What can Diffraction at HERA offer the LHC? Part 1: Diffractive pdf's and QCD factorization tests

Frank-Peter Schilling [DESY]

Contents:

- QCD factorization in diffraction
- Inclusive Diffractive DIS
- Determination of diffractive pdf's
- Factorization tests with jets and charm (HERA, Tevatron)

HERA-LHC Workshop Startup Meeting

CERN, March 26-27, 2004

Diffraction at HERA

- HERA: An ideal laboratory to study hard diffraction:
- 10% of low-x DIS events are diffractive

Virtual photon γ^* as a probe

- Inclusive DIS: Probe proton structure $(F_2(x, Q^2))$
- Diffractive DIS:
 Probe structure of colour singlet exchange!

Can be viewed as diffractive $\gamma^* p$ interaction:

Why diffraction?

- Diffraction is significant part of σ_{tot}
- Novel tool to study soft-hard transition in QCD
- Low-x structure of the proton (e.g. saturation)

Diffractive Processes in γp Interactions

- All 4 processes can be measured with varying Q^2 , W, t, M_X , M_Y
- large Q^2 : γ^* probes diffractive exchange This talk!

- large |t|: perturbative QCD applicable to IP (BFKL)?
- $Q^2 \sim 0$, $|t| \sim 0$: similar to soft hadronic diffraction

Exclusive diffraction (VM, DVCS, ...): see Michele's talk!

Experimental Techniques

Forward Proton Spectrometers at z = 24...90 m

Measure leading proton

- Free of dissociation bkgd.
- Measure *p* 4-momentum
- low statistics (acceptance)

Rapidity Gap Selection in central detector

Require large rapidity gap

- ullet $\Delta\eta$ large when $M_{
 m central}\ll W_{\gamma p}$
- integrate over outgoing *p* system
- high statistics (similar: M_X method)

Diffractive Cross section and Structure Functions

In a frame where the proton is moving fast:

$$x_{I\!P} = \xi = \frac{Q^2 + M_X^2}{Q^2 + W^2} = x_{I\!P/p}$$
 (momentum fraction of colour singlet exchange)

$$\mathsf{M}_{\mathsf{X}} \qquad \begin{array}{l} \beta = \frac{Q^2}{Q^2 + M_X^2} = x_{q/I\!\!P} \\ \text{(fraction of exchange momentum of} \\ q \text{ coupling to } \gamma^*, x = x_{I\!\!P}\beta) \end{array}$$

$$t = (p - p')^2$$

(4-momentum transfer squared)

Diffractive reduced cross section σ_r^D :

$$\frac{d^4\sigma}{dx_{I\!\!P}\ dt\ d\beta\ dQ^2} = \frac{4\pi\alpha^2}{\beta Q^4} \left(1 - y + \frac{y^2}{2}\right) \sigma_r^{D(4)}(x_{I\!\!P}, t, \beta, Q^2)$$

Structure functions F_2^D and F_L^D :

$$\sigma_r^{D(4)} = F_2^{D(4)} - \frac{y^2}{2(1-y+y^2/2)} F_L^{D(4)}$$

Integrated over t: $F_2^{D(3)} = \int dt \; F_2^{D(4)}$

– Longitudinal
$$F_L^D$$
: affects σ_r^D at high y – If $F_L^D = 0$: $\sigma_r^D = F_2^D$

$$[\gamma \text{ inelasticity } y = Q^2/sx]$$

Factorization in Diffraction

Diffractive pdf's / proof of QCD Factorization for diffractive DIS:

• Diffractive parton distributions (Trentadue, Veneziano, Berera, Soper, Collins, ...):

$$\frac{d^2\sigma(x,Q^2,x_{I\!\!P},t)^{\gamma^*p\to p'X}}{dx_{I\!\!P}dt} = \sum_i \int_x^{x_{I\!\!P}} d\xi \hat{\sigma}^{\gamma^*i}(x,Q^2,\xi) \ p_i^D(\xi,Q^2,x_{I\!\!P},t) \quad (\text{+higher twist})$$

