$$T(n) = \begin{cases} c & \text{if } n = 1 \\ 2T(n/2) + cn & \text{if } n > 1 \end{cases} \qquad T(n) = n + 2T(n/2) \\ T(n) = n + 2(n/2 + 2T(n/4)) \end{cases}$$

$$T(n) = \begin{cases} 1 & \text{if } n = 1 \\ 2T(n/2) + n & \text{if } n > 1 \end{cases} \qquad T(n) = n + n + 4T(n/4) \\ T(n) = 2n + n + 4T(n/4) \end{cases}$$

$$T(n) = 2n + n + 8T(n/8) \end{cases}$$

$$T(n) = 2n + n + 8T(n/8) \end{cases}$$

$$T(n) = 3n + 8(n/8 + 2T(n/16)) \end{cases}$$

$$T(n/2) = n/2 + 2T(n/2/2) \qquad T(n) = 4n + 2^4$$

Solve the Recurrence (Practice example)

$$T(n) = n + T(n/2)$$

$$T(n) = \begin{cases} 1 & \text{if } n = 1 \end{cases}$$

$$T(n) = n + (n/2 + T(n/4))$$

$$T(n) = n + n/2 + T(n/4)$$

$$T(n) = n + n/2 + n/4 + T(n/8)$$

$$T(n) = n + n/2 + n/4 + T(n/8)$$

$$T(n) = n + n/2 + n/4 + T(n/8)$$

$$T(n) = n + n/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4$$

Geometric Series (Aside)

$$1 + x + x^2 + \dots + x^n = \frac{1 - x^{n+1}}{1 - x}$$
 for $x \neq 1$

OR

$$1 + x + x^2 + \dots + x^n = \frac{x^{n+1} - 1}{x - 1}$$
 for $x \neq 1$

$$1 + x + x^2 + \dots + x^n = \frac{1}{1 - x}$$
 for $x < 1$

$$T(n) = 1 + T(n/2)$$

$$T(n) = \begin{cases} 1 & \text{if } n = 1 \\ T(n/2) + 1 & \text{if } n > 1 \end{cases}$$

$$T(n) = 1 + (1 + T(n/4))$$

$$T(n) = 2 + T(n/4)$$

$$T(n) = 3 + T(n/8)$$

$$T(n) = 3 + T(n/2^3)$$
.....
$$T(n) = k + T(n/2^k)$$
For $k = logn => n = 2^k$

$$T(n) = logn + T(1)$$

$$T(n) = 1 + log(n)$$
i.e. $T(n) = Theta (logn)$

Binary search example

The master theorem

- Suppose that $a \ge 1, b > 1$, and d are constants (independent of n).
- Suppose $T(n) = a \cdot T\left(\frac{n}{b}\right) + O(n^d)$. Then

$$T(n) = \begin{cases} O(n^d \log(n)) & \text{if } a = b^d \\ O(n^d) & \text{if } a < b^d \\ O(n^{\log_b(a)}) & \text{if } a > b^d \end{cases}$$

Three parameters:

a: number of subproblems

b: factor by which input size shrinks

We can also take n/b to mean either $\left\lfloor \frac{n}{b} \right\rfloor$ or $\left\lceil \frac{n}{b} \right\rceil$ and the theorem is still true.

d: need to do nd work to create all the subproblems and combine their solutions.

The master theorem (Limitations)

You cannot use the Master Theorem if

- T(n) is not monotone, ex: $T(n) = \sin n$
- f(n) is not a polynomial, ex: $T(n) = 2T(\frac{n}{2}) + 2^n$
- b cannot be expressed as a constant, ex: b=2n

Examples

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + O(n^d).$$

$$T(n) = \begin{cases} O(n^d \log(n)) & \text{if } a = b^d \\ O(n^d) & \text{if } a < b^d \\ O(n^{\log_b(a)}) & \text{if } a > b^d \end{cases}$$

