MATHF-3001 — Théorie de la mesure Résolution des TPs

R. Petit

Année académique 2018 - 2019

1 Séance 1

Exercice 1.1. Soient (X, \mathfrak{F}) un espace mesurable et $Y \subset X$. Mq $\mathfrak{F}_Y := \mathfrak{F} \cap Y$ est une σ -algèbre sur Y.

Résolution.

- 1. $\emptyset \in \mathcal{F}$, donc $\emptyset \cap Y = \emptyset \in \mathcal{F}_Y$.
- 2. Soit $F\in \mathfrak{F}.$ $F\cap Y\in \mathfrak{F}_Y$ et donc :

$$Y \setminus (F \cap Y) = Y \setminus F \cup \emptyset = Y \cap F^{C} \in \mathcal{F}_{Y}$$

car $F^{C} \in \mathcal{F}$.

3. Soit $(F_n)_{n\geqslant 0}\in \mathcal{F}^{\mathbb{N}}$. On sait que $\bigcup_{n\geqslant 0}F_n\in \mathcal{F}$. De plus $(F_n\cap Y)_{n\geqslant 0}\in \mathcal{F}_Y^{\mathbb{N}}$. Donc :

$$\bigcup_{n\geqslant 0}(F_n\cap Y)=\bigcup_{n\geqslant 0}F_n\cap Y\in \mathfrak{F}_Y.$$

Exercice 1.2.

1. Soit X un ensemble fini. Décrire la σ-algèbre engendrée par la classe des parties finies de X. Que peut-on dire si X est fini ?

2. Dans X = [0, n], on considère $A = \{0\}$ et $B = \{\{0\}, \{1, 2\}\}$. Décrire $\sigma(A)$ et $\sigma(B)$.

Résolution.

1. Soit $\mathcal{F} = \sigma(\{Y \in \mathcal{P}(X) \text{ s.t. } Y \text{ est fini } \})$. Alors :

$$\mathfrak{F} = \{Y \in \mathfrak{P}(X) \text{ s.t. } Y \text{ est au plus dénombrable ou } Y^\complement \text{ est au plus dénombrable} \}$$

car la famille doit être stable par complémentaire (d'où la définition symétrique par complémentarité) et par union dénombrable (d'où le fait que Y ou Y^{\complement} soit au plus dénombrable). Si X est fini, alors l'ensemble des parties finies de X est exactement $\mathfrak{P}(X)$ qui est une σ -algèbre. Donc $\mathfrak{F}=\sigma(\mathfrak{P}(X))=\mathfrak{P}(X)$.

2. $\sigma(\mathcal{A})$ est la σ -algèbre engendrée par un unique élément donc : $\sigma(\mathcal{A}) = \{\emptyset, \{0\}, \{0\}^\complement, [\![0,n]\!]\}$ où $\{0\}^\complement = [\![1,n]\!]$.

$$\sigma(\mathfrak{B}) = \{\emptyset, \{0\}, \{1,2\}, \{0,1,2\}, [\![3,n]\!]\,, [\![1,n]\!]\,, \{0\} \cup [\![3,n]\!]\,, [\![0,n]\!]\}.$$

Exercice 1.3. *Soient* X, Y *deux ensembles, et* $f: X \rightarrow Y$.

- 1. Si \mathcal{F} est une σ -algèbre sur Y, mq $\mathcal{A} := f^{-1}(\mathcal{F})$ est une σ -algèbre sur X.
- 2. Soit A une σ -algèbre sur X.
 - (a) $Mq \mathcal{F} := \{B \in \mathcal{P}(Y) \text{ s.t. } f^{-1}(B) \in \mathcal{A}\} \text{ est une } \sigma\text{-algèbre sur } Y.$
 - (b) Que peut-on dire de f(A)?

Résolution.

1.

- $\emptyset \in \mathcal{F} \operatorname{donc} \emptyset = f^{-1}(\emptyset) \in f^{-1}(\mathcal{F}).$
- Soit $A \in \mathcal{A}$. Il existe $B \in \mathcal{F}$ s.t. $f^{-1}(B) = A$. $f^{-1}(Y \setminus B) = X \setminus A \in \mathcal{A}$.
- $\text{ Soit } (A_n)_{n\geqslant 0} \in \mathcal{A}^{\mathbb{N}}. \text{ Il existe } (B_n)_{n\geqslant 0} \in \mathcal{F}^{\mathbb{N}} \text{ s.t. } \forall n\geqslant 0: A_n = f^{-1}(B_n). \bigcup_{n\geqslant 0} A_n = \bigcup_{n\geqslant 0} f^{-1}(B_n) = f^{-1}\left(\bigcup_{n\geqslant 0} B_n\right) \in f^{-1}(\mathcal{F}).$

2.

- (a)
- $-\emptyset \in \mathcal{A} \text{ donc } \emptyset \in \mathcal{F}.$
 - Soient $B \in \mathcal{F}$, $A := f^{-1}(B)$. $f^{-1}(B^{\complement}) = f^{-1}(Y) \setminus f^{-1}(B) = f^{-1}(B)^{\complement} \in \mathcal{A}$.
 - Soit $(B_n)_{n\geqslant 0} \in \mathcal{F}^{\mathbb{N}}$. On pose $B := \bigcup_{n\geqslant 0} B_n$.

$$f^{-1}(B)=\bigcup_{n\geqslant 0}f^{-1}(B_n)=\bigcup_{n\geqslant 0}A_n\in\mathcal{A}$$

où
$$\forall n \geqslant 0 : A_n = f^{-1}(B_n) \in \mathcal{A}$$
. Donc $B \in \mathcal{F}$.

(b) f(A) n'est pas nécessairement une σ -algèbre : l'égalité $f(A^{\complement}) = f(A)^{\complement}$ n'est pas vraie en général. Par exemple pour $f: [\pm \varepsilon] \to [0, \varepsilon^2] : x \mapsto x^2$, on a :

$$[0, \varepsilon^2] = f([-\varepsilon, 0]) = f([\pm \varepsilon] \setminus [0, +\varepsilon]) \neq f([\pm \varepsilon]) \setminus f([0, \varepsilon]) = [0, \varepsilon^2] \setminus [0, \varepsilon^2] = \emptyset.$$

Donc rien ne garantit que f(A) est stable par passage au complémentaire.

TODO: Donner un contre-exemple avec des σ -algèbres finies sur de petits ensembles.

Exercice 1.4. Soient $(X, \mathcal{A}), (Y, \mathcal{B})$ espaces mesurables. Soit $\mathcal{F} \subset \mathcal{P}(Y)$. Si $\mathcal{B} = \sigma(\mathcal{F})$, mq $f: X \to Y$ est mesurable ssi $f^{-1}(\mathcal{F}) \subseteq \mathcal{A}$.

 $\underline{\Leftarrow}$: on pose $\mathcal{B}' \coloneqq \{B \in \mathcal{B} \text{ s.t. } f^{-1}(B) \in \mathcal{A}\}$. Par le point précédent, \mathcal{B}' est une σ -algèbre. Par hypothèse : $\mathcal{F} \subset \mathcal{B}'$, et donc $\sigma(\mathcal{F}) \subset \sigma(\mathcal{B}') = \mathcal{B}'$. Or $\mathcal{B} = \sigma(\mathcal{F})$. De plus, puisque $\mathcal{B}' \subset \mathcal{B}$, on a $\mathcal{B} \subset \mathcal{B}' \subset \mathcal{B}$, ce qui implique $\mathcal{B} = \mathcal{B}'$, i.e. :

$$\forall B \in \mathcal{B} : f^{-1}(B) \in \mathcal{A}.$$

Exercice 1.5.

- 1. Mq toute intersection (non-vide) de classes de Dynkin est une classe de Dynkin.
- 2. Mq pour tout $\mathfrak{F} \subset \mathfrak{P}(X)$ il existe une plus petite classe de Dynkin au sens de l'inclusion (notée $\lambda(\mathfrak{F})$).
- 3. Mg si $\mathbb D$ est une classe de Dynkin stable par intersections finies, alors $\mathbb D$ est une σ -algèbre.

4. Mq si $\mathfrak{F} \subset \mathfrak{P}(X)$ est stable par intersections finies, alors $\lambda(\mathfrak{F}) = \sigma(\mathfrak{F})$.

Résolution.

- 1. [Exactement même raisonement que pour les σ -algèbres] Soit $(\mathcal{D}_i)_{i \in I}$ une famille non-vide de classes de Dynkin et soit $\mathfrak{D} \coloneqq \bigcap_{i \in I} \mathfrak{D}_i$.
 - \forall i ∈ I : \emptyset ∈ \mathcal{D}_i donc \emptyset ∈ \mathcal{D} .
 - Soit $D \in \mathcal{D}$. Puisque $\forall i \in I : D \in \mathcal{D}_i$ et que les \mathcal{D}_i sont des classes de Dynkin, on a $\forall i \in I : D^{\complement} \in \mathcal{D}_i$ et donc $D^{\complement} \in \mathcal{D}$.
 - Soit $(D_n)_{n\geqslant 0}\in \mathcal{D}^{\mathbb{N}}$. On sait que $\forall i\in I: \bigsqcup_{n\geqslant 0}D_n\in \mathcal{D}_i$ et donc $\bigsqcup_{n\geqslant 0}D_n\in \mathcal{D}$.
- 2. Comme pour les σ -algèbres, on peut définir :

$$\lambda(\mathfrak{F})\coloneqq\bigcap_{\substack{\mathfrak{D}\ \mathrm{Dynkin}\ \mathfrak{F}\subset\mathfrak{D}}}\mathfrak{D}.$$

Par le point ci-dessus, $\lambda(\mathcal{F})$ est une classe de Dynkin et toute classe de Dynkin $\mathcal{D}' \supset \mathcal{F}$ contient $\lambda(\mathcal{F})$ par définition.

- 3. Soit $\mathbb D$ une classe de Dynkin stable par intersections finies et soit $(D_n)_{n\geqslant 0}\in \mathbb D^{\mathbb N}$. Montrons donc que $\bigcup_{n\geqslant 0}D_n\in\mathcal{D}.$ On pose $B_0\coloneqq D_0$ et pour n>0, on pose $B_n\coloneqq A_n\cap(\bigcap_{j=1}^{n-1}B_j^\complement).$ Par récurrence, on observe que les B_n sont dans $\mathcal D$ par stabilité sous intersections finies. De plus les B_n sont disjoints deux à deux et leur union est égale à l'union des D_n . Donc $\bigcup_{n\geqslant 0}D_n\in \mathfrak{D}.$
- 4. Soit $D \in \lambda(\mathfrak{F})$. On pose $\mathfrak{D}_D \coloneqq \{Q \in \lambda(\mathfrak{F}) \text{ s.t. } Q \cap D \in \lambda(\mathfrak{F})\} \subset \lambda(\mathfrak{F})$. Montrons que \mathfrak{D}_D est une classe de Dynkin.

complément, stabilité par union disjointe.

— Soit $(Q_n)_{n\geqslant 0}\in \mathcal{D}_D^{\mathbb{N}}$ deux à deux disjoints. On a :

$$\bigsqcup_{n\geqslant 0}Q_n\cap D=\bigsqcup_{n\geqslant 0}(\underbrace{Q_n\cap D}_{\in\lambda(\mathfrak{F})})\in\lambda(\mathfrak{F}).$$

On remarque également que si $D \in \mathcal{F} : \mathcal{F} \subset \mathcal{D}_D \subset \lambda(\mathcal{F})$, ce qui implique $\lambda(\mathcal{F}) = \mathcal{D}_D$.

Or par symétrie de l'intersection, pour D, $Q \in \lambda(\mathcal{F})$ on $a : Q \in \mathcal{D}_D \iff D \in \mathcal{D}_Q$. Dès lors on a une équivalence entre les deux assertions suivantes :

- ∀(D, Q) ∈ 𝓕 × λ(𝓕) : Q ∈ 𝔻_D (autrement dit ∀D ∈ 𝓕 : λ(𝓕) = 𝔻_D);
- ∀(D, Q) ∈ 𝓕 × λ(𝓕) : D ∈ 𝔻_O (autrement dit ∀Q ∈ λ(𝓕) : 𝓕 ⊂ 𝔻_O).

On peut alors en déduire que $\forall Q \in \lambda(\mathcal{F}) : \lambda(\mathcal{F}) = \mathcal{D}_Q$. Dès lors, montrer que $\lambda(\mathcal{F})$ est stable par instersections finies revient à montrer que $\forall D, Q \in \lambda(\mathcal{F}) : D \cap Q \in \lambda(\mathcal{F})$, i.e. $D \in \mathcal{D}_Q = \lambda(\mathcal{F})$. On a donc bien la stabilité de $\lambda(\mathcal{F})$ sous intersections finies, on peut donc déduire que $\lambda(\mathcal{F})$ est une σ -algèbre qui contient \mathcal{F} , donc $\sigma(\mathcal{F}) \subset \lambda(\mathcal{F})$. Or toute σ -algèbre est une classe de Dynkin, donc $\lambda(\mathcal{F}) \subset \sigma(\mathcal{F})$, ce qui permet de conclure.

Exercice 2.1. Soient (X, \mathfrak{F}) un espace mesurable et μ une fonction additive sur \mathcal{A} à valeurs dans \mathbb{R}^+ . Mq les conditions suivantes sont équivalentes :

- 1. μ est σ -additive;
- 2. µ est continue à gauche;
- 3. µ est continue à droite.

Donner un exemple de mesure $\mu: \mathcal{A} \to [0, +\infty]$ qui ne satisfait pas le point 3. Que faut-il ajouter comme hypothèse pour ce résultat ?

Résolution.

 $\underline{1.\Rightarrow 2.}$ Soit $(B_n)_{n\geqslant 0}\in \mathcal{A}^{\mathbb{N}}$. On pose $A_0\coloneqq B_0$ et $\forall n>0$: $A_n\coloneqq B_n\setminus B_{n-1}$, ce qui donne (car les A_n sont dans \mathcal{A}):

$$\mu\left(\bigcup_{n\geqslant 0}B_n\right)=\mu\left(\bigsqcup_{n\geqslant 0}A_n\right)=\sum_{n\geqslant 0}\mu(A_n)=\lim_{N\to+\infty}\underbrace{\sum_{n=0}^N\mu(A_n)}_{=\mu(B_N)}=\lim_{N\to+\infty}\mu(B_N).$$

 $\underline{2. \Rightarrow 1.}$ Soit $(A_n)_{n\geqslant 0}\in \mathcal{A}^{\mathbb{N}}$ deux à deux disjoints. On pose $B_0\coloneqq A_0$ et $\forall n>0$: $B_n\coloneqq A_n\cup B_{n-1}$. Les B_n forment une suite croissante dans \mathcal{A} . On a alors :

$$\mu\left(\bigsqcup_{n\geqslant 0}A_n\right)=\mu\left(\bigcup_{n\geqslant 0}B_n\right)=\lim_{n\to +\infty}\mu(B_n)=\lim_{n\to +\infty}\mu\left(\bigsqcup_{j=0}^nA_j\right)=\lim_{n\to +\infty}\sum_{j=0}^n\mu(A_j)=\sum_{n\geqslant 0}\mu(A_n).$$

 $\underline{2. \Rightarrow 3.}$ Soit $(C_n)_{n\geqslant 0}\in \mathcal{A}^{\mathbb{N}}$ une suite décroissante. On a alors que $(C_n^{\mathfrak{G}})_{n\geqslant 0}$ est une suite croissante dans $\mathcal{A}.$ Donc :

$$\mu\left(\bigcup_{n\geqslant 0}C_n^{\mathfrak{C}}\right)=\lim_{n\to+\infty}\mu(C_n^{\mathfrak{C}})=\mu(X)-\lim_{n\to+\infty}\mu(C_n^{\mathfrak{C}})$$

car $\mu(X) < +\infty$. De plus :

$$\mu\left(\bigcup_{n\geqslant 0}C_n^{\mathfrak{C}}\right)=\mu\left(\left(\bigcap_{n\geqslant 0}C_n\right)^{\mathfrak{C}}\right)=\mu(X)-\mu\left(\bigcap_{n\geqslant 0}C_n\right).$$

Par finitude de µ, on conclut :

$$\mu\left(\bigcap_{n\geqslant 0}C_n\right)=\lim_{n\to+\infty}\mu(C_n).$$

 $\underline{3.\Rightarrow 2.}$ Exactement même raisonnement par passage au complémentaire. Si la mesure n'est pas finie, on peut construire une suite $(C_n)_n$ telle que $\forall n\geqslant 0: \mu(C_n)=+\infty$ et $\bigcap_{n\geqslant 0}C_n=\emptyset$. Par exemple, dans l'espace mesuré $(\mathbb{N},\mathcal{P}(\mathbb{N}),\#=|\cdot|): \forall n\geqslant 0: C_n:=\{\mathfrak{m}\in\mathbb{N} \text{ s.t. }\mathfrak{m}>n\}$ est de mesure $+\infty$ et $\bigcap_{n\geqslant 0}C_n=\emptyset$. On a donc :

$$\mu\left(\bigcap_{n\geqslant 0}C_n\right)=\mu(\emptyset)=0\neq +\infty=\lim_{n\to +\infty}+\infty=\lim_{n\to +\infty}\mu(C_n).$$

Il faut donc supposer que pour la suite $(C_n)_n$, il existe $n_0 \in \mathbb{N}$ s.t. $\mu(C_n) \nleq +\infty$ afin d'éviter le cas où $(\mu(C_n))_{n\geqslant 0}$ est infinie pour tous les termes.

