Proofs for Chapter 6 Continuous Functions

Constantin Filip

October 28, 2024

Theorem 1 Show that the limit of a function, if it exists, is unique.

Assume that $\lim_{x\to x_0}=L$ and $\lim_{x\to x_0}=M$, where $L\neq M$. Then let $\epsilon=\frac{|L+M|}{2}$. Then there exists some $\delta_1>0$ such that

$$|f(x) - L| < \frac{|L - M|}{2}$$

where $0 < |x - x_0| < \delta_1$. There also exists some $\delta_1 > 0$ such that

$$|f(x) - M| < \frac{|L - M|}{2}$$

where $0 < |x - x_0| < \delta_2$

Let $\delta = \min\{\delta_1, \delta_2\}$. Then both inequalities hold. Then

$$|L - M| = |L - f(x) + f(x) - M|$$

 $\leq |f(x) - L| + |f(x) - M|$
 $< |L - M|$

which is impossible, so the function cannot have two distinct limits. \Box

Theorem 2 Show that $\lim_{x\to x_0} f(x) = l \in \mathbb{R} \cup \{\infty, -\infty\}$ iff for all sequences $(y_n)_{n\geq 1}$ with $\lim_{n\to\infty} y_n = x_0$ we have $\lim_{n\to\infty} f(y_n) = l$.

We first prove (\Rightarrow)

For all $\epsilon > 0$, there exists δ such that for all x such that $0 < |x - x_0| < \delta$, we have $|f(x) - l| < \epsilon$.

If $\lim_{n\to\infty}y_n=x_0$, then for all $\epsilon'>0$, there exists $N\in\mathbb{N}$ such that for all n>N

$$|y_n - x_0| < \epsilon$$

Hence we can set $\epsilon' = \delta$ for any value of $\epsilon > 0$. Then there exists N_{ϵ} such that

$$0 < |y_n - x_0| < \epsilon$$

But then by assumption

$$|f(y_n) - l| < \epsilon$$

for all $n > N_{\epsilon}$.

Since N_{ϵ} exists for any value of $\epsilon > 0$, by the definition of sequence convergence,

$$\lim_{n \to \infty} f(y_n) = l$$

Now we prove (\Leftarrow)

Assume that $\lim_{n\to\infty} f(y_n) = l$ for all sequences $(y_n)_{n\geq 1}$ with $\lim_{n\to\infty} y_n = x_0$.

Now assume towards a contradiction that $\lim_{x\to x_0} f(x) \neq l$. Then we have

not '
$$\forall \epsilon > 0 \; \exists \delta > 0 \; (x \in [a, b] \land 0 < |x - x_0| < \delta \Rightarrow |f(x) - l| < \epsilon)$$
'

which is equivalent to

$$\exists \epsilon > 0 \ \forall \delta > 0 (\exists x_\delta \ (x_\delta \in [a, b] \land 0 < |x_\delta - x_0| < \delta \land |f(x_\delta) - l| \ge \epsilon))$$

We have $\lim_{n\to\infty} y_n = x_0$. Let $\delta = \frac{1}{n}$ where $n \geq 1$. Then by assumption, there exists some $\epsilon > 0$ such that for all 1/n > 0, there exists a_n such that $|a_n - x_0| < \frac{1}{n}$ and $|f(a_n) - l| \geq \epsilon$. Since this is true for all $n \geq 1$, $f(a_n)$ always differs from l by ϵ which is a contradiction.

Hence the original assumption that $\lim_{x\to x_0} f(x) \neq l$ is false, so $f(x)\to l$ as $x\to x_0$. \square

Theorem 3 Suppose the two functions $f, g : [a, b] \to \mathbb{R}$ have limits $k \in \mathbb{R}$ and $l \in \mathbb{R}$ respectively at $x_0 \in [a, b]$. Then $f \pm g$ has limit $k \pm l$, $f \cdot g$ has limit kl and if $l \neq 0$, f/g has limit k/l at x_0 .

