PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: WO 96/17514 (11) International Publication Number: A1 A01N 1/02, 63/00, A61B 19/00 (43) International Publication Date: 13 June 1996 (13.06.96) (21) International Application Number: PCT/US95/15738 (81) Designated States: AM, AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LT, LU, LV, MD, MG, MN, (22) International Filing Date: 5 December 1995 (05.12.95) MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TT, UA, UG, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, (30) Priority Data: SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, 5 December 1994 (05.12.94) US 08/349,747 MR, NE, SN, TD, TG), ARIPO patent (KE, LS, MW, SD, SZ, UG). (71) Applicant: NEW YORK BLOOD CENTER, INC. [US/US]; 310 East 67th Street, New York, NY 10021 (US). **Published** (72) Inventors: RUBINSTEIN, Pablo; 92 Woodhollow Lanc. New With international search report. Rochelle, NY 10804 (US). COELHO, Philip, Henry; 121 Giotto Way, El Dorado Hills, CA 95762 (US). STEVENS, Cladd, E.; Apartment W8F, 420 East 64th Street, New York, NY 10021 (US). (74) Agents: GEORGE, Kenneth, P. et al.; Amster, Rothstein & Ebenstein, 90 Park Avenue, New York, NY 10016 (US).

(54) Title: METHOD AND BAG SET FOR CONCENTRATING WHITE CELLS

(57) Abstract

A therapeutic product formed from a high concentration of white blood cells having a high degree of cell viability. The white blood cells are sequestered from their normal population presence in whole blood by placing the blood into a container and preventing coagulation of the blood, separating the blood into two components, one of which is extremely rich in white blood cells through the use of a reagent and centrifugation, sequestering the white cell concentration, and freezing the white cells.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
		GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT		PL	Poland
Bj	Benin		Italy	PT	Portugal
BR	Brazil	JP	Japan	RO	Romania
BY	Belarus	KE	Kenya	RU	Russian Federation
CA	Canada	KG	Kyrgystan		Sudan
CF	Central African Republic	KP	Democratic People's Republic	SD	
CG	Congo		of Korea	SE	Sweden
СН	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	u	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
cs	Czechoslovakia	LU	Luxembourg	TG	Togo
cz	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Мопасо	TT	Trinidad and Tobago
	Denmark	MD	Republic of Moldova	UA	Ukraine
DK		MG	Madagascar	US	United States of America
ES	Spain	ML	Mali	UZ	Uzbekistan
FI	Finland			VN	Viet Nam
FR	France	MN	Mongolia	•••	
GA	Gabon				

METEOD AND RAG RET FOR CONCENTRATING WHITE CELLS

5

10

15

20

25

30

35

40

FIELD OF THE INVENTION

The following invention is directed generally to the therapeutic utilization of white blood cells, a technique for sequestering the white blood cells by causing them to coalesce in a population density greater than they normally occur in nature, and a method for causing an enriched concentration in conjunction with an array of bags oriented in a set that facilitates both the concentration process and a method for preserving the white blood cells.

BACKGROUND OF THE INVENTION

It is now recognized that placenta/umbilical cord blood (PB) contains large numbers of hematopoietic stem and progenitor cells that endow PB with extraordinary therapeutic capabilities in the reconstitution of bone marrow damaged as a result of inherited diseases, accidents or medical procedures. As in the case of ordinary collection of bone marrow for transplantation, PB contains immune cells potentially capable of mounting specific responses against the recipients of transplants, but in contrast to adult immunological cells, those in PB display a lower, perhaps much lower tendency immune against produce damaging responses recipient. The clinical syndrome produced by the immuno responses of the graft against the recipient's cells and tissues is designated "Graft versus Host Disease" (GVHD). In the typical clinical situation, the recipient's own immune response against the graft is abrogated by drugs and irradiation treatments designed to reduce or eliminate the immunological and other hematopoietic cells and thus avoid the host versus graft immune reaction that would cause rejection of the graft. It has been proven that the principal targets of these Graft versus Host and Host versus Graft immune reactions are antigens encoded by the

genes of the HLA (Human Leukocyte Antigen) system and that successful outcomes of bone marrow transplants dependent on the sharing of HLA antigens by donor and Sibling donors who have inherited the same paternal and maternal HLA genes present in the recipient 5 are HLA-identical and thus, optimal from this viewpoint. Patients lacking such HLA-identical sibling donors must receive transplants from more distant relatives or from unrelated donors. Because the HLA system includes several discrete genes each of which displays an extremely large 10 antigenically different variants of population, such distant relative-donor or unrelated-donor transplants must be expected to contain a variable number of HLA incompatibilities unless they are selected from identifying the specific among potential donors by 15 variants present in each and choosing donors whose HLA antigens match those of the recipient. To perform this selection with significant probability of success, it is necessary to have access to large panels of potential donors whose HLA antigens are known. In the case of 20 unrelated donor PB, this requires establishing a bank of frozen HLA-typed units collected from random placentas. Heretofore, the most widely accepted method for freezing PB consisted of adding to the whole PB unit an equal volume of a cryopreservative solution, with the double 25 disadvantage that the volume of each cryopreserved unit becomes very large and that a relatively large amount of cryopreservative is eventually possibly deleterious such recipients of PB to the administered Administration of cryoprotectant and hemoglobin from 30 erythrocytes destroyed by using a freezing and thawing method designed to protect the stem and progenitor cells but not the erythrocytes may have toxic effects generally and especially on specific organs such as the kidney of In addition, there is the logistical the recipient. 35 consequence that a large number of freezers would be needed to contain useful numbers of the large volume -3-

