SYLLABUS CÁLCULO NUMÉRICO

Unidad académica responsable: Departamento de Ingeniería Matemática Carrera a la que se imparte: Ingeniería Civil (varias especialidades)

Módulo: No aplica.

I. Identificación

Nombre: Cálculo Numérico				
Código: 521230	Créditos: 4			
Prerequisitos: 503201; 521218; 521227				
Modalidad: Presencial	Calidad: Obligatoria	Duración: Semestral		
Trabajo Académico:				
Horas teóricas: 3	Horas prácticas: 0	Horas de laboratorio: 2		
Docentes responsables:	Leonardo Figueroa C. (coordinador)			
	Franco Milanese P. (coordinador laboratorios)			
	Mauricio Vega H.			
Duración:	15 semanas			

II. Descripción

Asignatura teórico-práctica que contiene los fundamentos de los algoritmos numéricos para resolver problemas de la Matemática Aplicada por medio del computador.

Esta asignatura contribuye a la formación de las siguientes competencias del perfil de egreso:

 \blacksquare Conocimientos sobre el área de estudios y la profesión.

III. RESULTADOS DE APRENDIZAJE ESPERADOS

Al completar en forma exitosa esta asignatura, los estudiantes serán capaces de:

- 1. Deducir algoritmos que se detallan en los contenidos.
- 2. Estimar cotas de errores de los resultados obtenidos.
- 3. Usar técnicas para demostrar propiedades sencillas relacionadas con los algoritmos.
- 4. Resolver modelos matemáticos sencillos por medio de algunos métodos computacionales.

IV. Contenidos

Los contenidos son los mismos pero en un orden distinto al de otros semestres.

- 1. Errores:
 - Errores absolutos.
 - Errores relativos.
 - Pérdida de cifras significativas.
- 2. Ecuaciones no lineales:
 - Métodos de convergencia garantizada: Bisección. Convergencia lineal.

- Métodos de convergencia veloz: Newton-Raphson. Condiciones de convergencia. Criterio de detención.
- Método de la secante.
- Sistemas de ecuaciones no lineales: Método de Newton.
- 3. Interpolación:
 - Interpolación polinomial, fórmula de Lagrange.
 - Interpolación por polinomios *splines*. Estimación del error.
- 4. Aproximación:
 - Cuadrados mínimos.
 - Las ecuaciones normales y factorización QR.
- 5. Integración Numérica:
 - Reglas del trapecio y de Simpson.
 - El método de Romberg.
 - Fórmulas de tipo Gauss.
 - Estimación de errores. Integración multidimensional.
- 6. Ecuaciones diferenciales ordinarias:
 - Problemas de valores iniciales: Existencia y unicidad de solución. Sistemas de ecuaciones diferenciales.
 - Ecuaciones de orden superior.
 - Método de Euler. Error local de truncamiento. Error global.
 - Métodos de paso simple: Métodos de tipo Runge-Kutta: Euler-Cauchy, Euler mejorado, Estimación a posteriori del error. Control del paso de integración. Métodos Runge-Kutta-Fehlberg.
 - Métodos de paso múltiple: Métodos explícitos: Adams-Bashforth. Métodos implícitos: Adams-Moulton. Métodos predictor-corrector.
 - Ecuaciones stiff: Estabilidad de las ecuaciones y de los métodos numéricos.
 - Problemas de valores de contorno: Existencia y unicidad de solución. Método de shooting. Método de diferencias finitas. Método de elementos finitos.
- 7. Sistemas de Ecuaciones Lineales:
 - Algoritmos: eliminación de Gauss, factorización LU, Choleski, pivoteo.
 - Condicionamiento de matrices.
 - Normas de vectores y matrices. Cotas de errores.
 - Métodos Iterativos: El método iterativo general.
 - Algoritmos de Jacobi y de Gauss-Seidel.
 - Métodos de descenso.

