# Data on Fire: A Hands-On Intro to Spark in Fabric

**SQL Saturday Orlando 2025** 



#### Jason

#### Romans

Cloud Data & Integration Developer



- Nashville, TN, USA
- **\*\*** Began Career as a SQL Server DBA
- **Transitioned to Microsoft BI Stack**
- **Data Engineering to Data Modeling**
- **Infrequent Blogger**
- Fan of Dimensional Models & Doctor Who

#### The DAX Shepherd



- @sql\_jar
- jason-r-sql-jar
- https://thedaxshepherd.com/



#### Thank you, Sponsors!

















Join Our Local User Groups:





#### www.thedaxshepherd.com









Simple Talk Presentations

A Speaker's Journey

#### **Presentations**

#### Sessionize

This is my Sessionize Profile that has the conferences I have spoken at along with future events. It has a couple of my most popular sessions.

#### **Presentation Slides**

This is my GitHub Repository with the presentation slides for each event.

#### **Recorded Sessions**

Simple Talks Podcast | Episode 4 - Coffee chat with Jason Romans

#### About Jason Romans



I love working with the Microsoft BI Stack. I am passionate about learning.

A Speaker's Journey

#### **Shoulders of Giants**





#### **Our Journey**











- 1. Intro
- 2. Python
- 3. PySpark
- 4. Uses
- 5. Conclusion

#### Our Journey



#### 1. Intro

- 2. Python
- 3. PySpark
- 4. Uses
- 5. Conclusion

## What lit the fire for Apache Spark

The Netflix Prize

Began Oct 2006

Goal - improve Netflix's Cinematch algorithm by at least 10%

Prize was 1 million dollars

Took until 2009

## Couldn't the Elephant\* Help?

Hadoop was not optimal for Machine Learning – multiple passes over disk

Need for new tooling

Shift to in-memory versus disk

Like Analysis Services Multi-Dimensional to Tabular

Contest must have led to work on Spark

\* Hadoop's Mascot is an Elephant

# Flashbacks of submitting homework digitally

Front runner BellKor's Pragmatic Chaos

Merger of teams from AT&A Labs and Commendo Research

July 26, 2009 two teams met minimum requirements

The Ensemble (Spark team) had a better improvement in score

Lost by submitting 20 minutes later

#### What is Powered by Spark

- Apache Spark
- Azure Synapse Analytics
- Databricks
- Microsoft Fabric

#### Installing Spark Step 1 of 42

```
$ pip install pyspark
No-module named pip;
 ModuleNotFoundError
 Error importing setuptools module:
   Install' command is unavailable until setuptools is
 Ensure pip, setuptols, and wheel are up to date
   For "upgrode spark pip.ptgspec "ll ergk!
Upgrade pyspark --no-cache-dir setuptools wheel
Value for scheme.headers does not match
   to avoid this problem; if erroode, with exame>
Retrying (Retry(total=4, connect=-4323 after Exceptilo
  annotate; error: (versygtut), line 230, init _eforl
File '/usr/lib/python3.8/supprocs.py, line 231, in me
   trod self.s.connect(sockaddr cannec) timeout
File '/usr/lib/python3.8/soket.py', line 26,i meth
    self.s.connect(sockaddr)
                                   involve'nexit
Interna to an attack
Collecting pyspark _apack-3.2.1-bin-hadoopg.3.2.cg int
Downloading Apache-spark-3.2.1-i-nstaller
 error Value for scheme headers does not matchc ae' matc
 to avoride tryn connect be found; ⇒ to avoid this problem
Retrying (Retry(total=<connect=,) after Excepption annotate
-- again:z https://files pytnonosted.org/poack,org)P/28n.
 (nttps: 'files.pythonhostetd.org(hjaps://packages/5/665f.1
confirming) package falled: There was a p: _crobiemrc t
Exception (ισο problen confirming the ssl certificate: HTTTPS
ssl-certificate:mTTTPSconnectionool Connection annicatetot/
(host='>> 'https://pjpu_I.jsomjoofit*> HTTPSConnecrinPool(Mol
Could not install pagages due to an vo space on device
[Errno 28) nò insstall paccages due to an an OSEserer:
```

# Wait! Microsoft Fabric makes this easy



# Notebooks in Microsoft Fabric

Can apply to other environments

#### **Notebook Gallery**

https://community.fabric.microsoft.com/t5/Notebook-Gallery/bd-p/pbi\_notebookgallery

There was a notebook contest (it is closed now):

https://powerbi.microsoft.com/en-us/blog/introducing-the-first-ever-fabric-notebooks-competition-for-power-bi/

#### Microsoft Fabric Architecture

- Data is stored in OneLake (Files)
- Compute engines sitting on top of files
- Languages and compute
  - •i.e. T-SQL with Warehouse

#### Compute & Language



## Spark (Python, Scala, SQL, R)



## Python (Python)



## T-SQL Analytics (T-SQL)



#### **Choosing PySpark or Python Compute (quick)**

| Scenario                                           | Recommended Notebook                                       |
|----------------------------------------------------|------------------------------------------------------------|
| Includes pre-installed DuckDB and Polars libraries | Python Notebooks                                           |
| Small to medium data (fits in memory)              | Python Notebooks (or PySpark on single-node Spark cluster) |
| Rapid exploration & prototyping                    | Python Notebooks (or PySpark on single-node Spark cluster) |
| Large datasets (10GB+) exceeding memory            | PySpark Notebooks                                          |
| Complex data workflows or ETL pipelines            | PySpark Notebooks                                          |
| High-concurrency or parallel execution             | PySpark Notebooks                                          |
| Needs Spark-native APIs (MLlib, SQL, Streaming)    | PySpark Notebooks                                          |

https://learn.microsoft.com/en-us/fabric/data-engineering/fabric-notebook-selection-guide