frozen units in reserve, with the attending increase in up-front and running costs. The applicants have developed a practical method that allows a substantial reduction of the volume of PB Units by eliminating the unneeded mature red blood cells and an equivalent volume of plasma. This submission describes this method and a specially designed set of plastic bags and connecting tubes intended to facilitate the accomplishment of the desired concentration of the needed stem cells and progenitor cells with minimal manipulation and risk of contamination. Essentially, this method will allow an experimental, time consuming laboratory process to become a routine procedure in blood banks.

The following submission reflects the state of
the art of which applicant is aware insofar as these
documents appear germane to the patent process. However,
it is respectfully stipulated that none of these patents
teach singly nor render obvious when considered in any
conceivable combination the nexus of the instant invention
as set forth hereinafter.

	INVENTOR	PATENT NO.	ISSUE DATE
	Tenczar, Jr.	3,187,750	06/1965
25	Williams	4,332,122	06/1982
	Pattillo, et al.	4,937,194	06/1990
	Boyse, et al.	5,004,681	04/1991
	Carmen, et al.	5,104,788	04/1992
	Bauman, et al.	5,154,716	10/1992
30	Boyse, et al.	5,192,553	03/1993

OTHER PRIOR ART (Including Author, Title, Date,
Pertinent Pages Etc.) Pablo Rubinstein, Richard E.

Rosenfield, John W. Adamson and Cladd E. Stevens (The
Lindsley F. Kimball Research Institute of The New York
Blood Center); Stored Placental Blood for Unrelated Bone
Marrow Reconstitution; May, 1993; entire paper.

5

10

10

15

20

25

30

35

SUMMARY OF THE INVENTION

The therapeutic product of the present invention is advantageous, first, because it recovers all or almost all of the stem and progenitor cells of the original collection of PB in a small and uniform volume that requires minimal and predictable storage space, second, because it permits a consistent methodology for processing PB units which results in a routinely dependable product with less dependence on operator skill and third, because the potentially deleterious effects of the cryoprotectant and of the free hemoglobin are minimized.

One first aspect to the nature of the product improved according to the present invention involves the methodology by which the white blood cells (which include the hematopoietic stem and progenitor cells) are separated from the bulk of other components in the whole PB and the manner in which the viability of such white cells is preserved by avoiding exposure to bacterial and fungal contamination, potentially damaging chemical excessive centrifugal forces and osmotic imbalances. Typically, bacterial and/or fungal contamination occurs when PB or white blood cell suspensions derived from PB are exposed to ambient air in the course of preparatory manipulations; chemical damage is possible when certain chemicals are used to lyse the accompanying red blood cells or to aggregate white cells; and physical damage follows the use of excessive centrifugal separation of the cellular components of the blood according to their density, by centrifugal stratification. In addition, the method according to the present invention provides for avoidance of prolonged exposure of the separated white blood cells to cryopreservation solutions at room temperature, an exposure that results in decreased viability of the white blood cells and of the stem and progenitor cells contained therein because of osmotic imbalances and, possibly, other toxic effects of the intracellular cryoprotectants themselves.

10

15

20

25

30

35

Another aspect of the present invention involves the set of interconnected plastic containers (designated The set under the present invention permits a selective concentration of the white blood cells and of the stem and progenitor cells contained therein without reducing their normally high viability and freedom from contamination by infectious organisms environment. Whole PB is collected into a mother bag and is subsequently processed through a series of bags of appropriate chemical structure and physical shape and capacity culminating in storage of a separated fraction containing most of the white blood cells of the collected PB in liquid nitrogen at -196 C inside a specially constructed freezer bag. Intervening steps include the addition of substances that enhance the aggregability of red blood cells and the separation of components by transferring supernatants into connected satellite bags. A special bag and its connecting assembly permits the addition of measured amounts of cryoprotectant to the separated white blood cell concentrate. This connecting assembly allows the cryoprotectant to be added to the white cells at a precise, slow speed required to maintain optimal cell viability.

The bag which is to be used for freezing and storage includes a plurality of connected, but detachable compartments for sequestration of the white blood cells into different discrete chambers. One chamber, the main compartment, is intended to keep the bulk of the white blood cells. A smaller compartment lends itself to the storage of a smaller fraction of the bag contents which may be separated from the main compartment without thawing, and extemporaneously detached from it separate thawing and subsequent in vitro expansion of the hematopoietic stem and progenitor cell populations contained in the corresponding fraction of the white blood cells. A third and subsequent chamber contains very small aliquots of the white blood cell suspension and are

10

15

20

25

30

35

intended to serve as detachable samples for testing the aptness of the unit to be transplanted or assessing its suitability as donor tissue for a specific recipient. freezing bag also includes indicia on the outer surface of each of its detachable areas for identification of the specific unit that will be stored in it, to facilitate storage and retrieval from designated sectors of cryogenic Means are also provided in an exterior storage depots. surface of the freezer bag to facilitate the placing and removing of the freezer bag into and from, respectively, bv automated storage location assigned instrumentation.