V. Metodología

El curso se desarrolla con tres horas de clases teóricas semanales. Además de las clases teóricas el curso contempla un laboratorio computacional semanal, de dos horas, y al cual **la asistencia es obligatoria**. Los alumnos se deberán inscribir en los laboratorios a partir del mediodía del lunes 19 de marzo y hasta el mediodía del miércoles 21 de marzo mediante Internet, en la dirección electrónica:

La elección de laboratorios será estrictamente por orden de inscripción. Esta inscripción de laboratorio es independiente de la inscripción formal de la asignatura.

VI. EVALUACIÓN

- a. La evaluación en la asignatura se hará por medio de dos (2) certámenes y dos (2) tests de laboratorio.
- b. Los dos (2) certámenes consistirán en pruebas escritas. Cada una de estas evaluaciones tendrá una ponderación en la nota final de un 40 %. Los laboratorios serán evaluados por dos (2) tests de 45 minutos frente al computador; cada uno con una ponderación en la nota final de un 10 %.
- c. Al final del semestre habrá una (1) evaluación de recuperación global y que remplazará una evaluación parcial de manera que la nota final resultante sea la que favorezca más al alumno (modalidad b del artículo 17.º del Reglamento Interno de Docencia de Pregrado de la Facultad de Ciencias Físicas y Matemáticas).
- d. En las evaluaciones, así como en los tests, **se prohíbe estrictamente el uso de calculadoras y teléfonos celulares**.
- e. La no asistencia a un certamen significará obtener nota final NCR. No obstante, quien justifique su inasistencia a un certamen (ver letra g siguiente) se deberá presentar a una evaluación especial para regularizar su situación, a la cual se le citará oportunamente.
- f. La no asistencia a un test significará obtener la calificación NCR. Quien justifique su inasistencia por los canales oficiales (ver letra g siguiente), se podrá presentar a un test de recuperación. No existe un test de recuperación para mejorar nota.
- g. Quien deba justificar una inasistencia a una evaluación **deberá hacerlo dentro de los plazos** y de acuerdo a los procedimientos dispuestos en el Artículo 18.º del Reglamento Interno de Docencia de Pregrado de la Facultad de Ciencias Físicas y Matemáticas.
- h. La asistencia de un alumno a cualquiera de las evaluaciones consideradas en la asignatura no permite justificaciones posteriores, sean éstas de salud o de otra índole.

VII. BIBLIOGRAFÍA Y MATERIAL DE APOYO

Textos básicos u obligatorios.

- 1. Kendall E. Atkinson, An introduction to numerical analysis, Wiley, New York, 1978.
- 2. S. Grossman, Análisis numérico y visualización gráfica con MATLAB, Prentice—Hall Hispanoamericana, México, 1997.

Textos complementarios.

- 1. H. Alder & E. Figueroa, *Introducción al Análisis Numérico*, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, 1995.
- 2. K. Atkinson, Elementary Numerical Analysis, John Wiley and Sons, 1993.
- 3. R. L. Burden & J. D. Faires, Análisis Numérico, Thomson, 1998.
- S. C. Chapra & R. P. Canale, Métodos Numéricos para Ingenieros, McGraw-Hill, 1999.
- 5. G. Hämmerlin & K.-H. Hoffmann, *Numerical Mathematics*, Springer-Verlag, 1991.
- 6. D. R. Kincaid & W. Cheney, Análisis Numérico: las Matemáticas del Cálculo Científico, Addison-Wesley Iberoamericana, 1994.

- 7. A. QUARTERONI & F. SALERI, Scientific Computing with MATLAB, Springer-Verlag, 2003.
- 8. H. R. Shwartz, Numerical Analysis. A Comprehensive Introduction, John Wiley and Sons, 1989.
- 9. J. Stoer & R. Bulirsch, Introduction to Numerical Analysis, Springer-Verlag, 1993.
- 10. L.N. Trefethen & D. Bau, Numerical linear algebra, SIAM, 1997.

VIII. PLANIFICACIÓN

Planificación de clases.

