July, 1977

DCIEM Technical Report No. 77X45

EXPOSURE TO ULTRASONIC CLEANER NOISE

IN THE CANADIAN FORCES

R.B. Crabtree S.E. Forshaw

Behavioural Division

Defence and Civil Institute of Environmental Medicine
1133 Shepphard Avenue West, P.O. Box 2000

Downsview, Ontario M3M 3B9

DEPARTMENT OF NATIONAL DEFENCE - CANADA

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

TABLE OF CONTENTS

	Page
ABSTRACT	v
INTRODUCTION	1
PROCEDURE	2
RESULTS AND DISCUSSION	2
CONCLUSIONS	4
RECOMMENDATIONS	5
ACKNOWLEDGEMENTS	6
REFERENCES	7
TABLES	9
FIGURES	19

ABSTRACT

The high-frequency noise produced by ultrasonic cleaning devices at CFB North Bay and CFB Trenton is sufficiently intense to produce effects such as nausea, headaches, tinnitus and fatigue among exposed personnel. Although the 20-kHz one-third octave-band sound pressure levels observed close to these units are well under 140 dB (the level below which damage to the human ear is thought not to occur), they nevertheless exceed the levels recommended for hearing conservation (105 dB at an operator's position, 95 dB within 15 feet of an operator). The most effective means of reducing the noise radiated from these cleaners is to contain each unit in an appropriately ventilated enclosure or room. Personnel operating or working close to units not enclosed should wear hearing protection.

INTRODUCTION

Ultrasound (the sound produced by an ultrasonic source) is defined as sound occuring at frequencies above the audible range of man (typically above 16 or 17 kHz). Human exposure to intense levels of ultrasound has become relatively common since the introduction of jet engines into military and civilian aircraft operations. The ultrasonic energy in close proximity to these engines can be as intense as the audible-frequency components of the engine's noise (Macpherson and Thrasher, 1959; Parrack, 1966). The effects that result from exposure to such levels of ultrasonic energy were first observed on a large scale in personnel working around military jet aircraft. Termed 'ultrasonic sickness', these effects include headaches, vertigo, nausea and excessive fatigue. Acton and Carson (1967) have reported that these subjective effects do not occur unless an individual's hearing extends to at least 17 kHz and the sound pressure level in the 17-kHz region exceeds 78 dB. They have noted that women experience adverse symptoms more often than men, and young men more often than old, presumably due to differences in highfrequency hearing aculty rather than sex or age.

Ultrasonic devices have now found wide application in industrial processes such as drilling, cleaning and welding. The Canadian Forces employ ultrasonic cleaning systems (e.g., Lewis Ultrasonic Cleaner Model L/C 136H manufactured by the Lewis Corporation (Figures 1 and 2); Hyper-Intense Proximinal Scanning Ultrasonic Cleaner (HIPS) Model AC 2858-IX, manufactured by Cavitron Ultrasonics Inc. (Figures 3 and 4)) for aircraft maintenance purposes, and personnel working near these cleaners have reported symptoms of 'ultrasonic sickness'.

Because the units operating these devices (the Aircraft Maintenance Development Unit (AMDU), CFB Trenton, and the Aircraft Maintenance Control and Records Office (AMCRO), CFB North Bay) did not have the equipment required to measure ultrasound, the Sonics Section of DCIEM was requested to take the following action:

- 1. Determine the levels of ultrasound being produced by the cleaning units.
- 2. Provide information on the hazards associated with exposure to ultrasound.
- 3. Measure the effectiveness of the enclosure fabricated at CFB North Bay and the Cleaning Rooms at CFB Trenton in reducing the amount of ultrasound being radiated.

4. Recommend procedures and/or exposure limits in order to minimize the effects of ultrasound upon personnel.

PROCEDURE

The sound fields produced by one HIPS and three Lewis ultrasonic cleaners (in the AMCRO section (CFB North Bay), the AMDU section and No. 3 Hangar (CFB Trenton)) (see Figures 4, 5 and 6) were measured (overall and octave-band sound pressure levels) using a Bruel and Kjaer type 2209 Sound Level Meter. For certain conditions, the sound was also recorded on a Nagra type IV-SJ Tape Recorder for subsequent one-third octave-band analysis.

