Największy Wspólny Dzielnik (z1)

Limit pamięci: 1024 MB Limit czasu: 1.00 s

Znajdź największy wspólny dzielnik dwóch liczb podanych na wejściu.

Wejście

W pierwszej i jedynej linii wejścia podane są dwie liczby całkowite A i B, oddzielone spacją.

Wyjście

Na wyjściu wypisz jedną liczbę całkowitą, równą największemu wspólnemu dzielnikowi liczbA i B.

Ograniczenia

 $1 \le A, B \le 10^1 8.$

Przykłady

Wejście
12 20 Wyjście
4

Wejście
19 23 Wyjście
1 1

Szybkie potęgowanie (z2)

Limit pamięci: 1024 MB Limit czasu: 1.00 s

Mając dane liczby A i N oblicz wartość A^N .

Wejście

W pierwszym i jedynym wierszu wejścia podane są dwie liczby całkowite A i N, oddzielone spacją.

Wyjście

Wartość A^N może być bardzo duża. Dlatego na wyjściu wypisz $A^N \bmod 10^9$.

Ograniczenia

 $1 \le A \le 10^9, 0 \le N \le 10^{18}.$

Przykłady

Wejście	Wyjście
10 3	1000

Wejście	Wyjście
2 10	1024

 Wejście
 Wyjście

 2 30
 73741824

Wyszukiwanie binarne (z3)

Limit pamięci: 1024 MB Limit czasu: 1.00 s

Dany jest posortowany ciąg liczb. Dla danego zestawu zapytań, gdzie każde z nich składa się z jednej liczby, znajdź pozycję tej liczby w danym posortowanym ciągu.

Wejście

W pierwszym wierszu wejścia znajduje się jedna liczba całkowita N, oznaczająca długość danego ciągu liczb. W drugim wierszu wejścia znajduje się N parami różnych liczb całkowitych a_1, a_2, \ldots, a_N , oddzielonych pojedynczymi spacjami.

W trzecim wierszu wejścia znajduje się jedna liczba całkowita M, oznaczająca liczbę zapytań.

W i-tym z kolejnych M wierszy znajduje się po jednej liczbie całkowitej x_i , oznaczającej jedno zapytanie.

Wyjście

Dla każdego zapytania x_i jako odpowiedź podaj takie p_i , że:

- $a_{p_i}=x_i$, jeśli element x_i występuje w ciągu podanym na wejściu,
- $p_i = -1$, w przeciwnym przypadku.

Ograniczenia

$$1 \le N \le 10^5$$
, $1 \le M \le 10^5$, $1 \le x_i \le 10^9$, $1 \le a_1 < a_2 < \dots < a_N \le 10^9$

Wejście	Wyjście
5	3
2 4 7 8 9	5
6	-1
7	1
9	-1
3	-1
2	
1	
10	

Sortowanie (z4)

Limit pamięci: 1024 MB Limit czasu: 1.00 s

Posortuj podany na wejściu ciąg liczb.

Wejście

W pierwszym wierszu wejścia znajduje się jedna liczba całkowita N oznaczająca długość ciągu liczb. W drugim wierszu znajduje się N pooddzielanych pojedynczymi spacjami liczb całkowitych a_1, a_2, \ldots, a_N .

Wyjście

Na wyjściu wypisz ciąg tych samych liczb, w kolejności niemalejącej.

Ograniczenia

 $1 \le N \le 100\,000, 1 \le a_i \le 10^9.$

Przykłady

 Wejście

 6
 2 3 5 6 7 9

 7 3 6 5 2 9

Hetmany (z5)

Limit pamięci: 32 MB Limit czasu: 3.00 s

Dana jest szachownica $N \times N$ i N szachowych hetmanów. Hetman szachuje pola, które leżą w tym samym wierszu, kolumnie bądź na przekątnej.

Napisz program, który: wczyta N, wyznaczy liczbę sposobów ustawienia N nieszachujących się hetmanów na szachownicy $N \times N$ i wypisze wynik na wyjście.

