

	4 how to check constraints satisfied? L) sample over path. In general, sampling techniques are popular but have to tackle a hard control and constraint check problem so some usually still apply MPC. Summary of Methods				
\mathbb{I}					
Ackermann	Dynamics LTE 31	Constraints no	Feedback	Real-II	me?
LOR	LTV	No	Yes	yes	
MPC	LTY	yes* polytopes	yes	yes	
Monlinear Trajedory Opt.	Nonlinear	discretized	10 h	no	0
Sampling	Nonlinear	discretized /	no	nor (faster than optimiz	nonlinear &
1	Application	ns			9
1. 2.	ACC, lone keeping - LQR os Ackermann low speed lane change tushs-(RKT or Nonlinear trajectory (Spt) + MPC				0.00
	/ /				

