Computational Intelligence Laboratory

Lecture 1

Linear Autoencoder

Thomas Hofmann

ETH Zurich - cil.inf.ethz.ch

22 February 2019

Dimension Reduction

Dimension Reduction

- Dimension reduction
 - given (high-dimensional) data points $\{\mathbf{x}_i \in \mathbb{R}^m\}$, $i=1,\ldots,n$
 - ▶ find low-dimensional representation $\{\mathbf{z}_i \in \mathbb{R}^k\}$, $k \ll m$
- ► Example: face images
 - ▶ 2D pixel fields, e.g. $\mathbf{x}_i \in \mathbb{R}^{100 \times 100} \simeq \mathbb{R}^{10000}$ (vectorization)
 - approximate each image by weighted superposition of basis images

(from: Turk and Pentland, Eigenfaces for Recognition, 1991)

coefficients = 4-dimensional representation

Dimension Reduction: Motivation

Motivation

- ▶ visualization e.g. 2D or 3D
- data compression fewer coefficients
- signal recovery discard irrelevant information (noise)
- discover modes of variation intrinsic properties of data
- feature discovery learn better representations
- generative models latent variables

Linear Dimension Reduction

- Linear dimension reduction
 - $ightharpoonup \mathbf{z}_i = \mathbf{C}\mathbf{x}_i$ for some (fixed) matrix $\mathbf{C} \in \mathbb{R}^{k \times m}$
 - lacktriangle generalizes to new data points: ${f C}$ represents linear map ${\mathbb R}^m o {\mathbb R}^k$
 - each feature is a linear combination of input variables

$$\mathbf{z} = \mathbf{C}\mathbf{x} \iff z_r = \sum_{s=1}^{m} c_{rs} x_s \ (\forall r), \quad \mathbf{C} = (c_{rs})_{\substack{1 \le r \le k \\ 1 \le s \le m}}$$

- neural network terminology: each z_r is a linear unit
 - computes a linear function of its inputs
 - with weight vector $\mathbf{c}_r = (c_{r1}, \dots, c_{rm})^{\top} \in \mathbb{R}^m$ (r-th row of \mathbf{C})

Dimension Reduction: Neural Network View

- ► Can think of this in terms of a (deep) neural network
- Optimize representations w.r.t loss defined over targets y
- ► Supervised learning ⇒ backpropagation (subsequent lecture)
- ► Our interest here: unsupervised learning

Linear Autoencoder

Linear Autoencoder

- ▶ Linear reconstruction map $\mathbf{D} \in \mathbb{R}^{m \times k}$
- ▶ Parameters $\theta = (\mathbf{C}, \mathbf{D})$ (coder/decoder)
- Use squared reconstruction loss

$$\ell(\mathbf{x}; \theta) = \frac{1}{2} \|\mathbf{x} - \hat{\mathbf{x}}(\theta)\|^2, \ \hat{\mathbf{x}}(\theta) := \mathbf{DCx}$$

Sample reconstruction error

$$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(\mathbf{x}_i; \theta)$$

- goal: approximately learn identity map
- only relative to data distribution
- retrieve intermediate representation
- Fully unsupervised approach: z acts as a bottleneck layer

Low-Rank Approximation

- How can we interpret the linear auto-encoder?
 - lacktriangle it defines a linear map $\mathbf{F}:\mathbb{R}^m o \mathbb{R}^m$ (as a matrix $\mathbf{F}:=\mathbf{DC}$)
 - lacktriangledown ideally: $\mathbf{F} pprox \mathbf{I}$ (close to identity), but: bottleneck = rank limitation!
- ▶ Rank of a linear map $\mathbf{A}: \mathbb{R}^k \to \mathbb{R}^l$

$$\mathsf{rank}(\mathbf{A}) := \mathsf{dim}\left(\mathsf{im}(\mathbf{A})\right) \leq \min\{k, l\}$$

note that for a matrix product (composition of linear maps)

$$\mathsf{rank}(\mathbf{AB}) \leq \min\{\mathsf{rank}(\mathbf{A}),\mathsf{rank}(\mathbf{B})\}.$$

▶ decomposition rank: $\mathbf{M} = \mathbf{AB}$ with $\mathbf{A} \in \mathbb{R}^{m \times k}$, $\mathbf{B} \in \mathbb{R}^{k \times n}$, if and only if rank $(\mathbf{M}) \leq k$

Frobenius Norm Objective

Linear autoencoder performs low-rank approximation

$$rank(\mathbf{F}) \le min\{rank(\mathbf{C}), rank(\mathbf{D})\} \le k$$

- ► Are there limits on the reconstruction quality achievable?
- lackbox Data matrix $\mathbf{X} = [\mathbf{x}_1 \dots \mathbf{x}_n]$ and approximations $\hat{\mathbf{X}} := [\hat{\mathbf{x}}_1 \dots \hat{\mathbf{x}}_n]$
- ► One can trivially rewrite

$$J(\theta) = \frac{1}{2n} \sum_{i=1}^{n} \|\mathbf{x}_i - \hat{\mathbf{x}}_i(\theta)\|^2 = \frac{1}{2n} \|\mathbf{X} - \hat{\mathbf{X}}(\theta)\|_F^2,$$
 where $\|\mathbf{A}\|_F := \|\text{vec}(\mathbf{A})\| = \sqrt{\sum_{ij} a_{ij}^2}$ (Frobenius norm)

