1.2 Математика в ІАТЕХ

L^AТ_БХ в Вышке

18 сентября 2017 г.

1 Tasks

1.1 Task 1

Составим расширенную матрицу коэффициентов и выполним определенные действия для решения системы.

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0$$

В описаниях преобразований строки пронумерованы сверху вниз $(0), (1), \ldots, (6), (7)$, а выражение $(i) \oplus = (j)$ обозначает «заменить все числа в строке (i) на их сумму по модулю 2 с соответствующими числами строки (j)».

Получаем решение: $X_7=1, X_6=1, X_5=0, X_4=0, X_3=0, X_2=0, X_1=0, X_0=1.$ Десятичный номер функции равен $2^7+2^6+2^0=193.$

Таблица истинности для данной функции:

A	0	0	0	0	1	1	1	1
В	0	0	1	1	0	0	1	1
С	0	1	0	1	0	1	0	1
F	1	1	0	0	0	0	0	1

1.2 Task 2

Представим таблицы истинности функции F в виде карты Карно:

F.	00	01	10	11	AB
0	1	0	0	0	
1	1	0	0	1	
С					

1.3 Task 3

Выполним дизъюнктивное разложение Шеннона:

$$\begin{array}{l} A & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ B & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ C & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ F & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \end{array} = \overline{A} \cdot \begin{array}{l} B & 0 & 0 & 1 & 1 \\ C & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ F & 1 & 1 & 0 & 0 & 0 & 0 & 1 \end{array} = \overline{A} \cdot \begin{array}{l} B & 0 & 0 & 1 & 1 \\ C & 0 & 1 & 0 & 1 & 1 & 1 \\ F & 0 & 1 & 0 & 1 & 1 & 1 & 1 \\ B & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \\ F & 1 & 1 & 0 & 0 & 0 & 0 & 1 \end{array} = \overline{B} \cdot \begin{array}{l} A & 0 & 0 & 1 & 1 \\ C & 0 & 1 & 0 & 1 & 1 & 1 \\ F & 1 & 1 & 0 & 0 & 0 & 0 & 1 \end{array} = \overline{B} \cdot \begin{array}{l} A & 0 & 0 & 1 & 1 \\ C & 0 & 1 & 0 & 1 & 1 & 1 \\ F & 1 & 1 & 0 & 0 & 0 & 0 & 1 \end{array} = \overline{A} \cdot \overline{B} + A \cdot B \cdot C$$

1.4 Task 4

Совершенная дизъюнктивная нормальная форма:

$$F(A, B, C) = \overline{A} \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot \overline{B} \cdot C + A \cdot B \cdot C$$

1.5 Минимальная дизъюнктивная нормальная форма

Воспользовавшись методом Куайна, получим:

$$F(A, B, C) = \overline{A} \cdot \overline{B} + A \cdot B \cdot C$$

1.6 Новые представления функции

Из дизъюнктивных разложений, используя ортогональность, получим новые представления функции.

$$F(A,B,C) = \overline{A} \cdot \overline{B} \oplus A \cdot B \cdot C$$

$$F(A,B,C) = A \cdot \overline{B} \cdot \overline{C} \oplus C \cdot (A \equiv B)$$

$$F(A,B,C) = \overline{A} \cdot \overline{B} \cdot \overline{C} \oplus \overline{A} \cdot \overline{B} \cdot C \oplus A \cdot B \cdot C$$

1.7 Конъюнктивные разложения Шеннона

$$\begin{smallmatrix} A & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ B & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ C & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ T & 1 & 1 & 0 & 0 & 0 & 0 & 1 \end{smallmatrix} = \left(A + \begin{smallmatrix} B & 0 & 0 & 1 & 1 \\ C & 0 & 1 & 0 & 1 \\ F & 1 & 1 & 0 & 0 \end{smallmatrix}\right) \cdot \left(\overline{A} + \begin{smallmatrix} B & 0 & 0 & 1 & 1 \\ C & 0 & 1 & 0 & 1 \\ F & 0 & 0 & 0 & 1 \end{smallmatrix}\right)$$

2