

Método k-medias

Método K-Means (Nubes Dinámicas)

Tareas de la Minería de Datos

"Clustering": (clasificación no supervisada, aprendizaje no supervizado): Es similar a la clasificación (discriminación), excepto que los grupos no son predefinidos. El objetivo es particionar o segmentar un conjunto de datos o individuos en grupos que pueden ser disjuntos o no. Los grupos se forman basados en la similaridad de los datos o individuos en ciertas variables. Como los grupos no son dados a priori el experto debe dar una interpretación de los grupos que se forman.

Métodos:

- Clasificación Jerárquica (grupos disjuntos).
- Nubes Dinámicas k-means (grupos disjuntos).
- Clasificación Piramidal (grupos NO disjuntos).

Análisis de Conglomerados

Objetivo:

Obtener clases lo más homogéneas posibles y tal que estén suficientemente separadas.

Criterio de la Inercia

The K-Means Clustering Method (nubes dinámicas)

Criterio de la inercia

Como se ha mencionado, se quiere obtener clases lo más homogéneas posibles y tal que estén suficientemente separadas. Este objetivo se puede concretar numéricamente a partir de la siguiente propiedad: supóngase que se está en presencia de una partición $P = (C_1, C_2, \ldots, C_K)$ de Ω , donde $\mathbf{g}_1, \mathbf{g}_2, \ldots, \mathbf{g}_K$ son los centros de gravedad de las clases:

$$\mathbf{g}_k = \frac{1}{|C_k|} \sum_{i \in C_k} \mathbf{x}_i,$$

g es el centro de gravedad total:

$$\mathbf{g} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i$$

Ejemplo: Estudiantes

Ver NotasEscolaresExcelKMeans.xlsx

Análisis de los	Clústeres								
	Matemáticas	Ciencias	Español	Historia	EdFísica				
Lucía	7	6.5	9.2	8.6	8				
Pedro	7.5	9.4	7.3	7	7				
Inés	7.6	9.2	8	8	7.5				
Luis	5	6.5	6.5	7	9				
Andrés	6	60	7.8	8.9	7.3				
Ana	7.8	9.6	7.7	8	6.5				
Carlos	6.3	6.4	8.2	9	7.2				
José	7.9	9.7	7.5	8	6				
Sonía	6	6	6.5	5.5	8.7				
María	6.8	7.2	8.7	9	7				
Centro Graved	ad Total de la	Nube de	Puntos						
	Matemáticas	Ciencias	Español	Historia	EdFísica				
	6.79	7.65	7.74	7.9	7.42				
Centro Graved									
	Matemáticas	Ciencias	Español	Historia	EdFísica				
	7.7	9.475	7.625	7.75	6.75				
Centro Gravedad C2={Luis,Sonia}									
	Matemáticas	Ciencias	Español		EdFísica				
	5.5	6.25	6.5	6.25	8.85				
Centro Gravedad C3={Lucía,Andrés,Carlos,María}									
	Matemáticas	Ciencias	Español	Historia	EdFísica				
	6.525	6.525	8.475	8.875	7.375				

Definiciones

• Inercia total de la nube de puntos:

$$I = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_i - \mathbf{g}||^2$$

 Inercia inter-clases, es decir la inercia de los centros de gravedad respecto al centro de gravedad total:

$$B(P) = \sum_{k=1}^{K} \frac{|C_k|}{n} ||\mathbf{g}_k - \mathbf{g}||^2$$

 Inercia intra-clases, es decir la inercia al interior de cada clase:

$$W(P) = \sum_{k=1}^{K} I(C_k) = \frac{1}{n} \sum_{k=1}^{K} \sum_{i \in C_k} \|\mathbf{x}_i - \mathbf{g}_k\|^2$$

