DM 5 : Corrigé. Ordinaux et suites de Goodstein.

1 Suites de Goodstein

$$1^{\circ}$$
) $144 = 81 + 63 = 3^4 + 2 \times 27 + 9 = 3^4 + 2 \cdot 3^3 + 3^2$.

2°) La décomposition héréditaire de 144 en base 3 est égale à $3^{(3^1+1)} + 2.3^3 + 3^2$ donc celle de $3^{144} + 144$ est

$$3^{[3^{(3^1+1)}+2.3^3+3^2]} + 3^{(3^1+1)} + 2.3^3 + 3^2$$

3°) Démontrons par récurrence sur h l'assertion S(h) suivante : $2^h > h$. Initialisation : pour h = 0, $2^0 = 1 > 0$.

Hérédité : pour $h \ge 0$, supposons que $2^h > h$.

Ainsi, $2^h \ge h + 1$, donc $2^{h+1} \ge 2(h+1) \ge h + 2 = (h+1) + 1$. Ainsi, $2^{h+1} > h + 1$, ce qui prouve S(h+1).

D'après le principe de récurrence, pour tout $h \in \mathbb{N}$, $2^h > h$.

4°) Fixons $b \in \mathbb{N}$ avec $b \ge 2$.

Montrons par récurrence forte sur n que R(n): $\mathrm{dh}_b(n)$ est correctement défini.

Initialisation: Supposons que $n < b^{b+1}$. Alors la décomposition en base b de n s'écrit

$$n = \sum_{i=0}^h a_i b^i$$
 avec $h \leq b$ (sinon, sachant que $a_h \neq 0$, $n \geq b^h \geq b^{b+1}$), donc cette écriture

de n ne fait intervenir que des entiers compris entre 0 et b. Il est donc correct de convenir que c'est aussi la décomposition héréditaire de n en base b.

 $H\acute{e}r\acute{e}dit\acute{e}: Pour \ n \geq b^{b+1},$ on suppose que, pour tout $k \in \{0,\ldots,n-1\},\ R(k)$ est vraie et l'on montre R(n).

Décomposons n en base $b: d_b(n) = \sum_{i=0}^h a_i b^i$, avec $h \in \mathbb{N}$ et $a_h \neq 0$.

Alors $n \ge b^h \ge 2^h > h$. Ainsi, pour tout $i \in \{0, \dots, h\}, i < n$ et on peut appliquer R(i):

 $\mathrm{dh}_b(i)$ est correctement défini, donc l'écriture $\sum_{i=0}^h a_i b^{dh_b(i)}$ est correctement définie. Ceci prouve R(n).

On montre par récurrence forte que, avec la définition proposée en question 5, pour tout $n \in \mathbb{N}$, on a $T(n): f_{q,r}(n)$ est bien défini et il correspond à la définition initiale.

Initialisation: Si $n \in \{0, \ldots, q-1\}$, alors la décomposition héréditaire de n en base q correspond seulement à l'écriture n = n : q n'apparaît pas dans cette écriture, donc si l'on remplace q par r, on ne change rien : il est correct de poser $f_{q,r}(n) = n$ dans ce

Toujours dans ce cas, la seconde définition est compatible avec la première, car dans

l'expression
$$\sum_{i=0}^{k} a_i \ q^i$$
, on a $k=0$.

 $H\acute{e}r\acute{e}dit\acute{e}$: Supposons maintenant que $n \geq q$ et que T(k) est vraie pour tout $k \in \{0, ..., n-1\}$.

On a encore
$$n = \sum_{i=0}^{h} a_i \ q^i$$
, avec $h \in \mathbb{N}$, $a_h \neq 0$ et pour tout $i \in \{0, \dots, h\}$,

 $a_i \in \{0,\ldots,q-1\}$. Ainsi, $n \geq q^h \geq 2^h > h$, donc, de même que lors de la question précédente, d'après l'hypothèse de récurrence, pour tout $i \in \{0, \dots, k\}, f_{q,r}(i)$ est bien défini et il correspond à la définition initiale de $f_{q,r}$. Alors, selon la définition initiale,

on a bien
$$f_{q,r}(n) = \sum_{i=0}^{h} a_i \ r^{f_{q,r}(i)}$$
, ce qui prouve $T(n)$.

 $g_0 = 3 = 2^1 + 1$, donc $f_{2,3}(g_0) = 3^1 + 1$ puis $g_1 = 3$. $f_{3,4}(g_1) = 4$, donc $g_2 = 3$. $f_{4,5}(g_2) = 3$, donc $g_3 = 2$, puis $g_4 = 1$, $g_5 = 0$ et la suite (g_n) stationne à 0 pour $n \geq 5$.

$$\mathbf{7}^{\circ}) \qquad \sum_{i=0}^{h} (b-1)b^{i} = \sum_{i=0}^{h} b^{i+1} - \sum_{i=0}^{h} b^{i} = \sum_{i=1}^{h+1} b^{i} - \sum_{i=0}^{h} b^{i} = b^{h+1} - 1.$$

Calculons les premières valeurs de la suite (g_n) .

