Insertion Sort

In-place and Stable sorting.

Case	Run Time
Best	O(n)
Worst	$O(n^2)$
Average	$O(n^2)$

If the number of inversions is d, the run time is $\Theta(n+d)$.

Benefits: Even in the worst case, the algorithm is fast for small problems.

Bubble Sort

In-place and Stable sorting.

Case	Run Time
Best	O(n)
Worst	$O(n^2)$
Average	$O(n^2)$

It is significantly worse than insertion sort.

Improvement process:

Basic Bubble Sort

Flagged Bubble Sort

Range-limiting Bubble Sort

Alternating Bubble Sort

Merge Sort

Not in-place and Stable sorting.

Case	Run Time
Best	$O(n \ln(n))$
Worst	$O(n \ln(n))$
Average	$O(n \ln(n))$

Run-time Analysis of Merge Sort

The time required to sort an array of size n > 1 is:

- the time required to sort the first half,
- the time required to sort the second half, and
- the time required to merge the two lists

That is:
$$T(n) = \begin{cases} \mathbf{\Theta}(1) & n = 1 \\ 2T(\frac{n}{2}) + \mathbf{\Theta}(n) & n > 1 \end{cases}$$

Solution: $T(n) = \Theta(n \ln(n))$

Proof by Recursion Tree

