) \mod 31$
= $(552 - 0) \mod 31$
= 25
Maka $\beta = 3\alpha = (3, 25)$
Menghitung (c1, c2) = $q * \beta = 2(3, 25)$
 $2\beta = \beta + \beta = (3, 25) + (3, 25)$
 $\lambda = (3x1 2 + a) (2y1) - 1 \mod 31$
= $3(3)2 + 1)(2(25)) - 1 \mod 31$
= $(3(9) + 1)(19) - 1 \mod 31$
= $(3(9) + 1)(18) \mod 31$
= $28(18) \mod 31$
= 8
x3 = $(\lambda 2 - x1 - x2) \mod 31$
= 8
x3 = $(\lambda 2 - x1 - x2) \mod 31$
= 8
x3 = $(64 - 6) \mod 31$
= 8

Maka didapat (c1, c2) =
$$2\beta$$
 = (27, 0)

 $= (-217) \mod 31$

= 0

= $(\lambda (x1 - x3) - y1) \mod 31$ = $(8(3 - 27) - 25) \mod 31$

y3

```
Menghitung y1 dan y2
y1 = c1x1 mod 31
= 27(7) mod 31
= 189 mod 31
= 3
y2 = c2x2 mod 31
= 0(8) mod 31
= 0 mod 31
= 0
```

Jadi didapat ciphertext y = (y0, y1, y2) = ((27, 0), 3, 0).

Dekripsi:

Menghitung (c1, c2) = r * y0 = 2(3, 25)
(c1, c2) = 3(27, 0).

$$2\alpha = \alpha + \alpha$$

= (27, 0) + (27, 0)
 $\lambda = (3x1 \ 2 + a) \ (2y1) - 1 \ mod \ 31$
= 3(27)2 + 1)(2(0)) - 1 mod \ 31
= (3(729) + 1)(0) - 1 mod \ 31
= (2187 + 1)(0) mod \ 31
= 2188(0) mod \ 31
= 0 mod \ 31
= 0

y3 = (\lambda \text{(x1 - x3)-y1) mod } 31
= (0(27 - 8) - 0) mod \ 31
= (0) mod \ 31
= 0

Maka didapat $2\alpha = (8, 0)$

$$3\alpha$$
 = $2\alpha + \alpha$
= $(8, 0) + (27, 0)$
 λ = $(y2 - y1) (x2 - x1) - 1 \mod 31$
= $(0 - 0)(27 - 8) - 1 \mod 31$
= $(0)(19) - 1 \mod 31$
= $(0)(18) \mod 31$
= $0 \mod 31$
= 0

x3 =
$$(\lambda 2 - x1 - x2) \mod 31$$

= $(02 - 8 - 27) \mod 31$
= $-35 \mod 31$
= 27
y3 = $(\lambda (x1 - x3) - y1) \mod 31$
= $(0(8 - 27) - 0) \mod 31$
= $(0) \mod 31$
= 0

Maka didapat (c1, c2) = 3α = (27, 0)

Menghitung x sebagai berikut:

Maka didapat plaintext x = (7, 0).