 $g_0 = 4 = 2^2$, donc $g_1 = 3^3 - 1 = 2.3^2 + 2.3^1 + 2$ (d'après la question précédente). Alors $f_{3,4}(g_1) = 2.4^2 + 2.4^1 + 2$, donc $g_2 = 2.4^2 + 2.4 + 1$, puis $g_3 = 2.5^2 + 2.5$.

Ensuite, $g_4 = 2.6^2 + 2.6 - 1 = 2.6^2 + 6 + 5$.

Par récurence, on obtient $g_{4+k} = 2.(6+k)^2 + (6+k) + 5 - k$, pour $k \in \{0, ..., 5\}$, donc $g_9 = 2.(11)^2 + 11$. Ainsi, h = 9.

Ensuite $g_{10} = 2.(12)^2 + 11$. Par récurrence, on obtient $g_{10+k} = 2.(12+k)^2 + 11 - k$, pour tout $k \in \{0, \dots, 11\}$, donc $g_{21} = 2 \cdot (23)^2$.

Ainsi, 21 est le plus petit k tel que $g_k = 2.(23)^2$.

9°) On a ensuite $g_{22} = 2.(24)^2 - 1 = (24)^2 + 23 \times 24 + 23$, puis $g_{23} = f_{24,25}((24)^2 + 23 \times 24 + 23) - 1 = (25)^2 + 23 \times 25 + 22$,

donc $g_{21+24} = (23+24)^2 + 23 \times (23+24)$,

c'est-à-dire $g_{3.2^4-3} = (3.2^4 - 1)^2 + 23 \times (3.2^4 - 1)$.

Ensuite, $g_{3.2^4-2} = (3.2^4)^2 + 23 \times (3.2^4) - 1 = (3.2^4)^2 + 22 \times (3.2^4) + (3.2^4 - 1)$, donc $g_{3.2^4-3+3.2^4} = g_{3.2^5-3} = (3.2^5-1)^2 + 22 \times (3.2^5-1).$

Par récurrence sur h, on montrerait que $g_{3.2^h-3} = (3.2^h - 1)^2 + (27 - h) \times (3.2^h - 1)$, pour tout $h \in \{4, ..., 27\}$. En particulier, lorsque h = 27, on obtient que $g_{3.2^{27}-3} = (3.2^{27} - 1)^2$.

10°) Posons $b = 3.2^{27} - 1$. Ainsi $g_{b-2} = b^2$, donc $g_{b-1} = f_{b,b+1}(b^2) - 1 = (b+1)^2 - 1 = b(b+1) + b$, puis $g_b = b(b+2) + b - 1$ donc $g_{b-1+b} = g_{2(b+1)-3} = b(2b+1)$, puis $g_{2(b+1)-2} = (b-1)(2b+2) + 2b+1$, donc $g_{2^2(b+1)-3} = (b-1)(2^2(b+1)-1)$. Par récurrence, on montre que $g_{2^k(b+1)-3} = (b-k+1)(2^k(b+1)-1)$ pour tout $k \in \{1,\ldots,b\}$. En particulier, lorsque k = b, $g_{2^b(b+1)-3} = 2^b(b+1) - 1$, donc si l'on pose $B = 2^b(b+1)$, $g_{B-3} = B - 1$, puis $g_{B-2} = f_{B-1,B}(B-1) - 1 = B - 1$, puis $g_{B-1} = f_{B,B+1}(B-1) - 1 = B - 2$ et finalement $g_{2B-3} = 0$. Ainsi, le plus petit k tel que $g_k = 0$ est

$$k = 2B - 3 = 2^{b+1}(b+1) - 3 = 2^{3 \cdot 2^{27}} \times 3 \cdot 2^{27} - 3.$$

2 Ensembles bien ordonnés

- 11°) Supposons que R est un ordre strict.
 - Par définition, r est réflexive.
 - Soit $x, y \in E$ tels que x r y et y r x.
 - Si $x \neq y$, alors x R y et y R x, donc par transitivité x R x, ce qui est impossible. Ainsi, x = y, ce qui prouve que r est antisymétrique.
 - Soit $x, y, z \in E$ tels que x r y et y r z.
 - Si x = y, alors x = y r z. Si y = z, alors x r y = z.
 - Si maintenant $x \neq y$ et $y \neq z$, alors x R y et y R z, donc par transitivité de R, x R z, donc x r z. Ainsi, dans tous les cas, x r z, ce qui prouve que r est transitive.

r est réflexive, antisymétrique et transitive, donc c'est une relation d'ordre.

 12°) Réciproquement, supposons que r est une relation d'ordre.

Analyse : Supposons qu'il existe un ordre strict R tel que r est la relation d'ordre associée à R. Ainsi, pour tout $x, y \in E$, $x r y \iff (x R y) \lor (x = y)$.

Soit $x, y \in E$. Si x R y, alors x r y et $x \neq y$ car R est antiréflexive.

Réciproquement, si x r y et $x \neq y$, alors x R y,

donc $\forall x, y \in E, [x R y \iff (x r y) \land (x \neq y)].$

Ceci montre que, sous condition d'existence, l'ordre strict R est unique.

