Slide #6.

(1) Write

$$\begin{cases} f = q_1h + r & \text{where either } \deg r < \deg h \text{ or } r = 0. \\ g = q_2h + s & \text{where either } \deg s < \deg h \text{ or } s = 0. \end{cases}$$

Note that $r = f \mod h$ and $s = g \mod h$. Hence,

$$f + g = (q_1 + q_2)h + (r + s)$$

where either deg(r+s) < deg h or r+s=0. That is,

$$[f+g]_h = r + s = [f]_h + [g]_h.$$

(2) Notation as in (1), we have:

$$f \cdot g = h \cdot (\cdots) + rs.$$

However, it is not necessarily true that $\deg rs < \deg h$ or rs = 0. So we write $rs = q_3h + t$ where either $\deg t < \deg h$ or t = 0. That is, $t = rs \mod h$. Then

$$f \cdot g = h \cdot (\cdots) + \underbrace{q_3 h + t}_{rs} = h \cdot (\cdots) + t,$$

whence $(fg) \mod h = t = (rs) \mod h$. That is,

$$[f \cdot g]_h = [rs]_h = [[f]_h \cdot [g]_h]_h.$$

Slide #9. Proof of the Remark:

Suppose $f \equiv g \pmod{h}$. By definition,

$$\begin{cases} f = q_1 h + r \\ g = q_2 h + r, \end{cases}$$

where either deg $r < \deg h$ or r = 0. Thus, $f + g = k \cdot h$, where $k = q_1 + q_2$.

Conversely, suppose $f + g = k \cdot h$. That is,

$$(f+g) \bmod h = 0. \quad (*)$$

Let

$$\begin{cases} f = q_1 h + r & \text{where either } \deg r < \deg h \text{ or } r = 0. \\ g = q_2 h + s & \text{where either } \deg s < \deg h \text{ or } s = 0. \end{cases}$$

Then $f + g = (q_1 + q_2) \cdot h + (r + s)$ where either $\deg(r + s) < \deg h$ or r + s = 0. This implies that $(f + g) \mod h = r + s$. From (*), we now have r + s = 0.

Slide #14. Proof of Property 1 : Recall that

$$\pi(v)(x) = [x \cdot v(x)]_{[x^n+1]}.$$

Then:

$$\pi^{2}(v) = \pi(\pi(v)) = \pi([x \cdot v(x)]_{[x^{n}+1]})$$

$$= [x \cdot [x \cdot v(x)]_{[x^{n}+1]}]_{[x^{n}+1]}$$

$$= [[x]_{[x^{n}+1]} \cdot [x \cdot v(x)]_{[x^{n}+1]}]_{[x^{n}+1]}$$

$$= [x^{2} \cdot v(x)]_{[x^{n}+1]}$$

Now one can proceed by mathematical induction to show that

$$\pi^{i}(v)(x) = [x^{i} \cdot v(x)]_{[x^{n}+1]}$$

for any $i \geq 3$.

Slide #16. Proof of Theorem 4.2.13 part 3:

 (\Longrightarrow) Suppose $c(x) \in C$. Long divide c(x) by g(x):

$$c(x) = a(x) \cdot g(x) + r(x),$$

where $\deg a(x) < n - \deg g(x)$ and either $\deg r(x) < \deg g(x)$ or r(x) = 0. Since both c(x) and $a(x) \cdot g(x)$ belong to C, then $r(x) \in C$. Since g(x) is the polynomial of smallest degree in C, we have r(x) = 0.

(\iff) Suppose a(x) is any polynomial in K[x] of degree less than $n - \deg g(x)$. By Property 2 on slide #14, we have $a(x) \cdot g(x) \in C$.

Slide #17. Proof of Theorem 4.2.13 parts 1 & 2: Let k=n-r, where $r=\deg g$. The polynomials $g(x),x\cdot g(x),\ldots,x^{k-1}\cdot g(x)$ all belong to C and they are

linearly independent: Indeed, suppose there exist $a_0, a_1, \ldots, a_{k-1}$, not all zero, such that

$$a_0 \cdot g(x) + a_1 x \cdot g(x) + \dots + a_{k-1} x^{k-1} \cdot g(x) = 0.$$

This is equivalent to saying that $a(x) \cdot g(x) = 0$ for some nonzero polynomial $a(x) = a_0 + a_1x + \cdots + a_{k-1}x^{k-1}$, which is a contradiction. Thus, a(x) = 0. From Theorem 4.2.13 part 3, we know that any $c(x) \in C$ can be written as $a(x) \cdot g(x)$ where

$$a(x) = a_0 \cdot g(x) + a_1 x \cdot g(x) + \dots + a_{k-1} x^{k-1} \cdot g(x).$$

In conclusion, $g(x), x \cdot g(x), \dots, x^{k-1} \cdot g(x)$ form a basis for C. From Chapter 2, the dimension of C equals k.

Slide #18. Proof of Theorem 4.2.17:

 (\Longrightarrow) Long divide $x^n + 1$ by g(x):

$$x^n + 1 = g(x) \cdot q(x) + r(x),$$

where either $\deg r(x) < \deg g(x)$ or r(x) = 0. The above equality implies

$$g(x) \cdot q(x) \mod (x^n + 1) = r(x) \mod (x^n + 1) = r(x).$$

By Property 2 on slide #14, we have

$$g(x) \cdot q(x) \mod (x^n + 1) \in C$$
, i.e., $r(x) \in C$.

Since $\deg r(x)$ cannot be smaller than $\deg g(x)$, we have r(x)=0. Thus, g(x) is a divisor of x^n+1 .

(\iff) Now suppose $g(x) \in K[x]$ is a divisor of $x^n + 1$. Let $C = \{a(x) \cdot g(x) \bmod (x^n + 1) \mid a(x) \in K[x]\}.$

Observe that C is a cyclic code of length n because it consists of all linear combinations of all cyclic shifts of g(x). We will prove that g(x) is a generator polynomial for C by showing that g(x) is the polynomial of smallest degree in C. Indeed, any polynomial $c(x) \in C$ equals the remainder when $a(x) \cdot g(x)$ is divided by $x^n + 1$, that is,

$$x^{n} + 1 = q(x) \cdot (a(x) \cdot g(x)) + r(x).$$

Since $x^n + 1 = t(x) \cdot g(x)$, we have

$$r(x) = (t(x) + q(x)a(x)) \cdot g(x).$$

The above equality yields either r(x) = g(x) or $\deg r(x) > \deg g(x)$.