2 mil

N73-2018/

CR-128859

C. Z_

SPACECRAFT COMMUNICATIONS TERMINAL BREADBOARD COMPONENTS

FINAL REPORT

for the NASA
MANNED SPACE FLIGHT CENTER

Houston, Texas

Contract NASS-12984

NA59-12

ADVANCED DEVELOPMENT

DEFENSE COMMUNICATIONS
492 River Road, Nutley, New Jersey 07110

February 1973

COMMUNICATIONS TERMINAL BREADBOARD COMPONENTS Final Report (ITT Defense Communications Div.) 88 p HC \$6.50

N73-20181

Unclas 66450

4

SPACECRAFT COMMUNICATIONS TERMINAL BREADBOARD COMPONENTS

FINAL REPORT

for the NASA

MANNED SPACE FLIGHT CENTER

Houston, Texas

Contract NASS-12984

NAS 9-12984

ADVANCED DEVELOPMENT

DEFENSE COMMUNICATIONS
492 River Road, Nutley, New Jersey 07110

- February 1973 -

TABLE OF CONTENTS

1.	INTRODUCTION			1		
	1. 1	Objectiv	ve	1		
	1.2	Summar	ry	1		
2.	C-BAND TRANSLATOR/TRANSMITTER/ATTENUATOR					
	2.1	Block D	Diagram Assembly	3		
	2, 2	Compon	ents	3		
		2. 2. 1	Input Attenuator	3		
		2.2.2	First Mixer	3		
		2. 2. 3	1042.5 MHz LO	4		
		2.2.4	1112.5 MHz IF Filter	4		
		2. 2. 5	1112.5 MHz Amplifier	5		
		2. 2. 6	SHF Mixer	5		
		2. 2. 7	SHF LO	5		
		2. 2. 8	6 GHz Isolator	6		
		2.2.9	6 GHz Band Pass Filter	6		
		2. 2. 10	Fixed Attenuator	6		
		2. 2. 11	Adjustable Attenuator	7		
	•	2. 2. 12	1 DB Step Attenuator	7		
		2. 2. 13	10 DB Step Attenuator	7		
3.	C-BA	ND TRAN	ISLATOR/RECEIVER/ATTENUATOR	8		
	3.1	Block D	8			
	3.2	3.2 Components				
	÷	3. 2. 1	Low Noise Amplifier	8		
		3. 2. 2	Input Attenuator	8		
		2 2 2	Innut Comlon	0		

			_
	3. 2. 4	4 GHz Isolator	9
	3. 2. 5	4 GHz Band Pass Filter	9
	3. 2. 6	SHF Mixer	10
	3. 2. 7	SHF LO	10
	3.2. 8	1112.5 MHz IF Amplifier	10
	3. 2. 9	1112.5 MHz IF Filter	11
	3. 2. 10	1112.5 MHz Mixer	11
	3. 2. 11	1182.5 MHz LO	12
	3. 2. 12	70 MHz IF Amplifier	. 12
	3. 2. 13	1 DB Step Attenuator	13
	3. 2. 14	10 DB Step Attenuator	13
4.	SYSTEM PERF	ORMANCE DATA	14
5.	MECHANICAL		39
e	гот.	•	40

LIST OF ILLUSTRATIONS

Figure Number	& Title	Follows Page
Figure 1-1 Figure 1-2 Figure 1-3 Figure 1-4	Translator Chassis, Front View (70704) Translator Chassis, Top View (70705) Translator Chassis, Three Quarter View (70706) Translator Block Diagram	2 2 2 2
Figure 2-1 Figure 2-2 Figure 2-3	Translator Upconverter, Block Diagram Translator Upconverter (68606) Translator Upconverter Chassis Drawing	3 3 3
Figure 2-4 Figure 2-5 Figure 2-6 Figure 2-7 Figure 2-8	X27 Multiplier, Schematic Diagram 1042.5 MHz Filter Frequency Response 1042.5 MHz Output Filter (68477) 1112.5 MHz I-F Bandpass Filter (70360) 1112.5 MHz I-F Bandpass Filter Response	4 4 4 4
Figure 2-9 Figure 2-10 Figure 2-11 Figure 2-12	1112.5 MHz Amplifier, Schematic Diagram 1112.5 MHz Amplifier (70362 SHF Mixer (70361) SHF Local Oscillator Manufacturer's Test Data Sheet	5 5 5 5
Figure 2-13 Figure 2-14	6 GHz Bandpass Filter (68479) 5.9 to 6.4 GHz Bandpass Filter, Frequency Response	6
Figure 3-1 Figure 3-2 Figure 3-3 Figure 3-4 Figure 3-5 Figure 3-6	Translator Downconverter, Block Diagram Translator Downconverter (70622) Translator Downconverter Chassis Drawing Low Noise Amplifier (70622) 4 GHz Low Noise Amplifier, Schematic Diagram 4 GHz Low Noise Amplifier Performance, Photo-Oscillogram	8 8 8 8 8
Figure 3–7 Figure 3–8 Figure 3–9	4 GHz Isolator (68474) 4 GHz Bandpass Filter (68475) 3.7 to 4.2 GHz Bandpass Filter Frequency Response	9 9 9
Figure 3-10 Figure 3-11 Figure 3-12 Figure 3-13	4 GHz Mixer (68449) 4 GHz Local Oscillator Manufacturer's Data Sheet 1112.5 MHz Downconverter Amplifier, Schematic Diagram 1112.5 MHz Downconverter Amplifier (70363)	10 10 10 10
Figure 3-14 Figure 3-15	1112.5 MHz Downconverter Filter (68476) Downconverter Filter Response	11 11
Figure 3-16 Figure 3-17 Figure 3-18	Downconverter X27 Multiplier (70359) 1182.5 MHz Downconverter Filter (68477) 1170.5 to 1190.2 MHz Bandpass Filter Frequency Response	12 12 12
Figure 5-1	Test Translator, D-C Wiring Diagram	39

1. INTRODUCTION

1.1 OBJECTIVE

This final report represents the results of the technical effort during the period from July, 1972 through January, 1973 under contract NAS9-12984 to produce spacecraft communication terminal breadboard components consistent with the specifications.

