This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Attorney's Docket No.: 09991-014001

Applicant: Robert PALIFKA et al.

Serial No.: 09/749,893

Filed: December 29, 2000

Page : 11 of 16

REMARKS

Claims 13 and 45 have been amended to correct typographical errors. Claim 46 has been amended to more clearly define Applicants' invention. Support can be found, for example, at page 6, lines 15 to 17 and Figure 4 of the specification. No new matter has been added. Claims 1 to 65 are pending. Claims 1, 21, 29, 44, 45, 46, and 52 are independent.

Applicants thank the Examiner for indicating allowability of claims 8, 13-17, 26, 27, 32, 37-42, 47-51, 57, 59-64, 45 and 44. See pages 7 and 8 of the Office Action.

<u>1449</u>

The Examiner indicated at page 3 of the Office Action that reference "AR" has not been considered because "it lacks pertinent information such as date of application." See page 3 of the Office Action.

Applicants include two attachments: a previously submitted PTO-1449 at Tab A that has been modified to include a publication date and dated document ("document") at Tab B. Based on our understanding and inspection of the document, Applicants believe that the reference AR was publicly available on March 27, 2000.

Objections

The Examiner has objected to claims 13 and 45. See page 3 of the Office Action. Claim 13 has been amended to include the proper antecedent basis. Claim 45 has been amended to delete the second "the". Applicants respectfully request reconsideration and withdrawal of these objections.

Rejection under 35 U.S.C. § 102(e)

Claim 46 has been rejected under 35 U.S.C. § 102(e) as being anticipated by U. S. Patent No. 6,109,737 to Kishima *et al.* ("Kishima"). See page 4 of the Office Action. Claim 46 is independent.

In making the rejection, the Examiner asserts that:

Attorney's Docket No.: 09991-014001

Applicant: Robert PALIFKA et al.

Serial No.: 09/749,893

Filed: December 29, 2000

Page : 12 of 16

Kishima discloses all the claimed features of the invention including:
-a method of manufacturing an ink jet printing module comprising:
-contacting a first component (32) of an ink jet printing module
(19) having a surface with a thermoplastic bonding component (50);
-contacting a second component (31) of the ink jet printing module
including a orifice plate (30) having a surface with the thermoplastic
bonding component (Fig. 3);

-adhering a peelable protector strip (251) over the orifice plate (column 8, lines 6-10). (See page 4 of the Office Action).

Applicants have discovered a method of manufacturing an ink jet module including adhering a peelable protector strip over an orifice of the orifice plate. See amended independent claim 46. In Kishima, 251 is a liquid repelling film not a peelable protector film as described in amended claim 46. Specifically, Kishima describes a liquid repelling film 251 which "repels ink, [sic] is formed to prevent ink from adhering around a nozzle." See Kishima at col. 35, lines 56 to 57 (emphasis added) and Figure 25. Indeed, in Kishima, the liquid repelling film does not adhere over an orifice of the orifice plate. See Figure 25 of Kishima. Kishima further describes that "a liquid repelling film provided with heat resistance and resistance to peeling." See Kishima at col. 8, lines 6 to 7. A liquid repelling film which resists peeling is not a a peelable protector strip. Thus, Kishima does not describe adhering a peelable protector strip over an orifice of the orifice plate of an ink jet module. Accordingly, independent claim 46 is not anticipated by Kishima. Applicants respectfully request reconsideration and withdrawal of this rejection.

Rejection under 35 U.S.C. § 102(e)

Claims 1-6, 9, 10, 12, 21-25, 29, 30, 33, 34, 36, 52, 53, 55, and 58 have been rejected under 35 U.S.C. § 102(e) as being anticipated by U. S. Patent No. 6,361,146 to Singh *et al.* ("Singh"). See page 4 of the Office Action. Claim 1, 21, 29 and 52 are independent.

