Introduction to Simulation - Lecture 9

Multidimensional Newton Methods

Jacob White

Thanks to Deepak Ramaswamy, Jaime Peraire, Michal Rewienski, and Karen Veroy

Outline

- Quick Review of 1-D Newton
 - Convergence Testing
- Multidimensonal Newton Method
 - Basic Algorithm
 - Description of the Jacobian.
 - Equation formulation.
- Multidimensional Convergence Properties
 - Prove local convergence
 - Improving convergence

Problem: Find x^* such that $f(x^*) = 0$

Use a Taylor Series Expansion

$$f(x^*) = f(x) + \frac{\partial f(x)}{\partial x} (x^* - x) + \frac{\partial^2 f(\tilde{x})}{\partial x^2} (x^* - x)^2$$

If x is close to the exact solution

$$\frac{\partial f(x)}{\partial x} (x^* - x) \approx -f(x)$$

Newton Algorithm

$$x^0$$
 = Initial Guess, $k = 0$

$$\frac{\partial f(x^k)}{\partial x} (x^{k+1} - x^k) = -f(x^k)$$

$$k = k+1$$

} Until?

$$||x^{k+1} - x^k|| < threshold? \quad ||f(x^{k+1})|| < threshold?$$

Newton Algorithm

Algorithm Picture

Newton Algorithm

Convergence Checks

Need a "delta-x" check to avoid false convergence

Newton Algorithm

Convergence Checks

Also need an "f(x)" check to avoid false convergence

SMA-HPC ©2003 MIT

Newton Algorithm

Local Convergence

Convergence Depends on a Good Initial Guess

Example Problem

Strut and Joint

$$l = \sqrt{x^2 + y^2}$$

$$- (l - l)$$

$$F = EA_c \frac{(l_o - l)}{l_o} = \varepsilon(l_o - l)$$

$$f_x = \frac{x}{l}F = \frac{x}{l}\varepsilon(l_o - l)$$

$$f_{y} = \frac{y}{l}F = \frac{y}{l}\varepsilon(l_{o} - l)$$

$$F(\vec{x}) = \begin{cases} f_x + F_{L_x} = 0 \\ f_y + F_{L_y} = 0 \end{cases}$$

OR

$$\frac{x}{l}\varepsilon(l_o-l)+F_{L_x}=0$$

$$\frac{y}{l}\varepsilon(l_o-l)+F_{L_y}=0$$

Example Problem

Nonlinear Resistors

Nodal Analysis

At Node 1:
$$i_1 + i_2 = 0$$

$$\Rightarrow g(v_1) + g(v_1 - v_2) = 0$$

At Node 2:
$$i_3 - i_2 = 0$$

$$\Rightarrow g(v_3) - g(v_1 - v_2) = 0$$

Two coupled nonlinear equations in two unknowns

General Setting

Problem: Find
$$x^*$$
 such that $F(x^*) = 0$
 $x^* \in \mathbb{R}^N$ and $F : \mathbb{R}^N \to \mathbb{R}^N$

Use a Taylor Series Expansion

$$F(x^*) = F(x) + J_F(x) (x^* - x) + H.O.T.$$

$$Jacobian$$

$$Matrix$$

If x is close to the exact solution

$$J_F(x)(x^* - x) \approx -F(x)$$

Nodal Analysis

Strut and Joint

$$\frac{x}{l} \varepsilon(l_o - l) + F_{L_x} = 0$$

$$\frac{y}{l} \varepsilon(l_o - l) + F_{L_y} = 0$$

$$J_F(\vec{x}) = \begin{bmatrix} ? & ? \\ ? & ? \\ ? & ? \end{bmatrix}$$

Nodal Analysis

Nonlinear Resistor

$$x^* \in \mathbb{R}^2$$
 and $F : \mathbb{R}^2 \to \mathbb{R}^2$

At Node 1:
$$i_1 + i_2 = 0$$

$$\Rightarrow F_1(\vec{v}) = g(v_1) + g(v_1 - v_2) = 0$$

At Node 2:
$$i_3 - i_2 = 0$$

$$\Rightarrow F_2(\vec{v}) = g(v_3) - g(v_1 - v_2) = 0$$

$$J_F(\vec{x}) = \begin{vmatrix} ? & ? \\ ? & ? \end{vmatrix}$$

Jacobian Matrix

$$J_F(x)\Delta x \approx F(x+\Delta x)-F(x)$$

$$J_{F}(x) \Delta x \equiv \begin{bmatrix} \frac{\partial F_{1}(x)}{\partial x_{1}} & \dots & \frac{\partial F_{1}(x)}{\partial x_{N}} \\ \vdots & \ddots & \vdots \\ \frac{\partial F_{N}(x)}{\partial x_{1}} & \dots & \frac{\partial F_{N}(x)}{\partial x_{N}} \end{bmatrix} \begin{bmatrix} \Delta x_{1} \\ \vdots \\ \Delta x_{N} \end{bmatrix}$$

