

Cloud Computing

Session 9-10 Serverless Computing & Cloud Scaling

Agenda

- Recap SaaS
- Serverless Computing
- Demonstration of AWS Lambda for Serverless computing
- Cloud Scaling

Software as a Service (SaaS)

- Powerful way of consuming a software application as a service!
 - Do not develop, just use it
- Subscription-based
- All cloud features:
 - on-demand, hosted remotely, scalable.
- E.g: Project management
 Spreadsheets, docs, Netflix,
 Gmail, Office365

Pros & Cons of SaaS

Pros Of SaaS

- Cost Reduction Lower the license costs
- Scalability
- Integration
- Upgrades
- Ease of Use Best practices

Cons of SaaS

- Security
- Limited Customization & Control

Serverless Computing

- Serverless computing is a cloud-computing model
- Cloud provider
 dynamically manages the
 allocation of machine
 resources.
- It allows developers to build and deploy applications without worrying about managing servers or infrastructure.

Image Courtesy: cloudguru.com

Key Features of Serverless Computing

No Server Management:

- Developers don't need to worry about provisioning, scaling, or maintaining servers.
- Everything is handled by the cloud provider.

Automatic Scaling:

- Serverless platforms automatically scale applications up and down based on demand.
- Ensuring optimal performance and resource utilization.

Event-Driven Execution:

 Serverless functions are often triggered by events, such as HTTP requests, database changes, or message queue events. This allows for highly responsive and efficient applications.

Pay-as-You-Go Pricing:

- You only pay for the compute resources you use.
- Billing is based on the number of requests and the execution time of your code.

Key Features of Serverless Computing

Reduced Operational Overhead:

 No need to manage and maintain server infrastructure, allowing developers to focus on writing code.

Cost Efficiency:

 You only pay for the compute time your code actually uses, potentially leading to significant cost savings.

Faster Development Cycles:

 Simplifies deployment and infrastructure management, leading to quicker iteration and delivery of features.

Cons of Serverless Computing

Cold Starts

 Initial invocation of serverless functions can be slow due to the time it takes to start up, which may impact performance for latency-sensitive applications.

Vendor Lock-In

 Relying on specific serverless platforms can make it difficult to switch providers or migrate applications.

Limited Execution Time

 Serverless functions often have execution time limits, which might not be suitable for long-running processes.

Cons of Serverless Computing

Complexity in Debugging

 Debugging serverless applications can be more challenging compared to traditional applications due to the distributed and event-driven nature.

Security Concerns

 The multi-tenant nature of serverless platforms can raise security issues, requiring robust measures to ensure data integrity and security.

Popular Serverless Platforms

- AWS Lambda
- Google Cloud Functions
- Azure Functions
- IBM Cloud Functions

AWS Lambda

- Abstraction Layer
 - Data Centers
 - Hardware
 - Assembly and High level Code
 - Operating Systems
 - Application Layer / APIs
- AWS Lambda
 - Compute service
 - Allows you to upload your code
 - Create a Lambda Function
 - Provisions and manages the servers that are used to run the code
 - Users need not worry about OS, scaling, patching.

Using Lambda

- Event Driven compute service
 - Changes in DB, S3 Bucket
- User request driven compute service
 - AWS API Calls using SDKs, API Gateway
- Languages
 - Node.js
 - Python
 - Go
 - Java

- Pricing
 - No of requests served
 - Duration
 - Time from start of execution of code till it returns or terminates

Why Lambda

- No servers
- Continuous scaling
 - Automatic
 - Lambda functions are independent,
 one event = one lambda function
- Economic

AWS Serverless Services

- API Gateway
- Lambda
- S3
- Dynamo DB

EC2 is not serverless

Using Lambda

- API Gateway faces the user requests
- Invokes a lambda function in the backend
- Lambda function handles the request with specific action
- Returns response back to API Gateway ultimately to the user

Traditional Versus Serverless Architecture

Traditional Architecture

Serverless Architecture

Lambda hands on

Let's do some hands on

All Image Courtesy: cloudguru.com

Scaling

- Every request handled by API Gateway
- Redirects it to a Lambda function
- HTTP Request handled by a separate Lambda function.
 - 1-1 mapping
- Returns response back to API Gateway
 - ultimately to the user

What is Cloud Scaling

Image Credit: Scaling in Cloud Computing: A Comprehensive Guide?

- Increasing or decrease the resources to meet the changing demand.
- Which resources ? Compute, storage, networking
- How? Virtualization

Why Cloud Scaling?

Image Credit: Scaling in Cloud Computing: A Comprehensive Guide?

- Meet consistent performance needs
- E.g: High Throughput and low latency with the spike in the arrived traffic

When to use?

- Expand business
- Seamlessly adapt to changes without causing downtime

Scaling Types

Three Popular Types

- Vertical
- Horizontal
- Diagonal

Vertical Scaling

- Add additional CPU/memory/storage to the existing machine
- E.g: Add more memory for a database running out of memory. DB can handle more data

Horizontal Scaling

- Add additional machines/nodes/servers
- Workload gets distributed across nodes including the new ones

All Image Credit: What is Cloud Scalability: The Ultimate Guide in 2025

Diagonal Scaling

 Combination of vertical and horizontal scaling – Hybrid

Image Credit: What is Cloud Scalability: The Ultimate Guide in 2025

More on Scaling...

Forms & Enablers of Scaling

- Auto Scaling
- Load Balancing
- Containerization
- Caching and Content Delivery Networks (CDNs)
- Cloud Monitoring

Benefits of Scaling

- Improved Performance
- Increased Reliability
- Cost Efficiency
- Easier Deployment

Summary

- SaaS
- Serverless Computing
- Demonstration of AWS Lambda for serverless computing
- What is Cloud Scaling?
- Why Cloud Scaling?
- Scaling Types
- Forms of Scaling
- Benefits of Scaling