More Orientation Special Cases Vector Calculus vs. Exterior Calculus

Thomas Cohn

2/13/19

Orientation special caes of a k-manifold in \mathbb{R}^n :

- (1) k = n: See notes from 2/11/19.
- (2) k = n 1: See notes from 2/11/19.
- (3) k=1: Let X be a 1-manifold. Then an orientation on X can be matched with a choice of continuous "forward-pointing" unit tangent. For orientation-preserving coordinate patch α , and $\vec{p} \in X$, $\vec{q} = \alpha^{-1}(\vec{p})$, we have unit tangent $\vec{T}(\vec{p}) = \frac{\alpha'(\vec{p})}{||\alpha'(\vec{p})||}$.
- (3a) $X = \partial M^{2\text{-mfd}}$. Then roughly speaking, when looking at the loop from the "outside" of M, the orientation on X is counterclockwise.
- (3b) $M^{2\text{-mfd}} \subseteq \mathbb{R}^2$, $X = \partial M$. Then for tangent and normal vectors $\vec{T}(\vec{p})$ and $\vec{N}(\vec{p})$, $\vec{T}(\vec{p})$ is just $\vec{N}(\vec{p})$ rotated 90° counterclockwise.
- (4) k=0: Recall that a compact 0-manifold is a finite set. A compact, connected 0-manifold is a singleton. Singletons have 2 orientations (denoted ± 1). So an orientation on $X^{0\text{-mfd}}$ is just a mapping $\varepsilon:X\to\{\pm 1\}$. For compact oriented 0-manifold X and f 0-form,

$$\int\limits_X f \stackrel{\text{def}}{=} \sum_{\vec{x} \in X} \varepsilon(\vec{x}) f(\vec{x})$$

If $X = \partial M^{1-\text{mfd}}$, then

$$\int_{M} df = \int_{\partial M} f = f(b) + (-1)f(a) = f(b) - f(a)$$

Building on HW5 #1:

For M oriented k-manifold, orientation-preserving $\alpha:U\to V\subset M$, ω k-form in a neighborhood of M $\vec{q}\mapsto \vec{p}$

$$\star \left\{ \begin{array}{l} \alpha^* \omega = f(\vec{x}) \wedge dx_1 \wedge \dots \wedge dx_k \\ \text{positive for } M \text{ at } \vec{p} \\ \text{negative for } M \text{ at } \vec{p} \\ \text{integral for } M \text{ at } \vec{p} \end{array} \right\} \stackrel{\text{def}}{\Leftrightarrow} \left\{ \begin{array}{l} f(\vec{q}) > 0 \\ f(\vec{q}) < 0 \\ f(\vec{q}) = 0 \end{array} \right\}$$

Exer: ω integral at $\vec{p} \Leftrightarrow \omega(\vec{p})(\vec{v_1}, \dots, \vec{v_k}) = 0$ when $\vec{v_i} \in \mathcal{T}_{\vec{p}}M$.

M is an integral manifold for $\omega \stackrel{\text{def}}{\Leftrightarrow} \omega$ is integral for M at all $\vec{p} \in M$.

Conversely, given ω nowhere integral on M, we get an orientation on M. Declare ω to be positive, call α orientation-preserving if \star holds. We also get an orientation on each $\mathcal{T}_{\vec{p}}M$: each basis (or <u>frame</u>) $\vec{v_1}, \ldots, \vec{v_k}$ for $\mathcal{T}_{\vec{p}}M$ is positively oriented $\Leftrightarrow \omega(\vec{p})(\vec{v_1}, \ldots, \vec{v_k}) > 0$.

Thm: 36.2 For ω k-form on a neighborhoold of M, a compact oriented k-manifold,

$$\int_{M} f = \int_{M} \lambda \, dV \text{ where } \lambda : M \to \mathbb{R}$$
 for any positively-oriented orthonormal basis for $\mathcal{T}\vec{p}M$

Recall that we did
$$k=1$$
 on November 28: $\in_M \omega = \int\limits_M \omega \cdot \vec{T} \, ds = \int\limits_M \omega(\vec{T}) \, ds$.

We would like to be able to do extended integrals over manifolds. What is $\int_M \omega$ for M some non-compact oriented manifold?

(Note that we allow N to inherit its orientation from M.)

Exterior Calculus in \mathbb{R}^2	Vector Calculus in \mathbb{R}^2
Diffeomorphisms	Isometries (translations, rotations, and reflections)
0-form f	Scalar Function f
1-form $\omega = \alpha dx + \beta dy$	Vector field $\vec{F} = (\alpha, \beta) = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$
2-form $f dx \wedge dy$	Scalar Function f
$df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy$	$ \operatorname{grad} F = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right) f = \nabla f $
$\int \omega^{1- ext{form}}$	$\int \left\langle \vec{F}, d\vec{s} \right\rangle = \int \left\langle \vec{F}, \vec{T} \right\rangle ds \text{ (where } d\vec{s} = (dx \ dy))$
$M^{1-\mathrm{mfd}}$	
$\int df = \Delta_M f$	$\int \left\langle \nabla f, \vec{T} \right\rangle ds = \Delta_m f$
$\stackrel{\circ}{M}$	$ \check{M} $

Standard interpretations: f is potential energy, force is $-\nabla f$, and work is $\int_M \left\langle -\nabla f, \vec{T} \right\rangle ds = -\Delta_m f$.

Suppose $\vec{F}: \mathbb{R}^2 \to \mathbb{R}^2$ is the velocity of a fluid (which could be time-dependent).