LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE

Patent number: JP2003086356

Publication date: 2003-03-20

Inventor: YAMAZAKI SHUNPEI; TAKAYAMA TORU
Applicant: SEMICONDUCTOR ENERGY LAB

Classification:

- international: G09F9/30; H05B33/04; H05B33/14; G09F9/30; H05B33/04; H05B33/14;

(IPC1-7): H05B33/04; G09F9/30; H05B33/14

- european:

Application number: JP20010270694 20010906 Priority number(s): JP20010270694 20010906

Report a data error here

Abstract of JP2003086356

PROBLEM TO BE SOLVED: To provide a flexible light emitting device having an OLED formed on a plastic substrate enabled to restrain deterioration caused by the diffusion of impurities such as water, oxygen, alkali metal, alkali earth metal. SOLUTION: Not less than two layers of barrier film shown as AlXOY preventing an organic light emitting layer of an OLED from the intrusion of oxygen and water, and preventing an active layer of TFT from the intrusion of alkali metal or alkali earth metal or the like, are formed, further, a stress releasing film containing resin is formed between the two layers of barrier film.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-86356 (P2003-86356A)

(43)公開日 平成15年3月20日(2003.3.20)

(51) Int.Cl. ⁷		識別記号	FI	テーマコード(参考)	
H05B	33/04		H 0 5 B 33/04	3 K 0 0 7	
G09F	9/30	3 1 0	G09F 9/30	310 5C094	
		3 3 8		3 3 8	
		3 6 5		3 6 5 Z	
H 0 5 B	33/14		H 0 5 B 33/14 A		
			審查請求未	請求 請求項の数17 OL (全 18 頁)	
(21)出願番号		特願2001-270694(P2001-270694)	(71) 出願人 000	(71) 出願人 000153878	
			株式	式会社半導体エネルギー研究所	
(22)出願日		平成13年9月6日(2001.9.6)	神系	东川県厚木市長谷398 番 地	
			(72)発明者 山崎	商 舜平	
			神羽	奈川県厚木市長谷398番地 株式会社半	
			導作	本エネルギー研究所内	
			(72)発明者 高山	上)徹	
			神羽	奈川県厚木市長谷398番地 株式会社半	
			導体	本エネルギー研究所内	
				最終頁に続く	

(54) 【発明の名称】 発光装置及び電子機器

(57)【要約】

【課題】 水分や酸素やアルカリ金属やアルカリ土類金属などの不純物の拡散による劣化を抑えることが可能な発光装置、具体的には、プラスチック基板上に形成されたOLEDを有するフレキシブルな発光装置の提供を課題とする。

【解決手段】プラスチック基板上に、酸素や水分がOLEDの有機発光層に入り込むのを防ぎ、且つアルカリ金属およびアルカリ土類金属などの不純物がTFTの活性層に入り込むのを防ぐことの可能なAINχOγで示される層からなるバリア膜を2層以上設けて、さらに該2層のバリア膜の間に樹脂を含む応力緩和膜を設ける。

1

【特許請求の範囲】

【請求項1】絶縁表面を有する基板上に陰極と、該陰極に接する有機化合物層と、該有機化合物層に接する陽極とを有する発光素子を備えた発光装置であって、前記基板に接してA1NxOyで示される層が設けられていることを特徴とする発光装置。

【請求項2】陰極と、該陰極に接する有機化合物層と、該有機化合物層に接する陽極とを有する発光素子を第1の基板と第2の基板との間に挟んだ発光装置であって、前記第1の基板または前記第2の基板には、A1NxOyで示される層が設けられ、且つ、前記発光素子は、A1NxOyで示される層で覆われていることを特徴とする発光装置。

【請求項3】絶縁表面を有する基板上に陰極と、該陰極に接する有機化合物層と、該有機化合物層に接する陽極とを有する発光素子を備えた発光装置であって、前記基板に接してA1NxOyで示される層と有機樹脂からなる層との積層が設けられていることを特徴とする発光装置

【請求項4】陰極と、該陰極に接する有機化合物層と、該有機化合物層に接する陽極とを有する発光素子を第1の基板と第2の基板との間に挟んだ発光装置であって、前記第1の基板または前記第2の基板には、AlNxOyで示される層と有機樹脂からなる層との積層が設けられ、且つ、前記発光素子は、AlNxOyで示される層で覆われていることを特徴とする発光装置。

【請求項5】請求項3または請求項4において、前記有機樹脂からなる層は、AlNxOyで示される層よりも応力が小さいことを特徴とする発光装置。

【請求項6】請求項3乃至5のいずれか一において、前 記有機樹脂からなる層は、前記基板を接着する接着層を 含むことを特徴とする発光装置。

【請求項7】請求項3乃至6のいずれか一において、前記発光素子は、AlNxOyで示される層で包まれていることを特徴とする発光装置。

【請求項8】A1NxOyで示される層上に有機樹脂からなる層と、該層上にA1NxOyで示される層とが積層形成されたポリイミド基板上に、陰極と、該陰極に接する有機化合物層と、該有機化合物層に接する陽極とを有する発光素子を備えた発光装置。

【請求項9】A1NxOyで示される層上に有機樹脂からなる層と、該層上にA1NxOyで示される層とが積層形成されたポリエチレンサルファイル基板上に、陰極と、該陰極に接する有機化合物層と、該有機化合物層に接する陽極とを有する発光素子を備えた発光装置。

【請求項10】AINХОYで示される層上に有機樹脂からなる層と、該層上にAINХОYで示される層とが積層形成されたポリカーボネート基板上に、陰極と、該陰極に接する有機化合物層と、該有機化合物層に接する陽極とを有する発光素子を備えた発光装置。

【請求項11】 AINXOYで示される層上に有機樹脂からなる層と、該層上にAINXOYで示される層とが積層形成されたポリエチレンテレフタレート基板上に、陰極と、該陰極に接する有機化合物層と、該有機化合物層に接する陽極とを有する発光素子を備えた発光装置。

2

【請求項12】A1NxOyで示される層上に有機樹脂からなる層と、該層上にA1NxOyで示される層とが積層形成されたポリエチレンナフタレート基板上に、陰極と、該陰極に接する有機化合物層と、該有機化合物層に10接する陽極とを有する発光素子を備えた発光装置。

【請求項13】発光装置と外部との間にAlNxOyで示される層または有機樹脂からなる層を単層または多層有していることを特徴とする電子機器。

【請求項14】請求項1万至13のいずれか一において、前記AlNχOγで示される層は、窒素を2.5atm%~47.5atm%含むことを特徴とする発光装置。

【請求項15】請求項1乃至14のいずれか一において、前記 $A1N_XO_Y$ で示される層は、周期律13族元素または周期律15族元素の不純物を $0.1atm\%\sim5atm$ 20 %含むことを特徴とする発光装置。

【請求項16】請求項1乃至14のいずれか一において、前記A1N χ O γ で示される層は、リン元素またはボロン元素を0.1 α 0、 α 0、 α 0、 α 0 を特徴とする発光装置。

【請求項17】請求項1乃至16のいずれか一において、前記発光装置をビデオカメラ、デジタルカメラ、ゴーグル型ディスプレイ、カーナビゲーション、パーソナルコンピュータまたは携帯情報端末に備えたことを特徴とする電子機器。

30 【発明の詳細な説明】

[0001]

【発明の属する技術分野】発光装置、特に、プラスチック基板上に形成された有機発光素子(OLED:Organic Light Emitting Device)を有する発光装置に関する。また、該OLEDパネルにコントローラを含むIC等を実装した、OLEDモジュールに関する。なお本明細書において、OLEDパネル及びOLEDモジュールを共に発光装置と総称する。本発明はさらに、該発光装置を用いた電子機器に関する。

40 [0002]

【従来の技術】近年、絶縁表面を有する基板上に形成された半導体薄膜(厚さ数~数百nm程度)を用いて薄膜トランジスタ(TFT)を構成する技術が注目されている。薄膜トランジスタはICや電気光学装置のような電子デバイスに広く応用され、特に画像表示装置のスイッチング素子として開発が急がれている。

【0003】このような画像表示装置を利用したアプリケーションは様々なものが期待されているが、特に携帯機器への利用が注目されている。現在、ガラス基板や石 英基板が多く使用されているが、割れやすく、重いとい

う欠点がある。また、大量生産を行う上で、ガラス基板 や石英基板は大型化が困難であり、不向きである。その ため、可撓性を有する基板、代表的にはフレキシブルな プラスチックフィルムの上にTFT素子を形成すること が試みられている。

【0004】しかしながら、プラスチックフィルムの耐熱性が低いためプロセスの最高温度を低くせざるを得ず、結果的にガラス基板上に形成する時ほど良好な電気特性のTFTを形成できないのが現状である。そのため、プラスチックフィルムを用いた高性能な発光素子は 10 実現されていない。

[0005]

【発明が解決しようとする課題】近年、自発光型素子としてOLEDを有したアクティブマトリクス型発光装置(以下、単に発光装置と呼ぶ)の研究が活発化している。発光装置は有機発光装置(OELD:Organic EL Display)又は有機ライトエミッティングダイオード(OLED:Organic Light Emitting Diode)とも呼ばれている。

