Lecture 9. Determinants: definition, properties.

Idea of Determinant of a $n \times n$ Matrix

For each $n \times n$ matrix can be assigned a special number called determinant. Below we first consider how it naturally arises in solving of system of linear equations.

Given a system of two linear equations in unknowns x_1 and x_2 :

$$\begin{cases} a_{11}x_1 + a_{12}x + 2 = b_1 \\ a_{21}x_1 + a_{22}x + 2 = b_2 \end{cases}$$

In order to exclude x_2 in the second equation, we multiply the first equation by a_{22} , the second equation by $-a_{12}$ and then we add them. Then we have

$$(a_{11}a_{22} - a_{12}a_{21})x_1 = a_{22}b_1 - a_{12}b_2.$$

If $a_{11}a_{22} - a_{12}a_{21} \neq 0$, then one can find x_1

$$x_1 = \frac{a_{22}b_1 - a_{12}b_2}{a_{11}a_{22} - a_{12}a_{21}}.$$

In similar way, one can find x_2

$$x_2 = \frac{a_{11}b_2 - a_{21}b_1}{a_{11}a_{22} - a_{12}a_{21}}.$$

So the expression $a_{11}a_{22} - a_{12}a_{21}$ defines whether the system has a unique solution or not.

If we write coefficients of the system as a matrix A

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix},$$

then $a_{11}a_{22} - a_{12}a_{21}$ is said to be determinant of matrix A and write it as

$$|A| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}.$$

Then following that rule the expressions $a_{22}b_1 - a_{12}b_2$ and $a_{11}b_2 - a_{21}b_1$ will be determinants of matrices, respectively

$$\begin{pmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{pmatrix}$$
 and $\begin{pmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{pmatrix}$.

So, if $|A| \neq 0$, then

$$x_1 = \frac{\begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}} \qquad x_2 = \frac{\begin{vmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}$$

Definition 1. The determinant of a 2 \times 2 matrix $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ is a

$$|A| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}.$$

Example 1. If
$$A = \begin{pmatrix} 2 & -3 \\ 5 & 6 \end{pmatrix}$$
, then
$$|A| = \begin{vmatrix} 2 & -3 \\ 5 & 6 \end{vmatrix} = 2 \cdot 6 - (-3) \cdot 5 = 12 + 15 = 27.$$

Determinant of 3×3 matrix In order to find determinant of 3×3 matrix, we consider

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13} x_3 = b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23} x_3 = b_1 \\ a_{31}x_1 + a_{32}x_2 + a_{33} x_3 = b_1 \end{cases}$$

Analogously, we can find x_1 and have

$$=\frac{b_{1}a_{22}a_{33}-b_{1}a_{23}a_{32}+b_{2}a_{32}a_{13}-b_{2}a_{12}a_{33}+b_{3}a_{12}a_{23}-b_{3}a_{22}a_{13}}{a_{11}a_{22}a_{33}+a_{12}a_{23}a_{31}+a_{13}a_{21}a_{32}-a_{13}a_{22}a_{31}-a_{12}a_{21}a_{33}-a_{11}a_{23}a_{32}}$$

It is a good exercise for students to derive this formula. The expression

$$a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32}$$

defines determinant of any 3×3 matrix.

Definition 2. The determinant of a 3×3 matrix
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
 is a

$$|A| = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} =$$

$$= a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32}.$$

Example 2.
$$\begin{vmatrix} 2 & 0 & 1 \\ 3 & 1 & 5 \\ 4 & -1 & -2 \end{vmatrix} = 2 \cdot 1 \cdot (-2) + 0 \cdot 5 \cdot 4 + 1 \cdot 3 \cdot (-1) - 1 \cdot 1 \cdot 4 - 0 \cdot 3 \cdot (-2) - 2 \cdot 5 \cdot (-1) = -4 + 0 - 3 - 4 - 0 + 10 = -1.$$

We note that the determinant formula of 3×3 matrix can be written as a sum of determinants of 2×2 matrices:

$$\begin{aligned} |A| &= \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \\ &= a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} \\ &- a_{11}a_{23}a_{32} \\ &= a_{11}\begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12}\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}. \end{aligned}$$

