

CS5228: Knowledge Discovery and Data Mining

Lecture 7 — Classification & Regression III

Course Logistics — Update

- Assignment 3
 - Available on Canvas (since Oct 13)
 - Submission deadline: Thu Oct 24, 11.59 pm
- Project
 - Progress reports completed + feedback provided to almost most team (there will be an announcement with a short summary)
 - 1st TEAMMATES session live (deadline: Oct 17, 11.59 pm)

Quick Recap — **Decision Trees**

Decision Trees

- Flowchart-like structure mapping input features to output labels or values
- Applicable to classification & regression tasks
- Support for categorical & numerical features
- Typically quite interpretable

Building Decision Trees

- Greedy algorithm iteratively finding the best splits
- Best split = split that minimizes impurity

Quick Recap — Decision Trees

Challenges

- Sensitive to small changes in training data
 - → High variance
- High chance of overfitting in case of maximum/complete
 - → Pruning of tree to avoid overfitting
- In practice, Decision Trees do not show state-of-the-art performance

→ Tree Ensemble methods

Quick Recap — Tree Ensembles

- Tree ensembles: Construct many decision trees and combine their predictions
 - Pros: Higher accuracy, lower variance
 - Cons: Lower interpretability, longer training time
- Ensembles of independent models:
 - Bagging Train decision trees over re-sampled training data (bootstrap sampling)
 - Random Forests bootstrap sampling + feature sampling

Quick Recap — Tree Ensembles

- Ensembles of dependent models (boosting methods)
 - Sequential training of decision trees
 - Next tree tries to improve errors of previous trees
 - Trees have different amount of say in predictions
- Two introduced boosting methods:
 - AdaBoost resample training data to favour previously misclassified samples
 - Gradient Boosted Trees start with initial prediction, improve based on predicted errors

Outline

Linear Models

Basic setup

Linear Regression

- Problem formulation
- Normal Equation (analytical solution)
- Gradient Descent (iterative optimization)
- Polynomial Linear Regression (overfitting, regularization)
- Interpretation of Coefficients

Logistic Regression

- Problem formulation
- Gradient Descent

Linear Models

Basic setup

- Dataset of *n* samples $\{(x_i, y_i)\}_{i=1}^n$
- lacktriangleq Input data with \emph{d} features $x_i = (x_{i1}, x_{i2}, ..., x_{id})$

Assumption

■ There exists linear relationship between x_i and dependent variable y_i

Predicted value which is hopefully close to y_i

$$\hat{y}_i = h_{\theta}(x_i) = f(\theta_0 x_{i0} + \theta_1 x_{i1} + \theta_2 x_{i2} + \dots + \theta_d x_{id})$$

$$\theta = \{\theta_0, \theta_1, \theta_2, \dots, \theta_d\}, \ \theta_i \in \mathbb{R}$$

Linear Models

- Vector representation
 - Introduce constant feature x_{io}

$$h_{\theta}(x_i) = f(\theta_0 x_{i0} + \theta_1 x_{i1} + \theta_2 x_{i2} + \dots + \theta_d x_{id})$$

■ Represent *x*, with new constant feature

$$x_i = (1, x_{i1}, x_{i2}, ..., x_{id})$$

■ Rewrite linear relationship using vectors representing x_i and θ

$$h_{\theta}(x_i) = f(\theta^T x_i)$$

Outline

- Linear Models
 - Basic setup

Linear Regression

- **■** Problem formulation
- Normal Equation (analytical solution)
- Gradient Descent (iterative optimization)
- Polynomial Linear Regression (overfitting, regularization)
- Interpretation of Coefficients

Logistic Regression

- Problem formulation
- Gradient Descent

Linear Regression — Simple Example

- Crime scene investigation (CSI)
 - Found a shoe print of size 32.2cm
 - What is the estimated height of the suspect?

