Microbiome Premature

Jaewoong Lee Semin Lee

Ulsan National Institute of Science and Technology jwlee230@unist.ac.kr

2021-04-02

Overview

- Introduction
- 2 Materials
- 3 Literature Survey
- 4 Methods
- 6 Results
 References

Introduction

Microbiome

- Microbiota: the microorganisms which live inside & on humans (Turnbaugh et al., 2007)
- Microbiome: 10^{13} to 10^{14} microorganisms whose which collective genome (Gill et al., 2006)

Figure: Concept of a core human microbiome (Turnbaugh et al., 2007)

rRNA

- Ribosomal RNA
- Well-known as a key to phylogeny (Olsen & Woese, 1993)

Premature (Preterm Birth)

Figure: Definitions of Premature (Tucker & McGuire, 2004)

∴ Hence, in this study,

• Premature: < 37 weeks

• Normal: \geq 37 weeks

Materials

16S rRNA Sequencing

16S rRNA sequencing is the *reference method* for bacterial taxonomy & identification (Mignard & Flandrois, 2006) Reasons (Janda & Abbott, 2007):

- 16S rRNA exists in almost all bacteria
- Functions of the 16S rRNA has not changed over time
- 16S rRNA is large enough for bioinformatics

Train/Test Data vs. Validate Data

- JBNU/Helixco data
 - First data
 - Second data
 - Stool data
- Validate data
 - EBI data
 - HMP data

Table: Metadata of Data

Data	Participants	Samples	Remarks
First	24	107	-
Second	35	288	-
Stool	63	126	Stool
EBI	18	1016	Only Normal
HMP	1572	9205	Only Premature

Literature Survey

Literature Survey

EBI Data (Dominguez-Bello et al., 2016)

BRIEF COMMUNICATIONS

Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer

Maria G Dominguez-Bello^{1,2}, Kassandra M De Jesus-Laboy², Nan Shen³, Laura M Cox¹, Amnon Amir⁴, Antonio Gonzalez⁴, Nicholas A Bokulich¹, Se Jin Song^{4,5}, Marina Hoashi^{1,4}, Juana I Rivera-Vinas⁷, Keimari Mendez⁷, Rob Knight^{4,8} & Jose C Clemente^{3,9} estimated 15% of births that require C-section delivery to protect the health of the mother or baby 11 .

Here we exposed C-section-delivered infants to their maternal vaginal fluids at birth and longitudinally determined the composition of their microbiato ta oassess whether it developed more similarly to vaginally born babies than to unexposed C-section-delivered infants. We collected samples from 18 infants and their mothers, including 7 born vaginally and 11 delivered by scheduled C-section, of which four were exposed to the maternal vaginal fluids at birth (Supplementary Table 1). Birely, the microbial restoration procedure, or vaginal microbial transfer, consists of incubating sterile gauze in the vagina of moth-

EBI Data II

- Study Objectives
 - Compare Vaginally vs. Cesarean-section (C-section)
 - 2 Restore the microbiota of C-section
- Microbial restoration procedure
 - Measure maternal vaginal pH
 - 2 Put sterile gauze with saline solution in vagina for 1 hour
 - Swab the infant with the gauze
- Sample collection procedure
 - Sample at right after birth, day 3 and weekly for the first month
 - Sample from oral, forehead, arm, foot and anal
- Notable Methods/Results
 - Using distance methods: e.g. UniFrac distance, Hamming distance

Literature Survey

HMP Data (Fettweis et al., 2019)