An example

•
$$T(n) = 4 T(n/2) + O(n)$$

•
$$T(n) = O(n^2)$$

$$d = 1$$

 $a > b^d$

 $a = b^d$

 $a = b^d$

 $a < b^d$

Binary Search

•
$$T(n) = T(n/2) + c$$

•
$$T(n) = O(\log(n))$$

$$a = 1$$

$$b = 2$$

$$d = 0$$

MergeSort

•
$$T(n) = 2T(n/2) + O(n)$$

$$a = 2$$

$$d = 1$$

That other one

•
$$T(n) = T(n/2) + O(n)$$

•
$$T(n) = O(n)$$

$$a = 1$$

$$b = 2$$

$$d = 1$$

$$T(n) = 1 + T(n-1)$$

 $T(n) = 1 + (1+T(n-2))$
 $T(n) = 2 + T(n-2)$
 $T(n) = 3 + T(n-3)$
 $T(n) = 4 + T(n-4)$
.....
 $T(n) = k + T(n-k)$
For $k = (n-1)$
 $T(n) = n - 1 + T(1)$
 $T(n) = n$
i.e. $T(n) = Theta(n)$

For
$$n - k = 1$$

So, $k = n-1$

$$T(n) = n + T(n-1)$$

 $T(n) = n + (n-1+T(n-2))$
 $T(n) = 2n - 1 + T(n-2)$
 $T(n) = 2n - 1 + ((n-2) + T(n-3))$
 $T(n) = 3n - 3 + T(n-3)$
 $T(n) = 3n - 3 + n - 3 + T(n-4))$
 $T(n) = 4n - 6 + T(n-4)$
.....
 $T(n) = kn - c + T(n-k)$
 $T(n) = (n-1).n - n - c + T(1)$
 $T(n) = n^2 - n - c + T(1)$
i.e. $T(n) = Theta(n^2)$

For n - k = 1So, k = n-1

$$T(n) = 2T(n-1)$$

 $T(n) = 2(2T(n-2))$
 $T(n) = 4T(n-2)$
 $T(n) = 4(2T(n-3))$
 $T(n) = 8T(n-3)$
 $T(n) = 8(2T(n-4))$
 $T(n) = 16T(n-4)$
 $T(n) = 2^4T(n-4)$
.....
 $T(n) = 2^k.T(n-k)$
 $T(n) = 2^n.T(n-k)$
 $T(n) = 0(2^n)$

For
$$n - k = 1$$

So, $k = n-1$

Master Theorem Example

Let $T(n) = 2T(\frac{n}{4}) + \sqrt{n} + 42$. What are the parameters?

$$a =$$

$$b =$$

$$d =$$

Therefore which condition?

Master Theorem Example

Solution

Let $T(n) = 2T(\frac{n}{4}) + \sqrt{n} + 42$. What are the parameters?

$$\begin{array}{rcl}
a & = & 2 \\
b & = & 4 \\
d & = & \frac{1}{2}
\end{array}$$

Therefore which condition?

Since $2 = 4^{\frac{1}{2}}$, case 2 applies.

Thus we conclude that

$$T(n) \in \Theta(n^d \log n) = \Theta(\sqrt{n} \log n)$$

Master Theorem 4th Case

Fourth Condition:

Recall that we cannot use the Master Theorem if f(n) (the non-recursive cost) is not polynomial.

There is a limited 4-th condition of the Master Theorem that allows us to consider polylogarithmic functions.

Corollary

If
$$f(n) \in \Theta(n^{\log_b a} \log^k n)$$
 for some $k \ge 0$ then

$$T(n) \in \Theta(n^{\log_b a} \log^{k+1} n)$$

This final condition is fairly limited and we present it merely for completeness.

MASTER THEOREM

• $T(n) = 2 \cdot T(n/2) + n \log n$

```
a = ?
```

$$d = ?$$

MASTER THEOREM

• $T(n) = 2 \cdot T(n/2) + n \log n$

i.e. $f(n) = \Theta(n \log n)$

So k = 1 therefore, fourth condition of master theorem

$$T(n) = \Theta (n \log^2 n)$$

Recursion Tree

Recursion Tree method

- $T_1(n) = T_1(\frac{n}{2}) + n$, $T_1(1) = 1$.
- Adding up over all layers:

$$\sum_{i=0}^{\log(n)} \frac{n}{2^i}$$

$$= n. \sum_{i=0}^{\log(n)} \frac{1}{2^i} = n. 2$$

• So $T_1(n) = O(n)$.

