CÁLCULO ELÁSTICO-LINEAL DE ESTRUCTURAS, DE BARRAS ARTICULADAS, HACIENDO USO DE Wolfram Language

Enrique M. Moreno Pérez

CÁLCULO ELÁSTICO-LINEAL DE ESTRUCTURAS

Enrique Manuel Moreno Pérez

ESTRUCTURAS DE BARRAS ARTICULADAS CALCULADAS HACIENDO USO DE WOLFRAM LANGUAGE

Primera edición: 13 de Noviembre de 2023

Esta obra está bajo una licencia Creative Commons "Atribución-NoComercial-CompartirIgual 4.0 Internacional".

Descarga tu copia digital gratis en: https://www.bubok.es/

CÁLCULO ELÁSTICO-LINEAL DE ESTRUCTURAS

Prefacio

E L cálculo matricial de estructuras es un componente vital en la formación de los alumnos de arquitectura, proporcionando una base sólida para comprender y diseñar estructuras eficientes y seguras. En este contexto, la adopción de métodos pedagógicos innovadores, como el aula invertida, emerge como un enfoque valioso que redefine la dinámica del aprendizaje.

En la Universidad Politécnica de Madrid (UPM), la Escuela Técnica Superior de Arquitectura (ETSAM) ha abrazado no solo la excelencia académica, sino también la integración efectiva de las asignaturas de física y estructuras. Este enfoque holístico crea una proyección y conexión sinérgicas entre estos campos, fortaleciendo la formación de los futuros arquitectos.

En este contexto educativo avanzado, se presenta la oportunidad de explorar y aplicar el código abierto como una herramienta pedagógica. La capacidad de visualizar y comprender el código fuente de programas específicos amplía las fronteras del aprendizaje interactivo. Este prefacio marca el inicio de un viaje educativo donde los alumnos no solo utilizan programas sencillos pero potentes para el cálculo de estructuras, sino que también tienen acceso a la esencia misma de estos programas.

CÁLCULO ELÁSTICO-LINEAL DE ESTRUCTURAS

Este texto introductorio sirve como puente entre la teoría y la práctica, permitiendo a los alumnos de arquitectura explorar, comprender y aplicar principios de elasticidad de primer orden en el diseño y análisis de estructuras. La metodología de aula invertida se convierte en el vehículo que facilita este viaje, donde los estudiantes se sumergen activamente en el proceso de aprendizaje, participando en discusiones significativas y aplicando conceptos en proyectos prácticos.

A lo largo de estas páginas, se abrirá una ventana al mundo del cálculo matricial de estructuras, donde la simplicidad de los programas se combina con su potencia intrínseca. Este prefacio invita a los estudiantes a explorar nuevas fronteras, a cuestionar y a descubrir, proporcionando las herramientas necesarias para enfrentar los desafíos del diseño estructural con confianza y competencia.

En última instancia, esta iniciativa busca no solo cultivar habilidades técnicas, sino también fomentar una mentalidad crítica y creativa. Al adoptar un enfoque integrado que une la física y las estructuras, los alumnos de la ETSAM de la UPM se embarcan en un viaje educativo que no solo los prepara para los desafíos prácticos, sino que también los empodera como arquitectos visionarios capaces de moldear el entorno construido con inteligencia y elegancia. ¡Bienvenidos a esta travesía educativa en el fascinante mundo del cálculo matricial de estructuras!

PREFACIO

Índice general

Pr	efacio		III	
1	Fund	Fundamentos		
	1.1.	Introducción histórica	1	
	1.2.	Introducción al cálculo elástico-lineal de estructuras de		
		barras articuladas	5	
	1.3.	Concepto de estructura en general	7	
2 F	Forn	nulación matemática del problema	23	
	2.1.	Formulación del problema	23	
	2.2.	Matrices tridiagonales y el método TDMA	34	
	2.3.	Una formulación particular del método matricial	37	
3	Inst	rucciones de uso general	48	
	3.1.	Número de Nudos, Barras y Diferencia Máxima: Pilares		
		para un Análisis Estructural Efectivo	48	
	3.2.	Entradas	61	
Ril	hliogr	afia	66	

1

FUNDAMENTOS

1.1. Introducción histórica

Las estructuras de barras articuladas son sistemas compuestos por barras rectas conectadas entre sí mediante articulaciones o nodos, donde estas uniones permiten el movimiento relativo de las barras. Estas estructuras se utilizan comúnmente en ingeniería para una variedad de aplicaciones, y existen varios tipos según su configuración y propósitos. Aquí hay algunos tipos comunes de estructuras de barras articuladas:

1. Cerchas:

- Descripción: Red bidimensional o tridimensional de barras conectadas en nodos.
- Características: Diseño triangular para proporcionar estabilidad y resistencia eficientes.
- Aplicaciones: Puentes, torres de transmisión, cubiertas.

2. Celosías:

• Descripción: Estructuras reticuladas formadas por barras rectas en un plano.

- Características: Configuración reticular para soportar cargas en varias direcciones.
- Aplicaciones: Puentes, cubiertas, torres de comunicación.

3. Porticos:

- Descripción: Estructuras tridimensionales formadas por barras y nodos.
- Características: Proporciona estabilidad lateral y capacidad para resistir momentos.
- Aplicaciones: Marcos de edificios, pórticos industriales.

4. Armaduras:

- Descripción: Estructuras planas formadas por barras conectadas en nodos.
- Características: Configuración reticular, utilizada para soportar cargas en un plano.
- Aplicaciones: Techos, puentes colgantes.

5. Pórticos Espaciales:

- Descripción: Estructuras tridimensionales compuestas por barras y nodos.
- Características: Proporciona resistencia en tres dimensiones.
- Aplicaciones: Estructuras arquitectónicas, cobertizos.

6. Marquesinas:

- Descripción: Estructuras de barras utilizadas para proporcionar sombra o protección.
- Características: Diseño ligero, a menudo con barras inclinadas.
- Aplicaciones: Áreas de estacionamiento, entradas de edificios.

Estos son solo algunos ejemplos, y la elección del tipo de estructura de barras articuladas depende de los requisitos específicos de cada proyecto, incluidas las cargas, la geometría y las limitaciones del sitio. La cercha es uno de los tipos de estructuras de barras articuladas más antiguos y ha sido utilizada a lo largo de la historia en diversas culturas y civilizaciones. Su diseño triangular proporciona estabilidad y resistencia, lo que las hace eficientes para soportar cargas en puentes y otras aplicaciones.

Un ejemplo histórico significativo de cerchas es el Puente de Trezzo sull'Adda[3], ubicado en Italia. Este puente medieval data del siglo XIV y presenta un diseño de cercha. A lo largo de los siglos, las cerchas se han utilizado en diferentes formas y estilos arquitectónicos en todo el mundo.

Si bien las cerchas son antiguas, es importante señalar que las estructuras de barras articuladas en diversas formas han sido utilizadas por muchas culturas a lo largo de la historia. La elección del tipo de estructura a menudo depende de la disponibilidad de materiales, la tecnología de construcción y las necesidades específicas del proyecto.

Las cerchas, en el contexto de la ingeniería estructural, han sido utilizadas durante siglos en diversas formas y estilos arquitectónicos. Sin embargo, la formalización y desarrollo sistemático de métodos para el diseño y cálculo de cerchas se intensificaron en los siglos XIX y XX con el avance de la ingeniería estructural y la teoría de estructuras.

Uno de los pioneros en el estudio y desarrollo de cerchas fue el ingeniero y arquitecto estadounidense Caleb y Thomas Pratt. En 1844, Caleb y Thomas Pratt patentaron una trama estructural conocida como "Truss Pratt"[2], una forma específica de cercha que se convirtió en una de las más utilizadas en puentes durante el siglo XIX. Esta trama presentaba diagonales inclinadas hacia adentro y verticales paralelas, y fue diseñada para ser eficiente en términos de materiales y resistencia.

A lo largo del tiempo, otros ingenieros y teóricos de estructuras, como William John M. Rankine, Otto Mohr, y otros, contribuyeron al desarrollo de teorías y métodos para el análisis de cerchas. El cálculo de cerchas se benefició significativamente del avance de la teoría de estructuras y la

aplicación de la mecánica de materiales.

No hay un único "padre" del cálculo de cerchas, ya que fue un proceso evolutivo que involucró contribuciones de varios ingenieros a lo largo del tiempo. La formalización de métodos de análisis y diseño de cerchas se integró con el crecimiento general de la ingeniería estructural como disciplina a lo largo del siglo XIX y principios del XX. No obstante, algunos de los ejemplos más notables son:

- Gustave Eiffel: fue un ingeniero francés conocido por diseñar la Torre Eiffel para la Exposición Universal de París en 1889. La Torre Eiffel incorpora elementos de cerchas en su estructura.
- 2. William Le Baron Jenney fue un ingeniero y arquitecto estadounidense, pionero en el diseño de rascacielos. Es conocido por utilizar estructuras de cerchas en algunos de sus diseños, como el Home Insurance Building, considerado uno de los primeros rascacielos.
- 3. Santiago Calatrava es un ingeniero y arquitecto español conocido por sus diseños arquitectónicos y de ingeniería estructural que a menudo incorporan cerchas y elementos esbeltos. Ejemplos incluyen el Puente de la Mujer en Buenos Aires y el Auditorio de Tenerife.
- 4. Thomas Telford fue un ingeniero civil escocés conocido por sus contribuciones a la ingeniería de puentes en el siglo XIX. Diseñó puentes que incorporaban cerchas, como el Puente Menai en Gales.
- 5. William Howe fue un ingeniero estadounidense que patentó la cercha Howe, un tipo específico de cercha utilizado en puentes. Su diseño fue ampliamente adoptado en la construcción de puentes durante el siglo XIX.
- 6. Isambard Kingdom Brunel fue un ingeniero británico conocido por sus logros en la ingeniería ferroviaria y de puentes en el siglo XIX. Diseñó puentes ferroviarios que incorporaban elementos de cerchas.

Estos son solo algunos ejemplos, y muchos otros ingenieros y arquitectos notables han utilizado cerchas en sus obras. La elección de la cercha como elemento estructural ha sido una práctica común en la historia de la ingeniería y la arquitectura debido a su eficiencia y capacidad para resistir cargas.

1.2. Introducción al cálculo elástico-lineal de estructuras de barras articuladas

El cálculo elástico-lineal de estructuras de barras articuladas es un enfoque utilizado en ingeniería estructural para analizar y diseñar estructuras simples, como puentes y marcos, bajo cargas aplicadas. En este contexto, el término .elástico-lineal"se refiere a suposiciones simplificadas sobre el comportamiento elástico de los materiales estructurales y la linearidad de las deformaciones. La teoría asume que las deformaciones son proporcionales a las fuerzas aplicadas y que el material vuelve a su forma original una vez que se retiran las cargas.

Wolfram Language es un lenguaje de programación de alto nivel desarrollado por Wolfram Research. Se utiliza para una variedad de propósitos, incluido el cálculo simbólico y numérico, la visualización de datos, la programación funcional y la manipulación simbólica de expresiones matemáticas. Puedes utilizar Wolfram Language para realizar cálculos elástico-lineales en estructuras de barras articuladas mediante la formulación de ecuaciones y la resolución simbólica o numérica.

Wolfram Language es parte del sistema más amplio Wolfram Mathematica [1], que es un software comercial desarrollado por Wolfram Research. Wolfram Research ofrece una versión gratuita y en línea llamada Wolfram Alpha, que permite realizar cálculos y obtener respuestas a preguntas matemáticas y científicas de manera interactiva.

Sin embargo, si estás interesado en utilizar Wolfram Language de forma más extensa, especialmente para programación y desarrollo, generalmente requerirás una licencia de Wolfram Mathematica [1]. El uso de Mathematica está sujeto a licencias y puede variar según el propósito del

uso (personal, académico o comercial). Wolfram Research ofrece diferentes tipos de licencias, y los precios pueden variar.

Es importante revisar los términos de uso y las políticas de licencia específicas proporcionadas por Wolfram Research para asegurarte de cumplir con sus requisitos. Puedes obtener información detallada sobre las opciones de licencia y los precios en el sitio web oficial de Wolfram Research. Sin embargo está la opción Player. Me explico, existe **Wolfram Player** que es una aplicación desarrollada por Wolfram Research. Es una herramienta gratuita que permite a los usuarios interactuar con documentos interactivos creados con Wolfram Mathematica [1]. Aquí hay algunos puntos clave sobre Wolfram Player:

1. Interactividad con Documentos de Mathematica [1]:

- Wolfram Player permite la interacción con cuadernos de Mathematica (archivos .nb) sin la necesidad de tener una licencia completa de Mathematica [1].
- Los cuadernos de Mathematica [1] pueden contener código, gráficos interactivos, visualizaciones, texto explicativo y más.

2. Exploración y Manipulación de Contenido:

 Los usuarios pueden abrir y explorar documentos interactivos creados por otros usuarios con Mathematica [1]. La aplicación permite la manipulación de parámetros y variables dentro de los cuadernos para ver cómo afectan al contenido.

3. Disponibilidad:

- Wolfram Player está disponible de forma gratuita para su descarga en el sitio web de Wolfram Research. Puedes ejecutar cuadernos interactivos con Wolfram Player en plataformas como Windows, macOS y Linux.
- 4. Limitaciones en Comparación con Mathematica [1] Completo:

Aunque Wolfram Player es una herramienta poderosa para interactuar con cuadernos de Mathematica [1], tiene ciertas limitaciones en comparación con la versión completa de Mathematica [1]. Por ejemplo, no se pueden realizar nuevas evaluaciones de celdas de código en Wolfram Player, y algunas funciones avanzadas pueden no estar disponibles.

5. Creación de Contenido con Mathematica [1]:

 Para crear documentos interactivos, realizar cálculos y utilizar todas las capacidades de Mathematica [1], generalmente necesitarás una licencia completa de Wolfram Mathematica [1].

6. Aplicaciones y Casos de Uso:

- Wolfram Player es útil para compartir y distribuir documentos interactivos sin la necesidad de proporcionar a los usuarios una licencia completa de Mathematica [1].
- Puede ser utilizado en entornos educativos, presentaciones interactivas, demostraciones técnicas y más.

Se recomienda verificar el sitio web oficial de Wolfram Research para obtener la información más reciente sobre Wolfram Player y sus características.