Exercice 2.2. Soit X un ensemble non dénombrable et $\mathcal{A} = \{A \in \mathcal{P}(X) \text{ s.t. A ou } A^{\complement} \text{ est dénombrable}\}$. Soit $\mu: \mathcal{A} \to \{0,1\}$ où $\mu(A) = 0 \iff A$ est dénombrable. Mq μ est une mesure sur (X,\mathcal{A}) .

Résolution. A est une σ -algèbre (voir cours).

- $\mu(\emptyset) = 0$ car \emptyset est fini.
- Soit $(A_n)_{n\geqslant 0}\in \mathcal{A}^\mathbb{N}$ deux à deux disjoints. On note $A:=\bigsqcup_{n\geqslant 0}A_n$. On a soit $\mu(A)=0$ ou $\mu(A)=1$, et:

$$\mu(A) = 0 \iff \underbrace{\forall n \geqslant 0 : \mu(A_n) = 0}_{\text{i.e. tous les } A_n \text{ dénombrables}},$$

et donc:

$$\mu(A)=0=\sum_{n\geqslant 0}0=\sum_{n\geqslant 0}\mu(A_n)$$

Exercice 2.3. Soit (X, A, \mathbb{P}) un espace de probabilité. Mq $\mathfrak{T} := \{A \in A \text{ s.t. } \mathbb{P}(A) \in \{0, 1\}\}$ est une σ -algèbre.

Résolution.

- $\mathbb{P}(\emptyset) = 0 \text{ donc } \emptyset \in \mathfrak{T}.$
- Soit $A \in \mathcal{T}$. En particulier $A \in \mathcal{A}$ et $\mathbb{P}(A) \in \{0,1\}$. Puisque \mathbb{P} est une mesure (finie), on a $\mathbb{P}(A^{\complement}) = \mathbb{P}(X) \mathbb{P}(A) = 1 \mathbb{P}(A) \in \{0,1\}$. Donc $A^{\complement} \in \mathcal{T}$.
- Soit $(A_n)_{n\geqslant 0}\in \mathfrak{I}^{\mathbb{N}}.$ On note $A\coloneqq\bigcup_{n\geqslant 0}A_n.$ Mq $\mathbb{P}(A)\in\{0,1\}.$
 - si $\forall n \geqslant 0$: $\mathbb{P}(A_n) = 0$, alors par σ-sous-additivité $0 \leqslant \mathbb{P}(A) \leqslant \sum_{n \geqslant 0} \mathbb{P}(A_n) = 0$.
 - si $\exists n_0 \in \mathbb{N}$ s.t. $\mathbb{P}(A_{n_0}) = 1$, alors par monotonie, puisque $A_{n_0} \subseteq A \subseteq X$:

$$1 = \mathbb{P}(A_{n_0}) \leqslant \mathbb{P}(A) \leqslant \mathbb{P}(X) = 1.$$

Exercice 2.4. Soient (X, \mathcal{A}, μ) un espace mesuré, (Y, \mathcal{B}) un espace mesurable et $g: X \to Y$ une application mesurable. On pose :

$$\nu: \mathcal{B} \to [0, +\infty]: \mathcal{B} \mapsto \mu(\mathfrak{q}^{-1}(\mathcal{B})).$$

Mq ν est une mesure sur (Y, \mathcal{B}) .

<u>Résolution</u>. On sait que $\forall B \in \mathcal{B} : g^{-1}(B) \in \mathcal{A}$ puisque g est mesurable. Donc v est bien définie. Mq v est une mesure.

- $\nu(\emptyset) = \mu(g^{-1}(\emptyset)) = \mu(\emptyset) = 0$ car μ est une mesure.
- Soient $(B_n)_{n\geqslant 0} \in \mathcal{B}^{\mathbb{N}}$ deux à deux disjoints. Mq ν est σ-additive.

$$\nu\left(\bigsqcup_{n\geqslant 0}B_n\right)=\mu\left(g^{-1}\left(\bigsqcup_{n\geqslant 0}B_n\right)\right)=\mu\left(\bigsqcup_{n\geqslant 0}g^{-1}(B_n)\right)=\sum_{n\geqslant 0}\mu(g^{-1}(B_n))=\sum_{n\geqslant 0}\nu(B_n).$$

Exercice 2.5. *Soit* (X, A) *un espace mesurable.*

- 1. Pour $x \in X$, $mq \delta_x$ est une mesure.
- 2. Mq si μ est une mesure sur (X, A) s.t. $\forall A \in A : \mu(A) = 0 \iff x \notin A$ alors $\exists C \ngeq 0$ s.t. $\mu = C\delta_x$.

Résolution.

- 1. Mq δ_x est une mesure.
 - $-\delta_{\mathbf{x}}(\emptyset) = 0 \operatorname{car} \mathbf{x} \notin \emptyset.$
 - Soit $(A_n)_{n\geqslant 0}\in \mathcal{A}^{\mathbb{N}}$ 2 à 2 disjoints. Mq $\delta_x(\bigsqcup_{n\geqslant 0}A_n)=\sum_{n\geqslant 0}\delta_x(A_n)$.
 - Si $\delta_x(\bigsqcup_{n\geq 0} A_n) = 0$, alors $\forall n \geq 0 : x \notin A_n$, i.e. $\forall n \geq 0 : \delta_x(A_n) = 0$.
 - Si $\delta_x(\bigsqcup_{n\geqslant 0}A_n)=1$, alors $\exists n_0 \text{ s.t. } x\in A_{n_0}.$ Et puisque les A_n sont disjoints, $\forall n\neq n_0: x\not\in A_n.$
- 2. Soient B, $C \in \mathcal{A}$ s.t. $\mu(B) \neq 0 \neq \mu(C)$. Alors $\delta_x(B) = 1 = \delta_x(C)$. Mq $\mu(B) = \mu(C)$. B \cap $C \neq \emptyset$ puisque $x \in B \cap C$. On pose $\tilde{C} \coloneqq C \cap B^{\complement}$ et $\tilde{B} \coloneqq C^{\complement} \cap B$. On a alors que B et \tilde{C} sont disjoints (C et \tilde{B} également). De plus, $x \notin \tilde{B}$ et $x \notin \tilde{C}$, et donc $\mu(\tilde{B}) = \mu(\tilde{C}) = 0$. On a donc :

$$\mu(C) = \mu(C) + \mu(\tilde{B}) = \mu(C \sqcup \tilde{B}) = \mu(B \cup C) = \mu(B \sqcup \tilde{C}) = \mu(B) + \mu(\tilde{C}) = \mu(B).$$

On a donc $\mu : \mathcal{A} \to \{0, C\}$ où $\mu(A) \iff \delta_{\kappa}(A) = 1$.

Exercice 2.6. Soit (X, A) un espace mesurable. Mq la mesure de comptage est une mesure.

Résolution.

- $-- |\emptyset| = 0.$
- La σ-additivité est triviale : $\left| \bigsqcup_{n \geqslant 0} A_n \right| = \sum_{n \geqslant 0} |A|_n$.

Exercice 2.7. Soit X un ensemble fini non-vide. Mq $\mu = \frac{|\cdot|}{|X|}$ est une mesure de proba sur $(X, \mathcal{P}(X))$.

Résolution.

- $-\mu(\emptyset) = 0/|X| = 0.$
- Soient $(A_n)_{n\geqslant 0}\in \mathcal{P}(X)^{\mathbb{N}}$ 2 à 2 disjoints.

$$\mu(\bigsqcup_{n\geqslant 0}A_n)=\frac{\sum_{n\geqslant 0}|A_n|}{|X|}=\sum_{n\geqslant 0}\frac{|A_n|}{|X|}.$$

Note: si (X, \mathcal{A}, μ) est un espace mesuré, alors $\forall \alpha > 0 : \alpha \mu : \mathcal{A} \to [0, +\infty] : A \mapsto \alpha \cdot \mu(A)$ est une mesure sur (X, \mathcal{A}) . Donc l'exercice peut être simplement résolu par le fait que μ est la mesure de comptage normalisée par $|X| \in \mathbb{R}^{+*}$

Exercice 2.8. *Soit* (X, A) *un espace de mesure.*

- 1. Soit $(\mu_n)_{n\geq 0}$ une suite croissante de mesures sur (X,A). Mq $\mu:=\lim_{n\to+\infty}\mu_n$ est une mesure.
- 2. Soit $(\mu_n)_{n\geqslant 0}$ une suite de mesures. Est-ce que $\mu\coloneqq\sum_{n\geqslant 0}\mu_n$ est une mesure?
- 3. Pour $n \ge 0$, on définit la mesure μ_n sur $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$ par $\mu_n(A) = |A \cap [n, +\infty)|$.
 - Mq $\forall n \geqslant 0$: μ_n est bien une mesure et que la suite $(\mu_n)_n$ est décroissante.
 - Est-ce que $\mu = \lim_{n \to +\infty} \mu_n$ est une mesure sur $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$? Caractériser entièrement μ .

Résolution.

- 1. On note que puisque la suite des μ_n est croissante, pour tout $A \in \mathcal{A}$, $\mu(A)$ est bien définie car soit la suite $(\mu_n(A))_n$ converge vers une valeur réelle, soit elle diverge vers $+\infty$.
 - $\mu(\emptyset) = \lim_{n \to +\infty} \mu_n(\emptyset) = 0.$
 - Soient $(A_n)_{n\geqslant 0}$ 2 à 2 disjoints.

$$\begin{split} \mu\left(\bigsqcup_{n\geqslant 0}A_n\right) &= \lim_{k\to +\infty}\mu_k\left(\bigsqcup_{n\geqslant 0}A_n\right) = \lim_{k\to +\infty}\lim_{N\to +\infty}\sum_{n=0}^N\mu_k(A_n)\\ &= \lim_{N\to +\infty}\sum_{n=0}^N\lim_{k\to +\infty}\mu_k(A_n) = \sum_{n\geqslant 0}\lim_{k\to +\infty}\mu_k(A_n) = \sum_{n\geqslant 0}\mu(A_n). \end{split}$$

2

- $--\mu(\emptyset) = \sum_{n\geqslant 0} \mu_n(\emptyset) = 0.$
- Soient $(A_n)_{n\geqslant 0}\in \mathcal{A}^{\mathbb{N}}$ 2 à 2 disjoints. On note $A\coloneqq \bigsqcup_{n\geqslant 0}A_n$. Par non-négativité des $(\mu_k(A_n))_{n,k}$, on a que les sommes sur k et n commutent, i.e. :

$$\sum_{k\geqslant 0}\sum_{n\geqslant 0}\mu_k(A_n)=\sum_{n\geqslant 0}\sum_{k\geqslant 0}\mu_k(A_n)\text{,}$$

et donc $\mu(A) = \sum_{n \geqslant 0} \mu(A_n)$.

On en déduit donc que $\mu = \sum_{k \geqslant 0} \mu_k$ est une mesure sur (X, \mathcal{A}) . De plus, puisque $\alpha \cdot \mu$ (pour $\alpha > 0$, μ mesure sur (X, \mathcal{A})) est également une mesure sur (X, \mathcal{A}) , on a que pour $(\alpha_n)_{n \geqslant 0} \in (\mathbb{R}^{+*})^{\mathbb{N}} : \mu = \sum_{n \geqslant 0} \alpha_n \mu_n$ est une mesure également.

3.

- Soit $n \in \mathbb{N}$.
 - $\mu_n(\emptyset) = |\emptyset| = 0.$
 - La σ-additivité est triviale par la σ-additivité de la mesure de comptage.

De plus, pour
$$A \in \mathcal{P}(\mathbb{N})$$
 et $n \in \mathbb{N}$: $\mu_n(A) = \Big|\underbrace{A \cap [n, +\infty)}_{\supseteq A \cap [n+1, +\infty)}\Big| \geqslant \mu_{n+1}(A)$.

- Soit $A \in \mathcal{P}(\mathbb{N})$. Deux cas sont à distinguer :
 - (a) Soit A est fini, en quel cas max A est fini et donc $\forall n > \max A : \mu_n(A) = 0$, et donc $\mu(A) = 0$.
 - (b) Soit A est infini, et donc dénombrable. On a alors $\forall n \geqslant 0: A \cap [n, +\infty) \neq \emptyset$ car si il existe un $n \geqslant 0$ tel que $A \cap [n, +\infty) = \emptyset$, alors $A \subset [0, n) \cap \mathbb{N}$, et donc A est fini. Dès lors $\mu(A) > 0$. De plus: $\forall n \geqslant 0: \mu_n(A) = +\infty$. Car si $\exists n \geqslant 0$ s.t. $\mu_n(A) \lneq +\infty$, alors $\mu_n(A) = |A \cap [n, +\infty)| = k \in \mathbb{N}$ et donc $A \cap [n, +\infty) = \{m_1, \dots, m_k\}$. Dans ce cas: $\mu_{m_k+1}(A) = 0$, ce qui est une contradiction.

On en déduit que si A est infini (dénombrable), alors $\mu(A) = +\infty$.

 μ vaut donc 0 sur les parties finies de $\mathbb N$ et $+\infty$ sur les parties dénombrables. μ n'est donc pas une mesure car : $\mu(\mathbb N) = \sum_{n \in \mathbb N} \mu(\{n\}) = \sum_{n \geq 0} 0 = 0 \neq +\infty$.

Exercice 2.9. Soient (X, \mathcal{A}, μ) un espace mesuré et $(A_n)_{n\geqslant 0}\in \mathcal{A}^{\mathbb{N}}$.

1. *Mq*:

$$\mu\left(\liminf_{n\to+\infty}A_n\right)\leqslant \liminf_{n\to+\infty}\mu(A_n).$$

2. $Si \exists n_0 \in \mathbb{N} \text{ s.t. } \mu\left(\bigcup_{n \geqslant n_0} A_n\right) \leqslant +\infty, mq$:

$$\mu\left(\limsup_{n\to+\infty}A_n\right)\geqslant \limsup_{n\to+\infty}\mu(A_n).$$

Résolution.

1. Pour $n \ge 0$: on pose $B_n := \bigcap_{m \ge n} A_m$. La suite $(B_n)_{n \ge 0}$ est trivialement croissante. On a donc:

$$\mu\left(\liminf_{n\to+\infty}A_n\right)=\mu\left(\bigcup_{n\geqslant0}B_n\right)=\lim_{n\to+\infty}\mu(B_n),$$

et:

$$\liminf_{n\to +\infty}\mu(A_n)=\lim_{n\to +\infty}\inf_{k\geqslant n}\mu(A_k).$$

De plus : $\mu(B_n) = \mu\left(\bigcap_{k\geqslant n}A_k\right) \leqslant \mu(A_m)$ pour $m\geqslant n$ par monotonie de μ , et donc en particulier $\mu(B_n)\leqslant\inf_{k\geqslant n}\mu(A_k)$. Dès lors la suite $\mu(B_n)_n$ est dominée par $(\inf_{k\geqslant n}\mu(A_k))_n$. Dès lors :

$$\mu\left(\liminf_{n\to+\infty}A_n\right)=\lim_{n\to+\infty}\mu(B_n)\leqslant \lim_{n\to+\infty}\inf_{k\geqslant n}\mu(A_k)=\liminf_{n\to+\infty}\mu(A_n).$$

2. On pose $C_n := \bigcup_{m \geqslant n} A_m$. On sait qu'il existe $n_0 \in \mathbb{N}$ s.t. $\mu\left(C_{n_0}\right) \lneq +\infty$. Les C_n forment une suite décroissante. On a donc :

$$\mu\left(\limsup_{n\to+\infty}A_n\right)=\mu\left(\bigcap_{n\geqslant 0}C_n\right)=\lim_{n\to+\infty}\mu(C_n).$$

De plus:

$$\limsup_{n \to +\infty} \mu(A_n) = \lim_{n \to +\infty} \sup_{k \to n} \mu(A_k).$$

Or $\forall k \geqslant n : C_n \supseteq A_k$ et donc $\forall k \geqslant n : \mu(C_n) \geqslant \mu(A_k)$, et en prticulier $\mu(C_n) \geqslant \sup_{k \geqslant n} \mu(A_k)$. Dès lors on conclut :

$$\mu\left(\limsup_{n\to+\infty}A_n\right)=\lim_{n\to+\infty}\mu(C_n)\geqslant \lim_{n\to+\infty}\sup_{k\geqslant n}\mu(A_k)=\limsup_{n\to+\infty}\mu(A_n).$$

Exercice 2.10. Soit (X,\mathcal{A}) un espace mesurable. Soient μ,ν deux mesures finies sur (X,\mathcal{A}) telles que $\forall A \in \mathcal{A}: \mu(A) \leqslant \frac{1}{2} \Rightarrow \mu(A) = \nu(A).$

- 1. $Mq \mu = \nu$
- 2. Mq le résultat est faux si l'inégalité est changée en inégalité stricte.

