CS218: design and analysis of algorithms

Data Structures

Yan Gu

What data structures have we learned before?

- Linked list
- Array
 - 1D, 2D, ...

- Search tree
 - Binary search tree/multiway search tree/balanced search tree/AVL tree/red-black tree
- Heap
 - Binary heap, Fibonacci heap, ...
- Hash Table
 - Open addressing, close addressing, ...

Construction of Huffman Tree

- Huffman(C)
 - n=|C|
 - Q=C // construct a **priority queue** of all character's frequency
 - for i = 1 to n-1
 - allocate a new node z
 - z.left = x = Extract-Min(Q)
 - z.right = y = Extract-Min(Q)
 - z.freq = x.freq + y.freq
 - Insert(Q, z)
 - return Extract-Min(Q) // Root of the tree

What priority queue will you use?

Construct Huffman tree using priority queues

Operation needed	Function name
Construct a priority queue (initialize) with n elements	construct (array A)
Find the smallest element and delete it	extract_min()
Insert an element	insert(x)

This is "priority queue", it is an "abstract data type" (ADT). It specifies an interface of functions

- In Huffman tree construction, we need a "priority queue"
- we call construct once
- extract_min and insert n times

Constructe Huffman tree using priority queues

To implement a "priority queue", we need some "data structures". Here are some possible implementations.

Data Structure	construct (array A)	extract_min()	insert(x)		
Binary heap	Construct a heap from an array (heapify)	Read the root and delete it	Insert x into the heap		
	O(n)	$O(\log n)$	$O(\log n)$		
Balanced binary tree	Construct a tree from an array	Chase the left-most branch to find min and delete it	Insert into the tree		
(e.g., AVL tree)	$O(n \log n)$	$O(\log n)$	$O(\log n)$		
Sorted array	Sort the array	Find the first element in the array and mark it deleted	Insert \boldsymbol{x} into the middle of the array to keep the order		
	$O(n \log n)$	0(1)	O(n)		
Unsorted array	Put everything in the array (nothing to do)	Traverse the array to find the min and mark it deleted	Put x at the end		
	0(1)	O(n)	0(1)		

Is the abstraction of "priority queue" useful?

Is it only used in Huffman tree construction?

Do you know other algorithms using priority queues?

Indeed, a lot of greedy algorithms essentially use priority queues

Dijkstra's algorithm and Prim's algorithm

• Given a graph and a source vertex s, find the shortest distance from s and all the other vertices

- $S = \emptyset$
- $Q = \{s\}$
- while $Q \neq \emptyset$
 - u = Extract-Min(Q)
 - $S = S \cup \{u\}$
 - for each $v \in N(u)$
 - $\delta(v) = \min \{ \delta(v), \delta(u) + w(s, v) \}$
 - Insert/Update $\delta(v)$ in ${\it Q}$

- $\delta(u)$: tentative distance
- S: settled set
- Q: priority queue
- w(u, v): weight of edge from u to v
- N(u): neighbor set of u

Is the abstraction of "priority queue" useful?

- A lot of greedy algorithms can essentially use priority queues
 - Because they make "greedy" choices
- Candy buying: find the cheapest candy
 - construct, extract_min. No need to insert or update
 - Using sorted array, heap, or balanced binary tree will all work $(O(n \log n) \cosh)$
- Dijkstra's and Prim's algorithm
 - extract_min, insert, update. No need to construct (start from a single element)
 - Using sorted array gives you $O(n^2)$ time.
 - Using binary heap or balanced binary tree gives you $O(m \log n)$ time
 - Using something called "Fibonacci heap" gives you $O(n \log n + m)$ time
- Huffman Code: Construct, extract_min, insert
- Optimization with submodularity: CELF (lazy update)

What other abstract data types do you know?

Example: ADTs in STL:

- Ordered set/maps
 - (<u>std::map</u>, <u>std::set</u>)
 - implemented by red-black trees
- Unordered set/maps
 - (<u>std::unordered map</u>, <u>std::unordered set</u>)
 - implemented by hash tables

```
Why they are called "std::map / std::unordered_map" instead of "std::red_black_tree / std::hash_table"?
```

What's the difference between sets and maps?

