Sei K ein Körper, V ein K-VR. Eine **Bilinearform** auf V ist eine (bilineare) Abbildung $\beta \colon V \times V \to K$, für die gilt:

- $(1) \dots$
- (2) $\beta(s \cdot \mathbf{v}, \mathbf{w}) = s \cdot \beta(\mathbf{v}, \mathbf{w})$ für alle $s \in K, \mathbf{v}, \mathbf{w} \in V$
- (3) $\beta(\mathbf{v}, \mathbf{w_1} + \mathbf{w_2}) = \beta(\mathbf{v}, \mathbf{w_1}) + \beta(\mathbf{v}, \mathbf{w_2})$ für alle $\mathbf{v}, \mathbf{w_1}, \mathbf{w_2} \in V$
- (4) $\beta(\mathbf{v}, s \cdot \mathbf{w}) = s \cdot \beta(\mathbf{v}, \mathbf{w})$ für alle $s \in K, \mathbf{v}, \mathbf{w} \in V$

Sei K ein Körper, V ein K-VR. Eine **Bilinearform** auf V ist eine (bilineare) Abbildung $\beta \colon V \times V \to K$, für die gilt:

- (1) $\beta(\mathbf{v_1} + \mathbf{v_2}, \mathbf{w}) = \beta(\mathbf{v_1}, \mathbf{w}) + \beta(\mathbf{v_2}, \mathbf{w})$ für alle $\mathbf{v_1}, \mathbf{v_2}, \mathbf{w} \in V$
- (2) $\beta(s \cdot \mathbf{v}, \mathbf{w}) = s \cdot \beta(\mathbf{v}, \mathbf{w})$ für alle $s \in K, \mathbf{v}, \mathbf{w} \in V$
- (3) $\beta(\mathbf{v}, \mathbf{w_1} + \mathbf{w_2}) = \beta(\mathbf{v}, \mathbf{w_1}) + \beta(\mathbf{v}, \mathbf{w_2})$ für alle $\mathbf{v}, \mathbf{w_1}, \mathbf{w_2} \in V$
- (4) $\beta(\mathbf{v}, s \cdot \mathbf{w}) = s \cdot \beta(\mathbf{v}, \mathbf{w})$ für alle $s \in K, \mathbf{v}, \mathbf{w} \in V$

 \rightarrow Def. 10.1

Sei K ein Körper, V ein K-VR. Eine **Bilinearform** auf V ist eine (bilineare) Abbildung $\beta\colon V\times V\to K$, für die gilt:

- (1) $\beta(\mathbf{v_1} + \mathbf{v_2}, \mathbf{w}) = \beta(\mathbf{v_1}, \mathbf{w}) + \beta(\mathbf{v_2}, \mathbf{w})$ für alle $\mathbf{v_1}, \mathbf{v_2}, \mathbf{w} \in V$
- $(2) \ldots$
- (3) $\beta(\mathbf{v}, \mathbf{w_1} + \mathbf{w_2}) = \beta(\mathbf{v}, \mathbf{w_1}) + \beta(\mathbf{v}, \mathbf{w_2})$ für alle $\mathbf{v}, \mathbf{w_1}, \mathbf{w_2} \in V$
- (4) $\beta(\mathbf{v}, s \cdot \mathbf{w}) = s \cdot \beta(\mathbf{v}, \mathbf{w})$ für alle $s \in K, \mathbf{v}, \mathbf{w} \in V$

Sei K ein Körper, V ein K-VR. Eine **Bilinearform** auf V ist eine (bilineare) Abbildung $\beta \colon V \times V \to K$, für die gilt:

- (1) $\beta(\mathbf{v_1} + \mathbf{v_2}, \mathbf{w}) = \beta(\mathbf{v_1}, \mathbf{w}) + \beta(\mathbf{v_2}, \mathbf{w})$ für alle $\mathbf{v_1}, \mathbf{v_2}, \mathbf{w} \in V$
- (2) $\beta(s \cdot \mathbf{v}, \mathbf{w}) = s \cdot \beta(\mathbf{v}, \mathbf{w})$ für alle $s \in K, \mathbf{v}, \mathbf{w} \in V$
- (3) $\beta(\mathbf{v}, \mathbf{w_1} + \mathbf{w_2}) = \beta(\mathbf{v}, \mathbf{w_1}) + \beta(\mathbf{v}, \mathbf{w_2})$ für alle $\mathbf{v}, \mathbf{w_1}, \mathbf{w_2} \in V$
- (4) $\beta(\mathbf{v}, s \cdot \mathbf{w}) = s \cdot \beta(\mathbf{v}, \mathbf{w})$ für alle $s \in K, \mathbf{v}, \mathbf{w} \in V$

