

Mitochondrial DNA Part A

DNA Mapping, Sequencing, and Analysis

ISSN: 2470-1394 (Print) 2470-1408 (Online) Journal homepage: https://www.tandfonline.com/loi/imdn21

Prey, populations, and the pleistocene: evidence for low COI variation in a widespread North American leech

Joseph Mack, Danielle de Carle & Sebastian Kvist

To cite this article: Joseph Mack, Danielle de Carle & Sebastian Kvist (2019): Prey, populations, and the pleistocene: evidence for low COI variation in a widespread North American leech, Mitochondrial DNA Part A, DOI: 10.1080/24701394.2019.1634698

To link to this article: https://doi.org/10.1080/24701394.2019.1634698

	Published online: 04 Jul 2019.
	Submit your article to this journal 🗷
ılıl	Article views: 5
CrossMark	View Crossmark data 🗗

RESEARCH ARTICLE

Prey, populations, and the pleistocene: evidence for low COI variation in a widespread North American leech

Joseph Mack^{a,b}, Danielle de Carle^{a,b} and Sebastian Kvist^{a,b}

^aDepartment of Natural History, Royal Ontario Museum, Toronto, ON, Canada; ^bDepartment of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada

ABSTRACT

Placobdella rugosa has long presented challenges to leech biologists. Its extreme morphological variability and similarity to some congeneric species has confounded classification for over a century. Recent molecular analyses revealed a surprising lack of genetic variation among morphologically disparate, geographically widespread specimens of *P. rugosa*. Given the lack of any obvious mechanism by which this species could disperse between distant habitats, it was expected that widespread populations would be genetically isolated from each other. In the present study, we investigate the relationship between geographic distance and genetic diversity in *P. rugosa* using COI sequences from specimens collected across Canada and the United States. Although we find preliminary evidence for a barrier to gene flow between eastern and western collecting localities, our vastly expanded dataset largely corroborates prior studies, showing minimal phylogeographic signal among the sequences and negligible levels of genetic isolation by distance. A recent range expansion following the last ice age and/or host-mediated dispersal are discussed as potential explanations for this unexpected phylogeographic pattern.

ARTICLE HISTORY

Received 1 March 2019 Accepted 18 June 2019

KEYWORDS

Hirudinea; *Placobdella*; leech; COI variation; phylogeography; North America

Introduction

Placobdella rugosa (Verrill 1874) is a sanguivorous leech common to freshwater ecosystems in the northeastern United States and Canada (Sawyer 1986). It is an ectoparasite that primarily feeds on turtle blood and has been shown to vector blood parasites between its testudine hosts (Siddall and Desser 1992, 2001). Opportunistically, P. rugosa will also feed on waterfowl, alligators, fish, and mammals (Sawyer 1972, 1986; Davies 1973; Trauger and Bartonek 1977; Brooks et al. 1990). The species is externally characterized by a dark, dorsomedial stripe interrupted by areas of lighter pigmentation; five dorsal rows of papillae, with heavy secondary papillation, and a distinctive pattern of two rows of three papillae, followed by two pairs of paramedial papillae adjacent to the anus; a repeated marginal alternation of two light-coloured annuli, followed by one dark annulus in mid-body segments; and an unpigmented 'mask' near the two pairs of coalesced eyespots (Moser et al. 2012). Previous observations of P. rugosa, however, demonstrate that these characteristics are not universal: instead, papillation and coloration are highly variable among individuals, more so than in other species of Placobdella (Klemm 1985; Moore 1905; Moser et al. 2012; de Carle et al. 2017; Langer et al. 2018) (see also Figure 1). Furthermore, there has been over a century of taxonomic confusion between P. rugosa and Placobdella ornata (Verrill 1872). The identity of the two species has only recently been

formalized (Moser et al. 2012), but the literature is riddled with examples of confusion between them (see Moser et al. 2016 and references therein).

A recent investigation into phylogenetic relationships and species delimitation within the genus Placobdella revealed a lack of phylogeographic structure among the sampled specimens of P. rugosa (de Carle et al. 2017). The nine specimens included in the study displayed significant variation in patterns of dorsal papillation and pigmentation, characters which are commonly - and reliably - used to diagnose congeneric species (Klemm 1985). These specimens were collected from localities in Saskatchewan, Manitoba, Minnesota, North Dakota and Nebraska. In spite of this, phylogenetic analyses revealed that all nine specimens nested together with short branch lengths, and their relationships did not reflect geographic structure. Observed genetic distances in these specimens were also low relative to other leech species: average intraspecific distance at the cytochrome c oxidase subunit I (COI) locus was 0.9% (minimum = 0.000%; maximum = 2.2%) (de Carle et al. 2017). These findings were surprising for a number of reasons. Molecular analyses continue to demonstrate the prevalence of cryptic diversity within leeches (Siddall and Borda 2003; Trontelj and Utevsky 2005; Sket and Trontelj 2008; Saglam et al. 2018). In fact, de Carle et al. (2017) found evidence for cryptic diversity within multiple

Figure 1. Nine preserved specimens of *P. rugosa* from Québec. Note the variation in mottling and coloration, which is typically more vibrant in living specimens. All have the characteristic dorsomedial stripe, alternating marginal light and dark annuli, and an unpigmented mask around the eyespots. The caudal suckers and some portions of marginal tissue have been removed for sequencing. A = ROMIZ I12379 (MK929750), B = ROMIZ I12384 (MK929755), C = ROMIZ I12461 (MK929768), D = ROMIZ I12383 (MK929754), E = ROMIZ I12459 (MK929766), F = ROMIZ I12457 (MK929764), G = ROMIZ I12447 (MK929761), H = ROMIZ I12378 (MK929749), I = ROMIZ I12377 (MK929748).

species of *Placobdella*. Furthermore, ecological observations of *P. rugosa* reveal no obvious mechanism by which the species could readily disperse between habitats. Like other glossiphoniid leeches, *P. rugosa* engages in extensive parental care, brooding their newly hatched offspring over the summer months and delivering them to their first blood meal before the onset of cold weather. Brooding takes place entirely off of the host, and during this time, neither adults nor juveniles feed (Siddall and Desser 2001). This behaviour would seem to preclude juvenile dispersal and limit gene flow between populations. Even while not engaged in brooding, *P. rugosa* has been described as 'sedentary' and 'sluggish'. They are not capable swimmers, and they detach from their hosts immediately after feeding (Moore 1901; Siddall and Desser 2001; de Carle et al. 2017).

To thoroughly investigate the phylogeography of *P. rugosa*, we leverage increased sampling from across a large section of the species' range. We perform phylogenetic and haplotype analyses to examine the relationship between genetic and geographic distance of these specimens and consider the possible influence of post-glacial recolonization and host dispersal in explaining the observed patterns.

Materials and methods

Specimen collection

The present study used leeches sampled during Royal Ontario Museum (ROM) field expeditions to the Canadian provinces of Saskatchewan (SK), Manitoba (MB), Ontario (ON), and Québec (QC) as well as Nebraska (NE) and Minnesota (MN) in the USA (Table 1 and Figure 2). Specimens were collected in shallow ponds and lakes from underneath rocks, aquatic debris, and exposed skin. Leeches were relaxed by the gradual addition of ethanol (maximally 15–20% ethanol) to pond water and subsequently fixed in 95% ethanol. All specimens are deposited in the ROM's invertebrate zoology collection.

DNA amplification, purification and sequencing

Tissue was cut from the caudal suckers to minimize contamination by gut contents and kept at $-20\,^{\circ}\text{C}$ until processing. DNA was extracted using a DNeasy Blood and Tissue Kit (Qiagen, Valencia, CA). The present study focused on the mitochondrial COI locus, which was amplified using

