First Lecture

Who is stronger a solid or a fluid?

Our Goals for Today (lect. 2)

- 1. Understand shear stress in liquids
- 2. Viscosity & its temperature and pressure dependance

Before we start... What are we after in Studying Fluid Dynamics?

- 1. Pressure field/values
- 2. Velocity Field
 - a. Work
 - b. Forces
 - c. Power
 - d. Losses
 - i. Pressure
 - ii. Drag/resistive force

What is the main difference between a solid and a liquid?

- Fluids do not keep their shape under any stress
- Stems from ability of liquid molecules to move around

Aside: the terms Fluid Dynamics and Fluid Mechanics are used interchangeably in this course and mean largely the same thing

Solid vs Fluid

A solid can resist a shear stress (τ) by a <u>static</u> deformation, but a fluid cannot!

What happens when a fluid experiences a shear stress?

It flows!

At a given time, δt , The larger the τ , the larger will be $\delta \theta$, so $\tau \propto \frac{1}{\delta t}$

$$\therefore \tau \propto \frac{\delta \theta}{\delta t} (1)$$

A constant shear stress, causes a strain ($\delta\theta$) that is changing with time, at a rate of $\frac{\delta\theta}{\delta t}$.

Eq (1)
$$\rightarrow \tau = \mu \frac{\delta \theta}{\delta t}$$
 (2) Newton's law for viscosity

Where μ is the viscosity (proportionality constant)

Viscosity is the resistance of a fluid to motion.

$$\frac{N}{m^2} = \mu \frac{\theta}{\delta} \rightarrow \mu \text{ unit is } \frac{N \cdot s}{m^2} \text{ or } \frac{kg}{m \cdot s}$$

$$\mu_{water} = 1 \times 10^{-3} kg/m \cdot s$$
 or 1 cP (centi-poise)

$$\mu_{air} = 1.8 \times 10^{-5} kg/m \cdot s$$

Viscosity is a thermodynamic property, so: $\mu = \mu(T, P)$

Where T = temperature and P = Pressure

μ changes significantly with temperature.

For gases,

$$\frac{\mu}{\mu_O} = (\frac{T}{T_O})^n$$

Known μ_O at T_O (273K)

n is a constant (for air 0.7)

But for liquids, μ decreases with temperature

$$\mu \approx ae^{-bT}$$

a and b are constants that depend on the type of liquid

why different between gas & liquid?

 $\mu \propto P$, and P \uparrow so does μ for all fluids.

If μ is divided by fluid density (ρ), it is called kinematic viscosity (ν).

$$v = \frac{\mu}{\rho} \left(\frac{m^2}{s} \right)$$

For water v = 1c δ t or 1 × 10⁻⁶ $\frac{m^2}{s}$

In fluid mechanics, we're not interested in strain rate (unlike solid mechanics), but care about velocity distribution with in the fluid. Let's see how we can match strain to velocity.

 $tan \ \delta\theta = \frac{\delta x}{\delta y} \Rightarrow$ (for small strains & elements) $\delta\theta = \frac{\delta x}{\delta y}$

$$\delta x = \, \delta u \delta t \qquad {\color{red} \rightarrow} \, \delta \theta = \frac{\delta u \delta t}{\delta y}$$

$$\frac{\delta\theta}{\delta t} = \frac{\delta x}{\delta y}(3)$$

From Eqs. (2 & 3):

$$\tau = \mu \frac{\delta \mathbf{u}}{\delta \mathbf{y}}(4)$$

$$\delta_m \mu \equiv momentum$$

$$q = k \frac{dT}{dx}$$

$$\tau = -\mu \frac{dv}{dy}$$

$$\dot{m} = D \frac{ds}{dx}$$

Example: Skating on ICE!

Let's assume ice between skate and surface is melted. What is the relative profile within the liquid film?

Assumption:

1 – The flow is one dimensional in x-direction, i.e. u(x) = u(z) = 0, $u(y) \neq 0$

2 – no pressure variation in x direction

Let's consider force balance over a fluid element

From force balance $\frac{du}{dy} = \frac{\tau}{\mu}$

$$du = \frac{\tau}{\mu} dy \to \int du = \int \frac{\tau}{\mu} dy$$

If the person is not accelerating, then τ is a constant, μ is a constant (water), then the integral can be solved as:

$$u = a + \frac{\tau}{\mu} y$$

<u>B.C.</u>

at
$$y = 0 \rightarrow u = 0 \rightarrow a = 0$$

at y = h
$$\rightarrow$$
 u = v \rightarrow v = 0 + $\frac{\tau}{\mu}h \rightarrow \frac{\tau}{\mu} = \frac{v}{h}$

$$u = \frac{v}{h}y$$
 (linear velocity profile)

Summary for today's lecture

- 1. Viscosity charge with T&P
- 2. Intermolecular forces is the origin if viscosity
- 3. Difference between solid & liquid in terms of strain
- 4. Proportionality between velocity & shear stress

Our Goals for Today (lect. 3)

- 1. Non-Newtonian Fluids
- 2. Various ways to study fluid dynamics

Newtonian vs Non-Newtonian Fluid