

Learnability of a counting-involving alternation: Japanese and an artificial language

Hailang Jiang

hailang.jiang.22@ucl.ac.uk hailangjiang.github.io

University College London

Summary

- Through a wug test with Japanese speakers, this study demonstrates that a lexical pattern in Japanese which 'involves counting' is not productive;
- Through an artificial language learning (ALL) test with English speakers, this study shows results consistent with the claim that phonology cannot count (past 2);
- This talk provides experimental evidence against counting in phonology.

Background

Japanese /g/ nasalization (VVN)

• In Tokyo (Yamanote) Japanese,

```
/g/ → [g] word-initially /geki/ [geki] 'drama' 
→ [ŋ] word-internally /kagami/ [kaŋami] 'mirror'
```

(Ito & Mester 1996)

Japanese /g/ nasalization in compounds

• For two-member compounds, not all /X-gY/ surface with /ŋ/.

```
/doku + ga/ → [doku-ŋa]~[doku-ga]
'poison moth' free variation [g~ŋ]
/noo + geka/ → [noo-geka] *[noo-ŋeka]
'brain surgery' one legal form [g]

(Ito & Mester 1996; Breiss et al. 2022)
```

 [ŋ] is always acceptable for words with a bound second member.

from Breiss et al. (2022)

A corpus study on /g/ nasalization

• Breiss et al. (2022) report three significant factors:

i. Relative frequency of both members (member 2 & member 1)

The (un)naturalness of the three factors

- i. Relative frequency of both members
 - → Paradigm uniformity (Breiss et al. 2021)
- ii. Nasality of the preceding segment
 - → Progressive local assimilation in [nasal]
- iii. Mora length of the entire compound
 - **→** ?

(un)naturalness in the sense of Peperkamp, Skoruppa & Dupoux (2006) second-order phonotactics (Warker & Dell 2006)

The mystery of the 'counting pattern'

 Here, 'counting' is used in the sense that a exact number of a phonological units is stated in the context of a phonological rule.

```
e.g., a hypothetical rule: [g] \rightarrow [ŋ] / |X_0 Y_0| > 5\mu
```

- Binary structure in phonology: phonology does not count to a number larger than 2 (e.g., McCarthy & Prince 1999)
- This may stem from difficulties in accessing precise information regarding the number of specific phonological units
- Counting units: syllables, moras ... but never segments 😊

Counting in phonology

- Paster (2019):
 - · Phonological generalization counting to more than 2 is *almost* unattested
 - There are some patterns that can only be **analyzed** as counting to more than 2 (e.g. grammatical tone assignment in Kuria)
 - Even so, no pattern counts past 4; no similar patterns to Japanese /g/ VVN (involving counting to 5, 6, 7...) is attested
 - · Counting patterns never involve segmental features (i.e., they only condition stress & tone but never [nasal])

Experiment 1: a wug test

A wug test design

- Wug test (Berko 1958): nonce words, to examine if speakers can productively extend attested patterns to non-existent words
- Choose a more natural form between [X-gY] and [X-ŋY]
- Participants: 30 Tokyo Japanese speakers from Prolific, aged between 18-65.
 - Self-report that they know the [ŋ] variant
 - 18 of them were eligible (passed the attention check, the ABX test)

A wug test (cont.) stimuli

- 45 trials, 4 forms per trial
- Two separate members [X] & [gY] and two potential compounds [XgY] [XŋY]
 e.g., [temi] [gemo] [temigemo] [temigemo]
- All in Japanese orthography (hiragana), which does not distinguish [g] and [ŋ]
- Created by manipulating two factors: nasality of preceding seg & mora length (2-10)

e.g.,	preceding seg \ mora length	5 moras	8 moras	
_	V (a, i, u, e, o)	dotsu'- <u>guko'se</u>	kasaka'so-gosoki'shi	
	N	<u>no'N</u> -ga'mehi	<u>pehe'kiN</u> -goro'doki	

- All moras: CV, /N/ or /Q/ (/Q/ cannot end a word due to phonotactics)

A wug test (cont.) procedure

Consent form / audio check / instruction → 3 practice trials with real word → test

This is temi.

That was my temi.

The <u>temi</u> I saw yesterday is good.

[temi]

This is gemo.

That was my gemo.

The gemo I saw yesterday is good.

[gemo]

This is temig(ŋ)emo.

That was my temig(η)emo.

The <u>temig(n)emo</u> I saw yesterday is good.

[no audio played here]

Rate the relative naturalness between two potential forms of each nonce compound word in audios.

