Algorithmen und Datenstrukturen

github/bircni

little donation

Inhaltsverzeichnis

			Seite	
L	Mat	thematische Grundlagen	1	
	1.1	Reihen	1	
	1.2	Potenzen und Logarithmen	1	
	1.3	Notationskonventionen	1	

1 Mathematische Grundlagen

1.1 Reihen

Arithmetische Reihe

► Allgemeine arithmetische Reihe: a₀+(a₀+d)+(a₀+2d)+ ... +(a₀+n⋅d)

$$\sum_{i=0}^{n} (a_0 + i \cdot d) = (n+1)(a_0 + d\frac{n}{2})$$

Beispiel: Summe der ungeraden Zahlen von 1 bis 99, d.h.1 + 3 + 5 + ... + 99:

 $a_0 = 1$ d = 2n = 49

Ergebnis: 50 * (1 + 2*49/2) = 2500

Gaußsche Summenformel: 1 + 2 + 3 + ... + n, also Summe der natürlichen Zahlen von 1 bis n. Dies ist der Spezialfall mit a₀ = 0; d = 1.

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

Beispiel: Summe der Zahlen von 1 bis 50:

50 * 51 / 2 = 1275

wichtig

1.2 Potenzen und Logarithmen

Der Logarithmus ist die Inverse der Potenzfunktion. $\log_a(x) = y \iff a^y = x$ spezielle Logarithmen:

$$ld(x) = log_2(x), lg(x) = log_1(x), ln(x) = log_e(x)$$

1.3 Notationskonventionen

[x] zur nächsten ganzen Zahl aufrunden

|x| zur nächsten ganzen Zahl abrunden

 $[a..b] = x | a \le x \land x \le b$ mit Intervallgrenzen

 $|a..b| = x |a < x \land x < b \text{ ohne Intervallgrenzen}$

arr[i..k] Teilfolge der Elemente von arr[i] bis arr[k]