Devoir maison 13 - Probabilités

Première partie : Temps d'attente du n-ième succès

On effectue une succession d'expériences de Bernoulli indépendantes, avec une probabilité de succès égale à $p \in]0,1[$.

On note T_n le nombre d'expériences nécessaires pour obtenir le n-ième succès.

- **1.** Identifier la loi de T_1 .
- **2.** Donner la loi de T_2 , puis celle de T_n pour n quelconque.
- **3.** Pour $n \in \mathbb{N}^*$ et $k \in T_n(\Omega)$, déterminer la loi de $T_{n+1} T_n$ conditionnée par $(T_n = k)$. En déduire la loi de $T_{n+1} T_n$
- **4.** En utilisant la question précédente, calculer $\mathbb{E}(T_n)$.
- **5.** Pour $n \in \mathbb{N}^*$, démontrer que $T_{n+1} T_n$ et T_n sont indépendants. En déduire $V(T_n)$.
- **6.** En utilisant l'indépendance de T_{n+1} et T_n , calculer la fonction génératrice de T_n .
- 7. En déduire la formule du binôme négatif :

$$\forall n \in \mathbb{N} \quad \forall x \in]-1,1[, \quad \frac{1}{(1-x)^{n+1}} = \sum_{k=n}^{+\infty} \binom{k}{n} x^{k-n}$$

Deuxième partie : Loi de Pascal

Dans cette partie, on sera amené à utiliser la formule du binôme négatif établie dans la première partie. Soient $n \in \mathbb{N}^*$ et $p \in]0,1[$. On note q=1-p.

1. Montrer que la suite de réels

$$\forall k \in \mathbb{N}, \quad p_k = \binom{k+n-1}{n-1} p^n q^k$$

définit la loi de probabilité d'une variable aléatoire à valeurs dans \mathbb{N} . On l'appelle loi de Pascal de paramètres n et p.

- $\mathbf{2}$. Soit X une variable aléatoire suivant une telle loi. Déterminer la fonction génératrice de X.
- 3. En déduire que X admet une espérance et une variance, et les calculer.
- **4.** Deux variables aléatoires indépendantes X et Y suivent deux lois de Pascal de paramètres respectifs (n, p) et (m, p). Déterminer la loi de X + Y.