```
In [111...
         import numpy as np
          import pandas as pd
          import matplotlib.pyplot as plt
          from sklearn.model selection import train test split, cross val score
          from sklearn.preprocessing import StandardScaler
          from sklearn.linear model import LogisticRegression
          from sklearn.svm import SVC
          from sklearn.ensemble import RandomForestClassifier
          from sklearn.metrics import confusion matrix, accuracy score
          import tensorflow.keras
          from keras.models import Sequential
          from keras.layers import Dense, LeakyReLU
          %matplotlib inline
In [112... df = pd.read_csv('facebook_ads.csv', encoding='ISO-8859-1')
          df
```

Out	Γ112
out	L T T C

	Names	emails	Country	Time Spent on Site	Salary	Clicked
0	Martina Avila	cubilia.Curae.Phasellus@quisaccumsanconvallis.edu	Bulgaria	25.649648	55330.06006	0
1	Harlan Barnes	eu.dolor@diam.co.uk	Belize	32.456107	79049.07674	1
2	Naomi Rodriquez	vulputate.mauris.sagittis@ametconsectetueradip	Algeria	20.945978	41098.60826	0
3	Jade Cunningham	malesuada@dignissim.com	Cook Islands	54.039325	37143.35536	1
4	Cedric Leach	felis.ullamcorper.viverra@egetmollislectus.net	Brazil	34.249729	37355.11276	0
•••						
494	Rigel	egestas.blandit.Nam@semvitaealiquam.com	Sao Tome and Principe	19.222746	44969.13495	0
495	Walter	ligula@Cumsociis.ca	Nepal	22.665662	41686.20425	0
496	Vanna	Cum.sociis.natoque@Sedmolestie.edu	Zimbabwe	35.320239	23989.80864	0
497	Pearl	penatibus.et@massanonante.com	Philippines	26.539170	31708.57054	0
498	Nell	Quisque.varius@arcuVivamussit.net	Botswana	32.386148	74331.35442	1

499 rows × 6 columns

Exeploration Datasets

In [113... df.info()

```
<class 'pandas.core.frame.DataFrame'>
          RangeIndex: 499 entries, 0 to 498
         Data columns (total 6 columns):
               Column
                                    Non-Null Count Dtype
               Names
                                    499 non-null
                                                     object
               emails
                                    499 non-null
                                                     object
                                                     object
               Country
                                    499 non-null
               Time Spent on Site 499 non-null
                                                     float64
           4
               Salary
                                    499 non-null
                                                     float64
           5
               Clicked
                                    499 non-null
                                                     int64
         dtypes: float64(2), int64(1), object(3)
         memory usage: 23.5+ KB
          df.duplicated().sum()
In [114...
Out[114...
          df.isna().sum()
In [115...
Out[115...
           Names
                                  0
           emails
           Country
           Time Spent on Site
           Salary
                                   0
           Clicked
           dtype: int64
          df.describe().round(2).T
In [116...
Out[116...
                                                                 25%
                                                                           50%
                                                                                     75%
                                                    std min
                              count
                                        mean
                                                                                              max
           Time Spent on Site
                                        32.92
                                                         5.0
                                                                           33.20
                                                                                    39.11
                                                                                               60.0
                               499.0
                                                   9.10
                                                                 26.43
                              499.0
                      Salary
                                     52896.99
                                               18989.18
                                                              38888.12
                                                                       52840.91
                                                                                 65837.29 100000.0
                                                        20.0
                      Clicked
                              499.0
                                         0.50
                                                   0.50
                                                         0.0
                                                                  0.00
                                                                           1.00
                                                                                     1.00
                                                                                                1.0
```

Clean Datasets

```
In [117...
          def clean_outliers(df, cols):
              for col in cols:
                  # Calculate IQR
                  q1 = df[col].quantile(0.25)
                  q3 = df[col].quantile(0.75)
                  iqr = q3 - q1
                  # Define outlier bounds
                  lower bound = q1 - 1.5 * iqr
                  upper_bound = q3 + 1.5 * iqr
                  # Remove outliers
                  df = df[(df[col] >= lower_bound) & (df[col] <= upper_bound)]</pre>
              return df
          df= clean_outliers(df,df[['Time Spent on Site', 'Salary']])
In [118...
          df.drop(columns=['Names','emails', 'Country'], inplace=True)
In [119...
In [120...
         df
```