Example 3.
$$\begin{vmatrix} 2 & 0 & 1 \\ 3 & 1 & 5 \\ 4 & -1 & -2 \end{vmatrix} = 2 \begin{vmatrix} 1 & 5 \\ -1 & -2 \end{vmatrix} - 0 \begin{vmatrix} 3 & 5 \\ 4 & -2 \end{vmatrix} + 1 \begin{vmatrix} 3 & 1 \\ 4 & -1 \end{vmatrix} = 2 \cdot (1 \cdot (-2) - 5 \cdot (-1)) - 0 \cdot (3 \cdot (-2) - 5 \cdot 4) + 1 \cdot (3 \cdot (-1) - 1 \cdot 4) = -4 + 10 - 0 - 0 - 3 - 4 = -1.$$

Cofactor and Minors

Below we give a recursive definition of determinants. Let A be a $n \times n$ matrix. Assume that the determinant of $(n-1) \times (n-1)$ matrix is defined. Let M_{ij} denote $(n-1) \times (n-1)$ submatrix of A obtained deleting its i —th and j —th column. The determinant $|M_{ij}|$ is called the minor of the element a_{ij} of A, and we define the cofactor of a_{ij} , denoted by A_{ij} :

$$A_{ij} = (-1)^{i+j} |M_{ij}|.$$

Example 4. Let
$$A = \begin{pmatrix} 2 & 0 & 1 \\ 3 & 1 & 5 \\ 4 & -1 & -2 \end{pmatrix}$$
. We find minors $|M_{23}|$, $|M_{31}|$ and cofactors A_{23} , A_{31} .

$$\begin{split} |M_{23}| &= \begin{vmatrix} 2 & 0 \\ 4 & -1 \end{vmatrix} = 2 \cdot (-1) - 0 \cdot 4 = -2, \\ A_{23} &= (-1)^{2+3} |M_{23}| = -1 \cdot (-2) = 2. \\ |M_{31}| &= \begin{vmatrix} 0 & 1 \\ 1 & 5 \end{vmatrix} = 0 \cdot 5 - 1 \cdot 1 = -1, \\ A_{31} &= (-1)^{3+1} |M_{31}| = 1 \cdot (-1) = -1. \end{split}$$

Properties of Determinants

Theorem 1. Let A be a square matrix.

- 1. If A has a row (column) of zeros, then |A| = 0.
- 2. If A has two identical rows (columns), then |A| = 0.
- 3. If A has zeros below the main diagonal, then |A| is the product of diagonal elements. In particular, $|I_n| = 1$ for any n.

Example 5. a)
$$\begin{vmatrix} 2 & 3 & 2 \\ 3 & 1 & 5 \\ 0 & 0 & 0 \end{vmatrix} = 2 \cdot A_{11} + 3 \cdot A_{12} + 2 \cdot A_{13} = 2|M_{11}| - 3|M_{12}| + 2|M_{13}| = 2 \begin{vmatrix} 1 & 5 \\ 0 & 0 \end{vmatrix} - 3 \begin{vmatrix} 3 & 5 \\ 0 & 0 \end{vmatrix} + 2 \begin{vmatrix} 3 & 1 \\ 0 & 0 \end{vmatrix} = 2 \cdot (1 \cdot 0 - 5 \cdot 0) - 3 \cdot (3 \cdot 0 - 5 \cdot 0) + 2 \cdot (3 \cdot 0 - 1 \cdot 0) = 0 - 0 + 0 = 0.$$

b)
$$\begin{vmatrix} 0 & 3 & 2 \\ 0 & 1 & 5 \\ 0 & -1 & -2 \end{vmatrix} = 0 \cdot A_{11} + 3 \cdot A_{12} + 2 \cdot A_{13} = -3|M_{12}| + 2|M_{13}| = -3 \begin{vmatrix} 0 & 5 \\ 0 & -2 \end{vmatrix} + 2 \begin{vmatrix} 0 & 1 \\ 0 & -1 \end{vmatrix} = -3 \cdot (0 \cdot (-2) - 5 \cdot 0) + 2 \cdot (0 \cdot (-1) - 1 \cdot 0) = 0 + 0 = 0.$$

c)
$$\begin{vmatrix} 2 & 3 & 2 \\ 2 & 3 & 2 \\ 4 & -1 & -2 \end{vmatrix} = 2 \cdot A_{11} + 3 \cdot A_{12} + 2 \cdot A_{13} = 2|M_{11}| - 3|M_{12}| + 2|M_{13}| = 2 \begin{vmatrix} 3 & 2 \\ -1 & -2 \end{vmatrix} - 3 \begin{vmatrix} 2 & 2 \\ 4 & -2 \end{vmatrix} + 2 \begin{vmatrix} 2 & 3 \\ 4 & -1 \end{vmatrix} = 2 \cdot (3 \cdot (-2) - 2 \cdot (-1)) - 3 \cdot (2 \cdot (-2) - 2 \cdot 4) + 2 \cdot (2 \cdot (-1) - 3 \cdot 4) = -8 + 36 - 28 = 0.$$

