[2019] Bag of tricks and a strong baseline for deep person re-identification

2021年5月12日 11:00

基本信息

```
@inproceedings {luo2019bag, title={Bag of tricks and a strong baseline for deep person re-identification}, author={Luo, Hao and Gu, Youzhi and Liao, Xingyu and Lai, Shenqi and Jiang, Wei}, affiliation={Zhejiang University, Chinese Academy of Sciences, Xi' an Jiaotong University}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops}, pages={0--0}, year={2019}
```

主要贡献

- 1. 汇聚了众多重识别模型的 tricks,搭建了一个简单有效的行人重识别 baseline。
- 2. 提出了一个 neck structure (BNNeck)

Framework

(a) The pipeline of the standard baseline.

(b) The pipeline of our modified baseline.

基线 Baseline

- 初始化 ResNet50(基于 ImageNet 的预训练模型) -> 通过一个全连接层将其输出的维度变为N, N为训练集中的行人实体(identities)数。
- 2. 随机采样 P 个行人实体,对于每个人选取 K 张照片,构成一个训练的 batch。因此,batch size = $P \times K$. 在本文中,设置P = 16, K = 4。
- 3. 将每幅图像 resize 至 256 × 128, 此后用 0 元素 padding 10个像素值,最后再随机将其裁剪为 256 × 128 大小的图片。
- 4. 每张图片有 0.5 的概率被水平翻转。
- 5. 每张图片被编码为 32 bit 的 float 类型的点,并且将像素值缩放至 [0,1] 大小。然后通过对 RGB 三个通道各减去 0.485, 0456, 0.406,并各除以 0.229, 0.224, 0.225 进行规范化。
- 6. 该模型的输出为 ReID 的特征 f, 以及 ID prediction logits p。

- 7. ReID 的特征 f 被用来计算 triplet loss, ID prediction logits p 被用来计算 cross entropy loss。Triplet loss 中的 margin 被设置为 0.3.
- 8. 采用了 Adam 的优化方法,初始学习率为 0.00035,40个 epoch 和 70个 epoch 时各衰减 0.1,总 共训练 120 个 epoch。

训练技巧

(—) Warmup Learning Rate

$$lr(t) = \begin{cases} 3.5 \times 10^{-5} \times \frac{t}{10}, & if \ t < 10 \\ 3.5 \times 10^{-4}, & if \ 10 < t < 40 \\ 3.5 \times 10^{-5}, & if \ 40 < t < 70 \\ 3.5 \times 10^{-6}, & if \ 70 < t < 120 \end{cases}$$

(<u></u>) Random Erasing Augmentation (REA)

Figure 4. Sampled examples of random erasing augmentation. The first row shows five original training images. The processed images are presented in the second low.

- 1. 目的:解决遮挡问题以及提高泛化能力
- 2. 符号:
 - (1) 对于 mini-batch 中的图片 I, 以概率 pc 对其进行随机擦除操作
 - (2) REA 在图片 I 中随机选择一个矩形区域 I_e ,其大小为 (W_e, H_e) ,并且用随机值进行替换擦除
 - (3) 定义擦除区域的面积率为 $r_c = \frac{S_e}{S} = \frac{W_e \times H_e}{W \times H}$
 - (4) 擦除区域 I_e 的长宽比为 (r_1, r_2) 之间随机初始化的值
- 3. 方法:
 - (1) 随机选择一个点 $P = (x_e, y_e)$, 如果 $x_e + W_e \le W$ 并且 $y_e + H_e \le H$, 则将区域 $I_e = (x_e, y_e, x_e + W_e)$ We, ye + He) 作为选择的区域;否则,重复上述操作直至选择了一个合适的区域。
 - (2) 选择了该区域后,使用整张图片的像素均值来填充该区域的像素值
- 4. 经验值: $p = 0.5, 0.02 < S_e < 0.4, r_1 = 0.3, r_2 = 3.33$.

(三) Label Smoothing

- 1. 目的: 提高模型的泛化性能, 防止过拟合。
- 2. 符号: y 为真实标签, p_i 为预测为 i 类的概率
- 3. 标准交叉熵损失:

$$L(ID) = \sum_{i=1}^{N} -q_i \log(p_i) \begin{cases} q_i = 0, y \neq i \\ q_i = 1, y = i \end{cases}$$
 标签平滑:

$$\mathbf{q}_{i} = \begin{cases} 1 - \frac{N-1}{N} \varepsilon & \text{if } i = y \\ \frac{\varepsilon}{N} & \text{otherwise} \end{cases}$$

(四) Last Stride

1. 目的: 提高模型的表征能力

2. 方法: 将 ResNet50 的最后一个 stride 由 2 设置为 1, 对于256×128 的图片使输出的特征 由 (8 × 4) 变为 (16 × 8)

3. 该方法仅会增加少量的计算量,且不会引入额外的训练参数,但可以带来显著的性能提升。

(五) BNNeck

1. 目的:解决不同损失优化目标不一致的问题。

2. 原因: ID loss 为交叉熵损失,将特征空间划分为不同的区域,因此在推断时使用余弦距离更为合理; 但 Triplet loss 是令类内距离小,类间距离大,因此使用欧式距离更为合理。两者合二为一后,往往导致一个损失下降,另一个损失震荡或上升。

3. 方法:在 ResNet50 输出的特征 f_t 后增加了一个 batch normalization (BN) 层,对应的特征为 f_i 。在训练时, f_t 与 f_i 分别被用来计算 triplet loss 和 ID loss。在推断时,使用 f_i 以及余弦相似度。

