The single most comprehensive and unified source of information about mathematical functions.

DirectedInfinity

View the online version at

Download the

functions.wolfram.com

PDF File

Notations

Traditional name

Directed infinity in the complex plane

Traditional notation

 $z \infty$

Mathematica StandardForm notation

DirectedInfinity[z]

Primary definition

 $z \infty$ represents an infinite numerical quantity that is a positive real multiple of the complex number z.

Specific values

Values at fixed points

 $0 \infty = \tilde{\infty}$

02.13.03.0002.01

 $1 \infty = \infty$

02.13.03.0003.01

 $-1 \infty = -\infty$

02.13.03.0004.01

 $i \infty == i \infty$

02.13.03.0005.01

 $-i \infty = -i \infty$

02.13.03.0006.01

$$(1+i) \infty = \frac{1+i}{\sqrt{2}} \infty$$

Values at infinities

02.13.03.0007.01

 $\infty \infty == \infty$

```
02.13.03.0008.01
-\infty \infty = -\infty
02.13.03.0009.01
i \infty \infty = i \infty
02.13.03.0010.01
-i \infty \infty = -i \infty
02.13.03.0011.01
\tilde{\infty} \infty = \tilde{\infty}
02.13.03.0012.01
\tilde{\omega} \infty = \tilde{\infty}
```

General characteristics

 $z \infty$ is a special symbol. On the Riemann sphere it is the north pole together with the direction z how to approach it. In the projective complex plane it is a point at the line at infinity.

Transformations

Transformations and argument simplifications

```
02.13.16.0001.01
-z \infty = -\operatorname{sgn}(z) \infty
02.13.16.0002.01
az \infty = z \infty /; a > 0
02.13.16.0003.01
az \infty = \operatorname{sgn}(z) \infty /; a > 0
02.13.16.0004.01
az \infty = -\operatorname{sgn}(z) \infty /; a < 0
02.13.16.0005.01
iz \infty = i \operatorname{sgn}(z) \infty
02.13.16.0006.01
-iz \infty = -i \operatorname{sgn}(z) \infty
```

Argument involving complex components

```
02.13.16.0007.01
\frac{z}{|z|} \infty = z \infty
02.13.16.0008.01
\operatorname{sgn}(z) \infty = z \infty
```

Power of arguments

02.13.16.0009.01

$$e^{ix} \infty = e^{ix} \infty /; x \in \mathbb{R}$$

Products, sums, and powers of the direct function

Products involving the direct function

```
02.13.16.0010.01
0(z \infty) == \xi
02.13.16.0011.01
a(z \infty) == z \infty /; a > 0
02.13.16.0012.01
a(z \infty) == -\text{sgn}(z) \infty /; a < 0
02.13.16.0013.01
\frac{z \infty}{w \infty} == \xi
02.13.16.0014.01
-(z \infty) =-\text{sgn}(z) \infty
```

Related transformations

```
(z \infty)^{0} = \zeta
02.13.16.0016.01
1^{z \infty} = \zeta
```

Complex characteristics

Real part

```
02.13.19.0001.01
Re(z \infty) = 0 /; Re(z) == 0
02.13.19.0002.01
Re(z \infty) = (sgn(Re(z)) \infty) /; Re(z) \neq 0
```

Imaginary part

$$02.13.19.0003.01$$
 $Im(z \infty) == 0 /; Im(z) == 0$ $02.13.19.0004.01$ $Im(z \infty) == (sgn(Im(z)) \infty) /; Im(z) \neq 0$

Absolute value

```
02.13.19.0005.01 |z \infty| == \infty
```

Argument

```
02.13.19.0006.01 \arg(z \infty) = \arg(z)
```

$$\frac{02.13.19.0007.01}{\arg(e^{ix} \infty) = x + 2\pi \left[\frac{\pi - x}{2\pi}\right]/; x \in \mathbb{R}}$$

Conjugate value

$$02.13.19.0008.01$$

$$\overline{z \infty} = \overline{z} \infty$$

Differentiation

Low-order differentiation

$$\frac{\partial (a \infty)}{\partial z} = 0$$

Integration

Indefinite integration

$$\int z \infty dz = z \infty$$

Copyright

This document was downloaded from functions.wolfram.com, a comprehensive online compendium of formulas involving the special functions of mathematics. For a key to the notations used here, see http://functions.wolfram.com/Notations/.

Please cite this document by referring to the functions.wolfram.com page from which it was downloaded, for example:

http://functions.wolfram.com/Constants/E/

To refer to a particular formula, cite functions.wolfram.com followed by the citation number.

e.g.: http://functions.wolfram.com/01.03.03.0001.01

This document is currently in a preliminary form. If you have comments or suggestions, please email comments@functions.wolfram.com.

© 2001-2008, Wolfram Research, Inc.