МІНІСТЕРСТВО ОСВІТИ І НАУКИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ «ЛЬВІВСЬКА ПОЛІТЕХНІКА»

Інститут комп'ютерних наук та інформаційних технологій Кафедра систем штучного інтелекту

Лабораторна робота №1 з курсу "Дискретна математика"

> Виконав: ст. гр. КН-110 Холод Ігор

Викладач: Мельникова Н.І.

Тема:

"Моделювання основних логічних операцій" Мета роботи:

Ознайомитись на практиці із основними поняттями математичної логіки, навчитись будувати складні висловлювання за допомогою логічних операцій та знаходити їхні істинностні значення таблицями істинності, використовувати закони алгебри логіки, освоїти методи доведень.

Теоретичні відомості:

1.1. Основні поняття математичної логіки. Логічні операції Просте висловлювання (атомарна формула, атом) — це розповідне речення, про яке можна сказати, що воно *істинне* (Т або 1) або *хибне* (F або 0), але не те й інше водночас.

Складне висловлювання — це висловлювання, побудоване з простих за допомогою *логічних операцій* (*логічних зв'язок*). Найчастіше вживаними операціями ϵ 6: заперечення (читають «не», позначають $\bar{}$, $\bar{}$), кон'юнкція

(читають «і», позначають \land), диз'юнкція (читають «або», позначають \lor), імплікація (читають «якщо ..., то», позначають \Rightarrow), альтернативне «або»

(читають **«додавання за модулем 2»,** позначають ⊕), **еквівалентність** (читають **«тоді і лише тоді»**, позначають ⇔).

Тавтологія — формула, що виконується у всіх інтерпретаціях (тотожно істинна формула). **Протиріччя** — формула, що не виконується у жодній інтерпретації (тотожно хибна формула). Формулу називають **нейтральною**, якщо вона не ε ні тавтологією, ні протиріччям (для неї існу ε

принаймні один набір пропозиційних змінних, на якому вона приймає значення Т, і принаймні один набір, на якому вона приймає значення F). Виконана формула — це формула, що не є протиріччям (інакше кажучи, вона принаймні на одному наборі пропозиційних змінних набуває значення Т).

Варіант № 13

Завдання 1. Формалізувати речення.

Якщо вчитель і учень присутні на уроці то вони опрацьовують тему.

х - вчитель присутній;

у - учень присутній;

z - вони опрацьовують тему.

Тоді:

$$(x \land y) \Rightarrow z$$

Завдання 2. Побудувати таблицю істинності для висловлювань:

$$(x \Leftrightarrow y) \Rightarrow (((y \Leftrightarrow z) \Rightarrow (z \Leftrightarrow x)) \Rightarrow (x \Leftrightarrow z))$$

X	у	Z	A	В	С	D	Е	F
0	0	1	1	0	0	1	0	0
0	1	0	0	0	1	1	1	1
1	0	0	0	1	0	0	1	1
0	1	1	0	1	0	0	1	1
1	1	0	1	0	0	1	0	0
1	0	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1	1
0	0	0	1	1	1	1	1	1

$$A = x \Leftrightarrow y$$
;

$$B = y \Leftrightarrow z$$
;

$$C = z \Leftrightarrow x ;$$

$$D = B \Rightarrow C$$
;

$$E = D \Rightarrow C$$
;

$$F = A \Rightarrow E ;$$

Завдання 3. Побудовою таблиць істинності вияснити чи висловлювання ϵ тавтологіями або суперечностями:

$$\overline{(\overline{(p \land q)} \Leftrightarrow (q \lor r) \land (\overline{p} \lor r)}$$

r	p	q	$\overline{p \wedge q}$	$q \lor r$	A	В	$\overline{p} \lor r$	Z
0	0	1	1	1	1	0	1	0
0	1	0	1	0	0	1	0	0
1	0	0	1	1	1	0	1	0
0	1	1	0	1	0	1	0	0
1	1	0	1	1	1	0	1	0
1	0	1	1	1	1	0	1	0
1	1	1	0	1	0	1	1	1
0	0	0	1	0	0	1	0	0

Запишемо:

$$\begin{split} & \overline{\frac{(p \wedge q)}{(p \wedge q)}} \Leftrightarrow (q \vee r) = A; \\ & \overline{\frac{(p \wedge q)}{(p \wedge q)}} \Leftrightarrow (q \vee r) = B; \\ & \overline{(p \wedge q)} \Leftrightarrow (q \vee r) \wedge (\overline{p} \vee r) = Z; \end{split}$$

Оскільки при одних значеннях атомів висловлювання набуває значення 0 (FALSE), а в деяких інших 1(TRUE), то дане висловлювання не ε ні тавтологією, ні суперечністю.