Recursion Tree method

•
$$T_2(n) = 4T_2\left(\frac{n}{2}\right) + n$$
, $T_2(1) = 1$.
• Adding up over all layers:
$$\log(n) \qquad \sum_{i=0}^{\log(n)} 4^i \cdot \frac{n}{2^i} = n \sum_{i=0}^{\log(n)} 2^i \qquad \sum_{i=0}^{\log(n)$$

$T(n) = a \cdot T\left(\frac{n}{h}\right) + c \cdot n^d$ Recursion tree Amount of Size of work at this # each level Level problems problem Size n 0 n n/b 1 a n/b n/b n/b n/b² n/b^2 a^2 n/b² n/b² 2 n/b² n/b² n/b² n/b² n/b^t n/b^t n/b^t n/b^t n/b^t n/b^t at n/b^t $\log_b(n)|_{a}\log_b(n)$ (Size 1)

Recursion tree

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + c \cdot n^{d}$$

Size of each problem

Amount of

1

2

Level

n/b

n/b²

n/b^t

$$c \cdot n^d$$

n/b²

Size n

 a^2

#

problems

$$ac \left(\frac{n}{b}\right)^{a}$$

$$a^{2}c \left(\frac{n}{b^{2}}\right)^{d}$$

n/b^t

$$(n)^d$$

$$a^t c \left(\frac{n}{b^t}\right)^d$$

n/b²

n/b

n/b²

n/b²

(Size 1)

 $\log_b(n)|_{\mathcal{O}}\log_b(n)$

$$\frac{t}{b}$$

 $a^{\log_b(n)}c$

(Let's pretend that the

base case is T(1) = c for

convenience).

n/b²

n/b^t

Now let's check all the cases

$$T(n) = \begin{cases} O(n^d \log(n)) & \text{if } a = b^d \\ O(n^d) & \text{if } a < b^d \\ O(n^{\log_b(a)}) & \text{if } a > b^d \end{cases}$$

Case 1:
$$a = b^d$$

$$T(n) = \begin{cases} O(n^d \log(n)) & \text{if } a = b^d \\ O(n^d) & \text{if } a < b^d \\ O(n^{\log_b(a)}) & \text{if } a > b^d \end{cases}$$

•
$$T(n) = c \cdot n^d \cdot \sum_{t=0}^{\log_b(n)} \left(\frac{a}{b^d}\right)^t$$
 Equal to 1!

$$= c \cdot n^d \cdot \sum_{t=0}^{\log_b(n)} 1$$

$$= c \cdot n^d \cdot (\log_b(n) + 1)$$

$$= c \cdot n^d \cdot \left(\frac{\log(n)}{\log(b)} + 1\right)$$

$$= \Theta(n^d \log(n))$$

Case 2: $a < b^d$

$$T(n) = \begin{cases} O(n^d \log(n)) & \text{if } a = b^d \\ O(n^d) & \text{if } a < b^d \\ O(n^{\log_b(a)}) & \text{if } a > b^d \end{cases}$$

•
$$T(n) = c \cdot n^d \cdot \sum_{t=0}^{log_b(n)} \left(\frac{a}{b^d}\right)^t$$
 Less than 1!
= $c \cdot n^d \cdot [\text{some constant}]$
= $\Theta(n^d)$

Geometric Series (Aside)

$$1 + x + x^2 + \dots + x^n = \frac{1 - x^{n+1}}{1 - x}$$
 for $x \neq 1$

OR

$$1 + x + x^{2} + \dots + x^{n} = \frac{x^{n+1} - 1}{x - 1}$$
 for $x \neq 1$

$$1 + x + x^2 + \dots + x^n = \frac{1}{1 - x}$$
 for $x < 1$

Case 3:
$$a > b^d$$

$$T(n) = \begin{cases} O(n^d \log(n)) & \text{if } a = b^d \\ O(n^d) & \text{if } a < b^d \\ O(n^{\log_b(a)}) & \text{if } a > b^d \end{cases}$$

