AULA 02 – ANÁLISE DO ALGORITMO INSERTION SORT

Prof. Daniel Kikuti

Universidade Estadual de Maringá

23 de julho de 2014

Resumo da aula anterior

- Primeira parte: blá blá blá.
 - Sobre a disciplina (avaliação/trabalhos).
 - Datas.
- Segunda parte: mais blá blá blá.
 - Definição do objeto de estudo.
 - O que analisar.
- Na última parte da aula: esboço do que faremos durante boa parte da disciplina.
 - Três algoritmos para multiplicação de inteiros longos com análise de complexidade de informal.
 - Exercício para verificar crescimento de funções.

Solução do exercício

	1 segundo	1 minuto	1 hora	1 dia
lg n	2^{10^6}	$2^{6 \times 10^7}$	$2^{3,6 \times 10^9}$	$2^{8,64 \times 10^{10}}$
\sqrt{n}	10^{12}	$3,6 \times 10^{15}$	$1,3 \times 10^{19}$	$7,46 \times 10^{21}$
n	10 ⁶	6×10^7	$3,6 \times 10^{9}$	$8,64 \times 10^{10}$
n lg n	62746	2801417	$1,33 \times 10^{8}$	$2,76 \times 10^{9}$
n^2	1000	7745	60000	293938
n ³	100	391	1532	4420
2 ⁿ	19	25	31	36
n!	9	11	12	13

Objetivos desta aula

- ▶ Técnica de Projeto de Algoritmos.
 - ► Abordagem incremental.
- Correção do Insertion sort.
 - Invariante de laço.
- Análise da complexidade.
 - Melhor caso.
 - Pior caso.
 - Caso médio.
- Exercícios.

Técnica de projeto de algoritmos

Cenário

- Você possui um grande volume de dados.
- Ao longo do tempo este volume de dados está sujeito a diversas (relativamente) pequenas mudanças.
- Você está processando estes dados e deseja manter o resultado (parcial) atualizado com o volume de dados alterado.

Técnica de projeto de algoritmos

Cenário

- Você possui um grande volume de dados.
- Ao longo do tempo este volume de dados está sujeito a diversas (relativamente) pequenas mudanças.
- Você está processando estes dados e deseja manter o resultado (parcial) atualizado com o volume de dados alterado.

Algoritmo incremental

É um algoritmo que parte de uma solução inicial e vai atualizando esta solução à medida que os dados da entrada são processados.

Exemplo de Geometria Computacional

Fecho convexo (envoltória convexa) de um conjunto de pontos

Entrada: Diversos pontos no plano.

Saída: Fecho convexo.

Definições

Um polígono P é **convexo** se para quaisquer pontos $x, y \in P$, todos os pontos do segmento de reta \overline{xy} estão em P. O **fecho convexo** é o menor polígono convexo que contém todos os pontos.

Um algoritmo incremental para fecho convexo

Insertion Hull

Dado um conjunto $I = \{p_1, \dots, p_n\}$ de n pontos e seja P o polígono que irá representar o fecho convexo.

- 1. Comece com o triângulo $P = (p_1, p_2, p_3)$ (fecho convexo trivial);
- 2. Para i = 4 até n faça
 - Se i não está no interior de P então encontre as duas retas que tangenciam o ponto i e P e atualize P;
- 3. Devolva P.

Algoritmo incremental de modo geral

- ▶ Seja $I = \{i_1, i_2, ..., i_n\}$ o conjunto de n elementos da entrada e o objetivo seja computar uma função f(I).
- ▶ Começamos com um conjunto vazio S (ou uma solução trivial) e mantemos f(S) a cada iteração do algoritmo.
- Então o algoritmo fará um total de n iterações (aproximadamente) e ao final devolverá solução S para o problema.

Algoritmo incremental de modo geral

- ▶ Seja $I = \{i_1, i_2, ..., i_n\}$ o conjunto de n elementos da entrada e o objetivo seja computar uma função f(I).
- ▶ Começamos com um conjunto vazio S (ou uma solução trivial) e mantemos f(S) a cada iteração do algoritmo.
- Então o algoritmo fará um total de n iterações (aproximadamente) e ao final devolverá solução S para o problema.

Análise de algoritmos incrementais

- A complexidade de tempo de um algoritmo incremental depende do tempo gasto em cada iteração.
- A correção do algoritmo em geral se dá usando invariante de laço.

Veremos detalhadamente a análise do algoritmo incremental *Insertion sort*.

O problema de ordenação

Entrada

Uma sequência de *n* números $\langle a_1, a_2, \dots, a_n \rangle$.

Saída

Uma permutação (reordenação) $\langle a_1', a_2', \dots, a_n' \rangle$ da sequência de entrada tal que, $a_1' \leq a_2' \leq \dots \leq a_n'$.

O problema de ordenação

Entrada

Uma sequência de *n* números $\langle a_1, a_2, \ldots, a_n \rangle$.