- Approach: Linear Regression
 - Collect a dataset of (size, height)-pairs
 - Quantify linear relationship between shoe print size and body height $\rightarrow h_{\theta}(size) = \theta_0 + \theta_1 size$
 - Predict suspect's height via $\hat{y} = h_{\theta}(32.2)$

Linear Regression

- Regression → Real-valued predictions
 - Function f is the identity function f(x) = x

$$\hat{y}_i = h_{\theta}(x_i) = f(\theta^T x_i) = \theta^T x_i$$
$$\hat{y}_i = \theta^T x_i$$
$$\hat{y} = X\theta$$

$$\hat{y} = \begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \\ \vdots \\ \hat{y}_n \end{bmatrix} \qquad X = \begin{bmatrix} 1 & x_{11} & x_{12} & \dots & x_{1d} \\ 1 & x_{21} & x_{22} & \dots & x_{2d} \\ 1 & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & x_{n2} & \dots & x_{nd} \end{bmatrix} \qquad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_d \end{bmatrix}$$

Quick Quiz

Which is the best line?

Why?

How to find it?

Linear Regression — Loss Function

- Loss function (also: cost function, error function)
 - \blacksquare Quantifies how good or bad a given set of values for θ is?
 - lacktriangle Measures the difference between predictions \hat{y} and true values $\ y$

Loss function for Linear Regression:
 Mean Squared Error (MSE)

$$L = \frac{1}{n} \sum_{i=1}^{n} e_i^2 = \frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2$$

Losses for CSI Example

$$h_{blue} = 92 + 3.10 \cdot x$$

 $h_{orange} = 69 + 3.61 \cdot x$
 $h_{green} = 56 + 3.95 \cdot x$
 $h_{random} = 100 - 5.00 \cdot x$

$$L_{blue} = 57.47$$
 $L_{orange} = 12.12$
 $L_{green} = 20.83$
 $L_{random} = 56,129.23$

 \rightarrow How to find the best values for θ ?

Method 1: Random Search (the "stupid" way)

- Repeat "enough" times
 - Select random values for $\theta = \{\theta_0, \theta_1, ..., \theta_d\}$
 - \blacksquare Calculate loss L for current θ
- Return θ with smallest loss

- Limitation:
 - Not practical beyond toy examples
- → Don't do that! :)

Outline

- Linear Models
 - Basic setup

Linear Regression

- Problem formulation
- Normal Equation (analytical solution)
- Gradient Descent (iterative optimization)
- Polynomial Linear Regression (overfitting, regularization)
- Interpretation of Coefficients

Logistic Regression

- Problem formulation
- Gradient Descent

Method 2: Find Minimum of L Analytically (the proper way)

- Minimum of loss function L → Calculus to the rescue!
 - Partial derivatives w.r.t. to all θ_i are 0

$$\frac{\partial L}{\partial \theta_0} = 0, \ \frac{\partial L}{\partial \theta_1} = 0, \ \dots, \ \frac{\partial L}{\partial \theta_d} = 0$$

- d+1 equations with d+1 unknowns
- (no need to check if minimum or maximum)

Method 2: Find Minimum of L Analytically (the proper way)

- Rewrite loss function L
 - Vector representation mathematically more convenient to handle
 - Avoids dealing with d equations

- Derive L w.r.t. to θ
 - Using chain rule

• Set $\partial L/\partial \theta$ to 0

$$L = \frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2$$
$$= \frac{1}{n} \sum_{i=1}^{n} (\theta^T x_i - y_i)^2$$
$$= \frac{1}{n} ||X\theta - y||^2$$

$$\frac{\partial L}{\partial \theta} = \frac{2}{n} X^T (X\theta - y)$$

$$\frac{2}{n}X^T(X\theta-y)\stackrel{!}{=}\overrightarrow{0}$$

Linear Regression — Normal Equation

• Solve for θ

$$\frac{2}{n}X^T(X\theta-y)=\overrightarrow{0}$$

$$X^TX\theta=X^Ty$$

$$(X^TX)^{-1}X^TX\theta=(X^TX)^{-1}X^Ty$$

$$\theta=(X^TX)^{-1}X^Ty$$

$$\theta=X^\dagger y, \text{ with } X^\dagger=(X^TX)^{-1}X^T$$
 "pseudo inverse" of X

