Archetypal Analysis

Philipp Sven Lars Schäfer

April 2025

1 Problem Formulation

Let $\mathcal{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}_{n=1}^N$ be a data set consisting of N D-dimensional data points, and let $\mathbf{X} \in \mathbb{R}^{N \times D}$ be the matrix where each row is a data point.

In Archetypal Analysis we make two assumptions: 1) Each data point is a convex combination of K archetypes; 2) Each archetype is a convex combination of N data points.

Expressing the first assumption in matrix notation yields

$$\hat{\mathbf{X}} = \mathbf{AZ} \tag{1}$$

where $\hat{\mathbf{X}} \in \mathbb{R}^{N \times D}$ is the reconstructed data matrix, $\mathbf{Z} \in \mathbb{R}^{K \times D}$ is the matrix of archetypes (i.e. each row is one archetype), and $\mathbf{A} \in \mathbb{R}^{N \times K}$ is a row-stochastic matrix that defines

Expressing the second assumption in matrix notation yields

$$\mathbf{Z} = \mathbf{B}\mathbf{X} \tag{2}$$

where $\mathbf{B} \in \mathbb{R}^{K \times N}$ is a row-stochastic matrix that defines

The reconstruction error is most commonly measured using the residual sum of squares (RSS), given by the squared Frobenius norm,

$$\|\mathbf{X} - \hat{\mathbf{X}}\|_F^2 = \|\mathbf{X} - \mathbf{A}\mathbf{Z}\|_F^2 = \|\mathbf{X} - \mathbf{A}\mathbf{B}\mathbf{X}\|_F^2$$
 (3)

which yields the following optimization objective

$$\mathbf{A}^{\star}, \mathbf{B}^{\star} = \underset{\mathbf{A} \in \mathbb{R}^{N \times K} \\ \mathbf{B} \in \mathbb{R}^{K \times N}}{\min} \|\mathbf{X} - \mathbf{A}\mathbf{B}\mathbf{X}\|_{F}^{2} \quad \text{subject to}$$

$$\mathbf{A} \geq 0, \mathbf{A}\mathbf{1}_{K} = \mathbf{1}_{N}$$

$$\mathbf{B} \geq 0, \mathbf{B}\mathbf{1}_{N} = \mathbf{1}_{K}$$

$$(4)$$

Introducing the set of row-stochastic non-negative matrices,

$$F(N,K) := \{ \mathbf{A} \in \mathbb{R}^{N \times K} \mid \mathbf{A} \ge 0 \land \mathbf{A} \mathbf{1}_K = \mathbf{1}_N \}$$
(5)

we can write the objective more compactly as:

$$\mathbf{A}^{\star}, \mathbf{B}^{\star} = \underset{\mathbf{A} \in F(N,K)}{\operatorname{arg min}} \|\mathbf{X} - \mathbf{A}\mathbf{B}\mathbf{X}\|_{F}^{2}$$

$$\mathbf{B} \in F(K,N)$$
(6)

2 Properties of the Objective

Property 1 (Translation invariance): The minimizers \mathbf{A}^{\star} , \mathbf{B}^{\star} of the objective are invariant under row-wise translations of \mathbf{X} . Let $\tilde{\mathbf{X}} = \mathbf{X} + \mathbf{1}_N \mathbf{v}^T$ for any $\mathbf{v} \in \mathbb{R}^D$, then

$$\underset{\mathbf{A} \in F(N,K)}{\operatorname{arg\,min}} \|\tilde{\mathbf{X}} - \mathbf{A}\mathbf{B}\tilde{\mathbf{X}}\|_F^2 = \underset{\mathbf{A} \in F(N,K)}{\operatorname{arg\,min}} \|\mathbf{X} - \mathbf{A}\mathbf{B}\mathbf{X}\|_F^2$$