RESULTS AND DISCUSSION

The results of the overall and octave-band noise measurements are given in Table I to V for various conditions and locations around the cleaners. It can be seen that the most intense noise produced by the cleaners occurs in the 16-kHz octave band. A narrow-band analysis of this noise shows, in fact, that its peak occurs in the 20-kHz one-third octave-band, the operating frequency of the HIPS and Lewis Ultrasonic cleaners (see Tables VI to IX). It is noted that the noise produced by Lewis Generator No. 688 (Table VII) peaks at 16 kHz due to the inadvertent misadjustment of the machine's operating frequency during maintenance. Note also that considerable noise is generated below 20 kHz due to cavitation in the cleaning solutions. Minute bubbles are formed in the liquid and grow until they reach a resonant size, at which time they oscillate with increasing amplitudes until implosion occurs (Hughes, 1965).

The first question to be answered is whether these levels are sufficiently intense to cause tinnitus and the feelings of nausea and fatigue reported by personnel working in the vicinity of the cleaners. It is noted that the noise levels (in the 1.25- plus 16-kHz one-third octave bands) produced by the ultrasonic cleaners (when not enclosed) range from 82 to 97 dB (see Tables VI to IX, last line), thus exceeding the 78-dB criterion of Acton and Carson (1967), and are therefore intense enough to produce the reported symptoms. One of the authors (RBC) himself experienced extraordinary fatigue and an 'unnatural sensation' in his ears after a two-hour exposure (without hearing protection) in the ultrasonic room at CFB Trenton.

A second question is whether the noise levels reported above are hazardous to hearing. Parrack (1966) has concluded that ultrasonic fields should not be harmful to the human ear until the octave-band or one-third octave-band sound pressure levels approach

140 dB.

At the same time, it is recognized that a hazard may exist due to subharmonic energy accidentally generated by ultrasonic equipment. As a result Parrack has recommended that the 20-kHz one-third octave-band sound pressure level, measured at the ear of an operator of ultrasonic generating equipment, should not exceed 105 dB. Likewise, the 25-, 31.5- and 40-kHz one-third octave-band sound pressure levels should not exceed 110, 115 and 115 dB respectively. Further, the sound pressure level in the 20-kHz one-third octave band should not exceed 95 dB for general advetitious exposures of people within 15 feet of the operator's position (Guignard, 1973). Although the 20-kHz one-third octave-band sound pressure levels observed around the unenclosed ultrasonic cleaners at CFB North Bay and CFB Trenton are well below the 140-dB limit thought to be non-injurious to hearing, the levels do exceed the 105-dB criterion suggested by Parrack.

The enclosure fabricated at CFB North Bay, constructed from 3/4 inch plywood, lined with one-inch styrofoam, and fitted with a top lid and front panel which are hinged with piano-type hinges, (Figures 8, 9 and 10) is effective in attenuating the noise produced by their ultrasonic cleaner. At the operator's position (with the cleaner lid closed), the enclosure reduces the cleaner noise from 94 to 65 dBA, and in the 12.5- plus 16-kHz one-third octave bands, from 85 to 55 dB.

It is observed that a vertical force of approximately 30 pounds is required to lift the top lid on this enclosure. The addition of a mechanical assist and a small access panel to provide access to the cleaner controls would reduce much of the inconvenience that has resulted from the use of the enclosure.

The rooms constructed in No. 3 Hanger (Figure 6) and in the AMDU (Figure 7) at CFB Trenton¹ effectively reduce the sound produced by the ultrasonic cleaners in other areas of these buildings. In No. 3 Hanger, the sound pressure level at the operator's position is 94 dBA; outside the room at the Silting Index Bench and

The room in the AMDU is constructed using 1/2" gypsum board on both sides of 2" x 4" studs. The room in No. 3 Hanger has walls with 1/4" plywood on one side and 1/4" plywood and 1/2" tentest on the other side of 2" x 4" studs, with the space between filled with fibreglass. No attempt has been made to seal the doors in either room, and in fact, there are at least 1/2" air spaces under the doors.

at the Filter Bench, the levels are 54 and 51 dBA respectively. In the 12.5- plus 16-kHz one-third octave bands, the sound pressure levels inside the room (with the ultrasonic cleaner lid open) are 91 and 60 dB respectively.

