世界知的所有権机

PCT

特顧平6/206958

特許協力条約に基づいて公

9607275A1

WO96/07275 (11) 国際公開番号 (51) 国際特許分類6 A1 H04N 9/07, 9/09, 5/228 1996年3月7日(07.03.96) (43) 国際公開日 (81) 指定国 PCT/JP95/01740 (21) 国際出顧番号 CN, JP, KR, US, 欧州特許(DE, FR, GB). 1995年8月31日(31.08.95) (22) 国際出願日 国際調査報告書 **添付公開書類** (30) 優先権データ

Љ

(71) 出願人(米国を除くすべての指定国について) ソニー株式会社(SONY CORPORATION)[JP/JP] 〒141 東京都品川区北品川6丁目7番35号 Tokyo, (JP)

(72) 発明者;および

(75) 発明者/出願人 (米国についてのみ) 近藤哲二郎(KONDO, Tetsujiro)[JP/JP] 川口邦雄(KAWAGUCHI, Kunio)[JP/JP] 〒141 東京都品川区北品川6丁目7番35号 ソニー株式会社内 Tokyo, (JP)

(74) 代理人 弁理士 小池 晃,外(KOIKE, Akira et al.) 〒105 東京都港区虎ノ門二丁目6番4号 第11森ビル Tokyo, (JP)

1994年8月31日(31.08.94)

(54) Tide: IMAGE PICKUP DEVICE

(57) Abstract

An image pickup device comprises a CCD (3) which converts the scene light received through a color filter (2) into electrical image signals; a color separation circuit (6) for separating the signals received from the CCD (3) into R-, G- and B-signal components; signal converters (50, 60 and 70) which receive respectively the R-, G-, and B-signal components from the circuit (6) and generate high-resolution R-, G- and B-signal components by converting the resolution of the received R-, G-, and B-signal components into higher resolution; and signal processing circuit (80) which receives the high-resolution R-, G- and B-signal components from the converters (50, 60 and 70) and generates luminance signals and chrominance components from the received R-, G-, and B-signals components.

(57) 要約

本発明に係る撮像装置は、色フィルタ2を介して入力された被撮像光を撮像信号に変換するCCD3と、CCD3から撮像信号が供給され、撮像信号をR信号成分、G信号成分及びB信号成分に分ける色分離回路6からR信号成分、G信号成分及びB信号成分、B信号成分、R信号成分、G信号成分及びB信号成分、B信号成分及びB信号成分を生成するR信号のB信号で変換部50、G信号変換部60及びB信号変換部70と、R信号変換部50、G信号変換部60及びB信号変換部70から高解像度のR信号成分、高解像度のB信号成分が供給され、高解像度のR信号成分、高解像度のG信号成分が供給され、高解像度のR信号及び色信号を生成する信号処理回路80とを有する。

,t⁵

PCT/JP95/01740

WO 96/07275

- 1 -

明細書

摄像装置

技術分野

本発明は、電荷結合素子(CCD)を用いた撮像装置に関し、特にCCDを用いて高解像度の映像信号を得る撮像装置に関する。

背景技術

電荷結合素子(CCD)を用いて被写体を撮像し、映像信号を出力する撮像装置が知られている。この従来の撮像装置について、図1、図2を用いて説明する。

図1は、CCDを1つ用いて映像信号を得る単板方式の撮像装置の一例の構成を示すブロック図である。

光学系1に入射された被撮像光は、色フィルタ2を介してCCD3に入射される。この色フィルタ2は、例えば黄色フィルタ、シアンフィルタ及びマゼンタフィルタからなる補色フィルタである。この色フィルタ2を介してCCD3に入射された被撮像光は、CCD3にて光電変換されて、撮像信号としてビデオアンプ4に供給される。この撮像信号は、ビデオアンプ4にて所定のレベルにまで増幅された後に、A/D変換回路5に供給される。このA/D変換回路5にて、撮像信号が所定のビット数のディジタル信号に変換された撮像信号は、色/D変換回路5にてディジタル信号に変換された撮像信号は、色

分離回路6に供給される。

この色分離回路6は、入力されたディジタル撮像信号をR信号成分、G信号成分及びB信号成分に分け、夫々を信号処理回路7に供給する。信号処理回路7は、供給されたR信号成分、G信号成分及びB信号成分に夫々所定の信号処理及びマトリクス演算を施して、輝度信号Y及び色差信号R-Y、B-Yを生成する。この信号処理回路7にて生成された色差信号R-Y、B-Yは、変調回路8に供給される。

この変調回路8は、色副搬送波信号を色差信号R-Y、B-Yによって直交2軸(二相)変調し、得られる搬送色信号(以下、色信号という。)を加算器9の一方の入力端に供給する。この加算器9の他方の入力端には、信号処理回路7より輝度信号Yが供給され、この輝度信号Yと変調回路8からの色信号とが加算されてディジタル複合映像信号が生成され、出力端子10より出力される。

この図1に示す撮像装置においては、1つの撮像素子を用いて、 被撮像光からR信号成分、G信号成分及びB信号成分を得る構成と されているので、小型軽量であり、持ち運びには適しているが、R 信号成分、G信号成分及びB信号成分の夫々に割り当てられる画素 数が比較的少ないため、撮像信号の解像度、すなわち出力端子10 から出力される複合映像信号が有する解像度が比較的低いといった 問題がある。

この解像度を上げるために、CCDを3つ使用して撮像信号を得る3板方式の撮像装置も知られている。この3板方式の撮像装置の一例について、図2を参照しながら説明する。

この図2において、被撮像光が光学系21を介して色分解プリズ

ム22に入射される。色分解プリズム22は、被撮像光を、赤色光、緑色光及び青色光に分光し、夫々赤色撮像用CCD23、緑色撮像用CCD25に入射させる。

赤色撮像用CCD23、緑色撮像用CCD24及び青色撮像用CCD25は、入射された赤色光、緑色光及び青色光を夫々光電交換し、R信号成分、G信号成分及びB信号成分を出力する。これらのR信号成分、G信号成分及びB信号成分は、ビデオアンプ26、27及び28は、供給されたR信号成分、G信号成分及びB信号成分を夫々所定のレベルに増幅して、A/D変換回路29、30及び31に大大の大いのの名/D変換回路29、30及び31に大大な方のの名/D変換回路29、30及び31にて大大な方に変換される。これらのA/D変換回路29、30及び31にて夫な方に変換される。これらのA/D変換回路29、30及び31にて夫なディジタル信号に変換されたR信号成分、G信号成分及びB信号成分は、信号処理回路32に供給される。

この信号処理回路32は、供給されたR信号成分、G信号成分及びB信号成分に夫々所定の信号処理及びマトリクス演算処理を施して、輝度信号Y及び色差信号R-Y、B-Yを生成する。この信号処理回路32にて生成された色差信号R-Y、B-Yは、変調回路34に供給される。

この変調回路34は、色副搬送波信号を色差信号R-Y、B-Yによって直交2軸変調し、得られる色信号を加算器35の一方の入力端に供給する。この加算器35の他方の入力端には、信号処理回路32より輝度信号Yと変調回路34からの色信号とが加算されてディジタル複合映像信号が生成され、