Jacobian Matrix

Singular Case

Suppose $J_F(x)$ is singular?

$$J_{F}(x)\Delta x = \begin{bmatrix} \frac{\partial F_{1}(x)}{\partial x_{1}} & \dots & \frac{\partial F_{1}(x)}{\partial x_{N}} \\ \vdots & \ddots & \vdots \\ \frac{\partial F_{N}(x)}{\partial x_{1}} & \dots & \frac{\partial F_{N}(x)}{\partial x_{N}} \end{bmatrix} \begin{bmatrix} \Delta x_{1} \\ \vdots \\ \Delta x_{N} \end{bmatrix} = 0$$

What does it mean?

Newton Algorithm

$$x^{0}$$
 = Initial Guess, $k = 0$
Repeat {
$$Compute F(x^{k}), J_{F}(x^{k})$$

$$Solve J_{F}(x^{k})(x^{k+1}-x^{k}) = -F(x^{k}) \text{ for } x^{k+1}$$

$$k = k+1$$
} Until $||x^{k+1}-x^{k}||$, $||f(x^{k+1})||$ small enough

Computing the Jacobian and the Function

Consider the contribution of one nonlinear resistor Connected between nodes n₁ and n₂

$$i^{b} + v^{b} - i^{b} = g(v^{b})$$

$$n_{1} \longrightarrow n_{2}$$

$$i^{b} = g(v^{b})$$

Summing currents at Node n_1 : $F_{n_1}(v) = g(v_{n_1} - v_{n_2}) + \dots$ Summing currents at Node n_2 : $F_{n_2}(v) = -g(v_{n_1} - v_{n_2}) + \dots$

Summing currents at Node n_2 : $F_{n_2}(v) = -g(v_{n_1} - v_{n_2}) + \dots$

Differenting at Node
$$n_1$$
:
$$\frac{\partial F_{n_1}(v)}{\partial v_{n_1}} = \underbrace{\frac{\partial g(v_{n_1} - v_{n_2})}{\partial v_{n_1}}}_{\frac{\partial g}{\partial v}} + \dots \qquad \underbrace{\frac{\partial F_{n_1}(v)}{\partial v_{n_2}}}_{\frac{\partial g}{\partial v}} = \underbrace{\frac{\partial g(v_{n_1} - v_{n_2})}{\partial v_{n_2}}}_{\frac{\partial g}{\partial v}} + \dots$$

Computing the Jacobian and the Function

Stamping a Resistor

More Complete Newton Algorithm

$$x^{0}$$
 = Initial Guess, $k = 0$
Repeat {
Compute $F(x^{k}), J_{F}(x^{k})$
Zero J_{F} and F

for each element

Compute element currents and derivatives Sum currents to F, sum derivatives to J_F

Solve
$$J_F(x^k)(x^{k+1}-x^k) = -F(x^k)$$
 for x^{k+1}
 $k = k+1$

} Until
$$||x^{k+1}-x^k||$$
, $||f(x^{k+1})||$ small enough

What is the Jacobian?

Multidimensional Convergence Theorem

Theorem Statement

Main Theorem

If

a)
$$||J_F^{-1}(x^k)|| \le \beta$$
 (Inverse is bounded)

b)
$$||J_F(x)-J_F(y)|| \le \ell ||x-y||$$
 (Derivative is Lipschitz Cont)

Then Newton's method converges given a sufficiently close initial guess

Multidimensional Convergence Theorem

Key Lemma

If
$$||J_F(x)-J_F(y)|| \le \ell ||x-y||$$
 (Derivative is Lipschitz Cont)

Then
$$||F(x)-F(y)-J_F(y)(x-y)|| \le \frac{\ell}{2}||x-y||^2$$

There is no multidimensional mean value theorem.

Multidimensional Convergence Theorem

Theorem Proof

By definition of the Newton Iteration and the assumed bound on the inverse of the Jacobian

$$\|x^{k+1} - x^k\| = \|J_F^{-1}(x^k)F(x^k)\| \le \beta \|F(x^k)\|$$

Again applying the Newton iteration definition

$$\|x^{k+1} - x^k\| \le \beta \left\| F(x^k) - F(x^{k-1}) - J_F(x^{k-1})(x^k - x^{k-1}) \right\|$$

Finally using the Lemma

$$\|x^{k+1} - x^k\| \le \frac{\beta \ell}{2} \|x^k - x^{k-1}\|^2$$

Multidimensional Convergence Theorem

Theorem Proof Continued

Reorganizing the equation

$$\|x^{k+1} - x^k\| \le \left(\frac{\beta \ell}{2} \|x^k - x^{k-1}\|\right) \|x^k - x^{k-1}\|$$

