Fondamenti di Automatica

Giorgio Battistelli

Dipartimento di Ingegneria dell'Informazione, Università di Firenze

UNIVERSITÀ
DEGLI STUDI
FIRENZE
DINFO
DIPARTIMENTO DI
INGEGNERIA
DELL'INFORMAZIONE

2 Analisi dei sistemi dinamici

2.11 Stabilità nei sistemi non lineari

Stabilità nei sistemi non lineari

- Per sistemi lineari: proprietà di stabilità hanno carattere globale
 - non dipendono dalla traiettoria considerata (**stabilità del sistema**)
 - non dipendono dall'ampiezza della perturbazione
- Per sistemi non lineari: proprietà di stabilità hanno carattere locale
 - dipendono dalla traiettoria considerata (stabilità della traiettoria)
 - dipendono dall'ampiezza della perturbazione

Punti di equilibrio

Consideriamo un sistema TI TC

$$\dot{x}(t) = f(x(t), u(t))
y(t) = h(x(t), u(t))$$

Studiamo la stabilità di una particolare classe di traiettorie del sistema:
 i punti di equilibrio

Definizione: Si definisce **punto di equilibrio** una coppia (x_e, u_e) tale che

$$\begin{array}{rcl} x(0) & = & x_e \\ u(t) & = & u_e, & \forall t \geq 0 \end{array} \quad \Longrightarrow \quad x(t) = x_e \quad \forall t \geq 0$$

- punto di equilibrio = **traiettoria costante** del sistema
- Dato un punto di equilibrio (x_e, u_e) definiamo l'uscita di equilibrio

$$y_e = h(x_e, u_e)$$

Punti di equilibrio

Fatto 2.16 I punti di equilibrio sono tutte e sole le coppie (x_e,u_e) tali che

$$f(x_e, u_e) = 0$$

Dimostrazione:

- \bullet Supponiamo che il sistema si trovi in $x(t)=x_e$ e si applichi l'ingresso $u(t)=u_e$
- Lo stato non cambia (soluzione costante) \Leftrightarrow $\dot{x}(t) = 0$
- Notiamo che

$$\dot{x}(t) = f(x(t), u(t))|_{x(t)=x_e, u(t)=u_e} = f(x_e, u_e)$$

Di conseguenza

$$\dot{x}(t) = 0 \Leftrightarrow f(x_e, u_e) = 0$$

• Per sistemi autonomi: x_e equilibrio \Leftrightarrow $f(x_e) = 0$

Calcolo degli equilibri: esempio scalare

Consideriamo il sistema non lineare scalare

$$\dot{x}(t) = x^{2}(t) - u(t)$$

$$y(t) = x(t)$$

Gli equilibri del sistema sono le soluzioni dell'equazione

$$f(x_e, u_e) = x_e^2 - u_e = 0$$

$$\updownarrow$$

$$x_e^2 = u_e$$

- Possiamo quindi distinguere tre casi:
 - per $u_e < 0$ nessun stato di equilibrio
 - per $u_e=0$ un unico stato di equilibrio $x_e=0$
 - per $u_e>0$ due stati di equilibrio $\pm \sqrt{u_e}$

Nota: Dobbiamo considerare solo le **soluzioni reali** perché x_e e u_e possono assumere solo valori reali

Calcolo degli equilibri: esempio del pendolo

- ullet Pendolo di massa M e lunghezza ℓ
- θ angolo tra il pendolo e la verticale
- c coefficiente di attrito viscoso
- g accelerazione di gravità

- Modello di sistema meccanico con dinamica rotazionale (esempio: braccio robotico con 1 grado dil libertà)
- Dall'equazione di Newton (lungo la direzione tangente al moto)

$$M \ell \ddot{\theta} = -Mg \sin \theta - c \ell \dot{\theta}$$

dove

- ullet $-Mg\sin heta$ componente della forza peso tangenziale al moto
- $-c \ell \dot{\theta}$ forza di attrito viscoso che si oppone al moto

Calcolo degli equilibri: esempio del pendolo

• Rappresentazione ingresso/uscita

$$M \ell \ddot{y} = -Mg \sin y - c \ell \dot{y}$$

prendendo come uscita l'angolo $y=\theta$

Scegliamo come stato angolo e velocità angolare

$$x = \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right] = \left[\begin{array}{c} y \\ \dot{y} \end{array} \right]$$

