Satisfacibilidad y consecuencia lógica

Clase 5

IIC 1253

Prof. Sebastián Bugedo

Outline

Obertura

Satisfacibilidad

Formas normales

Consecuencia lógica

Epílogo

Primer Acto: Fundamentos Inducción y lógica

Playlist Primer Acto

Playlist del curso: DiscretiWawos

Además sigan en instagram:

@orquesta_tamen

Definición

Un conjunto de conectivos lógicos se dice **funcionalmente completo** si toda fórmula en $\mathcal{L}(P)$ es lógicamente equivalente a una fórmula que sólo usa esos conectivos.

Ejemplo

El conjunto $C = \{\neg, \land, \lor\}$ es funcionalmente completo, pues para toda fórmula φ , se tiene que

$$\varphi \equiv \bigvee_{\substack{j=1\dots 2^n\\\sigma_j(\varphi)=1}} \left(\left(\bigwedge_{\substack{i=1\dots n\\\sigma_j(p_i)=1}} p_i \right) \wedge \left(\bigwedge_{\substack{i=1\dots n\\\sigma_j(p_i)=0}} (\neg p_i) \right) \right)$$

Ejercicios

- 1. Demuestre que $\{\neg, \land\}$, $\{\neg, \lor\}$ y $\{\neg, \rightarrow\}$ son funcionalmente completos.
- 2. Demuestre que $\{\neg\}$ no es funcionalmente completo.
- 3. ¿Es $\{\land, \lor, \rightarrow, \leftrightarrow\}$ funcionalmente completo?

Ya demostramos 1.c. Ahora demostraremos 2. El resto quedan propuestos \bigstar !

Ejercicio 2.

Demostraremos que $\{\neg\}$ no es funcionalmente completo.

Dado $P = \{p\}$, demostraremos por inducción que toda fórmula en $\mathcal{L}(P)$ construida usando sólo p y \neg es lógicamente equivalente a p o a $\neg p$. Como ninguna de estas fórmulas es equivalente a $p \land \neg p$, se concluye que $\{\neg\}$ no puede ser funcionalmente completo.

Esta demostración es "negativa" ... daremos un caso en que **no se cumple** la definición de funcionalmente completo

Ejercicio 2.

Demostraremos la propiedad

$$P(\varphi) := \varphi$$
 es equivalente a p o a $\neg p$

- BI: Si $\varphi = p$, con $p \in P$, la propiedad se cumple trivialmente.
- HI: Supongamos que $\varphi \in L(P)$ construida usando sólo p y ¬ es equivalente a p o a ¬p.

Estamos acotando las tablas de verdad que son posibles en $\{\neg\}$

Ejercicio 2.

■ **TI:** El único caso inductivo que tenemos que demostrar es $\psi = \neg \varphi$, pues sólo podemos usar el conectivo ¬.

Por **HI**, sabemos que para toda valuación σ se cumple que $\sigma(\varphi) = \sigma(p)$ o $\sigma(\varphi) = \sigma(\neg p)$. Podemos hacer una tabla de verdad:

$$\begin{array}{c|cc}
\varphi & \psi = \neg \varphi \\
\hline
p & \neg p \\
\neg p & p
\end{array}$$

Concluimos que ψ es equivalente a p o a $\neg p$.

Como la fórmula $\psi = p \land \neg p$ no es equivalente a ninguna fórmula que solo usa símbolos de $\{\neg\}$, tenemos que $\{\neg\}$ no es funcionalmente completo.

Objetivos de la clase

- □ Comprender el concepto de satisfacibilidad de fórmulas y conjuntos
- □ Aplicar lógica para modelar problemas
- Conocer las formas normales
- Comprender concepto de consecuencia lógica
- □ Demostrar consecuencias lógicas sencillas

Outline

Obertura

Satisfacibilidad

Formas normales

Consecuencia lógica

Epílogo

Definición

Una fórmula φ es satisfacible si existe una valuación σ tal que $\sigma(\varphi)$ = 1.

Ejemplo

Las siguientes fórmulas son satisfacibles:

$$(p \lor q) \to r$$
$$p \to \neg p$$

Las siguientes fórmulas no son satisfacibles:

$$p \land \neg p$$
$$(p \lor q) \leftrightarrow \neg (p \lor q)$$

Una fórmula es satisfacible si hay algún "mundo" en el cual es verdadera

El problema de satisfacibilidad

Problema de satisfacibilida (SAT)

Sea φ una fórmula proposicional. El problema de satisfacibilidad consiste en determinar si φ es satisfacible o no.

Este es un problema central en computación

- Permite resolver problemas fuera de la lógica...
- ... usando modelación en lógica proposicional

¿Es un problema difícil? ¿Cómo se resuelve?

