Computer Organization & Architecture

Group members:

Shahad Ahmed Alqarni 2111214

Lameer Mohammed Almoallim 2111368

Shahd Ali Alshikhi 2111228

Mrs.Bashair Alrashed

TABLE OF CONTENTS

01

Simulation Study of Cache Hit & Miss Ratios

03

Mapping Lines

02

Maximum Hit Ratio

04

Assembly Language Program

Memory Size (power of 2)

Offset Bits

512

0

512

Offset Bits

0

Maximum Hit Ratio

Memory Size (power of 2)
Offset Bits

0

512

Direct Mapping

#Number of line

$$= 2^r = 2^4 = 16$$

#Size of Tag

$$= s - r = 9 - 4 = 5 bit$$

#Number of bits required for RAM address

$$= s + w ((tag + r) + word) = ((5+4) + 0) = 9 bits$$

#Size of RAM

$$= 2^w+s = 2^9 = 512$$

Fully Associative Mapping

 Word (0 bits)
 Set (3 bits)
 Tag (6 bits)

 3. 2-Way Set Associative Cache[8]
 HIT 5% MISS 95% || ADD. RESOURCES 2272 NAND

 Instruction Breakdown
 001010
 011
 0

 6 bit
 3 bit
 0 bit

2-way Set Associative Mapping **#Number of line** = k*2^d = 2*2^3 = 16

#Number of sets = 2^d = 2^3 = 8

#Size of Tag

$$= s - d = 9 - 3 = 6 bit$$

#Number of bits required for RAM address

$$= s + w ((tag + d) + word) = ((6+3) + 0) = 9 bits$$

#Size of RAM

$$= 2^w+s = 2^9 = 512$$

Word (0 bits) Set (2 bits) Tag (7 bits)

4. 4-Way Set Associative Cache[4]		HIT <mark>5%</mark> MISS	95% ADD. RESOURCES 3056 NAND
Instruction Breakdown			
	0010100	11	0
	7 bit	2 bit	0 bit

4-way Set Associative Mapping #Number of line = k*2^d = 4*2^2 = 16 **#Number of sets** = 2^d = 2^2 = 4

#Size of Tag

$$= s - d = 9 - 2 = 7 bit$$

#Number of bits required for RAM address

$$= s + w ((tag + d) + word) = ((7+2) + 0) = 9 bits$$

#Size of RAM

$$= 2^w+s = 2^9 = 512$$

Assembly Language Program >>output

