Courbes géometriquement intègres propres lisses?

Table des matières

L	Rar	mification sur les courbes	
	1.1	La facilité du cadre!	
	1.2	La différence	
	1.3	Nombre fini de points ramifiés	

Je regarde quasi toujours $f \colon X \to Y$ entre courbes géometriquement intègres propres lisses.

0.1 Cadre

Donc un tel $X \to Y$ est surjectif fini. Et on peut supposer X,Y projectives.

Chapitre 1

Ramification sur les courbes

De $f^{\sharp} \colon \mathcal{O}_{Y} \to f_{*}\mathcal{O}_{X}$ on a

$$\mathcal{O}_{Y,f(x)} o \mathcal{O}_{X,x}$$

défini par

$$(g, V_{f(x)}) \mapsto (f^{\sharp}(V_{f(x)})(g), f^{-1}V_{f(x)})$$

Note 1. Juste un petit rappel de définitions.

1.1 La facilité du cadre!

Donc y se passe un truc fun, si B/A est une extension finie d'anneaux de Dedekind on sait que

$$[Frac(B): Frac(A)] = \sum e_i f_i$$

en particulier,

- 1. Pour toutes courbes intègres propres lisses, $X \to Y$ non constant est fini!
- 2. En particulier, on prends un affine qui contient $f^{-1}y$ par exemple $f^{-1}U$ avec $y \in U$ affine!
- 3. D'où $\sum e_{x/y} = [k(X):k(Y)]!$ (On est sur k algébriquement clos)

1.2 La différence

On a $\mathcal{O}_X(X) = \mathcal{O}_Y(Y) = k$. Donc pas d'arguments globaux.

1.3 Nombre fini de points ramifiés.

On peut se ramener a un ouvert affine le complémentaire a qu'un nombre fini de points. Ensuite, on regarde le discriminant d'un θ tel que $k(Y)(\theta) = k(X)$ et θ entier sur A(U) avec U l'ouvert de Y. Ensuite c'est l'argument usuel.

Remarque 1. À noter qu'on peut donc pas faire systématiquement tout globalement.