#### **Choosing PySpark or Python Compute**

| Scenario                                                                                                                                          | Python Notebooks (2-core VM)                                                                                       | PySpark Notebooks (Spark Compute)  Start-up ranges from ~5 seconds (starter pool) to several minutes (on-demand Spark clusters) |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|
| Startup Time                                                                                                                                      | The built-in starter pool initializes in approximately 5 seconds, while the on-demand pool takes around 3 minutes. |                                                                                                                                 |  |
| Quick Transformations<br>& API Calls                                                                                                              | Ideal for small to medium sized datasets (up to 1GB)                                                               | Optimized for large datasets using vectorized execution.                                                                        |  |
| Moderate Workloads                                                                                                                                | Not optimized for data sizes nearing memory saturation                                                             | Efficient at scaling via distributed compute.                                                                                   |  |
| Handling of Large<br>Datasets                                                                                                                     | Limited by single-node memory. May struggle with scaling.                                                          | Distributed processing ensures scalable handling of multi-GB to TB workloads.                                                   |  |
| High-Concurrency<br>Execution                                                                                                                     | Manual FIFO-style parallelism per notebook                                                                         | System-managed concurrency with support for parallel execution.                                                                 |  |
| Resource Fixed compute (2-core VM); does not auto scale. Users Customization & can manually scale out using %%config within the Scaling notebook. |                                                                                                                    | Flexible resource allocation; supports autoscaling and custom Spark configurations.                                             |  |

https://learn.microsoft.com/en-us/fabric/data-engineering/fabric-notebook-selection-guide

#### Type of Compute for Notebooks

- Spark Based
  - Cluster
- Single Node Python
  - 2 vCores, 16G RAM
- T-SQL Analytics
  - Warehouse

#### **Python Notebook**

- Has libraries installed for dealing with "small-big" data
  - Less than 10 Gigabytes
  - Fits in memory
- Example Libraries installed
  - Polars
  - DuckDB

#### Languages for Spark

Different choices of languages

**Built with Scala** 

- PySpark (Python)
- Spark (Scala)
- Spark SQL
- SparkR (R)



#### Magic Commands – set language by cell

| Magic<br>command | Language | Description                                                  |
|------------------|----------|--------------------------------------------------------------|
| %%pyspark        | Python   | Execute a <b>Python</b> query against Apache Spark Context.  |
| %%spark          | Scala    | Execute a <b>Scala</b> query against Apache Spark Context.   |
| %%sql            | SparkSQL | Execute a SparkSQL query against Apache Spark Context.       |
| %%html           | Html     | Execute n <b>HTML</b> query against Apache Spark<br>Context. |
| %%sparkr         | R        | Execute a R query against Apache Spark Context.              |



#### **Our Journey**



- 1. Intro
- 2. Python
- 3. PySpark
- 4. Uses
- 5. Conclusion

#### **Python Language**





HOW YOU INTERACT WITH SPARK HOW YOU MANIPULATE THE DATA

### Python Demo

#### Our Journey



- 1. Intro
- 2. Python
- 3. PySpark
- 4. Other Uses
- 5. Conclusion

#### **PySpark**





Python API for Spark

Most operations on a DataFrame



Like Pandas but distributed

#### **DataFrame**

- Conceptually same as a table
  - Abstraction
  - Rows
  - Columns
- Resilient Distributed Dataset (RDD)



#### **Lazy Evaluation**

- Waits until an action is requested
- Actions
  - Counting number of rows in a Spark DataFrame
  - Showing output
  - Writing data to a file or data source
  - Transferring data from a Spark DataFrame to a native object in Python

#### **Benefits of Lazy Evaluation**

- Saves resources
- Plan can be optimized

Pandas (non-spark, historic) is eager evaluation

#### Fabric in Visual Studio Code





**EDIT NOTEBOOKS** 

CONNECT TO COMPUTE IN MICROSOFT FABRIC

## Data Wrangler

Think Power Query but for PySpark and Python



# PySpark Demo

# **Our Journey**



- 1. Intro
- 2. Python
- 3. PySpark
- 4. Other Uses
- 5. Conclusion

#### Main Use

Consume and transform large amount of data

Machine Learning

## **Semantic Link**

### **Semantic Link Labs**



# Semantic Link Demo

#### Resources

#### Fabric Samples

- https://github.com/microsoft/fabric-samples
- Semantic Link
  - https://learn.microsoft.com/en-us/fabric/datascience/semantic-link-overview
- Semantic Link Labs
  - https://github.com/microsoft/semantic-link-labs

#### Resources

PySpark Book – Data Analysis with Python and PySpark

 https://www.oreilly.com/library/view/data-analysiswith/9781617297205/

PySpark Book – Intro to PySpark (Free HTML version)

https://pedropark99.github.io/Introd-pyspark/

## **Our Journey**



- 1. Intro
- 2. Python
- 3. PySpark
- 4. Other Uses

# 5. Conclusion

# Conclusion

#### **Powerful and Scalable Platform**

Apache Spark in Microsoft Fabric Notebooks provides a robust and scalable solution for handling big data analytics tasks efficiently.

#### **User-Friendly Tools**

The platform offers intuitive and practical tools that simplify data analysis for professionals of all skill levels.

#### **Unlocking Valuable Insights**

Understanding core concepts and leveraging these tools enables data professionals to extract meaningful insights effectively.





# Scan the QR code to fill out session evaluations



# Thank you

Jason Romans thedaxshepherd@gmail.com www.thedaxshepherd.com