Out[120		Time Spent on Site	Salary	Clicked
	0	25.649648	55330.06006	0
	1	32.456107	79049.07674	1
	2	20.945978	41098.60826	0
	3	54.039325	37143.35536	1
	4	34.249729	37355.11276	0
	•••			
	494	19.222746	44969.13495	0
	495	22.665662	41686.20425	0
	496	35.320239	23989.80864	0
	497	26.539170	31708.57054	0
	498	32.386148	74331.35442	1

497 rows × 3 columns

Machine Learning:

```
In [121... scaler = StandardScaler()
In [122... X = df[['Time Spent on Site', 'Salary']]
    y= df['Clicked']
In [123... X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
In [124... X_train = scaler.fit_transform(X_train)
    X_test = scaler.transform(X_test)
```

1- Logistic Regression:

```
In [125... lr = LogisticRegression()
    scores_logistic_regression = cross_val_score(lr, X, y, cv=5, scoring='accuracy')
    print(f'Accuracy Score with Logistic Regression = {scores_logistic_regression.mean().round(2)}')
```

Accuracy Score with Logistic Regression = 0.91

2- Support Vector Classifier:

```
In [126...
svc = SVC()
scores_svc = cross_val_score(svc, X, y, cv=5, scoring='accuracy')
print(f'Accuracy Score with Support Vector Classifier = {scores_svc.mean().round(2)}')
```

Accuracy Score with Support Vector Classifier = 0.81

3- Random Forest Classifier:

```
In [127...
rfc = RandomForestClassifier()
scores_Random_Forest_Classifier = cross_val_score(rfc, X, y, cv=5, scoring='accuracy')
print(f'Accuracy Score with scores Random Forest Classifier = {scores_Random_Forest_Classifier.mean().round(2)}')
```

Accuracy Score with scores Random Forest Classifier = 0.89

Deep Learning:

```
In [128...
ann = Sequential()
ann.add(Dense(units=50)) # 1st Hidden Layer
ann.add(LeakyReLU())
ann.add(Dense(units=50, activation='relu')) # 2nd Hidden Layer
ann.add(Dense(units=1, activation='sigmoid')) # Output Layer

In [129...
ann.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
In [130...
ann.fit(X_train, y_train, batch_size = 32, epochs = 100)
```

	1/100		2 / 1						0. 6300
-	2/100	25	3ms/step	-	accuracy:	0.5/53	-	loss:	0.6388
		0s	3ms/step	-	accuracy:	0.8747	-	loss:	0.5088
	3/100	0s	3ms/step	_	accuracv:	0.8980	_	loss:	0.4174
Epoch	4/100				_				
-	5/100	0s	3ms/step	-	accuracy:	0.8838	-	loss:	0.3823
13/13		0s	3ms/step	-	accuracy:	0.8794	-	loss:	0.3354
•	6/100	0s	3ms/sten	_	accuracy:	0 8896	_	loss	0 3117
Epoch	7/100								
	8/100	0s	3ms/step	-	accuracy:	0.9064	-	loss:	0.2806
13/13		0s	3ms/step	-	accuracy:	0.9009	-	loss:	0.2545
•	9/100	95	3ms/sten	_	accuracy:	a 9a71	_	1055.	0 2616
Epoch	10/100				_				
	11/100	0s	3ms/step	-	accuracy:	0.8925	-	loss:	0.2774
13/13		0s	3ms/step	-	accuracy:	0.9079	-	loss:	0.2686
•	12/100	95	3ms/sten	_	accuracy:	0.9069	_	loss:	0.2770
Epoch	13/100								
-	14/100	0s	3ms/step	-	accuracy:	0.9263	-	loss:	0.2440
13/13		0s	3ms/step	-	accuracy:	0.9206	-	loss:	0.2511
	15/100	0 s	3ms/sten	_	accuracy:	0.8962	_	loss:	0.2736
Epoch	16/100				-				
	17/100	0s	3ms/step	-	accuracy:	0.9219	-	loss:	0.2203
13/13		0s	3ms/step	-	accuracy:	0.9286	-	loss:	0.2391
	18/100	0s	2ms/step	_	accuracy:	0.9314	_	loss:	0.2359
Epoch	19/100								
13/13 Epoch	20/100	0s	2ms/step	-	accuracy:	0.9054	-	loss:	0.2440
13/13		0s	2ms/step	-	accuracy:	0.9218	-	loss:	0.2437
Epoch	21/100								

