# **Machine Learning to build Intelligent Systems**

# **Manas Dasgupta**



# **Naïve Bayes Classifier**



### **Structure of this Module**

**Naïve Bayes Classifier** 

# Introduction to Naïve Bayes Bayes Theorem Naïve Bayes Assumption Gaussian Naïve Bayes Multinomial Naïve Bayes Naïve Bayes Calculation Python Demo

# **Introduction to Naïve Bayes**

The *Naïve Bayes classifier* is a simple probabilistic classifier which is based on **Bayes theorem** but with strong assumptions regarding independence. Historically, this technique became popular with applications in email filtering, spam detection, and document categorization.

Although it is often outperformed by other techniques, and despite the naïve design and oversimplified assumptions, this classifier can perform well in many complex real-world problems. And since it is a resource efficient algorithm that is fast and scales well, it has become a very popular Machine Learning Algorithm.

#### Some cool use cases of Naïve Bayes

| Use Case            | Description                                                                                                            |
|---------------------|------------------------------------------------------------------------------------------------------------------------|
| Spam Filtering      | Email Classification as Spam or Ham                                                                                    |
| Sentiment Analysis  | Using in conjunction with NLP techniques, Naïve Bayes can be used to assign Sentiment Scores to texts.                 |
| Disease Detection   | Based on existing conditions diagnosed, a Naïve Bayes model can detect whether or not a person has a specific disease. |
| Weather Forecasting | Based on conditions existing today, a Naïve Bayes model can predict weather conditions for tomorrow.                   |

Simple

Works well with high Dimensional Data

Fast & Scalable

Used often for Benchmarking

Based on Bayesian Classification

# **Introduction to Naïve Bayes**

Naive Bayes classifiers are built on **Bayesian classification methods**. These rely on Bayes's theorem, which is an **equation describing the relationship of conditional probabilities of statistical quantities**.

In Bayesian classification, we're interested in *finding the probability of a label given some observed features*, which we can write as **P(L/Features)**. Bayes's theorem tells us how to express this in terms of quantities we can compute more directly:

$$P(L \mid \text{features}) = \frac{P(\text{features} \mid L)P(L)}{P(\text{features})}$$

### **Naïve Bayes Theorem**

For example, we are to examine Employee Attrition Data with a goal of creating a Naïve Bayes Model that could predict Attritions. Here, we are seeking the probability of an employee belonging to attrition class  $C_k$  (where  $C_{yes}$ =attrition and  $C_{no}$ =non-attrition) given that its predictor values are  $x_1$ ,  $x_2$ ,...,  $x_p$ . This can be written as  $P(C_k|x_1,...,x_p)$ .



$$P(c \mid X) = P(x_1 \mid c) \times P(x_2 \mid c) \times \cdots \times P(x_n \mid c) \times P(c)$$

- P(c|x) is the posterior probability of *class* (target) given predictor (attribute).
- P(c) is the prior probability of *class*.
- P(x|c) is the likelihood which is the probability of *predictor* given class.
- P(x) is the prior probability of predictor.

# **Naïve Bayes Theorem**

#### **EMPLOYEE ATTRITION CLASSIFICATION PROBLEM**

| X1     | X2     | Х3           | X4                 | X5            | Х6     | X6               | X7            | X8           | Label     |
|--------|--------|--------------|--------------------|---------------|--------|------------------|---------------|--------------|-----------|
| Emp_ld | Skill  | Years_of_Exp | Years_with_Company | Latest_Rating | Salary | Market_alignment | Manager_watch | Productivity | Attrition |
| 1      | Java   | 5            | 3                  | 3.5           | 40000  | Υ                | N             | G            | Υ         |
| 2      | ML     | 6            | 4                  | 3             | 45000  | Υ                | Υ             | Α            | N         |
| 3      | Java   | 4            | 2                  | 4             | 41000  | N                | N             | VG           | N         |
| 4      | Java   | 6            | 2                  | 3.5           | 46000  | N                | N             | VG           | N         |
| 5      | ML     | 9            | 4                  | 3.5           | 51000  | Υ                | Υ             | G            | Υ         |
| 6      | ML     | 5            | 1                  | 3             | 38000  | Υ                | Υ             | Α            | Υ         |
| 7      | DS     | 2            | 2                  | 3.5           | 31000  | Υ                | N             | Α            | N         |
| 8      | Python | 6            | 3                  | 3.5           | 48000  | N                | N             | G            | N         |
| 9      | React  | 7            | 2                  | 4             | 49000  | Υ                | N             | G            | N         |
| 10     | ML     | 5            | 1                  | 4             | 39000  | N                | N             | G            | Υ         |
| 11     | DS     | 4            | 3                  | 4.5           | 38000  | N                | Υ             | G            | ?         |

CLASS / LABEL

FEATURES / X

# **Naïve Bayes Assumption**

Naive Bayes classifier assumes that the <u>value of a particular feature is independent of the value of any</u> <u>other feature</u>, given the class variable.