$$\underset{\mathbf{B} \in F(K,N)}{\mathbf{A} \in F(N,K)}$$

$$(7)$$

Proof: Let $\mathbf{v} \in \mathbb{R}^D$, and let $\tilde{\mathbf{X}} = \mathbf{X} + \mathbf{1}_N \mathbf{v}^T$ be the translated matrix. Then for any feasible \mathbf{A}, \mathbf{B}

$$\tilde{\mathbf{X}} - \mathbf{A}\mathbf{B}\tilde{\mathbf{X}} = (\mathbf{X} + \mathbf{1}_{N}\mathbf{v}^{T}) - \mathbf{A}\mathbf{B}(\mathbf{X} + \mathbf{1}_{N}\mathbf{v}^{T})$$

$$= \mathbf{X} + \mathbf{1}_{N}\mathbf{v}^{T} - \mathbf{A}\mathbf{B}\mathbf{X} - \mathbf{A}\mathbf{B}\mathbf{1}_{N}\mathbf{v}^{T}$$
(8)

Since $\mathbf{B}\mathbf{1}_N = \mathbf{1}_K$ and $\mathbf{A}\mathbf{1}_K = \mathbf{1}_N$, this simplifies to

$$\tilde{\mathbf{X}} - \mathbf{A}\mathbf{B}\tilde{\mathbf{X}} = \mathbf{X} + \mathbf{1}_{N}\mathbf{v}^{T} - \mathbf{A}\mathbf{B}\mathbf{X} - \mathbf{1}_{N}\mathbf{v}^{T}$$

$$= \mathbf{X} - \mathbf{A}\mathbf{B}\mathbf{X}$$
(9)

Therefore, the reconstruction error remains unchanged, and the minimizers $\mathbf{A}^{\star}, \mathbf{B}^{\star}$ are invariant under such translations.

Property 2 (Scale invariance): The minimizers $\mathbf{A}^*, \mathbf{B}^*$ of the objective are invariant under global scaling of \mathbf{X} . Let $\tilde{\mathbf{X}} = \lambda \mathbf{X}$ for any $\lambda \neq 0$, then

$$\underset{\mathbf{A} \in F(N,K)}{\operatorname{arg\,min}} \|\tilde{\mathbf{X}} - \mathbf{A}\mathbf{B}\tilde{\mathbf{X}}\|_F^2 = \underset{\mathbf{A} \in F(N,K)}{\operatorname{arg\,min}} \|\mathbf{X} - \mathbf{A}\mathbf{B}\mathbf{X}\|_F^2$$

$$\underset{\mathbf{B} \in F(K,N)}{\mathbf{A} \in F(N,K)}$$

$$(10)$$

Proof: Let $\lambda \neq 0$, and let $\tilde{\mathbf{X}} = \lambda \mathbf{X}$ be the scaled matrix. Then for any feasible \mathbf{A}, \mathbf{B}

$$\tilde{\mathbf{X}} - \mathbf{A}\mathbf{B}\tilde{\mathbf{X}} = \lambda \mathbf{X} - \mathbf{A}\mathbf{B}\lambda \mathbf{X}$$

$$= \lambda (\mathbf{X} - \mathbf{A}\mathbf{B}\mathbf{X})$$
(11)

Thus the objective for the scaled matrix is given by

$$\underset{\mathbf{A} \in F(N,K)}{\operatorname{arg\,min}} \|\tilde{\mathbf{X}} - \mathbf{A}\mathbf{B}\tilde{\mathbf{X}}\|_F^2 = \underset{\mathbf{A} \in F(N,K)}{\operatorname{arg\,min}} \lambda^2 \|\mathbf{X} - \mathbf{A}\mathbf{B}\mathbf{X}\|_F^2$$

$$\underset{\mathbf{B} \in F(K,N)}{\mathbf{B} \in F(K,N)}$$
(12)

