南开大学

本科生毕业论文

中文题目: <u>基于注意力和时空图网络的行人轨迹预测</u> 方法研究

外文题目: <u>Study on Pedestrian Trajectory Prediction</u>

<u>Method Based on Attention Mechanism and Spatial-Temporal Network</u>

学 号: <u>1811627</u>

姓 名: 周咏琪

年 级: 2018 级

学院: 人工智能学院

系 别: 智能科学系

专 业: 智能科学与技术

完成日期: <u>2022 年</u> 5 月

指导教师: 刘景泰 教授

胡怡芳 高级工程师

关于南开大学本科生毕业论文(设计)的声明

本人郑重声明: 所呈交的学位论文,是本人在指导教师指导下,进行研究工作所取得的成果。除文中已经注明引用的内容外,本学位论文的研究成果不包含任何他人创作的、已公开发表或没有公开发表的作品内容。对本论文所涉及的研究工作做出贡献的其他个人和集体,均已在文中以明确方式标明。本学位论文原创性声明的法律责任由本人承担。

学位论文作者签名:

年 月 日

本人声明:该学位论文是本人指导学生完成的研究成果,已经审阅过论文的全部内容,并能够保证题目、关键词、摘要部分中英文内容的一致性和准确性。

学位论文指导教师签名:

年 月 日

摘 要

当今社会,移动智能体正在逐渐融入人们的生活,如何在移动过程中处理与周围行人的关系是智能体面临的困难问题。由于智能体需要在动态环境中执行控制,提前预测行人轨迹可以帮助智能体及时调整控制策略,实现更自然、流畅的人机交互。行人轨迹预测的主要挑战在于对其行动进行建模的复杂性,近年来,研究主要集中在利用机器学习方法建立行人轨迹模型,一些深度学习算法在该问题上展示出了良好的性能。

文章讨论了行人轨迹预测研究的相关方法,发现时空图网络在该问题上具有很大的潜力。本研究以 2020 年的 Social-STGCNN 算法为基础,在其中加入了注意力模块对行人之间的交互进行动态建模,与此同时,使用稀疏交互矩阵代替原模型中密集交互,另外在时序信息提取部分,将时间卷积网络替换为双向长短期记忆网络,最终,通过时间外推网络输出预测的行人轨迹的二维高斯分布。在开源数据集上定性、定量分析以及消融实验的结果表明,论文提出的各改进模块都使原 Social-STGCNN 算法性能得到了提升。

关键词: 行人轨迹预测;时空图卷积;自注意力模型;双向长短期记忆;二维高斯分布

Abstract

Currently, mobile agents are integrating to people's daily lives, one issue raised upon which is how do agents handle their interaction with surrounding pedestrians. Considering the dynamic working environment, pedestrian trajectory prediction might contribute to timely adjustment of agents control strategy, which could be an opportunity for smoother and more natural interaction. The major challenge in pedestrian trajectory prediction is the modeling complexity of human behavior. In recent years, most related works focused on modeling pedestrian trajectory by machine learning, and some state-of-the-art deep-learning algorithms have showed considerable performances.

This paper discusses related studies of pedestrian trajectory prediction, discovering that the spatial-temporal networks hold a great potential in solving this issue. This work is based on Social-STGCNN model proposed in 2020, to which, an attention module is introduced to model the dynamic interaction between pedestrian. The new framework replaces the dense interaction matrix with sparse interaction matrix. Moreover, in the timing information extraction part, the Temporal Convolution Network is replaced by a Bidirectional Long Short-term Memory network. Finally, the two-dimensional Gaussian distribution of the predicted pedestrian trajectory outputs from the Time-Extrapolator Convolution Neural Network. The results of qualitative, quantitative analysis and ablation experiments on the open-source datasets show that the performance of the model has been improved by the new modules presented in this paper.

Key Words: pedestrian trajectory prediction; spatial-temporal convolution; selfattention mechanism; bidirectional long short-term memory; twodimensional Gaussian distribution

目 录

摘 要	I
Abstract	II
目 录	
第一章 绪论	3
第一节 行人轨迹预测问题描述	3
第二节 研究意义和应用价值	4
第三节 本文主要内容介绍	5
第二章 行人轨迹预测研究的相关方法分析	7
第一节 基于知识模型的方法	7
2.1.1 群体运动模型	7
2.1.2 个体行为模型	8
第二节 基于机器学习的方法	9
2.2.1 基于循环神经网络的轨迹预测	9
2.2.2 基于卷积神经网络的轨迹预测	10
2.2.3 基于生成对抗网络的轨迹预测	10
第三节 本章小结	11
第三章 时空图模型及注意力机制理论基础	12
第一节 图卷积及时序特征提取网络	12
3.1.1 针对行人轨迹问题的图卷积网络	12
3.1.2 时序网络的两种结构模式	13
第二节 注意力机制	15
3.2.1 注意力的计算方法和学习过程	16
3.2.2 自注意力模型	16
第三节 本章小结	18
第四章 基于注意力及时空图的行人轨迹预测方法	实现19
第一节 轨迹特征矩阵及交互图构建	19

4.1.1 数据处理过程	19
4.1.2 由注意力模型建立邻接矩阵	20
4.1.3 稀疏交互和 Zero-softmax	21
第二节 网络整体结构设计	22
4.2.1 图卷积过程的实现	22
4.2.2 时序网络的实现	23
4.2.3 网络整体结构的设计	24
第三节 损失函数及训练过程	25
4.3.1 损失函数的设计和计算过程	25
4.3.2 改进前/后模型的训练过程	26
第四节 实验结果及分析	28
4.4.1 改进前后模型定性比较	28
4.4.2 改进前后模型定量比较	30
4.4.3 消融实验及结果分析	31
第五节 本章小结	32
第五章 总结与展望	33
第一节 本文工作总结	33
第二节 问题反思与研究方向展望	33
参考文献	35
致谢	38

第一章 绪论

第一节 行人轨迹预测问题描述

行人轨迹预测是人工智能和计算机领域的热点研究问题之一,它是推动人机共融以及帮助移动智能体产生决策的关键技术,涉及行人检测,轨迹描述和运动分析等多个方面。轨迹预测问题作为预测问题的子问题,可以被视为序列决策问题,具体而言,轨迹定义为行人位置的时间序列,给定时间步长内位置的变化可以解释为速度,预测轨迹意味着推断给定场景中行人未来时刻的位置坐标^[1]。

通常来讲,轨迹预测问题包括三个重要层次,如图 1.1^[2]所示,输入层是影响运动行为的激励(Stimuli),即大部分情况下的输入,包括但不限于历史轨迹,环境信息,以及个体与其它行人或智能体之间的交互关系;处理层是建模方式,即如何对行人轨迹进行表示,参数化,并学习其中的特征;最后是预测方法,不同的方法会产生不同形式的输出,例如输出高斯分布或者位置序列。

图 1.1 轨迹预测的三个重要层次

以面向服务机器人的行人轨迹预测为例,在大多数方法中,它的激励为观测到的行人历史轨迹,同时,还会考虑每一个人向目的地行走过程中与周围其

他人的交互以及可能采取的避让行为;由于每个行人都有各自的目的地和独特的步态、速度、加速度,机器人需要通过视觉或激光等感知方式来学习这些运动特征,并结合轨迹对行人的个体或群体进行建模;预测方法取决于建模方式和应用场景,移动服务机器人需要对周边小范围内全部行人未来短时间的轨迹进行较为精确的预测,在时间维度上外推未来轨迹。多数情况下,对于场景中的每个序列,需要有唯一的时间戳来标识它的时序位置。

行人轨迹不同于自然物体或人造智能体的轨迹,后者有相对稳定的运动模型,而对于前者的建模是相当困难的,主要难点在于行人移动的复杂性,体现在行人行动的自发性和外部影响的多样性。在理想情况下,人的行动轨迹会由目的地直接决定,然而,在现实世界中,人类的行为会受到环境的驱动,并因场景中突发事件而改变^[3],除此之外,还会由自身的临时意图、周围个体的行为、个体之间的社会关系等共同决定。例如,当发现前方有人群聚集时,行人可能会选择走过去围观或者绕行,也有少部分会保持原先的轨迹不变。