For example, a fruit may be considered to be an apple if it is red, round, and about 10 cm in diameter. A Naive Bayes classifier considers each of these features to contribute independently to the probability that this fruit is an apple, regardless of any possible correlations between the colour, roundness, and diameter features. It's a *naïve assumption* and hence the name.

Given that the Naïve Bayes classifier is very simple and computationally, the assumption of independence is not always realistic on our training data and hence not suitable in conditions where this assumption doesn't hold valid.

# **Types of Naïve Bayes**

**Gaussian Naïve Bayes** 

In this classifier, the assumption is that data from each label is drawn from a simple *Gaussian distribution*. You may recall that Gaussian distributions have no covariance between dimensions/features.



# Example of Gaussian Data Employee Salary Stock Price House/Car Price

# **Types of Naïve Bayes**

#### **Multinomial Naïve Bayes**

In Multinomial naive Bayes, the features are assumed to be generated from a simple Multinomial Distribution. The multinomial distribution describes the probability of observing counts among a number of categories, and thus multinomial naive Bayes is most appropriate for features that represent counts or count rates.

The idea is precisely the same as Gaussian Naïve Bayes, except that instead of modelling the data distribution with the best-fit Gaussian, we model the data distribution with a best-fit multinomial distribution.

#### **Example Application**

One place where multinomial naive Bayes is often used is in **text classification**, where the features are **word counts** or word frequencies within the documents to be classified (say as a Spam or Ham or classified as Positive or Negative, etc). There are multiple NLP techniques of word features extraction like TF-IDF or Bag of Words).

**Sparse word count features** are used to classify these documents into categories or classes using Multinomial Naïve Bayes.

|                 | the | red | dog | cat | eats | food |
|-----------------|-----|-----|-----|-----|------|------|
| the red dog ->  | 1   | 1   | 1   | 0   | 0    | 0    |
| cat eats dog -> | 0   | 0   | 1   | 1   | 1    | 0    |
| dog eats food→  | 0   | 0   | 1   | 0   | 1    | 1    |
| red cat eats→   | 0   | 1   | 0   | 1   | 1    | 0    |

#### **Points to Note**

Because naive Bayesian classifiers make strict assumptions of independence about data, they generally do not perform very well always as data most always contain some degree of correlation. However,

- They are extremely fast for both training and prediction.
- Provide straightforward probabilistic prediction.
- Easily interpretable.
- Easy to use as there are very few or none tuneable parameters.

These advantages make Naive Bayesian classifier is a very good choice as initial baseline classification for classification problems in hand. Based on the data, they might throw very good results. Otherwise, you may want to scout for more sophisticated classifiers.

Generally, Naïve Bayes works well in following conditions:

- Naive assumptions are met in the Data
- Classes or categories are well-separated, a complex model is not needed
- For high-dimensional data

# **Naïve Bayes - Calculation**

|    | Weather  | Temparature | Humidity | Windy | Play Golf |
|----|----------|-------------|----------|-------|-----------|
| 1  | Rainy    | Warm        | High     | False | No        |
| 2  | Rainy    | Warm        | High     | True  | No        |
| 3  | Overcast | Warm        | High     | False | Yes       |
| 4  | Sunny    | Moderate    | High     | False | Yes       |
| 5  | Sunny    | Cool        | Normal   | False | Yes       |
| 6  | Sunny    | Cool        | Normal   | True  | No        |
| 7  | Overcast | Cool        | Normal   | True  | Yes       |
| 8  | Rainy    | Moderate    | High     | False | No        |
| 9  | Rainy    | Cool        | Normal   | False | Yes       |
| 10 | Sunny    | Moderate    | Normal   | False | Yes       |
| 11 | Rainy    | Moderate    | Normal   | True  | Yes       |
| 12 | Overcast | Moderate    | High     | True  | Yes       |
| 13 | Overcast | Warm        | Normal   | False | Yes       |
| 14 | Sunny    | Moderate    | High     | True  | No        |

**The Problem:** We have data various weather parameter data and a decision on whether or not it is it is conducive to play Golf. The features are Weather, Humidity, Windy and Temperature.