d)
$$\begin{vmatrix} 2 & 3 & 2 \\ 0 & 1 & 5 \\ 0 & 0 & -2 \end{vmatrix} = 2 \cdot 1 \cdot (-2) = -4.$$

$$\begin{vmatrix} 2 & 3 & 2 \\ 0 & 1 & 5 \\ 0 & 0 & -2 \end{vmatrix} = 2 \cdot A_{11} + 3 \cdot A_{12} + 2 \cdot A_{13} = 2|M_{11}| - 3|M_{12}| + 2|M_{13}|$$

$$= 2 \begin{vmatrix} 1 & 5 \\ 0 & -2 \end{vmatrix} - 3 \begin{vmatrix} 0 & 5 \\ 0 & -2 \end{vmatrix} + 2 \begin{vmatrix} 0 & 1 \\ 0 & 0 \end{vmatrix}$$

$$= 2 \cdot (1 \cdot (-2) - 5 \cdot 0) - 3 \cdot 0 + 2 \cdot 0 = -4$$

Theorem 2. Suppose B is obtained from A by an elementary row (column) operation.

- 1. If two rows (columns) of A were interchanged, then |B| = -|A|.
- 2. If a row (column) of A were multiplied by a scalar λ , then $|B| = \lambda |A|$.
- 3. If a multiple of a row (column) of A were added to another row (column) of A, then |B| = |A|.

Example 6. a) We already know that determinant of $\begin{pmatrix} 2 & 3 & 2 \\ 3 & 1 & 5 \\ 4 & -1 & -2 \end{pmatrix}$ is equal to

70. Let B be a matrix obtained from A by interchanging the first and third rows.

Then determinant of $B = \begin{pmatrix} 4 & -1 & -2 \\ 3 & 1 & 5 \\ 2 & 3 & 2 \end{pmatrix}$ should be -70.

Checking:

$$|B| = \begin{vmatrix} 4 & -1 & -2 \\ 3 & 1 & 5 \\ 2 & 3 & 2 \end{vmatrix} = 4 \cdot A_{11} + (-1) \cdot A_{12} + (-2) \cdot A_{13}$$

$$= 4|M_{11}| + |M_{12}| - 2|M_{13}| = 4\begin{vmatrix} 1 & 5 \\ 3 & 2 \end{vmatrix} + \begin{vmatrix} 3 & 5 \\ 2 & 2 \end{vmatrix} - 2\begin{vmatrix} 3 & 1 \\ 2 & 3 \end{vmatrix} =$$

$$= 4 \cdot (1 \cdot 2 - 5 \cdot 3) + (3 \cdot 2 - 5 \cdot 2) - 2 \cdot (3 \cdot 3 - 1)$$

$$\cdot 2)$$

$$= -52 - 4 - 14 = -70.$$

b) Let
$$A = \begin{pmatrix} 2 & 3 & 2 \\ 3 & 1 & 5 \\ 4 & -1 & -2 \end{pmatrix}$$
. Then $|A| = 70$. If $B = \begin{pmatrix} 2 & 3 & 2 \\ 3 & 1 & 5 \\ 8 & -2 & -4 \end{pmatrix}$, then $|B| = 2|A = 140$. Checking:

$$\begin{split} |B| &= \begin{vmatrix} 2 & 3 & 2 \\ 3 & 1 & 5 \\ 8 & -2 & -4 \end{vmatrix} = 2 \cdot A_{11} + 3 \cdot A_{12} + 2 \cdot A_{13} \\ &= 2|M_{11}| - 3|M_{12}| + 2|M_{13}| \\ &= 2 \begin{vmatrix} 1 & 5 \\ -2 & -3 \end{vmatrix} - 3 \begin{vmatrix} 3 & 5 \\ 8 & -4 \end{vmatrix} + 2 \begin{vmatrix} 3 & 1 \\ 8 & -2 \end{vmatrix} = \\ &= 2 \cdot (1 \cdot (-4) - 5 \cdot (-2)) - 3 \cdot (3 \cdot (-4) - 5 \cdot 8) \\ &+ 2 \cdot (3 \cdot (-2) - 1 \cdot 8) = 12 + 156 - 28 = 140. \end{split}$$

c) Given matrix $A = \begin{pmatrix} 2 & 3 & 2 \\ 3 & 1 & 5 \\ 4 & -1 & -2 \end{pmatrix}$. Matrix B is obtained from A by elementary operation $R_3 \rightarrow -2R_1 + R_3$. Then |B| = |A| = 70.

