西南交通大学 2014-2015 学年第(1)学期考试试卷

课程代码 3231600 课程名称 数字信号处理 考试时间 120 分钟

题号 一		=	四四	五	六	七	八	九	+	总成绩
得分										
	1			1						
阅卷教师签	字:	- 1 B 1								
一、选择题:										
本题共 10	个小题,	每题回答	ទ正确	得 2 分	,否则律	專零分.	每小题	听给出	答案中	只有一个
确的。 . 信号通常是即	计同价感	粉 粉	タ信具	64 十 西 /	供 红 旦	信早th	豆胺奶	. 1	। । । । । । ।	(1
A. 离散值;									17 111 40	
n. 內 版 值; C. 连续值;						值;连:				
. 实序列的傅里		必是(Α		2. ~2.	ш, ~	ДЕ			
A. 共轭对称							B. 共轭	反对称	函数	
C. 奇函数							D. 偶函	数		
. 某序列的 Di 后数字域上相			n=0				W11.21	HJHJ +3X	以汉为	(n)
A. N	В. М	ſ	C	$2\pi/M$		D	$2\pi/2$	N N		
.对 IIR 网络约	吉构中,	下面说	法正确	的是(A).					
A. 级联	型网络便	于调整	零极点			B. 级联	类型网络	好差最	大	
C. 并联结	型网络便	于调整	零点			D. 直接	英型网络	逐便于调	整零板	& 点
. 线性相位 F	IR 滤波	器主要有	可以下[]类						
(I)h(n)偶	对称,	长度 N 为	可奇数	(II)h	(n)偶x	寸称,七	长度 N 为	偶数		
(III)h(n)奇	对称,一	长度 N カ	可奇数	(IV)h	(n) 奇双	寸称,七	使 N 为	偶数		
则其中不能	用于设	计带阻测	虑波器的	内是(c)	0				
A. I 、II							IV. I			
1 1 11	D. 1		٠.							

田名

A. 横截型

8. 对于序列的傅立叶变换而言, 其信号的特点是(

B. 级联型

1

C. 并联型

D. 频率抽样型

- A. 时域连续非周期, 频域连续非周期 B. 时域离散周期, 频域连续非周期
- C. 时域离散非周期, 频域连续非周期 D. 时域离散非周期, 频域连续周期
- 9. 在基 2 DIT—FFT 运算时,需要对输入序列进行倒序,若进行计算的序列点数 N=16, 倒序前 信号点序号为 10,则倒序后该信号点的序号为(C)。)。
 - A. 8
- B. 9
- C. 5
- D. 10
- 10. 关于双线性变换法设计 IIR 滤波器正确的说法是(D)
 - A. 双线性变换是一种线性变换
 - B. 不能用于设计高通和带阻滤波器
 - C. 双线性变换法将线性相位的模拟滤波器映射为一个线性相位的数字滤波器
 - D. 需要一个频率非线性预畸变
- 二、判断题(每题2分,共10分)
- 1、(×) 用双线性变换法设计 IIR 数字滤波器时会存在频率混叠失真。
- 2、(×) FIR 离散系统都具有严格的线性相位。
- 3、(×) 无限长非能量序列的 z 变换不存在。
- 4、(√) $v(n) = \cos[x(n)]$ 所代表的系统是非线性系统。
- 5、(×)巴特沃思滤波器的幅度特性必在一个频带中(通带或阻带)具有等波纹特性。
- 三、(12分)已知一个时域离散系统的流程图如图所示,其中 m 为一个实常数,
 - (1) 试求系统函数 H(z):
 - (2) 若系统是因果的, 试求系统函数的收敛域:
 - (3) m取何值时,该系统是因果稳定的。

解:
$$H(z) = \frac{1 - \frac{m}{4}z^{-1}}{1 + \frac{m}{3}z^{-1}}$$

若系统是因果的, 试求系统函数的收敛域 $z > \frac{m}{3}$ 。

 $\left|\frac{m}{3}\right| < 1$, 即 $\left|m\right| < 3$,该系统是因果稳定的。

四、(12 分)对实信号进行谱分析,要求频率分辨率 $F \leq 20$ Hz,信号最高频率 $f_h = 1kHz$,试确定以下各参数:

- (1) 最小记录长度(时间函数的周期) Tp;
- (2) 最大的采样间隔 T:
- (3) 最少的采样点数 N;
- (4) 在频带宽度不变的情况下,为使频率分辨提高到两倍的最少采样点数 N 的值。

解: (1) 最小记录时间
$$T_P = \frac{1}{F} = \frac{1}{20} = 0.05$$
 s

(2) 最大采样间隔
$$T = \frac{1}{2f_h} = \frac{1}{(2 \times 1000)} = \frac{1}{2} \times 10^{-3} \text{ s}$$
 =0.5 ms

(3) 最少采样点
$$N = {}^{2f_h}/_{F} = (2 \times 1000)/_{20} = 100$$

(4) 频带宽度不变就意味着采样间隔 T 不变,应使记录时间扩

大一倍, 即 F 变为原来

的一半,所以,
$$N = (2 \times 1000)_{10} = 200$$

五、(15分) 设序列 $x(n) = \{1, 3, 2, 1; n = 0, 1, 2, 3\}$, 另一序列 $h(n) = \{1, 2, 1, 2; n = 0, 1, 2, 3\}$,

- (1) 求两序列的线性卷积 y_i(n);
- (2) 求两序列的 6 点循环卷积 y_i(n);
- (3) 画图说明用 DFT 计算线性卷积的实现算法。

解

(1), 求线性卷积, 由列表法:

0	1	2	3	4	5	6
x(0)	x(1)	x(2)	x(3)			
h(0)	h(1)	h(2)	h(3)			
x(0)h(0)	x(1)h(0)	x(2)h(0)	x(3)h(0)		1-	****
	x(0)h(1)	x(1)h(1)	x(2)h(1)	x(3)h(1)		
		x(0)h(2)	x(1)h(2)	x(2)h(2)	x(3)h(2)	
			x(0)h(3)	x(1)h(3)	x(2)h(3)	x(3)h(3)
y(0)	y(1)	y(2)	y(3)	y(4)	y(5)	y(6)
y(0)=1						
	x(0) h(0) x(0)h(0) y(0)	x(0) x(1) h(0) h(1) x(0)h(0) x(1)h(0) x(0)h(1) y(0) y(1)	x(0) x(1) x(2) h(0) h(1) h(2) x(0)h(0) x(1)h(0) x(2)h(0) x(0)h(1) x(1)h(1) x(0)h(2) y(0) y(1) y(2)	x(0) x(1) x(2) x(3) h(0) h(1) h(2) h(3) x(0)h(0) x(1)h(0) x(2)h(0) x(3)h(0) x(0)h(1) x(1)h(1) x(2)h(1) x(0)h(2) x(1)h(2) x(0)h(3) y(0) y(1) y(2) y(3)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

y(1)=5

y(2)=9

y(3)=10

y(4)=10

y(5)=5

y(6)=2

(2) 求 6 点循环卷积:

$$x(n) = \{x(0), x(1), x(2), x(3)\} = \{1,3,2,1\}$$

$$h(n) = \{h(0), h(1), h(2), h(3)\} = \{1, 2, 1, 2\}$$

$$\begin{bmatrix} y_i(0) \\ y_i(1) \\ y_i(2) \\ y_i(3) \\ y_i(4) \\ y_i(5) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 & 2 & 3 \\ 3 & 1 & 0 & 0 & 1 & 2 \\ 2 & 3 & 1 & 0 & 0 & 1 \\ 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & 2 & 3 & 1 & 0 \\ 0 & 0 & 1 & 2 & 3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 1 \\ 2 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ 5 \\ 9 \\ 10 \\ 10 \\ 5 \end{bmatrix}$$

