MAT2040: Linear Algebra

Midterm Exam (2017-18, Summer)

Instructions:

- 1. This exam consists of 6 questions (3 pages). This exam is 2 hour long, and worth 100 points.
- 2. This exam is in closed book format. No books, calculators, dictionaries or blank papers to be brought. Any cheating will be given **ZERO** mark. **Please show your steps.**

Student Number:	Name:
-----------------	-------

Problem 1 (25 points) Solving a linear system of equations

For a real number λ , consider the linear system

$$\lambda x_1 + x_2 + x_3 + x_4 = 1$$

$$x_1 + \lambda x_2 + x_3 + x_4 = 1$$

$$x_1 + x_2 + \lambda x_3 + x_4 = 1$$

$$x_1 + x_2 + x_3 + \lambda x_4 = 1$$

do the following:

- (a) Write out the coefficient matrix **A** of the above linear system. [3 marks]
- (b) Use the row operations for the augmented matrix to determine λ such that the linear system is consistent, and write out the corresponding reduced-row echelon form. [12 marks]
- (c) Write out the complete set of solutions in vector form for (b). [6 marks]
- (d) What is the rank of the coefficient matrix **A** for (b)? [4 marks]

Problem 2 (15 points) Matrix LU factorization

Let
$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 5 & 6 & 7 \end{bmatrix}$$
,

- (a) find the LU factorization of A such that A = LU (L is the lower triangular matrix while U is the upper triangular matrix). [9 marks]
- (b) For $\mathbf{b} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$, solve for \mathbf{y} by using $\mathbf{L}\mathbf{y} = \mathbf{b}$ first, and then solve for \mathbf{x} by using $\mathbf{U}\mathbf{x} = \mathbf{y}$.

Problem 3 (16 points) Vector Space

Find a basis and the dimension for the following vector spaces.

- (a) Space of $n \times n$ symmetric matrices. [4 marks]
- (b) Space of $n \times n$ anti-symmetric matrices. [4 marks]
- (c) The space of all polynomials in the form of $ax^3 + 2bx^2 + cx + 2a + 3b + c$, where $a, b, c \in \mathcal{R}$. [4 marks]
- (d) V is the subspace of \mathcal{R}^3 given by all solutions to the equation $x_1 2x_2 + 3x_3 = 0$. [4 marks]

Problem 4 (12 points) Matrix multiplications

Find 3×3 matrices **B** such that

- (a) BA = -A for every A. [4 marks]
- (b) BA = -2B for every A. [4 marks]
- (c) $\mathbf{B}\mathbf{A} = \mathbf{C}$, where \mathbf{C} is obtained from \mathbf{A} by adding the first row into the last row of \mathbf{A} .

Problem 5 (17 points) Matrix inverse and rank

(a) Determine c such that the following matrix A is invertible, and find its inverse

$$\mathbf{A} = \left[\begin{array}{cc} 1 & 1 \\ 3 & c \end{array} \right],$$

where c is a real number.

[5 marks]

- (b) A, B are square matrices and B = I + AB, show that AB = BA. [4 marks]
- (c) Prove that for any $m \times n$ real matrix **A**, the null space of $\mathbf{AA^T}$ and the null space of $\mathbf{A^T}$ are the same. [4 marks]
- (d) Prove that for any $m \times n$ real matrix \mathbf{A} , rank $(\mathbf{A}\mathbf{A}^{\mathbf{T}})$ =rank (\mathbf{A}) . [4 marks]

Problem 6 (15 points) State your answer. No justification are required.

- (a) Suppose $\mathbf{x} \in \mathcal{R}^3$, $\|\mathbf{x}\| = 1$ (\mathbf{x} is a column vector), what is the rank of the matrix $\mathbf{I} \mathbf{x}\mathbf{x}^T$.
- (b) True or False: If **A** is 5×7 matrix and rank(**A**)=5, then the linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ always has at least one solution for any $\mathbf{b} \in \mathcal{R}^5$. [3 marks]
- (c) True or False: For two $n \times n$ matrices **A** and **B**, if **A** is singular, **B** is invertible, then **AB** must be singular. [3 marks]
- (d) True or False: the set of 3×3 matrices with rank= 2 is a vector space. [3 marks]
- (e) True or False: If two matrices have the same row reduced echelon form, then they have the same column space. [3 marks]