If
$$\left(\frac{\beta\ell}{2}||x^1-x^0||\right) \leq \gamma < 1$$

$$\|x^{k+1} - x^k\| \le \gamma^k \Rightarrow \sum_{k=0}^{\infty} (x^{k+1} - x^k) + x^0 \text{ converges}$$

Must Somehow Limit the changes in X

Newton Algorithm

Newton Algorithm for Solving F(x) = 0

$$x^{0} = \text{Initial Guess, } k = 0$$
Repeat {
$$\text{Compute } F\left(x^{k}\right), J_{F}\left(x^{k}\right)$$

$$\text{Solve } J_{F}\left(x^{k}\right) \Delta x^{k+1} = -F\left(x^{k}\right) \text{ for } \Delta x^{k+1}$$

$$x^{k+1} = x^{k} + \text{limited}\left(\Delta x^{k+1}\right)$$

$$k = k+1$$
} Until $\left\|\Delta x^{k+1}\right\|$, $\left\|F\left(x^{k+1}\right)\right\|$ small enough

Limiting Methods

• Direction Corrupting

$$\operatorname{limited}\left(\Delta x^{k+1}\right)_{i} = \begin{array}{c} \Delta x_{i}^{k+1} \text{ if } \left|\Delta x_{i}^{k+1}\right| < \gamma \\ \gamma \operatorname{sign}\left(\Delta x_{i}^{k+1}\right) \text{ otherwise} \end{array}$$

NonCorrupting

$$\operatorname{limited}\left(\Delta x^{k+1}\right) = \alpha \Delta x^{k+1}$$

$$\alpha = \min \left\{ 1, \frac{\gamma}{\left\| \Delta x^{k+1} \right\|} \right\}$$

Heuristics, No Guarantee of Global Convergence

Damped Newton Scheme

General Damping Scheme

Solve
$$J_F(x^k)\Delta x^{k+1} = -F(x^k)$$
 for Δx^{k+1}
$$x^{k+1} = x^k + \alpha^k \Delta x^{k+1}$$

Key Idea: Line Search

Pick
$$\alpha^{k}$$
 to minimize $\left\| F\left(x^{k} + \alpha^{k} \Delta x^{k+1}\right) \right\|_{2}^{2}$

$$\left\| F\left(x^{k} + \alpha^{k} \Delta x^{k+1}\right) \right\|_{2}^{2} \equiv F\left(x^{k} + \alpha^{k} \Delta x^{k+1}\right)^{T} F\left(x^{k} + \alpha^{k} \Delta x^{k+1}\right)$$

Method Performs a one-dimensional search in Newton Direction

Damped Newton

Convergence Theorem

<u>If</u>

- a) $||J_F^{-1}(x^k)|| \le \beta$ (Inverse is bounded)
- b) $||J_F(x)-J_F(y)|| \le \ell ||x-y||$ (Derivative is Lipschitz Cont)

Then

There exists a set of α^k ' $s \in (0,1]$ such that

$$||F(x^{k+1})|| = ||F(x^k + \alpha^k \Delta x^{k+1})|| < \gamma ||F(x^k)|| \text{ with } \gamma < 1$$

Every Step reduces F-- Global Convergence!

Damped Newton

Nested Iteration

$$x^{0} = \text{Initial Guess, } k = 0$$

$$\text{Repeat } \{$$

$$\text{Compute } F\left(x^{k}\right), J_{F}\left(x^{k}\right)$$

$$\text{Solve } J_{F}\left(x^{k}\right) \Delta x^{k+1} = -F\left(x^{k}\right) \text{ for } \Delta x^{k+1}$$

$$\text{Find } \alpha^{k} \in \{0,1\} \text{ such that } \left\|F\left(x^{k} + \alpha^{k} \Delta x^{k+1}\right)\right\| \text{ is minimized } x^{k+1} = x^{k} + \alpha^{k} \Delta x^{k+1}$$

$$k = k+1$$

$$\text{Yuntil } \left\|\Delta x^{k+1}\right\|, \left\|F\left(x^{k+1}\right)\right\| \text{ small enough}$$

How can one find the damping coefficients?

Damped Newton

Singular Jacobian Problem

Damped Newton Methods "push" iterates to local minimums Finds the points where Jacobian is Singular

Summary

- Quick Review of 1-D Newton
 - Convergence Testing
- Multidimensonal Newton Method
 - Basic Algorithm
 - Description of the Jacobian.
 - Jacobian Construction.
 - Local Convergence Theorem
- Damped Newton Method
 - Nested Algorithm with line search
 - Global convergence IF Jacobian nonsingular