→ Def. 10.1

Sei K ein Körper, V ein K-VR. Eine **Bilinearform** auf V ist eine (bilineare) Abbildung $\beta \colon V \times V \to K$, für die gilt:

- (1) $\beta(\mathbf{v_1} + \mathbf{v_2}, \mathbf{w}) = \beta(\mathbf{v_1}, \mathbf{w}) + \beta(\mathbf{v_2}, \mathbf{w})$ für alle $\mathbf{v_1}, \mathbf{v_2}, \mathbf{w} \in V$
- (2) $\beta(s \cdot \mathbf{v}, \mathbf{w}) = s \cdot \beta(\mathbf{v}, \mathbf{w})$ für alle $s \in K, \mathbf{v}, \mathbf{w} \in V$
- $(3) \dots$
- (4) $\beta(\mathbf{v}, s \cdot \mathbf{w}) = s \cdot \beta(\mathbf{v}, \mathbf{w})$ für alle $s \in K, \mathbf{v}, \mathbf{w} \in V$

Sei K ein Körper, V ein K-VR. Eine **Bilinearform** auf V ist eine (bilineare) Abbildung $\beta\colon V\times V\to K$, für die gilt:

- (1) $\beta(\mathbf{v_1} + \mathbf{v_2}, \mathbf{w}) = \beta(\mathbf{v_1}, \mathbf{w}) + \beta(\mathbf{v_2}, \mathbf{w})$ für alle $\mathbf{v_1}, \mathbf{v_2}, \mathbf{w} \in V$
- (2) $\beta(s \cdot \mathbf{v}, \mathbf{w}) = s \cdot \beta(\mathbf{v}, \mathbf{w})$ für alle $s \in K, \mathbf{v}, \mathbf{w} \in V$
- (3) $\beta(\mathbf{v}, \mathbf{w_1} + \mathbf{w_2}) = \beta(\mathbf{v}, \mathbf{w_1}) + \beta(\mathbf{v}, \mathbf{w_2})$ für alle $\mathbf{v}, \mathbf{w_1}, \mathbf{w_2} \in V$
- (4) $\beta(\mathbf{v}, s \cdot \mathbf{w}) = s \cdot \beta(\mathbf{v}, \mathbf{w})$ für alle $s \in K, \mathbf{v}, \mathbf{w} \in V$

 \rightarrow Def. 10.1

Sei K ein Körper, V ein K-VR. Eine **Bilinearform** auf V ist eine (bilineare) Abbildung $\beta \colon V \times V \to K$, für die gilt:

- (1) $\beta(\mathbf{v_1} + \mathbf{v_2}, \mathbf{w}) = \beta(\mathbf{v_1}, \mathbf{w}) + \beta(\mathbf{v_2}, \mathbf{w})$ für alle $\mathbf{v_1}, \mathbf{v_2}, \mathbf{w} \in V$
- (2) $\beta(s \cdot \mathbf{v}, \mathbf{w}) = s \cdot \beta(\mathbf{v}, \mathbf{w})$ für alle $s \in K, \mathbf{v}, \mathbf{w} \in V$
- (3) $\beta(\mathbf{v}, \mathbf{w_1} + \mathbf{w_2}) = \beta(\mathbf{v}, \mathbf{w_1}) + \beta(\mathbf{v}, \mathbf{w_2})$ für alle $\mathbf{v}, \mathbf{w_1}, \mathbf{w_2} \in V$
- (4) ...