The Examiner asserts that Singh discloses the following claim limitations, among others:

-contacting a first component (48) of an ink jet printing module (Fig. 3) having a surface with a thermoplastic bonding component (5), the thermoplastic bonding component having dimensions of a surface of the first component (Fig. 3);

-heating the surface to bond the surface to the thermoplastic

-heating the surface to bond the surface to the thermoplastic bonding component (column 6, lines 43-50); ...

Attorney's Docket No.: 09991-014001

Applicant: Robert PALIFKA et al.

Serial No.: 09/749,893

Filed: December 29, 2000

Page : 13 of 16

-a second component (20) of the ink jet printing module having a surface with the thermoplastic bonding component;
-heating the surface to bond the surface to the thermoplastic bonding component (column, lines 43-45). (See pages 4 to 5 of the Office Action).

Applicants have discovered an ink jet module and method of manufacturing an ink jet module. See independent claims 1, 21, 29 and 52. The ink jet module and method includes contacting a component with a thermoplastic bonding component. See independent claims 1, 21, 29 and 52. Singh does not describe a thermoplastic bonding component. See independent claims 1, 21, 29 and 52. Specifically, Singh discloses "[a]dhesive bond as used herein refers to a non-releasable, non-repositionable adhesive bond, unlike the releasable, repositionable adhesive bonds similar to those used as adhesives in self-stick removable note pads, and the like." See Singh at col. 3, lines 4 to 8. Moreover, Singh discloses "a first adhesive film that is capable of adhesively bonding to an epoxy coating and a second adhesive film that is capable of adhesively bonding to a stainless steel substrate." See Singh at col. 2, lines 62 to 65. In Singh, the films are adhesive layers. In independent claims 1, 21, 29 and 52, the component is contacted with a thermoplastic bonding component. An adhesive film is not a thermoplastic bonding component, as claimed in Applicants' invention.

For at least these reasons, independent claims 1, 21, 29 and 52 and claims that depend therefrom are not anticipated by Singh. Applicants respectfully request reconsideration and withdrawal of this rejection.

Rejection under 35 U.S.C. § 103(a)

Claims 11, 35, and 54 have been rejected under 35 U.S.C. § 103(a) as being unpatentable over Singh. See page 4 of the Office Action. Claims 11, 35 and 54 depend from independent claims 1, 29 and 52.

In making the rejection, the Examiner asserts that:

it would have been obvious to a person having ordinary skill in the art at the time the invention was made to modify the thickness of thermoplastic bonding component of Singh et al. to that as claimed for the purpose of preference for use in ink jet assemblies. (See page 6 of the Office Action).

Applicant: Robert PALIFKA et al. Attorney's Docket No.: 09991-014001

Serial No.: 09/749,893

Filed : December 29, 2000

: 14 of 16 Page

Independent claims 1 and 29 and claims that depend therefrom

As discussed above, Singh does not teach or suggest a thermoplastic bonding layer. Indeed, Singh merely describes adhesive films. A person of ordinary skill in the art would not be motivated by Singh to contact a component with a thermoplastic bonding component because adhering with an adhesive is not contacting a component with a thermoplastic layer. See adhesive bond definition in Singh. Thus, without the benefit of Applicants' invention, one of ordinary skill in the art would not arrive at a thermoplastic bonding component.

For at least these reasons, independent claims 1 and 29 and claims that depend therefrom are not obvious over Singh.

Independent claim 52 and claims that depend therefrom

Applicants have discovered an ink jet printing module which includes a piezoelectric element including a surface and a thermoplastic bonding component heat-bonded to the surface. See independent claim 52. Singh does not teach or suggest a thermoplastic bonding component heat-bonded to the surface of a piezoelectric element. As discussed above, Singh merely describes bonding with adhesive films not a thermoplastic bonding component. There is no suggestion in Singh that would one motivate one of ordinary skill in the art to contact a piezoelectric element surface with a thermoplastic bonding component much less to heat-bond a surface with a thermoplastic bonding component. The Examiner has not presented a prima facie case of obviousness.