第二节 研究意义和应用价值

行人轨迹预测的重要意义在于,对社会环境中的人的行为做出提前判断, 从而给予动态系统或交互智能体一定的控制和调整时间。

从研究角度讲,行人轨迹预测涉及到心理学、社会学、控制科学和计算机科学等领域的交叉,其研究成果可以帮助解决这些领域的其它问题。在控制科学领域,预测包含多个智能体(包括行人和机器)的环境在未来一段时间的变化有助于受控物体采取一些主动的、预先的控制行为。举例而言,自动跟随机器人依赖于对行人未来轨迹的估计来进行模型预测控制(MPC)^[4],多数 MPC 算法会假设行人速度不变或输入预定义轨迹,然而,在复杂真实场景中,这种简单的假设会导致预测能力严重不足,从而影响 MPC 效果。

从应用层面看,对于行人轨迹的准确预测在基础设施建设、交通规划^[5]、自动驾驶^[6]、服务机器人^[7]以及虚拟现实娱乐^[8]等领域都有重要的应用价值。以自动驾驶为例,行人在交通环境中属于易受伤害的弱势群体,许多事故都是由

于司机注意力减弱,无法预判行人位置而发生的,因此,自动驾驶汽车必须包含预测行人移动的算法,从而最大程度避免调整不及时而造成伤害。在实际场景中,自动驾驶汽车面对复杂语义和快速变换的室外环境的挑战,需要结合自身传感器、道路监控信息、实时交通环境以及基础交通规则进行运动预测。此外,对于服务机器人来说,在智能机器人融入工业、服务业和千家万户的当下,如何实现更自然、流畅的人机交互是亟待探索和解决的问题。移动服务机器人对于行人的轨迹预测在避让和跟随两方面有很大的应用价值,以避让为例,机器人在执行任务过程中不应该成为周围人的障碍物,而应该主动避让行人,传统的基于激光的避障方式往往会导致对机器人的控制落后于行人的移动,因此,机器人需要判断行人可能的走向,通过提前调整位姿来实现有效避让,从而更好地融入社会环境。

第三节 本文主要内容介绍

鉴于行人轨迹预测问题的重要研究意义以及在智能科学领域的应用价值,本论文提出一种面向服务机器人的行人轨迹预测方法,该方法以时空图卷积神经网络为基础,对其图构建形式以及时序预测算法进行了改进,实现了明显的效果提升。

本文分为五个章节,内容结构如图 1.2 所示。在第二章介绍了行人轨迹预测研究的相关方法,将其概括为基于知识的方法和基于学习的方法两大类,分别对每一类进行了细分和讨论;第三章说明了本研究的一部分理论基础,包括时空图神经网络和注意力机制,分析图卷积模型和两种时序模型,说明注意力的计算方法;第四章重点阐述本方法的实现过程,从数据处理、交互图构建、时空图模型、整体网络结构和损失函数几部分全面介绍方法内容和创新点,并设计定性和定量对比试验以及消融实验,通过分析实验结果证明了方法的有效性;最后一章对本论文进行了总结,讨论本研究的一些不足之处以及未来可能的改进方向。

图 1.2 论文内容结构图

第二章 行人轨迹预测研究的相关方法分析

对行人轨迹问题的研究早在 20 世纪末就登上过《自然》杂志^[9,10]。早期的研究从社会物理学等角度为行人的运动行为建立数学模型,通过分析和推理来预测行人轨迹;之后,随着算力的发展,大量研究者在机器学习领域展开进一步探索。本章将分别从基于知识模型(Knowledge-based, KB)和基于机器学习(Learning-based, LB)两种建模角度介绍行人轨迹预测研究的相关方法,并对这些方法进行简要的论述。

第一节 基于知识模型的方法

KB 方法与流行的深度学习方法相比通常被称作传统方法,这类方法通过制定明确的决策规则和相应的推理机制来解决建模问题^[11]。它的本质是将人或人群视为一种有数学规律的动态系统,研究核心是社会动力学建模。以往许多综述将 KB 方法分为宏观、微观以及介观模型^[12,13]。本论文更加直观地将其分为以群体运动为核心的模型和以个体行为为核心的模型,在本节介绍二者的特征和经典方法。

2.1.1 群体运动模型

群体运动模型通常将人群认为是一种场(field)或者流(flow),描述人群整体的特征而不是单个行人的特征。这类方法尤其适用于在一些人群密度较大的场景模拟大规模行人网络^[14]。

多数模型是由流体动力学或博弈论衍生出来的。从流体动力学角度看,人流的运动在一定程度上遵循液体或气体的运动规律,一些经典方法的理论基础包括类玻尔兹曼气体动力学模型^[15,16]、程函方程^[17,18]、高阶欧拉方程^[19]等;从博弈论角度看,平均场博弈模型将人群动力学建模为优化问题和多人纳什博弈^[12],简而言之,即人群在一定约束下进行动态交互,其最终目的是在最短时间内通过某段路。

群体运动模型可以预测人群整体的流动趋势,也可以通过构建不同尺度的

模型细化关键区域,然而,这类方法存在一个共同的缺点,即很难针对每个行人的特点建立不同的模型以准确预测某条轨迹,因此不适用于行人稀疏、规则不明确或需要预测更加精确的轨迹的场景。

2.1.2 个体行为模型

个体行为模型从微观视角考虑个体的运动行为和个体之间的交互。相比于 群体运动模型,它能更好地对不同行人的异构特质进行建模,从而更直接地预 测出每个人的轨迹,但相应地,这种模型复杂度更高,在进行大规模模拟时会 造成大量的计算开销。

从公式角度,个体行为模型主要包括二阶、一阶的连续模型和基于概率的状态转移模型。具体而言,二阶模型是基于加速度的模型,它与群体运动模型的动力学理论相近,认为每个人的运动取决于各种内部外部的"力"的叠加。对于"力"的解释,最著名的是 Helbing 等人提出的社会力模型,该研究所说的社会力不是个人或环境直接施加的物理力,而是"对使人产生某种行为的内部动机的衡量"^[20]。大部分基于力的模型都包括收敛项和交互项,其中收敛项通常与目的地有关,而交互项主要体现在周边障碍物或其他个体对某行人产生的排斥力^[21],这种排斥力常与距离有关,并最终表现为该行人与其它个体的速度差。

一阶模型以速度模型为主,对于行人来说,二阶加速度模型中包含的惯性效应和延迟在实际情况中是微乎其微的,而基于位置差的速度模型更符合人的行走特征。大多数速度模型的核心是避免碰撞,也可以视为无碰撞的可行轨迹集合上的优化问题^[22,23]。由于速度比力更容易观测,这类模型中的一些思想在许多基于学习的方法中被沿用下来。为了达到更好的效果,近几年的决策模型方法也涉及到了一些学习过程^[24]。

基于概率的状态转移模型通常是在时间上离散的决策模型,行人在 $t + \Delta t$ 时刻的位置取决于t时刻的状态和外部环境的输入。在这些已知条件的基础上通过贝叶斯 $^{[25]}$ 或者元胞自动机 $^{[26]}$ 等模型根据实际情况变化不断更新这些信息,从而预测未来的状态和轨迹。

第二节 基于机器学习的方法

LB 方法通常是数据驱动的,它可以直接从大量现实数据中提取轨迹特征,通过训练得到合适的参数和权重。本章重点介绍深度学习方法,从近十年的研究来看,在行人轨迹预测问题上表现出色的深度神经网络基本都归于三大类一一循环神经网络(Recurrent neural network, RNN),卷积神经网络(Convolutional neural network, CNN),以及生成对抗网络(Generative adversarial network, GAN)。本章将对这三类网络在行人轨迹预测问题上可行的原因和经典变体展开论述。

2.2.1 基于循环神经网络的轨迹预测

循环神经网络是一类使用链式递归来处理序列数据的神经网络,它通过在不同时间步中传递隐藏层提取的特征来实现记忆功能,适用于依赖过去时间步信息的序列数据的建模。最经典的 RNN 算法之一是长短期记忆网络(Long short-term memory, LSTM),它使用专门的存储单元来存储信息。

