Evaluation of Li/CF_x Cells For Aerospace Applications

Hari Vaidyanathan

Lockheed Martin Technical Operations

COMSAT Technical Services

Clarksburg, MD 20871

And

Gopalakrishna M. Rao

NASA/Goddard Space Flight Center

Power Systems Branch, Code 563

Greenbelt, MD 20771

Contents

- ObjectivesBackground
- Cell Description Results
- Conclusions

Objectives

Characterize Li/CF_x Cells for

- (C/10, C/5 and C/2) and temperatures (50, Capacities at various discharge rates $20, 0, -10 \text{ and } -30^{\circ}\text{C}$
- Six-month storage at -10 and -30°C for AA, and at 20 and 50°C for C Cells, respectively

Background

- Panasonic commercialized Li/CF_x cell technology in mid.
- such as Exploration missions, Launch vehicles, Tools and A promising primary battery for Aerospace applications many more
- Wide operation temperature range
- Low self-discharge
- High specific energy
- CF, cathode material has a theoretical specific energy of 2260 Wh/Kg
- of theoretical value unless used at a very low rate of C/1000 - Specific energy however achieved as of now is only 10%
- Research both at Government Labs and Industries is currently in progress to improve the performance

Cell Description

- Quallion Li/CF_x 2.5 Ah AA and 6.5 Ah C cells
- Hermetically sealed cylindrical cells
- Li metal as anode
- CF_x/acetylene black as cathode
- Lithium tetrafluoroborate in Propylene carbonate and dimethoxyethane solvent as electrolyte

Cell Description-Contd. #9 - AA cell and #10 - C Cell

Results AA cells

							Specific	Frency	Specific
		Discharge	Capaci	Capacity, Ah	Mid-dis	EOD	Energy	Density	Power
Cell ID	Temperature, °C	rate, A	to 2.0 V	to 0 V	Voltage, V	Voltage, V Temp, °C	Wh/Kg	Wh/L	W/Kg
*	-10						i		
*	-30								
ო	20	0.5	2.00	2.49	2.401	46	399.3	659.3	80.2
4	20	2.5	0	0.12	1	62		1	1
5	20	1.25	1.81	1.88	2.266	80	284.0	470.0	188.9
9	20	0.25	2.00	2.64	2.447	34	434.9	712.7	41.2
_	10	1.25	1.69	2.24	2.280	09	339.7	563.4	189.6
0	50	1.25	0.13	0.13	ı	7.97	•	ı	i
6	30	1.25	1.12	1.63	2.123	33.3	231.7	382.5	177.4
10	-30	0.5	1.14	1.63	2.174	15.5	236.8	390.9	72.6

*storage test for six months

EOD = End-of-discharge

	Discharge		ή. Λ	Mid_div	בט	Specific	Energy	Specific
Temperature, °C	rate, A	to 2.0 V	2.0 V to 0 V	Voltage,V	Temp,°C	Wh/Kg	Wh/L	W/Kg
50								
20								
20	3.25	4.78	6.84	2.143	113	355.1	502.9	168.7
-10	1.3	2.48	4.16	2.084	36	208.8	297.2	65.3
-10	3.25	2.38	4.55	2.016	63	223.6	314.7	159.7
-10	0.65	2.21	3.53	2.07	12	177.4	250.5	32.7
-10	6.5	0	0.02	ŧ	0.2	i	ı	ı
0	3.25	3.93	6.22	2.082	104	313.8	444.3	164.0
20	1.3	6.37	7.76	2.429	90.2	457.7	647.1	9.92
20	6.5	0	0.71	i	122	ı	•	
20	3.25	0	09.0	•	130.7	1	ı	ı
50	0.65	6.91	8.17	2.581	72.2	507.7	723.5	40.4
*Storage test for six months	nths	EOD = End-of-discharge	of-discharç	je et				

Results - contd.

Results - contd.

Conclusions

- Capable of performing at C/2 rate or less from -10°C to 50°C
- Temperature increased to 113°C at the end of C/2 discharge
- The C cells delivered the maximum energy of cells yielded 434 Wh/Kg at C/10 rate at 20°C 457.7 Wh/Kg at C/5 rate at 50°C and the AA
- The rate capability and low temperature pertormance depends on the cell size
- Further work should include environmental, selfdischarge, and safety studies to qualify for the Aerospace application of the technology

Acknowledgment

The authors thank Quallion for providing the cells and NASA- Goddard Space Flight Center for Sponsoring this work