TP2

Rémi Taniel

13/12/2019

Introduction

On commence tout d'abord par charger les données dans une variable data :

```
data = as.data.frame(readxl::read_xls('debitmetrie.xls'))
```

On propose de regarder à quoi ressemble nos données :

```
head(data)
```

```
## id resul fig fid fpg fpd tpg tpd carg card
## 1 1 2.00 74.9 76.7 91.0 93.6 87.2 91.3 78.0 88.0
## 2 2 2.50 80.3 80.8 82.3 90.3 80.8 89.6 76.9 82.5
## 3 3 1.70 77.8 77.4 79.8 90.0 84.3 83.4 77.3 69.4
## 4 4 3.75 74.8 72.9 78.8 77.1 93.4 85.8 89.3 81.2
## 5 5 2.00 81.2 82.0 80.6 79.4 79.6 91.1 75.4 78.3
## 6 6 4.00 88.8 90.2 93.3 95.1 87.7 88.4 89.8 95.8
```

On remarque que toutes nos variables sont des variables qualitatives, seule la variable id n'est pas à prendre à compte dans notre analyse, pour l'enlever on décide de l'utiliser pour nommer nos lignes :

```
data <- data[,-1]
head(data)</pre>
```

```
## resul fig fid fpg fpd tpg tpd carg card
## 1 2.00 74.9 76.7 91.0 93.6 87.2 91.3 78.0 88.0
## 2 2.50 80.3 80.8 82.3 90.3 80.8 89.6 76.9 82.5
## 3 1.70 77.8 77.4 79.8 90.0 84.3 83.4 77.3 69.4
## 4 3.75 74.8 72.9 78.8 77.1 93.4 85.8 89.3 81.2
## 5 2.00 81.2 82.0 80.6 79.4 79.6 91.1 75.4 78.3
## 6 4.00 88.8 90.2 93.3 95.1 87.7 88.4 89.8 95.8
```

Question 1

On décide de proposer des statistiques univariées pour chacune de nos variables, dans un premier temps, on utilise la fonction suivante :

summary(data)

```
##
        resul
                           fig
                                            fid
                                                             fpg
##
    Min.
            :0.000
                             :45.00
                                              :54.00
                                                                :47.00
                     Min.
                                       Min.
                                                        Min.
    1st Qu.:1.800
                     1st Qu.:74.80
                                       1st Qu.:75.90
                                                        1st Qu.:77.75
    Median :2.500
                     Median :81.50
                                       Median :82.00
                                                        Median :82.00
##
            :2.349
                             :79.57
                                              :80.96
                                                                :80.68
##
    Mean
                     Mean
                                       Mean
                                                        Mean
##
    3rd Qu.:2.900
                     3rd Qu.:87.50
                                       3rd Qu.:88.50
                                                        3rd Qu.:86.40
##
            :4.000
                             :93.90
                                              :98.20
                                                                :93.70
    Max.
                     Max.
                                       Max.
                                                        Max.
##
                                                        NA's
                                                                :2
##
         fpd
                                            tpd
                           tpg
                                                             carg
##
    Min.
            :59.00
                     Min.
                             :53.00
                                       Min.
                                              :61.00
                                                        Min.
                                                                :45.00
##
    1st Qu.:79.20
                     1st Qu.:76.20
                                       1st Qu.:80.53
                                                        1st Qu.:69.00
    Median :83.20
                     Median :83.80
                                       Median :85.90
                                                        Median :75.30
##
                                                                :74.79
##
    Mean
            :83.37
                     Mean
                             :81.21
                                       Mean
                                              :84.19
                                                        Mean
##
    3rd Qu.:90.05
                     3rd Qu.:87.45
                                       3rd Qu.:89.88
                                                        3rd Qu.:82.40
##
    Max.
            :95.30
                             :94.70
                                              :99.80
                                                                :98.90
                     Max.
                                       Max.
                                                        Max.
##
    NA's
            :2
                     NA's
                             :2
                                       NA's
                                              :3
##
         card
##
    Min.
            :50.20
    1st Qu.:71.45
##
##
    Median :79.60
##
    Mean
            :77.60
##
    3rd Qu.:84.00
##
    Max.
            :99.00
    NA's
            :2
```

