Language

Definition

A *language* over alphabet A is a set $L \subseteq A^*$. Example for $A = \{0, 1\}$:

- ▶ a finite language like $L = \{1, 10, 1001\}$ or the empty language Ø
- infinite but very difficult to describe (there are random languages: there exist more languages as subsets of A^* than there are finite descriptions)
- infinite but having some nice structure, where words follow a certain "pattern" that we can describe precisely and check efficiently ← these are our focus

 $L_2 = \{01,0101,010101,...\}$ = those non-empty words that are of the form 01...01 where the block 01 is repeated some finite positive number of times. Using notation $(01)^n$ for a word consisting of block 01 repeated n times, we can write $L_2 = \{(01)^n \mid n \ge 1\}$.

Languages are sets, so we can take their union (\cup), intersection (\cap), and apply other set operations on languages.

Languages \emptyset and $\{\varepsilon\}$ are very different: \emptyset is a set that contains no words, whereas $\{\varepsilon\}$ contains precisely one word, the word of length zero.

More Language Operations

In addition to set operations, languages support operations defined on their words.

Definition (Language concatenation)

```
Given L_1 \subseteq A^* and L_2 \subseteq A^*, define L_1 \cdot L_2 = \{w_1 \cdot w_2 \mid w_1 \in L_1, w_2 \in L_2\}
```

Example: $\{\varepsilon, a, aa\} \cdot \{b, bb\} = \{b, bb, ab, abb, aab, aabb\}$

In other words, $w \in L_1L_2$ iff w can be split into $w_1 \in L_1$ and $w_2 \in L_2$ s.t. $w = w_1w_2$.

More Language Operations

In addition to set operations, languages support operations defined on their words.

Definition (Language concatenation)

Given
$$L_1 \subseteq A^*$$
 and $L_2 \subseteq A^*$, define $L_1 \cdot L_2 = \{w_1 \cdot w_2 \mid w_1 \in L_1, w_2 \in L_2\}$

Example:
$$\{\varepsilon, a, aa\} \cdot \{b, bb\} = \{b, bb, ab, abb, aab, aabb\}$$

In other words, $w \in L_1L_2$ iff w can be split into $w_1 \in L_1$ and $w_2 \in L_2$ s.t. $w = w_1w_2$.

Definition (Language exponentiation)

Given
$$L \subseteq A^*$$
, define

$$L^0 = \{\varepsilon\}$$

$$L^{n+1} = L \cdot L^n$$

More Language Operations

In addition to set operations, languages support operations defined on their words.

Definition (Language concatenation)

Given
$$L_1 \subseteq A^*$$
 and $L_2 \subseteq A^*$, define $L_1 \cdot L_2 = \{w_1 \cdot w_2 \mid w_1 \in L_1, w_2 \in L_2\}$

Example:
$$\{\varepsilon, a, aa\} \cdot \{b, bb\} = \{b, bb, ab, ab, aab, aabb\}$$

In other words, $w \in L_1L_2$ iff w can be split into $w_1 \in L_1$ and $w_2 \in L_2$ s.t. $w = w_1w_2$.

Definition (Language exponentiation)

Given $L \subseteq A^*$, define

$$L^0 = \{\varepsilon\}$$

$$L^{n+1} = L \cdot L^n$$

Theorem

Given
$$L \subseteq A^*$$
, we have $L^n = \{w_1 \dots w_n \mid w_1, \dots, w_n \in L\}$

If L is an arbitrary language, compute each of the following:

► LØ

If L is an arbitrary language, compute each of the following:

 $\mathsf{L}\varnothing = \{ w_1 w_2 \mid w_1 \in \mathsf{L}, w_2 \in \varnothing \}$

- ► ØL

- $L\varnothing = \{w_1w_2 \mid w_1 \in L, w_2 \in \varnothing\} = \varnothing$
- $\triangleright \varnothing L = \varnothing$
- L{ε}