出力端子36より出力される。

また、信号処理回路32から出力される輝度信号Y、色差信号R-Y、B-Yは、コンポーネント信号として、出力端子37、38及び39から夫々出力される。

この図2に示す撮像装置においては、3つの撮像素子を用いて、被撮像光からR信号成分、G信号成分及びB信号成分を得る構成とされているので、図1に示される単板方式の撮像装置から出力される映像信号の解像度よりも高い解像度の映像信号を得ることができる。

しかしながら、近年、NTSC方式の解像度よりも高い解像度を有する高品位テレビジョン方式が開発されており、この高品位テレビジョン方式にも適用できる高解像度の映像信号を得るためには、3つのCCDを用いた撮像装置であっても、NTSC方式の映像信号を得る場合よりもさらに画素数の多いCCDを用いる必要がある。CCDは、その画素数が多くなるほど、製造が難しくなり、コストが高くなる。その結果、撮像装置全体のコストが高くなるといった問題がある。

本発明は、上述の実情を考慮してなされたものであり、本発明の目的は、CCDの画素数を増加させることなく、高解像度の映像信号を得ることができる撮像装置を提供することである。

発明の開示

この発明の1つの態様は、色フィルタを介して入力された被撮像 光を撮像信号に変換する撮像手段と、撮像手段から撮像信号が供給 され、撮像信号をR信号成分、G信号成分及びB信号成分に分ける分離手段と、分離手段からR信号成分、G信号成分及びB信号成分が失々供給され、R信号成分、G信号成分及びB信号成分の解像度をより高い解像度に変換して、高解像度のR信号成分、高解像度のB信号成分を生成する第1、第2、第3の変換手段と、第1、第2、第3の変換手段から高解像度のR信号成分及び高解像度のB信号成分が供給され、高解像度のR信号成分、高解像度のG信号成分及び高解像度のB信号成分が固定信号及び色信号を生成する信号処理手段とを有する撮像装置である。

この発明の他の態様は、赤色光、緑色光及び青色光を夫々R信号成分、G信号成分及びB信号成分に変換する第1、第2、第3の撮像手段と、第1、第2、第3の撮像手段からR信号成分、G信号成分及びB信号成分が夫々供給され、R信号成分、G信号成分及びB

信号成分の解像度をより高い解像度に変換して高解像度のR信号成分、高解像度のG信号成分及び高解像度のB信号成分を生成する第1、第2、第3の変換手段と、第1、第2、第3の変換手段から高解像度のR信号成分、高解像度のG信号成分及び高解像度のB信号成分が供給され、高解像度のR信号成分、高解像度のG信号成分及び高解像度のB信号成分から輝度信号及び色信号を生成する信号処理手段とを有する撮像装置である。

この発明のさらに他の態様は、入力された被撮像光を撮像信号に変換する撮像手段と、撮像手段から撮像信号が供給され、撮像信号から輝度信号及び第1、第2の色差信号を生成する信号処理手段と、信号処理手段から輝度信号及び第1、第2の色差信号が夫々供給され、輝度信号及び第1、第2の色差信号の解像度をより高い解像度に変換して、高解像度の輝度信号及び高解像度の第1、第2の色差信号を生成する第1、第2、第3の変換手段とを有する撮像装置である。

この発明のさらに他の態様は、入力された被撮像光を撮像信号に変換する撮像手段と、撮像手段から撮像信号が供給され、 撮像信号 から輝度信号及び色信号を生成する信号処理手段と、信号処理手段 から輝度信号及び色信号が供給され、輝度信号及び色信号から複合映像信号を生成する合成手段と、合成手段から複合映像信号が供給され、複合映像信号の解像度をより高い解像度に変換して、 高解像度の複合映像信号を生成して出力する変換手段とを有する撮像装置である。

図1は、従来の撮像装置の一例の構成を示すブロック図である。

図2は、従来の撮像装置の他の例の構成を示すブロック図である。

図3は、本発明の撮像装置の一実施例の構成を示すブロック図である。

図4は、SD信号の画素とHD信号の画素の2次元配列を示すための略線図である。

図5は、SD信号の画素とHD信号の画素の1次元配列を示すための略線図である。

図 6 は、A D R C 符号化の説明のための信号レベル変化を示す略 線図である。

図7は、ADRC符号化における量子化特性を説明するための略線図である。

図8は、1ビットADRCの符号化回路の一例の構成を示すプロック図である。

図9は、複数のHD画素の値を予測するときに使用されるSD画素を示す略線図である。

図10は、信号変換部の動作を説明するためのフローチャートである。

図11は、予測係数を決定する学習時の構成を概略的に示すプロック図である。

図12は、学習時の動作を説明するためのフローチャートである。

図13は、本発明の撮像装置の第2の実施例の構成を示すブロック図である。

図14は、本発明の撮像装置の第3の実施例の構成を示すブロッ

- 8 -

ク図である。

図15は、本発明の撮像装置の第4の実施例の構成を示すプロック図である。

発明を実施するための最良の形態

以下、本発明の好適な実施例を図面を参照しながら説明する。

まず、本発明の第1の実施例を図3を参照しながら説明する。この第1の実施例は、固体撮像素子である電荷結合素子(Charge Coupled Device)(以下、CCDという。)を1枚用いて、光の3原色信号である赤(R)信号成分、緑(G)信号成分及び青(B)信号成分を取り出し、この各信号成分を高解像度の信号成分に変換した後に合成して高解像度の複合映像信号を生成する撮像装置である。ここで、以下、高解像度の信号成分に変換する前の信号成分を通常精度(Standard Definition)の信号成分としてSD信号と呼び、変換後の信号成分を高精度(High Definition)の信号成分としてHD信号と呼ぶ。

図3において、図1と対応する部分については、同じ番号を付して説明する。

光学系1に入射された被撮像光は、色フィルタ2を介してCCD3に入射される。この色フィルタ2は、例えば黄色フィルタ、シアンフィルタ及びマゼンタフィルタからなる補色フィルタである。この色フィルタ2を介してCCD3に入射された被撮像光は、CCD3にて光電変換されて、撮像信号としてビデオアンプ4に供給される。この撮像信号は、ビデオアンプ4にて所定のレベルにまで増幅

された後に、A/D変換回路5に供給される。このA/D変換回路5にて、撮像信号が所定のビット数のディジタル信号に変換される。A/D変換回路5にてディジタル信号に変換された撮像信号は、色分離回路6に供給される。

この色分離回路6は、入力されたディジタル撮像信号をR信号成分、G信号成分及びB信号成分に分け、夫々をR信号変換部50、G信号変換部60及びB信号変換部70に供給する。

R信号変換部50は、上述の図3に示すように、色分離回路6から供給されたR信号成分を複数のプロックに分割するプロック化回路51から供給されるR信号成分を各プロックに分割するデータ圧縮回路52と、このデータ圧縮するデータ圧縮回路52と、このデータのルルレスを限信号成分のプロックをR信号成分のプロックをR信号成分のプロックをR信号成分のプロックをR信号のアロックを表生回路53と、こののアコードを発生するクラスコードに対対にしたアカード発生回路53から供給されるクラスコードに対対にしたアカードを対対についての路51から出力されるR信号成分について各プロック毎に予測演を行い、色分離回路6かを生成分で和3R信号成分の解像度よりも高い解像度のR信号成分を生成する予測値生成回路55とを有する。

