Procesos. Planificación del Procesador.

Sistemas Operativos.
Tema 2.

Sistemas Operativos (IS11) - Tema 2

Concepto de Proceso.

• Una definición sencilla: Programa en ejecución.

Entidad pasiva

Entidad activa

- El programa necesita una serie de recursos para su ejecución:
 - Tiempo de la CPU.
 - Memoria.
 - Con el contenido del programa.
 - Pila para datos temporales.
 - Sección de datos con variables globales.
 - Acceso a archivos y dispositivos E/S.

Concepto de Proceso.

- Para entender mejor el concepto de proceso:
 - Los procesos tienen un carácter secuencial:
 - Un proceso en su ejecución puede generar más de un proceso (llamada fork).
 - Dos procesos pueden asociarse al mismo programa.
- Proceso: Unidad de trabajo del sistema.
 - En general, habrá más de un proceso ejecutándose concurrentemente.
- Procesos de usuario y procesos del sistema.
- El sistema operativo se encargará de:
 - La creación y eliminación de procesos.
 - La planificación de procesos.
 - La sincronización, comunicación y manejo de bloqueos mutuos entre procesos.

Sistemas Operativos (IS11) - Tema 2

3

Estado de un proceso.

- El estado de un proceso:
 - Relacionado con su actividad del proceso en un cierto momento.
 - Al ejecutarse irá cambiando de estado.
- Posibles estados de un proceso:
 - En ejecución: Está usando el procesador.
 - Bloqueado: No puede hacer nada porque está espera un evento externo (esperando la conclusión de E/S).
 - Listo: Está en memoria esperando turno para ejecutarse en la CPU (espera asignación del procesador).

Estado de un proceso.

- Diagrama de transición de estados:
 - 1.- Pasa a esperar un suceso
 (E/S) y se bloquea.
 - 2.- Expulsión de proceso de la CPU
 - 3.- El planificador elige otro proceso.
 - 4.- El suceso (E/S) que esperaba el proceso acaba.

• En un instante: sólo un proceso en ejecución, los demás estarán listos o en espera.

Sistemas Operativos (IS11) - Tema 2

5

Bloque de control del proceso (PCB)

- En el S.O.:
 - Un proceso se representa por: Un <u>Bloque de Control del</u> <u>Proceso</u> (PCB, Process Control Block).
- Es un conjunto de registros que almacena información sobre el proceso:
 - <u>Estado del proceso:</u> Nuevo, Listo, en Ejecución, Bloqueado.
 - Contador del programa: Dirección siguiente instrucción a ejecutar.
 - <u>Registros de la CPU</u>: Contenidos al final de la ultima ejecución (contador de programa, puntero a pila, registros de datos, etc.).
 - <u>Información planificación CPU:</u> prioridad, apuntadores a las colas, algoritmo usado.
 - Información contable y de identificación: Número de proceso, tiempo real y de CPU utilizado.
 - <u>Información estado E/S:</u> Solicitudes E/S pendientes, lista archivos abiertos, etc.

Bloque de control del proceso (PCB)

• Se utiliza para poder ejecutar procesos concurrentes: hay un cambio de contexto (se produce una interrupción que debe atender el sistema operativo)

Sistemas Operativos (IS11) - Tema 2

7

Concepto de hilo de ejecución: thread.

- 1) Varios procesos pueden cooperar para resolver una misma tarea. Tendremos *ejecución concurrente entre procesos comunicados por memoria*
- 2) Un programa podría realizar actividades concurrentes (paralelismo dentro del proceso). Tendremos: *Ejecución concurrente de varios "hilos" dentro de un proceso*.
- Cada hilo, thread o proceso ligero tiene su propio:
 - Contador de programa, pila, registros y estado del proceso ligero
- Los procesos ligeros de un mismo proceso comparten la información del proceso:
 - Espacio de memoria, Variables globales, Archivos abiertos, Procesos hijos, Temporizadores, Señales y semáforos, Contabilidad

- Si hay dos procesos listos para ejecución ...
 - ¿ Cual se ejecutará primero?
- El planificador (scheduler) del sistema operativo decide cual.
- El planificador utiliza ⇒ Algoritmo de planificación.
- Un ejemplo de planificación de procesos: P₀ y P₁ listos

Sistemas Operativos (IS11) - Tema 2

9

Concepto de planificación.

• Una manera sencilla de planificación, sin multiprogramación.

Planificación con multiprogramación.

Sistemas Operativos (IS11) – Tema 2

- Colas de planificación:
 - El S.O. usa una serie de colas para planificar los recursos (Memoria, E/S, CPU etc.).
 - Cola de trabajos:
 - Procesos en almacenamiento secundario esperando memoria principal.
 - Cola de procesos listos:
 - Procesos en memoria principal, listo y esperando su ejecución (una lista ligada).
 - Cola de dispositivos:
 - Para cada dispositivo (disco, impresora, etc.) hay una cola de procesos esperando utilizarlo.

