

RANCANGAN DIAGRAM ALIR DATA (DAD) UNTUK PENGEMBANGAN INFORMATION RETRIEVAL SYSTEM (IRS) DOKUMEN PENELITIAN MENGGUNAKAN BASIS DATA NON-RELATIONAL

DATA FLOW DIAGRAM (DFD) DESIGN FOR THE DEVELOPMENT OF INFORMATION RETRIEVAL SYSTEM (IRS) OF RESEARCH DOCUMENT USING NON-RELATIONAL DATABASE

Moh. Muttaqin*, Eko Nugroho** dan Hanung Adi Nugroho***
Program Studi Pascasarjana Jurusan Teknik Elektro dan Teknologi Informasi
Fakultas Teknik Universitas Gadjah Mada
Jl. Grafika 2, Yogyakarta
*moh.muttaqin.cio13@mail.ugm.ac.id, moh.muttaqin@kominfo.go.id
**nugroho@ugm.ac.id
***adinugroho@ugm.ac.id

Diterima : 11 April 2016 Direvisi : 12 Mei 2016 Disetuji : 20 Juni 2016

ABSTRAK

Dokumen penelitian memiliki jenis dan format data yang sangat beragam. Penanganan dokumen dengan kompleksitas tinggi seperti ini membutuhkan sistem khusus sehingga pengaksesan terhadap informasi dalam dokumen-dokumen tersebut dapat dilakukan dengan optimal. Information Retrieval System (IRS) diciptakan untuk melakukan manajemen dokumen dari proses penyimpanan, pemberian indeks hingga pengaksesan kembali dengan cepat. Arsitektur IRS yang dibangun akan beragam juga, mengingat pihak pengguna memiliki standar dan kebiasaan sendiri dalam menggunakan dokumen untuk kepentingan penelitian. Artikel ini menyajikan rancangan Diagram Alir Data (DAD) untuk pengembangan IRS dokumen penelitian berdasarkan observasi proses bisnis penelitian di Unit Pelaksana Teknis (UPT) Bidang Pengkajian dan Pengembangan Komunikasi dan Informatika (BPPKI) Badan Penelitian dan Pengembangan Sumber Daya Manusia Kementerian Komunikasi dan Informatika (Balitbang SDM Kominfo) RI. Metode perancangan menggunakan tahapan rekayasa informasi sesuai Software Development Life Cycle (SDLC) model Waterfall. Penelitian ini menghasilakn DAD-DAD untuk pengembangan IRS dengan basis data non-relational sehingga menghasilkan rancangan yang sederhana dan umum sebagai dasar bagi pengembangan beragam jenis arsitektur IRS yang lebih kompleks.

Kata Kunci: DAD, IRS, SDLC, model Waterfall, basis data non-relational

ABSTRACT

Research Documents have a large variety of type and format. Handling these high-complexity documents needs special system for optimal access of informations within documents. Information Retrieval System (IRS) created for document management from storing process, indexing, until retrieving it quickly. Developed IRS architecture maybe vary depends on user standard and using behaviour of the document for the research purpose. This article propose Data Flow Diagram (DFD) design to develop IRS of research document based on the observation result of research bussiness processin Unit Pelaksana Teknis (UPT) Bidang Pengkajian dan Pengembangan Komunikasi dan Informatika (BPPKI) of Badan Penelitian dan Pengembangan SDM Kementerian Komunikasi dan Informatika (Balitbang SDM Kominfo) RI. Design method using information engineering stage according to Software Development Life Cycle (SDLC) in Waterfall model. This research results the DFDsfor IRS development using non-relational database, so its

design is simple and generalto fit as a template for the development of more complex types of IRS architecture.

Keywords: DFD, IRS, SDLC, Waterfall model, non-relational database.

PENDAHULUAN

Penelitian melibatkan sederet proses yang panjang, dimulai dari identifikasi masalah hingga muncul produk penelitian yang berguna bagi pengetahuan pengembangan ilmu bentuknya dapat beragam. Proses panjang ini melibatkan beragam dokumen yang dihasilkan setiap tahapan penelitian. terlahirnya dokumen ini berbeda-beda, demikian pula dengan peruntukannya. Pada akhirnya, penelitian menghasilkan beragam dokumen kompleks yang pada akhirnya membantu terwujudnya produk akhir penelitian. Selain kompleksitas dari sisi proses, dokumendokumen penelitian tersebut juga memiliki kekhasan dari sisi teknis, seperti sistematika dan format. Kekhasan sistematika menyangkut struktur dokumen, sedangkan dari sisi format misalnya kekhasan dalam bentuk jenis berkas (filetype/ekstensi) dan jika berupa berkas digital, maka akan memiliki kekhasan pengolahnya. Kekhasan juga dapat muncul dalam bentuk hak akses yang unik (read, write, Pada execute). akhirnya, dokumen yang dihasilkan dari keseluruhan proses penelitian memiliki kompleksitas yang sangat tinggi.