【0006】OLEDは自ら発光するため視認性が高く、液晶表示装置(LCD)で必要なバックライトが要らず薄型化に最適であると共に、視野角にも制限が無い。そのため、OLEDを用いた発光装置は、CRTやLCDに代わる表示装置として注目されている。

【0007】もし、プラスチックフィルム等の可撓性を有する基板の上に有機発光素子(OLED: Organic Light Emitting Device)が形成された発光装置を作製することができれば、厚みが薄く軽量であるということに加えて、曲面を有するディスプレイや、ショーウィンドウ等などにも用いることができる。よって、その用途は携帯機器のみに限られず、応用範囲は非常に広い。

【0008】しかし、プラスチックからなる基板は、一般的に水分や酸素を透過しやすく、有機発光層はこれらのものによって劣化が促進されるので、特に発光装置の寿命が短くなりやすい。そこで従来では、プラスチック基板とOLEDの間に窒化珪素や窒化酸化珪素などからなる絶縁膜を設け、水分や酸素の有機発光層への混入を防いでいた。しかしながら、窒化珪素や窒化酸化珪素などからなる絶縁膜では水分や酸素の有機発光層への混入を十分防止することは困難であった。

【0009】加えて、プラスチックフィルム等の基板は一般的に熱に弱く、窒化珪素や窒化酸化珪素などの絶縁膜の成膜温度を高くしすぎると、基板が変形しやすくなる。また、成膜温度が低すぎると膜質の低下につながり、水分や酸素の透過を十分防ぐことが難しくなる。

【0010】また、プラスチックフィルム等の基板上に設けた素子を駆動する際、局所的に発熱が生じて基板の一部が変形、変質してしまうことも問題になっている。 【0011】さらに、水分や酸素の透過を防ぐために、

【0011】さらに、水分や酸素の透過を防ぐために、 窒化珪素や窒化酸化珪素などの絶縁膜の膜厚を厚くする と、応力が大きくなり、クラック(亀裂)が入りやすくなる。また、膜厚を厚くすると、基板が曲げられたときに膜にクラックが入りやすくなる。また、基板を剥離する際、被剥離層が曲げられ、被剥離層にクラックが入ることもある。

【0012】また、TFTは、水分や酸素に加え、アルカリ金属(Li、Cs、Na等)やアルカリ土類金属(Ca、Mg等)や他の金属元素の不純物が活性層に拡散すると特性が変化しやすい。

Ø 【0013】また、最終製品とした後においても、他の不純物、例えば人の汗や接続部品からの不純物が拡散し、有機発光層やTFTの活性層に混入すると、変質や劣化が促進される恐れがある。

【0014】本発明は上記問題に鑑み、水分や酸素やアルカリ金属やアルカリ土類金属などの不純物の拡散による劣化を抑えることが可能な発光装置、具体的には、プラスチック基板上に形成されたOLEDを有する発光装置の提供を課題とする。

[0015]

20 【課題を解決するための手段】本発明は、プラスチック 基板上に、酸素や水分がOLEDの有機発光層に入り込むのを防ぎ、且つアルカリ金属およびアルカリ土類金属 などの不純物がTFTの活性層に入り込むのを防ぐこと の可能なAiNχOγで示される層からなる膜(以下、バ リア膜)を設ける。

【0016】本明細書で開示する発明の構成は、絶縁表面を有する基板上に陰極と、該陰極に接する有機化合物層と、該有機化合物層に接する陽極とを有する発光素子を備えた発光装置であって、前記基板に接してAlNx 30 Oyで示される層が設けられていることを特徴とする発光装置である。

【0017】なお、上記アルミニウムを含む窒化酸化物層は、窒素を2.5atm%~47.5atm%含む膜であり、水分や酸素をブロッキングすることができる効果に加え、熱伝導性が高く放熱効果を有し、さらには透光性が非常に高いという特徴を有している。加えて、アルカリ金属やアルカリ土類金属などの不純物がTFTの活性層に入り込むのを防ぐことができる。

【0018】また、2枚の基板で挟んで酸素や水分がO LEDの有機発光層に入り込むのを防ぐ構成としてもよ く、本発明の他の構成は、陰極と、該陰極に接する有機 化合物層と、該有機化合物層に接する陽極とを有する発 光素子を第1の基板と第2の基板との間に挟んだ発光装 置であって、前記第1の基板または前記第2の基板に は、AlNxOyで示される層が設けられ、且つ、前記発 光素子は、AlNxOyで示される層で覆われていること を特徴とする発光装置である。

【0019】さらに、2枚の基板で挟む際には接着層で 基板同士を接着することになるが、両基板にバリア膜を 50 設けても、接着層を通過して水分や酸素などの不純物が 侵入してくる恐れがある。そこで、上記発光素子を覆うパッシベーション膜(保護膜とも呼ぶ)としてAINXOYで示される層を用い、上記発光素子をバリア膜とパッシベーション膜とで包む構造とすることが好ましい。加えて、上記発光素子を覆って、AINXOYで示される層からなるパッシベーション膜を2層以上設けて、さらに該2層のパッシベーション膜の間に樹脂を含む応力緩和膜(以下、応力緩和膜と呼ぶ)を設けてもよい。パッシベーション膜に比べて応力が小さい応力緩和膜を、応力緩和膜の間に挟むことで、全体の応力を緩和することができる。

【0020】また、本発明は、プラスチック基板上に、酸素や水分がOLEDの有機発光層に入り込むのを防ぐバリア膜と、前記バリア膜よりも応力の小さい有機樹脂からなる層(応力緩和膜)との積層を設けてもよく、本発明の他の構成は、絶縁表面を有する基板上に陰極と、該陰極に接する有機化合物層と、該有機化合物層に接する陽極とを有する発光素子を備えた発光装置であって、前記基板に接してAlNxOyで示される層と有機樹脂からなる層との積層が設けられていることを特徴とする発光装置である。

【0021】また、2枚の基板で挟んで酸素や水分がOLEDの有機発光層に入り込むのを防ぐ構成としてもよく、本発明の他の構成は、陰極と、該陰極に接する有機化合物層と、該有機化合物層に接する陽極とを有する発光素子を第1の基板と第2の基板との間に挟んだ発光装置であって、前記第1の基板または前記第2の基板には、AlNxOyで示される層と有機樹脂からなる層との積層が設けられ、且つ、前記発光素子は、AlNxOyで示される層で覆われていることを特徴とする発光装置である。

【0022】具体的には、AlNxOyで示される層からなるバリア膜を2層以上設けて、さらに該2層のバリア膜の間に樹脂を含む応力緩和膜(以下、応力緩和膜と呼ぶ)を設ける。そして、該3層以上の絶縁膜上にOLEDを形成して密封することにより、発光装置を形成する。

【0023】本発明では、A1N_XO_Yで示される層からなる複数のバリア膜を積層することで、バリア膜にクラックが生じても、他のバリア膜で水分や酸素などの不純物が有機発光層に入り込むのを効果的に防ぐことができ、アルカリ金属などの不純物がTFTの活性層に入り込むのを効果的に防ぐことができる。

【0024】また、バリア膜に比べて応力が小さい応力 緩和膜を、応力緩和膜の間に挟むことで、全体の応力を 緩和することができる。よって、トータルのバリア膜の 厚さは同じであっても、1層のみのバリア膜に比べて、 応力緩和膜を間に挟んだバリア膜は、応力によるクラッ クが入りにくい。

【0025】したがって、1層のみのバリア膜に比べ

て、トータルのバリア膜の膜厚は同じであっても、水分や酸素などの不純物の有機発光層への混入を効果的に防ぐことができ、さらに、応力によるクラックが入りにく

6

【0026】また、バリア膜と応力緩和膜の積層により、よりフレキシブルになり、曲げたときのクラックを 防ぐことができる。

【0027】また、上記各構成において、前記有機樹脂からなる層は、AlNxOyで示される層よりも応力が小10 さい材料、例えば、ポリイミド、アクリル、ポリアミド、ポリイミドアミド、ベンゾシクロブテン、またはエポキシ樹脂から選ばれた単層、またはそれらの積層からなることを特徴としている。また、上記各構成において、前記有機樹脂からなる層は、前記基板を接着する接着層を含むことを特徴としている。

【 0 0 2 8 】また、上記各構成において、前記基板は、可撓性を有するプラスチック基板であれば特に限定されないが、例えば、ポリエチレンテレフタレート (PET)、ポリエーテルスルホン (PES)、ポリエチレン 20 ナフタレート (PEN)、ポリカーボネート (PC)、ナイロン、ポリエーテルエーテルケトン (PEEK)、ポリスルホン (PSF)、ポリエーテルイミド (PEI)、ポリアリレート (PAR)、ポリブチレンテレフタレート (PBT)、ポリイミドから選ばれた1種または複数種からなるプラスチック基板である。

【0029】また、本発明の他の構成は、A1N_XO_Yで示される層上に有機樹脂からなる層と、該層上にA1N_XO_Yで示される層とが積層形成されたポリイミド基板上に、陰極と、該陰極に接する有機化合物層と、該有機化合物層に接する陽極とを有する発光素子を備えた発光装置である。