Synthèse: Considérons sur E la relation binaire R définie par :

 $\forall x, y \in E, [x R y \iff (x r y) \land (x \neq y)].$

- Par définition de R, pour tout $x \in E$, $\neg(x R x)$, donc R est antiréflexive.
- Soit $x, y, z \in E$ tels que x R y et y R z.
 - Ainsi, $x \neq y$, $y \neq z$, x r y et y r z. Par transitivité de r, x r z.
 - Supposons que x=z. Alors z=x r y et y r z=x, donc par antisymétrie de r, x=y, ce qui est faux. Ainsi, $x\neq z$ et x r z, donc x R z.

Ceci prouve que R est transitive.

Ainsi R est un ordre strict.

Il reste à montrer que r est la relation d'ordre associée à R: pour tout $x, y \in E$, $x \ r \ y \iff [(x \ r \ y) \land (x \neq y)] \lor (x = y)$, le sens indirect provenant de la réflexivité de r, donc $x \ r \ y \iff (x \ R \ y) \lor (x = y)$, ce qu'il fallait démontrer.

13°) \diamond Soit $x, y \in E$.

 $\{x,y\}$ est une partie non vide de E, donc elle possède un minimum, noté m.

Si m = x, alors $x \le y$ et si m = y, alors $y \le x$. Ainsi, dans tous les cas, x et y sont comparables, donc l'ordre est total.

 \diamond Supposons qu'il existe une suite $(x_n)_{n\in\mathbb{N}}$ strictement décroissante.

Posons $X = \{x_n \mid n \in \mathbb{N}\}$. X est non vide, donc il possède un minimum, noté x_m où $m \in \mathbb{N}$. $x_{m+1} \in X$, donc $x_{m+1} \ge \min(X) = x_m$, mais (x_n) décroît strictement, donc $x_{m+1} < x_m$. C'est impossible.

14°) On notera \leq la relation d'ordre associée à l'ordre strict "<".

 \diamond Soit $(c,i) \in A + B$ tel que (c,i) < (c,i). Ainsi, $(i < i) \lor ((i = i) \land (c < c))$: c'est faux, donc < est antiréflexive sur A + B.

 \diamond Soit $(c, i), (d, j), (e, k) \in A + B$ tels que (c, i) < (d, j) et (d, j) < (e, k).

Nécessairement $i \leq j$ et $j \leq k$.

Si i < j ou bien si j < k, alors i < k, donc (c, i) < (e, k).

Sinon, i = j = k, donc c < d et d < e, or < est transitive, donc c < e puis (c, i) < (e, k). Ainsi, dans tous les cas, (c, i) < (e, k) et < est transitive et antiréflexive sur A + B: c'est un ordre strict.

 \diamond Soit M une partie non vide de A + B.

Premier cas: Supposons que $M \subset B \times \{1\}$.

Notons $B' = \{b \in B \mid (b,1) \in M\}$. M est non vide, donc B' est une partie non vide de B qui est bien ordonné par <, donc B' possède un minimum, noté m.

Alors $(m, 1) \in M$ et si $x \in M$, il existe $b \in B$ tel que x = (b, 1). Alors $b \in B'$, donc $m \le b$ puis $(m, 1) \le (b, 1) = x$. Ainsi, (m, 1) est le minimum de M.

Deuxième cas : Lorsque $M \not\subset B \times \{1\}$, l'ensemble $A' = \{a \in A \mid (a,0) \in M\}$ est une partie non vide de A, donc elle possède un minimum noté m. Alors $(m,0) \in M$.

Soit $x \in M$. Si $x \in B \times \{1\}$, alors (m, 0) < x.

Sinon, $x \in A \times \{0\}$, donc il existe $a \in A'$ tel que x = (a, 0). Alors $m \le a$, donc $(m, 0) \le x$. Ainsi (m, 0) est le minimum de M.

Ceci prouve que (A + B, <) est bien ordonné.

15°) \diamond Soit $(a,b) \in A \times B$ tel que (a,b) < (a,b).

Alors $(a < a) \lor ((a = a) \land (b < b))$. C'est faux car < sur A et sur B sont antiréflexifs. Ainsi, < est antiréflexive sur $A \times B$.

Soit $(a, b), (a', b'), (a'', b'') \in A \times B$ tels que (a, b) < (a', b') et (a', b') < (a'', b'').

Nécessairement, b < b' et b' < b''.

Si b < b' ou si b' < b'', alors b < b'' et (a, b) < (a'', b'').

Sinon, b = b' et b' = b'', donc a < a' et a' < a'', puis (a, b) < (a'', b) = (a'', b'').

Ceci prouve que < sur $A \times B$ est antiréflexive et transitive, donc c'est un ordre strict.

 \diamond Soit M une partie non vide de $A \times B$. Notons $B' = \{b \in B \mid \exists a \in A, (a, b) \in M\}$. M étant non vide, $B' \neq \emptyset$, or (B, <) est bien ordonné, donc B' possède un minimum noté b_0 .