Résolution.

1. Soit $B \in \mathcal{A}$ s.t. $\mu(B) \ngeq \frac{1}{2}$. Alors $\mu(B^\complement) = \mu(X) - \mu(B) = 1 - \mu(B) < \frac{1}{2}$. Dès lors $\mu(B^\complement) = \nu(B^\complement)$ par hypothèse, et on en déduit $\mu(B) = 1 - \mu(B^\complement) = 1 - \nu(B^\complement) = \nu(B)$, et donc $\mu = \nu$.

2. Si l'inégalité devient stricte, on peut choisir, sur l'espace mesurable $(\{0,1\}, \mathcal{P}(\{0,1\}))$, μ la mesure d'une Bernoulli de proba $\frac{1}{2}$ et ν la mesure d'une Bernoulli de proba $\frac{1}{3}$. On a alors :

A	μ(A)	$\nu(A)$
Ø	0	0
{0} {1} {0,1}	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	$\frac{2}{3}$ $\frac{1}{3}$ 1

Puisque $\mathcal{B} := \{A \in \mathcal{P}(\{0,1\}) \text{ s.t. } \mu(A) \nleq \frac{1}{2}\} = \{\emptyset\}, \text{ on a bien } \mu = \nu \text{ sur } \mathcal{B}, \text{ mais } \mu \neq \nu.$

Exercice 2.11. Soient (X, A) un espace mesurable et une partie stable par intersections finies $\mathfrak{F} \subset \mathfrak{P}(X)$ s.t. $\sigma(\mathfrak{F}) =$ A. Si μ et ν sont deux mesures finies sur (X, A) telles que $\nu(X) = \mu(X)$ et $\mu = \nu$ sur \mathfrak{F} . Mq $\mu = \nu$.

Résolution. On pose $\mathcal{D} := \{A \in \mathcal{A} \text{ s.t. } \mu(A) = \nu(A)\}$. Mq \mathcal{D} est une classe de Dynkin :

- $--\emptyset \in \mathcal{D} \stackrel{\cdot}{\operatorname{car}} \mu(\emptyset) = 0 = \nu(\emptyset).$
- $\text{Soit } A \in \mathcal{D}. \ \mu(A^{\complement}) = \mu(X) \mu(A) = \nu(X) \nu(A) = \nu(A^{\complement}) \text{ et donc } A^{\complement} \in \mathcal{D}.$ $\text{Soient } (A_n)_{n \geqslant 0} \in \mathcal{A}^{\mathbb{N}} \ 2 \ \text{a} \ 2 \ \text{disjoints et } A \coloneqq \bigsqcup_{n \geqslant 0} A_n.$

$$\mu(A) = \sum_{n\geqslant 0} \mu(A_n) = \sum_{n\geqslant 0} \nu(A_n) = \nu(A).$$

On en conclut $A \in \mathcal{D}$.

De plus par hypothèse $\mathfrak{F}\subset \mathfrak{D}$, et donc par l'exercice 1.5 on a $\mathfrak{D}=\sigma(\mathfrak{F})=\mathcal{A}$. Dès lors $\mu=\nu$ sur \mathcal{A} , et donc

Exercice 3.1. *Soient* \mathbb{B} *la tribu borélienne sur* \mathbb{R} *et* \mathcal{L} *la mesure de Lesbesgue sur* \mathbb{B} .

- 1. $Mq \ \forall x \in \mathbb{R} : \{x\} \in \mathbb{B}$.
- 2. $Mq \mathbb{Q} \in \mathbb{B} \ et \mathcal{L}(\mathbb{Q}) = 0.$
- 3. Mq une union non-dénombrable d'ensembles négligeables n'est pas nécessairement négligeable.
- 4. Mq $N \in \mathbb{B}$ est un ensemble négligeable ssi $\forall \epsilon > 0 : \exists U_{\epsilon} \text{ s.t. } N \subseteq U_{\epsilon} \text{ et } \mathcal{L}(U_{\epsilon}) < \epsilon.$

Résolution.

- 1. $\{x\} = [x, x]$ est fermé dans \mathbb{R} , et $\mathcal{L}(\{x\}) = x x = 0$.
- 2. $\mathcal{L}(\mathbb{Q}) = \mathcal{L}(\bigsqcup_{q \in \mathbb{Q}} \{q\}) = \sum_{q \in \mathbb{Q}} \mathcal{L}(\{q\}) = 0.$
- 3. $\mathcal{L}(\mathbb{R}) = +\infty$, or : $\bigsqcup_{x \in \mathbb{R}} \{x\}$.
- 4. \leq : par monotonie, si $\forall \epsilon > 0$: $N \subseteq U_{\epsilon}$, alors $\mathcal{L}(N) \leqslant \mathcal{L}(U_{\epsilon}) < \epsilon$. On en déduit $\mathcal{L}(N) = 0$, et donc N est négligeable.

 $\underline{\Rightarrow}$: Soit $N \in \mathbb{B}$ s.t. $\mathcal{L}(N) = 0$. Pour $\epsilon > 0$: mq $\exists U_{\epsilon}$ ouvert s.t. $\mathcal{L}(U_{\epsilon}) < \epsilon$ et $N \subset U_{\epsilon}$. Rappelons la mesure extérieure de Lebesgue :

$$\mathcal{L}^*(A) \coloneqq \inf_{(\mathrm{I}_n)_{n\geqslant 0} \in \mathfrak{C}_A} \sum_{n\geqslant 0} \text{Vol}(\mathrm{I}_n).$$

Soit $(I_n)_{n\geqslant 0}\in \mathcal{C}_N$. Les I_n sont compacts. On peut prendre une nouvelle suite $(J_n)_{n\geqslant 0}$ s.t. $\forall n\geqslant 0$: $Vol(\overline{J_n})< Vol(I_n)+\frac{\epsilon}{2^{n+1}}$ et $I_n\subseteq J_n$. Par σ -sous-additivité (parce que les J_n ne sont pas forcément mutuellement disjoints), pour $J=\bigcup_{n\geqslant 0}J_n\supseteq N$:

$$\mathcal{L}^*(N) \leqslant \mathcal{L}^*(\bigcup_{n\geqslant 0} J_n) \leqslant \sum_{n\geqslant 0} \mathcal{L}^*(J_n).$$

Or, pour $n \ge 0$: $\mathcal{L}^*(J_n) \le \text{Vol}(I_n) + \frac{\varepsilon}{2^{n+1}}$. Finalement :

$$\mathcal{L}^*(J) < \sum_{n \geqslant 0} \left(\operatorname{Vol}(I_n) + \frac{\epsilon}{2^{n+1}} \right) = 0 + \epsilon.$$

<u>Note</u>: si on définit un ensemble négligeable comme étant inclus dans un ensemble de mesure nulle (et pas comme étant un ensemble de mesure nulle, comme considéré ci-dessus), l'implication \Leftarrow est triviale.

Exercice 3.2. Montrer qu'une droite E dans \mathbb{R}^2 est de mesure nulle pour \mathcal{L} .

 $\underline{\textit{R\'esolution}}. \ \grave{A} \ x = (x_1, x_2), y = (y_1, y_2) \in \mathbb{R}^2 \ \text{fix\'es, } E = \{x + ty\}_{t \in \mathbb{R}}. \ \text{Pour } \alpha < \beta \in \mathbb{R}, \ \text{on d\'efinit } E_\alpha^\beta \coloneqq \{x + ty\}_{t \in [\alpha, \beta]}. \ \text{Mq} \ \mathcal{L}(E_\alpha^\beta) = 0.$

Si $y=(0,\lambda)$ (ou si $y=(\lambda,0)$ par symétrie), on peut recouvrir E_{α}^{β} par l'intervalle compact $[x_1\pm\epsilon]\times[x_2+\alpha\lambda,x_2+\beta\lambda]$ de volume arbitrairement petit (pour ϵ aussi petit que nécessaire), et donc $\mathcal{L}(E_{\alpha}^{\beta})=0$.

Sinon, soit $(I_n)_{n\geqslant 0}$ un recouvrement de E_α^β par des intervalles compacts. Pour $n\geqslant 0$: $I_n=[a_n^1,b_n^1]\times [a_n^2,b_n^2]$ et $Vol(I_n)=(b_n^1-a_n^1)(b_n^2-a_n^2)$.

1. Par exemple en prenant l'intervalle ouvert $J_n=(\alpha-\epsilon/2^{n+2},b+\epsilon/2^{n+2})$ pour $I_n=[\alpha,b].$

Montrons qu'il existe $(J_n)_{n\geqslant 0}$ s.t. $\sum_{n\geqslant 0} \operatorname{Vol}(J_n) < \frac{1}{2} \sum_{n\geqslant 0} \operatorname{Vol}(I_n)$.

Soit $n \ge 0$. $I_n = [a_n^1, b_n^1] \times [a_n^2, b_n^2]$ où les 4 coins sont $C_1 = (a_n^1, a_n^2)$, $C_2 = (a_n^1, b_n^2)$, $C_3 = (b_n^1, a_n^2)$, $C_4 = (a_n^1, a_n^2)$, $C_5 = (a_n^1, a_n^2)$, $C_7 = (a_n^1, a_n^2)$, $C_8 = (a_n^1, a_n^2)$, $C_$ (b_n^1, b_n^2) . WLOG supposons $\left| \mathsf{E}_{\alpha}^{\beta} \cap \{\mathsf{C}_i\}_{i=1}^4 \right| = 2$, i.e. E passe par deux coins de I_n (soit C_1 et C_3 , soit C_2 et $(C_4)^2$. On définit alors :

$$\begin{cases} J_{2n} & \coloneqq [a_n^1, \frac{1}{2}(b_n^1 + a_n^1)] \times [a_n^2, \frac{1}{2}(b_n^2 + a_n^2)] \\ J_{2n+1} & \coloneqq [\frac{1}{2}(b_n^1 + a_n^1), b_n^1] \times [\frac{1}{2}(b_n^2 + a_n^2), b_n^2] \end{cases}$$

si $E \cap \{C_1, C_3\}$; et :

$$\begin{cases} J_{2n} & \coloneqq [\alpha_n^1, \frac{1}{2}(b_n^1 + \alpha_n^1)] \times [\frac{1}{2}(b_n^2 + \alpha_n^2), b_n^2] \\ J_{2n+1} & \coloneqq [\frac{1}{2}(b_n^1 + \alpha_n^1), b_n^1] \times [\alpha_n^2, \frac{1}{2}(b_n^2 + \alpha_n^2)] \end{cases}$$

sinon.

On a bien $Vol(I_n) = 2 \left(Vol(J_{2n}) + Vol(J_{2n+1}) \right)$, et donc $\sum_{n\geqslant 0} Vol(I_n) = 2 \sum_{n\geqslant 0} Vol(J_n)$.

Et donc:

$$\mathcal{L}^*(\mathsf{E}_\alpha^\beta) = \inf_{(\mathsf{I}_\mathfrak{n})_\mathfrak{n} \in \mathcal{C}_{\mathsf{E}_\alpha^\beta}} \sum_{\mathfrak{n} \geqslant 0} Vol(\mathsf{I}_\mathfrak{n}) = 0.$$

On a alors que E_α^β est mesurable et de mesure de Lebesgue nulle. Et on trouve que :

$$\mathcal{L}^*(\mathsf{E}) = \mathcal{L}^*(\bigcup_{n \geq 0} \mathsf{E}_{-n}^{+n}) = \lim_{n \to +\infty} \mathcal{L}^*(\mathsf{E}_{-n}^{+n}) = 0.$$

Donc E est également mesurable pour \mathcal{L} et est de mesure nulle.

Exercice 3.3. Pour $B \in \mathbb{B}^n$ et $\lambda > 0$, on définit $\lambda B = {\lambda b}_{b \in B}$.

- 1. $Mq \ \forall \lambda > 0, B \in \mathbb{B}^n : \lambda B \in \mathbb{B}^n$.
- 2. $Mq \mathcal{L}(\lambda B) = \lambda^n \mathcal{L}(B)$.

Résolution. On note $\mathcal{B}_{\lambda} := \{B \in \mathbb{B}^n \text{ s.t. } \lambda B \in \mathbb{B}^n\}.$

- (a) Mq \mathcal{B}_{λ} est une σ -algèbre.

 - $\begin{array}{l} \emptyset \in \mathcal{B}_{\lambda} \text{ car } \lambda \emptyset = \emptyset. \\ \text{ Soit } B \in \mathcal{B}_{\lambda} . \lambda B^{\complement} = (\lambda B)^{\complement} \in \mathbb{B}^{n} \text{ par stabilité par passage au complémentaire.} \\ \text{ Soit } (B_{n})_{n \geqslant 0} \in \mathbb{B}^{n \mathbb{N}} . \lambda \bigcup_{n \geqslant 0} B_{n} = \{\lambda b \text{ s.t. } \exists n \geqslant 0, b \in B_{n}\} = \bigcup_{n \geqslant 0} \lambda B_{n} \in \mathbb{B}^{n} \text{ par stabilité} \\ \text{ Soit } (B_{n})_{n \geqslant 0} \in \mathbb{B}^{n \mathbb{N}} . \lambda \bigcup_{n \geqslant 0} B_{n} = \{\lambda b \text{ s.t. } \exists n \geqslant 0, b \in B_{n}\} = \bigcup_{n \geqslant 0} \lambda B_{n} \in \mathbb{B}^{n} \text{ par stabilité} \\ \text{ Soit } (B_{n})_{n \geqslant 0} \in \mathbb{B}^{n \mathbb{N}} . \lambda \bigcup_{n \geqslant 0} B_{n} = \{\lambda b \text{ s.t. } \exists n \geqslant 0, b \in B_{n}\} = \bigcup_{n \geqslant 0} \lambda B_{n} \in \mathbb{B}^{n} \text{ par stabilité} \\ \text{ Soit } (B_{n})_{n \geqslant 0} \in \mathbb{B}^{n} \text{ par stabilité} \\ \text{ Soit } (B_{n})_{n \geqslant 0} \in \mathbb{B}^{n} \text{ par stabilité} \\ \text{ Soit } (B_{n})_{n \geqslant 0} \in \mathbb{B}^{n} \text{ par stabilité} \\ \text{ Soit } (B_{n})_{n \geqslant 0} \in \mathbb{B}^{n} \text{ par stabilité} \\ \text{ Soit } (B_{n})_{n \geqslant 0} \in \mathbb{B}^{n} \text{ par stabilité} \\ \text{ Soit } (B_{n})_{n \geqslant 0} \in \mathbb{B}^{n} \text{ par stabilité} \\ \text{ Soit } (B_{n})_{n \geqslant 0} \in \mathbb{B}^{n} \text{ par stabilité} \\ \text{ Soit } (B_{n})_{n \geqslant 0} \in \mathbb{B}^{n} \text{ par stabilité} \\ \text{ Soit } (B_{n})_{n \geqslant 0} \in \mathbb{B}^{n} \text{ par stabilité} \\ \text{ Soit } (B_{n})_{n \geqslant 0} \in \mathbb{B}^{n} \text{ par stabilité} \\ \text{ Soit } (B_{n})_{n \geqslant 0} \in \mathbb{B}^{n} \text{ par stabilité} \\ \text{ Soit } (B_{n})_{n \geqslant 0} \in \mathbb{B}^{n} \text{ par stabilité} \\ \text{ Soit } (B_{n})_{n \geqslant 0} \in \mathbb{B}^{n} \text{ par stabilité} \\ \text{ Soit } (B_{n})_{n \geqslant 0} \in \mathbb{B}^{n} \text{ par stabilité} \\ \text{ Soit } (B_{n})_{n \geqslant 0} \in \mathbb{B}^{n} \text{ par stabilité} \\ \text{ Soit } (B_{n})_{n \geqslant 0} \in \mathbb{B}^{n} \text{ par stabilité} \\ \text{ Soit } (B_{n})_{n \geqslant 0} \in \mathbb{B}^{n} \text{ par stabilité} \\ \text{ Soit } (B_{n})_{n \geqslant 0} \in \mathbb{B}^{n} \text{ par stabilité} \\ \text{ Soit } (B_{n})_{n \geqslant 0} \in \mathbb{B}^{n} \text{ par stabilité} \\ \text{ Soit } (B_{n})_{n \geqslant 0} \in \mathbb{B}^{n} \text{ par stabilité} \\ \text{ Soit } (B_{n})_{n \geqslant 0} \in \mathbb{B}^{n} \text{ par stabilité} \\ \text{ Soit } (B_{n})_{n \geqslant 0} \in \mathbb{B}^{n} \text{ par stabilité} \\ \text{ Soit } (B_{n})_{n \geqslant 0} \in \mathbb{B}^{n} \text{ par stabilité} \\ \text{ Soit } (B_{n})_{n \geqslant 0} \in \mathbb{B}^{n} \text{ par stabilité} \\ \text{ Soit } (B_{n})_{n$
- $\begin{array}{l} \text{(b) } Mq\left\{\prod_{k=1}^{n}(-\infty,b_{k}]\right\}_{(b_{1},\ldots,b_{n})\in\mathbb{R}^{n}}\subset\mathcal{B}_{\lambda}. \, \text{Soit}\,(b_{1},\ldots,b_{n})\in\mathbb{R}^{n}. \, \text{On sait que}\, \prod_{k=1}^{n}(-\infty,b_{k}]\in\mathbb{B}^{n}\\ \text{et donc}\, \lambda\prod_{k=1}^{n}(-\infty,b_{k}]=\prod_{k=1}^{n}(-\infty,\lambda b_{k}]\in\mathbb{B}^{n}. \, \text{On a donc}\, \left\{\prod_{k=1}^{n}(-\infty,b_{k}]\right\}_{(b_{1},\ldots,b_{n})\in\mathbb{R}^{n}}\subseteq\mathcal{B}_{\lambda}. \end{array}$ Et donc $\mathbb{B}^n\subseteq\sigma\left(\left\{\prod_{k=1}^n(-\infty,b_k]\right\}_{(b_1,\dots,b_n)\in\mathbb{R}^n}\right)\subseteq\mathcal{B}_\lambda\subseteq\mathbb{B}^n$, et donc $\mathcal{B}_\lambda=\mathbb{B}^n$.
- 2. On voit que $(I_n)_{n\geqslant 0}$ recouvre B ssi $(\lambda I_n)_{n\geqslant 0}$ recouvre λB . Et donc :

