

PN8 General Meeting Daniel Fink

Quantum Computing &

Stochastic Processes

August 8th, 2022

Content

- Master Project
- Libraries & Tools
- People & Community
- My Goals

Master Project

Simulating Stochastic Processes with

Variational Quantum Circuits

- February 14th, 2022

Advisors

- University of Stuttgart
 - Prof. Dr. Christian Holm

- Free University of Berlin
 - Prof. Dr. Jens Eisert
 - Dr. Nora Tischler
 - Dr. Ryan Sweke
 - M.Sc. Paul Fährmann

Assume data drawn by a stochastic process

Stock Price Trend

Classical Models ≤ Quantum Models

How to get a quantum model?

- Classical description of the process $\rightarrow q$ -simulator
 - Binder et al., 10.1103/PhysRevLett.120.240502

- Classical description of the process $\rightarrow q$ -simulator
 - Binder et al., 10.1103/PhysRevLett.120.240502

$$Y_t = f(t) + e_t$$
 Quantum Model

- Data from the process → classical discovery algorithm
 - Yang et al., arXiv:2105.14434

Goal

Develop a quantum learning algorithm for simulation models, which uses only data as input.

Time Steps →

stationary

- Simulating = sampling trajectories
- Trajectory is governed by $P(\vec{X}|\vec{X})$

Classical Topological Complexity: $d_c = \log_2 N$

Example

Period-N Uniform Renewal Process

 ϵ -machine

Quantum Circuits

Quantum Circuits

Quantum Circuits

q-simulator

Memory Register

Auxiliary Registers

q-simulator

Memory Register

Auxiliary Registers

memory states

Quantum Topological Complexity: $d_q = \#$ qubits

Advantage

In general:

$$d_q \le d_c$$

For some processes:

$$d_q < d_c$$

Thompson et al., 10.1103/PhysRevX.8.031013

Advantage

In general:

$$d_q \le d_c$$

Thompson et al., 10.1103/PhysRevX.8.031013

For some processes:

$$d_q < d_c$$

Approximate models:

$$\hat{d}_q = \hat{d}_c$$

Q-Models can have better accuracy Yang et al., arXiv:2105.14434

Advantage

In general:

$$d_q \le d_c$$

Thompson et al., 10.1103/PhysRevX.8.031013

For some processes:

$$d_q < d_c$$

Approximate models:

$$\hat{d}_q = \hat{d}_c$$

Q-Models can have better accuracy Yang et al., arXiv:2105.14434

How to get a **quantum representation** of a quantum model?

Variational Quantum Circuits

Variational Quantum Circuits

Machine Learning Model

Variational Quantum Algorithms

Idea

Approximate
$$P \rightarrow |P - \hat{P}_{\theta}| < \epsilon$$

Kullback-Leibler divergence: (KL)

$$D_{KL}(P, \hat{P}) = \sum_{x} P(x) \log_2 \frac{P(x)}{\hat{P}(x)}$$

$$\begin{array}{c} P(x_1) & \widehat{P}(x_1) \\ \hline 0 & \end{array}$$

Kullback-Leibler divergence: (KL)

$$D_{KL}(P, \hat{P}) = \sum_{x} P(x) \log_2 \frac{P(x)}{\hat{P}(x)}$$

mean over time steps

average over pasts

$$D_{KL}(P, \hat{P}) = \sum_{x} P(x) \log_2 \frac{P(x)}{\hat{P}(x)}$$

 $P(x_1) \qquad \qquad \widehat{P}(x_1)$ $0 \qquad \qquad 1$

mean over time steps

average over pasts

$$D_{TV}(P,\widehat{P}) = \frac{1}{2} \sum_{x} |P(x) - \widehat{P}(x)|$$

$$\begin{array}{c} P(x_1) & \widehat{P}(x_1) \\ \hline 0 & & \end{array}$$

$$D_{KL}(P, \hat{P}) = \sum_{x} P(x) \log_2 \frac{P(x)}{\hat{P}(x)}$$

 $\begin{array}{c} P(x_1) & \qquad \hat{P}(x_1) \\ \hline 0 & \qquad 1 \end{array}$

