and Should: Cooking with Calculus-Scandinavian Coffee Cake Answer Sheet Shaurya Kalra

1) of
$$x^{2}dx = \lim_{b \to \infty} -\frac{1}{x} \Big|_{2}^{b}$$

Lim $-\frac{1}{b} + \frac{1}{2}$
 $\frac{1}{2} = \frac{1}{1-2} = \frac{2}{2}$

Ot $\frac{1}{2}$

1/2

(anverges to
$$\frac{a_1}{1-r}$$

6)
$$\lim_{x\to\infty} \frac{1/2}{3/4x^4+178}$$
 $\frac{6}{2}$ $\frac{2}{3}x^{\frac{3}{4}}$ $\frac{1}{2}$ \frac

2) (calculator)

$$y'=-2\sin 2x$$

 a_1y
 $\sqrt{1+(-2\sin 2x)^2} dx = 1.31759 \times 1$

3)
$$y = \cos 3x - 3/4$$
 Critical values when $y' = 0$ and endpoints $y' = -3 \sin 3x - 0$ $x = 0$, $\frac{0}{3}$, $\frac{0}{2}$ $\frac{1}{3} = 0$ $\frac{1}{3} = 0$

absolute mook is 14

$$8)^{3/4}$$
 $2.3x^{3}$
 $6/x^{3}$
 $4/3$
 $6(\frac{1}{3}x^{3})$
 $6(\frac{4}{3}-0)$

11)
$$-1125 \sqrt{\cos(3x)} dx$$
 $\frac{1}{3} \sin 3x \sqrt{\frac{9}{2}}$ $\frac{1}{3} \sin \frac{3\pi}{2} - \frac{1}{3} \sin 0$ $\frac{1}{3} \sin \frac{3\pi}{2} - \frac{1}{3} \sin 0$ $\frac{1}{3} \cos \left(-\frac{1}{3}\right)$ $\frac{1}{3} \cos \left(-\frac{1}{3}\right)$ $\frac{1}{3} \cos \left(-\frac{1}{3}\right)$