Cluster Quality

1. Defining Cluster Validity

Cluster Validity

- For supervised classification we have a variety of measures to evaluate how good our model is
 - Accuracy, precision, recall
- For cluster analysis, the analogous question is how to evaluate the "goodness" of the resulting clusters?
- But "clusters are in the eye of the beholder"!
- Then why do we want to evaluate them?
 - To avoid finding patterns in noise
 - To compare clustering algorithms
 - To compare two sets of clusters
 - To compare two clusters

Clusters found in Random Data

Cluster Quality Defining Cluster Validity AW

Different Aspects of Cluster Validation

- 1. Determining the clustering tendency of a set of data, i.e., distinguishing whether non-random structure actually exists in the data.
- 2. Comparing the results of a cluster analysis to externally known results, e.g., to externally given class labels.
- 3. Evaluating how well the results of a cluster analysis fit the data without reference to external information.
 - Use only the data
- 4. Comparing the results of two different sets of cluster analyses to determine which is better.
- 5. Determining the 'correct' number of clusters.

 For 2, 3, and 4, we can further distinguish whether we want to evaluate the entire clustering or just individual clusters.

Measuring Clustering Tendency

- Clustering algorithm will find clusters in any data. Is our data random?
 - If random means fitting a given model (i.e. known spatial distribution) need to estimate parameters and evaluate statistical significance
 - If random data means distributed uniformly at random (special, but ubiquitous case of the above) then can use Hopkins statistics.
 - For $D \subset \mathbb{R}^n$ be the set of data points, do the following:
 - 1. Take a sample S, of |S| = p points in D;
 - 2. Generate a set $B = \mathbb{R}^n$ uniformly at random over the range of D, such that |D| >> |B|, but |B| > p
 - 3. Take a sample S' of points in B that has same size as S
 - 4. For each point x_i in S compute its nearest neighbor distance w_i in D
 - 5. For each point y_i compute its nearest neighbor distance u_i in B

6. Compute tendency
$$H = \frac{\sum_{i=1}^{p} w_i}{\sum_{i=1}^{p} u_i + \sum_{i=1}^{p} w_i}$$

Measures of Cluster Validity

- Numerical measures that are applied to judge various aspects of cluster validity, are classified into the following three types.
 - External Index: Used to measure the extent to which cluster labels match externally supplied class labels.
 - Entropy
 - Internal Index: Used to measure the goodness of a clustering structure without respect to external information.
 - Sum of Squared Error (SSE)
 - Relative Index: Used to compare two different clusterings or clusters.
 - Often an external or internal index is used for this function, e.g., SSE or entropy
- Sometimes these are referred to as criteria instead of indices
 - However, sometimes criterion is the general strategy and index is the numerical measure that implements the criterion.

1. Defining Cluster Validity

2. Validity via Matrix Correlation

Cluster Validity Via Correlation

- Two matrices
 - Proximity Matrix
 - "Incidence" Matrix
 - One row and one column for each data point
 - An entry is 1 if the associated pair of points belong to the same cluster (each cluster is a complete graph)
 - An entry is 0 if the associated pair of points belongs to different clusters (each cluster is a separate connected component)
- Measuring correlation between proximity and incidence matrix:
 - If the matrix structure of proximity matrix is unimportant (e.g. spatial data), then treat matrices as vectors (flatten using as.vector in R) and compute correlation between vectors
 - If matrix structure is important (e.g. observations of multi-dimensional process in time) then compute canonical correlations

ICluster Validity Via Correlation – cont.

- Compute the correlation between the two matrices
 - Since the matrices are symmetric, only the correlation between n(n-1) / 2 entries needs to be calculated.
- High correlation indicates that points that belong to the same cluster are close to each other.
- Not a good measure for some density or contiguity based clusters.

Cluster Validity Via Correlation - continued

 Correlation of incidence and proximity matrices for the Kmeans clusterings of the following two data sets.

