Text processing: tokenization

What is Tokenization?

Tokenization is the process of segmenting a string of characters into words.

Depending on the application in hand, you might have to perform *sentence segmentation* as well.

The problem of deciding where the sentences begin and end.

Challenges Involved

The problem of deciding where the sentences begin and end.

Challenges Involved

• While '!', '?' are quite unambiguous

The problem of deciding where the sentences begin and end.

Challenges Involved

- While '!', '?' are quite unambiguous
- Period "." is quite ambiguous and can be used additionally for
 - Abbreviations (Dr., Mr., m.p.h.)

The problem of deciding where the sentences begin and end.

Challenges Involved

- While '!', '?' are quite unambiguous
- Period "." is quite ambiguous and can be used additionally for
 - Abbreviations (Dr., Mr., m.p.h.)
 - Numbers (2.4%, 4.3)

The problem of deciding where the sentences begin and end.

Challenges Involved

- While '!', '?' are quite unambiguous
- Period "." is quite ambiguous and can be used additionally for
 - Abbreviations (Dr., Mr., m.p.h.)
 - Numbers (2.4%, 4.3)

Approach: build a binary classifier

For each "."

Decides EndOfSentence/NotEndOfSentence

The problem of deciding where the sentences begin and end.

Challenges Involved

- While '!', '?' are quite unambiguous
- Period "." is quite ambiguous and can be used additionally for
 - Abbreviations (Dr., Mr., m.p.h.)
 - Numbers (2.4%, 4.3)

Approach: build a binary classifier

For each "."

- Decides EndOfSentence/NotEndOfSentence
- Classifiers can be: hand-written rules, regular expressions, or machine learning

Sentence Segmentation: Decision Tree Example

Decision Tree: Is this word the end-of-sentence (E-O-S)?

Sentence Segmentation: Decision Tree Example

Decision Tree: Is this word the end-of-sentence (E-O-S)?

• Case of word with ".": Upper, Lower, Cap, Number

- Case of word with ".": Upper, Lower, Cap, Number
- Case of word after ".": Upper, Lower, Cap, Number

- Case of word with ".": Upper, Lower, Cap, Number
- Case of word after ".": Upper, Lower, Cap, Number
- Numeric Features

- Case of word with ".": Upper, Lower, Cap, Number
- Case of word after ".": Upper, Lower, Cap, Number
- Numeric Features
 - Length of word with "."

- Case of word with ".": Upper, Lower, Cap, Number
- Case of word after ".": Upper, Lower, Cap, Number
- Numeric Features
 - Length of word with "."
 - Probability (word with "." occurs at end-of-sentence)

- Case of word with ".": Upper, Lower, Cap, Number
- Case of word after ".": Upper, Lower, Cap, Number
- Numeric Features
 - Length of word with "."
 - Probability (word with "." occurs at end-of-sentence)
 - Probability (word after "." occurs at beginning-of-sentence)

Just an if-then-else statement

- Just an if-then-else statement
- Choosing the features is more important

- Just an if-then-else statement
- · Choosing the features is more important
- For numeric features, thresholds are to be picked

- Just an if-then-else statement
- Choosing the features is more important
- For numeric features, thresholds are to be picked
- With increasing features including numerical ones, difficult to set up the structure by hand

- Just an if-then-else statement
- Choosing the features is more important
- For numeric features, thresholds are to be picked
- With increasing features including numerical ones, difficult to set up the structure by hand
- Decision Tree structure can be learned using machine learning over a training corpus

- Just an if-then-else statement
- Choosing the features is more important
- For numeric features, thresholds are to be picked
- With increasing features including numerical ones, difficult to set up the structure by hand
- Decision Tree structure can be learned using machine learning over a training corpus

Basic Idea

Usually works top-down, by choosing a variable at each step that best splits the set of items.

Popular algorithms: ID3, C4.5, CART

Other Classifiers

Other Classifiers

The questions in the decision tree can be thought of as features, that could be exploited by any other classifier:

Other Classifiers

The questions in the decision tree can be thought of as features, that could be exploited by any other classifier:

- Support Vector Machines
- Logistic regression
- Neural Networks

What is Tokenization?

