CHAPTER-6 TRIANGLES SYNOPSIS

- ❖ Congruent Figures: Two geometric figures which have the same shape and size are known as congruent figures.
- ❖ Similar Figures: Two geometric figures which have the same shape but different sizes are known as similar figures. Two congruent figures are always similar but two similar figures need not be congruent.
- Similar Polygons: Two polygons are said to be similar to each other. If

i)their corresponding angles are equal and

- ii) the lengths of their corresponding sides are proportional.
 - ❖ If a line is drawn parallel to one side of a triangle to intersect the other two sides at distinct points, then the other two sides are divided in the same ratio(Basic proportionality theorem or Thales theorem).
 - * Ratio of the areas of two similar triangles is equal to the ratio of the squares of their corresponding sides.
 - ❖ Perpendicular drawn from the vertex of the right angle of a right triangle to its hypotenuse divides the triangle into two triangles which are similar to the whole triangle and to each other.
 - ❖ In a right triangle, the square on the hypotenuse is equal to the sum of the squares on the other two sides (Pythagoras Theorem) and its converse

A. MULTIPLE CHOICE QUESTIONS (1 Mark)

- **1.** If in two triangles ABC and PQR, $\frac{AB}{QR} = \frac{BC}{PR} = \frac{CA}{PQ}$ then
 - (a) $\triangle PQR \sim \triangle CAB$
- (b) $\triangle PQR \sim \triangle ABC$
- (c) $\triangle PQR \sim \triangle CBA$
- (d) $\triangle PQR \sim \triangle BCA$

a. 12:64	b. 16:81	c. 25:49	d. 36:100
	•		ong on the ground. At und. The height of the d.200m
-	ers of two similar If $PQ = 10 \text{ cm}$, the	-	nd PQR are 36cm
(a) 9cm	(b) 12cm	(c) 15cm	(d) 18cm
6. Two poles of	of height 6m and 1	Im stand vertically	upright on a plane gro
-	•	•	
the distance (a) 12m 8.In \triangle ABC, a 1 $\angle XYC$, then	between their foot (b) 14m	(c) 13m BC cuts AB at X a	(d) 11m
the distance (a) 12m 8.In \triangle ABC, a 1 $\angle XYC$, then	between their foot (b) 14m	(c) 13m BC cuts AB at X a	(d) 11m
the distance (a) 12m 8.In \triangle ABC, a 1 $\angle XYC$, then (a) BC = CY 9. In \triangle ABC, D	between their foot (b) 14m ine XY parallel to (b) BC = B' & E are points on 3:1. If EA = 3.3	is 12m, the distant (c) 13m BC cuts AB at X at X at X (c) BC ≠ CY side AB and AC rescent then AC is	(d) 11m and AC at Y. If BY bis (d) BC ≠ BY respectively such that Γ
the distance (a) 12m 8.In \triangle ABC, a 1 $\angle XYC$, then (a) BC = CY 9. In \triangle ABC, D	between their foot (b) 14m ine XY parallel to (b) BC = BY & E are points on	is 12m, the distant (c) 13m BC cuts AB at X at Y (c) BC ≠ CY side AB and AC r	(d) 11m and AC at Y. If BY bis (d) BC ≠ BY respectively such that Γ
the distance (a) 12m 8.In \triangle ABC, a 1 $\angle XYC$, then (a) BC = CY 9. In \triangle ABC, D and AD: DB = (a) 1.1 cm	between their foot (b) 14m ine XY parallel to (b) BC = B' & E are points on (c) 3: 1. If EA = 3.3 (b) 4 cm	a is 12m, the distant (c) 13m BC cuts AB at X at X at X (c) BC ≠ CY side AB and AC rescent then AC is (c) 4.4c	(d) 11m and AC at Y. If BY bis (d) BC ≠ BY respectively such that Γ

4		
	•	/
1		_
	1	1:

d) 4:5

12.In an equilateral triangle ABC, if AD \perp BC, then

(a)
$$2 AB^2 = 3AD^2$$

(b)
$$4 AB^2 = 3AD^2$$

(c)
$$3AB^2 = 4AD^2$$

(d)
$$3 AB^2 = 2AD^2$$

13.In the trapezium ABCD , AB// DC and AB= 2DC. If area of $\Delta AOB = 84cm^2then$ the area of ΔCOD is :

(a)
$$24 \text{ cm}^2$$

(b)
$$20 \text{ cm}^2$$

(c)
$$36 \text{ cm}^2$$

14. △PQR is an equilateral triangle with each side of length 2p. If PS⊥ QR, then PS

(a)
$$\frac{\sqrt{3}}{2}$$
p

(b) 2p (c)
$$\sqrt{3}$$
p

15.If in two triangles DEF and PQR, $\angle D = \angle Q$ and $\angle R = \angle E$ then which of the following is not true

