exploration

October 30, 2018

1 Descriptive Analysis of the Bike Sharing Data

1.1 Data Import

```
In [1]: %matplotlib inline
        import io, requests, os
        import zipfile
        import warnings
        warnings.filterwarnings(action='ignore')
        ## Configuration ===
        url_for_bike_download = 'https://archive.ics.uci.edu/ml/machine-learning-databases/002'
        local_path = 'c:\\dev\\bike\\data'
        def load_and_unzip(url, dest=''):
            11 11 11
            Downloads and unpacks datasets in zip format
            response = requests.get(url)
            compressed_file = io.BytesIO(response.content)
            z = zipfile.ZipFile(compressed_file)
            print ('Extracting in %s' % dest)
            for name in z.namelist():
                if '.csv' in name:
                    print ('\tunzipping %s' %name)
                    z.extract(name, path=dest)
        load_and_unzip(url_for_bike_download, local_path)
Extracting in c:\dev\bike\data
        unzipping day.csv
        unzipping hour.csv
In [2]: import pandas as pd
        import seaborn as sns
        import matplotlib.pyplot as plt
```

```
source = local_path + '\\' + 'hour.csv'
data = pd.read_csv(source, parse_dates=['dteday'], date_parser=lambda x: pd.to_datetimedata.head()
```

Out[2]:	instant	dteday	seaso	n yr	mnth	hr	holiday	weekday w	orkingday	\
0	1 20:	11-01-01		1 0	1	0	0	6	0	
1	2 20:	11-01-01		1 0	1	1	0	6	0	
2	3 20:	11-01-01		1 0	1	2	0	6	0	
3	4 20:	11-01-01		1 0	1	3	0	6	0	
4	5 20:	11-01-01		1 0	1	4	0	6	0	
	weathersit	temp	atemp	hum	winds	speed	casual	registered	cnt	
0	1	0.24	0.2879	0.81		0.0	3	13	16	
1	1	0.22	0.2727	0.80		0.0	8	32	40	
2	1	0.22	0.2727	0.80		0.0	5	27	32	
3	1	0.24	0.2879	0.75		0.0	3	10	13	
4	1	0.24	0.2879	0.75		0.0	0	1	1	

1.2 Descriptive Analysis

In [3]: data.describe()

Out[3]:		instant	season	yr	mnth	hr \	\
	count	17379.0000	17379.000000	17379.000000	17379.000000	17379.000000	
	mean	8690.0000	2.501640	0.502561	6.537775	11.546752	
	std	5017.0295	1.106918	0.500008	3.438776	6.914405	
	min	1.0000	1.000000	0.00000	1.000000	0.000000	
	25%	4345.5000	2.000000	0.00000	4.000000	6.000000	
	50%	8690.0000	3.000000	1.000000	7.000000	12.000000	
	75%	13034.5000	3.000000	1.000000	10.000000	18.000000	
	max	17379.0000	4.000000	1.000000	12.000000	23.000000	
		holiday	weekday	workingday	weathersit	temp	\
	count	17379.000000	17379.000000	17379.000000	17379.000000	17379.000000	
	mean	0.028770	3.003683	0.682721	1.425283	0.496987	
	std	0.167165	2.005771	0.465431	0.639357	0.192556	
	min	0.000000	0.000000	0.00000	1.000000	0.020000	
	25%	0.000000	1.000000	0.00000	1.000000	0.340000	
	50%	0.000000	3.000000	1.000000	1.000000	0.500000	
	75%	0.000000	5.000000	1.000000	2.000000	0.660000	
	max	1.000000	6.000000	1.000000	4.000000	1.000000	
		atemp	hun	n windspeed	casual	registered	\
	count	17379.000000	17379.000000	17379.000000	17379.000000	17379.000000	
	mean	0.475775	0.627229	0.190098	35.676218	153.786869	
	std	0.171850	0.192930	0.122340	49.305030	151.357286	
	min	0.000000	0.000000	0.00000	0.000000	0.000000	
	25%	0.333300	0.480000	0.104500	4.000000	34.000000	

```
50%
           0.484800
                           0.630000
                                          0.194000
                                                        17.000000
                                                                      115.000000
75%
           0.621200
                           0.780000
                                          0.253700
                                                        48.000000
                                                                      220.000000
            1.000000
                           1.000000
                                          0.850700
                                                       367.000000
                                                                      886.000000
max
                 cnt
       17379.000000
count
mean
          189.463088
std
          181.387599
           1.000000
min
25%
          40.000000
50%
         142.000000
75%
         281.000000
         977.000000
max
```

```
In [4]: attributes = [x for x in list(data.columns.values) if x not in ['instant']]
    num_attributes = [x for x in attributes if x not in ['dteday']]
    cnt_attributes = ['casual', 'registered', 'cnt']
```

1.2.1 Evolution of Rentals

In [6]: data[['yr']+cnt_attributes].groupby(['yr']).agg('sum')

In [7]: data[['season', 'yr']+cnt_attributes].groupby(['yr','season']).agg('sum').plot(title=')

1.2.2 Seasonality

In [8]: data[['season']+cnt_attributes].groupby('season').agg('sum').plot(title='Rentals per season')

In [9]: data[['mnth']+cnt_attributes].groupby('mnth').agg('sum').plot(title='Rentals per month

In [10]: data[['hr']+cnt_attributes].groupby('hr').agg('sum').plot(title='Rentals per hour of

In [11]: data[['weekday']+cnt_attributes].groupby('weekday').agg('sum').plot(title='Rentals per

1.2.3 Working day sensitivity

In [12]: data[['workingday']+cnt_attributes].groupby('workingday').agg('sum').plot(title='Rentational Control Con

In [13]: data.holiday.sum()/data.holiday.count()

Out[13]: 0.028770355026181024

1.2.4 Weather sensitivity

In [14]: data[['weathersit']+cnt_attributes].groupby('weathersit').agg('sum').plot(title='Rent

In [15]: data[['temp']+cnt_attributes].groupby('temp').agg('sum').plot(title='Rentals depending)

In [16]: data[['atemp']+cnt_attributes].groupby('atemp').agg('sum').plot(title='Rentals depend

In [17]: data[['hum']+cnt_attributes].groupby('hum').agg('sum').plot(title='Rentals depending

In [18]: data[['windspeed']+cnt_attributes].groupby('windspeed').agg('sum').plot(title='Rental.groupby('windspeed').agg('sum').plot(title='Rental.groupby('windspeed').agg('sum').plot(title='Rental.groupby('windspeed').agg('sum

1.3 Univariate Distributions

In [19]: sns.distplot(data['cnt']);


```
In [20]: data[(data.hr > 6) \& (data.hr < 22)].cnt.describe()
```

Out[20]:	count	10922.000000			
	mean		272.06	4182	
	std		179.17	3595	
	min		1.00	0000	
	25%		139.00	0000	
	50%		233.00	0000	
	75%		367.000000		
	max		977.000000		
	Name:	cnt,	dtype:	float64	