Likewise, the sound pressure levels inside the cleaner room in the AMDU are 79 to 95 dBA (depending upon operating conditions (Table II)); outside the room it is 50 dBA.

Placing plastic absorbers on the surface of the ultrasonic cleaner fluid has about the same effect on sound radiation as does closing the lid of the cleaner. Without absorbers on the surface, for example, the sound radiated from the cleaner in the 12.5- plus 16-kHz one-third octave band drops arom 90 to 88 dB when the lid is closed. Leaving the lid open and placing absorbers on the surface of the cleaner fluid reduces the radiated sound from 90 to 87 dB. Closing the cleaner lid and placing absorbers on the surface of the fluid does not result in additional noise reduction, due presumably to the fact that other modes of radiation become dominant.

CONCLUSIONS

The high-frequency noise produced by ultrasonic cleaning devices at CFB North Bay and CFB Trenton is sufficiently intense to produce effects such as nausea, headaches, tinnitus, fatigue etc., among exposed personnel.

Although the 20-kHz one-third octave-band sound pressure levels observed close to these units are well under 140 dB (the level below which damage to the human ear is thought not to occur), they nevertheless exceed the levels recommended for hearing conservation (105 dB at an operator's postion, 95 dB within 15 feet of an operator).

The enclosure fabricated at CFB North Bay reduces the naise produced by the ultrasonic cleaner in the AMCRO below the level where the above effects begin to occur. The addition of a mechanical device to assist in lifting the enclosure lid, and a small access panel to provide access to the cleaner controls, would make the cleaner more convenient to use.

The rooms constructed in No. 3 Hanger and in the AMDU at CFB Trenton effectively reduce the sound produced by the ultrasonic cleaners from propagating to other areas of these buildings. Of course, personnel required to work inside these rooms receive no protection from the generated noise.

The plastic absorbers on the surface of the cleaning fluid inside the ultrasonic tanks have about the same effect on reducing radiated sound (by 2 to 3 dB) as does closing the cleaner lid. It has been suggested that a greater reduction might be achieved (perhaps 10 dB on the A-weighted scale) by isolating the ultrasonic tank (Figure 2) from the remainder of the cleaner unit. It would appear, however, that this rather complex modification is not warranted since the resulting reduction in noise level would not be sufficient to completely alleviate the above exposure effects.

The most effective means of reducing the noise radiated from ultrasonic cleaners is to contain each unit in an appropriately ventilated room or enclosure. An enclosure should include an easy-to-operate lid and convenient access to the cleaner controls.

RECOMMENDATIONS

- 1. Ultrasonic cleans should be enclosed to minimize the effects of ultrasonic exposure upon operators and personnel working in proximity with the devices.
- 2. Personnel who operated ultrasonic cleaners that are not effectively enclosed, or who work in environments where the noise radiated from such cleaners produces effects such as nausea, headaches, fatigue, tinnitus etc., should wear Canadian Forces standard issue ear plugs or earmuffs while being thus exposed.

ACKNOWLEDGEMENTS

The authors wish to thank Capt. J. Butterfield, AMDU, CFB Trenton, and Capt. R. Payne, AMCRO, CFB North Bay, for the cooperation and assistance provided by they and their staffs during this investigation.

REFERENCES

- 1. ACTON, W.I. & CARSON, M.B. (1967). Auditory and subjective effects of airborne noise from industrial ultrasonic sources. Brit. Jour. Ind. Med., 24, p 297.
- GUIGNARD, J.C. (1973). A basis for limiting noise exposure for hearing protection. Report No. AMRL-TR-73-90. Aerospace Medical Research Laboratory, Wright-Patterson Air Force Base, Ohio, U.S.A.
- 3. HUGHES, D.E. (1965). Biological effects of ultrasound. Science Jour., 7, p 39.
- 4. MACPHERSON, P.A., & THRASHER, D.B. (1959). A "near field" study of jet engine noise. DRML Technical Memorandum No. 27-11. Toronto.
- 5. PARRACK, H.O. (1966). Effect of air-borne ultrasound on humans. Int. Audiology, 5, p 294.

