Electrónica digital 1 Introducción al procesador

Ferney Alberto Beltrán Molina

Agosto 2019

Contacto

Nombre:

Ferney Alberto Beltrán Molina, Ing, MSc, PhD(c)

Email: oficina:

fabeltranm@unal.edu.co

Contenido

Recordando

Hardware Software Interface

ejemplo el procesador J1

ejemplo Arquitectura SoC J1

Índice

Recordando

Hardware Software Interface

ejemplo el procesador J1

ejemplo Arquitectura SoC J1

Antes..

En la clase anterior vimos:

- Se presenta un ejemplo de Contador y se reviso el divisor
- Se establece el proceso realizado:
 - 1. Elabora un diagrama de flujo que describa la funcionalidad deseada.
 - 2. Identificar los componentes del DataPath.
 - 3. Identificar las señales necesarias para controlar el Datapath y la interconexión.
 - 4. Especificar la unidad de control (FSM) utilizando diagramas de estado.
 - 5. Simulación y pruebas.

Recordando

Índice

Recordando

Hardware Software Interface

ejemplo el procesador J1

ejemplo Arquitectura SoC J1

Hardware Software Interface

8 / 42

Hardware Software Interface

La frontera entre el hardware y el software

Cada instrucción es directamente ejecutada por el hardware

Ciclo de instrucción

- Buscar la instrucción en la memoria principal
- Decodificar la instrucción
- Ejecutar la instrucción
- Almacenar o guardar resultados

Abstracción

```
High-level
                        swap(intv[], intk)
language
                        {int temp:
program
                          temp = v[k];
(in C)
                          v[k] = v[k+1];
                          v[k+1] = temp;
                            Ccompiler
Assembly
                        swap:
                           muli $2, $5,4
language
program
                           add $2, $4,$2
(for MIPS)
                              $15,0($2)
                              $16,4($2)
                              $16,0($2)
                              $15, 4($2)
                           ir $31
                            Assembler
Binary machine
                 000000010100001000000000011000
language
                 0000000100011100001100000100001
program
                 (for MIPS)
                 100011001111001000000000000000100
                 1010110011110010000000000000000000
                 101011000110001000000000000000100
```

Diseño el set de instrucciones (ISA)

- Simplicidad favorece la regularidad
- Cuanto más pequeños, más rápido
- Hacer lo común, lo más rápido
- Un buen diseño exige buenos compromisos

Set de instrucciones para arquitecturas basadas en pilas. Set de instrucciones para arquitecturas basadas en registros.

cómo se representa

- Con un formato binario. El hardware solo entiende bits
- Los objetos físicos son bits, bytes, palabras (words).
- ► Tamaño típico de palabra: 4 u 8 bytes (32 o 64 bits).
- Se identifica por un opcode (código de operación) add \$so,\$s1, \$s2
- Requiere de 0 a 3 operandos.
 identificador de la zona donde estan almacenados memoria, registros, stack

El procesador

Sigue las instrucciones del programa al pie de la letra. Suma y compara números, ordena activarse a los dispositivos de I/O, etc.

El procesador consta de dos componentes:

- El datapath. Ejecuta operaciones aritméticas y lógicas.
- El control. Ordena al datapath, memoria y dispositivos de I/O lo que hay que hacer de acuerdo al program

Procesador básico

Ciclo de instrucción

Ciclo de instrucción

- ▶ t1: Memory address Register (MAR) ← PC
- ▶ t2: Memory Buffer Register (MBR) ← Memoria
 - t2: Program Counter (PC) \leftarrow PC+1
- ▶ t3: Instruction Register (IR) ← MBR

Datapath

Unidad aritmético-lógica

La cual se encarga de realizar las operaciones que requiera el algoritmo.

Lógicamente las arquitecturas no tienen implemenentadas todas las posibles funciones matemáticas o funciones aritméticas (instrucciones)

Banco de registros

Mantiene almacenada la información o los datos Registros de acceso a memoria, registros programados, registro especiales etc.

