基础部分(建议测试时间不超过60分钟)

- 1. 填空题
 - (1) 设随机事件 A 和 B 独立, $P(A) = \frac{1}{3}$, $P(A+B) = \frac{1}{2}$,则 P(B) = ().
 - (2) 随机变量 X 的概率密度函数 $f(x) = \begin{cases} ax, & 0 \le x \le 2 \\ 0, & \pm \end{cases}$,则 P(1 < X < 2) = ().
 - (3) 随机变量 X 的分布列为 $P(X = k) = 2a \cdot 0.8^{k-1}$ ($k = 1, 2, \dots$),则常数 a = ().
 - (4) 设 $X \sim N(1,9)$, $Y \sim N(-1,4)$, 若 $P(X > 3) = P(Y \le \frac{a}{3})$, 则a = ()
 - (5) 已知随机变量 $X \sim U(0,2)$,则 $E(\min\{X,1\}) = ($).
 - (6) 随机向量 $(X,Y) \sim N(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2,\rho)$,其中 $\mu_1=-3$, $\mu_2=0$, $\sigma_1^2=9$, $\sigma_2^2=4$, $\rho=0.5$,则 $\mathrm{Var}(X+\frac{Y}{2})=(\quad).$
 - (7) 设 X_1, \dots, X_n 是来自二项分布总体 X 的随机样本, $X \sim B(100, \frac{1}{5})$, 若样本容量 n=8 ,则 $E\left(\frac{1}{n}\sum_{i=1}^n(X_i-\bar{X})^2\right)=(\quad).$
 - (8) 设 X_1, \dots, X_n 为来自正态总体 $N(\mu, 4)$ 的随机样本,若使 $P\left(\left|\bar{X} \mu\right| < \frac{1}{2}\right) \ge 0.96$ 成立,则样本容量 n 至少要达到 () .
- 2. 某厂有甲、乙、丙三车间生产同一种产品,产量分别占总产量的 60% , 30% 和 10% ,各车间的次品率分别 是 3% , 5% 和 7% , 试求:
 - (1) 在该厂产品中任取一件,恰为次品的概率.
 - (2) 若发现一件产品为次品,该次品来自甲车间的概率.
- 3. 随机向量(X,Y)的联合概率密度函数为 $f(x,y) = \begin{cases} \frac{x}{4}, & 0 \le x, y \le 2\\ 0, & 其它 \end{cases}$
 - (1) 求 X,Y 的边际密度函数 $f_X(x)$ 和 $f_Y(y)$.
 - (2) 验证随机变量 X, Y 相互独立.
 - (3) 计算相关系数 Corr(X+Y,X-Y).

强化部分(建议测试时间不超过60分钟)

1. 假设 X 和 Y 都是正的随机变量,其联合概率密度函数是 $f(x,y) = \frac{c}{y} \exp\left\{-\left(y + \frac{x}{y}\right)\right\}$, $0 < x, y < \infty$,这里 c

是常数.

- (1) 确定常数c的值.
- (2) 计算协方差Cov(X,Y).
- (3) 计算条件期望 $E[e^{-X} | Y = 1]$.
- 2. 设随机样本 X_i ($i=1,\cdots,n$)来自总体 U(0,1) ,假设 $X_{(1)}=\min\{X_1,\cdots,X_n\}$, $X_{(n)}=\max\{X_1,\cdots,X_n\}$.
 - (1) 分别求 $X_{(1)}$, $X_{(n)}$ 的概率密度函数.
 - (2) 求 $X_{(1)}$, $X_{(n)}$ 的联合概率密度函数.
 - (3) $RE(X_{(n)} + X_{(1)})$.
 - (4) 求 $X_{(n)} X_{(1)}$ 的概率密度函数.
- 3. 某校有1600名学生将参加通识讲座,共有5个讲座同时开讲,假定每位同学是随机地选择一个讲座去听,而且同学之间的选择是相互独立的,如果某间阶梯教室想以不低于95%的概率保证在这间教室听讲座的学生都有座位,那么这间阶梯教室至少需要设有多少座位?(需给出求解过程)
- 4. 假设随机变量 X_1 与 X_2 独立同分布且 $X_1+X_2\sim N(\mu,\sigma^2)$,求 X_1 的分布.(需给出求解过程)

附录:标准正态累积分布函数 $\Phi(x)$

	x	0.85	0. 92	1.00	1.64	1.80	1. 96	2. 05	2. 33	2. 58
($\Phi(x)$	0.802	0. 821	0.841	0. 950	0. 964	0. 975	0. 980	0. 990	0. 995