Two classes of spectral three-term derivative-free method for solving nonlinear equations with application

Abdulkarim Hassan Ibrahim¹, Mohammed Alshahrani^{*2}, and Suliman Al-Homidan³

1,2,3 Interdisciplinary Research Center for Smart Mobility and Logistics, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
 1,3 Department of Mathematics, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

DETAILED NUMERICAL RESULTS

Table 1: Comparison of the number of iterations, function evaluations and execution time of all algorithms in ENG-VAL1Grad

										1	ENGVA	L1Grad									
				ISTTDFPN	4			STTDFPM	[MOPCG				CGDFPM				AHDFPM	[
DIM	INP	NI	NF	CPU	NORM	NI	NF	CPU	NORM	NI	NF	CPU	NORM	NI	NF	CPU	NORM	NI	NF	CPU	NORM
1000	1NP x ₁ x ₂ x ₃ x ₄ x ₅ x ₆ x ₆ x ₇ x ₈ x ₉ x ₁₀ x ₁₀ x ₁₀ x ₁₁ x ₁₀ x ₁₀ x ₁₁ x ₁₁ x ₁₂ x ₁₂ x ₁₃ x ₁₄	83 148 187 179 227 161 221 189 196 137 240 137 81 242	348 584 752 724 911 635 876 758 780 563 965 552 351 974	0.170251 0.0425269 0.0236343 0.02171 0.0185836 0.0126765 0.0171659 0.0159074 0.0159042 0.0096911 0.0231056 0.0094106 0.0082148 0.0187274	NORM 6.27266E-12 9.83775E-12 9.21219E-12 5.99226E-12 9.43381E-12 9.40806E-12 9.4015E-12 9.4053E-12 9.45027E-12 8.12888E-12 9.35372E-12	61 189 185 202 203 170 198 200 195 111 210 136 74 188	759 461 833 730	0.039711 0.011635 0.018132 0.018604 0.01614 0.015482 0.018036 0.017156 0.017156 0.018308 0.007555 0.018493 0.012756 0.00443 0.015689	7.9914E-12 8.3598E-12	NI 160 226 118 141 164 148 112 198 164 270 180 164 146 220	NF 1920 2977 1099 1281 2126 1830 1090 2893 1853 3712 2346 1953 1487 3855	0.04697 0.049286 0.018483 0.023715 0.0265 0.028966 0.016718 0.041651 0.027913 0.054607 0.033777 0.041669 0.028041 0.028041 0.054182	NORM 5.08023E-12 5.02365E-12 7.94536E-12 7.94536E-12 6.61117E-12 4.99018E-12 3.43567E-12 9.58545E-12 4.25447E-12 4.25447E-12 7.20983E-12 9.71017E-12 8.87848E-12	36 669 698 708 715 703 705 655 699 418 682 428 38 682	322 5471 5708 5788 5844 5749 5766 5364 5718 3431 5586 3511 340 5586	0.029459 0.08823 0.083597 0.089491 0.087157 0.083791 0.087422 0.0798 0.08459 0.062501 0.083634 0.053159 0.007144 0.08708	5.08725E-12 9.24679E-12 8.48142E-12 8.48443E-12 8.39903E-12 8.39516E-12 9.09106E-12 9.33572E-12 9.14347E-12 9.61582E-12 9.51749E-12 7.81672E-12	115 136 134 135 134 143 137 139 46 140 45 36 140	NF 427 1079 1269 1251 1260 1252 1346 1281 1314 459 1312 442 355 1312	0.032163 0.020052 0.022194 0.018243 0.018592 0.017828 0.022672 0.017984 0.019986 0.006091 0.024945 0.006114 0.004275 0.022992	5.41684E-12 8.60829E-12 8.21844E-12 6.25975E-12 6.5548E-12 9.46069E-12 9.98484E-12 7.79394E-12 5.3876E-12 6.51291E-12 8.9978E-12 7.63998E-12 6.45555E-12
10000	x_{0}^{1} x_{0}^{2} x_{0}^{3} x_{0}^{4} x_{0}^{5} x_{0}^{6} x_{0}^{7} x_{0}^{8} x_{0}^{8} x_{0}^{1} x_{0}^{1} x_{0}^{1} x_{0}^{1} x_{0}^{1} x_{0}^{1}	70 213 133 192 216 190 213 193 214 113 236 109 101 237	292 843 543 775 864 761 854 764 858 474 951 447 436 955	0.045975 0.1504736 0.0961941 0.1387053 0.1405472 0.1643459 0.1832063 0.132412 0.1410929 0.0848578 0.175587 0.0766534 0.0692791 0.1645599	7.68093E-12 7.47409E-12 8.51329E-12 9.06063E-12 9.6831E-12 9.98719E-12 9.88552E-12 9.76179E-12 9.33623E-12 9.39171E-12 9.2353E-12 9.2353E-12 9.49709E-12	80 185 182 198 195 188 200 198 169 111 202 79 78 182	334 713 722 764 744 728 773 762 632 460 795 327 353 718	0.050725 0.108107 0.105694 0.134417 0.117332 0.110874 0.1162 0.118329 0.070648 0.119506 0.050995 0.050574 0.106602	9.6112E-12 7.6931E-12 9.3925E-12 7.8369E-12 7.8369E-12 8.9282E-12 8.9187E-12 9.0347E-12 9.0347E-12 9.433E-12 9.8811E-12 6.7712E-12 9.193E-12	175 115 163 216 139 130 148 137 143 159 230 138 281 133	1971 1215 2237 3248 1286 1306 2067 1258 1909 1822 4027 1225 4478 1512	0.232248 0.152756 0.272835 0.362836 0.14788 0.171415 0.23717 0.16115 0.231369 0.243875 0.441638 0.139917 0.507398 0.178789	6.32847E-12 7.82858E-12 6.10655E-12 7.90495E-12 3.89277E-12 6.17162E-12 5.65781E-12 9.86845E-12 5.43271E-12 8.74433E-12 8.57673E-12 8.57673E-12 8.34875E-12	37 657 687 691 683 692 688 721 688 300 676 308 37 676	331 5374 5619 5651 5585 5660 5629 5906 5629 2472 5537 2536 331 5537	0.038745 0.635148 0.686741 0.673806 0.685966 0.685848 0.678254 0.705982 0.685119 0.292672 0.669292 0.302534 0.038912 0.684784		42 108 135 129 117 130 142 137 138 42 131 41 44	420 1016 1260 1208 1099 1216 1336 1281 1298 418 1231 409 440 1231	0.049087 0.118062 0.14218 0.13753 0.128467 0.156155 0.157444 0.144989 0.152524 0.048371 0.151988 0.045308 0.045308 0.0457446 0.14183	6.66445E-12 6.40213E-12 7.34157E-12 9.13491E-12 6.61802E-12 6.58387E-12 7.19394E-12 8.36029E-12 5.98622E-12 9.60002E-12 4.98783E-12 9.57503E-12
100000	x_{0}^{1} x_{0}^{2} x_{0}^{3} x_{0}^{4}	79 211 173 190 189 170 187 170 174 99 216 82 88 226	335 845 703 784 743 680 748 668 696 466 871 346 435 912	0.5914944 1.611918 1.3152719 1.4222491 1.3960489 1.3380962 1.3868081 1.2508546 1.3297856 0.8303602 1.6413838 0.5977986 0.7196789 1.6553533	5.2961E-12 8.74563E-12 5.77705E-12 9.36323E-12 9.06948E-12 7.66697E-12 9.85327E-12 9.85327E-12 9.87818E-12 9.96849E-12 9.50177E-12 6.94657E-12 9.61912E-12	76 199 201 205 190 183 188 181 193 95 203 105 89 173	321 769 798 835 739 712 725 705 745 427 803 434 427 682	0.517002 1.354225 1.380495 1.392768 1.252762 1.206049 1.315373 1.209741 1.286028 0.706558 0.706558 0.714496 1.256372	4.8677E-12 8.9757E-12 7.7656E-12 9.2847E-12 7.1853E-12 9.4263E-12 8.6458E-12 8.6347E-12 8.9528E-12 9.2862E-12 9.4032E-12 6.4497E-12 9.9755E-12	137 158 126 195 193 239 173 213 200 191 135 137 128 213	1523 1592 1436 2647 2276 3115 2068 3503 3056 2361 1643 1541 1678 2808	1.972852 2.116809 1.784808 3.322391 2.977787 4.236914 2.689648 4.159242 3.720686 3.051151 2.01967 2.044481 2.103194 3.397369	7.9112E-12 7.88159E-12 5.10775E-12 4.90602E-12 4.90602E-12 9.78698E-12 7.12687E-12 9.01505E-12 4.45064E-12 8.60599E-12 8.60599E-12 8.16208E-12 7.41462E-12	38 651 672 2000 680 2000 667 705 667 171 651 189 39 651	340 5325 5498 16119 5560 16117 5460 5773 5460 1426 5336 1570 349 5336	0.437734 6.822158 7.149216 20.94318 7.144622 20.90791 7.145277 7.384159 7.025734 1.831488 6.839253 2.011022 0.436007 7.020791	9.82417E-12 8.48577E-12 8.71648E-12 9.28713E-12 4.47612E-12	41 103 130 102 108 130 143 132 141 39 125 41 30 125	412 973 1215 961 1020 1216 1362 1236 1343 393 1178 413 302 1178	0.497639 1.2 1.499284 1.203014 1.232727 1.601046 1.691828 1.610706 1.68278 0.473664 1.459519 0.520061 0.364805 1.456469	4.13487E-12 8.97092E-12 6.52554E-12 6.52554E-12 6.74785E-12 5.80222E-12 9.08238E-12 8.55344E-12 8.55344E-12 8.55529E-12 7.35795E-12 3.94714E-12 8.55042E-12

^{*}Corresponding Author mshahrani@kfupm.edu.sa

Table 2: Comparison of the number of iterations, function evaluations and execution time of all algorithms in ExponetialSineCosine

										F	xpon	etialS	ineCosine									
To					ISTTDFPN	M			STTDFPN	M			MOPCO	ì			CGDFPN	Л			AHDFPN	M
1000 1000	DIM	INP	NI	NF	CPU	NORM	NI	NF	CPU	NORM	NI	NF	CPU	NORM	NI	NF	CPU	NORM	NI	NF	CPU	NORM
100 100		x_0^1 x_0^2	_	-								_		-				-	_			-
1000 1000		x_0^3																				
100		x_0^4 x_0^5																				
1000 1000		x_{Ω}^{6}																				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1000																					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		x_0^8																				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		x ₀ 10																				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		x_0^{12}																				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		x_0^{13}																				
1000 X				278																		
1000 X		x_0^1 x_0^2	_	1 115								_			_				_	_		-
10000 X		x_0^3										88				85						
10000 X		x_0^4																				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		x_0°		115											14							
10000 X ₀ 35 107		x_{0}^{6}																				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10000	x'_{Q}																				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		x_{0}^{o}																				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		x ₀																				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		x ₀																				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		×12																				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		r13																				
100000 18 0.3251134 4.98538E-12 29 89 0.229663 6.7408E-12 45 90 0.23084 7.72383E-12 14 85 0.15432 2.73845E-12 52 313 0.655662 8.14513E-12 7.23845E-13 7.23		x_0^{14}																				
100000 18 0.3251134 4.98538E-12 29 89 0.229663 6.7408E-12 45 90 0.23084 7.72383E-12 14 85 0.15432 2.73845E-12 52 313 0.655662 8.14513E-12 7.23845E-13 7.23		x_0^1		•			-				-	_							_	_		-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		x_{Q}^{2}																				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		x_0^3																				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		x_{0}^{2}																				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		x ₀																				
x_0^8 35 107 0.3062105 5.61733E-12 25 78 0.198977 6.03863E-12 46 92 0.292384 6.95145E-12 17 99 0.227656 5.96842E-12 52 314 0.63941 7.65362E-12 x_0^8 40 121 0.3222726 5.8982E-12 31 95 0.241455 4.52898E-12 46 92 0.277173 8.49622E-12 15 93 0.19262 3.86192E-12 52 314 0.589598 7.65362E-12 x_0^{10} 70 247 0.6782202 6.64307E-12 64 212 0.495407 8.54496E-12 39 78 0.229114 7.08502E-12 60 370 0.675337 8.17058E-12 68 476 0.889066 9.11549E-12 91 87 314 0.851054 9.0627619 7.3689812 7.7288		x ₀																				
x_0^6 40 121 0.3222726 5.8982E-12 31 95 0.241495 4.52898E-12 46 92 0.27/173 8.4962E-12 15 93 0.19262 3.86192E-12 52 314 0.589598 7.65362E-12 x_0^{10} 74 247 0.6782202 6.64307E-12 64 212 0.495407 8.54496E-12 39 78 0.229114 7.08502E-12 60 370 0.675337 8.17058E-12 68 476 0.889066 9.11549E-12 x_0^{10} 7.7271E 12 80 243 0.6455E 12 68 27 0.067340 8.1655E 12 68 27 0.067340 8.1655	100000	×8																				
x_0^{10} 74 247 0.6782202 6.64307E-12 64 212 0.495407 8.54496E-12 39 78 0.229114 7.08502E-12 60 370 0.675337 8.17058E-12 68 476 0.889066 9.11549E-12		28																				
x_0^{11} 87 291 0.8510842 8.77271E-12 80 263 0.694551 9.70392E-12 46 92 0.274915 7.36989E-12 72 444 0.872557 8.96535E-12 68 479 0.967049 9.61665E-12 x_0^{12} 27 82 0.2486824 6.03863E-12 19 59 0.15426 8.77708E-12 31 62 0.187253 7.37275E-12 10 61 0.108134 2.87888E-12 54 205 0.396669 8.426E-12 x_0^{13} 3 68 227 0.5663099 8.76408E-12 59 194 0.422231 7.49301E-12 38 76 0.226405 5.12202E-12 56 345 0.594638 9.72235E-12 57 398 0.629989 8.9426E-13 x_0^{13} 8 72 10.7988753 8.81471E-12 81 266 0.721837 8.01129E-12 46 92 0.274111 7.37053E-12 72 444 0.82085 8.17398E-12 69 486 1.008487 8.985652E-13 x_0^{13} 8 72 10.7988753 8.81471E-12 81 266 0.721837 8.01129E-12 46 92 0.274111 7.37053E-12 72 444 0.82085 8.17398E-12 69 486 1.008487 8.985652E-13 x_0^{13} 8 72 10.7988753 8.98321E-12 81 266 0.721837 8.01129E-12 86 92 0.274111 7.37053E-12 72 444 0.82085 8.17398E-12 69 486 1.008487 8.985652E-13 x_0^{13} 8 72 10.7988753 8.98321E-12 81 266 0.721837 8.01129E-12 86 92 0.274111 7.37053E-12 72 444 0.82085 8.17398E-12 69 486 1.008487 8.985652E-13 x_0^{13} 8 73 10.798875 8.98321E-12 86 9.798875 8.98321E-12		v10																				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		x11																				
x_{0}^{13} 68 227 0.5663099 8.76408E-12 59 194 0.422231 7.49301E-12 38 76 0.226405 5.12202E-12 56 345 0.594638 9.72235E-12 57 398 0.629999 8.92413E-13 x_{0}^{14} 87 291 0.7988753 8.81471E-12 81 266 0.721837 8.01129E-12 46 92 0.274111 7.37053E-12 72 444 0.82085 8.17398E-12 69 486 1.008487 8.85652E-12		x12																				
x ₁ ¹⁴ 87 291 0.7988753 8.81471E-12 81 266 0.721837 8.01129E-12 46 92 0.274111 7.37053E-12 72 444 0.82085 8.17398E-12 69 486 1.008487 8.85652E-12		x_0^{13}																				
		x_0^{14}																				