For at least these reasons, independent claims 1, 29 and 52 and claims that depend therefrom are patentable over Singh. Applicants respectfully request reconsideration and withdrawal of this rejection.

Rejection under 35 U.S.C. § 103(a)

Claims 7, 18-20, 28, 31, 43, 56, and 65 have been rejected under 35 U.S.C. § 103(a) as being unpatentable over Singh combined with Kishima. See page 6 of the Office Action. Claims 7, 18 to 20, 28, 31, 43, 56 and 65 depend from independent claims 1, 21, 29 and 52.

In making the rejection, the Examiner asserts that:

filt would have been obvious to a person having ordinary skill in the art at the time the invention was made to provide Singh et al. with the thermoplastic

Applicant: Robert PALIFKA et al. Attorney's Docket No.: 09991-014001

Serial No.: 09/749,893

Filed: December 29, 2000

Page : 15 of 16

bonding component including an electrode pattern and a protector strip adhered over the orifice plate as disclosed by Kishima for the purposes of bonding and deforming a piezoelectric element and repelling ink. (See page 7 of the Office Action).

Independent claims 1, 21 and 29 and claims that depend therefrom

Kishima does not teach or suggest a thermoplastic bonding layer having the dimensions of a first component. See independent claims 1, 21, and 29. Instead, Kishima teaches that "the metallic layer 62 is formed by copper, the above protruding pattern 51 and pattern layer 52 can be formed using dry film resist, using the aqueous solution of ferric chloride." See Kishima at Figure 6(A) and (B) and col. 18, lines 55 to 57. In Kishima, a metallic layer is etched over component 50. In independent claims 1, 21 and 29, the thermoplastic bonding layer itself has dimensions of the first component. See, for example, Figure 4 of the specification. A laminated metallic pattern over a thermoplastic layer is not thermoplastic bonding layer having the dimensions of a first component.

As discussed above, Singh does not teach or suggest a thermoplastic bonding layer. Thus, neither Singh nor Kishima, nor their combination, provide any motivation to contact a component with a thermoplastic bonding component, the thermoplastic bonding component having dimensions of a surface of the first component. For at least these reasons, independent claims 1, 21, and 29 and claims that depend therefrom are patentable over Singh combined with Kishima.

Independent claim 52 and claims that depend therefrom

Kishima does not teach or suggest a thermoplastic bonding component heat-bonded to a surface. In Kishima the

plural protruding portions 51 are laminated on one main surface 50A of a thermoplastic layer 50 formed by thermoplastic material amd provided with an adhesive property and the above thermoplastic layer 50 is bonded onto main surface 31A. (See Kishima at col. 16, lines 26 to 31)

Indeed, in Kishima, layer 50 is adhered by an adhesive. Kishima does not teach a thermoplastic bonding component heat-bonded to a surface. As discussed above, Singh does not teach heat-

Applicant: Robert PALIFKA et al. Attorney's Docket No.: 09991-014001

Serial No.: 09/749,893

Filed: December 29, 2000

Page : 16 of 16

bonding a thermoplastic bonding component to the surface of piezoelectric element. Adhering with an adhesive is not heat-bonding a thermoplastic layer. Thus, neither Singh nor Kishima, nor their combination, provide any motivation to contact a thermoplastic bonding component to heat-bonded the thermoplastic bonding component to the surface of a component.

For at least these reasons, independent claims 1, 21, 29 and 52 and claims that depend therefrom are patentable over Singh combined with Kishima. Applicants respectfully request reconsideration and withdrawal of this rejection.

CONCLUSION

Applicants ask that all the claims be allowed.

Sheet _	<u>1</u> o	f 1

Substitute Form PTO-1449
U.S. Separtment of Commerce (Modifi d)
U.S. Separtment of Commerce mark Office
U.S. Separtment of Commerce mark Office

Attorney's Docket No. 09991-014001 **Applicant**

Application No. 09/749,893

by Applicant (Use sev ral sh ets if n cessary)

Robert PALIFKA et al.