また、G信号変換部60は、上述の図3に示すように、色分離回路6から供給されたG信号成分を複数のブロックに分割するブロック化回路61と、ブロック化回路61から供給されるG信号成分を各ブロック毎に圧縮するデータ圧縮回路62と、このデータ圧縮回路62にて圧縮されたG信号成分の各ブロックをG信号成分のレベ

ル部分のパターンに基づいてそのブロックが属すべきクラスを決定してクラスコードを発生するクラスコード発生回路 6 3 と、このクラスコード発生回路 6 3 と、このクラスコード発生回路 6 3 と、このクラスコードに対応した予測係数を出力する予測係数メモリ 6 4 と、この予測係数メモリ 6 4 から供給される予測係数を用いてブロック化回路 6 1 から出力されるG信号成分の解像度よりも高い解像度のG信号成分を生成する予測値生成回路 6 5 とを有する。

また、B信号変換部70は、上述の図3に示すように、色分離回路6から供給されたB信号成分を複数のブロックに分割する形式分を複数のブロックに分割するB信号成分を各プロック化回路71と、ブロック化回路72と、このデータ圧縮回路72と、このデータ圧縮回路72と、このデータ底が日ックをB信号成分の各プロックをB信号成分のスコードを発生するクラスコード発生回路73と、このテ測係数メモリ74と、この予測係数メモリ74と、この予測係数を用いてブロック化回路71から出力する別係数を用いてブロック化回路71から出力されるB信号成分の解像度よりも高い解像度のB信号成分を生成する予測値生成回路75とを有する。

R信号変換部50、G信号変換部60及びB信号変換部70から 夫々出力される高解像度のR信号成分、高解像度のG信号成分及び 高解像度のB信号成分は、信号処理回路80に供給される。

この信号処理回路80は、供給された高解像度のR信号成分、高

解像度のG信号成分及び高解像度のB信号成分に夫々所定の信号処理及びマトリクス演算を施して、高解像度の輝度信号Y及び高解像度の色差信号R-Y、B-Yを生成する。この信号処理回路80の構成及び動作原理については周知なので、その詳細な説明は省略する。ただし、図1に示される従来の撮像装置の信号処理回路7に比べ、高速レートでの処理が可能な構成とされている。

この信号処理回路80にて生成された高解像度の色差信号R-Y、B-Yは、変調回路81に供給される。変調回路81は、色副搬送 波信号を高解像度の色差信号R-Y、B-Yによって直交2軸(二相)変調し、得られる高解像度の搬送色信号(以下、色信号という。)を加算器82の一方の入力端に供給する。この加算器82の他方の入力端には、信号処理回路80より高解像度の輝度信号 Yが供給され、この高解像度の輝度信号 Yと変調回路81からの高解像度の色信号とが加算されて高解像度のディジタル複合映像信号が生成され、出力端子10より出力される。なお、変調回路81及び加算器82は、図1に示される従来の撮像装置の変調回路8及び加算器81に示される従来の撮像装置の変調回路8及び加算器81とは、高速レートでの処理が可能な構成とされている。

つぎに、図3に示される本発明の撮像装置の第1の実施例の動作 を説明する。

光学系1及び色フィルタ2を介してCCD3に入射された被撮像 光は光電変換され、得られる撮像信号はビデオアンプ4で所定のレベルに増幅される。この所定のレベルに増幅された撮像信号は、A/D変換回路5にてディジタル撮像信号に変換されて色分離回路6に供給され、この色分離回路6にて、R信号成分、G信号成分及びB信号成分に分けられる。分離されたR信号成分、G信号成分及び B信号成分は夫々R信号変換部50、G信号変換部60及びB信号変換部70に供給され、夫々高解像度のR信号成分、高解像度のG信号成分及び高解像度のB信号成分に変換される。これらの高解像度のR信号成分、高解像度のG信号成分及び高解像度のB信号成分は、信号処理回路80に供給され、これらの信号成分から高解像度の輝度信号Y及び高解像度の色差信号R-Y、B-Yが生成される。

高解像度の色差信号R-Y、B-Yは変調回路81に供給され、色副搬送波信号を直交2軸変調することにより、高解像度の色信号に変換される。信号処理回路80から出力される高解像度の輝度信号Yと変調回路81から出力される高解像度の色信号とを加算器82にて加算することによって、出力端子10から高解像度の複合映像信号が得られる。

このようにして、CCDの画素数は従来の撮像装置に用いられているCCDの画素数と同じでも、従来の撮像装置の出力複合映像信号の解像度に比べて解像度が高い複合映像信号を得ることができる。 つぎに、本発明の撮像装置に用いられているR信号変換部50、

つさに、平死明の城隊安區に用いるによりながある。 G信号変換部60及びB信号変換部70の構成及び動作原理の詳細 について説明する。

これらR信号変換部 5 0、 G信号変換部 6 0 及び B 信号変換部 7 0 の構成及び動作原理は互いに同じなので、 R 信号変換部 5 0 を例にとって説明する。なお、この信号変換部の構成及び動作原理については、国際公開番号W O 94/14278の公報にも記載されているが、ここでは、本発明の撮像装置を構成する上で最低限必要な構成及び動作原理について説明する。

図3において、R信号変換部50のブロック化回路51に供給さ

れるSD信号は、所定のサンプリング周波数でもって、1画素が8ビットのディジタル信号とされたものである。このプロック化回路51は、ラスター走査順のデータを1次元プロック、2次元ブロック又は3次元プロックの順序のデータに変換する。

ブロック化回路 5 1 の出力信号がデータ圧縮回路 5 2 及び予測値 生成回路 5 5 に供給される。データ圧縮回路 5 2 の出力データがク ラスコード発生回路 5 3 に供給される。クラスコード発生回路 5 3 からのクラスコードがアドレス信号として予測係数メモリ 5 4 に供 給される。予測係数メモリ 5 4 には、予め学習によって決定された 予測係数が格納されている。予測係数メモリ 5 4 からの予測係数が 予測値生成回路 5 5 に供給される。

データ圧縮回路 5 2 及びクラスコード発生回路 5 3 は、予測の対象の注目画素のクラス分けを行うためのものであり、クラス分けは、注目画素を含むブロック毎のレベル分布のパターンに従ってなされる。このクラス分けで決定されたクラスを指示するクラスコードがクラスコード発生回路 5 3 から出力される。クラス分けは、SD信号に基づいてなされるが、注目画素の周辺の複数の SD信号の画素(以下、SD画素という。)の値(8 ビット)をそのままクラス分けのために参照すると、クラス数が多くなり過ぎる問題がある。そこで、データ圧縮回路 5 2 が設けられており、参照される周辺の画素(参照画素)のビット数が圧縮される。データ圧縮回路 5 2 の一例は、ADR C符号化回路である。

