

Mining Large Scale Datasets

Locality-Sensitive Hashing

(Adapted from CS246@Starford.edu; http://www.mmds.org)

Sérgio Matos - aleixomatos@ua.pt

- Family of related techniques
- Allows to only examine pairs that are likely to be similar Avoids quadratic growth in computation time

LSH: general idea

- Hash items into buckets using many different hash functions
 - \hookrightarrow Functions are designed so that similar items are more likely to hash into same bucket
- Only pairs that share a bucket for at least one of the hash functions need to be examined
 - \hookrightarrow There may be false negatives pairs of similar items may not be considered at all
 - → There may be false positives pairs of items may be erroneously found as similar

Similar Documents: Steps

- **Shingling**: Converts a document into a set representation
- **Min-Hashing**: Convert large sets to short signatures, while preserving similarity
- Locality-Sensitive Hashing: Focus on pairs of signatures likely to be from similar documents

Min-Hashing

Permutations

2	4	3
3	2	4
7	1	7
6	3	2
1	6	6
5	7	1
4	5	5

Characteristic matrix

1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

Signature matrix

2	1	2	1
2	1	4	1
1	2	1	2

Similarities

1-2 1-3 2-4 3-4 0 .75 .75 0 Original 0 .67 1 0 Signatures

LSH with a single min hash function (one band of one row)

 $\mathsf{LSH}-\mathsf{Optimal}$ scenario: only pairs of sets with similarity $>\mathsf{t}$ are selected as candidates

7/40

- b bands, r rows/band
- Consider columns C1 and C2 with similarity s
- For any band (r rows):
 - Probability that all rows in band are equal $= s^r$
 - Probability that some row in band is unequal = $1 s^r$
 - Probability that no band identical = $(1 s^r)^b$
 - Probability that at least 1 band identical = $1 (1 s^r)^b$

Locality-Sensitive Hashing: S-curve

LSH - b bands of r rows: S-curve

Locality-Sensitive Hashing: S-curve

Given a fixed threshold t, we want to choose r and b such that $Prob(Candidate\ pair)$ has a "step" around t.

LSH Families of Hash Functions

- In the context of LSH families, a "hash function" is any function that allows us to say whether two elements are candidates for comparison
 - We use the notation

$$h(x) = h(y)$$

to mean "h says x and y are a candidate pair"

• A family of hash functions is any set of hash functions from which we can pick one at random efficiently

For Min-Hashing signatures, each permutation of rows gives us a different Min-Hash function

LSH Families of Hash Functions

• Consider a space S of points with a distance measure d(x,y)Can be Jaccard, Cosine, Euclidean, or other distance

```
(d_1, d_2, p_1, p_2)-sensitive family
```

- A family H of hash functions is said to be (d1, d2, p1, p2)-sensitive if for any x and y in S:

 If $d(x, y) < d_1$, then the probability that h(x) = h(y), over all $h \in H$, is at least p_1 If $d(x, y) > d_2$, then the probability that h(x) = h(y), over all $h \in H$, is at most p_2
 - → With a LS Family we can do LSH!

(d_1, d_2, p_1, p_2) -sensitive family

For distances d_1 and below, the probability is at least p_1 , and for distances d_2 and above, the probability is at most p_2 . Between distances d_1 and d_2 , we know nothing.

Goal: Minimize difference btw d_1 and d_2 and maximize distance btw p_1 and p_2 .

Example of LS Family: Min-Hash

Consider

 $\mathsf{S} = \mathsf{space} \; \mathsf{of} \; \mathsf{all} \; \mathsf{sets}$

d = Jaccard distance

H: a family of Min-Hash functions for all permutations of rows

• Then for any hash function $h \in H$

$$Pr[h(x) = h(y)] = 1 - d(x,y)$$

Example of LS Family: Min-Hash

• For Jaccard distance, Min-Hashing gives a $(d_1, d_2, (1 - d_1), (1 - d_2))$ -sensitive family for any $d_1 < d_2$

Example:

H is a (1/3, 2/3, 2/3, 1/3)-sensitive family for S and d

If distance $\leq 1/3$, similarity $\geq 2/3$

Then probability that min-hash values are the same is $\geq 2/3$

Amplifying a LS-Family

- Reproduce the "S-curve" effect for any LS family
- The "bands" technique we learned for signature matrices carries over to this more general setting
- Two constructions

AND construction ~ "rows in a band" **OR** construction ~ "many bands"

AND of Hash Functions

 Given family H, construct family H' consisting of r functions from H

```
For h = [h_1, ..., h_r] in H',

h(x) = h(y) if and only if h_i(x) = h_i(y) for all i

\rightarrow corresponds to creating a band of size r
```

Theorem

If H is (d_1,d_2,p_1,p_2) -sensitive, H' is $(d_1,d_2,{p_1}^r,{p_2}^r)$ -sensitive

Lowers probability for large distances (Good)

Also lowers probability for small distances (Bad)

OR of Hash Functions

 Given family H, construct family H' consisting of b functions from H

For
$$h = [h_1, ..., h_b]$$
 in H' ,
 $h(x) = h(y)$ if and only if $h_i(x) = h_i(y)$ for at least one i

Theorem

If H is (d_1, d_2, p_1, p_2) -sensitive, H' is $(d_1, d_2, 1 - (1 - p_1)^b, 1 - (1 - p_2)^b)$ -sensitive

Raises probability for small distances (Good)) Raises probability for large distances (Bad)

Effect of AND and OR constructions

- AND makes all probabilities shrink
 - by choosing *r* correctly, we can make the lower probability approach 0 while the higher does not
- OR makes all probabilities grow
 - by choosing *b* correctly, we can make the upper probability approach 1 while the lower does not

