Step-1

Let us use Induction on the order of the matrices A and M to prove this.

Let both the matrices be of order 1. Thus, $A = [a_{11}], M = [m_{11}]$

We have $Ax = \lambda Mx$. This gives,

$$Ax = \lambda Mx$$

$$[a_{11}]x = \lambda [m_{11}]x$$

$$x = \lambda \frac{[m_{11}]}{[a_{11}]}x$$

$$= \lambda \frac{m_{11}}{a_{11}}x$$

 $\lambda_{\parallel} = \frac{a_{11}}{m_{11}}.$ Thus, \hat{I}_{l} is not greater than $\frac{a_{11}}{m_{11}}$. In case of one by one matrix, there is only one eigenvalue and thus, that itself is the smallest eigenvalue.

Step-2

Assume that when A and M are n by n matrices, we get the smallest eigenvalue \hat{I}_{n_1} is not greater than m_{11} .

Now let A and M be n+1 by n+1 matrices. From these two matrices, we can throw their last row and last column and can obtain new matrices $A\hat{a}e^{TM}$ and $M\hat{a}e^{TM}$. Both these are of the order n by n.

Suppose λ_1' be the smallest eigenvalue of $A'x = \lambda M'x$.

Step-3

Suppose $^{\lambda_1}$ be the smallest eigenvalue of $Ax = \lambda Mx$.

If *P* is any square matrix and if *Q* is a matrix obtained by throwing any row and column of *P*, then we know that $\lambda_1(P) \leq \lambda_1(Q)$.

By using this, we can say that $\lambda_1 \leq \lambda_1'$

But by induction hypothesis, $\lambda_1' \le \frac{a_{11}}{m_{11}}$

Therefore, $\lambda_1 \le \frac{a_{11}}{m_{11}}$

Step-4

Thus, we have shown that the smallest eigenvalue $\lambda_{\rm l} \leq \frac{a_{\rm l1}}{m_{\rm l1}}$.