557_Project_2BS

Ben Straub, Hillary Koch, Jiawei Huang, Arif Masrur 3/15/2017

Boring Stuff on the dataset

Names of Variables

[1]	"seismic"	"seismoacoustic"	"shift"	"genergy"
[5]	"gpuls"	"gdenergy"	"gdpuls"	"ghazard"
[9]	"nbumps"	"nbumps2"	"nbumps3"	"nbumps4"
[13]	"nbumps5"	"nbumps6"	"nbumps7"	"nbumps89"
[17]	"energy"	"maxenergy"	"class"	

Summary Statistics

seismic seismoa	acoustic shift	genergy	У	gpuls	
a:1682 a:1580	N: 921	$\mathtt{Min.}$:	100	Min. : 2.0	
b: 902 b: 956	W:1663	1st Qu.:	11660	1st Qu.: 190.0	
c: 48		Median :	25485	Median : 379.0	
		Mean :	90242	Mean : 538.6	
		3rd Qu.:	52832	3rd Qu.: 669.0	
		Max. :25	595650	Max. :4518.0	
gdenergy	gdpuls	ghazar	d nb	umps	
Min. : -96.00	Min. :-96.00				
1st Qu.: -37.00	1st Qu.:-36.00	00 b: 212			
Median : -6.00	Median : -6.00	00 c: 30	Median	:0.0000	
Mean : 12.38	Mean : 4.50)9	Mean	:0.8595	
3rd Qu.: 38.00	3rd Qu.: 30.29	50	3rd Qu	.:1.0000	
Max. :1245.00	Max. :838.00	00	Max.	:9.0000	
nbumps2	nbumps3	nbump	s 4	nbumps5	
Min. :0.0000	Min. :0.0000	Min. :	0.00000	Min. :0.000000	
1st Qu.:0.0000	1st Qu.:0.0000	1st Qu.:	0.00000	1st Qu.:0.000000	
Median :0.0000	Median :0.0000	Median :	0.00000	Median :0.000000	
Mean :0.3936	Mean :0.3928		0.06772	Mean :0.004644	
3rd Qu.:1.0000	3rd Qu.:1.0000	3rd Qu.:	0.00000	3rd Qu.:0.000000	
Max. :8.0000	Max. :7.0000	Max. :	3.00000	Max. :1.000000	
nbumps6 n	nbumps7 nbump	ps89 ene	ergy	maxenergy	
Min. :0 Min.	:0 Min.	:0 Min.	: 0	$\mathtt{Min.}$: 0	
1st Qu.:0 1st	Qu.:0 1st Qu.:	:0 1st Qu	.: 0	1st Qu.: 0	
Median :0 Medi	lan :0 Median	:0 Median	: 0	Median: 0	
Mean :0 Mean	n :0 Mean	:0 Mean	: 4975	Mean : 4279	
3rd Qu.:0 3rd	Qu.:0 3rd Qu.:	:0 3rd Qu	.: 2600	3rd Qu.: 2000	
Max. :0 Max.	:0 Max.	:0 Max.	:402000	Max. :400000	
class					
Min. :0.00000					
1st Qu.:0.00000					
Median :0.00000					
Mean :0.06579					

3rd Qu.:0.00000 Max. :1.00000

Dimensions of Data Matrix

[1] 2584 19

Check for Normality of Data

Seismoacoustic Distribution

Ghazard Distribution

density.default(x =

density.default(x = seismic\$maxenergy

gy density.default(x = seismic\$nbumps)

