Éléments de logique et notions fondamentales de la théorie des ensembles

Logique

Exercice 2.1

Écrire les tables de vérité suivantes :

- a) "non(P) et Q"
- c) "(non(P)) ou (non(Q))"

- b) "non(*P* et *Q*)"
- d) " $P \Longrightarrow Q$ " (i.e. "(non(P)) ou Q")

Correction

P	Q	non(P)	non(Q)	P et Q	(non(P)) et Q	non(P et Q)	(non(P)) ou $(non(Q))$	(non(<i>P</i>)) ou <i>Q</i>
V	V	F	F	V	F	F	F	V
V	F	F	V	F	F	V	V	F
F	V	V	F	F	V	V	V	V
F	F	V	V	F	F	V	V	V

On remarque l'équivalence logique

"non
$$(P \text{ et } Q)$$
" \equiv "(non (P)) ou (non (Q))"

Exercice 2.2

Pour chaque proposition, écrire la contraposée, la négation et la réciproque, et dire si elle est vraie ou fausse (on justifie succinctement) :

- 1. $x > 3 \implies x > 2$
- $2. x > 2 \implies x > 3$
- 3. $x = 3 \implies x^2 = 9$
- 4. $x^2 = 9 \implies x = -3$

Correction

1.
$$x > 3 \implies x > 2$$

Proposition $x \le 3$ ou x > 2

Contraposée $x \le 2 \implies x \le 3$

Négation x > 3 et $x \le 2$

Réciproque $x > 2 \implies x > 3$

proposition vraie

 $2. x > 2 \implies x > 3$

Proposition $x \le 2$ ou x > 3

Contraposée $x \le 3 \implies x \le 2$

Négation x > 2 et $x \le 3$

Réciproque $x > 3 \implies x > 2$

proposition fausse pour x dans [2,3] (c'est la négation).

3.
$$x = 3 \implies x^2 = 9$$

Proposition $x \neq 3$ ou $x^2 = 9$

Contraposée $x^2 \neq 9 \implies x \neq 3$

Négation x = 3 et $x^2 \neq 9$

Réciproque $x^2 = 9 \implies x = 3$

proposition vraie

4. $x^2 = 9 \implies x = -3$

Proposition x = 9 ou x = -3

Contraposée $x \neq -3 \implies x^2 \neq 9$

Négation $x^2 = 9$ et $x \neq -3$

Réciproque $x = -3 \implies x^2 = 9$

proposition fausse (x = 3 est aussi solution)

Exercice 2.3

Parmi les propositions suivantes, indiquer si elles sont vraies ou fausses :

- 1. (2 < 3) et (2 divise 4)
- 2. (2 < 3) et (2 divise 5)
- 3. (2 < 3) ou (2 divise 5)
- 4. (2 < 3) et $\neg (2 \text{ divise } 5)$
- 5. $\neg (2 < 3)$ ou (2 divise 5)

Correction

- 1. Il s'agit de la proposition $P \wedge Q$ où
 - ★ P="2<3"
 - $\star Q = "2 \text{ divise 4"}$

Puisque P et Q sont vraies, la proposition est vraie.

- 2. Il s'agit de la proposition $P \wedge Q$ où
 - ★ P="2<3"
 - $\star Q = "2 \text{ divise 5}"$

Puisque *Q* est fausse, la proposition est fausse.

- 3. Il s'agit de la proposition $P \lor Q$ où
 - $\star P = "2 < 3"$
 - $\star Q = 2 \text{ divise 5}$

Puisque *P* est vraie, la proposition est vraie.

- 4. Il s'agit de la proposition $P \wedge Q$ où
 - **★** P="2<3"
 - $\star Q = "\neg (2 \text{ divise 5})"$

Puisque P et Q sont vraies, la proposition est vraie.

- 5. Il s'agit de la proposition $P \lor Q$ où
 - $\star P = "\neg (2 < 3)"$
 - * Q = "(2 divise 5)"

Puisque *P* et *Q* sont fausses, la proposition est fausse.

