COMP4075/G54RFP: Lecture 2 & 3

Pure Functional Programming: Exploiting Laziness

Henrik Nilsson

University of Nottingham, UK

Lazy evaluation is a *technique for implementing NOR* more efficiently:

Lazy evaluation is a *technique for implementing NOR* more efficiently:

A redex is evaluated only if needed.

Lazy evaluation is a *technique for implementing NOR* more efficiently:

- A redex is evaluated only if needed.
- Sharing employed to avoid duplicating redexes.

Lazy evaluation is a **technique for implementing NOR** more efficiently:

- A redex is evaluated only if needed.
- Sharing employed to avoid duplicating redexes.
- Once evaluated, a redex is *updated* with the result to avoid evaluating it more than once.

Lazy evaluation is a **technique for implementing NOR** more efficiently:

- A redex is evaluated only if needed.
- Sharing employed to avoid duplicating redexes.
- Once evaluated, a redex is updated with the result to avoid evaluating it more than once.

As a result, under lazy evaluation, any one redex is evaluated at most once.

Recall:

```
sqr x = x * x
dbl x = x + x
main =
sqr (dbl (2+3))
```

sqr (dbl (2 + 3))

```
sqr x = x * x
dbl x = x + x
main =
sqr (dbl (2+3))
```

$$\Rightarrow \frac{\text{dbl } (2 + 3)}{\text{dbl } (2 + 3)} *$$

$$sqr x = x * x$$

$$dbl x = x + x$$

$$main =$$

$$sqr (dbl (2+3))$$

$$\Rightarrow$$
 $\frac{\text{db1} (2 + 3)}{\text{db1} (2 + 3)} * (\bullet)$ \Rightarrow $((2 + 3) + (\bullet)) * (\bullet)$

$$sqr x = x * x$$

$$dbl x = x + x$$

$$main =$$

$$sqr (dbl (2+3))$$

$$\Rightarrow \frac{\text{db1} (2 + 3)}{} * (\bullet)$$

$$\Rightarrow \frac{(2 + 3)}{} + (\bullet)$$

$$\Rightarrow \frac{(2 + 3)}{} + (\bullet)$$

$$sqr x = x * x$$

$$dbl x = x + x$$

$$main =$$

$$sqr (dbl (2+3))$$

$$\Rightarrow \frac{\text{db1} (2 + 3)}{} * (\bullet)$$

$$\Rightarrow \frac{(2 + 3)}{} + (\bullet)$$

$$\Rightarrow \frac{(2 + 3)}{} * (\bullet)$$

$$\Rightarrow \frac{(5 + (\bullet))}{} * (\bullet)$$

$$sqr x = x * x$$

$$dbl x = x + x$$

$$main =$$

$$sqr (dbl (2+3))$$

```
take 0 _ = []
take n [] = []
take n (x:xs) = x : take (n-1) xs
from n = n : from (n+1)
nats = from 0
main = take 5 nats
```

main

$$\underline{\text{main}} \Rightarrow^1 \underline{\text{take 5}} (\bullet)$$

nats

$$\frac{\text{main}}{\Rightarrow^{1}} \Rightarrow^{1} \frac{\text{take 5}}{\Rightarrow^{2}} \text{ from 0}$$

$$\underline{\text{main}} \Rightarrow^1 \underline{\text{take 5}} (\bullet)$$

$$\underbrace{\mathtt{nats}} \Rightarrow^2 \underline{\mathtt{from}} \ 0 : \underline{\mathtt{from}} \ 1$$

$$\underline{\text{main}} \Rightarrow^{1} \underline{\text{take 5 }} (\bullet) \Rightarrow^{4} 0 : \underline{\text{take 4 }} (\bullet)$$

$$\underline{\text{nats}} \Rightarrow^{2} \underline{\text{from 0}} \Rightarrow^{3} 0 : \underline{\text{from 1}}$$

$$\frac{\text{main} \Rightarrow^{1} \text{take 5} (\bullet)}{\text{nats}} \Rightarrow^{2} \frac{\text{from 0}}{\text{o}} \Rightarrow^{3} 0: \text{from 1}$$

$$\Rightarrow^{5} 0:1: \frac{\text{from 2}}{\text{from 2}}$$

$$\frac{\text{main}}{\Rightarrow^{1}} \Rightarrow^{1} \frac{\text{take 5}}{\Rightarrow^{6}} 0 : 1 : \frac{1}{\text{take 3}} (\bullet)$$

$$\Rightarrow^{6} 0 : 1 : \frac{1}{\text{take 3}} \Rightarrow^{2} \frac{1}{\text{from 0}} \Rightarrow^{3} 0 : \frac{1}{\text{from 1}}$$