- $L\varnothing = \{ w_1 w_2 \mid w_1 \in L, w_2 \in \varnothing \} = \varnothing$
- $\triangleright \varnothing L = \varnothing$
- ► $L\{\varepsilon\} = \{w_1 w_2 \mid w_1 \in L, w_2 \in \{\varepsilon\}\}$

- $L\varnothing = \{ w_1 w_2 \mid w_1 \in L, w_2 \in \varnothing \} = \varnothing$
- $\triangleright \varnothing L = \varnothing$
- ► $L\{\varepsilon\} = \{w_1 w_2 \mid w_1 \in L, w_2 \in \{\varepsilon\}\} = \{w_1 w_2 \mid w_1 \in L, w_2 = \varepsilon\}$

- $L\varnothing = \{ w_1 w_2 \mid w_1 \in L, w_2 \in \varnothing \} = \varnothing$
- $\triangleright \varnothing L = \varnothing$
- $L\{\varepsilon\} = \{w_1 w_2 \mid w_1 \in L, w_2 \in \{\varepsilon\}\} = \{w_1 w_2 \mid w_1 \in L, w_2 = \varepsilon\} = \{w_1 \varepsilon \mid w_1 \in L\}$

- $L\varnothing = \{w_1w_2 \mid w_1 \in L, w_2 \in \varnothing\} = \varnothing$
- $\triangleright \varnothing L = \varnothing$
- ► $L\{\varepsilon\} = \{w_1 w_2 \mid w_1 \in L, w_2 \in \{\varepsilon\}\} = \{w_1 w_2 \mid w_1 \in L, w_2 = \varepsilon\} = \{w_1 \varepsilon \mid w_1 \in L\} = L$
- {ε}L

- $L\varnothing = \{w_1w_2 \mid w_1 \in L, w_2 \in \varnothing\} = \varnothing$
- $\triangleright \varnothing L = \varnothing$
- ► $L\{\varepsilon\} = \{w_1 w_2 \mid w_1 \in L, w_2 \in \{\varepsilon\}\} = \{w_1 w_2 \mid w_1 \in L, w_2 = \varepsilon\} = \{w_1 \varepsilon \mid w_1 \in L\} = L$
- \triangleright { ε }L = L
- Ø{ε}

- $L\varnothing = \{ w_1 w_2 \mid w_1 \in L, w_2 \in \varnothing \} = \varnothing$
- $\triangleright \varnothing L = \varnothing$
- ► $L\{\varepsilon\} = \{w_1 w_2 \mid w_1 \in L, w_2 \in \{\varepsilon\}\} = \{w_1 w_2 \mid w_1 \in L, w_2 = \varepsilon\} = \{w_1 \varepsilon \mid w_1 \in L\} = L$
- \triangleright { ε }L = L
- $\triangleright \varnothing \{\varepsilon\} = \varnothing$
- ▶ Is LL equal to $\{w^2 \mid w \in L\}$?

- $\triangleright \varnothing L = \varnothing$
- ► $L\{\varepsilon\} = \{w_1 w_2 \mid w_1 \in L, w_2 \in \{\varepsilon\}\} = \{w_1 w_2 \mid w_1 \in L, w_2 = \varepsilon\} = \{w_1 \varepsilon \mid w_1 \in L\} = L$
- \triangleright { ε }L = L
- $\triangleright \varnothing \{\varepsilon\} = \varnothing$
- ▶ Is LL equal to $\{w^2 \mid w \in L\}$? No! The latter only has words of the shape ww.
- \triangleright $\{\varepsilon\}^n$

- $L\varnothing = \{ w_1 w_2 \mid w_1 \in L, w_2 \in \varnothing \} = \varnothing$
- $\triangleright \varnothing L = \varnothing$
- ► $L\{\varepsilon\} = \{w_1 w_2 \mid w_1 \in L, w_2 \in \{\varepsilon\}\} = \{w_1 w_2 \mid w_1 \in L, w_2 = \varepsilon\} = \{w_1 \varepsilon \mid w_1 \in L\} = L$
- \triangleright { ε }L = L
- $\triangleright \varnothing \{\varepsilon\} = \varnothing$
- ▶ Is LL equal to $\{w^2 \mid w \in L\}$? No! The latter only has words of the shape ww.

