Theory of Computation Assignment no. 8

Goktug Saatcioglu

(1) a. The simple PDA M' such that L(M) = L(M') is given below.

Where q_{00} is the intial state before the shielding symbol is pushed onto the stack, q_0 is q_0 from M, q_1 is the intermediary step in the upper loop of M, q_2 is the inermediary step in the lower loop of M, q_3 is the stack empyting step and q_4 is the accepting state once the stack is empty.

b. A derivation tree for the word w = abaab is given below.

(2) The transformation of the CFG into a PDA is given below. We begin by defining the PDA with the main state and then define the transition in and out of main.

$$\operatorname{start} \longrightarrow \overbrace{q_0} \xrightarrow{\operatorname{Push} \$} \overbrace{q_1} \xrightarrow{\operatorname{Push} S} \overbrace{q_2} \xrightarrow{\operatorname{Pop} \$} \overbrace{q_3}$$

Here q_0 is the initial state, q_1 is the state with the shielding state, q_2 is main where we begin by pushing S and q_3 is the accepting state. Next, for each rule we show a set of transition out from main and back into main. We begin with the rule $S \to aS^aS$.

Here q_2 is main and the rest of the states is the derivation rule processed in reverse. Similarly, we write the transitions for the rule $S \to bS^bS$.

Again q_2 is main and we reverse process the derivation rules. Next, we write the derivation for the rule $S \to \lambda$ with q_2 as main.

start
$$\rightarrow q_2$$
 q_{11}

We then get two more derivations for the rule $S^a \to a \mid a^S a S^a$ with q_2 as main.

Finally, we get two more derivations for the rule $S^b \to b \mid a^S b S^b$ with q_2 as main.

Thus, we have transformed the CFG into a PDA that accepts the same language.

- (3) (a) $L(P) = \{u \# v \mid u, v \in \{a, b\}^* \text{ and } \#_a(u) \#_b(u) = \#_a(v) \#_b(v)\}$
 - (b) A data-configuration sequence of an accepting computation path in P for the word w = abb # abb is given below.

Here q_i is the *i*-th state from the left.

(c) The simple PDA P' such that L(P) = L(P') is given below.

Here q_0 , q_1 , q_2 and q_3 are the states given by the PDA P and the remaining states are the intermediary steps in the loops of P where for example the left-top loop of q_1 which goes to q_4 is the left-top loop of q_1 in PDA P.

(d) A derivation tree for the word w = abb # abb is given below.

