LABORATORIUM Teoria Automatów					
Temat Ćwiczenia: PROJEKTOWANIE AUTOMATÓW Z WYKORZYSTANIEM STEROWNIKA PLC					
Grupa laboratoryjna: 1a, wtorek 11 ⁰⁰					
L.p	Nazwisko i Imię				
1 2 3	Aleksandrowicz Maciej Krzyszczuk Michał Marczewski Marcin				
Data wykonania ćwiczenia : 12.12.2017r					

Spis treści

Spis treści	1
1) Wstęp teoretyczny	1
2) Zadania do wykonania	2
3) Analiza teoretyczna	2
4) Sposób realizacji zadania w praktyce	4
5) Wnioski	4
6) Załączniki	4
Załącznik 1	5
Załacznik 2	9

1) Wstęp teoretyczny

Celem ćwiczenia jest nabycie umiejętności programowania prostych automatów uruchamianych na sterownikach PLC oraz zapoznanie się z językiem programowania LAD. PLC(ang. *programmable logic controller*) urządzenie mikroprocesorowe przeznaczone do sterowania pracą maszyny lub urządzenia technologicznego. Język LAD jeden z graficznych

języków programowania sterowników PLC.Nazwa tego języka pochodzi od klasycznego zapisu na elektrycznych schematach stykowo-przekaźnikowych

2) Zadania do wykonania

Zadanie 1. Zapoznanie się z językiem drabinkowym, analiza schematów.

Zadanie 2. Zaprojektowanie automatu realizującego bezpieczny przejazd kolejowy, z migającą lampką ostrzegawczą.

Zadanie 3. Zaprojektowanie automat służącego do mieszania dwóch substancji.

3) Analiza teoretyczna

Zadanie 1

Rys.1 Zadany schemat do analizy(instrukcja do Laboratorium Teorii Automatów).

DIN0\DIN1	0	1
0	0	1
1	1	1

DOUT0 = DIN0 v DIN1

```
%10.0 %10.1 %Q0.0 "DIn1" "DOut0" — ( )
```

Rys.2 Drugi zadany schemat do analizy(instrukcja do Laboratorium Teorii Automatów).

DIN0\DIN1	0	1
0	0	0
1	0	1

DOUT0= DIN0 ^ DIN1

Zadanie 2

Do wykonania poprawnie działającego automatu została wykorzystana analiza zadania wykonana podczas ćwiczeń laboratoryjnych "Przejazd Kolejowy".

$$\begin{aligned} Q_1^{n+1} &= B \vee Q_1 Q_2 \vee D Q_1 \\ Q_2^{n+1} &= B \overline{D} \vee D \overline{Q_1} \overline{B} \vee Q_2 \overline{D} \vee \overline{Q_1} Q_2 \overline{B} \\ Y &= B \vee \overline{Q_1} Q_2 \vee \overline{Q_1} D \end{aligned}$$

Zadanie 3.

Celem zadania było zaprojektowanie automatu realizującego proces mieszania dwóch cieczy.

Wejścia:

- Czujnik 1-umiejscowiony na dnie zbiornika(CZ1)
- Czujnik 2-umiejscowiony w połowie wysokości zbiornika(CZ2)
- Czujnik 3-umiejscowiony na wysokości maksymalnej zbiornika(CZ3)
- Przycisk start(BTN Start)
- Przycisk bezwarunkowego stopu(BTN_Stop)

Wyjścia:

- Silnik mieszający
- Zawór z pierwszą cieczą
- Zawór z drugą cieczą
- Zawód odpływowy

Timer odliczający czas pomiędzy zakończeniem wlewania cieczy 2 a zakończeniem pracy silnika mieszającego.

4) Sposób realizacji zadania w praktyce

Schematy zaprojektowanych automatów znajdują się w załączniku.

5) Wnioski

Podczas ćwiczeń laboratoryjnych zapoznaliśmy się z przykładowym sterownikiem PLC firmy Siemens. Poszerzyliśmy zdobytą podczas wykładu wiedzę o języku LAD. Przekonaliśmy się o jego uniwersalności oraz powszechnym zastosowaniu w dziedzinie sterowników PLC.Poznaliśmy możliwości Timerów, które mogą być używane jako opóźnienia lub liczniki czasu.

6) Załączniki

- Załącznik nr 1 Wykaz programu SIMATIC z programem LAD dla ćwiczenia "przejazd kolejowy"
- Załącznik nr 2 Wykaz programu SIMATIC z programem LAD dla automatu mieszającego dwóch cieczy.

Załącznik 1

Załącznik 2