$$\Rightarrow^{5} 0 : 1 : \frac{1}{\text{from 2}}$$

$$\frac{\text{main} \Rightarrow^{1} \text{ take } 5 \text{ (•)}}{\Rightarrow^{6} \text{ 0:1:take } 3 \text{ (•)}} \Rightarrow^{4} \text{ 0:take } 4 \text{ (•)}$$

$$\Rightarrow^{6} \text{ 0:1:take } 3 \text{ (•)}$$

$$\frac{\text{nats}}{\Rightarrow^{2} \text{ from } 0} \Rightarrow^{3} \text{ 0:from } 1$$

$$\Rightarrow^{5} \text{ 0:1:from } 2 \Rightarrow^{7} \dots$$

$$\frac{\text{main}}{\Rightarrow^{1}} \Rightarrow^{1} \text{ take } 5 \xrightarrow{(\bullet)} \Rightarrow^{4} 0 : \text{take } 4 \xrightarrow{(\bullet)}$$

$$\Rightarrow^{6} 0 : 1 : \text{take } 3 \xrightarrow{(\bullet)} \Rightarrow^{8} \dots$$

$$\frac{\text{nats}}{\Rightarrow^{2}} \Rightarrow^{2} \text{ from } 0 \Rightarrow^{3} 0 : \text{from } 1$$

$$\Rightarrow^{5} 0 : 1 : \text{from } 2 \Rightarrow^{7} \dots$$

```
\underline{\text{main}} \Rightarrow^1 \text{take } 5 \leftarrow 0 \Rightarrow^4 0 \text{:take } 4 \leftarrow 0
\Rightarrow<sup>6</sup> 0:1:take 3 (•) \Rightarrow<sup>8</sup> ...
  \frac{\text{nats}}{\text{nats}} \Rightarrow^2 \underline{\text{from 0}} \Rightarrow^3 0 : \underline{\text{from 1}}
\Rightarrow^5 0:1: \underline{\text{from 2}} \Rightarrow^7 \dots \Rightarrow 0:1:2:3:4: \underline{\text{from}}
```

```
\underline{\text{main}} \Rightarrow^1 \text{take } 5 \leftarrow 0 \Rightarrow^4 0 \text{:take } 4 \leftarrow 0
\Rightarrow<sup>6</sup> 0:1:take 3 (•) \Rightarrow<sup>8</sup> ...
\Rightarrow 0:1:2:3:4: take 0 (•)
 \frac{\text{nats}}{\text{nats}} \Rightarrow^2 \frac{\text{from 0}}{\text{om 0}} \Rightarrow^3 0 : \boxed{\text{from 1}}
\Rightarrow^5 0:1: \underline{\text{from 2}} \Rightarrow^7 \dots \Rightarrow 0:1:2:3:4: \underline{\text{from 5}}
```

```
\underline{\text{main}} \Rightarrow^1 \text{take } 5 \leftarrow 0 \Rightarrow^4 0 \text{:take } 4 \leftarrow 0
\Rightarrow 0:1:take 3 (•) \Rightarrow 8 ...
\Rightarrow 0:1:2:3:4: take 0 (•) \Rightarrow [0,1,2,3,4]
 \Rightarrow^2 \underline{\text{from 0}} \Rightarrow^3 0 : \underline{\text{from 1}}
\Rightarrow^5 0:1: \underline{\text{from 2}} \Rightarrow^7 \dots \Rightarrow 0:1:2:3:4: \underline{\text{from}}
```

```
take 0 _ = []
take n [] = []
take n (x:xs) = x : take (n-1) xs
ones = 1 : ones
main = take 5 ones
```

main

$$\underline{\text{main}} \Rightarrow^{1} \underline{\text{take 5}} (\bullet)$$

$$\frac{\text{main}}{\Rightarrow^{1}} \Rightarrow^{1} \text{take 5} (\bullet)$$

$$\frac{\text{ones}}{\Rightarrow^{2}} \Rightarrow^{2} 1 : \bullet$$

$$\frac{\text{main}}{\text{ones}} \Rightarrow^{1} \frac{\text{take 5 (•)}}{\text{ones}} \Rightarrow^{2} 1 : \bullet$$

$$\frac{\text{main} \Rightarrow^{1} \text{ take 5 } (\bullet)}{\Rightarrow^{4} \text{ 1:1:} \text{take 3 } (\bullet)}$$

$$\Rightarrow^{2} \text{ 1:0}$$

$$\frac{\text{main} \Rightarrow^{1} \text{ take } 5 \text{ (•)}}{\Rightarrow^{4} \text{ 1:1:take } 3 \text{ (•)}} \Rightarrow^{5} \dots$$

$$\frac{\text{ones}}{\Rightarrow^{2} \text{ 1:0}}$$

```
\underline{\text{main}} \Rightarrow^1 \text{take } 5 \leftarrow 3 \text{ 1:take } 4 \leftarrow 3
\Rightarrow 4 1:1:take 3 (\bullet) \Rightarrow 5 ...
\Rightarrow 1:1:1:1:1:take 0 (•)
```

```
\underline{\text{main}} \Rightarrow^1 \text{take } 5 \leftarrow 3 \text{ 1:take } 4 \leftarrow 3
\Rightarrow 1:1:take 3 (\bullet) \Rightarrow 5 ...
\Rightarrow 1:1:1:1:1:take 0 (\stackrel{\bullet}{\bullet}) \Rightarrow [1,1,1,1,1]
```

Exercise

Given the following tree type

define:

- An infinite tree where every node is labelled by 1.
- An infinite tree where every node is labelled by its depth from the root node.