Sebagai kekayaan intelektual organisasi, pengelolaan dokumen-dokumen penelitain dengan kompleksitas tinggi tersebut menjadi tantangan penting organisasi. Organisasi penelitian yang menjadikan penelitian sebagai aktivitas utama tentu menjadikan pengelolaan dokumen penelitian ini sebagai komponen yang lebih serius. Manajemen yang baik untuk pemanfaatan dokumen penelitian secara optimal menjadi tuntutan.

Dalam manajemen modern, dikenal istilah Knowledge Management (KM).KM dapat diartikan sebagaimekanisme pengelolaan knowledge (pengetahuan) untuk mengubahnya

dari tacit knowledge (pengetahuan yang tersimpan dalam benak manusia) menjadi explicit knowledge (pengetahuan yang terkodifikasi dan dapat dipahami manusia lain) dan mengelolanya sebagai kekayaan intelektual dalam suatu organisasi.¹

Knowledge Management System (KMS) berbasis dokumen dan Information Retrieval System (IRS)

Kerangka kerja (*framework*) KM terdiri dari tiga komponen, yaitu sistem, basis data, dan metode teknologi informasi yang digunakan.² Kerangka kerja tersebut ditunjukkan pada Gambar 1.

Gambar 1. KM Framewok²

Pada Gambar 1, sistem yang digunakan untuk menjalankan KM disebut *Knowledge Management System* (KMS). Basis data yang memuat pengetahuan dalam framework KM tersebut adalah*Knowledge Discovery Databases* (KDD). Komponen ketiga adalah teknik pengaksesan menggunakan teknologi informasi yang biasanya berupa program aplikasi.²

Untuk manajemen dokumen penelitian, basis data yang digunakan tidak terlalu spesifik dan model yang dapat dipilih sangat beragam, kembali kepada kekhasan pilihan dan kebutuhan organisasi. Namun, berbeda dengan pemilihan KMS dan teknologi informasi pengaksesnya. Karena menjadikan dokumen sebagai bentuk pengetahuan, maka jenis KMS yang tepat adalah KMS berbasis dokumen (*Document Based KMS*). Penelitian mengenai pengembangan KMS telah banyak dilakukan, namun terdapat beberapa penelitian KMS yang mengkhususkan pada pembahasan KMS berbasis dokumen, seperti ditunjukkan pada Tabel 1.

Tabel 1. Penelitian KMS berbasis dokumen

Fokus	Penelitian	
Knowledge Collecting	Nor et al. (SCAT)³, Chen et al. (KM untuk berkas terdokumentasi secara parsial)⁴, Bartoli (PATO sebagai teknologi pemindai informasi dari dokumen cetak)⁵	
Document Flow	Tang (konsep sederhana pelepasan pengetahuan antar titik aktor dalam organisasi, hingga proses penyimpanan kembali) ⁶	
Knowledge Acquisition and Storing (KAS)	Beatrice et al. (<i>K-store</i> dalame-learning) ⁷ , Alamri (<i>K-acquisition</i> darirepositorydan <i>K-store</i> dalam <i>Database Management System</i> /DBMS) ⁸ , Beevi et al. (K-acquisition kedalambentuk <i>Knowledge Base</i> /KB XML dan <i>K-store</i> denganfiturseperti IRS) ⁹ , Kumar (KAS khusus peningkatan pengelolaan pengetahuan untuk optimalisasi proses di Perguruan Tinggi) ¹⁰ , Samoilenko et al. (membandingkan beragam/ <i>T Tool</i> suntuk <i>K-store</i> dan <i>K-access</i> dalam KMS. Merekomendasikan KB denganfungsi/ <i>Information Retrieval System</i> /IRS, untuk keandalan penanganan data dalam skala besar) ¹¹ , Corcoglioniti (<i>K-acquisition</i> yang diperoleh dari pengetahuan tersetruktur dan tak terstruktur) ¹²	