OBJECTS OF THE INVENTION

Accordingly, it is a primary object of the present invention to provide the means for preparing PB derived hematopoietic stem and progenitor cells in a novel and therapeutically more useful form. The product becomes a bag containing a high concentration of white blood cells having a high degree of cell viability.

A further object of the present invention is to provide a novel and useful method for generating the therapeutic product according to the previous object.

A further object of the present invention is to provide an aseptic and interconnected bag set for use in conjunction with the method of developing the therapeutic product herein above.

A further object of the present invention is to provide a freezer storage bag configured to contain the therapeutic dose in a cryoprotected environment for protracted periods of time until needed for dosage.

A further object of the present invention is to provide a freezer bag as noted above provided with a plurality of compartments in which the therapeutic dose has been sequestered so that various aliquots can be strategically excised from the freezer bag for several purposes.

5

10

15

20

25

30

35

-7-

Viewed from a first vantage point, it is an object of the present invention to provide a system for developing placental ms ża cells, comprising combination: a first blood bag adapted to receive blood from a placenta therewithin, means within the blood bag to prevent coagulation, reagent means removably coupled to the blood bag, means for separating supernatant from the first blood bag and into a white cell bag, means for separating white cells from plasma in the white cell bag, a plasma bag removably coupled to the white cell bag for receiving the expressed plasma from the white cell bag, cryoprotectant means operatively coupled to the white cell bag, and a stem cell freezing bag operatively coupled to the white cell bag for transferring contents from the white cell bag to the stem cell freezing bag.

Viewed from a second vantage point, it is an object of the present invention to provide a method for preparing concentrated and partially purified white blood cell suspensions containing placental stem comprising the steps of: placing blood from a placenta into a first blood bag, preventing coagulation within the blood bag, coupling reagent means into the blood bag, centrifuging and separating white blood cell supernatant from the first blood bag and placing the supernatant into a white cell bag, separating white cells from plasma in the white cell bag, removably coupling a plasma bag to the white cell bag and expressing the plasma from the white cell bag into the plasma bag. Coupling cryoprotectant means to the white cell bag, transferring contents from the white cell bag to a stem cell freezing bag, and freezing the stem cell freezing bag with its contents follows.

Viewed from a third vantage point, it is an object of the present invention to provide a therapeutic product comprising at least 80% of the white blood cells (including stem and progenitor cells) with viability greater than 90% and fewer than 10% of the red blood cells

-8-

in the original PB collection.

These and other objects will be made manifest when considering the following detailed specification when taken in conjunction with the appended drawing figures.

5

BRIEF DESCRIPTION OF THE DRAWING FIGURES

Figure 1 is a schematic view of the stem cell processing bag set according to the present invention.

Figure 2 is a detailed view of the freezing bag

Figure 3 is a view similar to figure 2 showing the interior of the freezing bag.

Figure 4 is a flow chart the method according to the present invention.

15

20

25

30

35

DESCRIPTION OF PREFERRED EMBODIMENTS

Referring to the drawings now, wherein like reference numerals refer to like parts throughout various figures, reference numeral 100 is directed to an apparatus according to the present invention.

In essence, the apparatus 100 may be viewed as three arrays of bags collectively defining a bag set. Individual bags are provided with removable connection means to assure selected admission into the several bags only under aseptic conditions. In a preferred form of the invention, the array of bags 100 includes six bags: a blood bag 10 defining a first array; a reagent bag 20, a white cell bag 30, a plasma bag 40 and a cryoprotectant bag 50 defining a second array; and a stem cell freezing Cord blood (i.e. blood bag 60 defining a third array. from the placenta and umbilical cord) is admitted to the blood bag 10 which had previously been dosed with an anticoagulant. Next, the second array is connected to the A separation reagent is admitted to the blood bag 10. baq reagent conduit from 26 via bag Centrifuging blood bag 10 follows. Supernatant containing the white blood cells is expressed off into the white cell

bag 30, whereupon further centrifugation takes place. Next, supernatant plasma is expressed off into the plasma bag 40 leaving sedimented white blood cells in white cell bag 30. Cryoprotectant from the cryoprotectant bag 50 is transferred via conduit 59 to the white cell bag 30 slowly. Subsequently, the contents of the white cell bag 30 are transferred to the stem cell freezing bag 60 which is thereafter frozen and stored in liquid nitrogen for subsequent use.

More specifically, and with reference to figure 10 1, whole, placental, and umbilical cord blood is collected into a blood bag 10 provided with an anticoagulant such as Assume, for the Citrate, Phosphate and Dextrose (CPD). sake of explanation, that one hundred (100) milliliters of Typically, cord blood are placed within the blood bag. 15 blood will exhibit a ratio of one thousand (1,000) red cells to each "non-red" cell (for simplicity, assume the non-red blood cell can be labeled white blood cells). Naturally, the main recognizable and functionally capable erythrocytes, blood include in cells circulating 20 neutrophilic, eosinophilic, and basophilic granulocytes; B- T- and non B- non T-lymphocytes; monocytes and These mature cells derive from and are platelets. replaced, on demand, by morphologically recognizable dividing precursor cells for the respective lineages such 25 as erythroblasts for the erythrocyte series, myeloblasts, promyelocytes and myelocytes for the granulocyte series, and megakaryocytes for the platelets. The precursor cells derive from more primitive cells that can simplistically be divided into two major subgroups: stem cells and 30 progenitor cells. Of course, neonatal blood has other cellular constituents which will not be discussed here so as not to obscure the essence of the invention. The blood bag 10 includes at least two access portals. A first portal 2 receives the cord blood whereupon the access 35 Typically sealing includes a heat portal 2 is sealed. seal to insure asepsis. A second portal 4 is provided

