

A COMPUTER PROGRAM FOR THE AERODYNAMIC DESIGN OF AXISYMMETRIC AND PLANAR NOZZLES FOR SUPERSONIC AND HYPERSONIC WIND TUNNELS

J. C. Sivells
ARO, Inc., a Sverdrup Corporation Company

VON KARMAN GAS DYNAMICS FACILITY
ARNOLD ENGINEERING DEVELOPMENT CENTER
AIR FORCE SYSTEMS COMMAND
ARNOLD AIR FORCE STATION, TENNESSEE 37389

December 1978

Final Report for Period December 1975 — October 1977

Approved for public release; distribution unlimited.

Prepared for

ARNOLD ENGINEERING DEVELOPMENT CENTER/DOTR ARNOLD AIR FORCE STATION, TENNESSEE 37389

NOTICES

When U. S. Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, or in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Qualified users may obtain copies of this report from the Defense Documentation Center.

References to named commercial products in this report are not to be considered in any sense as an indorsement of the product by the United States Air Force or the Government.

This report has been reviewed by the Information Office (OI) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

APPROVAL STATEMENT

This report has been reviewed and approved.

Project Manager, Research Division

Directorate of Test Engineering

Approved for publication:

FOR THE COMMANDER

ROBERT W. CROSSLEY, Lt Colonel, USAF

Acting Director of Test Engineering

Deputy for Operations

UNCLASSIFIED

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM	
1. REPORT NUMBER 2. GOVT AC	CESSION NO. 3. RECIPIENT'S CATALOG NUMBER	
AEDC-TR-78-63		
A. TITLE (and Subtitle) A COMPUTER PROGRAM FOR THE AERODYNAM DESIGN OF AXISYMMETRIC AND PLANAR NO FOR SUPERSONIC AND HYPERSONIC WIND T	ZZLES Oct 1977	
<u></u>		
J. C. Sivells, ARO, Inc., a Sverdrup Corporation Company	8. CONTRACT OR GRANT NUMBER(s)	
9. PERFORMING ORGANIZATION NAME AND ADDRESS Arnold Engineering Development Cente	r Program Element Project, Task area & work unit numbers Program Element 65807F	
Air Force Systems Command Arnold Air Force Station, Tennessee	<u> </u>	
11. CONTROLLING OFFICE NAME AND ADDRESS Arnold Engineering Development Cente	r/OIS December 1978	
Air Force Systems Command Arnold Air Force Station, Tennessee		
14. MONITORING AGENCY NAME & ADDRESS(If different from Contro	Iling Office) 15. SECURITY CLASS. (of this report)	
	UNCLASSIFIED	
	15a. DECLASSIFICATION DOWNGRADING SCHEDULE N/A	
Approved for public release; distribution unlimited.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
Available in DDC.		
wind tunnel design boundary layers transonic nozzles supersonic nozzles hypersonic nozzles exhaust nozzle performance computer program		
20. ABSTRACT (Continue on reverse side if necessary and identity by block number) A computer program is presented for the aerodynamic design of axisymmetric and planar nozzles for supersonic and hypersonic wind tunnels. The program is the culmination of the effort expended at various times over a number of years to develop a method of designing a wind tunnel with an inviscid contour which has continuous curvature and which is corrected for the growth of the boundary layer in a manner such that uniform parallel flow can be		

DD 1 FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

20. ABSTRACT (Continued) expected at the nozzle exit. The continuous curvature is achieved through specification of a centerline distribution of velocity (or Mach number) which has first and second derivatives that 1) are compatible with a transonic solution near the throat and with radial flow near the inflection point and 2) approach zero at the design Mach number. The boundary-layer growth is calculated by solving a momentum integral equation by numerical integration. AFS C Arnold AFS Tenn

PREFACE

The work reported herein was conducted by the Arnold Engineering Development Center (AEDC), Air Force Systems Command (AFSC). The results of the research were obtained by ARO, Inc., AEDC Division (a Sverdrup Corporation Company), operating contractor for the AEDC, AFSC, Arnold Air Force Station, Tennessee, under ARO Project Numbers V33A-A8A and V32A-P1A. The Air Force project manager was Mr. Elton R. Thompson. The manuscript was submitted for publication on September 12, 1978.

The author wishes to acknowledge the assistance of Messrs. W. C. Moger and F. C. Loper, ARO, Inc., for providing the basic subroutines for smoothing and spline fitting, respectively, which were adapted for use with the subject program. Mr. F. L. Shope, ARO, Inc., provided technical assistance in the preparation of this report. Prior to the publication of this report, the author retired from ARO, Inc.

CONTENTS

		Page
1.0	INTRODUCTION	5
2.0	TRANSONIC SOLUTION	10
3.0	CENTERLINE DISTRIBUTION	15
4.0	INVISCID CONTOUR	20
5.0	BOUNDARY-LAYER CORRECTION	24
6.0	DESCRIPTION OF PROGRAM	34
7.0	SAMPLE NOZZLE DESIGN	38
8.0	SUMMARY	41
	REFERENCES	41
	ILLUSTRATIONS	
Figu:	re	
1.	A Foelsch-Type Nozzle with Radial Flow at the	
	Inflection Point	6
2.	Nozzle with Radial Flow and a Transition Region	
	to Produce Continuous Curvature	7
3.	Nozzle Illustrating Design Method of Ref. 13	8
4.	Nozzle Throat Region	9
5.	Relationships Obtained from Cubic Distribution	
	of Velocity from Sonic Point to Point E for	
	Axisymmetric Nozzle	18
6.	Limitations of Fourth-Degree Distribution of	
	Mach Number from Eq. (39)	19
7.	Characteristics Near Throat of Nozzle with $R = 1$	23
8.	Variation of Wake Parameter, II, with	
	Reynolds Number (Incompressible)	28
9.	Variation of Skin-Friction Coefficient with	
	Reynolds Number (Incompressible)	29
10.	Variation of Velocity Profile Exponent with	
	Reynolds Number Based on Boundary-Layer	
	Thickness	30

TABLE

1.	Input Cards for Sample Design	Page 39
	APPENDIXES	
Α.	TRANSONIC EQUATIONS	45
В.	CUBIC INTEGRATION FACTORS	49
C.	INPUT DATA CARDS	52
D.	COMPUTER PROGRAM	61
	NOMENCI ATURE	139

1.0 INTRODUCTION

Supersonic and hypersonic wind tunnel nozzles can be placed in two general categories, planar (also called two-dimensional) and axisymmetric. Early supersonic nozzles (circa 1940) were planar for many reasons: the state of the art was new with regard to both the design and the fabrication; the expansion of the air - the usual medium - was in one plane only, thereby simplifying the calculations and requiring two contoured walls for each test Mach number and two flat walls which could be used for all the Mach numbers; and the relatively low stagnation temperature and pressure requirements did not create dimensional stability problems in the throat region. Dimensional stability would in later years become a primary factor in the development of axisymmetric nozzles.

Prandtl and Busemann, Ref. 1, laid the foundation for determining the inviscid nozzle contours by the method of characteristics. Foelsch, Ref. 2, simplified the calculation of the contour by assuming that the flow in the region of the inflection point was radial, as if the flow came from a theoretical source as illustrated in Fig. 1. The downstream boundary of the radial flow is the right-running characteristic AC from the inflection point, A, to the point, C, on the axis of symmetry where the design Mach number is first reached. The flow properties along this characteristic can be readily calculated; and inasmuch as all leftrunning characteristics downstream of the radial flow region are straight lines in planar flow, the entire downstream contour can be determined analytically. Upstream of the inflection point, it was assumed that the source flow could be produced by a contour which was a simple analytic In the Foelsch design the Mach number gradient on the axis is discontinuous at the juncture of the radial flow region and the beginning of the parallel flow region. This discontinuity produces a discontinuity in curvature of the contour at the inflection point and at the theoretical exit of the nozzle.

Figure 1. A Foelsch-type nozzle with radial flow at the inflection point.

As the state of the art progressed, it became desirable to cover a range of Mach numbers without fabricating different nozzle blocks for each Mach number. A limited range of Mach numbers could be covered by using blocks with unsymmetrical contours which could be translated relative to each other to vary the mean Mach number in the test section. The widest range of Mach numbers with acceptably uniform flow in the test section has been obtained in wind tunnels in which the contoured walls consist of flexible plates supported by jacks which can be adjusted to vary the contour to suit each Mach number. Inasmuch as the curvature of a plate so supported must be continuous, methods of calculating contours with continuous curvature were developed (Refs. 3, 4, and 5) by introducing a transition region, A B C J, downstream of the radial flow region (see Fig. 2). The shape of the wall between points A and J was controlled to give continuous curvature. The contours used for the von Kármán Gas Dynamics Facility 40- by 40-in. Supersonic Wind Tunnel (A) at AEDC were obtained by the method of Ref. 5. Not only is a continuous-curvature contour easier to match with a jack-supported plate, but it also satisfies the potential flow criterion for zero vorticity,

$$dq/dn = Kq \tag{1}$$

where q is the velocity measured along a streamline of curvature K and n is the distance normal to the streamline. Inasmuch as the inviscid contour is a streamline, this criterion implies that the flow will be disturbed where a contour has a discontinuity in curvature.

Figure 2. Nozzle with radial flow and a transition region to produce continuous curvature.

The usual wind tunnel criterion concerning temperature is that the constituents of the gas should not liquefy during the expansion process required to reach the test Mach number. For the usual pressure levels involved, ambient stagnation temperatures can be used up to a Mach number of about five. As the stagnation temperature is raised, dimensional stability becomes more difficult to maintain in a planar nozzle. Therefore, axisymmetric nozzles are used when elevated stagnation temperatures are involved. Axisymmetric nozzles have also been used for low-density tunnels (Ref. 6) because their boundary-layer growth is more uniform than that of planar nozzles, which inherently have transverse pressure gradients on the flat walls. The obvious disadvantage of axisymmetric nozzles is that each one must be designed for a particular Mach number. Moreover, disturbances created by imperfections in the contour tend to be focused on the centerline.

Before the advent of high-speed digital computers, it was extremely time consuming (Ref. 7) to calculate axisymmetric nozzle flow by the method of characteristics (Ref. 8). Inasmuch as the assumption of source flow saved time in designing a planar nozzle, it was logical to use source flow as a starting point in the design of an axisymmetric nozzle. In Ref. 9, Foelsch develops an approximate method of converting the radial flow to uniform flow. Beckwith et al., Ref. 7, show that Foelsch's approximations were quite inaccurate but utilized the idea of

a region of radial flow followed immediately on the axis by uniform flow, as in Fig. 1. As in the case of planar flow, the discontinuity in Mach number gradient on the axis produces a discontinuity in curvature on the contour (Ref. 10). Such discontinuities have been eliminated by the design methods of Refs. 10, 11, and 12; here, an axial distribution of Mach number (or velocity) between points B and C (Fig. 2) introduces a transition region between the radial and parallel flow regions, thus gradually reducing the gradient and/or second derivative to zero from the radial flow values at the beginning of the parallel flow. As shown in Fig. 3, the upstream boundary of the radial flow region is a left-running characteristic from the inflection point, G, to the axis at point E. flow angle is the same at points G and A. Both are shown to illustrate a general nozzle design. As described in Ref. 12, the contour upstream of the inflection point can be calculated for an axial distribution of velocity in the region between points I and E, which makes the transition from sonic values to radial flow values. On the axis, the sonic values of first and second derivatives of velocity with respect to axial distance were calculated by an adaptation of the transonic theory of Hall, Ref. 13, or Kliegel and Levine, Ref. 14. The upstream limit of these calculations was the left-running characteristic from the sonic point on the axis.

Figure 3. Nozzle illustrating design method of Ref. 13.

This characteristic is also called a branch line. Between the theoretical location of the throat and the intersection of the branch line with the contour was a region which was not calculated but which increased in size as the throat curvature increased. This gap in the contour has been eliminated by the method described herein which utilizes a right-running characteristic originating at the throat as shown in Fig. 4 (where point I has been moved from the sonic line to the throat characteristic). With this latest improvement upon the method of Ref. 12, contours can be designed which have throat radii of curvature of the same order of magnitude as the throat radii although such an extreme curvature would not normally be recommended from other standpoints. A recent (1975) design of a Mach 6 nozzle utilized this method with a throat radius of curvature of about 5.5 times the throat radius.

Figure 4. Nozzle throat region.

After the design method was developed for axisymmetric nozzles, it was adapted for planar nozzles having a prescribed centerline distribution of Mach number (or velocity). This approach to such a design is considerably different from that of Ref. 5. The current design method is incorporated into the computer program included herein. As an option in the program, a complete centerline Mach number distribution

can be used which does not include a radial flow region. Parts of the computer program are subroutines for computing the boundary-layer correction to the inviscid contour, for smoothing the contour, and for interpolating points at even axial positions by means of a cubic spline fit of the contour.

2.0 TRANSONIC SOLUTION

In many early nozzle designs, it was assumed that the flow at the throat was uniform (M = 1) and parallel. This assumption implies that the wall curvature is zero and that the acceleration of the flow is zero (i.e., the acceleration starts from zero at the beginning of the contraction, reaches a maximum in the contraction but is reduced to zero again at the throat, and must be increased again in the beginning of the supersonic contour and reduced to zero at the nozzle exit). A nozzle so designed therefore becomes considerably longer than one in which the flow reaches its maximum acceleration in the vicinity of the throat, where it is approximately proportional to the reciprocal of the square root of the radius of curvature. The above argument indicates the fallacy of some so-called "minimum length" nozzles, although some designers have combined a contraction having a relatively high throat curvature with the supersonic section having zero throat curvature.

For a throat with a finite radius of curvature there have been many transonic solutions. Hall, Ref. 13, developed a small perturbation transonic solution for irrotational, perfect gas flow, in both two-dimensional and axisymmetric nozzles, by means of expansions in inverse powers of R, the ratio of the throat radius of curvature to the throat half-height, or radius. His solution gives the normalized (with the velocity at the sonic point) axial and normal velocity components in the form

$$u = 1 + \frac{u_a(y,z)}{R} + \frac{u_b(y,z)}{R^2} + \frac{u_c(y,z)}{R^3} + \dots$$
 (2)

$$v = \left[\frac{y+1}{(1+\sigma)R}\right]^{\frac{1}{2}} \left[\frac{v_a(y,z)}{R} + \frac{v_b(y,z)}{R^2} + \frac{v_c(y,z)}{R^3} + \cdots \right]$$
 (3)

where

$$z = \left[\frac{(1+\sigma)R}{\gamma+1}\right]^{\frac{1}{2}} x \tag{4}$$

and x and y are coordinates normalized with the throat half-height or radius, y_0 . The value of σ is zero for two-dimensional flow and one for axisymmetric flow. Kliegel and Levine in Ref. 14 extended the applicability of Hall's axisymmetric solution to lower values of R essentially by making the substitution

$$R^{-1} = S^{-1} + S^{-2} + S^{-3} + \dots$$
 (5)

where S = R + 1, into Eqs. (2) and (3). In the method used herein, the same substitution is made in Eq. (4) for two-dimensional flow as well as for axisymmetric flow and therefore becomes a special case of the general transonic solution described in Ref. 15. The complete general equations in terms of S are given in Appendix A.

At the throat, x = 0, $y = y_0$, v = 0, for planar flow,

$$u = 1 + \frac{1}{3S} - \frac{(14\gamma - 75)}{270S^2} + \frac{(274\gamma^2 - 861\gamma + 4464)}{17010S^3} + \dots$$
 (6)

$$\frac{du}{dx/y_0} = \lambda \left[1 + \frac{1}{S} - \frac{(32\gamma^2 + 87\gamma - 561)}{540S^2} + \dots \right]$$
 (7)

and, for axisymmetric flow,

$$u = 1 + \frac{1}{4S} - \frac{(14\gamma - 57)}{288S^2} + \frac{(2364\gamma^2 - 3915\gamma + 14337)}{82944S^3} + \dots$$
 (8)

$$\frac{du}{dx/y_0} = \lambda \left[1 + \frac{7}{8S} - \frac{(64y^2 + 117y - 1026)}{1152S^2} + \dots \right]$$
 (9)

where the derivatives are with respect to x nondimensionalized by the throat half-height or radius, respectively, and

$$\lambda = \left[\frac{1+\sigma}{(\gamma-1)S} \right]^{\frac{1}{2}} \tag{10}$$

On the axis, y = 0, v = 0, for planar flow,

$$u = 1 - \frac{1}{6S} + \frac{\gamma - 15}{270S^{2}} - \frac{782\gamma^{2} + 3507\gamma + 7767}{272160S^{3}} + \cdots$$

$$+ \frac{x\lambda}{y_{o}} \left(1 + \frac{134\gamma^{2} + 429\gamma + 123}{4320S^{2}} + \cdots \right) + \left(\frac{x\lambda}{y_{o}} \right)^{2} \left(-\frac{2\gamma - 3}{6} - \frac{5\gamma}{36S} + \cdots \right) + \left(\frac{x\lambda}{y_{o}} \right)^{3} (2\gamma^{2} - 33\gamma + 9)/72 + \cdots$$

$$(11)$$

and, for axisymmetric flow,

$$\mathbf{u} = 1 - \frac{1}{4S} + \frac{10\gamma - 15}{288S^2} - \frac{2708\gamma^2 + 2079\gamma + 2115}{82944S^2} + \cdots$$

$$+ \frac{x\lambda}{y_o} \left(1 - \frac{1}{8S} + \frac{92\gamma^2 + 180\gamma - 9}{1152S^2} + \cdots \right) +$$

$$\left(\frac{x\lambda}{y_o} \right)^2 \left(-\frac{2\gamma - 3}{6} - \frac{\gamma + 1}{16S} + \cdots \right) +$$

$$\left(\frac{x\lambda}{y_o} \right)^3 (4\gamma^2 - 57\gamma + 27)/144 + \cdots$$
(12)

Because the sonic line is curved for finite values of R, the mass flow through the throat is reduced by the factor \mathbf{C}_{D} (discharge coefficient), which is the ratio of actual mass flow to that which could flow if R were infinite and the sonic line were straight. For planar flow,

$$C_{D} = 1 - \frac{\gamma + 1}{90S^{2}} \left[1 - \frac{4\gamma - 24}{21S} + \frac{334\gamma^{2} - 457\gamma + 4353}{3780S^{2}} + \dots \right]$$
 (13)

and, for axisymmetric flow,

$$C_D = 1 - \frac{\gamma + 1}{96S^2} \left[1 - \frac{8\gamma - 27}{24S} + \frac{754\gamma^2 - 757\gamma + 3615}{2880S^2} + \dots \right]$$
 (14)

The flow which passes through the throat also passes through the sonic area of the source flow which is at a distance r_1 from the source. In planar flow,

$$y^* = y_0 C_D = \eta r_1$$
 (15)

or

$$y_o/r_1 = \eta/C_D \tag{16}$$

where the inflection angle, n, is in radians.

In axisymmetric flow,

$$\pi y^{*2} = \pi y_0^2 C_D = 2\pi r_1^2 (1 - \cos \eta)$$
 (17)

or

$$y_o/r_1 = 2 \sin (\eta/2)/C_D^{\frac{1}{2}}$$
 (18)

In the calculation of the throat characteristic used herein, the value at x = 0, $y = y_0$, Eq. (6), is the starting point. The half-height or radius, y_0 , is divided into 240 equally spaced values of y. Inasmuch as the characteristic is right running, its slope at each point is

$$dy/dx = \tan (\phi - \mu)$$
 (19)

where

$$\sin \mu = 1/M \tag{20}$$

Also

$$W = M \left(\frac{2}{\gamma + 1} + \frac{\gamma - 1}{\gamma + 1} M^2 \right)^{-\frac{1}{2}}$$
 (21)

$$\sin \phi = v/W \tag{22}$$

and

$$d\psi + d\phi = \frac{\sigma \sin \phi \sin \mu}{y} d\xi$$
 (23)

$$d\xi = dx/\cos(\phi - \mu) = dy/\sin(\phi - \mu)$$
 (24)

The term ψ is the Prandtl-Meyer angle in two-dimensional flow,

$$\psi = \left(\frac{\gamma+1}{\gamma-1}\right)^{\frac{1}{2}} \tan^{-1} \left[\frac{\gamma-1}{\gamma+1} (M^2 - 1)\right]^{\frac{1}{2}} - \tan^{-1} (M^2 - 1)^{\frac{1}{2}}$$
 (25)

Equations (19) and (23) are the characteristic equations and are solved by finite differences. If all values are known at point 1, the values at point 2 are found (y is known at both points) by

$$x_2 = x_1 + \frac{2(y_2 - y_1)}{\tan(\phi_1 - \mu_1) + \tan(\phi_2 - \mu_2)}$$
 (26)

$$\Delta \xi = \left[(y_2 - y_1)^2 + (x_2 - x_1)^2 \right]^{\frac{1}{2}}$$
 (27)

$$\psi_2 = \psi_1 + \phi_1 - \phi_2 + \frac{\alpha}{2} \left[\frac{v_1}{W_1 y_1 M_1} + \frac{v_2}{W_2 y_2 M_2} \right] \Delta \xi$$
 (28)

At the starting point W is the value of u because v=0. Values of v_2 are calculated at each point (x_2, y_2) from the transonic solution, and Eqs. (26) to (28) are iterated until convergence is reached. For evaluating the term in brackets in Eq. (28), the ratio v/y is defined by the transonic solution even on the axis where both v and v are zero. This fact eliminates the general problem in axisymmetric characteristics solutions of evaluating the indeterminate v0 in Eq. (23) on the axis of symmetry.

It may be noted that the value of W as calculated from the characteristic value from Eq. (21) differs from the value $(u^2 + v^2)^{1/2}$ calculated from the transonic equations, but the difference decreases with increasing R. For the final point of the throat characteristic which lies on the axis, the value of d^3u/dx^3 from the transonic solution for the axial distribution is "corrected" to make u = W for the axisymmetric case for values of R less than 12. The correction is about 16 percent for R = 1 and decreases rapidly as R increases. This correction is made

so that values of du/dx and d^2u/dx^2 can be calculated from the transonic solution for later application. The correction is believed to be justified inasmuch as the accuracy of the transonic solution is limited, particularly for low values of R, because the series expression for u is truncated after the x^3 term.

3.0 CENTERLINE DISTRIBUTION

In the radial flow region, the distance r, measured from the source, is related to the local Mach number by

$$\left(\frac{r}{r_1}\right)^{1+\sigma} = M^{-1} \left(\frac{2}{\gamma+1} + \frac{\gamma-1}{\gamma+1} M^2\right)^{\frac{\gamma+1}{2(\gamma-1)}}$$
 (29)

or

$$\left(\frac{\mathbf{r}}{\mathbf{r}_1}\right)^{1+\sigma} = \mathbf{W}^{-1} \left(\frac{\gamma+1}{2} - \frac{\gamma-1}{2} \mathbf{W}^2\right)^{\frac{-1}{\gamma-1}} \tag{30}$$

First, second, and third derivatives of W or M with respect to r/r_1 can be obtained as described in Ref. 12. Along the axis x = r when x is measured from the source. Inasmuch as all coordinates must be normalized by the same factor, r_1 , the transonic equation in terms of x/y_0 and y/y_0 can be transormed by Eqs. (16) and (18), after which the distance from the source to the throat station must be taken into account. This latter distance is generally unknown until after the distance from point I to point E is determined.

In radial flow, the term on the right-hand side of Eq. (23) can be evaluated simply. Inasmuch as $\sin \phi = y/r$ and $d\xi = dr/\cos \mu$,

$$\frac{\sin \phi \sin \mu \, d\xi}{y} = \tan \mu \, \frac{dr}{r}$$

but

$$\tan \mu = (M^2 - 1)^{-\frac{1}{2}}$$

and, from Eq. (29) for $\sigma = 1$,

$$\frac{dr}{r} = \frac{(M^2 - 1)}{2(1 + \frac{\gamma - 1}{2} M^2)} \frac{dM}{M}$$

Thus

$$\tan \mu \frac{dr}{r} = \frac{(M^2 - 1)^{\frac{1}{2}}}{2(1 + \frac{\gamma - 1}{2} M^2)} \frac{dM}{M}$$

From Eq. (25),
$$d\psi = \frac{(M^2 - 1)^{\frac{1}{2}}}{(1 + \frac{\gamma - 1}{2} M^2)} \frac{dM}{M}$$

therefore, Eq. (23), in radial flow, becomes

$$d\psi + d\phi = \frac{\sigma}{2} d\psi$$
 (31)

which applies for characteristic AB or GF. Similarly, for the leftrunning characteristic EG,

$$d\psi - d\phi = \frac{\sigma}{2} d\psi \tag{32}$$

Therefore,

$$\psi_{\rm R} - \psi_{\rm A} = (\sigma + 1) \, \eta = \psi_{\rm F} - \psi_{\rm C} \tag{33}$$

and

$$\psi_{G} - \psi_{E} = (\sigma + 1) \eta \tag{34}$$

and, from the design values η and M $_B$ (and/or M $_F)$, M $_A$, M $_G$, M $_E$, W $_E$, and the necessary derivatives can be calculated.

Within the accuracy of Eqs. (11) and (12), the second derivative of velocity ratio at the sonic point is negative for values of R less than 11.767 for planar flow and 10.525 for axisymmetric flow. The second derivative of Mach number at the sonic point is positive for all values of R. Inasmuch as the second derivative of either W or M is negative for source flow, it seems better to use a velocity distribution rather than a Mach number distribution between points I and E. On the other hand, a Mach number distribution between points B and C is preferable

because the velocity ratio approaches the constant value of $[(\gamma + 1)/(\gamma - 1)]^{-1/2}$ as the Mach number increases to infinity; therefore, the change in velocity between points B and C becomes small relative to the change in Mach number.

The velocities and their first and second derivatives at points I and E are used to determine the coefficients of the general fifth degree polynomial

$$W = C_1 + C_2 X + C_3 X^2 + C_4 X^3 + C_5 X^4 + C_6 X^5$$
 (35)

where

$$X = (x - x_I)/(x_E - x_I)$$
 (36)

Similarly, the Mach numbers and their first and second derivatives at points B and C are used to determine the coefficients of the polynomial

$$M = D_1 + D_2 X + D_3 X^2 + D_4 X^3 + D_5 X^4 + D_6 X^5$$
 (37)

where, in this case,

$$X = (x - x_B)/(x_C - x_B)$$
 (38)

and the first and second derivatives at point C are usually set equal to zero.

In these equations, the lengths $(x_E^-x_I^-)$ and $(x_C^-x_B^-)$ must be specified, but can be determined by the conditions that C_6^- and D_6^- equal zero, thereby reducing the polynomials to fourth-degree ones. If the velocity at point E is determined by iteration, the third derivative at point I or E can be included as a criterion for the fourth-degree polynomial; or, by setting $C_5^- = 0$, one can find a third-degree polynomial with a constant third derivative. In either case, the Mach number at point B is found from Eqs. (33) and (34) after the value at point E is found. All of these options are included in the program, but unless there are other factors involved, the preferred options are the cubic between points I and E and the quartic between points B and C.

For the cubic distribution for axisymmetric flow, the Mach number at point E is related to the radius ratio as shown in Fig. 5 for γ = 1.4 for various values of inflection angle. Cross plotted are lines of constant values of the ratio ψ_E/η . Such values for most axisymmetric nozzles lie in the range covered in this figure, and inasmuch as ψ_F/η = ψ_E/η + 4, values of M_F can also be obtained.

Figure 5. Relationships obtained from cubic distribution of velocity from sonic point to point E for axisymmetric nozzle.

In determining the length of the segment between points B and C, using the fourth-degree polynomial distribution, there is a minimum value of the Mach number at point B for the design Mach number at point C. As given in Ref. 12,

$$M_{B_{min}} = M_{C} + 0.75 M_{B}^{\prime 2} / M_{B}^{"}$$
 (39)

where the primes indicate derivatives with respect to r/r_1 . This relationship is shown in Fig. 6. For an axisymmetric nozzle designed for a Mach number greater than about 3.4, the minimum Mach number at

Figure 6. Limitations of fourth-degree distribution of Mach number from Eq. (39).

point B is about two-thirds of the design Mach number. Using such a value usually causes the length to be excessive, and more realistic

values of M_B are 75 to 80 percent of M_C . It is important, however, as illustrated in Ref. 16, that the distance between points B and C be sufficient to allow for accurate machining of the contour between points A and J, which lie on the characteristics through points B and C, respectively.

4.0 INVISCID CONTOUR

The flow properties are determined at a desired number of points along the key characteristics (i.e., the throat characteristic, TI, as described earlier (a sub-multiple of 240 is used for subsequent calculations), the characteristics EG and AB bounding the radial flow region by Eqs. (33) and (34) for equal increments in n, and the final characteristic CD along which the Mach number is constant and the flow angle is zero). The flow properties are also determined at axial points from Eqs. (35) and (37). The network of characteristics is then calculated in the region TIEG starting at point E and progressing upstream and in the region ABCD starting at point B and progressing downstream.

The equations for a right-running characteristic were given previously.

$$dy/dx = \tan(\phi - \mu) \tag{19}$$

$$d\psi + d\phi = \frac{\sigma \sin \phi \sin \mu}{y} d\xi$$
 (23)

where

$$d\xi = dx/\cos(\phi - \mu) = dy/\sin(\phi - \mu)$$
 (24)

For a left-running characteristic, the equations are

$$dy/dx = \tan(\phi + \mu) \tag{40}$$

$$d\psi - d\phi = \frac{\sigma \sin \phi \sin \mu}{y} d\zeta$$
 (41)

where

$$d\zeta = dx/\cos(\phi + \mu) = dy/\sin(\phi + \mu)$$
 (42)

Also

$$d\psi = \frac{\cot \mu}{(1 + \frac{\gamma - 1}{2} M^2)} \frac{dM}{M} = \cot \mu \frac{dW}{W}$$
 (43)

Values of x, y, ϕ , and M are known at the general point 1 on the right-running characteristic, ξ , and at the general point 2 on the left-running characteristic, ζ . The characteristics intersect at the general point 3 where the values are calculated by numerical integration of Eqs. (23) and (41) along the respective characteristics.

$$\psi_3 - \psi_2 - (\phi_3 - \phi_2) = P_2 =$$

$$\frac{\sigma}{2} \left(\frac{\sin \phi_3 \sin \mu_3}{y_3} + \frac{\sin \phi_2 \sin \mu_2}{y_2} \right) \Delta \zeta \tag{44}$$

where

$$\Delta \zeta = (x_3 - x_2) \sec \beta \tag{45}$$

and

$$\frac{y_3 - y_2}{x_3 - x_2} = \tan \beta = \frac{1}{2} \tan (\phi_3 + \mu_3) + \frac{1}{2} \tan (\phi_2 + \mu_2)$$
 (46)

$$\psi_3 - \psi_1 + (\phi_3 - \phi_1) = P_1 =$$

$$\frac{\sigma}{2} \left(\frac{\sin \phi_3 \sin \mu_3}{y_3} + \frac{\sin \phi_1 \sin \mu_1}{y_1} \right) \Delta \xi \tag{47}$$

where

$$\Delta \xi = (x_3 - x_1) \sec \alpha \tag{48}$$

and

$$\frac{y_3 - y_1}{x_3 - x_1} = \tan \alpha = \frac{1}{2} \tan (\phi_3 - \mu_3) + \frac{1}{2} \tan (\phi_1 - \mu_1)$$
 (49)

Adding, substracting, and rearranging gives

$$\psi_3 = \frac{1}{2} (\psi_2 + \psi_1 - \phi_2 + \phi_1 + P_2 + P_1)$$
 (50)

$$\phi_3 = \frac{1}{2} (\psi_1 - \psi_2 + \phi_1 + \phi_2 + P_1 - P_2)$$
 (51)

In planar flow, $P_1 = P_2 = 0$ because $\sigma = 0$ and Eqs. (50) and (51) can be solved directly, M_3 is obtained from ψ_3 by the inverse application of Eq. (25), and $\mu_3 = \sin^{-1}(1/M_3)$. In axisymmetric flow, the equations must be solved by iteration. A useful first approximation for P_1 and P_2 is the radial flow values, $P_1 = (\psi_3 - \psi_1)/2$ and $P_2 = (\psi_3 - \psi_2)/2$.

At all points except on the axis in axisymmetric flow, Eqs. (44) and (47) are defined because y_2 and y_1 are nonzero. On the axis, the terms $\sin\,\phi_2/y_2$ and $\sin\,\phi_1/y_1$ are indeterminate with the form zero/zero. These indeterminates can be evaluated by assuming that the general points 1 and 2 on the axis are very close together and that $\mu_1 \approx \mu_2 \approx \mu_3$ and $W_1 \approx W_2 \approx W_3$. Equation (41) can be written

$$\cot \mu \frac{dW}{W} = d\phi + \frac{\sin \phi \sin \mu \, dx}{y \cos (\phi + \mu)}$$
 (52)

and Eq. 23 can be written

$$\cot \mu \frac{dW}{W} = -d\phi + \frac{\sin \phi \sin \mu \, dx}{y \cos (\phi - \mu)}$$
 (53)

as

$$\phi \rightarrow 0$$
, $\phi \rightarrow \sin \phi$, $\phi \pm \mu \rightarrow \pm \mu$

and

$$\tan \mu_3 = \frac{y_3}{x_3 - x_2} = \frac{y_3}{x_1 - x_3}$$

In finite-difference form,

$$\frac{\cot \mu_3}{W_3} (W_3 - W_2) = \phi_3 + \frac{\sin \phi_3 \tan \mu_3 (x_3 - x_2)}{y_3}$$

$$\rightarrow \frac{\phi_3 \tan \mu_3 (x_3 - x_2)}{y_3} + \frac{\sin \phi_3 \tan \mu_3 (x_3 - x_2)}{y_3}$$
(54)

$$\rightarrow 2 \sin \phi_3 \tan \mu_3 (x_3 - x_2)/y_3$$
 (55)

Similarly

$$\frac{\cot \mu_3}{W_2} (W_1 - W_3) = \phi_3 + \sin \phi_3 \tan \mu_3 (x_1 - x_3)/y_3$$
 (56)

$$\Rightarrow 2 \sin \phi_3 \tan \mu_3 (x_1 - x_3) / y_3 \tag{57}$$

Adding Eqs. (55) and (57) and rearranging,

$$\lim_{y\to 0} \frac{\sin \phi}{y} = \frac{1}{2} \frac{\cot^2 \mu}{W} \frac{dW}{dx}$$
 (58)

and
$$\frac{\sin \phi_2 \sin \mu_2}{y_2} = \frac{(M_2^2 - 1)}{2M_2 W_2} \left(\frac{dW}{dx}\right)_2$$
 (59)

for use in Eq. (44) when point 2 is on the axis, and

$$\frac{\sin \phi_1 \sin \mu_1}{y_1} = \frac{(M_1^2 - 1)}{2W_1 W_1} \left(\frac{dW}{dx}\right)_1$$
 (60)

for use in Eq. (47) when point 1 is on the axis.

In starting the calculation of the network of characteristics in the region TIEG, point E becomes point 1 and the first axis point upsteam of point E becomes point 2. The complete left-running characteristic approximately parallel to EG is calculated, and the point on the contour is determined from mass flow considerations as described in Ref. 17. The flow properties along this characteristic are then used to calculate the next left-running characteristic, again starting on the axis. This process is repeated until point I is reached, after which the starting point for each left-running characteristic is a point on the throat characteristic as illustrated in Fig. 7. The process in region ABCD is similar except that right-running characteristics are calculated for each point on the contour.

Figure 7. Characteristics near throat of nozzle with R = 1.

5.0 BOUNDARY-LAYER CORRECTION

To each ordinate of the inviscid contour must be added a correction for the boundary-layer growth to obtain the viscid or physical contour of the nozzle. Except for very low stagnation pressures, the boundary layer is assumed to be turbulent. Generally, the boundary-layer correction will be made for one design condition of stagnation pressure and temperature although it is theoretically possible to reshape a flexibleplate type of planar nozzle to account for different boundary-layer thicknesses corresponding to different stagnation conditions. correction for a planar nozzle is usually applied to the contoured walls only, but the correction also allows for the growth of the boundary layer on the parallel walls in order to maintain a constant Mach number along the test section centerline. Therefore, the correction applied is greater than the displacement thickness on the contoured walls, and the flow in the test section is diverging in the longitudinal plane normal to the contoured walls. In the longitudinal plane normal to the parallel walls, the flow is converging because of the boundary-layer growth; moreover, there is a tendency for the boundary layer to be thicker on the wall centerline because of the transverse pressure gradients present on the parallel walls. Although these physical effects make a true correction impossible for a planar nozzle, the calculations described herein are made as if the cross section were circular, with the circumference at each station equal to the periphery of the actual rectangular cross section.

The method of calculating the boundary-layer growth is based on obtaining a solution to the von Kármán momentum equation written for axisymmetric flow.

$$\frac{d\theta}{dx} + \theta \left[\frac{2 - M^2 + H}{M \left[1 + (\gamma - 1) M^2 / 2 \right]} \frac{dM}{dx} + \frac{1}{r_w} \frac{dr_w}{dx} \right] = \frac{C_f}{2} \sec \phi_w$$
 (61)

The term $\left[(1/r_w)(dr_w/dx)\right]$ becomes an effective one for planar flow as just described. For either type of nozzle, the inviscid value is used

as a first approximation. The entire solution is iterated several times with new values of $r_{_{\!\!W}}$ and $dr_{_{\!\!W}}/dx$ = tan $\phi_{_{\!\!W}}$ obtained each time by adding vectorially the displacement thickness to the inviscid contour.

The value of momentum thickness used in Eq. (61) is defined by

$$\theta = \int_{0}^{\delta} \left(1 - \frac{z \cos \phi_{w}}{r_{w}}\right) \left(\frac{\rho q}{\rho_{e} q_{e}}\right) \left(1 - \frac{q}{q_{e}}\right) dz$$
 (62)

where z is measured normal to the wall.

Also

$$\delta^* = H\theta = \int_0^{\delta} \left(1 - \frac{z \cos \phi_w}{r_w}\right) \left(1 - \frac{\rho q}{\rho_e q_e}\right) dz$$
 (63)

The quantities δ^* and θ may be considered to be the displacement and momentum thicknesses when the boundary-layer thickness is small with respect to the radius, $r_{_{\rm W}}$. These values are related to total values δ^*_a and θ_a , obtained from mass-defect and momentum-defect considerations by

$$\delta^* = \delta_a^* - \delta_a^{*2} \cos \phi_w / 2 r_w \tag{64}$$

and

$$\theta = \theta_a - \theta_a^2 \cos \phi_w / 2r_w \tag{65}$$

Because $r_w = \delta_w^* \cos \phi_w + y$, where y is the inviscid radius, Eq. (64) may be rearranged to give

$$\delta_a^* = \delta^* + (\delta^{*2} + y^2 \sec^2 \phi_w)^{\frac{1}{2}} - y \sec \phi_w$$
 (66)

For the final correction, the value δ_a^* sec ϕ_w is added to the inviscid radius in order that no correction be made to the longitudinal location.

The integrations of Eqs. (62) and (63) are performed numerically using Gauss' 16-point formula, with the assumption of the power-law velocity distribution

$$q/q_c = (z/\delta)^{1/N}$$
 (67)

and

$$\rho/\rho_{e} = T_{e}/T \tag{68}$$

where

$$T = T_w + \alpha (T_{aw} - T_w) q/q_e + [T_e - \alpha (T_{aw} - T_w) - T_w] (q/q_e)^2$$
 (69)

which is Crocco's quadratic temperature distribution if α = 1. However, as shown in Ref. 12, a value of α = 0 gives a parabolic distribution which agrees better with data obtained in hypersonic wind tunnels with water-cooled walls. The same distribution is obtained if $T_w = T_{aw}$, which is likely to be the case for planar, flexible-plate nozzles. Before using the Gaussian integration, one must replace the values of z and dz with $\delta(q/q_e)^N$ and $N\delta(q/q_e)^{N-1}$ $d(q/q_e)$, respectively, in order to avoid the infinite slope, dq/dz, when q and z equal zero.

The value of the compressible skin friction coefficient, C_f , in Eq. (61) is assumed to be related to an incompressible value, C_f , by a factor F_c , introduced by Spalding and Chi, Ref. 18,

$$F_c C_f = C_{f_i}$$
 (70)

and C_f is related to an incompressible Reynolds number, R_{θ} , which is related to the compressible value, R_{θ} , by a factor $F_{R_{\xi}}$,

$$F_{R_{\delta}} R_{\theta_{c}} = R_{\theta_{\delta}} \tag{71}$$

The factor F_c, also used by van Driest, Ref. 19, is given by

$$F_{c} = \left[\int_{1}^{1} (\rho/\rho_{e})^{\frac{1}{2}} d(q/q_{e}) \right]^{-2}$$
 (72)

which uses Eqs. (68) and (69). In Refs. 18 and 19, a value of α = 1 was implied, but Eq. (72) is used herein with α = 0 also, to give a "modified" value of F_c . The factor F_c may be considered to be the ratio of a reference temperature to the free-stream temperature. The factor F_{R_c} , as used by van Driest, is

$$F_{R_{\delta}} = \mu_{e}/\mu_{w} \tag{73}$$

The compressible momentum thickness, $\theta_{\,c},$ upon which R $_{\!\theta}$ is based is the flat-plate value

$$\theta_{c} = \int_{0}^{\delta} \left(1 - \frac{q}{q_{e}}\right) \frac{\rho q}{\rho_{e} q_{e}} dz$$
 (74)

because the values of $\mathbf{F}_{\mathbf{C}}$ and $\mathbf{F}_{\mathbf{R}_{\delta}}$ were developed to correlate flat-plate data.

The equation used herein for incompressible skin-friction coefficient is that of Ref. 20,

$$C_{f_{i}} = \frac{0.0773}{(\log R_{\theta_{i}} + 4.561) (\log R_{\theta_{i}} - 0.546)}$$
 (75)

This equation is believed to agree with experimental data slightly better than the von Kármán-Schoenherr equation,

$$C_{f_i} = \frac{(0.242)^2}{(\log R_{\theta_i} + 1.1696) (\log R_{\theta_i} + 0.3010)}$$
 (76)

at high Reynolds numbers. Also as shown in Ref. 20, Eq. (75) agrees with the equation, Ref. 21, based on Coles' law of the wall and law of the wake.

$$\kappa (2/C_{f_i})^{\frac{1}{2}} = \ln R_{\delta} + 0.5 \ln (C_{f_i}/2) + \kappa C + 2 \Pi$$
 (77)

if H varies as shown in Fig. 8 from about 0.41 at R_{θ} = 400 to a maximum of 0.5885 at R_{θ} = 50,000 and then decreases to about 0.49 at R_{θ} = 10^7 . In order for Eq. (76) to agree with Eq. (77), H must continually increase with increasing R_{θ} as shown in Fig. 8. The data shown in Fig. 8 were computed by Coles in Ref. 21 from Wieghardt's flat plate data, Ref. 22. A comparison of friction coefficients from Eqs. (75) and (76) is shown in Fig. 9 together with Wieghardt's values as recomputed by Coles. The constants κ and C are 0.41 and 5.0, respectively. The relationship between θ_{i} and δ is obtained from the logarithmic velocity profile by neglecting the laminar sublayer, representing the wake function by a sine distribution, and integrating to obtain

$$\frac{\delta_i^*}{\delta} = \frac{1+\Pi}{\kappa} \left(\frac{C_{f_i}}{2}\right)^{\frac{1}{2}} \tag{78}$$

and

$$\frac{\theta_{i}}{\delta} = \frac{\delta_{i}^{*}}{\delta} - \frac{C_{f_{i}}}{2\kappa} (2 + 3.179 \Pi + 1.5 \Pi^{2})$$
 (79)

Figure 8. Variation of wake parameter, II, with Reynolds number (incompressible).

The value of N in Eq. (67) is assumed to be a function of Reynolds number based on the actual boundary thickness, not corrected by \mathbf{F}_{R} , and is evaluated through the use of the kinematic momentum thickness

$$\theta_{k} = \int_{0}^{\delta} \frac{q}{q_{e}} \left(1 - \frac{q}{q_{e}} \right) dz$$
 (80)

from which

$$\theta_k/\delta = N/(N^2 + 3N + 2) \tag{81}$$

or

$$N = \frac{1}{2} \left\{ \frac{\delta}{\theta_k} - 3 + \left[\frac{\delta}{\theta_k} \left(\frac{\delta}{\theta_k} - 6 \right) + 1 \right]^{\frac{1}{2}} \right\}$$
 (82)

Figure 9. Variation of skin-friction coefficient with Reynolds number (incompressible).

The value of θ_k/δ is obtained from Eq. (79), where the value of II is evaluated from Eqs. (75) and (77) with θ_k used instead of θ_i . The resulting variation of N with R $_{\delta}$ is shown in Fig. 10.

Two options contained in the program subroutine for the boundary layer utilize Coles' law of corresponding stations (Ref. 23),

$$\frac{C_{f_i} R_{\theta_i}}{C_{f_i} R_{\theta_c}} = \frac{T_w \mu_e}{T_e \mu_w}$$
 (83)

If $C_f/C_f = F_c$ is calculated from Eq. (72) for $\alpha = 0$ or $\alpha = 1$, then one option gives

$$F_{R_{\delta}} = T_{w} \mu_{e} / (F_{c} T_{e} \dot{\mu}_{w})$$
 (84)

The second option divdes Eq. (83) into the two parts,

$$C_{f_i}/C_f = T_w \mu_e/T_e \mu_w$$
 (85)

and

$$R_{\theta_i}/R_{\theta_c} = \mu_e/\mu_c \tag{86}$$

where $\boldsymbol{\mu}_{\boldsymbol{c}}$ is evaluated at the temperature

$$T_{c} = T_{w} + 17.2 (C_{f_{i}}/2)^{\frac{1}{2}} \alpha (T_{aw} - T_{w}) - 305 (C_{f_{i}}/2) \left[\alpha (T_{aw} - T_{w}) + T_{w} - T_{e} \right]$$
(87)

Figure 10. Variation of velocity profile exponent with Reynolds number based on boundary-layer thickness.

Still another option defines the incompressible skin-friction coefficient as

$$C_{f_{i}} = \frac{0.0888}{(\log R_{\delta_{i}} + 4.6221) (\log R_{\delta_{i}} - 1.4402)}$$
 (88)

where

$$R_{\delta_i}/R_{\delta} = T_e^{\frac{1}{2}} \mu_e / (F_c^{\frac{1}{2}} T_w^{\frac{1}{2}} \mu_w)$$
 (89)

and F_c is calculated from Eq. (72).

The wall temperature in the above equations can be the adiabatic wall temperature or can be allowed to vary between a throat wall temperature, T, and a nozzle-exit wall temperature, T, both of which are input to the program. Two options are available for the variation of wall temperature,

$$T_{w} = T_{w_{D}} + \frac{(T_{w_{T}} - T_{w_{D}})}{(A_{c}/A^{*})^{m} - 1} \left[\left(\frac{A_{c}/A^{*}}{A/A^{*}} \right)^{m} - 1 \right]$$
(90)

where m can be 1/2 or 1, A/A* is the area ratio corresponding to local Mach number, and $A_{\rm C}/{\rm A}*$ is the area ratio corresponding to the design Mach number at the nozzle exit. Equation (90) is used in lieu of more accurate values and approximates the way the heat transfer decreases as the Mach number increases from 1 at the throat to the design value at the exit. For a water-cooled throat, the value of $T_{\rm W}$ can also be calculated by the program,

$$T_{w_{T}} = \frac{h_{a}T_{aw} + Q(T_{w_{D}} - 15)}{h_{a} + Q}$$
 (91)

where h_{a} is the airside heat-transfer coefficient at the throat as calculated by Reynolds analogy from the throat skin-friction coefficient

$$h_a = \rho_e q_e C_p P_r^{-2/3} C_f/2$$
 (92)

with a constant specific heat based on the thermochemical BTU

$$C_{p} = \frac{\gamma R_{g}}{(\gamma - 1) 777.64885}$$
 (93)

and Q is an input which is a function of the properties of the throat material, the cooling water, and the geometry and would be a constant if the properties were constant. The assumption is made that the bulk temperature of the water is 15°F less than $T_{\rm w}$ and that $P_{\rm r}^{2/3}$ is the square of the recovery factor used to obtain the adiabatic wall temperature, $T_{\rm aw}$.

For the integration of Eq. (61), the values of x, y, dy/dx, M, and dM/dx are obtained from the inviscid contour at unevenly spaced points as a result of the characteristics solution. With the inputs of stagnation pressure and temperature, gas constant, and recovery factor, the unit Reynolds number and static and adiabatic wall temperatures can be calculated at the same points as functions of Mach number with Sutherland's equation used for viscosity. With the inputs of T_{w_T} and T_{w_D} , the wall temperatures can also be calculated as functions of Mach number, although T_{w_T} may need to be obtained by interation if the option to input a value of Q is exercised. Sutherland's equation is also used with wall temperatures to obtain the viscosities at the wall. For any static temperature below the Sutherland temperature, 198.72°R as used herein, the viscosity variation with temperature is assumed to be linear.

The integration of Eq. (61) is started at the throat where it is assumed that $d\theta/dx = 0$ in order to obtain a value of θ . Iteration is involved at each point because C_f is a function of Reynolds number based upon θ , and the relations θ/δ and $\delta*/\delta$ depend upon the value of N, which is a function of Reynolds number based upon δ . After all iterations converge within specified tolerances, the value of δ^* is calculated from the value of δ^* , and the values of θ and $d\theta/dx$ are used in the calculation at subsequent points. The values of $d\theta/dx$ are integrated numerically to obtain the increment in θ to be added to a previously determined value of θ . The trapezoidal rule is used to determine the second point, the parabolic rule for the third point, and cubic integration for the fourth and subsequent points.

For convenience, Eq. (61) may be written $\theta' + \theta P = Q$. The general integration for the nth point is

$$\theta_{n} = \theta_{n-3} + G_{n-3} \theta'_{n-3} + G_{n-2} \theta'_{n-2} + G_{n-1} \theta'_{n-1} + G_{n} \theta'_{n}$$
 (94)

where the G's are functions of the spacings s, t, and u between the points and are given in Appendix B. Except for θ_n and θ_n , the other values in Eq. (94) are known from previous calculations. Inasmuch as

$$\theta_n' = Q_n - P_n \theta_n \tag{95}$$

Eq. (92) can be rearranged to give

$$\theta_{n} = \frac{(\theta_{n-3} + G_{n-3} \theta'_{n-3} + G_{n-2} \theta'_{n-2} + G_{n-1} \theta'_{n-1} + G_{n} Q_{n})}{(1 + G_{n} P_{n})}$$
(96)

After convergence of the iterations, Eq. (95) is used to obtain $d\theta/dx$. Inasmuch as Eq. (94) depends upon the knowledge of θ_{n-3} , the value of θ_{n-2} is calculated by

$$\theta_{n-2} = \theta_{n-3} + F_{n-3} \theta'_{n-3} + F_{n-2} \theta'_{n-2} + F_{n-1} \theta'_{n-1} + F_n \theta_n$$
 (97)

which becomes the θ_{n-3} for the next point to be calculated. The values of the F's are also given in Appendix B. The values of θ_2 and θ_3 obtained from Eq. (95) are used in the calculation of δ^* and δ^* instead of the initial values obtained by the trapezoidal or parabolic integration.

The success of the above type of integration depends upon the spacing of the points. The values of the increments s, t, and u must be of the same order of magnitude, although t is usually larger than s and smaller than u if the parameters involved in the characteristics solution are selected with care.

After the values of δ_a^* sec ϕ_w are calculated, the values of $d(\delta_a^*$ sec $\phi_w)/dx$ are obtained by parabolic differentiation and added to the inviscid values of dy/dx to obtain dr_w/dx . This procedure is believed to be more accurate than differentiating the value $(\delta_a^*$ sec ϕ_w + y) because dy/dx is obtained directly from the characteristics solution and not by differentiating y with respect to x.

In general, the boundary-layer correction at the throat will have a gradient such that the viscid throat will be slightly upstream of the inviscid throat. This displacement and the value of the viscid curvature at the throat are calculated using the assumption that both the inviscid throat and the boundary-layer correction are parabolic in shape.

6.0 DESCRIPTION OF PROGRAM

The computer program is written in Fortran IV for use with the IBM 370/165 Computer. The program consists of a main section, three functions, and 16 subroutines arranged so that the program can be overlaid to conserve computer storage. The four overlays consist of AXIAL, CONIC, SORCE, and TORIC; PERFC; BOUND and HEAT; SPLIND and XYZ. The input data cards are described in Appendix C, and a listing of the program is given in Appendix D.

Program MAIN. MAIN calls for the various overlays. The title card is read in with the designation as to whether the nozzle is planar or axisymmetric. A card defining the gas properties and a few pertinent dimensions is then read in. The first subroutine called is AXIAL, in which the upstream axial distribution is defined. PERFC is called to calculate the upstream contour. AXIAL is recalled to define the downstream distribution, and PERFC is recalled to calculate the downstream contour. BOUND is called to calculate the boundary-layer growth. SPLIND is called to determine the coefficients of cubic equations to fit the unevenly spaced points along the contour, and XYZ uses these coefficients to obtain ordinates at evenly spaced points along the axis or, in the case of the planar nozzle, at discrete points along the surface of the flexible plate at which the supporting jacks are located.

<u>Subroutine AXIAL</u>. In this subroutine, cards are read in with the parameters used to define the axial distributions of velocity and/or Mach number and with integers which define the number and spacing of the points on the axis and on the key characteristics and the sequence of

subsequent calculations. If the throat characteristic is called for, the upstream end of the upstream distribution starts at the intersection of the throat characteristic and the axis. An option can be exercised to not use the throat characteristic and thereby start the distribution at the point where M = 1. This option would normally be used for a nozzle with a large throat radius of curvature, e.g. a planar nozzle, or if it were desired to repeat a calculation as in Ref. 13. Another option is to avoid a radial flow section altogether by using a polynomial distribution from the throat to the beginning of the test cone or rhombus. Other options will be described in Appendix C when the input cards are discussed.

<u>Subroutine BOUND</u>. This subroutine is used to calculate the turbulent boundary-layer correction to the inviscid contour. The stagnation conditions are input, as are the parameters to describe the wall temperature distribution, the temperature distribution in the boundary layer, and the factors relating the compressible skin-friction coefficients to incompressible values.

Subroutine CONIC. This subroutine is used within AXIAL to give the derivatives of Mach number with respect to r/r_1 in radial flow from Eq. (29).

<u>Function CUBIC</u>. This subroutine is used to obtain the smallest positive root of a cubic equation.

<u>Function FMV</u>. This subroutine determines the Mach number for a given Prandtl-Meyer angle.

<u>Subroutine FVDGE</u>. This subroutine is used within PERFC in conjunction with NEO to smooth the inviscid coordinates as desired.

<u>Subroutine HEAT</u>. This subroutine is a dummy called by BOUND but is included so that with a more elaborate subroutine a heat balance can be made to determine the wall temperature if the material conductivity is specified and the cooling water passage geometry and quantity of flow are specified.

<u>Subroutine NEO</u>. This subroutine is used with PERFC in conjunction with FVDGE to smooth the inviscid coordinates as desired by modifying the ordinate such that the second derivative is more nearly linear after smoothing than beforehand.

<u>Subroutine OFELD.</u> This subroutine is used within PERFC to calculate the properties at the intersection of a left- and a right-running characteristic.

<u>Subroutine OREZ</u>. This subroutine is used to make all values of an array equal to zero prior to a new calculation.

Subroutine PERFC. In this subroutine, the properties along the key characteristics are first calculated to go with those along the axis. The intermediate characteristics are then calculated and the contour points obtained by integrating the mass flow crossing each characteristic. If desired, certain designated intermediate characteristics may be printed out. If smoothing of the ordinates is desired, the inputs associated with the smoothing are read and the smoothing applied. Inasmuch as the wall angle is interpolated from mass-flow considerations, independently of the coordinates, the wall slopes are integrated from the inflection point toward the throat for comparison with the interpolated ordinates. Parabolic integration is used for this purpose as well as for the mass flow. Also calculated for comparison are the ordinates of a parabola and a hyperbola which have the same radius ratio, R, inasmuch as the transonic solution should be equally applicable to these shapes for the number of terms retained in the series,

Eqs. (2) and (3). Finally, the scale factor, the value of r_1 in inches, is applied to obtain the inviscid coordinates in inches, and the abscissas are also shifted as desired.

Subroutine PLATE. This subroutine is also a dummy to allow additional calculations to be made for a flexible plate contour after the coordinates at each jack location have been interpolated by SPLIND and XYZ.

Subroutine SCOND. This subroutine is used in BOUND, NEO, and PERFC for parabolic differentiation of coordinates to obtain the slopes, or of slopes and abscissas to obtain second derivatives. Three points at a time are used to establish the parabola, and the slope is obtained at the center point. The slopes at the first and last point are also obtained, but with less accuracy.

Subroutine SORCE. This subroutine is used within AXIAL to give the derivatives of velocity ratio, W, with respect to r/r_1 in radial flow from Eq. (30).

<u>Subroutine SPLIND</u>. This subroutine computes the coefficients of cubic equations that fit the unevenly spaced points obtained from the characteristics solution. The initial and final slopes are used together with the coordinates to determine the cubic coefficients.

Function TORIC. If the velocity gradient is known at the axial point where M=1, this function gives the value of radius ratio, R, which would produce such a gradient from the transonic theory used. This function is used in AXIAL if the option is exercised of specifying the Mach number at point F but not specifying the value of R. It is also used to determine the value of R for calculating streamlines other than the contour itself.

Subroutine TRANS. This subroutine calculates the throat characteristic from the transonic theory. In AXIAL, at the point where the throat characteristic intersects the axis, the derivatives of velocity and Mach number are used to determine the coefficients of the polynomial describing the axial distribution. In PERFC, the flow properties along this key characteristic are used at the number of points specified as one plus a submultiple of 240.

<u>Subroutine TWIXT</u>. This subroutine is used in PERFC and BOUND to interpolate the ordinate and other properties at a specified point. A fourpoint Lagrangian interpolation is used with two points on either side of the specified point.

Subroutine XYZ. This subroutine uses the cubic coefficients obtained in SPLIND for calculating the ordinate, slope, and second derivative at specified values of the abscissa read as inputs in the MAIN section of the program. The points may be at even intervals in the abscissa or at arbitrary uneven intervals. The points may be the same points as those input to SPLIND if a comparison is desired between the derivatives so determined and those obtained elsewhere in the program.

7.0 SAMPLE NOZZLE DESIGN

The design of a Mach 4 axisymmetric nozzle is selected to illustrate use of the computer program. The input cards for the sample design are given in Table 1. An axisymmetric nozzle is specified by leaving JD blank (JD = 0) on Card 1. Leaving SFOA blank on Card 2 specifies that the upstream axial velocity distribution is not a fifth-degree polynomial. Leaving FMACH blank on Card 3 specifies that the value of FMACH will be computed by the program, and leaving IX blank on Card 4 specifies a cubic distribution. The computed value of FMACH is 3.0821543, which is greater than the value of BMACH specified on Card 3;

therefore, BMACH also becomes 3.0821543. The negative value of SF means that the inviscid exit radius of the nozzle is 12.25 in. value of PP means that the inflection point will be 60 in, downstream of an arbitrary point. Leaving XC blank specifies the downstream axial distribution will be a fourth-degree polynomial, and the positive value of IN on Card 4 specifies a Mach number distribution. The values of MT, NT, MD, ND, NF, and LR determine the number of points on the key characteristics and are all odd numbers because each includes both end points of each distribution which is divided into an even number of increments. The negative value of NF specifies the contour points to be smoothed according to Card 5, and the negative value of LR specifies that the transonic distribution be printed as the first page of the sample output. The NX value of 13 specifies the spacing of the axial points between points I and E to be close together near Point I with the last increment about 3.17 times as large as the first increment, $(20^{1.3} - 19^{1.3})$. The JC value of 10 specifies that every 10th leftrunning characteristic will be printed for the upstream contour together with the right-running characteristic through Point E. The smoothing integers on Card 5 are used to control the smoothing subroutine.

Table 1. Input Cards for Sample Design

CARD 1 ITLE M A C H 4	JO													
CARD 2 GAM	AR		zo		RO		VISC		VISM		SFOA		XBL	
1 • 4	1716.56		1.		0.89				198.7				1000.	
CARD 3														
8,67	6.				з.		4.		-12.25		60.			
ETAD	RC	FM	ACH		BMACH		CMC		SF		PP		ХC	
CARD 4														
MT NT	IX	IN	Į Q	ΜD	ND	NF	MP	MQ	JB	JX	JC	ΙT	LR	NX
41 21		10		41	49	-61			1		10		-21	13
CARD 5														
NOUP NPCT	NODO													
50 85	5+)													
CARD 6														
PPQ	ΤÜ	T	WT .		TWAT		QFUN		ALPH		IHT	ŢŔ	10	L٧
200.	1638.	9	00.		540.		•38						1	5
CARD 7														
XST	XLOW	Х	END		XINC		BJ		XMID		XINCS		CN	
1000.	46.	1	72.		2.									

For the boundary-layer calculations for stagnation conditions of 200 psia and 1638R, the value of QFUN of 0.38 overrides the specified throat temperature of 900R and produces the throat temperature of 866R as indicated on the output. Leaving ALPH blank causes the temperature distribution in the boundary to be parabolic for both the calculation of the boundary-layer parameters and the calculation of the reference temperature. Leaving IHT blank causes the longitudinal distribution of wall temperature to vary as a square-root function of the area ratio corresponding to the local Mach number; m = 1/2 in Eq. (90). Leaving IR blank causes the transformation from incompressible to compressible values of skin friction coefficient to be calculated using a modified Spalding-Chi reference temperature and a Van Driest reference Reynolds number. Specifying ID = 1 takes into account that the boundary-layer thickness is not negligible relative to the radius of the inviscid core, and its positive value causes the boundary-layer calculations to be printed for the first and last iteration; the number of iterations is specified by the absolute value of LV (LV = 5 for the example).