Teorema: Igualdad de Fisher

• Inercia total = Inercia inter-clases

+

Inercia intra-clases

$$I = B(P) + W(P)$$

Ejemplo: Estudiantes

Ver NotasEscolaresExcelKMeans.xlsx

	Matemáticas	Ciencias	Español	Historia	EdFísica		Cálculo de I=Inercia Total		Cálculo de B(P)=Inercia Inter-Clases				
Lucía	7	6.5	9.2	8.6	8		4.3246			4.6434			
Pedro	7.5	9.4	7.3	7	7		4.7466			9.9291			
Inés	7.6	9.2	8	8	7.5		3.1426			2.8287			
Luis	5	6.5	6.5	7	9		9.3706		B(P)=	4.9747			
Andrés	6	6	7.8	8.9	7.3		4.3646						
Ana	7.8	9.6	7.7	8	6.5		5.6806			Cálculo d	le W(P)=I	nercia Inti	ra-Clases
Carlos	6.3	6.4	8.2	9	7.2		3.2726			1.2181	0.7763	0.8975	
José	7.9	9.7	7.5	8	6		7.5186			1.0131	0.8513	0.8975	
Sonía	6	6	6.5	5.5	8.7		12.283			0.1881	0.1563	1.795	
María	6.8	7.2	8.7	9	7		2.5106			0.7381	0.7313		
						/=	5.7214			3.1575	2.515		
Centro Graveo	dad Total de la	Nube de	Puntos						W(P)=	0.7468			
oomio oravo.	Matemáticas			Historia	EdEísica				**(*)	0.7 700			
	6.79		7.74	7.9	7.42								
	00	7.00											
Centro Graveo	dad C1={Pedro	,Inés,Ana	a,José}					I=B(P)+W(P)	5.7214				
	Matemáticas			Historia	EdFísica								
	7.7	9.475	7.625	7.75	6.75								
Centro Graveo	dad C2={Luis,S	Sonia}											
	Matemáticas	Ciencias	Español	Historia	EdFísica								
	5.5	6.25	6.5	6.25	8.85								
Centro Graveo	dad C3={Lucía	,Andrés,C	arlos,Mar	ía}									
	Matemáticas	Ciencias	Español	Historia	EdFísica								
	6.525	6.525	8.475	8.875	7.375								

 Objetivo: Se quiere que B(P) sea máxima y W(P) sea mínima

• Como la inercia I(P) es fija, dada la nube de puntos, entonces al maximizar B(P) se minimiza automáticamente W(P).

• Por lo tanto, los dos objetivos (homogeneidad al interior de las clases y separación entre las clases) se alcanzan al mismo tiempo al querer minimizar *W(P)*.

Problema combinatorio

- Es necesario hacer notar que, cuando se quiere obtener una partición en *K* clases de un conjunto con *n* individuos, no tiene sentido examinar *todas* las posibles particiones del conjunto de individuos en *K* clases.
- En efecto, se está en presencia de un problema combinatorio muy complejo; sólo para efectos de ilustración, mencionemos que el número de particiones en 2 clases de un conjunto con 60 elementos es aproximadamente 10¹⁸, y para 100 elementos en 5 clases anda por 10⁶⁸.

Objetivo del Método K-means

• Así, el objetivo en el método de K-means es encontrar <u>una partición P</u> de Ω y representantes de las clases, tales que W(P) sea mínima.

Método de k-medias

- Existe un poco de confusión en la literatura acerca del método de las k-medias, ya que hay dos métodos distintos que son llamados con el mismo nombre.
- Originalmente, Forgy propuso en 1965 un primer método de reasignación-recentraje que consiste básicamente en la iteración sucesiva, hasta obtener convergencia, de las dos operaciones siguientes:

- Representar una clase por su centro de gravedad, esto es, por su vector de promedios.
- 2. Asignar los objetos a la clase del centro de gravedad más cercano.

The K-Means Clustering Method (nubes dinámicas)

Sub-optimal Clustering

¿Cuántos clústeres?

Datos originales

6 clústeres

2 clústeres

4 clústeres

¿Cuántos clústeres?

El "codo" indica que k=3 es la cantidad adecuada de clústeres

- McQueen propone un método muy similar, donde también se representan las clases por su centro de gravedad, y se examina cada individuo para asignarlo a la clase más cercana.
- La diferencia con el método de Forgy es que inmediatamente después de asignar un individuo a una clase, el centro de ésta es recalculado, mientras que Forgy primero hacía todas las asignaciones y luego recalculaba los centros.
- Variantes del método de Forgy son propuestas en Francia como Método de Nubes Dinámicas por E. Diday a partir en 1967.
- Es McQueen quien propone el nombre "k-means", que se usa hasta la fecha, aún si estos métodos también reciben nombres como nubes dinámicas, centros móviles, o reasignación-recentraje.

