

SRM Institute of Science and Technology College of Engineering and Technology

Department of Mathematics

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: 2023-2024(ODD)

Tutorial sheet - 3

Date: 24/07/2023

 $Course\ Code\ \&Title:\ 18 MAB 302 T-Discrete\ Mathematics\ for\ Engineers$

Year & Sem: III/V

Q. No	Questions	Answer keys
1	For the function $F: \{1,2,3,4,5\} \rightarrow \{a,b,c,d,e\}$ defined as $F(1) = a, F(2) = b, F(3) = b, F(4) = d, F(5) = c$, identify domain (F) , codomain (F) , range (F) , $F^{-1}(a)$, $F^{-1}(\{a,b,c\})$	
2	and $F^{-1}(e)$. If the function f is defined by $f(x) = x^2 + 1$ on the sets $\{-3, -2, -1, 0, 1, 2, 3\}$, find the range of f.	{10, 5, 2, 1}
3	Let $f: X \to Y$ and $g: Y \to Z$ be two bijective functions. Show that $(g \circ f)^{-1}$ exists and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.	
4.	For the functions $f(x) = x^2 - 4$ and $g(x) = \sqrt{(x+1)}$, find $f(g(x)), g(f(x)), (f \circ f)(x)$, and $(g \circ g)(x)$.	
5.	If $f, g: R \to R$ where $f(x) = ax + b$, $g(x) = 1 - x + x^2$ and $(g \circ f)(x) = 9x^2 - 9x + 3$. Find the values of a and b .	a = 3, b = -1
6.	 State TRUE or FALSE with proper justification for each of the following statements: (a) Every function is a relation but the converse is not true. (b) If A = n and B = m, the number of different functions f : A → B is mn. (c) Any one-one function from A to B is a bijective function from A to f(A). 	(a) True, (b) False, (c) True
7.	State which of the following are injections, surjections or bijections from R into R, where R is the set of all real numbers i. $f(x) = -2x$ ii. $g(x) = x^2 - 1$	i. bijection ii. neither injection nor surjection.
8.	Let $f: A \to B$ be a function. Prove that f^{-1} is a function from range of f to A if and only if f is one-to-one.	
9	Let $A = \{a, b, c\}B = \{x, y, z\}$ and $C = \{r, s, t\}$. Let $f: A \to B$ and $g: B \to C$ be defined by $f = \{(a, y), (b, x), (c, y)\}$ and $g = \{(x, s), (y, t), (z, r)\}$. Find (a) Composition function $g \circ f: A \to C$ (b) Im (f) , Im (g) and Im $(g \circ f)$	$g \circ f$ $= \{(a,t), (b,s), (c,t)\}$ $Im(g \circ f) = \{s,t\}$
10	Let $f: X \to Y$ and $g: Y \to Z$ be functions. We can define the composition of f and g to be the function $g \circ f: X \to Z$ which the image of each $x \in X$ is $g(f(x))$. (a) If f and g are both injective, must $g \circ f$ be injective? Explain. (b) If f and g are both surjective, must $g \circ f$ be surjective?	

Explain.	