$$\mathcal{L}^*(\lambda B) = \inf_{(I_{\mathfrak{n}})_{\mathfrak{n}} \in \mathfrak{C}_B} \sum_{n \geqslant 0} Vol(\lambda I_{\mathfrak{n}}) = \inf_{(I_{\mathfrak{n}})_{\mathfrak{n}} \in \mathfrak{C}_B} \sum_{n \geqslant 0} \lambda^{\mathfrak{n}} \, Vol(I_{\mathfrak{n}}) = \lambda^{\mathfrak{n}} \inf_{(I_{\mathfrak{n}})_{\mathfrak{n}} \in \mathfrak{C}_B} \sum_{n \geqslant 0} Vol(I_{\mathfrak{n}}) = \lambda^{\mathfrak{n}} \mathcal{L}^*(B).$$

^{2.} En effet, si ce n'est pas le cas, on peut "réduire" I_n afin que ce soit le cas (et qui est donc de volume strictement inférieur).

Exercice 3.4 (Vrai ou Faux). *Justifier les affirmations suivantes :*

- 1. $Si \to \mathbb{R}^n$ est négligeable, alors $\overline{\mathbb{E}}$ est négligeable.
- 2. Il existe un ensemble non-mesurable sur \mathbb{R}^n de complémentaire de mesure extérieure de Lebesgue nulle.
- 3. Il existe des ensemble non-mesurables dont l'union est mesurable.
- 4. Si $A \subset \mathbb{R}^n$ satisfait $\mathcal{L}(\mathring{A}) = \mathcal{L}(\overline{A})$, alors A est mesurable.

Résolution.

- 1. Faux : \mathbb{Q} est négligeable et $\overline{\mathbb{Q}} = \mathbb{R}$ n'est pas négligeable.
- 2. Faux : si A^{\complement} est de mesure extérieure de Lebesgue nulle, alors A^{\complement} est mesurable, et donc $A^{\complement} \in \mathcal{M}_{\mathcal{L}^*}$. Or l'ensemble des mesurables est une σ -algèbre, et donc $A = A^{\complement^{\complement}} \in \mathcal{M}_{\mathcal{L}^*}$.
- 3. Vrai : si A est non-mesurable, alors $A^{\mathbb{C}}$ ne l'est pas non plus. Or $\mathfrak{M}_{\mathcal{L}^*} \ni X = A \cup A^{\mathbb{C}}$.
- 4. Vrai : par définition de complétion de mesure. Si \mathring{A} et \overline{A} sont mesurables et de même mesure, alors $\mathring{A} \subseteq A \subseteq \overline{A}$ et $\mathcal{L}(\overline{A} \setminus \mathring{A}) = 0$. Dès lors $A \in \mathcal{M}_{\mathcal{L}^*}$ et par monotonie : $\mathcal{L}(A) = \mathcal{L}(\mathring{A}) = \mathcal{L}(\overline{A})$.

Exercice 4.1. *Soit* $f: (X, A) \to \mathbb{R}$. *Mq si* $\forall q \in \mathbb{Q} : f^{-1}((q, +\infty)) \in A$, *alors* f *est mesurable.*

<u>Résolution</u>. Pour cela, montrons que $f^{-1}((r, +\infty)) \in \mathcal{A}$ pour $r \in \mathbb{R} \setminus \mathbb{Q}$. Par densité de \mathbb{Q} dans \mathbb{R} , on sait que pour $r \in \mathbb{R}$:

$$(r,+\infty) = \bigcup_{q \in (r,+\infty) \cap \mathbb{Q}} (q,+\infty).$$

Dès lors, pour
$$r \in \mathbb{R}$$
 : $f^{-1}((r, +\infty)) = \bigcup_{q \in (r, +\infty) \cap \mathbb{Q}} \underbrace{f^{-1}((q, +\infty))}_{\in \mathcal{A}} \in \mathcal{A}$.

Exercice 4.2. *Mq les fonctions* f *et* g *sont mesurables sur* (\mathbb{R}, \mathbb{B}) .

Résolution. Pour cela, on utilise le fait qu'un produit de fonctions mesurables est mesurable et que :

- les fonctions caractéristiques sur des boréliens sont mesurables;
- α : \mathbb{R} → \mathbb{R} : $x \mapsto x^2$ est mesurable car α = Id · Id;
- $(\mathbb{R} \setminus \mathbb{Q}) \cap [0,1]$ est mesurable car [0,1] est mesurable et \mathbb{Q}^{\complement} est mesurable aussi.

Donc puisque $f = \alpha \chi_{[0,1]} + \chi_{(1,2)}$ et $g = \alpha \chi_{\mathbb{Q}^{\complement} \cap [0,1]}$, on a f et g mesurables.

Exercice 4.3. Soient (X, A) un espace mesurable et $(f_k)_{k\geqslant 0}$ une suite de fonctions mesurables de X dans \mathbb{R} . Mq l'ensemble $A \coloneqq \{x \in X \text{ s.t. } \lim_{k \to +\infty} f_k(x) \text{ existe}\}$ est mesurable.

<u>Résolution</u>. La limite de la suite $(f_k(x))_{k\geqslant 0}$ existe ssi $f_1\coloneqq \limsup_{k\to +\infty} f_k$ et $f_2\coloneqq \liminf_{k\to +\infty} f_k$ existent en x et sont identiques. On sait que f_1 et f_2 sont mesurables, et donc que f_1-f_2 l'est également. Or $A=(f_1-f_2)^{-1}(\{0\})$, donc $A\in \mathcal{A}$.

Résolution alternative par les suites de Cauchy. À $x \in X$ fixé, la suite $(f_k(x))_{k\geqslant 0}$ est une suite réelle et donc converge ssi elle est de Cauchy, i.e. $\lim_{k\to +\infty} f_k(x)$ existe ssi

$$\forall \varepsilon > 0 : \exists N \in \mathbb{N} \text{ s.t. } \forall m, n \geqslant N : |f_m(x) - f_n(x)| < \varepsilon.$$

Donc A peut s'écrire comme union/intersection de Boréliens. Pour $m, n \in \mathbb{N}$, posons $f_{m,n} := |f_m - f_n|$. Par mesurabilité des $f_{m,n}$, on observe :

$$A = \left\{x \in X \text{ s.t. } \forall \epsilon > 0: \exists N \in \mathbb{N} \text{ s.t. } \forall m,n \geqslant N: f_{m,n}(x) < \epsilon \right\} = \bigcap_{\epsilon \in \mathbb{Q}^{*+}} \bigcup_{N \in \mathbb{N}} \bigcap_{m,n \geqslant N} f_{m,n}^{-1}((\pm \epsilon)) \in \mathbb{B}.$$

Exercice 4.4. Soient $f: \mathbb{R} \to \mathbb{R}$ Borel-mesurable et $g: \mathbb{R} \to \mathbb{R}$ s.t. $g \neq f$ sur un ensemble D au plus dénombrable. Mq g est Borel-mesurable.

Résolution. Rappelons d'abord que les singletons sont des fermés et donc des Boréliens. Dès lors, $D \in \mathbb{B}$ et $\mathcal{L}(D) = 0$. De plus, par passage au complémentaire, on sait que $D^{\complement} \in \mathbb{B}$ également. Pour $b \in \mathbb{R}$:

$$g^{-1}((-\infty,b]) = \left[\underbrace{f^{-1}((-\infty,b]) \cap D^{\complement}}_{=:A}\right] \sqcup \left[\underbrace{g^{-1}((-\infty,b]) \cap D}_{=:B}\right].$$

Puisque B \subseteq D, on a B au plus dénombrable, et en particulier B \in B. Par mesurabilité de f, on sait que $f^{-1}((-\infty,b]) \in \mathbb{B}$, et puisque $D^{\complement} \in \mathbb{B}$, on déduit que $A \in \mathbb{B}$. Dès lors $g^{-1}((-\infty,b])$ est union de deux Boréliens, et est donc un Borélien.

Exercice 4.5. Sur un espace mesurable (X, A), ma χ_A est mesurable ssi $A \in A$.

Résolution. \Rightarrow : si χ_A est mesurable, alors $A = \chi_A^{-1}(\{1\}) \in \mathcal{A}$.

 \leq : si $A \in A$, alors:

- $\begin{array}{l} \quad \quad -\chi_A^{-1}(\{0,1\}) = X \in \mathcal{A} \text{ et } \chi_A^{-1}(\emptyset) = \emptyset \in \mathcal{A} \text{ puisque } \mathcal{A} \text{ est une } \sigma\text{-algèbre sur } X; \\ \quad -\chi_A^{-1}(\{1\}) = A \in \mathcal{A} \text{ par hypothèse}; \\ \quad -\text{ et } \chi_A^{-1}(\{0\}) = A^\complement \in \mathcal{A} \text{ par passage au complémentaire}. \end{array}$

Exercice 4.6. Soient (X, A) un espace mesurable et $f: X \to \mathbb{R}$ une fonction mesurable. Mq f^+ et f^- sont mesurables.

Résolution. Trivial: min et max de fonctions mesurables sont mesurables et la fonction $0: X \to \{0\}: x \mapsto 0$ est constante donc mesurable.

Exercice 4.7.
$$Mq \ f: [0,1) \to [0,1): x \mapsto \begin{cases} 2x & \text{si } x \in [0,1/2) \\ 2x-1 & \text{si } x \in [1/2,1) \end{cases}$$
 est mesurable.

Mg pour tout $E \subset [0,1)$ mesurable : $\mathcal{L}(E) = \mathcal{L}(f^{-1}(E))$.

Résolution. Soit $M \subseteq [0,1)$ mesurable.

$$f^{-1}(M) = (f^{-1}(M) \cap [0,1/2)) \sqcup (f^{-1}(M) \cap [1/2,1)) = \{x \in [0,1/2) \text{ s.t. } f(x) \in M\} \sqcup \{x \in [1/2,1) \text{ s.t. } f(x) \in M\}.$$

Notons respectivement M_1 et M_2 ces deux ensembles. $M_1 = \{x \in [0, 1/2) \text{ s.t. } 2x \in M\} = \{x/2\}_{x \in M} \in \mathcal{M}$ et $M_2 = \{x \in [1/2, 1) \text{ s.t. } 2x - 1 \in M\} = \{(1+x)/2\}_{x \in M} \in \mathcal{M} \text{ car la transformation affine d'un ensemble } x \in M$ \mathcal{L} -mesurable est \mathcal{L} -mesurable. Donc $f^{-1}(M)=M_1\sqcup M_2\in \mathcal{M}$ car \mathcal{M} est une σ -algèbre.

De plus, $\mathcal{L}(f^{-1}M) = \mathcal{L}(M_1 \sqcup M_2) = \mathcal{L}(M_1) + \mathcal{L}(M_2)$. Par invariance par translation de \mathcal{L} , on a $\mathcal{L}(M_2) = \mathcal{L}(M_1 \sqcup M_2) = \mathcal{L}(M_1$ $\mathcal{L}(M_1) = \frac{1}{2}\mathcal{L}(M)$. Donc $\mathcal{L}(f^{-1}M) = 2\mathcal{L}(M_1) = \mathcal{L}(M)$.

Exercice 4.8 (Vrai ou Faux). *Justifier* :

- 1. Soit $f: \mathbb{R} \to \mathbb{R}$ s.t. $f \circ f$ est mesurable. Alors f est mesurable.
- 2. Soit $f: \mathbb{R} \to \mathbb{R}$ s.t. |f| est mesurable. Alors f est mesurable.
- 3. Soient $f: \mathbb{R} \to \mathbb{R}$ mesurable et $g: \mathbb{R} \to \mathbb{R}$ continue. Alors $g \circ f$ est mesurable.
- *4.* Si f : $\mathbb{R} \to \mathbb{R}$ est continue presque partout, alors f est mesurable.

Résolution.

- 1. Faux. Prenons $N \notin M$ s.t. $N \cap \{0,1\} = \emptyset$. Alors χ_N n'est pas mesurable, mais $\chi_N \circ \chi_N = \mathbf{0}$ est constante donc mesurable.
- 2. aux. Prenons à nouveau $N \notin \mathcal{M}$. On pose $f := \chi_N \chi_{N^\complement} : \mathbb{R} \to \{-1, +1\}$ où donc f(x) = 1 si $x \in N$ et f(x) = -1 sinon. f n'est pas mesurable, mais $|f| = 1 : \mathbb{R} \to \{1\} : x \mapsto 1$ est constante donc mesurable.

- 3. Mq continuité implique Borel-mesurabilité. Soit $f \in \mathcal{C}^0(\mathbb{R},\mathbb{R})$. Pour $b \in \mathbb{R}$: $f^{-1}((-\infty,b))$ est ouvert et est donc borélien. Donc ici g et f sont toutes deux Borel-mesurables et la composition d'applications Borel-mesurables est Borel-mesurable.
- 4. On pose $N \coloneqq \{x \in \mathbb{R} \text{ s.t. } f \text{ n'est pas continue en } x\}$. N est négligeable et f est continue sur $\mathbb{R} \setminus N$. On trouve pour $b \in \mathbb{R}$:

$$f^{-1}((-\infty,b)) = \left(f^{-1}((-\infty,b)) \cap N^\complement\right) \sqcup \underbrace{\left(f^{-1}((-\infty,b)) \cap N\right)}_{\subseteq N \ donc \ \in \mathbb{M}}.$$

Exercice 5.1. 1. Mg la relation \sim définie sur [0,1] par $x \sim y \iff x-y \in \mathbb{Q}$ est une relation d'équivalence.

2. On note $\hat{\mathbf{x}} := \mathbb{R}/\sim$. On pose $\mathbf{F} := \bigcup_{\mathbf{x} \in \mathbb{R}} \rho(\hat{\mathbf{x}})$ où $\rho(\hat{\mathbf{x}})$ est un représentant de $\hat{\mathbf{x}}$ (ρ est bien définie par l'axiome du choix). Mq :

$$[0,1]\subseteq\bigcup_{\substack{q\in\mathbb{Q}\cap[-1,1]\\ \longrightarrow \tilde{E}}}(F+q)\subseteq[-1,2].$$

- 3. $Mq \, si \, q_1 \neq q_2 \in \mathbb{Q} \cap [-1, 1], alors \, (F + q_1) \cap (F + q_2) = \emptyset.$
- 4. Mg F n'est pas L-mesurable par l'absurde.

Résolution.

