

DTI 5126: Fundamentals for Applied Data Science

Summer 2021 - Assignment 3

Name: Yomna Jehad Abdelsattar

Part A: Clustering

1) K-means Clustering

a)
$$k = 4$$
.

• Selected only "Sex" and "age".

•	male	\$	age	÷
1		1		39
2		0		46
3		1		48
4		0		61
5		0		46
6		0		43
7		0		63
8		0		45

• Standardized "age".

•	male [‡]	age [‡]
1	1	-1.23413741
2	0	-0.41761493
3	1	-0.18432280
4	0	1.33207609
5	0	-0.41761493
6	0	-0.76755314

• Specified number of classes (k) = 4 and applied k-means clustering.

> table(Cluster_kmean\$cluster,fram\$TenYearCHD)

	0	1
1	934	41
2	808	313
3	1029	194
4	825	96

By looking at the plot, we can tell that the algorithm clustered the data in 4 groups:

- Group of young males
- Group of young females
- Group of middle aged people
- Group of old people

And it also shows that people with TenYearCHD are mainly old people.

- **b)** Apply the elbow method to determine the best k.
 - Best k result = 6 clusters (By looking at this graph)

• Apply k-means again.

By looking at the plot, to me, this clustering makes sense (6 Groups):

- A group for young males.
- A group for young females.
- A group for middle aged males.
- A group for middle aged females.
- A group for old males.
- A group for old females.

And as previously mentioned, people with TenYearCHD are mainly in the old groups.

c) Evaluate quality of the cluster using the Silhouette Coefficient method.

I tried out many number of clusters to calculate their silhouette score and the plot was as follows:

However, by carefully looking at these results, it turns out that the best number of clusters according to the highest silhouette score is either 7 or 8 clusters, and not 6 as I anticipated from the elbow plot.

2) Hierarchical Clustering

- a) Single linkage
 - Derivation

<u> </u>	00	13	45	6	(73)	9
3	0					
45	2015	0				
	101	90	0			
(F)3)	140 -	100	36	0		
9	175	155	75	39	0	
-			110	74	27	0
00	103	95	6	100	9	
(163)	0		1	1		11 110 11
4)5)	40	0	1		1	
73	- 81	36	6			
9	120	75	1	_0		
-	155	110	74	12715	0	
	123		3 6	73	9	
123	0					
45	40	()		1		
(6)	81	136		34		
(F89)	120	7-5	39	0		
	92(3)	1 (45	1 (G)	39		
	CAS	100	0 0			
123	0					
436	40	- 0				
73(9)	120	1 30	TE !	0		
20	1)23	(6690	(9)		
123	860 140	11	0			
4567	P 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	95	0	THE REAL PROPERTY.	The same	

• Dendrogram

b) Complete linkage

Derivation

1000						
900	123	95	16	(F)D	19	
(12)3	70					
96	111	41	0			
9	185	115	47 74	(35)=	0	
	1 023	(4)5)	6	339		
023	70		0	1000		
95	111	141/5	0			
339	185	115	74	0		
	023	956	133	0		
023	111		(10)			
956	185	115	0			
	5 6		6	9		
		456	789			
12345 739	B (9	85 =	0			
233	12					
1000						

• Dendrogram

Part B: Model Evaluation & Performance Improvement

a) Partition data 67% training set and 33% test set.

① test_set	2324 obs. of 21 variables
<pre>train_set</pre>	4719 obs. of 21 variables

• Bar graph with the results.

Dataset split distribution

As shown in the bar graph, the ratio between training set and test set as requested.

