CdL in Scienze Statistiche ed Economiche - Università degli Studi di Milano-Bicocca

Lezione: Analisi fattoriale

Docente: Aldo Solari

Nelle scienze sociali, in particolare in psicologia, spesso è problematico misurare le variabili di interesse direttamente. Ad esempio:

- Intelligenza
- Classe sociale

Queste variabili sono variabili non osservabili (variabili latenti), tuttavia è possibile esaminare queste variabili indirettamente, misurando variabili osservabili che sono ad esse collegate. Ad esempio

- Punteggio in varie prove di intelligenza, etc.
- Occupazione, Tasso di istruzione, Casa di proprietà, etc.

L'obiettivo dell'*analisi fattoriale* è studiare le relazioni tra le variabili osservabili e le variabili latenti (dette fattori comuni).

1 Il modello fattoriale con k fattori

$$x_1 = \lambda_{11}f_1 + \ldots + \lambda_{1k}f_k + u_1$$

$$x_2 = \lambda_{21}f_1 + \ldots + \lambda_{2k}f_k + u_2$$

$$\vdots = \vdots$$

$$x_p = \lambda_{p1}f_1 + \ldots + \lambda_{pk}f_k + u_p$$

dove

- $x = (x_1, \dots, x_p)'$ sono le *variabili osservate* (variabili casuali)
- $f_{k \times 1} = (f_1, \dots, f_k)'$ sono i *fattori comuni* (var. casuali non oss.)
- $u_{p \times 1} = (u_1, \dots, u_p)'$ sono i fattori specifici (var. casuali non oss.)
- λ_{ij} sono i *pesi fattoriali* (costanti incognite)

In forma matriciale:

$$\underset{p \times 1}{x} = \underset{p \times k_{k \times 1}}{\Lambda} f + \underset{p \times 1}{u}$$

1.1 Assunzioni

- 1. Variabili osservate: $\mathbb{E}(x) = 0$ (altrimenti si può sempre centrare x sullo 0 sottraendo la media μ) 0
- 2. Fattori comuni: $\mathbb{E}(f) = 0, \mathbb{C}\text{ov}(f) = \mathbb{E}(ff') = I_{k \times 11 \times k}$
- 3. Fattori specifici: $\mathbb{E}(\underbrace{u}_{p\times 1}) = \underbrace{0}_{p\times 1}$, $\mathbb{C}\text{ov}(\underbrace{u}_{p\times 1}) = \mathbb{E}(\underbrace{u}_{p\times 11\times p}) = \underbrace{\Psi}_{p\times p} = diag(\psi_1, \dots, \psi_p)$
- 4. Incorrelazione tra f e u: $\mathbb{C}\mathrm{ov}(\underbrace{u}_{p\times 1},\underbrace{f}_{k\times 1}) = \mathbb{E}(\underbrace{u}_{p\times 1_{1\times k}}f') = \underbrace{0}_{p\times k};$ analogamente $\mathbb{C}\mathrm{ov}(\underbrace{f}_{k\times 1},\underbrace{u}_{p\times 1}) = \underbrace{0}_{k\times p}$

1.2 Proprietà

Proposition 1.1. La matrice di varianza/covarianza Σ di x è data da

$$\sum_{p \times p} = \bigwedge_{p \times kk \times p} \bigwedge_{p \times p} + \Psi$$

Dimostrazione.

$$\begin{split} &\sum_{p\times p} &= \mathbb{C}\mathrm{ov}(\underset{p\times 1}{x}) = \mathbb{E}(\underset{p\times 11\times p}{x}') \\ &= \mathbb{E}[(\Lambda f + u)(\Lambda f + u)'] \\ &= \mathbb{E}[\Lambda f(\Lambda f)' + u(\Lambda f)' + (\Lambda f)u' + uu'] \\ &= \Lambda \mathbb{E}(ff')\Lambda' + \mathbb{E}(uf')\Lambda' + \Lambda \mathbb{E}(fu') + \mathbb{E}(uu') \\ &= \Lambda \mathbb{C}\mathrm{ov}(f)\Lambda' + \mathbb{C}\mathrm{ov}(u, f)\Lambda' + \Lambda \mathbb{C}\mathrm{ov}(f, u) + \mathbb{C}\mathrm{ov}(u) \\ &= \Lambda \Lambda' + \Psi \end{split}$$

Il modello fattoriale con k fattori ipotizza che

$$p(p+1)/2$$

parametri corrispondenti alle p varianze e alle p(p-1)/2 covarianze di $\sum\limits_{p\times p}$ possano essere espressi con

$$p(k+1)$$

parametri corrispondenti ai pk pesi fattoriali di $\underset{p \times k}{\Lambda}$ e le p varianze specifiche di $\underset{p \times p}{\Psi}$. Per esempio, se abbiamo p=12 variabili osservabili $\underset{x}{x}$ e un modello fattoriale con k=2 fattori,

allora i p(p+1)/2=78 parametri di $\sum\limits_{p\times p}$ possono essere ridotti ai p(k+1)=36 parametri di $\sum\limits_{p\times k}$ e $\prod\limits_{n\geq p}$.