We are to create a Naïve Bayes model from this data to determine for a give condition, it is conducive to play Golf or not.

| Weather | Temparature | Humidity | Windy | Play Golf |
|---------|-------------|----------|-------|-----------|
| Rainy   | Warm        | High     | False | ?         |

# **Naïve Bayes - Calculation**

#### Frequency Table

|         |          | Play Golf |    |
|---------|----------|-----------|----|
|         |          | Yes       | No |
| Weather | Sunny    | 3         | 2  |
|         | Overcast | 4         | 0  |
|         | Rainy    | 2         | 3  |

|             |          | Play Golf |    |
|-------------|----------|-----------|----|
|             |          | Yes       | No |
|             | Warm     | 2         | 2  |
| Temparature | Moderate | 4         | 2  |
|             | Cool     | 3         | 1  |

|          |        | Play | Play Golf |  |
|----------|--------|------|-----------|--|
|          |        | Yes  | No        |  |
| Humidity | High   | 3    | 4         |  |
| number   | Normal | 6    | 1         |  |

|       |       | Play | Golf |
|-------|-------|------|------|
|       |       | Yes  | No   |
| Windy | False | 6    | 2    |
| winay | True  | 3    | 3    |

#### **Likelyhood Table**

|         |          | Play Golf |     |
|---------|----------|-----------|-----|
|         |          | Yes       | No  |
|         | Sunny    | 3/9       | 2/5 |
| Weather | Overcast | 4/9       | 0/5 |
|         | Rainy    | 2/9       | 3/5 |

|             |          | Play Golf |     |
|-------------|----------|-----------|-----|
|             |          | Yes       | No  |
|             | Warm     | 2/9       | 2/5 |
| Temparature | Moderate | 4/9       | 2/5 |
|             | Cool     | 3/9       | 1/5 |

|          |        |     | Golf |
|----------|--------|-----|------|
|          |        | Yes | No   |
| Humidity | High   | 3/9 | 4/5  |
| number   | Normal | 6/9 | 1/5  |

|  |       |       | Play Golf |     |
|--|-------|-------|-----------|-----|
|  |       |       | Yes       | No  |
|  | Windy | False | 6/9       | 2/5 |
|  |       | True  | 3/9       | 3/5 |

|         |          | Play Golf |      |
|---------|----------|-----------|------|
|         |          | Yes       | No   |
| Weather | Sunny    | 0.33      | 0.40 |
|         | Overcast | 0.44      | 0.00 |
|         | Rainy    | 0.22      | 0.60 |

|  |             |          | Play Golf |      |  |
|--|-------------|----------|-----------|------|--|
|  |             |          | Yes       | No   |  |
|  | Temparature | Warm     | 0.22      | 0.40 |  |
|  |             | Moderate | 0.44      | 0.40 |  |
|  |             | Cool     | 0.33      | 0.20 |  |

|          |        | Play Golf |      |
|----------|--------|-----------|------|
|          |        | Yes       | No   |
| Humidity | High   | 0.33      | 0.80 |
|          | Normal | 0.67      | 0.20 |

|  |       |       | Play | Golf |
|--|-------|-------|------|------|
|  |       |       | Yes  | No   |
|  | Windy | False | 0.67 | 0.40 |
|  |       | True  | 0.33 | 0.60 |

# **Naïve Bayes - Calculation**

| Masthan | T           |          | Min de . | Dlan Calf | Vaa     | N.o.    |
|---------|-------------|----------|----------|-----------|---------|---------|
| Weather | Temparature | Humidity | Windy    | Play Golf | Yes     | No      |
| Rainy   | Warm        | High     | False    | ?         | 0.24198 | 0.94080 |
|         |             |          |          |           | 20.46%  | 79.54%  |

P(Yes | X) = P(Rainy | Yes) x P(Warm | Yes) x P(High | Yes) x P(False | Yes) x P(Yes) / P(X)

P(No | X) = P(Rainy | No) x P(Warm | No) x P(High | No) x P(False | No) x P(No) / (Rainy Warm High False)



- P(c/x) is the posterior probability of *class* (*target*) given *predictor* (*attribute*).
- P(c) is the prior probability of *class*.
- P(x/c) is the likelihood which is the probability of *predictor* given class.
- P(x) is the prior probability of *predictor*.

# **Gradient Descent**

#### **Python Demo**

- Gaussian Naïve Bayes
- Multinomial Naïve Bayes
  - Project

# Hope you have liked this Video. Please help us by providing your Ratings and Comments for this Course!

Thank You!!
Manas Dasgupta

**Happy Learning!!** 



# Fully Editable Icon Sets: A

You can Resize without losing quality

You can Change Fill Color & **Line Color** 



www.allppt.com



























































































# Fully Editable Icon Sets: B

You can Resize without losing quality

You can Change Fill Color & **Line Color** 



www.allppt.com



























































































# Fully Editable Icon Sets: C

You can Resize without losing quality

You can Change Fill Color & Line Color



www.allppt.com







