Exercice 2.4

Soient les propositions définies par $P(x) = x \le 1$ et $Q(x) = x \le 2$. Donner les valeurs de x dans \mathbb{R} pour les quelles

- 1. " $P \wedge Q$ " est vraie
- 2. "non(P) \land Q" est fausse
- 3. " $P \lor Q$ " est vraie
- 4. "non(P) \vee Q" est fausse

Correction

- 1. Pour aucune valeur de x dans \mathbb{R}
- 2. $x \in]-\infty, 2[$

- 3. $x \in]-\infty;1] \cup [2;+\infty[$
- 4. $x \in]-\infty,1[$

Exercice 2.5

- 1. "4 divise n" est-elle une condition nécessaire, suffisante, nécessaire et suffisante pour que "2 divise n"?
- 2. "3 divise n" est-elle une condition nécessaire, suffisante, nécessaire et suffisante pour que "9 divise n"?

Correction

- 1. "4 divise *n*" est une condition suffisante pour que "2 divise *n*". En effet, si on note *P* l'assertion "4 divise *n*" et *Q* l'assertion "2 divise *n*", on a que
 - ★ l'énonce " $P \implies Q$ " est vrai car si 4 divise n alors il existe p dans \mathbb{N} tel que n = 4p = 2(2p) ce qui signifie que 2 divise n;
 - \star l'énonce " $Q \Longrightarrow P$ " est faux car pour n=2 on a bien que 2 divise n mais 4 ne divise pas n.
- 2. "3 divise n" est une condition nécessaire pour que "9 divise n". En effet, si on note P l'assertion "3 divise n" et Q l'assertion "9 divise n", on a que
 - ★ l'énonce " $P \implies Q$ " est faux car pour n = 6 on a bien que 3 divise n mais 9 ne divise pas n;
 - ★ l'énonce " $Q \implies P$ " est vrai car si 9 divise n alors il existe q dans \mathbb{N} tel que n = 9q = 3(3q) ce qui signifie que 3 divise n.

Exercice 2.6

On considère la proposition \mathcal{I} suivante :

 \mathcal{I} = "Si l'entier naturel n se termine par 5, alors il est divisible par 5."

- 1. Écrire la contraposée de la proposition \mathcal{I} .
- 2. Écrire la négation de la proposition \mathcal{I} .
- 3. Écrire la réciproque de la proposition \mathscr{I} .

Correction

Rappels:

- ★ La proposition \mathscr{I} correspond a l'implication " $P \Longrightarrow Q$ " avec P = "l'entier naturel n se termine par 5" et Q = "l'entier naturel n est divisible par 5". Elle est logiquement équivalent à la proposition " $(\neg P) \lor Q$ ".
- * La contraposée, qui a la même véridicité que " $P \Longrightarrow Q$ ", s'écrit " $(\neg Q) \Longrightarrow (\neg P)$ ".
- ★ La négation, qui est fausse si " $P \implies Q$ " est vraie et qui est vraie si " $P \implies Q$ " est fausse, s'écrit " $\neg [(\neg P) \lor Q]$ ", ce qui est équivalent à écrire " $P \land (\neg Q)$ ".
- \star La réciproque s'écrit " $Q \Longrightarrow P$ ".

Dans notre cas on a:

Implication: "Si l'entier naturel n se termine par 5, alors il est divisible par 5."

Prouvons que cette implication est vraie:

$$P \text{ vraie} \implies \exists m \in \mathbb{N} \mid n = 10m + 5$$

$$\implies \exists m \in \mathbb{N} \mid n = 5(2m + 1)$$

$$\implies Q \text{ vraie}$$

Contraposée: "Si l'entier naturel *n* n'est pas divisible par 5 alors il ne se termine pas par 5."

Elle est vraie car elle a la même véridicité que l'implication " $P \implies Q$ ".

Négation: "L'entier naturel *n* se termine par 5 et n'est pas divisible par 5."