 $b_0 \in B'$ donc il existe $a \in A$ tel que $(a, b_0) \in M$. Ainsi, $A' = \{a \in A \mid (a, b_0) \in M\}$ est une partie non vide de A: elle possède un minimum noté a_0 .

Posons $m = (a_0, b_0) : m \in M$.

Soit $x = (a, b) \in M$. $b \in B'$, donc $b \ge b_0$.

Si $b_0 < b$, alors $m = (a_0, b_0) < (a, b) = x$.

Sinon, $x = (a, b_0)$ et $a \in A'$. Ainsi $a \ge a_0$ et $m = (a_0, b_0) \ge (a, b_0) = x$.

Ainsi, m est le minimum de M, ce qui prouve que $(A \times B, <)$ est bien ordonné.

 \diamond Si $(a_b) < (a_b')$, il existe $b_0 \in B$ tel que $a_{b_0} < a_{b_0}'$ or < est antiréflexive sur B, donc $a_{b_0} \neq a'_{b_0}$ puis $(a_b) \neq (a'_b)$. Ainsi, < est antiréflexive sur $A^{(B)}$.

Soit $(a_b), (a_b'), (a_b'') \in A^{(B)}$ tels que $(a_b) < (a_b')$ et $(a_b') < (a_b'')$. Il existe $b_0, b_1 \in B$ tels que $a_{b_0} < a_{b_0}', a_{b_1}' < a_{b_1}''$, pour tout $b > b_0$, $a_b = a_b'$, pour tout $b > b_1, a'_b = a''_b.$

Supposons que $b_0 < b_1$. Alors $a_{b_1} = a'_{b_1} < a''_{b_1}$ et pour tout $b > b_1$, $a_b = a'_b = a''_b$, donc $(a_b) < (a_b'').$

Supposons que $b_0 > b_1$. Alors $a_{b_0} < a'_{b_0} = a''_{b_0}$ et pour tout $b > b_0$, $a_b = a'_b = a''_b$, donc $(a_b) < (a_b'').$

Supposons que $b_0 = b_1$. Alors par transitivité de < dans A, $a_{b_0} < a_{b_0}''$ et pour tout $b > b_0$, $a_b = a_b' = a_b''$, donc $(a_b) < (a_b'')$.

D'après la question 13, b_0 et b_1 sont comparables, donc on a envisagé tous les cas.

Ceci prouve que < sur $A^{(B)}$ est antiréflexive et transitive, donc c'est un ordre strict.

Il s'agit d'une généralisation du principe de récurrence forte à un ensemble bien ordonné quelconque.

Raisonnons par l'absurde en supposant qu'il existe $x \in E$ tel que $\neg(P(x))$. Alors $A = \{x \in E \mid \neg(P(x))\}\$ est non vide, or E est bien ordonné, donc A possède un minimum, que l'on notera m.

Soit $y \in E$ tel que y < m. Par construction de $m, y \notin A$, donc P(y) est vrai. Ainsi, on a montré que $[\forall y \in E, y < m \Longrightarrow P(y)]$, donc P(m) est vrai et $m \notin A$, ce qui est faux. On en déduit que pour tout $x \in E$, P(x) est vraie.

On peut remarquer qu'on a bien une forme d'initialisation car $P(\min(E))$ est vrai. En effet, pour tout $y \in E$, l'assertion " $y < \min(E)$ " est fausse,

donc $[\forall y \in E, y < \min(E) \Longrightarrow P(y)].$

- \diamond Soit $x_0 \in E$. Soit $x \in S_{x_0}$ et $y \in E$ tel que y < x. Alors par transitivité, $y < x_0$, donc $y \in S_{x_0}$. Ainsi, pour tout $x_0 \in E$, S_{x_0} est un segment initial et il est clair que E est un segment initial de E.
- \diamond Réciproquement, soit S un segment initial de E. Supposons que $S \neq E$.

Alors $E \setminus S$ est une partie non vide de E, donc on peut poser $x_0 = \min(E \setminus S)$.

Soit $x \in S_{x_0}$. Alors $x < x_0$, donc $x \notin (E \setminus S)$ (par définition de x_0), donc $x \in S$.

Réciproquement, supposons que $x \in S$. Alors $x \neq x_0$, car $x_0 \in E \setminus S$, donc $x < x_0$ ou $x > x_0$, mais si $x > x_0$, S étant un segment initial, on en déduirait que $x_0 \in S$, ce qui est faux. Ainsi $x < x_0$, donc $x \in S_{x_0}$. Ceci montre que $S = S_{x_0}$.

Remarque : plus précisément, on a montré que lorsque S est un segment initial différent de E, alors $S = S_{x_0}$, où $x_0 = \min(E \setminus S)$.

- 19°) Soit f et q deux bijections strictement croissantes de E dans F.
- \diamond Soit $x, y \in E$. Montrons que $x < y \iff f(x) < f(y)$:

le sens direct provient de la définition de la croissance stricte de f. De plus, si $x \ge y$, alors $f(x) \ge f(y)$, donc par contraposée, $f(x) < f(y) \Longrightarrow x < y$ (les ordres sont totaux d'après la question 13).

