HG351 Corpus Linquistics

Lexical and Grammatical Studies, Variation

Francis Bond

Division of Linguistics and Multilingual Studies

http://www3.ntu.edu.sg/home/fcbond/bond@ieee.org

Lecture 7

http://compling.hss.ntu.edu.sg/courses/hg3051/

Overview

- > Revision of DIY Corpora
 - > DIY Corpora
 - Corpus Tools
 - Processing Raw Text
 - > SQL
- > Lexical Studies
- > Grammatical Studies
- > Variation

Revision of DIY Corpora

DIY Corpora

- Decide what you want to study see if you can do it with existing resources No ②
- 2. Collect data that fits your needs
 - > Speech (expensive)
 - > Text (easy to get, hard to do legally)
- 3. Process it
 - > Clean up
 - ➤ Mark up
 - > Annotation

Web as Corpus

Two Approaches to using the Web as a Corpus

- Direct Query: Search Engine as Query tool and WWW as corpus? (Objection: Results are not reliable)
 - \triangleright Population and exact hit counts are unknown \rightarrow no statistics possible.
 - Indexing does not allow to draw conclusions on the data.
 - Soogle is missing functionalities that linguists / lexicographers would like to have.
- Web Sample: Use search engine to download data from the net and build a corpus from it.
 - \rightarrow known size and exact hit counts \rightarrow statistics possible.
 - > people can draw conclusions over the included text types.
 - (limited) control over the content.
 - ⊗ sparser data

Structured Query Language

A special-purpose programming language designed for managing data held in a relational database management system (RDBMS)

- > The simplest query
 - > SELECT desired attributes
 - > FROM one or more tables
 - > WHERE condition applies about the records in the tables
- What lemmas are there associated with the word does?

QUERY	word	lemma
SELECT word, lemma FROM word	does	do
FROM word	does	do
FROM word WHERE word = 'does'	does	doe

Queries can be rather complicated

> Tell me more about frequent common nouns

count	distinct	min	max	avg
1096	10	3	10	5.13

- > First find the ten most common words, then do things to them
 - > the trick is to write simple queries first, and then combine them
- Note that more common words are shorter (as we would expect)
 SQL allows you to search for a very wide variety of things

Corpus Studies of Lexicography

big, large, great

- Same syntax (all adjectives)
- > Similar meaning:
 - ➤ large, big "above average in size or number or quantity or magnitude or extent" a large city; set out for the big city; a large sum; a big (or large) barn; a large family; big businesses; a big expenditure; a large number of newspapers; a big group of scientists; large areas of the world
 - great "relatively large in size or number or extent; larger than others of its kind" a great juicy steak; a great multitude; the great auk; a great old oak; a great ocean liner; a great delay
- > How do they differ?

Biber et al. (1998, § 2.6)

Distribution of big, large, great

	Academic	Fiction	Combined
big	31	408	230
large	605	232	408
great	284	490	393
	/ !!!!	`	

(frequency/million words)

Counts from Longman-Lancaster Corpus

Academic Text: 2.7 Million Words

> Fiction: 3.0 Million Words

Immediate Right Collocates

Academic

big		large	9	great	
enough	2.2	number	48.3	deal	44.6
traders	1.1	numbers	31.3	importance	12.5
		scale	18.0	number	8.9
		and	28.0	majority	8.1
		enough	15.9	variety	7.0

Fiction

big		larg	e	gre	at
man	9.6	and	15.2	deal	40.4
enough	8.9	black	4.3	man	6.6
and	8.3	enough	3.6	burrow	5.6
house	7.6	room	2.7	big	4.6
big	7.0	white	2.7	aunt	4.3

Discussion big, large, great

- big mainly for concrete things
- > large mainly for amounts and numbers
- great similar to large but many special senses
 - > great deal
 - > great man
 - great burrow (Watership Down)
 - > great relative

also use as intensifier great big, great importance

The dictionary definition does not really tell us this.

Corpus Studies of Morphology

Distribution and Function of Nominalizations

- Investigate how common normalizations are in different registers
- > Count four common derivational suffixes: -[ts]ion, -ment, -ness, -ity
- ➤ In three registers: Academic, Fiction, Speech
- Search for words ending in tion, sion, ity, ... with a stop list: nation, station, city, ...
- > First run the matcher, then add stop words, then rerun, ... hard to do with a web interface

Biber et al. (1998, § 3.2)

Results (1)

Nominalizations per thousand words across registers

Academic	Fiction	Speech
44.0	11.2	11.3

- Nominalizations much more common in Academic text
- ➤ A few words very common (more than 500 per million)

 movement, activity, information,* development, relation, equation
 - ➤ If *movement* has occurred recently ... (Academic)
 - ➤ Garth [...] *moved* his hand crabwise along the table. (Fiction)
 - ➤ When we *moved* into the new house ... (Speech)
- Academic text focuses on generalized processes
- Speech and fiction focus on a specific person doing some activity

Results (2)

