PROJET 7 PREUVE DE CONCEPT : UTILISATION DE TRANSFORMERS POUR LA MODÉLISATION DE DONNÉES TABULÉES

SOUTENANCE OPENCLASSROOMS, LE 31/08/2022

ERWAN CHESNEAU

PLAN:

- I. Motivations
- II. Les TabTransformers
- III. Collecte des données
- IV. Nettoyage et exploration de la base de données
- V. Features engineering
- VI. Modélisation
- VII. Conclusions
- VIII. Améliorations à envisager

I. MOTIVATION:

- Les données tabulées :
 - Historiquement les données les plus utilisées en ML
 - Données avec lesquelles j'apprécie travailler
- ML : développement régulier de nouvelle méthode ou nouveau modèle :
 - Pour les données tabulées, souvent méthode Gboost les plus efficaces
 - Transformer très en vogue et efficace sur les donnéees textuelles (BERT)
- Utilisation de Transformer sur des données tabulées :
 - Proposé par Huang et al (AWS) en décembre 2020
 - Amélioration de la précision par rapport à un MLP classique
 - Précision proche d'un XGBoost
- Tester cette méthode sur des données réelles

II. LES TABTRANSFORMERS : PRINCIPE

- Proposé par Huang et al en décembre 2020 [1]
- Principe du transformateur :
 - Utiliser les méthodes du NLP pour améliorer les performances
 - Plongement de données catégorielle
 - Auto attention pour conserver un plongement contextualisé
- Architecture du modèle :
 - Couche de plongement de données
 - Un ou plusieurs transformateur(s)
 - Une couche d'auto attention
 - Une couche d'anticipation
 - Concaténation des données catégorielles et continues
 - Un perceptron multicouches

II. LES TABTRANSFORMERS: UTILISATION

- Les auteurs ont testé le modèle sur 15 bases de données
 - Principalement issus de compétitions
 - Nombre de variables catégorielles entre 2 et 128
 - Amélioration des performances par rapport à un MLP
 - Performances similaires à celles accessibles par des arbres de décision
- D'autres auteurs ont également utilisés ce transformateur
 - Prédiction de la mortalité due à la COVID-19
 - Prédiction de maladie neurodégénérative
 - Etude d'attaques informatiques
- Des auteurs proposent de combiner TabTransformer et XGBoost

Dataset	Baseline MLP	TabTransformer	Gain (%)
albert	74.0	75.7	1.7
1995_income	90.5	90.6	0.1
dota2games	63.1	63.3	0.2
hcdr_main	74.3	75.1	0.8
adult	72.5	73.7	1.2
bank_marketing	92.9	93.4	0.5
blastchar	83.9	83.5	-0.4
insurance_co	69.7	74.4	4.7
jasmine	85.1	85.3	0.2
online_shoppers	91.9	92.7	0.8
philippine	82.1	83.4	1.3
qsar_bio	91.0	91.8	0.8
seismicbumps	73.5	75.1	1.6
shrutime	84.6	85.6	1.0
spambase	98.4	98.5	0.1

Model Name	Mean AUC (%)
TabTransformer	82.8 ± 0.4
MLP	81.8 ± 0.4
GBDT	82.9 ± 0.4
Sparse MLP	81.4 ± 0.4
Logistic Regression	80.4 ± 0.4
TabNet	77.1 ± 0.5
VIB	80.5 ± 0.4

III. COLLECTE DES DONNÉES

- Objectif : Prédire le prix de l'immobilier en France
- Utilisation uniquement de données publiques :
 - Récupération des données sur data.gouv.fr
- Les bases de données :
 - L'historique des mutations immobilières (descriptions des biens)
 - Données sur les communes (caractérisation de l'environnement)
 - Transport en commun (Accessibilité)
 - Educations (écoles à proximité)
 - Données sur les loyers (estimation locative)

IV. NETTOYAGE ET EXPLORATION : MUTATIONS IMMOBILIÈRES

- 40 variables : toutes ne sont pas utiles
 - Conservées : localisation, surface du bien et terrain, type de local, type de mutation, nombre de pièces et valeur
- Suppression des observations contenant des locaux commerciaux ou uniquement des dépendances
- Suppression des opérations avec un nombre de biens importants (Opérations immobilières particulières)
- Certaines mutation ont une valeur très élevée (>10M) ou très faible (1€)
 - On conserve uniquement les mutations dont la valeur est entre 10k et 1M€
- Suppression des biens de moins de 10m² et dont le terrain et > 5000m²
- Corrélation entre valeur et :
 - Surface du bien
 - Surface du terrain
 - Nombre de pièce

IV. NETTOYAGE ET EXPLORATION : COMMUNES

Données sur les communes :

- 101 variables initialement mais beaucoup peu renseignées
 - Conservées : code commune, nom, département, accès aux soins, informations démographiques et taux de propriété
- Vérification que les variables ne sont pas aberrantes et sont discriminantes :
 - Le nombre de pharmacie semble erroné (max 2)
 - Le taux d'étudiant non discriminant

Loyers:

- On conserve le nom et le code de la commune et les estimations hautes, basses, et moyennes des loyers / m²
- Données disponibles pour les maisons et les appartements

IV. NETTOYAGE ET EXPLORATION

Educations:

- Liste de tous les établissements avec le niveau d'études, la localisation
- Simplification du niveau d'étude en niveau maternelle, élémentaire, collège, lycée
- Les universités sont traitées de la même manière
- Nombre d'étudiants inscrits par an moyens calculé

Transport en communs:

- Liste de toutes les stations de transports avec la localisation, le mode de transport
- Pour toutes les bases de données la localisation est vérifiée :
 - Latitude : entre 0 et 90
 - Longitude : entre -180 et 180

V. FEATURES ENGINEERING

- Combinaison de toutes les bases de données :
 - Informations sur les communes : grâce aux codes communes
 - Calcul du loyer estimé pour chaque bien
- Calcul de distances :
 - Utilisation de la librairie Sklearn
 - Distances entre le bien et les écoles
 - Nombre d'étudiants dans un rayon de 10km
 - Distance aux transports
 - Mode de transport à proximité

V. FEATURES ENGINEERING: FEATURES IMPORTANCES

- Sélection des variables les plus importantes parmi les 23 disponibles
- Combiner différentes méthodes :
 - F_score
 - Regularisation Lasso (L1)
 - Arbre de décision et XGBoost
- Seuil fixé arbitrairement
- Sélection des features présentes ³/₄
- Ajout du nombre de pièces
- Ajout du nombre de dépendance

VI. MODELISATION: MODELE « CLASSIQUE »

- Des modèles classiques sont utilisés comme baseline
 - ElasticNet
 - KNN
 - Kernel SVR
 - XGBoost
 - CateBoost
- Meilleur modèle : XGBoost
 - Optimisation des hyperparamètres

Modèle	MAE
Dummy mean	92431
ElasticNet	47833
KNN	40993
Kernel SVR	91022
XGBoost	32809
XGBoost opt	31864
CateBoost	30711

VI. MODELISATION : RÉSEAUX DE NEURONES

- Les TabTransformers sont injectés dans un MLP :
 - Réseaux de neurones sert aussi de baseline
- Recherche de la meilleure architecture
 - Dans une architecture rectangulaire (l,n)
 - Optimum pour l=10, n=128 et l=15, n=256
- Réseaux moins performant que les méthodes de Boosting

Modèle	MAE
Dummy mean	92431
ElasticNet	47833
KNN	40993
Kernel SVR	91022
XGBoost	32809
XGBoost opt	31864
CateBoost	30711
NN_I-10_n-128	36755
NN_I-15_n-256	36896

VI. MODELISATION: TRANSFORMATEURS

- Librairies pytorch widedeep
- Différents modèles :
 - TabMLP : Plongement de données uniquement
 - TabResNet : bloc ResNet
 - TabTransformers: Huang et al
- TabMLP donne des faibles performances
- TabTransformers plus performants qu'un NN...
- Mais moins performant que CateBoost et XGBoost
- Données trop peu structurées ?

Modèle	MAE
Dummy mean	92431
ElasticNet	47833
KNN	40993
Kernel SVR	91022
XGBoost	32809
XGBoost opt	31864
CateBoost	30711
NN_I-10_n-128	36755
NN_I-15_n-256	36896
TabMLP	39247
TabResNet	36305
TabTransformers	35480

VI. MODELISATION: MODEL AVERAGING

- Performances peu satisfaisantes
- Peut on améliorer la performance en combinant les modèles?
 - Sélection des modèles les plus performants
 - Hypothèse qu'une partie de l'erreur est aléatoire
 - Hypothèse que tous les modèles ne font pas les mêmes erreurs
- La performance est comparable à XGBoost
- Pas d'amélioration drastique :
 - L'erreur n'est pas aléatoire
 - L'erreur provient probablement d'imprécision de la base de données

Modèle	MAE
Dummy mean	92431
ElasticNet	47833
KNN	40993
Kernel SVR	91022
XGBoost	32809
XGBoost opt	31864
CateBoost	30711
NN_I-10_n-128	36755
NN_I-15_n-256	36896
TabMLP	39247
TabResNet	36305
TabTransformers	35480
Model averaging	32126

VI. MODELISATION: FEATURES IMPORTANCE

- 10 variables les plus importantes
- Apprentissage de tous les modèles
- Perte de performance systématique
- Les variables déclarées non importantes apportent de l'information
- Simplifie le modèle...
- ... mais à utiliser avec précaution

VII. CONCLUSIONS

- Les transformers ont été adaptés pour pouvoir être appliqué aux données tabulées
- Test sur une base de données construite à partir de données publiques et donc imparfaites / incomplètes
 - Base de données nettoyée afin de conserver uniquement des données caractérisables et non aberrantes
 - Nouvelles variables créées pour caractériser la distance à des lieux d'intérêts
- Les TabTransformers permettent d'améliorer les performances accessibles à partir d'un NN
- La performance accessible par une méthode de boosting non égalée
 - Les données ne sont pas totalement adaptées à la méthode → pas assez structurées
- La précision est assez faible et non annulable en moyenne
 - L'erreur causée par une base de données de trop faible qualitée

VIII. AMÉLIORATIONS

- Compléter la base de données avec des informations complémentaires (notamment sur la qualité des biens)
- Augmenter le nombre de variables (catégorielle) pour améliorer les performances
- Tester d'autres méthodes de sélection de variables
- Tester la combinaison de Xgboost avec les TabTransformers pour profiter du meilleur des deux mondes...

MERCI POUR VOTRE ATTENTION!