1.2 SUMMARY

Photos of the overall translator chassis are shown in figures 1-1, 2 and 3 (front, top, three-quarter view). A block diagram of the complete assembly is shown in figure 1-4.

The following table summarizes the performance of the spacecraft communication terminal breadboard components:

Specification	NASA MSC Requirement	ITTDCD Performance
Packaging	Single unit capable of being	Single unit capable
	rack mounted in a 19" rack.	of being rack mounted
		in a 19" rack.
Size		
•		
Weight		26 lbs.
Power Consumption		115/120 VAC, 50-60
		watts
Environment	Normal laboratory	Normal laboratory
	C-Band Translator/Transmitter/Att	enuator
IF Input Frequency	70 MHz	70 MHz
IF Bandwidth	100 MHz	100 MHz
IF Input Impedance	50 ohms	50 ohms
IF Input VSWR		1. 5:1 max.

0 to +10 dBm 0 to +10 dBm Input Signal Level 6 GHz 6 GHz RF Output Frequency 100 MHz 100 MHz RF Output Bandwidth Adjustable -110 to -70 dBm RF Output Level Adjustable -110 to -70 dBm Repeatability error of Repeatability error of 0.5 dB Attenuator Accuracy 0.5 dB under calibrated under calibrated conditions conditions $\pm 0.25 \text{ dB/day}$ Carrier level stability 50 ohms 50 ohms RF Output Impedance 1. 5: max. RF Output VSWR \pm . 0015% Frequency Stability ±. 0015% -138 dBm in a 4 kHz band Spurious Outputs -138 dBm in a 4 kHz band at the attenuator output. at the attenuator output.

C-Band Translator/Receiver/Attenuator

·		
RF Input Frequency	4 GHz	4 GHz
RF Input Bandwidth	100 MHz	100 MHz
RF Input Impedance	50 ohms	50 ohms
RF Input VSWR	1.5:1	1. 5:1
RF Input Level	+20 to +40 dBm	+20 to +40 dBm
IF Output Frequency	70 MHz	70 MHz
IF Output Bandwidth	100 MHz	100 MHz
IF Output Impedance	50 ohms	50 ohms
IF Output VSWR		1. 5:1 max.
IF Output Level	Adjustable -75 dBm to	Adjustable -75 dBm to
	-25 dBm	-25 dBm
Receiver Noise Figure	8 dB	8.3 dB
Carrier Level Stability		±0. 25 dB/day
Attenuator Accuracy	Repeatability error 0.5 dB	Repeatability error
	under calibrated conditions.	of 0.5 dB under
		calibrated conditions.

Figure 1-1 Translator Chassis, Front View (70705)

Figure 1-3 Translator Chassis, Three Quarter View (70706

Figure 1–4 Translator Block Diagram

2. C-BAND TRANSLATOR/TRANSMITTER/ATTENUATOR

2.1 BLOCK DIAGRAM ASSEMBLY

The block diagram for the translator/transmitter is shown in figure 2-1. The only changes from the block diagram in the first quarterly report are the internal levels.

A photo of the up-converter is shown in figure 2-2 and a chassis drawing in figure 2-3.

2.2 COMPONENTS

2.2.1 INPUT ATTENUATOR

The input Attenuator design is complete. It consists of three 1/4 watt fixed composition resistors in a pi configuration. The specification for the Input Attenuator appears below with a schematic.

Frequency

20 to 120 MHz

Attenuation

20 dB nominal

VSWR

1.3:1 max.

 $R_1 = 62$

 $R_2 = 220$

1/4 W. Fixed Composition

Schematic

2.2.2 FIRST MIXER

The first mixer is a purchased, Summit Engineering, Boozeman, Montana, Model 761 unit. The measured performance of this mixer is shown in the table below along with the specification.

Figure 2-1 Translator Upconverter, Block Diagram

Figure 2-2 Translator Upconverter (68606)

Figure 2-3 Translator Upconverter Chassis Drawing

	Specification	Performance
RF Output Frequency	1112. 5 MHz	1112.5 MHz
LO Frequency	1042.5 MHz	1042.5 MHz
IF Input Frequency	70 MHz	70 MHz
RF Bandwidth	100 MHz	100 MHz
LO/RF Isolation	50 dB	50 dB
LO Level	+7 to +10 dBm	+7 to +10 dBm
Conversion Loss	8 dB	8 dB

2.2.3 1042.5 MHZ LO

The TCXO for this LO chain is a CTS Knight Model 9703232. A schematic of the X27 multiplier is shown in figure 2-4. A curve showing the performance of the 1042. 5 MHz Lo output filter is shown in figure 2-5 and a photo in figure 2-6.

The performance specifications for the LO are tabulated below for reference.

Output Frequency 1042. 5 MHz
Frequency Stability ±. 0001%

Output Level +10 dBm

Spurious Outputs 85 dB below nominal Output

2.2.4 1112.5 MHZ IF FILTER

A 13 pole interdigital band pass filter has been fabricated. A photo of this filter appears in figure 2-7. The frequency response of this filter is shown in figure 2-8.

A summary of performance appears below:

	Specification	Performance
Frequency	1112.5 MHz	1112.5 MHz
Bandwidth	$100\mathrm{MHz}$	100 MHz
Rejection	55 dB at 1042. 5 MHz	55 dB
Design	13 Pole	13 Pole
	.1 dB Tchebyshev	.1 dB Tchebyshev
Loss	1 dB	1.2 dB
Band Edge Droop	1 dB	0.5 dB

Figure 2-5 1042.5 MHz Filter Frequency Response

Figure 2-7 1112.5 I-F Bandpass Filter (70360)

2. 2. 5 1112. 5 MHZ AMPLIFIER

The 1112.5 MHz amplifier has been fabricated. A schematic of the 1112.5 MHz amplifier is shown in figure 2-9. The measured amplifier performance appears below:

	Specification	Performance
Frequency	1112. 5 MHz	1112.5 MHz
Bandwidth	100 MHz	$100 \mathrm{MHz}$
Gain	15 dB	20 dB
Input VSWR	1. 2:1 max.	1. 5:1 max.
Output VSWR	1. 5:1 max.	1. 5:1 max.

