LABORATORIO 9

Argomenti: equazioni differenziali ordinarie

1. Implementare in un *m-file* di tipo *function*, denominato Eulero_esp.m, il metodo di Eulero esplicito per integrare il problema di Cauchy

$$\begin{cases} y'(x) = f(x, y(x)), & x \ge x_0, \\ y(x_0) = y_0, \end{cases}$$

con passo costante $h = (x_N - x_0)/N$, ove x_N e N sono fissati a priori.

Strutturare la function Eulero_esp in modo tale che, ricevendo in input la funzione f(x,y) (definita mediante un'altra function o il comando @), i valori x_0 e y_0 della condizione iniziale, il punto x_N fino al quale si vuole integrare il problema e il valore N con il quale si controlla l'ampiezza del passo d'integrazione, restituisca in output i vettori x e y contenenti rispettivamente i nodi dell'intervallo di integrazione (equidistanti con passo h) e le corrispondenti approssimazioni della funzione incognita y(x).

Successivamente applicare la function Eulero_esp al problema

$$\begin{cases} y'(x) = -y(x) + x + 1, & x \ge 0, \\ y(0) = 1, & \end{cases}$$

la cui soluzione è $y(x) = x + e^{-x}$. In particolare, approssimare la soluzione nel punto $x = x_N = 1$, scegliendo $N = 10^k$ con k = 1, 2, 3. Indicata con y_N la soluzione approssimata fornita dal metodo in x_N , calcolare per ciascun valore di k l'errore assoluto $|y(x) - y_N|$ e disegnare all'interno della medesima finestra grafica la curva soluzione e le curve approssimanti.

2. Implementare in un *m-file* di tipo *function*, denominato Eulero_esp_system.m, il metodo di Eulero esplicito per integrare un sistema di equazioni deifferenziali del primo ordine posto in forma canonica. Strutturare la *function* nella forma precedentemente descritta e utilizzarla per risolvere il seguente problema

$$\begin{cases} y''(x) = 0.1(1 - y^2(x))y'(x) - y(x), & x \ge 0, \\ y(0) = 1 \\ y'(0) = 0, \end{cases}$$

dopo averlo riportato nella forma canonica. Rappresentare graficamente la soluzione ottenuta per $x \in [0,1]$ e $N=10^k$ con k=1,2,3.

3. Implementare in due *m-file* di tipo *function*, denominati Heun.m e Runge_Kutta_4.m, rispettivamente il metodo di Heun

$$\begin{cases} y_{n+1} = y_n + \frac{h}{2}(k_1 + k_2) \\ k_1 = f(x_n, y_n) \\ k_2 = f(x_n + h, y_n + hk_1) \end{cases}$$

e il seguente metodo Runge Kutta a 4 stadi

$$\begin{cases} y_{n+1} = y_n + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4) \\ k_1 = f(x_n, y_n) \\ k_2 = f(x_n + \frac{h}{2}, y_n + \frac{h}{2}k_1) \\ k_3 = f(x_n + \frac{h}{2}, y_n + \frac{h}{2}k_2) \\ k_4 = f(x_n + h, y_n + hk_3) \end{cases}$$

per integrare il problema di Cauchy

$$\begin{cases} y'(x) = f(x, y(x)), & x \ge x_0, \\ y(x_0) = y_0, \end{cases}$$

con passo costante $h = (x_N - x_0)/N$, ove x_N e N sono fissati a priori. Strutturare le function Heun e Runge_Kutta_4 in maniera analoga alla function Eulero_esp dell'esercizio 1 e, successivamente, applicarle al problema dell'esercizio 1, scegliendo $N = 2^k$, con k = 3, 4, ..., 9.

- 4. Risolvere il problema di Cauchy dell'esercizio 1 mediante la function ode45 di MATLAB. Indicata con y_N la soluzione approssimata fornita dal metodo in $x = x_N = 1$, stampare l'errore assoluto $|y(x) y_N|$. Imporre una tolleranza più stringente e rappresentare graficamente gli errori assoluti che si commettono ad ogni passo.
- 5. Implementare in due m-file di tipo function, denominati $Heun_system.m$ e $Runge_Kutta_4_system.m$, il metodo di Heun e il metodo di Runge-Kutta descritto nell'esercizio 3 per integrare un sistema di equazioni deifferenziali del primo ordine posto in forma canonica. Quindi applicare le suddette function al problema dell'esercizio 2, scegliendo $N=2^k$, con k=3,4,...,9.