- 1. ~ est trivialement une relation d'équivalence.
- 2. $[0,1] \subseteq \tilde{F}$: soit $x \in [0,1]$. Par définition de $F : \exists \tilde{x} \in \hat{x} \cap F$ et $x \tilde{x} \in \mathbb{Q}$. On a alors $x \in (\mathbb{Q} \cap [-1,1]) + \tilde{x} \subseteq \mathbb{Q}$ $(\mathbb{Q}\cap[-1,1])+\mathsf{F}=\bigcup_{\mathfrak{q}\in\mathbb{Q}\cap[-1,1]}(\mathsf{F}+\mathfrak{q}).$

 $\tilde{\mathsf{F}} \subseteq [-1,2] : \mathsf{F} \subseteq [0,1]$, et donc :

$$\tilde{F} = \bigcup_{q \in \mathbb{Q} \cap [-1,1]} (F+q) \subseteq \bigcup_{y \in [-1,1]} (F+y) \subseteq [-1,2].$$

- 3. Supposons par l'absurde $\exists \tilde{x} \in (F+q_1) \cap (F+q_2)$. On a alors $\exists y_1, y_2 \in F$ s.t. $y_1+q_1=\tilde{x}=y_2+q_2$. Donc $\tilde{x} - y_1 \in \mathbb{Q} \ni \tilde{x} - y_2$, ou encore $\tilde{x} \sim y_1$ et $\tilde{x} \sim y_2$, et donc par transitivité : $y_1 \sim y_2$, i.e. $\hat{\mathbf{y}}_1 = \hat{\mathbf{y}}_2$, or F contient exactement un seul représentant de chaque classe d'équivalence, ce qui est une contradiction. Donc $F + q_1$ et $F + q_2$ sont disjoints.
- 4. Supposons que F soit \mathcal{L} -mesurable. On a (par le point 2) :

$$1 \leqslant \mathcal{L} \left(\bigsqcup_{q \in \mathbb{Q} \cap [-1,1]} (F+q) \right) \leqslant 3.$$

Or $\forall q \in \mathbb{Q} : \mathcal{L}(F + q) = \mathcal{L}(F)$ car \mathcal{L} est invariante par translations.

- Si $\mathcal{L}(F) = 0$, alors $\sum_{q \in \mathbb{Q} \cap [-1,1]} \mathcal{L}(F+q) = 0 \leqq 1$, ce qui est une contradiction. Donc $\mathcal{L}(F) \ngeq 0$, et donc $\sum_{q \in \mathbb{Q} \cap [-1,1]} \mathcal{L}(F+q) = \sum_{q \in \mathbb{Q} \cap [-1,1]} \mathcal{L}(F) = +\infty \gneqq 3$, ce qui est également une contradiction.

On en déduit que F n'est pas \mathcal{L} -mesurable.

Exercice 5.2 (Ensemble triadique de Cantor). *Pour* $k \ge 0$, *on pose* :

$$A_k \coloneqq \bigcup_{\alpha \in \{0,2\}^k} \left(\sum_{i=1}^k \frac{\alpha_i}{3^i} \right) + [0,3^{-k}].$$

On définit l'ensemble triadique de Cantor par $\mathscr{C} := \bigcap_{k \geq 0} A_k$.

- 1. Mq $\forall k \geqslant 0$: A_k est formé de 2^k intervalles fermés disjoints deux à deux et $\mathcal{L}(A_k) = (2/3)^k$.
- 2. Mq \mathscr{C} est un borélien non vide et de mesure de Lebesque nulle.
- 3. Mg le développement infini en base 3 est unique ssi les chiffres de la décomposition (notés $a_k : [0,1] \rightarrow$ $\{0,1,2\}$ pour le kème chiffre) sont soit 0 soit 2. Mq $x \in \mathscr{C} \iff \forall k \geqslant 0 : a_k(x) \neq 1$.

4. En déduire que C est en bijection avec [0, 1].

Résolution.

1. $|\{0,2\}^k|=2^k$, donc A_k est bien composé de 2^k intervalles fermés. Soient $\alpha \neq \beta \in \{0,2\}^k$ et mq:

$$\left[\left(\sum_{i=1}^k \frac{\alpha_i}{3^i}\right) + [0,3^{-k}]\right] \cap \left[\left(\sum_{i=1}^k \frac{\beta_i}{3^i}\right) + [0,3^{-k}]\right] = \emptyset.$$

Puisque $\alpha \neq \beta$, on sait que $\exists j \in [\![1,k]\!]$ s.t. $\alpha_j \neq \beta_j$. On pose $\gamma_k : \{0,2\}^k \to [0,1] : \alpha \mapsto \sum_{i=1}^k \frac{\alpha_i}{3^i}$. Par écriture (**finie!**) en base 3, on a :

$$\gamma(\alpha) = 0.\alpha_1 |\alpha_2| \dots |\alpha_k$$
 et $\gamma(\beta) = 0.\beta_1 |\beta_2| \dots |\beta_k|$

où | désigne la concaténation, ce qui implique que $\left|\gamma(\alpha)-\gamma(\beta)\right| \not \geq 3^{-k}$. WLOG, on suppose $\gamma(\alpha) < \gamma(\beta)$. On en déduit finalement $\gamma(\alpha)+3^{-k} \not \leq \gamma(\beta)$, or :

$$\forall x \in \gamma(\alpha) + [0, 3^{-k}] : \gamma(\alpha) \leqslant x \leqslant \gamma(\alpha) + 3^{-k}.$$

Et:

$$\forall x \in \gamma(\beta) + [0, 3^{-k}] : \gamma(\beta) \leqslant x \leqslant \gamma(\beta) + 3^{-k}.$$

On en déduit que $(\gamma(\alpha) + [0, 3^{-k}]) \cap (\gamma(\beta) + [0, 3^{-k}]) = \emptyset$.

Et finalement, par additivité de \mathcal{L} , on a :

$$\mathcal{L}(A_k) = \sum_{\alpha \in \{0,2\}^k} \mathcal{L}(\gamma(\alpha) + [0,3^{-k}]) = \sum_{\alpha \in \{0,2\}^k} \mathcal{L}([0,3^{-k}]) = 2^k 3^{-k} = (2/3)^k.$$

2. $\forall k \geqslant 0 : \{0,1\} \subset A_k$, donc $\mathscr{C} \neq \emptyset$. De plus, $\forall k \geqslant 0 : A_k$ est une union de boréliens et est donc borélien. \mathscr{C} est intersection de boréliens et est donc également un borélien.

De plus la suite $(A_k)_{k\geqslant 0}$ est décroissante, donc par continuité de la mesure : $\mathcal{L}(\mathscr{C}) = \lim_{k\to +\infty} \mathcal{L}(A_k) = 0$. Mq $(A_k)_{k\geqslant 0}$ est décroissante. Fixons $k\geqslant 0$. Soit $x\in A_{k+1}$, mq $x\in A_k$. On sait que $\exists!\alpha\in\{0,2\}^{k+1}$ s.t. $x\in\gamma(\alpha)+[0,3^{-k}]$. On pose $\tilde{\alpha}\in\{0,2\}^k$ s.t. $\forall j\in[1,k]$: $\tilde{\alpha}_j=\alpha_j$. On a donc :

$$\gamma_k(\tilde{\alpha}) \leqslant \gamma_{k+1}(\alpha)$$
.

Mais on a également :

$$\gamma_k(\tilde{\alpha}) + 3^{-k} \geqslant \gamma_{k+1}(\alpha) + 3^{-k-1}$$

car:

$$(\underbrace{\gamma_k(\tilde{\alpha})-\gamma_{k+1}(\alpha)}_{\geqslant -2\cdot 3^{-k-1}})+(\underbrace{3^{-k}-3^{-k-1}}_{=2\cdot 3^{-k-1}})\geqslant 0.$$

Donc les A_k forment bien une suite décroissante.

3. On remarque que pour $\alpha \in \{0,2\}^k: x \in A_k \iff \{\alpha_j(x)\}_{j=1}^k \subseteq \{0,2\}$. Et puisque $\mathscr{C} = \bigcap_{k \geqslant 0} A_k: A_k : A_k$

$$x \in \mathscr{C} \iff x \in \bigcap_{k \geqslant 0} A_k \iff \forall k \geqslant 0 : \{\alpha_j(x)\}_{j=1}^k \subseteq \{0,2\} \iff \{\alpha_j(x)\}_{j \geqslant 0} \subseteq \{0,2\}.$$

4. On a alors $x \in \mathscr{C} \iff x = \sum_{k\geqslant 1} \frac{\alpha_k(x)}{3^k}$ où les $\alpha_k(x) \neq 1$, i.e. $\alpha_k(x) \in \{0,2\}$. On peut alors poser :

$$\theta: \to [0,1]: x = \sum_{k>1} \frac{\alpha_k(x)}{3^k} \mapsto \sum_{k>1} \frac{\alpha_k(x)}{2^{k+1}},$$

qui est une bijection entre \mathscr{C} et [0,1]. On en déduit que $|\mathscr{C}|=|[0,1]|$, et donc \mathscr{C} est non-dénombrable.

Exercice 5.3. On définit la bijection $f = \theta^{-1}$ (inverse de la bijection ci-dessus).

- 1. Mq f est strictement croissante et est non-continue.
- 2. Soit $E \subset [0,1]$ un ensemble non-mesurable au sens de Lebesgue. Mq f(E) est \mathcal{L} -mesurable mais non Borélien.

Résolution. Attention : résolution erronée. Il est montré que [0,1] et $\mathscr C$ ne sont pas homéomorphes, et pas que f n'est pas continue.

1. f est trivialement strictement croissante par construction, et f n'est pas continue car $\mathscr C$ n'est pas connexe donc $\mathscr C$ n'est pas homéomorphe à [0,1].

Mq $\mathscr C$ n'est pas connexe : il faut trouver U, V ouverts pour la topologie induite de $\mathscr C$ par la topologie usuelle de $\mathbb R$ tels que U \cap V = \emptyset et U \cup V = $\mathscr C$. Pour cela on prend arbitrairement $x \in [0,1] \setminus \mathscr C$ (par exemple x=1/2) et on définit :

- U := (−1, x) $\cap \mathscr{C}$;

U et V sont bien des ouverts pour la topologie induite car (-1,x) et (x,2) sont des ouverts de \mathbb{R} . De plus :

- $\begin{array}{l} -- U \cap V = (-1, x) \cap \mathscr{C} \cap (x, 2) \cap \mathscr{C} = \emptyset; \\ -- U \cup V = \big((-1, x) \cup (x, 2) \big) \cap \mathscr{C} = (-1, 2) \cap \mathscr{C} \setminus \{x\} = \mathscr{C}. \end{array}$
- 2. Soit $E\subseteq [0,1]$ quelconque. $f(E)\subseteq \mathscr{C}$ donc f(E) est \mathcal{L} -négligeable. Or \mathcal{L} est complète donc f(E) est mesurable.

Exercice 6.1. Soient $X \neq \emptyset$, $\alpha \in X$ et $\mathcal{A} = \mathcal{P}(X)$. Dans l'espace mesuré $(X, \mathcal{A}, \delta_{\alpha})$, montrons que pour $f: X \to \mathbb{R}^+$ mesurable :

$$\int_X f d\delta_\alpha = f(\alpha).$$

<u>Résolution</u>. Supposons d'abord f positive. Soit $g \in \mathcal{S}^+(X,\mathcal{A})$. Pour $(\mathfrak{a}_i)_{i=1}^k$ les valeurs prises par g, par définition on a :

$$\int g\,d\delta_\alpha = \sum_{i=1}^k \alpha_i \mu(g^{-1}(\{\alpha_i\})) = \alpha_\ell \delta_\alpha(g^{-1}(\{\alpha_\ell\})) = \alpha_\ell = g(\alpha)$$

où $a_{\ell} = g(a)$. Dès lors, par définition de l'intégrale d'une fonction positive mesurable :

$$\int f d\delta_{\alpha} = \sup_{\substack{g \in \mathbb{S}^+ \\ g \leqslant f}} \int g d\delta_{\alpha}.$$

On sait que $f(\alpha)$ majore tous les $g(\alpha)$ pour $g \in S^+$ s.t. $g \leqslant f$ donc $\int f \, d\delta_\alpha \leqslant f(\alpha)$. De plus pour $\tilde{g} = f(\alpha)\chi_{\{\alpha\}}$, on a $\tilde{g} \in S^+$ et $\tilde{g} \leqslant f$, or $\int \tilde{g} \, d\delta_\alpha = \tilde{g}(\alpha) = f(\alpha)$. Donc $\int f \, d\delta_\alpha \geqslant f(\alpha)$. On a alors bien l'égalité.

Dans le cas général où f n'est pas non-négative, soit $f(\alpha)\geqslant 0$ et donc f est égale à une fonction positive δ_{α} -ae, soit $f(\alpha)<0$ et donc $\int f^+ \,d\delta_{\alpha}=0$, donc $\int f\,d\delta_{\alpha}=-\int f^- \,d\delta_{\alpha}=-f^-(\alpha)=f(\alpha)$.

Exercice 6.2. Sur l'espace mesurable (\mathbb{R}, \mathbb{B}) , on définit la mesure de Lebesgue \mathcal{L} et la mesure μ suivante :

$$\mu: \mathbb{B} \to \overline{\mathbb{R}}^+: B \mapsto \sum_{k \in B \cap \mathbb{Z}} \frac{1}{1 + (k+1)^2}.$$

Déterminer si les fonctions suivantes sont intégrables :

$$f(x) = \begin{cases} +\infty & si \ x = 0 \\ \ln|x| & si \ 0 < |x| < 1 \\ 0 & sinon \end{cases}$$

$$g(x) = \begin{cases} \frac{1}{x^2 - 1} & si \ |x| < 1 \ et \ x \in \mathbb{Q} \\ \frac{1}{\sqrt{|x|}} & si \ |x| < 1 \ et \ x \in \mathbb{Q}^{\complement} \\ \frac{1}{x^2} & si \ |x| \geqslant 1 \end{cases}$$

$$h(x) \equiv 1$$

pour les mesures \mathcal{L} et μ comme défini ci-dessus (pour f et h).

Résolution.

— Pour la fonction f :

 $\mathcal L$ Utilisons le théorème de convergence monotone, i.e. construisons une suite croissante $(f_n)_{n\geqslant 1}$ d'applications mesurables telle que $f_n\xrightarrow[n\to +\infty]{} \tilde f$ (où $\tilde f=f\Big|_{(0,1)}=f\chi_{(0,1)}$). Pour $n\geqslant 1$, posons :

$$f_n: \mathbb{R} \to \mathbb{R}: x \mapsto -\chi_{(\frac{1}{n},1)}(x) \ln x.$$

 f_n est majorée par $x \mapsto \chi_{(1/n,1)}(x) \sup_{y \in (1/n,1)} - \ln(y) = \chi_{(1/n,1)} \ln(n)$ qui est intégrable. On en déduit que f_n est intégrable. 3 Par l'exercice 7.1, une fonction bornée Riemann-intégrable est Lebesgue-intégrable et les intégrales coïncident. On a donc :

$$\int f_n d\mathcal{L} = \int_{\frac{1}{n}}^1 -\ln(x) dx = 1 - \frac{\ln n + 1}{n}.$$

En appliquant le théorème de convergence monotone, on trouve :

$$\int f\,d\mathcal{L} = \lim_{n\to +\infty} \int f_n\,d\mathcal{L} = \lim_{n\to +\infty} \left(1-\frac{1+\ln n}{n}\right) = 1.$$

De manière similaire, on trouve que $\int f\chi_{(-1,0)} d\mathcal{L} = 1$, et on en déduit :

$$\int f\,d\mathcal{L} = \int f\chi_{(-1,0)}\,d\mathcal{L} + \int f\chi_{(0,1)}\,d\mathcal{L} = 1+1=2.$$

 $\mu:\ f=\chi_{(-1,1)\setminus\{0\}}\ln\lvert\cdot\rvert+(+\infty)\chi_{\{0\}}.\ Donc\ f\equiv 0\ sur\ \mathbb{R}\setminus(-1,1).\ Or\ (-1,1)\cap\mathbb{Z}=\{0\}.\ Donc\ f=+\infty\chi_{\{0\}},\ \mu\text{-ae où }x\mapsto +\infty\chi_{\{0\}}(x)\in\mathbb{S}^+.\ On\ trouve\ donc:$

$$\int f\,d\mu = \int +\infty \chi_{\{0\}}\,d\mu = +\infty \mu(\{0\}) = +\infty \cdot \frac{1}{1+1} = +\infty.$$

On peut également remarquer que pour $g \in S^+$ s.t. $g \nleq f$:

$$\int g \, d\mu = \int g \chi_{\{0\}} \, d\mu = g(0) \frac{1}{2}.$$

Donc sup{ $\int g \, d\mu$ s.t. $g \in \mathbb{S}^+$, $g \lesseqgtr f \}$ n'est pas borné.

— Pour la fonction $g: g = |x|^{-1/2} \chi_{(-1,+1)} + x^{-2} \chi_{(-\infty,1] \cup [1,+\infty)}$ \mathcal{L} -ae et ces deux fonction sont Riemann-intégrables. Donc g est \mathcal{L} -intégrable et :

$$\int g \, d\mathcal{L} = 2 \left(\int_0^1 x^{-1/2} \, dx + \int_1^{+\infty} x^{-2} \, dx \right) = 2(2+1) = 6.$$

— Pour la fonction $h \in S^+(\mathbb{R}, \mathbb{B})$:

 \mathcal{L} : h n'est pas \mathcal{L} -intégrable car $\int h d\mathcal{L} = 1\mathcal{L}(\mathbb{R}) = +\infty$.