La varianza di x_i si può esprimere come

$$\sigma_{ii} = \mathbb{V}\operatorname{ar}(x_i) = \{\sum_{p \times p}\}_{ii} = \{\Lambda\Lambda'\}_{ii} + \{\Psi\}_{ii}$$

$$= \sum_{j=1}^{k} \lambda_{ij}^2 + \psi_i$$

$$= \underbrace{h_i^2}_{\text{comunalita'}} + \underbrace{\psi_i}_{\text{var. specifica}}$$

dove

- $h_i^2=\lambda_{i1}^2+\ldots+\lambda_{ik}^2$ è la comunalità, ovvero la varianza dovuta ai k fattori comuni
- ullet ψ_i è la varianza specifica di x_i non attribuibile ai fattori comuni

La covarianza tra x_i e x_j si può esprimere come

$$\sigma_{ij} = \mathbb{C}\text{ov}(x_i, x_j) = \{\sum_{p \times p} \}_{ij} = \{\Lambda \Lambda'\}_{ij} + \{\Psi\}_{ij}$$
$$= \sum_{l=1}^{k} \lambda_{il} \lambda_{jl}$$
$$= \lambda_{i1} \lambda_{j1} + \ldots + \lambda_{ik} \lambda_{jk}$$

La covarianza tra x e f si può esprimere come

$$\mathbb{C}\text{ov}(\underset{p\times 1}{x}, \underset{k\times 1}{f}) = \mathbb{E}(\underset{p\times 1_{1\times k}}{x}f') \\
= \mathbb{E}[(\Lambda f + u)f'] \\
= \Lambda \mathbb{E}(ff') + \mathbb{E}(uf') \\
= \underset{p\times k}{\Lambda}$$

quindi il peso fattoriale λ_{ij} rappresenta la covarianza tra x_i e f_j :

$$\mathbb{C}\text{ov}(x_i, f_j) = \{ \underset{n \times k}{\Lambda} \}_{ij} = \lambda_{ij}$$

1.3 Invarianza rispetto a trasformazioni di scala

Assumiamo il modello fattoriale per x:

$$\underset{p \times 1}{x} = \underset{p \times k_{k \times 1}}{\Lambda} f + \underset{p \times 1}{u}$$

Consideriamo una trasformazione di scala per x:

$$y_{p \times 1} = A x_{p \times pp \times 1}$$

dove $A_{p \times p} = diag(a_1, \dots, a_p)$ è una trasformazione di scala. Il modello fattoriale è ancora valido per y? Abbiamo

$$y = A x p \times p \times 1$$

$$= A \left(\Lambda f + u \right)
= A \Lambda f + A u p \times p \times k \times 1 + p \times p \times 1$$

$$= A \Lambda f + A u p \times p \times k \times 1 + p \times p \times 1$$

$$= \Lambda f + u p \times k \times 1 + p \times 1$$

e

$$\operatorname{Cov}(y) = \operatorname{Cov}(Ax)
= \operatorname{\mathbb{E}}(Axx'A')
= A\operatorname{\mathbb{C}}\operatorname{ov}(x)A'
= A\Sigma A'
= A\Lambda\Lambda'A' + A\Psi A'
= \Lambda_{y}\Lambda'_{y} + \Psi_{y}$$

quindi il modello fattoriale è ancora valido per y con pesi fattoriali $\Lambda_y = A\Lambda$ e varianze specifiche $\Psi_y = A\Psi A'$.

Il risultato precedente mostra che il modello fattoriale rimane essenzialmente inalterato se effettuiamo una trasformazione di scala. La standardizzazione

$$z_{p \times 1} = D_{p \times p}^{-1/2} x_{p \times 1}$$

è un caso particolare di trasformazione di scala con $A={\cal D}^{-1/2}$ dove

$$D^{-1/2} = diag(1/\sqrt{\sigma_{11}}, \dots, 1/\sqrt{\sigma_{pp}})$$

Questo significa che, invece di considerare la decomposizione della matrice di varianze/covarianze di x, $\mathbb{C}\text{ov}(x)$, possiamo considerare la decomposizione della matrice di correlazione di x, $\mathbb{C}\text{orr}(x)$, o equivalentemente, la decomposizione della matrice di varianze/covarianze di z, $\mathbb{C}\text{ov}(z) = D^{-1/2} \Sigma D^{-1/2} = \mathbb{C}\text{orr}(x)$.

Si noti che sebbene il modello fattoriale è invariante rispetto a trasformazioni di scala, la *stima* dei parametri potrebbe essere influenzata dalle trasformazioni di scala.