Filing Date

Group Art Unit

(37 CFR §1.98(b))

December 29, 2000

			U.S. Pate	ent Documents		, , , , , , , , , , , , , , , , , , , ,	
Examiner Initial	Desig. ID	Patent Number	Issue Date	Patentee	Class	Subclass	Filing Date If Appropriate
Un	AA	6,147,438	11/14/00	Nishiwaki et al.	310	363	
	AB	6,143,399	11/07/00	Kohno et al.	428	220	
	AC	6,136,915	10/24/00	Ohara et al.	524	538	
	AD	6,129,982	10/10/00	Yamaguchi et al.	yro	336	
	AE	6,109,737	08/29/00	Kishima	347	70	
	AF	6,106,096	08/22/00	Komplin et al.	347	20	
	AG	6,037,707	03/14/00	Gailus et al.	, ,	363	
	AH	5,945,253	08/31/99	Narang et al.	430	280-1	
	ΑI	5,891,986	04/06/99	Yamaguchi et al.	528	310	
	AJ	5,849,397	12/15/98	Kohno et al.	418	209	-
	AK	5,830,564	11/03/98	Kohno et al.	428	720	
	AL	5,728,473	03/17/98	Inoue et al.	428	440	
m	AM	5,434,607	07/18/95	Keefe	347		

Foreign Patent-Documents or Published Foreign Patent Applications								
Examiner Initial	Desig. ID	Document Number	Publication Date	Country or Patent Office	Class	Subclass		lation No
lun	AN	EP 1 018 507	07/12//00	EPO			100	140
ſ	AO	EP 1 018 534	07/12//00	EPO	_			
	AP	EP 0 786 348	07/30/97	EPO				
in	AQ	EP 0 624 472	07/23/97	EPO	_			

	Other D	ocuments (include Author, Title, Date, and Place of Publication)
Examiner Initial	Desig. ID	Document
Am	AR	UBE Industries, LTD., (Brochure) "Development of Heat Bonding Type Polyimide Film Upilex VT", Japan, Date Unknown 3/27/2000
-	AS	
	AT	
	AU	

Examiner Signature ()	
Examiner Signature [1]	Date Considered
(~) - /
EXAMINER: Initials citation considered. Draw line through	gh citation if not in conformance and not considered./Include copy of this form with
next communication to applicant.	gh citation is not in comornance and not considered./Include copy of this form with
next communication to applicant.	

Development of Heat Bonding Type

Polyimide Film

UBE INDUSTRIES. LTD.

Specialty Products Div. Business Development Dept. Ube Building,2-3-11. Higashi-Shinagawa,Shinagawa-ku.Tokyo 140,Japan Phone (03)5460-3242

Pacsimile (03)5460-3406

(URL>http://www.ube - ind.co.jp

Development of Heat Bonding Type Polyimide Film

[UPILEX.VT]

Specialty Products Div. Business Development Dept.
TAKUHIRO ISHII E-Mail:28369u@ube-ind.co.jp

1.Introduction

Polyimide film is a high heat-resistant insulating material.

The demand of the polyimide film expands around electric and electronic industrial field.

Use Industries, Ltd. has an industrial synthetic technology of BPDA(biphenyltetracerboxylic dianhydride) by the coupling reaction of the aromatic group.

The polyimide is obtained by the polymerization of BPDA and the aromatic group diamine in the polar solvent, then the polyimide film is made by the easting method.

The representative grade of the BPDA type polyimide film is [UPILEX-S].

[UPILEX-S] has a high market share as a base film for TAB(Tape Automated Bonding) with excellent heat-resistance, mechanical arrangth, and the dimension stability, etc.

Ube Industries, Ltd. developed new polyimide film [UPILEX VT] with the excellent hear bonding characteristics based on this BPDA type polyimide technology. Thanks to [UPILEX VT]'s excellent bonding proporties without using adhesive, there are wide range of possibility of applications.

