Machine learning

Q-2. Imagine you have a dataset where you have different features like Age, Gender, Height, Weight, BMI, and Blood Pressure and you have to classify the people into different classes like Normal, Overweight, Obesity, Underweight, and Extreme Obesity by using any 4 different classification algorithms. Now you have to build a model which can classify people into different classes. Dataset This is the Dataset You can use this dataset for this question.

In [1]:

```
## Import the necessary libraries:-
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import classification_report
from sklearn.preprocessing import LabelEncoder
import warnings
warnings.filterwarnings('ignore')
```

In [3]:

```
1 # Load the dataset
2 data = pd.read_csv('Downloads/archive (2)/ObesityDataSet_raw_and_data_sinthetic.csv
```

In [4]:

```
1 ## Checking top 5 rows
2 data.head()
```

Out[4]:

	Gender	Age	Height	Weight	family_history_with_overweight	FAVC	FCVC	NCP	C/
0	Female	21.0	1.62	64.0	yes	no	2.0	3.0	Someti
1	Female	21.0	1.52	56.0	yes	no	3.0	3.0	Someti
2	Male	23.0	1.80	77.0	yes	no	2.0	3.0	Someti
3	Male	27.0	1.80	87.0	no	no	3.0	3.0	Someti
4	Male	22.0	1.78	89.8	no	no	2.0	1.0	Someti
4									•

In [5]:

```
1 ## Checking Rows & Columns Availabale in Dataset
2 data.shape
```

Out[5]:

(2111, 17)

In [6]:

```
1 ## Checking Details Information related with Dataset
2 data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2111 entries, 0 to 2110
Data columns (total 17 columns):

#	Column	Non-Null Count	Dtype
0	Gender	2111 non-null	object
1	Age	2111 non-null	float64
2	Height	2111 non-null	float64
3	Weight	2111 non-null	float64
4	<pre>family_history_with_overweight</pre>	2111 non-null	object
5	FAVC	2111 non-null	object
6	FCVC	2111 non-null	float64
7	NCP	2111 non-null	float64
8	CAEC	2111 non-null	object
9	SMOKE	2111 non-null	object
10	CH2O	2111 non-null	float64
11	SCC	2111 non-null	object
12	FAF	2111 non-null	float64
13	TUE	2111 non-null	float64
14	CALC	2111 non-null	object
15	MTRANS	2111 non-null	object
16	NObeyesdad	2111 non-null	object
d+vn	$ac \cdot float64(8) abiact(9)$		

dtypes: float64(8), object(9)
memory usage: 280.5+ KB

In [7]:

```
1 ## Checking All Columns name present in dataset
2 data.columns
```

Out[7]:

In [8]:

- 1 ## Checking Statistical Analysis of Dataset
- 2 data.describe()

Out[8]:

	Age	Height	Weight	FCVC	NCP	CH2O	
count	2111.000000	2111.000000	2111.000000	2111.000000	2111.000000	2111.000000	2111.00
mean	24.312600	1.701677	86.586058	2.419043	2.685628	2.008011	1.01
std	6.345968	0.093305	26.191172	0.533927	0.778039	0.612953	0.85
min	14.000000	1.450000	39.000000	1.000000	1.000000	1.000000	0.00
25%	19.947192	1.630000	65.473343	2.000000	2.658738	1.584812	0.12
50%	22.777890	1.700499	83.000000	2.385502	3.000000	2.000000	1.00
75%	26.000000	1.768464	107.430682	3.000000	3.000000	2.477420	1.66
max	61.000000	1.980000	173.000000	3.000000	4.000000	3.000000	3.00
4							•

In [9]:

- 1 ## Checking Information Related with Dataset
 2 data.info()
- <class 'pandas.core.frame.DataFrame'>
 RangeIndex: 2111 entries, 0 to 2110
 Data columns (total 17 columns):

#	Column	Non-Null Count	Dtype
0	Gender	2111 non-null	object
1	Age	2111 non-null	float64
2	Height	2111 non-null	float64
3	Weight	2111 non-null	float64
4	<pre>family_history_with_overweight</pre>	2111 non-null	object
5	FAVC	2111 non-null	object
6	FCVC	2111 non-null	float64
7	NCP	2111 non-null	float64
8	CAEC	2111 non-null	object
9	SMOKE	2111 non-null	object
10	CH2O	2111 non-null	float64
11	SCC	2111 non-null	object
12	FAF	2111 non-null	float64
13	TUE	2111 non-null	float64
14	CALC	2111 non-null	object
15	MTRANS	2111 non-null	object
16	NObeyesdad	2111 non-null	object

dtypes: float64(8), object(9)
memory usage: 280.5+ KB

In [10]:

```
1 ## Checking All Columns Available in dataset
2 data.columns
```

Out[10]:

In [11]:

```
# Preprocess the dataset
encoder = LabelEncoder()
data['Gender'] = encoder.fit_transform(data['Gender'])
data['family_history_with_overweight'] = encoder.fit_transform(data['family_history])
data['FAVC'] = encoder.fit_transform(data['FAVC'])
data['CAEC'] = encoder.fit_transform(data['CAEC'])
data['SMOKE'] = encoder.fit_transform(data['SMOKE'])
data['SCC'] = encoder.fit_transform(data['SCC'])
data['CALC'] = encoder.fit_transform(data['CALC'])
data['MTRANS'] = encoder.fit_transform(data['MTRANS'])
data['NObeyesdad'] = encoder.fit_transform(data['NObeyesdad'])
```

In [12]:

```
1 ## Checking Details Information related with Dataset
2 data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2111 entries, 0 to 2110
Data columns (total 17 columns):
```

#	Column	Non-Null Count	Dtype
0	Gender	2111 non-null	int32
1	Age	2111 non-null	float64
2	Height	2111 non-null	float64
3	Weight	2111 non-null	float64
4	<pre>family_history_with_overweight</pre>	2111 non-null	int32
5	FAVC	2111 non-null	int32
6	FCVC	2111 non-null	float64
7	NCP	2111 non-null	float64
8	CAEC	2111 non-null	int32
9	SMOKE	2111 non-null	int32
10	CH2O	2111 non-null	float64
11	SCC	2111 non-null	int32
12	FAF	2111 non-null	float64
13	TUE	2111 non-null	float64
14	CALC	2111 non-null	int32
15	MTRANS	2111 non-null	int32
16	NObeyesdad	2111 non-null	int32
dtvp	es: float64(8), int32(9)		

dtypes: float64(8), int32(9) memory usage: 206.3 KB

In [13]:

```
# Split the dataset into features (X) and target (y)
X = data.drop('NObeyesdad', axis=1)
y = data['NObeyesdad']
```

In [14]:

```
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_stars)
```

In [15]:

```
# Decision Tree Classifier

td_clf = DecisionTreeClassifier()

dt_clf.fit(X_train, y_train)

dt_predictions = dt_clf.predict(X_test)
```

In [16]:

```
# Logistic Regression Classifier
lr_clf = LogisticRegression()
lr_clf.fit(X_train, y_train)
lr_predictions = lr_clf.predict(X_test)
```

In [17]:

```
# Random Forest Classifier
rf_clf = RandomForestClassifier()
rf_clf.fit(X_train, y_train)
rf_predictions = rf_clf.predict(X_test)
```

In [18]:

```
# Support Vector Machine (SVM) Classifier
svm_clf = SVC()
svm_clf.fit(X_train, y_train)
svm_predictions = svm_clf.predict(X_test)
```

In [19]:

```
# Print classification reports for each classifier
print("Decision Tree Classifier:")
print(classification_report(y_test, dt_predictions))
```

Decision Tree Classifier:

	precision	recall	f1-score	support
0	0.92	0.96	0.94	56
1	0.87	0.87	0.87	62
2	0.97	0.92	0.95	78
3	0.93	0.95	0.94	58
4	1.00	1.00	1.00	63
5	0.91	0.89	0.90	56
6	0.94	0.96	0.95	50
accuracy			0.94	423
macro avg	0.93	0.94	0.94	423
weighted avg	0.94	0.94	0.94	423

In [20]:

```
print("Logistic Regression Classifier:")
print(classification_report(y_test, lr_predictions))
```

Logistic Regression Classifier:

	precision	recall	f1-score	support
0	0.74	0.93	0.83	56
1	0.53	0.42	0.47	62
2	0.58	0.60	0.59	78
3	0.82	0.84	0.83	58
4	0.90	1.00	0.95	63
5	0.54	0.38	0.44	56
6	0.35	0.38	0.37	50
accuracy			0.65	423
macro avg	0.64	0.65	0.64	423
weighted avg	0.64	0.65	0.64	423

In [21]:

```
print("Random Forest Classifier:")
print(classification_report(y_test, rf_predictions))
```

Random Forest Classifier:

	precision	recall	f1-score	support
0	1.00	0.96	0.98	56
1	0.88	0.94	0.91	62
2	0.99	0.96	0.97	78
3	0.97	0.98	0.97	58
4	1.00	1.00	1.00	63
5	0.89	0.88	0.88	56
6	0.96	0.96	0.96	50
accuracy			0.96	423
macro avg	0.95	0.95	0.95	423
weighted avg	0.96	0.96	0.96	423

In [22]:

```
print("SVM Classifier:")
print(classification_report(y_test, svm_predictions))
```

SVM Classifier:

	precision	recall	f1-score	support
0	0.71	0.88	0.78	56
1	0.48	0.34	0.40	62
2	0.65	0.33	0.44	78
3	0.77	0.41	0.54	58
4	0.56	1.00	0.72	63
5	0.47	0.48	0.47	56
6	0.43	0.58	0.49	50
accuracy			0.57	423
macro avg	0.58	0.57	0.55	423
weighted avg	0.59	0.57	0.54	423

In []:

1