WEST

End of Result Set

Generate Collection Print

L19: Entry 1 of 1

File: JPAB

Mar 19, 1993

PUB-NO: JP405068241A

DOCUMENT-IDENTIFIER: JP 05068241 A

TITLE: CIF IMAGE TRANSFORMING SYSTEM FOR VIDEO TELEPHONE

PUBN-DATE: March 19, 1993

INVENTOR-INFORMATION:

NAME

COUNTRY

FUJINO, YUICHI NAKANISHI, MAMORU

ASSIGNEE-INFORMATION:

NAME

COUNTRY

NIPPON TELEGR & TELEPH CORP

APPL-NO: JP03227626

APPL-DATE: September 9, 1991

INT-CL (IPC): HO4N 7/01; HO4N 7/14

ABSTRACT:

PURPOSE: To attain good conversation by picking up beforehand the image of an objective person in a wide angle, and detecting the face area of the person by picture processing, and generating this area by segmenting it by CIF or QCIF picture elements.

CONSTITUTION: In order to generate a <u>CIF or a QCIF</u> picture, the image of the objective person is picked up beforehand in the wide angle, and the face area of the person is detected by the picture processing by a moving area detecting means 103, and center coordinates for segmentation are calculated by a segmenting address calculating means 104, and a rectangular range including the face area of the person is segmented by the <u>CIF or the QCIF</u> picture elements. Then, if a face moves, a segmented range is changed within the image-picked up range in accordance with the movement of the face area, and the face is displayed as following the face area. Thus, the face area never goes out of the picture frame of a <u>camera</u> on account of the movement of the face part of the objective person, and the face are can be transmitted always to an opposite party side, and as the result, the good conversation can be realized through a video <u>telephone</u>.

COPYRIGHT: (C) 1993, JPO&Japio

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

FΙ

(11)特許出願公開番号

特開平5-68241

(43)公開日 平成5年(1993)3月19日

(51)Int.Cl.⁵

識別記号

庁内整理番号

技術表示箇所

H 0 4 N 7/01 7/14

Z 9070-5C 8943-5C

審査請求 未請求 請求項の数3(全 9 頁)

(21)出願番号

特願平3-227626

(22)出願日

平成3年(1991)9月9日

(71)出願人 000004226

日本電信電話株式会社

東京都千代田区内幸町一丁目1番6号

(72)発明者 藤野 雄一

東京都千代田区内幸町1丁目1番6号 日

本電信電話株式会社内

(72)発明者 中西 衛

東京都千代田区内幸町1丁目1番6号 日

本電信電話株式会社内

(74)代理人 弁理士 森田 寛

(54)【発明の名称】 テレビ電話用CIF画像変換方式

(57)【要約】

【目的】 本発明は、被写体人物の顔の部分が動いてしまうことによってカメラの画枠から顔領域が外れる点を解決し、常に人物顔領域がカメラの画枠内にあり、良好な会話が可能にすることを目的としている。

【構成】 テレビジョン信号からCIF画像を得るに当って、テレビジョン信号をA/D変換する手段と、A/D変換されたテレビジョン信号を蓄積するフレームメモリと、テレビジョン信号中の動領域を検出する手段と、切り出しアドレスを算出する手段とを持つよう構成する。

1

【特許請求の範囲】

【請求項1】 テレビジョン信号からCIF画像を得る テレビ電話用CIF画像変換方式において、

テレビジョン信号をA/D変換する処理手段と、

A/D変換された該テレビジョン信号をフレームメモリ に蓄積する手段と、

該テレビジョン信号中の動領域を検出する手段と、

該フレームメモリに蓄積された信号から該検出された動 領域を含む矩型領域で切り出すためのアドレスを算出す る手段を有することを特徴とするテレビ電話用CIF画 10 像変換方式。

