

Aufgabennummer: B\_295

Technologieeinsatz: möglich □ erforderlich ⊠

Zur Programmierung eines Weltraum-Computerspiels werden einige geometrische Überlegungen benötigt.

Die nachstehende Abbildung zeigt die Flugbahn s zweier Patrouillenschiffe  $S_1$  und  $S_2$  um eine Raumstation R. Die Flugbahn eines feindlichen Raumschiffs wird durch den Graphen der Funktion f beschrieben. (In der Abbildung sind die Nullstelle  $N_1$  sowie die Extrempunkte  $E_1$  und  $E_2$  des Funktionsgraphen von f eingezeichnet.)



a) – Erklären Sie, warum die Flugbahn s kein Graph einer Funktion ist.

Die Funktion f ist eine Polynomfunktion vierten Grades mit  $f(x) = ax^4 + bx^3 + cx^2 + dx + e$ .

- Stellen Sie ein Gleichungssystem auf, mit dem die Koeffizienten dieser Funktion f ermittelt werden k\u00f6nnen.
- b) Für die Funktion f gilt:

$$f(x) = -\frac{3}{196}x^4 + \frac{9}{98}x^3 - \frac{3}{196}x^2 - \frac{18}{49}x + \frac{135}{49}$$

Während des Spielverlaufs schießt das feindliche Raumschiff am Wendepunkt der Funktion f in der Nähe von  $E_2$  einen Laserstrahl tangential in Richtung  $S_2$ .

- Ermitteln Sie die Funktionsgleichung der Tangente, die den Laserstrahl beschreibt.
- Überprüfen Sie rechnerisch, ob das Raumschiff  $S_{\scriptscriptstyle 2}$  vom Laserstrahl getroffen wird.

- c) Zu einem bestimmten Zeitpunkt hat die Raumstation die Koordinaten R = (1,5|0) und das erste Patrouillenschiff die Koordinaten  $S_1 = (0,5|y>0)$ .
  - Erstellen Sie eine Formel zur Berechnung der fehlenden y-Koordinate des Patrouillenschiffs, wenn der Abstand vom Patrouillenschiff  $S_1$  zur Raumstation R genau d Einheiten beträgt.

*y* = \_\_\_\_\_

– Ermitteln Sie den Winkel  $\alpha$ , den die beiden Vektoren  $\overrightarrow{RS_1} = \begin{pmatrix} -1 \\ -1,5 \end{pmatrix}$  und  $\overrightarrow{RS_2} = \begin{pmatrix} -2,5 \\ 1 \end{pmatrix}$  einschließen.

Hinweis zur Aufgabe:

Lösungen müssen der Problemstellung entsprechen und klar erkennbar sein. Ergebnisse sind mit passenden Maßeinheiten anzugeben.

# Möglicher Lösungsweg

a) Bei der Flugbahn s handelt es sich um keinen Graphen einer Funktion, weil es x-Werte gibt, denen mehr als ein y-Wert zugeordnet wird.

$$f(x) = ax^4 + bx^3 + cx^2 + dx + e$$
  
$$f'(x) = 4ax^3 + 3bx^2 + 2cx + d$$

Nullstelle:  $N_1 = (-3|0)$ 

Extrempunkte:  $E_1 = (-1|3)$   $E_2 = (4|3)$ 

$$f(-3) = 0$$
: I:  $81a - 27b + 9c - 3d + e = 0$ 

$$f(-1) = 3$$
: II:  $a - b + c - d + e = 3$ 

$$f'(-1) = 0$$
: III:  $-4a + 3b - 2c + d = 0$ 

$$f(4) = 3$$
: IV:  $256a + 64b + 16c + 4d + e = 3$ 

$$f'(4) = 0$$
: V: 256 $a + 48b + 8c + d = 0$ 

b) Berechnung des Wendepunktes:

$$f''(x) = -\frac{9}{49}x^2 + \frac{27}{49}x - \frac{3}{98}$$
$$-\frac{9}{49}x^2 + \frac{27}{49}x - \frac{3}{98} = 0$$
$$x_1 = 2,943... \approx 2,94$$

$$(x_2 = 0.056...)$$

$$f(2,943...) = 2,734...$$

$$W = (2,94 | 2,73)$$

Aufstellen der Funktionsgleichung der Tangente:

$$y = kx + d$$

$$k = f'(2,943...) = 0,36820..., d = y - kx = 1,65049...$$

$$y = 0.3682x + 1.6505$$

Einsetzen der Koordinaten von  $S_2$  in die Tangentengleichung:

$$1 = 0.3682 \cdot (-1) + 1.6505$$

$$1 = 1,2822$$

Der Laserstrahl trifft nicht das Raumschiff  $S_2$ .

c) 
$$\overrightarrow{RS}_{1} = \begin{pmatrix} 0.5 \\ y \end{pmatrix} - \begin{pmatrix} 1.5 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ y \end{pmatrix}$$

$$(-1)^{2} + y^{2} = d^{2}$$

$$y = \sqrt{d^{2} - 1}$$

$$\cos(\alpha) = \frac{\begin{pmatrix} -1 \\ -1.5 \end{pmatrix} \cdot \begin{pmatrix} -2.5 \\ 1 \end{pmatrix}}{\sqrt{(-1)^{2} + (-1.5)^{2}} \cdot \sqrt{(-2.5)^{2} + 1^{2}}}$$

$$\cos(\alpha) = \frac{1}{\sqrt{3.25} \cdot \sqrt{7.25}}$$

$$\alpha \approx 78.11^{\circ}$$

# Klassifikation

□ Teil A 🗵 Teil B

#### Wesentlicher Bereich der Inhaltsdimension:

- a) 3 Funktionale Zusammenhänge
- b) 4 Analysis
- c) 2 Algebra und Geometrie

#### Nebeninhaltsdimension:

- a) 4 Analysis
- b) 3 Funktionale Zusammenhänge
- c) -

### Wesentlicher Bereich der Handlungsdimension:

- a) A Modellieren und Transferieren
- b) B Operieren und Technologieeinsatz
- c) A Modellieren und Transferieren

## Nebenhandlungsdimension:

- a) D Argumentieren und Kommunizieren
- b) D Argumentieren und Kommunizieren
- c) B Operieren und Technologieeinsatz

### Schwierigkeitsgrad:

#### Punkteanzahl:

a) mittelb) mittelc) leichta) 3b) 3c) 2

Thema: Informatik

Quellen: -