Ainsi, pour tout $x, y \in E$, $x < y \iff f(x) < f(y) \iff g(x) < g(y)$.

 \diamond Supposons que $f \neq g$. Alors l'ensemble $A = \{x \in E \mid f(x) \neq g(x)\}$ est non vide, donc il possède un minimum que l'on notera x_0 . Sans perte de généralité, on peut supposer que $f(x_0) > g(x_0)$.

f étant surjective, il existe $x_1 \in E$ tel que $g(x_0) = f(x_1)$. Alors $f(x_0) > f(x_1)$, donc d'après le point précédent, $x_1 < x_0$, donc $g(x_1) < g(x_0) = f(x_1)$. Ainsi, $f(x_1) \neq g(x_1)$, donc $x_1 \in A$, mais $x_1 < x_0 = \min(A)$. C'est impossible, donc f = g.

3 Les ordinaux

- **20°**) Pour tout prédicat P(x), l'assertion " $\forall x \in \emptyset$, P(x)" est toujours vraie, donc " \in " est un ordre strict sur E et comme \emptyset n'admet aucune partie non vide, (\emptyset, \in) est bien ordonné. Il est de plus clairement transitif, donc \emptyset est bien un ordinal.
- **21°**) Posons $a = \emptyset$, $b = \{\emptyset\}$ et $A = \{a, b\}$. Il s'agit de montrer que A est un ordinal. Notons également R la relation d'appartenance : $b R b \iff b \in b \iff b = \emptyset$, ce qui est faux, donc, tout $x, y \in A$, $x R y \iff (x = a) \land (y = b)$.

La relation R est clairement antiréflexive.

Soit $x, y, z \in A$ tels que x R y et y R z. Alors y = b et y = a, ce qui n'est pas possible. Ainsi, la propriété $(x R y) \land (y R z)$ est fausse, donc on a bien

 $(x R y) \land (y R z) \Longrightarrow (x R z) : R$ est transitive, donc c'est un ordre strict.

Les parties non vides de A sont $\{a\}$, $\{b\}$ et A. Elles possèdent toutes un minimum, respectivement égal à a, b et a. Ainsi, (A, R) est bien ordonné.

Soit $x \in A$ et $y \in x$. Alors x est non vide, donc x = b et y = a. On a bien $y \in A$, donc A est transitif.

Ceci démontre que A est un ordinal.

22°) (α, \in) est bien ordonné et α est une partie non vide de α , donc on peut poser $m = \min(\alpha)$. Si m est non vide, il existe $x \in m$. Alors $x \in m \in \alpha$, donc par transitivité de α , $x \in \alpha$ et x < m. Ceci contredit la définition de m. Ainsi $m = \emptyset$, donc $\emptyset \in \alpha$ et on a même montré que \emptyset est le minimum de α .

23°) Supposons que $\alpha \in \alpha$.

 α étant un ordinal, " \in " est un ordre strict sur α , donc " \in " est en particulier antiréflexive. Ainsi, pour tout $\beta \in \alpha$, $\beta \notin \beta$, donc en particulier, avec $\beta = \alpha$, $\alpha \notin \alpha$. Ainsi, $\alpha \in \alpha \Longrightarrow \alpha \not\in \alpha$, donc $\alpha \notin \alpha$.

24°) Pour tout $x \in \beta$, par transitivité de α , $x \in \alpha$, donc $\beta \subset \alpha$. Or il est clair que si (E, <) est bien ordonné, toute partie de E est également bien ordonnée par <, donc (β, \in) est bien ordonné.

Supposons de plus que $x \in y \in \beta$. On a $y \in \beta \in \alpha$, donc par transitivité de α , $y \in \alpha$, donc on a $x \in y \in \alpha$, donc à nouveau par transitivité de α , $x \in \alpha$. Ainsi, x, y, β sont trois éléments de α , or " \in " est transititive dans α et $x \in y \in \beta$, donc $x \in \beta$. Ceci démontre que β est transitif, donc β est un ordinal.

25°) Soit $\beta \in \alpha$.

D'après la transitivité de $\alpha, \beta \subset \alpha$, donc $\beta = \{x \in \alpha \mid x \in \beta\} = \{x \in \alpha \mid x < \beta\} = S_{\beta}$.

26°) \diamond Supposons que $\beta \subset \alpha$ et que $\beta \neq \alpha$.

 β est un segment initial de α car, si $x \in \beta$ et $y \in \alpha$ avec y < x, alors $y \in x \in \beta$, or β est transitif (car c'est un ordinal), donc $y \in \beta$.

Alors, d'après la remarque faite en fin de question 18, $\beta = S_{\gamma}$, où $\gamma = \min(\alpha \setminus \beta)$. D'après la question précédente, $\beta = \gamma$, or $\gamma \in \alpha$, donc $\beta \in \alpha$.