- $\hat{\sigma}^{\gamma^*i}$ hard scattering coeff. functions, as in incl. DIS
- p_i^D diffractive PDF's in proton, conditional probabilities, valid at fixed $x_{I\!\!P}, t$, obey (NLO) DGLAP

Ingelman-Schlein Model ('Resolved Pomeron' model):

 $x_{I\!\!P},t$ dependence factorizes out (Donnachie, Landshoff, Ingelman, Schlein, ...):

- additional assumption, no proof!
- consistent with present data if sub-leading *IR* included

Shape of diffr. PDF's indep. of $x_{I\!\!P}, t$, normalization controlled by Regge flux $f_{I\!\!P/p}$

Recent Diffractive DIS cross section data

 X_{IP}

- Large kinematic range covered
- $1.5 < Q^2 < 1600 \,\mathrm{GeV}^2$
- large stat. precision
- At low Q^2 limited by syst. err. from diffractive selection

Comparision diffractive vs inclusive: β or x dependence

 \Rightarrow Only weak β dependence! Similar to photon ...

x=0.021

x = 0.18

x = 0.65

102

10

10³

 $Q^2 (GeV^2)$

104

Proton:

ZEUS

Comparision diffractive vs inclusive: Q^2 dependence

 \Rightarrow +ve scaling violations to highest β : Gluon dominated!

Precise H1 Measurement of β , Q^2 dependences

Prerequisite for NLO DGLAP QCD fit:

- $-x_{\mathbb{P}}$ dep. taken out: factorization holds for $x_{\mathbb{P}} < 0.01$
- rising for $\beta \to 1$ at low Q^2
- positive scaling violations expect for largest β (gluon dominance)

NLO DGLAP QCD Fit (H1)

QCD Fit Technique:

- factorize $f(x_{I\!\!P})f(z,Q^2)$
- Singlet Σ and gluon g parameterized at $Q_0^2=3~{\rm GeV}^2$
- NLO DGLAP evolution
- Fit data for $Q^2 > 6.5 \text{ GeV}^2$, $M_X > 2 \text{ GeV}$
- For first time propagate exp. and theor. uncertainties!

PDF's of diffractive exchange:

- Extending to large fractional momenta z
- Gluon dominated
- Σ well constrained
- substantial uncertainty for gluon at highest z
- Similar to previous fits

H1 NLO QCD Fit: Gluon fraction and F_L^D

Integrate PDF's over measured range:

Momentum fraction of diffractive exchange carried by gluons:

$$75 \pm 15\%$$

Longitudinal
$$F_L^D$$
:
$$F_L^D \sim \frac{\alpha_s}{2\pi} \left[C_q^L \otimes F_2^D + C_g^L \otimes \sum_i e_i^2 z g^D(z, Q^2) \right]$$

Jet and Open Charm Production in Diffractive DIS

Test QCD factorization by applying dpdf's to final state cross sections ...

 Q^2 : Photon virtuality W: $\gamma^* p$ CMS energy

 M_X : mass of diffractively produced system

 $M_{12} = \sqrt{\hat{s}}$: mass of two jets / $c\bar{c}$ pair

$$x_{I\!\!P} = \frac{Q^2 + M_X^2}{Q^2 + W^2}$$

momentum fraction of diffractive exchange w.r.t. proton

$$z_{I\!\!P} = \frac{Q^2 + M_{12}^2}{Q^2 + M_X^2}$$

momentum fraction of diffractive exchange entering hard process

- → High sensitivity to diffractive gluon distribution!
- high p_T jet production
- $c \to D^*$ Meson production

NLO Calculations for Diffractive Final States

- So far mostly LO Monte Carlo programs with parton showers used
- QCD factorization: Hard scattering cross section same as for normal DIS
- NLO important to describe non-diffractive Jet production
- \rightarrow use standard NLO programs for jets and heavy quarks in DIS ($\mathcal{O}(\alpha_s^2)$)

Diffractive DIS Jets:	Diffractive DIS D^* :
-----------------------	-------------------------

Use DISENT (Seymour)

c.f. Hautmann [JHEP 0210 (2002) 025]

