Digital Game Development

Dott. Filippo Milotta

Lecture Overview

- Learning and Experience Curves
- Interaction Design (IxD)
- GUI Design
- User Experience (UE)
- Mockup: definition and tutorial

Learning Curve (1/8)

- Thought by Hermann Ebbinghaus in 1885
- It could represent the learning process when:
 - the same task is repeated in a series of trials
 OR
 - where a body of knowledge is learned over time
- How to draw a learning curve?

Learning Curve (2)

Learning Curve (3) – Shapes

Exponential Growth

Characteristics:

Curve can increase without limits

Learning Curve (4) - Shapes

Exponential Rise

Characteristics:

- A steeper curve means that learning process is more difficult, but also shorter
- A shallower curve could be more tedious for learner
- A curve with an Exponential Rise shape has a maximum limit to learning level

Learning Curve (5) - Shapes

S-Curve (Sigmoid)

Characteristics:

- There are three zones with different learning rates: start zone has slow rate, then there is a boost in middle zone and finally learning level tends to maximum in the end zone
- A curve with a Sigmoid shape has a maximum limit to learning level

Learning Curve (6) - Considerations

- Any learner has his own learning curve
 - There is not a single, absolute, learning curve for a system
 - An overall curve could be estimated as the average of the learning curves of the learners
- Usually, learning curves are monotonically increasing
 - Sometimes learning level might decrease
 - e.g., the learner stop the learning process for a while, then when he comes back again to the process he forgot something and has to revise what it has already done before

Learning Curve (7) - Game Context

- How to help an user in the learning process?
 - Start the game with a <u>tutorial</u> (Learning-by-doing)
 - Show tips on loading screen
 - Show suggestions before important events in-game
 - Provide a good Guide Section available from menù
 - Provide meta-game activities to speed-up the learning process (forum, how-to videos, ...)

0

Learning Curve (8)

- Why is so important the learning curve?
 - You should avoid discouraging a player with a steeper learning curve
 - On the other hand, if you choose a shallower learning curve your game might become too easy and so no one will play it
 - Adopting a S-Curve shape with short start zone and a long term end zone might grant you an higher longevity to your game

Experience Curve (1/5)

- Sometimes, you can find a particular type of learning curve, called Experience Curve
- Thought by Wright in 1938
- It has a slighty different meaning:
 - More times a task has been performed, the less time is required on each subsequent iteration
 - It measures the efficiency of the learning process

Experience Curve (2)

Logarithmic Scale

- Experience Curves are represented using the logarithmic scale
- A logarithmic scale is a nonlinear scale used when there is a large range of quantities

Experience Curve (3) - Shape

 Experience represented in Linear Scale VS Cost of learning rep. in Logarithmic Scale

Characteristics:

- Experience Curves has a minimum limit to cost of learning
- This minimum limit depends on learner learning rate

Experience Curve (4) - Game Context

- How to decrease the cost of learning process?
 - You cannot decrease the learning rate of users!
 - As for Learning Curves, each user has his own Experience Curve
 - You should encourage users to <u>spent more time</u> in the learning process:
 - Recognize their progesses with rewards
 - Use a positive approach when users fail some task
 - •

Experience Curve (5)

- Why is so important the experience curve?
 - Users can really feel the so called EROEI:
 - Energy Returned On Energy Invested
 - What does it mean?
 - If you spend a lot of time in a game, then you expect to gain more experience. You expect to become more able to play it, stronger and more expert.
 - If you do not perceive this kind of progress is very likely that you will abandon that game: it is simply not worthy!

Interaction Design (IxD) (1/4)

- To facilitate the learning progress the Interaction Design (IxD) cover a critical role
- IxD is often associated with the design of system interfaces
 - but concentrates on the aspects of the interface that define and present its behavior over time, with a focus on developing the system to respond to the user's experience and not to the technical issues.

Interaction Design (IxD) (2)

- The 5 dimensions of IxD:
 - 1. Words (voice, text, messages, ...)
 - 2. Visual Representations (figures, icons, banners, ...)
 - 3. Physical Objects or Space (windows, rooms, ...)
 - **4. Time** (contents that changes over time, ...)
 - **5. Behaviour** (contents that changes accordingly to user actions or behaviours, ...)

