Devoir TP 0

#Exercice 13

#la matrice des données

poids <- read.table("C/Users/ProDesK/Desktop/Poids_naissance.csv", header = TRUE)</pre>

View(poids)

#Convertion des donnés des poids des mamansen kg.

poids <- transform(poids,LWT=LWT*0.4535923)</pre>

La convertion

^	ID ‡	AGE [‡]	LWT [‡]	RACE [‡]	SMOKE [‡]	PTL [‡]	HT ‡	UI [‡]	FVT [‡]	BWT [‡]	LOW
1	85	19	82.55380	2	0	0	0	1	0	2523	C
2	86	33	70.30681	3	0	0	0	0	3	2551	C
3	87	20	47.62719	1	1	0	0	0	1	2557	C
4	88	21	48.98797	1	1	0	0	1	2	2594	C
5	89	18	48.53438	1	1	0	0	1	0	2600	C
6	91	21	56.24545	3	0	0	0	0	0	2622	C
7	92	22	53.52389	1	0	0	0	0	1	2637	C
8	93	17	46.72001	3	0	0	0	0	1	2637	C
9	94	29	55.79185	1	1	0	0	0	1	2663	C
10	95	26	51.25593	1	1	0	0	0	0	2665	C
11	96	19	43.09127	3	0	0	0	0	0	2722	C
12	97	19	68.03884	3	0	0	0	0	1	2733	C
13	98	22	43.09127	3	0	0	1	0	0	2750	C
14	99	30	48.53438	3	0	1	0	1	2	2750	C

#Exercice 14

#Saisie des donnees

Mort.à = c(93, 53, 72, 68, 68, 53)

Années.de.carrière = c(66, 25, 48, 37, 31, 32)

Nombre.de.films = c(211, 58, 98, 140, 74, 81)

Prénom = c("Michel", "André", "Jean", "Louis", "Lino", "Jacques")

Nom = c("Galabru", "Raimbourg", "Gabin", "de Funès", "Ventura", "Villeret")

Date.du.décès = c("04-01-2016", "23-09-1970", "15-10-1976", "27-01-1983",

"22-10-1987", "28-01-2005")

acteurs = data.frame(Mort.à, Années.de.carrière, Nombre.de.films, Prénom,

Nom, Date.du.décès)

#Modification du nom de la 1ere colonne

colnames(acteurs)[1] = "Age.du.décès"

#Extraction de la colonne Prénom

acteurs\$Prénom

#Ordonner la data frame par ordre croissant suivant l'âge de la mort.

acteurs[order(acteurs\$Age.du.décès),]

*	Mort.à [‡]	Années.de.carrière	Nombre.de.films	Prénom [‡]	Nom [‡]	Date.du.décès [‡]
1	93	66	211	Michel	Galabru	04-01-2016
2	53	25	58	André	Raimbourg	23-09-1970
3	72	48	98	Jean	Gabin	15-10-1976
4	68	37	140	Louis	de Funès	27-01-1983
5	68	31	74	Lino	Ventura	22-10-1987
6	53	32	81	Jacques	Villeret	28-01-2005

Modification du nom de la premiere colonne

•	Age.du.décès	Années.de.carrière ‡	Nombre.de.films	Prénom [‡]	Nom [‡]	Date.du.décès
1	93	66	211	Michel	Galabru	04-01-2016
2	53	25	58	André	Raimbourg	23-09-1970
3	72	48	98	Jean	Gabin	15-10-1976
4	68	37	140	Louis	de Funès	27-01-1983
5	68	31	74	Lino	Ventura	22-10-1987
6	53	32	81	Jacques	Villeret	28-01-2005

Extraction de la colonne prenom

[1] Michel André Jean Louis Lino Jacques Levels: André Jacques Jean Lino Louis Michel

```
Age.du.décès Années.de.carrière Nombre.de.films Prénom
                                                              Nom Date.du.décès
2
                                                                      23-09-1970
           53
                              25
                                              58 André Raimbourg
                                             81 Jacques Villeret
6
           53
                              32
                                                                      28-01-2005
4
                              37
                                             140 Louis de Funès
                                                                      27-01-1983
                                                   Lino Ventura
Jean Gabin
5
           68
                              31
                                              74
                                                                      22-10-1987
3
           72
                              48
                                              98
                                                                     15-10-1976
                                                         Galabru
                                             211 Michel
                                                                     04-01-2016
```

#Exercice 15

w <- read.table("C:/Users/ProDesK/Desktop/fromage.txt", header = TRUE)
attach(w)</pre>

X1

str(w) #caracteristiques de w

summary(w) # les paramètres statistiques élémentaires pour les variables Y , X1, X2 et X3 pairs(w)#Cela renvoie les nuages de points des variables deux à deux.

