Simulação e Modelagem de Sistemas

Exercícios de preparação de dados (modelagem de dados de entrada) e geração de n^{os} randômicos

1. Teste de adequação usando método $\chi 2$

a. Com Normal (nível de signif. de 10%)

# classe	inf	sup	f
1	-8	3	0
2	3	6	1
3	6	9	3
4	9	12	5
5	12	15	3
6	15	18	2
7	18	8	0

b. Com Exponencial (nível de signif. de 10%)

	f
	14
	5
	3
	1
	. 0,8
	0
Ι,	

intervalos de classes original (unidade=segundos):

0 a 100
100 a 200
200 a 300
300 a 400
400 a 500
500 a 600
Qual a chance de um intervalo entre chegadas ser igual a 333 seg.?
Qual a chance de haver ocorrência de intervalos entre-chegadas menor ou igual a 200 seg?

Supondo ser possível contagem fracionária

2. Teste de adequação usando método Kolmogorov-Smirnov (KS)

Os seguintes dados foram coletados e deseja-se saber se este conjunto pode estar distribuído exponencialmente. Dados: 1,5-9,3-1,2-39,4-22,3-8,6-3,7-10,2-12,4-33,2. Realizar o teste KS com signif. de 20%. (obs.: neste teste a primeira coisa a ser feita é ordenar os dados de maneira ascendente).

3. Correlação linear

Foram anotados os tamanhos de uma fila em 8 instantes de uma simulação:

tempo simul.	tam. Fila
130	7
145	15
190	13
230	10
235	8
270	8
290	5
344	6

Universidade do Vale do Rio dos Sinos - UNISINOS

Considerando o tempo de simulação como var. indep. e o tam. da fila como a var. dependente, construir um gráfico <u>tempo simul X tam. fila</u>, calcular a <u>reta</u> que melhor aproxima a relação entre estas duas variáveis (na forma Y=a+bX) e o <u>coeficiente de correlação</u> r.

4. Geração e teste de uma seqüência pseudo-randômica

Empregando o método do quadrado médio, com uma semente igual a 7234, gere uma seqüência pseudo-randômica de 10 números. Em seguida mapeie estes números para o intervalo de 0 a 1 e então para o intervalo de 10 a 30. Verifique se os números gerados estão uniformemente distribuídos.

5. Geração de uma seqüência pseudo-randômica

Empregando o método de *Tausworthe*, monte uma sequência inicial de **8 bits** (semente), escolha **r** e **q** e gere os bits 9,10, 11 e 12 da sequência. Qual seria o tamanho esperado do ciclo para esta sequência?

6. Usando o método LCG aditivo, gere uma seqüência de 20 nºs. Utilize m=100 e a≠c e ambos maiores que 2; Passe os valores gerados para o intervalo [0;1], identifique as tuplas sobrepostas (com d=2) e faça o mapeamento (plote) para um hiperplano unitário (Marsaglia).