Exercise: Solution

A non-empty tree type:

data Tree = Leaf Int | Node Tree Tree

A non-empty tree type:

```
data Tree = Leaf Int | Node Tree Tree
```

Suppose we would like to write a function that replaces each leaf integer in a given tree with the *smallest* integer in that tree.

A non-empty tree type:

```
data Tree = Leaf Int | Node Tree Tree
```

Suppose we would like to write a function that replaces each leaf integer in a given tree with the *smallest* integer in that tree.

How many passes over the tree are needed?

A non-empty tree type:

```
data Tree = Leaf Int | Node Tree Tree
```

Suppose we would like to write a function that replaces each leaf integer in a given tree with the *smallest* integer in that tree.

How many passes over the tree are needed?

One!

Write a function that replaces all leaf integers by a given integer, and returns the new tree along with the smallest integer of the given tree:

```
fmr :: Int -> Tree -> (Tree, Int)
fmr m (Leaf i) = (Leaf m, i)
fmr m (Node tl tr) =
     (Node tl' tr', min ml mr)
     where
     (tl', ml) = fmr m tl
     (tr', mr) = fmr m tr
```

For a given tree t, the desired tree is now obtained as the **solution** to the equation:

```
(t', m) = fmr m t
```

Thus:

```
findMinReplace t = t'
    where
     (t', m) = fmr m t
```

Intuitively, this works because fmr can compute its result without needing to know the value of m.

A Simple Spreadsheet Evaluator (1)

```
а
    c3 + c2
                                       37
                a2 + b2
    a3 * b2
                                       14
                                              16
                 a2 + a3
                                              21
s' = array (bounds s)
            [ (r, evalCell s' (s ! r))
            | r <- indices s |
```

The evaluated sheet is again simply the **solution** to the stated equation. No need to worry about evaluation order. **Any caveats?**

A Simple Spreadsheet Evaluator (2)

As it is quite instructive, let us develop this evaluator together. Some definitions to get us started:

```
type CellRef = (Char, Int)
type Sheet a = Array CellRef a
data BinOp = Add | Sub | Mul | Div
data Exp = Lit Double
           Ref CellRef
           App BinOp Exp Exp
```

Breadth-first Numbering (1)

Consider the problem of numbering a possibly infinitely deep tree in breadth-first order:

Breadth-first Numbering (2)

The following algorithm is due to G. Jones and J. Gibbons (1992), but the presentation differs.

Consider the following tree type:

Define:

width t i The width of a tree t at level i (0 origin).

label t i j The jth label at level i of a tree t (0 origin).

Breadth-first Numbering (3)

The following system of equations defines breadth-first numbering:

$$label t 0 0 = 1 (1)$$

label
$$t (i + 1) 0 = label t i 0 + width t i (2)$$

$$label t i (j+1) = label t i j + 1$$
 (3)

Note that label t i 0 is defined for all levels i (as long as the widths of all tree levels are finite).

Breadth-first Numbering (4)

The code that follows sets up the defining system of equations:

Breadth-first Numbering (4)

The code that follows sets up the defining system of equations:

Streams (infinite lists) of labels are used as a mediating data structure to allow equations to be set up between adjacent nodes within levels and between the last node at one level and the first node at the next.

Breadth-first Numbering (4)

The code that follows sets up the defining system of equations:

- Streams (infinite lists) of labels are used as a mediating data structure to allow equations to be set up between adjacent nodes within levels and between the last node at one level and the first node at the next.
- Idea: the tree numbering function for a subtree takes a stream of labels for the *first node* at each level, and returns a stream of labels for the *node after the last node* at each level.

Breadth-first Numbering (5)

As there manifestly are *no cyclic dependences* among the equations, we can entrust the details of solving them to the lazy evaluation machinery in the safe knowledge that a solution will be found.

