

Proofs about Programs

Prof. Clarkson Fall 2019

Today's music: Suite from Downton Abbey by John Lunn

CLICKER QUESTION 1

Review

Previously in 3110:

- Functional programming
- Modular programming
- Efficiency
- Interpreters

Next unit of course: proofs about programs

Today:

- Equational reasoning
- Proving correctness of recursive functions

Approaches to validation [lec 10]

- Social
 - Code reviews
 - Extreme/Pair programming
- Methodological
 - Design patterns
 - Test-driven development
 - Version control
 - Bug tracking
- Technological
 - Static analysis
 ("lint" tools, FindBugs, ...)
 - Fuzzers
- Mathematical
 - Sound type systems
 - "Formal" verification

Less formal: Techniques may miss problems in programs

All of these methods should be used!

Even the most formal can still have holes:

- did you prove the right thing?
- do your assumptions match reality?

More formal: eliminate with certainty as many problems as possible.

Verification

- In the 1970s, scaled to about tens of LOC
- Now, research projects scale to real software:
 - CompCert: verified C compiler
 - seL4: verified microkernel OS
 - Ynot: verified DBMS, web services
 - Four color theorem
 - Project Everest: verified HTTPS stack [in progress]
 - Etc.
- In another 40 years?

Our goals

- Write small, pure functional programs
 - no side effects, mutability, I/O; always terminating
 - integers, lists, options, trees

- Prove correctness theorems
 - CS 2800 mathematics: induction, logic

Be rigorous but not completely formal

CORRECTNESS

Specifications

```
(** [fact n] is [n] factorial,
   i.e., [n!].
   Requires: [n >= 0]. *)
let rec fact n = ...
```

Postcondition gives an equality between function output and an English/mathematical description involving input

Correctness proofs

Based on equality between expressions

- When does e = e'?
 - Not asking about OCaml Boolean equality
 - Asking whether two pieces of code are equal...

Equality of expressions

$$41 + 1 \stackrel{?}{=} 42$$

Semantically: yes

$$41 + 1 \rightarrow * 42$$

$$42 \rightarrow * 42$$

Syntactically: no

Equality of expressions

fun
$$x \rightarrow x \stackrel{?}{=} fun y \rightarrow y$$

Extensionality

Semantically: yes

Syntactically: no

for all v, (fun x -> x) $v \rightarrow * v$ (fun y -> y) $v \rightarrow * v$

Equality of expressions

$$e = e'$$

if e and e' evaluate to the same value

EQUATIONAL REASONING

```
let twice f x = f (f x)
let compose f g x = f (g x)
twice h x = h (h x) (by evaluation)
compose h h x = h (h x) (by evaluation)
SO
twice h x = compose h h x (by transitivity)
```

```
let twice f x = f (f x)
let compose f g x = f (g x)
twice h x
= {evaluation}
h (h x)
= {evaluation}
compose h h x
```

Please use this proof format

$$let (<<) = compose$$

Theorem: composition is associative.

$$(f << g) << h = f << (g << h)$$

Proof: by extensionality, we need to show:

forall x,
$$((f << g) << h) x = (f << (g << h)) x$$

```
((f << g) << h) x = (f << (g << h)) x
((f << g) << h) x
                                 (f << (g << h)) x
= { evaluation }
                                = { evaluation }
(f \ll g) (h x)
                                f((g << h) x)
                                = { evaluation }
= { evaluation }
f(g(hx))
                                f(g(hx))
```

PROOFS WITH RECURSION

Example 1: Summation

$$\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$$

```
let rec sumto n =
  if n = 0 then 0
  else n + sumto (n - 1)
```

sumto
$$n \stackrel{?}{=} n * (n + 1) / 2$$

Induction on natural numbers

Theorem: for all natural numbers n, P(n).

Proof: by induction on n

Base case: n = 0

Show: P(0)

Inductive case: n = k+1

IH: P(k)

Show: P(k+1)

Please use this proof format

Induction principle

forall properties P of natural numbers, if P 0

and (forall n, P n implies P (n+1))

then (forall n, P n)

Summation: proof structure

Claim: forall n, sum to n = n * (n + 1) / 2

Proof: by induction on n.

$$P(n) = sumto n = n * (n + 1) / 2$$

Base case: n = 0

Show: sum to 0 = 0 * (0 + 1) / 2

Inductive case: n = k + 1

IH: ???

