Formale Sprachen

Definition

Eine **Grammatik** ist ein Tupel (N, T, S, P) wobei

 $N: Alphabet \ der \ \mathbf{nichtterminalen} \ Symbole$

 $T: Alphabet \ der \ \mathbf{terminalen} \ Symbole \ (mit \ T \cap N = \varnothing)$

 $S: Startsymbol \in N$

 $P: Produktionen \subset (N \cup T)^+ \times (N \cup T)^*$

Chomsky Hierarchie

Typ 0: Keine Bedingung

Typ 1: Für alle Produktionen $\alpha \to \beta$ gilt: $\alpha, \beta \in (N \cup T)^+$ und $|\alpha| \le |\beta|$

Typ 2: Für alle Produktionen $\alpha \to \beta$ gilt: $\beta \in (N \cup T)^+$ und $\alpha \in N$

Typ 3: Für alle Produktionen $\alpha \to \beta$ gilt: $\alpha \in N$ und $\beta = tB$, wobei $t \in T^*$ und $B \in N \cup \{\epsilon\}$ und $\beta \neq \epsilon$.

Sonderregel Leeres Wort:

Zusätlich wird die Produktion

$$S_{neu} \to \epsilon | S_{alt}$$

erlaubt um das Leere Wort zuzulassen.

Normalformen

Typ	3	2	1	0
$A \to \epsilon$				×
$A \to t$	×	×	×	×
$A \to tB$	×			×
$A \to BC$		×	×	×
$AB \rightarrow CD$			×	×

Aufgabe 1

Gegeben seien die Produktionen von Grammatiken. Geben sie jeweils den restriktivsten Typ gemäß der Chomsky Hierarchie an.

a)
$$\{S \to$$

Aufgabe 2

Sei L=
$$\{(abc)^n d^m | k \in \mathbb{N}, m \in \mathbb{N}_0\}$$

- a) Geben sie eine Typ-3 Grammatik an, die L erzeugt.
- b) Geben sie auf Basis der Grammatik von (a eine Ableitung des Wortes abcabcddd an
- c) Normalisieren sie die Grammatik von a).
- d) Konstruieren sie den zugehörigen endlichen Automaten.

Aufgabe 3

Sei L=
$$\{(ab)^n(cd)^m|k\in\mathbb{N},\ m\in\mathbb{N}_0\}$$

- a) Geben sie eine Typ-3 Grammatik an, die L erzeugt.
- b) Geben sie auf Basis der Grammatik von (a eine Ableitung des Wortes *abcdcdcd* an.
- c) Normalisieren sie die Grammatik von a).
- d) Konstruieren sie den zugehörigen endlichen Automaten.

Aufgabe 4

Sei $R = ((ba)^* \cup c)d^*$ und L die von R erzeugte Sprache.

- a) Geben sie eine Typ-3 Grammatik an, die L erzeugt.
- b) Geben sie auf Basis der Grammatik von (a eine Ableitung des Wortes babad an.
- c) Normalisieren sie die Grammatik von a).
- d) Konstruieren sie den zugehörigen endlichen Automaten.

Aufgabe 5

Geben sie die zugehörige Typ-3 Grammatik des folgenden Automaten an.

Aufgabe 6

Geben sie die zugehörige Typ-3 Grammatik des folgenden Automaten an.

Aufgabe 7

Geben sie die zugehörige Typ-3 Grammatik des folgenden Automaten an.

