ЛЕКЦІЯ 12

Основи криптографії на еліптичних КРИВИХ

План

1. Загальні поняття

2. Операції над точками еліптичних кривих

3. Алгоритм обміну ключами ECDH

4. Стандарт цифрового підпису ECDSS

Використання еліптичних кривих у криптографії було незалежно запропоновано Нілом Кобліцом (Neal Koblitz) та Віктором Міллером (Victor Miller) у 1985 році

Криптографія на еліптичних кривих (Elliptic curve cryptography, ECC) вивчає асиметричні криптосистеми, засновані на еліптичних кривих над скінченими полями

Ніл Кобліц Віктор Міллер

3 1998 року використання еліптичних кривих для вирішення криптографічних завдань було закріплено в стандартах США ANSI X9.62 і FIPS 186-2 (FIPS 186-3 з 2009 року)

У 2002 році в Україні був прийнятий ДСТУ 4145-2002 «Інформаційні технології. Криптографічний захист інформації. Цифровий підпис, що ґрунтується на еліптичних кривих. Формування та перевірка»

НАЦІОНАЛЬНИЙ СТАНДАРТ УКРАЇНИ

Інформаційні технології

КРИПТОГРАФІЧНИЙ ЗАХИСТ ІНФОРМАЦІЇ ЦИФРОВИЙ ПІДПИС, ЩО ҐРУНТУЄТЬСЯ НА ЕЛІПТИЧНИХ КРИВИХ

Формування та перевіряння

₩ 12-2002/5

ДСТУ 4145-2002

Видання офіційне

Київ ДЕРЖАВНИЙ КОМІТЕТ УКРАЇНИ З ПИТАНЬ ТЕХНІЧНОГО РЕГУЛЮВАННЯ ТА СПОЖИВЧОЇ ПОЛІТИКИ 2003

Криптосистеми на еліптичних кривих забезпечують еквівалентний захист за меншої довжини ключа

Ступінь захисту (на кожен біт ключа)	Мінімальна довжина ключа (в бітах)	
	RSA/DSA/DH	ECC
80	1024	160
112	2048	224
128	3072	256
192	7680	384
256	15360	512

Рівняння еліптичної кривої у спрощеному вигляді (рівняння Вейєрштрасса):

$$y^2 = x^3 + ax + b ag{1.1}$$

Так як $y = \pm \sqrt{x^3 + ax + b}$, то графік кривої симетричний відносно Ox.

Дискримінант рівняння: $D = \left(\frac{a}{3}\right)^3 + \left(\frac{b}{2}\right)^2$.

- D < 0 три різних дійсних корені (графік 1);
- D = 0 три дійсних корені, два з яких однакові (сингулярна крива);
- $\blacksquare D > 0$ один дійсний корінь та два комплексних (графік 2).

Еліптична крива над скінченним полем p описується рівнянням:

$$y^2 \equiv x^3 + ax + b \pmod{p}$$
 (1.2)

(x,y) — точки еліптичної кривої, a,b — параметри кривої, p — просте число ($p \neq 2, p \neq 3$).

При цьому параметри кривої a та b мають задовольняти умову $4a^3 + 27b^2 \neq 0 \pmod{p}$

Позначимо через $E_p(a,b)$ множину точок еліптичної кривої. Точка належить еліптичній кривій, якщо пара чисел (x,y) задовольняє рівнянню (1.2).

Кількість точок кривої називається порядком кривої.

Приклад 1.1:

 $E_5(2,1)$ складається з 6 точок, а також точки 0. Порядок кривої — 7.

У множину точок еліптичної кривої також включається нескінченно віддалена точка .

Обернена точка

Оберненою точкою до P(x,y) називають точку еліптичної кривої -P(x,-y).

Приклад 2.1:

Якщо P(3,2) — точка еліптичної кривої $y^2 \equiv x^3 + 2x + 1 \pmod{5}$, то точка -P(3,-2). Проте $-2 \mod 5 = 3$, тому -P(3,3).

Додавання точок

Візьмемо дві різні точки $P(x_1, y_1)$ та $Q(x_2, y_2)$, які належать E_p і проведемо через них пряму.

Ця пряма обов'язково перетне криву в третій точці R.

Проведемо через точку R вертикальну пряму до перетину з кривою у точці -R=P+Q.

Подвоєння точки

Якщо дві точки $P(x_1, y_1)$ та $Q(x_2, y_2)$ співпадають, то P+Q=P+P, що рівнозначно подвоєнню точки 2P=-R.

