Knight: Chapter 17

Work, Heat, & the 1st Law of Thermodynamics

(The Specific Heat of Gases)

Last time...

□ *Heat* needed to change temp by ΔT (*only* when W=0!) is..

$$Q = Mc\Delta T$$
 or $Q = nC\Delta T$ Specific heat Molar specific heat

□ *Heat* needed for a phase change...

$$Q = \pm M L_{f,v}$$

□ Calorimetry...

$$Q_{net} = 0$$

Consider the two processes A & B...

- Both have the *same* ΔT , therefore the *same* ΔE_{th} , but they require *different* amounts of Q.
 - The reason is that work is done in process B but not in process A.
- □ The total change in thermal energy for any process, due to work and heat, is:

 $\Delta E_{th} = nC_V \Delta T$ (any ideal-gas process)

Ofth = nCVOT = W+Q

Define 2 different versions of the specific heat of gases...

- one for constant-*volume* processes.
- one for constant-*pressure* processes.
- The quantity of heat needed to change the temperature of n moles of gas by ΔT is:

$$Q = nC_V \Delta T$$
 (temp change at constant volume)
 $Q = nC_P \Delta T$ (temp change at constant pressure)

□ where C_V is the molar specific heat at constant volume & C_P is the molar specific heat at constant pressure.

```
Constant value : W=0 : Q=nCV\Delta T (no area under A curve)
Constant pressure: W\neq 0 : Q=nCV\Delta T
```

What if neither the pressure nor the volume is constant?

What if neither the pressure nor the volume is constant?

- \square no direct way to relate Q to ΔT !
- Use the 1st law of thermodynamics:

$$Q = \Delta E_{th} - W$$

Extra credit problem

i.e. 17.8:

Calorimetry with a gas and a solid

The interior volume of a 200 g hollow aluminum box is 800 cm³. The box contains nitrogen gas at STP. A 20 cm³ block of copper at a temperature of 300° C is placed inside the box, then the box is sealed.

DEM = NGOT = Q+40

What is the final temperature?

Consider Table 17.4...

TABLE 17.4 Molar specific heats of gases $(J/mol\ K)$

Gas	$C_{ m P}$	$C_{ m V}$	$C_{\rm P}-C_{ m V}$
Monat	omic Gases	S	
He	20.8	12.5	8.3
Ne	20.8	12.5	8.3
Ar	20.8	12.5	8.3
Diaton	nic Gases		
H_2	28.7	20.4	8.3
N_2	29.1	20.8	8.3
O_2	29.2	20.9	8.3

TABLE 17.4 Molar specific heats of gases (J/mol K)

Consider Table 17.4...

,				
Gas	$C_{ m P}$	$C_{ m V}$	$C_{ m P}-C_{ m V}$	
Monat	omic Gases	S		
He	20.8	12.5	8.3	
Ne	20.8	12.5	8.3	
Ar	20.8	12.5	8.3	
Diaton	nic Gases			
H_2	28.7	20.4	8.3	
N_2	29.1	20.8	8.3	
O_2	29.2	20.9	8.3	

Notice:

- □ *Molar specific heats* of *monatomic* gases are *all alike*.
- □ *Molar specific heats* of *diatomic* gases are *very nearly alike*.
- □ The *difference* is the *same* in every case &...

$$C_p - C_V = R$$

Coincidences?

The change in thermal energy of the gas is the *same* for any two processes that have the same ΔT .

$$\Delta E_{th} = nC_V \Delta T$$

Consider Figure 17.20...

Q: Which process requires *more* heat to produce the same ΔT ?

Path A

$$W=0$$
 $C = C_0 = C_0 = C_0$
 $C = C_0 = C_0 = C_0$
 $C = C_0 = C_0 = C_0 = C_0$
 $C = C_0 = C_0 = C_0$

The change in thermal energy of the gas is the *same* for any two processes that have the same ΔT .

$$\Delta E_{th} = nC_V \Delta T$$

Consider Figure 17.20...

$$C_P = C_V + R$$

The *heat* required to bring about a temperature change depends on what the process is.

Quiz Question 1

1 mol of air has an initial temperature of 20°C. 200 J of heat energy are transferred to the air in an isochoric process, then 200 J are removed in an isobaric process. Afterward, the air temperature is

CP= CVTR

Q= NCCPCTF

Q= NCCPC

- 1. $< 20^{\circ}$ C.
- $= 20^{\circ} \text{C}.$
- $\sim 20^{\circ} \text{C}.$
 - 4. Not enough information is given to answer the question.

Heat depends on the path..

Consider the two ideal-gas processes...

- There's more area under the process B curve, so $|W_B| > |W_A|$.
- W < o as the gas expands.
- $\Delta E_{\rm th}$ is the *same* for both processes, so $W_{\rm A}$ + $Q_{\rm A}$ = $W_{\rm B}$ + $Q_{\rm B}$.
- Only true if $Q_{\rm B} > Q_{\rm A}$.

Heat *added* or *removed* during an ideal-gas process depends on the path followed through the *pV* diagram!

2 ways one can have an adiabatic process..

Gas cylinder can be...

- 1. completely surrounded by thermal insulation.
- 2. expanded or compressed very rapidly where there is no time for heat to be transferred between the gas and the environment.

2 ways one can have an adiabatic process..

Gas cylinder can be...

- 1. completely surrounded by thermal insulation.
- 2. expanded or compressed very rapidly where there is no time for heat to be transferred between the gas and the environment.

Notice:

- □ *Adiabatic expansions* or *compressions* are...
 - *fast enough* to be *adiabatic*, but *slow enough* to still be considered *quasi-static*.
- □ For an adiabatic process, Q = o so $\Delta E_{th} = W = nC_V\Delta T$
 - Adiabatic compression (expansion) raises (lowers) the temp of a gas.

An *adiabatic process* is one for which...

An adiabatic process is one for which...

$$pV^{\gamma} = \text{constant}$$

where

$$\gamma = \frac{C_P}{C_V} = 1.67$$
 monatomic gas
$$= 1.40 \quad \text{diatomic gas}$$

Adiabats are steeper than hyperbolic isotherms, so the temp

- □ falls during an adiabatic expansion
- □ rises during an adiabatic compression.