Table S1: Average traits values among 'ilima leaves at each site. $SD_{abaxial}$ is the stomatal density per mm² on the abaxial (lower) surface; $SD_{adaxial}$ is the stomatal density per mm² on the adaxial (upper) surface; $GCL_{abaxial}$ is the guard cell length in μ m on the abaxial (lower) surface; $GCL_{adaxial}$ is the guard cell length in μ m on the adaxial (upper) surface; Leaf thickness is the length from upper cuticle to lower cuticle in μ m; A is the photosynthetic rate in μ mol CO_2 m⁻² s⁻¹; g_{sw} is the stomatal conductance to water vapor in mol m⁻² s⁻¹.

Site	Island	Habitat	SD _{abaxial}	SD _{adaxial}	$GCL_{abaxial}$	$GCL_{adaxial}$	Leaf thickness	A	$g_{ m sw}$
Kaloko-Honokōhau national historical park	Hawai'i	coastal	412.99	92.31	14.73	20.32	189.60	17.40	0.123
Puakō petroglyph park	Hawaiʻi	coastal	310.12	52.55	13.35	20.94	194.20	17.85	0.134
Kahuku Point	Oʻahu	coastal	420.43	80.80	16.23	22.77	304.24	20.88	0.155
Kaloko beach	Oʻahu	coastal	400.27	109.03	15.69	23.26	399.54	31.28	0.314
Ka'ena Point	Oʻahu	coastal	370.14	120.34	17.61	22.89	295.82	34.77	0.336
Makapu'u beach	Oʻahu	coastal	408.28	23.18	15.99	22.03	249.71	32.87	0.349
Hāloa 'Āina	Hawaiʻi	montane	307.94	7.61	16.49	22.59	149.41	13.07	0.116
Ka'ohe game	Hawaiʻi	montane	270.24	13.07	14.87	21.51	183.72	12.94	0.130
management area									
Koai'a tree sanctuary	Hawaiʻi	montane	318.58	9.55	13.89	22.86	138.89	27.88	0.358
Hawaiʻi loa ridge	Oʻahu	montane	329.25	115.56	17.83	21.76	205.97	21.95	0.215
Mau'umae Ridge	Oʻahu	montane	298.77	138.32	16.53	20.72	162.02	24.60	0.436
Waʻahila ridge	Oʻahu	montane	346.75	150.26	17.76	20.61	193.33	13.96	0.194

Figure S1: See next page.

Figure S1: (Contunited from previous page) Individual $A-g_{\rm sw}$ curves used to estimate AA. For each leaf, one per site, we measured A (y-axis) over a range of $g_{\rm sw}$ (x-axis) on the same leaf with two treatments: 'amphi' (circles, solid line) leaves were untreated; 'pseudohypo' (squares, dashed line) leaves had no conductance through the upper (adaxial) surface. In all coastal (orange) and montane (blue) leaves, we fit generalized additive models and 95% confidence ribbons to estimate AA at a $g_{\rm sw}$ where the curves overlap (vertical black line). In leaves from Kaloko-Honokōhau national historical park and Puakō petroglyph park, we extrapolated sligtly beyond fitted curves because they did not quite overlap. AA, amphistomy advantage; A, photosynthetic rate in μ mol ${\rm CO_2}$ m $^{-2}$ s $^{-1}$; $g_{\rm sw}$, stomatal conductance to water vapor in mol m $^{-2}$ s $^{-1}$.

Figure S2: The photsynthetic rate (left facet) and stomatal conductance to water vapor (right facet) of montane (blue) and coastal (orange) 'ilima leaves. Each point-interval is the median posterior estimate plus 95% confidence interval of trait value for that habitat. Smaller points next to each point-interval are the $g_{\rm smax,ratio}$ of individual plants, one per site. A, photosynthetic rate in μ mol $\rm CO_2$ m⁻² s⁻¹; $g_{\rm sw}$, stomatal conductance to water vapor in mol m⁻² s⁻¹.

Figure S3: The $g_{\rm smax,ratio}$ (y-axis) of montane (blue) and coastal (orange) 'ilima leaves. Each point-interval is the median posterior estimate plus 95% confidence interval of $g_{\rm smax,ratio}$ for that site. Sites are arranged by habitat and ascending $g_{\rm smax,ratio}$ within habitat. Smaller, transparent points next to each point-interval are the $g_{\rm smax,ratio}$ of individual plants. $g_{\rm smax,ratio}$, the ratio of anatomical maximum stomatal conductance to water vapor on the the adaxial surface over the total.