nou work: -> System of variables

Fino:

From

From > Equations - Use words, arrows,

Torque and Rotational Equilibrium

Torque:

A torque is required to cause something to rotate.

In general:

Examples of determining torque:

Rotational Equilibrium

When considering cases of translational equilibrium, the location on a body at which a force acts is not important.

$$\Sigma F_{x} = 0$$

 $\Sigma F_{y} = 0$

When considering cases of rotational equilibrium, the location at which a force acts is important.

$$\Sigma F_x = 0$$

 $\Sigma F_y = 0$

$$\Sigma F_y = 0$$

(No matter what point is taken to be the pivot. Rotational equilibrium exists only when the sum of the torques about ALL points on an object is zero).

Example 1:

WHAT MUST X BE TO ACHIEVE EQUILIBRIUM?

$$35x = 960$$

 $x = 27.4 ft$

Using Rotational Equilibrium as a problem-solving tool:

- 1. Draw a FBD. 2 by to totate forces a correctly
- 2. Identify a point to serve as a pivot. (Note: if in equilibrium, the object will NOT be pivoting. Also, ANY point could serve as a reference for lever arms).
- 3. Establish a reference rotation (+/-).
- 4. Resolve all forces into components:
- One perpendicular to the lever arm
- One parallel to the lever arm
 important for translation
- 5. The sum of all torques about any (and every) point on the object must equal zero. $\leq \tau = 0$
- 6. Solve for unknowns.