1.3. Concepto de estructura en general

Se denominado estructura a todo conjunto de sólidos, unidos entre si, de modo que este conjunto sea capaz de soportar las cargas aplicadas al mismo, sin experimentar movimientos relativos entre si. Son el esqueleto de las edificaciones arquitectónicas y no se puede concebir ningún tipo de solución habitacional que no contemple este elemento como un fundamento esencial de tal, por motivos eminentemente prácticos y de seguridad. La estructura es un bloque conexo de elementos que en

realidad, puede experimentar pequeños movimientos, (compatibles con las condiciones de equilibrio impuesto), que por razones geodinámicas y meteorológicas impliquen un reacondicionamiento de la multitud de ligaduras (estabilidad hiperestática) a que la estructura está sometida. Aquí estudiaremos las estructuras mediante la teoría elástica de primer orden. Evidentemente este concepto necesita ser aclarado.

La teoría elástica de primer orden, también conocida como región lineal, es una aproximación simplificada en el estudio de la elasticidad de los materiales. Esta teoría se aplica a deformaciones pequeñas, donde se asume que las relaciones entre las fuerzas aplicadas y las deformaciones resultantes son lineales y proporcionales.

Aquí hay algunos puntos clave para entender la teoría elástica de primer orden de manera sencilla:

1. Deformaciones Pequeñas:

■ La teoría elástica de primer orden se aplica cuando las deformaciones en un material son pequeñas. Esto significa que los cambios en la forma del material son pequeños en comparación con sus dimensiones originales.

2. Ley de Hooke:

- En la región lineal, se utiliza la ley de Hooke para describir la relación entre el esfuerzo (fuerza aplicada por unidad de área) y la deformación (cambio relativo en longitud).
- La ley de Hooke establece que esta relación es proporcional y lineal. Es decir, el esfuerzo es directamente proporcional a la deformación.

3. Constantes Elásticas:

En la teoría elástica de primer orden, los materiales se caracterizan por constantes elásticas, como el módulo de elasticidad. Estas constantes representan la rigidez del material y cómo responde a las fuerzas externas.

4. Región Lineal:

La región lineal es una parte específica de la curva esfuerzodeformación para un material elástico. En esta región, la relación entre esfuerzo y deformación es lineal, y la ley de Hooke se cumple.

5. Simplicidad en los Cálculos:

 La ventaja de utilizar la teoría elástica de primer orden es que simplifica los cálculos en comparación con enfoques más avanzados que consideran deformaciones grandes o no lineales.

En resumen, la teoría elástica de primer orden es una aproximación útil cuando estamos trabajando con materiales que responden elásticamente a pequeñas deformaciones. Esta teoría proporciona una descripción simple y práctica del comportamiento de los materiales en la región lineal de su respuesta elástica.

Además de todo lo anterior consideraremos materiales que son isótropos. En la teoría elástica de primer orden, la isotropía juega un papel importante al describir las propiedades elásticas de un material. La isotropía se refiere a la propiedad de un material de tener las mismas propiedades mecánicas en todas las direcciones. En otras palabras, no importa en qué dirección se aplique una carga o una deformación, las propiedades del material no cambian.

El rol de la isotropía en la teoría elástica de primer orden se puede entender de la siguiente manera:

1. Simplicidad de las Ecuaciones:

- La isotropía simplifica las ecuaciones matemáticas que describen el comportamiento elástico del material. En un material isotrópico, las ecuaciones pueden expresarse de manera más simple y general, lo que facilita los cálculos y análisis.
- 2. Constantes Elásticas Independientes de la Dirección:

En un material isotrópico, las constantes elásticas, como el módulo de elasticidad, son independientes de la dirección en la que se aplican las fuerzas o deformaciones. Esto simplifica la formulación de las leyes de Hooke para la relación esfuerzodeformación.

3. Definición del Tensor de Elasticidad:

■ En la teoría elástica, las propiedades elásticas se describen a menudo mediante un tensor de elasticidad. En un material isotrópico, este tensor se reduce a una forma más simple, ya que muchos de sus componentes son iguales.

4. Homogeneidad en Todas las Direcciones:

• La isotropía implica que el material tiene una estructura homogénea en todas las direcciones. Esto significa que las características mecánicas, como la rigidez y la resistencia, son las mismas en cualquier orientación.

Así en la teoría elástica de primer orden la isotropía simplifica la descripción matemática del comportamiento elástico de los materiales. Facilita los cálculos y el análisis al permitir que las propiedades mecánicas se definan de manera más general y homogénea, sin depender de la dirección en la que se apliquen las fuerzas o deformaciones.

En este proyecto pedagógico, nos enfocaremos en analizar desplazamientos que se encuentran dentro de la zona de Hooke o elástica lineal, lo que implica deformaciones inferiores al 0.5 %. Esto nos permite simplificar el análisis y utilizar la teoría elástica lineal, que asume una relación lineal entre el esfuerzo y la deformación en los materiales, válida para deformaciones pequeñas.

Los elementos estructurales que consideraremos en este contexto son barras alargadas y rectas, todas hechas de un mismo material. Es importante destacar que esta elección facilita la aplicación de una teoría uniforme, pero en la práctica, se podría extender fácilmente a materiales

diferentes. La conexión entre estas barras se realiza mediante articulaciones en los extremos, siguiendo dos casos principales: uno en 2D con pasadores sin fricción o charnelas, y otro en 3D con rótulas libres, ambos asumidos sin rozamiento y sin rigideces al giro. Este tipo de estructura se conoce como armadura articulada en 3D o celosía en 2D.

Las barras conectadas en las articulaciones definen puntos específicos llamados "nudos". En el caso de que todas las barras de la estructura sean coplanarias, la estructura se denomina plana y estará en un plano bidimensional. La primera parte de este proyecto se centrará en este tipo de estructuras, permitiendo una simplificación en el análisis al considerar únicamente fuerzas y desplazamientos en un plano.

En el presente trabajo, se persigue el objetivo de cumplir con los siguientes objetivos:

- 1. Exponer de manera clara y accesible un conjunto de rutinas utilizando Mathematica[1] destinadas a la resolución de problemas relacionados con estructuras de barras articuladas.
- 2. Asegurar que la aplicación de estas rutinas sea lo más general posible, especialmente en el marco de la física de medios elásticos, lineales, homogéneos e isótropos. Esto implica abordar una amplia variedad de situaciones y contextos en los que estas estructuras puedan aplicarse.
- 3. Servir como un núcleo sólido, fácilmente comprensible y modificable, que pueda ser utilizado como base para la creación de otros proyectos en el entorno de Mathematica [1]. Este núcleo está diseñado para facilitar el desarrollo de proyectos adicionales, específicamente en el ámbito del dimensionamiento automático de elementos estructurales reales.

En el proyecto, se ha tomado la decisión deliberada de abordar únicamente la esencia del cálculo automático de estructuras, que se centra en el análisis de esfuerzos. Esta elección implica renunciar al desarrollo de dos componentes esenciales en el proceso de análisis estructural: el preprocesador gráfico y el posprocesador gráfico.

En el caso del preprocesador gráfico, esta parte del proyecto generalmente se encarga de preparar los datos de manera interactiva, proporcionando una interfaz intuitiva y cómoda para el diseñador o proyectista. Usualmente, incluye la capacidad de visualizar en pantalla el croquis de la estructura, permitiendo al usuario verificar, corregir y modificar los datos introducidos de manera paramétrica. Esto significa que el proyectista puede ajustar las coordenadas de nudos, incidencias de barras, datos de cargas, tipos de ligaduras en los apoyos, secciones de barras, entre otros, sin tener que ingresar manualmente cada uno de estos datos. La renuncia a esta fase implica que el enfoque del proyecto estará más centrado en el análisis de esfuerzos propiamente dicho.

De manera similar, la renuncia al desarrollo del posprocesador gráfico implica prescindir de una fase posterior al análisis de esfuerzos. El posprocesador gráfico, en un proyecto de esta índole, sería responsable de realizar combinaciones de esfuerzos provenientes de diferentes hipótesis, calcular esfuerzos y desplazamientos en puntos intermedios de las barras, obtener envolventes de esfuerzos, identificar valores máximos y mínimos para el dimensionamiento, realizar dicho dimensionamiento en las secciones elegidas como características, y finalmente, llevar a cabo el armado de las piezas estructurales. Además, esta fase incluiría la generación de croquis o incluso planos detallados del armado de la estructura. Finalmente, el posprocesador se encargaría de establecer pedidos-presupuestos para la construcción de la estructura. Al renunciar a esta etapa, el proyecto simplifica su alcance y se concentra en proporcionar un análisis de esfuerzos sólido y eficiente.

Esta decisión estratégica permite enfocarse en el aspecto fundamental del diseño estructural, proporcionando una herramienta especializada y eficaz para el análisis de esfuerzos, sin las capas adicionales de complejidad asociadas al preprocesamiento y posprocesamiento gráfico.

Objetivos

El proyecto tiene como objeto principal introducir a los estudiantes de arquitectura en el fascinante mundo del Análisis Matricial de Estructuras

de barras. En términos más específicos, busca no solo proporcionar una base teórica sólida, sino también facilitar la comprensión y aplicación práctica de los métodos matriciales del equilibrio.

1. Enfoque y Alcance:

Precisando más, nuestro enfoque se centra en la ejecución práctica del cálculo de movimientos en los nudos y esfuerzos en los arranques de las barras. Este proceso se realiza utilizando el método matricial del equilibrio, una herramienta poderosa que nos permite abordar estructuras tanto planas como tridimensionales.

2. Características de las Estructuras Consideradas:

Las estructuras de interés en este proyecto están compuestas por barras rectas de sección constante. Estas barras, que conforman tanto estructuras planas como tridimensionales, proporcionan un lienzo ideal para explorar y comprender los fundamentos del análisis estructural.

3. Contexto Elástico de Primer Orden:

Es crucial señalar que nuestro enfoque se sitúa en el ámbito de las teorías elásticas de primer orden, específicamente en la región lineal del comportamiento elástico. Esto implica considerar deformaciones que son pequeñas y proporcionales a las dimensiones originales de la estructura.

4. Anotación Teórica:

Es importante destacar que, aunque una hipótesis de carga puede no producir deformaciones unitarias no lineales, la superposición de varias hipótesis podría llevar a deformaciones no lineales. No obstante, sería sencillo postprocesar una solución de superposición para asegurar que está dentro de la zona lineal. Esto se lograría indicando simplemente el porcentaje máximo de deformación aceptable para el material. Por ejemplo, podríamos establecer un límite del 0.5 % de la longitud del material.

Vamos a profundizar en las hipótesis fundamentales que guiarán nuestro análisis estructural. En un primer paso, consideraremos una estructura articulada plana compuesta por una serie de barras rectas interconectadas en los nudos. Específicamente, asumiremos que las uniones entre las barras, es decir, los nudos, actúan como articulaciones perfectas, lo que implica que son incapaces de transmitir momentos. Esta característica simplifica significativamente el análisis, ya que nos permite enfocarnos exclusivamente en los esfuerzos axiles que actúan sobre las barras, garantizando así un equilibrio adecuado.

En términos prácticos, se consideran estructuras articuladas aquellas que pueden modelarse como cerchas y celosías trianguladas. Estas pueden ser tanto isostáticas como hiperestáticas, siempre y cuando, al considerar sus nudos articulados, no se conviertan en mecanismos libremente deformables. Esto significa que, aunque las barras pueden estar unidas rígidamente a los nudos, el sistema en su conjunto conserva la capacidad de mantenerse estable y estático.

Un aspecto crucial que subrayaremos es que, incluso cuando las barras están unidas rígidamente a los nudos, los esfuerzos axiles siguen siendo predominantes en estas estructuras. Esto se debe a la alta rigidez frente a la deformación axial en comparación con la rigidez frente a la deformación por flexión. En consecuencia, podemos afirmar con confianza que los momentos y cortantes pueden considerarse esfuerzos secundarios, y por lo tanto, pueden despreciarse en el análisis sin comprometer la precisión de los resultados.

En resumen, estas hipótesis proporcionan un marco simplificado pero riguroso para el análisis de estructuras articuladas, destacando la importancia de los esfuerzos axiles y permitiendo una aproximación efectiva en el diseño y cálculo de estas estructuras en la práctica ingenieril.

Las ligaduras

Antes de entrar en detalles debemos comprender que es una grado de libertad y que una ligadura.

Ligadura:

En el contexto de estructuras y sistemas mecánicos, una ligadura se refiere a una restricción que impide ciertos movimientos o deformaciones en un sistema. Imagina que tienes una viga apoyada en un extremo, la cual no puede moverse hacia arriba o hacia abajo. En este caso, se dice que hay una ligadura vertical en ese extremo, ya que la viga está "ligada.º restringida en su movimiento vertical.

Las ligaduras son esenciales para modelar con precisión el comportamiento de las estructuras y sistemas físicos, ya que reflejan las condiciones reales de apoyo y restricciones que existen en el mundo físico.

Grado de Libertad:

En el mismo contexto, un grado de libertad es una dirección o modo en el cual un punto o un nodo de una estructura puede moverse. Cada grado de libertad representa una forma en que un punto puede experimentar desplazamiento o rotación. Por ejemplo, si consideras un nodo en una estructura, este puede tener grados de libertad de desplazamiento en las direcciones X, Y y Z, así como grados de libertad de rotación alrededor de los ejes X, Y, y Z.

Contar los grados de libertad es importante para comprender la complejidad del sistema y para determinar cuántas restricciones o ligaduras son necesarias para describir completamente el comportamiento del sistema. En general, cada grado de libertad necesita ser considerado al analizar o modelar una estructura o sistema mecánico.

Los apoyos son ligaduras (nudos en los que alguno de los posibles movimientos está coartado). Estas coacciones pueden ser rígidas (movimientos completamente impedidos) o elásticas (movimientos a los que se oponen reacciones que crecen proporcionalmente con los mismos). En cada apoyo puede especificarse cualquier combinación de movimientos libres y coartados elástica o rígidamente.

Las acciones o cargas a las que pueden estar sometidas estas estructuras son fuerzas en los nudos. Obviamente en coherencia con los grados de libertad correspondientes; cargas puntuales y movimientos impuestos a los apoyos según los grados de libertad que han sido coartados rígidamente en los mismos.