【0030】また、本発明の他の構成は、 $A1N_XO\gamma$ で示される層上に有機樹脂からなる層と、該層上に $A1N_XO\gamma$ で示される層とが積層形成されたポリエチレンサルファイル基板上に、陰極と、該陰極に接する有機化合物層と、該有機化合物層に接する陽極とを有する発光素子を備えた発光装置である。

【0031】また、本発明の他の構成は、A1NXOYで示される層上に有機樹脂からなる層と、該層上にA1N XOYで示される層とが積層形成されたポリカーボネート基板上に、陰極と、該陰極に接する有機化合物層と、該有機化合物層に接する陽極とを有する発光素子を備えた発光装置である。

【0032】また、本発明の他の構成は、AlNxOyで示される層上に有機樹脂からなる層と、該層上にAlNxOyで示される層とが積層形成されたポリエチレンテレフタレート基板上に、陰極と、該陰極に接する有機化合物層と、該有機化合物層に接する陽極とを有する発光素子を備えた発光装置である。

50 【0033】また、本発明の他の構成は、AlNxOyで

示される層上に有機樹脂からなる層と、該層上にAIN XOYで示される層とが積層形成されたポリエチレンナフタレート基板上に、陰極と、該陰極に接する有機化合物層と、該有機化合物層に接する陽極とを有する発光素子を備えた発光装置である。

【0034】また、本発明の他の構成は、発光装置と外部との間にA1NxOyで示される層または有機樹脂からなる層を単層または多層有していることを特徴とする電子機器である。

【0035】また、上記各構成において、前記 AlN_X O γ で示される層は、周期律13族元素または周期律15族元素の不純物を $0.1atm\%\sim5atm\%$ 含むことを特徴としている。

【0036】また、上記各構成において、リン元素またはボロン元素を0.1atm%~5atm%含むことを特徴とする発光装置。

【0037】また、上記各構成における上記AlNxOyで示される層により、素子の発熱を拡散させて素子の劣化を抑える効果とともに、プラスチック基板の変形や変質を保護する効果を有する。

【0038】なお、本明細書では、OLEDの陽極と陰極の間に形成された全ての層を有機発光層と定義する。有機発光層には具体的に、発光層、正孔注入層、電子注入層、正孔輸送層、電子輸送層等が含まれる。基本的にOLEDは、陽極/発光層/陰極が順に積層された構造を有しており、この構造に加えて、陽極/正孔注入層/発光層/陰極や、陽極/正孔注入層/発光層/管極等の順に積層した構造を有していることもある。

【0039】また、OLEDは、電場を加えることで発生するルミネッセンス(Electroluminescence)が得られる有機化合物(有機発光材料)を含む層(以下、有機発光層と記す)と、陽極と、陰極とを有している。有機化合物におけるルミネッセンスには、一重項励起状態から基底状態に戻る際の発光(蛍光)と三重項励起状態から基底状態に戻る際の発光(リン光)とがあるが、本発明の発光装置は、上述した発光のうちの、いずれか一方の発光を用いていても良いし、または両方の発光を用いていても良い。

[0040]

【発明の実施の形態】本発明の実施形態について、以下 に説明する。

【0041】図1 (A) は、ELモジュールを示す上面図、図1 (B) は図1 (A) をA - A で切断した断面図である。図1 (B) において、表面にバリア膜として機能する $A1N_XO_Y$ で示される層($A1N_XO_Y$ 膜とも呼ぶ)10bと、応力緩和膜(有機樹脂)10cと、 $A1N_XO_Y$ 膜10dとの積層が設けられた可撓性を有するフィルム基板10a (例えば、プラスチック基板等)が接着層33で絶縁膜11と接着されている。なお、接着層

33もバリア膜よりも応力の小さい材料を用いて応力緩和膜として機能させてもよい。このように、複数のバリア膜10b、10dを積層することで、バリア膜にクラックが生じても、他のバリア膜で水分や酸素などの不純物が有機発光層に入り込むのを効果的に防ぐことができる。加えて、複数のバリア膜の間に応力緩和膜を設けることによって、よりフレキシブルな発光装置になり、曲げたときのクラックを防ぐことができる。

8

【0042】また、膜厚100nmにおけるAlN_XO_Y 10 膜の透過率を図12に示す。図12に示すように、Al N_XO_Y膜は透光性が非常に高く(可視光領域で透過率8 0%~91.3%)、発光素子からの発光の妨げになら ない

【0043】本発明において、AlNxOy膜は、スパッタ法を用い、例えば、窒化アルミニウム(AlN)ターゲットを用い、アルゴンガスと窒素ガスと酸素ガスを混合した雰囲気下にて成膜する。AlNxOy膜は、窒素を数atm%以上、好ましくは2.5atm%~47.5atm%含む範囲であればよく、スパッタ条件(基板温度、原料20 ガスおよびその流量、成膜圧力など)を適宜調節することによって窒素濃度を調節することができる。なお、得られたAlNxOy膜のESCA(Electron Spectroscopy for Analysis)での分析による組成を図13に示す。また、アルミニウム(Al)ターゲットを用い、窒素ガス及び酸素ガスを含む雰囲気下にて成膜してもよい。なお、スパッタ法に限定されず、蒸着法やその他の公知技術を用いてもよい。

【0044】また、AlNxOy膜による水分や酸素のブロッキング効果を確認するため、膜厚200nmのAl NxOy膜が設けられたフィルム基板でOLEDを封止したサンプルと、膜厚200nmのSiN膜が設けられたフィルム基板でOLEDを封止したサンプルとを用意して、85度に加熱した水蒸気雰囲気中での経時変化を調べる実験を行ったところ、SiN膜のサンプルに比べ、AlNxOy膜のサンプルのほうがOLEDの寿命が長く、長時間の発光が可能であった。この実験結果から、AlNxOy膜は、SiN膜よりも装置外から水分や酸素などの不純物といった有機化合物層の劣化を促す物質が侵入することを防げる材料膜であることが読み取れる。

【0045】また、A1NxOy膜によるアルカリ金属のブロッキング効果を確認するため、シリコン基板上に膜厚50nmの熱酸化膜を設け、その上に膜厚40nmのA1NxOy膜を設け、その上にLiを含むアルミニウム電極を設け、これらの膜が設けられた面とは反対側のシリコン基板面にSiを含むアルミニウム電極を設けて300℃、1時間の熱処理を行った後、BTストレス試験(±1.7MV/cm、150℃、1時間)を行いMOS特性(C-V特性)を測定した。実験結果を図14に示す。図14に示したC-V特性は、プラスの電圧を印加した時、即ち+BTの時、プラス側にシフトしている

ことから、シフトした原因はLiではなく、AlNxOγ膜によるアルカリ金属のブロッキング効果が有ることが確認できた。比較のため、MOSの上方に絶縁膜(膜厚100nmの窒化シリコン膜)を介してAlLi合金を形成し、同様にそのMOSの特性変動を調べた。結果を図15に示す。プラスの電圧を印加した時、即ち+BTの時、図15に示したC-V特性変動は大きくマイナス側にシフトしており、その原因は、主にLiが活性層へ混入したことであると考えられる。

【0046】また、AlNxOy膜でプラスチック基板の 両面のみを覆う構成としてもよい。

【0047】なお、ここでは耐熱性を有する基板上に絶縁膜11、絶縁膜20を設け、その上に画素部22、ソース側駆動回路14、及びゲート側駆動回路13を設けた後、カバー材を接着して固定し、耐熱性を有する基板を剥離した後、上記フィルム基板を貼りつけているが、特に限定されず、画素部22、ソース側駆動回路14、及びゲート側駆動回路13の形成温度に耐え得るフィルム基板であれば、フィルム基板上に画素部22、ソース側駆動回路14、及びゲート側駆動回路13を形成すればよく、その場合、接着層を設ける必要はない。

【0048】耐熱性を有する基板(ガラス基板や石英基 板)を剥離する技術は特に限定されず、ここでは、膜の 内部応力を利用して剥離を行う剥離方法、具体的には、 耐熱性を有する基板上に熱処理によって膜剥がれ(ピー リング) などのプロセス上の異常は生じない第1の材料 層と第2の材料層との積層を設け、該積層上に素子 (T FTや発光素子)を形成した後、物理的手段、代表的に は機械的な力を加えること、例えば人間の手で引き剥が すことで容易に第2の材料層の層内または界面におい て、きれいに分離できる方法を用いる。第1の材料層と 第2の材料層との結合力は、熱エネルギーには耐え得る 強さを有している一方、剥離する直前において、引張応 力を有する第1の材料層と圧縮応力を有する第2の材料 層との間には応力歪みを有しているため、力学的エネル ギーに弱く、剥離する。ここでは、第1の材料層として タングステン膜を用い、第2の材料層としてスパッタ法 による酸化珪素膜を用いて剥離させたため、絶縁膜11 が第2の材料層に相当している。

【0049】また、耐熱性を有する基板を剥離する他の技術として、分離層を介して存在する被剥離層を前記基板から剥離する剥離方法(特開平10-125929号公報、特開平10-125931号公報)を用いてもよい。上記公報に記載の技術は、非晶質シリコン(またはポリシリコン)からなる分離層を設け、基板を通過させてレーザー光を照射して非晶質シリコンに含まれる水素を放出させることにより、空隙を生じさせて基板を分離させるというものである。