При P=Q січна перетворюється на дотичну, тому точка 2P є оберненою до точки R.

Координати $-R(x_3, y_3)$ визначаються за формулами:

Додавання точок
$$(якщо P \neq Q)$$
 $x_3 = \lambda^2 - x_1 - x_2 \pmod{p}$ $y_3 = \lambda(x_1 - x_3) - y_1 \pmod{p}$ $\lambda = \frac{y_2 - y_1}{x_2 - x_1} \pmod{p}$

Подвоєння точки
$$(якщо P = Q)$$
 $x_3 = \lambda^2 - 2x_1 \pmod{p}$ $y_3 = \lambda(x_1 - x_3) - y_1 \pmod{p}$ $\lambda = \frac{3x_1^2 + a}{2y_1} \pmod{p}$

 λ – кутовий коефіцієнт січної, що проведена через точки $P(x_1,y_1)$ та $Q(x_2,y_2)$

Приклад 2.2:

Рівняння еліптичної кривої має вигляд:

$$y^2 \equiv x^3 + x + 1 \; (mod \; 23) \tag{2.1}$$

Потрібно перевірити чи точки P(3,10) та Q(9,7) належать кривій та знайти P+Q.

Підставимо значення P(3,10) та Q(9,7) у рівняння еліптичної кривої та переконаємося, що точки належать кривій:

$$10^2 \equiv 3^3 + 3 + 1 \pmod{23} \rightarrow 100 \mod 23 \equiv 31 \pmod{23};$$

 $7^2 \equiv 9^3 + 9 + 1 \pmod{23} \rightarrow 49 \mod 23 \equiv 739 \pmod{23}.$

Приклад 2.2 (продовження):

Виконаємо додавання точок P(3,10) та Q(9,7):

$$\lambda = \frac{y_2 - y_1}{x_2 - x_1} \pmod{p} = \frac{7 - 10}{9 - 3} \pmod{23} = -\frac{3}{6} \pmod{23} = -\frac{1}{2} \pmod{23} = \frac{22}{2} \pmod{23} = 11.$$

Знаходимо:

$$x_3 = \lambda^2 - x_1 - x_2 \pmod{p} = 121 - 3 - 9 \pmod{23} = 109 \pmod{23} = 17$$

 $y_3 = \lambda(x_1 - x_3) - y_1 \pmod{p} = 11(3 - 17) - 10 \pmod{23} = -164 \pmod{23} = 20.$

Отже
$$P + Q = (3,10) + (9,7) = (17,20)$$
.

Приклад 2.3:

Додати точки P(12,19) та Q(5,4) еліптичної кривої 2.1.

$$\lambda = \frac{y_2 - y_1}{x_2 - x_1} \pmod{p} = \frac{4 - 19}{5 - 12} \pmod{23} = \frac{-15}{-7} \pmod{23} = \frac{15}{7} \pmod{23}.$$

Потрібно знайти обернений елемент, розв'язавши рівняння:

$$7 \cdot Z \equiv 1 \pmod{23} \rightarrow Z = 10.$$

$$\lambda = 15 \cdot 10 \ (mod \ 23) = 12.$$

$$x_3 = \lambda^2 - x_1 - x_2 \pmod{p} = 144 - 12 - 5 \pmod{23} = 127 \pmod{23} = 12.$$

$$y_3 = \lambda(x_1 - x_3) - y_1 \pmod{p} = 12(12 - 12) - 19 \pmod{23} = 4(mod 23) = 4.$$

Приклад 2.4:

Дано точку P(5,4) еліптичної кривої 2.1. Знайти 2P та 3P.

$$\lambda = \frac{3x_1^2 + a}{2y_1} \pmod{p} = \frac{3 \cdot 25 + 1}{2 \cdot 4} \pmod{23} = \frac{76}{2 \cdot 4} \pmod{23} = \frac{19}{2} \pmod{23}.$$

Знайдемо обернений елемент, розв'язавши рівняння:

$$2 \cdot Z \equiv 1 \pmod{23} \rightarrow Z = 12.$$

$$\lambda = 19 \cdot 12 \pmod{23} = 21.$$

$$x_3 = \lambda^2 - 2x_1 \pmod{p} = 441 - 10 \pmod{23} = 431 \pmod{23} = 17.$$

$$y_3 = \lambda(x_1 - x_3) - y_1 \pmod{p} = 21(5 - 17) - 4 \pmod{23} = -256 \pmod{23} = 20.$$

Отже
$$2P = (17, 20)$$
.

