

Features

- Uses CRM(CQ) advanced Trench technology
- Extremely low on-resistance R_{DS(on)}
- Excellent $Q_g x R_{DS(on)}$ product(FOM)
- Qualified according to JEDEC criteria

Applications

- · Motor control and drive
- Battery management
- UPS (Uninterrupible Power Supplies)

Product Summary

V_{DS}	-100V
R _{DS(on) typ.}	59mΩ
I_{D}	-26A

100% DVDS Tested

100% Avalanche Tested

Package Marking and Ordering Information

Part #	Marking	Package	Packing	Reel Size	Tape Width	Qty
CRTD700P10L	CRTD700P10L	TO-252	Reel	N/A	N/A	2500pcs

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Drain-source voltage	V_{DS}	-100	V
Continuous drain current			
T _C = 25°C (Silicon limit)	I_{D}	-26	Α
T _C = 25°C (Package limit)	TD	-80	
T _C = 100°C (Silicon limit)		-17	
Pulsed drain current ($T_C = 25$ °C, t_p limited by T_{jmax})	${ m I_{D~pulse}}$	-104	Α
Avalanche energy, single pulse (L=0.5mH, Rg=25 Ω)	E _{AS}	42	mJ
Gate-Source voltage	V_{GS}	±20	V
Power dissipation ($T_C = 25$ °C)	P _{tot}	102	W
Operating junction and storage temperature	T_{j} , T_{stg}	-55+150	°C
Soldering temperature, wave soldering only allowed at leads (1.6mm from case for 10s)	T _{sold}	260	°C

Trench P-MOSFET -100V, $59m\Omega$, -26A

Thermal Resistance

Parameter	Symbol	Max	Unit
Thermal resistance, junction – case.	R_{thJC}	1.22	°C/W
Thermal resistance, junction – ambient(min. footprint)	R_{thJA}	91	- C/ VV

Electrical Characteristic (at Tj = 25 °C, unless otherwise specified)

Davameter	Symbol	Value			Heit	Tark Canadikian	
Parameter	Symbol	min.	typ. max.		Unit	Test Condition	
Static Characteristic							
Drain-source breakdown voltage	BV _{DSS}	-100	-	-	V	V _{GS} =0V, I _D =-250uA	
Gate threshold voltage	V _{GS(th)}	-1.5	-2	-2.5	V	$V_{DS}=V_{GS}$, $I_{D}=-250$ uA	
						V _{DS} =-100V,V _{GS} =0V	
Zero gate voltage drain current	I_{DSS}	-	-0.05	-1	μΑ	T _j =25°C	
current		-	-5	-20		T _j =150°C	
Gate-source leakage current	I_{GSS}	-	-10	-100	nA	V _{GS} =-20V,V _{DS} =0V	
						V _{GS} =-10V, I _D =-10A,	
Drain-source on-state resistance	R _{DS(on)}	-	59	70	mΩ	Tj=25°C	
resistance		-	120	150		Tj=150°C	
Transconductance	g_{fs}	-	28	-	S	$V_{DS} = -5V, I_{D} = -10A$	

Dynamic Characteristic

- ,						
Input Capacitance	C _{iss}	-	2859	-		
Output Capacitance	C _{oss}	-	93	-		V_{GS} =0V, V_{DS} =-50V, f =1MHz
Reverse Transfer Capacitance	C _{rss}	-	68	-		
Gate Total Charge	Q_{G}	-	53	-	nC	
Gate-Source charge	Q_{gs}	-	12	-		V_{GS} =-10V, V_{DS} =-50V, I_{D} =-22A, f=1MHz
Gate-Drain charge	Q_{gd}	-	10	-		
Turn-on delay time	t _{d(on)}	-	8	-		V_{GS} =-10V, V_{DD} =-50V, R_{G_ext} =2.7 Ω , ID=-10A
Rise time	t _r	-	27	-	nc	
Turn-off delay time	t _{d(off)}	-	115	-	ns	
Fall time	t _f	-	77	-		
Gate resistance	R_{G}	-	4.3	-	Ω	V _{GS} =0V, V _{DS} =0V, f=1MHz