Sei K ein Körper, V ein K-VR. Eine **Bilinearform** auf V ist eine (bilineare) Abbildung $\beta \colon V \times V \to K$, für die gilt:

- (1) $\beta(\mathbf{v_1} + \mathbf{v_2}, \mathbf{w}) = \beta(\mathbf{v_1}, \mathbf{w}) + \beta(\mathbf{v_2}, \mathbf{w})$ für alle $\mathbf{v_1}, \mathbf{v_2}, \mathbf{w} \in V$
- (2) $\beta(s \cdot \mathbf{v}, \mathbf{w}) = s \cdot \beta(\mathbf{v}, \mathbf{w})$ für alle $s \in K, \mathbf{v}, \mathbf{w} \in V$
- (3) $\beta(\mathbf{v}, \mathbf{w_1} + \mathbf{w_2}) = \beta(\mathbf{v}, \mathbf{w_1}) + \beta(\mathbf{v}, \mathbf{w_2})$ für alle $\mathbf{v}, \mathbf{w_1}, \mathbf{w_2} \in V$
- (4) $\beta(\mathbf{v}, s \cdot \mathbf{w}) = s \cdot \beta(\mathbf{v}, \mathbf{w})$ für alle $s \in K, \mathbf{v}, \mathbf{w} \in V$

Jede Bilinearform β auf K^n liefert eine Matrix	Jede Bilinearform β auf K^n liefert eine Matrix $M(\beta) \in \operatorname{Mat}_K(n \times n)$ der Gestalt
	$M(\beta) \colon = \beta(\mathbf{e}_i, \mathbf{e}_j)_{ij}$
	\rightarrow Satz 10.2

Jede Matrix $A \in \operatorname{Mat}_K(n \times n)$ liefert eine wie folgt:	Jede Matrix $A \in \operatorname{Mat}_K(n \times n)$ liefert eine Bilinearform auf K^n wie folgt:
	$\beta_A: K^n \times K^n \longrightarrow K$

 $\rightarrow \mathrm{Satz} \ 10.2$

Die Menge der Bilinearformen auf K^n und die Menge der $n \times n$ Matrizen über K sind Die Menge der Bilinearformen auf K^n und die Menge der $n \times n$ Matrizen über K sind isomorph. \to Satz 10.2

Die darstellende Matrix einer Bilinearform β bezüglich einer Basis B ist gegeben durch . . . Die darstellende Matrix einer Bilinearform β bezüglich einer Basis B ist gegeben durch

Die darstellende Matrix einer Bilinearform β bezüglich einer Basis B ist gegeben durch . . . $M_B(\beta)\colon =\beta(\mathbf{b}_i,\mathbf{b}_j)_{ij}$ \to Def. 10.3

Zwei Matrizen A, A' sind kongruent , falls es	Zwei quadratische Matrizen A,A' sind kongruent , falls es eine invertierbare Matrix S gibt mit $A' = S^T A S$ \to Def. 10.5
Eine Bilinearform β auf V ist symmetrisch , falls	Eine Bilinearform β auf V ist symmetrisch , falls für alle $\mathbf{v}, \mathbf{w} \in V$ $\beta(\mathbf{v}, \mathbf{w}) = \beta(\mathbf{w}, \mathbf{v})$
	\rightarrow Def. 10.7
Def LinA-II-10-Skalarprodukte 57381bea-bbe3-11ec-8422-0242ac120002	
Eine Bilinearform β auf V ist schiefsymmetrisch , falls	Eine Bilinearform β auf V ist schiefsymmetrisch , falls für alle $\mathbf{v}, \mathbf{w} \in V$
	$eta(\mathbf{v},\mathbf{w}) = -eta(\mathbf{w},\mathbf{v})$
	\rightarrow Def. 10.7
Def LinA-II-10-Skalarprodukte 57381bea-bbe3-11ec-8422-0242ac120002	
Eine Bilinearform β auf V ist alternierend , falls	Eine Bilinearform β auf V ist alternierend , falls für alle $\mathbf{v} \in V$ $\beta(\mathbf{v}, \mathbf{v}) = 0$

