МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3 по дисциплине «Информатика»

Тема: Машина Тьюринга

Студент гр. 3343		Калиберов Н.И.
Преподаватель		Иванов Д. В.
	Санкт-Петербург	

2023

Цель работы

Понять принцип работы машины Тьюринга и конечных автоматов и научиться использовать их для решения практических задач

Задание

Вариант 2.

На вход программе подается строка неизвестной длины. Каждый элемент является значением в ячейке памяти ленты Машины Тьюринга.

На ленте находится последовательность латинских букв из алфавита $\{a,b,c\}$.

Напишите программу, которая заменяет в исходной строке символ, идущий после последних двух встретившихся символов 'a', на предшествующий им символ(гарантируется, что это не пробел). Наличие в строке двух подряд идущих символов 'a' гарантируется.

Указатель на текущее состояние Машины Тьюринга изначально находится слева от строки с символами (но не на первом ее символе). По обе стороны от строки находятся пробелы. Алфавит: a, b, c, " " (пробел) Соглашения:

- 1. Направление движения автомата может быть одно из R (направо), L (налево), N (неподвижно).
- 2. Гарантируется, что длинна строки не менее 5 символов и не более 15.
 - 3. В середине строки не могут встретиться пробелы.
- 4. При удалении или вставке символов направление сдвигов подстрок не принципиально (т. е. результат работы алгоритма может быть сдвинут по ленте в любую ее сторону на любое число символов).
- 5. Курсор по окончании работы алгоритма может находиться на любом символе.

Ваша программа должна вывести полученную ленту после завершения работы.

В отчете предоставьте таблицу состояний. Отдельно кратко опишите каждое состояние, например: q1 - начальное состояние, которое необходимо, чтобы найти первый встретившийся символ 'a'.

Выполнение работы

Для начала создаём словарь table, который хранит описание всех состояний. Начальное состояние машины - 'q0'.

Таблица состояний представлена в табл. 1.

Таблица 1 – Состояния

Состояние	ʻa'	'b'	'c'		Описание
q0	a,R,q1	b,R,q1	c,R,q1	' ',R,q0	Ищем первый символ
q1	a,R,q1	b,R,q1	c,R,q1	' ',R,q2	Доходим до последнего символа
q2	a,L,q3	b,L,q2	c,L,q2		Ищем первую 'a'
q3	a,L,q4	b,L,q2	c,L,q2		Ищем вторую 'a'
q4	a,R,q5	b,R,q6	c,R,q7		Смотрим какой символ слева от 'aa'
q5	a,R,q5	a,N,qT	a,N,qT	ʻʻ,N,qT	Если символ слева 'а' заменяем его справа на 'a'
q6	a,R,q6	b,N,qT	b,N,qT	'',N,qT	Если символ слева 'b' заменяем его справа на 'b'

q7	a,R,q7	c,N,qT	c,N,qT	' ',N,qT	Если
					символ слева
					'c'
					заменяем его
					справа на
					'c'

Тестирование.

Результаты тестирования представлены в табл. 2.

Таблица 2 – Результаты тестирования

№ п/п	Входные данные	Выходные данные	Комментарии
1.	acaabcbabaacab	acaabcbabaabab	Верно
2.	abcaabc	abcaacc	Верно
3.	aaaa	aaaaa	Верно
4.	cabcaabb	cabcaacb	Верно

Выводы

Было изучено строение машины Тьюринга и других конечных автоматов, получено представление об архитектуре компьютера на более низком уровне.

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: main.py

```
L, R, N = -1, 1, 0
table = {
    'q0': {'a': ['a', R, 'q1'], 'b': ['b', R, 'q1'], 'c': ['c', R, 'q1'],
' ': [' ', R, 'q0']},
    'q1': {'a': ['a', R, 'q1'], 'b': ['b', R, 'q1'], 'c': ['c', R, 'q1'],
' ': [' ', L, 'q2']},
    'q2': {'a': ['a', L, 'q3'], 'b': ['b', L, 'q2'], 'c': ['c', L, 'q2']},
    'q3': {'a': ['a', L, 'q4'], 'b': ['b', L, 'q2'], 'c': ['c', L, 'q2']},
    'q4': {'a': ['a', R, 'q5'], 'b': ['b', R, 'q6'], 'c': ['c', R, 'q7']},
    'q5': {'a': ['a', R, 'q5'], 'b': ['a', N, 'qT'], 'c': ['a', N, 'qT'],
' ': ['a', N, 'qT']},
    'q6': {'a': ['a', R, 'q6'], 'b': ['b', N, 'qT'], 'c': ['b', N, 'qT'],
' ': ['b', N, 'qT']},
    'q7': {'a': ['a', R, 'q7'], 'b': ['c', N, 'qT'], 'c': ['c', N, 'qT'],
' ': ['c', N, 'qT']}
}
memory = list(input())
q = 'q0'
index = -1
states = [q]
while q != 'qT':
    symb = memory[index]
    symbol, i, q = table[q][symb]
   memory[index] = symbol
    index += i
    states.append(q)
print(*memory, sep='')
```