Trench P-MOSFET -100V, $59m\Omega$, -26A

Body Diode Characteristic

Parameter	Symbol		Value		Unit	Test Condition
Parameter	Syllibol	min.	typ.	max.	Oilit	rest condition
Body Diode Forward Voltage	V_{SD}	-	-0.9	-1.3	V	V _{GS} =0V,I _{SD} =-10A
Body Diode Continuous Forward Current	I_S			-26	А	Tc = 25°C
Body Diode Reverse Recovery Time	t _{rr}	-	36	-	ns	I _F =-10A, dI/dt=100A/μ
Body Diode Reverse Recovery Charge	Q _{rr}	-	40	-	nC	s

^{*}The value of R_{thJA} is measured by placing the device in a still air box which is one cubic foot.

Typical Performance Characteristics

Fig 2: Transfer Characteristics 50 V_{DS} =-5V40 30 € 20 150°d 10 25°C 0 2 5 6 1 3 $-V_{GS}(V)$

Fig 3: Rds(on) vs Drain Current and Gate Voltage 100 V_{GS}⊨-10V 90 R_{DS(on)} (mΩ) 80 70 60 50 0 12 24 36 48 60 -I_D (A)

Fig 5: Rds(on) vs. Temperature 2.6 V_{GS} =-10V2.4 I_D=-22A 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 50 75 100 125 150 Tj - Junction Temperature (°C)

Fig 6: Capacitance Characteristics 10000 C iss C - Capacitance (PF) 1000 Coss 100 $V_{GS}=0V$ f=1MHz Crss 10 0 20 40 80 100 60 -V_{DS} (V)

Fig 7: Gate Charge Characteristics

No. 10

No. 20

No

36

Qg (nC)

60

48

Fig 8: Body-diode Forward Characteristics 1000 -Is - Diode Current(A) 100 150°C 10 1 0.1 0 0.2 0.4 8.0 1 1.2 1.4 0.6 1.6

-V_{SD} - Diode Forward Voltage(V)

Fig 9: Power Dissipation

12

2

0

0

Fig 10: Drain Current Derating

Fig 11: Safe Operating Area

Fig 12: Max. Transient Thermal Impedance

Test Circuit & Waveform

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

Package Outline: TO-252-3L

Complete	Dimensions I	n Millimeters	Dimensions	s In Inches
Symbol	Min.	Max.	Min.	Max.
А	2.15	2.45	0.085	0.096
A1	0.00	0.15	0.000	0.006
A2	0.76	1.36	0.030	0.054
b	0.60	0.91	0.024	0.036
b1	0.65	1.15	0.026	0.045
b2	5.00	5.64	0.197	0.222
С	0.45	0.61	0.018	0.024
c1	0.36	0.66	0.014	0.026
D	5.80	6.30	0.228	0.248
D1	5.00	6.00	0.197	0.236
е	2.29 BSC.		0.090	BSC.
E	6.30	6.90	0.248	0.272
E1	4.55	5.30	0.179	0.209
Н	9.40	10.48	0.370	0.413
L	1.18	1.70	0.046	0.067
L1	2.92 REF		0.115	5 REF
L2	0.36	0.66	0.014	0.026
L3	0.72	1.35	0.028	0.053
L4	0.60	1.20	0.024	0.047

Trench P-MOSFET -100V, $59m\Omega$, -26A

Revision History

Revison	Date	Major changes
1.0	2019/5/13	Release of formal version

Disclaimer

Unless otherwise specified in the datasheet, the product is designed and qulified as a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability, such as automotive, aviation/aerospace and life-support devices or systems.

Any and all semicondutor products have certain probability to fail or malfunction, which may result in personal injury, death or property damage. Customer are solely responsible for providing adequate safe measures when design their systems.

CRM(CQ) reserves the right to improve product design, function and reliability without notice.