Sistemas Operativos (IS11) - Tema 2

11

Concepto de planificación.

• Se usan los PCB como elementos de las colas:

• ¿Puede haber un mismo PCB en más de una cola?

- Un proceso cambia de cola a lo largo de su ejecución.
- Planificador:
 - Elemento del sistema operativo que selecciona procesos en esas colas.
- En lo que a ejecución de procesos respecta:
 - Planificador a largo plazo (planificador de trabajos).
 - Planificador a corto plazo (planificador de la CPU).

Sistemas Operativos (IS11) - Tema 2

13

Concepto de planificación.

- Planificador de trabajos:
 - Necesidad:
 - Si hay muchos procesos ... algunos en almacenamiento secundario.
 - Cometido:
 - Se encarga del intercambio entre memoria y almacenamiento secundario. Controla el número de procesos en memoria (grado de multiprogramación).
 - Frecuencia:
 - Se ejecuta con menor frecuencia que el planificador CPU (cuando termina un proceso, etc.) ... puede ser más lento
 - Eficiencia:
 - Buena mezcla en memoria entre procesos limitados por la CPU y por E/S

- Ejecución de un proceso: Ciclo de ráfagas CPU y E/S:
 - En la ejecución de un proceso se alternan la ejecución en CPU y la espera de E/S.
 - <u>Ráfaga CPU</u>: Tiempo de ejecución en CPU entre dos E/S.
 - Ráfaga E/S: Tiempo entre solicitud y terminación de E/S.
- Ejemplo gráfico de ejecución de proceso:

Sistemas Operativos (IS11) - Tema 2

15

Concepto de planificación.

• Histograma típico de duración de ráfagas de CPU:

- Un proceso limitado por la E/S:
 - Predomina la duración de ráfagas de E/S, (normalmente, muchas ráfagas de CPU breves).
- Un proceso limitado por la CPU:
 - Predomina la duración de ráfagas de CPU, (normalmente, pocas ráfagas de CPU de larga duración).

- Planificador de la CPU: (planificador a corto plazo)
 - Cometido: Selecciona un proceso listo y le asigna CPU, reparte el tiempo de CPU entre procesos.
 - Frecuencia: Mayor que la del planificador de trabajos ... debe ser más rápido.
- Pueden efectuarse decisiones de planificación de la CPU:
 - 1.- Proceso cambia de estado de ejecución a bloqueado (E/S).
 - 2.- Cuando termina un proceso.
 - 3.- Proceso cambia de estado de ejecución a listo (interrupción).
 - 4.- Un proceso cambia de estado bloqueado a listo (acaba E/S).
- En 1 y 2 se debe seleccionar un nuevo proceso para ejecución.
- En 3 y 4 puede o no hacerse:
 - Sí: Esquema de planificación expulsiva o apropiativa.
 - No: Esquema de planificación hasta terminación (no apropiativo).

Sistemas Operativos (IS11) - Tema 2

17

Concepto de planificación.

- Cambio de contexto (cambio de proceso):
 - Cambio del proceso en ejecución.
 - Requiere:
 - Guardar el estado del proceso que se estaba ejecutando (PCB).
 - Cargar el estado (PCB) guardado para el nuevo proceso que se ejecutará.
 - Su duración es un "gasto de tiempo" (típica de 1-100 microsg)
 y depende de:
 - La velocidad de la memoria.
 - El número de registros.
 - Existencia de instrucciones especiales (una sola instrucción para cargar o almacenar todos los registros), Etc.

Algoritmos de planificación.

- Algoritmo de planificación:
 - Decide el proceso de la cola de procesos listos al que se le asigna CPU.
- Criterios para comparar algoritmos de planificación:
 - Equidad: procesos usan la CPU de forma equitativa.
 - Eficiencia (utilización de la CPU): 100% uso.
 - <u>Tiempo de retorno (o de trabajo global)</u>: tiempo que tarda en ejecutarse un proceso concreto.
 - <u>Tiempo de respuesta:</u> minimizar el tiempo de respuesta para usuarios interactivos.
 - <u>Tiempo de espera:</u> tiempo que un proceso espera en la cola de procesos listos.
 - Rendimiento (productividad): número de trabajos procesados por unidad de tiempo.

Sistemas Operativos (IS11) - Tema 2

19

Algoritmos de planificación.

- Objetivos:
 - Maximizar eficiencia y rendimiento.
 - Minimizar tiempo de retorno, espera y respuesta.
- Se pueden intentar optimizar los valores promedio, máximos o mínimos.
- Para que todos los usuarios buen servicio podemos minimizar el tiempo de respuesta.
- En los algoritmos que veremos calcularemos el tiempo promedio de espera.

