Branch: CSE & IT

Batch:Hinglish

Theory of Computation

Finite Automata - Regular Language Identification Part -2

DPP-12

[MCQ]

- 1. Which of the following language is not regular?
 - (a) $L = \{w \mid w \in \{a, b\}^*\}$
 - (b) $L = \{xy \mid x, y \in \{a, b\}^*\}$
 - (c) $L = \{xy \mid |x| = |y| \ x, y \in \{a, b\}^*\}$
 - (d) None of these

[MSQ]

- 2. Which of the following language is/are regular?
 - (a) $L = \{ww^R | w \in \{0, 1\}^*\}.$
 - (b) $L = \{ \text{Set of all palindrome} \}.$
 - (c) $L = \{ \text{Number of a's equal to number of b's} \}.$
 - (d) $L = \{wwp \mid w, p \in \{0, 1\}^*\}$

[MCQ]

3. Consider the following given language L.

$$L = \{p \; q \; w \; w \; y \; r \; | \; w, \, p, \, q, \, r \in \, \{a, \, b\}^*\}$$

The regular expression generated by above language is?

- (a) $(a+b)^2 (aa+bb) (a+b)$
- (b) $[(a+b)^2]^* (aa+bb) (a+b)^*$
- (c) $(a + b)^*$
- (d) None of these

[MCQ]

- **4.** Consider the language $L = \{w \ w \ p \mid w, p \in \{a, b\}^+\}$ Which of the following regular expression generated by above language?
 - (a) $(a + b)^+$
 - (b) $(a+b)^+(a+b)^+$
 - (c) $(aa + bb) (a + b)^+$
 - (d) None of these

[NAT]

5. Consider the following language L:

$$L = \{xw \mid |x| = 2, w \in \{a, b\}^*\}$$

For the above language L, how many equivalence classes are possible?

[MCQ]

6. Consider the following languages.

$$L_1 = \{ w \ x \ w^R \} \mid w, x \in \{a, b\}^+ \}$$

$$L_2 = \{ w \ w^R x \mid w, x \in \{a, b\}^+ \}$$

Which of the following language is regular?

- (a) L_1 is regular.
- (b) L_2 is regular.
- (c) Both L_1 and L_2 are regular.
- (d) None of these.

Answer Key

(d) 1.

2. (**d**)

3. (c)

4. (d)

5. (3) 6. (a)

Hints and Solutions

- 1. (d)
 - (a) Regular = (a + b)*
 - (b) Regular = $(a + b)^* (a + b)^*$ = $(a + b)^*$ Regular
 - (c) $L = \{xy \mid |x| = |y| \ x, y \in \{a, b\}^*\}$ $L = \{aa, ab, ba, bb, bbaa, bbab ...\}$ L = All even length string = Regular.Hence, option (d) is correct.
- 2. (d)

L = {wwp | w,p
$$\in$$
 {0, 1}*}
L = \in . \in . p = (0 + 1)*
= Regular

3. (c)

$$L = \{pqwwr \mid p,q,r, w \in \{a, b\}^*\}$$

$$L = pq \in \in r$$

$$= pqr$$

$$= (a + b)^* (a + b)^* (a + b)^*$$

$$= (a + b)^*$$

Hence, option (c) is correct.

4. (d)

$$L = \{wwp \mid w, p \in \{a, b\}^+\}$$

= minimal string = aap, bbp

- aaaap ∈ aap
- ababp ∉ any minimal string
- babap ∉ any minimal string

- bbbbp ∈ bbp
 so, regular expression not possible.
 Hence, option (d) is correct.
- **5.** (3)

L =
$$\{xw ||x| = 2, w \in \{a, b\}^*\}$$

Regular expression = $(a + b)^2 (a + b)^*$

DFA:

Number of equivalence classes = 3

6. (a)

$$L1 = \{wxw^{R} \mid w, x \} \in \{a, b\}^{+}\}$$
minimal string = a x a | b x b

aaxaa | bbxbb | abxba | baxab

L1 is regular.

$$L_2 = \{ww^Rx \mid w, x \in \{a,b\}^+\}$$

Not cover Not regular

Hence, option (a) is correct

Any issue with DPP, please report by clicking here: https://forms.gle/t2SzQVvQcs638c4r5
For more questions, kindly visit the library section: Link for web: https://smart.link/sdfez8ejd80if