Las coacciones en los apoyos deben imponerse según las direcciones de

los posibles movimientos de esos apoyos, que coinciden con las de los ejes generales de la estructura. El cálculo se realiza admitiendo las hipótesis básicas habituales de la Resistencia de Materiales elemental.

Hipótesis:

- 1. Las cargas son estacionarias en el sentido de que no cambian ni su dirección ni su sentido a lo largo del tiempo.
- 2. Las cargas se localizan en la región lineal (no se consideran la elástica no lineal ni la zona de fluencia).
- 3. Las deformaciones son pequeñas (región de Hooke). Ello equivale a admitir la teoría de primer orden, en la que las condiciones de equilibrio y de compatibilidad se refieren a la geometría de la estructura antes de la deformación.
- 4. Las rigideces axiles vienen dadas por

$$k = \frac{EA}{L}$$

donde E es el módulo de rigidez común a toas las barras, A el áreas de cada barra y L la longitud de la misma.

- 5. Las barras son rectas, de sección constante y simétricas internamente (eje axial).
- 6. Se supone que las dimensiones transversales de las piezas son pequeñas en relación con las longitudinales, es decir, se puede trabajar sustituyendo la estructura real por la figura formada por las directrices de dichas piezas.

Vamos a aclarar un poco las cosas. Cuando se dice que las cargas son estacionarias en el sentido de que no cambian ni su dirección ni su sentido a lo largo del tiempo, significa que las fuerzas externas aplicadas a una estructura permanecen constantes en términos de magnitud, dirección y sentido durante el período de análisis o estudio.

En el contexto del análisis estructural, las cargas pueden clasificarse como estacionarias si su valor y dirección no varían significativamente con el tiempo. Esto implica que las fuerzas externas aplicadas a la estructura se consideran constantes y no experimentan cambios dinámicos durante el período bajo consideración.

Por ejemplo, en una estructura estática donde se aplica una carga constante, como el peso propio de la estructura o una carga aplicada de manera constante, se puede considerar que las cargas son estacionarias. En contraste, si las cargas cambian en el tiempo, ya sea en magnitud, dirección o sentido, se considerarían cargas dinámicas.

La asunción de cargas estacionarias es común en el análisis estático de estructuras, simplificando el proceso de cálculo y permitiendo el uso de métodos estáticos para determinar las respuestas estructurales. Es importante considerar la naturaleza de las cargas al abordar análisis estructurales para seleccionar el enfoque de modelado y cálculo más apropiado.

Además se menciona que las cargas se localizan en la región lineal y no se considera la elástica no lineal ni la zona de fluencia. Se está haciendo referencia a la aplicación de cargas dentro del rango elástico de un material. Este enfoque implica que las deformaciones inducidas por las cargas aplicadas no son lo suficientemente grandes como para entrar en las regiones de comportamiento no lineal o de fluencia del material. En términos más simples:

- 1. Región Lineal (Elasticidad Lineal): En esta región, la relación entre el esfuerzo (fuerza por unidad de área) y la deformación (cambio en la longitud original) del material es proporcional y sigue la ley de Hooke. En otras palabras, el material se deforma de manera elástica y vuelve a su forma original cuando se retira la carga. Este comportamiento es lineal y predecible dentro de ciertos límites de carga.
- 2. Elastica No Lineal: Más allá de la región lineal, algunas cargas pueden provocar deformaciones no lineales, donde la relación

esfuerzo-deformación ya no sigue estrictamente la ley de Hooke. Esto podría deberse a que el material está alcanzando su límite de elasticidad y comienza a comportarse de manera no lineal antes de entrar en la zona de fluencia.

3. Zona de Fluencia: La zona de fluencia es el rango en el cual el material comienza a experimentar deformaciones permanentes o plásticas. En este punto, la deformación no es completamente reversible al retirar la carga, y el material puede experimentar cambios estructurales permanentes.

Por lo tanto, cuando se dice que las cargas se localizan en la región lineal y no se considera la elástica no lineal ni la zona de fluencia, implica que las fuerzas aplicadas son lo suficientemente pequeñas como para mantener el comportamiento lineal y elástico del material, sin entrar en deformaciones plásticas significativas ni comportamientos no lineales. Esto simplifica el análisis estructural al utilizar relaciones lineales de esfuerzo-deformación y leyes de material elástico dentro de los límites de la región lineal. Nótese que en la región lineal de deformación de un elemento estructural, la superposición es un concepto fundamental y poderoso. La superposición se refiere a la capacidad de combinar o sumar los efectos de múltiples cargas o fuerzas aplicadas de manera independiente. Este principio es particularmente valioso cuando se analizan estructuras sometidas a cargas variables o múltiples cargas simultáneas. En el contexto de la región lineal de deformación, donde la ley de Hooke es aplicable, la superposición se basa en la propiedad de proporcionalidad directa entre esfuerzo y deformación. Esta propiedad implica que la respuesta del material a una carga se puede predecir y entender, y los efectos de diferentes cargas se pueden analizar por separado y luego combinar.

Aquí hay algunas consideraciones clave sobre la importancia de la superposición en la región lineal:

1. Linealidad: La propiedad lineal de los materiales en la región elástica permite la superposición. Si una carga produce una cierta

deformación, y otra carga se aplica de manera independiente, los efectos de ambas cargas se pueden sumar para obtener la deformación total.

- 2. Análisis Eficiente: La superposición facilita el análisis eficiente de estructuras sujetas a diversas cargas. En lugar de realizar un análisis completo para cada carga, se pueden analizar por separado y luego superponer los resultados.
- 3. Cargas Variables: Cuando las cargas cambian con el tiempo o cuando se aplican múltiples cargas de manera simultánea, la superposición permite evaluar el efecto de cada carga por separado y luego combinarlos para obtener la respuesta total.
- 4. Validación de Resultados: La superposición proporciona una herramienta para validar y verificar resultados. Al comparar los resultados obtenidos a través de la superposición con soluciones analíticas o experimentales, se puede verificar la validez del análisis.

En la región lineal de deformación, la superposición es esencial para simplificar y mejorar el análisis de estructuras sometidas a cargas múltiples o variables, aprovechando la linealidad de los materiales para sumar efectos independientes de manera precisa y eficiente.

La rigidez axial (k) es una medida de la resistencia de la barra a la deformación bajo una carga axial (fuerza a lo largo del eje de la barra). La fórmula para calcular la rigidez axial (k) se presenta de la siguiente manera:

$$k = \frac{E \cdot A}{L}$$

Donde: - E es el módulo de elasticidad del material de la barra. Este módulo representa la rigidez del material y su capacidad para resistir deformaciones elásticas. - A es el área de la sección transversal de la barra. La sección transversal es la forma geométrica que resulta de cortar perpendicularmente a la longitud de la barra. - E0 es la longitud de la barra. La rigidez axial E1 se expresa en términos de fuerza por unidad de deformación (o longitud) y se mide en unidades de fuerza por unidad de

longitud (por ejemplo, newtons por metro o libras por pulgada). Cuanto mayor sea la rigidez axial, menos deformación experimentará la barra bajo una carga axial.

Esta fórmula se basa en la ley de Hooke para materiales lineales elásticos, que establece que la deformación es proporcional al esfuerzo aplicado. En el contexto de barras estructurales, esta relación describe cómo la barra se deforma axialmente bajo la aplicación de una fuerza, y la rigidez axial es una medida de esa resistencia a la deformación. Es importante considerar que en el análisis de cerchas, se suelen considerar barras rectas, de sección constante y simétricas internamente por varias razones que simplifican el análisis estructural y proporcionan una representación precisa de la realidad en muchos casos prácticos:

- Simplicidad Matemática: El uso de barras rectas simplifica enormemente los cálculos matemáticos asociados con el análisis de fuerzas y deformaciones en la cercha. Las propiedades geométricas y de material de las barras rectas son más fáciles de manejar desde el punto de vista matemático.
- 2. Comportamiento Lineal: Las barras rectas son consistentes con el enfoque lineal en la teoría de estructuras. Dentro de la región elástica, la relación entre el esfuerzo y la deformación es lineal, y las barras rectas son una representación razonable de este comportamiento.
- 3. Trabes Idealizadas: Las cerchas, en esencia, son una idealización de estructuras más complejas. Representar las barras como rectas y de sección constante permite una modelización simplificada y práctica de las cerchas, sin perder precisión en muchos casos de ingeniería civil y estructural.
- 4. Análisis Estático y Métodos Matriciales: La asunción de barras rectas es coherente con muchos métodos de análisis estructural, como el método de los nodos o el método de las fuerzas. Además, facilita la aplicación de métodos matriciales y de elementos finitos, que son fundamentales en el análisis estructural moderno.

- 5. Representación Razonable: En muchos casos prácticos, las cerchas en la realidad consisten en barras rectas conectadas en nodos. Esta simplificación sigue siendo una representación razonable y precisa de la estructura, especialmente cuando las deformaciones son pequeñas y las cargas son aplicadas de manera axial.
- 6. Efectos Axiales Predominantes: En cerchas bien diseñadas, los esfuerzos axiales son predominantes en comparación con los esfuerzos de flexión y cortantes. Esto justifica el uso de barras rectas, ya que los momentos y cortantes pueden considerarse esfuerzos secundarios, simplificando así el análisis.

Con lo cual el uso de barras rectas, de sección constante y simétricas internamente en el análisis de cerchas proporciona una simplificación práctica que facilita los cálculos, sin comprometer significativamente la precisión en situaciones prácticas y en el rango elástico de los materiales estructurales.

La hipótesis de que las dimensiones transversales de las piezas son pequeñas en relación con las longitudinales es comúnmente conocida como la hipótesis de esbeltez o esbeltez geométrica en el contexto de estructuras. Esta hipótesis se utiliza en el análisis estructural para simplificar los cálculos y modelar estructuras más fácilmente. Sin embargo, si no hacemos esta hipótesis y las dimensiones transversales no son pequeñas en comparación con las longitudinales, varios efectos pueden surgir:

- Efectos de Torsión: En estructuras con dimensiones no despreciables en la dirección transversal, pueden surgir efectos significativos de torsión, especialmente cuando las cargas aplicadas no están alineadas con los ejes principales de inercia de la sección transversal.
- 2. Flexión Fuera del Plano: En lugar de comportarse predominantemente en el plano, las piezas pueden experimentar deformaciones considerables fuera del plano de carga, lo que se conoce como flexión fuera del plano. Esto puede complicar el análisis, ya que ahora

se deben considerar deformaciones y esfuerzos en tres dimensiones.

- 3. Influencia de Efectos de Segundo Orden: Las estructuras con dimensiones significativas en la dirección transversal pueden experimentar efectos de segundo orden más pronunciados, lo que significa que las deformaciones y esfuerzos pueden ser significativamente diferentes de los predichos por el análisis de primer orden.
- 4. Estabilidad Global: La esbeltez geométrica también está relacionada con la estabilidad global de la estructura. Si las dimensiones transversales son grandes en comparación con las longitudinales, la estructura puede volverse más propensa a fenómenos de inestabilidad global, como pandeo lateral¹.

Importante considerar que, no hacer la hipótesis de esbeltez geométrica puede conducir a un modelo más realista, pero también a un análisis estructural más complicado y a la necesidad de considerar efectos adicionales como torsión, flexión fuera del plano y estabilidad global. En la práctica, la hipótesis de esbeltez se utiliza a menudo como una aproximación razonable cuando las dimensiones transversales son pequeñas en comparación con las longitudinales, simplificando así el análisis sin perder precisión en muchas aplicaciones de ingeniería.

¹El pandeo lateral, también conocido como pandeo lateral por flexión, es un fenómeno de inestabilidad estructural que ocurre cuando una columna/barra/viga delgada está sometida a cargas axiales de compresión. Este fenómeno implica la pérdida de estabilidad de la barra, lo que resulta en un movimiento lateral incontrolado de la misma. El pandeo lateral generalmente ocurre en estructuras esbeltas donde las fuerzas de compresión pueden superar la capacidad de la columna para resistir la flexión lateral.

FORMULACIÓN MATEMÁTICA DEL PROBLEMA

2.1. Formulación del problema

E le la nálisis moderno de cerchas, el método matricial se utiliza para expresar las ecuaciones de equilibrio y compatibilidad de manera más eficiente. Esto implica representar las fuerzas y desplazamientos en forma matricial. Aquí hay una explicación general de cómo se realiza este proceso:

- 1. Representación Matricial de Fuerzas:
 - a) Fuerzas en los Nodos: Se define un vector de fuerzas nodales que representa las fuerzas en todos los nodos de la cercha. Cada componente del vector corresponde a una dirección específica (por ejemplo, horizontal y vertical).

$$\mathbf{F} = \begin{bmatrix} F_1 \\ F_2 \\ \vdots \\ F_n \end{bmatrix}$$

Donde F_i es la fuerza en el nodo i.

b) Matriz de Rigidez:

Se utiliza una matriz de rigidez (\mathbf{K}) que relaciona los desplazamientos nodales (\mathbf{U}) con las fuerzas nodales (\mathbf{F}) a través de la ecuación $\mathbf{F} = \mathbf{K} \cdot \mathbf{U}$.

$$\mathbf{F} = \mathbf{K} \cdot \mathbf{U}$$

Donde U es el vector de desplazamientos nodales.

- 2. Representación Matricial de Desplazamientos:
 - a) 1. Desplazamientos en los Nodos:
 Se define un vector de desplazamientos nodales que representa los desplazamientos en todos los nodos de la cercha.
 Cada componente del vector corresponde a una dirección

específica.

$$\mathbf{U} = \begin{bmatrix} U_1 \\ U_2 \\ \vdots \\ U_n \end{bmatrix}$$

Donde U_i es el desplazamiento en el nodo i.

b) Matriz de Deformación:

Se utiliza una matriz de deformación (**B**) que relaciona los desplazamientos nodales (**U**) con las deformaciones nodales (ε) a través de la ecuación $\varepsilon = \mathbf{B} \cdot \mathbf{U}$.

$$\varepsilon = \mathbf{B} \cdot \mathbf{U}$$

Donde ε es el vector de deformaciones nodales.