Diffractive version of HVQDIS (Harris, Smith) by Alvero, Collins, Whitmore

[hep-ph/9806340]

Calculate NLO cross section at fixed $x_{I\!\!P}$ by running with reduced $E_p = x_{I\!\!P} E_{p,nom}$. $x_{I\!\!P}$, t integration numerically

Use diffractive pdf $p_{i/I\!\!P}(z,\mu^2)$ NLO Calculation in massive scheme

Mul. w/ flux $f_{\mathbb{P}}(x_{\mathbb{P}}) = \int dt f_{\mathbb{P}}(x_{\mathbb{P}}, t)$ Peterson fragmentation

Data integrated over $x_{\mathbb{P}}$:

" $x_{I\!\!P}$ slicing" Both Interfaced to H1 diffractive pdf's

NLO Comparisons with Diffractive DIS Jets

Data:

Published H1 data:

[Eur. Phys. J. C20 (2001) 29] $4 < Q^2 < 80 \text{ GeV}^2, 0.1 < y < 0.7, x_{I\!\!P} < 0.05$ Jets: CDF cone, $p_{T,jet} > 4 \text{ GeV}$

But: NLO unstable if $p_{T,1} \sim p_{T,2}$ \rightarrow Data corrected to $p_{T,1(2)} > 5(4) \text{ GeV}$

NLO Calculations with DISENT:

$$\begin{split} \mu_r^2 &= p_T^2, \mu_f^2 = 40~{\rm GeV^2} \\ \Lambda_{QCD}^4 &= 0.2~{\rm GeV}~({\rm as~in~QCD~fit}) \end{split}$$

Hadronization corrections applied

Inner band: $0.25\mu_r^2 \dots 4\mu_r^2$ Outer band includes unc. in hadr. corr.

H1 Diffractive Dijets (prel.)

H1 fit 2002, $\mu_r^2 = p_T^2$, $\mu_f^2 = 40 \text{ GeV}^2$

NLO Comparisons with Diffractive DIS Jets (cont.)

- Cross section differential in $z_{\mathbb{P}}$
- LO Calculation too low, shape of data not reproduced (note: w/o parton showers!)
- Size of NLO correction on average factor ~ 2 (due to low jet p_T)
- NLO, corrected for hadronization: reasonable description in shape and normalization
- Renormalization scale unc. $\sim 20\%$
- Not shown: pdf uncertainty (gluon at high $z_{\mathbb{P}}$)

NLO Comparisons with Diffractive DIS Jets (cont.)

Further Cross sections:

• Size of NLO Corrections decreasing with Q^2 (and p_T , not shown)

 Reasonable agreement with NLO calculation

Diffractive Open Charm in DIS

Use
$$D^* \to D_0 \pi_s \to K \pi \pi_s$$

$$1.5 < Q^2 < 200 \,\mathrm{GeV}^2$$
 $x_{I\!\!P} < 0.035$ $p_{T,D^*} > 1.5 \,\mathrm{GeV}, |\eta_{D^*}| < 1.5$

So far measurements statistics limited

NLO Comparisons with Diffractive DIS D^* (H1)

NLO Calculations with diffr. HVQDIS:

$$\mu_r^2 = \mu_f^2 = Q^2 + 4m_c^2$$

$$\Lambda_{QCD}^4 = 0.2~{\rm GeV}~{\rm (as~in~QCD~fit)}$$

Peterson Fragmentation: $\epsilon = 0.078$

$$m_c = 1.5 \text{ GeV}, f(c \to D^*) = 0.233$$

Inner NLO error band: $0.25\mu_r^2 \dots 4\mu_r^2$ Outer band also includes

$$-1.35 < m_c < 1.65 \text{ GeV } (\pm 12\%)$$

$$-0.035 < \epsilon < 0.100 (+21/-7\%)$$

Good agreement in shape and normalization within uncertainties

Size of NLO correction smaller than for dijets

Diffractive D^* in DIS (ZEUS)

- Theory: gluon dominated pdf's from inclusive fits (ACTW), interfaced to NLO matrix elements
- Differential cross sections well described by calculation!

