

Linear and Discrete Optimization

How efficient is the simplex method?

- Algorithms and their analysis
- ► *O*-notation

Algorithms

An algorithm is a finite set of instructions, used in common programming languages, like

- arithmetic operations
- comparisons
- conditional statements
- read/write instructions
- etc.

The *running time* of the algorithm is the number of instructions that it carries out. (Function depending on the *length of input*)

Algorithms

An algorithm is a finite set of instructions, used in common programming languages, like

- arithmetic operations
- comparisons
- conditional statements
- read/write instructions
- etc.

The *running time* of the algorithm is the number of instructions that it carries out. (Function depending on the *length of input*)

First approximation: Count the number of elementary operations like

- arithmetic operations (addition, subtraction, multiplication, division)
- Comparisons such as <, ≤, = etc.</p>

Example: Inner product

$$a \cdot b = \sum_{i=1}^{\infty} a_i \cdot b_i$$

- $a, b \in \mathbb{R}^n$
- Number of multiplications: n
- Number of additions: n
- ► Total: 2 · n elementary operations
- ▶ Length of input is $2 \cdot n$.

Example: Matrix multiplication

Example: Matrix multiplication (cont.)

Total: 2. m.n.l orchmetic operations

- $A \in \mathbb{R}^{m \times l}, B \in \mathbb{R}^{l \times n}$
- ▶ Multiplications: $m \cdot n \cdot l$
- Additions: $m \cdot n \cdot l$
- ▶ Length of input is $\underline{m \cdot l} + l \cdot n$

Example: Matrix multiplication (cont.)

- $A \in \mathbb{R}^{m \times l}, B \in \mathbb{R}^{l \times n}$
- ▶ Multiplications: $m \cdot n \cdot l$
- Additions: $m \cdot n \cdot l$
- ▶ Length of input is $m \cdot l + l \cdot n$
- In these examples exact counting is possible.
- ▶ We are interested in the *rate of growth* of the number of elementary operations.

in terms of in put length

Let $T, f : \mathbb{N} \to \mathbb{R}_{\geq 0}$ be functions

► T(n) = O(f(n)), if there exist positive constants $n_o \in \mathbb{N}$ and $c \in \mathbb{R}_{>0}$ with $T(n) \in O(f(n))$ $T(n) \leq c \cdot f(n)$ for all $n \geq n_0$.

Let $T, f : \mathbb{N} \to \mathbb{R}_{\geq 0}$ be functions

▶ T(n) = O(f(n)), if there exist positive constants $n_o \in \mathbb{N}$ and $c \in \mathbb{R}_{>0}$ with

$$T(n) \le c \cdot f(n)$$
 for all $n \ge n_0$.

▶ $T(n) = \Omega(f(n))$, if there exist constants $n_o \in \mathbb{N}$ and $c \in \mathbb{R}_{>0}$ with

$$T(n) \ge c \cdot f(n)$$
 for all $n \ge n_0$.

 $ightharpoonup T(n) = \Theta(f(n))$ if

$$T(n) = O(f(n))$$
 and $T(n) = \Omega(f(n))$.

Let $T, f : \mathbb{N} \to \mathbb{R}_{\geq 0}$ be functions

▶ T(n) = O(f(n)), if there exist positive constants $n_o \in \mathbb{N}$ and $c \in \mathbb{R}_{>0}$ with

$$T(n) \leq \underline{c} \cdot f(n) \text{ for all } \underline{n \geq n_0}.$$

▶ $T(n) = \Omega(f(n))$, if there exist constants $n_o \in \mathbb{N}$ and $c \in \mathbb{R}_{>0}$ with

$$T(n) \ge c \cdot f(n)$$
 for all $n \ge n_0$.

 $ightharpoonup T(n) = \Theta(f(n))$ if

$$T(n) = O(f(n))$$
 and $T(n) = \Omega(f(n))$.

Example

The function $T(n) = 2n^2 + 3n + 1$ is in $O(n^2)$, since for all $n \ge 1$ one has $2n^2 + 3n + 1 \le 6n^2$. Here $\underline{n_0 = 1}$ and $\underline{c = 6}$.