On remarque que pour plusieurs variables (fpg, fpd, tpg, tpd, card) nous avons des données manquantes, il faudra y faire attention lors de nos prochaines analyses, Pour chacune de nos variables on décide de

```
stats = apply(data, 2, function(col) {
   nb_obs = length(na.omit(col))
   nb_na = length(col[is.na(col)])
   min = min(col, na.rm = TRUE)
   max = max(col, na.rm = TRUE)
   mean = mean(col, na.rm = TRUE)
   sd = sd(col, na.rm = TRUE)

   return(c(nb_obs, nb_na, min, max, mean, sd))
})

row.names(stats) = c('Nb obs.', 'Nb NA', 'Min', 'Max', 'Moyenne', 'Ecart type')
knitr::kable(round(t(stats), 3), format = 'markdown', align = 'r')
```

	Nb obs.	Nb NA	Min	Max	Moyenne	Ecart type
resul	69	0	0.0	4.0	2.349	0.979
fig	69	0	45.0	93.9	79.565	10.015
fid	69	0	54.0	98.2	80.964	9.745
fpg	67	2	47.0	93.7	80.676	8.876
fpd	67	2	59.0	95.3	83.370	8.006
$_{\mathrm{tpg}}$	67	2	53.0	94.7	81.207	8.890
tpd	66	3	61.0	99.8	84.192	8.811
carg	69	0	45.0	98.9	74.794	10.817

	Nb obs.	Nb NA	Min	Max	Moyenne	Ecart type
card	67	2	50.2	99.0	77.604	10.093

```
hist(data$resul, xlab = 'RESUL', ylab = 'Fréquence', main = 'Répartition de la variable RESULT')
```

Répartition de la variable RESULT


```
par(mfrow = c(2,2))
for(i in 2:ncol(data)) {
  hist(data[,i], xlab = names(data)[i], ylab = 'Fréquence', main = paste('Répartition de la variable', :
}
```

Répartition de la variable fig

90 41 50 60 70 80 90 fig

Répartition de la variable fid

Répartition de la variable fpg

Répartition de la variable fpd

Répartition de la variable tpg

Répartition de la variable tpd

Répartition de la variable carg

Répartition de la variable card

Question 2

On décide ensuite de trouver les variables les plus corrélées avec la variable RESUL qui represente le résultat du test cognitif, pour cela nous allons utiliser un nuage de point :

```
library(corrplot)
```

corrplot 0.84 loaded

corrplot::corrplot(cor(data\$resul, data[,-1], use = 'pairwise.complete.obs'))

Les variables les plus corrélées avec la variable RESUL sont les variables :

- tpg représentant le débit dans
- carg représentant le débit dans la carotide gauche
- card représentant le débit dans la carotide droite

Les valeurs précises sont obtenus grâce à la fonction suivante :

```
cor(data$resul, data[,-1], use = 'pairwise.complete.obs')

## fig fid fpg fpd tpg tpd carg
## [1,] 0.4683541 0.3607721 0.4494765 0.3800304 0.6920652 0.4924288 0.7681647
## card
## [1,] 0.6844961
```

Maintenant, on décide de présenter les statistiques bivariées de la variable RESUL par rapport aux autres variables :

```
par(mfrow = c(2,2))
for(i in 2:ncol(data)) {
  plot(data[,1], data[,i], xlab = 'RESULT', ylab = names(data)[i])
}
```


Question 3

On réalise maintenant le modèle de régression linéaire simple entre la variable \mathtt{RESUL} et la variable \mathtt{card} , pour cela, on utilise la fonction \mathtt{lm} :

```
model = lm(resul~card, data = data)
```

Qualité du modèle

On explore les propriétés de notre modèle linéaire en appliquant la fonction summary :

summary(model)

```
##
## Call:
## lm(formula = resul ~ card, data = data)
##
## Residuals:
##
        Min
                   1Q
                        Median
                                      ЗQ
                                              Max
   -1.53579 -0.36168
                       0.03938
                                0.43687
                                          1.49658
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
```