Table 3: Comparison of the number of iterations, function evaluations and execution time of all algorithms in Modified-NonsmoothSine

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	PM
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	NORM
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
X-0	
$ \begin{array}{c} x_0^{\frac{1}{9}} & 15 & 45 & 0.0007091 & 32721E-12 & 12 & 36 & 0.000465 & 3.84787E-12 & 132 & 264 & 0.004238 & 8.4365E-12 & 11 & 45 & 0.000454 & 6.19662E-13 & 55 & 221 & 0.00218888888888888-12 & 11 & 45 & 0.000454 & 1.44822E-12 & 57 & 229 & 0.00228888888-12 & 16 & 47 & 0.0009768 & 6.1211E-12 & 13 & 39 & 0.000495 & 2.80165E-12 & 140 & 280 & 0.012389 & 8.66649E-12 & 10 & 40 & 0.000398 & 3.61265E-12 & 59 & 237 & 0.0024888888-12 & 16 & 47 & 0.0009768 & 6.1211E-12 & 13 & 39 & 0.000495 & 2.80165E-12 & 19 & 278 & 0.004398 & 8.66649E-12 & 10 & 40 & 0.000398 & 3.61265E-12 & 59 & 237 & 0.00278 & 3.00151 & 3.001888$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c} x_0^8 \\ 16 \\ x_0^8 \\ 15 \\ 44 \\ 0.00090768 \\ 0.0009005 \\ 0.009005 \\ 0.009005 \\ 0.009005 \\ 0.009005 \\ 0.009005 \\ 0.009005 \\ 0.009005 \\ 0.009005 \\ 0.009005 \\ 0.009005 \\ 0.009005 \\ 0.00000000 \\ 0.009005 \\ 0.009005 \\ 0.009005 \\ 0.009005 \\ 0.00000000 \\ 0.009005 \\ 0.00000000 \\ 0.0000000000 \\ 0.00000000$	
$ \begin{array}{c} x_0^3 & 16 & 47 \\ x_0^3 & 15 & 44 & 0.00090768 & 6.1211E-12 & 13 & 39 & 0.000495 & 2.80165E-12 & 140 & 280 & 0.012389 & 36.6649E-12 & 10 & 40 & 0.000398 & 36.1265E-12 & 59 & 237 & 0.01278 \\ x_0^{10} & 54 & 160 & 0.0033614 & 9.0242E-12 & 64 & 191 & 0.002502 & 7.22603E-12 & 139 & 278 & 0.004395 & 9.60664E-12 & 60 & 263 & 0.002524 & 5.43798E-12 & 56 & 289 & 0.00262 \\ x_0^{11} & 58 & 174 & 0.0025579 & 8.6292E-12 & 66 & 199 & 0.002653 & 8.04987E-12 & 136 & 272 & 0.0049 & 9.80226E-12 & 64 & 281 & 0.009833 & 5.5588E-12 & 60 & 311 & 0.00288 \\ x_0^{13} & 48 & 143 & 0.0021712 & 5.7127E-12 & 55 & 165 & 0.002186 & 6.94564E-12 & 139 & 278 & 0.004678 & 9.71097E-12 & 11 & 45 & 0.000586 & 5.34875E-12 & 56 & 289 & 0.0042 \\ x_0^{13} & 48 & 143 & 0.0021712 & 5.7127E-12 & 55 & 165 & 0.002186 & 6.94564E-12 & 139 & 278 & 0.012794 & 9.72788E-12 & 56 & 244 & 0.00273 & 2.81979E-12 & 55 & 282 & 0.0042 \\ x_0^{14} & 58 & 174 & 0.0031379 & 6.9586E-12 & 66 & 199 & 0.003156 & 8.05033E-12 & 136 & 272 & 0.00424 & 9.79869E-12 & 59 & 260 & 0.002602 & 7.8906E-12 & 55 & 282 & 0.0042 \\ x_0^{14} & 16 & 47 & 0.0065552 & 6.9889E-12 & 13 & 39 & 0.004522 & 1.47999E-12 & 145 & 290 & 0.042612 & 8.86513E-12 & 11 & 45 & 0.000507 & 7.84928E-12 & 58 & 233 & 0.0227 \\ x_0^{13} & 16 & 47 & 0.0065552 & 6.9889E-12 & 13 & 39 & 0.005421 & 2.4869E-12 & 142 & 284 & 0.043324 & 9.34673E-12 & 11 & 45 & 0.004501 & 7.84928E-12 & 58 & 233 & 0.0227 \\ x_0^{13} & 15 & 45 & 0.00608815 & 6.2117E-12 & 13 & 39 & 0.006527 & 3.83818E-13 & 137 & 274 & 0.040156 & 9.43535E-12 & 11 & 45 & 0.004501 & 7.84928E-12 & 57 & 229 & 0.0242 \\ x_0^{13} & 15 & 45 & 0.0060312 & 9.9390E-12 & 13 & 39 & 0.004621 & 1.63203E-12 & 142 & 284 & 0.04451 & 9.4335E-12 & 11 & 45 & 0.004534 & 1.95954E-12 & 57 & 229 & 0.0242 \\ x_0^{13} & 15 & 45 & 0.0060312 & 9.9390E-12 & 13 & 39 & 0.004621 & 8.8598E-12 & 142 & 284 & 0.04471 & 9.15379E-12 & 11 & 45 & 0.004534 & 1.95954E-12 & 57 & 229 & 0.0242 \\ x_0^{13} & 15 & 45 & 0.0060312 & 9.9390E-12 & 13 & 39 & 0.004621 & 8.8598E-12 & 142 & 284 & 0.04471 & 9.15379E-1$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c} x_0^7 \\ 16 \\ 47 \\ 0.0072233 \\ 516 \\ 47 \\ 0.006272 \\ 3 \\ 515 \\ 45 \\ 0.0066312 \\ 0.006576 \\ 0.006321 \\ 0.006272 \\ 0$	9 3.75265E-12
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
x_0^3 16 48 0.0087501 4.3576E-12 13 39 0.004422 8.85958E-12 145 290 0.044462 9.72E-12 11 44 0.004148 6.38378E-13 61 245 0.02536 x_0^3 15 45 0.006237 3.919IE-12 12 36 0.007337 6.05627E-12 14 288 0.042386 9.72E-12 11 45 0.006842 6.32827E-12 61 245 0.02536 x_0^{10} 49 146 0.0215192 7.5945E-12 58 174 0.023544 6.58468E-12 145 290 0.053541 8.85985E-12 64 279 0.025776 6.33963E-12 59 304 0.0288 x_0^{11} 59 177 0.024943 8.8053E-12 69 208 0.028939 7.3423EE-12 142 284 0.045597 8.93433E-12 65 279 0.027755 3.04317E-12 65 334 0.0313 x_0^{12} 16 47 0.0063576 6.9889E-12 13 39 0.004697 4.17999E-12 145 290 0.043595 8.86513E-12 12 49 0.004776 9.49241E-13 59 237 0.0224 x_0^{13} 47 140 0.0206946 6.6147E-12 51 153 0.021162 8.74076E-12 145 290 0.04584 8.8644E-12 58 255 0.025679 2.52358E-12 52 265 0.0249 x_0^{14} 59 177 0.024815 8.8081E-12 69 208 0.029564 7.34237E-12 142 284 0.041582 8.93406E-12 68 301 0.029704 7.85136E-12 63 324 0.0359 x_0^{14} 6 48 0.08835893 5.6173E-12 14 42 0.076101 8.95263E-13 150 300 0.573819 y_0^{23} 16 48 0.089306 3.7566E-12 13 39 0.06724 7.86427E-12 148 296 0.563203 8.5137E-12 12 49 0.060955 1.0264E-12 61 245 0.3592 x_0^{23} 16 47 0.0930652 5.1434E-12 13 39 0.06724 2.35226E-12 142 284 0.518637 8.77708E-12 11 45 0.060955 6.1264E-12 59 237 0.2940	7.92699E-12
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
x_0^{11} 59 177 0.024943 8.8053E-12 69 208 0.028393 7.34232E-12 142 284 0.045597 8.93433E-12 65 279 0.027755 3.04317E-12 65 334 0.0313 x_0^{12} 16 47 0.0063576 6.9889E-12 13 39 0.004697 4.17999E-12 145 290 0.043595 8.86513E-12 12 49 0.004776 9.49241E-13 59 237 0.02248 x_0^{13} 47 140 0.0206946 6.6147E-12 51 153 0.021162 8.74076E-12 142 290 0.044548 8.6644E-12 58 255 0.025679 2.5238SE-12 52 265 0.0249 x_0^{14} 59 177 0.024815 8.8081E-12 69 208 0.029564 7.34237E-12 142 284 0.041582 8.93406E-12 68 201 0.029704 7.85136E-12 63 234 0.0305 x_0^{11} 16 48 0.0835893 5.6173E-12 14 42 0.076101 8.95263E-13 150 300 0.573819 9.95321E-12 12 49 0.063984 3.00176E-12 61 245 0.3359 x_0^{11} 16 48 0.0899206 3.7566E-12 13 39 0.06724 7.86427E-12 148 296 0.563203 8.51377E-12 12 49 0.070337 1.40433E-12 61 245 0.3359 x_0^{11} 16 47 0.0930652 5.1434E-12 13 39 0.076442 2.35226E-12 148 296 0.563203 8.57137E-12 11 45 0.060955 6.1264E-12 59 237 0.2940	
x_0^{14} 59 177 0.024815 8.8081E-12 69 208 0.029564 7.34237E-12 142 284 0.041582 8.93406E-12 68 301 0.029704 7.85136E-12 63 324 0.0305 x_0^{1} 16 48 0.0835893 5.6173E-12 14 42 0.076101 8.95263E-13 150 300 0.573819 9.95321E-12 12 49 0.063984 3.00176E-12 61 245 0.3399 x_0^{2} 16 48 0.0899206 3.7566E-12 13 39 0.0672 7.86427E-12 148 296 0.563203 8.51377E-12 12 49 0.070337 1.40433E-12 61 245 0.3592 x_0^{2} 16 47 0.0930652 5.1434E-12 13 39 0.076442 2.35226E-12 142 284 0.518637 8.77708E-12 11 45 0.060955 6.1264E-12 59 237 0.2940	
x_0^{14} 59 177 0.024815 8.8081E-12 69 208 0.029564 7.34237E-12 142 284 0.041582 8.93406E-12 68 301 0.029704 7.85136E-12 63 324 0.0305 x_0^{1} 16 48 0.089305 5.6173E-12 14 42 0.076101 8.95263E-13 150 300 0.573819 9.95321E-12 12 49 0.063984 3.00176E-12 61 245 0.3399 x_0^{2} 16 48 0.0899206 3.7566E-12 13 39 0.0672 7.86427E-12 148 296 0.563203 8.51377E-12 12 49 0.070337 1.40433E-12 61 245 0.3592 x_0^{2} 16 47 0.0930652 5.1434E-12 13 39 0.076442 2.35226E-12 142 284 0.518637 8.77708E-12 11 45 0.060955 6.1264E-12 59 237 0.2940	
x_0^{14} 59 177 0.024815 8.8081E-12 69 208 0.029564 7.34237E-12 142 284 0.041582 8.93406E-12 68 301 0.029704 7.85136E-12 63 324 0.0305 x_0^{1} 16 48 0.0835893 5.6173E-12 14 42 0.076101 8.95263E-13 150 300 0.573819 9.95321E-12 12 49 0.063984 3.00176E-12 61 245 0.3399 x_0^{2} 16 48 0.0899206 3.7566E-12 13 39 0.0672 7.86427E-12 148 296 0.563203 8.51377E-12 12 49 0.070337 1.40433E-12 61 245 0.3592 x_0^{2} 16 47 0.0930652 5.1434E-12 13 39 0.076442 2.35226E-12 142 284 0.518637 8.77708E-12 11 45 0.060955 6.1264E-12 59 237 0.2940	6.28386E-12
x_0^1 16 48 0.0835893 5.6173E-12 14 42 0.076101 8.95263E-13 150 300 0.573819 9.95321E-12 12 49 0.063984 3.00176E-12 61 245 0.3339 x_0^2 16 48 0.0899206 3.7566E-12 13 39 0.0672 7.86427E-12 148 296 0.563203 8.51377E-12 12 49 0.070337 1.40433E-12 61 245 0.3592 x_0^3 16 47 0.0930652 5.1434E-12 13 39 0.076442 2.35226E-12 142 284 0.518637 8.77708E-12 11 45 0.060955 6.1264E-12 59 237 0.2940	6 8.56123E-12
x_0^2 16 48 0.0899206 3.7566E-12 13 39 0.0672 7.86427E-12 148 296 0.563203 8.51377E-12 12 49 0.070337 1.40433E-12 61 245 0.3592 x_0^3 16 47 0.0930652 5.1434E-12 13 39 0.076442 2.35226E-12 142 284 0.518637 8.77708E-12 11 45 0.060955 6.1264E-12 59 237 0.2940	1 8.33633E-12
x_0^3 16 47 0.0930652 5.1434E-12 13 39 0.076442 2.35226E-12 142 284 0.518637 8.77708E-12 11 45 0.060955 6.1264E-12 59 237 0.2940	
x_0^2 16 47 0.0930652 5.1434E-12 13 39 0.076442 2.35226E-12 142 284 0.518637 8.77708E-12 11 45 0.060955 6.1264E-12 59 237 0.2940	
x_0^4 15 45 0.1023716 3.2475E-12 12 36 0.051348 4.10768E-12 132 264 0.466658 8.47866E-12 11 45 0.051678 7.02167E-13 55 221 0.2737	
	7.30253E-12
x_0^5 16 47 0.0925345 5.4945E-12 13 39 0.057406 2.65068E-12 143 286 0.52992 8.60154E-12 11 45 0.057372 6.19662E-12 60 241 0.2680	7.3903E-12
x_0^6 16 47 0.0856057 8.6191E-12 13 39 0.052317 5.16093E-12 148 296 0.544735 8.32068E-12 12 49 0.052891 8.07492E-13 62 249 0.3173	4 8.97018E-12
100000 x_0^7 15 45 0.0958666 7.7765E-12 13 39 0.052824 1.28145E-12 150 300 0.574259 8.86485E-12 12 49 0.064863 1.10591E-12 63 253 0.3255	
x ₀ ⁸ 16 48 0.0901032 8.584E-12 14 42 0.064583 1.93096E-12 151 302 0.546964 8.86485E-12 11 44 0.067263 2.01873E-12 63 253 0.3359	
x_0^9 15 45 0.0868062 7.7765E-12 13 39 0.064084 1.28145E-12 150 300 0.540244 8.86485E-12 12 49 0.065994 1.10591E-12 63 253 0.3320	
x_0^{10} 48 143 0.2529833 7.9036E-12 53 159 0.280816 9.48736E-12 150 300 0.575352 9.94308E-12 58 249 0.286063 8.01934E-12 68 346 0.3870	
x_0^{11} 62 186 0.4039515 7.7176E-12 71 214 0.338685 9.98439E-12 148 296 0.577097 8.14528E-12 68 295 0.36291 7.80284E-12 72 368 0.4257	5 4.76195E-12
x_0^{12} 16 48 0.0908582 5.6173E-12 14 42 0.072277 8.95263E-13 150 300 0.521524 9.95321E-12 12 49 0.067651 3.00176E-12 61 245 0.3043	3 7.67117E-12
$x_0^{\bar{1}\bar{3}}$ 43 128 0.2170258 9.6192E-12 46 138 0.237127 9.70344E-12 150 300 0.532588 9.95313E-12 62 274 0.32701 6.88801E-12 55 281 0.3111 x_0^{14} 62 186 0.3343659 7.7175E-12 71 214 0.345402 9.98449E-12 148 296 0.537041 8.14525E-12 69 301 0.365591 4.61915E-12 63 326 0.3909	4 6.57513E-12
x_0^{14} 62 186 0.3343659 7.7175E-12 71 214 0.345402 9.98449E-12 148 296 0.537041 8.14525E-12 69 301 0.365591 4.61915E-12 63 326 0.3909	4 5.0452E-12

