Discrete Mathematics

Chapter 2: Basic Structures: Sets, Functions, Sequences and Sums

Department of Mathematics The FPT university

1/23

Definition

• A set is an unordered collection of objects.

Definition

- A set is an unordered collection of objects.
- An object of a set is called an element, or a member, of that set.

Definition

- A set is an unordered collection of objects.
- An object of a set is called an element, or a member, of that set.
- The cardinality of the set A is the number of distinct elements of A, denoted by |A|.

Definition

- A set is an unordered collection of objects.
- An object of a set is called an element, or a member, of that set.
- The cardinality of the set A is the number of distinct elements of A, denoted by |A|.
- The empty set, denoted by Ø, is the set whose cardinality is 0.

Definition

- A set is an unordered collection of objects.
- An object of a set is called an element, or a member, of that set.
- The cardinality of the set A is the number of distinct elements of A, denoted by |A|.
- The empty set, denoted by Ø, is the set whose cardinality is 0.

Example.

Definition

- A set is an unordered collection of objects.
- An object of a set is called an element, or a member, of that set.
- The cardinality of the set A is the number of distinct elements of A, denoted by |A|.
- The empty set, denoted by Ø, is the set whose cardinality is 0.

Example.

• The set $\{a, cat, catches, a, mouse\}$ has

Definition

- A set is an unordered collection of objects.
- An object of a set is called an element, or a member, of that set.
- The cardinality of the set A is the number of distinct elements of A, denoted by |A|.
- The empty set, denoted by Ø, is the set whose cardinality is 0.

Example.

• The set $\{a, cat, catches, a, mouse\}$ has 4 elements.

Definition

- A set is an unordered collection of objects.
- An object of a set is called an element, or a member, of that set.
- The cardinality of the set A is the number of distinct elements of A, denoted by |A|.
- The empty set, denoted by Ø, is the set whose cardinality is 0.

Example.

- The set {a, cat, catches, a, mouse} has 4 elements.
- The set $\{a, b, \{a, b\}, c, \{a, b, c, \}, \emptyset\}$ has

TrungDT (FUHN)

Definition

- A set is an unordered collection of objects.
- An object of a set is called an element, or a member, of that set.
- The cardinality of the set A is the number of distinct elements of A, denoted by |A|.
- The empty set, denoted by Ø, is the set whose cardinality is 0.

Example.

- The set {a, cat, catches, a, mouse} has 4 elements.
- The set $\{a, b, \{a, b\}, c, \{a, b, c, \}, \emptyset\}$ has 6 elements

• If x is an element of A we write $x \in A$.

• If x is an element of A we write $x \in A$. If x is not an element of A we write $x \notin A$.

- If x is an element of A we write $x \in A$. If x is not an element of A we write $x \notin A$.
- If all elements of A are also elements of B we write $A \subseteq B$, and A is called a subset of B.

- If x is an element of A we write $x \in A$. If x is not an element of A we write $x \notin A$.
- If all elements of A are also elements of B we write $A \subseteq B$, and A is called a subset of B.
- If A is a proper subset of B, meaning $A \subseteq B$ and $A \neq B$, we write $A \subset B$.

- If x is an element of A we write $x \in A$. If x is not an element of A we write $x \notin A$.
- If all elements of A are also elements of B we write $A \subseteq B$, and A is called a subset of B.
- If A is a proper subset of B, meaning $A \subseteq B$ and $A \neq B$, we write $A \subset B$.
- The empty set Ø is a subset of any set.

- If x is an element of A we write $x \in A$. If x is not an element of A we write $x \notin A$.
- If all elements of A are also elements of B we write $A \subseteq B$, and A is called a subset of B.
- If A is a proper subset of B, meaning $A \subseteq B$ and $A \neq B$, we write $A \subset B$.
- The empty set Ø is a subset of any set.

- If x is an element of A we write $x \in A$. If x is not an element of A we write $x \notin A$.
- If all elements of A are also elements of B we write $A \subseteq B$, and A is called a subset of B.
- If A is a proper subset of B, meaning $A \subseteq B$ and $A \neq B$, we write $A \subset B$.
- The empty set Ø is a subset of any set.

$$x \in \{x\}$$

- If x is an element of A we write $x \in A$. If x is not an element of A we write $x \notin A$.
- If all elements of A are also elements of B we write $A \subseteq B$, and A is called a subset of B.
- If A is a proper subset of B, meaning $A \subseteq B$ and $A \neq B$, we write $A \subset B$.
- The empty set Ø is a subset of any set.

$$x \in \{x\}$$
 (T)

- If x is an element of A we write $x \in A$. If x is not an element of A we write $x \notin A$.
- If all elements of A are also elements of B we write $A \subseteq B$, and A is called a subset of B.
- If A is a proper subset of B, meaning $A \subseteq B$ and $A \neq B$, we write $A \subset B$.
- The empty set Ø is a subset of any set.

$$x \in \{x\} \ (\mathsf{T})$$

$$x \subseteq \{x\}$$

- If x is an element of A we write $x \in A$. If x is not an element of A we write $x \notin A$.
- If all elements of A are also elements of B we write $A \subseteq B$, and A is called a subset of B.
- If A is a proper subset of B, meaning $A \subseteq B$ and $A \neq B$, we write $A \subset B$.
- The empty set Ø is a subset of any set.