On a un r 2 égal à 46,85%, c'est à dire que la variable card explique 46.85% de l'information de la variable RESUL, notre modèle est donc de bonne qualité, ce qui n'est pas illogique vu que le coefficient de corrélation entre ces 2 variables est de 0.6844961

Validité du modèle

On décide maintenant de vérifier la validité de notre modèle, pour cela on dispose de trois critères :

- La normalité des résidus
- L'indépendance des résidus
- L'homoscédasticité des résidus

Normalité des résidus

La normalité des résidus est vérifié par le test de Shapiro grâce à la fonction :

```
shapiro.test(model$residuals)
```

```
##
## Shapiro-Wilk normality test
##
## data: model$residuals
## W = 0.98626, p-value = 0.6702
```

La p-value étant de 0.6702, elle est donc supérieure à 0.05, donc on ne rejette pas l'hypothèse

On peut également tracer le graphique suivant pour vérifier la normalité des résidus :

```
qqnorm(model$residuals)
qqline(model$residuals, col = 'red')
```

Normal Q-Q Plot

Indépendance des résidus

Pour tester l'indépendance des résidus, on utilise cette fois le test de Durbin-Watson :

```
library(lmtest)
```

```
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
dwtest(model)
```

```
dw ccb c (modc1)
```

```
##
## Durbin-Watson test
##
## data: model
## DW = 1.6466, p-value = 0.06891
## alternative hypothesis: true autocorrelation is greater than 0
```

Tout comme le test précédent, la p-value est supérieure à 0.05 donc on ne rejette pas l'hypothèse

Homoscédasticité des résidus

Afin de vérifier l'homoscédasticité des résidus on utilise le test de Breusch-Pagan :

bptest(model)

```
##
## studentized Breusch-Pagan test
##
## data: model
## BP = 2.3314, df = 1, p-value = 0.1268
```

Comme les 2 précédents tests, la p-value est supérieure à 0.05 donc on ne rejette pas l'hypothèse Ceci est confirmé par le graphique suivant :

```
plot(model$residuals, xlab = "Carg", ylab = "Résidus ", main = "Homoscédasticité de m0")
```

Homoscédasticité de m0

Influence des observations

On décide d'étudier l'influence des observations sur l'estimation du modèle, pour cela on utilise le code suivant :

```
influence = lm.influence(model)
str(influence)
```

```
## List of 4
                 : Named num [1:67] 0.031 0.0185 0.0249 0.0168 0.015 ...
##
   $ hat
    ..- attr(*, "names")= chr [1:67] "1" "2" "3" "4" ...
    $ coefficients: num [1:67, 1:2] 0.10583 0.00508 -0.00807 -0.03282 -0.00244 ...
    ..- attr(*, "dimnames")=List of 2
##
     ....$ : chr [1:67] "1" "2" "3" "4" ...
##
     .. ..$ : chr [1:2] "(Intercept)" "card"
                 : Named num [1:67] 0.696 0.707 0.707 0.69 0.705 ...
##
  $ sigma
    ..- attr(*, "names")= chr [1:67] "1" "2" "3" "4" ...
##
                : Named num [1:67] -0.9761 -0.12 -0.0717 1.2142 -0.348 ...
    ..- attr(*, "names")= chr [1:67] "1" "2" "3" "4" ...
plot(influence$hat, xlab = 'Observations', ylab = 'Leviers', type = 'h')
abline(h = 2/nrow(data), col = 'red')
abline(h = 3/nrow(data), col = 'green')
```


Puis un graphique représentant les distances de Cook :

```
plot(cooks.distance(model), xlab = 'Observations', ylab = 'Distances', type = 'h')
```


Validation croisée

Pour calculer le PRESS, on utilise la fonction suivante :

```
press = sum((model$residuals / (1 - influence$hat))^2)
press
```

[1] 34.05903

On peut également calculer le REMSEP :

```
sqrt((1 / length(model$residuals)) * press)
```

[1] 0.7129823

Autres

Réaliser la même analyse sur la base us_crime.txt afin d'expliquer la variable R (taux de criminalité) a partir de la variable Ed (education)

Question 4