CS & IT

Database Management System

FD's & Normalization

DPP - 08 Discussion Notes

By-Vijay Agarwal sir

TOPICS TO BE COVERED

01 Question

02 Discussion

PQRST

RIPORST) [P-0, QR-5, S-T]

PQR

(PR) = [PRQST]

PQRS

None of the above

Avg (A)

Assume a relation R with attributes MNOPQ and F is a set of functional dependencies $\{M \rightarrow MNOPQ\}$

 $N \rightarrow 0$ } which of the following statement is true?

S₁: R₁ (MOPQ), R₂ (NO) are both in BCNF and preserves lossless join. (0)- (0) wasy

 S_2 : R₁ (MNPQ), R₂ (NO) are both in BCNF and preserves lossless-join. R/MNOPQ [MAMOPQ] [MAMOPQ] NAOPQ RIMNOPR) [M>MNOPR, N>0]

Only S₁ is true

Comdidate lay - M.

[MCQ]

Only S₂ is true

BCNF Decomposition
N-0

R(MNOPQ)

Both S₁ and S₂ are true

R2 (NO).

RI(MUPQ) R2(NO)

Neither S_1 and S_2 is true $(N_1^f = (N_0) \text{ suber bor of } R_2)$

Assume a relation schema R with 5 attributes P, Q, R, S, T and the set of FD'S P \rightarrow RS, Q \rightarrow RT, T \rightarrow Q consider the statements:

S₁: The only candidate key of R is PQ and PT RA = [P, g, T]

 \times **S**₂: The highest normal form satisfied by R is 2NF

Which of the statement is true? (P) [PRS] (Q) [APT] [MCQ

Only S_1 is true R(PQPST) $(P \rightarrow RS, Q \rightarrow RT, T \rightarrow Q)$

(PQT-[PQRST]

Both S_1 and S_2 are true $(P_1)^{\frac{1}{2}} = (P_1)^{\frac{1}{2}} = (P_1)^{\frac{1}{2}}$

Se PARS, QART. TAB

Candidate key: [PQ, Pt] Non (Res)

Check 2NF? PAR, PAS, QAR

Partial Dependency.

Not in 2NF.

1NF

RIPURST) [Q-)R, S-)P, P-)Q) Prime = [SIT,]

3NFST) (PST) [PQRST]

BCNF

Pospersubject - Non Icean [PD]

dicic Attribute

Consider a relation R (P, Q, R, S, T) with the following FD's, $\{P \to Q, QS \to P, P \to R\}$ if we decompose R into BCNF then which of the following FD cannot be preserved?

B.
$$P \rightarrow R$$
 $(P)^{\dagger} = (PQR)$
 $QS \rightarrow P$ $(PST)^{\dagger} = (PQRST)$
 $QS \rightarrow P$ $(PT' = (PQRT))$

All of them are preserved

Not in BCNF: Xis Not sipel key

BCNF Decumposition

P-19 RIPORST)

Pyr R2(PB)

QS+P R3(PR)

R, (PST) P2 (PP) P3 (PR)

$$L \rightarrow M$$

$$M \rightarrow N$$

$$N \rightarrow 0$$

Which one of the following decompositions is not lossless?

- R_1 (L, M), R_2 (M, N), R_3 (N, O) $\rightarrow \omega \lesssim \delta \omega$
- B. $R_1(L, M), R_2(L, N), R_3(L, O) \rightarrow USSES$
- $R_1(L, O), R_2(M, O), R_3(N, O) \longrightarrow lossy Join (Not Lossless)$
 - D. All of the above are lossless

R(LMNO) [L+M, M+N, N+O) @ RILLM) RZ(MN) RZ(NO) RILLM) NR2(MN) => M (M)= [MN.O.] Suber lay of R2 RIZ (LMN) ARZ(NO) => N (N) = [NO] Super bey of R3 PRS (LMNO) LOSSPRES

RI(IM) R2(IN) R3(L0)

RI(IM) MR2(IN) => (0) == (0)

@ RILLO) R2 (MO) R3(NO) R((10) 1 R2(M0) => 0 (0) ! (v) Not superlay of R, not R2 R2(M0) 1 R3(Nb) => 0 (0) = (0) Not Super key of Rz not Rz R, ((0)) R3(NO) > (0) (0) - (0) Not Subser land R, not R3 Lossy Join

IB Common Attobate of RIRR Not o Super bey of R, now Super key of R2.

RIABCD) 2 Common 3) R(ABCDE) BLUCD LOSSY BCZ
Attorbute Et Missing

Consider a relation X (P, Q, R, S, T) with the FD's: PARE & T, P, Q

$$Q \rightarrow S$$
 (PQ) = [PARS] $\frac{ST \rightarrow P}{(QST)^{+}}$ [PARST]

 $Q \rightarrow S$ is a BCNF violation for X. Suppose we decide to decompose X into $X_1(Q, S)$, and $X_2(P, Q, R, S, T)$.

Which of the following statements are incorrect?

Free (1) $\{PQ \rightarrow R\}$ is a minimal cover for the FD's that hold in X_2 .

(wheet $\in \{2\}$ PQ \rightarrow R is a BCNF violation for X_2 .

Irumet (3) X2 should be decomposed further into X3(P, Q, R) and X4 (R, T)

X(PQRST) [PQ-R, Q-S, ST-P] (P) - (P) (Q) - (QS) Candidate keys = [PRT, QST] (T)=(T) (PQ) = [PQS] (Q) = [Q] X(QS) X2(PQRST) (57)=[57) (i) PR-9R is minimal Cover - In Correct (ii) PQ->R is BCNF Viulation in X2 -> Correct Not Jusel key RIPRIST) La Not in Bruf PQ-IR Q-15

Suppose functional dependency $Q \rightarrow R$ holds in relation R (P, Q, R, S) which additional FD will make R be in 3NF, but not BCNF?

$$S \rightarrow PQ$$

$$PR \rightarrow S$$

(S) = (SPQR) Sis Candidate key

$$RS \rightarrow Q$$

Check 3NF

SAPA

3NF V

$$PS \rightarrow Q$$

Q ->R X Not in 3NF

Q is Not Super Key

Ris Non Poine.

(B) R(PQRS) [PR->S, Q->R) (PR)= (PRS (PQ) = [PQRS] NonPoine = [Ris] PQ is CK Prove | cey = [BQ]

Check SNF PR-25; PR Not Super key? Not in 3NF Q->R-> Partial Dep Not in 2NF

Suppose functional dependency $Q \rightarrow R$ holds in relation R (P, Q, R, S) which additional FD will make R be in 3NF, but not BCNF?

$$PR \rightarrow S$$

$$RS \rightarrow Q$$

$$PS \rightarrow Q$$

Check 3NF?

(RS)-) g; d is prime Attorbut

Q R, R is Prime Attenbute

Risin 3NF But Not in BUNT XIS Not ruber lead

CRIPARS) (PS-19, Q-18)

(PS)=[PSQR]

PS is candidate |cey

Cheek 3NF

PS-9Q; /3NF/

JAR Notin 3NF (

Q is Not subselled R is Non Prime So Not in SNF