Método de Forgy

Denotaremos Ω el conjunto de n individuos que queremos clasificar, todos dotados de pesos iguales 1/n, y supondremos que están descritos por p variables cuantitativas x^1, x^2, \ldots, x^p .

En el caso en que se está en presencia de variables cuantitativas, tiene sentido el cálculo de promedios y de distancias Euclídeas. Por lo tanto, también tiene sentido que cada clase esté representada por su centro de gravedad, esto es, por un individuo ficticio cuyas coordenadas son los valores promedio de las variables para los individuos pertenecientes a la clase. Este es el caso más simple y el usado más corrientemente. Generalmente, se usará la distancia Euclídea clásica en este contexto.

Algoritmo: K-means

0. Inicialización: Escoger al azar K objetos de Ω , que servirán como núcleos iniciales⁸. Esto es, escoger al azar $\mathbf{g}_1, \ldots, \mathbf{g}_k$ en Ω ; sean

$$C_1 := \emptyset, \ldots, C_K := \emptyset.$$

- Asignación: Asignar cada objeto a la clase del centro de gravedad más cercano. Es decir, para todo i ∈ Ω hacer:
 si d(x_i, g_{k*}) ≤ {d(x_i, g_k) para todo k = 1,..., K} entonces asignar x_i a la clase C_{k*}; si el mínimo se alcanza para dos clases diferentes entonces asignarlo a la clase de índice menor.
- 2. Representación: Calcular los centros de gravedad de la partición. Así, para todo $k \in \{1, \ldots, K\}$ hacer: $\mathbf{g}_k := \frac{1}{|C_k|} \sum_{\mathbf{x}_i \in C_k} \mathbf{x}_i$. Calcular el criterio $W := \sum_{k=1}^K \sum_{i \in C_k} ||\mathbf{x}_i \mathbf{g}_k||^2$.

Algoritmo: K-means

- 3. Control de parada: Si la variación en el criterio W entre la iteración anterior y la presente es menor que un umbral dado, o si se sobrepasa el número máximo de iteraciones entonces detenerse, de lo contrario ir al paso 4.
- 4. Preparación: Poner $C_1 := \emptyset, \ldots, C_K := \emptyset$; ir al paso 1.

El resultado de la aplicación del método de k-medias, dependerá de la escogencia inicial de los núcleos. Por ello, se recomienda correr varias veces el método y escoger la mejor solución obtenida en esas corridas.

K-Means Clustering Algorithm

Algorithm 1 Basic K-means Algorithm.

- 1: Select K points as the initial centroids.
- 2: repeat
- 3: Form K clusters by assigning all points to the closest centroid.
- 4: Recompute the centroid of each cluster.
- 5: **until** The centroids don't change

Ejemplo de las notas escolares

Partición P	Número de	W(P)	B(P)
	veces obtenida	. /	. ,
$C_1 = \{\text{Lucía,Andrés,Carlos,María}\}$	17	0.75	4.97
$C_2 = \{\text{Luis,Sonia}\}$	(68%)		
$C_3 = \{ Pedro, Inés, Ana, José \}$			
$C_1 = \{\text{Lucía,Andrés,Carlos,María,}\}$	3	2.48	3.24
Luis,Sonia}	(12%)		
$C_2 = \{ \text{Pedro,In\'es} \}$			
$C_3 = \{Ana, José\}$			
$C_1 = \{Lucía, Andrés, Carlos, María, \}$	2	2.52	3.20
Luis,Sonia}	(8%)		
$C_2 = \{\text{In\'es}, \text{Ana}, \text{Jos\'e}\}$			
$C_3 = \{ \text{Pedro} \}$			
$C_1 = \{\text{Lucía,Andrés,Carlos,María,}\}$	1	2.55	3.17
Luis,Sonia}	(4%)		
$C_2 = {\text{Inés,Ana}}$			
$C_3 = \{ \text{Pedro,José} \}$			
$C_1 = \{\text{Lucía,Andrés,Carlos,Luis,}\}$	1	2.72	3.00
Sonia}	(4%)		
$C_2 = \{ \text{Pedro,In\'es} \}$			
$C_3 = \{Ana, José, María\}$			
$C_1 = \{\text{Lucía,Andrés,Carlos,María,}\}$	1	3.06	2.66
${\bf Pedro, In\acute{e}s, Ana, Jos\acute{e}}\}$	(4%)		
$C_2 = \{\text{Luis}\}$			
$C_3 = \{\text{Sonia}\}$			