For the final coordinates, interpolated at even intervals, specifying XST = 1,000 (the same value as XBL on Card 2) keeps the X-coordinates consistent with the location of the inviscid inflection point at 60 in. downstream of an arbitrary point.

The main parameters selected for the sample problem were the inflection angle, the curvature ratio, and the Mach number at the point B. The selected values of 8.67 deg, 6, and 3.0821543 (computed), respectively, are not necessarily optimum but result in a nozzle with an upstream length of about 14 in. from the throat to the inflection point, a length of about 31 in. from the inflection point to point J (see Fig. 3), and nearly 120 in. from the inflection point to the theoretical end of the nozzle. Such downstream lengths are probably conservative and could be reduced to some degree although experience with Mach 4 axisymmetric nozzles is very limited.

The number of points used on the key characteristics should be consistent with the number of points used in the axial distributions in order that the individual nets in the characteristics network should not become too elongated (e.g., see Fig. 7). The spacing of the points on the final contour should also progress in an orderly manner. Several trials may be necessary to optimize the various inputs to the program.

8.0 SUMMARY

A method and computer program have been presented for the aerodynamic design of planar and axisymmetric supersonic wind tunnel nozzles. The method uses the well-known analytical solution for radial source flow and connects this radial flow region to the throat and test section regions via the method of characteristics. Continuous curvature over the entire contour is attained by specifying polynomial distributions of the centerline velocity or Mach number and matching various derivatives of these polynomials at the extremities of the radial flow region, the test section, and a throat characteristic. The inviscid contour is obtained by initiating characteristics outward from the centerline and then integrating the mass flux along these characteristics to compute the inviscid nozzle boundary. The final wall contour is then obtained by adding to the inviscid coordinates a boundarylayer correction based on displacement thickness computed by integrating the von Kármán momentum equation. To illustrate the method, a sample design calculation was presented along with the associated input and output data. A listing of the computer program and an input description are included.

REFERENCES

 Prandtl, L., and Busemann, A. "Nahrungsverfahren zur zeichnerischen Ermittlung von ebenen Stromungen mit uberschall Geschwindigkeit." Stodola Festschrift. Zurich: Orell Susli, 1929.

AEDC-TR-78-63

- 2. Foelsch, K. "A New Method of Designing Two Dimensional Laval Nozzles for a Parallel and Uniform Jet." Report NA-46-235-1, North American Aviation, Inc., Downey, California, March 1946.
- 3. Riise, Harold N. "Flexible-Plate Nozzle Design for Two-Dimensional Supersonic Wind Tunnels." Jet Propulsion Laboratory Report No. 20-74, California Institute of Technology, June 1954.
- 4. Kenney, J. T. and Webb, L. M. "A Summary of the Techniques of Variable Mach Number Supersonic Wind Tunnel Nozzle Design." AGARDograph 3, October 1954.
- 5. Sivells, J. C. "Analytic Determination of Two-Dimensional Supersonic Nozzle Contours Having Continuous Curvature."

 AEDC-TR-56-11 (AD-88606), July 1956.
- 6. Owen, J. M. and Sherman, F. S. Fluid Flow and Heat Transfer at Low Pressures and Temperatures: "Design and Testing of a Mach 4 Axially Symmetric Nozzle for Rarefied Gas Flows." Rept. HE-150-104, July 1952, University of California, Institute of Engineering Research, Berkeley, California.
- 7. Beckwith, I. E., Ridyard, H. W., and Cromer, N. "The Aerodynamic Design of High Mach Number Nozzles Utilizing Axisymmetric Flow with Application to a Nozzle of Square Test Section."

 NACA TN 2711, June 1952.
- 8. Cronvich, L. L. "A Numerical-Graphical Method of Characteristics for Axially Symmetric Isentropic Flow." <u>Journal of the Aeronautical Sciences</u>, Vol. 15, No. 3, March 1948, pp. 155-162.
- 9. Foelsch, K. "The Analytical Design of an Axially Symmetric

 Laval Nozzle for a Parallel and Uniform Jet." <u>Journal of</u>

 the Aeronautical Sciences, Vol. 16, No. 3, March 1949, pp.

 161-166, 188.

- 10. Yu, Y. N. "A Summary of Design Techniques for Axisymmetric Hypersonic Wind Tunnels." AGARDograph 35, November 1958.
- 11. Cresci, R. J. "Tabulation of Coordinates for Hypersonic Axisymmetric Nozzles Part I Analysis and Coordinates for Test Section Mach Numbers of 8, 12, and 20." WADD-TN-58-300, Wright Air Development Center, Dayton, Ohio, October 1958.
- 12. Sivells, J. C. "Aerodynamic Design of Axisymmetric Hypersonic Wind-Tunnel Nozzles." <u>Journal of Spacecraft and Rockets</u>, Vol. 7, No. 11, Nov. 1970, pp. 1292-1299.
- 13. Hall, I. M. "Transonic Flow in Two-Dimensional and Axially-Symmetric Nozzles." The Quarterly Journal of Mechanics and Applied Mathematics, Vol. 15, Pt. 4, November 1962, pp. 487-508.
- 14. Kliegel, J. R. and Levine, J. N. "Transonic Flow in Small Throat Radius of Curvature Nozzles." AIAA Journal, Vol. 7, No. 7, July 1969, pp. 1375-1378.
- 15. May, R. J., Thompson, H. D., and Hoffman, J. D. "Comparison of Transonic Flow Solutions in C-D Nozzles." AFAPL-TR-74-110, October 1974.
- 16. Edenfield, E. E. "Contoured Nozzle Design and Evaluation for Hotshot Wind Tunnels." AIAA Paper 68-369, San Francisco, California, April 1968.
- 17. Moger, W. C. and Ramsay, D. B. "Supersonic Axisymmetric Nozzle Design by Mass Flow Techniques Utilizing a Digital Computer." AEDC-TDR-64-110 (AD-601589), June 1964.

- 18. Spalding, D. B. and Chi, S. W. "The Drag of a Compressible Turbulent Boundary Layer on a Smooth Flat Plate With and Without Heat Transfer." Journal of Fluid Mechanics, Vol. 18, Part 1, January 1964, pp. 117-143.
- 19. Van Driest, E. R. "The Problem of Aerodynamic Heating."

 <u>Aeronautical Engineering Review</u>, Vol. 15, No. 10, October 1956, pp. 26-41.
- 20. Sivells, J. C. "Calculation of the Boundary-Layer Growth in a Ludwieg Tube." AEDC-TR-75-118 (AD-A018630), December 1975.
- 21. Coles, D. E. "The Young Person's Guide to the Data." Proceedings
 AFOSR-IFP-Stanford 1968 Conference on Turbulent Boundary Layer
 Prediction. Vol. II, Edited by D. E. Coles and E. A. Hirst.
- 22. Wieghardt, K. and Tillmann, W. Zur Turbulenten Reibungsschicht bei Druckanstieg. Z.W.B., K.W.I., U&M6617, 1944, translated as "On the Turbulent Friction Layer for Rising Pressure."

 NACA-TM-1314, 1951.
- 23. Coles, D. E. "The Turbulent Boundary Layer in a Compressible Fluid." RAND Corporation Report R-403-PR, September 1962.

APPENDIX A TRANSONIC EQUATIONS

When Eq. (5) is substituted into Eqs. (2), (3) and (4), Eq. (2) can be written as:

$$u = 1 - \frac{1}{2(3 - \sigma)S} - \frac{GR}{S^2} - \frac{GS}{S^3} + \dots$$

$$+ \lambda x (1 - \frac{\sigma}{8S} + \frac{GT}{S^2} + \dots)$$

$$+ \frac{\lambda^2 x^2}{2} (1 - \frac{2\gamma}{3} - \frac{GV}{S} + \dots) + \frac{\lambda^3 x^3}{3} GK + \dots$$

$$+ \frac{y^2}{2S} + \frac{U_{42} y^4 - U_{22} y^2}{S^2} + \frac{U_{63} y^6 - U_{43} y^4 + U_{23} y^2}{S^3}$$

$$+ \lambda x \left(\frac{y^2}{S} + \frac{U_{P2} y^4 - U_{P0} y^2}{S^2} + \dots \right)$$

$$+ \frac{\lambda^2 x^2 y^2}{2} \left(\frac{3\sigma - (10 - 3\sigma)\gamma}{4S} \right) + \dots$$
(A-1)

where the coefficients are written in the terminology of the program and x and y are normalized with respect to y_0 . For planar flow,

$$GR = (15 - \gamma)/270$$
 (A-2)

GS =
$$(782 \gamma^2 + 3507 \gamma + 7767)/272160$$
 (A-3)

$$GT = (134 \gamma^2 + 429 \gamma + 123)/4320$$
 (A-4)

$$GV = 5 \gamma/18 \tag{A-5}$$

$$GK = (2\gamma^2 - 33\gamma + 9)/24$$
 (A-6)

$$U_{h2} = (\gamma + 6)/18 \tag{A-7}$$

$$U_{22} = \gamma/9 \tag{A-8}$$

$$U_{63} = (362 \gamma^2 + 1449 \gamma + 3177)/12960$$
 (A-9)

$$U_{43} = (194 \gamma^2 + 549 \gamma - 63)/2592$$
 (A-10)

$$U_{23} = (854 \gamma^2 + 807 \gamma + 279)/12960$$
 (A-11)

$$U_{p2} = (26 \gamma^2 + 27 \gamma + 237)/288$$
 (A-12)

$$U_{p_0} = (26 \gamma^2 + 51 \gamma - 27)/144$$
 (A-13)

For axisymmetric flow,

$$GR = (15 - 10 \gamma)/288$$
 (A-14)

$$GT = (92 \gamma^2 + 180 \gamma - 9)/1152$$
 (A-16)

$$GV = (\gamma + 1)/8 \tag{A-17}$$

$$GK = (4 \gamma^2 - 57 \gamma + 27)/48$$
 (A-18)

$$U_{42} = (2 \gamma + 9)/24$$
 (A-19)

$$U_{22} = (4 \gamma + 3)/24 \tag{A-20}$$

$$U_{63} = (556 \gamma^2 + 1737 \gamma + 3069)/10368$$
 (A-21)

$$U_{43} = (388 \gamma^2 + 777 \gamma + 153)/2304$$
 (A-22)

$$U_{23} = (304 \gamma^2 + 255 \gamma - 54)/1728$$
 (A-23)

$$U_{P2} = (52 \gamma^2 + 51 \gamma + 327)/384$$
 (A-24)

$$U_{PO} = (52 \gamma^2 + 75 \gamma - 9)/192$$
 (A-25)

The first part of Eq. (A-1), which is independent of y, can be recognized as Eq. (11) for planar flow or Eq. (12) for axisymmetric flow inasmuch as x and y are normalized here with the value of y_0 .

In a similar manner, Eq. (3) can be written as

$$v = \frac{y}{\lambda S} \left\{ \frac{(y^2 - 1)}{2(3 - \sigma)S} + \frac{v_{42} y^4 - v_{22} y^2 + v_{02}}{s^2} + \frac{v_{63} y^6 - v_{43} y^4 + v_{23} y^2 - v_{03}}{s^3} + \dots \right.$$

$$+ \lambda x \left[1 + \frac{(2\gamma + 12 - 3\sigma)y^2 - 2\gamma - 1.5\sigma}{(9 - 3\sigma)S} + \frac{6 u_{63} y^4 - 4 u_{43} y^2 + 2 u_{23}}{s^2} + \dots \right]$$

$$+ \frac{\lambda^2 x^2}{2} \left(2 + \frac{4 u_{p2} y^2 - 2 u_{p0}}{S} + \dots \right)$$

$$+ \frac{\lambda^3 x^3}{3} \left(\frac{3\sigma - 10\gamma - 3\sigma \gamma}{4} + \dots \right) + \dots \right\}$$
(A-26)

For planar flow,

$$V_{42} = (22 \gamma + 75)/360$$
 (A-27)

$$V_{22} = (10 \gamma + 15)/108$$
 (A-28)

$$V_{02} = (34 \gamma - 75)/1080$$
 (A-29)

$$V_{63} = (6574 \gamma^2 + 26481 \gamma + 40059)/181440$$
 (A-30)

$$V_{43} = (2254 \gamma^2 + 6153 \gamma + 2979)/25920$$
 (A-31)

$$V_{23} = (5026 \gamma^2 + 7551 \gamma - 4923)/77760$$
 (A-32)

$$V_{03} = (7570 \gamma^2 + 3087 \gamma + 23157)/544320$$
 (A-33)

For axisymmetric flow,

$$V_{42} = (\gamma + 3)/9$$
 (A-34)

$$V_{22} = (20 \text{ } \gamma + 27)/96$$
 (A-35)

$$V_{02} = (28 \ \gamma - 15)/288$$
 (A-36)

$$V_{63} = (6836 \gamma^2 + 23031 \gamma + 30627)/82944$$
 (A-37)

$$V_{43} = (3380 \gamma^2 + 7551 \gamma + 3771)/13824$$
 (A=38)

$$V_{23} = (3424 \gamma^2 + 4071 \gamma - 972)/13824$$
 (A-39)

$$V_{03} = (7100 \text{ } \gamma^2 + 2151 \text{ } \gamma + 2169)/82944$$
 (A-40)

APPENDIX B CUBIC INTEGRATION FACTORS

If a curve through four points with ordinates a, b, c, and d, spaced at uneven increments in abscissa, s, t, and u, is defined by a cubic equation, the area under each section of the curve can be found in the following manner:

$$Area_{a-b} = F_{as} a + F_{bs} b + F_{cs} c + F_{ds} d$$
(B-1)

$$Area_{b-c} = F_{at} a + F_{bt} b + F_{ct} c + F_{dt} d$$
 (B-2)

$$Area_{c-d} = F_{au} a + F_{bu} b + F_{cu} c + F_{du} d$$
 (B-3)

$$Area_{total} = G_a a + G_b b + G_c c + G_d d$$
 (B-4)

where

$$F_{as} = \frac{s}{2} - \frac{s^2(3s + 4t + 2u)}{12(s + t)(s + t + u)}$$
(B-5)

$$F_{bs} = \frac{s}{2} + \frac{s^2(s + 4t + 2u)}{12 \ t(t + u)}$$
 (B-6)

$$F_{cs} = -\frac{s^3(s + 2t + 2u)}{12tu(s + t)}$$
 (B-7)

$$F_{ds} = \frac{s^3(s+2t)}{12(s+t+u)(t+u)u}$$
 (B-8)

$$F_{at} = -\frac{t^3(t+2u)}{12s(s+t)(s+t+u)}$$
 (B-9)

$$F_{bt} = \frac{t}{2} + \frac{t^2(t + 2u - 2s)}{12s(t + u)}$$
 (B-10)

$$F_{ct} = \frac{t}{2} + \frac{t^2(2s + t - 2u)}{12u(s + t)}$$
 (B-11)

$$F_{dt} = -\frac{t^3(2s+t)}{12u(t+u)(s+t+u)}$$
(B-12)

$$F_{au} = \frac{u^{3}(2t + u)}{12s(s + t)(s + t + u)}$$
 (B-13)

$$F_{bu} = -\frac{u^3(2s + 2t + u)}{12st(t + u)}$$
 (B-14)

$$F_{cu} = \frac{u}{2} + \frac{u^2(2s + 4t + u)}{12t(s + t)}$$
 (B-15)

$$F_{du} = \frac{u}{2} - \frac{u^2(2s + 4t + 3u)}{12(t + u)(s + t + u)}$$
(B-16)

$$G = F + F + F$$
 (B-17)

$$G_{b} = F_{bs} + F_{bt} + F_{bu}$$
 (B-18)

$$G_{c} = F_{cs} + F_{ct} + F_{cu}$$
 (B-19)

$$G_{d} = F_{ds} + F_{dt} + F_{du}$$
 (B-20)

If all increments are equal, then

$$s = t = u = h$$
 (B-21)

$$F_{ds} = -F_{at} = -F_{dt} = F_{au} = h/24$$
 (B-22)

$$F_{cs} = F_{bu} = -5h/24$$
 (B-23)

$$F_{bs} = F_{cu} = 19h/24$$
 (B-24)

$$F_{as} = F_{du} = 9h/24$$
 (B-25)

$$F_{bt} = F_{ct} = 13h/24$$
 (B-26)

$$G_a = G_d = 3h/8$$
 (B-27)

$$G_{\rm b} = G_{\rm c} = 9h/8$$
 (B-28)

The values of G's in Eq. (96) correspond to those in Eq. (B-4). The value of F's in Eq. (97) correspond to those in Eq. (B-1).

APPENDIX C INPUT DATA CARDS

Input	Columns	
Card 1		
ITLE	2-12	Title
JD	14-15	Blank (0) for axisymmetric contour, -1 for planar.
Card 2		
GAM	1-10	Specific heat ratio.
AR	11-20	Gas constant, ft ² /sec ² R.
Z0	21-30	Compressibility factor for an axisymmetric nozzle, constant for entire contour. Or, for a planar nozzle, ZO is half the distance (in.) between the parallel walls, and the compressibility factor is one.
RO	31-40	Turbulent boundary-layer recovery factor.
VISC	41-50	Constant in viscosity law.
VISM	51-60	Constant in viscosity law. If VISM is equal to or less than one,
		$\mu = VISC* T^{VISM} 1b-sec/ft^2$
		If VISM is greater than one,
		$\mu = \frac{\text{VISC* T}^{1.5}}{\text{T + VISM}} \text{ 1b-sec/ft}^2. \text{If}$
		T is greater than VISM,
,		$\mu = \frac{\text{VISC* T}}{2 \text{ VISM}^{1/2}}; \text{ T} \leq \text{VISM}.$
SFOA	61–70	Used for nozzle with radial flow region if 5th-deg axial velocity distribution is desired. If positive, the distance, in inches, from the throat to Point A

on the characteristic diagram. If negative, absolute value is distance from the throat to Point G. If Blank, 3rd- or 4th-deg distribution is used depending on value of IX on Card 4.

XBL 71-80

Station (in.) where interpolation is desired (e.g., the end of a truncated nozzle). If XBL=1000., the spline fit subroutines are used to obtain values at increments evenly spaced in length.

Card 3

ETAD 1-10

Inflection angle in degrees if radial flow region is desired. Two characteristic solutions are obtained, one upstream and one downstream of Point A. If ETAD = 60., the entire centerline velocity distribution is specified and only one solution is obtained and the inflection point must be interpolated. If ETAD = 60., IQ = 1, IX = 0, on Card 4.

RC 11-20

Ratio of throat radius of curvature to throat radius. Must be given if ETAD = 60. or FMACH = 0. If FMACH is given, RC is calculated. If LR = 0, IX = 0 gives third-deg equation between Mach 1 and EMACH, matching first and second derivations at each end. If LR \neq 0, the value of RC found for LR = 0 is used with given value of FMACH to define a fourth-deg equation. If IX = \pm 1 and FMACH is given, RC is calculated to define a fourth-deg equation. If LR \neq 0, a new value of FMACH is found, compatible with the value of RC calculated for LR = 0.

FMACH 21-30

Mach number at Point F if ETAD \neq 60. Negative value specifies Prandtl-Meyer angle at Point F as |FMACH| *ETAD (usually around -7). If FMACH and RC are given, IX = 0 and 4th-deg distribution is used. If FMACH = 0 and IX = 0, a 3rd-deg distribution is used. If FMACH = 0 and IX = ± 1 , a 4th-deg distribution is used. FMACH is calculated if not given. If ETAD = 60., Point F is not defined.

вмасн	31-40	Mach No. at Point B if ETAD ≠ 60.
CMC	41-50	Absolute value is design Mach No. at Point C. If ETAD \neq 60, positive CMC gives d^2M/dx^2 =0, and negative CMC gives $d^2M/dx^2 \neq$ 0. If ETAD = 60., CMC is positive.
SF	51–60	Scale factor by which nondimension coordinates are multiplied to give dimensions in inches. If SF = 0, nozzle will have an inviscid throat radius (or half-height) of 1 in. If negative, nozzle will have an inviscid exit radius (or half-height) of SF in.
PP	61-70	Station (in.) at Point A. PP = 0 gives coordinates relative to geometric throat. Negative PP gives coordinates relative to source or radial flow (ETAD \(\neq \) 60.).
XC	71-80	Nondimensional distance from source to Point C. $XC = 1$. requires centerline Mach No. distribution from Point B to Point C to be read in as input data on Unit 9. Otherwise, positive XC gives 5th-deg distribution if CMC positive and 4th-deg if CMC negative. $XC = 0$ gives 4th-deg distribution if CMC positive and 3rd-deg if CMC negative. Negative XC and IN gives 3rd-deg distribution with d^2W/dx^2 not matching source flow at Point B. If ETAD = 60. and $XC > 1$, XC is ratio of length, from throat to Point C, to throat height. Negative XC gives 3rd-deg distribution in M; $XC = 0$ gives 4th-deg distribution; $XC > 1$ gives 5th-deg distribution. $XC = 1$. requires centerline Mach No. distribution to be read in as input data on Unit 9.
Card 4		
MT	1-5	Number of points on characteristic EG if ETAD # 60. or CD if ETAD = 60. Maximum value about 125. Use odd number. A zero or negative value stops calculation after centerline distribution is calculated if NT positive.

NT	6–10	Number of points on axis IE. Maximum value is 149-LR. Use odd number. A zero or negative value stops calculation before centerline distribution is calculated but after parameters and coefficients of distribution are calculated.
IX	11-15	Determines if third derivative of velocity distribution is matched. IX = 1 matches third derivative with transonic solution. IX = -1 matches third derivative with source flow value. IX = 0 does not match third derivative but gives constant third derivative if RC = 0 or FMACH = 0.
IN	16-20	Determines type of distribution from Point B to Point C, positive for Mach No. distribution, negative for velocity distribution. IN = 0 for throat only. If XC is greater than 1., the downstream value of the second derivative at Point B is 0.1* IN times the radial flow value. Similarly, if ETAD = 60., the second derivative at Point I is 0.1*IN times the transonic value.
IQ	21–25	Zero for a complete contour if ETAD \neq 60., 1 for throat only or if ETAD = 60., -1 for downstream only.
MD	26-30	Number of points on characteristic AB. Maximum value about 125. Use odd number. A zero or negative value stops calculation similarly to MT.
ND	31–35	Number of points on axis BC. Maximum value is 150. A zero or negative value acts like NT.
NF	36–40	Absolute value is number of points on characteristic CD for ETAD \neq 60. Maximum value is 149 or 200 - ND - MP - $ MQ $ - number of points on upstream contour. Negative value calls for smoothing subroutine.
MΡ	41–45	Number of points on conical section GA if FMACH # BMACH. Use value to give desired increments in contour - usually not known for initial calculation.

МО	46–50	Number of points downstream of Point D if parallel inviscid contour desired. A negative value can be used to eliminate the inviscid printout.
JB	51-55	Positive number if boundary-layer calculation is desired before spline fit. Negative number transfers control of program to JX. Absolute values greater than one are used to approximately halve the number of points on the upstream contour even though LR + NT - 1 points are calculated from characteristic network if LR > 2, or (NT + 1) points if LR = 0.
JX	56-60	Positive number calls for calculation of stream- lines, zero calls for repeat of inviscid calcula- tions requiring new cards 3 and 4, or, if XBL = 1000., for spline fit after inviscid calcu- lation, negative number calls for repeat of cal- culations requiring new cards 1, 2, 3, and 4.
JC	61-65	If not zero, calls for printout of intermediate characteristics within upstream contour if JC is positive and downstream contour if JC is negative. Characteristics are (NT - 1)/JC or (ND - 1)/(-JC). Opposite running characteristic through Point E (or B) is also printed.
IT	66–70	Number of points at which spline fit is desired if points are not evenly spaced, such as jack locations for a flexible plate. Used only for a planar nozzle, inasmuch as a nonzero value calculates distance along curved plate surface. Positive value of IT requires additional cards to be read in (8 points per card) after boundary layer is calculated.
LR	71-75	Absolute value is number of points on throat characteristic used in characteristics solution. Negative values give printout of transonic solution. $LR = 0$ gives $M = 1$ at Point I.
NX	76-80	Number from 10 to 20 determines spacing of points on axis for upstream contour. $NX = 10$ gives linear spacing. $NX > 10$ gives closer spacing of points at upstream end than at downstream end. $NX = 0$ same as $NX = 20$. Ratio of downstream

increment to upstream increment is $(NT-1)^{NX/10}$ - $(NT-2)^{NX/10}$. Optimum values, usually 13 to 15, determined by trial and error for specific contour desired. Negative NX used with negative LR limits printout to transonic solution.

NOTE: A zero value of MT, NT, MD, or ND will allow a repeat of calculations for parameters specified by new cards Nos. 3 and 4. A negative value will allow a repeat of calculations for new cards Nos. 1, 2, 3, and 4.

Card 5		
NOUP	1-5	If smoothing is desired, negative NF. Number of times upstream contour is smoothed.
NPCT	6-10	Smoothing factor in percent. Smoothing factor = NPCT/100.
NODO	11–15	Number of times downstream contour is smoothed.
Card 5		If boundary-layer calculation is desired using inviscid points calculated from characteristics solution. (No smoothing).
Card 6		If boundary-layer calculation is desired using evenly spaced points interpolated from spline
or		fit of points from characteristics solution.
Card 7	·	If boundary-layer calculation is desired using evenly spaced points interpolated from spline fit of smoothed points.
PPQ	1-10	Stagnation pressure (psia).
то	11-20	Stagnation temperature, Rankine.
TWT	21-30	Throat wall temperature, Rankine, if QFUN = 0. If TWT = 0, the wall temperature is assumed to be the adiabatic value.
TWAT	31~40	Wall temperature, Rankine, at Point D. For water-cooled wall, the bulk water temperature is assumed to be 15° lower than specified TWAT. The cooled wall temperature distribution is assumed to be

$$TW = TWAT + \frac{(TWT - TWAT)}{\sqrt{Ac/A^*} - 1} \times \left(\sqrt{\frac{Ac/A^*}{A/A^*}} - 1 \right)$$

where A/A^* is the area ratio corresponding to local value of Mach number and Ac refers to Point C.

For negative IHT

$$TW = TWAT + \frac{(TWT - TWAT)}{Ac/A^* - 1} \times \left(\frac{Ac/A^*}{A/A^*} - 1\right)$$

QFUN 41-50 Heat-transfer function at the throat.

QFUN =
$$\frac{\text{ha}(\text{Taw} - \text{TWT})}{\text{TWT} - \text{TWAT} + 15}$$

where ha has dimensions of BTU/sec/sq ft/R and is obtained by Reynolds analogy from the skin-friction coefficient. If QFUN is specified, input value of TWT is ignored and TWT is calculated from QFUN.

ALPH 51-60 Parameter specifying temperature distribution in boundary layer. ALPH = 1. uses quadratic distribution both in the calculation of the reference temperature TP and the calculation of boundary-layer shape parameters. ALPH = 0 uses parabolic distribution in both calculations. ALPH = -1. uses quadratic distribution for TP and parabolic in the calculation of boundary-layer shape parameters. Within boundary layer,

$$T = Tw + \alpha (Taw - TW) (U/U_e) + \left[Te - \alpha (Taw - Tw) - Tw\right] (U/Ue)^2$$

where $\alpha = 1$ for quadratic dist.

 $\alpha = 0$ for parabolic dist.

Integer which determines temperature distribution (see TWAT). If nonzero, IHT determines how often subroutine HEAT is called. An absolute value of IHT greater than KO, the number of points on the upstream contour, will prevent HEAT from being called but will allow the choice of temperature distribution to be made.

NOTE: HEAT is a special purpose subroutine for determining heat-transfer values for the upstream contour. The subroutine HEAT incorporated in this program is a dummy.

IR 66-70 Integer, parameter specifying transformation from incompressible to compressible values. If IR = 2, Coles' transformation is used for C_f and Re_θ . If IR = 1, TP is calculated by a modification of the Spalding-Chi (Van Driest) method. If IR = 0, the Van Driest value of Re_θ is used, but if IR = -1, Coles' law of incorresponding stations is used.

 $C_f = C_{f_i} * TE/TP, Re_{\theta_i} = FRD*Re_{\theta_i}$

 $\mathcal{M}(\mathcal{A}^{n},\mathcal{A}^{n})$

ID 71-75 Integer. If ID = ± 1 , axisymmetric effects are included in momentum equation and in calculation of boundary-layer parameters (δ not negligible relative to coordinate normal to axis). If ID = 0, these effects are omitted. Negative ID suppresses the printout of the boundary-layer calculations.

LV 76-80 Integer. Absolute value, usually 5, determines number of times boundary-layer solution is iterated so that radius terms in momentum equation refer to viscid radius instead of inviscid radius. Value of 0 or absolute value of 1 uses inviscid radius. Positive LV repeats boundary-layer calculations for new set of parameters on a new card if XBL # 1000.

Card 5 If streamlines are desired, JX positive. (No smoothing.)

ETAD 1-10 Inflection angle in degrees for streamline desired if ETAD \neq 60. for Card 3. If ETAD = 60. on Card 3, use ETAD = 60 on this card.

QM 11-20 Fraction of contour desired if ETAD = 60. Otherwise, QM = ETAD on Card 5 divided by ETAD on Card 3.

XJ 21-30 Value to update JX for subsequent calculation, JX = XJ.

Card 5 or		If SPLIND used after inviscid calculation (JX zero or negative and JB zero or negative). (No smoothing.)
Card 6		If SPLIND used after viscid contour (JB positive and LV zero or negative). No smoothing of inviscid contour. Or, if inviscid contour
or		is smoothed before SPLIND is used.
Card 7		If inviscid contour is smoothed, boundary layer is added and SPLINE is desired.
XST	1-10	Station (in.) for throat value of X. If XST = 1000., program uses value previously determined by specifying PP on Card 3. Otherwise, value of XST is used to shift contour points by desired increments for arbitrary Station 0.
XLOW	11-20	Starting value for interpolation. Second value of interpolated $X = XLOW + XINC$.
XEND	21-30	End value for interpolation. If zero, SPLIND is used to calculate slope and d^2y/dx^2 at same points as previously defined.
XINC	31-40	Increment in X for interpolation. If zero, and $BJ > 10$, contour is divided into BJ increments.
ВЈ	41–50	Value to update JB for subsequent calculation. JB = BJ. If negative and XEND = 0, interpolation is made at discrete points read in on subsequent cards similar to case when IT > 0.
XMID	51-60	Intermediate value for interpolation. Distance (XMID-XLOW) is divided into increments defined by XINC, and distance (XEND-XMID) is divided into increments defined by XINC2.
XINC2	61-70	Increments in X between XMID and XEND if different than XINC.
CN	71-80	Number of copies desired of final tabulation of coordinates if more than one copy is desired.

1EDC-1 H-/8-63

	APPENDIX D COMPUTER PROGRAM		
C C	MAIN PART OF PROGRAM CONTUR(INPUT.OUTPUT.TAPES=INPUT.TAPE6=OUTPUT)	MAI MAI	1
000	NOZZLE CONTOUR PROGRAM VEVOOD28 FOR AXISYMMETRIC OR PLANAR FLOW WITH RADIAL FLOW REGION AND/OR WITH CENTER-LINE VELOCITY OR MACH NUMBER DISTRIBUTIONS DEFINED BY POLYNOMIALS.	MAI MAI IAM IAM	3 4. 5 6
000	CORRECTION APPLIED FOR GROWTH OF TURBULENT BOUNDARY LAYER. PERFECT GAS IS ASSUMED WITH CONSTANT SPECIFIC HEAT RATIO. GAM. COMPRESSIBILITY FACTOR. ZQ. AND RECOVERY FACTOR. RQ. AS INPUTS.	MAI MAI MAI MAI	. 7 8 9 10
0000	ALSO IMPUT IS GAS CONSTANT. AR. IN SQ FT PER SQ SECOND PER DEG R. IF VISM IS SUTHERLANDS TEMPERATURE. VISCOSITY FOLLOWS SUTHERLANDS LAW ABOVE VISM. BUT IS LINEAR WITH TEMPERATURE BELOW VISM. IF (VISM.LE.1.D.O) VISCOSITY=VISC+TEMPERATURE+*VISM	MAI MAI MAI MAI	11 12 13 14
C	IMPLICIT REAL+8(A-H+0-Z) COMMON /GG/ GAM+GM+G1+G2+G3+G4+G5+G6+G7+G8+G9+GA+RGA+QT COMMON /COORD/ S(200)+F5(200)+WALTAN(200)+SD(200)+WMN(200)+TTR(20	IAM IAM IAM IAMO	15 16 17 18
	1) DMDX(200)+SPR(200)+DPX(200)+SREF(200)+XBIN-XCIN+GMB+GMB+GMC+GMD COMMON /CORR/ DLA(200)+RC0(200)+DAX(200)+DRX(200)+DRX(200)+DR2 COMMON /PROP/ AR-ZO+RO+VISC+VISH+SFOA+XBL+CONV COMMON /PARAM/ ETAD+RC+AMACH+BMACH+CMACH+EMACH+GMACH+FRC+SF+WWO+W	MAI MAI MAI.	19 20 21 22
	10P,0M+WE+CBET+XE+ETA+EPSI+BPSI+XO+YO+RRC+SDO+XB+XC+AM+PP+SE+TYE+X COMMON /JACK/ SJ(30)+XJ(30)+XJ(30)+AJ(30) COMMON /CONTR/ ITLE(3)+IE+LR+IT+JB+JQ+JX+KAT+KBL+KING+KO+LY+NOCON DATA ZRO/0+0D+0/+ONE/1+D+0/+TWO/2+0+0/7/8HCURYATUR/	MAI	23 24 25 26
	DATA DC1/8H D2Y/DXZ/+DC2/8H	IAM IAM IAM	27 28 29 30
		MAI MAI MAI MAI	31 32 33 34
	0CA=DC4 DCB=DC2 JJ=1000 DCC=DC1	MAI MAI MAI	35 36 37 38
C 1	READ (5,30,END=24) ITLE,JD IF (ITLE(1).EG.L4) GO TO 24 IE=1+JD	HAI HAI HAI MAI	39 40 41 42
c c	QT=ONE/(1+IE) READ (5,28) GAM,AR+ZO,RO+VISC,VISM-SFOA,XBL FOR GAMMA=1.4+ G9=5+ G8=.2+ G7=1.2+ G6=5/6+ G5=1/6+ G4=1/SQRT(6)+	IAH IAH IAH	43 44 45 46
С	G3=1.5, G2=SQRT(6), G1=2.5 GM=GAM=ONE G1=ONE/GM G9=TWO#G1	MAI MAI MAI MAI	47 48 49 50
	G8≈ONE/G9 G7≈ONE/G8 G6≈ONE/G7 G5≈G8≈G6	HAI MAI MAI MAI	51 52 53 54
	RGA=TMO=G5 GA=ONE/RGA	IAH IAH	55 56

		_	
	'G4=DSQRT(G5)	HAI	57
	G3=GA/TWO	MAI	58
	G2=ONE/G4	MAI	59
		MAI	60
	IF (IE-EQ-0) AH=ZO		
	IF (IE.EQ.O) ZO=ONE	HAI	61
	QM=ONE	MAI	62
	JX=0	MAI	63
2	JQ=0	MAI	64
-	LV=0	MAI	65
<u> </u>		IAH	66
3	CALL AXIAL		
	IF (LV-LT-0) GO TO 1	MAI	67
	CALL PERFC	MAI	68
	IF (NOCON.NE.O) GO TO 24	MAI	69
	IF ((JQ.GT.0).OR.(JX.GT.0)) GO TO 3	MAI	70
		MAI	71
	IF (JB.GT.O) CALL BOUND		
	IF (XBL+EQ-1-D+3) GO TO 5	MAI	72
	IF (IT-LT-1) GO TO 4	MAI	73
	L'A=L3	MAI	74
	DCA=DC5	MAI	75
	DCC=DC7	MAI	76
	KUP*IT	MAI	77
		MAI	78
	KAP=KUP+1		
	XEND=ZRO	IAM	79
.C		IAM	80
	READ (5+28+END=24) (SJ(K)+K=1+KUP)+XST	MAI	81
	CSK=ONE/DSQRT (ONE+DRX (KAT)++2)	MAI	82
	SNK#CSK*DRX (KAT)	MAI	83
		MAI	84
	CALL SPLIND (SL+RCO+ZRO+SNK+KAT)		
	GO TO 6	MAI	85
4	IF (LV.GT.0) GO TO 24	MAI	86
	ÍF (JX.LT.0) GO TO 1	MAI	87
	60 TO 2	IAM	88
		IAM	89
5	CONTINUE		
C		IAH	90
	READ (5+28+END=24) XST+XLOW+XEND+XINC+BJ+XMID+XINC2+CN	MAI	91
	IF (XST+EQ.XBL) XST=S(1)	MAI	92
	NC=CN+ONE	MAI	93
	IF (JB.LE.D) CALL SPLIND (S.FS.WALTAN(1).WALTAN(KING).KING)	IAM	94
	IF (JB.GT.D) CALL SPLIND (S.RCO.DRX(1).DRX(KAT).KAT)	MAI	95
		HAI	96
	IF (XEND.GT.ZRO) GO TO 6		
	LB#L5	MAI	97
	DCB=DC4	MAI	98
6	SLONG=S(KING)+S(1)	IAM	99
-	1PP=0	HAÍ	100
	WRITE (6.25) ITLE.SLONG	MAI	101
		MAI	102
	WRITE (6.31) LA.LZ.DCA.DC3.DCC.DCB.LB		
	IF (J8.GT.0) GO TO 7	MAI	103
	WRITE (6.26) XST+FS(1)+WALTAN(1)+ZRO+SD(1)	HAI	104
	xmax=slong+xst	MAI	105
	YMAX=FS(KING)	MAI	106
	TMAX=WALTAN(KİNG)	MAI	107
		HAI	
_	GO TO 8		108
7	WRITE (6+26) XST+RCO(1)+DRX(1)+ZRO+DR2	MAI	109
	XMAX=S(KAT)=S(1)+XST	MAI	110
	YMAX=RCO(KAT)	MAI	111
	TMAX=DRX (KAT)	MAI	112
	1190=20019	• • • • •	

400

```
IF (IT.GT.0) GO TO 11
                                                                     MAI 113
      J8=8J
                                                                     MAI 114
      IF (XEND.GT.ZRO) GO TO 10
                                                                     MAI 115
      IF (JB.LT.0) GO TO 9
                                                                     MAI 116
     KUP=KING-1
                                                                     MAI 117
     KAP=KING-1
                                                                     MAI 118
     GO TO 11
                                                                     MAI
                                                                          119
     KUP≈-J8
                                                                     MAI
                                                                          120
     KAP=KUP+1
                                                                     MAI 121
C
                                                                     SSI IAM
     READ. (5+28+END=24) (SJ(K)+K=1+KUP)
                                                                     MAI 123
     GO TO 11
                                                                     MAI 124
     IF (XINC.GT.ZRO) KUP=(XEND-XLOW)/XINC+1.D-2
                                                                     MAI 125
     IF (XMID.NE.ZRO) JJ=(XMID-XLOW)/XINC+1.D-2
                                                                     MAI 126
     IF (XMID.NE.ZRO) KUP=JJ+(XEND=XMID)/XINC2+1.D=2
                                                                     MAI 127
     IF (JB.GT.10) KUP=JB
                                                                     MAI 128
     IF (JB.GT.10) XINC*SLONG/BJ
                                                                     MAI 129
     KAP=(XMAX=XLOW)/XINC+1
                                                                     MAI 130
     IF (XMID.NE.ZRO) KAP=JJ+(XMAX-XMID)/XINCZ+1
                                                                     MAI 131
     DO 19 K=1+KUP
                                                                     MAI 132
     IF (XEND.EQ.2RO) GO TO 12
                                                                     MAI 133
     X=XLOW+K+XINC
                                                                     MAI 134
     IF (K.GT.JJ) X=XMID+(K-JJ)+XINC2
                                                                     MAI 135
     60 TO 13
                                                                     MAI 136
12
     IF (IT-LT-1.AND.JB.GE.O) X=S(K+1)
                                                                     MAI 137
     IF (IT.GT.O.OR.JB.LT.O) X=SJ(K)
                                                                     MAI 138
     XX=X-XST+S(1)
                                                                     MAI 139
     IF (K.LT.KAP) CALL XYZ (XX.YY.YYP.YYPP)
                                                                     MAI 140
     IF (K.EQ.KAP) X=XMAX
                                                                     MAI 141
     IF (K.GE.KAP) YY#YMAX
                                                                     MAI 142
     IF (K.GE.KAP) YYPETMAX
                                                                     MAI 143
     IF (K.GE.KAP) YYPP=ZRO
                                                                     MAI 144
     IF (IT-LT-1) GO TO 16
                                                                     MAI 145
     IF (IPP.GT.0) GO TO 14
                                                                     MAI 146
     YJ(K)=YY
                                                                     MAI 147
     AJ(K) *DARSIN(YYP)
                                                                     MAI 148
     WANG=CONV#AJ(K)
                                                                    HAI 149
     CURV=YYPP/DCOS(AJ(K))
                                                                    MAI 150
     WRITE (6,26) X,YY,YYP,WANG,CURV
                                                                    MAI 151
     GO TO 18
                                                                    MAI
                                                                        152
     YY=YY-S(1)+XST
                                                                    MAI 153
     XJ(K)=YY
                                                                    MAI 154
     WANG=CONV#DARCOS (YYP)
                                                                    MAI 155
     WRITE (0.26) X.YY.YYP.WANG
                                                                    MAI 156
     GO TO 18
                                                                    HAI 157
     WANG*CONV*DATAN(YYP)
                                                                    MAI 158
     IF (XEND.EG.ZRO.AND.JB.GE.O) DY=YYP-WALTAN(K+1)
                                                                    MAI 159
     IF (JB.LE.0) GO TO 17
                                                                    MAI
                                                                        160
     FS(K+1)=YY
                                                                    IAM
                                                                        161
     WALTAN(K+1)=YYP
                                                                    MAI
                                                                        162
     SD(K+1)=YYPP
                                                                    HAI
                                                                        163
     IF (XEND.GT.ZRO.OR.JB.LT.0) WRITE (6.26) X.YY.YYP.WANG.YYPP
                                                                    MAI
                                                                        164
     IF (XEND.EQ.ZRO.AND.JB.GE.O) WRITE (6.26) X.YY.YYP.WANG.YYPP.DY
                                                                    MAI 165
    IF (MOD(K+10)+EQ.0) WRITE (6.29)
                                                                    MAI 166
     IF (MOD(K+50) NE+0) GO TO 19
                                                                    MAI 167
     WRITE (6,25) ITLE, SLONG
                                                                    MAI 168
```

	WRITE (6,31) LA+L2+DCA+UC3+DCC+DCB+LB	MAI	169
19	CONTINUE	MAI	170
	IF (IT.GT.O.AND.IPP.EQ.1) CALL PLATE	MAI	171
	IF (IPP.GE.NC) GO TO 20	HAI	172
	IPP#IPP+1	HAI	173
	WRITE (6,25) ITLE, SLONG	MAI	174
	WRITE (6+31) LA+L2+DCA+DC3+DCC	MAI	175
	WRITE (6+26) XST+RCO(1)+DRX(1)+ZRO+DR2	MAI	176
	GO TO 11	IAH	177
20	IF ((IPP.GT.0).OR.(JX.LT.0)) GO TO 1	HAI	178
	IF (IT.EQ.0) GO TO 21	MAI	179
	19P=1	MAI	180
	CALL SPLIND. (SL+S+ONE+CSK+KAT)	MAI	181
	WRITE (6+29)	MAI	182
	WRITE (6+31) L3+L1+DC6+DC3	MAI	183
	WRITE (6+26) XST+XST+ONE+ZRO	MAI	184
	GO TO 11	MAI	185
51	IF (JB) 1·2·22	IAM	186
22	CALL SPLIND (5+WMN+DMDX(1)+DMDX(KING)+KING)	IAM	187
	DO 23 K#1+KUP	MAI	188
	X=XLOW+K+XINC	MAI	189
	IF (XEND.EQ.ZRO) X=S(K+1)	MAI	190
	xx=x=xsT+S(1)	MAI	191
	IF (K.LT.KAP) CALL XYZ (XX.YY.YPP.YYPP)	MAI	192
	IF (K.GE.KAP) YY=CMACH	HAI	193
	IF (K.GE.KAP) YYP=ZRO	MAI	194
	S(K+1)=X	MAI	195
	WMN(K+1)=YY	MAI	196
	TTR(K+1)=0NE+G8=YY==2	HAI	197
	SPR(K+1)=ONE/TTR(K+1)++(ONE+G1)	MAI	198
	DMDX(K+1) =YYP	MAI	199
23	DPX(K+1)=-GAM*YY*YYP*SPR(K+1)/TTR(K+1)	IAM	200
	S(1) *XST	IAH	201
	KAT=KUP+1	MAI	202
	KBL=KAT+4	MAI	203
	KQ=1	MAI	204
	CALL BOUND	MAI	205
	IF (JB.EQ.7) STOP	MAI	206
	IF (JB.GT.10) GO TO 1	IAM	207
	WRITE (6,25) ITLE, SLONG	MAI	208
	WRITE (6,31) L1,L2,DC4	IAM	209
	WRITE (6.27) (S(K).RCO(K).DRX(K).K=1.KAT)	IAM	210
	GO TO 1	MAI	211
24	STOP	MAI	212
č	310	MAI	213
25	FORMAT (1H1.9X.3A4. COORDINATES AND DERIVATIVES. LENGTH = F12	7) MAI	214
26	FORMAT (1H .8X.2F15.6,1P4E20.8)	MAI	215
27	FORMAT (10 (9x.0P2F15.6.1PE20.8/))	MAI	216
- 28	FORMAT (8E10.0)	MAI	217
29	FORMAT (1H)	MAI	218
30	FORMAT (3A4,13)	MAI	219
31	FORMAT (1M0.14X.A4.*(IN)*.7X.A4.*(IN)*.6X.A8.12X.A8.14X.A8.9X.A		220
41	1X+A4 /)	MAI	221
	END	MAI	222
	SUBROUTINE AXIAL	AXI	ī
c	TARDARIES WORKS	AXI	Ž
~	·		_

