Оценка себестоимости судостроительной продукции на основе регуляризирующего байесовского подхода

Ю. В. Ефимов, С. В. Прокопчина Финансовый университет при Правительстве Российской Федерации

Аннотация. В статье рассмотрены особенности проектирования и изготовления современных судов и боевых кораблей. Наличие широкого спектра технологий обработки и получения информации в неопределенности, основанных на методах искусственного байесовского интеллекта. мягких вычислений. измерительного подходов дают возможность обоснованного выбора из них тех, которые будут максимально эффективны в проектировании и производстве сложных промышленных разработанности методологической инструментальной баз, а также по числу решенных прикладных задач в сферах энергетики и промышленного производства одним из лидеров является методология регуляризирующего байесовского подхода. На основе этого производится оценка ориентировочной полхола себестоимости судостроительной продукции в условиях неопределенности и нестабильности производства и внешней среды. Методологические аспекты и пример их применения для оценки себестоимости приведены в данной статье.

строительства Современные условия обусловливают значительную степень неопределенности в формировании цен И оценке себестоимости трудоемкости этих изделий. Дальнейшее отечественного судостроительного производства(судостроительных заводов, так и судостроительных возможно только при углублении технологической специализации и внедрении на этой основе новых прогрессивных технологий, что, в свою очередь, вносит дополнительную нестабильность и c инновационными неопределенность в оценке указанных выше показателей.. Поэтому в настоящее время наиболее актуальными для отечественного судостроения является разработка методов и средств оценки показателей подготовки и проведения строительства судов и кораблей в условиях неопределенности.

Уникальность и специализация современных кораблей, а также влияние всех вышеуказанных факторов приводят к необходимости применять и разрабатывать специальные методы и методики для оценки их себестоимости. трудоемкости и цен в условиях неопределенности.

Одним из главных стало направление разработки и использования интеллектуальных технологий вычислений и измерений при проектировании и изготовлении сложных техногенных объектов в условиях неопределенности и

рисков. Достижения данного направление рассмотрены в работах отечественных и зарубежных ученых.

разработанности методологической инструментальной баз, а также по числу решенных прикладных задач в сферах энергетики и промышленного производства одним из лидеров является методология регуляризирующего байесовского подхода (РБП). На ней основаны классы байесовских интеллектуальных технологий для решения задач измерения, мониторинга, аудита управления сложными техногенными комплексами в условиях значительной неопределенности [1]. На основании РБП системные модели можно представить как модели с динамическими ограничениями (МДО).

Согласно классификации факторов неопределенности, приведенных в главе 1 настоящей работы, представим их системную концептуальную модель в следующем виде:

$$G^{(\phi_B)} = G^{(BHEII.C)} * G^{(BHYTP.}$$

где $G^{(\phi B)}$ - факторы воздействия на судостро)ительное предприятие в условиях неопределенности $G^{(BHeul.c)}$ — факторы внешней среды ; $G^{(BHyTp.c)}$ - факторы внутренней среды.

Система себестоимости судостроительной продукции в обобщенных показателях может быть представлена в виде совокупности следующих взаимосвязанных систем:

$$G^{(cm)} = G^{(cm)} * G^{(osn)} * G^{(onp)} * G^{(oxp)} * G^{(kp)}$$

где $G^{(cm)}$ – сырье и основные материалы, в том числе топливо и энергия на технологические нужды; $G^{(03\Pi)}$ – основная заработная плата производственных рабочих; расходы; $G^{(oxp)}$ - общепроизводственные общехозяйственные расходы; - коммерческие расходы ,* =- символ байесовской свертки. Системная концептуальная модель В соответствии вышеприведенными статьями) себестоимости судостроительной продукции может быть записана в виде:

$$G^{(\Pi 3)} = G^{(CM)} * G^{(\Pi KU)} * G^{(K\Pi p)} * G^{(\Pi C\Pi)} * G^{(O3\Pi)} * G^{(Д3\Pi)} * G^{(OCC)}.$$

где: $G^{(\Pi S)}$ — простые(экономически однородные) издержки; $G^{(CM)}$ — сырье и материалы (за вычетом стоимости возвратных отходов); $G^{(\Pi KH)}$ — покупные комплектующие изделия, полуфабрикаты, работы и услуги производственного; $G^{(K\Pi D)}$ — контрагентские поставки и

работы; $G^{(ncn)}$ — полуфабрикаты собственного производства; $G^{(osn)}$ — основная заработная плата производственных рабочих; $G^{(occ)}$ — отчисления на социальное страхование с заработной платы производственных рабочих.

Системная концептуальная МДО имеет вид:

$$G^{(\text{внеш.c})} = G^{(3\varphi)} *G^{(\Pi\Pi\varphi)} *G^{(CK\varphi)} *G^{(HT\varphi)}$$

где $G^{(9\varphi)}$ – экономические факторы.

$$G_{(a\phi)} = \frac{{}_*G_{(uau)}{}_*G_{(ue)}{}_*G_{(ae)}{}_*G_{(ue)}{}$$

где $G^{(\text{трэс})}$ – темпы роста экономики страны; $G^{(\text{трэо})}$ – темпы роста отдельных отраслей; $G^{(\text{лрр})}$ – динамика развития рынка и его насыщенность; $G^{(\text{унб})}$ – уровень инфляции и безработицы; $G^{(\text{пс})}$ – процентные ставки за кредит; $G^{(\text{ннп})}$ – инвестиционная и налоговая политика; $G^{(\text{пзп})}$ – политика в

области заработной платы и цен; $G^{(\text{нб})}$ — налоговая база; $G^{(\text{эс})}$ — экономическая ситуация в регионах; $G^{(\text{втб})}$ — внешнеторговые барьеры; $G^{(\text{тп})}$ — таможенная политика; $G^{(\text{сбс})}$ — состояние банковской сферы; $G^{(\text{ппф})}$ — политикоправовые факторы.

Все эти модели используются при определении себестоимости и трудоемкости проектирования и изготовления судов и кораблей в условиях нестабильности и неопределенности.

Список литературы

[1] Прокопчина С.В., Федичкин А.И. Применение байесовских интеллектуальных технологий (БИТ) для оценки интегральных показателей // СПб. Сборник докладов Международной конференции по мягким вычислениям и измерениям SCM-2006, 27-29 июня 2006, c.20-22.