Saída

Uma permutação (reordenação) $\langle a_1', a_2', \dots, a_n' \rangle$ da sequência de entrada tal que, $a_1' \leq a_2' \leq \dots \leq a_n'$.

Usando a abordagem incremental

- Manteremos uma parte dos dados ordenada;
- Esta parte aumentará a cada iteração;
- No final, teremos todos os elementos ordenados.

O algoritmo

O algoritmo a seguir é uma versão que faz **ordenação local**, isto é, dentro do próprio vetor *A*, usando no máximo um número constante de espaço de memória para auxiliar no processo.

```
insertion-sort(A)
1 for j = 2 to A.length
2    chave = A[j]
3    /*insere A[j] na sequência ordenada A[1..j-1]*/
4    i = j - 1
5    while i > 0 and A[i] > chave
6         A[i + 1] = A[i]
7         i = i - 1
8    A[i + 1] = chave
```

Como demonstrar que este algoritmo está correto?

Invariante de laço

Declarar a invariante

Propriedade que se mantém verdadeira antes do início do laço, durante a manutenção do laço e na saída do laço. Deve ser uma propriedade que auxilie na demonstração da correção do algoritmo.

Inicialização

A propriedade deve ser verdadeira antes da primeira iteração

Manutenção

Verificar que a propriedade se mantém a cada iteração. A propriedade deve permanecer válida para as próximas iterações.

Término

Verificar a propriedade quando a última iteração do laço for executada.

Uma figura para fixar a idéia

```
ANTES
/* O invariante é verdadeiro */
enquanto Condição faça
   /* O invariante é verdadeiro */
   CORPO DO LAÇO
   /* 0 invariante é verdadeiro */
fim enquanto
/* Condição é falsa e o invariante é verdadeiro */
DEPOIS
```

Correção do Insertion sort

Declarar a invariante

Para o laço **for** (linhas 1–8), $A[1\ldots j-1]$ contém os mesmos elementos contidos originalmente em $A[1\ldots j-1]$, mas em sequência ordenada.

Correção do Insertion sort

Declarar a invariante

Para o laço **for** (linhas 1–8), $A[1\ldots j-1]$ contém os mesmos elementos contidos originalmente em $A[1\ldots j-1]$, mas em sequência ordenada.

Inicialização

Quando j=2, o subvetor $A[1 \dots j-1]$ consiste apenas do elemento A[1] que é o mesmo elemento original em A[1] e está trivialmente ordenado.

Correção do Insertion sort

Declarar a invariante

Para o laço **for** (linhas 1–8), $A[1\ldots j-1]$ contém os mesmos elementos contidos originalmente em $A[1\ldots j-1]$, mas em sequência ordenada.

Inicialização

Quando j=2, o subvetor A[1...j-1] consiste apenas do elemento A[1] que é o mesmo elemento original em A[1] e está trivialmente ordenado.

Manutenção

O corpo do laço **for** consiste em deslocar os elementos $A[j-1], A[j-2], \ldots$ uma posição a direita, até encontrar a posição adequada do elemento A[j] (linhas 4–7). Neste ponto, o valor de A[j] é inserido. O subvetor $A[1\ldots j]$ consiste então dos elementos originalmente em $A[1\ldots j]$, mas de forma ordenada.

Continuação da Correção do Insertion sort

Término

O laço externo termina quando j excede n, isto é, quando j=n+1. Substituindo j=n+1 no enunciado do invariante de laço, temos que o subvetor $A[1\dots n]$ consiste nos elementos originalmente contidos no vetor $A[1\dots n]$, mas em sequência ordenada. Contudo, o subvetor $A[1\dots n]$ é o vetor inteiro. Portanto, o algoritmo está correto.

Análise de complexidade do Insertion sort

Considerações

- Usaremos o modelo RAM.
- O recurso que queremos prever para o insertion-sort é o tempo.
- ▶ O tempo de execução de um algoritmo em uma determinada entrada é o número de operações primitivas executadas.
- O tempo de execução depende da quantidade de itens na entrada (tamanho da entrada).
- Vamos assumir que cada linha executada consome um período constante de tempo.

Análise de Complexidade

```
insertion-sort(A)
                                    custo # de execuções
1 for j = 2 to A.length
                                     C_1
 chave = A[j]
                                     c_2
3 /*insere A[j] ... */
                                     0
    i = j - 1
                                     C_{\Delta}
5 while i > 0 and A[i] > chave
                                     C_5
A[i + 1] = A[i]
                                     c_6
   i = i - 1
                                     C_7
8 A[i + 1] = chave
                                     C8
```

Análise de Complexidade

```
insertion-sort(A)
                                                            # de execuções
                                                   custo
1 for j = 2 to A.length
                                                     c_1
                                                     c_2 \qquad n-1
     chave = A[j]
3 /*insere A[j] ... */
                                                     0 \quad n-1
                                                     c_4 n-1
    i = j - 1
                                                         \begin{array}{l} \sum_{j=2}^{n} t_{j} \\ \sum_{j=2}^{n} (t_{j} - 1) \\ \sum_{j=2}^{n} (t_{j} - 1) \end{array}
5 while i > 0 and A[i] > chave
                                                     C<sub>6</sub>
    A[i + 1] = A[i]
                                                    C<sub>7</sub>
7 	 i = i - 1
8 A[i + 1] = chave
                                                          n-1
                                                     C<sub>S</sub>
```

- t_j é o número de vezes que o teste do while é executado para o valor j.
- Para calcularmos o tempo de execução T(n), somamos os produtos das colunas custo e # de execuções.