Taxon	Specimen code	and accession numbers for the specimens used in the study. Ne Locality	Coordinates	COI GenBank Accession Numbers
Ingroup	Specimen code	Locuity	coordinates	COT GETIDATIK / RECESSION (VAITIBLE)
Placobdella rugosa Placobdella rugosa	ROMIZI 110089 ROMIZI 110090	Mijinemungshing Lake, Lake Superior Provincial Park, Ontario Mijinemungshing Lake, Lake Superior Provincial Park, Ontario	47.702673N	MF067106 MK929652
J	KOMIZI 110090		84.730059W	MK929653
Placobdella rugosa	ROMIZI I10091	Mijinemungshing Lake, Lake Superior Provincial Park, Ontario	47.702673N 84.730059W	
Placobdella rugosa	ROMIZI I10096	Mijinemungshing Lake, Lake Superior Provincial Park, Ontario	47.702673N 84.730059W	MK929654
Placobdella rugosa	ROMIZI I10100	Mijinemungshing Lake, Lake Superior Provincial Park, Ontario		MF067105
Placobdella rugosa Placobdella rugosa	ROMIZI I10101 ROMIZI I10112	Mijinemungshing Lake, Lake Superior Provincial Park, Ontario Kenny Lake, Lake Superior Provincial Park, Ontario	47.282636N	MF067104 MK929655
J	DOMEST 110110	•	84.561766W	MVODOCEC
Placobdella rugosa	ROMIZI I10118	Paquette Lake, Ontario	46.748837N 83.885505W	MK929656
Placobdella rugosa Placobdella rugosa	ROMIZI I10119 ROMIZI I10120	Paquette Lake, Ontario Paquette Lake, Ontario	46.748837N	MF067103 MK929657
J		•	83.885505W	
Placobdella rugosa	ROMIZI I10121	Paquette Lake, Ontario	46.748837N 83.885505W	MK929658
Placobdella rugosa	ROMIZI I10132	Ranger Lake, Ontario	46.879187N	MK929659
Placobdella rugosa	ROMIZI I10133	Ranger Lake, Ontario	83.569371W 46.879187N	MK929660
Diacobdella vuossa	DOMIZI 110127	•	83.569371W	MV020661
Placobdella rugosa	ROMIZI I10137	Ranger Lake, Ontario	46.879187N 83.569371W	MK929661
Placobdella rugosa	ROMIZI I10165	Unnamed Pond, Grundy Lake Provincial Park, Ontario	45.931319N 80.568046W	MK929662
Placobdella rugosa	ROMIZI I10166	Unnamed Pond, Grundy Lake Provincial Park, Ontario	45.931319N	MK929663
Placobdella rugosa	ROMIZI I10167	Unnamed Pond, Grundy Lake Provincial Park, Ontario	80.568046W 45.931319N	MK929664
J		•	80.568046W	
Placobdella rugosa	ROMIZI I10185	Unnamed pond, Grundy Lake Provincial Park, Ontario	45.931319N 80.568046W	MK929665
Placobdella rugosa	ROMIZI I10210	Clear Lake, Grundy Lake Provincial Park, Ontario	45.932639N	MK929666
Placobdella rugosa	ROMIZI I10212	Unnamed pond, Restoule Provincial Park, Ontario	80.575461W 46.060783N	MK929667
Placobdella rugosa	ROMIZI I10213	Unnamed pond, Restoule Provincial Park, Ontario	79.763913W 46.060783N	MK929668
J		•	79.763913W	
Placobdella rugosa	ROMIZI I10245	Unnamed pond, Restoule Provincial Park, Ontario	46.060783N 79.763913W	MK929669
Placobdella rugosa	ROMIZI 110253	Moore Lake, Samuel de Champlain Provincial Park, Ontario	46.292453N	MK929670
Placobdella rugosa	ROMIZI I10254	Moore Lake, Samuel de Champlain Provincial Park, Ontario	78.878476W 46.292453N	MK929671
Placobdella rugosa	ROMIZI I10255	Moore Lake, Samuel de Champlain Provincial Park, Ontario	78.878476W 46.292453N	MK929672
J		*	78.878476W	
Placobdella rugosa	ROMIZI I10263	Pacaud Lake, Samuel de Champlain Provincial Park, Ontario	46.290257N 78.89958W	MK929673
Placobdella rugosa	ROMIZI I10264	Pacaud Lake, Samuel de Champlain Provincial Park, Ontario	46.290257N	MK929674
Placobdella rugosa	ROMIZI 110267	Pacaud Lake, Samuel de Champlain Provincial Park, Ontario	78.89958W 46.290257N	MK929675
Placobdella rugosa	ROMIZI I10273	Pacaud Lake, Samuel de Champlain Provincial Park, Ontario	78.89958W 46.290257N	MK929676
J		·	78.89958W	
Placobdella rugosa	ROMIZI I10275	Pacaud Lake, Samuel de Champlain Provincial Park, Ontario	46.290257N 78.89958W	MK929677
Placobdella rugosa	ROMIZI I10286	Burbot Lake, Ontario	46.258237N	MK929678
Placobdella rugosa	ROMIZI 110287	Burbot Lake, Ontario	78.901717W 46.258237N	MK929679
Placobdella rugosa	ROMIZI I10288	Burbot Lake, Ontario	78.901717W 46.258237N	MK929680
J	NOMIZI 110200		78.901717W	WIK929000
Placobdella rugosa	ROMIZI 110289	Burbot Lake, Ontario	46.258237N 78.901717W	MK929681
Placobdella rugosa	ROMIZI I10325	Unnamed pond, Ontario	46.13038N	MK929682
Placobdella rugosa	ROMIZI I10338	Pearkes Lake, Ontario	78.306168W 44.497839N	MK929683
Placobdella rugosa	ROMIZI I10339	Pearkes Lake, Ontario	76.560586W 44.497839N	MK929684
J			76.560586W	
Placobdella rugosa	ROMIZI I10342	Unnamed pond, Frontenac Provincial Park, Ontario	44.569695N 76.505173W	MK929985
Placobdella rugosa	ROMIZI 110362	Unnamed pond, Frontenac Provincial Park, Ontario	44.569695N	MK929686
			76.505173W	(continued)

Table 1. Continued.

Taxon	Specimen code	Locality	Coordinates	COI GenBank Accession Numbers
Placobdella rugosa	ROMIZI I10363	Unnamed pond, Frontenac Provincial Park, Ontario	44.569695N	MK929687
.			76.505173W	
Placobdella rugosa	ROMIZI 110476	Lost Lake, Cook, Minnesota	47.816683N	MK929688
			92.403817W	
Placobdella rugosa	ROMIZI 110477	Lost Lake, Cook, Minnesota	47.816683N	MK929689
0	2014171 140470		92.403817W	*******
Placobdella rugosa	ROMIZI I10478	Lost Lake, Cook, Minnesota	47.816683N	MK929690
Placobdella rugosa	ROMIZI I10479	Lost Lake, Cook, Minnesota	92.403817W 47.816683N	MK929691
iucobuella rugosa	NOMIZI 110479	LOST Lake, COOK, MITTIESOTA	92.403817W	WIK929091
Placobdella rugosa	ROMIZI 110480	Lost Lake, Cook, Minnesota	47.816683N	MK929692
		, ,	92.403817W	
Placobdella rugosa	ROMIZI 110481	Lost Lake, Cook, Minnesota	47.816683N	MK929693
			92.403817W	
Placobdella rugosa	ROMIZI 110482	Lost Lake, Cook, Minnesota	47.816683N	MK929694
DI I- d - II	DOMEST 110402	Last Labor Carlo Minnesota	92.403817W	MICOSOCOE
Placobdella rugosa	ROMIZI I10483	Lost Lake, Cook, Minnesota	47.816683N 92.403817W	MK929695
Placobdella rugosa	ROMIZI I10484	Lost Lake, Cook, Minnesota	47.816683N	MK929696
racoodena ragosa	NOMIZI 110404	LOST Lake, Cook, Willinesota	92.403817W	MIKJZJOJO
Placobdella rugosa	ROMIZI 110485	Lost Lake, Cook, Minnesota	47.816683N	MK929697
		, ,	92.403817W	
Placobdella rugosa	ROMIZI 110486	Lost Lake, Cook, Minnesota	47.816683N	MK929698
			92.403817W	
Placobdella rugosa	ROMIZI 110487	Lost Lake, Cook, Minnesota	47.816683N	MK929699
D	DOMEST 140400		92.403817W	M//020700
Placobdella rugosa	ROMIZI I10488	Lost Lake, Cook, Minnesota	47.816683N	MK929700
Placobdella rugosa	ROMIZI I10489	Lost Lake, Cook, Minnesota	92.403817W 47.816683N	MK929701
riacoodena ragosa	NOMIZI 110409	LOST Lake, COOK, MITTIESOTA	92.403817W	WIK929701
Placobdella rugosa	ROMIZI 110499	Eagle Lake, Minnesota	44.206883N	MK929702
· · · · · · · · · · · · · · · · · · ·		g,	93.88975W	
Placobdella rugosa	ROMIZI 110500	Eagle Lake, Minnesota	44.206883N	MK929703
			93.88975W	
Placobdella rugosa	ROMIZI I10513	Unknown pond, Nevens Ranch, Nebraska	41.192745N	MK929704
Di	DOMEST 110514	Halmann and Marray Danah Makaraka	101.303333W	M4/020705
Placobdella rugosa	ROMIZI I10514	Unknown pond, Nevens Ranch, Nebraska	41.192745N	MK929705
Placobdella rugosa	ROMIZI 110522	Unknown pond, Nevens Ranch, Nebraska	101.303333W 41.192745N	MK929706
racoodena ragosa	NOMIZI 110322	onknown pond, nevens nanch, nebraska	101.303333W	MIK323700
Placobdella rugosa	ROMIZI I10564	Swan Lake, Arthur County, Nebraska	41.737617N	MK929707
,		<i>,</i>	101.4745W	
Placobdella rugosa	ROMIZI 110565	Swan Lake, Arthur County, Nebraska		MF067102
Placobdella rugosa	ROMIZI 110566	Swan Lake, Arthur County, Nebraska	41.737617N	MK929708
D	DOMEST 140567		101.4745W	M//020700
Placobdella rugosa	ROMIZI I10567	Swan Lake, Arthur County, Nebraska	41.737617N	MK929709
Placobdella rugosa	ROMIZI 110568	Swan Lake, Arthur County, Nebraska	101.4745W 41.737617N	MK929710
riacobaena ragosa	NOMIZI 110500	Swall Lake, Althai County, Nebraska	101.4745W	MIK3237 10
Placobdella rugosa	ROMIZI 110569	Swan Lake, Arthur County, Nebraska	41.737617N	MK929711
		,,,	101.4745W	
Placobdella rugosa	ROMIZI 110578	Swan Lake, Arthur County, Nebraska	41.7638N	MK929712
			102.43885W	
Placobdella rugosa	ROMIZI I11411	Pipestone Creek, Moosomin Regional Park, Saskatchewan		MF067101
Placobdella rugosa	ROMIZI I11443	Anglin Lake beach, Saskatchewan	53.742748N	MK929713
Placobdella rugosa	ROMIZI I11553	Adam Lake, Turtle Mountain Provincial Park, Manitoba	105.895182W	MF067100
Placobdella rugosa Placobdella rugosa	ROMIZI 111587	Singuish Lake, Duck Mountain Provincial Park, Manitoba		MF067099
Placobdella rugosa	ROMIZI 111598	Unnamed pond, Duck Mountain Provincial Park, Manitoba		MF067098
Placobdella rugosa	ROMIZI I12327	Unnamed pond, Quebec	45.640243N	MK929714
•		•	75.832892W	
Placobdella rugosa	ROMIZI 112334	Lac Blair, Quebec	45.668094N	MK929715
			75.796329W	
Placobdella rugosa	ROMIZI I12340	Lac Jadot, Tee Lake, Timiskaming, Quebec.	46.757492N	MK929716
Diacobdella vuessa	DOMITI 112241	Lac ladet Too Lake Timiskaming Out-	79.04616W	MK020717
Placobdella rugosa	ROMIZI 112341	Lac Jadot, Tee Lake, Timiskaming, Quebec.	46.757492N 79.04616W	MK929717
Placobdella rugosa	ROMIZI I12344	Lac Pian, Quebec	47.857443N	MK929718
cooucha rayosa	NOMILI HZJTT	Lucdrij Quebec	79.113793W	
Placobdella rugosa	ROMIZI 112345	Lac Levéque, Quebec	47.86929N	MK929719
.			79.000097W	
Placobdella rugosa	ROMIZI I12346	Lac Levéque, Quebec	47.86929N	MK929720
			79.000097W	
Placobdella rugosa	ROMIZI 112347	Lac Levéque, Quebec	47.86929N	MK929721
			79.000097W	