Use ADT and data structures for algorithm design

- Your algorithm may need to access and organize data:
 - How to store data?
 - What query to support? (lookup, findMin, findSum, ...)
 - What update to support? (insertion, deletion, filter, multi_insert, delete_min, ...)
- Based on the functions needed, you define an abstract data type (ADT)!
 - You don't care how they are supported (data organization/algorithms/cost bounds) for an ADT
- Then you find a data structure to support them
 - A concrete way to organize data and concrete algorithms to support the functions
 - They may have different costs for different functions
 - So based on your algorithm, you choose the best data structure

Examples of ADT

- FIFO Queue
- Deque (double-ended queue)
- Stack
- Priority queue
- Ordered set/map
- Unordered set/map

 (sometimes we say a queue or a stack is a data structure when we are talking about a concrete implementation)

In this course

Winning trees

- An implementation of priority queue
- Easy to implement, same bound as binary heap

Augmented trees

- Range-related queries: 1D range max/min/sum
- Rank/selection on trees

Winning Tree

Priority queue

- Store a set of keys
 - find/delete smallest/largest key
 - update the keys
 - Insert/delete

Operation needed	Function name
Construct a priority queue (initialize) with n elements	construct (array A)
Find the smallest element and delete it	extract_min()
Insert an element	insert(x)

Binary Heap

- Organize all keys in a complete binary tree
- The key at node x is smaller than its children
- Once updated, an element needs to move upwards or downwards (heapify)

- Min/max query applicable only to the entire set
 - Cannot support min/max of a range

Winning tree

- Store all elements at the leaves
- Each internal node is a competition
 - the one wins (the smaller one) will be recorded at the node
- To make it easier to be stored in an array, add some dummy nodes to make the size 2^k for integer k

Winning tree

- Store all elements at the leaves
- Each internal node is a competition
 - the one wins (the smaller one) will be recorded at the node
- To make it easier to be stored in an array, add some dummy nodes

Insertion

- add at the end
- re-compute all its ancestors

Deletion

- mark it as ∞
- re-compute all its ancestors

Update

- update its key
- re-compute all its ancestors

Winning tree - construct

• *O*(*n*) time

Winning tree - update

• $O(\log n)$ time

Winning tree: insertion

• $O(\log n)$ time

Winning tree - deletion

- $O(\log n)$ time
- If we want to make it more space-efficient, we can move the last element back to the slot of the deleted element

Winning tree

- Can also use an array to store it (similar to binary heap)
- Two children of A[i]: A[2i] and A[2i+1] (can also start from 0)

Index	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Value	2	2	8	2	6	8	∞	2	4	9	6	8	10	8	∞

Winning tree

- Can also use an array to store it
- Two children of A[i]: A[2i] and A[2i+1] (can also start from 0)
- We don't need dummy nodes!! Use a complete binary tree

Index	1	2	3	4	5	6	7	8	9	10	11
Value	2	6	2	6	8	2	4	9	6	8	10

Winning tree vs. binary heap

- Same asymptotical bound for insertion/deletion/update/extract_min
- Winning tree takes more space, and is slightly slower in practice
 - $O(\log n)$ cost is tight for winning trees
- Winning tree is much simpler to implement
 - Essentially, it only needs one operation
- However, winning tree is more general than binary heap

• Find the min of the $2^{nd} - 6^{th}$ elements?

• Find the min of the $2^{nd} - 6^{th}$ elements?

• Find the min of the $2^{nd} - 6^{th}$ elements?

min(4, 6, 8)

• Find the min of the first 6 elements?

• Find the min of the first 6 elements?