Since we assumed $\lambda \neq 0$, λ^2 will always be a positive scalar. Multiplying the objective by any positive scalar does not change the location of its minimum, since the ordering of function values is preserved. Thus we have

$$\underset{\mathbf{A} \in F(N,K)}{\operatorname{arg\,min}} \|\tilde{\mathbf{X}} - \mathbf{A}\mathbf{B}\tilde{\mathbf{X}}\|_F^2 = \underset{\mathbf{A} \in F(N,K)}{\operatorname{arg\,min}} \|\mathbf{X} - \mathbf{A}\mathbf{B}\mathbf{X}\|_F^2$$

$$\underset{\mathbf{B} \in F(K,N)}{\mathbf{A} \in F(N,K)}$$

$$(13)$$

3 OPTIMIZATION 3

Property 3 (Rewrite using convex hull of **Z**)

Proof,

3 Optimization

While this objective is an NP-hard Euclidean sum of square clustering problem [1], several practical optimization approaches have been developed that exploit that this objective is biconvex, meaning that it is convex in **A** if we fix **B** and vice versa. See Section 5 in Cutler & Breiman (1994) [3] or Section 2 in Mørup & Hansen (2012) [6]. One way to optimize such a biconvex objective is to initialize **A**, **B**, and then alternating between solving the convex optimization problem in one variable fixing the other variable, and vice versa.

3.1 Gradient of the Objective

To compute the gradient of the unconstrained objective w.r.t. **A** and **B**, we first rewrite the residual sum of squares (Frobenius norm) in Equation (4) in terms of the trace

RSS =
$$\|\mathbf{X} - \mathbf{A}\mathbf{B}\mathbf{X}\|_F^2$$

= $\operatorname{tr}\left((\mathbf{X} - \mathbf{A}\mathbf{B}\mathbf{X})^T(\mathbf{X} - \mathbf{A}\mathbf{B}\mathbf{X})\right)$
= $\operatorname{tr}(\mathbf{X}^T\mathbf{X}) - \operatorname{tr}(\mathbf{X}^T\mathbf{A}\mathbf{B}\mathbf{X}) - \operatorname{tr}(\mathbf{X}^T\mathbf{B}^T\mathbf{A}^T\mathbf{X}) + \operatorname{tr}(\mathbf{X}^T\mathbf{B}^T\mathbf{A}^T\mathbf{A}\mathbf{B}\mathbf{X})$
= $\operatorname{tr}(\mathbf{X}^T\mathbf{X}) - 2\operatorname{tr}(\mathbf{X}^T\mathbf{A}\mathbf{B}\mathbf{X}) + \operatorname{tr}(\mathbf{X}^T\mathbf{B}^T\mathbf{A}^T\mathbf{A}\mathbf{B}\mathbf{X})$ (5)

where we used that for any $\mathbf{G}, \mathbf{H} \in \mathbb{R}^{N \times N}$ it is true that $\operatorname{tr}(\mathbf{G} + \mathbf{H}) = \operatorname{tr}(\mathbf{G}) + \operatorname{tr}(\mathbf{H})$ and $\operatorname{tr}(\mathbf{G}^T) = \operatorname{tr}(\mathbf{G})$

Next we will use Equation 101 from the Matrix Cookbook by Petersen and Pedersen (2012) [7] which states that for any matrices $G, H, J \in \mathbb{R}^{N \times N}$ we have

$$\frac{\partial}{\partial H}\operatorname{tr}(GHJ) = G^T J^T \tag{14}$$

and Equation 116 which states that for any matrices $G, H, J \in \mathbb{R}^{N \times N}$ we have

$$\frac{\partial}{\partial H}\operatorname{tr}(G^T H^T J H G) = J^T H G G^T + J H G G^T \tag{15}$$