 $ww = w[(X1 > 5.1) \& (X3 < 1.77),] \# construction du nouveau data frame \\ str(ww) \# caracteristiques de ww$

summary(ww) #donner les paramètres statistiques élémentaires pour les variables Y ,X1, X2 et X3.

```
> X1

[1] 4.543 5.159 5.366 5.759 4.663 5.697 5.892 6.078 4.898 5.242 5.740 6.446 4.477 5.236 6.151 6.365 4.787

[18] 5.412 5.247 5.438 4.564 5.298 5.455 5.855 5.366 6.043 6.458 5.328 5.802 6.176
```

```
> str(w) #caracteristiques de w
'data.frame': 30 obs. of 4 variables:
$ Y : num 12.3 20.9 39 47.9 5.6 25.9 37.3 21.9 18.1 21 ...
$ X1: num 4.54 5.16 5.37 5.76 4.66 ...
$ X2: num 3.13 5.04 5.44 7.5 3.81 ...
$ X3: num 0.86 1.53 1.57 1.81 0.99 1.09 1.29 1.78 1.29 1.58 ...
```


#Exercice 16
data(airquality)

?airquality

•	Ozone [‡]	Solar.R [‡]	Wind [‡]	Temp [‡]	Month [‡]	Day [‡]
1	41	190	7.4	67	5	1
2	36	118	8.0	72	5	2
3	12	149	12.6	74	5	3
4	18	313	11.5	62	5	4
5	NA	NA	14.3	56	5	5
6	28	NA	14.9	66	5	6
7	23	299	8.6	65	5	7
8	19	99	13.8	59	5	8
9	8	19	20.1	61	5	9
10	NA	194	8.6	69	5	10
11	7	NA	6.9	74	5	11
12	16	256	9.7	69	5	12
13	11	290	9.2	66	5	13
14	14	274	10.9	68	5	14

New York Air Quality Measurements

Description

Daily air quality measurements in New York, May to September 1973.

Usage

```
airquality
```

Format

A data frame with 153 observations on 6 variables.

```
[,1] Ozone numeric Ozone (ppb)
[,2] Solar.R numeric Solar R (lang)
[,3] Wind numeric Wind (mph)
[,4] Temp numeric Temperature (degrees F)
[,5] Month numeric Month (1--12)
[,6] Day numeric Day of month (1--31)
```

Details

names(airquality) #les noms des variables considérées

dim(airquality) # le nombre de lignes et de colonnes

summary(airquality) #Calcul des paramètres statistiques

boxplot(airquality\$Ozone~airquality\$Month) #représentation de la boîte à moustaches de la variable Ozone pour chaque mois

```
#Création de la variable saison install.packages("dplyr") library(dplyr)
```

```
saison <-case_when (
    airquality$Month==5 ~ "printemps",
    airquality$Month==6 | airquality$Month==7 | airquality$Month==8 ~ "été",
    airquality$Month==9 ~ "automne",
    TRUE ~ "Autre"
)
install.packages("ggplot2")
library(ggplot2)</pre>
```

qplot(Temp, Ozone, data = airquality, colour = Month)

#Exercice 17

#simulation

X=rnorm(100,0,5)

head(X)

#graphique

i=c(1:100)

Y=1.7+2.1*i+X

plot(i,Y)

abline(a=1.7, b=2.1, col="red")

#Exercice 18

#saisi des DONNEES

brun =c(68,15,5,20)

chatin=c(119,54,29,84)

roux=c(26,14,14,17)

blond=c(7,10,16,94)

couleur=data.frame(brun,chatin,roux,blond)

View(couleur)

#Calcul de la matrice des frequences

freq <- couleur/sum(couleur)

round(freq*100,digit=2)

#distributions marginales r pour les lignes et c pour les colonnes

r <- apply(freq,1,sum)

round(r,digit=2)

c <- apply(freq ,2,sum)

round(c,digit=2)

#Matrice des profils-lignes L (distributions conditionnelles en ligne)

L <- sweep(freq,1,STAT=r,FUN="/")

round(L,digits=2)

#Matrice des profils colonnes C (distributions conditionnelles en colonnes)

round(T,digit=2)

#test de khi-deux

chisq.test(couleur)\$statistic

#on remarque que le test de khi-deux=138.2898

#138.2898>23.59, donc on rejette H0 qui estime qu'il n'a pas de liaison entre la couleur des yeux et la couleurdes cheveux.