(a)
$$\frac{EF}{PR} = \frac{DF}{PO}$$

(a)
$$\frac{EF}{PR} = \frac{DF}{PQ}$$
 (b) $\frac{DE}{PQ} = \frac{EF}{RP}$ (c) $\frac{DE}{QR} = \frac{DF}{PQ}$ (d) $\frac{EF}{RP} = \frac{DE}{QR}$

(c)
$$\frac{DE}{OR} = \frac{DF}{PO}$$

(d)
$$\frac{EF}{RP} = \frac{DE}{QR}$$

A.		Very Short Answer Questions (VSA) (1 Mark)	Level
1	7	The corresponding altitudes of two similar triangles are 6cm and 9cm respectively. Find the ratio of their area	С
2	13	It is given that Δ FED $\sim \Delta$ STU. Is it true to say that $\frac{DE}{ST} = \frac{EF}{TU}$ Why?	U
3		In a triangle ABC, DE \parallel BC. If AD = x, AE = (x + 2), BD = (x -2) and CE = (x-1), find the value of x.	С
4	!?	In \triangle ABC, AB = 24 cm, BC = 10 cm and AC = 26 cm. Is this triangle a right triangle? Give reasons for your answer.	С
5	- <u>\$</u> -	If the sides of a triangle are 3 cm, 4 cm and 6 cm, determine whether the triangle is a right-angled triangle.	U
		SECTION-B	
B.		Short Answer Questions (2 marks)	level
6		In \triangle ABC, AB = 13 cm, AC = 12 cm, and BC = 5cm, then find $\angle C$.	С
7		Δ ABC is a right angled triangle at A. If AD \bot BC, show that Δ ABD \sim Δ CAD .	НОТ
8		Legs (sides other than the hypotenuse) of a right triangle are of lengths 16cm and 8 cm. Find the length of the side of the largest square that can be inscribed in the triangle	U
9		Hypotenuse of a right triangle is 25 cm and out of the remaining two sides, one is longer than the other by 5 cm. Find the lengths of the other two sides.	НОТ
10		ABC is a triangle. PQ is the line segment intersecting AB in P and AC in Q such that PQ parallel to BC and divides triangle ABC into two parts equal in area. Find BP: AB.	НОТ

		B C	
11		A man goes 24cm towards west and then 10m towards north. How far is he from the starting point.	MD
С		V Long Answer Questions (VLA) (4 Marks)	
12		In a \triangle ABC, BD \perp AC such that BD ² = DC x AD. Prove that \triangle ABC is a right angled triangle.	С
13	!?	Prove that the diagonals of a trapezium divide each other in the same ratio.	С
14		In an equilateral triangle, prove that three times the square of one side is equal to four times the square of one of its altitudes.	НОТ
15		Prove that in a $\triangle ABC$ with AD \perp BC, $AB^2 + CD^2 = AC^2 + BD^2$	U
D.		V Long Answer Questions (VLA) (4 Marks)	

16	- <u>`</u>	PQRS is a trapezium in which PQ \parallel SR \parallel XY.	U
	Ā	Prove that: $\frac{PX}{XS} = \frac{QY}{YR}$	
17	- Ö -	 In a triangle if the square on one sides is equal to the sum of squares on the other two sides, prove that the angle opposite to the first side is a right angle. Apply the above theorem in the following: In a quadrilateral ABCD, ∠B = 90°. If AD² = AB² + BC² + CD², then prove that ∠ACD = 90°. 	U
18		State and prove Basic proportionality theorem	С
19	<u>-</u>	State and prove Pythagoras theorem.	<u>U</u>
20		Prove that the area of the equilateral triangle described on the side of a square is half the area of the equilateral triangle described on its diagonal.	НОТ

21	1?	In the figure, Δ PQR is right angled at Q, and the points S and T trisect the side QR. Prove that: $8PT^2 = 3PR^2 + 5PS^2$.	НОТ
22			НОТ

MCQ

1) a 2) a 3) b 4) a 5) c 6) b 7) c 8) a 9) c 10) a 11) a 12) c 13) d 14) c 15) b

SECTION A

1)36:81

2) No, because the correct correspondence is $F \to S, E \to T, D \to U$.

With this correspondence $\frac{EF}{ST} = \frac{DE}{TU}$

3) x=4 4) yes 5) No

SECTION B

 $\angle C = 90$ 7) length = 16/3 cm 8) 15cm and 20cm 9) 26

SECTION C PROVE

SECTION D PROVE

Lesson-Triangles

Learning Objective	Achieved	Working	Needs		
		towards	reinforcement		
I can understand and identify the similar figures.					
I can understand the theorems based on tringles.					
I can apply the theorems learnt.					
I can relate my learning to real life through various examples of triangles.					
Teacher's feedback:					
Student's feedback:					
Next step in Learning:					