Teori Bahasa dan Automata

Push Down Automata (PDA)

Definisi

- Penerapan CFG dengan cara yang sama seperti kami merancang DFA untuk regular grammar.
- DFA dapat mengingat sejumlah informasi yang terbatas, tetapi PDA dapat mengingat jumlah informasi yang tak terbatas.

Tumpukan (Stack)

- "Finite state machine" + "a stack"
- Tiga komponen PDA :
 - Input tape,
 - Unit kontrol, dan
 - Tumpukan dengan ukuran tak terbatas.

Operasional Tumpukan

- Kepala tumpukan memindai simbol atas tumpukan.
- Push Simbol baru ditumpuk paling atas
- Pop Simbol paling atas dibaca dan dihapus

Konsep Tumpukan

Tuple pada PDA

- Q adalah jumlah state yang terbatas
- ¬ adalah alfabet masukan
- S adalah simbol tumpukan
- δ adalah fungsi transisi: $Q \times (\Sigma \cup \{\epsilon\}) \times S \times Q \times S^*$
- q_0 adalah keadaan awal $(q_0 \in Q)$
- I adalah simbol tumpukan atas awal (I \in S)
- F adalah himpunan status menerima ($F \in Q$)

Transisi pada PDA

Pada status q₁, jika ditemukan string input 'a' dan simbol atas tumpukan adalah 'b', lalu 'b' di pop, dan 'c' di push di atas tumpukan dan pindah ke status q_2 .

Instantaneous Description (ID)

- Deskripsi sesaat dari PDA diwakili oleh triplet (q, w, s) dimana
 - q adalah state
 - w adalah input yang tidak digunakan
 - s adalah isi tumpukan

Turnstile Notation

- Menghubungkan pasangan ID yang mewakili satu atau banyak gerakan PDA.
- Proses transisi dilambangkan dengan simbol pintu putar "⊢".
- Untuk PDA (Q, ∑, S, δ, q₀, I, F) :
 - (p, aw, TB) \vdash (q, w, α b)
- Transisi dari state p ke q, simbol input 'a' digunakan, dan bagian atas tumpukan 'T' diganti dengan string baru 'α'.

Final State Acceptability

- Dalam final state yang dapat diterima, PDA menerima string ketika, setelah membaca seluruh string, PDA berada dalam status akhir.
- Dari initial state, dapat dilakukan gerakan yang berakhir di final state dengan nilai tumpukan apa pun.
- Nilai tumpukan tidak relevan selama kita berada di final state.

Notasi Final State Acceptability

- Untuk PDA (Q, \sum , S, δ , q₀, I, F), bahasa yang diterima oleh himpunan status akhir F adalah -
 - L (PDA) = {w | $(q_0, w, I) \vdash * (q, \epsilon, x), q \in F$ }
- untuk setiap input stack string x

Empty Stack Acceptability

- Di sini PDA menerima string ketika, setelah membaca seluruh string, PDA telah mengosongkan tumpukannya.
- Untuk PDA (Q, \sum , S, δ , q₀, I, F), bahasa yang diterima oleh stack kosong adalah -
 - L (PDA) = {w | $(q_0, w, I) \vdash * (q, \varepsilon, \varepsilon), q \in Q$ }

Contoh 1

• Bangun PDA yang menerima:

```
-L = \{0^n 1^n \mid n \ge 0\}
```

Solusi 1: Graph


```
L = \{0^n \ 1^n \mid n \ge 0\}
L = \{\epsilon, \ 01, \ 0011, \ 000111, \ ...\}
```

Solusi 1 : Penjelasan (1)

- Bahasa ini menerima $L = \{\epsilon, 01, 0011, 000111, ...\}$
- Bilangan 'a' dan 'b' harus sama (n).
- Simbol khusus '\$' ke dalam tumpukan kosong.
- Pada state q_2 , jika ditemukan input 0 dan top Null, push 0 ke stack. Dimungkinkan perulangan sebanyak n. Jika ditemukan input 1 dan top adalah 0, pop 0.

Solusi 1 : Penjelasan (2)

- Pada state q₃, jika ditemukan input 1 dan top adalah 0, pop 0. Dimungkinkan perulangan sebanyak n. Dan jika ditemukan input 1 dan top adalah 0, munculkan elemen top.
- Jika simbol khusus '\$' ditemukan di atas tumpukan, akhirnya masuk ke status menerima q₄.

Contoh 2

• $L = \{ ww^R \mid w = (a+b)^* \}$

Solusi 2 : Graph

PDA for L= $\{ww^R \mid w = (a+b)^*\}$

Solusi 2 : Penjelasan

- Simbol khusus '\$' ke dalam tumpukan kosong.
- Pada state q₂, w sedang dibaca.
- Di state q₃, setiap 0 atau 1 muncul jika sesuai dengan input.
- Jika ada masukan lain yang diberikan, PDA akan mati.
- Ketika mencapai simbol khusus '\$', transisi menuju ke status menerima q_4 .