GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- VI (NEW) EXAMINATION - WINTER 2021

Subject Code:3160704 Date:24/11/2021

Subject Name: Theory of Computation

Time:10:30 AM TO 01:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

MARKS

Q.1 (a) Define one-to-one, onto and bijection function

03

(b) The given relation R on set $A = \{1,2,3\}$ determine whether the Relation is reflexive, symmetric or transitive, give reason. $R = \{(1,1), (1,2), (1,3), (2,1), (2,2), (3,1), (3,3)\}$

04

(c) Write Principle of Mathematical Induction. Prove that for every n > 1, $1 + 3 + 5 + ... + (2n - 1) = n^2$

07

Q.2 (a) Define FA and Write recursive definition of NFA

03

(b) Find a regular expression of following subsets of $\{0, 1\}^*$

04

- 1. The language of all strings that begin or end with 00 or 11.
 - 2. The language of all strings ending with 1 and not containing 00.
- 07
- (c) Draw Finite Automata to accept following over input alphabets $\Sigma = \{0, 1\}$ (i) The language accepting strings not ending with '01'.
- 07
- (ii)The language accepting strings next to last symbol '0'

OR

(c) Let M1 and M2 be the FAs pictured in Figure, recognizing languages L1 and L2 respectively.

Draw FAs recognizing the following languages.

- a. L1 U L2
- b. L1 L2

Q.3

3 (a) Give the difference between moore machine and mealy machine.

03

(b) Define Context Free Grammar. Find context-free grammar for the language: $L = \{a^i b^j c^k \mid j = i + k\}$

04

Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-VI (NEW) EXAMINATION - SUMMER 2022

Subi		ode:3160704 Date:0	1/06/2022
•		ame:Theory of Computation	1/00/2022
_		<u>-</u>	Marks: 70
Instru			VICE 1150 7 0
	1. A	ttempt all questions.	
		lake suitable assumptions wherever necessary.	
		gures to the right indicate full marks.	
	4. 51	mple and non-programmable scientific calculators are allowed.	MARKS
0.1	(-)	Definer Set Subset Complement	
Q.1		•	03 04
	(b)	example.	V4
	(c)	•	07
	(C)	(i). $(0+1)^*(1+00)(0+1)^*$	U1
		(i). $(0+1)(1+00)(0+1)$ (ii). $(111+100)^*0$	
		(11). (111 100) 0	
Q.2	(a)	Explain Regular language & Regular expressions	03
Q.2	(a) (b)		03
	(6)	subsets of $\{0,1\}^*$	04
		(i). the language of all strings that do not end with 01	
		(ii). the language of all strings that begin with or end with 00 or	
		11	
	(c)	Prove Kleene's theorem part-1	07
		OR	
	(c)	Explain procedure to minimize finite automata	07
Q.3	(a)	Define Context free grammar & context free language	03
	(b)	· · · · · · · · · · · · · · · · · · ·	04
		(i) $L=\{a^ib^jc^k \mid i=j \text{ or } j=k\}$	
		(ii) $L=\{a^ib^jc^k\mid j>i+k\}$	
	(c)	Convert following CFG to CNF:	07
	(0)	$S \rightarrow S(S)/^{\wedge}$	07
		OR	
Q.3	(a)	Define Regular grammar and give example.	03
	(b)	1 11	04
	(c)	Convert following CFG to CNF:	07
		$S->aX/Yb$ $X->S/^ Y->bY/b$	
Q.4	(a)	What is a pushdown automaton? Explain.	03
Q	(b)		04
	(c)	Design and draw deterministic PDA Accepting "Balance string of	07
		brackets"	
0.1		OR	0.2
Q.4		Explain deterministic pushdown automata.	03
	(b) (c)	Explain conversion from PDA to CFG. Design and draw PDA to accept string with more a's than b's.	04 07
	(U)	Design and draw 1 Dr. to accept suring with more a 5 mail 0 5.	U/

Q.5	(a)	What is Turing machine? Explain its capabilities.	03
	(b)	Explain Church Turing thesis.	04
	(c)	Design a Turing machine to copy a string.	07
	, ,	OR	
Q.5	(a)	Explain Primitive Recursive Functions.	03
	(b)	Explain Universal Turing machine	04
	(c)	Design a Turing machine to delete a symbol.	07