Corr = -0.5810

Framework for Cluster Validity

- Need a framework to interpret any measure.
 - For example, if our measure of evaluation has the value, 10, is that good, fair, or poor?
- Statistics provide a framework for cluster validity
 - The more "atypical" a clustering result is, the more likely it represents valid structure in the data
 - Can compare the values of an index that result from random clustering to those of a clustering result.
 - If the value of the index is unlikely, then the cluster results are valid
 - These approaches are more complicated and harder to understand.
- For comparing the results of two different sets of cluster analyses, a framework is less necessary.
 - However, there is the question of whether the difference between two index values is significant

Statistical Framework for Correlation

- Correlation of incidence and proximity matrices for the K-means clustering of the following two data sets.
- Histogram: correlation of three clusters vs. 500 sets of random data points size 100 distributed over the range 0 1,0 for (x,y) values

- 1. Defining Cluster Validity
- 2. Validity via Matrix Correlation

3. Visualization of Validity

 Order the similarity matrix with respect to (manual) cluster labels and inspect visually.

Cluster Quality

- Clusters in random data are not so crisp
 - Cluster identification using DBSCAN

DBSCAN

- Clusters in random data are not so crisp
- Cluster identification using 3-means

K-means

- Clusters in random data are not so crisp
 - Cluster identification using Complete Graph

Complete Graph

- Clusters in meaningful data test
 - Cluster identification using DBSCAN

DBSCAN

1. Defining Cluster Validity

2. Validity via Matrix Correlation

3. Visualization of Validity

4. Internal Measures

Internal Measures: Cohesion and Separation

- Cluster Cohesion: Measures how closely related are objects in a cluster
- Cluster Separation: Measures how distinct or well-separated a cluster is from other clusters
- Two classes of measures prototype based and graph based

Internal Measures: Graph Cohesion/Separation

- Let D be data, G_D proximity graph
- Cluster Ci = subgraph induced by data points in C_i
- Graph-based cohesion:
 - Cohesion of a cluster C_i $Coh_G(C_i) = w_i \sum_{x,y \in C_i} prox(x,y)$ or total weighted edge capacity (distance) of a subgraph C_i
 - Total cohesion $Coh_G = \sum_i Coh_G(C_i)$
- Graph based separation:
 - $Sep_G(C_i, C_j) = w_{ij} \sum_{x \in C_i, y \in C_j} prox(x, y)$ or the weighted capacity (distance) of the cut separating C_i and C_j
 - Total separation $Sep_G = \sum_i \sum_j Sep_G(C_i, C_j)$

cohesion

separation

Internal Measures: Prototype Cohesion/Separation

• Prototypes = centroids or medoids. Cohesion (with prototypes): $Coh_p(Ci) = \sum_{y \in Ci} w_i prox(c_i, y)$ where c_i —centroid/medoid of cluster C_i and w_i —weight assigned to a cluster

Example: Within-cluster Squared Error: Cohesion is measured by the within cluster sum of squares (SS) where

$$prox(x, y) = ||x - y||^2$$
, i.e.

$$Coh_{WSE}(C_i) = \sum_{x \in C_i} ||x - c_i||^2$$

Then total cohesion is $Coh_{WSE} = \sum_{i} Coh_{WSE}(C_i)$

Separation (with prototypes)

 $Sep_p(C_i) = \sum_{i=1}^{k} w_i prox(c_i, c)$ where c is overall centroid

Example: Total Separation by Between-cluster Sum of Squares.

Weight in cluster separation is its size: $Sep_{BSS}(C_i) = |C_i| ||c_i - c||$, where |Ci| is the size of cluster i.