IMPLICIT REAL*8(A+H-0-Z) COMMON /FG/ GG,G05-GG-GF-GH-GI-HA-HB-HC-HE COMMON /FG/ GGN-GG-GF-GF-GH-GI-HA-HB-HC-HE COMMON /FG/ GAM-GH-GI-92-G3-G6+GS-G6+G7-G8-G9-GA-RGA-QT AXI	C	TO OBTAIN THE AXIAL DISTRIBUTION OF VELOCITY AND/OR MACH NUMBER	IXA	3
COMMON /GG/ GC.GG.GE.GF.GH.A.HB.HC.HE COMMON /GG/ GG.AGG.GG.GG.GG.GG.GG.GG.GG.GG.GG.GG.AGA.GG.GG	·	THO: TOTT GEN #0/A=H.O=71		
COMMON /CINEY ANISINED ATTENDANTS (S. 150 - 67 - 68 - 69 - 68 - 68 - 68 - 68 - 68 - 68				
COMMON /CLINE/ AXISIS.150) .TAXI (S.150) .WIP.X1.FRIP.ZONK.SEO.CSE				
COMMON /PROPA R=20-RO-VISC-VISM-SFOA+XRL,CONV COMMON /PARM/ETADARCA-MACH-MARCH-EMACH-EMACH-FRC:SF-WWO-WMAXI 10 10P-0M-WE-CBET.XE-ETA-FPSI-BPSI-XO-YO-RRC(-SDO-XR-XC-AH-PPP-SE-TYE-XAAXI 11 11 11N-MC-MCP-IP-10-ISE-UC-M-MP-MO-N-NP-NF-NUT-NR-LC-MD-MF-MT-ND-NT 2				
COMMON / PARAMY ETAD-RC-AMACH-BMACH-CMACH-EMACH-RC-SF-MONAMAXI 10 10P-0M-ye-CBET-XE-ETA-EPSI-MPST-XO-YO-RC-S0D-XB-XC-AM-PP-S-ST-YE-XAAXI 11 10P-0M-Y-CONTR/ ITLE(3)+IE-LR-IT-JB-JQ-JX-KAT-KBL-KING-KO-LV-NOCON-AXI 12 11N-MC-MCP-IP-10-15E-JC-M-MP-MG-NN-NP-NF-NUT-MR-LC-MD-MF-MT-ND-NT-XI 13 DATA ZRO/JO-00P-0-YONE/1-D-0/-YM-VC-Z0-0/-YSIX/-0-D-0/-HALF/S-D-1/ AXI 14 DATA THR/3-D-0/-FT-MD-D-0/-FT-NID-ST-XIX-D-0/-HALF/S-D-1/ AXI 15 DATA SEV/7-D-0/-EIT-ND-0/-FT-NID-ST-XIX-D-0/-HALF/S-D-1/ AXI 16 DATA MJ-MHGMAC/-MZ-MD-0/-FT-NID-ST-XIX-D-1/-XSIX/-6-D-1/ AXI 16 DATA MJ-MHGMAC/-MZ-MD-0/-FT-NID-ST-XIX-S-MD-Y-XSIX/-6-D-1/ AXI 18 DIMENSION C(6)+ D(4)+ AX(150)+ AXM(150)+ AXM(150)+ AXM(150) C				
10P=0M+WE-CBET-XE,ETA-EPSI-MPSI-ND,YO-RRC+SDO-XB-XC-AH-PP-SE,TYE-XAAXI 12 10N+MC+MCP-IP-ID-ISE-JC+M-MP-MD,N-NP-NF-NUT-NR-LC+MD-MF-MT-ND-NT 11E(3)-IE-NE-IT-JB-J0J-XX-KAT-KBE, KING-KO-LV-NOCON-AXI 12 11N+MC+MCP-IP-ID-ISE-JC+M-MP-MD,N-NP-NF-NUT-NR-LC+MD-MF-MT-ND-NT AXI 13 12 12N+MC+MCP-IP-ID-ISE-JC+M-MP-MD,N-NP-NF-NUT-NR-LC+MD-MF-MT-ND-NT AXI 15 12N-MC-MD-V-FIV-V-D-V-IE-V-V-D-V-SEN-V-D-V-IT-V-V-D-V-IT-V-V-D-V-IT-V-V-D-V-IT-V-V-D-V-IT-V-V-D-V-IT-V-V-D-V-D-V-IT-V-V-D-V-D-V-IT-V-V-D-V-D-V-D-V-D-V-D-V-D-V-D-V-D-V-D-				
COMMON /CONTR/ ITLE(3)*IE*CR*IT*JB#JQ#JX*KAT*KBE*KING*KO*LV*NOCÓN*AXI 12 1N*NC*NCP*IP*IQ*G*ISE*CZ*M*MP*MON*NP*N*NT*NR*L*NP*N*C*MO*MP*N*N*N*N*I* XI 13 DATA ZRO/0.0D*0/*ONE/1.D*0/*TWO/2.D*0/*SIX/6.D*0/*HALF/5.D*1/ AXI 14 DATA THR/3.0*0/*FOUR/4.D*0/*FIV/5.D*0/*FEN/1.D*1/*TLV/1.2D*1/ AXI 15 DATA SEV/7.D*0/*EIT/8.D*0/*FITN/1.5D*1/*TRTY/3.D*1/*SXTY/6.D*1/ AXI 16 DATA MJ*HGMAC/*M2*M*Z*D*/INTRITY/3.D*1/*SXTY/6.D*1/ AXI 16 DATA MJ*HGMAC/*M2*M*Z*D*/INTRITY/3.D*1/*SXTY/6.D*1/* AXI 18 DIMENSION C(6)* D(4)*, AX(150)*, AXM(150)*, AXMP(150) AXI 18 DIMENSION C(6)*, D(4)*, AX(150)*, AXM(150)*, AXMP(150) AXI 22 IF (JQ*G*I-0)**GO*TO**D** ***C****************************				
1 1 1 1 1 1 1 1 1 1				
DATA ZRO/0.00+0/.ONE/1.0+0/.TWO/2.0+0/.SIX/6.0+0/.HALF/5.0-1/ AXI 14 DATA THR/3.0+0/.FOR/A.0+0/.FIX/5.0+0/.TEN/1.0+1/.TLV/1.20+1/ AXI 15 DATA SEV/7.0+0/.FIT/8.0+0/.FFTN/1.50+1/.TRTY/3.0+1/.SXTY/6.0+1/ AXI 16 DATA MI/AHGMAC/.HZ/AHZ-D/.FTTN/1.50+1/.TRTY/3.0+1/.SXTY/6.0+1/ AXI 17 DATA MI/AHGMAC/.HZ/AHZ-D/.FTTN/1.50+1/.TRTY/3.0+1/.SXTY/6.0+1/ AXI 17 DATA MI/AHGMAC/.HZ/AHZ-D/.FTTN/1.50+1/.TRTY/3.0+1/.SXTY/6.0+1/ AXI 17 DATA MI/AHGMAC/.HZ/AHZ-D/.FTTN/1.50+1/.TRTY/3.0+1/.SXTY/6.0+1/ AXI 18 DIMENSION C(6). D(4). AX(150). AXM(150). AXMP(150) AXI 19 AXI 20 MPI=9.0+1/CONV AXI 22 IF (JQ.GT.0).AND.JX.EQ.O) CALL OREZ (AXIS.2*750) AXI 22 IF (JQ.GT.0).GO TO 50 AXI 22 IF (JQ.GT.0).GO TO 50 AXI 25 IF (JX.EQ.O).GO TO 2 AXI 25				
DATA THR/3_D=0/_FOUR/4_D=0/_FIV/S_D=0/_TER/1_D=1/_STYY/D_0=1/_ AXI				
DATA SEV/7.0+0/.EIT/8.0+0/.FFTN/1.50+1/.TRTY/3.0+1/.SXTY/6.0-1/ DATA N1/4HGMAC/.HRZ/4HZ-D/.1AXIS/AHAXIS/,NS/4H SPE/.NC/4HCIAL/ DATA N3/4H 3RD/.NM4/AH 4TH/.NS/4H 5TH/.NM/AH-DEG/ AXI 18 DIMENSION C(6). D(4), AX(150), AXM(150), AXMP(150) AXI 20 RPI=9.0+1/CONV AXI 21 IF (JQ.EU.0.AND.JX.EQ.0) CALL OREZ (AXIS.2*750) AXI 22 IF (JQ.6U.0.AND.JX.EQ.0) CALL OREZ (AXIS.2*750) AXI 23 IF (JX.EQ.0) GO TO 2 C CARD USED TO OBTAIN INTERNAL STREAMLINES (JX > 0) AXI 26 C READ (5.93.END=91) ETAD.QH+XJ AXI 28 JXEXJ IF (ETAD.EQ.SXTY) GO TO 1 AXI 30 IF (IE.EQ.1) SEETA AXI 32 IF (IE.EQ.1) SEETA AXI 32 APSI=BPSI-ETA/GT AMACH=FNV(APSI) RA= (G6.665*MACCH*2)**GA/AMACH)**QT AXI 39 GPSI=EPSI*ETA/GT AXI 36 GPSI=EPSI*ETA/GT AXI 36 GPSI=EPSI*ETA/GT AXI 37 RA= (G6.665*GMACCH*2)**GA/AMACH)**QT AXI 36 GO TO 14 C C CONSTANTS USED IN TRANSONIC SOLUTION AXI 41 GG C*(TWO*GAM/QT=THR)/SIX/(3*IE) GC*(TWO*GAM/QT=THR)/SIX/(3*IE) AXI 55 GC*(TWO*GAM/QT=THR)/SIX/(3*IE) AXI 55 GC*(TWO*GAM/QT=THR)/SIX/(3*IE)				
DATA M1/AHGMAC/-M2/AH2-D /-1AX1S/-AHAXIS/-MS/-AH SPE/-NC/AHCIAL/ DATA N3/AH 3RD/-NA/AH 4TH/-NS/AH 5TH/-NO/AH-DEG/ DIMENSION C(6) + D(4) + AX(150) + AXM(150) + AXMP(150) AXI 20 HPI=9,D+1/CONV IF (JD.EU-0.AND.JX.EQ.0) CALL OREZ (AXIS-2*750) AXI 22 IF (JD.GT-0.0) GO TO 50 AXI 23 IF (JX.EQ.0) GO TO 2 C CARD USED TO OBTAIN INTERNAL STREAMLINES (JX > 0) AXI 27 READ (5.93.END=91) ETAD-QM-XJ AXI 29 JX=XJ IF (ETAD.EQ.SXTY) GO TO 1 ETA=ETAD/CONV AXI 32 IF (IE.EQ.0) SE=ETA IF (IE.EQ.0) SE=ETA AXI 32 IF (IE.EQ.0) SE=ETA AXI 34 CSE=DCOS(ETA) ANI 34 APSI=BPSI-ETA/OT ANI 36 AMACH=FMY(APSI) RA= (G6.66S=MACCH=>2)**GA/AMACH)**QT AXI 39 GMACH=FMY(GPSI) RG= (G6.65S=GMACCH=>2)**GA/GMACH)**QT AXI 39 GMACH=FMY(GPSI) RG= (G6.65S=GMACCH=>2)**GA/GMACH)**QT AXI 34 CC CONSTANTS USED IN TRANSONIC SOLUTION AXI 44 GO TO 14 C C CONSTANTS USED IN TRANSONIC SOLUTION AXI 48 GC= (THO*GAM/QT=THR)/S[X/(3+iE) GC= (THO*GAM-Q-2-SDO*OH)[E-10-20-2-SDO*O+0(2+iE))/SIX AXI 55 GC= (THO*GAM-Q-2-SDO*OH)[E-10-20-2-SDO*O+0(2-1E))/SIX AXI 55 GC= (THO*GAM-Q-2-SDO*OH)[E-10-20-2-SDO*O+0(2-1E))/SIX AXI 55 GC= (THO*GAM-Q-2-SDO*OH)[E-10-0(0-0)/O+0)/O+01-00-0 AXI 56 GF= (36)2-D0*OHM (75)_D0*OHM (750-0)-00-0)/O+01-00-0 AXI 56 GF= (36)2-D0*OHM (750-0)-00-00-0)/O+01-00-00-00-00-				
DATA N3/4H 3RD/-N4/AH 4TH/-N5/AH 5TH/-N0/4H-DEG/ DIMENSION C(6) + D(4) + AX(150) + AXM(150) + AXMP(150) AXI 18 DIMENSION C(6) + D(4) + AX(150) + AXMP(150) AXI 22 IF (JQ-EQ-0.AND-JX-EQ-0) CALL OREZ (AXIS-2*750) AXI 23 IF (JQ-GT-0) GO TO 50 AXI 23 IF (JX-EQ-0) GO TO 2 C CARD USED TO OBTAIN INTERNAL STREAMLINES (JX > 0) AXI 26 C READ (5.93.END=91) ETAD-QM-XJ AXI 28 C JX=XJ IF (ETAD-EQ-SXTY) GO TO 1 AXI 31 ETA=ETAD/CONY AXI 32 IF (1E.EQ-0) SEETA AXI 33 IF (1E.EQ-1) SE=TWO*DSIN(HALF*ETA) AXI 33 APSI*=DPSI*=ETA/GT AXI 36 APACH=FMY(GPSI) RAX (G6+05*AMACH**2)**GA/AMACH)**QT AXI 38 GPSI=EPSI+ETA/OT AXI 38 GPSI=EPSI+ETA/OT AXI 39 GMACH=FMY(GPSI) RC**(166+05*GMACH**2)**GA/AMACH)**QT AXI 41 MP=DNE*THR**(RA-RG) GO TO 14 SE=QM*SEO C CONSTANTS USED IN TRANSONIC SOLUTION AXI 43 GG**(TWO*GAM/QT=THR)/SIX/(3*1E) GC**(TWO*GAM/QT=THR)/SIX/(3*1E) GC**(TWO*GAM/QT=THR)/SIX/(3*1E) GC**(TWO*GAM/QT=THR)/SIX/(3*1E) GC**(TWO*GAM/QT=THR)/SIX/(3*1E) GC**(GAM**(GAM*-2,250+0*1E-26*50+0)**,750+0**(6-1E))/TLV/(3*1E) GC**(GAM**(GAM*-2,250+0**1E-26*50+0)**,750+0**(6-1E))/TLV/(3*1E) AXI 53 HB**(14.D**O*GAM-75*D**,00+0*H\$*1E) AXI 54 GF**(36)22.D**O*GAM*-15*1D**(00+0)**,00+0)**(00+0)**(00+0)**,00+0)** GF**(36)22.D**O*GAM*-15*1D**(00+0)**,00+0)** AXI 56 GF**(36)22.D**O*GAM*-15*1D**(00+0)**(00+0)**(00+0)** AXI 56 GF**(36)22.D**O*GAM*-15*1D**(00+0)**(00+0)** AXI 56 GF**(36)20.D**O*GAM*-15*1D**(00+0)**(00+0)** AXI 56 GF**(36)20.D**O*GAM*-15*1D**(00+0)** AXI 56 GF**(36)20.D**O*GAM*-15*1D**(00+0)** AXI 56 GF**(36)22.D**O*GAM*-15*1D**(00+0)** AXI 56 GF**(36)22.D**O*GAM*-15*1D**(00+0)** AXI 56 GF**(36)22.D**O*GAM*-15*1D**(00+0)** AXI 56 GF**(36)22.D**O*GAM*-15*1D**(00+0)**(00+0)** AXI 56 GF**(36)22.D**O*GAM*-15*1D**(00+0)** AXI 56 GF**(36)22.D**O*GAM*-15*1D**(00+0)** AXI 56 GF**(36)22.D**O*GAM*-15*1D**(00+0)** AXI 56 GF**(36)22.D**O*GAM*-15*1D**(00+0)**(30+0)** AXI 56 GF**(36)22.D**O*GAM*-15*1D**(00+0)**(30+0)** AXI 56 GF**(36)22.D**O*GAM*-15*1D**(00+0)**(30+0)** AXI 56 GF**			AXI	17
C HPI=9,D+1/CONV IF (JQ.EQ.0.AND,JX.EQ.0) CALL OREZ (AXIS.2*750) AXI 22 IF (JQ.EQ.0.AND,JX.EQ.0) CALL OREZ (AXIS.2*750) AXI 22 IF (JQ.EQ.0.GO TO 50 AXI 23 IF (JX.EQ.0) GO TO 2 AXI 25 C C CARD USED TO OBTAIN INTERNAL STREAMLINES (JX > 0) AXI 27 READ (5.93.END=91) ETAD.QH.XJ AXI 27 AXI 27 READ (5.93.END=91) ETAD.QH.XJ AXI 30 IF (ETAD.EQ.SXTY) GO TO 1 AXI 30 IF (IE.EQ.0) SEETA AXI 32 IF (IE.EQ.0) SEETA AXI 33 IF (IE.EQ.1) SEETA AXI 33 IF (IE.EQ.1) SEETA AXI 35 APSI=PPSI-ETA/OT AXI 35 APSI=PPSI-ETA/OT AXI 37 RAM(G6+G5*AHACH*2)**GA/AHACH)**QT AXI 37 GRACH=FHY(APSI) RG*(166+G5*GHACH*2)**GA/GHACH)**QT AXI 39 GRACH=FHY(APSI) RG*(166+G5*GHACH*2)**GA/GHACH)**QT AXI 40 GO TO 14 SEEQM*SEO AXI 43 I SEEQM*SEO AXI 43 I SEEQM*SEO AXI 43 I SEEQM*SEO AXI 44 AXI 45 GO TO 14 GC*(TWO*GAM/QT=THR)/SIX/(3+IE) GC**(TWO*GAM/QT=THR)/SIX/(3+IE) GC**(TWO*GAM/QT=THR)/SIX/(3+IE) GC**(TWO*GAM/QT=THR)/SIX/(3+IE) GC**(GAM*CGAM*2,25D+0*IE-16.5D+0)**,75D+0*(6-IE))/TLV/(3-IE) GC**(GAM*CGAM*2,25D+0*IE-16.5D+0)**,75D+0*(6-IE))/TLV/(3-IE) GC**(GAM*(GAM*2,25D+0*IE-16.5D+0)**,75D+0*(6-IE))/TLV/(3-IE) GC**(GAM*(GAM*2,25D+0*IE-16.5D+0)**,75D+0*(6-IE))/TLV/(3-IE) GC**(GAM*(GAM*2,25D+0*IE-16.5D+0)**,75D+0*(6-IE))/TLV/(3-IE) GC**(GAM*CGAM*2,25D+0*IE-16.5D+0)**,75D+0*(6-IE))/TLV/(3-IE) GC**(GAM*CGAM*2,25D+0*IE-16.5D+0)**,75D+0*(6-IE))/TLV/(3-IE) GC**(GAM*GGAM*2,25D+0*IE-16.5D+0)**,75D+0*(6-IE))/TLV/(3-IE) GC**(GAM*GGAM*2,25D+0*IE-16.5D+0)**,75D+0*(6-IE))/TLV/(3-IE) GC**(GAM*GGAM*2,25D+0*IE-16.5D+0)**,75D+0*(6-IE))/TLV/(3-IE) GC**(GAM*GGAM*2,25D+0*IE-16.5D+0)**,75D+0*(6-IE))/TLV/(3-IE) GC**(GAM*GGAM*2,25D+0*IE-16.5D+0)**,75D+0*(6-IE))/TLV/(3-IE) GC**(GAM*GGAM*2,25D+0*IE-16.5D+0)**,75D+0*(6-IE))/TLV/(3-IE) GC**(GAM*GGAM*2,25D+0*IE-16.5D+0)**,75D+0*(6-IE))/TLV/(3-IE) GC**(GAM*GGAM*2,25D+0*IE-16.5D+0)**,75D+0*(6-IE))/TLV/(3-IE) GC**(GAM*CGAM*2,25D+0*IE-16.5D+0)**,75D+0*(6-IE))/TLV/(3-IE) GC**(GAM*GGAM*2,25D+0*IE-16.5D+0)**,75D+0*(6-IE))/TLV/(3-IE) GC**(GAM*GGAM*2,25D+0*IE-16.5D+0)**,75D+0*(6-IE))/TLV/(3-IE) GC**(GAM*GGAM*2,25D*0*IE-16.5D+0)**,75D+0*(6-IE))/TLV/			AXI	18
HPI=9_0+1/CONV				
HPI=9_0+1/CONV	c		AXI	20
IF (JQ.0FT.0) GO TO SO	-	HPI=9.D+1/CONV	AXI	21
TF (JX.EQ.0) GO TO 2 C CARD USED TO OBTAIN INTERNAL STREAMLINES (JX > 0) AXI 26 C READ (5.93.END=91) ETAD.QM.XJ AXI 28 C JX=XJ IF (ETAD.EQ.SXTY) GO TO 1 ETA=ETAD/CONV AXI 30 IF (IE.EQ.0) SE=ETA AXI 33 IF (IE.EQ.0) SE=TMO*OSIN(HALF*ETA) CSE=DCOS(6TA) ANI 35 APSI=BPSI-ETA/GT AMACH=FMY (APSI) RA# ((G6.G5*AMACH**2)**GA/AMACH)**QT GMACH=FMY (GPSI) RG* ((G6.G5*AMACH**2)**GA/GMACH)**QT AXI 39 GMACH=FMY (GPSI) RG* ((G6.G5*GMACH**2)**GA/GMACH)**QT AXI 40 GO TO 14 C CONSTANTS USED IN TRANSONIC SOLUTION C C CONSTANTS USED IN TRANSONIC SOLUTION AXI 45 GE=(THR*(B*1E)*FOUR*GAM/QT)/THR/(7*IE) GAM*(FFTN*(2-6*IE)**GAM)/TLV/(5*IE) GJ=(GM*(GAM**2.25D+O*IE=16.5D+O)**2.25D+O*(2*IE))/SIX AXI 52 GR#(FTN*(1-9*IE)**GAM)/(15*IE)/18**D+O AXI 55 GG=*(GM*(GAM**2.25D+O*IE=16.5D+O)**2.25D+O*(2*IE))/SIX AXI 55 GG=*(360*(65*2.D+O*GM*(75).D+O*(60-10))/(6912.D+O AXI 55 GG=*(3610*C)**O*(675).D+O*(60-10))/(6912.D+O AXI 56 GF*(3612.D+O*GM*(75).D+O*(60-10))/(6912.D+O AXI 56		IF (JQ.EG.O.AND.JX.EG.O) CALL OREZ (AXIS.2*750)	AXI	22
C CARD USED TO OBTAIN INTERNAL STREAMLINES (JX > 0) READ (5,93,END=91) ETAD-QH,XJ AXI 28 AXI 28 AXI 28 AXI 28 AXI 30 IF (ETAD.EQ.SXTY) GO TO 1 ETA=TAD/CONV AXI 31 IF (1E.EQ.0) SE=ETA AXI 33 IF (1E.EQ.1) SE=ETA AXI 34 CSE=DCOS(ETA) APSI=BPSI-ETA/OT AMACH=FMV (APSI) RA=((66+G5*AMACH**2)**GA/AMACH)**QT AXI 37 RA=((66+G5*AMACH**2)**GA/AMACH)**QT AXI 39 GMACH=FMV (GPSI) AXI 40 RG=(166+G5*GMACH**2)**GA/GMACH)**QT AXI 40 RG=(166+G5*GMACH**2)**GA/GMACH)**QT AXI 40 CC CONSTANTS USED IN TRANSONIC SOLUTION CC CONSTANTS USED IN TRANSONIC SOLUTION AXI 45 GC=(TWO*GAM/QT=THR)/SIX/(3*1E) GC=(TWO*GAM/QT=THR)/SIX/(3*1E) GC=(TWO*GAM/QT=THR)/SIX/(3*1E) GC=(TWO*GAM/QT=THR)/SIX/(3*1E) GC=(GAM*(GAM**2.250*0*)E-26.5D*0)**2.25D*0**(6-IE))/TLV/(3*IE) GX=(GAM**(GAM**2.25D*0*)E-16.5D*0)**2.25D*0**(6-IE))/TLV/(3*IE) AXI 52 GR=(FFTN-(1-9*IE)**GAM)/TLV/(5*IE) AXI 53 HB=(14.0*0*GAM+75.0*0*)E-10**(0*1E)**		IF (JQ+GT+0) GO TO 50	AXI	23
C CARD USED TO OBTAIN INTERNAL STREAMLINES (JX > 0) READ (5+93+END=91) ETAD+QM+XJ AXI 28 AXI 29 JX=XJ IF (ETAD+EQ+SXTY) GO TO 1 AXI 32 IF (1E+EQ+D) SE=ETA IF (1E+EQ+D) SE=ETA AXI 32 IF (1E+EQ+D) SE=TWO+DSIN(HALF+ETA) AXI 35 APS1=BPS1-ETA/OT AXI 35 APS1=BPS1-ETA/OT AXI 36 GPS1=EPS1+ETA/OT AXI 37 RA=((G6+G6+AAACH+0+2)++GA/AMACH)++QT AXI 38 GPS1=EPS1+ETA/OT AXI 39 GMACH=FMV(GPS1) AXI 39 GMACH=FMV(GPS1) AXI 40 RG=((G6+G5+GAACH+0+2)++GA/GMACH)++QT AXI 41 MP=DNNE-THR=(RA-RG) GO TO 14 AXI 42 GO TO 14 C CONSTANTS USED IN TRANSONIC SOLUTION AXI 45 GC=(TMO+GAM/QT+THR)/SIX/(3+1E) GC=(TMO+GAM/QT+THR)/SIX/(3+1E) GC=(TMC+GAM+Q-SD+O+O+CA+TE)/SD+O+(6-IE))/TLV/(3-IE) AXI 49 GM=(GAM+(GAM+Q-SD+O+O+CA+TE)/SD+O+(6-IE))/TLV/(3-IE) AXI 49 GM=(GAM+(GAM+Q-SD+O+O+CA+TE)/SD+O+(6-IE))/SIX AXI 50 GM=(GAM+(GAM+Q-SD+O+O+CA+TE)/SD+O+(6-IE))/SIX AXI 55 GM=(GM+(GAM+P-S-D+O+AB-IE)/(27O+D+O+B+IE) AXI 55 GD=(GM+(6S-D+O+GM+1319-D+O)+0)/6912-D+O AXI 55 GF=(3612-D+O+GM+751-D+O+GM+75+D+O)/2880-D+O AXI 55		IF (JX.EQ.0) GO TO 2	AXI	
C READ (5+93+END=91) ETAD+QH+XJ AXI 27 AXI 28 AXI 30 IF (ETAD+EQ-SXTY) GO TO 1 AXI 31 ETA=ETAD/CONV AXI 32 IF (1E+EQ-0) SE=ETA AXI 33 IF (1E+EQ-1) SE=TMO+DSIN(HALF+ETA) AXI 33 CSE=DCOS(ETA) AXI 35 APSI=BPSI-ETA/OT AXI 36 AMACH=FMV(APSI) AXI 36 AMACH=FMV(APSI) AXI 36 GMACH=FMV(APSI) AXI 38 GPSI=EPSI+ETA/OT AXI 38 GPSI=EPSI+ETA/OT AXI 39 GMACH=FMV(GPSI) AXI 39 GMACH=FMV(GPSI) AXI 40 RG=(166+65=GMACH+=2)++GA/GMACH)++QT AXI 41 MP=ONE+THR=(RA-RG) AXI 42 GO TO 14 AXI 43 1 SE=QM+SEO AXI 44 GO TO 14 AXI 45 GO TO 14 AXI 46 C CONSTANTS USED IN TRANSONIC SOLUTION AXI 47 GC=(TMP+(B+1E)=FOUR+GAM/CT)/THR/(7+1E) AXI 49 GM=(FFTN+(2-6+IE)+GAM/CT)/THR/(7+1E) AXI 49 GM=(GAM+(GAM+2-250+0+IE-16+50+0)+2-250+0+(6-IE))/TLV/(3-IE) AXI 50 GM=(GAM+(GAM+2-250+0+IE-16+50+0)+2-250+0+(2+IE))/SIX AXI 53 HB=(14+0)+O+GAM+7-5-0+0+18+IE)/(270+0+0+18+IE) AXI 53 GD=(GM+(650+0+6AM+7-5-0+0+18+IE)/(270+0+0+18+IE) AXI 55 GF=(3612+0+0+6M+7-5-10+0+6M+7-5+0+0+0)/(2880+0+0)			IXA	
READ (5+93*END=91) ETAD*QH*XJ AXI 28 AXI 29 IF (ETAD*EQ**,SXTY) GO TO 1 ETA=ETAD/CONV AXI 31 IF 11E**,EQ**,D SE**,ETA AXI 33 IF (1E**,EQ**,D SE**,ETA AXI 33 IF (1E**,EQ**,D SE**,ETA AXI 35 APSI**,EDST**,ETA/OT AXI 36 AMACH**,FMY (APSI) RA** (166**,GS**,AMACH**,PACT AXI 37 RA** (166**,GS**,AMACH**,PACT AXI 39 GMACH**,FMY (APSI) RG**,166**,GS**,AMACH**,PACT AXI 39 GMACH**,FMY (APSI) AXI 40 RG**,166**,GS**,AMACH**,PACT AXI 40 RG**,166**,GS**,AMACH**,PACT AXI 40 RG**,166**,GS**,AMACH**,PACT AXI 40 RG**,166**,AMACH**,AM	С	CARD USED TO OBTAIN INTERNAL STREAMLINES (JX > 0)	AXI	
C JX=XJ IF (ETAD,EQ,SXTY) GO TO 1 AXI 30 ETA=ETAD/CONV AXI 32 IF (IE.EQ.0) SE=ETA IF (IE.EQ.0) SE=ETA AXI 32 AXI 33 IF (IE.EQ.1) SE=TWO*OSIN(HALF*ETA) AXI 34 CSE=DCOS(ETA) AXI 35 APSI=BPSI-ETA/OT AXI 35 APSI=BPSI-ETA/OT AXI 36 GPSI=EPSI+ETA/OT AXI 37 RA=((G6+G\$*AMACH**2) **GA/AMACH) **QT AXI 38 GPSI=EPSI+ETA/OT AXI 38 GPSI=EPSI+ETA/OT AXI 38 GPSI=EPSI+ETA/OT AXI 38 GPSI=EPSI+ETA/OT AXI 40 RG=(166+G\$*GMACH**2) **GA/AMACH) **QT AXI 40 RG=(166+G\$*GMACH**2) **GA/GMACH) **QT AXI 41 MP=ONE+THR*(RA-RG) GO TO 14 AXI 42 GO TO 14 AXI 43 C C C CONSTANTS USED IN TRANSONIC SOLUTION AXI 46 GC=(THR*(B*1E)=FOUR*GAM/OT)/THR/(7*1E) GAX(47) GC=(TWO*GAM/QT*THR)/SIX/(3*1E) GC=(THR*(B*1E)=FOUR*GAM/OT)/THR/(7*1E) GAX(47) GC=(TMO*GAM*(CAM**2,25D**0*1E-26*5D**0)**,75D**0**(6-IE))/TLV/(3-IE) AXI 49 GR=(GAM*(GAM**2,25D**0*1E-16**5D**0)**,75D**0**(6-IE))/TLV/(3-IE) AXI 50 GR=(GAM*(GAM**2,25D**0*1E-16**5D**0)**,25D**0**(2*1E))/SIX AXI 53 GR=(GAM**(GAM**3,5D**0**1B**1E)/(270**0**0**1B**1E) AXI 55 GD=(GM**(652**0**0**GM**131**0**0**0**0**0**0**0**0**0**0**0**0**0	С		AXI	27
JXEXJ IF (ETAD-EG,SXTY) GO TO 1 ETA=ETAD/CONV AXI 32 IF (IE-EQ.0) SE=ETA IF (IE-EQ.1) SE=TWO=DSIN(HALF#ETA) CSE=DCOS(ETA) AXI 35 APSI=BPSI-ETA/OT AXI 36 AMACH=FMY(APSI) RAXI (GG+GG=AMACH=02)**GA/AMACH)**QT AXI 37 GMACH=FMY(GPSI) RGX: (GG+GG=GMACH=02)**GA/GMACH)**QT AXI 39 GMACH=FMY(GPSI) AXI 40 RG=(IGG+GG=GMACH=02)**GA/GMACH)**QT AXI 40 AXI 41 MP=ONE+THR*(RA=RG) GO TO 14 AXI 43 1 SE=MP*SEO GO TO 14 C CONSTANTS USED IN TRANSONIC SOLUTION AXI 45 GC=(THO*GAM/QT=THR)/SIX/(3+IE) GC=(THO*GAM/QT=THR)/SIX/(3+IE) GC=(THO*GAM/QT=THR)/SIX/(3+IE) GC=(THO*GAM/QT=THR)/SIX/(3+IE) GC=(GAM*(GAM*2-250+0*IE-26*5D+0)+*,75D+0*(6-IE))/TLV/(3-IE) AXI 49 GM=(GAM*(GAM*2-250+0*IE-16*5D+0)+2-25D+0*(2+IE))/SIX AXI 52 GR=(FFTN-(1*9*IE)*GAM)/(15+IE)/18.0+0 AXI 55 GD=(GM*(652-D+0*GM+319-D+0)+1000-D+0)/6912-D+0 AXI 55 GD=(GM*(552-D+0*GM+1319-D+0)+1000-D+0)/6912-D+0 AXI 55 GF*(3612-D+0*GM+75+D+0)/2880-D+0 AXI 55		READ (5+93+END=91) ETAD+QM+XJ		
IF (ETAD_EQ.SXTY) GO TO 1 ETA=ETAD/CONV AXI 32 IF 1IE.EQ.0) SE=ETA AXI 33 IF (IE.EQ.1) SE=ETA AXI 34 CS=DCOS(CTA) AXI 35 APSI=BPSI-ETA/OT AXI 36 AMACH=FMY (APSI) RA=((G6+GS=AMACH=*2)**GA/AMACH)**QT AXI 37 RA=((G6+GS=AMACH**2)**GA/AMACH)**QT AXI 39 GMACH=FMY (GPSI) AXI 40 RG=(1G6+GS=GMACH**2)**GA/GMACH)**QT AXI 40 RG=(1G6+GS=GMACH**2)**GA/GMACH)**QT AXI 40 RG=(1G6+GS=GMACH**2)**GA/GMACH)**QT AXI 40 GO TO 14 AXI 42 GO TO 14 C C CONSTANTS USED IN TRANSONIC SOLUTION AXI 45 GC=(TWO*GAM/QT=THR)/SIX/(3*IE) GC=(TWO*GAM/QT=THR)/SIX/(3*IE) GC=(TWO*GAM/QT=THR)/SIX/(3*IE) GC=(TWO*GAM/GT=THR)/SIX/(3*IE) GC=(GAM*(GAM**2.250*0*IE=16.550*0)*2.250*0*(6-IE))/TLV/(3*IE) AXI 49 GR=(FFTN*(1**9*IE)**GAM)/TLV/(5*IE) AXI 49 GR=(GAM**(GAM**2.250*0*IE=16.550*0)*2.250*0*(6-IE))/TLV/(3*IE) AXI 52 GR=(FFTN*(1**9*IE)**GAM)/TLV/(5*IE) AXI 53 HB=(14.0**0*GAM**75**D**0*(15*IE)/18.0**0 AXI 55 GD=(GM**(652.0**0*GM**1319**D**0)*0*(0*12**0**0 AXI 55 GD=(GM**(652.0**0*GM**1319**D**0)*0*(0*12**0**0 AXI 55 GF*(3612**0**0**0**C**10**0**0**0**0**0**0**0**0**0**0**0**0	C			
ETA=ETAD/CONV IF (IE.EQ.0) SE=ETA IF (IE.EQ.1) SE=TWO*OSIN(HALF*ETA) AXI 34 CSE=DCOS(ETA) AXI 35 APSI=BPSI*ETA/OT AXI 35 AMACH=FMV (APSI) RAX((36+65*AMACH*2)**GA/AMACH)**QT GMACH=FMV (GPSI) RG=(166+65*GMACH*2)**GA/GMACH)**QT AXI 38 GPSI=EPSI*ETA/OT AXI 39 GMACH=FMV (GPSI) AXI 40 RG=(166+65*GMACH*2)**GA/GMACH)**QT AXI 41 MP=ONE+THR*(RA-RG) GO TO 14 AXI 42 GO TO 14 C CONSTANTS USED IN TRANSONIC SOLUTION AXI 46 CC CONSTANTS USED IN TRANSONIC SOLUTION AXI 46 GC=(TMO*GAM/QT*THR)/SIX/(3*IE) GC=(TMO*GAM/QT*THR)/SIX/(3*IE) GMX(FFTN*(2*6*IE)**GOAM)/TLV/(5*IE) GJ=(GAM*(GAM*2,25D*0*)1E-26**SD*0)**C**JD*0**(6*IE))/TLV/(3*IE) AXI 49 GR*(FFTN*(1*9*IE)**GAM)/(15*IE)/18**D**0 AXI 53 GR*(FFTN*(1*9*IE)**GAM)/(15*IE)/18**D**0 AXI 55 GD*(GM*(652**D*0*GM*131**D*0)**O*0*(0*12**D*0) AXI 55 GD*(GM*(652**D*0*GM*131**D*0)**O*0*(0*12**D*0) AXI 55 GD*(GM*(652**D*0*GM*131**D*0)**O*0*(0*12**D*0) AXI 55 GF*(3612**D*0*CM**(751**D*0*O*0*D*0)/6912**D*0 AXI 57				
TF (IE.EQ.1) SE=ETA				
IF (IE.EQ.1) SE=TWO+OSIN(HALF+ETA) CSE=DCOS(CTA) ANI 35 APSI=DPSI-ETA/OT ANI 35 AMACH=FMY(APSI) RA=((G6+OSF+MACH+*2)*+GA/AMACH)**QT ANI 37 RA=((G6+OSF+MACH+*2)*+GA/AMACH)**QT ANI 39 GMACH=FMY(GPSI) RG=(1G6+OSF+GMACH+*2)*+GA/GMACH)**QT ANI 40 RG=(1G6+OSF+GMACH+*2)*+GA/GMACH)**QT ANI 40 RG=(1G6+OSF+GMACH+*2)*+GA/GMACH)**QT ANI 41 ANI 42 GO TO 14 ANI 43 1 SE=QM*SEO ANI 43 GO TO 14 C C CONSTANTS USED IN TRANSONIC SOLUTION ANI 45 GC=(TWO*GAM/QT=THR)/SIX/(3*IE) GC=(TWO*GAM/QT=THR)/SIX/(3*IE) GH=(FFTN*(2*6*IE)**GAM)/TLV/(5*IE) GJ=(GAM*(GAM*0,250*0*IE=16.5D*0)*2.25D*0*(6*IE))/TLV/(3*IE) GR=(GAM*(GAM*0,250*0*0*IE=16.5D*0)*2.25D*0*(6*IE))/SIX ANI 52 GR=(FFTN*(1*9*IE)**GAM)/(1*IE)/18.D*0 ANI 55 GR=(GAM*(GAM*0,250*0*0*IE*16.5D*0)*2.25D*0*(2*IE))/SIX ANI 52 GR=(FFTN*(1*9*IE)**GAM)/(1*IE)/18.D*0 ANI 55 GD=(GM*(652*D*0*GAM*131*D*0*0*0*0*0*0*0*0*0*0*0*0*0*0*0*0*0*0*				
CSE=DCOS(ETA) APSI=BPSI-ETA/OT AMACH=FMY(APSI) AXI 35 AMACH=FMY(APSI) RAX(G6+G5+AMACH+*2)++GA/AMACH)+*QT AXI 38 GPSI=EPSI+ETA/OT AXI 38 GPSI=EPSI+ETA/OT AXI 39 GMACH=FMY(GPSI) AXI 40 RG=(166+G5+GMACH+*2)++GA/GMACH)+*QT AXI 41 MP=ONE+THR*(RA-RG) GO TO 14 AXI 42 GO TO 14 AXI 43 1 SE=CM*SEO AXI 44 GO TO 14 AXI 45 C CONSTANTS USED IN TRANSONIC SOLUTION AXI 46 CC CONSTANTS USED IN TRANSONIC SOLUTION AXI 47 GC=(TMO*GAM/QT+THR)/SIX/(3+IE) GC=(THR*(B+1E)=FOUR*GAM/QT)/THR/(7+IE) AXI 49 GHX(FFTN+(2-6+IE)+GAM)/TLV/(5+IE) GJ=(GAM*(GAM+2-25D+0#1E-16-5D+0)+2-25D+0#(6-IE))/TLV/(3-IE) AXI 50 GR=(GAM*(GAM+2-25D+0#1E-16-5D+0)+2-25D+0#(2+IE))/SIX AXI 53 HB=(14-0)+0*GAM+7-5.0+0+18+IE)/(270.0+0+18*IE) AXI 55 GD=(GM*(652-0+0+6M*(751-0+0+6M*75+0+0))/2880-0+0 AXI 55 GF*(3612-0+0+6M*(751-0+0+6M*75+0+0))/2880-0+0				
APSI=BPSI=ETA/QT AMACH=FMY(APSI) AXI 36 AMACH=FMY(APSI) AXI 37 RA=((G6-G6-MACCH+0-2)++GA/AMACH)+0QT AXI 38 GPSI=EPSI+ETA/QT AXI 39 GMACH=FMY(GPSI) AXI 40 RG=((G6-G6-G6-MACCH+0-2)++GA/GMACH)+0QT AXI 41 MP=ONE+THR=(RA-RG) AXI 42 GO TO 14 AXI 43 1 SE=MM*SEO GO TO 14 AXI 43 C CONSTANTS USED IN TRANSONIC SOLUTION AXI 45 C CONSTANTS USED IN TRANSONIC SOLUTION AXI 46 GC=(TMO*GAM/QT=THR)/SIX/(3+IE) GC=(TMO*GAM/QT=THR)/SIX/(3+IE) AXI 49 GH=(FFTN+(2-G+IE)+GAM)/TLV/(5+IE) AXI 49 GH=(FFTN+(2-G+IE)+GAM)/TLV/(5+IE) AXI 51 GK=(GAM*(GAM+2-25D+0+IE-26-5D+0)+-75D+0+(6-IE))/TLV/(3-IE) AXI 52 GR=(FFTN-(1+9+IE)+GAM)/(15+IE)/18.D+0 AXI 53 GM=(GAM+GAM-75-D+0+18+IE)/(270-D+0+18+IE) AXI 55 GD=(GM*(652-D+0+GM+1319-D+0)+1000-D+0)/6912-D+0 AXI 55 GD=(GM*(3612-D+0+GM+1519-D+0)+1000-D+0)/6912-D+0 AXI 55 GF=(3612-D+0+GM+1519-D+0)+1000-D+0)/6912-D+0 AXI 55				
AMACH=FMY(APST) RA=((G6+G5+AMACH+0+2)+GA/AMACH)+0T RA=((G6+G5+AMACH+0+2)+GA/AMACH)+0T RA=(G6+G5+GAMACH+0+2)+GA/AMACH)+0T RG=(IG6+G5+GAMACH+0+2)+GA/GMACH)+0T RG=(IG6+G5+GAMACH+0+2)+GA/GMACH)+0T RG=(IG6+G5+GAMACH+0+2)+GA/GMACH)+0T RG=(IG6+G5+GAMACH+0+2)+GA/GMACH)+0T RG=(IG6+G5+GAMACH+0+2)+GA/GMACH)+0T RG=(G0 TO 14 AXI 43 AXI 43 AXI 44 RG=(G0 TO 14 CC CONSTANTS USED IN TRANSONIC SOLUTION AXI 45 CC CONSTANTS USED IN TRANSONIC SOLUTION AXI 45 GC=(TW0+GAM/QT+THR)/SIX/(3+IE) GC=(TW0+GAM/QT+THR)/SIX/(3+IE) AXI 49 GH=(FFTN+(2+6+IE)+FOUR+GAM/QT)/THR/(7+IE) AXI 49 GH=(FFTN+(2+6+IE)+FOUR+GAM/QT)/THR/(7+IE) AXI 50 GJ=(GAM+(GAM+0,250+0+IE-16+50+0)+2,250+0+(6+IE))/TLV/(3+IE) AXI 52 GR=(FFTN-(1+9+IE)+GAM)/(15+IE)/18+0+0 AXI 53 HB=(14+0+0+GAM+75+0+0+18+IE)/(270+0+0+18+IE) AXI 55 GD=(GM+(652+0+0+GM+1319+0+0)+1000+0+0)/6912+0+0 AXI 55 GF=(3612+0+0+GM+175+0+0+10+0+0+0)/2880+0+0 AXI 57				
RA=((G6+G5=AMACH=02)+eGA/AMACH)+eQT				
GPSI=EPSI+ETA/GT GMACH=FMy(GPSI) AXI 39 GMACH=FMy(GPSI) AXI 40 RG=(1G6-G9=GMACH=*2)**GA/GMACH)**QT AXI 41 MP=ONE+THR*(RA=RG) AXI 42 GO TO 14 AXI 43 1 SE=MM*SEO AXI 45 GO TO 14 C C CONSTANTS USED IN TRANSONIC SOLUTION AXI 45 GC=(THO*GAM/QT=THR)/SIX/(3+IE) GC=(THO*GAM/QT=THR)/SIX/(3+IE) GH=(FFTN+(2-G*IE)**GAM)/TLV/(5+IE) GJ=(GAM*(GAM*2,250+0)**IE-2G**5D+0)**,75D+0**(6-IE))/TLV/(3-IE) AXI 45 GR=(GAM*(GAM*2,250+0)**IE-16**5D+0)**,75D+0**(6-IE))/TLV/(3-IE) AXI 52 GR=(FFTN-(1*9*IE)**GAM)/(15*IE)/18**D+0 AXI 53 HB=(14**D**O**GAM*75**,D+0)**IB**IE)/(270**D+0)**IB**IE) AXI 55 GD=(GM**(652**D+0)**GAM*1319**D+0)**(0**D+0)**O**D+0 AXI 55 GD=(GM**(652**D+0)**GM*1319**D+0)**(0**D+0)**O**D+0 AXI 55 GD=(GM**(652**D+0)**GM*1319**D+0)**(0**D+0)**O**D+0 AXI 55 GD=(GM**(652**D+0)**GM*1319**D+0)**(0**D+0)**O**D+0 AXI 55 GF**(3612**D+0)**O**(0**T51**D+0)**(0**D+0)**O**D+0 AXI 55				
GMACH=FMV(GPSI) RG x(166+65=6MACH=*2)**GA/GMACH)**QT AXI 40 RG x(166+65=6MACH=*2)**GA/GMACH)**QT AXI 42 GO TO 14 SE x x x x x x x x x x x x x x x x x x x				
RG=([G6+G5=GMACH=*2]*=GA/GMACH)*=QT MP=ONE+THR*(RA=RG) GO TO 14 SE=QM*SEO GO TO 14 C CONSTANTS USED IN TRANSONIC SOLUTION C CONSTANTS USED IN TRANSONIC SOLUTION AXI 45 GE=(THR*(B+1E)=FOUR*GBM/GI)*THR/(7+IE) GH=(FFTN+(2-6*IE)*GAM)*/TLV/(5+IE) GJ=(GAM*(GAM*2.250+0*IE-26.50+0)*.750+0*(6-IE))*/TLV/(3-IE) GR=(GAM*(GAM*2.250+0*IE-16.50+0)*2.250+0*(2+IE))*/SIX HB=(14.0+0*GAM*75.0+0*18*IE)*/(270.0+0*18*IE) GP=(GM*(652.0+0*GM*1319.0+0)*1000.0+0)*/6912.0+0 AXI 55 GD=(GM*(652.0+0*GM*1319.0+0)*1000.0+0)*/6912.0+0 AXI 55 GF=(3612.0+0*0+0*(751.0+0*H0*75*4.0+0))*/2880.0+0 AXI 55				
MP=ONE+THR*(RA=RG)				
GO TO 14 1 SE=QM*SEO				
1 SE=QM+SEO GO TO 14 GO TO 14 AXI 45 C C C CONSTANTS USED IN TRANSONIC SOLUTION AXI 47 2 GC=(TWO+GAM/QT+THR)/SIX/(3+IE) GE=(THR+(B+IE)=FOUR+GAM/QT)/THR/(7+IE) GH=(FFTN+(2-6+IE)+GAM)/TLV/(5+IE) GJ=(GAM+(GAM+9.25D+0+IE-26.5D+0)+.75D+0+(6-IE))/TLV/(3+IE) AXI 50 GK=(GAM+(GAM+2.25D+0+IE-26.5D+0)+2.25D+0+(2+IE))/5IX AXI 52 GR=(FFTN-(1+9+IE)+GAM)/(15+IE)/18.D+0 AXI 53 HB=(14.D+0+GAM-75.D+0+18+IE)/(270.D+0+18+IE) AXI 54 IF (IE.EQ.0) GO TO 3 AXI 55 GD=(GM+(652.D+0+GM+1319.D+0)+1000.D+0)/6912.D+0 AXI 56 GF=(3612.D+0+6M+(751.D+0+6M+75+D+0))/2880.D+0 AXI 57				
GO TO 1+ C CONSTANTS USED IN TRANSONIC SOLUTION AXI 46 C CONSTANTS USED IN TRANSONIC SOLUTION AXI 47 2 GC#(TWO*GAM/QT=THR)/SIX/(3+IE) AXI 48 GE#(THR*(8+IE)=FOUR*GAM/QT)/THR/(7+IE) AXI 49 GH#(FFTN+(2-6+IE)=GAM)/TLV/(5+IE) GJ#(GAM*(GAM+0,250+0+IE-26+50+0)+0,750+0*(6-IE))/TLV/(3-IE) AXI 51 GK#(GAM*(GAM+0,2,50+0+IE-16+50+0)+0,2,250+0*(2+IE))/SIX AXI 52 GR#(FFTN-(1+9*IE)=GAM)/(15+IE)/18.0+0 AXI 53 HB#(14.0+0*GAM+75.0+0+18*IE)/(270.0+0+18*IE) AXI 54 IF (IE.Eq.0) GO TO 3 GD#(GM*(652.0+0*GM+1319.0+0)+0)0+0)/6912.0+0 AXI 55 GF#(3612.0+0+0*GM*(751.0+0+GM*75*,0+0))/2880.0+0 AXI 57				
C CONSTANTS USED IN TRANSONIC SOLUTION AXI 46 C CONSTANTS USED IN TRANSONIC SOLUTION AXI 47 2 GC*(TWO*GAM/QT*THR)/SIX/(3*IE) AXI 48 GE*(THR*(8*IE)=FOUR*GAM/QT)/THR/(7*IE) AXI 49 GH*(FFTN*(2*-6*IE)*GAM)/TLV/(5*IE) AXI 50 GJ*(GAM*(GAM*)*2.50*0*(1E-26*5D*0)**.75D*0*(6-IE))/TLV/(3*IE) AXI 50 GK*(GAM*(GAM*)*2.50*0*(1E-26*5D*0)**.25D*0*(2*IE))/SIX AXI 52 GR*(FFTN*(1*9*IE)*GAM)/(15*IE)/18*.D*0 AXI 53 HB*(14*.D*0*GAM*75*,D*0*18*IE)/(270*.D*0*18*IE) IF (IE*EQ.0) GO TO 3 AXI 55 GD*(GM*(652*,D*0*GM*131*).D*0)*(1000*.D*0)/6912*.D*0 AXI 55 GF*(3612*,D*0*GM*(751*,D*0*GM*75*,D*0))/2880*.D*0 AXI 57	1			
C CONSTANTS USED IN TRANSONIC SOLUTION 2 GC*(TWO*GAM/QT=THR)/SIX/(3*IE) GE*(THR*{B*IE})=FOUR*GAM/QT1/THR/(7*IE) GH*(FFTN*(2*6*IE)*GAM)/TLV/(5*IE) GJ*(GAM*(GAM*9.250*0*IE*26*50*0)*,750*0*(6*IE))/TLV/(3*IE) GK*(GAM*(GAM*2.250*0*IE*26*50*0)*2,250*0*(2*IE))/SIX GR*(FFTN*(1*9*IE)*GAM)/(15*IE)/18*0*0 AXI 53 HB*(14*,0*0*GAM*75*,0*0*0+18*IE)/(270*,0*0*0+18*IE) IF (IE*Eq.0) GO TO 3 GD*(GM*(652*,0*0*0*1319*,0*0*0)*0)/6912*,0*0 AXI 55 GF*(3612*,0*0*0*0*(755),0*0*0*75*,0*0*0)/2880*,0*0 AXI 57	^	60 10 14		
2 GC*(TWO*GAM/QT=THR)/SIX/(3+1E) GE*(THR*(8+1E)=FOUR*GAM/QT)/THR/(7+1E) AXI 49 GH*(FFTH*(2+6*1E)*GAM)/TLV/(5+1E) GJ*(GAM*(GAM+9.25D+0*1E-26.5D+0)*.75D+0*(6-1E))/TLV/(3-1E) GK*(GAM*(GAM+2.25D+0*1E-16.5D+0)*2.25D+0*(2+1E))/SIX AXI 52 GR*(FFTN-(1+9*1E)*GAM)/(15+1E)/18.D+0 AXI 53 HB*(14.D+0*GAM-75.D+0*18*1E)/(270.D+0*18*1E) AXI 54 IF (1E.EQ.0) GO TO 3 AXI 55 GD*(GM*(652.D+0*GM+1319.D+0)*1000.D+0)/6912.D+0 GF*(3612.D+0*GM*(751.D+0*GM*75*,D+0))/2880.D+0 AXI 57		CONCEANTS USED IN TRANSCRIES COLUTION		
GE=(TMR*{8+ E)=FOUR*GAM/OT)/THR/(7+IE) AXI 49 GH=(FFTN+(2-6=IE)*GAM)/TLV/(5+IE) AXI 50 GJ=(GAM*(GAM+9,250+0+IE-26-50+0)+*.750+0*(6-IE))/TLV/(3-IE) AXI 51 GK=(GAM*(GAM+2.250+0+IE-16.50+0)+2.250+0*(2+IE))/SIX AXI 52 GR=(FFTN-(1+9*IE)*GAM)/(15*IE)/18.0+0 AXI 53 HB=(14*0+0*GAM*-75*,0+0+18*IE)/(270*0+0+18*IE) AXI 54 IF (IE-EQ-0) GO TO 3 AXI 55 GD=(GM*(652-0+0*GM+1319+0+0)+1000*0+0)/6912*0+0 AXI 55 GF=(3612*0+0+6*M*(751*0+0+6*M*75*+0+0))/2880*0+0 AXI 57				
GH=(FFTN+(2-6+IE)+GAM)/TLV/(5+IE) GJ=(GAM+(GAM+0,250+0+IE-26+50+0)+.750+0+(6-IE))/TLV/(3+IE) AXI 51 GK=(GAM+(GAM+2.250+0+IE-16+50+0)+2.250+0+(2+IE))/SIX AXI 52 GR=(FFTN-(1+9+IE)+GAM)/(15+IE)/18+0+0 AXI 53 HB=(14+0+0+GAM-75+0+0+18+IE)/(270+0+0+18+IE) AXI 54 IF (IE-Eq.0) GO TO 3 AXI 55 GD=(GM+(652+0+0+GM+1319+0+0)+0)0+0)/6912+0+0 AXI 55 GF=(3612+0+0+6M+751+0+0+0M+754+0+0))/2880+0+0 AXI 57	E			
GJ=(GAM+(GAM+9.25D+0+1E-26.5D+0)+.75D+0+(6-IE))/TLV/(3-IE) AXI 51 GK=(GAM+(GAM+2.25D+0+1E-16.5D+0)+2.25D+0+(2+IE))/SIX AXI 52 GR=(FFTN-(1+9*IE)+GAM)/(15+IE)/18.D+0 AXI 53 HB=(14.D+0+GAM-75.D+0+18*IE)/(270.D+0+18*IE) AXI 54 IF (IE.EQ.0) GO TO 3 AXI 55 GD=(GM+(652.D+0+GM+1319.D+0)+0)00.D+0)/6912.D+0 AXI 56 GF=(3612.D+0+6M+(751.D+0+6M+75+.D+0))/2880.D+0 AXI 57				
GK=(GAM*(GAM*2.25D+0*FE=16.5D+0)*2.25D+0*(2+IE))/SIX AXI 52 GR*(FFTN-(1.9*E)*GAM)/(15*IE)/18.D+0 AXI 53 HB=(14.D+0*GAM-75.D+0*18*IE)/(270.D+0+18*IE) AXI 54 IF (1E.EQ.0) GO TO 3 AXI 55 GD=(GM*(652.D+0*GM+1319.D+0)*1000.D+0)/6912.D+0 AXI 56 GF*(3612.D+0*GM*(751.D+0*GM*75*,D+0))/2880.D+0 AXI 57				
GR#(FFTN-(1+9*1E)*GAM)/(15+1E)/18.D+0 AXI 53 HB#(14.D+0*GAM-75.0+0+18*1E)/(270.D+0+18*1E) AXI 54 IF (IE.EQ.0) GO TO 3 AXI 55 GD#(GM*(652.D+0*GM+1319.D+0)+1000.D+0)/6912.D+0 AXI 56 GF#(3612.0+0+0*6M*(751.D+0+GM+754.D+0))/2880.D+0 AXI 57				
MB=(14.D+0+GAM-75.D+0+18*IE)/(270.D+0+18*IE) AXI 54 IF (IE.EQ.0) GO TO 3 AXI 55 GD=(GM*(652.D+0+GM+1319.D+0)+1000.D+0)/6912.D+0 AXI 56 GF=(3612.D+0+GM*(751.D+0+GM*754.D+0))/2880.D+0 AXI 57				
IF (IE.EQ.0) GO TO 3 AXI 55 GD=(GM*(652.0+0.0GM+1319.0+0)+1000.0+0)/6912.0+0 AXI 56 GF=(3612.0+0+6M*(751.0+0+6M*754.0+0))/2880.0+0 AXI 57				
GD=(GM+(652.D+0+GM+1319.D+0)+1000.D+0)/6912.D+0 AXI 56 GF=(3612.D+0+GM+(751.D+0+GM+754.D+0))/2880.D+0 AXI 57				
GF=(3612-D+0+GM+(751-D+0+GM+754-D+0))/2880-D+0 AXI 57				
		GI=(909.D+0+GAM+(270.D+0+GAM+4)2.D+0))/10368.D+0	AXI	58

5x(GAM+(GAM+2708.D+0+2079.D+0)+2115.D+0)/82944.D+0 Cx(GAM+(2364.D+0+GAM-3915.D+0)+14337.D+0)/82944.D+0	IXA IXA	59 60
E=(GAM+(64.0+0+GAM+117.0+0)=1026.0+0)/1152.0+0	ÎXĀ	61
60 TO 4	ÂXÎ	62
00 10 4	AXI	63
XISYM FLOW, IF=1, QT=0.5, GAM=1.4, GC=0.10833333, GD=0.236		64
E=0.65833333, GF=1.40036111, GH=0.13055556, GI=0.202017746	9. AXI	65
J=-0.76833333. GK=-1.87333333. GR=0.003472222. GS=0.124581		66
B=-0.12986111. HC=0.1626331019. HE=-0.6395486111	AXI	67
	IXA	68
D=(GM+(32.D+0+GM-14.D+0)+221.D+0)/1080.D+0	AXI	69
F=(4230.D+0+GM*(21).D+0+GM*334.D+0))/3780.D+0	AXI	70
;I=(738.D+0+GAM+(273.D+0+GAM+82.D+0))/7560.D+0	AXI	71
S=(GAM+(GAM+782.0+0+3507.0+0)+7767.0+0)/272160.0+0	AXI	72
C=(GAM+(274.D+0#GAM-861.D+0)+4464.D+0)/17010.D+0	AX1	73
E=(GAM+(32.D+0+GAM+87.D+0)-561.D+0)/540.D+0	AXI	74
_	AXI	75
PLANAR FLOW. IE=0. QT=1.0. GAM=1.4. GC=-0.011111. GD=0.2041		76
GE=0.8761904762. GF=1.155513228. GH=0.29666667. GI=0.126915		77
SJ=-0.85111111. GK=-2.7733333. GR=0.05037037037, GS=0.05221		78
48=+0.2051851852, HC=0.2231416814, HE=-0.6971851852	IXA	79
	IXA IXA	80 81
CARD USED TO ESTABLISH INVISCIO PARAMETERS	IXA	82
(C 03 505-01) FT40 06 FM464 0M464 6M6.6E.00.YE	IXA	83
READ (5.93,END#91) ETAD.RC.FMACH.BMACH.CMC.SF.PP.XC	IXA	84
CARD USED TO CONTROL CALCULATIONS	IXA	
JARO OSED TO CONTROL CARCOCATIONS	ÎXĂ	86
EAD (5.92) MT.NT.IX.IN.IQ.MD.ND.NF.MP.MQ.JB.JX.JC.IT.LR.NX		87
CAO (3772) IV(IV(IV) IV) IV	AXI	68
_C=XC	AXI	89
F(XC.GT.ONE)LC=XC+ONE	IXA	90
NR=SIX+RC	AXI	91
IF=FMACH	AXI	92
IF (IE.EQ.1) MC=M1	IXA	93
IF (IE.EG.O) MC=M2	IXA	94
VOCON≖0	AXI	95
ETA=ETAD/CONV	IXA	96
IF (IE.EQ.O) SE=ETA	IXA	97
IF (IE.EQ.1) SE*TWO*DSIN(HALF*ETA)	AXI	98
IF (ETAU.EQ.SXTY) SE=ONE	IXA	99
SEO*SE	AXI	
ISE=SE	AXI	101
CSE=DCOS(ETA)	IXA IXA	102
RT=RC+ONE	IXA	
AM=ONE	AXI	
WI=ONE	ÎXA	
WIPP=ZRO MCP=CMC	ÎXÂ	
CHACH=DABS(CMC)	AXI	
CHACH-DADS(CMC) CBET=DSQRT(CMACH=CMACH-ONE)	AXI	•
FRC=((G6+G5+CMACH++2)++GA/CMACH)++GT	IXA	
TYE=FRC+SE	IXA	
	AXI	
TF (SF.LT.7RO) SF=→SF/TYE		
IF (SF.LT.ZRO) SF=-SF/TYE IF (ISE.EQ.O) GO TO S	AXI	113

c	NON-RADIAL FLOW AT INFLECTION POINT	AXI 115	
	1Q=1	AXI 116	
	AMACH=CMACH	AXI 117	
	BNACH=CMACH	AXI 118	
	EMACH*CHACH	AXI 119	
	FMACH#CMACH	AXI 120	
	GMACH#CMACH	AXI 121	
	IF (IE.EG.1) AH=GMACH	AXI 122	
	WE=G2+EMACH/DSQRT (EMACH++2+G9)	AXI 123	
	D₩≈₩E≈₩I	AXI 124	
	XO=ZRO EOF=ZRO	AXI 125	
		AXI 126	
	GO TO 15	AXI 127	
C C	DARIAL ELOU AT INCLEATION DOTAL	AXI 12B	
5	RADIAL FLOW AT INFLECTION POINT IF (IN-EQ-0) GO TO 6	AXI 129	· '
9	IF (LC.LT.0.AND.IN.LT.0) IN=-1	AXI 130	
	IF (LC.EQ.0.0.MCP.LT.0) IN=ISIGN(10.1N)	AXI 131	
6	BBET=DSGRT(BMACH=BMACH=ONE)	AXI 132	
•	BPSI=G2*DATAN(G4*8BET) -DATAN(BBET)	AXI 133	
	IF (FMACH) 9.8.7	AXI 134	
7	FRETEDSORT (FMACHOFMACH-ONE)	AXI 135 AXI 136	
	FPSI=G2+DATAN(G4+FBET)-DATAN(FBET)	AXI 137	
	GO TO 10	AXI 138	
8	FMACH=-BPSI/ETA	AXI 139	
	IF (BPSI/ETA.GT.7.5D+0) FMACH=+7.5D+0	AXI 140	
9	FPSI=+FMACH+ETA	AXÎ 141	
	FMACH*FMV(FPSI)	AXI 142	
10	EPSI=FPSI=TWO*ETA/QT	AXI 143	9
	EMACH=FMV(EPSI)	AKI 144	
	HE=GZ*EMACH/DSQRT (EMACH*EMACH+G9)	AXI 145	
	DW=WE-WI	AXI 146	
	CALL SORCE (WE+D)	AXI 147	
	XE=D(1) WEP=D(2)	AXI 148	
	WEPP=0(3)	AXI 149	
	WRPPP=D(4)	AXI 150	
	IF (NR.NE.0) GO TO 15	AXI 151	
	IF II P.NE.D. OP. TO. I T. O. GO TO. II	AXI 152	
	IF (1%-F0-0) WRITE (6-106) TILE-N3	AXI 153	
	IF (LR.NE.0.0R.1Q.LT.0) GO TO 11 IF (IX.EQ.0) WRITE (6.106) ITLE.N3 IF (IX.NE.0) WRITE (6.106) ITLE.N4	- AXI 154 AXI 155	
С		AXI 156	
C	ITERATION TO DETERMINE RC IF NOT SPECIFIED (NR = 0)	AX1 157	
11	EARNRPPP	AYT 169	
	EB=-FIV*WEPP-WIPP	AXI 159	
	EC=TLV=WEP	AXI 160	
	ED==TLY+D#	AXI 161	
	XIE=CUBIC(EA+EB+EC+ED)	AXI 162	
	IF (XIE-LE-ZRO) GO TO 89	AXI 163	
12	WIP=TWO+(WE=ONE)/XIE-WEP+(WEPP-WIPP)+XIE/SIX	AXI 164	
13	NOCON=NOCON+1	AXI 165	
14	IF (NOCON, 6T. 100) GO TO 90	AXI 166	
14	RT=TORIC(WIP+SE) RC=RT-ONE	AXI 167	
15		AXI 168	
19	TK=(ONE-G7*(ONE+(GE+GF/RT)/RT)/RT++2/(15+1E)/THR)++QT YO=SE/TK	AXI 169	>
	10-3511/	AXI 170	m
		÷ + + +	
			Õ
			DC-TR-78-6
		•	-
			Ī
			78
			င်

	AA=DSQRT(QT+(GAM+ONE)+RT)	IXA	171
	IF (QM.NE.ONE) GO TO 19	IXA	172
	WHPP=(ONE-GAH/1.50+0+GJ/RT)/(AA*Y0)+*2	AX1	173
	IF (NR.NE.O.OR.ISE.EQ.1) GO TO 18	AXI	174
	IF (DABS(WHPP-WIPP).LT.1.D-10) GO TO 18	AXI	175
	WIPP#WHPP	AXI	176
	IF (1x) 11.17.16	AXI	177
16	EA=GK/{AA+YO}++3	IXA	178
••		AXI	179
	EB=THR*(WIPP+WEPP)		
	EC=-TLV+WEP	AXI	180
	ED=TLV*DW	AXI	181
		AXI	182
	XIE=CUBIC (EA+EB+EC+ED)		
	IF (XIE-LE.ZRO) GO TO 89	IXA	183
	60 TO 12	AXI	184
	H= (EIT+WIP+SEV+WEP)/(THR+WIPP+TWO+WEPP)	AXI	185
17			
	HH=TRTY+DW/(THR+WIPP-TWO+WEPP)	AXI	186
	XIE=HH/(DSQRT(H+H+)+H)	IXA	187
	WIP=WEP-HALF+XIE+(WEPP+WIPP)	IXA	188
	60 TO 13	IXA	189
С		AXI	190
č	ITERATION FOR RC COMPLETED. REMAINDER OF TRANSONIC VALUES	COMPHIENANT	191
		AXI	192
18	WIP=(ONE-(GC-GD/RT)/RT)/YO/AA		
	WHP=WIP	IXA	193
	WIPP=WHPP	AXI	194
		ΙΧΑ	195
	AMP=G7*WIP	,	
	AMPP=G7*(WHPP+THR*G8*W1P**2)	AXI	196
19	X01=Y0=DSQRT(G7/TWO/(9=1E)/RT)=(ONE+(GH+G1/RT)/RT)	IXA	197
		AXI	
	IF (QM.NE.ONE) GO TO 21		198
	IF (ISE.EQ.1) XI=X01	AXI	199
	10x=10x	AXI	200
	WO=ONE-(HALF/(3-1E)+(GR+GS/RT)/RT)/RT	AXI	501
	OM=WO/DSQRT (G7-G8+WO++2)	AXI	202
	WOPPP=GK/(AA*YO) 4+3	AXI	203
	IF (LR.EQ.0) GO TO 21	AXI	204
C		AXI	205
Ċ	CALL FOR THROAT CHARACTERISTIC VALUES	AXI	206
•		IXA	207
	CALL TRANS (RT+TK+WO+AM+AMP+AMPP+WI+AWP+AWPP+AWPPP+XI)		
	IF (NX.LT.D.AND.NT.LY.O) GO TO 87	IXA	208
	IF (NX-LT-0) GO TO 4	AXI	209
		IXA	210
	AHP#AMP/SE		
	AMPP=AMPP/SE##2	IXA	211
	WAP=AWP/SE	IXA	212
		AXI	213
	WAPP#AWPP/SE++2		
	WOPPP=AWPPP/SE++3	AXI	214
	IF (ISE-EQ.1) GO TO 21	AXI	215
		IXA	216
	DM=ME-MI		
	XOI=XI*SE	3XA	217
	IF (NR.GT.0) GO TO 20	AXI	218
	X1=XE+XIE	AXI	219
	XO=XE-XIE-XO1	IXA	220
	C2=x1E#HIP	AXI	221
	C3=HALF*WIPP*XIE**2	IXA	222
	C4=WE+0NE-C2-C3	IXA	223
	IF (IX.NE.0) C4=F0UR=C4+TW0+C3+C2-XIE=WEP	AXI	224
	IF (IQ.LT.0) GO TO 20	AXI	225
	WRITE (6,110) ITLE.NA,LR	IXA	226

	WRITE (6+96) XIE+C2+C3+C4+X1		AX1	227
20	WIPEWAP		AXI	228
	WIPP=WAPP		IXA	229
~ .				
21	WWO=ONE+(ONE/(IE+3)+(HB+HC/RT)/RT)/RT		AXI	230
	WWOP=(ONE+(ONE+1E/EIT-HE/RT)/RT)/YO/AA		AXI	231
	RRC=ONE/RC		AXI	232
	SDO*RRC/YO		AXI	233
	ZONK=QM+1+0D=03		AXI	234
	NP=ZONK+(IABS(NF)=1)+1			
			AXI	235
	IF (SF.GT.ZRG) GO TO 22		AXI	236
	SF=ONE/YO		AXI	237
22	IF (10.LT.0) GO TO 31		AXI	238
	IP=0		AXI	239
	JQ=0		AXI	240
	M=ZONK+(MT-1)+1	• •	AXI	241
	N=NT		AXI	242
	IF (QM.EQ.ONE) GO TO 23		AXI	243
	XO=X1-X0I		AXI	244
	RETURN		ÂXI	245
23	CALL OREZ (C+6)		AXI	246
	IF (ISE.EQ.O) GO TO 31		AXI	247
С			AXI	248
С	LENGTH OF AXIAL DISTRIBUTION FOR NON-RADIAL	FLOW	AXI	249
•	X1=X0I	. 404	AXI	250
	AEM=EMACH-AM		AXI	251
	C(1) #AM		AXI	252
	IF (LC) 25,24,27		AXI	253
24	AMSQ=AMP+#2+AEM+AMPP+FOUR/THR		AXI	254
	IF (LR.EQ.0) WRITE (6.122) ITLE.N4.N0		AXI	255
	IF (LR.NE.O) WRITE (6.107) ITLE.NA.NO.LR			
			AXI	256
	IF (AMSQ+LT+ZRO) GO TO 28		AXI	257
	XIE=FOUR+AEM/(DSQRT(AMSQ)+AMP)		AXI	258
	XE=XIE+XI		AXI	259
	C(5) *THR*AEH-AMP*XIE		AXI	260
	GO TO 26			
			AXI	261
25	XIE=THR+AEM/AMP		AXI	262
	xe=xie+xi		AXI	263
	IF (LR.EQ.O) WRITE (6.122) ITLE.N3.NO		AXI	264
	IF (LR.NE.0) WRITE (6.107) ITLE.N3.NO.LR		AXI	265
26	C(2) =AMP+XIE			
<0			AXI	266
	C(3)=S1X*AEM+THR+C(2)		AXI	267
	C(4)=THR+C(2)=EIT+AEM		AXI	268
	GO TO 46		AXI	269
27	IF (LC.EQ.1) GO TO 29		AXI	270
	XE=XC/TK			
			AXI	271
	XIE=FIV+AEM/(DSQRT(AMP++2+IN+AEM+AMPP/EIT)+	AMP)	AXI	272
	IF (XE.GT.XI+XIE) XE=XI+XIE		IXA	273
	XIE=XE-XI		AXI	274
	C(2)=AMP*XIE		IXA	275
	C(3) #HALF*IN*AMPP*XIE**2/TEN		AXI	276
	C(4)=TEN+AEM+SIX+C(2)+THR+C(3)		AXI	277
	C(5)==FFTN*AEM+EIT*C(2)+THR*C(3)		AXI	278
	C(6) *SIX*AEM-THR*C(2) -C(3)		AXI	279
	IF (LR.EQ.0) WRITE (6.122) ITLE.NS.NO		AXI	280
	IF (LR.NE.O) WRITE (6.107) ITLE.N5+NO.LR		AXI	281
	GO TO 46		AXI	282

C(2) =TWO#AEM

E8S IXA

	Filmir 1040		
	EW#WE-,10+0	IXA	339
	IF (EW.GT.WI) GO TO 39 WRITE (6.113)	IXA	340
	GO TO 4	IXA	341
38	EW#WI+HALF#XIE#(WIP+WEP+XIE#(WIPP=WEPP)/SIX)	AXI	342
39	REMERA CALLEL CALLE CALL	IXA	343
٠,	IF (WE-GT-G2) GO TO 79	AXI	344
	IF (DABS(EW-DW-WI).LT.1.D-9) GO TO 43	AXI AXI	345 346
	DW=WE-WI	AXI	347
	CALL SORCE (WE.D)	IXA	348
	XE=0(1)	ÎXA	349
	WEP=0(2)	AXI	350
	WEPP≖D(3)	IXA	351
	WRPPP=D(4)	AXI	352
	NOCON≠NOCON+1	AXI	353
	GO TO 35	AXI	354
40	IF (IQ+LT+0) GO TO 41	AXI	355
	WRITE (6.110) ITLE.NA.LR	AXI	356
je 41	H=THR*(WEP+WIP)/(WIPP-WEPP)	IXA	357
	HH=TLV+DW/(WIPP-WEPP)	AXI	358
	XIE=HH/(DSQRT(H*H+HH)+H) IF (MF) 44.42.45	IXA	359
42	EW=WI+XIE*(WIP+THR*WEP+XIE*(WEPP-XIE*WRPPP/SIX))/FOUR	AXI	360
74.	60 TO 39	AXI	361
43	EMACH=WE/DSQRT (G7=G8*WE*WE)	AXI	362
č	CHACH-HE/D3GK (101-00-HC-HE)	AXI	363
č	ITERATION FOR EMACH COMPLETED	AXI AXI	364 365
•	EBET=DSURT (EMACH-EMACH-ONE)	IXA	366
	EPSI=G2*DATAN(G4*EBET) -DATAN(EBET)	ÎXÎ	367
	FPSI*EPSI+TWO*ETA/QT	IXA	368
	FMACH=FMV (FPSI)	AXI	369
44	IF (BMACH.GT.FMACH) GO TO 45	AXI	370
	BMACH=FMACH	ĀXĪ	371
	BPSI=FPSI	AXI	372
	MP=0	AXI	373
45	GPSI=FPSI-ETA/OT	AXI	374
	GMACH=FMV(GPSI)	AXI	375
	IF (IE.EQ.1) AH=GMACH	AXI	376
	RG=((G6+G5+GMACH++2)++GA/GMACH)++QT APSI=BPSI=ETA/QT	AXI	377
	AMACH=FMV(APSI)	AXI	378
	RA#((G6+G5*AMACH++2)++GA/AMACH)++QT	AXI	379
	XA*RA*CSE	AXI	380
	IF (SFOA.GT.7RO) XIE=SFOA/SF+XE-XA-XO1	AXI	381
	IF (SFOA.LT.ZRO) XIE*XE*SFOA/SF*RG*CSE*XOI	AXI AXI	382 383
	XI=XE-XIE	AXI	384
	X0=XI-X0I	AXI	385
	X1=X0+X01	IXA	386
	IF (IQ-LT-0) GO TO 48	ÎXÂ	387
	X8=((G6+G5+8MACH++2)++GA/8MACH)++QT	AXI	388
	IF (LC.LT.2) XC=((G6+G5+CMACH++2)++GA/CMACH)++QT	AXI	389
	C(1)=WI	AXI	390
	C(S)=XIE+MIP	AXI	391
	C(3)=HALF+WIPP+XIE+XIE	AXI	392
	C(4)=TEN=DW-XIE=(FOUR+WEP-HALF+XIE+WEPP)=SIX+C(2)=THR+C(3)	AXI	393
	C(5) *XIE*(SEV*WEP*EIT*WIP=XIE*(WEPP=THR*WIPP/TWO))=FFTN*DW	AXI	394

