

# Journal of Water Pollution & **Purification Research**

ISSN: 2394-7306 Volume 10, Issue 1, 2023 DOI (Journal): 10.37591/JoWPPR

http://techjournals.stmjournals.in/index.php/JoWPPR/index

**JoWPPR** 

# A Study of Groundwater Contamination of Patiala District as a 'HOT SPOT' in Punjab

Hardev Singh Virk\*

#### Abstract

Patiala is a part of Malwa belt of Punjab which has reported highest contamination due to heavy metals and other ionic pollutants in groundwater. The Department of Water Supply and Sanitation's (DWSS) Punjab Statement on Water Quality Monitoring and Mitigation paints a dismal picture of Punjab's current water quality situation. It is estimated that around 50% habitations are having poor quality of water due to high contamination of arsenic, iron, aluminium, magnesium, selenium, fluoride, nitrate and other basic parameters. In Patiala district, contamination by uranium, fluoride, nitrate, and sulphate predominates; heavy metals (aluminum, lead, and nickel) are next as major groundwater pollutants. In two villages in the Patiala district, there were 2553 mg/L of NO<sub>3</sub>, the highest level ever recorded in Punjab. The highest value of sulphate contamination, 4980 ppm, was recorded in the Patiala district's Pehar Kalan and Pehar Khurd. The analysis presented in this paper is based on Department of Water Supply and Sanitation (DWSS) data collected in 3 phases during 2009 to 2016 and compiled and analysed in April 2016 using Ion Chromatography and Spectrophotometer in DWSS Laboratory in SAS Nagar (Mohali), India.

**Keywords:** Groundwater, Heavy Metals, Ionic Pollutants, Hot Spot, Health hazards.

#### INTRODUCTION

Patiala is known as the royal city of Punjab as it was the seat of Phulkian family which ruled over a vast tract of Punjab. During my B.Sc. in Govt. Mohindra College during 1959-61, our Professor of Chemistry, Mr. Mathur, was engaged in research to determine the source of Fluoride in drinking water supply of Patiala city. There was lack of research facility in our college and Mr. Mathur had to carry out his research on the premises of Rajendra Medical College, Patiala. I could never imagine that after 62 years; I will be working on the same problem to tackle it using state of the art facilities provided by Department of Water Supply and Sanitation (DWSS), Govt. of Punjab in Regional Advance Water Testing Lab (RAWTL) at SAS Nagar (Mohali). RAWTL is equipped with sophisticated instruments, namely, Inductively Coupled Plasma Mass Spectrophotometer (ICP-MS) for Heavy Metals like

1

Uranium & Arsenic and Ion Chromatograph (IC)

for anions like Nitrate and Fluoride.

\*Author for Correspondence

Hardev Singh Virk

E-mail: hardevsingh.virk@gmail.com

Professor of Eminence, SGGS World University, Fatehgarh Sahib, Punjab, India

Received Date: April 15, 2023 Accepted Date: June 01, 2023 Published Date: June 10, 2023

Citation: Hardev Singh Virk. A Study of Groundwater Contamination of Patiala District as a 'HOT SPOT' in Punjab. Journal of Water Pollution & Purification Research. 2023;

10(1): 1-13p.

Our investigations of Punjab groundwater contaminants have been reported in various research journals during 2017-22. Heavy metals, namely, uranium (U), arsenic (As), cadmium (Cd), zinc (Zn), copper (Cu), nickel (Ni), lead (Pb), mercury (Hg), iron (Fe), selenium (Se), and chromium (Cr) have been detected in high concentrations in groundwaters of Punjab. High contents of basic parameters, like TDS (Total Dissolved Salts), fluoride, chloride, nitrate,

sulphate, calcium, and magnesium have also been reported [1–10]. The source of groundwater contamination in Punjab is mostly geogenic but augmented by anthropogenic sources like intense agricultural practices and industrial pollutants released untreated in water channels.

These days, heavy metal contaminants in air and groundwater are one of the most important environmental concerns due to their high toxicities and adverse impacts on human health. According to the World Health Organization (WHO) report [11], 80% of all the diseases and deaths in the developing countries are caused by drinking of contaminated water. The risk of serious illnesses like cancer from drinking water contaminated with heavy metals is present. [12].

A crisis situation exists in Punjab due to heavy metals contamination in the sub-surface water table. Recent reports in the local media regarding the high toxicity of heavy metals in the groundwater of Punjab may create a panic in the minds of public. According to the report, hazardous metals have contaminated Punjab's subsurface groundwater to such an extent that adult cases of cancer and heart disease are on the rise. In the Tribune report published on February 7, 2018, it was reported that 88 percent of habitations affected by heavy metals in groundwater of India belong to Punjab State [13–15].

The basis of this investigation is DWSS data collected in three phases during 2009 to 2016 and compiled in April 2016 [16].

# Guidelines from the World Health Organization and Indian Standards for Water

The World Health Organization's (WHO) Drinking Water Quality (GDWQ) Guidelines are created with the protection of the general public's health in mind. International Standards for Drinking-Water were first published in 1958 after WHO organised a series of expert meetings in Geneva during 1956. These Standards were revised in 1963, 1971 and 1984. This process continued and more revisions were carried out in 1993, 1995, 2004 and 2011. We have adopted 1993 edition of GDWQ for this study [17].

To maintain the security of water for consumption supplies, national standards are developed using WHO recommendations as a foundation. The purpose of these standards is to keep the level of hazardous contaminants in groundwater to a bare minimum level so that they are not health hazards to public. The suggested guideline values can be used in the creation of risk management plans based on local or national standards, but they are not required limitations. These have been created while taking into account the regional or national social, economic, environmental, and cultural circumstances.