Eckart-Young Theorem

▶ **Eckart-Young theorem**: for $k \le \min\{m, n\}$

$$\mathop{\arg\min}_{\hat{\mathbf{X}}: \mathsf{rank}(\hat{\mathbf{X}}) = k} \|\mathbf{X} - \hat{\mathbf{X}}\|_F^2 = \mathbf{U} \, \mathbf{\Sigma}_k \, \mathbf{V}^\top$$

- $lackbox{ } \mathbf{X} = \mathbf{U} \, m{\Sigma} \, \mathbf{V}^{ op}$ is the Singular Value Decomposition of \mathbf{X}
- $ar{\Sigma}_k$ is the truncated diagonal matrix of singular values
- minimal reconstruction loss $\min_{\theta} J(\theta) = \sum_{l=k+1}^{\min\{n,m\}} \sigma_l^2$.
- Optimal rank k approximation: can be obtained via Singular Value Decomposition (SVD)
 - ▶ C. Eckart, G. Young, The approximation of one matrix by another of lower rank. Psychometrika, Volume 1, 1936

Singular Value Decomposition

Singular Value Decomposition

• Any $m \times n$ matrix **A** can be decomposed into

$$\begin{bmatrix} \mathbf{A} \\ \mathbf{A} \end{bmatrix} = \begin{bmatrix} \mathbf{U} \\ m \times n \end{bmatrix} \cdot \begin{bmatrix} \mathbf{\Sigma} \\ m \times n \end{bmatrix} \cdot \begin{bmatrix} \mathbf{V}^{\top} \\ n \times n \end{bmatrix}$$

- lacktriangle with \mathbf{U} , \mathbf{V} orthogonal, i.e. $\mathbf{U}\mathbf{U}^{\top}=\mathbf{I}_m$, $\mathbf{V}\mathbf{V}^{\top}=\mathbf{I}_n$.
- ▶ and with Σ diagonal, $s := \min\{m, n\}$

$$\Sigma = diag(\sigma_1, \dots, \sigma_s), \quad \sigma_1 \ge \dots \ge \sigma_s \ge 0$$

lacktriangle "diagonal" \simeq padded w/ zeros to match dimensionality

Singular Vectors and Values

- ► Columns of U and V: left/right singular vectors
- ▶ Entries of Σ : singular values
 - ▶ number of distinct singular values $\leq s = \min\{n, m\}$
 - σ_i with two (or more) linearly independent left (or right) singular vectors = **degenerate**
- Uniqueness / ambiguity
 - singular vectors for non-degenerate σ_i : unique up to sign
 - singular vectors for degenerate σ_i : orthonormal basis (non-unique) of span (unique)
- Rank and SVD (exercise)

$$\operatorname{rank}(\mathbf{A}) = r \iff \sigma_r > 0 \land \sigma_{r+1} = \sigma_{r+2} = \cdots = 0$$

Linear Autoencoder (cont'd)

Optimal Linear Autoencoder via SVD

- ▶ Given data $\mathbf{X} \in \mathbb{R}^{m \times n}$ with SVD $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}$.
- ▶ Define $\mathbf{U}_k := [\mathbf{u}_1\mathbf{u}_2\dots\mathbf{u}_k] \in \mathbb{R}^{m \times k}$ the first k columns of \mathbf{U}
- ▶ $\mathbf{C}^* = \mathbf{U}_k^{\mathsf{T}}$ and $\mathbf{D}^* = \mathbf{U}_k$ yields minimal reconstruction error for a linear autoencoder with k hidden units.
 - proof:

$$\begin{split} \hat{\mathbf{X}} &= \mathbf{D}^* \mathbf{C}^* \mathbf{X} = \mathbf{U}_k \mathbf{U}_k^\top \begin{pmatrix} \mathbf{U} \mathbf{\Sigma} \mathbf{V}^\top \end{pmatrix} = \mathbf{U}_k \begin{bmatrix} \mathbf{I}_k & \mathbf{0} \end{bmatrix} \mathbf{\Sigma} \mathbf{V}^\top \\ &= \mathbf{U} \begin{bmatrix} \mathbf{I}_k & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \mathbf{\Sigma} \mathbf{V}^\top = \mathbf{U} \mathbf{\Sigma}_k \mathbf{V}^\top = \text{optimal (by EY)} \end{split}$$

- for any $\mathbf{A} \in \mathsf{GL}(m)$: $\mathbf{C} = \mathbf{A}\mathbf{U}_k^{ op}$ and $\mathbf{D} = \mathbf{U}_k\mathbf{A}^{-1}$ are also optimal
- lacktriangle \Longrightarrow low-dimensional representation ${f z}$ has limited interpretability

Weight Sharing

- ► Corollary: weight sharing $\mathbf{D} = \mathbf{C}^{\mathsf{T}}$ w/o reducing modeling power
- ▶ Reduces ambiguity: $\mathbf{A}^{-1} = \mathbf{A}^{\top}$, i.e. $\mathbf{A} \in \mathsf{O}(m)$ (orthogonal group)
- ightharpoonup mapping $\mathbf{x}\mapsto\mathbf{z}$ uniquely determined up to rotations (permutations, reflections)

Next week: principal component analysis, algorithms