Multimodal Deep Learning for Product Design Data

Yoon Sang Cho

DMQA Seminar

2019-10-04

Contents

- Introduction
- Multimodal Deep Learning
- Application for Product Design Data
- Conclusions
- Future works

Multimodal Deep Learning

Multimodal 을 인공신경망 모델을 여러 층으로 쌓아 데이터 학습

What is the 'Multimodal Learning'?

- 인간은 살아가는 데 필요한 정보를 학습하기위해 대표적으로 5개의 감각 기관으로 부터 수집되는 데이터를 바탕 학습
- 인간의 인지적 학습법을 모방하여 <u>다양한 형태(modality)</u> 데이터로 학습하는 방법

What is the 'Multimodal Learning'?

- 인간은 살아가는 데 필요한 정보를 학습하기위해 대표적으로 5개의 감각 기관으로 부터 수집되는 데이터를 바탕 학습
- 인간의 인지적 학습법을 모방하여 <u>다양한 형태(modality)</u> 데이터로 학습하는 방법 → Multimodal learning

❖ What is the 'Multimodal'?

- Multimodal 이란? → Modality가 여러 개 존재
- Modality(양식): 특정 자원으로부터 수집된 데이터 표현 형식
- Multimodal data: 다양한 자원(source)로부터 수집된 데이터가 하나의 정보를 표현

- ❖ Multimodal learning 기법 사용 분야
 - 인간 행동 인식 분야(Human Activity Recognition)

What is the 'Multimodal Learning'?

odel

	Text	Image	 Audio	Sensor	Υ
관측치 1		:	 	::	0
관측치 2		::	 		I
관측치 N			 		0

What is the 'Multimodal Learning'?

f(X) = Model

	변수 1	변수 2	 변수 P-1	변수 P	Y
관측치 1			 		0
관측치 2			 		I
관측치 N			 		0

변수가 많으면 Multimodal? NO! > 변수들의 데이터차원이 달라야 함!

- What is the 'Multimodal Learning'?
 - Single-modal

Model =
$$f(X_n^p)_{n=1,...,N, p=1,...,P}$$

	변수 1	변수 2		변수 P-1	변수 P	Y
관측치 1		::		:	:	0
관측치 2		:	•••	:	:	I
			•••		::	
관측치 N				::	::	0

- What is the 'Multimodal Learning'?
 - Multi-modal

$$Model = f(X_{term}^{doc}, X_{x,y}^{color}, X_{time}^{voice}, X_{time}^{sensor})$$

	Text	Image	 Audio	Sensor	Y
관측치 1			 		0
관측치 2			 		I
관측치 N			 		0

- ❖ Single-modal 과 Multi-modal 차이점
 - Single-modal 데이터: Image OR Text OR Audio OR …
 - Multi-modal 데이터: Image AND Text AND Audio AND …

Multimodal Learning Model = $f(X_{term}^{doc}, X_{x,y}^{color}, X_{time}^{voice}, X_{time}^{sensor})$

Multimodal learning은 특징 차원이 다른 데이터를 동시에 학습

어떻게 <u>'잘'</u> 학습할 수 있을까?

- ❖ Multimodal Learning의 지향점
 - ① 일치의 원리(consistence principle)
 - ② 보완의 원리(complementary principle)

Deep learning 기반 Multimodal Learning 기법 소개

❖ Deep Learning이란?

- 인공 신경망을 여러 층으로 깊게 쌓아 예측력을 높이는 모델
- 인공신경망(Artificial Neural Network, ANN)

- ❖ Deep Learning이라?
 - 인공 신경망을 여러 층으로 깊게 쌓아 예측력을 높이는 모델
 - 순환신경망(Recurrent Neural Network, RNN)

- ❖ Deep Learning이란?
 - 인공 신경망을 여러 층으로 깊게 쌓아 예측력을 높이는 모델
 - 합성곱신경망(Convolutional Neural Network, CNN)

Multimodal learning은 특징 차원이 다른 데이터를 동시에 학습

어떻게 <u>'잘'</u> 학습할 수 있을까?

→ 각 데이터 특성을 '잘' 통합해야함.