TP1

```
#EXO19
#ecriture du data.frame
data <- data.frame(BEPC = c(15,10,15,40), BAC = c(12,18,5,35), Licence
          = c(3,4,8,15), Total = c(30,32,28,90))
rownames(data) <- c("Plus de 50 ans", "Entre 30 et 50 ans", "Moins de 30
ans", "Total")
data
#tableau de contingence de la frequence
freq <- data/sum(data)
round(freq*100,digit=2)
r <- apply(freq,1,sum)
round(r,digit=2)
c <- apply(freq ,2,sum)
round(c,digit=2)
#Matrice des profils-lignes L (distributions conditionnelles en ligne)
L <- sweep(freq,1,STAT=r,FUN="/")
round(L,digits=2)
#Matrice des profils colonnes C (distributions conditionnelles en colonnes)
C <- sweep(freq,1,STAT=c,FUN="/")
round(C,digits=2)
chisq.test(data)
#11.175 > 9.49, les 2 variables ne sont pas indépendantes
```

```
BEPC BAC Licence Total
Plus de 50 ans
                         15 12
                                       3
                         10 18
                                               32
Entre 30 et 50 ans
                                        4
                       15 5
                                        8
                                               28
Moins de 30\nans
                         40 35
                                        15
Total
                                               90
> #tableau de contingence de la frequence
> freq <- data/sum(data)</pre>
> round(freq*100,digit=2)
                        BEPC
                              BAC Licence Total
                        4.17 3.33
Plus de 50 ans
                                     0.83
                                       1.11 8.89
Entre 30 et 50 ans 2.78 5.00
                                       2.22 7.78
                        4.17 1.39
Moins de 30\nans
                                       4.17 25.00
Total
                       11.11 9.72
4- test de khi-deux : chisq.test(data)
 > chisq.test(data)
           Pearson's Chi-squared test
 data: data
 X-squared = 11.175, df = 9, p-value = 0.2639
#11.175 > 9.49, les 2 variables ne sont pas indépendantes
#EXO20
#création du tableau
tableau <- matrix(c(290,410,110,190), ncol=2, byrow=TRUE)
colnames(tableau) <- c("Bleu","Brun")</pre>
rownames(tableau) <- c("Celib", "Marie")
tableau
tableau <- as.table(tableau)
#representation graphique du contenu du tableau
barplot(tableau)
n <- margin.table(tableau) #nombre total de personnes
m1 <- margin.table(tableau,1)# nombre total de personnes par colonnes (celib/marie)
m2 <- margin.table(tableau,2) #nombre total de personnes par ligne (bleu/brun)
prop.table(tableau) #proportions
tab0 <- as.array(m1) %*% t(as.array(m2))/n
tab0 <- as.table(tab0)
summary(tableau)
summary(tab0)
```

#test de khi-deux pour l'échantillon HairEyeColor

HairEyeColor

HairEyeNew<- margin.table(HairEyeColor, margin = c(1,2))

chisq.test(HairEyeNew)

#Le test nous indique qu'une ou plusieurs relations sont plus fréquentes que les autres dans le tableau.

#Pour déterminer quelle relation entre la couleur des cheveux et des yeux est plus fréquente que les autres, nous allons

#calculer les proportions du tableau, comme indiqué ci-dessous.

HairEyeNew/sum(HairEyeNew)

#Comme vous pouvez le voir dans le tableau, les cheveux bruns et les yeux marron sont les plus fréquents (20%),

#suivis des cheveux blonds et des yeux bleus (15%).


```
> HairEyeNew<- margin.table(HairEyeColor, margin = c(1,2)) > chisq.test(HairEyeNew)
                      Pearson's Chi-squared test
   data: HairEyeNew
X-squared = 138.29, df = 9, p-value < 2.2e-16

#Le test nous indique qu'une ou plusieurs relations sont plus fréquentes que les autres dans le tableau.

> #Pour déterminer quelle relation entre la couleur des cheveux et des yeux est plus fréquente que les autres, nous allons

> #calculer les proportions du tableau, comme indiqué ci-dessous.

> HairEyeNew/sum(HairEyeNew)

**The Tourne of the Tour
   Eye Brown Blue Hazel Green
Black 0.114864865 0.033783784 0.025337838 0.008445946
Brown 0.201013514 0.141891892 0.091216216 0.048986486
Red 0.04918919 0.028716216 0.023648649 0.023648649
Blond 0.011824324 0.158783784 0.016891892 0.027027027
#EXO21:
data()
data(cars)
cars #Distance necessaire pour qu'une voiture s'arrete en fonction de la vitesse
names(cars)
dim(cars) #une matrice de taille 50,2
plot(cars) #on ne comprend pas grand chose de ce graphique
?lm
reg <- Im(dist ~ speed, data = cars)
attributes(reg)
summary(reg)
anova(reg)
names(reg)
plot(reg)
plot(cars,pch=20,col='blue')
abline(reg=reg,col="red")
abline(reg$coeff,col="yellow")
hat<-predict(reg)
hat
predict(reg , data.frame(speed = 20) , interval = "prediction")
```


Les fonctions summary et anova

Le graphique 1:

Le graphique 2 (QQ-plot):

Le graphique 3 :

Le graphique 4 (Cook's D):

plot(cars,pch=20,col='blue') abline(reg=reg,col='red')

avec abline(reg\$coeff,col='yellow')

a)valeur prédite pour une vitesse de 20 :

Devoir TP2

```
#Exercice 23
#Question 1:
library("FactoMineR")
library("factoextra")
dataC<-data.frame(
 Indidvidus = c("Z1","Z2"),
 n1 = c(1.00, 5.00),
 n2 = c(2.00, 10.00),
 n3 = c(3.00, 8.00),
 n4 = c(4.00, 8.00),
 n5 = c(9.00, 12.00)
dim(dataC)
#construire la matrice de correlation
pairs(dataC[,2:6])
Matricecorl<-cor(dataC[,2:6])
#observons si c'est une matrice identitaire
det(Matricecorl)
#faire l'APC
```

res.pca<-PCA(Matricecorl,scale.unit = TRUE,graph=TRUE)

