Physics 20 - Lesson 11 **Vector Addition-Components**

Possible 90/90

1)
$$x=25\sin 40$$

a) $x=16.1 \text{m/s}$
/9 $y=25\cos 40$
 $y=19.2 \text{m/s}$ 40° 25m/s

b)
$$x=16\cos 20$$

 $y=16\sin 20$
 $y=5.5 \text{m/s}^2$ 16m/s^2

2)
$$A_x = -440\cos 50^\circ = -282.83$$

$$A_y = -440\sin 50^\circ$$

$$= -337.06$$

/16

a) distance

$$\Delta d = 440m + 580m$$

$$\Delta d = 1020m$$

b) displacement

$$\Delta \vec{d}_x = \vec{A}_x + \vec{B}_x = -282.83 + 290$$

$$\Delta \vec{d}_x = +7.17m$$

$$\Delta \vec{d}_y = \vec{A}_y + \vec{B}_y = -337.06 + 502.29$$

 $\Delta \vec{d}_v = +165.23m$

$$\Delta d = \sqrt{165.23^2 + 7.17^2}$$
 $\theta = \tan^{-1} \frac{7.17}{165.23}$
 $\Delta d = 165.4m$
 $\theta = 2.5^{\circ} \text{ F. of N}$

$$\theta = \tan^{-1} \frac{7.17}{165.23}$$

 $\theta = 2.5^{\circ} \text{ E of N}$

$$\Delta \vec{d} = 165.4m \ [2.5^{\circ} \text{ E of N}]$$

c) speed

$$v_{avg} = \frac{\Delta d}{\Delta t}$$

$$v_{avg} = \frac{1020m}{15 \,\text{min}}$$

$$v_{avg} = 68 \, \text{m/min}$$

3)

/16

/14

a) distance

$$\Delta d = 440m + 580m = 1020m$$

b) displacement

$$\Delta d_x = -337.06 + 502.29$$

$$= 165.23$$

$$\Delta d_y = -282.83 + 290$$

$$= 7.17$$

$$\Delta d = \sqrt{7.17^2 + 165.23^2}$$
= 165.4m

$$\tan \theta = \frac{7.17}{165.23}$$

$$\theta = 2.5^{\circ} \text{ N of E}$$

$$\Delta \vec{d} = 165.4m [2.5^{\circ} \text{ N of E}]$$

- c) speed $V_{avg} = \frac{\Delta d}{\Delta t} = \frac{1020m}{15 \text{ min}} = 68 \frac{m}{\text{min}}$
- 4) \vec{A} $\Delta d = 5.0 \frac{m}{s} (150s) = 750m$

$$B_x = 810\cos 40$$

$$= 620.50$$

$$B_y = -810\sin 40$$

$$= -520.66$$

 $\Delta d = 5.0 \frac{m}{s} (150s) = 750m$ $A_{x} = -750 \cos 30 \quad \text{a)} \quad V_{avg} = \frac{\Delta d}{\Delta t} = \frac{750m + 810m}{25 \min + 4.5 \min} = 222.9 \frac{m}{\min} (3.7 \frac{m}{s})$ $A_{x} = -649.52 \quad \text{b)} \Delta d_{x} = -649.82 + 620.50 = -29.02$ $A_{y} = -750 \sin 30 \quad \Delta d_{y} = -375 - 520.50 = -895.66$ = -375 $\Delta d = 3.0 \frac{m}{s} (270s) = 810m$ $B_{x} = 810 \cos 40 \quad 895.66$ = 620.50 $B_{y} = -810 \sin 40 \quad d = 896m [88.1^{\circ} \text{ S of W}]$ = -520.66

	vertical	horizontal
A	438.8	409.2
В	394.0	-307.8
C	-145.0	-262.4
D	-389.7	90.0
	297.7	-71.0

297.7
$$\Delta \vec{d} = \sqrt{71.0^2 + 297.7^2} = 306\text{m}$$

 $\tan \theta = \frac{71}{297.7} \theta = 13^\circ \text{ W of N}$
 $\Delta \vec{d} = 306m [13^\circ \text{ W of N}]$

6) a)
$$A_{x} = 481.5$$

$$A_{y} = 638.9$$

$$379.$$
800m

b) time
$$V = \frac{\Delta d}{\Delta t}$$
$$\Delta t = \frac{\Delta d}{V} = \frac{800 + 300 + 400m}{15 \frac{m}{s}}$$
$$\Delta t = 100s$$

/12

c)crow
$$V_{avg} = \frac{\Delta d}{\Delta t} = \frac{640m}{100s} = 6.4 \%$$

	vertical	horizontal
A	638.9	481.5
В	0	-300
C	-240.7	319.5
	398.2	501
		•

the horizontal component of

motion for the airplane.

$$\cos 15^\circ = \frac{200 km/h}{v}$$

$$v = \frac{200km/h}{\cos 15^{\circ}}$$
$$v = 207 \text{ km/h}$$

$$\tan 15^{\circ} = \frac{v_{v}}{200 km/h}$$

$$v_v = 200km/h(\tan 15^\circ)$$

$$v_v = 53.59 km/h$$

$$t = \frac{d_v}{v_v} = \frac{1.00km}{53.59km/h}$$

$$t = 0.0187h$$

$$t = 1.1 min$$