- 3. Ecuaciones de Equilibrio:
 - Se aplican las ecuaciones de equilibrio, y el sistema de ecuaciones resultante se expresa en forma matricial utilizando las relaciones mencionadas anteriormente.
- 4. Resolución del Sistema: El sistema de ecuaciones matriciales se resuelve para encontrar los desplazamientos nodales (\mathbf{U}) y, por lo tanto, las fuerzas nodales (\mathbf{F}) .

Expliquemos mejor las ecuaciones del equilibrio. Las ecuaciones de equilibrio en forma matricial para una estructura se derivan del principio de equilibrio estático, que establece que la suma de las fuerzas y momentos en cualquier estructura debe ser igual a cero para que esté en equilibrio. Estas ecuaciones se expresan comúnmente utilizando matrices y vectores. Supongamos que tenemos n nodos en la estructura, cada uno con m grados de libertad, donde m es la cantidad de direcciones en las que un nodo puede desplazarse (por ejemplo, m=2 para un plano bidimensional).

Las ecuaciones de equilibrio en forma matricial para una estructura se pueden expresar como:

$$\mathbf{F} = \mathbf{K} \cdot \mathbf{U}$$

Donde:

- F es el vector de fuerzas externas aplicadas a la estructura.
- ${f K}$ es la matriz de rigidez de la estructura.
- ${f U}$ es el vector de desplazamientos nodales.

El vector de fuerzas \mathbf{F} y el vector de desplazamientos nodales \mathbf{U} están relacionados por la matriz de rigidez \mathbf{K} . Esta matriz contiene información sobre la rigidez relativa de cada elemento estructural y su disposición en

la estructura.

Las dimensiones de **F**, **K**, y **U** estarán determinadas por la cantidad de nodos y grados de libertad en la estructura. En términos matriciales, el sistema de ecuaciones resultante sería:

$$\begin{bmatrix} F_1 \\ F_2 \\ \vdots \\ F_{mn} \end{bmatrix} = \begin{bmatrix} k_{11} & k_{12} & \cdots & k_{1mn} \\ k_{21} & k_{22} & \cdots & k_{2mn} \\ \vdots & \vdots & \ddots & \vdots \\ k_{mn1} & k_{mn2} & \cdots & k_{mnmn} \end{bmatrix} \begin{bmatrix} U_1 \\ U_2 \\ \vdots \\ U_{mn} \end{bmatrix}$$

Estas ecuaciones representan nuevamente la relación entre las fuerzas aplicadas y los desplazamientos nodales en la estructura, y se utilizan en el análisis estructural para resolver y determinar los desplazamientos y las fuerzas internas en los elementos de la estructura.

Las ligaduras

En el contexto de análisis matricial de estructuras, las ligaduras (o restricciones) se introducen mediante la aplicación de condiciones de contorno que limitan ciertos desplazamientos nodales. Estas condiciones reflejan la conexión o apoyo de la estructura en sus puntos de apoyo o en aquellos lugares donde se desea imponer restricciones.

Supongamos que tienes un sistema de ecuaciones matriciales $\mathbf{F} = \mathbf{K} \cdot \mathbf{U}$ que describe la relación entre las fuerzas (\mathbf{F}), la matriz de rigidez (\mathbf{K}), y los desplazamientos nodales (\mathbf{U}). Si deseas introducir ligaduras en la forma de restricciones en ciertos desplazamientos nodales, puedes hacerlo modificando la matriz de rigidez y el vector de fuerzas.

Por ejemplo, consideremos un caso en el que queremos fijar el nodo i en todas las direcciones. Esto se puede lograr estableciendo los desplazamientos nodales correspondientes (U_i) a cero. En términos matriciales, esto se representa como:

$$\mathbf{K}_{ii} \cdot U_i = 0$$

Esto impone la restricción de que el desplazamiento en el nodo i es cero en todas las direcciones.

Si tienes varias restricciones de este tipo, puedes incorporarlas directamente en la matriz de rigidez y el vector de fuerzas. Por ejemplo, si deseas fijar el nodo i en las direcciones x, y, y z, puedes hacer lo siguiente:

- 1. Establecer los elementos correspondientes de la fila i y columna i de la matriz de rigidez (**K**) a cero.
- 2. Establecer el valor correspondiente de la fuerza aplicada (F_i) en cero.

Esto reflejará las restricciones impuestas en el nodo i en el sistema matricial de ecuaciones, y el método de solución dará cuenta automáticamente de estas restricciones al calcular los desplazamientos nodales y las fuerzas internas de la estructura.

Es importante ver que cuando en la matriz de rigidez $i \neq j$, representa la contribución de un elemento a la rigidez entre dos nodos diferentes i y j en la estructura. En términos físicos, esta parte de la matriz de rigidez modela la influencia que tiene un nodo sobre el otro en términos de rigidez estructural.

La matriz de rigidez (\mathbf{K}) generalmente se compone de bloques, y cada bloque K_{ij} está asociado con la rigidez entre el nodo i y el nodo j. Estos bloques pueden ser diferentes dependiendo de la orientación y tipo de elemento estructural entre los nodos.

Cuando $i \neq j$, los elementos fuera de la diagonal principal (K_{ij}) indican las interacciones de rigidez entre los nodos i y j. Esto es especialmente evidente en estructuras tridimensionales, donde cada elemento de la matriz de rigidez puede afectar tanto a la dirección local como a la global de la estructura.

Los términos fuera de la diagonal principal de la matriz de rigidez representan las interacciones de rigidez entre diferentes nodos de la estructura, y su magnitud y orientación dependen de la geometría y la disposición de los elementos estructurales en la estructura.

La expresión $\mathbf{K}_{ii}\cdot U_i=0$ indica una ligadura o restricción en el nodo i en una estructura. Vamos a desglosar por qué esto representa una ligadura y qué sucede si los índices son diferentes.

- 1. \mathbf{K}_{ii} : Este término representa el coeficiente de rigidez en el nodo i. En otras palabras, es la contribución de la rigidez del nodo i a sí mismo.
- 2. U_i : Este término representa los desplazamientos nodales en el nodo i.

Cuando decimos $\mathbf{K}_{ii} \cdot U_i = 0$, estamos estableciendo que los desplazamientos nodales en el nodo i multiplicados por su propia rigidez deben ser igual a cero. En términos prácticos, esto significa que no hay desplazamientos nodales permitidos en el nodo i.

Si los índices fueran diferentes, por ejemplo, $\mathbf{K}_{ij}\cdot U_i=0$ con $i\neq j$, estaríamos estableciendo una restricción entre los nodos i y j, indicando que los desplazamientos nodales en el nodo i debido a la rigidez del nodo j deben ser igual a cero. Esto implica que los nodos i y j están vinculados de alguna manera y no se permiten desplazamientos relativos entre ellos. En resumen, la expresión $\mathbf{K}_{ii}\cdot U_i=0$ representa la restricción de desplazamientos nodales en el nodo i, y si los índices son diferentes, se estaría imponiendo una restricción entre los nodos i y j.

Ángulos pequeños

Imaginemos que en el cálculo matricial de estructuras tras aplicar las fuerzas se produce una ciertas deformaciones. Estas deformaciones modifican de alguna forma los ángulos que las barras forman en una cercha. ¿Cómo sabemos que esas modificaciones en los ángulos no cambian la dirección en la que se aplican las fuerzas y por tanto la resolución? En el contexto del análisis estructural, cuando se producen deformaciones en una cercha debido a la aplicación de fuerzas, es importante considerar cómo estas deformaciones afectan los ángulos entre las barras y, por lo tanto, la dirección de las fuerzas.

Para abordar esto, se hace uso del concepto de deformaciones pequeñas o desplazamientos infinitesimales. La idea es que las deformaciones y desplazamientos son lo suficientemente pequeños como para que las relaciones trigonométricas entre las barras de la cercha no cambien significativamente.

En el método de nudos, se asume que las deformaciones son pequeñas y, por lo tanto, se pueden expresar linealmente. En otras palabras, las ecuaciones que relacionan las fuerzas y los desplazamientos son válidas dentro de la región lineal de comportamiento elástico.

Cuando las deformaciones son pequeñas, las ecuaciones que rigen el equilibrio en cada nudo (considerando las fuerzas y desplazamientos) pueden expresarse en una forma linealizada. Esto implica que las variaciones en los ángulos de las barras, que se pueden derivar de las deformaciones, no afectarán significativamente las direcciones de las fuerzas.

La suposición de deformaciones pequeñas y el enfoque linealizado en el método de nudos permiten asumir que las modificaciones en los ángulos debido a las deformaciones no alteran significativamente las direcciones de las fuerzas. Esta suposición es válida mientras las deformaciones se mantengan en la región lineal y las relaciones trigonométricas sean aproximadamente lineales en esa región.

En el método matricial de resolución de cerchas, cada barra individual se modela como un elemento axial y se utiliza un sistema de referencia local para describir sus propiedades geométricas y de material. Este sistema de referencia local está asociado con la barra y tiene su origen en uno de los extremos de la misma. Por lo general, se establece de manera que el eje local \boldsymbol{x} coincida con el eje axial de la barra.

Para conectar el sistema de referencia local con el sistema de referencia global, se utilizan transformaciones de coordenadas. Estas transformaciones permiten expresar las fuerzas y desplazamientos en el sistema de referencia global en términos del sistema de referencia local y viceversa. La matriz de transformación de coordenadas, comúnmente denotada como T, se utiliza para realizar esta conexión.

La matriz de transformación T relaciona los vectores de fuerza y desplazamiento en el sistema de referencia local con los vectores correspondientes en el sistema de referencia global. La relación se expresa mediante la siguiente ecuación generalizada:

$$\begin{cases} F_x \\ F_y \\ F_z \\ M_x \\ M_y \\ M_z \end{cases}_{\text{global}} = T \cdot \begin{cases} F_x \\ F_y \\ F_z \\ M_x \\ M_y \\ M_z \end{cases}_{\text{loca}}$$

Aquí, F_x , F_y , F_z son las fuerzas en los ejes global x, y, z, y M_x , M_y , M_z son los momentos alrededor de los ejes global x, y, z.

La matriz de rigidez K de una barra en el sistema de referencia local se transforma al sistema de referencia global utilizando la matriz de transformación de coordenadas T. La relación es:

$$K_{\text{global}} = T^T \cdot K_{\text{local}} \cdot T$$

Aquí, $K_{\rm global}$ es la matriz de rigidez en el sistema de referencia global, $K_{\rm local}$ es la matriz de rigidez en el sistema de referencia local, y T^T representa la transpuesta de la matriz T.

En resumen, la conexión entre el sistema de referencia local y el global en el método matricial de resolución de cerchas se logra mediante el uso de matrices de transformación de coordenadas. Estas matrices afectan la forma de la matriz de rigidez, permitiendo la descripción de las fuerzas y desplazamientos en términos del sistema de referencia global.

Para una cercha plana, que es un sistema bidimensional, la matriz de transformación T se utiliza para relacionar las fuerzas y desplazamientos en el sistema de referencia local con los del sistema de referencia global. Supongamos que tenemos una cercha en el plano xy, y el sistema de referencia local tiene su eje x coincidiendo con el eje axial de la cercha. La matriz de transformación T para una cercha plana general se define como:

$$T = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0\\ \sin \theta & \cos \theta & 0 & 0\\ 0 & 0 & \cos \theta & -\sin \theta\\ 0 & 0 & \sin \theta & \cos \theta \end{bmatrix}$$

Donde:

- θ es el ángulo entre el eje global x y el eje local x de la cercha.
- Los primeros dos elementos de la primera columna representan la dirección del eje local *x* en términos de los ejes globales *x* e *y*.
- Los dos siguientes elementos de la segunda columna representan la dirección del eje local *y*.
- La matriz T es de tamaño 4×4 porque estamos tratando con un sistema bidimensional.

Cuando aplicas esta matriz de transformación a la matriz de rigidez $K_{\rm local}$ de la cercha en el sistema de referencia local, obtienes la matriz de rigidez $K_{\rm global}$ en el sistema de referencia global:

$$K_{\text{global}} = T^T \cdot K_{\text{local}} \cdot T$$

Esta matriz de transformación permite relacionar las fuerzas y desplazamientos en el sistema global con los del sistema local, teniendo en cuenta la orientación de la cercha en el plano.

Para una cercha tridimensional en un sistema de coordenadas cartesianas globales, la matriz de transformación T se utiliza para relacionar las fuerzas y desplazamientos en el sistema de referencia local con los del sistema de referencia global. Supongamos que tenemos una cercha tridimensional, y el sistema de referencia local tiene su eje x coincidiendo con el eje axial de la cercha.

La matriz de transformación ${\cal T}$ para una cercha tridimensional general se define como:

$$T = \begin{bmatrix} \cos\theta & -\sin\theta & 0 & 0 & 0 & 0 \\ \sin\theta & \cos\theta & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & \cos\phi & -\sin\phi & 0 \\ 0 & 0 & 0 & \sin\phi & \cos\phi & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Donde:

- θ es el ángulo de inclinación de la cercha en el plano xy.
- ϕ es el ángulo de inclinación de la cercha respecto al plano xy (girando alrededor del eje z).
- Los primeros tres elementos de la primera columna representan la dirección del eje local x en términos de los ejes globales x, y y z.
- Los dos siguientes elementos de la cuarta columna representan la dirección del eje local y.
- Los dos últimos elementos de la sexta columna representan la dirección del eje local z.
- La matriz T es de tamaño 6×6 porque estamos tratando con un sistema tridimensional.

Cuando aplicas esta matriz de transformación a la matriz de rigidez $K_{\rm local}$ de la cercha en el sistema de referencia local, obtienes la matriz de rigidez $K_{\rm global}$ en el sistema de referencia global:

$$K_{\text{global}} = T^T \cdot K_{\text{local}} \cdot T$$

Esta matriz de transformación permite relacionar las fuerzas y desplazamientos en el sistema global con los del sistema local, teniendo en cuenta la orientación tridimensional de la cercha.

En el contexto de cerchas bidimensionales y tridimensionales, los elementos de la matriz de rigidez local siguen la misma forma funcional, pero su disposición en la matriz puede variar según la dimensionalidad de la cercha.

La matriz de rigidez local ($K_{\rm local}$) de un elemento de cercha representa la relación entre las fuerzas y los desplazamientos locales en el sistema de coordenadas locales del elemento. Los elementos de esta matriz dependen de las propiedades del material y de la geometría del elemento.

