This week's goals

- Today
 - Physical realization of compensators
- Wednesday
 - Proportional-Derivative compensator
 - Lead/Lag compensators
- Friday
 - Introduction to state space

Differential amplifier as proportional controller

Controller gain

$$K = \frac{R_2}{R_1}.$$

Recall the differential amplifier input—output relation

$$V_s(s) = \frac{R_2}{R_1} (V_{ref}(s) - V(s))$$
$$= \frac{R_2}{R_1} E(s).$$

Differential amplifier as generic controller

Input-output relation of differential amplifier with general impedances

$$V_s(s) = \frac{Z_2(s)}{Z_1(s)} (V_{ref}(s) - V(s))$$

= $\frac{Z_2(s)}{Z_1(s)} E(s)$.

Controller transfer function

$$G_c(s) = \frac{Z_2(s)}{Z_1(s)}$$

 $V_{controller}$

Example 1: Ideal integral controller

$$\begin{array}{c}
Z_1 \\
\square \\
= - \swarrow \swarrow \swarrow \\
C \\
- - - - - - - - - - - -
\end{array}$$

Controller transfer function

$$G_c(s) = \frac{Z_2(s)}{Z_1(s)} = \frac{1/(Cs)}{R} = \frac{1/(RC)}{s}.$$

Example 2: Proportional-integral controller

Controller transfer function
$$R_{2} \qquad C \qquad G_{c}(s) = \frac{Z_{2}(s)}{Z_{1}(s)} = \frac{R_{2} + 1/(Cs)}{R_{1}} = \frac{R_{2}}{R_{1}} \frac{s + 1/(R_{2}C)}{s}$$

$$= K_{p} \frac{s + z}{s}, \quad \text{where } K_{p} = \frac{R_{2}}{R_{1}}, \quad z = \frac{1}{R_{2}C}$$

$$= K_{p} + \frac{K_{i}}{s}, \quad \text{where } K_{i} = \frac{1}{R_{1}C}.$$

Example 3: Proportional-derivative controller

$$\frac{Z_2}{\square} = \sqrt{N_2}$$

Controller transfer function

$$G_c(s) = \frac{Z_2(s)}{Z_1(s)} = \frac{R_2}{R_1/(1+R_1Cs)} = \frac{R_2}{R_1} + R_2Cs$$

= $K_p + K_d s$, where $K_p = \frac{R_2}{R_1}$, $K_d = R_2C$.

s, where
$$K_p = \frac{R_2}{R_1}$$
, $K_d = R_2$