Trig Final (SLTN v608)

• You should have a calculator (like Desmos) and a unit-circle reference sheet.

Question 1

In the figure below, we see a circle and a central angle that subtends an arc. The arc length is 100 meters. The radius is 22 meters. What is the angle measure in radians?

$$\theta = \frac{L}{r}$$
 $r = \frac{L}{\theta}$ $L = r\theta$

 $\theta = 4.545$ radians.

Question 2

Consider angles $\frac{-9\pi}{4}$ and $\frac{19\pi}{6}$. For each angle, use a spiral with an arrow head to **mark** the angle on a circle below in standard position. Then, find **exact** expressions for $\sin\left(\frac{-9\pi}{4}\right)$ and $\cos\left(\frac{19\pi}{6}\right)$ by using a unit circle (provided separately).

Find $sin(-9\pi/4)$

$$\sin(-9\pi/4) = \frac{-\sqrt{2}}{2}$$

Find $cos(19\pi/6)$

$$\cos(19\pi/6) = \frac{-\sqrt{3}}{2}$$

Question 3

If $\cos(\theta) = \frac{-65}{97}$, and θ is in quadrant II, determine an exact value for $\sin(\theta)$.

Ignore any negatives and the quadrant, and draw a right triangle (based on SOHCAHTOA) in standard (quadrant I) orientation.

Solve the Pythagorean Equation

$$65^{2} + B^{2} = 97^{2}$$

$$B = \sqrt{97^{2} - 65^{2}}$$

$$B = 72$$

Rescale the triangle so the hypotenuse is 1. Reflect the triangle into Quadrant II in a unit circle.

$$\sin(\theta) = \frac{72}{97}$$

Question 4

A mass-spring system oscillates vertically with an amplitude of 4.56 meters, a frequency of 8.82 Hz, and a midline at y = 2.52 meters. At t = 0, the mass is at the maximum height. Write an equation to model the height (y in meters) as a function of time (t in seconds).

Any of these equations would get full credit.

$$y = 4.56\cos(2\pi 8.82t) + 2.52$$

or

$$y = 4.56\cos(17.64\pi t) + 2.52$$

or

$$y = 4.56\cos(55.42t) + 2.52$$