Indian institutions are using the Bureau of Indian Standards (BIS) for most of the heavy metals under the heading "General Parameters Concerning Substances Undesirable in Excessive Amounts (Table 1)" [18]. These parameters have been adopted from WHO Guidelines and Standards. It includes all metals listed in DWSS analysis except arsenic. Annual Water Quality Report of DWSS, Govt. of Punjab has listed all contaminants found in groundwater under two categories: Mandatory Parameters and Emerging Parameters. Further, the amount of contamination allowed is classified in two regimes: Acceptable limit (AL) and Permissible limit (PL). These limits are different for different countries. BIS limit has been adopted by Atomic Energy Regulatory Board (AERB) of Department of Atomic Energy (DAE), Govt. of India and is being implemented in all the states of India as a standard for Water Quality. The values of AL and PL are listed in Table 1, adopted from Annual Water Quality Report of DWSS [19].

Table 1. Water Quality Parameters and their contamination limits for India

| Parameters | Acceptable limit<br>BIS/ AERB mg/l | Permissible limit<br>as per BIS/AERB |  |  |  |  |
|------------|------------------------------------|--------------------------------------|--|--|--|--|
|            | Mandatory Parameters               |                                      |  |  |  |  |
| Arsenic    | 0.01 ppm                           | No Relaxation                        |  |  |  |  |
| Fluoride   | 1.0 ppm                            | 1.5 ppm                              |  |  |  |  |
| Nitrate    | 45 ppm                             | No Relaxation                        |  |  |  |  |

Volume 10, Issue 1 ISSN: 2394-7306

| TDS      | 500 ppm         | 2000 ppm      |
|----------|-----------------|---------------|
| Iron     | 1.00 ppm        | No Relaxation |
|          | Emerging parame | ters          |
| Uranium  | 30 ppb          | 60 ppb        |
| Selenium | 0.01 ppm        | No Relaxation |
| Mercury  | 0.001 ppm       | No Relaxation |
| Aluminum | 0.3 ppm         | 0.2 ppm       |
| Cadmium  | 0.003 ppm       | No Relaxation |
| Nickel   | 0.02 ppm        | No Relaxation |
| Chromium | 0.05 ppm        | No Relaxation |
| Lead     | 0.01 ppm        | No Relaxation |

# THE STUDY AREA AND GROUNDWATER QUALITY Location

The location of Patiala district of Punjab state (Figure 1) is defined by 29° 49' to 30° 40' north latitudes and 75° 58' to 76° 48' east longitudes. Total geographical area of the district is 3218 sq. km. It is divided into five administrative units known as *tehsils*, namely Patiala, Nabha, Ghanaur, Rajpura and Samana. There are eight-community blocks for development purpose of the district.



Figure 1. District Map of Punjab Showing District of Patiala.

# Geomorphology and Soil Types [20]

The area under Patiala district belongs to Indo-Gangetic alluvial plain and consists of three types of regions: the Upland plain, the Cho-infested Foothill Plain and the floodplain of the Ghaggar river. Its elevation varies in the range from 240 to 278 m (amsl or above mean sea level). Major parts of the district have arid or tropical climate and the soils are either light coloured or of brown variety. Generally, these soils are deficient in nitrogen, phosphorus, and potassium. In Patran and Samana blocks, soils are arid brown. These are calcareous in nature including *kankar* layers in most of them.

# **Ground Water Quality**

Patiala district is broadly classified under Indo-Gangetic alluvial plain of Quaternary age and it is a part of Ghaggar basin. The prospective aquifers are formed by alluvium formations, which contain fine to coarse sand and contain the ground water. Groundwater occurs under unconfined water table conditions in the shallow aquifer (up to 50m), whereas its occurrence in deeper aquifer is semi-confined or in confined condition. Traditional constructed irrigation wells that tapped the shallow reservoir have been decommissioned. However, this aquifer is being tapped by the hand pumps and shallow tube wells, which are widely used for domestic purposes. In order to determine the chemical quality of the ground water in the region, the Central Ground Water Board (CGWB) has conducted investigations. The district's groundwater is alkaline in composition. The electrical conductivity (EC) in the area ranges from 687 to 4100 micromhos/cm. Nitrate values range between 0.40–200 mg/l and fluoride concentration ranges from 0.20 to 2.8 mg/l [20] and observed beyond the safe limits suggested by the WHO, thus the ground water is harmful for human consumption at these places.

#### **METHODOLOGY**

Water samples were collected in 500 ml amber coloured superior quality plastic bottles from the area of study by the field staff of DWSS. The bottles used were subjected to double washing; first with soap solution and then with distilled water. Deionized water was used to rinse and dry these bottles. Before being collected in plastic bottles, the source's groundwater was permitted to flow freely. On the spot filtration of samples was done using the 0.2-micron filters. Samples were labelled after adding 2ml of conc. HNO<sub>3</sub> and transported to Regional Testing Water Laboratory in SAS Nagar (Mohali) for storage on the same day. Nitric acid (0.5M HNO<sub>3</sub>) helps in the recovery of total recoverable uranium. It helps in the preservation and digestion of uranium by breaking down the complexes so that the influence of poly-atoms is reduced to the minimum.

The standard procedure has been adopted for the analysis of uranium in collected water samples using Model 7700 Agilent Series ICP-MS in the DWSS laboratory set up in Mohali, Punjab. A radiofrequency inductively coupled plasma (ICP) is used to measure the generated uranium ions. A liquid-based analyte species is nebulized, while the ensuing aerosol is then carried by the gas argon into a plasma torch. A channel electron multiplier is used to quantitatively analyze the ions created by elevated temperatures in the plasma after they have been sorted based on their mass-to-charge ratios. By applying adjustments for background ions supplied by a plasma gas, substances, and components of the sample matrix, interferences must be examined and avoided. Standard analytical techniques were employed for estimation of Uranium and heavy metals in groundwater [4]. All analytical work was carried out using the Merck-grade chemicals while preparing solvents and standards. Ion Chromatography and Photospectrometer [9] were used for assessment of ionic contaminants concentration in groundwater. Tables 2 and 3