Description

Perform k-means clustering on a data matrix.

Usage

Arguments

not used

```
numeric matrix of data, or an object that can be coerced to such a matrix (such as a numeric vector or a data frame with all numeric columns).

either the number of clusters, say k, or a set of initial (distinct) cluster centres. If a number, a random set of (distinct) rows in x is chosen as the initial centres.

iter.max the maximum number of iterations allowed.

nstart if centers is a number, how many random sets should be chosen?

algorithm character: may be abbreviated.

object an R object of class "kmeans", typically the result ob of ob <- kmeans(..).

method character: may be abbreviated. "centers" causes fitted to return cluster centers (one for each input point) and "classes" causes fitted to return a vector of class assignments.
```


Value

kmeans returns an object of class "kmeans" which has a print and a fitted method. It is a list with components:

cluster

A vector of integers (from 1:k) indicating the cluster to which each point is allocated.

centers

A matrix of cluster centres.

totss

The total sum of squares.

withinss

Vector of within-cluster sum of squares, one component per cluster.

tot.withinss Total within-cluster sum of squares, i.e., sum (withinss).

betweenss

The between-cluster sum of squares, i.e. totss-tot.withinss.

size

The number of points in each cluster.

Ejemplo 2D: Datos

Ploteo de los Datos


```
setwd("C:/Users/Oldemar/Google Drive/Curso Mineria Datos II -
   Optativo/Datos")
datos<-read.csv("Ej1kmeans.csv",sep = ";",header=F)</pre>
datos
plot(datos,pch=19,xlab=expression(x[1]),ylab=expression(x[2]))
grupos<-kmeans(datos, 2)
points(grupos$centers,pch=19,col="blue",cex=2)
points(datos,col=grupos$cluster,pch=19)
grupos$cluster
grupos$centers
```


grupos\$cluster

> grupos\$cluster

grupos\$centers

> grupos\$centers

V1

V2

1 0.02169424 0.08865999

2 0.99128291 1.07898833

78 Agrupación por k-medias		×
Expresión de selección		
<todos casos="" los="" td="" válido<=""><td></td><td></td></todos>		
← III →		
Variables (seleccione una o más)		2
V1	Número de grupos:	
<u>V2</u> ▼	Número de semillas iniciales:	10
		10
	Iteraciones máximas:	
	Imprimir resumen del grupo:	V
	Gráfica doble de grupos	~
	Asignar grupos al conjunto de datos	V
	Variable de asignación:	KMeans
Aceptar Cancelar	Reiniciar	Ayuda

Con Rattle

- Para instalarlo:
 - ➤install.packages("rattle",dependencies =TRUE)
- Para ejecutarlo:
 - ➤ library(rattle)
 - >rattle()
- Sitio WEB:
 - http://rattle.togaware.com/

Dr. Graham Williams is the author of the Rattle data mining software and Adjunct Professor, University of Canberra and Australian National University.

Interfaz de Rattle

Cargando los Datos

Generando el modelo k-means

Opción "Datos"

Opción "Discriminat"

Discriminant Coordinates Ej1kmeans.csv

dc 1 Rattle 2012-ago-17 11:56:54 Oldemar

Algoritmos de Recomendación

Recommendations for You in Books

Data Mining: Practical Machine...

lan H. Witten, Eibe Frank, Mark A. Hall

Paperback

\$69.95 \$42.12

Fix this recommendation

Multivariate Data Analysis (7th Edition)

Joseph F. Hair, William C. Black,

Hardcover

\$215.24

Fix this recommendation

Data Mining: Concepts and Techniques...