Table 4: Comparison of the number of iterations, function evaluations and execution time of all algorithms in ModifiedTridiagonal

										Modif	iedTrid	iagonal									
				ISTTDFP!	M			STTDFPM				MOPCG			(CGDFPM			A	AHDFPM	
DIM	INP	NI	NF	CPU	NORM	NI	NF	CPU	NORM	NI	NF	CPU	NORM	NI	NF	CPU	NORM	NI	NF	CPU	NORM
	x_0^1	3	8	0.2628378	85.99124179	2	7	0.028655	85.99124	2000	4001	0.191719	85.99414	2000	4001	0.179005	85.99414	2000	4001	0.175256	85.99414
	x_0^2	4	30	0.0008258	85.95961902	2	22	0.000494	85.99124	2000	4001	0.162132	85.99414	2000	4001	0.151223	85.99414	2000	4001	0.146286	85.99414
	x_0^3	4	33	0.0008518	85.95961902	2	22	0.000461	85.99124	2000	4001	0.162615	85.99414	2000	4001	0.154251	85.99414	2000	4001	0.14623	85.99414
	x_0^4	4	33	0.0007656	85.95961902	2	22	0.00047	85.99124	2000	4001	0.160786	85.99414	2000	4001	0.146883	85.99414	2000	4001	0.146983	85.99414
	x_0^5	4	33	0.0007906	85.95961902	2	22	0.000463	85.99124	2000	4001	0.162346	85.99414	2000	4001	0.153301	85.99414	2000	4001	0.148579	85.99414
	x_0^6	4	34	0.0008211	85.95961902	2	22	0.000706	85.99124	2000	4001	0.163347	85.99414	2000	4001	0.151897	85.99414	2000	4001	0.152169	85.99414
1000	x_0^7	4	34	0.0007953	85.95961902	2	22	0.007576	85.99124	2000	4001	0.163968	85.99414	2000	4001	0.152028	85.99414	2000	4001	0.153181	85.99414
1000	x_0^8	4	34	0.0007798	85.95961902	2	22	0.000512	85.99124	2000	4001	0.172441	85.99414	2000	4001	0.148032	85.99414	2000	4001	0.146643	85.99414
	x_0^9	4	34	0.0007867	85.95961902	2	22	0.000509	85.99124	2000	4001	0.192889	85.99414	2000	4001	0.148441	85.99414	2000	4001	0.145692	85.99414
	x_0^{10}	6	12	0.0006087	85.99630758	3	7	0.000402	85.99588	2000	4001	0.160813	85.99705	2000	4001	0.156855	85.99705	2000	4001	0.147913	85.99705
	x_0^{11}	6	12	0.0005362	85.99016099	4	9	0.000391	85.99173	2000	4001	0.158912	85.99705	2000	4001	0.155457	85.99705	2000	4001	0.146859	85.99705
	x_0^{12}	3	6	0.0002708	85.99124179	2	5	0.000169	85.99124	2000	4001	0.159439	85.99414	2000	4001	0.150004	85.99414	2000	4001	0.150269	85.99414
	x_0^{13}	6	12	0.0005077	85.99308704	3	7	0.000252	85.99274	2000	4001	0.159936	85.99705	2000	4001	0.155741	85.99705	2000	4001	0.147987	85.99705
	$x_0^{12} \\ x_0^{13} \\ x_0^{14}$	6	12	0.000559	85.99016175	4	9	0.000389	85.99173	2000	4001	0.16101	85.99705	2000	4001	0.151982	85.99705	2000	4001	0.150328	85.99705
	x_0^1	3	6	0.0022385	271.8381828	2	5	0.003738	271.8382	2000	4001	1.431557	271.8391	2000	4001	1.337901	271.8391	2000	4001	1.310182	271.8391
	$x_0^{\frac{3}{2}}$	4	24	0.006008	271.8281829	2	20	0.004135	271.8382	2000	4001	1.414154	271.8391	2000	4001	1.331387	271.8391	2000	4001	1.31096	271.8391
	x_0^3	4	26	0.0063286	271.8281829	2	22	0.004598	271.8382	2000	4001	1.443506	271.8391	2000	4001	1.339813	271.8391	2000	4001	1.300116	271.8391
	x_0^4	4	26	0.0061802	271.8281829	2	22	0.004532	271.8382	2000	4001	1.487275	271.8391	2000	4001	1.320174	271.8391	2000	4001	1.30359	271.8391
	x_0^5	4	27	0.006252	271.8281829	2	22	0.004538	271.8382	2000	4001	1.434849	271.8391	2000	4001	1.331131	271.8391	2000	4001	1.304608	271.8391
	x_0^6	4	27	0.0089064	271.8281829	2	22	0.004572	271.8382	2000	4001	1.459571	271.8391	2000	4001	1.33991	271.8391	2000	4001	1.294982	271.8391
10000	x_0^7	4	28	0.0067243	271.8281829	2	22	0.004382	271.8382	2000	4001	1.423102	271.8391	2000	4001	1.326911	271.8391	2000	4001	1.294463	271.8391
10000	x_0^8	4	28	0.0064616	271.8281829	2	22	0.007187	271.8382	2000	4001	1.415867	271.8391	2000	4001	1.327646	271.8391	2000	4001	1.342441	271.8391
	x_0^9	4	28	0.0063786	271.8281829	2	22	0.00463	271.8382	2000	4001	1.400542	271.8391	2000	4001	1.330458	271.8391	2000	4001	1.321446	271.8391
	x_0^{10}	6	12	0.020417	271.8397851	3	7	0.018705	271.8396	2000	4001	1.380973	271.84	2000	4001	1.468442	271.84	2000	4001	1.298259	271.84
	x_0^{11} x_1^{12}	5	10	0.0081547	271.8379981	4	9	0.008256	271.8382	2000	4001	1.386331	271.84	2000	4001	1.404948	271.84	2000	4001	1.317584	271.84
	x_0^{12}	2	4	0.0018355	271.8381828	2	5	0.001689	271.8382	2000	4001	1.399305	271.8391	2000	4001	1.336898	271.8391	2000	4001	1.293541	271.8391
	x_0^{13}	6	12	0.0046531	271.8387727	3	7	0.002616	271.8387	2000	4001	1.367346	271.84	2000	4001	1.323041	271.84	2000	4001	1.303643	271.84
	x_0^{13} x_0^{14}	5	10	0.0085711	271.8379981	4	9	0.008363	271.8382	2000	4001	1.428773	271.84	2000	4001	1.431437	271.84	2000	4001	1.302043	271.84
	x_0^1	3	6	0.0232622	859.5993523	2	5	0.034624	859.5994	2000	4001	17.04426	859.5996	2000	6000	20.50294	859.5996	2000	4001	15.5493	859.5996
	x_0^2	4	20	0.0635916	859.5961902	2	17	0.045022	859.5994	2000	4001	17.12333	859.5996	2000	6000	20.10126	859.5996	2000	4001	15.62685	859.5996
	x_0^3	4	22	0.0693673	859.5961902	2	19	0.049183	859.5994	2000	4001	18.11489	859.5996	2000	6000	20.01319	859.5996	2000	4001	15.3791	859.5996
	x_0^4	4	22	0.0629879	859.5961902	2	19	0.044557	859.5994	2000	4001	17.48771	859.5996	2000	6001	19.62867	859.5996	2000	4001	15.59981	859.5996
	x_0^5	4	23	0.0656531	859.5961902	2	20	0.037111	859.5994	2000	4001	17.1192	859.5996	2000	6001	19.74258	859.5996	2000	4001	15.2473	859.5996
	x_0^6	4	23	0.0710454	859.5961902	2	20	0.038643	859.5994	2000	4001	17.16234	859.5996	2000	6001	19.63747	859.5996	2000	4001	15.33378	859.5996
100000	x_0^7	4	23	0.0589353	859.5961902	2	20	0.038446	859.5994	2000	4001	17.32825	859.5996	2000	6001	19.86019	859.5996	2000	4001	15.38637	859.5996
100000	x_0^8	4	24	0.0659006	859.5961902	2	21	0.048591	859.5994	2000	4001	17.61502	859.5996	2000	6001	19.82709	859.5996	2000	4001	15.28186	859.5996
	x_0^9	4	23	0.081446	859.5961902	2	20	0.033323	859.5994	2000	4001	17.3032	859.5996	2000	6001	20.09854	859.5996	2000	4001	15.5886	859.5996
	x_0^{10}	5	10	1.4988516	859.599859	3	7	1.599882	859.5998	2000	4001	18.43248	859.5999	2000	6000	32.68497	859.5999	2000	4001	15.40371	859.5999
	x_0^{11}	6	12	0.9633102	859.5993575	4	9	0.620164	859.5994	2000	4001	18.07283	859.5999	2000	6001	30.45305	859.5999	2000	4001	15.53294	859.5999
	x_{0}^{12}	1	2	0.0092521	859.5993523	1	3	0.015711	859.5994	2000	4001	17.94464	859.5996	2000	6000	20.02029	859.5996	2000	4001	15.53272	859.5996
	x_0^{11} x_0^{12} x_0^{13} 14	5	10	0.0461032	859.599539	3	7	0.030974	859.5995	2000	4001	18.06122	859.5999	2000	6000	19.9436	859.5999	2000	4001	15.52753	859.5999
	x_0^{14}	6	12	0.9840253	859.5993575	4	9	0.611344	859.5994	2000	4001	18.6032	859.5999	2000	6001	30.37647	859.5999	2000	4001	15.6199	859.5999

Table 5: Comparison of the number of iterations, function evaluations and execution time of all algorithms in Non-moothLogarithmic

										Jonmo	othLo	garithmic									
				ISTTDFPN	M			STTDFPN	M			MOPCG				CGDFPN	Л			AHDFPN	Л
DIM	INP	NI	NF	CPU	NORM	NI	NF	CPU	NORM	NI	NF	CPU	NORM	NI	NF	CPU	NORM	NI	NF	CPU	NORM
	x_0^1	1	1	0.1482352	0	1	2	0.029647	0	1	1	0.020256	0	1	1	0.017709	0	1	1	0.020931	0
	$x_0^2 \\ x_0^3$	2	4	0.0000867	0	1	3	5.43E-05	0	260	520	0.016635	9.1962E-12	2	5	0.000074	0	1	3	4.87E-05	0
	x_0^3	2	4	0.0000822	0	1	3	4.72E-05	0	267	534	0.009587	9.78543E-12	2	5	7.18E-05	0	1	3	4.48E-05	0
	x_0^4	2	4	0.0000857	0	1	3	5.27E-05	0	270	540	0.016606	9.39261E-12	2	5	7.24E-05	0	1	3	4.72E-05	0
	x_0^5	2	4	0.0000999	0	1	3	5.29E-05	0	272	544	0.009839	9.60305E-12	2	5	7.41E-05	0	1	3	4.78E-05	0
	x_0^6	2	4	0.0000877	0	1	3	5.13E-05	0	276	552	0.009992	9.28739E-12	2	5	0.000074	0	1	3	4.76E-05	0
1000	x_0^7	2	4	0.0000874	0	1	3	5.11E-05	0	279	558	0.016871	9.3365E-12	2	5	8.46E-05	0	1	3	5.83E-05	0
1000	$x_0^8 \\ x_0^9$	2	4	0.0000874	0	1	3	5.05E-05	0	280	560	0.010016	9.69424E-12	2	5	7.75E-05	0	1	3	4.71E-05	0
	x_0^9	2	4	0.0000876	0	1	3	0.00005	0	279	558	0.014257	9.31545E-12	2	5	7.82E-05	0	1	3	0.000053	0
	x_0^{10}	3	6	0.0001161	0	2	5	9.28E-05	0	247	494	0.008921	9.78739E-12	14	29	0.00043	0	2	5	6.96E-05	0
	x_0^{11}	14	28	0.0005512	0	2	5	0.000085	0	273	546	0.013354	9.00527E-12	17	35	0.000561	0	3	7	0.000107	0
	x_0^{12}	2	4	0.0000797	0	1	3	4.46E-05	0	208	416	0.007644	9.8205E-12	2	5	6.76E-05	0	1	3	4.03E-05	0
	x_0^{13}	5	10	0.0001913	6.65333E-16	2	5	0.000082	5.43264E-16	233	466	0.0086	9.33893E-12	6	13	0.000181	3.13782E-16	2	5	6.93E-05	1.48536E-19
	x_0^{12} x_0^{13} x_0^{14}	20	40	0.0007987	1.72315E-21	2	5	0.000087	0	273	546	0.013978	9.02227E-12	17	35	0.000535	0	2	5	7.61E-05	0
	$x_0^1 \\ x_0^2$	1	1	0.000254	0	1	2	0.000242	0	1	1	7.07E-05	0	1	1	0.000064	0	1	1	0.000078	0
	x_0^2	2	4	0.0006713	0	1	3	0.000437	0	270	540	0.094563	9.88E-12	2	5	0.000605	0	1	3	0.00038	0
	x_0^3	2	4	0.0007036	0	1	3	0.000435	0	278	556	0.096033	9.45815E-12	2	5	0.000608	0	1	3	0.000408	0
	x_0^4	2	4	0.000839	0	1	3	0.000438	0	281	562	0.09767	9.08072E-12	2	5	0.000709	0	1	3	0.000435	0
	x_0^5	2	4	0.0007343	0	1	3	0.000446	0	283	566	0.097102	9.28054E-12	2	5	0.000666	0	1	3	0.00053	0
	x_0^6	2	4	0.0007371	0	1	3	0.000436	0	286	572	0.099834	9.96881E-12	2	5	0.000653	0	1	3	0.000436	0
10000	x_0^7	2	4	0.0007151	0	1	3	0.000435	0	290	580	0.098878	9.01411E-12	2	5	0.000798	0	1	3	0.000446	0
10000	x_0^8	2	4	0.0007381	0	1	3	0.000435	0	291	582	0.100589	9.36935E-12	2	5	0.00081	0	1	3	0.000423	0
	$x_0^8 \\ x_0^9$	2	4	0.000747	0	1	3	0.000435	0	290	580	0.099076	9.01411E-12	2	5	0.000911	0	1	3	0.000448	0
	x_0^{10}	3	6	0.0011294	0	2	5	0.000737	0	247	494	0.083104	9.55425E-12	14	29	0.004528	0	2	5	0.000609	0
	x_{0}^{11}	3	6	0.0011108	0	2	5	0.000792	0	283	566	0.098835	9.67617E-12	21	43	0.006559	0	3	7	0.001004	0
		2	4	0.0006867	0	1	3	0.00041	0	197	394	0.065466	9.70238E-12	2	5	0.000626	0	1	3	0.000352	0
	x_0^{13}	5	10	0.0017746	1.5221E-15	2	5	0.000863	6.6606E-16	233	466	0.08285	9.1306E-12	6	13	0.004234	4.96462E-16	2	5	0.000647	2.89109E-20
	x_0^{13} x_0^{14}	3	6	0.0034175	0	2	5	0.00087	0	283	566	0.111239	9.67798E-12	21	43	0.006253	0	3	7	0.001181	0
-	x_0^1	1	1	0.0022965	0	1	2	0.003424	0	1	1	0.001059	0	1	1	0.001028	0	1	1	0.000732	0
	x_0^2 x_0^3	2	4	0.0084595	0	1	3	0.006076	0	281	562	1.11023	9.76002E-12	2	5	0.009127	0	1	3	0.004348	0
	x_0^3	2	4	0.0151231	0	1	3	0.005871	0	289	578	1.173077	9.33872E-12	2	5	0.009816	0	1	3	0.004156	0
		2	4	0.0091327	0	1	3	0.00666	0	291	582	1.1882	9.97067E-12	2	5	0.010259	0	1	3	0.00455	0
	$x_0^4 \\ x_0^5$	2	4	0.0089859	0	1	3	0.00656	0	294	588	1.181978	9.19829E-12	2	5	0.010237	0	1	3	0.004931	0
	x_0^6	2	4	0.0109662	0	1	3	0.005208	0	297	594	1.270673	9.90045E-12	2	5	0.012228	0	1	3	0.004764	0
100000	x_0^7	2	4	0.0110355	0	1	3	0.005414	0	300	600	1.289264	9.90045E-12	2	5	0.010737	0	1	3	0.004893	0
100000	x_0^8	2	4	0.0115037	0	1	3	0.008231	0	302	604	1.318275	9.26851E-12	2	5	0.010342	0	1	3	0.006609	0
	x_0^9	2	4	0.0104918	0	1	3	0.010363	0	300	600	1.282223	9.90045E-12	2	5	0.009159	0	1	3	0.006226	0
	x_0^{10}	3	6	0.0155093	0	2	5	0.019098	0	247	494	1.083777	9.53123E-12	14	29	0.048248	0	2	5	0.010289	0
	x_0^{11}	3	6	0.0160201	0	2	5	0.011026	0	294	588	1.282916	9.57676E-12	25	51	0.092165	0	3	7	0.013726	0
	x_0^{12}	2	4	0.0140149	0	1	3	0.006093	0	186	372	0.765498	9.76002E-12	2	5	0.006867	0	1	3	0.004212	0
	x_0^{13}	5	10	0.0256413	1.81749E-15	2	5	0.010217	1.04147E-15	233	466	1.019353	9.11003E-12	6	13	0.022399	9.67861E-16	2	5	0.006929	7.76105E-21
	$x_0^{13} \\ x_0^{14}$	3	6	0.0194406	0	2	5	0.011088	0	294	588	1.165276	9.57695E-12	25	51	0.099629	0	3	7	0.011476	0