【0050】図1 (B) において、絶縁膜20上には画素部12、ゲート側駆動回路13が形成されており、画 50

素部12は電流制御用TFT21とそのドレインに電気的に接続された画素電極(陰極)22を含む複数の画素により形成される。電流制御用TFT21としてはpチャネル型TFTを用いることも可能であるが、nチャネル型TFTを用いることが好ましい。また、ゲート側駆動回路13はnチャネル型TFT23とpチャネル型TFT24とを組み合わせたCMOS回路を用いて形成される。各TFTの活性層としては、結晶構造を有する半導体膜(ポリシリコン膜)や非晶質構造を有する半導体10膜(アモルファスシリコン膜など)を用いる。

10

【0051】また、画素電極22は発光素子(OLED)の陰極として機能する。また、画素電極22の両端にはバンク25が形成され、画素電極22上には有機化合物層26および発光素子の陽極27が形成される。

【0052】有機化合物層26としては、発光層、電荷輸送層または電荷注入層を自由に組み合わせて有機化合物層(発光及びそのためのキャリアの移動を行わせるための層)を形成すれば良い。例えば、低分子系有機化合物材料や高分子系有機化合物材料を用いればよい。また、有機化合物層26として一重項励起により発光(蛍光)する発光材料(シングレット化合物)からなる薄膜、または三重項励起により発光(リン光)する発光材料(トリプレット化合物)からなる薄膜を用いることができる。また、電荷輸送層や電荷注入層として炭化珪素等の無機材料を用いることも可能である。これらの有機材料や無機材料は公知の材料を用いることができる。

【0053】陽極27は全画素に共通の配線としても機能し、接続配線18を経由してFPC19に電気的に接続されている。さらに、画素部12及びゲート側駆動回路13に含まれる素子は全て陽極27、有機樹脂28、及び保護膜29で覆われている。

【0054】また、図1 (A) において、28は有機樹脂、29は保護膜であり、画素部12および駆動回路13、14は有機樹脂28で覆われ、その有機樹脂は保護膜(A1NxOy膜)29で覆われている。なお、有機樹脂28としては、できるだけ可視光に対して透明もしくは半透明な材料を用いるのが好ましい。また、有機樹脂28はできるだけ水分や酸素などの不純物を透過しない材料であることが望ましい。

【0055】さらに、画素部12および駆動回路13、14は、接着剤を用いてカバー材30aで封止されている。カバー材30aは、支持体として剥離前に接着される。なお、支持体となるカバー材30aを接着した後、剥離する際には配線引き出し端子の部分(接続部分)が絶縁膜20、11のみとなり機械強度が弱くなるため、剥離前にFPC19を貼りつけ、さらに有機樹脂32で固定している。

【0056】ここで、熱や外力などによる変形に耐える ためカバー材30aはフィルム基板10aと同じ材質の もの、例えばプラスチック基板を用いることが望まし 11

い。なお、水分や酸素などの不純物の侵入を防ぐため、カバー材30aには予めAlNxOy膜30bを形成する。ここではカバー材中を通して発光を通過させるため、単層のバリア圏(AlNxOy膜30b)としたが、フィルム基板10aと同様に、複数のバリア膜と、該バリア膜どうしの間に前記バリア膜よりも応力の小さい層(応力緩和膜)を設けてもよい。その場合、応力緩和膜としては透光性の高いものを用いる。

【0057】なお、18はソース側駆動回路14及びゲート側駆動回路13に入力される信号を伝送するための配線であり、外部入力端子となるFPC(フレキシブルプリントサーキット)19からビデオ信号やクロック信号を受け取る。なお、ここではFPCしか図示されていないが、このFPCにはプリント配線基盤(PWB)が取り付けられていても良い。本明細書におけるELモジュールには、発光素子が設けられた基板本体だけでなく、それにFPCもしくはPWBが取り付けられた状態をも含むものとする。

【0058】以上のような構造で発光素子をAlNxOyで示されるバリア膜10b、10d及びAlNxOyで示される保護膜29で封入することにより、発光素子を外気から完全に遮断することができ、装置外から水分や酸素等による有機化合物層の酸化が主原因である劣化を促す物質が侵入することを防ぐことができる。加えて、熱伝導性を有するAlNxOy膜により発熱を発散することができる。従って、信頼性の高い発光装置を得ることができる。

【0059】加えて、複数のバリア膜の間に応力緩和膜を設けることによって、外力が与えられても破壊することなく、フレキシブルな発光装置になる。

【0060】また、図2には、外力が与えられたフレキシブルな発光装置45の外観図を示した。図2中、40は画素部、41はFPC、42a、42bは集積回路、43a、43bはゲート側駆動回路、44はソース側駆動回路、45a、45bはフィルム基板である。フィルム基板45a及びフィルム基板45bには、A1NxOyで示される層と有機樹脂からなる層との積層が片面または両面に設けられており、外からの水分、酸素、アルカリ金属などの不純物が侵入してくるのを防ぎ、OLED及びTFTを保護している。

【0061】また、AINXOYで示される層と有機樹脂からなる層との積層を基板の外側表面に設けた場合、発光装置と外部との間にAINXOYで示される層または有機樹脂からなる層を単層または多層有している構成となり、外部からの不純物拡散を防止することができる。本明細書中、外部とは、ELモジュールに外部接続される素子やICチップ、ELモジュールに接触するパッケージやその他の部材を含めた総称を指すこととする。

【0062】なお、フィルム基板45a上に画素部40 い。ここではスパッタ法で膜厚100nmの窒化チタンや駆動回路や発光素子が設けられており、フィルム基板 50 膜を用いる。なお、基板100と密着性が悪い場合には

45bとでこれらの素子を挟みこんでいる。これらの画素部や駆動回路と同一基板上に複雑な集積回路(メモリ、CPU、コントローラ、D/Aコンバータ等)42a、42bを形成しても可能であるが、少ないマスク数での作製は困難である。従って、メモリ、CPU、コントローラ、D/Aコンバータ等を備えたICチップを、COG (chip on glass) 方式やTAB (tape automate d bonding) 方式やワイヤボンディング方法で実装することが好ましい。フィルム基板45aとフィルム基板45bで封止してもよい。

【0063】なお、ここではFPCしか図示されていないが、このFPCにはプリント配線基盤(PWB)が取り付けられていても良い。

【0064】また、画素電極を陽極とし、有機化合物層と陰極を積層して図1とは逆方向に発光する構成としてもよい。その場合には電流制御用TFTとしてpチャネル型TFTを用いることが好ましい。

20 【0065】以上の構成でなる本発明について、以下に 示す実施例でもってさらに詳細な説明を行うこととす ろ。

【0066】(実施例)

[実施例1] 本発明の実施例を図3及び図4を用いて説明する。ここでは、まず、同一基板上にnチャネル型TFTとpチャネル型TFTとを相補的に組み合わせたCMOS回路を同時に作製する方法について詳細に説明する。

【0067】まず、基板100上に第1の材料層10 30 1、第2の材料層102、下地絶縁膜103を形成し、 結晶構造を有する半導体膜を得た後、所望の形状にエッ チング処理して島状に分離された半導体層104、10 5を形成する。

【0068】基板100としては、ガラス基板(#1737)を用いる。

【0069】また、第1の材料層101としては、成膜後或いは剥離直前において、1~1×10¹⁰ (Dyne/c m²) の範囲で引張応力を有することを特徴としている。前記第1の材料層としては、上記範囲の引張応力を有する材料であれば、特に限定されず、金属材料(Ti、Al、Ta、W、Mo、Cu、Cr、Nd、Fe、Ni、Co、Zr、Zn、Ru、Rh、Pd、Os、Ir、Ptなど)、半導体材料(例えばSi、Geなど)、絶縁体材料、有機材料のいずれか一層、またはこれらの積層を用いることができる。なかでも、タングステン膜、窒化タングステン膜、窒化チタン膜が好ましい。なお、1~1×10¹⁰ (Dyne/cm²) よりも大きな引張応力を有する膜は、熱処理を加えた場合、ピーリングを起しやすい。ここではスパッタ法で膜厚100nmの窒化チタンには、ここではスパッタ法で膜厚100nmの窒化チタンに

バッファ層を設ければよい。

【0070】また、第2の材料層102としては、-1 ~-1×10¹⁰ (Dyne/cm²) の範囲で圧縮応力を有する ことを特徴としている。前記第2の材料層としては、上 記範囲の圧縮応力を有する材料であれば、特に限定され ず、金属材料(Ti、Al、Ta、W、Mo、Cu、C r, Nd, Fe, Ni, Co, Zr, Zn, Ru, R h、Pd、Os、Ir、Ptなど)、半導体材料(例え ばSi、Geなど)、絶縁体材料、有機材料のいずれか 一層、またはこれらの積層を用いることができる。な お、 -1×10^{10} (Dyne/cm²) よりも大きな圧縮応力を 有する膜は、熱処理を加えた場合、ピーリングを起しや すい。中でも、酸化シリコン材料または酸化金属材料か らなる単層、またはこれらの積層が好ましい。ここでは スパッタ法で膜厚200nmの酸化シリコン膜を用い る。この第1の材料層101と第2の材料層102の結 合力は熱処理には強く、膜剥がれ(ピーリングとも呼ば れる) などが生じないが、物理的手段で簡単に第2の材 料層の層内、あるいは界面において剥離することができ る。