De nuevo notamos que el orden de los contenidos es distinto al de otros semestres.

Fecha	Contenido		
Lun 12 Mar	Presentación; Errores		
$\mathrm{Mi\acute{e}}\ 14\ \mathrm{Mar}$	Errores (cont.)		
Lun 19 Mar	Errores (cont.); Ecuaciones no lineales		
$\mathrm{Mi\acute{e}}\ 21\ \mathrm{Mar}$	Ecuaciones no lineales (cont.)		
Lun 26 Mar	Ecuaciones no lineales (cont.); Interpolación		
Mié 28 Mar	Interpolación (cont.)		
Lun 02 Abr	Interpolación (cont.); Cuadrados mínimos		
Mié 04 Abr	Cuadrados mínimos (cont.)		
Lun 09 Abr	Cuadrados mínimos (cont.); Integración I; Integración II		
Mié 11 Abr	Integración II (cont.)		
Lun 16 Abr	Integración II; EDO I		
Mié 18 Abr	EDO I (cont.)		
Lun 23 Abr	EDO I (cont.)		
Mié 25 Abr	EDO I (cont.); EDO II		
Lun 30 Abr	Feriado universitario		
Mié 02 May	EDO II (cont.)		
Lun 07 May	EDO II (cont.)		
Mié 09 May	EDO II (cont.); EDO III		
Lun 14 May	EDO III (cont.)		
Mié 16 May	EDO III (cont.)		
Mié 16 May	Evaluación 1		
Lun 21 May	Feriado		
Mié 23 May	EDO III (cont.)		
Lun 28 May	EDO III (cont.); Sistemas de ecuaciones lineales I; Sistemas de ecuaciones lineales II		
Mié 30 May	Sistemas de ecuaciones lineales II (cont.)		
Lun 04 Jun	Sistemas de ecuaciones lineales II (cont.); Sistemas de ecuaciones		
	lineales III		
Mié 06 Jun	Sistemas de ecuaciones lineales III (cont.); Sistemas de ecuaciones		
	lineales IV		
Lun 11 Jun	Sistemas de ecuaciones lineales IV (cont.); Sistemas de ecuaciones		
	lineales V		

\mathbf{Fecha}	Contenido	
Mié 13 Jun	Sistemas de ecuaciones lineales V (cont.); Sistemas de ecuaciones	
	lineales VI	
Lun 18 Jun	Sistemas de ecuaciones lineales VI (cont.)	
Mié 20 Jun	Comodín	
Vie 06 Jul	Evaluación 2	
$\mathrm{Mi\acute{e}}\ 25\ \mathrm{Jul}$	Evaluación de recuperación	

Planificación de laboratorios.

Semana	Fecha Lab.	Actividad de Laboratorio
1	14 – $15/\mathrm{mar}$	Sin actividad de laboratorio
2	21– $22/mar$	Inscripción laboratorios vía Internet (19–21/mar)
3	$28-29/\mathrm{mar}$	Lab. 01: Introducción a Matlab I
4	04– $05/abr$	Lab. 02: Introducción a Matlab II
5	$11-12/\mathrm{abr}$	Lab. 03: Ecuaciones no lineales
6	$18-19/\mathrm{abr}$	Lab. 04: Interpolación
7	25– $26/abr$	Lab. 05: Cuadrados mínimos
8	$02-03/{ m may}$	Laboratorio Complementario
9	09-10/may	Test 1
10	16-17/may	Comodín
11	23– $24/may$	Lab. 06: Integración
12	30-31/may	Lab. 07: EDO (problemas de valores iniciales)
13	$06-07/{ m jun}$	Lab. 08: EDO (problemas de valores de contorno)
14	13– 14 /jun	Lab. 09: Sistemas de ecuaciones lineales
15	20– 21 /jun	Laboratorio Complementario
16	27– 28 /jun	Test 2
17	04– 05 /jul	Muestra tests 1 y 2