Table 6: Comparison of the number of iterations, function evaluations and execution time of all algorithms in PolynomialI

	INP x_0^1	NII		ISTTDFPN	A.																
		NII			VI			STTDFPM	I			MOPCG				CGDFPN	4			AHDFPN	Л
	χ^1_0	141	NF	CPU	NORM	NI	NF	CPU	NORM	NI	NF	CPU	NORM	NI	NF	CPU	NORM	NI	NF	CPU	NORM
		1	1	0.6523618	0	1	2	0.028299	0	1	1	0.023851	0	1	1	0.022345	0	1	1	0.027635	0
	x_0^2	15	45	0.0315175	6.64373E-12	1	5	7.29E-05	0	80	160	0.003071	7.94192E-12	13	66	0.000836	3.08852E-12	1	6	8.94E-05	0
	x_0^3	15	46	0.001701	3.01466E-12	1	5	9.58E-05	0	82	164	0.002808	8.04228E-12	13	66	0.000922	7.00582E-12	1	6	7.38E-05	0
	x_0^4	15	46	0.0016877	3.1719E-12	1	5	7.18E-05	0	83	166	0.021606	7.15513E-12	13	66	0.000789	9.32786E-12	1	6	8.21E-05	0
	x_0^5	15	46	0.0016657	3.33293E-12	1	5	6.78E-05	0	83	166	0.002718	8.73189E-12	14	71	0.000705	1.10657E-12	1	6	7.68E-05	0
	x_0^6	15	46	0.001672	3.667E-12	1	5	6.76E-05	0	84	168	0.002754	8.43357E-12	12	60	0.00062	5.41978E-12	1	5	6.33E-05	0
	x_0^7	15	46	0.0024351	4.01806E-12	1	5	6.88E-05	0	85	170	0.004053	7.64241E-12	13	65	0.000667	1.6227E-12	1	5	6.45E-05	0
1000	x_0^8	15	46	0.0030289	4.20038E-12	1	5	6.92E-05	0	85	170	0.012694	8.55781E-12	13	65	0.000688	2.36699E-12	1	5	0.000063	0
	x_0^9	15	46	0.0027501	4.01626E-12	1	5	6.63E-05	0	85	170	0.003121	7.63341E-12	13	65	0.000631	1.61592E-12	1	5	6.37E-05	0
	x_0^{10}	22	67	0.0040337	4.72787E-12	36	109	0.001822	6.2004E-12	104	207	0.003851	8.65583E-12	65	325	0.020304	8.16996E-12	19	114	0.001187	3.65884E-13
	x_0^{11}	22	66	0.0037353	8.19828E-12	11	35	0.0006	1.5935E-12	100	199	0.003386	9.76623E-12	88	444	0.00449	9.16075E-12	45	270	0.002574	7.30539E-12
	χ_0^{12}	12	37	0.0023773	4.50571E-12	1	5	8.29E-05	0	65	130	0.011375	8.10145E-12	11	56	0.000576	1.58276E-12	1	6	6.33E-05	0
	x_0^{13}	12	37	0.0022506	3.17242E-12	1	5	6.51E-05	6.0961E-16	96	191	0.003277	9.25591E-12	24	120	0.001388	8.12121E-12	1	5	6.18E-05	5.68259E-15
	x_0^{14}	22	66	0.0040189	8.91453E-12	11	35	0.000494	1.7158E-12	100	199	0.00333	9.77002E-12	96	481	0.018638	8.33667E-12	42	252	0.022178	7.47689E-12
	x_0^1	1	1	0.0002115	0	1	2	0.000205	0	1	1	7.57E-05	0	1	1	6.15E-05	0	1	1	7.92E-05	0
	x_0^2	15	45	0.0224403	9.51812E-12	1	5	0.00044	0	83	166	0.033175	8.61429E-12	13	66	0.011818	9.76677E-12	1	6	0.000492	0
	x_0^3	15	46	0.0092925	2.9975E-12	1	5	0.0005	0	85	170	0.028278	8.72315E-12	14	71	0.007426	2.05592E-12	1	6	0.000522	0
	x_0^4	15	46	0.019046	3.15414E-12	1	5	0.000485	0	86	172	0.029997	7.76089E-12	14	71	0.011532	2.73735E-12	1	6	0.000521	0
	x_0^5	15	46	0.0068451	3.31452E-12	1	5	0.005956	0	86	172	0.036956	9.47114E-12	14	71	0.007186	3.49927E-12	1	6	0.000513	0
	x_0^6	15	46	0.0172691	3.6471E-12	1	5	0.000523	0	87	174	0.031058	9.14757E-12	13	65	0.009836	1.59048E-12	1	5	0.000464	0
10000	x_0^7	15	46	0.0066395	3.99639E-12	1	5	0.000643	0	88	176	0.036526	8.28942E-12	13	65	0.006626	5.13144E-12	1	5	0.000459	0
	x_0^8	15	46	0.0099195	4.17771E-12	1	5	0.000556	0	88	176	0.031707	9.28232E-12	13	65	0.010385	7.48508E-12	1	5	0.000465	0
	x_0^9	15	46	0.0074135	3.99621E-12	1	5	0.000587	0	88	176	0.04304	8.28844E-12	13	65	0.006576	5.12929E-12	1	5	0.000453	0
2	x_0^{10}	30	90	0.0161391	6.67132E-12	37	113	0.019003	1.0272E-12	104	207	0.048147	8.65446E-12	56	280	0.034232	6.64516E-12	19	114	0.016332	3.65048E-13
2	x_{0}^{11}	20	61	0.0112921	4.13083E-12	3	11	0.001227	2.2702E-12	95	189	0.032281	8.57347E-12	91	459	0.052664	7.01935E-12	7	42	0.003753	0
2	x_0 x_0^{12} x_0^{13} x_0^{14}	11	34	0.0057278	7.54656E-12	1	5	0.000485	0	62	124	0.022661	7.46804E-12	10	51	0.007123	5.39042E-12	1	6	0.000601	0
	x_0^{13}	12	37	0.0078815	3.17242E-12	1	5	0.000488	6.8771E-16	96	191	0.033308	9.25591E-12	24	120	0.012747	8.12121E-12	1	5	0.000467	6.38766E-15
	x_0^{14}	20	61	0.0122676	2.24244E-12	3	11	0.001215	2.0581E-12	95	189	0.032961	8.57382E-12	85	430	0.049313	8.43725E-12	7	42	0.004476	0
	x_0^1	1	1	0.0152953	0	1	2	0.002402	0	1	1	0.000743	0	1	1	0.000579	0	1	1	0.000706	0
	x_0^2	15	45	0.4712151	9.50018E-12	1	5	0.011305	0	86	172	0.459103	9.34359E-12	14	71	0.151979	2.86615E-12	1	6	0.0293	0
	x_0^3	15	46	0.2473254	2.9921E-12	1	5	0.017641	0	88	176	0.397452	9.46167E-12	14	71	0.444167	6.5014E-12	1	6	0.006502	0
	x_0^4	15	46	0.0936662	3.14855E-12	1	5	0.022797	0	89	178	0.380899	8.41793E-12	14	71	0.271882	8.65626E-12	1	6	0.008255	0
	x_0^5	15	46	0.0818547	3.30873E-12	1	5	0.013838	0	90	180	0.380661	7.19108E-12	15	76	0.100644	1.02689E-12	1	6	0.006106	0
	x_0^6	15	46	0.0803644	3.64083E-12	1	5	0.005365	0	90	180	0.374266	9.92201E-12	13	65	0.087506	5.02955E-12	1	5	0.010369	0
100000	x_0^7	15	46	0.0778008	3.98956E-12	1	5	0.006131	0	91	182	0.409662	8.99121E-12	14	70	0.089764	1.50587E-12	1	5	0.006243	0
100000	x_0^8	15	46	0.1042527	4.17056E-12	1	5	0.010647	0	92	184	0.377948	7.04772E-12	14	70	0.095798	2.19657E-12	1	5	0.007787	0
	x_0^9	15	46	0.083453	3.98955E-12	1	5	0.02721	0	91	182	0.401391	8.99111E-12	14	70	0.086913	1.5058E-12	1	5	0.005793	0
	x_0^{10}	27	83	0.1778629	6.9407E-12	38	115	0.204938	5.6451E-12	104	207	0.460681	8.65432E-12	58	290	0.36239	2.27585E-12	19	114	0.141806	3.65008E-13
	x_0^{11}	21	64	0.1252838	2.26226E-12	3	11	0.019916	2.4584E-16	91	181	0.3893	9.44375E-12	89	449	0.564995	6.03782E-12	7	42	0.053856	0
	x_0^{12}	11	33	0.0616702	8.42797E-12	1	5	0.009298	0	58	116	0.246128	9.83577E-12	10	51	0.065969	1.70451E-12	1	6	0.006355	0
	x_0^{13}	12	37	0.0732819	3.17242E-12	1	5	0.015089	3.9408E-14	96	191	0.419383	9.25591E-12	24	120	0.150898	8.12121E-12	1	5	0.007164	3.67436E-13
	x_0^{14}	21	64	0.1122553	2.07452E-12	3	11	0.023422	2.2357E-16	91	181	0.411353	9.44386E-12	88	444	0.583763	9.10381E-12	7	42	0.051836	0

Table 7: Comparison of the number of iterations, function evaluations and execution time of all algorithms in ModifiedTridiagonal

