GB 2 063 249 A

us UK Patent Application us GB up 2 063 249 A

- (21) Application No 8030906
- (22) Date of filing 25 Sep 1980
- (30) Priority data
- (31) 54/130434 55/124644
- (32) 9 Oct 1979 10 Sep 1980
- (33) Japan (JP)
- (43) Application published
 - 3 Jun 1991
- (51) INT CL³ C07D 237/32 A61K 31/50 C07D 237/34
- (52) Domestic classification
 C2C 1594 213 220 226
 22Y 246 250 252 25Y 30Y
 311 313 314 315 31Y 322
 326 32Y 337 338 351 355
 35Y 364 365 366 367 368
 36Y 388 38Y 456 45Y 500
 50Y 610 617 620 623 624
 625 628 62Y 634 644
 65X 660 662 665 666
 667 668 669 670 672 680
 682 688 694 697 699 69Y
 774 775 802 80Y AA BE
 LH LL LS MB NB NF UL WE
- (56) Documents cited None
- (58) Field of search C2C
- (71) Applicants
 Mitsubishi Yuka
 Pharmaceutical Co., Ltd.,
 3—7, Ginza 8-chome,
 Chuo-ku, Tokyo, Japan
- (72) Inventors
 Eisaku Hayashi,
 Etsuo Oishi,
 Yasuhiro Morinaka,
 Motokuni Mori,
 Toshiji Kanayama
- (74) Agents
 Michael Burnside &
 Partners, 2 Serjeant's Inn,
 Fleet Street, London
 EC4Y 1HL

(54) 4-Phenylphthalazine derivatives

(57) 4-phenylphthalazine derivatives of formula (I), and represented by pharmaceutically acceptable salts thereof have potent inhibitory activities against platelet aggregation

$$(R^3)_n \longrightarrow (R^1)_L$$

wherein X is NH or 0; R^1 , R^2 and R^3 are each alkyl, alkoxy, haiogen, alkoxycarbonyl, carboxyl, alkylcarbonyl group, hydroxyl, trifluoromethyl, and R^1 can also be cyano, 1, m and n are each 0, 1, 2 or 3 (provided that I=1 to 3 and the case where I=1 to 3 and I=1 to 4 and I=1 to 4 and I=1 to 4 and I=1 to 5 and I=1 to 5 and I=1 to 5 and I=1 to 5 and I=1 to 6 and I=1 to 6 and I=1 to 7 and I=1 to 8 and I=1 to 8 and I=1 to 8 and I=1 to 9 and I=1 to 9 and I=1 to 9 and I=1 to 9 and I=1 to 1 and I=1 to 1 and I=1 to 1 and I=1 to 1 and I=1 to 3 and I=1 to 4 and

25

SPECIFICATION 4-phenylphthalazine derivativas

5

10

15

This invention relates to a 4-phenylphthalazine derivative represented by the following formula [1] or a pharmaceutically acceptable salt thereof:

$$(R^{3})_{n} \longrightarrow (R^{1})_{n}$$

$$(R^{3})_{n} \longrightarrow (R^{1})_{n}$$

$$(R^{3})_{n} \longrightarrow (R^{1})_{n}$$

wherein X stands for NH or O; R¹ an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, a halogen atom, an alkoxycarbonyl group having 2 to 6 total carbon atoms, a carboxyl group, a cyano group, an alkylcarbonyl group having 2 to 4 total carbon atoms, a hydroxyl group or a trifluoromethyl group; R² and R³, which may be identical or different (may also be the same as or different from R¹), each represent an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, a haiogen atom, an alkoxycarbonyl group having 2 to 6 total carbon atoms, a carboxyl group, an alkylcarbonyl group having 2 to 4 total carbon atoms, a hydroxyl group or a trifluoromethyl group; and each of I, m and n is an integer of zero to 3 (provided that I=1 to 3 and m=n=zero when X is O, and the case where I=m=n=zero is excluded when X is NH), each plural number of R¹, R² and R³ being identical or different when the integers I, 15 m and n are two or more.

and also to a process for producing the same.

As 4-phenylphthalazine derivatives analogous to those of the present invention, there have heretofore been known 1-anilino-4-phenylphthalazine (Ber., 38, 3923 (1905)], 1-phenoxy-4-20 phenylphthalazine [Journal of Pharmacology, 88, 83 (1968], 1-[2-(2-methylallyl)-phenoxy]-4-phenylphthalazine, 1-(2-allylphenoxy)-4-phenylphthalazine [Chem. Fharm. Bull., 24, 1581—1595 (1976)]. These compounds are disclosed merely as intermediates and there is nothing done about uses thereof. The compounds 1-[2-(2-methylallyi)phenoxy]-4-phenylphthalazine and 1-(2-allylphenoxy)-4-phenylphthalazine are liable to undergo ring-closure reaction or other undesirable reactions due to the presence of double bonds in the substituents, whereby structural changes are caused.

On the other hand, studies have been made about 1-alkylamino-4-phenylphthalazine derivatives, 1-alkoxy-4-phenylphthalazine derivative [J. Med.Chem. 12, 555 (1969)] and 1-(piperazine-1-yl)-4-phenylphthalazine derivative (Japanese Patent Publication 39944/1973) for their uses as antiinflammatory agents. However, there is no description about 1-anilino derivatives and 1-phenoxy derivatives.

The present inventors have successfully synthesized the novel compounds represented by the above formula [I] which have not been described in literatures. They have further progressed their studies to find out that these compunds have potent inhibitory activity against platelet aggregation.

Thus, the compounds of the present invention are considered to be applicable for prevention or therapy of the diseases induced by increased platelet aggregation ability such as cerebral thrombosis, cerebral infarction, myocardial infarction and arteriosclerotic diseases. It is therefore the primary object of the present invention to provide a novel compound represented by the formula [I] having a potent inhibitory activity against platelet aggregation.

The compound according to the present invention is represented by the following formula [i]:

$$(R^3)_n$$

$$(R^2)_m$$

$$(R^3)_n$$

$$(R^1)_{\underline{z}}$$

5

10

20

25

wherein all the symbols have the same meanings as defined above.

In the above formula [1], the alkyl group as represented by R1, R2 and R3 may be exemplified by methyl, ethyl, propyl, iso-propyl, n-butyl, t-butyl and amyl. Typical e ar aples of the alkoxy group are methoxy, ethoxy, propoxy, butoxy and amyloxy. As a halogen atom, there may be mentioned fluorine, 5 chlorine, bromine and iodine. The alkoxycarbonyl group may include, for example, methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, butoxycarbonyl, amyloxycarbonyl, etc. As the alkylcarbonyl group, there may be used acetyl, propionyl, butylyl or others.

In the compounds of the present invention, R1 may preferably be an alkyl group, an alkoxy group, a halogen atom or a trifluoromethyl group. On the other hand, R2 may preferably be an alkyl group, an 10 alkoxy group or a halogen atom, while R3 an alkyl group.

In the above formula [1], each of the integers represented by I, m and n may be variable from zero to 3. But there are some restrictions depending on the species of X. When X represents O (an oxygen atom), both m and n are required to be zero, while I may be variable from 1 to 3. On the other hand, when X represents NH group, the case where all of the integers are zero is excluded; in other words, 15 there is at least one substituent on the aromatic nuclei. Thus, when X is NH, there are so many possible 15 combinations in number of the substituents on the aromatic nuclei. Among them, the following four combinations are found to be particularly preferred:

- l=1 to 3, m=n=zero;
- (2)I=1 to 2, m=1 to 2, n=zero;
- (3)l=1 to 2, m=zero, n=1 to 2; and
- (4) l=m=zero, n=1 to 2.

Also, when X is 0.1 is preferred to be 1 or 2, while m=n=0.

The compound represented by the formula [I] can also form a pharmaceutically acceptable salt through the reaction of the basic nitrogen thereof with an acid. For example, there may be mentioned 25 salts with mineral acids such as hydrogen chloride, sulfuric acid, hydrobrobromic acid, phosphoric acid, etc. or methanesulfonic acid, toluenesulfonic acid, benzenesulfonic acid, acetic acid, glycolic acid. glucuronic acid, maleic acid, oxalic acid, ascorbic acid, citric acid, salicylic acid, and so on.

In the following, there are enumerated concrete examples of the compounds represented by the formula [1].