PCT/US95/15738

5

10

15

20

25

30

35

-10-

which communicates with a spike 22 coupled via conduit 26 to a separation reagent bag 20 and through conduit 32 to the white cell bag 30 from the second array of bags discussed above. In addition, the blood bag 10 may also be provided with a third access 6 which may include a sample tube, should it be found desirable to place into storage an exemplar of the cord blood which was originally drawn. Access 6 may also provide alternative connections to bag 10.

Once the cord blood has been admitted into the blood bag 10, the admixture with an anticoagulant such as CPD prevents the clotting of the placental blood and readies the blood for admixture with a reagent contained within reagent bag 20. After the admission of the reagent to the blood bag and thorough mixing, the bag is centrifuged at a precise speed and the white-cell-rich supernatant is expressed into the white cell bag 30. reagent is intended to facilitate the sedimentation of the red blood cells which is greatly accelerated by a very light centrifugation step (50 x G x 5 min.). The effects of the addition of separation reagent and centrifugation are to produce a supernatant which contains eighty to ninety-five percent (80-95%) of the white blood cells and less than ten percent (10%) of the red blood cells of the originally collected blood. This reduces the presence of red cells (compared to white cells) by approximately ninety percent (90%). In the white cell bag, the red cell to white cell count ratio is now reduced to approximately one hundred (100) to one (1).

Typically, reagents which promote effective separation of the red blood cells from the white blood cells operate on the basis of mechanisms which can be the subject matter of some speculation as to the physical process or model that describes the separation process. One vantage point advances the premise that the addition of the reagent raises the dielectric strength of the and then, its charge-dissipating suspension medium

10

15

20

25

30

35

capacity, so that the tendency for the red blood cells to remain in uniform suspension is disturbed. Another view is that the polymeric molecule of the reagent binds to two or more red blood cells, causing them to aggregate and form characteristic "rouleau" i.e., loose clumps of red blood cells stacked together by the flat aspects of their The effect, however, irrespective of discoidal surface. the physical model that one envisions, is that separation between the red and white cells is possible with relatively minor, gentle and brief centrifugation. accelerates the settling of the red cells and preserves the white cells in the suspended, unmodified state. preferred embodiment, once the reagent from bag 20 has been placed within the blood bag 10, centrifugation at fifty (50) gs for approximately five (5) minutes provides effective separation.

Reagents which change the charge dissipation characteristic or alter the dielectric strength of the constituent components can be selected from a relatively broad range of suitable substances. A six percent (6%) concentration of Heptastarch is presently preferred both due to efficacy, cost, and wide spread utilization in However, similar natural clinical blood processing. gelatins, modified such as dextrans, polymers unmodified starches or synthetics such as polyethylene glycol or polyvinyl-pirrolydone and many others could conceivably be substituted as conditions warrant. similar effect may also be obtained with substances whose molecules attach with high avidity to two or more red cells such as antibodies and lectins. In any event, any one of these red cell-cryoprecipitating reagents contained in the reagent bag is dispensed from the reagent bag 20 via outlet 24 through branch passageway 26 and through the outlet spike 22 received by portal 4 or, alternatively, portal 6, into the blood bag 10.

Mixing of the reagent with the blood in the bag 10 followed by gentle centrifugation results in a

separation in which the supernatant composed of plasma, most of the white blood cells and a small fraction of the red blood cells, is expressed off into the white cell bag 30 via a branch passageway 32 communicating between the spike 22 and the bag 30 with a T-adapter 34 which allows a bifurcation between the branch 26 and the branch 32. The bulk of the red blood cells remain in bag 10.

5

10

15

20

25

30

The enriched white cell mixture is prevented from entering the reagent bag by means of a clamp 28 operatively engaged on the branch passage 26. The enriched white cell mixture in the white cell bag 30 at inlet 36 is now ready for further processing.

example, assume one hundred (100)As an milliliters of PB had been originally collected into blood bag 10. A preferred embodiment provides a reagent bag 20 sufficient volume of Hydroxyethyl (Heptastarch, Dupont) to provide for the addition of a volume equal to one-fifth (1/5) that of the PB collection In this example, one-fifth (1/5) of one into bag 10. hundred (100) milliliters equals twenty (20) milliliters. Typically, seventy (70) milliliters of white cell enriched supernatant plasma (containing the reagent solution) will be produced which will be expressed into the white cell bag 30. Once there, the contents are subjected to further centrifugation at-four hundred (400) x G x ten (10) Typically, of the seventy (70) milliliters that had been admitted into the white cell bag 30, fifty-five (55) milliliters will be expressed off thereafter into a approximately fifteen leaving pag 40, milliliters of highly-enriched white cell product in bag The supernatant transferred to bag 40 contains the bulk of the plasma, anticoagulant and reagent essentially no cells.