Pseudo Inverse X^{\dagger}

$$X^{\dagger} = (X^T X)^{-1} X^T$$

$$\begin{bmatrix} X^T \\ (d+1) \times n \end{bmatrix} \begin{bmatrix} X \\ n \times (d+1) \end{bmatrix} = \begin{bmatrix} X^T X \\ (d+1) \times (d+1) \end{bmatrix} \qquad \begin{bmatrix} (X^T X)^{-1} \\ (d+1) \times (d+1) \end{bmatrix} \xrightarrow{(d+1) \times n} \begin{bmatrix} X^T \\ (d+1) \times n \end{bmatrix}$$

Performance analysis

- Most expensive operation: calculating the inverse of $(X^TX)^{-1}$
- Calculation of inverse depends on number of features *d*, not on number of data samples *n*
- Complexity of calculating inverse of a $d \times d$ matrix: $O(d^3)$

Quick Quiz

The determinant of A is non-zero

A is a square matrix

A has full rank

All diagonal values are non-zero

22

Quick Quiz

When will X^TX not be invertible?

A

There are more features *d* than data samples *n*

B

The data is not normalized

C

In practice, X^TX will always be invertible

D

X has no determinant

Outline

- Linear Models
 - Basic setup

Linear Regression

- Problem formulation
- Normal Equation (analytical solution)
- Gradient Descent (iterative optimization)
- Polynomial Linear Regression (overfitting, regularization)
- Interpretation of Coefficients

Logistic Regression

- Problem formulation
- Gradient Descent

Method 2: Find Minimum of L Analytically (the proper way)

Algorithm

- Construct matrix *X* and vector *y* from data
- Calculate pseudo inverse $X^{\dagger} = (X^T X)^{-1} X^T$
- Return $\theta = X^{\dagger}y$

• For the CSI example:

$$\theta = \begin{bmatrix} 20.0 & 620.2 \\ 620.0 & 19284.9 \end{bmatrix}^{-1} X^T y = \begin{bmatrix} 18.4 & -0.6 \\ -0.6 & 0.02 \end{bmatrix} X^T y = \begin{bmatrix} 69.5 \\ 3.6 \end{bmatrix}$$

$$h_{\theta}(size) = 69.5 + 3.6size$$
 $h_{\theta}(32.2) = 185.4$

Method 3: Gradient Descent

- Core idea
 - Start with a random setting of θ
 - Adjust θ iteratively to minimize L

Gradient — Quick Refresher

Gradient

- Vector of partial derivatives of a multivariable function (e.g., θ_0 , θ_1 , ..., θ_d)
- Partial derivative: slope w.r.t. to a single variable given a current set of values for all $\theta_0, \theta_1, ..., \theta_d$
- Points in the direction of the steepest ascent

$$\nabla_{\theta} L = \frac{\partial L}{\partial \theta} = \begin{bmatrix} \frac{\partial L}{\partial \theta_0} \\ \frac{\partial L}{\partial \theta_1} \\ \frac{\partial L}{\partial \theta_2} \\ \vdots \\ \frac{\partial L}{\partial \theta_d} \end{bmatrix}$$

Gradient for CSI Example

Best value: θ_0 = 69.5, θ_1 = 3.6

• Assume θ_0 = 60 and θ_1 = 4

$$\nabla_{\theta} L = \frac{2}{n} X^{T} (X \theta - y) = \frac{2}{n} X^{T} (X \cdot \begin{bmatrix} 60 \\ 4 \end{bmatrix} - y) = \begin{bmatrix} 5.2 \\ 163.9 \end{bmatrix}$$

- Interpretation of $\nabla_{\theta} L = \begin{bmatrix} 5.2 \\ 163.9 \end{bmatrix}$
 - Both values positive: a small increase of θ_0 or θ_1 will increase the loss
 - A small change in θ_1 affects the loss more than the same change in θ_0
 - lacktriangle Absolute values of gradient not a direct indicator of how to update heta

Gradient Descent Algorithm

- Important concept: learning rate
 - Scaling factor for gradient (typical range: 0.01 0.0001)

Input: data (X, y), loss function L, learning rate η

Initialization: Set θ to random values

while true:

Calculate gradient $\nabla_{\theta} L$

$$\theta \leftarrow \theta - (\eta \cdot \nabla_{\theta} L)$$

In practice: stop loop when θ converges

Gradient Descent for CSI Example

- Input
 - $\eta = 0.0001$
- Initialization
 - $\theta_0 = 100$
 - $\theta_1 = 50$

```
Quick Quiz: Why not just increase the learning rate to speed things up?
```

```
[001] theta0=99.70619, theta1=40.86448, loss=2163825.04200
[002] theta0=99.46909, theta1=33.49256, loss=1409025.31406
[003] theta0=99.27776, theta1=27.54378, loss=917521.53239
[004] theta0=99.12336. theta1=22.74340. loss=597468.46605
[005] theta0=98.99877, theta1=18.86972, loss=389059.15347
[006] theta0=98.89823. theta1=15.74385. loss=253349.02868
[007] theta0=98.81709, theta1=13.22143, loss=164978.51518
[008] theta0=98.75161, theta1=11.18595, loss=107434.18922
[009] theta0=98.69877, theta1=9.54342, loss=69962.98624
[010] theta0=98.65613, theta1=8.21798, loss=45562.82115
[011] theta0=98.62172, theta1=7.14841, loss=29674.13840
[012] theta0=98.59395, theta1=6.28532, loss=19327.88711
[013] theta0=98.57153, theta1=5.58885, loss=12590.70710
[014] theta0=98.55344, theta1=5.02683, loss=8203.65008
[015] theta0=98.53884, theta1=4.57330, loss=5346.92525
[016] theta0=98.52706, theta1=4.20733, loss=3486.70856
[017] theta0=98.51754, theta1=3.91201, loss=2275.38917
[018] theta0=98.50986, theta1=3.67370, loss=1486.61298
[019] theta0=98.50366, theta1=3.48140, loss=972.98470
[020] theta0=98.49866, theta1=3.32622, loss=638.52480
[098] theta0=98.47656, theta1=2.67760, loss=14.17658
[099] theta0=98.47655, theta1=2.67760, loss=14.17658
[100] theta0=98.47653, theta1=2.67760, loss=14.17658
```


Gradient Descent — Variations

- (Basic) Gradient Descent
 - Calculate gradient und update θ for whole dataset
- Stochastic Gradient Descent (SGD)
 - lacktriangle Calculate gradient und update θ for each data sample
- Mini-batch Gradient Descent
 - lacktriangle Calculate gradient und update θ for batches of sample
 - e.g., batch = 64 data samples
 - In practice often referred to as SGD

Gradient Descent — Variations

Gradient Descent

Gradient averaged over all data items

- Smooth descent
- Small(er) gradients
- Small(er) update steps

Mini-Batch Gradient Descent

Gradient averaged over <u>some</u> data items

• Well, "somewhere in-between" :)

Stochastic Gradient Descent

Gradient for each data item considered

- Choppy descent
- Large(r) gradients
- Large(r) steps

Normal Equation vs. Gradient Descent

Gradient Descent

- Works well even if *d* is large
- Works even if X^TX is non-invertible
- Iterative process; may not find optimal solution in practice
- Learning rate a critical hyperparameter

Normal Equation

- Finds optimal solutions
- Non-iterative; no need of learning rate
- Calculation of $(X^TX)^{-1}$ in $O(d^3)$

Quick Quiz

Gradient Descent not reaching optimal solution after 10k iterations.

Why?