Combining AND and OR Constructions

- r-way AND followed by b-way OR construction
- Same as in Min-Hashing
 - AND: If bands match in all r (values hash to same bucket)
 - OR: Columns that have at least one common bucket form a candidate pair
- If for points x and y Pr[h(x) = h(y)] = s
 - H will make (x, y) a candidate pair with probability s
 - r*AND b*OR construction makes (x, y) a candidate pair with probability $1 (1 s^r)^b$
 - → S-curve
- Can use OR followed by AND; can combine sequences

AND-OR construction: example

S	$p = 1 - (1 - s^4)^4$
0.2	0.0064
0.3	0.0320
0.4	0.0985
0.5	0.2275
0.6	0.4260
0.7	0.6666
0.8	0.8785
0.9	0.9860

r = 4, b = 4 transforms a $(d_1,d_2,0.8,0.2)$ -sensitive family into a $(d_1,d_2,0.8785,0.0064)$ -sensitive family.

OR-AND construction: example

s	$p = (1 - (1 - s)^4)^4$
0.1	0.0140
0.2	0.1215
0.3	0.3334
0.4	0.5740
0.5	0.7725
0.6	0.9015
0.7	0.9680
8.0	0.9936

r = 4, b = 4 transforms a $(d_1,d_2,0.8,0.2)$ -sensitive family into a $(d_1,d_2,0.9936,0.1215)$ -sensitive family.

Cascading constructions

- Example: Apply the (4,4) OR-AND construction followed by the (4,4) AND-OR construction
- Transforms a $(d_1, d_2, 0.8, 0.2)$ -sensitive family into a $(d_1, d_2, 0.9999996, 0.0008715)$ -sensitive family

Note that this family uses 256 (=4*4*4*4) of the original hash functions

Constructions: visualization of threshold t

For an AND-OR S-curve $1-(1-s^r)^b$, the threshold t is where $1-(1-s^r)^b=t$ Probabilities p_1 and p_2 should be at opposite sides of t

Summary

- Pick any two distances $d_1 < d_2$
- ullet Start with a (d_1,d_2,p_1,p_2) -sensitive family
- Apply constructions to amplify (d_1, d_2, p_1^*, p_2^*) -sensitive family, where p_1^* is almost 1 and p_2^* is almost 0
- The closer to 0 and 1 we want to get, the more hash functions must be used!

LSH for other distance metrics

LSH for other distance metrics

- Cosine distance
 - Random hyperplanes
- Euclidean distance
 - Random projections

LSH for cosine distance

- For cosine distance, there is a technique called Random Hyperplanes
 - Technique similar to Min-Hashing
- Random Hyperplanes method is a $(d_1,d_2,(180-d_1)/180,(180-d_2)/180)$ sensitive family for any d_1 and d

```
Reminder: (d_1, d_2, p_1, p_2)-sensitive

If d(x, y) < d_1, then probability that h(x) = h(y) is at least p_1

If d(x, y) > d_2, then probability that h(x) = h(y) is at most p_2
```

Random hyperplanes visualization

29/40

Random hyperplanes visualization So: Prob[Red case] = θ / π So: $P[h(x)=h(y)] = 1 - \theta/\pi = 1 - d(x,y)/\pi$

Signatures for Cosine Distance

• Pick some number of random vectors v_i , and hash your data for each vector

$$h_{v_i}(x) = +1 \text{ if } v_i \cdot x \ge 0$$

 $h_{v_i}(x) = -1 \text{ if } v_i \cdot x < 0$

- ullet Result is a signature (sketch) of +1's and -1's for each data point
- Can be used for LSH, in same way as Min-Hash signatures are used for Jaccard distance
- Amplify using AND/OR constructions

How to select random vectors

- Expensive to pick random vectors in M dimensions for large M
 Would require generating M random numbers
- ullet It suffices to consider only vectors v_i consisting of +1 and -1 components

Assuming data is random, then vectors of +/-1 cover the entire space evenly (no bias)

LSH for Euclidean distance

- Hash functions correspond to lines
- Partition the line into buckets (line segments) of size a
- Hash each point to the bucket containing its projection onto the line
- An element of the "signature" is a bucket id for that given projection line
- Nearby points are always close; distant points are rarely in same bucket

Projections

Projections

If **d** << **a**, then the chance the points are in the same bucket is at least **1** – **d/a**.

Projections

36/40

LS-Family for Euclidean Distance

- If points are at distance $d \le a/2$, then the probability of falling in same bucket is at least 1 d/a, or 1/2
- If points are at distance $d \ge 2a$, then they can fall in the same bucket only if $d \cdot cos\theta \le a$, which is only true if

```
cos\theta \le 1/2
60 < \theta < 90, i.e., at most 1/3 probability
```

- Yields a (a/2, 2a, 1/2, 1/3)-sensitive family of hash functions for any a
- Amplify using AND-OR cascades

LS families

38/40

Important points

- Property P(h(C1)=h(C2)) = sim(C1,C2) of hash function h is the essential part of LSH, without it we can't do anything
- LS-hash functions transform data to signatures so that the bands technique (AND, OR constructions) can then be applied

Further fun... [MMDS 3.8, 3.9]

Application examples

Entity resolution

Idea: Score 100 for each full match on name, address, or phone Sort on name, score matching lines; repeat for address, phone

Fingerprint matching

Fingerprints represented by set of grid squares containing minutiae: can use Jaccard similarity

LSH family: each hash function is a set of grid squares

Similar news articles

Shingles defined by a stopword followed by the next two words

Sets as strings

- Length-based filtering
- Prefix indexing