Име: ______, ФН:____, Спец./курс:_____

Задача	1	2	3	4	5	6	Общо
получени точки							
максимум точки	20	20	40	20	20	20	140

Забележка: За отлична оценка са достатъчни 100 точки!

Задача 1 Подредете по асимптотично нарастване функциите по-долу. Обосновете отговора си и напишете в явен вид подредбата.

$$\sum_{i=1}^{n} \frac{n^2}{i}, \qquad \lg((n!)^n), \qquad \left(\frac{3}{2}\right)^{2n}, \qquad n^2 + n \lg n, \qquad \sum_{i=0}^{n} \frac{1}{i!}, \qquad \frac{3^n}{2^n}, \qquad \binom{n}{2} \frac{1}{\lg n}, \qquad \sum_{i=1}^{n} \left(\frac{3}{2}\right)^i$$

Задача 2 Решете следните рекурентни отношения:

Задача 3 Докажете, че InversionSort е сортиращ (${f 20}\ {f r}$) и че сложността му по време е $\Theta(n^2)$ (${f 20}\ {f r}$).

InversionSort(A[1...n]: array of integers)

```
\begin{array}{lll} 1 & i \leftarrow 1 \\ 2 & \textbf{while } i < n \textbf{ do} \\ 3 & \textbf{ if } A[i] > A[i+1] \\ 4 & swap(A[i], A[i+1]) \\ 5 & \textbf{ if } i = 1 \\ 6 & i \leftarrow i+1 \\ 7 & \textbf{ else } i \leftarrow i-1 \\ 8 & \textbf{ else } i \leftarrow i+1 \end{array}
```

Задача 4 Подпоследователност на масив $A[1,\ldots,n]$ е всяка редица $A_{i_1},A_{i_2},\ldots,A_{i_m}$, където $1\leq i_1< i_2<\ldots i_m\leq n$ и $1\leq m\leq n$. Неформално, подпоследователност се получава след изтриване на някакви (може и нула) елементи от оригиналния масив, като редът на останалите е същият като в оригиналния масив. Редица от числа a_1,a_2,\ldots,a_t за произволно $t\geq 2$ се нарича алтернираща, ако в сила е точно едно от следните:

- $a_i < a_{i+1}$ за всички четни i и $a_i > a_{i+1}$ за всички нечетни i, където $1 \le i \le t-1$;
- $a_i > a_{i+1}$ за всички четни i и $a_i < a_{i+1}$ за всички нечетни i, където $1 \le i \le t-1$.

Предложете колкото е възможно по-бърз алгоритъм, който намира алтернираща подпоследователност с максимален брой елементи в масив от цели числа $A[1, \ldots, n]$.

Задача 5 Предложете колкото е възможно по-бърз алгоритъм, който намира най-дълъг път в дърво (10 т.). Предложете колкото е възможно по-бърз алгоритъм за същата задача, но сега в тегловен вариант, тоест ребрата имат положителни тегла, а дължината на път е сумата от теглата на ребрата му (10 т.).

Задача 6 Задачата МАКСКлика се дефинира така: при даден граф G(V,E) и число k, дали най-голямата клика в G има поне k върха. Задачата МинВърховоПокриване се дефинира така: при даден граф G(V,E) и число k, дали най-малкото върхово покриване на G има не повече от k върха. Да си припомним две дефиниции: κ лика в граф е всеки подграф, който е пълен граф; ϵ ърхово покриване на граф G(V,E) е всяко $U \subseteq V$, такова че за всяко ребро $(u,v) \in E$ е изпълнено, че $u \in U$ или $v \in U$.

Предложете полиномиална сводимост Макс Клика \propto МинВърхово Покриване. Обосновете коректността и́. **Решение на зад. 3:** Ще ползваме очевидната инварианта: Всеки път когато алгоритъмът е на ред 2, подмасивът A[1...i] е подреден (не съдържа инверсии).

Интересен е въпросът дали i достига стойност n, ако това стане, масивът ще бъде сортиран.

Ще докажем по индукция лема, която дава позитивен отговор на горния въпрос и влече коректността на алгоритъма:

Лема: За всяко $k, 1 \le k \le n$ променливата i достига стойност k при работата на алгоритъма InversionSort. Доказателство: k = 1 се достига още при първото изпълнение на ред 2.

Нека i достига стойност k на ред 2. Има два случая — проверката на ред 3 сработва. В този случай елементът A[k+1] след най-много k на брой размени ще бъде поставен на точното си място в подмасива $A[1 \dots k+1]$ и след още най-много k преминавания през цикъла, i ще достигне стойност k+1.

В другият случай, когато проверката на ред 3 не сработва, i веднага достига стойност k+1.

Прилагаме принципа на математическата индукция, и завършваме доказателството на лемата.

Сега да означим с T_k броят изпълнения на цикъла while, когато за пръв път i достига стойност k. От разсъжденията, проведени в доказателството на лемата се вижда, че след момента T_k са достатъчни не повече от 2k изпълнения на цикъла за достигане на стойност k+1, т.е. функцията, изразяваща сложността на алгоритъма ще расте по-бавно от решението на рекурентната зависимост T(k+1) = T(k) + ck, където c е подходяща константа. Решението на рекурентната зависимост е $\Theta(k^2)$.

Алгоритъмът завършва, когато i достигне n, следователно сложността му е ограничена от $\Theta(n^2)$.

Остава да забележим, че при всяко преминаване през цикъла алгоритъмът унищожава най-много една инверсия (той унищожава инверсия от вида < i, i+1>, която не влияе на останалите инверсии в масива). Ако подадем на входа обратно нареден масив, броят на инверсиите в него е $\Theta(n^2)$, следователно сложността му е точно $\Theta(n^2)$.