Приклад 2.4 (продовження):

Далі знайдемо суму точок P + 2P = (5,4) + (17,20).

$$\lambda = \frac{20-4}{17-5} \pmod{23} = \frac{16}{12} \pmod{23} = \frac{4}{3} \pmod{23}.$$

Знайдемо обернений елемент, розв'язавши рівняння:

$$3 \cdot Z \equiv 1 \pmod{23} \rightarrow Z = 8.$$

$$\lambda = 4 \cdot 8 \ (mod \ 23) = 9.$$

$$x_3 = 9^2 - 5 - 17 \pmod{23} = 81 - 22 \pmod{23} = 13.$$

$$y_3 = 9(5-13) - 4(mod\ 23) = 9 \cdot (-8) - 4(mod\ 23) = -76(mod\ 23) = 16.$$

Отже
$$3P = (13, 16)$$
.

Множина точок еліптичної кривої $E_p(a,b)$ разом із введеною точкою на нескінченності o утворює комутативну групу щодо операції додавання точок. Для цього виконуються усі необхідні властивості:

```
Якщо P і Q \in E_p (a,b), то P+Q \in E_p (a,b) — замкнутість; P+Q=Q+P — комутативність; (P+Q)+R=P+(Q+R) — асоціативність; P+(-P)=0 — обернений елемент; P+O=O+P=P — нейтральний елемент.
```


Скалярне множення точки на число

Із попередніх операцій додавання точок та подвоєння точки випливає операція скалярного множення точки на число.

$$2P = P + P$$
$$3P = P + P + P$$

$$mP = P + P + P + \dots + P$$
 m разів

Приклад 2.5:

Щоб знайти 13P потрібно $13_{10} = 1101_2 \rightarrow 13P = 8P + 4P + P$.

Порядок точки

Порядком точки еліптичної кривої називають найменше натуральне число n, при якому nP = O.

Приклад 2.6:

Рівняння еліптичної кривої має вигляд:

$$y^2 \equiv x^3 + x + 1 \; (mod \; 5) \tag{2.3}$$

Потрібно знайти порядок точки P(2,4).

Приклад 2.6 (продовження): 2P:

$$\lambda = \frac{3 \cdot 2 + 1}{2 \cdot 4} \pmod{5} = \frac{7}{8} \pmod{5} = 14 \pmod{5} = 4.$$

$$x_3 = 16 - 4 \pmod{5} = 2.$$

$$y_3 = 4(2 - 2) - 4 \pmod{5} = 4 \pmod{23} = 1.$$

Виконаємо: P(2,1) + P(2,4).

$$3P = 2P + P = 0$$
:
 $\lambda = \frac{4-1}{2-2} \pmod{5} = \infty$.

Таким чином порядок точки P(2,4), що належить еліптичній кривій (2.3) дорівнює 3.

Стійкість криптосистем, побудованих на еліптичних кривих визначається складністю виконання завдання дискретного логарифмування у групі точок еліптичної кривої

Пряма задача: mP = Q (скалярне множення — аналог піднесення до степеню в звичайних асиметричних шифрах)

Зворотна задача: знаючи точки P та Q знайти m важко (дискретне логарифмування у групі точок еліптичної кривої)

Точка $G \in E_p(a,b)$ називається базовою точкою підгрупи точок еліптичної кривої $E_p(a,b)$, якщо будь-яка точка P цієї підгрупи може бути подана у вигляді P=mG, де m=1,2,...n, де n – порядок підгрупи.

Для базової точки G має місце рівність nG = O.

Приклад 2.7:

Точка G=(0,1) є базовою точкою для групи точок еліптичної кривої $y^2\equiv x^3+x+1\ (mod\ 5).$ Вона генерує усі інші точки підгрупи:

$$G = (0,1) \rightarrow 2G = (4,2) \rightarrow 3G = (2,1) \rightarrow 4G = (3,4) \rightarrow 5G = (3,1) \rightarrow 6G = (2,4) \rightarrow 7G = (4,3) \rightarrow 8G = (0,4) \rightarrow 9G = 0$$

3. Алгоритм обміну ключами ECDH

Алгоритм Діффі-Хелмана на еліптичних кривих

- 1. Абоненти А і $\overline{\,}$ В спільно обирають просте число p та параметри еліптичної кривої a та b.
- 2. У групі точок еліптичної кривої $E_p(a,b)$ також обирається спільна базова точка G=(x,y), що має дуже великий порядок n.
- 3. Абонент A обирає x < n, обчислює $X_A = xG$ та відправляє його B.
- 4. Абонент B обирає y < n, обчислює $Y_B = yG$ та відправляє його A.
- 5. Абонент A обчислює закритий ключ за формулою $K_A = xY_B$.
- 6. Користувач B обчислює закритий ключ за формулою $K_B = y X_A$.