1.4 Non-unicità dei pesi fattoriali

Sia A = A una matrice ortogonale: AA' = A'A = I

$$\begin{array}{rcl} x & = & \displaystyle \mathop{\Lambda}_{p \times k} f + u \\ & = & \displaystyle \mathop{\Lambda}_{p \times k k \times k} A A' f + u \\ & = & \displaystyle \mathop{\Lambda}_{p \times k k \times k k \times k k \times 1} A + u \\ & = & \displaystyle \mathop{\Lambda}_{p \times k k \times 1} A A' + u \\ & = & \displaystyle \mathop{\Lambda}_{p \times k k \times 1} A A' + u \\ & = & \displaystyle \mathop{\Lambda}_{p \times k k \times 1} A A' + u \\ & = & \displaystyle \mathop{\Lambda}_{p \times k k \times 1} A A' + u \\ & = & \displaystyle \mathop{\Lambda}_{p \times k k \times 1} A A' + u \\ & = & \displaystyle \mathop{\Lambda}_{p \times k k \times 1} A A' + u \\ & = & \displaystyle \mathop{\Lambda}_{p \times k k \times 1} A A' + u \\ & = & \displaystyle \mathop{\Lambda}_{p \times k k \times 1} A A' + u \\ & = & \displaystyle \mathop{\Lambda}_{p \times k k \times 1} A A' + u \\ & = & \displaystyle \mathop{\Lambda}_{p \times k k \times 1} A A' + u \\ & = & \displaystyle \mathop{\Lambda}_{p \times k k \times 1} A A' + u \\ & = & \displaystyle \mathop{\Lambda}_{p \times k k \times 1} A A' + u \\ & = & \displaystyle \mathop{\Lambda}_{p \times k k \times 1} A A' + u \\ & = & \displaystyle \mathop{\Lambda}_{p \times k k \times 1} A A' + u \\ & = & \displaystyle \mathop{\Lambda}_{p \times k k \times 1} A A' + u \\ & = & \displaystyle \mathop{\Lambda}_{p \times k k \times 1} A A' + u \\ & = & \displaystyle \mathop{\Lambda}_{p \times k k \times 1} A A' + u \\ & = & \displaystyle \mathop{\Lambda}_{p \times k k \times 1} A A' + u \\ & = & \displaystyle \mathop{\Lambda}_{p \times k k \times 1} A A' + u \\ & = & \displaystyle \mathop{\Lambda}_{p \times k k \times 1} A A' + u \\ & = & \displaystyle \mathop{\Lambda}_{p \times k k \times 1} A A' + u \\ & = & \displaystyle \mathop{\Lambda}_{p \times k k \times 1} A A' + u \\ & = & \displaystyle \mathop{\Lambda}_{p \times k k \times 1} A A' + u \\ & = & \displaystyle \mathop{\Lambda}_{p \times k k \times 1} A A' + u \\ & = & \displaystyle \mathop{\Lambda}_{p \times k k \times 1} A A' + u \\ & = & \displaystyle \mathop{\Lambda}_{p \times k k \times 1} A A' + u \\ & = & \displaystyle \mathop{\Lambda}_{p \times 1} A A' + u \\ & =$$

- $\bullet \ \ \Lambda^*_{p \times k} = \underset{p \times kk \times k}{\Lambda} A$
- $\bullet \ \ f^*_{k\times 1} = A' f_{k\times k_{k\times 1}}$
- $\bullet \ \mathbb{E}(f^*) = A' \mathbb{E}(f) = \underset{k \times 1}{0}$
- $\mathbb{C}\text{ov}(f^*) = A' \mathbb{C}\text{ov}(f) A = \underset{p \times p}{I}$
- $\mathbb{C}ov(x) = \Sigma = \Lambda \Lambda' + \Psi = \Lambda A A' \Lambda' + \Psi = \Lambda^* \Lambda^{*'} + \Psi$

Il risultato precedente mostra che il modello fattoriale con fattori comuni $f_{k\times 1}$ e pesi fattoriali $f_{p\times k}$ e il modello fattoriale con fattori comuni $f_{k\times 1}^*$ e pesi fattoriali $f_{p\times k}^*$ sono equivalenti per spiegare la matrice di varianza/covarianza $f_{p\times 1}$ di $f_{p\times 1}$.

1.5 Rappresentazione grafica del modello

Si consideri il modello fattoriale con k=1 fattore e p=3 variabili

$$x_1 = \lambda_1 f + u_1$$

$$x_2 = \lambda_2 f + u_2$$

$$x_3 = \lambda_3 f + u_3$$

Questo modello può essere rappresentato graficamente:

Se consideriamo un modello a k=2 fattori per p=6 variabili standardizzate, otteniamo:

Per questo modello

$$\mathbb{C}\operatorname{ov}(z_1, f_1) = \mathbb{C}\operatorname{orr}(z_1, f_1) = \mathbb{C}\operatorname{orr}(x_1, f_1) = \lambda_{11}$$

$$\mathbb{C}\text{ov}(z_1, z_2) = \mathbb{C}\text{orr}(z_1, z_2) = \mathbb{C}\text{orr}(x_1, x_2) = \lambda_{11}\lambda_{21} + \lambda_{12}\lambda_{22}$$

