Lecture 30: Multiple testing considerations

Motivation: differential gene expression

Suppose a biologist is interested in identifying genes which are *differentially expressed* under different biological treatments. The biologist observes 10 subjects under treatment A, and 10 subjects under treatment B. Gene expression measurements $X_{i,j}$ (treatment A) and $Y_{i,j}$ (treatment B) are recorded for 1000 different genes ($i=1,\ldots,1000, j=1,\ldots,10$).

For each gene i, the biologist tests $H_0: \mu_{i,A} = \mu_{i,B}$, rejecting when the p-value is below a threshold α .

If H_0 is actually true for all 1000 genes, how many false positives do we expect?

Motivation: multiple testing

In what other settings might we test many hypotheses?

Outcomes for multiple hypothesis tests

Family-wise error rate

Definition: Suppose we test m null hypotheses $H_{0,1}, \ldots, H_{0,m}$. The family-wise error rate is the probability of making at least one type I error:

$$FWER = P\left(\bigcup_{i:H_{0,i} \text{ is true}} \{\text{reject } H_{0,i}\}\right)$$

Suppose all m tests are independent, and $H_{0,i}$ is true for all tests. For each test, we reject if the corresponding p-value $p_i < \alpha$. What is the FWER?

The Sidak correction

$$FWER = P\left(\bigcup_{i:H_{0,i} \text{ is true}} \{\text{reject } H_{0,i}\}\right)$$

If all m hypotheses are independent, at what threshold α^* should we reject each test, such FWER $\leq \alpha$?

The Bonferroni correction

$$FWER = P\left(\bigcup_{i:H_{0,i} \text{ is true}} \{\text{reject } H_{0,i}\}\right)$$

Holm's procedure

Suppose we test 5 hypotheses, and observe p-values 0.4, 0.01, 0, 0, 0. Does it still seem reasonable to use the Bonferroni cutoff $\alpha/5$ for each test?

Holm's procedure

Suppose we test m null hypotheses $H_{0,1}, \ldots, H_{0,m}$. Let p_i be the corresponding p-value for test i.

- Order the p-values $p_{(1)} \leq p_{(2)} \leq \cdots \leq p_{(m)}$
- Let $i^* = \min \left\{ i : p_{(i)} > \frac{\alpha}{m-i+1} \right\}$
- Reject $H_{0,(i)}$ for all $i < i^*$

Claim: Holm's procedure controls FWER at level α