3. Алгоритм обміну ключами ECDH

Приклад 3.1:

- 1. p = 23, a = -2, b = 15, тобто $y^2 \equiv x^3 2x + 15 \pmod{23}$.
- 2. G = (4,5).
- 3. x = 3, обчислимо $X_A = 3G = 2G + G = (13, 22)$.
- 4. y = 7, обчислимо $Y_B = 7G = 2G + 4G + G = (17,8)$.
- 5. $K_A = 3Y_B = 2Y_B + Y_B = (15, 5)$.
- 6. $K_B = 7X_A = 2X_A + 4X_A + X_A = (15, 5)$.

Секретний ключ, обчислений обома сторонами – (15, 5).

Алгоритм ЕЦП DSS, який заснований на застосуванні еліптичної кривої називається ECDSS (Elliptic Curve Digital Signature Scheme).

Для створення цифрового підпису використовується алгоритм ECDSA (Elliptic Curve Digital Signature Algorithm)

Генерація ключів

- 1. Обираються просте число p та параметри еліптичної кривої a та b.
- 2. Обираються базова точка G = (x, y) та n (просте число), таке що nG = O.
- 3. Закритий ключ d випадкове ціле число, таке що $0 < d \le n-1$
- 4. Обчислюється відкритий ключ Q = dG.

Підпис повідомлення

Якщо розмірність n в бітах менше розмірності в бітах хеш-значення h(M), то використовуються тільки ліві біти хеш-значення — z

- 1.Вибирається випадкове ціле число k разовий секретний ключ, де $0 < k \le n-1$
- 2. Обчислюється $(x_1, y_1) = kG$
- 3. Обчислюється $r = x_1 \mod n$. Якщо r = 0, то повертаємося до п. 1.
- 4. Обчислюється $s=k^{-1}(z+dr) mod n$. Якщо s=0, то повертаємося до п. 1.
- 5. Підписом для повідомлення M є пара (r, s).

Перевірка підпису

- $\overline{1}$. Отримується $\overline{(r,s)}$ та підтверджене значення відкритого ключа $\overline{\mathit{Q}}$.
- 2. Обчислюється $w = s^{-1} \mod n$
- 3. Обчислюється $u_1 = z \cdot w \mod n$
- 4. Обчислюється $u_2 = r \cdot w \mod n$
- 5. Обчислюється $(x_1, y_1) = u_1G + u_2Q$
- 6. Якщо $(x_1, y_1) = 0$ підпис недійсний.
- 7. Якщо $r \equiv x_1 mod \ n$ підпис дійсний.

Приклад 4.1: Підписати та перевірити підпис повідомлення M хеш-значення, якого z=10.

Генерація ключів

1.
$$p = 23$$
, $a = -2$, $b = 15$, тобто $y^2 \equiv x^3 - 2x + 15 \pmod{23}$;

2.
$$G = (4,5)$$
; $n = 23$;

$$3. d = 3 -$$
закритий ключ;

$$4. \ Q = dG = 3G = 2G + G = (13, 22) - відкритий ключ.$$

Приклад 4.1: Підписати та перевірити підпис повідомлення M хеш-значення, якого z=10.

Підписування

Сесійний ключ: k = 19

kG = 19G = (9, 17)

 $r = 9 \mod 23 = 9$.

 $s = 19^{-1}(10 + 3 \cdot 9) \mod 23$ = 629 mod 23 = 8

 $19^{-1} mod \ 23 = 17$ (за розширеним алгоритмом Евкліда)

Перевірка підпису

Відомо M, (9,8) та Q=(13,22)

$$w = 8^{-1} \mod 23 = 3$$

$$u_1 = 10 \cdot 3 \mod 23 = 7$$

$$u_2 = 9 \cdot 3 \mod 23 = 4$$

$$7G + 4Q = (17,8) + (10,2)$$

= (9,17)

 $9 \equiv 9 \ mod \ 23$ — підпис дійсний