2016-2017 学年大学物理光学、热学与近代物理考试试题 B 卷参考答案

- 一、选择题: (共30分,每题3分)
- 1. [B]
- 2. [D]
- 3. [D]
- 4. [B] 9. [C]
- 5. [D]

- 6. [B]
- 7. [C]
- 8. [C]

- 10. [B]
- 二、填空题: (共30分, 每题3分)

1	$\frac{\lambda}{2(n-1)}$	<u> </u>	6	2000	13. 1%					
2	$n_1\theta_1=$	$n_2\theta_2$	7	270						
3	22	8	$\frac{4}{5}$ c							
4	$\frac{\rho N_{\mathrm{A}}}{\mu}$	$\frac{1}{2}\rho(v_{\rm p})^2$	9	$2-\sqrt{2}$						
5	(1)	500	10	3	12.1					

三、判断题: (共10分,每小题1分。)

	1 (1)	1 (2)	1 (3)	2 (1)	2 (2)	2 (3)	2 (4)	3 (1)	3 (2)	3 (3)
	×	√	√	×	×	√	×	√	×	X

四、(10分)

- 解: (1) 位置坐标与衍射角满足关系: $x = Dtg\theta = 40tg\theta = 0.14$
 - $\sin \theta \approx tg\theta = 0.0035$ 解出

由单缝衍射明纹公式: $a\sin\theta = \frac{2k+1}{2}\lambda$ 解出 $\lambda = \frac{4200nm}{2k+1}$ 1分

对于可见光, k=3, 解出 $\lambda=600nm$

或者k=4,解出 $\lambda = 466.67nm$

(2) 当 $\lambda = 600nm$ 时,P点为第3级明纹,缝处分为7个半波带;

2分 当 $\lambda = 466.67nm$ 时,P点为第4级明纹、缝处分为9个半波带。 2分

五、(10分)

解: (1) 由光栅方程 $d\sin\theta = k\lambda$ 知,

$$d = a + b = \frac{k\lambda}{\sin \theta} = \frac{2 \times 6 \times 10^{-7}}{\sin 30^{\circ}} = 2.4 \times 10^{-6} m$$
 25

(2) 由第三级缺级,可知 $k = \frac{d}{d}k' = 3$,

最小可能宽度
$$a = \frac{d}{3} = 0.8 \times 10^{-6} m$$

(3) 由 $d \sin \theta = k\lambda$ 得

$$k_{\text{max}} = \frac{d}{\lambda} = 4$$
 (对应无限远处),再考虑到±3缺级, 2分

可见主极大为0,±1,±2, 共五条谱线。

六、(10分)

 \mathbf{M} :(1)由图可知,C-A 为等容过程,则

$$T_C = \frac{p_C}{p_A} T_A = \frac{100}{400} \times 300 = 75 \,\mathrm{K}$$
 2 $\%$

3分

2分

2分

B-C 为等压过程,则

$$T_B = \frac{V_B}{V_C} T_C = \frac{6}{2} \times 75 = 225 \,\mathrm{K}$$
 2 $\%$

(2)设该理想气体的自由度为 i,则摩尔比热容比 y 满足

$$\gamma = \frac{i+2}{i} = 1.4$$
,得出自由度 $i = 5$

B-C 为等压过程,吸收的净热量为

$$Q_{B-C} = \nu C_p \Delta T = \frac{7}{2} \nu R (T_C - T_B) = \frac{7}{2} (p_C V_C - p_B V_B)$$

$$= \frac{7}{2}(2-6) \times 100 = -1400 J$$

1分

2分

2分

3分

C-A 为等容过程, 吸收的净热量为

$$Q_{C-A} = \nu C_V \Delta T = \frac{5}{2} \nu R (T_A - T_C) = \frac{5}{2} (p_A V_A - p_C V_C)$$
$$= \frac{5}{2} (400 - 100) \times 2 = 1500 J$$

循环过程吸收的净热量等于系统对外作的净功,则

$$Q_{\text{ffs}} = W_{\text{ph}} = \frac{1}{2}(6-2)\times(400-100) = 600 J$$

A-B 过程吸收的净热量为

$$Q_{A-B} = Q_{\text{flist}} - Q_{B-C} - Q_{C-A} = 600 - (-1400) - 1500 = 500 J$$
 2 $\%$