The white cell bag 30 includes an outlet portal 35 38 that communicates with the plasma bag 40 via a branch conduit 42 having a T-adapter 44 and a constrictor 46 in line. The supernatant is expressed from white cell bag 30

via conduit 42 to the plasma bag 40 via its own portal 48. Once the supernatant has been received into the plasma bag 40 it is sealed off and the plasma bag 40 is disconnected from the white cell bag 30.

Cryoprotectant from cryoprotectant bag 50 is 5 next admitted into the white cell bag 30. Cryoprotectant bag 50 includes an outlet 52, a branch passageway 54 and a constrictor element 56 on the line 54 in fluidic communication with the portal 38 of the white cell bag 30 10 through T-adapter 44. Typically, three point eight (3.8) milliliters of cryoprotectant is admitted into the fifteen (15) milliliters contained within the white cell bag 30. It is extremely desirable to admit the cryoprotectant into the white cell bag 30 at a relatively slow rate. Typically, the three point eight (3.8) milliliters of 15 cryoprotectant is admitted into the bag over a twenty (20) interval, while continuously cryoprotectant with the contents of the white cell bag by hand or with an orbital shaker. A preferred 20 cryoprotectant solution includes Dimethyl Sulfoxide DMSO (an intracellular cryoprotectant) diluted to fifty percent (50%) with dextran an extracellular cryoprotectant. feature of the instant invention is that the constrictor element 56 determines that the intracellular 25 cryoprotectant can only enter white cell bag 30 very slowly. Thus, the intracellular cryoprotectant increases its concentration and permeates the white cell mixture contained within the white cell bag 30 without causing damage to the cells. In order to effect same, a metering 30 instrumentality 58 may be interposed in the branch 54 instead of the constrictor element 56 (should the constriction not provide a constant flow rate) and in fluid communication with the portal 38. The metering instrumentality 58 can be a pump. Alternatively the cryoprotectant bag and pump arrangement can be replaced 35 syringe or other metering apparatus facilitates the slow addition of cryoprotectant to the

10

15

20

white cell bag 30.

The physical analogy for the cryoprotectant is that the DMSO penetrates through the white cell membrane and reduces the capacity of intracellular water as it freezes to crystallize intracellularly and inflict damage Dextran and other extracellular to the cell walls. cryoprotectants such as diverse kinds of soluble starches, proteins and sugars are believed to provide extracellular layers around white cells that insulate the cells from the tendency of the water to form crystals during the freezing extracellular to develop excessive and hyperosmolarity, both of which might reduce cell wall By providing the integrity and cellular viability. cryoprotectant at a measured rate, over a relatively long period of time, cell viability will have been maximized by providing ample time for the DMSO to diffuse into cells and to reach equilibrium across the cell membrane and for the dextran to be homogeneously diluted in the surrounding plasma.

As an example of the preferred embodiment, three and eight/tenth (3 and 8/10) milliliters of cryoprotectant is added to the fifteen (15) milliliters of white cells in the white cell bag 30. This addition brings the concentration of DMSO to ten percent (10%) in bag 30. White cell bag 30 has another outlet 62 which receives a 25 spike 64 from the stem cell freezing bag 60 in an aseptic The white cell bag 30 communicates with stem cell freezing bag 60 via conduit 66 controlled by clamp 67. The cryoprotected white cell mixture is received into the stem cell freezing bag 60 via portal 68. The portal 68 is 30 specially configured to include a stand tube which allows a standing column of stem cell mixture to be retained therewithin for sequestering into a series of compartments 70, each spaced from the other by heat seals 72. specimens 70 can be used for pre-infusion confirmation of 35 an optimum HLA match or other tests, once a particular stem cell freezing bag 60 has been chosen as appropriate

15

20

25

30

35

-15-

for the putative recipient.

The stem cell freezing bag 60 is further characterized by having a plurality of compartments within the main body of the bag 60, each compartment provided with indicia 75 thereon for identification of the specific unit, establishing a form of chain of custody. More particularly, the stem cell freezing bag 60 includes at least a first major portion 74 and a second minor portion 76. Typically, the ratio between the major portion 74 and the minor portion 76 is eighty percent (80%) major portion and twenty percent (20%) minor portion. These portions of bag 60 are delimited by heat seal 80 and, after filling, contribute to dividing the stem cell freezing bag into two, intimately attached, but independent white cell containers once heat seals at both locations 82 are executed.

Each portion is in communication with its own outlet. The major portion 74 is in communication with its portal 84 while the minor portion 76 communicates with its In addition, the heat seal location may own portal 86. include a line of demarcation 81 defining a scoreline which allows the major portion 74 to be severed, without thawing, from the minor portion 76. It is contemplated that the stem cells contained in the minor portion 76 can be allocated for other uses, such as for increasing the numbers of useful cells by culturing the stem and progenitor cells in a propagation medium. The stem cells left undisturbed portion 74 are in. major The freezer bag 60 and administration as transplants. stand tube/portal 68 have negligible thickness. purpose of this particular geometry is to assure that the white cells in compartments 76, 74 and 70 all maintain a uniform and narrow thickness so that subsequent freezing regimens achieve near identical controlled rate freezing conditions.

