Midterm Exam

Oct 28, 8:00 am - 12:00 pm, LW-836

Midterm Review

- 1. Represent the system shown below as an ABG.
- 2. Generate Zone with the main trajectory a(h5)a(h6)a(h7)a(h8). Use grammars of Trajectories and Zones, show the generations with <u>important</u> values of the functions and sets including

DOCK, med_i , $lmed_i$, SUM, ST_k, MOVE, $next_i$, $f, h_i^o, h_i, g, \underline{v}, \underline{w}$, TIME, and NEXTTIME.

3. Show your understanding of Translations. Show a translation table (analogous to table in handout No. 14) for the main variation (your choice) assuming that Black moves first. Include only the most important trajectories.

Note. On the exam it is going to be a meaningful ABG (which may include nonchess-like pieces). It will be stated as a gaming problem so that generating a zone and moving in it would allow you to solve this ABG.

Class of Problems

Abstract Board Game

is the following eight-tuple

$$\langle X, P, R_p, \{ON\}, v, S_i, S_t, TR \rangle$$

 $X = \{x_i\}$ is a finite set of *points*;

 $P = \{p_i\}$ is a finite set of *elements*; $P = P_1 \cup P_2$, $P_1 \cap P_2 = \emptyset$;

 $\mathbf{R}_{\mathbf{p}}(\mathbf{x}, \mathbf{y})$ is a family of binary relations of *reachability* in X $(\mathbf{x} \in X, \mathbf{y} \in X, \mathbf{p} \in P)$; y is *reachable* from x for p;

ON(p)=x is a partial function of *placement* of elements P into X;

 $\mathbf{v} > 0$ is a real function, $\mathbf{v}(\mathbf{p_i})$ are the *values* of elements;

 S_i is a set of *initial* states of the system, a certain set of formulas $\{ON(p_i) = x_i\}$;

 S_t is a set *target* states of the system (as S_i);

TR is a set of operators TRANSITION(p, x, y) for transition of the system from one state to another described as follows

precondition: $ON(p) = x \wedge R_p(x, y)$ **delete**: ON(p) = x, ON(q) = y**add**: ON(p) = y


```
Q_1 S(u, v, w) \rightarrow A(u, v, w)
                                                                                                                                     two
                                                                                                                                                 Ø
         Q_2 = A(u, v, w) \rightarrow t(h_i^0(u), l_0+1)
                                                                                   TIME(z) = DIST(z, h_i^0(u))
                                                                                                                                       3
                                                                                                                                                  Ø
                             A((0, 0, 0), g(h_{i}^{0}(u), w), zero)
         Q_3 \quad A(u, v, w) \rightarrow A(f(u, v), v, w)
                                                                                   NEXTTIME(z) =
                                                                                                                                    four
                                                                                                                                                   5
                                                                                   init(u, NEXTTIME(z))
         Q_4 A(u, v, w) \rightarrow t(h_i(u), TIME(y)))
                                                                                                                                                   3
                                                                                   NEXTTIME(z) =
                                        A(u, v, g(h_i(u), w))
                                                                                   ALPHA(z, h_j(u), TIME(y) - l_j+1)
         Q_{5} A(u, v, w) \rightarrow A((0, 0, 0), w, zero)
                                                                                   TIME(z) = NEXTTIME(z)
                                                                                                                                                   6
         Q_6 \quad A(u, v, w) \rightarrow e
                                                                                                                                       Ø
                                                                                                                                                   Ø
Q_1(u) = (ON(p_0) = x) \land (MAP_{X,p_0}(y) \le l \le l_0) \land (\exists q ((ON(q) = y) \land (OPPOSE(p_0, q))))
\boldsymbol{Q_{2}}(u) = T; \hspace{1cm} \boldsymbol{Q_{3}}(u) = (\mathbf{x} \neq \mathbf{n}) \vee (\mathbf{y} \neq \mathbf{n}) \hspace{1cm} \boldsymbol{Q_{5}}(w) = (w \neq zero); \hspace{1cm} \boldsymbol{Q_{6}} = T;
\mathbf{Q}_{4}(u) = \exists p ((ON(p) = x) \land (l > 0) \land (x \neq x_{0}) \land (x \neq y_{0})) \land [(\neg OPPOSE(p_{0}, p) \land (MAP_{X,p}(y) = 1))]
\frac{v(\text{OPPOSE}(p_0, p) \land (\text{MAP}_{X,p}(y) \le l)]}{init(u, r) = \begin{cases} 2n, & \text{if } u = (0, 0, 0), \\ r, & \text{if } u \ne (0, 0, 0). \end{cases}}
\frac{init(u, r) = \begin{cases} (x + 1, y, l), & \text{if } (x \ne n) \land (l > 0)) \lor ((y = n) \land (l \le 0)) \\ (1, y + 1, TIME(y + 1) \times v_{y+1}), & \text{if } (x = n) \lor ((l \le 0) \land (y \ne n)). \end{cases}}
Let t_0 \in L_t^{l_0}(S), t_0 = a(z_0)a(z_1)...a(z_m), t_0 \in t_{n_0}(z_0, z_m, m);
 If ((z_m = y_0) \land (p = p_0) \land (\exists k (1 \le k \le m) \land (x = z_k))) \lor
       (((z_m \neq y_0) \lor (p \neq p_0)) \land (\exists \ k \ (1 \leq k \leq m - 1) \land (x = z_k)))
      then DIST(x, p_0, t_0) = k+1 else DIST(x, p_0, t_0) = 2n
                                                max(NEXTTIME(x), k), if(DIST(x, p_0, t_0) \neq 2n)
                                                                                                    \land (NEXTTIME(x) \neq 2n);
  ALPHA(x, p_0, t_0, k) = \langle k,
                                                                                                    if DIST(x, p_0, t_0) \neq 2n) \land
                                                                                                      (NEXTTIME(x) = 2n);
                                                                                                     if DIST(x, p_0, t_0) = 2n).
                                                 NEXTTIME(x),

\frac{g_{\mathbf{r}}(p_{o}, t_{o}, w) = \begin{cases} 1, & \text{if } DIST(r, p_{o}, t_{o}) < 2n, \\ w_{r}, & \text{if } DIST(r, p_{o}, t_{o}) = 2n. \end{cases}} \text{TRACKS}_{p_{o}} = \{p_{o}\} \times (\bigcup L[G_{\mathbf{t}}^{(2)}(x, y, k, p_{o})] \}

 If TRACKS_{po} = e
                                                                                                                    1≤k≤l
     then h_i^o(u) = e
      \textbf{else} \ \ \text{TRACKS}_{p_o} = \{(p_o, t_1), (p_o, t_2), \dots, (p_o, t_b)\}, (b \leq M) \ \ \textbf{and} \ \ \textbf{\textit{h}}_i^o(u) = \begin{cases} (p_o, t_i), & \text{if } i \leq b, \\ (p_o, t_b), & \text{if } i > b. \end{cases}
```