Elle est fausse car l'implication " $P \Longrightarrow Q$ " est vraie.

Réciproque: "Si l'entier naturel *n* est divisible par 5, alors il se termine par 5."

Cette proposition est fausse: l'entier naturel 10 ne se termine pas par 5 mais est divisible par 5.

? Exercice 2.7

Sur le portail d'une maison il y a une pancarte : «Chien qui aboie, ne mord pas. Notre chien n'aboie pas.». Franchiriez-vous cette porte?

Correction

Soit P = "Aboyer" et Q = "Ne pas mordre". On a $P \implies Q$, ce qui équivaut à $\neg Q \implies \neg P$: «Chien qui mord, n'aboie pas.» «Notre chien n'aboie pas» correspond à $\neg P$, ce qui n'implique rien sur la véracité de Q: il n'est pas possible d'établir si le chien mord ou pas.

Exercice 2.8 (Th. CHAMPION)

On considère les propositions suivantes

- 1. "les éléphants portent toujours des pantalons courts";
- 2. "si un animal mange du miel alors il peut jouer de la cornemuse";
- 3. "si un animal est facile à avaler alors il mange du miel";
- 4. "si un animal porte des pantalons courts alors il ne peut pas jouer de la cornemuse".

On suppose que ces propositions sont vraies. Quelqu'un prétend en déduire que les éléphants sont faciles à avaler. Cette conclusion est-elle correcte?

Correction

Soit *A* = "Porter des pantalons courts", *B* = "Manger du miel", *C* = "Pouvoir jouer de la cornemuse", *D* = "Être facile à avaler". Les propositions données se formalisent comme suit :

- 1. ∀ éléphants, *C*;
- 2. $B \Longrightarrow C$ (logiquement équivalente à $\neg C \Longrightarrow \neg B$);
- 3. $D \Longrightarrow B$ (logiquement équivalente à $\neg B \Longrightarrow \neg D$);
- 4. $A \Longrightarrow \neg C$:

et on veut savoir si c'est vraie que "∀ éléphants, D".

Les quatre propositions étant vraies, on a la chaîne d'implications $A \Longrightarrow \neg C \Longrightarrow \neg D$, c'est-à-dire "Si un animal porte des pantalons courts alors il n'est pas facile à avaler". Étant donné que les éléphants portent toujours des pantalons courts, cela signifie " \forall éléphants, $\neg D$ ": la déduction est fausse.

Exercice 2.9 (Th. CHAMPION)

On peut déduire de la loi des gaz parfaits le principe suivant :

"Si le volume du gaz est constant, alors la température du gaz est une fonction croissante de la pression."

- 1. Écrire la contraposée et la négation du principe ci-dessus.
- 2. On étudie un gaz qui a la propriété suivante : "quand son volume est constant et sa température augmente, sa pression diminue." Peut-on dire si c'est un gaz parfait ou non?

Correction

Soit *P* = "le volume du gaz est constant" et *Q* = "la température du gaz est une fonction croissante de la pression".

- 1. La contraposée de « $P \Longrightarrow Q$ » est « $(\neg Q) \Longrightarrow (\neg P)$ ». On obtient donc comme contraposée :
 - "Si la température du gaz n'est pas une fonction croissante de la pression alors le volume du gaz n'est pas constant."

Remarque: cette contraposée est logiquement équivalente au principe donné dans l'énoncé.

La négation de « $P \Longrightarrow Q$ », i.e. de « $(\neg P) \lor Q$ », est « $P \land (\neg Q)$ ». On obtient donc comme négation :

"Le volume du gaz est constant et la température du gaz n'est pas une fonction croissante de la pression."

Remarque : cette négation est vraie lorsque la proposition initiale est fausse et elle est fausse lorsque la proposition initiale est vraie.

