1. Calculeu el domini de les funcions definides per les expressions següents:

(a)
$$f(x) = \frac{1 - \log x}{1 + \log x}$$
.

(b)
$$g(x) = \sqrt{\frac{x^3}{1 - 9x^2}}$$
.

Justifique detalladament la resposta.

Solució:

(a) Observeu que $f(x) = f_2(f_1(x))$, on $f_1(x) = \log x$ i $f_2(x) = \frac{1-x}{1+x}$. Per tant,

$$D(f) = \{ x \in D(f_1) = (0, +\infty) : \log x = f_1(x) \in D(f_2) = \mathbb{R} \setminus \{-1\} \}$$

$$= \{ x \in (0, +\infty) : \log x \neq -1 \} \stackrel{(*)}{=} \{ x \in (0, +\infty) : x \neq e^{-1} = 1/e \},$$

on la igualtat (*) es dedueix de la injectivitat de la funció logaritme.

En conseqüència, $D(f) = (0, +\infty) \setminus \{1/e\} = (0, 1/e) \cup (1/e, +\infty).$

(b) Observeu que $g(x) = g_2(g_1(x))$, on $g_1(x) = \frac{x^3}{1-9x^2}$ i $g_2(x) = \sqrt{x}$. Per tant, el domini de g, D(f), és el conjunt dels nombres $x \in \mathbb{R}$ que compleixen les dues condicions següents:

(i) $x \in D(g_1)$, és a dir, $1 - 9x^2 \neq 0$, o, equivalentment, $x^2 \neq \frac{1}{9}$. Aquesta condició diu que $x \neq \pm \frac{1}{2}$.

(ii) $\frac{x^3}{1-9x^2} = g_1(x) \in D(g_2) = [0, +\infty)$. Això vol dir que es compleix alguna de les dues condicions següents:

- $x^3 \ge 0$ i $1 9x^2 > 0$, és a dir, $x \ge 0$ i $\frac{1}{9} > x^2$, o, equivalentment, $0 \le x < \frac{1}{3}$. $x^3 \le 0$ i $1 9x^2 < 0$, és a dir, $x \le 0$ i $\frac{1}{9} < x^2$, o, equivalentment, $x < -\frac{1}{3}$.

(Aqui hem utilitzat la gràfica de la funció $h(x) = x^2$.)

En conseqüència, $D(g) = (-\infty, -\frac{1}{3}) \cup [0, \frac{1}{3}).$

2. Calculeu el recorregut de:

- (a) La funció $f:(-\infty,-\frac{1}{2})\to\mathbb{R}$ definida per $f(x)=\frac{x+3}{2x+1}$.
- (b) La funció $g:[9,+\infty)\to\mathbb{R}$ definida per $g(x)=\log(e^{1/\sqrt{x}}-1)$.

Justifiqueu detalladament la resposta.

Solució:

(a) Observeu que $f(x) = \frac{1}{2} + \frac{5/2}{2x+1}$, i en conseqüència

$$R(f) = \{ f(x) : x < -\frac{1}{2} \} = \{ \frac{1}{2} + \frac{5/2}{t} : t < 0 \} = \{ \frac{1}{2} + \frac{5}{2}s : s < 0 \} = (-\infty, \frac{1}{2}).$$

(Aqui hem utilitzat les gràfiques de les funcions g(x) = 2x + 1, h(t) = 1/t i $r(s) = \frac{1}{2} + \frac{5}{2}s$.)

(b) Observeu que $g(x) = g_5(g_4(g_3(g_2(g_1(x)))))$, amb $g_1(x) = \sqrt{x}$, $g_2(x) = \frac{1}{x}$, $g_3(x) = e^x$, $g_4(x) = x - 1$ i $g_5(x) = \log x$. Per tant,

$$R(g) = \{g(x) : x \in [9, +\infty)\} = g([9, +\infty)) = g_5(g_4(g_3(g_2(g_1([9, +\infty)))))).$$