Orden de llegada (FCFS).

- FCFS (first-come, first-served):
 - El primer proceso que entró en la cola de procesos listos es el primero al que se le asigna CPU.
 - Se implementa con una cola FIFO.
- El tiempo promedio de espera suele ser bastante largo:
 - Ejemplo (efecto convoy):
 - Un proceso A, limitado por CPU, se ejecuta y retiene la CPU.
 - Los demás acabarán su E/S y pasan a la cola de listos.
 - Cuando acaban, entra A y retiene de nuevo la CPU.
 - Todos vuelven a esperar otra vez (ráfagas cortas CPU).
- Es un algoritmo del tipo ejecución hasta terminación.

Sistemas Operativos (IS11) - Tema 2

21

Orden de llegada (FCFS).

• Ejemplo de cálculo de tiempos promedio(en msg):

Tp se reduce (variable con orden llegada).

Primero el trabajo más corto (SJF).

- SJF (shortest-job-first):
 - Se asocia a cada proceso la longitud de su siguiente ráfaga de CPU.
 - Si CPU disponible se le asigna al proceso de menor longitud de ráfaga. Si hay dos con igual longitud de ráfaga se usa FCFS.
- Ejemplo:

<u>Proceso</u>	Duración Ráfaga CPU							
P ₁	6							
P_2	8	$\begin{bmatrix} P_4 & P_1 & P_3 & \\ 0 & 3 & 9 & 16 \end{bmatrix}$	P ₂ 24					
P ₃	7	$T_p = \frac{(0+3+9+16)}{4} = 7$						
P_4	3	$I_P = \frac{1}{4}$						

Sistemas Operativos (IS11) - Tema 2

23

Primero el trabajo más corto (SJF).

- Es óptimo con el criterio del tiempo promedio de espera. Se usa frecuentemente.
- Problema:
 - ¿Como conocer la longitud de la siguiente ráfaga de CPU?
 - Se intenta predecir longitud de siguiente ráfaga de CPU:
 - Un método sencillo: el valor de la última ráfaga de CPU.
 - Como Promedio exponencial de ráfagas anteriores:

 $T_{n+1} = \alpha \cdot t_n + (1-\alpha) \cdot T_n$ $T_n = Valor \ previsto \ para \ n_{esima} \ rafaga \ CPU$ $t_n = Valor \ n_{esima} \ rafaga \ CPU$ $0 \le \alpha \le 1$

Primero el trabajo más corto (SJF).

- La planificación SJF puede ser hasta terminación o expulsiva:
 - ... Llega un proceso A a la cola p.l. con menor ráfaga CPU que tiempo de ejecución de ráfaga le queda a B, proceso en ejecución.
 - Si se ejecuta A: planificación expulsiva.
 - Si continua ejecución B: planificación hasta terminación.

Sistemas Operativos (IS11) - Tema 2

25

Primero el trabajo más corto (SJF)

• Ejemplo de planificación SJF expulsiva:

Prioridades generales.

- Se asigna una prioridad a cada proceso:
 - El de menor prioridad se ejecuta en CPU (si hay dos de igual prioridad FCFS).
 - SJF es un caso particular: p=1/T.
 - Se asigna números a la prioridad.
- Ejemplo:

<u>Proceso</u>	Duración <u>Ráfaga CPU</u>	Prioridad					
P ₁	10	3					
P_2	1	1	-				
P_3	2	3	P ₂	P ₅		P ₁	P_3 P_4
P_4	1	4	0 1		6		16 18 19
P ₅	5	2					

Sistemas Operativos (IS11) - Tema 2

27

Prioridades generales.

- Las prioridades pueden definirse:
 - Factores externos al sistema: Importancia del proceso, del usuario, etc.
 - Factores internos al sistema: Requisitos de memoria, límites de tiempo, número de archivos abiertos, etc.
- La planificación puede ser hasta terminación o expulsiva.
- Problema: Bloqueo indefinido o inanición.
 - Un proceso con muy baja prioridad puede llegar a no ejecutarse nunca.
 - **Solución:** Envejecimiento.
 - Se aumenta la prioridad al aumentar el tiempo de espera en la cola de procesos listos.

Prioridades generales.

• Ejemplo prioridades planif. expulsiva y envejecimiento:

Sistemas Operativos (IS11) – Tema 2

29

Turno rotativo (Round Robin).