Para una cercha bidimensional, la matriz de rigidez local general tiene la forma:

$$K_{\text{local}}^{2D} = \frac{EA}{L} \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Donde:

- E es el módulo de elasticidad del material de una barra.
- A es el área de la sección transversal de la barra considerada en la cercha.
- *L* es la longitud de la barra considerada.

Para una cercha tridimensional, la matriz de rigidez local general tiene la forma:

La forma funcional de los elementos sigue siendo similar, pero la disposición cambia para adaptarse a la dimensionalidad de la cercha (bidimensional o tridimensional). Además, ten en cuenta que estas son formas generales y pueden variar según la definición específica de las coordenadas locales y la orientación del elemento en un software o en un enfoque particular.

Es importante ver que si cada barra tiene una sección diferente y un módulo de Young diferente, la matriz de rigidez local ($K_{\rm local}$) se ajustará para reflejar estas variaciones en las propiedades de cada barra. La forma general de la matriz de rigidez local sigue siendo la misma, pero los valores numéricos en ella dependerán de las propiedades específicas de cada barra.

Para una cercha bidimensional con barras de secciones, longitud y módulos de Young diferentes, la matriz de rigidez local para un elemento genérico puede expresarse como:

$$ext{Barra}_{\ell} K_{ ext{local}}^{2D} = rac{E_{\ell} A_{\ell}}{L_{\ell}} egin{bmatrix} 1 & 0 & -1 & 0 \ 0 & 0 & 0 & 0 \ -1 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 \end{bmatrix}$$

Donde:

- E_ℓ es el módulo de elasticidad del material de la barra ℓ .
- L_{ℓ} es la longitud de la barra ℓ .

Análogo sería el caso para una estructura articulada tridimensional.

2.2. Matrices tridiagonales y el método TDMA

Vamos a suponer que en una cercha plana, la matriz de rigidez tridiagonal se puede construir considerando la relación entre los desplazamientos nodales y las fuerzas en cada elemento de la cercha.

Supongamos que tienes un elemento de cercha con dos nodos, y estos nodos tienen un desplazamiento axial u y v respectivamente. La matriz de rigidez del elemento en dirección axial puede expresarse como:

$$k_{\text{elemento}} = \frac{EA}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

Donde:

- E es el módulo de elasticidad del material de una barra.
- A es el área de la sección transversal de la barra considerada en la cercha.

■ *L* es la longitud de la barra considerada.

Luego, si tienes una cercha plana compuesta por elementos tridiagonales, la matriz de rigidez global K puede construirse ensamblando las matrices de rigidez de cada elemento en la matriz global. Supongamos que tienes n nodos que conectan las barras, entonces la matriz global K tendrá la forma:

$$K = \begin{bmatrix} k_1 & -k_1 & 0 & \cdots & 0 \\ -k_1 & k_1 + k_2 & -k_2 & \cdots & 0 \\ 0 & -k_2 & k_2 + k_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & k_n \end{bmatrix}$$

En esta matriz tridiagonal, los elementos diagonales (k_1,k_2,\ldots,k_n) corresponden a las rigideces axiales de los nudos individuales, y los elementos fuera de la diagonal $(-k_1,-k_2,\ldots,-k_{n-1})$ corresponden a las interacciones entre los nodos adyacentes.

Estas matrices presentan estructuras tridiagonales. Una matriz tridiagonal es una matriz cuadrada en la que todos los elementos fuera de la diagonal principal y las dos diagonales adyacentes están establecidos en cero. En otras palabras, una matriz tridiagonal tiene elementos no nulos solo en la diagonal principal y en las dos diagonales que la rodean inmediatamente por encima y por debajo.

La forma general de una matriz tridiagonal $n \times n$ se puede expresar como:

$$\begin{bmatrix} a_1 & b_1 & 0 & 0 & \cdots & 0 \\ c_1 & a_2 & b_2 & 0 & \cdots & 0 \\ 0 & c_2 & a_3 & b_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & c_{n-1} & a_n \end{bmatrix}$$

Donde a_i, b_i, c_i son coeficientes que definen los elementos de la matriz. Estas matrices son comunes las cerchas.

El método TDMA (Tridiagonal Matrix Algorithm) es un algoritmo eficiente utilizado para resolver sistemas de ecuaciones lineales con matrices tridiagonales. Una matriz tridiagonal es aquella en la que los elementos distintos de cero están ubicados únicamente en la diagonal principal y las dos diagonales adyacentes a ella, es decir, los elementos fuera de estas tres diagonales son cero.

En el contexto de métodos matriciales aplicados a estructuras articuladas, el método TDMA se utiliza comúnmente en la fase de resolución del sistema de ecuaciones lineales que surge al aplicar el método de rigidez directa para analizar las estructuras.

Después de formular las ecuaciones de equilibrio y ensamblar la matriz de rigidez global, se obtiene un sistema de ecuaciones lineales. La matriz de rigidez global tiende a ser tridiagonal debido a la naturaleza conectada de las barras en una estructura articulada. Cada nudo conecta solo con sus nodos vecinos a través de las barras, dando lugar a una matriz tridiagonal en el sistema de ecuaciones.

El método TDMA es particularmente eficiente para resolver sistemas tridiagonales porque explota la estructura específica de estas matrices, evitando cálculos innecesarios y reduciendo la complejidad computacional. En el contexto de análisis de estructuras articuladas, donde la matriz de rigidez global a menudo tiene una estructura tridiagonal, el método TDMA puede acelerar significativamente la solución numérica del sistema de ecuaciones resultante. Esto es especialmente útil en problemas grandes y complejos, donde la eficiencia computacional es esencial.

Es por ello que en la resolución emplearemos la palabra banded que está relacionada con matrices bandadas. En el contexto de LinearSolve en Mathematica, la opción Method->"Banded"se utiliza para resolver sistemas lineales donde la matriz es bandada, lo que significa que tiene muchas entradas cero fuera de un cierto rango alrededor de la diagonal principal.

El método "Banded" de Linear Solve es eficiente para resolver sistemas lineales con matrices bandadas porque aprovecha la estructura de la matriz para realizar cálculos de manera más eficiente que los métodos de resolución de sistemas lineales convencionales. Esto puede ser beneficio-

so en términos de uso de recursos y tiempo de ejecución, especialmente cuando se trata de matrices grandes y bandadas.

En cuanto a la relación con el método TDMA (Tridiagonal Matrix Algorithm), aunque ambos implican matrices con cierta estructura especial, no son idénticos. El método TDMA específicamente se utiliza para sistemas tridiagonales, donde solo las diagonales principal y las diagonales adyacentes contienen elementos no nulos. El método "Banded.en Linear-Solve es más general y puede manejar matrices con bandas más anchas. Lo que sucede es que una cierta convergencia entre los métodos cuando las estructuras matriciales coinciden.

2.3. Una formulación particular del método matricial

En este contexto estructural, la determinación de los ángulos que las barras forman con el sistema de referencia global se basa en una metodología directa y eficaz. La clave reside en la diferencia de coordenadas entre los dos nodos conectados por cada barra. Al considerar las coordenadas de ambos extremos de la barra, podemos calcular la inclinación o ángulo que la barra forma con respecto al sistema global.

Este enfoque proporciona una manera intuitiva de comprender y visualizar la orientación de las barras dentro de la estructura, ya que utiliza la información geométrica de los nodos extremos para determinar los ángulos relativos. La simplicidad de este método contribuye a una interpretación clara y directa de la disposición angular de las barras en relación con el sistema de referencia global.

La expresión matemática asociada con esta determinación angular es:

$$\alpha = \arctan\left(\frac{y_j - y_i}{x_j - x_i}\right)$$

donde (x_i, y_i) y (x_j, y_j) representan las coordenadas de los dos nodos extremos de la barra, y α es el ángulo en radianes que la barra forma con el sistema de referencia global. Este enunciado matemático refleja

la relación trigonométrica fundamental utilizada en el cálculo de los ángulos asociados con las barras en la estructura.

La siguiente figura 2.1 ilustra visualmente el correspondiente cálculo de una α , correspondiente a una barra arbitraria.

En la representación matricial de estructuras, los elementos en color azul se refieren a ejes globales, mientras que aquellos en color rojo están asociados a ejes locales. Esta convención de colores proporciona una clara distinción entre las coordenadas de los elementos en el sistema global y local, facilitando la interpretación y comprensión de la disposición estructural.

En el análisis estructural, la conexión entre las fuerzas locales aplicadas sobre cada barra y las fuerzas globales expresadas en el sistema de referencia global se logra mediante matrices de transformación. Para visualizar y comprender este proceso, empleamos un código de colores, donde el rojo representa el sistema de referencia local sobre las barras, y el azul representa el sistema de referencia global.

La matriz de transformación, que relaciona las fuerzas locales ${f f}=$

$$egin{bmatrix} f_i \ f_j \end{bmatrix}$$
 con las fuerzas globales $\mathbf{F} = egin{bmatrix} \mathbf{F}_{x,i} \ \mathbf{F}_{y,i} \ \mathbf{F}_{x,j} \ \mathbf{F}_{y,j} \end{bmatrix}$, se expresa como:

$$\begin{pmatrix} \mathbf{F}_{x,i} \\ \mathbf{F}_{y,i} \\ \mathbf{F}_{x,j} \\ \mathbf{F}_{y,j} \end{pmatrix} = \begin{pmatrix} -\cos(\alpha) & 0 \\ -\sin(\alpha) & 0 \\ 0 & \cos(\alpha) \\ 0 & \sin(\alpha) \end{pmatrix} \begin{pmatrix} f_i \\ f_j \end{pmatrix}$$

Aquí, α representa el ángulo que la barra forma con el sistema de referencia global. La matriz de transformación permite expresar las fuerzas locales ${\bf f}$ en términos de las fuerzas globales ${\bf F}$, considerando la orientación de la barra.

El uso del código de colores resalta visualmente este proceso: el rojo indica las fuerzas locales en el sistema de referencia local de la barra, mientras que el azul representa las fuerzas resultantes en el sistema de referencia global. Esta representación facilita la interpretación y comprensión de la transferencia de fuerzas entre sistemas de referencia. Vamos a explicar cada paso para llegar a la expresión final para la conexión entre desplazamientos, fuerzas locales y globales en una Barra:

1. Relación entre Fuerzas Locales y Desplazamientos Locales: La relación entre las fuerzas locales f_i , f_j y los desplazamientos locales δ_i , δ_j está dada por la expresión:

$$\left(\begin{array}{c} f_i \\ f_j \end{array}\right) = \left(\begin{array}{cc} k & k \\ k & k \end{array}\right) \left(\begin{array}{c} \delta_i \\ \delta_j \end{array}\right)$$

Donde k es el coeficiente de rigidez de la barra, definido como $k=\frac{EA}{L}$, con E siendo el módulo de elasticidad, A el área de la sección transversal, y L la longitud de la barra.

2. Relación entre Deformaciones Locales y Desplazamientos Locales: La relación entre las deformaciones locales δ_i , δ_j y los desplazamientos locales Δx_i , Δy_i , Δx_j , Δy_j se expresa mediante la matriz de transformación:

En la figura presentada, se ilustra la transformación de coordenadas de fuerzas desde el sistema local al global. Los elementos coloreados en azul representan fuerzas y ángulos referidos al sistema de coordenadas global, proporcionando una visualización clara de las magnitudes y direcciones en el contexto global. Por otro lado, los elementos en rojo representan las fuerzas locales aplicadas sobre la barra, permitiendo una distinción visual entre las magnitudes y direcciones en el sistema de coordenadas local asociado a la barra. Esta convención de colores facilita la interpretación de las relaciones de fuerzas en diferentes sistemas de referencia.

$$\begin{pmatrix} \delta_{i} \\ \delta_{j} \end{pmatrix} = \begin{pmatrix} -\cos(\alpha) & -\sin(\alpha) & 0 & 0 \\ 0 & 0 & \cos(\alpha) & \sin(\alpha) \end{pmatrix} \begin{pmatrix} \Delta x_{i} \\ \Delta y_{i} \\ \Delta x_{j} \\ \Delta y_{j} \end{pmatrix}$$

3. Conexión entre Fuerzas Locales y Desplazamientos Globales: La conexión entre las fuerzas en ejes globales $F_{x,i}$, $F_{y,i}$, $F_{x,j}$, $F_{y,j}$ y

las deformaciones expresadas en ejes locales se describe mediante la expresión:

$$\begin{pmatrix} F_{x,i} \\ F_{y,i} \\ F_{x,j} \\ F_{y,j} \end{pmatrix} = \begin{pmatrix} k & k \\ k & k \end{pmatrix} \cdot \begin{pmatrix} -\cos(\alpha) & -\sin(\alpha) & 0 & 0 \\ 0 & 0 & \cos(\alpha) & \sin(\alpha) \end{pmatrix} \cdot \begin{pmatrix} -\cos(\alpha) & 0 \\ -\sin(\alpha) & 0 \\ 0 & \cos(\alpha) \\ 0 & \sin(\alpha) \end{pmatrix} \cdot \begin{pmatrix} \Delta x_i \\ \Delta y_i \\ \Delta x_j \\ \Delta y_j \end{pmatrix}$$

Simplificando esta expresión, llegamos a la forma final:

$$\begin{pmatrix} F_{x,i} \\ F_{y,i} \\ F_{x,j} \\ F_{y,j} \end{pmatrix} =$$

$$\begin{pmatrix} -2k\cos^2(\alpha) & -k\sin(\alpha)\cos(\alpha) & 2k\cos^2(\alpha) & k\sin(\alpha)\cos(\alpha) \\ -k\sin(\alpha)\cos(\alpha) & -k\sin^2(\alpha) & k\sin(\alpha)\cos(\alpha) & k\sin^2(\alpha) \\ k\sin(\alpha)\cos(\alpha) & k\sin^2(\alpha) & -k\sin(\alpha)\cos(\alpha) & -k\sin^2(\alpha) \\ k\sin(\alpha)\cos(\alpha) & k\sin^2(\alpha) & -2k\cos^2(\alpha) & -k\sin(\alpha)\cos(\alpha) \end{pmatrix} \begin{pmatrix} \Delta x_i \\ \Delta y_i \\ \Delta x_j \\ \Delta y_j \end{pmatrix}$$

Esta es la expresión final que relaciona las fuerzas globales con los desplazamientos globales teniendo en cuenta las propiedades de la barra y la transformación de coordenadas.

