

Adjazenzmatrix (Aufgrund der besseren Lesbarkeit sind die Gewichte nur für eine Kantenrichtung eingetragen)

Schritt	Kante	Gewicht	Union-Find-Struktur
1	(1,3)	1	1
2	(2,5)	2	1 2 4 6 7 8 9
3	(6,8)	2	1 2 6 4 7 9
4	(5,7)	3	1 6 4 9
5	(1,8)	4	3 6 5 7 4 9 9
6	(4,7)	7	3 6 5 7 4 9
7	(2,8)	9	3 • 6 • 2 9 •
8	(8,9)	14	3 6 9

	1	2	3	4	5	6
1						
2	1					
3	3	1				
4	5	3	1			
5	10			2		1
6	8	5	3			

- a) Tragen Sie in folgende Tabelle nach jedem Besuchsschritt folgendes ein:
 - · der besuchte Knoten b
 - die Kosten d[v] für den günstigsten Weg von Startknoten s nach v
 - den Vorgängerknoten p[v] für den günstigsten Weg von Startknoten s nach v.

Wichtig: Haben mehrere Kandidaten denselben d-Wert, dann wird der Kandidat mit kleinster Nummer als nächster Knoten besucht.

<u>Hinweis:</u> Es brauchen nur die d- und p-Werte eingetragen werden, die sich geändert haben. Die endgültigen p- und d-Werte können durch Umrandung besonders gekennzeichnet werden. (8 Punkte)

b	d[1]	d[2]	d[3]	d[4]	d[5]	d[6]		p[1]	p[2]	p[3]	p[4]	p[5]	p[6]
5	10	∞	∞	2	0	1	Г	5	-	-	5	-	5
6	9	6	4					6	6	6			
4	7	5	3					4	4	4			
3	6	4						3	3				
2	5							2					
1													

Rotationen

Linkslastig, Linker Teilbaum ausgeglichen:

Rotate Right

Linkslastig, Linker Teilbaum leicht Rechtslastig:

Rotate Left Right

Rechtslastig, Rechter Teilbaum ausgeglichen:

Rotate Left

Rechtslastig, Rechter Teilbaum leicht Linkslastig:

Rotate Right Left

(NW) Ein Knoten v ≠ Wurzel ist ein Artikulationspunkt, falls v im TR ein Kind w hat, so dass es von w keinen Rückwärtsweg zu einem Vorfahren von v gibt.

Ein Rot-Schwarz-Baum ist ein binärer Suchbaum mit folgenden Färbungsregeln:

- (1) Jeder Knoten ist entweder rot oder schwarz.
- (2) Die Wurzel ist immer schwarz.
- (3) Ein roter Knoten darf kein rotes Kind haben.
- (4) Jeder Pfad von der Wurzel zu einem Blatt hat die die gleiche Anzahl an schwarzen Knoten.