以 RNN 为基础的行人轨迹预测研究有很多,此类方法将每个行人的轨迹 视为时间-位置序列,通过 RNN 类型的编码器对已知序列进行编码,最后输出 预测的序列。最著名的 RNN 方法是李飞飞实验室提出的社会长短期记忆网络 (Social-LSTM)^[27],该方法是第一个将行人之间的交互考虑进去的深度学习算 法,它的主要贡献在于设计了一种隐藏池结构,可以将周围行人的一些运动特 征作为预测的输入量来对架构和进行建模。受社会长短期记忆网络的启发,一些研究者提出可以构建几个不同尺度的 LSTM 将更多信息融入轨迹预测中,包括历史轨迹信息、环境信息、社会信息等;也有人关注行人之间的交互权重,引入注意力机制来控制不同行人之间交互的相对重要性^[28,29];还有一些算法会 将行人关节的运动作为输入,通过分析行人的全身位置来预测其未来的轨迹 [30]。

这类 RNN 算法的优缺点都是相当明显的,其优点在于,对每个行人的运动进行建模有利于得到更精确的预测结果,同时有较好的扩展性,可以将各种

类型的输入信息融合进去;相对的,这类精细建模的计算开销会比较大,尤其 是在人群密度较大的情况下,计算速度会受到影响。

2.2.2 基于卷积神经网络的轨迹预测

卷积神经网络是一类主要用于各种计算机视觉任务的深度学习算法,这类方法包含大量的矩阵运算,适用于对二维或者图形化结构的信息进行特征提取。CNN 方法本身是非顺序的,在轨迹预测问题上应用主要是对空间特征的提取,因此这类方法往往可以同时输出全部行人的未来轨迹,减少一定的计算量。

一部分基于 CNN 的轨迹预测是通过输入连续的图像帧来整体分析环境变化^[31],这类算法可以提取到行人在整个场景中的分布特征,从而预测行人的目的地以及长期运动趋势。另一类重要的 CNN 方法是将卷积运算扩展到图结构中的图卷积网络(Graph convolutional network, GCN),Mohammed 等人提出的社会-时空图卷积神经网络(Social-STGCNN)^[32]通过图网络建模行人之间的交互,再利用时间卷积网络整合时序特征来进行预测。除此之外,还有许多方法会将CNN 和 LSTM 结合^[33],将通过 CNN 提取的空间信息作为 LSTM 的输入之一。

总而言之,仅使用 CNN 来进行轨迹预测的研究并不是太多,但它可以作为学习网络中的一个重要组成部分对行人交互、周围环境以及分布进行建模,将全局信息进行更好的融合,提高预测的速度和准确率。

2.2.3 基于生成对抗网络的轨迹预测

生成对抗网络是依赖生成器和和判别器之间的相互对抗来进行参数训练和 更新的一类学习方法。它在行人轨迹预测上的优势在于可以生成多模态的结 果,即可以预测多条可能的轨迹,这更符合行人行走的不确定特性。

典型的基于 GAN 的方法包括使用 LSTM 进行编码解码的 Social-GAN^[34]、基于图形注意力网络的 Social-BiGAT^[35]、引入隐变量的 info-GAN^[36]以及结合注意力模型的 SoPhie^[37]。

尽管 GAN 方法有助于解决多模态问题,这类方法存在两个缺陷,一是训练较为困难,二是容易发生模式崩溃,生成大量重复数据,可能的解决办法是

参考元学习的思路设计隐空间,以及设计不同的生成器寻找更有效的特征融合 方式。

第三节 本章小结

以社会力模型为代表的 KB 方法在过去 30 年中一直属于热点研究课题,但这类方法具有非常明显的劣势,即他们严重依赖理论模型,需要人为定义其中的变量,且每个参数都有相对明确的意义。因此,在当前的主流研究趋势下,一些经典的 KB 方法通常作为基准来评估深度学习方法的效果。本章第二节剖析了三类主要的深度学习模型,这三种模型没有绝对的优劣之分,在有些复杂的算法中会将其中两种甚至三种整合到一起。但大多数情况下的研究表明,RNN 系列模型预测精度较高开销较大,CNN 系列模型对整体特征把握更好,GAN 系列模型预测精度较高开销较大,CNN 系列模型对整体特征把握更好,计对具体问题和具体改进方向设计更优秀的算法。

第三章 时空图模型及注意力机制理论基础

由于行人轨迹建模要求空间上的交互特征和时间上的历史轨迹,需要寻找一种可以同时提取空间和时间两个维度特征的方法,时空图模型正是基于这种需求被提出的。它由图卷积和时序网络构成,前者将空间中的行人用图结构表示,通过设定边的权重来对交互进行建模,后者用来拟合行人运动趋势和轨迹特征。本研究基于社会-时空图卷积网络(Social-STGCNN)[32]提出加入注意力机制和双向长短期记忆网络的改进方法。本章将对时空图卷积网络以及注意力机制涉及到的理论基础进行说明。

第一节 图卷积及时序特征提取网络

在 Social-STGCNN 论文中,行人之间的交互定义为稠密矩阵形式的图结构,在空间域上提取高阶全局特征嵌入到各个时间节点上,之后使用时间外推网络(Time-Extrapolator Convolution Neural Network, TXP-CNN)预测期望的轨迹。本节第一部分结合行人轨迹预测的具体问题对图卷积网络原理和更新方式进行说明,第二部分针对预测问题讨论时间卷积网络(Temporal Convolutional Network, TCN)和双向长短期记忆网络这两类时序网络,分析二者特点和异同,并介绍双向长短期记忆网络的结构和原理。

3.1.1 针对行人轨迹问题的图卷积网络

图卷积中的图是由节点和边组成的一种数据结构。一系列时间节点上的行人轨迹可以由一组空间图来表示,以t时刻的图Gt为例,Gt = (Vt, Et),其中 $Vt = \{(x_i, y_i) | i \in 1, 2, ..., N\}$ 是顶点的集合,表示 t 时刻场景中每个行人i的空间位置, $Et = \{e_{ij} | i, j \in 1, 2, ..., N\}$ 是边的集合,表示 t 时刻行人i,j之间相互影响的程度。

图卷积运算是 CNN 概念在图结构上的扩展。类比来看,使用 CNN 处理计算机视觉问题时是在图像矩阵中进行卷积操作,而 GCN 的卷积操作是在图的邻接矩阵上进行的。它的核心是在将图中其它点的信息以边的权重加权到要更

新的点上,顶点 v_i 在l+1层的特征可以由以下公式计算得到:

$$v_{i(l+1)} = \sigma \left(\frac{1}{\Omega} \sum_{||v_i - v_j|| < D} v_j \cdot W_{i,j} \right)$$
(3.1)

其中, σ 是激活函数, $\frac{1}{\Omega}$ 与节点的度有关, v_j 是与目标顶点 v_i 距离不超过D的顶点的集合(包括 v_i 本身), $W_{i,i}$ 是两个顶点之间的边的权重。

从整体矩阵更新的角度看,图卷积在层之间的传播方式的公式表述如下:

$$H^{l+1} = \sigma(L^{sym}H^lW^l) \tag{3.2}$$

 H^l 是上一层的特征输出, W^l 是层间传递过程中训练的参数, L^{sym} 是由图的邻接矩阵得到的对称归一化拉普拉斯(Symmetric normalized Laplacian)矩阵,计算公式为 $L^{sym}=I_n+D^{-\frac{1}{2}}AD^{\frac{1}{2}}$,其中,A是图的邻接矩阵,单位矩阵 I_n 保证每个节点不会忽略自身特征,度矩阵D起到对称归一化作用。

公式 3.1 和 3.2 是图卷积网络的基本通式,但在实际实现过程中,会根据具体问题进行调整。如在本论文所提出的方法中,邻接矩阵A是动态自适应且非对称的,在计算拉普拉斯矩阵时先一步限制A的阈值,再采用 Zero-softmax 进行零值抑制的归一化,这样构造出来的代表行人交互关系的拉普拉斯矩阵也将是非对称的。

3.1.2 时序网络的两种结构模式

时序网络沿时间维度对各时间节点输出的嵌入图进行编码和解码,从而预测未来给定一段时间长度的轨迹。本研究主要考虑时间卷积网络(TCN)和双向长短期记忆 (Bi-LSTM) 网络两种时序网络设计。

TCN 是卷积神经网络在序列数据上的应用。在序列上的卷积和在图像上的卷积不同,对于图像而言,卷积的过程非常直观:图像可以表示为 $M \times N$ 的矩阵,矩阵的行和列对应空间图像的宽和高,在空间上某块区域进行一次卷积的本质是将该区域中心点与其周围的点进行加权,得到高维空间特征,由于在大