So computing the gradient of the RSS w.r.t. A we have

$$G^{(A)} = \nabla_{A} \operatorname{RSS}$$

$$= \nabla_{A} \left[\operatorname{tr}(X^{T}X) - 2 \operatorname{tr}(X^{T}ABX) + \operatorname{tr}(X^{T}B^{T}A^{T}ABX) \right]$$

$$= -2\nabla_{A} \operatorname{tr}(\underbrace{X^{T}}_{G} \underbrace{A}_{H} \underbrace{BX}_{J}) + \nabla_{A} \operatorname{tr}(\underbrace{(BX)^{T}}_{G^{T}} \underbrace{A^{T}}_{H^{T}} \underbrace{I}_{J} \underbrace{A}_{H} \underbrace{BX}_{G})$$

$$= -2XX^{T}B^{T} + \left(I^{T}ABXX^{T}B^{T} + IABXX^{T}B^{T} \right)$$

$$= -2XX^{T}B^{T} + 2ABXX^{T}B^{T}$$

$$= 2\left(ABXX^{T}B^{T} - XX^{T}B^{T} \right)$$

$$= 2\left(AZZ^{T} - XZ^{T} \right)$$
(16)

3 OPTIMIZATION 4

Similarly, computing the gradient of the RSS w.r.t. B we have

$$G^{(B)} = \nabla_B \operatorname{RSS}$$

$$= \nabla_A \left[\operatorname{tr}(X^T X) - 2 \operatorname{tr}(X^T A B X) + \operatorname{tr}(X^T B^T A^T A B X) \right]$$

$$= -2\nabla_B \operatorname{tr}(\underbrace{X^T A}_G \underbrace{B}_H \underbrace{X}_J) + \nabla_B \operatorname{tr}(\underbrace{X^T}_{G^T} \underbrace{B^T}_{H^T} \underbrace{A^T A}_J \underbrace{B}_H \underbrace{X}_G)$$

$$= -2A^T X X^T + \left(A^T A B X X^T + A^T A B X X^T \right)$$

$$= -2A^T X X^T + 2A^T A B X X^T$$

$$= 2 \left(A^T A B X X^T - A^T X X^T \right)$$
(17)

3.2 Regularized Nonnegative Least Squares

Introduced in 1994 by Adele Cutler and Leo Breiman [3], this was the first algorithm to solve the archetypal analysis objective in Equation (4).

Algorithm 1 Archetypal Analysis Algorithm

- 1: Initialize **B** and compute the archetypes $\mathbf{Z} = \mathbf{B}\mathbf{X}$
- 2: while not converged or maximum number of iterations is reached do
- 3: **for** n = 1 to N **do**
- 4: Find optimal \mathbf{a}_n by solving the constrained optimization problem:

$$\mathbf{a}_n = \underset{\mathbf{a}_n \in \mathbb{R}^K}{\operatorname{arg\,min}} \|\mathbf{x}_n - \mathbf{Z}^T \mathbf{a}_n\|_2^2$$
 subject to $\mathbf{a}_n \ge 0, \sum_{k=1}^K a_{nk} = 1$

- 5: end for
- 6: Compute the optimal archetypes **Z** given **A**, i.e.

$$\mathbf{Z} = \underset{\mathbf{Z} \in \mathbb{R}^{K \times D}}{\min} \|\mathbf{X} - \mathbf{A}\mathbf{Z}\|_F^2$$

- 7: **for** k = 1 to K **do**
- 8: Find optimal \mathbf{b}_k by solving the constrained optimization problem:

$$\mathbf{b}_k = \underset{\mathbf{b}_k \in \mathbb{R}^N}{\operatorname{arg\,min}} \|\mathbf{z}_k - \mathbf{X}^T \mathbf{b}_k\|_2^2$$
 subject to $\mathbf{b}_k \ge 0, \sum_{n=1}^N b_{kn} = 1$

- 9: end for
- 10: Compute the archetypes given B, i.e. Z = BX
- 11: end while
- 12: return A, B, Z

The authors originally proposed to solve the constrained optimization problems using a Nonnegative Least Squares Problem (NNLS) solver and enforcing the convexity constraints using a penalty term with regularization parameter λ , i.e.