CLICKER QUESTION 2

Summation: proof structure

Claim: for all n, sum to n = n * (n + 1) / 2

Proof: by induction on n.

$$P(n) = sumto n = n * (n + 1) / 2$$

Base case: n = 0

Show: sum to 0 = 0 * (0 + 1) / 2

Inductive case: n = k + 1

IH: sumto k = k * (k + 1) / 2

Show: sumto (k + 1) = (k + 1) * ((k + 1) + 1) / 2

Summation: base case

Base case: n = 0

```
Show: sum to 0 = 0 * (0 + 1) / 2
 sumto 0
= { evaluation }
 \mathbf{O}
= { algebra (or evaluation) }
 0*(0+1)/2
```

```
let rec sumto n =
  if n = 0 then 0
  else n + sumto (n - 1)
```

Summation: inductive case

```
Inductive case: n = k + 1
IH: sumto k = k * (k + 1) / 2
Show: sumto (k + 1) = (k + 1) * ((k + 1) + 1) / 2
 sumto (k + 1)
= { evaluation }
 k + 1 + sumto k
= \{ IH \}
 k + 1 + k * (k + 1) / 2
= { algebra }
(k + 1) * ((k + 1) + 1) / 2
```

QED

```
let rec sumto n =
  if n = 0 then 0
  else n + sumto (n - 1)
```

Example 2: Factorial

```
let rec fact n =
  if n = 0 then 1
  else n * fact (n - 1)
                           "i" suggests
                            iterative
let rec facti acc n =
  if n = 0 then acc
  else facti (acc * n) (n - 1)
```

```
let fact_tr n = facti 1 n
```

Factorial: correctness

Claim: forall n, fact n = facti 1 n

Proof: by induction on n.

P(n) = fact n = fact i 1 n

Base case: n = 0

Show: fact 0 = facti 1 0

Inductive case: n = k + 1

IH: fact k = facti 1 k

Show: fact (k + 1) = facti 1 (k + 1)

Factorial: inductive case

```
Inductive case: n = k + 1
IH: fact k = facti 1 k
Show: fact (k + 1) = facti 1 (k + 1)
 fact (k + 1)
                                  facti 1 (k + 1)
= { evaluation }
                                 = { evaluation }
 (k + 1) * fact k
                                  facti(k + 1)k
= \{ IH \}
                      STUCK
(k + 1) * facti 1 k
```

want to move (k + 1) into accumulator:

```
facti (k + 1) k
but how?
```

let rec fact n =
 if n = 0 then 1
 else n * fact (n - 1)

let rec facti acc n =
 if n = 0 then acc
 else facti (acc * n) (n - 1)

Strengthened IH

What we have from IH:

$$(k + 1) * fact k = (k + 1) * facti 1 k$$

What we want:

$$(k + 1) * fact k = facti (k + 1) k$$

want to multiply (k + 1) into acc

So, strengthen P(n) to give us what we want:

forall p, p * fact n = facti p n

can multiply anything into acc

Factorial: correctness, take 2

Lemma: forall n, forall p, p * fact n = facti p n

Proof: by induction on n.

P(n) = forall p, p * fact n = facti p n

Base case: n = 0

Show: forall p, p * fact 0 = facti p 0

Inductive case: n = k + 1

IH: forall p, p * fact k = facti p k

Show: forall p, p * fact (k + 1) = facti p (k + 1)

Factorial: strengthened ind. case

```
Inductive case: n = k + 1
IH: forall p, p * fact k = facti p k
Show: forall p, p * fact (k + 1) = facti p (k + 1)
 p * fact (k + 1)
                                    facti p(k + 1)
= { evaluation }
                                   = { evaluation }
 (p * (k + 1)) * fact k
                                    facti (p * (k + 1)) k
= \{ IH \text{ with } p := p * (k + 1) \}
 facti (p * (k + 1)) k
                                         let rec fact n =
                                           if n = 0 then 1
                                           else n * fact (n - 1)
```

let rec facti acc n =
 if n = 0 then acc

else facti (acc * n) (n - 1)

QED

Factorial: correctness

Claim: forall n, fact n = fact_tr n

Proof:

```
fact_tr n
= { evaluation }
facti 1 n
= { previous lemma with p := 1 }
fact n
```

QED

Sponsored Advertisement

CS 4160: FORMAL VERIFICATION

Proof assistant

Coq

- 1984: Coquand and Huet implement Coq based on calculus of inductive constructions
- 1992: Coq ported to Caml
- Now implemented in OCaml

Thierry Coquand 1961 –

Coq for program verification

CAUTION: HIGHLY ADDICTIVE

Upcoming events

• [Wed] A6 due

This is formal.

THIS IS 3110