Jiawei Han, Micheline Kamber, Jian Pei

Hardcover

\$74.95 \$50.03

Fix this recommendation

Regression Analysis by Example

> Bertram Price, Samprit Chatterjee

Hardcover

\$152.00 \$110.24

Fix this recommendation

Recommendations for You in Clothing

adidas Boys 2-7 Revolution Basic Pant \$19.99 - \$21.00 Fix this recommendation

Sesame Street Ernie & Bert Homespun... \$15.95

Fix this recommendation

adidas Infant Boys Core tricot Set \$23.92 - \$25.20 Fix this recommendation

Sesame Street Elmo & Friends Varsity... \$14.95
Fix this recommendation

See more recommendations

Recommendations for You in Toys & Games

Cars 2 Collector Submariner... Mattel \$17.99 Fix this recommendation

Cars 2 Radiator Springs Playtown Mattel \$43.99 \$25.82 Fix this recommendation

Disney Cars 2 Lightning McQueen \$7.99 \$2.76 Fix this recommendation

Disney / Pixar CARS 2 Movie 155 Die... \$7.99 \$3.99 Fix this recommendation

Recommendations for You in Electronics

Epson Duet 80-Inch Dual Aspect Ratio...

Fix this recommendation

HP Laserjet 125A Dual Black Cartridge...

Fix this recommendation

Link Depot HDMI to HDMI Cable (25 feet) Fix this recommendation Deluxe 425 Project-o Stand Projection... Da-Lite

Fix this recommendation

> See more recommendations

Recommendations for You in Musical Instruments

1st Note Metal Kazoo Woodstock \$6.85 \$4.89

Fix this recommendation

Trophy Snoopy Jaws Harp \$6.23

Fix this recommendation

Acme Siren Whistle \$75.95 \$31.73

Fix this recommendation

Trophy 3470 Musical Spoons

\$9.95 \$6.69

Fix this recommendation

Tabla con los promedios de evaluación de 100 personas que adquirieron los mismos productos o muy similares

	Velocidad Entrega	Precio	Durabilidad	Imagen Producto	Valor Educativo	Servicio Retorno	Tamano Paquete	Calidad Producto	Numero Estrellas
Adam	2,05	0,3	3,45	2,35	2,4	2,3	2,6	2,1	1,7
Anna	0,9	1,5	3,15	3,3	2,5	4	4,2	2,15	2,8
Bernard	1,7	2,6	2,85	3	4,3	2,7	4,1	2,6	3,3
Edward	1,35	0,5	3,55	2,95	1,8	2,3	3,9	1,95	1,7
Emilia	3	0,45	4,8	3,9	3,4	4,6	2,25	3,4	4,3
Fabian	0,95	1,65	3,95	2,4	2,6	1,9	4,85	2,2	3
Philip	2,3	1,2	4,75	3,3	3,5	4,5	3,8	2,9	3,1
Frank	0,65	2,1	3,1	2,55	2,8	2,2	3,45	2,15	2,9
Xavier	2,75	0,8	4,7	2,35	3,5	3	3,8	2,7	4,8
Gabriel	2	1,75	3,25	3	3,7	3,2	4,35	2,7	3,9
Marisol	1,2	0,8	4,4	2,4	2	2,8	2,9	2,15	1,7
Henry	1,95	1,1	4,55	2,3	3	2,5	4,15	2,5	3,2
Irene	1,4	0,7	4,05	1,9	2,1	1,4	3,3	2,2	2,4
Isabelle	1,85	0,75	4,3	2,85	2,7	3,7	3,35	2,5	2,3
Isidore	2,35	0,65	4,95	3,35	3	2,6	3,4	2,95	3,9
Joseph	1,7	1	4,85	2,35	2,7	1,7	2,4	2,35	3,4