- Turno rotativo (RR, Round Robin):
 - La cola de procesos es circular (a nivel práctico se implementa con una FIFO).
 - El planificador la recorre y asigna un tiempo máximo de CPU
 (Q cuanto de tiempo) a cada proceso .
- Un proceso puede abandonar la CPU:
 - Libremente, si ráfaga de CPU < Q.
 - Después de una interrupción, si ráfaga de CPU > Q.
- Características:
 - Esquema de planificación expulsiva.
 - Si hay n procesos en cola, tiempo espera máximo entre dos ejecuciones (n-1)·Q.
 - Tiempo promedio de espera bastante grande.
 - Diseñado para sistemas de tiempo compartido (equidad).

Turno rotativo (Round Robin).

• Ejemplo:

<u>Proceso</u>	Duración <u>Ráfaga CPU</u>	Cuar	$\underline{\text{Cuanto de timepo Q} = 4}$				$T_P = \frac{(0+4)^2}{2}$			$\frac{4+7+(10-4))}{3} = 5,66$		
P ₁	24											
P ₂	3	P ₁	P ₂	P ₃		Р	1					
P_3	3	0	4	7 10	14	18	22	26	30			

- Rendimiento: Depende del tamaño del cuanto.
 - Si Q>> se convierte en FCFS.
 - Si Q<< se reparte el tiempo equitativamente (efecto cambio contexto: ineficiencia).
 - 80% ráfaga menores que Q.

Sistemas Operativos (IS11) - Tema 2

31

Colas multinivel con y sin realimentación.

- Los procesos pueden clasificarse en grupos:
 - Primer plano (interactivos).
 - Segundo plano (por lotes).
- Podemos usar colas distintas:
 - Una para cada grupo, con prioridades distintas y algoritmos de planificación distintos.
 - Ejemplo: RR para primer plano, FCFS para segundo plano.
- Cada nuevo proceso se incluirá en una cola y permanecerá en ella.
- Debe existir una planificación entre las colas.
 - Ejemplo:
 - Prioridad absoluta de la cola de primer plano sobre la de segundo.
 - Reparto de la CPU: 80 % primer plano, 20% segundo plano.

Colas multinivel con y sin realimentación.

Sistemas Operativos (IS11) - Tema 2

33

Colas multinivel con y sin realimentación.

- Planificación de colas múltiples con realimentación:
 - Además de incluir varias colas podemos permitir que los procesos cambien de cola.
 - Se puede, por ejemplo:
 - Ir cambiando a los procesos interactivos o de ráfagas de CPU cortas a colas de mayor prioridad.
 - Cambiar los procesos de ráfagas CPU largas a las colas de menor prioridad.
 - Si un proceso espera demasiado en una cola se puede mover a otra de mayor prioridad (envejecimiento, bloqueo indefinido).

Colas multinivel con y sin realimentación.

• Ejemplo:

- El planificador:
 - Ejecuta primero los procesos cola 0, si vacía cola 1, si vacía cola 2.
 - Proceso nuevo se coloca en cola 0.
 - Si la duración de ráfaga de un proceso de la cola 0 es mayor que Q=8, se pasa a cola 1.
 - Si la duración de ráfaga de un proceso de cola 1 es mayor que Q=24, se pasa a cola 2.

Sistemas Operativos (IS11) - Tema 2

35

Colas multinivel con y sin realimentación.

- Para definir un planificador de colas múltiples con realimentación necesitamos:
 - El número de colas.
 - El algoritmo de planificación para cada cola.
 - El método para saber cuando cambiar un proceso a otra cola de mayor o menor prioridad.
 - El método para determinar a que cola entra un proceso nuevo.

Planificación de varias CPUs.

- El problema de planificación es más complejo.
- Según el tipo de procesadores:
 - Distintos (sistema heterogéneo):
 - Cada procesador tiene su propia cola y algoritmo de planificación.
 - Idénticos (sistema homogéneo): Pueden compartir cargas.
 - Una cola distinta para cada procesador:
 - Unas más llenas que otras?.
 - Una cola común:
 - Cada procesador se planifica a sí mismo (multiprocesamiento simétrico):
 - Mira la cola común y selecciona un proceso.
 - Problemas: Todos accediendo a la misma cola.
 - Un procesador planifica a los demás (multiprocesamiento asimétrico).

Sistemas Operativos (IS11) - Tema 2

37

Evaluación de Algoritmos.

- ¿Cómo seleccionar un algoritmo en un sistema?
 - Decidir un criterio o criterios a utilizar.
- Varios métodos de evaluación:
 - Evaluación analítica:
 - Obtención de una fórmula o un número que evalúe el rendimiento.
 - A partir de:
 - El criterio.
 - El algoritmo.
 - La carga de trabajo del sistema.
 - Modelado determinista:
 - Se tome un carga de trabajo determinada.
 - Modelado de colas:
 - Se usa una distribución de ráfagas de CPU y E/S.
 - Se usa otra de tiempos de llegada de procesos.
 - Simulaciones.