 \diamond Réciproquement, si $\beta = \alpha$ alors $\beta \subset \alpha$ et si $\beta \in \alpha$, pour tout $x \in \beta$, α étant transitif, on a bien $x \in \alpha$, donc on a aussi $\beta \subset \alpha$.

27°)

- Soit $x \in \alpha^+$. Si $x \in \alpha$ alors $x \notin x$ car α est un ordinal donc " \in " est antiréflexive sur α . Sinon, alors $x = \alpha$ et d'après la question 23, $x \notin x$. Ainsi, " \in " est antiréflexive sur α^+ .
- Soit $x, y, z \in \alpha^+$ tels que $x \in y \in z$. Si $x, y, z \in \alpha$, alors $x \in z$ par transitivité de \in sur α . Sinon, parmi x, y, z, l'un au moins est égal à α . Mais si $z \neq \alpha$, alors $x \in y \in z \in \alpha$, donc par transitivité de α , $x, y \in \alpha$ et d'après la question 23, $x \neq \alpha$ et $y \neq \alpha$. Ainsi $z = \alpha$ et $x \in y \in \alpha$. Toujours par transitivité de α , $x \in \alpha = z$. Ainsi, dans tous les cas, $x \in z$.

Ceci prouve que (α^+, \in) est ordonné (strictement).

— Soit A une partie non vide de α^+ . Si $A \subset \alpha$, elle possède un minimum car α est bien ordonné. Si $A = \{\alpha\}$, alors $\min(A) = \alpha$. Il reste le cas où $\alpha \in A$ et $A \cap \alpha \neq \emptyset$. Alors, α étant bien ordonné, on peut poser $m = \min(A \cap \alpha)$. $m \in \alpha$ c'est-à-dire $m < \alpha$, donc $m = \min(A)$.

Ceci prouve que (α^+, \in) est bien ordonné.

— Supposons que $x \in \alpha^+$ et que $y \in x$.

Si $x \in \alpha$, alors $y \in \alpha$ car α est transitif, donc $y \in \alpha^+$.

Sinon, $x = \alpha$, donc $y \in \alpha$ puis $y \in \alpha^+$.

Ceci prouve que α^+ est transitif.

— Soit β un ordinal tel que $\alpha \in \beta$.

D'après la question précédente, $\alpha \subset \beta$ et $\{\alpha\} \subset \beta$, donc $\alpha^+ \subset \beta$.

28°) Posons $\gamma = \alpha \cap \beta$. Montrons que γ est un ordinal.

 (α,\in) est bien ordonné, donc c'est le cas de toute partie de $\alpha.$ Ainsi, (γ,\in) est bien ordonné.

Soit $x \in \gamma$ et $y \in x$. On a $y \in x \in \alpha$ et α est transitif, donc $y \in \alpha$. De même on montre que $y \in \beta$, donc $y \in \alpha \cap \beta = \gamma$. Ceci prouve que γ est transitif, donc c'est un ordinal. Si $\gamma = \alpha$, alors $\alpha \subset \beta$, donc d'après la question 26, $\alpha \in \beta$ ou $\alpha = \beta$.

De même, si $\gamma = \beta$, on montre que $\beta \in \alpha$ ou $\alpha = \beta$.

Il reste à étudier le cas où $\gamma \neq \alpha$ et $\gamma \neq \beta$. γ est un ordinal inclus dans α et dans β , donc toujours d'après la question 26, $\gamma \in \alpha$ et $\gamma \in \beta$. On en déduit que $\gamma \in (\alpha \cap \beta) = \gamma$, ce qui est impossible d'après la question 23. Ainsi le cas où $\gamma \neq \alpha$ et $\gamma \neq \beta$ ne se produit jamais et la question est démontrée.

29°)

- Pour tout $\alpha \in A$, d'après la question 23, $\alpha \notin \alpha$, donc \in est antiréflexive sur A.
- Soit $\alpha, \beta, \gamma \in A$ tels que $\alpha \in \beta \in \gamma$. γ est transitif, donc $\alpha \in \gamma$.
 - Ainsi, \in est un ordre strict sur A.
- Soit B une partie non vide de A. Il reste à montrer que B possède un minimum. Posons $m = \bigcap_{\beta \in B} \beta$.

En adaptant la preuve de la question précédente, on montre que m est un ordinal. Pour tout $\beta \in B$. $m \subset \beta$, donc d'après la question 26, $m = \beta$ ou $m \in \beta$. Mais si pour tout $\beta \in B$, $m \in \beta$, alors $m \in \bigcap_{\beta \in B} \beta = m$ ce qui est impossible d'après

la question 23. Ainsi il existe $\beta \in B$ tel que $m = \beta$, donc $m \in B$.

On vient de voir que pour tout $\beta \in B$ avec $\beta \neq m$, $m \in \beta$, donc m est bien le minimum de B pour la relation d'appartenance.

30°) Posons
$$\beta = \bigcup_{\alpha \in A} \alpha$$
.