Table 2. Fluoride Content (>3ppm) in Groundwater of Patiala District

| Villages<br>Covered | Source of<br>Scheme | Depth   | Flouride<br>Content (ppm) |
|---------------------|---------------------|---------|---------------------------|
| Sahal               | Tube well           | 1200 ft | 8.517                     |
| Kattumajra          |                     | 3.14    | 46                        |
| Bhoglan             |                     | 3.610   |                           |

| Dhakansu Kalan     |           | 3.78    | 80    |
|--------------------|-----------|---------|-------|
| Akbarpur           | Tube well | 1200 ft | 3.470 |
| Bathonia Kalan     | Tube well | 1200 ft | 8.300 |
| Gandian            | Tube well | 1200 ft | 8.300 |
| Chalheri           | Tube well | 820 ft  | 3.540 |
| Chatar Nagar       | Tube well | 1050 ft | 8.240 |
| Gandian            | Tube well | 1200 ft | 8.300 |
| Ghagar Sarai       | Tube well | 932 ft  | 8.500 |
| Ghungran           | Tube well | 600 ft  | 5.800 |
| Hassanpur Jattan   | Tube well | 950 ft  | 4.940 |
| Kaboolpur          | Tube well | 950 ft  | 4.940 |
| Khairpur           | Tube well | 1200 ft | 5.800 |
| Sheikhan           |           |         |       |
| Khanpur<br>Gandian | Tube well | 750 ft  | 3.400 |
| Kutha Kheri        | Tube well | 300 ft  | 3.500 |
| Lochwan            | Tube well | 900 ft  | 5.850 |
| Lohakheri          | Tube well | 300 ft  | 3.500 |
| Magar              | Tube well | 900 ft  | 5.700 |
| Nardu              | Tube well | 750 ft  | 3.040 |
| Pahairpur          | Hand pump | 210 ft  | 3.560 |
| Pipal Mangoli      | Tube well | 900 ft  | 5.650 |
| Sahal              | Tube well | NA      | 7.806 |
| Salempur Jattan    | Tube well | 900 ft  | 9.220 |
| Salempur Sekhan    | Tube well | 980 ft  | 8.700 |
| Sanoulian          | Tube well | 970 ft  | 3.100 |
| Shahpur Raian      | Tube well | 600 ft  | 5.800 |
| Sheikhupur         | Tube well | 900 ft  | 5.700 |
| Sheikhupur         | Tube well | 210 ft  | 6.465 |
| Rajputan           |           |         |       |
| Bhappal            | Tube well | 1100 ft | 3.067 |
| Bhoglan            | Tube well | 900 ft  | 3.910 |
| Dhakansu Khurd     | Tube well | NA      | 3.701 |
| Dhakansu Khurd     | Tube well | 700 ft  | 3.520 |
| Dhakansu Majra     | Tube well | 970 ft  | 3.749 |
| Faridpur           | Tube well | 1080 ft | 3.020 |
| Gado Majra         | Tube well | 780 ft  | 4.080 |
| Islampur           | Tube well | 855 ft  | 3.326 |
| Jandoli            | Tube well | 870 ft  | 3.620 |
| Khanpur Baring     | Tube well | 540 ft  | 3.956 |
| Kharajpur          | Tube well | 870 ft  | 4.079 |
| Kheri Gandian      | Tube well | 510 ft  | 4.170 |
| Mangpur            | Tube well | 515 ft  | 3.020 |
| Mehma              | Tube well | 840 ft  | 5.350 |
| Nalas Kalan        | Tube well | 820 ft  | 3.220 |
| Nalas Khurd        | Tube well | 820 ft  | 3.220 |
| Rangian            | Tube well | 820 ft  | 3.220 |
| Sehri              | Tube well | 855 ft  | 4.050 |
| Shamdoo            | Tube well | 885 ft  | 3.280 |

| Sural Khurd | Tube well | 950 ft | 3.305 |
|-------------|-----------|--------|-------|
| Sural Khurd | Tube well | 900 ft | 3.240 |
| Alampur     | Tube well | 210 ft | 3.140 |

Table 3. Sulphate Content in Groundwater of Patiala District

| S.N. | Village               | Source of<br>Water | Sulphate<br>Content (ppm) |
|------|-----------------------|--------------------|---------------------------|
| 1    | Kulwanoo              | Tubewell           | 102.23                    |
| 2    |                       | Tubewell           | 64.41                     |
| 3    | Alampur<br>Lachkani   | Scheme T/W         | 92.26                     |
| -    |                       |                    |                           |
| 4    | Kathmathi             | Scheme T/W         | 117.92                    |
| 5    | Shankarpur            | Raw Water RO       | 168.90                    |
| 6    | Rasauli               | Tubewell           | 64.88                     |
| 7    | Harpalpur             | Tubewell           | 74.21                     |
| 8    | Bhoglan               | Tubewell           | 233.51                    |
| 9    | Dhabali               | Tubewell           | 92.47                     |
| 10   | Kharajpur             | Tubewell           | 178.66                    |
| 11   | Kotla                 | Tubewell           | 91.02                     |
| 12   | Jhansla               | Tubewell           | 64.77                     |
| 13   | Fatehpur Garhi        | Tubewell           | 64.77                     |
| 14   | Nalas Kalan           | Tubewell           | 92.26                     |
| 15   | Pehar Kalan           | Scheme T/W         | 4980.0                    |
| 16   | Pehar Khurd           | Scheme T/W         | 4980.0                    |
| 17   | Faridpur              | Tubewell           | 245.87                    |
| 18   | Faridpur              | Tubewell           | 245.20                    |
| 19   | Mehergarh Batta       | Raw Water RO       | 206.20                    |
| 20   | Mehergarh Batti       | Raw Water RO       | 206.20                    |
| 21   | Dhakansu Majra        | Tubewell           | 109.06                    |
| 22   | Kaloli                | Tubewell           | 23.93                     |
| 23   | Raipur                | Raw Water RO       | 93.35                     |
| 24   | Islampur              | Tubewell           | 752.20                    |
| 25   | Islampur              | Tubewell           |                           |
| 26   | Jansua                | Scheme T/W         | 105.43                    |
| 27   | Purbia Basti          | Scheme T/W         | 294.15                    |
| 28   | Kalyan                | Scheme T/W         | 294.15                    |
| 29   | Dera Bahmna Inderpura | Scheme T/W         | 294.15                    |