Ara les gràfiques de les funcions g_1 , g_2 , g_3 , g_4 i g_5 mostren que $g_1([9, +\infty)) = [3, +\infty)$, $g_2(g_1([9, +\infty))) = g_2([3, +\infty)) = (0, 1/3], g_3(g_2(g_1([9, +\infty)))) = g_3((0, 1/3]) = (1, e^{1/3}], g_4(g_3(g_2(g_1([9, +\infty))))) = g_4((1, e^{1/3}]) = (0, e^{1/3} - 1]$ i, finalment,

$$R(g) = g_5((0, e^{1/3} - 1]) = (-\infty, \log(e^{1/3} - 1)].$$

- 3. Per a cadascuna de les funcions següents, determineu si és injectiva, i en cas afirmatiu calculeu la seva inversa:
 - (a) $f: \mathbb{R} \to \mathbb{R}$ definida per $f(x) = \sqrt{2e^{x^4} + 4e^{x^2} + 1}$.
 - (b) $g: (-1,0] \to \mathbb{R}$ definida per $g(x) = (\log(1-x^2))^2$.

Justifiqueu detalladament la resposta.

Solució:

- (a) f no és injectiva perquè f és una funció parella $(f(x) = f(-x), \text{ per a cada } x \in \mathbb{R}).$
- (b) Demostrarem que g és injectiva i calcularem la seva inversa g^{-1} per dos mètodes:

Mètode 1: Per a demostrar que g és injectiva provarem que per a cada $y \in R(g)$ existeix una única $x \in (-1,0]$ tal que g(x)=y. En efecte, sigui y=g(x), amb $x \in (-1,0]$. Aleshores $y=(\log(1-x^2))^2 \geq 0$ i $\log(1-x^2) < 0$ (perquè $0 < 1-x^2 \leq 1$). Per tant, $\log(1-x^2)=-\sqrt{y}$ i, en conseqüència, $1-x^2=e^{\log(1-x^2)}=e^{-\sqrt{y}}$, és a dir, $x^2=1-e^{-\sqrt{y}}$. Així doncs, $x=-\sqrt{1-e^{-\sqrt{y}}}$, ja que $x \leq 0$. Això prova que g és injectiva, $R(g) \subset [0,+\infty)$ i $g^{-1}(y)=-\sqrt{1-e^{-\sqrt{y}}}$, per a cada $y \in R(g)$.

Ara per provar que $R(g) = [0, +\infty)$ cal comprovar que si $y \ge 0$ llavors $x = -\sqrt{1 - e^{-\sqrt{y}}} \in (-1, 0]$ i g(x) = y. En efecte, primer és clar que $x \le 0$. D'altra banda, si $y \ge 0$ llavors $1 \ge e^{-\sqrt{y}} > 0$, i per tant $0 \le 1 - e^{-\sqrt{y}} < 1$ i $\sqrt{1 - e^{-\sqrt{y}}} < 1$, i en conseqüència x > -1. Finalment,

$$g(x) = (\log(1 - x^2)^2 = (\log(1 - (1 - e^{-\sqrt{y}}))^2 = (\log(e^{-\sqrt{y}}))^2 = (-\sqrt{y})^2 = (\sqrt{y})^2 = y.$$

I acabem de provar que $R(g) = [0, +\infty)$.

En conclusió, hem vist que g és injectiva, $R(g)=[0,+\infty)$, i la seva inversa és la funció $g^{-1}:[0,+\infty)\to (-1,0]$ definida per $g^{-1}(y)=-\sqrt{1-e^{-\sqrt{y}}}$.

Mètode 2: Observeu que $g(x) = g_1(g_3(g_2(g_1(x))))$, amb $g_1(x) = x^2$, $g_2(x) = 1 - x$ i $g_3(x) = \log x$. Com que

- g_1 és bijectiva entre (-1,0] i $g_1((-1,0]) = [0,1)$, amb inversa $h(x) = -\sqrt{x}$,
- g_2 és bijectiva entre $g_1((-1,0]) = [0,1)$ i $g_2([0,1]) = (0,1]$, amb inversa g_2 ,
- g_3 és bijectiva entre $g_2([0,1]) = (0,1]$ i $g_3((0,1]) = (-\infty,0]$, amb inversa $\exp(x) = e^x$,
- g_1 és bijectiva entre $g_3((0,1])=(-\infty,0]$ i $g_1((-\infty,0])=[0,+\infty)$, amb inversa h,

resulta que g és injectiva, $R(g) = g((-1,0]) = [0,+\infty)$, i la seva inversa és la funció $g^{-1}:[0,+\infty) \to (-1,0]$ definida per

$$g^{-1}(x) = h(g_2(\exp(h(x)))) = -\sqrt{1 - e^{-\sqrt{x}}}.$$