1 Probability and Statistics

(1) (combinatorics)

Evidently, C(1, 0) = C(1, 1) = 1

Suppose for $N = n \in N^+$, that for all $0 \le k \le n$, we have

$$C(n, k) = n! / (k! * (n - k)!)$$

Then let N = n + 1, for all $0 \le k+1 \le n$, from the property of C, we have

$$\begin{split} &C(n+1,k+1) = C(n,k+1) + C(n,k) = \frac{n!}{(k+1)! (n-k-1)!} + \frac{n!}{k! (n-k)!} \\ &= \frac{n! ((n-k)+(k+1))}{(k+1)! (n-k)!} = \frac{(n+1)!}{(k+1)! (n-k)!} \end{split}$$

And for k = 0, C(n, 0) = 1 still holds.

Thus for N = n + 1, the equation still holds.

Therefore, for any $N \in N^+$ and any $0 \le K \le N$, we have

$$C(N,K) = \frac{N!}{K!(N-K)!}$$

(2) (counting)

(a) Altogether 2^{10} cases, each with probability $(1/2)^{10}$.

Among them, C(10, 4) cases fit our demand.

P(head = 4, tail = 6) =
$$C(10, 4) * (1/2)^{10}$$

(b) Altogether 2¹⁰ cases, each with probability 1 / C(52, 5).

Among them, take 2 numbers, from each number take 3/2 cards.

X - Y are commutative, thus the result is multiplied by 2.

P(full house) = 2 *
$$\frac{C(13,2)C(4,2)C(4,3)}{C(52,5)}$$

(3) (conditional probability)

$$P(\text{head} = 3 \mid \text{head} \ge 1) = \frac{P(\text{head} \ge 1 \mid \text{head} = 3)P(\text{head} = 3)}{P(\text{head} \ge 1)} = \frac{1 * \left(\frac{1}{8}\right)}{\left(1 - \left(\frac{1}{8}\right)\right)} = \frac{1}{7}$$

(4) (Bayes theorem)

$$P(X = -1 \mid |X| = 1) = \frac{P(|X| = 1 \mid X = -1) P(X = -1)}{P(|X| = 1)} = \frac{1 * \left(\frac{1}{2}\right) * \left(\frac{1}{4}\right)}{\left(\frac{1}{2}\right) * \left(\frac{1}{4}\right) + \left(\frac{1}{2}\right) * \left(\frac{1}{8}\right)} = \frac{2}{3}$$

(5) (union/intersection)

- (a) $Max(P(A \cap B)) = 0.3$ when $A \subseteq B$
- (b) $Min(P(A \cap B)) = 0$ when $A \cap B = \emptyset$
- (c) $Max(P(A \cup B)) = 0.7$ when $A \cap B = \emptyset$
- (d) $Min(P(A \cup B)) = 0.4$ when $A \subseteq B$

2 Linear Algebra

(1) (rank)

It is a rank-2 square matrix.

(2) (inverse)

$$0.125 -0.625 0.75 \\ -0.25 0.75 -0.5$$

$$0.375 - 0.375 \ 0.25$$

(3) (eigenvalues/eigenvectors)

eigenvalues	eigenvectors
4	1, 2, -1
2	1, 0, -1
2	0, 1, -1

- (4) (singular value decomposition)
 - (a) $MM^{\dagger}M = U\Sigma V^{T}V\Sigma^{\dagger}U^{T}U\Sigma V^{T} = U\Sigma\Sigma^{\dagger}\Sigma V^{T}$ $M = U\Sigma V^{T}$

Obviously, $MM^{\dagger}M = M$ if $\Sigma\Sigma^{\dagger}\Sigma = \Sigma$

w.l.o.g Suppose M is an m-by-n (m<n) matrix, then Σ is an m-by-n matrix with non-negative real numbers on the diagonal.

$$\Sigma = \begin{pmatrix} \sigma_1 & \cdots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & \sigma_m & 0 \end{pmatrix}$$

$$\Sigma^{\dagger} = \begin{pmatrix} \sigma_{1}^{\dagger} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_{m}^{\dagger} \\ 0 & \cdots & 0 \end{pmatrix}, \text{ where } \sigma_{i}^{\dagger} = \begin{cases} 1/\sigma_{i}, & \text{if } \sigma_{i} \neq 0 \\ 0, & \text{otherwise} \end{cases}, 1 \leq i \leq m$$