Quick Quiz

Region of "near-plateau":

- ightharpoonup Gradient $\nabla_{\theta}L$ very small
- ightharpoonup Step $\eta \nabla_{\theta} L$ extremely small
- → Very slow convergence

Outline

- Linear Models
 - Basic setup

Linear Regression

- Problem formulation
- Normal Equation (analytical solution)
- Gradient Descent (iterative optimization)
- Polynomial Linear Regression (overfitting, regularization)
- Interpretation of Coefficients

Logistic Regression

- Problem formulation
- Gradient Descent

Polynomial Linear Regression

- Linear Regression #> line / plane / hyperplane
- Polynomial Linear Regression
 - Allows to capture nonlinear relationships between X and y
 - Polynomial regression model for 1 input feature

Still linear in θ !

$$\hat{y}_i = \theta_0 1 + \theta_1 x_i + \theta_2 x_i^2 + \dots + \theta_p x_i^p$$

Matrix representation (again, 1 input feature!)

$$X^{(1)} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix}$$

$$X^{(2)} = \begin{bmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 \end{bmatrix}$$

$$X^{(3)} = \begin{bmatrix} 1 & x_1 & x_1^2 & x_1^3 \\ 1 & x_2 & x_2^2 & x_2^3 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 & x_n^3 \end{bmatrix}$$

$$X^{(1)} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix} \qquad X^{(2)} = \begin{bmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 \end{bmatrix} \qquad X^{(3)} = \begin{bmatrix} 1 & x_1 & x_1^2 & x_1^3 \\ 1 & x_2 & x_2^2 & x_2^3 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 & x_n^3 \end{bmatrix} \qquad X^{(p)} = \begin{bmatrix} 1 & x_1 & x_1^2 & x_1^3 & \dots & x_1^p \\ 1 & x_2 & x_2^2 & x_2^3 & \dots & x_2^p \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & x_n^3 & \dots & x_n^p \end{bmatrix}$$

Polynomial Linear Regression

Example: 1 input feature, 3 data samples

$$X^{(1)} = \begin{bmatrix} 1 & 2 \\ 1 & 3 \\ 1 & 1 \end{bmatrix} \qquad X^{(2)} = \begin{bmatrix} 1 & 2 & 4 \\ 1 & 3 & 9 \\ 1 & 1 & 1 \end{bmatrix} \qquad X^{(3)} = \begin{bmatrix} 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

- → Polynomial terms "look the same" as additional features
- \rightarrow Finding best θ using the Normal Equation or Gradient Descent

Polynomial Linear Regression — Example

Polynomial Linear Regression — Overfitting

- Increasing degree of polynomial p
 - More capacity to capture nonlinear relationships
 - Much higher sensitivity to noise and outliers
- Countermeasure: Regularization
 - lacktriangle Extend loss function to "punish" large values of heta

$$L = \frac{1}{n} \|X\theta - y\|^2 + \lambda \frac{1}{n} \|\theta\|_2^2$$
 Regularization parameter

Note: excludes θ_0 !

Polynomial Linear Regression — Minimizing Loss L

Normal Equation

$$\theta = (X^T X + \lambda \begin{bmatrix} 0 \\ 1 \\ & \ddots \\ & & 1 \end{bmatrix})^{-1} X^T y$$

Gradient Descent

$$\nabla_{\theta} L = \frac{2}{n} X^{T} (X\theta - y) + \lambda \frac{2}{n} \theta$$

Polynomial Linear Regression — More than 1 Feature

• Polynomial of degree p=2 and two input features (d=2)

$$\hat{y_i} = \theta_0 + \theta_1 x_{i1} + \theta_2 x_{i2} + \theta_3 x_{i1}^2 + \theta_4 x_{i2}^2 + \theta_5 \underbrace{x_{i1} x_{i2}}_{\text{interaction terms (cross terms)}}$$

Polynomial of degree p=3 and two input features (d=2)

$$\hat{y}_i = \theta_0 + \theta_1 x_{i1} + \theta_2 x_{i2} + \theta_3 x_{i1}^2 + \theta_4 x_{i2}^2 + \theta_5 x_{i1}^3 + \theta_6 x_{i2}^3 + \theta_7 x_{i2}^2 x_{i1} + \theta_8 x_{i2} x_{i1}^2 + \theta_9 x_{i2} x_{i1}$$

Polynomial of degree p=2 and two input features (d=3)

$$\hat{y}_i = \theta_0 + \theta_1 x_{i1} + \theta_2 x_{i2} + \theta_3 x_{i3} + \theta_4 x_{i1}^2 + \theta_5 x_{i2}^2 + \theta_6 x_{i3}^2$$
$$\theta_7 x_{i2} x_{i1} + \theta_8 x_{i3} x_{i1} + \theta_9 x_{i3} x_{i2}$$