Untuk teknologi informasi yang digunakan dapat dipilih aplikasi *Information Retrieval System* (IRS).Pada awalnya, IRS digunakan untuk mendeteksi eksistensi (keberadaan atau ketidakberadaan) suatu informasi¹³ dan hanya mendukung dokumen dengan format teks.¹⁴ Seiring perkembangan teknologi, IRS kemudian diperluas kemampuannya menjadi teknologi

yang juga dapat menemukan informasi yang terdeteksi. IRS kemudian digunakan untuk penyimpanan, pengorganisasian, dan pengaksesan informasi dari satu atau beberapa kelompok informasi (dokumen). menyajikannya secepat-cepatnya kepada pengguna. IRS modern telah dikembangkan tidak hanya untuk menangani data teks, namun juga format multimedia (*image*, *audio*, *video*).¹⁴ Skema kerja IRS ditunjukkan pada Gambar 2.

Gambar 2. Skema proses kerja IRS¹⁴

Diagram Alir Data(DAD)

Sebelum ditulis dalam bahasa pemrograman yang dipahami komputer, aplikasi perangkat lunak perlu dimodelkan terlebih dahulu. Salah satu teknik pemodelan yang dapat digunakan adalah dengan mentransformasikan gambaran perangkat lunak yang diinginkan dalam bentuk DAD.

DAD adalah representasi grafik yang menggambarkan aliran informasi dan transformasi informasi yang diaplikasikan sebagai data yang mengalir dari masukan (input) dan keluaran (output). DAD merepresentasikan sistem dengan lengkap melalui beberapa level abstraksi.¹⁵ Level yang paling kecil (level 0) memberikan abstraksi yang lebih kemudian level-level berikutnya menunjukkan aliran data dan fungsi yang lebih detail.

Membangun sistem pengelola dokumen penelitian dengan IRS akan membantu optimalisasi pemanfaatan dokumen penelitian dengan menata proses penyimpanan, pemberian indeks dan pengaksesan kembali dokumen. Namun arsitektur IRS dokumen yang dibutuhkan tiap lembaga penelitian akan berbeda sesuai dengan kekhasan proses bisnis di lembaga tersebut. Artikel ini menyajikan pemecahan masalah tersebut dengan merancang DAD dengan proses bisnis yang umumnya dimiliki oleh setiap lembaga penelitian. Pendekatan basis data non relasional sengaja dipilih untuk fleksibilitas hasil rancangan DAD jika akan dikembangkan lebih jauh untuk kebutuhan pembangunan IRS dokumen penelitian pada organisasi yang lebih spesifik.

METODE PENELITIAN

Penelitian dilakukan menggunakan pendekatan kualitatif. Objek penelitian yang dipilih adalah organisasi penelitian dalam lingkup Unit Pelaksanan Teknis (UPT) Bidang Pengkajian dan Pengembangan Komunikasi dan Informatika yang terdiri dari Balai dan Balai Besar. Observasi dilakukan di salah satu UPT tersebut yaitu Balai Besar Pengkajian dan Pengembangan Komunikasi dan Informatika (BBPPKI) Medan. Objek observasi adalah proses bisnis dan dokumen yang dihasilkan dari proses penelitian. Observasi dilakukan selama rentang tahun 2012 hingga pertengahan tahun 2013, ketika penulis menangani dokumen penelitian sebagai staf Sub Bidang Program di organisasi tersebut.

Pengembangan rancangan DAD dilakukan dengan memanfaatkan metode yang sudah ada dan banyak digunakan dalam pengembangan perangkat lunak, yaitu metode SDLC (Software Development Life Cycle). Model-model dalam SDLC ini juga beragam, di antaranya adalah model Waterfall yang membutuhkan spesifikasi sistem yang jelas dan mampu menggambarkan urutan proses dengan baik, model Mock Up untuk membangu sistem yang spesifikasinya belum terpetakan dengan baik, model Rapid **Application Development** (RAD) untuk pengembangan secara inkremental dengan pengembang berbentuk tim dengan waktu yang singkat, model Iteratif dan model Spiral yang keduanya merupakan kombinasi *Waterfall* dan *Mock Up*.¹⁵Dari model-model dalam metode SDLC dipilih model *Waterfall*.