HMP Data I

OPEN

The vaginal microbiome and preterm birth

Jennifer M. Fettweis 1.2.3, Myrna G. Serrano^{1.3}, J. Paul Brooks^{3.4}, David J. Edwards^{3.5}, Philippe H. Girerd^{2.3}, Hardik I. Parikh', Bernice Huang', Tom J. Arodz^{3.6}, Laahirie Edupuganti^{1.3}, Abigail L. Glascock⁷, Jie Xu^{3.8,9}, Nicole R. Jimenez^{1.3}, Stephany C. Vivadelli^{1,3}, Stephen S. Fong^{3.0}, Nihar U. Sheth'¹, Sophonie Jean', Vladimir Lee^{1.3}, Yahya A. Bokhari⁶, Ana M. Lara', Shreni D. Mistry¹, Robert A. Duckworth Ill', Steven P. Bradley', Vishal N. Koparde¹¹, X. Valentine Orenda¹⁰, Sarah H. Milton², Sarah K. Rozycki¹², Andrey V. Matveyev¹, Michelle L. Wright 1.3.4.15, Snehalata V. Huzurbazar¹⁶, Eugenie M. Jackson¹⁶, Ekaterina Smirnova 1.5, Jonas Korlach¹⁹, Yu-Chih Tsai 1.5, Molly R. Dickinson¹, Jamie L. Brooks¹, Jennifer I. Drake¹, Donald O. Chaffin²0, Amber L. Sexton²0, Michael G. Gravett^{20,21}, Craig E. Rubens²⁰, N. Romesh Wijesooriya⁹, Karen D. Hendricks-Muñoz^{3,8,9}, Kimberly K. Jefferson^{1,3}, Jerome F. Strauss Ill^{2,3} and Gregory A. Buck 1.3.48

HMP Data II

- Study Objectives
 - Predicting & Preventing premature
 - Report community resources
 - Provide an analysis of the longitudinal, comprehensive, multi-omic profiling of vaginal samples
- Sample collection Procedure
 - 1 Premature birth vs. Matched normal birth
 - 2 Ethnically diverse cohort
- Notable Methods/Results
 - Imitate figures

HMP Data III

Figure: Microbiome Composition during Pregnancy

Methods

Methods

Qiime 2 Workflow

Qiime 2 Workflow

Figure: QIIME 2 workflow (Bolyen et al., 2019; Mandal et al., 2015; McDonald et al., 2012)

Filitering with Quality Score I

Drawback between:

- Longer sequence read
- Higher quality value
- \therefore Select the maximum length n where:

$$\forall n_i \in \{n_k | \text{MedianQualityScore} \ge 30\}$$

$$\exists! n \in \{n_i\} : n \ge n_i$$
 (1)

Denoising Techniques

- DADA2: Amplicon Sequence Variants (ASVs) (Callahan et al., 2016)
- Deblur: Operational Taxonomic Units (OTUs) (Amir et al., 2017)

Figure: Denoising Algorithms

Taxonomy Classification

- Greengenes (GG) (DeSantis et al., 2006)
- SILVA (Pruesse et al., 2007; Quast et al., 2012)

Figure: Taxonomy Classifications

"A **higher** performance at taxonomic levels above *genus level*; but performance appears to **drop** at *species level*" (Gihawi et al., 2019)

Merging Denoising/Taxonomy

Merging multiple IDs (ASVs or OTUs) into one, which have

- Different IDs
- Identified as same taxonomy

Figure: Example Diagram for Merging Denoising/Taxonomy

Methods

Miscellaneous

t-distributed Stochastic Neighbor Embedding (t-SNE)

Figure: t-SNE with handwritten data (Maaten & Hinton, 2008)

Python Packages

- Pandas (McKinney et al., 2011)
- Scikit-Learn (Pedregosa et al., 2011)
- SciPy (Virtanen et al., 2020)
- Matplotlib (Hunter, 2007)
- Seaborn (Waskom et al., 2020)

Results

Results

Filtering Results

Quality Score from First Data

rigare. Sequence Quanty Flot from Flotines Butt

Maximum Length: $n_{forward} = 300$, $n_{Reverse} = 265$

Quality Score from Second Data

Figure: Sequence Quality Plot from Helixco Data

Maximum Length:
$$n_{forward} = 300$$
, $n_{Reverse} = 222$

Quality Score from Stool Data

Figure: Sequence Quality Plot from Stool Data

Maximum Length: $n_{forward} = 250$, $n_{Reverse} = 251$

Quality Score with EBI Data

Figure: Sequence Quality Plot from EBI Data

Maximum Length: 150

Quality Score with HMP Data

Figure: Sequence Quality Plot from HMP Data

Maximum Length: $n_{forward} = 278$, $n_{Reverse} = 226$

Results

Comparing Data

Workflow for Comparing Data

Figure: Workflow of t-SNE for Brief Information

Intersected Taxa

t-SNE for Comparing Data

(a) DADA2 + GG (b) DADA2 + SILVA

(c) Deblur + GG (d) Deblur + SILVA

Figure: t-SNE for Comparing Data

t-SNE with Site/Premature Information I

Figure: Workflow of t-SNE for Site/Premature Information

t-SNE with Site/Premature Information II

t-SNE with Site/Premature Information III

t-SNE with Site/Premature Information IV

t-SNE with Site/Premature Information V

Bacterial Abundance I

Alpha-Diversity I

Beta-Diversity I

Classification I

Figure: Workflow with Classification

Random Forest Classifier I

Input Data was treated with **Deblur** and **SILVA**.