- $L\varnothing = \{ w_1 w_2 \mid w_1 \in L, w_2 \in \varnothing \} = \varnothing$
- $\triangleright \varnothing L = \varnothing$
- ► $L\{\varepsilon\} = \{w_1 w_2 \mid w_1 \in L, w_2 \in \{\varepsilon\}\} = \{w_1 w_2 \mid w_1 \in L, w_2 = \varepsilon\} = \{w_1 \varepsilon \mid w_1 \in L\} = L$
- \triangleright { ε }L = L
- $\triangleright \varnothing \{\varepsilon\} = \varnothing$
- ▶ Is LL equal to $\{w^2 \mid w \in L\}$? No! The latter only has words of the shape ww.

- $L\varnothing = \{ w_1 w_2 \mid w_1 \in L, w_2 \in \varnothing \} = \varnothing$
- $\triangleright \varnothing L = \varnothing$
- ► $L\{\varepsilon\} = \{w_1 w_2 \mid w_1 \in L, w_2 \in \{\varepsilon\}\} = \{w_1 w_2 \mid w_1 \in L, w_2 = \varepsilon\} = \{w_1 \varepsilon \mid w_1 \in L\} = L$
- \triangleright { ε }L = L
- $\triangleright \varnothing \{\varepsilon\} = \varnothing$
- ▶ Is LL equal to $\{w^2 \mid w \in L\}$? No! The latter only has words of the shape ww.

If L is an arbitrary language, compute each of the following:

- $L\varnothing = \{ w_1 w_2 \mid w_1 \in L, w_2 \in \varnothing \} = \varnothing$
- $\triangleright \varnothing L = \varnothing$
- ► $L\{\varepsilon\} = \{w_1 w_2 \mid w_1 \in L, w_2 \in \{\varepsilon\}\} = \{w_1 w_2 \mid w_1 \in L, w_2 = \varepsilon\} = \{w_1 \varepsilon \mid w_1 \in L\} = L$
- \triangleright { ε }L = L
- $\triangleright \varnothing \{\varepsilon\} = \varnothing$
- ▶ Is LL equal to $\{w^2 \mid w \in L\}$? No! The latter only has words of the shape ww.

Note the difference between:

- ▶ the empty language Ø, which contains no words
- ightharpoonup the language $\{\varepsilon\}$, which contains exactly one word, ε

If L is an arbitrary language, compute each of the following:

- $L\varnothing = \{ w_1 w_2 \mid w_1 \in L, w_2 \in \varnothing \} = \varnothing$
- $\triangleright \varnothing L = \varnothing$
- ► $L\{\varepsilon\} = \{w_1 w_2 \mid w_1 \in L, w_2 \in \{\varepsilon\}\} = \{w_1 w_2 \mid w_1 \in L, w_2 = \varepsilon\} = \{w_1 \varepsilon \mid w_1 \in L\} = L$
- \triangleright { ε }L = L
- $\triangleright \varnothing \{\varepsilon\} = \varnothing$
- ▶ Is LL equal to $\{w^2 \mid w \in L\}$? No! The latter only has words of the shape ww.

Note the difference between:

- ▶ the empty language Ø, which contains no words
- **ightharpoonup** the language $\{\varepsilon\}$, which contains exactly one word, ε

Q: for any L_1 and L_2 , does $L_1L_2 = L_2L_1$ hold? Can it possibly hold?