なお、データ圧縮としては、ADRC符号化(Adaptive Dynamic Range Coding)に限らず、DCT(Discrete Cosine Transform)、VQ(ベクトル量子化)、DPCM(Differential Pulse Code Mo

dulation)、BTC(Block Trancation Coding)、非線形量子化 等を選択的に使用することができる。

プロック化回路 5 1 では、テレビジョン信号のラスター走査の順序から図 4 に示すような 2 次元ブロックのデータの順序へ入力 S D 信号を走査変換する。図 4 の例では、3 × 3 画素が 1 プロックとされ、a ~ i の値をそれぞれ有する 9 個の S D 画素が 1 プロックに含まれる。この 1 プロックの S D 画素によって、中心付近に位置する 4 個の H D 画素 A ~ D の値が予測値生成回路 5 5 において生成される。

図4に示されるブロックは、単なる一例であり、代わりに、例えば図5に示されるように4個のSD画素 a ~ dからなる1次元ブロックを用いて、HD画素の予測値を生成することもできる。さらに、3次元ブロックに対しても、HD画素の予測値を生成することができる。

図5の1次元配列において、SD画素 a、b、cからHD画素 Aのクラス分けと予測値の生成がなされ、SD画素 a、b、c、dからHD画素 Bのクラス分けと予測値の生成がなされる。また、学習の場合も同様の関係でクラス分けと予測値の生成がなされる。

ここで、データ圧縮回路 5 2 として採用することができる A D R C 符号化について説明する。

ADRCは、画素の局所的な相関を利用してレベル方向の冗長度を適応的に除去するものである。例えば図6に示すように、8ピットの原データが有する0~255のダイナミックレンジの中で、各プロック毎に再量子化するのに必要なプロック内のダイナミックレンジA、Bは、原ダイナミックレンジに比して大幅に小さい。この

ため、再量子化に必要なビット数は、元の8ビットより大幅に低減 することができる。

元のビット数(8ビット)より少ない割当てビット数を p、プロックのダイナミックレンジを D R、プロック内のある画素の値を x、再量子化コードをQとすると、次の式(1)によりプロック内の最大値 M A X と最小値 M I N との間を 2 ° 個に均等に分割して再量子化を行う。図 7 (a)に p = 3 の場合の再量子化を示す。

DR = MAX - MIN + 1

$$Q = [(x - MIN + 0.5) \times 2^{p}/DR]$$
 (1)
ここで、[z]は、z以下の最大の整数を表す。

次に、図7(a)におけるpビット再量子化の階調レベルの中の(2º-1)に相当するデータレベルを有するブロック内画素の平均値を計算し、これを図7(b)に示すように、新たな最大値MAX・とする。また、再量子化の階調レベル0に相当するデータレベルを有するブロック内の画素の平均値を新たな最小値MIN・とする。新しく求められた最大値MAX・及び最小値MIN・からダイナミックレンジを定義し直して、次の式(2)によって、再量子化を行う。

$$DR' = MAX' - MIN'$$
 $q = [(x - MIN') \times (2^{p} - 1) / DR' + 0.5]$
(2)

ここで、 [z]は、z以下の最大の整数を表す。

このような新たな最大値MAX'、最小値MIN'、ダイナミックレンジDR'を定義し直すADRCは、ノイズの影響を受けることなく、効率の良い情報量の圧縮を行うことができる。

- 16 -

さらに、ADRCにおける量子化として、復元される代表レベル として、最大値MAX及び最小値MINと等しいレベルを持つよう な特性も可能である。

2次元プロックの例では、上述のADRCによって、8ビットの 値a~iから各pビットへ圧縮されたn画素の値がクラスコード発 生回路53へ供給され、式(3)によって表されるクラスを指示す るクラスコードclass が生成される。

$$class = \sum_{i=1}^{n} q_i (2^p)^i \tag{3}$$

ここで、1ビットADRCを例にとって、ADRC符号化回路に ついて図8を参照して説明する。

図8において、入力端子121からのプロックの順序に変換され たデータに対して、検出回路122は、各ブロック内の画素の値の 最大値MAX、最小値MINを検出する。減算回路123は、これ らの最大値MAX及び最小値MINが供給され、最大値MAXから 最小値MINを減算してダイナミックレンジDRを出力する。一方、 減算回路124は、入力データ及び最小値MINが供給され、入力 データから最小値MINを減算して、正規化された画素データを出 力する。

割算回路125は、正規化された入力データ及びダイナミックレ ンジDRが供給され、正規化された画素データをダイナミックレン ジDRで割り算して比較回路126に供給する。比較回路126は、 9個の画素の割算結果が0.5を基準として、より大きいか、より 小さいかの判断を行い、この結果に応じて'0'又は'1'の1ビ ットデータDTを発生する。このデータDTが出力端子127から

取り出される。この1ビットADRCを用いてクラス分けを行えば、 3×3画素のSDブロックのクラスが、9ビットのクラスコードで 表現される。

図3に戻って説明すると、クラスコードと対応する予測係数が予測係数メモリ54から読み出され、予測値生成回路55では、ブロック化回路51から供給されたブロック単位のSDデータと、読み出された予測係数w1~w2とから、式(4)に示す線形1次結合に従った演算により、HD画素の予測値y'が生成される。

$$y' = w_1 x_1 + w_2 x_2 + \cdots + w_n x_n$$
 (4)

上述の図4の例では、(n=1、2、・・・、9)である。予 測対象である注目HD画素の位置に対応して、図9に示す関係でも って、所定のSDデータがx1~x3として用いられる。

すなわち、1プロック内の4個のHD画素A~Dのそれぞれの予測値を生成するときに、注目HD画素に応じて予測係数と組み合わされるSD画素が変更される。例えば注目HD画素がAの場合、式(5)により、HD画素Aの予測値が生成される。

$$y' = w_1 a + w_2 b + w_3 c + \cdots + w_n i$$
 (5)

また、例えば注目HD画素がBの場合、式(6)により、HD画素Bの予測値が生成される。

$$y' = w_1 a + w_2 d + w_3 c + \cdots + w_n e$$
 (6)

このように、同じプロック(言い換えると同じクラス)の4個の HD画素の予測値を生成するための係数を共通することでき、予測 係数メモリ54の容量の削減と予測係数メモリ54に対するアクセ ス回数を少なくすることができる。図9の係数に乗じられる値x1~x。とSD画素 a~iの対応関係は、注目HD画素とSD画素間の 距離に基づいて規定されたものである。

ここで、x₁~x₈は、例えば1ビットADRCで形成されたクラスコードの9ビットと考えることもできる。すなわち、1プロックの中心付近のHD画素A~Dのそれぞれに関するクラスは、SD画素a~iの値を圧縮符号化した値の順序を変えるのみで、規定することができる。そして、これらの値をメモリに蓄えておき、読出し順序を変更すればよい。

図10は、SD信号からHD信号へのアップコンバートの処理の順序を示すフローチャートである。

ステップ131からアップコンバートの制御が開始され、ステップ132のデータブロック化では、SD信号が供給され、図4に示すようにSD画素を処理ブロック単位に取り出す処理を行う。ステップ133のデータ終了では、入力された全データの処理が終了していれば、ステップ137の終了へ、終了していなければ、ステップ134のクラス決定へ処理が移る。