										Modif	iedTrid	iagonal									
				ISTTDFPN	M			STTDFPM				MOPCG			(CGDFPM			A	AHDFPM	
DIM	INP	NI	NF	CPU	NORM	NI	NF	CPU	NORM	NI	NF	CPU	NORM	NI	NF	CPU	NORM	NI	NF	CPU	NORM
	x_0^1	3	8	0.2628378	85.99124179	2	7	0.028655	85.99124	2000	4001	0.191719	85.99414	2000	4001	0.179005	85.99414	2000	4001	0.175256	85.99414
	x_0^2	4	30	0.0008258	85.95961902	2	22	0.000494	85.99124	2000	4001	0.162132	85.99414	2000	4001	0.151223	85.99414	2000	4001	0.146286	85.99414
	x_0^3	4	33	0.0008518	85.95961902	2	22	0.000461	85.99124	2000	4001	0.162615	85.99414	2000	4001	0.154251	85.99414	2000	4001	0.14623	85.99414
	x_0^4	4	33	0.0007656	85.95961902	2	22	0.00047	85.99124	2000	4001	0.160786	85.99414	2000	4001	0.146883	85.99414	2000	4001	0.146983	85.99414
	x_0^5	4	33	0.0007906	85.95961902	2	22	0.000463	85.99124	2000	4001	0.162346	85.99414	2000	4001	0.153301	85.99414	2000	4001	0.148579	85.99414
	x_0^6	4	34	0.0008211	85.95961902	2	22	0.000706	85.99124	2000	4001	0.163347	85.99414	2000	4001	0.151897	85.99414	2000	4001	0.152169	85.99414
1000	x_0^7	4	34	0.0007953	85.95961902	2	22	0.007576	85.99124	2000	4001	0.163968	85.99414	2000	4001	0.152028	85.99414	2000	4001	0.153181	85.99414
1000	x_0^8	4	34	0.0007798	85.95961902	2	22	0.000512	85.99124	2000	4001	0.172441	85.99414	2000	4001	0.148032	85.99414	2000	4001	0.146643	85.99414
	x ₀ ⁹ x ₁₀	4	34	0.0007867	85.95961902	2	22	0.000509	85.99124	2000	4001	0.192889	85.99414	2000	4001	0.148441	85.99414	2000	4001	0.145692	85.99414
	x_0^{10}	6	12	0.0006087	85.99630758	3	7	0.000402	85.99588	2000	4001	0.160813	85.99705	2000	4001	0.156855	85.99705	2000	4001	0.147913	85.99705
	x_0^{11}	6	12	0.0005362	85.99016099	4	9	0.000391	85.99173	2000	4001	0.158912	85.99705	2000	4001	0.155457	85.99705	2000	4001	0.146859	85.99705
	x_0^{12}	3	6	0.0002708	85.99124179	2	5	0.000169	85.99124	2000	4001	0.159439	85.99414	2000	4001	0.150004	85.99414	2000	4001	0.150269	85.99414
	x_0^{12} x_0^{13}	6	12	0.0005077	85.99308704	3	7	0.000252	85.99274	2000	4001	0.159936	85.99705	2000	4001	0.155741	85.99705	2000	4001	0.147987	85.99705
	x_0^{14}	6	12	0.000559	85.99016175	4	9	0.000389	85.99173	2000	4001	0.16101	85.99705	2000	4001	0.151982	85.99705	2000	4001	0.150328	85.99705
	x_0^1	3	6	0.0022385	271.8381828	2	5	0.003738	271.8382	2000	4001	1.431557	271.8391	2000	4001	1.337901	271.8391	2000	4001	1.310182	271.8391
	x_0^2	4	24	0.006008	271.8281829	2	20	0.004135	271.8382	2000	4001	1.414154	271.8391	2000	4001	1.331387	271.8391	2000	4001	1.31096	271.8391
	x_0^3	4	26	0.0063286	271.8281829	2	22	0.004598	271.8382	2000	4001	1.443506	271.8391	2000	4001	1.339813	271.8391	2000	4001	1.300116	271.8391
	x_0^4	4	26	0.0061802	271.8281829	2	22	0.004532	271.8382	2000	4001	1.487275	271.8391	2000	4001	1.320174	271.8391	2000	4001	1.30359	271.8391
	x_0^5	4	27	0.006252	271.8281829	2	22	0.004538	271.8382	2000	4001	1.434849	271.8391	2000	4001	1.331131	271.8391	2000	4001	1.304608	271.8391
	x_0^6	4	27	0.0089064	271.8281829	2	22	0.004572	271.8382	2000	4001	1.459571	271.8391	2000	4001	1.33991	271.8391	2000	4001	1.294982	271.8391
10000	x_0^7	4	28	0.0067243	271.8281829	2	22	0.004382	271.8382	2000	4001	1.423102	271.8391	2000	4001	1.326911	271.8391	2000	4001	1.294463	271.8391
10000	x_0^8	4	28	0.0064616	271.8281829	2	22	0.007187	271.8382	2000	4001	1.415867	271.8391	2000	4001	1.327646	271.8391	2000	4001	1.342441	271.8391
	x_0^9	4	28	0.0063786	271.8281829	2	22	0.00463	271.8382	2000	4001	1.400542	271.8391	2000	4001	1.330458	271.8391	2000	4001	1.321446	271.8391
	x_{0}^{10}	6	12	0.020417	271.8397851	3	7	0.018705	271.8396	2000	4001	1.380973	271.84	2000	4001	1.468442	271.84	2000	4001	1.298259	271.84
	x_0^{11} x_1^{12}	5	10	0.0081547	271.8379981	4	9	0.008256	271.8382	2000	4001	1.386331	271.84	2000	4001	1.404948	271.84	2000	4001	1.317584	271.84
	x_{0}^{12}	2	4	0.0018355	271.8381828	2	5	0.001689	271.8382	2000	4001	1.399305	271.8391	2000	4001	1.336898	271.8391	2000	4001	1.293541	271.8391
	x_0^{13}	6	12	0.0046531	271.8387727	3	7	0.002616	271.8387	2000	4001	1.367346	271.84	2000	4001	1.323041	271.84	2000	4001	1.303643	271.84
	x_0^{13} x_0^{14}	5	10	0.0085711	271.8379981	4	9	0.008363	271.8382	2000	4001	1.428773	271.84	2000	4001	1.431437	271.84	2000	4001	1.302043	271.84
	x_0^1	3	6	0.0232622	859.5993523	2	5	0.034624	859.5994	2000	4001	17.04426	859.5996	2000	6000	20.50294	859.5996	2000	4001	15.5493	859.5996
	x_0^2	4	20	0.0635916	859.5961902	2	17	0.045022	859.5994	2000	4001	17.12333	859.5996	2000	6000	20.10126	859.5996	2000	4001	15.62685	859.5996
	x_0^3	4	22	0.0693673	859.5961902	2	19	0.049183	859.5994	2000	4001	18.11489	859.5996	2000	6000	20.01319	859.5996	2000	4001	15.3791	859.5996
	$x_0^4 \\ x_0^5$	4	22	0.0629879	859.5961902	2	19	0.044557	859.5994	2000	4001	17.48771	859.5996	2000	6001	19.62867	859.5996	2000	4001	15.59981	859.5996
	x_0^5	4	23	0.0656531	859.5961902	2	20	0.037111	859.5994	2000	4001	17.1192	859.5996	2000	6001	19.74258	859.5996	2000	4001	15.2473	859.5996
	x_0^6	4	23	0.0710454	859.5961902	2	20	0.038643	859.5994	2000	4001	17.16234	859.5996	2000	6001	19.63747	859.5996	2000	4001	15.33378	859.5996
100000	x_0^7	4	23	0.0589353	859.5961902	2	20	0.038446	859.5994	2000	4001	17.32825	859.5996	2000	6001	19.86019	859.5996	2000	4001	15.38637	859.5996
100000	x_0^8	4	24	0.0659006	859.5961902	2	21	0.048591	859.5994	2000	4001	17.61502	859.5996	2000	6001	19.82709	859.5996	2000	4001	15.28186	859.5996
	x_0^9	4	23	0.081446	859.5961902	2	20	0.033323	859.5994	2000	4001	17.3032	859.5996	2000	6001	20.09854	859.5996	2000	4001	15.5886	859.5996
	x_0^{10}	5	10	1.4988516	859.599859	3	7	1.599882	859.5998	2000	4001	18.43248	859.5999	2000	6000	32.68497	859.5999	2000	4001	15.40371	859.5999
	x_0^{11} x_0^{12}	6	12	0.9633102	859.5993575	4	9	0.620164	859.5994	2000	4001	18.07283	859.5999	2000	6001	30.45305	859.5999	2000	4001	15.53294	859.5999
	x_{0}^{12}	1	2	0.0092521	859.5993523	1	3	0.015711	859.5994	2000	4001	17.94464	859.5996	2000	6000	20.02029	859.5996	2000	4001	15.53272	859.5996
	x_0^{13}	5	10	0.0461032	859.599539	3	7	0.030974	859.5995	2000	4001	18.06122	859.5999	2000	6000	19.9436	859.5999	2000	4001	15.52753	859.5999
	x_0^{14}	6	12	0.9840253	859.5993575	4	9	0.611344	859.5994	2000	4001	18.6032	859.5999	2000	6001	30.37647	859.5999	2000	4001	15.6199	859.5999

Table 8: Comparison of the number of iterations, function evaluations and execution time of all algorithms in ModifiedTrigI

										Mo	odified	lTrigI									
				ISTTDFPN	Λ			STTDFPN	Л			MOPCG				CGDFPN	Л			AHDFPN	Л
DIM	INP	NI	NF	CPU	NORM	NI	NF	CPU	NORM	NI	NF	CPU	NORM	NI	NF	CPU	NORM	NI	NF	CPU	NORM
	x_0^1	15	44	0.2641793	8.33121E-12	12	36	0.029066	1.90287E-12	139	278	0.03368	8.66123E-12	11	45	0.020204	2.00118E-12	59	237	0.025187	6.47398E-12
	$x_0^1 \\ x_0^2$	15	45	0.0010025	4.67643E-12	12	36	0.000711	7.55531E-12	137	274	0.006513	8.15918E-12	11	45	0.000758	1.44997E-12	57	229	0.003805	9.64075E-12
		15	45	0.0009522	3.2721E-12	12	36	0.000724	3.8549E-12	132	264	0.014311	8.43302E-12	11	45	0.000757	6.21418E-13	55	221	0.004128	7.99768E-12
	$x_0^3 \\ x_0^4$	14	41	0.0008781	8.0047E-12	11	33	0.000695	5.97895E-12	121	242	0.005812	8.28557E-12	10	41	0.000693	1.20773E-12	50	201	0.010492	7.87129E-12
	x_0^5	15	44	0.0009454	8.53835E-12	12	36	0.000869	3.45466E-12	131	262	0.006548	8.60154E-12	11	45	0.000859	6.17907E-13	54	217	0.00384	8.61559E-12
	x_0^6	15	45	0.0009628	6.76187E-12	13	39	0.000855	7.86427E-13	137	274	0.01359	8.34876E-12	11	45	0.000715	2.48567E-12	56	225	0.004056	8.08896E-12
1000	x_0^7	15	45	0.0010266	9.28967E-12	13	39	0.000817	1.32007E-12	139	278	0.007531	9.73905E-12	11	45	0.000746	5.37158E-12	56	225	0.003642	8.2645E-12
1000	x_0^8	15	45	0.0010342	9.95672E-12	13	39	0.000805	1.5869E-12	140	280	0.010603	9.7531E-12	11	45	0.000811	7.36573E-12	56	225	0.011173	6.39674E-12
	x_0^9	15	45	0.0010306	9.27913E-12	13	39	0.00075	1.32007E-12	139	278	0.007007	9.71097E-12	11	45	0.009237	5.35051E-12	56	225	0.003814	8.27855E-12
	x_0^{10}	61	187	0.0045666	9.1182E-12	62	189	0.01145	7.51869E-12	139	278	0.006951	8.54851E-12	39	227	0.00373	9.79427E-12	23	152	0.002376	4.04517E-12
	x_0^{11}	69	214	0.0161446	9.10182E-12	72	220	0.005117	9.57893E-12	136	272	0.010684	9.78284E-12	45	249	0.00392	4.64113E-12	27	176	0.002784	5.16739E-12
	x_0^{12}	15	44	0.0009592	8.39791E-12	12	36	0.000933	1.97309E-12	139	278	0.00733	8.64718E-12	11	45	0.000795	2.00118E-12	59	237	0.004242	6.45993E-12
	x_0^{13}	62	191	0.0043636	7.17319E-12	63	191	0.004129	9.05541E-12	139	278	0.010642	8.58951E-12	38	221	0.003614	5.84461E-12	25	163	0.00255	4.18735E-12
	x_0^{14}	59	179	0.0040571	9.0575E-12	67	204	0.004251	8.81171E-12	136	272	0.007118	9.78441E-12	45	249	0.004535	4.39087E-12	27	176	0.010041	5.23728E-12
	x_0^1	15	45	0.0112586	3.90799E-12	12	36	0.006449	6.01741E-12	144	288	0.072378	9.70335E-12	11	45	0.007018	6.32827E-12	61	245	0.041936	7.90479E-12
		15	45	0.0086622	9.9476E-12	13	39	0.008196	1.63203E-12	142	284	0.067588	9.15934E-12	11	45	0.009152	4.58522E-12	60	241	0.04825	7.30527E-12
	$x_0^2 \\ x_0^3$	15	45	0.0122628	6.43929E-12	13	39	0.009387	8.21565E-13	137	274	0.063333	9.448E-12	11	45	0.009743	1.96509E-12	57	229	0.039798	9.76996E-12
	x_0^4	14	42	0.011666	8.23785E-12	12	36	0.0072	1.28786E-12	126	252	0.065977	9.28146E-12	10	41	0.007521	3.81917E-12	52	209	0.034158	9.61453E-12
	x_0^5	15	45	0.0093925	6.22835E-12	13	39	0.009614	7.32747E-13	136	272	0.076971	9.63674E-12	11	45	0.010638	1.95399E-12	57	229	0.039563	6.53921E-12
	x_0^6	16	47	0.0121963	5.15143E-12	13	39	0.008408	2.4869E-12	142	284	0.0732	9.37028E-12	11	45	0.007498	7.86038E-12	58	233	0.040333	9.88098E-12
10000	x_0^7	16	47	0.0106598	6.99441E-12	13	39	0.008045	4.17444E-12	145	290	0.067492	8.88178E-12	12	49	0.009292	9.76996E-13	59	237	0.047693	6.23945E-12
10000	x_0^8	16	47	0.0114401	7.87148E-12	13	39	0.01063	5.01821E-12	146	292	0.075493	8.88178E-12	12	49	0.010954	1.33227E-12	58	233	0.054505	7.81597E-12
	$x_0^8 \\ x_0^9$	16	47	0.009849	6.99441E-12	13	39	0.00785	4.17444E-12	145	290	0.066842	8.88178E-12	12	49	0.008408	9.76996E-13	59	237	0.054549	6.23945E-12
	x_0^{10}	63	193	0.0632282	4.61605E-12	69	209	0.046531	8.53559E-12	144	288	0.067199	9.70032E-12	39	228	0.03712	6.26064E-12	23	152	0.032781	6.52648E-12
	$x_0^{10} \\ x_0^{11} \\ x_0^{12}$	67	206	0.0522741	4.84985E-12	70	214	0.046625	6.45965E-12	142	284	0.064506	8.93234E-12	40	219	0.034607	7.0859E-12	27	175	0.028381	8.55582E-12
	x_0^{12}	15	45	0.011462	3.93019E-12	12	36	0.007016	6.08402E-12	144	288	0.068226	9.70335E-12	11	45	0.010064	6.32827E-12	61	245	0.042287	7.90479E-12
	x_0^{13}	67	208	0.0509592	6.01545E-12	65	196	0.047856	7.72322E-12	144	288	0.071318	9.71887E-12	40	233	0.036943	3.86368E-12	26	169	0.025975	8.0889E-12
	x_0^{14}	68	211	0.0528804	5.26251E-12	69	209	0.050783	5.13598E-12	142	284	0.065957	8.93267E-12	40	219	0.03573	7.85739E-12	27	175	0.026857	8.89696E-12
	x_0^1 x_0^2 x_0^3 x_0^4 x_0^5	15	45	0.1176978	7.72383E-12	13	39	0.096769	1.33412E-12	150	300	0.845763	8.8473E-12	12	49	0.111181	1.15858E-12	63	253	0.464658	9.61968E-12
	x_0^2	16	47	0.1235069	8.63665E-12	13	39	0.112473	5.16093E-12	148	296	0.860732	8.39089E-12	12	49	0.104336	8.426E-13	62	249	0.47769	8.91752E-12
	x_0^3	16	47	0.1304418	5.54712E-12	13	39	0.094769	2.59802E-12	143	286	0.829099	8.63665E-12	11	45	0.094372	6.21418E-12	60	241	0.474223	7.44297E-12
	x_0^4	15	45	0.1072809	3.30018E-12	12	36	0.083057	4.07257E-12	132	264	0.759466	8.46111E-12	11	45	0.079489	7.02167E-13	55	221	0.431471	7.30253E-12
	x_0^5	16	47	0.1402087	5.09071E-12	13	39	0.095114	2.31715E-12	142	284	0.855658	8.77708E-12	11	45	0.093873	6.17907E-12	59	237	0.461525	8.0047E-12
	x_0^6	16	48	0.1229711	3.65127E-12	13	39	0.087656	7.93448E-12	148	296	0.883141	8.49622E-12	12	49	0.103098	1.40433E-12	61	245	0.484237	7.51318E-12
100000	x_0^7	16	48	0.1240773	5.61733E-12	14	42	0.104072	9.12817E-13	150	300	0.859452	9.97077E-12	12	49	0.093702	3.08953E-12	61	245	0.490697	7.51318E-12
100000	x_0^8	16	48	0.1253594	6.24928E-12	14	42	0.102775	1.08836E-12	151	302	0.855702	9.97077E-12	12	49	0.095328	4.213E-12	60	241	0.483686	9.61968E-12
	x_0^9	16	48	0.1070273	5.54712E-12	14	42	0.098352	9.83033E-13	150	300	0.855931	9.97077E-12	12	49	0.093163	3.08953E-12	61	245	0.462936	7.51318E-12
	x_0^{10}	60	181	0.4635378	5.75489E-12	64	193	0.461315	6.94059E-12	150	300	0.883527	8.83395E-12	36	209	0.373887	5.02617E-12	28	180	0.321307	2.11448E-12
	x_0^{11}	69	216	0.5576898	7.34394E-12	68	205	0.480957	6.35048E-12	148	296	0.817777	8.14632E-12	40	215	0.388457	8.17414E-12	31	199	0.3515	3.68213E-12
	x_0^{12}	15	45	0.1138517	7.86427E-12	13	39	0.093392	1.2639E-12	150	300	0.86012	8.8473E-12	12	49	0.091321	1.15858E-12	63	253	0.508048	9.61968E-12
	x_0^{13}	72	222	0.5865181	8.09487E-12	61	186	0.474931	7.15273E-12	150	300	0.899731	8.84666E-12	40	231	0.419773	5.39097E-12	23	149	0.259051	7.36273E-12
	x_0^{14}	68	213	0.529195	9.91919E-12	69	208	0.510241	6.47765E-12	148	296	0.861445	8.14763E-12	40	215	0.374244	8.20563E-12	31	199	0.328947	3.68222E-12