A photo of this amplifier is shown in figure 2-10.

2.2.6 SHF MIXER

The SHF mixer is a microstrip balanced mixer. A photo of this mixer is shown in figure 2-11 and a performance summary appears below.

Input Frequency	1112.5 MHz	1112.5 MHz
Output Frequency	6.0 GHz	6.0 GHz
LO Frequency	4887.5 MHz	4887.5 MHz
LO Level	+10 to +13 dBm	+10 to +13 dBm
Conversion Loss	9 dB	9 dB
LO/RF Isolation	25 dB	25 dB

2.2.7 SHF LO

The SHF local oscillator is a Frequency Sources Model FS-30 purchased to the following specifications:

Output Frequency	4887.5 MHz
Output Power	+10 dBm
Output VSWR	1. 5:1 max.
Frequency Stability	±.0015%

Spurious 65 dB below output level in ±2000 MHz

band around fo.

A copy of the manufacturers test data is shown in figure 2-12.

HP35821E 100(2) C16,C17 FL2 9 C6, C7 HP 35821 E 87 750 12 <u>_</u> R2 & + 15000 5 % Resistor, Girbon, 5.6Kohm, Ygwarr, 25%. 2% Resistor Carbon, 1000 ohm, 1/8 watt, ±5%. Resistor, Carbon, 1800 ohm, 1/8 watt, ±5%. Resistor, Carbon, 8.2K ohm, 1/8 watt, ±5%. Resistor, Carbon, 750 ohm, 1/8 watt, ±5% Resistor, Carbon, 10 chm. 19 warr, 15%. Resistor, Carbon, 120 ohm, 1/8 wATT, ± 5 %. Resistor, Carbon, 180 ohm. Ye watt. + RIH Resistor, Carbon. 4.7 Kohm, 1/8 wATT, ± RIT RESISTOr, 91 ohm, 1/8 wATT 2 5% Transistor, NPN, HP35821E R/2 Resistor, same as RB. Resistor, same as RS. Transistor, same as QI Resistor, same as R4. RIG Kesistor, some as RB. Resistor, same as RS RIS RESISTOR, Same as R4. Resistor, same as Al. PARTS LIST

83

89

R7

K10 KII

Capacitur, some as CB Same us C3 Capacitur, some as C3 Capacitor, same as CB C25 Capacitur, same as C5 Capacilot, same as C3 Coppositor C31, C30 C26 C27 C28 C29 5425-003 Capacitor, variable .4-3.5pf, Johanson 5802 Capacitor. Ceramic, oluf, CKRO6CW103K

C24 Capacitor, same as C4

Capacitor. Variable, .4-6pf Johanson 5702

Transistor, same as Q1.

900 - 000

Capacitor, 100pf, ATC100-B-100-K-ms

Capacitur, 10 pf., ATC100-B-10-K-MS

Copacitor Ferd Turu, 1000pf, Erie 2

Capacitor, same as C3.

Same as C3.

Capacitor,

80

same as C2.

Clo Capacitur, same as CB.

C9 Capacitur, same as C3.

Same as Cl.

C12 Capacitor. C/1 Capacitor.

Capacitor. same

Capacitor, same

HP35821E

о 8

Capacitur, Fixed, 3,94f, 3500c KEMET CSR 13439 KP FILTER, LINE, FILTERION, ERIE: 1270-009 FI

Enductor, strip 0,4" LONG. OTS WIDE, GOLDPLATED ,007" THICK Inductor, strip, 0.5 Long. . 075 WIDE, GOLD PLATED . DOT "THICK Enductor, 2 TURNS #22 AWR SILVEL .070"10, 1/8" LONG Enductor, 6 TURNS # 22 AWR SILVER .070'10, .4"LONG, FILTER, Same as FLI. FILTER, SOME OS FLI. FL3 FL2 77 4

as C5.

Same

C15 Capacitor

as c4

same as L3. Inductor, same as L4. Incluctor, Inductor,

03

S

CIB Capacitor, same

Capacilor, same C20 Ciporitor, same

CIJ

C22 caparitor, same C23 Capacitor same

C21 Cuparitor, same

same as

CIT Capacilor.

Clb Capacilor, same

1112.5 MHz Amplifier, Figure 2-9 Conter Freq. = 1112.5 mHz Nominal Gain = 40 dB

PRE-AMP FOR UPCONVERTER

WIDE BAND

Schematic Diagram

Figure 2-10 1112.5 MHz Amplifier (70362)

Figure 2-11 SHF Mixer (70361)

	T. 7. 7. 14
P.O. NO.	5780310
CUST. NO.	32.66
FREQ.	4887.5 MHZ
T NO.	FS-30

·	SER	November 1	7				-1	7
. [JLI.	`~^					1	
į		00	90	2		٠.		,
DAT	Έ	10	2/3	-/-	7.2	,	_	
	'		i, i				•	
	_	_						١.

TEST DATA SHEET

TEMPERATURE	FREQUENCY	POWER
_ <i>O</i> •c	488 <u>7.5277</u> MHZ	28.0 Mw
<u>+25</u> •c	4887.5010MHZ	26.5 Mw
<u>+60 </u>	4887.3900 MHZ	<u>21.0 M</u> w
Spurious Rejection:	V	ОК
2.1 Mismatch Check:		ок

D.C.	Power	+15.0	V DC	9	115	1	Ma.
	- · · · · · · -		· · · · ·				

TECH: SARAM

OPERATING VOLTAGE _____AT _____MA

2.2.8 6 GHz ISOLATORS

The 6 GHz Isolators performance is tabulated below:

	Specification	Performan	Performance	
Frequency	6.0 GHz	6.0 GHz	6.0 GHz	
Bandwidth	200 MHz	$200~\mathrm{MHz}$	200 MHz	
Isolation	20 dB min.	26 dB	27 dB	
VSWR	1. 2:1 max.	1. 27:1	1. 22:1	
Loss	0.8 dB max.	.6 dB	.6 dB	

2.2.9 6 GHZ BANDPASS FILTER

The 6 pole MIC 6 GHz bandpass filter is shown in the photo of figure 2-13. The performance is shown in the curve of figure 2-14 and a performance summary is tabulated below:

	Specification	Performance
Frequency	6.0 GHz	6.0 GHz
Bandwidth	200 MHz	600 MHz
Rejection	80 dB at 4887.5 MHz	80 dB
Design	6 pole, 0.1 dB	6 pole, 0.1 dB
•	Tchebyshev	Tchebyshev
Loss	2 dB	1. 5 dB

This filter has a wider bandwidth than required. The performance of the translator is not affected by this as long as the Rejection specification is met.