Modelación en lógica proposicional

Ejercicio

Sea M un mapa conformado por n países. Decimos que M es 3-coloreable si se pueden pintar todos los países con 3 colores sin que ningún par de países adyacente tenga el mismo color. En otras palabras, los países vecinos deben tener colores distintos.

Dado un mapa M, construya una fórmula $\varphi \in \mathcal{L}(P)$ tal que M es 3-coloreable si y sólo si φ es satisfacible.

La fórmula φ debe **codificar** los requisitos y estructura del problema

Ejercicio (mapa 3-coloreable)

Sea M el mapa. Consideremos la lista de países $\{1, 2, ..., n\}$ y una lista de pares de países adyacentes $A = \{(i, j), (k, m), ...\}$.

Seguiremos la siguiente estrategia para resolver el problema

- 1. Definición de variables proposicionales
 - · Variables predefinidas por el problema
 - Variables que hay que asignar
- 2. Construcción de restricciones a través de fórmulas proposicionales
- 3. Demostración de que φ cumple lo pedido (si y solo si)

Ejercicio (mapa 3-coloreable)

Primero, definimos las variables proposicionales. Usamos dos tipos de variables:

Para $1 \le i, j \le n$ definimos

$$p_{ij} = \begin{cases} 1 & \text{si } i \text{ es adyacente con } j \\ 0 & \text{si no} \end{cases}$$

Observamos que cada p_{ij} se conoce de antemano una vez que conocemos el mapa M. Debemos **inicializarlas**.

Análogamente, para $1 \le i \le n$ definimos

$$r_i$$
 b_i g_i

que valen 1 si el país i es pintado rojo, azul o verde respectivamente, y 0 en caso contrario. Estas variables deben ser **determinadas** para resolver el problema.

¿Qué restricciones son naturales para este problema?

Ejercicio (mapa 3-coloreable)

Para representar el problema vamos a definir φ como la conjunción de las siguientes fórmulas.

"Cada país tiene uno y solo un color"

$$\varphi_{C} = \bigwedge_{i=1}^{n} \left(\left(r_{i} \vee b_{i} \vee g_{i} \right) \wedge \left(r_{i} \rightarrow \left(\neg b_{i} \wedge \neg g_{i} \right) \right) \wedge \left(b_{i} \rightarrow \left(\neg r_{i} \wedge \neg g_{i} \right) \right) \right) \wedge \left(g_{i} \rightarrow \left(\neg r_{i} \wedge \neg b_{i} \right) \right)$$

"Países adyacentes deben tener colores distintos"

$$\varphi_{D} = \bigwedge_{i=1}^{n} \bigwedge_{j=1}^{n} \left(p_{ij} \to \left((r_{i} \to \neg r_{j}) \land (b_{i} \to \neg b_{j}) \land (g_{i} \to \neg g_{j}) \right) \right)$$

Ejercicio (mapa 3-coloreable)

■ Inicializamos las variables conocidas por la instancia M del problema

$$\varphi_M = \bigwedge_{(i,j)\in A} p_{ij} \wedge \bigwedge_{(i,j)\notin A} \neg p_{ij}$$

Entonces, nuestra fórmula será la conjunción de las fórmulas anteriores:

$$\varphi = \varphi_C \wedge \varphi_D \wedge \varphi_M$$

Ahora demostraremos que M es 3-coloreable si y sólo si φ es satisfacible.

Debemos demostrar dos direcciones

Ejercicio (mapa 3-coloreable)

 (\Rightarrow) **P.D.** Si M es 3-coloreable, entonces φ es satisfacible.

Supongamos que M es 3-coloreable. Luego, existe una coloración válida para M.Construimos una valuación σ según

$$\sigma(p_{ij}) = \begin{cases} 1 & \text{si } i, j \text{ son adyacentes en } M \\ 0 & \text{en otro caso} \end{cases}$$

$$\sigma(r_i) = \begin{cases} 1 & \text{si } i \text{ es rojo en la coloración de } M \\ 0 & \text{en otro caso} \end{cases}$$

$$\sigma(b_i) = \begin{cases} 1 & \text{si } i \text{ es azul en la coloración de } M \\ 0 & \text{en otro caso} \end{cases}$$

$$\sigma(g_i) = \begin{cases} 1 & \text{si } i \text{ es verde en la coloración de } M \\ 0 & \text{en otro caso} \end{cases}$$

Esta dirección consiste en construir una valuación que satisface φ

Ejercicio (mapa 3-coloreable)

(⇒) (continuación) Ahora verificamos que $\sigma(\varphi)$ = 1:

- $\sigma(\varphi_C)$: para cada país i, se debe cumplir que $\sigma(r_i) = 1$, o que $\sigma(g_i) = 1$, o que $\sigma(b_i) = 1$, y solo una de estas, por construcción de σ . Luego, es claro que $\sigma(\varphi_C) = 1$.
- $\sigma(\varphi_D)$: para cada combinación de países i,j, sabemos que $\sigma(p_{ij})=1$ solo cuando los países son adyacentes. Entonces, como en φ_D tenemos una implicancia, solo nos preocuparemos de los pares de países adyacentes. En el consecuente de la implicancia, sabemos que si por ejemplo $\sigma(r_i)=1$, se debe cumplir que $\sigma(r_j)=0$, dado que construimos σ a partir de una 3-coloración. Para las otras dos implicancias, sabemos que el lado izquierdo va a ser falso (por la fórmula φ_C), y por lo tanto todo el lado derecho se hace verdadero, y entonces $\sigma(\varphi_D)=1$. El análisis para cuando i es de otro color es análogo.

Ejercicio (mapa 3-coloreable)

- (⇒) (continuación)
 - $\sigma(\varphi_M)$: por construcción de σ es claro que $\sigma(\varphi_M)$ = 1, dado que la construimos precisamente como esta fórmula, asignando 1 a pares de países adyacentes y 0 a los que no.

Finalmente, como φ es la conjunción de las fórmulas anteriores, concluimos que $\sigma(\varphi)=1$, y entonces φ es satisfacible.

La dirección opuesta comienza suponiendo que φ es satisfacible

Ejercicio (mapa 3-coloreable)

(\Leftarrow) **P.D.** Si φ es satisfacible, entonces M es 3-coloreable.

Supongamos que φ es satisfacible. Luego, existe una valuación σ tal que $\sigma(\varphi) = 1$, y por construcción $\sigma(\varphi_C) = \sigma(\varphi_D) = \sigma(\varphi_M) = 1$. Usaremos esta valuación para colorear el mapa.

En primer lugar, como $\sigma(\varphi_C)=1$, sabemos que para cada i, $\sigma(r_i\vee g_i\vee b_i)=1$, y por lo tanto cada país tiene asignado al menos un color. Sin pérdida de generalidad, supongamos que $\sigma(r_k)=1$, es decir, pintamos el país k rojo. Como también se cumple que $\sigma(r_k\to (\neg g_k\wedge \neg b_k))=1$, necesariamente $\sigma(g_k)=0$ y $\sigma(b_k)=0$, y por lo tanto cada país tiene un único color.

Esta dirección busca deducir la **existencia** de una coloración a partir de la valuación

Ejercicio (mapa 3-coloreable)

(←) (continuación)

En segundo lugar, como $\sigma(\varphi_M)=1$, sabemos que si i,j son adyacentes en M, $\sigma(p_{ij})=1$, y si no lo son, $\sigma(p_{ij})=0$. Ahora, en $\sigma(\varphi_D)=1$, solo nos interesa el primer caso (dado que en el segundo no podemos concluir nada de la implicancia). Tomemos entonces i,j adyacentes, y sin pérdida de generalidad supongamos que $\sigma(r_i)=1$. Como $\sigma(r_i\to\neg r_j)=1$ para todo j adyacente a i, necesariamente $\sigma(r_j)=0$, y entonces los países adyacentes no pueden estar pintados del mismo color.

Concluimos que usando los colores asignados por φ a través de r_i, g_i, b_i , podemos 3-colorear M.

Otros conceptos asociados a satisfacibilidad

Definición

Una fórmula φ es una contradicción si no es satisfacible; es decir, para toda valuación σ se tiene que $\sigma(\varphi) = 0$.

Ejemplo

 $p \wedge \neg p$

Definición

Una fórmula φ es una tautología si para toda valuación σ se tiene que $\sigma(\varphi)$ = 1.

Ejemplo

 $p \vee \neg p$

 $p \leftrightarrow p$

Otros conceptos asociados a satisfacibilidad

Definición

Una fórmula φ es una **tautología** si para toda valuación σ se tiene que $\sigma(\varphi)$ = 1.

Podemos definir la equivalencia lógica de una manera alternativa:

Teorema

Dos fórmulas $\varphi, \psi \in L(P)$ son lógicamente equivalentes si $\varphi \leftrightarrow \psi$ es una tautología.

Demuestre el teorema (★)

Outline

Obertura

Satisfacibilidad

Formas normales

Consecuencia lógica

Epílogo

Concluiremos nuestra revisión sintáctica con un resumen sintáctico jj

Definición

Un literal es una variable proposicional o la negación de una variable proposicional.

Ejemplo

Para el conjunto de variables $P = \{p, q, r\}$, las fórmulas p y $\neg r$ son literales.