Dari keseluruhan langkah dalam model Waterfall, penelitian dibatasi hingga proses rekayasa informasi yang keluarannya berupa DAD. Proses rekayasa informasi dalam model Waterfall sendiri tersusun atas dua tahap, yaitu tahap analisis dan desain. Tahap analisis akan hasil analisis proses bisnis menghasilkan penelitian di BBPPKI Medan, dan hasil analisis kebutuhan sistem yang akan dibangun desain akan (requirement analysis). Tahap menghasilkan desain basis data dan DAD.15 Jalannya penelitian secara keseluruhan ditunjukkan pada Gambar 3.

Gambar 3. Jalannya penelitian

HASIL DAN PEMBAHASAN

Hasil penelitian dan pembahasannya akan disajikan berurutan sesuai langkah-langkah jalannya penelitian. Hasil yang dimaksud adalah keluaran dari tiap proses rekayasa informasi yaitu hasil analisis proses bisnis, analisis kebutuhan perangkat lunak, desain basis data dan terakhir desain DAD.

Analisis Proses Bisnis

Hasil analisis proses bisnis merupakan produk observasi yang dilakukan terhadap objek penelitian. Hasil analisis proses bisnis ditunjukkan pada Tabel 2.

Tabel 2. Hasil Analisis Proses Bisnis

Tahap	Ringkasan Proses Bisnis	Contoh Dokumen
Proses Awal	Meliputi proses penemuan masalah,identifikasi hingga penyusunan rancangan proposal penelitian yang diajukan di Rapat Kerja Anggaran - Kementerian/Lembaga (RKA-K/L)	Dokumen-dokumen sumber kajian, literatur yang dipelajari, hingga dokumen proposal penelitian
Proses Pelaksanaan	Meliputi proses pelaksanaan penelitian di lapangan setelah proposal penelitian di setujui, sesuai dengan tahapan dan jadwal penelitian pada proposal, hingga proses analisis dan simpulan hasil penelitian	logbook, dokumen laporan perkembanganpenelitian, catatan perjalanan penelitian, informasi kontak-kontak informan, objek penelitian, dan lain-lain
Proses Akhir	Proses penyempurnaan hasil penelitian untuk siap digunakan dan diseminasikan	Laporan hasil penelitian, artikel diseminasi, dan lain- lain

Tabel 2 menggambarkan keseluruhan proses bisnis penelitian yang terjadi di BBPPKI Medan berdasarkan hasil observasi. Analisis terhadap proses bisnis mengklasifikasikan keseluruhan proses bisnis dalam tiga tahap. Deskripsi yang dijelaskan pada kolom Ringkasan Proses Bisnis menunjukkan apa yang terjadi pada tahap tersebut. Sedangkan penamaan "Proses Awal", "Proses Pelaksanaan" dan "Proses

Akhir"merupakan istilah yang digunakan oleh peneliti dan bukanlah merupakan istilah baku. Penggunaan istilah ini hanya untuk memudahkan dalam memahami hasil analisis. Kolom contoh dokumen tidak menunjukkan dokumen yang benar-benar lahir dalam setiap tahapan dalam proses bisnis di BBPPKI Medan. Karena penelitian ditujukan membangun DAD yang fleksibel untuk IRS dokumen penelitian di organisasi penelitian secara umum, pemunculan kolom contoh dokumen dimaksudkan untuk menunjukkan dokumen apa yang diproduksi pada setiap tahapan. Di BBPPKI Medan, dokumen yang diproduksi masih lebih sederhana. Pemunculan kolom contoh dokumen juga mempermudah mengenali perbedaan di tiap tahapan selain dari mencermati proses bisnisnya.

Analisis Kebutuhan Sistem

IRS yang akan dibangun ditujukan untuk mengolah dokumen sesuai perlakuan terhadap dokumen pada kenyataannya. Dari observasi yang dilakukan, diketahui bahwa perlakuan yang diberikan terhadap dokumen ada tiga, yaitu penyimpanan dokumen, pengklasifikasian dokumen, dan pencarian dokumen. Oleh karena itu, sistem yang akan dibangun harus memenuhi kemampuan tersebut.

Dokumen penelitian dapat memiliki format beragam dari sekedar teks hingga multimedia. Keragaman format ini menyebabkan keragaman lainnya, di antaranya keragaman ukuran data, ekstensi berkas, dan perangkat untuk membuka (menjalankan) dokumen. Sistem yang dibangun juga harus memenuhi tuntutan ini.