In this text, [UPILEX VT] made by the continuous film casting equipment is introduced together with the data.

2.Characteristic

There is a base film for FPC(Flexible Print Circuit) in a typical usage of the polyimide film.

A popular arracture of copper clad lamination used for FPC is three layer type consisting of a polyimide (ilm, a copper foil, and an acrylic adhesive.

However, there are some problems pointed out for FPC; heat-resistance of FPC decreases more than the polyimide film because of that of adhesives, and the thickness of

the FPC substrate it also restricted to the need of thickness due to that of the bonding layer.

layer.

[UPILEX VT] can be bonded simply by beating (Ahout 300°C) without the adhesive with ceramics and metal like copper, aluminum, stainless, etc.

The bonding pressure in this case is within a general range though differs according to the process and the material.

Of course, [UPILEX VT] has an enough characteristics as the polyimide film.

Excellent iseat bonding property without losing the original film property was achieved by the further development of synthetic technology of the polyimide using

[UPILEX VI] is an aromatic groups polyimide as well as [UPILEX-S] and is able to be produced by the existing equipment for the polymerization end the casting without a special process.

RPDA.

Photo.1 The appearance of both film are similar.

UPLEX - &

LIPLEIX VT

3. Physical properties of [UPILEX VT]

Heat bonding type polyimide film [VT441S] (30 μ m) was made for trial purposes.

The properties of films were compared about appearance, mechanical properties, thornal properties, electric properties, and chanical properties with those of [UPILEX-S] 25 μ m of thickness .(catalogue value).

As a result, the properties of those film are quite similar to those of usual aromatic polyimide.

(1) Appearance of UPILEX VTJ VT441S is abbreviated as VT and UPILEX. S is abbreviated as S. VT is a transparent film of the polyimids color.

The appearance of VT is hardly distinguished to S.(Photo.1)

Table 1. Mechanical properties

Ibran	Unit -	UPILE	XVI	UN	EX-S	
		VT(30	μ <u>π</u>):			Jen Werhod
Tensila Strength (MD)	kg/mm	25°C	300°C	25 C	300°C	
Street at 5% Elongation (MD)	kg/mm ^j	. 32	10	53	30	ASTM D882
Clongadon (MI)	4	18	3	26		
Consile Strength (MD)	kg/nurr	57	104	42	67	ASTM D882 ASTM D882
ensile Modulus (MD)	kg/mm'	620	110	930	. 380	ASTM D882
Tear Strength Initiation [Graves] (MD)	kg/mm	21		23		ASIM DIUU4
Tear Strength - Propagation [Etmenderf] (MD)	מעני /אַ	280	_	330		ASTM DI922

Fig.1 Tonelle Stress - Strain Curves

Strain (% Blongming)

(2) Mechanical properties of [UPILEX VT]

A mechanical properties at 25°C and 300°C (VT are shown in Table 1.

Tensile strongth at normal temperature is 32kg/mm² and the value at 300°C is

Fig.2 isothermal Weight Loss(VT:S0µm)

10kg/mm².

The tensile modulus at normal temperature is about 70% of that of S, dis alongation is 50-60%, which is larger than S.

Fig. 1 shows aress-strain curves at 25°C and 300°C of VT.

This figure says that VT is softer and larger drop of atrangth by heat than that of S.

(3) Thermal properties of [UPILEX VT] Table 2 shows a thermal properties of VT. The level of the shrinkage rate at the high temperature of VT is similar to S.

The coefficient of thems! expansion of VT is about 20ppm which is larger than that of S. Fig. 2 shows the weight loss properties by the pyrolysis of VT at the temperature of 350°C, 400°C, and 450°C.

The weight loss was headly at

The weight loss was hardly observed even after 18 hours at 350°C.

(4) Electric properties.

An electric properties of VT are shown in

Each properties of VT are at similar level to S.

(5) Chemical properties.