#### DISCUSSION OF RESULTS

# **Uranium Contamination**

Drinking water containing uranium poses both radiological (carcinogenic) and chemical (noncarcinogenic) risks. The assessment of radiological and chemical risks due to ingestion of uranium are calculated by using the standard method developed by the USEPA [21]. Uranium content in groundwater of Patiala district and the corresponding Health Risk Factors are listed in Table 4.

All of the findings of our investigation are published elsewhere. The radiological danger and extra cancer risk owing to consumption of natural uranium in the drinking water of 50 habitations of the Patiala area have been determined. [4]. Our investigation revealed that Patiala district of Punjab has 250% higher cancer risk than the national average with the likelihood of 200 cancers occurring per million of population. Chemical toxicity of uranium is expressed in terms of hazard quotient which needs to be less than 1. However, it is > 1 in 9 villages of Patiala district (Table 4).

Volume 10, Issue 1 ISSN: 2394-7306

# **Lead and Nickel Contamination**

Lead is one of the most toxic heavy metals; hence its mitigation is a major problem in Patiala district. Lead contamination of groundwater of Patiala district varies from .024 to 0.19 mg/L (ppm) and the average value is .031 ppm (Table 5). The highest value of Lead (0.190 mg/l) in groundwater is recorded in Punia Khana village. The AL and PL (permissible) limits allowed for groundwater in India are 0.01 ppm. The US EPA (Environmental Protection Agency) has set a zero lead contamination level objective for drinking water because lead is a hazardous metal that can be damaging to human health even at low exposure levels. Its hazard quotients are not calculated as it is harmful at all levels.

Patiala district has high contamination of Nickel and Aluminium in groundwater as reported earlier [6]. Nickel contamination in groundwater varies from 0.020 to 0.190 mg/L, with an average level of 0.030 mg/L.

Table 4. Uranium Content in Groundwater of Patiala District and Corresponding Risk Factors.

| S.N. | Location                 | Source             | Depth (m) | U Conc.<br>(ppb) | U Conc.<br>(Bq l-1) | Excess<br>cancer<br>risk 10-4 | LADD<br>(μg kg-1<br>day-1) | Hazard<br>Quotient |
|------|--------------------------|--------------------|-----------|------------------|---------------------|-------------------------------|----------------------------|--------------------|
| 1    | Ahru Kalan               | NULL               | NULL      | 267.00           | 6.75                | 7.56                          | 15.45                      | 3.41               |
| 2    | Ahru Khurd               | NULL               | NULL      | 267.00           | 6.75                | 7.56                          | 15.45                      | 3.41               |
| 3    | Daun Kalan               | Tubewell           | 285.00    | 127.60           | 3.23                | 3.61                          | 7.38                       | 1.63               |
| 4    | Dera Xen Retd.           | Tubewell           | 118.26    | 87.76            | 2.22                | 2.49                          | 5.08                       | 1.12               |
| 5    | Chunagra                 | Tubewell           | 118.26    | 87.76            | 2.22                | 2.49                          | 5.08                       | 1.12               |
| 6    | Todarwal                 | NULL               | NULL      | 83.34            | 2.11                | 2.36                          | 4.82                       | 1.06               |
| 7    | Purbia Basti             | Tubewell           | NULL      | 82.93            | 2.10                | 2.35                          | 4.80                       | 1.06               |
| 8    | Kalyan                   | Tubewell           | NULL      | 82.93            | 2.10                | 2.35                          | 4.80                       | 1.06               |
| 9    | DeraBahmnaInderp<br>ura  | Tubewell           | NULL      | 82.93            | 2.10                | 2.35                          | 4.80                       | 1.06               |
| 10   | Dera Xen Retd.           | Tubewell           | 150.00    | 76.10            | 1.92                | 2.16                          | 4.40                       | 0.97               |
| 11   | Chunagra                 | Tubewell           | 150.00    | 76.10            | 1.92                | 2.16                          | 4.40                       | 0.97               |
| 12   | Birdhno                  | NULL               | NULL      | 75.80            | 1.92                | 2.15                          | 4.39                       | 0.97               |
| 13   | Dera Bahmna<br>Inderpura | NULL               | NULL      | 73.76            | 1.86                | 2.09                          | 4.27                       | 0.94               |
| 14   | Kalyan                   | NULL               | NULL      | 73.76            | 1.86                | 2.09                          | 4.27                       | 0.94               |
| 15   | Purbia Basti             | NULL               | NULL      | 73.76            | 1.86                | 2.09                          | 4.27                       | 0.94               |
| 16   | AsseMajra                | NULL               | NULL      | 73.76            | 1.86                | 2.09                          | 4.27                       | 0.94               |
| 17   | Inderpura                | NULL               | NULL      | 73.76            | 1.86                | 2.09                          | 4.27                       | 0.94               |
| 18   | Rathian                  | NULL               | NULL      | 72.93            | 1.84                | 2.07                          | 4.22                       | 0.93               |
| 19   | Khanora                  | NULL               | NULL      | 68.81            | 1.74                | 1.95                          | 3.98                       | 0.88               |
| 20   | Dhingi                   | NULL               | NULL      | 67.04            | 1.69                | 1.90                          | 3.88                       | 0.86               |
| 21   | Seona                    | NULL               | NULL      | 66.54            | 1.68                | 1.88                          | 3.85                       | 0.85               |
| 22   | Wazidpur                 | NULL               | NULL      | 62.50            | 1.58                | 1.77                          | 3.62                       | 0.80               |
| 23   | Dera Saini Majra         | NULL               | NULL      | 62.50            | 1.58                | 1.77                          | 3.62                       | 0.80               |
| 24   | Paidan                   | Tubewell           | 165.00    | 61.10            | 1.54                | 1.73                          | 3.54                       | 0.78               |
| 25   | Ransihpura               | NULL               | NULL      | 61.00            | 1.54                | 1.73                          | 3.53                       | 0.78               |
| 26   | Raipur                   | Raw Water<br>of RO | 42.67     | 60.63            | 1.53                | 1.72                          | 3.51                       | 0.77               |
| 27   | Rasulpur                 | Hand Pump          | 70.00     | 59.30            | 1.50                | 1.68                          | 3.43                       | 0.76               |
| 28   | Haripur Jhugian          | Hand Pump          | 70.00     | 59.30            | 1.50                | 1.68                          | 3.43                       | 0.76               |
| 29   | Katlahar                 | Hand Pump          | 70.00     | 59.30            | 1.50                | 1.68                          | 3.43                       | 0.76               |
| 30   | Budanpur                 | NULL               | NULL      | 51.33            | 1.30                | 1.45                          | 2.97                       | 0.66               |