AXI 395

54 XBC=THR*WCB/WBP	AXI	1 4	451
₩8PP≖-TWO*WBP/X8C	AXI		452
WRITE (6.109) ITLE.N3	IXA	-	453
GO TO 57	ÄÄÄ		454
55 WBPP=WSPP	ÄÄÄ		455
IF (MCP.LT.0) WRITE (6.109			
IF (MCP+LT-0) X8CN=THR+WCB			456
IF (MCP.LT.0) XBCM=+TWQ*WB	117111	[4	
			458
IF (MCP.GT.0) WRITE (6:109		-	459
IF (MCP.GT.0) XBCN≠FOUR+WC			460
IF (MCP.GT.O) XBCM=-THR+WB	P/WBPP AXI	I 4	461
A8CM=ONE-X8CN/XBCM	IXA	1 4	462
IF (ABCM+LT+ZRO) GO TO 88	AXI	I 4	463
XBC=XBCN/(DSQRT(ABCM)+QNE)	AXI	Į 4	464
GO TO 57	AXI	1 4	465
56 WBPP=-WSPP*IP/TEN	AXI	1 4	466
IF (MCP⋅GT⋅0) XBCMN≖CUBIC(WSPPP/THR.THR+WBPP.TLV+WBPTWO+TEN+WCB)AXI	1 4	467
IF (MCP.LT.0) XBCMN=CUBIC(WSPPP/SIX.W8PP.THR+WBPFOUR+WCB) AXI	1	468
X8CMX=FIV*WC8/(DSQRT(W8P**	2-IP*WCB*WSPP/EIT)+WBP) AXI	i 4	469
IF (XC.GT.X8+XBCMX) XC=X8+	XBCMX	1	470
IF (XC+LT+XB+XBCMN) XC#XB+	XBCMN AXI		471
XBC=XC-XB	AYT	i	
IF (MCP-LT.0) WRITE (6-109) ITI FaN4	i	
IF (MCP.GT.0) WRITE (6.109) ITLE+N5 AXI		474
57 C(2)=XBC*WBP		I 4	
C(3) *HALF*X8C*X8C*WBPP			
	AXI		476
IF (MCP+LT+0) C(4)=FOUR*WC IF (MCP+LT+0) C(5)=-THR*WC	B-THR*C(2)-TWO*C(3)		477
IF (MCP-CI-0) C(3) == IMR*MC	B+TWO+C(2)+C(3) AXI		¥78
IF (MCP-GT.0) C(4)=TEN+NCB IF (MCP-GT.0) C(5)==FFTN+NC IF (MCP-GT.0) C(6)=SIX+NCB	-SIX-C(2)-THR-C(3) AXI		179
IF (MCP+G1+U) C(5) ==FFINW	CB+EIT+C(2)+THR+C(3) AXI		480
			481
IF (LC.LT.0) C(5)=ZRO	AXI		\$82
IF (LC.LE.O) C(6)=ZRO	AXI	. 4	483
XC=XB+X8C	IXA	[4	484
GO TO 63	1XA	i 4	485
C	AXI	. 4	486
	NO. DISTRIBUTION: RADIAL FLOW AXI	1 4	487
58 CALL CONIC (BMACH+D)	IXA	[4	68
X8≠D(1)	AXI	[4	489
BMP=D(2)	IXA		90
SMPP=0 (3)	IXA	-	491
SMPPP=D(4)	AXI	-	192
CBM=CMACH-8MACH	AXI		193
C(1)=BMACH	ÄÄÄ		694
8MPP*SMPP*IP/TEN	ÂÂ		195
IF (LC.NE.0) GO TO 59	ÎXA		196
IF (MCP+LT+0) WRITE (6+108) ITLE+N3 AXI		197
IF (MCP.LT.O) XBCN=THR+CBM	and the same of th		
IF (MCP-LT-0) XBCM=-TWO+BM			198 199
IF (MCP-GT-0) WRITE (6-108			500
IF (MCP.GT.O) XBCN=FOUR+CB			
IF (MCP.GT.0) X8CM==THR+BM			
ABCH=ONE-XBCM/XBCM			
IF (ABCM-LT-ZRO) GO TO 88	AXI		
	IXA		
XBC=XBCN/(DSQRT(ABCM)+ONE) XC=XB+X8C	AXI		505
AL=AD7AOL	AXI	. 5	106

	IF (IP.NE.0) XIE=XBC	AXI	563
	IF (IP.NE.0) XI=X8	AXI	564
	Q=ZRO	AXI	565
	00 84 K*l+N	AXI	566
	IF (ISE-EQ-1-AND-LC-EQ-1) GO TO 72	AXI	567
	IF (IP.NE.0) GO TO 70	AXI	568
	IF (NX.EQ.0) Q=((N~K)/FN)**2	AXI	569
	IF (NX.NE.0) Q=((N=K)/FN)++(NX+1.D=1)	AXI	570
	GO TO 71	AXI	571
70	IF (LC.EQ.1) GO TO 72	AXI	572
	Q=(K+1)/FN	AXI	573
71	AXIS(1+K)=XIE*Q+XI	AXI	574
72	RMACH=ONE	AXI	575
_	IF (ISE.EQ.1) GO TO 75	AXI	576
	IF (AXIS(1.K).LT.ONE+1.D-9) GO TO 74	AXI	577
	AB=AXIS(1.K) ** (RGA/QT)	AXI	578
	IF (AB-LT-TWO) SM=((ONE+DSQRT(AB+GM+GM))++GA)++2	AXI	579
	IF (AB.GE.TWO) SM=(AB/GS)++G7	AXI	580
73	CM=5M=665	AXI	581
13	FQ=SM+(G6+G5+SM-CH+AB)/(SM-ONE)/G5/G6	AXI	582
	SM=SM=FQ	AXI	583
		IXA	584
	IF (DABS(FQ).GT.1.D-9) GO TO 73	AXI	585
- .	RMACH=DSQRT (SM)		
74	IF (IP-LT-1) GO TO 78	AXI	586
75	IF (LC.EQ.1) GO TO 76	AXI	587
	XM=C(1)+Q*(C(2)+Q*(C(3)+Q*(C(4)+Q*(C(5)+Q*C(6)))))	AXI	588
	IF (ISE.EQ.1.0R.K.EQ.1) GO TO 77	AXI	589
	IF (RMACH.LT.XM) WRITE (6.124) K+RMACH.XM	AXI	590
	GO TO 77	AXI	591
76	XH#AXM(K)	AXI	592
77	XMP = (C(2) + Q + (TWO + C(3) + Q + (THR + C(4) + Q + (FOUR + C(5) + Q + FIV + C(6))))/XIE		593
	IF (LC.EQ.1) XMP=AXMP(K)	AXI	594
	XMPP=TWO+(C(3)+0+(THR+C(4)+Q+(SIX+C(5)+Q+TEN+C(6))))/XIE/XIE	AXI	595
	XMPPP=SIX+(C(4)+Q+(FOUR+C(5)+TEN+Q+C(6)))/XIE/XI#/XI#	AXI	596
	GMM=XM+XM+G9	AXI	597
	GQ=DSQRT(GMM)	AXI	598
	W=G2*XM/GQ	AXI	599
	WM=G9+G2/GQ/GMM	AXI	600
	HP=HM+XMP	AXI	601
	WPP=WM*(XMPP=THR*XM*XMP*XMP/GMM)	AXI	6'02
	GMP=FIV+XM+XM+XMP+XMP/GMM-THR+XM+XMPP-XMP+XMP	AXI.	603
	₩₽₽₽±₩M*(XMPPP+THR*XMP*GMP/GMM)	AXI	604
	IF (MQ.LT.0) GO TO 83	AXI	605
	IF (MOD(K-1+L)+NE+0) GO TO 83	AXI	606
	GO TO 82	AXI	607
78	W=C(1)+Q*(C(2)+Q*(C(3)+Q*(C(4)+Q*(C(5)+Q*C(6)))))	AXI	608
	WP=(C(2)+Q+(TW0+C(3)+Q+(THR+C(4)+Q+(FOUR+C(5)+Q+FIV+C(6)))))/XIE	AX1	609
	WPP=TWO+(C(3)+0+(THR+C(4)+Q+(SIX+C(5)+Q+TEN+C(6))))/XIE/XIE	AXI	610
	WPPP=SIX*(C(4)+Q*(FOUR*C(5)+TEN*Q*C(6)))/XIE/XIE/XIE	AXI	611
	GWW≖G7-W*W*G8	AXI	612
	IF (GWW.GT.ZRO) GO TO 80	AXI	613
79	WRITE (6,119)	ÎXA	614
	60 TO 4	AXI	615
80	GW≖DSQRT (GWW)	AXI	616
OU	XM=W/GW	AXI	617
	IF (K.EQ.1.OR.K.EQ.N) GO TO 81	AXI	618
	TI PROFITE A SOLD BE CARLED ON IN OF	WVI	219

15

```
1P=+F11-8+4X+6HEMACH=+F8+5+4X+6HFMACH=F10-7+4X+A4+2HH=F9+5)
     FORMAT (1H +1X+A4/6H POINT+4X+1HX+7X+5HX(IN)+3X+8HMACH NO++4X+5HDMAXI
     1/Dx+8x+7HD2M/Dx2+7x+7HD3M/Dx3+7x+6Hw=Q/A+,5x+5HDW/Dx+8x+7HD2W/Dx2+AXI
                                                                              677
     27X.7HD3W/DX3/)
                                                                         AXI 678
104
     FORMAT (1HO.//)
                                                                         AXI
                                                                              679
105
      FORMAT (1H1)
                                                                              680
                                                                         ΔXI
106
      FORMAT (1H1.3A4.16H THROAT CONTOUR..A4.49H-DEG AXIAL VELOCITY DISTAXI
                                                                              681
     IRIBUTION FROM SONIC POINT/)
     FORMAT (1H1-3A4-18H INVISCID CONTOUR-+A4-A4-68H AXIAL MACH NUMBER AXI
                                                                              683
     10ISTRIBUTION FROM THROAT CHARACTERISTIC WHICH HAS-14-7H POINTS /) AXI
                                                                              684
     FORMAT (1H +3A4+20H DOWNSTREAM CONTOUR++A4+35H-DEG AXIAL MACH NUMBAXI
                                                                              685
     1ER DISTRIBUTION/)
                                                                         AXT
                                                                              686
     FORMAT (1H +3A4+20H DOWNSTREAM CONTOUR++A4+32H-DEG AXIAL VELOCITY AXI
                                                                              687
     1DISTRIBUTION/)
                                                                              688
     FORMAT (1H1+3A4+16H THROAT CONTOUR++A4+69H-DEG AXIAL VELOCITY DISTAXI
                                                                              689
     IRIBUTION FROM THROAT CHARACTERISTIC WHICH HAS. 14.7H POINTS /)
                                                                         AXI
                                                                              690
     FORMAT (1H +3A4+19H DOWNSTREAM CONTOUR/)
111
                                                                         AXI
                                                                              691
      FORMAT (1H0,38HSOLUTION TO CUBIC EQUATION IS NEGATIVE)
112
                                                                         AXT
                                                                              692
      FORMAT (1HO.35HRC IS TOO LARGE TO ALLOW A SOLUTION)
113
                                                                         AXI
                                                                              693
      FORMAT (1H0,38H8MACH IS TOO SMALL TO ALLOW A SOLUTION)
114
                                                                         IXA
                                                                              694
      FORMAT (1H )
115
                                                                              695
      FORMAT (1H0,9X.3HWB=F12.8.4X.4HWBP=F12.8.4X.5HWBPP=.1PE15.7.4X.6HWAX1
                                                                              696
     18PPP=+E15-7-5X-5HWSPP=+E15-7//10X-3HWC=0PF12-8-4X-4HWCP=F12-8-4X- AXI
                                                                              697
     25HWCPP*, 1PE15.7.4X, 6HWCPPP*, E15.7, 4X, 6HWSPPP*, E15.7 )
                                                                         AXI
                                                                              698
     FORMAT (1H0.9X.6HBMACH*F9.5.4X.4HBMP*F12.8.4X.5HBMPP*,1PE15.7.4X. AXI
                                                                              699
     16H8MPPP*+E15.7,5X+5HSMPP*+E15.7//10X+6HCMACH*0PF9.5.4X+4HCMP*+F12.AXI
                                                                              700
     28,4x,5HCMPP=,1PE15.7,4x,6HCMPPP=,E15.7,4x,6HSMPPP=,E15.7)
                                                                         AXI
                                                                              701
     FORMAT (1H0.9X.6HAMACH=F11.7.4X.3HXA=.F11.7.4X.3HXB=.F11.7.4X.
                                                                         AXI
                                                                              702
     14HXBC=+F11+7+4X+3HXC=+F12+7+4X+3HXD=+F12+7/)
                                                                         AXI
                                                                              703
     FORMAT (1H0+47HVELOCITY GREATER THAN THEORETICAL MAXIMUM VALUE)
                                                                         AXI . 704
     FORMAT (1H +9X+7HXA(IN)=+F11+7+9H+ YA(IN)=+F11+7+9H+ X8(IN)=+F12+7AXI
                                                                              705
     1.9H. XC(IN)=.F12.7.9H. XD(IN)=.F12.7.9H. YD(IN)=.F11.7 /)
                                                                         ΔXI
                                                                              706
     FORMAT (1H1, 'NO CONVERGENCE IN', 14, 1 ITERATIONS')
                                                                         AXI
                                                                              707
     FORMAT (1H1+3A4+18H INVISCID CONTOUR++A4+A4+A8H AXIAL MACH NUMBER AXI
                                                                             708
     IDISTRIBUTION FROM SONIC POINT /)
                                                                             709
                                                                         AX1
     FORMAT (1H0.9X,3HWI=F12.8.4X,4HWIP=F12.8.4X,5HWIPP=1PE15.7.4X,3HMIAXI 710
    1=0PF12.8.4X,4HMIP=F12.8.4X.5HMIPP=1PE15.7 )
                                                                         AXI 711
     FORMAT (1H .13.8H RMACH .2F12.8 )
                                                                         AXI
                                                                            712
     FORMAT (IH .9X.4HMACH.FI1.8.3H AT.FI1.7.17H IN..
                                                         MACH 1 AT.F11.7AXI
                                                                            713
    1-12H IN-- MACH-F11-8-3H AT-F11-7-4H IN. /)
                                                                             714
                                                                         AXI:
                                                                         IXA
                                                                              715
      SUBROUTINE BOUND
                                                                         BOU
                                                                         ROIL
      TO OBTAIN THE CORRECTION DUE TO THE TURBULENT BOUNDARY LAYER
                                                                         800
                                                                         800
      IMPLICIT REAL®8 (A=H+O=Z)
                                                                         BOU
      COMMON /GG/ GAM.GM.G1.G2.G3.G4.G5.G6.G7.G8.G9.GA.RGA.GT
                                                                         BOU
      COMMON /CORR/ DLA(200) +RCO(200) +DAX(200) +DRX(200) +SL(200) +DR2
                                                                         BOU
     COMMON /COORD/ S(200) .FS(200) .WALTAN(200) .SU(200) .WMN(200) .TTR(200BOU
     1) +DMDX(200) +SPR(200) +BTA(200) +SREF(200) +XBIN+XCIN+GMA+GMB+GMC+GMD BOU
      COMMON /PROP/ AR.ZO.RO.VISC.VISM.SFOA.SBL.CONV
                                                                               10
      COMMON /PARAM/ ETAD+RC+AMACH+BMACH+CMACH+ENACH+GMACH+FRC+SF+WWO+WWBOU
                                                                               11
     10P,QM,WE,CBET,XE,ETA,EPSI,8PSI,XO,YO,RRC,SDO,XB,XC,AH,PP,SE,TYE,XABOU
                                                                               12
     COMMON /HTTR/ HAIR+TAW+TWQ+TW+TWAT+QFUN+QFUNW+IPQ+IJ+IV+IW
                                                                               13
      COMMON /CONTR/ ITLE(3)+IE+LR+IT+JB+JQ+JX+KAT+KBL+KING+KO+LV+NOCON+BOU
                                                                               1+
     1IN.MC.MCP
```

```
DIMENSION Z(16) + D(16) + SCV(200) + SK(200) + CDS(200) + RW(200)
                                                                         800
                                                                               16
      DATA ZRO/0.00+0/+ONE/1.0+0/+TWO/2.D+0/+SIX/6.D+0/+HALF/5.D-1/
                                                                               17
                                                                         80u
      DATA THR/3.D+0/.FOUR/4.D+0/.TEN/1.D+1/.TLV/1.2D+1/
                                                                         BOU
                                                                               18
      DATA CF1/3.8650-2/.CF2/4.5610+0/.CF3/5.460-1/.FS1/3.178979710+0/
                                                                         BOU
                                                                               19
      DATA LY/4H Y/, LS/4H S/, DD/8HD2Y/DX2 /, DK/8H CURV. /
                                                                         800
                                                                               20
      DATA Z(1)/.052995325D-1/.Z(4)/.1222977958D+0/.Z(7)/.3591982246D.0/80U
                                                                               21
      DATA Z(2)/.277124885D-1/.Z(5)/.1910618778D+0/.Z(8)/.4524937451D+0/80U
                                                                               22
      DATA Z(3)/.671843988D-1/.Z(6)/.2709916112D+0/
                                                                               23
      DATA D(1)/.1357622970-1/.D(2)/.31126762D-1/.D(3)/.475792558D-1/
                                                                               24
      DATA D(4)/.623144856D-1/.D(5)/.747979944D-1/.D(6)/.845782597D-1/ BOU
                                                                               25
      DATA D(7)/a913017075D-1/+D(8)/-947253052D-1/
                                                                         BOU
                                                                               26
      DO 1 J=9.16
                                                                         BOU
                                                                               27
      D(J) = D(17-J)
                                                                         BOU
                                                                               28
1
      Z(J) = ONE = Z(17-J)
                                                                         BOU
                                                                               29
      DO 2 J=1.KAT
                                                                         BOU
                                                                               30
      SREF(J) = S(J)
                                                                         BOU
                                                                               31
      NIBX*NIB2
                                                                         BOU
                                                                               32
      SCIN=XCIN
                                                                         BOU
                                                                               33
      TRPI=CONV/90.D+0
                                                                         BOU
                                                                               34
      FCC=2.05D+0+DL0G(.41D+0)
                                                                         BOU
                                                                               35
      CHAIR=GAM+G1+AR/RO/RO/777.64885D+0
                                                                         BQU
                                                                               36
      IF (IT-EQ-0) XBL=SBL
                                                                         BOU
                                                                               37
                                                                         BOU
                                                                               38
      READ (5.66.END=65) PPQ+TO+TWT+TWAT+QFUN-ALPH+IHT+IR,LO+LV
                                                                         BOU
                                                                               39
                                                                         BOU
                                                                               40
                                                                         800
                                                                               41
      RH0=144.0+0+PPS/ZO/AR/TO
                                                                         80V
                                                                               42
      ID=IABS(LD)
                                                                         800
                                                                               43
      KOR=KO
                                                                         800
                                                                               44
      IF (IABS(IN).EQ.10) KOR=1
                                                                         BOU
                                                                               45
      IF (MCP.LT.0) KOR=KING
                                                                         BOV
                                                                               46
      ROY=ONE
                                                                         BOU
                                                                               47
      IF (IE.EQ.O) HW=AH
                                                                         BOU
                                                                               48
      IF ((ID.EQ.0).OR.(IE.EQ.1)) HW=ZRO
                                                                         BOU
                                                                               49
      IF (HW.EQ.ZRO) YOH=ZRO
                                                                         BOU
                                                                               50
      IF (HW.EQ.ZRO) YOHA=ZRO
                                                                         BQU
                                                                               51
      ALF=DABS(ALPH)
                                                                         BOU
                                                                               52
      ARC*FRC
                                                                         800
                                                                               53
      IF (IHT-LT-0) ARC=FRC++(IE+1)
                                                                         800
                                                                               54
      IPQ=0
                                                                         BOU
                                                                               55
      I₩≖l
                                                                         BOU
                                                                               56
      IF (LV.NE.O) IW=IABS(LV)
                                                                         BOU
                                                                               57
      DO 4 J=1+KAT
                                                                         80U
                                                                               58
      S(J)=SREF(J)
                                                                         BQU
                                                                               59
                                                                         800
      SL {J}=${J}
                                                                               60
      RW(J)=FS(J)
                                                                         BOU
                                                                               61
                                                                         80U
      RCO(J) = FS(J)
                                                                               62
      SCW=DSQRT(ONE+WALTAN(J)++2)
                                                                         800
                                                                               63
      SK(J)=SD(J)/SCW++3
                                                                         80U
                                                                               64
      IF (KAT.EG.KING) GO TO 4
                                                                         BOU
                                                                               65
      IF (S(J).LT.SBL) KBL=J+2
                                                                         800
                                                                               66
                                                                               67
      DRX(J)=WALTAN(J)
                                                                         900
      IF (KBL.GF.KAT) KBL=KAT+4
                                                                         BOU
                                                                               68
      DO 58 IV=1.IW
                                                                         BQU
                                                                               69
      IF ((IV-GT-1).AND.(IV-LT-IW)) GO TO 15
                                                                         BQU
                                                                               70
      IF (LD.GE.O) WRITE (6.80) ITLE.PPS.TO
                                                                         BOU
                                                                               71
```

_			
5	IF (ALPH+GT+ZRO) GO TO 6	BOU	72
	ALPHA=ZRO	800	73
	IF (LO.GE.O.OR.PPQ.EQ.ZRO) WRITE (6.71)	BOU	74
	60 10 7	BOU	75
6	ALPHA=ALPH	BOU	76
	IF (LD.GE.O.OR.PPQ.EQ.ZRO) WRITE (6.70)	BOU	77
7	IF (IR-EQ-2) GO TO 13	800	78
	IF (ALF.EG.ONE) GO TO 8	BOU	79
	IF (LD.GE.O.OR.PPQ.EQ.ZRO) WRITE (6.75)	800	80
	60 70 9	BOU	81
8	IF (LD.GE.O.GR.PPG.EG.ZRO) WRITE (6,72)	800	82
9	IF (IR) 10+11+12	BOU	83
10	IF (LD.GE.O.OR.PPG.EQ.ZRO) WRITE (6.74)	BOU	84
	60 TO 14	BOU	85
11	IF (LD.GE.O.OR.PPQ.EQ.ZRO) WRITE (6.73)	800	86
	GO TO 14	BOU	87
12	IF (LD.GE.O.OR.PPQ.EQ.ZRO) WRITE (6,76)	BOU	88
	GO TO 14	BOU	89
13	IF (LD.GE.O.OR.PPQ.EQ.ZRO) WRITE (6.77)	800	90
14	IF (PPQ.EQ.ZRO) GO TO 60	BOU	91
15	CAPI=+550+0	BOU	92
	1PP=0	BOU	93
	IJ=1	800	94
	DO 56 J#1+KAT	800	95
	BET=TTR(J)=ONE	800	96
	STR=ONE/TTR(J)	BOU	96 97
	TE=TO+STR	BOU	
	RAJ=WMN(J)+(67+STR)++GA	BOU	98 99
	IF (IHT.GE.0) RAJ=RAJ=+QT	800	
	SCH=DSQRT(ONE+DRX(J)++2)		100
	EMU=VISC*TE*DSQRT(TE)/(TE*VISM)	800	101
	IF (TE.LT. VISM) EMU=HALF*VISC*TE/DSQRT(VISM)	BOU	102
	IF (VISM.LE.ONE) EMU=VISC*TE**VISM	BOU	103
	TAW=TE*(ONE+RO#BET)		104
	RHOE*RHO*STR**G]	BOU	105
	VE=WMN(J) *DSQRT (GAM+AR+TE)	BOU	106
	REO=RHOE+VE/EMU/TLV	BOU	107
	IF (HW.GT.ZRO) YOH#FS(J)/HW	BOU	108
		BOU	109
	IF (IE.EQ.O.AND.HW.GT.ZRO) ROY=(HW/FS(J)+ONE)*TRPI K=J	BOU	110
	IF (J.EQ.1) 60 TO 19	80U	111
		BOU	112
	IF (J.GT.KOR) K=J-KOR+1	BOU	113
	IF (K-3) 16,17,18	BOU	114
16	0S=S(J)=S(J=1)	800	115
	SMD=HALF+DS	800	116
	GO TO 19	BOU	117
17	DT=S(J)=S(J=1)	80U	118
	OST=DS+DT	800	119
	SMA=DST*(TWO-DT/DS)/SIX	BOU	120
	SMC=DST+(TWO-DS/DT)/SIX	BOU	121
	SMB=DST=SMA=SMC	BOU	
	H8=H	BOU	123
	IF (IV.6T.1) GO TO 19	BON.	124
	BMA=TWO/OS/DST	BOU	125
	BMB=TWO/DS/DT	BOU	126
	BMC=TWO/DT/DST	BOU	127

.

	GO TO 19	вου	128
10	DU=S(J)=S(J=1)	BOU	
18			129
	DT=S(J=1)=S(J=2)	BOU	130
	D\$=\$(J=2)=\$(J=3)	BOU	131
	DST=DS+DT	BOU	132
	DSTU=DST+0U	BOU	133
	DTU=DT+DU	BOU	134
	DUT=DU-DT	BOU	135
	DTS=DS-UT	BOU	136
	DTUS=DT+TWO+(DU-DS)	804	137
	DTSU=DT+TWO+(DS-DU)	BOU	138
	DSTTU=TWO+ (DST+DTU)	800	139
	HA=HB	800	140
	HB=H	800	141
	QMA=HALF+DS+(ONE-DS+(THR+(DTU+DU)/DST)/DSTU/SIX)	BOU	142
	QMB=HALF*DS*(ONE+DS*(TWO+(DST+DT)/DTU)/DT/SIX)	BOU	143
	QMC==DS++3+(ONE+(DTU+DU)/DST)/DT/DU/TLY	800	144
	QMD=DS++3+(DST+DT)/DU/DTU/DSTU/TLV	BOU	145
	SMA=HALF+DS+(DUT+DTU++3/DS-DS+DS+(DS+DSTTU))/DST/DSTU/TLV	BOU	146
	SMB=HALF+DST+(DS+DS+(DSTTU-DS)/DT+DT+DT+DTUS/DS-DU++3+(DSTU+DST)		147
	1S/DT)/DTU/TLV	BQU	148
	SHC=HALF+DTU+(DT+DT*DTSU/DU+DU+DU+(DSTTU+DU)/DT-DS++3*(DSTU+DTU)		149
	1T/DU)/DST/TLV	800	150
	SMD=HALF=DU+(DTS=DST++3/OU=DU=DU+(DU+DSTTU))/DTU/DSTU/TLY	BOU	151
19	IF (THT.NE.ZRO) GO TO 20	BOU	152
* >	TH=TAN	BOU	153
	GO TO 21	BOU	154
20	TWD=(ARC=RAJ=ONE)+(TWT=TWAT)/(ARC=ONE)	BOU	155
EU	IF (TWD-LT-ZRO) TWD=ZRO	BOU	156
~-	TW#TWD+TWAT	800	157
21	WMU=VISC+TW+DSQRT(TW)/(TW+VISM)	BOU	158
	IF (VISM.LE.ONE) WMU=VISC+TW++VISM	BOU	159
	DL=TW/TE	800	160
	DH=ALPHA+(TAW-TW)/TE	900	161
	DN=ONE-DL-DM	BOU	162
	DA#ALF*(TAH-TW)	BOU	163
	DB=DA+TW-TE	BOU	164
	IF. (DB) 22+23+24	BOU	165
55	DG=DSQRT(=DB=TE)	BQU	166
	DH=DSQRT (-DB+TW)	BOU	167
	DI=(TWO+(DG+TE-TW)=DA)/(TWO+DH+DA)	BOU	168
	DJ=DLOG(DI)	BOU	169
	TP=-08/DJ/DJ	BOU	170
	GO TO 25	800	171
23	TP=(DSQRT(TE)+DSQRT(TW))++2/FOUR	800	172
	GO TO 25	BOU	173
24	DC=DSQRT (DA+OA+FOUR+TW+D8)	BQU	174
	DF=DARSIN((OB+TW-TE)/DC)	BOU	175
	DE=DARSIN(DA/DC)	BOU	176
	TP#DB/(OF+DE)/(DF+DE)	BOU	177
25	IF (IR) 26.27.28	BOU	178
26	FRD=TW=EMU/WMU/TP	BCU	179
	GO TO 29	BOU	. 180
27	FRD=EMU/WMU	BOU	181
	60 70 29	BOU	182
28	FRD=TE=ENU/WMU/DSQRT (TP+TW)	BOU	183
			,

29	IF (IPP.GT.0) GO TO 31	800	184
	RTHI=1.0-2*REO*FS(1)	uoe	185
	RTII=RTHI	800	186
	RDLI=TEN+RTHI	BOU	187
	IF (IR.EQ.1) GO TO 32	800	188
30	RTHG=DLOG10(RTHI)	BOU	189
	CFI*CF1/(RTHG+CF2)/(RTHG+CF3)	BOU	190
31	IF (IR.NE.2) GO TO 33	BOU	191
	SCFI=DSQRT(CFI)	BOU	192
	TC=TW+17.2D+0*5CF1*DA-305.D+0*CF1*DB	800	193
	CMU*VISC*TC*DSQRT(TC)/(TC+VISM)	BOU	194
	IF (VISM.LE.ONE) CMU=VISC+TC++VISM	BOU	195
	TP=TW=CM-//WMU	BOU	196
	FRD=EMU/CMU	BOU	197
	GO TO 33	BOU	198
32	RDLG=DLOG10(RDLI) .	BOU	199
	CFI=0.0444D+0/(RDLG+4.6221D+0)/(RDLG=1.4402D+0)	BOU	200
33	CF=CFI+TE/TP	BOU	201
33	CFS=CF+SCW	BOU	202
	RTIG=DLOG10(RTTI)	800	203
	XCF=,41D+0*OSQRT((RTIG+CF2)*(RTIG=CF3)/CF1)	BOU	204
34	C3=TWO+CAPI+(FSI+1.5D+0+CAPI)	BOU	205
	C2=ONE+CAPI	BOU	206
	C1=C2-C3/XCF	BOU	207
	FXCF=XCF+DLOG(C1/RTII)-FCC-TWO+CAPI	BOU	208
	FPCP=(XCF-FSI-THR+CAPI)/XCF/C1-TWO	BOU	209
	CAPI=CAPI-FXCF/FPCP	BOU	210
	IF (DABS(FXCF).gT.l.D-8) GO TO 34	BOU	211
	DOT1=XCF/C1	800	212
	XN=HALF*(DOTI+DSQRT(DOTI+(DOTI+SIX)+ONE)-THR)	BOU	213
	HI=ONE+THO/XN	800	214
	SUMA=ZRO	800	215
	SUMB=ZRO	BOV	216
	SUMC=ZRO	800	217
	SUND=ZRO	800	218
	DO 35 L=1+16	BOU	219
	UN#Z(L) ♥₹XN	BOU	220
	TR=DL+Z(L)+(DM+Z(L)+DN)	800	155
	ADD=D(L) *XN+UN/TR	BOU	222
	BDD=ADO+Z (L)	BOU	223
	CDD=ADD+UN	800	224
	DOD=BDD=UN	800	225
	SUMA#SUMA+ADD	800	226
	SUMB=SUM8+BDD .	800	227
	SUMC#SUMC+CDD	BOU	228
35	SUMD=SUMD+DDD	80V	229
	DOT=ONE/(SUMA-SUMB)	BOU	230
	DSOD=ONE-SUMA	BOU	231
	DSM=HALF=SUMC	800	232
	THM=SUMC-SUMD	60U	233
	HU=DSOD*DOT	800	234
	IF (IPP.GT.0) GO TO 36	BOU	235
	H=HU	BOU	236
	OOTR=DOT	800	237
36	FMY=(H+TWO-G9+BET) *DMDX(J) *STR/WMN(J) *ID*DRX(J)/(RW(J) +HW)	BOU	238
	IF (J.EQ.1) TH=CFS/FMY	BOV	239

BOU 240

245

BOU 241

BOU. 263

BOIL 244

BOU

Bou 246

BOU 247

> 804 289

BOU 290

ROU 291

BOU 292

BOU 293

BOU 294

295 BOU

A Commence of the Commence of

IF (K.EQ.2) TH=(THA+SMD+(OTHA+CFS))/(ONE+SMD+FMY)

ASFC=DELST+DSQRT (ID+DELST++2+(FS(J)+SCW+ROY)++2)

THA=THA+QMA+DTHA+QMB+DTHB+QMC+DTHC+QMD+DTH

1MY1

DELST=H+TH

DTH8=DTH

60 TO 47

DTHA=DTHB

DTHR=DTHC

1F (K.GT.5) GO TO 45

SCU=DSQRT (ONE+DRX (J-2) **2)

43

DOR=ID+DOTR+TH/ASEC

IF (K.EQ.3) TH=(THA+SMA+DTHA+SMB+DTHB+SMC+CFS)/(ONF+SMC+FMY)

IF (K.GT.3) TH#(THA+SMA+DTHA+SMB+DTHB+SMC+DTHC+SMD+CFS)/(ONE-SMD+FBOU 242

	OC A LIABANA		
	DELA=HA*THA	800	296
	IF ((IE-EQ-1).OR.(ID-EQ-0)) YSEC=FS(J-2)+SCU	BOU	297
	IF (IE.EQ.O.AND.HW.GT.ZRO) YSEC=SCU*(FS(J-2)+HW)*TRPI	800	298
	IF (HW+GT+ZRO) YOHA=FS(J=2)/HW	BOU	299
	ASCA=DELA+DSORT (1D+DELA++2+YSEC++2)	BOU	300
	RW(J=2)=ASCA/SCU	BQU	301
	DLA(J-Z)=SCU+(ASCA-YSEC)+(ONE+YOHA)	BQU	302
	RCG(J=2)=FS(J=2)+DLA(J=2)	800	303
45	DTHC=DTH	BOU	304
	60 10 47	80U	305
46	THA=TH	800	306
	DTHA=DTH	80U	307
	IF ((IV-GT-1).AND.(IV-LT-IW)) GO TO 47	BOU	308
	IF (J.EQ.1.AND.LD.GE.0) WRITE (6.82)	800	309
47	CDS(J)=ASEC-SCH+F5(J)+R0Y	BOU	310
	DLA(J)=SCW+CDS(J)+(ONE+YOH)	BOU	311
	RCO(J)=FS(J)+DLA(J)	BOU	312
	RW (J) =ASEC/SCW	BOU	313
	IF (IV.LT.IW) GO TO 48	BOU	314
	BTA(J)=-DMDX(J)+DSU/WMN(J)/TTR(J)/SCW/CFI	BOU	315
	IF (J.EQ.1.0R.J.GT.KO.OR.IHT.EQ.O) GO TO 48	BOU	316
	IF (MOD(J+IHT).NE-1) GO TO 48	BOU	317
	IJ≖J	BOU	318
	HAIR=RHOE*VE*CF*CHAIR	80U	319
	CALL HEAT	BOU	320
48	IF (LD.LT.0) GO TO 56	BOU	321
	IF ((IV-GT-1).AND.(IV-LT-IW)) GO TO 56	BOU	322
	CFIK=2000.0+0+CFI	BOU	323
	CFK=2000.D+0+CF	BOU	324
	CFSK=2000+0+0+CFS	BOU	325
	DTHK=1000.D+0+DTH	800	326
	CTH=TWO*TH/(ONE+DSQRT(ONE+TWO+TH+ID/ASEC))	800	327
	CH=CDS(J)/CTH	80U	328
	IEO=REO+HALF	800	329
	ITHX=RTHX+HALF	800	
	WRITE (6+83) J.TW.TE.TAW.TP.IEO.ITHX.FRD.CFIK.CFK.CFSK.H.HI.FMY.D		330
	1HK+TH+DELTA+DELST	BOU	331
	IF (J.LT.KBL-3) GO TO 54		332
	IF (J-KBL+2) 49.50.51	BOU BOU	333 334
49	CTHA±CTH		
	XNA=XN	BOU	335 336
	OLTA=DELTA		
	REOA=REO	BOU	337
	GO TO 55	BOU	338
50	CTHB=CTH	BOU	339
30	XNB=XN	BOU	340
		800	341
	OLT8*DELTA	BOU	342
	REO8≠REO	800	343
	60 10 55	BQU	344
51	IF (J-KUL) 52,53,54	BOU	345
52	CTHC≠CTH	80U	346
	XNC=XN	aou	347
	DLTC=DELTA	BOU	348
	REOC≠RE0	80U	349
<i>E</i> ~	GO TO 55	800	350
53	IF (IT.GT.0) GO TO 55	8 0 U	351

DLST=GMA+CDS(J-3)+GMB+CDS(J-2)+GMC+CDS(J-1)+GMD+CDS(J)

BOU 352

	SL(1) = ZRO	800	408
	IM=(KAT-1)/2	800	409
	DO 62 I=1+IM	BQU	410
	J=2+I	800	411
	SS#S(J) +5(J+1)	800	412
	IF (I.EQ.1) SS=S(2)	800	413
	TT=S(J+1)-S(J)	BOU	414
	ST=SS+Tf	BOU	415
	\$1=(TWO-TT/SS)+ST/SIX	800	416
	S3=(TWO-SS/TT)*ST/SIX	BOU	417
	S2=ST+S1+S3	800	418
	SA=(TWO+TT/ST)+SS/SIX	80U	419
	SB*(TWO+ST/TT)*SS/SIX	800	420
	SC=SS-SA-SB	80∪	421
	SL(J) #SL(J-1) +SA*SCV(J-1) +S8*SCV(J) +SC*SCV(J+1)	800	422
62	5L (J+1)=5L (J+1)+51*5CV (J-1)+52*5CV (J)+53*5CV (J+1)	80U	423
	XST=ZRO	800	424
	WRITE (6+68) LS+DK	800	425
	WRITE (6+69) (K+S(K)+SL(K)+DLA(K)+RCO(K)+WALTAN(K)+SK(K)+DAX(K)		426
	1X(K) +WMN(K) +DMDX(K) +SPR(K) +BTA(K) +K=1+KAT)	800	427
	IF (KBL.GT.KAT) GO TO 64	BOU	428
	CALL TWIXT (SL.GMA.GMB.GMC.GMD.SBL.KAT.KBL)	BOU	429
	XBL=GMA+5(KBL-3)+GMB+5(KBL-2)+GMC+5(KBL-1)+GMD+5(KBL)	BOU	430
	DLAB=GMA+DLA(KRL-3)+GMB+DLA(KBL-2)+GMC+DLA(KBL-1)+GMD+DLA(KBL)	BOU	431
	RCOB=GMA*RCO(KBL-3)+GMB*RCO(KBL-2)+GMC*RCO(KBL-1)+GMD*RCO(KBL)	BOU	432
	WRITE (6:89) XBL.SBL.DLAB.RCOB.GMA.GMB.GMC.GMD	BOU	433
	GO TO 64	BOU	434
63	WRITE (6.68) LY,DD	800	435
	WRITE (6,69) (K+S(K)+FS(K)+DLA(K)+RCO(K)+WALTAN(K)+SD(K)+DAX(K)+		436
	1X(K)+WMN(K)+DMDX(K)+SPR(K)+BTA(K)+K=1+KAT) IF (KBL+GT+KAT) GO TO 64	800	437
	CALL TWIRT (S.GMA.GMB.GMC.GMD.XBL.KAT.KBL)	800	438
		BOU	439
	DLAB=GMA*DLA(KBL-3)+GMB*DLA(KBL-2)+GMC*DLA(KBL-1)+GMD*DLA(KBL) RCOB=GMA*RCO(KBL-3)+GMB*RCO(KBL-2)+GMC*RCO(KBL-1)+GMD*RCO(KBL)	800	440
	YBL=RCOB=DLAB	BOU	441
	WRITE (6+84) XBL+YBL+DLAB+RCOB+GMA+GMB+GMC+GMD	BOU	442
64	WRITE (6+87) XST+YST+DD2+DR2+RCV	BOU	443 444
	S(1)=XST	800	445
	RCO(1)=Y5T	BOU	446
	DRX (1) *ZRO	BOU	447
	IF (S8L.EQ.1.0+3) RETURN	80U	448
	IF (LV.GT.0) GO TO 3	800	449
65	CONTINUE	BOU	450
	IF (J.EG.1) WRITE (6.90) IPQ.QFUNW.TWT	800	451
	RETURN	BOU	452
c		BOU	453
66	FORMAT (6E10.0.415)	BOU	454
67	FORMAT (1H .4H RC=+F11.6+3X+5HETAD=F8.4+4H DEG+3X+6HAMACH=F10.7+	TABUL	455
	1.6HBMACH=F10.7.3X.6HCMACH=F10.7.3X.6HEMACH=F10.7.3X.A4.2HH=F11.7	7/1800	456
68	FORMAT (1H +7X+9HSTA(IN) +A4+40H(IN) DELR(IN) R(IN)	DYBOU	457
	1	7B0U	458
	2X,4HBETA /)	BOU	459
69	FORMAT (10(14,0P2F11.6,2F11.7,4F10.7,F11.7,F10.7,1P2E12.4/))	BOU	460
70	FORMAT (1H+,5X+34HQUADRATIC TEMPERATURE DISTRIBUTION)	800	461
71	FORMAT (1H++5X+34HPARABULIC TEMPERATURE DISTRIBUTION)	800	462
72	FORMAT (1H+,44X,34HSPALDING-CHI REFERENCE TEMPERATURE)	BOU	463
	_		

	B(4)=B(3)+(B(3)/B(2)+XM+B(2)+DMM-ONE/B(1))	CON	19
	RETURN	CON	20
	END	CON	21
	FUNCTION CUBIC (EA+EB+EC+ED)	CUB	1
	IMPLICIT REAL#8(A=H+O=Z)	CUB	Ž
С	TO OBTAIN POSITIVE REAL ROOT OF CUBIC EQUATION	CUB	3
-	DATA ZRO/0.0D+0/+ONE/1.D+0/+TWO/2.D+0/+THR/3.D+0/	CUB	4
	E3=EB/THR	CUB	5
	Q1=EA=EC/THR=E3++2	CUB	6
	R1=EA+(E3+EC+EA+ED)/TW0+E3++3	CUB	7
	QR=Q1++3+R1=+2	CUB	á
	RQ=DSQRT(DABS(QR))		
		CUB	9
	Q=DSQRT(DABS(Q1))	CUB	10
	B=DSIGN(ONE+R1)	CUB	11
	CBB*-ONE	CUB.	12
	CBC=-ONE	CUB	13
	COTI=ZRO	CUB	14
	CBT2=ZRO	CUB	15
	A=ZRO	CUB	16
	IF (QR.GT.ZRO) GO TO 1	CUB	17
	IF (GR.NE.ZRO) A=DARSIN(-RG/Q1/G)/THR	CUB	18
	CSA=DCOS(A)	ČUB	19
	CSNA=DSQRT(THR) +DSIN(A)	CUB	20
	CBA=(TWO*B*Q*CSA=E3)/EA	CUB	21
	C88=-(B#G*(CSA+CSNA)+E3)/EA	cus	22
	CBC==(B*Q*(CSA=CSNA)+E3)/EA	CU8	23
	GO TO 2	CUB	24
1	IF (RI+RG.NE.ZRO) CBT1=DSIGN(DEXP(DLOG(DABS(RI+RQ))/THR).R1+RQ)	CUB	25
-	IF (R1=RQ+NE.ZRO) CBT2=DSIGN(DEXP(DLOG(DABS(R1=RQ))/THR)+R1=RQ)	CUB	56
	CBA=(CBT1+CBT2-E3)/EA	CUB	27
2	IA=DSIGN(ONE+CBA)	CUB	28
-	18=DSIGN(ONE.CBB)	CUB	29
	IC=DSIGN(ONE, CBC)		
	IF (IA+IB+IC+1) 11+3+7	CUB	30
3	IF (IA-EQ-1) GO TO 5	CUB	31
		CUB	32
	IF (19.EQ.1) GO TO 6	CUB	33
4	CUBIC=CBC	CUB	34
_	RETURN	CUB	35
5	CUBIC=CBA	CUB	36
	RETURN	CUB	37
6	CUBIC=CBB	CU8	38
_	RETURN	CUB	39
7	IF (IA+2*IB+3*IC-2) 8,9,10	ÇUB.	40
8	IF (CBA.GT.CBB) GO TO 6	CUB	41
	60 TO 5	CUB	42
9	IF (CBA-GT-CBC) GO TO 4	CÚB	43
	GO TO 5	CUB	44
16	IF (CBB.GT.CBC) GO TO 4	CUB	45
	GO TO 6	CUB	46
11	AA=A+9.D+1/DARSIN(ONE)	ÇUB	47
	WRITE (6.12) EA.EB.EC.ED.G1.R1.GR.RQ.G.AA.CBA.CBB.CBC	CUB	48
	CUBIC=-ONE	CUB	49
	RETURN	CUB	50
С		COB.	51
12	FORMAT (1H0,3HEA=E14.7.5H EB=E14.7.5H EC=E14.7.5H ED=E14.7.	CUB	52
	15H Q1=E14.7.5H R1=E14.7.5H QR=E14.7/5H RQ=E14.7.5H - Q=E14.7.		53

	2+, AA=+,E14.7++,CBA=+,E14.7++,CBB=+,E14.7+++CBC=++E14.7 /)	CUB	54
	END .	COR	55
	FUNCTION FMV (PMA)	FMV	1
С	TO OBTAIN MACH NUMBER FROM PRANDTL MEYER ANGLE	FMV	2
	IMPLICIT REAL+8(A-H+0+Z)	FHV	3
	COMMON /GG/ GAM, GM, G1, G2, G3, G4, G5, G6, G7, G8, G9, GA, RGA, QT	FMV	4
	ONE=1.D+0	FMV	5
	THIRD=ONE/3.D+0	FHV	6
	VM=(DARSIN(ONE)+(PMA/(G2-ONE))++2)++HIRD	FMV	7
	Z=QNE+.895D+0+((G7+(G2-QNE))++2)++THIRD+DTAN(YM)	FMV	8
	DO 1 I=1-100	FMV	9
	7BET*DSQRT(Z*Z=ONE)	FMV	10
	ANG=G2+DATAN(ZBET/G2)+DATAN(ZBET)	FMV	11
	REM=(ANG-PMA)+Z+(Z+Z+G9)/G9/ZBET	EMV	12
	IF (DABS(REM).LT.1.D-10) GO TO 2	FMV	13
1	Z=Z=REM	FMV	14
ž	FMV=Z-REM	FHV	15
_	RETURN	FMV	16
	END	FMV	17
	SUBROUTINE FVDGE (X+Y+D5+DY)	FV	1
c		FVD	2
_	IMPLICIT REAL®8(A~H+O~Z)	FVD	3
	DIMENSION X(5), Y(5)	FVD	4
	DATA H/0.5D+0/.TW0/2.0D+0/	FVD	5
С		FVD	6
•	x1=x(1)	FVD	7
	X2=X(Z)	FVD	8
	x3=x (3)	FVD	9
	X4=X (4)	FVO	10
	X5=X (5)	FVD	11
С		FVD	12
•	Y1*Y(1)	FVD	13
	Y2=Y (2)	FVD	14
	Ý3=Ý(3)	EVO	15
	Ý4=Y(4)	FVD	16
	Y5=Y (5)	FVD	17
C		FVD	18
Č	FIND DELTA-Y.	FVD	19
-	F1=(X3-X1)+(X3-X2)	FVD	20
	F1=TWO/F1	FVD	21
С	·	FVD	22
_	F2=(X4-X3)+{X3-X2}	FVD	23
	F2=-TWO/F2	FVD	24
C		FVD	25
_	F3=(X5-X3)+(X4-X3)	FVD	26
	F3=TWO/F3	FVD	27
С		FVD	28
-	213=x1+x2+x2-x4-x4-x5	FVD	29
	A1=(X2+X3-X4-X5)/Z13	FVD	30
	A3=(X1+X2-X3-X4)/Z13	FVD	31
С		FVD	32
-	YP21=(Y2+Y1)/(X2+X1)	FVD	33
	YP32=(Y3-Y2)/(X3-X2)	FVD	34
	YP43=(Y4+Y3)/(X4-X3)	FVD	35
	YP54=(Y5-Y4)/(X5-X4)	FVD	36
С		FVD	37

	X21=H+(X2+X1)		
	X32=H+ (X3+X2)	FVD	38
	X43=H* (X4+X3)	FVU	39
	X54=H+ (X5+X4)	FVD	40
С	707-11 170-747	FVD	41
_	YPP1=(YP32-YP21)/(X32-X21)	FVD	42
	YPP2=(YP43-YP32)/(X43-X32)	FVD	43
	YPP3=(YP54-YP43)/(X54-X43)	FVD	44
	DS#A1=YPP1+A3=YPP2	FVD	45
	FX=F2-A1*F1-A3*F3	FVO	46
	DY=DS/FX	FVD	47
c	U1=U5/FA	FVU	48
•	RETURN	FVD	49
	END	FVD	50
		FVÐ	51
С	SUBROUTINE HEAT	HEA	1
·	DUMMY TO BE MODIFIED FOR SPECIAL CALCULATIONS OF HEAT TRANSFER	HEA	2
	IMPLICIT REAL®B (A-H+0-Z)	HEA	3-
	COMMON /HTTR/ HAIR, TAW, TWQ, TWT, TWAT, QFUN, QFUNW, IPQ, IJ, IV. IW	HEA	4
	QFUNW=QFUN	HEA	5
	RETURN	HEA	6
	END SUBDOUTING HER	HEA	7
_	SUBROUTINE NEO	NEO	1
C C	CHARTH AND A THEORY OF THE AND ADDRESS OF THE AND ADDRESS OF THE A	NEO	2
č	SMOOTH BY LINEAR SECOND DERIVATIVE	NEO	3
·	*****	NEO	4
	IMPLICIT REAL+8(A+H+O+Z)	NEO	5
	COMMON /HORK/ E(400), Z(400), X(400), Y(400), YST(400), WTN(250), WALL	(SNEO	6
	1.200) .WAX (200) .WAY (200) .WAN (200)	NEO	7
	COMMON /CONTR/ ITLE(3) . IE . LR . IT . JB . JQ . JX . KAT . KBL . KING . KO . LV . NOCO	N+NEO	8
•	11N.MC.MCP.IP.IQ.ISE.JC.M.MP.MQ.N.NP.NR.NUT.NF	NEO	9
	DATA ZERO/0.0D+0/.ONE/1.D+0/.TWO/ .D+0/	NEO	10
_	DATA JO/4H UP/,JI/4HDOWN/	NEO	11
С		NEO	12
	CONV=90.D+0/DARSIN(ONE)	NEO	13
_	TNI=DTAN(WALL(5+1))	NEO	14
С	•• •• •• •• •• •• •• •• •• ••	NEO	15
_	IF (JQ.EQ.O.OR.IQ.LT.O) READ (5.14.END=13) NOUP.NPCT.NODO	NEO	16
C	IF (JG.EQ.O.OR.IG.LT.O) READ (5+14-END=13)NOUP-NPCT-NODO	NEO	17
	IF (JQ.GT.0) GO TO 2	NEO	18
	JN=J0	NEO	19
	LIM=NUT	NEO	20
	NOTM=NOUP	NEO	21
	00 1 J=1+LIM	NEO	22
	(L)XAW=(I+L)X	NEO	23
_	Y(J+1)=WAY(J)	NEO	24
1	YST(J+1)=Y(J+1)	NEO	25
	X(1)=TW0+X(2)=X(3)	NEO	26
	Y(1)=Y(3)	NEO	27
	X(LIM+2)=THO+X(LIM+1)-X(LIM)	NEO	28
	Y(LIM+2)=Y(LIM+1)+TNI#(X(LIM+2)-X(LIM+1))	NEO	29
_	60 TO 4	NEO	30
2	LIH=N+NP-1	NEO	31
	NOTH=NODO	NEO	32
	JN=J1	NEO	33
	DO 3 J=1+LIM	NEO	34
	X(J+1)=WALL(1+J)	NEO	35

NEO

NEO

NEO

NEO

NEO

NE0

NEO

NEO

NEO

NEO

NEO

NEO

NEO

87 88

89

90

91

37

38

39

+0

+1

42

43

(L+5) JJAW=([+U)Y

X(1)=TWO=X(2)+X(3)Y(1)=Y(2)=TWI=(X(2)+X(1))

Y(LIM+2)=Y(LIM+1)

IF (NOTM.EQ.0) RETURN

LUS=1+(LIM-3)/6

LM=LIM-1

CALL SCOND (X+Y+WTN+LIM+2)

IF (JQ.EQ.1) GO TO 11 00 10 J*2+LM

X(LIM+2)=TWO+X(LIM+1)-X(LIM)

YST (J+1) =Y (J+1)

3

	WAY (J) =Y (J+1)	NEO	92
10	WAN(J) =CONV#DATAN(WTN(J+1))	NEO	93
••	RETURN	NEO	94
С	AL COMP	NEO	95
ĭı	DO 12 J=2+LM		
11		NEO	96
	HALL(L+S) = Y (J+1)	NEO	97
12	WALL(5+J)=DATAN(WTN{J+1}}	NEO	98
	RETURN	NEO	99
C		NEO	100
13	WRITE (6+18)	NEO	101
	STOP	NEO	102
С	575.	NEO	103
14	FORMAT (1615)	NEO	104
15	FORMAT (1H +20X+15+2X+0P4F13+7+18)		105
		NEO	
16	FORMAT (1H1+3A4+2X+A4+24HSTREAM CONTOUR+ SHOOTHED+15+19H		106
	IH FACTOR=:F4.2	NEO	107
	2//34X+1HX+11X+6HY-CALC+7X+4HY-IN+10X+4HDIFF /)	NEO	108
17	FORMAT (1H)	NED	109
18	FORMAT (1H0.10X.34HCARD NOT AVAILABLE FOR NEGATIVE NF)	NEO	110
19	FORMAT (1H0.26x.21HMAX. ABSOLUTE ERROR #.1PG15.6.10H AT	POINT+15)NEO	111
• .	END	NEO	112
	SUBROUTINE OFELD (A.B.C.NOCON)	OFE	ī
С	TO OBTAIN POINTS IN CHARACTERISTIC NETWORK	OFE	ż
·			
	IMPLICIT REAL#8 (A=H+0=Z)	OFE	3
	COMMON /CONTR/ ITLE(3)+IE	OFE	4
	DATA ZRO/0.0D+0/+ONE/1.D+0/+TWO/2.D+0/+HALF/5.D-1/	OFE	5
	DIMENSION A(5), B(5), C(5)	OFE	6
	Al=DARSIN(ONE/A(3))	OFE	7
	A2=DARSIN(ONE/B(3))	OFE	8
	T1=A(5)	OFE	9
	12=8(5)	ÖFE	1ó
	IF (IE.EQ.0) GO TO 8	OFE	ii
	IF (A(2).EQ.ZRO) GO TO 5	OFE	12
	FSY1=DSIN(A(5))/A(2)/A(3)	OFE	13
_	60 10 6	OFE	14
5	T1=ZRO	OFE	15
	FSY]=A(5)	OFE	16
6	IF (8(2).EQ.ZRO) GO TO 7	OFE	17
	FSY2=DSIN(8(5))/8(2)/8(3)	OFE	18
	GO TO 8	OFE	Ĩ9
7	T2=ZRO	OFE	20
•	FSY2=8(5)	OFE	21
8	TNI=DTAN(T1=A1)	OFE	22
•			
	IF (B(3).NE.ONE) TN2=DTAN(T2+A2)	OFE	23
	[z-]	OFE	24
	HDPSI=HALF+(A(4)-B(4))	OFE	25
	HT3=HALF+(T1+T2)+HDPSI	OFE	26
	T3=HT3-HALF*IE*HDPSI	OFE	27
	HPSI3=HALF+(A(4)+B(4)+T1-T2)	OFE	28
	PSI3=HPSI3+HALF+IE+(T1-T2)	OFE	29
	C(3)=FMY(PSI3)	0FE	30
	TOLD=T3	OFE	31
1	I=I+1	OFE	32
4			
	FM3=C(3)	OFE	33
	A3=DARSIN(ONE/C(3))	OFE	34
	TNA=HALF4(TN1+DTAN(T3-A31)	OFF	75

```
IF (B(3).NE.ONE) TNB=HALF*(OTAN(T3+A3)+TN2)
                                                                           36
                                                                     OFE
IF (B(3).EQ.ONE) THE=TWO-DTAN(T3.A3)
                                                                     OFE
                                                                           37
                                                                     OFE
                                                                           38
DINETNB-TNA
                                                                           39
                                                                     OFE
MTG/((S) 8-(S) A+ANT+(1) #TNB+A(2)-B(2))/OTN
Y3=(A(2)+TNB-B(2)+TNA+(B(1)-A(1))+TNA+TNB)/DTN
                                                                           40
                                                                     OFE
IF (IE.EQ.O.OR.DABS(Y3).LT.1.D-9) GO TO 4
                                                                     OFE
                                                                           41
                                                                     OFE
                                                                           42
FSY3=DSIN(T3)/Y3/FH3
PI#HALF* (FSY1+FSY3)*(X3-A(1))*05QRT (ONE+TNA**2)
                                                                     OFE
                                                                           43
                                                                     OFE
                                                                           44
P2=HALF* (FSY2+FSY3) * (X3-B(1)) *DSQRT (ONE+TNB**2)
                                                                     OF E
                                                                           45
T3=HT3+HALF=(P1+P2)
                                                                     OFE
                                                                           46
PS13=HPS13+HALF+(P1+P2)
                                                                           47
                                                                     OFE
C(3) =FMV(PSI3)
                                                                     OFE
                                                                           48
IF (DA8S(T3-TOLD).GT.1.0-9) GO TO 2
IF (DABS(C(3)-FM3).LT.1.D-9) GO TO 4
                                                                     OFE
                                                                           49
                                                                     OFE
                                                                           50
IF (I.EQ.40) GO TO 3
                                                                     OFE
                                                                           51
TEMP=T3
                                                                           52
T3=(T3+TOLD) +HALF
                                                                     OFE
                                                                           53
                                                                     OFE
TOLD=TEMP
                                                                           54
                                                                     OFE
60 TO 1
                                                                     OFE
                                                                           55
NOCON#1
                                                                           56
57
                                                                     OFE
C(1)=X3
                                                                     OFE
C(2)=Y3
                                                                           58
                                                                     OFE
C(4)=PSI3
                                                                     OFE
                                                                           59
C(5)=T3
                                                                     OFE
                                                                            60
RETURN
                                                                     OFE
                                                                            61
FND
                                                                     ORE
SUBROUTINE OREZ (A+NA)
                                                                     ORE
IMPLICIT REAL *8 (A-H+0-Z)
                                                                     ORE
DIMENSION A(1)
                                                                     ORE
DO 1 K#1+NA
                                                                     ORE
A(K)=0.00+0
                                                                     ORE
RETURN
                                                                     ORE
FND
                                                                     PER
SUBROUTINE PERFC
                                                                      PER
TO OBTAIN THE INVISCID CONTOUR OF THE NOZZLE
                                                                      PER
                                                                      PER
                                                                      PER
IMPLICIT REAL+8(A-H+0-Z)
COMMON /GG/ GAM.GM.G1.G2.G3.G4.G5.G6.G7.G8.G9.GA.RGA.QT
COMMON /CLINE/ AXIS(5,150), TAXI(5,150) .WIP.X1,FRIP.ZONK.SED.CSE
COMMON /COORD/ S(200) .FS(200) .WALTAN(200) .SD(200) .WHN(200) .TTR(200PER
1) + DMDX (200) + SPR (200) + DPX (200) + SECO (200) + X8IN + XCIN + GMA + GMB + GMC + GMD PER
COMMON /WORK/ A(5,150) +8(5,150) +FINAL (5,150) +WALL (5,200) +WAX (200) +PER
                                                                            10
                                                                            11
1WAY (200) . WAN (200)
COMMON /PROP/ AR.ZO.RO.VISC.VISM.SFOA.XBL.CONV
                                                                      PER
                                                                            12
 COMMON /PARAM/ ETAD.RC.AMACH.BMACH.CMACH.EMACH.GMACH.FRC.SF.WWO.WMPER
                                                                            13
10P.QM.WE.CBET.XE.ETA.EPSI.BPSI.XO.YO.RRC.SDO.XB.XC.AH.PP.SE.TYE.XAPER
                                                                            15
COMMON /TROAT/ FC(6+51)
 COMMON /CONTR/ ITLE(3).IE.LR.IT.JB.JQ.JX.KAT.KBL.KING.KO.LV.NOCON.PER
                                                                            16
1 IN+MC+MCP+IP+IQ+ISE+JC+M+MP+MQ+N+NP+NF+NUT
                                                                            17
DIMENSION CHAR(6,150), SU(150), WDX(200), WTAN(200), SCDF(200), YIPER
                                                                            16
                                                                            19
1(100)
 DATA ZRO/0.00+0/.ONE/1.0+0/.TH0/2.D+0/.SIX/6.D+0/.HALF/5.D-1/
                                                                            20
 DATA IFR/4HFIRS/+IWL/4HWALL/+LST/4HLAST/+IBL/4H /+THR/3-D+0/
                                                                            21
                                                                            22
 CALL OREZ (A+4+750+250)
                                                                      PER
                                                                      PER
                                                                            23
 CPSI=G2*DATAN(G4*CBET)-DATAN(CBET)
```