μ: h est μ-intégrable car :

$$\begin{split} \int h \, d\mu &= \mu(\mathbb{R}) = \sum_{k \in \mathbb{Z}} \frac{1}{1 + (k+1)^2} = \sum_{k \in \mathbb{N}^*} \frac{1}{1 + (k-1)^2} + \sum_{k \in \mathbb{N}} \frac{1}{1 + (k+1)^2} \\ &= \frac{1}{2} + \sum_{k \in \mathbb{N}^*} \frac{1}{1 + k^2} + \sum_{k \in \mathbb{N}^*} \frac{1}{1 + k^2} = \frac{1}{2} + 2 \sum_{k \in \mathbb{N}^*} \frac{1}{1 + k^2} \leqslant \frac{1}{2} + 2 \sum_{k \in \mathbb{N}^*} k^{-2} \\ &= \frac{1}{2} + 2 \zeta(2) = \frac{1}{2} + \frac{\pi^2}{3} < +\infty. \end{split}$$

Exercice 6.3. Soient (X, A, μ) un espace mesuré et $(f_k)_{k\geqslant 1}$ une suite de fonctions mesurables telles que :

$$f_1 \geqslant f_2 \geqslant f_3 \geqslant \ldots \geqslant 0.$$

^{3.} Ainsi, toute fonction bornée définie sur un ensemble de mesure finie est intégrable.

On définit $f := \lim_{k \to +\infty} f_k$ la limite point par point. Mq si $f_1 \in L^1(X, \mathcal{A}, \mu)$, alors :

$$\lim_{k\to +\infty} \int_X f_k \, d\mu = \int_X f \, d\mu.$$

Donner un contre-exemple avec $f_1 \notin L^1(X, \mathcal{A}, \mu)$.

 $\underline{\textit{R\'esolution}}$. Pour $n\geqslant 2$: $f_n\leqslant f_1$ donc f_n est intégrable car majorée par une fonction intégrable. Par la convergence dominée, on a f intégrable également et $\int f_k \, d\mu \xrightarrow[k \to +\infty]{} \int f \, d\mu$.

Pour un contre-exemple, prenons la suite constante $f_k: x \mapsto x^{-1}$. $\forall x \in X: f_k(x) \xrightarrow[k \to +\infty]{} x^{-1}$ qui n'est pas intégrable.

Exercice 6.4. Supposons $\mu(X) \nleq +\infty$. Soit $(f_k)_{k\geqslant 0}$ une suite de fonctions mesurables positives sur X telles que $f_k \xrightarrow[k \to +\infty]{\text{CVU sur } X} f$. Mq si $\forall k\geqslant 0$: $f_k \in L^1(X,\mathcal{A},\mu)$, alors:

$$f \in L^1(X,\mathcal{A},\mu) \qquad \text{et} \qquad \lim_{k \to +\infty} \int_X f_k \, d\mu = \int_X f \, d\mu.$$

Résolution. À n > 0 fixé, on a :

$$f = |f| = |f_n + f - f_n| \le |f_n| + |f - f_n|$$
.

Dès lors, par monotonie de l'intégrale :

$$\int f d\mu \leqslant \int f_n d\mu + \int |f - f_n| d\mu.$$

La convergence uniforme revient à dire :

$$\forall \epsilon > 0: \exists N > 0 \text{ s.t. } \forall n > N: \underset{x \in X}{sup} |f - f_n|\left(x\right) < \epsilon.$$

En particulier, il existe N>0 s.t. $\forall n>N: \sup_{x\in X} |f-f_n|\left(x\right)<1.$ Dès lors pour n>N:

$$\int f \, d\mu \leqslant \int f_n \, d\mu + \int \lvert f - f_n \rvert \, d\mu \leqslant \int f_n \, d\mu + \mu(X) < +\infty$$

car $f_n \in L^1$ et $\mu(X) < +\infty$.

On en déduit $f \in L^1(X, \mathcal{A}, \mu)$. De plus :

$$\left| \int f_n d\mu - \int f d\mu \right| = \left| \int (f_n - f) d\mu \right| \leqslant \int |f_n - f| d\mu \xrightarrow[n \to +\infty]{} 0,$$

i.e. $\int f_n d\mu \xrightarrow[n \to +\infty]{} \int f d\mu$.

Exercice 6.5. On définit pour $k \geqslant 0$:

$$\alpha_k \coloneqq \int_0^k \left(1 - \frac{x}{k}\right)^k exp(x/2) \, dx \qquad \text{ et } \qquad \beta_k \coloneqq \int_0^k \left(1 + \frac{x}{k}\right)^k exp(-2x) \, dx.$$

Calculer $\alpha := \lim_{k \to +\infty} \alpha_k \ et \ \beta := \lim_{k \to +\infty} \beta_k$.

$$\lim_{k\to +\infty}\alpha_k=\lim_{k\to +\infty}\int f_k\,d\mu=\int \lim_{k\to +\infty}f_k\,d\mu=[2e^{x/2}]_{-\infty}^0=2,$$

et:

$$\lim_{k\to +\infty}\beta_k=\lim_{k\to +\infty}\int g_k\,d\mu=\int\lim_{k\to +\infty}g_k\,d\mu=[-e^{-x}]_0^{+\infty}=1.$$

Exercice 6.6. *Soit* $f \in L^1(X, A, \mu)$. *Mq*:

$$\forall \epsilon > 0: \exists \delta > 0 \text{ s.t. } \forall A \in \mathcal{A}: \mu(A) < \delta \Rightarrow \int_{A} |f| \, d\mu < \epsilon.$$

Résolution. Par l'absurde, supposons qu'il existe $\varepsilon > 0$ s.t. :

$$\forall n>0: \exists A_n \in \mathcal{A} \text{ s.t. } \mu(A_n) < \frac{1}{n} \text{ et } \int_{A_n} f \, d\mu \geqslant \epsilon.$$

Posons $f_n \coloneqq f\chi_{A_n}$. $\forall n>0: |f_n|\leqslant |f| \ et |lim_{n\to +\infty} \ f_n|\leqslant |f| \ et$ ces applications sont mesurables. Donc par la convergence dominée, on a :

$$\lim_{n\to +\infty} \int f_n \, d\mu = \int \lim_{n\to +\infty} f_n \, d\mu.$$

 $Mq \lim_{n \to +\infty} f_n = 0 \text{ μ-ae. Soit } N \coloneqq \{\lim_{n \to +\infty} f_n \neq 0\}. \text{ Sur } N^\complement, \text{ on a } \lim_{n \to +\infty} f_n = f. \text{ Dès lors}:$

$$\exists K > 0 \text{ s.t. } \forall x \in \mathbb{N} : \forall n > K : x \in \mathbb{A}_n$$

et donc : $\forall n>K:N\subset A_n$, ce qui implique $\forall n>K:\mu(N)\leqslant \mu(A_n)<\frac{1}{K}$, i.e. $\mu(A)=0$.

Finalement, on déduit :

$$\epsilon\geqslant\lim_{n\to+\infty}\int f_n\,d\mu=\int\lim_{n\to+\infty}f_n\,d\mu=0,$$

ce qui est une contradiction.

Exercice 7.1. *Soit* $f : [a, b] \rightarrow \mathbb{R}$ *bornée. Mq :*

1. si f est Riemann-intégrable, alors f est Lebesgue-intégrable et :

$$\int_{\alpha}^{b} f(x) dx = \int_{[\alpha,b]} f d\mathcal{L}.$$

2. les fonctions h et H définies ci-dessous sont bien définies et $h \le f \le H$ sur [a,b]:

$$\begin{split} h(x) &= \lim_{\delta \to 0} \inf_{|y-x| < \delta} f(y), \\ H(x) &= \lim_{\delta \to 0} \sup_{|y-x| < \delta} f(y). \end{split}$$

- 3. f est continue en x ssi H(x) = h(x).
- 4. H et h sont Lebesgue-mesurables et :

$$\int_{[\mathfrak{a},b]} H \, d\mathcal{L} = \inf_P U(f;P) \qquad \text{et} \qquad \int_{[\mathfrak{a},b]} h \, d\mathcal{L} = \sup_P L(f;P).$$

5. En déduire que f est Riemann-intégrable ssi l'ensemble des discontinuités de f est négligeable.

Résolution.

1. Notations: Pour $P = (x_i)_{i=0}^{N_P}$ une partition de [a,b], on pose pour $i \in [0,N_P-1]$: $P(i] := (x_i,x_{i+1}]$. On pose également les fonctions:

$$\begin{split} f_P &\coloneqq \sum_{j=0}^{N_P-1} m_j \chi_{P(j]} + f(\alpha) \chi_{\{\alpha\}} \\ f^P &\coloneqq \sum_{j=0}^{N_P-1} M_j \chi_{P(j]} + f(\alpha) \chi_{\{\alpha\}} \end{split}$$

Pour P une partition de [a,b] et $y\in (a,b)$ s.t. $\forall i\in \llbracket 0,N_P\rrbracket$, on pose $P\oplus y\coloneqq (x_j')_{j=0}^{N_P+1}$ où $\exists j\in \llbracket 1,N_P\rrbracket$ s.t. $x_j'=y$ et $(x_1',\ldots,x_{j-1}',x_{j+1}',\ldots,x_{N_P+1}')=P$. Pour deux partitions $P_1=(x_{1,j})_{j=0}^{N_{P_1}}$ et $P_2=(x_{2,j})_{j=0}^{N_{P_2}}$, on pose également $P_1\oplus P_2$ la plus petite partition $(x_j)_{j=0}^{N_P}$ où :

$$\forall j \in \llbracket 0, N_{P_1} \rrbracket : \forall \ell \in \llbracket 0, N_{P_2} \rrbracket : \exists i, k \in \llbracket 0, N_P \rrbracket \text{ s.t. } x_{1,j} = x_i \text{ et } x_{2,\ell} = x_k.$$

Résolution:

Observons que pour une partition P et $y \in (a, b)$, on a :

$$-f^{P\oplus y}\leqslant f^{P};$$

$$-f_{P\oplus y}\geqslant f_{P}.$$

En effet, cela découle directement du fait que pour $P \oplus y = (x_j')_{j=0}^{N_P+1}$ et pour j s.t. $y = x_j'$:

$$\inf_{t \in (x_j, x_{j+1}]} f(t) \geqslant \inf_{t \in (x_{j-1}, x_{j+1}]} f(t) \quad \text{ et } \quad \inf_{t \in (x_{j-1}, x_{j}]} f(t) \geqslant \inf_{t \in (x_{j-1}, x_{j+1}]} f(t).$$

On déduit similairement pour le sup :

$$\sup_{t \in (x_j, x_{j+1}]} f(t) \leqslant \sup_{t \in (x_{j-1}, x_{j+1}]} f(t) \quad \text{ et } \quad \sup_{t \in (x_{j-1}, x_j]} f(t) \leqslant \sup_{t \in (x_{j-1}, x_{j+1}]} f(t).$$

Ainsi, on remarque que pour deux partitions P_1 et P_2 , on a les inégalités suivantes par le même raisonnement :

$$- f^{P_1 \oplus P_2} \leqslant f^{P_1};$$

$$- f_{P_1 \oplus P_2} \geqslant f_{P_1}.$$

Par définition du sup, il existe une suite de partitions $(P'_n)_{n\geqslant 0}$ s.t. $U(f;P'_n) \xrightarrow[n\to+\infty]{} \inf_P U(f;P)$ et une suite de partitions $(\tilde{P}_n)_{n\geqslant 0}$ s.t. $L(f;\tilde{P}_n) \xrightarrow[n\to+\infty]{} \sup_P L(f;P)$. Du plus les suites $(U(f;P'_n))_{n\geqslant 0}$ et $(L(f;\tilde{P}_n))_{n\geqslant 0}$ sont respectivement décroissante et croissante. Par la remarque ci-dessus, on remarque que si on pose $P_n \coloneqq P'_n \oplus \tilde{P}_n$, on obtient une suite de partitions $(P_n)_n$ telle que :

$$\lim_{n\to +\infty} U(f;P_n) = \inf_P U(f;P) = \sup_P L(f;P) = \lim_{n\to +\infty} L(f;P_n).$$

En particulier : $U(f; P_n) - L(f; P_n) \xrightarrow[n \to +\infty]{} 0$.

Remarquons ensuite que les f_{P_n} sont des applications mesurables puisque des des combinaisons linéaires de fonctions caractéristiques sur des boréliens (en effet les intervalles ouverts à gauches sont des boréliens et le singleton $\{a\}$ en est un également). De plus :

$$\int_{[\mathfrak{a},\mathfrak{b}]} f_{P_{\mathfrak{n}}} \, d\mathcal{L} = L(\mathfrak{f};P_{\mathfrak{n}}) \quad \text{ et } \quad \int_{[\mathfrak{a},\mathfrak{b}]} f^{P_{\mathfrak{n}}} \, d\mathcal{L} = U(\mathfrak{f};P_{\mathfrak{n}}).$$

Puisque $U(f;P_n)-L(f;P_n)\xrightarrow[n\to+\infty]{}0$, on a $\int_{[a,b]}(f^{P_n}-f_{P_n})\,d\mathcal{L}\xrightarrow[n\to+\infty]{}0$. Du coup $\lim_{n\to+\infty}(f^{P_n}-f_{P_n})=0$ \mathcal{L} -ae, i.e. $f_{P_n}\xrightarrow[n\to+\infty]{}f$

Dès lors, par le théorème de la convergence monotone, on a que f est mesurable et que :

$$\int_{[\mathfrak{a},\mathfrak{b}]}f\,d\mathcal{L}=\int_{[\mathfrak{a},\mathfrak{b}]}\lim_{n\to+\infty}f_{P_n}\,d\mathcal{L}=\lim_{n\to+\infty}\int_{[\mathfrak{a},\mathfrak{b}]}f_{P_n}\,d\mathcal{L}=\lim_{n\to+\infty}L(f;P_n)=\sup_{P}L(f;P)=\int_{\mathfrak{a}}^{\mathfrak{b}}f(x)\,dx.$$

2. Puisque f est bornée, pour tout $x \in [a, b], \delta \geq 0$, on a bien :

$$\left|\inf_{y\in B_\delta(x)\cap[\mathfrak{a},\mathfrak{b}]}f(y)\right| \lneq +\infty \quad \text{et} \quad \left|\sup_{y\in B_\delta(x)\cap[\mathfrak{a},\mathfrak{b}]}f(y)\right| \lneq +\infty.$$

De plus, pour tout $x \in [a, b], \delta \ge 0$:

$$\inf_{y \in B_{\delta}(x) \cap [\mathfrak{a}, \mathfrak{b}]} f(y) \leqslant f(x) \leqslant \sup_{y \in B_{\delta}(x) \cap [\mathfrak{a}, \mathfrak{b}]} f(y).$$

3. \Leftarrow : H(x) = h(x) est équivalent à :

$$\forall \epsilon > 0: \exists \delta_\epsilon > 0 \text{ s.t. } \forall \gamma > 0: \gamma \leqslant \delta_\epsilon \Rightarrow \sup_{y \in B_\gamma(x)} f(y) - \inf_{y \in B_\gamma(x)} f(y) \leqslant \epsilon.$$

En particulier, à $\epsilon>0$ fixé, pour $y\in [\mathfrak{a},\mathfrak{b}],$ si $|x-y|\leqslant \delta_{\epsilon}$, alors :

$$\left|f(x)-f(y)\right|\leqslant \sup_{z\in B_{\delta_{\epsilon}}(x)}f(z)-\inf_{z\in B_{\delta_{\epsilon}}}f(z)\leqslant \epsilon.$$

On a donc bien la continuité de f en x.

 \Rightarrow : à $\varepsilon > 0$ fixé, il existe $\delta > 0$ s.t. $|x - y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon$. Donc:

$$\begin{split} \sup_{y \in B_{\delta}(x)} f(y) - \inf_{y \in B_{\delta}(x)} f(y) &= \left(\sup_{y \in B_{\delta}(x)} f(y) - f(x) \right) - \left(\inf_{y \in B_{\delta}(x)} f(y) - f(x) \right) \\ &\leqslant \left| \sup_{y \in B_{\delta}(x)} f(y) - f(x) \right| + \left| f(x) - \inf_{y \in B_{\delta}(x)} f(y) \right| \leqslant 2\epsilon. \end{split}$$

Or cette inégalité est vraie pour tout $\varepsilon > 0$. On en déduit que H(x) - h(x) = 0.