ステップ134のクラス決定では、SD信号の信号レベルの分布で定まるパターンからクラスが決定される。例えば1ビットADRCによって圧縮されたデータによりクラスが決定される。ステップ135では、クラスコードに対応する予測係数をメモリから読み出す。ステップ136の予測演算では、式(4)の演算を行い、HD画素の予測値y'を出力する。この一連の処理が全データに対し繰り返され、全データが終了すればステップ133のデータ終了からステップ137の終了に処理が移り、アップコンバートの処理が終了する。

上述のように、予測係数メモリ54には、予め学習により得られ

た予測係数が記憶されている。ここで、この学習について説明する。 図11は、予測係数を学習により得る装置の構成を示すプロック図 である。

入力端子141を介して、標準的なHD信号の静止画像が多数枚入力され、垂直間引きフィルタ142及び学習部144にへ供給される。垂直間引きフィルタ142は、HD信号を垂直方向に間引きし、この垂直間引きフィルタ142に接続された水平間引きフィルタ143は、HD信号を水平方向に1/2に間引きし、これにより、SD信号と同等の画素数の画像信号が学習部144に供給される。予測係数メモリ145は、学習部144内に設けられているクラス分け回路で決定されたクラスと対応するアドレスに予測係数w」~w』を記憶する。

HD信号からSD信号を形成する方法としては、上述のような間引きフィルタを使用するのに限らず、他の方法が可能である。例えば2の画素配置のように、2×2画素の4画素(例えばA、B、C、D)の平均値によってSD画素aの値を形成しても良い。さらに、単純平均値ではなく、より広い範囲内のHD画素(例えば1プロックのHD画素)の値の距離に応じた加重平均値をSD画素の値としても良い。

学習部144では、図4の配列のように、3×3のSD画素によって1ブロックが構成される場合、画素a~iとHD画素A、B、C、Dが一組の学習データとなる。1フレームに関して多数組の学習データが存在し、且つ、フレーム数を増加させることにより非常に多数の組の学習データを利用することができる。

SD画素a~iを圧縮し、圧縮されたSD画素の値の2次元分布

のパターンによりクラスを決定するクラス分けと、各クラスの予測 係数を最小二乗法により決定する演算処理とを学習部144が行う。 クラス分けは、図3のデータ圧縮回路52とクラスコード発生回路 53が行う処理と同一のものである。この学習部144をソフトウ ェア処理の構成とした時のその動作を示すフローチャートを図12 に示す。

ステップ151から学習部144の処理が開始され、ステップ152の対応データブロック化では、HD信号とSD信号が供給され、図4に示すような配列関係にあるHD画素A~D及びSD画素a~iを取り出す処理を行う。ステップ153のデータ終了では、入力された全データ例えば1フレームのデータの処理が終了していれば、ステップ156の予測係数決定へ、終了していなければ、ステップ154のクラス決定へ処理が移る。

ステップ154のクラス決定では、予測対象のHD画素A~Dの周辺の複数のSD画素a~iのレベル分布のパターンからクラスが決定される。この制御では、ビット数削減のため上述のように、SD画素が例えばADRC符号化によって圧縮される。ステップ155の正規方程式加算では、後述する式(12)、式(13)及び式(14)の方程式を作成する。

ステップ153のデータ終了から全データの処理が終了後、処理がステップ156に移り、ステップ156の予測係数決定では、後述する式(14)を行列解法を用いて解いて、予測係数を決める。ステップ157の予測係数ストアで、予測係数をメモリにストアし、ステップ158で学習部144の一連の動作が終了する。

図4の画素配列を使用して、SD画素a~iを圧縮符号化し、符

号化された値に基づいてクラス分けがされることは、上述の信号変換部と同様である。また、SD画素 a~iの値と予測係数wi~w。との線形1次結合によって、HD画素A~Dの予測値を図9に示す組合せでもって生成する点も上述と同様である。

ここで、HD画素の値をSD画素の値から予測するための係数を 求める処理をより詳細に説明する。

SD画素の値を $x_1 \sim x_n$ とし、注目HD画素の真値をyとしたとき、クラス毎に予測係数 $w_1 \sim w_n$ によるn タップの線形 1 次結合は、式(7)で表される。

$$y' = w_1 x_1 + w_2 x_2 + \cdots + w_n x_n$$
 (7)

学習前は、w、が未定係数である。

上述のように、学習はクラス毎に複数のHDデータ及びSDデータに対して行う。データ数がmの場合、式(7)は式(8)に示すように表される。

$$y_{i} = w_{1}x_{i1} + w_{2}x_{i2} + \cdots + w_{n}x_{in}$$
 (8)
(但し、j = 1、2、···m)

m>nの場合、w;~w,は一意には決まらないので、誤差ベクトルeの要素を式(9)により定義して、次の式(10)を最小にする予測係数を求める。

$$e_{j} = y_{j}' - (w_{1}x_{j} + w_{2}x_{j} + \cdots + w_{n}x_{j})$$
 (9)

$$E^2 = \sum_{j=0}^{m} \left\{ e_j \right\}^2 \tag{10}$$

式(10)は、いわゆる最小自乗法による解法である。ここで、式(11)に示すように、式(10)のw;による偏微分係数を求める。

$$\frac{\partial E^2}{\partial w_i} = \sum_{j=0}^m 2 \left(\frac{\partial e_j}{\partial w_i} \right) e_j = \sum_{j=0}^m 2X_{ij} \cdot e_j \tag{11}$$

そして、この式(11)を0にするような各w,を決めれば、予 測係数を求めることができる。従って、

$$X_{ij} = \sum_{p=0}^{m} X_{pi} \cdot X_{pj}$$
 (12)

$$Y_i = \sum_{j=0}^m X_{ji} \cdot y_j \tag{13}$$

として、行列を用いると、

$$\begin{bmatrix} X_{11} & X_{12} & \cdots & X_{1n} \\ X_{21} & X_{22} & \cdots & X_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ X_{n1} & X_{n2} & \cdots & X_{nn} \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{bmatrix} = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix}$$

$$(14)$$

となり、掃き出し法等の一般的な行列解法を用いて、式(14)をw.について解けば、予測係数w.が求まる。そして、クラスコードをアドレスとして、この予測係数w.をメモリに格納しておく。

以上のように学習部144が実データであるHD信号を用いて予測係数w。を決定することができ、これがメモリに格納される。そして、学習部144で決定された予測係数が図3の予測係数メモリ54に蓄えられている。

つきに、本発明の撮像装置の第2の実施例について図13を参照 しながら説明する。なお、図2に示される従来の撮像装置と同じ部 分については同じ番号を付して説明する。

この図13において、被撮像光が光学系21を介して色分解プリ

ズム22に入射される。色分解プリズム22は、被撮像光を、赤色光、緑色光及び青色光に分光し、夫々赤色撮像用CCD23、緑色撮像用CCD25に入射させる。

赤色撮像用 C C D 2 3、緑色撮像用 C C D 2 4 及び青色撮像用 C C D 2 5 は、入射された赤色光、緑色光及び青色光を夫々光電変換し、R信号成分、G信号成分及びB信号成分を出力する。これらのR信号成分、G信号成分及びB信号成分は、ビデオアンプ 2 6、27及び 2 8 は、供給されたR信号成分、G信号成分及び B 信号成分を夫々所定のレベルに増幅して、A / D 変換回路 2 9、3 0 及び 3 1 に大々供給する。これらの A / D 変換回路 2 9、3 0 及び 3 1 にて、R信号成分、G信号成分及び B 信号成分が夫々所定のビット数のディジタル信号に変換される。これらの A / D 変換回路 2 9、3 0 及び 3 1 にて夫々ディジタル信号に変換されたR信号成分、G信号成分及び B 信号成分は、夫々R信号変換部 2 0 0、G信号変換部 2 1 0 及び B 信号 変換部 2 2 0 に供給される。

