Chapter13 Semi-Supervised Learning

- 1. Introduction
 - a) Transductive Learning: Unlabeled data is the testing data
 - b) Inductive Learning: Unlabeled data is not the testing data
 - c) Collecting data is easy, but collecting 'labeled' data is expensive
 - d) We do semi-supervised learning in our lives
 - e) The distribution of the unlabeled data tells us something
- 2. Generative Model
 - a) Supervised Generative model
 - i) Prior Probability: $P(C_i)$ Class-Dependent Probability: $P(x|C_i)$
 - ii) $P(x|C_i)$ is a Gaussian distribution parameterized by μ_i and Σ

iii)
$$P(C_1|x) = \frac{P(x|C_1)P(C_1)}{P(x|C_1)P(C_1) + P(x|C_2)P(C_2)}$$

- b) Semi-Supervised Generative Model
 - i) The unlabeled data x^u help re-estimate $P(C_1), P(C_2), \mu_1, \mu_2, \sum$
 - ii) E-M Algorithm

Step1: Compute the posterior probability of unlabeled data Step2: Update Model

- c) Reason
 - i) Maximum likelihood with labelled data

$$logL(\Theta) = \sum_{x^l} log P_{\Theta}(x^l, \hat{y}^l)$$

$$P_{\Theta}(x^l, \hat{y}^l) = P_{\Theta}(x^l | \hat{y}^l) P(\hat{y}^l)$$

Closed-form Solution

ii) Maximum likelihood with labelled + unlabeled data

$$\begin{split} logL(\Theta) &= \sum_{x^l} log P_{\Theta}(x^l, \hat{y}^l) + \sum_{x^u} log P_{\Theta}(x^u) \\ P_{\Theta}(x^u) &= P_{\Theta}(x^u | \mathcal{C}_1) P(\mathcal{C}_1) + P_{\Theta}(x^u | \mathcal{C}_2) P(\mathcal{C}_2) \\ \text{Solve iteratively} \end{split}$$

- 3. Low-density Separation Assumption: Black or white
 - a) Self-Training
 - i) Train model f^* from labeled data set
 - ii) Apply f^* to the unlabeled data, obtain $\{(x^u, y^u)\}_{u=R}^{R+U}$ (Pseudo Label)
 - iii) Remove a set of data from unlabeled set, and add them into labeled set
 - iv) Self-training uses hard label, and generative model uses soft label
 - b) Entropy-based Regularization
 - i) Entropy of y^u : evaluate how concentrate the distribution y^u is
 - ii) $E(y^u) = -\sum_{m=1}^5 y_m^u \ln(y_m^u)$ should be as small as possible
 - iii) $L = \sum_{x^r} C(y^r, \hat{y}^r) + \lambda \sum_{x^u} E(y^u)$
 - c) Semi-supervised SVM
 - i) Enumerate all possible labels for the unlabeled data
 - Find a boundary that can provide the largest margin and least error
- 4. Smoothness Assumption: You are known by the company you keep
 - a) Smoothness Assumption
 - i) Assumption: "similar" x has the same \hat{y}
 - ii) More precisely:

x is not uniform

If x^1 and x^2 are close in a high-density region, \hat{y}^1 and \hat{y}^2 are same

- b) Cluster and then label
- c) Graph-based Approach
 - i) Represent the data points as a graph
 - ii) Graph representation is nature sometimes

Hyperlink of webpages

Citation of papers

- iii) Sometimes you have to construct the graph yourself
- iv) Define the similarity $s(x^i, x^j)$ between x^i and x^j

K Nearest Neighbor

e-Neighborhood

- v) Labeled data influence their neighbors, propagate through the graph
- vi) Define the smoothness of labels on the graph

$$S = \frac{1}{2} \sum_{i,j} w_{i,j} (y^i - y^j)^2 = y^T L y$$

Smaller means smoother

$$L = \sum_{x^r} C(y^r, \hat{y}^r) + \lambda S$$

- 5. Better Representation
 - a) Find the latent factors behind the observation
 - b) the latent factors are better representations

Chapter14 Deep Auto-Encoder

- 1. Auto-Encoder
 - a) Compact representation of the input object
 - b) Reconstruct the original object
- 2. PCA
 - a) Bottleneck layer
 - b) Decoding matrix is the transpose of the encoding matrix
- 3. Deep Auto-Encoder
 - a) De-noising auto-encoder
 - b) Text-Retrieval
 - i) Vector Space Model
 - ii) The documents talking about the same thing will have close code
 - c) Similar Image Search
- 4. Auto-Encoder for CNN
 - a) Unpooling
 - i) Alternative: simply repeat the values
 - b) Deconvolution
 - i) Actually, deconvolution is convolution
- 5. Pre-train DNN