To: Professor Mallette From: Nguyen Khoa Bui

CC: Lab Manager Date: July 26, 2022

Subject: Re: Membrane Formal Experiment Memorandum Guidelines

A membrane gas separation procedure was setup to explore the TN 0800 separation unit under testing. Conditions for both oxygen and nitrogen enrichment processes were tested. Nitrogen enrichment only achieved 94% N₂ purity, which is below many industrial standard needs. The process also required retentate flowrate as low as 100 sccm/min and compressed air at 83 psig. Which are slow for industrial production and resource intensive. On the other hand, the module shown high selectivity for oxygen, allowing less use of compressed air to achieve at least 40% O₂ purity, an acceptable level in industrial standards for small-scale medical uses. While production at permeate stream can reach a high of up to 6500 sccm/min, this purity level only had O₂% recovery around 20%. Overall, we recommend the company to use the unit for oxygen enrichment only, but demand should be analyzed carefully to justify the intensive use of compressed air at the inlet with little recovery.

The membrane module was set up in accordance with the Membrane section of the CBE 424 Lab Manual (CBE 424 lab manual: membrane gas seperation protocol). The TN2 0800 separation unit under study was tested by alternating the inlet feed pressure, permeate rotameter flowrate, and retentate rotameter flowrate. The inlet feed consisted of dry air with its flowrate controlled by changing feed pressure and measured by a rotameter. The dry air passed through the membrane and split into a permeate and a retentate streams. The oxygen composition for both separated streams are measured with oxygen sensor. Their outlet pressures are measured by analog pressure sensors. These data were used to evaluate the module performance and

To: Professor Mallette From: Nguyen Khoa Bui

CC: Lab Manager Date: July 26, 2022

Subject: Re: Membrane Formal Experiment Memorandum Guidelines

efficiency by analyzing the outlets O₂% and N₂% purity and recovery and membrane behavior

with respect to R/F.

The module's integrity was ensured by performing mass balance closure on the overall air, N₂ and O₂ flowrates. The mass balance has an average error of 8.2, 9.0, and 8.1% for air, O₂, and N₂ respectively for all runs collected. These errors are within the error range computed total equipment uncertainties of up to 9.4%. Despite the strong mass balance closure, the module should be avoided operating with retentate flowrates below 1000 sscm. For this range, the mass balance error was high at 17 to 18%. This was due to low retentate flowrate causing atmospheric air to flow backward into the stream, contaminating the sampling line.

Unfortunately, the low retentate flowrate fell into the operating range for the nitrogen enrichment trial, resulting in low N₂% purity at 94% and below at the retentate stream. This purity level does not meet many industrial standards, such as tank inerting application at 95% or food packaging at 99% purity or more according to the Membrane section of CBE 424 Lab Manual (CBE 424 lab manual: membrane gas seperation protocol). This process condition also operated at a low feed flowrate between 1700 and 2200 sccm, and high feed pressure of at least 75 psi. Furthermore, the recovery rate for 94% purity can range between 10-20% according to figure 1. The company would be wasting highly compressed air for low and slow production.

While the module condition did not favor nitrogen enrichment process, the membrane portrayed high selectivity for oxygen, ranging on average between 4.3 to 4.7 from data analysis.

To: Professor Mallette From: Nguyen Khoa Bui

CC: Lab Manager Date: July 26, 2022

Subject: Re: Membrane Formal Experiment Memorandum Guidelines

Figure 1. N₂% purity and recovery plotted against feed flowrate for two feed pressure 75 psig, and 90 psig, at room temperature T = 298K. Purity data (red points) are read with left y-axis and recovery data (blue points) are read with right y-axis.

The selectivity is within the range of the high-performance polymer as reported by other literatures. (L. M. RobesonW. F. BurgoyneM. LangsamA. C. Savoca, 1994) high selectivity, O₂% purity of up to 47% was achieved with feed flowrate above 10,000 sccm according to figure 2. This purity level is within the 40-60% satisfactory range for medical use in the industry. The resulting permeate flowrate also reached as high as 6500 sccm, a production rate up to 6 times higher than nitrogen enrichment process. Furthermore, feed pressure as low as 50 psi could achieved more than 40% purity level, a lower compressed air requirement compared to nitrogen enrichment process.