#Interpretation : On voit que les individus n1 et n5 sont les individus qui contribuent le plus à droite de l'axe.

fviz_eig(res.pca, addlabels = TRUE, ylim = c(0, 50))

#Question 2

#en utilisant primcomp et prcomp

X<-princomp(Matricecorl,scale=FALSE)

Y<-prcomp(Matricecorl,scale=FALSE)

#Graphes

Devoir TP2 station du ski

pour l'axe 2, le calcul de la variabilité est : 20,789%=1,247/6 et le % cumulé est

73,998=20,789+53,209. Cela

#signifie que le deuxième axe comporte 20,789 de la variance (ou variabilité, ou inertie)

totale du nuage, et que le plan (1,2)

#totalise 73,998% de cette variance totale.

#interpréter les 2 axes.

var <- get_pca_var(res.pca1)</pre>

var

Coordonnées

head(var\$coord)

Dim.1 Dim.2 Dim.3 Dim.4 Dim.5

prixforf 0.93031706 0.09513297 -0.08572117 0.1251448 -0.31055554

altmin -0.07336694 0.82270492 0.48871130 0.2792394 0.02904032

altmax 0.65006226 0.53099234 -0.03832048 -0.5398817 0.04967488

pistes 0.95404437 -0.06226765 -0.11082956 0.1446174 0.05250905

kmfond 0.36193326 -0.50154750 0.76829658 -0.1613207 -0.03250806

Coordonnées

head(var\$coord)

Dim.1 Dim.2 Dim.3 Dim.4 Dim.5

prixforf 0.865489833 0.009050282 0.007348118 0.01566121 0.0964447462

altmin 0.005382708 0.676843387 0.238838735 0.07797465 0.0008433401

altmax 0.422580938 0.281952868 0.001468459 0.29147230 0.0024675934

pistes 0.910200666 0.003877261 0.012283191 0.02091420 0.0027572005

kmfond 0.130995683 0.251549890 0.590279627 0.02602438 0.0010567740

remontee 0.864410398 0.020276296 0.001171477 0.03560523 0.0562078214

Contributions aux composantes principales head(var\$contrib)

fviz_pca_var(res.pca1, col.var = "blue")

library("corrplot")
corrplot(var\$cos2, is.corr=FALSE)
fviz_contrib(res.pca1, choice = "ind", axes = 1:2)

ind <- get_pca_ind(res.pca1)

ind

Contribution of individuals to Dim-1-2

Coordonnées des individus

head(ind\$coord)

Dim.1 Dim.2 Dim.3 Dim.4 Dim.5

1-0.9538555-1.9658361 0.30654862-0.1467118 0.07898986

2 3.2622418 -0.7109340 -1.25776337 -0.6421885 -0.20595549

3 -0.9670028 -1.8619314 -0.03410107 -0.9136117 -0.30583446

4 -1.3737068 -1.2479434 -1.75191973 -1.7603420 0.09790165

5 -2.0038380 -0.4415058 2.92715126 -0.3557049 0.15456409

6 -1.4108447 2.2642552 0.03318371 -0.3860225 0.26058662

Qualité des individus

head(ind\$cos2)

Dim.1 Dim.2 Dim.3 Dim.4 Dim.5

 $1\ 0.1796712\ 0.76314664\ 0.0185571843\ 0.004250536\ 0.0012321285$

```
2 0.8030306 0.03813804 0.1193706912 0.031118942 0.0032007117
3 0.1751260 0.64926578 0.0002177866 0.156321426 0.0175173337
4 0.1961070 0.16184332 0.3189579045 0.322032045 0.0009960588
5 0.3100140 0.01504974 0.6615252023 0.009768678 0.0018444772
6 0.2712227 0.69858345 0.0001500436 0.020304517 0.0092527696
```

Contributions des individus head(ind\$contrib)

Devoir TP3

#Exercice 31

#1)

data("USArrests")

head(USArrests)

class(USArrests)

-	Murder	Assault	UrbanPop	Rape
Alabama	13.2	236	58	21.2
Alaska	10.0	263	48	44.5
Arizona	8.1	294	80	31.0
Arkansas	8.8	190	50	19.5
California	9.0	276	91	40.6
Colorado	7.9	204	78	38.7

#2)

head(princomp(USArrests,cor=TRUE)\$scores)

head(prcomp(USArrests,scale=TRUE)\$x)

la fonction princomp:

	Comp.1	Comp.2	Comp.3	Comp.4
Alabama	0.9855659	1.1333924	0.44426879	0.156267145
Alaska	1.9501378	1.0732133	-2.04000333	-0.438583440
Arizona	1.7631635	-0.7459568	-0.05478082	-0.834652924
Arkansas	-0.1414203	1.1197968	-0.11457369	-0.182810896
California	2.5239801	-1.5429340	-0.59855680	-0.341996478
Colorado	1.5145629	-0.9875551	-1.09500699	0.001464887

la fonction prcomp:

	PC1	PC2	PC3	PC4
Alabama	-0.9756604	1.1220012	-0.43980366	0.154696581
Alaska	-1.9305379	1.0624269	2.01950027	-0.434175454
Arizona	-1.7454429	-0.7384595	0.05423025	-0.826264240
Arkansas	0.1399989	1.1085423	0.11342217	-0.180973554
California	-2.4986128	-1.5274267	0.59254100	-0.338559240
Colorado	-1.4993407	-0.9776297	1.08400162	0.001450164

```
#3)
#a)
Z <- scale(USArrests)
#b)
# fonction SVD generalisee avec metriques diagonales
gsvd <- function(Z,r,c) {</pre>
 N=diag(r)
 M=diag(c)
k \leftarrow qr(Z)$rank
colnames<-colnames(Z)
rownames<-rownames(Z)</pre>
Z <- as.matrix(Z)
Ztilde <- diag(sqrt(r)) %*% Z %*% diag(sqrt(c))
e <- svd(Ztilde)
U <-diag(1/sqrt(r))%*%e$u[,1 :k]
V <-diag(1/sqrt(c))%*%e$v[,1:k]
d <- e d [1:k]
rownames(U) <- rownames
rownames(V) <- colnames
if (length(d)>1)
colnames(U) <- colnames (V) <- paste("dim", 1 :k, sep = "")</pre>
return(list(U=U,V=V,d=d))
}
r <- rep(1/nrow(Z),nrow(Z))
```

```
c <- rep(1,ncol(Z))
U <- gsvd(Z,r,c)$U
d <- gsvd(Z,r,c)$d
Psi <- U %*% diag(d)
head(Psi)</pre>
```

```
[,1]
                           [,2]
                                       [,3]
          -0.9756604
                      1.1220012 -0.43980366
                                            0.154696581
Alabama
Alaska
          -1.9305379 1.0624269
                                2.01950027 -0.434175454
          -1.7454429 -0.7384595
Arizona
                                 0.05423025 -0.826264240
Arkansas
          0.1399989 1.1085423
                                 0.11342217 -0.180973554
California -2.4986128 -1.5274267
                                0.59254100 -0.338559240
Colorado -1.4993407 -0.9776297 1.08400162 0.001450164
```

#d)

install.packages(c("FactoMineR"))

library("FactoMineR")

head(PCA(USArrests,graph=FALSE)\$ind\$coord)

```
Dim.2
                                       Dim.3
                Dim.1
                                                    Dim.4
            0.9855659 -1.1333924 0.44426879 0.156267145
Alabama
Alaska
            1.9501378 \ -1.0732133 \ -2.04000333 \ -0.438583440
Arizona
            1.7631635
                      0.7459568 -0.05478082 -0.834652924
Arkansas
           -0.1414203 -1.1197968 -0.11457369 -0.182810896
                      1.5429340 -0.59855680 -0.341996478
California 2.5239801
           1.5145629 0.9875551 -1.09500699 0.001464887
Colorado
```

#Exercice 32

```
data <- data.frame(CAMP = c(239,1003,682,2594), HOTEL = c(155,1556,1944,1124), LOCA = c(129,1821,967,2176), RESI = c(0,1521,1333,1038)) rownames(data) <- c("AGRI","CADR","INAC","OUVR")
```

```
chisq <- chisq.test (data)</pre>
chisq
Pearson's Chi-squared test
data: data
X-squared = 2067.9, df = 9, p-value < 2.2e-16
#2)
#tableau de contingence des frequences
sansT=data
cont=prop.table(sansT)
round(cont,digit=2)
CAMP HOTEL LOCA RESI
AGRI 0.01 0.01 0.01 0.00
CADR 0.05 0.09 0.10 0.08
INAC 0.04 0.11 0.05 0.07
OUVR 0.14 0.06 0.12 0.06
#vecteur ligne
r1 <- apply(cont,1,sum)
round(r1, digit=2)
AGRI CADR INAC OUVR
0.03 0.32 0.27 0.38
#vecteur colonne
```

c1 <- apply(cont,2,sum)

```
round(c1, digit=2)
CAMP HOTEL LOCA RESI
0.25 0.26 0.28 0.21
#ajout des totaux
cont2<-cbind(cont,r1)</pre>
cont2<-rbind(cont2,c1)
cont2[5,5]=sum(c1)
colnames(cont2) <- c("CAMP","HOTEL","LOCA","RESI","TOTAL")</pre>
rownames(cont2) <- c("AGRI","CADR","INAC","OUVR","TOTAL")</pre>
round(cont2,digit=2)
 CAMP HOTEL LOCA RESI TOTAL
AGRI 0.01 0.01 0.01 0.00 0.03
CADR 0.05 0.09 0.10 0.08 0.32
INAC 0.04 0.11 0.05 0.07 0.27
OUVR 0.14 0.06 0.12 0.06 0.38
TOTAL 0.25 0.26 0.28 0.21 1.00
#matrice des profils lignes
L1 <- sweep(cont2[-5,],1,STAT=r1,FUN="/")
round(L1,digits=2)
CAMP HOTEL LOCA RESI TOTAL
AGRI 0.46 0.30 0.25 0.00 1
CADR 0.17 0.26 0.31 0.26 1
INAC 0.14 0.39 0.20 0.27 1
OUVR 0.37 0.16 0.31 0.15 1
```

```
#matrice des profils colonnes
```