[temigemo] 1 2 3 4 5 6 7 [temigemo]

[Next]

An attention check mixed at random with trials

A wug test (cont.) An ABX test of distinguishing [g] & [ŋ]

- 10 trials
- Audio selected from compounds in the test trials
- Could only be played once
- 'Is the /g/ (i.e., が、ぎ、ぐ、げ、ご) in the audio a non-nasal or a nasal?'
- Accuracy rate < 8/10 : excluded

Results of Experiment 1

Results Turning the 7-scale bar to a binary variable

```
[temigemo] 1 2 3 4 5 6 7 [teminemo]

Not accept [ŋ] Accept [ŋ]
```

 Transforming a variable with 7 ordinal scales into a binary variable (consistent with the corpus data)

Results nasality of the preceding segment

Trend in real lexicon

Trend in nonce words

Results mora length

Trend in real lexicon

Mean value: 0.705 (real); 0.699 (nonce)
 Frequency matching (Hayes et al. 2009)

Trend in nonce words

Results Statistics

- Mixed-effect logistic model (with max random effect)
- Initial model: glmer(Nasalized_Response ~ nas * length + (1 + nas + length | subject) + (1 | word), data = data, family = binomial)
- Results of fixed effects in the final model:

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	1.4210	0.7110	1.999	0.0457 *
nasality	1.1354	0.4575	2.482	0.0131 *

The inclusion of length does not significantly improve the model, according to ANOVA

Experiment 2: an ALL test

An ALL test design

- A structure akin to Japanese VVN is designed, with a more in-depth investigation into the 'counting' factor *length*
- 7 groups (10 participants each), each learning a rule with a unique length threshold
- The rule: /b/ (or /d/) → /m/ (or /n/) in a compound iff the compound's length falls below the given length threshold of the group
- Same task: choose the correct form between [X-bY] and [X-mY]

- Participants: 70 American English speakers from Prolific, aged between 20-66.
 - 49 of them were eligible (passed the attention check)

An ALL test (cont.) more on the group condition

Different groups learned different patterns during the training phase

/b/ (or /d/) → /m/ (or /n/) in a compound iff the compound's length in syllables is not greater than 1, 2, 3, 4, 5, 6 or 7

An ALL test (cont.) stimuli

- 8 lengths (1-8 syllables), 20 trials per length (160 in total)
- Among the 20 trials of each length:
 - 10 were focus words (containing /b/ or /d/)
 - 10 were filler words (not containing /b/ or /d/)
- Two separate members [X] & [bY] and two potential compounds [XbY] [XmY]
 e.g., [sapi] [but[a] [sapimut[a]
- All stimuli were in the form of recordings
- All syllables: CV
 - C= consonant in English inventory; no /b/ /d/ /m/ /n/ elsewhere
 - V= /a/ /i/ /u/

An ALL test (cont.) the morphological context: compounding

• The context of the nasalization rule is compounding (as in Japanese):

[sapi] + [butʃa] = [sapibutʃa] or [sapimutʃa] (depending on the length threshold)

An ALL test (cont.) procedure

- Training phase
 10 trials per length (80 in total)
 feedback provided
- Testing phase
 10 trials per length (80 in total)
 no feedback

An attention check mixed at random with trials

How do you call this item?

► Play

▶ Play

Option 1

Option 2

► Play

Results of Experiment 2

Results no significant difference between the two sides

 Counting is allowed → Able to distinguish two sides of the length threshold as a condition of the rule, since the threshold is reflected by a number

 In each group, there is no substantial difference between both sides of the length threshold.

Results Statistics (excl. filler words)

- Mixed-effect logistic model (with *max random effect*)
- Initial model: glmer(Nasalized_Response ~ group * side + (1 + side | subject) + (1 + group * side | item), data = filler_data, family = binomial)
- Results of fixed effects in the final model:

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-3.2449	0.5558	-5.838	0.00000 ***
group2	0.1031	0.7411	0.139	0.88936
group3	1.2685	0.7957	1.594	0.11089
group4	0.6084	0.7403	0.822	0.41113
group5	2.2576	0.7219	3.127	0.00176 **
group6	2.3137	0.7704	3.003	0.00267 **
group7	2.2923	0.8234	2.784	0.00537 **
side	-0.3816	0.3655	-1.044	0.29653

Results Statistics (incl. filler words)

- Mixed-effect logistic model (with max random effect)
- Initial model: glmer(Nasalized_Response ~ group * side * wordtype + (1 + side * wordtype | subject) + (1+ group * side | item), data = all_data, family = binomial)
- Results of fixed effects in the final model:

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-3.46162	0.46041	-7.519	0.0000 ***
group2	0.16418	0.57476	0.286	0.7751
group3	1.30096	0.61934	2.101	0.0357 *
group4	1.06046	0.56159	1.888	0.0590 .
group5	2.29214	0.56600	4.050	0.0000 ***
group6	2.90064	0.59698	4.859	0.0000 ***
group7	2.83847	0.64302	4.414	0.0000 ***
side	-0.52396	0.33505	-1.564	0.1179
wordtype	0.08027	0.23458	0.342	0.7322
side:wordtype	0.95897	0.36442	2.631	0.0085 **

Results frequency matching again

Learning results (for focus words only)

Exposure (for focus words only; filler words never nasalize)

Discussion

A learning bias against counting

- There exists a learning bias against alternations that involve 'counting.'
- For Japanese VVN,
 - · This counting-based pattern is not internalized. Unnatural patterns are disfavored and tend to be underlearned (e.g., Hayes et al. 2009)
- For ALL,
 - The learning bias can explain the indifference on two sides of the threshold
 - The results is consistent with the typological observation that counting-based patterns are rare (Paster 2019).

What is the cause of the mora-counting pattern in Japanese?

A 'surfeit of the stimulus' effect (Becker et al. 2011, 2012)

Just an accidental generalization

No synchronic explanation required

Possibly due to a now inactive diachronic process

An alternative explanation: token frequency

The longer a word is, the less frequently it appears. (Zipf 2013)

An alternative explanation of the ALL test: bias against source-oriented learning

- My experiment is designed to induce source-oriented (rule) learning (Kapatsinski 2012)
- The results shows a product-oriented generalization ('learn surface forms')
 - · Even when the presentation condition is favorable for extracting rules, participants showed a strong preference for product-oriented generalizations (Kapatsinski 2012)
 - The results are biased to a certain extent by the tendency to draw productoriented generalizations
 - · A more source-oriented design may influence the results

Conclusion

- Japanese speakers internalize the natural factor of nasality of the preceding segment conditioning the tendency of /g/ undergoing nasalization; they fail to directly internalize the unnatural factor of the number of moras
- Artificial language learners did not learn the counting-based factor
- A learning bias against counting can explain the results of both experiments

References I

- Becker, M., Ketrez, N., & Nevins, A. (2011). The surfeit of the stimulus: Analytic biases filter lexical statistics in Turkish laryngeal alternations. *Language*, 84-125.
- Becker, M., Nevins, A., & Levine, J. (2012). Asymmetries in generalizing alternations to and from initial syllables. Language, 231-268.
- Berko, J. (1958). The child's learning of English morphology. Word, 14(2-3), 150-177.
- Breiss, C., Katsuda, H., & Kawahara, S. (2021). Paradigm uniformity is probabilistic: Evidence from velar nasalization in Japanese. In *Proceedings of WCCFL* (Vol. 39).
- Breiss, C., Katsuda, H., & Kawahara, S. (2022). A quantitative study of voiced velar nasalization in Japanese. *University of Pennsylvania Working Papers in Linguistics*, 28(1), 4.
- Itô, J., & Mester, A. (1996). Correspondence and compositionality: The ga-gyō variation in Japanese phonology.
- Kapatsinski, V. (2012). What statistics do learners track? Rules, constraints or schemas in (artificial) grammar learning. Frequency effects in language learning and processing, 1, 53-82.

References II

- Hayes, B., Siptár, P., Zuraw, K., & Londe, Z. (2009). Natural and unnatural constraints in Hungarian vowel harmony. Language, 822-863.
- McCarthy, J. J., & Prince, A. (1999). Prosodic morphology 1986. Phonological theory: the essential readings, 238-288.
- Paster, M. (2019). Phonology counts. *Radical: A Journal of Phonology*, 1, 1-61. White, J. (2014). Evidence for a learning bias against saltatory phonological alternations. *Cognition*, 130(1), 96-115.
- Peperkamp, S., Skoruppa, K., & Dupoux, E. (2006). The role of phonetic naturalness in phonological rule acquisition.
- Warker, J. A., & Dell, G. S. (2006). Speech errors reflect newly learned phonotactic constraints. *Journal of Experimental Psychology: Learning, Memory, and Cognition*, 32(2), 387.
- Zipf, G. K. (2013). The psycho-biology of language: An introduction to dynamic philology. Routledge.

Thank you!

Hailang Jiang

hailang.jiang.22@ucl.ac.uk hailangjiang.github.io