In a preferred embodiment, approximately nineteen (19) milliliters of therapeutic product are

5

10

15

20

25

30

35

-16-

contained within the freezing bag 60. The stem cell freezing bag 60 is gradually frozen to an extremely low temperature such as in liquid nitrogen for permanent storage. This preserves the stem cells in a state such that, upon thawing, they are recovered in quantity and exhibit a high degree of cell viability.

Once it has been determined that the given stem cells within a freezing bag 60 are to be used in a transplant procedure, the stem cells are first thawed to a temperature where the stem cells and constituent components change phase back from a solid to a liquid. the stem cells washed are remove to cryoprotectant which was added prior to freezing. Preferably, the wash is intended to remove the DMSO by using an isotonic fluid, preferably a colloid. example, a mixture having five percent (5%) albumin and ten percent (10%) dextran in a saline solution is used to dilute the DMSO in the extracellular environment and secondarily reduce its concentration inside the white blood cells. Subsequently, the mixture is centrifuged at four hundred (400) gs for ten (10) minutes with the supernatant expressed therefrom.

As mentioned supra, the enriched white cells were present in volume at approximately fifteen (15) milliliters prior to the addition of three point eight (3.8) milliliters of cryoprotectant. When placed in the stem cell freezing bag, about four (4) milliliters were placed in the secondary compartment 76 and fifteen (15) milliliters were retained in the primary container 74. In actuality, somewhat less than the four (4) milliliters are allocated as is just described because the stem cell samples contained within compartments 70 may contain collectively up to one (1) milliliter. In any event, the thawed white blood and stem cell suspension prior to washing contained ten (10%) cryoprotectant by volume. After the dilution, spinning and expressing off the supernatant the sedimented stem cells (typically in a

10

15

20

30

35

volume less than three (3) milliliters) are diluted once again to a volume adequate for administration to the recipient, fifteen (15) milliliters or more. This second dilution reduces the concentration of DMSO to below one percent (1%). Therefore, the quantity of DMSO retained is in the order to one-tenth (1/10) gram. This is very much less, compared with the prior art which typically may have involved two hundred (200) milliliters of ten percent (10%) DMSO i.e. twenty (20) grams of this compound.

In addition, the therapeutic dose described in the disclosed invention hereinabove has a special efficacy because the processing described hereinabove has removed from the whole blood, the bulk of the red cells, plasma, cryoprotectant, free hemoglobin, etc. which heretofore have exhibited adverse consequences on the recipient and has restored the osmolarity of the stem and progenitor to the normal range of three hundred milliosmols from the over one thousand (1000) milliosmols of ten percent (10%) DMSO solution.

It is to be noted that the stem cells that are stored in freezing bags must be kept at extremely low such as those achievable using liquid temperatures By providing white stem cells in twenty (20) nitrogen. milliliter quantities, the problems that would have 25 existed before in the provision of storage space for units with ten fold larger volumes of cryopreserved placental blood (whole) will have been solved by the smaller storage requirement of separated white blood cells associated with the instant invention.

One attribute of the instant invention is that the therapeutic dose involves a relatively low level of DMSO in the finished product that is to be administered. A second attribute involves the fact that a ten (10) fold lower concentration of red blood cells are contained in a unit without significant loss of stem and progenitor The lower red blood cell numbers reduce the presence of hemoglobin in the thawed specimen and decrease

-18-

cell associated with red blood problems the Further, the viability of the white incompatibilities. cells contained in the dose after thawing is typically three (3) to four (4) fold higher than in the prior art, particularly after administration and dilution in the Experimentally, thawed white recipient's own plasma. cells are diluted in twenty (20) milliliters of plasma prior to counting for viability. In prior art, unwashed white cell viability was typically of the order of twenty percent (20%). According to the present invention, using the DNA fluorescence stain or other viability tests, the mononuclear cells are much greater than twenty percent (20%), typically greater than ninety percent (90%) viable. When stem and progenitor cells are cultured in vitro from such white cell concentrates after thawing as described, the number of viable cells estimated by the number of colonies formed is also greater than ninety percent (90%) of the original numbers.

While the previous discussion has focused on the desirability of using cord blood from placental stem cells, other peripheral stem cells can also be processed in a similar manner to provide benefits. Further, having thus described the invention it should be apparent that numerous structural modification and adaptations of the bag set, the chemical nature of the reagents and cryoprotectants and the details of the processing steps, may be resorted to without departing from the scope and fair meaning of the instant invention as set forth hereinabove and as described hereinbelow by the claims.

25

5

10

15

20

-19-

What is Claimed is:

20

25

30

35

1. A system for concentrating blood cells, comprising in combination:

a first blood bag adapted to receive blood from 5 a source,

means within said blood bag to prevent coagulation,

reagent means removably coupled to said blood bag,

10 means for separating white blood cells containing plasma supernatant from said first blood bag and into a satellite white cell bag,

means for separating white cells from the plasma in said white cell bag, and

- a satellite plasma bag removably coupled to said white cell bag for receiving the expressed supernatant plasma from said white cell bag.
 - 2. The system of claim 1 further including cryoprotectant means operatively coupled to said white cell bag.
 - 3. The system of claim 2 further including a stem cell freezing bag operatively coupled to said white cell bag for transferring contents from said white cell bag to said stem cell freezing bag.
 - 4. The system of claim 3 wherein said stem cell freezing bag includes a plurality of compartments therewithin.
 - 5. The system of claim 4 wherein said plurality of compartments include means for sealing said compartments into isolated sequestered areas and means on said sequestered areas for indicating the origin of said freezing bag partitioned area.
 - 6. The system of claim 5 including means for washing cryoprotectant from said contents of said freezing bag.

