

4. 使用Random Troest对结果分类

* auto_ml

A tree_based models \$ 特征重要 NHO MAN SON 数据集合 性

B可能置DCW等模形作特征交叉

+ auto_sklearn

part A: 特征预处理(标准化, 由一化平衡, one-ht, 循放···)

Part B:特征院选,因合 (PCA, 独立成份分析)

part C:/分类器的效果对比

相对来说,更暴力,更程则

Name	Formula	Rationale	Variants
Nr instances Nr features Nr classes	n p c	Speed, Scalability [99] Curse of dimensionality [99] Complexity, imbalance [99]	p/n, $log(n)$, $log(n/p)log(p)$, % categorical ratio min/maj class
Nr missing values Nr outliers	m o	Imputation effects [70] Data noisiness [140]	% missing o/n
Skewness	$\frac{E(X-\mu_X)^3}{\sigma_X^3}$ $\frac{E(X-\mu_X)^4}{\sigma_X^4}$	Feature normality [99]	$\min, \max, \mu, \sigma, q_1, q_3$
Kurtosis	$\frac{E(X-\mu_X)^4}{\sigma_X^4}$	Feature normality [99]	$\min, \max, \mu, \sigma, q_1, q_3$
Correlation Covariance Concentration Sparsity Gravity ANOVA p-value Coeff. of variation	$\rho_{X_1X_2}$ $cov_{X_1X_2}$ $\tau_{X_1X_2}$ sparsity(X) gravity(X) $p_{val_{X_1X_2}}$	Feature interdependence [99] Feature interdependence [79] Feature interdependence [72] Degree of discreteness [142] Inter-class dispersion [5] Feature redundancy [70] Variation in target [157]	$\begin{aligned} & \min, \max, \mu, \sigma, \rho_{XY} [15] \\ & \min, \max, \mu, \sigma, cov_{XY} \\ & \min, \max, \mu, \sigma, \tau_{XY} \\ & \min, \max, \mu, \sigma \end{aligned}$ $& p_{val_{XY}} [157]$
PCA ρ_{λ_1} PCA skewness PCA 95%	$\sqrt[h]{\frac{\lambda_1}{1+\lambda_1}}$ $\frac{dim_{95\%var}}{p}$	Variance in first PC [99] Skewness of first PC [48] Intrinsic dimensionality [9]	$\frac{\lambda_1}{\sum_i \lambda_i} [99]$ PCA kurtosis [48]
Class probability	P(C)	Class distribution [99]	\min, \max, μ, σ
Class entropy Norm. entropy Mutual inform. Uncertainty coeff. Equiv. nr. feats Noise-signal ratio	$\begin{array}{c} H(\texttt{C}) \\ \frac{H(\texttt{X})}{log_2n} \\ MI(\texttt{C}, \texttt{X}) \\ \frac{MI(\texttt{C}, \texttt{X})}{H(\texttt{C})} \\ \frac{H(\texttt{C})}{MI(\texttt{C}, \texttt{X})} \\ \frac{H(X) - MI(\texttt{C}, \texttt{X})}{MI(\texttt{C}, \texttt{X})} \end{array}$	Class imbalance [99] Feature informativeness [26] Feature importance [99] Feature importance [3] Intrinsic dimensionality [99] Noisiness of data [99]	$\begin{array}{l} \min, \max, \mu, \sigma \\ \min, \max, \mu, \sigma \\ \min, \max, \mu, \sigma \end{array}$
Fisher's discrimin. Volume of overlap Concept variation Data consistency	$\frac{(\mu_{c1} - \mu_{c2})^2}{\sigma_{c1}^2 - \sigma_{c2}^2}$	Separability classes c_1, c_2 [64] Class distribution overlap [64] Task complexity [179] Data quality [76]	See [64] See [64] See [178, 179] See [76]
Nr nodes, leaves Branch length Nodes per feature Leaves per class Leaves agreement	$ \eta , \psi $ $ \eta_X $ $ \psi_c $ $ \psi_c $ $ \psi_i $ $ \eta_{\psi_i}$ $ \eta_{\psi_i} $	Concept complexity [113] Concept complexity [113] Feature importance [113] Class complexity [49] Class separability [16]	Tree depth \min, \max, μ, σ \min, \max, μ, σ \min, \max, μ, σ \min, \max, μ, σ
Information gain Landmarker(1NN) Landmarker(Tree) Landmarker(Lin) Landmarker(NB) Relative LM Subsample LM	$P(\theta_{1NN}, t_j)$ $P(\theta_{Tree}, t_j)$ $P(\theta_{Lin}, t_j)$ $P(\theta_{NB}, t_j)$ $P_{a,j} - P_{b,j}$ $P(\theta_i, t_j, s_t)$	Feature importance [16] Data sparsity [115] Data separability [115] Linear separability [115] Feature independence [115] Probing performance [53] Probing performance [159]	min,max, μ , σ , gini Elite 1NN [115] Stump,RandomTree Lin.Disciminant More models [14, 88]

元学习常见字段