Table 9: Comparison of the number of iterations, function evaluations and execution time of all algorithms in Non-moothLogarithmic

									N	Ionmo	othLo	garithmic									
				ISTTDFPN	M			STTDFPN	Л			MOPCG				CGDFPN	Л			AHDFPN	M
DIM	INP	NI	NF	CPU	NORM	NI	NF	CPU	NORM	NI	NF	CPU	NORM	NI	NF	CPU	NORM	NI	NF	CPU	NORM
	x_0^1	1	1	0.1482352	0	1	2	0.029647	0	1	1	0.020256	0	1	1	0.017709	0	1	1	0.020931	0
		2	4	0.0000867	0	1	3	5.43E-05	0	260	520	0.016635	9.1962E-12	2	5	0.000074	0	1	3	4.87E-05	0
	x_0^2 x_0^3	2	4	0.0000822	0	1	3	4.72E-05	0	267	534	0.009587	9.78543E-12	2	5	7.18E-05	0	1	3	4.48E-05	0
	x_0^4	2	4	0.0000857	0	1	3	5.27E-05	0	270	540	0.016606	9.39261E-12	2	5	7.24E-05	0	1	3	4.72E-05	0
	x_0^5	2	4	0.0000999	0	1	3	5.29E-05	0	272	544	0.009839	9.60305E-12	2	5	7.41E-05	0	1	3	4.78E-05	0
	x_0^6	2	4	0.0000877	0	1	3	5.13E-05	0	276	552	0.009992	9.28739E-12	2	5	0.000074	0	1	3	4.76E-05	0
1000		2	4	0.0000874	0	1	3	5.11E-05	0	279	558	0.016871	9.3365E-12	2	5	8.46E-05	0	1	3	5.83E-05	0
1000	$x'_0 \\ x'_0 \\ x'_0 \\ x'_0$	2	4	0.0000874	0	1	3	5.05E-05	0	280	560	0.010016	9.69424E-12	2	5	7.75E-05	0	1	3	4.71E-05	0
	x_0^8	2	4	0.0000876	0	1	3	0.00005	0	279	558	0.014257	9.31545E-12	2	5	7.82E-05	0	1	3	0.000053	0
	x_0^{10}	3	6	0.0001161	0	2	5	9.28E-05	0	247	494	0.008921	9.78739E-12	14	29	0.00043	0	2	5	6.96E-05	0
	x_0^{11}	14	28	0.0005512	0	2	5	0.000085	0	273	546	0.013354	9.00527E-12	17	35	0.000561	0	3	7	0.000107	0
	x_0^{12}	2	4	0.0000797	0	1	3	4.46E-05	0	208	416	0.007644	9.8205E-12	2	5	6.76E-05	0	1	3	4.03E-05	0
	x_0^{13}	5	10	0.0001913	6.65333E-16	2	5	0.000082	5.43264E-16	233	466	0.0086	9.33893E-12	6	13	0.000181	3.13782E-16	2	5	6.93E-05	1.48536E-19
	x_0^{11} x_0^{12} x_0^{13} x_0^{14}	20	40	0.0007987	1.72315E-21	2	5	0.000087	0	273	546	0.013978	9.02227E-12	17	35	0.000535	0	2	5	7.61E-05	0
	$x_0^1 \\ x_0^2$	1	1	0.000254	0	1	2	0.000242	0	1	1	7.07E-05	0	1	1	0.000064	0	1	1	0.000078	0
	x_0^2	2	4	0.0006713	0	1	3	0.000437	0	270	540	0.094563	9.88E-12	2	5	0.000605	0	1	3	0.00038	0
	x_0^3	2	4	0.0007036	0	1	3	0.000435	0	278	556	0.096033	9.45815E-12	2	5	0.000608	0	1	3	0.000408	0
	x_0^4	2	4	0.000839	0	1	3	0.000438	0	281	562	0.09767	9.08072E-12	2	5	0.000709	0	1	3	0.000435	0
	$x_0^{\frac{5}{5}}$	2	4	0.0007343	0	1	3	0.000446	0	283	566	0.097102	9.28054E-12	2	5	0.000666	0	1	3	0.00053	0
	$x_0^5 \\ x_0^6$	2	4	0.0007371	0	1	3	0.000436	0	286	572	0.099834	9.96881E-12	2	5	0.000653	0	1	3	0.000436	0
10000	x_0^7	2	4	0.0007151	0	1	3	0.000435	0	290	580	0.098878	9.01411E-12	2	5	0.000798	0	1	3	0.000446	0
10000	x_0^8	2	4	0.0007381	0	1	3	0.000435	0	291	582	0.100589	9.36935E-12	2	5	0.00081	0	1	3	0.000423	0
	$x_0^8 \\ x_0^9$	2	4	0.000747	0	1	3	0.000435	0	290	580	0.099076	9.01411E-12	2	5	0.000911	0	1	3	0.000448	0
	x_0^{10}	3	6	0.0011294	0	2	5	0.000737	0	247	494	0.083104	9.55425E-12	14	29	0.004528	0	2	5	0.000609	0
	x_0^{11}	3	6	0.0011108	0	2	5	0.000792	0	283	566	0.098835	9.67617E-12	21	43	0.006559	0	3	7	0.001004	0
	x_0^{12}	2	4	0.0006867	0	1	3	0.00041	0	197	394	0.065466	9.70238E-12	2	5	0.000626	0	1	3	0.000352	0
	x_0^{13}	5	10	0.0017746	1.5221E-15	2	5	0.000863	6.6606E-16	233	466	0.08285	9.1306E-12	6	13	0.004234	4.96462E-16	2	5	0.000647	2.89109E-20
	x_0^{12} x_0^{13} x_0^{14}	3	6	0.0034175	0	2	5	0.00087	0	283	566	0.111239	9.67798E-12	21	43	0.006253	0	3	7	0.001181	0
-	x_0^1	1	1	0.0022965	0	1	2	0.003424	0	1	1	0.001059	0	1	1	0.001028	0	1	1	0.000732	0
	$x_0^2 \\ x_0^3$	2	4	0.0084595	0	1	3	0.006076	0	281	562	1.11023	9.76002E-12	2	5	0.009127	0	1	3	0.004348	0
	x_0^3	2	4	0.0151231	0	1	3	0.005871	0	289	578	1.173077	9.33872E-12	2	5	0.009816	0	1	3	0.004156	0
		2	4	0.0091327	0	1	3	0.00666	0	291	582	1.1882	9.97067E-12	2	5	0.010259	0	1	3	0.00455	0
	$x_0^4 \\ x_0^5$	2	4	0.0089859	0	1	3	0.00656	0	294	588	1.181978	9.19829E-12	2	5	0.010237	0	1	3	0.004931	0
	x_0^6	2	4	0.0109662	0	1	3	0.005208	0	297	594	1.270673	9.90045E-12	2	5	0.012228	0	1	3	0.004764	0
100000	x_0^7	2	4	0.0110355	0	1	3	0.005414	0	300	600	1.289264	9.90045E-12	2	5	0.010737	0	1	3	0.004893	0
100000		2	4	0.0115037	0	1	3	0.008231	0	302	604	1.318275	9.26851E-12	2	5	0.010342	0	1	3	0.006609	0
	$x_0^8 \\ x_0^9$	2	4	0.0104918	0	1	3	0.010363	0	300	600	1.282223	9.90045E-12	2	5	0.009159	0	1	3	0.006226	0
	x_0^{10}	3	6	0.0155093	0	2	5	0.019098	0	247	494	1.083777	9.53123E-12	14	29	0.048248	0	2	5	0.010289	0
	x_0^{11}	3	6	0.0160201	0	2	5	0.011026	0	294	588	1.282916	9.57676E-12	25	51	0.092165	0	3	7	0.013726	0
	x_0^{12}	2	4	0.0140149	0	1	3	0.006093	0	186	372	0.765498	9.76002E-12	2	5	0.006867	0	1	3	0.004212	0
	x_0^{13}	5	10	0.0256413	1.81749E-15	2	5	0.010217	1.04147E-15	233	466	1.019353	9.11003E-12	6	13	0.022399	9.67861E-16	2	5	0.006929	7.76105E-21
	x_0^{14}	3	6	0.0194406	0	2	5	0.011088	0	294	588	1.165276	9.57695E-12	25	51	0.099629	0	3	7	0.011476	0

Table 10: Comparison of the number of iterations, function evaluations and execution time of all algorithms in NonsmoothSine