- b) Rebalance data.
 - Identify total number of training set records.

```
> nrow(train_set)
[1] 4719
> |
```

• Identify the number of "YES" Churn values in the training set.

old_yes_train_set_no	Named int 1252
:	

• In order to have a "YES" Churn percentage of 30% in the training dataset, calculate the number of "YES" Churn records that need to be resampled.

```
#
old_yes_train_set_no = table(train_set$Churn)["Yes"]
old_yes_train_set_ratio = old_yes_train_set_no / nrow(train_set)
no_to_yes_resample_ratio = 0.3 - old_yes_train_set_ratio
no_to_yes_resample_no = no_to_yes_resample_ratio * nrow(train_set)
new_yes_train_set_no = nrow(train_set) - table(train_set$Churn)["No"] + no_to_yes_resample_no
new_yes_train_set_ratio = new_yes_train_set_no/ nrow(train_set)
```

As a result of these calculations, the number of "Yes" Churn records that need to be resampled = 164

new_yes_train_set_no	Named num 1416
new_yes_train_set_rat	Named num 0.3
no_to_yes_resample_no	Named num 164
no_to_yes_resample_ra…	Named num 0.0347
old_yes_train_set_no	Named int 1252
old_yes_train_set_rat	Named num 0.265

c) Resample and confirm.

After resampling using the ROSE package,

```
> table(data.balanced.under$Churn)
No Yes
3461 1473
```

To further confirm the desired ratios:

```
new_new_yes_train_set_no = table(data.balanced.under$Churn)["Yes"]
new_new_yes_train_set_ratio = new_new_yes_train_set_no / nrow(data.balanced.under)
```

new_new_yes_train_set_no	Named int 1473
new_new_yes_train_set_ratio	Named num 0.299

New percentage is 0.299 (approximately 30%).

d) Decision tree

• Tree plot

Confusion matrix

CONFUSION MATRIX

DETAILS

0.87	0.844	0.857
	Kappa	
	0.436	
		0.436

- e) Ensemble method: Random forest.
 - Initial model with default hyperparameters

DETAILS

Sensitivity	Specificity	Precision	Recall	F1
0.904	0.488	0.83	0.904	0.865
	Accuracy		Kappa	
	0.793		0.426	
	0.700		0.420	

• Hyperparameters tuning (increased ntree = 100)

CONFUSION MATRIX

DETAILS

Sensitivity	Specificity	Precision	Recall	F1
0.849	0.647	0.889	0.849	0.868
	Accuracy		Карра	
	0.802		0.471	

 Model comparison By simple tuning to the hyperparameter the accuracy, we managed to increase the overall accuracy and specificity. However we notice that sensitivity (recall) has decreased. This is the effect of the ntree hyperparameter I chose to tune.

I tried to tune the model at ntree= 20 and ntree = 200 as well, the accuracy turned out to be 0.791 and 0.797 respectively, the other metricies did not vary significantly either. So i concluded that ntree = 100 is quite a good place to avoid overfitting as it's known that generally increasing the number of trees or depth of a tree makes it prone to overfitting.

- f) Ensemble method vs Decision tree: Confusion matrix
 - Accuracy, Sensitivity and Specificity.
 By looking at the confusion matrix provided after each model,
 We can conclude that the ensemble model (Random Forest) got better overall accuracy and F1 Scores than the normal decision tree model.
 However when it comes to sensitivity and specificity it significantly got better which is a good sign for model generalization ability.

Best model

To choose the best model, we need to have a criteria. For the Churn prediction problem. I believe that the company would like to accurately predict the number of customers who will actually churn (True positives) and decrease the falsely predicted as positive churn customers (False Positive) because the company will most probably send marketing items to the churn potential clients which will cost them money.

That being said; I think the most important metric here is the one that minimizes the False Positive: Precision.

By looking at the confusion matrices:

Decision Tree: 0.87

Initial Random Forest: 0.83
Tuned Random Forest: 0.889

Thus, the best model is the Tuned Random Forest.

Worst model is: Initial random forest.

g) Ensemble method vs Decision tree: ROC analysis

• Decision Tree: GREEN

- Ensemble without hyperparameter tuning: RED
- Ensemble with hyperparameter tuning: BLUE

The best model will be the model with the biggest area under the curve (AUC). By looking at the overlapped plot, the Blue one has the largest area, thus, the ensemble with hyperparameter tuning is the best model.