Chapitre 18

Phénomènes inductifs

Théorème 18.1 - Loi de Faraday

Les variations de flux magnétique au travers d'un circuit fermé se modélisent électriquement par l'ajout d'un générateur induit dans le circuit, dont la force électromotrice induite e est reliée au flux magnétique Φ au travers du circuit par la relation :

$$e = -\frac{\mathrm{d}\Phi}{\mathrm{d}t}$$

Théorème 18.2 - loi de modération de Lenz

Par leurs conséquences, les phénomènes d'induction tendent à atténuer leurs causes.

Définition 18.3 - force de Laplace

Un tronçon élémentaire de conducteur par couru par un courant i indépendant d'un champ \overrightarrow{B} extérieur le traversant subit une force appelée force de Laplace:

$$\overrightarrow{\mathrm{d}F_{\mathcal{L}}} = i \overrightarrow{\mathrm{d}\ell} \wedge \overrightarrow{B}$$

Le vecteur déplacement élémentaire $\overrightarrow{\mathrm{d}\ell}$ est ici dirigé dans le sens de i. Pour un tronçon d'extrémités M_1 et M_2 :

$$\overrightarrow{F_{\mathcal{L}}} = \int_{M_1}^{M_2} i \, \overrightarrow{\mathrm{d}\ell} \wedge \overrightarrow{B}$$

Définition 18.4 - moment magnétique d'un circuit

Le moment magnétique quantifie la réactivité d'un circuit électrique traversé par un courant i, face à un champ magnétique :

$$\overrightarrow{m} = iS\overrightarrow{n}$$

où \overrightarrow{n} est orienté selon la règle de la main droite suivant \overrightarrow{i} .

Définition 18.5 - couple de Laplace

Quand un circuit mobile est placé dans un champ uniforme $\overrightarrow{B},$ il subit le couple de Laplace :

$$\overrightarrow{\Gamma_{\mathcal{L}}} = \overrightarrow{m} \wedge \overrightarrow{B}$$

où $\overrightarrow{m} = iS\overrightarrow{n}$.