Breadth-first Numbering (6)

```
Egns (1) & (2)
bfn :: Tree a -> Tree Integer
bfn t = t'
   where
         (ns, t') = bfnAux (1 : ns)
bfnAux :: [Integer] -> Tree a
                                          Eqn (3)
          -> ([Integer], Tree Integer)
                  Empty
                             = (ns, Empty)
bfnAux ns
       (n : ns) (Node tl _ tr) = ( (n + 1) : ns''
bfnAux
                                    Node tl' n tr')
    where
        (ns', tl') = bfnAux ns tl
        (ns'', tr') = bfnAux ns' tr
```

Breadth-first Numbering (7)

Breadth-first Numbering (8)

Dynamic Programming

Dynamic Programming:

- Create a table of all subproblems that ever will have to be solved.
- Fill in table without regard to whether the solution to that particular subproblem will be needed.
- Combine solutions to form overall solution.

Dynamic Programming

Dynamic Programming:

- Create a table of all subproblems that ever will have to be solved.
- Fill in table without regard to whether the solution to that particular subproblem will be needed.
- Combine solutions to form overall solution.

Lazy Evaluation is perfect match: no need to worry about finding a suitable evaluation order.

Dynamic Programming

Dynamic Programming:

- Create a table of all subproblems that ever will have to be solved.
- Fill in table without regard to whether the solution to that particular subproblem will be needed.
- Combine solutions to form overall solution.

Lazy Evaluation is perfect match: no need to worry about finding a suitable evaluation order.

In effect, using laziness to implement limited form of memoization.

The Triangulation Problem (1)

Select a set of *chords* that divides a convex polygon into triangles such that:

- no two chords cross each other
- the sum of their length is minimal.

We will only consider computing the minimal length.

See Aho, Hopcroft, Ullman (1983) for details.

The Triangulation Problem (2)

The Triangulation Problem (3)

- Let S_{is} denote the subproblem of size s starting at vertex v_i of finding the minimum triangulation of the polygon $v_i, v_{i+1}, \ldots, v_{i+s-1}$ (counting modulo the number of vertices).
- Subproblems of size less than 4 are trivial.
- Solving S_{is} is done by solving $S_{i,k+1}$ and $S_{i+k,s-k}$ for all k, $1 \le k \le s-2$
- The obvious recursive formulation results in 3^{s-4} (non-trivial) calls.
- But for $n \ge 4$ vertices there are only n(n-3) non-trivial subproblems!

The Triangulation Problem (4)

The Triangulation Problem (5)

- Let C_{is} denote the minimal triangulation cost of S_{is} .
- Let $D(v_p, v_q)$ denote the length of a chord between v_p and v_q (length is 0 for non-chords; i.e. adjacent v_p and v_q).
- For s > 4:

$$C_{is} = \min_{k \in [1, s-2]} \left\{ \begin{array}{l} C_{i,k+1} + C_{i+k,s-k} \\ + D(v_i, v_{i+k}) + D(v_{i+k}, v_{i+s-1}) \end{array} \right\}$$

• For s < 4, $C_{is} = 0$.

The Triangulation Problem (6)

These equations can be transliterated straight into Haskell:

```
triCost :: Polygon -> Double
triCost p = cost!(0,n) where
    cost = array ((0,0), (n-1,n))
                  ([ ((i,s),
                      minimum [ cost!(i, k+1)
                                 + cost!((i+k) \mod n, s-k)
                                 + dist p i ((i+k) 'mod' n)
                                 + dist p ((i+k) 'mod' n)
                                           ((i+s-1) \mod n)
                               | k < [1..s-2] |
                   | i \leftarrow [0..n-1], s \leftarrow [4..n] | ++
                   [((i,s), 0.0)]
                   | i < [0..n-1], s < [0..3] | 
    n = snd (bounds b) + 1
```

Attribute Grammars (1)

Lazy evaluation is also very useful for evaluation of **Attribute Grammars**:

- The attribution function is defined recursively over the tree:
 - takes inherited attributes as extra arguments;
 - returns a tuple of all synthesised attributes.
- As long as there exists *some* possible attribution order, lazy evaluation will take care of the attribute evaluation.

Attribute Grammars (2)

The earlier examples on Circular Programming and Breadth-first Numbering can be seen as instances of this idea.

Reading

- John W. Lloyd. Practical advantages of declarative programming. In *Joint Conference on Declarative Programming, GULP-PRODE'94*, 1994.
- John Hughes. Why Functional Programming Matters. *The Computer Journal*, 32(2):98–197, April 1989.
- Thomas Johnsson. Attribute Grammars as a Functional Programming Paradigm. In Functional Programming Languages and Computer Architecture, FPCA'87, 1987

Reading

- Geraint Jones and Jeremy Gibbons.

 Linear-time breadth-first tree algorithms: An exercise in the arithmetic of folds and zips.

 Technical Report TR-31-92, Oxford University Computing Laboratory, 1992.
- Alfred Aho, John Hopcroft, Jeffrey Ullman.
 Data Structures and Algorithms.
 Addison-Wesley, 1983.