(3)画图说明 DFT 计算线性卷积的实现算法。

六、(15 分) 设 FIR 滤波器的系统函数为 $H(z) = \frac{1}{6} (1 - 2.4z^{-1} + 1.2z^{-2} - 2.4z^{-3} + z^{-4})$ 。

- (1)(2分)试判断该滤波器是否具有线性相位特性,并说明判断依据;
- (2)(8分)求出其幅度特性函数和相位特性函数:
- (3)(5分)如果具有线性相位特性,画出其线性相位型结构,否则画出其直接型结构图。

解: (1) :
$$H(z) = \sum_{n=0}^{\infty} h(n)z^{-n}$$

$$h(n) = \frac{1}{6}\delta(n) - 0.4\delta(n-1) + 0.2\delta(n-2) - 0.4\delta(n-3) + \frac{1}{6}\delta(n-4)$$

$$= \{\frac{1}{6} - 0.4 \quad 0.2 \quad -0.4 \quad \frac{1}{6}\} \quad 0 \le n \le 4$$

 \therefore h(n) = h(N-1-n) , .: 该滤波器具有线性相位特点

(2)
$$H(e^{j\omega}) = H_g(\omega)e^{j\theta(\omega)} = \sum_{n=0}^{N-1} h(n)e^{-j\omega m}$$
$$= \frac{1}{6}(e^{j2\omega} - 2.4e^{j\omega} + 1.2 - 2.4e^{-j\omega} + e^{-j2\omega})e^{-j2\omega} = \frac{1}{6}(1.2 - 4.8\cos\omega + 2\cos2\omega)e^{-j2\omega}$$

幅度特性函数为

$$H_{\rm g}(\omega) = \frac{0.6 - 2.4\cos\omega + \cos2\omega}{3}$$

相位特性函数为

$$\theta(\omega) = -\omega \frac{N-1}{2} = -2\omega$$

(3)

七、(16 分)用双线性变换法(T=2s 时)设计一个数字巴特沃斯(Butterworth)低通 IIR 滤波器。要求:在通带内频率低于 0.25π 时,最大衰减小于 0.5dB;在阻带内 $[0.35\pi,\pi]$ 频率区间上,最小衰减大于 30dB。

- (1)(8分)求模拟低通滤波器的技术指标;
- (2) (8分) 求模拟低通滤波器的阶数 N 和 3dB 带宽 Ω_{c} ;

解: (1)

求 N (双线性变换法):

$$\Omega = \frac{2}{T} t g(\frac{\omega}{2})$$

由指标要求得:
$$\Omega_p = \frac{2}{2} t g \left(\frac{\omega_p}{2} \right) = t g \left(\frac{0.25\pi}{2} \right) = 0.4142$$
, $\Omega_s = \frac{2}{2} t g \left(\frac{\omega_s}{2} \right) = t g \left(\frac{0.35\pi}{2} \right) = 0.6128$

过渡比的倒数为:
$$\lambda_{sp} = \frac{\Omega_s}{\Omega_p} = \frac{0.6128}{0.4142} = 1.479$$

$$k_{sp} = \sqrt{\frac{10^{0.1\alpha_s} - 1}{10^{0.1\alpha_p} - 1}} = \sqrt{\frac{10^3 - 1}{10^{0.05} - 1}} = \frac{\sqrt{999}}{\sqrt{0.1220}} = 90.49$$

故巴特沃斯模拟低通滤波器的阶数 N 为:

$$N = \frac{\lg k_{sp}}{\lg \lambda_{sp}} = \frac{\lg(90.49)}{\lg(1.479)} = \frac{1.9566}{0.17} = 11.51$$

取 N=12

(2) 求^Ωc.

$$1+(\frac{\Omega_p}{\Omega_c})^{2N}=10^{0.1\alpha_p}$$
,可得:

$$\Omega_c = \Omega_p \left(10^{0.1\alpha_p} - 1 \right)^{-\frac{1}{2N}} = 0.4142 \times 1.0916 = 0.4521$$