ain @ d5b22522021-10-11

HDAT9400 Data Management: S, M, L, XL Data

Malcolm Gillies

https://github.com/mbg-unsw/hdat9400

19 October 2021

Lecture outline

About me

- When I studied computer science (1990), a PC had
 - 4MB RAM (1000th today's phones)
 - 200MB Disk (1000th today's phones)
 - 33MHz Processor (100th today's phones)

21 P A A E P 2 2 E 2 2 A 2 1 - 1 A - 1 1

Health data I've worked with

- NPS MedicineWise: GP electronic medical records (MedicineInsight)
- NSW Ministry of Health: hospital, ambulance, births
- CBDRH: Pharmaceutical Benefits Scheme (PBS)
- SAS, R, MS SQL Server, PostgreSQL, SQLite, DuckDB

Why does data size matter?

- Time and space are finite
- We have budgets and deadlines
- Two times bigger can take more than twice the time

What can we do about it?

- Work smarter, not harder
- Relax, people have been thinking about this for a long time!

11-01-10-11-10-11

How big are health data sets?

Data	Records	Gigabytes
NSW congenital conditions (5 years)	10 000	0.001
NSW perinatal (20 years)	1000000	1
NSW Admitted patients (20 years)	100000000	15
AU Pharmaceutical benefits (20 years)	1000000000	400
XXXX Data Lake??		

20-200 variables per record

Examples of different data processing technologies

Method	Max size	Rec per sec	Notes
In memory [R]	XX	XX	Simple!
Disk streaming [SAS]	1TB	XX	Slower
Relational database [PostgreSQL]	1TB	XX	Complicated
Column-store database [DuckDB]	1TB	XX	Specialised
NoSQL [Apache Spark]	????	????	Don't ask

Starting simple: process all the data

- Sometimes you need to look at every record aka *table scan*
 - e.g. What is the total length of stay of all NSW admissions?
- All else being equal, twice the data takes twice the time
- Most important distinction: scan in memory (RAM) or disk?

1 0 1 LOCC 122 1 10 1

Making things more complicated

- Sort all prescriptions by date of prescription
- Analyse all data from hospitals in Sydney
- For each antibiotic prescription, find the corresponding doctor visit
- Build a regression model for risk of low birth weight based on maternal characteristics

Experiment: sorting in SAS

Time (and space) complexity

Asymptotic complexity

Speed of common algorithms

```
Sort O(n \log n)
(Binary) search O(\log n)
Matrix inversion O(n^2 \log n)
XXXX
```

main @ d5h2252 2021-10-11

Speeding up WHERE using an index

XXXX

11 A A A E P 2 2 5 2 8 2 1 - 1 8 - 1 1

Real world example: NSW hospital readmission rates I

- Bureau of Health Information
- Quarterly report on hospital performance
- Mixed models, SAS
- Run time for the analysis: 1 minute

Real world example: NSW hospital readmission rates II

Acute myocardial infarction 30-day risk-standardised readmission ratio, NSW public hospitals, July 2015 – June 2018

Bonus round: what about big data?

■ Parallel processing e.g. Google MapReduce

Thanks

- Sadaf Marashi-Pour (Bureau of Health Information)
- Sandy Sa (NSW Ministry of Health)
- Juan Quiroz Aguilera (CBDRH)
- Oisin Fitzgerald (CBDRH)

Further reading

References