However, operating at such condition required high R/P ratio of up to at least 10. While data shown that higher R/F led to exponential growth of O_2 % purity, the O_2 % recovery rate

To: Professor Mallette From: Nguyen Khoa Bui

CC: Lab Manager Date: July 26, 2022

Subject: Re: Membrane Formal Experiment Memorandum Guidelines

would drop to 20% and below for product purity above 40%. As a result, large amount of

processed air was wasted into the retentate stream.

Figure 2. O₂% purity and recovery plotted against feed flowrate for various feed and retentate pressures at room temperature T = 298K. Purity data (red points) are read with left y-axis and recovery data (blue points) are read with right y-axis.

In conclusion, the membrane module is a viable choice for oxygen enrichment process due to high selectivity and satisfactory O₂% purity at permeate stream. The company should ensure that the revenue in selling high purity oxygen would justify the use of the membrane module. For nitrogen enrichment, we believe further testing would be needed to verify the module's performance. However, even if we characterized N₂% purity to reach industrial standard, production rate shown to be too slow, and the process required high inlet pressure stream. The company should look for other membrane module that specialize in nitrogen enrichment process.

To: Professor Mallette From: Nguyen Khoa Bui

CC: Lab Manager Date: July 26, 2022

Subject: Re: Membrane Formal Experiment Memorandum Guidelines

References

(n.d.). CBE 424 lab manual: membrane gas seperation protocol.

L. M. RobesonW. F. BurgoyneM. LangsamA. C. Savoca, C. F. (1994). *High performance polymers for membrane*. Retrieved from

https://reader.elsevier.com/reader/sd/pii/0032386194906513?token=BB2A3198A22A46B50AE 77D70592AFC322B52397A313307FF82FB2EECA7DF7BEAE18EE95B8DDAD9C24AE363E20ECE65 68&originRegion=us-east-1&originCreation=20220724225420

To: Professor Mallette From: Nguyen Khoa Bui

CC: Lab Manager Date: July 26, 2022

Subject: Re: Membrane Formal Experiment Memorandum Guidelines

Appendix:

Figures of data:

Figure 1. calculated O_2 molar flow rate versus the mean O_2 pressure difference at the permeate with room temperature T = 298 K. Data (red points) of varying feed pressure and retentate pressures are shown.

Figure 2. calculated N_2 molar flow rate versus the mean N_2 pressure difference at the permeate with room temperature T = 298 K. Data (red points) of varying feed pressure and retentate pressures are shown.

To: Professor Mallette From: Nguyen Khoa Bui CC: Lab Manager

Date: July 26, 2022

Figure 3. total molar flow rate versus the mean N_2 pressure difference at the permeate with room temperature T = 298 K. Data (red points) of varying feed pressure and retentate pressures are shown.

Figure 4. O_2 % fraction at the permeate (red points) and the retentate (blue points) plotted against flowrate at the retentate over feed ratio R/F. The constant air O_2 % fraction at the feed (black line) is also shown, separating the two stream's O_2 % content.

To: Professor Mallette From: Nguyen Khoa Bui

CC: Lab Manager Date: July 26, 2022

Figure 5. O_2 % purity and recovery plotted against feed flowrate for various feed and retentate pressures at room temperature T=298K. Purity data (red points) are read with left y-axis and recovery data (blue points) are read with right y-axis.

Figure 6. N_2 % purity and recovery plotted against feed flowrate for two feed pressure 75 psig and 90 psig at room temperature T = 298K. Purity data (red points) are read with left y-axis and recovery data (blue points) are read with right y-axis.

To: Professor Mallette From: Nguyen Khoa Bui

CC: Lab Manager Date: July 26, 2022

Figure 7. O_2 % composition in permeate stream plotted against ratio of permeate to retentate flowrate P/R. Data (red points) were collected at feed pressure of 75 psig and standard room temperature T = 298 K.

Figure 8. O_2 % composition (red points) and O_2 % recovery (blue point) in permeate stream plotted against feed pressure at room temperature T=298~K.