2 Stima del modello fattoriale

Obiettivo: determinare due matrici $\hat{\Lambda}$ e $\hat{\Psi}$ tali che $\widehat{\mathbb{C}\mathrm{ov}(x)} = \hat{\Sigma} = S = \hat{\Lambda}\hat{\Lambda}' + \hat{\Psi}$, oppure determinare due matrici $\hat{\Lambda}$ e $\hat{\Psi}$ tali che $\widehat{\mathbb{C}\mathrm{orr}(x)} = R = \hat{\Lambda}\hat{\Lambda}' + \hat{\Psi}$

2.1 Stima naïve

Example 2.1. Si consideri il seguente esempio: sulla base di un campione di voti di studenti su tre materie, x_1 (Classics), x_2 (French) e x_3 (English) si è ottenuta la seguente matrice di correlazione:

$$\begin{array}{l} {\bf R} = \begin{array}{l} {\rm Classics} \\ {\rm French} \\ {\rm English} \end{array} \begin{pmatrix} 1.00 \\ 0.83 \ 1.00 \\ 0.78 \ 0.67 \ 1.00 \end{pmatrix}. \end{array}$$

Si consideri il modello fattoriale con k = 1 fattore

$$x_1 = \lambda_1 f + u_1$$

$$x_2 = \lambda_2 f + u_2$$

$$x_3 = \lambda_3 f + u_3$$

Le sei equazioni derivanti dall'uguaglianza $R=\Lambda\Lambda'+\Psi$ sono

$$\mathbf{R} = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{pmatrix} \begin{pmatrix} \lambda_1 \ \lambda_2 \lambda_3 \end{pmatrix} + \begin{pmatrix} \psi_1 \ 0 \ 0 \\ 0 \ \psi_2 \ 0 \\ 0 \ 0 \ \psi_3 \end{pmatrix},$$

are

$$\begin{split} \hat{\lambda}_1 \lambda_2 &= 0.83, \\ \hat{\lambda}_1 \lambda_3 &= 0.78, \\ \hat{\lambda}_1 \lambda_4 &= 0.67, \\ \psi_1 &= 1.0 - \hat{\lambda}_1^2, \\ \psi_2 &= 1.0 - \hat{\lambda}_2^2, \\ \psi_3 &= 1.0 - \hat{\lambda}_3^2. \end{split}$$

The solutions of these equations are

$$\hat{\lambda}_1 = 0.99, \quad \hat{\lambda}_2 = 0.84, \quad \hat{\lambda}_3 = 0.79,$$

 $\hat{\psi}_1 = 0.02, \quad \hat{\psi}_2 = 0.30, \quad \hat{\psi}_3 = 0.38.$

Example 2.2. Casi di Heywood

Esempio 4 (tratto da Everitt e Dunn, 2001):

Si stimino i parametri del modello fattoriale ad un fattore per i punteggi ottenuti nelle tre materie:

$$x_1$$
: Classics, x_2 : French e x_3 : English.

$$x_1 = \lambda_1 f + u_1,$$

$$x_2 = \lambda_2 f + u_2,$$

$$x_3 = \lambda_3 f + u_3.$$

data la matrice di correlazione campionaria
$$\begin{array}{c} \text{Classics} \\ \text{R} = \begin{array}{c} \text{Classics} \\ \text{French} \\ \text{English} \end{array} \begin{array}{c} \text{Classics} \\ 1.00 \\ 0.84 \\ 0.60 \\ 0.35 \end{array} \begin{array}{c} \text{English} \\ \text{I} \end{array}$$

$$\begin{split} \hat{\psi}_1 &= 1.0 - \hat{\lambda}_1^2, & \lambda_1 \lambda_2 = 0.84 \\ \hat{\psi}_2 &= 1.0 - \hat{\lambda}_2^2, & \mathbf{e} & \lambda_3 \lambda_2 = 0.35 \end{split}$$

$$\psi_2 = 1.0 - \lambda_2, \qquad \psi_3 = 1.0 - \hat{\lambda}_3^2.$$

$$\hat{\psi}_3 = 1.0 - \hat{\lambda}_3^2.$$

$$\lambda_1 \lambda_3 = 0.6$$

$$\hat{\lambda}_1 = 1.2,$$
 $\hat{\lambda}_2 = 0.7,$ $\hat{\lambda}_3 = 0.5,$ $\hat{\psi}_1 = -0.44,$ $\hat{\psi}_2 = 0.51,$ $\hat{\psi}_3 = 0.75$

Stime di tipo intuitivo possono condurre a soluzioni non accettabili anche se il modello è identificato esattamente!