Checking:

$$\begin{vmatrix} 2 & 3 & 2 \\ 3 & 1 & 5 \\ 4 & -1 & -2 \end{vmatrix} = \begin{vmatrix} 2 & 3 & 2 \\ 3 & 1 & 5 \\ 0 & -7 & -6 \end{vmatrix} = 2 \cdot A_{11} + 3 \cdot A_{12} + 2 \cdot A_{13}$$

$$= 2|M_{11}| - 3|M_{12}| + 2|M_{13}|$$

$$= 2\begin{vmatrix} 1 & 5 \\ -7 & -6 \end{vmatrix} - 3\begin{vmatrix} 3 & 5 \\ 0 & -6 \end{vmatrix} + 2\begin{vmatrix} 3 & 1 \\ 0 & -7 \end{vmatrix} =$$

$$= 2 \cdot (1 \cdot (-6) - 5 \cdot (-7)) - 3 \cdot (3 \cdot (-6) - 5 \cdot 0) + 2 \cdot (3 \cdot (-7) - 1 \cdot 0) = 58 + 54 - 42 = 70.$$

Finding Determinants using Properties

$$\begin{vmatrix} 2 & 5 & -3 & -2 \\ -2 & -3 & 2 & -5 \\ 1 & 3 & -2 & 2 \\ -1 & -6 & 4 & 3 \end{vmatrix} = - \begin{vmatrix} 1 & 3 & -2 & 2 \\ -2 & -3 & 2 & -5 \\ 2 & 5 & -3 & -2 \\ -1 & -6 & 4 & 3 \end{vmatrix} = - \begin{vmatrix} 1 & 3 & -2 & 2 \\ 0 & 3 & -2 & -1 \\ 0 & -1 & 1 & -6 \\ 0 & 3 & -2 & -1 \\ 0 & -1 & 1 & -6 \\ 0 & 3 & -2 & -1 \\ 0 & -3 & 2 & 5 \end{vmatrix} = \begin{vmatrix} 1 & 3 & -2 & 2 \\ 0 & -1 & 1 & -6 \\ 0 & 0 & 1 & -19 \\ 0 & 0 & 0 & 4 \end{vmatrix} = 1 \cdot (-1) \cdot 1 \cdot 4 = -4.$$

- 1. $R_1 \leftrightarrow R_3$
- 2. $R_2 \rightarrow 2R_1 + R_2, R_3 \rightarrow -2R_1 + R_3, R_4 \rightarrow R_1 + R_4$
- $3. R_2 \leftrightarrow R_3,$
- 4. $R_3^- \rightarrow 3\bar{R}_2 + R_3, R_4 \rightarrow -3R_2 + R_4$
- $5. R_4 \rightarrow R_3 + R_4$
- 6. determinant of a diagonal matrix

Theorem 3. $|A^T| = |A|$.

Example 7.
$$\begin{vmatrix} 1 & 3 & -2 & 2 \\ 0 & -1 & 1 & -6 \\ 0 & 3 & -2 & -1 \\ 0 & -3 & 2 & 5 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 & 0 \\ 3 & -1 & 1 & -6 \\ -3 & 3 & -2 & -1 \\ 2 & -3 & 2 & 5 \end{vmatrix} = \begin{vmatrix} 3 & -1 & -3 \\ -2 & 1 & 2 \\ -1 & -6 & 5 \end{vmatrix} = \begin{vmatrix} -1 & -6 & 5 \\ -2 & 1 & 2 \\ -1 & -6 & 5 \end{vmatrix} = \begin{vmatrix} -1 & -6 & 5 \\ 0 & 13 & -8 \\ 3 & -1 & -3 \end{vmatrix} = \begin{vmatrix} -1 & -6 & 5 \\ 0 & -19 & 12 \end{vmatrix} = -\begin{vmatrix} -1 & 0 & 0 \\ -6 & 13 & -8 \\ 5 & -19 & 12 \end{vmatrix} = -(-1)\begin{vmatrix} 13 & -19 \\ -8 & 12 \end{vmatrix} = 13 \cdot 12 - 19 \cdot 8 = 156 - 152 = 4.$$

Theorem 4. |AB| = |A||B|.

