Homework 2

郝晉凱 B01705041 資管三

March 15, 2015

Problem 1.

Problem 2.

a.

b.

Problem 3.

a.

b.

Problem 4.

a.

b.

Problem 5.

Proof. Given $A_1 \cdot w \in A$ is regular. Then it's reverse $= w \cdot A_1^R$ is regular (the regular operation.) By induction, if A is regular, A^R is regular.

Problem 6.

$$\textit{Proof. Let } A = \left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \right\}, B = \left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \right\}, C = \left\{ \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}, \text{ and } D = \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right\}.$$
 The state diagram for B^R is as below.

start
$$\longrightarrow Q_1$$
 Q_2 Q_2

Thus, B^R is regular, by Problem 5, B is regular.

Problem 7.

Proof. Let $\Sigma = \Sigma_1 \cup \Sigma_2$. Change $M_1 = (Q_1, \Sigma_1, \delta_1, q_1, F_1)$ and $M_2 = (Q_2, \Sigma_2, \delta_2, q_2, F_2)$ to $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ and $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$, then do the proof like before. \square