# $\begin{array}{c} {\rm Second~Exam} \\ {\rm CS~1102~Computer~Science~2} \end{array}$

Spring 2018

Thursday April 19, 2018 Instructor Muller

#### **KEY**

Before reading further, please arrange to have an empty seat on either side of you. Now that you are seated, please write your name **on the back** of this exam.

This is a closed-notes and closed-book exam. Computers, calculators, and books are prohibited.

- Partial credit will be given so be sure to show your work.
- Feel free to write helper functions if you need them.
- Please write neatly.

| Problem | Points | Out Of |
|---------|--------|--------|
| 1       |        | 4      |
| 2       |        | 4      |
| 3       |        | 4      |
| 4       |        | 4      |
| 5       |        | 4      |
| Total   |        | 20     |

#### Part 1: Short Answer

For true/false questions, please circle the correct answer.

1. True or false: Let t be a binary tree with k leaves. There are no paths in t of length greater than  $\log_2 k$ .

#### Answer:

False

2. True or false: Let t be a full binary tree with k leaves. There are no paths in t of length greater than  $\log_2 k$ .

#### **Answer:**

False

3. True or false: Let t be a perfect binary tree with k leaves. There are no paths in t of length greater than  $\log_2 k$ .

#### **Answer:**

True

4. True or false: Let t be a Red/Black tree with k leaves and consider paths in t without considering Red or Black link color. There are no paths in t of length greater than  $\log_2 k$ .

#### **Answer:**

False

5. True or false: Every Huffman coding tree is a full binary tree.

#### Answer:

True

6. True or false: Since the Huffman coding algorithm works for any kind of input (not just text), one can always compress a zip file to produce a still smaller file.

#### Answer:

False

7. True or false: Let  $A = \{a, b, c\}$ .  $R = \{(b, b)\}$  is a transitive relation on A.

#### **Answer:**

True

8. Let  $A = \{a, b, c\}$ . Show any equivalence relation on A.

```
{(a, a), (b, b), (c, c)}
```

# Part 2: Binary Heaps

Show all of the successive binary trees that result from the left-to-right insertion of the letters ELONMUSK into an empty max binary heap. I.e., a binary heap in which the root contains the maximum value.



# Part 3: Red/Black Trees

Show all of the successive trees that result from the left-to-right insertion of the letters ELONMUSK into an empty left-leaning Red/Black tree.



# Part 4: Huffman Coding

A zip file contains the following frequency table and bit sequence.

| +- |   | +- |   | -+- |   | +- |   | +- |   | +- |   | +- |   | -+ |
|----|---|----|---|-----|---|----|---|----|---|----|---|----|---|----|
| 1  | Α | 1  | M |     | N |    | 0 | 1  | R | 1  | T | 1  | Н | 1  |
| +- |   | +- |   | -+- |   | +- |   | +- |   | +- |   | +- |   | -+ |
| 1  | 2 | ١  | 1 |     | 1 | 1  | 1 | 1  | 1 | ١  | 1 | ١  | 1 | ١  |
| +- |   | +- |   | -+- |   | +- |   | +- |   | +- |   | +- |   | +  |

0110011000111010101100

The file was constructed with the same assumptions as in the problem set:

- 1. Letters are initially entered into the PQ in alphabetical order;
- 2. Ties are broken by placing the newly inserted entry behind all entries with the same priority;
- 3. In a Huffman Tree traversal, left means 0 and right means 1.

What is the uncompressed text? Please show all of your work.

#### **Answer:**

MARATHON

# Part 5: Traversing Trees

Consider a binary tree with integers in the nodes:

Write a function int addPath(Node root, int path) such that a call addPath(root, path) returns the sum of the integers on the binary path specified in path, with rightmost bit 0 meaning left and rightmost bit 1 meaning right. For example, with root as above and with path = 5 = 0b101, the call addPath(root, path) should return 4 + 2 + 6 + 8 = 20. A call addPath(root, path) with root == null should return 0 for any path.

```
public int addPath(Node root, int path) {
  if (root == null)
    return 0;
  Node next = path % 2 == 0 ? root.left : root.right;
  return root.info + addPath(next, path / 2);
}
```