			_
	IF (JQ-GT-0) GO TO 6	PER	24
	IF (LR.EQ.O) GO TO 4	PER	25
С		PER	26
č	THROAT CHARACTERISTIC VALUES	PER	27
Ų		PER	
	SUMAX=(SE/SEO)++(IE+1)		28
	IF (QM.EQ.ONE) SUMAX≃ONE	PER	29
	LQ=ZONK+{LR-1)+1	PER	30
	NL =N+LQ-1	PER	31
	00 3 J#1+LQ	PER	32
		PER	33
	IF (QM.NE.ONE), GO TO 1		
	FC(1+J)=FC(1+J)#SE+XO	PER	34
	FC(2,J)=FC(2,J)+SE	PER	35
1	FINAL (1.J)=FC(1.J)	PER	36
-	FINAL (2+J) =FC (2+J)	PER	37
	FINAL (3+J) =FC (3+J)	PER	38
		PER	39
	FINAL (4+J) =FC (4+J)	PÉR	
	Final (5+J)=FC (5+J)		40
	IF (MG.LT.0) GO TO 3	PER	41
	1F (J.GT.1) GO TO 2	PER	42
	WRITE (6,93) ITLE	PER	43
	WRITE (6,99) IBL	PER	44
2		PER	45
2	XMU=CONV+DARSIN(ONE/FINAL(3,J))	PER	46
	PSI=CONV*FINAL(4+J)		
	AN=CONV*FINAL(5,J)	PER	47
	XINCH=SF+FINAL(1,J)+FRIP	PER	48
	YINCH=SF*FINAL(2.J)	PER	49
	WRITE (6,103) J. (FINAL (K.J) .K=1.3) .XMU.PSI.AN.XINCH.YINCH	PER	50
	IF (MOD(J+10).EQ.0) WRITE (6.98)	PER	51
~		PER	52
3	SU(J) =FC(6+J)/SUMAX		
4	IF (ISE-E9.0) GO TO 8	PER	53
C		PER	54
С	INITIAL CHARACTERISTIC VALUES IF NON-RADIAL FLOW	PER	55
	DO 5 K=1.M	PER	56
	A(2+K)=(K-1)+TYE/(H-1)	PER	57
	A(1+K)*A(2+K)*CBET+XE	PER	58
		PER	59
	A(3,K)=CMACH		
	A(4,K)=CPSI	PER	60
5	A (5+K) = ZRO	PER	61
	GO TO 10	PER	62
C		PER	63
č	FINAL CHARACTERISTIC VALUES IF RADIAL FLOW	PER	64
6		PER	65
•	NL=N+NP-1		
	FN=NP-1	PER	66
	DO 7 JJ=1•NP	PER	67
	IF ([E.EQ.0) F=(JJ-])/FN	PER	68
	IF (IE.EQ.1) F=TWO+DSIN(HALF+ETA+(JJ-1)/FN)/SE	PER	69
	FINAL (2+JJ)=F*TYE	PER	70
	FINAL (1+JJ) *FINAL (2+JJ) *CBET+XC	PER	71
		PER	72
	FINAL (3+JJ) = CHACH		
	FINAL (4+JJ)=CPSI	PER	73
	FINAL (5+JJ) =ZRO	PER	74
7	SÜ(JJ) =F**(IE+1)	PER	75
c	•	PER	76
č	INITIAL CHARACTERISTIC VALUES IF RADIAL FLOW	PER	77
		PER	78
8	EM=ETA/(M-1)	PER	79
	D0 9 K=1+M	PER	79

PER

PER

PER 134

PER 135

80

81

T= (K-1) *EM

IF (IP-EQ-0) XM=FMV(EPSI+T/QT)

IF (IE.EQ.1) 8x=TWO+8(2+J)/SE++2

	XM=B(3+J)	PER	136
	XMUR=DARSIN(ONE/XM)	PER	137
	XMŪ≈CONV®XHUR	PER	138
	PSI=8(4+J)*CONV	PER	139
	AN=8 (5+J) *CONV	PER	140
	IF (B(2+J).EQ.ZRO) AN=ZRO	PER	141
	IF (IP.EQ.0.0R.LA.GT.45) GO TO 22	PER	142
	S(J) =8 (1, N) =8 (1, J)	PER	143
С	MASS INTEGRATION WITH RESPECT TO X	PER	144
	DSX=ONE/DCOS(B(5.J)-XMUR)	PER	145
	IF (B(2+J).Eg.ZRO) DSX=XM/DSQRT(XM++2-ONE)	PER	146
	GO TO 23	PER	147
22	S(J) =8(2+J) =8(2+M)	PER	148
č	MASS INTEGRATION WITH RESPECT TO Y	PER	149
•	IF (IP-EQ-0) DSX=ONE/DSIN(XMUR+8(5-J))	PER	150
	IF (IP.NE.O) DSX=ONE/DSIN(XMUR-B(5.J))	PER	151
	IF (B(2+J).EQ.ZRO) DSX*XM	PER	152
23	IF (ICHAR-EQ.O.OR.J.NE.LINE) GO TO 24	PER	153
23	CHAR(1+J)=B(1+J)	PER	154
	CHAR(2+J) =B(2+J)	PER	155
	CHAR(3.J)=XM	PER	156
	CHAR(4+J)=XMU	PER	
			157
	CHAR(5+J) =PSI	PER	158
	CHAR(6,J) =AN	PER	159
24	FS(J)=DSX*BX/(G6+G5*XM**2)**GA	PER	160
	IF (MQ.GE.O.AND.LINE.EQ.1) GO TO 25	PER	161
	IF (IPRNT.EQ.0) GO TO 27	PER	162
	IF (J.GT.NN) GO TO 25	PER	163
	IF (IP-EQ-0) WRITE (6-104) ITLE	PER	164
	IF (IP-NE-0) WRITE (6-105) ITLE	PER	165
	WRITE (6,106) LINE	PER	166
25	IF ((NK.GT.1).AND.(MOD(J.NK).EQ.0)) GO TO 26	PER	167
	XINCH=SF+B(1+J)+FRIP	PER	168
	YINCH=SF+8(2,J)	PER	169
	WRITE (6.103) J.B(1.J).B(2.J).XM.XMU.PSI.AN.XINCH.YINCH	PER	170
26	IF (MOD(J+10*NK).EQ.0) WRITE (6.98)	PER	171
27	CONTINUE	PER	172
Ċ		PER	173
Č	INTEGRATION AND INTERPOLATION FOF MASS FLOW	PER	174
•	SA#ZRO	PER	175
	SB*ZRO	PER	176
	SC#ZRO	PER	177
	SUN=SU(NN)	PER	178
	KAN=(LASTP=NN)/2	PER	179
	00 28 J=1+KAN	PER	180
	K=NN+2+J	PER	181
	:_**: = :	. –	
	KT=K	PER	182
	AS=S(K=1)=S(K=2)	PER	183
	8S=S(K)=S(K+1)	PER	184
	CS=AS+BS	PER	185
	S1=(TWO-BS/AS)+CS/SIX	PER	186
	S3=(TWO-AS/BS)+CS/SIX	PER	187
	S2=CS=\$1=\$3	PER	188
	ADD=S1*FS(K-2)+S2*FS(K-1)+S3*FS(K)	PER	189
	SUM#ADD+SUM	PER	190
	IF (LINE.EQ.1) GO TO 28	PER	191

	DEL=ONE-SUM	PER	192
	IF (DEL) 30+29+28	PER	193
28	CONTINUE	PER	194
	IF (LINE,EQ.1) WRITE (6,96) SUM	PER	195
	IF (LINE.EQ.1) GO TO 16	PER	196
	85*5(K+1)*5(K)	PER	197
	KT=K+1	PER	198
	DN=TWO+DEL/BS	PER	199
	SC=DN/(FS(K)+DSQRT(FS(K)++2+(FS(KT)+FS(K))+DN))	PER	500
	SB=ONE=SC	PER	201
		PER	202
20	GO TO 34	PER	203
29	SC=ONE	PER	204
	GO TO 34		
30	S2=BS*(TW0+CS/A5)/SIX	PER	205
	S3=85*(TWO+AS/CS)/51X	PER	206
	S1*8S-S2-S3	PER	207
	BDD=S1*FS(K+2)+S2*FS(K-1)+S3*FS(K)	PER	208
	IF (BDD+0EL) 31+32+33	PER	
31	DN=TWO+(ADD+DEL)/AS	PER	
	SB=DN/(FS(K-2)+DSQRT(FS(K-2)++2+(FS(K-1)+FS(K-2))+DN))	PER	211
	SA=ONE-SB	PER	212
	GO TO 34	PER	213
32	SB≠ONE	PER	214
	GO TO 34	PER	215
33	DN=TWO+DEL/8S	PER	216
	SC=ONE+DN/(FS(K)+DSQRT(FS(K)++2+(FS(K)-FS(K+1))+DN))	PER	217
	SB*ONE~SC	PER	218
34	DO 35 J=1+5	PER	219
35	WALL(J+LINE)=8(J+KT-2)+SA+B(J+KT-1)+SB+8(J+KT)+SC	PER	220
=	IF (IPRNT.EQ.1) WRITE (6,107) (WALL(J.LINE).J=1.3)	PER	221
	LAST=KT	PER	222
	IF (N=LINE) 42.41.36	PER	223
36	LINE=LINE+1	PER	224
	DO 37 K=1.5	PER	225
	00 37 L=1•150	PER	226
37	A(K+L)=B(K+L)	PER	
•	IF (IP.EQ.0) GO TO 17	PER	
38	DO 39 J=1+5	PER	229
39	B(J+1)=AXIS(J+LINE)	PER	
٠,	00 40 J=1+LAST	PER	
	K*J	PER	
	CALL OFELD (B(1+K)+A(1+K)+B(1+K+1)+NOCON)	PER	233
	IF (NOCON.NE.O) GO TO 83	PER	234
40	CONTINUE	PER	235
~~	GO TO 20	PER	236
41	IF (IP.NE.0) GO TO 42	PER	237
٠.	IF (LR.EQ.O.OR.IT.NE.0) GO TO 49	PER	238
42	IF (LINE.EQ.NL=1) GO TO 48	PER	
76	NN=NN+1	PER	
	LINE=LINE+1	PER	241
	DO 43 K=1.5	PER	242
	00 43 L=1+5	PER	243
43		PER	244
43	A(K+L)=B(K+L)		
	DO 44 K=1+5	PER PER	245
	DO 44 L=1:150	PER	246 247
44	B(K+L)=FINAL(K+L)	FCR	C+1

	IF ((LR.NE.0).AND.(JQ.EQ.0)) GO TO 46	PER	248
	DO 45 J=NN+LAST	PER	249
	K=J	PER	250
	CALL OFELD (8(1-K)+A(1-K)+8(1-K+1)+NOCON)	PER	251
	IF (NOCON.NE.O) GO TO 83	PER	252
45	CONTINUE	PER	253
•	60 TO 20		
46	DO 47 J=NN+LAST	PER	254
40		PER	255
	K=J	PER	256
	CALL OFELD (A(1+K)+B(1+K)+B(1+K+1)+NOCON)	PER	257
_	IF (NOCON+NE+0) GO TO 83	PER	258
47	CONTINUE	PER	259
	GO TO 20	PER	260
48	IF (IP+NE+0) GO TO 64	PER.	261
С		PER	262
С	INTEGRATION OF SLOPES	PER	263
49	IB=1	PER	264
	IF (IABS(JB).GT.1) IB=2	PER	265
	LT=0	PER	266
	IF (IT.NE.0) LT=IB	PER	
	NUT=(LINE-1)/IB+2-LT		267
		PER	268
	WALL(1+LINE+1)=XO	PER	269
	WALL(5+LINE+1)=ZRO	PER	270
	YI(NUT)=WALL(2+1)	PER	271
	Y*YI (NUT)	PER	272
	LIN=2+((LINE-LT)/2)	PER	273
	00 50 J=2.LIN.2	PER	274
	L-1U/=I	PER	275
	SS=WALL(1+J)-WAŁL(1+J-1)	PER	276
	TT=WALL (1+J+1)-WALL (1+J)	PER	277
	ST=SS+TI	PER	278
	\$1#\$\$*(TWO+TT/\$T)/\$1X	PER	279
	52*SS*(TWO+ST/TT)/SIX	PER	280
	S3*S5+S1+S2		
		PER	281
	T3*TT*(THO+SS/ST)/SIX	PER	282
	T2=TT+(TWO+ST/SS)/SIX	PER	283
	11=11-12-13	PER	284
	Y=Y+S}-01AN(WALL(5+J-1))+SP-01AN(WALL(5+J))+SP-01AN(WALL(5+J+1))	PER	285
	IF (I8.EQ.1) YI(I+1)=Y	PER	286
	Y=Y+T1*OTAN(WALL(5+J-1))+T2*DTAN(WALL(5+J))+T3*DTAN(WALL(5+J+1))	PER	287
	IF (IB.EQ.1) YI(I)=Y	PER	288
	IF (IB-EQ-2) YI(I-J/2)=Y	PER	289
50	CONTINUE	PER	290
	IF (LR.NE.O.AND.LINE.EU.LIN) GO TO 51	PER	291
	X=WALL (1,LINE-LT)-XO	PER	292
	YI(1) *YI(2) *X*(DTAN(WALL(5+LINE-LT)) *HALF*X*SD0)/THR		
51	DO 52 L=2+NUT	PER	293
21		PER	294
	JJ#1+IB+ (NUT-L)	PER	295
	WAX(L) =WALL(1+JJ)	PER	296
	WAY(L)=WALL(2+JJ)	PER	297
	MHN (L) =MALL (3+33)	PER	298
	WAN(L) =CONV+WALL(5+JJ)	PER	299
52	WALTAN(L)=Dtan(WALL(S.JJ))	PER	300
	WAX(1)=X0	PER	301
	WAY (1) =YO	PER	302
	WAN(1)=ZRO	PER	303

	MWW(1)=AAO\D2GH1(G\-GR-HAO++5)	PER	304
	WALTAN(1)=ZRO	PER	305
	IF (NF.GE.0) GO TO 54	PER	306
C		PER	307
č	SMOOTH UPSTREAM CONTOUR IF DESIRED	PER	308
-	CALL NEO	PER	309
	DO 53 J=1•NUT	PER	310
53	WALTAN(J) *DTAN(WAN(J) /CONV)	PER	311
54		PER	312
74	CALL SCOND (WAX+WALTAN+SECD+NUT)		
	SECD(1)=\$00	PER	313
	SECD (NUT) = ZRO	PER	314
	KO=NUT+MP	PER	315
	IF (MP.EQ.0) GO TO 56		316
C		PER	317
C	RADIAL FLOW SECTION COORDINATES	PER	318
	SNE⊐DSIN(ETA)	PER	319
	TNE±DTAN(ETA)	PER	320
	DM=(AMACH-GMACH)/MP	PER	321
	DO 55 L=1+MP	PER	322
	LL=NUT+L	PER	323
	WMN (LL) = GMACH+L+DM	PER	324
	RL=((G5*WMN(LL)**2+G6)**GA/WMN(LL))**QT	PER	325
	WAX (LL) =RL+CSE	PER	326
	WAY (LL) =RL+SNE	PER	327
	WAN (LL) #ETAD	PER	328
	WALTAN (LL) = TNE	PER	329
55	SECD(LL)=ZRO	PER	330
56	1F (MQ.LT.0) GO TO 60	PER	331
	1F (JC.LE.0) GO TO 58	PER	332
	WRITE (6.105) ITLE	PER	333
	WRITE (6+99) LST	PER	334
	DO 57 K=1+LP+NK	PER	335
	I=(K-1)/NK+1	PER	336
	XINCH=SF*CHAR(1.K)+FRIP YINCH=SF*CHAR(2.K)	PER	337 338
	WRITE (6+103) K+(CHAR(J+K)+J=1+6)+XINCH+YINCH	PER	339
57	IF (MOD(I+10).EQ.0) WRITE (6+98)	PER	340
58	IF (ISE.EQ.0) WRITE (6.91) ITLE	PER	341
	IF (ISE.EQ.1) WRITE (6.102) ITLE	PER	342
	WRITE (6+84) RC+ETAD+AMACH+BMACH+CMACH+EMACH+MC+AM	PER	343
	IF (NOCUN.NE.0) GO TO 59	PER	344
	WRITE (6+100) IWL	PER	345
	WRITE (6+85) (K+WAX(K)+WAY(K)+WMN(K)+WAN(K)+WALTAN(K)+SECD(K)+K=1		346
	INUT)	PER	347
	IF ((LR.EQ.0).AND.(N.LT.42)) GO TO 59	PER	348
	IF ((LR.NE.0).AND.(N+LR.LT.27)) GO TO 59	PER	349
	NOCON=1	PER	350
	GO TO 58	PER	351
59	WRITE (6.87)	PER	352
	NOCON#0	PER	353
С		PER	354
Ç	COMPARISON OF CONTOUR WITH PARABOLA AND HYPERBOLA	PER	355
60	DO 62 J=1.NUT	PER	356
	X5=(WAX(J)=X0)/Y0	PER	357
	XS2=XS++2	PER	358
	x53=x5**3	PER	359
		_	

	YS=WAY(J)/YO	PER	360
	YE=YI (J) /YO	PER	361
	PS=ONE+HALF+XS2+RRC	PER	362
	DHP=ONE+XS2+RRC	PER	363
	HS=DSQRT (DHP)	PER	364
	IF (J.GT.1) GO TO 61	PER	365
	IF (MQ.LT.0) GO TO 62	PER	366
	WRITE (6+88) J.XS.YS.YE.PS.HS	PER	367
	GO TO 62	PER	368
51	YPX=WALTAN(J)/XS	PER	369
	CY=(PS-YS)/XS3	PER	370
	CI=(PS-YE)/XS3	PER	371
	IF (J.EQ.2) ICY=1.D+6+(DABS(CY)-DABS(CI))	PER	372
	IF (MQ.LT.0) GO TO 63	PER	373
	CYP=(RRC-YPX)/XS/THR	PER	374
	WRITE (6+88) J.XS.YS.YE.PS.HS.CY.CI.CYP	PER	375
52	IF (MOD(J+10).EQ.0) WRITE (6,98)	PER	376
53	WRITE (6+97) ICY	PER	377
	IF ([Q.GT.0) GO TO 70	PER	378
	JQ±1	PER	379
	RETURN	PER	380
54	LINE*NL	PER	381
	00 65 J=1,5	PER	382
55	WALL (J.NL) =FINAL (J.NP)	PER	383
:		PER	384
	SMOOTH DOWNSTREAM CONTOUR IF DESIRED	PER	385
	IF (NF+LT+0) CALL NEG	₽ER	386
	DO 66 J=1+NL	PER	387
	(L.1) #WALL (1.d)	PER	388
56	WTAN(J)=DTAN(WALL(5,J))	PER	389
	CALL SCOND (WDX+WTAN+SCDF+NL)	PER	390
	SCOF(1)*ZRO	PER	391
	SCDF (NL) =ZRO	PER	392
	IF (JC.GE.O) GO TO 68	PER	393
	WRITE (6+104) ITLE	PER	394
	WRITE (6,99) IFR	PER	395
	DO 67 K=1+LP+NK	PER	396
	I=(K-1)/NK+1	PER	397
	XINCH=SF+CHAR(1,K)+FRIP	PER	398
	YINCH=SF+CHAR(2+K)	PER	399
	WRITE (6,103) K, (CHAR(J,K),J=1,6),XINCH,YINCH	PER	400
57	IF (MOD(I,10),EQ.0) WRITE (6.98)	PER	401
58	IF (10.LT.0) K0=1	PER	402
	NAG=KO-1	PER	403
	KING=LINE+NAG	PER	404
	DO 69 L=1.LINE	PER	405
	WAX(NAG+L)=WALL(1+L)	PER	406
	WAY (NAG+L)=WALL (2+L)	PER	407
	WMN(NAG+L)=WALL(3+L)	PER	408
	WAN (NAG+L)=CONV+WALL (5+L)	PER	409
	WALTAN (NAG+L) = WTAN (L)	PER	410
59	SECD (NAG+L) #SCDF (L)	PER	411
	IF (MQ.LT.0) GO TO 71	PER	412
	WRITE (6,94) ITLE	PER	413
	WRITE (6+84) RC+ETAD+AMACH+BMACH+CMACH+EMACH+MC+AH	PER	414
	WRITE (6,100) IWL	PER	415

```
WRITE (6+85) (K.WAX(K)+WAY(K)+WAN(K)+WAN(K)+WALTAN(K)+SECD(K)+K=KOPER 416
                                                                         PER
                                                                              417
     1.KING)
                                                                         PFR 418
      GO TO 71
      KING=KO
                                                                         PER
                                                                              419
70
С
                                                                         PER
                                                                              420
                                                                         PER
      APPLICATION OF SCALE FACTOR TO NON-DIMENSIONAL COORDINATES
                                                                              421
Ċ
                                                                         PER
                                                                              422
71
      00 72 K=1+KING
      S(K)=SF#WAX(K)+FRIP
                                                                         PER
                                                                              423
      FS (K) =SF +WAY (K)
                                                                         PER
                                                                              424
                                                                         PER
                                                                              425
      TTR(K) = QNE+G8+WMN(K) ++2
      SPR(K) = ONE/TTR(K) ++ (ONE+G1)
                                                                         PER
                                                                              426
                                                                         PER
                                                                              427
      SD(K) =SECO(K)/SF
                                                                         PER
      IF (ISE.EQ.1) XBIN=ZRO
                                                                              428
      IF (ISE.EQ.0) XRIN=XB*SF*FRIP
                                                                         PER
                                                                              429
                                                                         PER
                                                                              430
      XCIN=XC*SF+FRIP
      CALL SCOND (S.WMN.DMDX.KING)
                                                                         PER
                                                                              431
      DMDX(1)=G7*WWOP*WMN(1)**3/WWO**3/SF
                                                                         PER
                                                                              432
      IF (MP.EQ.O.OR.IQ.LT.O) GO TO 74
                                                                         PER
                                                                              433
      DO 73 K=NUT.KO
                                                                         PER
                                                                              434
      DHDX(K)=WMN(K)+TTR(K)/(WMN(K)++2-ONE)/GT/SF/WAX(K)
                                                                         PER
                                                                              435
                                                                         PER
                                                                              436
      60 TO 75
74
      IF (ISE.EQ.0) DMDX(KO)=AMACH+TTR(KO)/(AMACH++2-ONE)/QT/SF/XA
                                                                         PER
                                                                              437
75
      IF (IQ.LT.1.OR.ISE.EQ.1) DMDX(KING)=ZRO
                                                                         PER
                                                                              438
                                                                         PER
                                                                              439
      DO 76 K=1 • KING
      DPX(K) = -GAM+WMN(K) + DMDX(K) + SPR(K) / TTR(K)
                                                                          PER
                                                                              440
76
                                                                         PER 441
                                                                         PER 442
      KAT=KING
      IF (1A85(MQ).LT.2) GO TO 78
                                                                         PER
                                                                              443
                                                                         PER
                                                                               444
                                                                         PER 445
      EXTENSION OF PARALLEL-FLOW CONTOUR
                                                                         PER 446
      KIT=KING+1
                                                                         PER
      KAT=KING+IABS(MQ)
                                                                              447
                                                                          PER
                                                                               448
      KUT=S(KING)+HALF
      INC=S(KING)-S(KING-1)
                                                                          PER
                                                                               449
                                                                          PER
      IF (INC.LT.1) INC=1
                                                                               450
                                                                          PER
                                                                               451
      DO 77 K=KIT+KAT
      S(K)=KUT+(K-KING)+INC
                                                                          PER
                                                                               452
                                                                          PER
                                                                               453
      FS(K)=FS(KING)
                                                                          PER
                                                                               454
      WMN (K) #WMN (KING)
                                                                          PER
                                                                               455
      TTR(K)=TTR(KING)
                                                                          PER
      SPR(K)=SPR(KING)
                                                                               456
                                                                          PER
                                                                              457
      WAN(K)=ZRO
                                                                          PER
      WALTAN(K) =ZRO
                                                                              458
                                                                          PER
      OMDX(K)=ZRO
                                                                               459
                                                                          PER
                                                                               460
      OPX(K)=ZRO
                                                                          PER
                                                                               461
      SD (K) = ZRO
78
      IF (XBL.EQ.ZRO) GO TO 79
                                                                          PER
                                                                               462
                                                                          PER
                                                                               463
       IF (S(KING-1).LT.XBL) GO TO 79
                                                                          PER
                                                                               464
      INTERPOLATE FOR VALUES AT SPECIFIED STATION
                                                                          PER
                                                                               465
      CALL TWIXT (S.GMA.GMB.GMC.GMD. BL.KING.KBL)
                                                                          PER
                                                                               466
                                                                          PER
                                                                               467
      GO TO 80
      KBL=KAT+4
                                                                          PER
                                                                               468
79
                                                                          PER
                                                                              469
       IF (JB.GT.O) RETURN
      IF (ISE.EQ.0) GO TO 81
                                                                          PER
                                                                              470
       WRITE (6,102) ITLE
                                                                          PER 471
```

```
WRITE (6.92) RC.SE.XCIN
                                                                         PFR 472
      GO TO 82
                                                                         PER
                                                                             473
81
      IF (IQ.GT.0) WRITE (6.91) ITLE
                                                                             474
                                                                         PER
      IF (IQ.LE.O) WRITE (6.95) ITLE-XBIN-XCIN-SF
                                                                         PER 475
      WRITE (6.84) RC. ETAD. AMACH. BMACH. CMACH. FNACH. MC. AM
                                                                         PFR
                                                                             476
      WRITE (6.89)
                                                                         PFR
                                                                             477
      WRITE (6+90) (K+S(K)+FS(K)+WALTAN(K)+SD(K)+WMN(K)+DMDX(K)+SPR(K)+DPER
                                                                             478
     1PX(K) .K=1.KING)
                                                                             479
                                                                         PER
      IF (KBL.GT.KAT) RETURN
                                                                         PER
                                                                             480
      J=KBL-1
                                                                         PFR
                                                                             481
      FSX=GMA+FS(J-2)+GMB+FS(J-1)+GMC+FS(J)+GMD+FS(J+1)
                                                                         PER
                                                                             482
      \forall MNX=GMA+\forall MN(J=2)+GMB+\forall MN(J=1)+GMC+\forall MN(J)+GMD+\forall MN(J+1)
                                                                         PER
                                                                             483
      DMXX=GMA+DMDX(J-2)+GMB+DMDX(J-1)+GMC+DMDX(J)+GMD+DMDX(J+1)
                                                                         PFR
                                                                             484
      DYDX=GMA*WALTAN(J-2)+GM8*WALTAN(J-1)+GMC*WALTAN(J)+GMD*WALTAN(J+1)PER
                                                                             485
      SDX=GMA*SD(J=2)+GMB*SD(J=1)+GMC*SD(J)+GMD*SD(J+1)
                                                                         PFR
                                                                             486
      SPRX=GMA+SPR(J-2)+GMB+SPR(J-1)+GMC+SPR(J)+GMD+SPR(J+1)
                                                                         PER
                                                                             487
      DPXX=GMA+DPX(J-2)+GMB+DPX(J-1)+GMC+DPX(J)+GMD+DPX(J+1)
                                                                             488
                                                                         PER
      WRITE (6.101) XBL.FSX.DYDX.SDX.WMNX.DMXX.SPRX.DPXX
                                                                             489
                                                                         PER
      RETURN
                                                                         PER
                                                                             490
83
      WRITE (6+86) IP+NN+LINE+J
                                                                         PER
                                                                             491
      RETURN
                                                                         PFR
                                                                             492
                                                                         PER
                                                                             703
     FORMAT (1H +4H RC=+F11+6+3X+5HETAD=F8+4+4H DEG+3X+6HAMACH=F10+7+3XPER 494
     1.6HBMACH=F10.7.3X.6HCMAC:=F10.7.3X.6HEMACH=F10.7.3X.A4.2HH=F11.7/1PER 495
     FORMAT (10(8x.13.2x.1P6E15.7/))
     FORMAT {1H0.9HOFELD.1P=.I3.5H. NN=.I3.7H. LINE=.I3.8H. POINT=.I3 1PFR
     FORMAT (1H +9X+*POINT X/YO*+8X+*Y/YO*+7X+*INT+Y/YO*+7X+*PAR/YOPER
87
                                                                             498
     1.47X.*HYP/YO
                       C(Y) **11X**C(YI) **10X**C(YP) * /)
                                                                         PER
                                                                             499
88
     FORMAT (1H .9X.13.5F13.7.1P3E15.6 )
                                                                         PER
                                                                             500
      FORMAT (IH .9X.SHPOINT.7X.SHX(IN).9X.5HY(IN).9X.5HDY/OX.8X.7HD2Y/DPER
                                                                             501
     1x2.7x.8HMACH NO..7x.5HDM/Dx.9x.5HPE/PO.11x.6HDPR/Dx/)
                                                                              502
                                                                         DED
90
     FORMAT (10(10X+13+2X+0P6F14.7+1P2E16.5/))
                                                                         PFR
                                                                             503
91
      FORMAT (1H1,3A4,17H UPSTREAM CONTOUR/)
                                                                         PER
                                                                             504
92
      FORMAT (IH . RC=++F11.7++ STREAMLINE RATIO=++F11.8++.
                                                                     TESTPER
                                                                             505
     1 CONE BEGINS AT + F12.7+ IN. 1 / )
                                                                         PER
                                                                              506
     FORMAT (1H).3A4.22H THROAT CHARACTERISTIC 1
                                                                         PER
                                                                             507
94
      FORMAT (1H1+3A4+19H DOWNSTREAM CONTOUR/)
                                                                         PER
                                                                             508
      FORMAT LIHI+3A4+45H INVISCID NOZZLE CONTOUR+ RADIAL FLOW ENDS ATFIPER
                                                                             500
     11.6.25H IN., TEST CONE BEGINS ATF11.6.19H IN., SCALE FACTOR F9.4/) PER
                                                                             510
     FORMAT (1H0.8X.6HMASS =.F13.10)
                                                                             511
      FORMAT (1H0.9X.5HICY =. [13 / ]
97
                                                                         PER 512
      FORMAT (1H )
                                                                         PER 513
99
      FORMAT (1H .8X.44/8X.5HPOINT.8X.1HX.14X.1HY.10X.68HMACH NO.
                                                                        MPER
                                                                             514
     IACH ANG. (D)
                     PSI (D)
                                  FLOW ANG. (D)
                                                    X(IN)+9X+5HY(IN)/)PER
                                                                             515
     FORMAT (1H .8X,A4/8X,5HPOINT.8X,1HX,14X,1HY-10X,37HMACH NO.
                                                                        FPER
                                                                             516
     ILOW ANG. (D)
                     WALTAN+9X+6HSECDIF/)
                                                                         PFR
                                                                             517
     FORMAT (1H0.14x.6F14.7.1P2E16.5)
101
                                                                         PER
                                                                             518
102
     FORMAT (1H1.3A4.17H INVISCID CONTOUR/)
                                                                         PER
                                                                             519
     FORMAT (1H +110+2x+1P6E15+7+0P2F14+7)
103
                                                                         PER
                                                                             520
     FORMAT (1H1+3A4+33H INTERMEDIATE LEFT CHARACTERISTIC /)
104
                                                                         PER
                                                                             521
105
     FORMAT (1H1.3A4.34H INTERMEDIATE RIGHT CHARACTERISTIC /)
                                                                         PER
                                                                             522
106
     FORMAT (1H +8H CHARACT+14/8x+5HPOINT+8x+1HX+14x+1HY+10X+68HMACH NOPER
                                                                             523
             MACH ANG. (D)
                              PSI (0)
                                           FLOW ANG. (D)
                                                              X(IN) +9X+SPER
                                                                             524
     CV (NI) YHS
                                                                         PER
                                                                             525
107
     FORMAT (1H0+12H CONTOUR +1P3E15.7 )
                                                                         PER
                                                                             526
      END
                                                                         PER
                                                                             527
```

	SUBROUTINE PLATE	PLA	1
С	DUMMY TO BE MODIFIED FOR SPECIAL CALCULATIONS FOR FLEXIBLE PLATE	PLA	2
	IMPLICIT REAL+8(A-H+O-Z)	PLA	3
	COMMON /JACK/ SJ(30)+XJ(30)+XJ(30)+	PLA	4
	RETURN	PLA	5
	END	PLA	6
	SUBROUTINE SCOND (A+8+C+KING)	SCO	1
С	TO OBTAIN PARABOLIC DERIVATIVE OF CURVE (UNEQUALLY SPACED POINTS)	SCO	2
	IMPLICIT REAL*8(A-H+O-Z)	SCO	2
	DIMENSION A(300), 8(300), C(300)	SCO	4
	N=KING-1	5C0	5
	00 1 K=2+N	5C0	6
	S≠4(K)+4(K-1)	SCO	7
	T=A(K+1)-A(K)	SC0	8
1	C(K)=((B(K+1)-B(K))+S+S+(B(K)-B(K-1))+T+T)/(S+S+T+S+T+T)	SCO	9
	SO=A(2)-A(1)	SCO	10
	TO=A(3) -A(2)	SCO	11
	Q0=50+T0	SCO	12
	C(1)=(-T0+(Q0+S0)+B(1)+Q0+Q0+B(2)-S0+S0+B(3))/Q0/S0/T0	SC0	13
	SF=A(KING-1)-A(KING-2)	SC0	14
	TF=A(KING)-A(KING-1)	SCO	15
	QF≠SF+TF	SCO	16
	QST±QF+SF+TF	SCO	17
	C(KING) = (SF+(QF+TF)+B(KING)-QF+QF+B(KING+1)+TF+TF+B(KING-2))/QST	SÇ0	18
	RETURN	SCO	19
	END	SC0	20
	SUBROUTINE SORCE (W+B)	SOR	1
С	TO OBTAIN VELOCITY DERIVATIVES IN RADIAL FLOW	SOR	2
	IMPLICIT REAL+8(A+H+0-Z)	SOR	3
	COMMON /GG/ GAM.GM.G1.G2.G3.G4.G5.G6.G7.G8.G9.GA.RGA.QT	SOR	4
	DATA ONE/1.0+0/+TWO/2.D+0/+THR/3.D+0/+FOUR/4.D+0/	SOR	5
	DIMENSION B(4)	SOR	6
	HW=H+H	SOR	7
	AL=G7*69	SOR	8
	AWW=AL-WW	SOR	9
	WWI=WW-ONE	SOR	10
	AREA=(((AL-ONE)/AWW)**G1)/W	SOR	11
	B(1)=AREA++QT	SOR	12
	AXW=AL*WW1+8(1)	SOR	13
	B(2)=W*AWW/AXW/QT	SOR	14
	C2=THR/QT+AL+(TW0-ONE/QT)	SOP	15
	C4=AL+ONE/OT	SOR	16
	CWW=WW+(C2-WW+C4)-AL+(ONE+ONE/QT)	SOR	17 18
	8(3)±8(2)*CWW/AXW/WW]	SOR	19
	DWW#(THO*C2-FOUR*C4*HW)/CWW-FOUR/HW]	SOR	20
	B(4)=B(3)*(B(3)/B(2)+W*B(2)*DWW~ONE/B(1)) RETURN	SOR	21
	END	SOR	22
	SUBROUTINE SPLIND (X.Y.TNZ.TNL.L)	SPL	1
_	COMPUTE CUBIC COEFFICIENTS FOR A CURVE X-Y	SPL	Ž
С	IMPLICIT REAL+8(4+H+0+Z)	SPL	3
	COMMON /COEF/ E (5+200) +NE	SPL	4
	COMMON /WORK/ A(300)+B(300)+C(300)+D(300)+G(300)+SB(300)+XM(300)+		5
	1x(300) •0Y(300)	SPL	6
	DIMENSION X(1) + Y(1)	SPL	7
	DATA ZERO/0.0D+0/.ONE/1.D+0/.THR/3.D+0/.SIX/6.D+0/	SPL	ė

	CALL OREZ (E·5+200)	SPL	9
	CALL OREZ (A.9+300)	SPL	10
	DX(1)*ZERO	SPL	iĭ
	DY(1)=ZERO	SPL	12
	N=L-1	SPL	13
	00 1 K=2+L	SPL	14
	DX(K)=X(K)-X(K-1)	SPL	15
1	DY(K)=Y(K)-Y(K-1)	SPL	16
č		SPL	17
•	B(1)=DX(2)/THR	SPL	18
		SPL	
	C(1)=DX(2)/SIX		19
	D(1)=DY(2)/DX(2)=TNZ	SPL	20
	A(L)=DX(L)/SIX	SPL	21
	B(L) *DX(L)/THR	SPL	22
	D(L)=TNL-DY(L)/DX(L)	SPL	23
	A(1)=ZERO	SPL	24
	DO 2 K=2.N	SPL	25
	A(K)=DX(K)/SIX	SPL	26
	B(K)=(DX(K)+DX(K+1))/THR	SPL	27
			28
	D(K)*DY(K+1)/DX(K+1)-DY(K)/DX(K)	SPL	
5	C(K)=DX(K+1)/SIX	SPL	29
	SW=ONE/B(1)	SPL	30
	S8(1)=SW=C(1)	SPL	31
	G(1)=SW+D(1)	SPL	32
	00 3 K=2+L	SPL	33
	SW=ONE/(B(K)-A(K)*SB(K-1))	SPL	34
	SB (K) =SW • C (K)	SPL	35
3	G(K)=SW+(D(K)-A(K)+G(K-1))	SPL	36
3			37
	XH(L)=G(L)	SPL	
	DO 4 K=1.N	SPL	38
	J=L-K	SPL	39
4	(L) B2= (L) B2= (L) MX= {L+1} MX= {L} B2= (L) D= (L) MX	SPL	40
	00 5 K=2+L	SPL	41
	DXR=ONE/-X (K)	SPL	42
	Q=DXR/SIX	SPL	43
	P=-XM(K-1)*Q	SPL	44
	Q=Q=XM(K)	SPL	45
	R=DX(K)*XM(K-1)/SIX-DXR*Y(K-1)	SPL	46
	S=Y(K)+DXR-DX(K)+XM(K)/SIX	SPL	47
	XK=X (K)	SPL	48
	PX=XK=P	SPL	49
	PXX=PX*XK	SPL	50
	PXXX=PXX+XK	SPL	51
	XJ=X(K-1)	SPL	52
	QX=XJ*Q	SPL	53
	ZX=XX=XX	SPL	54
	OXXX=QXXXXJ	SPL	55
	E(2+K)=P+Q	SPL	56
	E(3+K) ==THR+(PX+GX)	SPL	57
	E(4,K)=THR+(PXX+QXX)+R+S	SPL	58
_	E(5,K)=-PXXX-QXX-R*XK-S*XJ	SPL	59
5	CONTINUE	SPL	60
	DO 6 K=2+L	SPL	61
	E(1+K)=X(K)	SPL	62
6	CONTINUE	SPL	63
-	E(1,1)=X(1)	SPL	64
	w1878/ = 018/	SPL	07

SPL

65

NE=L

l	GT=(GAM+(GAM+134.D+0+429.D+0)+123.D+0)/4320.D+0	TRA	36
	U23=(GAM+(854.D+0+GAM+807.D+0)+279.D+0)/12960.D+0	TRA	37
	U43=(GAM*(194.D+0*GAM+549.D+0)-63.D+0)/2592.U+0	TRA	38
	U63=(GAM+(362.D+0+GAM+1449.D+0)+3177.D+0)/12960.D+0	TRA	39
	UP0=(GAM*(26.D+0*GAM+51.D+0)-27.D+0}/144.D+0	TRA	40
	UP2=(GAM+(26.D+0+GAM+27.D+0)+237.D+0)/288.D+0	TRA	41
	V02=(34.D+0+GAM-75.D+0)/1080.D+0	TRA	42
	V22=(10+0+0+GAM+15+D+0)/108+D+0	TRA	43
	V42=(22+0+0+GAM+75+0+0)/360+0	TRA	44
	V03=(GAM*(7570.D+0*GAM+3087.D+0)+23157.D+0)/544320.D+0	TRA	45
	V23=(GAM+(5026.D+0+GAM+7551.D+0)-4923.D+0)/77760.D+0	TRA	46
	V43=(GAM*(2254.D+0*GAH+6153.D+0)+2979.D+0)/25920.D+0	TRA	47
	V63=(GAM+(6574.D+0+GAM+26481.D+0)+40059.D+0)/181440.D+0	TRA	48
	WWO=WO+ (HALF+(U42-U22+(U63-U43+U23)/RTO)/RTO)/RTO	TRA	49
	WOP=(ONE-(GB-GT/RTO)/RTO)/OSQRT(RTO)	TRA	50
	WOPP= (GU-GY/RTO) /RTO	TRA	51
	HOPPP=GK/RTO/DSGRT(RTO)	TRA	52
	HVPPP=(3*IE-(10-3*IE) *GAM)/FOUR/RTO/DSQRT(RTO)	TRA	53
	AMN=WWO/DSQRT (G7=G8*WWQ**2)	TRA	54
	BET=DSQRT (AMN**2=ONE)	TRA	55
	PSI1=G2*DATAN(BET/G2)-DATAN(BET)	TRA	56
	P1=ZRO	TRA	57
	T1=ZRO	TRA	58
	X1*ZRO	TRA	59
	Y1=ONE	TRA	60
	FSY1=ZRO	TRA	61
	TN2#+QNE/BET	TRA	62
	FC(1+NN)=X1	TRA	63
	FC(2+NN)=Y1	TRA	64
	FC(3+NN) #AMN	TRA	65
	FC (4+NN) =PSI1	TRA	66
	FC (5+NN) *ZRO	TRA	67
	FC (6+NN) = ZRO	TRA	68
	8X≠ONE .	TRA	69
	SUM=ZRO	TRA	70
	FSA=(IE+1)+AMN/(G6+G5+AMN++2)++GA	TRA	71
	00 8 J=1+KK	TRA	72
	Y=DFLOAT (KK+J) /KK	TRA	73
	IF (IE.EQ.1) BX=Y+Y	TRA	74
	4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.	TRA	75
	TN1=TN2	TRA	76
	V0=(((YY+(YY+V63-V43)+V23)-V03)/RT0+YY+(YY+V42-V22)+V02)/R	TO+HTRA	77
	IALF+(YY-ONE)/(3-IE))/RTO	TRA	78
	VP*(ONE+((YY+(TWO+GAM+3+(4-IE))-TWO+GAM+TRHV+IE)/(3-IE)/THR+(Y		79
	1IX=U63+YY-FOUR+U43)+TW0+U23)/RTO)/RTO)/D5GRT(RTO)	TRA	80
	VPP=TWO+(ONE+(TWO+UP2+YY-UP0)/RTO)/RTO	TRA	81
	ITERATE FOR X AND MACH NUMBER FROM CHARACTERISTIC EQUATIONS	TRA	82
	00 4 I=1+10	TRA	83
	TNA=HALF*(TN)+TN2)	TRA	84
	X=X1+(Y=Y1)/TNA	TRA	85
	DXI=DSQRT((Y-Y1)**2+(X+X1)**2)	TRA	86
	XOT=X/GZ	TRA	87
	VY*GZ*(VO+XOT*(VP+XOT*(HALF*VPP+XOT*HVPPP/THR)))/DSQRT(RTO)	TRA	88
	W=AMN/DSQRT (G6+G5+AMN++2)	TRA	89
	T=DARSIN(VY=Y/W)	TRA	90
	FSY=IE*VY/W/AMN	TRA	91

_	P1=HALF*(FSY1+FSY)+DXI	TRA	92
3	PSI=P1+PSI1+T1-T	TRA	93
	FMA=FMV(PSI)	TRA	94
	IF (DABS(AMN-FMA).LT.1.D-10) GO TO 5	TRA	95
	FMU=DARSIN(ONE/FMA)	TRA	96
	TN2=DTAN(T-FMU)	TRA	97
	AMN≠FMA	TRA	98
4	CONTINUE	TRA	99
C	ITERATION COMPLETE	TRA	100
5	IF (MOD(J+2).EQ.0) GO TO 6	TRA	101
	AS=Yl=Y	TRA	102
	FS8=8X/DSIN(FMU-T)/(G6+G5+FMA++2)++GA	TRA	103
	GO TO 7	TRA	104
6	8S=Y1-Y	TRA	105
	CS=AS+8S	TRA	106
	Si=(TWO-BS/AS)+CS/SIX	TRA	107
	S3=(TW0-A5/8S)+CS/SIX	TRA	108
	S2=CS-S1-S3	TRA	109
	FSC=RX/DSIN(FMU=T)/(G6+G5#FMA++2)++GA	TRA	110
	ADD=S1*FSA+S2*FSB+S3*FSC	TRA	111
	SUM#ADD+SUM	TRA	112
	FSA=FSC	TRA	113
7	X1=X	TRA	114
	Y1=Y	TRA	115
	T1=T	TRA	116
	FSY1=FSY	TRA	117
	PSI1=PSI	TRA	118
	IF (MOD(J+JJ).NE.0) GO TO 8	TRA	119
	K=NN-J/JJ	TRA	120
	FC(1•K)=X	TRA	121
	FC(2,K)=Y	TRA	122
	FC(3.K)=FMA	TRA	123
	FC(4.K)=PSI	TRA	124
	FC(\$•K)=T	TRA	125
	FC(6,K)=SUM	TRA	126
8	CONTINUE	TRA	127
	DO 9 J=1,NN	TRA	128
	FC(1.J)=FC(1.J)/TK	TRA	129
	FC(2+J)=FC(2+J)/TK	TRA	1.30
9	FC (6+J) = ONE-FC (6+J) / SUM	TRA	131
	AXN=FC(1+1)	TRA	132
	AWOP=WOP+TK/GZ	TRA	133
	AWOPP=WUPP*(TK/GZ)**2	THA	134
	AWOPPP=TWO+HOPPP+(TK/GZ)++3	TRA	135
	CWOPPP=SIX+(W-WO-AXN+(AWOP+AXN+AWOPP/TWO))/AXN++3	TRA	136
	IF (CWOPPP.LT.AWOPPP) CWOPPP=AWOPPP	TRA	137
	AWP=AWOP+AXN+(AWOPP+AXN+CWOPPP/TWO)	TRA	138
	AWPP=AWOPP+AXN*CWOPPP	TRA	139
	AMP=AWP+G7+(AMN/W)++3	TRA	140
	AMPP=AMP+ (AWPP/AWP+THR+G5+AMP+W+W/AMN)	TRA	141
	IF (ER.GT.O) RETURN	TRA	142
	LR=NN	TRA	143
	RC=RTO=ONE	TRA	144
	WRITE (6+12) ITLE+RC+AWOP+AWOPP+AWOPPP	TRA	145
	00 10 J=1+NN	TRA	146
	Y=DFLOAT(J-1)/(NN-1)	TRA	147

```
ARTH+0TR\(S0V+(SSV-S4V*YY)*YY+0TR\(E0V-(ESV+(E4V-E6V*YY)*YY)*TY))#OV
                                                                         153
IALF+(YY-ONE)/(3-IE))/RTO
                                                                    TRA
                                                                         154
 VY=GZ*VO*Y/DSGRT (RTO)
                                                                    TRA
                                                                         155
 WY=DSQRT(UY+#2+VY##2)
                                                                    TRA
                                                                         156
 YM=WY/DSQRT (G7-G8+WY++2)
                                                                    TRA
                                                                         157
 WRITE (6.13) Y.UY.VY.WY.YM
                                                                    TRA
                                                                         158
 IF (MOD(J:10).EQ.0) WRIT (6:14)
                                                                    TRA
                                                                         159
 XX1=CUBIC(CWOPPP/SIX.AWOPP/TWO.AWOP.WO-ONE)
                                                                    TRA
                                                                         160
 XXI=CUBIC(AWOPPP/SIX+AWOPP/TWO+AWOP+WO-W)
                                                                    TRA
                                                                         161
 WRITE (6,15) XX1,XXI,W+CWOPPP,TK
                                                                    TRA
                                                                         162
 WRITE (6:16)
                                                                    TRA
                                                                         163
 PX=AXN+1.D-1
                                                                    TRA
                                                                         164
 DO 11 J=1+11
                                                                    TRA
                                                                         165
 X=.10+0+(J-1)
                                                                    TRA
                                                                         166
 XW=WO+X*(AWOP+X*(AWOPP/TWO+X*CWOPPP/SIX))
                                                                    TRA
                                                                         167
 XWP=AWOP+X+(AWOPP+X+CWOPPP/TWO)
                                                                    TRA
                                                                         168
 XWPP=AWOPP+X*CWOPPP
                                                                    TRA
                                                                         169
 XM=XW/DSQRT (G7=G8=XW==2)
                                                                    TRA
                                                                         170
 XMP=XWP=G7+(XM/XW)++3
                                                                    TRA
                                                                         171
 XMPP=XMP+(XWPP/XWP+THR+G5+XMP+XW+XW/XM)
                                                                    TRA
                                                                         172
 IF (X.LT.AXN.OR.X.GT.PX) GO TO 11
                                                                    TRA
                                                                         173
 WRITE (6:18) AXN.W.AWP.AWPP.AMN.AMP.AMPP
                                                                    TRA
                                                                         174
 WRITE (6+17) X+XW+XWP+XWPP+XM+XMP+XMPP
                                                                    TRA
                                                                         175
 RETURN
                                                                    TRA
                                                                         176
                                                                    TRA
                                                                         177
FORMAT (1H1.8X.3A4.39H THROAT VELOCITY DISTRIBUTION. X=0. RC=.F10.TRA
                                                                         178
16//10X,44HDERIVATIVES TAKEN WITH RESPECT TO x/Y** WOP=,F11.8//10X,TRA
                                                                         179
25HWOPP=,1PE15.7,5X,6HWOPPP=,E15.7//10X,4HY/YO,7X,4HU/A+,10X,4HV/A+TRA
3.11x.1HW.11x.8HMACH NO. /)
                                                                         181
FORMAT (1H .F)4.4.4F14.8 )
                                                                         182
 FORMAT (1H )
                                                                         183
FORMAT (1H0.9X.18HFROM CUBIC. X/Y* =.F11.8.11H FOR W= 1.0 //22X.6HTRA
                                                                         184
1x/Y+ =.F11.8,7H FOR W=.F11.8 //10x.16HCORRECTED WOPPP=.1PE15.7 // TRA
                                                                         185
210x+15HRMASS = Y*/Y0 *+0PF13.10 //)
                                                                         186
FORMAT (1H0.9X,32HAXIAL VELOCITY DISTRIBUTION, Y=0 //10X,4HX/Y*,9XTRA
                                                                         187
1,1HW,17X,2HWP,16X,3HWPP,15X,1HM,17X,2HMP,16X,3HMPP /)
                                                                    TRA
                                                                         188
FORMAT (1H ,F13.3.1P6E18.7 )
                                                                    TRA
                                                                         189
FORMAT (1H +F16.8+1PE15.7+5E18.7 )
                                                                    TRA
                                                                         190
                                                                    TRA
                                                                         191
 SUBROUTINE TWIXT (S.GMA.GMB.GMC.GMD.XBL.KAT.KBL)
                                                                    TWI
 TO DETERMINE INTERPOLATION COEFFICIENTS
                                                                    TWI
 IMPLICIT REAL+8 (A-H+0-Z)
                                                                    TWI
 DIMENSION S(200)
                                                                    TWI
 DO 1 L=1.KAT
                                                                    TWI
 IF (S(KAT-L).LT.XBL) GO TO 2
                                                                    TWI
 CONTINUE
                                                                    TWI
 J=KAT-L+1
                                                                    TWI
                                                                           8
 XBB=S(J)-XBL
                                                                    TWI
                                                                           9
 KBL=J+1
                                                                    TWI
                                                                          10
 DU=S(J+1)=S(J)
                                                                    IWI
                                                                          11
 DT=S(J)-S(J-1)
                                                                    TWI
```

DUY=(HALF=YY+(U42+Y4-U22+YY+(U63+Y6-U43+Y4+U23+YY)/RT0)/RT0)/RT0

TRA 148

TRA 149

TRA 150

TRA 151 TRA 152

YY#Y#Y

11

C

13

14

17

18

Y4=YY442

Y6=YY=#3

```
05=5(J-1)-5(J-2)
                                                                      TWI
                                                                            13
     DST#DS+DT
                                                                      TWI
                                                                            14
     DSTU=DST+DU
                                                                      TWI
                                                                            15
     DTU=DT+0U
                                                                      TwI
                                                                            16
     GMA=-XBB+(DT-XBB)+(DU+XBB)/DS/DST/DSTU
                                                                      TWI
                                                                            17
     GM8=X88*(DST-X88)*(DU+X88)/DS/DT/DTU
                                                                      TWI
                                                                            18
     GMC=(OST-X8R)+(DT-X8R)+(DU+X8B)/OST/OT/DU
                                                                      T⊯I
                                                                            19
     GMD=-XB8*(DST-XBB)*(DT-XBB)/DSTU/DTU/DU
                                                                      TWI
                                                                            20
     RETURN
                                                                      TWI
                                                                            Ž1
     FND
                                                                      TWI
                                                                            22
     SUBROUTINE XYZ (XX+YY+YYP+YYPP)
                                                                      XYZ
                                                                             1
c
     COMPUTE Y.Y .Y FOR A CURVE DESCRIBED BY CUBIC+S A(5.4)
                                                                      XYZ
     WHERE (1) = X-MAX (2) = HIGH ORDER COEFFICIENT.
                                                                      XYZ
                                                                             3
     IMPLICIT REAL+8 (A-H+0-Z)
                                                                      XYZ
     COMMON /COEF/ A(5,200) +NA
                                                                      XYZ
     DATA ZERO/0.00+0/
                                                                      XYZ
     X×XX
                                                                      XYZ
     IF (X.GE.A(1.1)) GO TO 2
                                                                      XYZ
                                                                             8
1
     Y#ZERO
                                                                      XYZ
     YP=ZER0
                                                                      XYZ
                                                                            10
     YPP=ZERO
                                                                      XYZ
                                                                            11
     GO TO 5
                                                                      XYZ
                                                                            12
2
     DO 3 K=2.200
                                                                      XYZ
                                                                            13
     IF (X.LE.A(1.K)) GO TO 4
                                                                      XYZ
                                                                            14
3
     CONTINUE
                                                                      XYZ
                                                                            15
     GO TO 1
                                                                      XYZ
                                                                            16
     43=4(2.K)
                                                                      XYZ
                                                                            17
     A2=A(3,K)
                                                                      XYZ
                                                                            18
     A1=A(4+K)
                                                                      XYZ
                                                                            19
     AZ=A(5.K)
                                                                      XYZ
                                                                            20
     5A+5A=T
                                                                      XYZ
                                                                            21
     S=A3+3.00+0
                                                                      XYZ
                                                                            22
     R#S+S
                                                                      XYZ
                                                                            23
     ((EA*X+SA)*X+SA*Y
                                                                      XYZ
                                                                            24
     YP=A1+X+(T+X+S)
                                                                      XYZ
                                                                            25
     YPP=T+R#X
                                                                      XYZ
                                                                            26
     YY#Y
                                                                      XYZ
                                                                            27
     YYP=YP
                                                                      XYZ
                                                                            28
     YYPP=YPP
                                                                      XYZ
                                                                            29
     RETURN
                                                                      XYZ
                                                                            30
     END
                                                                      XYZ
                                                                            31
```

1	M A C H 4								
5	1.4	1716,563	1.	0.896	2.269688-8	198.72		1000.	
3	8.67	6.		3.	4.	-12.25	60.		
4	41 21	. 10	41	49 -61		i	1 o	-21	13
5	50 85	50					- •		
6	200.	1638.	900.	540	.38			1	5
7	1000.	46.	172.	2	•-			•	-

AEDC-TR-78-63

WOPP= 2.8328436D-03 WOPPP= -7.6881686D-02 U/A* Y/Y0 V/A* MACH NO. 0.0 0.96385164 0.96385164 0.0 0.95708127 0.0500 0.96401577 -0.00071638 0.96401603 0.95727442 0.1000 0.96450872 -0.00142453 0.96450977 0.95785464 81SEL296.0 0.1500 -0.00211614 0.96533450 0.95882420 0.2000 0.96648905 -0.00278269 0.96649305 0.96018698 0.2500 0.96798341 -0.00341543 0.96798943 0.96194847 0.3000 0.96982065 -0.00400516 0.96982892 0.96411593 0.3500 0.97200756 0.97201817 -0.00454220 0.96669850 0.97455242 0.4000 +0.00501616 0.97456533 0.96970739 0.4500 0.97746515 -0.00541581 0.97748016 0.97315605 0.5000 0.98075749 -0.00572885 0.98077422 0.97706044 0.5500 0.98444311 -0.00594164 0.98446104 0.98143928 0.6000 0.98853789 -0.00603898 0.98855634 0.98631439 0.6500 0.99306008 -0.00600372 0.99307823 0.99171105 0.7000 0.99803057 -0.00581642 0.99804752 0.99765839 0.7500 1.00347313 -0.00545488 1.00348795 1.00418993 0.8000 1.00941470 -0.00489374 1.00942656 1.01134407 0.8500 1.01588572 1.01589400 -0.00410381 1.01916472 0.9000 1.02292039 -0.00305157 1.02292494 1.02770206 0.9500 1.03055708 -0.00169844 1.03055848 1.03701332 1.0000 1.03883866 -0.000000000 1.03883866 1.04716380 FROM CUBIC, X/Y* # 0.10589172 FOR W* 1.0 X/Y* = 0.30916451 FOR W= 1.06914514 CORRECTED WOPPP= -7.50232010-02

M A C H 4 THROAT VELOCITY DISTRIBUTION, X=0, RC= 6.000000
DERIVATIVES TAKEN WITH RESPECT TO X/Y+, WOP= 0.34136118

		_	
AXIAL	VELOCITY	DISTRIBUTION.	Y=0

RMASS = Y*/YO = 0.9997135747

X/Y*	w	₩P	WPP	м	MP	мер
0.0	9.6385164D-01	3.41361180-01	2.83284360-03	9.57081270-01	4.01061750-01	8.13946640-02
0.100	9.97989420-01	3.4126935D-01	-4.66947650-03	9.97588760-01	4-0903018D-01	7.7921558D-02
0.200	1.03208050 00	3.4042728D=01	-1.21717970-02	1.0388752D 00	4.1663426D-01	7.4093984D-02
0.300	1.0660499D 00	3.38834990-01	-1-96741170-02	1.0809022D 00	4-23834270-01	6.98250120-02
0.30913748	1.0691451D 00	3.3865208D-01	-2.03596400-02	1.0847778D 00	4.24470410-01	6.94096560-02
0.400	1.0998225D 00	3.3649246D-01	-2.71764370-02	1.1236269D 00	4.30581350-01	6.50183630+02
0.500	1.13332340 00	3.33399700~01	-3.46787570-02	1.1670014D 00	4.3681650D-01	5.95679340-02
0.600	1.1664774D 00	3.2955671D-01	-4.21810770-02	1.2109708D 00	4-4246962D-01	5.33575010-02
0.700	1.1992097D 00	3.2496349D-01	-4.9683397D-02	1.2554732D 00	4.47458460-01	4.6260683D-02
0.800	1.23144510 00	3-1962003D-01	-5.71857170-02	1.30043720 00	4.5168768D-01	3.81412630-02
0.900	1,26310870 00	3-13526340-01	-6.46880380-02	1.3457817D 00	4.55047800-01	2.88540130-02
1.000	1.2941254D 00	3.06682420-01	-7.21903580-02	1.39141370 00	4.5741446D-01	1.82461770-02

21

M A C H 4 THROAT CONTOUR, 3RD-DEG AXIAL VELOCITY DISTRIBUTION FROM THROAT CHARACTERISTIC WHICH HAS 21 POINTS NO. OF POINTS ON 1ST CHAR. (M) = 41 NO. OF POINTS ON AXIS (N) = 21 EPSI/ETA= 1.91896 BMACH= 3.08215 CMACH= 4.00000 INFLECTION ANG. (ETA) = 8.6700 DEGREES SCALE FACTOR (SF) # 24.75038624 GAMMA= 1.4000 RAD. OF CURV. (RC) = 6.000000 Y*=0.15117572 RMASS=0.99971357 WW0= 1.0388387 WWOP= 2.59666557 EMACH= 1.66015 FMACH= 3.0821543 GMACH= 2.28784 WIPP= -8.90852940-01 MI= 1.08477784 MTP= 2.80779489 MIPP= 3.0370771D 00 WI= 1.06914514 WIP= 2.24012223 WI≈ 1.05914514 WIP# 2.24012223 WIPP= -8.90852940-01 WIPPP= -3.00096030 01 WOPPP= -2.17144820 01 WE= 1.46016505 WEP# 1.45785766 WEPP= -6.9097416D 00 WEPPP= -3.0009603D 01 WRPPP= 7.0885236D 01 C1= 1.0691451 C6= 0.0 XOI= 0.04673408 XI= 0.94011759 XO= 0.89338351 YU= 0.15121903 XIE= 0.20056538 XE= 1.14068296 44 ITERATIONS MACH 0.95708127 AT 46.0758555 IN.. MACH 1 AT 46,4720875 IN. MACH 1.08477784 AT 47,2325420 IN.