Si $x \in \beta$, il existe $\alpha \in A$ tel que $x \in \alpha$, donc x est un élément d'un ordinal. D'après la question 24, x est aussi un ordinal. Ainsi, β est un ensemble d'ordinaux, donc d'après la question précédente, (β, \in) est bien ordonné. Il reste à montrer que β est transitif. Soit $x \in \beta$ et $y \in x$. Il existe $\alpha \in A$ tel que $x \in \alpha$, or α est transitif, donc $y \in \alpha$, donc $y \in \beta$.

4 Le théorème de Goodstein

31°) $g_n \neq 0$, donc $g_{n+1} + 1 = f_{q+n,q+n+1}(g_n)$. Ainsi,

 $f_{q+n+1,\omega}(g_{n+1}+1)=f_{q+n+1,\omega}(f_{q+n,q+n+1}(g_n)),$ donc on conclut si l'on démontre que $f_{q+n+1,\omega}(f_{q+n,q+n+1}(g_n))=f_{q+n,\omega}(g_n)=\alpha_n.$

Pour cela, on fixe $q \in \mathbb{N}$ avec $q \geq 2$ et on montre par récurrence forte sur n que, pour tout $n \in \mathbb{N}$, $f_{q+1,\omega}(f_{q,q+1}(n)) = f_{q,\omega}(n)$. Notons T(n) cette assertion.

Initialisation : Si $n \in \{0, \ldots, q-1\}$, alors $f_{q+1,\omega}(f_{q,q+1}(n)) = f_{q+1,\omega}(n) = \overline{n} = f_{q,\omega}(n)$. Hérédité : Supposons maintenant que $n \geq q$ et que T(k) est vraie pour tout $k \in \{0, ..., n-1\}$.

On peut écrire $n = \sum_{i=0}^{k} a_i \ q^i$, avec $k \in \mathbb{N}$, $a_k \neq 0$ et pour tout $i \in \{0, \dots, k\}$,

 $a_i \in \{0, \dots, q-1\}$. Ainsi, $n \geq q^k \geq 2^k > k$, donc on peut utiliser T(i) pour tout $i \in \{0, \dots, k\}$. Ainsi,

$$f_{q+1,\omega}(f_{q,q+1}(n)) = f_{q+1,\omega}\left(\sum_{i=0}^k a_i \ (q+1)^{f_{q,q+1}(i)}\right) = \sum_{i=0}^k \omega^{f_{q+1,\omega}(f_{q,q+1}(i))} \overline{a_i},$$

donc
$$f_{q+1,\omega}(f_{q,q+1}(n)) = \sum_{i=0}^{k} \omega^{f_{q,\omega}(i)} \overline{a_i} = f_{q,\omega}(n).$$

Remarque : Nous avons utilisé la convention suivante : si $(\alpha_h)_{0 \le h \le k}$ est une famille de k+1 ordinaux, alors $\sum_{h=0}^k \alpha_h = \alpha_k + \alpha_{k-1} + \cdots + \alpha_0$. Nous poursuivons le corrigé en conservant cette même convention.

32°) Il suffit de montrer que, pour tout $x \in \mathbb{N}$, $f_{n,\omega}(x+1) > f_{n,\omega}(x)$ (car un ensemble d'ordinaux est ordonné par \in d'après la question 29). Démontrons-le par récurrence. <u>Initialisation</u>: Lorsque x = 0, $f_{n,\omega}(0) = \overline{0} < \overline{1} = f_{n,\omega}(1)$, car $\overline{1} = \overline{0}^+ = \emptyset \cup \{\emptyset\} = \{\emptyset\}$, donc $\overline{0} = \emptyset \in \overline{1}$.

<u>Hérédité</u>: On suppose que $x \ge 1$ et que,

pour tout $y \in \{0, \dots, x - 1\}, f_{n,\omega}(y + 1) > f_{n,\omega}(y).$

Montrons que $f_{n,\omega}(x+1) > f_{n,\omega}(x)$. On note f à la place de $f_{n,\omega}$.

 $\{h \in \mathbb{N} \ / \ n^h \le x+1\}$ est non vide et il est majoré par $\frac{\ln(x+1)}{\ln n}$, donc il possède un maximum, que l'on notera k. Ainsi, $n^k \le x+1 < n^{k+1}$.

 $\{b \in \mathbb{N} \ / \ bn^k \le x+1\}$ est non vide et majoré, donc il possède également un maximum, que l'on note a. Ainsi, $an^k \le x+1 < (a+1)n^k$.

Si l'on pose $j = x + 1 - an^{\overline{k}}$, on a donc $0 \le j < n^k$.

Par construction, $an^k < n^{k+1}$, donc $a \in \{0, ..., n-1\}$, or $x+1 = an^k + j$, donc si

l'écriture de j en base n est $j = \sum_{i=0}^{n} a_i n^i$, celle de x+1 est $x+1 = an^k + \sum_{i=0}^{n} a_i n^i$.

Ceci démontre que $f(x+1) = \omega^{f(k)} \overline{a} + f(j)$.

Premier cas : Supposons que $j \neq 0$.

Alors on a également $x = an^k + (j-1)$ avec $j-1 \in \{0, \ldots, n^k - 1\}$, donc pour les mêmes raisons, $f(x) = \omega^{f(k)} \overline{a} + f(j-1)$.

