ОГЛАВЛЕНИЕ

	Стр.
ВВЕДЕНИЕ	6
ГЛАВА 1 АНАЛИЗ ПОЛЬЗОВАТЕЛЬСКИХ ПОТРЕБНОСТЕЙ 1.1 Название подраздела 1	7 7 7
ГЛАВА 2 АЛГОРИТМ ГЕНЕРАЦИИ МАРШРУТОВ 2.1 Название подраздела 3	8
ГЛАВА 3 ОБЗОР ИСПОЛЬЗУЕМЫХ ТЕХНОЛОГИЙ 3.1 Название подраздела 1	9 9 9
ГЛАВА 4 АРХИТЕКТУРА ПРОГРАММНОГО КОМПЛЕКСА 4.1 Название подраздела 1	10 10 10 10
ГЛАВА 5 ОБЗОР КЛИЕНТСКОЙ ЧАСТИ 5.1 Название подраздела 1	13 13 13
ГЛАВА 6 АНАЛИЗ ОТКАЗОУСТОЙЧИВОСТИ 6.1 Название подраздела 1	14 14 14
ГЛАВА 7 ОБЗОР DEVOPS ПРОЦЕССОВ 7.1 Название подраздела 1	15 15 15
ГЛАВА 8 НАГРУЗОЧНОЕ ТЕСТИРОВАНИЕ 8.1 Название подраздела 1	16 16 16
ЗАКЛЮЧЕНИЕ 8.3 Название подраздела 1 8.4 Название подраздела 2 СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	17 17 17 18

введение

Текст текст текст текст текст

ГЛАВА 1

АНАЛИЗ ПОЛЬЗОВАТЕЛЬСКИХ ПОТРЕБНОСТЕЙ

Текст текст текст текст

1.1 Название подраздела 1

Рисунок 1.1 — Пример вставки изображения

A1	В1	C1
A2	В2	C2

Таблица 1.1 — Пример вставки таблицы

ГЛАВА 2

АЛГОРИТМ ГЕНЕРАЦИИ МАРШРУТОВ

```
int main() {
    return 0;
}
```

Listing $2.1-\Pi$ ример вставки кода

ГЛАВА 3 ОБЗОР ИСПОЛЬЗУЕМЫХ ТЕХНОЛОГИЙ

Текст текст текст текст

3.1 Название подраздела 1

Рисунок 3.1 — Пример вставки изображения

A1	B1	C1
A2	В2	C2

Таблица 3.1 — Пример вставки таблицы

ГЛАВА 4

АРХИТЕКТУРА ПРОГРАММНОГО КОМПЛЕКСА

Текст текст текст текст текст

4.1 Название подраздела 1

Рисунок 4.1- Пример вставки изображения

4.2 Название подраздела 2

A1	В1	C1
A2	В2	C2

Таблица 4.1 — Пример вставки таблицы

4.3 Теория графов

Теория графов представляет собой обширную область математики, которая изучает структуры, состоящие из вершин и рёбер, и их свойства. В контексте разработки рекомендательных систем для маршрутизации,

где необходимо учитывать фиксированную дистанцию, а также пользовательские фильтры, понимание основных концепций теории графов имеет важное значение. Данный раздел представляет обзор ключевых аспектов теории графов и их применение в контексте дорожных сетей.

2.1 Пути и циклы в графах Пути и циклы - это основные элементы, используемые для описания путей перемещения в графах.

Пути: Путь в графе представляет собой последовательность вершин, в которой каждая вершина соединена ребром с последующей вершиной. Путь может быть простым или составным, в зависимости от наличия повторяющихся вершин. Циклы: Цикл в графе - это путь, в котором начальная и конечная вершины совпадают, и ни одна вершина не повторяется, кроме начальной и конечной. Они могут быть простыми или составными, а также могут иметь различные свойства, влияющие на структуру графа и возможные маршруты. 2.2 Изоморфизм и деревья в графах Изоморфизм и деревья - это концепции, которые помогают понять структуру и связи между вершинами в графах.

Изоморфизм графов: Графы называются изоморфными, если существует биективное отображение между их множествами вершин, сохраняющее отношение смежности. Понимание изоморфизма позволяет выявлять схожие или одинаковые паттерны в различных сетевых структурах. Деревья: Дерево - это связный ациклический граф. Они играют важную роль в моделировании иерархических структур и имеют широкое применение в алгоритмах маршрутизации и анализе данных. 2.3 Клики и полное упорядочивание графов Клики и полное упорядочивание графов представляют собой дополнительные аспекты структуры графов.