• Find the min of the first 6 elements?

min(2, 8)

Winning tree vs. binary heap

- Same asymptotical bound for insertion/deletion/update/extract_min
- Winning tree takes more space, and is slightly slower in practice
 - $O(\log n)$ cost is tight for winning trees
- Winning tree is much simpler to implement
 - Essentially, it only needs one operation

Augmented search trees

Range sum query

 Given a set of key-value pairs, a query asks for the sum of values in between a key range

			25,2	16,1	10	12,11 15,17 7,7 9,2					
			8,9	9 4	,4	17	7,3	13,9	1	0,2	
Key	4	7	8	9	10	12	13	15	16	17	25
value	4	7	9	2	2	11	9	17	10	3	2
Prefix sum	4	11	20	22	24	35	44	61	71	74	76

- range_sum(7,16) = 71 4 = 67
- $O(\log n)$ time

Range max query

- Given a set of key-value pairs, a query asks for the max of values in between a key range
 - Cannot use subtraction!
- The set of key-value pairs can be updated
 - Insert/delete new key-values or update the values
- Search tree
 - Insertion/deletion/update in $O(\log n)$ time

Why we need search trees?

A B-tree structure maintaining ordering on keys.

A binary search tree structure maintaining ordering on keys.

- Organizing a set of data
- What is the benefit/disadvantage of using trees compared to arrays?
- What is the benefit/disadvantage of using trees compared to hash table?

Search Trees

Ordered!

- The in-order traversal is sorted w.r.t. keys
- (cannot be achieved if we use hash tables)

Dynamic!

- Insertion/deletion in O(log n) time
- (cannot be achieved if we use ordered arrays)

Efficient!

- Insertion/deletion/lookup in O(log n) time
- Traversal in O(n) time
- Get some info from / operate on the root of subtrees (do not need to touch all tree nodes)

However?

- More space than flat arrays
- Worse locality since tree nodes are scattered

Balanced Binary Trees

- Binary: each tree node has at most two children
- Balanced: the tree has bounded height
 - Usually $O(\log n)$ for size n

A wild balanced binary tree

Balanced Binary Trees

- Binary: each tree node has at most two children
- Balanced: the tree has bounded height
 - Usually $O(\log n)$ for size n

A wild balanced binary tree

Balanced Binary Trees

- Binary: each tree node has at most two children
- Balanced: the tree has bounded height
 - Usually $O(\log n)$ for size n

An abstract balanced binary tree

Binary Search Trees

- Lookup/insertion just follows the path
- Deletion may be more involved
- Need to rebalance the tree using rotation!

Tree rotation

Source: wikipedia

Source: https://www.researchgate.net/figure/A-single-left-rotation-and-a-double-left-rotation-a-b-and-c-are-elements-x-y-y0_fig4_220676747

AVL trees

 Invariant: for any node in the tree, the heights of its two subtrees differ by at most 1

Height is bounded by O(log n)

•
$$|h(T_l) - h(T_R)| \leq 1$$

• $h(\cdot)$ denotes the height of the tree

Red-black trees

- Invariants:
 - Red node only have black children;
 - External nodes (leaves) are black;
 - The black height from the root to any leaf is the same.
- Tree height at most $O(\log n)$

Augmented tree

Augmented data structures

- Very rarely we need to design a brand-new data structure
- We could augment some of the existing ones!
 - Directly use existing operations/analysis
 - With minimal additional information to be maintained

Range sum query

 Given a set of key-value pairs, a query asks for the sum of values in between a key range

Key	4	7	8	9	10	12	13	15	16	17	25
value	4	7	9	2	2	11	9	17	10	3	2

Search tree

First of all, how to find all records in a given key range on a binary search tree?

Range query algorithm

• Report all entries in key range $[k_L, k_R]$.

```
v_{\mathsf{Split}} v_{\mathsf
```

```
range(t, k_L, k_R) {
r = t.root; if (!r) return;
if (k_R < r) return range (t.left, k_L, k_R); // total range in the left branch
if (k_L > r) return range(t.right, k_L, k_R); // total range in the right branch
 add rangeR(t.left, k_L) to result
                                           k_L < k_R^L \leq \sum_{r} \leq k_R < k_R
 add t.root to result
 add rangeL(t.right, k_R) to result
```