C1 <- sweep(cont2[,-5],2,STAT=c1,FUN="/")

round(C1,digits=2)

CAMP HOTEL LOCA RESI

AGRI 0.05 0.03 0.03 0.00

CADR 0.22 0.33 0.36 0.39

INAC 0.15 0.41 0.19 0.34

OUVR 0.57 0.24 0.43 0.27

TOTAL 1.00 1.00 1.00 1.00

#3) AFC

res.ca <- CA (data, graph = FALSE)

print(res.ca)

Results of the Correspondence Analysis (CA)

The row variable has 4 categories; the column variable has 4 categories

The chi square of independence between the two variables is equal to 2067.911 (p-value = 0).

*The results are available in the following objects:

name description

- 1 "\$eig" "eigenvalues"
- 2 "\$col" "results for the columns"
- 3 "\$col\$coord" "coord. for the columns"
- 4 "\$col\$cos2" "cos2 for the columns"
- 5 "\$col\$contrib" "contributions of the columns"
- 6 "\$row" "results for the rows"
- 7 "\$row\$coord" "coord. for the rows"
- 8 "\$row\$cos2" "cos2 for the rows"
- 9 "\$row\$contrib" "contributions of the rows"

```
10 "$call"
             "summary called parameters"
11 "$call$marge.col" "weights of the columns"
12 "$call$marge.row" "weights of the rows"
#Exercice 33
#1)
install.packages(c("ca"))
library(ca)
data(smoke)
smoke
none light medium heavy
SM 4 2
            3
              2
JM 4 3 7 4
SE 25 10 12 4
JE 18 24 33 13
SC 10 6 7 2
#2)a)
F <- smoke/sum(smoke)
r<-apply(F,1,sum)
r
c<-apply(F,2,sum)
С
Z <- (F-r%*%t(c))/r%*%t(c)
Ζ
```

light medium

heavy

none

```
SM 0.1505216 -0.22020202 -0.1510264 0.4036364
```

JM -0.2969035 -0.28518519 0.2105735 0.7155556

SE 0.5509482 -0.15904139 -0.2675522 -0.3945098

JE-0.3528316 0.16969697 0.1673387 0.1404545

SC 0.2655738 0.02933333 -0.1283871 -0.3824000

#b)

U<-gsvd(Z,r,c)\$U

V < -gsvd(Z,r,c)\$V

d < -gsvd(Z,r,c)\$d

X <- sweep(U,2,STAT=d,FUN="*") #coordonnees factorielles des profil-lignes

Χ

Y <- sweep(V,2,STAT=d,FUN="*") #coordonnees factorielles des profild-colonne

Υ

Matrice des coordonnées factorielles des profils lignes AFC

```
dim1 dim2 dim3

SM -0.06576838 -0.19373700 0.070981028

JM 0.25895842 -0.24330457 -0.033705190

SE -0.38059489 -0.01065991 -0.005155757

JE 0.23295191 0.05774391 0.003305371

SC -0.20108912 0.07891123 -0.008081076
```

Matrice des coordonnées factorielles des profils colonnes AFC

```
dim1 dim2 dim3
none -0.39330845 -0.030492071 -0.0008904827
light 0.09945592 0.141064289 0.0219980349
medium 0.19632096 0.007359109 -0.0256590867
heavy 0.29377599 -0.197765656 0.0262108499
#c)
```

plot(X[,1:2],xlab="dim 1",ylab="dim 2",xlim=c(-0.4,0.4),ylim=c(-0.4,0.4),main="Premier plan factoriel")

Premier plan factoriel

#d)le pourcentage

T <- sum(d^2) d[1:2]^2/T*100

sum(d[1:2]^2/T)*100 #le pourcentage d'inertie du plan

#3)

?CA
res <- CA(smoke,graph=FALSE)
res\$eig</pre>

head(res\$row\$coord)

head(res\$col\$coord)

?plot.CA

plot(res)

	eigenvalue	percentage	of variance	cumulative	percentage	of	variance
dim 1 0.	0747591059		87.7558731				87.75587
dim 2 0.	0100171805		11.7586535				99.51453
dim 3 0.	0004135741		0.4854734			-	100.00000

LA matrice X

	Dim 1	Dim 2	Dim 3
SM	-0.06576838	0.19373700	0.070981028
JM	0.25895842	0.24330457	-0.033705190
SE	-0.38059489	0.01065991	-0.005155757
JE	0.23295191	-0.05774391	0.003305371
SC	-0.20108912	-0.07891123	-0.008081076

Matrice Y:

	Dim 1	Dim 2	Dim 3
none	-0.39330845	0.030492071	-0.0008904827
light	0.09945592	-0.141064289	0.0219980349
medium	0.19632096	-0.007359109	-0.0256590867
heavy	0.29377599	0.197765656	0.0262108499