So total separation is $Sep_{BSS} = \sum_{i} Sep_{BSS}(C_i)$

Internal Measures: Cohesion and Separation

Example: prox = SS

Total sum of squares TSS=BSS + WSE =constant

- K=1 one cluster:
 - $Coh_{WSE} = (1-3)^2 + (2-3)^2 + (4-2)^2 + (5-3)^2 = 10$
 - $Sep_{BSS} = 4 \times (3 3) = 0$
 - TSS = 10 + 0
- K=2 –two clusters:
 - $Coh_{WSE} = (1-1.5)^2 + (2-1.5)^2 + (4-4.5)^2 + (5-4.5)^2 = 1$
 - $Sep_{BSS} = 2 \times (3 1.5)^2 + 2 \times (4.5 3)^2 = 9$
 - TSS = 1 + 9 = 10

SS ⇒ Graph Cohesion = Prototype Cohesion

• Let prox function be SS and weight of each pair of points in a cluster be $\frac{1}{2|C_i|}$

$$\begin{aligned}
\mathbf{Coh} \; (C_i) &= \frac{1}{2 \mid C_i \mid} \sum_{x,y \in C_i} (x - y)^2 = \frac{1}{2 \mid C_i \mid} \sum_{x,y \in C_i} ((x - c_i) - (y - c_i))^2 \\
&= \frac{1}{2 \mid C_i \mid} \left(\sum_{x,y \in C_i} (x - c_i)^2 - 2 \sum_{x,y \in C_i} (x - c_i) (y - c_i) + \sum_{x,y \in C_i} (y - c_i)^2 \right) \\
&= \frac{1}{2 \mid C_i \mid} \left(\mid C_i \mid \sum_{x \in C_i} (x - c_i)^2 + \mid C_i \mid \sum_{y \in C_i} (y - c_i)^2 \right) = \sum_{x \in C_i} (x - c_i)^2 \\
&= SSE(C_i)
\end{aligned}$$

where

$$\sum_{x,y \in C_i} (x - c_i)(y - c_i) = \sum_{x \in C_i} x \sum_{y \in C_i} y - \sum_{x \in C_i} x \sum_{y \in C_i} c_i - \sum_{x \in C_i} c_i \sum_{y \in C_i} y + \sum_{x \in C_i} c_i \sum_{y \in C_i} c_i$$

$$= |C_i| c_i |C_i| c_i - 2 |C_i| c_i \sum_{y \in C_i} c_i + \sum_{x \in C_i} c_i \sum_{y \in C_i} c_i = 0$$

25

Internal Measures: SSE

- Clusters in more complicated figures aren't well separated
- Internal Index: Used to measure the goodness of a clustering structure without respect to external information
 - SSE
- SSE is good for comparing two clusterings or two clusters (average SSE).
- Can also be used to estimate the number of clusters

26

Internal Measures: SSE

SSE curve for a more complicated data set

SSE of clusters found using K-means

Statistical Framework for SSE

- Example
 - Compare SSE of 0.005 of three clusters against random data
 - Histogram: SSE of three clusters vs. 500 sets of random data points size 100 distributed over the range 0.2 – 0.8 for (x,y) values

Cluster Quality Internal Measures AW

Silhouette Coefficient

- Silhouette Coefficient combine ideas of both cohesion and separation, but for individual points, as well as clusters and clusterings. For individual point x:
 - •Cohesion a(x): average distance of x to all other vectors in the same cluster.
 - •Separation b(x): average distance of x to the vectors in other clusters. Find the minimum among the clusters.

b

a

silhouette

$$s(x) = \frac{b(x) - a(x)}{\max\{a(x), b(x)\}}$$

•s(x) = [-1, +1]: -1=bad, 0=indifferent, 1=g

Silhouette coefficient (SC):

Type equation here.