										Nonsi	nooth	Sine									
				ISTTDFPN	M			STTDFP	M			MOPCG				CGDFPN	1			AHDFPM	
DIM	INP	NI	NF	CPU	NORM	NI	NF	CPU	NORM	NI	NF	CPU	NORM	NI	NF	CPU	NORM	NI	NF	CPU	NORM
	x_0^1	1	1	0.4076834	0	1	2	0.029544	0	1	1	0.020911	0	1	1	0.01788	0	1	1	0.021491	0
	x_0^2	13	39	0.0005668	4.22405E-12	8	24	0.015189	4.438E-13	258	516	0.014996	9.86079E-12	16	49	0.000488	2.87132E-12	1	4	5.38E-05	0
	x_0^3	14	41	0.0005302	5.93824E-12	8	24	0.000327	1.53518E-12	265	530	0.008036	9.32543E-12	16	49	0.000506	5.48346E-12	1	4	4.09E-05	0
	x_0^4	14	41	0.0005292	9.06068E-12	8	24	0.00033	2.17007E-12	267	534	0.015171	9.36307E-12	16	49	0.000474	6.62617E-12	1	4	4.02E-05	0
	x_0^5	14	41	0.0005289	5.85671E-13	8	24	0.000296	2.52902E-12	269	538	0.008207	9.00993E-12	16	49	0.000496	7.6356E-12	1	4	3.79E-05	0
	x_0^6	13	37	0.0005047	8.96719E-12	8	24	0.000334	7.58649E-13	271	542	0.008436	9.4944E-12	16	49	0.000491	9.2168E-12	1	4	4.12E-05	0
1000	x_0^7	12	36	0.0004644	7.07445E-12	1	4	4.92E-05	0	273	546	0.017513	9.33169E-12	17	52	0.00063	1.63156E-12	1	4	0.000051	0
	x_0^8	14	43	0.0005333	3.38515E-12	1	4	4.71E-05	0	274	548	0.007997	9.08776E-12	17	52	0.000504	1.67438E-12	1	4	5.07E-05	0
	x_0^9	12	36	0.0004673	4.75872E-12	1	4	7.38E-05	0	273	546	0.009304	9.32385E-12	17	52	0.000535	1.63102E-12	1	4	4.03E-05	0
	x_{0}^{10}	23	73	0.0008819	8.96857E-12	27	84	0.000975	4.24406E-12	243	486	0.012184	9.19795E-12	58	176	0.001711	6.29127E-12	1	4	3.89E-05	0
	χ_0^{11}	38	119	0.0015314	2.93027E-12	27	82	0.000891	4.90883E-12	268	536	0.008629	9.4316E-12	58	177	0.001801	9.71883E-12	1	4	3.98E-05	0
	$x_0^{12} \\ x_0^{13}$	11	31	0.0004525	6.61962E-12	6	19	0.000221	3.16233E-13	208	416	0.005928	9.60377E-12	13	40	0.000369	3.56041E-12	1	4	3.79E-05	0
	x_0^{13}	17	49	0.0005855	7.72743E-12	13	39	0.000418	6.23441E-12	231	462	0.010151	9.42525E-12	46	139	0.001269	3.42995E-12	1	4	3.45E-05	0
	x_0^{14}	20	60	0.0007729	9.63945E-13	27	82	0.001053	4.90899E-12	268	536	0.008404	9.44481E-12	72	219	0.002197	8.73831E-12	1	4	4.04E-05	0
	x_0^1	1	1	0.0001472	0	1	2	0.000128	0	1	1	3.69E-05	0	1	1	2.93E-05	0	1	1	4.94E-05	0
	x_0^2	15	46	0.0070889	9.82543E-13	8	24	0.002534	1.40342E-12	269	538	0.073079	9.78542E-12	16	49	0.004654	9.07992E-12	1	4	0.000354	0
	x_0^3	13	38	0.0046012	4.10066E-12	8	24	0.002478	4.85466E-12	276	552	0.075307	9.25415E-12	17	52	0.004861	2.77443E-12	1	4	0.000363	0
	x_0^4	13	39	0.00542	1.888E-12	8	24	0.002566	6.86235E-12	278	556	0.074917	9.2915E-12	17	52	0.004924	3.3526E-12	1	4	0.000371	0
	x_0^5	15	45	0.0049472	1.65263E-12	8	24	0.004818	7.99745E-12	279	558	0.075963	9.93451E-12	17	52	0.005371	3.86334E-12	1	4	0.000369	0
	x_0^6	13	39	0.0068127	3.23718E-12	8	24	0.002474	2.39906E-12	282	564	0.076835	9.42183E-12	17	52	0.004958	4.66337E-12	1	4	0.000454	0
10000	x_0'	12	37	0.0044014	6.63546E-12	1	4	0.000375	0	284	568	0.076231	9.26036E-12	17	52	0.006967	5.15945E-12	1	4	0.000376	0
	x_0^8	12	37	0.0041501	9.53262E-12	1	4	0.000368	0	285	570	0.076613	9.0183E-12	17	52	0.005073	5.29487E-12	1	4	0.000461	0
	x ₀	12	37	0.0040161	6.63228E-12	1	4	0.000385	0	284	568	0.077895	9.25959E-12	17	52	0.004804	5.15928E-12	1	4	0.000361	0
	x_0^{10}	24	77	0.0107462	9.82558E-13	27	84	0.008147	4.35513E-12	243	486	0.078329	9.20076E-12	46	139	0.013123	4.99978E-12	1	4	0.000345	0
	x_{0}^{11}	26	75	0.0087113	7.452E-12	29	88	0.009376	1.26043E-12	279	558	0.077993	9.36541E-12	67	202	0.021255	6.9959E-12	1	4	0.000365	0
	x_0^{11} x_0^{12} x_0^{13}	10	29	0.0036405	4.65067E-12	6	18	0.001695	4.5E-12	197	394	0.05286	9.67775E-12	12	37	0.003131	7.03687E-12	1	4	0.000336	0
	x_0^{13}	17	49	0.0054671	7.72743E-12	13	39	0.005363	6.23441E-12	231	462	0.065329	9.42525E-12	46	139	0.014072	3.42995E-12	1	4	0.000285	0
	x ₀ ¹⁴	27	78	0.0125069	1.20268E-12	29	88	0.009606	1.26237E-12	279	558	0.081686	9.36672E-12	60	183	0.017738	9.3905E-12	1	4	0.000365	0
	$x_{\mathbb{Q}}^{1}$	1	1	0.0012233	0	1	2	0.001713	0	1	1	0.000363	0	1	1	0.000293	0	1	1	0.000634	0
	$x_{\bar{Q}}^2$	14	43	0.0557674	2.39837E-12	8	24	0.037376	4.438E-12	280	560	0.900581	9.71062E-12	17	52	0.066051	4.59412E-12	1	4	0.004994	0
	x_0	13	39	0.0623224	6.90574E-12	8	25	0.034266	3.41151E-13	287	574	0.896314	9.18341E-12	17	52	0.067956	8.77353E-12	1	4	0.005233	0
	$x_{\mathbb{Q}}^{4}$	14	42	0.0574819	6.17402E-12	8	25	0.036552	4.82237E-13	289	578	0.938301	9.22048E-12	18	55	0.071206	1.6963E-12	1	4	0.005453	0
	x_0^5	14	42	0.0645716	8.98996E-12	8	25	0.040143	5.62004E-13	290	580	0.940139	9.85857E-12	18	55	0.067238	1.95471E-12	1	4	0.005094	0
	x_0^6	12	35	0.0523736	9.7458E-12	8	24	0.035783	7.58649E-12	293	586	0.939405	9.34981E-12	18	55	0.069958	2.3595E-12	1	4	0.005693	0
100000	x_0'	14	42	0.0630572	7.01014E-13	1	4	0.006146	0	295	590	0.944738	9.18958E-12	18	55	0.075589	2.6105E-12	1	4	0.005026	0
	x_0°	12	37	0.0556239	8.53515E-12	1	4	0.006241	0	295	590	0.943079	9.94373E-12	18	55	0.056676	2.67902E-12	1	4	0.004884	0
	x ₀	14	42	0.0631452	7.00987E-13	1	4	0.007914	0	295	590	0.931641	9.1895E-12	18	55	0.070331	2.61049E-12	1	4	0.005673	0
	x ₀	24	77	0.1205535	9.36607E-13	27	84	0.100423	4.36509E-12	243	486	0.758346	9.20105E-12	50	152	0.192963	8.87208E-12	1	4	0.004328	0
	x ₀ 1	34	105	0.1532481	9.64323E-12	29	88	0.122845	3.98867E-12	290	580	0.901521	9.2944E-12	66	203	0.255324	9.77579E-12	1	4	0.003898	0
	x_0^{11} x_0^{12} x_0^{13}	10	29	0.0416141	1.47067E-12	6	18	0.023303	1.42302E-12	186	372	0.598464	9.75229E-12	12	37	0.041275	2.22526E-12	1	4	0.003639	0
		17	49	0.0653237	7.72743E-12	13	39	0.048892	6.23441E-12	231	462	0.684146	9.42525E-12	46	139	0.135136	3.42995E-12	1	4	0.002998	0
	x_0^{14}	31	97	0.1338255	5.01193E-12	29	88	0.112262	3.98929E-12	290	580	0.920004	9.29454E-12	60	183	0.220246	1.64094E-12	1	4	0.004206	0

Table 11: Comparison of the number of iterations, function evaluations and execution time of all algorithms in PolynomialI

	INP x_0^1	NII		ISTTDFPN	A.																
		NII			VI			STTDFPM	I			MOPCG				CGDFPN	4			AHDFPN	Л
	χ^1_0	141	NF	CPU	NORM	NI	NF	CPU	NORM	NI	NF	CPU	NORM	NI	NF	CPU	NORM	NI	NF	CPU	NORM
		1	1	0.6523618	0	1	2	0.028299	0	1	1	0.023851	0	1	1	0.022345	0	1	1	0.027635	0
	x_0^2	15	45	0.0315175	6.64373E-12	1	5	7.29E-05	0	80	160	0.003071	7.94192E-12	13	66	0.000836	3.08852E-12	1	6	8.94E-05	0
	x_0^3	15	46	0.001701	3.01466E-12	1	5	9.58E-05	0	82	164	0.002808	8.04228E-12	13	66	0.000922	7.00582E-12	1	6	7.38E-05	0
	x_0^4	15	46	0.0016877	3.1719E-12	1	5	7.18E-05	0	83	166	0.021606	7.15513E-12	13	66	0.000789	9.32786E-12	1	6	8.21E-05	0
	x_0^5	15	46	0.0016657	3.33293E-12	1	5	6.78E-05	0	83	166	0.002718	8.73189E-12	14	71	0.000705	1.10657E-12	1	6	7.68E-05	0
	x_0^6	15	46	0.001672	3.667E-12	1	5	6.76E-05	0	84	168	0.002754	8.43357E-12	12	60	0.00062	5.41978E-12	1	5	6.33E-05	0
	x_0^7	15	46	0.0024351	4.01806E-12	1	5	6.88E-05	0	85	170	0.004053	7.64241E-12	13	65	0.000667	1.6227E-12	1	5	6.45E-05	0
1000	x_0^8	15	46	0.0030289	4.20038E-12	1	5	6.92E-05	0	85	170	0.012694	8.55781E-12	13	65	0.000688	2.36699E-12	1	5	0.000063	0
	x_0^9	15	46	0.0027501	4.01626E-12	1	5	6.63E-05	0	85	170	0.003121	7.63341E-12	13	65	0.000631	1.61592E-12	1	5	6.37E-05	0
	x_0^{10}	22	67	0.0040337	4.72787E-12	36	109	0.001822	6.2004E-12	104	207	0.003851	8.65583E-12	65	325	0.020304	8.16996E-12	19	114	0.001187	3.65884E-13
	x_0^{11}	22	66	0.0037353	8.19828E-12	11	35	0.0006	1.5935E-12	100	199	0.003386	9.76623E-12	88	444	0.00449	9.16075E-12	45	270	0.002574	7.30539E-12
	χ_0^{12}	12	37	0.0023773	4.50571E-12	1	5	8.29E-05	0	65	130	0.011375	8.10145E-12	11	56	0.000576	1.58276E-12	1	6	6.33E-05	0
	x_0^{13}	12	37	0.0022506	3.17242E-12	1	5	6.51E-05	6.0961E-16	96	191	0.003277	9.25591E-12	24	120	0.001388	8.12121E-12	1	5	6.18E-05	5.68259E-15
	x_0^{14}	22	66	0.0040189	8.91453E-12	11	35	0.000494	1.7158E-12	100	199	0.00333	9.77002E-12	96	481	0.018638	8.33667E-12	42	252	0.022178	7.47689E-12
	x_0^1	1	1	0.0002115	0	1	2	0.000205	0	1	1	7.57E-05	0	1	1	6.15E-05	0	1	1	7.92E-05	0
	x_0^2	15	45	0.0224403	9.51812E-12	1	5	0.00044	0	83	166	0.033175	8.61429E-12	13	66	0.011818	9.76677E-12	1	6	0.000492	0
	x_0^3	15	46	0.0092925	2.9975E-12	1	5	0.0005	0	85	170	0.028278	8.72315E-12	14	71	0.007426	2.05592E-12	1	6	0.000522	0
	x_0^4	15	46	0.019046	3.15414E-12	1	5	0.000485	0	86	172	0.029997	7.76089E-12	14	71	0.011532	2.73735E-12	1	6	0.000521	0
	x_0^5	15	46	0.0068451	3.31452E-12	1	5	0.005956	0	86	172	0.036956	9.47114E-12	14	71	0.007186	3.49927E-12	1	6	0.000513	0
	x_0^6	15	46	0.0172691	3.6471E-12	1	5	0.000523	0	87	174	0.031058	9.14757E-12	13	65	0.009836	1.59048E-12	1	5	0.000464	0
10000	x_0^7	15	46	0.0066395	3.99639E-12	1	5	0.000643	0	88	176	0.036526	8.28942E-12	13	65	0.006626	5.13144E-12	1	5	0.000459	0
	x_0^8	15	46	0.0099195	4.17771E-12	1	5	0.000556	0	88	176	0.031707	9.28232E-12	13	65	0.010385	7.48508E-12	1	5	0.000465	0
	x_0^9	15	46	0.0074135	3.99621E-12	1	5	0.000587	0	88	176	0.04304	8.28844E-12	13	65	0.006576	5.12929E-12	1	5	0.000453	0
2	x_0^{10}	30	90	0.0161391	6.67132E-12	37	113	0.019003	1.0272E-12	104	207	0.048147	8.65446E-12	56	280	0.034232	6.64516E-12	19	114	0.016332	3.65048E-13
2	x_{0}^{11}	20	61	0.0112921	4.13083E-12	3	11	0.001227	2.2702E-12	95	189	0.032281	8.57347E-12	91	459	0.052664	7.01935E-12	7	42	0.003753	0
2	x_0 x_0^{12} x_0^{13} x_0^{14}	11	34	0.0057278	7.54656E-12	1	5	0.000485	0	62	124	0.022661	7.46804E-12	10	51	0.007123	5.39042E-12	1	6	0.000601	0
	x_0^{13}	12	37	0.0078815	3.17242E-12	1	5	0.000488	6.8771E-16	96	191	0.033308	9.25591E-12	24	120	0.012747	8.12121E-12	1	5	0.000467	6.38766E-15
	x_0^{14}	20	61	0.0122676	2.24244E-12	3	11	0.001215	2.0581E-12	95	189	0.032961	8.57382E-12	85	430	0.049313	8.43725E-12	7	42	0.004476	0
	x_0^1	1	1	0.0152953	0	1	2	0.002402	0	1	1	0.000743	0	1	1	0.000579	0	1	1	0.000706	0
	x_0^2	15	45	0.4712151	9.50018E-12	1	5	0.011305	0	86	172	0.459103	9.34359E-12	14	71	0.151979	2.86615E-12	1	6	0.0293	0
	x_0^3	15	46	0.2473254	2.9921E-12	1	5	0.017641	0	88	176	0.397452	9.46167E-12	14	71	0.444167	6.5014E-12	1	6	0.006502	0
	x_0^4	15	46	0.0936662	3.14855E-12	1	5	0.022797	0	89	178	0.380899	8.41793E-12	14	71	0.271882	8.65626E-12	1	6	0.008255	0
	x_0^5	15	46	0.0818547	3.30873E-12	1	5	0.013838	0	90	180	0.380661	7.19108E-12	15	76	0.100644	1.02689E-12	1	6	0.006106	0
	x_0^6	15	46	0.0803644	3.64083E-12	1	5	0.005365	0	90	180	0.374266	9.92201E-12	13	65	0.087506	5.02955E-12	1	5	0.010369	0
100000	x_0^7	15	46	0.0778008	3.98956E-12	1	5	0.006131	0	91	182	0.409662	8.99121E-12	14	70	0.089764	1.50587E-12	1	5	0.006243	0
100000	x_0^8	15	46	0.1042527	4.17056E-12	1	5	0.010647	0	92	184	0.377948	7.04772E-12	14	70	0.095798	2.19657E-12	1	5	0.007787	0
	x_0^9	15	46	0.083453	3.98955E-12	1	5	0.02721	0	91	182	0.401391	8.99111E-12	14	70	0.086913	1.5058E-12	1	5	0.005793	0
	x_0^{10}	27	83	0.1778629	6.9407E-12	38	115	0.204938	5.6451E-12	104	207	0.460681	8.65432E-12	58	290	0.36239	2.27585E-12	19	114	0.141806	3.65008E-13
	x_0^{11}	21	64	0.1252838	2.26226E-12	3	11	0.019916	2.4584E-16	91	181	0.3893	9.44375E-12	89	449	0.564995	6.03782E-12	7	42	0.053856	0
	x_0^{12}	11	33	0.0616702	8.42797E-12	1	5	0.009298	0	58	116	0.246128	9.83577E-12	10	51	0.065969	1.70451E-12	1	6	0.006355	0
	x_0^{13}	12	37	0.0732819	3.17242E-12	1	5	0.015089	3.9408E-14	96	191	0.419383	9.25591E-12	24	120	0.150898	8.12121E-12	1	5	0.007164	3.67436E-13
	x_0^{14}	21	64	0.1122553	2.07452E-12	3	11	0.023422	2.2357E-16	91	181	0.411353	9.44386E-12	88	444	0.583763	9.10381E-12	7	42	0.051836	0

Table 12: Comparison of the number of iterations, function evaluations and execution time of all algorithms in SmoothSine