2. 2. 10 FIXED ATTENUATOR

A Narda, Model 777C fixed attenuator was purchased and has been received to the following specifications:

Figure 2-13 6 GHz Bandpass Filter (68479)

Figure 2-14 5.9 to 6.4 GHz Bandpass Filter, Frequency Response

Frequency

6.0 GHz

Bandwidth

200 MHz

Attenuation

30 dB

VSWR

1.3:1 max.

2. 2. 11 ADJUSTABLE ATTENUATOR

A Narda, Model 4798, adjustable attenuator was purchased and received to the following specifications:

Frequency

6.0 GHz

Bandwidth

200 MHz

Attenuation

0.5 to 15 dB

VSWR

1.5:1 max.

2. 2. 12 1 DB STEP ATTENUATOR

A Weinschel, Model 9009, 1 dB step attenuator was purchased and received to the following specifications:

Frequency

6.0 GHz

Bandwidth

200 MHz

VSWR

1.35:1 max.

Range

0 to 9 dB, 1 dB steps

Accuracy

±0.05 dB repeatability

2. 2. 13 10 DB STEP ATTENUATOR

A Weinschel, Model 9010, 10 dB step attenuator was purchased and received to the following specifications:

Frequency

6.0 GHz

Bandwidth

200 MHz

VSWR

1.35:1 max.

Range

0 to 60 dB, 10 dB steps

Accuracy

±0.05 dB repeatability

3. C-BAND TRANSLATOR/RECEIVER/ATTENUATOR

3.1 BLOCK DIAGRAM ASSEMBLY

The block diagram of the translator/receiver is shown in figure 3-1. The signal levels shown reflect the actual test data. The addition of a band pass filter on the SHF LO output was necessary to reduce spurious outputs.

A photo of the down converter is shown in figure 3-2 and a chassis drawing in figure 3-3.

3.2 COMPONENTS

3. 2. 1 LOW NOISE AMPLIFIER

The LNA is shown in figure 3-4. A block diagram/schematic is shown in figure 3-5:

	Specification	Performance
Frequency	4.0 GHz	4.0 GHz
Bandwidth	200 MHz (1 dB)	200 MHz (1 dB)
Gain	15 dB min.	12 dB
Noise Figure	5. 5 dB max.	5 dB
Input/Output VSWR	1. 5:1 max.	

Frequency response photos are shown in figure 3-6.

3. 2. 2 INPUT ATTENUATOR

A Narda, Model 777C, fixed attenuator was purchased and received to the following specifications:

Frequency	4.0 GHz
Bandwidth	200 MHz
Attenuation	60 dB
VSWR	1. 25:1 max.

Figure 3-1 Translator Downconverter, Block Diagram

Figure 3-2 Translator Downconverter (68605)

Figure 3-4 Low Noise Amplifier (70622)

D5215 A ISS. 9/71

Figure 3-6 4 GHz Low Noise Amplifier Performance

3. 2. 3 INPUT COUPLER

A Narda, Model 3043B, coupler and a Narda, Model M374NM, 10 watt load were purchased and received to the following specifications:

Frequency	4.0 GHz
Bandwidth	200 MHz
Coupling	30 dB
VSWR	1. 2:1 max.
Directivity	27 dB min.

Termination on main line to dissipate 10 watts.

3. 2. 4 4 GHZ ISOLATOR

The 4 GHz Isolator is shown in figure 3-7. The performance summary for these isolators is listed below:

	Specification	Performance	<u> </u>
Frequency	4.0 GHz	4 GHz	4 GHz
Bandwidth	200 MHz	200 MHz	200 MHz
Insertion Loss	0.6 dB	0.8 dB	0.7 dB
Isolation	20 dB min.	19 dB	22 dB
VSWR	1. 2:1 max.	1.25:1	1.33:1

3. 2. 5 4 GHZ BAND PASS FILTER

The 4 GHz band pass filter is shown in figure 3-8 and a performance curve in figure 3-9. A summary of performance is shown below:

	Specification	Performance
Center Frequency	4.0 GHz	4.0 GHz
Bandwidth	360 MHz	600 MHz
Insertion Loss	.7 dB Alumina	1.2 dB
Rejection	60 dB at 5112.5 MHz	60 dB at 5112.5 MHz
Design	5 Pole, 0.1 dB Tcheby	5 Pole, 0.1 dB Tcheby

Figure 3-7 4 GHz Isolator (68474)

Figure 3-8 4 GHz Bandpass Filter (68475)

Figure 3-9 3.7 to 4.2 GHz Bandpass Filter Frequency Response

The bandwidth of this filter is wider than required. This does not affect system performance as long as the rejection at 5112.5 MHz is met.

3.2.6 SHF MIXER

The SHF Mixer has been fabricated and tested. The performance of the mixer is summarized below. A photo of the mixer is shown in figure 3-10.

	Specification	Performance
RF Frequency	4. 0 GHz	4. 0 GHz
Bandwidth	200 MHz	200 MHz
LO Frequency	5112. 5 MHz	5112.5 MHz
Noise Figure	6 dB (mixer only)	8 dB (mixer only)
LO Power	+10 to +13 dBm	+10 to +13 dBm

The higher mixer noise figure is not a problem because of the input LNA.

3.2.7 SHF LO

A Frequency Sources, Model FS-30, oscillator was purchased to the following specifications:

Output Frequency	5112. 5 MHz
Output Power	+10 dBm
Output VSWR	1. 5:1 max
Frequency Stability	±. 0015%
Spurious	$65~\mathrm{dB}$ below output level in $\pm 200~\mathrm{MHz}$
	band around fo.

A copy of the manufacturers test data is shown in figure 3-11.