Proportions of different suffixes across registers

suffix	Academic	Fiction	Speech
-[ts]ion	68%	51%	56%
-ment	15%	21%	24%
-ness	2%	13%	5%
-ity	15%	15%	15%

- > -[ts]ion more common in Academic (but common everywhere)
- > -ment commoner in Fiction and Speech
- > -ness common in Fiction

Discussion

- > -[ts]ion more common in Academic (but common everywhere) basic use is to make an action non-agentive
 - ➤ It provides a direct indication of fuel consumption.
- > -ment often used for mental states agreement, amazement, embarrassment

(Fiction)

- Patrick shrugged in <u>embarrassment</u>.
- -ness used for personal qualities bitterness, happiness, politeness

(Fiction)

The <u>bitterness</u> in his heart was mixed with

It would be good if we could automatically divide the words according to their semantic field (which we can approximate with WordNet, ...)

Corpus Studies of Syntax

begin vs start

- > **begin** and **start** are very similar in meaning
 - get down, begin, get, start out, start, set about, set out, commence — "take the first step or steps in carrying out an action" We began working at dawn; Who will start?; Get working as soon as the sun rises!; The first tourists began to arrive in Cambodia; He began early in the day; Let's get down to work now
 - ➤ **begin, start** "have a beginning, in a temporal, spatial, or evaluative sense" The DMZ begins right over the hill; The second movement begins after the Allegro; Prices for these homes start at \$250,000
 - ➤ **begin, lead off, start, commence** "set in motion, cause to start" the U.S. started a war in the Middle East; the Iraqis began hostilities; begin a new chapter in your life

Biber et al. (1998, § 4.3)

begin vs start

- begin and start are very similar in possible usage
 - ➤ intransitive

 I had better rest before we begin/start
 - transitive (NP)
 I will begin/start the lecture at 18:00
 - transitive (VP:ing)
 I will begin/start lecturing at 18:00
 - transitive (VP:to)
 I will begin/start to lecture at 18:00
- > So how do they differ?

begin vs start

Automatically tag text from two registers (Longman-Lancaster Fiction and Academic)

```
V (ADV)? NP \Rightarrow T (transitive)
V (ADV)? to \Rightarrow TCLS (to clause transitive)
V (ADV)? V+ing \Rightarrow ING (-ing clause transitive)
else: \Rightarrow I (intransitive)
```

- > Aim for 250 samples, take every third
- Hand correct the initial sample

Example

```
00018.FCT
<valency=TCLS (I)
hath her in thrall. "After a minute, the trio
==> began
rather carefully to cross the room

00021.FCT
<valency=ING (I)
station, shops, roadhouses, all closed. A dog
==> began
barking and , having begun , went on.
```

Corrected Results

	Intransitive	+NP	+to	+ing
begin				
Fiction	22%	3%	72%	4%
Academic	43%	12%	34%	12%
start				
Fiction	40%	22%	20%	18%
Academic	64%	16%	15%	6%

- > start is more common as intransitive
- > **begin** is more common as **to**-transitive

(After table 4.3 (Biber et al., 1998, p 98))

Discussion

Typically *start* is used to show the onset of a process, often with an adverb

- > The soil formation process may start again in the fresh material
- > The train started down the hill

begin is used with more concrete agents

- > Then I began to laugh a bit.
- The original mass of gas cooled and began to contract.

Because the corpus doesn't mark **animacy** or **concrete agent** these statements are weak: we can't really make predictions or measure correlation.

Can we do better?

- Treebanks exist for some languages
- > We can search some English treebanks

```
//VP/VB/begin[->S/VP/TO/to]
//VP/VB/start[->S/VP/VBG]
```

> This can also be done offline to get counts

What about SQL?

We can look at a word and the next word by joining a table to itself

> Transitive (V N)

```
SELECT a.word, b.word, b.pos
FROM word AS a JOIN word AS b
ON a.sid=b.sid AND a.wid=b.wid-1
WHERE a.lemma='start' AND b.pos GLOB 'N*'
```

Transitive (VP:ing)

```
SELECT a.word, b.word, b.pos
FROM word AS a JOIN word AS b
ON a.sid=b.sid AND a.wid=b.wid-1
WHERE a.lemma='start' AND b.pos='VBG'
```

Transitive (VP:to)

```
SELECT a.word, b.word, b.pos
FROM word AS a JOIN word AS b
ON a.sid=b.sid AND a.wid=b.wid-1
WHERE a.lemma='start' AND b.pos='TO'
```

Intransitive (remainder)

Regular expressions are better for this, SQL is not very good at one or none. But it is easy to write a few queries and add them together.

Transitive (V ADV N) (none in eng.db)

```
SELECT a.word, b.word, b.pos
FROM word AS a JOIN word AS b JOIN word as c
ON a.sid=b.sid AND a.wid=b.wid-1 AND a.wid=c.wid-2
WHERE a.lemma='start' AND b.pos GLOB 'R*' AND c.pos GLOB 'N*
```

Try to do these as nested loops!

JOINS

An SQL JOIN clause is used to combine rows from two or more tables, based on common fields between them.