Nótese a partir de aquí que lo que haremos será invertir la forma matricial de toda la cercha. Esa inversión para una simple barra sería, partiendo de la relación de fuerzas y desplazamientos expresada como ${\bf F}={\bf K}\Delta$, donde:

$$\mathbf{F} = \begin{pmatrix} F_{x,i} \\ F_{y,i} \\ F_{x,j} \\ F_{y,j} \end{pmatrix}; \quad \boldsymbol{\Delta} = \begin{pmatrix} \Delta x_i \\ \Delta y_i \\ \Delta x_j \\ \Delta y_j \end{pmatrix};$$

$$\mathbf{K} = \left(\begin{array}{ccc} -2k\cos^2(\alpha) & -k\sin(\alpha)\cos(\alpha) & 2k\cos^2(\alpha) & k\sin(\alpha)\cos(\alpha) \\ -k\sin(\alpha)\cos(\alpha) & -k\sin^2(\alpha) & k\sin(\alpha)\cos(\alpha) & k\sin^2(\alpha) \\ k\sin(\alpha)\cos(\alpha) & k\sin^2(\alpha) & -k\sin(\alpha)\cos(\alpha) & -k\sin^2(\alpha) \\ k\sin(\alpha)\cos(\alpha) & k\sin^2(\alpha) & -2k\cos^2(\alpha) & -k\sin(\alpha)\cos(\alpha) \end{array} \right)$$

Para encontrar Δ en función de \mathbf{F} , necesitas invertir la matriz \mathbf{K} . La matriz inversa se denota por \mathbf{K}^{-1} , y la ecuación se convierte en $\Delta = \mathbf{K}^{-1}\mathbf{F}$.

Podemos calcular la inversa de la matriz K de forma interna en Mathematica. La forma invertida de la ecuación sería:

$$\begin{pmatrix} \Delta x_i \\ \Delta y_i \\ \Delta x_j \\ \Delta y_j \end{pmatrix} = \mathbf{K}^{-1} \begin{pmatrix} F_{x,i} \\ F_{y,i} \\ F_{x,j} \\ F_{y,j} \end{pmatrix}$$

Estructuras articuladas tridimensionales

Vayamos un paso mas allá. Vamos a ver ahora la conexión entre desplazamientos, fuerzas locales y globales en una barra tridimensional. En una cercha tridimensional, la conexión entre los desplazamientos locales δ_i, δ_j y las fuerzas locales $f_i^x, f_i^y, f_i^z, f_j^x, f_j^y, f_j^z$ se establece mediante la matriz de rigidez k y la matriz de transformación tridimensional.

Relación entre Fuerzas Locales y Desplazamientos Locales:
 La relación entre las fuerzas locales y los desplazamientos locales se describe mediante la matriz de rigidez tridimensional k:

$$\begin{pmatrix} f_i^x \\ f_i^y \\ f_i^z \\ f_j^x \\ f_j^y \\ f_j^z \end{pmatrix} = \begin{pmatrix} k & 0 & 0 & -k & 0 & 0 \\ 0 & k & 0 & 0 & -k & 0 \\ 0 & 0 & k & 0 & 0 & -k \\ -k & 0 & 0 & k & 0 & 0 \\ 0 & -k & 0 & 0 & k & 0 \\ 0 & 0 & -k & 0 & 0 & k \end{pmatrix} \begin{pmatrix} \delta_i^x \\ \delta_j^y \\ \delta_i^z \\ \delta_j^y \\ \delta_j^y \\ \delta_j^z \end{pmatrix}$$

Aquí, k es el coeficiente de rigidez tridimensional de la barra.

2. Relación entre Deformaciones Locales y Desplazamientos Locales: La relación entre las deformaciones locales δ_i , δ_j y los desplazamientos locales Δx_i , Δy_i , Δz_i , Δx_j , Δy_j , Δz_j se expresa mediante la matriz de transformación tridimensional:

$$\begin{pmatrix} \delta^x_i \\ \delta^y_i \\ \delta^z_i \\ \delta^y_j \\ \delta^z_j \\ \delta^z_j \end{pmatrix} = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) & 0 & -\cos(\alpha) & -\sin(\alpha) & 0 \\ 0 & 0 & \cos(\beta) & 0 & 0 & -\cos(\beta) \\ 0 & 0 & \sin(\beta) & 0 & 0 & -\sin(\beta) \end{pmatrix} \begin{pmatrix} \Delta x_i \\ \Delta y_i \\ \Delta z_i \\ \Delta x_j \\ \Delta y_j \\ \Delta z_j \end{pmatrix}$$

Aquí, α y β representan los ángulos de orientación de la barra en el sistema global. Cuando se habla de α y β como los ángulos de orientación, se está describiendo cómo la barra se orienta en relación con estos ejes globales. Aquí hay una explicación más detallada:

- a) α y β en el plano xy:
 - α podría representar el ángulo de rotación de la barra en el plano xy alrededor del eje z. Es decir, si tienes un objeto en el plano xy y lo rotas alrededor del eje z, eso sería α .
 - β podría representar el ángulo de inclinación en el plano xy. Si la barra se inclina hacia arriba o hacia abajo en el plano xy, eso sería β .
- b) α y β en el plano xz:
 - α también podría representar el ángulo de rotación de la barra en el plano xz alrededor del eje y. Es decir, si giras la barra en el plano xz alrededor del eje y, eso sería α .
 - β en este caso podría representar el ángulo de inclinación en el plano xz. Si la barra se inclina hacia arriba o hacia abajo en el plano xz, eso sería β .
- c) α y β en el plano yz:
 - α podría representar el ángulo de rotación de la barra en el plano yz alrededor del eje x. Si giras la barra en el plano yz alrededor del eje x, eso sería α .

 β podría representar el ángulo de inclinación en el plano yz. Si la barra se inclina hacia arriba o hacia abajo en el plano yz, eso sería β.

Así que podemos decir que α y β describen cómo la barra se orienta en cada uno de los planos xy, xz, y yz en relación con los ejes globales. Estos ángulos son cruciales para definir la posición y orientación tridimensional de la barra en el espacio global.

3. Conexión entre fuerzas locales y desplazamientos globales: La relación entre las fuerzas en ejes globales y los desplazamientos globales se obtiene combinando las matrices anteriores:

$$\begin{pmatrix} F_i^x \\ F_i^y \\ F_i^z \\ F_j^x \\ F_j^y \\ F_j^z \end{pmatrix} = \begin{pmatrix} k & 0 & 0 & -k & 0 & 0 \\ 0 & k & 0 & 0 & -k & 0 \\ 0 & 0 & k & 0 & 0 & -k \\ -k & 0 & 0 & k & 0 & 0 \\ 0 & -k & 0 & 0 & k & 0 \\ 0 & 0 & -k & 0 & 0 & k \end{pmatrix}.$$

$$\begin{pmatrix}
\cos(\alpha) & \sin(\alpha) & 0 & -\cos(\alpha) & -\sin(\alpha) & 0 \\
0 & 0 & \cos(\beta) & 0 & 0 & -\cos(\beta) \\
0 & 0 & \sin(\beta) & 0 & 0 & -\sin(\beta)
\end{pmatrix} \cdot \begin{pmatrix}
\Delta x_i \\
\Delta y_i \\
\Delta z_i \\
\Delta x_j \\
\Delta y_j \\
\Delta z_j
\end{pmatrix}$$

Esta matriz de transformación tridimensional tiene en cuenta las componentes x,y,z y la orientación de la barra en el sistema global. La matriz de rigidez ${\bf K}$ se obtiene al multiplicar las dos matrices de rigi-

dez y transformación de coordenadas:

$$\mathbf{K} = \begin{bmatrix} k & 0 & 0 & -k & 0 & 0 \\ 0 & k & 0 & 0 & -k & 0 \\ 0 & 0 & k & 0 & 0 & -k \\ -k & 0 & 0 & k & 0 & 0 \\ 0 & -k & 0 & 0 & k & 0 \\ 0 & 0 & -k & 0 & 0 & k \end{bmatrix}.$$

$$\cdot \begin{bmatrix} \cos(\alpha) & \sin(\alpha) & 0 & -\cos(\alpha) & -\sin(\alpha) & 0 \\ 0 & 0 & \cos(\beta) & 0 & 0 & -\cos(\beta) \\ 0 & 0 & \sin(\beta) & 0 & 0 & -\sin(\beta) \end{bmatrix}$$

Dado que esta multiplicación es grande y puede volverse compleja, resulta útil dividirla en bloques y calcular cada bloque por separado.

La matriz resultante tiene la siguiente estructura:

$$\mathbf{K} = \begin{bmatrix} \mathbf{K}_{11} & \mathbf{K}_{12} \\ \mathbf{K}_{21} & \mathbf{K}_{22} \end{bmatrix}$$

Donde:

$$\mathbf{K}_{11} = k \begin{bmatrix} \cos(\alpha) & \sin(\alpha) & 0 \\ 0 & 0 & \cos(\beta) \\ 0 & 0 & \sin(\beta) \end{bmatrix}$$

$$\mathbf{K}_{12} = k \begin{bmatrix} -\cos(\alpha) & -\sin(\alpha) & 0 \\ 0 & 0 & -\cos(\beta) \end{bmatrix}$$

$$\mathbf{K}_{21} = -k \begin{bmatrix} \cos(\alpha) & \sin(\alpha) & 0 \\ 0 & 0 & \cos(\beta) \\ 0 & 0 & \sin(\beta) \end{bmatrix}$$

$$\mathbf{K}_{22} = -k \begin{bmatrix} -\cos(\alpha) & -\sin(\alpha) & 0 \\ 0 & 0 & -\cos(\beta) \end{bmatrix}$$

Simplificando cada uno de estos bloques, obtenemos:

$$\mathbf{K}_{11} = k \begin{bmatrix} \cos(\alpha) & \sin(\alpha) & 0\\ 0 & 0 & \cos(\beta)\\ 0 & 0 & \sin(\beta) \end{bmatrix}$$

$$\mathbf{K}_{12} = k \begin{bmatrix} -\cos(\alpha) & -\sin(\alpha) & 0\\ 0 & 0 & -\cos(\beta) \end{bmatrix}$$

$$\mathbf{K}_{21} = -k \begin{bmatrix} \cos(\alpha) & \sin(\alpha) & 0\\ 0 & 0 & \cos(\beta)\\ 0 & 0 & \sin(\beta) \end{bmatrix}$$

$$\mathbf{K}_{22} = k \begin{bmatrix} \cos(\alpha) & \sin(\alpha) & 0\\ 0 & 0 & \cos(\beta) \end{bmatrix}$$

La matriz de rigidez simplificada sería:

$$\mathbf{K} = \begin{bmatrix} k\cos(\alpha) & k\sin(\alpha) & 0 & -k\cos(\alpha) & -k\sin(\alpha) & 0 \\ 0 & 0 & k\cos(\beta) & 0 & 0 & -k\cos(\beta) \\ 0 & 0 & k\sin(\beta) & 0 & 0 & -k\sin(\beta) \\ -k\cos(\alpha) & -k\sin(\alpha) & 0 & k\cos(\alpha) & k\sin(\alpha) & 0 \\ 0 & 0 & -k\cos(\beta) & 0 & 0 & k\cos(\beta) \\ 0 & 0 & -k\sin(\beta) & 0 & 0 & k\sin(\beta) \end{bmatrix}$$

Esto representa la matriz de rigidez simplificada para el sistema dado. En el próximo capítulo, nos sumergiremos en el código del programa, centrándonos específicamente en el procedimiento para la introducción de datos necesarios en la resolución de cerchas. Este programa está diseñado para abordar tanto cerchas bidimensionales como tridimensionales, proporcionando una herramienta versátil para el análisis estructural.

1. Comentarios en el Código:

Antes de adentrarnos en el proceso de entrada de información, es fundamental comprender la estructura del código. Los comentarios a lo largo del programa actúan como guías explicativas, proporcionando detalles sobre la lógica detrás de cada sección y la función de bloques específicos. Estos comentarios facilitan la comprensión del código, mejorando la legibilidad y permitiendo a los usuarios comprender rápidamente cómo interactuar con el programa.

Procedimiento de Entrada de Datos: El procedimiento para introducir información es crucial para el

éxito del análisis estructural. En el caso de cerchas bidimensionales, se deben especificar parámetros como las coordenadas de los nodos, las características de los elementos y las condiciones de carga. Para cerchas tridimensionales, esta información se extiende para abordar el espacio tridimensional, considerando además ángulos de inclinación y orientación.

3. Coordenadas de los Nodos:

Para ambas cerchas, se deben ingresar las coordenadas de los nodos que definen la geometría de la estructura. Estas coordenadas son esenciales para establecer la posición espacial de los elementos.

4. Características de los Elementos:

Es necesario especificar las propiedades de los elementos, como la rigidez y longitud, para que el programa pueda realizar cálculos precisos. En el caso de cerchas tridimensionales, también se deben ingresar ángulos de orientación.

5. Condiciones de Carga:

Se deben introducir las condiciones de carga que actúan sobre la estructura. Estas cargas pueden incluir fuerzas aplicadas en nodos específicos o distribuidas a lo largo de los elementos.

Siguiendo estos pasos de entrada de datos, el programa estará equipado para realizar un análisis estructural completo, proporcionando resultados precisos y significativos.

De modo que en el próximo capítulo exploraremos la claridad en la comprensión del código y la correcta introducción de datos como pilares fundamentales para aprovechar al máximo la funcionalidad del programa en el análisis de cerchas bidimensionales y tridimensionales.

Instrucciones de uso general

3.1. Número de Nudos, Barras y Diferencia Máxima: Pilares para un Análisis Estructural Efectivo

 \mathbf{E}^{L} análisis estructural se fundamenta en la comprensión integral del "Número de Nudos", el "Número de Barrasz la "Diferencia Máxima". Estos elementos son cruciales para definir la geometría, conectividad y limitaciones prácticas del sistema estructural en estudio.

