DM3: Régimes transitoires - corrigé

Le travail en groupe est fortement encouragé, vous rendrez une copie par groupe de 3. Attention, tous les membres du groupe doivent avoir fait tout le DM! Il ne s'agit pas de partager le travail.

Exercice 1: Convertisseur Boost

- 1. Lorsque K_1 est fermé, on a $u_L = u_{\rm in} = L \frac{\mathrm{d}i}{\mathrm{d}t}$. Donc $\frac{\mathrm{d}i}{\mathrm{d}t} = \frac{u_{\rm in}}{L}$
- 2. D'après la question précédente, $\frac{di}{dt}$ est une constante, donc $i(t) = \frac{u_{\text{in}}}{L}t + A$ où A est une constante. La condition $i(0) = i_{\text{min}}$ donne $A = i_{\text{min}}$. Donc finalement $i(t) = i_{\text{min}} + \frac{u_{\text{in}}}{L}t$ Au moment où l'interrupteur K_1 se ferme, $t = t_{\text{on}}$ et donc :

$$i_{\text{max}} = i_{\text{min}} + \frac{u_{\text{in}}t_{\text{on}}}{L} \tag{1}$$

- 3. Lorsque K_1 est ouvert, K_2 est fermé, la loi des mailles donne $u_L = u_{\rm in} u_{\rm out} = L \frac{\mathrm{d}i}{\mathrm{d}t}$, donc $\frac{\mathrm{d}i}{\mathrm{d}t} = \frac{u_{\rm in} u_{\rm out}}{L}$
- 4. Comme dans la question 2, on intègre $\frac{di}{dt}$ et on utilise $i(t_{\text{on}})=i_{max}$ pour trouver :

$$i(t) = i_{\text{max}} + \frac{u_{\text{in}} - u_{\text{out}}}{L} (t - t_{\text{on}})$$
(2)

5. L'énoncé indique que l'intensité i évolue de façon périodique, donc $i(T=t_{\rm on}+t_{\rm off})=i(0)=i_{\rm min}$. On obtient l'évolution suivante :

- 6. La condition donnée à la question précédente implique que $u_{\text{out}} = u_{\text{in}} \frac{1}{1-r}$. Comme 0 < r < 1, on a bien $u_{\text{out}} > u_{\text{in}}$.
- 7. D'après la question 2, on a $\Delta i = \frac{u_{\rm in}t_{\rm on}}{L}$, on en déduit la formule demandée pour i(t):

$$i(t) = i_{\min} + \frac{\Delta i}{t_{\text{on}}} t$$
(3)

En utilisant le résultat de la question 6, on peut montrer que $u_{\rm in} - u_{\rm out} = -\frac{r}{1-r}u_{\rm in}$, en utilisant la même expression de Δi qu'à la question précédente, on finit par trouver la formule demandée. (il faut utiliser $t_{\rm on} = rT$ et $t_{\rm off} = (1-r)T$).

2022-2023 page 1/5

8. Pendant la phase où K_1 est fermé, l'énergie fournie par le générateur est

$$E_{\rm on} = \int_0^{t_{\rm on}} u_{\rm in} i(t) dt = u_{\rm in} i_{\rm min} t_{\rm on} + \frac{1}{2} u_{\rm in} t_{\rm on} \Delta i$$

Pendant la phase où K_1 est ouvert, le générateur fournit l'énergie :

$$E_{\text{off}} = \int_{t_{\text{on}}}^{t_{\text{on}} + t_{\text{off}}} u_{\text{in}} i(t) dt = u_{\text{in}} i_{\text{min}} t_{\text{off}} + \frac{1}{2} u_{\text{in}} t_{\text{off}} \Delta i$$

Sur un cycle complet, le générateur fournit l'énergie :

$$E_g = E_{\rm on} + E_{\rm off} = u_{\rm in} i_{\rm min} T + \frac{1}{2} u_{\rm in} T \Delta i$$
(4)

9. On trouve que l'énergie consommée par le circuit pendant un cycle complet est égale à l'énergie consommée pendant la phase où K_1 est ouvert, et vaut :

$$E_{\text{out}} = \int_{t_{\text{on}}}^{t_{\text{on}} + t_{\text{off}}} u_{\text{out}} i(t) dt = u_{\text{out}} i_{\text{min}} t_{\text{off}} + \frac{1}{2} u_{\text{out}} t_{\text{off}} \Delta i$$
$$= u_{\text{in}} i_{\text{min}} T + \frac{1}{2} u_{\text{in}} T \Delta i = E_g$$

en utilisant la relation de la question 6 entre $u_{\rm in}$ et $u_{\rm out}$.

