Derivacije

Osnovna pravila deriviranja:

• derivacija konstante: c' = 0

 $\bullet\,$ derivacija umnoška konstante i funkcije: $\boxed{(c\cdot f)'=c\cdot f'}$

• derivacija zbroja i razlike: $(f \pm g)' = f' \pm g'$

 \bullet derivacija umnoška: $\boxed{(f\cdot g)'=f'\cdot g+f\cdot g'}$ $\boxed{(f\cdot g\cdot h)'=f'gh+fg'h+fgh'}$

 \bullet derivacija kvocjenta: $\boxed{\left(\frac{f}{g}\right)' = \frac{f' \cdot g - f \cdot g'}{g^2}}$

Derivacije elemetarnih funkcija:

x'	=	1	$(x^n)'$	=	$n \cdot x^{n-1}$
$\left(\frac{1}{x}\right)'$	=	$-\frac{1}{x^2}$	$\left(\frac{1}{x^n}\right)'$	=	$-\frac{n}{x^{n+1}}$
$\left(\sqrt{x}\right)'$	=	$\frac{1}{2\sqrt{x}}$	$\left(\sqrt[n]{x}\right)'$	=	$\frac{1}{n \cdot \sqrt[n]{x^{n-1}}}$
$(e^x)'$	=	e^x	$(a^x)'$	=	$a^x \cdot \ln a$
$(\ln x)'$	=	$\frac{1}{x}$	$(\log_a x)'$	=	$\frac{1}{x \cdot \ln a}$
$(\sin x)'$	=	$\cos x$	$(\cos x)'$	=	$-\sin x$
$(\operatorname{tg} x)'$	=	$\frac{1}{\cos^2 x}$	$(\operatorname{cg} x)'$	=	$\frac{1}{\sin^2 x}$
$(\sin^{-1}x)'$	=	$\frac{1}{\sqrt{1-x^2}}$	$\left (\cos^{-1} x)' \right $	=	$-\frac{1}{\sqrt{1-x^2}}$
$(\operatorname{tg}^{-1} x)'$	=	$\frac{1}{1+x^2}$	$(\operatorname{ctg}^{-1} x)'$	=	$-\frac{1}{1+x^2}$
$(\sinh x)'$	=	$\cosh x$	$(\cosh x)'$	=	$\sinh x$
$(\operatorname{tgh} x)'$	=	$\frac{1}{\cosh^2 x}$	$\left (\operatorname{ctgh} x)' \right $	=	$-\frac{1}{\sinh^2 x}$
$(\sinh^{-1} x)'$	=	$\frac{1}{\sqrt{1+x^2}}$	$\left (tgh^{-1} x)' \right $	=	$\frac{1}{1-x^2}$
$(\cosh^{-1} x)'$	=	$\frac{1}{\sqrt{x^2 - 1}}$	$\left (\operatorname{ctgh}^{-1} x)' \right $	=	$-\frac{1}{x^2-1}$

Integrali

Opća pravila integriranja:

• ako je $\int f(x) dx = F(x) + c$ tada je F' = f

•
$$\int c \cdot f(x) dx = c \cdot \int f(x) dx$$

$$\bullet \ \ \int \mathrm{d}x = x + c$$

• integral zbroja i razlike: $\int [f(x) \pm g(x)] dx = \int f(x) dx \pm \int g(x) dx$

• pravilo supstitucije: ako je $x = \varphi(t)$, tada je: $\int f(x) dx = \int f[\varphi(t)] \cdot \varphi'(t) dt$

 \bullet parcijalna integracija: $\boxed{\int (f\cdot g') = f\cdot g - \int (f'\cdot g)}$

Tablica osnovnih integrala (kod svakog integrala s desne strane jednakosti treba dodati konstantu c)

$\int x^n \mathrm{d}x$	=	$\frac{x^{n+1}}{n+1} \ (n \neq 1)$	$\int \frac{\mathrm{d}x}{x}$		
$\int e^x \mathrm{d}x$			$\int a^x dx$	=	$\frac{a^x}{\ln a}$
$\int \sin x \mathrm{d}x$	=	$-\cos x$	$\int \cos x \mathrm{d}x$		
$\int \operatorname{tg} x \mathrm{d} x$	=	$-\ln \cos x $	$\int \operatorname{ctg} x \mathrm{d}x$	=	$\ln \sin x $
$\int \frac{\mathrm{d}x}{\cos^2 x}$	=	$\operatorname{tg} x$	$\int \frac{\mathrm{d}x}{\sin^2 x}$	=	$-\operatorname{ctg} x$
$\int \sinh x \mathrm{d}x$	=	$\cosh x$	$\int \cosh x \mathrm{d}x$	=	$\sinh x$
$\int \operatorname{tgh} x \mathrm{d}x$	=	$\ln \cosh x $	$\int \operatorname{ctgh} x dx$	=	$\ln \sinh x $
$\int \frac{\mathrm{d}x}{\cosh^2 x}$	=	$\operatorname{tgh} x$	$\int \frac{\mathrm{d}x}{\sinh^2 x}$	=	$-\operatorname{ctgh} x$
$\int \frac{\mathrm{d}x}{a^2 + x^2}$	=	$\frac{1}{a} \cdot tg^{-1} \frac{x}{a}$	$\int \frac{\mathrm{d}x}{\sqrt{a^2 - x^2}}$	=	$\sin^{-1}\frac{x}{a}$
		$\frac{1}{a} \cdot tgh^{-1} \frac{x}{a}$	$\int \frac{\mathrm{d}x}{\sqrt{a^2 + x^2}}$	=	$\sinh^{-1}\frac{x}{a}$
$\int \frac{\mathrm{d}x}{x^2 - a^2}$	=	$-\frac{1}{a} \cdot \operatorname{ctgh}^{-1} \frac{x}{a}$	$\int \frac{\mathrm{d}x}{\sqrt{x^2 - a^2}}$	=	$\cosh^{-1}\frac{x}{a}$

Određeni integral:

• ako je F' = f onda: $\int_a^b f(x) dx = F(b) - F(a)$