If L is an arbitrary language, compute each of the following:

- $L\varnothing = \{w_1w_2 \mid w_1 \in L, w_2 \in \varnothing\} = \varnothing$
- $\triangleright \varnothing L = \varnothing$
- ▶ $L\{\varepsilon\} = \{w_1 w_2 \mid w_1 \in L, w_2 \in \{\varepsilon\}\} = \{w_1 w_2 \mid w_1 \in L, w_2 = \varepsilon\} = \{w_1 \varepsilon \mid w_1 \in L\} = L$
- \triangleright { ε }L = L
- $\triangleright \varnothing \{\varepsilon\} = \varnothing$
- ▶ Is *LL* equal to $\{w^2 \mid w \in L\}$? No! The latter only has words of the shape ww.

Note the difference between:

- ▶ the empty language Ø, which contains no words
- lacktriangle the language $\{arepsilon\}$, which contains exactly one word, arepsilon

Q: for any L_1 and L_2 , does $L_1L_2 = L_2L_1$ hold? Can it possibly hold?

Answer: no (ex: $L_1 = \{a\}, L_2 = \{b\}$) and yes (ex: $L_1, L_2 \in \{\emptyset, \{\varepsilon\}\}, L_1 = L_2, ...$).

Let A be alphabet. Consider the set of all languages $L \subseteq A^*$

Let A be alphabet. Consider the set of all languages $L \subseteq A^*$

Is this a monoid?

► Is there a neutral element?

Let A be alphabet. Consider the set of all languages $L \subseteq A^*$

- ▶ Is there a neutral element? $L\{\varepsilon\} = L$, $\{\varepsilon\}L = L$, so $\{\varepsilon\}$ is one
- Which law needs to hold? Does it hold?

Let A be alphabet. Consider the set of all languages $L \subseteq A^*$

- ▶ Is there a neutral element? $L\{\varepsilon\} = L$, $\{\varepsilon\}L = L$, so $\{\varepsilon\}$ is one
- ▶ Which law needs to hold? Does it hold? Associativity: we need $L_1 \cdot (L_2 \cdot L_3) = (L_1 \cdot L_2) \cdot L_3$

Let A be alphabet. Consider the set of all languages $L \subseteq A^*$

- ▶ Is there a neutral element? $L\{\varepsilon\} = L$, $\{\varepsilon\}L = L$, so $\{\varepsilon\}$ is one
- Which law needs to hold? Does it hold? Associativity: we need $L_1 \cdot (L_2 \cdot L_3) = (L_1 \cdot L_2) \cdot L_3$ $L_1 \cdot (L_2 \cdot L_3) = \{w_1(w_2w_3) \mid w_1 \in L_1 \land (w_2 \in L_2 \land w_3 \in L_3)\}$

Let A be alphabet. Consider the set of all languages $L \subseteq A^*$

- ▶ Is there a neutral element? $L\{\varepsilon\} = L$, $\{\varepsilon\}L = L$, so $\{\varepsilon\}$ is one
- ▶ Which law needs to hold? Does it hold? Associativity: we need $L_1 \cdot (L_2 \cdot L_3) = (L_1 \cdot L_2) \cdot L_3$ $L_1 \cdot (L_2 \cdot L_3) = \{w_1(w_2w_3) \mid w_1 \in L_1 \land (w_2 \in L_2 \land w_3 \in L_3)\}$ $(L_1 \cdot L_2) \cdot L_3 = \{(w_1w_2)w_3 \mid (w_1 \in L_1 \land w_2) \in L_2 \land w_3 \in L_3\}$

Let A be alphabet. Consider the set of all languages $L \subseteq A^*$

Is this a monoid?

- ▶ Is there a neutral element? $L\{\varepsilon\} = L$, $\{\varepsilon\}L = L$, so $\{\varepsilon\}$ is one
- ▶ Which law needs to hold? Does it hold? Associativity: we need $L_1 \cdot (L_2 \cdot L_3) = (L_1 \cdot L_2) \cdot L_3$ $L_1 \cdot (L_2 \cdot L_3) = \{w_1(w_2w_3) \mid w_1 \in L_1 \land (w_2 \in L_2 \land w_3 \in L_3)\}$ $(L_1 \cdot L_2) \cdot L_3 = \{(w_1w_2)w_3 \mid (w_1 \in L_1 \land w_2) \in L_2 \land w_3 \in L_3\}$

It is a monoid.