Equazioni di stato

$$\begin{array}{rcl} \dot{x}_1 & = & \dot{y} = x_2 \\ \dot{x}_2 & = & \ddot{y} = -\frac{g}{\ell} \sin y - \frac{c}{M} \dot{y} = -\frac{g}{\ell} \sin x_1 - \frac{c}{M} x_2 \\ y & = & x_1 \end{array}$$

Sistema autonomo non lineare TI TC

$$\dot{x} = f(x) \\
y = h(x)$$

Calcolo degli equilibri: esempio del pendolo

• Equazione di transizione dello stato

$$\dot{x} = f(x)$$

con

$$f(x) = \left[\begin{array}{c} f_1(x) \\ f_2(x) \end{array} \right] = \left[\begin{array}{c} x_2 \\ -\frac{g}{\ell} \sin x_1 - \frac{c}{M} x_2 \end{array} \right]$$

• x_e punto di equilibrio \Leftrightarrow $f(x_e) = 0$

$$f(x_e) = 0 \quad \Leftrightarrow \quad \left\{ \begin{array}{l} x_{e,2} = 0 \\ -\frac{g}{\ell} \sin x_{e,1} - \frac{c}{M} x_{e,2} = 0 \end{array} \right. \quad \Leftrightarrow \quad \left\{ \begin{array}{l} x_{e,2} = 0 \\ \sin x_{e,1} = 0 \end{array} \right.$$

Punti di equilibrio

$$x_e = \left[\begin{array}{c} k \, \pi \\ 0 \end{array} \right] \, \mathsf{con} \, k \in \mathbb{Z}$$

- ullet pari \Rightarrow pendolo nella posizione verticale in basso con velocità nulla
- k dispari \Rightarrow pendolo nella posizione verticale in alto con velocità nulla

Mappa di transizione globale

Consideriamo un sistema TI TC

$$\dot{x} = f(x, u)$$

 $y = h(x, u)$

- Dati
 - condizione iniziale $x(0) = x_0$
 - segnale di ingresso u(t), $t \ge 0$

indichiamo la risposta nello stato al tempo t con la notazione

$$x(t) = \Phi(t, x_0, u)$$

- $\Phi(t, x_0, u)$ è detta mappa di transizione globale dello stato
- Se (x_e, u_e) punto di equilibrio vale

$$\Phi(t, x_e, u_e) = x_e \qquad \forall t \ge 0$$

Stabilità interna dei punti di equilibrio

- Studiamo la stabilità interna dei punti di equilibrio considerando una perturbazione della condizione iniziale
- ullet Consideriamo come **traiettoria nominale** quella costante corrispondente al punto di equilibrio (x_e,u_e)

$$x(t) = \Phi(t, x_e, u_e) = x_e$$

• Consideriamo una condizionale iniziale perturbata $x(0)=x_e+\tilde{x}_0$ e la corrispondente **traiettoria perturbata**

$$x(t) = \Phi(t, x_e + \tilde{x}_0, u_e)$$

• effetto della perturbazione = traiettoria perturbata – traiettoria nominale

$$\Phi(t, x_e + \tilde{x}_0, u_e) - \Phi(t, x_e, u_e) = \Phi(t, x_e + \tilde{x}_0, u_e) - x_e$$

Nota: La quantità

$$\|\Phi(t, x_e + \tilde{x}_0, u_e) - x_e\|$$

misura la distanza tra la traiettoria perturbata e lo stato di equilibrio x_e

Stabilità alla Lyapunov

- $\tilde{x}_0 = x(0) x_e$ perturbazione delle condizioni iniziali di equilibrio
- Stabilità alla Lyapunov
 perturbazioni sufficientemente piccole
 delle condizioni iniziali danno luogo a
 perturbazioni arbitrariamente piccole
 delle traiettorie
- Proprietà locale, valida nell'intorno della traiettoria di equilbrio considerata

Definizione: L'equilibrio (x_e,u_e) si dice **stabile alla Lyapunov** se comunque si fissa un $\epsilon>0$ esiste un $\delta>0$ tale che

$$\|\tilde{x}_0\| < \delta \implies \|\Phi(t, x_e + \tilde{x}_0, u_e) - x_e\| < \epsilon \quad \forall t > 0$$