R信号変換部200は、上述の図13に示すように、ブロック化回路201、データ圧縮回路202、クラスコード発生回路203、予測係数メモリ204及び予測値生成回路205を備える。

また、G信号変換部210は、上述の図13に示すように、プロック化回路211、データ圧縮回路212、クラスコード発生回路213、予測係数メモリ214及び予測値生成回路215を備える。また、B信号変換部220は、上述の図13に示すように、プロック化回路221、データ圧縮回路222、クラスコード発生回路223、予測係数メモリ224及び予測値生成回路225を備える。

これらのR信号変換部200、G信号変換部210及びB信号変換部220の構成及び動作原理は、図3にて示されるR信号変換部50の構成及び動作原理と同じであるため、その説明を省略する。

R信号変換部200、G信号変換部210及びB信号変換部220にて夫々生成された高解像度のR信号成分、高解像度のG信号成分及び高解像度のB信号成分は、信号処理回路230に供給される。信号処理回路230は、供給された高解像度のR信号成分、高解像度のG信号成分及び高解像度のB信号成分に夫々所定の信号処理及びマトリクス演算を施して、高解像度の輝度信号Y及び高解像度の色差信号R-Y、B-Yを生成する。この信号処理回路230にて生成された高解像度の色差信号R-Y、B-Yは、変調回路240に供給される。

この変調回路240は、色副搬送波信号を高解像度の色差信号R-Y、B-Yによって直交2軸変調し、得られる高解像度の色信号を加算器250の一方の入力端に供給する。この加算器250の他方の入力端には、信号処理回路230より高解像度の輝度信号Yが供給され、この高解像度の輝度信号Yと変調回路240からの高解像度の色信号とが加算されて高解像度のディジタル複合映像信号が生成され、出力端子260より出力される。なお、信号処理回路230、変調回路240及び加算器250は、図2に示される従来の撮像装置で用いられる信号処理回路32、変調回路34及び加算器35よりも高速レートでの処理が可能な構成とされている。

また、信号処理回路230から出力される高解像度の輝度信号Y、高解像度の色差信号R-Y、B-Yは、高解像度のコンポーネント信号として、出力端子270、280及び290から夫々出力され

る。

つぎに、本発明の撮像装置の第3の実施例について、図14を参照しながら説明する。なお、図1に示される従来の撮像装置と同じ部分については同じ番号を付して説明する。

光学系1に入射された被撮像光は、色フィルタ2を介してCCD3に入射される。この色フィルタ2は、例えば黄色フィルタ、シアンフィルタ及びマゼンタフィルタからなる補色フィルタである。この色フィルタ2を介してCCD3に入射された被撮像光は、CCD3にて光電変換されて、撮像信号としてビデオアンプ4に供給される。この撮像信号は、ビデオアンプ4にて所定のレベルにまで増幅された後に、A/D変換回路5に供給される。このA/D変換回路5にて、撮像信号が所定のビット数のディジタル信号に変換される。A/D変換回路5にてディジタル信号の変換された撮像信号は、色分離回路6に供給される。

この色分離回路6は、入力されたディジタル撮像信号をR信号成分、 G信号成分及びB信号成分に分け、 夫々を信号処理回路7に供給する。信号処理回路7は、供給されたR信号成分、 G信号成分及びB信号成分に夫々所定の信号処理及びマトリクス演算を施して、輝度信号Y及び色差信号R-Y、 B-Yを生成する。この信号処理回路にて生成された色差信号R-Y、 B-Yは、変調回路8に供給される。

この変調回路 8 は、色副搬送波信号を色差信号R-Y、B-Yによって直交 2 軸変調し、得られる色信号を加算器 9 の一方の入力端に供給する。この加算器 9 の他方の入力端には、信号処理回路 7 より輝度信号 Y が供給され、この輝度信号 Y と変調回路 8 からの色信

号とが加算されてディジタル複合映像信号が生成される。

この加算器 9 から出力されるディジタル複合映像信号は信号変換部 3 0 0 に供給され、この信号変換部 3 0 0 にて高解像度のディジタル複合映像信号に変換されて出力端子 3 1 0 より出力される。信号変換部 3 0 0 の構成及び動作原理については、図 3 に示される名 R 信号変換部 5 0 の構成及び動作原理と同じなので、その説明を省略する。なお、図 1 4 に示される信号変換部 3 0 0 を構成するプロック化回路 3 0 1、データ圧縮回路 3 0 2、クラスコード発生回路 3 0 3、予測係数メモリ 3 0 4 及び予測値生成回路 3 0 5 は、図 3 示される R 信号変換部 5 0 を構成するプロック化回路 5 1、データ圧縮回路 5 2、クラスコード発生回路 5 3、予測係数メモリ 5 4 及び予測値生成回路 5 5 に夫々対応する。

つぎに、本発明の扱像装置の第4の実施例について、図15を参照しながら説明する。なお、図2に示される従来の撮像装置と同じ部分については同じ番号を付して説明する。

被撮像光が光学系21を介して色分解プリズム22に入射される。 色分解プリズム22は、被撮像光を、赤色光、緑色光及び青色光に 分光し、夫々赤色撮像用CCD23、緑色撮像用CCD24及び青 色撮像用CCD25に入射させる。

赤色撮像用CCD23、緑色撮像用CCD24及び青色撮像用CCD25は、入射された赤色光、緑色光及び青色光を夫々光電変換し、R信号成分、G信号成分及びB信号成分を出力する。これらのR信号成分、G信号成分及びB信号成分は、ビデオアンプ26、27及び28は、供給されたR信号成分、G信号成分及びB信号成分を夫々所定のレ

ベルに増幅して、A/D変換回路29、30及び31に夫々供給する。これらのA/D変換回路29、30及び31にて、R信号成分、G信号成分及びB信号成分が夫々所定のビット数のディジタル信号に変換される。これらのA/D変換回路29、30及び31にて夫々ディジタル信号に変換されたR信号成分、G信号成分及びB信号成分は、信号処理回路32に供給される。

信号処理回路32は、供給されたR信号成分、G信号成分及びB信号成分に夫々所定の信号処理及びマトリクス演算処理を施して、 輝度信号Y及び色差信号R-Y、B-Yを生成する。この信号処理回路32にて生成された色差信号R-Y、B-Yは、夫々R-Y信号変換部410及びB-Y信号変換部420に供給される。

信号処理回路32から供給された色差信号R-Yは、R-Y信号変換部410にて、高解像度の色差信号R-Yに変換されて出力される。また、信号処理回路32から供給された色差信号B-Yは、B-Y信号変換部420にて、高解像度の色差信号B-Yに変換されて出力される。

また、信号処理回路32にて生成された輝度信号 Y は、輝度信号変換部400に供給される。信号処理回路32から供給された輝度信号 Y は、輝度信号変換部400にて、高解像度の輝度信号 Y に変換されて出力される。

