hw10

October 31, 2018

1 HW 10

Given the following formulation:

$$\min \sum_{j=1}^{n} x_{j}$$
s.t.
$$\sum_{j=1}^{n} A_{j}x_{j} = b$$

$$x_{j} \ge 0 \forall j = 1, ..., n$$

The problem has the following data. Customers need three types of smaller widths: $w_1 = 5$, $w_2 = 12$, $w_3 = 16$ with quantities $b_1 = 150$, $b_2 = 100$, $b_3 = 80$. The width of a big roll is W = 200. Assume the column generation algorithm starts from the following initial patterns:

$$A_1 = [40\ 0\ 0]^T A_2 = [0\ 16\ 0]^T A_3 = [0\ 0\ 12]^T$$

1. Write down the restricted master problem (RMP) using these patterns.

min
$$x_1 + x_2 + x_3$$

s.t. $40x_1 = 150$
 $16x_2 = 100$
 $12x_3 = 80$
 $x_1, x_2, x_3 \ge 0$

2. Solve RMP in CVX.

```
In [1]: import cvxpy as cp
    import numpy as np
    from scipy import linalg

#setup variables and coeffcients
    x = cp.Variable(3, 1)
    A = np.array([[40.,0.,0.],[0.,16.,0.],[0.,0.,12.]])
    b = np.array([150., 100., 80.])
    W = 200.
    w = np.array([5., 12., 16.])
    c = np.array([1., 1., 1.])
```

```
#setup objective and constraints
        objective = cp.Minimize(cp.sum(x))
        constraints = [A*x == b, x >= 0.]
        # solve
        prob = cp.Problem(objective, constraints)
        result = prob.solve()
        # display optimal value of variables
        print('The solution status is', prob.status)
        print('The optimal value is', round(result))
        print('The optimal [x1, x2, x3] is', [round(xx,2) for xx in x.value])
        print('\nB is\n', A)
        BI = linalg.inv(A)
        y = c.dot(BI)
        print('\nThe inverse of B is\n', BI)
        print('\nThe optimal dual solution is\n', y)
The solution status is optimal
The optimal value is 17.0
The optimal [x1, x2, x3] is [3.75, 6.25, 6.67]
Bis
[[40. 0. 0.]
[ 0. 16. 0.]
 [ 0. 0. 12.]]
The inverse of B is
[[ 0.025
               0.
                           -0.
 ΓО.
              0.0625
                          -0.
                                     1
 ΓО.
                           0.0833333311
               0.
The optimal dual solution is
            0.0625
 [0.025
                        0.08333333]
```

3. Write down the pricing problem. The pricing problem is of the form:

max
$$.025a_1 + .0625a_2 + .083a_3$$

s.t. $5a_1 + 12a_2 + 16a_3 \le 200$
 $a_1, a_2, a_3 \ge 0$, integers

4. Solve the pricing problem in CVX.

```
In [2]: a = cp.Variable(3,1, integer=True)
```

```
#setup objective and constraints
  objective = cp.Maximize(cp.sum(y*a))
  constraints = [w*a <= W, a >= 0.]

# solve
  prob = cp.Problem(objective, constraints)
  result = prob.solve()

# display optimal value of variables
  print('The solution status is', prob.status)
  print('The optimal value is', round(result))
  print('The optimal [a1, a2, a3] is', [round(aa,2) for aa in a.value])

The solution status is optimal_inaccurate
The optimal value is 1.0
The optimal [a1, a2, a3] is [0.0, 11.0, 4.0]
```

We can see in the above that the optimal solution is non-negative, therefore we have the optimal set of columns and there is no need to continue.

6. Write down the final optimal solution, the optimal basis, and the optimal objective value.

The optimal value is 17.0

The optimal $\{x_1, x_2, x_3\}$ is $\{3.75, 6.25, 6.67\}$ The optimal basis is:

$$\begin{bmatrix} 40 & 0 & 0 \\ 0 & 16 & 0 \\ 0 & 0 & 12 \end{bmatrix}$$