•
$$T(n) = c \cdot n^d \cdot \sum_{t=0}^{\log_b(n)} \left(\frac{a}{b^d}\right)^t$$
 Larger than 1!

$$= c \cdot n^d \left(\frac{\left(\frac{a}{b^d}\right)^{\log_b(n)+1} - 1}{\frac{a}{b^d} - 1} \right)$$

$$= \Theta\left(n^d \left(\frac{a}{b^d}\right)^{\log_b(n)}\right) = \Theta\left(n^d \left(\frac{a^{\log_b(n)}}{b^{d^{\log_b(n)}}}\right)\right)$$

$$=\Theta\left(n^d\left(\frac{n^{\log_b(a)}}{n^{\log_b(b^d)}}\right)\right)=\Theta\left(n^d\left(\frac{n^{\log_b(a)}}{n^d}\right)\right)$$

$$=\Theta(n^{\log_b(a)})$$

Understanding the Master Theorem

- Let $a \ge 1$, b > 1, and d be constants.

• Suppose
$$T(n) = a \cdot T\left(\frac{n}{b}\right) + O(n^d)$$
. Then
$$T(n) = \begin{cases} O(n^d \log(n)) & \text{if } a = b^d \\ O(n^d) & \text{if } a < b^d \\ O(n^{\log_b(a)}) & \text{if } a > b^d \end{cases}$$

What do these three cases mean?

Consider our three warm-ups

1.
$$T(n) = T\left(\frac{n}{2}\right) + n$$

2.
$$T(n) = 2 \cdot T\left(\frac{n}{2}\right) + n$$

3.
$$T(n) = 4 \cdot T\left(\frac{n}{2}\right) + n$$

First example
$$T(n) = \begin{cases} 0(n^d \log(n)) & \text{if } a = b^d \\ 0(n^d) & \text{if } a < b^d \\ 0(n^{\log_b(a)}) & \text{if } a > b^d \end{cases}$$
1. $T(n) = T\left(\frac{n}{2}\right) + n$, $\left(a < b^d\right)$ Size n

1.
$$T(n) = T\left(\frac{n}{2}\right) + n$$
, $\left(a < b^d\right)$

top (the biggest problem) is higher than the amount of work done anywhere else.

T(n) = O(work at top) = O(n)

Most work at the top of the tree!

Second example

$$T(n) = \begin{cases} 0(n^d \log(n)) & \text{if } a = b^d \\ 0(n^d) & \text{if } a < b^d \\ 0(n^{\log_b(a)}) & \text{if } a > b^d \end{cases}$$

$$(a = b^d)$$
Size n

2.
$$T(n) = 2 \cdot T\left(\frac{n}{2}\right) + n$$
,

$$(a = b^d)$$
 Size n

 The branching just balances out the amount of work.

- The same amount of work is done at every level.
- n/4 n/4 n/4

- T(n) = (number of levels) * (work per level)
- = log(n) * O(n) = O(nlog(n))

Third example

$$T(n) = \begin{cases} 0(n^d \log(n)) & \text{if } a = b^d \\ 0(n^d) & \text{if } a < b^d \\ 0(n^{\log_b(a)}) & \text{if } a > b^d \end{cases}$$

$$(a > b^d)$$

3.
$$T(n) = 4 \cdot T\left(\frac{n}{2}\right) + n$$
, $\left(a > b^d\right)$

Most work at the bottom of the tree!

- There are a HUGE number of leaves, and the total work is dominated by the time to do work at these leaves.
- $T(n) = O(work at bottom) = O(4^{depth of tree}) = O(n^2)$

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure 4.1 The construction of a recursion tree for the recurrence $T(n) = 3T(n/4) + cn^2$. Part (a) shows T(n), which is progressively expanded in (b)-(d) to form the recursion tree. The fully expanded tree in part (d) has height $\log_4 n$ (it has $\log_4 n + 1$ levels).

Figure 4.2 A recursion tree for the recurrence T(n) = T(n/3) + T(2n/3) + cn.