30 Compound No.

Name of Compound

3C

35

4C

45

5C

- (1) 1-(4-Methylanilino)-4-phenylphthalazine (2) 1(3-Methylanilino)-4-phenylphthalazine
- (3)1-(2-Methylanilino)-4-phenylphthalazine
- (4) 1-(4-Ethylanilino)-4-phenylphthalazine (5)
- 1-(2-Ethylanilino)-4-phenylphthalazine (6)1-(4-n-Butylanilino)-4-phenylphthalazine
- (7)1-(3-n-Butylanilino)-4-phenylphthalazine
 - (8) 1-(4-t-Butylanilino)-4-phenylphthalazine
 - 1-(4-Methoxyanilino)-4-phenylphthalazine (9)
- 40 (10)1-(3-Methoxyanilino)-4-phenylphthalazine
- (11)1-(3-Propoxyanilino)-4-phenylphthalazine
 - (12) 1-(4-n-Butoxyanilino)-4-phenylphthalazine
 - 1-(4-Fluoroanilino)-4-phenylphthalazine (13)
 - 1-(3-Fluoroanilino)-4-phenylphthalazine (14)
- (15) 1-(2-Fluoroanilino)-4-pnenylph/halazine
- 1-(4-Chloroanilino)-4-phenylphthalazine (16)
- 1-(3-Chloroanilino)-4-phenylphthalazine (17)
- 1-(2-Chloroanilino)-4-phenylphthalazine (18)
- (19)1-(4-Bromoanilino)-4-phenylohthalazine (20)
- 1-(3-Bromoanilino)-4-phenylphthalazine (21)
 - 1-4-lodoanilino)-4-phenylphthalazine (22)1-(3-lodoanilino)-4-phenylphthalazine
 - 1-(4-Ethoxycarbonylanilino)-4-phenylphthalazine (23)
- (24)1-(4-Carboxylanilino)-4-phenylphthalazine
- 55 1-(4-Cyanoanilino)-4-phenylphthalazine (25)
 - 1-(4-Acetylanilino)-4-phenylohthalazine (26)
 - (27)1-(4-Trifluoromethylanilino)-4-phenylphthalazine
- (28)1-(3-Trifluoromethylanilino)-4-phenylphthalazine
- (29)1-(2-Trifluoromethylanilino)-4-phenylphthalazine
- (30)1-(3-Hydroxylanilino)-4-phenylphthalazine

55

6C

	(94)	1-Anilino-4-(4-chlorophenyl)phthalazine		
	(95)	4-(4-Chlorophenyl)-1-(2,5-dimethylanilino)phthalazine		
	(96)	4-(4-Chlorophenyl)-1-(2,5-dimethoxyanilino)phthalazine		
_	(97)	1-(3-Chloroanilino)-4-(4-chlorophenyl)-phthalazine		5
5	(98)	4-(4-Chlorophenyl)-1-(3-trifluoromethylanilino)phthalazine	-	•
	(99) (100)	1-(5-Chloro-2-methoxyanilino)-4-(4-chlo.ophenyl)phthalazine 1-Anilino-4-(4-bromophenyi)phthalazine		
	(100)	1-Anilino-4-(4-fluorophenyi)phthalazine		
	(102)	1-(2,5-Dimethylanilino)-4-(4-fluorophenyl)phthalazine		
10	(103)	1-(2,5-Dimethoxyanilino)-4-(4-fluorophenyl)phthalazine		10
	(104)	1-(3-Chloroanilino)-4-(4-fluorophenyl)phthalazine		
:	(105)	4-(4-Fluorophenyl)-1-(3-trifluoromethylanilino)phthalazine		•
	(106)	1-(5-Chloro-2-methoxyanilino)-4-(4-fluorophenyl)phthalazine		
15	(107)	1-Anilino-4-(4-ethoxycarbonylphenyl)phthalazine		15
13	(108)	1-{2,5-Dimethylanilino}-4-{4-ethoxycarbonylphenyl}phthalazine 1-(2,5-Dimethoxyanilino)-4-(4-ethoxycarbonylphenyl)phthalazine		
	(110)	1-(3-Chloroanilino)-4-(4-ethoxycarbonylpheriyl)phthalazine		
	(111)	4-(4-Ethoxycarbonylphenyl)-1-(3-trifluoromethylanilino)phthalazina		
	(112)	1-(5-Chloro-2-methoxyanilino)-4-(4-ethoxycarbonylphenyl)phthalazine		
20	(113)	1-Anilino-6-methyl-4-phenylphthalazine	•	20
	(114)	1-Anilino-7-methyl-4-phenylphthalazine		
	(115)	1-(2,5-Dimethylanilino)-6-methyl-4-phenylphthalazine		
	(116) (117)	1-(2,5-Dimethylanilino)-7-methyl-4-phenylphthalazine 1-(2,5-Dimethylanilino)-6-methyl-4-phenylphthalazine		
25	(118)	1-(2,5-Dimethoxyanilino)-7-methyl-4-phenylphthalazine	;	25
	(119)	1-(3-Chloroanilino)-6-methyl-4-phenylphthalazine		
	(120)	1-(3-Chloroanilino)-7-methyl-4-phenylphthalazine		
	(121)	6-Methyl-4-phenyl-1-(3-trifluoromethylanilino)phthalazine		
	(122)	7-Methyl-4-phenyl-1-(3-trifluoromethylanilino)phthalazine	,	30
30	(123)	1-(5-Chloro-2-methoxyanilino)-6-methyl-4-phenylphthalazine	•	30
	(124)	1-(5-Chloro-2-methoxyanilino)-7-methyl-4-phenylphthalazine		
	(125) (126)	1-Anilino-6,7-dimethyl-4-phenylphthalazine 1-(4-Butylanilino)-6,7-dimethyl-4-phenylphthalazine	•	
	(127)	1-(2,5-Dimethylanilino)-6,7-dimethyl-4-phenylphthalazine		
35	(128)	1-(2,5-Dimethoxyanilino)-6,7-dimethyl-4-phenylphthalszine	;	35
	(129)			
	(130)	1-(3-Chloroanilino)-6,7-dimethyl-4-phenyiphthalazine		
	(131)	6,7-Dimethyl-4-phenyl-1-(3-trifluoromethylanilino)phthalazine		
40	(132) (133)	1-(5-Chloro-2-methoxyanilino)-6,7-dimethyl-4-phenylphthalazine		40
40	(134)	1-(3-Chloro-4-methylanilino)-6,7-dimethyl-4-phonylphthalazine 6,7-Dimethyl-1-(4-ethoxycarbonylanilino)-4-phonylphthalazine		
	(135)	1-Anilino-5,8-dimethyl-4-phenylphthalazine		
	(136)	1-(3-Chloroanilino)-5,8-dimethyl-4-phenylphthalazine		
	(137)	1-Anilino-6,7-dibutyl-4-phenylphthalazine		
45	(138)	1-Anilino-6,7-dimethoxy-4-phenylphthalazine	. "	45
	(139)	6.7-Dimethoxy-1-(2.5-dimethylanilino)-4-phenylphthalazine	•	
	(140)	6,7-Dimethoxy-1-(2,5-dimethoxyanilino)-4-phenylphthalazine		
	(141) (142)	1-(3-Chloroanilino)-6,7-dimethoxy-4-phenyiphthalazine	•	
50	(143)	6.7-Dimethoxy-4-phenyl-1-(3-trifluoromethylanilino)phthalazine 1-(5-Chloro-2-methoxyanilino)-6,7-dimethoxy-4-phenylphthalazine	!	50
	(144)	1-(4-Butylanilino)-6,7-dimethoxy-4-phenylphthalazine		
	(145)	1-(4-Butoxyanilino)-6,7-dimethoxy-4-phenylphthalazine		
	(146)	1-Anilino-5,8-dimethoxy-4-phenylphthalazine		
	(147)	1-Anilino-6,7-dibutoxy-4-phanylphthalazine		55
55	(148)	1-Anilino-6,7-dichloro-4-phenylphthalazine		35
	(149)	6.7-Dichloro-1-(2,5-dimethylanilino)-4-phenylphthalazine		
	(150) (151)	6,7-Dichloro-1-(2,5-dimethoxyanilino)-4-phenylphthalazine		
	(152)	1-(3-Chloroanilino)-6,7-dichloro-4-phenylphthalazine 6,7-Dichloro-4-phenyl-1-(3-trifluoromethylanilino)phthalazine		
	(153)	1-(4-Chloro-2-methoxyanilino)-6,7-dichloro-4-phenylphthalazine		60
	(154)	1-Anilino-5,8-dichloro-4-phenylohthalazine		
	(155)	1-Anilino-6-ethoxycarbonyl-4-phenylphthalazine		
	(156)	1-Aniling-6,7-dimethyl-4-(4-methylphenyl)ohthalazine		
	(157)	1-(4-Butylanilino)-6,7-dimethyl-4-(4-methylohenylichthalazine		65
03	(158)	6,7-Dimethyl-1-(2,5-dimethylanilino)-4-(4-methylphenyl)phthalazine		00