2. Cette proposition correspond à « $P \land (\neg Q)$ » donc on peut déduire qu'il n'est pas un gaz parfait.

Exercice 2.10

Soit f une fonction définie sur \mathbb{R} et à valeur dans \mathbb{R} . Écrire avec les quantificateurs les propriétés suivantes :

- 1. f prend toujours la valeur 1
- 2. f prend au moins une fois la valeur 1
- 3. f prend exactement une fois la valeur 1
- 4. f prend ses valeurs entre -2 et 3
- 5. *f* ne prend que des valeurs entiers
- 6. f s'annule au moins une fois sur l'intervalle [-1,1[

Correction

1. $f(x) = 1 \ \forall x \in \mathbb{R}$

- 2. $\exists x \in \mathbb{R} \text{ tel que } f(x) = 1$
- 3. $\exists ! x \in \mathbb{R} \text{ tel que } f(x) = 1$
- 4. $f(x) \in [-2,3] \ \forall x \in \mathbb{R}$
- 5. $f(x) \in \mathbb{Z} \ \forall x \in \mathbb{R}$
- 6. $\exists x \in [-1, 1[\text{ tel que } f(x) = 0]$

Exercice 2.11

Pour chaque énoncé, écrire la négation, puis dire si l'énoncé original est vrai ou faux (en justifiant la réponse à l'aide d'une démonstration).

a) $\forall x \in \mathbb{R} \quad x > 1$

- b) $\forall n \in \mathbb{N}, \exists p \in \mathbb{N}, p > n$
- c) $\exists x \in \mathbb{R} \quad \forall y \in \mathbb{R} \quad x + y > 0$

- d) $\forall x \in \mathbb{R} \quad \exists y \in \mathbb{R} \quad x + y > 0$
- e) $\forall x \in \mathbb{R} \quad \forall y \in \mathbb{R} \quad x + y > 0$

Correction

- 1. $P = "\forall x \in \mathbb{R} \quad x > 1"$
 - $\neg P = "\exists x \in \mathbb{R} \quad x \le 1"$

P est faux. Pour cela on prouve que $\neg P$ est vrai : en effet x=0 est un réel inférieur à 1.

- 2. $P = " \forall n \in \mathbb{N} \quad \exists p \in \mathbb{N} \quad p > n"$
 - $\neg P = "\exists n \in \mathbb{N} \quad \forall p \in \mathbb{N} \quad p \leq n"$

P est vrai : étant donné $n \in \mathbb{N}$, il existe toujours un $p \in \mathbb{N}$ tel que p > n car il suffit de prendre p = n + 1.

- 3. $P = "\exists x \in \mathbb{R} \quad \forall y \in \mathbb{R} \quad x + y > 0"$
 - $\neg P = " \forall x \in \mathbb{R} \quad \exists y \in \mathbb{R} \quad x + y \le 0"$

P est faux. Pour cela on prouve que ¬*P* est vrai : étant donné $x \in \mathbb{R}$, il existe toujours un $y \in \mathbb{R}$ tel que $x + y \le 0$ car il suffit de prendre y = -(x + 1) qui donne $x + y = -1 \le 0$.

- 4. $P = \forall x \in \mathbb{R} \quad \exists y \in \mathbb{R} \quad x + y > 0$ "
 - $\neg P = "\exists x \in \mathbb{R} \quad \forall y \in \mathbb{R} \quad x + y \le 0"$

P est vrai : étant donné $x \in \mathbb{R}$, il existe toujours un $y \in \mathbb{R}$ tel que x + y > 0 car il suffit de prendre y = -x + 1 qui donne x + y = 1 > 0.

- 5. $P = \forall x \in \mathbb{R} \quad \forall y \in \mathbb{R} \quad x + y > 0$
 - $\neg P = "\exists x \in \mathbb{R} \quad \exists y \in \mathbb{R} \quad x + y \le 0"$

P est faux. Pour cela on prouve que $\neg P$ est vrai : x = -1 et y = 0

- 6. $P = "\exists x \in \mathbb{R} \quad \forall y \in \mathbb{R} \quad y^2 > x"$
 - $\neg P = "\forall x \in \mathbb{R} \quad \exists y \in \mathbb{R} \quad y^2 \le x"$

P est vrai : il suffit de choisir x < 0.