$$x \in \{x\}$$
 (T)

$$x \subseteq \{x\}$$
 (F)

- If x is an element of A we write $x \in A$. If x is not an element of A we write $x \notin A$.
- If all elements of A are also elements of B we write $A \subseteq B$, and A is called a subset of B.
- If A is a proper subset of B, meaning $A \subseteq B$ and $A \neq B$, we write $A \subset B$.
- The empty set Ø is a subset of any set.

$$x \in \{x\}$$
 (T)
 $x \subseteq \{x\}$ (F)
 $\{a, b\} \subseteq \{a, b, \{a, b\}, c\}$

- If x is an element of A we write $x \in A$. If x is not an element of A we write $x \notin A$.
- If all elements of A are also elements of B we write $A \subseteq B$, and A is called a subset of B.
- If A is a proper subset of B, meaning $A \subseteq B$ and $A \neq B$, we write $A \subset B$.
- The empty set Ø is a subset of any set.

$$x \in \{x\}$$
 (T)
 $x \subseteq \{x\}$ (F)
 $\{a, b\} \subseteq \{a, b, \{a, b\}, c\}$ (T)
 $\{a, b\} \in \{a, b, \{a, b\}, c\}$

- If x is an element of A we write $x \in A$. If x is not an element of A we write $x \notin A$.
- If all elements of A are also elements of B we write $A \subseteq B$, and A is called a subset of B.
- If A is a proper subset of B, meaning $A \subseteq B$ and $A \neq B$, we write $A \subset B$.
- The empty set Ø is a subset of any set.

$$x \in \{x\}$$
 (T)
 $x \subseteq \{x\}$ (F)
 $\{a, b\} \subseteq \{a, b, \{a, b\}, c\}$ (T)
 $\{a, b\} \in \{a, b, \{a, b\}, c\}$ (T)

- If x is an element of A we write $x \in A$. If x is not an element of A we write $x \notin A$.
- If all elements of A are also elements of B we write $A \subseteq B$, and A is called a subset of B.
- If A is a proper subset of B, meaning $A \subseteq B$ and $A \neq B$, we write $A \subset B$.
- The empty set Ø is a subset of any set.

$$x \in \{x\}$$
 (T) $\emptyset \subseteq \{\emptyset\}$
 $x \subseteq \{x\}$ (F)
 $\{a,b\} \subseteq \{a,b,\{a,b\},c\}$ (T)
 $\{a,b\} \in \{a,b,\{a,b\},c\}$ (T)

- If x is an element of A we write $x \in A$. If x is not an element of A we write $x \notin A$.
- If all elements of A are also elements of B we write $A \subseteq B$, and A is called a subset of B.
- If A is a proper subset of B, meaning $A \subseteq B$ and $A \neq B$, we write $A \subset B$.
- The empty set Ø is a subset of any set.

$$x \in \{x\}$$
 (T) $\emptyset \subseteq \{\emptyset\}$ (T) $x \subseteq \{x\}$ (F) $\{a,b\} \subseteq \{a,b,\{a,b\},c\}$ (T) $\{a,b\} \in \{a,b,\{a,b\},c\}$ (T)

- If x is an element of A we write $x \in A$. If x is not an element of A we write $x \notin A$.
- If all elements of A are also elements of B we write $A \subseteq B$, and A is called a subset of B.
- If A is a proper subset of B, meaning $A \subseteq B$ and $A \neq B$, we write $A \subset B$.
- The empty set Ø is a subset of any set.

$$x \in \{x\}$$
 (T)
 $x \subseteq \{x\}$ (F)
 $\{a, b\} \subseteq \{a, b, \{a, b\}, c\}$ (T)
 $\{a, b\} \in \{a, b, \{a, b\}, c\}$ (T)

$$\emptyset \subseteq \{\emptyset\}$$
 (T)

$$\emptyset \in \{\emptyset\}$$

- If x is an element of A we write $x \in A$. If x is not an element of A we write $x \notin A$.
- If all elements of A are also elements of B we write $A \subseteq B$, and A is called a subset of B.
- If A is a proper subset of B, meaning $A \subseteq B$ and $A \neq B$, we write $A \subset B$.
- The empty set Ø is a subset of any set.

$$x \in \{x\}$$
 (T) $\emptyset \subseteq \{\emptyset\}$ (T)
 $x \subseteq \{x\}$ (F) $\emptyset \in \{\emptyset\}$ (T)
 $\{a,b\} \subseteq \{a,b,\{a,b\},c\}$ (T)
 $\{a,b\} \in \{a,b,\{a,b\},c\}$ (T)

- If x is an element of A we write $x \in A$. If x is not an element of A we write $x \notin A$.
- If all elements of A are also elements of B we write $A \subseteq B$, and A is called a subset of B.
- If A is a proper subset of B, meaning $A \subseteq B$ and $A \neq B$, we write $A \subset B$.
- The empty set Ø is a subset of any set.