		6,7-Dimethyl-1-(3-methoxyanilino)-4-(4-methylphenyl)phtha azine	
	(159) (160)	1-(2.5-Dimethoxyanilino)-6,7-dimethyl-4-(4-methylphenyli-p athalazine	
	(161)	1-(3-Chloroanilino)-6,7-dimethyl-4-(4-methylphenyl)phthalar ne	
	(162)	6,7-Dimethyl-4-(methylphenyl)-1-(3-trifluoromethylanilino:phthalazine	
	(163)	1-(4-Chloro-2-methoxyanilino)-6,7-dimethyl-4-(4-methylphonyl)phthalazine	5
	(164)	6,7-Dimethyl-1-(4-ethoxycarbonylanilino)-4-(4-methylphenyl)phthalazine	
	(165)	1-Anilino-4-(4-butylphenyl)-6,7-dimethylphthalazine	
	(166)	1-Aniling-6,7-dimethyl-4-(4-methoxyphenyl)phthalazine	
	(167)	6,7-Dimethyl-1-(2,5-dimethylanilino)-4-(4-methoxyphenyl)phthalazine	10
10	(168)	1-(2.5-Dimethoxyanilino)-6,7-dimethyl-4-(4-methoxyphenyl)phthalazine	10
10	(169)	1-(3-Chloroanilino)-6.7-dimethyl-4-(4-methoxyphenyl)phthalazine	
	(170)	6,7-Dimethyl-4-(4-methoxyphenyl)-1-(3-trifluoromethylanilino)phthalazine	
	(171)	1-(5-Chloro-2-methoxyanilino)-6,7-dimethyl-4-(4-methoxyphenyl)phthalazine	•
	(172)	1-Anilino-4-(4-butoxyphenyl)-6,7-dimethylphthalazine	
15	(173)	1-Anilino-4-(2,4-dimethoxyphenyl)-6,7-dimethylphthalazine	15
1.5	(174)	1-Anilino-4-(4-chlorophenyl)-6,7-dimethylphthalazine	
	(175)	1-(3-Chloroanilino)-4-(4-chlorophenyl)-6,7-dimethylphthalazine	
	(176)	1-(3-Chloro-4-methylanilino)-4-(4-chlorophenyl)-6,7-dimethylphthalazine	
	(177)	1-Anilino-6,7-dimethyl-4-(4-fluorophenyl)phthalazine	20
20	(178)	1-Anilino-6,7-dimethyl-4-(4-ethoxycarbonylphenyl)phthalazine	20
20	(179)	1-Anilino-6,7-dimethoxy-4-(4-methylphenyl)phthalazine	
	(180)	6,7-Dimethoxy-1-(2,5-dimethylanilino)-4-(4-methylphenyl)phthalazine	
	(181)	6,7-Dimethoxy-1-(2,5-dimethoxyanilino)-4-(4-methylphenyl)phthalazine	
	(182)	1-(3-Chioroanilino)-6,7-dimethoxy-4-(4-methylphenyl)phthalazine	25
25	(183)	1-Anilino-4-(4-butylphenyl)-6,7-dimethoxyphthalazine	25
4.5	(184)	1-Aniiino-6,7-dimethoxy-4-(4-methoxyphenyl)phthalazine	
	(185)	1-Anilino-6,7-dimethoxy-4-(2,4-dimethoxyphenyl)phthalazine	
	(186)	1-Anilino-4-(4-chlorophenyl)-6,7-dimethoxyphthalazine	
	(187)	1-Anilino-6,7-dimethoxy-4-(4-fluorophenyl)phthalazine	30
30	(188)	1-Anilino-6,7-dimethoxy-4-(4-ethoxycarbonylphenyl)phthalazine	30
•••	(189)	1-Anilino-6,7-dichloro-4-(4-methylphenyl)phthalazine	
	(190)	1-Anilino-4-(4-butylphenyl)-6,7-dichlorophthalazine	
	(191)	1-Anilino-6,7-dichloro-4-(4-methoxyphenyl)phthalazine	
	(192)	1-Anilino-4-(4-butoxyphenyl)-6,7-dichlorophthalazine	35
35	(193)	1-Anilino-6,7-dichloro-4-(2,4-dimethoxyphenyl)phthalazine	33
	(194)	1-Anilino-4-(4-chlorophenyl)-6,7-dichlorophthalazine	
	(195)	1-Anilino-6,7-dichloro-4-(4-fluorophenyl)phthalazine	
	(196)	1-Anilino-6,7-dichloro-4-(4-ethoxycarbonylphenyl)phthalazine	
	(197)	1-Aniling-4-(4-carboxyphenyl)phthalazine	• 40
40	(198)	4-(4-Carboxyphenyl)-1-(2,5-dimethylanilino)phthalazine	•
	(199)		
	(200)	4-(4-Carboxyphenyi)-1-(3chloroanilino)phthalazine	
	(201)	4-(4-Carboxyphenyl)-1-(3-trifluoromethylanilino)phthalazine	
	(202)	4-(4-Carboxyphenyl)-1-(5-chloro-2-methoxyanilino)phthalazine	45
45	(203)	1-Anilino-4-(4-hydroxyphenyl)phthalazine	
	(204)	1-(2,5-Dimethylanilino)-4-(4-hydroxyphenyl)phthalazine	
	(205)	1-(2,5-Dimethylanilino)-4-(4-hydroxyphenyl)phthalazine	
	(206)	1-(3-Chloroanilino)-4-(4-hydroxyphenyl)phthalazine	
	(207)	4-(4-Hydroxyphenyl)-1-(3-trifluoromethylanilino)phthalazine	50
50	(208)	1-(5-Chloro-2-methoxyanilino)-4-(4-carboxyphenyl)phthalazine	
	(209)		
	(210)		
	(211)	1-(4-Methylphenoxy)-4-phenylphthalazine	
	(212)	1-(3-Methylphenoxy)-4-phenylphthalazine	55
55	(213)	1-(2-Methylphenoxy)-4-phenylphthalazine	
	(214)	1-(4-Ethylphenoxy)-4-phenylphthalazine	
	(215)	1-(2-Ethylphenoxy)-4-phenylphthalazine	
	(216)		
	(217)		60
60			
	(219)		
	(220)		
	(221)		
	(222)		65
65	(223)	1-(4-Fluorophenoxy)-4-phenyiphthalazine	

(240)1-(2,5-Diethylphenoxy)-4-phenylphthalazine (241)1-(2,5-Dipropylphenoxy)-4-phenylphthalazine (242)1-(2,5-Dimethoxyphenoxy)-4-phenylphthalazine 20 20 (243) 1-(3,4-Dimethoxyphenoxy)-4-phenylphthalazine (244)1-(2,5-Dichlorophenoxy)-4-phenylphthalazine (245)1-(2,6-Dichlorophenoxy)-4-phenylphthalazine (246) 1-(2,5-Difluorophenoxy)-4-phenylphthalazine

1-(3-Chloro-4-methylphenoxy)-4-phenylphthalazine (247)25 25 (248) 1-(3-Methyl-4-chlorophenoxy)-4-phenylphthalazine (249)1-(3-Fluoro-4-methylphenoxy)-4-phenylphthalazine 1-(2-Methoxy-4-chlorophenoxy)-4-phenylphthalazine (250)1-(2-Methoxy-5-methylphenoxy)-4-phenylphthalazinee (251)(252)1-(2-Methyl-4-trifluoromethylphenoxy)-4-phenylphthalazine

30

45

Process for preparation of the compound (I)

1-(2,4,6-Trimethylphenoxy)-4-phenylphthalazine

30 (253)

40

The compound represented by the formula [i] can be prepared according to any suitable process, which is not particularly limited. Preferably, however, the compound (I) can be synthesized by the following reaction route:

$$(R^{3})_{n} \longrightarrow (R^{3})_{n} \longrightarrow (R^{3})_{n} \longrightarrow (R^{3})_{n} \longrightarrow (R^{1})_{1}$$

$$(R^{3})_{n} \longrightarrow (R^{3})_{n} \longrightarrow (R^{3})_{n} \longrightarrow (R^{1})_{1}$$

$$(R^{3})_{n} \longrightarrow (R^{3})_{n} \longrightarrow (R^{3})_{n} \longrightarrow (R^{1})_{1}$$

In the above formulae, X' represents —NH2 or OH; Y a halogen atom (e.g., chlorine, bromine or iodine), a group of the formula: $-S(0)_0 - R^4$ (p=0-2, R⁴ is a C_{1-5} alkyl, phenyl or a substituted phenyl) or a group of the formula: -0R5 (R5 is a C₁₋₅ alkyk, phenyl or a substituted phenyl); and all of the other symbols have the same meanings as defined above.