13

【0071】また、下地絶縁膜103としては、プラズマCVD法で成膜温度400℃、原料ガスSiH4、NH3、N2Oから作製される酸化窒化シリコン膜(組成比Si=32%、O=27%、N=24%、H=17%)を50nm(好ましくは10~200nm)形成する。次いで、表面をオゾン水で洗浄した後、表面の酸化膜を希フッ酸(1/100希釈)で除去する。次いでプラズマCVD法で成膜温度400℃、原料ガスSiH4、N2Oから作製される酸化窒化シリコン膜(組成比Si=32%、O=59%、N=7%、H=2%)を100nm(好ましくは50~200nm)の厚さに積層形成し、さらに大気解放せずにプラズマCVD法で成膜温度300℃、成膜ガスSiH4で非晶質構造を有する半導体膜(ここではアモルファスシリコン膜)を54nmの厚さ(好ましくは25~80nm)で形成する。

【0073】次いで、非晶質構造を有する半導体膜の表面を洗浄した後、オゾン水で表面に約2nmの極薄い酸化膜を形成する。

【0074】次いで、重量換算で10ppmのニッケルを

含む酢酸ニッケル塩溶液をスピナーで塗布する。塗布に 代えてスパッタ法でニッケル元素を全面に散布する方法 を用いてもよい。

14

【0075】次いで、加熱処理を行い結晶化させて結晶構造を有する半導体膜を形成する。この加熱処理は、電気炉の熱処理または強光の照射を用いればよい。電気炉の熱処理で行う場合は、500℃~650℃で4~24時間で行えばよい。ここでは脱水素化のための熱処理(500℃、1時間)の後、結晶化のための熱処理(5 50℃、4時間)を行って結晶構造を有するシリコン膜を得る。なお、ここでは炉を用いた熱処理を用いて結晶化を行ったが、ランプアニール装置で結晶化を行ってもよい。なお、ここではシリコンの結晶化を助長する金属元素としてニッケルを用いた結晶化技術を用いたが、他の公知の結晶化技術、例えば固相成長法やレーザー結晶化法を用いてもよい。

【0076】次いで、結晶構造を有するシリコン膜表面 の酸化膜を希フッ酸等で除去した後、結晶化率を高め、 結晶粒内に残される欠陥を補修するための第1のレーザ 20 一光 (XeCl:波長308nm) の照射を大気中、ま たは酸素雰囲気中で行う。レーザー光には波長400nm 以下のエキシマレーザ光や、YAGレーザやYVO4レ ーザの第2高調波、第3高調波を用いる。第1のレーザ 一光は、パルス発振であってもよいし、連続発振でもよ い。パルス発振の場合、繰り返し周波数10~1000 Hz程度のパルスレーザー光を用い、当該レーザー光を光 学系にて100~500mJ/cm²に集光し、90~95% のオーバーラップ率をもって照射し、シリコン膜表面を 走査させればよい。ここでは、繰り返し周波数30H z、エネルギー密度393mJ/cm²で第1のレーザー光の 照射を大気中で行なう。なお、大気中、または酸素雰囲 気中で行うため、第1のレーザー光の照射により表面に 酸化膜が形成される。

【0077】次いで、第1のレーザー光の照射により形成された酸化膜を希フッ酸で除去した後、第2のレーザー光の照射を窒素雰囲気、或いは真空中で行い、半導体膜表面を平坦化する。このレーザー光(第2のレーザー光)には波長400m以下のエキシマレーザー光や、YAGレーザーの第2高調波、第3高調波を用いる。第2のレーザー光のエネルギー密度は、第1のレーザー光のエネルギー密度より大きくし、好ましくは30~60mJ/cm²大きくする。ここでは、繰り返し周波数30Hz、エネルギー密度453mJ/cm²で第2のレーザー光の照射を行ない、半導体膜表面における凹凸のPーV値(Peak to Valley、高さの最大値と最小値の差分)が50m以下となる。このPーV値は、AFM(原子間力 関微鏡)により得られる。

【0078】また、本実施例では第2のレーザー光の照射を全面に行ったが、オフ電流の低減は、画素部のTF 50 Tに特に効果があるため、少なくとも画素部のみに選択 的に照射する工程としてもよい。

【0079】次いで、オゾン水で表面を120秒処理して合計1~5nmの酸化膜からなるバリア層を形成する。

【0080】次いで、バリア層上にスパッタ法にてゲッタリングサイトとなるアルゴン元素を含む非晶質シリコン膜を膜厚150nmで形成する。本実施例のスパッタ法による成膜条件は、成膜圧力を0.3 Paとし、ガス(Ar)流量を50(sccm)とし、成膜パワーを3kWとし、基板温度を150 $^{\circ}$ とする。なお、上記条件での非晶質シリコン膜に含まれるアルゴン元素の原子濃度は、 $3\times10^{20}/\text{cm}^3\sim6\times10^{20}/\text{cm}^3$ 、酸素の原子濃度は $1\times10^{19}/\text{cm}^3\sim3\times10^{19}/\text{cm}^3$ である。その後、ランプアニール装置を用いて650 $^{\circ}$ 、3分の熱処理を行いゲッタリングする。

【0081】次いで、バリア層をエッチングストッパーとして、ゲッタリングサイトであるアルゴン元素を含む非晶質シリコン膜を選択的に除去した後、バリア層を希フッ酸で選択的に除去する。なお、ゲッタリングの際、ニッケルは酸素濃度の高い領域に移動しやすい傾向があるため、酸化膜からなるバリア層をゲッタリング後に除去することが望ましい。ここではゲッタリングを行った例を示したが、特に限定されず、他のゲッタリング方法でもよい。

【0082】次いで、得られた結晶構造を有するシリコン膜(ポリシリコン膜とも呼ばれる)の表面にオゾン水で薄い酸化膜を形成した後、レジストからなるマスクを形成し、所望の形状にエッチング処理して島状に分離された半導体層104、105を形成する。半導体層を形成した後、レジストからなるマスクを除去する。

【0083】次いで、フッ酸を含むエッチャントで酸化膜を除去すると同時にシリコン膜の表面を洗浄した後、ゲート絶縁膜106となる珪素を主成分とする絶縁膜を形成する。本実施例では、プラズマCVD法により115 nmの厚さで酸化窒化シリコン膜(組成比Si=32%、O=59%、N=7%、H=2%)で形成する。

【0084】次いで、図3 (B) に示すように、ゲート 絶縁膜106上に膜厚20~100nmの第1の導電膜 107と、膜厚100~400nmの第2の導電膜10 8とを積層形成する。本実施例では、ゲート絶縁膜10 6上に膜厚50nmの窒化タンタル膜、膜厚370nm のタングステン膜を頃次積層する。

【0085】第1の導電膜及び第2の導電膜を形成する 導電性材料としてはTa、W、Ti、Mo、Al、Cu から選ばれた元素、または前記元素を主成分とする合金 材料もしくは化合物材料で形成する。また、第1の導電 膜及び第2の導電膜としてリン等の不純物元素をドーピ ングした多結晶シリコン膜に代表される半導体膜や、、 AgPdCu合金を用いてもよい。また、2層構造に限 定されず、例えば、膜厚50nmのタングステン膜、膜 50 厚500nmのアルミニウムとシリコンの合金(A1~Si)膜、膜厚30nmの窒化チタン膜を順次積層した3層構造としてもよい。また、3層構造とする場合、第1の導電膜のタングステンに代えて窒化タングステンを用いてもよいし、第2の導電膜のアルミニウムとシリコンの合金(A1-Si)膜に代えてアルミニウムとチタンの合金膜(A1-Ti)を用いてもよいし、第3の導電膜の窒化チタン膜に代えてチタン膜を用いてもよい。また、単層構造であってもよい。

16

10 【0086】次に、図3(C)に示すように光露光工程によりレジストからなるマスク109を形成し、ゲート電極及び配線を形成するための第1のエッチング処理を行う。エッチングにはICP(Inductively Coupled Plasma:誘導結合型プラズマ)エッチング法を用いると良い。ICPエッチング法を用い、エッチング条件(コイル型の電極に印加される電力量、基板側の電極に印加される電力量、基板側の電極に印加される電力量、基板側の電極に印加される電力量、基板側の電極に印加される電力量、基板側の電極に印加される電力量、基板側の電極に印加される電力量、基板側の電極に印加される電力量、基板側の電極温度等)を適宜調節することができる。なお、エッチング用ガスとしては、C12、20 BCl3、SiCl4、CCl4などを代表とする塩素系ガスまたはCF4、SF6、NF3などを代表とするフッ素系ガス、またはO2を適宜用いることができる。