Def LinA-II-10-Skalarprodukte

57381bea-bbe3-11ec-8422-0242ac120002

Eine Bilinearform β ist symmetrisch	genau dann, wenn
(darstellende Matrix)	,

Eine Bilinearform β ist symmetrisch genau dann, wenn ihre darstellende Matrix $M(\beta)$ symmetrisch ist:

$$M(\beta)^T = M(\beta)$$

→ Satz 10.9

LinA-II-10-Skalarprodukte

00e2cdc-bbf2-11ec-8422-0242ac120002

Eine Bilinearform β ist **schiefsymmetrisch** genau dann, wenn . . . (darstellende Matrix)

Eine Bilinearform β ist schiefsymmetrisch genau dann, wenn ihre darstellende Matrix $M(\beta)$ schiefsymmetrisch ist:

$$M(\beta)^T = -M(\beta)$$

 $\rightarrow \; \mathrm{Satz} \; 10.9$

Eine Bilinearform β ist **alternierend** genau dann, wenn ... (darstellende Matrix)

Eine Bilinearform β ist **alternierend** genau dann, wenn für ihre darstellende Matrix $M(\beta)$ gilt:

$$M(\beta)^T = -M(\beta)$$

 und

$$M_{ii} = 0$$
 für alle i

→ Satz 10.9

Satz LinA-II-10-Skalarprodukte

Satz LinA-II-10-Skalarprodukte

fb0e2cdc-bbf2-11ec-8422-0242ac120002

fb0e2cdc-bbf2-11ec-8422-0242ac120002

Eine **Sesquilinearform** η auf einem \mathbb{C} -Vektorraum V ist eine Abbildung $\eta\colon V\times V\longrightarrow \mathbb{C}$ mit folgenden Eigenschaften:

- •
- η ist semilinear in der zweiten Koordinate:

$$\eta(\mathbf{v}, \mathbf{w}_1 + \mathbf{w}_2) = \eta(\mathbf{v}, \mathbf{w}_1) + \eta(\mathbf{v}, \mathbf{w}_2)$$

 $\eta(\mathbf{v}, s\mathbf{w}) = \bar{s} \cdot \eta(\mathbf{v}, \mathbf{w})$

für alle $\mathbf{v}, \mathbf{w}, \mathbf{w_1}, \mathbf{w_2} \in V$ und alle $s \in \mathbb{C}$

Eine **Sesquilinearform** η auf einem \mathbb{C} -Vektorraum V ist eine Abbildung $\eta\colon V\times V\longrightarrow \mathbb{C}$ mit folgenden Eigenschaften:

• η ist linear in der ersten Koordinate:

$$\eta(\mathbf{v}_1 + s\mathbf{v}_2, \mathbf{w}) = \eta(\mathbf{v}_1, \mathbf{w}) + s \cdot \eta(\mathbf{v}_2, \mathbf{w})$$

für alle $\mathbf{v_1},\mathbf{v_2},\mathbf{w}\in V$ und alle $s\in\mathbb{C}$

• η ist semilinear in der zweiten Koordinate:

$$\eta(\mathbf{v}, \mathbf{w}_1 + \mathbf{w}_2) = \eta(\mathbf{v}, \mathbf{w}_1) + \eta(\mathbf{v}, \mathbf{w}_2)$$
$$\eta(\mathbf{v}, s\mathbf{w}) = \bar{s} \cdot \eta(\mathbf{v}, \mathbf{w})$$

für alle $\mathbf{v}, \mathbf{w}, \mathbf{w_1}, \mathbf{w_2} \in V$ und alle $s \in \mathbb{C}$

\rightarrow Def. 10.10	Eine Sesquilinearform η auf einem \mathbb{C} -Vektorraum V
	ist eine Abbildung $\eta\colon V\times V\longrightarrow \mathbb{C}$ mit folgenden
	Eigenschaften:
	• η ist linear in der ersten Koordinate:

 $\eta(\mathbf{v}_1 + s\mathbf{v}_2, \mathbf{w}) = \eta(\mathbf{v}_1, \mathbf{w}) + s \cdot \eta(\mathbf{v}_2, \mathbf{w})$

für alle $\mathbf{v_1}, \mathbf{v_2}, \mathbf{w} \in V$ und alle $s \in \mathbb{C}$