mean over time steps

average over pasts

$$D_{TV}(P,\widehat{P}) = \frac{1}{2} \sum_{x} |P(x) - \widehat{P}(x)|$$

sum up time steps

sum up pasts

Ideally, use validation metric:

$$D_{KL}(P,\widehat{P}) = \sum_{x} P(x) \log_2 \frac{P(x)}{\widehat{P}(x)}$$

Ideally, use validation metric:

$$D_{KL}(P, \hat{P}) = \sum_{x} P(x) \log_2 \frac{P(x)}{\hat{P}(x)}$$

unknown

inefficient

Maximum Mean Discrepancy: (MMD)

$$MMD[P, \hat{P}] = 0 \iff P = \hat{P}$$

Maximum Mean Discrepancy: (MMD)

$$MMD[P, \hat{P}] = 0 \iff P = \hat{P}$$

$$C(\boldsymbol{\theta}) = \sum_{\bar{x}} w_{\bar{x}} \cdot \text{MMD}^{2}[P, \hat{P}_{\boldsymbol{\theta}} | \bar{x}]$$

$$C(\boldsymbol{\theta}) = \sum_{\dot{x}} w_{\dot{x}} \cdot \text{MMD}^{2}[P, \hat{P}_{\boldsymbol{\theta}} | \dot{x}]$$

$$C(\boldsymbol{\theta}) = \sum_{\bar{x}} w_{\bar{x}} \cdot \text{MMD}^{2}[P, \hat{P}_{\boldsymbol{\theta}} | \bar{x}] + R_{\bar{x}}(\boldsymbol{\theta})$$

Regularization = penalizes models with a large set of memory states

memory states

initial state for $\dot{x} = 1$

 $U(\boldsymbol{\theta})$

initial state for $\dot{x} = 1$

memory states for $x_i = 1$

 $U(\boldsymbol{\theta})$

Conclusion

- Developed a hybrid quantum learning algorithm for simulation models
- Learning algorithm is memory efficient
- MMD can decrease KL and TV
- Regularization → small set of memory states
- Learned models show constantly good simulation performance

Outlook

- arXiv:2105.14434: Lower bound onto the KL divergence of any classical model
- Apply the algorithm to more complicated processes
 - → Showing "quantum advantage"
- Use only data, i.e., no analytical solutions
 - → Create a classical version of the learning algorithm (quantum inspired)
 - → Compare quantum approximate models with classical approximate models: Learning speed, Barren plateaus, simulation accuracy

Libraries & Tools

Vendors

SDKs

Tools & Libraries

- Quirk: Prototyping + Visualization + Dynamic
- Link
- QuTIP: Easy numerical calculations + Visualization
- Link
- PennyLane: Quantum Machine Learning + almost cross-platform
- → Qiskit, Braket, Cirq, QDK, IonQ, ..., Numpy, TensorFlow, PyTorch, JAX

People & Community

People & Community

Quantum Machine Learning

Seth Loyd (MIT)

Maria Schuld (Xanadu)

John Preskill (Caltech)

Jay M. Gambetta (IBM)

Amira Abbas (Google)

Jens Eisert (FUB)

. . .

"Present a holistic picture of whether, and if so, how, quantum devices offer a practical advantage for simulating stochastic processes in real-world scenarios."

"Present a holistic picture of whether, and if so, how, quantum devices offer a practical advantage for simulating stochastic processes in real-world scenarios."

"Present a holistic picture of whether, and if so, how, quantum devices offer a practical advantage for simulating stochastic processes in real-world scenarios."

"Build a bridge between (quantum) simulation models for stochastic processes and the field of machine learning."

"Present a holistic picture of whether, and if so, how, quantum devices offer a practical advantage for simulating stochastic processes in real-world scenarios."

"Build a bridge between (quantum) simulation models for stochastic processes and the field of machine learning."

→ PAC framework, generalization bounds, ...

Thank you very much!

Let's discuss.