Análise de Complexidade

Custo total

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$$

Analisando o t_i

O tempo de execução pode ser diferente (mesmo para entradas do mesmo tamanho).

- Como deve ser a entrada para executar o menor número de iterações?
- Como deve ser a entrada para executar o maior número de iterações?

Análise de Complexidade: Melhor Caso

- Ocorre quando o vetor já está ordenado.
- $lackbox{O}$ teste A[i] > chave falha na primeira comparação quando i=j-1
- ▶ Portanto, $t_j = 1$ para j = 2, ..., n, e o tempo de execução no melhor caso será:

$$T(n) = c_1 n + c_2(n-1) + c_4(n-1) + c_5(n-1) + c_8(n-1)$$

= $(c_1 + c_2 + c_4 + c_5 + c_8)n - (c_2 + c_4 + c_5 + c_8).$

- Esse tempo pode ser expresso como T(n) = an + b, para constantes $a \in b$.
- É uma função linear de n.

Análise de Complexidade: Pior Caso

- Ocorre quando o vetor está em ordem inversa.
- ► Cada elemento de A[j] deve ser comparado com todos os elementos do subvetor ordenado A[1...j-1].
- ▶ Portanto, $t_j = j$ para j = 2, ..., n. Como

$$\sum_{j=2}^{n} j = \frac{n(n+1)}{2} - 1$$

е

$$\sum_{i=2}^{n} (j-1) = \frac{n(n-1)}{2}$$

o tempo de execução no pior caso é:

Análise de Complexidade: Pior Caso

$$T(n) = c_1 n + c_2(n-1) + c_4(n-1) + c_5 \left(\frac{n(n+1)}{2} - 1\right) + c_6 \left(\frac{n(n-1)}{2}\right) + c_7 \left(\frac{n(n-1)}{2}\right) + c_8(n-1)$$

$$= \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right) n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2} + c_8\right) n - (c_1 + c_4 + c_5 + c_8).$$

- Esse tempo pode ser expresso como $T(n) = an^2 + bn + c$, para constantes a, b e c.
- ▶ É uma função quadrática de n.

Análise de Complexidade: Caso Médio

- ▶ Suponha a entrada com *n* números escolhidos aleatoriamente.
- Quantas comparações são necessárias para se descobrir o lugar adequado de A[j] dentro do subvetor ordenado A[1 ...j-1]?
- ► Em média, metade dos elementos em A[1 ...j-1] são menores que A[j] e metade maiores.
- Portanto, em média verificaremos metade do subvetor ordenado, ou seja $t_j=j/2$ para $j=2,\ldots,n$, e o tempo de execução no melhor caso será quadrático.

Algumas considerações sobre ordem de crescimento

- Começamos ignorando o custo real de cada instrução (adotamos um custo abstrato c_i por linha).
- Fizemos a análise do algoritmo e chegamos no pior caso em uma função $T(n) = an^2 + bn + c$ onde a, b e c são constantes que dependem dos custos c_i (ignoramos também os custos abstratos).
- Abstraimos mais uma vez, considerando apenas o termo que expressa a ordem de crescimento (termo de mais alta ordem da função).
- ► Termos de mais baixa ordem são insignificantes para grandes valores de *n*.

Algumas considerações sobre ordem de crescimento

- Em geral, também ignoramos o coeficiente constante do termo de mais alta ordem (são menos significativos que a taxa de crescimento para determinar a eficiência computacional para grandes entradas).
- ▶ Um algoritmo é mais eficiente que outro se o seu tempo no pior caso tem uma ordem de crescimento menor.
- Um algoritmo com maior ordem de crescimento pode demorar menos para entradas pequenas que um algoritmo com uma menor ordem de crescimento (devido às constantes e termos de mais baixa ordem despresados), porém, para entradas suficientemente grandes, um algoritmo quadrático será mais rápido no pior caso que um algoritmo cúbico por exemplo.

Tarefa

Leitura

Leia o Capítulo 2 do Cormen (20 páginas). A primeira parte detalha a análise do *insertion sort*, a segunda parte apresenta a técnica de divisão e conquista e análise do *mergesort*

Exercício 1

Qual seria o invariante de laço para o problema do fecho convexo?

Exercício 2

Faça o exercício 2.2-2 do Cormen (demonstre a correção do algoritmo *selection sort* e faça a análise de complexidade).