(continued)

Table 1. Continued.

Table 1. Continued.				
Taxon	Specimen code	L	ocality Coordinates	COI GenBank Accession Numbers
Placobdella rugosa	ROMIZI I12348	Lac Levéque, Quebec	47.86929N	MK929722
Placobdella rugosa	ROMIZI I12349	Lac Levéque, Quebec	79.000097W 47.86929N	MK929723
riacobaena ragosa	NOMIZI 112549	Lac Leveque, Quebec	79.00097W	WIK727723
Placobdella rugosa	ROMIZI I12350	Lac Levéque, Quebec	47.86929N	MK929724
Diacobdolla vuonna	DOMIZI 112251	Las Lavágua Oughas	79.000097W	MK02022E
Placobdella rugosa	ROMIZI I12351	Lac Levéque, Quebec	47.86929N 79.000097W	MK929725
Placobdella rugosa	ROMIZI 112352	Lac Levéque, Quebec	47.86929N	MK929726
DI I- d-II	DOMEST 112252	Landau (m. a. Ovelana	79.000097W	MK020727
Placobdella rugosa	ROMIZI 112353	Lac Levéque, Quebec	47.86929N 79.000097W	MK929727
Placobdella rugosa	ROMIZI 112357	Big Cedar Lake, Quebec	46.287888N	MK929728
DI I- d-II	DOMEST 112250	Die Carlan Laba Occabas	76.092519W	MKO20720
Placobdella rugosa	ROMIZI 112358	Big Cedar Lake, Quebec	46.287888N 76.092519W	MK929729
Placobdella rugosa	ROMIZI 112359	Big Cedar Lake, Quebec	46.287888N	MK929730
DI I- d-II	DOMEST 1122.60	Die Carlan Laba Occabas	76.092519W	M/020721
Placobdella rugosa	ROMIZI I12360	Big Cedar Lake, Quebec	46.287888N 76.092519W	MK929731
Placobdella rugosa	ROMIZI 112361	Big Cedar Lake, Quebec	46.287888N	MK929732
01 1 1 11	DOMEST 1422.62	D: C	76.092519W	Mesora
Placobdella rugosa	ROMIZI 112362	Big Cedar Lake, Quebec	46.287888N 76.092519W	MK929733
Placobdella rugosa	ROMIZI I12363	Lac Boutin, Quebec	46.279762N	MK929734
			76.092655W	
Placobdella rugosa	ROMIZI I12364	Lac Boutin, Quebec	46.279762N 76.092655W	MK929735
Placobdella rugosa	ROMIZI I12365	Lac Boutin, Quebec	46.279762N	MK929736
· · · · · · · · · · · · · · · · · · ·			76.092655W	
Placobdella rugosa	ROMIZI I12366	Big Cedar Lake, Quebec	46.28826N	MK929737
Placobdella rugosa	ROMIZI I12367	Big Cedar Lake, Quebec	76.094493W 46.28826N	MK929738
· · · · · · · · · · · · · · · · · · ·			76.094493W	
Placobdella rugosa	ROMIZI I12368	Big Cedar Lake, Quebec	46.28826N	MK929739
Placobdella rugosa	ROMIZI I12369	Big Cedar Lake, Quebec	76.094493W 46.28826N	MK929740
			76.094493W	
Placobdella rugosa	ROMIZI I12370	Big Cedar Lake, Quebec	46.28826N	MK929741
Placobdella rugosa	ROMIZI I12371	Big Cedar Lake, Quebec	76.094493W 46.28826N	MK929742
· · · · · · · · · · · · · · · · · · ·			76.094493W	
Placobdella rugosa	ROMIZI I12372	Big Cedar Lake, Quebec	46.28826N	MK929743
Placobdella rugosa	ROMIZI I12373	Big Cedar Lake, Quebec	76.094493W 46.28826N	MK929744
racooucha ragosa		ong count zame, quesco	76.094493W	
Placobdella rugosa	ROMIZI I12374	Lac Edelweiss, Quebec	45.648138N	MK929745
Placobdella rugosa	ROMIZI I12375	Unnamed pond, Quebec	75.852593W 45.640243N	MK929746
racooucha ragosa	NOME TIESTS	omanica pona, quesce	75.832892W	
Placobdella rugosa	ROMIZI I12376	Unnamed pond, Quebec	45.640243N	MK929747
Placobdella rugosa	ROMIZI I12377	Unnamed pond, Quebec	75.832892W 45.640243N	MK929748
racooucha ragosa	NOME TIEST	omanica pona, quesce	75.832892W	
Placobdella rugosa	ROMIZI I12378	Unnamed pond, Quebec	45.640243N	MK929749
Placobdella rugosa	ROMIZI I12379	Unnamed pond, Quebec	75.832892W 45.640243N	MK929750
r iacobaciia ragosa	HOWILL TIESTS	offilatifica porta, Quebec	75.832892W	MIC22730
Placobdella rugosa	ROMIZI 112380	Unnamed pond, Quebec	45.640243N	MK929751
Placobdella rugosa	ROMIZI I12381	Unnamed pond, Quebec	75.832892W 45.640243N	MK929752
, accouciiu rugosu	NOMILI 112301	omanica pona, Quebec	75.832892W	
Placobdella rugosa	ROMIZI 112382	Unnamed pond, Quebec	45.640243N	MK929753
Placobdella rugosa	ROMIZI I12383	Unnamed pond, Quebec	75.832892W 45.640243N	MK929754
i iacoouena ragosa	NOWILL 112303	omanica pona, Quebec	45.040245N 75.832892W	WIR 3237 34
Placobdella rugosa	ROMIZI 112384	Unnamed pond, Quebec	45.640243N	MK929755
Placohdella rucces	DOMIZI 112205	Unnamed need Ouches	75.832892W 45.640243N	MK020756
Placobdella rugosa	ROMIZI 112385	Unnamed pond, Quebec	45.640243N 75.832892W	MK929756
Placobdella rugosa	ROMIZI 112386	Unnamed pond, Quebec	45.640243N	MK929757
Placohdella rucces	DOMINI 112207	Unnamed need Ouches	75.832892W 45.640243N	MK020758
Placobdella rugosa	ROMIZI 112387	Unnamed pond, Quebec	45.640243N 75.832892W	MK929758
			, 3,03237211	(continued)

(continued)

Table 1. Continued.