Polynomial Linear Regression — More than 1 Feature

 Number of terms in multivariate polynomial given given p, d

$$\theta_i, \ 0 \le i \le M, \quad \text{with } M = \binom{p+d}{p}$$

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

- Practical considerations
 - Limited to small number of features and small polynomial degrees
 - In principle, terms can be dropped (e.g., all interaction terms)

risk of overfitting + low interpretability

justification typically not obvious

Outline

- Linear Models
 - Basic setup

Linear Regression

- Problem formulation
- Normal Equation (analytical solution)
- Gradient Descent (iterative optimization)
- Polynomial Linear Regression (overfitting, regularization)
- Interpretation of Coefficients

Logistic Regression

- Problem formulation
- Gradient Descent

Linear Regression — Interpretation of θ_i

Example: prediction of house prices

$$price = \theta_0 + \theta_1(\#rooms) + \theta_2(area) + \theta_3(floor) + \dots$$

$$price' = \theta_0 + \theta_1(\#rooms + 1) + \theta_2(area) + \theta_3(floor) + \dots$$

$$\Delta(price) = price' - price = \theta_1$$

- Interpretation
 - Change of value of feature *i* by 1 unit → change of output value by θ_i
 - Assumption: all other features values remain the same
- → What about normalizing the data?

Data Normalization — Yes or No? (standardization, min-max scaling)

• Data normalization does not affect model performance (assuming basic Linear Regression without regularization)

- In favor of "No"
 - Preserves unit of feature $i \rightarrow$ direct interpretation of θ_i
 - Better for comparing θ_i for the same features across different datasets
- In favour of "Yes"
 - When using regularization
 - When using Polynomial Linear Regression
 - Better for comparing θ_i within a model (e.g., $\theta_i > \theta_i$) feature i more important than feature j)

Quick Quiz

A

It's impossible to overfit given a dataset with only 1 feature

B

Scaling the data will change the coefficients

Which of the statements regarding Linear Regression is **True**?

C

Gradient Descent can get stuck in local minimum

D

Regularization can improve the training loss/error

Overview

- Linear Models
 - Basic setup
- Linear Regression
 - Problem formulation
 - Normal Equation (analytical solution)
 - Gradient Descent (iterative optimization)
 - Polynomial Linear Regression (overfitting, regularization)
 - Interpretation of Coefficients
- Logistic Regression
 - Problem formulation
 - Gradient Descent

Logistic Regression — Simple Example

- Crime scene investigation (CSI)
 - Found a shoe print of size 32.2cm
 - Is the suspect a male or not?

- Approach: Logistic Regression for binary classification $y_i \in \{0,1\}$
 - Collect a dataset of (size, sex)-pairs
 - Train linear classifier such that

$$0 \le h_{\theta}(x_i) \le 1$$

Logistic Regression

- Logistic Regression → Real-valued predictions interpreted as probability
 - Function *f* is the standard **Logistic Function** (Sigmoid function)

$$f(x) = \frac{L}{1 + e^{-k(x - x_0)}} \xrightarrow{L = 1, \ k = 1, \ x_0 = 0} f(x) = \frac{1}{1 + e^{-x}}$$

Logistic Regression — Probabilistic Interpretation

ullet \hat{y} interpreted as a probability

$$\hat{y} = h_{\theta}(x) = f(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}} \qquad \text{with} \quad \hat{y} \in [0, 1]$$

 \Rightarrow $\hat{y} = h_{\theta}(x)$ is the estimated probability that $y_i = 1$ (male) given x and θ

$$\hat{y} = P(y = 1|x, \theta)$$

 \rightarrow Given only discrete 2 outcomes: $P(y=1|x,\theta)+P(y=0|x,\theta)=1$

$$\hat{y} = 1 - P(y = 0|x, \theta)$$

Logistic Regression — Probabilistic Interpretation

$$\hat{y} = P(y = 1|x, \theta) = 1 - P(y = 0|x, \theta)$$

 $\rightarrow P(y|x)$ is a Bernoulli distribution

$$P(y|x) = \begin{cases} \hat{y} & , y = 1 \\ 1 - \hat{y} & , y = 0 \end{cases}$$

$$P(y|x) = \hat{y}^y (1 - \hat{y})^{1-y}$$

$$\hat{y} = \frac{1}{1 + e^{-\theta^T x}}$$

Logistic Regression

Which $h_{\theta}(x)$ is the best?

