LAPORAN TUGAS PRAKTIKUM MANDIRI

Tugas 3: Judul Tugas - Prediksi Jumlah Penyewaan Sepeda Menggunakan Linear Regression

Nama Mahasiswa: Al Hijir

Program studi: Teknik Informatika, STT Terpadu Nurul Fikri, Depok

E-mail: 0110224222@student.nurulfikri.ac.id

Abstract

Praktikum ini bertujuan untuk membangun model prediksi jumlah penyewaan sepeda harian menggunakan algoritma *Linear Regression*. Data yang digunakan berasal dari *Bike Sharing Dataset* yang berisi informasi tentang kondisi cuaca, waktu, dan jumlah penyewa sepeda. Proses dilakukan dengan memisahkan data menjadi data latih dan uji, melatih model menggunakan fitur-fitur seperti suhu, kelembapan, kecepatan angin, serta kondisi cuaca. Hasil evaluasi menggunakan metrik MAE, MSE, dan R² menunjukkan bahwa model mampu memprediksi jumlah penyewaan sepeda dengan tingkat akurasi yang cukup baik. Model ini dapat dikembangkan lebih lanjut menggunakan algoritma regresi lain untuk meningkatkan performa prediksi.

1. Metode Penelitian

1.2. Connect Drive

Penjelasan Kode

Kode di atas digunakan untuk **menghubungkan Google Colab dengan Google Drive**.

Tujuannya agar file dataset (day.csv) yang disimpan di Google Drive bisa diakses langsung oleh Colab.

1.3. Masuk Ke folder prkatikum

```
path = "/content/gdrive/MyDrive/praktikmML/praktikum3"
```

Penjelasan Kode

Kode ini digunakan untuk menentukan lokasi folder kerja (path) di Google Drive tempat dataset atau file praktikum disimpan.

1.3. Import Library

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
```

Penjelasan:

- pandas digunakan untuk membaca dan mengelola data.
- seaborn dan matplotlib digunakan untuk visualisasi data.
- **sklearn** digunakan untuk membangun dan mengevaluasi model *Linear Regression*.

1.4. Persiapan Data

Penjelasan:

Dataset dimuat dari Google Drive ke dalam variabel df. Dataset ini berisi data penyewaan sepeda dengan berbagai fitur seperti:

- season \rightarrow musim
- $yr \rightarrow tahun$

- $mnth \rightarrow bulan$
- holiday → hari libur
- weekday → hari kerja
- weathersit → kondisi cuaca
- temp, atemp, hum, windspeed → data cuaca
- $cnt \rightarrow jumlah penyewaan sepeda per hari (target)$

1.5. Permisahan Data

Penjelasan:

- X adalah variabel independen (fitur).
- y adalah variabel dependen (target).
- Data dibagi menjadi data latih (80%) dan data uji (20%) agar model bisa diuji keakuratannya terhadap data baru.

1.6. Pembuatan dan Pelatihan Model

Penjelasan:

Model Linear Regression dibuat dan dilatih menggunakan data latih (X train,

y train).

Tujuannya agar model mampu mempelajari hubungan antara fitur (X) dan target (cnt).

1.7. Prediksi dan Evaluasi Model

```
y_pred = model.predict(X_test)

print("MAE:", mean_absolute_error(y_test, y_pred))
print("MSE:", mean_squared_error(y_test, y_pred))
print("R2 Score:", r2_score(y_test, y_pred))

MAE: 617.3930656443376
MSE: 691035.0082022651
R2 Score: 0.8276670090367212
```

Penjelasan:

- MAE (Mean Absolute Error) → rata-rata selisih absolut antara nilai aktual dan prediksi.
- MSE (Mean Squared Error) → rata-rata kuadrat dari selisih antara nilai aktual dan prediksi.
- $\mathbf{R^2 \, Score} \rightarrow \text{mengukur seberapa baik model menjelaskan variasi data (semakin mendekati 1 semakin baik)}$

1.8. Visualisasi Hasil

2. Hasil dan Pembahasan

Model *Linear Regression* berhasil memprediksi jumlah penyewaan sepeda berdasarkan kondisi cuaca dan waktu.

Nilai metrik evaluasi menunjukkan performa model yang cukup baik, dengan nilai **R² Score** mendekati 1.

Visualisasi scatterplot juga memperlihatkan bahwa hasil prediksi cukup mendekati nilai aktual, walaupun masih terdapat sedikit penyebaran data (error).

Fitur yang paling berpengaruh terhadap prediksi biasanya adalah **temperatur (temp/atemp)** dan **musim (season)**.

3. Kesimpulan

Dari hasil praktikum ini dapat disimpulkan bahwa:

- 1. Algoritma *Linear Regression* mampu digunakan untuk memprediksi jumlah penyewaan sepeda harian berdasarkan data cuaca dan waktu.
- 2. Model memberikan hasil yang cukup akurat, dengan nilai R² yang tinggi.
- 3. Model masih dapat ditingkatkan dengan menambah fitur, melakukan normalisasi data, atau mencoba algoritma regresi lain seperti *Ridge Regression* atau *Random Forest Regressor*.

4. Referensi

- [1] H. Fanaee-T and J. Gama, "Event labeling combining ensemble detectors and background knowledge," *Progress in Artificial Intelligence*, vol. 2, no. 2–3, pp. 113–127, 2013. [Online]. Available: https://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset
- [2] F. Pedregosa *et al.*, "Scikit-learn: Machine learning in Python," *Journal of Machine Learning Research*, vol. 12, pp. 2825–2830, 2011.
- [3] W. McKinney, "Data structures for statistical computing in Python," in *Proceedings of the 9th Python in Science Conference (SciPy 2010)*, pp. 51–56, 2010.
- [4] J. D. Hunter, "Matplotlib: A 2D graphics environment," *Computing in Science & Engineering*, vol. 9, no. 3, pp. 90–95, 2007.
- [5] M. L. Waskom, "Seaborn: Statistical data visualization," *Journal of Open Source Software*, vol. 6, no. 60, p. 3021, 2021. [Online]. Available: https://doi.org/10.21105/joss.03021
- [6] Scikit-learn Developers, "Linear regression scikit-learn 1.5 documentation," Scikit-learn.org, 2024. [Online]. Available: https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
- [7] Google, "Welcome to Colaboratory," *Google Colab*, 2024. [Online]. Available: https://colab.research.google.com
- [8] J. Han, M. Kamber, and J. Pei, *Data Mining: Concepts and Techniques*, 3rd ed. Burlington, MA, USA: Morgan Kaufmann Publishers, 2012.