IRS mengelola dokumen secara elektronik dengan membangun data tentang dokumen (metadata). Oleh karena itu, sistem yang dibangun juga perlu dilengkapi dengan kemampuan pengelolaan metadata yang memadai terhadap dokumen elektronik, yaitu dengan fitur-fitur yang dapat diterapkan pada dokumen penelitian.

Tabel 3. Hasil Analisis Kebutuhan Sistem

Fitur	Objek
input	Metadata, Dokumen
view	Metadata
update/edit	Metadata
search	Metadata
access	Dokumen

Tabel 3 menunjukkan gambaran keseluruhan kebutuhan sistem dalam mengelola dokumen dan metadatanya. Sistem membutuhkan fitur inputdata dokumen untuk memasukkan metadata dokumen (bersamaan dengan penyimpanan dokumen) menyimpannya dalam sistem, melihat metadata dokumen yang telah di-input (view), memperbarui (update) metadata dokumen jika diperlukan, mencari metadata dokumen yang diinginkan (search), dan membuka (menjalankan) dokumen berdasarkan metadata tersebut (access).

Dari kelima fitur tersebut, dokumen harus dapat diakses langsung setelah menemukan metadata yang dicari maupun dalam proses pengolahan dokumen melalui pengolahan metadata. Dengan demikian, fitur access hanya dapat dijalankan dari antarmuka metadata dengan menggunakan fitur lain untuk masuk ke antarmuka tersebut. Metode penggunaan fitur pada sistem yang akan dibangun ditunjukkan pada Gambar 4.

Gambar 4. Metode penggunaan fitur

Gambar 4 menunjukkan fitur untuk akses dokumen harus selalu tersedia saat pengguna berada pada antarmuka yang menampilkan metadata, baik saat mencari atau mengelola dokumen penelitian. Saat aktivitas mengelola dokumen, fitur access didahului dengan menggunakan fitur view untuk masuk ke tampilan koleksi metadata. Aktivitas fitur input dan update tidak diikuti fitur access ke dokumen, karena pada kedua fitur ini pengguna akan dihadapkan pada form (form kosong untuk input dan form yang telah terisi data sebelumnya untuk update). Sedangkan dalam aktivitas mencari dokumen, antarmuka metadata diakses melalui fitur search. Dengan demikian, IRS yang dibangun harus dilengkapi dengan mesin pencari untuk masuk ke antarmuka metadata melalui hasil pencarian, kemudian mengakses dokumen. Dengan penataan sistem menggunakan metadata seperti ini, maka pengaksesan dan pengelolaan dokumen akan lebih efektif.

Desain Basis Data

Basis data yang digunakan menggunakan konsep sederhana *Database Management System* (DBMS) non-relasional. Pemilihan konsep basis data ini mendukung kebutuhan sistem akan pengklasifikasian dokumen dan tujuan sistem membangun rancangan IRS yang fleksibel untuk dikembangkan lebih jauh sesuai kebutuhan spesifik dan kekhasan organisasi yang ingin memanfaatkan hasil penelitian ini. Dengan basis data non-relasional, maka satu basis data akan terdiri dari hanya satu tabel. Maka tidak diperlukan analisis *Entity Relationship Diagram* (ERD) dan normalisasi tabel-tabel basis data seperti pada *Relational* DBMS(RDBMS).

Setiap basis data akan memuat satu jenis dokumen saja, dengan demikian fungsi klasifikasi dokumen akan terpenuhi. Nama dokumen dapat ditetapkan sebagai basis data, misalnya basis data proposal untuk dokumen proposal, basis data sumber untuk dokumen sumber dan lain-lain. Komponen yang digunakan sebagai *field* untuk tabel dokumen dipilih sesuai dengan metadata dokumen. Untuk dokumen

proposal misalnya, *field* yang dapat digunakan adalah nama peneliti (peneliti utama jika dokumen merupakan proposal tim penelitian), judul, kata kunci, tahun, jenis penelitian, satuan kerja (satker) sasaran, ranah penelitian, lokasi penelitian, sumber dana dan alamat dokumen. Beberapa metadata dari seperangkat metadata tersebut dipilih sebagai indeks yang isinya (*record*) dapat menjadi kunci pencarian untuk mengakses dokumen. Misalnya, basis data proposal dapat menggunakan metadata nama peneliti, judul, kata kunci, tahun, satker sasaran, jenis, dan ranah penelitian sebagai indeks.

