Results

Descriptives

Descriptives

	Cloak
N	24
Missing	0

Frequencies

Frequencies of Cloak

Levels	Counts	% of Total	Cumulative %
No Cloak	12	50.0 %	50.0 %
Cloak	12	50.0 %	100.0 %

Plots

Cloak

Descriptives

Descriptives

_	· ·	
_		Mischief
	N	24
	Missing	0
	Mean	4.38
	Median	5.00
	Mode	5.00
	Sum	105
	Standard deviation	1.86
	Variance	3.46
	Range	8.00
	Minimum	0.00
	Maximum	8.00
	Skewness	-0.514
	Std. error skewness	0.472
	Kurtosis	0.410
	Std. error kurtosis	0.918
	Shapiro-Wilk W	0.954
	Shapiro-Wilk p	0.336

Plots

Mischief

Relationships, Prediction, and Group Comparisons

You have entered a numeric variable for Variable 1 / Dependent Variable and a dichotomous variable for Variable 2 / Independent Variables. Hence, the two sample t test assuming equal population variances or the two sample t test not assuming equal population variances seems to be a good option for you! Both tests are tests for the difference between two population means. In order to run these tests in jamovi, go to: T-Tests > Independent Samples T-Test

- Drop your dependent (numeric) variable in the box below Dependent Variables and your independent (grouping) variable in the box below Grouping Variable
- Under Tests, select Student's if you want to assume equal population variances, and Welch's if you don't want to assume equal population variances
- Under Hypothesis, select your alternative hypothesis

If the normality assumption is violated, you could use the non-parametric Mann-Whitney U test. Click on the links to learn more about these tests!

Scatter Plots of Bivariate Relationships - Dependent/Independent Variables

Independent Samples T-Test

									5% dence erval	_		Confi	5% idence erval
		Statistic	±%	df	р	Mean difference	SE difference	Lower	Upper		Effect Size	Lower	Upper
Mischief	Student's t	-1.71		22.0	0.101	-1.25	0.730	-2.76	0.263	Cohen's d	-0.700	-1.54	0.165
	Bayes factor ₁₀	1.05	5.45e- 6										
	Welch's t	-1.71		21.5	0.101	-1.25	0.730	-2.76	0.265	Cohen's d	-0.700		
	Mann- Whitney U	47.0			0.149	-1.00		-3.00	2.55e- 5	Rank biserial correlation	0.347		

Assumptions

Normality Test (Shapiro-Wilk)

	w	р		
Mischief	0.965	0.546		

Note. A low p-value suggests a violation of the assumption of normality

Homogeneity of Variances Test (Levene's)

	F	df	df2	р
Mischief	0.545	1	22	0.468

Note. A low p-value suggests a violation of the assumption of equal variances

[6]

Group Descriptives

	Group	N	Mean	Median	SD	SE
Mischief	No Cloak	12	3.75	4.00	1.91	0.552
	Cloak	12	5.00	5.00	1.65	0.477

Plots

Mischief

Robust Independent Samples T-Test

Robust Independent Samples T-Test

						95% Confidence Interval		95% Confidence Interval		_	95% ξ Confid	lence Interval
		t	df	р	Mean diff	Lower	Upper	ξ	Lower	Upper		
Mischief	Yuen's test Yuen's bootstrapped	1.48 -1.36	12.3	0.165 0.199	-1.00	-2.47	0.472	0.398	0.00	0.796		

Bayesian Independent Samples T-Test

Bayesian Independent Samples T-Test

	BF ₁₀	error %
Mischief	1.05	5.45e-4

[7] [3] [4]

Descriptives

Group Descriptives

						95% Credil	ole Interval
	Group	N	Mean	SD	SE	Lower	Upper
Mischief	No Cloak	12	3.75	1.91	0.552	2.53	4.97
	Cloak	12	5.00	1.65	0.477	3.95	6.05

Descriptives Plot

Mischief

Inferential Plots

Mischief

Prior and Posterior

Bayes Factor Robustness Check

max BF₁₀: 1.183 at r = 0.2824

• user prior: $BF_{10} = 1.051$ • wide prior: $BF_{01} = 1.086$ • ultrawide prior: $BF_{01} = 1.313$

References

[1] The jamovi project (2021). jamovi. (Version 1.6) [Computer Software]. Retrieved from https://www.jamovi.org.

[2] R Core Team (2020). R: A Language and environment for statistical computing. (Version 4.0) [Computer software]. Retrieved from https://cran.r-project.org. (R packages retrieved from MRAN snapshot 2020-08-24).

[3] Morey, R. D., & Rouder, J. N. (2018). BayesFactor: Computation of Bayes Factors for Common Designs. [R package]. Retrieved from https://cran.r-project.org/package=BayesFactor.

[4] Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. *Psychonomic Bulletin & Review, 16*, 225-237.

[5] Kerby, D. S. (2014). The simple difference formula: An approach to teaching nonparametric correlation. Comprehensive Psychology, 3, 2165–2228.

[6] Fox, J., & Weisberg, S. (2020). car: Companion to Applied Regression. [R package]. Retrieved from https://cran.r-project.org/package=car.

[7] JASP Team (2018). JASP. [Computer software]. Retrieved from https://jasp-stats.org.