Taxon	Specimen code	Locality	Coordinates	COI GenBank Accession Numbers
Placobdella rugosa	ROMIZI 112388	Unnamed pond, Quebec	45.640243N 75.832892W	MK929759
Placobdella rugosa	ROMIZI I12446	Lac Blair, Quebec	45.668094N	MK929760
Placobdella rugosa	ROMIZI I12447	Lac Blair, Quebec	75.796329W 45.668094N	MK929761
Placobdella rugosa	ROMIZI I12451	Lac Blair, Quebec	75.796329W 45.668094N	MK929762
•			75.796329W	
Placobdella rugosa	ROMIZI 112455	Lac Donovan, Quebec	45.769997N 75.728258W	MK929763
Placobdella rugosa	ROMIZI I12457	Lac Donovan, Quebec	45.769997N 75.728258W	MK929764
Placobdella rugosa	ROMIZI I12458	Lac Donovan, Quebec	45.769997N	MK929765
Placobdella rugosa	ROMIZI I12459	Lac Donovan, Quebec	75.728258W 45.769997N	MK929766
Placobdella rugosa	ROMIZI I12460	Lac Donovan, Quebec	75.728258W 45.769997N	MK929767
Placobdella rugosa	ROMIZI I12461	Lac Donovan, Quebec	75.728258W 45.769997N	MK929768
•			75.728258W	
Placobdella rugosa	ROMIZI I12464	Unnamed pond, Frontenac Provincial Park, Ontario	44.569582N 76.505861W	MK929769
Placobdella rugosa	ROMIZI I12465	Unnamed pond, Frontenac Provincial Park, Ontario	44.569582N 76.505861W	MK929770
Placobdella rugosa	ROMIZI 112467	Unnamed pond, Frontenac Provincial Park, Ontario	44.569582N	MK929771
Placobdella rugosa	ROMIZI I12469	Unnamed pond, Frontenac Provincial Park, Ontario	76.505861W 44.569582N	MK929772
Placobdella rugosa	ROMIZI I12470	Unnamed pond, Frontenac Provincial Park, Ontario	76.505861W 44.569582N	MK929773
•		•	76.505861W	
Placobdella rugosa	ROMIZI 112471	Unnamed pond, Frontenac Provincial Park, Ontario	44.569582N 76.505861W	MK929774
Placobdella rugosa	ROMIZI 112472	Unnamed pond, Frontenac Provincial Park, Ontario	44.569582N 76.505861W	MK929775
Placobdella rugosa	ROMIZI I12473	Unnamed pond, Frontenac Provincial Park, Ontario	44.569582N 76.505861W	MK929776
Placobdella rugosa	ROMIZI 112474	Unnamed pond, Frontenac Provincial Park, Ontario	44.569582N	MK929777
Placobdella rugosa	ROMIZI I12475	Unnamed pond, Frontenac Provincial Park, Ontario	76.505861W 44.569582N	MK929778
Placobdella rugosa	ROMIZI I12476	Unnamed pond, Frontenac Provincial Park, Ontario	76.505861W 44.569582N	MK929779
•		•	76.505861W	
Placobdella rugosa	ROMIZI 112478	Unnamed pond, Frontenac Provincial Park, Ontario	44.569582N 76.505861W	MK929780
Placobdella rugosa	ROMIZI I12481	Unnamed pond, Frontenac Provincial Park, Ontario	44.569582N 76.505861W	MK929781
Placobdella rugosa	ROMIZI I12519	Unnamed pond, Frontenac Provincial Park, Ontario	44.569582N 76.505861W	MK929782
Placobdella rugosa	ROMIZI I12520	Unnamed pond, Frontenac Provincial Park, Ontario	44.569582N	MK929783
Placobdella rugosa	ROMIZI I12522	Unnamed pond, Frontenac Provincial Park, Ontario	76.505861W 44.569582N	MK929784
Placobdella rugosa	ROMIZI I12523	Unnamed pond, Frontenac Provincial Park, Ontario	76.505861W 44.569582N	MK929785
•		•	76.505861W	
Placobdella rugosa	ROMIZI 112524	Unnamed pond, Frontenac Provincial Park, Ontario	44.569582N 76.505861W	MK929786
Placobdella rugosa	ROMIZI I12525	Unnamed pond, Frontenac Provincial Park, Ontario	44.569582N 76.505861W	MK929787
Placobdella rugosa	ROMIZI I12526	Unnamed pond, Frontenac Provincial Park, Ontario	44.569582N 76.505861W	MK929788
Placobdella rugosa	ROMIZI I12527	Unnamed pond, Frontenac Provincial Park, Ontario	44.569582N	MK929789
Placobdella rugosa		Belcourt Lake, Turtle Mountain, North Dakota, USA	76.505861W	JX412986
Placobdella rugosa		Belcourt Lake, Turtle Mountain, North Dakota, USA		JX412987
Placobdella rugosa Placobdella rugosa		Belcourt Lake, Turtle Mountain, North Dakota, USA Belcourt Lake, Turtle Mountain, North Dakota, USA		JX412988 JX412989
Placobdella rugosa		Belcourt Lake, Turtle Mountain, North Dakota, USA		JX412990
Outgroup Placobdella multilineata		Maurepas Swamp, Louisiana, USA		AY962464

Figure 2. Map of all localities where leeches were sampled with an overlay of drainage basins. Each black dot represents a unique sampling locality. A total of 37 localities are represented.

polymerase chain reaction in 25 µL volumes per sample. Each reaction consisted of 16.34 µL distilled water, 2.5 µL buffer, 2.5 μL MgCl₂, 1 μL of each primer at 10 μM concentration, 0.56 μL dNTPs at 10 μM concentration, 0.1 μL Tag Polymerase (Invitrogen, Carlsbad, CA), and 1 µL DNA. The primers used were LCO1490 (5'-GGTCAACAAATCATAAAATATTGG-3') and HCO2198 (5'-TAAACTTCAGGGTGACCAAAAAATCA-3') (Folmer et al. 1994). Amplification used the following thermoprofile: 94°C (1 min) followed by five cycles of 94°C (30 s), 40°C (40 s), 72 °C (1 min), then 35 cycles of 94 °C (30 sec), 46 °C (40 sec), 72 °C (1 min), and final extension at 72 °C (5 min). All PCR products were examined by electrophoresis on a 1.2% agarose gel and samples were purified with a solution of 1.5 μL H₂O:0.5 μL ExoSap-IT (Affymetrix, Santa Clara, CA). Cycle sequencing reactions were carried out using $4 \mu L$ of distilled water, 0.5 µL of ABI Big Dye Terminator ver. 3.1, 0.5 μL Big Dye 5X Sequencing Buffer (Applied Biosystems, Carlsbad, CA), 2 μL primer at 10 μM concentration, and 3 μL PCR product. Cycle sequencing was followed by ethanol precipitation, and the samples were then sequenced on an ABI PRISM 3730 (Applied Biosystems, Carlsbad, CA) at the ROM. Raw sequences were edited and assembled using Geneious ver. 11.1.4 (Kearse et al. 2012). To augment the dataset, five COI sequences for P. rugosa from its type locality in Belcourt Lake, North Dakota (ND) were downloaded from GenBank and added to our analyses, as were nine P. rugosa sequences from the study by de Carle et al. (2017). In total, 152 P. rugosa sequences were used, 138 of which were newly generated for the present study.

Alignments were carried out using the online version of MAFFT ver. 7 (Katoh and Standley 2013), applying default settings. All phylogenetic trees were rooted at Placobdella

multilineata (Moore 1953), following the phylogenetic hypothesis recovered by de Carle et al. (2017). The final matrix was created in Mesquite ver. 3.5 (Maddison and Maddison 2016). All newly generated sequences are deposited in GenBank under accession numbers MK929652-MK929789.

