What is a hierarchy?	$Define\ digital.$
Define analogue.	How many values can be represented by a binary number containing n bits?
Arrange AND, OR and NOT in order of operator precedence.	What is the symbol for AND?
What is the symbol for \mathtt{OR} ?	What is the symbol for ${\tt NOT}$

A hierarchy is a group of objects arranged in tiers of descending magnitude, importance or complexity.

2

1

 2^n

 $An \ entity \ that \ can \ reside \ in \ an \ infinite \ number \ of \ possible \\ states.$

4

3

E.g. $A \cdot B$

NOT, AND, OR

6

5

E.g. \overline{A}

 $E.g. \ \, \begin{matrix} + \\ A+B \end{matrix}$

What is the symbol for XOR	What is De Morgan's theorem commonly used for when designing digital circuits?
What is the symbol for an AND gate? $\cite{1}$	What is the symbol for an OR gate?
What is the symbol for an XOR gate?	What is the symbol for an NOT gate?
What is the symbol for an NAND gate?	What is the symbol for an NOR gate?

 $Converting \ gates \ such \ as \ {\tt AND}, \ {\tt OR}, \ {\tt XOR} \ etc \ into \ {\tt NAND} \ and \ {\tt NOR} \\ since \ they \ are \ cheap \ and \ fast.$

12 11

13

What's the symbol for a n:1 multiplexer?	What is the truth table for binary addition?
How do you negate a binary number?	Convert binary 6 to -6
Which bit is the signed bit when using 2's complement?	How do you subtract two binary numbers?
What is the sum-of-products?	What is the product-of-sums?

What is the truth table for binary addition?

U	ic	u au	wore,		ourun y
	A	B	c_{in}	S	c_{out}
	0	0	0	0	0
	0	0	1	1	0
	0	1	0	1	0
	0	1	1	0	1
	1	0	0	1	0
	1	0	1	0	1
	1	1	0	0	1
	1	1	1	1	1

18

1. Start with 0110 2. Invert the bits - 1001 3. Add 1 - 1010

1. Invert the bits 2. Add 1

20 19

1. Invert the number you're subtracting
2. Add 1 to the inverted number

3. Add the number you're subtracting from with the inverted number.

Basically, add the original number to the 2's complement negative of what you're taking away.

 $The \ left \ most \ bit.$

22 21

When a number of \mathtt{OR} gates are \mathtt{AND} 'ed together.

When a number of AND gates are OR'ed together.

What is the structure of a half adder (in terms of gates)?	What is the truth table for the half adder? $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Define propagation delay.	Fill in the table:
What does active high and active low mean?	What are the advantages of a hierarchy:
What is a combinatorial circuit?	What is a sequential circuit?

j			
A	B	S	c_{out}
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

26 25

Fill in the table:

State	Symbol
Low	0
High	1
Tristate	Z
Unknown	X

Propagation delay is the time taken for the output of a gate to change after it's inputs have changed.

28 27

1. Encapsulation

 $\it 2. \ Reuse \ of \ logic$

3. Only have to define and test things once

If a signal is active high, then it is interpreted as True when the signal is high (e.g. a light is on, or the voltage is positive etc).

If a signal is active low, then it is interpreted as True when the signal is low (e.g. a light is off, or the voltage is negative etc).

30

A circuit where the value of the output depends on the values of the input and the past history of it's inputs. A sequential circuit requires a clock and memory.

A circuit where the value of the output depends only on the values of the input.

	1
$What \ is \ a \ synchronous \ clock?$	What is a clock edge? 3
Define bistable.	What is a flip flop?
$What \ is \ a \ register \ made \ of?$	What is a finite state machine? 38
What do S and R stand for on a S-R flip flop?	9

The point on a clock signal where the signal is going from low to high (rising or positive edge) or high to low (falling or negative edge.)	A synchronous clock is one that is effective system wide; all components in the system adhere to this clock.
34	33
$A\ bistable\ device\ that\ latches\ onto\ a\ state.$	An entity that can be in one of two stable states.
36	35
A digital system that holds the current state of itself and progresses to a new state based on the value of the current state.	$A\ series\ of\ flip\ flops,\ each\ containing\ one\ bit.$
38	37
	S - Set R - Reset