

Radiation Response of Nickel-Chromium Binary Alloys

S.A. Briggs¹, J. Pakarinen¹, C.M. Barr³, M. Mamivand², D.D. Morgan², M. Taheri³, K. Sridharan¹

University of Wisconsin-Madison

¹Engineering Physics Department

²Materials Science and Engineering Department

Drexel University

3 Materials Science and Engineering Department

Research Motivation

- Austenitic and Ni-based alloys are widely used in steam generators in light water reactors and are candidate materials for in-core applications in next-generation sodium- and molten salt-cooled fast reactors.^{1,2}
- Examples of alloys include: X-750, X-718, IN600, Nimonic PE16, and 304 and 316 stainless steels.
- Radiation response must be understood to design a Ni-based alloy that is well-suited for core components that receive large radiation fluences.
- Examples of radiation damage effects in Ni-based alloys include:
- Dislocation loops typically faulted Frank loops on {111} atomic planes. Primary contributor to radiation-induced hardening and embrittlement effects.³
- Voids empty cavities formed by agglomeration of vacancy-type point defects. Primary contributor to radiation-induced void swelling.
- Radiation-induced segregation (RIS) Composition gradients at point-defect sinks (typically grain boundaries) arising from differences in diffusion rates of alloying elements. Enrichment or depletion of specific elements can result in irradiation-assisted stress corrosion cracking (IASCC).
- Prior radiation effects studied have focused on Nimonic PE16 or austenitic steels.^{4,5}
- Few fundamental studies have investigated how varying Cr content or irradiation conditions can affect formation of these features.

Research Goals

- Investigate composition dependence of defect formation and solute segregation in binary Ni-Cr alloys.
- Cr is usually alloyed to enhance aqueous corrosion resistance, but it detrimental to performance in molten salt environments.⁶
- Study effects of different irradiation conditions (irradiating species and temperature) on resulting microstructure.
- Determining how well ion irradiations simulate the effects of long-term neutron irradiations is important to predicting material performance in reactor environments.
- Microstructural evolution of materials using ion beam irradiation depends on irradiating species, due to differences in dose rate and radiation damage cascade evolution. A schematic of how different particles impart their energy is shown to the right.⁷

Experimental

- Samples
- Bulk Ni-5Cr and Ni-18Cr samples
- ~100-150µm grain size (inverse pole figure maps shown to the right)
- Grain boundaries targeted during TEM sample prep using FIB
- Equipment & Irradiation Treatment
- 3.4 MV Pelletron Tandem Accelerator
- 2.0 MeV protons at 400 & 500°C to 1.6dpa
 6 MV Tandem Van de Graaff Accelerator
- 20 MeV Ni⁴⁺ ions at 500°C
 FEI TITAN Aberration-corrected (S)TEM
- Tecnai-TF30 TEM

Dislocation Loop Analysis

 Frank loops on {111} planes imaged using dark-field relrod imaging techniques.

Void Analysis

Void Density Ni-5Cr: 2.28 ± 0.71 x 10²⁰ m⁻³

Voids imaged using STEM HAADF imaging techniques

RIS Measurements

- Large Cr depleted regions were observed in all materials due to grain boundary migration occurring from long irradiation times (approximately 100 hours) at 500°C.
- Not observed at Σ3 coincidence site lattice (CSL) boundaries, which have different mobilities from other GBs.
- Unirradiated annealing study shows shift in grain size commensurate with the observed depleted region size.

Cluster Dynamics Modeling

- Cluster dynamics (CD) simulations have been employed to investigate dislocation loop nucleation and growth behavior in both Ni-Cr alloys.
- Results demonstrate that changes in Cr content can be accounted for by adjusting the dimer interstitial binding energy.

 Comparison of model results to experimental data is shown to the left.

Conclusions

- Increasing radiation temperature tends to result in a lower density of larger-sized defects.
- Likely due to increased instability of smaller, immature defects resulting from increased thermal emission.
- Changes in Cr content affect nucleation behavior of defects.
- Cluster dynamics (CD) modeling efforts have demonstrated a good fit with experimental data is achieved by varying interstitial binding energy between the two compositions.
- Ni-ion irradiations cause increased in-cascade clustering, but allow less time for defects to agglomerate.
- Demonstrated primarily via higher density of smaller voids in Ni-irradiated specimens.
- RIS analysis revealed a radiation-enhanced GB migration phenomena.
- Potentially the most rapid instance of GB migration ever reported.

Future Work

- Compare results of H⁺ and Ni⁴⁺ ion irradiation to neutron irradiation experiments.
- Ultimate goal of ion irradiation is to emulate radiation damage in reactor environments.
- Extend study to ternary and more advanced alloy systems.
 - Materials used for in-core applications will not be simple binary alloys.
- Results of this study serve to aide in advanced alloy design efforts.

Acknowledgemer

- Equipment and facilities usage for this work is made possible by National Science Foundation Grant Award Number 1105681.
- This research utilized NSF-supported shared facilities at the University of Wisconsin.
- FIB sample preparation was performed at the MaCS Laboratory at the Center for Advance Energy Studies at Idaho National Laboratory.
- This research was performed, in part, using instrumentation (FEI Talos F200X S/TEM) provided by the Department of Energy, Office of Nuclear Energy, Fuel Cycle R&D Program and the Nuclear Science User Facilities.
- S. Briggs is supported by a Department of Energy Nuclear Energy University Program Graduate Fellowship.

References

- [1] T. Yonezawa, Comprehensive Nuclear Materials, 234 (2012), Oxford, UK: Elsevier.
- [2] Y. Guérin, G.S. Was, S.J. Zinkle, MRS Bulletin 34 10 (2009).
- [3] D.J. Edwards, E.P. Simonen, S.M. Bruemmer, *Journal of Nuclear Materials* 317 13 (2003).
- [4] R.M. Boothby, *Journal of Nuclear Materials* 230 148 (1996).
- [5] F.A. Garner, W.G. Wolfer, *Journal of Nuclear Materials* **123** 201 (1984).
- [6] W.D. Manly et al., Construction Materials for Molten-Salt Reactors, 595 (1958), New York, NY: Addison-Wesley.
- [7] G.S. Was, T. R. Allen, *Journal of Nuclear Materials* **205** 332 (1993).