$$x \in \{x\}$$
 (T) $\emptyset \subseteq \{\emptyset\}$ (T)
 $x \subseteq \{x\}$ (F) $\emptyset \in \{\emptyset\}$ (T)
 $\{a,b\} \subseteq \{a,b,\{a,b\},c\}$ (T) $\{a,b,c\} \subseteq \{a,b,c\}$
 $\{a,b\} \in \{a,b,\{a,b\},c\}$ (T)

- If x is an element of A we write $x \in A$. If x is not an element of A we write $x \notin A$.
- If all elements of A are also elements of B we write $A \subseteq B$, and A is called a subset of B.
- If A is a proper subset of B, meaning $A \subseteq B$ and $A \neq B$, we write $A \subset B$.
- The empty set Ø is a subset of any set.

$$x \in \{x\}$$
 (T) $\emptyset \subseteq \{\emptyset\}$ (T)
 $x \subseteq \{x\}$ (F) $\emptyset \in \{\emptyset\}$ (T)
 $\{a,b\} \subseteq \{a,b,\{a,b\},c\}$ (T) $\{a,b,c\} \subseteq \{a,b,c\}$ (T)
 $\{a,b\} \in \{a,b,\{a,b\},c\}$ (T)

- If x is an element of A we write $x \in A$. If x is not an element of A we write $x \notin A$.
- If all elements of A are also elements of B we write $A \subseteq B$, and A is called a subset of B.
- If A is a proper subset of B, meaning $A \subseteq B$ and $A \neq B$, we write $A \subset B$.
- The empty set Ø is a subset of any set.

$$x \in \{x\}$$
 (T) $\emptyset \subseteq \{\emptyset\}$ (T)
 $x \subseteq \{x\}$ (F) $\emptyset \in \{\emptyset\}$ (T)
 $\{a,b\} \subseteq \{a,b,\{a,b\},c\}$ (T) $\{a,b,c\} \subseteq \{a,b,c\}$ (T)
 $\{a,b\} \in \{a,b,\{a,b\},c\}$ (T) $\{a,b,c\} \in \{a,b,c\}$

- If x is an element of A we write $x \in A$. If x is not an element of A we write $x \notin A$.
- If all elements of A are also elements of B we write $A \subseteq B$, and A is called a subset of B.
- If A is a proper subset of B, meaning $A \subseteq B$ and $A \neq B$, we write $A \subset B$.
- The empty set Ø is a subset of any set.

$$x \in \{x\}$$
 (T) $\emptyset \subseteq \{\emptyset\}$ (T)
 $x \subseteq \{x\}$ (F) $\emptyset \in \{\emptyset\}$ (T)
 $\{a,b\} \subseteq \{a,b,\{a,b\},c\}$ (T) $\{a,b,c\} \subseteq \{a,b,c\}$ (T)
 $\{a,b\} \in \{a,b,\{a,b\},c\}$ (T) $\{a,b,c\} \in \{a,b,c\}$ (F)

- If x is an element of A we write $x \in A$. If x is not an element of A we write $x \notin A$.
- If all elements of A are also elements of B we write $A \subseteq B$, and A is called a subset of B.
- If A is a proper subset of B, meaning $A \subseteq B$ and $A \neq B$, we write $A \subset B$.
- The empty set Ø is a subset of any set.

$$x \in \{x\}$$
 (T) $\emptyset \subseteq \{\emptyset\}$ (T)
 $x \subseteq \{x\}$ (F) $\emptyset \in \{\emptyset\}$ (T)
 $\{a,b\} \subseteq \{a,b,\{a,b\},c\}$ (T) $\{a,b,c\} \subseteq \{a,b,c\}$ (T)
 $\{a,b\} \in \{a,b,\{a,b\},c\}$ (T) $\{a,b,c\} \in \{a,b,c\}$ (F)

• The Cartesian product of two sets A and B, denoted by $A \times B$, is the set of all ordered pairs (a, b) where $a \in A$ and $b \in B$.

- The Cartesian product of two sets A and B, denoted by $A \times B$, is the set of all ordered pairs (a, b) where $a \in A$ and $b \in B$.
- The power set of the set A, denoted by P(A), is the set of all subsets of A.

- The Cartesian product of two sets A and B, denoted by $A \times B$, is the set of all ordered pairs (a, b) where $a \in A$ and $b \in B$.
- The power set of the set A, denoted by P(A), is the set of all subsets of A.

Note.

- The Cartesian product of two sets A and B, denoted by $A \times B$, is the set of all ordered pairs (a, b) where $a \in A$ and $b \in B$.
- The power set of the set A, denoted by P(A), is the set of all subsets of A.

Note.

If |A| = m and |B| = n then $|A \times B| = mn$.

- The Cartesian product of two sets A and B, denoted by $A \times B$, is the set of all ordered pairs (a, b) where $a \in A$ and $b \in B$.
- The power set of the set A, denoted by P(A), is the set of all subsets of A.

Note.

If
$$|A| = m$$
 and $|B| = n$ then $|A \times B| = mn$.

If
$$|A| = n$$
 then $|P(A)| = 2^n$.

Let A and B be two sets.

