MA3227 Numerical Analysis II

Lab Session 1

Simon Etter, 2019/2020

General lab rules

- Work through the below questions yourself or in small groups.
- You are highly encouraged to show me your results so I can check them and discuss them with you.

1 Finite differences and sparse LU

Consider Poisson's equation on $(0,1)^2$, i.e. the problem of finding $u:[0,1]^2\to\mathbb{R}$ such that

$$-\Delta u = f$$
 on $(0,1)^2$, $u = 0$ on $\partial(0,1)^2$. (1)

Lecture 3 presented a solve_poisson(f,n) function which solves this problem using a finite difference discretisation.

1. Demonstrate numerically that $||u - u_n||_{2,n} = \mathcal{O}(n^{-2})$ where u denotes the exact solution to (1), u_n is the output of solve_poisson(), and

$$||u||_{2,n} := \frac{1}{n+1} \sqrt{\sum_{i_1,i_2=1}^n u(\frac{i_1}{n+1},\frac{i_2}{n+1})^2}.$$

Hint. Poisson's equation can be solved analytically for $f(x_1, x_2) = \sin(\pi x_1) \sin(\pi x_2)$.

2. Demonstrate numerically that the runtime of solving the finite-difference linear system using Julia's \ operator is $\mathcal{O}(N^{3/2}) = \mathcal{O}(n^3)$.

Hint. Have a look at the <code>@elapsed()</code> macro (i.e. type <code>?@elapsed</code> in the REPL and hit enter to see the documentation).

- 3. Further ideas if you have the time:
 - Try to rewrite solve_poisson() yourself, starting from scratch.
 - Extend your code such that it can solve the variable-coefficient problem

$$-\nabla \cdot (D(x)\nabla u) = f \quad \text{on } (0,1)^2, \qquad u = 0 \quad \text{on } \partial(0,1)^2$$

where $D:[0,1]^2\to\mathbb{R}$.

• Extend your code to three dimensions.