

Neural Networks

Overview

Plan

- 1. Linear regression reminder
- 2. Fully Connected Neural Networks
- 3. History of Convolutional Neural Networks.

Usual approach

Small reminder about Linear Regression

$$\hat{y} = w_1 x + w_0$$
 $x - \text{input}$
 $y - \text{target}$
 $w - \text{weights}$

Single Layer Perceptron

The same formula in different view

What if we stack them?

$$o_{1} = \sum_{i=2}^{N} x_{i} w_{i1}^{(1)} + w_{11}^{(1)}$$

$$o_{2} = \sum_{i=2}^{N} x_{i} w_{i2}^{(1)} + w_{12}^{(1)}$$

$$\vdots$$

$$o_{M} = \sum_{i=2}^{N} x_{i} w_{iM}^{(1)} + w_{1M}^{(1)}$$

$$o_1 = \sum_{i=2}^{N} x_i w_{i1}^{(1)} + w_{11}^{(1)}$$

$$o_2 = \sum_{i=2}^{N} x_i w_{i2}^{(1)} + w_{12}^{(1)}$$
:

$$o_M = \sum_{i=1}^{N} x_i w_{iM}^{(1)} + w_{1M}^{(1)}$$

$$O_1 = X \times W^{(1)}$$

$$V^{(1)} = egin{pmatrix} w_{11}^{(1)} & w_{12}^{(1)} & \dots & w_{1M}^{(1)} \ w_{21}^{(1)} & w_{22}^{(1)} & \dots & w_{2M}^{(1)} \ dots & dots & \ddots & dots \ w_{2M}^{(1)} & w_{2M}^{(1)} & \dots & w_{2M}^{(1)} \end{pmatrix}$$

What if we stack them?

$$\hat{y} = (\dots((X \times W^{(1)})W^{(2)})\dots)\mathbf{w}^{(\mathbf{M})}$$

Or even more...

This function is still linear...

$$\hat{y} = (\dots ((X \times W^{(1)})W^{(2)})\dots)\mathbf{w}^{(\mathbf{M})} = (X \times W^{(q)})\mathbf{w}^{(\mathbf{M})}$$

This function is still linear...

$$\hat{y} = (\dots((X \times W^{(1)})W^{(2)})\dots)\mathbf{w}^{(\mathbf{M})} = (X \times W^{(q)})\mathbf{w}^{(\mathbf{M})}$$

Let's add some nonlinearity here!

$$\hat{y} = f_M(f_{M-1}(\dots f_2(f_1(X \times W^{(1)})W^{(2)})\dots)\mathbf{w}^{(\mathbf{M})})$$

Neuron output:

$$z_{11} = f_{11}(o_{11})$$

$$\hat{y} = f_M(f_{M-1}(\dots f_2(f_1(X \times W^{(1)})W^{(2)})\dots)\mathbf{w}^{(\mathbf{M})})$$

Activation functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU max(0.1x, x)

tanh

tanh(x)

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

ReLU

 $\max(0, x)$

Example: Regression task

How much the house costs?

Data(χ):

1500 _ examples	ID	Number of rooms	Floor	LotArea		Distance from center (m)
	1	2	5	64		3620
	2	3	3	80		1076
	:	÷	:	:	٠	:
	N	2	10	40		6400
		•	•		•	

80 features

Targets(*y*):

Price(\$)
254000
500000
÷
210000

Example: Regression task

How can we put data into NN?

Example: Regression task

Many networks with the same weights... Batches: 64 3620 X_1 24 7800 80 x_1 input neurons 3001 k+1 98 x_2 X_2 examples 45 1200 \mathcal{X} x_{P} 80 features times

How to decrease this huge error?