• Union of A and B: $A \cup B = \{x | (x \in A) \lor (x \in B)\}$

TrungDT (FUHN)

- Union of A and B: $A \cup B = \{x | (x \in A) \lor (x \in B)\}$
- Intersection of A and B: $A \cap B = \{x | (x \in A) \land (x \in B)\}$

- Union of A and B: $A \cup B = \{x | (x \in A) \lor (x \in B)\}$
- Intersection of A and B: $A \cap B = \{x | (x \in A) \land (x \in B)\}$
- Difference of A and B: $A B = \{x | (x \in A) \land (x \notin B)\}$

- Union of A and B: $A \cup B = \{x | (x \in A) \lor (x \in B)\}$
- Intersection of A and B: $A \cap B = \{x | (x \in A) \land (x \in B)\}$
- Difference of A and B: $A B = \{x | (x \in A) \land (x \notin B)\}$
- Symmetric difference of A and B: $A \oplus B = \{x | (x \in A) \oplus (x \in B)\}$

- Union of A and B: $A \cup B = \{x | (x \in A) \lor (x \in B)\}$
- Intersection of A and B: $A \cap B = \{x | (x \in A) \land (x \in B)\}$
- Difference of A and B: $A B = \{x | (x \in A) \land (x \notin B)\}$
- Symmetric difference of A and B: $A \oplus B = \{x | (x \in A) \oplus (x \in B)\}$
- Complement of A with respect to the universal set U: $\overline{A} = U A$

Name	Identity

Name	Identity
Complementation law	$\overline{(\overline{A})} = A$

Name	Identity
Complementation law	$\overline{(\overline{A})} = A$
Identity laws	$A \cup \emptyset = A, \ A \cap U = A$

Name	Identity
Complementation law	$\overline{(\overline{A})} = A$
Identity laws	$A \cup \emptyset = A, \ A \cap U = A$
Domination laws	$A \cup U = U, \ A \cap \emptyset = \emptyset$

Name	Identity
Complementation law	$\overline{(\overline{A})} = A$
Identity laws	$A \cup \emptyset = A, \ A \cap U = A$
Domination laws	$A \cup U = U, \ A \cap \emptyset = \emptyset$
Complement laws	$A \cup \overline{A} = U, \ A \cap \overline{A} = \emptyset$

Name	Identity
Complementation law	$\overline{(\overline{A})} = A$
Identity laws	$A \cup \emptyset = A, \ A \cap U = A$
Domination laws	$A \cup U = U, \ A \cap \emptyset = \emptyset$
Complement laws	$A \cup \overline{A} = U, \ A \cap \overline{A} = \emptyset$
Idempotent laws	$A \cup A = A, \ A \cap A = A$

Name	Identity
Complementation law	$\overline{(\overline{A})} = A$
Identity laws	$A \cup \emptyset = A, \ A \cap U = A$
Domination laws	$A \cup U = U, \ A \cap \emptyset = \emptyset$
Complement laws	$A \cup \overline{A} = U, \ A \cap \overline{A} = \emptyset$
Idempotent laws	$A \cup A = A, \ A \cap A = A$
Commutative laws	$A \cup B = B \cup A, \ A \cap B = B \cap A$
	· ·

Name	Identity
Complementation law	$\overline{(\overline{A})} = A$
Identity laws	$A \cup \emptyset = A, \ A \cap U = A$
Domination laws	$A \cup U = U, \ A \cap \emptyset = \emptyset$
Complement laws	$A \cup \overline{A} = U, \ A \cap \overline{A} = \emptyset$
Idempotent laws	$A \cup A = A, \ A \cap A = A$
Commutative laws	$A \cup B = B \cup A, \ A \cap B = B \cap A$
Associative laws	$(A \cup B) \cup C = A \cup (B \cup C)$
	$(A \cap B) \cap C = A \cap (B \cap C)$

Name	Identity
Complementation law	$\overline{(\overline{A})} = A$
Identity laws	$A \cup \emptyset = A, \ A \cap U = A$
Domination laws	$A \cup U = U, \ A \cap \emptyset = \emptyset$
Complement laws	$A \cup \overline{A} = U, \ A \cap \overline{A} = \emptyset$
Idempotent laws	$A \cup A = A, \ A \cap A = A$
Commutative laws	$A \cup B = B \cup A, \ A \cap B = B \cap A$
Associative laws	$(A \cup B) \cup C = A \cup (B \cup C)$
	$(A \cap B) \cap C = A \cap (B \cap C)$
Distributive laws	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
	$A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$

Name	Identity
Complementation law	$\overline{(\overline{A})} = A$
Identity laws	$A \cup \emptyset = A, \ A \cap U = A$
Domination laws	$A \cup U = U, \ A \cap \emptyset = \emptyset$
Complement laws	$A \cup \overline{A} = U, \ A \cap \overline{A} = \emptyset$
Idempotent laws	$A \cup A = A, \ A \cap A = A$
Commutative laws	$A \cup B = B \cup A, \ A \cap B = B \cap A$
Associative laws	$(A \cup B) \cup C = A \cup (B \cup C)$
	$(A \cap B) \cap C = A \cap (B \cap C)$
Distributive laws	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
De Morgan's laws	$\overline{A \cup B} = \overline{A} \cap \overline{B}$
	$\overline{A \cap B} = \overline{A} \cup \overline{B}$

◆□▶◆□▶◆壹▶◆壹▶ 壹 り<</p>

Two methods to show the equality of two sets.