Gene tree inference, haplotype networks and genetic distances

Two optimality criteria were used to construct the phylogenetic hypotheses: parsimony and maximum likelihood (ML). For parsimony analyses, trees were constructed using a new technology search in TNT ver. 1.5 (Goloboff et al. 2008). The heuristic search consisted of 1000 replications, five rounds of ratcheting and five rounds of tree fusing, stipulating that the minimum length tree be recovered at least 10 times before terminating the search. Nodal support values were estimated by 1,000 rounds of standard bootstrapping, employing default settings. Prior to the ML analysis, PartitionFinder ver. 2.1.1 (Lanfear et al. 2016) was used to simultaneously estimate the optimal model of nucleotide evolution and the best fitting partitioning scheme, testing each codon position as a separate partition under the greedy algorithm. The ML tree was constructed using RAxML ver. 8 (Stamatakis 2014) on the CIPRES platform (Miller et al. 2010). The search used 25 initial GAMMA rate categories that were allowed to fluctuate independently for each partition, and final optimization with four GAMMA shape categories. Support values for clades were estimated via 1,000 iterations of the rapid strap algorithm.

Average genetic distances (± standard error) were estimated in MEGA ver. 7.0.26 (Kumar et al. 2016), using the bootstrap method for variance estimation under the uncorrected p-distance model, with uniform rates among sites and complete deletion of missing data (note that no internal gaps were present in the alignment). To examine the relationship between collecting locality and genetic distance, specimens were grouped according to clades recovered by the phylogenetic and haplotype analyses, and according to the drainage basins from which they were collected. Within and between group genetic distances were then calculated for these specimens. To test for a possible correlation between genetic distance and geographic distance among the specimens, a Mantel test was run in Alleles in Space (AIS) applying default settings (Mantel 1967; Miller 2005). Finally, a haplotype network based on statistical parsimony was constructed in TCS (Clement et al. 2000), with a 90% connection limit and gaps treated as missing data. Adobe Illustrator (Adobe Systems, Inc., San Jose, CA) and Inkscape 0.92.3 (Free Software Foundation, Inc., Boston, MA) were used to further

polish the haplotype network. The map of our sampling

localities was constructed in ArcMap 10.6.1 (Esri, Inc.,

Redlands, CA) and drainage boundaries were taken from the

HydroSHEDS database (Lehner et al. 2008).

Results

Gene trees

The parsimony and ML trees are highly similar – though lacking in resolution - showing only a few recognizable clades, and minimal evidence of phylogeographic structure (Figures 3 and 4). Both topologies resolve a 'western' clade, consisting of all but one sequence from specimens collected in Saskatchewan, Manitoba, Nebraska, Minnesota and North Dakota (parsimony bootstrap support [PBS] = 29%; ML bootstrap support [MLBS] = 74%). In the ML tree, this western clade is the sister group to a clade consisting of ROMIZ 110513 (MK929704), and ROMIZ 111443 (MK929713), collected from Nebraska and Saskatchewan, respectively (MLBS = 21%; Figure 3). Although these individuals form a sister pair in the parsimony tree as well (PBS = 51%), their position cannot be further resolved (Figure 4). The remainder of the tree, consisting almost entirely of sequences from Ontario and Québec, is largely unresolved. However, this group contains some clades of uniquely Québec origin, the largest of which includes 15 sequences from various localities in the province (PBS = 64%, MLBS = 52%).

Two anomalies bear mentioning: first, both trees agree on the placement of a sequence from Ontario (ROMIZI 10255 [MK929672]) within the otherwise exclusively western clade (MLBS = 74%, PBS = 29%); second, both trees agree on the placement of a Minnesota sequence (ROMIZ I10500 [MK929703]) within a clade of Ontario and Québec specimens (MLBS = 77%, PBS = 60%). These oddities are further discussed in the context of haplotypes and genetic distances, below.

Haplotype network

There is a total of 57 unique haplotypes in our dataset, 34 of which are unique to a single specimen. The network largely mirrors the results of the phylogenetic analyses, inasmuch as a cluster of haplotypes from western areas of collection (MB, SK, MN, ND and NE) is separated by six substitutions from a larger cluster of eastern (ON and QC) haplotypes (Figure 5). Additionally, much like the gene trees, there are exceptions to the geographic groupings and, unsurprisingly, the haplotype network more closely resembles the most parsimonious phylogenetic hypothesis. The aforementioned sequences from Nebraska and Saskatchewan (ROMIZ I10513 [MK929704] and ROMIZ I11443 [MK929713]) are separated by four and six substitutions, respectively, from the most inclusive Ontario + Québec haplotype. Moreover, the Ontario sequence that places within the western grouping in the phylogenies (ROMIZ I10255 [MK929672]) shares a haplotype with four other Nebraskan sequences and is separated from the nearest Ontario haplotype by 10 substitutions. Similarly, the sequence from Minnesota (ROMIZ I10500 [MK929703]) that clustered with Ontario and Québec specimens in the phylogenies shares its haplotype with 8 sequences from those provinces and is separated from other Minnesota sequences by at least 11 substitutions.

COI distances

The average COI distance among all *P. rugosa* specimens is $0.8\% \pm 0.2$, with the greatest distance reaching 2.6%. This greatest distance occurs between ROMIZ I10567 (NE;MK929709) and ROMIZ I10119 (ON;MF067103), as well as between ROMIZ I10578 (NE;MK929712) and three sequences from Ontario and Québec (ROMIZ I10119 [ON; MF067103], ROMIZ I12367 [QC;MK929738], and ROMIZ I12371 [QC;MK929742]).

Genetic distances were calculated within and between the eastern and western haplotype groupings. In the phylogenetic and haplotype analyses, ROMIZ I10255 (ON) was included in the western clade, as were ROMIZ I10513 (NE) and ROMIZ 111443 (SK); similarly, ROMIZ 110500 (MN) was included in the eastern grouping of Ontario and Québec specimens. The average distance between the two groups amounted to $1.4\% \pm 0.4$, while the average within-group genetic distance for the western clade was $0.6\% \pm 0.2$ and the average withingroup distance for the eastern grouping was $0.5\% \pm 0.1$. We also investigated how the specimens were dispersed across the North American freshwater drainage basins (Figure 2), which, to our knowledge, has not been considered in other population-level studies of leeches. Specimens from Nebraska and Minnesota reside in the Mississippi drainage basin; those from Québec and Ontario reside in the St. Lawrence River drainage basin; while those from Nebraska, Saskatchewan, and Manitoba reside in the Hudson Bay drainage basin. Genetic distances among the drainages were as follows: 0.7% ± 0.2 between Hudson Bay and Mississippi drainages; 1.3% ± 0.4 between St. Lawrence River and Hudson Bay drainages drainages; and 1.4% ± 0.4 between St. Lawrence River and Mississippi drainages. Within group, distances did not

Figure 3. Maximum-likelihood tree (InL = -1846.112147) resulting from the analysis of the COI dataset. Maximum likelihood bootstrap values above 50% are shown above each node. GenBank accession numbers are noted before each terminal and collection localities are noted after each taxon name. ON = Ontario, QC = Qu'ebec, MB = Manitoba, SK = Saskatchewan, ND = North Dakota, MN = Minnesota, NE = Nebraska.

exceed $0.8\% \pm 0.2$. Because the overwhelming majority of specimens from the Mississippi and Hudson Bay drainages grouped together in both the phylogenetic and haplotype analyses, we also grouped specimens from these two regions

and compared genetic distances within this group to specimens from the St. Lawrence drainage basin. The genetic distance within the two drainages was $0.7\% \pm 0.2$, while the distance between groups was $1.4\% \pm 0.3$.

Figure 4. Strict consensus of 107 most parsimonious trees (182 steps) resulting from the analysis of the COI dataset. Parsimony bootstrap values above 50% are shown above each node. GenBank accession numbers are noted before each terminal and collection localities are noted after each taxon name. ON = Ontario, QC = Québec, MB = Manitoba, SK = Saskatchewan, ND = North Dakota, MN = Minnesota, NE = Nebraska.

Figure 5. Haplotype network based on statistical parsimony resulting from the analysis of the COI dataset. Colours correspond to different provinces/states and solid black circles represent one transition.

Finally, we considered the genetic distances between specimens from the edges of our sampling range (Table 1 and Figure 2). Distances were computed between the westernmost and northernmost sample, ROMIZ I11443 (SK; MK929713); the southernmost sample, ROMIZ I10513 (NE; MK929704); and the easternmost sample, ROMIZ I12455 (QC; MK929763). The Saskatchewan and Québec samples, separated by 2322 km, differed by $1.1\% \pm 0.4$ in COI; the Québec and Nebraska samples, separated by 2115 km, differed by 0.76% ± 0.3; finally, the Nebraska and Saskatchewan samples, separated by 1432 km, differed by $0.61\% \pm 0.3$. We tested for a correlation between genetic distance and geographic distance using a Mantel test, and obtained a correlation

coefficient of r = 0.22, p < 0.001, indicating a lack of correlation between the two parameters.