Datapath (Componentes básicos)

code	operation
0	T
1	N
2	T+N
3	Tand N
4	Tor N
5	Txor N
6	$\sim T$
7	N = T
8	N < T
9	Nrshift T
10	T-1
11	R
12	[T]
13	Nlshift T
14	depth
15	Nu < T

Banco de Registros

El banco de registros (register file) es un conjunto de registros para guardar y leer datos.

- Cada registro es un vector de flip-flops D.
- 2. Para leer un registro:
 - 2.1 Entrada: número de registro.
 - 2.2 Salida: dato contenido en el registro.
- 3. Para escribir un registro:
 - 3.1 Entrada: número de registro, dato y una señal de reloj para controlar la escritura.

Datapath (stack)

SP: Puntero de la Pila: registro con la dirección de la ultima palabra insertada en la pila TOS, Top od Stack en funcion de Sp se obtiene el próximo registro NOS Next of

Stack

Direccionamiento

Implicito

- El opcode implica la dirección de los operandos.
- ► Ejemplo en una máquina de pila (stack) add
- La instrucción saca (pop) dos valores de la pila, hace la suma y deja (push) el resultado en la pila

DataPath Acumulador

Banco de registros de propósito general $(R_o \dots R_{m-1})$ Maquinas de dos (Lectura destructiva) o tres operandos

Direccionamiento

Explícito

- Las direcciones vienen en los operandos.
- Ejemplo de MIPS: add \$so,\$s1, \$s2
- Dos operandos fuentes: s1 y s2
- Un operando destino: s0
- s0 = s1 + s2

Componentes básicos adicionales

Una memoria para guardar y leer instrucciones Un registro, llamado PC (contador de programa), para guardar la dirección de la instrucción actual.

Un sumador para incrementar el PC.

Componentes básicos adicionales

Obtener la instrucción de la memoria.

Incrementar el PC para preparar la ejecución de la instrucción siguiente.

26 / 42

Índice

Recordando

Hardware Software Interface

ejemplo el procesador J1

ejemplo Arquitectura SoC J1

Datapath J1 (Componentes básicos)

Datapath (Componentes básicos)

code	operation
0	T
1	N
2	T + N
3	Tand N
4	Tor N
5	Txor N
6	$\sim T$
7	N = T
8	N < T
9	Nrshift T
10	T-1
11	R
12	[T]
13	Nlshift T
14	depth
15	Nu < T

6-14		action
	width	
T'	4	ALU op, replaces T , see table 1
T o N	1	copy T to N
$R \to PC$	1	copy R to the PC
$T \to R$	1	copy T to R
dstack ±	2	signed increment data stack
rstack ±	2	signed increment return stack
$N \rightarrow [T]$	1	RAM write
[-]		
15 14 13 12	11 10 9 8	7 6 5 4 3 2 1 0
		alue
1	va	alue } literal
15 14 13 12	11 10 9 8	7 6 5 4 3 2 1 0
		target
0 0 0		Jump
15 14 13 12	11 10 9 8	7 6 5 4 3 2 1 0
0 0 1		target conditional jump
0 0 1		conditional Jump
15 14 13 12	11 10 9 8	7 6 5 4 3 2 1 0
		target
0 1 0		target
15 14 13 12	11 10 9 8	7 6 5 4 3 2 1 0
0 1 1	T' :	
0 1 1 1	T'	$ \begin{array}{c cccc} T & T & T & T & T & T & T & T & T & T &$

Índice

Recordando

Hardware Software Interface

ejemplo el procesador J1

ejemplo Arquitectura SoC J1

J1 CPU

J1 CPU escritura

Escribir los datos 0x0005 en la dirección 0x6700, 0x0003 en la 0x6702 y 0x0001 en la 0x6704

J1 CPU leer

Leer los datos de las direcciones 0x6706, 0x6708 y la 0x670A

J1 CPU leer

Almacenamiento por bytes

¿Cómo se almacena si el bus es de 32 bits? ¿Cuántos bytes se reservan?

Mapa de memoria Multiplicador

Diagrama de bloques Multiplicador

Lectura

Escritura

Diagrama de Bloques Divisor

Interfaz basada en memoria