4. Pour $\beta \in \mathbb{R}$, remarquons :

$$\overbrace{f^{-1}((-\infty,\beta])}^{\circ} = \{\xi \in [\alpha,b] \text{ s.t. } \exists r_{\xi} > 0 \text{ s.t. } B_{r_{\xi}}(\xi) \subseteq f^{-1}((-\infty,\beta])\}.$$

Dès lors:

$$\begin{split} x &\in H^{-1}((-\infty,\beta]) \\ \iff H(x) \leqslant \beta \\ \iff \lim_{\delta \to 0} \sup_{y \in B_{\delta}(x)} f(y) \leqslant \beta \\ \iff \exists \delta > 0 \text{ s.t. } \forall y \in B_{\delta}(x) : f(y) \leqslant \beta \\ \iff \exists \delta > 0 \text{ s.t. } B_{\delta}(x) \subseteq f^{-1}((-\infty,\beta]) \\ \iff x \in f^{-1}((-\infty,\beta]), \end{split}$$

i.e. H est mesurable car l'intérieur d'un ensemble est un ouvert.

De manière similaire, on a $x \in h^{-1}([\alpha, +\infty)) \iff x \in f^{-1}([\alpha, +\infty))$. Donc h est également mesurable.

Remarquons ensuite que pour toute partition $P:H\leqslant f^P$ sur $[\mathfrak{a},\mathfrak{b}]\setminus P$ et donc $H\leqslant f^P$ \mathcal{L} -ae. Par monotonie de l'intégrale :

$$\int H\,d\mathcal{L}\leqslant \int f^P\,d\mathcal{L}.$$

En particulier:

$$\int H d\mathcal{L} \leqslant \inf_{P} \int f^{P} d\mathcal{L}.$$

Reconsidérant maintenant la suite $(P_n)_{n\geqslant 0}$ s.t. $U(f;P_n)\xrightarrow[n\to+\infty]{}\inf_P U(f;P)$ et $L(f;P_n)\xrightarrow[n\to+\infty]{}\sup_P L(f;P)$ et supposons la croissante (ce qui n'est pas abusif : il suffit de poser la suite de partitions $\hat{P}_0 \coloneqq P_0$ et $\hat{P}_n \coloneqq \hat{P}_{n-1} \oplus P_n$ qui est croissante au sens de l'inclusion et qui satisfait les limites puisque $f^{\hat{P}_n} \leqslant f^{P_n}$ et $f_{\hat{P}_n} \geqslant f_{P_n}$). Pour toute partition P et pour tout $x \in [a,b] \setminus P$, on note $j_{P,x} \in [0,N_P-1]$ s.t. $x \in P(j_{P,x}]$. Fixons alors $x \in [a,b] \setminus \bigcup_{n\geqslant 0} P_n$ (i.e. $\forall n\geqslant 0: x \notin P_n$).

Séparons deux cas:

 $\begin{array}{l} \text{si } \mathcal{L}(P_n(j_{P_n,x}]) \xrightarrow[n \to +\infty]{} 0: \ \forall \delta > 0: \ \exists N > 0 \ \text{s.t.} \ P_N(j_{P_N,x}] \subset B_\delta(x). \ \text{Posons une suite } (\delta_n)_{n\geqslant 0} \ \text{d\'ecroissante vers } 0 \ \text{et posons} \ H_n(x) \coloneqq \sup_{y \in B_{\delta_n}(x)} f(y). \end{array}$

sante vers 0 et posons $H_n(x) \coloneqq \sup_{y \in B_{\delta_n}(x)} f(y)$. On remarque que $\forall n \geqslant 0 : \exists K > 0$ s.t. $\forall k \geqslant K : H_n(x) \geqslant f^{P_k}(x) \geqslant H(x)$. Or $H_n(x) \xrightarrow[n \to +\infty]{} H(x)$, et donc $f^{P_n}(x) \xrightarrow[n \to +\infty]{} H(x)$.

sinon : $\forall (\alpha, \beta] \subset \bigcap_{n \geqslant 0} P_n(j_{P_n, x}] : \exists K > 0 \text{ s.t. } \forall k \geqslant K :$

$$\sup_{y\in(\alpha,\beta]}f(y)=\sup_{y\in P_k(j_{P_k,x}]}f(y).$$

En effet, s'il existe $(\alpha,\beta]$ qui ne satisfait pas la propriété, alors les P_n pourraient être raffinés par la suite $(P'_n)_{n\geqslant 0}$ définie par $P'_n\coloneqq P_n\oplus\alpha\oplus\beta$. Dans ce cas : $f^{P_n}\geqslant f^{P'_n}$ ce qui contredit :

$$U(f; P_n) \xrightarrow[n \to +\infty]{} \inf_{P} U'f; P).$$

On déduit donc :

$$\lim_{\delta \to 0} \sup_{y \in B_\delta(x)} f(y) = \sup_{y \in \bigcap_{n \geqslant 0} P_n(j_{P_n,x}]} f(y),$$

i.e. :

$$H(x) = \lim_{\delta \to 0} \sup_{y \in B_{\delta}(x)} f(y) = \sup_{y \in \bigcap_{n \geqslant 0} P_{\pi}(\mathfrak{j}_{P_{\pi},x}]} f(y) = \lim_{n \to +\infty} f^{P_{\pi}}(x).$$

On déduit de ces deux cas $f^{P_{\pi}} \xrightarrow[n \to +\infty]{\mathcal{L}\text{-ae}} H$ et donc :

$$\int H \, d\mathcal{L} = \lim_{n \to +\infty} \int f^{P_n} \, d\mathcal{L} = \inf_P U(f;P).$$

On déduit similairement le cas $\int h d\mathcal{L} = \sup_{P} L(f; P)$.

5. f est Riemann-intégrable $\iff \int H d\mathcal{L} = \int h d\mathcal{L} \iff \int (H - h) d\mathcal{L} = 0 \iff H = h \mathcal{L}$ -ae et donc $\iff \mathcal{L}(\{x \in [a,b] \text{ s.t. } H(x) \neq h(x)\}) = 0$, i.e. f est continue \mathcal{L} -ae.

Exercice 7.2.

1. $Mq si f : [a, +\infty) \to \mathbb{R}$ est Riemann-intégrable et bornée sur [a, b] pour tous b > a, alors :

$$\int_{[\alpha,+\infty)} f d\mathcal{L} = \int_{\alpha}^{+\infty} f(x) dx.$$

2. Mq si $f: [a,b] \to \mathbb{R}$ est Riemann-intégrable et bornée sur [c,b] pour tous $c \in (a,b)$, alors:

$$\int_{[\mathfrak{a},b]}f\,d\mathcal{L}=\int_{\mathfrak{a}}^{b}f(x)\,dx.$$

Résolution.

1. Posons la suite croissante de fonctions $f_n \coloneqq f\chi_{[\alpha,\alpha+n]}$. Puisque les f_n sont bornées et Riemann-intégrables (par hypothèse), par l'exercice précédent, on sait que les f_n sont mesurables et que $\int_{[\alpha,\alpha+n]} f \, d\mathcal{L} = \int_{\alpha}^{\alpha+n} f(x) \, dx$. Puisque $f_n \xrightarrow[n \to +\infty]{} f$, on a que f est mesurable. De plus, par le théorème de la convergence monotone :

$$\int f\,d\mathcal{L} = \lim_{n\to +\infty} \int f_n\,d\mathcal{L} = \lim_{n\to +\infty} \int_{\alpha}^{\alpha+n} f(x)\,dx = \int_{\alpha}^{+\infty} f(x)\,dx.$$

2. De manière similaire, on pose la suite croissante de fonctions $f_n \coloneqq f\chi_{[a+\frac{1}{n},b]}$ qui converge vers f sur (a,b] (donc \mathcal{L} -ae). Puisque les f_n sont mesurables, on déduit à nouveau que f est mesurable également et par la convergence monotone :

$$\int f d\mathcal{L} = \lim_{n \to +\infty} \int f_n d\mathcal{L} = \lim_{n \to +\infty} \int_{\alpha + \frac{1}{n}}^b f(x) dx = \int_{\alpha}^b f(x) dx.$$

Exercice 7.3. \mathbb{Q} est dénombrable donc $\mathbb{Q} \cap [0,1]$ l'est aussi. Donc $\mathbb{Q} \cap [0,1] = \{q_k\}_{k \geqslant 0}$. Pour $k \geqslant 0$, on définit :

$$f_k: [0,1] \to \mathbb{R}: x \mapsto \begin{cases} 1 & \text{si } x \in \{q_\ell\}_{\ell=0}^k \\ 0 & \text{sinon.} \end{cases}$$

1. $Mq \forall k \ge 0$: f_k est Riemann-intégrable et déterminer:

$$\int_0^1 f_k(x) dx.$$

- 2. Mq $f_k \xrightarrow[k \to +\infty]{\text{CVS sur } [0,1]} f$. Que peut-on en déduire?
- 3. Mq f est Lebesgue-intégrable et vérifier les hypothèses du théorème de la convergence dominée.

Résolution.

1. À k fixé, f_k est bornée sur son compact de définition et est continue sur $[0,1] \setminus \{q_\ell\}_{\ell=0}^k$, donc f_k est Riemann-intégrable. De plus :

$$\int_0^1 f_k(x) \, dx = \sum_{\ell=1}^k \int_{q_{\ell-1}}^{q_\ell} f_k(x) \, dx = \sum_{\ell=1}^k 0 = 0.$$

De manière plus élégante, remarquons que f_k est la fonction caractéristique d'un ensemble de mesure nulle, donc f_k est mesurable et de plus :

$$\int f_k d\mathcal{L} = \mathcal{L}(\{q_\ell\}_{\ell=0}^k) = 0,$$

donc f_k est Lebesgue-intégrable. De plus f_k est bornée sur son compact de définition (qui est forcément de mesure finie), donc f_k doit être Riemann-intégrable.

2. Soit $x \in [0,1]$. Si $x \in \mathbb{Q}^\complement$, alors $\forall k \geqslant 0: f_k(x) = 0$. Si $x \in \mathbb{Q}$, alors $\exists K \geqslant 0$ s.t. $x = q_K$, ce qui implique $\forall k \geqslant K: f_k(x) = 1$. Donc $f_k \xrightarrow[k \to +\infty]{} \chi_{\mathbb{Q} \cap [0,1]}$. Notons que f_k converge simplement mais pas uniformément. En effet :

$$\forall k\geqslant 0: \sup_{x\in[0,1]}\left|f_k(x)-\chi_{\mathbb{Q}}(x)\right|=1.$$

Puisque $\chi_{\mathbb{Q} \cap [0,1]}$ n'est pas Riemann-intégrable, on a l'existence d'une fonction \mathcal{L} -intégrable mais pas R-intégrable.

3. Voir la remarque ci-dessus pour l'intégrabilité au sens de Lebesgue. Les f_k sont bien mesurables et $f = \chi_{\mathbb{Q} \cap [0,1]} \leqslant \chi_{[0,1]}$ qui est intégrable. Donc par la convergence dominée, on a bien $\int f \, d\mathcal{L} = 0$.

Exercice 8.1. *Soit* (X, A, μ) *un espace mesuré.*

1. Si $\mu(X) \leq +\infty$, mq si p et q sont des réels tels que $1 \leq q \leq p \leq +\infty$, alors :

$$L^{\infty}(X,\mathcal{A},\mu)\subseteq L^{\mathfrak{p}}(X,\mathcal{A},\mu)\subset L^{\mathfrak{q}}(X,\mathcal{A},\mu)\subset L^{1}(X,\mathcal{A},\mu).$$

2. Considérons la fonction suivante :

$$u: \mathbb{R} \to \mathbb{R}: x \mapsto egin{cases} x^{rac{-1}{q}} & \textit{si } x \geqslant 1 \\ 0 & \textit{sinon}. \end{cases}$$

 $Mq u \in L^p(\mathbb{R}) \setminus L^q(\mathbb{R}).$

3. Considérons la fonction suivante :

$$\nu: \mathbb{R} \to \mathbb{R}: x \mapsto egin{cases} x^{\frac{-1}{p}} & \textit{si } x \in (0,1] \\ 0 & \textit{sinon}. \end{cases}$$

 $Mq u \in L^q(\mathbb{R}) \setminus L^p(\mathbb{R}).$

Résolution.

1.

 $L^\infty\subseteq L^p$: Soit $f\in L^\infty$. μ étant une mesure finie, les ensembles μ -négligeables et localement- μ -négligeables coïncidente. Il existe donc $C\geqslant 0$ s.t. $\mu(\{x\in X \text{ s.t. } \big|f(x)\big|>C\})=0$. Notons cet ensemble N. On a alors :

$$\int \lvert f\rvert^p \ d\mu = \int_N \lvert f\rvert^p \ d\mu + \int_{N^\complement} f^p \ d\mu \leqslant C^p \mu(N^\complement) = C^p \mu(X) < +\infty.$$

 $L^p\subseteq L^q:$ Soit $f\in L^p.$ On remarque que $|f|^q\in L^{\frac{p}{q}}$ avec $\frac{p}{q}>1.$ De plus, puisque $\mu(X)<+\infty$, les fonctions constantes sont intégrables (car dans L^∞). En particulier $1:x\mapsto 1$ est dans $L^{\frac{p}{p-q}}.$ Par Hölder:

$$\int \lvert f \rvert^q \ d\mu = \int \lvert f \rvert^q \lvert \mathbf{1} \rvert \ d\mu \leqslant \left\lvert \left\lVert f \right\rvert^q \right\rVert_{L^{\frac{p}{q}}} \ \underbrace{ \lVert \mathbf{1} \rVert_{L^{\frac{p}{p-q}}}}_{=u(X) < +\infty}.$$

Or:

$$\left[\int \left(\!\!\left|f\right|^q\right)^{\frac{p}{q}}\,d\mu\right]^{\frac{q}{p}} = \left[\int \!\!\left|f\right|^pd\mu\right]^{\frac{q}{p}} = \left[\left(\int \!\!\left|f\right|^pd\mu\right)^{\frac{1}{p}}\right]^q = \|f\|_{L^p}^q < +\infty.$$

Donc $f \in L^q$.

L^q \subseteq L¹: Soit $f \in$ L^q. $f = f\chi_A + f\chi_{A^0}$ où $A = \{x \in X \text{ s.t. } |f(x)| \ge 1\}$. Donc:

$$\int \! |f| \, d\mu = \int_A |f| \, d\mu + \int_{A^\complement} \! |f| \, d\mu \leqslant \int_A |f|^q \, d\mu + \int_{A^\complement} 1 \, d\mu \leqslant \|f\|_{L^q}^q + \mu(A^\complement) < +\infty.$$

2. $u \in L^p$ pour p > q car :

$$\int u^p d\mathcal{L} = \lim_{t \to +\infty} \int_1^t x^{-\frac{p}{q}} dx = \frac{-q}{p-q} \lim_{t \to +\infty} \left(t^{-\frac{p-q}{q}} - 1 \right) = \frac{q}{p-q}$$

car $\frac{p-q}{q} > 0$ et donc $t^{-\frac{p-q}{q}} \xrightarrow[t \to +\infty]{} 0$.

De plus $u \notin L^q$ car :

$$\int u^q d\mathcal{L} = \lim_{t \to +\infty} \int_1^t x^{-1} dx = \lim_{t \to +\infty} \ln(t) = +\infty.$$

3. $v \in L^q$ pour q < p car :

$$\int v^q d\mathcal{L} = \lim_{\epsilon \to 0} \int_{\epsilon}^1 x^{-\frac{q}{p}} dx = \frac{q}{p-q} \lim_{\epsilon \to 0} \left(1 - \epsilon^{\frac{p-q}{q}}\right) = \frac{q}{p-q}$$

 $\operatorname{car} \frac{p-q}{q} > 0.$ De plus $v \notin L^p$ car :

$$\int \nu^p \ d\mathcal{L} = \lim_{\epsilon \to 0} \int_{\epsilon}^1 x^{-1} \ dx = \lim_{\epsilon \to 0} \ln \epsilon = +\infty.$$

Exercice 8.2 (Inégalité de Chebycshev). *Soient* (X, A, μ) *un espace mesuré et* $f: X \to [0, +\infty)$ *une applica*tion mesurable. Mq

$$\forall \alpha > 0 : \mu\left(\left\{x \in X \text{ s.t. } f(x) \geqslant \alpha\right\}\right) \leqslant \frac{1}{\alpha} \int f d\mu.$$

De plus, si $\Phi : \mathbb{R}^+ \to \mathbb{R}^+$ *est une application mesurable croissante, alors :*

$$\forall \alpha > 0: \mu\left(\left\{x \in X \text{ s.t. } f(x) \geqslant \alpha\right\}\right) \leqslant \frac{1}{\Phi(\alpha)} \int \Phi(f(x)) \, d\mu(x).$$

Résolution. à $\alpha > 0$ fixé, notons $A_{\alpha}(f) := \{x \in X \text{ s.t. } f(x) \geqslant \alpha\}$. L'inégalité découle simplement du fait que :

$$\int_X f \, d\mu \geqslant \int_{A_\alpha(f)} f \, d\mu \geqslant \int_{A_\alpha(f)} \alpha \, d\mu = \alpha \mu(A_\alpha(f)).$$

Pour le second point, il suffit de remarquer que $A_{\alpha}(f) \subset A_{\Phi(\alpha)}(\Phi \circ f)$ puisque Φ est croissante. Donc en appliquant le premier point :

$$\mu(A_{\alpha}(f))\leqslant \mu(A_{\Phi(\alpha)}(\Phi\circ f))\leqslant \frac{1}{\Phi(\alpha)}\int \Phi\circ f\,d\mu.$$

Exercice 8.3. Soient (X, A, μ) un espace mesuré et $f: X \to \mathbb{R}$ une application mesurable.