Example 2.3. *Modello ad un fattore:* $\mathbb{C}orr(x)$

Esempio 3 (tratto da Hardle e Simar 2003)

Si stimi il modello fattoriale ad un fattore per la matrice di correlazione relativa a valutazioni fornite da 40 clienti su 25 tipologie di auto per le variabili X_1 : economicità, X_2 : accessori, X_3 : deprezzamento

$$\mathcal{R} = \left(\begin{array}{ccc} 1 & 0.975 & 0.613 \\ 0.975 & 1 & 0.620 \\ 0.613 & 0.620 & 1 \end{array}\right)$$

Soluzione

Soluzione
$$\begin{pmatrix} 1 & r_{X_1X_2} & r_{X_1X_3} \\ r_{X_1X_2} & 1 & r_{X_2X_3} \\ r_{X_1X_3} & r_{X_2X_3} & 1 \end{pmatrix} = \mathcal{R} = \begin{pmatrix} \hat{\lambda}_1^2 & \hat{\lambda}_1 \hat{\lambda}_2 & \hat{\lambda}_1 \hat{\lambda}_3 \\ & \hat{\lambda}_2^2 & \hat{\lambda}_2 \hat{\lambda}_3 \\ & & \hat{\lambda}_3^2 \end{pmatrix} + \begin{pmatrix} \hat{\Psi}_1 & 0 & 0 \\ & \hat{\Psi}_2 & 0 \\ & & \hat{\Psi}_3 \end{pmatrix}$$

Da cui

$$= \frac{r_{X_1X_2}r_{X_1X_3}}{r_{X_2X_3}} = (0.982)^2 = \hat{\lambda}_1^2, \qquad \frac{r_{X_1X_2}r_{X_2X_3}}{r_{X_1X_3}} = (0.993)^2 = \hat{\lambda}_2^2 \qquad \frac{r_{X_1X_3}r_{X_2X_{31}}}{r_{X_1X_2}} = (0.624)^2 = \hat{\lambda}_3^2$$
 e

 $\psi_i\!\!=\!\!1\!\!-\!\boldsymbol{\hat{\lambda}}_1^2\!\!=\!\!0.035$

 $\psi_2 = 0.014$

 $\psi_3 = 0.610$

Le prime due comunalità sono ≈ 1 . X_1 e X_2 sono ben spiegate dal I° fattore (economicità + accessori)

Example 2.4. *Modello ad un fattore:* $\mathbb{C}ov(x)$

Example 11.1 Let p = 3 and k = 1, then d = 0 and

$$\Sigma = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{pmatrix} = \begin{pmatrix} q_1^2 + \psi_{11} & q_1q_2 & q_1q_3 \\ q_1q_2 & q_2^2 + \psi_{22} & q_2q_3 \\ q_1q_3 & q_2q_3 & q_3^2 + \psi_{33} \end{pmatrix}$$

with $Q = \begin{pmatrix} q_1 \\ q_2 \\ q_3 \end{pmatrix}$ and $\Psi = \begin{pmatrix} \psi_{11} & 0 & 0 \\ 0 & \psi_{22} & 0 \\ 0 & 0 & \psi_{33} \end{pmatrix}$. Note that here the constraint (11.8) is automatically verified since k = 1. We have

$$q_1^2 = \frac{\sigma_{12}\sigma_{13}}{\sigma_{23}}; \qquad q_2^2 = \frac{\sigma_{12}\sigma_{23}}{\sigma_{13}}; \qquad q_3^2 = \frac{\sigma_{13}\sigma_{23}}{\sigma_{12}}$$

and

$$\psi_{11} = \sigma_{11} - q_1^2;$$
 $\psi_{22} = \sigma_{22} - q_2^2;$ $\psi_{33} = \sigma_{33} - q_3^2.$

In this particular case (k=1), the only rotation is defined by $\mathcal{G}=-1$, so the other solution for the loadings is provided by $-\mathcal{Q}$.

2.2 Vincoli e gradi di libertà

Numero di parametri del modello fattoriale $\Lambda\Lambda' + \Psi : pk + p$

Per risolvere il problema della non-unicità dei pesi fattoriali, introduciamo ora il seguente vincolo (Vincolo 1):

$$\Lambda' \Psi^{-1} \Lambda = diag(b_1, \ldots, b_k)$$

 $con b_1 \ge \ldots \ge b_k$

Il Vincolo 1 impone k(k-1)/2 restrizioni

Numero di parametri del modello fattoriale $\Lambda\Lambda' + \Psi$ dato il Vincolo 1: pk + p - k(k-1)/2

Come alternativa al Vincolo 1 si può considerare

Vincolo 2:
$$\Lambda' D^{-1} \Lambda = diag(c_1, \ldots, c_k)$$
 con $c_1 \geq \ldots \geq c_k$ e $D = diag(\sigma_{11}, \ldots, \sigma_{pp})$