$$\mathbf{a}_{n} = \underset{\mathbf{a}_{n} \in \mathbb{R}^{K}}{\operatorname{arg min}} \|x_{n} - Z^{T} \mathbf{a}_{n}\|_{2}^{2} + \lambda \|\mathbf{1}_{K} - \mathbf{a}_{n}\|_{2}^{2} \quad \text{subject to} \quad \mathbf{a}_{n} \geq 0$$

$$= \underset{\mathbf{a}_{n} \in \mathbb{R}^{K}}{\operatorname{arg min}} \left\| \begin{bmatrix} \mathbf{x}_{n} \\ \lambda \end{bmatrix} - \begin{bmatrix} \mathbf{Z}^{T} \\ \lambda \mathbf{1}_{K}^{T} \end{bmatrix} \mathbf{a}_{n} \right\|_{2}^{2}$$

$$(18)$$

3 OPTIMIZATION 5

Equivalently, for \mathbf{B} we have

$$\mathbf{b}_{k} = \underset{\mathbf{b}_{k} \in \mathbb{R}^{N}}{\operatorname{arg \, min}} \|\mathbf{z}_{k} - \mathbf{X}^{T} \mathbf{b}_{k}\|_{2}^{2} + \lambda \|\mathbf{1}_{N} - \mathbf{b}_{k}\|_{2}^{2} \quad \text{subject to} \quad \mathbf{b}_{k} \geq 0$$

$$= \underset{\mathbf{a}_{n} \in \mathbb{R}^{K}}{\operatorname{arg \, min}} \left\| \begin{bmatrix} \mathbf{z}_{k} \\ \lambda \end{bmatrix} - \begin{bmatrix} X^{T} \\ \lambda \mathbf{1}_{N}^{T} \end{bmatrix} b_{k} \right\|_{2}^{2}$$

$$(19)$$

3.3 Principal Convex Hull Algorithm (PCHA)

Inspired by the projected gradient method for NMF [5] and normalization invariance approach introduced for NMF [4], the PCHA algorithm was introduced by Morten Mørup and Lars Kai Hansen in 2012 to solve the archetypal analysis objective.

The idea is to use a projected gradient algorithm to solve the objective in Equation (4).

First, we recast the optimization problem in terms of the l1-normalization invariant variables \tilde{a}_n and \tilde{b}_k (called invariant because these variables won't change if one applies l1-normalization)

$$\tilde{a}_{nk} = \frac{a_{nk}}{\sum_{k''=1}^{K} a_{nk''}}, \quad \tilde{b}_{kn} = \frac{b_{kn}}{\sum_{n''=1}^{N} b_{kn''}}$$
(20)

Then the gradient of the RSS wrt to a_n is obtained using the chain rule which yields

$$\frac{\partial RSS}{\partial a_n} = \frac{\partial RSS}{\partial \tilde{a}_n} \frac{\partial \tilde{a}_n}{\partial a_n}
= \left(\tilde{g}_n^{(A)}\right)^T \left(\frac{\left(\sum_{k''=1}^K a_{nk''}\right) \mathbf{I}_K - a_n \mathbf{1}_K^T}{\left(\sum_{k''=1}^K a_{nk''}\right)^2}\right)
= \frac{\left(\sum_{k''=1}^K a_{nk''}\right) \left(\tilde{g}_n^{(A)}\right)^T \mathbf{I}_K - \left(\tilde{g}_n^{(A)}\right)^T a_n \mathbf{1}_K^T}{\left(\sum_{k''=1}^K a_{nk''}\right)^2}$$
(21)

So for a single element we have

$$\frac{\partial RSS}{\partial a_{nk}} = \frac{\partial RSS}{\partial \tilde{a}_{n}} \frac{\partial \tilde{a}_{n}}{\partial a_{nk}}$$

$$= \frac{\left(\sum_{k''=1}^{K} a_{nk''}\right) \tilde{g}_{nk}^{(A)} - \left(\tilde{g}_{n}^{(A)}\right)^{T} a_{n}}{\left(\sum_{k''=1}^{K} a_{nk''}\right)^{2}}$$

$$= \frac{\left(\sum_{k''=1}^{K} a_{nk''}\right) \tilde{g}_{nk}^{(A)} - \sum_{k''=1}^{K} \tilde{g}_{nk''}^{(A)} a_{nk''}}{\left(\sum_{k''=1}^{K} a_{nk''}\right)^{2}}$$
(22)