Wejście

W pierwszym (i jedynym) wierszu wejścia znajduje się jedna liczba naturalna N.

Wyjście

W pierwszym (i jedynym) wierszu wyjścia powinna się znaleźć jedna liczba całkowita – liczba sposobów ustawienia N hetmanów na szachownicy $N \times N$.

Ograniczenia

 $1 \leqslant N \leqslant 12$.

Wejście	Wyjście
4	2

Rozmiary poddrzew (z6)

Limit pamięci: 1024 MB Limit czasu: 1.00 s

Mając dane drzewo, dla każdego z wierzchołków policz ile innych wierzchołków znajduje się w jego poddrzewie.

Wejście

W pierwszym wierszu wejścia znajduje się jedna liczba całkowita N, oznaczająca liczbę wierzchołków. Wierzchołki numerowane są liczbami całkowitymi od 1 do N, gdzie wierzchołek numer 1 jest korzeniem drzewa.

W drugim wierszu wejścia znajduje się N-1 liczb całkowitych, oznaczających kolejno ojców wierzchołków o numerach od 2 do N.

Wyjście

W pierwszym wierszu wyjścia wypisz N liczb, oznaczających kolejno liczby wierzchołków znajdujących się pod wierzchołkami od 1 do N.

Ograniczenia

 $1 \le N \le 200\,000.$

Wejście	Wyjście
5	4 1 1 0 0
1 1 2 2	

Budowanie dróg (27)

Limit pamięci: 1024 MB Limit czasu: 1.00 s

Dany jest graf prosty nieskierowany. Twoim zadaniem jest policzyć ile co najmniej krawędzi należy do niego dodać, aby stał się spójny.

Wejście

W pierwszym wierszu wejścia znajdują się dwie liczby całkowite N oraz M, oznaczające kolejno liczbę wierzchołków oraz krawędzi w grafie. Wierzchołki numerowane są liczbami całkowitymi od 1 do N.

Każdy z kolejnych M wierszy zawiera dwie liczby całkowite a oraz b, oznaczające krawędź w grafie. W grafie nie ma pętli, a krawędzie się nie powtarzają.

Wyjście

W pierwszym i jedynym wierszu wyjścia powinna się znaleźć jedna liczba całkowita, oznaczająca minimalną liczbę krawędzi, które należy do niego dodać, aby stał się spójny.

Ograniczenia

$$1 \leq N \leq 10^5$$
 , $1 \leq M \leq 2 \cdot 10^5$, $1 \leq a,b \leq N$.

Wejście	Wyjście
4 2	1
1 2	
3 4	

Najkrótsza ścieżka (z8)

Limit pamięci: 1024 MB Limit czasu: 1.00 s

Dany jest graf nieskierowany składający się z N wierzchołków i M krawędzi. Policz dla każdego wierzchołka jego odległość od wierzchołka 1.

Wejście

W pierwszym wierszu wejścia znajdują się dwie liczby N oraz M, oznaczajęce kolejno liczbę wierzchołków oraz krawędzi w grafie. Wierzchołki są numerowane liczbami całkowitymi od 1 do N.

W kolejnych M wierszach znajdują się po dwie liczby całkowite a oraz b, oznaczające krawędź pomiędzy wierzchołkami o tych numerach.

Wyjście

Na wyjściu wypisz jeden wiersz zawierający N-1 liczb, oznaczających kolejno odległości wierzchołków $2,3,\ldots,N$ od wierzchołka 1. Jeżeli do któregoś z wierzchołków nie da się dojść, zamiast odległości wypisz-1.

Ograniczenia

$$2 \le N \le 10^5$$
, $1 \le M \le 2 \cdot 10^5$, $1 \le a, b \le n$.

W	V ejście	Wyjście
5	5	1 1 1 2
1	2	
1	3	
1	4	
2	3	
5	4	