The University of Melbourne COMP 20003 Algorithms and Data Structures

COMP20003 Algorithms and Data Structures Greedy Algorithms and the MST

Nir Lipovetzky
Department of Computing and
Information Systems
University of Melbourne
Semester 2

Greedy Algorithms

Greedy algorithms are used in optimization problems

Greedy algorithms keep taking the next best step repeatedly, until the best solution is reached

 Dijkstra's algorithm is greedy: takes the next best edge to add to the path tree

COMP 20003 Algorithms and Data Structures

4.0

Minimum Spanning Tree

- Undirected weighted graphs
- Minimum spanning tree = subgraph that is:
 - A tree (no cycles)
 - Contains every vertex (spans)
 - Minimum sum of edge weights
- Also called:
 - Minimum weight spanning tree (sum of weights)
 - Minimal spanning tree (might be more than one)

1003 Algorithms and Data Structures

The University of Melbourne COMP 20003 Algorithms and Data Structures

MST and Graph characteristics

- Graph must be connected
- MST must have exactly V-1 edges
- No cycles in MST

COMP 20003 Algorithms and Data Structures

Building a MST: General approach

- Start with isolated vertices (all), no edges
- Begin with any vertex (Prim's) or the least cost edge (Kruskal's)
 - This is a MST subtree

Keep adding vertices/edges to **extend** this MST **subtree**

- Shortest connections
- No cycles

COMP 20003 Algorithms and Data Structures

Famous MST algorithms

- Prim's
 - Shortest connection networks and some generalizations.
 R.C. Prim, Bell System Technical Journal 36(6), 1389-1401,
 1957
- Kruskal's
 - On the shortest spanning subtree of a graph and the traveling salesman problem. J.B. Kruskal, Proceedings of the American Mathematical Society 7, 48-50, 1956.
- Borůvka's (1926, published in Czech)
 - Otakar Borůvka on minimum spanning tree problem: translation of both the 1926 papers, comments, history. Nešetřil, Jaroslav; Milková, Eva; Nešetřilová, Helena (2001). Discrete Mathematics 233 (1–3): 3–36

1-8

The University of Melbourne COMP 20003 Algorithms and Data Structures

Prim's MST algorithm

- Preferred method for dense graphs
- Easiest with matrix representation
- Prim's algorithm relies on picking the next best edge that joins two set of vertices:
 - Vertices already in the tree (S)
 - Vertices not yet in the tree (V-S)

These two sets form a "cut"

COMP 20003 Algorithms and Data Structures

Definitions

- A Cut (V, V-S) of G is a partition of V
- Cross: an edge (u,v) in E with one endpoint in S and the other in V-S
- Light edge: the minimum weight edge crossing the cut
- Respect: a cut respects a set A of edges if no edge in A crosses the cut

COMP 20003 Algorithms and Data Structures

1-10

Cut during MST construction

Cut:

- S: set of vertices already in the MST
- V-S: not yet in the MST
 - Fringe: part of V-S one step away from the MST
 - Vertices in V-S have a cost (distance) from the MST subtree so far constructed
 - Distances between non-MST vertices and MST vertices are updated as vertices are added to MST

Algorithms and Data Structures

1-11

The University of Melbourne COMP 20003 Algorithms and Data Structures

Prim's MST construction

1-13

Start:

- S = {any vertex}
- S-V = {all the others}
- The cut S/V-S respects edges in the MST as it is being constructed
- The cut itself changes

COMP 20003 Algorithms and Data Structures

Prim's MST construction

Respect:

- The cut S/V-S respects edges in the MST being constructed
 - Fringe: vertices in V-S one step away from the MST
 - Vertices in V-S have a cost(distance) from the MST subtree so far constructed (some may be ∞)

COMP 20003 Algorithms and Data Structures

1-14

Prim's MST construction

- Pick lightest edge crossing the cut:
 - Crossing edge (u,v) has u in S and v in V-S
 - Add v to S
 - Keep track of path (pred[])
 - Update distances between non-MST vertices and MST vertices (could be closer now) (w[])
- Repeat until V-S = {0}
- Reconstruct connections and distances from pred[] and wt[]

COMP 20003 Algorithms and Data Structures

Prim's: Pseudocode

```
void prim(G,wt,root)
  for every u in V { dist[u] = \infty; inmst[u] = FALSE;}
  dist[root] = 0; pred[root] = NULL;
  PQ = makePQ(V); /* all vertices in PQ */
  while (!empty PO) {
    u = deletemin(PQ);
    for every (v adjacent to u) {
       if ((inmst[v] == FALSE) && (w[u][v] < dist[v])) {</pre>
          dist[v] = w[u][v]; /* update distance */
          decreasewt(PQ,v,dist[v]);/* update PQ dist*/
           pred[v]=u; /* update path information */
    inmst[u] = TRUE;
```

The University of Melbourne COMP 20003 Algorithms and Data Structures

The University of Melbourne COMP 20003 Algorithms and Data Structures

The University of Melbourne COMP 20003 Algorithms and Data Structures

