Probability & Statistics

Problem set №5. Week starting April 6th

1. Continuous random variable (X,Y) has density function f(x,y). Prove that

$$E(X + Y) = E(X) + E(Y).$$

- 2. X is a discrete random variable. Seuences $\{x_i\}$, $\{p_i\}$ values and probabilities of the r.v. Prove that if Y = aX + b then $V(Y) = a^2V(X)$, $(a, b \in \mathbb{R})$.
- 3. Random variable X has standard normal distribution, i.e. $f(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$, $x \in \mathbb{R}$. (In short: $X \sim N(0,1)$). Find distribution (density $f_Y(y) \equiv g(y)$) of variable $Y = X^2$.
- 4. Check that $\Gamma(1/2) = \sqrt{\pi}$. (Hint: In exercise 1.3 substitution $t = x^2/2$ and compare with exercise 1.6)
- 5. R.v. X has Gamma distribution with parameters b, p > 0 (Abb.: $X \sim \text{Gamma}(b, p)$) if and only if $f(x) = \frac{b^p}{\Gamma(p)} \, x^{p-1} \exp(-bx)$, where $x \in (0, \infty)$. Does Y from exercise 3. has Gamma distribution? If answer is positive give the values of parameters b, p.
- 6. Random variable X has standard normal distribution $X \sim N(0,1)$. Let $\sigma > 0, \mu \in \mathbb{R}$. Find distribution (density) of variable $Y = \sigma X + \mu$.
- 7. **2p.** Variable (X,Y) has density fraction of the form f(x,y) = xy, in area $[0,2] \times [0,1]$. Find cumulative distribution function of this variable. In other words find formula(e) of the integral $F_{XY}(s,t) = \int_{-\infty}^{s} \int_{-\infty}^{t} xy \, dy \, dx$.
- 8. **2p.** (X,Y) like in exercise 7. Find distribution of Z=X+Y.
- 9. Variable (X,Y) is of continuous type, variables X,Y are independent. Prove that Cov(X,Y)=0.

Witold Karczewski