13/13		0s	2ms/step	_	accuracv:	0.8696	_	loss:	0.3415
	22/100		.,						
13/13		0s	3ms/step	-	accuracy:	0.9162	-	loss:	0.2485
	23/100								
13/13		0s	4ms/step	-	accuracy:	0.9266	-	loss:	0.2176
Epoch	24/100								
		0s	4ms/step	-	accuracy:	0.9141	-	loss:	0.2556
•	25/100	_	2 / .						
		0s	3ms/step	-	accuracy:	0.905/	-	loss:	0.2855
•	26/100	00	2mc/c+on		26611026144	0 0036		1000	0 2676
•	27/100	05	ziiis/step	_	accuracy.	0.9030	_	1055.	0.2076
•		0s	3ms/sten	_	accuracy:	0 9236	_	loss	0 2483
	28/100	05	33, 3 ccp		accai acy.	0.3230		1033.	012103
•		0s	3ms/step	_	accuracy:	0.9283	_	loss:	0.2307
Epoch	29/100				-				
13/13		0s	3ms/step	-	accuracy:	0.9055	-	loss:	0.2609
•	30/100								
		0s	3ms/step	-	accuracy:	0.9195	-	loss:	0.2588
	31/100	_						_	
	22/100	0s	3ms/step	-	accuracy:	0.9122	-	loss:	0.2502
12/12	32/100	00	2mc/c+on		accuracy:	0 0102		1000	0 2454
	33/100	62	Jiis/step	_	accuracy.	0.9103	_	1055.	0.2434
		05	3ms/sten	_	accuracy:	0.9054	_	loss:	0.2689
	34/100		о, о о о р		,				
•	-	0s	2ms/step	_	accuracy:	0.9098	_	loss:	0.2568
Epoch	35/100								
		0s	3ms/step	-	accuracy:	0.9079	-	loss:	0.2467
•	36/100								
		0s	3ms/step	-	accuracy:	0.8975	-	loss:	0.2738
•	37/100	0-	A			0.0165		1	0 2107
	38/100	05	4ms/step	-	accuracy:	0.9165	-	1055:	0.2187
		۵s	3ms/sten	_	accuracy:	0 9001	_	1055.	0 2558
	39/100	03	эшэ/ эсср		accuracy.	0.3004		1033.	0.2330
13/13		0s	3ms/step	_	accuracy:	0.8950	_	loss:	0.2814
	40/100				,				
13/13		0s	3ms/step	-	accuracy:	0.8860	-	loss:	0.2760
•	41/100								
13/13		0s	3ms/step	-	accuracy:	0.8930	-	loss:	0.2737