-20-

- 7. The system of claim 6 further including means for metering said cryoprotectant into said white cell bag.
- 8. The system of claim 7 further including clamping means to constrict passage from one bag to another.
 - 9. A method for concentrating placental stem cells, comprising the steps of:

placing blood into a first blood bag, preventing coagulation within said blood bag, coupling reagent means into said blood bag, separating supernatant from said first blood bag

and placing the supernatant into a white cell bag,

10

15

35

separating white cells from plasma in said white cell bag, and

removably coupling a plasma bag to said white cell bag and expressing the plasma from the white cell bag into said plasma bag.

- 10. The method of claim 9 further including 20 coupling cryoprotectant means to said white cell bag.
 - 11. The method of claim 10 further including transferring contents from said white cell bag to a stem cell freezing bag, and freezing the contents of the stem cell freezing bag.
- 25 12. The method of claim 11 further including sequestering the contents in said stem cell freezing bag into a plurality of partitioned areas prior to freezing the contents.
- 13. The method of claim 12 further including labeling the partitioned areas of the stem cell freezing bag to identify the source of the cells contained therewithin.
 - 14. The method of claim 13 further including removing one of the partitions from the stem cell freezing bag to confirm the contents.

25

35

- 15. The method of claim 14 including thawing the contents of the stem cell freezing bag upon ascertaining the matching of that bag.
- 16. The method of claim 15 including the step of washing cryoprotectant from the contents of one partitioned area of the stem cell freezing bag.
 - 17. The method of claim 16 including the step of diluting the washed contents of the stem cell freezing bag and injecting the contents into a patient.
- 18. A therapeutic product comprising white blood cells in a solution having a constituent presence of at least one white cell part per one hundred red cells and a stem and progenitor cell viability greater than 80%.
- 19. The product of claim 18 further comprising said white cells in a solution having an intracellular cryoprotectant concentration below 1%.
 - 20. The product of claim 18 in which the stem and progenitor cells have an osmolarity in the range of three hundred milliosmols.
- 21. The product of claim 20 wherein the prescribed dose of said product is in the range of ten to twenty milliliters.
 - 22. The product of claim 21 where the stem and progenitor cells are present in the ratio of approximately 90% with respect to the original donated blood.
 - 23. The product of 18 wherein there is a reduction of 90% of the red cells from an original blood donation.
- 24. A therapeutic product comprising white 30 blood cells in a solution having a constituent presence of at least one white blood cell per one hundred red blood cells formed form the process of:

placing blood into a first blood bag, preventing coagulation within said blood bag, coupling reagent means into said blood bag,

separating supernatant from said first blood bag and placing the supernatant into a white cell bag,

5

20

25

30

35

-22-

separating white cells from plasma in said white cell bag,

removably coupling a plasma bag to said white cell bag and expressing the plasma from the white cell bag into said plasma bag,

coupling cryoprotectant means to said white cell bag,

transferring contents from said white cell bag to a stem cell freezing bag,

freezing the contents of the stem cell freezing bag,

sequestering the contents in said stem cell freezing bag into a plurality of partitioned areas prior to freezing the contents,

labeling the partitioned areas of the stem cell freezing bag to identify the source of the cells contained therewithin.

removing one of the partitions from the stem cell freezing bag to confirm the contents,

thawing the contents of the stem cell freezing bag upon ascertaining the matching of that bag,

washing cryoprotectant from the contents of one partitioned area of the stem cell freezing bag, and

diluting the washed contents of the stem cell freezing bag and injecting the contents into a patient.

25. A method for removing at least 90% of red blood cells and plasma from placental, umbilical cord and/or peripheral donor blood while retaining a composition comprising hematopoietic stem and progenitor cells having a viability of at least 80%, said method comprising performing the following steps in an integrated, aseptic system:

contacting placental, umbilical cord and/or peripheral donor blood with an anticoagulant to prevent coagulation of said donor blood;

contacting said anticoagulated blood with a rouleaux-inducing reagent to facilitate at least 90% of

15

20

25

30

red blood cells contained in said donor blood to form a rouleaux;

gently centrifuging said rouleaux-inducing reagent contacted blood to obtain a first sediment and a first supernatant, wherein said first sediment comprises at least 90% of red blood cells contained in said donor blood;

isolating said first supernatant;

centrifuging said first supernatant to obtain a second sediment and a second supernatant, wherein said second supernatant comprises at least 90% of plasma contained in said donor blood; and

removing said second supernatant so as to retain a composition comprising hematopoietic stem and progenitor cells having a viability of at least 80%, and less than 10% of red blood cells and plasma contained in said donor blood.