Exercice 2.12

On considère $x, y, z \in \mathbb{N}$. Soit la proposition

(P) «si
$$(x = 3)$$
 alors $(y = 5 \text{ et } z = 1)$ ».

Pour chaque affirmation dire si elle est vraie ou fausse :

- a) (P) est équivalente à «si y = 5 et z = 1 alors x = 3».
- b) (*P*) est équivalente à «pour que y = 5 et z = 1 il suffit que x = 3».
- c) (P) est équivalente à «pour que y = 5 et z = 1 il faut que x = 3».
- d) La négation de (*P*) est «x = 3, alors $y \ne 5$ ou $z \ne 1$ ».
- e) La négation de (P) est «si x = 3, alors $y \ne 5$ ou $z \ne 1$ ».

Correction

- a) Fausse
- b) Vraie
- c) Fausse
- d) Fausse
- e) Fausse

Récurrence

Exercice 2.13

Démontrer (par récurrence) les propositions

1)
$$\forall n \in \mathbb{N}^*$$
 $\sum_{i=1}^n i = \frac{n(n+1)}{2}$,

3)
$$\forall n \in \mathbb{N}^*$$
 $\sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6}$,

5)
$$\forall n \in \mathbb{N}^*$$
 $\sum_{i=1}^n i^4 = \frac{n(n+1)(6n^3 + 9n^2 + n - 1)}{30}$,

2)
$$\forall n \in \mathbb{N}^*$$
 $\sum_{i=1}^n (2i+1) = n(n+2),$

4)
$$\forall n \in \mathbb{N}^*$$

$$\sum_{i=1}^n i^3 = \left(\sum_{i=1}^n i\right)^2,$$

Correction

On considère une propriété P_n qui dépend d'un entier naturel n et on souhaite démontrer par récurrence qu'elle est vraie pour tout n à partir d'un certain rang n_0 . Pour cela il faut

- 1. montrer que la propriété P_n est vraie pour un entier particulier n_0 (par exemple 0 ou 1);
- 2. montrer que si elle est vraie pour un certain n, cela implique qu'elle est vraie pour son successeur n+1.
- 1) Pour n=1 la somme se réduit à 1 et elle est égale à $1\frac{2}{2}=1$. On suppose maintenant que le résultat est vrai pour un certain n, c'est-à-dire que $\sum_{i=1}^n i = \frac{n(n+1)}{2}$. Alors $\sum_{i=1}^{n+1} i = \sum_{i=1}^n i + (n+1) = \frac{n(n+1)}{2} + (n+1) = \frac{(n+1)(n+2)}{2}$. Le résultat est donc vrai pour l'entier n+1.
- 2) Pour n=1 la somme se réduit à $2\times 1+1$ et elle est égale à 1(1+2)=2. On suppose maintenant que le résultat est vrai pour un certain n, c'est-à-dire que $\sum_{i=1}^{n}(2i+1)=n(n+2)$. Alors $\sum_{i=1}^{n+1}(2i+1)=\sum_{i=1}^{n}(2i+1)+(2(n+1)+1)=n(n+2)+(2(n+1)+1)=(n+1)(n+3)$. Le résultat est donc vrai pour l'entier n+1.
- 3) Pour n=1 la somme des carrées se réduit à 1^2 et elle est égale à $\frac{1(1+1)(2+1)}{6}=1$. On suppose maintenant que le résultat est vrai pour un certain n, c'est-à-dire que $\sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6}$. Alors $\sum_{i=1}^{n+1} i^2 = \sum_{i=1}^n i^2 + (n+1)^2 = \frac{n(n+1)(2n+1)}{6} + (n+1)^2 = \frac{n(n+1)(2n+1)}{6}$. Le résultat est donc vrai pour l'entier n+1.
- 4) Pour n=1 la somme des cubes se réduit à 1^3 et elle est égale à $\frac{(1\times 2)^2}{4}=1$. On suppose maintenant que le résultat est vrai pour un certain n, c'est-à-dire que $\sum_{i=1}^n i^3 = \left(\frac{n(n+1)}{2}\right)^2$. Alors $\sum_{i=1}^{n+1} i^3 = \sum_{i=1}^n i^3 + (n+1)^3 = \left(\frac{n(n+1)}{2}\right)^2 + (n+1)^3 = \left(\frac{(n+1)(n+2)}{2}\right)^2$. Le résultat est donc vrai pour l'entier n+1.
- 5) Pour n=1 la somme se réduit à 1^4 et elle est égale à $\frac{1(1+1)(6+9+1-1)}{30}=1$. On suppose maintenant que le résultat est vrai pour un certain n, c'est-à-dire que $\sum_{i=1}^{n}i^4=\frac{n(n+1)(6n^3+9n^2+n-1)}{30}$. Alors $\sum_{i=1}^{n+1}i^4=\sum_{i=1}^{n}i^4+(n+1)^4=\frac{n(n+1)(6n^3+9n^2+n-1)}{30}+(n+1)^4=\frac{(n+1)(n+2)(6(n+1)^3+9(n+1)^2+(n+1)-1)}{30}$. Le résultat est donc vrai pour l'entier n+1.

