UDP数据包分析实验

同济大学软件学院

1. UDP的概述(User Datagram Protocol,)

UDP是传输层的协议,功能即为在IP的 数据报服务之上增加了最基本的服务: 复用和 分用以及差错检测。

UDP提供不可靠服务,具有TCP所没有的优 势:

UDP无连接,时间上不存在建立连接需要的时 延。空间上,TCP需要在端系统中维护连接状 态,需要一定的开销。此连接装入包括接收和 发送缓存, 拥塞控制参数和序号与确认号的参 数。UCP不维护连接状态,也不跟踪这些参数, 开销小。空间和时间上都具有优势。

UDP数据报用户数据报协议

2. UDP的应用特点

DNS如果运行在TCP之上而不是UDP,那么DNS的速度将会慢很多。HTTP使用TCP而不是UDP,是因为对于基于文本数据的Web网页来说,可靠性很重要。同一种专用应用服务器在支持UDP时,一定能支持更多的活动客户机。

分组首部开销小,TCP首部20字节,UDP首部8字节。

UDI数据报用户数据报协议)

2. UDP的应用特点

UDP没有拥塞控制,应用层能够更好的控制 要发送的数据和发送时间, 网络中的拥塞控制 也不会影响主机的发送速率。某些实时应用要 求以稳定的速度发送,能容忍一些数据的丢失, 但是不能允许有较大的时延(比如实时视频, 直播等)

UDP提供尽最大努力的交付,不保证可靠交 付。所有维护传输可靠性的工作需要用户在应 用层来完成。没有TCP的确认机制、重传机制。 如果因为网络原因没有传送到对端, UDP也不 会给应用层返回错误信息。

UDI数据报用户数据报协议)

2. UDP的应用特点

UDP没有拥塞控制,应用层能够更好的控制 要发送的数据和发送时间, 网络中的拥塞控制 也不会影响主机的发送速率。某些实时应用要 求以稳定的速度发送,能容忍一些数据的丢失, 但是不能允许有较大的时延(比如实时视频, 直播等)

UDP提供尽最大努力的交付,不保证可靠 交付。所有维护传输可靠性的工作需要用户在 应用层来完成。没有TCP的确认机制、重传机 制。如果因为网络原因没有传送到对端,UDP 也不会给应用层返回错误信息。

2. UDP的应用特点

UDP是面向报文的,对应用层交下来的报文, 添加首部后直接乡下交付为IP层,既不合并, 也不拆分,保留这些报文的边界。对IP层交上 来UDP用户数据报,在去除首部后就原封不动 地交付给上层应用进程,报文不可分割,是 UDP数据报处理的最小单位。正是如此UDP显 得不够灵活,不能控制读写数据的次数和数量。 比如我们要发送100个字节的报文,调用一次 sendto函数就会发送100字节,对端也需要用 recvfrom函数一次性接收100字节,不能使用循 环每次获取10个字节,获取十次这样的做法。

2. UDP的应用特点

UDP常用一次性传输比较少量数据的网络应用,如DNS,SNMP等,因为对于这些应用,若是采用TCP,为连接的创建,维护和拆除带来不小的开销。UDP也常用于多媒体应用(如IP电话,实时视频会议,流媒体等)数据的可靠传输对他们而言并不重要,TCP的拥塞控制会使它们有较大的延迟,也是不可容忍的。

总之, UDP协议提供不可靠无连接的数据报传输服务。

3. UDP报文格式

UDP的首部格式

UDP数据报分为首部和用户数据部分,整个UDP数据报作为IP数据报的数据部分封装在IP数据报中、UDP数据报文结构如图所示:

0	15	5 16	31
	16位源端口号	16位目的端口号	8字节
	16位UDP长度	16位UDP检验和	
	数据	vinnacińcie i 928992772	

UDP数据报用户数据报协议

3. UDP报文格式

UDP的首部格式

UDP首部有8个字节,由4个字段构成,每个字段都是两个字节,1).源端口:源端口号,需要对方回信时选用,不需要时全部置0.

- 2).目的端口:目的端口号,在终点交付报文的时候需要用到。
- 3).长度: UDP的数据报的长度(包括首部和数据) 其最小值为8(只有首部)

UDP数据报用户数据报协议)

3. UDP报文格式

UDP的首部格式

4).校验和:检测UDP数据报在传输中是否有错, 有错则丢弃。该字段是可选的,当源主机不想 计算校验和,则直接令该字段全为0.