IF we additionally assume that a_n has been 11 normalized in the previous iteration we get

$$\frac{\partial RSS}{\partial a_{nk}} = \tilde{g}_{nk}^{(A)} - \sum_{k''=1}^{K} \tilde{g}_{nk''}^{(A)} a_{nk''}$$

$$\tag{23}$$

which is exactly the same as in Section 2.2. of Mørup & Hansen (2012) [6]

4 INITIALIZATION 6

To write down the algorithm we define P_{Σ_M} , a function that projects the rows of any matrix $\mathbf{H} \in \mathbb{R}^{N \times M}$ onto the M simplex

$$\tilde{\mathbf{H}} = P_{\Sigma_M} (\mathbf{H}) \quad \text{with}$$

$$\tilde{\mathbf{H}}_{nm} = \frac{\max(\mathbf{H}_{nm}, 0)}{\sum_{m'=1}^{M} \max(\mathbf{H}_{nm'}, 0)}$$
(24)

Putting everything together, the algorithm in matrix notation is shown in Algorithm 3

3.4 Frank-Wolfe Algorithm

The idea of the Frank-Wolfe algorithm for archetypal analysis is to use gradient information, but to avoid the costly projection step of the PCHA.

As described above, the objective is convex in **A** when fixing **B** and vice versa. Furthermore, in this alternating optimization setting, the rows of **A** and **B** are constrained to the Σ_K and Σ_N simplex, respectively, which are convex sets. Thus, we have a convex minimization problem over a convex set which can be tackled using the efficient Frank-Wolfe algorithm [2]

4 Initialization

4.1 Furthest Sum

5 References

- [1] Daniel Aloise et al. "NP-Hardness of Euclidean Sum-of-Squares Clustering". In: *Machine Learning* 75.2 (May 2009), pp. 245-248. ISSN: 0885-6125, 1573-0565. DOI: 10.1007/s10994-009-5103-0. http://link.springer.com/10.1007/s10994-009-5103-0 (visited on 12/07/2024). http://link.springer.com/10.1007/s10994-009-5103-0.
- [2] Kenneth L. Clarkson. "Coresets, Sparse Greedy Approximation, and the Frank-Wolfe Algorithm". In: ACM Trans. Algorithms 6.4 (Sept. 3, 2010), 63:1-63:30. ISSN: 1549-6325. DOI: 10.1145/1824777. 1824783. https://doi.org/10.1145/1824777.1824783 (visited on 02/11/2025). https://doi.org/10.1145/1824777.1824783.
- [3] Adele Cutler and Leo Breiman. "Archetypal Analysis". In: Technometrics: a journal of statistics for the physical, chemical, and engineering sciences 36.4 (1994), pp. 338–347. ISSN: 0040-1706. DOI: 10.1080/00401706.1994.10485840.
- [4] J. Eggert and E. Korner. "Sparse Coding and NMF". In: 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541). Vol. 4. July 2004, 2529-2533 vol.4. DOI: 10. 1109/IJCNN.2004.1381036. https://ieeexplore.ieee.org/document/1381036 (visited on 03/30/2025). https://ieeexplore.ieee.org/document/1381036.
- [5] Chih-Jen Lin. "Projected Gradient Methods for Nonnegative Matrix Factorization". In: Neural Computation 19.10 (Oct. 2007), pp. 2756-2779. ISSN: 0899-7667. DOI: 10.1162/neco.2007.19.10. 2756. https://ieeexplore.ieee.org/document/6795860 (visited on 03/30/2025). https://ieeexplore.ieee.org/document/6795860.
- [6] Morten Mørup and Lars Kai Hansen. "Archetypal Analysis for Machine Learning and Data Mining". In: Neurocomputing 80 (Mar. 2012), pp. 54-63. ISSN: 09252312. DOI: 10.1016/j.neucom.2011. 06.033. https://linkinghub.elsevier.com/retrieve/pii/S0925231211006060 (visited on 12/07/2024). https://linkinghub.elsevier.com/retrieve/pii/S0925231211006060.