| 31    | Sarkari Farm       | NULL      | NULL   | 51.33 | 1.30 | 1.45     | 2.97 | 0.66 |
|-------|--------------------|-----------|--------|-------|------|----------|------|------|
| 32    | Khaktan Khurd      | NULL      | NULL   | 51.33 | 1.30 | 1.45     | 2.97 | 0.66 |
| 33    | Bugga Khurd        | NULL      | NULL   | 50.75 | 1.28 | 1.44     | 2.94 | 0.65 |
| 34    | Hariyou Khurd      | Tubewell  | NULL   | 49.50 | 1.25 | 1.40     | 2.86 | 0.63 |
| 35    | Ohjhan             | Hand Pump | 80.00  | 49.30 | 1.25 | 1.40     | 2.85 | 0.63 |
| 36    | Rasauli            | Tubewell  | NULL   | 46.86 | 1.18 | 1.33     | 2.71 | 0.60 |
| 37    | DeraShingara Singh | Hand Pump | 90.00  | 42.20 | 1.07 | 1.20     | 2.44 | 0.54 |
| 38    | Birdhno            | Tubewell  | 90.00  | 42.00 | 1.06 | 1.19     | 2.43 | 0.54 |
| 39    | Uppli              | NULL      | NULL   | 41.76 | 1.06 | 1.18     | 2.42 | 0.53 |
| 40    | Paror              | NULL      | NULL   | 41.76 | 1.06 | 1.18     | 2.42 | 0.53 |
| 41    | Kathmathi          | Tubewell  | NULL   | 39.94 | 1.01 | 1.13     | 2.31 | 0.51 |
| 42    | Gandian            | Tubewell  | 300.00 | 39.30 | 0.99 | 1.11     | 2.27 | 0.50 |
| 43    | Bathonia Kalan     | Tubewell  | 300.00 | 39.30 | 0.99 | 1.11     | 2.27 | 0.50 |
| 44    | Bathonia Khurd     | Tubewell  | 300.00 | 39.30 | 0.99 | 1.11     | 2.27 | 0.50 |
|       | Paror              | Tubewell  | 165.00 | 38.90 | 0.98 | 1.10     | 2.25 | 0.50 |
| 46    | Uppli              | Tubewell  | 165.00 | 38.90 | 0.98 | 1.10     | 2.25 | 0.50 |
|       |                    |           |        |       |      |          |      |      |
| 47    | Ghungran           | Tubewell  | 200.00 | 38.80 | 0.98 | 1.10     | 2.24 | 0.50 |
| 48    | Shahpur Raian      | Tubewell  | 200.00 | 38.80 | 0.98 | 1.10     | 2.24 | 0.50 |
| 49    | Balamgarh          | NULL      | NULL   | 38.77 | 0.98 | 1.10     | 2.24 | 0.50 |
| 50    | Uppli              | NULL      | NULL   | 38.00 | 0.96 | 1.08     | 2.20 | 0.49 |
| Avera | ige                |           | 68,70  |       | 1.74 | 1.95 3.9 | 7    | 0.88 |

Table 5. Lead Contamination in Groundwater of Patiala District (Acceptable limit 0.01 mg/l).

| S.N. | Villages surveyed    | Source of ground water | Depth (m) | Lead (mg/l) |
|------|----------------------|------------------------|-----------|-------------|
| 1    | Punia Khana          | Tubewell               | 235       | 0.190       |
| 2    | Dera Musalmana       | Handpump               | 90        | 0.049       |
| 3    | Kalwa                | Handpump               | 90        | 0.049       |
| 4    | Alampur              | Handpump               | 70        | 0.048       |
| 5    | Kalburshan           | Tubewell               | 250       | 0.039       |
| 6    | Sehajpur Khurd       | Tubewell               | 200       | 0.033       |
| 7    | Sehajpur Kalan       | Tubewell               | 200       | 0.033       |
| 8    | Dulatpur Fakiran     | Tubewell               | 150       | 0.032       |
| 9    | Mirjapur             | Tubewell               | 150       | 0.032       |
| 10   | Kakrala              | Tubewell               | 500       | 0.031       |
| 11   | Hassanpur Kamboan    | Tubewell               | 180       | 0.029       |
| 12   | Paror                | Tubewell               | 165       | 0.028       |
| 13   | Uppli                | Tubewell               | 165       | 0.028       |
| 14   | Nandpur Kesho        | Tubewell               | 154       | 0.028       |
| 15   | Sadh Majra           | Tubewell               | 138       | 0.028       |
| 16   | Gurdialpura          | Tubewell               | 138       | 0.028       |
| 17   | Bahmna               | Tubewell               | 200       | 0.027       |
| 18   | Behmna/Bajigar Basti | Tubewell               | 200       | 0.027       |
| 19   | Harijan Basti        | Tubewell               | 200       | 0.027       |
| 20   | Kheri Bheema         | Tubewell               | 116       | 0.027       |
| 21   | Niamatpur            | Tubewell               | 242       | 0.026       |
| 22   | Shadipur             | Tubewell               | 242       | 0.026       |