To: Professor Mallette From: Nguyen Khoa Bui CC: Lab Manager Date: July 26, 2022

Figure 9. $O_2\%$ fraction (red and blue points) and the fitted permeability Q (red and blue lines) for permeate and retentate streams plotted against R/F at room temperature T=298 K. The permeability model fitting is $y=a \ln x+b$, where a=4.79, b=23.29 for permeate stream and a=4.189, b=0 for retentate stream.

To: Professor Mallette From: Nguyen Khoa Bui CC: Lab Manager Date: July 26, 2022

Figure 10. O_2 permeate flux flowrate (red points) and fitted permeability line (red line) plot against the mean pressure difference at the permeate stream. Data were fitted using linear equation $y = Q_b \Delta P$ with $Q_a = 0.1371$ mmol/psi s. Data were collected with various feed flowrate and at standard room temperature T = 298K.

Figure 11. O_2 permeate flux flowrate (red points) and fitted permeability line (red line) plot against the mean pressure difference at the permeate stream. Data were fitted using linear equation $y = Q_b \Delta P$ with $Q_b = 0.0313$ mmol/psi s. Data were collected with various feed flowrate and at standard room temperature T = 298K.

To: Professor Mallette From: Nguyen Khoa Bui CC: Lab Manager Date: July 26, 2022

Figure 12. mass reconciliation for permeate rotameter reading by plotting $\frac{z_a - x_a}{y_a - z_a}$ against $\frac{r_p}{r_R}$ with 0 intercept. The slope of the line (red line), m, was determined at m = 0.89 when fitted with experimental data (red points). The slope is used for $C_p = m C_r$, with $C_r = 50$ sccm/mm to determine $C_p = 44.3$ sccm/mm.

To: Professor Mallette From: Nguyen Khoa Bui CC: Lab Manager

Date: July 26, 2022

Figure 13. mass reconciliation for feed rotameter reading by fitting R + P against $\left(\frac{P_F}{P_{atm}}\right)^{0.5} (r_F)$ with 0 intercept. The slope of the line (red line), C_F, was determined at C_F = 234 sccm/mm when fitted with experimental data (red points).

To: Professor Mallette From: Nguyen Khoa Bui CC: Lab Manager

CC: Lab Manager Date: July 26, 2022

Subject: Re: Membrane Formal Experiment Memorandum Guidelines

Sample calculation:

	calibrating Sead C	1
Cr	grab data from tash	1 or others.
Calculate	$\frac{z_A - z_W}{y_A - z_W} = \frac{R}{P} = \frac{C_P}{C_V}$. set $C_v = 50$ munol/mm
02 401	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	98 m, = $\frac{C_P}{C_T}$ [for iloua 1 of task 1]
	=) 0. 934 Cr Cr Cr ((retentate reading) = $\frac{88 \text{ mm}}{89.5 \text{ mm}} = 0.98$
Com Po	$\frac{z_a - x_a}{y_a - z_a} = 0.934$ again ind my with excel lin	inst $\frac{C_{4}}{C_{7}} = 0.983$ with other points. Lest: $m_{4} = 0.886$ with 0 interest
Evor.	get Cy = 0.886. 50.	= 44.3 SCCm/am
ass me	% Oz reading has ± 0.2°	levor occurately from nonfacture. 10 (0.002) error.
Cr +0.1cr	$= \frac{C_{p}(1+0.1)}{C_{v}(1-0.1)} - \frac{C_{p}(1.02)}{C_{v}(0.98)}.$ $= \frac{1.2017}{20.02} 1.023$ $= \frac{1.2017}{20.002} - \frac{1.168}{20.002}$	$\frac{C_{p}}{C_{p}}\left(\frac{0.98}{1.01}\right) = \frac{0.944}{0.8042}.$
- (J) - (J)	$\frac{z_u - (x_w - 0.002)}{y_w = 0.002) - z_w} = 1.168$	$\frac{Z_{a}-(x_{u}+0.002)}{(y_{u}+0.002)-Z_{0}}=1.094$