Dalam setiap tahap penelitian, ada banyak jenis dokumen yang terlibat. Setiap jenis dokumen tersebut dapat dibuatkan basis datanya masing-masing sekaligus untuk mengklasifikasikan jenis dokumen sesuai kelompoknya. Karena saling bebas, setiap dokumen dapat membentuk sistematika metadatanya sendiri. Desain basis data dalam artikel ini digeneralisasi dengan memilih satu sistematika metadata dokumen untuk satu tahap penelitian dengan tujuan penyederhanaan. Tabel 4 menunjukkan desain basis data.

Tabel 4. Desain Basis Data

Dokumen Proses Awal	Dokumen Proses Pelaksanaan	Dokumen Proses Akhir
Nama Peneliti*	Nama Peneliti*	Nama Peneliti*
Judul*	Judul*	Judul Awal*
Tahun*	Temuan/Catatan*	Judul Final*
Kata kunci*	Tipe data*	Tahun*
Satker Sasaran*	Tanggal Input	Kata kunci*
Jenis Penelitian*		Satker Sasaran*
Ranah Penelitian*		Jenis Penelitian*
Lokasi		Ranah
Penelitian*		Penelitian*
Sumber Dana*		Lokasi
Sumber Dana		Penelitian*
Alamat Dokumen		Hasil Akhir
		Kendala Umum
		Alamat Dokumen

Pada Tabel 4, komposisi metadata untuk basis data proses awal direfleksikan dari metadata dokumen proposal penelitian. Komposisi metadata untuk basis data proses pelaksanaan direfleksikan dari metadata dokumen *logbook*. Komposisi metadata untuk basis data proses akhir direfleksikan dari metadata dokumen laporan akhir penelitian. Tanda bintang (*) menunjukkan metadata yang dipilih sebagai indeks.

Desain DAD

Setelah mengetahui hasil analisis proses bisnis, analisis kebutuhan sistem, dan rancangan basis data, maka DAD dapat mulai dideskripsikan. DAD terdiri dari beberapa level yang semakin besar nilai levelnya maka sistem yang dimodelkan semakin detail. Gambar 5 menunjukkan DAD Level 0 (context diagram) dari IRS yang akan dibangun.

Gambar 5. DAD Level 0

DAD Level 0 5 pada Gambar mendeskripsikan IRS pada tingkat kerja yang paling global. Aliran input dan output data searah dengan arah panah. Pengguna sistem adalah petugas pengelola dan aktivitas yang dijalankan oleh sistem adalah mengelola IRS dokumen penelitian. Pengguna melakukan request kepada sistem dalam bentuk pencarian dokumen dan pengelolaannya, dan sistem menjawab (respon) dengan data sesuai request. Panah dengan label pencarian dokumen dan jenis dokumen dari pengguna ke aktivitas menunjukkan request pengguna, dan panah dengan arah sebaliknya dari aktivitas ke

pengguna dengan label jenis dokumen adalah respon sistem.

DAD Level 0 dapat diturunkan menjadi DAD Level 1 yang lebih detail. Deskripsi DAD Level 1 ditunjukkan pada Gambar 6.

Gambar 6. DAD Level 1

DAD Level 1 pada Gambar 6 menampilkan modul fungsi-fungsi utama yang dilakukan dokumen dan sistem. vaitu mencari mengelolanya. DAD Level 1 juga telah menggambarkan aliran data dari pengguna hingga respon dari sistem yang diperoleh dari basis data. Kronologis aliran data pada DAD Level 1 adalah request dari pengguna (baik request mencari maupun mengelola dokumen) diteruskan ke basis data sesuai jenis dokumennya. Respon sistem sebenarnya merupakan data yang diambil dari basis data dan ditampilkan pengguna dalam sebaliknya.Pola aliran data dalam request dan

respon pada DAD Level 1 merupakan detail dari pola *request* dari DAD Level 0.

Fungsi mengelola dokumen pada DAD Level 1 masih dapat diturunkan lagi menjadi beberapa fitur sebagaimana penjabaran dalam analisis kebutuhan sistem. Penjabaran terhadap fungsi mengelola dokumen tersebut ditampilkan dalam DAD Level 2 pada Gambar 7.

