Extraction d'associations symbiotiques entre organismes marins dans des corpus scientifiques

Encadre par: Solen Quinou Samuel Chaffron

Présenté par: Samuel Girardeau Harry Jandu

Plan

- 1. Introduction
- 2. Travails précédents
- 3. Méthodologie
- 4. Résultats
- 5. Limitations
- 6. Conclusion

Extraction des relations

- Tâche de classification des entités nommés dans les corpus biomédicaux
- Nous allons utiliser les approches neuronales pour réaliser cette tâche

LS2N - Université de Nantes

- Réalisé en Juin 2018 par David Kerbrat
- Approche par étude de cooccurrences
 - Observation des mots qui apparaissent dans le même contexte

État de l'art - BERT

- Bidirectional Encoder Representations from Transformers (Devlin et al. 2019)
- Modèle pré-entraîné pour pouvoir sur plusieurs corpus comme Wikipédia
- Prend en considération le contexte du mots avec Attention (Vaswani et al. 2017)
- Deux modèles principales
 - BERT-base (L=12, H=768, A=12)
 - BERT-large (L=24, H=1024, A=16)

Figure 1 : Architecture du BERT

État de l'art - BioBert

- BioBERT: a pre-trained biomedical language representation model for biomedical text mining (Jinhyuk et al. 2019)
- Basé sur le modèle BERT
- Pré-entraîné sur les grands corpus biomédicaux
 - Wikipédia (Général)
 - BooksCorpus (Général)
 - PubMed Abstracts (Biomédical)
 - PMC Full-text articles (Biomédical)
- Utilisation de BERT-base pour pré-entraînement

Figure 2 : Pré-entraînement et Fine Tuning de BioBert

Notre approche

- Utilisation du modèle BERT-base pour la classification des séquences
- Modèle pré-entrainé fourni par HuggingFace pour PyTorch
 - https://huggingface.co/transformers/model_doc/bert.html
- Implémentation PyTorch en utilisant Google Colab
 - Colab facile à utiliser
 - GPU gratuit fourni

Corpus

- Deux corpus principales utilisé par BioBERT
 - European Union database of Suspected Adverse Drug Reaction Reports EUADR
 - Erik M. Van Mulligen et al. "The EU-ADR corpus: Annotated drugs, diseases, targets, and their relationships". In: Journal of biomedical in-formatics45 (avr. 2012), p. 879-84.doi:10.1016/j.jbi.2012.04.004
 - Gene Disease Associations GAD
 - Paulina Bravo et al. "Conceptualising patient empowerment: A mixed methods study". In :BMC health services research 15 (juil. 2015), p. 252.doi:10.1186/s12913-015-0907-z
- Corpus pour l'extraction des relations
- Chaque ligne contient
 - Un gène
 - Une maladie
 - Libellé : 1 pour positive et 0 pour négative

Taille des données

Corpus	Train	Test	
GAD	47,970	5,330	
EUADR	3,195	355	

Pré-traitements

- Pré-traitements déjà effectué
 - Anonymisation : remplacement des entités nommées ciblés
 - Exemple : serine position 986 of @GENE\$ may be an independent genetic predictor of angiographic @DISEASE\$
- Conversion des mots en vecteurs de taille maximale 128
- Ajout de jeton [CLS] au début de chaque phrase et [PAD] pour les phrases inférieures à 128
- Ajout des masques d'attention
 - Valeur binaire

Modèle

Couche de sortie (768 -> 2)

12 couches encodeurs empilés (768 -> 768)

Couche d'embedding (128 -> 768)

Couche d'entrée (taille 128)

Hyperparamètres d'entraînement

Hyper-paramètres	GAD	EUADR		
Taille max des séquences	128	128		
Epochs	2	3		
Optimizer	AdamW	AdamW		
Loss function	Binary Cross Entropy	Binary Cross Entropy		
Batch size	32	32		
Learning rate	3e-5	3e-5		
Weight decay	1e-8	1e-8		

Relation	Corpus	Metric	BERT-base-ca sed (ours)	BERT (état de l'art)	BioBERT V1.1 (+ PubMed)
Gene-Disease	GAD	Precision	99.71%	79.21%	77.32%
		Recall	<mark>98.93%</mark>	89.25%	82.62%
		F1-Score	<mark>99.32%</mark>	83.93%	79.83%
Gene-Disease	EUADR	Precision	<mark>98.05%</mark>	76.43%	77.86%
		Recall	95.80%	<mark>98.01%</mark>	83.55%
		F1-Score	<mark>96.91%</mark>	85.35%	79.74%

Niveau hardware

- GPU fourni par Google Colab ne permet pas de faire des très gros calculs
- Nous avons pas réussi à exécuter le code fourni par les auteurs de BioBert
 - https://github.com/dmis-lab/biobert

Nouveau état de l'art

- Nos résultats ont dépassé l'état de l'art existent
- Travail prévu
 - Utilisation d'autres corpus
 - BB 2019 https://sites.google.com/view/bb-2019/dataset/corpus-statistics

Merci pour votre attention