Eine **Sesquilinearform** η auf einem \mathbb{C} -Vektorraum Vist eine Abbildung $\eta \colon V \times V \longrightarrow \mathbb{C}$ mit folgenden Eigenschaften:

• η ist linear in der ersten Koordinate:

$$\eta(\mathbf{v}_1 + s\mathbf{v}_2, \mathbf{w}) = \eta(\mathbf{v}_1, \mathbf{w}) + s \cdot \eta(\mathbf{v}_2, \mathbf{w})$$

für alle $\mathbf{v_1}, \mathbf{v_2}, \mathbf{w} \in V$ und alle $s \in \mathbb{C}$

• η ist semilinear in der zweiten Koordinate:

$$\eta(\mathbf{v}, \mathbf{w}_1 + \mathbf{w}_2) = \eta(\mathbf{v}, \mathbf{w}_1) + \eta(\mathbf{v}, \mathbf{w}_2)$$
$$\eta(\mathbf{v}, s\mathbf{w}) = \bar{s} \cdot \eta(\mathbf{v}, \mathbf{w})$$

für alle $\mathbf{v}, \mathbf{w}, \mathbf{w_1}, \mathbf{w_2} \in V$ und alle $s \in \mathbb{C}$

Eine Sesquilinearform η ist **hermitesch**, falls ...

LinA-II-10-Skalarprodukte

7e2e222e-bbf4-11ec-8422-0242ac120002

Die darstellende Matrix $M(\eta)$ zu einer Sesquilinearform η hat die Form ...

Die darstellende Matrix $M(\eta)$ zu einer Sesquilinearform η hat die Form

Eine Sesquilinearform η ist **hermitesch**, falls gilt

für alle $\mathbf{v}, \mathbf{w} \in V$

 $\eta(\mathbf{v}, \mathbf{w}) = \overline{\eta(\mathbf{w}, \mathbf{v})}$

$$M(\eta)$$
: = $(\eta(\mathbf{e}_i, \mathbf{e}_j)_{ij})$

→ Satz 10.11

→ Def. 10.10

 \rightarrow Def. 10.10

LinA-II-10-Skalarprodukte

bd8dcf48-bc10-11ec-8422-0242ac120002

Zu einer gegebenen komplexen Matrix A existiert eine Sesquilinearform η wie folgt:	Zu einer gegebenen komplexen quadratischen Matrix A existiert eine Sesquilinearform η wie folgt: $\eta_A(\mathbf{v},\mathbf{w})\colon = \mathbf{v}^T A \overline{\mathbf{w}}$
	ightarrow Satz 10.11
Satz LinA-II-10-Skalarprodukte bd8dcf48-bc10-11ec-8422-0242ac120002	
Eine symmetrische Bilinearform β auf einem \mathbb{R} -Vektorraum ist positiv definit , falls	Eine symmetrische Bilinearform β auf einem \mathbb{R} -Vektorraum ist positiv definit , falls $\beta(\mathbf{v}, \mathbf{v}) > 0 \text{ für alle } \mathbf{v} \in V \setminus \{0\}$
	ightarrow Def. 10.14
Def LinA-II-10-Skalarprodukte ca81504e-bc10-11ec-8422-0242ac120002	

Eine hermitesche Bilinearform β auf einem $\mathbb{C}\text{-Vektorraum}$

ist positiv definit, falls \dots

Def
LinA-II-10-Skalarprodukte ca81504e-bc10-11ec-8422-0242ac120002

Ein Skalarprodukt auf einem \mathbb{R} -Vektorraum ist ...

Def LinA-II-10-Skalarprodukte

d1b1125a-bc10-11ec-8422-0242ac120002

Ein Skalarprodukt auf einem \mathbb{R} -Vektorraum ist eine positiv definite symmetrische Bilinearform.

