Homework 25

Joe Baker, Brett Schreiber, Brian Knotten

March 22, 2018

44

\mathbf{a}

Given a one-way function f, it is possible to create a new one-way function g which runs in $O(n^2)$ time as follows: On input x of size n:

Split the input x into log(n) chunks: $x_1, x_2...x_{log(n)}$. for each x_i :

First, g runs in $O(n^2)$ time, because f performing log(n) computations. So g is the complexity of f multiplied by log(n). Since we stop f after n^2 steps, the total runtime is $n^2 * log(n) = O(n^2)$.

Second, g is a one way function, since $g = f_U$, and f_U is one-way as proved below.

b

f is one way $\Rightarrow f_U$ is one-way. This can be proved by contrapositive, that f_U is not one-way $\Rightarrow f$ is not one way. Assume f_U is not one-way. Then there exists an algorithm A_U which given y can produce the x such that $f_U(x') = y'$ in polynomial time. Then you can construct an algorithm A which given y can produce the x such that f(x) = y in polynomial time.

A =on input y:

- 1. Generate r = some number of random bits.
- 2. Construct the string y' := y||r.
- 3. Run A on y' to get x'.
- 4. If f(x') = y, return x, else, go back to step 1.

A will halt in polynomial time because

45

\mathbf{a}

Let (E,D) be a semantically secure encryption scheme and let f(x) be a function that returns 1 if a bit of x is 1 and 0 otherwise. Then, by definition, for all probabilistic poly-time algorithms A: $P(A(E_k(x)) = 1) \le P(B(1^n) = 1) + \epsilon(n)$. Clearly, if A cannot determine if a bit of $E_k(x) = 1$, then by definition the $P(A(E_k(x) = (i, b) \text{ s.t. } x_i = b)$ requirement of computational security is satisfied. Further, the probability of a random bit being 1 is $\frac{1}{2}$ so $P(B(1^n) = 1) = \frac{1}{2}$. Then our definition becomes: $P(A(E_k(x)) = 1) \le \frac{1}{2} + \epsilon(n)$ and semantic security satisfies computational security.

b

Let G be a pseudo-random generator mapping $\{0,1\}^n$ to $\{0,1\}^m$, and (E,D) be an encryption scheme where $E_k(x) = x \oplus G(k)$ and $D_k(y) = y \oplus G(k)$. Let A be any probabilistic poly-time algorithm and $x \in_R X_n, k \in_R \{0,1\}^n$.

Consider the algorithm $A(E_{U_n}(0^m))$. Since G is a pseudo-random generator, decrypting $E_k(x)$ will require guessing each bit of x. The probability of guessing 1 of $2^{|x|}$ different bitstrings is uniformly distributed, so an optimal guessing strategy would be guessing all 0's since it is just as likely to be correct as any other guess. Thus $P[A(E_k(x)) = f(x)] \leq P[A(E_{U_n}(0^m)) = f(x) + \epsilon(n)$ and this encryption scheme is semantically secure by definition.