According to this process, the starting compound represent 1 by the formula (II), namely 1-chloro- 40 4-phenylphthalazine or its derivative, is allowed to react with a b...... derivative represented by the formula (III), in either the presence or absence of a solvent, preferably in the presence of a catalyst, to prepare a 4-phenylphthalazine derivative represented by the formula [I].

The starting materials, i.e., 1-choloro-4-phenylphthalazine [II] or derivatives thereof were synthesized according to the method as described in Journal of Pharmacology 86, 576 (1965) or the methods similar thereto.

As the benzene derivative [III] to be reacted with the compound (II) as mentioned above, there may be employed suitable substituted anilines or substituted phenols.

The reaction temperature may be in the range from -20 to 250° C., preferably from -10 to 180°C. The reaction time may be from 5 minutes to 24 hours, preferably from 10 minutes to 10 hours. 50 When a catalyst is to be employed, there may be used an organic base such as ammonia,

triethylamine, piperidine or pyridine, or an inorganic base such as sodium carbonate, potassium

15

30

carbonate, sodium hydroxide, potassium hydroxide, sodium hydride or sodium amide may be added at a molar ratio relative to the compound (II) in the range from 0.5 to 5, preferably from 1 to 3. Alternatively, it is also possible to use a metal such as copper, magnesium, cadmium, sodium or potassium, at a molar ratio relative to the compound (II) in the range from 0.001 to 2, preferably from 0.01 to 1.5.

When a solvent is to be employed, there may be used a solvent selected from ethers such as ethyl ether, tetrahydrofuran, and dioxane; halogenated alkanes such as chloroform, methylene chloride, etc.; alcohols such as methanol, ethanol, etc.; aromatic hydrocarbons such as benzene, toluene, xylene, etc.; amides such as demethylformamide, dimethylacetamide, etc.; and dimethylsulfoxide; and so on.

The compound (III) may be used in an amount of 0.5 to 30 moles, preferably 1 to 20 moles, per 10 mole of the compound (III).

After completion of the reaction, the reaction mixture may be poured into a large excess of water or dissolved as such in a solvent such as chloroform to be neutralized therein. If desired, the precipitated crystals may be collected by filtration after concentration, or alternatively the product may be extracted with a suitable solvent such as chloroform when there is no precipitation, followed by recrystallization or chromatography according to conventional procedures.

The present invention is further illustrated by the following Examples, by which the present invention is not limited.

EXAMPLE 1

Synthesis of 1-(4-methylanilino)-4-phenylphthalazine (Compound No. 1)

To 2.41 g of 1-chloro-4-phenylphthalazine, there were added 5.35 g of p-toluidine and 70 mg of copper powders. The mixture was then subjected to stirring under heating for one hour while maintaining the reaction temperature at 100°C. After the reaction mixture was left to cool, a large excess of chloroform was added thereto. The resultant insolubles were filtered off and the filtrate was washed with a 5% aqueous sodium hydroxide and then with water. The organic layer was dried and concentrated, and the residue was recrystallized from ethanol to give 910 mg (yield: 29%) of pale yellow crystals.

m.p.: 185—186°C.

I.R.: 1630 cm⁻¹, 1510 cm⁻¹, 1410 cm⁻¹

M.S.: $310 (M^{+}-1)$

30 EXAMPLES 2-30

The compounds as shown in Table 1 were synthesized according to the methods similar to Example 1.

				· · · · · · · · · · · · · · · · · · ·
Example	Compound No.	m.p./*C	1 R/cm ^L	M.S.
2	(2)	202 🕶 203	3270, 1575, 1520 1410, 790	310 (M [±] 1)
3	(3)	188	3200, 1500, 1400 1200, 755	311 (M ⁺) 296
4	(4)	206 ~ 207	2990, 1625, 1520 1420, 780	324 (M [±] 1)
5	(6)	189 ~ 190	2860, 1620, 1520 1420, 780	353 (M ⁺) 310
6	(9)	206 ~ 207,5	2950, 1640, 1510 1420, 1240, 785	327 (M ⁺) 312
7	(10)	196	3000, 1610, 1500 1400, 1155, 780	326 (M±1)
8	(12)	168.5 ~ 169	2950, 1620, 1505 1410, 1240, 790	369 (M ⁺) 312
9 .	(13)	206 ~ 207	3050, 1620, 1520 1410, 1220, 780	314 (M [±] 1)
10	(14)	239 ~ 240	3280, 1620, 1520 1400, 1140, 790	314 (M±1)
11	(16)	193 ~ 194	1620, 1580, 1500 1400, 820, 770	330 (M [†])
12	(17)	191 ~ 194	1600, 1510, 1420 1390, 770	330 (M ⁺)
13	(18)	170 ~ 171.5	3440, 1600, 1520 1400, 1040, 760	330 332 (M ⁺)
14	(19)	219 ~ 222	3000, 1625, 1510 1400, 820, 760	376 374 (M+1)
15	(23)	236 ~ 237,5	3000, 1720, 1615 1520, 1410, 1280	369 368 I(M ⁺)
16	(25)	240 ~ 242,5	3360, 2210, 1610 1510, 14°, 790	321 (M* 1)
17	(26)	247 ~ 248.5	3400, 1680, 1600 1520, 1400, 1280	338 (M [±] 1)
18	(28)	174 ~ 175.5	3040, 1630, 1520 1410, 1340, 1100	354 (M±1)

TABLE 1 (Continued)

Example	Compound No.	m.p./*C	l R√cm ¹	M.S.
19	(31)	240 ~ 242	3200, 1520, 1415 790, 770	325 (M ⁺) 310
20	(32)	206.5 ~ 207.5	3400, 1500, 1400 810, 780	325 (M ⁺) 310
21	(33)	202 ~ 203.5	3200, 1500, 1400 810, 780	325 (M ⁺) 310
22	(34)	204 ~ 204.5	3200, 1510, 1420 790, 770	324 (M±1)
23	(37)	215 ~ 216	3440, 1610, 1520 1430, 790	357 (M ⁺) 326
24	(43)	217	1590, 1510, 1410 780, 700	347 345 ^{†(M+})
25	(44)	232 ~ 232.5	3400, 1490, 1400 820, 780, 700	347 345 ¹ (M+)
26	(42)	171 ~ 172	3000, 1610, 1500 1400, 775, 700	346 344 (M±1)
27	(47)	129 ~132	3450, 1530, 1430 1230, 790, 710	341 (M ⁴) 310
28	(48)	74.5 ~ 75	1600, 1500, 1420 1220, 790, 780	364 352 (M [†])
29	(51)	200 ~ 202,5	3200, 1500, 1400 780, 700	339 (M ⁺)
30	(24)	250<	3360, 1680, 1600 1520, 1410, 780	340 (M±1)

EXAMPLE 31

Synthesis of 1-(2-methylphenoxy)-4-phenylphthalazine (Compound No. 213)

To 1.20 g of 1-chloro-4-phenylphthalazine, there were added 5.40 g of o-cresol and 360 mg of potassium hydroxide. The resultant mixture was subjected to stirring under heating for 2 hours, while maintaining the reaction temperature at 100°C. After the reaction mixture was poured into 12 ml of an aqueous solution having 3.6 g of potassium hydroxide dissolved ther in the crystals precipitated were recovered by filtration. The crude crystals were dissolved in chloroform, washed with water, dried and concentrated. These residue was recrystallized from ethanol-n-hexane to give 725 mg (yield: 46%) of white crystals.

10

5

m.p.: 136.5-137.5°C.

I.R.: 1490 cm⁻¹, 1385 cm⁻¹, 1230 cm⁻¹,

1190 cm⁻¹, 790 cm⁻¹, 750 cm⁻¹.

M.S.: 312 (M')

15

EXAMPLES 32-44

15

According to procedures similar to that as described in Example 31, there were synthesized the compounds as shown in Table 2.

