2.m

Sammenhæng mellem f og f'.

Grafer

I nogle tilfælde vil vi kun kende graferne for f og f', og ud fra dette skal vi afgøre, hvilken af graferne der er graf for f og graf for f'. Lad os betragte et eksempel.

Eksempel 1.1. Graferne for f og f' kan ses af Fig. 1.

Figur 1: Grafer for f og f'

Vi skal afgøre hvilken af graferne A og B der tilhører f og f'. Vi ved, at f'(x) = 0, når grafen for f er i et ekstremumspunkt. Vi kan se, at grafen B har et toppunkt i x = 0 og et minimum omkring x = 1.3. Grafen A skærer x-aksen i netop disse punkter. Derfor må grafen for f være B og grafen for f' må være A.

Vi skal også ud fra en monotonilinje kunne skitsere en mulig graf for en funktion

Eksempel 1.2. Vi får givet følgende monotonilinje og ønsker at bestemme en mulig graf for funktionen f.

Side 1 af 4

Vi kan se, at grafen skal have ekstrema i -1 og 2 samt være voksende før og efter de to ekstrema og aftagende mellem. Vi skitserer en mulig graf, som kan ses af Fig. 2.

Figur 2: Mulig graf for funktionen med givet monotonilinje

Opgave 1

i) Skitsér en mulig graf for funktionen f med monotonilinjen

$$\begin{array}{c|cccc}
x & 0 \\
f'(x) & - 0 & + \\
f(x) & & \nearrow
\end{array}$$

ii) Skitsér en mulig graf for funktionen f med monotonilinjen

iii) Skitsér en mulig graf for funktionen f med monotonilinjen

iv) Skitsér en mulig graf for funktionen f med monotonilinjen

Opgave 2

På følgende koordinatsystemer kan man se graferne for f og f'. Afgør for hvert koordinatsystem hvilken af graferne der tilhører f og hvilken af graferne der tilhører f'.

Opgave 3

Vi skal vise, at b-værdien for et andengradspolynomium rent faktisk tilsvarer hældningen af funktionen i skæringen med y-aksen.

- i) Differentiér and engradspolynomiet $f(x) = ax^2 + bx + c$.
- ii) Indsæt 0 på x plads i f'(x). Hvad får du hældningen i x=0 til at være?
- iii) Hvad må konklusionen være?