If $\lim_{x\to x_0} f(x) = k$, then for all sequences $(y_n)_{n\geq 1}$ with $\lim_{n\to\infty} y_n = x_0$, we have $\lim_{n\to\infty} f(y_n) = k$. Likewise, we also have $\lim_{n\to\infty} f(y_n) = l$.

Now let h(x) = f(x) + g(x). Then

$$\lim_{n \to \infty} h(y_n) = \lim_{n \to \infty} f(y_n) \pm g(y_n) = k \pm l$$

by the limit properties of sequences. Therefore, $\lim_{x\to x_0} h(x) = \lim_{x\to x_0} f(x) \pm g(x) = k \pm l$ as required.

The other properties can be proven in an identical way by considering the functions h(x) = f(x)g(x) and $h(x) = \frac{f(x)}{g(x)}$

Theorem 4 If the two functions $f, g : [a, b] \to \mathbb{R}$ are continuous at $x_0 \in [a, b]$, then we have

- $f \pm g$ is continuous at x_0
- The product $f \cdot g$ is continuous at x_0
- If $g(x_0) \neq 0$ then f/g is continuous at x_0

These results are immediate from the limit properties of functions.

Theorem 5 Any polynomial f(x) of degree n is continuous for all real x

We first show that

$$\lim_{x \to a} x = a$$

where a is some arbitrary real number.

Let $\epsilon > 0$ be given, and let $\delta = \epsilon$. Then for all x such that $0 < |x - a| < \delta$, we have

$$|f(x) - a| = |x - a| < \delta \Rightarrow |f(x) - a| < \epsilon$$

so by the definition of the limit, $\lim_{x\to a} x = a$. Since this is true for an arbitrary a, we have $\lim_{x\to x_0} x = x_0$ for all $x_0 \in \mathbb{R}$.

Now we show that for any $n \in \mathbb{N}$, x^n is continuous for all real x.

For $n=0, x^0=1$, for which it is trivial to show that $\lim_{x\to a}1=1$ for all real x

Assume that x^k is continuous over the real numbers for some k > 1. Then $\lim_{x \to a} x^k = a^k$ for all real a. Then for some arbitrary $c \in \mathbb{R}$

$$\lim_{x\to c} x^{k+1} = (\lim_{x\to c} x^k)(\lim_{x\to c} x) = c^{k+1}$$

Since this is true for any real c, x^{k+1} is continuous over the real numbers by definition. Since x^{k+1} is continuous under the assumption that x^k is continuous, and given the base case n = 0, we have x^n is continuous over the real numbers for all $n \in \mathbb{N}$.

Then also for any $\lambda > 0$, we have

$$\lim_{x \to x_0} \lambda x^n = \lim_{x \to x_0} \lambda \cdot \lim_{x \to x_0} x^n = \lambda x_0^n$$

for any real x_0 , so λx_0^n is continuous over the real numbers.

Lastly, we show that any polynomial of degree n is continuous over the real numbers by induction.

From above, a polynomial of degree 0 is a constant which is continuous.

Assume that a polynomial $f_k(x)$ of degree k where $k \in \mathbb{N}$ is continuous over the real numbers. Then for n = k + 1

$$\lim_{x \to x_0} f_{k+1}(x) = \lim_{x \to x_0} (ax^{k+1} + f_k(x)) = \lim_{x \to x_0} ax^{k+1} + \lim_{x \to x_0} f_k(x) = ax_0^{k+1} + f_k(x_0) = f_{k+1}(x_0)$$

Hence $f_{k+1}(x)$ is continuous over all real x under the assumption that $f_k(x)$ is continuous over the real numbers. Since the base case also holds, by induction, $f_n(x)$ is continuous over the real numbers for all $n \in \mathbb{N}$. \square

Theorem 6 Suppose $f:(a,b) \to \mathbb{R}$ is a function with $x_0 \in (a,b)$ and $g:(c,d) \to \mathbb{R}$ is a function with $Im(f) \subset (c,d)$. If f is continuous at x_0 and g is continuous at $f(x_0)$, then the composition $g \circ f:(a,b) \to \mathbb{R}$ with $(g \circ f)(x_0) = g(f(x_0))$ is continuous at x_0 .