1. Mg:

$$\liminf_{p\to +\infty} \lVert f \rVert_{L^p} \geqslant \lVert f \rVert_{L^\infty}$$
,

et donner un exemple où l'inégalité est infinie à gauche et finie à droite.

- 2. Supposions qu'il existe $q \in [1, +\infty)$ s.t. $f \in L^q(X)$.
 - (a) Mq f est finie μ-ae.
 - (b) Supposons que $0 \le \|f\|_{L^{\infty}} \le +\infty$. Mq si $p \in (q, +\infty)$, alors :

$$\|f\|_{L^p}\leqslant \|f\|_{L^\infty}^{1-\frac{q}{p}}\cdot \|f\|_{L^q}^{\frac{q}{p}}\,,$$

et en déduire que :

$$\limsup_{p\to +\infty} \lVert f\rVert_{L^p} \leqslant \lVert f\rVert_{L^\infty}.$$

(c) Conclure.

Résolution.

- 1. Séparons les cas (i) $\|f\|_{L^{\infty}} = 0$; (ii) $\|f\|_{L^{\infty}} \lneq +\infty$ et (iii) $\|f\|_{L^{\infty}} = +\infty$.
 - Dans le premier cas, puisque $\forall p \ge 1 : ||f||_{L^p} \ge 0$, l'inégalité est triviale.
 - Dans le second cas, l'inégalité est... moins triviale.

Séparons à nouveau deux cas ici : soit $\forall p \geqslant 1: f \notin L^p(X)$ soit $\exists p \geqslant 1$ s.t. $f \in L^p$. Dans le premier cas, on a donc $\forall p \geqslant 1: \|f\|_{L^p} = +\infty \geqslant \|f\|_{L^\infty}$, donc ok. Supposons donc alors qu'il existe $\widetilde{p} \geqslant 1$ s.t. $f \in L^{\widetilde{p}}$. On pose alors une suite $(\epsilon_n)_{n\geqslant 0}$ telle que $\forall n \geqslant 0: 0 < \epsilon_n < \|f\|_{L^\infty}$ et $\epsilon_n \searrow 0$. Pour tout $n \geqslant 0$, on pose :

$$\Omega_{\epsilon_n} \coloneqq \left\{ x \in X \text{ s.t. } \left| f(x) \right| \geqslant \|f\|_{L^{\infty}} - \epsilon_n \right\} = f^{-1} \left(\left(\|f\|_{L^{\infty}} - \epsilon_n, +\infty \right) \right).$$

Puisque $(\epsilon_n)_{n\geqslant 0}$ décroit, la suite $(\Omega_{\epsilon_n})_{n\geqslant 0}$ décroit également. De plus, par définition du supremum essentiel $(\|f\|_{L^\infty})$, on déduit $\mu(\Omega_{\epsilon_n}) \ngeq 0$. Maintenant observons que, à $p \geqslant 1$ et $n \geqslant 0$ fixés :

$$\|f\|_{L^p} = \left(\int_X |f|^p \, d\mu\right)^{\frac{1}{p}} \geqslant \left(\int_{\Omega_{\epsilon_n}} |f|^p \, d\mu\right)^{\frac{1}{p}} \geqslant \left(\int_{\Omega_{\epsilon_n}} \left(\|f\|_{L^\infty} - \epsilon_n\right)^p \, d\mu\right)^{\frac{1}{p}} = \left(\|f\|_{L^\infty} - \epsilon_n\right) \mu(\Omega_{\epsilon_n})^{\frac{1}{p}}.$$

Montrons alors que $\mu(\Omega_{\varepsilon_n}) \leq +\infty$. Puisque $\|f\|_{L^{\widetilde{p}}} \leq +\infty$, on sait :

$$+\infty \gneqq \|f\|_{L^{\widetilde{p}}} \geqslant \underbrace{\left\|f\right\|_{L^{\infty}} - \epsilon_{\mathfrak{n}}\right)}_{\lessgtr +\infty} \mu\left(\Omega_{\epsilon_{\mathfrak{n}}}\right)^{\frac{1}{\widetilde{p}}}.$$

On a donc obligatoirement $\mu(\Omega_{\epsilon_n}) \nleq +\infty$.

Dès lors, puisque $\forall x \in \mathbb{R}_+^* : x^{\frac{1}{p}} \xrightarrow[p \to +\infty]{} 1$, par passage à la limite pour n, on a :

$$\forall p \geqslant 1 : ||f||_{I_p} \geqslant ||f||_{I_\infty}.$$

Dès lors, par passage à la limite (à la lim inf car on ne sait pas si $\|f\|_{L^p}$ converge pour $p \to +\infty$):

$$\liminf_{p\to+\infty} \lVert f\rVert_{L^p} \geqslant \lVert f\rVert_{L^\infty}.$$

— Dans le dernier cas, montrons que $\liminf_{p\to+\infty} ||f||_{L^p} = +\infty$. On sait que $||f||_{L^\infty} = +\infty$, i.e.:

$$\forall M \geqslant 0 : \exists A_M \in A \text{ s.t. } f \geqslant M \text{ sur } A_M \text{ et } \mu(A_M) \geqslant 0.$$

À nouveau, deux cas sont à distinguer : soit $\forall A \in \mathcal{A} : A \neq \emptyset \Rightarrow \mu(A) = +\infty$, soit $\exists A \in \mathcal{A} \text{ s.t. } A \neq \emptyset$ et $\mu(A) \subsetneq +\infty$.

(a) Dans le premier cas, $f \neq 0$ dans L^p (où 0 est la fonction constante nulle) implique $\forall p \geqslant 1$: $\|f\|_{L^p} = +\infty \operatorname{car} \|f\|_{L^\infty} > 0$ et donc pour $p \geqslant 1$:

$$\int \mid f\mid^p d\mu \geqslant \int_{\left\{x \in X \text{ s.t.} \mid f(x)\mid > \frac{\parallel f\parallel_{L^\infty}}{2}\right\}} \mid f\mid^p d\mu \geqslant \frac{\|f\|_{L^\infty}}{2} \underbrace{\mu\left(\left\{x \in X \text{ s.t.} \mid f(x)\mid > \frac{\|f\|_{L^\infty}}{2}\right\}\right)}_{=+\infty} = +\infty.$$

(b) Dans le second cas, pour tout $M\geqslant 0$, il existe A_M s.t. $f\geqslant M$ sur A_M et $0\nleq \mu(A_M)\nleq +\infty$. Dans ce cas :

$$\forall p\geqslant 1: \forall M\geqslant 0: \|f\|_{L^p}\geqslant \left(\int_{A_M}|f|^p\,d\mu\right)^{\frac{1}{p}}\geqslant \left(\int_{A_M}M^p\,d\mu\right)^{\frac{1}{p}}=M\mu(A_M)^{\frac{1}{p}}.$$

Pour $p \to +\infty$: $\mu(A_M)^{\frac{1}{p}} \to 1$. Dès lors on a :

$$\forall M \geqslant 0 : \liminf_{p \to +\infty} \|f\|_{L^p} \geqslant M,$$

i.e.:

$$\liminf_{p\to +\infty} = +\infty = \|f\|_{L^{\infty}}.$$

Mais remarquons que l'inégalité peut être stricte. En effet, dans $(\mathbb{R},\mathbb{B},\mathcal{L})$, l'application $\mathbf{1}:\mathbb{R}\to\mathbb{R}:x\mapsto 1$ est bien mesurable avec $\|\mathbf{1}\|_{L^\infty}=1$ (et même $\sup_{x\in\mathbb{R}}\mathbf{1}(x)=1$). Or pour tout $p\geqslant 1$:

$$\|\mathbf{1}\|_{L^p} = \left(\int_{\mathbb{R}} 1 \, d\mathcal{L}\right)^{\frac{1}{p}} = +\infty.$$

2

(a) On sait que $f \in L^1 \Rightarrow |f| \nleq +\infty$ μ -ae. Or :

$$f\in L^q\iff \left||f|^q\,d\mu<+\infty\iff |f|^q\in L^1.$$

Donc si $f \in L^q$, $|f|^q \leq +\infty$ μ -ae, et donc $f \leq +\infty$ μ -ae.

(b) Notons $S \coloneqq \{x \in X \text{ s.t. } \left| f(x) \right| \leqslant \|f\|_{L^{\infty}} \}$. On sait que $\mu(S^\complement) = 0$. Donc à $\mathfrak{p} > \mathfrak{q}$ fixé :

$$\|f\|_{L^p} = \left(\int_S |f|^p \, d\mu \right)^{\frac{1}{p}} = \left(\int_S |f|^q |f|^{p-q} \, d\mu \right)^{\frac{1}{p}}.$$

or puisque $|f| \le ||f||_{L^{\infty}}$ sur S, on a :

$$\|f\|_{L^p} \leqslant \left(\int_{S} |f|^q \|f\|_{L^\infty}^{p-q} \, d\mu \right)^{\frac{1}{p}} = \left(\|f\|_{L^\infty}^{p-q} \int_{S} |f|^q \, d\mu \right)^{\frac{1}{p}} = \|f\|_{L^\infty}^{\frac{p-q}{p}} \left(\left(\int_{S} |f|^q \right)^{\frac{1}{q}} \right)^{\frac{q}{p}} = \|f\|_{L^\infty}^{\frac{p-q}{p}} \|f\|_{L^q}^{\frac{q}{p}} \, .$$

Montrons alors que l'on peut en déduire :

$$\limsup_{p\to +\infty} \lVert f\rVert_{L^p} \leqslant \lVert f\rVert_{L^\infty}.$$

Puisque $f \in L^q$, on sait que $\|f\|_{L^q} \lneq +\infty$ (et $\|f\|_{L^q} <code-block> 0$ puisque $\|f\|_{L^\infty} \gneqq 0$). Dès lors :</code>

$$\lim_{p \to +\infty} \|f\|_{L^{q}}^{\frac{q}{p}} = \lim_{t \to 0} \|f\|_{L^{q}}^{t} = 1,$$

 $\text{car } \tfrac{q}{\mathfrak{p}} \xrightarrow[\mathfrak{p} \to +\infty]{} 0 \text{ (dont on d\'eduit \'egalement} \|f\|_{L^\infty}^{1-\frac{q}{\mathfrak{p}}} \xrightarrow[\mathfrak{p} \to +\infty]{} \|f\|_{L^\infty} \text{). Cela donne finalement :}$

$$\limsup_{p\to+\infty} \|f\|_{L^p} \leqslant \|f\|_{L^\infty}.$$

(c) On déduit de tout cela que $\mathrm{si} \| \mathbf{f} \|_{L^\infty} = +\infty$, alors $\mathrm{lim}_{\mathfrak{p} \to +\infty} \| \mathbf{f} \|_{L^\mathfrak{p}}$ existe et vaut $+\infty = \| \mathbf{f} \|_{L^\infty}$ car :

$$+\infty\geqslant \underset{p\to +\infty}{lim}\underset{p\to +\infty}{sup}\|f\|_{L^p}\geqslant \underset{p\to +\infty}{lim}\underset{p\to +\infty}{inf}\|f\|_{L^p}\geqslant \|f\|_{L^\infty}=+\infty.$$

 $\text{De plus, si} \|f\|_{L^\infty} \lesseqgtr +\infty, \text{alors si } \exists q \geqslant 1 \text{ s.t. } f \in L^q, \text{alors } \lim_{p \to +\infty} \lVert f \rVert_{L^p} \text{ existe et vaut } \lVert f \rVert_{L^\infty}.$

Exercice 8.4 (Inégalité d'interpolation). Soient (X, \mathcal{A}, μ) un espace mesuré, $1 \leqslant p \leqslant r \leqslant q \leqslant +\infty$ et $\theta \in (0,1)$ tels que :

$$\frac{1}{r} = \frac{\theta}{p} + \frac{1-\theta}{q}.$$

 $\textit{Mq si } u \in L^p(X,\mathcal{A},\mu) \cap L^q(X,\mathcal{A},\mu), \textit{alors } u \in L^r(X,\mathcal{A},\mu) \textit{ et } :$

$$\|u\|_{L^{r}} \leq \|u\|_{L^{p}}^{\theta} \cdot \|u\|_{L^{q}}^{1-\theta}.$$

Résolution. Mq $f \in L^p \iff f^q \in L^{\frac{p}{q}} \text{ pour } q \geqslant 0.$ Soient $p \geqslant 1$ et $q \in [1/p, +\infty)$. Soit $f \in L^p$. Si $p \not \leq +\infty$:

$$f^q \in L^{\frac{p}{q}} \iff +\infty \gneqq \left||f^q|^{\frac{p}{q}} \, d\mu = \int \!\!|f|^p \, d\mu \lesseqgtr +\infty \iff f \in L^p.$$

 $\text{Si } \mathfrak{p} = +\infty \text{, alors } \mathfrak{f} \in L^{\infty} \iff \|\mathfrak{f}\|_{L^{\infty}} \lesseqgtr +\infty. \text{ Donc on observe} \|\mathfrak{f}^{\mathfrak{q}}\|_{L^{\infty}} = \|\mathfrak{f}\|_{L}^{\infty\,\mathfrak{q}} \lesseqgtr +\infty \iff \|\mathfrak{f}\|_{L^{\infty}} \oiint +\infty.$

Dès lors, on a:

$$\begin{array}{l} - \ u \in L^q \Rightarrow u^{r\theta} \in L^{\frac{p}{r\theta}} \,; \\ - \ u \in L^q \Rightarrow u^{r(1-\theta)} \in L^{\frac{q}{r(1-\theta)}}. \end{array}$$

Or $\frac{p}{r\theta}$ et $\frac{q}{r(1-\theta)}$ sont conjugués par hypothèse. Par l'inégalité de Hölder, on a alors que $\mathfrak{u}^r=\mathfrak{u}^{r\theta}\mathfrak{u}^{r(1-\theta)}\in L^1$, et donc $\mathfrak{u}\in L^r$.

Finalement, toujours par Hölder:

$$\|u^r\|_{L^1} \leqslant \left\|u^{r\theta}\right\|_{L^{\frac{p}{r\theta}}} \left\|u^{r(1-\theta)}\right\|_{L^{\frac{q}{r(1-\theta)}}}.$$

Deux cas sont à distinguer :

$$-\sin\frac{p}{r\theta}, \frac{q}{r(1-\theta)} \in (1,+\infty)$$
:

$$\begin{split} \|u^r\|_{L^1} &= \int \!\! |u^r| \, d\mu = \int \!\! |u|^r \, d\mu = \|u\|_{L^r}^r \\ \|u^r\theta\|_{L^{\frac{p}{r\theta}}} &= \left(\int \!\! \left|u^{r\theta}\right|^{\frac{p}{r\theta}} \, d\mu\right)^{\frac{r\theta}{p}} = \left(\int \!\! |u|^p \, d\mu\right)^{\frac{r\theta}{p}} = \|u\|_{L^p}^{r\theta} \\ \left\|u^{r(1-\theta)}\right\|_{L^{\frac{q}{r(1-\theta)}}} &= \left(\int \!\! |u|^q \, d\mu\right)^{\frac{r(1-\theta)}{q}} = \|u\|_{L^q}^{r(1-\theta)} \, . \end{split}$$

— Et si $\frac{p}{r\theta} = 1$, $\frac{q}{r(1-\theta)} = +\infty$, on a également :

$$\begin{split} \|u^{r}\|_{L^{1}} &= \|u\|_{L^{r}}^{r} \\ \left\|u^{r\theta}\right\|_{L^{1}} &= \|u\|_{L^{r\theta}}^{r\theta} = \|u\|_{L^{p}}^{r\theta} \\ \left\|u^{r(1-\theta)}\right\|_{L^{\infty}} &= \|u\|_{L^{\infty}}^{r(1-\theta)}, \end{split}$$

En mettant les deux membres à la puissance $\frac{1}{r}$, on trouve bien :

$$\|u\|_{L^{\mathfrak{r}}} \leqslant \|u\|_{L^{\mathfrak{p}}}^{\theta} \|u\|_{L^{\mathfrak{q}}}^{1-\theta} \, .$$

Remarque : En corolaire de ce théorème, on déduit que si $f \in L^1 \cap L^\infty$ (i.e. si f est μ-intégrable et essentiel-lement bornée), alors $f \in L^p$ pour tout p. Et ça, c'est chouette.