多数图像问题中 X 方向和 Y 方向的特征是等价的,因此卷积核通常会设计为正方形;而对于序列而言,卷积操作是发生在时间维度上的,如图 3.1 所示,对于有n个时间节点的序列Tn,将各节点铺平可得到1 × N的矩阵,在某段时间序列上进行一次卷积的本质是将该序列中心时刻的特征和前后时刻特征进行加权,得到高维时间特征,在这种情况下,卷积核应当设计为1 × K的长方形。一段时间序列经过卷积后的长度取决于卷积核大小K以及卷积过程中的步长、填充等,该序列的通道数/特征维度取决于卷积核数目。

图 3.1 时间卷积网络结构

LSTM 是一类典型的循环神经网络模型。在传统的神经网络中,每一个特征层的输出只能传递给下一层,而循环神经网络可以将本层上一个时刻的输出传递给下一个时刻,从而实现时间维度上的特征融合。LSTM 在每个隐层的每个时间节点t上输入了单元状态 c_{t-1} 和隐层状态 h_{t-1} ,其中C存储长期记忆,为该节点提供由先前所有时刻共同得到的单元状态,h是上一时刻的输出,为该节点提供上一时刻的隐层信息。假设将时间序列Tn输入 LSTM 网络后得到Tm,则输出序列长度m=n保持不变,输出通道数/特征维度取决于单元状态C和隐藏层T的通道数/特征维度,初始的 C_0 h_0 一般是 0 矩阵或者随机数矩阵,除此之外,可以通过设置较大的 LSTM 隐藏层层数来获取更高维信息。

Bi-LSTM 由两个信息传递顺序相反的单向 LSTM 模型组成,如图 3.2 所示,一个为正向输入的时间序列 $T_n = \{t_1, t_2, ..., t_n\}$,另一个为逆向输入的时间序列 $\bar{T}_n = \{t_n, t_{n-1}, ..., t_1\}$,将这两个模型输出的结果合并后得到最终的预测序

列。相比而言,单向 LSTM 每个节点的隐藏层输入中包含之前时刻的隐藏层输出,但无法接收到后续时间节点的信息,而 Bi-LSTM 中的每个节点同时受到先前时刻和后续时刻的影响。

图 3.2 双向长短期神经网络结构

在行人轨迹预测问题上,TCN 和 LSTM 网络都有效果较好的研究案例,对比两个模型的基本原理,TCN 的每一层对时间各节点的信息是并行处理的,通过滑动的卷积核直接融合相邻节点的特征,在整个序列上进行高维特征的提取;与之相反,LSTM 的每一层是串行处理每个时间节点的信息,由于行人轨迹具有连续性,历史状态和未来状态都可以作为输入信息来推断某一时刻的位置,本论文采用 Bi-LSTM 替代单向 LSTM。从模型效果角度来看,有研究[38]表明 LSTM 在大多数问题上会得到更准确的预测结果,而 TCN 的预测效果受参数影响更小,得益于其并行的特点,TCN 在处理速度上可能会有一定优势。

第二节 注意力机制

注意力模型最早应用于自然语言处理中的语义编解码问题。以机器翻译为例,比如输入中文句子"我的专业是智能科学",当翻译"专业"这个词时,没有注意力机制的模型中每个输入词对目标输出的贡献是相同的,这一点显然不符合人类的思维方式,映射过程会受到杂乱信息的干扰从而忽略重点;引入注意力模型可以体现不同单词对序列中某个输出点位影响的大小,对于"专业"这一点位的目标输出词,受到各中文词的影响比例可能为("我的",0.05)

("专业", 0.7)("智能科学", 0.25), 这个比例就是模型分配给各单词的注意力大小。

在更加普遍的问题上,注意力可以理解为各部分信息在映射到不同输出的 过程中所占的权重,也可以是各部分之间的关系。这是一个在输入端编码和在 输出端解码的过程,而注意力机制的核心就是找到最合适的权重分配。

3.2.1 注意力的计算方法和学习过程

注意力用于衡量各部分输入对某个输出的影响程度,因此,最直接的计算 思路就是比较输入和输出的相似度。

实际问题中,输入和输出都由多维向量表示,其中每一维表示一个特征,在基础模型上,每个输入和输出的特征维度都相同。计算两个多维向量的相似度最简单的方法是点乘,点乘得到的结果越大,说明两个向量的方向越一致。用公式表示,对于输出向量 O_i ,它与输入向量的输入向量 E_j 之间的注意力分数为:

$$score(O_i, E_j) = \frac{1}{\phi}(O_i \cdot E_j^T)$$
 (3.3)

其中 $\frac{1}{a}$ 是归一化系数。

从注意力模型原理角度讨论,输入被认为是一系列< Key, Value >键值对的形式,而目标输出是一个查询 (Query)。Query 与所有输入的 Key 进行匹配,其乘积越大说明匹配程度越高,将每个输入的 Value 与对应的匹配得分相乘后求和,即为最终的目标输出。

从监督学习角度来看,训练过程中的输入是给定的,目标输出是已知的,通过比较模型输出和目标输出之间的差异,模型学习到的是如何将输入 Value 编码成 Key,如何将输出编码成 Query,以及如何获得最优的注意力分配。

3. 2. 2 自注意力模型

自注意力模型,顾名思义,它所建立的注意力模型是自身到自身的。自注 意力模型的输入和输出数量相同,都来自于同一组向量,因此,它的作用是衡 量一组数据内各向量之间的相关性。 对于行人轨迹预测问题,自注意力模型的特性使其可以自然而然对行人之间的交互进行建模。在大多数基于图的行人轨迹预测研究中,表示交互关系的邻接矩阵通常是利用已知数据根据某种给定规则计算出来的,以本文的基准方法 Social-STGCNN 为例,邻接矩阵 A_t 中的 $a_{i,j}$ 表示行人i,j在 t 时刻的相关性,由 $a_{i,j} = 1 / \|v_t^i - v_t^j\|^2$ 计算得到。从公式可以看出,行人之间的交互仅由二者速率关系决定,即速率越接近,交互权重就越大,影响对方未来轨迹的概率也越高。这种建模规则有一定道理,但显然不太全面,其它影响相关性的因素如位置关系、行走方向关系等均没有考虑到。采用能自主学习的自注意力模型替代静态的规则模型可以有效提取到每个行人轨迹特征的关联性,其核心计算过程由下列公式表示:

$$E = \phi(G, W_E), \tag{3.4}$$

$$Q = \phi(E, W_0), \tag{3.5}$$

$$K = \phi(E, W_K), \tag{3.6}$$

$$attentionMap = \phi\left(\frac{Q \cdot K^{T}}{\sqrt{D_{Q}}}\right)$$
 (3.7)

公式中,E是由行人特征图编码后得到的图嵌入,可以理解为注意力模型中的输入 value; Q是E经过权重参数为 W_Q 的线性模型得到的查询序列,K是E经过参数 W_K 编码得到的键序列;将查询序列与键序列一一相乘后进行归一化,即可得到长宽都为行人数量的注意力分数图,这是后续图卷积所用到的邻接矩阵的雏形。

用自注意力模型代替静态规则模型的另一优点在于,由于采用不同的参数 来生成 Q 和 K,自注意力建立的交互模型是非对称的。在实际场景下,这种非 对称性可以更好地表示行人之间的关系,举例而言,行人i走在行人j的前面, j能看到 i,因此可能在一定程度上受到 i 前进轨迹的影响;反之,i无法看到 j,那么 j 对 i 的影响就会相对较小。

第三节 本章小结

本章对论文所实现方法的一部分理论基础进行了原理阐述。图卷积方面,介绍了行人轨迹的图表示方法以及图卷积网络的更新过程; 时序网络方面,分析了基准模型中的时间卷积网络结构,并对比介绍了本论文采用的双向长短期记忆网络; 注意力机制方面,介绍了注意力的计算方法和学习过程,解释了提出自注意力模型的动机,以及该模型用于行人交互建模的原理和相应的表现形式。