Let A be alphabet. Consider the set of all languages $L \subseteq A^*$

Is this a monoid?

- ▶ Is there a neutral element? $L\{\varepsilon\} = L$, $\{\varepsilon\}L = L$, so $\{\varepsilon\}$ is one
- ▶ Which law needs to hold? Does it hold? Associativity: we need $L_1 \cdot (L_2 \cdot L_3) = (L_1 \cdot L_2) \cdot L_3$ $L_1 \cdot (L_2 \cdot L_3) = \{w_1(w_2w_3) \mid w_1 \in L_1 \land (w_2 \in L_2 \land w_3 \in L_3)\}$ $(L_1 \cdot L_2) \cdot L_3 = \{(w_1w_2)w_3 \mid (w_1 \in L_1 \land w_2) \in L_2 \land w_3 \in L_3\}$

It is a monoid.

Let A be alphabet. Consider the set of all languages $L \subseteq A^*$

Is this a monoid?

- ▶ Is there a neutral element? $L\{\varepsilon\} = L$, $\{\varepsilon\}L = L$, so $\{\varepsilon\}$ is one
- ▶ Which law needs to hold? Does it hold? Associativity: we need $L_1 \cdot (L_2 \cdot L_3) = (L_1 \cdot L_2) \cdot L_3$ $L_1 \cdot (L_2 \cdot L_3) = \{w_1(w_2w_3) \mid w_1 \in L_1 \land (w_2 \in L_2 \land w_3 \in L_3)\}$ $(L_1 \cdot L_2) \cdot L_3 = \{(w_1w_2)w_3 \mid (w_1 \in L_1 \land w_2) \in L_2 \land w_3 \in L_3\}$

It is a monoid.

Does the cancellation law hold? (Reminder: it means $x \star y = z \star y \Longrightarrow x = z$)

Let A be alphabet. Consider the set of all languages $L \subseteq A^*$

Is this a monoid?

- ▶ Is there a neutral element? $L\{\varepsilon\} = L$, $\{\varepsilon\}L = L$, so $\{\varepsilon\}$ is one
- ▶ Which law needs to hold? Does it hold? Associativity: we need $L_1 \cdot (L_2 \cdot L_3) = (L_1 \cdot L_2) \cdot L_3$ $L_1 \cdot (L_2 \cdot L_3) = \{w_1(w_2w_3) \mid w_1 \in L_1 \land (w_2 \in L_2 \land w_3 \in L_3)\}$ $(L_1 \cdot L_2) \cdot L_2 = \{(w_1w_2)w_2 \mid (w_1 \in L_1 \land w_2) \in L_2 \land w_2 \in L_2\}$

It is a monoid.

Does the cancellation law hold? (Reminder: it means $x \star y = z \star y \Longrightarrow x = z$) No, because there is an absorbing element, \varnothing .

For all L_1, L_2 we have $L_1\varnothing = \varnothing = L_2\varnothing$, but not necessarily $L_1 = L_2$

Representing Languages Through Programs

In general not possible: some formal languages are not recursively enumerable sets.

Reasonably powerful representation: computable characteristic functions.

A language $L \subseteq A^*$ is given by its characteristic function $f_L : A^* \to \{0,1\}$ defined by $f_L(w) = 1$ for $w \in L$ and $f_L(w) = 0$ for $w \notin L$.

Representing Languages Through Programs

In general not possible: some formal languages are not recursively enumerable sets.

```
Reasonably powerful representation: computable characteristic functions. A language L \subseteq A^* is given by its characteristic function f_L : A^* \to \{0,1\} defined by f_L(w) = 1 for w \in L and f_L(w) = 0 for w \notin L.
```

case class Lang[A](contains: List[A] ⇒ Boolean)

Representing Languages Through Programs

L2.contains(0::1::0::1::Nil()) // true

In general not possible: some formal languages are not recursively enumerable sets.