Thus,

$$\Sigma\Sigma^{\dagger} = \begin{pmatrix} \sigma_1^* & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_m^* \end{pmatrix}, \text{ where } \sigma_i^* = \left\{ \begin{array}{l} 1, \ if \ \sigma_i \neq 0 \\ 0, \ otherwise', 1 \leq i \leq m \end{array} \right.$$

$$\Sigma \Sigma^{\dagger} \Sigma = \begin{pmatrix} \sigma_{1} \sigma_{1}^{*} & \cdots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & \sigma_{m} \sigma_{m}^{*} & 0 \end{pmatrix}, \text{ where } \sigma_{i} \sigma_{i}^{*} = \begin{cases} \sigma_{i}, \text{ if } \sigma_{i} \neq 0 \\ 0, \text{ otherwise}, 1 \leq i \leq m \end{cases}$$

Therefore for any $1 \le i \le m, 1 \le j \le n$, we have

 $(\Sigma \Sigma^{\dagger} \Sigma)[i][j] = \Sigma[i][j]$, which means $\Sigma \Sigma^{\dagger} \Sigma = \Sigma$

(b) w.l.o.g Suppose M is an m-by-n (m<n) matrix, then Σ is an m-by-n matrix with non-negative real numbers on the diagonal.

M is invertible, therefore rank(M) = m. Since U_{mxm} and V_{nxn} are orthogonal, rank(U) = m, rank(V) = n > m, thus rank(Σ) >= m, which suggests σ_1 , ..., $\sigma_m \neq 0$ Similar to the proof in (a), we have

$$\Sigma \Sigma^{\dagger} = \begin{pmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{pmatrix} = I$$

Therefore $MM^{\dagger} = U\Sigma V^T V\Sigma^{\dagger} U^T = I$

This indicates that $M^{\dagger} = M^{-1}$

- (5) (PD/PSD)
 - (a) for all $x \neq 0$, $xZZ^Tx^T = xZ(xZ)^T \geq 0$, therefore ZZ^T is PSD
 - (b) =>

Let λ , v be an eigenvalue-eigenvector pair of A.

Then $Av = \lambda v$

Given that A is PD, there exists at least one $v \neq \mathbf{0}$, and $v^T A v = \lambda v^T v > 0$. Since $v^T v > 0$, λ has to be strictly positive.

<=

Suppose there exists an eigenvalue-eigenvector pair λ, v of A s.t. $\lambda \mathrel{<=} 0$

Then $v^T A v = \lambda v^T v \le 0$, which contradicts with the fact that A is PD.

This indicates that each eigenvalue of A has to be strictly positive.

- (6) (inner product)
 - (a) $\max(\mathbf{u}^T \mathbf{x}) = ||\mathbf{x}||, \text{ when } \mathbf{u} = \frac{\mathbf{x}}{||\mathbf{x}||}$
 - (b) $\min(u^T x) = -||x||$, when $u = -\frac{x}{||x||}$
 - (c) $min(|\mathbf{u}^T \mathbf{x}|) = 0$. If $\mathbf{x} = \mathbf{0}$ apparently any \mathbf{u} is good. Otherwise,

let
$$\mathbf{x} = (a_1, ..., a_d)$$
, w.l.o.g suppose $a_1 \neq 0$

let
$$\mathbf{v} = (b_1, ..., b_d)$$
, where $\sum_{i=2}^d b_i^2 \neq 0$, $b_1 = \frac{\sum_{i=2}^d a_i b_i}{a_1}$

Evidently, $\mathbf{v}^T \mathbf{x} = 0$

So we just make $u = \frac{v}{||v||}$

3 Calculus

(1) (differential and partial differential)

$$\frac{df(x)}{dx} = \frac{-2e^{-2x}}{1 + e^{-2x}}$$

$$\frac{\partial g(x,y)}{\partial y} = 2e^{2y} + 6xye^{3xy^2}$$

(2) (chain rule)

$$\frac{\partial f}{\partial v} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v} = -y \sin(u + v) - x \cos(u - v)$$