Interaction Design (IxD) (3)

- The 4 activities of IxD:
 - 1. Goal and Requirements definition
 - 2. Design
 - Conceptual Design
 - Physical Design
 - 3. Implementation
 - Release of a prototype
 - 4. Evaluation

Interaction Design (IxD) (4)

- Each user interacts with the system in his own way
 - However, the interaction is strictly related to the goal of the system
- IxD exploits archetypes of users and customers called *Personas*
- IxD is related to Model-View-Controller (MVC) architectural pattern and Human-Computer Interaction (HCI)

MVC Pattern

The Model-View-Controller (MVC) architectural design pattern divides a software application into three interconnected parts:

Model

Handles the logic of the sw

2. View

Handles the display of the data

3. Controller

Handles user interaction

Human-Computer Interaction (HCI)

- HCI includes methods for describing and testing the usability of interacting with an interface
- ▶ HCI define the "loop of interaction", that includes:
 - Audio and Video based interactions
 - ► Task Environment (user side)
 - Machine Environment (computer side)
 - Input Flow (from user to computer, within task environment)
 - Output Flow (from computer to user, within machine environment)
 - Feedback (about input and output flows)
- We are interested in Graphical User Interfaces (GUI)

GUI Design (1/3)

L. Constantine and L. Lockwood states several principles to user interface (UI) design:

1. Structure

 concerned with overall UI architecture, the elements of the UI should be positioned in a structured way

2. Simplicity

Common tasks should be performed in the easiest way

3. Visibility

 Needed elements should be always visible, while UI should limit at most distracting elements

GUI Design (2)

4. Feedback

 UI should keep user informed about its current state (e.g., using loading bars during loading operations)

5. Tolerance (UI forgive the user)

 UI should allow undoing and redoing, and generally be tolerant with user errors

6. Reuse

Use the same elements in different views of the UI

GUI Design (3)

- J. Raskin add 2 more principles, based on the Asimov's laws of robotics:
 - 7. A computer shall not harm your work or, through inactivity, allow your work to come to harm
 - 8. A computer shall not waste your time or require you to do more work than is strictly necessary

User Experience (UX) (1/3)

- UI is one of the many elements that influence the so called User Experience (UX). Some of them are included in the figure below.
- ► UX has been defined in the ISO 9241-210 as "a person's perceptions and responses that result from the use or anticipated use of a product, system or service"

User Experience (UX) (2)

- The ISO also list three factors that influence user experience:
 - System
 - User (yes, the user himself!)
 - The context of use

Then, ISO hints "Usability criteria can be used to assess aspects of user experience"

User Experience (UX) (3)

- Users' feelings, motivations, and values are given as much, if not more, attention than
 - efficiency,
 - effectiveness and
 - basic subjective satisfaction
 - (i.e. the three traditional usability metrics)
- For instance, UX provided a platform to cover the interests of all the stakeholders involved in a website design:
 - Usability is valuable for marketing, branding, and popularity issues

UX Design (UXD)

- UXD is the process of enhancing user satisfaction by improving
 - usability,
 - accessibility, and
 - pleasure provided in the interaction between the user and the product
- Starting from HCI, UXD extends it by addressing all aspects of a product or service as perceived by users

UX Evaluation (UXE)

- Implicit UXE Methods:
 - User Tracking and Profiling
 - Eye Tracking
 - HeatMap of salient zones
- Explicit UXE Methods:
 - Usability testing
 - Emotion evaluation
 - Survey

Mockup of a GUI UX-oriented

- UI that show the end-user what the software will look like without having to build the software or the underlying functionality
- Can range from very simple hand drawn screen layouts, through realistic bitmaps, to semi functional user interfaces developed in a software development tool
- ► TUTORIAL → Try to make your own mockup!

Tutorial - Make a Mockup

- Take a random ticket, then...
 - If you take a «website»
 - Home page
 - Create account page
 - Main task related to the website
 - i.e., e-commerce website → new order page
 - Otherwise, if you take a «videogame» or «app»
 - Main menù
 - Create your account/character sheet/page
 - Achievement sheet/page