#### Problem 1

(a). Assume {p,q,r} in P<sub>ROG</sub>,

Firstly, we can easily prove that  $p \equiv p$ ,

Thus, F is reflexive

Secondly, assume  $p \equiv q$ , then  $p \leftrightarrow q$ 

| р | q | $p \rightarrow q$ | $q \rightarrow p$ | $p \leftrightarrow q$ | q ↔ p |
|---|---|-------------------|-------------------|-----------------------|-------|
| Т | Т | Т                 | Т                 | Т                     | Т     |
| Т | F | F                 | Т                 | Т                     | Т     |
| F | Т | Т                 | F                 | Т                     | Т     |
| F | F | Т                 | Т                 | Т                     | Т     |

As the above truth table, from  $p \leftrightarrow q$ , we can get  $q \leftrightarrow p$ ,

Thus, F is symmetric

Finally, assume  $p \equiv q$  and  $q \equiv r$ , then  $p \leftrightarrow q$  and  $q \leftrightarrow r$ 

| р | q | r | p→q | q→p | q→r | r→q | p→r | r→p | р↔q | q↔r | p↔r |
|---|---|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Т | Т | Т | Т   | Т   | Т   | Т   | Т   | Т   | Т   | Т   | Т   |
| Т | Т | F | Т   | Т   | F   | Т   | F   | Т   | Т   | F   | F   |
| Т | F | Т | F   | Т   | Т   | F   | Т   | Т   | F   | F   | Т   |
| Т | F | F | F   | Т   | Т   | Т   | F   | Т   | F   | Т   | F   |
| F | Т | Т | Т   | F   | Т   | Т   | Т   | F   | F   | Т   | F   |
| F | Т | F | Т   | F   | F   | Т   | Т   | Т   | F   | F   | Т   |
| F | F | Т | Т   | Т   | Т   | F   | Т   | F   | Т   | F   | F   |
| F | F | F | Т   | Т   | Т   | Т   | Т   | Т   | Т   | Т   | Т   |

As the above truth table, from  $p \leftrightarrow q$  and  $q \leftrightarrow r$ , we can get  $p \leftrightarrow r$ ,

Thus, F is transitive.

As a result we can get that the logical equivalence relation,  $\equiv$ , is an equivalence relation on F .

(b).

| р | q | r | p→q | p→r | р∧а | p∧r |
|---|---|---|-----|-----|-----|-----|
| Т | F | F | F   | F   | F   | H   |

As the above truth table,  $\{p \rightarrow q, p \rightarrow r, p \land q, p \land r\}$  in  $[\bot]$ .

(c). (i). 
$$v(\neg \phi) = !v(\phi)$$
  
 $= !v(\phi')$   
 $= v(\neg \phi')$   
Thus,  $\neg \phi \equiv \neg \phi'$   
(ii).  $v(\phi \land \psi) = v(\phi) \&\& v(\psi)$   
 $= v(\phi') \&\& v(\psi')$   
 $= v(\phi' \land \psi')$   
Thus,  $\phi \land \psi \equiv \phi' \land \psi'$   
(iii).  $v(\phi \lor \psi) = v(\phi) \parallel v(\psi)$   
 $= v(\phi') \parallel v(\psi')$   
 $= v(\phi' \lor \psi')$   
Thus,  $\phi \lor \psi \equiv \phi' \lor \psi'$ 

(d).  $T = \{ [\phi] : \phi \in F \}$ 

 $[\phi] \wedge [\psi] : [\phi \wedge \psi]$ 

 $[\phi] \lor [\psi]$ :  $[\phi] \lor [\psi]$ 

 $[\phi]': [\neg \phi]$ 

0:Ø

1 : F

# Problem 2

(a).



As above picture show,

$$\chi(G) = 3$$
,

 $\therefore \chi(K5) = 5 \text{ and } \chi(G) \geqslant \kappa(G).$ 

 $\therefore$  The Petersen graph does not contain a subdivision of K5 (b).



As above picture shows,

Connecting 1 and 7 with replacing 2

Connecting 4 and 8 with replacing 3

Connecting 1 and 8 with replacing 6

Connecting 4 and 7 with replacing 9

Then, we get  $K_{3,3}$ 

(a) (i).



Define Defence against the Dark Arts as A Define Potions as B Define Herbology as C

Define Transfiguration as D

Define Charms as E

Define edge AC as Harry can take A and C both

Define edge AD as Harry can take A and D both

Define edge BD as Harry can take B and D both

Define edge BE as Harry can take B and E both

Define edge CE as Harry can take C and E both

(ii). Find a vertex with maximum edges, which means that vertex has maximum number of classes he can take

## (b) There five solutions:

- 1 Take both A and C
- 2 Take both A and D
- 3 Take both B and D
- 4 Take both B and E
- (5) Take both C and E

## Problem 4

(a) T(n):

$$T(0) = 1$$

$$T(1) = 1$$

$$T(n) = T(n-1) * (4*n - 2) / (n+1)$$

(b) Assume the layer of full binary tree is k and the number of nodes is n Count(n):

$$n = 1$$
  $k = 0$ 

$$n = 1 + 2^k \quad k > 0$$

As 1 is odd and  $2^k$  is even,

Thus,  $1 + 2^k$  is odd.

As a result, a full binary tree must have an odd number of nodes.

(c) 
$$T(n) = \frac{1}{n+1} \binom{2n}{n}$$

$$B(n) = \frac{1}{T(n)} \binom{2n}{n} - 1$$

(d)

#### Problem 5

(a) 
$$p_1(n+1) = (p_2(n)+p_4(n))/3$$

$$p_2(n+1) = (p_1(n)+p_3(n))/2 + p_4(n)/2$$

$$p_3(n+1) = (p_2(n)+p_4(n))/3$$

$$p_4(n+1) = (p_1(n)+p_3(n))/2 + p_2(n)/2$$

(b) Let  $p_i(n+1) = p_i(n)$ ,

Then, we can get

$$p_1(n) = (p_2(n) + p_4(n))/3$$

$$p_2(n) = (p_1(n) + p_3(n))/2 + p_4(n)/2$$

$$p_3(n) = (p_2(n) + p_4(n))/3$$

$$p_4(n) = (p_1(n) + p_3(n))/2 + p_2(n)/2$$

from 
$$\bigcirc$$
 and  $\bigcirc$  we get  $n (n) = n ($ 

from ① and ③, we get 
$$p_1(n) = p_3(n)$$

from ② and ⑤, 
$$p_2(n) = p_1(n) + p_4(n)/2$$
  
from ② and ⑤,  $p_4(n) = p_1(n) + p_2(n)/2$ 

$$\widehat{7}$$

from 
$$\textcircled{6}$$
 -  $\textcircled{7}$ ,  $p_2(n) = p_4(n)$ 

from 
$$\textcircled{6}$$
 and  $\textcircled{8}$ ,  $p_2(n) = 2 p_1(n)$ 

$$p_1(n) + p_2(n) + p_3(n) + p_4(n)$$

$$= p_1(n) + 2 p_1(n) + p_1(n) + 2 p_1(n)$$

$$= 6 p_1(n) = 1$$

Then , we get 
$$p_1(n) = p_3(n) = 1/6$$
,  $p_2(n) = p_4(n) = 1/3$ .

(c) 
$$d(v_1-v_2) = p_2(n)*1 = 1/3$$

$$d(v_1-v_4) = p_4(n)*1 = 1/3$$

$$d(v_1-v_3) = p_3(n)*2 + p_3(n)*2 = (1/6)*2 + (1/6)*2 = 2/3$$