輝度信号変換部400は、上述の図15に示すように、ブロック 化回路401、データ圧縮回路402、クラスコード発生回路40 3、予測係数メモリ404及び予測値生成回路405を備える。

また、R-Y信号変換部410は、上述の図15に示すように、 ブロック化回路411、データ圧縮回路412、クラスコード発生 回路 4 1 3、予測係数メモリ 4 1 4 及び予測値生成回路 4 1 5 を備える。

また、B-Y信号変換部420は、上述の図15に示すように、 ブロック化回路421、データ圧縮回路422、クラスコード発生 回路423、予測係数メモリ424及び予測値生成回路425を備える。

これらの輝度信号変換部400、R-Y信号変換部410及びB-Y信号変換部420の構成及び動作原理については、図3に示されるR信号変換部50の構成及び動作原理と同じなので、その説明を省略する。

R-Y信号変換部410及びB-Y信号変換部420にて夫々生成された高解像度の色差信号R-Y、B-Yは、変調回路430に供給される。この変調回路430は、色副搬送波信号を高解像度の色差信号R-Y、B-Yによって直交2軸変調し、得られる高解像度の色信号を加算器440の一方の入力端に供給する。この加算器440の他方の入力端には、輝度信号変換部400にて生成された高解像度の輝度信号Yが供給され、この高解像度の輝度信号Yと変調回路430からの高解像度の色信号とが加算されて高解像度のディジタル複合映像信号が生成され、出力端子450より出力される。なお、変調回路430及び加算器440は、図2に示される従来の撮像装置で用いられる変調回路34及び加算器35よりも高速レートでの処理が可能な構成とされている。

また、輝度信号変換部400から出力される高解像度の輝度信号 Y、R-Y信号変換部410から出力される高解像度の色差信号 R -Y、及びB-Y信号変換部420から出力される高解像度の色差 信号B-Yは、高解像度のコンポーネント信号として、出力端子460、470及び480から夫々出力される。

なお、本発明の撮像装置は、第1から第4の実施例にのみ限定されるものではなく、例えば、予測係数メモリを、R信号成分、G信号成分及びB信号成分の変換処理について共通化する等、本発明の要旨を逸脱しない範囲で種々の変形が可能である。

本発明によれば、CCDの画素数を増加させることなく、高解像 度の映像信号を得ることができる撮像装置を提供できる。

請求の範囲

1. 色フィルタを介して入力された被撮像光を撮像信号に変換する撮像手段と、

上記撮像手段から上記撮像信号が供給され、該撮像信号をR信号成分、G信号成分及びB信号成分に分ける分離手段と、

上記分離手段から上記R信号成分、G信号成分及びB信号成分が 夫々供給され、該R信号成分、G信号成分及びB信号成分の解像度 をより高い解像度に変換して、高解像度のR信号成分、高解像度の G信号成分及び高解像度のB信号成分を生成する第1、第2、第3 の変換手段と、

上記第1、第2、第3の変換手段から上記高解像度のR信号成分、高解像度のG信号成分及び高解像度のB信号成分が供給され、該高解像度のR信号成分、高解像度のG信号成分及び高解像度のB信号成分から輝度信号及び色信号を生成する信号処理手段と、

を有することを特徴とする撮像装置。

- 2. さらに、上記信号処理手段から出力される上記輝度信号及び 色信号から複合映像信号を生成する合成手段を有する ことを特徴とする請求の範囲第1項に記載の撮像装置。
- 3. 上記第1、第2、第3の変換手段は、夫々、 入力された信号を複数のプロックに分割するプロック化手段と、 上記プロック化手段で分割されたプロック毎にデータ量を圧縮する圧縮手段と、

上記プロック毎に、圧縮後のデータのレベル分布のパターンに基 づいて各プロックのクラスを決定し、該クラスを示す信号を出力す るクラス検出手段と、

各クラスに対応させて、入力信号を高解像度の信号に変換するための予測係数が記憶されており、上記クラス決定手段から出力される上記クラスを示す信号に応じた予測係数を出力する予測係数記憶手段と、

上記予測係数記憶手段から出力される予測係数を用いて、上記入力された信号に予測演算処理を施して、上記入力された信号から高解像度の信号を生成する予測演算手段と、

を有することを特徴とする請求の範囲第1項に記載の撮像装置。

4. 赤色光、緑色光及び青色光を夫々R信号成分、G信号成分及びB信号成分に変換する第1、第2、第3の撮像手段と、

上記第1、第2、第3の撮像手段から上記R信号成分、G信号成分及びB信号成分が夫々供給され、該R信号成分、G信号成分及びB信号成分の解像度をより高い解像度に変換して高解像度のR信号成分、高解像度のG信号成分及び高解像度のB信号成分を生成する第1、第2、第3の変換手段と、

上記第1、第2、第3の変換手段から上記高解像度のR信号成分、高解像度のG信号成分及び高解像度のB信号成分が供給され、該高解像度のR信号成分、高解像度のG信号成分及び高解像度のB信号成分から輝度信号及び色信号を生成する信号処理手段と、

を有することを特徴とする撮像装置。

- 5. さらに、上記信号処理手段から出力される上記輝度信号及び 色信号から複合映像信号を生成する合成手段を有する ことを特徴とする請求の範囲第4項に記載の撮像装置。
- 6. 上記第1、第2、第3の変換手段は、夫々、

入力された信号を複数のプロックに分割するプロック化手段と、 上記プロック化手段で分割されたプロック毎にデータ量を圧縮す る圧縮手段と、

上記プロック毎に、圧縮後のデータのレベル分布のパターンに基 づいて各プロックのクラスを決定し、該クラスを示す信号を出力す るクラス検出手段と、

各クラスに対応させて、入力信号を高解像度の信号に変換するための予測係数が記憶されており、上記クラス決定手段から出力される上記クラスを示す信号に応じた予測係数を出力する予測係数記憶手段と、

上記予測係数記憶手段から出力される予測係数を用いて、上記入力された信号に予測演算処理を施して、上記入力された信号から高解像度の信号を生成する予測演算手段と、

を有することを特徴とする請求の範囲第4項に記載の撮像装置。

7. 入力された被撮像光を撮像信号に変換する撮像手段と、

上記撮像手段から上記撮像信号が供給され、該撮像信号から輝度 信号及び第1、第2の色差信号を生成する信号処理手段と、

上記信号処理手段から上記輝度信号及び第1、第2の色差信号が 夫々供給され、該輝度信号及び第1、第2の色差信号の解像度をよ り高い解像度に変換して、高解像度の輝度信号及び高解像度の第1、第2の色差信号を生成する第1、第2、第3の変換手段と、 を有することを特徴とする撮像装置。

8. さらに、上記第1、第2、第3の変換手段から出力される上記高解像度の輝度信号及び高解像度の第1、第2の色差信号から複合映像信号を生成する合成手段を有する

ことを特徴とする請求の範囲第7項に記載の撮像装置。

9. 上記第1、第2及び第3の変換手段は、夫々、 入力された信号を複数のブロックに分割するブロック化手段と、 上記ブロック化手段で分割されたブロック毎にデータ量を圧縮する圧縮手段と、

