

Wyższa Szkoła Oficerska Sił Powietrznych

Katedra Awioniki i Systemów Sterowania

Miernictwo i Technika Eksperymentu					
Rok akademicki	Rok studiów Kierunek G				
2010/2011	2 Lotnictwo i Kosmonautyka		C9D2		
Sprawozdanie					
Nr ćwiczenia	Temat ćwiczenia				
14	Mostki Pomiarowe				
Data wykonania	Imię i nazwisko Ocen				
ćwiczenia	Karol Mazur				
19.01.2011	Szkopiak Piotr				
Data złożenia	Łukasz Kusek				
sprawozdania	Małgorzata Michalak				
24.01.2011					
Prowadzący					
mjr mgr inż.					
Roman Tuziak					

Spis treści

1	Cel i zakres ćwiczenia	2
2	Opis stanowiska laboratoryjnego	2
3	Opis przebiegu realizacji	2
4	Wyniki	3
5	Wnioski	4

1 Cel i zakres ćwiczenia

Celem ćwiczenia jest zapoznanie się z rozwiązaniami konstrukcyjnymi mostków pomiarowych oraz wykonanie pomiarów rezystancji oraz pojemności.

2 Opis stanowiska laboratoryjnego

W skład stanowiska wchodziły przyrządy

- Zasilacz stabilizowany
- Generator Funkcyjny DF 1641B
- Mostek Wheatstone?a-Thomsona MWT-77a
- Galwanometr
- Mikroamperomierz LM-3

oraz

• Kondensator Dekadowy DK5

• Rezystory: P-9120, P-9121

3 Opis przebiegu realizacji

W celu pomiaru rezystancji, po połączeniu układu do pomiaru i dostarczeniu napięcia U=2V odpowiedni operując rezystancją R_P doprowadziliśmy układ do stanu równowagi (galwanometr wskazywał 0). Otrzymany wynik rezystancji R_P wpisaliśmy do tabeli pomiarowej.

Aby dokonać pomiaru pojemności, po połączeniu układu do pomiaru i dostarczeniu sygnału o częstotliwości 300kHZ oraz napięciu około 10-15V doprowadziliśmy układ do stanu równowagi przez operowanie pojemnością C_W . Otrzymany wynik C_W wpisaliśmy do tabeli pomiarowej.

4 Wyniki

W	ielkość	R_{X1}					
mi	ierzona	$ \begin{array}{cc} R_{X11} & = \\ 6,8\Omega \end{array} $	$\begin{array}{c c} R_{X12} & = \\ 100\Omega & \end{array}$	$R_{X13} = 931\Omega$	$\begin{array}{c c} R_{X14} & = \\ 825\Omega & \end{array}$	$\begin{array}{cc} R_{X15} & = \\ 487\Omega & \end{array}$	$\begin{array}{c c} R_{X16} & = \\ 820\Omega & \end{array}$
Tol	lerancja	10%	10%	2%	2%	2%	10%
R_1	Ω	10	10	10	10	10	10
R_2	Ω	10	10	10	10	10	10
R_P	Ω	6,9	98, 9	931	825	485	770
R_X	Ω	6,9	98, 9	931	825	485	770
δ	%	-1	1	0	0	0, 4	6

Ze wzoru

$$R_X = \frac{R_1}{R_2} R_P$$

obliczyliśmy wartości ${\cal R}_X$ i umieściliśmy w tabeli. Ze wzoru

$$\delta R_{X1} = \frac{R_{X1} - R_X}{R_X} \cdot 100\%$$

obliczamy błąd względny i umieszczamy w tabeli.

W	Vielkość		C_{X1}				
mierzona		$C_{X11} = 220nF$	$\begin{array}{c c} C_{X12} & = \\ 4,7nF \end{array}$	$ \begin{array}{ccc} C_{X13} & = \\ 10nF \end{array} $			
Tolerancja		10%	20%	10%			
R_3	Ω	10	10	10			
R_4	Ω	10	10	10			
C_W	nF	160	4,4	9, 2			
C_X	nF	160	4,4	9, 2			
δ	%	37	7	9			

Ze wzoru

$$C_X = \frac{R_4}{R_3} C_W$$

obliczyliśmy wartości ${\cal C}_X$ i umieściliśmy w tabeli. Ze wzoru

$$\delta C_{X1} = \frac{C_{X1} - C_X}{C_X} \cdot 100\%$$

obliczamy błąd względny i umieszczamy w tabeli.

5 Wnioski

- Badane rezystancje mieszczą się w granicach tolerancji podanej przez producenta. Występuje przy tym niewielki błąd względny.
- Mostek Wheatstone?a-Thomsona MWT-77a okazał się dobrym przyrządem do pomiaru rezystancji.
- Przy badaniu kondensatorów wystąpiły większe błędy pomiarów pojemności. W jednym wypadku wykraczające poza tolerancję pojemności kondensatora. Na podstawie przeprowadzonego badania trudno stwierdzić czy metoda jest niedokładna w badanym zakresie, czy kondensator był uszkodzony.