Liouville's Theorem on integrability via elementary functions

Vanya Vorobiov

Sher

January 15, 2025

Liouville's Theorem

Vanya Vorobiov

Introduction

Basic definitions

What are elementary functions

Liouville's Theorem (statement)

The Main Lemma

Liouville's Theorem (proof)

t is a trancendental logarithm

t is a trancendental exponent

t is algebraic

Corollaries

Introduction

Liouville's Theorem

Vanya Vorobiov

Introduction

Basic definitions

What are elementary functions

Liouville's Theorem (statement)

The Main Lemma

Liouville's Theorem (proof)

t is a trancendental logarithm

 ${f t}$ is a trancendental exponent

t is algebraic

Corollaries

TODO

Basic definitions

Remark

Through the all of presentation we will suppose that all fields have 0 characteristic.

Liouville's Theorem

Vanya Vorobiov

Introduction

Basic definit

What are elementary functions

Liouville's Theorem (statement)

The Main Lemma

Liouville's Theorem (proof)

t is a trancendental logarithm

t is a trancendental exponent

t is algebraic

Corollaries

The Main

Lemma Liouville's

Theorem (proof)

logarithm t is a trancendental

ponent

t is algebraic

Corollaries

Remark

Through the all of presentation we will suppose that all fields have 0 characteristic.

Definition

Field F is differential if it's equipped with the unary function ' such that:

- (a + b)' = a' + b'
- (ab)' = a'b + ab'

The Main Lemma

Liouville's Theorem (proof)

t is a trancendental

t is a trancendental exponent

t is algebraic

Corollaries

Remark

Through the all of presentation we will suppose that all fields have 0 characteristic.

Definition

Field F is differential if it's equipped with the unary function ' such that:

- (a + b)' = a' + b'
- (ab)' = a'b + ab'

Definition

Subfield $K \subseteq F$, $K = \{a \in F \mid a' = 0\}$ is called subfield of constants.

The Main Lemma

Liouville's Theorem (proof)

t is a trancendental logarithm

t is a trancendental

t is algebraic

Corollaries

Remark

Through the all of presentation we will suppose that all fields have 0 characteristic.

Definition

Field F is differential if it's equipped with the unary function ' such that:

- (a + b)' = a' + b'
- (ab)' = a'b + ab'

Definition

Subfield $K \subseteq F$, $K = \{a \in F \mid a' = 0\}$ is called subfield of constants.

Definition

Differential extension of the differential field F is field E such that $E \supset F$ and there is the same differentiation ' on E.

The Main Lemma

Liouville's Theorem (proof)

t is a trancendental logarithm

t is a trancendental

t is algebraic

Corollaries

Remark

Through the all of presentation we will suppose that all fields have 0 characteristic.

b is called the exponent of a if $a' = \frac{b'}{h}$

Definition

Field F is differential if it's equipped with the unary function ' such that:

- (a + b)' = a' + b'
- (ab)' = a'b + ab'

Definition

Subfield $K \subseteq F$, $K = \{a \in F \mid a' = 0\}$ is called subfield of constants.

Definition

Differential extension of the differential field F is field E such that $E \supset F$ and there is the same differentiation ' on E.

Definition

Let F be the differential field. Then

- b is called the logarithm of a if $b' = \frac{a'}{a}$

Lemma Liouville's

Theorem (proof) t is a trancendental

logarithm t is a trancendental

t is algebraic

Corollaries

Definition

The extension E of F is called elementary if it can be presented as $E = F(t_1, ..., t_n)$ and for all i t_i is logarithm or exponent or algebraic over $F(t_1, \ldots, t_{i-1}).$

Lemma Liouville's

Theorem (proof)

logarithm t is a trancendental

xponent

t is algebraic

Corollaries

Definition

The extension E of F is called elementary if it can be presented as $E = F(t_1, ..., t_n)$ and for all i t_i is logarithm or exponent or algebraic over $F(t_1, ..., t_{i-1})$.

Remark

Common sense says us that some function $f:\mathbb{C}\to\mathbb{C}$ is elementary iff it can be constucted via finite number of radicals, sines, cosines, exponents, logarithms and hyperbolic functions. One can see that it's consistent with our approach. Futhermore our definition on elementarity is more general.