AXIS POINT X X (IN) MACH NO. DM/DX DSM/0x2 D3M/DX3 W=G/A+ DW/DX DSM\DXS D3W/DX3 1.14068 52.19661 1.660154 2.5711980 00 -7.941402D 00 -9.736933D 01 1.460165 1.4578580 00 -6.909740D 00 -3.000960D 01 1.12775 S1.87640 1.626258 2.6659540 00 -6.7191180 00 -9.1512930 01 1.440736 1.544743D 00 -6.521482D 00 -3.000960D 01 51.56120 1.591793 2.7442630 00 -5.5920330 00 -8.5459530 01 1.420545 1.6253610 00 -6.1393080 00 -3.0009600 01 1.11501 1.10249 51.25121 1.557012 2.8077560 00 -4.5596600 00 -7.939040D 01 1.399717 1.699899D 00 -5.763454D 00 -3.000960D 01 2.8580040 00 -3.6193890 00 -7.3445950 01 1.378372 1.7685480 00 -5.3941770 00 -3.0009600 01 1.09018 50.94665 1.522140 50.64775 2.8964980 00 -2.7670860 00 -6.7730520 01 1.356629 1.07810 1.487383 1.8315030 00 -5.0317640 00 -3.0009600 01 2.9246350 00 -1.9975920 00 -6.2317620 01 1.334605 1.8889630 00 -4.6765310 00 -3.0009600 01 1.06627 50.35478 1.452920 1.05468 50.06801 1.418917 2.9437120 00 -1.3051430 00 -5.7255390 01 1.312413 1.9411310 00 -4.3288350 00 -3.0009600 01 1.04336 49.78780 1.385519 2.9549200 00 -4.8369160-01 -5.2571540 01 1.290166 1.9882180 00 -3.9890770 00 -3.0009600 01 1,352861 2,959353D 00 -1,271681D-01 -4,827793D 01 1,267976 2,030435D 00 -3,657716D 00 -3,000960D 01 10 1.03232 49.51451 1.02157 49.24858 1.321067 2,9580090 00 3.7033290-01 -4.437445D 01 1.245956 2.068003D 00 -3.335281D 00 -3.0009600 01 11 1.290254 2.951801D 00 8.144091D-01 -4.085234D 01 1.224218 12 1.01115 48.99052 2.1011470 00 -3.0223880 00 -3.0009600 01 13 1.00106 48.74094 1.260536 2.9415660 00 1.2102470 00 -3.7696860 01 1.202882 2.1300990 00 -2.7197710 00 -3.0009600 01 0.99135 48.50056 1.232030 2.9280790 00 1.5625460 00 -3.4889580 01 1.182070 2.1550980 00 -2.4283160 00 -3.0009600 01 14 15 0.98205 48.2/030 1.204861 2.9120690 00 1.8754490 00 -3.241018D 01 1.161919 2.176391D 00 -2.149123D 00 -3.000960D 01 0.97320 48.05131 1.179173 2.8942350 00 2.1524720 00 -3.0238110 01 1.142582 2.1942310 00 -1.8835990 00 -3.0009600 01 16 17 0.96487 47.84514 1.155142 2.8752780 00 2.3963970 00 -2.8354150 01 1.124242 2.2088800 00 -1.633624D 00 -3.0009600 01 18 0.95715 47.65400 1.133010 2.8559430 00 2.6090620 00 -2.6742500 01 1.107137 2.220601D 00 -1.401869D 00 -3.000960D 01 19 0.95017 47.48133 1.113151 2.8371010 00 2.7908670 00 -2.5394600 01 1.091613 2.2296510 00 -1.1925120 00 -3.0009600 01 0.94420 47.33358 1.096265 2.8199950 00 2.9392210 00 -2.4319980 01 1.078282 2.2362350 00 -1.0133650 00 -3.0009600 01 20

0.94012 47.23254 1.084778 2.8077950 00 3.0370770 00 -2.362573D 01 1.069145 2.240122D 00 -8.90859D-01 -3.000960D 01

. -- •

POINT	×	Y	MACH NO.	MACH ANG. (D)	PSI (D)	FLOW ANG. (D)	X(IN)	Y(IN)
1	9-40117590-01	0.0	1.0847778D 00	6.7197722D 01	1.0529074D 00	0.0	47.2325420	0.0
2	9,37018400-01	7.56095150+03	1.0763292D 00	6.8292446D 01	9.04249970-01	7.23832840-02	47.1558360	0.1871365
3	9.34072480-01	1.51219030+02	1.06880590 00	6.9329122D 01	7.7756238D-01	1.30305260-01	47.0829233	0.3742729
4	9.31270550-01	2.26828550-02	1.06216310 00	7.0300762D 01	6.7051186D-01	1.75513180-01	47.0135744	0.5614094
5	9.28602420-01	3.0243806D-02	1.0563575D 00	7.1199985D 01	5.8093009D-01	2.0961900D-01	46.9475371	0.7485459
6	9.26056950-01	3.78047580-02	1.0513476D 00	7.2019228D 01	5.0681641D-01	2.3409749D-01	46.8845358	0.9356823
7	9.23622060-01	4.5365709D-02	1.04709260 00	7.2751043D 01	4.4634349D-01	2.50282270-01	46.8242714	1.1228188
8	9.21284790-01	5.29266610-02	1.04355250 00	7.3388485D 01	3.97864230-01	2.59360470-01	46.7664229)	1.3099553
9	9.19031360-01	6.04876120-02	1.04068800 00	7.3925570D 01	3.5991872D-01	2.62367440-01	46.7106498	1.4970918
10	9.16847400-01	6.8048564D~02	1.03846040 00	7.4357744D 01	3.31239770-01	2.60182550-01	46.6565958	1.6842282
11	9.1471809D-01	7.56095150-02	1.0368325D 00	7.4692308D 01	3.1075561D=01	2.53527570=01	46.6038946	1.8713647
12	9.12628470-01	8.3170467D-02	1.03576850 00	7.4898702D 01	2.97588700-01	2.42968490-01	46.5521759	2.0585012
13	9.10563740-01	9.07314180-02	1.03523460 00	7.5008590D 01	2.9105011D=01	2.28921160-01	46.5010728	2.2456376
14	9.08509460-01	9.82923700-02	1.0352002D 00	7.5015712D 01	2.90629720-01	2.1166043D-01	46.4502286	2.4327741
15	9.06451880-01	1.05853320-01	1.0356377D 00	7.49255310 01	2.95983200-01	1.91332120-01	46.3993029	2.6199106
16	9.04378110-01	1.13414270-01	1.03652380 00	7.4744736D 01	3.0691718D-01	1.6796608D-01	46.3479762	2.8070470
17	9.02276200-01	1.20975220-01	1.0378392D 00	7.4480709D 01	3.23374200-01	1.41489330-01	46.2959531	2.9941835
18	9.00135220-01	1.28536180-01	1.0395689D 00	7.4141015D 01	3.4541889D-01	1.1173767D-01	46.2429631	3.1813200
19	8.97945280-01	1.36097130-01	1.0417028D 00	7.37329910 01	3.7322646D-01	7.8465045D-02	46,1887611	3.3684565
20	8.95697400-01	1.4365808D-01	1.0442348D 00	7.32634520 01	4.0707408D-01	4.13501380-02	46.1331253	3.5555929
21	A.93383510-01	1-51219030=01	1-0471628D 00	7.27385040.01	4.47335440-01	0.0	44 D759655	2 7427704

MASS = 1.0000000381

M A C H 4 INTERMEDIATE LEFT CHARACTERISTIC

CHARACT 11								
POINT	x	Y	MACH NO.	- MACH ANG. (D)	PS1 (D)	FLOW ANG. (D)	X(IN)	Y(IN)
1	1.02157240 00	0.0	1.3210673D 00	4.91972530 01	6.75094380 00	0.0	49.2485811	0.0
Ž	1.02685110 00	6.0554298D+03			7.19182130 00	2.22664950-01	49.3792293	0.1498742
3	1.03209250 00	1.19543960-02	1.3529441D 00	4.76572580 01	7.6438354D 00	4.55128270-01	49.5089554	0.2958759
4		1.76992200-02	1.3692059D 00	4.69157710 01	8.1050114D 00	6.9604949D-01	49.6375964	0.4380625
5	1.04243890 00	2.3294023D-02		4.6195634D 01		9.4401004D-01	49,7650329	0.5765361
6	1.04753590 00	2.87443510-02	1.4020756D 00	4.54981900 01		1.19751120 00	49.8911859	0.7114338
7	1.05257940 00	3.4056976D-02	1.4185644D 00	4.4824540D 01		1.45497110 00	50.0160153	0.8429233
8	1.05756950 00	3.92397980-02	1.4350095D 00	4.4175579D 01		1.71472770 00	50,1395211	0.9712002
9	1.062507/0 00	4.4301840D-02	1.4513510D 00	4.35520440 01	1.0477581D 01	1.9750382D 00	50.2617444	1.0964877
10	1.06739760 00	4.92532930-02	1.4675284D 00	4.2954537D 01	1.0951003D 01	2.23408170 00	50.3827712	1.2190380
11	1.07224460 00	5.4105606D-02	1.48348050 00	4.2383557D 01	1.1419191D 01	2.4899576D 00	50.5027359	1.3391346
12	1.07651890 00	5.83417510-02	1.49741200 00	4.1898947D 01	1.1828998D 01	2.71304310 00	50.6085268	1.4439809
13	1.09087220 00	6.26177810-02	1.5114323D 00	4.1423853D 01	1.22421330 01	2.9368256D 00	50.7162740	1.5498143
14	1.08530570 00	6.69351900-02	1.52552170 00	4.0958596D 01	1.2657888D 01	3.1608768D 00	50.8260034	1.6566718
15	1.08981990 00	7.12951860-02	1.5396676D 00		1.3075769D 01	3.38496050 00	50.9377333	1.7645834
16	1.09441570 00	7.5698866D-02		4.0057640D 01		3.60893970 00	51.0514789	1.8735762
17	1.09909340 00		1.5680984D 00			3.8327349D 00	51.1672544	1.9836762
18	1.10385370 00	8.46414740-02	1.5823741D 00	3.9195011D 01	1.4338888D 01	4.0563007D 00	51.2850733	2.0949092
19	1.10869710 00	8.9182484D-02	1.5966864D 00	3.8777452D 01	1.4762330D 01	4.27961370 00	51.4049497	2.2073009
20	1.11362420 00	9.37713650-02	1.6110340D 00	3.8368686D 01	1.5186702D 01	4.5026636D 00	51.5268977	2.3208775
21	1.11863560 00	9.84091880-02	1.62541630 00	3.79684170 01	1.56118860 01	4.72544900 00	51.6509323	2.4356654
22	1.12373200 00	1.0309704D-01	1.6398332D 00	3.7576353D 01		4.9479737D 00	51.7770691	2.5516916
23	1.12891390 00	1.0783604D+01	1.6542850D 00	3.7192205D 01	1.64643070 01	5.1702450D 00	51.9053245	2.6689836
24	1.13418220 00	1.12627310-01	1.6687725D 00	3.68156910 01	1.68913910 01	5.39227220 00	52.0357158	2.7875693
25	1.13953750 00	1.1747201D=01	1.6832964D 00	3.6446537D 01	1.73189740 01	5.6140656D 00	52.1682609	2.9074775
26	1.14498050 00	1.22371320-01	1.6978579D 00	3.60844790 01	1.7747003D 01	5.83563610 00	52.3029789	3.0287375
27	1.15051220 00	1.27326450-01	1.7124581D 00	3.57292630 01	1.8175434D 01	6.0569948D 00	52.4398896	3.1513789
28	1.15613330 00	1.3233864D-01	1.7270984D 00	3.5380647D 01	1.8604228D 01	6.2781524D 00	52.5790137	3.2754324
29	1.1618447D 00	1.37409130-01	1.7417801D 00	3.50383980 01	1.9033351D 01	6.49911950 00	52,7203729	3.4009291
30	1.16764730 00	1.42539220-01	1.7565049D 00	3.47022910 01	1.9462774D 01	6.71990630 00	52.8639897	3,5279008
31	1-17354200 00	1.47730220+01	1.77127410 00	3.43721150 01	1.9892469D 01	6.9405224D 00	53.0098876	3.6563799
32	1.17953000 00	1.52983460-01	1.7860893D 00	3.4047666D 01	2.0322414D 01	7.16097710 00	53.1580910	3.7863997
33	1.18561210 00	1.5830031D-01	1.8009522D 00	3.37287500 01	2.0752588D 01	7.3812790D 00	53.3086250	3.9179939
34	1.1917894D 00	1.63682180+01	1.8158643D 00	3.34151820 01	2.11829720 01	7.60143630 00	53,4615161	4.0511971
35	1.19806300 00	1.6913048D-01	1.8308274D 00	3.31067840 01	2.1613549D 01	7.8214568D 00	53.6167912	4.1860447
36	1.20443410 00	1.74646680-01	1.8458429D 00	3.28033880 01		8,04134760 00	53,7744785	4.3225728
37	1.21090390 00	1.80232270-01	1.8609127D 00	3.25048310 01	2.24752270 01	8.2611156D 00	53.9346070	4.4608182
38	1.21747340 00	1.85888750+01	1.8760383D 00	3.22109610 01		8.48076710 00	54.0972066	4.6008185
39	1.22414410 00	1.9161770D-01	1.8912215D 00	3.1921629D 01	2.3337518D 01	8.7003082D 00	54,2623083	4.7426121
40	1.23091720 00	1.97420700-01	1.9064640D 00	3.16366950 01	2.3768868D 01	8.9197445D 00	54,4299439	4.8862385
CANTANA	1 01757530 04	1 0501.050 01				,		

CONTOUR 1.21737530 00 1.85804250-01 1.87581240 00

CHARACT 21								
POINT	×	Y	MACH NO.	MACH ANG. (D)	PS1 (D)	FLOW ANG. (D)	X(IN)	Y(IN)
1	9.40117590-01	0.0	1.0847778D 00	6.7197722D 01	1.0529074D 00	0.0	47.2325420	0.0
2	9.42122380-01	4.6946459D=03	1.09050750 00	6.64919820 01	1.1573065D 00	5.30091340-02	47.2821613	0.1161943
3	9.44938240-01	1.10496750-02	1.09887870 00	6.5507920D 01	1.3146987D 00	1.35602210-01	47.3518550	0.2734837
4	9.48084750-01	1.78473630-02	1.10864610 00	6.4422365D 01	1.5051524D 00	2.38991450-01	47.4297324	0.4417291
5	9.51418460-01	2.47331730-02	1.11943270 00	6.32921250 01	1.7233478D 00	3.6109650D-01	47.5122430	0.6121556
6	9.54866970-01	3.15480190-02	1.13102940 00	6.21471430 01	1.9663934D 00	5.00745270-01	47.5975949	0.7808257
7	9.58387290-01	3.82144980-02	1.14329540 00	6.1005303D 01	2.2322159D 00	6.5698840D-01	47.6847242	0.9458236
8	9.61951230-01	4.46950780=02	1.1561254D 00	5.98779190 01	2.5190656D 00	8.28913230=01	47.7729330	1.1062204
9	9.65538930-01	5.09732340-02	1.1694342D 00	5.87723700 01	2.8253199D 00	1.01557780 00	47.8617301	1.2616072
10	9+69135710+01	5.70440310-02	1.18314950 00	5.7693554D 01	3.1493948D 00	1.21598510 00	47.9507518	1,4118618
11	9.72730330-01	6.29091390+02	1.19720710 00	5.66447350 01	3.4897026D 00	1.4290723D 00	48,0397199	1.5570255
12	9.76314040-01	6.85741040-02	1.21154810 00	5.5628075D 01	3.8446317D 00	1.6537065D 00	48.1284183	1.6972356
13	9.79880110-01	7.40468270-02	1.22611770 00	5.4644985D 01	4.2125368D 00	1.8886814D 00	48.2166797	1.8326876
14	9.83423440-01	7.9336723D-02	1.24086340 00	5.36963430 01	4.5917389D 00	2.1327199D 00	48.3043787	1.9636145
15	9.86940520+01	8.44542750-02	1.25573430 00	5.27826520 01	4.9805251D 00	2.3944715D 00	48.3914278	2.0902759
16	9.90429310-01	8.94108270-02	1.27068080 00	5.1904149D 01	5.37715480 00	Z.6425156D 00	48.4777766	2.2129525
17	9.93889280-01	9.42185250-02	1.28565420 00	5.1060870D 01	5,77986620 00	2.9053620D 00	48.5634121	2.3319449
18	9.97321460-01	9.88903530-02	1.30060640 00	5.02527120 01	6.1868830D 00	3.1714519D 00	48.6483600	2.4475744
19	1.00072860 00	1.03440230-01	1.31548980 00	4.9479464D 01	6.5964232D 00	3.4391599D 00	48.7326871	2.5601856
20	1.00411510 00	1.07883150-01	1.33025710 00	4.8740840D 01	7.00670770 00	3.7067953D 00	48.8165045	2.6701496
21	1.00748740 00	1.12235360-01	1.34486160 00	4.80365000 01	7.4159665D 00	3.97260230 00	48.8999711	2.7778684
25	1.01047690 00	1.16038090-01	1.35765970 00	4.7439335D 01	7.7772045D 00	4.2057291D 00	48.9739616	2.8719875
53	1.01353790 00	1.19882260-01	1.37058280 00	4.68542650 01	8.1442146D 00	4.4408653D 00	49.0497224	2.9671322
24	1.01667200 00	1.23770300-01	1.38361130 00	4.62816920 01	8.51629830 00	4.6774038D 00	49.1272938	3.0633628
25	1.01988030 00	1.27703810-01	1.39673060 00	4.5721739D 01	8.8928936D 00	4.9149073D 00	49.2066996	3.1607185
26	1.02316330 00	1.31683920-01	1.40992970 00	4.5174352D 01	9.27353190 00	5.1530474D 00	49.2879551	3.2592280
27	1.02652140 00	1,35711580-01	1.42319970 00	4.4639364D 01	9.65781490 00	5.39157290 00	49.3710703	3.3589140
28	1.02995500 00	1.3978754D-01	1.4365340D 00	4.41165310 01	1.00453990 01	5.6302890D 00	49.4560528	3.4597957
29	1.03346430 00	1.43912520-01	1.4499272D 00	4.3605560D 01	1.0435986D 01	5.8690437D 00	49.5429083	3.5618906
30	1.03704940 00	1.48087190-01	1.46337500 00	4.3106126D 01	1.0829314D 01	6.10771870 00	49.6316417	3.6652151
31	1.04071060 00	1.52312190-01	1.4768742D 00	4.2617886D 01	1.12251520 01	6.34622120 00	49.7222577	3.7697855
32	1.04444800 00	1.56588180-01	1.4904223D U0	4.2140488D 01	1.1623294D 01	6.5844792D 00	49.8147608	3.A756179
33	1.04826190 00	1.60915830-01	1.50401740 00	4.1673576D 01	1.20235570 01	6.8224369D 00	49.9091562	3.9827290
34	1.05215250 00	1.65295830+01	1.51765800 00	4.1216796D 01	1.24257780 01	7.06005170 00	50.0054492	4.0911356
35	1.05612000 00	1.69728890-01	1.53134310 00	4.07698010 01	1.28298100 01	7.29729130 00	50.1036461	4.2008556
36	1.06016470 00	1.7421576D-01	1.54507210 00	4.0332252D 01	1.32355190 01	7.5341321D 00	50.2037536	4.3119073
CONTOUR	1.04964940 00	1.62477880-01	1.5088820D 00					

CHARACT 31							•		
POINT	x	Y	MACH NO.		MACH ANG. (D)	PSI (D)	FLOW ANG. (D)	X(IN)	Y(IN)
11	9.14718090-01	7.56095150-02	1.03683250	00	7,4682308D 01	3.10755610-01	2.53527570-01	46.6038946	1.8713647
12	9-15/11220-01	7.91859510-02	1.0419215D	00	7.3691821D 01	3.76114380-01	3.0600126D-01	46.6284751	1.9598829
13	9.17162560-01	8•4051847D-02	1.0493890D	00	7.23517030 01	4.78689270-01	3.8799191D-01	46.6643962	2.0803157
14	9.18853930-01	8.92881310-02	1.05813020	00	7.09200330 01	6.0787366D-01	4.9078166D-01	46.7062582	2.2099157
15	9.20714500-01	9.4621733D-02	1.0678106D	00	6.9471134D 01	7.6122731D-01	6.12346590-01	46.7523082	2.3419244
16	9.22702420-01	9.99262960-02	1.07824340	00	6.8038353D 01	9.3735763D-01	7.5155485D-01	46.8015100	2.4732144
17	9.24788370-01	1.05137480-01	1.08930190	00	6,6638192D 01	1.1351087D 00	9.0749169D-01	46.8531380	2.6021932
18	9.26950050-01	1.10221810-01	1.10089080	00	6.5279051D 01	1.35335030 00	1.0792767D 00	46.9066404	2.7280323
19	9.29169780-01	1.15162560-01	1.11293260	ų O	6,39651230 01	1.59090910 00	1.26599980 00	46.9615796	2.8503177
20	9.31433170-01	1.19952640+01	1.12536110	00	6.2698301D 01	1.84654810 00	1.4666970D 00	47.0175993	2.9688742
21	9+33728400+01	1.24590810-01	1.13811770	00	6.14791890 01	2.11896060 00	1.68034090 00	47.0744071	3.0836706
25	9.36045780-01	1.29079520-01	1.15114850	00	6.0307652D 01	2.4067737D 00	1.90583670 00	47.1317633	3.1947680
23	9.38377500-01	1.33423740-01	1.1644030D	00	5.9183140D 01	2.70855290 00	2.14202100 00	47.1894742	3.3022891
24	9.40717440-01	1.37630250-01	1.17783350	00	5.8104855D 01	3.02281170 00	2.3876649D 00	47.2473887	3.4064020
25	9.43061140-01	1.4170731D-01	1.1913937D	00	5.7071874D 01	3.3480183D 00	2.64147270 00	47.3053961	3.5073107
26	9.45405730-01	1.45664420-01	1.20503890	00	5.60832050 01	3.6826068D 00	2.90208590 00	47.3634256	3.6052506
27	9.47749990-01	1.49512320-01	1.21872540	00	5.51378230 01	4.02498770 00	3.1680856D 00	47.4214470	3.7004876
28	9.5009439U+01	1.53262980-01	1.23241050	00	5.4234698D 01	4.3735574D 00	3.4379939D 00	47.4794717	3.7933180
29	9.52441160-01	1.56929740-01	1.24605260	00	5.3372803D 01	4.1267093D 00	3.71027690 00	47.5375552	3.8840716
30	9.54794400-01	1.60527350-01	1.25961050	00	5.25511210 01	5.0828454D 00	3.9833474D 00	47.5957989	3.9731140
31	9.57160230=01	1.64072230-01	1.27304450	00	5.1768656D 01	5.44038350 00	4.25556470 00	47.6543542	4.0608510
CONTOUR	9.49893690-01	1.52941900-01	1.2312390D	υo					

	x	Y-CALC	Y-IN	DIFF	
1	0.8933835	0.1512190	0.1512190	0.0	1
2	0.8981780	0.1512317	0.1512316	0.0000001	2
3	0.9031363	0.1512714	0.1512712	0.0000002	3
Ä	0.9082511	0.1513406	0.1513403	0.0000002	4
5	0.9135380	0.1514422	0.1514422	0.0000000	5
6	0.9189965	0.1515789	0.1515787	0.0000003	6
7	0.9246596	0.1517547	0.1517539	0.0000009	7
ė	0.9305367	0.1519731	0.1519726	0.0000005	8
9	0.9366783	0.1522399	0.1522387	0.0000012	9
1ó	0.9431175	0.1525609	0.1525592	0.0000017	10
- 0	*************	0015,007	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
11	0.9498937	0.1529430	0.1529419	0.0000011	11
12	0.9570730	0.1533955	0.1533942	0.0000014	12
13	0.9647004	0.1539274	0.1539264	0.0000009	13
14	0.9728364	0.1545491	0.1545491	0.0	14
15	0.9815448	0.1552720	0.1552/34	-0.0000014	15
16	0.9908919	0.1561084	0.1561105	-0.0000022	16
17	1.0009363	0.1570703	0.1570737	-0.0000035	17
18	1.0117627	0.1581731	0.1581767	-0.0000036	18
19	1.0234319	0.1594306	0.1594343	-0.0000037	19
20	1.0360337	0.1608591	0.1608628	-0.0000036	20
21	1.0496494	0.1624749	0.1624779	-0.0000030	21
22	1.0586537	0.1635797	0.1635826	-0.0000029	22
23	1.0715645	0.1652082	0.1652117	-0.0000036	23
24	1.0863627	0.1671320	0.1671360	-0.00000 1 0	24
25	1.1024792	0.1692874	0.1692926	-0.0000052	25
26	1.1196438	0.1716423	0.1716478	-0.0000054	26
27	1.1376982	0.1741740	0.1741802	-0.0000061	27
28	1.1565561	0.1768682	0.1768/33	-0.0000051	28
29	1.1761470	0.1797114	0.1797158	-0.0000044	29
30	1.1964348	0.1826928	0.1826961	-0.0000032	30
31	1.2173753	0.1858020	0.1858043	-0.0000022	31
32	1.2389456	0.1890300	0.1890304	-0.0000004	32
33	1.2611122	0.1923669	0.1923672	-0.0000004	33
34	1.2838486	0.1958053	0.1958053	0.0	34
35	1.3071231	0.1993364	0.1993364	0.0	35
36	1.3309005	0.2029516	0.2029521	-0.0000005	36
37	1.3551440	0.2066430	0.2066430	0.0	37
38	1.3798149	0.2104028	0.2104028	0.0	38
39	1.4048689	0.2142226	0.2142226	0.0	39
40	1.4302636	0.2180949	0.2180949	0.0	40
41	1.4559664	0.2220140	0.2220140	0.0	41

MAX. ABSOLUTE ERROR = 6.1268970-06 AT POINT 27

LAST POINT	x	Υ	MACH NO.	MACH ANG. (D)	PSI (D)	FLOW ANG. (D)	X(IN)	Y(IN)
1	1.14068300 00	0.0	1.66015380 00	3.70386650 01	1.6637379D 01	0.0	52.1966126	0.0
2	1.13413180 00	4.9613543D-03	1.64318410 00	3.7486504D 01	1.6136718D 01	2.50226280+01	52.0344692	0.1227954
3	1.12751270 00	1.00117670-02	1.62585030 00	3.7956481D 01	1.5624713D 01	5.0524583D-01	51.8706443	0.2477951
4	1.12082370 00	1.51571300-02	1.60823410 00	3.84477020 01	1.5103900D 01	7.63015230-01	51.7050870	0.3751448
5	1-11406440 00	2.04022610-02	1.59041490 00	3.8959195D 01	1.45767900 01	1.02155670 00	51.5377939	0.5049638
6	1.10723670 00	2.57509600-02	1.5724705D 00	3,9489885D 01	1.40458700 01	1.27898870 00	51.3688057	0.6373462
7	1.10034390 00	3.12060160-02	1.55447690 00	4.00385770 01	1.35136010 01	1.5335178D 00	51.1982044	0.7723609
8	1.09339080 00	3.67691680-02	1.53650840 00	4.06039270 01	1.29824110 01	1.7834439D 00	51.0261121	0.9100511
9	1.09638400 00	4.24409860~02	1.51863810 00	4,11844130 01	1.2454700D 01	2.0271575D 00	50.8526913	1.0504308
10	1.07933180 00	4.8220652D-02	1.50093810 00	4.1778292D 01	1.19328410 01	2.2631387D 00	50.6781476	1.1934798
11	1.07224460 00	5.41056060-02	1.48348050 00	4,23835570 01	1.14191910 01	2.48995760 00	50.5027359	1.3391346
15	1.06513500 00	6.00909700-02	1.4663377D 00	4,2997869D 01	1.09161070 01	2.70626910 00	50.3267714	1.4872747
13	1.05801900 00	6.61686470=02	1.4495844D 00	4,3618467D 01	1.04259740 01	2.9108096D 00	50.1506482	1.6376996
14	1.05091700 00	7.23258910-02	1.43329920 00	4.4242048D 01	9.95124980 00	3.1023900D 00	49.9748707	1.7900937
15	1.04385590 00	7.85429670-02	1.4175692D 00	4.48645710 01	9.4945492D 00	3.2798849D 00	49.8001059	1.9439688
16	1.03687300 00	8.47891860-02	1.4024901D UU	4,5480961D 01	9.05878230 00	3.4422132D 00	49.6272753	2.0985651
17	1.03002240 00	9.1015793D-02	1.3881863D 00	4,60845750 01	8.64741720 00	3.5883009D 00	49.4577215	2.2526760
18	1.02338880 00	9.71421470-02	1.37482020 00	4.66661820 01	8.26501220 00	3.7169967D 00	49.2935376	2.4043057
19	1.01711680 00	1.03025340-01	1.36264220 00	4.72116790 01	7.9184507D 00	3.82685340 00	49.1383024	2.5499170
50	1.01149480 00	1.08375950=01	1.35212270 00	4.7695466D 01	7.62063550 00	3.9153593D 00	48,9991555	2.6823466
21	1.00748740 00	1.1223536D-01	1.34486160 00	4.80365000 01	7.4159665D 00	3.9726023D 00	48.8999711	2.7778684
55	1.00128570 00	1.1828424D-01	1.33402770 00	4.85565720 01	7.11205220 00	4.0514822D 00	48.7464767	2.9275806
23	9.95385510-01	1.24126240-01	1.3241927D 00	4.9040845D 01	6.83776920 00	4.1154037D 00	48.6004446	3.0721723
24	9.89773480-01	1.29762900-01	1.31528290 00	4.9490008D 01	6.59070290 00	4.1659900D 00	48.4615445	3.2116818
25	9.84435130-01	1.35197670-01	1.30722610 00	4.9905087D 01	6.3685182D 00	4.2047418D 00	48.3294183	3.3461946
26	9,79354660-01	1.4043627D-01	1.2999520D 00	5.0287409D 01	6.1689727D 00	4.2330288D 00	48.2036747	3.4758520
27	9.74514750-01	1.45486970-01	1.2933924D 00	5.0638560D 01	5.9899283D 00	4.25208370 00	48.0838852	3.6008587
28	9.69896490-01	1.50360810-01	1.2874818D 00	5.0960326D 01	5.82936260 00	4.26299670 00	47,9695814	3,7214882
59	9.65479390-01	1.55071630-01	1.28215820 00	5.1254622D 01	5.68538460 00	4.2667108D 00	47-8602565	3.8380827

RC=	6.000000	ETAD=	8.6700 DEG	AMACH= 2.2878437	BMACH= 3.0821543	CMACH= 4.0000000	FWACH= 1.0001230	UMAUN= C.E	818431

WALL						
POINT	X	Y	MACH NO.	FLOW ANG. (D)	WALTAN	SECDIF
	••	•			•	•
ì	8.93383510-01	1.51219030-01	1.04716380 00	0.0	0.0	1.1021541D 00
ē	8.98178030-01	1.51231700-01	1.0626027D 00	3.0245925D-01	5.2789588D-03	1.09963210 00
3	9.03136290-01	1.51271390-01	1.0786293D 00	6.1441645D-01	1.07240010-02	1.0968392D 00
4	9.08251110-01	1.51340590-01	1.0952300D 00	9,35389910-01	1.6327084D=02	1.09269530 00
5	9-13538010-01	1.5144220D-01	1.11249320 00	1.2653979D 00	2.20889510-02	1.0855826D 00
6	9-18996460-01	1.51578940-01	1.13035520 00	1.6033225D 00	2,79905630-02	1.0751564D 00
7	9.24659570-01		1.14895920 00	1.9498158D 00	3.40438490-02	1.06072050 00
8	9.30536680-01	1.51973130-01	1.16823050 00	2.3036495D 00	4.0227947D=02	1.04264740 00
9	9.36678280-01	1.52239870-01	1.1883589D 00	2.6663346D 00	4.65699410-02	1.0191646D 00
10	9.43117480-01	1.52560930-01	1.20935560 00	3.0362174D 00	5.3041650D-02	9.87911420-01
			•		_	
11	9.49893690-01	1.52943040-01	1.23123900 00	3.4115784D 00	5.9613744D-02	
12	9.57073000-01	1.53395540-01	1.2541190D 00	3.7917793D 00	6.62758170-02	9.03059030-01
13	9.64700380-01	1.53927370-01	1.27794330 00		7.29620510-02	
14	9.72836360-01	1.54549070-01	1.3026785D 00		7.96000090-02	
15	9.81544830-01	1.55271960-01			8.61321100-02	
16	9.90891890-01	1.5610837D-01			9.25115440-02	6.50534180-01
17	1.00093630 00	1.57070280-01			9.8700684D-02	
18	1.01176270 00	1.58173100-01	1.4120873D 00		1.0470270D-01	5.24740310-01
19	1.02343190 00	1.5943060D-01	1.4427244D 00		1.10453110-01	4.6410130D-01
50	1.03603370 00	1.60859120-01	1.4749409D 00	6.6117213D 00	1.15911270-01	4.07886710-01
					1 21402/20 21	2 52402418 44
51	1.04964940 00	1.62474890-01	1.5088820D 00		1.21093620-01	3.53098110-01
22	1.05865370 00	1.63579690-01	1.53088170 00		1.24109170-01	3.19092190-01
23	1.07156450 00	1.65208170-01	1.5618623D 00		1.2793624D-01	2.79735690-01
24	1.08636270 00	1.67131980-01			1.31792760=01	2.43425290=01
25	1.10247920 00	1.69287440-01	1.6335898D 00		1.35414350-01	2.0780700D+01
26	1.11964380 00	1.71642330-01	1.67206110 00		1.38672210-01	1.74143200-01
27	1.13769820 00	1.7417403D-01	1.71161100 00		1.4151890D-01	1.44306350-01
28	1.15655610 00	1.76868250-01	1.7519140D 00		1.4397695D=01	1.17715950-01
29	1.17614700 00	1.79711420-01	1.79283120 00		1.4602606D-01 1.4770430D-01	9.3849670D=02 7.3736928D=02
30	1.19643480 00	1.82692840-01	1.83415150 00	8.4020831D 00	1041104200401	1 43 7 30 7 8 00 40 2
21	1 317396311 55	1 85003010-01	1.8758124D 00	8.47775980 00	1.49054190-01	5.62904070-02
31	1.21737530 00	1.85802010-01	1.87581240 00 1.91764070 00		1.50086810-01	4.18915450-02
35	1.23894560 00	1.89030000-01			1.50879170=01	3.09451470-02
33 34	1.26111220 00	1.92366870-01	1.9595949D 00 2.0015440D 00		1.51470800-01	2.1778656D-02
34 35	1.2838486U 00 1.3071231U 00	1.9580533D=01 1.9933644D=01	2.0015440D 00 2.0434024D 00		1.51470000-01	1.45122710-02
35 36	1.3309005D 00	2.02951570-01	2.08509680 00			9.4814587D=03
36 37	1.35514400 00	2.06642950-01	2.1265044D 00		1.52329980-01	5.7476131D-03
36	1.37981490 00	2.1040276D-01	2.1675528D 00		1.5243037D-01	2.91359480-03
39	1.40486890 00	2.14222570-01	2.2081710D 00		1.5247397D-01	1.04252170-03
40	1.43026360 00	2.1809487D-01	2.2482849D 00		1.5248249D=01	2.30580180-04
40	1++3450300 00	C+10034010_01	C. C. TO COTTO UU	0.0000EV70 00	***************************************	F#30300100-04
41	1.45596640 00	2.22014040-01	2.2878437D 00	8.6700000D 00	1.5248569D-01	0.0

M A C H 4 UPSTREAM CONTOUR

		8.6700 DEG	AMACH= 2.2878437		3.0821543	CMACH= 4+0000000	EMACH= 1.6601	538 GMACH= 2.28784
POINT	X/YO	Y/Y0	INT.Y/YO	PAR/YU	HYP/YO	C(Y)	C(YI)	C(YP)
1	0.0	1.0000000		1.0000000	1.000000	0		
2	0.0317058	1.0000838	1.0000929	1.0000838	1.000083	8 -9.027028D-04	-2.852807D+01	1.7714580-03
3	0.0644944	1.0003463	1.0003562	1.0003466	1.000346	6 1.3356690-03	-3.5499110-02	2.0086530-03
4	0.0983183	1.0008039	1.0008144	1.0008055			-9.341050D-03	2.045023D-03
5	0.1332802	1.0014758	1.0014864	1.0014803	1.001479	2 1.894462D-03	-2.5754650-03	2.334730D-03
6	0.1693765	1.0023801	1.0023903	1.0023907			8.706624D-05	2.7752710-03
7	0.2068262	1.0035425	1.0035516	1.0035648			1.4830450-03	3.3288140-03
8	0.2456911	1.0049868		1.0050303			2.4013550-03	3.979032D-03
9	0.2863051	1.0067508		1.0068309			3.1406260-03	4.6665920-03
10	0.3288870	1.0088739		1.0090139			3.7885620-03	5.4633410+03 ··
••				1400,013,	14000513	0 34,330310-03	341003020-03	344033410-03
11	0.3736976	1.0114008		1.0116375			4.438139D-03	6.3711370+03
12	0.4211738	1.0143931		1.0147823			5.1187970-03	7.3658240-03
13	0.4716131	1.0179100		1.0185349			5.8581470-03	8.4527150-03
14	0.5254157	1.0220213		1.0230051			6.6726340-03	9.6225850=03
15	0.5830041	1.0268017		1.0283245			7,5681880-03	1.0822250-02
16	0.6448156	1.0323328		1.0346489			8.530062D-03	1.1991490-02
17	0.7112386	1.0386939		1.0421550			9.5216590-03	1.3072830-02
18	0.7828325	1.0459867		1.0510689			1.051204D-02	1.401668D-02
19	0.8600004	1.0543025		1.0616334			1.146479D+02	1.4818940-02
50	0.9433346	1.0637492	1.0637853	1.0741567	1.071593	3 1.2397890-02	1,2354920-02	1.5474430-02
21	1.0333747	1.0744341	1.0744669	1.0889886	1.085346	6 1.318935D-02	1.315968D-02	1.5961940-02
22	1.0929194	1.0817401		1.0995394			1.3610260-02	1.6197960-02
23	1.1782974	1.0925091		1.1156987			1.415420D-02	
24	1.2761568	1.1052311		1.1357147				1.643316D=02
25	1.3827342	1.1194850		1.1593295			1.4648660-02	1.6558440-02
26	1.4962419	1.1350577		1.1865616			1.5054300-02	1.656967D-02
27	1.6156349	1.1517997					1.5361890-02	1.6482700-02
28	1.7403406			1.2175230			1.5573080-02	1.631418D-02
29	1.8698934	1.1696163		1.2523988			1.569645D-02	1.6076830-02
30	2.0040550	1.1884180		1.2913751			1.5741650-02	1.578939D-02
30	2.4040350	1.2081339	1.2081635	1.3346864	1.292042	1 1.572322D-02	1.5719550-02	1.5462640-02
31	2.1425332	1.2286946		1.3825374	1.328561	1.5642070-02	1.5640030-02	1.5106340-02
32	2.2851759	1.2500411		1.4351691	1.367603		1.5512610-02	1.4730920-02
33	2.4317621	1,2721076	1.2721171	1.4927889			1.5345590-02	1.4340970-02
34	2.5821161	1.2948458		1.5556103			1.514646D-02	1.3942720-02
35	2.7360289	1.3181968		1.6238212			1.492173D-02	1.3542350-02
	2.8932668	1.3421034	1.3421088	1.6975827			1.4677170-02	1.3143020-02
37	3.0535872	1.3665142		1.7770329			1.4417690-02	1.2747970-02
38	3.2167339	1.3913775		1.8622814	1.650625		1.4147610-02	
39	3.3824143	1.4166376		1.9533938			1.387060D=02	1.2360360-02
40	3.5503471	1.4422449		2.0504137			1.3589770-02	1.198239D-02 1.1615580-02
41	3.7203183	1.4681620	1.4681620	2.1533973		-	1.3307590-02	1.1260630-02

ICY = -284377

XA(IN)= 60.0000000, YA(IN)= 5.4949332, XB(IN)= 76.9263852, XC(IN)= 132.3126057, X0(IN)= 179.7566517, Y0(IN)= 12.2500000

AXIS D3W/DX3 POINT X(IN) MACH NO. DM/OX D2M/DX2 D3M/DX3 W=Q/A+ OW/DX D2W/DX2 2.13985 76.92639 3.082154 9.8284940-01 -4.3579320-01 -3.9863250-01 1.982672 2.1801940-01 -2.3331610-01 1.9250830-01 79.23414 3.171850 9.4055420-01 -4.706570D-01 -3.491846D-01 2.002012 1.970900D-01 -2.157468D-01 1.839255D-01 81,54190 3,257457 8.9522330-01 -5.0091010-01 -2.9973670-01 2.019476 1.7775830-01 -1.9907840-01 1.7336500-01 2.41957 83.84966 3.338713 8.4728650-01 -5.2655270-01 -2.5028880-01 2.035208 1.5993300-01 -1.8344910-01 1.6177010-01 2.51282 86.15742 3.415394 7.971736D-01 -5.475846D-01 -2.008408D-01 2.049344 1.4351390-01 -1.6892130-01 1.4983750-01 2.60606 88.46518 3.487317 7.453147D-01 -5.640060D-01 -1.513929D-01 2.062011 1.2839760-01 -1.5550170-01 1.3806980-01 11 3.554341 6.9213960-01 -5.7581680-01 -1.0194500-01 1.1448210-01 -1.4315750-01 2.073325 1.2682020-01 13 2.69930 90.77294 2.79254 93.08070 3.616362 6.3807820-01 -5.8301700-01 -5.2497090-02 2.083394 1.0166960-01 -1.3182830-01 1.1633010-01 15 2.88578 95.38846 3.673317 5.835603D-01 -5.856066D-01 -3.049173D-03 2.092316 8.986926D-02 -1.214353D-01 1.067592D-01 17 2.97902 97.69622 3.725185 5.290160D-01 -5.835856D-01 4.639874D-02 2.100182 7.899777D-02 -1.118878D-01 9.8209360-02 3.07226 100.00398 3.771982 4.748750D-01 -5.769540D-01 9.584666D-02 2.107075 6.898090D-02 -1.030873D-01 9.0742350-02 21 23 3.16550 102.31174 3.813767 4.2156730-01 -5.6571190-01 1.4529460-01 2.113070 5.9753750-02 -9.4931120-02 8.4393700-02 3.25875 104.61950 3.850637 3.6952280-01 -5.4985910-01 1.947425D-01 2.118240 5.1261140-02 -8.7313980-02 7.9182270-02 25 3.35199 106.92725 3.882729 3.1917140-01 -5.2939580-01 2.4419040-01 2.122651 4.345776D-02 -8.0129370-02 7.5116890-02 3.44523 109.23501 3.910222 2.7094300-01 -5.0432180-01 2.9363830-01 2.126365 3,6308280-02 -7,3270270-02 7,2200290-02 3.53847 111.54277 3.933335 2.252675D-01 -4.746373D+01 3.430862D-01 2.129441 2.9787330-02 -6.6629610-02 7.0430840-02 31 3.63171 113.85053 3.952324 1.8257470-01 -4.4034220-01 3.9253420-01 2.131939 2.387954D-02 -6.010067D-02 6.980227D-02 33 3.72495 116.15829 3.967488 1.4329460-01 -4.0143650-01 4.4198210-01 2.133913 1.8579420-02 -5.3577630-02 7.0301520-02 1.3891300-02 -4.6956320-02 7.1904850-02 3.81819 118.46605 3.979165 1.078570D-01 -3.579202D-01 4.914300D-01 2.135422 3.91144 120.77381 3.987734 7.6691950-02 -3.0979330-01 5.4087790-01 2.136523 9.8290820-03 -4.0135520-02 7.4572240-02 4.00468 123.08157 3.993613 5.022924D-02 -2.570558D-01 5.903258D-01 2.137276 6.4159220-03 -3.301876D-02 7.824013D-02 41 4.09792 125.38933 3.997260 2.8898800-02 -1.9970770-01 6.3977370-01 2.137741 3.6836340-03 -2.5516940-02 8.2812640-02 4.19116 127.69709 3.999175 1.3130510-02 -1.3774910-01 6.8922170-01 2.137985 1.6718720-03 -1.7551760-02 8.8151680-02 45 4.28440 130.00485 3.999895 3.354276D-03 -7.117984D-02 7.386696D-01 2.138077 4.269151D-04 -9.060223D-03 9.406618D-02 4.37764 132.31261 4.000000 -4.167444D-15 -6.030310D-15 7.881175D-01 2.138090 -5.303792D-16 -7.674610D-16 1.003016D-01

MACH4	DOWNSTREAM CONT	OUR						
CHARACT 1								
POINT	x	Y	MACH NO.	MACH ANG. (D)	PSI (D)	FLOW ANG.(D)	X(IN)	Y(IN)
1	2.13985010 00	0.0	3.0821543D 00	1.89321590 01	5.13173790 01	0.0	76.9263852	0.0
?	2.11646200 00	8.00661650-03	3.05906210 00	1.90805790 01	5.08838790 01	2.16750000-01	76.3475216	0.1981669
3	2.09349230 00	1.58396700-02	3.03617440 00	1.92300470 01	5.04503790 01	4.3350000D=01	75.7790116	0.3920379
4	2.07093130 00	2.35040150-02	3.01348770 00	1.93805800 01	5.00168790 01	6.5025000D-01	75.2206173	0.5817335
5	2.04876960 00	3.10043580-02	00 OERPPOPP.S	1.95321980 01	4.95833790 01	8.67000000-01	74.6721080	0.7673698
6	2.02699830 00	3.8345258D-02	2.9687030D 00	1.9684919D 01	4.91498790 01	1.08375000 00	74.1332594	0.9490599
7	2.00560850 00	4.55311350-02	2.94659820 00	1.9838764D 01	4.87163790 01	1.3005000D 00	73.6038537	1.1269132
Э	1.98459170 00	5.25662760-02	2.9246807D 00	1.99937510 01	4.8282879D 01	1.5172500D 00	73.0836792	1.3010356
9	1.96393950 00	5.9454836D-02	2.90294730 00	2.0149903D 01	4.78493790 01	1.7340000D 00	72.5725301	1.4715302
10	1.94364390 00	6.6200847D-02	2.8813946D 00	2.0307240D.01	4.74158790 01	1.9507500D 00	72.0702063	1.6384965
11	1.92369700 00	7.28082170-02	2.8600196D 00	2.04657840 01	4.6982379D 01	2.1675000D 00	71.5765135	1.8020315
15	1.90409130 00	7.92807410-02	2.8388193D 00	2.0625556D 01	4.6548879D 01	2.3842500D 00	71.0912626	1.9622290
13	1.88481910 00	8.56220990=02	2.8177905D 00	2.0786580D 01	4.6115379D 01	2.6010000D 00	70.6142697	2.1191800
14	1.86587340 00	9.18358650-02	2.7969303D 00	2.0948879D 01	4.56818790 01	2.81775000 00	70.1453561	2.2729731
15	1.84724710 00	9.79255070-02	2.77623580 00	2.11124760 01	4.52483790 01	3.03450000 00	69.6843478	2.4236941
16	1.82893340 00	1.03894390-01	2.75570420 00	2.12773970 01	4.4814879D 01	3.2512500D 00	69.2310756	2.5714263
17	1.81092550 00	1.09745790-01	2.73533250 00	2.14436670 01	4.4381379D 01	3.4680000D 00	68.7853750	2.7162507
18	1.79321720 00	1.15482880-01	2.71511820 00	2.16113110 01	4.3947879D 01	3.6847500D 00	68.3470857	2.8582458
19	1.77580190 00	1.21108740-01	2.6950584D 00	2.17803560 01	4.3514379D 01	3.9015000D 00	67.9160519	2+9974880
50	1.75867370 00	1.2662637D=01	2.67515040 00	2.19508300 01	4.30808790 01	4.1182500D 00	67.4921219	3.1340515
21	1.74182650 00	1.3203868D-01	2.6553917D 00	2.2122760D 01	4.2647379D 01	4.3350000D 00	67.0751479	3.2680083
22	1.72525460 00	1.37348510-01	2.6357796D 00	2,22961750 01	4.2213879D 01	4.5517500D 00	66.6649862	3.3994286
23	1.70895220 00	1.42558600-01	2.6163117D 00	2.2471105D 01	4.1780379D 01	4.7685000D 00	66.2614968	3.5283805
24	1.69291400 00	1.47671640-01	2.5969853D 00	2.26475810 01	4.1346879D 01	4.9852500D 00	65.8645434	3,6549301
25	1.67713440 00	1.52690220-01	2.5777981D 00	2.2825633D 01	4.0913379D 01	5.2020000D 00	65.4739932	3.7791418
26	1.66160830 00	1.5761687D-01	2.5587476D 00	2.3005295D 01	4.0479879D 01	5.4187500D 00	65+0897170	3.9010784
27	1.64633070 00	1.6245406D-01	2.5398314D 00	2.31865990 01	4.0046379D 01	5.6355000D 00	64,7115887	4.0208006
28	1.63129640 00	1.67204170-01	2.52104720 00	2.3369580D 01	3.9612879D 01	5.8522500D 00	64,3394858	4.1383679
29	1.61650080 00	1.7186955D-01	2.50239260 00	2.35542720 01	3.9179379D 01	6.0690000D 00	63,9732887	4.2538379
30	1.60193910 00	1.76452460-01	2.4838653D 00	2.37407130 01	3.8745879D 01	6.2857500D 00	63.6128808	4.3672666
31	1.59760670 00	1.80955110-01	2.4654632D 00	2.3928939D 01	3.83123790 01	6.5025000D 00	63.2581489	4.4787089
35	1.57349920 00	1.85379650=01	2.44718380 00	2.4118989D 01	3.7878879D 01	6.7192500D 00	62.9089822	4.5882180
33	1.55961220 00	1.89728170-01	2.4290252D 00	2.43109030 01	3.7445379D 01	6.93600000 00	62.5652729	4.6958456
34	1.54594140 00	1.94002720-01	2.4109850D 00	2.45047220 01	3.7011879D 01	7+1527500D 00	62,2269161	4.8016422
35	1.53248280 00	1.98205280+01	2.39306110 00	2.47004890 01	3.6578379D 01	7.3695000D 00	61.8938093	4.9056572
36	1.51923220 00	2.02337790-01	2.37525150 00	2.48982460 01	3.6144879D 01	7.5862500D 00	61.5658527	5.0079384
37	1.50618580 00	2.06402130-01	2.35755390 00	2.5098040D 01	3.5711379D 01	7.8030000D 00	61.2429489	5.1085325
38	1.49333970 00	Z-1040016D-01	2.33996640 00	2.52999170 01	3.52778790 01	8.0197500D 00	60.9250032	5.2074852
39	1.48069020 00	2.1433366D-01	2.3224869D 00	2.5503925D 01	3.4844379D 01	8.2365000D 00	60,6119228	5.3048408
4 0	1.46823360 00	2.1820438D=01	2.3051134D 00	2.57101140 01	3.44108790 01	8.4532500D 00	60.3036178	5.4006428
41	1.4559664D 00	2.2201404D-01	2.28784370 00	2.5918536D 01	3.39773790 01	8.6700000D 00	60.0000000	5.4949332

MASS = 0.9999999136

	X	Y-CALC	Y-IN	DIFF	
1	1.4559664	0.2220140	0.2220140	0.0	1
ž	1.4783065	0.2254207	0.2254211	-0.0000004	2
3	1.5005471	0.2288121	0.2288122	-0.0000002	3
4	1.5227029	0.2321903	0.2321902	0.0000001	4
5	1.5447888	0.2355573	0.2355570	0.0000004	5
6			0.2389150		6
7	1.5668216	0.2389156		0.0000007	7
	1.5888196	0.2422675	0.2422666	0.0000009	
8	1.6108018	0.2456153	0.2456146	0.0000007	8
9	1.6327838	0.2489607	0.2489617	-0.0000010	9
10	1.6547950	0.2523073	0.2523073	-0.0000000	10
11	1.6768523	0.2556568	0.2556564	0.0000004	11
15	1,6989763	0.2590114	0.2590116	-0.0000002	12
13	1.7211884	0.2623733	0.2623733	-0,0000000	13
14	1.7435111	0.2557447	0.2657437	0.0000010	14
15	1.7659655	0.2691277	0.2691271	0.0000006	15
16	1.7885670	0.2725233	0.2725249	-0.0000016	16
17	1.8113487	0.2759349	0.2759349	0.0000000	17
18	1.8343264	0.2793635	0.2793639	-0.0000004	18
19	1.8575201	0.2828101	0.2828102	-0.0000001	19
50	1.8809524	0.2862765	0.2862751	0.0000014	20
21	1.9046426	0.2897636	0.2897639	-0.0000003	21
25	1.9286045	0.2932714	0.2932721	-0.0000007	22
23	1.9528712	0.2968028	0.2968031	-0.0000003	23
24	1.9774540	0.3003574	0.3003592	-0.0000018	24
25	2.0023732	0.3039357	0.3039348	0.0000009	25
26		0.3075379	0.3075385		26
_	2.0276463			-0.0000006	_
27	2.0532825	0.3111628	0.3111637	-0.0000009	27
85	2.0793143	0.3148122	0.3148121	0.0000001	28
59	2.1057480	0.3184841	0.3184853	-0.0000012	29
30	2.1326005	0.3221780	0.3221758	0.0000022	30
31	2.1598844	0.3258924	0.3258930	-0.0000006	31
32	2.1876038	0.3296247	0.3296246	0.0000002	32
43	2.2157874	0.3333758	0.3333762	-0.0000004	33
34	2.2444348	0.3371422	0.3371430	-0.0000008	34
35	2.2735572	0.3409220	0.3409208	0.0000012	35
36	2.3031506	0.3447114	0.3447171	-0.0000057	36
37	2.3332387	0.3485098	0.3485106	-0.0000008	37
38	2.3638162	0.3523132	0.3523172	-0.0000039	38
39	2.3948832	0.3561181	0.3561184	-0.0000003	39
					-
40	2.4264414	0.3599210	0.3599209	0.0000000	40
41	2.4584751	0.3637164	0.3637192	-0.0000028	41
42	2,4910016	0.3675029	0.3675020	0.0000009	42
43	2.5240006	0.3712742	0.3712773	-0.0000030	43
44	2.5574640	0.3750262	0.3750226	0.0000036	44
45	2.5913777	0.3787536	0.3787554	-0.0000018	45
46	2.6257145	0.3824508	0.3824499	0.0000009	46
47	2.6604786	0.3861155	0.3861174	-0.0000018	47
48	2.6956345	0.3897415	0.3897411	0.0000005	48
49	2.7311606	0.3933244	0.3933235	0.0000010	49
50	2.7804383	0.3981596	0.3981670	-0.0000074	50
_					_
>1	2.8303081	0.4029951	0.4028965	-0.0000014	51
52	2.8807504	0.4075249	0.4075214	0.0000035	52

53	2.9317139	0.4120413	0.4120429	-0.0000017	53
54	2.9831884	0.4164406	0.4164456	-0.0000050	54
55	3.0351722	0.4207206	0.4207173	0.0000033	55
56	3.0876232	0.4248761	0.4248761	0.0	56
57	3.1405382	0.4289056	0.4289149	-0.0000092	57
58	3.1939216	0.4328084	0.4328062	0.0000022	58
59	3.2477348	0.4365807	0+4365807	0.0000000	59
60	3.3019779	0.4402224	0.4402325	-0.0000102	60
61	3.3566594	0.4437334	0.4437302	0.0000032	61
92	3.4117403	0.4471112	0.4471113	-0.0000001	62
63	3,4672234	0.4503561	0.4503640	-0.0000079	63
64	3.5231177	0.4534689	0.4534660	0.0000029	64
65	3.5793863	0.4564483	0.4564488	-0.0000005	65
66	3.6360322	0.4592957	0.4593053	-0.0000097	66
67	3,6930612	0.4620126	0.4620117	0.0000008	67
68	3.7504417	0.4645990	0.4645983	0.0000007	68
59	3.8081853	0.4670572	0.4670598	-0.0000026	69
70	3.8662636	0.4693873	0.4693890	-0.0000017	70
71	3.9246796	0.4715916	0.4715896	0.0000020	71
72	3.9834323	0.4736721	0.4736688	0.0000033	72
73	4.0424953	0.4756301	0.4756315	-0.0000014	73
74	4.1018677	0.4774685	0.4774722	-0.0000037	74
75	4.1615486	0.4791899	0.4791889	0.0000010	75
76	4.2215140	0.4807971	0.4807957	0.0000014	76
77	4.2817672	0.4822935	0.4822915	0.0000020	77
78	4.3422861	0.4836819	0.4836815	0.0000003	78
79	4.4030717	0.4849655	0.4849659	-0.0000004	79
80	4.4641037	0.4861472	0.4861492	-0.0000020	80
81	4.5253768	0.4872307	0.4872314	-0.0000008	81
82	4.5868848	0.4882197	0.4882193	0.0000004	82
83	4.6486081	0.4891185	0.4891186	-0.0000001	83
84	4.7105436	0.4899314	0.4899311	0.0000003	84
85	4.7726727	0.4906627	0.4906628	S000000-0-	85
86	4.8349909	0.4913166	0.4913163	0.0000003	86
87	4.8974804	0.4918974	0.4918974	0.0	87
86	4.9601354	0.4924095	0.4924092	0.0000003	88
89	5.0229390	0.4928577	0.4928577	0.0	89
90	5.0858844	0.4932465	0.4932463	0.0000002	90
91	5.1489555	0.4935803	0.4935809	-0.0000006	91
92	5.2121447	0.4938637	0.4938637	0.0	92
93	9.2754384	0.4941018	0.4941011	0.0000006	93
94	5.3388238	0.4942989	0.4942984	0.0000005	94
95	5.4022929	0.4944599	0.4944593	0.0000006	95
96	5.4658324	0.4945892	0.4945890	0.0000002	96
97	5.5294342	0.4946909	0,4946906	0.0000003	97
48	5.5930872	0.4947690	0.4947681	0.0000009	98
49	5.6567813	0.4948275	0.4948264	0.0000010	99
100	5.7205095	0.4948696	0.4948687	0.0000009	100
101	5.7842631	0.4948988	0.4948979	0.0000010	101
102	5.8480345	0.4949182	0.4949172	0.0000010	102
103	5.9118183	0.4949301	0.4949293	0.0000008	103
104	5.9756089	0.4949369	0.4949362	0.0000007	104
105	6.0394017	0.4949403	0.4949397	0.0000007	105
106	6.1031937	0.4949417	0.4949412	0.0000005	106
107	6.1669822	0.4949420	0.4949417	0.0000004	107
108	6.2307657	0.4949419	0,4949418	0.0000001	108

109 6.2945435 0.4949418 0.4949418 0.0 109

MAX. ABSOLUTE ERROR = 1.0154520-05 AT POINT 60

RC= 6.000000 ETAD= 8.6700 DEG AMACH= 2.2878437 BMACH= 3.0821543 CMACH= 4.0000000 EMACH= 1.6601538 GMACH= 2.28784	RC=	6.000000 ETAD= 8.67	'00 DEG AMACH= 2.2878	437 BMACH= 3.0821543	CMACH= 4.0000000	EMACH≈ 1.6601538	GMACH= 2.287843
--	-----	---------------------	-----------------------	----------------------	------------------	------------------	-----------------