【請求項2】 テレビジョン信号がNTSC方式の場 合、A/D変換時のサンプリング周波数を11.1MH zとする請求項1記載のテレビ電話用CIF画像変換方

【請求項3】 テレビジョン信号がPALまたはSEC AM方式の場合、A/D変換時のサンプリング周波数を 13.5MHzとする請求項1記載のテレビ電話用CI F画像変換方式。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、CCITT標準に準拠 したテレビ電話装置の、NTSCからCIF画像への変 換処理方式に関するものである。

[0002]

【従来の技術】ここでは従来の、CCITT標準に準拠 したテレビ電話装置の、NTSCからCIF画像への変 換処理方式について説明する前に、CIF画像規格につ いて説明する。CCITTではテレビ電話の相互接続を 実現するために1990年12月にp×64kbit/ 30 sオーディオビジュアル・サービス用ビデオ符号化方式 を勧告した (CCITT Rec. H261 "Video Codec for Audio visual Service at px64kbit/s 1990)。ここでは、各 国のテレビ信号の方式の差を吸収するために共通中間フ オーマット画像 (CIF; Comon Intermediate Forma t)を以下のように規定している。

【0003】第1のフォーマット(CIF)では、輝度 の標本は、1ラインあたり352画素、1フレームあた り288ラインで直交格子状に配列される。2つの色差 フレームあたり144ラインで直交格子状に配列され る。色差信号の画素ブロック境界は輝度信号の画素ブロ ック境界と一致するように置かれ、これらの数の画素で 囲まれた画像領域は、アスペクト比が4:3であり、標 準テレビジョン信号の有効画面と一致する。

【0004】第2のフォーマット(QCIF)は、上述 のCIFの画素とライン数を各々1/2にしたものであ る。(以上、TTC標準 JT-H221より抜粋)以 上の規格に準拠したテレビ電話装置ではテレビジョンの 標準方式の違いに関わらず相互通信を行うことができ

る。以下に本規格に準拠した従来のテレビ電話装置にお けるNTSC/CIF変換処理方式について説明する。 【0005】従来のテレビ電話装置において、日本の標 準テレビジョン方式であるNTSC方式からCIF画像 を作成するNTSC/CIF変換処理方式は、垂直、水 平方向の画素数、ライン数を縮小する縮小フィルタを使 用する方式であった。

【0006】図7はNTSC信号を13.5MHzで標 本化し、ディジタル色分離処理を行い、水平方向704 画素、垂直方向480ラインの画像を作成し、該画像か らCIF画像を作成する従来方式を示す例である。な お、水平方向704画素、垂直方向480ラインの画像 は1982年にCCIRにおいて「スタジオ用ディジタ ルテレビの符号化パラメータ」(Rec. 601)とし て勧告された規格に準拠している。ここで、1は撮像 部、2は帯域制限用ローパスフィルタ(LPF)部、3 はA/D変換部、4はディジタルY/C分離部、5は水 平方向縮小フィルタ部、6はノンインタレース変換部、 7は垂直方向縮小フィルタ部、8は符号化処理部、9は 20 網インタフェース処理部である。

【0007】撮像部1により撮像されたNTSC信号 は、LPF部2により帯域制限され、A/D変換部3に よりサンプリング周波数13.5MHzでサンプリン グ、量子化ビット数9ビットで量子化される。これによ り水平方向のサンプリング数は858サンプル、有効画 素数は704画素となる。ディジタル化されたNTSC 信号はディジタルY/C分離部4により輝度信号Y、色 差信号C1, C2 のコンポーネント信号に分離される。 色分離されたコンポーネント信号はそれぞれ水平方向縮 小フィルタ部に入力される。ここでの具体的処理は、水 平方向の有効画素数が704画素であるため、1/2に サブサンプリングし縮小する。水平方向に1/2に縮小 されたコンポーネント信号はノンインタレース変換部6 に入力され、奇数フィールド、偶数フィールドの信号は それぞれ一度フィールドメモリに蓄積される。読み出す 際には、奇数、偶数フィールドの各ラインを交互に読み 出すことによりインタレース信号をノンインタレース信 号に変換する。ノンインタレース化されたコンポーネン ト信号は垂直方向縮小フィルタ部7に入力され、垂直方 成分の標本は、それぞれ1ラインあたり176画素、1 40 向に3/5倍に縮小される。具体的な縮小方法は、5ラ インから3ラインを単純に間引く方法、5ラインの信号 それぞれに重み係数を乗じて3ラインに変換する方法が あるが、ここでは単純に前者の方法にて縮小する。 【0008】以上により、水平、垂直方向にそれぞれ1 **/2,3/5に縮小されたコンポーネント信号はそれぞ**