- ❖ Multimodal Learning은 데이터 통합 방식에 따라 구분
 - (I) 데이터 **'차원'**의 통합: 다른 특성 데이터가 공유하는 하나의 특징공간으로 투영 e.g. Deep Canonical Correlation Analysis(Deep CCA, 심층-정준상관분석)

- ❖ Multimodal Learning은 데이터 통합 방식에 따라 구분
 - (I) 데이터 차원의 통합: 다른 특성 데이터를 Embedding 하여 <u>특성이 같은 데이터</u>로 추출 e.g. Deep Canonical Correlation Analysis(Deep CCA, 심층-정준상관분석)

- ❖ Multimodal Learning은 데이터 통합 방식에 따라 구분
 - (2) 분류기 통합: 여러 예측 모델의 결과를 결합하여 예측
 - → Co-training, Ensemble

목적 함수
$$P\left(\hat{Y}_j = c | I_j\right) = \sum_{\phi \in \{1,2,3\}} \gamma_\phi P_\phi\left(\hat{Y}_j = c | I_j; \theta_\phi\right)$$

γ: 분류 결과에 대한 가중치

- ❖ Multimodal Learning은 데이터 통합 방식에 따라 구분
 - (3) 학습된 표현 간의 통합: 다른 신경망으로 학습하여 추출된 특징을 선형 결합

- Multimodal CNN(m-CNN)
 - Multimodal CNN: 이미지와 연관된 텍스트의 관계를 학습(Ma et al, 2015)

- Multimodal CNN(m-CNN)
 - Multimodal CNN: 이미지와 연관된 텍스트의 관계를 학습(Ma et al, 2015)
 - S_{match} : 텍스트와 이미지 결합표현(V_{JR})을 기준으로 인공신경망 형성

Ma, L., Lu, Z., Shang, L., & Li, H. (2015). Multimodal convolutional neural networks for matching image and sentence. In Proceedings of the IEEE international conference on computer vision (pp. 2623-2631)

- Multimodal RNN(m-RNN)
 - Multimodal RNN(m-RNN): 이미지와 관련된 문장을 생성하는 방법(Mao et al, 2014)

Mao, J., Xu, W., Yang, Y., Wang, J., & Yuille, A. L. (2014). Explain images with multimodal recurrent neural networks. arXiv preprint arXiv:1410.1090.

❖ Multimodal Deep Learning 요약

- Deep learning 기법의 도입으로 새로운 변화를 맞이함.
- Multimodal learning 기법은 인간행동인식, 의학, 정보검색, 표정인식 등 다양한 분야에서 문제를 해결
- Singlemodal Learning 기법과 달리 여러가지 정보를 보완적으로 이용
- 목표: 다양한 정보를 이용하여 단일 정보만 사용했을 때보다 학습 성능 ↑
- 현재 진행하고 있는 프로젝트에 적용

- Multimodal Deep Learning for Product Design Data
 - 후드 형상 이미지 및 와이퍼 설계 데이터 기반 고속 부상 속도 예측

- Wiper blade Wiper arm
- Multimodal Deep Learning for Product Design Data
 - 와이퍼 설계 데이터 및 후드 형상 이미지 기반 고속 부상 속도 예측

	Wiper blade 설계치(각도) 1	Wiper blade 설계치(각도) 2		Wiper arm 설계치(각도) 1	Wiper arm 설계치(각도) 2	속도
관측치 1			:			140
관측치 2						150
관측치 N						170

- Multimodal Deep Learning for Product Design Data
 - 와이퍼 설계 데이터 및 후드 형상 이미지 기반 고속 부상 속도 예측

- Multimodal Deep Learning for Product Design Data
 - 와이퍼 설계 데이터 및 후드 형상 이미지 기반 고속 부상 속도 예측

→ Convolutional Neural Network Input 데이터

- Multimodal Deep Learning for Product Design Data
 - 와이퍼 설계 데이터 및 후드 형상 이미지 기반 고속 부상 속도 예측

후드형상이미지

와이퍼 설계 데이터

관측치 ID	와이퍼 설계데이터
1	•••
2	•••
•••	•••
94	
95	•••

Convolutional neural network

Model

Deep neural network

낮으면 불합격! 140 km 150 km 160 km 170 km 높으면 Good!