WALL									
POINT	x		Y	MACH NO.		FLUW ANG.	(D)	WALTAN	SECDIF
			**						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
41	1 45596640		2.22014040-01	2.28784370		8.67000000	00	1.5248569D-01	0.0
47	1.47830650		2.25420680-01	2.3214084D		8.6701296D		1.52488000-01	-1.2304520D-04
43	1.50054710		2.28812060-01	2.35412350		8,66969540			-5.30408540-04
44	1.52270290		2.32190250-01	2.38604470		8.66881280			-9.48187020-04
45	1.544/8880		2.3555734D-01	2.4172256D		8.66734830			-1.55133500-03
46 47	1.54682160		2.38915640-01	2.4477161D		8.6649825D			-2.39284830-03
48	1.58881960	00	2.42267480-01	2.47756250		8.6614505D			-3.50869150-03
49	1.63278380		2.4561528D-01 2.4896066D-01	2.50680800 2.5354718D		8.6563427D			-4.9722566D-03
50	1.65479500		2.52307270-01	2.5635910D		8,64920930			-6.66159790-03
70	1403419300	••	C+26301610-01	2430339100	00	8.6399281D	vv	1431440010-01	-8.4624544D-03
51	1.67685230	00	2.55656790-01	2.59121850	00	8.62831940	00	1.51741390-01	-1.03770580-02
52	1.69897630	00	2.59011390-01	2.61838670	00	8.61424330	00		-1.2367249D-02
53	1.72118840	00	2.62373260+01	2.64509500	00	8,59759780	00	1.5119290D-01	-1.44339310-02
54	1.74351110		2.65744700-01	2.67137910	00	8.57822260	00	1.50847020-01	-1.65889750-02
55	1.76596550		2.6912769D-01	2.69728640	00	8.55596860	00	1.50449800-01	-1.88643020-02
56	1.78856700		2.7252328D-01	2.72281040		8.5305823D			-2.12775550-02
57	1.81134870		2.75934950-01	2.74797250		8.50183320			-2.37701030-02
58	1.83432640		2.79363460-01	2.77282390		8.4695954D			-2.62974250-02
59	1.85752010		2+82810130-01	2.79734720		8.43374300			-2.88056290-02
60	1.88095240	00-	2.86276500-01	2.82156320	00	8.3942634D	00	1.4/564850-01	-3.12422490-02
61	1.90464260	00	2.89763570-01	2.84551950	00	8.3511536D	00	1.46796140=01	-3.36181180-02
62	1.92860450		2.93271410-01	2.86916290			00		-3.59159160-02
63	1.95287120		2.96802850-01	2.89256680			00		-3.81304910-02
64	1.97745400		3.00357390-01	2.91572990		8.19981410			-4.02971140-02
65	2.00237320	00	3.03935710-01	2.93862090		8.1419288D			-4.24356770-02
66	2.02764630	00	3.07537910-01	2.96130880	00	8.0801817D			-4.4568599D-02
67	2+05328250	00	3-11162800-01	2.98373270		8.01445080			-4.6681025D-02
68	2.07931430	00	3.14812190-01	3.00595120	00	7.94462770	00	1.39555450-01	-4.87291550-02
69	2.10574800		3.18484120-01	3.02796030		7,87072020	0.0	1.38240630-01	-5.06592410-02
70	2+13260050	00	3.2217795D-01	3.0497246D	00	7.7928164D	00	1.36855230-01	-5.24583210-02
71	2.15988440	00	3.25892360-01	3.0713107D	ıı n	7.7109535D	00	1 3530000-01	-5.41254710-02
72	2.19760380		3.2962475D-01	3.09263380			00		-5.5612612D-02
73	2.21578740		3.3337579D-01	3.1137755D		7.53592490			-5.69652240-02
74	2.24443480	00	3.37142180-01	3.13469550			00		-5.82301480+02
75	2.27355720	00	3.40922010-01	3.15538820			00		-5.93567920-02
76	2.30315060	00	3.44711360-01	3-17588450		7.2464884D			-6.03616650-02
77	2.33323870	00	3.48509850-01	3.19611710	00	7.1432346D	00		-6.12757190-02
78	2.36381620	00	3.52313240-01	3.21616690	00	7.03676960			-6.20799660-02
79	2.39488320	00	3.56118050-01	3.23594850	00	6.92723920			-6.2818104D-02
80	2.47644140	00	3.59920960-01	3.25551570	00	6,81462580	00		-6.35305580+02
81	2 46847610		3 43714440-01	3 37403130		4 40000130			4
82	2.45847510		3.6371644D=01 3.6750288D=01	3.2748313D 3.2938948D		6.69900170			-6.4197346D-02
83	2.52400060		3.71274250-01	3.31273860		6,58037070			-6.47685390-02
84	2.55746400		3.7502616D=01	3.33127610		6.4590178D 6.3351856D			+6.52089660+02
85	2.59137770		3.7875364D-01	3.3496037D			00		-6.5476517D-02 -6.5497518D-02
86	2.625/1450		3.82450830-01	3.3676009D		6.0820586D			-6.53313770+02
87	2.66047860		3.86115540-01	3.3853741D		5.9535/33D			-6.50780850-02
88	2.69563450		3.89741540-01	3.40284370			00		-6.4757058D-02
89	2.73116060		3-93324420-01	3.42004500		5.69402950			-6.43892140-02
90	2.78043830	00	3.98159610-01	3.44320040		5.5147090D			-6.38278660-02
				=					

```
2.83030810 00 4.02895060-01 3.46575960 00 5.33480980 00
                                                                  9.3380004D-02 -6.3185466D-02
       2.8807504D 00 4.0752494D-01
                                     3.48781700 00
                                                    5.15471600 00
                                                                   9.02102850-02 -6.24211210-02
 93
       2.93171390 00 4.12041250-01
                                     3.50936700 00
                                                    4.9750894D 00
                                                                   8.7050580D-02 -6.1528767D-02
       2.98318840 00 4.16440610-01
                                     3.53038690 00
                                                    4.79633260 00
                                                                   8.39078880-02 -5.05507940-02
                                                    4.61870130 00
       3.03517220 00 4.20720630-01
                                     3.5508706D 00
                                                                   8.07866110-02 -5.94947300-02
       3.0976232U 00 4.2487610D-01
                                     3.5708751D 00
                                                    4.44267510 00
                                                                   1.76950800-02 -5.83768960-02
       3.14053820 00 4.28905610-01
                                     3.5904045D 00
                                                    4.26842520 00
                                                                   7.46362000-02 -5.72439900-02
 98
                                                    4.09599670 00
       3.1939216U 00 4.3280838D+01
                                     3.60938070 00
                                                                   7.16106630-02 -5.60914700-02
 90
       3.24773480 00 4.36580740-01
                                     3.6279067D 00
                                                    3.92570460 00
                                                                  6.86238900-02 -5.49081020-02
100
       3.30197790 00 4.40222350-01
                                     3.64598720 00
                                                    3.75767600 00
                                                                  6.56780110-02 -5.37283630-02
101
       3.35665940 00 4.43733410+01
                                     3.66351610 00
                                                    3,59186130 00
                                                                   6.27720600-02 -5.25589320-02
102
       3.41174030 00 4.47111210-01
                                     3.6806240D 00
                                                    3,42846300 00
                                                                   5.99094880-02 -5.1369517D-02
       3.45722340 00
103
                     4.50356100-01
                                     3.69728240 00
                                                    3.26763630 00
                                                                   5.70929240-02 -5.01431120-02
104
       3.52311770 00
                      4.53468920-01
                                     3.71341070 00
                                                    3,10954750 00
                                                                   5.43251900-02 -4.88693920-02
105
       3.57938630 00
                     4.56448340-01
                                     3.7291180D 00
                                                    2,95453280 00
                                                                   5.16120800-02 -4.75425220-02
       3.63603220 00
106
                     4.59295660-01
                                     3.74439160 00
                                                    2.80281810 00
                                                                   4.89574620-02 -4.61882220-02
107
       3.69306120 00
                     4.6201258D-01
                                     3.75912190 00
                                                    2,6544550D 00
                                                                   4.63621550-02 -4.48505220-02
108
       3.75044170 00 4.6459903D-01
                                     3.7734273D 00
                                                    2,50947330 00
                                                                  4.3826600D-02 -4.3549610D-02
109
       3.80818530 00 4.67057160-01
                                     3.78731190 00
                                                    2,36777510 00
                                                                  4.13490120-02 -4.2272603D-02
110
       3.86626360 00 4.6938733D-01
                                    3.80069140 00
                                                    2,22945230 00
                                                                  3.8930933D-02 -4.0979383D-02
       3.92467960 00 4.71591590-01
111
                                    3.8135937D 00
                                                    2,09469330 00
                                                                   3.6575592D-02 -3.9660340D-02
112
       3.98343230 00
                     4.73672060-01
                                     3.8260686D 00
                                                    1.96358390 00
                                                                   3.4284427D-02 -3.8328669D-02
113
       4.04249530 00
                     4.75630130-01
                                                                   3.20602880-02 -3.69714800-02
                                     3.8381050D 00
                                                    1.83629020 00
114
       4.10186770 00
                     4.77468460-01
                                     3.8496669D 00
                                                    1,71298390 00
                                                                   2.99061200-02 -3.55746730-02
       4.1515486U 00
115
                     4.7918990D-01
                                     3.8607359D 00
                                                    1,59386920 00
                                                                   2.78254430-02 -3.41468720-02
       4.22151400 00 4.80797090-01
116
                                     3.87136370 00
                                                    1,47910460 00
                                                                   2.58209810-02 -3.27361170-02
117
       4.24176720 00
                     4-8229350D-01
                                     3.88155070 00
                                                    1,36855600 00
                                                                   2.38903520-02 -3.13833440-02
118
       4.34228610 00 4.8368187D-01
                                    3.89129010 00
                                                    1.26208490 00
                                                                   2.20311010-02 -3.00840640-02
       4.40307170 00 4.84965480-01
119
                                    3.90058240 00
                                                    1.15958620 00
                                                                  2.02413610-02 -2.87918880-02
       4.44410370 00 4.86147200-01 3.9094140D 00
120
                                                    1.06122930 00
                                                                  1.85240640-02 -2.74615910-02
151
       4.52537680 00 4.87230670-01 3.91776450 00
                                                    9,67232420-01
                                                                   1.68829940-02 -2.6081144D-02
155
       4.58688480 00 4.88219730-01
                                     3.9256728D 00
                                                    8.77824190-01
                                                                   1.53221210-02 -2.46607550-02
       4.6486081D 00 4.8911850D-01
123
                                     3.9331370D 00
                                                    7.9317076D-01
                                                                   1.38443260-02 -2.32397590-02
124
       4.71054360 00 4.89931400-01
                                     3.94016010 00
                                                    7.13216540-01
                                                                   1.24486200-02 -2.18561950-02
125
       4.77267270 00 4.90662670-01
                                     3.94674250 00
                                                    6.3784807D-01
                                                                   1.11330090-02 -2.05252180-02
126
       4.83499090 00 4.9131663D-01
                                     3.95288890 00
                                                    5.66897940-01
                                                                   9.89455850-03 -1.92179130-02
127
       4.89748040 00 4.91897390-01
                                     3.9586023D 00
                                                    5.00448180-01
                                                                   8.73469070-03 -1.78901230-02
158
       4.96013540 00 4.92409550-01
                                    3.96388950 00
                                                    4.38643900-01
                                                                   7.65592980-03 -1.65634330-02
       5.02293900 00 4.92857730-01
129
                                     3,96875630 00
                                                                   6.6568598D-03 -1.5279647D-02
                                                    3.81404340-01
130
       5.08588440 00 4.93246500-01 3.9732116D 00
                                                    3.28570940-01
                                                                  5.7347076D-03 -1.4026820D-02
131
       5.14895550 00 4.9358029D+01
                                    3.97726450 00
                                                    2.80140110-01
                                                                   4.88940620-03 -1.27626460-02
132
       5.21214470 00
                     4.93863750-01
                                     3.98090200 00
                                                    2.36254540-01
                                                                   4.12344290-03 -1.14929040-02
133
       5.2754384D 00
                     4.94101760-01
                                     3.9841501D 00
                                                                   3.43588240-03 -1.02594090-02
                                                    1.96860790-01
134
       5.33882380 00
                     4.94298940-01
                                     3.9870320D 00
                                                    1.61797200-01
                                                                   2.8239014D-03 -9.0661286D-03
135
      5.40229290 00 4.9445994D=01
                                     3.98956410 00
                                                    1.30972270-01
                                                                   2.28590120-03 -7.92912290-03
136
       5.4658324U 00 4.9458923D-01
                                     3.9917639D 00
                                                                   1.81691210-03 -6.86602370-03
                                                    1.0410128D-01
137
       5.52943420 00 4.94690910-01
                                     3.9936403D 00
                                                    8.09594730-02
                                                                   1.41301030-03 -5.85153270-03
138
      5.59308720 00 4.94769030-01
                                    3.99519340 00
                                                   6.1439804D=02
                                                                  1.07232730-03 -4.89658900-03
139
                                    3.99647930 00
       5.6567813D 00 4.9482746D-01
                                                   4,52339500-02
                                                                  7.89481520-04 -4.02065400-03
140
       5.72050950 00 4.94869620-01
                                    3.99752190 00
                                                   3,20876320-02
                                                                  5.60034890-04 -3.20399770-03
141
       5.78426310 00 4.94898850-01
                                    3.99832480 00
                                                   2.18325650-02
                                                                  3.81050160-04 -2.46981630-03
142
      5.84803450 00
                     4.94918210-01
                                     3.99892550 00
                                                   1.40422610-02
                                                                  2.4508369D-04 -1.8409896D-03
143
      5.91181830 00
                     4.94930110-01
                                    3.9993651D 00
                                                   8.37834170+03
                                                                  1.46229650-04 -1.29247310-03
144
       5.9756089U 00 4.9493686D-01
                                    3.9996582D 00 4.59515570-03
                                                                  8.02005960-05 -8.48933560-04
      6.0394017D 00 4.9494034D-01 3.9998381D 00 2.1726944D-03
                                                                  3.79206710-05 -5.24688660-04
```

M A C H A BOUNDARY LAYER CALCULATIONS, STAGNATION PRESSURE: 200.PST. STAGNATION TEMPERATURE=1638. DEG R. N BASED	J ON RE•O'	Fef	ı D'	n.	n	n	П	• '		ં 🕝	Ē	1	ŧ.	æ	ĸ.	æ	к	к	к	к	æ	₹!	æ	ж	к	к	к
--	------------	-----	------	----	---	---	---	-----	--	-----	---	---	----	---	----	---	---	---	---	---	---	----	---	---	---	---	---

PARABOLIC TEMPERATURE O	ISTRIBUTION MODI	• SPALDING-CHI REF	ERENCE TEMP V	AN DRIEST REFERENCE	REYNOLOS NUMBER
TW TE TAW TP	RE/IN RTHI F	D KCFI KCF	KCFS H	HI FMY K	THP THETA-1 DELTA DELTA*-1
1 866.01343.4 1607.41011.2				1.3172 0.14257 0.0	
X= 46.076, OSU= 0.00555					0,507892+ N= 6,30583
2 865.71336.2 1606.61008.9					2158 0.010853 0.0910 0.005595
X= 46.195. DSU= 0.00563					0.515172 • N= 6.30774
3 865,31328.8 1605.81006.5					5401 0.010858 0.0912 0.005679 0.522693: N= 6.30970
X= 46.317, DSU= 0.00571		2129 2.33025 3.0662			8485 0.010867 0.0915 0.005768
4 864.71321.1 1605.01004.0 5 864.11313.0 1604.21001.2		686 2.33064 3.0564			1731 0.010880 0.0918 0.005862
6 863.31304.6 1603.3 998.3		234 Z.33101 3.0463			5122 0.010898 0.0921 0.005962
7 862.41295.9 1602.4 995.1		770 2.33138 3.0359			8770 0:010922 0:0925 0:006069
8 861.41286.8 1601.5 991.8		297 2.33172 3.0252			2645 0.010952 0.0929 0.006182
9 860.21277.3 1600.5 988.2		810 2.33202 3.0141			6663 0.010989 0.0934 0.006304
10 858.81267.3 1599.4 984.4		309 2,33226 3,0026			1100 0.011035 0.0940 0.006435
x= 47.307. OSU= 0.00647				# 0.583139, CH=	0.582784 N= 6.32598
11 857.21256.9 1598.4 980.3	1355928 19511 1+2	3795 2.33241 2.9906			5807 0.011091 0.0947 0.006577
12 855.51246.0 1597.2 975.9	1353056 19509 1.2	3265 2.33244 2.9781	7 2,98470 0,6033	3 1.3158 0.09716 0.4	0807 0,011159 0.0956 0.006732
13 853.51234.7 1596.1 971.2		722 2.33230 2.9651			6109 0.011242 0.0965 0.006901
14 851.31222.9 1594.8 966.2		7167 2.33193 2.9514			1455 0.011340 U.0976 0.007086
15 848.91210.7 1593.6 961.0		5598 2 . 33130 2 . 9372			6541 0.011456 0.0989 0.007289
16 846.31198.0 1592.2 955.4		016 2.33040 2.9222			1157 0.011593 0.1004 0.007512
17 843.41184.8 1590.9 949.5		417 2.32924 2.9066			5396 0.011750 0.1020 0.007758
18 840.21171.0 1589.4 943.1		799 2.32784 2.8902			9299 0.011431 0.1039 0.008029
19 836,71156.5 1587.9 936.4		159 2.32621 2.8730			2927 0.012136 0.1061 0.008329 6395 0.012369 0.1085 0.008663
20 832.91141.4 1586.4 929.2 X= 49.607. DSU= 0.00872		3495 2.32437 2.8550 CTH=0.0123883+ ⊢			0.700009+ N* 6.37371
21 828.71125.5 1584.7 921.6		2A05 2.32231 2.8362			9715 0.012632 0.1112 0.009033
22 825.91115.3 1583.6 916.6		2362 2.32093 2.8241			1738 0.012812 0.1131 0.009284
23 821.91100.9 1582.1 909.4		745 2.31896 2.8071			4455 0.013078 0.1158 0.009652
24 817.21084.9 1580.5 901.4		060 2.31670 2.7883			7319 0.013392 0.1191 0.010086
25 812.21068.0 1578.7 892.8		339 2.31428 2.7684			0202 0.013747 0.1227 0.010574
26 806.81050.6 1576.9 883.8		9597 2.31175 2.7481			3056 0.014136 0.1267 0.011110
27 801.11032.8 1575.1 874.4		3842 2.30916 2.7274		2 1.3112 0.02875 0.9	5868 0.014558 0.1311 0.011693
28 795.31015.0 1573.2 865.0		3078 2.30654 2.7065			8611 0.015012 0.1358 0.012322
29 789.3 997.0 1571.3 855.3	1145891 21025 1.1	7309 2.30392 2.6857	3 2.71421 0.8388	3 1.3104 0.02221 1.0	1299 0.015497 0.1408 0.012999
30 783.2 979.2 1569.5 845.6	1123888 21171 1.1	5538 2,30131 2,5649			3912 0.016012 0.1461 0.013724
X= 53.576+ DSU= 0.01383					0.856885+ N= 6.45346
31 776.9 961.4 1567.6 835.		5765 2.29873 2.6442			6450 0.016557 0.1518 0.014498
32 770.7 943.8 1565.8 826.0		4993 2.29619 2.6236			8898 0.017132 0.1578 0.015323
33 764.3 926.5 1564.0 616.3		+222 2.29371 2.6032			1260 0.017736 0.1641 0.016199
34 758.0 909.4 1562.2 806.6		3453 2.29129 2.5831			3494 0.018369 0.1707 0.017127
35 751.7 892.6 1560.5 797.1		2689 2.28894 2.5633			5630 0.019029 0.1777 0.018108
36 745.4 876.2 1558.8 787.6		1929 2.28668 2.5437			7632 0.019715 0.1849 0.019142
37 739.3 860.1 1557.1 778.3		1175 2.28450 2.5245			9480 0.020427 0.1925 0.020228 1204 0.021161 0.2003 0.021366
38 733.2 844.5 1555.5 769.7		04 29 2.28241 2. 5057 9691 2 .28 043 2.4873			2795 0.021918 0.2084 0.022554
39 727.2 829.3 1553.9 760.° 40 721.3 814.5 1552.4 751.6		9691 2.20043 2.4693 8962 2.27855 2.4693			4242 0.022695 0.2167 0.023792
X= 59.364, DSU= 0.02404					1.048468 N= 6.54185
41 715.6 800.3 1550.9 743.2		8243 2.27678 2.4517			5527 0.023489 0.2253 0.025078
42 710.7 788.3 1549.6 736.3		7633 2.27535 2.4369			6571 0.024186 0.2329 0.026221
43 706.1 776.9 1548.4 729.2		7039 2.27402 2.4226			7533 0.024885 0.2405 0.027383
44 701.6 765.9 1547.3 722.0		5458 2.27278 2.4088			8408 0.025587 0.2481 0.028565
		5890 2.27163 2.3954			9201 0.026291 0.2558 0.029765

46 693.0 745.1 1545.1 710.1 47 688.9 735.3 1544.1 /04.2

48 685.0 725.8 1543.1 698.4

49 681.1 716.6 1542.2 592.8

50 677.4 707.7 1541.3 687.4

51 673.8 699.1 1540.4 682.2

52 670.2 690.8 1539.5 677.0

53 666.8 682.7 1538.6 672.1

54 663.5 674.8 1537.8 667.2

55 660.2 667.2 1537.0 662.5

56 657.0 659.8 1536.3 657.9

57 553.9 652.5 1535.5 653.5

58 650.9 645.5 1534.8 949.1

59 648.0 638.6 1534.1 644.8

60 645.1 631.9 1533.4 540.7

62 639.5 618.9 1532.0 632.6

63 636.8 612.7 1531.4 628.7

64 634.2 606.6 1530.7 624.9

65 631.6 600.6 1530.1 021.2

66 629.1 594.8 1529.5 617.5

67 526.6 589.1 1528.9 614.0

68 624.2 583.5 1528.3 010.4

69 621.8 578.0 1527.8 507.0

70 619.5 572.7 1527.2 603.6

71 617.2 567.5 1526.7 600.3

72 615.0 562.3 1526.1 597.1

73 612.8 557.3 1525.6 594.0

74 610.7 552.4 1525.1 590.9

75 608.6 547.6 1524.6 587.8

76 606.5 542.9 1524.1 584.8

77 604.5 538.3 1523.6 581.9

78 602.5 533.8 1523.2 579.1

79 600.6 529.4 1522.7 576.3

80 598.7 525.1 1522.3 573.5

82 595.1 516.7 1521.4 568.2

83 593.4 512.7 1521.0 565.7

84 591.6 508.8 1520.6 563.2

85 590.0 504.9 1520.2 560.7

86 588.3 501.2 1519.8 558.4

87 586.7 497.5 1519.4 556.0

88 585.2 494.0 1519.0 553.8

89 583.7 490.5 1518.7 551.5

90 581.7 485.9 1518.2 548.6

91 579.7 481.4 1517.7 545.7

92 577.8 477.1 1517.3 543.0

93 576.0 473.0 1515.8 540.3

94 574.3 469.0 1516.4 537.8

95 572.6 465.1 1516.0 535.3

96 571.0 461.4 1515.6 332.9

97 569.4 457.8 1515.3 530.6

98 567.9 454.3 1514.9 528.3

99 566.4 450.9 1514.5 526.2

X=105.689. DSU= 0.15593.

100 565.0 447.7 1514.2 524.1

X= 92.781. OSU= 0.11582.

X= 84.020. DSU= 0.08969.

81 596.9 520.8 1521.8 570.9 -

X= 76.747. DSU= 0.06852.

X= 70.519. DSU= 0.05105. 61 642.3 625.3 1532.7 636.6

X= 64.921. OSU= 0.03651.

783356

672514

661967

641721

613335

604355

595596

587066

717942 23303 1.02217 2.26559 2.31158 2.33795

706070 23344 1.01728 2.26494 2.30073 2.32687

694556 23383 1.01246 2.26434 2.29010 2.31601

683372 23419 1.00771 2.26377 2.27968 2.30534

651702 23516 0.99383 2.26225 2.24957 2.27437

632009 23575 0.98486 2.26133 2.23032 2.25447

570618 23763 0.95496 2.25842 2.16698 2.18836

562693 23791 0.95086 2.25800 2.15836 2.17927

554955 23819 0.94679 2.25757 2.14982 2.17027

547413 23848 0.94277 2.25712 2.14138 2.16134

540039 23877 0.93879 2.25667 2.13301 2.15247

532858 23909 0.93485 2.25619 2.12473 2.14368

525840 23941 0.93095 2.25569 2.11652 2.13496

518992 23975 0.92708 2.25517 2.10839 2.12631

23453 1.00302 2.26324 2.26947 2.29485

23485 0.99840 2.26273 2.25943 2.28454

23546 0.98932 2.26178 2.23987 2.26435

23630 0.97609 2.26048 2.21163 2.23507

23657 0.97178 2.26007 2.20248 2.22553

23683 0.96751 2.25966 2.19344 2.21610

23710 0.96328 2.25924 2.18452 2.20676

23736 0.95910 2.25884 2.17570 2.19751

			110000 11100-0100404 11100040 0104000 010111 0101010	
512313	24011 0.92326 2.2546.	3 2-10034 2-11772	1.5517 1.2978-0.00396 1.25595 0.049807 0.5281 0.077284	
505790	24048 0.91948 2.2540	6 2.09235 2.10920-		
499439	24088 0.91575 2.2534			
493232	24129 0.91205 2.2528		1.5905 1.2973-0.00371 1.24140 0.052596 0.5620 0.083654	
487191	24173 0.90840 2.2521		1.6033 1.2971+0.00363 1.23653 0.053548 0.5736 0.085854	
481295	24219 0.90479 2.2514			
			1.6160 1.2969-0.00357 1.23268 0.054512 0.5854 0.088094	
475553	24268 0.90124 2.2507		1.6287 1.2967-0.00350 1.22828 0.055488 0.5973 0.090371	
469961	24319 0.89772 2.2499		1.6412 1.2965-0.00346 1.22503 0.056475 0.6094 0.092687	
464506	24373 0.89426 2.2491	8 2.03850 2.05152	1.6536 1.2963-0.00340 1.22126 0.057475 0.6217 0.095042	
459209	24430 0.89084 2.2483	2 2.03110 2.04357	1.6659 1.2961-0.00336 1.21826 0.058485 0.6342 0.097433	
454038	24490 0.88747 2.2474	2.02376 2.03571	1.6782 1.2959-0.00332 1.21551 0.059506 0.6469 0.099862	
449025	24553 0.88417 2.2465		1.6903 1.2957-0.00328 1.21279 0.060538 0.6597 0.102325	
444136	24618 0.88090 2.2455		1.7022 1.2955-0.00327 1.21128 0.061581 0.6726 0.104825	
439389			1.7141 1.2953-0.00324 1.20941 0.062634 0.6857 0.107359	
434772	24759 0.87454 2.2434		1.7258 1.2951-0.00324 1.20910 0.063697 0.6990 0.109927	
428644	24862 0.87029 2.2419			
			1.7416 1.2948-0.00323 1.20786 0.065171 0.7175 0.113504	
		847+ HU= 1.7377		
422769	24971 0.86616 2.2403		1.7572 1.2945-0.00322 1.20701 0.066661 0.7362 0.117135	
417115	25085 0.86213 2.2387		1.7724 1.2943-0.00324 1.20823 0.068169 0.7552 0.120825	
411676	25205 0.85819 2.2370	3 1.95820 1.96561	1.7875 1.2940-0.00325 1.20918 0.069693 0.7745 0.124574	
406449				
400444				
401431	25331 0.85436 2.2352	4 1.94932 1.95617	1.8022 1.2937-0.00325 1.20934 0.071234 0.7940 0.128377	
401431	25331 0.85436 2.2352 25462 0.85062 2.2333	4 1.94932 1.95617 8 1.94060 1.94692	1.8022 1.2937-0.00325 1.20934 0.071234 0.7940 0.128377 1.8166 1.2934-0.00326 1.21048 0.072791 0.8138 0.132232)
401431 396599	25331 0.85436 2.2352 25462 0.85062 2.2333 25599 0.84698 2.2314	4 1.94932 1.95617 8 1.94060 1.94692 6 1.93201 1.93784	1.8022 1.2937-0.00325 1.20934 0.071234 0.7940 0.128377 1.8166 1.2934-0.00326 1.21048 0.072791 0.8138 0.132232 1.8308 1.2931-0.00328 1.21284 0.074363 0.8338 0.136143)
401431 396599 391948	25331 0.85436 2.2352 25462 0.85062 2.2333 25599 0.84698 2.2314 25740 0.84343 2.2294	4 1.94932 1.95617 8 1.94060 1.94692 6 1.93201 1.93784 8 1.92357 1.92892	1.8022 1.2937-0.00325 1.20934 0.071234 0.7940 0.128377 1.8166 1.2934-0.00326 1.21048 0.072791 0.8138 0.132232 1.8308 1.2931-0.00328 1.21284 0.074363 0.8338 0.136143 1.8447 1.2928-0.00328 1.21333 0.075953 0.8541 0.140108)
401431 396599 391948 387490	25331 0.85436 2.2352 25462 0.85062 2.2333 25599 0.84698 2.2314 25740 0.84343 2.2294 25889 0.83998 2.2274	4 1.94932 1.95617 8 1.94060 1.94692 6 1.93201 1.93784 8 1.92357 1.92892 2 1.91528 1.92018	1.8022 1.2937-0.00325 1.20934 0.071234 0.7940 0.128377 1.8166 1.2934-0.00326 1.21048 0.072791 0.8138 0.132232 1.8308 1.2931-0.00328 1.21284 0.074363 0.8388 0.136143 1.8447 1.2928-0.00328 1.21333 0.075953 0.8541 0.140108 1.8582 1.2925-0.00328 1.21414 0.077556 0.8747 0.144118	
401431 396599 391948 387490 383196	25331 0.85436 2.2352 25462 0.85062 2.2333 25599 0.84698 2.2314 25740 0.84343 2.2294 25889 0.83998 2.2274 26042 0.83662 2.2253	4 1.94932 1.95617 8 1.94060 1.94692 6 1.93201 1.93784 6 1.92357 1.92892 2 1.91528 1.92018 1 1.90712 1.91161	1.8022 1.2937-0.00325 1.20934 0.071234 0.7940 0.128377 1.8166 1.2934-0.00326 1.21048 0.072791 0.8138 0.132232 1.8308 1.2931-0.00328 1.21284 0.074363 0.8338 0.136143 1.8447 1.2928-0.00328 1.21333 0.075953 0.8541 0.140108 1.8582 1.2925-0.00328 1.21414 0.077556 0.8747 0.144118 1.8716 1.2923-0.00330 1.21708 0.079175 0.8955 0.148180	7.00
401431 396599 391948 387490 383196 379059	25331 0.85436 2.2352 25462 0.85062 2.2333 25599 0.84698 2.2314 25740 0.84343 2.2294 25889 0.83698 2.2274 26042 0.83662 2.2253 26200 0.83334 2.2253	4 1.94932 1.95617 8 1.94060 1.94692 6 1.93201 1.93784 8 1.92357 1.92892 2 1.91528 1.92018 1 1.90712 1.91161 5 1.89910 1.90319	1.8022 1.2937-0.00325 1.20934 0.071234 0.7940 0.128377 1.8166 1.2934-0.00326 1.21048 0.072791 0.8138 0.132232 1.8308 1.2931-0.00328 1.21248 0.074363 0.8338 0.136143 1.8447 1.2928-0.00328 1.21233 0.075953 0.8541 0.140108 1.8592 1.2925-0.00328 1.21313 0.077556 0.8747 0.144118 1.8716 1.2923-0.00330 1.21708 0.079175 0.8955 0.148180 1.8846 1.2920-0.00329 1.21745 0.088810 0.9166 0.152294	7.00
401431 396599 391948 387490 383196 379059	25331 0.85436 2.2352 25462 0.85062 2.2333 25599 0.84698 2.2314 25740 0.84343 2.2294 25889 0.83998 2.2274 26042 0.83662 2.2253	4 1.94932 1.95617 8 1.94060 1.94692 6 1.93201 1.93784 8 1.92357 1.92892 2 1.91528 1.92018 1 1.90712 1.91161 5 1.89910 1.90319	1.8022 1.2937-0.00325 1.20934 0.071234 0.7940 0.128377 1.8166 1.2934-0.00326 1.21048 0.072791 0.8138 0.132232 1.8308 1.2931-0.00328 1.21284 0.074363 0.8338 0.136143 1.8447 1.2928-0.00328 1.21333 0.075953 0.8541 0.140108 1.8582 1.2925-0.00328 1.21414 0.077556 0.8747 0.144118 1.8716 1.2923-0.00330 1.21708 0.079175 0.8955 0.148180	300-114
401431 396599 391948 387490 383196 379059	25331 0.85436 2.2352 25462 0.85062 2.2333 25599 0.84698 2.2314 25740 0.84343 2.2294 25889 0.83698 2.2274 26042 0.83662 2.2253 26200 0.83334 2.2253	4 1.94932 1.95617 8 1.94060 1.94692 6 1.93201 1.93784 8 1.92357 1.92892 2 1.91528 1.92018 1 1.90712 1.91161 5 1.89910 1.90319	1.8022 1.2937-0.00325 1.20934 0.071234 0.7940 0.128377 1.8166 1.2934-0.00326 1.21048 0.072791 0.8138 0.132232 1.8308 1.2931-0.00328 1.21248 0.074363 0.8338 0.136143 1.8447 1.2928-0.00328 1.21233 0.075953 0.8541 0.140108 1.8592 1.2925-0.00328 1.21313 0.077556 0.8747 0.144118 1.8716 1.2923-0.00330 1.21708 0.079175 0.8955 0.148180 1.8846 1.2920-0.00329 1.21745 0.088810 0.9166 0.152294	X 100-11-0
401431 396599 391948 387490 383196 379059	25331 0.85436 2.2352 25462 0.85062 2.2333 25599 0.84698 2.2314 25740 0.84343 2.2294 25889 0.83698 2.2274 26042 0.83662 2.2253 26200 0.83334 2.2253	4 1.94932 1.95617 8 1.94060 1.94692 6 1.93201 1.93784 8 1.92357 1.92892 2 1.91528 1.92018 1 1.90712 1.91161 5 1.89910 1.90319	1.8022 1.2937-0.00325 1.20934 0.071234 0.7940 0.128377 1.8166 1.2934-0.00326 1.21048 0.072791 0.8138 0.132232 1.8308 1.2931-0.00328 1.21248 0.074363 0.8338 0.136143 1.8447 1.2928-0.00328 1.21233 0.075953 0.8541 0.140108 1.8592 1.2925-0.00328 1.21313 0.077556 0.8747 0.144118 1.8716 1.2923-0.00330 1.21708 0.079175 0.8955 0.148180 1.8846 1.2920-0.00329 1.21745 0.088810 0.9166 0.152294	X F C - 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2
401431 396599 391948 387490 383196 379059	25331 0.85436 2.2352 25462 0.85062 2.2333 25599 0.84698 2.2314 25740 0.84343 2.2294 25889 0.83698 2.2274 26042 0.83662 2.2253 26200 0.83334 2.2253	4 1.94932 1.95617 8 1.94060 1.94692 6 1.93201 1.93784 8 1.92357 1.92892 2 1.91528 1.92018 1 1.90712 1.91161 5 1.89910 1.90319	1.8022 1.2937-0.00325 1.20934 0.071234 0.7940 0.128377 1.8166 1.2934-0.00326 1.21048 0.072791 0.8138 0.132232 1.8308 1.2931-0.00328 1.21248 0.074363 0.8338 0.136143 1.8447 1.2928-0.00328 1.21233 0.075953 0.8541 0.140108 1.8592 1.2925-0.00328 1.21313 0.077556 0.8747 0.144118 1.8716 1.2923-0.00330 1.21708 0.079175 0.8955 0.148180 1.8846 1.2920-0.00329 1.21745 0.088810 0.9166 0.152294	A F D C = 1 1 2 3 G - G 2
401431 396599 391948 387490 383196 379059	25331 0.85436 2.2352 25462 0.85062 2.2333 25599 0.84698 2.2314 25740 0.84343 2.2294 25889 0.83698 2.2274 26042 0.83662 2.2253 26200 0.83334 2.2253	4 1.94932 1.95617 8 1.94060 1.94692 6 1.93201 1.93784 8 1.92357 1.92892 2 1.91528 1.92018 1 1.90712 1.91161 5 1.89910 1.90319	1.8022 1.2937-0.00325 1.20934 0.071234 0.7940 0.128377 1.8166 1.2934-0.00326 1.21048 0.072791 0.8138 0.132232 1.8308 1.2931-0.00328 1.21248 0.074363 0.8338 0.136143 1.8447 1.2928-0.00328 1.21233 0.075953 0.8541 0.140108 1.8592 1.2925-0.00328 1.21313 0.077556 0.8747 0.144118 1.8716 1.2923-0.00330 1.21708 0.079175 0.8955 0.148180 1.8846 1.2920-0.00329 1.21745 0.088810 0.9166 0.152294	X 1 0 0 - 0 0

797810 22991 1.05335 2.27056 2.38248 2.40999 1.1477 1.3039-0.00349 1.29915 0.026998 0.2636 0.030985

769389 23110 1.04257 2.26865 2.35761 2.38477 1.1782 1.3034-0.00417 1.31098 0.028419 0.2793 0.033484

755892 23163 1.03734 2.26780 2.34567 2.37265 1.1932 1.3031-0.00443 1.31532 0.029133 0.2873 0.034763

742838 23213 1.03220 2.26701 2.33403 2.36083 1.2081 1.3029-0.00465 1.31911 0.029851 0.2953 0.036062

730196 23260 1.02715 2.26627 2.32268 2.34927 1.2228 1.3026-0.00484 1.32262 0.030572 0.3034 0.037383

THU=0.0302746, CTH=0.0299214, HU= 1.205995, H= 1.208070, CH= 1.208665, N= 6.60376

THU=0.0378746, CTH=0.0373667, Hu= 1.347848, H= 1.350328, CH= 1.351562, N= 6.65118

THU=0.0462088. CTH=0.0455107. Hu= 1.482872. H= 1.485767. CH= 1.487807. N# 6.69383

622542 23602 0.98045 2.26091 2.22090 2.24471 1.3641 1.3005-0.00516 1.31874 0.038044 0.3887 0.051896

23052 1.04791 2.26957 2.36987 2.39721 1.1630 1.3036-0.00386 1.30554 0.027707 0.2715 0.032224

1.2374 1.3024-0.00499 1.32500 0.031297 0.3115 0.038726

1.2518 1.3022-0.00509 1.32634 0.032026 0.3198 0.040090

1.2662 1.3019-0.00518 1.32755 0.032759 0.3281 0.041478

1.2804 1.3017-0.00524 1.32816 0.033497 0.3364 0.042890

1.2945 1.3015-0.00526 1.32754 0.034240 0.3449 0.044325

1.3086 1.3013-0.00528 1.32684 0.034988 0.3535 0.045786

1.3226 1.3011-0.00527 1.32572 0.035742 0.3621 0.047273

1.3365 1.3009-0.00524 1.32351 0.036503 0.3709 0.048786

1.3503 1.3007-0.00521 1.32158 0.037270 0.3797 0.050327

1.3778 1.3003-0.00509 1.31524 0.038825 0.3978 0.053494

1.3915 1.3001-0.00504 1.31233 0.039614 0.4070 0.055122

1.4051 1.2999-0.00495 1.30815 0.040411 0.4163 0.056782

1.4187 1.2997-0.00487 1.30408 0.041217 0.4257 0.058472

1.4322 1.2995-0.00478 1.29985 0.042031 0.4353 0.060196

1.4456 1.2993-0.00468 1.29492 0.042855 0.4450 0.061952

1.4591 1.2992-0.00460 1.29073 0.043687 0.4549 0.063743

1.4724 1.2990-0.00450 1.28556 0.044530 0.4649 0.065568

1.4858 1.2988-0.00441 1.28082 0.045383 0.4750 0.067429

1.4991 1.2986-0.00431 1.27577 0.046246 0.4853 0.069326

1.5123 1.2984-0.00421 1.27038 0.047120 0.4958 0.071259

1,5255 1,2982-0,00413 1,26585 0,048004 0,5064 0,073229

1.5386 1.2980-0.00404 1.26048 0.048900 0.5172 0.075238

101 563.7 444.6 1513.9 522.1	375099 26365 0.836	017 2,22091 1.89123 1,8949	5 1.8973 1.2917-0.00328	1.21809 0.082458 0.9379 0.156447
102 562.4 441.6 1513.6 520.2	371282 26535 0.82	707 2.21862 1.88348 1.8868	6 1.9098 1.2914-0.00330	1.22079 0.084120 0.9594 0.160649
103 561.1 438.7 1513.3 518.3	367609 26710 0.824	407 2.21628 1.87587 1.8789	2 1.9219 1.2911-0.00328	1.22064 0.085797 0.9812 0.164896
104 559.9 435.9 1513.0 516.5	364094 26892 0.82	116 2.21388 1.86840 1.8711	5 1.9338 1.2908-0.00326	1.22077 0.087485 1.0032 0.169176
105 558.7 433.2 1512.7 514.7	360710 27078 0.814	928.1 40168.1 E4115.5 EER	3 1.9453 1.2905-0.00326	1.22282 0.089186 1.0254 0.173498
106 557.6 430.6 1512.4 513.1	357455 27270 0.819	558 2.20893 1.85384 1.8560	6 1.9566 1.2902-0.00323	1.22155 0.090901 1.0478 0.177859
107 556.5 428.1 1512.2 511.5	354349 27469 0.817	293 2.20637 1.84678 1.8487	6 1.9676 1.2899-0.00319	1.22003 0.092624 1.0704 0.182242
108 555.5 425.7 1511.9 509.9		037 2.20377 1.83984 1.8416		1.22095 0.094356 1.0932 0.186656
109 554.5 423.4 1511.7 508.4		788 2.20113 1.83303 1.8346		1.21958 0.096101 1.1162 0.191103
110 553.5 421.2 1511.5 507.0		548 2.19843 1.82636 1.8277		1.21643 0.097852 1.1393 0.195565
X=119.656, DSU= 0.20106.		CTH=0.0982603. HU= 1.99		H= 2.007013. N= 6.91913
111 552.6 419.1 1511.2 505.6		317 2-19569 1-81983 1-8210		1.21452 0.099609 1.1626 0.200041
112 551.7 417.0 1511.0 504.3		095 2.19291 1.81343 1.8144		1.21311 0.101374 1.1860 0.204537
113 550.8 415.1 1510.8 503.0		880 2.19009 1.80715 1.8080		1.21005 0.103146 1.2096 0.209048
114 550.0 413.2 1510.6 501.8		674 2.18723 1.80101 1.8018		1.20495 0.104920 1.2332 0.213561
115 549.3 411.4 1510.4 500.7		477 2.18433 1.79502 1.7957		1.20003 0.106696 1.2569 0.218071
116 548.5 409.8 1510.3 499.6		288 2.18140 1.78916 1.7897		1.19577 0.108474 1.2807 0.222579
117 547.8 408.1 1510.1 498.5		107 2.17844 1.78342 1.7839		1.19068 0.110254 1.3045 0.227084
118 547.2 406.6 1509.9 497.6		934 2.17544 1.77783 1.7782		1.18475 0.112033 1.3284 0.231578
119 546.5 405.2 1509.8 496.6		769 2.17242 1.77236 1.7727		1.17779 0.113810 1.3522 0.236057
120 546.0 403.8 1509.6 495.7		612 2.16937 1.76703 1.7673		1.16921 0.115583 1.3761 0.240512
X=134.453+ DSU= 0.24845+		CTH=0.1161323, HU# 2.07		H= 2.091713, N= 6.98852
121 545.4 402.5 1509.5 494.9		465 2.16629 1.76185 1.7621		1.16026 0.117349 1.3999 0.244935
		325 2.16319 1.75680 1.7570		1.15149 0.119109 1.4236 0.249326
122 544.9 401.3 1509.4 494.1				1.14185 0.120861 1.4473 0.253681
123 544.4 400.1 1509.3 493.3		193 2.16007 1.75189 1.7520		
124 543.9 399.0 1509.1 492.6		069 2.15694 1.74711 1.7472		1.13137 0.122603 1.4709 0.257994
125 543.5 398.0 1509.0 492.0		952 2.15379 1.74247 1.7425		1.12012 0.124334 1.4943 0.262260
126 543.1 397.1 1508.9 491.4		844 2.15062 1.73796 1.7380		1.10815 0.126053 1.5176 0.266475
127 542.7 396.2 1508.9 490.8	· · · · · · · · · · · · · · · · · · ·	743 2-14745 1-73360 1-7336		1.09550 0.127757 1.5408 0.270631
128 542.3 395.4 1508.8 490.3		650 2.14427 1.72936 1.7294		1.08219 0.129446 1.5637 0.274726
129 542.0 394.7 1508.7 489.8		564 2-14108 1-72526 1-7253		1.06830 0.131117 1.5864 0.278755
130 541.7 394.0 1508.6 489.4		486 2.13789 1.72129 1.7213		1.05392 0.132770 1.6089 0.282715
X=149.842, DSU= 0.29351.		CTH=0.1334834. HU= 2.13		CH= 2.142498+ N= 7.05535
131 541.5 393.4 1508.6 489.0				
		415 2.13470 1.71746 1.7174		1.03838 0.134404 1.6311 0.286600
132 541.2 392.9 1508.5 488.6	311324 34164 0.77	351 2.13152 1.71376 1.7137	77 2.135] 1.2830-0.00]21	1.02213 0.136015 1.6530 0.290404
133 541.0 392.4 1508.5 488.3	311324 34164 0.77 310743 34492 0.77	351 2.13152 1.71376 1.7137 294 2.12834 1.71019 1.710	77 2.1351 1.2830-0.00121 20 2.1375 1.2827-0.00110	1.02213 0.136015 1.6530 0.290404 1.00629 0.137604 1.6747 0.294125
133 541.0 392.4 1508.5 488.3 134 540.8 391.9 1508.4 488.0	311324 34164 0.77 310743 34492 0.77 310229 34822 0.77	351 2-13152 1-71376 1-7137 294 2-12834 1-71019 1-7100 243 2-12517 1-70674 1-7067	77 2.1351 1.2830-0.00121 20 2.1375 1.2827-0.00110 75 2.1396 1.2825-0.00099	1.02213 0.136015 1.6530 0.290404 1.00629 0.137604 1.6747 0.294125 0.99059 0.139170 1.6960 0.297766
133 541.0 392.4 1508.5 488.3 134 540.8 391.9 1508.4 488.0 135 540.7 391.6 1508.4 487.8	311324 34164 0.77 310743 34492 0.77 310229 34822 0.77 309778 35155 0.77	351 2-13152 1-71376 1-7137 294 2-12834 1-71019 1-7107 243 2-12517 1-70674 1-7067 199 2-12201 1-70342 1-7034	77 2.1351 1.2830-0.00121 20 2.1375 1.2827-0.00110 75 2.1396 1.2825-0.00099 22 2.1414 1.2822-0.00088	1.02213 0.136015 1.6530 0.290404 1.00629 0.137604 1.6747 0.294125 0.99059 0.139170 1.6960 0.297766 0.97488 0.140714 1.7170 0.301325
133 541.0 392.4 1508.5 488.3 134 540.8 391.9 1508.4 488.0 135 540.7 391.6 1508.4 487.8 136 540.5 391.2 1508.3 487.6	311324 34164 0.77 310743 34492 0.77 310229 34822 0.77 309778 35155 0.77 309386 35490 0.77	351 2-13152 1-71376 1-7137 294 2-12834 1-71019 1-7106 243 2-12517 1-70674 1-706 199 2-12201 1-70342 1-703 160 2-11886 1-70021 1-7007	77 2.1351 1.2830-0.00121 20 2.1375 1.2827-0.00110 52 2.1396 1.2825-0.00099 52 2.1414 1.2822-0.00088 22 2.1430 1.2820-0.00077	1.02213 0.136015 1.6530 0.290404 1.00629 0.137604 1.6747 0.294125 0.99059 0.139170 1.66960 0.297766 0.97488 0.140714 1.7170 0.301325 0.95899 0.142234 1.7378 0.304804
133 541.0 392.4 1508.5 488.3 134 540.8 391.9 1508.4 488.0 135 540.7 391.6 1508.4 487.8 136 540.5 391.2 1508.3 487.6 137 540.4 390.9 1508.3 487.4	311324 34164 0.77 310743 34492 0.77 310229 34822 0.77 309778 35155 0.77 309386 35490 0.77 309053 35828 0.77	351 2.13152 1.71376 1.7137 294 2.12834 1.71019 1.7106 243 2.12517 1.70674 1.7067 199 2.12201 1.70342 1.703 160 2.11886 1.70021 1.7006 127 2.11573 1.69712 1.697	77 2.1351 1.2830-0.00121 20 2.1375 1.2827-0.00110 25 2.1376 1.2825-0.00099 26 2.1414 1.2822-0.00088 22 2.1430 1.2820-0.00077 22 2.1443 1.2817-0.00065	1.02213 0.136015 1.6530 0.290404 1.00629 0.137604 1.6747 0.294125 0.99059 0.139170 1.6960 0.297766 0.97488 0.140714 1.7170 0.301325 0.95899 0.142234 1.7378 0.304804 0.94240 0.143731 1.7581 0.304804
133 541.0 392.4 1508.5 488.3 134 540.8 391.9 1508.4 488.0 135 540.7 391.6 1508.4 487.8 136 540.5 391.2 1508.3 487.6 137 540.4 390.9 1508.3 487.4 138 540.3 390.7 1508.3 487.2	311324 34164 0.77 310743 34492 0.77 310229 34822 0.77 309778 35155 0.77 309386 35490 0.77 309053 35828 0.77 308778 36168 0.77	351 2.13152 1.71376 1.7137 294 2.12834 1.71019 1.7107 243 2.12837 1.70074 1.7067 199 2.12201 1.70342 1.703 160 2.11886 1.70021 1.7007 127 2.11573 1.69712 1.697 100 2.11262 1.69415 1.694	77 2.1351 1.2830-0.00121 2.1375 1.2827-0.00110 2.1375 1.2827-0.00110 2.1396 1.2825-0.00099 2.2.1414 1.2822-0.00088 2.1430 1.2820-0.00075 2.1443 1.2817-0.00065 2.1453 1.2815-0.00055	1.02213 0.136015 1.6530 0.290404 1.00629 0.137604 1.6747 0.294125 0.99059 0.139170 1.6960 0.297766 0.97488 0.140714 1.7170 0.301325 0.95899 0.142234 1.7378 0.304804 0.94240 0.143731 1.7581 0.304808 0.92663 0.145203 1.7782 0.311506
133 541.0 392.4 1508.5 488.3 134 540.8 301.9 1508.4 488.0 135 540.7 301.6 1508.4 487.8 136 540.5 391.2 1508.3 487.6 137 540.4 390.9 1508.3 487.4 138 540.3 390.7 1508.3 487.2 139 540.2 390.5 1508.3 487.1	311324 34164 0.77 310743 34492 0.77 310229 34822 0.77 309778 35155 0.77 309386 35490 0.77 309788 36168 0.77 308778 36168 0.77 308550 36509 0.77	351 2.13152 1.71376 1.7137 294 2.12834 1.71019 1.7106 243 2.12517 1.70074 1.706 199 2.12501 1.70342 1.703 160 2.11886 1.70021 1.700 127 2.11573 1.69712 1.697 100 2.11262 1.69415 1.694 077 2.10953 1.69127 1.6917	77 2.1351 1.2830-0.00121 20 2.1375 1.2827-0.00110 75 2.1396 1.2825-0.00099 22 2.1414 1.2822-0.00088 22 2.1430 1.2820-0.00077 22 2.1443 1.2817-0.00065 25 2.1453 1.2815-0.00055 27 2.1461 1.2813-0.00046	1.02213 0.136015 1.6530 0.290404 1.00629 0.137604 1.6747 0.294125 0.99059 0.139170 1.6990 0.297766 0.97488 0.140714 1.7170 0.301325 0.95899 0.142234 1.7378 0.304804 0.94240 0.143731 1.7581 0.308198 0.92663 0.145203 1.7782 0.311506 0.91257 0.146653 1.7979 0.314737
133 541.0 392.4 1508.5 488.3 134 540.8 391.9 1508.4 488.0 135 540.7 391.6 1508.4 487.8 136 540.5 391.2 1508.3 487.6 137 540.4 390.9 1508.3 487.4 138 540.3 390.7 1508.3 487.2 139 540.2 390.5 1508.3 487.1 140 540.2 390.4 1508.2 487.0	311324 34164 0.77 310743 34492 0.77 310229 34822 0.77 309778 35155 0.77 309386 35490 0.77 309053 35828 0.77 308778 36168 0.77 308550 36509 0.77 308350 36852 0.77	351 2.13152 1.71376 1.7137 294 2.12834 1.71019 1.7107 243 2.12517 1.70674 1.7067 199 2.12201 1.70342 1.7034 160 2.11886 1.70021 1.7007 127 2.11573 1.69712 1.697 100 2.11262 1.69415 1.694 077 2.10953 1.69127 1.6917 059 2.10646 1.68849 1.6886	77 2.1351 1.2830-0.00121 20 2.1375 1.2827-0.00110 25 2.1376 1.2827-0.00199 26 2.1414 1.2822-0.00088 22 2.1430 1.2820-0.00055 2.1453 1.2815-0.00055 27 2.1461 1.2813-0.00066 27 2.1468 1.2810-0.00037	1.02213 0.136015 1.6530 0.290404 1.00629 0.137604 1.6747 0.294125 0.99059 0.139170 1.6960 0.297766 0.97488 0.140714 1.7170 0.301325 0.95899 0.14234 1.7378 0.304804 0.94240 0.143731 1.7581 0.308198 0.92663 0.145203 1.7782 0.311506 0.91257 0.146653 1.7979 0.314737 0.89858 0.148081 1.8174 0.317397
133 541.0 392.4 1508.5 488.3 134 540.8 391.9 1508.4 488.0 135 540.7 391.6 1508.4 487.8 136 540.5 391.2 1508.3 487.6 137 540.4 390.9 1508.3 487.4 138 540.3 390.7 1508.3 487.1 140 540.2 390.4 1508.2 487.0 X=165.549. DSU# 0.33159.	311324 34164 0.77 310743 34492 0.77 310229 34822 0.77 309778 35155 0.77 309386 35490 0.77 309053 35828 0.77 308778 36168 0.77 308550 36509 0.77 308365 36852 0.77 308365 36852 57.7	351 2.13152 1.71376 1.7137 294 2.12834 1.71019 1.7107 243 2.12834 1.71019 1.7107 199 2.12201 1.70342 1.7034 160 2.11886 1.70021 1.7003 160 2.11873 1.69712 1.697 100 2.11262 1.69415 1.698 077 2.10953 1.69127 1.697 059 2.10646 1.68849 1.6886 CTH=0.1489637	77 2.1351 1.2830-0.00121 2.1375 1.2827-0.00110 2.1375 1.2827-0.00110 2.1396 1.2825-0.00099 2.1414 1.2822-0.00088 2.1430 1.2820-0.0007 2.1443 1.2817-0.00065 2.1453 1.2813-0.00046 2.1468 1.2810-0.00037 38136. M= 2.146777.	1.02213 0.136015 1.6530 0.290404 1.00629 0.137604 1.6747 0.294125 0.99059 0.139170 1.6960 0.297766 0.97488 0.140714 1.7170 0.301325 0.95899 0.142234 1.7378 0.304804 0.94240 0.143731 1.7581 0.304804 0.92663 0.145203 1.7782 0.311506 0.91257 0.146653 1.7979 0.314737 0.89858 0.148081 1.8174 0.317897 CH# 2.161746, N= 7.11626
133 541.0 392.4 1508.5 488.3 134 540.8 391.9 1508.4 488.0 135 540.7 391.6 1508.4 487.8 136 540.5 391.2 1508.3 487.6 137 540.4 390.9 1508.3 487.4 138 540.2 390.5 1508.3 487.1 140 540.2 390.5 1508.2 487.0 X=165.549. DSU= 0.33159.141 540.1 390.2 1508.2 486.9	311324 34164 0.77 310743 34492 0.77 310229 34822 0.77 309778 35155 0.77 309386 35490 0.77 309053 35828 0.77 308778 36168 0.77 308550 36529 0.77 308365 36852 0.77 THU=0.1550857 308223 37196 0.77	351 2.13152 1.71376 1.7137 294 2.12834 1.71019 1.7107 243 2.12517 1.70074 1.7067 199 2.12201 1.70342 1.7034 160 2.11886 1.70021 1.70021 127 2.11573 1.69712 1.6971 100 2.11262 1.69415 1.694 077 2.10953 1.69127 1.691 059 2.10646 1.68849 1.6884 CTH=0.1889637+ MU* 2.1 045 2.10342 1.68581 1.6858	77 2.1351 1.2830-0.00121 2.1375 1.2827-0.00110 2.1375 1.2827-0.00110 2.1396 1.2825-0.00099 2.1414 1.2822-0.00088 22 2.1430 1.2820-0.00077 2.1443 1.2817-0.00065 2.1443 1.2815-0.00055 2.1461 1.2813-0.00046 2.1468 1.2810-0.00037 38136. M= 2.146777 31 2.1472 1.2808-0.00028	1.02213 0.136015 1.6530 0.290404 1.00629 0.137604 1.6747 0.294125 0.99059 0.139170 1.6960 0.297766 0.97488 0.140714 1.7170 0.301325 0.95899 0.142234 1.7378 0.304804 0.94240 0.143731 1.7581 0.308198 0.92663 0.145203 1.7782 0.311506 0.91257 0.146653 1.7772 0.314737 0.89858 0.148081 1.8174 0.317897 CH= 2.161746- N= 7.11626 0.88515 0.149488 1.8366 0.320985
133 541.0 392.4 1508.5 488.3 134 540.8 391.9 1508.4 408.0 135 540.7 391.6 1508.4 407.8 136 540.5 391.2 1508.3 407.6 137 540.4 390.9 1508.3 407.4 138 540.3 390.7 1508.3 407.1 140 540.2 390.5 1508.3 407.1 140 540.2 390.4 1508.2 407.0 X=165.540.9 DSU# 0.33159, 141 540.1 390.2 1508.2 486.9 142 540.1 390.2 1508.2 486.9	311324 34164 0.77 310743 34492 0.77 310229 34822 0.77 309778 35155 0.77 309053 35490 0.77 308053 35828 0.77 308778 36168 0.77 308365 36509 0.77 308365 36852 0.77 THU=0.1550857. 308223 37196 0.77 308117 37541 0.77	351 2.13152 1.71376 1.7137 294 2.12834 1.71019 1.7107 243 2.12517 1.70674 1.7067 199 2.12201 1.70342 1.7034 160 2.11886 1.70021 1.7037 172 2.11573 1.69712 1.6977 100 2.11262 1.69415 1.6947 077 2.10953 1.69127 1.6917 0759 2.10646 1.668849 1.6886 CTH=0.1489637* HU* 2.1045 045 2.10342 1.668581 1.6685 045 2.10342 1.668581 1.6683	77 2.1351 1.2830-0.00121 2.1375 1.2827-0.00110 25 2.1375 1.2827-0.00110 25 2.1396 1.2825-0.00099 25 2.1414 1.2822-0.00088 25 2.1430 1.2820-0.00075 25 2.1453 1.2815-0.00055 27 2.1461 1.2813-0.00046 29 2.1468 1.2810-0.00037 38136. M= 2.1467778 2.1472 1.2808-0.00028 21 2.1475 1.2808-0.00028	1.02213 0.136015 1.6530 0.290404 1.00629 0.137604 1.6747 0.294125 0.99059 0.139170 1.6960 0.297766 0.97488 0.140714 1.7170 0.301325 0.95899 0.142234 1.7378 0.304804 0.94240 0.143731 1.7581 0.304804 0.92263 0.145203 1.7782 0.311506 0.91257 0.146653 1.7797 0.314737 0.89858 0.148081 1.8174 0.317897 CH* 2.161746, N= 7.11626 0.88515 0.149488 1.8366 0.320985 0.87366 0.150876 1.8555 0.324007
133 541.0 392.4 1508.5 488.3 134 540.8 391.9 1508.4 480.0 135 540.7 391.6 1508.4 487.8 136 540.5 391.2 1508.3 487.6 137 540.4 390.9 1508.3 487.4 138 540.2 390.7 1508.3 487.1 140 540.2 390.4 1508.2 487.0 X=165.549. DSU= 0.33159.1 1508.2 486.9 142 540.1 390.2 1508.2 486.9 143 540.0 390.1 1508.2 486.9	311324 34164 0.77 310743 34492 0.77 310229 34822 0.77 309778 35155 0.77 309386 35490 0.77 309053 35828 0.77 308778 36168 0.77 308550 36509 0.77 308365 36852 0.77 THU=0.1550857. 308223 37196 0.77 30817 37541 0.77 308039 37886 0.77	351 2.13152 1.71376 1.7137 294 2.12834 1.71019 1.7107 243 2.12834 1.71019 1.7107 199 2.12201 1.70342 1.7034 160 2.11886 1.70021 1.7004 127 2.11573 1.69712 1.6971 100 2.11262 1.69415 1.694 077 2.10953 1.69127 1.6917 059 2.10646 1.68849 1.6886 CTH=0.1489637 Hy= 2.12 045 2.10342 1.68581 1.6856 034 2.10040 1.68321 1.6856 026 2.09742 1.68068 1.680	77 2.1351 1.2830-0.00121 2.1375 1.2827-0.00110 2.1375 1.2827-0.00110 2.1376 1.2825-0.00099 2.2.1414 1.2822-0.00088 2.2.1414 1.2817-0.00065 2.1443 1.2817-0.00065 2.1461 1.2813-0.00046 2.1466 1.2810-0.00037 38136. H= 2.146777. 31 2.1472 1.2808-0.00028 2.1475 1.2808-0.00028 2.1477 1.2804-0.00015	1.02213 0.136015 1.6530 0.290404 1.00629 0.137604 1.6747 0.294125 0.99059 0.139170 1.6960 0.297766 0.97488 0.140714 1.7170 0.301325 0.95899 0.142234 1.7378 0.304804 0.94240 0.143731 1.7581 0.304804 0.92663 0.145203 1.7782 0.311506 0.91257 0.146653 1.7979 0.314737 0.89858 0.148081 1.8174 0.317897 CH# 2.161746, N= 7.11626 0.89358 0.149488 1.8366 0.320985 0.87366 0.150876 1.8555 0.324007 0.86345 0.152247 1.8742 0.326975
133 541.0 392.4 1508.5 488.3 134 540.8 391.9 1508.4 408.0 135 540.7 391.6 1508.4 407.8 136 540.5 391.2 1508.3 407.6 137 540.4 390.9 1508.3 407.4 138 540.3 390.7 1508.3 407.1 140 540.2 390.5 1508.3 407.1 140 540.2 390.4 1508.2 407.0 X=165.540.9 DSU# 0.33159, 141 540.1 390.2 1508.2 486.9 142 540.1 390.2 1508.2 486.9	311324 34164 0.77 310743 34492 0.77 310229 34822 0.77 309778 35155 0.77 309386 35490 0.77 308778 36168 0.77 308550 36509 0.77 308365 36852 0.77 308365 36852 0.77 308167 37541 0.77 308117 37541 0.77 308039 37886 0.77 308039 37886 0.77	351 2.13152 1.71376 1.7137 294 2.12834 1.71019 1.7107 243 2.12834 1.71019 1.7107 199 2.12517 1.70074 1.706 199 2.12201 1.70342 1.703 160 2.11886 1.70021 1.7002 127 2.11573 1.69712 1.697 100 2.11262 1.69415 1.694 077 2.10953 1.69127 1.691 059 2.10646 1.68849 1.688 CTH=0.1489637- HU= 2.8 045 2.10342 1.68581 1.683 034 2.10040 1.68321 1.683 026 2.09742 1.68068 1.680 021 2.09446 1.67822 1.678	77 2.1351 1.2830-0.00121 2.1375 1.2827-0.00110 2.1375 1.2827-0.00110 2.1376 1.2825-0.00088 2.2.1414 1.2822-0.00088 2.2.1443 1.2817-0.00055 2.1443 1.2815-0.00055 2.1453 1.2815-0.00055 2.1461 1.2813-0.00046 2.1468 1.2810-0.00037 38136. H= 2.146777.281 2.1472 1.2808-0.00028 2.1477 1.2804-0.00012 2.1477 1.2804-0.00012 2.1477 1.2804-0.00010 2.1477 1.2804-0.00010 2.1477 1.2802-0.00010	1.02213 0.136015 1.6530 0.290404 1.00629 0.137604 1.6747 0.294125 0.99059 0.139170 1.6960 0.297766 0.97488 0.140714 1.7170 0.301325 0.95899 0.142234 1.7378 0.304804 0.94240 0.143731 1.7581 0.308198 0.92663 0.145203 1.7782 0.311506 0.91257 0.146653 1.7772 0.314737 0.89858 0.148081 1.8174 0.317897 CM= 2.161746, N= 7.11626 1.88515 0.149488 1.8366 0.320985 0.87366 0.150876 1.8555 0.324007 0.86345 0.152247 1.8742 0.326975 0.86343 0.152247 1.8742 0.326975
133 541.0 392.4 1508.5 488.3 134 540.8 391.9 1508.4 480.0 135 540.7 391.6 1508.4 487.8 136 540.5 391.2 1508.3 487.6 137 540.4 390.9 1508.3 487.4 138 540.2 390.7 1508.3 487.1 140 540.2 390.4 1508.2 487.0 X=165.549. DSU= 0.33159.1 1508.2 486.9 142 540.1 390.2 1508.2 486.9 143 540.0 390.1 1508.2 486.9	311324 34164 0.77 310743 34492 0.77 310729 34892 0.77 309778 35155 0.77 309386 35490 0.77 308778 36168 0.77 308365 36509 0.77 308365 36659 0.77 THU=0.1550857. 308117 37541 0.77 308039 37886 0.77 307956 38579 0.77	351 2.13152 1.71376 1.7137 294 2.12834 1.71019 1.7103 243 2.12831 1.71019 1.7103 199 2.12201 1.70074 1.7036 199 2.12201 1.70372 1.7037 160 2.11886 1.70021 1.7003 127 2.11573 1.69712 1.6971 100 2.11262 1.69415 1.694 1077 2.10953 1.69127 1.6913 1059 2.10646 1.668649 1.6686 CTH=0.1489637* HU* 2.13 1045 2.10342 1.688581 1.6853 1045 2.10342 1.688581 1.6830 1045 2.0946 1.66868 1.680 1021 2.09446 1.67822 1.675	27 2.1351 1.2830-0.00121 2.1375 1.2827-0.00110 2.1375 1.2827-0.00110 2.1375 1.2825-0.00099 2.2.1414 1.2822-0.00088 2.2.1430 1.2820-0.00075 2.1443 1.2815-0.00055 2.1453 1.2815-0.00055 2.1468 1.2810-0.00037 38136. H= 2.14677 7.81 2.1472 1.2808-0.00028 2.1477 1.2808-0.00021 2.1477 1.2808-0.00015 2.1477 1.2808-0.00015 2.1477 1.2808-0.00015 2.1477 1.2808-0.00016 2.1477 1.2808-0.00016 2.1477 1.2808-0.00016 2.1477 1.2808-0.00016 2.1477 1.2808-0.00016 2.1477 1.2808-0.00016	1.02213 0.136015 1.6530 0.290404 1.00629 0.137604 1.6747 0.294125 0.99059 0.139170 1.6960 0.297766 0.97488 0.140714 1.7170 0.301325 0.95899 0.142234 1.7378 0.304804 0.94240 0.143731 1.7581 0.304804 0.92263 0.145203 1.7782 0.311506 0.91257 0.146653 1.7792 0.314737 0.89858 0.148081 1.8174 0.317897 CH= 2.161746 N= 7.11626 0.89555 0.149488 1.8366 0.320985 0.87366 0.150876 1.8555 0.324007 0.86345 0.152247 1.8742 0.326975 0.85434 0.153603 1.8926 0.329895
133 541.0 392.4 1508.5 488.3 134 540.8 391.9 1508.4 488.0 135 540.7 391.6 1508.4 487.8 136 540.5 391.2 1508.3 487.6 137 540.4 390.9 1508.3 487.4 138 540.3 390.7 1508.3 487.1 140 540.2 390.5 1508.2 487.0 ×=165.549. DSU* 0.33159, 141 540.1 390.2 1508.2 486.9 142 540.1 390.2 1508.2 486.9 143 540.0 390.1 1508.2 486.8	311324 34164 0.77 310743 34492 0.77 310229 34822 0.77 309778 35155 0.77 309386 35490 0.77 308778 36168 0.77 308550 36509 0.77 308365 36852 0.77 THU=0.1550857. 308223 37196 0.77 30817 37541 0.77 30817 37541 0.77 308039 37886 0.77 307987 38233 0.77 307987 38233 0.77 307937 38925 0.77	351 2.13152 1.71376 1.7137 294 2.12834 1.71019 1.7107 243 2.12834 1.71019 1.7107 149 2.12201 1.70342 1.7034 160 2.11886 1.70021 1.7003 160 2.11886 1.70021 1.7003 160 2.11262 1.69712 1.6971 100 2.11262 1.69415 1.6981 077 2.10953 1.69127 1.6971 059 2.10646 1.68849 1.6886 CTH=0.1489637 Hy= 2.11 045 2.10342 1.68581 1.6856 034 2.10040 1.68321 1.683 026 2.09742 1.68868 1.680 021 2.09446 1.67822 1.678 018 2.09153 1.67582 1.675 016 2.08864 1.67347 1.673	77 2.1351 1.2830-0.00121 2.1375 1.2827-0.00110 2.1375 1.2827-0.00110 2.1375 1.2825-0.00099 2.21414 1.2822-0.00088 2.2 2.1430 1.2820-0.0007 2.21443 1.2817-0.00065 2.1453 1.2815-0.00059 2.1461 1.2813-0.00046 2.1466 1.2810-0.00037 38136. H= 2.146777. 2.1472 1.2808-0.00028 2.1477 1.2804-0.00015 2.1477 1.2804-0.00016 2.21477 1.2800-0.0000647 2.1477 1.2800-0.0000647	1.02213 0.136015 1.6530 0.290404 1.00629 0.137604 1.6747 0.294125 0.99059 0.139170 1.6960 0.297766 0.97488 0.140714 1.7170 0.301325 0.95899 0.142234 1.7378 0.304804 0.94240 0.143731 1.7581 0.304804 0.92663 0.145203 1.7782 0.311506 0.91257 0.146653 1.7797 0.314737 0.89858 0.148081 1.8174 0.317897 CH= 2.161746, N= 7.11626 0.88515 0.149488 1.8366 0.320985 0.87366 0.150876 1.8555 0.324007 0.86345 0.152247 1.8742 0.326975 0.85434 0.153603 1.88926 0.329894 0.84721 0.554946 1.9110 0.332770 0.84168 0.156279 1.9291 0.335617
133 541.0 392.4 1508.5 488.3 134 540.8 391.9 1508.4 408.0 135 540.7 391.6 1508.4 407.8 136 540.5 391.2 1508.3 487.6 137 540.4 390.9 1508.3 487.4 138 540.3 390.7 1508.3 487.2 139 540.2 390.5 1508.3 487.0 X=165.540.0 X=165.540.0 DSUW 0.33159. 141 540.1 390.2 1508.2 486.9 142 540.1 390.2 1508.2 486.9 143 540.0 390.1 1508.2 486.8 145 540.0 390.1 1508.2 486.8	311324 34164 0.77 310743 34492 0.77 310229 34822 0.77 309778 35155 0.77 309386 35490 0.77 308778 36168 0.77 308550 36509 0.77 308365 36952 0.77 308157 37541 0.77 308173 37541 0.77 308173 37541 0.77 308039 37886 0.77 307937 38925 0.77 307937 38925 0.77	351 2.13152 1.71376 1.7137 294 2.12834 1.71019 1.7107 243 2.12834 1.71019 1.7107 149 2.12517 1.70074 1.706 199 2.12201 1.70342 1.703 160 2.11886 1.70021 1.7004 127 2.11573 1.69712 1.697 100 2.11262 1.69415 1.694 077 2.10953 1.69127 1.691 059 2.10466 1.68849 1.6886 CTH=0.1489637* HU= 2.1 045 2.10342 1.68581 1.685 034 2.10040 1.68321 1.683 026 2.09742 1.68068 1.680 021 2.09446 1.67822 1.678 018 2.09153 1.67582 1.675 016 2.08864 1.67347 1.673 016 2.088678 1.67116 1.671	77 2.1351 1.2830-0.00121 20 2.1375 1.2827-0.00110 25 2.1375 1.2827-0.00199 22 2.1414 1.2822-0.00088 22 2.1430 1.2820-0.00056 25 2.1453 1.2815-0.00056 27 2.1468 1.2810-0.00056 27 2.1468 1.2810-0.00037 38136. M= 2.146777. 31 2.1472 1.2808-0.00028 2.1477 1.2808-0.00028 2.1477 1.2808-0.00010 2.1475 1.2800-0.00010 32 2.1477 1.2800-0.00010 32 2.1477 1.2800-0.00010 32 2.1477 1.2800-0.00010 32 2.1477 1.2800-0.00006 32 2.1477 1.2800-0.00006 32 2.1477 1.2800-0.00006 32 2.1477 1.2800-0.00006 32 2.1477 1.2800-0.00006 32 2.1477 1.2800-0.00006 32 2.1477 1.2800-0.00006 32 2.1474 1.2795-0.00001	1.02213 0.136015 1.6530 0.290404 1.00629 0.137604 1.6747 0.294125 0.99059 0.139170 1.6960 0.297766 0.97488 0.140714 1.7170 0.301325 0.95899 0.14234 1.7378 0.304804 0.94240 0.143731 1.7581 0.308198 0.92663 0.145203 1.7782 0.311506 0.91257 0.146653 1.7792 0.314737 0.89858 0.148081 1.8174 0.317897 CH# 2.161746, N= 7.11626 0.85535 0.14988 1.8366 0.320985 0.87366 0.150876 1.8555 0.324007 0.865345 0.152247 1.8742 0.326975 0.85534 0.153603 1.8926 0.329894 0.84721 0.154946 1.9110 0.332770 0.84168 0.156279 1.9291 0.335617 0.86135 0.154946 1.9110 0.332770
133 541.0 392.4 1508.5 488.3 134 540.8 301.9 1508.4 488.0 135 540.7 301.6 1508.4 487.6 137 540.4 390.9 1508.3 487.4 138 540.3 390.7 1508.3 487.4 138 540.2 390.5 1508.3 487.1 140 540.2 390.5 1508.2 487.0 DSU# 0.33159.141 540.1 390.2 1508.2 486.9 142 540.1 390.2 1508.2 486.9 144 540.0 390.1 1508.2 486.8 145 540.0 390.0 1508.2 486.8 145 540.0 390.0 1508.2 486.8	311324 34164 0.77 310743 34492 0.77 310229 34822 0.77 309778 35155 0.77 309386 35490 0.77 308778 36168 0.77 308550 36509 0.77 308365 36952 0.77 308157 37541 0.77 308173 37541 0.77 308173 37541 0.77 308039 37886 0.77 307937 38925 0.77 307937 38925 0.77	351 2.13152 1.71376 1.7137 294 2.12834 1.71019 1.7107 243 2.12834 1.71019 1.7107 149 2.12201 1.70342 1.7034 160 2.11886 1.70021 1.7003 160 2.11886 1.70021 1.7003 160 2.11262 1.69712 1.6971 100 2.11262 1.69415 1.6981 077 2.10953 1.69127 1.6971 059 2.10646 1.68849 1.6886 CTH=0.1489637 Hy= 2.11 045 2.10342 1.68581 1.6856 034 2.10040 1.68321 1.683 026 2.09742 1.68868 1.680 021 2.09446 1.67822 1.678 018 2.09153 1.67582 1.675 016 2.08864 1.67347 1.673	77 2.1351 1.2830-0.00121 20 2.1375 1.2827-0.00110 25 2.1375 1.2827-0.00199 22 2.1414 1.2822-0.00088 22 2.1430 1.2820-0.00056 25 2.1453 1.2815-0.00056 27 2.1468 1.2810-0.00056 27 2.1468 1.2810-0.00037 38136. M= 2.146777. 31 2.1472 1.2808-0.00028 2.1477 1.2808-0.00028 2.1477 1.2808-0.00010 2.1475 1.2800-0.00010 32 2.1477 1.2800-0.00010 32 2.1477 1.2800-0.00010 32 2.1477 1.2800-0.00010 32 2.1477 1.2800-0.00006 32 2.1477 1.2800-0.00006 32 2.1477 1.2800-0.00006 32 2.1477 1.2800-0.00006 32 2.1477 1.2800-0.00006 32 2.1477 1.2800-0.00006 32 2.1477 1.2800-0.00006 32 2.1474 1.2795-0.00001	1.02213 0.136015 1.6530 0.290404 1.00629 0.137604 1.6747 0.294125 0.99059 0.139170 1.6960 0.297766 0.97488 0.140714 1.7170 0.301325 0.95899 0.142234 1.7378 0.304804 0.94240 0.143731 1.7581 0.304804 0.92263 0.145203 1.7782 0.311506 0.91257 0.146653 1.77792 0.314737 0.89858 0.148081 1.8174 0.317897 CH= 2.161746 N= 7.11626 0.88515 0.149488 1.8366 0.320985 0.87366 0.150876 1.8555 0.324007 0.86345 0.152247 1.8742 0.326975 0.85434 0.153603 1.8926 0.329899 0.84721 0.159946 1.9110 0.332770 0.84168 0.150279 1.9291 0.335617 0.83757 0.157604 1.9473 0.338439 0.83502 0.1578924 1.9653 0.334426
133 541.0 392.4 1508.5 488.3 134 540.8 391.9 1508.4 488.0 135 540.7 391.6 1508.4 487.8 136 540.5 391.2 1508.3 487.6 137 540.4 390.9 1508.3 487.4 138 540.3 390.7 1508.3 487.1 140 540.2 390.5 1508.2 487.0 DSU# 0.33159, 141 540.1 390.2 1508.2 486.9 142 540.1 390.2 1508.2 486.9 143 540.0 390.1 1508.2 486.8 145 540.0 390.1 1508.2 486.8 145 540.0 390.0 1508.2 486.8 14	311324 34164 0.77 310743 34492 0.77 310729 34892 0.77 309778 35155 0.77 309053 35490 0.77 308778 36168 0.77 308365 36509 0.77 308365 36852 0.77 THU=0.1550857. 308117 37541 0.77 308039 37886 0.77 307937 38933 0.77 307937 38925 0.77 307937 38925 0.77 307937 38925 0.77 307937 38927 0.77 307937 39272 0.77	351 2.13152 1.71376 1.7137 294 2.12834 1.71019 1.7107 243 2.12834 1.71019 1.7107 149 2.12517 1.70074 1.706 199 2.12201 1.70342 1.703 160 2.11886 1.70021 1.7004 127 2.11573 1.69712 1.697 100 2.11262 1.69415 1.694 077 2.10953 1.69127 1.691 059 2.10466 1.68849 1.6886 CTH=0.1489637* HU= 2.1 045 2.10342 1.68581 1.685 034 2.10040 1.68321 1.683 026 2.09742 1.68068 1.680 021 2.09446 1.67822 1.678 018 2.09153 1.67582 1.675 016 2.08864 1.67347 1.673 016 2.088678 1.67116 1.671	77 2.1351 1.2830-0.00121 2.1375 1.2827-0.00110 25 2.1375 1.2827-0.00199 25 2.1414 1.2822-0.00088 25 2.1430 1.2820-0.00075 25 2.1453 1.2815-0.00055 27 2.1461 1.2813-0.00046 27 2.1468 1.2810-0.00037 38136. M= 2.14677 7.81 2.1472 1.2808-0.00028 2.1477 1.2808-0.00021 2.1477 1.2808-0.00015 22 2.1477 1.2808-0.00015 22 2.1477 1.2809-0.00006 27 2.1475 1.2795-0.00003 2.1475 1.2795-0.00003 2.1475 1.2795-0.00003 2.1475 1.2795-0.00003 2.1475 1.2795-0.00003 2.1475 1.2795-0.00003 2.1475 1.2795-0.00003 2.1475 1.2795-0.000003 2.1475 1.2795-0.000003 2.1475 1.2795-0.000003 2.1475 1.2795-0.000003 2.1475 1.2795-0.000003 2.1475 1.2795-0.000003 2.1475 1.2795-0.000003 2.1475 1.2795-0.000003 2.1475 1.2795-0.000003 2.1475 1.2795-0.000000	1.02213 0.136015 1.6530 0.290404 1.00629 0.137604 1.6747 0.294125 0.99059 0.139170 1.6960 0.297766 0.97488 0.140714 1.7170 0.301325 0.95899 0.14234 1.7378 0.304804 0.94240 0.143731 1.7581 0.308198 0.92663 0.145203 1.7782 0.311506 0.91257 0.146653 1.7792 0.314737 0.89858 0.148081 1.8174 0.317897 CH# 2.161746, N= 7.11626 0.85535 0.14988 1.8366 0.320985 0.87366 0.150876 1.8555 0.324007 0.865345 0.152247 1.8742 0.326975 0.85534 0.153603 1.8926 0.329894 0.84721 0.154946 1.9110 0.332770 0.84168 0.156279 1.9291 0.335617 0.86135 0.154946 1.9110 0.332770