TABLE 2

Example	Compound No.	m.p./ *C	I R/cm ¹	M.S.
32	(212)	148 — 150 ,	1490, 1390, 1250 1165, 800, 770	312 (M ⁺) 295
33	(214)	171.5 ~ 172	1510, 1385, 1210 850, 770, 700	326 (M ⁺) 311
34	(218)	211 ~ 212.5	2970, 1500, 1390 1230, 790	354 (M ⁺) 339
35	(219)	163 ~ 164	1510, 1390, 1205 1030, 850, 700	328 (M [†]) 121
36	(227)	171 ~ 172	1550, 1480, 1380 1230, 790, 780	331 297 (M±1)
37	(228)	179 ~ 180	1490, 1380, 1220 1010, 790	376 (M ⁺) 378
38	(234)	139 141.5	1700, 1600, 1380 1220, 850, 800	340 325 (M [†])
39	(236)	119 ~ 12:	1450, 1385, 1330 1170, 1120, 900	366 (M ⁺) 365
40	(225)	149 ~ 149.5	1595, 1380, 1220 890, 795, 700	332 {(M ⁺) 334
41	(239)	153 ~ 155	1570, 1385, 1250 1120, 770	325 (M ⁺) 309
42	(248)	155.5 ~ 156	1480, 1390, 1240 1170, 1050, 790	346 }(M ⁺)
43	(244)	175.5 ~ 176.5	1580, 1470, 1365 1220, 1090, 770	365 (M±1) 331
44	(245)	210 ~ 210.5	1450, 1380, 1360 1240, 770	366 (M ⁺) 331

EXAMPLE 45

Synthesis of 1-(3-chloroanilino)-4-(4-methylphenyl)phthalazine (Compound No. 60)

To 172 mg of 1-chloro-4-(4-methylphenyliphthalazine, there was added 319 mg of m-5 chloroaniline, and the resultant mixture was heated at 100°C with stirring or one hour. After the reaction mixture was left to cool to room temperature, a large excess of caloroid in was added there:o, followed by washing with a 5% aqueous sodium hydroxide and then with water. The organic layer was dried and subjected to concentration. The residue was recrystallized from ethanol to give 145 mg (yield: 62%) of pale yellow crystals.

10

m.p.: 211.5-212°C.

595 cm⁻¹, 1510 cm⁻¹, 1475 cm⁻¹, 1405 cm⁻¹, 770 cm⁻¹. I.R.:

M.S.: 345 (M*), 343 (M*), 344.

EXAMPLES 46-109

15 The compounds as shown in Table 3, having the following formula:

15

10

TABLE 2

Example	Compound No.	m.p./ *C	I R/cm ¹	M.S.
32	(212)	148 ~ 150 .	1490, 1390, 1250 1165, 800, 770	312 (M ⁺) 295
33	(214)	171.5 ~ 172	1510, 1385, 1210 850, 770, 700	326 (M ⁺) 311
34	(218)	211 ~ 212.5	2970, 1500, 1390 1230, 790	354 (M ⁺) 339
35	(219)	163 ~ 164	1510, i390, 1205 1030, 850, 700	328 (M [†]) 121
36	(227)	171 ~ 172	1553, 1480, 1380 1230, 790, 780	331 297 (M±1)
37	(228)	179 ~ 180	1490, 1380, 1220 1010, 790	376 [(M ⁺) 378
38	(234)	139 ~ 141.5	1700, 1600, 1380 1220, 650, 800	340 325 (M ⁺)
39	(236)	119 ~ 12:	1450, 1385, 1330 1170, 1120, 900	366 (M ⁺) 365
40	(226)	149 ~ 149.5	1595, 1380, 1220 890, 795, 7 00	332 {(M ⁺) 334
41	(239)	153 ~ 155	1570, 1385, 1250 1120, 770	326 (M ⁺) 309
. 42	(248)	155,5 ~ 156	1480, 1390, 1240 1170, 1050, 790	346 348 (M ⁺)
43	(244)	175.5 ~ 176.5	1589, 1470, 1355 1220, 1090, 770	365 (M±1) 331
44	(245)	210 ~ 210.5	1450, 1380, 1360 1240, 770	366 (M ⁺) 331

EXAMPLE 45

Synthesis of 1-(3-chloroanilino)-4-(4-methylphenyl)phthalazine (Compound No. 60)

To 172 mg of 1-chloro-4-(4-methylphenyl)phthalazine, there was added 319 mg of m-5 chloroaniline, and the resultant mixture was heated at 100°C with stirring or one hour. After the reaction mixture was left to cool to room temperature, a large excess of caloroic im was added thereto. followed by washing with a 5% aqueous sodium hydroxide and then with water. The organic layer was dried and subjected to concentration. The residue was recrystallized from ethanol to give 145 mg (yield: 62%) of pale yellow crystals.

10

m.p.: 211.5-212°C.

595 cm⁻¹, 1510 cm⁻¹, 1475 cm⁻¹, 1405 cm⁻¹, 770 cm⁻¹. I.R.;

M.S.:

345 (M1), 343 (M1), 344.

EXAMPLES 46-109

15 The compounds as shown in Table 3, having the following formula:

15

10

were prepared according to the procedures similarly as described in Example 45.

•	•
U	U
-	į
0	ō
٩	C
۲	-

WS	379 (M*) 378	339 (M ⁺) 324	371 (M [†]) 340	377 (M [†]) 375 (M [†])	363 (M*) 361 (M*) 360	76£ (₩)	355 (M*) 340	385 (M*)	393 (N. ⁺) 391 (M ⁺)	367 (M ⁺) 365 (M ⁺) 364
1.R./cm*1	3240, 1595, 1510 1400, 1330, 1160	3200, 1610, 1490 1405, 1020	3435, 1600, 1510 1420, 1200, 1035	3430, 1595, 1510 1420, 1240, 1010	1600, 1480, 1400 1250, 770	3230, 1610, 1515 1405, 1335, 1250	1610, 1490, 1400 1250, 1175	3435, 1610, 1515 1250, 1020	3435, 1600, 1515 1420, 1250, 1020	1600, 1480, 1410 1080, 780
m.p./*C	179–180	184–185	192,5—193	197-197.5	227-228	228–229	179–180	185–186	206–207	222–223
-cc	I	I	I	Ι	I	Ι	н	Ι	Ι.	Ι
E.	4-CH,	4-CH,	4-CH,	4-CH,	4-0CH,	4-0CH,	40CH,	4-0CH,	4-0CH,	4-CI
īcc	3-CF,	2-CH, 5-CH,	2-0CH,, 5-0CH,	2-0CH,,	3-61	3-CF,	2-CH, 5-CH,	2-0CH, 5-0CH,	2-0CH, 4-CI	3-CI
Compound No.	(63)	(56)	(65)	(84)	(78)	۲.	(76)	(77)	(80)	(97)
Example	46	47	84	49	20	51	25	53	54	55

TABLE 3 (Continued)

MS	401 (M ⁺) 399 (M ⁺) 398	361 (M [†]) 359 (M [†]) 344	393 (M ⁺) 391 (M ⁺) 360	397 (M+) 395 (M+) 364	389 (M+) 387 (M+) 386	421 (M ⁺) 420	381(14*)	413 (M+) 382	419 (M ⁺) 417 (M ⁺) 396
l.R./cm**	3270, 1605, 1450 1415, 1340, 1120	1580, 1500, 1410 1090, 835	3440, 1600, 1510 1430, 1220, 1045	3420, 1600, 1410 1420, 1250	2920, 1600, 1410 900, 770	2920, 1610, 1410 1330, 1170, 1120	2920, 1610, 1490 1400, 805, 775	2920, 1610, 1520 1430, 1205, 785	3440, 2920, 1595 1510, 1420, 1250
m.p./•C	180–181	196–197	190–192	200–201	193–194	164–167	169,5–171	159.5–160	173.5–174.5
R¹	Ξ	Ξ.	.Ξ	Ξ	I	I	·I	Ι	I
.a.	4-CI	4-CI	4-CI	4-CI	4-C.H.	4-C,H,	4:-C,H,	4-C,H,	4-C,H,
Ğ.	3-CF,	2-СН,, 5-СН,	2-0CH, 5-0CH,	2-0CH,,	3-cı	3-cF,	2-сн, 5-сн,	2-0CH,, 5-0CH,	2-0CH,, 5-CI
Compound No.	(96)	(92)	(96)	(66)	(0,1)	(71)	(69)	(69)	(72)
Example	8	57	83	59	90	61	62	8	64