(3) (gradient and Hessian)

$$\nabla E = i \frac{\partial E}{\partial u} + j \frac{\partial E}{\partial v}$$
, where

$$\frac{\partial E}{\partial u} = 2(ue^v - 2ve^{-u})(e^v + 2ve^{-u})$$

$$\frac{\partial E}{\partial v} = 2(ue^v - 2ve^{-u})(ue^v - 2e^{-u})$$

At u = 1 and v = 1,
$$\nabla E = 2(e^2 - 4e^{-2})\mathbf{i} + 2(e - 2e^{-1})^2\mathbf{j}$$

$$\nabla^2 E = \begin{pmatrix} \frac{\partial^2 E}{\partial^2 u} & \frac{\partial^2 E}{\partial u \partial v} \\ \frac{\partial^2 E}{\partial v \partial u} & \frac{\partial^2 E}{\partial^2 v} \end{pmatrix}, where$$

$$\frac{\partial^2 E}{\partial^2 u} = 2(ue^v - 2ve^{-u})^2 + 2(ue^v - 2ve^{-u})(-2ve^{-u})$$

$$\frac{\partial^2 E}{\partial u \partial v} = 2(e^v + 2ve^{-u})(ue^v - 2e^{-u}) + 2(ue^v - 2ve^{-u})(e^v + 2e^{-u})$$

$$\frac{\partial^2 E}{\partial v \partial u} = 2(e^v + 2ve^{-u})(ue^v - 2e^{-u}) + 2(ue^v - 2ve^{-u})(e^v + 2e^{-u})$$

$$\frac{\partial^2 E}{\partial^2 v} = 2(ue^v - 2e^{-u})^2 + 2(ue^v - 2ve^{-u})(ue^v)$$

At u = 1 and v = 1,
$$\nabla^2 E = \begin{pmatrix} 2e^2 - 12 + 16e^{-2} & 4e^2 - 16e^{-2} \\ 4e^2 - 16e^{-2} & 4e^2 - 4 + 8e^{-2} \end{pmatrix}$$

(4) (Taylor's expansion)

$$E(1 + \Delta u, 1 + \Delta v)$$

$$\begin{split} &= E(1,1) + \Delta u \frac{\partial E(1,1)}{\partial u} + \Delta v \frac{\partial E(1,1)}{\partial v} \\ &+ \frac{1}{2!} \left[(\Delta u)^2 \frac{\partial^2 E(1,1)}{\partial^2 u} + 2\Delta u \Delta v \frac{\partial^2 E(1,1)}{\partial u \partial v} + (\Delta v)^2 \frac{\partial^2 E(1,1)}{\partial^2 v} \right] + o^2 \\ &= (e - 2e^{-1})^2 + \Delta u * 2(e^2 - 4e^{-2}) + \Delta v * 2(e - 2e^{-1})^2 \\ &+ \frac{1}{2!} \left[(\Delta u)^2 * 2e^2 - 12 + 16e^{-2} + 2\Delta u \Delta v * (4e^2 - 16e^{-2}) \right. \\ &+ (\Delta v)^2 (4e^2 - 4 + 8e^{-2}) \right] + o^2 \end{split}$$

(5) (optimization)

$$F(\alpha) = Ae^{\alpha} + Be^{-2\alpha}$$

Let $\frac{dF}{d\alpha} = Ae^{\alpha} - 2Be^{-2\alpha} = 0$, since A > 0, B > 0, we have $\alpha^* = \frac{\ln(2B) - \ln A}{3}$
 $\frac{dF(\alpha^{*+})}{d\alpha} > 0$, $\frac{dF(\alpha^{*-})}{d\alpha} < 0$, therefore $F(\alpha^*)$ is the minimum.

(6) (vector calculus)

Let
$$\mathbf{w} = (w_1, ..., w_d)$$
, $\mathbf{b} = (b_1, ..., b_d)$, $\mathbf{A} = \begin{pmatrix} a_{11} & \cdots & a_{1d} \\ \vdots & \ddots & \vdots \\ a_{d1} & \cdots & a_{dd} \end{pmatrix}$
 $\mathbf{w}^T \mathbf{A} \mathbf{w} = w_1^2 a_{11} + \cdots + w_1 w_d a_{1d} + \cdots + w_d w_1 a_{d1} + \cdots + w_d^2 a_{dd}$

$$\boldsymbol{b}^T \mathbf{w} = b_1 w_1 + \dots + b_d w_d$$

Given that **A** is symmetrical, for 1<=i<=d

$$\frac{\partial \mathbf{w}^T \mathbf{A} \mathbf{w}}{\partial w_i} = 2 \sum_{k=1}^d a_{ik} w_i$$

Therefore

$$\frac{\partial E}{\partial w_i} = \sum_{k=1}^d a_{ik} w_i + b_i$$

Which yields

$$\frac{\partial^2 E}{\partial w_i \partial w_j} = a_{ij}$$

Henceforth

$$\nabla E = \frac{\partial E}{\partial \boldsymbol{w}} = \mathbf{A}\boldsymbol{w} + \boldsymbol{b}$$

$$\nabla^2 E = \frac{\partial^2 E}{\partial^2 \mathbf{w}} = \mathbf{A}$$