FA 6.4 - 1 Atemzyklus - OA - BIFIE

1. Der Luftstrom beim Ein- und Ausatmen einer Person im Ruhezustand ändert sich in Abhängigkeit von der Zeit nach einer Funktion f. Zum Zeitpunkt t=0 FA 6.4 beginnt ein Atemzyklus. f(t) ist die bewegte Luftmenge in Litern pro Sekunde zum Zeitpunkt t in Sekunden und wird durch die Gleichung

$$f(t) = 0.5 \cdot \sin(0.4 \cdot \pi \cdot t)$$

festgelegt.

(Quelle: Timischl, W. (1995). Biomathematik: Eine Einführung für Biologen und Mediziner. 2. Auflage. Wien u.a.: Springer.)

Berechne die Dauer eines gesamten Atemzyklus!

Periodenlänge: $2 \cdot \pi = 0.4 \cdot \pi \cdot t$, t = 5

Ein Atmenzyklus dauert fünf Sekunden. Im Zeitintervall [0; 2,5] wird eingeatmetet, von 2,5 bis 5 Sekunden wird ausgeatmet.

FA 6.4 - 2 Periodizität - OA - BIFIE

2. Die nachstehende Abbildung zeigt die Graphen f_1, f_2 und f_3 von Funktionen _____/1 der Form $f(x) = \sin(b \cdot x)$.

FA 6.4

$$f_1(x) = \sin(x), f_2(x) = \sin(2x), f_3(x) = \sin(\frac{x}{2})$$

Bestimme die der Funktion entsprechende primitive (kleinste) Periode p!

 $p_1 = 2\pi, p_2 = \pi, p_3 = 4\pi$

FA 6.4 - 3 Periodische Funktion - OA - Matura 2015/16 - Nebentermin 1

3. Gegeben ist die periodische Funktion f mit der Funktionsgleichung $f(x) = \frac{1}{\sin(x)}$ FA 6.4

Gib die kleinste Zahl a>0 (Maßzahl für den Winkel in Radiant) so an, dass für alle $x\in\mathbb{R}$ die Gleichung f(x+a)=f(x) gilt.

 $a = \underline{\hspace{1cm}}$ rad

 $a = 2 \cdot \pi \operatorname{rad}$

Toleranzintervall: [6,2 rad; 6,3 rad]