れ352画素、288ラインとなり、CIF画像が作成 され、符号化処理部8に入力され符号化処理を施され、 網インタフェース処理部9を介して伝送路に送出され

50 【0009】以上、CIF画像の作成法について述べた

3

が、QCIF画像は上記方法で水平方向のサブサンプリ ングを1/4に、垂直方向の間引きを3/10にする事 により同様に作成できる。

[0010]

【発明が解決しようとする課題】上述の従来方式では、 CIFまたはQCIFの画素数が少ないために、テレビ 電話として相手の顔の表情までをはっきり認識するため にはある程度ズームアップして撮像し、伝送されなけれ ばならず、このような場合には、相手被写体人物の顔の 部分が少しでも動いてしまうとカメラの画枠から外れて 10 しまい、正常な顔面像が伝送されない欠点がある。

【0011】本発明は、被写体人物の顔の部分が動いて しまうことによってカメラの画枠から顔領域が外れる点 を解決し、常に人物顔領域がカメラの画枠内にあり、良 好な会話が可能にすることを目的としている。

[0012]

【課題を解決するための手段】図1は本発明の原理構成 図を示す。図中の符号101はA/D変換処理手段、1 02はフレームメモリであってA/D変換されたテレビ ジョン信号を蓄積するもの、103は動領域検出手段で 20 あってテレビジョン信号の中の動領域を検出するもの、 104は切り出しアドレス算出手段であって切り出しア ドレスを算出する手段である。

[0013]

【作用】CIFまたはQCIF画像を作成するのに、あ らかじめ広角で被写体人物像を撮像し、画像処理により 人物顔領域を検出して該領域をCIFまたはQCIF画 素で切り出して作成すること、顔が動いた場合には撮像 された範囲内で該顔領域の動きに応じて切り出し範囲を 変更することにより、常に顔領域を相手側に送信できる 30 ようにする。更に、切り出したCIF画像の歪をなくす ため、СІF画像切り出しに際し水平方向、垂直方向の アスペクト比に基づいたサンプリング周波数を求め、該 サンプリング周波数で標本化する。

【0014】従来の技術においては、CIFまたはQC IF画像を作成するのに、水平、垂直方向の縮小フィル 夕を使用し縮小変換により作成するのに対し、本発明で ~ はあらかじめ広角で撮像した画像から顔領域を画像処理 により検出し、検出した顔領域を含む矩型領域をCIF またはQCIF画素で切り出すことによって作成する。 また、従来では、ディジタル色分離の容易性から13. 5MHzまたは色副搬送波周波数fsc(3.58MH z)の3または4倍の周波数でA/D変換を行っている のに対し、本発明ではアナログ色分離を実施しているた め上記周波数に依存せず、CIF画像の歪をなくすため に適当な周波数を決定している。

[0015]

【実施例】(実施例1)図2は本発明の第1の実施例で あるNTSC方式からСIF画像を作成する方式を説明 する図であり、図中の符号1,2,3,8,9は図7に 50 部、17は2値化処理部、18は頭頂部座標算出部、1