Attrattività

- **Attrattività** \Leftrightarrow a fronte di perturbazioni delle condizioni iniziali le traiettorie tendono a ritornare nello stato di equilibrio
- L'attrattività può essere locale o globale

Definizione: L'equilibrio (x_e, u_e) si dice

• Localmente attrattivo se esiste un $\delta > 0$ tale che

$$\|\tilde{x}_0\| \le \delta \implies \lim_{t \to +\infty} \Phi(t, x_e + \tilde{x}_0, u_e) = x_e$$

• **Globalmente attrattivo** se per qualunque perturbazione \tilde{x}_0 vale

$$\lim_{t \to +\infty} \Phi(t, x_e + \tilde{x}_0, u_e) = x_e$$

Stabilità interna dei punti di equilibrio – osservazioni

- Per sistemi non lineari in generale la stabilità è un proprietà locale
 possono coesistere equilibri stabili e instabili
- Per sistemi non lineari stabilità alla Lyapunov e attrattività sono concetti indipendenti

$$\dot{x} = 0$$

tutti gli stati sono equilibri stabili ma non attrattivi perché $x(t)=x(0) \quad \forall t \geq 0$

 Attrattività stabilità alla Lyapunov (quando le traiettorie si allontanano sempre dall'equilibrio prima di tornarci, vedi figura)

Stabilità interna dei punti di equilibrio

Definizione (Stabilità interna di un equilibrio):

L'equilibrio (x_e, u_e) si dice:

- Localmente asintoticamente stabile se è stabile alla Lyapunov e localmente attrattivo.
- Globalmente asintoticamente stabile se è stabile alla Lyapunov e globalmente attrattivo.
- Marginalmente stabile se è stabile alla Lyapunov ma non attrattivo.

- Per studiare la stabilità di un equilibrio
 - Metodo diretto: ricerca di una funzione di Lyapunov idea: funzione di Lyapunov misura l'energia immagazzinata nel sistema equilibrio asintoticamente stabile punto di minimo dell'energia
 - Metodo indiretto: linearizzazione del sitema nell'intorno dell'equilibrio

Punti di equilibrio nei sistemi LTI

Nota: possiamo rivisitare i concetti di stabilità interna visti per sistemi LTI in termini di stabilità degli equilibri.

Consideriamo un sistema LTI TC

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t) + Du(t)$$

- Funzione di transizione dello stato f(x, u) = Ax + Bu
- (x_e, u_e) punto di equilibrio $\Leftrightarrow f(x_e, u_e) = Ax_e + Bu_e = 0$
- Dato un segnale di ingresso costante

$$u(t) = u_e \quad \forall t \ge 0$$

i corrispondenti stati di equilibrio sono le soluzioni del **sistema di equazioni** lineari

$$A x_e = -B u_e$$

Punti di equilibrio nei sistemi LTI

• Ingresso costante $u(t)=u_e$ per $t\geq 0$ \Rightarrow stati di equilibrio soluzioni di

$$A x_e = -B u_e$$

• Per sistemi LTI $x_e=0$ e $u_e=0$ è **sempre** un punto di equilibrio (corrisponde alla situazione di quiete in cui il sistema rimane nello stato 0)

Quando A **invertibile**, ad un ingresso costante $u(t)=u_e$, corrisponde un **unico** stato di equilibrio

$$x_e = -A^{-1} B u_e$$

Ricordiamo che

A invertibile \Leftrightarrow A non ha autovalori in 0

Stabilità dei punti di equilibrio nei sistemi LTI

- ullet Per un sistema LTI, stabilità asintotica $\ \Leftrightarrow\$ tutti autovalori di A con Re < 0
- ullet Di conseguenza, stabilità asintotica \Rightarrow A invertibile
- ullet Per un sistema LTI asintoticamente stabile, ad un ingresso costante $u(t)=u_e$, corrisponde un **unico** stato di equilibrio

$$x_e = -A^{-1} B u_e$$

- Per sistemi LTI la stabilità è una proprietà globale
 - \Rightarrow Per un sistema LTI asintoticamente stabile, l'equilibrio $x_e = -A^{-1} \, B \, u_e$ risulta essere **globalmente asintoticamente stabile**