1										Smo	othSin	e									
1				ISTTDFP	M			STTDFPN	Л			MOPCG				CGDFPN	I			AHDFPM	
X Y Y Y Y Y Y Y Y Y	NΡ	NI	NF	CPU	NORM	NI	NF	CPU	NORM	NI	NF	CPU	NORM	NI	NF	CPU	NORM	NI	NF	CPU	NORM
X Y Y Y Y Y Y Y Y Y	0	1	1	0.1500283	0	1	2	0.027986	0	1	1	0.020506	0	1	1	0.020389	0	1	1	0.020862	0
X		3	9	0.00039	0	8	24	0.000716	4.438E-13	258	516	0.024	9.86079E-12	16	49	0.002005	2.8713E-12	1	4	0.000117	0
1000 1000	3	3	9	0.0127788	0	8	24	0.000704	1.53518E-12	265	530	0.017792	9.32543E-12	16	49	0.002026	5.4835E-12	1	4	0.000122	0
x60 x000 x	0	3	9	0.000297	0	8	24	0.000675	2.17007E-12	267	534	0.017835	9.36307E-12	16	49	0.002036	6.6262E-12	1	4	0.000104	0
1000 x 0 x 0 0 0 x 0 0 0	5	3	9	0.000311	0	8	24	0.000705	2.52902E-12	269	538	0.024883	9.00993E-12	16	49	0.002121	7.6356E-12	1	4	0.000102	0
0000 x 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	- Q	3	9	0.0003068	0	8	24	0.000716	7.58649E-13	271	542	0.01981	9.4944E-12	16	49	0.002073	9.2168E-12	1	4	0.000105	0
x 5 0 x 5 0	0	5	14	0.0004655	0	1	4	0.000109	0	273	546	0.018306	9.33169E-12	17	52	0.002199	1.6316E-12	1	4	0.000106	0
x 5 10 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	8	5	14	0.0004719	0	1	4	0.000111	0	274	548	0.025571	9.08776E-12	17	52	0.00218	1.6744E-12	1	4	0.000107	0
1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ó	5	14	0.0004647	0	1	4	0.000111	0	273	546	0.01847	9.32385E-12	17	52	0.002189	1.631E-12	1	4	0.000111	0
1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10 Q.	3	9	0.0002755	0	29	87	0.002457	4.8287E-12	243	486	0.016166	9.19795E-12	50	151	0.005362	7.8491E-12	1	4	0.000146	0
1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.	11	33	0.0009901	2.6522E-12	33	99	0.002922	6.45777E-12	268	536	0.021528	9.4316E-12	52	157	0.004271	5.6226E-12	1	4	0.000104	0
1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	12 0_	4	12	0.0003884	0	6	19	0.000548	3.16233E-13	208	416	0.013895	9.60377E-12	13	40	0.001116	3.5604E-12	1	4	0.000104	0
1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	13 0.	3	9	0.000282	5.02583E-18	14	43	0.001251	5.54536E-13	231	462	0.015138	9.42525E-12	44	133	0.003681	7.26E-12	1	4	0.000115	0
x 0 3 4 4 4 4 1 4 1 4 4 1 4 4 4 4 4 4 4 4 4		11	33	0.0010063	2.72272E-12	33	99	0.003033	6.42807E-12	268	536	0.021666	9.44481E-12	52	157	0.004537	5.8929E-12	1	4	0.000105	0
x 0 3 4 4 4 4 1 4 1 4 4 1 4 4 4 4 4 4 4 4 4	0	1	1	0.0005119	0	1	2	0.000499	0	1	1	0.000162	0	1	1	0.000151	0	1	1	0.000198	0
X100 X200	ō	4	12	0.0037445	0	8	24	0.00679	1.40342E-12	269	538	0.173951	9.78542E-12	16	49	0.012739	9.0799E-12	1	4	0.000977	0
20000 x 6 x 6 x 7 x 6 x 7 x 6 x 7 x 7 x 7 x 7	3	4	12	0.0040391	0	8	24	0.006643	4.85466E-12	276	552	0.178204	9.25415E-12	17	52	0.01569	2.7744E-12	1	4	0.000965	0
20000 x 6 x 6 x 7 x 6 x 7 x 6 x 7 x 7 x 7 x 7	0	4	12	0.0037733	0	8	24	0.007005	6.86235E-12	278	556	0.179012	9.2915E-12	17	52	0.013948	3.3526E-12	1	4	0.000967	0
0000	.5	4	12	0.0037671	0	8	24	0.010219	7.99745E-12	279	558	0.17934	9.93451E-12	17	52	0.014135	3.8633E-12	1	4	0.000955	0
0000	6	3	9	0.0028901	0	8	24	0.00666	2.39906E-12	282	564	0.190966	9.42183E-12	17	52	0.014363	4.6634E-12	1	4	0.000987	0
x 5 0 x 5 0 x 5 0 0 0 0 0 0 0 0 0 0 0 0	7	5	14	0.0048733	0	1	4	0.001054	0	284	568	0.210014	9.26036E-12	17	52	0.014162	5.1595E-12	1	4	0.000978	0
100 x ₀ 10 x ₀ 12 x ₀ 2 x ₀ 13 x ₀ 14 x ₀ 13 x ₀ 14 x ₀ 15 x	8	5	14	0.004781	0	1	4	0.001032	0	285	570	0.199963	9.0183E-12	17	52	0.013582	5.2949E-12	1	4	0.001016	0
x ₁₀ x ₀ x	9	5	14	0.0046059	0	1	4	0.001051	0	284	568	0.184888	9.25959E-12	17	52	0.015744	5.1593E-12	1	4	0.001305	0
X ₁₀	10 0	3	9	0.002969	0	29	87	0.024007	4.88498E-12	243	486	0.156391	9.20076E-12	50	151	0.039221	7.8483E-12	1	4	0.001311	0
x ₀	11 0	11	32	0.0098884	9.5146E-12	35	105	0.030972	7.93333E-12	279	558	0.179347	9.36541E-12	54	163	0.045416	6.8048E-12	1	4	0.001288	0
x ₀ 4 1 x ₁ x ₁ x ₂ x ₁ x ₂ x ₂ x ₂ x ₂ x ₃ x ₃ x ₄ x ₅ x ₅ x ₆	12 0	4	12	0.0034562	0	6	18	0.00482	4.5E-12	197	394	0.128036	9.67775E-12	12	37	0.009358	7.0369E-12	1	4	0.001308	0
00000 x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0 x	13 0	3	9	0.0027227	2.41226E-17	14	43	0.012106	5.54536E-13	231	462	0.145599	9.42525E-12	44	133	0.03345	7.26E-12	1	4	0.001193	0
x_0^2 x_0^3 x_0^4 x_0^4 x_0^5 x_0^6 x_0^6 x_0^8 x_0^{10} x_0^{10}	14 0	11	32	0.0121892	9.5617E-12	35	105	0.029973	7.92967E-12	279	558	0.183733	9.36672E-12	54	163	0.044157	6.8369E-12	1	4	0.001293	0
x_0^2 x_0^3 x_0^4	10	1	1	0.0050454	0	1	2	0.007549	0	1	1	0.001601	0	1	1	0.0015	0	1	1	0.002459	0
x_0^3 x_0^4 x_0^5 x_0^6 x_0^6 x_0^9 x_0^{10}		4	12	0.0418928	0	8	24	0.088045	4.438E-12	280	560	2.070844	9.71062E-12	17	52	0.160866	4.5941E-12	1	4	0.011814	0
x_{0}^{5} x_{0}^{6} x_{0}^{7} x_{0}^{7} x_{0}^{7} x_{0}^{7} x_{0}^{7}		5	15	0.059154	0	8	25	0.096694	3.41151E-13	287	574	2.230639	9.18341E-12	17	52	0.194295	8.7735E-12	1	4	0.01168	0
x_0^7 x_0^7 x_0^7 x_0^7 x_0^7 x_0^7 x_0^7	4	5	15	0.0476069	0	8	25	0.105676	4.82237E-13	289	578	2.247195	9.22048E-12	18	55	0.17021	1.6963E-12	1	4	0.01557	0
00000 x_0^{y} x_0^{y} x_0^{y} x_0^{y}	5	5	15	0.0603251	0	8	25	0.089624	5.62004E-13	290	580	2.22234	9.85857E-12	18	55	0.199734	1.9547E-12	1	4	0.014586	0
$\begin{array}{ccc} x_0^7 & & & & \\ x_0^7 & & & & \\ x_0^7 & & & & \\ x_0^{10} & & & & \end{array}$	6	4	12	0.0433751	0	8	24	0.089556	7.58649E-12	293	586	2.25753	9.34981E-12	18	55	0.185474	2.3595E-12	1	4	0.012765	0
$x_0^8 \\ x_0^7 \\ x_0^{10}$	7	5	14	0.0489626	0	1	4	0.011103	0	295	590	2.319293	9.18958E-12	18	55	0.200921	2.6105E-12	1	4	0.011741	0
$x_{0.}^{10}$.8 0	5	14	0.0619584	0	1	4	0.012347	0	295	590	2.285059	9.94373E-12	18	55	0.19193	2.679E-12	1	4	0.015108	0
	,ğ	5	14	0.0574898	0	1	4	0.013541	0	295	590	2.259153	9.1895E-12	18	55	0.188415	2.6105E-12	1	4	0.015992	0
Y1	10	3	9	0.0342624	0	29	87	0.28137	4.89064E-12	243	486	1.808514	9.20105E-12	50	151	0.481473	7.8482E-12	1	4	0.010751	0
X0-	Ĭ1	7	21	0.0687001	0	37	111	0.388197	9.76414E-12	290	580	2.219649	9.2944E-12	56	169	0.573485	8.0798E-12	1	4	0.010993	0
x_0^{12}	12	4	12	0.0379395	Õ	6	18	0.058434	1.42302E-12	186	372	1.413779	9.75229E-12	12	37	0.107919	2.2253E-12	1	4	0.011746	0
x_0^{13}	13	3	9	0.036639	1.11149E-16	14	43	0.148498	5.54536E-13	231	462	1.659983	9.42525E-12	44	133	0.391031	7.26E-12	1	4	0.009632	0
	14	7	21	0.0745299	0	37	111	0.390614	9.76369E-12	290	580	2.215667	9.29454E-12	56	169	0.512894	8.0836E-12	1	4	0.010903	0

Table 13: Experiment results and average result of ℓ_1 -norm regularization problem via STTDFPM , CGDFPM , MOPCG and AHDFPM methods.

MSE									
Experiments	STTDFPM	AHDFPM	CGDFPM	MOPCG	Experiments	STTDFPM	AHDFPM	CGDFPM	MOPCG
1	0.05284	0.05287	0.05405	0.05291	51	0.04206	0.04215	0.04717	0.04230
2	0.05256	0.05262	0.05375	0.05269	52	0.04499	0.04500	0.04759	0.04506
3	0.05096	0.05103	0.05388	0.05119	53	0.03398	0.03408	0.03716	0.03422
4	0.04169	0.04178	0.04388	0.04190	54	0.04476	0.04481	0.04874	0.04489
5	0.04069	0.04082	0.04202	0.04098	55	0.05324	0.05326	0.05437	0.05327
6	0.04734	0.04731	0.04812	0.04726	56	0.04135	0.04136	0.04435	0.04142
7	0.04552	0.04565	0.05000	0.04597	57	0.04020	0.04045	0.04712	0.04086
8	0.04236	0.04243	0.04505	0.04253	58	0.05260	0.05262	0.05456	0.05267
9	0.04051	0.04059	0.04416	0.04072	59	0.03338	0.03342	0.03666	0.03350
10	0.06570	0.06566	0.06482	0.06561	60	0.04219	0.04244	0.04753	0.04286
11	0.04634	0.04641	0.05008	0.04647	61	0.05566	0.05569	0.05593	0.05573
12	0.04104	0.04138	0.04659	0.04177	62	0.03025	0.03034	0.03237	0.03045
13	0.04468	0.04474	0.04717	0.04484	63	0.03813	0.03811	0.03921	0.03806
14	0.04708	0.04715	0.05091	0.04732	64	0.04286	0.04293	0.04564	0.04307
15	0.05348	0.05349	0.05704	0.05360	65	0.04216	0.04232	0.04812	0.04260
16	0.03949	0.03961	0.04402	0.03980	66	0.05871	0.05880	0.06153	0.05891
17	0.04504	0.04506	0.04680	0.04511	67	0.05396	0.05393	0.05324	0.05384
18	0.05241	0.05244	0.05513	0.05251	68	0.04694	0.04712	0.05241	0.04745
19	0.04330	0.04335	0.04565	0.04343	69	0.04378	0.04385	0.04695	0.04396
20	0.04041	0.04049	0.04300	0.04070	70	0.05371	0.05373	0.05657	0.05392
21	0.03602	0.03617	0.04368	0.03648	71	0.05019	0.05020	0.05174	0.05021
22	0.04266	0.04275	0.04627	0.04301	72	0.05210	0.05207	0.05178	0.05204
23	0.05424	0.05427	0.05837	0.05435	73	0.04313	0.04318	0.04719	0.04335
24	0.04244	0.04236	0.04333	0.04228	74	0.03706	0.03719	0.04041	0.03740
25	0.05006	0.05011	0.05224	0.05023	75	0.03853	0.03859	0.04152	0.03870
26	0.03507	0.03518	0.03966	0.03538	76	0.04341	0.04350	0.04664	0.04364
27	0.04264	0.04265	0.04466	0.04267	77	0.02827	0.02832	0.03254	0.02844
28	0.04605	0.04616	0.04941	0.04627	78	0.04593	0.04600	0.04904	0.04611
29	0.04523	0.04527	0.04888	0.04541	79	0.04472	0.04476	0.04704	0.04484
30	0.03291	0.03305	0.03708	0.03329	80	0.03862	0.03883	0.04407	0.03913
31	0.03880	0.03887	0.04119	0.03900	81	0.03274	0.03293	0.03740	0.03320
32	0.03149	0.03149	0.03403	0.03149	82	0.04847	0.04863	0.05017	0.04884
33	0.05351	0.05348	0.05465	0.05345	83	0.03386	0.03387	0.03549	0.03391
34	0.04861	0.04864	0.05129	0.04871	84	0.05266	0.05265	0.05350	0.05262
35	0.05020	0.05025	0.05393	0.05052	85	0.03691	0.03703	0.04280	0.03725
36	0.06390	0.06394	0.06654	0.06404	86	0.05090	0.05099	0.05353	0.05115
37	0.04924	0.04931	0.05223	0.04945	87	0.04659	0.04655	0.04655	0.04648
38	0.04503	0.04504	0.04542	0.04505	88	0.04078	0.04082	0.04318	0.04090
39	0.03665	0.03672	0.04055	0.03681	89	0.05044	0.05050	0.05241	0.05063
40	0.04140	0.04147	0.04393	0.04160	90	0.03858	0.03874	0.04264	0.03896
41	0.04858	0.04859	0.04997	0.04862	91	0.05956	0.05959	0.06337	0.05963
42	0.04250	0.04053	0.04335	0.04254	92	0.03330	0.03333	0.00557	0.03303
43	0.04230	0.04233	0.04333	0.04234	93	0.04417	0.04419	0.04507	0.04431
44	0.05167	0.05171	0.05323	0.05356	94	0.04371	0.04373	0.04372	0.04382
45	0.05701	0.05771	0.05323	0.05176	95	0.04024	0.04028	0.04595	0.04037
46	0.03701	0.03708	0.04619	0.03718	96 96	0.03023	0.03025	0.04003	0.03029
46 47	0.04284	0.04291	0.05041	0.04306	96 97	0.03023	0.03023	0.05165	0.03029
48	0.04676	0.04666	0.05041	0.04706	97 98	0.04784	0.04789	0.03377	0.04627
49	0.04960	0.04956	0.05215	0.04992	98 99	0.04802	0.04613	0.04983	0.04630
49 50	0.04962	0.04957	0.03146	0.04950	100	0.04266	0.04268	0.04414	0.04270
Average						0.03643	0.03642	0.04877	0.03637