上記ブロック毎に、圧縮後のデータのレベル分布のパターンに基 づいて各ブロックのクラスを決定し、該クラスを示す信号を出力す るクラス検出手段と、

各クラスに対応させて、入力信号を高解像度の信号に変換するための予測係数が記憶されており、上記クラス決定手段から出力される上記クラスを示す信号に

応じた予測係数を出力する予測係数記憶手段と、

上記予測係数記憶手段から出力される予測係数を用いて、上記入力された信号に予測演算処理を施して、上記入力された信号から高解像度の信号を生成する予測演算手段と、

を有することを特徴とする請求の範囲第7項に記載の撮像装置。

10. 入力された被撮像光を撮像信号に変換する撮像手段と、

上記撮像手段から上記撮像信号が供給され、該撮像信号から輝度 信号及び色信号を生成する信号処理手段と、

上記信号処理手段から上記輝度信号及び色信号が供給され、該輝 度信号及び色信号から複合映像信号を生成する合成手段と、

上記合成手段から複合映像信号が供給され、該複合映像信号の解像度をより高い解像度に変換して、高解像度の複合映像信号を生成して出力する変換手段と、

を有することを特徴とする撮像装置。

11. 上記変換手段は、

入力された信号を複数のブロックに分割するブロック化手段と、 上記ブロック化手段で分割されたブロック毎にデータ量を圧縮す る圧縮手段と、

上記プロック毎に、圧縮後のデータのレベル分布のパターンに基 づいて各プロックのクラスを決定し、該クラスを示す信号を出力す るクラス検出手段と、

各クラスに対応させて、入力信号を高解像度の信号に変換するための予測係数が記憶されており、上記クラス決定手段から出力される上記クラスを示す信号に応じた予測係数を出力する予測係数記憶手段と、

上記予測係数記憶手段から出力される予測係数を用いて、上記入力された信号に予測演算処理を施して、 上記入力された信号から高解像度の信号を生成する予測演算手段と、

を有することを特徴とする請求の範囲第11項に記載の撮像装置。

<u>..</u>

FIG.2

WO 96/07275

PCT/JP95/01740

FIG.4

FIG.5

FIG.6

FIG.7

FIG.8

注目HD画素	SD画素									
	x ₁	x ₂	хз	X4	X 5	x 6	X 7	х8	X9	
A	а	b	С	d	е	f	g	h	i	
В	а	d	С	b	i	h	g	f	е	
С	а	h	g	f	е	d	С	ъ	i	
D	а	f	g	h	i	Ъ	С	đ	е	

FIG.9

FIG.10

FIG.11

FIG.12

FIG.14

Form PCT/ISA/210 (second sheet) (July 1992)

International application No.

INTERNATIONAL SEARCH REPORT PCT/JP95/01740 A. CLASSIFICATION OF SUBJECT MATTER Int. Cl6 H04N9/07, H04N9/09, H04N5/228 According to International Patent Classification (IPC) or to both national classification and IPC Minimum documentation searched (classification system followed by classification symbols) HO4N9/07, HO4N9/09, HO4N5/228, HO4N7/01, HO4N5/335 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Int. Cl6 Jitsuyo Shinan Koho Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages 1. - 1.1. JP, 6-178277, A (Sony Corp.), June 24, 1994 (24. 06. 94), Category* Columns (0027) - (0069), WO, 94/14278, Al & AU, 5658794, Al & EP, 635978, Al & EP, 635978, A4 1-3, 10, JP, 4-257175, A (Matsushita Electric Ind. Co., 11 September 11, 1992 (11. 09. 92), Columns (0011) - (0013), Fig. 4 (Family: none) Y 4, 5, 7, 8 6, 9-11 JP, 63-102580, A (Matsushita Electric Ind. Co., X Ltd.), 1988 (07. 05. 88), May 7, 1988 (Family; none) Figs. 1, 6 (Family; none) Y 1-3, 10, 11 JP, 5-130622, A (Victor Co. of Japan, Ltd.), May 25, 1993 (25. 05. 93), Columns (0002)-(0005), Fig. 3 (Family: none) Y See patent family annex. Further documents are listed in the continuation of Box C. later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the lavention Special categories of cited documents: "X" document of particular relevance; the claimed invention cannot be considered so involve an inventive step when the document is taken alone "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other "&" document member of the same patent family document published prior to the international filing date but later than the priority date claimed Date of mailing of the international search report December 5, 1995 (05. 12. 95) Date of the actual completion of the international search November 15, 1995 (15. 11. 95) Authorized officer Name and mailing address of the ISA/ Japanese Patent Office Telephone No. Facsimile No.

国際調查報告

国際出願番号 PCT/JP

	国際調査報告	国際広報をラードで1731	
A. 発明の属	する分野の分類(国際特許分類(IPC)) Int. CL ⁶ H04N9/07,	H04N9/09, H04N	5/228
B. 調査を行	った分野		
調査を行った最	小限資料(国際特許分類(IPC))		
	Int. C2 ⁶ H04N9/07, H04N7/01,	H04N9/09, H04N5 H04N5/335	5/228,
最小限資料以外		926-1995年 971-1995年	
国際調査で使用	した電子データベース(データベースの名称、調査	に使用した用語)	
C. 関連する	と認められる文献		
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連す	るときは、その関連する箇所の表示	関連する 請求の範囲の番 ^長
Y	JP、6-178277, A(ソニ 24.6月、1994(24.06. 【0027】	, 94). 70, 94/14278, A1	1-11
Y	JP, 4-257175, A(松下 11.9月.1992(11.09。 【0011】-【0013】欄, 第	. 92),	1-3, 10,
☑ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	とにも文献が列挙されている。	パテントファミリーに関する別	紙を参照。
* 5(用文献 4 「A」特に同文 「E」先行文化 「L」優先代報: 若 2 理由: 「O」回顾に。 「P」国際出		「T」国際出願日又は優先日後に公表さ 矛盾するものではなく、発明の原 に引用するもので 「X」特に関連のある文献であって、当 性又は進歩性がないと考えられる 「Y」特に関連のある文献であって、当 献との、当業者にとって自明であ がないと考えられるもの 「&」同一パテントファミリー文献	原理又は理論の理解のため 当該文献のみで発明の新着 5もの 当該文献と他の1以上の3
国際調査を完	7した日 15.11.95	国際調査報告の発送日 05.12.9	5
	先 本 国 特 許 庁 (I SA/JP) 郵便番号100 京都千代田区霞が関三丁目 4 番 3 号	特許庁等査官(権限のある職員) 山本章格の 電話番号 03-3581-1101 内部	5 C 9 3 7 3 a 3 5 4 1

11 医肾主机合

国際出職番号 PCT/JP

C (統合). 関連すると認められる文献					
引用文献の カテゴリーキ		間違する 請求の範囲の番号			
X Y	JP, 63-102580, A(松下電器産業株式会社), 7.5月.1988(07.05.88), 第1,6図(ファミリーなし)	4, 5, 7, 8 6, 9-11			
Y	JP, 5-130622, A(日本ピクター株式会社), 25.5月.1993(25.05.93), 【0002】-【0005】欄, 第3図(ファミリーなし)	1-3, 10, 11			