Table 4 shows a chemical resistance of VT. VT shows similar alkali resistance to S. The dimension change of VT against various solvents is also very small. It is said that the BPDA type polyimide has very high chemical resistance and VT also has the similar characteristics. Although the general polyimide film has rather high water absorption, it appears that VT has generalizable could

it appears that VT has comparatively small water absorption as well as S.

Table 2. Thermal properties

- Alican		WE ENGINE	125(150 m)	Test Conditions (Test Method)
Heat Shrinkage (%)	MD	0.10	0.10	ЛS С2318
200C 2Hours	TD	0.10	0.10	,
Cuefficient of thermal expr	nasion MD	18	12	20~200℃
(×ppm cm/cm/℃)	TD	21	12	At 50/min. temperature increse

Table 3. Electrical properties

L	Ton 2				set Metford
Dielectic Strength	kV/25µm	6.3	6.8	SOHZ	A5TM D149
Dielectic Constant		3.2	3.5	1000HZ	ASTM DISO
Dissipation Factor		0.0023	0.0013	1000HZ	ASTM DISO
Volume Resistivity	Ω-cm	10E+17	102+17	DC100V	ASTM D257
Surface Resistivity	Ω	>10E+17	>102+17	DC100V	ASTM D257

Table 4. Chemical properties

e de la companya del companya de la companya del companya de la co					W. 1	The state of the s
Anador Media	Sheagh ?	Long allow . Alba	lion Contract		Reconstruction	and the state of t
10% Sodium Hydroxide		- 984		60%	95%	ALZS C for 5 days
Water Alsorption Rate	•	1.08%		1.00%	77.0	ALD C DL TUET
(Dimensional Stability)	MD	TD	MD		(Unit%)	
(Domob)			, ALL		TD .	
Feate Chlodde (37%)	+0.01	+0.01	10.0-	+	0.01	At more sempendere for 10 <u>avir</u> .
S Sedium Hydroxide	+0.02	+0.02	-0.02		0.03	At 60°C für 30 jain.
missions;	0.00	0.00	-000			U room remperature for 10 min.
N-Rydrochlaric Acid	0.00	0110	-0.00			U room compensate for 10 min.

Fig.3 The retainton rate of peel strength (%) VS Temperature

Fig.4 Tast Specimen

The copper foil of 0.5mm width was left and other copper foil was removed by the arching.

Pig.5 90°C-Peel Test Gear

4.Heat bonding characteristic of [UPILEX VT]

The heat bonding test of VT/copper fall.

VT/VT, and VT/S was made, and the

peel strength of each case was measured.

(1) VT/copper foli

The test specimen was made by bonding VT and rolled copper foil (35 μ m) by the heating roll.

The condition went by 300°C in temperature and pressure 20-30kg/cm.

① Heat resistance
Fig. 3 showed the test result of peel

energib in cacle temperature from normal temperature to 300°C.

Initial peel strength (T-Peel) was about 1.5-2kg/cm.

Initial pool strength was maintained up to 200°C.

At 250 To, 90% of initial strength is maintained.

The retention rate has decreased even to some at 300°C.

(2) Chemical resistance

Fig. 4 shows the test specimen, which was prepared as follows; VT and copper foil of 10mm width was heat bonded then the copper foil of 0.5mm width was left and other copper foil was removed by the etching.

The test specimen was soaked in various chemicals for 60 minutes and peel strength before and after soaking was measured. Feel strength was measured by 90°-Peel (Figure 5:IPC-TH-650).

Peel strength has not decreased by various chemicals as shown in Table 5.

3 Other experiments

Table 6 showed the condition of heat cycle test, solder heat-realisance test and pursues outless test.

As the result, the retention rate of peel surength was 100% in the test of best cycle

and solder host-maintant, but 90% in PCT.

(2)VT/VT

The heat bonding test of VT and VT was made.

The condition went by 330°C in temperature, pressure 50-100kg/cm² and time for 60 minutes with a hot press.

