Problema 37. L'anell $\mathbb{Z}[\sqrt{2}]$ és un DFU.

- (i) Comproveu que $23=(3+4\sqrt{2})(-3+4\sqrt{2})=(11+7\sqrt{2})(11-7\sqrt{2}).$ Contradiu aquesta igualtat el fet que $\mathbb{Z}[\sqrt{2}]$ sigui DFU?
 - (ii) Proveu que $\mathbb{Z}[\sqrt{2}]$ té infinites unitats.

Nota: Recordem que la norma està definida en l'exercici 33: si d és lliure de quadrats, aleshores $N(a+b\sqrt{d})=a^2-db^2$. També ens diu que $\alpha\in\mathbb{Z}[\sqrt{2}]$ és una unitat si, i només si, $N(\alpha)=\pm 1$.

Solució. (i) Com que $\mathbb{Z}[\sqrt{2}]$ és un domini de factorització única, tot element de $\mathbb{Z}[\sqrt{2}]$ factoritza en producte d'irreductibles de manera única llevat d'ordre i de producte per invertibles.

Primerament demostrarem que les dues descompisicions de 23 corresponen a una mateixa factorització llevat de l'ordre i de producte per invertibles. I per a això demostrarem que $(3+4\sqrt{2})$ i $(-3+4\sqrt{2})$ són associats a $(11+7\sqrt{2})$ i $(11-7\sqrt{2})$.

• Volem veure que $\exists a \in \mathbb{Z}[\sqrt{2}]^*$ tal que

$$\begin{cases} a = x + y\sqrt{2}, \text{ amb } x, y \in \mathbb{Z}, \\ (3 + 4\sqrt{2})a = 11 + 7\sqrt{2}. \end{cases}$$

Desenvolupem la segona equació:

$$(3+4\sqrt{2})(x+y\sqrt{2}) = 3x + 8y + (4x+3y)\sqrt{2} = 11 + 7\sqrt{2}$$

$$\Leftrightarrow \begin{cases} 3x + 8y = 11 \\ 4x + 3y = 7 \end{cases} \Leftrightarrow \begin{cases} 3x + 8y = 11 \\ x = -4 + 5y \end{cases} \Leftrightarrow \begin{cases} -12 + 15y + 8y = 11 \\ x = -4 + 5y \end{cases} \Leftrightarrow \begin{cases} y = \frac{23}{23} = 1 \\ x = -4 + 5y \end{cases} \Leftrightarrow \begin{cases} y = 1 \\ x = 1 \end{cases}$$

Per tant, $a=1+\sqrt{2}$, i $11+7\sqrt{2}=(3+4\sqrt{2})(1+\sqrt{2})$. A més, és immediat comprovar que $(1+\sqrt{2})(-1+\sqrt{2})=1$, i això significa que a és invertible i el seu invers en $\mathbb{Z}[\sqrt{2}]^*$ és $-1+\sqrt{2}$.

• Ara volem veure que $\exists b \in \mathbb{Z}[\sqrt{2}]^*$ tal que

$$\begin{cases} b = x + y\sqrt{2}, \text{ amb } x, y \in \mathbb{Z}, \\ (-3 + 4\sqrt{2})b = 11 - 7\sqrt{2}. \end{cases}$$

Desenvolupem la segona equació:

$$(-3+4\sqrt{2})(x+y\sqrt{2}) = -3x + 8y + (4x - 3y)\sqrt{2} = 11 - 7\sqrt{2}$$

$$\Leftrightarrow \begin{cases} -3x + 8y = 11 \\ 4x - 3y = -7 \end{cases} \Leftrightarrow \begin{cases} -3x + 8y = 11 \\ x = 4 - 5y \end{cases} \Leftrightarrow \begin{cases} -12 + 15y + 8y = 11 \\ x = 4 - 5y \end{cases} \Leftrightarrow \begin{cases} y = \frac{23}{23} = 1 \\ x = 4 - 5y \end{cases} \Leftrightarrow \begin{cases} y = 1 \\ x = -1 \end{cases}$$

Per tant, $b = -1 + \sqrt{2}$, que és l'invers de $a = 1 + \sqrt{2}$, on $b \in \mathbb{Z}[\sqrt{2}]^*$

Podem veure que les dues factoritzacions de 23 són la mateixa llevat d'invertibles:

$$23 = (3 + 4\sqrt{2})(-3 + 4\sqrt{2})$$

$$23 = (11 + 7\sqrt{2})(11 - 7\sqrt{2}) = \underbrace{(1 + \sqrt{2})(-1 + \sqrt{2})}_{\in \mathbb{Z}[\sqrt{2}]^*} (3 + 4\sqrt{2})(-3 + 4\sqrt{2}).$$

Finalment, per veure que aquest fet no contradiu que $\mathbb{Z}[\sqrt{2}]$ sigui un domini de factorització única, ens hem d'assegurar que $(3+4\sqrt{2})$ i $(-3+4\sqrt{2})$ són irreductibles. Només demostrarem que $(3+4\sqrt{2})$ és irreductible; que $(-3+4\sqrt{2})$ ho és, es demostra de manera anàloga.

Suposem que $(3 + 4\sqrt{2})$ no és irreductible per arribar a una absurditat. Si no és irreductible, aleshores tenim dues possibilitats:

- Una possibilitat és que $(3+4\sqrt{2})$ és invertible, i segons la nota, la seva norma ha de ser 1 o -1. Però $N(3+4\sqrt{2})=-23\neq\pm1$. En deduïm que $(3+4\sqrt{2})$ no és invertible.
- L'altra possibilitat seria que $(3 + 4\sqrt{2})$ admetés una descomposició no trivial, és a dir, aquelles descomposicions en les que dos o més factors no són unitats. Posem doncs

$$(3+4\sqrt{2}) = (x+y\sqrt{2})(z+t\sqrt{2}), \text{ amb } x, y, z, t \in \mathbb{Z},$$

on $x+y\sqrt{2}$ i $z+t\sqrt{2}$ no són invertibles. Apliquem la norma a la igualtat:

$$-23 = N(3+4\sqrt{2}) = N(x+y\sqrt{2})N(z+t\sqrt{2}) = (x^2-2y^2)(z^2-2t^2).$$

Com que -23 és un nombre primer en \mathbb{Z} (també és irreductible), per força un dels dos factors ha de ser 1 o -1. Això implica que un dels dos factors és invertible. Per tant, $(3+4\sqrt{2})$ no admet una descomposició no trivial.

Hem arribat doncs a una absurditat, perquè $(3 + 4\sqrt{2})$ no compleix cap requisit per ser no-irreductible. Per tant, emprany el raonament per l'absurd, hem demostrat que $(3 + 4\sqrt{2})$ és irreductible.

(ii) Segons (i), $(1+\sqrt{2})$ i $(-1+\sqrt{2})$ són dues unitats de $\mathbb{Z}[\sqrt{2}]$, per tant,

$$\langle a \rangle = \langle 1 + \sqrt{2} \rangle \subset \mathbb{Z}[\sqrt{2}]^*,$$

ja que $\mathbb{Z}[\sqrt{2}]^*$ és un grup multiplicatiu abelià. Sabem que fixat a>1, la successió $\{a^n\}_{n\geq 0}$ és estrictament creixent (en \mathbb{R}), i $a^n\in\mathbb{Z}[\sqrt{2}]^*$, per a tot $n\in\mathbb{Z}$. Per tant, $\langle a\rangle=a^\mathbb{Z}$ és un subgrup cíclic infinit de $\mathbb{Z}[\sqrt{2}]^*$.