Profil-lignes et les profil-colonnes sur le premier plan factoriel de l'AFC


```
Exercice 34
```

```
#1)
library(ca)
data <- read.csv(file="writers.csv", header = TRUE,row.names = 1)
data
CAMP HOTEL LOCA RESI
AGRI 239 155 129 0
CADR 1003 1556 1821 1521
INAC 682 1944 967 1333
OUVR 2594 1124 2176 1038
#2)
K <- data[1:15,]
chisq.test(K)
       Pearson's Chi-squared test
X-squared = 455.18, df = 210, p-value < 2.2e-16
#3)
res <- CA(K)
res$eig[1:8,]
plot(res,axes=c(3,4))
```


#4)
res <- CA(data,row.sup=c(16,17),graph=FALSE)
plot(res,col.row.sup=3)

#5)

X <- rbind(res\$row\$coord[,1:4],res\$row.sup\$coord[,1:4])

D <- dist(X)

#CAH

tree <- hclust(D,method="ward.D2")

#Dendrogramme

plot(tree,hang=-1)

#partition en 4 classes

cutree(tree,k=4)

Cluster Dendrogram

D hclust (*, "ward.D2")

Repartition en 4 classes :

TP 4 et 5

```
TP4:
#1)
load("post-198636-chiens.rda")
head(chiens)
class(chiens)
            taille poids velocite intellig affect agress
                                                                       fonction
                                                                        Utilite
beauceron
                T++
                         P+
                                   V++
                                                I+
                                                        Af+
                                                                 Ag+
                                                                          Chasse
                                                        Af-
basset
                 T-
                         P-
                                     V-
                                                I-
                                                                 Ag+
ber_allem
                                               I++
                                                                        Utilite
                         P+
                                                        Af+
                                                                 Ag+
                T++
                                   V++
boxer
                                                        Af+
                                                                 Ag+ Compagnie
                 T+
                         P+
                                     V+
                                                I+
bull-dog
                 T-
                         P-
                                     V-
                                                I+
                                                        Af+
                                                                 Ag- Compagnie
bull-mass
                T++
                                     V-
                                               I++
                                                        Af-
                                                                 Ag+
                                                                        Utilite
                        P++
#2)
H <- subset(chiens, select =- fonction)
Н
#3)
#a)
#tableau disjonctif complet
K <- tab.disjonctif(H)</pre>
#matrice des fréquences
Freq <- K/sum(K)
#poids des lignes (r) et colonnes (c)
r<-apply(Freq,1,sum)
c<-apply(Freq,2,sum)
```

```
Z<-(Freq-r%*%t(c))/r%*%t(c)
U<-gsvd(Z,r,c)$U
V<-gsvd(Z,r,c)$V
d < -gsvd(Z,r,c)$d
X <- sweep(U,2,STAT=d,FUN="*")
Y <- sweep(V,2,STAT=d,FUN="*")
#b)
#inertie totale
p <- ncol(H)
m <- ncol(K)
m/p-1
#somme des valeurs singulières
sum(d^2)
#c)
#nb dim
length(round(d^2,digit=3))
n<-27
min(n-1,m-p)
#d)
barplot(d^2/sum(d^2)*100,
    names.arg=1:length(d),
    xlab="dim",
    ylab="pourcentage d'inertie expliquée")
```


#e)

```
X <- data.frame(U[,1:3]%*%diag(d[1:3]))
rownames(X) <- rownames(H)
colnames(X) <- paste("dim", 1:3, sep = "")
round(X,digit=2)
Y <- data.frame(V[,1:3]%*%diag(d[1:3]))
rownames(Y) <- colnames(K)
colnames(Y) <- paste("dim", 1:3, sep = "")
round(Y,digit=2)</pre>
```



```
#f)
```

```
#Plan factoriel des individus
plot(X[,c(1,2)],pch=20)
abline(v = 0, lty = 2)
abline(h = 0, lty = 2)
text(X[,c(1,2)],labels=rownames(X),pos=3)
#Plan factoriel des modalités
plot(Y[,c(1,2)],pch=17)
abline(v = 0, lty = 2)
abline(h = 0, lty = 2)
text(Y[,c(1,2)],labels=rownames(Y),pos=3)
#g)
which(K[,1]==1)
moy <- apply(X[which(K[,1]==1),],2,mean)
moy*(1/d[1:3])
Y[1,]
 basset bull-dog caniche chihuahua fox_terri
2 5 7 8 17
                                                                       pekinois
                                                                                        teckel
                                                                                22
                                                                                              26
#h)
eta2 <- function(x, gpe) {
 moyennes <- tapply(x, gpe, mean)
 effectifs <- tapply(x, gpe, length)
 varinter <- (sum(effectifs * (moyennes - mean(x)) ^ 2))</pre>
 vartot <- (var(x) * (length(x) - 1))
 res <- varinter / vartot
 return(res)
```

eta2(X\$dim1,chiens\$taille)

eta2(X\$dim2,chiens\$taille)

rapport de corrélation entre la variable taille avec la première composante principale :