Per un sistema LTI TC asintoticamente stabile si ha che

$$u(t) = u_e \quad \forall t \ge 0 \quad \Longrightarrow \quad \begin{aligned} & \lim_{t \to \infty} x(t) = x_e = -A^{-1} B u_e \\ & \lim_{t \to +\infty} y(t) = y_e = \left(-CA^{-1} B + D \right) u_e \end{aligned}$$

Metodo indiretto (della linearizzazione di Lyapunov)

Idea: si approssima il comportamento del sistema non lineare nell'intorno dell'equilibrio (x_e,u_e) con quello di un sistema LTI ottenuto **linearizzando** le funzioni f e h

• Ricordiamo che per una funzione scalare $f:\mathbb{R}\to\mathbb{R}$ derivabile con continuità, nell'intorno di un punto x_e vale

$$f(x) = f(x_e) + \frac{df}{dx} \Big|_{x=x_e} (x - x_e) + R(x - x_e)$$

con $R(x - x_e)$ resto di Taylor

ullet Nell'intorno di x_e possiamo approssimare la funzione f con la **retta tangente**

$$f(x) \approx f(x_e) + \frac{df}{dx} \Big|_{x=x_e} (x - x_e)$$

• L'approssimzione può essere estesa a funzioni di più variabili considerando la **matrice Jacobiana** delle derivate parziali

Matrice Jacobiana

- Consideriamo una funzione f(x) con $f: \mathbb{R}^n \to \mathbb{R}^n$
- Matrice Jacobiana delle derivate parziali

$$\frac{\partial f}{\partial x} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \dots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \dots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \dots & \frac{\partial f_n}{\partial x_n} \end{bmatrix} \in \mathbb{R}^{n \times n}$$

dove f_i indica l'i-esima componente di f e x_j indica la j-esima componente di x

• Per sistemi non autonomi con f(x,u), possiamo definire una matrice Jacobiana anche rispetto all'ingresso $u \in \mathbb{R}^m$

$$\frac{\partial f}{\partial u} \in \mathbb{R}^{n \times n}$$

Linearizzazione nell'intorno dell'equilibrio

- Consideriamo un punto di equilibrio (x_e, u_e)
- Linearizzando f(x, u) nell'intorno dell'equilibrio abbiamo

$$f(x,u) \approx f(x_e, u_e) + \left. \frac{\partial f}{\partial x} \right|_{(x,u)=(x_e, u_e)} (x - x_e) + \left. \frac{\partial f}{\partial u} \right|_{(x,u)=(x_e, u_e)} (u - u_e)$$

• Linearizzando h(x, u) nell'intorno dell'equilibrio abbiamo

$$h(x,u) \approx h(x_e, u_e) + \left. \frac{\partial h}{\partial x} \right|_{(x,u)=(x_e, u_e)} (x - x_e) + \left. \frac{\partial h}{\partial u} \right|_{(x,u)=(x_e, u_e)} (u - u_e)$$

• Approssimazione tanto migliore quanto più siamo vicini al punto di equilibrio. In particolare, errore di approssimazione tende a zero per $x \to x_e$ e $u \to u_e$

Linearizzazione nell'intorno dell'equilibrio

Definiamo

$$A_{e} = \frac{\partial f}{\partial x}\Big|_{(x,u)=(x_{e},u_{e})} \qquad B_{e} = \frac{\partial f}{\partial u}\Big|_{(x,u)=(x_{e},u_{e})}$$

$$C_{e} = \frac{\partial h}{\partial x}\Big|_{(x,u)=(x_{e},u_{e})} \qquad D_{e} = \frac{\partial h}{\partial u}\Big|_{(x,u)=(x_{e},u_{e})}$$

 \Rightarrow l'approssimazione diventa

$$f(x,u) \approx f(x_e, u_e) + A_e(x - x_e) + B_e(u - u_e)$$

$$h(x,u) \approx h(x_e, u_e) + C_e(x - x_e) + D_e(u - u_e)$$

• Ricordiamo che per un punto di equilibrio (x_e, u_e) vale

$$f(x_e, u_e) = 0$$

$$h(x_e, u_e) = y_e$$

⇒ l'approssimazione diventa

$$f(x,u) \approx A_e(x-x_e) + B_e(u-u_e)$$

$$h(x,u) \approx y_e + C_e(x-x_e) + D_e(u-u_e)$$

Linearizzazione nell'intorno dell'equilibrio

• Consideriamo gli scostamenti rispetto all'equilibrio

$$\tilde{x}(t) = x(t) - x_e$$
 $\tilde{u}(t) = u(t) - u_e$
 $\tilde{y}(t) = y(t) - y_e$