- 1. Número de Nudos: Definición y Correspondencia:
 - El "Número de Nudosrepresenta la cantidad total de puntos de conexión, incluyendo tanto los nodos físicos como los puntos de apoyo en la estructura. Esta cantidad debe coincidir con el número de abscisas y de ordenadas, estableciendo así la posición espacial precisa de cada nudo en el sistema tridimensional. La numeración correlativa de los nudos mejora la claridad del modelo.
- 2. Número de Barras: Enlaces Estructurales: Por otro lado, el "Número de Barras"se refiere a la cantidad de elementos de conexión en la estructura. Cada barra conecta dos nudos y contribuye a la integridad estructural. La relación entre el

número de nudos y el número de barras es esencial para establecer la conectividad adecuada en la estructura.

- 3. Diferencia Máxima: Impacto en la Memoria del Ordenador: La "Diferencia Máxima. es la mayor separación entre los números de nudos extremo y origen de las barras. Esta diferencia puede tener implicaciones prácticas, ya que estructuras con grandes diferencias pueden desbordar la memoria del ordenador. Actualmente, se observa que estructuras superiores a 10,000 nudos pueden condicionar la capacidad de la memoria del PC.
- 4. Recomendación para Numeración Eficiente:

 Para mitigar posibles desafíos de memoria, se recomienda numerar los nudos durante la preparación del croquis de la estructura de manera que la "Diferencia Máxima" sea lo menor posible. Esta práctica no solo favorece la eficiencia en el uso de la memoria del ordenador sino que también simplifica la entrada de datos y mejora la comprensión de la estructura.

La correlatividad en la numeración de nudos, la adecuada distribución de barras y la consideración de la "Diferencia Máxima"son elementos esenciales para garantizar un análisis preciso y eficiente de la estructura. Estos fundamentos no solo contribuyen a la integridad de los cálculos sino que también abordan limitaciones prácticas relacionadas con los recursos de memoria del ordenador.

Entrada de los medios materiales

El parámetro de entrada mas importante relativo a una propiedad del material de que están hechas la barras es el "Módulo de Elasticidad" (E), también conocido como módulo de Young. Este parámetro es esencial en el análisis estructural, ya que representa la medida de la rigidez de un material y su capacidad para deformarse bajo la influencia de fuerzas externas.

En el contexto del texto proporcionado, el módulo de elasticidad (E) se

considera un parámetro de entrada que debe ser definido antes de realizar el análisis estructural. Aquí hay algunos puntos clave relacionados con el módulo de elasticidad:

1. Definición de E:

El módulo de elasticidad (E) se define como el cociente entre las tensiones y deformaciones unitarias del material de la estructura. Es una medida de la rigidez del material y su capacidad para recuperarse después de ser sometido a fuerzas externas.

2. Unidades Recomendadas:

Se recomienda expresar el módulo de elasticidad en unidades coherentes con el sistema métrico, sugiriendo metros para la longitud y toneladas para la fuerza.

3. Coherencia de Unidades:

Las unidades elegidas para expresar E deben ser coherentes con las unidades de longitud y fuerza utilizadas para los demás datos. Esto incluye las coordenadas de los nudos, áreas, cargas, desplazamientos de los nudos y esfuerzos axiles.

4. Relación con el Área (EA):

En el cálculo, el módulo de elasticidad (E) está asociado al área (A) de las barras en el producto EA. Para facilitar la entrada de datos, se sugiere multiplicar las áreas de las barras por 10 y dividir el valor de E por 10.

5. Materiales con Módulos Diferentes (E'):

En el caso de estructuras que contienen barras de materiales con diferentes módulos de elasticidad (E y E'), se asigna a la estructura el módulo E. Las áreas de las barras del segundo material se multiplican por la relación n=E/E'.

Así pues el módulo de elasticidad (E) es un parámetro clave que influye en el comportamiento de la estructura, y su definición y aplicación deben seguir las recomendaciones específicas para asegurar un análisis estructural preciso y coherente.

Introducir las coordenadas de los nudos

En el proceso de modelado y análisis de cerchas, uno de los parámetros esenciales que el usuario debe proporcionar son las Çoordenadas de los Nodos". Estas coordenadas son vitales para establecer la geometría y la disposición espacial de la cercha en el sistema.

1. Definición de Coordenadas:

Las Çoordenadas" se representan mediante una matriz de dos columnas y tantas filas como nodos en la cercha. Cada fila de esta matriz contiene las coordenadas de un nodo específico. En el contexto de una cercha, un nodo se refiere a un punto de conexión entre barras, y las coordenadas de esos nodos determinan su posición en el espacio tridimensional.

2. Estructura de la Matriz:

La matriz de coordenadas tiene dos columnas, la primera para las coordenadas en el eje x (horizontal) y la segunda para las coordenadas en el eje y (vertical). Cada fila de la matriz corresponde a un nodo y contiene las coordenadas respectivas en el sistema de referencia elegido.

3. Interpretación Práctica:

Cuando el usuario ingresa las coordenadas de los nodos, está definiendo la ubicación precisa de cada punto de conexión en la cercha. Estas coordenadas son fundamentales para la generación del modelo y tienen un impacto directo en la representación visual de la estructura.

4. Ejemplo Práctico:

Supongamos que se tiene una cercha con cuatro nodos. La matriz de coordenadas podría lucir así:

Coordenadas =
$$\begin{bmatrix} x_1 & y_1 \\ x_2 & y_2 \\ x_3 & y_3 \\ x_4 & y_4 \end{bmatrix}$$

Aquí, x_i y y_i representan las coordenadas en x e y del nodo i. Cada fila en la matriz define la posición de un nodo específico en el espacio.

5. Consideraciones Finales:

La precisión en la definición de estas coordenadas es crucial, ya que afecta directamente la representación física y el comportamiento estructural de la cercha. La correcta entrada de estas coordenadas es un paso esencial para garantizar un análisis estructural preciso y confiable.

Es importante notar, las coordenadas de los nodos son un componente clave en la definición de la cercha, permitiendo al usuario especificar la disposición espacial precisa de la estructura tridimensional. Estas coordenadas sirven como la base sobre la cual se construye y analiza la cercha en el contexto del modelo estructural.

Pero, ¿qué pasa en el caso tridimensional?

La definición precisa de las coordenadas de los nodos cobra aún más importancia al considerar estructuras articuladas tridimensionales. Estas estructuras, que pueden tener nodos conectados por barras en tres direcciones (longitudinal, transversal y vertical), requieren una entrada cuidadosa de coordenadas para capturar la complejidad tridimensional del sistema.

1. Matriz de Coordenadas Tridimensionales:

La matriz de coordenadas para estructuras articuladas tridimensionales es una extensión de la versión bidimensional. Ahora, se necesitan tres columnas en lugar de dos. La primera columna representa las coordenadas en el eje x, la segunda en el eje y, y la tercera en el eje z. Cada fila de la matriz sigue asociándose con un nodo específico.

$$\text{Coordenadas} = \begin{bmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \\ x_4 & y_4 & z_4 \end{bmatrix}$$

Estas coordenadas tridimensionales permiten situar cada nodo en el espacio de manera única, abarcando la complejidad espacial de la estructura articulada.

2. Significado Práctico de las Coordenadas Tridimensionales: La entrada de las coordenadas en estructuras articuladas tridimensionales tiene un significado práctico significativo. Define no solo la posición horizontal (eje x) y vertical (eje y), sino también la posición en profundidad (eje z). Esto es esencial para abordar la variabilidad tridimensional en las conexiones entre nodos.

3. Ejemplo Práctico:

Consideremos una estructura articulada tridimensional con cuatro nodos. La matriz de coordenadas podría ser similar a la siguiente: Primera parte:

$$\text{Coordenadas} = \left(\begin{array}{ccccc} -4500 & 0 & 0 \\ -2250 & 3900 & 0 \\ -2250 & -3900 & 0 \\ 2250 & 3900 & 0 \\ 2250 & -3900 & 0 \\ 4500 & 0 & 0 \\ -4250 & 0 & 1500 \\ -2120 & 3680 & 1500 \\ -2120 & -3680 & 1500 \\ 2120 & -3680 & 1500 \\ 2120 & -3680 & 1500 \\ 4250 & 0 & 1500 \\ -3750 & 0 & 2500 \\ -1875 & 3250 & 2500 \\ -1875 & -3250 & 2500 \end{array} \right)$$

Y la segunda parte:

$$\mbox{Coordenadas} = \left(\begin{array}{cccc} 1875 & 3250 & 2500 \\ 1875 & -3250 & 2500 \\ 3750 & 0 & 2500 \\ -2820 & 0 & 3500 \\ -1410 & 2440 & 3500 \\ -1410 & -2440 & 3500 \end{array} \right)$$

Donde cada fila representa las coordenadas tridimensionales de un nodo específico.

4. Consideraciones Adicionales:

La entrada de coordenadas para estructuras articuladas tridimensionales debe abordar las particularidades de las conexiones espaciales. La representación precisa de la geometría en todas las direcciones es esencial para capturar adecuadamente el comportamiento tridimensional de la estructura.

5. Importancia en el Análisis:

Las coordenadas en nodos son la base sobre la cual se desarrolla el análisis de estructuras articuladas tridimensionales. La precisión en la definición de estas coordenadas es crucial para garantizar que el modelo represente de manera fiel la geometría y las conexiones espaciales.

Con lo que la entrada de coordenadas en estructuras articuladas tridimensionales es un paso clave que refleja la complejidad espacial del sistema. Estas coordenadas sirven como puntos de referencia esenciales para la construcción y el análisis preciso de estructuras articuladas en tres dimensiones.

El tipo de barra

Habitualmente las barras suelen estar construidas con el mismo material acero de un mismo tipo y lo que varía suele ser la sección de tales barras. Así nace el siguiente parámetro llamado Número de Barras por

Tipo.

El parámetro "Número de Barras por Tipo. es fundamental en la descripción de la variabilidad de secciones dentro de la estructura. Este valor representa la cantidad de secciones distintas presentes en las barras de la estructura, y su rango se define desde 1 hasta el número total de barras clasificadas por tipo. Este enfoque permite la flexibilidad de asignar diferentes propiedades de sección a distintos conjuntos de barras, reflejando la diversidad estructural en términos de dimensiones, forma y material. Para cada una de estas secciones, se proporcionarán, de manera ordenada, las características específicas de la sección. En este contexto, se destaca particularmente el "Área" (A), expresada en metros cuadrados (m^2). El área de la sección es un parámetro crítico que influye directamente en la capacidad de carga y resistencia de cada barra. Por lo tanto, la información proporcionada para cada tipo de barra incluirá, de manera sistemática, el área de su sección transversal.

Esta estructura organizativa facilita un enfoque claro y metódico para la definición de las propiedades de las barras. A través de la asignación ordenada de áreas a cada tipo de barra, se logra una representación completa y detallada de la variabilidad estructural. Este enfoque es esencial para abordar la heterogeneidad de las barras dentro de la estructura y para asegurar que cada componente contribuya de manera precisa al comportamiento global de la misma.

En resumen, el concepto de "Número de Barras por Tipoz la descripción detallada de las características de la sección, con un enfoque particular en el área, son elementos esenciales para capturar la complejidad y diversidad en la composición de las barras dentro de la estructura. Esta información no solo contribuye a la precisión del modelo, sino que también proporciona los cimientos necesarios para un análisis estructural riguroso y confiable.

La matriz croquis

La matriz croquis es un componente esencial en el proceso de modelado de estructuras, siendo la piedra angular que define las características fundamentales de las barras que componen la cercha. En esta matriz, se establece la conexión entre los nudos y se determina el tipo de cada barra, brindando una representación sistemática de la geometría estructural. Para cada barra en la matriz croquis, se especifican tres datos clave:

1. Nudo Origen (i):

Este es el nodo de numeración más baja y es vital para la identificación única de la barra. Su número debe estar en el rango de 1 a Nudos, asegurando una correlatividad adecuada con los puntos de conexión en la estructura.

2. Nudo Extremo (j):

Representa el nodo de numeración más alta y debe cumplir con dos condiciones cruciales. Primero, debe estar en el rango entre i+1 y Nudos. Segundo, j debe ser menor que i+ Dif, donde Dif se refiere a la máxima diferencia entre el origen y el extremo de las barras.

3. Tipo de Barra:

Este dato indica el número de la barra tipo que determina la sección transversal de la barra. Es un componente esencial para definir las propiedades físicas de la barra en términos de su área y material.

El orden de entrada de las barras en la matriz croquis puede elegirse libremente, pero se recomienda seguir un orden alfabético. Esto implica introducir las barras ordenadas por valores de i crecientes, y para cada valor de i, por valores de j crecientes. Este enfoque facilita la búsqueda y la interpretación de barras específicas en los resultados, mejorando la legibilidad de los listados de salida.

Es importante destacar que cada nudo debe estar conectado al menos a una barra, ya sea como origen o extremo. Esto asegura que todos los nudos estén vinculados al sistema estructural y evita que se vuelvan libres, lo que resultaría en un sistema de ecuaciones indeterminado.

En resumen, la matriz croquis proporciona una descripción estructurada y detallada de la conectividad de las barras en la cercha, estableciendo las bases para un modelado preciso y un análisis estructural confiable. La

elección cuidadosa de los datos en esta matriz es esencial para garantizar la coherencia y la representación precisa de la geometría y las propiedades de las barras en la estructura.

La matriz de áreas

La matriz de áreas despliega un papel esencial en la representación de las secciones transversales de las barras en el sistema estructural. En el contexto de la cercha, donde cada barra puede tener una sección única, esta matriz organiza de manera ordenada y sistemática las distintas áreas correspondientes a cada tipo de barra.

La estructura de la matriz de áreas es fundamentalmente sencilla. Se compone de una sola columna que enumera las áreas de las barras por orden. Estos valores numéricos representan índices asociados a la tercera columna de la matriz croquis, que a su vez determina el tipo de barra y, por ende, la sección transversal que le corresponde.

Cuando se establece la conexión entre la matriz croquis y la matriz de áreas, se asigna a cada barra un índice específico que indica la posición de su área correspondiente en la matriz de áreas. Esto crea un enlace directo entre la información de conectividad en la cercha y las propiedades físicas específicas de cada barra.

En síntesis, la matriz de áreas proporciona una lista ordenada de las distintas áreas de las barras del sistema. Esta estructura indexada facilita la asignación eficiente de secciones transversales a cada barra, asegurando que las propiedades físicas asociadas se reflejen con precisión en el análisis estructural. La coherencia entre la matriz croquis, que especifica las conexiones de los nodos y los tipos de barras, y la matriz de áreas, que detalla las secciones transversales, es esencial para garantizar la representación precisa de la geometría y las características materiales de la cercha.