- Multimodal Deep Learning for Product Design Data
 - 후드 형상 이미지 및 와이퍼 설계 데이터 기반 고속 부상 속도 예측

학습데이터 예측성능

테스트데이터 예측성능

- Multimodal Deep Learning for Product Design Data
 - 후드 형상 이미지 및 와이퍼 설계 데이터 기반 고속 부상 속도 예측
 - Single modal과 Multimodal learning의 성능 비교

예측 모델	데이터	MAE	MSE
LASSO	Single modal-와이퍼 설계 데이터	6.76	72.02
CNN	Single modal-후드 형상 이미지 데이터	9.14	132.58
DNN+CNN	Multimodal - 와이퍼 설계 및 후드 형상 이미지	6.62	73.7

Conclusions

Summary

- 후드 이미지 및 와이퍼 설계 데이터 기반 Multimodal Learning 기법을 적용
- 두 데이터를 모두 적용했을 때 더 좋은 성능을 보임

- Future work: Explainable Multimodal Deep learning
 - 인자분석을 위한 Multimodal 모델 구조 디자인

관측치 ID	설계인	<u>민</u> 자1	설계 인자1
1			 •••
2			
94			
95			 •••

멀티 뷰 기법	모형	언어	패키지	비고
		R	CCA	
	CCA	R	stats	
데이터		Python	sklearn	
차원의	KCCA	R	kernlab	
시전의 통합	KCCA	Python	pyrcca	https://github.com/gallantlab/pyrcca
ਰ ਖ਼		R	drCCA	
	GCCA	R	RGCCA	
		Python	numpy 기반	https://github.com/rupy/GCCA
분류기		R	SSL	
차원의	Co-training	Python	sklearn 기반	https://github.com/jjrob13/sklearn cotraining/
통합				blob/master/sklearn_cotraining/classifiers.py
	Seq2seq	Python	Tensorflow 기반	
	m-RNN	Python	Tensorflow 기반	http://www.stat.ucla.edu/~junhua.mao/m-RNN. html
학습된	Deep CCA	Python	Tensorflow 기반	https://github.com/VahidooX/DeepCCA
파면 표현	Deep CCA	Python	Theano 기반	https://github.com/msamribeiro/deep-ccaA
표면 간의 통합 -	multimodal DBM	Python	Tensorflow 기반	https://github.com/abyoussef/DRBM_Project
	Corr-AE	Python	numpy 기반	https://github.com/huyt16/Twitter100k
	JMVAE	Python	Theano 기반	https://github.com/masa-su/jmvae
-	Text-Image GAN	Python	Tensorflow 기반	https://github.com/paarthneekhara/text-to-x image

Multi-view learning review understanding methods(2019)

Thank You

Multimodal Deep Learning

Multimodal 을 인공신경망 모델을 여러 층으로 쌓아 데이터 학습

- What is the 'Multimodal Learning'?
 - 인간은 어떤 사물을 인식하거나 예측할 때 다양한 정보를 활용
 - 인간의 인지적 학습방법을 모방하여 다양한 형태(modality) 데이터로부터 학습하는 방법

Core Challenge 1: Representation

- Definition: Learning how to represent and summarize multimodal data in away that exploits the complementarity and redundancy.
- Learn linear projections that are maximally correlated:

Core Challenge 1: Representation

- Definition: Learning how to represent and summarize multimodal data in away that exploits the complementarity and redundancy.
- Learn linear projections that are maximally correlated:

B Coordinated representations:

- Core Challenge 1: Representation
 - Coordinated Representation: Deep CCA
 - Learn linear projections that are maximally correlated:

Core Challenge 2: Translation

 Definition: Given an entity in one modality the task is to generate the same entity in a different modality.

Core Challenge 3: Alignment

 Definition: Identify the direct relations between (sub)elements from two or more different modalities.

The goal is to directly find correspondences between elements of different modalities

B Implicit Alignment

Uses internally latent alignment of modalities in order to better solve a different problem

Core Challenge 3: Alignment

- Definition: Identify the direct relations between (sub)elements from two or more different modalities.
- Implicit Alignment

Karpathy et al., Deep Fragment Embeddings for Bidirectional Image Sentence Mapping, https://arxiv.org/pdf/1406.5679.pdf

Core Challenge 4: Fusion

 Definition: To join information from two or more modalities to perform a prediction task.

Core Challenge 5: Co-learning

Definition: Co-learning is aiding the modeling of a (resource poor) modality by exploiting knowledge from another (resource rich)
modality.