• Effettuando la linearizzazione nell'intorno dell'equilibrio

$$\dot{x}(t) = f(x(t), u(t)) \approx A_e \tilde{x}(t) + B_e \tilde{u}(t)$$

$$y(t) = h(x(t), u(t)) \approx y_e + C_e \tilde{x}(t) + D_e \tilde{u}(t)$$

Notiamo che

$$\frac{d}{dt}\tilde{x}(t) = \frac{d}{dt}(x(t) - x_e) = \frac{d}{dt}x(t)$$

Dinamica linearizzata nell'intorno dell'equilibrio

$$\frac{d}{dt}\tilde{x}(t) = A_e \,\tilde{x}(t) + B_e \,\tilde{u}(t)$$

$$\tilde{y}(t) = C_e \,\tilde{x}(t) + D_e \,\tilde{u}(t)$$

Metodo indiretto (della linearizzazione di Lyapunov)

Teorema 2.5 (Metodo della linearizzazione di Lyapunov) Consideriamo la matrice A_e del sistema linearizzato nell'intorno di un equilibrio (x_e,u_e) .

- $\begin{tabular}{l} \bullet & \end{tabular} Se tutti gli autovalori di A_e hanno parte reale < 0 \\ \Rightarrow equilibrio (localmente) asintoticamente stabile$
- Se almeno un autovalore di A_e ha parte reale > 0⇒ equilibrio internamente instabile
- (caso critico) Se invece tutti gli autovalori di A_e hanno parte reale ≤ 0 AND almeno un autovalore a parte reale $= 0 \implies$ non si può concludere nulla

- Il Teorema 2.5 ha un carattere **locale**: non specifica quanto sia grande la perturbazione che si può tollerare (**dominio di attrazione**)
- Nel caso critico la linearizzazione non è sufficiente per concludere sul comportamento del sistema nell'intorno dell'equilibrio
 - ⇒ dobbiamo usare altre tecniche (esempio: metodo diretto)

Studio della stabilità degli equilibri: esempio scalare

Consideriamo il sistema non lineare scalare

$$\dot{x}(t) = x^2(t) - u(t)
y(t) = x(t)$$

- Possiamo distinguere tre casi:
 - per $u_e < 0$ nessun stato di equilibrio
 - per $u_e=0$ un unico stato di equilibrio $x_e=0$
 - per $u_e > 0$ due stati di equilibrio $\pm \sqrt{u_e}$
- ullet Per studiare la stabilità degli equilibri linearizziamo $f(x,u)=x^2-u$
- Per l'equilibrio $(x_e, u_e) = (0, 0)$ vale

$$A_e = \frac{\partial f}{\partial x}\Big|_{(x,u)=(0,0)} = 2x\Big|_{x=0} = 0$$

- $\Rightarrow A_e = 0$ ha autovalore $\lambda_1 = 0$
- ⇒ siamo nel caso critico e il metodo della linearizzazione non consente di concludere

Studio della stabilità degli equilibri: esempio scalare

• Per gli equilibri $(x_e, u_e) = (\sqrt{u_e}, u_e)$ con $u_e > 0$ vale

$$A_e = \left. \frac{\partial f}{\partial x} \right|_{(x,u) = (\sqrt{u_e}, u_e)} = 2 x \left|_{x = \sqrt{u_e}} \right. = 2\sqrt{u_e}$$

- $\Rightarrow A_e = 2\sqrt{u_e}$ ha autovalore $\lambda_1 = 2\sqrt{u_e}$
- \Rightarrow A_e ha almeno un autovalore con Re > 0
- ⇒ equilibrio internamente instabile
- Per gli equilibri $(x_e,u_e)=(-\sqrt{u_e},u_e)$ con $u_e>0$ vale

$$A_e = \frac{\partial f}{\partial x}\Big|_{(x,u)=(-\sqrt{u_e},u_e)} = 2x\Big|_{x=-\sqrt{u_e}} = -2\sqrt{u_e}$$