【0087】第1のエッチング処理では、レジストによ るマスクの形状と、基板側に印加するバイアス電圧の効 果により端部をテーパー形状とすることができる。テー パー部の角度は15~45°となるようにする。また、 ゲート絶縁膜上に残渣を残すことなくエッチングするた めには、10~20%程度の割合でエッチング時間を増 加させると良い。W膜に対する酸化窒化シリコン膜の選 30 択比は2~4 (代表的には3) であるので、オーバーエ ッチング処理により、酸化窒化シリコン膜が露出した面 は20~50nm程度エッチングされる。こうして、第 1のエッチング処理により第1導電膜と第2導電膜から 成る第1形状の導電層110、111 (第1の導電層1 10a、111aと第2導電層110b、111b)を 形成する。112はゲート絶縁膜であり、第1の形状の 導電層で覆われない領域は20~50nm程度エッチン グされ薄くなる。

【0088】そして、第1のドーピング処理を行いn型の不純物(ドナー)をドーピングする。(図3(D))その方法はイオンドープ法若しくはイオン注入法で行う。イオンドープ法の条件はドーズ量を1×10¹³~5×10¹⁴/cm²として行う。n型を付与する不純物元素として15族に属する元素、典型的にはリン(P)または砒素(As)を用いる。この場合、第1形状の導電層110、111はドーピングする元素に対してマスクとなり、加速電圧を適宣調節(例えば、20~60keV)して、ゲート絶縁膜112を通過した不純物元素により不純物領域(n+領域)におけるリン

17 (P) 濃度は 1×1 $0^{20} \sim 1 \times 1$ $0^{21} / c$ m^3 の範囲となるようにする。

【0089】次いで、図4 (A) に示すように第2のドーピング処理を行う。第1のドーピング処理よりもドーズ量を下げ高加速電圧の条件でn型の不純物(ドナー)をドーピングする。例えば、加速電圧を70~120keVとし、1×10¹³/cm²のドーズ量で行い、図3

で V と C、 1×10^{-7} と 1×10^{-17} と 1×10^{-19} と 1×10^{-7} と 1×10^{-19} と 1×10^{-17} と 1×10^{-19} と $1 \times 10^{-$

【0090】次いで、図4(B)に示すように第2のエ ッチング処理を行う。エッチングはICPエッチング法 20 を用い、エッチングガスにCF4とCl2とO2を混合し て、1Paの圧力でコイル型の電極に500WのRF電 力(13.56MHz)を供給してプラズマを生成する。 基板側 (試料ステージ) には50WのRF (13.56 MHz) 電力を投入し、第1のエッチング処理に比べ低 い自己バイアス電圧を印加する。このような条件により タングステン膜を異方性エッチングし、第1の導電層で ある窒化タンタル膜またはチタン膜を残存させるように する。こうして、第2形状の導電層117、118 (第 1の導電膜117a、118aと第2の導電膜117 b、118b) を形成する。119はゲート絶縁膜であ り、第2の形状の導電層117、118で覆われない領 域はさらに20~50nm程度エッチングされて膜厚が 薄くなる。

【0091】そして、図4(C)に示すように、レジストによるマスク120を形成し、pチャネル型TFTを形成する半導体層にp型の不純物(rクセプタ)をドーピングする。典型的にはボロン(B)を用いる。不純物領域(p+領域)121、122の不純物濃度は $2\times10^{20}\sim2\times10^{21}/c$ m^3 となるようにし、含有するリン濃度の $1.5\sim3$ 倍のボロンを添加して導電型を反転させる。

【0092】以上までの工程でそれぞれの半導体層に不純物領域が形成される。第2形状の導電層117、118はゲート電極となる。その後、図4(D)に示すように、窒化シリコン膜または酸化窒化シリコン膜から成る保護絶縁膜123をプラズマCVD法で形成する。そして導電型の制御を目的としてそれぞれの半導体層に添加された不純物元素を活性化する工程を行う。

【0093】さらに、窒化シリコン膜124を形成し、

水素化処理を行う。その結果、窒化シリコン膜124中 の水素が半導体層中に拡散させることで水素化を達成す ることができる。

18

【0094】次いで、層間絶縁膜125を形成する。層間絶縁膜125は、ポリイミド、アクリルなどの有機絶縁物材料で形成する。勿論、プラズマCVD法でTEOS (Tetraethyl Ortho silicate)を用いて形成される酸化シリコン膜を適用しても良いが、平坦性を高める観点からは前記有機物材料を用いることが望ましい。

10 【0095】次いで、コンタクトホールを形成し、アルミニウム(A1)、チタン(Ti)、タンタル(Ta)などを用いて、ソース配線またはドレイン配線126~128を形成する。

【0096】以上の工程で、nチャネル型TFTとpチャネル型TFTとを相補的に組み合わせたCMOS回路を得ることができる。

【0097】pチャネル型TFTにはチャネル形成領域 130、ソース領域またはドレイン領域として機能する 不純物領域121、122を有している。

20 【0098】nチャネル型TFTにはチャネル形成領域 131、第2形状の導電層から成るゲート電極118と 重なる不純物領域116a(Gate Overlapped Drain: GOLD領域)、ゲート電極の外側に形成される不純物領域116b(LDD領域)とソース領域またはドレイン領域として機能する不純物領域119を有している。 【0099】このようなCMOS回路は、アクティブマトリクス型の発光装置やアクティブマトリクス型の液晶表示装置における駆動回路の一部を形成することを可能とする。それ以外にも、このようなnチャネル型TFT またはpチャネル型TFTは、画素部のトランジスタに応用することができる。

【0100】このようなCMOS回路を組み合わせることで基本論理回路を構成したり、さらに複雑なロジック回路(信号分割回路、D/Aコンバータ、オペアンプ、γ補正回路など)をも構成することができ、さらにはメモリやマイクロプロセッサをも形成することが可能である。

【0101】 [実施例2] ここでは、上記実施例1で得られるTFTを用いてOLEDを有する発光装置を作製 した例について図5を用い、以下に説明する。

【0102】同一の絶縁体上に画素部とそれを駆動する 駆動回路を有した発光装置の例(但し封止前の状態)を 図5に示す。なお、駆動回路には基本単位となるCMO S回路を示し、画素部には一つの画素を示す。このCM OS回路は実施例1に従えば得ることができる。

【0103】図5において、200は基板、201は第 1の材料層、202は第2の材料層であり、その素子形 成基板上に設けられた下地絶縁層203上にはnチャネ ル型TFTとpチャネル型TFTからなる駆動回路20 4、pチャネル型TFTからなるスイッチングTFTお よびnチャネル型TFTからなる電流制御TFTとが形 成されている。また、本実施例では、TFTはすべてト ップゲート型TFTで形成されている。

19

【0104】nチャネル型TFTおよびpチャネル型T FTの説明は実施例1を参照すれば良いので省略する。 また、スイッチングTFTはソース領域およびドレイン 領域の間に二つのチャネル形成領域を有した構造(ダブ ルゲート構造)となっているpチャネル型TFTであ る。なお、本実施例はダブルゲート構造に限定されるこ となく、チャネル形成領域が一つ形成されるシングルゲ ート構造もしくは三つ形成されるトリプルゲート構造で あっても良い。

【0105】また、電流制御TFTのドレイン領域20 6の上には第2層間絶縁膜208が設けられる前に、第 1層間絶縁膜207にコンタクトホールが設けられてい る。これは第2層間絶縁膜208にコンタクトホールを 形成する際に、エッチング工程を簡単にするためであ る。第2層間絶縁膜208にはドレイン領域206に到 達するようにコンタクトホールが形成され、ドレイン領 域206に接続された画素電極209が設けられてい る。画素電極209はOLEDの陰極として機能する電 極であり、周期表の1族もしくは2族に属する元素を含 む導電膜を用いて形成されている。本実施例では、リチ ウムとアルミニウムとの化合物からなる導電膜を用い る。

【0106】次に、213は画素電極209の端部を覆 うように設けられた絶縁膜であり、本明細書中ではバン クと呼ぶ。バンク213は珪素を含む絶縁膜もしくは樹 脂膜で形成すれば良い。樹脂膜を用いる場合、樹脂膜の 比抵抗が $1 \times 10^6 \sim 1 \times 10^{12} \Omega m$ (好ましくは $1 \times$ $10^{8} \sim 1 \times 10^{10} \Omega \,\mathrm{m}$) となるようにカーボン粒子も しくは金属粒子を添加すると、成膜時の絶縁破壊を抑え ることができる。

【0107】また、OLED210は画素電極(陰極) 209、有機化合物層211および陽極212からな る。陽極212は、仕事関数の大きい導電膜、代表的に は酸化物導電膜が用いられる。酸化物導電膜としては、 酸化インジウム、酸化スズ、酸化亜鉛もしくはそれらの 化合物を用いれば良い。

【0108】なお、本明細書中では発光層に対して正孔 注入層、正孔輸送層、正孔阻止層、電子輸送層、電子注 入層もしくは電子阻止層を組み合わせた積層した層の総 称を有機化合物層と定義する。但し、有機化合物層には 有機化合物膜を単層で用いた場合も含むものとする。

【0109】また、発光層としては、有機化合物材料で あれば特に限定されないが、高分子材料や低分子材料を 用いてもよく、例えば二重項励起により発光する発光材 料からなる薄膜、あるいは三重項励起により発光する発 光材料からなる薄膜を用いることができる。