0.8870733

rapport de corrélation entre la variable taille avec la deuxième composante principale :

0.5024857

#4)

#a)

res <- MCA(chiens, quali.sup = 7)

#b)

head(X)

```
head(res$ind$coord)[,1:3]
```

head(res\$var\$coord)[,1:3]

```
plot(res, choix="ind", invisible=c("var", "quali.sup"))\\
```

plot(res,choix="ind",invisible="ind")

	Dim 1	Dim 2	Dim 3
beauceron	-0.3172001	-0.4177013	-0.1014677
basset	0.2541098	1.1012270	-0.1907010
ber_allem	-0.4863955	-0.4644496	-0.4981339
boxer	0.4473649	-0.8817779	0.6920158
bull-dog	1.0133522	0.5498795	-0.1634232
bull-mass	-0.7525745	0.5469118	0.4975731

TP5

```
#TP5
#Exercice 29
from age 2 <- \ read. delim("\sim/Downloads/post-198637-from age 2.txt", \ row.names=1)
fromage.cr <- scale(fromage2,center=T,scale=T)</pre>
d.fromage <- dist(fromage.cr)</pre>
#CAH
cah.ward <- hclust(d.fromage,method="ward.D2")</pre>
plot(cah.ward)
rect.hclust(cah.ward,k=4)
cahF <- cutree(cah.ward,k=4)
sort(groupes.cah)
#k-means
kmeansF <- kmeans(fromage.cr,centers = 4,nstart = 5)\\
kmeansF$cluster
#correspondance
table(cahF,kmeansF$cluster)
```

Cluster Dendrogram

d.fromage hclust (*, "ward.D2")

Après avoir réalisé le dendrogramme, on distingue un découpage en 4 groupes.

Bleu	Beaufort	Babybel	CarredelEst
1	4	1	2
Chaource	Chabichou	Cantal	Camembert
2	2	1	2
Edam	Coulomniers	Comte	Cheddar
4	2	4	1
Fr.frais20nat.	Fr.fondu.45	Fr.chevrepatemolle	Emmental
3	1	. 2	4
Parmesan	Morbier	Maroilles	Fr.frais40nat.
4	1	1	3
Reblochon	Pyrenees	PontlEveque	Petitsuisse40
1	1	. 1	3
Vacherin	Tome	SaintPaulin	Rocquefort
1	1	1	1
			Yaourtlaitent.nat.
			3

Travail personnel

#Travail personnel couleur des cheveux et yeux :

library(factoextra)

library(FactoMineR)

dataTable<-read.csv("C:/Users/ProDesK/Desktop/yeux-cheveux-sexes data.csv")

str(dataTable)

data.frame': 592 obs. of 3 variables:

\$ cheveux: chr "Noir" "Blond" "Noir" "Marron" ...

\$ yeux : chr "Marron" "Bleu" "Bleu" "Marron" ...

\$ sexe : chr "Male" "Femelle" "Male" "Femelle" ...

res.famd <- FAMD(dataTable, graph = FALSE)

get_famd_var(res.famd)

FAMD results for variables

Name Description

- 1 "\$coord" "Coordinates"
- 2 "\$cos2" "Cos2, quality of representation"
- 3 "\$contrib" "Contributions"

fviz_screeplot(res.famd)

#Test d'independance entre les deux caracteres.

test<-chisq.test(dataTable\$cheveux,dataTable\$yeux)

#Analyse factorielle

res.mca <- MCA (dataTable, graph = FALSE)

print(res.mca)

fviz_mca_biplot(res.mca)

The analysis was performed on 592 individuals, described by 3 variables

^{*}The results are available in the following objects:

name d	escription		
1 "\$eig" "	eigenvalues"		
2 "\$var" "	results for the variables"		
3 "\$var\$coord"	"coord. of the categories"		
4 "\$var\$cos2"	"cos2 for the categories"		
5 "\$var\$contrib	" "contributions of the categories"		
6 "\$var\$v.test"	"v-test for the categories"		
7 "\$ind" "	results for the individuals"		
8 "\$ind\$coord"	"coord. for the individuals"		
9 "\$ind\$cos2"	"cos2 for the individuals"		
10 "\$ind\$contrib" "contributions of the individuals"			

^{**}Results of the Multiple Correspondence Analysis (MCA)**

- 11 "\$call" "intermediate results"
- 12 "\$call\$marge.col" "weights of columns"
- 13 "\$call\$marge.li" "weights of rows"

fviz_mca_biplot(res.mca)

#valeurs propres

eig.val <- get_eigenvalue(res.mca)</pre>

#visualisation de chaque pourcentage de variance

fviz_screeplot (res.mca, addlabels = TRUE, ylim = c (0, 45))

#visualisation du biplot des individus et des variables

fviz_mca_biplot (res.mca, repel = TRUE, ggtheme = theme_minimal())

On a utilisé L'ACM car on avait beaucoup de données qualitatives comme ca on peut bien faire notre analyse sur les données .