COL774: Machine Learning

Assignment 2 Report

Date: March 15, 2019

Name: Manish Tanwar Entry Number: 2016CS10363

1 Naive Bayes:

(a) Accuracy over test and training dataset:

• Accuracy over test dataset: 60.4 %

 \bullet Accuracy over training dataset: 64.6 %

(b) Accuracy using Random and Majority Prediction:

• Accuracy using Random Prediction: 19.9 %

• Accuracy using Majority Prediction: 44.0 %

(c) Confusion Matrix:

Figure 1: Confusion Matrix

- Diagonal has the most elements which represents the correct predictions.
- Confusion matrix also shows the correlation between adjacent ratings. (For example for actual class 5, it has most entries in 5 but it has second most entries in 4).
- The number of elements decreases as we move away from the diagonal which shows clear correlation.

(d) Stemming and Stopword Removal:

- Accuracy Obtained: 60.0 %
- Accuracy does not change much on performing stemming and stopword removal.

(e) Feature Engineering:

- Accuracy Obtained: 63.4 %
- On adding bigram feature on top of our model, accuracy increases by 3-4%.
- Using bigrams feature introduces dependencies among words which increases the accuracy.

(f) F1-Score:

- F1 Score: [0.7193 0.2362 0.2805 0.5231 0.7821]
- Less F1 score for class 2 and 3 shows less accuracy for these classes.
- Macro F1 Score : **0.5083**
- Macro F1 score is a better metric, especially in uneven class distribution model as it considers both precision and recall to compute the score.

(g) Training of Full Dataset:

- Accuracy Obtained: 73.15%
- F1 Score : [0.7645 0.5130 0.5901 0.6533 0.8336]
- Macro F1 Score: 0.6709
- Increase in training data helps in better model learning and prediction.

2 Support Vector Machine:

2.1 Binary Classification:

(a) CVXOPT with Linear Kernel:

- Accuracy Obtained: 99.49%
- Indices of Support Vectors, Weights(w) and bias(b) are submitted in file "linear_results.txt"
- Number of Support Vectors: 134

(b) CVXOPT with Gaussian Kernel:

- Accuracy Obtained: 99.89%
- Indices of Support Vectors are submitted in file "gaussian_results.txt"
- Number of Support Vectors: 1386

(c) LIBSVM Package with Linear and Gaussian Kernels:

Linear Kernel:

- Accuracy Obtained: 99.49%
- Indices of Support Vectors, Weights(w) and bias(b) are submitted in file "libsym_linear_results.txt"
- Number of Support Vectors: 134

Gaussian Kernel:

• Accuracy Obtained: 99.89%

• Indices of Support Vectors are submitted in file "libsvm_gaussian_results.txt"

 $\bullet\,$ Number of Support Vectors: 1344

Computational Cost Comparision:

Training Time(in Sec)			
Kernel	CVXOPT	LIBSVM	
Linear	74.82	4.59	
Gaussian	35.84	8.96	

• LIBSVM takes way less time than CVXOPT package.

• Using CVXOPT and LIBSVM gives almost same number of support vectors. Slight difference is due to floating point arithmetic comparison $\alpha > 0$, which is done using $\alpha > eps$ ($eps = 10^{-5}$).

2.2 Multi-Class Classification:

(a) Using CVXOPT Package:

 \bullet Accuracy over test dataset: 97.24 %

• Accuracy over training dataset: 99.92 %

(b) Using LIBSVM Package:

• Accuracy over test dataset: 97.23 %

• Accuracy over training dataset: 99.92 %

Computational Cost Comparision (Training time):

 \bullet CVXOPT : 472.36 sec

• LIBSVM : 237.51 sec

(c) Confusion Matrix:

Figure 2: Confusion Matrix(drawn for part(b))

Analysis:

- Most often 2,7,8,9 are misclassified as 8,2,3,4 respectively.
- Misclassification of 7 as 2, 8 as 3 and 9 as 4 is due to their similarity in structural representation.

(d) Validation:

- \bullet We randomly select 10% data from training dataset as validation set to estimate the parameter C.
- ullet C is penalty parameter. Value of parameter C how much misclassification do we allow for finding the hyperplane.
- For C=5 and 10, we obtain the best validation and test accuracy.
- For smaller C, we allow too much misclassification by imposing too low penalty which results in really low accuracy.

$\mid C \mid$	Validation	Test Accu-
	Accuracy	racy
10^{-5}	9	10.28
10^{-3}	9	10.28
1	97.7	97.12
5	97.8	97.24
10	97.8	97.24

Figure 3: Accuracy Vs Parameter ${\cal C}$