

190F Foundations of Data Science

Lecture 36

Case Study: Education

Announcements

Tutoring in Computer Science

Small-Group Tutoring at Scale

Fall 2017 small-group mentoring/tutoring (CS Mentors & course tutors)

Course	CS 61A	Data 8	CS 61B	CS 70	EE 16A
Topic	Program structures	Foundations of data science	Data structures	Discrete math & probability	Linear algebra & circuits
Mentors	84	31	51	25	9
Sections	140	60	52	27	9
Students	587	261	160	156	45

Mentoring Schedule in CS 61A

September 14, 2017 — CS 61A Midterm 1
September 15, 2017 — Sign-ups for adjunct sections open
September 17, 2017 — CS 61A Midterm 1 scores returned
September 18, 2017 — Weekly adjunct sections start
October 19, 2017 — CS 61A Midterm 2

(Demo)

What's Next?

Data Science

Why Data Science

- Unprecedented access to data means that we can make new discoveries and more informed decisions.
- Computation is a powerful ally in data processing, visualization, prediction, and statistical inference.
- People can agree on evidence and measurement.

How to Analyze Data

Begin with a question from some domain, reasonable assumptions about the data, & a choice of methods.

Visualize, then quantify!

Perhaps the most important part: Interpretation of the results in the language of the domain, without statistical jargon.

How Not to Analyze Data

Begin with a question from some domain, reasonable assumptions about the data, & a choice of methods.

Visualize, then quantify!

Perhaps the most important part: Interpretation of the results in the language of the domain, without statistical jargon.

How to Analyze Data in 2018

Begin with a question from some domain, reasonable assumptions about the data, & a choice of methods.

Visualize, then quantify! (Both using computation.)

Perhaps the most important part: Interpretation of the results in the language of the domain, without statistical jargon.