Peal strength was lkg/cm or more.

On the other hand, when a special method was used, heat bonding VT and VT at 300°C with no pressure, was possible maintaining the peal strength of over 1 kg/cm.

(3)VT/S

VT and S were not able to be heat bonded in the same condition as VT/VT.

5. To the end

Besides the above-test, it was confirmed that VT out be heat bonded to the metal such as aluminum, stainless steel, and from and to the ceramics.

Therefore, VT has great possibility to be used as a substitute of the field where the polyimide film was laminated using adhesive.

I wish to express my gratitude for cooperation by specialty materials dept.

Table 5. Chemical resistance of VT/copper foil

		e forte co
2N-RCI	100%	6Umia.
2N-NaOH	100%	60min.
MEX	100%	60mis.
Toluene	100%	60min.

Table 6. T at condition of other experiments

Hunt Cycle Test	150°C × 30min. — -55°C × 30min. (5times)
Solder Heid Resistance Text	280°C × 10sec. 1N - HCl wax used at flux
Pressure Cooker Test	121 C,2am HrO×20hrs

URE Industries, Ltd. has developed new BPDA type polyimide film "UPILEX VT".

UPILEX VT is a heat bonding type of polyimide film without using adhesive and applicable with various substrate material.

Features

- (1) Heat bonding ability with ceramics, silicon wafers, and metals
- (2) Bonding temperature: 300°C
- (3) Excellent characteristics as polyimide film

Applications

• FPC

- Metal substrate PCB
- HDD Suspention
- Sheet heater
- Ceramics Lamination
- Micro Machine

Properties (30µm, MD)

are of	and the second	Tart March	US FILES	
Tensile Strength	ಚಳಿ	1 1		35
Termine Sperigiti	300°C	No IM Desz	kg/mm*	10
Elungation	සංද	4.CTD 4.D0000		54
	300°C	ASTM D882	76	74
Tensile Modulus	25°¢	ACTI A Dogg		680
1 AUDIE MOUNTE	300°C	ASTM D882	kg/mm²	180
Coefficient of Thermal Expansion	20~200°C	AETM D235	ppm, *C-1	18
Heat Shrinkage	200°C, 2hr	JIS C2319	%	0.10
Dielectric Strength	25°C	ASTM D149	kV	7.5
Dielectric Constant	25°C, 1kHz	ASTM D150	-	3.2
Valume Resistivity	25℃	ASTM D257	Ω-om	1017
Chemical Resistance	Retention Rate of Modulus in 10% NAOH	-	%	- 99

UBE INDUSTRIES, LTD

Heat Bonding Type Polyimide Film

1

UPILEX®-VT can be bonded simply heating (about 300°C) without the adhesive with various material.

Application

- (1) FPC (Flexible Print Circuit)
- (2) Metal sucstrate PCB
- (3) HDD Suspension
- (4) Sheet heater
- (5) Ceramics lamination
- (6) Micro Machine

Features

High bonding ability with ceramics, silicon waters, and metals.

Bonding temperature: 300°C

Enough characteristics as polyimide film.

Typical Properties

1. Mechanical Properties

Softer and larger drop of strength by heat than that of UPILEX®-S.

Table 1. Mechanical Properties

	Unit -	UPILEX VT		UPILEX-S		
Item		VT (3	VT (30μm)		25μm)	Test Method
		25 °C	300°C	25°C	300°C	•
Tensile Strength	ke/mm²	32	10	58	30	ASTIM DOS2
Stress at 5 % elongation	kg/mm ²	20	4	26	9	ASTM D882
Elonosition	· %	54	74	42	67	ASTIM D882
Tensile Modulus	kg/mm ²	680	180	930	380	ASTM D882
Tear Strength-Initiation (Graves)	ke/mm²	16	de per en de la comp	23	in te	ASTM D1004
Tear Strength-Propagation [Elmendorf]	g/mm	200	-	330	-	ASTM D1922

2. Electrical Properties

Similar level of each properties to UPILEX®-S.