Клики: Клика - это подграф, в котором каждая вершина соединена с каждой другой вершиной. Клики играют важную роль в анализе социальных сетей и обнаружении сообществ. Полное упорядочивание: Полное упорядочивание - это такое отношение порядка на множестве вершин, при котором для любых двух вершин одна из них достижима из другой. Понимание полного упорядочивания важно для анализа структуры графа и применимости различных алгоритмов. 2.4 Алгоритмы упорядочивания и триангуляции графов Алгоритмы упорядочивания и триангуляции позво-

ляют анализировать и оптимизировать графы для эффективной работы рекомендательных систем.

Алгоритмы упорядочивания: Существует множество алгоритмов для упорядочивания графов, таких как алгоритм Тарьяна и алгоритм Хопкрофта-Тарьяна, которые находят применение в различных областях, включая географическую информационную систему (ГИС) и компьютерную графику. Триангуляция графов: Триангуляция позволяет разбить граф на треугольники, что упрощает анализ и обработку данных. Она широко используется в графических системах и вычислительной геометрии.

ГЛАВА 5 ОБЗОР КЛИЕНТСКОЙ ЧАСТИ

Текст текст текст текст

5.1 Название подраздела 1

Рисунок 5.1 - Пример вставки изображения

A1	В1	C1
A2	В2	C2

Таблица 5.1 — Пример вставки таблицы

ГЛАВА 6 АНАЛИЗ ОТКАЗОУСТОЙЧИВОСТИ

Текст текст текст текст

6.1 Название подраздела 1

Рисунок 6.1 — Пример вставки изображения

A1	B1	C1
A2	В2	C2

Таблица 6.1 — Пример вставки таблицы

ГЛАВА 7 ОБЗОР DEVOPS ПРОЦЕССОВ

Текст текст текст текст текст

7.1 Название подраздела 1

Рисунок 7.1 — Пример вставки изображения

A	1	B1	C1
A	2	В2	C2

Таблица 7.1 — Пример вставки таблицы

ГЛАВА 8 НАГРУЗОЧНОЕ ТЕСТИРОВАНИЕ

Текст текст текст текст

8.1 Название подраздела 1

Рисунок 8.1 — Пример вставки изображения

A1	B1	C1
A2	В2	C2

Таблица 8.1 — Пример вставки таблицы

ЗАКЛЮЧЕНИЕ

Текст текст текст текст текст

8.3 Название подраздела 1

Рисунок $8.2-\Pi$ ример вставки изображения

A1	B1	C1
A2	B2	C2

Таблица 8.2 — Пример вставки таблицы

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Andrew Ng, Machine Learning from Stanford University. https://www.coursera.org/learn/machine-learning
- Воронцов K.B., Введение обучение 2. В машинное OT& Yandex School Analysis. НИУ ВШЭ of Data https://www.coursera.org/learn/vvedenie-mashinnoe-obuchenie
- 3. Samuel, Arthur L. Some Studies in Machine Learning Using the Game of Checkers // IBM Journal. 1959. №3. http://www.cs.virginia.edu/evans/greatworks/samuel1959.pdf

Список иллюстраций

		Стр.
Рисунок 1.1	Пример вставки изображения	7
Рисунок 3.1	Пример вставки изображения	9
Рисунок 4.1	Пример вставки изображения	10
Рисунок 5.1	Пример вставки изображения	13
Рисунок 6.1	Пример вставки изображения	14
Рисунок 7.1	Пример вставки изображения	15
Рисунок 8.1	Пример вставки изображения	16
Рисунок 8.2	Пример вставки изображения	17

Список таблиц

		Стр.
Таблица 1.1	Пример вставки таблицы	7
Таблица 3.1	Пример вставки таблицы	9
Таблица 4.1	Пример вставки таблицы	10
Таблица 5.1	Пример вставки таблицы	13
Таблица 6.1	Пример вставки таблицы	14
Таблица 7.1	Пример вставки таблицы	15
	Пример вставки таблицыПример вставки таблицы	
Таолица 8.2	Пример вставки таблицы	-17

\sim			
Список	прог.	раммных	листингов

2.1 Пример вставки кода	2.1	Пример в	ставки !	кода .										8
-------------------------	-----	----------	----------	--------	--	--	--	--	--	--	--	--	--	---