4. 结果: BN 使特征 f_i 高斯分布于超平面,该分布使得 ID loss 更容易收敛,以及减少了对其的约束。 这也使得 triplet loss 更为容易收敛。归一化也保证了同一个人的特征的紧密分布。

5. 技巧:由于超平面是对称的,所以一个技巧是移除 FC 层的偏置

(六) Center Loss

1. Triplet Loss: $L_{Tri} = [d_p - d_n + \alpha]$

 d_p 和 d_n 分别是 positive pair 和 negative pair 的距离, α = 0.3 是 triplet loss 的 margin $[z]_+$ 等价于 max(0,z)

存在的问题:仅考虑了一个 batch 之中的 d_p 和 d_n 距离,忽略了两者的绝对值,难以保证在全局中 类内距离小于类间距离。

2. Center Loss: $L_c = \frac{1}{2} \sum_{j=1}^{B} \left\| f_{t_j} - c_{y_j} \right\|_2^2$ c_{y_j} 为类 j 的中心,B 为 batch size大小

3. 本文中使用了三者,构建损失 L = L_{ID} + L_{Triplet} + βL_C β 设置为了 0.0005

实验结果

1. 每个 trick 的影响

(1) Same Domain (逐一叠加加入各种 trick)

	Mark	et1501	DukeMTMC		
Model	r = 1	mAP	r = 1	mAP	
Baseline-S	87.7	74.0	79.7	63.7	
+warmup	88.7	75.2	80.6	65.1	
+REA	91.3	79.3	81.5	68.3	
+LS	91.4	80.3	82.4	69.3	
+stride=1	92.0	81.7	82.6	70.6	
+BNNeck	94.1	85.7	86.2	75.9	
+center loss	94.5	85.9	86.4	76.4	

(2) Cross Domain

	$M{\rightarrow}D$		$D{ ightarrow}M$	
Model	r = 1	mAP	r = 1	mAP
Baseline	24.4	12.9	34.2	14.5
+warmup	26.3	14.1	39.7	17.4
+REA	21.5	10.2	32.5	13.5
+LS	23.2	11.3	36.5	14.9
+stride=1	23.1	11.8	37.1	15.4
+BNNeck	26.7	15.2	47.7	21.6
+center loss	27.5	15.0	47.4	21.4
-REA	41.4	25.7	54.3	25.5

REA mask 了训练集中的图片,使得模型学习了更多训练集领域的知识,造成泛化性降低

2. BNNeck 网络的分析

		Market1501		DukeMTMC	
Feature	Metric	r = 1	mAP	r = 1	mAP
f (w/o BNNeck)	Euclidean	92.0	81.7	82.6	70.6
f_t	Euclidean	94.2	85.5	85.7	74.4
f_t	Cosine	94.2	85.7	85.5	74.6
f_i	Euclidean	93.8	83.7	86.6	73.0
f_i	Cosine	94.1	85.7	86.2	75.9

3. 与 SOTA 的比较

			Market1501		DukeMTMC	
Type	Method	N_f	r = 1	mAP	r = 1	mAP
D	GLAD[19]	4	89.9	73.9	-	-
Pose-	PIE [23]	3	87.7	69.0	79.8	62.0
guided	PSE [13]	3	78.7	56.0	-	-
Mask-	SPReID [7]	5	92.5	81.3	84.4	71.0
guided	MaskReID [9]	3	90.0	75.3	78.8	61.9
	AlignedReID [21]	1	90.6	77.7	81.2	67.4
	SCPNet [3]	1	91.2	75.2	80.3	62.6
Stripe-	PCB [16]	6	93.8	81.6	83.3	69.2
based	Pyramid[22]	1	92.8	82.1	-	-
	Pyramid[22]	21	95.7	88.2	89.0	79.0
	BFE[1]	2	94.5	85.0	88.7	75.8
Attention-	Mancs [18]	1	93.1	82.3	84.9	71.8
based	DuATM [14]	1	91.4	76.6	81.2	62.3
based	HA-CNN [8]	4	91.2	75.7	80.5	63.8
GAN-	Camstyle [28]	1	88.1	68.7	75.3	53.5
based	PN-GAN [10]	9	89.4	72.6	73.6	53.2
	IDE [25]	1	79.5	59.9	-	1-
	SVDNet [15]	1	82.3	62.1	76.7	56.8
Global	TriNet[6]	1	84.9	69.1	-	
feature	AWTL[12]	1	89.5	75.7	79.8	63.4
	Ours	1	94.5	85.9	86.4	76.4
	Ours(RK)	1	95.4	94.2	90.3	89.1

4. Batch Size 的影响

Batch Size	Market1501		DukeMTMC	
$P \times K$	r = 1	mAP	r = 1	mAP
8×3	92.6	79.2	84.4	68.1
8×4	92.9	80.0	84.7	69.4
8×6	93.5	81.6	85.1	70.7
8×8	93.9	82.0	85.8	71.5
16×3	93.8	83.1	86.8	72.1
16×4	93.8	83.7	86.6	73.0
16×6	94.0	82.8	85.1	69.9
16×8	93.1	81.6	86.7	72.1
32×3	94.5	84.1	86.0	71.4
32×4	93.2	82.8	86.5	73.1

5. 图像大小的影响

	Market1501		DukeMTMC	
Image Size	r = 1	mAP	r = 1	mAP
256×128	93.8	83.7	86.6	73.0
224×224	94.2	83.3	86.1	72.2
384×128	94.0	82.7	86.4	73.2
384×192	93.8	83.1	87.1	72.9