rangeL and rangeR functions

• rangeL: everything $\leq k$

```
 \begin{array}{l} {\rm rangeL}(t,k) \, \{ \\ r=t. {\rm root}; \ {\rm if} \ (!{\rm r}) \ {\rm return} \ 0; \\ {\rm if} \ (k < r. {\rm key}) \ {\rm return} \ {\rm rangeL}(t. {\rm left}, \, k); \, /\!/ \ {\rm total} \ {\rm range} \ {\rm in} \ {\rm the} \ {\rm left} \ {\rm branch} \\ {\rm if} \ (k \geq r. {\rm key}) \, \{ \\ {\rm add} \ t. {\rm left} \ {\rm to} \ {\rm result} \, /\!/ {\rm the} \ {\rm whole} \ {\rm left} \ {\rm subtree} \ {\rm should} \ {\rm be} \ {\rm included} \\ {\rm add} \ t. {\rm root} \ {\rm to} \ {\rm result} \\ {\rm if} \ (k > r. {\rm key}) \ {\rm add} \ {\rm rangeL}(t. {\rm right}, \, k) \ {\rm to} \ {\rm result} \\ \} \\ \end{array}
```

Totally on the left

The left subtree is

totally included

Range query: time complexity

• $O(\log n)$ time to find the relevant subtrees

• O(k) time to traverse and output (k is the output size)

• Total cost: $O(\log n + k)$

What if we only need the sum/max/count of the range?

Augmented Trees for Range Max

• Storing the max in each tree node for answering range sum queries

Augmented Trees for Range Sum

• Storing the sum in each tree node for answering range sum queries

Range max query algorithm

- When the whole subtree is included in the result, sometimes we don't need to traverse the tree use the augmented value!
- E.g., if we want the max of values
 - Store at each node the max value
 - When we say "add the subtree to the result", directly read the max value (augmented value) from the subtree root, and add the value to the result
 - Takes only $O(\log n)$ time!

Augmented Trees for rank report / select k-th element

Maintain augmented values

- In any construction/insertion/deletion/update ... algorithms
- Any modification will update all related tree nodes on the path
- Asymptotically the same time bound
- aug_val of a node can be computed by its two children and the node:
 - min = min(leftmin, rightmin, rootvalue)
 - sum = leftsum+rightsum+rootvalue
 - size = leftsize+rightsize+1

Augmented tree for range queries

- Range sum/min/max/... queries
- Can be combined with any searched tree data structure
 - Base data structure can be AVL, red-black tree, etc.
- Using different augmentations we can get different functionalities

Revisit of the range sum/max/rank query

 Given a set of key-value pairs, a query asks for the sum of values in between a key range

Key	4	7	8	9	10	12	13	15	16	17	25
value	4	7	9	2	2	8	9	7	10	3	2
Prefix sum	4	11	20	22	24	32	41	48	58	61	63

- range_sum(7,13) = 41 4 = 37
- $O(\log n)$ time

Build a winning tree for the query!

Range query on a winning tree


```
rangeMax(t, k_L, k_R) {
r = t.root; if (r is null) return;
if (t.\min < k_R \text{ and } t.\max < k_L): return;
if (k_L \le t \text{. min and } t \text{. max} \le k_R):
  ans = max(ans, t.augval) and return;
if (k_L \le r \le k_R): ans = max(ans, r);
rangeMax(t. left, k_L, k_R);
rangeMax(t. right, k_L, k_R);
```

Winning tree itself is a special augmented tree

- It can be used directly as a priority queue because the extract-Min for priority queue is a special range query
- We can augment the winning tree differently for different queries; we can augment multiple fields simultaneously
- The left-to-right order of the leaves in a winning tree can be used to represent a list, and augmenting the winning tree can solve all list query problems
- If we pre-sort all elements or the key range is fixed (e.g., [1, ..., n]), winning tree can be used as a static search tree (discretization)

Summary

Winning tree + augmentation is almost sufficient for any data structure to maintain 1D data

- Winning tree stores the elements in all leaves in a complete binary tree
 - Unordered: binary heap
 - A list: list queries (static)
 - A sorted list: static binary search trees
- Augmentation supports range and rank queries (no matter what tree that is)
 - For the whole list: stored in the root
 - For a range (k_L, k_R) : use the algorithm that visit $O(\log n)$ subtrees
 - Supports min/max/sum/rank/...
 - For list-all, the cost is $O(\log n + k)$ where k is the output size

The next lectures ...

- Dynamic programming!
- (For the next four lectures)

Training part of Homework 2 due tomorrow