Gambar 7. DAD Level 2 fungsi mengelola dokumen

DAD Level 2 pada Gambar 7 merupakan turunan dari DAD Level1 pada bagian fungsi mengelola dokumen. Bagian fungsi mencari dokumen tidak diturunkan lagi menjadi DAD Level 2 karena aktivitas mencari dokumen hanya terdiri dari satu fitur di dalamnya yaitu access dokumen. Pada DAD Level 2, selain detail terhadap respon dan request dari DAD Level 1, fungsi yang masih dapat diturunkan dari DAD Level 1 (mengelola dokumen) juga dipecah menjadi DADtersendiri. Hal menyebabkan adanya DAD dalam DAD, yaitu aliran data berupa request, respon dan fitur dalam suatu fungsi. DAD di dalam DAD inilah yang merupakan DAD Level 2. Dengan demikian, hingga penurunan DAD Level 2 pemodelan IRS dengan DAD sudah cukup untuk menggambarkan arsitektur sistem

manajemen dokumen penelitian yang akan dibangun.

Model DAD yang dihasilkan dari keseluruhan proses penelitian yang mengambil tahap rekayasa informasi dari model Waterfall metode SDLC ini sangat sederhana dan umum. Kesederhanaan dan keumuman ini menjadikannya cocok digunakan sebagai pola/template bagi pengembangan IRS dokumen penelitian dengan kompleksitas yang lebih tinggi. Ciri penting dari rancangan DAD ini adalah fleksibilitasnya yang sangat baik untuk dikembangkan menjadi beragam model rancangan DAD turunan bagi beragam jenis model IRS dokumen penelitian. Fleksibilitas ini merupakan dampak penerapan satu dokumen satu tabel dalam konsep basis data nonrelational. Tabel-tabel ini saling lepas sehingga penambahan dokumen, proses bisnis maupun komponen lainnya dalam pelaksanaan prosedur penelitian di dalam organisasi tidak harus merombak struktur sistem karena perubahan struktur basis data dan komponen metadata vang saling berkaitan seperti pada RDBMS.

Kekhawatiran bahwa semakin berkembangnya bisnis proses dan bertambahnya dokumen sistem akan semakin lambat juga teratasi dengan metode akses yang pendek. Selain itu isi field basis datanya juga hanya berupa data berformat teks yang sesungguhnya hanya merupakan metadata dari dokumen. Dapat dikatakan bahwa sesungguhnya basis data-basis data yang dibangun dengan model ini adalah basis metadata. Sedangkan data aslinya (dokumen penelitian) diakses melalui informasi metadata tersebut. Data asli berupa dokumen penelitian tidak disimpan dalam basis data, namun basis data menyimpan jalan menuju akses dokumen dalam format data dengan ukuran terkecil yaitu teks metadata.

SIMPULAN

Dengan pola penurunan DAD pada Gambar 5, Gambar 6 hingga Gambar 7, pada akhirnya akan dihasilkan satu DAD Level 0, satu DAD Level 1 dan tigaDAD Level 2. Tiga DAD Level 2 ini masing-masing untuk menurunkan aktivitas mengelola tiga jenis dokumen pada DAD Level 1, yaitu mengelola dokumen awal, mengelola dokumen pelaksanaan, dan mengelola dokumen akhir. Karena ketika DAD Level 2 tersebut memiliki aliran data serta pola request-respon berbeda hanya sama (yang Level 2 dokumennya), maka DAD yang ditampilkan di artikel ini hanya DAD Level 2 untuk fungsi mengelola dokumen seperti ditunjukkan pada Gambar 7. DAD-DAD yang dihasilkan dapat langsung menjadi rancangan logis untuk dikodekan dalam pembuatan IRS dokumen penelitian sederhana. IRS dengan arsitektur sederhana seperti ini sekalipun mampu mengelola dokumen penelitian dengan kompleksitas dan keberagaman yang tinggi.

DAD vang dihasilkan dari dua proses berurutan (analisis: proses bisnis, kebutuhan sistem; dan desain: basis data, DAD) dalam tahap rekayasa informasi pada model Waterfall dengan menggunakan metode SDLC ini menggunakan pendekatan keumuman aktivitas dan dokumen penelitian. Meskipun data-data yang diolah dan dianalisis merupakan hasil observasi dari organisasi penelitian secara langsung (observasi di **BBPPKI** Medan) partisipatif namun pengembangan yang sangat luas dapat dilakukan terhadap rancangan DAD ini diterapkan untuk organisasi penelitian lainnya yang akan membangun IRS dokumen penelitian. Bahkan **BBPPKI** Medan masih dapat mengembangkannya jika ada tambahan kebutuhan khusus. Fleksibilitas dari DAD yang dihasilkan terutama karena tidak terlalu merinci dokumen penelitian, sehingga penambahannya dapat dilakukan sesuai kebutuhan (misalnya menambahkan dokumen sumber pada proses awal, dokumen laporan perkembangan pada proses pelaksanaan, maupun menambahkan dokumen aplikasi temuan, poster atau artikel diseminasi pada proses akhir) sehingga DAD Level 0, dan Level 1 akan berkembang. DAD Level 2 kemungkinan besar tidak akan