Corollary 1. Let A be a square matrix. If $|A| \neq 0$, then $|A^{-1}| = \frac{1}{|A|}$.

Corollary 2. Let A be a square matrix. Then A^{-1} exists if and only if $|A| \neq 0$.

Glossary		
determinant	определитель	

Exercises for lecture 9

1. Find det(A), adj A, and A^{-1} , where

(a)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 1 \end{bmatrix}$$

- 2. Find the inverses of the matrices $\begin{bmatrix} 1 & 0 & -2 \\ -3 & 1 & 4 \\ 2 & -3 & 4 \end{bmatrix}$
- 3. Use the algorithm to find the inverses of $\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$ and $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}$.

Let A be the corresponding $n \times n$ matrix, and let B be its inverse. Guess the form of B, and then prove that AB = I and BA = I.

4. Find
$$A^{-1}$$
, where $A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 1 \end{bmatrix}$

- 5. Let $A = \begin{bmatrix} -2 & -7 & -9 \\ 2 & 5 & 6 \\ 1 & 3 & 4 \end{bmatrix}$. Find the third column of A^{-1} without computing the other columns.
- 6. Evaluate: $\begin{bmatrix} 2 & 6 \\ 4 & 1 \end{bmatrix}$, $\begin{bmatrix} 3 & 5 \\ 4 & -1 \end{bmatrix}$

7. Compute the determinant of each of the following matrices:
$$\begin{vmatrix} 2 & 1 & 1 \\ 0 & 5 & -2 \\ 1 & -3 & 4 \end{vmatrix}$$

7. Compute the determinant of each of the following matrices:
$$\begin{vmatrix} 2 & 1 & 1 \\ 0 & 5 & -2 \\ 1 & -3 & 4 \end{vmatrix}$$
8. Find the determinant of the following matrix:
$$\begin{vmatrix} 2 & -1 & 3 & -4 \\ 2 & 1 & -2 & 1 \\ 3 & 3 & -5 & 4 \\ 5 & 2 & -1 & 4 \end{vmatrix}$$

9. Solve the following systems by determinants:

(a)
$$\begin{cases} 3x + 5y = 8, \\ 4x - 2y = 1. \end{cases}$$
 (b)
$$\begin{cases} 2x - 3y = -1, \\ 4x + 7y = -1. \end{cases}$$
 (c)
$$\begin{cases} ax - 2by = c, \\ 3ax - 5by = 2c. \end{cases}$$
 $(ab \neq 0)$

Homework 9

1. Find det(A), adj A, and A^{-1} , where

(b)
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 3 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

- 2. Find the inverses of the matrices $\begin{bmatrix} 1 & -2 & 1 \\ 4 & -7 & 3 \\ -2 & 6 & -4 \end{bmatrix}$
- 3. Find A^{-1} , where $A = \begin{bmatrix} 1 & 2 & 2 \\ 3 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$
- 4. Let $A = \begin{bmatrix} -25 & -9 & -27 \\ 546 & 180 & 537 \\ 154 & 50 & 149 \end{bmatrix}$. Find the second and third columns of A^{-1} without computing the first column.

5. Evaluate:
$$\begin{vmatrix} 2 & -5 \\ 6 & -1 \end{vmatrix}$$
, $\begin{vmatrix} 3 & 7 \\ 4 & -2 \end{vmatrix}$

- 6. Compute the determinant of the following matrix $\begin{vmatrix} 3 & -2 & -4 \\ 2 & 5 & -1 \\ 0 & 6 & 1 \end{vmatrix}$ 7. Evaluate the following determinants: a) $\begin{vmatrix} 1 & 2 & -1 & 3 & 1 \\ 2 & -1 & 1 & -2 & 3 \\ 3 & 1 & 0 & 2 & -1 \\ 5 & 1 & 2 & -3 & 4 \\ -2 & 3 & -1 & 1 & 3 \end{vmatrix}$

8. Solve the following systems by determinants:

(a)
$$\begin{cases} 3x + 5y = 8, \\ 2x + 3y = 1. \end{cases}$$

(a)
$$\begin{cases} 3x + 5y = 8, \\ 2x + 3y = 1. \end{cases}$$
(b)
$$\begin{cases} 2x + 3y = -1, \\ 4x + 7y = -1. \end{cases}$$

(c)
$$\begin{cases} ax - by = c, \\ 3ax - 4by = 2c. \end{cases} (ab \neq 0)$$