Yet another small reminder about linear regression

Linear regression parameters training:

$$\hat{y} = w_0 + w_1 x$$

$$L(y, \hat{y}) = (y - \hat{y})^2$$

$$= (y - w_1 x - w_0)^2$$

$$w_{new} = w_{old} - \alpha \frac{\partial L(w, x)}{\partial w}$$

$$\alpha \in \mathbb{R} - \text{learning rate}$$

Neural Network Training

Linear regression parameters training:

$$\hat{y} = w_0 + w_1 x$$

$$L(y, \hat{y}) = (y - \hat{y})^2$$

$$= (y - w_1 x - w_0)^2$$

$$w_{new} = w_{old} - \alpha \frac{\partial L(w, x)}{\partial w}$$

$$\alpha \in \mathbb{R} - \text{learning rate}$$

Fully Connected Neural Network:

$$L(X, y) = \frac{1}{N} \sum_{i}^{N} (y_i - \hat{y}_i)^2$$

$$\hat{y} = (\dots ((X \times W^{(1)}) W^{(2)}) \dots) \mathbf{w}^{(\mathbf{M})}$$

$$w_{new} = w_{old} - \alpha \frac{\partial L(w, x)}{\partial w}$$

Chain Rule

$$\frac{\partial L}{\partial w} = \frac{\partial L}{f_{out}} * \frac{\partial f_{out}}{W_N} * \dots * \frac{\partial f_1}{W_1} X$$

Neural Network Training

Fully Connected Neural Network:

$$L(X,y) = \frac{1}{N} \sum_{i}^{N} (y_i - \hat{y}_i)^2$$

$$\hat{y} = (\dots ((X \times W^{(1)})W^{(2)}) \dots) \mathbf{w}^{(\mathbf{M})}$$

$$w_{new} = w_{old} - \alpha \frac{\partial L(w,x)}{\partial w}$$

Chain Rule

$$\frac{\partial L}{\partial w} = \frac{\partial L}{f_{out}} * \frac{\partial f_{out}}{W_N} * \dots * \frac{\partial f_1}{W_1} X$$

This approach named Backpropagation:

[111, 135, 163, 138, 102, 138, 171, 138, 117, 106, 118, 132, 85] [161, 156, 169, 154, 115, 123, 154, 151, 144, 125, 103, 115, 107] [109, 143, 149, 134, 126, 113, 108, 124, 132, 154, 148, 130, 110] [102, 141, 151, 135, 129, 122, 117, 126, 126, 148, 153, 140, 116] [130, 155, 156, 147, 158, 167, 163, 162, 122, 135, 152, 151, 127] [192, 179, 152, 144, 162, 170, 157, 145, 130, 122, 134, 139, 127] [135, 112, 95, 110, 144, 161, 161, 160, 137, 121, 126, 131, 131] [119, 111, 109, 120, 133, 139, 143, 149, 131, 132, 148, 155, 158] [138, 146, 149, 140, 134, 139, 144, 142, 128, 138, 153, 158, 169] [136, 152, 151, 128, 122, 143, 151, 136, 136, 133, 125, 121, 148] [143, 152, 120, 117, 145, 121, 101, 132, 134, 117, 122, 155, 136] [172, 141, 107, 120, 151, 141, 132, 155, 120, 108, 120, 155, 137] [121, 99, 94, 106, 118, 119, 116, 124, 93, 89, 112, 144, 124] [87, 94, 103, 105, 130, 155, 145, 136, 112, 108, 130, 151, 127] [148, 135, 112, 102, 149, 171, 131, 118, 143, 121, 130, 143, 132] [135, 108, 98, 111, 157, 155, 114, 138, 138, 103, 107, 126, 136] [140, 106, 122, 139, 148, 130, 106, 149, 126, 103, 121, 139, 147] [137, 82, 93, 101, 99, 106, 100, 128, 114, 110, 145, 152, 135] [161, 132, 99, 106, 126, 144, 142, 101, 84, 114, 124, 121, 125] [157, 149, 123, 118, 121, 126, 128, 103, 78, 111, 127, 122, 115] [146, 159, 142, 132, 128, 119, 113, 95, 103, 135, 152, 147, 132] [142, 160, 144, 138, 143, 131, 111, 83, 90, 109, 116, 113, 103] [154, 167, 149, 140, 143, 138, 122, 91, 112, 115, 106, 103, 105] [169, 176, 159, 140, 127, 131, 140, 114, 145, 141, 121, 113, 120] [166, 166, 156, 138, 114, 129, 155, 126, 115, 118, 97, 77, 77]]


```
[[111, 135, 163, 138, 102, 138, 171, 138, 117, 106, 118, 132, 85]
[161, 156, 169, 154, 115, 123, 154, 151, 144, 125, 103, 115, 107]
[109, 143, 149, 134, 126, 113, 108, 124, 132, 154, 148, 130, 110]
[102, 141, 151, 135, 129, 122, 117, 126, 126, 148, 153, 140, 116]
[130, 155, 156, 147, 158, 167, 163, 162, 122, 135, 152, 151, 127]
[192, 179, 152, 144, 162, 170, 157, 145, 130, 122, 134, 139, 127]
[135, 112, 95, 110, 144, 161, 161, 160, 137, 121, 126, 131, 131]
[119, 111, 109, 120, 133, 139, 143, 149, 131, 132, 148, 155, 158]
[138, 146, 149, 140, 134, 139, 144, 142, 128, 138, 153, 158, 169]
[136, 152, 151, 128, 122, 143, 151, 136, 136, 133, 125, 121, 148]
[143, 152, 120, 117, 145, 121, 101, 132, 134, 117, 122, 155, 136]
[172, 141, 107, 120, 151, 141, 132, 155, 120, 108, 120, 155, 137]
[121, 99, 94, 106, 118, 119, 116, 124, 93, 89, 112, 144, 124]
[ 87, 94, 103, 105, 130, 155, 145, 136, 112, 108, 130, 151, 127]
[148, 135, 112, 102, 149, 171, 131, 118, 143, 121, 130, 143, 132]
[135, 108, 98, 111, 157, 155, 114, 138, 138, 103, 107, 126, 136]
[140, 106, 122, 139, 148, 130, 106, 149, 126, 103, 121, 139, 147]
[137, 82, 93, 101, 99, 106, 100, 128, 114, 110, 145, 152, 135]
[161, 132, 99, 106, 126, 144, 142, 101, 84, 114, 124, 121, 125]
[157, 149, 123, 118, 121, 126, 128, 103, 78, 111, 127, 122, 115]
[146, 159, 142, 132, 128, 119, 113, 95, 103, 135, 152, 147, 132]
[142, 160, 144, 138, 143, 131, 111, 83, 90, 109, 116, 113, 103]
[154, 167, 149, 140, 143, 138, 122, 91, 112, 115, 106, 103, 105]
[169, 176, 159, 140, 127, 131, 140, 114, 145, 141, 121, 113, 120]
[166, 166, 156, 138, 114, 129, 155, 126, 115, 118, 97, 77, 77]]
```