形成した後、OLED210を完全に覆うようにしてパ ッシベーション膜を設けることは有効である。パッシベ ーション膜としては、熱伝導性を有する膜、例えば、A 1 NxOyで示される層が適している。また、他のパッシ ベーション膜としては、さらにDLC膜、窒化珪素膜も しくは窒化酸化珪素膜を含む絶縁膜を積層してもよく、 これらを組み合わせた積層を用いてもよい。

20

【0111】次いで、OLED210を保護するため、 実施の形態に示したように支持体となるカバー材を貼り 10 つけて封止(または封入)工程まで行った後、第1の材 料層201が設けられた基板200を引き剥がす。そし て第2の材料層にフィルム基板を接着層で貼り合わせ る。貼り合わせるフィルム基板上には複数のバリア膜 と、前記バリア膜どうしの間に前記バリア膜よりも応力 の小さい層(応力緩和膜)とが設けられており、貼り合 わせた後の状態が、実施の形態1に示した図1 (A)、 図1 (B) である。第2の材料層202が絶縁膜11に 対応している。

【0112】 [実施例3] ここでは、実施例2に示した 20 工程とは異なる例を示し、具体的には剥離工程及び貼り 合わせ工程についてさらに詳細な説明を図6、図7を用 いて説明する。

【0113】図6(A)中、300は基板、301は窒 化物層、302は酸化物層、303は下地絶縁層、30 4a~304cは素子、305はOLED、306は層 間絶縁膜である。

【0114】図6(A)において、基板300はガラス 基板、石英基板、セラミック基板などを用いることがで きる。また、シリコン基板、金属基板またはステンレス 基板を用いても良い。

【0115】まず、図6(A)に示すように、実施の形 態に従って、基板300上に第1の材料層301と第2 の材料層302とを形成する。この第1の材料層301 の膜応力と、第2の材料層302の膜応力とを異ならせ ることが重要である。各々の膜厚は、1nm~1000 n mの範囲で適宜設定し、各々の膜応力を調節すればよ

【0116】次いで、第2の材料層302上に被剥離層 を形成する。被剥離層は、TFTを代表とする様々な素 40 子 (薄膜ダイオード、シリコンの PIN接合からなる光 電変換素子やシリコン抵抗素子)を含む層とすればよ い。また、基板300の耐え得る範囲の熱処理を行うこ とができる。なお、本発明において、第2の材料層30 2の膜応力と、第1の材料層301の膜応力が異なって いても、被剥離層の作製工程における熱処理によって膜 剥がれなどが生じない。ここでは、被剥離層として、下 地絶縁周303上に、駆動回路23の素子304a、3 04b、および画素部304の素子304cを形成し、 画素部304の素子304cと電気的に接続するOLE

【0110】なお、ここでは図示しないが陽極212を 50 D15を形成し、OLEDを覆うように膜厚10nm~

1000nmである 居間絶縁膜 (透光性を有する 有機樹脂) 306を形成する。 (図1(A))

【0117】また、第1の材料層301や第2の材料層302によって表面に凹凸が形成された場合、下地絶縁層を形成する前後に表面を平坦化してもよい。平坦化を行った方が、被剥離層においてカバレッジが良好となり、素子を含む被剥離層を形成する場合、素子特性が安定しやすいため好ましい。なお、この平坦化処理として、塗布膜(レジスト膜等)を形成した後エッチングなどを行って平坦化するエッチバック法や機械的化学的研磨法(CMP法)等を用いればよい。

【0118】次いで、層間絶縁膜306上に膜厚10n m~1000nmであるAlNxOy膜で示されるアルミ ニウムを含む窒化酸化物膜307を形成する。(図6 (B)) このA 1 N_XO_Y膜307は保護膜として機能す る。ここでは、窒化アルミニウム(A1N)ターゲット を用い、アルゴンガス (20 s c c m) と窒素ガス (1 5 s c c m) と酸素ガス (5 s c c m) を混合した雰囲 気下にて成膜する。また、アルミニウム(Al)ターゲ ットを用い、窒素ガス及び酸素ガスを含む雰囲気下にて 成膜してもよい。また、AINXOy膜307は、装置外 から水分や酸素などの不純物といったOLED15の劣 化を促す物質が侵入することを防ぐ効果も有している。 【0119】次いで、FPC310やICチップ(図示 しない) をCOG (chip on glass) 方式やTAB (tap e automated bonding) 方式やワイヤボンディング方法 で貼り付ける。また、各TFT素子の各配線と入出力端 子311は、配線(接続配線)で繋がれており、入出力 端子311にはFPC310を異方性導電材で接着す る。異方性導電材は樹脂と表面にAuなどがメッキされ た数十~数百μm径の導電性粒子から成り、導電性粒子 により入出力端子とFPCに形成された配線とが電気的 に接続される。メモリ、CPU、コントローラ、D/A コンバータ等を備えたICチップも同様に異方性導電材 で基板に接着し、樹脂中に混入された導電性粒子によ り、ICチップに設けられた入出力端子と引出線または 接続配線及び入出力端子と電気的に接続する。

【0120】次いで、基板300を物理的手段により引き剥がすために被剥離層を固定する支持体(プラスチック基板からなるカバー材)309をエポキシ樹脂などの接着層308で貼りつける。(図6(C))ここでは、被剥離層の機械的強度が不十分であると仮定した例を示しているが、被剥離層の機械的強度が十分である場合には、被剥離層を固定する支持体なしで剥離することものきる。FPC310やICチップを覆って支持体309を貼り付けるため、支持体309の接着により、入出力端子311とFPCとの接続をさらに固定することができる。また、ここではFPCやICチップを接着した後に支持体を接着した例を示したが、支持体を接着した後、FPCやICチップを装着してもよい。

【0121】次いで、第1の材料層301が設けられている基板300を物理的手段により引き剥がす。第2の材料層302の膜応力と、第1の材料層301の膜応力が異なっているため、比較的小さな力で引き剥がすことができる。第1の材料層301と第2の材料層302との結合力は、熱エネルギーには耐え得る強さを有している一方、互いの膜応力は異なり、第1の材料層301と第2の材料層302との間には応力歪みを有しているため、力学的エネルギーに弱く、剥離するには最適であめ、力学的エネルギーに弱く、剥離するには最適である。こうして、第2の材料層302上に形成された被剥離層を基板300から分離することができる。剥離後の状態を図7(A)に示す。なお、この剥離方法は、小さな面積を有する被剥離層の剥離だけでなく、大きな面積を有する被剥離層を全面に渡って歩留まりよく剥離することが可能である。

22

【0122】次いで、第2の材料層302をエポキシ樹脂などの接着層308により転写体309aに貼り付ける。実施の形態では、カバー材と保護膜との間に空隙を有する例を示したが、本実施例では保護膜307に接着20層を接着した例を示す。

【0123】また、ここでは、転写体309aをプラスチックフィルム基板とすることで、軽量化を図っている。また、転写体309a上にバリア膜として機能するA1NxOyで示される層(A1NxOy膜とも呼ぶ)309bと、応力緩和膜(有機樹脂)309cと、A1NxOy膜309dとの積層を設けて、バリア膜で水分や酸素などの不純物が有機発光層に入り込むのを効果的に防ぐとともに、複数のバリア膜の間に応力緩和膜を設けることによって、よりフレキシブルな発光装置になり、曲30 げたときのクラックを防ぐことができる。

【0124】このようにしてフレキシブルなプラスチック基板上に形成されたOLEDを有する発光装置が完成する

【0125】なお、本明細書中において、転写体とは、 剥離された後、被剥離層と接着させるものであり、特に 限定されず、プラスチック、ガラス、金属、セラミック ス等、いかなる組成の基材でもよい。また、本明細書中 において、支持体とは、物理的手段により剥離する際に 被剥離層と接着するためのものであり、特に限定され 40 ず、プラスチック、ガラス、金属、セラミックス等、い かなる組成の基材でもよい。また、転写体の形状および 支持体の形状も特に限定されず、平面を有するもの、曲 面を有するもの、可曲性を有するもの、フィルム状のも のであってもよい。また、軽量化を最優先するのであれ ば、フィルム状のプラスチック基板、例えば、ポリエチ レンテレフタレート (PET)、ポリエーテルスルホン (PES)、ポリエチレンナフタレート (PEN)、ポ リカーボネート (PC)、ナイロン、ポリエーテルエー テルケトン(PEEK)、ポリスルホン(PSF)、ポ 50 リエーテルイミド (PEI)、ポリアリレート (PA

R)、ポリブチレンテレフタレート(PBT)などのプラスチック基板が好ましい。

【0126】 [実施例4] 本実施例では、画素電極を陽極とし、有機化合物層と陰極を積層して実施の形態(図1)とは逆方向に発光する構成の一例を図8に示す。なお、上面図は図1と同一であるので省略する。

【0127】図8に示した断面構造について以下に説明する。A1NxOy膜1000bと応力緩和膜1000cと、A1NxOy膜1000dとの積層が設けられたフィルム基板1000aが絶縁膜1001と接着層1023で貼り合わせられている。絶縁膜1001上には絶縁膜1010が設けられ、絶縁膜1010の上方には画素部1002、ゲート側駆動回路1003が形成されており、画素部1002は電流制御用TFT1011とそのドレインに電気的に接続された画素電極1012を含む複数の画素により形成される。電流制御用TFT1011は、nチャネル型TFTを用いることも可能であるが、pチャネル型TFTを用いることが好ましい。また、ゲート側駆動回路1003はnチャネル型TFT1013とpチャネル型TFT1014とを組み合わせたCMOS回路を用いて形成される。