I gradi di libertà (= numero dei parametri "liberi") sono dati dalla differenza tra i p(p+1)/2 parametri di $\sum_{p \times p}$ e il numero di parametri del modello fattoriale dato il Vincolo 1 (o 2):

$$d = p(p+1)/2 - (pk + p - k(k-1)/2) = (p-k)^2/2 - (p+k)/2$$

- Se d < 0, allora ci sono più parametri che equazioni: il modello è indeterminato (ci sono infinite soluzioni)
- Se d=0, allora il numero di equazioni è pari al numero di parametri: la soluzione è unica (ma non necessariamente propria, poiché possiamo avere casi di Heywood)
- ullet d>0, allora ci sono più equazioni che parametri: non c'è una soluzione esatta (ci si accontenta di una approssimazione)

Example 2.5. Modello indeterminato

Example 11.2 Suppose now p = 2 and k = 1, then d < 0 and

$$\Sigma = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} = \begin{pmatrix} q_1^2 + \psi_{11} & q_1 q_2 \\ q_1 q_2 & q_2^2 + \psi_{22} \end{pmatrix}.$$

We have infinitely many solutions: for any α ($\rho < \alpha < 1$), a solution is provided by

$$q_1 = \alpha;$$
 $q_2 = \rho/\alpha;$ $\psi_{11} = 1 - \alpha^2;$ $\psi_{22} = 1 - (\rho/\alpha)^2.$

2.3 Metodi di stima

Data $\hat{\Sigma}_{p \times p} = S_{p \times p}$ (oppure $= R_{p \times p}$), vogliamo stimare $\hat{\Psi}_{p \times p}$ e $\hat{\Lambda}_{p \times k}$ in modo tale che $\hat{\Sigma} \approx \hat{\Lambda} \hat{\Lambda}' + \hat{\Psi}$ e sia rispettato il Vincolo 1 o 2

- Naïve (senza vincolo)
- Componenti principali
- Fattori principali
- Massima Verosimiglianza (richiede assunzione di Normalità per $\underset{p\times 1}{x}$)

Rotazione dei fattori:

Dopo aver stimato il modello fattoriale, può essere utile ruotare i pesi fattoriali $\hat{\Lambda}$ per ottenere $\hat{\Lambda}^* = \hat{\Lambda} A$ (con A matrice ortogonale), al fine di trovare configurazioni più facilmente interpretabili

Numero di fattori:

In pratica, dobbiamo anche determinare il valore di k

2.4 Metodo dei fattori principali

Si parte da $\hat{\Sigma}_{p \times p} = \widehat{\mathbb{C}\mathrm{orr}(x)} = \underset{p \times p}{R}$ per trovare $\hat{\Psi}_{p \times p}$ e $\hat{\Lambda}_{p \times k}$ in modo tale che $R - \hat{\Psi} \approx \hat{\Lambda} \hat{\Lambda}'$ e sia rispettato il Vincolo 2

- $R^* = R \hat{\Psi}$ è detta matrice di correlazione ridotta
- $\{\mathbb{C}\mathrm{orr}(x)\}_{ii} = 1 = h_i^2 + \psi_i$, quindi se abbiamo a disposizione una stima iniziale \hat{h}_i^2 , allora $\{R^*\}_{ii} = 1 \hat{\psi}_i = \hat{h}_i^2$
- $R^* = R \hat{\Psi}$ è una matrice simmetrica, quindi la sua decomposizione spettrale è $R^* = VLV'$ con $L = diag(l_1, \ldots, l_p)$ e $V = [v_1, \ldots, v_p]$. Se i primi k autovalori l_1, \ldots, l_k sono positivi e i rimanenti p k autovalori l_{k+1}, \ldots, l_p prossimi a 0, allora

$$R^* \approx V_k L_k V_k'$$

dove $\mathop{V_k}_{p\times k}$ contiene le prime k colonne di V e $\mathop{L_k}_{k\times k}=diag(l_1,\dots,l_k)$

• Segue $R^*=R-\hat{\Psi}pprox (V_kL_k^{1/2})(V_kL_k^{1/2})'pprox \hat{\Lambda}\hat{\Lambda}'$, quindi $\hat{\Lambda}pprox V_kL_k^{1/2}$

Inizializzazione:

- Partire dalla stima R della matrice di correlazione \mathbb{C} orr(x)
- $\bullet\,$ Calcolare la stima iniziale \hat{h}_i^2 della comunalità h_i^2 come
 - $\hat{h}_i^2 = \max_{j \neq i} |\widehat{\mathbb{C}orr}(x_i, x_j)|$
 - $\hat{h}_i^2=1-\frac{1}{r^{ii}}$ dove $r^{ii}=\{R^{-1}\}_{ii}$, che equivale il coefficiente di determinazione lineare multiplo tra x_i e x_{-i} $(p-1)\times 1$
- Ottenere la matrice di correlazione ridotta R^* da R ma sostituendo i valori 1 sulla diagonale con $\hat{h}_1^2,\ldots,\hat{h}_p^2$

Algoritmo iterativo:

- 1. $R^* \leftarrow R$ e poi $\{R^*\}_{ii} \leftarrow \hat{h}_i^2, i = 1, \dots, p$
- 2. Ottenere la decomposizione spettrale $R^* = VLV'$
- 3. Fissare k e determinare V_k e L_k
- 4. Stimare $\Lambda \operatorname{con} \hat{\Lambda} \approx V_k L_k^{1/2}$
- 5. Aggiornare $\hat{h}_i^2 \leftarrow \sum_{j=1}^k \hat{\lambda}_{ij}^2$ e $\{R^*\}_{ii} \leftarrow \hat{h}_i^2$
- 6. Ripetere i passi 2-5 fino a raggiungere convergenza

Output: $\hat{\Lambda}$, \hat{h}_{i}^{2} e $\hat{\psi}_{i} = 1 - \hat{h}_{i}^{2}$, i = 1, ..., p

Vincolo 2

 $D = diag(\sigma_{11}, \dots, \sigma_{pp}) = I$ perchè consideriamo la matrice di correlazione

Vincolo 2: $\hat{\Lambda}'\hat{D}^{-1}\hat{\Lambda} = \hat{\Lambda}'\hat{\Lambda} = diag(c_1, \dots, c_k) \text{ con } c_1 \geq \dots \geq c_k$

Quindi $\hat{\Lambda}$ soddisfa il Vincolo 2 perchè

$$\hat{\Lambda}'\hat{\Lambda} = (V_k L_k^{1/2})'(V_k L_k^{1/2}) = L_k = diag(l_1, \dots, l_k)$$

Casi di Heywood

Nella procedura di stima iterativa possono succedere casi di Heywood, ovvero $\hat{\psi}_i < 0$ oppure $\hat{\psi}_i > 1$

 $\hat{\psi}_i < 0$ non ha senso perchè ψ_i è una varianza, e quindi >0

 $\hat{\psi}_i > 1$ non ha senso perchè $\mathbb{V}\mathrm{ar}(x_i) = 1$ è quindi $\psi_i \leq 1$

2.5 Stima di massima verosimiglianza

Assunzione: $\underset{p \times 1}{x}$ segue una distribuzione Normale p-variata $\mathcal{N}(\underset{p \times 1}{\mu},\underset{p \times p}{\Sigma})$

Funzione di log-verosimiglianza:

$$\ell(X; \mu, \Sigma) = -\frac{1}{2} n \log |2\pi\Sigma| - \frac{1}{2} \sum_{i=1}^{n} (x_i - \mu) \Sigma^{-1} (x_i - \mu)'$$
$$= -\frac{1}{2} n \log |2\pi\Sigma| - \frac{1}{2} n \operatorname{tr}(\Sigma^{-1}S) - \frac{1}{2} n (\bar{x} - \mu) \Sigma^{-1} (\bar{x} - \mu)'$$

Sostituendo $\hat{\mu} = \bar{x}$

$$\ell(X; \hat{\mu}, \Sigma) = -\frac{n}{2} \left\{ \log |2\pi\Sigma| + \operatorname{tr}(\Sigma^{-1}S) \right\}$$

e per $\Sigma = \Lambda \Lambda' + \Psi$ otteniamo

$$\ell(X; \hat{\mu}, \Lambda, \Psi) = -\frac{n}{2} \left\{ \log |2\pi(\Lambda \Lambda' + \Psi)| + \text{tr}[(\Lambda \Lambda' + \Psi)^{-1}S] \right\}$$

Massimizzare

$$\ell(X; \hat{\mu}, \Lambda, \Psi) = -\frac{n}{2} \left\{ \log |2\pi(\Lambda \Lambda' + \Psi)| + \text{tr}[(\Lambda \Lambda' + \Psi)^{-1}S] \right\}$$

rispetto a Ψ e Λ

Stima iterativa:

- 1. Per Ψ fissato, massimizza numericamente per Λ
- 2. Per Λ fissato, massimizza numericamente per Ψ
- Implementata nella funzione R factanal ()
- Possiamo ottenere casi di Heywood

Example 2.6. Voto di n=202 studenti maschi su p=6 esami (variabili) Gaelic (non-math), English (non-math), History (non-math), Arithmetic (math), Algebra (math), Geometry (math).

$$\mathbf{R} = \begin{bmatrix} 1.0 & .439 & .410 & .288 & .329 & .248 \\ & 1.0 & .351 & .354 & .320 & .329 \\ & & 1.0 & .164 & .190 & .181 \\ & & & 1.0 & .595 & .470 \\ & & & & 1.0 & .464 \\ & & & & & 1.0 \end{bmatrix}$$

Stima di massima verosimiglianza con k=2

Table 9.5					
	Estimated factor loadings		Communalities		
Variable	F_1	F_2	\hat{h}_i^2		
1. Gaelic	.553	.429	.490		
2. English	.568	.288	.406		
3. History	.392	.450	.356		
4. Arithmetic	.740	273	.623		
5. Algebra	.724	211	.569		
6. Geometry	.595	132	.372		