berkembang lagi, karena keseluruhan perlakuan yang diberikan pada dokumen telah dimodelkan dan perlakuan ini tidak akan berubah hanya karena penambahan jenis dokumen atau perubahan tahap dalam proses bisnis.

DAFTAR PUSTAKA

- ¹Uriarte, F. A.2008.*Introduction to Knowledge Management*. Jakarta: ASEAN Foundation.
- ²Jindal, G.dan J. Tyagi. 2014. "Aspects of Knowledge Management and Impact of Decision Support System of E-Governance Model in Professional Education," *IEEE* International Conference on MOOC, Innovation and Technology in Education (MITE), pp. 1–6.
- ³ Nor, M. Z. M., R. Abdullah, M. H. Selamat, dan M. A. A. Murad. 2012. "An Agent-Based Knowledge Management System Collaborative Software Maintenance Environment Design and Evaluation," in 2012 International Conference Information Retrieval Knowledge Management (CAMP), pp. 115-120.
- ⁴Chen,H., G. Ragsdell, A. O'Brien, and M. B. Nunes. 2012. "A Proposed Model of Knowledge Management in the Software Industry Sector," in *2012 Seventh International* Conference on Digital Information Management (ICDIM), pp. 291–296.
- ⁵Bartoli,A., G. Davanzo, E. Medvet, dan E. Sorio. 2014. "Semisupervised Wrapper Choice and Generation for Print-Oriented Documents," *IEEE Trans. Knowl. Data Eng.*, vol. 26, no. 1, pp. 208–220.
- ⁶Tang,Q.dan Z. Chenghui. 2012. "A Simplified Document Flow System," in *2012 IEEE International Conference on Automation and Logistics (ICAL)*, pp. 474–477.
- ⁷Beatrice,B. A., E. Kirubakaran, dan V. Saravanan. 2010. "Knowledge Acquisition and Storing Learning Objects for A Learning Repository to Enhance E-Iearning

- Categories of Knowledge Learning the Ontology," in *2010 2nd International Conference on Education Technology and Computer (ICETC)*, pp. V–234–V–236.
- ⁸Alamri,A.2012. "The Relational Database Layout to Store Ontology Knowledge Base," in 2012 International Conference on Information Retrieval & Knowledge Management, pp. 74–81.
- ⁹Beevi, J. H., dan N. Deivasigamani. 2012. "A New Approach to the Design of Knowledge Base Using XCLS Clustering," in 2012 International Conference on Pattern Recognition, Informatics and Medical Engineering (PRIME), pp. 14–19.
- ¹⁰Kumar,S. 2012. "A Knowledge Acquisition System for A University Educational Process," in 2012 7th IEEE International Conference on Industrial and Information Systems (ICIIS), pp. 1–6.
- ¹¹Samoilenko,N. dan N. Nahar. 2013. "IT Tools for Knowledge Storage and Retrieval in Globally Distributed Complex Software and Systems Development of High-tech Organizations," in 2013 Proceedings of PICMET '13: Technology Management in the IT-Driven Services (PICMET), pp. 1353–1369.
- ¹²Corcoglioniti,F., M. Rospocher, R. Cattoni, B. Magnini, dan L. Serafini. 2013. "Interlinking Unstructured and Structured Knowledge in an Integrated Framework," in 2013 IEEE Seventh International Conference on Semantic Computing (ICSC), pp. 40–47.
- ¹³Lancaster, F. W.1968.*Information Retrieval Sistem*. New York: John Wiley.
- ¹⁴Chowdury, G. G.2004. *Introduction to Modern Information Retrieval*, 2nd ed. London: Facet Publishing.
- ¹⁵Rosa, A. S.,dan M. Shalahuddin. 2013. *Rekayasa Perangkat Lunak: Terstruktur dan Berorientasi Objek*. Bandung: Informatika.