|         |                    | 1        | 1     |       |
|---------|--------------------|----------|-------|-------|
| 23      | Alampur            | Tubewell | 200   | 0.026 |
| 24      | Balamgarh          | Tubewell | 200   | 0.026 |
| 25      | Fatan Majri        | Tubewell | 277   | 0.026 |
| 26      | Basti Harchandpura | Tubewell | 250   | 0.026 |
| 27      | Nanhera            | Tubewell | 250   | 0.026 |
| 28      | Talwandi Malik     | Tubewell | 200   | 0.026 |
| 29      | Sullar             | Tubewell | 198   | 0.026 |
| 30      | Thakurgarh         | Tubewell | 250   | 0.025 |
| 31      | Hussainpur         | Tubewell | 250   | 0.025 |
| 32      | Dera Alipur        | Tubewell | 250   | 0.025 |
| 33      | Massingan          | Tubewell | 273   | 0.025 |
| 34      | BirKauli           | Tubewell | 250   | 0.025 |
| 35      | Rongla             | Tubewell | 107   | 0.025 |
| 36      | Lang               | Tubewell | 107   | 0.025 |
| 37      | Dera Banta Singh   | Tubewell | 74    | 0.025 |
| 38      | Lalgarh            | Tubewell | 74    | 0.025 |
| 39      | Dera Balbir Singh  | Tubewell | 74    | 0.025 |
| 40      | Bahadurgarh        | Tubewell | 74    | 0.025 |
| 41      | Danipur            | Tubewell | 74    | 0.025 |
| 42      | Dodra              | Tubewell | 150   | 0.025 |
| 43      | Gajewas            | Tubewell | 250   | 0.025 |
| 44      | Basti Channa       | Tubewell | 126   | 0.025 |
| 45      | Sapperheri         | Tubewell | 126   | 0.025 |
| 46      | Assmanpur          | Tubewell | 126   | 0.025 |
| 47      | Patti Sodhian      | Tubewell | 200   | 0.025 |
| 48      | Shahpur Afgana     | Handpump | 70    | 0.024 |
| 49      | Rajgarh            | Tubewell | 240   | 0.024 |
| 50      | Rattanheri         | Tubewell | 240   | 0.024 |
| Average |                    |          | 0.031 |       |
|         |                    |          |       |       |

#### Fluoride Contamination [3]

There is a global problem with fluoride pollution of groundwater. Its abundance varies throughout India and Punjab. The Fluoride contamination shows a variation from 3.140 to 8.517 ppm in groundwater of Patiala district. The distribution of fluoride in the groundwater of the Patiala district and associated non-carcinogenic health risks to the local population (men, women, and children individually) during the fluoride endemic zone of the Patiala district have been documented in our earlier study [10]. According to the study, fluoride levels are frequently beyond the allowed level of 1.5 ppm in the communities that were sampled. Based on our study, which shows that the hazard quotient of fluoride (HQFluoride) is bigger than the unitary value, an incidence of painful fluorosis and chronic health hazards is predicted. Children are most susceptible to fluoride poisoning, followed by men and women, based on data. The results obtained [10] are in line with current trends that show an increase in dental care, skeleton fluorosis, and liver functional impairment issues among children and adults in the examined region. [22].

# **Nitrate Contamination [9]**

The highest level of  $NO_3$  content of 2553 mg/L has been recorded in two villages of Patiala district. This figure is significantly higher and causes worry when compared to the limitations established by the World Health Organization (50 mg/L) and the Bureau of Indian Standards (45 mg/L). Geogenic and human-made sources are both responsible for the  $NO_3$  in groundwater. Serious health hazards, especially in children (< 5 years), are posed due to consumption of high  $NO_3$  containing water. The

non-carcinogenic health risks of high  $NO_3$  intake have been estimated using US-EPA model for both adults and children [23, 24].  $HQ_{Nitrate}$  values have been found significantly higher than 1 in most of the habitations studied both for adults and children. The HQ values for adults and children are 45.59 and 106.38, respectively, for Patiala district which must set the alarm bell ringing for the safety of children in this district.

# **Sulphate Contamination**

Sulphate concentration in groundwater has not been considered under mandatory or emerging parameters by DWSS Report [19]. However, if its concentration is higher than 400 ppm, its health hazard cannot be ignored. BIS has set Al and PL limits of 200 ppm and 400 ppm, respectively, for Sulphate in water. Out of 29 habitations studied in Patiala district, 12 have Sulphate values higher than 200 ppm and only 4 with values >400 ppm. In case of 2 villages, Pehar Kalan and Peher Khurd, Sulphate concentration is 4980.0 ppm, which is 12 times the PL value; hence a "Hot Spot" to be considered for immediate action. What causes this anomaly in sulphate concentration in groundwater of these villages? It is a matter for discussion by expert epidemiologists.

# HEALTH HAZARDS OF GROUNDWATER CONTAMINANTS IN PATIALA DISTRICT

Malwa belt of Punjab is a cancer belt of India due to high occurrence of cancer in some districts. Because of its chemical and radioactive properties, uranium is a radioactive heavy metal that poses a health risk. The most vulnerable organ to uranium's chemical toxicity is the kidneys, and at lower exposure levels, it generally outweighs its radiation toxicity [25]. From the LADD and hazard quotient values previously reported in our work, the chemical toxicity has been estimated [4].