MS	405 (M ⁺) 403 (M ⁺) 402	437 (M*) 438	397 (M+) 382	429 (M*) 398	435 (M ⁺) 433 (M ⁺) 402	351 (M ⁺) 349 (M ⁺) 348	383 (M ⁻¹) 382	343 (M ⁺) 328	375 (N+) 344	381 (M*) 379 (M*) 348
1.A./cm*1	2950, 1600, 1515 1420, 1250, 770	2950, 1610, 1510 1400, 1330, 1110	2950, 1610, 1500 1400, 1250	3440, 2950, 1605 1505, 1240	3420, 2950, 1600 1510, 1410, 1250	1600, 1515, 1420 1220, 1150, 775	1610, 1520, 1420 1335, 1120, 800	1600, 1500, 1415 1225	3445, 1600, 1510 1430, 1210, 1020	3445, 1600, 1515 1430, 1240, 1015
m.p./*C	184.5–185.5	183–184	156.5–158	163163.5	161.5-162.5	228.5-229,5	205-206.5	188.5189.5	176–177	216–217
, H	Ι	Ή	н	Ι	Ι	π	Ť	I	I	Ξ.
, B	4-0C,H,	4-0C,H,	4-0C,H.	4-0C,H,	4-0C,H,	4-F	4-F	4 - 4	4-F	4-F
R¹	3-CI	3-CF,	2-сн., 5-сн,	2-0CH ₁ , 5-0CH ₁	2-осн, 5-сі	3-CI	3-сғ,	2-CH, 5-CH,	2-осн, 5-осн,	2-осн, 5-сі
Compound No.	(85)	(86)	(83)	(84)	(87)	(104)	(105:	(102)	(103)	(106)
Example	65	99	29	89	69	70	7.1	72	7.3	74

TABLE 3 (Continued)

75 (91)		Ģ.	c	m.p./•C	I.R./cm ⁻¹	WS
	3-CI	2-0CH, 4-0CH,	Ι	200-201,5	1600, 1485, 1400 1215, 1160, 775	393 (M*) 391 (M*)
	3-CF,	2-OCH,, 4-OCH,	н	213–214	1620, 1500, 1400 1340, 1215, 1110	425 (M*) 394
	2-CH, 5-CH,	2-0CH, 4-0CH,	Н	220–221.5	1615, 1505, 1410 1215, 1160, 1040	385 (M*) 370
(96)	2-0CH, 5-0CH,	2-0CH, 4-0CH,	Н	17.7–177.5	3440, 1615, 1515 1210, 1030	417 (M*) 386
(69)	2-0CH,, 5-C1	2-0CH,, 4-0CH,	H	203,5–205	3450, 1600, 1510 1420, 1210, 1030	392 (M-1) 390 (M-1)
80 (110)	3-61	4-COOE1	π	173–174	1710, 1590, 1500 1410, 1270, 770	405 (M ⁺) 403 (M ⁺) 402
(111)	3-CF,	4~COOE1	н	215.5–216.5	1710, 1625, 1495 1400, 1330, 1270	437 (M [‡]) 436
82 (10!)	2-CH,, 5-CH,	4-COOEt	·I	201.5–202.5	3300, 1710, 1480 1400, 1270, 1100	397 (M ^{.;}) 38?
83 (109)	2-0CH, 5-0CH,	4-COOEt	Ι	198–199,5	3440, 1725, 1600 1560, 1270, 1090	429 (M*) 398
84 (112)	2-осн,, 5-сі	4-C00Et	I	206-207,5	3435, 1725, 1600 1510, 1420, 1270	435 (M ⁺) 433 (M ⁺) 402

TABLE 3 (Continued)

MS	347 (M*) 345 (M*) 344	379 (M+) 378	339 (M+) 324	371 (M+) 340	377 (M ⁺) 375 (M ⁺) 344	325 (M ⁺) 324	351 (M ¹) 359 (M ¹) 358	393 (M*) 392	353 (M ⁺) 338	385 (M ⁺) 354
1.R./cm ⁻⁴	1590, 1475, 1400 1250, 770	1600, 1440, 1400 1330, 1150, 1110	1620, 1500, 1410 800	3430, 1600, 1520 1450, 1210, 1035	3430, 1600, 1510 1420, 1240, 1210	1605, 1500, 1410 750	1605, 1500, 1400 775, 785	1615, 1570, 1445 1420, 1330, 1170	1600, 1575, 1440 810, 770	3450, 1610, 1520 1400, 1220, 1010
D•/'d'w	221–223	221–222.5	164-168	192–193	146-147.5	238–239	243,5–244,5	255–256	153,5-156	232–233
ťα	6-CH, mix	6-CH, } mix.	8-CH, mix.	6-CH, mix.	9-CH,} mix.	6-CH,, 7-CH,	8-CH, 7-CH,	6-CH,	6-CH,,	8-сн, 7-сн,
R	I	I	Ŧ	r	I	I	I	I	I	I
Œ	3-0	3-CF,	2-CH, 5-CH,	2-0CH ₃ , 5-0CH ₄	2-OCH,,	I	3-CI	3-CF,	2-C4, 5-CH,	2-0CH,, 5-0CH,
Compound No.	(119)	(121)	(115)	(117)	(123)	(125)	(561)	(131)	(127)	(128)
Example	85	86	87	88	68	06	91	92	83	94

TABLE 3 (Continued)

	T	T	1	T		Т	т ——		Τ	
MS	391 (M+) 389 (M+) 358	357 (M+) 356	393 (M ⁺) 391 390	425 (M ⁺) 424	385 (M+) 370	417 (M ⁺) 386	423 (M ⁺) 421 (M ⁺) 390	413 (M ¹) 412	429 (M ⁺) 372	403 (M ⁺) 402 (M ⁺) 401 (M ⁺) 400
1.R./cm-1	3450, 1600, 1520 1425, 1250, 1020	1620, 1500, 1410 1220, 1100, 750	1620, 1600, 1520 1410, 1220, 775	1610, 1510, 1400 1330, 1155, 1115	1610, 1510, 1410, 1250, 1210	3440, 1610, 1510 1410, 1215, 1080	3440, 1610, 1590 1510, 1410, 1240	2920, 1615, 1495 1405, 1240, 1090	2940, 1615, 1500 1405, 1220, 825	1600, 1480, 1405 1090, 890, 760
m.p/*C	237238	205.5–207	199,5-204	223–226	192-193,5	158~158	211.5–213	167.5–189	183.5-186	248-250
R³	6-СН,, 7-СН,	6-0CH, 7-:0CH,	8-0CH,, 7-0CH,	6-0CH,,	6-0CH,, 7-0CH,	6-0CH ₃ , 7-0CH ₃	6-осн, 7-осн,	6-0CH ₃ , 7-0CH ₃	6-0CH, 7-0CH,	6-C1, 7-C1
R,	. д	I	Ξ	н	Ħ	Ξ	I	π	Σ	Ι
Α.	2-OCH,, 5-CI	Ι	3-cı	3-cF,	2-сн,, 5-сн,	2-0CH, 5-0CH,	2-осн,, 5-сі	4-C,H,	4-0C,H,	3-C1
Compound No.	(132)	(138)	(141)	(142)	(139)	(140)	(143)	(144)	(145)	(151)
Example	95	98	97	96	66	100	101	102	103	104

TABLE 3 (Continued)

Compound R¹ R³ No. (152) 3-CF₃ H (149) 2-CH³, H	ı ı		6-CI, 7-CI, 6-CI, 7-CI	m.p./ •C 243–244.5 204–205,5	1.R./cm ⁻¹ 1610, 1515, 1450 1415, 1335, 1110 1605, 1560, 1495 1400, 1380	MS 435 (M ⁺) 434 (M ⁺) 433 (M ⁺) 432 395 (M ⁺) 393 (M ⁺)
2-0CH, 5-0CH,		Ι	6-C1, 7-C1	199.5–201	3435, 1610, 1560 1460, 1210	427 (M ⁺) 425 (M ⁺) 394
2-0cH, 5-ci	·	I	6-C1, 7-C1	201–202	3435, 1600, 1550, 1500, 1420, 1250	431 (M ⁺) 429 (M ⁺) 400
2-0CH,	4	4-COOH	Ι	274–275,5	3440, 1690, 1600 1510, 1420, 1240	405 (M ⁺) 374

10

Pharmacological tests:

Artery blood of a rabbit was subjected to centrifugation to obtain platelet rich plasma. To an aliquot of 250 μ l of the plasma, there was added 5 μ l of each pharmaceutical sc lu ion. After incubation for two minutes, platelet aggregation was induced by adding 3 μ g of collagen tc the mixture. The change in platelet aggregation was monitored and recorded by means of an aggregameter for 10 minutes.

The platelet aggregation inhibitory percentage was calculated by the following formula:

Inhibitory percentage =
$$\frac{T_e - T_e}{T_e} \times 100$$

wherein T_c is the degree of aggregation when only a solvent is added and T_s is that when a 10 pharmaceutical solution is added.

Table 4 shows inhibitory percentages at indicated mole concentrations for each compound. As apparently seen from the results, among these compounds, the anilinophthalazine derivatives are generally found to have more potent activity than the phenoxyphthalazine derivatives.