Eine hermitesche Bilinearform β auf einem $\mathbb{C}\text{-Vektorraum}$

 $\beta(\mathbf{v}, \mathbf{v}) > 0$ für alle $\mathbf{v} \in V \setminus \{\mathbf{0}\}$

ist positiv definit, falls

 \rightarrow Def. 10.15

Ein Skalarprodukt auf einem \mathbb{C} -Vektorraum ist	Ein Skalarprodukt auf einem C-Vektorraum ist eine positiv definite hermitesche Bilinearform.
	\rightarrow Def. 10.15
Def LinA-II-10-Skalarprodukte d1b1125a-bc10-11ec-8422-0242ac120002	
•	
Ein euklidischer Vektorraum ist	Ein euklidischer Vektorraum $(V, \langle \cdot, \cdot \rangle)$ ist ein \mathbb{R} -Vektorraum V zusammen mit einem Skalarprodukt $\langle \cdot, \cdot \rangle$.
	\rightarrow Def. 10.15
Def LinA-II-10-Skalarprodukte d1b1125a-bc10-11ec-8422-0242ac120002	
Ein unitärer Vektorraum ist	Ein unitärer Vektorraum $(V, \langle \cdot, \cdot \rangle)$ ist ein \mathbb{C} -Vektorraum V zusammen mit einem Skalarprodukt $\langle \cdot, \cdot \rangle$.
	\rightarrow Def. 10.15
	→ Del. 10.10
Def LinA-II-10-Skalarprodukte d1b1125a-bc10-11ec-8422-0242ac120002	
Die assoziierte Norm zu einem euklidischen oder unitären Vektorraum $(V, \langle \cdot, \cdot \rangle)$ ist gegeben durch	Die assoziierte Norm zu einem euklidischen oder unitären Vektorraum $(V, \langle \cdot, \cdot \rangle)$ ist gegeben durch
$\ \cdot\ :V\longrightarrow \mathbb{R}$	$\lVert \cdot \rVert : V \longrightarrow \mathbb{R}$
$\mathbf{v} \mapsto$	$\mathbf{v} \mapsto \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$
	(Die Norm wird durch das Skalarprodukt induziert .)

In jedem euklidischen oder unitären Vektorraum $(V, \langle \cdot, \cdot \rangle)$ gilt:

- (i) (Verhältnis Norm und 0)...
- (ii) $||s \cdot \mathbf{v}|| = |s| ||\mathbf{v}||$
- (iii) Dreiecksungleichung: $\|\mathbf{v} + \mathbf{w}\| \le \|\mathbf{v}\| + \|\mathbf{w}\|$
- (iv) Cauchy-Schwarz-Ungleichung: $|\langle \mathbf{v}, \mathbf{w} \rangle| \leq \|\mathbf{v}\| \cdot \|\mathbf{w}\|$

In jedem euklidischen oder unitären Vektorraum $(V, \langle \cdot, \cdot \rangle)$ gilt:

- (i) $\|\mathbf{v}\| \ge 0$ für alle $\mathbf{v} \in V$ $\|\mathbf{v}\| = 0 \Leftrightarrow \mathbf{v} = \mathbf{0}$
- (ii) $||s \cdot \mathbf{v}|| = |s| ||\mathbf{v}||$
- $\label{eq:constraint} \begin{aligned} (\mathrm{iii}) \quad & \textbf{Dreiecksungleichung:} \\ & \|\mathbf{v} + \mathbf{w}\| \leqslant \|\mathbf{v}\| + \|\mathbf{w}\| \end{aligned}$
- (iv) Cauchy-Schwarz-Ungleichung: $|\langle \mathbf{v}, \mathbf{w} \rangle| \leqslant \|\mathbf{v}\| \cdot \|\mathbf{w}\|$

 \rightarrow Satz 10.18

In jedem euklidischen oder unitären Vektorraum $(V, \langle \cdot, \cdot \rangle)$ gilt:

- (i) $\|\mathbf{v}\| \ge 0$ für alle $\mathbf{v} \in V$ $\|\mathbf{v}\| = 0 \Leftrightarrow \mathbf{v} = \mathbf{0}$
- (ii) $||s \cdot \mathbf{v}|| = \dots$
- (iii) Dreiecksungleichung: $\|\mathbf{v} + \mathbf{w}\| \le \|\mathbf{v}\| + \|\mathbf{w}\|$
- (iv) Cauchy-Schwarz-Ungleichung: $|\langle \mathbf{v}, \mathbf{w} \rangle| \leq \|\mathbf{v}\| \cdot \|\mathbf{w}\|$