 $\textbf{else} \ \ TRACKS = \{(p_1, t_1), (p_1, t_2), \dots, (p_m, t_m)\}, \ \ (m \leq M) \ \ \textbf{and} \ \ \ \textbf{\textit{h}}_i(u) = \begin{cases} (p_i, t_i), & \text{if } i \leq m, \\ (p_m, t_m), & \text{if } i > m. \end{cases}$

At the beginning: $u = (x_0, y_0, l_0)$, w = zero, v = zero, $x_0 \in X$, $y_0 \in X$, $l_0 \in \mathbb{Z}_+$, $p_0 \in P$, and TIME(z) = 2n, NEXTTIME(z) = 2n for all z from X.

Grammar G_t⁽²⁾ of shortest and admissible trajectories.

Q	Kernel, π_k π_i	r_T	F_{F}
Q_1	$S(x,y,l) \rightarrow A(x,y,l)$	two	Ø
Q_2	$A(x,y,l) \rightarrow A(x, med_i(x, y, l), lmed_i(x, y, l))$ $A(med_i(x, y, l), y, l-lmed_i(x, y, l))$	three	three
<i>Q</i> ₃	$A(x,y,l) \rightarrow a(x)A(next_j(x,l),y,f(l))$	three	4
<i>Q</i> ₄	$A(x,y,l) \rightarrow a(y)$	three	5
Q_5	$A(x,y,l) \rightarrow e$	three	Ø
	Q ₁ Q ₂ Q ₃ Q ₄	$Q_{1} \qquad S(x,y,l) -> A(x,y,l)$ $Q_{2} \qquad A(x,y,l) -> A(x, med_{i}(x,y,l), lmed_{i}(x,y,l))$ $A(med_{i}(x,y,l), y, l-lmed_{i}(x,y,l))$ $Q_{3} \qquad A(x,y,l) -> a(x)A(next_{j}(x,l), y, f(l))$ $Q_{4} \qquad A(x,y,l) -> a(y)$	Q_1 $S(x,y,l) \rightarrow A(x,y,l)$ two Q_2 $A(x,y,l) \rightarrow A(x, med_i(x,y,l), lmed_i(x,y,l))$ $three$ $A(med_i(x,y,l), y, l - lmed_i(x,y,l))$ $lmed_i(x,y,l)$ Q_3 $A(x,y,l) \rightarrow a(x)A(next_j(x,l), y, f(l))$ $lmed_i(x,y,l)$ Q_4 $A(x,y,l) \rightarrow a(y)$ $lmed_i(x,y,l)$