TABLE 4

		Mole concentration		
Example	Compound No.	3 × 10 ⁻⁴	10-4	
1	(1)	56.5	33.9	
2	(2)	80.6	66.1	
3	(3)	100	60.9	
4	(4)	100	100	
5	(6)	100	100	
6	(9)	76.6	Q9.1	
7	(10)	100	100	
3	(12)	100	100	
9	(13)	100	100	
10	(14)	100	100	
11	(16)	100	8.88	
12	(17)	100	100	
13	(18)	100	100	
14	(19)	100	100	
15	(23)	65,5	50,9	
16	(25)	13.6	_	
17	(26)	100	21.1	
18	(28)	100	100	
19	(31)	82.5	24.6	
20	(32)	100	45.3	
21	(33)	100	1 00	
22	(34)	100	100	
. 23	(37)	100	100	
24	(43)	100	100	
25	(44)	85,5	56.5	
26	(42)	100	100	
27	(47)	100	100	
28	(48)	100	100	

	Carrant	Mole concertration		
Example	Compound No.	3 × 10 ⁻⁶	10-4	
29	(51)	100	100	
30	(24)	13,4	-	
31	(213)	100	100	
32	(212)	100	51.3	
33	(214)	100	30.4	
34	(218)	6.38	9.5	
35	(219)	100	100	
36	(227)	73.4	23.8	
37	(228)	100	28.9	
38	(234)	104	€	
39	(236)	100	100	
40	(226)	100	100	
41	(239)	100	100	
42	(248)	100	25.5	
43	(244)	68.4	26.3	
44	(245)	84.1	15.9	
45	(60)	100	100	
46	(63)	100	100	
. 47	(56)	1∞	7.5	
. 48	(59)	100	100	
49	(64)	100	100	
50	(78)	100	100	
51	(79)	100	100	
52	(76)	a. ee	11,8	
53	(77)	100	160	
54	(80)	100	100	
55	(97)	100	100	
56	(98)	100	100	

TABLE 4 (Continued)

	Canada	Mole concentration		
Example	Compound No.	3 × 10°	10-1	
57	(95)	58,7	15.1	
58	(96)	100	9.2	
59	(33)	100	100	
60	(70)	28.0	23.4	
61	(71)	100	26 <i>.2</i>	
62	(68)	55.8		
63	(69)	100	100	
64	(72)	100	54.9	
65	(85)	30.5	18.3	
66	(85)	48.2	25.9	
6 <i>7</i> :	(83)	27.9		
68	(84)	100	100	
69	(37)	61 <i>.</i> 2	35.8	
70	(104)	100 -	-66.7	
71	(105)	100	74.1	
72	(102)	100	69.8	
73	(103)	100	91.9	
74	(106)	84.4	50.0	
75	(91)	92.6	10.6	
76	(92)	29.7		
77	(89)	100	84.9	
78	· (90)	30.5	11.9	
79	(93)	17.7		
80	(110)	12.0	· :	
81	(111)	48.2	36,5	
82	(108)	30.5	^ 4.3	
83	(109)	100	100	
84	(112)	100	100	

TABLE 4 (Continued)

	Compound		Mole cor	ncentration
Example	No.	10*5	3 × 10 ⁻⁶	10-4
85	(119) (120)		100	100
86	(121) (122)		93.1	34.5
87	(115) (116)		100	100
88	{ (117) (118)		100	100
89	(123) (124)		100	100
90	(125)			100
91	(130)			100
92	(131)		ļ	100
93	(127)		100	23.1
94	(128)			100
95	(132)			100
96	(138)			9.1
97	(141)	10.7	1	
98	(142)	46.3		
103	(145)			8.9
104	(151)	13,3		
105	(152)		100	15 <i>.</i> 2
107	(150)	15,8		
108	(153)	27.6		

Safety

Each of the compounds according to the present invention was found to be very low in toxicity, namely not less than 5000 mg/Kg in terms of LD_{50} as measured by oral administration for mouse.

5 CLAIMS

1. A 4-phenylphthalazine derivative represented by the following formula 3. 2 pharmaceutically acceptable salt thereof:

10

25

30

35

$$(R^{2})_{m}$$

$$(R^{3})_{n}$$

wherein X stands for NH or O; R1 an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, a halogen atom, an alkoxycarbonyl group having 2 to 6 total carbon atoms, a carboxyl group, a cyano group, an alkylcarbonyl group having 2 to 4 total carbon atoms, a hydroxyl group or a 5 trifluoromethyl group; R2 and R3, which may be identical or different (may also be the same as or different from R1), each represent an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, a halogen atom, an alkoxycarbonyl group having 2 to 6 total carbon atoms, a carboxyl group, an alkylcarbonyl group having 2 to 4 total carbon atoms, a hydroxyl group or a trifluoropmethyl group; and each of l, m and n is an integer of zero to 3 (provided that l=1 to 3 and 10 m=n=zero when X is O, and the case where l=m=n=zero is excluded when X is NH), each plural number of R¹, R² and R³ being identical or different when the integers I, m and n are two or more,

2. A 4-phenylphthalazine derivative according to Claim 1, wherein X is NH. 3. A 4-phenylphthalazine derivative according to Claim 2, wherein I, m and n are one combination selected from the following combinations (1) to (4):

15

20

(1) l=1 to 3, m=n=zero;

15 (2) i=1 to 2, m=1 to 2, n=zero:

(3) l=1 to 2, m=zero, n=1 to 2; and

(4) l=m=zero, n=1 to 2.

 A 4-phenylphthalazine derivative according to Claim 3, wherein l=1 to 3 and m=n=zero. 5. A 4-phenylphthalazine derivative according to Claim 3, wherein l=1 to 2, m=1 to 2 and n=zero. 20 A 4-phenylphthalazine derivative according to Claim 3, wherein I=1 to 2, m=zero and n=1 to 2.

A 4-phenylphthalazine derivative according to Claim 3, wherein l=m=zero and n=1.

8. A 4-phenylphthalazine derivative according to Claim 1, wherein X is 0.

 A 4-phenylphthalazine derivative according to Claim 8, wherein l=1 to 3 and m=n=zero. 25

10. A 4-phenylphthalazine derivative according to Claim 9, wherein I=1 to 2. 11. A 4-phenylphthalazine derivative according to Claim 1, wherein R1 is an alkyl group having 1

to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, a halogen atom or a trifluormethyl

12. A 4-phenylphthalazine derivative according to Claim 1, wherein R2 is an alkyl group having 1 30 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms or a halogen atom.

13. A 4-phenylphthalazine derivative according to Claim 1, wherein R3 is an alkyl group.

14. A process for preparing a 4-phenylphthalazine derivative represented by the following formula:

wherein X stands for NH or O; R1 an alkyl group having 1 to 5 carbon atoms, an alkoxyy group 35 having 1 to 5 carbon atoms, a halogen atom, an alkoxycarbonyl group having 2 to 6 total carbon atoms, a carboxyl group, a cyano group, an alkylcarbonyl group having 2 to 4 total carbon atoms, a hydroxyl group or a trifluoromethyl group; R2 and R3, which may be identical or different (may also be the same as or different from R1), each represent an alkyl group having 1 to 5 carbon atoms, an

alkoxy group having 1 to 5 carbon atoms, a halogen atom, an alkoxycarbonyl group having 2 to 6 total carbon atoms, a carboxyl group, an alkylcarbonyl group having 2 to 4 total carbon atoms, a hydroxyl group or a trifluoromethyl group; and each of I, m and n is an integer of zero to 3 (provided that I=1 to 3 and m=n=zero when X is O, and the case while I=m=n=zero is excluded when X is NH), each plural number of R¹, R² and R³ being identical or different when the integers I, m and n are two or more,

which comprises allowing a compound of the formula:

Y represents a halogen atom, a group of the formula: —S(0)_p—R⁴, in which p=0—2, R⁴ is a C₁₋₅ alkyl, phenyl or a substituted phenyl or a group of the formula: —OR⁶, in which R⁵ is a C₁₋₅ alkyl, phenyl or a substituted phenyl; R², R³, m and n have the same meanings as defined above, to react with a compound of the formula:

wherein X' represents —NH₂ of OH, and R¹ and I have the same meanings as defined above.

15 15. A process as claimed in Claim 14 and substantially as hereinbefore described with reference 15 to Examples 1 to 109.

16. 4-phenylphthalazine derivatives when prepared by a process as claimed in Claim 14 or 15.

Printed for Her Majesty's Stationery Office by the Courier Press, Learnington Spa, 1981. Published by the Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained.

ST segment change in the same model, and it improved acute myocardial ischemia in anesthetized dogs with partially occluded coronary arteries by dilating the large conductive coronary artery (Isono et al., 1993b). This evidence regarding the action of these guanylate cyclase activators and the finding that E4021 relaxes isolated coronary arteries, as noted previously by Saeki et al. (1993), seem to support the possibility outlined above.

