Lezione del 8 aprile

Esempio 0.1 (Sull'utilizzo della formula integrale di Cauchy). Sia $a \in \mathbb{C}$ e R > 0, poniamo $B(a, R) = \{z \in C \mid |z - a| \leq R\} \subseteq D$. Sia γ una parametrizzazione di $\partial B(a, R)$ in senso antiorario. Applicando la formula integrale di Cauchy, otteniamo che

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - a} \, \mathrm{d}z = f(a)$$

per ogni funzione $f:D\to\mathbb{C}$ olomorfa.

Teorema 0.2 (di Cauchy).

Sia f una funzione olomorfa su un aperto $D \subseteq \mathbb{C}$. Allora la forma $\omega = f(z) \, \mathrm{d}z$ è chiusa in D

Dimostrazione. Sia γ omotopicamente banale in D e $a \notin Imm\gamma$. Sia F(z) = (z-a)f(z) dunque

$$\frac{1}{2\pi i} \int_{\gamma} \frac{F(z)}{z - a} = \frac{1}{2\pi i} \int_{\gamma} f(z) \, \mathrm{d}z$$

Dalla formula integrale di Cauchy, si ha $\int_{\gamma} \frac{F(z)}{z-a} = F(a)I(\gamma, a) = 0.$

Abbiamo provato che $\int_{\gamma}\omega=0$ per ogni cammino omotopicamente banale contenuto in D il che prova che ω è esatta

Lemma 0.3 (di Abel). Siano $r, r_0 \in \mathbb{R}$ tale che $0 < r < r_0$. Se esistono $0 < M < +\infty$ tale che $|a_k| r_0^k \le M$ per ogni $k \ge 0$. Allora la serie $\sum a_k z^k$ converge normalmente per $|z| \le r$ cioè $\sum ||a_k z^k||$

Teorema 0.4 (olomorfa \Rightarrow analitica).

Sia f una funzione olomorfa nel disco aperto B(0,R) con $0 < R \le +'\infty$.

Allora f è analitica sul disco B(0,R), in particolare esiste una serie di potenze $\sum a_n z^n$ con raggio di convergenza $\rho \geq R$ tale che

$$f(z) = \sum a_n z^n \ per \ |z| < R$$

Dimostrazione. Sia $0 < r_0 < R$ definiamo $\gamma : t \to r_0 e^{2\pi i t}$ per ogni $t \in [0, 1]$. Sia $z \in \mathbb{C}$ tale che $|z| < r_0$, allora $I(\gamma, z) = 1$, dalla formula integrale di Cauchy sappiamo

$$f(z) = \frac{1}{2\pi i} \int \frac{f(w)}{w - z} \, \mathrm{d}w \tag{1}$$

Ansiamo a riscrivere l'integrale come una serie di potenze e poi scambiamo l'ordine tra la somma e l'integrale

Notiamo che $|z| = r < r_0 = |\gamma(t)|$ per ogni $t \in [0, 1]$ in particolare

$$\frac{1}{w-z} = \frac{1}{w} \cdot \frac{1}{1 - \frac{z}{w}}$$

Osserviamo che

$$\sum_{k=0}^{n} \left(\frac{z}{w}\right)^k = \frac{1 - \left(\frac{z}{w}\right)^{n+1}}{1 - \frac{z}{w}} \quad \Rightarrow \quad \frac{1}{1 - \frac{z}{w}} = \sum_{k=0}^{n} \left(\frac{z}{w}\right)^k + \left(\frac{z}{w}\right)^{n+1}$$

dunque otteniamo

$$\frac{1}{w-z} = \frac{1}{w} \sum_{k=0}^{n} \left(\frac{z}{w}\right)^k + \frac{1}{w} \left(\frac{z}{w}\right)^{n+1} \cdot \frac{1}{1-\frac{w}{z}}$$

Sostituendo nell'uguaglianza 1 otteniamo

$$f(z) = \frac{1}{2\pi i} \left[\int_{\gamma} \frac{f(w)}{w} \sum_{k=0}^{n} \left(\frac{z}{w} \right)^{k} dw + \int_{\gamma} \frac{f(w)}{w} \frac{\left(\frac{z}{w} \right)^{n+1}}{1 - \frac{z}{w}} \right] = \frac{1}{2\pi i} \left[\sum_{k=0}^{n} z^{k} \left(\int_{\gamma} \frac{f(w)}{w^{k+1}} dw \right) + \int_{\gamma} \frac{\left(\frac{z}{w} \right)^{n+1}}{1 - \frac{z}{w}} dw \right]$$

Definiamo

$$a_k = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w^{k+1}}$$

$$R_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w} \frac{\left(\frac{z}{w}\right)^{n+1}}{1 - \frac{z}{w}} dw$$

abbiamo ottenuto

$$f(z) = \sum_{k=0}^{n} a_n z^k + R_n$$

andiamo a stimare $|R_n|$, per fare questo definiamo

$$M(r_0) = \sup\{|f(\gamma(t))| : t \in [0,1]\}$$

tale quantità è un numero reale in quanto $|f(\gamma(\bullet))|$ è una funzione continua su un compatto

$$R_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w} \frac{\left(\frac{z}{w}\right)^{n+1}}{1 - \frac{z}{w}} dw = \frac{1}{2\pi i} \int_{0}^{1} \frac{f(\gamma(t))}{\gamma(t)} \frac{\left(\frac{z}{\gamma(t)}\right)^{n+1}}{1 - \frac{z}{\gamma(t)}} r_0 2\pi e^{2\pi i t} dt$$

da cui

$$|R_n| \le \int_0^1 \frac{|f(\gamma(t))|}{|\gamma(t)|} \frac{\left|\frac{z}{\gamma(t)}\right|^{n+1}}{\left|1 - \frac{z}{\gamma(t)}\right|} r_0 dt$$