5 REFERENCES 7

```
Algorithm 2 Principal Convex Hull Algorithm (PCHA)
  1: Initialize \tilde{\mathbf{A}}, \tilde{\mathbf{B}}
  2: Initialize \mu_{\mathbf{A}} \leftarrow 1, \, \mu_{\mathbf{B}} \leftarrow 1
  3: while not converged or maximum number of iterations is reached do
                 Update A using projected gradient descent
               \mathbf{Z} \leftarrow \tilde{\mathbf{B}}\mathbf{X}
  5:
               RSS_{old} \leftarrow \|\mathbf{X} - \mathbf{AZ}\|_F^2
  6:
               for t = 1 to T_{\cdot}do
  7:
                      \tilde{\mathbf{G}}^{(\mathbf{A})} \leftarrow 2 \left( \tilde{\mathbf{A}} \mathbf{Z} \mathbf{Z}^T - \mathbf{X} \mathbf{Z}^T \right)
  8:
                      \mathbf{G^{(A)}} \leftarrow \tilde{\mathbf{G}^{(A)}} - \left( \tilde{\mathbf{G}^{(A)}} \odot \mathbf{A} \right) \mathbf{1}_K \mathbf{1}_K^T
  9:
                      for j = 1 to 100T do
10:
                                                                                                                                                                                                   \triangleright line search
                              \mathbf{A} \leftarrow \mathbf{A} - \mu_{\mathbf{A}} \mathbf{G}^{(\mathbf{A})}
11:
                              \mathbf{A} \leftarrow P_{\Sigma_K}(\mathbf{A})
12:
                             RSS_{new} \leftarrow \|\mathbf{X} - \mathbf{A}\mathbf{Z}\|_F^2
13:
                              if RSS_{new} < RSS_{old} + (1 + \epsilon) then
14:
                                     \mu_{\mathbf{A}} \leftarrow 1.2 \cdot \mu_{\mathbf{A}}
15:
                                     break
16:
                              else
17:
18:
                                     \mu_{\mathbf{A}} \leftarrow 0.5 \cdot \mu_{\mathbf{A}}
                              end if
19:
                      end for
20:
21:
                Update {f B} using projected gradient descent
22:
               RSS_{old} \leftarrow \|\mathbf{X} - \mathbf{ABX}\|_F^2
23:
               for t = 1 to T_{\mathbf{do}}
24:
                      \tilde{\mathbf{G}}^{(\mathbf{B})} \leftarrow 2\left(\tilde{\mathbf{A}}^T \tilde{\mathbf{A}} \tilde{\mathbf{B}} \mathbf{X} \mathbf{X}^T - \tilde{\mathbf{A}}^T \mathbf{X} \mathbf{X}^T\right)
25:
                      \mathbf{G^{(B)}} \leftarrow \tilde{\mathbf{G}^{(B)}} - \left(\tilde{\mathbf{G}^{(B)}} \odot \mathbf{B}\right) \mathbf{1}_N \mathbf{1}_N^T
26:
                      for j = 1 to 100T do
27:
                                                                                                                                                                                                   ▶ line search
                             \mathbf{B} \leftarrow \mathbf{B} - \mu_{\mathbf{B}} \mathbf{G}^{(\mathbf{B})}
28:
                              \tilde{\mathbf{B}} \leftarrow P_{\Sigma_N}(\mathbf{B})
29:
                             \mathrm{RSS}_{\mathrm{new}} \leftarrow \|\mathbf{X} - \tilde{\mathbf{A}}\tilde{\mathbf{B}}\mathbf{X}\|_F^2
30:
                             if RSS_{new} < RSS_{old} + (1 + \epsilon) then
31:
                                     \mu_{\mathbf{B}} \leftarrow 1.2 \cdot \mu_{\mathbf{B}}
32:
                                     break
33:
34:
                              else
35:
                                     \mu_{\mathbf{B}} \leftarrow 0.5 \cdot \mu_{\mathbf{B}}
                              end if
36:
                      end for
37:
38:
               end for
39:
                Check for Convergence
               \mathbf{Z} \leftarrow \tilde{\mathbf{B}}\mathbf{X}
40:
               RSS \leftarrow \|\mathbf{X} - \mathbf{A}\mathbf{Z}\|_F^2
41:
               if RSS reduction is sufficient then
42:
                      break
43:
               end if
44:
45: end while
46: return A, B, Z
```