Figure: Feature Importance derived by Random Forest Classifier

Random Forest Classifier II

Figure: Number of Features vs. Accuracy

Random Forest Classifier III

- Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus Lactobacillus iners
- Bacteria Fusobacteriota Fusobacteriales Leptotrichiaceae Leptotrichia
- Bacteria Actinobacteriota Actinobacteria
- Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus
- Bacteria Firmicutes Clostridia Peptostreptococcales-Tissierellales Peptostreptococcaceae Romboutsia
- Bacteria Firmicutes Bacilli Mycoplasmatales Mycoplasmataceae Ureaplasma
- Bacteria Actinobacteriota Actinobacteria Corynebacteriales
 Corynebacteriaceae Corynebacterium Corynebacterium matruchotii

Random Forest Classifier IV

Figure: Random Forest Classifier

Random Forest Classifier V

Figure: Violin Plot of Taxonomy

- Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus Lactobacillus iners
- Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus
- Bacteria Firmicutes Clostridia Peptostreptococcales-Tissierellales Peptostreptococcaceae Romboutsia

Lactobacillus (Lb.)

- Vaginal Lb. may be clinically useful tools at PTB under 33 weeks.
 (Usui et al., 2002)
- Presence of Lb. sp (odds ratio 0.2) was negatively associated. (MARTIUS et al., 1988)
- Lb. crispatus/gasseri could decrease the risk of PTB. (Stafford et al., 2017)
- Lb. were associated with decreased risk of PTB. (Tabatabaei et al., 2019)

Romboutsia

References I

- Amir, A., McDonald, D., Navas-Molina, J. A., Kopylova, E., Morton, J. T., Xu, Z. Z., . . . others (2017). Deblur rapidly resolves single-nucleotide community sequence patterns. *MSystems*, *2*(2).
- Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., . . . Caporaso, J. G. (2019). Reproducible, interactive, scalable and extensible microbiome data science using qiime 2. *Nature Biotechnology*, *37*(8), 852-857. Retrieved from https://doi.org/10.1038/s41587-019-0209-9 doi: 10.1038/s41587-019-0209-9
- Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). Dada2: high-resolution sample inference from illumina amplicon data. *Nature methods*, *13*(7), 581–583.

References II

- DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L., Keller, K., . . . Andersen, G. L. (2006). Greengenes, a chimera-checked 16s rrna gene database and workbench compatible with arb. *Applied and environmental microbiology*, 72(7), 5069–5072.
- Dominguez-Bello, M. G., De Jesus-Laboy, K. M., Shen, N., Cox, L. M., Amir, A., Gonzalez, A., . . . others (2016). Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. *Nature medicine*, *22*(3), 250.
- Fettweis, J. M., Serrano, M. G., Brooks, J. P., Edwards, D. J., Girerd, P. H., Parikh, H. I., . . . others (2019). The vaginal microbiome and preterm birth. *Nature medicine*, *25*(6), 1012–1021.

References III

- Gihawi, A., Rallapalli, G., Hurst, R., Cooper, C. S., Leggett, R. M., & Brewer, D. S. (2019). Sepath: benchmarking the search for pathogens in human tissue whole genome sequence data leads to template pipelines. *Genome biology*, 20(1), 1–15.
- Gill, S. R., Pop, M., DeBoy, R. T., Eckburg, P. B., Turnbaugh, P. J., Samuel, B. S., ... Nelson, K. E. (2006). Metagenomic analysis of the human distal gut microbiome. *science*, *312*(5778), 1355–1359.
- Hunter, J. D. (2007). Matplotlib: A 2d graphics environment. *Computing in science & engineering*, *9*(3), 90–95.
- Janda, J. M., & Abbott, S. L. (2007). 16s rrna gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. *Journal of clinical microbiology*, 45(9), 2761–2764.
- Maaten, L. v. d., & Hinton, G. (2008). Visualizing data using t-sne. Journal of machine learning research, 9(Nov), 2579–2605.