Density

N = 2584 Bandwidth = 279.1

N = 2584 Bandwidth = 0.1395

density.default(x = seismic\$nbumps2

density.default(x = seismic\$nbumps3

N = 2584 Bandwidth = 0.1395 density.default(x = seismic\$nbumps4

N = 2584 Bandwidth = 0.1395 density.default(x = seismic\$nbumps5

density.default(x = seismic\$nbumps6

density.default(x = seismic\$nbumps7

N = 2584 Bandwidth = 0.187

-2 -1

0

Theoretical Quantiles

-3

3

-2

Theoretical Quantiles

-3

2

3

Correlation of the Variables

\$r				
	row	column	cor	p
1	genergy	gpuls	0.7500	0.0e+00
2	genergy	nbumps4	0.1500	1.4e-14
3	gpuls	nbumps4	0.2600	0.0e+00
4	genergy	nbumps3	0.1900	0.0e+00
5	gpuls	nbumps3	0.2300	0.0e+00
6	nbumps4	nbumps3	0.1800	0.0e+00
7	genergy	nbumps	0.2200	0.0e+00
8	gpuls	nbumps	0.3000	0.0e+00
9	nbumps4	nbumps	0.4000	0.0e+00
10	nbumps3	nbumps	0.8000	0.0e+00
11	genergy	nbumps2	0.1400	2.2e-13
12	gpuls	nbumps2	0.2100	0.0e+00
13	nbumps4	nbumps2	0.1600	0.0e+00
14	nbumps3	nbumps2	0.3500	0.0e+00
15	nbumps	nbumps2	0.8000	0.0e+00
16	genergy	gdenergy	0.0490	1.4e-02
17	gpuls	gdenergy	0.2900	0.0e+00
18	nbumps4	gdenergy	0.0370	6.1e-02
19	nbumps3	gdenergy	-0.0120	5.4e-01
20	nbumps	gdenergy	0.0300	1.3e-01
21	nbumps2	gdenergy	0.0410	3.6e-02
22	genergy	gdpuls	0.0720	2.7e-04

```
gdpuls 0.3800 0.0e+00
23
     gpuls
   nbumps4
24
              gdpuls 0.0660 7.6e-04
25
   nbumps3
              gdpuls 0.0150 4.5e-01
    nbumps
              gdpuls 0.0580 3.2e-03
26
   nbumps2
              gdpuls 0.0510 9.4e-03
28 gdenergy
              gdpuls 0.8100 0.0e+00
   genergy
             nbumps5 -0.0099 6.2e-01
             nbumps5 0.0490 1.2e-02
30
     gpuls
31
   nbumps4
             nbumps5 -0.0170 4.0e-01
32
   nbumps3
             nbumps5 0.0460 1.8e-02
33
    nbumps
             nbumps5 0.0700 4.0e-04
             nbumps5 -0.0053 7.9e-01
34
   nbumps2
             nbumps5
                     0.1200 3.3e-10
35 gdenergy
36
             nbumps5
                     0.1400 5.9e-13
    gdpuls
              energy 0.0810 3.9e-05
37
   genergy
38
     gpuls
              energy 0.1900 0.0e+00
39
   nbumps4
              energy 0.4900 0.0e+00
   nbumps3
40
              energy 0.2400 0.0e+00
41
    nbumps
              energy 0.3500 0.0e+00
              energy 0.1200 2.0e-10
42
   nbumps2
43 gdenergy
              energy 0.1100 6.7e-08
    gdpuls
              energy 0.1400 2.5e-13
              energy 0.7700 0.0e+00
45
   nbumps5
46
   genergy maxenergy 0.0640 1.1e-03
47
     gpuls maxenergy 0.1600 0.0e+00
   nbumps4 maxenergy 0.4200 0.0e+00
49
   nbumps3 maxenergy 0.1800 0.0e+00
50
    nbumps maxenergy
                      0.2700 0.0e+00
   nbumps2 maxenergy 0.0850 1.5e-05
51
52 gdenergy maxenergy 0.1100 3.2e-08
    gdpuls maxenergy 0.1400 2.2e-13
53
54
   nbumps5 maxenergy
                      0.8100 0.0e+00
55
     energy maxenergy 0.9900 0.0e+00
```

