COT 5600 Quantum Computing Spring 2019

Homework 1

Problem 1 (Eigenvalues of Pauli operators)

 $\rm https://github.com/t583046$

Problem 2 (Trace inner product)

Proof:

Assuming $C^{d\times d}$ is a real vector space

1) Using basic property of Trace: The matrix A and its Transpose have the same Trace. ie.

$$Tr(A) = Tr(A^T)$$

2)By definition of conjugate transpose, and assuming A has real entries, the conjugate transpose of A reduces to the transpose of A.

ie. from 2,

- $3)A^{\dagger} = Tr(A^T) = Tr(A)$. This is simply the trace of A.
- 4) Keeping the same expression on the LHS, now we are at $\langle A|B\rangle_{\text{Tr}} = \text{Tr}(AB)$.

 $\langle A|B\rangle_{\text{Tr}}$ is also by definition the inner product trace. This Definition states that for real square matrices of the same size, $\langle A|B\rangle = \text{Tr}(AB^T)$.

- 5) From 1, $Tr(B) = Tr(B^T)$, thus $\langle A|B\rangle \Rightarrow Tr(AB)$.
- 6) Therefore Tr(AB) = Tr(AB).

Q.E.D. $\langle A|B\rangle_{\mathrm{Tr}}=\mathrm{Tr}(A^{\dagger}B)$.

Problem 3 (Unitary error basis)

 $\rm https://github.com/t583046$