How to find it θ ?

Logistic Regression — Loss Function

$$\hat{y} = \frac{1}{1 + e^{-\theta^T x}}$$

- Goal: Maximize probability of true y label given training sample x
 - Find θ that maximizes

$$P(y|x) = \hat{y}^y (1 - \hat{y})^{1-y}$$
$$\log P(y|x) = \log \left[\hat{y}^y (1 - \hat{y})^{1-y} \right]$$

 $= y \log \hat{y} + (1 - y) \log (1 - \hat{y})$

 \blacksquare Find θ that minimizes

$$L = -P(y|x) = -\left[y\log\hat{y} + (1-y)\log\left(1-\hat{y}\right)\right]$$
 Cross-Entropy Loss

Cross-Entropy Loss — Visualization

$$L = -[y \log \hat{y} + (1 - y) \log (1 - \hat{y})]$$

Quick Quiz

What happens if Logistic Regression gets a training sample **correct**?

Overview

- Linear Models
 - Basic setup

Linear Regression

- Problem formulation
- Normal Equation (analytical solution)
- Gradient Descent (iterative optimization)
- Polynomial Linear Regression (overfitting, regularization)
- Interpretation of Coefficients

Logistic Regression

- Problem formulation
- Gradient Descent

Logistic Regression — Loss Function

 $\hat{y} = \frac{1}{1 + e^{-\theta^T x}}$

Loss for all training samples

$$L = -\frac{1}{n} \sum_{i=1}^{n} \left[y_i \log \hat{y}_i + (1 - y_i) \log (1 - \hat{y}_i) \right]$$

$$= -\frac{1}{n} \sum_{i=1}^{n} \left[y_i \log h_{\theta}(x_i) + (1 - y_i) \log (1 - h_{\theta}(x_i)) \right]$$

$$= -\frac{1}{n} \sum_{i=1}^{n} \left[y_i \log \frac{1}{1 + e^{\theta^T x_i}} + (1 - y_i) \log (1 - \frac{1}{1 + e^{\theta^T x_i}}) \right]$$

• Required for minimizing the loss:

$$\nabla_{\theta} L = \frac{\partial L}{\partial \theta} = ???$$

Logistic Regression — Loss Function

After lots of tedious math...

$$\frac{\partial L}{\partial \theta_j} = \frac{1}{n} \sum_{i=1}^n \left[h_{\theta}(x_i) - y_i \right] x_{ij}$$

$$\nabla_{\theta} L = \frac{1}{n} X^{T} (h_{\theta}(X) - y)$$

- Problem: $\frac{1}{n}X^T(h_{\theta}(X)-y)\stackrel{!}{=}0$ has no closed-form solution for θ
- → Gradient Descent!

Logistic Regression in Practice (CSI Example)

Vanilla implementation

Start	training for 1,000,000	iterations	
Loss:	0.6931471805599453	0.0%	
Loss:	0.765069661957756	10.0%	
Loss:	0.6093119537276577	20.0%	
Loss:	0.5066673325457598	30.0%	
Loss:	0.4551164039897514	40.0%	
Loss:	0.4280635319707213	50.0%	
Loss:	0.4154389042684111	60.0%	
Loss:	0.4152887492109594	70.0%	
Loss:	0.4151849953246913	80.0%	
Loss:	0.41511286000667447	90.0%	
loss:	0.41506245481850296	100.0%	
Training finished in 0:00:09.617970			

$$\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix} = \begin{bmatrix} -43.45 \\ 1.42 \end{bmatrix}$$

sklearn.linear_model.LogisticRegression (with default L-BFGS-B solver)

```
Start training...
Training finished in 0:00:00.000035 (#iterations: 21)
```

$$\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix} = \begin{bmatrix} -44.91 \\ 1.47 \end{bmatrix}$$

