Gliding, Climbing, and Turning Flight Performance

Robert Stengel, Aircraft Flight Dynamics, MAE 331, 2016

Learning Objectives

- · Conditions for gliding flight
- · Parameters for maximizing climb angle and rate
- Review the V-n diagram
- Energy height and specific excess power
- · Alternative expressions for steady turning flight
- · The Herbst maneuver

Reading:
Flight Dynamics
Aerodynamic Coefficients, 130–141

Copyright 2016 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE331.html_ http://www.princeton.edu/~stengel/FlightDynamics.html

Review Questions

- How does air density decrease with altitude?
- What are the different definitions of airspeed?
- What is a "lift-drag polar"?
- Power and thrust: How do they vary with altitude?
- What factors define the "flight envelope"?
- What were some features of the first commercial transport aircraft?
- What are the important parameters of the "Breguet Range Equation"?
- What is a "step climb", and why is it important?

Gliding Flight

3

Equilibrium Gliding Flight

$$D = C_D \frac{1}{2} \rho V^2 S = -W \sin \gamma$$

$$C_L \frac{1}{2} \rho V^2 S = W \cos \gamma$$

$$\dot{h} = V \sin \gamma$$

$$\dot{r} = V \cos \gamma$$

Gliding Flight

- Thrust = 0
- Flight path angle < 0 in gliding flight
- Altitude is decreasing
- Airspeed ~ constant
- · Air density ~ constant

Gliding flight path angle

$$\tan \gamma = -\frac{D}{L} = -\frac{C_D}{C_L} = \frac{\dot{h}}{\dot{r}} = \frac{dh}{dr}; \quad \gamma = -\tan^{-1}\left(\frac{D}{L}\right) = -\cot^{-1}\left(\frac{L}{D}\right)$$

Corresponding airspeed

$$V_{glide} = \sqrt{\frac{2W}{\rho S \sqrt{C_D^2 + C_L^2}}}$$

5

Maximum Steady Gliding Range

- Glide range is maximum when γ is least negative, i.e., most positive
- This occurs at (L/D)_{max}

Maximum Steady Gliding Range

- Glide range is maximum when γ is least negative, i.e., most positive
- This occurs at $(L/D)_{max}$

$$\left| \gamma_{\text{max}} = -\tan^{-1} \left(\frac{D}{L} \right)_{\text{min}} = -\cot^{-1} \left(\frac{L}{D} \right)_{\text{max}} \right|$$

$$\tan \gamma = \frac{\dot{h}}{\dot{r}} = negative \ constant = \frac{\left(h - h_o\right)}{\left(r - r_o\right)}$$

$$\Delta r = \frac{\Delta h}{\tan \gamma} = \frac{-\Delta h}{-\tan \gamma} = maximum \text{ when } \frac{L}{D} = maximum$$

Sink Rate, m/s

• Lift and drag define γ and V in gliding equilibrium

$$D = C_D \frac{1}{2} \rho V^2 S = -W \sin \gamma$$

$$\sin \gamma = -\frac{D}{W}$$

$$L = C_L \frac{1}{2} \rho V^2 S = W \cos \gamma$$

$$V = \sqrt{\frac{2W \cos \gamma}{C_L \rho S}}$$

$$L = C_L \frac{1}{2} \rho V^2 S = W \cos \gamma$$
$$V = \sqrt{\frac{2W \cos \gamma}{C_L \rho S}}$$

Sink rate = altitude rate, dh/dt (negative)

$$\begin{split} \dot{h} &= V \sin \gamma \\ &= -\sqrt{\frac{2W \cos \gamma}{C_L \rho S}} \left(\frac{D}{W}\right) = -\sqrt{\frac{2W \cos \gamma}{C_L \rho S}} \left(\frac{L}{W}\right) \left(\frac{D}{L}\right) \\ &= -\sqrt{\frac{2W \cos \gamma}{C_L \rho S}} \cos \gamma \left(\frac{1}{L/D}\right) \end{split}$$