Ensembles

Exercice 2.14

Soient E un ensemble et F et G deux parties de E. Montrer que

- 1) $C_{\scriptscriptstyle E}(C_{\scriptscriptstyle E}F) = F$
- 2) $F \subset G \iff C_E F \supset C_E G$
- 3) $C_F(F \cup G) = (C_F F) \cap (C_F G)$ et $C_F(F \cap G) = (C_F F) \cup (C_F G)$ [Lois de Morgan]

Correction

- 1. $x \in C_E(C_E F) \iff x \notin C_E F \iff x \in F$
- 2. " $F \subset G$ " \iff " $(x \in F) \implies (x \in G)$ " \iff "non $(x \in G) \implies$ non $(x \in F)$ " \iff " $(x \in C_E G) \implies (x \in C_E F)$ " \iff " $(x \in C_E F)$ " \implies " $(x \in C_E F)$
- 3. $x \in C_E(F \cup G) \iff x \notin (F \cup G) \iff x \notin F \text{ ET } x \notin G \iff x \in C_E(F) \text{ ET } x \in C_E(G) \iff x \in \left(C_E F\right) \cap \left(C_E G\right)$ $x \in C_E(F \cap G) \iff x \notin F \text{ OU } x \notin G \iff x \in C_E(F) \text{ OU } x \in C_E(G) \iff x \in \left(C_E F\right) \cup \left(C_E G\right)$

Exercice 2.15

Soit *I* un ensemble et $\{A\}_{i\in I}$ une partie de $\mathscr{P}(E)$. Montrer que

1.
$$C_E(\bigcup_{i\in I} A_i) = \bigcap_{i\in I} C_E A_i$$

2.
$$C_E(\bigcap_{i\in I} A_i) = \bigcup_{i\in I} C_E A_i$$
.

Correction

Soit I un ensemble et $\{A\}_{i \in I}$ une partie de $\mathscr{P}(E)$. Alors

1.
$$x \in C_E \left(\bigcup_{i=1}^{\infty} A_i \right) \iff x \not\in \bigcup_{i=1}^{\infty} A_i \iff \forall i \in \mathbb{N}^* \ x \not\in A_i \iff \forall i \in \mathbb{N}^* \ x \in C_E(A_i) \iff x \in \bigcap_{i=1}^{\infty} C_E(A_i)$$