\$p NULL

\$sym NULL

\$r				
	row	column	cor	р
1	genergy	gpuls	0.7500	0.0e+00
2	genergy	nbumps4	0.1500	1.4e-14
3	gpuls	nbumps4	0.2600	0.0e+00
4	genergy	nbumps3	0.1900	0.0e+00
5	gpuls	nbumps3	0.2300	0.0e+00
6	nbumps4	nbumps3	0.1800	0.0e+00
7	genergy	nbumps	0.2200	0.0e+00
8	gpuls	nbumps	0.3000	0.0e+00
9	nbumps4	nbumps	0.4000	0.0e+00
10	nbumps3	nbumps	0.8000	0.0e+00
11	genergy	nbumps2	0.1400	2.2e-13
12	gpuls	nbumps2	0.2100	0.0e+00
13	nbumps4	nbumps2	0.1600	0.0e+00
14	nbumps3	nbumps2	0.3500	0.0e+00
15	nbumps	nbumps2	0.8000	0.0e+00
16	genergy	gdenergy	0.0490	1.4e-02
17	gpuls	gdenergy	0.2900	0.0e+00
18	nbumps4	gdenergy	0.0370	6.1e-02
19	nbumps3	gdenergy	-0.0120	5.4e-01
20	nbumps	gdenergy	0.0300	1.3e-01
21	nbumps2	gdenergy	0.0410	3.6e-02
22	genergy	gdpuls	0.0720	2.7e-04
23	gpuls	gdpuls	0.3800	0.0e+00
24	nbumps4	gdpuls	0.0660	7.6e-04
25	nbumps3	gdpuls	0.0150	4.5e-01
26	nbumps	gdpuls	0.0580	3.2e-03

```
27 nbumps2
              gdpuls 0.0510 9.4e-03
28 gdenergy
              gdpuls 0.8100 0.0e+00
29
   genergy
             nbumps5 -0.0099 6.2e-01
30
     gpuls
             nbumps5 0.0490 1.2e-02
31 nbumps4
             nbumps5 -0.0170 4.0e-01
32
  nbumps3
             nbumps5 0.0460 1.8e-02
    nbumps
             nbumps5 0.0700 4.0e-04
   nbumps2
             nbumps5 -0.0053 7.9e-01
34
35 gdenergy
             nbumps5 0.1200 3.3e-10
             nbumps5 0.1400 5.9e-13
36
    gdpuls
   genergy
37
              energy 0.0810 3.9e-05
38
                     0.1900 0.0e+00
     gpuls
              energy
              energy 0.4900 0.0e+00
39
   nbumps4
40
   nbumps3
              energy 0.2400 0.0e+00
              energy 0.3500 0.0e+00
41
    nbumps
              energy 0.1200 2.0e-10
42
   nbumps2
43 gdenergy
              energy 0.1100 6.7e-08
              energy 0.1400 2.5e-13
44
    gdpuls
                     0.7700 0.0e+00
45 nbumps5
              energy
   genergy maxenergy 0.0640 1.1e-03
46
47
     gpuls maxenergy 0.1600 0.0e+00
48
   nbumps4 maxenergy 0.4200 0.0e+00
49 nbumps3 maxenergy 0.1800 0.0e+00
    nbumps maxenergy 0.2700 0.0e+00
  nbumps2 maxenergy 0.0850 1.5e-05
51
52 gdenergy maxenergy 0.1100 3.2e-08
53
    gdpuls maxenergy 0.1400 2.2e-13
54 nbumps5 maxenergy
                     0.8100 0.0e+00
    energy maxenergy 0.9900 0.0e+00
55
```