Tokenization is the process of segmenting a string of characters into words.

What is Tokenization?

Tokenization is the process of segmenting a string of characters into words.

I have a can opener; but I can't open these cans.

Word Token

- An occurrence of a word
- For the above sentence, 11 word tokens.

Word Type

- A different realization of a word
- For the above sentence, 10 word types.

Tokenization in practice

- NLTK Toolkit (Python)
- Stanford CoreNLP (Java)
- Unix Commands

Issues in Tokenization

- Finland's → Finland Finlands Finland's ?
- What're, I'm, shouldn't → What are, I am, should not ?
- San Francisco → one token or two?
- m.p.h. \rightarrow ??

Issues in Tokenization

- Finland's → Finland Finlands Finland's ?
- What're, I'm, shouldn't → What are, I am, should not ?
- San Francisco → one token or two?
- m.p.h. \rightarrow ??

For information retrieval, use the same convention for documents and queries

Hyphens can be

Hyphens can be

End-of-Line Hyphen

Used for splitting whole words into part for text justification.

This paper describes MIMIC, an adaptive mixed initia-tive spoken dialogue system that provides movie show-time information.

Hyphens can be

End-of-Line Hyphen

Used for splitting whole words into part for text justification.

This paper describes MIMIC, an adaptive mixed initia-tive spoken dialogue system that provides movie show-time information.

Lexical Hyphen

Certain prefixes are offen written hyphenated, e.g. co-, pre-, meta-, multi-, etc.

Hyphens can be

End-of-Line Hyphen

Used for splitting whole words into part for text justification.

This paper describes MIMIC, an adaptive mixed initia-tive spoken dialogue system that provides movie show-time information.

Lexical Hyphen

Certain prefixes are offen written hyphenated, e.g. co-, pre-, meta-, multi-, etc.

Sententially Determined Hyphenation

Mainly to prevent incorrect parsing of the phrase. Some possible usages:

- Noun modified by an 'ed'-verb: case-based, hand-delivered
- Entire expression as a modifier in a noun group: three-to-five-year direct marketing plan

Language Specific Issues: French and German

French

I'ensemble: want to match with un ensemble

Language Specific Issues: French and German

French

I'ensemble: want to match with un ensemble

German

Noun coumpounds are not segmented

- Lebensversicherungsgesellschaftsangestellter
- 'life insurance company employee'
- Compound splitter required for German information retrieval

Language Specific Issues: Chinese and Japanese

No space between words

莎拉波娃现在居住在美国东南部的佛罗里达。 莎拉波娃 现在 居住 在 美国 东南部 的 佛罗里达 Sharapova now lives in US southeastern Florida

Language Specific Issues: Chinese and Japanese

No space between words

莎拉波娃现在居住在美国东南部的佛罗里达。 莎拉波娃 现在 居住 在 美国 东南部 的 佛罗里达 Sharapova now lives in US southeastern Florida

Japanese: further complications with multiple alphabets intermingled.

Language Specific Issues: Sanskrit

सत्यम्ब्रूयात्प्रियम्ब्रूयान्नब्रूयात्सत्यमप्रियम्प्रियञ्चनानृतम्ब्रूयादेषधर्मःसनातनः

satyambrūyātpriyambrūyānnabrūyātsatyamapriyampriyamcanānṛtambrūyādeṣadharmaḥsanātanaḥ.

"One should tell the truth, one should say kind words; one should neither tell harsh truths, nor flattering lies; this is a rule for all times."

Language Specific Issues: Sanskrit

सत्यम्ब्रूयात्प्रियम्ब्रूयान्नब्रूयात्सत्यमप्रियम्प्रियञ्चनानृतम्ब्रूयादेषधर्मःसनातनः

satyambrūyātpriyambrūyānnabrūyātsatyamapriyampriyamcanānṛtambrūyādeṣadharmaḥsanātanaḥ.

"One should tell the truth, one should say kind words; one should neither tell harsh truths, nor flattering lies; this is a rule for all times."

