# MATH 232 Section 3.2 pre-lecture comments

#### **Lecture Outline**

Today we will define the inverse of a matrix. THIS IS A REALLY IMPORTANT IDEA!

We will continue on with the algebra of matrices.

### New terminology

- 1. matrix inverse
- 2. zero matrix
- 3. identity matrix
- 4. invertible

Theorem 3.2.1 (p. 94) Suppose A, B and C are  $m \times n$  matrices and r and s are scalars. Then

$$A + B = B + A$$
  
 $A + (B + C) = (A + B) + C$   
 $(rs)A = r(sA)$   
 $(r + s)A = rA + sA$   
 $(r - s)A = rA - sA$   
 $r(A + B) = rA + rB$   
 $r(A - B) = rA - rB$   
 $A(BC) = (AB)C$   
 $r(BC) = (rB)C = B(rC)$   
 $(B + C)A = BA + CA$   
 $(B - C)A = BA - CA$   
 $A(B + C) = AB + AC$   
 $A(B - C) = AB - AC$ 



# $\bigcirc$ Warning! AB is not always equal to BA!!



Matrix multiplication is different from normal multiplication.

Example. Given 
$$A = \begin{bmatrix} 0 & 2 \\ 1 & -1 \end{bmatrix}$$
 and  $B = \begin{bmatrix} 1 & 4 \\ -2 & 3 \end{bmatrix}$ , calculate  $AB$  and  $BA$ .

$$AB = \begin{bmatrix} -4 & 6 \\ 3 & 1 \end{bmatrix}$$

$$AB \neq BA$$

$$BA = \begin{bmatrix} 4 & -2 \\ 3 & -7 \end{bmatrix}$$

## AB and BA are not always equal

Given two matrices A and B, the products AB and BA may not be equal, for three possible reasons:

- ► AB may be defined, but BA is not; A is  $2 \times 3$ By not defined

   AB and BA are both defined, but they have different sizes;
- ightharpoonup AB and BA are both defined and have the same sizes, but the products are not equal.

**Question.** What conditions must A and B satisfy so that both AB and

BA are defined?

A is mxn AB is mxm B is nxm BA is nxn

Example

$$\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}$$

Zero matrices (p. 96) A matrix with entries all zeroes is called a zero **matrix**. It is denoted by O, or by  $O_{m \times n}$  if we want to specify the size. If the size of matrix A is  $m \times n$  and k is a scalar, then

1. 
$$A + O_{m \times n} = O_{m \times n} + A = A$$

2. 
$$A - O_{m \times n} = A$$

3. 
$$A - A = A + (-A) = 0$$

$$4.0A = 0$$
 Mx

5. If 
$$kA = O_{m \times n}$$
, then either  $k=0$  or  $A=0$  mtx

**Example** If 
$$A = \begin{bmatrix} 0 & 0 \\ 3 & 2 \end{bmatrix}$$
,  $B = \begin{bmatrix} 3 & 1 \\ -4 & 5 \end{bmatrix}$  and  $C = \begin{bmatrix} 1 & 1 \\ -1 & 5 \end{bmatrix}$ ,

then check that AB = AC, and that A(B - C) = O.

$$AB = \begin{bmatrix} 0 & 0 \\ 1 & 13 \end{bmatrix}$$

$$AC = \begin{bmatrix} 0 & 0 \\ 1 & 13 \end{bmatrix}$$

$$AB-AC = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$B-C=[20]$$

$$B-C-\begin{bmatrix} -3 & 0 \\ 2 & 0 \end{bmatrix}$$

AB = AC does not necessarily imply that B = C.





**Definition** The  $n \times n$  **identity** matrix, written  $I_n$  has 1s on the main diagonal and 0 in all other entries. (p, 97)

Examples
$$\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
2 & 1 & -1 \\
0 & 7 & 3
\end{bmatrix} = \begin{bmatrix}
2 & 1 & -1 \\
0 & 7 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
2 & 1 & -1 \\
0 & 7 & 3
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0
\end{bmatrix} = \begin{bmatrix}
2 & 1 & -1 \\
0 & 7 & 3
\end{bmatrix}$$

Any matrix times an identity matrix gives the same matrix back.

## The inverse of a matrix (p. 98-100)

**Definition** If A is an  $n \times n$  square matrix and there is an  $n \times n$  matrix B such that  $AB = BA = I_n$ , then we say B is an **inverse** of A.

#### Example

$$\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1/2 & -1/2 \\ 1/2 & 1/2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 1/2 & -1/2 \\ 1/2 & 1/2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \text{are inverses of each other}$$

#### Remarks

- 1. The notion of an inverse is only defined for a *square matrix* as we need both  $AB = I_n$  and  $BA = I_n$ .
- 2. Not all matrices have an inverse.

**Theorem 3.2.6 (p. 99)** An invertible matrix has a unique inverse.

**Remark** Because the inverse is unique we denote the inverse of A by  $A^{-1}$ . Thus  $AA^{-1} = I_n$  and  $A^{-1}A = I_n$ .

#### Inverse of $2 \times 2$ matrices:

# Theorem 3.2.7 (p. 99)

The matrix  $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$  is invertible if and only if  $ad - bc \neq 0$  in which case:

$$A^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

**Examples** If A is invertible find  $A^{-1}$ 

$$A = \begin{bmatrix} 6 & 1 \\ 5 & 2 \end{bmatrix} \qquad \text{ad-bc} = 7 \qquad A^{-1} = \frac{1}{7} \begin{bmatrix} 2 & -1 \\ -5 & 6 \end{bmatrix} = \begin{bmatrix} \frac{2}{7} & -\frac{1}{7} \\ -\frac{5}{7} & \frac{6}{7} \end{bmatrix}$$

$$A = \begin{bmatrix} 6 & -2 \\ -3 & 1 \end{bmatrix} \quad \text{and be = 0}$$
not invertible

**Theorem 3.2.8** If A and B are both invertible then  $(AB)^{-1} = B^{-1}A^{-1}$ .

$$(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B = B^{-1}IB = B^{-1}B = I$$

#### Powers of a matrix

If *A* is a *square* matrix, we define the non-negative integer powers of *A* to be

$$A^0 = I$$
 and  $A^n = \underbrace{AA \dots A}_{n \text{ factors}}$ 

and if A is invertible, then we define the negative powers of A to be

$$A^{-n} = (A^{-1})^n = \underbrace{A^{-1}A^{-1}...A^{-1}}_{n \text{ factors}}$$

**Property** If r and s are integers, then

$$A^r A^s = A^{rs}$$
 and  $(A^r)^s = A^{rs}$ 

**Theorem 3.2.9** If A is *invertible* and n is a non-negative integer, then

- 1.  $A^{-1}$  is invertible and  $(A^{-1})^{-1} = A$
- 2.  $A^n$  is invertible and  $(A^n)^{-1} = A^{-n} = (A^{-1})^n$
- 3. If k is a non-zero scalar, then  $(kA)^{-1} = \frac{1}{k}A^{-1}$

Example. Expand 
$$(A + B)^2$$

$$(A+B)^2 = (A+B)(A+B) = AA + AB + BA + BB$$

$$= A^2 + AB + BA + B^2$$

$$= Cunnot simplify AB+BA to 2AB$$
because in general:  $AB+BA$