Discussion

Our results suggest that there is no evidence for cryptic diversity, using the COI locus as a proxy, within the Placobdella rugosa specimens sampled herein. While the greatest intraspecific distance within our dataset exceeds 2%, it is still within the range of intraspecific variation commonly encountered for leeches (Kvist 2014; Mack and Kvist 2019). Furthermore, the calculated average intraspecific distance of 0.83% is less than the average intraspecific distance for Placobdella species – $1.5\% \pm 1.8$ (de Carle et al. 2017). This strongly indicates that populations of P. rugosa, from Québec to Saskatchewan to Nebraska, constitute a single species in spite of the observed morphological variation (Figure 1). This is further corroborated by the lack of differentiation in the nuclear loci used by de Carle et al. (2017). Importantly, notwithstanding rigorous sampling efforts, we have yet to record P. rugosa west of Saskatchewan. Although Placobdella rugosa has been reported from more westerly localities in the United States and Canada (Sawyer 1972; Klemm 1985), these records are likely the result of confusion with a separate, as yet undescribed, species that closely resembles P. rugosa in external appearance (Placobdella sp.1; de Carle et al. 2017). The two species co-exist in Saskatchewan but, westward, P. rugosa appears to be replaced by Placobdella sp. 1 (Kvist, personal observation). Although this undescribed species is externally similar to *Placobdella rugosa*, it is more closely related to two other western species: Placobdella kwetlumye Ocequera-Figueroa et al. (2010) and Placobdella burressonae Siddall and Bowerman (2006), known from Washington and Oregon, respectively (de Carle et al. 2017). As it cannot presently be determined whether records ranging as far east as Nova Scotia and as far south as Texas (Klemm 1985) correspond to P. rugosa sensu stricto, Placobdella ornata, or another cryptic species not yet described, the northern, eastern, and southern geographic boundaries of P. rugosa's range are still unknown.

Our phylogenetic and haplotype analyses recover a 'western' clade containing nearly all individuals from west of the Great Lakes (i.e. those in the Hudson Bay and Mississippi drainages) (SK, MB, MN, ND and NE; Figure 2); this was distinct from an unresolved cluster of haplotypes from areas in the Great Lakes region (i.e. those in the St. Lawrence river drainage) (ON and QC; Figure 2). It is possible that these results represent preliminary evidence for a barrier to gene flow between the Hudson Bay and Mississippi drainages and the St. Lawrence River drainage. This is reflected in the fact that genetic distance among specimens from these two groups is much less than between them. The same pattern is observed for the 'western' and 'eastern' haplotype groups. However, we are reluctant to draw conclusions based solely on the present data. First of all, a single Ontario specimen (ROMIZ I10255 [MK929672]) places within the western clade, and a single Minnesota specimen (ROMIZ I10500 [MK929703]) places within an otherwise eastern clade (Figures 3 and 4). The parsimony analysis also fails to recover two specimens from western localities - ROMIZ I10513 (NE; MK929704) and ROMIZ I11443 (SK; MK929713) - as part of the larger 'western' clade. Most importantly, however, the current study does not include nuclear data, which would be necessary to demonstrate gene flow, or a lack thereof, across drainage basins. Phylogenetic analyses by de Carle et al. (2017) leveraged both mitochondrial and nuclear data but failed to identify geographic structure within P. rugosa. Their study, however, included far fewer individuals. It is possible that a dataset encompassing nuclear data for a larger number of specimens may reveal a different pattern. For the time being, the notion that individuals of P. rugosa constitute a

continuous population cannot be ruled out. Indeed, our Mantel test showed negligible correlation between genetic and geographic distance. This raises the question: what forces could maintain an apparent lack of geographic structure in such a widespread organism? We propose two possible explanations: the potential for host-mediated dispersal, and the impact of glaciation.

Populations of Placobdella rugosa could be panmictic, dispersing with the aid of their vertebrate hosts. The primary hosts for P. rugosa are freshwater turtles, such as the snapping turtle, Chelydra serpentina (Linnaeus 1758); the painted turtle, Chrysemys picta (Schneider 1783); the spotted turtle Clemmys guttata, (Schneider 1792); and Blanding's turtle, Emydoidea blandingii (Holbrook 1838) (Davy et al. 2009). It has also been known to feed opportunistically - yet reluctantly - on waterfowl, mammals, and fish (Sawyer 1972, 1986; Davies 1973; Trauger and Bartonek 1977; Brooks et al. 1990; de Carle, personal observation). The spotted turtle is the least vagile of the reported testudine hosts, existing in isolated, structured populations connected by limited gene flow (Davy and Murphy 2014). The species is known to move 1-2 km during active months and has a relatively small home range of approximately 300-1000 m (Joyal et al. 2001; Milam and Melvin 2001; Seburn 2003; Rasmussen and Litzgus 2010). The three remaining turtle hosts are known to travel far overland. The most mobile of these is the snapping turtle Che. serpentina, which is a common host of multiple Placobdella species, possibly due to its abundance, small plastron, and relatively large area of exposed skin (Stone 1976; Davy et al. 2009). One study on Che. serpentina populations across southeastern USA found high phylogeographic uniformity in mitochondrial DNA, which the authors attributed to its propensity for overland travel and broad habitat usage (Phillips et al. 1996; Walker et al. 1998; Gailbraith 2008). For example, gravid females can undertake migrations to nesting sites that last multiple days, and range from less than 1 km to over 11 km (Obbard and Brooks 1981; Congdon et al. 2008). Other studies have also reported mean annual movements of 1 km and have discovered individuals far from the nearest body of water (Barbour 1950; Klimstra 1951; Lovich and Ernst 2009). Interestingly, Che. serpentina was among the first turtle species to recolonize northern habitats after the last glacial maximum (Holman and Andrews 2008), followed by the painted turtle, Chr. picta. The latter species is also known to disperse across great distances: one study in Saskatchewan showed that male turtles moved, on average, 6 km during the active season, while females moved an average of 2.2 km (MacCulloch and Secoy 1983). The final candidate for testudine dispersal of P. rugosa is Blanding's turtle. Unlike the common snapping turtle, this species is highly phylogeographically structured across its range (Lovich and Ernst 2009; Davy et al. 2014; Sethuraman et al. 2014). Nonetheless, it has a fondness for overland travel and will frequently move between wetlands, sometimes over distances greater than 2 km (Joyal et al. 2001; Edge et al. 2010; Millar and Blouin-Demers 2011). A single Blanding's turtle may even occupy up to six wetlands in a summer (Lovich and Ernst 2009).

Although the turtle hosts of Placobdella rugosa are known to travel large distances overland, it has been demonstrated that these leeches do not remain on their hosts after feeding (Siddall and Desser 1992). At present, we do not know how long P. rugosa takes to begin feeding after finding a suitable host, nor do we know how long feeding lasts in this species. Macrobdella decora (Say 1824), another blood-feeding leech common to the same habitats, is known to feed for an average of 68 minutes, and may take up to 30 minutes to commence feeding after attaching to a host (Munro et al. 1991). Assuming that P. rugosa exhibits similar behaviors, we cannot reasonably expect these leeches to disperse over long distances on turtles. This is especially true since M. decora is, on average, much larger than P. rugosa, and feeding time, as well as the volume of blood ingested, is positively correlated with body size in leeches (Munro et al. 1991). Instead, it is more likely that host-mediated dispersal takes place via repeated instances of short-distance translocation. Whether this would be sufficient to generate the observed patterns of COI variation is not clear, but under this scenario, we might expect to observe greater genetic distance between individuals at the boundaries of the range than those at the centre. Our results, however, do not support any relationship between geographic and genetic distance. Birds present a more likely driver of host-mediated dispersal, as they are able to disperse much faster than turtles, and have been shown to act as agents of dispersal for other leech species (Siddall et al. 2013). Although P. rugosa is known to feed opportunistically on waterfowl, the frequency with which it does so is unclear.

Alternatively, the patterns we observe could result from dispersal dynamics following glaciation. The most recent ice age had deep biogeographical and genetic impacts on temperate organisms in North America and Europe (Hewitt 1996, 2000; Dyke 2004; Clark et al. 2009). Glacial advances during the Pleistocene (2.58 Mya to 11,700 years ago) repeatedly forced organisms from northern latitudes into warmer southern, or equilatitudinal, pockets of refuge (Cohen et al. 2018). As the glaciers receded, species recolonized their former ranges (Hewitt 2000). Minimal phylogeographic structure is one of the signatures of a rapid expansion, and has been documented in many temperate species that migrated north after the last glacial maximum (Bernatchez and Wilson 1998; Milá et al. 2000; Hewitt 2004; Canestrelli et al. 2008; Grill et al. 2009; Trontelj and Utevsky 2012; Moore et al. 2015). Typically, this manifests as a lack of phylogenetic resolution, and a reduction in the genetic diversity of northern populations relative to southern populations (Slatkin and Hudson 1991; Hewitt 1996, 2000; Avise 2000). Our newly generated trees show a distinct lack of genetic diversity, in line with patterns that have been ascribed to the signature of repeated glacial expansion and retraction. This same hypothesis has been implicated to explain low phylogeographic signal in other freshwater organisms, like the European medicinal leech Hirudo medicinalis Linnaeus 1758, and the Arctic char Salvelinus alpinus (Linnaeus 1758) (Trontelj and Utevsky 2012; Moore et al. 2015). Under this scenario, it is possible that gene flow between populations of Placobdella rugosa is limited or non-existent, but that there has not been

sufficient time for those populations to amass differences at the COI locus that would be indicative of such genetic isolation. Assuming that leech mitochondrial DNA evolves at a similar rate to that of other animals (Brown et al. 1979; DeSalle et al. 1987; DeSalle and Templeton 1988; Fleischer et al. 1998; Eo and DeWoody 2010), and taking into account average interspecific distance within *Placobdella* $(16.06\% \pm 1.99$; de Carle et al. 2017), it would stand to reason that the observed intraspecific variation in *P. rugosa* (mean = 0.83%, maximum = 2.6%) reflects standing variation in preglacial populations.