$$V_{T} = \{a\},$$

$$V_{N} = \{S, A\},$$

$$V_{PR}$$

$$Pred = \{Q_{1}, Q_{2}, Q_{3}, Q_{4}, Q_{5}\}$$

$$Q_{1}(x, y, l) = (MAP_{X,p}(y) \le l < 2MAP_{X,p}(y)) \land (l < 2n)$$

$$Q_{2}(x, y, l) = (MAP_{X,p}(y) \ne l)$$

$$Q_{3}(x, y, l) = (MAP_{X,p}(y) = l) \land (l \ge 1)$$

$$Q_{4}(y) = (y = y_{0})$$

$$Q_{5}(y) = (y \ne y_{0})$$

$$Var = \{x, y, l\};$$

$$Con = \{x_{0}, y_{0}, l_{0}, p\};$$

$$Func = Fcon \cup Fvar;$$

$$Fcon = \{f, next_{1}, ..., next_{n}, med_{1}, ..., med_{n}, lmed_{1}, ..., lmed_{n}\} \quad (n = |X|),$$

functions $next_i$, med_i and $lmed_i$ are defined below.

$$Fvar = \{x_0, y_0, l_0, p\}$$

 $E = \mathbb{Z}_{+} \cup X \cup P$ is the subject domain;

$$Parm: S \longrightarrow Var, A \longrightarrow Var, a \longrightarrow \{x\};$$

$$L=\{1,4\} \cup two \cup three, two = \{2_1,2_2,...,2_n\}, three = \{3_1,3_2,...,3_n\}$$

 $f(l) = l-1, D(f) = \mathbb{Z}_{+} \setminus \{0\}$

At the beginning of derivation: $x = x_0$, $y = y_0$, $l = l_0$, $x_0 \in X$, $y_0 \in X$, $l_0 \in \mathbb{Z}_+$, $p \in P$.

Definition of functions med, lmed, next

med; is defined as follows:

$$\begin{split} &D(med_i) = \mathbf{X} \times \mathbf{X} \times \mathbf{Z}_+ \times \mathbf{P} \\ &\mathrm{DOCK} = \{\mathbf{v} \mid \mathbf{v} \text{ from } \mathbf{X}, \mathrm{MAP}_{\mathbf{Xo},\mathbf{p}}(\mathbf{v}) + \mathrm{MAP}_{\mathbf{yo},\mathbf{p}}(\mathbf{v}) = l\}, \\ &\mathrm{If} \\ &\mathrm{DOCK}_l(\mathbf{x}) = \{v_1, v_2, ..., v_m\} \neq \emptyset \\ &\mathrm{then} \\ &med_l(\mathbf{x}, \mathbf{y}, l) = v_l \text{ for } 1 \leq i \leq m \text{ and} \\ &med_l(\mathbf{x}, \mathbf{y}, l) = v_m \text{ for } m < i \leq n, \\ &\mathrm{otherwise} \\ &med_l(\mathbf{x}, \mathbf{y}, l) = \mathbf{x}. \end{split}$$

lmed; is defined as follows:

$$D(med_i) = X \times X \times \mathbf{Z}_+ \times P$$
$$lmed_i(x, y, l) = MAP_{X,p}(med_i(x, y, l))$$

next; is defined as follows:

$$\begin{split} &D(\textit{next}_i) = \mathbf{X} \times \mathbf{Z}_+ \times \mathbf{X}^2 \times \mathbf{Z}_+ \times \mathbf{P} \\ &\mathbf{SUM} = \{\mathbf{v} \mid \mathbf{v} \text{ from } \mathbf{X}, \mathbf{MAP}_{\mathbf{X}_0,\mathbf{p}}(\mathbf{v}) + \mathbf{MAP}_{\mathbf{y}_0,\mathbf{p}}(\mathbf{v}) = l_0\}, \\ &\mathbf{ST}_{\mathbf{k}}(\mathbf{x}) = \{\mathbf{v} \mid \mathbf{v} \text{ from } \mathbf{X}, \mathbf{MAP}_{\mathbf{X},\mathbf{p}}(\mathbf{v}) = \mathbf{k}\}, \\ &\mathbf{MOVE}_{\textit{l}}(\mathbf{x}) \text{ is an intersection of the following sets:} \\ &\mathbf{ST}_1(\mathbf{x}), \mathbf{ST}_{l_0-l+1}(\mathbf{x}_0) \text{ and } \mathbf{SUM}. \\ &\mathbf{If} \\ &\mathbf{MOVE}_{\textit{l}}(\mathbf{x}) = \{m_1, m_2, ..., m_r\} \neq \emptyset \\ &\mathbf{then} \\ &\textit{next}_{\textit{l}}(\mathbf{x}, \textit{l}) = m_{\textit{l}} \text{ for } \textit{i} \leq \textit{r} \text{ and} \\ &\textit{next}_{\textit{l}}(\mathbf{x}, \textit{l}) = m_{\textit{r}} \text{ for } \textit{r} < \textit{i} \leq \textit{n}, \\ &\mathbf{otherwise} \\ &\textit{next}_{\textit{l}}(\mathbf{x}, \textit{l}) = \mathbf{x}. \end{split}$$