- > (INNER) JOIN: Returns all rows with a match in BOTH tables
- > LEFT JOIN: Return all rows from the left table, and matched rows from the right table
- RIGHT JOIN: Return all rows from the right table, and matched rows from the left table
- > FULL JOIN: Return all rows with a match in EITHER table

```
SELECT column_name(s)
FROM table1
JOIN table2
ON table1.column_name=table2.column_name;
```

Can be very, very slow

little vs small

- > little and small are nearly synonymous
- > WordNet 3.0 has them share 4 synsets out of 10 for small and 8 for little
 - > small, little "limited or below average in number or quantity or magnitude or extent" a little dining room; a little house; a small car; a little (or small) group
 - ➤ little, small "(of children and animals) young, immature" what a big little boy you are; small children
 - ➤ little, minuscule, small "lowercase" little a; small a; e.e.cummings's poetry is written all in minuscule letters
 - > little, small "(of a voice) faint" a little voice; a still small voice
- > Yet they differ semantically and syntactically

Biber et al. (1998, § 4.2)

Syntax: predicative vs attributive

- Predicative
 When I was little/small, I couldn't say "hospital"
- Attributive
 It's only a little/small puppy
- > Are they used in the same way?
 - > 5 million words of conversation from BNC
 - > 5 million words of academic text from Longman-Lancaster

How to find usage examples?

- Automatic pass (collect data matching patterns)
- > Hand checking of a sample
- > Re-weigh counts

Automatic pass

- Match patterns against the corpus
 - > Predicative

```
When I was { little/small}, I couldn't say "hospital" be (ADV)? (little|small)
```

> Attributive

```
It's only a <u>little/small</u> puppy
(little|small) (ADJ)? NN
```

- No tag (the remainder)
- > Store the results

```
Type = Atrb; File = 00116.TEC section at the center of each lesion is a ----> small bronchus containing lungworms and ...
```

Initial Results

Type	Word	Atrb	Pred	No Tag	Total
Conversation	little	2,101	104	405	2,610
	small	399	72	158	629
Academic	little	1,033	65	411	1,509
	small	2,557	316	399	3,272
Total		6,090	557	1,373	8,020

(After table 4.1 (Biber et al., 1998, p 91))

- ➤ More no tag than predicative
- > So we can't be confident
- > Look at a sample (about a hundred) of each group

Some example errors

```
Type = No tag; File = 00116.TEC -> attributive
Shut up you
----> little
... COW
Type = No tag; File = 00117.TEC -> predicative
It is by no means
----> small
for a brachiapod
Type = No tag; File = 02316.TEC -> attributive
A: Cause they have
----> little
B: We
A: milk bottles
```

Simplified

Hand checking of a sample

- 1. Extract a random sample of occurrences the bigger the better, make sure it is uniform
- 2. Analyze the grammatical feature by hand
- 3. Compute the proportional use of each variant in the sample
- 4. Multiply the total number of occurrences by these proportions
- 5. Adjust the original counts by the weighted counts

Hand checking of a sample

- In this case look at a hundred from each group (6 samples)
 - Consider *little* in conversation
 - * attributive: 100% atrb
 - * predicative: 42% atrb; 39% pred; 19% other
 - * no tag: 57% atrb; 4% pred; 39% other
- > Use these proportions to recalculate:
 - \rightarrow Attributive: $2,101+.42\times104+.57\times405=2,376$
 - ightharpoonup Predicative: $.39 \times 104 + .04 \times 405 = 57$

Re-weighted Counts

Type	Word	Original % Pred	Weighted % Pred
Conversation	little	5	2
	small	15	23
Academic	little	6	< 1
	small	11	13

(After table 4.2 (Biber et al., 1998, p 93))

- Adjusted counts more accurate
- > Only had to check 600 (of 8,020)
- But hard to reuse or go further: only a small accurate sample parsed text is better

Interpretation

- > Attributive much more common for both
 - Predicative relatively more common in conversation
 - > Predicative relatively more common for *small* than *little*
- Collocation results:
 - > little: concrete objects (little boy)
 - > **small**: amounts (**small** proportion)
- > But predicative *small* also for physical size:
 - > She's small and really skinny
 - ➤ He's really small isn't he?
- We still don't really know why © corpus linguistics gives us the what, but not the why

Can we do better?

- > Treebanks exist for some languages
- > We can search some English treebanks (wikipedia)
 - //VP/ADJP/JJ/small
 //NP/ADJP/JJ/small + //NP/JJ/small
 (attributive)
- > This can also be done offline to get counts

Where do we go from here?

- Corpora show clearly that even semantically very similar words can show different behavior.
- But they still don't explain why
 - Hand correction limits data sizes
 - Without semantic tags, we can't generalize automatically
- > Corpora with more mark-up (syntax and semantics) would help
 - > But they are expensive, ...

Acknowledgments

➤ Many examples from chapters 3 and 4 of Biber, D., Conrad, S., and Reppen, R. (1998). *Corpus Linguistics: Investigating Language Structure and Use*. CUP

HG351 (2011) 43