Given the broad geographic range recorded for Placobdella rugosa, it is somewhat surprising that the COI locus does not provide definitive evidence for population structure across northern North America. Each of the explanations (postglacial recolonization and host-mediated dispersal) invoked here could result in patterns of low geographic structure and COI variation, much like the observed patterns in Placobdella rugosa. It is important to note, however, that more data are needed to unequivocally refute the hypothesis that all individuals included in this study represent a single, continuous population. Future studies should focus on increasing gene sampling, including nuclear data, to robustly test for barriers to gene flow across the range of this ecologically important leech.

Acknowledgements

We are grateful to Kristen Choffe for assistance in DNA sequencing. Rafael Iwama, Claire Manglicmot, Madeleine Foote, Kevin Anderson, and Don Stacey were all instrumental in collecting the Royal Ontario Museum specimens used in this study. We thank Michael Tessler for the script used to run TNT, and the Willi Hennig Society for making TNT freely available. One anonymous reviewer and the Editor provided feedback and suggestions that greatly improved a previous version of this manuscript. SK was funded by a NSERC Discovery Grant and an Olle Engkvist Byggmästare Foundation grant, JM was funded by an NSERC Undergraduate Student Research Award, and Dd was funded by an NSERC Postgraduate Doctoral Scholarship (PGSD2-518435-2018).

Disclosure statement

No potential conflict of interest was reported by the authors.

References

Avise JC. 2000. Phylogeography: the history and formation of species. Cambridge (UK): Harvard University Press.

Barbour RW. 1950. The reptiles of big black mountain. Copeia, 1950(2), 100-107

Bernatchez L, Wilson CC. 1998. Comparative phylogeography of Nearctic and Paleartic fishes. Mol Ecol. 7:431-452.

Brooks RJ, Galbraith DA, Layfield JA. 1990. Occurrence of Placobdella parasitica (Hirudinea) on Snapping Turtles, Chelydra serpentina, in Southeastern Ontario. J Parasitol. 76:190-195.

Brown WM, George M, Wilson AC. 1979. Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci USA. 76:1967-1971.

Canestrelli D, Cimmaruta R, Nascetti G. 2008. Population genetic structure and diversity of the Apennine endemic stream frog, Rana italica -Insights on the Pleistocene evolutionary history of the Italian peninsular biota. Mol Ecol. 17:3856-3872.

- Clark PU, Dyke AS, Shakun JD, Carlson AE, Clark J, Wohlfarth B, Mitrovica JX, Hostetler SW, McCabe AM. 2009. The last glacial maximum. Science. 325:710-714.
- Clement M, Posada D, Crandall KA. 2000. TCS: a computer program to estimate gene genealogies. Mol Ecol. 9:1657-1660.
- Cohen KM, Harper DAT, Gibbard PL. 2018. The ICS International Chronostratigraphic Chart 2018/08. Int Commission Stratigraphy, IUGS. 199-204.
- Congdon JD, Greene JL, Brooks RJ. (2008). Reproduction and nesting ecology of female snapping turtles. In Steyermark AC, Finkler MS, & Brooks EJ, editors. Biology of the snapping turtle (Chelydra serpentina). Baltimore (MD): John Hopkins University Press; p. 123-135.
- Davies RW. 1973. The geographic distribution of freshwater Hirudinoidea in Canada. Can J Zool. 51:531-545.
- Davy CM, Bernardo PH, Murphy RW. 2014. A Bayesian approach to conservation genetics of Blanding's turtle (Emys blandingii) in Ontario, Canada, Conserv Genet, 15:319-330.
- Davy CM, Murphy RW, 2014. Conservation genetics of the endangered Spotted Turtle (Clemmys guttata) illustrate the risks of "bottleneck tests." Can J Zool. 92:149-162.
- Davy CM, Shim KC, Coombes SM. 2009. Leech (Annelida: Hirudinea) infestations on Canadian turtles, including the first Canadian record of Helobdella modesta from freshwater turtles. Can Field-Nat. 123:44-47.
- de Carle D, Oceguera-Figueroa A, Tessler M, Siddall ME, Kvist S. 2017. Phylogenetic analysis of Placobdella (Hirudinea: Rhynchobdellida: Glossiphoniidae) with consideration of COI variation. Mol Phylogenet Evol. 114:234-248.
- DeSalle R, Prager EM, Wilson AC, Freedman T. 1987. Tempo and mode of sequence evolution in mitochondrial DNA of Hawaiian Drosophila. J Mol Evol. 26:157-164.
- DeSalle R, Templeton AR. 1988. Founder effects and the rate of mitochondrial DNA evolution in Hawaian Drosophila. Evolution. 42: 1076-1084.
- Dyke AS. 2004. An outline of North American deglaciation with emphasis on central and northern Canada. Develop Quater Sci. 2:373-424.
- Edge CB, Steinberg BD, Brooks RJ, Litzgus JD. 2010. Habitat selection by Blanding's turtles (Emydoidea blandingii) in a relatively pristine landscape. Écoscience. 17:90-99.
- Eo SH, DeWoody JA. 2010. Evolutionary rates of mitochondrial genomes correspond to diversification rates and to contemporary species richness in birds and reptiles. Proc Royal Soc B: Biol Sci. 277:3587-3592.
- Fleischer RC, McIntosh CE, Tarr CL. 1998. Evolution on a volcanic conveyor belt: using phylogeographic reconstructions and K - Ar-based ages of the Hawaiian Islands to estimate molecular evolutionary rates. Mol Ecol. 7:533-545.
- Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol. 3:294-299.
- Gailbraith DA. 2008. Population biology and population genetics. In Steyermark AC, Finkler MS, & Brooks EJ, editors. Biology of the snapping turtle (Chelydra serpentina) Baltimore (MD): John Hopkins University Press; p. 168-181.
- Goloboff PA, Farris JS, Nixon KC. 2008. TNT, a free program for phylogenetic analysis. Cladistics. 24:774-786.
- Grill A, Amori G, Aloise G, Lisi I, Tosi G, Wauters LA, Randi E. 2009. Molecular phylogeography of European Sciurus vulgaris: Refuge within refugia? Mol Ecol. 18:2687-2699.
- Hewitt GM. 1996. Some genetic consequences of ice ages, and their role in speciation. Biol J Linnaean Soc. 58:247-276.
- Hewitt GM. 2000. The genetic legacy of the Quarternary ice ages. Nature. 405:907-913.
- Hewitt GM. 2004. Genetic consequences of climatic oscillations in the Quaternary. Philos Trans Royal Soc B: Biol Sci. 359:183-195.
- Holbrook JE. 1838. North American herpetology. Philadelphia, PA: J. Dobson and Son.
- Holman AJ, Andrews KD. 2008. North American Quaternary cold-tolerant turtles: distributional adaptations and constraints. Boreas. 23:44-52.
- Joyal LA, McCollough M, Hunter ML. & Malcolm LH Jr. 2001. Landscape ecology approaches to wetland species conservation: a case study of two turtle species in southern Maine. Conserv Biol. 15:1755-1762.

- Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol. 30:772-780.
- Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, et al. 2012. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 28: 1647-1649.
- Klemm DJ. 1985. A Guide to the freshwater Annelida (Polychaeta, naidid and tubificid Oligochaeta, and Hirudinea). Dubuque (IA): Kendall/Hunt Publishina Co.
- Klimstra WD. 1951. Notes on late summer snapping turtle movements. Herpetologica. 7:140.
- Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 33: 1870-1874.
- Kvist S. 2014. Does a global DNA barcoding gap exist in Annelida? Mitochondrial DNA, 1394: 1-12.
- Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. 2016. Partitionfinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol Biol Evol. 34:772-773.
- Langer SV, Vezsenyi KA, de Carle D, Beresford DV, Kvist S. 2018. Leeches (Annelida: Hirudinea) from the far north of Ontario: distribution, diversity, and diagnostics. Can J Zool. 96: 141-152.
- Lehner B, Verdin K, Jarvis A. 2008. New global hydrography derived from spaceborne elevation data. Eos, Transactions, AGU. 89:93-94.
- Linnaeus C. 1758. Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. 10th ed. Stockholm (Sweden): Laurentius Salvius.
- Lovich JE, Ernst CH. 2009. Turtles of the United States and Canada (Second.). Baltimore (MD): John Hopkins University Press.
- MacCulloch RD, Secoy DM. 1983. Movement in a River Population of Chyrsemys picta bellii in Southern Saskatchewan. J Herpetol. 17: 283-285.
- Mack J, Kvist S. 2019. Improved geographic sampling provides further evidence for the separation of Glossiphonia complanata and Glossiphonia elegans (Annelida: Clitellata: Glossiphoniidae). J Nat Hi. 53:335-350.
- Maddison W, Maddison D. 2016. Mesquite: a modular system for evolutionary analysis. Version 3.5.
- Mantel N. 1967. The detection of disease clustering and a generalized regression approach. Cancer Res. 27:209-220.
- Milá B, Girman DJ, Kimura M, Smith TB. 2000. Genetic evidence for the effect of a postglacial population expansion on the phylogeography of a North American songbird. Proc Royal Soc B: Biol Sci. 267: 1033-1040.
- Milam JC, Melvin SM. 2001. Density, habitat use, movements, and conservation of spotted turtles (Clemmys guttata) in Massachusetts. J Herpetol. 35:418-427.
- Millar CS, Blouin-Demers G. 2011. Spatial ecology and seasonal activity of Blanding's turtles (Emydoidea blandingii) in Ontario, Canada. J Herpetol. 45:370-378.
- Miller MA, Pfeiffer W, Schwartz T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. 2010 Gateway Computing Environments Workshop, GCE 2010. Nov 14; New Orleans (LA): IEEE.
- Miller MP. 2005. Alleles In Space (AIS): Computer software for the joint analysis of interindividual spatial and genetic information. J Heredity. 96:722-724
- Moore JS, Bajno R, Reist JD, Taylor EB. 2015. Post-glacial recolonization of the North American Arctic by Arctic char (Salvelinus alpinus): Genetic evidence of multiple northern refugia and hybridization between glacial lineages. J Biogeograph. 42:2089-2100.
- Moore JP. 1901. The Hirudinea of Illinois. Bull Illinois State Lab Nat Hist. 5:
- Moore JP. 1905. Hirudinea and Oligochaeta collected in the Great Lakes Region. B Bureau Fish. 25:155.
- Moore JP. 1953. Three undescribed North American leeches (Hirudinea). Notulae Naturae, 250:13.

- Moser WE, Richardson DJ, Hammond CI, Govedich FR, Lazo-Wasem EA. 2012. Resurrection and redescription of Placobdella rugosa (Verrill, 1874) (Hirudinida: Glossiphoniidae). B Peabody Mus Nat Hi. 53: 375-381.
- Moser WE, Richardson DJ, Lazo-Wasem EA. 2016. Distribution of Placobdella ornata (Verrill, 1872) (Hirudinida: Glossiphoniidae). B Peabody Mus Nat Hi. 57:175-179.
- Munro R, Siddall M, Dessert SS, Sawyer RT. 1991. Bleeding in human volunteers from the bite of the American medicinal leech Macrobdella decora compared with its European counterpart Hirudo medicinalis. Comp Haematol Int. 1:214-216.
- Obbard ME, Brooks RJ. 1981. A radio-telemetry and mark-recapture study of activity in the common snapping turtle, Chelydra serpentina. Copeia. 1981:630-637.
- Oceguera-Figueroa A, Kvist S, Watson SC, Sankar DF, Overstreet RM, Siddall ME. 2010. Leech Collections from Washington State, with the Description of Two New Species of Placobdella. American Museum Novitates. 3701:1-14.
- Phillips CA, Dimmick WW, Carr JL. 1996. Conservation genetics of the common snapping turtle (Chelydra serpentina). Conserv Biol. 10:
- Rasmussen ML, Litzgus JD. 2010. Habitat selection and movement patterns of spotted turtles (Clemmys guttata): effects of spatial and temporal scales of analyses. Copeia. 2010:86-96.
- Saglam N, Kutschera U, Saunders R, Saidel WM, Balombini KLW, Shain DH. 2018. Phylogenetic and morphological resolution of the Helobdella stagnalis species-complex (Annelida: Clitellata: Hirudinea). Zootaxa, 4403:61-86.
- Sawyer RT. 1972. North American freshwater leeches, exclusive of the piscicolidae, with a key to all species. Urbana (IL): University of Illinois
- Sawyer RT. 1986. Leech biology and behavior: volume ii feeding biology, ecology, and systematics. New York (NY): Oxford University Press.
- Say T. (1824). D. Class Vermes. Order Cryptobranchia. Hirudo. In Keating WH, editor. Narrative of an expedition to the source of St. Peter's River, Lake Winnepeek, Lake of the Woods, performed in the year 1823, by order of the Hon. J.C. Calhoun, Secretary of War, under the command of Stephen H. Long, Major U.S.T.E.: Compiled from notes of Major Long, Messrs. Say, Keating and Calhoun. Philadelphia: H.C. Carey and I. Lea; p. 266-268.
- Schneider JG. 1783. Allgemeine naturgeschichte der schildkroten, nebst einem systematichen verseichnisse der einzelnen arten und zwei kupfren. Leipzig (Germany): Muller.
- Schneider JG. 1792. Beschreibung und Abbildung einer neuen Art Yon Wasserchildkrote. Schriften Ges. Naturf. Freunde Berlin. 10:259-283.
- Seburn DC. 2003. Population structure, growth, and age estimation of spotted turtles, Clemmys guttata, near their northern limit: An 18-year follow-up. Can Field-Nat. 117:436-439.

- Sethuraman A, McGaugh SE, Becker ML, Chandler CH, Christiansen JL, Hayden S, LeClere A, Monson-Miller J, Myers EM, Paitz RT, et al. 2014. Population genetics of Blanding's turtle (Emys blandingii) in the midwestern United States. Conserv Genet. 15:61-73.
- Siddall ME, Borda E. 2003. Phylogeny and revision of the leech genus Helobdella (Glossiphoniidae) based on mitochondrial gene sequences and morphological data and a special consideration of the triserialis complex. Zoologica Scripta. 32:23-33.
- Siddall ME, Bowerman J. 2006. A new species of glossiphoniid leech from Rana pretiosa (Amphibia: Ranidae) in Oregon. J Parasitol. 92:855-857.
- Siddall ME, Desser SS. 1992. Prevalence and intensity of Haemogregarina balli (Apicomplexa: Adeleina: Haemogregarinidae) in three turtle species from Ontario, with observations on intraerythrocytic development. Can J Zool. 70:123-128.
- Siddall ME, Desser SS. 2001. Transmission of Haemogregarina balli from Painted Turtles to Snapping Turtles through the Leech Placobdella ornata. J Parasitol. 87:1217-1218.
- Siddall ME, Rood-Goldman R, Barrio A, Barboutis C. 2013. The eyes have it: long-distance dispersal by an intraorbital leech parasite of birds. J Parasitol. 99:1137-1139.
- Sket B, Trontelj P. 2008. Global diversity of leeches (Hirudinea) in freshwater. Hydrobiologia. 595:129-137.
- Slatkin M, Hudson RR. 1991. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics. 129:555-562.
- Stamatakis A. 2014. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 30:1312-1313.
- Stone MD. 1976. Occurrence and implications of heavy parasitism on the turtle Chelydra serpentina by the leech Placobdella multilineata. Southwestern Nat. 20:575-576.
- Trauger DL, Bartonek JC. 1977. Leech parasitism of waterfowl in North America. Wildfowl. 28:143-152.
- Trontelj P, Utevsky SY. 2005. Celebrity with a neglected taxonomy: Molecular systematics of the medicinal leech (genus Hirudo). Mol Phylogenet Evol. 34:616-624.
- Trontelj P, Utevsky SY. 2012. Phylogeny and phylogeography of medicinal leeches (genus Hirudo): Fast dispersal and shallow genetic structure. Mol Phylogenetics Evol. 63:475-485.
- Verrill A. 1872. Descriptions of North American fresh-water leeches. Am J Sci. 3:126-139.
- Verrill A. 1874. Synopsis of the North American fresh-water leeches. In: Report of the Commissioner for 1872 and 1873, part 2. United States commission of fish and fisheries. Washington, DC: Governement Printing Office. p. 666-689.
- Walker D, Moler PE, Buhlmann KA, Avise JC. 1998. Phylogeographic uniformity in mitochodrial DNA of the snapping turtle (Chelydra serpintina). Anim Conserv. 1:55-60.