3 APPENDIX 8

[7] Kaare Brandt Petersen and Michael Syskind Pedersen. *The Matrix Cookbook*. Technical University of Denmark, 2012. https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf. https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf.

6 Appendix

6.1 Notation

- $N \in \mathbb{N}$ is the number of samples
- $D \in \mathbb{N}$ is the number of dimensions
- $K \leq \min(N, D)$ is the number of archetypes
- $\mathcal{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}_{n=1}^N$ is our dataset, where each $\mathbf{x}_n \in \mathbb{R}^D$
- $\mathbf{X} \in \mathbb{R}^{N \times D}$ is our data matrix where each row is one sample
- $\mathbf{Z} \in \mathbb{R}^{K \times D}$ is our matrix of archetypes where each row is one archetype

6.2 Algorithms

```
Algorithm 3 Principal Convex Hull Algorithm (PCHA)
Require: Data matrix \mathbf{X} \in \mathbb{R}^{N \times D}, learning rates \mu_{\mathbf{A}} > 0, \mu_{\mathbf{B}} > 0
 1: Initialize A, B
 2: RSS_{old} \leftarrow \|\mathbf{X} - \mathbf{ABX}\|_F^2
 3: while not converged do
 Update A coefficients:
              \mathbf{Z} \leftarrow \mathbf{B}\mathbf{X}
                                                                                                                                                              \mathbf{G}^{(\mathbf{A})} \leftarrow 2(\mathbf{A}\mathbf{Z}\mathbf{Z}^T - \mathbf{X}\mathbf{Z}^T)
                                                                                                                                                    ⊳ gradient of RSS w.r.t. A
              \mathbf{A} \leftarrow \mathbf{A} - \mu_{\mathbf{A}} \mathbf{G}^{(\mathbf{A})}
                                                                                                                                                           ⊳ gradient descent step
             \mathbf{A} \leftarrow P_{\Sigma_K}(\mathbf{A})
                                                                                                                                  \triangleright project rows of A onto K-simplex
 Update B coefficients:
              \mathbf{G^{(B)}} \leftarrow 2(\mathbf{A}^T \mathbf{A} \mathbf{B} \mathbf{X} \mathbf{X}^T - \mathbf{A}^T \mathbf{X} \mathbf{X}^T)
                                                                                                                                                    \triangleright gradient of RSS w.r.t. B
             \mathbf{B} \leftarrow \mathbf{B} - \mu_{\mathbf{B}} \mathbf{G^{(B)}}
                                                                                                                                                           ⊳ gradient descent step
 9:
             \mathbf{B} \leftarrow P_{\Sigma_N}(\mathbf{B})
                                                                                                                                  \triangleright project rows of B onto N-simplex
10:
 Check convergence:
             \begin{aligned} & \mathrm{RSS}_{\mathrm{new}} \leftarrow \|\mathbf{X} - \mathbf{ABX}\|_F^2 \\ & \mathrm{rel\_decrease} \leftarrow \frac{\mathrm{RSS}_{\mathrm{old}} - \mathrm{RSS}_{\mathrm{new}}}{\mathrm{RSS}_{\mathrm{old}}} \\ & \mathbf{if} \ \mathrm{rel\_decrease} < \epsilon \ \mathbf{then} \end{aligned}
11:
12:

▷ relative decrease in RSS

13:
                    break
                                                                                                                                                   14:
              end if
15:
             RSS_{old} \leftarrow RSS_{new}
17: end while
18: return A, B, Z
```