3. 2. 8 1112. 5 MHz IF AMPLIFIER

The 1112.5 MHz amplifier schematic is shown in figure 3-12 and a photo in figure 3-13. The performance summary is shown below for reference:

Figure 3-10 4 GHz Mixer (68449)

CUSTOM: R	<u> </u>
P.O. NO.	580310
CUST. NO.	3266
F 1. 5	112.5 MHZ
UNIT NO.	FS- 30

SE	R. NO.		
	8001	,	` .
DATE	10/4	1/22	•
	1		1

TEST DATA SHEET

TEMPERATURE	FREQUENCY	POWER
c	5/12.5500 MHZ	18.0 Mw
+25 c	3/12.5750 MHZ	18.5 Mw
+60 °c	5112.4600 MHZ	14.0 MW

Spurious	Rejection	·:	. AT	/		_ok
				•		-
2:1 Mism	atch Check			/		_ок
•					the second secon	

	2			•	<i>-</i>	
D.C.	Power	+15	 _VDC	9	<u>83.</u>	 Ma.

Fig 3-11

	Figure 3-11	4 GHz Local Oscillator	Manufacturer's Data Sheet	Land 1
OPERATING	VOLTAGEAT	MA	TECH:	Maill
			00:	87.13
	•	**		RIVER

PARTS LIST

Resistor, Carbon. 15 Kohm. 1/8 WATT, IS % RI Resistor, Carbon, 1.8 Kohm, 18 WATT = 5%

Resistor, Carbon. 1000 ohm, 1/8 warr, 15% Resistor, Carbon, 180 ohm. 1/8 watt, 25%

Resistor, Carbon, 1500 ohm, 1/8 wATT, ±5% R6 Resistor, same as RI

R7 Resistor, Carbon. 4,7 Kohm, 1/8 WATT, ±5% RB Resistor, same as R3.

R9 Resistor, some as R4. RIO Resistor, same as RI.

RII Resistor, Carbon 4,3 Kohm, 19 warr. 25%

RIZ Resistor, some as R3.

R13 Resistor, Same as R4.

RIH Resistor, Carbon, 2200hm, Yountt, ± 5% R15 Resistor, Curbon, 22 ohm. 1/8 warr, 15% RIG IRESISTOF, Same as RIY. Q1 Transistor, NPN. Microwave, HP 35821 E

Q3 Transistor, same as Q1 Q2 Transistor, same os Q1

Cl CAPACITOR, variable. 4-3,5pf Johanson 5802 C2 capacitor, fixed, 4.7pf, ATC100-8-4R7-K-MS

C3 Capacitur, Variable, .4-6pf, Johanson 5702

C4 Capacitur, fixed, 10pf, ATC 100-8-10-K-MS CS Capacitor, Fixed, 100 pf., ATC 100-6-100-K-MS

CG Capacitor, Ceramic, or uf CKROGCW103K

C7 Capacitur, Feed Thru, 1000 pf, Erie 2425-003

CB Capacitor, same as CS. Capacitor, same as CS.

CID Capacitus, same as cl.

CII Capacitor, same as CS. C12 Capacitor, same as

C13 Capacitor, same as

CIS Capucitor, same as CIH Capacitar, same

CIT Capacitor, same as C16 Capacitur, same

CIB Capacillof, same as C19 Capacifor, same as

C21 Capacitor, same 45 C20 Caparitor, same as

C23 Capacifirisame as C22 Caparitor, same as

C24 Capacitus, same as

FOLDOUT FRAME

same as cb. Same as CS C26 Capacitor. C2S Capacitor,

Same as C7. SAWE c29 Capacitor, C27 Capacitor, C28 Capacitor.

Same

ひんごろ Same Capacitur. Capacitor, C30 C31

, Same Same Capacitor Caporidor C32 583

C34 Capacitor, Fixed, 3,9 ut, 35 ur. KEMET CSRISH 39KP.

ERIE - 1270-009 FLI FILTER, Line, FILTERCON FILTER, Same OS FLI. FL 2

FLI FILTER, Same FL3 GOLD PLATED BRASS STRIP ,007 THK SILVER WIRE , . 070" ID , 1/8" LONG STRIP, 0.5"LONG. DOTS WIDE 2 TURNS # 22 L I INDUCTOR, 2 INDUCTOR,

STRIP, 0.4" LONG, . DTS WIDE GOLD PLATED BRASS STRIP . DOT THK SILVER WIRE, ".070"10, ,4" LONG 6 TURNS # 22 L3 INDUCTOR, L4 INDUCTOR,

-S INDUCTOR,

Same as L3. L 6 TN DUCTOR, L8 INDUCTOR, 41/2 TURNS # 22 SILVER LIRE, .070"ID .4" LONG.

PRE - AMP FOR DOWN CONVERTER LOW NOISE - WIDE BAND CENTER FREG - 1112.5 MHZ 40 dB NOMINAL GAIN - 1112.5 MHz Downconverter Amplifier, Schematic Diagram Figure 3-12

Figure 3-13 1112.5 MHz Downconverter Amplifier (70363)

•	Specification	Performance
Center Frequency	1112.5 MHz	1112.5 MHz
Bandwidth	100 MHz	100 MHz
Gain	40 dB	32 dB
Noise Figure	3 dB	*
Input VSWR	1. 5:1 max.	1. 5:1 ma
Output VSWR	1. 2:1 max.	1. 5:1

^{*} Noise Figure of preamp without mixer was not measured.