9

TABLE I

SOUND PRESSURE LEVELS IN dB re 2x10⁻⁵ N/m² IN THE AMCRO ULTRASONIC CLEANER ROOM, CFB NORTH BAY

	TABOATT	CDI C 42	ar			100	40 000							
	_ 1	5	10			75	OCIAVE-BAND	ND SELS	5] }				,
CONDITION AND	Linear	C-wt	A-wt	31.5	63	125	250	200	-	7	4	80	16	31.5
LOCATION	2Hz-40 kHz	dBC	dBA	Hz	Hz	Hz	Hz	Hz	KHz	KH2	KHZ	KHZ	KHz	KHz
Operator Position														
Lid Closed	,			,										
Cabinet Closed	79	67	65	62	56	58	53	52	95	42	43	59	77	89
Operator Position													4	
Cabinet Open	66	95	96	63	52	99	55	53	53	51	62	81	97	95
Operator Position														
Lid Upen Cabinet Open	108	100	97	63	53	65	55	55	53	55	71	84	107	86
Workbench (12')														
7													- •	
Cabinet Closed	73	99	62	62	63	55	99	20	51	40	39	47	72	99
Workbench Lid													•••	
Open Cabinet												-	-	
Open	98	90	87	58	58	52	55	50	20	67	59	71	86	68
Desk (18')									· · · ·				•	
Lid Closed	(,			((,
Cabinet Closed	09	To	22	25	5	52	46	84	87	97	44	£3	67	41
Desk Lid Open														
Cabinet Open	87	70	7.1	54	53	53	52	49	48	48	61	74	98	8
Operator Position					~							 .		
Lid Open														
Cabinet Pront Open	90T	101	96	09	58	57	57	56	55	54	67	9/	106	98
Operator Position														
Room Ambient														
(Cleaner Off)	19	09	45	09	47	67	67	43	39	36	32	27	25	23
	1			1		1	1							

TABLE II

10 SOUND FRESSURE LEVELS IN dB re 2x10"5 N/m2 IN THE AMDU ULTRASONIC CLEANER ROOM AT THE OPERATOR POSITION (CFB TENTON)

	OVERAL	OVERALL SPLs in	dB			OCTAVE-BAND		SPLs in	дВ					
CONDITION	Linear 2 Hz-40 kHz	C-wt dBC	A-wt dBA	31.5 Hz	63 Hz	125 Hz	250 Hz	500 IIz	1 kHz	2 kHz	4 kHz	8 kHz	16 kHz	31.5 kHz
Generator No. 688 Lid Closed	85	78	79	47	77	53	54	87	45	41	43	64	98	70
Generator No. 688 Lid Open	93	85	84	1					70	89	65	63	88	73
Generator No. 684 Lid Closed	100	91	89						50	50	09	77	100	87
Generator No. 684 Lid Open	104	89	06	67	51	53	59	63	49	53	19	80	103	06
Generator No. 684 Lid Closed Spray, Circulation, Blowers On	100	89	89	54	09	71	69	89	09	57	09	77		
Generator No. 1063 Lid Closed	66	06	68						50	87	59	77	66	80
HIPS Cleaner No Circulation	102	93	95	47	49	56	48	50	51	56	78	83	102	81
·														

TABLE III

SOUND PRESSURE LEVELS IN dB re 2x10⁻⁵ N/m² IN THE AMDU ULTRASONIC CLEANER ROOM AT THE OPERATOR POSITION USING PLASTIC GEOMETRIC SHAPES AS SURFACE ABSORBERS (GENERATOR NO. 684)

	OVERA	OVERALL SPLs in dB	дВ				OCTAV	OCTAVE-BAND SPLs in dB	SPI	s in	G B	Ì		
CONDITIONS	LINEAR 2 Hz-40 kHz	C-wt dBC	A-wt dBA	31.5 Hz	63 Hz	125 Hz	250 Hz	500 Hz	1 kHz	2 kHz	4 kHz	8 kHz	16 kHz	31.5 kHz
Lid Closed	106	92	95	51	53	53	53	55	50	49	61	83	106	94
Lid Open	112	101	102	51	57	54	54	56	52	53	65	84	112	86
Lid Closed, Water Surface Covered with Plastic Shapes	104	94	93	52	54	54	53	55	52	55	79	98	104	94
Lid Open, Water Surface Covered with Plastic Shapes	106	95	94	51	54	55	53	55	54	56	65	87	106	93
Lid Open, Plastic Shapes Removed Basket Removed	116	102	102	51	57	52	55	55	52	55	89	92	113	86