Conditions for Minimum Steady Sink Rate

- Minimum sink rate provides maximum endurance
- Minimize sink rate by setting $\partial (dh/dt)/\partial C_1 = 0$ (cos $\gamma \sim 1$)

$$\begin{split} \dot{h} &= -\sqrt{\frac{2W\cos\gamma}{C_L\rho S}}\cos\gamma\left(\frac{C_D}{C_L}\right) \\ &= -\sqrt{\frac{2W\cos^3\gamma}{\rho S}}\left(\frac{C_D}{C_L^{3/2}}\right) \approx -\sqrt{\frac{2}{\rho}\left(\frac{W}{S}\right)}\left(\frac{C_D}{C_L^{3/2}}\right) \end{split}$$

$$C_{L_{ME}} = \sqrt{\frac{3C_{D_o}}{\varepsilon}}$$
 and $C_{D_{ME}} = 4C_{D_o}$

q

L/D and V_{ME} for Minimum Sink Rate

$$\left(\frac{L_D}{D}\right)_{ME} = \frac{1}{4}\sqrt{\frac{3}{\varepsilon C_{D_o}}} = \frac{\sqrt{3}}{2}\left(\frac{L_D}{D}\right)_{\max} \approx 0.86\left(\frac{L_D}{D}\right)_{\max}$$

$$V_{ME} = \sqrt{\frac{2W}{\rho S \sqrt{C_{D_{ME}}^2 + C_{L_{ME}}^2}}} \approx \sqrt{\frac{2(W/S)}{\rho}} \sqrt{\frac{\varepsilon}{3C_{D_o}}} \approx 0.76 V_{L/D_{\text{max}}}$$

L/D for Minimum Sink Rate

- For L/D < L/D_{max}, there are two solutions
- Which one produces smaller sink rate?

$$\left(\frac{L}{D}\right)_{ME} \approx 0.86 \left(\frac{L}{D}\right)_{\max}$$
 $V_{ME} \approx 0.76 V_{L/D_{\max}}$

11

Checklist

- □ Steady flight path angle?
- □ Corresponding airspeed?
- ☐ Sink rate?
- □ Maximum-range glide?
- ☐ Maximum-endurance glide?

Historical Factoids Lifting-Body Reentry Vehicles

13

Climbing Flight

Climbing Flight

Flight path angle

$\dot{V} = 0 = \frac{\left(T - D - W\sin\gamma\right)}{m}$ $\sin \gamma = \frac{(T-D)}{W}; \quad \gamma = \sin^{-1} \frac{(T-D)}{W}$

Required lift

$$\dot{\gamma} = 0 = \frac{\left(L - W \cos \gamma\right)}{mV}$$
$$L = W \cos \gamma$$

Rate of climb, dh/dt = Specific Excess Power

$$\dot{h} = V \sin \gamma = V \frac{(T - D)}{W} = \frac{\left(P_{thrust} - P_{drag}\right)}{W}$$

$$Specific Excess Power (SEP) = \frac{Excess Power}{Unit Weight} \equiv \frac{\left(P_{thrust} - P_{drag}\right)}{W}$$

Steady Rate of Climb

Climb rate

$$\dot{h} = V \sin \gamma = V \left[\left(\frac{T}{W} \right) - \frac{\left(C_{D_o} + \varepsilon C_L^2 \right) \overline{q}}{\left(W/S \right)} \right]$$

$$L = C_L \overline{q} S = W \cos \gamma$$

$$C_L = \left(\frac{W}{S} \right) \frac{\cos \gamma}{\overline{q}}$$

$$V = \sqrt{2 \left(\frac{W}{S} \right) \frac{\cos \gamma}{C_D c}}$$

$$L = C_L \overline{q}S = W \cos \gamma$$

$$C_L = \left(\frac{W}{S}\right) \frac{\cos \gamma}{\overline{q}}$$

$$V = \sqrt{2\left(\frac{W}{S}\right) \frac{\cos \gamma}{C_L \rho}}$$

Note significance of thrust-to-weight ratio and wing loading

$$\dot{h} = V \left[\left(\frac{T}{W} \right) - \frac{C_{D_o} \overline{q}}{(W/S)} - \frac{\varepsilon(W/S) \cos^2 \gamma}{\overline{q}} \right]$$

$$= V \left(\frac{T(h)}{W} \right) - \frac{C_{D_o} \rho(h) V^3}{2(W/S)} - \frac{2\varepsilon(W/S) \cos^2 \gamma}{\rho(h) V}$$