To: Professor Mallette From: Nguyen Khoa Bui CC: Lab Manager

Date: July 26, 2022 Subject: Re: Membrane Formal Experiment Memorandum Guidelines

	then,	0.968	48.4		
	ma high :		C, = 35.3	SCCM/ Wer.	
	7 170	0.829	7 - 41.5	,	
	low:	0-7039 =)	C, = 35.3	scen/mm	
	1	74 8 4			
		+ (56.9 - 44.	3) = 443 + 123 3) = 443 - 123	1 / 1	
	Cr = 44.3	3 - (+4.	3) = 44.3	19 Scem Land	
		41.5	126+9	41.28	3.55
_		_ b.	ig erro, 126+9	10.8	مصدر
				The second secon	
	Calibrate Ci	_	(r = 44.3 ±	the scen	
	Calibrate Ci	F		3.55	
			+ 89.	5	
8	cm of retablate	ue: 50.89	5 =4475 sccm	1 = R	
30	NO OT PERSON		- 0.49	+ 312.4	C. C. Ma
	pernate	e: 88.4	4.3 = 3898 50	W - Jake	30000
				4518	
				ETTER OF THE PERSON OF THE PER	
	R+P= 40	475 7 3898 =	8 373.8 ± 3	27 SUEM	-
				4019 [4.8%	.)
Fee	d P (psi) =	69+14.7 =	83.7 psi	and - 1 psi	04 14
/ D	1 1	02712	e110 = 34.6 ± 1	0.692	
(-	=)~ r= = (19.5	5 71.0 - 1	1. [248 + 3.0%	1_
\ P	ar-/	14.7/		4 (3.48 1 3.48)	3.44
		(P) 3	with 0 intercep	1. 2	1
P	lot (R+P) V	SF	William C miles cap		
	(/	Pater			
		- 11 - 111	,		
CF	= 233.97	= 234 500	pro / man,		
	with C-	- 3075	can Im	4	
1100	- mil - ch	1. da la to	13 214	ζ Τ	
	10V C	100	133.54	4-7-23	
	4.000	(3078, -244)	+ (234 - 1963)	1575 005	
90.00	any Live	259.4		20.3	
			2		
~	1	2.14 + LE	5 sccw/m		4000
L	1CF = 0	47.2	5		
-		1 2004)		100
		(APR (-	//		

To: Professor Mallette From: Nguyen Khoa Bui CC: Lab Manager Date: July 26, 2022

Subject: Re: Membrane Formal Experiment Memorandum Guidelines

(alculating mol flux from sccm
$$\rightarrow$$
 mod /5.

feed flow actual: (dain 2 on fach 1)

 $V = C_F V_F \cdot \left(\frac{P_F}{P_{atin}}\right)^2 = 12$ by $14.5 \cdot 234t \cdot \left(\frac{833}{24.7}\right)^2$
 $= 9095.5 \cdot 5000 \text{ faction}$

Standord our des

our volue day. 1000 grad
 $= 1000 \text{ grad}$
 $= 1000$

To: Professor Mallette From: Nguyen Khoa Bui CC: Lab Manager Date: July 26, 2022

Cally T How.
Cale J Hax.
Joz, F = 0.215 6.02 = 1.295 mol/s
Joz. p = 2.9 mot (0, % rading at perm) = 2.9. (0.348) = 1.009 mms/s
$\int_{0}^{1} 1^{2} = \frac{29}{3.33} \left(- vet \right) = 3.33 \cdot (0.09) = 0.2996$
Nz flux:
JN2, F = 0.715. 6.07 = 4.73 mmol/s
J_{N_2} , $P = 2.9(1-0.348) = 1.89 \text{ mod /5}$ J_{N_2} , $V = 3.32(1-0.09) = 3.03 \text{ mod /6}$ $\frac{0.044}{1.295}.100 = 1.08\%$
M.B of O_2 : 1.295 - (1.009 + 0.3) = -0.014. Conserved account to V eVV.
N_2 : $4.73 - (1.89 + 3.03) = -0.19$ consered account
All M.B are less than 5° to error, 0.19 .100 = 4.017's well conserved, considering rotal meter reaching has 5°6 - 10°6 error.

To: Professor Mallette From: Nguyen Khoa Bui CC: Lab Manager Date: July 26, 2022