If f is continuous at x_0 , then $\lim_{x\to x_0} f(x) = f(x_0)$ by definition, so

$$\forall \epsilon > 0 \ \exists \delta > 0 \ (0 < |x - x_0| < \delta \implies |f(x) - f(x_0)| < \epsilon) \tag{1}$$

Likewise, if g is continuous at $f(x_0)$, then $\lim_{x\to f(x_0)} g(x) = (g\circ f)(x_0)$, so

$$\forall \epsilon > 0 \ \exists \delta > 0 \ (0 < |x - f(x_0)| < \delta \implies |g(x) - (g \circ f)(x_0)| < \epsilon) \tag{2}$$

Let $\epsilon > 0$ be given. Then let $\delta_2 > 0$ be the value for which the limit inequality in (2) holds.

Now set ϵ in (1) to δ_2 . Then there exists $\delta_1 > 0$ such that (1) holds. Therefore, we have

$$0 < |x - x_0| < \delta_1 \implies |f(x) - f(x_0)| < \delta_2$$

But then by (2)

$$0 < |f(x) - f(x_0)| < \delta_2 \implies |(g \circ f)(x) - (g \circ f)(x_0)| < \epsilon$$

Since δ_1 is a function of δ_2 which is itself a function of ϵ , where ϵ can be any positive real number, we have

$$\forall \epsilon > 0 \ \exists \delta > 0 \ (0 < |x - x_0| < \delta \implies |(g \circ f)(x) - (g \circ f)(x_0) < \epsilon)$$

so $\lim_{x\to x_0}(g\circ f)(x)=(g\circ f)(x_0)$ so $g\circ f$ is continuous at x_0 by definition. \square

Lemma 1 If f is continuous in [a,b] then f is bounded.

Suppose that f is continuous but not bounded. Then

$$\forall k \; \exists x_k \in [a, b] \; s.t. \; |f(x_k)| \geq k$$

We can form a sequence $(a_n)_{n\geq 1}$ such that for all $N\in\mathbb{N}^+$, there exists $a_n\in[a,b]$ such that $|f(a_n)|\geq N$. Hence $|f(a_n)|\to\infty$ by definition of convergence to ∞ .

Since $(a_n)_{n\geq 1}$ is bounded, as proven in Chapter 5, $(a_n)_{n\geq 1}$ must have a convergent subsequence $(a_{n_i})_{i\geq 1}$.

Now since f is continuous at l, we have $\lim_{x\to l} f(x) = f(l)$. Hence as proven earlier, we have $\lim_{n_i\to\infty} f(a_{n_i}) = f(l)$, so also $\lim_{n_i\to\infty} |f(a_{n_i})| = |f(l)|$.

But since $|f(a_n)| \to \infty$, we must also have $|f(a_{n_i})| \to \infty$ since any subsequence of a sequence converges to the limit of the sequence. This is a contradiction, so we reject the assumption that f is unbounded. \square

Theorem 7 If $f:[a,b] \to \mathbb{R}$ is a continuous function with $a,b \in \mathbb{R}$ then there exists $r,s \in [a,b]$ such that $f(r) = \sup_{x \in [a,b]} f(x)$ and $f(s) = \inf_{x \in [a,b]} f(x)$ (i.e. f has a maximum and minimum in [a,b]).

By the lemma above, f is bounded. So by the axiom of Dedekind-completeness, f has a supremum and infimum. Let $M = \sup_{x \in [a,b]} f(x)$ and $m = \inf_{x \in [a,b]} f(x)$.

We want to find $v_M \in [a,b]$ such that $f(v_M) = M$. For every n > 0, by the definition of the supremum, there exists $x_n \in [a,b]$ with $M \geq f(x_n) > M - \frac{1}{n}$. Then we can construct the sequence $(x_n)_{n\geq 1}$ with the property that $\lim_{n\to\infty} f(x_n) = M$. Since x_n is bounded, it has a convergent subsequence $(x_{n_i})_{i\geq 1}$; let v_M be $\lim_{i\to\infty} x_{n_i}$. It follows that $\lim_{i\to\infty} f(x_{n_i}) = M$. By the continuity of f at v_M we have $f(v_M) = \lim_{i\to\infty} f(n_i) = M$. There also exists $v_m \in [a,b]$ such that $f(v_m) = m$.