2.
$$x \in C_E \left(\bigcap_{i=1}^{\infty} A_i \right) \iff x \not\in \bigcap_{i=1}^{\infty} A_i \iff \exists i \in \mathbb{N}^* \text{ tel que } x \not\in A_i \iff \exists i \in \mathbb{N}^* \text{ tel que } x \in C_E(A_i) \iff x \in \bigcup_{i=1}^{\infty} C_E(A_i)$$

Exercice 2.16

Expliciter les sous-ensembles suivants de la droite réelle

$$\bigcup_{x \in [0,1]} \left| \frac{x}{2}, 2x \right|$$

$$\bigcap_{n \in \mathbb{N}^*} \left[-\frac{1}{n}, 2 + \frac{1}{n} \right]$$

$$\bigcap_{x \in [0,1]} \left[\frac{x}{2}, 2x \right]$$

$$\bigcup_{n \in \mathbb{N}^*} \left[1 + \frac{1}{n}, n \right]$$

$$\bigcup_{x \in [0,1]} \left[\frac{\lambda}{2}, 2x \right]$$

$$\bigcap_{n \in \mathbb{N}^*} \left[3, 3 + \frac{1}{n^2} \right]$$

$$\bigcup_{x \in [0,1]} \left| \frac{x}{2}, 2x \right| \qquad \qquad \bigcap_{x \in [0,1]} \left| \frac{x}{2}, 2x \right| \qquad \qquad \bigcup_{x \in [0,1]} \left[\frac{x}{2}, 2x \right]$$

$$\bigcap_{n \in \mathbb{N}^*} \left[-\frac{1}{n}, 2 + \frac{1}{n} \right] \qquad \qquad \bigcup_{n \in \mathbb{N}^*} \left[1 + \frac{1}{n}, n \right] \qquad \qquad \bigcap_{n \in \mathbb{N}^*} \left[3, 3 + \frac{1}{n^2} \right]$$

Correction

$$\bigcup_{x \in [0,1]} \left| \frac{x}{2}, 2x \right| =]0, 2[$$

$$\bigcap_{n \in \mathbb{N}^*} \left[-\frac{1}{n}, 2 + \frac{1}{n} \right] = [0, 2]$$

$$\bigcup_{n\in\mathbb{N}^*} \left[1 + \frac{1}{n}, n\right] = [1, +\infty]$$

$$\bigcup_{x \in [0,1]} \left[\frac{\pi}{2}, 2x \right] = [0,2]$$
$$\bigcap_{n \in \mathbb{N}^*} \left[3, 3 + \frac{1}{n^2} \right] = \{3$$

$$\bigcup_{x \in [0,1]} \left[\frac{x}{2}, 2x \right] = [0,2] \qquad \bigcap_{x \in [0,1]} \left[\frac{x}{2}, 2x \right] = \emptyset \qquad \qquad \bigcup_{x \in [0,1]} \left[\frac{x}{2}, 2x \right] = [0,2] \qquad \bigcap_{x \in [0,1]} \left[\frac{x}{2}, 2x \right] = \emptyset$$

$$\bigcap_{n \in \mathbb{N}^*} \left[-\frac{1}{n}, 2 + \frac{1}{n} \right] = [0,2[\qquad \bigcup_{n \in \mathbb{N}^*} \left[1 + \frac{1}{n}, n \right] = [1, +\infty[\qquad \bigcap_{n \in \mathbb{N}^*} \left[3, 3 + \frac{1}{n^2} \right] = [3] \qquad \bigcap_{n \in \mathbb{N}^*} \left[-2 - \frac{1}{n}, 4 + n^2 \right] = [-2, 5]$$