Two methods to show the equality of two sets.

• Show that each set is a subset of the other.

Two methods to show the equality of two sets.

- Show that each set is a subset of the other.
- Use Membership table, similar to the method of using truth table to establish propositional equivalences.

Let U be a universal set. Fix an ordering of elements of U as a_1, a_2, \ldots, a_n .

8/23

TrungDT (FUHN) MAD101 Chapter 2

Let U be a universal set. Fix an ordering of elements of U as a_1, a_2, \ldots, a_n .

If A is a subset of U, represent A with a bit string of length n, where the ith bit is 1 if a_i is in A, and is 0 if a_i is not in A.

Let U be a universal set. Fix an ordering of elements of U as a_1, a_2, \ldots, a_n .

If A is a subset of U, represent A with a bit string of length n, where the ith bit is 1 if a_i is in A, and is 0 if a_i is not in A.

Example.

Let U be a universal set. Fix an ordering of elements of U as a_1, a_2, \ldots, a_n .

If A is a subset of U, represent A with a bit string of length n, where the ith bit is 1 if a_i is in A, and is 0 if a_i is not in A.

Example. Let $U = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

Let U be a universal set. Fix an ordering of elements of U as a_1, a_2, \ldots, a_n .

If A is a subset of U, represent A with a bit string of length n, where the ith bit is 1 if a_i is in A, and is 0 if a_i is not in A.

Example. Let $U = \{1, 2, 3, 4, 5, 6, 7, 8\}$. Then the subset $A = \{1, 3, 4, 6\}$ is represented as the bit string 10110100.

2.3 Functions

2.3 Functions

2.3 Functions

The set A is called domain and B is called codomain of f.

The set A is called domain and B is called codomain of f. If f(a) = b we say b is the image of a and a is a preimage of b.

The set A is called domain and B is called codomain of f. If f(a) = b we say b is the image of a and a is a preimage of b.

Let S be a subset of A. The set

$$f(S) = \{b \in B | \exists a \in A(f(a) = b)\}$$

is called the image of S,

The set A is called domain and B is called codomain of f. If f(a) = b we say b is the image of a and a is a preimage of b.

Let S be a subset of A. The set

$$f(S) = \{b \in B | \exists a \in A(f(a) = b)\}$$

is called the image of S, and the set

$$f^{-1}(S) = \{ a \in A | f(a) \in S \}$$

is called the preimage of S.

The set A is called domain and B is called codomain of f. If f(a) = b we say b is the image of a and a is a preimage of b.

Let S be a subset of A. The set

$$f(S) = \{b \in B | \exists a \in A(f(a) = b)\}$$

is called the image of S, and the set

$$f^{-1}(S) = \{a \in A | f(a) \in S\}$$

is called the preimage of S. The set f(A) is called the range of f.

• Floor function: $\lfloor x \rfloor$

• Floor function: |x| = the greatest integer that is not greater than x.

TrungDT (FUHN) MAD101 Chapter 2 10 / 23

- Floor function: $\lfloor x \rfloor$ = the greatest integer that is not greater than x.
- Ceiling function: $\lceil x \rceil$

- Floor function: $\lfloor x \rfloor =$ the greatest integer that is not greater than x.
- Ceiling function: [x] = the smallest integer that is not smaller than x.

10 / 23

- Floor function: $\lfloor x \rfloor$ = the greatest integer that is not greater than x.
- Ceiling function: $\lceil x \rceil$ = the smallest integer that is not smaller than x.

Note. For all real numbers x we have

$$x - 1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x + 1$$

- Floor function: $\lfloor x \rfloor$ = the greatest integer that is not greater than x.
- Ceiling function: $\lceil x \rceil$ = the smallest integer that is not smaller than x.

Note. For all real numbers x we have

$$x - 1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x + 1$$

- Floor function: $\lfloor x \rfloor$ = the greatest integer that is not greater than x.
- Ceiling function: $\lceil x \rceil$ = the smallest integer that is not smaller than x.

Note. For all real numbers x we have

$$x - 1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x + 1$$

Example. Which statements are true for all real numbers x, y and all integers n?

$$\lceil x + y \rceil = \lceil x \rceil + \lceil y \rceil$$

TrungDT (FUHN)

- Floor function: $\lfloor x \rfloor$ = the greatest integer that is not greater than x.
- Ceiling function: [x] = the smallest integer that is not smaller than x.

Note. For all real numbers x we have

$$x - 1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x + 1$$

Example. Which statements are true for all real numbers x, y and all integers n?

10/23

TrungDT (FUHN) MAD101 Chapter 2

- Floor function: $\lfloor x \rfloor$ = the greatest integer that is not greater than x.
- Ceiling function: [x] = the smallest integer that is not smaller than x.

Note. For all real numbers x we have

$$x - 1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x + 1$$

$$\lceil x + n \rceil = \lceil x \rceil + n$$

- Floor function: $\lfloor x \rfloor$ = the greatest integer that is not greater than x.
- Ceiling function: [x] = the smallest integer that is not smaller than x.

Note. For all real numbers x we have

$$x - 1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x + 1$$

$$\begin{bmatrix} x+y \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + \begin{bmatrix} y \end{bmatrix} \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \end{bmatrix}$$

- Floor function: $\lfloor x \rfloor$ = the greatest integer that is not greater than x.
- Ceiling function: [x] = the smallest integer that is not smaller than x.