当传输层从IP层收到UDP数据报时,就根据首 部中的目的端口,把UDP数据报通过相应的端 口,上交给应用进程。

如果接收方UDP发现收到的报文中的目的端口 号不正确(不存在对应端口号的应用进程0,), 就丢弃该报文,并由ICMP发送"端口不可达" 差错报文给对方。

3. UDP报文格式

UDP校验

在计算校验和的时候,需要在UDP数据报之前 增加12字节的伪首部,伪首部并不是UDP真正 的首部。只是在计算校验和、临时添加在UDP 数据报的前面,得到一个临时的UDP数据报。 校验和就是按照这个临时的UDP数据报计算的。 伪首部既不向下传送也不向上递交, 而仅仅是 为了计算校验和。这样的校验和, 既检查了 UDP数据报,又对IP数据报的源IP地址和目的IP 地址进行了检验。

3. UDP报文格式

UDP校验

UDP校验和的计算方法和IP数据报首部校验和的计算方法相似,都使用二进制反码运算求和再取反,但不同的是: IP数据报的校验和只检验IP数据报的首部,但UDP的校验和是把首部

和数据部分一起校验。

UDP数据报用户数据报协议)

3. UDP报文格式

UDP校验

发送方,首先是把全零放入校验和字段并且添 加伪首部,然后把UDP数据报看成是由许多16 位的子串连接起来,若UDP数据报的数据部分 不是偶数个字节,则要在数据部分末尾增加一 个全零字节(此字节不发送),接下来就按照 二进制反码计算出这些16位字的和。将此和的 二进制反码写入校验和字段。在接收方,把收 到得UDP数据报加上伪首部(如果不为偶数个 字节,还需要补上全零字节)后,按二进制反 码计算出这些16位字的和。

UDP数据报用户数据报协议)

UDP校验

当无差错时其结果全为1,。否则就表明有差错出 现,接收方应该丢弃这个UDP数据报。注意: 1). 校验时,若UDP数据报部分的长度不是偶数个字 节,则需要填入一个全0字节,但是此字节和伪 首部一样,是不发送的。2).如果UDP校验和校验 出UDP数据报是错误的,可以丢弃,也可以交付 上层,但是要附上错误报告,告诉上层这是错误 的数据报。3).通过伪首部,不仅可以检查源端口 号,目的端口号和UDP用户数据报的数据部分, 还可以检查IP数据报的源IP地址和目的地址。这 种差错检验的检错能力不强,但是简单,速度快。

Ung数据报 用户数据报协议

UDP校验示例

计算UDP校验和的例子

10011001	01010010	\rightarrow	153.82
00001000	00101001	\rightarrow	8.41
10101011	00000010	\rightarrow	171.2
00001110	00001010	\rightarrow	14.10
00000000	00010001	\longrightarrow	0 和 17
00000000	00001111	\longrightarrow	15
00000100	00111111	\longrightarrow	1087
00000000	00001101	\longrightarrow	13
00000000	00001111	\longrightarrow	15
00000000	00000000	\rightarrow	0(校验和初始值)
01010100	01000101		T和E
01010011	01010100		S和T
01001001	01001110		I和N
************	~~~~~~~~~		
01000111	00000000	\rightarrow	G 和 0 (填充)
10010110	11101011	求	和结果
01101001	00010100	. 芯	验和iangon com
U A A U A U U A	COCACACO	171100	4000 ATM 4 47 47 47 47 411 1 1 1 1 1 1 1 1 1 1 1

UDP数据报用户数据报协议

4.Packet Tracer 分析UDP报文

网络结构图

1)设置WEB服务器和简单的DNS服务器; 2) 打开PCO浏览器,输入配置Web服务器的Web 地址,如www.tongji.edu.cn,产生UDP数据报文。

UDPIXX

UDPIA 1X

UDPIN 1X

UDPIATX

UDPIXX

UDPIA

PDU Information at Device: Server2								
OSI	SI Model Inbound PDU Details Outbound PDU Details							
_PI	PDU Formats							
	Ethernet II							
	0 4	8		14	19	Bytes		
	PREAMBL 1010101	ST MAC: SRC MAC: 0050.0F15.515B						
	TYPE: 0x800	BLE LENGTH)		FCS: 0x0				
	<u>IP</u> 0 4	8	16 19		21	Bits		
	4 IHL	DSCP: 0x0	I	TL: 61	31	DICS		
	ID: (0x0						
	TTL: 128	C	CHKSUM					
	SRC IP: 192.168.2.12							
		DST IP: 192.168.2.2						
	OPT: 0x0 DATA (VARIABLE LENGTH)				0x0			
	LIDD	SAIA (VAIGA	DEE EENOTH)			l		
	<u>UDP</u>	4.5			Dies			
	0 16 31 Bits SRC PORT: 1034 DEST PORT: 53							
	LENGTH: 0	HECKSUM: 0>						
	DATA (VARIABLE)							
	4 ""						T	
						,		

UDPIAN

UDPIATX

同二二十字取件事例 School of Software Engineering. Tongi University

UDPIAN

UDPIXX

4. Packet Tracer 分析报文 PC1 WEB Browser

5. WireShark UDP报文採取分析

实验主要分析内容

- 1.配置Web服务器,并从客户端查看;
- 2.配置DNS服务器;
- 3.分析在Packet tracer中UDP报文情况;
- 4.用WireShark抓取UDP数据包;
- 5.查看UDP报文字段内容,并解读;