Lead is tenacious and over time, it may bioaccumulate in the body. All ages are adversely affected by lead in water, but young children, newborns, and fetuses are most susceptible. In comparison to adults, children are more susceptible to the physical and behavioral effects of lead exposure. Low exposure levels have been associated with learning impairments, shorter stature, hearing impairment, and problems with the development and function of blood cells in children, in addition to harming the central and peripheral nervous systems. [26].

Nickel compounds are, in general, inactive in bacterial mutation assays but not so in mammalian cell systems [27]. Nickel-induced reactions including cell toxicity were noted in all investigations utilizing mammalian cells to study gene mutation. There is a great deal of interest in the subject of the carcinogenicity of nickel compounds in lab animals [28].

The fundamental justification for dental and skeletal fluoridation is consumption of fluoride at levels above the recommended limit. According to estimates, fluoride-contaminated water is to blame for the major health issues of 62 million Indians, especially 6 million children [29]. There are 6 million persons impacted by skeletal fluoridation in 17 of the 32 states in India that have been designated as endemic locations. Patiala district has been identified as a 'Hot Spot' of fluoride in Punjab [10]. Pain in the bones and joints, muscle weakness, occasional pain, joint stiffness, and chronic weariness are signs of skeletal fluoridise in its early stages. Pain in the bones and joints, muscle weakness, occasional pain, joint stiffness, and chronic weariness are signs of skeletal fluoridise in its early stages. deformities in RBCs, excessive thirst, headache, skin rashes, nervousness, neurological manifestations, depression, gastrointestinal problems, urinary tract malfunctioning, nausea, abdominal pain, tingling sensation in fingers and toes, reduced immunity, repeated abortions or still births, male sterility, etc. [30].

The ingestion of water with high NO<sub>3</sub> content can cause various health issues in affected population, for example, methemoglobinemia, neural effects, gastric and respiratory problems, etc. Infants (< 6 months) compared to children are always at greater risk for NO<sub>3</sub> toxicity mainly due to their smaller body weight and lower metabolic activities [31]. The link between the large intake of nitrate with thyroid dysfunction and gastrointestinal cancer has been established by some studies [32]. There is an urgent need to undertake an epidemiological study of Patiala district.

Like other ionic contaminants, excess of sulphates in water can cause health problems. Drinking water with excessive sulphate (>500 ppm) causes laxative effect, diarrhea and dehydration, but at moderate levels it is harmless. Infants are often more sensitive to sulphate contamination than adults. Ingestion of 8 g of sodium sulphate and 7 g of magnesium sulphate caused catharsis in adult males. People consuming drinking-water containing sulphate in concentrations exceeding 600 mg/litre are reported to suffer from cathartic effects [33]. Excessive sulphate is a cause of sudden deaths and an outbreak of diarrhea in horses [34].

### **CONCLUSIONS**

- 1. Several villages of Patiala district have Uranium concentration in groundwater higher than the safe limits of 30 ppb and 60 ppb recommended by the WHO and AERB, respectively.
- 2. The source of uranium enhancement in Patiala district of Punjab may be attributed to mobilization of uranium from the Siwaliks [35] by Ghaggar river and its tributaries, for example, Patiala Ki Rao, a seasonal stream flowing within the limits of city.
- 3. The cause of cancer is not yet fixed precisely due to Uranium in water. However, kidneys are most sensitive and affected by the chemical toxicity of uranium.
- 4. Patiala district is a 'Hot Spot' for Fluoride, Nitrate and Sulphate contaminants in water.
- 5. Out of all the districts of Punjab, Patiala demands the attention of DWSS and other concerned agencies of the Punjab government to implement proper cost-effective mitigation measures to reduce the current and future chronic health risks associated with high levels of Uranium and other heavy metals, and ionic contaminants like Fluoride, Nitrate, and Sulphate in the groundwater.

# Acknowledgements

The author is grateful to Secretary, Punjab Water Supply and Sanitation Department, Govt. of Punjab, and Director Water Quality, DWSS, Phase 2, Mohali, for supply of data on heavy metals and Nitrate concentration in groundwater. He offers his sincere thanks to his research collaborators, Prafulla Kumar Sahoo in CUP Bathinda and Sarwar Nizam and Indra Sekhar Sen of IIT Kanpur.

# **REFERENCES**

- 1. Virk HS. Uranium Anomalies in groundwater of Sangrur district of Punjab (India) for cancer risk assessment. *Current Science* 2017; 113(9): 1661-1663p.
- 2. Virk HS. A Crisis Situation Due to Uranium and Heavy Metal Contamination of Ground Waters in Punjab State, India: A Preliminary Report. *Research & Reviews: A Journal of Toxicology*. 2017; 7(2): 6-11p.
- 3. Virk HS. Fluoride Contamination of Ground Waters of Two Punjab Districts and Its Implications. *Omni Science*. 2018; 8(2): 25-31p.
- 4. Virk HS. Uranium Content Anomalies in Groundwater of Patiala District of Punjab (India) for the Assessment of Excess Cancer Risk. *Research & Reviews: Journal of Oncology and Hematology*. 2019; 8(2): 13–19p.
- 5. Virk HS. Groundwater Contamination due to Heavy Metals and other Pollutants in Amritsar District of Punjab. *Research & Reviews: A Journal of Toxicology*. 2019; 9(3): 19-28p.
- 6. Virk HS. Heavy Metals Contamination of Groundwater in Patiala District of Punjab State, India. *Research & Reviews: A Journal of Toxicology.* 2019; 9(3), 34-42p.
- 7. Virk HS. Groundwater Contamination in Punjab due to Arsenic, Selenium and Uranium Heavy Metals. *Research & Reviews: A Journal of Toxicology*. 2020; 10(1), 1-6p.
- 8. Sahoo P, Virk HS, Powell M, Kumar R, Pattanaik J, Salomao G, Mittal S and Tiwari RP (2021) Meta-analysis of uranium contamination in groundwater in the alluvial plains of Punjab, northwest India: status, health risk, and hydrogeochemical processes. *Science of Total Environment*. 2021; 807, 151753p; https://doi.org/10.1016/j.scitotenv.2021.151753
- 9. Virk HS. Groundwater Contamination in Punjab due to High Levels of Nitrate (NO3-) and its Health Hazards: A Preliminary Report. *Research & Reviews: A Journal of Toxicology*. 2022; 12(3): 18–26.