Thus model input will contains WxHxC features... (It is a lot!)


```
[111, 135, 163, 138, 102, 138, 171, 138, 117, 106, 118, 132, 85]
[161, 156, 169, 154, 115, 123, 154, 151, 144, 125, 103, 115, 107]
[109, 143, 149, 134, 126, 113, 108, 124, 132, 154, 148, 130, 110]
[102, 141, 151, 135, 129, 122, 117, 126, 126, 148, 153, 140, 116]
[130, 155, 156, 147, 158, 167, 163, 162, 122, 135, 152, 151, 127]
[192, 179, 152, 144, 162, 170, 157, 145, 130, 122, 134, 139, 127]
[135, 112, 95, 110, 144, 161, 161, 160, 137, 121, 126, 131, 131]
[119, 111, 109, 120, 133, 139, 143, 149, 131, 132, 148, 155, 158]
[138, 146, 149, 140, 134, 139, 144, 142, 128, 138, 153, 158, 169]
[136, 152, 151, 128, 122, 143, 151, 136, 136, 133, 125, 121, 148]
[143, 152, 120, 117, 145, 121, 101, 132, 134, 117, 122, 155, 136]
[172, 141, 107, 120, 151, 141, 132, 155, 120, 108, 120, 155, 137]
[121, 99, 94, 106, 118, 119, 116, 124, 93, 89, 112, 144, 124]
[ 87, 94, 103, 105, 130, 155, 145, 136, 112, 108, 130, 151, 127]
[148, 135, 112, 102, 149, 171, 131, 118, 143, 121, 130, 143, 132]
[135, 108, 98, 111, 157, 155, 114, 138, 138, 103, 107, 126, 136]
[140, 106, 122, 139, 148, 130, 106, 149, 126, 103, 121, 139, 147]
[137, 82, 93, 101, 99, 106, 100, 128, 114, 110, 145, 152, 135]
[161, 132, 99, 106, 126, 144, 142, 101, 84, 114, 124, 121, 125]
[157, 149, 123, 118, 121, 126, 128, 103, 78, 111, 127, 122, 115]
[146, 159, 142, 132, 128, 119, 113, 95, 103, 135, 152, 147, 132]
[142, 160, 144, 138, 143, 131, 111, 83, 90, 109, 116, 113, 103]
[154, 167, 149, 140, 143, 138, 122, 91, 112, 115, 106, 103, 105]
[169, 176, 159, 140, 127, 131, 140, 114, 145, 141, 121, 113, 120]
[166, 166, 156, 138, 114, 129, 155, 126, 115, 118, 97, 77, 77]]
```

Thus model input will contains *WxHxC* features... (**It is a lot!**)

Also, we do not use information about neighboring pixels.


```
[111, 135, 163, 138, 102, 138, 171, 138, 117, 106, 118, 132, 85]
[161, 156, 169, 154, 115, 123, 154, 151, 144, 125, 103, 115, 107]
[109, 143, 149, 134, 126, 113, 108, 124, 132, 154, 148, 130, 110]
[102, 141, 151, 135, 129, 122, 117, 126, 126, 148, 153, 140, 116]
[130, 155, 156, 147, 158, 167, 163, 162, 122, 135, 152, 151, 127]
[192, 179, 152, 144, 162, 170, 157, 145, 130, 122, 134, 139, 127]
[135, 112, 95, 110, 144, 161, 161, 160, 137, 121, 126, 131, 131]
[119, 111, 109, 120, 133, 139, 143, 149, 131, 132, 148, 155, 158]
[138, 146, 149, 140, 134, 139, 144, 142, 128, 138, 153, 158, 169]
[136, 152, 151, 128, 122, 143, 151, 136, 136, 133, 125, 121, 148]
[143, 152, 120, 117, 145, 121, 101, 132, 134, 117, 122, 155, 136]
[172, 141, 107, 120, 151, 141, 132, 155, 120, 108, 120, 155, 137]
[121, 99, 94, 106, 118, 119, 116, 124, 93, 89, 112, 144, 124]
[ 87, 94, 103, 105, 130, 155, 145, 136, 112, 108, 130, 151, 127]
[148, 135, 112, 102, 149, 171, 131, 118, 143, 121, 130, 143, 132]
[135, 108, 98, 111, 157, 155, 114, 138, 138, 103, 107, 126, 136]
[140, 106, 122, 139, 148, 130, 106, 149, 126, 103, 121, 139, 147]
[137, 82, 93, 101, 99, 106, 100, 128, 114, 110, 145, 152, 135]
[161, 132, 99, 106, 126, 144, 142, 101, 84, 114, 124, 121, 125]
[157, 149, 123, 118, 121, 126, 128, 103, 78, 111, 127, 122, 115]
[146, 159, 142, 132, 128, 119, 113, 95, 103, 135, 152, 147, 132]
[142, 160, 144, 138, 143, 131, 111, 83, 90, 109, 116, 113, 103]
[154, 167, 149, 140, 143, 138, 122, 91, 112, 115, 106, 103, 105]
[169, 176, 159, 140, 127, 131, 140, 114, 145, 141, 121, 113, 120]
[166, 166, 156, 138, 114, 129, 155, 126, 115, 118, 97, 77, 77]]
```

Thus model input will contains WxHxC features... (It is a lot!)