In jedem euklidischen oder unitären Vektorraum $(V,\langle\cdot,\cdot\rangle)$ gilt:

- (i) $\|\mathbf{v}\| \ge 0$ für alle $\mathbf{v} \in V$ $\|\mathbf{v}\| = 0 \Leftrightarrow \mathbf{v} = \mathbf{0}$
- (ii) $||s \cdot \mathbf{v}|| = |s| ||\mathbf{v}||$
- $\label{eq:constraint} \begin{array}{ll} \mbox{(iii)} & \mbox{Dreiecksungleichung:} \\ & \|\mathbf{v}+\mathbf{w}\| \leqslant \|\mathbf{v}\| + \|\mathbf{w}\| \end{array}$
- (iv) Cauchy-Schwarz-Ungleichung: $|\langle \mathbf{v}, \mathbf{w} \rangle| \leqslant \|\mathbf{v}\| \cdot \|\mathbf{w}\|$

→ Satz 10.18

In jedem euklidischen oder unitären Vektorraum $(V, \langle \cdot, \cdot \rangle)$ gilt:

- (i) $\|\mathbf{v}\| \geqslant 0$ für alle $\mathbf{v} \in V$ $\|\mathbf{v}\| = 0 \Leftrightarrow \mathbf{v} = \mathbf{0}$
- (ii) $||s \cdot \mathbf{v}|| = |s| ||\mathbf{v}||$
- (iii) (Dreiecksungleichung:)

. .

 $(iv) \ \ \textbf{Cauchy-Schwarz-Ungleichung:}$

$$|\langle \mathbf{v}, \mathbf{w} \rangle| \leqslant \|\mathbf{v}\| \cdot \|\mathbf{w}\|$$

In jedem euklidischen oder unitären Vektorraum $(V, \langle \cdot, \cdot \rangle)$ gilt:

- (i) $\|\mathbf{v}\| \geqslant 0$ für alle $\mathbf{v} \in V$ $\|\mathbf{v}\| = 0 \Leftrightarrow \mathbf{v} = \mathbf{0}$
- (ii) $||s \cdot \mathbf{v}|| = |s| ||\mathbf{v}||$
- (iii) Dreiecksungleichung: $\|\mathbf{v} + \mathbf{w}\| \leq \|\mathbf{v}\| + \|\mathbf{w}\|$
- $\begin{array}{ll} \text{(iv)} \;\; \textbf{Cauchy-Schwarz-Ungleichung:} \\ |\langle \mathbf{v}, \mathbf{w} \rangle| \leqslant \|\mathbf{v}\| \cdot \|\mathbf{w}\| \end{array}$

→ Satz 10.18

In jedem euklidischen oder unitären Vektorraum $(V, \langle \cdot, \cdot \rangle)$ gilt:

- (i) $\|\mathbf{v}\| \ge 0$ für alle $\mathbf{v} \in V$ $\|\mathbf{v}\| = 0 \Leftrightarrow \mathbf{v} = \mathbf{0}$
- (ii) $||s \cdot \mathbf{v}|| = |s| ||\mathbf{v}||$
- (iii) Dreiecksungleichung: $\|\mathbf{v} + \mathbf{w}\| \le \|\mathbf{v}\| + \|\mathbf{w}\|$
- (iv) (Cauchy-Schwarz-Ungleichung):

..

In jedem euklidischen oder unitären Vektorraum $(V, \langle \cdot, \cdot \rangle)$ gilt:

- (i) $\|\mathbf{v}\| \ge 0$ für alle $\mathbf{v} \in V$ $\|\mathbf{v}\| = 0 \Leftrightarrow \mathbf{v} = \mathbf{0}$
- (ii) $||s \cdot \mathbf{v}|| = |s| ||\mathbf{v}||$
- (iii) Dreiecksungleichung: $\|\mathbf{v} + \mathbf{w}\| \le \|\mathbf{v}\| + \|\mathbf{w}\|$
- (iv) Cauchy-Schwarz-Ungleichung: $|\langle \mathbf{v}, \mathbf{w} \rangle| \leqslant \|\mathbf{v}\| \cdot \|\mathbf{w}\|$

 \rightarrow Satz 10.18