Лабораторная работа № 1.2.1

Определение скорости пули при помощи баллистического маятника

Каменская Елизавета

24 октября 2020 г.

Цель работы

Определить скорость полета пули, применяя законы сохранения и используя баллистические маятники.

Оборудование

Духовое ружье на штативе, осветитель, оптическая система для измерения отклонения маятника, измерительная линейка, пули и весы для их взвешивания, баллистические маятники.

Теоретическая справка

I. Метод баллистического маятника, совершающего поступательное движение

Рис. 1: Схема установки для измерения скорости полета пули

В данном случае ружье необходимо установить таким образом, чтобы скорость пули перед ударом была направлена горизонтально вдоль оси цилиндра. Внешними силами для системы пуля-цилиндр являются сила тяжести, которая не имеет горизонтальной компоненты, и сил натяжения нитей, у которых появляются горизонтальные компоненты при отклонении маятника. Однако если отклонения малы, то и эти компоненты малы. Тем более мал по сравнению с импульсом пули их импульс за время соударения. Поэтому закон сохранения импульса при соударении пули с цилиндром имеет вид

$$mu = (M+m)V. (1)$$

Здесь m - масса пули, M - масса цилиндра, u - скорость пули перед ударом, V - скорость цилиндра и пули после неупругого соударения.

Учитывая, что масса маятника значительно больше массы пули, можно записать

$$u = \frac{M}{m}V\tag{2}$$

Если пренебречь потерями, то вся кинетическая энергия переходит в потенциальную в поле тяжести. Тогда по закону сохранения механической энергии высота h подъема маятника над его начальным положением связана с начальной скоростью маятника V следующим образом:

$$V^2 = 2gh. (3)$$

Высота подъема маятника выражается через угол φ отклонения маятника от вертикали:

$$h = L(1 - \cos\varphi) = 2L\sin\frac{\varphi^2}{2}, \quad \varphi \approx \frac{\Delta x}{L}$$
 (4)

Из (2), (3) и (4) получаем окончательную формулу для определения скорости пули:

$$u = \frac{M}{m} \sqrt{\frac{g}{L}} \Delta x \tag{5}$$

Измерение отклонения маятника Δx производится с помощью оптической системы, изображенной на рис. 1. Затуханием можно пренебречь, если за десять периодов амплитуда колебаний уменьшается меньше, чем в два раза.

II. Метод крутильного баллистического маятника

Рис. 2: Схема установки для измерения скорости полета пули с крутильным баллистическим маятником

Схема эксперимента изображена на рис. 2. Пуля массой m попадает в мишень, укрепленную на стержне aa, который вместе с грузами M и проволокой Π образует

крутильный маятник. Считая удар пули о мишень неупругим, для определения скорости u полета пули непосредственно перед ударом воспользуемся законом сохранения момента импульса в виде

$$mur = I\Omega \tag{6}$$

Здесь r - расстояние от линии полета пули до проволоки Π , I - момент инерции маятника, Ω - его угловая скорость непосредственно после удара.

Пренебрегая потерями, закон сохранения энергии при колебаниях записываем следующим образом:

$$k\frac{\varphi^2}{2} = I\frac{\Omega^2}{2} \tag{7}$$

Здесь k - модуль кручения проволоки Π , а φ - максимальный угол поворота маятника. Из (6) и (7) получаем

$$u = \varphi \frac{\sqrt{kI}}{mr} \tag{8}$$

Здесь d - расстояние от шкалы до проволоки П.

В формулу (8) входит произведение kI, которое можно найти по измерениям периодов колебаний маятника с грузами M и без них. В первом случае:

$$T_1 = 2\pi \sqrt{\frac{I}{k}} \tag{9}$$

Во стором случае:

$$T_2 = 2\pi \sqrt{\frac{I - 2MR^2}{k}} \tag{10}$$

Из (10) и (11) следует

$$\sqrt{kI} = \frac{4\pi M R^2 T_1}{T_1^2 - T_2^2} \tag{11}$$

3десь R - расстояние от центров масс грузов M до проволоки.

Ход работы

Ι

1. Измерим массу пулек:

m_1 , мг	m_2 , мг	$\mid m_3$, мг	m_4 , мг
501	501 511		509

Таблица 1: Массы первых четырех пулек, $\Delta m = 0.001$ г.

- 2. Измерим параметры установки: $L=(221.5\pm0.05)~{\rm cm},\,M=(2925\pm5)~{\rm г}.$
- 3. Соберем оптическую систему и добьемся четкого изображения шкалы на экране.
- 4. Сделаем несколько холостых выстрелов по маятнику, убедимся в том, что он не реагирует на удар воздушной струи из ружья.
- 5. Возбудим колебания: за 10 колебаний амплитуда уменьшилась незначительно, значит потери энергии малы.
- 6. Произведем несколько выстрелов и найдем отклонение маятника ($\delta_{\Delta x} = \frac{0.25}{2} = 0.125$ мм), и определим по формуле (5) скорость полета пули:

	1	2	3	4
m,мг	501	511	505	509
Δx ,мм	10.3	11.0	10.2	11.1
u,м/с	126.63	132.59	124.41	134.32
Δu ,м/с	1.57	1.55	1.56	1.55

Таблица 2: Расчет скорости пули.