Завдання 4. За означенням без побудови таблиць істинності та виконання еквівалентних перетворень перевірити, чи ϵ тавтологіями висловлювання:

$$((p \Rightarrow q) \land (\overline{p} \Rightarrow q)) \Rightarrow q$$

Нехай дане висловлювання набуває значення хибності. Тоді

$$((p \Rightarrow q) \land (\overline{p} \Rightarrow q))$$

має набувати значення істинності, а q - хибності.

Однак, або $(p \Rightarrow q)$ або $(\overline{p} \Rightarrow q)$ завжди набувають значення хибності, а отже ця частина твердження не може бути істиною. Тому дане висловлювання зажди набуває значення істини, а, отже, воно є тавтологією.

Завдання 5. Визначити, чи формули еквівалентні:

$$(p \Rightarrow q) \land (p \Rightarrow r) \text{ Ta } (r \land q) \lor (q \Rightarrow r)$$

p	q	r	$p \Rightarrow q$	$p \Rightarrow r$	A	$r \wedge q$	$q \Rightarrow r$	В
0	0	0	1	1	1	0	1	1
1	1	1	1	1	1	1	1	1
0	0	1	1	1	1	0	1	1
0	1	0	1	1	1	0	0	0
1	0	0	0	0	1	0	1	1
1	1	0	1	0	0	0	0	0
1	0	1	0	1	0	0	1	1
0	1	1	1	1	1	1	1	1

Нехай перша формула буде А, друга - В.

Згідно з таблицею істинності, дані формули не ϵ еквівалентними, оскільки при певних значеннях атомів вони набувають різних значень.

Завдання 6. Реалізувати програмно визначення значень таблиці істинності логічних висловлювань при різних інтерпретаціях для формули:

$$(x \Leftrightarrow y) \Rightarrow (((y \Leftrightarrow z) \Rightarrow (z \Leftrightarrow x)) \Rightarrow (x \Leftrightarrow z))$$

Таблицю істинності див. в Завданні 2.

Програмний код:

```
1 #include <stdio.h>
 2 int main()
 3 {
 4 //variables for atoms
 5 int x, y, Z;
 6 //inputing atoms value
7 printf ("Input x, y, z (use SPACE between the numbers!):\n"); 8 scanf ("%i%i%i", &x, &y, &z);
9 //checking for the correct numbers
10 while (((x != 0) && (x != 1)) || ((y != 0) && (y != 1)) || ((z != 0) && (z != 1)))
11 //if numbers are not correct: Error, repeating inputing
12 {
13 printf ("Wrong numbers. Use only 0 or 1.\nRetry: ");
14 scanf ("%i%i%i", &x, &y, &z);
15 }
16 //all the cases when result is FALSE
17 if (((x==0)&&(y==0)&&(z==1)) || ((x==1)&&(y==1)&&(z==0))) printf ("Result: FALSE\n");
18 //every other case is TRUE
19 else printf ("Result: TRUE\n");
20 return 0;
21 }
```

Результати:

а) Результат TRUE:

```
Input x, y, z (use SPACE between the numbers!): 0 0 0
Result: TRUE
```

б) Результат FALSE:

```
Input x, y, z (use SPACE between the numbers!):
1 1 0
Result: FALSE
```

в) Введено невірні числа:

```
Input x, y, z (use SPACE between the numbers!):
1 2 33
Wrong numbers. Use only 0 or 1.
Retry:
```

Висновок: я ознайомився і навчився застосовувати на практиці основні поняття математичної логіки, будувати таблиці істинності, розрізняти

тавтології, суперечності та нейтральні висловлювання, а також програмно реалізовувати таблиці істинності.