TABLE IV

SOUND PRESSURE LEVELS IN dB re 2×10^{-5} N/m² IN AND AROUND THE AMDU ULTRASONIC CLEANER ROOM. (GENERATOR NO. 1063 OPERATING UNLESS NOTED)

							11
	31.5 kHz	72	45	22	21	22	11
	16 kHz	88	55	31	21	21	11
фВ	8 kHz	65	24	23	26	22	16
s in	4 kHz	45	25	26	23	23	13
SPL	2 kHz	42	29	25	27	25	17
BAND	1 kHz	46	32	29	33	27	23
OCTAVE-BAND SPLs in	500 Hz						
ŏ	250 Hz						
	125 Hz				,		
	63 Hz						
	31.5 Hz						
In dB	A-wt dBA	77	50				
OVERALL SPLs in dB	C-wt dBC	78	54				
OVERA	LINEAR 2 Hz-40 kHz	85	62		IJ		
	CONDITION AND LOCATION	Cleaner Room 1 m from Corner Near Door	1 m Outside Closed Door of Cleaner Room	Lunch Room at Table	Cleaner Room Ambient (Cleaner Off)	Lunch Room Ambient (Cleaner Off)	Ambient Outside Cleaner Room, 1 m from Door (Cleaner Off)

TABLE V

SOUND PRESSURE IN dB re 2×10^{-5} N/m² in and around the ultrasonic room at cfb trentom (hangar no. 3) using generator no. 1063

	OVERALL	OVERALL SPLs in dB	ı dB	بد استند				OCT	OCTAVE-BAND SPLs in dB	SAND	SPLs	in	фВ	
CONDITION AND LOCATION	LINEAR 2 Hz-40 kHz	C-wt dBC	A-wt dBA	31.5 Hz	63 Hz	125 Hz	250 Hz	500 Hz	1 kHz	2 kHz	4 kHz	kHz,	16 kHz	31.5 kHz
Operator Position Lid Closed	102	93	94	99	09	56	57	56	57	56	59	78	101	98
Operator Position Lid Open	104	76	94	65	57	54	55	56	57	57	63	76 100	100	87
Silting Index Bench Lid Open	99	59	54	58	67	43	47	45	40	37	39	43	65	43
Silting Index Bench Room Ambient	09	99	52		(<u>.</u>						
Filter Bench Lid Open	63	99	51	56	45	07	45	42	38	36	37	48	99	42
Filter Bench Room Ambient	63	52	77				!				·			

CENTRE FREQUENCY	LID OPEN CABINET OPEN	LID CLOSED CABINET CLOSED	LID CLOSED CABINET CLOSED
6.3 kHz	78dB	74dB	53dB
8 kHz	81dB	79dB	55dB
10 kHz	86dB	83dB	61dB
12.5 kHz	77dB	75dB	52dB
16 kliz	86dВ	84dB	52dB
20 kHz	105dB	100dB	78dB
25 kHz	97dB	97dB	65dB
31.5 kHz	80dB	79dB	50dB
40 kHz	71dB	72dB	44dB
12.5kHz + 16kHz	87dB	85dB	55dB

TABLE VII ${\tt ONE-THIRD\ OCTAVE-BAND\ SOUND\ PRESSURE\ LEVELS\ IN\ dB\ re\ 2x10^{-5}\ N/m^2\ AT\ THE\ OPERATOR\ POSITION\ OF\ THE\ AMDU\ ULTRASONIC\ CLEANERS }$

CENTRE FREQUENCY	LEWIS GEN. N LID OPEN	O. 1063 LID CLOSED	LEWIS GEN. NO LID OPEN	LID CLOSED	HIPS ULTRASONIC CLEANER
6.3 kHz	64dB	62dB	53dB	53dB	79dB
8 kHz	71dB	73dB	55dB	55dB	77dB
10 kHz	75dB	74dB	59dB	57dB	81dB
12.5 kHz	56dB	55dB	83dB	81dB	7 1 dB
16 kHz	97dB	95dB	89dB	89dB	82dB
20 kHz	103dB	98dB	61dB	60dB	103dB
25 kHz	76dB	70dB	72dB	68dB	77dB
31.5 kHz	70dB	67dB	75dB	67dB	; 73dB
40 kHz	69dB	69dB	60dB	57dB	70dB
12.5kHz + 16	kHz 97dB	95dB	90dB	90dB	82dB

.

