Representation: $(t_{ji}, k_{jt}) \Rightarrow (z_{ji}, m_{ji})$

Donglai Wei

2011.4.28

0. Notation

 t_{ii} : table assignment of Customer i in restaurant j

 k_{it} : dish assignment of Table t in restaurant j

 $l_{t_{ji}}$: the i th customer in restaurant j is sitting at the l lth table serving dish k

 n_{jtk}^{l} : number of customers in restaurant j sitting at table t, which is the l lth table serving dish k

 m_{ik} : number of tables in restaurant j serving dish k.

. means marginalization

 $m_{.k}$: number of tables in dish k

 m_i : number of tables in Restaurant j

 n_{jt} : number of customers in Restaurant j table t

 $n_{i..}$: number of tables in Restaurant j

 $n_{..k}$: number of customers in dish k

 $n_{...k}^{w}$ number of tables in dish k with word w

1.CRF (t_{ii}, k_{it})

$$\begin{split} &P(x_{ji},t_{ji},k_{jt}|\alpha,\gamma,\lambda)\\ &= (table\ term)\Pi_{j=1}^{J} \big\{ \frac{\Gamma(\alpha)}{\Gamma(n_{j..}+\alpha)} \big[\Pi_{t=1}^{m_{j.}}\Gamma(n_{jt..})\big]\alpha^{m_{j.}} \big\}\\ &(dish\ term) \frac{\Gamma(\gamma)\Pi_{k=1}^{K}\Gamma(m_{.k})}{\Gamma(m_{..}+\gamma)} \Pi_{k=1}^{K} \big[\frac{\Pi_{w=1}^{W}\Gamma(\lambda_{0}+n_{..k}^{w})}{\Gamma(n_{..k}+W\lambda_{0})} \frac{\Gamma(W\lambda_{0})}{\Gamma(\lambda_{0})^{W}} \big]\gamma^{K}\\ &= C \times \Pi_{j=1}^{J} \Pi_{t=1}^{m_{j.}}\Gamma(n_{jt..})\\ &= C \times \Pi_{j=1}^{J} \Pi_{k=1}^{K} \big[\Pi_{l=1}^{m_{jk}}\Gamma(n_{j.k}^{l})\big] \end{split}$$

2.CRF (z_{ii}, m_{ik})

Notice that $(t_{ji}, k_{jt}) = (z_{ji}, l_{t_{ji}})$

Below, we are going to have a more compact assignment: sum over $l_{t_{ji}} \to \vec{n}_{j.k} \to m_{jk}$

$$P(z_{ji}, m_{jk} | \alpha, \gamma, \lambda)$$

$$P(z_{ji}, m_{jk} | \alpha, \gamma, \lambda)$$

$$= \sum_{partition} P(x_{ji}, t_{ji}, k_{jt} | \alpha, \gamma, \lambda)$$

$$= C \times \Pi_{j=1}^{J} \Pi_{k=1}^{K} \{ \sum_{\vec{n}_{...}^{l}}^{\sim} \left[\begin{pmatrix} n_{j.k} & \\ n_{jk.}^{1} & \dots & n_{jk.}^{l} \end{pmatrix} \Pi_{l=1}^{m_{jk}} \Gamma(n_{j.k}^{l}) \right] \}$$

$$= C \times \Pi_{j=1}^J \Pi_{k=1}^K \left[\begin{array}{c} n_{j,k} \\ m_{jk} \end{array} \right]$$
 ($\sum_{\vec{n}_{j,k}^l}^{\sim}$:with constriants that $\sum \vec{n}_{j,k}^l = n_{j,k}$)

1. Given $\vec{n}_{j.k}^l$, we sum over $l_{t_{ji}}$ configuration:

We get the factor $\begin{pmatrix} n_{j.k} & \\ n_{jk.}^1 & \dots & n_{jk}^l \end{pmatrix}$ (number of combination to assign $n_{j.k}$ elements to m_{jk} identifiable groups with size $\vec{n}_{j.k}^l$)

2. Given m_{jk} , we sum over $\vec{n}_{j.k}^l$ Then $\sum_{\vec{n}_{j.k}^l}^{\sim} \left(\begin{array}{ccc} n_{j.k} \\ n_{jk}^1 & \dots & n_{jk}^l \end{array}\right) \left[\Pi_{l=1}^{m_{jk}} \Gamma(n_{j.k}^l)\right]$ exactly counts the number of permutations of $n_{j.k}$ elements with m_{jk} disjoint cycles.

3. Will it solve the problem?

1. Suppose in the previous
$$(t_{ji}, k_{jt})$$
 representation, $m_{jk} = \{0, 1\}$, then:(modify s.t. $\Gamma(0) = 1$)
$$P(x_{ji}, t_{ji}, k_{jt} | \alpha, \gamma, \lambda) = C \times \prod_{j=1}^{J} \prod_{k=1}^{K} \Gamma(n_{j,k})$$
$$P(z_{ji}, m_{jk} | \alpha, \gamma, \lambda) = C \times \prod_{j=1}^{J} \prod_{k=1}^{K} \begin{bmatrix} n_{j,k} \\ m_{jk} \end{bmatrix}$$

2. Similar size:
$$\Gamma(n_{j.k}) < max(\left[\begin{array}{c} n_{j.k} \\ \cdot \end{array}\right]) = \left[\begin{array}{c} n_{j.k} \\ * \end{array}\right] < \Gamma(n_{j.k}+1)$$

3. Penalty for splitting the table into 2: For
$$CRF(t_{ji}, k_{jt}): \Delta(1 \to 2) = log\Gamma(n) - 2log\Gamma(\frac{n}{2}) \approx nlog(n) - 2(\frac{n}{2})log(\frac{n}{2}) = nlog(2)$$
 For $CRF(z_{ji}, m_{jk}): \Delta(1 \to 2) = log(\begin{bmatrix} n \\ * \end{bmatrix}) - 2log(\begin{bmatrix} \frac{n}{2} \\ * \end{bmatrix})$ There is no simple asymptotic approximation, but we can plot it numerically

We can see from the picture below, the penalty for splitting the table into 2 are similar.

Conclusion:

- 1. $\begin{bmatrix} n_{j,k} \\ * \end{bmatrix}$ behaves similarly to $\Gamma(n_{j,k})$
- 2. If the likelihood term is hard to improve, the restaurant still prefers one "dish" configuration which has more partitions.
- 3. However, the degenate configuration now is sevaral tables serving the same dish instead of one big table serving that dish alone before.