Condition for Maximum Steady Rate of Climb

$$\dot{h} = V \left(\frac{T}{W}\right) - \frac{C_{D_o} \rho V^3}{2(W/S)} - \frac{2\varepsilon (W/S) \cos^2 \gamma}{\rho V}$$

Necessary condition for a maximum with respect to airspeed

$$\frac{\partial \dot{h}}{\partial V} = 0 = \left[\left(\frac{T}{W} \right) + V \left(\frac{\partial T / \partial V}{W} \right) \right] - \frac{3C_{D_o} \rho V^2}{2(W/S)} + \frac{2\varepsilon (W/S) \cos^2 \gamma}{\rho V^2}$$

17

Maximum Steady Rate of Climb:

Propeller-Driven Aircraft

True Airspeed

At constant power

$$\frac{\partial P_{thrust}}{\partial V} = 0 = \left[\left(\frac{T}{W} \right) + V \left(\frac{\partial T / \partial V}{W} \right) \right]$$

With cos² γ ~ 1, optimality condition reduces to

$$\frac{\partial \dot{h}}{\partial V} = 0 = -\frac{3C_{D_o}\rho V^2}{2(W/S)} + \frac{2\varepsilon(W/S)}{\rho V^2}$$

Airspeed for maximum rate of climb at maximum power, P_{max}

$$V^{4} = \left(\frac{4}{3}\right) \frac{\varepsilon \left(W/S\right)^{2}}{C_{D_{o}} \rho^{2}}; \quad V = \sqrt{2 \frac{\left(W/S\right)}{\rho} \sqrt{\frac{\varepsilon}{3C_{D_{o}}}}} = V_{ME}$$

Maximum Steady Rate of Climb: Jet-Driven Aircraft

True Airspeed

Condition for a maximum at constant thrust and $\cos^2 \gamma \sim 1$

$$\frac{\frac{\partial \dot{h}}{\partial V} = 0}{\frac{3C_{D_o}\rho}{2(W/S)}V^4 + \left(\frac{T}{W}\right)V^2 + \frac{2\varepsilon(W/S)}{\rho} = 0}$$

$$-\frac{3C_{D_o}\rho}{2(W/S)}(V^2)^2 + \left(\frac{T}{W}\right)(V^2) + \frac{2\varepsilon(W/S)}{\rho} = 0$$

Quadratic in V²

Airspeed for maximum rate of climb at maximum thrust, T_{max}

$$0 = ax^2 + bx + c \text{ and } V = +\sqrt{x}$$

19

Checklist

- ☐ Specific excess power?
- ☐ Maximum steady rate of climb?
- □ Velocity for maximum climb rate?

Optimal Climbing Flight

21

What is the Fastest Way to Climb from One Flight Condition to Another?

Energy Height

- Specific Energy
 - = (Potential + Kinetic **Energy) per Unit Weight**
 - = Energy Height

$$\frac{Total\ Energy}{Unit\ Weight} \equiv Specific\ Energy$$
$$= \frac{mgh + mV^2/2}{mg} = h + \frac{V^2}{2g}$$

Can trade altitude for airspeed with no change in energy height if thrust and drag are zero

23

Specific Excess Power

Rate of change of Specific Energy

$$\frac{dE_h}{dt} = \frac{d}{dt} \left(h + \frac{V^2}{2g} \right) = \frac{dh}{dt} + \left(\frac{V}{g} \right) \frac{dV}{dt}$$

$$= V \sin \gamma + \left(\frac{V}{g}\right) \left(\frac{T - D - mg \sin \gamma}{m}\right) = V \frac{(T - D)}{W}$$

$$= \frac{\text{Excess Power (SEP)}}{\text{Unit Weight}} = \frac{\left(P_{thrust} - P_{drag}\right)}{W}$$

$$= V \frac{\left(C_T - C_D\right) \frac{1}{2} \rho(h) V^2 S}{W}$$

$$=V\frac{\left(C_{T}-C_{D}\right)\frac{1}{2}\rho(h)V^{2}S}{W}$$

Contours of Constant Specific Excess Power

- Specific Excess Power is a function of altitude and airspeed
- SEP is maximized at each altitude, h, when

Subsonic Minimum-Time Energy Climb

Objective: Minimize time to climb to desired altitude and airspeed

- Minimum-Time Strategy:
 - Zoom climb/dive to intercept SEP_{max}(h) contour
 - Climb at SEP_{max}(h)
 - Zoom climb/dive to intercept target SEP_{max}(h) contour