Substitution Method

- 1. Guess the form of the solution or Guess what the answer is
 - (iterative substitution: iteratively apply the recurrence equation to itself to find a possible pattern)
- Prove your guess is correct, using mathematical induction (Guess and Test method).

Solving Recurrences by Substitution: Guess-and-Test

$$T(n) = 2T(n/2) + n$$

$$Guess (#1) \qquad T(n) = O(n)$$

$$Inductive Hypothesis \qquad T(n) <= cn \qquad \text{for some constant c>0}$$

$$Inductive Step \qquad T(n/2) <= cn/2$$

$$T(n) = 2T(n/2) + n$$

$$T(n) \leq 2 \cdot c(n/2) + n$$

$$T(n) \leq cn + n \qquad \text{no choice of c could ever}$$

$$T(n) \leq (c+1) \quad n \qquad \text{make } (c+1) \quad n \leq cn!$$

$$Our guess was wrong!!$$

Solving Recurrences by Substitution: G #2

$$T(n) = 2T(n/2) + n$$
Guess (#2)
$$T(n) = O(n^2)$$
IH
$$T(n) <= cn^2 \text{ for some constant c>0}$$
Inductive Step $T(n/2) <= cn^2/4$

$$T(n) = 2T(n/2) + n$$

$$T(n) \le 2 \cdot c(n^2/4) + n$$

$$T(n) \le \frac{cn^2}{2} + n$$

Works for all n as long as c>=2!! $cn^2 / 2 + n \le cn^2$

Solving Recurrences by Substitution: G #3

Guess (#3)
$$T(n) = 2T(n/2) + n$$

$$T(n) = O(n\log n)$$
IH
$$T(n) <= \text{cnlogn for some constant } c > 0$$

$$T\left(\frac{n}{2}\right) \le c \frac{n}{2} \log(\frac{n}{2})$$

$$T(n) = 2T(n/2) + n$$

$$T(n) \le 2 \cdot c \frac{n}{2} \log(\frac{n}{2}) + n$$

$$T(n) \le cn (\log n - \log 2) + n$$

$$T(n) \le cn \log n - cn + n$$
Thus
$$T(n) \le cn \log n - cn + n <= \text{cnlogn}$$

Works for all n as long as c>=1!!

Guess and Test Method by Substitution: Ex #2, G # 1

$$T(n) = \begin{cases} b & \text{if } n < 2\\ 2T(n/2) + bn \log n & \text{if } n \ge 2 \end{cases}$$

Guess (# 1)
$$T(n) = O(n \log n)$$

(Inductive Hypothesis):
$$T(n) \le c n \log n$$
 for $c > 0$

Inductive step, Assume
$$T\left(\frac{n}{2}\right) \le c \frac{n}{2} \log(\frac{n}{2})$$

$$T(n) = 2T\left(\frac{n}{2}\right) + bn\log n$$

$$T(n) \leq 2 \cdot c \cdot \frac{n}{2} \log(\frac{n}{2}) + bn\log n$$

$$T(n) \leq cn (log n - log 2) + bn\log n$$

$$T(n) \leq cn \log n - cn + bn\log n$$

$$T(n) \leq (c + b)n \log n - cn$$

Wrong: we cannot make this last line be less than cn log n

Guess and Test Method by Substitution: Ex #2, G # 2

$$T(n) = \begin{cases} b & \text{if } n < 2\\ 2T(n/2) + bn \log n & \text{if } n \ge 2 \end{cases}$$

Guess (# 1)
$$T(n) = O(n \log^2 n)$$

(Inductive Hypothesis):
$$T(n) \le c n \log^2 n$$
 for $c > 0$

Inductive step, Assume
$$T\left(\frac{n}{2}\right) \le c \frac{n}{2} \log^2(\frac{n}{2})$$

$$T(n) = 2T(\frac{n}{2}) + bnlogn$$

$$T(n) \le 2 \cdot c \frac{n}{2} \log^2(\frac{n}{2}) + bn \log n$$

$$T(n) \le cn (log n - log 2)^2 + bnlog n$$

$$T(n) \le cn \log^2 n - 2cn \log n + cn + bn \log n$$

$$T(n) \le cn \log^2 n + (b - 2c)n \log n + cn$$