

Sprinklers

Vlad are o frumoasă grădină ce constă în M flori plantate pe o singură linie. Pe această linie, Vlad are amplasate și N stropitori pentru florile sale.

Pozițița stropitorilor este dată de numerele s_1, \ldots, s_N . Pozițiile florilor sunt date de numerele f_1, \ldots, f_M . Ambele șiruri sunt date în ordine crescătoare:

- $s_1 \leq s_2 \leq \ldots \leq s_N$
- $f_1 \leq f_2 \leq \ldots \leq f_M$

Vlad pleacă la CEOI curând. El ar dori să se asigure că toate florile sunt udate corespunzător cât timp este plecat. Pentru a face asta, el orientează în mod individual fiecare stropitoare către stânga sau către dreapta, și alege o putere de stropire — toate stropitorile sunt alimentate prin același furtun, deci au aceeași putere de stropire.

Dacă puterea de stropire este K și a i-a stropitoare este orientată către stânga, va uda toate florile cuprinse între pozițiile s_i-K și s_i (inclusiv). În mod similar, dacă a j-a stropitoare este orientată către dreapta, va uda toate florile cuprinse între pozițiile s_j și s_j+K (inclusiv). O singură stropitoare poate uda mai multe flori, iar o singură floare poate fi udată de mai multe stropitori.

Sarcina ta este să găsești puterea minimă de stropire pentru a uda toate florile, cât și o orientare a stropitorilor, sau să determini dacă este imposibil.

Dacă există mai multe configurații posibile pentru stropitori, poate fi afișată oricare dintre ele.

Input

Prima linie din input va conține două numere întregi: N și M separate prin câte un spațiu. A doua linie conține N numere întregi s_1,\ldots,s_N — pozițiile stropitorilor. A treia linie conține M numere întregi f_1,\ldots,f_M — pozițiile florilor.

Output

Dacă nu este posibil să fie udate toate florile, afișați -1.

Dacă este posibil, trebuie afișate două linii. Pe prima linie, afișați un număr K – puterea minimă de stropire necesară pentru a uda toate florile. Pe a doua linie, afișați un șir de caractere c de lungime N, astfel încat c_i este egal cu \mathbbm{L} dacă a i-a stropitoare trebuie întoarsă către stânga și \mathbb{R} altfel.

Exemple

Exemplul 1

Input:

```
3 3
10 10 10
5 11 16
```

Output:

```
6
LLR
```

Soluția dată este validă — fiecare floare este udată de cel puțin o stropitoare. Nu se poate obține o putere de stropire mai mică de 6, deoarece floarea de la locația 16 este la 6 unități depărtare de cea mai apropiată stropitoare.

Exemplul 2

Input:

```
1 2
1000
1 2000
```

Output:

```
-1
```

Cel mult o floare poate fi udată la un moment de timp indiferent de orientarea stropitorilor.

Restricții

- $1 \le N, M \le 10^5$
- $0 \le s_i \le 10^9$ (oricare ar fi i astfel încât $1 \le i \le N$)
- $0 \leq f_i \leq 10^9$ (oricare ar fi i astfel încât $1 \leq i \leq N$)
- $ullet \ \ s_i \leq s_j$ pentru orice $i \leq j$
- ullet $f_i \leq f_j$ pentru orice $i \leq j$

Grupe

- 1. (3 puncte) N=1
- 2. (6 puncte) N=3x unde x e un număr întreg, iar $s_{3i+1}=s_{3i+2}=s_{3i+3}$ (oricare ar fi i astfel încât $0\leq i\leq x-1$) (adică stropitorile sunt grupate câte trei)
- 3. (17 puncte) $N \leq 10, M \leq 1\,000$
- 4. (27 puncte) $K \leq 8$ (i.e., în toate testele, există o configurație astfel încât să poată fi udate toate florile folosind o putere de stropire de cel mult 8)
- 5. (47 puncte) fără alte constrângeri