Stima di MV:
$$\hat{h}_1^2 = \hat{\lambda}_{11}^2 + \hat{\lambda}_{12}^2 = (0.553)^2 + (0.429)^2 \approx 0.490$$

Primo fattore: intelligenza generale

Secondo fattore: abilità matematica vs abilità verbale

2.6 Rotazione dei pesi fattoriali

Per la rotazione dei pesi fattoriali Λ , dobbiamo cercare una matrice ortogonale Λ $\Lambda' = \Lambda = \Lambda' = I$) tale per cui i pesi fattoriali ruotati $\Lambda * = \Lambda = \Lambda = \Lambda = \Lambda$ sono più facilmente interpretabili:

$$A_{2\times 2} = \left[\begin{array}{cc} \cos\phi & \sin\phi \\ -\sin\phi & \cos\phi \end{array} \right] \text{ rotazione oraria per } k=2$$

Questo non cambia la soluzione del modello, solo la sua descrizione. Situazione desiderata per i fini interpretativi:

- i pesi fattoriali sono tutti grandi e positivi o prossimi a 0 (con pochi valori intermedi)
- ogni variabile osservabile è legata in modo pesante al più ad un solo fattore

Per k>2 il metodo varimax identifica la rotazione massimizzando un'opportuna funzione dei pesi fattoriali ruotati che misura la variabilità dei pesi.

Example 2.7. Riprendiamo l'esempio precedente:

Figure 9.1 Factor rotation for tes scores.

Table 9.6					
Variable	Estimate factor le F_1^*		Communalities $\hat{h}_i^{*2} = \hat{h}_i^2$		
1. Gaelic 2. English 3. History 4. Arithmetic 5. Algebra 6. Geometry	.369 .433 .211 .789 .752 .604	.594 .467 .558 .001 .054 .083	.490 .406 .356 .623 .568		

• Primo fattore: abilità matematica

• Secondo fattore: abilità verbale

2.7 Verifica d'ipotesi sul numero di fattori

Un vantaggio della stima di massima verosimiglianza e che permette un test di ipotesi sul numero di fattori

Ipotesi nulla H_0 : il modello fattoriale con k fattori è corretto

$$\Sigma = \Lambda \Lambda \Lambda' + \Psi$$

Ipotesi alternativa H_1 : Σ è una matrice definitiva positiva diversa da quella specificata sotto l'ipotesi nulla

Rifiuto l'ipotesi nulla con un p-value $\leq 5\%$

Test sequenziali: parto da k=1, se rifiuto proseguo con $k=2,3,\ldots$ fino a quando fallisco di rifiutare l'ipotesi

Test rapporto di verosimiglianza

Siano $\hat{\Lambda}$ e $\hat{\Psi}$ le stime di massima verosimiglianza per il k specificato dall'ipotesi nulla La statistica test rapporto di verosimiglianza è data da

$$T = -2\log\left(\frac{\text{MV sotto } H_0}{\text{MV}}\right) = n\log\left(\frac{|\hat{\Lambda}\hat{\Lambda}' + \hat{\Psi}|}{|S|}\right)$$

e sotto H_0 segue asintoticamente una distribuzione

$$\chi^{2}_{\frac{1}{2}[(p-k)^{2}-p-k]}$$

Il p-value del test si calcola come $\Pr(\chi^2_{\frac{1}{2}[(p-k)^2-p-k]}>t)$ dove t è il valore osservato della statistica test

L'approssimazione χ^2 può essere migliorata utilizzando la statistica test con la correzione di Bartlett:

$$T_{Bartlett} = \left[(n-1) - (2p + 4k + 5)/6 \right] \log \left(\frac{|\hat{\Lambda}\hat{\Lambda}' + \hat{\Psi}|}{|S|} \right)$$

2.8 Stima dei punteggi fattoriali

I punteggi fattoriali $\hat{f}_{k\times 1}=(\hat{f}_1,\dots,\hat{f}_k)'$ sono le "stime" delle variabili non osservabili $f_{k\times 1}=(f_1,\dots,f_k)'$

Metodo di Thompson (1951)

La distribuzione condizionata di $\int_{k\times 1} dato x dato x dato x$

$$\mathcal{N}(\Lambda'\Sigma^{-1}x, I - \Lambda'\Psi^{-1}\Lambda)$$

Per l'i-sima osservazione x_i (se standardizzata z_i),

$$\hat{f}_i = \hat{\Lambda}' S^{-1} x_i \qquad (\hat{f}_i = \hat{\Lambda}' R^{-1} z_i)$$

Metodo di Bartlett (1937)

$$\hat{f}_i = (\hat{\Lambda}' \hat{\Psi}^{-1} \hat{\Lambda})^{-1} \hat{\Lambda}' \hat{\Psi}^{-1} x_i$$