COSC 290 Discrete Structures

Lecture 26: Hasse Diagrams and Basic Rules of Counting

Prof. Michael Hay Friday, Apr. 6, 2018

Colgate University

Partial orders & Hasse Diagrams

Plan for today

- 1. Partial orders & Hasse Diagrams
- 2. Counting
- 3. Sum and Product rules

Recall: partial order

Relation \preceq is a partial order if it is reflexive, antisymmetric, transitive.

Convention: we use *infix* notation: $a \leq b$ instead of $\langle a, b \rangle \in \preceq$.

Intuition: partial order relations behave like \leq except that some pairs may be *incomparable*.

Example (Partial order)

The prefixOf relation is a partial order:

- "a" ≺ "aa"
- · "aa" ≺ "aardvark"

Note: not all pairs comparable: "a" ∠ "b" and "b" ∠ "a"

2

Recall: strict partial order

Relation

is a strict partial order if it is irreflexive, (antisymmetric), transitive.

Example (Strict partial order)

The ancestorOf relation (ancestor is parent or (recursively) parent of ancestor):

- · "DT" ≺ "Don Jr"
- · "Hanns Drumpf"

 ~ "DT" (#makedonalddrumpfagain)

Hasse diagram

A partial order ≤ on A can be drawn using a Hasse diagram.

- · Draw nodes: one node for each A
- Draw edges: edge from a to b if $a \leq b$, except...
- $\boldsymbol{\cdot}\,$... omit edges that can be inferred by reflexivity
- · ... omit edges that can be inferred by transitivity
- ... and layout nodes "by level" if $a \preceq b$ for $a \neq b$, then a is placed lower than b

Example: isSubstringOf relation on the strings $\{a, b, c, ab, bc, abc, cd\}$.

Review example from last time

Definition: Relation <u>≤</u> is a partial order if it is reflexive, antisymmetric, transitive.

Example: Let \leq_1 be a relation on a set of track runners where $a \leq_1 b$ if the number of races in which a competed is no more than the number in which b competed.

This is not a partial order. Why?

Because two runners, say Al and Bob may have competed in the same number of races, and therefore,

 $Al \leq_1 Bob$ and $Bob \leq_1 Al$ but $Al \neq Bob$

What property does this violate? Antisymmetry!

Exercise: draw Hasse diagram

Complete the following exercise: on a piece of paper, draw a Hasse diagram for the relation on $A := \{1,2,3,4,5,6,10,12,15,20,30,60\}$ for the relation $R \subseteq A \times A$ where

$$R := \{ \langle x, y \rangle \in A \times A : y \mod x = 0 \}$$

- · Draw nodes: one node for each A
- Draw edges: edge from a to b if a ≤ b, except...
- $\boldsymbol{\cdot} \ \dots \ omit$ edges that can be inferred by reflexivity
- · ... omit edges that can be inferred by transitivity
- ... and layout nodes "by level" if $a \preceq b$ for $a \neq b$, then a is placed lower than b

Example partial order

A to do list,

[attendClass, sleep, borrowBook, eat, brushTeeth, study]

with constraints:

- borrowBook ≺ study
- study ≺ attendClass
- $\bullet \ \textit{sleep} \preceq \textit{attendClass}$
- eat ≺ brushTeeth
- brushTeeth ≤ sleep

What should you do first? Brush teeth? Eat? Borrow book?

Topological ordering

Given a partial order \preceq , a topological ordering is a total order \preceq_{total} that is *consistent* with \preceq .

(See book for formal definition of consistent; see earlier lectures for algorithms for topological sort.)

Total order

Relation R is a **total order** if it is a partial order where every pair is comparable (either $\langle a,b\rangle \in R$ or $\langle b,a\rangle \in R$).

A total order can be written succinctly as an ordered list.

Is previous example a total order?

Counting

Short URLs

http://bit.ly/2AF3U9c

Bitly is a URL shortening service.

- · Input: regular URL; output: short url.
- . Short url is a string of 6 or 7 characters from { o-9, A-Z, a-z }.
- · If url is 7 characters, first character must be 1 or 2.1

Bitly claims to have shortened 34, 033, 678, 000 urls. How many short urls does Bitly have left?

10

Sum and Product rules

Counting

The essence of counting:

Define some set S that is of practical or theoretical interest.

Determine |S|.

Sum Rule

If A and B are disjoint, then $|A \cup B| = |A| + |B|$.

Example (Short urls)

 $shortUrls = sixCharUrls \cup sevenCharUrls. \\ sixCharUrls \cap sevenCharUrls = \emptyset. Thus, \\ |shortUrls| = |sixCharUrls| + |sevenCharUrls|. \\$

11

¹This claim based on empirical observation.

Product Rule

Let
$$S=A_1\times A_2\times \cdots \times A_R$$
 .

Then
$$|S| = \prod_{i=1}^k |A_i|$$
.

Example (Six character urls)

$$|sixCharUrls| = ?$$

Let $A=\{$ 0-9, A-Z, a-z $\}$. We have |A|= 10 + 26 + 26 = 62. There are 62 choices for each character and six characters total.

Thus $|sixCharUrls| = |A|^6 = 62^6 \approx 56.8$ billion

Example (Seven character urls)

|sevenCharUrls| = ?

Thus |sevenCharUrls| = | { 1, 2 } $|\cdot|A|^6 = 2 \cdot 62^6 \approx 113.6$ billion

Poll: using the sum and product rule

How many 3 digit numbers are divisible by 5? Hint: what values can be the first digit take? The middle digit? The last digit?

- A) 180
- B) 190
- C) 199
- D) 200 F) None of above

How many short urls left?

 $|shortUrls| = |sixCharUrls| + |sevenCharUrls| \approx 170.4$ billion. Bitly has used roughly 34/170 \approx 20% of available URLs.

Short urls used by cloud services to support collaboration (Google map directions, online documents, etc.) Any potential concerns?

(Mis)applying the product rule

Suppose the Colgate Coders club must choose three officers—President, Secretary, Treasurer—from among the four leaders of the club: Alice. Bob. Chen. and Divesh.

- · Bob doesn't want to be president.
- · Only Chen or Divesh can be Treasurer.
- A person can serve in at most one role.

How many distinct officer combinations?

- P = { A, C, D } (no Bob)
- S = { A, B, C, D }
- T = { C, D } (no Alice, no Bob)

Let S denote the set of all possible officer assignments. So, $|S| = |P| \cdot |S| \cdot |T| = 3 \cdot 4 \cdot 2 = 24$. What's wrong with this?

13