Also, we do not use information about neighboring pixels.

How can we use it??

Fully Connected Neural Network. Summarizing.

1. Can be represented in the form of several linear regressions with the activations functions.

$$\hat{y} = f_M(f_{M-1}(\dots f_2(f_1(X \times W^{(1)})W^{(2)})\dots)\mathbf{w}^{(\mathbf{M})})$$

- There are many hyperparameters for optimization.
- 3. For training use Backpropagation algorithm.
- Not used with images because:
 - a. Huge number of input parameters.
 - b. Information about the relative position of pixels is lost.

http://playground.tensorflow.org

History of Convolutional Neural Networks.

ImageNet dataset

Dataset size: 14,000,000 + images 30,000+ classes

Image size 224x224

ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

Dataset size: 20,000 images 1000 classes

Task:

Predict which class picture belongs to.

Evaluation types:

1. Top 5 error.

The percentage of the images that the classifier did not include the correct class among its top 5 guesses.

2. Top 1 error.

The percentage of the images that the classifier did not give the correct class the highest score.

LeNet-5 (1998)

LeNet-5 (1998)

- Small 7 layers network developed by Yann Lecun.
- Used for recognizing 32x32 hand-written numbers.
- It required a lot of resources for training that were not available in 1998.

Alexnet (2012)

Alexnet (2012)

- Winner of ILSVRC 2012 with 15.3% of top 5 error.
- Deeper architecture with huge convolutions 11x11.
- Was trained on 2 GPU for 6 days.

Alexnet (2012)

- Winner of ILSVRC 2012 with 15.3% of top 5 error.
- Deeper architecture with huge convolutions 11x11.
- Was trained on 2 GPU for 6 days.
- 60 million parameters.

Drawbacks:

Huge convolutions with a lots of weights.

GoogLeNet or Inception v1 (2014)

GoogLeNet or Inception v1 (2014)

- Winner of ILSVRC 2014 with 6.67% of top 5 error.
 (Right now it is better than human)
- Huge block structure with 22 layers.
- Small number of parameters. (4 million)

Drawbacks:

Need a lot of time to reach a good quality.

VGG (2014)

ConvNet Configuration					
Α	A-LRN	В	C	D	Е
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight
layers	layers	layers	layers	layers	layers
	i	nput (224×2	24 RGB imag	ge)	
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64
	LRN	conv3-64	conv3-64	conv3-64	conv3-64
	200		xpool	Dec .	25 par
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128
		conv3-128	conv3-128	conv3-128	conv3-128
	ac ac		kpool	V	**
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
			conv1-256	conv3-256	conv3-256
					conv3-256
			xpool		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
	/-				conv3-512
		max	xpool		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
			<u> </u>		conv3-512
			kpool		
			4096		
			4096		
		0.00011004	1000		
		soft	-max		
				in millions).	
Net	work	A,A-	LRN B	C D	E
		10	0 100	404 400	4 4 4 4

Number of parameters

VGG (2014)

- 2d place on ILSVRC 2014 with 7.32% of top 5 error.
- Only 3x3 convolutions and poolings!
- There are a lot of different versions from small VGG7 to huge VGG19. (133 - 144 million parameters)

Drawbacks:

- All parameters in fully connected layers in the end of the network.
- Vanishing gradients.