Cophenetic Matrix – Example: Single Link

	I 1	12	I 3	I 4	I 5	
11	1.00	0.90	0.10	0.65	0.20 0.50 0.30 0.80 1.00	
\mathbb{Z}	0.90	1.00	0.70	0.60	0.50	
\mathbb{I}_{3}	0.10	0.70	1.00	0.40	0.30	
14	0.65	0.60	0.40	1.00	0.80	
1 5	0.20	0.50	0.30	0.80	1.00	

	p1	p2	рЗ	p4	р5
p1		0.9	0.7	0.65	0.65
p2			0.7	0.65	0.65
р3				0.65	0.65
p4					0.8
p5					

Cophenetic Matrix

Cophenetic correlation coefficient – computed between cophenetic matrix and original similarity matrix

30

- 1. Defining Cluster Validity
- 2. Cluster Validity via Matrix Correlation
- 3. Visualization of Validity
- 4. Internal Measures
- 5. External Measures

External Measures of Cluster Validity: Entropy and Purity

Cluster	Entertainment	Financial	Foreign	Metro	National	Sports	Entropy	Purity
1	3	5	40	506	96	27	1.2270	0.7474
2	4	7	280	29	39	2	1.1472	0.7756
3	1	1	1	7	4	671	0.1813	0.9796
4	10	162	3	119	73	2	1.7487	0.4390
5	331	22	5	70	13	23	1.3976	0.7134
6	5	358	12	212	48	13	1.5523	0.5525
Total	354	555	341	943	273	738	1.1450	0.7203

Table 5.9. K-means Clustering Results for LA Document Data Set

entropy For each cluster, the class distribution of the data is calculated first, i.e., for cluster j we compute p_{ij} , the 'probability' that a member of cluster j belongs to class i as follows: $p_{ij} = m_{ij}/m_j$, where m_j is the number of values in cluster j and m_{ij} is the number of values of class i in cluster j. Then using this class distribution, the entropy of each cluster j is calculated using the standard formula $e_j = \sum_{i=1}^{L} p_{ij} \log_2 p_{ij}$, where the L is the number of classes. The total entropy for a set of clusters is calculated as the sum of the entropies of each cluster weighted by the size of each cluster, i.e., $e = \sum_{i=1}^{K} \frac{m_i}{m} e_j$, where m_j is the size of cluster j, K is the number of clusters, and m is the total number of data points.

purity Using the terminology derived for entropy, the purity of cluster j, is given by $purity_j = \max p_{ij}$ and the overall purity of a clustering by $purity = \sum_{i=1}^{K} \frac{m_i}{m} purity_j$.

Cluster Quality External Measures AW

More External Measures of Cluster Validity

- Similarity-Oriented
 - From cluster labels compute ideal cluster matrix (i.e. block matrix, C(x,y) = 1 if x,y belongs to same cluster and C(x,y) = 0 otherwise)
 - From class labels compute class matrix (same computation)
 - Rand statistic= $(f_{00} + f_{11})/(f_{00} + f_{01} + f_{10} + f_{11})$
 - Jaccard coefficient = $f_{11}/(f_{00} + f_{01} + f_{10} + f_{11})$

Cluster Quality External Measures AW

Cluster Validity for Hierarchical Clustering

- The idea: for each class there must be at least one cluster that is good w.r.t. a chosen measure. So we take a cluster that is best w.r.t. this measure and then combine these using weighted average of all per-class measures
 - if chosen measure is purity then $\sum_{j=1}^k {m_j \choose m} \max_i p_{ij} \text{ where } p_{ij} \text{ frequency of class } i \text{ in cluster } j$
 - If chosen measure is F-measure then

$$\sum_{j=1}^{k} \left(\frac{m_j}{m}\right) \max_i F_{ij}$$
 where

- For each class *j* maximum is taken over all clusters;
- $F_{ij} = \frac{2p_{ij}r_{ij}}{p_{ij}+r_{ij}}$ measures the extent to which cluster i contains only class j
- For each class j and cluster i recall r_{ij} is fraction of class j contained in cluster i, i.e. $r_{ij} = \frac{m_{ij}}{m_i}$;

Final Comment on Cluster Validity

"The validation of clustering structures is the most difficult and frustrating part of cluster analysis.

Without a strong effort in this direction, cluster analysis will remain a black art accessible only to those true believers who have experience and great courage."

Algorithms for Clustering Data, Jain and Dubes

Cluster Quality External Measures AW

Reading

• 8.5