Le rendement du système est donc égal à 1, ce qui n'est pas étonnant car il n'y a aucune source de dissipation d'énergie dans le circuit étudié, c'est un cas idéal, dans la réalité le rendement sera strictement inférieur à 1, de l'ordre de 80 % pour ce type de convertisseur.

Exercice 2 : Décharge d'un condensateur dans un circuit RC parallèle

1. L'interrupteur est en position A. L'application de la loi des maille dans la maille de gauche, avec la loi d'Ohm sur la résistance r donne

$$E = ri + u_1 \tag{1}$$

Avec i l'intensité du courant qui circule dans la maille dans le sens horaire. On a également dans C_1 , $i = C_1 \frac{du_1}{dt}$. Ce qui permet d'aboutir à l'équation différentielle

$$\frac{\mathrm{d}u_1}{\mathrm{d}t} + \frac{1}{rC_1}u_1 = \frac{E}{rC_1} \tag{2}$$

2. La solution générale de l'équation homogène associée est :

$$u_{1,h}(t) = Ae^{-t/\tau_1} (3)$$

avec $\tau_1 = rC_1$. La solution particulière est la constante $u_{1,p} = E$ et donc la solution générale de l'équation (2) est

$$u_1(t) = E + Ae^{-t/\tau_1} (4)$$

On détermine A à partir de la condition initiale $u_1(0) = 0$, soit A = -E. Donc finalement, on a

$$u_1(t) = E\left(1 - e^{-t/\tau_1}\right) \tag{5}$$

3. Allure de $u_1(t)$:

2022-2023 page 2/5

4. Le condensateur est chargé lorsque $u_1(t_1) = 0.999E$, soit

$$e^{-t_1/\tau_1} = 10^{-3}$$
 soit $t_1 = \tau_1 \ln(10^3) \approx 2.07 \times 10^{-6} \,\mathrm{s}$ (6)

- 5. On a $t_2 \gg t_1$, donc au bout de t_2 le condensateur est totalement chargé et $u(t_2) = E = 15,0 \,\mathrm{V}$.
- 6. On commence par établir un schéma du circuit étudié dans cette partie :

On écrit les lois du circuit et des composants :

- Loi des nœude : $i_1 = i_2 + i_3$;
- Loi des mailles + loi d'Ohm sur $R_2: u_1 = u_2 + Ri_2$;
- Loi d'Ohm sur $R_3: u_1 = Ri_3$;
- Lois des condensateurs : $i_1 = -C_1 \frac{du_1}{dt}$ et $i_2 = C_2 \frac{du_2}{dt}$.

On a alors

$$C_{2} \frac{du_{2}}{dt} = i_{2} = i_{1} - i_{3} = -C_{1} \frac{du_{1}}{dt} - \frac{u_{1}}{R}$$

$$= -C_{1} \frac{du_{2}}{dt} - C_{1} R \frac{di_{2}}{dt} - \frac{u_{2}}{R} - \frac{R_{2}}{R} i_{2}$$
(8)

$$= -C_1 \frac{\mathrm{d}u_2}{\mathrm{d}t} - C_1 R \frac{\mathrm{d}i_2}{\mathrm{d}t} - \frac{u_2}{R} - \frac{R_2}{R} i_2 \tag{8}$$

$$= -C_1 \frac{du_2}{dt} - C_1 C_2 R \frac{d^2 u_2}{dt^2} - \frac{u_2}{R} - \frac{R}{R} C_2 \frac{du_2}{dt}$$
(9)

soit finalement

$$\frac{\mathrm{d}^2 u_2}{\mathrm{d}t^2} + \frac{\mathrm{d}u_2}{\mathrm{d}t} \frac{1}{R} \frac{2C_2 + C_1}{C_2 C_1} + \frac{1}{C_1 C_2 R^2} u_2 = 0$$
(10)

Et on a dont par identification

$$U = 0$$
 $\omega_0 = \frac{1}{R\sqrt{C_1 C_2}}$ et $Q = \frac{\sqrt{C_1 C_2}}{2C_2 + C_1}$ (11)

2022-2023 page 3/5

- 7. Pour montrer qu'il ne peut pas y avoir d'oscillation, il faut montrer que l'on a toujours $Q < \frac{1}{2}$. Notons $C_2 = xC_1$, avec x > 0. On a alors $Q = \frac{\sqrt{x}}{2+x} = \frac{1}{2} \frac{\sqrt{x}}{1+x/2}$. Or $1 + \frac{x}{2} \sqrt{x} = (1 \sqrt{x}/2)^2 + \frac{x}{4} > 0$, donc quel que soit x > 0, $\frac{\sqrt{x}}{1+x/2} < 1$ et $Q < \frac{1}{2}$ et il ne peut pas y avoir d'oscillation.
- 8. Avec les données de l'énoncé, on a $\overline{C = \frac{C_1}{3} = 10\,\mathrm{nF}}$ et $\tau = 6RC = 0.6\,\mathrm{ms}$
- 9. L'équation différentielle devient

$$\frac{\mathrm{d}^2 u_2}{\mathrm{d}t^2} + \frac{7}{\tau} \frac{\mathrm{d}u_2}{\mathrm{d}t} + \frac{6}{\tau^2} u_2 = 0 \tag{12}$$