Liouville's Theorem

The Main Lemma

Liouville's Theorem (proof)

t is a trancendental logarithm

t is a trancendental exponent

t is algebraic

Corollaries

Theorem (Liouville, 1833-1841)

Let F be a differential field, and K is its subfield of constants. If for $\alpha \in F$ equation $x' = \alpha$ has the solution in some elementary extension of F, such that its subfield of constants is still K, then

$$\alpha = \sum_{i=1}^m c_i \frac{u_i'}{u_i} + v'$$

 $\text{for some } c_1, \ldots c_m \in K, \, u_1, \ldots, u_m, v \in F.$

Liouville's Theorem (proof)

t is a trancendental logarithm

t is a trancendental

t is algebraic

Corollaries

Lemma

Let F be a differential field, t is trancendental over F, and t is a logarithm or an exponent of some element from F. And let $f \in F[x]$ be a polynom, $deg f = k \ge 1$

- If t is a logarithm then the degree of (f(t))' is k if the leading coefficient of is not a constant, and it has degree k-1 if the leading coefficient is a constant.
- If t is an exponent then the degree of (f(t))' is k and it's multiple of f if and only if f is a monomial.

Liouville's Theorem (proof)

t is a trancendental logarithm

t is a trancendental

t is algebraic

Corollaries

Lemma

Let F be a differential field, t is trancendental over F, and t is a logarithm or an exponent of some element from F. And let $f \in F[x]$ be a polynom, $deg f = k \ge 1$

- ▶ If t is a logarithm then the degree of (f(t))' is k if the leading coefficient of is not a constant, and it has degree k-1 if the leading coefficient is a constant.
- If t is an exponent then the degree of (f(t))' is k and it's multiple of f if and only if f is a monomial.

Proof.

It's a quite simple technical exercise.

Liouville's Theorem (proof)

Let x be the solution of differential equation mentioned above. And $x\in F(t_1,\ldots,t_n).$

We will use induction on n (we don't fix the field F).

For short we denote $t = t_1$.

Liouville's Theorem

Vanya Vorobiov

Introduction

Basic definitions

What are elementary functions

Liouville's Theorem (statement)

The Main Lemma

> liouville's Theorem (proof

t is a trancendental logarithm

t is a trancendental exponent

t is algebraic

Corollaries

Liouville's Theorem (statement) The Main

Lemma

t is a trancendental

logarithm t is a trancendental

t is algebraic

Corollaries

Let x be the solution of differential equation mentioned above. And $x \in F(t_1, \ldots, t_n).$

We will use induction on n (we don't fix the field F).

For short we denote $t = t_1$.

Using the inductive assumption, we get

$$\alpha = \sum_{i=1}^{m} c_i \frac{u_i'}{u_i} + v'$$

for some $c_1, \ldots c_m \in K$, $u_1, \ldots, u_m, v \in F(t)$. Here we use that the subfield of constants of F(t) is K.

4 D > 4 A > 4 B > 4 B > B = 900

 $x \in F(t_1, \ldots, t_n).$

For short we denote $t = t_1$.

Using the inductive assumption, we get

for some $c_1, \ldots c_m \in K$, $u_1, \ldots, u_m, v \in F(t)$.

Liouville's Theorem (statement)

Lemma

logarithm

Corollaries

Basic definitions

The Main

t is a trancendental

t is a trancendental

t is algebraic

▶ t is trancendental over F and it is an exponent;

 $\alpha = \sum_{i=1}^{m} c_i \frac{u_i'}{u_i} + v'$

Let x be the solution of differential equation mentioned above. And

We will use induction on n (we don't fix the field F).

Here we use that the subfield of constants of F(t) is K.

t is trancendental over F and it is a logarithm;

t is algebraic over F.

Now we consider 3 cases

Introduction

Basic definitions

What are elementary functions

Liouville's Theorem (statement)

The Main Lemma

Liouville's Theorem (proof)

t is a trancendental logarithm

t is a trancendental exponent t is algebraic

Corollaries

TODO

TODO

Introduction

Basic definitions

What are elementary functions

Liouville's Theorem (statement)

The Main Lemma

> Liouville's Theorem (proof)

 ${f t}$ is a trancendental logarithm

exponent

t is algebraic

Corollaries

4日 → 4個 → 4 差 → 4 差 → 9 へ ○

Basic definitions

What are elementary functions

Liouville's Theorem (statement)

The Main Lemma

Liouville's Theorem (proof)

 ${f t}$ is a trancendental logarithm

t is a trancendental exponent

t is algebraic

Corollaries

TODO

Corollaries

Liouville's Theorem

Vanya Vorobiov

Introduction

Basic definitions

What are elementary functions

Liouville's Theorem (statement)

The Main Lemma

Liouville's Theorem (proof)

t is a trancendental logarithm

t is a trancendental exponent

t is algebraic

Corollaries

 TODO