- $\Rightarrow A_e = -2\sqrt{u_e}$ ha autovalore $\lambda_1 = -2\sqrt{u_e}$
- \Rightarrow A_e ha tutti autovalori con Re < 0
- ⇒ equilibrio (localmente) asintoticamente stabile

Nota: per un sistema scalare dim(x)=1, esiste un unico autovalore coincidente con A_e

- ullet Pendolo di massa M e lunghezza ℓ
- ullet angolo tra il pendolo e la verticale
- c coefficiente di attrito viscoso
- g accelerazione di gravità

Scegliamo come stato angolo e velocità angolare

$$x = \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right] = \left[\begin{array}{c} y \\ \dot{y} \end{array} \right]$$

Equazioni di stato

$$\begin{array}{rcl} \dot{x}_1 & = & \dot{y} = x_2 \\ \dot{x}_2 & = & \ddot{y} = -\frac{g}{\ell} \sin y - \frac{c}{M} \, \dot{y} = -\frac{g}{\ell} \sin x_1 - \frac{c}{M} \, x_2 \\ y & = & x_1 \end{array}$$

• Punti di equilibrio

$$x_e = \left[\begin{array}{c} k \, \pi \\ 0 \end{array} \right] \, \mathsf{con} \, k \in \mathbb{Z}$$

k pari \Rightarrow pendolo nella posizione verticale in basso con velocità nulla k dispari \Rightarrow pendolo nella posizione verticale in alto con velocità nulla

• Per studiare la stabilità degli equilibri linearizziamo

$$f(x) = \begin{bmatrix} f_1(x) \\ f_2(x) \end{bmatrix} = \begin{bmatrix} x_2 \\ -\frac{g}{\ell} \sin x_1 - \frac{c}{M} x_2 \end{bmatrix}$$

Matrice Jacobiana

$$A_{e} = \frac{\partial f}{\partial x}\Big|_{x=x_{e}} = \begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} \\ \frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} \end{bmatrix}\Big|_{x_{1}=x_{e,1}, x_{2}=x_{e,2}}$$

$$= \begin{bmatrix} 0 & 1 \\ -\frac{g}{\ell} \cos x_{e,1} & -\frac{c}{M} \end{bmatrix}\Big|_{x_{1}=k \pi, x_{2}=0}$$

$$= \begin{bmatrix} 0 & 1 \\ -\frac{g}{\ell} \cos(k \pi) & -\frac{c}{M} \end{bmatrix}$$

• Per k pari (pendolo nella posizione verticale in basso con velocità nulla)

$$A_e = \left[\begin{array}{cc} 0 & 1 \\ -\frac{g}{\ell} & -\frac{c}{M} \end{array} \right]$$

Polinomio caratteristico

$$\varphi(s) = \det(sI - A_e) = \det \begin{bmatrix} s & -1 \\ \frac{g}{\ell} & s + \frac{c}{M} \end{bmatrix}$$
$$= s^2 + \frac{c}{M}s + \frac{g}{\ell}$$

- Tutti coefficienti positivi (poiché c > 0, M > 0, g > 0)
 - \Rightarrow per la regola di Cartesio, entrambe le radici con Re < 0
 - ⇒ punto di equilibrio (localmente) asintoticamente stabile

La posizione verticale in basso con velocità nulla corrisponde a un equilibrio (localmente) **asintoticamente stabile**.

• Per k dispari (pendolo nella posizione verticale in alto con velocità nulla)

$$A_e = \left[\begin{array}{cc} 0 & 1\\ \frac{g}{\ell} & -\frac{c}{M} \end{array} \right]$$

Polinomio caratteristico

$$\varphi(s) = \det(sI - A_e) = \det \begin{bmatrix} s & -1 \\ -\frac{g}{\ell} & s + \frac{c}{M} \end{bmatrix}$$
$$= s^2 + \frac{c}{M}s - \frac{g}{\ell}$$

- Una variazione di segno (poiché c > 0, M > 0, g > 0)
 - \Rightarrow per la regola di Cartesio, una radice con Re > 0
 - ⇒ punto di equilibrio internamente instabile

La posizione verticale in alto con velocità nulla corrisponde a un equilibrio internamente instabile.