Formulario de electrostática

Fuerza entre dos cargas:

$$\vec{F} = K \cdot \frac{Q_1 \cdot Q_2}{r^2} \cdot \vec{u}_{12}$$
 siendo $K = \frac{1}{4 \cdot \pi \cdot \varepsilon}$ $(N \cdot m^2 \cdot C^{-2})$ y $\epsilon = \epsilon_0 \cdot \epsilon_r$;

 ϵ_o = Permitividad en el vacío: 8,854 · 10^{-12} ; ϵ_r = Permitividad relativa al medio. En el vacío: K = $\frac{1}{4 \cdot \pi \cdot \epsilon_0}$ = 9· 10^9 -en el SI-

Intensidad de campo:

$$\vec{E} = K \cdot \frac{Q}{r^2} \cdot \vec{u}_{12}$$
 $(N/C) = (V/m)$

Fuerza sobre una carga dentro de un campo:

$$\vec{F} = Q \cdot \vec{E}$$

Potencial:

$$V = \frac{Q}{r}$$
 (Voltios); $E = \frac{V}{r}$

Energía potencial:

$$E_p = K \cdot \frac{Q_1 \cdot Q_2}{r}; \quad E_p = Q \cdot V; \quad (J)$$

Trabajo del campo para mover una carga entre dos puntos:

$$W = -\Delta E_p$$
; $\rightarrow W = -Q(V_{final} - V_{inicial})$;

El trabajo de llevar una carga a lo largo de una línea equipotencial sería = 0 J.