第四章 基于注意力及时空图的行人轨迹预测方法实现

本方法在经典行人轨迹预测模型 Social-STGCNN 的基础上,对行人交互图的建立过程和时序预测方法上进行了改进。具体而言,采用注意力模型构建动态自适应交互图以替代原论文的静态规则交互图,通过掩模和改进的归一化方法生成稀疏图替代原论文的稠密图,用双向长短时记忆网络替代时间卷积网络。本章详细介绍了本方法的具体实现过程,并在开源数据集上与原方法进行了实验对比,结果表明经过改进后的模型对行人轨迹的预测能力得到了很大提升,且每个单独的改进模块都是有效的。

第一节 轨迹特征矩阵及交互图构建

4.1.1 数据处理过程

数据集格式: 在常用的行人轨迹预测开源数据集中,行人轨迹信息已被处理成文本文档形式。每个文本文档中有 n 行 4 列浮点数,第一列为帧编号,第二列为行人 ID,第三、四列为该行人在该时刻的 x, y 坐标,每列由空格或 tab隔开。行的排列顺序为先帧编号由小到大,后行人 ID 由小到大。每个数据集有

<

目标数据格式:数据处理的目标是由这些位置序列得到用于训练输入的轨迹特征矩阵 V_{obs} 和用于比较结果计算损失函数的轨迹特征矩阵 V_{pred} 。这两个矩阵均有四个维度,按顺序分别为:批大小(batch_size),序列长度(T_in/T_out),行人数目(node_num),位置特征(feature)。其中,批大小固定为 1,输入数据的序列长度为 8(帧),输出长度为 12(帧),行人数目仅计算在此 20 帧中每一帧都出现的行人,位置特征有两维,分别表示 x 和 y 方向的特征。

对每个文本文档,数据处理代码核心逻辑如下:

1. 取出帧号,以每20帧为一组序列,按列拼接该序列中的所有数据:

- 遍历每个序列中的行人ID,仅保留在20帧中都出现的行人(有效行人),将这些行人的时间-位置信息处理为2×20的矩阵,矩阵行表示x和y的坐标,矩阵列表示帧号;
- 3. 将时间-信息矩阵在时间维度上平移一帧,与原矩阵做差,把 x 和 y 的 绝对坐标变为和上一帧的相对坐标。
- 4. 将每个序列中全部的有效行人信息进行拼接,将矩阵的最后一维 20 切 分为前 8 后 12,这两部分即为最终所要的*Vohs*和*Vmred*。

4.1.2 由注意力模型建立邻接矩阵

在论文 Social-STGCNN中,图的邻接矩阵是在数据处理过程中建立的,在训练过程中不发生变化,这种静态方式建立的邻接矩阵需要对交互规则有明确的定义。但在实际情况中,行人之间的交互很难用简单的速率关系或者位置关系来衡量,因此,本方法采用注意力模型代替静态规则,该模型能从输入的轨迹特征矩阵中自动学习到各行人之间的高维特征相关性,动态建立邻接矩阵。

该模型的前向传播代码如下:

```
def forward(self, x):
    # 输入 x: (T_in(8), node, feature(2))
    embeddings = self.embedding(x) # (8, node, feature(64))
    query = self.query(embeddings) # (8, node, feature(64))
    key = self.key(embeddings) # (8, node, feature(64))
    # 计算注意力分数图
    attention = torch.matmul(query, key.permute(0, 2, 1)).unsqeeze(1)
    attention = self.softmax(attention / self.scaled_factor)
    return attention
```

其中,输入特征矩阵 x 通过线性模型 $nn.linear(feature_in,feature_out)$ 转换成高维图嵌入(embeddings),模型参数 $feature_in=8$, $feature_out=64$ 该图嵌入经由两个不同的线性模型提取特征后得到大小相同的查询矩阵(query) 和键矩阵(key)。根据第三章第二节中介绍的计算方法,将 query 和 key 的转置相乘,经特征维度系数 $scaled_factor$ 和函数softmax归一化后即可得到注意力分数图attention。此模型返回的注意力分数图大小为 $Tin \times 1 \times node \times node$,

它就是初始的邻接矩阵。

在此基础上,将attention前两个维度置换,输入一个卷积核大小为 1×1 的二维卷积模型 $nn.Conv2d(T_in,T_in,1)$ 中,在时间维度上对每个点的注意力得分进行特征融合,使同一对行人的交互在不同时刻具有一定的一致性。注意力分数图各维度大小在这个步骤中保持不变。

4.1.3 稀疏交互和 Zero-softmax

相较于密集交互矩阵,稀疏交互矩阵中存在零值,零值的含义为,其所在行列代表的行人之间不存在相互影响。

为了提取高维交互特征,进一步对上一个模型输出的邻接矩阵进行非对称卷积,非对称卷积的效果与对称卷积基本相同,但可以有效降低计算量。具体操作为,将输入的矩阵x用3×1大小的卷积核卷积得到 x_1 ,同时用1×3大小的卷积核卷积得到 x_2 ,将 x_1 和 x_2 加和后进行非线性激活,即得到空间特征融合后的输出。

到这一步为止,先前所有的邻接矩阵均为稠密矩阵。将邻接矩阵用 nn. Sigmoid()函数归一化,设置交互判定阈值threshold = 0.5,小于该阈值的 交互被抑制为 0,于是得到了目标稀疏交互矩阵。

上述稀疏交互矩阵还需要进行一步归一化操作。传统的softmax归一化公式为 $Softmax(x^i) = \frac{e^{x_i}}{\Sigma_{j=1}^n e^{x_j}}$,很显然,经过该函数后矩阵中所有被抑制为 0 的交互都不再得 0。鉴于此,将该函数进行微调,采用Zero-softmax方法,其公式如下:

Zero-softmax(xⁱ) =
$$\frac{(e^{x_i} - 1)^2}{\sum_{i=1}^{n} (e^{x_i} - 1)^2 + \epsilon}$$
 (4.1)

该方法保持矩阵中零值不变,仅对非零值进行归一化操作。至此,表示行人交互特征的邻接矩阵建立完毕,在后续每一轮的训练中,注意力模型、1×1卷积模型、非对称卷积模型中的参数都会不断更新,使得生成的邻接矩阵越来越趋近于真实的交互关系。该矩阵和 4.1.1 中得到的轨迹特征矩阵被一同输入下一节图卷积网络中。

第二节 网络整体结构设计

本方法的网络由两个学习链路共同组成,第一个链路用于学习交互特征,构建邻接矩阵,本章第一节中介绍了该链路的主要模块;第二个链路用于提取轨迹特征,主要由图卷积、时序网络和时间外推网络组成。本节介绍第二条链路中图卷积和时序网络的实现方法,并阐述网络的整体结构设计。

4.2.1 图卷积过程的实现

图 4.1 单步图卷积计算过程示意图

本方法中图卷积的过程如上图所示,模型的输入为轨迹特征图和邻接矩阵。其中轨迹特征图维度为 $batch(1) \times feature_in(2) \times T_in(8) \times node_num$,经过一步核为 1×1 的二维卷积运算后,将 2 维特征(2 通道)转化为 5 维特征(5 通道),这 5 维特征代表二维高斯分布的五个参数,该部分将在本章第五节中详细解释。输入的邻接矩阵维度为 $T_in(8) \times node_num \times node_num$,二者相乘后轨迹特征图的每个顶点都根据边的权重与其他顶点进行了加权,即融合了交互信息。

忽略对数据和图的处理过程,单步图卷积可以由以下两行代码表示:

```
x = self.conv(x)
x = torch.einsum('nctv,tvw->nctw', (x, A))
```

第一行对轨迹特征矩阵 x 的卷积操作决定了输出的特征维度,第二行将 x 与其邻接矩阵A相乘,最终得到根据各节点交互进行加权后的轨迹特征。在本方法的时空图模型中,提取空间交互特征的图卷积和提取运动特征时序网络是相连的,每一步图卷积后面都跟随一步时序处理,然后再进入下一层图卷积中。这样的操作使得各行人轨迹的时间特征和空间特征紧密融合,有助于建立更准确的轨迹模型。

4.2.2 时序网络的实现

图卷积的输出被送入时序网络中提取运动特征。在代码实现方面,时间卷积网络(TCN)采用nn. Conv2d()在时间维度上执行卷积操作,因此输入应该为一个4维张量,其中第二维channel是行人轨迹的特征维。卷积参数设置如下:

- 1. 输入输出通道数保持不变, 皆为5个特征维度;
- 2. 卷积核压扁到一个维度,大小为3×1;
- 3. 将步长stride和填充padding设为1,此时输出序列长度保持不变:

$$size_{output} = \frac{size_{input} + 2padding - kernal}{stride} + 1 = size_{input}$$
 (4.2)

与 TCN 不同,双向长短期记忆网络(Bi-LSTM)采用*nn. LSTM*()循环处理各时间节点的信息,其输入包括三部分:

- 1. $input_x$: 形状为 $T_{in} \times batch \times size_{input}$ 的三维张量,由于 LSTM 中每个行人的轨迹被单独处理,这里的batch即为行人数目,而 $size_{input}$ 是特征维度;
- 2. 隐藏层参数h₀: 形状为num_{layers} * num_{directions} × batch × size_{hidden} 的三维张量,其中num_{layers} 为隐层层数,num_{directions}是 LSTM 方向数,Bi-LSTM 的方向数为 2;同样的,batch为行人数目,而size_{hidden} 是隐藏层特征维度,也即该层的输出维度;用torch.zeros对该参数进行初始化;
- 3. 隐藏层参数 c_0 : 与 h_0 形状相同,用torch.zeros()进行初始化。

在参数设置方面,输入输出维度大小保持不变,隐层层数默认为1,设置

参数bidirectional = True实现双向操作。

4.2.3 网络整体结构的设计

本模型整体网络结构如图 4.2 所示,由邻接矩阵的生成链路和特征数据的学习链路共同组成。相较于 Social-STGCNN 网络结构,本模型的三大核心改进点由虚线框出,分别为邻接矩阵构建中的注意力模型和稀疏交互掩模,以及时空图模型中的时序网络部分。

图 4.2 网络整体结构示意图

数据在该模型中的传输过程分为如下几步:

- 1. 原始数据经过处理后得到输入的 8 帧轨迹 V_{obs} 和用于验证的 12 帧未来轨迹 V_{target} ,其中 V_{obs} 同时进入两个学习链路中;
- 2. 在邻接矩阵链路中, V_{obs} 经过自注意力模型,由空间注意力得分得到初始的邻接图,再通过 1×1 卷积融合每条权重边在不同时刻的时序特征,得到 A_{init} ;
- 3. 将 A_{init} 传入非对称卷积网络提取高维特征,经过 threshold 抑制后得到稀疏交互,加入对角矩阵保证每个节点和自身有相关性,之后用 $Zero ext{-}softmax$ 进行归一化,得到最终的交互邻接图 $A_{interaction}$ 。
- 4. 在轨迹特征链路中, V_{obs} 经过 1×1 卷积进行特征维度变换,与邻接图一起传入时空图模型,每层时空图包括一次图卷积和一次 Bi-LSTM,时空图模型输出结果为时空关系加权后的 $V_{weighted}$;
- 5. $V_{weighted}$ 传入时间外推网络,该网络是一个卷积网络,通道数为时间序列长度,经过该网络后输入的 8 帧序列被转化为 12 帧预测结果,得到最终的 V_{output} ;
- 6. 用网络预测输出 V_{output} 和真实轨迹 V_{target} 计算损失函数并反向传播更新网络参数,损失函数的计算方法及训练过程将在下一节介绍。

第三节 损失函数及训练过程

4.3.1 损失函数的设计和计算过程

Social-STGCNN 中假设每个行人未来的轨迹符合二维高斯分布,该分布的概率密度公式为:

$$f(x,y) = \left(2\pi\sigma_{1}\sigma_{2}\sqrt{1-\rho^{2}}\right)^{-1} exp\left[-\frac{1}{2(1-\rho^{2})}\left(\frac{(x-\mu_{1})^{2}}{\sigma_{1}^{2}} - \frac{2\rho(x-\mu_{1})(y-\mu_{2})}{\sigma_{1}\sigma_{2}} + \frac{(y-\mu_{2})^{2}}{\sigma_{2}^{2}}\right)\right]$$

$$(4.3)$$

由公式(4.3)可知,行人在某一时刻位置(x,y)的概率密度由 5 个参数共同决定,其中 μ_1 , μ_2 分别为 x 和 y 的期望, σ_1 , σ_2 为 x 和 y 的方差, ρ 是二者的相关系数。

比较真实轨迹 V_{target} 和网络模型的输出 V_{output} ,前者特征维度为 2 维,分别代表 x 和 y 的相对位置,后者维度为 5 维,向概率密度的 5 个参数拟合。指定 V_{output} 的第 1 维特征为 x 的期望,第 2 维特征为 y 的期望,3、4 维分别是 x 和 y 的方差,第 5 维是相关系数,则根据预测结果,行人每个时刻真实轨迹点的概率密度计算如下:

```
# 期望与目标之差
normx = V_trgt[:,:,0] - V_pred[:,:,0]
normy = V_trgt[:,:,1] - V_pred[:,:,1]
# 方差
sx = torch.exp(V_pred[:,:,2])
sy = torch.exp(V_pred[:,:,3])
# tanh 让相关系数映射到[-1,1]之间
corr = torch.tanh(V pred[:,:,4])
sxsy = sx * sy
z = (normx/sx)**2 + (normy/sy)**2 - 2*((corr*normx*normy)/sxsy)
negRho = 1 - corr**2
result = torch.exp(-z/(2*negRho))
# 归一化系数
denom = 2 * np.pi * (sxsy * torch.sqrt(negRho))
# 概率密度输出
result = result / denom
```

该密度反应预测模型与真实模型之间的相似度,其概率密度越大,预测轨迹在真实位置的分布越密集,说明轨迹模型拟合效果越好。因此,参考负对数似然函数,该模型的损失函数为概率密度的负对数,其代码表示为:

```
# 限制张量的最小值为1e-20
epsilon = 1e-20
loss_matric = -torch.log(torch.clamp(result, min=epsilon))
loss = torch.mean(result)
```

4.3.2 改进前/后模型的训练过程

在 ETH 数据集上分别对改进前的基准模型 Social-STGCNN 和改进后的模型 Attention-BiLSTM 进行 250 轮的训练,模型学习率均设为 0.01,时空图层数均设为 1,两个模型的损失下降过程如图 4.3,4.4 所示:

图 4.3 Social-STGCNN 模型训练/验证损失

图 4.4 Attention-BiLSTM 模型训练/验证损失

分析图 4.3 和 4.4,可以发现两个模型损失最终都会收敛,相对而言改进后的模型验证集损失图降低过程更加稳定。

一个比较有趣的发现是,损失函数在收敛过程中会小于 0。这个现象在机器学习模型中比较少见,大多数机器学习模型最终的损失都应该由某个正数向 0 收敛,这符合对梯度更新的直观理解:损失函数指示梯度下降的步长,越靠近最优点,梯度越缓,损失函数越小,步长也越小。然而,这样的理解过于浅显,并不能覆盖所有的模型收敛规则。从梯度下降的原理来看,只要目标函数是一个有极限的凸函数,最终的损失就有可能收敛,就该问题而言,负对数损

失函数中的真数是真实轨迹点 x,y 的概率密度,在连续区间内某一点上的概率密度没有真实物理意义,并不等价于概率或者似然,它是可以大于 1 的,虽然如此,该点的概率密度一定有一个极限值,即当 $x=\mu_1$, $y=\mu_2$ 时,概率密度达到最大值 $\frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}$,由于分母中的参数取到某些值时会小于 1,难免计算得到的概率密度会大于 1,而这种情况下负对数损失就会小于 0,这并不会影响模型最终收敛。

第四节 实验结果及分析

4.4.1 改进前后模型定性比较

为了更加直观地比较两个模型的效果,对测试数据进行了多次采样,用轨迹图和分布图的形式对比模型的性能。

分别在 ETH 数据集和 Zara 数据集上各提取一段轨迹,对两个模型输出的分布采样 10 次,分别得到 10 条预测轨迹,如图 4.5,4.6 所示:

图 4.5 ETH 数据集上一段轨迹的预测采样

(a) 原模型效果; (b) 改进模型效果

图 4.6 Zara 数据集上一段轨迹的预测采样(左为原模型效果,右为改进模型效果)
(a) 原模型效果; (b) 改进模型效果

上图中,红色线是真实轨迹,蓝色线是采样轨迹,红点之前是已知的行人历史轨迹,两条蓝色虚线之间的角度表明采样轨迹的分散程度。由图可见,改进模型的预测结果更加集中,方差较小,准确度也更高。

此外,通过采样最终位置的分布,评估两个模型预测的轨迹最终目的点与 真实轨迹目的点之间的差异。

图 4.7 ETH 数据集上一段轨迹的终点采样

(a) 原模型效果; (b) 改进模型效果

图 4.8 Zara 数据集上一段轨迹的终点采样

(a) 原模型效果; (b) 改进模型效果

在以上图 4.7, 4.8 中,红色星点是真实轨迹的终点,蓝色圆点是 20 次采样预测的终点,蓝色虚线圈表明采样轨迹终点的分散程度,绿色圆圈位置是预测分布的大致中心。从图中可以看出,改进后的模型预测分布更加集中,且分布中心距离真实目的地更接近。

4.4.2 改进前后模型定量比较

行人轨迹预测模型的评估指标有两个,其一是平均位移误差(Average Displacement Error, ADE),其二是最终位移误差(Final Displacement Error, FDE),两个指标的计算公式如下:

$$ADE = \frac{\sum_{n \in N} \sum_{t \in T_p} ||\hat{p}_t^n - p_t^n||_2}{N \times T_p}$$
 (4.4)

$$FDE = \frac{\sum_{n \in N} ||\hat{p}_t^n - p_t^n||_2}{N}, \ t = T_p$$
 (4.5)

由上式可知, ADE 和 FDE 越小说明预测轨迹和真实轨迹的差异越小,即模型性能越好。本论文改进后和改进前的模型经过 250 训练后,在四个常用开源数据集上的测试的 ADE/FDE 如表 4.1 所示:

模型	指标	ЕТН	Hotel	Univ	Zara
Attention + Bi-	ADE	0.63	0.38	0.47	0.31
LSTM	FDE	1.12	0.58	0.78	0.51
Social-STGCNN	ADE	0.79	0.45	0.48	0.36
	FDE	1.48	0.78	0.88	0.59

表 4.1 改进前后模型的性能比较

由结果可知,改进后的模型在所有数据集上表现出的性能都不低于同样训练轮次的原模型,根据表 4.1 的数据计算,改进后的模型平均 ADE/FDE 为 0.448/0.748,相比改进前 0.520/0.933 有明显的提升。

4.4.3 消融实验及结果分析

本论文的主要改进点有两部分,其一是基于注意力的动态交互图构建,其二是用双向长短期记忆网络替代时间卷积网络。为了说明每个改进单独都是有效的,设计了消融实验,在四个开源数据集上分别对 1) 无注意力 TCN 模型,2) 无注意力 Bi-LSTM 模型,3) 含注意力的 TCN 模型,4) 含注意力 Bi-LSTM 模型 进行实验,计算各模型的 ADE 和 FDE,实验结果如表 4.1 所示:

注意力/时序模型	ETH	Hotel	Univ	Zara	Average
无/TCN	0.79/1.48	0.45/0.78	0.48/0.88	0.36/0.59	0.52/0.933
无/Bi-LSTM	0.69/1.20	0.40/0.67	0.47/0.83	0.30/0.47	0.465/0.793
有/TCN	0.71/1.13	0.42/0.75	0.46/0.80	0.31/0.49	0.475/0.793
有/Bi-LSTM	0.63/1.12	0.38/0.58	0.47/0.78	0.31/0.51	0.448/0.748

表 4.2 两个改进模块的消融实验结果(ADE/FDE)

表 4.2 中,每个数据集上性能最好的模型结果被标红,性能最差的结果被标蓝,同时计算了每个数据集的平均 ADE/FDE。从结果中可以看出,含注意力模块的 Bi-LSTM 模型在 ETH、Hotel 数据集上以及平均的 ADE 和 FDE 都最小,无注意力的 Bi-LSTM 模型在 Zara 数据集上表现最佳,而在所有数据集上,由一处或两处改进的模型性能都优于原模型。该结果说明,本论文提出的两处改进单独都是有效的,且在大多数情况下,同时加入注意力和用 Bi-LSTM

代替 TCN 的模型性能要好于仅有一处改进的模型。

第五节 本章小结

本章介绍了本论文方法的具体实现,首先,介绍了轨迹特征矩阵和交互图的构建过程,其中包括原始数据转化为输入数据,由注意力模型代替静态规则模型建立交互关系,由掩模和 Zero-softmax 函数将密集交互变为稀疏交互; 其次,介绍了图卷积模块以及单步图卷积过程; 在此之后,说明了 Bi-LSTM 网络的实现细节; 第四节给出了网络整体结构设计图,并对每个流程和改进模块进行了说明; 第五节详细介绍了概率密度负对数损失函数的原理、计算方式,给出原模型、改进后模型的训练损失图,并解释了出现负损失的原因; 最后一节对两个模型进行了定性和定量分析,通过消融实验说明了改进的有效性。

第五章 总结与展望

第一节 本文工作总结

本文对行人轨迹预测问题进行了讨论与研究,通过比较相关方法,确定以时空图卷积模型 Social-STGCNN 为基础,在交互邻接图构建方法和时序网络设计方面对模型进行改进。首先,使用自注意力模型代替静态规则模型,动态学习行人之间的交互特征,构建自适应的邻接矩阵;其次,通过阈值掩模和 Zerosoftmax 函数将密集交互的邻接矩阵转换为稀疏交互的邻接矩阵,抑制无效交互信息;之后,考虑到长短期记忆网络在处理时序问题上的准确度优势,将原模型的时间卷积网络替换为双向长短期记忆网络;文中展示了改进后的整体网络结构并进行了详细阐释。实验阶段,本文采用轨迹的二维高斯概率密度函数的负对数作为损失函数,分析训练过程中损失函数下降曲线,并对出现的损失函数为负值的现象进行了分析和解释;在此之后,本文设计了定性实验和定量实验,从各指标比较改进前后的模型性能;最后,通过消融实验说明了本文提出的各处改进单独都是有效果的,且同时采用所有改进时所达到的平均效果最好。

第二节 问题反思与研究方向展望

从模型性能角度考虑,基于深度学习的行人轨迹预测问题的研究热度已经持续了五年以上,尽管目前准确预测行人轨迹仍然具有较大的挑战性,但从性能提升的趋势来看,深度学习方法在该问题上正在进入瓶颈期。其根本原因在于,现阶段包括本文方法在内的大量研究都是仅基于行人历史轨迹数据进行的,尽管设计精巧的深度学习模型能在大量数据驱动的情况下学习到行人轨迹的高维抽象特征,但在已知信息有限的情况下,很难拟合行人行走过程中受到的所有内、外激励。因此,除了设计更有针对性的深度学习模型之外,突破该瓶颈的一个重要方式是在学习过程中加入多模态信息,如周围环境变化、交通

规则约束、行人姿态等,并在深度学习基础上结合一定的知识模型思路,提供某些先验的行动规律。

从应用落地角度考虑,由于行人轨迹预测的主要应用场景是服务机器人、自动驾驶等移动智能体的路径规划,因此需要更多地结合智能体自身传感器来考虑算法设计。目前大多数算法都会假定所有行人的历史轨迹都是已知的,即智能体有全局视角,但在真实应用中,智能体所能获得的都是局部信息,并且还涉及到通过各类传感器的感知信息计算行人的具体位置。考虑到这些问题,行人轨迹预测的一个研究方向是如何利用局部多模态信息进行预测,该研究方向有助于将理论研究落实到工业和生活应用中去。

