Contact Hours: 39

Course Learning Objectives (CLOs): This course focuses on the following learning perspectives:

- Analyze the performance of algorithms.
- Demonstrate familiarity with major algorithms and data structures.
- Apply important algorithmic design paradigms and methods of analysis.

Course Outcomes (COs):

	iption of the Course Outcome:	Mapping to POs(1-12) / PSOs (13-16)						
At the able to	end of the course the student will be :	Substantial Level (3)	Moderate Level (2)	Slight Level (1)				
CO-1	Explain the importance of algorithmic/mathematical approach	-	1	-				

II Year B. E. (CSE): 2023-24 555

SDMCET: Syllabus

	in solving different types of problems.					
CO-2	Analyze time and space complexity for a given algorithm.	2	-	1		
CO-3	Apply and analyze brute force technique and compare it with other techniques.	2	5	3,13		
CO-4	Apply and analyze divide and conquer technique and compare it with other techniques.	2	5	3,13		
CO-5	Apply and analyze greedy technique and compare it with other techniques.	2	5	3,13		
CO-6	Apply and analyze dynamic programming technique and compare it with other techniques.	2	5	3,13		
CO-7	Apply and analyze backtracking and branch & bound technique and compare it with other techniques.	2	5	3,13		

POs/PSOs	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Mapping Level	1.5	3.0	1.0	-	2.0	-	-	-	-	- ,	1 -	-	1.0	-	-	-0

Pre-requisites: Knowledge of Discrete Mathematics and Data Structures

Contents:

Unit-I

Introduction: Algorithm, Fundamentals of problem solving, Problem types, Principles of Algorithm Design. Analysis framework, Asymptotic notations, Mathematical analysis of Non recursive algorithms, Recurrence relations; Mathematical analysis of recursive algorithms.

Brute force strategy: Selection Sort, Bubble sort, String matching

7 Hrs

Unit-II

Divide and Conquer: Introduction and General method, Binary search, Merge sort, Quick sort, Matrix multiplication using Stressen's Matrix multiplication.

Basic Traversal and search techniques: Depth First search, Breadth First Search, Topological Sorting.

8 Hrs

Unit-III

SDMCET: Syllabus

Dynamic Programming: Introduction and General method, Computing a binomial coefficient, Warshall's algorithm, Floyd's algorithm, Knapsack problem. **8 Hrs**

Unit-IV

Greedy Strategy: Introduction and General Method, Job sequencing with dead-lines, min cost spanning tree (Prim's & Kruskal's), Single Source Shortest Path. Huffman Tree. **8 Hrs**

Unit-V

Back tracking and Branch and Bound: Introduction General Method for both strategies Back Tracking: Sum of Sub sets, Knapsack problem, Traveling Sales person (TSP).

Limitations of Algorithm Power: Lower bound arguments, decision trees, P, NP and NP Complete Problems.

8 Hrs

Reference Books:

- Anany Levitin, "Introduction to the Design and analysis of algorithms", 3/E, Pearson Education, 2011
- 2) Horowitz, Sahani et.al "Fundamentals of Computer Algorithms", 2/E, Galgotia Publication, 2004.
- 3) Marks Allen Weiss, "Data Structure and Algorithm Analysis", 3/E, Pearson Education, 2009
- 4) Thomas H.Cormen, Charles E.Leiserson & Ronald L. Rivest, "Introduction to Algorithms", 2/E, Prentice Hall of India, 2003.