ANSWER KEY

Q.1 (a)
$$x(t) = A \operatorname{rect}\left(\frac{t - W/2}{W}\right) - A \operatorname{rect}\left(\frac{t - 3W/2}{W}\right)$$

(b)
$$y(t) = x(t) * \sum_{n=-\infty}^{\infty} \delta(t - 2nW)$$

- (c) $X(f) = j2AW \operatorname{sinc}(Wf) \sin(W\pi f) e^{-j2W\pi f}$
- (d) Average power of $y(t) = A^2 = W^2$

Q.2 (a)

- (b) Nyquist sampling frequency = $2 \times 2W = 4W$
- (c)(i) $f_1 = 2W$
- (c)(ii) $f_s = 6W$
- **Q.3** (a) Low-frequency asymptotic slope of $|\tilde{H}(s)| = 20 \text{ dB/decade}$ Low-frequency asymptotic value of $\angle \tilde{H}(s) = 90^{\circ}$ High-frequency asymptotic slope of $|\tilde{H}(s)| = 0 \text{ dB/decade}$ High-frequency asymptotic slope of $\angle \tilde{H}(s) = 0^{\circ}$
 - (b) Yes. EXPLAIN WHY?.

(c)
$$y(t) = 50 |\tilde{H}(j5)| \cdot \cos(5t + 90^{\circ} + \angle \tilde{H}(j5))$$

where $|\tilde{H}(j5)| = \frac{5C\sqrt{25 + D^2}}{\sqrt{(E^2 - 25)^2 + 210^2}}$ and $\angle \tilde{H}(j5) = \tan^{-1}(\frac{D}{-5}) - \tan^{-1}(\frac{210}{E^2 - 25})$

Q.4 (a) 4 poles and 2 zeros (b) $K_{dc} = 10^{H_{dB}/20}$

(c)
$$\tilde{H}(s) = \frac{50000K_{dc}(s+6)^2}{3(s+0.3)(s+50)(s+200)^2}$$

- **Q.5** (a) DC gain = 0.5K
 - (b) $\zeta = \frac{39600}{2\gamma} \rightarrow 2^{\text{nd}}$ -order factor is $\begin{cases} \text{critically damped if } \zeta = 1 \\ \text{underdamped if } 0 < \zeta < 1 \end{cases}$
 - (c) The largest value of $\beta = 20 \times (90 + 9 + 99) = 3960$ The smallest value of $\gamma = 100 \times 99 = 9900$ $\rightarrow \gamma > 2\beta$ (for all student numbers)

- (d) $y(t) \approx \frac{0.5K\beta}{\omega_o} \sin(\omega_o t)$.
- Q.6 (a) $S(f) = \sum_{k} A \frac{T_1}{T_2} \operatorname{sinc}\left(k \frac{T_1}{T_2}\right) \delta\left(f \frac{k}{T_2}\right)$ $X(f) = B \operatorname{tri}\left(\frac{f}{10^3}\right) e^{-j\pi f \times 10^{-3}}$
 - (b) $Y(f) = \sum_{k} AB \times \frac{T_1}{T_2} \operatorname{sinc}\left(k\frac{T_1}{T_2}\right) \operatorname{tri}\left(\frac{f k / T_2}{10^3}\right) e^{-j\pi\left(f \frac{k}{T_2}\right) \times 10^{-3}}$
 - (c) Maximal value of $T_2 = 0.5 \times 10^{-3}$ second.
 - (d) Bandwidth of lowpass filter = 10^3 Hz. Passband gain of lowpass filter = $\frac{50}{A}$.