Segmented Text:

satyam brūyāt priyam brūyāt na brūyāt satyam apriyam priyam ca na anṛtam brūyāt eṣaḥ dharmaḥ sanātanaḥ.

Longest Words

Max ▼	Language (non scientific) \$
431	Sanskrit (Longest)
173	Greek
136	Afrikaans
85	Māori
79	German
74	Turkish
64	Icelandic
56	Hungarian
54	Spanish
49	Dutch
46	Malay
45	English

44	Romanian
42	Georgian
41	Czech
39	Bulgarian
39	Lithuanian
36	Kazakh
33	Norwegian
32	Tagalog
32	Polish
30	Serbian
30	Montenegrin
30	Italian
30	Croatian

Longest Words

Compound word composed of 431 letters, from the Varadāmbikā Parinaya Campū by Tirumalāmba

निरन्तरान्धकारिता-दिगन्तर-कन्दलदमन्द-सुधारस-बिन्दु-सान्द्रतर-घनाघन-वृन्द-सन्देहकर-स्यन्दमान-मकरन्द-बिन्दु-बन्धुरतर-माकन्द-तरु-कुल-तल्प-कल्प-मृदुल-सिकता-जाल-जिटल-मूल-तल-मरुवक-मिलदलघु-लघु-लय-किलत-रमणीय-पानीय-शालिका-बालिका-करार-विन्द-गलिन्तका-गलदेला-लवङ्ग-पाटल-घनसार-कस्तूरिकातिसौरभ-मेदुर-लघुतर-मधुर-शीतलतर-सिललधारा-निराकरिष्णु-तदीय-विमल-विलोचन-मयूख-रेखापसारित-पिपासायास-पथिक-लोकान्

Word Tokenization in Chinese or Sanskrit

Also called 'Word Segmentation'.

Word Tokenization in Chinese or Sanskrit

Also called 'Word Segmentation'.

Greedy Algorithm for Chinese

Maximum Matching (Greedy Algorithm)

- Start a pointer at the beginning of the string
- Find the largest word in dictionary that matches the string starting at pointer
- Move the pointer over the word in string

Think of the cases when word segmentation would be required for English Text.

Word Tokenization in Chinese or Sanskrit

Also called 'Word Segmentation'.

Greedy Algorithm for Chinese

Maximum Matching (Greedy Algorithm)

- Start a pointer at the beginning of the string
- Find the largest word in dictionary that matches the string starting at pointer
- Move the pointer over the word in string

Think of the cases when word segmentation would be required for English Text.

Finding constituent words in a compound hashtags: #ThankYouSachin, #musicmonday etc.

Text Segmentation for Sanskrit

1

General assumption behind the design

Sentences from Classical Sanskrit may be generated by a regular relation R of the Kleene closure W^* of a regular set W of words over a finite alphabet Σ .

Week 1: Lecture 5

¹ http://sanskrit.inria.fr

Text Segmentation for Sanskrit

1

General assumption behind the design

Sentences from Classical Sanskrit may be generated by a regular relation R of the Kleene closure W^* of a regular set W of words over a finite alphabet Σ .

- W: vocabulary of (inflected) words (padas) and
- R: sandhi

Text Segmentation for Sanskrit

1

General assumption behind the design

Sentences from Classical Sanskrit may be generated by a regular relation R of the Kleene closure W^* of a regular set W of words over a finite alphabet Σ .

- W: vocabulary of (inflected) words (padas) and
- R: sandhi

Analysis of a sentence

A candidate sentence w is analyzed by inverting relation R to produce a finite sequence $w_1, w_2, ... w_n$ of word forms, together with a proof that $w \in R(w_1 \cdot w_2 ... \cdot w_n)$.

¹http://sanskrit.inria.fr

Word Segmentation in Sanskrit

Normalization

Why to "normalize"?

Indexed text and query terms must have the same form.

U.S.A. and USA should be matched

Normalization

Why to "normalize"?

Indexed text and query terms must have the same form.