Note. For all real numbers x we have

$$x - 1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x + 1$$

$$\begin{bmatrix} x+y \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + \begin{bmatrix} y \end{bmatrix} \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \begin{bmatrix} x+n \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + n \\ \end{bmatrix}$$

One-to-One, Onto, and Bijection

One-to-One, Onto, and Bijection

The function $f: A \to B$ is one-to-one if $f(a_1) \neq f(a_2)$ for all $a_1 \neq a_2$ in A.

TrungDT (FUHN)

One-to-One, Onto, and Bijection

The function $f: A \to B$ is one-to-one if $f(a_1) \neq f(a_2)$ for all $a_1 \neq a_2$ in A.

11 / 23

TrungDT (FUHN) MAD101 Chapter 2

(a)
$$f: \mathbb{R} \to \mathbb{R}$$
; $f(x) = x^2$

(a)
$$f: \mathbb{R} \to \mathbb{R}$$
; $f(x) = x^2$

(b)
$$f: \mathbb{R}^+ \to \mathbb{R}$$
; $f(x) = x^2$

(a)
$$f: \mathbb{R} \to \mathbb{R}$$
; $f(x) = x^2$

(b)
$$f: \mathbb{R}^+ \to \mathbb{R}$$
; $f(x) = x^2$

(c)
$$f: \mathbb{Z} \to \mathbb{Z}$$
; $f(n) = \lfloor \frac{n+1}{2} \rfloor$

(a)
$$f: \mathbb{R} \to \mathbb{R}$$
; $f(x) = x^2$

(b)
$$f: \mathbb{R}^+ \to \mathbb{R}$$
; $f(x) = x^2$

(c)
$$f: \mathbb{Z} \to \mathbb{Z}$$
; $f(n) = \lfloor \frac{n+1}{2} \rfloor$

(d)
$$f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$$
; $f(m, n) = m + n$

The function $f: A \to B$ is onto if for each b in B there is a in A such that f(a) = b.

13 / 23

The function $f: A \to B$ is onto if for each b in B there is a in A such that f(a) = b. In other words, the function $f: A \to B$ is onto if f(A) = B.

TrungDT (FUHN) MAD101 Chapter 2 13/23

The function $f: A \to B$ is onto if for each b in B there is a in A such that f(a) = b. In other words, the function $f: A \to B$ is onto if f(A) = B.

13 / 23

(a)
$$f: \mathbb{R} \to \mathbb{R}$$
; $f(x) = x^2$

(a)
$$f: \mathbb{R} \to \mathbb{R}$$
; $f(x) = x^2$

(a)
$$f : \mathbb{R} \to \mathbb{R}$$
; $f(x) = x^2$
(b) $f : \mathbb{R} \to \mathbb{R}$; $f(x) = x^3$

- (a) $f: \mathbb{R} \to \mathbb{R}$; $f(x) = x^2$
- (b) $f: \mathbb{R} \to \mathbb{R}$; $f(x) = x^3$
- (c) $f: \mathbb{R} \to \mathbb{Z}$; f(x) = 2|x|

Example. Which functions are onto:

- (a) $f: \mathbb{R} \to \mathbb{R}$; $f(x) = x^2$
- (b) $f: \mathbb{R} \to \mathbb{R}$; $f(x) = x^3$
- (c) $f: \mathbb{R} \to \mathbb{Z}$; $f(x) = 2\lfloor x \rfloor$
- (d) $f: \mathbb{R} \to \mathbb{Z}$; $f(x) = \lfloor 2x \rfloor$

Example. Which functions are onto:

- (a) $f: \mathbb{R} \to \mathbb{R}$; $f(x) = x^2$
- (b) $f: \mathbb{R} \to \mathbb{R}$; $f(x) = x^3$
- (c) $f: \mathbb{R} \to \mathbb{Z}$; f(x) = 2|x|
- (d) $f: \mathbb{R} \to \mathbb{Z}$; f(x) = |2x|
- (e) $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$; f(m, n) = m + n

The function $f: A \to B$ is a bijection (or one-to-one correspondence) if it is both one-to-one and onto.

The function $f: A \to B$ is a bijection (or one-to-one correspondence) if it is both one-to-one and onto.

The function $f: A \to B$ is a bijection (or one-to-one correspondence) if it is both one-to-one and onto.

