Analyse des Disciplines Sportives par Clustering et Classification

Objectif: Analyser les données des disciplines sportives via clustering et classification.

Méthodologie: Utilisation de DBSCAN, KMeans, SVM, Random Forest et KNN.

Sriwelavan Theeban, Meddas Kilian

Présentation des Données

Description

Données de performance des plongeurs dans différentes disciplines.

Name	Nationality	Gender	Discipline	AP	RP	Card	Points	Title Event	Event Type	Day
Deborah Andollo	CUB		CWT	61 m	61 m	WHITE	61.0	WR Attempt - ANDOLLO Deborah (CWT)	Worldrecord attempt	1994-06-12
Umberto Pelizzari		М	CWT	72 m	72 m	WHITE	72.0	WR Attempt - PELIZZARI Umberto (CWT)	Worldrecord attempt	1995-09-17
Deborah Andollo	CUB		CWT	62 m	62 m	WHITE	62.0	WR Attempt - ANDOLLO Deborah	Worldrecord attempt	1996-10-05
Michael Oliva	FRA	М	CWT	72 m	72 m	WHITE	72.0	WR Attempt - OLIVA Michael (CWT)	Worldrecord attempt	1996-10-11
Alejandro Ravelo	CUB	М	CWT	73 m	73 m	WHITE	73.0	WR Attempt - RAVELO Alejandro (CWT)	Worldrecord attempt	1997-08-02
Umberto Pelizzari	ITA	М	CWT	75 m	75 m	WHITE	75.0	WR Attempt - PELIZZARI Umberto (CWT)	Worldrecord attempt	1997-09-13
Deborah Andollo	CUB		CWT	0 m	65 m	WHITE	65.0	WR Attempt - ANDOLLO Deborah	Worldrecord attempt	1997-12-05
Alexandra Louzine	CZE		CWT	35 m	35 m	WHITE	35.0	1998 WRA CWT Fresh Water by Alexandra Louzine	Worldrecord attempt	1998-09-06
Tanya Streeter	USA		CWT	67 m	67 m	WHITE	67.0	WR Attempt - STREETER Tanya (CWT)	Worldrecord attempt	1998-09-19
Andy Le Sauce	FRA	М	CWT	0 m	56 m	WHITE	56.0	Compiled rankings for year 1999	Competition	1999-01-01

(dataset originel et modifié)

Nettoyage

Suppression des doublons, renommage et changement de type.

- csv.drop(['Start', 'Line', 'Official Top'], axis=1, inplace=True)
- csv['AP']=csv['AP'].str.extract(r'(\d+)').astype(float)
- csv['RP']=csv['RP'].str.extract(r'(\d+)').astype(float)
- csv.rename(columns={'Diver': 'Name'}, inplace=True)
- csv.AP = csv.AP.astype(float)
- csv.RP = csv.RP.astype(float)
- <u>csv.Day</u> = lien inconnu_datetime(<u>csv.Day</u>)

	precision	recall	f1-score	support	
RED	0.86	0.46	0.60	283	
WHITE	0.76	1.00	0.87	1678	
YELLOW	0.07	0.00	0.01	413	
accuracy			0.76	2374	
macro avg	0.57	0.49	0.49	2374	
weighted avg	0.66	0.76	0.69	2374	

Matrice de Corrélation

Relation Significative
Forte corrélation entre
experience_dive et Points.

Faible Corrélation

Peu de lien entre Gender_codes

et Points.

Évolution du Nombre de Plongées au Fil des Années

Ce graphique illustre la progression du nombre de plongées enregistrées de 1995 à 2025. Il met en évidence une croissance exponentielle, avec une forte augmentation après 2010 et des variations notables autour de 2020 possiblement liées à des événements comme le COVID-19

Cette tendance justifie l'analyse approfondie des performances en plongée sur une période significative pour identifier les facteurs de succès et les défis rencontrés.

Analyse des nationalités les plus représentées

Ce diagramme circulaire illustre la répartition des nationalités les plus fréquentes parmi les participants. Les États-Unis (USA) dominent avec 31.01%, suivis de Taïwan (TPE) avec 12.50%. D'autres nationalités significatives incluent la Russie (RUS) avec 9.49%, la Corée (KOR) avec 7.95%, et le Japon (JPN) avec 7.84%. Les autres nationalités se partagent des proportions inférieures, mais restent représentées, montrant une certaine diversité.

Cette distribution pourrait refléter l'intérêt culturel et les infrastructures disponibles pour ce sport dans ces pays.

Données sélectionnées pour le clustering et la classification

	AP	Nationality	Gender	Discipline	experience_dive	experience_discipline	Points	target
0	42.0	GER	М	FIM	1.0	1.0	42.0	WHITE
1	32.0	GER	М	CWT	2.0	1.0	32.0	WHITE
2	43.0	GER	М	CWT	3.0	2.0	43.0	WHITE
3	34.0	CAN	М	CWT	1.0	1.0	34.0	WHITE
4	32.0	CAN	М	CWT	2.0	2.0	32.0	WHITE
31712	60.0	NaN	F	FIM	NaN	NaN	60.0	WHITE
31713	49.0	NaN	F	CWT	NaN	NaN	0.0	RED
31714	61.0	NaN	F	CNF	NaN	NaN	61.0	WHITE
31715	63.0	NaN	F	CNF	NaN	NaN	63.0	WHITE
31716	81.0	NaN	F	CWT	NaN	NaN	81.0	WHITE

Clustering avec DBSCAN

Groupes Principaux

Identification de 3 groupes principaux (Cluster -1, 0, 1). Le cluster -1 représentant le bruit (pas suffisamment de voisin d'après l'algo)

Limite

Sensibilité aux paramètres eps et min_samples.

Méthode du Coude

Exemple de graphique illustrant la méthode du coude pour le KMeans (point d'inflexion choisi comme nombre optimal de clusters).

KMeans Clustering

Groupes Définis

Clusters bien définis selon experience_dive et experience_discipline.

Robustesse

Plus stable que DBSCAN face aux variations.

Défaut

Moins facile à comprendre.

Kernel: linear, Accuracy: 0.9518212621770437
Kernel: poly, Accuracy: 0.9307496823379924
Kernel: rbf, Accuracy: 0.9561626429479034

Classification - Résultats SVM

95.18%

3

Précision Kernel Linear

Performance supérieure du kernel linéaire.

Kernels Comparés

Analyse des kernels linear, poly, et rbf.

Classification - Comparaison des Modèles

2

Random Forest

Précision de 95.15%, bon équilibre entre classes.

Précision de 81.92%, difficulté avec les classes déséquilibrées.

KNN

Analyse Comparative des Modèles

Conclusion et Perspectives

Clustering
DBSCAN pour exploration, KMeans pour segmentation robuste.

Classification
SVM avec kernel linear est le plus performant.

Recommandations
Améliorer la représentation des classes minoritaires.