3. 2. 9 1112. 5 MHZ IF FILTER

The 1112.5 MHz IF Filter photo is shown in figure 3-14 and a performance curve is shown in figure 3-15. A performance summary is shown below:

,	Specification	Performance
Center Frequency	1112.5 MHz	1112.5 MHz
Bandwidth	100 MHz	100 MHz
Design	8 Pole, 0.1 dB Tcheby	8 Pole, 0.1 dB Tcheby
Loss	4 dB	2.5 dB

3.2.10 1112.5 MHZ MIXER

An Anzac, Model MD-113, mixer was purchased and received to the following specifications:

m

Figure 3-14 1112.5 MHz Downconverter Filter (68476)

Figure 3-15 Downconverter Filter Response

3. 2. 11 1182. 5 MHZ LO

The TCXO was purchased from CTS Knights (Model 9703233). A photo of the X27 multiplier is shown in figure 3-16. The schematic for the X27 multiplier is identical to that of figure 2-4. The LO output filter is shown in the photo of figure 3-17 and a performance curve in figure 3-18. The performance specification for the LO is shown below for reference:

Output Frequency

1182.5 MHZ

Output Level

+10 DBM

Frequency Stability

⁺.0001%

Spurious Outputs

85 DB below nominal output

Monitor Output

-2 DBM

3. 2. 12 70 MHZ IF AMPLIFIER

The 70 MHz IF Amplifier consists of three Avantek GPD-401 amplifiers in cascade.

These amplifiers have been purchased and received. The 70 MHz amplifier performance is shown below:

Frequency

70 MHz

Bandwidth

100 MHz (1 DB)

Gain

42 DB

Input/Output VSWR

1. 5:1 max.

Due to lower gain in the 1112. 5 MHz IF amplifier and higher mixer conversion loss than originally specified an additional amplifier stage was needed to meet the system gain requirements. An Amperex Model ATF-419 amplifier was used to provide an additional 15 DB of gain over the 20 to 120 MHz bandwidth required with no increase in gain variation with frequency.

Figure 3-16 Downconverter X27 Multiplier (70359)

Figure 3-17 1182.5 MHz Downconverter Filter (68477)

Figure 3-18 1170.5 to 1190.2 Bandpass Filter Frequency Response

3.2.13 1 DB STEP ATTENUATOR

A Texscan, Model RA-50, 1 DB step attenuator was purchased and received to the following specification:

Frequency

70 MHz

Bandwidth

100 MHz

VSWR

1.2:1

Range

0 to 10 DB, 1 DB steps

Accuracy

+ 0.1 DB

3.2.14 10 DB STEP ATTENUATOR

A Texscan, Model RA-51, 10 DBstep attenuator has been purchased and received to the following specifications:

Frequency

70 MHz

Bandwidth

100 MHz

VSWR

1.2:1

Range

0 to 70 DB, 10 DB steps

Accuracy

+ 0.2 DB

4. SYSTEM PERFORMANCE DATA

This section includes the Test Data Sheets for the CTB Translator, and test data sheets for the TCXO and SHF Step Attenuator

DRAWING NUMBER

ACCEPTANCE TEST DATA SHEETS FOR

SPACECRAFT COMMUNICATIONS TERMINAL BREADBOARD COMPONENTS

> TEST PROCEDURE DOCUMENT FOR THE

NASA' MANNED SPACE FLIGHT CENTER HOUSTON, TEXAS

CONTRACT NAS9-12984

PREPARED BY:

PREPARED BY

Advanced Development Department

ITT Defense Communications 492 River Road Nutley, New Jersey 07110

CODE IDENT NO. DWG. NO. 1165304

SHEET - 1 of 7

15

NUTLEY, NEW JERSEY

ACCEPTANCE TEST DATA SHEET

Applicable Documents:

- (1) Exhibit "A"
 End Item Specification for
 Spacecraft Communication Terminal
 Breadboard Components
 April 1972
- (2) Test Procedure Document for the
 NASA Manned Space Flight Center
 Houston, Texas
 Contract NAS9-12984
 ITT Drawing Number All65313, 14 sheets

ITTDCD Engineering
ITTDCD Engineering

ITTDCD Quality Assurance

NASA Representative

Enger W Minier

W. Shamer

E. Barany (3)

2/9/73 2/9/73 2/9/73

Date

NOTE: All test equipments used throughout are in current calibration. except noise tube which has calibration due date 11/15/72.

16

CHECKED BY

SIZE CODE IDENT NO. DWG. NO.

A 28528 _ 1165304.

REV. — SHEET 2 of 7

			•			
		AC	CEPTANCE	•		
MBER		TEST	DATA SHEE	T		·
NG NUMBER						
DRAWING NUMBER	C Pa	and Translator Up-Conver	rte r			
DR	2. 1	Input Impedance and			**	•
9 3 3 K		Frequency in MI		Retur	n Loss in dB	
WING SERICE ORE SE	, v. ,	20			- 26	
S S S S S S S S S S S S S S S S S S S	:	30	· · · · · ·		_ 27	· ·.
NATE BANC		40 —	<u> </u>		_ 34	
AND PAND	:	50 <u></u> -		. ,	- 33	\$.
CONTR FIT FOR	. ·	60	· 	· · · · · · · · · · · · · · · · · · ·	_ 26	
STY ONFIC		70 ———			26	
WIDE ROPER ICA CO		80 ——			30	
E PRO HE PI N STR SED A	1 ``	90 ———			<i>> 3</i> s	
ERWIS LRE T UED 1		100			29	
OTHE SE 185 PIED.	·	110			 26	•
IAY BE		*120			— >3o	
PECIF DIVISI CED.		* NARDA DIRECTIONAL	coupler used	FOR THIS	MOASURE MENT	
XCEP ND S 10NS RODU	2.2	Output Signal Charac	teristics		÷	•
MAFGR		70 MHz Input Level	• ·	6 GH	z Output Level	
SE <	A.	+10 dBm		-70 dBm	(ATTENUATOR SET	To 20 de
EY. JERSEY	*	+10 dBm	***		(ATTENUATOR SE	
NUTLEY,					•	
		0 dBm		-70 dBm	(ATTENUATOR SE	r - 10 dB
82		0 dBm		-100 d8m	(AMENUATIA S	מידי פד די
DEFENSE COMMUNICATIONS DIVISION					•	
# 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5						
		* ANALYZER NOASE P	FLOSK = -1	io abm		· 1
						· ·
邑		PREPARED BY		28528	DWG. NO. 1165	304
	(CHECKED BY		REV.		T 3 of

