WEEK 1 Documentation: Pollution Drift Predictor

Problem Statement

Airborne pollution, especially particulate matter (PM), poses serious health and environmental risks. Construction zones, industrial areas, and urban corridors often experience unpredictable pollution drift due to changing environmental conditions. This project aims to build an AI-powered system that forecasts pollution drift using environmental data such as wind speed, wind direction, humidity, and timestamp.

"Can we predict how pollution spreads across a region based on environmental factors?"

Dataset Overview

Source

The dataset used is data.csv, located in the /data/ folder of the repository. It contains historical pollution readings from various monitoring stations across Hyderabad, India.

Key Columns

Column Name	Description
stn_code	Station identifier
sampling_date	Month and year of sampling
state, location, type	Geographical and zone metadata
so2, no2, spm, pm2_5	Pollutant concentrations (some missing values)
date	Standardized timestamp

Preprocessing Steps

- Dropped rows with missing values in key pollutant columns (so2, no2, spm)
- Selected so2 and no2 as features, and spm as the target variable
- Converted date to datetime format for future time-based analysis

© ML Objective

To build a regression model that predicts SPM (Suspended Particulate Matter) levels based on SO₂ and NO₂ concentrations.

This aligns with the Week 1 goal of:

- Defining a clear ML problem
- Preparing a dataset suitable for modeling
- Identifying relevant features and target variables

Tools & Technologies

Tool	Purpose	
Python 3.11	Core programming language	
Pandas, NumPy	Data manipulation and cleaning	
Scikit-learn	ML model training and evaluation	
Matplotlib, Seaborn Visualization and plotting		
Git & GitHub	Version control and collaboration	

Sample Data Snapshot

stn_code,sampling_date,state,location,type,so2,no2,spm,date
150,February - M021990,Andhra Pradesh,Hyderabad,Residential,4.8,17.4,NA,1990-02-01
151,March - M031990,Andhra Pradesh,Hyderabad,Industrial,4.7,7.5,82,1990-03-01
152,June - M061990,Andhra Pradesh,Hyderabad,Residential,3.3,19.3,111,1990-06-01

more available... (check repository)

Prepared Features

After cleaning and selection:

features = df[['so2', 'no2']]

target = df['spm']

This structure ensures the model receives numeric inputs and a continuous target variable for regression.

✓ Week 1 Checklist

Task Status

Search dataset related to theme ✓ Done