Let $T, f : \mathbb{N} \to \mathbb{R}_{\geq 0}$ be functions

▶ T(n) = O(f(n)), if there exist positive constants $n_o \in \mathbb{N}$ and $c \in \mathbb{R}_{>0}$ with

$$T(n) \le c \cdot f(n)$$
 for all $n \ge n_0$.

► $T(n) = \Omega(f(n))$, if there exist constants $n_o \in \mathbb{N}$ and $c \in \mathbb{R}_{>0}$ with

$$T(n) \ge c \cdot f(n)$$
 for all $n \ge n_0$.

 $T(n) = \Theta(f(n))$ if

$$T(n) = O(f(n))$$
 and $T(n) = \Omega(f(n))$.

Example

The function $T(n) = 2n^2 + 3n + 1$ is in $O(n^2)$, since for all $n \ge 1$ one has $2n^2 + 3n + 1 \le 6n^2$. Here $n_0 = 1$ and $n_0 = 1$ and $n_0 = 1$.

Similarly $T(n) = \Omega(n^2)$, since for each $n \ge 1$ one has $2n^2 + 3n + 1 \ge n^2$. Thus T(n) is in $\Theta(n^2)$.

Quiz

The function $f(n) = n^2 \log n$ is

$$\bigcirc$$
 = $O(n^3)$

$$ightharpoonup = O(n)$$

$$\bigcirc$$
 = $\Omega(n)$

$$\triangleright$$
 = $\Omega(n^2)$

$$\triangleright$$
 = $O(n^{2+\varepsilon})$ for each $\varepsilon > 0$

$$\lim_{n\to\infty} \frac{\log n}{n\epsilon} = 0$$

Running time of algorithms

We measure the running time of algorithms in terms of the *length of the input*.

Example: The inner product of two n-dimensional vectors can be computed in time O(n) (linear time).

Running time of algorithms

We measure the running time of algorithms in terms of the length of the input.

Example: The inner product of two n-dimensional vectors can be computed in time O(n) (linear time).

Example: Two $n \times n$ matrices can be multiplied in time $O(n^3)$. The input has length $\Theta(n^2)$.

Measured by the length of the input, the algorithm runs in time $O(m^{1.5})$. $(m = n^2)$

Running time of algorithms

We measure the running time of algorithms in terms of the length of the input.

Example: The inner product of two n-dimensional vectors can be computed in time O(n) (linear time).

Example: Two $n \times n$ matrices can be multiplied in time $O(n^3)$. The input has length $\Theta(n^2)$.

Measured by the length of the input, the algorithm runs in time $O(m^{1.5})$. $(m = n^2)$

An algorithm runs in *polynomial time*, if it carries out $O(n^k)$ elementary operations for some $k \in \mathbb{N}$, where n is the *length* of the input.

fixed constant

Quiz

Suppose that L has n elements.

- \bigcirc The algorithm carries out O(n) elementary operations.
- ▶ The algorithm carries out $\Omega(2^n)$ elementary operations.
- After the last iteration of the loop, $s = 2^{n+1}$.
- After the last iteration of the loop, $s = 2^{2^n}$.

$$S = 2^{2}$$

 $log(S) = 2^{n}$ = exponential
 $log(L)$

Polynomial time: Re-definition

An algorithm runs in *polynomial time*, if it carries out $O(n^k)$ elementary operations *on rational numbers of size* $O(n^k)$ for some $k \in \mathbb{N}$, where n is the length of the input.

$$x \in \mathbb{Z}$$
: $\operatorname{size}(x) = \lceil \log(|x| + 1) \rceil$

► $x \in \mathbb{Q}$: size(x) = size(p) + size(q), where x = p/q with $p, q \in \mathbb{Z}$, $q \ge 1$ and $\gcd(p, q) = 1$ A A O A = A · 2³ + A · 2²

= 1.3

⇒ ⊖ (number of bits nucled to rep. x)

Also account for binary encoding length of numbers