Introducir los apoyos

La definición de los apoyos en una estructura es un aspecto crucial que influye directamente en su comportamiento y capacidad de resistencia. En teoría, un apoyo se considera un nudo donde alguno de los posibles movimientos está coartado, ya sea de manera rígida o elástica. La precisión en la definición de apoyos es esencial para modelar con precisión la interacción entre la estructura y sus condiciones de soporte. Los datos necesarios para la definición de los apoyos incluyen dos elementos fundamentales:

1. Número de Apoyos (Núm. de apoyos):

Este parámetro indica la cantidad de nudos en los que se coarta alguno de los posibles movimientos. Es un entero positivo entre 1 y el total de nudos (Nudos). La presencia de al menos un apoyo es crucial, ya que una estructura completamente libremente deformable no tendría restricciones.

2. Matriz de Apoyos (Apoyos):

Esta matriz organiza la información sobre los apoyos de la siguiente manera:

- Número del Apoyo (i):
 Representa el número del nudo definido como apoyo. El orden de lectura de los apoyos puede ser arbitrario.
- C, C' (Coacciones en direcciones X, Y):
 Estos valores indican las restricciones en las direcciones X e
 Y, respectivamente. Se definen según el siguiente convenio:
- C = 0 para movimiento rígidamente coartado.
- lacksquare C=1 para movimiento completamente libre.
- C = k para movimiento elásticamente coartado con rigidez k.

La rigidez k de un apoyo elástico se define como la relación entre la reacción en el apoyo y el movimiento correspondiente. También se conoce como la constante de muelle del apoyo. Es importante destacar que k no puede ser precisamente 1, ya que esto se interpretaría como un apoyo libre. Si se desea introducir k=1, se puede

proporcionar un número tan cercano a la unidad como se desee, pero diferente de ella (por ejemplo, 0,99999999).

Esta detallada definición de apoyos proporciona la base necesaria para abordar con precisión las condiciones de soporte en una estructura, asegurando que el modelo refleje fielmente las restricciones y comportamientos esperados.

La matriz de cagas

La introducción de cargas en una estructura es un paso esencial para evaluar su respuesta bajo condiciones específicas de carga. En este contexto, la matriz de cargas se convierte en un instrumento crucial que permite especificar y organizar sistemáticamente las fuerzas aplicadas en los nudos del sistema. Este proceso facilita la modelización precisa de las condiciones de carga y contribuye a un análisis estructural detallado. El concepto de Número de Nudos Cargados (Núm.nudoscargados) es fundamental para determinar la cantidad de nudos que experimentarán fuerzas aplicadas. Este número es un entero comprendido entre o y el total de nudos (Nudos). Si se introduce un valor de o, el programa avanza directamente a la siguiente hipótesis, indicando que no hay nudos cargados. La flexibilidad en la selección del número de nudos cargados permite adaptar el modelo a una variedad de situaciones.

La Matriz de Cargas (Cargas) organiza la información sobre las fuerzas aplicadas en los nudos de la estructura. Se define de la siguiente manera:

- Número del Nudo (i):** Representa el número del nudo cargado y debe estar entre 1 y Nudos. El orden de lectura de las cargas puede ser arbitrario.
- F_x , F_y :** Son las componentes de la carga a lo largo de las direcciones X e Y de los ejes generales de la estructura. Estas componentes deben tener unidades coherentes con el resto de los datos, siendo recomendables las toneladas de fuerza. Los signos positivos coinciden con las direcciones positivas de los ejes, y los valores numéricos indican la magnitud de las fuerzas aplicadas.

La Matriz de Cargas proporciona la información necesaria para simular las condiciones de carga específicas en cada nudo de la estructura. Esta organización sistemática permite una entrada clara y precisa de las fuerzas aplicadas, facilitando la interpretación de los resultados y contribuyendo a un análisis estructural riguroso.

En el contexto de estructuras articuladas tridimensionales, la matriz de cargas desempeña un papel esencial al introducir y organizar las fuerzas aplicadas en los nodos del sistema. Este componente fundamental facilita la representación detallada de las condiciones de carga en las tres dimensiones del espacio, permitiendo un análisis estructural completo y preciso.

El Número de Nudos Cargados (Núm.nudos cargados) sigue siendo un parámetro clave que indica la cantidad de nudos que experimentarán fuerzas aplicadas. Este número es un entero comprendido entre o y el total de nudos (Nudos), y su flexibilidad permite adaptar el modelo a diversas configuraciones tridimensionales.

La Matriz de Cargas (Cargas) se define de manera extendida para estructuras tridimensionales, incorporando las componentes de carga en las tres direcciones espaciales:

- Número del Nudo (i): Representa el número del nudo cargado y debe estar entre 1 y Nudos. El orden de lectura de las cargas puede ser arbitrario.
- F_x , F_y , F_z : Son las componentes de la carga a lo largo de las direcciones X, Y y Z de los ejes generales de la estructura. Estas componentes deben tener unidades coherentes con el resto de los datos, siendo recomendables las toneladas de fuerza. Los signos positivos coinciden con las direcciones positivas de los ejes, y los valores numéricos indican la magnitud de las fuerzas aplicadas.

La adaptación de la Matriz de Cargas para estructuras tridimensionales amplía la capacidad de modelar y analizar el comportamiento de la estructura en todas las dimensiones del espacio. Esta organización sistemática de las fuerzas aplicadas en cada nudo contribuye a un análisis estructural detallado, proporcionando información esencial para comprender la respuesta global de la estructura ante diversas condiciones de carga en el entorno tridimensional.

Hasta este punto, hemos establecido los fundamentos mediante la introducción de conceptos y descripciones vinculadas al programa. En la siguiente fase, nos sumergiremos en un análisis detallado de la sección de entradas, la cual ostenta un papel central en este manuscrito. Es en esta sección donde concluye nuestra exploración. No obstante, antes de cerrar, se proporcionarán los enlaces correspondientes al conjunto de cuadernos de matemáticas esenciales para el cálculo de estructuras articuladas, tanto bidimensionales como tridimensionales.

CÁLCULO MATRICIAL DE ESTRUCTURAS PLANAS DE BARRAS ARTICULADAS, HACIENDO USO DE Wolfram Language: https://github.com/maxwellfree/EstructurasArticuladas/blob/main/Art2D.rar

CÁLCULO MATRICIAL DE ESTRUCTURAS ESPACIALES DE BARRAS ARTICULADAS, HACIENDO USO DE Wolfram Language: https://github.com/maxwellfree/EstructurasArticuladas/blob/main/Art3D.rar

3.2. Entradas

Comentarios a la entrada de estructuras bidimensionales.

- nudos=25;: Define el número de nudos en el sistema como 25.
- barras=78;: Establece el número de barras en el sistema como 78.
- tipos=3;: Indica que hay 3 tipos diferentes de barras según sus secciones.
- ligaduras=6;: Representa el número de apoyos en el sistema.
- hipotesis=3;: Define el número de hipótesis de carga como 3.

- e=21000000;: Establece el módulo de elasticidad del material utilizado en el sistema como 21,000,000.
- path=NotebookDirectory[]; SetDirectory[path];:Establece el directorio de trabajo actual para el directorio del cuaderno de Mathematica. Luego se leen las coordenadas y croquis desde archivos externos ubicados en este directorio.
- coordenadas=ReadList[çoordenadas.dat", Number, RecordLists Lee las coordenadas de los nudos desde un archivo llamado çoordenadas.dat".
- croquis=ReadList[çroquis.dat", Number, RecordLists->True];
 Lee el croquis (posiblemente la representación gráfica) del sistema desde un archivo llamado croquis.dat".
- areas={0.01,0.005,0.0025};: Define las áreas de las distintas barras en metros cuadrados.
- apoyos=...: Define las condiciones de apoyo en los nodos del sistema. En este caso, parece que todos los nodos están fijos en la dirección x, y, y z.
- Se especifican las cargas en diferentes nodos del sistema.
- hipo[1] = . . .: Carga de viento en nodos específicos.
- hipo[2]=...: Carga de nieve en nodos específicos.
- hipo[3]=Union[hipo[1],hipo[2]];: Combina las cargas de viento y nieve en una única hipótesis de carga.
- cargas={hipo[1],hipo[2],hipo[3]};:Crea una lista que contiene todas las hipótesis de carga.

VOLVER AL CUERPO DEL PROYECTO->LINKO

• nudos=25;: Define el número de nudos en el sistema como 25.

INSTRUCCIONES DE USO GENERAL

- barras=78;: Establece el número de barras en el sistema como 78.
- tipos=3;: Indica que hay 3 tipos diferentes de barras según sus secciones.
- ligaduras=6;: Representa el número de apoyos en el sistema.
- hipotesis=3;: Define el número de hipótesis de carga como 3.
- e=21000000;: Establece el módulo de elasticidad del material utilizado en el sistema como 21,000,000.
- path=NotebookDirectory[]; SetDirectory[path];:Establece el directorio de trabajo actual para el directorio del cuaderno de Mathematica. Luego se leen las coordenadas y croquis desde archivos externos ubicados en este directorio.
- coordenadas=ReadList[çoordenadas.dat", Number, RecordLists->True]
 Lee las coordenadas de los nudos desde un archivo llamado çoordenadas.dat".
- croquis=ReadList[çroquis.dat", Number, RecordLists->True];:
 Lee el croquis (posiblemente la representación gráfica) del sistema desde un archivo llamado çroquis.dat".
- areas={0.01,0.005,0.0025};: Define las áreas de las distintas barras en metros cuadrados.
- apoyos=...: Define las condiciones de apoyo en los nodos del sistema. En este caso, parece que todos los nodos están fijos en la dirección x, y, y z.
- Se especifican las cargas en diferentes nodos del sistema.
- hipo[1] = . . .: Carga de viento en nodos específicos.
- hipo[2] = . . .: Carga de nieve en nodos específicos.

- hipo[3]=Union[hipo[1],hipo[2]];: Combina las cargas de viento y nieve en una única hipótesis de carga.
- cargas={hipo[1],hipo[2],hipo[3]};:Crea una lista que contiene todas las hipótesis de carga.

Comentarios a la entrada de estructuras tridimensionales.

El código de entradas 3D escrito en Mathematica se centra en la entrada de datos para el análisis de estructuras. A continuación, proporciono una breve descripción y comentarios sobre cada sección:

1. Datos Principales:

- 'nudos': Número de nudos en el sistema.
- 'barras': Número de barras en el sistema.
- 'tipos': Número de tipos de barras basadas en sus secciones.
- 'ligaduras': Número de apoyos en el sistema.
- 'hipotesis': Número de hipótesis de carga.
- 'e': Módulo de elasticidad del material.

2. Datos de Segundo Orden o Morfológicos:

- 'path': Ruta donde se encuentran los archivos 'coordenadas.dat' y 'croquis.dat'.
- Lectura de coordenadas desde el archivo 'coordenadas.dat'.
- Lectura de croquis desde el archivo 'croquis.dat'.
- 'areas': Lista de áreas de las distintas barras en m^2 .

3. Apoyos del Sistema:

Definición de los apoyos del sistema mediante la matriz 'apoyos'. Cada fila representa un apoyo, con el primer valor indicando el número del nudo y los siguientes tres valores (cada conjunto de tres valores) especificando las restricciones en las direcciones x, y y z respectivamente.

4. Nudos Cargados:

- Definición de las hipótesis de carga ('hipo[1]', 'hipo[2]', y 'hipo[3]') donde cada fila representa una carga. Los primeros tres valores indican el número del nudo y las siguientes tres componentes representan las cargas en las direcciones x, y y z respectivamente. Las hipótesis de carga se unen en 'hipo[3]'.
- La matriz 'cargas' contiene todas las hipótesis de carga.

5. Volver al Cuerpo del Proyecto:

• Este es un comentario que indica la posibilidad de volver al cuerpo principal del proyecto mediante un enlace (LINK1).

Este código se enfoca en la organización y entrada de datos esenciales para realizar análisis estructurales, incluyendo información sobre nudos, barras, apoyos y cargas. La utilización de listas y matrices facilita la estructuración y manipulación eficiente de estos datos en el entorno de Mathematica.

BIBLIOGRAFÍA

- [1] C. Hastings, K. Mischo, and M. Morrison. <u>Hands-on Start</u> to Wolfram Mathematica: And Programming with the Wolfram Language. Wolfram Media, 2016.
- [2] R. Thorne. <u>Structural Iron and Steel, 1850–1900</u>. Studies in the History of Civil Engineering. Taylor & Francis, 2017.
- [3] L.F. Troyano. <u>Bridge Engineering: A Global Perspective</u>. ICE Publishing complete digital collection: Structures and buildings. Thomas Telford, 2003.

Sobre el autor

Enrique es oriundo de un municipio del cinturón metropolitano de la ciudad de Granada. Obtuvo su primera licenciatura en física aplicada e instrumentación en el Cork Institute of Technology en Irlanda. Posteriormente obtuvo la licenciatura en física fundamental, un máster en métodos y técnicas avanzadas en física y un doctorado en física y matemáticas por la Universidad de Granada. También posee un Máster en COM-SOL Multiphysics impartido por la Universidad de Málaga. Los últimos diez años ha trabajado en la aplicación de métodos numéricos. En particular ha trabajado en modelado compacto y numérico de MISFET multipuerta, interruptores fotoconductivos, memristores resistivos, recepción heterodina basada en diodos cuánticos, generación de haces de Bessel y optimización topológica de antenas.

Ha realizado múltiples estancias posdoctorales en el extranjero y actualmente trabaja como profesor ayudante doctor en la Universidad pública de Alcalá de Henares.

Motivación

Existen muchas razones para escribir este libro, pero la principal razón es facilitar, en la medida de lo posible, el entendimiento de la estadística a cualquiera y muy especialmente a los estudiantes universitarios del grado de Criminalística que comienzan esta disciplina.

En este manuscrito se ilustra, de un modo pedagógico, el análisis de estructuras articuladas de dos y tres dimensiones. Precisando más, se trata de calcular, por el

método matricial del equilibrio,

tracción o compresión axial de barras) de los nudos así como los esfuerzos axiales de las barras que asumimos, de un material lineal-homogeneo-isotropo, rectas, de sección constante y elásticas de primer orden.

E.M. Moreno