Le discriminant de l'équation caractéristique est $\Delta=\frac{25}{\tau^2}$. Et donc $\sqrt{\Delta}=\frac{5}{\tau}$. Et les solutions de l'équation caractéristique sont $r_1=\frac{-6}{\tau}$ et $r_2=-\frac{1}{\tau}$. La solution générale de l'équation différentielle est

$$u_2(t) = Ae^{-\frac{6t}{\tau}} + Be^{-\frac{t}{\tau}} \tag{13}$$

On détermine les valeurs de A et B à partir des conditions initiales :

- la tension $u_2(t)$ est continue, et donc $u_2(0^+) = u_2(0^-) = 0$ car le condensateur C_2 est initialement déchargé;
- la tension $u_1(t)$ est continue, et donc $u_1(0^+) = u_1(0^-) = E$ car le condensateur C_1 est initialement chargé. La loi des mailles et la loi d'Ohm donnent alors $i_2(0^+) = C_2 \frac{du_2}{dt}(0^+) = \frac{E}{R}$.

On doit donc résoudre le système

$$\begin{cases} A + B = 0 \\ -\frac{6A}{\tau} - \frac{b}{\tau} = \frac{E}{R} \end{cases} \tag{14}$$

Et après résolution, on trouve

$$u_2(t) = \frac{3E}{5} \left(e^{-\frac{t}{\tau}} - e^{-\frac{6t}{\tau}} \right) \tag{15}$$

10. La loi des mailles et la loi d'Ohm dans la résistance R_2 permettent d'écrire

$$u_1(t) = u_2(t) + Ri_2(t) = u_2(t) + 2RC\frac{\mathrm{d}u_2}{\mathrm{d}t} = u_2(t) + \frac{\tau}{3}\frac{\mathrm{d}u_2}{\mathrm{d}t}$$
(16)

Et on trouve finalement

$$u_1(t) = \frac{E}{5} \left(3e^{-\frac{6t}{\tau}} + 2e^{-\frac{t}{\tau}} \right) \tag{17}$$

11. La fonction $u_1(t)$ est la somme de deux exponentielles décroissantes, c'est donc de manière évidente une fonction décroissante du temps. On s'y attendait car le condensateur C_1 se décharge au cours du temps (et il n'y a pas d'oscillations)

Pour $u_2(t)$, on peut penser qualitativement que le condensateur C_2 partant d'une tension nulle, il va se charger, puis finira par se décharger à cause des résistances. On calcule la dérivée de $u_2(t)$:

$$\frac{\mathrm{d}u_2}{\mathrm{d}t} = \frac{3E}{5\tau} \left(6e^{-\frac{6t}{\tau}} - e^{-\frac{t}{\tau}} \right) \tag{18}$$

On trouve que $\frac{du_2}{dt}$ s'annule pour une seule valeur de $t:t_m=\frac{\tau \ln(6)}{5}$. Comme $u_2(t)>0$ quel que soit t et $u_2(0)=u_2(\infty)=0$. On en déduit que $u_2(t)$ est une fonction croissante puis décroissante. On a les allures suivantes :

2022-2023 page 4/5

12. On applique la loi des nœuds au point D et on la multiplie par u_1 . On obtient alors

$$u_1 i_1 = u_2 i_2 + u_1 i_3 \tag{19}$$

En utilisant la loi des mailles et la loi d'Ohm, on obtient le bilan de puissance suivant

$$\underbrace{u_1 i_1}_{-P_{C_1}} = \underbrace{u_2 i_2}_{P_{C_2}} + \underbrace{R_2 i_2^2}_{P_{R_2}} + \underbrace{R_3 i_3^2}_{P_{R_3}} \tag{20}$$

La puissance cédée par le condensateur C_1 ($-P_{C_1}$) est égale à la somme des puissances reçues par les trois autres dipôles.

- 13. <u>La puissance</u> consommée par C_1 est toujours négative, car il se décharge, elle est donc représentée par la courbe 1.
 - La puissance consommée par une résistance est toujours positive, donc la puissance consommée par R_3 est représentée par $\overline{\text{la courbe 3}}$
 - La puissance consommée par C_2 est d'abord positive (il se charge) puis négative (il se décharge) et correspond donc à la courbe 2
- 14. Le condensateur C_2 se comporte d'abord comme un récepteur, puis comme un générateur.

2022-2023 page 5/5