Prova de Reposição de Cálculo III – 17/12/2019 Prof. Rafael B. de R. Borges

Aluno:	
Matrícula:	Turma: 2

Instruções para a prova:

- Só escreva nesta capa o que foi pedido acima.
- Você pode resolver as questões na ordem que quiser.
- Resolva as questões a lápis e escreva a caneta apenas a resposta final.
- Faça uma prova organizada. Há folhas de sobra para você fazer as questões. E, caso falte, é só pedir que eu grampeio mais.
- Parênteses são muito importantes. Use-os. Exemplos:
 - "x vezes -6" é $x \cdot (-6)$, não $x \cdot -6$, ou, pior, x 6.

■
$$x - \frac{1}{y+2}$$
 é $\frac{x \cdot (y+2) - 1}{y+2}$, não $\frac{x \cdot y + 2 - 1}{y+2}$.

- Manipulações algébricas absurdas serão (muito) descontadas. As crianças do nosso Brasil dependem de que você saiba Matemática!
- Lembre-se: é melhor não simplificar, do que tentar e se complicar!
- Mas você tem que saber o valor de expressões básicas como sen 0, $\cos \pi$, $\ln 1$, e^0 etc.
- São proibidos: folha própria de rascunho, calculadora, e celular. Guarde-os na mochila, que deve ser guardada na frente da sala.
- Não serão aceitas respostas sem desenvolvimento. Mostre que você sabe o que está fazendo.
- Não desgrampeie o caderno de provas.

Questão 1. Seja C a curva parametrizada por $\langle x, y, z \rangle = \langle 2 \operatorname{sen}(t), t, -2 \operatorname{cos}(t) \rangle$,

$$0 \le t \le \pi$$
. Qual o valor de $\int_C xyz \, ds$?

A.
$$\sqrt{5}\pi \leftarrow$$

C.
$$-\sqrt{3}\pi$$

E.
$$\sqrt{2}\pi$$

D.
$$\pi$$

Questão 2. Seja C a curva parametrizada por $\vec{r}(t) = \langle 11t^4, t^3 \rangle$, $0 \le t \le 1$, e

$$\vec{F}(x,y) = \langle xy, 3y^2 \rangle$$
. Qual o valor de $\int_C \vec{F} \cdot d\vec{r}$?

D.
$$45 \leftarrow$$

Questão 3. Seja C a fronteira da região limitada pelas parábolas $y = x^2$ e $x = y^2$. Qual o valor de $\oint_C (y + e^{\sqrt{x}}) dx + (2x + \cos(y^2)) dy$?

C.
$$1/6$$

$$\mathbf{E.} \ 1/3 \longleftarrow$$

B.
$$1/12$$

D.
$$1/2$$

 $\mathbf{Quest\~ao}$ 4. Seja S a superfície da caixa delimitada pelos planos coordenados e pelos planos x=3, y=2 e z=1. Qual o valor do fluxo de $\vec{F}=\langle xye^2, xy^2z^3, ye^z\rangle$ através de S?

C.
$$1/6$$

E.
$$1/3$$

D.
$$1/2$$

F. N.D.A.
$$\leftarrow$$

Solução:

$$6e + 6e^2 - \frac{3}{2}.$$

Questão 5. Seja $\alpha = xz dx + \sqrt{2y^2 + 2z^2} dy + \frac{z^2 + 1}{x^2 + 1} dz$ uma forma diferencial em \mathbb{R}^2 (errata: deveria ser \mathbb{R}^3). Quanto vale $d\alpha$ em (x,y,z) = (1,1,1)?

A.
$$2 dy^{\wedge} dz + 3 dz^{\wedge} dx - 4 dx^{\wedge} dy$$

D.
$$5 dy^{\wedge} dz + 8 dz^{\wedge} dx - 3/2 dx^{\wedge} dy$$

B.
$$2/3 \, dy^{\hat{}} dz - dz^{\hat{}} dx - 3/2 \, dx^{\hat{}} dy$$
 E. $2/3 \, dy^{\hat{}} dz + 3 \, dz^{\hat{}} dx - dx^{\hat{}} dy$

E
$$2/3 du^{\wedge} dz + 3 dz^{\wedge} dx - dz^{\wedge} du$$

C.
$$2 dy^{\wedge} dz - 3 dz^{\wedge} dx + 4 dx^{\wedge} dy$$

$$\mathbf{F.\ N.D.A.} \leftarrow$$

Solução:

$$d\alpha(x,y,z) = x dz^{\wedge} dx + \frac{4z}{2\sqrt{2y^2 + 2z^2}} dz^{\wedge} dy - \frac{2x(z^2 + 1)}{(x^2 + 1)^2} dx^{\wedge} dz =$$

$$= -\frac{4z}{2\sqrt{2y^2 + 2z^2}} dy^{\wedge} dz + \left(x + \frac{2x(z^2 + 1)}{(x^2 + 1)^2}\right) dz^{\wedge} dx,$$

$$d\alpha(1,1,1) = -dy^{\wedge}dz + 2 dz^{\wedge}dx.$$

Também seria aceitável dizer que é N.D.A. porque foi assumido que α estava em \mathbb{R}^2 .

¹N.D.A. = Nenhuma das anteriores