Reasonably powerful representation: computable characteristic functions.

```
A language L \subseteq A^* is given by its characteristic function f_I : A^* \to \{0,1\}
  defined by f_t(w) = 1 for w \in L and f_t(w) = 0 for w \notin L.
case class Lang[A](contains: List[A] \Rightarrow Boolean)
Example: build the language L_2 = \{(01)^n \mid n \ge 1\}.
def f(w: List[Int]): Boolean = w match
 case Cons(0, Cons(1, Nil())) \Rightarrow true
 case Cons(0, Cons(1, wRest)) \Rightarrow f(wRest)
 case _ ⇒ false
val L2 = Lang(f)
```

Representing Language Concatenation

We can use code to express concatenation of computable languages.

```
def concat(L1: Lang[A], L2: Lang[A]): Lang[A] =
  def f(w: List[A]) =
      val n = w.length
      def checkFrom(i: Int) =
         require(0 <= i && i <= n)
         (L1.contains(w.take(i)) & L2.contains(w.drop(i))) |
         (i < n \& Garantine CheckFrom(i + 1))
      checkFrom(0, w.length)
   Lang(f) // return the language with characteristic function f
// take and drop are defined on lists:
(a :: b :: c :: d :: e :: Nil()).take(2) = a :: b :: Nil()
(a :: b :: c :: d :: e :: Nil()).drop(2) = c :: d :: e :: Nil()
```

Definition (Kleene star)

Given $L \subseteq A^*$, define

$$L^* = \bigcup_{n \geq 0} L^n$$

Definition (Kleene star)

Given $L \subseteq A^*$, define

$$L^* = \bigcup_{n \geq 0} L^n$$

Theorem

For $L \subseteq A^*$, for every $w \in A^*$ we have $w \in L^*$ if and only if

$$\exists n \geq 0. \ \exists w_1, \ldots, w_n \in L. \ w = w_1 \ldots w_n$$

Definition (Kleene star)

Given $L \subseteq A^*$, define

$$L^* = \bigcup_{n \ge 0} L^n$$

Theorem

For $L \subseteq A^*$, for every $w \in A^*$ we have $w \in L^*$ if and only if

$$\exists n \geq 0. \ \exists w_1, \ldots, w_n \in L. \ w = w_1 \ldots w_n$$

$$\begin{aligned} &\{a\}^* = \{\varepsilon, a, aa, aaa, \ldots\} \\ &\{a, bb\}^* = \{\varepsilon, a, bb, abb, bba, aa, bbbb, aabb, \ldots\} \end{aligned} \text{ (describe this language)}$$

Definition (Kleene star)

Given $L \subseteq A^*$, define

$$L^* = \bigcup_{n \geq 0} L^n$$

Theorem

For $L \subseteq A^*$, for every $w \in A^*$ we have $w \in L^*$ if and only if

$$\exists n \geq 0. \ \exists w_1, \ldots, w_n \in L. \ w = w_1 \ldots w_n$$

```
 \begin{aligned} &\{a\}^* = \{\varepsilon, a, aa, aaa, \ldots\} \\ &\{a, bb\}^* = \{\varepsilon, a, bb, abb, bba, aa, bbbb, aabb, \ldots\} \end{aligned} \text{ (describe this language)}
```

words whose all contiguous blocks of b-s have even length

Can L^* be finite for some L? If so, describe all such L

Definition (Kleene star)