Bryson, Desai, Hoffman, 1969

Subsonic Minimum-Fuel Energy Climb

Objective: Minimize fuel to climb to desired altitude and airspeed

- Minimum-Fuel Strategy:
 - Zoom climb/dive to intercept [SEP(h)/(dm/dt)] max contour
 - Climb at [SEP(h)/(dm/dt)] max
 - Zoom climb/dive to intercept target[SEP(h)/(dm/dt)] max contour

Bryson, Desai, Hoffman, 1969

27

Supersonic Minimum-Time Energy Climb

Objective: Minimize time to climb to desired altitude and airspeed

- Minimum-Time Strategy:
 - Intercept subsonic SEP_{max}(h) contour
 - Climb at SEP_{max}(h) to intercept matching zoom climb/dive contour
 - Zoom climb/dive to intercept supersonic SEP_{max}(h) contour
 - Climb at SEP_{max}(h) to intercept target SEP_{max}(h) contour
 - Zoom climb/dive to intercept target SEP_{max}(h) contour

Bryson, Desai, Hoffman, 1969

Checklist

- □ Energy height?
- □ Contours?
- □ Subsonic minimum-time climb?
- □ Supersonic minimum-time climb?
- ☐ Minimum-fuel climb?

$$\frac{dE_h}{dm_{fuel}} = \frac{dE_h}{dt} \frac{dt}{dm_{fuel}} = \frac{1}{\dot{m}_{fuel}} \left[\frac{dh}{dt} + \left(\frac{V}{g} \right) \frac{dV}{dt} \right]$$

29

SpaceShipOne Ansari X Prize, December 17, 2003

SpaceShipOne Altitude vs. Range MAE 331 Assignment #4, 2010

SpaceShipOne State Histories

SpaceShipOne Dynamic Pressure and Mach Number Histories

33

The Maneuvering Envelope

Typical Maneuvering Envelope: V-n Diagram

- Maneuvering envelope: limits on normal load factor and allowable equivalent airspeed
 - Structural factors
 - Maximum and minimum achievable lift coefficients
 - Maximum and minimum airspeeds
 - Protection against overstressing due to gusts
 - Corner Velocity: Intersection of maximum lift coefficient and maximum load factor

Typical positive load factor limits

- Transport: > 2.5
- Utility: > 4.4
- Aerobatic: > 6.3
- Fighter: > 9

Typical negative load factor limits

- Transport: < −1
- Others: < -1 to -3

35

Maneuvering Envelopes (*V-n Diagrams*) for Three Fighters of the Korean War Era

Turning Flight

37

Level Turning Flight

- Level flight = constant altitude
- Sideslip angle = 0
- · Vertical force equilibrium

$$L\cos\mu = W$$

Load factor

$$n = \frac{L}{W} = \frac{L}{mg} = \sec \mu, "g"s$$

· Thrust required to maintain level flight

$$T_{req} = \left(C_{D_o} + \varepsilon C_L^2\right) \frac{1}{2} \rho V^2 S = D_o + \frac{2\varepsilon}{\rho V^2 S} \left(\frac{W}{\cos \mu}\right)^2$$
$$= D_o + \frac{2\varepsilon}{\rho V^2 S} (nW)^2$$

Maximum Bank Angle in Steady Level Flight

Bank angle

$$\cos \mu = \frac{W}{C_L \overline{q}S}$$

$$= \frac{1}{n}$$

$$= W \sqrt{\frac{2\varepsilon}{\left(T_{req} - D_o\right)\rho V^2 S}}$$

$$\mu = \cos^{-1}\left(\frac{W}{C_L \overline{q}S}\right)$$

$$= \cos^{-1}\left(\frac{1}{n}\right)$$

$$= \cos^{-1}\left[W\sqrt{\frac{2\varepsilon}{\left(T_{req} - D_o\right)\rho V^2 S}}\right]$$

Bank angle is limited by

$$C_{L_{\max}}$$
 or T_{\max} or n_{\max}

39

Turning Rate and Radius in Level Flight

Turning rate

$$\dot{\xi} = \frac{C_L \overline{q} S \sin \mu}{mV}$$

$$= \frac{W \tan \mu}{mV}$$

$$= \frac{g \tan \mu}{V}$$

$$= \frac{\sqrt{L^2 - W^2}}{mV}$$

$$= \frac{W \sqrt{n^2 - 1}}{mV}$$

$$= \frac{\sqrt{\left(T_{req} - D_o\right)\rho V^2 S / 2\varepsilon - W^2}}{mV}$$