Avancé

Exercice 2.17

Soient les sous-ensembles de \mathbb{R}

$$A_i = \left[0, 1 + \frac{1}{i}\right],\,$$

$$B_i = \left[0, 1 - \frac{1}{i}\right].$$

avec $i \in \mathbb{N}^*$. Trouver les ensembles

1.
$$C_{\mathbb{R}}(A_i)$$

$$2. \bigcup_{i=1}^{\infty} C_{\mathbb{R}}(A_i)$$

3.
$$\bigcap_{i=1}^{\infty} A_i$$

4.
$$C_{\mathbb{R}}\left(\bigcap_{i=1}^{\infty}A_{i}\right)$$
,

5.
$$\bigcup_{i=1}^{\infty} A_i$$
,

 $1. \ C_{\mathbb{R}}(A_i), \qquad 2. \ \bigcup_{i=1}^{\infty} C_{\mathbb{R}}(A_i), \quad 3. \ \bigcap_{i=1}^{\infty} A_i, \qquad 4. \ C_{\mathbb{R}}\left(\bigcap_{i=1}^{\infty} A_i\right), \quad 5. \ \bigcup_{i=1}^{\infty} A_i, \qquad 6. \ C_{\mathbb{R}}\left(\bigcup_{i=1}^{\infty} A_i\right), \quad 7. \ \bigcap_{i=1}^{\infty} C_{\mathbb{R}}(A_i);$

8.
$$C_{\mathbb{R}}(B_i)$$
,

9.
$$\bigcup_{i=1}^{\infty} C_{\mathbb{R}}(B_i),$$

10.
$$\bigcap_{i=1}^{\infty} B_i$$
,

11.
$$C_{\mathbb{R}}\left(\bigcap_{i=1}^{\infty} B_i\right)$$
, 12.

8.
$$C_{\mathbb{R}}(B_i)$$
, 9. $\bigcup_{i=1}^{\infty} C_{\mathbb{R}}(B_i)$, 10. $\bigcap_{i=1}^{\infty} B_i$, 11. $C_{\mathbb{R}}\left(\bigcap_{i=1}^{\infty} B_i\right)$, 12. $\bigcup_{i=1}^{\infty} B_i$, 13. $C_{\mathbb{R}}\left(\bigcup_{i=1}^{\infty} B_i\right)$, 14. $\bigcap_{i=1}^{\infty} C_{\mathbb{R}}(B_i)$;

Correction

1.
$$C_{\mathbb{R}}(A_i) = \mathbb{R} \setminus A_i =]-\infty, 0[\cup]1 + \frac{1}{i}, +\infty[$$

3.
$$\bigcap_{i=1}^{\infty} A_i = [0,1],$$

5.
$$\bigcup_{i=1}^{\infty} A_i = [0,2],$$

7.
$$\bigcap_{i=1}^{\infty} C_{\mathbb{R}}(A_i) =]-\infty, 0[\cup]2, +\infty[;$$

9.
$$\bigcup_{i=1}^{\infty} C_{\mathbb{R}}(B_i) = \mathbb{R} \setminus \{0\},$$

11.
$$C_{\mathbb{R}}\left(\bigcap_{i=1}^{\infty} B_i\right) = \mathbb{R} \setminus \{0\},$$

13.
$$C_{\mathbb{R}}\left(\bigcup_{i=1}^{\infty} B_i\right) =]-\infty, 0[\cup[1,+\infty[,$$

2.
$$\bigcup_{i=1}^{\infty} C_{\mathbb{R}}(A_i) =]-\infty, 0[\cup]1, +\infty[,$$

4.
$$C_{\mathbb{R}}\left(\bigcap_{i=1}^{\infty} A_i\right) =]-\infty, 0[\cup]1, +\infty[$$

6.
$$C_{\mathbb{R}}\left(\bigcup_{i=1}^{\infty} A_i\right) =]-\infty, 0[\cup]2, +\infty[$$

8.
$$C_{\mathbb{R}}(B_i) =]-\infty, 0[\cup]1-\frac{1}{i}, +\infty[,$$

10.
$$\bigcap_{i=1}^{\infty} B_i = \{0\},\$$

12.
$$\bigcup_{i=1}^{\infty} B_i = [0, 1[,$$

14.
$$\bigcap_{i=1}^{\infty} C_{\mathbb{R}}(B_i) =]-\infty, 0[\cup [1, +\infty[;$$