⇒ Support for QCD factorization in diffractive DIS!

Diffractive Dijets at the Tevatron (CDF)

Use pdf's to predict hard diffraction in pp:

- Serious breakdown of factorization observed if HERA pdf's transported to TEVATRON:
- Prediction based on H1 pdf's one order of magnitude above CDF data
- Also observed for other processes: Relative rate of diffractive processes $\sim 1\%$

Due to presence of second hadron in initial state? Spectator interactions/rescattering effects break up \overline{p} , "rapidity gap survival probability"

Dijets in Diffractive Photoproduction ($Q^2 \sim 0$)

Real photon \sim hadron: Look at HERA in photoproduction ...

Real photon may develop hadronic structure

→ similar to hadron-hadron interactions

 x_{γ} : Momentum fraction of photon entering the hard process

- $x_{\gamma} = 1$: Direct interaction, similar to DIS
- x_{γ} < 1: Resolved interaction, similar to hadron-hadron scattering

- Does QCD factorization also work in diffractive photoproduction (although not proven)?
- Is there a dependence on x_{γ} ?
- Can factorization breaking w.r.t. Tevatron be understood?

Dijets in Diffractive Photoproduction

H1 data:

$$Q^2 < 0.01~{
m GeV}^2, 0.3 < y < 0.65$$
 $x_{I\!\!P} < 0.03$ Jets: incl. k_T algo. $p_{T,1(2)} > 5(4)~{
m GeV}$

Monte Carlo comparisons: LO ME + parton showers: RAPGAP

$$\mu_r^2 = p_T^2$$

- New 2002 LO fit describes data very well
- Old "H1 fit 2" too high, but large uncertainties

Dijets in Diffractive Photoproduction

• Cross section as a function of x_{γ}

• New 2002 fit describes direct and resolved contribution

Direct comparison DIS vs γp :

$$\frac{\left(\frac{Model}{Data}\right)_{\gamma p}}{\left(\frac{Model}{Data}\right)_{DIS}} = 1.25 \pm 0.30 (\text{exp.})$$

Within uncertainties no suppression of γp w.r.t. DIS diffractive jets

Independent of fit

(NLO Calculations being worked on...)

Conclusions

HERA-I has told us:

- Diffractive DIS at HERA: Investiage quark/gluon structure of diffraction
- **High precision HERA data** in large kinematic range available
- **Diffractive pdf's of proton** have been determined at NLO
- Comparison with jets/charm: Self-consistent QCD picture of diffractive DIS to NLO
- Does factorization also hold in diffractive photoproduction? (Need NLO calc.)

From HERA to the LHC (via TEVATRON):

- HERA-II to provide a lot more data (in particular using the H1 VFPS)
- ullet Understanding of **factorization breaking mechanism** ep vs pp needed
- Need diffr. pdf's in kinematic range relevant for LHC!
- Can **diffractive pdf's + non-factorizing mechanism be combined** in a sensible way to obtain predictions for the LHC (e.g. diffractive Higgs)?

BACKUP

Ratio Diffractive / Inclusive: Q2 dependence (H1)

Logarithmic Q^2 dependence of the ratio $\frac{\sigma_r^{D(3)}(x,Q^2,x_{I\!\!P})}{\sigma_r(x,Q^2)}$

 $\left. rac{\sigma_r^{D(3)}(x,Q^2,x_{I\!\!P})}{\sigma_r(x,Q^2)}
ight|_{x,x_{I\!\!P}} \sim A_R + B_R \log Q^2$

Low β : rel. flat:

- ratio of diffr. to incl. $g(x, Q^2)$ constant
- diple models (IF $\sigma_{dipole} \propto R$)

As $\beta = 1$: falling:

- $-Q^2$ -suppressed higher twist (pert. 2-gluon exchange)
- DGLAP evolution (gluon radiation)

Diffractive / Inclusive: Ratio from ZEUS

Similar features observed:

- little Q^2 dependence at high M_X ($\sim \text{low } \beta$)
- strong (negative) Q^2 dependence at small M_X (\sim high β)