Sugli autovalori relativi ad un'equazione della conduzione del calore in un fluido soggetto a turbolenza.

Nota di Giovanni Sansone (a Firenze)

A Enrico Bompiani in occasione del suo Giubileo scientifico.

Sunto. - L'A. dimostra che gli autovalori, anche per equazioni più generali, dipendono da un'equazione integrale di seconda specie di Fredholm con nucleo di Schmidt-Goursat.

1. H. LATZOKO nel 1927, in una sua ricerca sulla conduzione del calore in un fluido soggetto a turbolenza [1], perveniva all'equazione

(1)
$$\frac{d}{dx}\left[(1-x^{\prime})\frac{dy}{dx}\right] + \lambda x^{\prime}y = 0$$

per la quale dovevano determinarsi gli autovalori λ ai quali corrispondono soluzioni dell'equazione che soddisfano le due condizioni

(2₁)
$$y(x)$$
 limitata in [0, 1], (2_2) $y(0) = 0$.

L'A. senza dimostrazione osservava che gli autovalori λ e le corrispondenti autofunzioni debbono minimizzare l'integrale

$$\int_{0}^{1} \left[(1-x^{7}) \left(\frac{dy}{dx} \right)^{2} - \lambda x^{7} y^{2} \right] dx,$$

e partendo allora dallo sviluppo di y(x) in serie di polinomi di LEGENDRE, $y(x) = g_1 P_1(x) + g_2 P_3(x) + g_3 P_5(x) + \dots$ e limitandosi ai primi tre termini, assegnava per i primi tre autovalori i seguenti valori numerici:

$$(3_1)$$
 $\lambda_0 = 8.712;$ $\lambda_1 = 164.36;$ $\lambda_2 = 1700.40.$

Nel 1956 W. H. DURFEE [2] partendo dallo sviluppo dell'integrale generale dell'equazione (1)

$$y = A \sum_{i=0}^{\infty} a_i(x-1)^i + B \log (x-1) \sum_{i=0}^{\infty} b_i(x-1)^i$$

con A e B costanti, arriva alla valutazione numerica dei primi otto autovalori calcolando le soluzioni della (1) che soddisfano la condizione y(1) = 1 e che si annullano nell'origine.

Questo A. fornisce per λ_0 , λ_1 , λ_2 i seguenti valori

$$(3_2)$$
 $\lambda_0 = 8.72747;$ $\lambda_1 = 152.423;$ $\lambda_2 = 435.06.$

Più recentemente H. E. FETTIS [3], sviluppando le soluzioni dell'equazione (1) in serie di polinomi di Jacobi di un'opportuna classe, perviene ai seguenti valori numerici di λ_0 , λ_1 , λ_2 :

$$(3_8)$$
 $\lambda_0 = 8.72798; \quad \lambda_1 = 152.8; \quad \lambda_2 = 462.5.$

Nessuno dei tre AA. ricordati dimostra preventivamente che gli autovalori del sistema (1), (2₁), (2₂) esistono, e lo scopo di questa brevissima nota è di provare che gli autovalori cercati, anche per equazioni più generali della (1), dipendono dall'esistenza di infiniti autovalori di un'equazione integrale di seconda specie di FREDHOLM con nucleo di SCHMIDT-GOURSAT.

2. Si consideri l'equazione

(4)
$$\frac{d}{dx} \left[\theta(x) \frac{dy}{dx} \right] + \lambda A(x)y = 0$$

dove $\theta(x)$, $\theta'(x)$, A(x) sono continue in [0, 1],

$$\begin{array}{ll} \theta(x) > 0 \ \ per \ \ 0 \leq x < 1 \ ; & \quad \theta(1) = 0, \lim_{x \to 1-0} \theta(x) \ (1-x) = \rho > 0 \ ; \\ A(x) > 0 \ \ per \ \ 0 < x \leq 1, \end{array}$$

e si cerchino gli autovalori di λ cui corrispondano le autofunzioni y(x) definite in [0, 1] che soddisfino le condizioni:

- (5_1) y(x) sia limitata in [0, 1],
- $(5_2) y(0) = 0,$
- (5₃) y(x) verifichi l'equazione (4) per $0 \le x < 1$.