- U.S.A. and USA should be matched
- We implicitly define equivalence classes of terms

Case Folding

Reduce all letters to lower case

Case Folding

- Reduce all letters to lower case
- Possible exceptions (Task dependent):
 - Upper case in mid sentence, may point to named entities (e.g. General Motors)

Case Folding

- Reduce all letters to lower case
- Possible exceptions (Task dependent):
 - Upper case in mid sentence, may point to named entities (e.g. General Motors)
 - For MT and inforamtion extraction, some cases might be helpful (US vs. us)

Lemmatization

- Reduce inflections or variant forms to base form:
 - ightharpoonup am, are, is ightarrow be
 - ightharpoonup car, cars, cars, cars ightharpoonup car
- Have to find the correct dictionary headword form

Morphology studies the internal structure of words, how words are built up from smaller meaningful units called **morphemes**

Morphology studies the internal structure of words, how words are built up from smaller meaningful units called **morphemes**

- Stems: The core meaning bearing units
- Affixes: Bits and pieces adhering to stems to change their meanings and grammatical functions

Morphology studies the internal structure of words, how words are built up from smaller meaningful units called **morphemes**

- Stems: The core meaning bearing units
- Affixes: Bits and pieces adhering to stems to change their meanings and grammatical functions
 - Prefix: un-, anti-, etc (a-, ati-, pra- etc.)

Morphology studies the internal structure of words, how words are built up from smaller meaningful units called **morphemes**

- Stems: The core meaning bearing units
- Affixes: Bits and pieces adhering to stems to change their meanings and grammatical functions
 - Prefix: un-, anti-, etc (a-, ati-, pra- etc.)
 - Suffix: -ity, -ation, etc (-taa, -ke, -ka etc.)

Morphology studies the internal structure of words, how words are built up from smaller meaningful units called **morphemes**

- Stems: The core meaning bearing units
- Affixes: Bits and pieces adhering to stems to change their meanings and grammatical functions
 - Prefix: un-, anti-, etc (a-, ati-, pra- etc.)
 - Suffix: -ity, -ation, etc (-taa, -ke, -ka etc.)
 - Infix: 'n' in 'vindati' (he knows), as contrasted with vid (to know).

Stemming

• Reducing terms to their stems, used in information retrieval

Stemming

- Reducing terms to their stems, used in information retrieval
- Crude chopping of affixes
 - language dependent

Stemming

- Reducing terms to their stems, used in information retrieval
- Crude chopping of affixes
 - language dependent
 - automate(s), automatic, automation all reduced to automat

for example compressed and compression are both accepted as equivalent to compress.

for exampl compress and compress ar both accept as equival to compress

Step 1a

- sses \rightarrow ss (caresses \rightarrow caress)
- ies \rightarrow i (ponies \rightarrow poni)
- $ss \rightarrow ss$ (caress \rightarrow caress)
- $s \rightarrow \phi$ (cats \rightarrow cat)

Step 1a

- sses \rightarrow ss (caresses \rightarrow caress)
- ies \rightarrow i (ponies \rightarrow poni)
- $ss \rightarrow ss$ (caress \rightarrow caress)
- $s \rightarrow \phi$ (cats \rightarrow cat)

Step 1b

ullet (*v*)ing o ϕ (walking o walk, king o

Step 1a

- sses \rightarrow ss (caresses \rightarrow caress)
- ies \rightarrow i (ponies \rightarrow poni)
- ss \rightarrow ss (caress \rightarrow caress)
- $s \rightarrow \phi$ (cats \rightarrow cat)

Step 1b

- (*v*)ing $\rightarrow \phi$ (walking \rightarrow walk, king \rightarrow king)
- (*v*)ed \rightarrow ϕ (played \rightarrow play)

Step 2

- ational \rightarrow ate (relational \rightarrow relate)
- izer \rightarrow ize (digitizer \rightarrow digitize)
- ator → ate (operator → operate)

Step 2

- ational \rightarrow ate (relational \rightarrow relate)
- izer → ize (digitizer → digitize)
- ator → ate (operator → operate)

Step 3

- al \rightarrow ϕ (revival \rightarrow reviv)
- able $\rightarrow \phi$ (adjustable \rightarrow adjust)
- ate \rightarrow ϕ (activate \rightarrow activ)