【0128】これらのTFT (1011、1013、1014を含む)は、上記実施例1のnチャネル型TFT 201、上記実施例1のpチャネル型TFT 202に従って作製すればよい。

【0129】画素電極1012は発光素子(OLED)の陽極として機能する。また、画素電極1012の両端にはバンク1015が形成され、画素電極1012上には有機化合物層1016および発光素子の陰極1017が形成される。

【0130】陰極1017は全画素に共通の配線としても機能し、接続配線1008を経由してFPC1009に電気的に接続されている。さらに、画素部1002及びゲート側駆動回路1003に含まれる素子は全て陰極1017、有機樹脂1018、及び保護膜1019で覆われている。保護膜1019として、1000bと同じA1N $_{\rm X}$ O $_{\rm Y}$ 膜を用いてもよい。また、カバー材1020と接着層で貼り合わせている。また、カバー材には凹部を設け、乾燥剤1021を設置する。

【0131】また、カバー材1020を図8に示す凹部形状とした場合、支持体となるカバー材1020を接着した後、剥離する際には配線引き出し端子の部分が絶縁膜1010のみとなり機械強度が弱くなるため、剥離前にFPC1009を貼りつけ、さらに有機樹脂1022で固定することが望ましい。

【0132】また、図8では、画素電極を陽極とし、有機化合物層と陰極を積層したため、発光方向は図8に示す矢印の方向となっている。

【0133】また、ここではトップゲート型TFTを例 として説明したが、TFT構造に関係なく本発明を適用 *50* することが可能であり、例えばボトムゲート型(逆スタ ガ型)TFTや順スタガ型TFTに適用することが可能 である。

24

【0134】 [実施例5] また、実施の形態ではトップ ゲート型TFTを用いた例を示したが、ボトムゲート型 TFTを用いることも可能である。ここではボトムゲー ト型TFTを用いた例を図9に示す。

【0135】図9中に示したようにnチャネル型TFT 1113、pチャネル型TFT1114、nチャネル型 10 TFT111を全てボトムゲート構造とする。これらのボトムゲート構造は、公知の技術を用いて作製すればよい。なお、これらのTFTの活性層は、結晶構造を有する半導体膜(ポリシリコン等)であってもよいし、非晶質構造を有する半導体膜(アモルファスシリコン等)であってもよい。

【0136】また、図9中、1100aは、可撓性を有するフィルム基板(例えば、プラスチック基板等)、1100b、1100dはAlNxOy膜、1100cは、応力緩和膜(有機樹脂)、1101は、第2の材料層(例えば、酸化シリコン膜)である絶縁膜、1102は画素部、1103はゲート側駆動回路、1110は絶縁膜、1112は画素電極(陰極)、1115はバンク、1116は有機化合物層、1117は陽極、1118は有機樹脂、1119は保護膜(AlNxOy膜)、1120はカバー材、1121は乾燥剤、1122は有機樹脂、1123は接着層である。

【0137】また、nチャネル型TFT1113、pチャネル型TFT1114、nチャネル型TFT1111 以外の構成は、実施の形態と同一であるのでここでは説 30 明を省略する。

【0138】 [実施例6] 本発明を実施して形成された ELモジュールは様々な電子機器の表示部に用いること ができる。即ち、ELモジュールを表示部に組み込んだ 電子機器全てに本発明を実施できる。

【0139】その様な電子機器としては、ビデオカメラ、デジタルカメラ、ヘッドマウントディスプレイ(ゴーグル型ディスプレイ)、カーナビゲーション、プロジェクタ、カーステレオ、パーソナルコンピュータ、携帯情報端末(モバイルコンピュータ、携帯電話または電子40 書籍等)などが挙げられる。それらの一例を図10、図11に示す。

【0140】図10(A)はパーソナルコンピュータであり、本体2001、画像入力部2002、表示部2003、キーボード2004等を含む。本発明を表示部2003に適用することができる。

【0141】図10(B)はビデオカメラであり、本体2101、表示部2102、音声入力部2103、操作スイッチ2104、バッテリー2105、受像部2106等を含む。本発明を表示部2102に適用することができる。

25

【0142】図10 (C) はモバイルコンピュータ (モ ービルコンピュータ)であり、本体2201、カメラ部 2202、受像部2203、操作スイッチ2204、表 示部2205等を含む。本発明は表示部2205に適用 できる。

【0143】図10(D)はゴーグル型ディスプレイで あり、本体2301、表示部2302、アーム部230 3等を含む。本発明は表示部2302に適用することが できる。

【 0 1 4 4 】 図 1 0 (E) はプログラムを記録した記録 10 変形や変質を保護する効果を有する。 媒体(以下、記録媒体と呼ぶ)を用いるプレーヤーであ り、本体2401、表示部2402、スピーカ部240 3、記録媒体2404、操作スイッチ2405等を含 む。なお、このプレーヤーは記録媒体としてDVD(D igtial Versatile Disc), CD 等を用い、音楽鑑賞や映画鑑賞やゲームやインターネッ トを行うことができる。本発明は表示部2402に適用 することができる。

【0145】図10 (F) はデジタルカメラであり、本 体2501、表示部2502、接眼部2503、操作ス イッチ2504、受像部(図示しない)等を含む。本発 明を表示部2502に適用することができる。

【0146】図11(A)は携帯電話であり、本体29 01、音声出力部2902、音声入力部2903、表示 部2904、操作スイッチ2905、アンテナ290 6、画像入力部 (CCD、イメージセンサ等) 2907 等を含む。本発明を表示部2904に適用することがで きる。

【0147】図11(B)は携帯書籍(電子書籍)であ り、本体3001、表示部3002、3003、記憶媒 30 体3004、操作スイッチ3005、アンテナ3006 等を含む。本発明は表示部3002、3003に適用す ることができる。

【0148】図11 (C) はディスプレイであり、本体 3101、支持台3102、表示部3103等を含む。 本発明は表示部3103に適用することができる。

【0149】ちなみに図11 (C) に示すディスプレイ は中小型または大型のもの、例えば5~20インチの画 面サイズのものである。また、このようなサイズの表示 部を形成するためには、基板の一辺が1mのものを用 い、多面取りを行って量産することが好ましい。

【0150】以上の様に、本発明の適用範囲は極めて広 く、あらゆる分野の電子機器の作製方法に適用すること が可能である。また、本実施例の電子機器は実施例1~

5のどのような組み合わせからなる構成を用いても実現 することができる。

[0151]

【発明の効果】本発明のバリア膜(AlNxOy膜)を複 数積層することで、バリア膜にクラックが生じても、他 のバリア膜で水分や酸素などの不純物の有機発光層への 混入を効果的に防ぐことができる。また、本発明のバリ ア膜(AlNxOy膜)により、素子の発熱を拡散させて 素子の劣化を抑える効果とともに、プラスチック基板の

【0152】加えて、本発明のバリア膜(AlNxO γ膜)は、アルカリ金属やアルカリ土類金属などの不純 物のTFTの活性層及び有機発光層への混入を効果的に 防ぐことができる。

【0153】また、本発明のバリア膜(AlNxOy膜) に比べて応力が小さい応力緩和膜を、複数のバリア膜の 間に挟むことで、絶縁膜全体の応力を緩和することがで きる。よって、外力が与えられても破壊することなく、 フレキシブルな発光装置とすることができる。

【図面の簡単な説明】

- 【図1】 ELモジュールの上面図および断面図。
- 【図2】 外力が加わったときのELモジュールの外 観図。
- 【図3】 TFTの作製工程を示す図。
- 【図4】 TFTの作製工程を示す図。
- 【図5】 OLEDが設けられたアクティブマトリク ス基板の断面図。
- 【図6】 実施例3を説明する工程断面図。
- 【図7】 実施例3を説明する工程断面図。
- 【図8】 実施例4を説明するELモジュールの断面 図。
 - 【図9】 実施例5を説明するELモジュールの断面 図。
 - 【図10】 電子機器の一例を示す図。
 - 【図11】 電子機器の一例を示す図。
 - 本発明のAlNxOy膜の透過率を示すグラ 【図12】 フである。
 - 【図13】 本発明のAlNxOy膜のESCA分析結果 である。
- 40 【図14】 BTストレスでのMOS特性(AlNxOy 膜) である。

【図15】 BTストレスでのMOS特性(SiN膜) である。 (比較例)

【図5】

[図 6] [図 7]

【図9】

フロントページの続き

Fターム(参考) 3K007 AB00 AB13 AB14 BA06 BA07

BB00 BB01 CA01 CA05 CA06

CB01 DA00 DB03 EB00 FA01

FA02 FA03

5C094 AA31 AA36 AA38 AA43 BA03

BA27 CA19 CA25 DA06 DA09

DA11 DA13 DB01 DB02 DB04

EA04 EA05 EA07 EA10 EB10

FA01 FA02 FB01 FB02 FB15

FB20 GB10

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ GRAY SCALE DOCUMENTS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.