Theorem 8 Intermediate Value theorem If $f : [a,b] \to \mathbb{R}$ is continuous and $s \in \mathbb{R}$ is such that f(a) < s < f(b), then there exists $c \in (a,b)$ such that f(c) = s.

If c=a is such that f(c)=s, then f(a)=s which is a contradiction. Likewise, if c=b then f(b)=s which is also a contradiction, so c cannot equal a or b

Consider the set $A = \{x \in [a, b] : f(x) \le s\}$. Since A is a bounded subset of the real numbers by definition, by the axiom of Dedekind-completeness, A has a supremum; let this supremum be c. We then have three possibilities:

- (1) f(c) = s; then we are done
- (2) f(c) < s. Let f(c) = k. Since it is given that f is continuous over [a, b], $\lim_{x \to c} f(x) = k$, so for all $\epsilon > 0$, there exists $\delta > 0$ such that if $|x c| < \delta$, then $|f(x) k| < \epsilon$.

Let $x=c+\frac{\delta}{2}$ and let $\epsilon=s-k$. Then there exists $\delta>0$ such that $|c+\frac{\delta}{2}-c|=\frac{\delta}{2}<\delta$, so $|f(c+\delta 2)-k|< s-k$

Therefore

$$f(c + \frac{\delta}{2}) = f(c + \frac{\delta}{2}) - k + k$$

$$\leq |f(c + \frac{\delta}{2}) - k| + k$$

$$< s - k + k$$

$$= s$$

Then also $c+\frac{\delta}{2}\in A$ by definition which is a contradiction since c then is not the supremum.

(3) f(c) > s

Since f is continuous at c, then for $\epsilon = k - s$, there exists $\delta > 0$ such that for all x such that $0 < |x - c| < \delta$, we have |f(x) - k| < k - s. Then s - k < f(x) - k < k - s so f(x) > s.

Now since c is the supremum of A, $c-\delta$ is not an upper bound of A. Then there exists $c' \in A$ such that

$$c - \delta < c' < c$$

. Since $c' \in A$, we have $f(c') \leq s$ by definition. But since $|c - c'| < \delta$ so f(c') > s. This is a contradiction, so it cannot be the case that f(c) > s.

It is impossible for f(c) > s or f(c) < s, so the only possibility is that f(c) = s. \square

Theorem 9 If $f:[a,b] \to \mathbb{R}$ for $a,b \in \mathbb{R}$ is continuous, then it is uniformly continuous on [a,b].

Suppose that f is not uniformly continuous on [a,b]. Then there exists $\epsilon > 0$ such that for all $n \geq 1$, there exists $x_n, y_n \in [a,b]$ with $|x_n - y_n|$ with $|x_n - y_n| < \frac{1}{2}$ but $|f(x_n) - f(y_n)| > \epsilon$.

 $|x_n-y_n|<\frac{1}{n}$ but $|f(x_n)-f(y_n)|\geq \epsilon$. As $(x_n)_{n\geq 1}$ is a bounded sequence, it has a convergent subsequence $(x_{n_i})_{i\geq 1}$ with limit l in [a,b]. But then

$$|l - y_{n_i}| \le |l - x_{n_i}| + |x_{n_i} - y_{n_i}|$$

 $< |l - x_{n_i}| + \frac{1}{n_i}$

So y_{n_i} also converges to l. Since f is continuous at l, we have $\lim_{i\to\infty} f(x_{n_i}) = f(l) = \lim_{i\to\infty} f(y_{n_i})f(y_{n_i})$. However, this contradicts $|f(x_{n_i} - f(y_{n_i}))| \ge \epsilon$ for all $i \ge 1$. \square