参考文献

- [1] 李琳辉, 周彬, 任威威, 连静. 行人轨迹预测方法综述[J]. 智能科学与技术学, 2021, 3(4): 399-411.
- [2] Andrey Rudenko, Luigi Palmieri, Michael Herman, Kris M. Kitani, Dariu M. Gavrila, Kai O. Arras. Human motion trajectory prediction: a survey. International Journal of Robotics Research, 2020, 39(8): 895-935.
- [3] Xu Yanyu, Piao Zhixin, Gao Shenghua. Encoding crowd interaction with deep neural network for pedestrian trajectory prediction. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, United states, June 18-22, 2018, 5275-5284.
- [4] Shunichi Sekiguchi, Ayanori Yorozu, Kazuhiro Kuno, Masaki Okada, Yutaka Watanabe, Masaki Takahashi. Uncertainty-aware non-linear model predictive control for humanfollowing companion robot. IEEE International Conference on Robotics and Automation (ICRA), 2021, 8316-8322.
- [5] Daniela Ridel, Eike Rehder, Martin Lauer, Christoph Stiller, Denis Wolf. A literature review on the prediction of pedestrian behavior in urban scenarios. IEEE International Conference on Intelligent Transportation Systems (ITSC). Maui, HI, 2018, 3105-3112.
- [6] 连静, 王欣然, 李琳辉, 周雅夫, 周彬. 基于人-车交互的行人轨迹预测[J]. 中国公路学报, 2021, 34(5): 9.
- [7] Sun Li, Yan Zhi, Mellado Sergi Molina, Hanheide Marc, Duckett Tom. 3DOF pedestrian trajectory prediction learned from long-term autonomous mobile robot deployment data. IEEE International Conference on Robotics and Automation (ICRA), 2018, 5942-5948.
- [8] Ivan Rodin, Antonino Furnari, Dimitrios Mavroedis, Giovanni Maria Farinella. Predicting the future from first person (egocentric) vision: a survey. Computer Vision and Image Understanding, 2021, 211: 103252.
- [9] Batty Michael. Predicting where we walk. Nature, 1997, 388(6637): 19-20.
- [10] Helbing Dirk, Keltsch Joachim, Molnár Péter. Modelling the evolution of human trail systems. Nature, 1997, 388(6637): 47-50.
- [11] Cheng Hao, Johora Fatema T., Sester, Monika Müller, Jörg P. Trajectory modelling in shared spaces: expert-based vs. deep learning approach? International Workshop on Multi-Agent Systems and Agent-Based Simulation. Springer, Cham, 2020: 13-27.
- [12] Korbmacher, Raphael Tordeux, Antoine. Review of pedestrian trajectory prediction methods: comparing deep learning and knowledge-based approaches. ArXiv Preprint, 2021, arXiv: 2111.06740.
- [13] 龚晓岚, 魏中华. 行人动力学的研究进展[J]. 人类工效学, 2008, (2): 68-71.
- [14] Dong Hairong, Zhou Min, Wang Qianling, Yang Xiaoxia, Wang Feiyue. State-of-the-art pedestrian and evacuation dynamics. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(5): 1849-1866.
- [15] Prigogine I., Andrews F. C. A boltzmann-like approach for traffic flow. Operations

- Research, 1960, 8(6): 789-797.
- [16] Helbing Dirk. A fluid dynamic model for the movement of pedestrians. Complex Systems, 1998, 6(5):391-415.
- [17] Roger L. Hughes. The flow of human crowds. Annual Review of Fluid Mechanics, 2003. 35(1): 169-182.
- [18] Roger L. Hughes. A continuum theory for the flow of pedestrians. Transportation Research Part B: Methodological, 2002, 36B(6): 507-535.
- [19] Jiang Yanqun, Zhang Peng, Wong S. C., Liu Ruxun, A higher-order macroscopic model for [edestrian flows. Physica A: Statistical Mechanics and its Applications, 2010, 389(21): 4623-4635.
- [20] Helbing Dirk, Molnár Péter. Social force model for pedestrian dynamics. Physical Review E, 1995, 51(5): 4282-4286.
- [21] Totzeck Claudia. An anisotropic interaction model with collision avoidance. ArXiv Preprint, 2019, arXiv:.04234.
- [22] Maury Bertrand, Venel Juliette. A mathematical framework for a crowd motion model. Comptes Rendus Mathematique, 2008, 346(23): 1245-1250.
- [23] Guo Ke, Wang Dawei, Fan Tingxiang, Pan Jia. Vr-Orca: Variable Responsibility Optimal Reciprocal Collision Avoidance. IEEE Robotics and Automation Letters, 2021, 6(3): 4520-4527.
- [24] Zhang Zhe, Jia Limin. Direction-decision learning based pedestrian flow behavior investigation. IEEE Access, 2020, 8: 15027-15038.
- [25] Graeme Best, Robert Fitch. Bayesian intention inference for trajectory prediction with an unknown goal destination. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015, 5817-5823.
- [26] 方峻. 基于元胞自动机的行人微观仿真模型研究与应用[博士学位论文]. 清华大学, 2012.
- [27] Alahi Alexandre, Goel Kratarth, Ramanathan Vignesh, Robicquet Alexandre, Fei-Fei Li, Savarese Silvio. Social Lstm: human trajectory prediction in crowded spaces. Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), 2016, 961-971.
- [28] Vemula Anirudh, Muelling Katharina, Oh Jean. Social attention: modeling attention in human crowds. IEEE international Conference on Robotics and Automation (ICRA), 2018, 4601-4607.
- [29] 孙亚圣, 姜奇, 胡洁, 戚进,彭颖红. 基于注意力机制的行人轨迹预测生成模型 [J]. 计算机应用, 2019(3): 7.
- [30] Fragkiadaki Katerina, Levine Sergey, Felsen Panna, Malik Jitendra. Recurrent network models for human dynamics. Proceedings of the IEEE International Conference on Computer Vision (CVPR). 2015, 4346-4354.
- [31] Yi Shuai, Li Hongsheng, Wang Xiaogang. Pedestrian behavior understanding and prediction with deep neural networks. European Conference on Computer Vision (ECCV),

- 2016, 263-279.
- [32] Mohamed Abduallah, Qian Kun, Elhoseiny Mohamed, Claudel Christian. Social-stgcnn: s social spatio-temporal graph convolutional neural network for human trajectory prediction. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020, 14424-14432.
- [33] Dan Xiong. Spatial-Temporal block and Lstm network for pedestrian trajectories prediction. ArXiv Preprint, 2020, arXiv:.10468.
- [34] Gupta Agrim, Johnson Justin, Fei-Fei Li, Savarese Silvio, Alahi Alexandre. Social GAN: socially acceptable trajectories with generative adversarial networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018, 2255-2264.
- [35] Kosaraju Vineet, Sadeghian Amir, Martín-Martín Roberto, Reid Ian, Rezatofighi Hamid, Savarese Silvio. Social-bigat: multimodal trajectory forecasting using bicycle-gan and graph attention networks. Advances in Neural Information Processing Systems, 2019, 32.
- [36] Amirian Javad, Hayet Jean-Bernard, Pettré Julien. Social ways: learning multi-modal distributions of pedestrian trajectories with gans. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2019, 0-0.
- [37] Sadeghian Amir, Kosaraju Vineet, Sadeghian Ali, Hirose Noriaki, Rezatofighi Hamid, Savarese Silvio. Sophie: an attentive GAN for predicting paths compliant to social and physical constraints. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019, 1349-1358.
- [38] Lara-Benítez Pedro, Carranza-García Manuel, Riquelme José C., An experimental review on deep learning architectures for time series forecasting. International Journal of Neural Systems, 2020, 31(03): 2130001.

致 谢

值此,本科毕业设计工作暂告收尾,在南开的学习生涯也走到了尾声。

在本科期间的科研和毕业论文工作中,由衷感谢刘景泰教授在方法论、大方向和论文规范上的指导。整躬率物,以身作则,在刘教授身上我看到了一位教育工作者和科研工作者的榜样,他在科研态度上对我的影响是我大学阶段最重要的收获之一。除此之外,感谢周磊博士在深度学习思想原理方面给我的提点,学长对抽象概念的直观解释和网络设计的经验让我在许多问题上豁然开朗,使得本次毕业设计能够顺利进行。

回首四年,感谢各科老师的教导及身边同学的陪伴,我在眼界、学识、思维方式和专业能力等方面都有了长足了进步。就专业兴趣方面,特别感谢刘杰、张瀚和王鸿鹏三位授课教授,他们的课堂对我的帮助和影响巨大,让我发现了自己在编程和计算机方面的兴趣,奠定了我未来的研究生学习方向。另外,感谢我的朋友宋一诺,恰同学少年时,她是相逢意气的可遇不可求。

最后,永远感谢我的父母,愿我不负所望;亦敬抗疫逆行者,愿祖国安康,山河无恙。