- 10. Nizam S, Virk HS, Sen IS. High levels of fluoride in groundwater from Northern parts of Indo-Gangetic plains reveals detrimental fluorosis health risks. *Environmental Advances* Online: https://doi.org/10.1016/j.envadv.2022.100200
- 11. WHO, Guidelines for Drinking Water Quality-II. Environmental Health Criteria, Geneva, 2006.
- 12. IARC Monographs. A Review of Human Carcinogens-Part C: Metals, Arsenic, Dusts, and Fibers. 2009.
- 13. Sood A. Groundwater High in Arsenic, No Steps to Protect Food Chain: Situation Alarming in Majha Districts, Observes Dept. Report. Chandigarh: *The Tribune*; 2018. [Online] Available from www.tribuneindia.com [Accessed on Feb 2018].
- 14. Singh J. *Heavy Metals, Deep Impact*. Chandigarh: *The Tribune*; 2018. [Online]. Available from www.tribuneindia.com [Accessed on Feb 2018].
- 15. Vijay M. *State Groundwater Most Contaminated*. Chandigarh: *The Tribune*; 2018. [Online] Available from www.tribuneindia.com [Accessed on Feb 2018].
- 16. Ministry of Water Resources, Government of India. ejalshakti.gov.in/jjm/jjmreports.
- 17. World Health Organization (WHO). *Drinking Water Guidelines and Standards*. Chapter 5. Geneva: Switzerland; 1993; Guidelines for Third Edition Volume 1 Recommendations, WHO, Geneva, 2004. https://www.who.int/water\_sanitation\_health/dwq/GDWQ2004web.pdf; Guidelines for Drinking-water Quality Fourth Edition, WHO, Geneva, 2011: https://apublica.org/wp-content/uploads/2014/03/Guidelines-OMS-2011.pdf.
- 18. The Bureau of Indian Standards (BIS). *Indian Standard Drinking Water Specification (Second Revision)*. New Delhi: Publication Unit, BIS; May 2012.
- 19. Annual Water Quality Report. DWSS, Government of Punjab. 2021, 3p.
- 20. Patiala District, Punjab. Report of Central Ground Water Board, Ministry of Water Resources. Government of India, North-Western Region, Chandigarh; 2013.
- 21. United States Environmental Protection Agency. National primary drinking water regulations, radionuclides. Final Rule. Washington, DC: USEPA; 2000.
- 22. Kaur, S., Kaur, A., Singh, R., Avasthi, A., Fatima, A., 2020. Prevalence of dental caries in 5- to 12-year-old school children of Patiala City, Punjab. Dent. J. Adv. Stud. 08, 01–04. https://doi.org/10.1055/s-0040-1703026.
- 23. USEPA. Risk assessment guidance for superfund: process for conducting probabilistic risk assessment (volume III—part a, 540-R-502-002), 2001.
- 24. USEPA. Guidelines for Carcinogen Risk Assessment Review draft. NCEA-F-0644, Jul. 1999. http://www.epa.gov/cancerguidelines/draft-guidelines-carcinogen-ra-1999.htm
- 25. International Commission on Radiological Protection (ICRP). *Annals of the ICRP* 23(2). information-about-lead-drinking-water.
- 26. Basic Information about Lead in Drinking Water, US EPA. www.epa.gov/.../basic information-about-lead-drinking-water.
- 27. WHO, Nickel in Drinking-water Background document for development of WHO Guidelines for Drinking-water Quality, 2005. www.who.int/water\_sanitation\_health/ gdwqrevision/nickel.
- 28. Aitio A. Nickel and nickel compounds. Stockholm, National Institute of Working Life, Nordic Council of Ministers, The Nordic Expert Group for Criteria Documentation of Health Risks from Chemicals, 1995; 61 p. (*Arbete och hälsa* 26).
- 29. Andezhath SK, Ghosh G. Fluorosis management in India: the impact due to networking between health and rural drinking water supply agencies. *IAHS-AISH Publication*. 2000; 260: 159–165p.
- 30. Meenakshi, Maheshwari RC. Fluoride in drinking water and its removal. *Journal of Hazardous Materials*. 2006; B137: 456–463p.
- 31. Chen J, Wu H, Qian H (2016) Groundwater nitrate contamination and associated health risk for the rural communities in an agricultural area of Ningxia, Northwest China. *Expo Health* 2016, 8(3): 349–359p.
- 32. Powlson EL Hansell MJ, Sloan NL, et al. Women's nutritional status, iron consumption and weight gain during pregnancy in relation to neonatal weight and length in West Java, Indonesia. *Int J Gynecol Obstet.* 1995; 48(Suppl):103–119p.

- 33. WHO Report. Sulfate in Drinking-water. *Background document for development of WHO Guidelines for Drinking-water Quality*. 2004.
- 34. Burgess BA, Lohmann KL, Blakley BR. Excessive sulfate and poor water quality as a cause of sudden deaths and an outbreak of diarrhea in horses. *Can Vet J.* 2010; 51(3): 277–282p.
- 35. Patnaik R, Lahiri S, Chahar V, *et al.* Study of uranium mobilization from Himalayan Siwaliks to the Malwa region of Punjab state in India. *J Radioanal Nucl Chem.* 2015; 308(3): 913–18p. DOI 10.1007/s10967-015-4578-3.