The function f(1) that minimises mean-squared error is given as f(x)= E[Y|x=x] (Conditional Expectation or regression function) - f(x) = Avg $(Y_1 | Y_1 = X)$ -> we suppose for $X_1 = 3$, $Y_2 = 2$ Problem: If the have only $f(x) = \frac{Y_1 + Y_1 + Y_1 + Y_1^{**}}{4}$ $Y_1 = 3$ one sample of $X_1 = 2$ $Y_2 = 2$ $Y_3 = 3$ $Y_4 = 3$ Its difficult to get avg. $Y_4 = 2$ $Y_4 = 3$ 1. Problem: It we have only 2. unable to predict on unsendata, > NOT WORKING Conclusion: Instead of Conditioning on single data point, we cuil Condition on a region (Mony data points) f(x) = Avg (Yi | Zi FNK(2)) Neighborshood of 2 Assumption! Output of the function will be constant on that region. , output will be some this region

As $K \uparrow$, estimate more stable

As $N, K \to \infty$, $K \mid N \to 0$, $f(x) \Longrightarrow E[Y|x=x]$

EPE(
$$\hat{f}$$
) = E[L(G , \hat{f})] biscrete distribution)

= $E_X E_{G|X} \{ [G, \hat{f}] | x^2 \}$

= $E_X = E_{G|X} \{ [G, \hat{f}] | x^2 \}$

= $E_X = E_{G|X} \{ [G, \hat{f}] | x^2 \}$

= $E_X = E_{G|X} \{ [G, \hat{f}] | x^2 \}$

= $E_X = E_{G|X} \{ [G, \hat{f}] | x^2 \}$

= $E_X = E_{G|X} \{ [G, \hat{f}] | x^2 \}$

= $E_X = E_{G|X} \{ [G, \hat{f}] | x^2 \}$

= $E_X = E_{G|X} \{ [G, \hat{f}] | x^2 \}$

= $E_X = E_{G|X} \{ [G, \hat{f}] | x^2 \}$

= $E_X = E_{G|X} \{ [G, \hat{f}] | x^2 \}$

= $E_X = E_{G|X} \{ [G, \hat{f}] | x^2 \}$

= $E_X = E_{G|X} \{ [G, \hat{f}] | x^2 \}$

= $E_X = E_{G|X} \{ [G, \hat{f}] | x^2 \}$

= $E_X = E_{G|X} \{ [G, \hat{f}] | x^2 \}$

= $E_X = E_{G|X} \{ [G, \hat{f}] | x^2 \}$

= $E_X = E_{G|X} \{ [G, \hat{f}] | x^2 \}$

= $E_X = E_{G|X} \{ [G, \hat{f}] | x^2 \}$

= $E_X = E_{G|X} \{ [G, \hat{f}] | x^2 \}$

= $E_X = E_{G|X} \{ [G, \hat{f}] | x^2 \}$

= $E_X = E_{G|X} \{ [G, \hat{f}] | x^2 \}$

= $E_X = E_{G|X} \{ [G, \hat{f}] | x^2 \}$

= $E_X = E_{G|X} \{ [G, \hat{f}] | x^2 \}$

= $E_X = E_{G|X} \{ [G, \hat{f}] | x^2 \}$

= $E_X = E_{G|X} \{ [G, \hat{f}] | x^2 \}$

= $E_X = E_{G|X} \{ [G, \hat{f}] | x^2 \}$

= $E_X = E_X E_{G|X} \{ [G, \hat{f}] | x^2 \}$

= $E_X = E_X E_{G|X} \{ [G, \hat{f}] | x^2 \}$

= $E_X = E_X E_{G|X} \{ [G, \hat{f}] | x^2 \}$

= $E_X = E_X E_{G|X} \{ [G, \hat{f}] | x^2 \}$

= $E_X = E_X E_{G|X} \{ [G, \hat{f}] | x^2 \}$

= $E_X = E_X E_{G|X} \{ [G, \hat{f}] | x^2 \}$

= $E_X = E_X E_{G|X} \{ [G, \hat{f}] | x^2 \}$

= $E_X = E_X E_{G|X} \{ [G, \hat{f}] | x^2 \}$

= $E_X = E_X E_{G|X} \{ [G, \hat{f}] | x^2 \}$

= $E_X = E_X E_{G|X} \{ [G, \hat{f}] | x^2 \}$

= $E_X = E_X E_{G|X} \{ [G, \hat{f}] | x^2 \}$

= $E_X = E_X E_{G|X} \{ [G, \hat{f}] | x^2 \}$

= $E_X E_{G|X} \{ [G, \hat{f}] | x^2 \}$

= $E_X E_{G|X} \{ [G, \hat{f}] | x^2 \}$

= $E_X E_{G|X} \{ [G, \hat{f}] | x^2 \}$

= $E_X E_{G|X} \{ [G, \hat{f}] \}$

= $E_X E_{G|X} \{ [$

K-NN: (pick "k" nearest neign bown and take majority)

*1.7 E-4

[4]

Binary classifier (210) $(\chi_{2}, 1)$ (13,0) f(x) > 0.5 f(ass-14) (x,1) (0.5 f(ass-14), (x,1)Bias- Varionce Week-2 lecture7

Week-2 lecture-6