_

TABLE VIII ONE-THIRD OCTAVE-BAND SOUND PRESSURE LEVELS IN dB re 2×10^{-5} N/m 2 OF THE AMDU ULTRASONIC CLEANER, USING PLASTIC GEOMETRIC SHAPES AS SURFACE ABSORBERS

CENTRE	LID OPE	EN	LID CLOS	
FREQUENCY	SHAPES IN	SHAPES OUT	SHAPES IN	SHAPES OUT
6.3 kHz	73dB	73dB	74dB	69dB
8 kHz	89dB	76dB	77dB	73dB
10 kHz	87dB	83dB	88dB	82dB
12.5 kHz	77dB	75dB	77dB	73dB
16 kHz	87dB	90dB	87dB	88dB
20 kHz	106dB	110dB	107dB	107dB
25 kHz	84dB	87dB	86dB	84dB
31.5 kHz	80dB	77dB	76dB	73dB
40 kHz	77dB	80dB	76dB	75dB
12.5kHz + 16kHz	87dB	90dB	87dB	88dB

	INSIDE CLEA	NING ROOM	OUTSIDE CLEAN	ING ROOM
CENTRE FREQUENCY	LID OPEN	LID CLOSED	SILTING BENCH LID OPEN	FILTER BENCH LID CLOSED
6.3 kHz	69dв	73dB	37 d B	47dB
8 kHz	72dB	72dB	37dB	37dB
10 kHz	73dB	74dB	39dB	38dB
12.5 kHz	73dB	74dB	35dB	37dB
16 kHz	91dB	85dB	60dB	60dB
20 kHz	101dB	100dB	67dB	65dB
25 kHz	72dB	75dB	39dB	38dB
31.5 kHz	80dB	73dB	36dB	35dB
40 kHz	81dB	75dB	43dB	39dB
12.5kHz + 16kHz	91dB	85dB	60dB	60dB

ŧ

•

Figure 1: Lewis Ultrasonic Cleaner Model L/C 136H.

Figure 2: Cleaning tank of the Lewis Ultrasonic Cleaner.

Figure 3: Hyper-Intense Proximal Scanning (HIPS) Ultrasonic Cleaner.

Figure 4: Cleaning tank and transducer of the HIPS Ultrasonic Cleaner.

Figure 5: Plan of the Ultrasonic Cleaning Facility at CFB North Bay.

Figure 6: Plan of the AMDU Ultrasonic Cleaning Facility, CFB Trenton.

, ;

Figure 7: Plan of the Hangar No. 3 Ultrasonic Cleaning Facility, CFB Trenton.

and front panel are shown open.

Figure 9: Enclosure for the Lewis Ultrasonic Cleaner, North Bay. Lid is open to permit access to tanks and controls.

Figure 10: Enclosure for Lewis Ultrasonic Cleaner, CFB North Bay, closed down for normal operation.

REPORT NO:

DC11M Technical Report 77X45

TITLE:

Exposure to Ultrusonic Cleaner Noise in the Canadian Forces.

DATED:

July 77

AUTHORS:

R.B./Crabtree & S.E./ Forshaw

SECURITY GRADING:

UNCLASSIFIED Initial distribution Dec 77

2- DSIS

Plus distribution

- 1- DSIS Report Collection
- 1- Microfiche Section
- 1- DPM
- 1- CFMS
- 1- CF School of Aeromedical Training
- 1- CISTI (microfiche only)
- 1- NHW
- Dept. Veterans Affairs C Chief Medical Adviser)
 Air Canada Administrative Officer of Medical
- Services

Attn: Dr. Keith Eady

BRITAIN

Ministry of Defence

5- DRIC

UNITED STATES

3- DDC/NTIS

1-11-77X4: " " " " " " The