

Obtaining your first spin-echo with a low-cost open-source MRI system

Pablo Irarrazaval, Joshua Harper, Belén Bravo

Electrical Engineering Department
Institute for Biological and Medical Engineering
Pontificia Universidad Católica de Chile

Sponsor and organizer: LIBRE Hub

The Latin American Hub for Bioimaging Through Open Hardware (LIBRE Hub) is a training network for open source bioimaging hardware in Latin America with the goal to empower regional researchers through practical workshops, seminars, networking, and online resources adapted to local needs and re-published in local languages.

Lecturers

Bringing MRI technology to Paraguay

In the Sustainable MRI lab, our focus is on developing affordable, accessible, and sustainable magnetic resonance imaging technology.

We are currently building the first open-source, low field MRI system in South America in close collaboration with Leiden University Medical Center, the United Consortium, Yale University, and Mbarara University of Science and Technology.

Joshua Harper, PhD (Penn State University)

Belén Bravo, MSc (UC)

Program

Time		Activi	ty		
16:00	16:25	1. Intro	roduction to MRI, motivation, RF chain and spin-echo sequence		
			Field mapping		
			Center frequency (demonstration)		
			Ppm in DSV		
			Selecting an appropriate phantom		
16:25	16:40	2. First RF coil (start small)			
			Noise (measurements)		
			50 ohm noise for baseline		
			Noise level with coil attached		
16:40	17:40	3. Tun	3. Tune and match		
			Theoretical calculations to start		
			Why only add capacitance and not inductance or resistance?		
			VNA process flow		
17:40	17:55	Break			
17:55	19:00	4. Find	inding the echo		
			Setting the initial 90 and 180 degree pulse (6 dB apart)		
			Iterating through frequencies		
			Identifying the echo		
			Optimizing power		
			Echo height characteristics		

Overview of MRI

Polarization - Excitation - Readout - Reconstruction

$$M_z^0 = |\vec{M}| = \frac{\gamma^2 \hbar^2 B_0 N_s}{4KT_s}$$

Overview of MRI

Polarization - Excitation - Readout - Reconstruction

$$\vec{B}_1(t) = B_1^e(t) [\cos(\omega_{\text{rf}} t + \varphi)\hat{\imath} - \sin(\omega_{\text{rf}} t + \varphi)\hat{\jmath}]$$

Overview of MRI

Polarization – Excitation – Readout – Reconstruction

$$S(t) = \int M_{xy}(\vec{r}, 0)e^{-i\gamma \int_0^t \Delta B(\vec{r}, \xi)d\xi}d\vec{r}$$

Relaxation

Free induction decay

Overview of MRI: off-resonance in Gradient Echo

Polarization – Excitation – Readout – Reconstruction

$$S(t) = \int M_{xy}(\vec{r}, 0) e^{-i\gamma \int_0^t \vec{G}(\xi) \cdot \vec{r} d\xi - i\gamma t \Delta B(\vec{r})} d\vec{r}$$

(B) Image signal loss due to dephasing

Overview of MRI: measuring the field

$$\gamma = 42.51 \text{ MHz/T}$$

$$f_o = \gamma B_o \text{ Hz}$$

Overview of MRI: off-resonance in Spin Echo

Polarization - Excitation - Readout - Reconstruction

RF excitation + readout