Table 2. Electrical Properties

Item	Unit	UPILEX VT VT (30µm) 25 °C	UPILEX-S 25S (25μm) 25 °C	Test Conditions	Test Method
Dielectric Strength	KV/25pm	6.3	6.8	50 Hz	ASTM D149
Dielectric Constant	•	3.2	3.5	1000 Hz	ASTM D150
Dissipation Factor	. 0	0.0023	0.0013	1000 Hz	ASTIM D150
Volume Resistivity	Ù-cm	10E+17	10E+17	DC100 V	ASTM D257
Suriboe Resistivity		≥ 10 E +17	≥ 10 2 017	D©100 V	ASTM D257

3. Thermal Properties

Similar level of the shrinkage rate at the high temperature to UPILEX®-S. Larger coefficient of thermal expansion than that of UPILEX®-S.

100

Table 3. Thermal Properties

Item	Unit	UPILEX VT UPILEX-S		Toot Conditions (Mothed)	
item	Unit	VT (30μm)	25S (25μm)	Test Conditions (Method)	
Heat Shrinkage	MD	0.10	0.10	JIS C2318	
200 °C 2 Hours	TD	0.10	0.10	313 G2310	
Coefficient of thermal expansion	MD	18	12	20 ~ 200 °C	
(× ppm cm/cm/°C)	TD	21	12	At 5 °C/min. temperature increase	
(× ppm cm/cm/°C)	TD	21	12	At 5 °C/min. temperature increase	

*MD=Machine Direction TD=Transverse Direction

350°C 20 8 40 400°C

Heating Time, hrs
Fig. 2 Isothermal Weighte Loss (VT: 30 μm)

10

450°C

20

4. Chemical-Resistance Properties

Similar alkali resistance to UPILEX®-S.

Small dimension change against various solvents.

High chemical resistance.

Comparatively small water absorption as well as UPILEX®-S.

No decrease of peel strength by various chemicals.

Table 4. Chemical Properties

Item		U	UPILEX VT			LEX-S	Immersion	
Retentio	n of =	V	T (30µm)		25S	(25µm)	Condition	
10 % Sodium Strength					80 %		At 25 °C	
Hydroxide Elongation	Elongation	ss, the set - years of		60 %			for 5 days	
	Modulus		98 %		9	5 %	101 0 00,0	
Water Absor	ption Rate		1.08 %		1,	00 %	the second	
Dimensiona	l Stability	MD	TD		MD	TD		
Ferric Cl	nloride	+0.01	+0.01		-0.01	+0.01	At R.T. for 10 min.	
5% Sodium	Hydroxide	+0.02	+0.02		-0.01	+0.03	At 60 °C for 30 min.	
Isoprop	anol	0.00	0.00	1.1	-0.00	+0.01	At R.T. for 10 min.	
2N-Hydrich	loric Acid	0.00	0.00		-0.00	-0.00	At R.T. for 10 min.	

Table 5. Chemical Resistance of VT/Copper Foil

Chemical	The Retention Rate of Peel Strength.	Immersion Time		
2N-HCI	100 %	60 min.		
2N-NaOH	100 %	60 min.		
MEK	100 %	60 min.		
Toluene	100 %	60 min.		

Fig. 3 Retention Rate of Peel Strength (%) vs Temperature

5. Oth rF atures

High retention rate of peel strength in the test of heat cycle, solder heat-resistance and PCT.

Table 6. Retention Rate Test Condition of Other Experiments and Results

Heat Cycle Test	150 °C × 30 min. ~ -55 °C × 30 min. (5 times)	100 %	\neg
Solder Heat Resistance Test	280 °C × 10 sec. 1N-HCl was used at flux	100 %	
Pressure Cooker Test	121 °C, 2 atm H ₂ O × 20 hrs	90 %	

UPILEX® is registered trademark of Ube Industries, Ltd.