Given $L \subseteq A^*$, define

$$L^* = \bigcup_{n \geq 0} L^n$$

Theorem

For $L \subseteq A^*$, for every $w \in A^*$ we have $w \in L^*$ if and only if

$$\exists n \geq 0. \ \exists w_1, \ldots, w_n \in L. \ w = w_1 \ldots w_n$$

```
 \begin{aligned} &\{a\}^* = \{\varepsilon, a, aa, aaa, \ldots\} \\ &\{a, bb\}^* = \{\varepsilon, a, bb, abb, bba, aa, bbbb, aabb, \ldots\} \end{aligned} \text{ (describe this language)}
```

words whose all contiguous blocks of b-s have even length

Can L^* be finite for some L? If so, describe all such L

▶ $\{\varepsilon\}^* = \{\varepsilon\}$, $\emptyset^* = \{\varepsilon\}$; all others have at least one word of length ≥ 1 , so L^* is infinite

Concatenating with an empty word has no effect, so we have the following:

$$L^* = (L \setminus \{\varepsilon\})^* = \{\varepsilon\} \cup \bigcup_{n \ge 1} (L \setminus \{\varepsilon\})^n$$

Moreover, $w \in L^*$ if and only if either $w = \varepsilon$ or, for some n where $1 \le n \le |w|$,

$$w = w_1 \dots w_n$$

where $w_i \in L$ and $|w_i| \ge 1$ for all i where $1 \le i \le n$.

Concatenating with an empty word has no effect, so we have the following:

$$L^* = (L \setminus \{\varepsilon\})^* = \{\varepsilon\} \cup \bigcup_{n \ge 1} (L \setminus \{\varepsilon\})^n$$

Moreover, $w \in L^*$ if and only if either $w = \varepsilon$ or, for some n where $1 \le n \le |w|$,

$$w = w_1 \dots w_n$$

where $w_i \in L$ and $|w_i| \ge 1$ for all i where $1 \le i \le n$.

- \triangleright we omit ε because it leaves concatenation the same
- we can assume $n \le |w|$ because all blocks have length at least one

Concatenating with an empty word has no effect, so we have the following:

$$L^* = (L \setminus \{\varepsilon\})^* = \{\varepsilon\} \cup \bigcup_{n \ge 1} (L \setminus \{\varepsilon\})^n$$

Moreover, $w \in L^*$ if and only if either $w = \varepsilon$ or, for some n where $1 \le n \le |w|$,

$$w = w_1 \dots w_n$$

where $w_i \in L$ and $|w_i| \ge 1$ for all i where $1 \le i \le n$.

- ightharpoonup we omit ε because it leaves concatenation the same
- ▶ we can assume $n \le |w|$ because all blocks have length at least one

If L is computable (has a computable characteristic function), is L^* also computable?

Concatenating with an empty word has no effect, so we have the following:

$$L^* = (L \setminus \{\varepsilon\})^* = \{\varepsilon\} \cup \bigcup_{n \ge 1} (L \setminus \{\varepsilon\})^n$$

Moreover, $w \in L^*$ if and only if either $w = \varepsilon$ or, for some n where $1 \le n \le |w|$,

$$w = w_1 \dots w_n$$

where $w_i \in L$ and $|w_i| \ge 1$ for all i where $1 \le i \le n$.

- \blacktriangleright we omit ε because it leaves concatenation the same
- we can assume $n \le |w|$ because all blocks have length at least one

If L is computable (has a computable characteristic function), is L^* also computable?

- try all possible ways of splitting w
- ▶ if k = |w|, for each point between the letters of w you can decide to split there or not, so there are 2^{k-1} ways to split: $w = \Box [\Box] ... |\Box| \Box$
- there is a better way see exercises

Starring: {a, ab}

Let $A = \{a, b\}$ and $L = \{a, ab\}$. Come up with a property "..." that describes the language L^* :

$$L^* = \{ w \in A^* \mid ... \}$$

Prove that the property and L^* denote the same language.

Starring: {*a*, *ab*}

Let $A = \{a, b\}$ and $L = \{a, ab\}$. Come up with a property "..." that describes the language L^* :

$$L^* = \{ w \in A^* \mid ... \}$$

Prove that the property and L^* denote the same language.

Properties:

- does not being with b
- does not contain bb

in one phrase: there is an "a" before every "b"