X=179.757, DELTA== 0.3488741, THETA=0.1612733, H= 2.163248, N= 7.1651556, DELTA= 1.9833418, RE/FT= 3695124.

RE-THETA= 49660.. LOG= 4.69601.

RE-DELTA= 610725.. LOG= 5.78585

797810 22935 1.05333 2.27146 2.38338 2.41172 1.1478 1.3039-0.00324 1.29300 0.026934 0.2630 0.030915

46 693.0 745.1 1545.1 /10.1

```
101 563.7 444.6 1513.9 522.1
                               375099 26188 0.83016 2.22331 1.89327 1.89737 1.8975 1.2918-0.00309 1.20157 0.081918 0.9313 0.155439
102 562.4 441.6 1513.6 520.2
                                      26352 0.82707 2.22108 1.88556 1.88930
                                                                             1,9099 1.2916-0.00310 1.20374 0.083558 0.9525 0.159591
103 561.1 438.7 1513.3 518.3
                                      26522 0.82406 2.21879 1.87798 1.88138
                                                                             1.9221 1.2913-0.00308 1.20309 0.085211 0.9740 0.163786
104 559.9 435.9 1513.0 516.5
                                      26698 0.82116 2.21644 1.87055 1.87363
                               364094
                                                                             1.9340 1.2910-0.00306 1.20272 0.086875 0.9956 0.168013
105 558.7 433.2 1512.7 514.7
                               360710
                                      26879 0.81833 2.21404 1.86325 1.86604
                                                                             1.9455 1.2907-0.00306 1.20422 0.088550 1.0175 0.172278
106 557.6 430.6 1512.4 513.1
                               357455
                                      27065 0.81558 2.21160 1.85608 1.85859
                                                                             1.9568 1.2904-0.00303 1.20246 0.090238 1.0396 0.176581
107 556.5 428.1 1512.2 511.5
                               354349
                                      27258 0.81293 2.20909 1.84905 1.85131
                                                                             1.9678 1.2901-0.00299 1.20046 0.091934 1.0618 0.180904
108 555.5 425.7 1511.9 509.9
                                      27455 0.81036 2.20655 1.84216 1.84418
                               351364
                                                                             1.9784 1.2898-0.00298 1.20083 0.093639 1.0842 0.185255
109 554.5 423.4 1511.7 508.4
                                      27657 0.80788 2.20396 1.83538 1.83720
                                                                             1.9888 1.2895-0.00294 1.19895 0.095354 1.1068 0.189638
110 553.5 421.2 1511.5 507.0
                                      27865 0.80548 2.20132 1.82876 1.83037
                               345759
                                                                             1.9988 1.2893-0.00289 1.19534 0.097075 1.1295 0.194033
   X=119.656: USU= 0.19943.
                               THU=0.1000546. CTH=0.0974769. HU= 1.993259. H= 1.998791. CH= 2.007159. N= 6.91436
                              343144 28079 0.80317 2.19864 1.82227 1.82370 2.0085 1.2890-0.00284 1.19294 0.098801 1.1524 0.198440
111 552.6 419.1 1511.2 505.6
112 551.7 417.0 1511.0 504.3
                                      28298 0.80094 2.19592 1.81591 1.81718
                                                                             2.0179 1.2887-0.00281 1.19101 0.100535 1.1754 0.202865
113 550.8 415.1 1510.8 503.0
                                      28522 0.79880 2.19316 1.80968 1.81079
                                                                             2.0269 1.2884-0.00276 1.18749 0.102273 1.1985 0.207303
114 550.0 413.2 1510.6 501.8
                               335959
                                      28752 0.79674 2.19036 1.80358 1.80456
                                                                             2.0357 1.2881-0.00269 1.18197 0.104015 1.2216 0.211741-
115 549.3 411.4 1510.4 500.7
                               333792
                                      28988 0.79477 2.18752 1.79763 1.79849
                                                                             2.0441 1.2878-0.00262 1.17665 0.105756 1.2449 0.216174
116 548.5 409.8 1510.3 499.6
                                      29228 0.79287 2.18465 I.79181 1.79256
                                                                             2.0521 1.2875-0.00256 1.17197 0.107499 1.2681 0.220603
117 547.8 408.1 1510.1 498.5
                               329761
                                      29474 0.79106 2.18174 1.78613 1.78677
                                                                             2.0599 1.2873-0.00250 1.16648 0.109243 1.2915 0.225028
118 547.2 406.6 1509.9 497.6
                                      29725 0.78934 2.17881 1.78057 1.78113
                               327896
                                                                             2.0673 1.2870-0.00243 1.16019 0.110986 1.3148 0.229440
119 546.5 405.2 1509.8 496.6
                                     29981 0.78769 2.17584 1.77515 1.77563
                                                                             2.0744 1.2867-0.00235 1.15291 0.112726 1.3382 0.233835
                               324458 30243 0.78612 2.17285 1.76987 1.77028
120 546.0 403.8 1509.6 495.7
                                                                             2.0811 1.2864-0.00226 1.14407 0.114461 1.3615 0.238205
   X=134.453, OSU= 0.24598.
                               THU=0.1185693. CTH=0.1149995. HU= 2.074552. H= 2.081109. CH= 2.091857. N= 6.98261
121 545.4 402.5 1509.5 494.9
                               322890 30510 0.78464 2.10983 1.76473 1.76507 2.0875 1.2861-0.00217 1.13490 0.116189 1.3848 0.242542
122 544.9 401.3 1509.4 494.1
                               321412 30181 0.78325 2.16679 1.75972 1.76002
                                                                             2.0935 1.2859-0.00209 1.12591 0.117910 1.4080 0.246845
123 544.4 400.1 1509.3 493.3
                                      31058 0.78193 2.16373 1.75485 1.75510
                                                                             2.0992 1.2856-0.00199 1.11610 0.119622 1.4311 0.251112
124 543.9 399.0 1509.1 492.6
                                      31339 0.78069 2.16065 1.75012 1.75032
                                                                             2.1046 1.2853-0.00190 1.10550 0.121325 1.4542 0.255337
125 543.5 398.0 1509.0 492.0
                                      31625 0.77952 2.15756 1.74552 1.74569
                              317517
                                                                             2.1096 1.2851-0.00180 1.09417 0.123017 1.4770 0.259513
126 543.1 397.1 1508.9 491.4
                                      31915 0.77844 2.15445 1.74106 1.74119
                              316392
                                                                             2.1143 1.2848-0.00170 1.08218 0.124695 1.4998 0.263637
127 542.7 396.2 1508.9 490.R
                              315350
                                      32210 0.77743 2.15133 1.73673 1.73684
                                                                             2.1186 1.2845-0.00159 1.06955 0.126359 1.5223 0.267704
128 542.3 395.4 1508.8 490.3
                                      32509 0.77650 2.14820 1.73253 1.73262
                              314390
                                                                             2.1226 1.2843-0.00148 1.05632 0.128008 1.5447 0.271709
129 542.0 394.7 1508.7 489.8
                                      32813 0.77564 2.14506 1.72847 1.72855
                                                                             2.1263 1.2840-0.00138 1.04256 0.129639 1.5668 0.275648
130 541.7 394.0 1508.6 489.4
                              312705 33120 0.77486 2.14193 1.72454 1.72460
                                                                             2.1296 1.2838-0.00127 1.02835 0.131252 1.5887 0.279518
  X=149+842+ OSU= 0.29005+
                               THU=0.1366870. CTH=0.1319490. HU= 2.122034.
                                                                                  H= 2.129630, CH= 2.142629, N= 7.04826
131 541.5 393.4 1508.5 489.0
                              311977 33430 0.77415 2.13879 1.72074 1.72079
                                                                            2.1327 1.2835-0.00115 1.01305 0.132846 1.6104 0.283315
132 541.2 392.9 1508.5 488.6
                              311324 33745 0.77351 2.13565 1.71708 1.71712
                                                                             2.1354 1.2833-0.00103 0.99711 0.134418 1.6318 0.287031
133 541.0 392.4 1508.5 488.3
                              310743 34063 0.77294 2.13251 1.71354 1.71357
                                                                             2.1378 1.2830-0.00092 0.98159 0.135967 1.6528 0.290666
134 540.8 391.9 1508.4 488.0
                              310229 34383 0.77243 2.12938 1.71013 1.71015
                                                                             2.1399 1.2828-0.00081 0.96624 0.137495 1.6736 0.294222
135 540.7 391.6 1508.4 487.8
                              309778 34707 0.77199 2.12626 1.70684 1.70686
                                                                             2.1417 1.2825-0.00070 0.95091 0.139001 1.6941 0.297698
136 540.5 391.2 1508.3 487.6
                              309386 35033 0.77160 2.12316 1.70366 1.70368
                                                                             2.1433 1.2823-0.00060 0.93543 0.140484 1.7143 0.301094
137 540.4 390.9 1508.3 487.4
                              309053
                                      35361 0.77127 2.12007 1.70060 1.70061
                                                                             2.1446 1.2820-0.00049 0.91930 0.141944 1.7341 0.304408
138 540.3 390.7 1508.3 487.2
                              308778 35692 0.77100 2.11699 1.69765 1.69766
                                                                             2.1456 1.2818-0.00038 0.90400 0.143380 1.7536 0.307637
139 540.2 390.5 1508.3 487.1
                              308550
                                      36024 0.77077 2.11393 1.69480 1.69481
                                                                             2.1464 1.2816-0.00030 0.89035 0.144794 1.7729 0.310792
140 540.2 390.4 1508.2 487.0
                              308365 36357 0.77059 2.11090 1.69205 1.69205
                                                                            2.1471 1.2814-0.00021 0.87678 0.146188 1.7918 0.313877
  X=165.549. DSU= 0.32721.
                               THU=0.1530049. CTH=0.1470484. HU= 2.138547. H* 2.147074. CH= 2.161857. N* 7.10823
141 540.1 390.2 1508.2 486.9
                              308223 36692 0.77045 2.10789 1.68938 1.68939 2.1475 1.2811-0.00013 0.86376 0.147561 1.8105 0.316891
142 540.1 390.2 1508.2 486.9
                              308117
                                     37028 0.77034 2.10490 1.58681 1.68681
                                                                             2.1478 1.2809-0.00006 0.85261 0.148915 1.8289 0.319841
143 540.0 390.1 1508.2 486.8
                              308039 37365 0.77026 2.10194 1.68430 1.68430
                                                                             2.1480 1.2807-0.00000 0.84269 0.150253 1.8471 0.322739
144 540.0 390.1 1508.2 486.8
                                      37702 0.77021 2.09901 1.68186 1.68186
                                                                             2.1480 1.2805 0.00005 0.83382 0.151577 1.8651 0.325588
145 540.0 390.0 1508.2 486.8
                              307956
                                      38040 0.77018 2.09610 1.67948 1.67948
                                                                             2.1480 1.2803 0.00008 0.82686 0.152887 1.8829 0.328396
146 540.0 390.0 1508.2 486.A
                              307937
                                      38377 0.77016 2.09323 1.67715 1.67715
                                                                             2.1479 1.2801 0.00011 0.82141 0.154189 1.9007 0.331174
147 540.0 390.0 1508.2 486.8
                              307930
                                      38715 0.77016 2.09039 1.67486 1.67486
                                                                            2.1477 1.2799 0.00013 0.81732 0.155482 1.9183 0.333928
148 540.0 390.0 1508.2 486.8
                              307927 39053 0.77015 2.08759 1.67261 1.67261 2.1475 1.2797 0.00014 0.81471 0.156770 1.9359 0.336667
149 540.0 390.0 1508.2 486.8
                              307927 39390 0.77015 2.08481 1.67038 1.67038 2.1473 1.2795 0.00014 0.81292 0.158055 1.9534 0.339397
```

X=179.757. DFLTA== 0.3440982. THETA=0.1590590. H= 2.163337. N= 7.1564820. DELTA= 1.9534113. RE/FT= 3695124.

RE+THETA= 48979., LUG# 4-69001.

RE+DELTA# 601508.+ LOG= 5.77924

M A C H 4 NOZZLE CONTOUR, RADIAL FLOW ENDS AT STA 76.9263852, TEST CONE BEGINS AT STA 132.3126057, SCALE FACTOR = 24.75038624 6.000000 ETAD= 8.6700 DEG AMACH= 2.2878437 BMACH= 3.0821543 CMACH= 4.0000000 EMACH= 1.6601538 GMACH= 2.2878437 STAG. PRESSURE= 200. PSI, STAG. TEMPERATURE=1638. DEG R. THROAT TEMP.= 866. DEG R. WALL TEMP.=540. DEG R. THROAT HT COEF.= 0.17482 VAN DRIEST REFERENCE REYNOLDS NUMBER PARABOLIC TEMPERATURE DISTRIBUTION MODIF. SPALDING-CHI REFERENCE TEMP PE/PO BETA DA/DX DR/9X MACH NO. DM/DX DELR (IN) R(IN) DY/DX D2Y/DX2 STA(IN) Y(IN) 0.0445308 0.0006641 0.0006641 1.0471638 0.1289481 4.99570-01 -4.8038D-01 1 46.075855 3.742729 0.0055143 3.7482437 0.0 3.743043 0.0055941 3.7486371 0.0052790 0.0444289 0.0006795 0.0059585 1.0626027 0.1303456 4.90340-01 -4.82790-01 2 46.194522 1.0786293 0.1308606 4.80850-01 -4.8187D-01 3.744025 0.0056784 3.7497038 0.0107240 0.0443160 0.0006964 0.0114204 3 46,317241 3.745738 0.0057677 3.7515058 0.0163271 0.0441486 0.0007156 0.0170426 1.0952300 0.1315243 4.71130-01 -4.81520-01 4 46.443834 3.749253 0.0058627 3.7541157 0.0220990 0.0438612 0.0007355 0.0228245 1.1124932 0.1320693 4.61130-01 -4.80710-01 5 46,574687 3.751637 0.0059634 3.7576009 0.0279906 0.0434400 0.0007567 0.0287473 1.1303552 0.1324678 4.50910-01 -4.79400-01 46.709786 3.755988 0.0060711 3.7620592 0.0340438 0.0428567 0.0007789 0.0348227 1.1489592 0.1326094 4.40410-01 -4.77200-01 46.849950 3.761394 0.0061860 3.7675796 0.0402279 0.0421265 0.0008019 0.0410298 1.1682305 0.1324519 4.29690-01 -4.74010-01 8 46.995411 3.767996 0.0063098 3.7743055 0.0465699 0.0411777 0.0008264 0.0473963 1.1883589 0.1320898 4.18670+01 -4.7018D-01 47.147418 3.775942 0.0064435 3.7823854 0.0530416 0.0399150 0.0008511 0.0538927 1.2093556 0.1311293 4.07360-01 -4.64390-01 10 47.306791 3.785399 0.0065884 3.7919877 0.0596137 0.0383639 0.0008766 0.0604903 1.2312390 0.1296467 3.9580D-01 -4.5598D-01 11 47.474504 3.796599 0.0067465 3.8033455 0.0662758 0.0364867 0.0009022 0.0671780 1.2541190 0.1275207 3.83940-01 -4.47600-01 12 47.652195 1.2779433 0.1245724 3.71860-01 -4.35720-01 3.809742 0.0069193 3.8166811 0.0729621 0.0342307 0.0009269 0.0738890 13 47.840976 1.3026785 0.1210265 3.59600-01 -4.22220-01 3.825149 0.0071085 3.8322578 0.0796000 0.0316803 0.0009509 0.0805509 14 48.042344 1.3283469 0.1173018 3.47190-01 -4.08590-01 3.843041 0.0073161 3.8503570 0.0861321 0.0289891 0.0009744 0.0871065 15 48.257882 3.863742 0.0075443 3.8712867 0.0925115 0.0262838 0.0009986 0.0935101 1.3550399 0.1138238 3.34620-01 -3.96310-01 16 48,489226 3.887550 0.0077958 3.8953458 0.0987007 0.0236942 0.0010235 0.0997242 1.3829205 0.1105609 3.21870-01 -3.85220-01 17 48.737829 3.914845 0.0080735 3.9229188 0.1047027 0.0212013 0.0010497 0.1057524 1.4120873 0.1075151 3.0893D-01 -3.7530D-01 18 49.005786 3.945969 0.0083808 3.9543497 0.1104531 0.0187513 0.0010777 0.1115309 1.4427244 0.1047381 2.95780-01 -3.66700-01 19 49.294604 3.981325 0.0087215 3.9900470 0.1159113 0.0164800 0.0011075 0.1170188 1.4749409 0.1020542 2.8244D-01 -3.5881D-01 20 49,606502 4.02[316 0.009]002 4.0304[64 0.12]0936 0.0142664 0.001]397 0.1222334 1.5088820 0.0995120 2.68920-01 -3.51800-01 21 49.943497 1.5308817 0.0979907 2.60440-01 -3.47830-01 4.048660 0.0093566 4.0580171 0.1241092 0.0128924 0.0011610 0.1252702 22 50.166357 4.088966 0.0097325 4.0986985 0.1279362 0.0113023 0.0011917 0.1291280 1.5618623 0.0959719 2.48890-01 -3.4283D-01 23 50.485904 1.5966017 0.0938333 2.36460-01 -3.37860-01 24 50.852165 4.136581 0.0101754 4.1467564 0.1317928 0.0098352 0.0012271 0.1330199 4.189929 0.0106726 4.2006021 0.1354143 0.0083961 0.0012656 0.1366800 1.6335898 0.0916764 2.23810-01 -3.33180-01 25 51.251055 4.248214 0.0112190 4.2594329 0.1386722 0.0070360 0.0013068 0.1399790 1.6720611 0.0895581 2.11290-01 -3.28910-01 26 51.675884 4.310875 0.0118127 4.3226873 0.1415189 0.0058305 0.0013501 0.1428690 1.7116110 0.0874521 1.99070-01 -3.24930-01 27 52.122740 1.7519140 0.0853867 1.87280+01 -3.21290+01 4.377557 0.0124533 4.3900108 0.1439769 0.0047561 0.0013955 0.1453724 28 52.589479 1.7928312 0.0833563 1.75960-01 -3.17930-01 29 53.074361 4.447927 0.0131415 4.4610685 0.1460261 0.0037918 0.0014426 0.1474687 4.521718 0.0138780 4.5355964 0.1477043 0.0029792 0.0014914 0.1491957 1.8341515 0.0813511 1.65170-01 -3.14790-01 53.576491 4.598672 0.0146642 4.6133357 0.1490542 0.0022743 0.0015416 0.1505958 1.8758124 0.0793805 1.54910-01 -3.11860-01 31 54.094777 4.678566 0.0155008 4.6940663 0.1500868 0.0016926 0.0015929 0.1516797 1.9176407 0.0774225 1.45220-01 -3.09040-01 32 54.628651 4.761154 0.0163893 4.7775437 0.1508792 0.0012503 0.0016456 0.1525247 1.9595949 0.0755200 1.36080-01 -3.06460-01 33 55.177283 4.846257 0.0173303 4.8635878 0.1514708 0.0008799 0.0016987 0.1531694 2.0015440 0.0736156 1.2750D-01 -3.0387D-01 34 55.740017 4.933654 0.0183244 4.9519784 0.1518766 0.0005863 0.0017525 0.1536291 2.0434024 0.0717661 1.1945D-01 -3.0146D-01 56.316071 35 5.023130 0.0193719 5.0425017 0.1521507 0.0003831 0.0018065 0.1539571 2.0850968 0.0699376 1.11930-01 -2.99070-01 56.904570 57.504606 5.114493 0.0204721 5.1349650 0.1523300 0.0002322 0.0018601 0.1541901 2.1265044 0.0681244 1.0492D-01 -2.9665D-01 37 5.207549 0.0216244 5.2291739 0.1524304 0.0001177 0.0019137 0.1543641 2.1675528 0.0663705 9.83930+02 -2.9435D+01 58.115220 38 5.302091 0.0228279 5.3249191 0.1524740 0.0000421 0.00196/1 0.1544410 2.2081710 0.0646682 9.23330-02 -2.92140-01 58.735317 5.397932 0.0240810 5.4220133 0.1524825 0.0000093 0.0020197 0.1545022 2.2482849 0.0630080 8.6714D-02 -2.8994D-01 59,363844 60.000000 5.494933 0.0253825 5.5203158 0.1524857 0.0 0.0020715 0.1545572 2.2878437 0.0613810 8.15080-02 -2.87710-01 41 5.579249 0.0265402 5.6057892 0.1524880-0.0000050 0.0021158 0.1546038 2.3214084 0.0600664 7.7339D-02 -2.8602D-01 60.552926 5.663187 0.0277170 5.6909039 0.1524802-0.0000214 0.0021595 0.1546398 2.3541235 0.0588206 7.34820-02 -2.84460-01 61.103390 5.746798 0.0289130 5.7757114 0.1524645-0.0000383 0.0022022 0.1546666 2.3860447 0.0576257 6.9906D-02 -2.8295D-01 44 61.651753

45 62 198387

49

52

54

55

56

57

68

69

75

76

77

78

79

82

84

85

62.743709 63,288168

63.832236

64.376299

64.921084

65,467010

66.014590

66.564347

67.116843

67.672596

68.231992

68.795850

69,364555

69.938609

70.518568

71.697974

72.298584

72.907018

73.523780

74.149298

74.783805

75.428101

76.082345

76.746956

78.108309

79.514896

80.235689

80.968136

81.712829

82,469634

83.238552

84.019630

84.812477

85.617520

86,434259

87.262491

88.101869

88.951717

89.812142

90,682263

91.561549

92.781191

95.263954

91 94.015488

93 96.525320

94 97,799333

95 99,085954

96 100.384135

97 101.693801

98 103.015063

99 104.346959

100 105.689498

71 77,422242

73 78.805862

61 71.104909

5.996214

6.410632

6.829497

6.914354

6+999660

7.085454

7+345985

7.433961

7.522526

7.701399

7.791723

7+974029

8 • 158340

8.251179

8+437951

8.531739

8 • 625753

8.719889

8.814059

8.908183

9.189181

9.282042

9.374299

9+465806

9+556509

9.646254

9+734931

9+854604

9.971808

10.086400

10-198180

10.307066

10+412998

10.515847

10.615580

10.712175

10.805542

0.0719505

0.0739254

0.0821951

0.0843573

0.0865560

0.1005357

5.830135 0.0301283 5.8602635 0.1524383-0.0000627 0.0022437 0.1546820 2.4172256 0.0564765 6.65850-02 -2.81470-01 5.913254 0.0313630 5.9446174 0.1523961-0.0000967 0.0022841 0.1546802 2.4477161 0.0553653 6.3492D-02 -2.8000D-01

8.065962 0.0700133 8.1359750 0.1354000-0.0021869 0.0028212 0.1382212 3.0713107 0.0315266 2.4471D+02 -2.1898D-01

9.002122 0.0910671 9.0931894 0.1174553-0.0025938 0.0028697 0.1203250 3.2748313 0.0240239 1.8129D-02 -1.8838D-01

10-895673 0.1527419 11.0484151 0.0656780-0.0021708 0.0030524 0.0687304 3.6459872 0.0132107 1.06750-02 -1.37550-01

6.079073 0.0338918 6.1129649 0.1522418-0.0002009 0.0023606 0.1546024

6.161873 0.0351860 6.1970586 0.1521144-0.0002692 0.0023959 0.1545103

6.244702 0.0365006 6.2812030 0.1519487-0.0003419 0.0024301 0.1543788

6.327604 0.0378366 6.3654410 0.1517414-0.0004193 0.0024636 0.1542049

6.493840 0.0405743 6.5344139 0.1511929-0.0005832 0.0025239 0.1537168

6.577284 0.0419766 6.6192606 0.1508470-0.0006703 0.0025522 0.1533993

6.661014 0.0434029 6.7044173 0.1504498-0.0007622 0.0025792 0.1530290

6.745056 0.0448529 6.7899094 0.1499967-0.0008597 0.0026035 0.1526003

7-171760 0-0524911 7-2242513 0-1467961-0-0013583 0-0027064 0-1495025

7-258501 0-0541007 7-3126815 0-1459622-0-0014511 0-0027222 0-1486844

7-611682 0-0608458 7-6725280 0-1419682-0-0018007 0-0027764 0-1447446

7.882605 0.0662428 7.9488479 0.1382406-0.0020468 0.0028056 0.1410463

0.0391946 6.4498266 0.1514901-0.0004997 0.0024948 0.1539849

0.0463275 6.8758240 0.1494837-0.0009604 0.0026270 0.1521107

0.0478283 6.9621818 0.1489085-0.0010625 0.0026493 0.1515578

0.0493551 7.0490151 0.1482690-0.0011638 0.0026692 0.1509382

0.0509087 7.1363625 0.1475648-0.0012623 0.0026888 0.1502536

0.0557407 7.4017258 0.1450633-0.0015406 0.0027382 0.1478015

0.0574114 7.4913728 0.1440989+0.0016281 0.0027518 0.1468507

0.0591122 7.5816383 0.1430678-0.0017145 0.0027645 0.1458323

0.0626106 7.7640100 0.1407980-0.0018861 0.0027866 0.1435846

0.0644094 7.8561328 0.1395555-0.0019688 0.0027970 0.1423525

0.0681098 8.0421385 0.1368552-0.0021195 0.0028139 0.1396691

0.0759373 8.4203364 0.1306395-0.0023527 0.0028397 0.1334791

0.0779857 8.5159371 0.1289259-0.0023982 0.0028453 0.1317712

0.0800723 8.6118115 0.1271538-0.0024388 0.0028497 0.1300035

0.0887931 8.9969758 0.1195017-0.0025669 0.0028661 0.1223678

0.0957286 9.2849096 0.1132111-0.0026347 0.0028781 0.1160892

0.0981129 9.3801551 0.1110227-0.0026455 0.0028826 0.1139052

0.1029906 9.5687962 0.1065525-0.0026396 0.0028924 0.1094449

0.1054826 9.6619914 0.1042851-0.0026294 0.0028991 0.1071842

0.1080077 9.7542614 0.1020023+0.0026164 0.0029058 0.1049081

0.1105661 9.8454975 0.0997080-0.0026015 0.0029145 0.1026225

0.1141289 9.9687331 0.0965482-0.0025789 0.0029252 0.0994733

0.1177444 10.0895528 0.0933800-0.0025529 0.0029361 0.0963161

0.1214187 10.2078184 0.0902103-0.0025220 0.0029509 0.0931612

0.1251509 10.3233311 0.0870506-0.0024860 0.0029651 0.0900157

0.1289366 10.4360026 0.0839079-0.0024465 0.0029770 0.0868849

0.1327740 10.5457720 0.0807866-0.0024038 0.0029904 0.0837770

0.1366663 10.6525138 0.0776951-0.0023586 0.0030057 0.0807008

0.1406126 10.7561922 0.0746362-0.0023129 0.0030171 0.0776533

0.1446040 10.8567787 0.0716107-0.0022663 0.0030281 0.0746388

0.1486469 10.9541888 0.0686239-0.0022185 0.0030428 0.0716667

8.2302903 0.1338775-0.0022469 0.0028274 0.1367049

8.3251049 0.1322904-0.0023016 0.0028343 0.1351247

8.7079484 0.1253229-0.0024757 0.0028538 0.1281767

8.8042461 0.1234360-0.0025082 0.0028583 0.1262943

8.9006154 0.1214957-0.0025381 0.0028617 0.1243574

9.4748345 0.1087994-0.0026463 0.0028875 0.1116869

0.0326174 6.0288310 0.1523330-0.0001418 0.0023232 0.1546562 2.4775625 0.0542857 6.06080-02 -2.7852D-01

2.5068080 0.0532190

2.5354718 0.0521503

2.5635910 0.0511115

2.6183867 0.0490995

2.6450950 0.0480789

2.6713791 0.0470964

2.6972864 0.0461238

2.7228104 0.0451284

2.7479725 0.0441636

2.7728239 0.0432111

2.7973472 0.0422396

2.8215632 0.0413084

2.8455195 0.0403647

2.8691629 0.0394195

2.8925668 0.0385213

2.9157299 0.0375957

2.9386209 0.0366957

2.9613088 0.0358090

2.9837327 0.0349161

3.0059512 0.0340659

3.0279603 0.0331975

3.0497246 0.0323598

3.0926338 0.0306975

3.1137755 0.0299100

3.1346955 0.0291099

3.1553882 0.0283486

3.1758845 0.0275796

3.1961171 0.0268336

3.2161669 0.0261126

3.2359485 0.0253917

3.2555157 0.0247095

3.3127386 0.0227294

3.3312761 0.0221102

3.3496037 0.0215079

3.3676009 0.0209182

3.3853741 0.0203684

3.4028437 0.0198214

3.4200450 0.0193209

3.4432004 0.0186333

3.4878170 0.0173776

3.5093670 0.0167933

3.5303869 0.0162112

3.5508706 0.0156662

3.5708751 0.0151618

3.5904045 0.0146382

3.6093807 0.0141368

5.79110-02 -2.7693D-01

5-53880+02 -2.75170-01

5.30230-02 -2.73410-01

4.8710U-02 -2.6978D-01

4.67410-02 -2.6767D-01

4.48850-02 -2.6562D-01

4.31300-02 -2.63500-01

4.14710-02 -2.61110-01

3.99000-02 -2.58770-01

3.84110-02 -2.5637D-01

3.69980-02 -2.53730-01

3.43790-02 -2.4850D-01

3.31660-02 -2.45660-01

3.20100-02 -2.43000-01

3.09070-02 -2.40050-01

2.98570-02 -2.37150-01

2.88530-02 +2.34220-01

2.78970-02 -2.31140-01

2.69820-02 -2.28240-01

2.61070-02 -2.25110-01

2.52720-02 -2.22080-01

2.37070-02 -2.15800-01

2.29740-02 -2.12810-01

2.2273D-02 -2.0963D-01

2.16020-02 -2.0664D-01

2.09590+02 -2.03480-01

2.03440-02 +2.00390-01

1.97530-02 -1.97390-01

1.91890-02 -1.94300-01

1.7633D-02 -1.8559D-01

1.71560-02 -1.8267D-01

1.67010-02 -1.7989D-01

1.6264D-02 -1.7717D-01

1.58470-02 -1.74450-01

1.54460-02 -1.71980-01

1.5063D-02 -1.6945D-01

1.46960-02 -1.67220-01

1.42160-02 -1.6403D-01

1.33400-02 -1.58250-01

1-29380-02 -1-55530-01

1.25580-02 -1.52690-01

1.22000-02 -1.50060-01

1.18600-02 -1.47690-01

1.1539D-02 -1.4499D-01

1.12360-02 -1.42390-01

3.4657596 0.0179740 1.3766D-02 -1.6093D-01

3.6279067 0.0136893 1.09480-02 -1.40190-01

1.86470-02 -1.91400-01

3.56560-02 -2.51220-01

2.5912185 0.0501117 5.08010-02 -2.71700-01

⋗
ш
O
÷
JĮ,
•
ω
က်
نت

5.97373108

101 107.042885 10.982573 0.1568759 11.1394492 0.0627721-0.0021236 0.0030610 0.0658331 3.6635161 0.0127512 1.0418D-02 -1.3498D-01

D2A/DX2= 0.000130108. DZR/DX2= 0.044660860+ VISCID RC=

STA 46.060986+

Y*= 3.7482388.

x(IN)	YIIN	DY/OX	ANGLE	DSA\DX5
46.060986	3,748239	0.0	0.0	4.46608599D-02
48.000000	3.828872	7.928752760-02	4.533356900 00	3.233121120-02
50.000000	4.037350	1.231080500-01	7.018258590 00	1.386269750-02
52,000000	4,305187	1.422101290-01	8.09376932D 00	6.177612540-03
54.000000	4.599067	1.504338720~01	8.55507609D 00	2.444559730-03
56.000000	4.403448	1.534265540-01	8.722675330 00	7.895883750-04
58.000000	5.211391	1.54331457D-01	8.773323200 00	2.044309060-04
60.000000	5.520316	1.54556026D-01	8.785890300 00	1-17939093D=04
62.000000	5.829576	1.546802720-01	8.792842860'00	2.740835130-05
54.000000	6.138901	1.545848900-01	8.787505500 00	-1.55627214D-04
66.000000	5.447580	1.539992030-01	8,754728380 00	-4.40629780D-04
68.000000	6.754483	1.527948470-01	8.687310280 00	-7.75590079D-04
70.000000	7.058280	1.50877708D-01	8,579941610 00	-1.145012590-03
72-000000	7.357525	1.48256053D-01	8.43301867D 00	-1.46882223D-03
74.000000	7.650897	1.450194950-01	8,251481230 00	-1.76461079D-03
76.000000	7.937226	1.412222640-01	8.038283180 00	-2.03338R59D-03
78.000000	8.215470	1.36952466D-01	7.798284970 00	-2.22815556D-03
80.000000	8.484813	1.323377850-01	7,538591680 00	-2.375525270-03
82.000000	B.744656	1.274704390-01	7.26434180D 00	-2.482244430-03
84.000000	8.994573	1.224221840-01	6.97954482D 00	-2.56156775D-03
86.000000	9.234248	1.172335770-01	6.686468370 00	-2.622812320-03
88.000000	9.463443	1.119561990+01	6.388016790 00	-2.65025211D-03
90.000000	9.682080	1.06689586D-01	6.089826580 00	-2.62306385D-03
92.000000	9.890242	1.01484659D-01	5.794803160 00	-2.58632039D-03
94.000000	10.088061	9.634882880-02	5,503393690 00	-2.54268685D-03
96.000000	10.275706	9.131295110-02	5,217377890 00	-2.491214870-03
98.000000	10.453387	8.638684330-02	4.937343920 00	-2.433364n3D-03
100.000000	10.621344	8-159527320-02	4,664730830 00	-2.35869491D-03
102.000000	10.779858	7.69378839D-02	4.399548740 00	-2-297913470-03
104.000000	10.929194	7.24243454D-02	4.14237678D 00	-2.21733826D-03
106.000000	11.069648	6.804791130-02	3,892856880 00	-2.158093120-03
108.000000	11.201485	6.381499830-02	3.651378870 00	-2.079367280-03
110.000000	11.324996	5.971422390-02	3.417315050 00	-2.02025440D-03
112.000000	11.440445	5.576349840-02	3.191707570 00	-1.93494923D-03
114.000000	11.548148	5.195996530-02	2.974411830 00	-1-871074660-03
116.000000	11.648387	4.830811190-02	2.765700850 00	-1.78371679D-03
118.000000	11.741483	4.480880220-02	2.565639050 00	-1.72205955D-03
120.000000	11.827702	4.143522470-02	2.372706230 00	-1.64819876D-03
122.000000	11.907330	3.821807570-02	2.188669250 00	-1.57234891D-03
124.000000	11.980667	3.514180090-02	2.012648650 00	-1.50387224D-03
126.000000	12.047989	3.220385630-02	1.844507590 00	-1.430333420-03
128.000000	12-109594	2.942782410-02	1,685603660 00	-1.34894234D-03
130.000000	12.165800	2.680149790-02	1.535245190 00	-1.278463020-03
132.000000	12.216891	2.431172790=02	1.392685060 00	-1.212328450-03
134,000000	12.263132	2.195079550-02	1.257486000 00	-1.14751593D-03
136.000000	12.304785	1.972754010-02	1.130158190 00	-1.074282300-03
138.000000	12.342143	1.765517960-02	1.011462190 00	-9.99015303D-04
140.000000	12.375503	1.572884230-02	9.011219710-01	-9.272061620-04
142.000000	12.405153	1.394414440-02	7.988888480-01	-8-58380327D-04
144.000000	12.431367	1.22912949D-02	7.042038580-01	-7-93686046D-04
146.000000	12.454409	1.077353810-02	6,172543810-01	-7.24275824D-04

M A C H 4 COORDINATES AND DERIVATIVES, LENGTH # 133.6956656

X(IN)	Y (1N)	DYIDX	ANGLE	05A\0XS
148.000000	12.474553	9.392165340=03	5.381156120-01	-6.58091366D-04
150.000000	12.492063	8.139532360-03	4,66350553D→01	-5.95039869D-04
152.000000	12.507192	7.009309710+03	4,015972870-01	-5.32529461D-04
154.000000	12.520192	6.013286450-03	3,445317820-01	-4.65704477D-04
156.000000	12.531329	5.144374780-03	2.947483630-01	-4.03224707D-04
158.000000	12.540852	4.39881668D=03	2,520320050-01	-3.43757846D-04
160.000000	12.548996	3.762222270-03	2,155584410-01	-2.93142352D-04
162.000000	12.555969	3.229019150-03	1.85008526D-01	-2.37784049D-04
164.000000	12.561986	2.80338138D+03	1,606215010+01	-1.901960570-04
166.000000	12.567239	2.464070180-03	1,41180536D+01	+1.483662230-04
168.000000	12.571900	2.210520270-03	1,266532760-01	-1.077258170-04
170.000000	12.576128	2.02839844D=03	1.16218510D-01	-7.52059936D-05
172.000000	12.580055	1.907851380-03	1.093116990-01	-4.62866371D-05

NOMENCLATURE

À Area Exit area, inviscid contour A_{C} **A*** Sonic area Sonic speed a* C Factor in logarithmic skin friction law, Eq. (77) ^C1,2,3,4,5,6 Coefficients, Eq. (35) Ratio of actual mass flow to that if R were infinite $^{\mathtt{C}}_{\mathtt{f}}$ Skin friction coefficient, compressible Skin friction coefficient, incompressible $C_{\mathbf{p}}$ Specific heat at constant pressure Coefficients, Eq. (37) D_{1,2,3,4,5,6} Ratio, C_{f_i}/C_f $\mathbf{F}_{\mathbf{c}}$ Multiplying factors, Eq. (97) $\mathbf{F}_{\mathbf{n}}$ $\mathbf{F}_{\mathbf{R}_{\delta}}$ Ratio, $R_{\theta_{i}}/R_{\theta_{c}}$ Multiplying factors, Eqs. (94) and (96) ${\tt G}_{\tt n}$

н	Ratio, δ*/θ
h _a	Heat-transfer coefficient
K	Streamline curvature
1n	Natural logarithm (base e)
log	Common logarithm (Base 10)
М	Mach number
m	Exponent in Eq. (90)
N	Velocity profile exponent
n .	Distance normal to streamline
P _{1,2}	Factors in axisymmetric characteristics equations
P _n	Coefficient of θ at nth point on contour
Pr	Prandtl number
Q	Factor related to heat transfer, Eq. (91)
$Q_{\mathbf{n}}$	Coefficient in momentum equation
q	Velocity along streamline or, in boundary- layer equations, velocity within boundary layer
q _e	Velocity at edge of boundary layer .

R	Ratio of throat radius of curvature to
	throat radius (half height, $\sigma = 0$)
Rg	Gas constant, ft ² /sec ² R
R	Reynolds number based on δ, compressible
$R_{\delta_{\mathbf{i}}}$	Incompressible Reynolds number
$R_{oldsymbol{ heta}}$ c	Reynolds number based on θ_{c} , compressible
$^{\mathrm{R}}_{\mathrm{ heta}}$ i	Incompressible Reynolds number
r	Distance from source
r ₁	Distance from source where M = 1, used to
	non-dimensionalize distances for inviscid
	calculations
r _w	Radius of viscid contour
s	R + 1
s,t,u	Cubic integration increments, Appendix B
T	Temperature within boundary layer
Taw	Adiabatic wall temperature
Tc	Reference temperature, Eq. (87)
T _e	Free-stream temperature at edge of
	inviscid contour

T _w	Wall temperature
$\mathbf{r}_{\mathbf{w}_{\mathrm{D}}}$	Wall temperature at nozzle exit
$\mathbf{T}_{\mathbf{w}_{\mathrm{D}}}$ $\mathbf{T}_{\mathbf{w}_{\mathrm{T}}}$	Wall temperature at nozzle throat
u	Axial component of velocity, normalized by a*
v	Normal component of velocity, normalized by a*
W	Velocity along streamline, normalized by a*
Х	Ratio in Eq. (36) or (38)
x	Axial distance, normalized by y_0 in transonic equations, normalized by r_1 in inviscid calculations, not normalized in boundary-layer calculations
У	Normal distance, normalized same as x
y _o	Throat half height, used to normalize x and y in transonic calculations
у*	Theoretical throat height if R is infinite
z	Function of \mathbf{x} in transonic equations, or distance normal to contour in boundary-layer calculations

α	Mean angle of right-running characteristic,
	or factor in temperature distribution in
	boundary layer
β	Mean angle of left-running characteristic
Δ	Prefix to indicate increment in value
Υ	Specific heat ratio
	Downstown Jarren this land
O	Boundary-layer thickness
δ *	Displacement thickness in boundary layer
•	Displacement infermess in boundary layer
δ * a	Displacement thickness when boundary layer
a	is large relative to r_w
i e e	W The state of the state of t
δ *	Incompressible displacement thickness in boundary
	layer
ζ	Distance along left-running characteristic
η	Inflection angle, radians
θ	Momentum thickness in boundary layer
v	induction chiraciness in boundary rayer
θa	Momentum thickness when boundary layer
a	is large relative to $r_{_{_{\mathbf{W}}}}$
	w
$\theta_{\mathbf{c}}$	Compressible θ for flat plate
θ _i	Incompressible value of θ
•	
$\theta_{\mathbf{k}}$	Kinematic momentum thickness

 $\theta_{\mathbf{n}}$ Value of θ at nth point on contour ĸ Constant in logarithmic skin-friction law λ Mach angle, $\sin^{-1}(1/M)$ μ $^{\mu}c$ Viscosity at value of T Viscosity at value of Te μe Viscosity at value of T_{w} $\mu_{\mathbf{w}}$ ξ Distance along right-running characteristic Wake variable in logarithmic skin-friction law Π Density within boundary layer ρ Density at edge of boundary layer $^{\rho}e$ Zero for planar flow, 1 for axisymmetric flow Flow angle Flow angle of viscid contour ψ Prandtl-Meyer angle

~ SUBSCRIPTS

1	Values at point 1 on right-running characteristic
2	Values at point 2 on left-running characteristic
3	Values at intersection of characteristics
A,B,C,D,E, F,G,I,J,T	Variables evaluated at points on Figs. 1 through 4
a,b,c	With u and v, values corresponding to first-, second-, and third-order approximations, respectively
OTHER NOTATION	
,	d/dx
	OUTPUT NOMENCLATURE
BETA	Pressure gradient parameter
	$\frac{2\delta^*\mathrm{d}\mathrm{P_E}/\mathrm{d}x}{\gamma\mathrm{M}^2\mathrm{P_E}\mathrm{C_{f_i}}}$
C(Y)	Coefficient of third-degree term if throat contour is a cubic
C(YI)	Coefficient of third-degree term if integrated throat contour is a cubic

AEDC-TR-78-63

C(YP) Coefficient of third-degree term determined

from slope of contour

D2A/DX2 Second derivative of boundary-layer correction

evaluated at the throat

D2R/DX2 Second derivative of corrected contour

evaluated at the throat

DA/DX Slope of boundary-layer correction

DELR(IN) Boundary-layer correction to inviscid contour

DELTA* δ_a^* from Eq. (66)

DELTA* - 1 δ * from Eq. (63)

FMY Bracketed term in Eq. (61)

HYP/YO Value of hyperbola with same throat curvature

ratio

ICY $10^6 \left[C(YI) - C(Y) \right]$ for Point 2

INT.Y/YO Value of Y/YO obtained by integrating contour

slopes starting at inflection point

 KCF 1000 $\mathrm{C_f}$

KCFI 1000 C_f

KCFS KCF sec ϕ_{w}

KTHP

 $1000 d\theta/dx$

MASS

Result of mass integration along characteristic EG or AB (measure of accuracy of numerical integration)

PAR/YO

Value of parabola with same throat curvature ratio

PE/PO

Ratio of static to stagnation pressure

R(IN)

Ordinate of viscid contour

RMASS

 $c_D^{1/(1+\sigma)}$

RTHI

Incompressible Reynolds number based on momentum thickness

SMPP

Second derivative of Mach number in source flow evaluated for BMACH

SMPPP

Third derivative of Mach number in source flow evaluated for BMACH

THETA - 1

 θ from Eq. (62) used in Eq. (61)

WE

Velocity ratio at Point E (Fig. 3)

WI

Velocity ratio at Point I (Fig. 3)

WO

Velocity ratio on axis at throat

WOPPP

Third derivative of throat velocity distribution

WRPPP

Third derivative of velocity ratio in source

flow evaluated at WE

WWO

Velocity ratio on wall at throat