Sia $\omega(\tau)$ la funzione definita per $0 \le \tau \le 1$ dalla relazione

(6₁)
$$\int_{0}^{\tau} ds/\theta(s) = \omega(\tau), \qquad [(6_2)\omega(1)\infty];$$

risulterà per le nostre ipotesi

(6₂)
$$\lim_{\tau \to 1-0} \omega(\tau)/\log(1-\tau) = -\rho^{-1}.$$

Se λ è un autovalore e y(x) la corrispondente autofunzione, se poniamo

(7)
$$z(x) = \lambda \int_{0}^{x} \omega(\tau) A(\tau) y(\tau) d\tau + \lambda \omega(x) \int_{x}^{1} A(\tau) y(\tau) d\tau,$$

dalla limitatezza di y(x) in [0, 1] e dalla (6_s) risulterà pure z(x) limitata in [0, 1], e

$$z(0) = 0.$$

Derivando la (7) avremo per $0 \le x < 1$

(9₁)
$$\frac{dz}{dx} = \frac{\lambda}{\theta(x)} \int_{x}^{1} A(\tau) y(\tau) d\tau,$$

quindi

(9₂)
$$\frac{d}{dx} \left[\theta(x) \frac{dz}{dx} \right] = -\lambda A(x) y(x) = \frac{d}{dx} \left[\theta(x) \frac{dy}{dx} \right],$$

perciò

$$\theta(x) \frac{d(z-y)}{dx} = \theta(0)[z'(0) - y'(0)],$$

$$z'(x) - y'(x) = \frac{\theta(0)}{\theta(x)} [z'(0) - y'(0)]$$

e per la (5_2) e la (8), sempre per $0 \le x < 1$,

$$z(x) - y(x) = \theta(0)[z'(0) - y'(0)]\omega(x)$$

e per la limitatezza di y(x) e z(x) in [0, 1] e per la (6_2) ne viene z'(0) = y'(0), $z(x) \equiv y(x)$, ossia

(10)
$$y(x) = \lambda \int_{0}^{x} \omega(\tau) A(\tau) y(\tau) d\tau + \lambda \omega(x) \int_{x}^{1} A(\tau) y(\tau) d\tau.$$

Questa, ove si ponga

(11₁)
$$K(x, \tau) = \omega(\tau)$$
 so $x \ge \tau$, $(1 \ge x \ge \tau \ge 0)$,

(11₂)
$$K(x, \tau) = \omega(x) \text{ se } x \le \tau, \quad (1 \ge \tau \ge x \ge 0),$$

e perciò

$$(11_8) K(x, \tau) = K(\tau, x)$$

diventa

(12)
$$y(x) = \lambda \int_{0}^{1} K(x, \tau) A(\tau) y(\tau) d\tau,$$

e abbiamo così dimostrato che se λ è un autovalore dell'equazione (4) e $y(\tau)$ la corrispondente autofunzione, allora y(x) soddisfa l'equazione integrale di seconda specie (12) col nucleo $K(x, \tau)A(\tau)$ di Schmidt-Goursat.

A motivo delle (11₁), (11₂), (6₃) il nucleo $K(x, \tau)A(\tau)$ è di quadrato integrabile per τ variabile in [0, 1], per x variabile in [0, 1], per (x, τ) variabile nel quadrato di vertici opposti (0, 0), (1, 1) e in conseguenza [4] poichè il nucleo simmetrico $K(x, \tau)[A(x)A(\tau)]^{1/2}$ non è elementare, esistono infiniti autovalori.

Gli autovalori sono tutti positivi. Infatti se per assurdo λ fosse un autovalore negativo, dalla (4) si avrebbe che y(x) per 0 < x < 1 non può annullarsi [5], e se y(x) > 0 avendosi dalla (9₁)

$$y'(x) = \frac{\lambda}{\theta(x)} \int_{x}^{1} A(\tau) y(\tau) d\tau$$

seguirebbe y'(x) < 0, e poichè y(0) = 0 l'assurdo y(x) < 0,

BIBLIOGRAFIA

- H. LATZOKO, Wärmeübergang an einen turbulenten Flüssigkeits oder Gasstrom, «Zeitschr, f. Ang. Math., u. Mech. », 1 (1921), 268-290.
- [2] W. H. Durfee, Heat Flow in a Fluid with Eddying Flow, Journ. of the Aeronautical Sciences, 23 (1956). 188-189.
- [3] H. E. FETTIS, On the eigenvalue LATZOKO's differential equation, «Zeitschr, f. Ang. Math., u. Mech. », 37 (1957), 398-399.
- [4] M. PICONE, Appunti di Analisi Superiore, (Napoli, 1940), 616-617.
- [5] G. Sansone, Equazioni Differenziali nel campo reale, I (ed. 1956), 191.