(a)
$$f: \mathbb{R} \to \mathbb{R}$$
; $f(x) = x^2$

(a)
$$f : \mathbb{R} \to \mathbb{R}$$
; $f(x) = x^2$
(b) $f : \mathbb{R} \to \mathbb{R}$; $f(x) = x^3$

(b)
$$f: \mathbb{R} \to \mathbb{R}$$
; $f(x) = x^3$

- (a) $f: \mathbb{R} \to \mathbb{R}$; $f(x) = x^2$
- (b) $f: \mathbb{R} \to \mathbb{R}$; $f(x) = x^3$
- (c) $f: \mathbb{R} \to \mathbb{Z}$; $f(x) = \lfloor 2x \rfloor$

- (a) $f: \mathbb{R} \to \mathbb{R}$; $f(x) = x^2$
- (b) $f: \mathbb{R} \to \mathbb{R}$; $f(x) = x^3$
- (c) $f: \mathbb{R} \to \mathbb{Z}$; f(x) = |2x|
- (d) $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$; f(m, n) = m + n

- (a) $f: \mathbb{R} \to \mathbb{R}$; $f(x) = x^2$
- (b) $f: \mathbb{R} \to \mathbb{R}$; $f(x) = x^3$
- (c) $f: \mathbb{R} \to \mathbb{Z}$; f(x) = |2x|
- (d) $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$; f(m, n) = m + n
- (e) $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$; f(m, n) = (m, m + n)

(a) A bijection /one-to-one/onto function from a set of 7 elements to a set of 5 elements?

(a) A bijection /one-to-one/onto function from a set of 7 elements to a set of 5 elements? From a set of 5 elements to a set of 7 elements?

- (a) A bijection /one-to-one/onto function from a set of 7 elements to a set of 5 elements? From a set of 5 elements to a set of 7 elements?
- (b) A bijection from the set of even integers to the set of odd integers?

- (a) A bijection /one-to-one/onto function from a set of 7 elements to a set of 5 elements? From a set of 5 elements to a set of 7 elements?
- (b) A bijection from the set of even integers to the set of odd integers?
- (c) A bijection from the set of odd integers to the set of all integers?

- (a) A bijection /one-to-one/onto function from a set of 7 elements to a set of 5 elements? From a set of 5 elements to a set of 7 elements?
- (b) A bijection from the set of even integers to the set of odd integers?
- (c) A bijection from the set of odd integers to the set of all integers?
- (d) A bijection from the set of all real numbers to the set of positive real numbers?

Composition

Composition

Composition

Note.

Note. The function $f: A \rightarrow B$ has an inverse if and only if f is a bijection.

TrungDT (FUHN) MAD101 Chapter 2 19/23

Sequences

Sequences

Sequence is a discrete structure used to represent an order list.

Sequences

Sequence is a discrete structure used to represent an order list. It is usually denoted as $\{a_1, a_2, \ldots\} = \{a_n, n = 1, 2, \ldots\}$.

Sequences

Sequence is a discrete structure used to represent an order list. It is usually denoted as $\{a_1, a_2, \ldots\} = \{a_n, n = 1, 2, \ldots\}$.

Example.

Sequences

Sequence is a discrete structure used to represent an order list. It is usually denoted as $\{a_1, a_2, \ldots\} = \{a_n, n = 1, 2, \ldots\}$.

Example. Find a general formula for a_n of each sequence:

Sequences

Sequence is a discrete structure used to represent an order list. It is usually denoted as $\{a_1, a_2, \ldots\} = \{a_n, n = 1, 2, \ldots\}$.

Example. Find a general formula for a_n of each sequence:

(a)
$$\frac{1}{2}$$
, $-\frac{2}{3}$, $\frac{3}{4}$, $-\frac{4}{5}$, ...

Sequences

Sequence is a discrete structure used to represent an order list. It is usually denoted as $\{a_1, a_2, \ldots\} = \{a_n, n = 1, 2, \ldots\}$.

- (a) $\frac{1}{2}$, $-\frac{2}{3}$, $\frac{3}{4}$, $-\frac{4}{5}$, ...
- (b) $-2, 1, 4, 7, 10, \dots$

Sequences

Sequence is a discrete structure used to represent an order list. It is usually denoted as $\{a_1, a_2, \ldots\} = \{a_n, n = 1, 2, \ldots\}$.

- (a) $\frac{1}{2}$, $-\frac{2}{3}$, $\frac{3}{4}$, $-\frac{4}{5}$, ...
- (b) $-2, 1, 4, 7, 10, \ldots$ (an arithmetic progression)
- (c) $1, 2, 2, 3, 3, 3, 4, 4, 4, 4, \dots$

Sequences

Sequence is a discrete structure used to represent an order list. It is usually denoted as $\{a_1, a_2, \ldots\} = \{a_n, n = 1, 2, \ldots\}$.

- (a) $\frac{1}{2}$, $-\frac{2}{3}$, $\frac{3}{4}$, $-\frac{4}{5}$, ...
- (b) $-2, 1, 4, 7, 10, \ldots$ (an arithmetic progression)
- (c) $1, 2, 2, 3, 3, 3, 4, 4, 4, 4, \dots$
- (d) 1, 1, 2, 3, 5, 8, 13, 21, . . .

Sequences

Sequence is a discrete structure used to represent an order list. It is usually denoted as $\{a_1, a_2, \ldots\} = \{a_n, n = 1, 2, \ldots\}$.

- (a) $\frac{1}{2}$, $-\frac{2}{3}$, $\frac{3}{4}$, $-\frac{4}{5}$, ...
- (b) $-2, 1, 4, 7, 10, \dots$ (an arithmetic progression)
- (c) $1, 2, 2, 3, 3, 3, 4, 4, 4, 4, \dots$
- (d) 1, 1, 2, 3, 5, 8, 13, 21, ... (Fibonacci sequence)

Given a sequence $\{a_n, n = 1, 2, \ldots\}$.