Turning rate is limited by

$$C_{L_{\max}}$$
 or T_{\max} or n_{\max}

Turning radius

$$R_{nurn} = \frac{V}{\dot{\xi}} = \frac{V^2}{g\sqrt{n^2 - 1}}$$

Maximum Turn Rates

41

Corner Velocity Turn

Corner velocity

$$V_{corner} = \sqrt{\frac{2n_{\text{max}}W}{C_{L_{mas}}\rho S}}$$

 For steady climbing or diving flight

$$\sin \gamma = \frac{T_{\text{max}} - D}{W}$$

Turning radius

$$R_{turn} = \frac{V^2 \cos^2 \gamma}{g \sqrt{n_{\text{max}}^2 \cos^2 \gamma}}$$

Corner Velocity Turn

Turning rate

$$\dot{\xi} = \sqrt{\frac{g(n_{\text{max}}^2 \cos^2 \gamma)}{V \cos \gamma}}$$

Time to complete a full circle

$$t_{2\pi} = \frac{V \cos \gamma}{g \sqrt{n_{\text{max}}^2 \cos^2 \gamma}}$$

Altitude gain/loss

$$\Delta h_{2\pi} = t_{2\pi} V \sin \gamma$$

43

Checklist

- □ V-n diagram?
- ☐ Maneuvering envelope?
- □ Level turning flight?
- □ Limiting factors?
- □ Wind-up turn?
- □ Corner velocity?

Herbst Maneuver

- Minimum-time reversal of direction
- · Kinetic-/potential-energy exchange
- · Yaw maneuver at low airspeed
- X-31 performing the maneuver

Next Time: Aircraft Equations of Motion

Reading:
Flight Dynamics,
Section 3.1, 3.2, pp. 155-161

Learning Objectives

What use are the equations of motion?
How is the angular orientation of the airplane described?
What is a cross-product-equivalent matrix?
What is angular momentum?
How are the inertial properties of the airplane described?
How is the rate of change of angular momentum calculated?

Supplemental Material

47

Gliding Flight of the P-51 Mustang

Maximum Range Glide

Loaded Weight = 9,200 lb (3,465 kg)
$$(L/D)_{\text{max}} = \frac{1}{2\sqrt{\varepsilon C_{D_o}}} = 16.31$$

$$\gamma_{MR} = -\cot^{-1}\left(\frac{L}{D}\right)_{\text{max}} = -\cot^{-1}(16.3) = -3.5^{\circ}$$

$$(C_D)_{L/D_{\text{max}}} = 2C_{D_o} = 0.0326$$

$$(C_L)_{L/D_{\text{max}}} = \sqrt{\frac{C_{D_o}}{\varepsilon}} = 0.531$$

$$V_{L/D_{\text{max}}} = \frac{76.49}{\sqrt{\rho}} \text{ m/s}$$

$$\dot{h}_{L/D_{\text{max}}} = V \sin \gamma = -\frac{4.68}{\sqrt{\rho}} \text{ m/s}$$

$$R_{h_o=10km} = (16.31)(10) = 163.1 \, km$$

Maximum Endurance Glide

Loaded Weight = 9,200 lb (3,465 kg)

$$S = 21.83 \text{ m}^{2}$$

$$C_{D_{ME}} = 4C_{D_{o}} = 4(0.0163) = 0.0652$$

$$C_{L_{ME}} = \sqrt{\frac{3C_{D_{o}}}{\varepsilon}} = \sqrt{\frac{3(0.0163)}{0.0576}} = 0.921$$

$$(L/D)_{ME} = 14.13$$

$$\dot{h}_{ME} = -\sqrt{\frac{2}{\rho} \left(\frac{W}{S}\right)} \left(\frac{C_{D_{ME}}}{C_{L_{ME}}}\right) = -\frac{4.11}{\sqrt{\rho}} \text{ m/s}$$

$$\gamma_{ME} = -4.05^{\circ}$$

$$V_{ME} = \frac{58.12}{\sqrt{\rho}} \text{ m/s}$$