対応し、更に10はアナログY/C分離部、11は動領 域検出部、12はCIF/QCIF画像切り出しアドレ ス算出部、13はフレームメモリ部である。

【0016】撮像部1により撮像されたNTSC方式の テレビジョン信号は、アナログY/C分離部10に入力 され、輝度信号Y、色差信号C1, C2のコンポーネン ト信号に分離される。分離されたY, C1, C2 信号は A/D変換の前にLPF部2を通過し帯域制限される。 帯域制限されたY, C1, C2 信号はA/D変換部3に よりA/D変換される。ここで、A/D変換のサンプリ ング周波数はCIFまたはQCIF画素で切り出された 時の画像の水平方向対垂直方向の物理的な大きさの比が 4:3になるように決定される。すなわちA/D変換に よりサンプリングされた画像から水平、垂直方向のそれ ぞれの走査線帰線期間を除いた有効画像と、CIFまた はQCIF画素により作成された画像とが相似形である ことが条件となる。具体的には、CIF画像の水平方 向、垂直方向の画素、ライン数をそれぞれ352画素、 288本、サンプリングする映像信号の水平方向、垂直 方向の有効画素、ライン数をそれぞれ p 画素、480本 とした場合、以下の関係が成り立つ。

[0017]p:480=352:288 $\therefore p = 587$

従って、水平方向の有効画素数は587画素となり、水 平走査期間の83%を有効期間とした場合、水平走査期 間の画素数は707画素となる。これより、A/D変換 のサンプリング周波数は11.1MHzと決定すること ができる。なお、色差信号C1 , C2 は、輝度信号Yの 半分、すなわち5.56MHzでA/D変換される。

【0018】サンプリング周波数11.1MHzまたは 5.56MHz、量子化ビット数8ビットでA/D変換 されたY信号を利用して動領域検出部11にて顔領域を 含むCIFまたはQCIF画像の矩型領域の中心座標が 決定される。また、同時にY, C1, C2 信号は2フィ ールド毎にフレームメモリ部13に蓄積される。なお、 ノンインタレース変換処理は該フレームメモリに蓄積さ れた奇数、偶数フィールドを一度に読み出すことにより 行う。決定されたCIFまたはQCIF画像の中心座標 はCIF/QCIF画像切り出しアドレス算出部12に て、フレームメモリ部に蓄積されている、Y, C1, C 2 信号のそれぞれのフレーム画像から切り出すアドレス を計算し、該アドレスに基づきCIFまたはQCIF画 像が読み出される。読み出されたCIFまたはQCIF 画像は、符号化処理部8、網インタフェース処理部9を 介して相手側に伝送される。

【0019】図3は図2の動領域検出部11の内容を詳 細に説明する図であり、背景参照画像を使用した背景差 分法による例を示す。ここで、14は背景差分算出部、 15は背景参照画像メモリ部、16はブロック化処理

9はCIF/QCIF画像切り出し用中心座標算出部である。

【0020】あらかじめ、人物像や動物体を含まない背景参照画像を撮像し、背景参照画像メモリ部15に蓄積する。次に、人物が含まれた通常のテレビ電話画像を撮像し、撮像された人物画像は背景差分算出部14に入力される。背景差分算出部14では入力される人物画像のフレーム毎に背景参照画像との差分信号を計算する。得られた背景差分信号は、計算量の削減の為にブロック化処理部16に入力され、例えば16×16画素等でブロック化処理を行う。ブロック化された画像は2値化処理部17に入力され、適当なしきい値で2値化され、背景参照画像と人物画像の差分、すなわち人物が存在する領域を抽出する。

【0021】図4は、ブロック化され、2値化された差分画像の例を示す。ここで点p(xc, yc)は人物頭項部座標、点q(Xc, Yc)は切り出し中心座標である。このように人物領域のみが差分として抽出される。

【0022】2値化処理部17で2値化された差分画像は頭頂部座標算出部18に入力され頭頂部座標を算出す 20 る。頭頂部座標の算出法は、多種考えられるが、ここでは最も簡単な方法である、人物頭頂部から頭頂部座標を決定する方法について説明する。たとえば図4に示されているブロック差分画像から人物頭頂部を検出する方法は、図4のブロック差分画像の左上から水平方向に走査し、最初に差分を検出した位置を人物頭頂部座標