\$p NULL

\$sym NULL

Linear regression of an indicator matrix

pc.comp

PC1 vs PC3

Logistic Regression on the Training and Test Sets

Call:

```
glm(formula = y.train ~ ., family = binomial, data = seismic.train)
Deviance Residuals:
   Min
              1Q
                  Median
                                3Q
                                        Max
-1.8338
        -0.3884
                 -0.2855
                           -0.1560
                                     3.0819
Coefficients: (3 not defined because of singularities)
                  Estimate Std. Error z value Pr(>|z|)
(Intercept)
                -4.696e+00 3.381e-01 -13.890
                                              < 2e-16 ***
seismicb
                 4.625e-01 2.119e-01
                                        2.183 0.02902 *
seismoacousticb 2.153e-01 2.108e-01
                                        1.021
                                              0.30704
seismoacousticc 4.176e-01
                           8.106e-01
                                        0.515
                                               0.60647
shiftW
                 1.174e+00
                           3.576e-01
                                        3.284 0.00102 **
genergy
                -2.508e-07 5.044e-07
                                       -0.497
                                               0.61896
                           2.474e-04
                                        2.879
                                               0.00400 **
gpuls
                7.122e-04
                -1.428e-04
                            2.143e-03
                                       -0.067
                                               0.94686
gdenergy
                -3.077e-03 3.058e-03
                                       -1.006
                                               0.31441
gdpuls
ghazardb
                -6.873e-02 3.784e-01
                                       -0.182
                                               0.85586
ghazardc
                -1.373e+01 5.335e+02
                                      -0.026
                                               0.97947
nbumps
                2.106e+01 2.400e+03
                                        0.009
                                               0.99300
nbumps2
                -2.072e+01 2.400e+03 -0.009 0.99311
nbumps3
                -2.071e+01 2.400e+03
                                       -0.009
                                               0.99312
nbumps4
                -2.106e+01 2.400e+03
                                       -0.009
                                               0.99300
nbumps5
                -1.915e+01 2.400e+03
                                       -0.008
                                               0.99363
nbumps6
                        NA
                                   NA
                                           NA
                                                    NΑ
nbumps7
                        NA
                                   NA
                                           NA
                                                    NA
nbumps89
                        NA
                                   NA
                                                    NA
                                           NA
                           4.030e-05
                                               0.94939
energy
                 2.558e-06
                                        0.063
                -7.703e-06
                           3.966e-05
                                       -0.194
                                               0.84600
maxenergy
               0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 958.82
                           on 1937
                                    degrees of freedom
Residual deviance: 811.70 on 1920
                                    degrees of freedom
AIC: 847.7
```

The predictors that are significant in our logistic model are genergy, gpuls and ghazardb and a couple more. The predictors nbumps6, nbumps7 and nbumps89 are not defined due to singularities, which may indicated collinearity.

```
y.train
glm.pred 0 1
0 1802 125
1 5 6
```

Number of Fisher Scoring iterations: 15

[1] 0.9329205

The diagonal elements of the confusion matrix indicate correct predictions, while the off-diagonals represent incorrect predictions. Hence our model on the training data set correctly predicted that the seismic activity

would be of no harzard on 1176 observations and that it would be a low hazard on 230 observations, for a total of 1176 + 230 = 1406 correct predictions. The mean() function can be used to compute the fraction of seismic activity for which the prediction was correct. In this case, logistic regression correctly predicted the movement of the market 73 percent of the time.

```
## y.test
## glm.pred 0 1
## 0 603 37
## 1 4 2
## [1] 0.9365325
```

The diagonal elements of the confusion matrix indicate correct predictions, while the off-diagonals represent incorrect predictions. Hence our model on the testing data set correctly predicted that the seismic activity would be of no harzard on 352 observations and that it would be a low hazard on 110 days, for a total of 352 + 110 + 462 correct predictions. The mean() function can be used to compute the fraction of seismic activity for which the prediction was correct. In this case, logistic regression correctly predicted the movement of the market 71.5 percent of the time.

Recall that the logistic regression model had only 7ish predictors that were significant from an avaiable 17. Perhaps by removing the variables that appear not to be helpful in predicting seismic hazard, we can obtain a more effective model. After all, using predictors that have no relationship with the response tends to cause a deterioration in the test error rate (since such predictors cause an increase in variance without a corresponding decrease in bias), and so removing such predictors may in turn yield an improvement [straight from the book]