Other mechanisms underlying the action of E4021 on myocardial ischemia may be related to the reduction in the heart preload and afterload. It is well established that nitro vasodilators induce venodilatation, with a consequent reduction of left ventricular end-diastolic pressure and end-diastolic volume (Silber, 1990). FK409 decreases venous return in anesthetized dogs (Yamada et al., 1991). Zaprinast was shown to attenuate ST segment elevation on the electrocardiogram and the increase in left ventricular end-diastolic pressure induced by ventricular overdrive pacing in conscious rabbits (Szilvassy et al., 1993). This result suggests that the protective effect of the phosphodiesterase type V inhibitor on myocardial ischemia may be associated with a decrease in preload. We observed that E4021, like isosorbide dinitrate, causes a dose-dependent reduction in left ventricular end-diastolic pressure in anesthetized dogs (unpublished data). The decreased venous return after E4021 administration leads to reduced cardiac size and work. In the present study, we also found that E4021 decreased mean arterial pressure in a dose-dependent fashion, indicating a reduction in afterload. The decreased preload and afterload may improve myocardial ischemia, as a consequence of lowering the oxygen requirement of the heart. However, we have no decisive evidence concerning the cardiohemodynamic mechanism that underlies the ameliorating action of E4021 on myocardial ischemia in the present experimental models.

In conclusion, the results of the present studies suggest that E4021 may be useful in the treatment of angina pectoris, as a drug to be administered orally like the nitro vasodilators. Nitro vasodilators, however, despite being very effective for the treatment of ischemic heart disease, exhibit the serious problem of clinically attenuating the antianginal effect, i.e., tolerance develops (Leier, 1985). This tolerance may be related to the guanylate cyclase activation pathway (Ignarro et al., 1981). Saeki et al. (1993) have shown that E4021 does not affect guanylate cyclase activity. We would therefore expect that the phosphodiesterase type V inhibitor would have an advantage over nitro vasodilators in this regard. In any case, further investigations are necessary to clarify the mechanism responsible for the antiischemic action of E4021 and to determine the clinical effectiveness of this drug in the treatment of ischemic heart disease and other conditions.

References

- Ahn, H.S., W. Crim, B. Pitts and E.J. Sybertz, 1992, Calciumcalmodulin-stimulated and cyclic-GMP-specific phosphodiesterases: tissue distribution, drug sensitivity, and regulation of cyclic GMP levels, Advances in Second Messenger and Phosphoprotein Research (Raven Press, New York) p. 271.
- Aono, J., M. Akima and K. Sakai, 1981, Effects of N-(2-hydroxyethyl) nicotinamide nitrate (SG-75) on methacholine-induced ECG changes in intact anesthetized rats, Jpn. J. Pharmacol. 31, 823
- Beavo, J.A. and D.H. Reifsnyder, 1990, Primary sequence of cyclic nucleotide phosphodiesterase isozymes and the design of selective inhibitors, Trends Pharmacol. Sci. 11, 150.
- Corliss, R.J., D.H. McKenna, S. Sialer, G.S. O'Brien and G.G. Rowe, 1968, Systemic and coronary hemodynamic effects of vasopressin, Am. J. Med. Sci. 256, 293.
- Dundore, R.L., P.F. Pratt, W.D. Hallenbeck, M.L. Wassey, P.J. Silver and R.A. Buchholz, 1990, Sodium nitroprusside potentiates the depressor response to the phosphodiesterase inhibitor zaprinast in rats, Eur. J. Pharmacol. 185, 91.
- Dundore, R.L., P.G. Habeeb, P.F. Pratt, L.T. Becker, D.M. Clas and R.A. Buchholz, 1992, Differential hemodynamic responses to selective inhibitors of cyclic nucleotide phosphodiesterases in conscious rats, J. Cardiovasc. Pharmacol. 19, 937.
- Hall, I.P., 1993, Isoenzyme selective phosphodiesterase inhibitors: potential clinical uses, Br. J. Clin. Pharmacol. 35, 1.
- Holzmann, S., 1983, Cyclic GMP as possible mediator of coronary arterial relaxation by nicorandil (SG-75), J. Cardiovasc. Pharmacol. 5, 364.
- Ignarro, L.J., H. Lippton, J.C. Edwards, W.H. Baricos, A.L. Hyman, P.J. Kadowitz and C.A. Gruetter, 1981, Mechanism of vascular smooth muscle relaxation by organic nitrates, nitrites, nitroprusside and nitric oxide: evidence for the involvement of S-nitrosothiols as active intermediates, J. Pharmacol. Exp. Ther. 218, 739.
- Isono, T., Y. Koibuchi, N. Sato, A. Furuichi, M. Nishii, T. Yamamoto, J. Mori, M. Kohsaka and M. Ohtsuka, 1993a, Vasorelaxant mechanism of the new vasodilator, FK409, Eur. J. Pharmacol. 246, 205.
- Isono, T., N. Sato, Y. Koibuchi, S. Sakai, T. Yamamoto, R. Ozaki, J. Mori, M. Kohsaka and M. Ohtsuka, 1993b, Effect of FK409, a novel nitric oxide donor, on acute experimental myocardial ischemia, Jpn. J. Pharmacol. 62, 315.
- Kodama, K., H. Adachi, T. Ogawa and H. Ohhara, 1992, Inhibitory effect of a novel antianginal agent, E4080, on ST segment elevation induced by vasopressin in anesthetized guinea pigs, Jpn. J. Pharmacol. 60, 73.
- Leier, C.V., 1985, Nitrate tolerance, Am. Heart J. 110, 224.
- Matlib, M.A., G.P. Dube, R.W. Millard, D.A. Lathrop, Y.H. Baik, K. Sakai, J. DiSalvo and A. Schwartz, 1985, Studies on the mode of action of isosorbide dinitrate: a physiologic and biochemical approach, Am. Heart J. 110, 204.
- Murray, K.J., 1993, Phosphodiesterase VA inhibitors, Drug News Perspectives 6, 150.
- Popescu, L.M., C. Panoiu, M. Hinescue and D. Nutu, 1985, The mechanism of cGMP-induced relaxation in vascular smooth muscle, Eur. J. Pharmacol. 107, 393.
- Raeymaekers, L., F. Hofmann and R. Casteels, 1988, Cyclic GMP-dependent protein kinase phosphorylates phospholamban in isolated sarcoplasmic reticulum from cardiac and smooth muscle, Biochem. J. 252, 269
- Saeki, T., H. Adachi and I. Saito, 1993, A novel selective and potent inhibitor of cGMP-phosphodiesterase, E4021, as an anti-anginal drug, in vitro, Circulation 88, I-38.
- Schoeffter, P., C. Lugnier, F. Demesy-Waeldele and J.C. Stoclet, 1987, Role of cyclic AMP- and cyclic GMP- phosphodiesterases

- in the control of cyclic nucleotide levels and smooth muscle tone in rat isolated aorta, Biochem. Pharmacol. 36, 3965.
- Silber, S., 1990, Nitrates: why and how should they be used today?, Eur. J. Clin. Pharmacol. 38 (Suppl. I), S 35.
- Souness, J.E., R. Brazdil, B.K. Diocee and R. Jordan, 1989, Role of selective cyclic GMP phosphodiesterase inhibition in the myorelaxant actions of M&B 22,948, MY-5445, vinpocetine and 1methyl-3-isobutyl-8-(methylamino) xanthine, Br. J. Pharmacol. 98, 725.
- Szilvassy, Z., I. Jakab, P. Ferdinandy, M. Koltai, J. Lonovics, T. Tarrade and P.G. Braquet, 1993, Zaprinast, cicletanine, and verapamil attenuate overdrive pacing-induced myocardial ischemia in conscious rabbits, Life Sci. 53, 13.
- Twort, C.H.C. and C. Van Breemen, 1988. Cyclic guanosine monophosphate-enhanced sequestration of Ca²⁺ by sarcoplasmic reticulum in vascular smooth muscle, Circ. Res. 62, 961.
- Weishaar, R.E., D. Kobylarz-Singer, J.A. Keiser, C.D. Wright, J. Cornicelli and R. Panek, 1992, Cyclic nucleotide phosphodiesterases in the circulatory system: biochemical, pharmacological, and functional characteristics, Advances in Second Messenger and Phosphoprotein Research (Raven Press, New York), p. 249.
- Yamada, H., F. Yoneyama, K. Sato and N. Taira, 1991, Cardiohemodynamic effect of FK409, a novel highly potent nitrovasodilator, in anesthetized dogs, Eur. J. Pharmacol. 205, 81.