(xc, yc)とすることにより求める。ここで、人物 頭頂部水平方向ブロックが1ブロックである場合には該 ブロックの中心点を、また2ブロック以上の場合には該 ブロックの平均座標位置を頭頂部水平方向座標点xcと 30 する。頭頂部座標算出部18にて求められた座標はCI F/QCIF画像切り出し範囲用中心座標算出部に入力 され、CIFまたはQCIF画像を切り出す際の切り出 し中心点が計算される。

【0023】具体的には、求められた頭頂部垂直方向座標ycより適当なブロック上方、たとえば2ブロック上方を切り出し用上方枠とし、この枠の位置から垂直方向の切り出し中心座標Ycを求める。また、頭頂部水平方向座標はそのまま水平方向の切り出し中心座標Xcとする。これによりCIFまたはQCIF画像切り出し範囲40用中心座標(Xc, Yc)が求められる。求められた中心座標は図2のCIF/QCIF画像切り出しアドレス算出部12に入力される。

【0024】図5は、水平方向587画素、垂直方向480ラインから、それぞれ352画素、288ラインを切り出した例を示す。

(実施例2)図6は本発明の第2の実施例であるPAL またはSECAM方式からCIF画像を作成する方式を 説明する図である。図中の符号1,2,3,4,8, 9,11,12,13は図2および図7に対応してい る。撮像部1により撮像されたPALまたはSECAM 方式のテレビジョン信号は、LPF部2により帯域制限 されA/D変換部3に入力される。ここでNTSC方式 と同様にサンプリング周波数を決定する。PALまたは SECAM方式の場合には垂直方向の有効ライン数が5 76本であるため、水平方向の有効画素数をP画素とす ると、以下の関係が成り立つ。

6

[0025] p: 576=352: 288 \therefore p=704

この水平方向の画素数は13.5MHzでサンプリング した場合の有効画素数と一致する。従って、PAL、S ECAM方式の場合にはサンプリング周波数を13.5 MHzとし、以下の処理は上述したNTSC方式の場合 と同様となる。

[0026]

【発明の効果】以上説明したように、本発明によればCIFまたはQCIF画像を作成するのにあらかじめ広角で被写体人物像を撮像し、画像処理により人物顔領域を検出して切り出し用中心座標を算出し、人物顔領域を含む矩型範囲をCIFまたはQCIF画素で切り出し、顔が動いた場合には撮像された範囲内で該顔領域の動きに応じて切り出し範囲を変更して顔領域に追従して顔を表示するため、カメラの画枠から顔領域が外れることなく、常に顔領域を相手側に送信でき、その結果としてテレビ電話を介して良好な会話が実現できる利点がある。【図面の簡単な説明】

【図1】本発明の原理構成図を示す。

【図2】本発明の第1の実施例であるNTSC方式から CIF画像を作成する方式を説明する図である。

0 【図3】図2の動領域検出部の内容を詳細に説明する図である。

【図4】ブロック化され、2値化された差分画像の例を示す図である。

【図5】切り出した例を示す。

【図6】本発明の第2の実施例であるPALまたはSE CAM方式からCIF画像を作成する方式を説明する図 である。

【図7】NTSC信号を13.5MHzで標本化し、ディジタル色分離処理を行い、水平方向704画素、垂直方向480ラインの画像を作成し、該画像からCIF画像を作成する従来方式の例を示す図である。

【符号の説明】

- 1 撮像部
- 2 帯域制限用ローパスフィルタ(LPF)部
- 3 A/D変換部
- 4 ディジタルY/C分離部
- 5 水平方向縮小フィルタ部
- 6 ノンインタレース変換部
- 7 垂直方向縮小フィルタ部
- 50 8 符号化処理部

(5)

特開平5-68241

7

- 9 網インタフェース処理部
- 10 アナログY/C分離部
- 11 動領域検出部
- 12 CIF/QCIF画像切り出しアドレス算出部
- 13 フレームメモリ部
- 14 背景差分算出部

- 15 背景参照画像メモリ部
- 16 ブロック化処理部
- 17 2值化処理部
- 18 頭頂部座標算出部
- 19 CIF/QCIF画像切り出し用中心座標算出部

【図1】

【図5】

【図2】

【図4】

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.