$$w_{new} = w_{old} - \alpha \frac{\partial L(w, x)}{\partial w}$$

$$\frac{\partial L}{\partial w} = \frac{\partial L}{f_{out}} * \frac{\partial f_{out}}{W_N} * \dots * \left(\frac{\partial f_1}{W_1} X\right)^{2^{\Lambda}}$$

$$w_{new} = w_{old} - \alpha \frac{\partial L(w, x)}{\partial w}$$

$$\frac{\partial L}{\partial w} = \frac{\partial L}{f_{out}} * \underbrace{\frac{\partial f_{out}}{W_N}}^{2} * \dots * \underbrace{\frac{\partial f_1}{W_1} X}^{2}$$

$$w_{new} = w_{old} - \alpha \frac{\partial L(w,x)}{\partial w}$$

$$\frac{\partial L}{\partial w} = \frac{\partial L}{f_{out}} * \frac{\partial f_{out}}{W_N} * \dots * \frac{\partial f_1}{W_1} X^{2}$$
A lot of parameters!

$$w_{new} = w_{old} - \alpha \frac{\partial L(w,x)}{\partial w}$$

$$\frac{\partial L}{\partial w} \neq \frac{\partial L}{f_{out}} * \frac{\partial f_{out}}{W_N} * \dots * \frac{\partial f_1}{W_1} X$$
A lot of parameters!

Thus,
$$w_{new} = w_{old} - \alpha \frac{\partial L(w,x)}{\partial w}$$

$$w_{new} = w_{old} \quad \text{Almost no updates!}$$

Reminder about weights update process

$$w_{new} = w_{old} - \alpha \frac{\partial L(w, x)}{\partial w}$$

$$\underbrace{\frac{\partial L}{\partial w}}_{N} \neq \underbrace{\frac{\partial L}{f_{out}}}_{N} * \underbrace{\frac{\partial f_{out}}{W_{N}}}_{N} * \dots * \underbrace{\frac{\partial f_{1}}{W_{1}}}_{N} X^{2}$$

A lot of parameters!

Thus,
$$w_{new} = w_{old} - \alpha \frac{\partial L(w,x)}{\partial w}$$

 $w_{new} = w_{old}$ Almost no updates!

It means that networks with huge number of layers will be train very slowly.

ResNet (2015)

ResNet (2015)

- Winner of ILSVRC 2015 with top 5 error 3.5%
- No vanishing gradients
- Really huge networks, started from ResNet18 to ResNet152.

A lots of other architectures here...

Attention models

Binary segmentation

2015? To old!

What should we do then?

2015? To old!

What should we do then?

What tasks we can solve by CNN?

- regression
- classification
- segmentation
- detection

What tasks we can solve by CNN?

- regression
- classification
- segmentation
- detection

What is the output of the network?

CNN with regression

CNN with classification

$$f$$
: $\sigma(z)_i = rac{e^{z_i}}{\displaystyle\sum_{k=1}^K e^{z_k}}$ Softmax

$$\sigma(x) = \frac{1}{1+e^{-x}}$$
 Sigmoid

CNN with classification

Свёрточная Нейросеть (CNN)

CNN with segmentation

CNN with detection one object

CNN with detection for several objects

Number of neurons in output layer is 5xWxH.

CNN with detection for several objects

Number of neurons in output layer is WxHx(5+NumClass). •

- confidence in this bb
- length of bb
- width of bb
- X
- \
- probability for each class

- Полносвязные сети.
- Когда хорошо? (Табличные данные можно исследовать таким образом)
- Когда плохо? (картинки, сеть становится слишком большой)
- Что делать?
- 2. Свертки.
 - Сверточные сети с картинками
 - Какие типы сетей? Что использовали раньше, что используют сейчас? (просто перечисление, какими они были и какими стали)
 - Чем отличается задача регрессии от классификации в терминах сетки?
 - Какие еще задачи существуют и как их решают? (pose estimation)
 - Плюсиком видео iv.
 - Сверточные сети со звуком
 - 22222
 - Сверточные сети с текстами
 - text to numbers
 - типы сетей(только задачи со сверточными сетями)???
 - классификация текста, лейблинг, sentiment analysis
- 3. Рекуррентные сети.
 - Примеры сетей для решения задач на текстах.
- Генеративные сети.
 - Какие задачи решаем?
 - Какие типы сетей используются? Как развивалось?
- 5. Graph networks.
- Комбинация сетей.
 - По картинке генерить описание.