K-means en R

```
setwd("C:/Users/Oldemar/Google Drive/Curso Mineria Datos II -
    Optativo/Datos")
datos <- read.csv("C:/Users/Oldemar/Google Drive/Curso Mineria Datos II -
    Optativo/Datos/EjemploAlgoritmosRecomendación.csv",header=TRUE,
    sep=";", dec=",", row.names=1)
datos
grupos<-kmeans(datos, 3)
grupos$cluster
grupos$centers</pre>
```


grupos\$cluster

>grupos\$cluster

Adam	Anna	B	ernard	d Edwai	rd En	nilia	Fabian
3	1	1	3	2	3		
Philip	Frank	Xa	vier	Gabriel	Mariso	l	Henry
1	3	2	1	3	2		
Irene	Isabelle	lsi	dore	Joseph	Eugei	ne	Eugenia
3	3	2	2	1	2		
Eunice	Eva	Evo	lokia	Fedir	Felix	Fi	alka
2	2	3	3	1	3		
	•••••						

grupos\$centers

```
> grupos$centers
Velocidad.Entrega Precio Durabilidad Imagen.Producto
  Valor. Educativo Servicio. Retorno Tamano. Paquete
      1.629630 1.8703704 3.581481
                                       3.072222
                                                   3.485185
  3.225926
              3.992593
      2.351316 0.8368421 4.542105
                                       2.496053
                                                   3.192105
  2.484211 2.906579
3
                                       2.417143
      1.211429 1.0257143
                          3.582857
                                                   2.177143
  2.428571 3.722857
Calidad.Producto Numero.Estrellas
     2.522222
                  3.422222
     2.659211
                  3.757895
     1.982857
                  2.165714
```


7.6 Agrupación por k-medias		X
Expresión de selección <todos casos="" los="" td="" válido<=""><td></td><td></td></todos>		
Variables (seleccione una o más)		3
Servicio.Retorno Tamano.Paquete	Número de grupos:	
Valor.Educativo <u>Velocidad.Entrega</u>	Número de semillas iniciales:	10
		10
	Iteraciones máximas:	
	Imprimir resumen del grupo:	▽
	Gráfica doble de grupos	▽
	Asignar grupos al conjunto de datos	~
	Variable de asignación:	KMeans
Aceptar Cancelar	Reiniciar	Ayuda

7 ∕ Datos					-X-
	etorno Tama	no.Paquete Calida	ad.Producto Numero	.Estrellas KM	leans
Adam	2.3	2.60	2.10	1.7	2 🔺
Anna	4.0	4.20	2.15	2.8	1
Bernard	2.7	4.10	2.60	3.3	1
Edward	2.3	3.90	1.95	1.7	2 =
Emilia	4.6	2.25	3.40	4.3	3
Fabian	1.9	4.85	2.20	3.0	2
Philip	4.5	3.80	2.90	3.1	1
Frank	2.2	3.45	2.15	2.9	1
Xavier	3.0	3.80	2.70	4.8	3
Gabriel	3.2	4.35	2.70	3.9	1
Marisol	2.8	2.90	2.15	1.7	2
Henry	2.5	4.15	2.50	3.2	3
Irene	1.4	3.30	2.20	2.4	2
Isabelle	3.7	3.35	2.50	2.3	2
Isidore	2.6	3.40	2.95	3.9	3
Joseph	1.7	2.40	2.35	3.4	3
Eugene	2.9	3.10	2.20	2.3	1
Eugenia	1.5	2.95	2.80	2.5	3
Eunice	3.9	3.40	2.95	3.9	3
Eva	2.6	3.40	3.00	4.0	3
Evdokia	1.8	3.15	2.25	2.6	2
Fedir	1.7	2.60	1.65	2.0	2
Felix	3.4	4.20	2.60	4.0	1
Fialka	2.5	3.60	1.85	2.1	2
Flavia	2.6	1.90	2.45	3.4	3 ₹
	4			III	- 1

Con Rattle

- Para instalarlo:
 - install.packages("rattle",dependencies

 =TRUE)
- Para ejecutarlo:
 - ➤ library(rattle)
 - >rattle()
- Sitio WEB:
 - http://rattle.togaware.com/

Cargando los Datos

Generando el modelo k-means

Opción "Datos"

Rattle 2012-ago-17 14:32:06 Oldemar

Opción "Discriminat"

Discriminant Coordinates EjemploAlgoritmosRecomendación

dc 1 Rattle 2012-ago-17 14:33:35 Oldemar

oldemar rodríguez

CONSULTOR en MINER14 DE D4T0S