ACCEPTANCE TEST DATA SHEET

C-Band Translator Up-Converter

Bandwidth 2.3

SWEEP FREQUENCY RESPONSE

Pin= 0 dBm VERT CAL = 2dB/cm FRED AS MARKED

Frequency Stability

Spec \pm .0015% (\pm 90.45 KHz centered on

MELTY				6.030 GHz)
	1	Time (Est)	Xtal Oscillator Frequency	SHF Output Frequency
SEY	(1) Star	t 0945	_ 100.0006 MHZ / _	- 6.029972 GHz
E E	(2)	1000	_ 100.0006 11 1	6,029963 11
NUTLEY. NEW JERSEY	(3)	1015		— 6.0299 59 "
	(4)	1030	_ 100,0006 11 11	6.029958 "
S S	(5)	1045	- 100,0006 " [6.029959 11
) ¥	(6)	1100	_ 100,0006 " =	6,029960 u
25 S	(7)	1115	_ 100.0006 " =	6.029960 11
DEFENSE COMMUNICATIONS DIVISION	(8)	1130	100.0006 " -	6.029961 11
	(9) End-	1145	100.0006 " (6.029963."
		PREPARED BY	I A I OOFOO F	g. no. 18 -
1 F		CHECKED BY	A 28528	1165304

Ā

1

SPACECRAFT COMMUNICATIONS TERMINAL BREADBOARD COMPONENTS

TEST PROCEDURE DOCUMENT

for the

NASA

Manned Space Flight Center

Houston, Texas

Contract NAS9-12984

ADVANCED DEVELOPMENT

DEFENSE COMMUNICATIONS

492 River Road, Nutley, New Jersey 07110

SEPTEMBER 1972

A1165313 Sheet 1 of 14 Rev. A

1. <u>INTRODUCTION</u>

The following report describes the tests to be performed on the C-Band Trans-lator/Transmitter/Attenuator and Translator/Receiver/Attenuator to demonstrate compliance with the End Item Specification contained in Exhibit "A" of contract NAS9-12984 for Spacecraft Communications Terminal Breadboard Components.

2. C-BAND TRANSLATOR/TRANSMITTER/ATTENUATOR TEST DESCRIPTIONS

2.1 INPUT IMPEDANCE AND VSWR

The input impedance and VSWR of the translator receiver will be measured using a network analyzer to display return loss versus frequency for the 20 to 120 MHz input bandwidth as shown in the test setup in figure 2-1. To meet the 1.5:1 VSWR specified, a 14 dB return loss is the minimum allowable.

2.2 OUTPUT SIGNAL CHARACTERISTICS

The output signal characteristics over the specified input range will be measured using the test setup shown in figure 2-2. A 70 MHz, 0 dBm input signal will be applied to the translator and the 6 GHz signal output level will be varied over the specified -110 to -70 dBm range.

A spectrum analyzer will be used to measure the level of the output signal. The input level will then be increased to +10 dBm and the measurement repeated.

2.3 BANDWIDTH

The bandwidth will be measured by sweeping the input frequency range of 20 to 120 MHz with an input level within the 0 to +10 dBm operating range and detecting the 6 GHz output signal using the test setup shown in figure 2-3. The detected output will be displayed on a calibrated oscilloscope and a photo of the amplitude response will be taken. The output will be detected at the up-converter output before the attenuators to provide a -30 dBm minimum level to the crystal detector. Lower detector input levels will not be easily displayed on an oscilloscope. No contribution to amplitude flatness variations is expected from the attenuators since the RF bandwidth is very narrow. The oscilloscope will be calibrated using a precision attenuator and the detector at the same level to be encountered during the test.

2.4 FREQUENCY STABILITY

The frequency stability of the translator will be measured using the test set-up shown in figure 2-4. A crystal oscillator in the input signal range (20 to 120 MHz) will be used as a reference. The frequency of the crystal reference will be counted and recorded. The SHF output frequency will be counted and recorded with a digital recorder.

2.5 SPURIOUS OUTPUTS

The spurious outputs of the translator transmitter will be measured using the test set-up shown in figure 2-5. A 70 MHz signal at a 0 dBm input (worst case) will be applied to the translator and the output displayed on a spectrum analyzer. The up-converter output will be measured before the attenuators since it is not possible to measure -138 dBm with the Spectrum analyzer. The -138 dBm spurious requirement corresponds to a 68 dB carrier-to-spurious ratio at the -70 dBm maximum output level. The up-converter output will be approx -30 dBm before the attenuators. The 68 dB C/S specification translated to this location corresponds to a -95 dBm output level which can be measured.

3. C-BAND TRANSLATOR/RECEIVER/ATTENUATOR TEST DESCRIPTIONS

3.1 INPUT IMPEDANCE AND VSWR

The SHF input impedance and VSWR will be measured using a network analyzer to display the input reflection coefficient versus frequency for the 3.950 to 4.050 GHz input bandwidth as shown in the test set-up of figure 3-1. To meet the 1.5:1 VSWR specified a reflection coefficient of < 0.2 is required over the 100 MHz bandwidth.

3.2 OUTPUT SIGNAL CHARACTERISTICS

The output signal characteristics of the translator receiver will be measured using the test set-up shown in figure 3-2. The 4 GHz input level will be set at +40 dBm and the 70 MHz output level will be varied over the specified -25 to -75 dBm range. The 70 MHz output level will be measured on a spectrum analyzer. The 4 GHz input will then be adjusted to +20 dBm and the above procedure repeated.

3.3 BANDWIDTH

The translator receiver bandwidth will be measured using the test set-up shown in figure 3-3. The receiver input will be swept from 3950 to 4050 MHz at a level within the +20 to +40 dBm input range. The 70 MHz output will be detected and displayed on a calibrated oscilloscope. A photo of the display will be taken.

3.4 RECEIVER NOISE FIGURE

The receiver noise figure will be measured at the input to the LNA (Low Noise Amplifier) as shown in the test set-up of figure 3-4. The noise figure measurement is automatic with the set-up shown. The 10 dB attenuator is included to improve the accuracy of the measurement by using a more accurate meter range on the noise figure meter.