Usando che $|z| = r < r_0 = |\gamma(t)|$ si ha $\left|1 - \frac{z}{\gamma(t)}\right| > 1 - \frac{r}{r_0}$ da cui

$$|R_n| \le \frac{M(r_0) \left(\frac{r}{r_0}\right)^{n+1}}{1 - \frac{r}{r_0}}$$

per $n \to +\infty$ otteniamo $|R_n| \to 0$ dunque

$$f(z) = \sum a_k z^k \text{ per } |z| < R$$

Osserviamo che a_n è indipendendente da r_0 per $0 < r_0 < R$ (basta prendere un'altra circonferenza liberamente omotopa a γ).

Con gli stessi argomenti usati per stimare $|R_n|$ si trova

$$|a_k| \le \frac{M(r_0)}{r_0^k} \quad \forall k \ge 0 \tag{2}$$

dal lemma di Abel, otteniamo $\sum a_n z^n$ converge assolutamente in $|z| < r_0$ per ogni $0 < r_0 < R$ da cui il raggio di convergenza è $\rho \ge R$

Corollario 0.5. Sia $D \subseteq \mathbb{C}$ un aperto. Una funzione f è olomorfa in D se e solo se è analitica in D.

In particolare la serie di Taylor di f in D ha raggio di convergenza

$$\rho \geq \sup\{r > 0 \,|\, \{z \in \mathbb{C} \,|\, |z-a| < r\} \subseteq D\}$$

Corollario 0.6. Sia f una funzione olomorfa su un aperto D, allora f è di classe C^{∞} e per ogni n si ha $f^{(n)}$ è olomorfa in D

Dimostrazione. Il corollario segue dalla seguente catena di implicazioni

$$f$$
 olomorfa \Rightarrow f analitica \Rightarrow
$$\begin{cases} f \in C^{\infty} \\ f^{(n)} \text{ analitica} & \Rightarrow f^{(n)} \text{ olomorfa} \end{cases}$$

Corollario 0.7. Sia f una funzione olomorfa in D aperto.

Sia R > 0 tale che $B(a, R) \subseteq D$ e sia γ la curva che parametrizza $\partial B(a, R)$ in sento antiorario. Allora

$$f^{(n)}(a) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(z)}{(z-a)^{n+1}} \,dz$$

Dimostrazione. Dal fatto che f è analitica sappiamo che

$$\frac{f^n(a)}{n!} = a_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{(z-a)^{n+1}} dz$$

Osservazione 1. Mostriamo che vale l'implicazione opposta del teorema di Cauchy

Teorema 0.8 (di Morera).

Sia f una funzione continua in un aperto $D \subseteq \mathbb{C}$.

Se $\omega = f(z) dz$ è chiusa in D allora f è olomorfa in D

Dimostrazione. Essendo ω chiusa, per ogni $a\in D$ esiste un intorno aperto U di atale che $\omega=\,\mathrm{d} F$ in U.

Fè di classe C^1 essendo primitiva locale di ω

$$f(z) dz = w = dF = \frac{\partial F}{\partial z} dz + \frac{\partial F}{\partial \overline{z}} d\overline{z} \quad \Leftrightarrow \quad f(z) = \frac{\partial F}{\partial z} e \frac{\partial F}{\partial \overline{z}} = 0$$

Ora $\frac{\partial F}{\partial \bar{z}} = 0$ se e solo se F soddisfa le condizioni di Cauchy-Rieman, da cui F è olomorfa e per il corollario anche F' è olomorfa.

Si conclude osservano che F' = f da cui f olomorfa

Usando la proposizione (dimostrata nelle lezioni precedenti)

Proposizione 0.9. $f: D \to \mathbb{C}$ continua su D e olomorfa su $D \setminus r$ con r retta orizzontale. Allora f(z) dz

e il teorema di Moreral si dimostra

Corollario 0.10. $f: D \to \mathbb{C}$ continua su D e olomorfa su $D \setminus r$ con r retta orizzontale. Allora f è olomorfa

Ricapitoliamo le varie dimostrazioni con il seguente teorema

Teorema 0.11. Sia $f: D \to C$ una funzione su un aperto $D \subseteq \mathbb{C}$. Le sequenti affermazioni sono equivalenti

- f è olomorfa su D
- f è analitica in D
- $f \ e$ di classe C^1 e soddisfa le condizioni di Cauchy-Riemann
- $f \ e$ continua e olomorfa in $D \setminus r$ con r retta orizzontale
- f è continua e la forma f(z) dz è chiusa in D

La disuguaglianza 2 implica

Corollario 0.12 (Disuguaglianza di Cauchy).

Sia $a \in \mathbb{C}$ e assumiamo $f(z) = \sum a_n(z-a)^n$ abbia raggio di convergenza ρ . Allora per ogni $0 < r < \rho$ si ha

$$a_n = \frac{f^{(n)}(a)}{n!}$$

ed inoltre

$$|a_n| r^n \le M(r) \text{ dove } M(r) = \sup\{|f(z)| \mid |z - a| = r\}$$