<u>Dashboard</u> / My courses / <u>Grado</u> / <u>Ingeniería en Petróleos</u> / <u>Cursos 2023</u> / <u>Mecánica Aplicada-Mecanica y Mecanismos-2023</u> / <u>UNIDAD 3: ACOPLAMIENTOS PERMANENTES - GEOMETRIA DE MASAS / <u>Trabajo Práctico: MR GEOMETRÍA DE MASAS 2023</u></u>

| Started on   | Thursday, 7 September 2023, 7:36 PM                                                                         |
|--------------|-------------------------------------------------------------------------------------------------------------|
| State        | Finished                                                                                                    |
| Completed on | Friday, 15 September 2023, 7:28 PM                                                                          |
| Time taken   | 7 days 23 hours                                                                                             |
| Marks        | 24.00/27.00                                                                                                 |
| Grade        | <b>8.89</b> out of 10.00 ( <b>88.89</b> %)                                                                  |
| Feedback     | Cuestionario <b>APROBADO</b> para rendir examen parcial (sujeto a revisión de los pocedimientos de cálculo) |

Una placa de acero delgada mide 4 mm de espesor y se corta y pliega según se muestra. Si la densidad del acero es de 7850 kg/m3.



Question 1

Correct

Mark 1.00 out of 1.00

Calcule el momento de inercia de la pieza con respecto al **eje x**.

| Answer: | 0.003 | ~ | kg.m^2 |
|---------|-------|---|--------|
|---------|-------|---|--------|

Question **2** 

Correct

Mark 1.00 out of 1.00

Calcule el momento de inercia de la pieza con respecto al **eje y**.







Mark 1.00 out of 1.00

Calcule el momento de inercia de la pieza con respecto al eje z.



## Question **4**

Incorrect

Mark 0.00 out of 1.00

Se requiere calcular los momentos de inercia de una pieza respecto a los ejes x' - y' - z' como se muestra en la figura, que tiene un radio de **R= 68 mm**. La pieza está construida de **aluminio**.

En este primer punto, calcular la inercia lx'



Semiesfera

Answer: 277324 **★** kg.mm^2

Ahora, para la misma pieza calcular la inercia ly'

Answer: 277324 ✓ kg.mm^2

Question 6
Incorrect
Mark 0.00 out of 1.00

Answer: 427680 ★ kg.mm^2

Se cuenta con un sistema de barras delgadas, que tienen una masa por unidad de longitud de 6 kg/m.



Question 7

Correct

Mark 1.00 out of 1.00

Calcule el momento de inercia de la pieza con respecto al **eje x**.

| Answer: | 80 | <b>~</b> | kg.m^2 |
|---------|----|----------|--------|
|---------|----|----------|--------|



Question **12** 

Correct

Mark 1.00 out of 1.00

Calcule el producto de inercia  $I_{xz}$  de la pieza.

Information

Se requiere analizar el momento de inercia del volante de hierro fundido mostrado en al figura respecto a su eje de rotación. La densidad del hierro fundido es 7369 kg/m





Se requiere analizar los productos de inercia de la placa rectangular mostrada en al figura respecto a los ejes  $\mathbf{x}$   $\mathbf{y}$   $\mathbf{z}$ . El orificio está situado en el centro de la placa. La densidad del acero es 7870 kg/m<sup>3</sup>



Question **17** 

Correct

Mark 1.00 out of 1.00

Calcule el producto de inercia  $I_{xy}$  de la pieza.

| Answer: | -0.51 | <b>✓</b> | kg.m^2 |
|---------|-------|----------|--------|
|---------|-------|----------|--------|

Question 18

Correct

Mark 1.00 out of 1.00

Calcule el producto de inercia  $\emph{\textbf{I}}_{\emph{yz}}$  de la pieza.

**Answer:** 0.123 **★** kg.m^2

Question **19** 

Correct

Mark 1.00 out of 1.00

Calcule el producto de inercia  $I_{xz}$  de la pieza.

**Answer**: 0.11 **✓** kg.m^2

Information

Se requiere analizar los productos de inercia de la pieza mostrada en al figura respecto a los ejes  $\mathbf{x}$   $\mathbf{y}$   $\mathbf{z}$ . La densidad del material de la pieza es 7850 kg/m<sup>3</sup>



Question **20** 

Correct

Mark 1.00 out of 1.00

Calcule el producto de inercia  $\emph{\textbf{I}}_{\emph{\textbf{xy}}}$  de la pieza.

Question 21
Calcule el producto de inercia I<sub>yz</sub> de la pieza.

Mark 1.00 out of 1.00
Answer:
1.1
✓ kg.m^2

Question 22
Correct
Mark 1.00 out of 1.00
Answer:
0.78
✓ kg.m^2
✓ kg.m^2

Se requiere analizar la inercia de la pieza mostrada en al figura respecto a los ejes perpendiculares a la imagen, que pasan por el baricentro G y por el punto O. La densidad del material de la pieza es 90 lb/pie<sup>3</sup>



Question **23** 

Correct

Mark 1.00 out of 1.00

Calcule el momento de inercia total del conjunto respecto al eje perpendicular a la figura que pasa por el baricentro G.

Answer: 118.5 ✓ slug.pie^2



Question **24** 

Correct

Mark 1.00 out of 1.00

Calcule el momento de inercia total del conjunto respecto al eje perpendicular a la figura que pasa por O.

Answer: 283 ✓ slug.pie^2

Information

Se necesita analizar los momentos de inercia de la manivela mostrada en la figura, en dos ejes diferentes. El material con el que se fabrica tiene una densidad de  $7850 \text{ kg/m}^3$ 





Calcule el momento de inercia total de la manivela respecto al **eje x**.







Calcule el momento de inercia total de la manivela respecto al **eje x'**.





El péndulo de la figura esta compuesto por una **barra** de masa 10 kg y 450 mm de largo, y por una **esfera** en el extremo de masa 15 kg de diámetro 100 mm.



Question **27** 

Correct

Mark 1.00 out of 1.00

Calcule el momento de inercia total del péndulo respecto al eje perpendicular a la figura que pasa por el punto O.

**Answer**: 5.28 **★** kg.m^2

Question **28**Complete
Not graded

Escanear /fotografiar los procedimientos de calculo del los ítems anteriores, incluyendo las tablas y o gráficas utilizadas con las respectivas indicaciones de procesos para extrar los parámetros; y agregarlo como archivo **pdf**.

•

RAYES-TP-GEO-MASAS.pdf

Jump to...

1-ACOPLAMIENTOS TEMPORARIOS: Presentación Teórica-2023 ►