Fig 3-4 Receiver Noise Figure

PREPARED BY W. Shanney CHECKED BY	9-26-72	A	28528	10. <u>D</u> WG.	NO. A1165313	35 -
			RE	V. A	SHEET	14 (last)

L NO. 440M &

1

Weinschel Engineering GAITHERSBURG, MARYLAND

TEST REPORT

Job No. <u>545562</u> Date: 2///73

	Custome	r: 🔾									Date	e:4//7	<u>'}</u>		
	SERIAL	FREQ.	D,C,		FREQ.	4.0		FREQ.	8.0		FREQ.				
LOT NO.	SERTAL NUMBER	ATT.		W. R.	ATT. DB	V. S.		ATT. DB		W. R. FEMALE	ATT. DB	· V. S.	W. R.		
1	NUMBER Class	DB	MALE	FEMALE		MALE	FEMALE		MALE	PEMALE		MALE	FEMALE		
_	6	0			,1			12					 		
2	10	9.92			10.0			10.3							
3	20	2002			20.0			20.2					ļ		
4	30	29.94			30.0			30.3							
5	40	39.91			39.9			403							
6	50	49.92			49.9			50,4							
7	60	59.86			59.8			59.0							
8		13 // 00			3 71 8										
9															
10															
11	-														
12		-		-											
13		-													
14							· · · · · · · · · · · · · · · · · · ·								
15															
16															
17									,						
18															
19									-						
20															
21															
22												,			
23		-							<u></u>				 		
24															
24					· ·		<u> </u>	<u></u>		L		L			
			· · · · · · · · · · · · · · · · · · ·				·····				TESTER_	40.9.	nt s		
				·							QUALITY	40.9.	Semmo		

5 MECHANICAL ASSEMBLY

The mechanical details of the Test Translator Assembly can be obtained from the photographs, Figures 1-1, 1-2, and 1-3. Figure 5-1 is a d-c wiring diagram; Figure 1-4 is the r-f wiring diagram

Figure 5-1 Test Translator, D-C Wiring Diagram

6. ENGINEERING PARTS LIST

The pages following are the Engineering Parts List for the CTB Translator.

			,		,		,		,		<u></u>						,	,			,		1
REV	LTR	SHT	SCE	atti iuos																			
	28528 PL		NOMENCLATURE OR	DESCRIPTION	POWER SUPPLY	9887.5 MMZ 05011.19 TOR	5112,5 MHZ OSGILLATOR	TEMP COMP X TAL DSCULATOR	TEMP CONA XTAL OSCILLATAR 39.61111 MHZ.	, 4	1006 STEP ATTENUATOR	I db STEP ATTENHAMA	10db STEP ATTENUATOR	VARIABLE ATTENUATOR	Power LOAD	30 db FIXED ATTENMATOR	GODB FIXED ATTENUATOR	30ds DIRECTIONAL COUPLER	FILTER, BANDPASS	AMPLIFIER, LOW NOISE	UPWNVERTER	DOWN CONVERTER	* IN PART NO. COL. DENOTES VENDOR ITEM: SEE SOURCE OR SPECIFICATION CONTROL DWG.
	A SIZE		SPECIFICATION NO.	ITTDCD PART NO.										,						()		/	IN PART NO. COL. D SOURCE OR SPECIFIC
Α.			3	ZiS																			*
٥	NEW JERSEY		PART OR	OTHER THAN ITTDCD	DWER MATE UNI-76	FREGUENCY SOURCES	FREQUENCY SOME	CTS KNIGHT 970-3333-0	KW16H 3232-	TEXSCAN RA-50	TEXSCAN RA-51	PEINSCHEL 9009	WEINSCHEL 9010	NARDA 4798	NAKOA M374	NARDH 777C-80	NARDA 7776-60	NARDA 30438-30					FLUID OZ. 55 U.S. GAL.
	SMS		32	ZIS													_					-	
DEFENSE	DWISION			IDENT											·		·						52 U.S. F 54 U.S. L
		·	ITEMOR	S														·	•				32 FEET
F	니		_	5≥																			32
Ļ	_		ļ —	G1	2	/	/	/	•		/	,	•	\	/	2	\	/	/	7	/	_	PAIR REF DOC
-	PAKIS LISI	SEE COVER SHEET FOR LIST TITLE, REVISION AND AUTHENTICATION	R GROUP	62																			6 PAIR 20 REF
) د	Ω I	SHEE REVI	' PER	63																			PIECE SET
ر ا د	-	/ER : TE: THEN	OUANTITY	64																	41		1 PIE(5 SET
V	₹	SES A ES	UAN																				
L		SEE LIS	0	65																			U OF M CODE
											•												

REV	Q.F.	SHT	30 0:	OOTTI ORUO							Ť										1
CODE DRAWING NUMB	28528 PL		NO TRILLY INTROM	DESCRIPTION	MICKOAMGETER		FILTER 4887,5 MHZ	FILTER 5112.5 MMZ	FUSE 34,120V	FUSE HOLDER	INDICATING LAMP	1AMP HOLDER	SWITCH ON-OFF	SWITCH 4 PALE SINGLE THAN							* IN PART NO. COL. DENOTES VENDOR ITEM: SEE
L		 	NO.	Š				\			-								 		L. DEI
IO. DWG	A		SPECIFICATION NO.	ITTDCD PART									:	·			·				RT NO. CO
RACT NO.																,					IN PA
				ZIS																	*
15	NUTLEY, NEW JERSEY			OTHER THA	HESTON MODEL				-												FLUID OZ. 55 U.S. GAL.
	SMOT.		3.	ZIS																	FLUI
	DIVISION		L	IDENT																	52 U.S.
			_	NO.			·														FEET
		ļ	חל	5≥																	32
-	<u>.</u>	œ	GROUP	5			_	>	N	И	\	/	/	`							6 PAIR
	PARIS LISI	SEE COVER SHEET FOR LIST TITLE, REVISION AND AUTHENTICATION	PER GR	3 62	_																
	2	SHI RE ENTI		63											1	_					1 PIECE 5 SFT
	7	COVER TITLE AUTH	QUANTITY	64				·		,									42	\neg	- N
_	2	SEE C LIST AND	OU.	65											7	_					U OF M
-						ــــــــــــــــــــــــــــــــــــــ		—— <u>(</u>			-		 				لب				_ີ ວັ

SOURCE OR SPECIFICATION CONTROL DWG. 54 U.S. LIQUID OT. 68 LB AVDP