 $a \ge 1$, car $1 \times n^k \le x + 1$ et $n^k \ge 1$, donc $j = x + 1 - an^k \le x$. Ainsi, d'après l'hypothèse de récurrence, f(j-1) < f(j). Alors, d'après la propriété admise numéro 2, f(x+1) > f(x).

Second cas: On suppose maintenant que j = 0.

Alors $f(x+1) = \omega^{f(k)}\overline{a}$. D'autre part $x = an^k - 1 = (a-1)n^k + \sum_{i=0}^{k-1} (n-1)n^i$, d'après

la question 7, donc $f(x) = \omega^{f(k)} \overline{(a-1)} + \sum_{i=0}^{k-1} \omega^{f(i)} \overline{(n-1)}$.

D'après la propriété 1 puis la définition de la suite (\overline{n}) , $\overline{(a-1)} + \overline{1} = \overline{(a-1)}^+ = \overline{a}$, donc d'après les propriétés 5 et 8, $f(x+1) = \omega^{f(k)} \overline{(a-1)} + \omega^{f(k)} \overline{1} = \omega^{f(k)} \overline{(a-1)} + \omega^{f(k)}$.

D'après la propriété 2, il suffit donc de montrer que $\omega^{f(k)} > \sum_{i=0}^{k-1} \omega^{f(i)} \overline{(n-1)}$.

 $\underline{\text{Si } k=0},\ f(x+1)=\overline{a}\ \text{et}\ f(x)=\overline{(a-1)},\ \text{or pour tout ordinal}\ \alpha,\ \alpha\in\alpha^+,\ \text{donc}\ \overline{(a-1)}\in\overline{a},\ \text{c'est-à-dire}\ \overline{(a-1)}<\overline{a}.\ \text{Dans ce cas, on a bien}\ f(x+1)>f(x).$

Si
$$k = 1$$
, $\omega^{f(k)} = \omega^{\overline{1}} = \omega$ (prop 6) et $\sum_{i=0}^{k-1} \omega^{f(i)} \overline{(n-1)} = \overline{(n-1)}$ (prop 6 et 8).

Mais on a vu que $\overline{(n-1)} \in \overline{n}$. De plus $\omega = \bigcup_{n \in \mathbb{N}} \overline{n}$,

donc $\overline{(n-1)} \in \omega$, c'est-à-dire $\overline{(n-1)} < \omega$. Ainsi, lorsque k=1, on a montré que f(x+1) > f(x).

On peut maintenant supposer que $k \geq 2$.

D'après la question 3, $2^x \ge x+1$, donc $n^x \ge x+1$. Ainsi, par définition de $k, k \le x$. Alors, d'après l'hypothèse de récurrence, f(k) > f(k-1). On a donc $f(k-1) \in f(k)$, donc d'après la question 27, $f(k-1)^+ \subset f(k)$, puis d'après la question 26, $f(k-1) + \overline{1} = f(k-1)^+ \le f(k)$.

D'après la prop 4, sachant que $\omega > \overline{1}$ (on a vu que, pour tout $n \in \mathbb{N}$, $\omega > \overline{n}$), $\omega^{f(k)} \geq \omega^{f(k-1)+\overline{1}} = \omega^{f(k-1)}\omega$ (prop 7), donc (prop 3) $\omega^{f(k)} \geq \omega^{f(k-1)}\overline{n}$. Ainsi, pour

conclure, il suffit de montrer que $\omega^{f(k-1)}\overline{n} > \sum_{i=1}^{k-1} \omega^{f(i)}\overline{(n-1)}$.

Or d'après la prop 5, $\omega^{f(k-1)}\overline{n} = \omega^{f(k-1)}\overline{(n-1)} + \omega^{f(k-1)}$, donc (prop 2) il suffit de montrer que $\omega^{f(k-1)} > \sum_{i=0}^{k-2} \omega^{f(i)}\overline{(n-1)}$, c'est-à-dire que

$$f(n^{k-1}) > f\left(\sum_{i=0}^{k-2} (n-1)n^i\right) = f(n^{k-1}-1).$$

Mais $n^{k-1} < n^k \le x+1$, donc $n^{k-1} \le x$. Alors, d'après l'hypothèse de récurrence, on a bien $f(n^{k-1}) > f(n^{k-1}-1)$.

On a ainsi démontré dans tous les cas que f(x+1) > f(x).

33°) Si $g_n \neq 0$, alors $\alpha_n = f_{q+n+1,\omega}(g_{n+1}+1)$, donc d'après la question précédente, $\alpha_n > f_{q+n+1,\omega}(g_{n+1}) = \alpha_{n+1}$.

L'ensemble $A = \{\alpha_n / n \in \mathbb{N}\}$ est un ensemble non vide d'ordinaux, donc d'après la question 29, il possède un minimum, de la forme α_{n_0} où $n_0 \in \mathbb{N}$. Alors $\alpha_{n_0+1} \geq \alpha_{n_0}$, donc $g_{n_0} = 0$, ce qui démontre le théorème de Goodstein.