Logistic Regression in Practice (CSI Example)

Vanilla implementation

Start	training for 78,000	iterations
Loss:	0.6931471805599453	0.0%
Loss:	0.6565544350291496	10.0%
Loss:	0.6475478825116517	20.0%
Loss:	0.6389819932273285	30.0%
Loss:	0.6308342158505089	40.0%
Loss:	0.6230827400881452	50.0%
Loss:	0.6157065622831859	60.0%
Loss:	0.6086855316895313	70.0%
Loss:	0.6020003798552925	80.0%
Loss:	0.5956327355164103	90.0%
loss:	0.5895658866765062	100.0%
Training finished in 0:00:00.784118		

$$\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix} = \begin{bmatrix} -5.44 \\ 0.19 \end{bmatrix}$$

sklearn.linear_model.LogisticRegression (with SAG solver)

```
Start training...
Training finished in 0:00:00.007022 (#iterations: 5820)
```

$$\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix} = \begin{bmatrix} -5.45 \\ 0.19 \end{bmatrix}$$

Logistic Regression in Practice (CSI Example)

Region of "near-plateau":

- \rightarrow Gradient $\nabla_{\theta}L$ very small
- ightharpoonup Step $\eta \nabla_{\theta} L$ extremely small
- → Very slow convergence

Note: The Cross-Entropy loss of Logistic Regression is convex

→ There always exists exactly one minimum (global minimum)!

Logistic Regression in Practice

- Logistic Regression with vanilla Gradient Descent (also Linear Regression)
 - Works in principle the math is sound!
 - Often poor performance compared to more sophisticated implementations
- Many techniques to boost performance
 - Smart(er) initialization of θ
 - Adaptive learning rates
 - Extensions to Gradient Descent
 - Regularization
 - ...and others

Logistic Regression — 2D Example

IRIS dataset

- 3 classes of Iris plants (only 2 considered)
- 50 samples per class
- 4 continuous features
 (only sepal length/width considered)

Logistic Regression — 2D Example (Vanilla Gradient Descent)

Polynomial Logistic Regression

- Analogous to Polynomial Linear Regression
 - Allows to capture nonlinear relationships between X and y
 - Polynomial Logistic Regression model for 1 input feature

$$\hat{y}_i = \frac{1}{1 + e^{-\theta^T x_i}}, \text{ with } \theta^T x_i = \theta_0 + \theta_1 x_i + \theta_2 x_i^2 + \dots + \theta_p x_i^p$$

- Identical practical considerations
 - Solve using Gradient Descent as usual (optionally with regularization to avoid overfitting)
 - Limited to small number of features and small polynomial degrees

$$\nabla_{\theta} L = \frac{1}{n} X^{T} (h_{\theta}(X) - y) + \lambda \frac{2}{n} \theta$$

Overview

- Linear Models
 - Basic setup
- Linear Regression
 - Problem formulation
 - Normal Equation (analytical solution)
 - Gradient Descent (iterative optimization)
 - Polynomial Linear Regression (overfitting, regularization)
 - Interpretation of Coefficients
- Logistic Regression
 - Problem formulation
 - Gradient Descent

Summary

Linear Models

- Assume linear relationship between input features and output (i.e., output = sum of weighted feature values)
- However, regression line / decision boundary not always a line/plane/hyperplane (data transformation to add polynomial terms based on input features)
- Generally good interpretability

Linear Regression & Logistic Regression

- Very fundamental and popular regression and classification methods
- Gradient Descent to solve both tasks + Normal Equation to solve Linear Regression
- Effects of data normalization mainly(!) on explainability / interpretability of results
- Straightforward extension of Logistic Regression beyond 2 classes (not covered here)

Solutions to Quick Quizzes

- Slide 13: Yellow (smallest average error)
- Slide 22: D
- Slide 23: A
- Slide 35: "near plateau" → very small gradients and updates
- Slide 48: B
- Slide 57: C