- 26. The method of claim 25 wherein said integrated, aseptic system comprises a series of interconnected bags.
- 27. The method of claim 25 wherein said anticoagulant comprises citrate, phosphate and dextrose.
- 28. The method of claim 25 wherein said rouleaux-inducing reagent comprises hydroxyethyl starch.
- 29. The method of claim 25 which further comprises contacting said composition with a cryoprotectant at a rate and an amount sufficient to obtain a cryoprotected composition without damaging cells contained in said composition; and freezing said cryoprotected composition.
- 30. The method of claim 29 wherein said cryoprotectant comprises dimethylsulfoxide.
- 31. The method of claim 30 wherein said cryoprotectant further comprises dextran.
- 35 32. The method of claim 30 wherein the final concentration of dimethylsulfoxide in the cryoprotected suspension is 10%.

PCT/US95/15738

5

10

15

20

25

30

33. A method for removing at least 90% of red blood cells and plasma from placental, umbilical cord and/or peripheral donor blood while retaining a composition comprising hematopoietic stem and progenitor cells having a viability of at least 80%, said method comprising performing the following steps in a series of interconnected bags under aseptic conditions:

contacting placental, umbilical cord and/or peripheral donor blood in a blood bag with an anticoagulant to prevent coagulation of said donor blood;

contacting said anticoagulated blood in said blood bag with a rouleaux-inducing reagent to facilitate at least 90% of red blood cells contained in said donor blood to form a rouleaux;

gently centrifuging said blood bag to obtain a first sediment and a first supernatant, wherein said first sediment comprises at least 90% of red blood cells contained in said donor blood;

expressing said first supernatant into a white cell bag;

centrifuging said white cell bag to obtain a second sediment and a second supernatant, wherein said second supernatant comprises at least 90% of plasma contained in said donor blood; and

expressing said second supernatant into a plasma bag so as to retain a composition in said white cell bag comprising hematopoietic stem and progenitor cells having a viability of at least 80%, and less than 10% of red blood cells and plasma contained in said donor blood.

- 34. The method of claim 33 wherein said anticoagulant comprises citrate, phosphate and dextrose.
- 35. The method of claim 33 wherein said rouleaux-inducing reagent comprises hydroxyethyl starch.
- 36. The method of claim 33 which further comprises contacting said composition with a cryoprotectant at a rate and an amount sufficient to obtain a cryoprotected composition without damaging cells

-25-

contained in said composition; and freezing said cryoprotected composition.

- 37. The method of claim 36 wherein said cryoprotectant comprises dimethylsulfoxide.
- 5 38. The method of claim 37 wherein said cryoprotectant further comprises dextran.
 - 39. The method of claim 38 wherein the final concentration of dimethylsulfoxide in the cryoprotected suspension is 10%.

10

Figure 1

Figure 2

Figure 3

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US95/15738

IPC(6) US CL	SSIFICATION OF SUBJECT MATTER :A01N 1/02, 63/00; A61B 19/00 :435/2; 424/93.71; 604/410, 416 o International Patent Classification (IPC) or to both	national classification and IPC			
According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED					
Minimum d	ocumentation searched (classification system follows	d by classification symbols)			
U.S. :	U.S. : 435/2; 424/93.71; 604/410, 416				
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched					
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) MEDLINE, BIOSIS, APS					
C. DOX	uments considered to be relevant				
Category*	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.		
×	US, A, 4,004,975 (LIONETTI et al.) 25 January 1977, see entire document, particularly Figure 1.		1-20		
 Y			21-39		
х	US, A, 5,004,681 (BOYSE et al.) 02 April 1991, see column 41, lines 25-35, column 40, lines 9-30. US, A, 4,332,122 (WILLIAMS) 01 January 1982, see entire article.		18-24		
 Y			25-39		
ж 			1		
Y			2-39		
Furth	er documents are listed in the continuation of Box C	. See patent family annex.			
"A" doc	cial entergories of cited documents: ument defining the general state of the art which is not considered	"T" Etter document published ofter the inter- dets and set in conflict with the applied principle or theory underlying the inv	ntion but cited to underchind the		
E cor	te of particular relevance tier document publicated on or ofter the interesticated filing dates	"X" decurrent of particular relevance; the considered covel or cannot be considered to the constant of these places.			
cite spe	ument which any three doubts on priority cham(s) or which is d to exhibit the publication dote of another citation or other sial reason (as specified)	'Y' dearment of particular relavance; the	ctep when the document is		
me	uzusas referring to an oral disclosure, use, exhibition or other and	. 9. quantiti tampa o la bacara tappa e qua cod papa domini o a bacara tappa e qua cod	ee art		
the	priority date chimsed actual completion of the international search	Date of mailing of the international sea			
20 MARC	Н 1996	27 MAR 1996			
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231		Authorized officer Dellingh Filide / 63 SANDRA SAUCIER			

Facsimile No. (703) 305-3230

INTERNATIONAL SEARCH REPORT

lat	z-mational	application	No.
	DOT/I ICO	£/1 £720	

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
Please See Extra Sheet.
1. X As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest
X No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet(1))(July 1992) *

International application No.
PCT/US95/15738

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for all inventions to be examined, the appropriate additional examination fees must be paid.

Group I, claims 1-24, drawn to an apparatus for forming the product, the product and a method of using the apparatus to make the product.

Group II, claims 25-39, drawn to drawn to a second process.

The inventions listed as Groups I and II do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: The process of group II is not related so as to form a single inventive concept because the bag system (apparatus) of Group I used in the process of Group I to produce the product of group I is not required in the process of Group II. Multiple processes are not permissible in a single application under Rule 13.1.