References IV

- Mandal, S., Van Treuren, W., White, R. A., Eggesbø, M., Knight, R., & Peddada, S. D. (2015). Analysis of composition of microbiomes: a novel method for studying microbial composition. *Microbial ecology in health and disease*, *26*(1), 27663. doi: 10.3402/mehd.v26.27663
- MARTIUS, J., KROHN, M. A., HILLIER, S. L., STAMM, W. E., HOLMES, K. K., & ESCHENBACH, D. A. (1988). Relationships of vaginal lactobacillus species, cervical chlamydia trachomatis, and bacterial vaginosis to preterm birth. *Obstetrics & Gynecology*, 71(1), 89–95.
- McDonald, D., Clemente, J. C., Kuczynski, J., Rideout, J. R., Stombaugh, J., Wendel, D., . . . Caporaso, J. G. (2012). The biological observation matrix (biom) format or: how i learned to stop worrying and love the ome-ome. *GigaScience*, 1(1), 7. doi: 10.1186/2047-217X-1-7

References V

- McKinney, W., et al. (2011). pandas: a foundational python library for data analysis and statistics. *Python for High Performance and Scientific Computing*, 14(9).
- Mignard, S., & Flandrois, J.-P. (2006). 16s rrna sequencing in routine bacterial identification: a 30-month experiment. *Journal of microbiological methods*, 67(3), 574–581.
- Olsen, G. J., & Woese, C. R. (1993). Ribosomal rna: a key to phylogeny. *The FASEB journal*, 7(1), 113–123.
- Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... others (2011). Scikit-learn: Machine learning in python. the Journal of machine Learning research, 12, 2825–2830.
- Pruesse, E., Quast, C., Knittel, K., Fuchs, B. M., Ludwig, W., Peplies, J., & Glöckner, F. O. (2007). Silva: a comprehensive online resource for quality checked and aligned ribosomal rna sequence data compatible with arb. *Nucleic acids research*, *35*(21), 7188–7196.

References VI

- Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., ... Glöckner, F. O. (2012). The silva ribosomal rna gene database project: improved data processing and web-based tools. *Nucleic acids research*, *41*(D1), D590–D596.
- Stafford, G. P., Parker, J. L., Amabebe, E., Kistler, J., Reynolds, S., Stern, V., ... Anumba, D. O. (2017). Spontaneous preterm birth is associated with differential expression of vaginal metabolites by lactobacilli-dominated microflora. *Frontiers in physiology, 8*, 615.
- Tabatabaei, N., Eren, A., Barreiro, L., Yotova, V., Dumaine, A., Allard, C., & Fraser, W. (2019). Vaginal microbiome in early pregnancy and subsequent risk of spontaneous preterm birth: a case–control study. *BJOG: An International Journal of Obstetrics & Gynaecology*, 126(3), 349–358.
- Tucker, J., & McGuire, W. (2004). Epidemiology of preterm birth. *Bmj*, 329(7467), 675–678.

References VII

- Turnbaugh, P. J., Ley, R. E., Hamady, M., Fraser-Liggett, C. M., Knight, R., & Gordon, J. I. (2007). The human microbiome project. *Nature*, 449(7164), 804–810.
- Usui, R., Ohkuchi, A., Matsubara, S., Izumi, A., Watanabe, T., Suzuki, M., & Minakami, H. (2002). Vaginal lactobacilli and preterm birth. *Journal of perinatal medicine*, 30(6), 458–466.
- Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., . . . others (2020). Scipy 1.0: fundamental algorithms for scientific computing in python. *Nature methods*, 17(3), 261–272.
- Waskom, M., Botvinnik, O., Ostblom, J., Gelbart, M., Lukauskas, S., Hobson, P., ... Brian (2020, April). mwaskom/seaborn: v0.10.1 (april 2020). Zenodo. Retrieved from https://doi.org/10.5281/zenodo.3767070 doi: 10.5281/zenodo.3767070