Given a sequence $\{a_n, n=1,2,\ldots\}$. The summation notation, \sum , is used as follows:

Given a sequence $\{a_n, n = 1, 2, ...\}$. The summation notation, \sum , is used as follows:

$$\sum_{i=1}^{100} a_i = a_1 + a_2 + \cdots + a_{100}$$

Given a sequence $\{a_n, n = 1, 2, ...\}$. The summation notation, \sum , is used as follows:

$$\sum_{i=1}^{100} a_i = a_1 + a_2 + \dots + a_{100}$$

$$\sum_{i=1}^{100} a_{2i+1} = a_3 + a_5 + \dots + a_{201}$$

Given a sequence $\{a_n, n = 1, 2, ...\}$. The summation notation, \sum , is used as follows:

$$\sum_{i=1}^{100} a_i = a_1 + a_2 + \dots + a_{100}$$
 $\sum_{i=1}^{100} a_{2i+1} = a_3 + a_5 + \dots + a_{201}$
 $\sum_{i=1}^{100} 1 = 1 + 1 + \dots + 1$ (100 terms)

Given a sequence $\{a_n, n=1,2,\ldots\}$. The summation notation, \sum , is used as follows:

$$\sum_{i=1}^{100} a_i = a_1 + a_2 + \dots + a_{100}$$
 $\sum_{i=1}^{100} a_{2i+1} = a_3 + a_5 + \dots + a_{201}$
 $\sum_{i=1}^{100} 1 = 1 + 1 + \dots + 1$ (100 terms)

Properties

21/23

TrungDT (FUHN) MAD101 Chapter 2

Given a sequence $\{a_n, n = 1, 2, ...\}$. The summation notation, \sum , is used as follows:

$$\sum_{i=1}^{100} a_i = a_1 + a_2 + \dots + a_{100}$$
 $\sum_{i=1}^{100} a_{2i+1} = a_3 + a_5 + \dots + a_{201}$
 $\sum_{i=1}^{100} 1 = 1 + 1 + \dots + 1$ (100 terms)

Properties

$$\sum_{i=1}^{n} (a_i + b_i) = \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i$$

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q で

Given a sequence $\{a_n, n = 1, 2, \ldots\}$. The summation notation, \sum , is used as follows:

$$\sum_{i=1}^{100} a_i = a_1 + a_2 + \dots + a_{100}$$
 $\sum_{i=1}^{100} a_{2i+1} = a_3 + a_5 + \dots + a_{201}$
 $\sum_{i=1}^{100} 1 = 1 + 1 + \dots + 1$ (100 terms)

Properties

$$\sum_{i=1}^{n} (a_i + b_i) = \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i \qquad \sum_{i=1}^{n} ka_i = k \sum_{i=1}^{n} a_i$$

Given a sequence $\{a_n, n = 1, 2, \ldots\}$. The summation notation, \sum , is used as follows:

$$\sum_{i=1}^{100} a_i = a_1 + a_2 + \dots + a_{100}$$
 $\sum_{i=1}^{100} a_{2i+1} = a_3 + a_5 + \dots + a_{201}$
 $\sum_{i=1}^{100} 1 = 1 + 1 + \dots + 1$ (100 terms)

Properties

$$\sum_{i=1}^{n} (a_i + b_i) = \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i \qquad \sum_{i=1}^{n} ka_i = k \sum_{i=1}^{n} a_i$$

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

$$\sum_{i=1}^{n} i^2 = 1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

$$\sum_{i=1}^{n} i^2 = 1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{i=1}^{n} i^3 = 1^3 + 2^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$$

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

$$\sum_{i=1}^{n} i^2 = 1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{i=1}^{n} i^3 = 1^3 + 2^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$$

$$\sum_{i=1}^{n} r^i = 1 + r + r^2 + \dots + r^n = \frac{1 - r^{n+1}}{1 - r}$$

Example 1.

(a)
$$\sum_{i=1}^{100} \frac{3^i}{4^{i+1}}$$

(a)
$$\sum_{i=1}^{100} \frac{3^i}{4^{i+1}}$$

(b)
$$\sum_{i=1}^{100} \frac{1}{i(i+1)}$$
 (Telescoping sum)

Example 2.

(a)
$$\sum_{i=1}^{100} \frac{3^i}{4^{i+1}}$$

(b)
$$\sum_{i=1}^{100} \frac{1}{i(i+1)}$$
 (Telescoping sum)

Example 2. Find double summations:

(a)
$$\sum_{i=1}^{100} \frac{3^i}{4^{i+1}}$$

(b)
$$\sum_{i=1}^{100} \frac{1}{i(i+1)}$$
 (Telescoping sum)

Example 2. Find double summations:

(a)
$$\sum_{i=1}^{2} \sum_{j=0}^{2} (i+2j)$$

(a)
$$\sum_{i=1}^{100} \frac{3^i}{4^{i+1}}$$

(b)
$$\sum_{i=1}^{100} \frac{1}{i(i+1)}$$
 (Telescoping sum)

Example 2. Find double summations:

(a)
$$\sum_{i=1}^{2} \sum_{i=0}^{2} (i+2j)$$

(b)
$$\sum_{i=1}^{10} \sum_{i=1}^{100} ij$$