7. Погрешность определения скорости пули в каждом выстреле:

$$\delta_u = u\sqrt{(\frac{\delta_M}{M})^2 + (\frac{\delta_m}{m})^2 + \frac{1}{4}(\frac{\delta_L}{L})^2 + (\frac{\delta_x}{x})^2},$$

Занесем результаты в таблицу 2.

8. Найдем среднее значение скорости пули:

$$\overline{u} = 129.49 \text{ m/c}$$

Разброс отдельных результатов около среднего значения определяется по формуле:

$$\sigma_u = \sqrt{\frac{1}{N} \sum_{N}^{i=1} (u_i - \overline{u})^2} = 4.1 \text{ m/c}$$

Систематическая ошибка:

$$\sigma_{ ext{chct}} = rac{1}{N} \sum_{i=1}^N \sigma_i = 1.56 \; ext{m/c}$$

Общая ошибка:

$$\sigma_{
m oбиц} = \sqrt{\sigma_{
m cuct}^2 + \sigma_u^2} = 4.38 \; {
m m/c}$$

Итоговое значение:

$$u = \overline{u} \pm \sigma_{\text{общ}} = (129.49 \pm 4.38) \text{ м/c}, \quad \epsilon = 3\%$$

\mathbf{II}

1. Измерим массу пулек:

m_1 , мг	m_2 , мг	$\mid m_3$, мг	m_4 , мг
499	507	511	501

Таблица 3: Массы вторых четырех пулек, $\Delta m = 0.001$ г.

2. Измерим параметры установки:

$$R = 34 \pm 0.05 \text{ cm}, \quad M = 730.5 \pm 0.5 \text{ f}, \quad r = 22.5 \pm 0.1 \text{ cm}, \quad d = 46.5 \pm 0.5 \text{ cm}.$$

- 3. Соберем оптическую систему и добьемся четкого изображения нити осветителя на шкале.
- 4. Сделаем несколько холостых выстрелов по маятнику, убедимся в том, что он не реагирует на удар воздушной струи из ружья.
- 5. Возбудим колебания: за 10 колебаний амплитуда уменьшилась незначительно, значит потери энергии малы.
- 6. Измеряя время 10-15 полных крутильных колебаний маятника, определим периоды колебаний с грузом и без $(T_1$ и T_2 соответственно), $\Delta T = 0.1$ с:

	$t_{\text{полн}}$, с	T_1 , c
10 периодов	226.2	22.62
15 периодов	336.0	22.40

Таблица 4: Маятник с грузами.

	$t_{\text{полн}}$, с	T_2 , c
10 периодов	186.2	18.62
15 периодов	280.5	18.70

Таблица 5: Маятник без грузов.

7. По формуле (12) найдем величину \sqrt{kI} и оценим ее погрешность:

$$\sqrt{kI} = \frac{4 \cdot \pi \cdot 0.7305 \cdot (0.34)^2 \cdot 20.62}{(20.62)^2 - (12.62)^2} = 0.146 \frac{\text{K} \Gamma \cdot \text{M}^2}{\text{c}}$$

Погрешность вычисляется по формуле

$$\sigma_{kI} = \sqrt{kI} \cdot \sqrt{4 \cdot (\frac{\sigma_{T1}}{T_1})^2 + 4 \cdot (\frac{\sigma_{T2}}{T_2})^2 + (\frac{\sigma_M}{M})^2 + 4 \cdot (\frac{\sigma_R}{R})^2} = 0.002 \frac{\text{K} \Gamma \cdot \text{M}^2}{\text{c}}$$

7

8. Произведем несколько выстрелов и по формулам (8) и (9) определим скорость пули при каждом выстреле:

	1	2	3	4
m , Γ	0.499	0.507	0.511	0.501
x,cm	9.4	9.8	10.0	9.5
u,м/с	131.44	134.87	136.54	132.30
Δu ,м/с	8.99	9.71	10.09	9.34

Таблица 6: Расчет скорости пули.

9. Погрешность определения скорости пули в каждом выстреле рассчитывается по формуле:

$$\sigma_u = \overline{u}\sqrt{(\frac{\sigma_{kI}}{kI})^2 + (\frac{\sigma_d}{d})^2 + (\frac{\sigma_m}{m})^2 + (\frac{\sigma_r}{r})^2 + (\frac{\sigma_x}{x})^2},$$

10. Найдем среднее значение скорости пули:

$$\overline{u} = 133.79 \text{ m/c}$$

Разброс отдельных результатов около среднего значения определяется по формуле:

$$\sigma_u = \sqrt{\frac{1}{N} \sum_{N}^{i=1} (u_i - \overline{u})^2} = 2.0 \text{ m/c}$$

Систематическая ошибка:

$$\sigma_{ ext{cuct}} = rac{1}{N} \sum_{i=1}^N \sigma_i = 9.53 \; ext{m/c}$$

Общая ошибка:

$$\sigma_{
m obm} = \sqrt{\sigma_{
m cuct}^2 + \sigma_u^2} = 9.75 \; {
m m/c}$$

Итоговое значение:

$$u = \overline{u} \pm \sigma_{\text{общ}} = (133.79 \pm 9.75) \text{ м/c}, \quad \epsilon = 7\%$$

Вывод

Вывод: в ходе работы была установлена приблизительная скорость пули. Разброс результатов связан с неточным измерением Δx в первом эксперименте и x во втором в силу неточности оптической установки, а также с ошибками при измерениях прочих расстояний.