Los literales son los átomos de la construcción que mostraremos

Definición

Decimos que una fórmula φ está en forma normal disyuntiva (DNF) si es una disyunción de conjunciones de literales; o sea, si es de la forma

$$B_1 \vee B_2 \vee \ldots \vee B_k$$

donde cada B_i es una conjunción de literales, $B_i = (I_{i1} \wedge ... \wedge I_{ik_i})$

Ejemplo

$$(p \wedge q) \vee (\neg p \wedge r \wedge s)$$

¿Hemos visto fórmulas en DNF antes?

Definición

Decimos que una fórmula φ está en forma normal disyuntiva (DNF) si es una disyunción de conjunciones de literales; o sea, si es de la forma

$$B_1 \vee B_2 \vee \ldots \vee B_k$$

donde cada B_i es una conjunción de literales, $B_i = (I_{i1} \wedge ... \wedge I_{ik_i})$

Teorema

Toda fórmula es equivalente a una fórmula en DNF.

Ya demostramos esto y ¡mostramos cómo construir tal fórmula!

Definición

Decimos que una fórmula φ está en forma normal conjuntiva (CNF) si es una conjunción de disyunciones de literales; o sea, si es de la forma

$$C_1 \wedge C_2 \wedge \ldots \wedge C_k$$

donde cada C_i es una disyunción de literales, $C_i = (I_{i1} \lor ... \lor I_{ik_i})$

Observaciones

- Una disyunción de literales se llama una cláusula.
 - Los C_i anteriores son cláusulas.
- Una fórmula en CNF es una conjunción de cláusulas.

Ejemplo

$$(p \vee \neg q) \wedge (\neg p \vee \neg r \vee s) \wedge (\neg r \vee s)$$

¿Podríamos obtener una fórmula en CNF para una tabla de verdad?

Definición

Decimos que una fórmula φ está en forma normal conjuntiva (CNF) si es una conjunción de disyunciones de literales; o sea, si es de la forma

$$C_1 \wedge C_2 \wedge \ldots \wedge C_k$$

donde cada C_i es una disyunción de literales, $C_i = (I_{i1} \lor ... \lor I_{ik_i})$

Teorema

Toda fórmula es equivalente a una fórmula en CNF.

Demuestre el teorema (★○)

Outline

Obertura

Satisfacibilidad

Formas normales

Consecuencia lógica

Epílogo

Conjuntos de fórmulas

Notación

Dado un conjunto de fórmulas Σ en L(P), diremos que una valuación σ satisface Σ , denotado por $\sigma(\Sigma)$ = 1, si para toda fórmula $\varphi \in \Sigma$ se tiene que $\sigma(\varphi)$ = 1.

Definición

Un conjunto de fórmulas Σ es satisfacible si existe una valuación σ tal que $\sigma(\Sigma)$ = 1. En caso contrario, Σ es inconsistente.

¿Cuándo decimos que una fórmula se deduce de un conjunto?

Consecuencia lógica

Definición

 ψ es consecuencia lógica de Σ si para cada valuación σ tal que $\sigma(\Sigma)$ = 1, se tiene que $\sigma(\psi)$ = 1.

Lo denotamos por $\Sigma \vDash \psi$.

 ψ debe ser satisfecha en cada "mundo" donde Σ es verdadero

Consecuencia lógica

Ejemplo

La regla de inferencia llamada **Modus ponens** es $\{p,p \rightarrow q\} \vDash q$

р	q	р	$p \rightarrow q$	q
0	0	0	1	0
0	1	0	1	1
1	0	1	0	0
1	1	1	1	1

Nos tenemos que fijar en las valuaciones que satisfacen al conjunto... En esos mundos, la fórmula "objetivo" también debe ser satisfecha

Ejercicio (propuesto ★)

Demuestre las siguientes reglas de inferencia

- Modus tollens: $\{\neg q, p \rightarrow q\} \vDash \neg p$
- Demostración por partes: $\{p \lor q \lor r, p \to s, q \to s, r \to s\} \models s$

Un resultado fundamental

Teorema

 $\Sigma \vDash \varphi$ si y sólo si $\Sigma \cup \{\neg \varphi\}$ es inconsistente.

Este teorema combina dos mundos:

la consecuencia lógica y la satisfacibilidad

Demostración

Próxima clase!

Outline

Obertura

Satisfacibilidad

Formas normales

Consecuencia lógica

Epílogo

Objetivos de la clase

- □ Comprender el concepto de satisfacibilidad de fórmulas y conjuntos
- □ Aplicar lógica para modelar problemas
- Conocer las formas normales
- □ Comprender concepto de consecuencia lógica
- Demostrar consecuencias lógicas sencillas