Epoch	42/100								
		0s	3ms/step	-	accuracy:	0.8995	-	loss:	0.2693
	43/100								
		0s	2ms/step	-	accuracy:	0.9063	-	loss:	0.2561
	44/100								
		0s	3ms/step	-	accuracy:	0.9008	-	loss:	0.2630
	45/100		2 / /					-	
	46/400	0S	3ms/step	-	accuracy:	0.9200	-	loss:	0.2385
•	46/100	0.0	2ms/ston		26611026144	0 0022		1000	0 2400
	47/100	05	siis/step	-	accuracy:	0.9022	-	1055:	0.2409
•	47/100	۵c	3ms/ston		accupacy:	0 8023		1000	0 2755
	48/100	03	Jiiis/ step	_	accui acy.	0.0923	_	1033.	0.2755
		95	3ms/sten	_	accuracy:	0.9284	_	loss:	0.2229
	49/100	0.5	ээ, эсср		accar acy.	0.320.		1033.	0.2223
	,	0s	3ms/step	_	accuracy:	0.8780	_	loss:	0.2965
	50/100				,				
		0s	2ms/step	_	accuracy:	0.9272	_	loss:	0.2282
Epoch	51/100								
13/13		0s	4ms/step	-	accuracy:	0.9065	-	loss:	0.2433
	52/100								
		0s	2ms/step	-	accuracy:	0.9273	-	loss:	0.2290
	53/100								
		0s	3ms/step	-	accuracy:	0.9317	-	loss:	0.2187
	54/100	_	2 / 1					-	
	FF /100	0S	2ms/step	-	accuracy:	0.9059	-	loss:	0.23/3
•	55/100 ———————	۵c	2ms/ston		accuracy.	0 807/		1000	0 2712
	56/100	03	21113/3CEP	_	accui acy.	0.0374	_	1033.	0.2/12
•		0 s	3ms/sten	_	accuracy:	0.8942	_	loss:	0.2613
	57/100		т, с с с р		,				
		0s	4ms/step	_	accuracy:	0.9081	_	loss:	0.2502
Epoch	58/100								
13/13		0s	4ms/step	-	accuracy:	0.8907	-	loss:	0.2556
Epoch	59/100								
13/13		0s	3ms/step	-	accuracy:	0.9094	-	loss:	0.2387
•	60/100							_	
13/13		0s	3ms/step	-	accuracy:	0.9294	-	loss:	0.2085
	61/100	•	2 / 1			0.0115		,	0 2222
13/13		US	₃ms/step	-	accuracy:	0.9143	-	TOSS:	0.2289
Epocn	62/100								

13/13		0s	7ms/step	_	accuracv:	0.9141	_	loss:	0.2238
	63/100		, с с с р		,				
•		0s	2ms/step	-	accuracy:	0.8956	-	loss:	0.2682
	64/100								
13/13		0s	2ms/step	-	accuracy:	0.9025	-	loss:	0.2527
Epoch	65/100								
		0s	3ms/step	-	accuracy:	0.9160	-	loss:	0.2361
•	66/100							_	
	67/100	0s	4ms/step	-	accuracy:	0.9016	-	loss:	0.2486
•	67/100	00	2ms/ston		26611026144	a 0002		10001	0 2020
-	68/100	05	siis/step	-	accuracy:	0.8892	-	1055:	0.2830
•		95	3ms/sten	_	accuracy:	0 9109	_	1055.	0 2428
	69/100	05	эшэ, эсср		accar acy.	0.5105		1033.	0.2-20
•		0s	4ms/step	_	accuracy:	0.8982	_	loss:	0.2572
Epoch	70/100		·		•				
13/13		0s	4ms/step	-	accuracy:	0.8893	-	loss:	0.2548
	71/100								
		0s	4ms/step	-	accuracy:	0.9045	-	loss:	0.2466
	72/100							_	
	72/100	0s	3ms/step	-	accuracy:	0.9138	-	loss:	0.2248
Epocn	73/100	00	1ms / ston		26611026144	0 0071		10001	0 2021
	74/100	05	4ms/scep	-	accuracy:	0.88/1	-	1055:	0.2831
		95	4ms/sten	_	accuracy:	0 9088	_	1055.	0 2550
	75/100	05	-1113/ Эсер		accar acy.	0.3000		1033.	0.2550
		0s	4ms/step	_	accuracy:	0.9157	_	loss:	0.2087
Epoch	76/100		·		•				
13/13		0s	3ms/step	-	accuracy:	0.9042	-	loss:	0.2622
•	77/100								
		0s	3ms/step	-	accuracy:	0.8938	-	loss:	0.2574
•	78/100	_	2 / /					,	0.0460
		0S	3ms/step	-	accuracy:	0.9004	-	loss:	0.2468
	79/100	Q.c	2mc/cton		accuracy:	0 0015		1000	0 2024
	80/100	03	Jilis/ Step	_	accuracy.	0.0313	-	1055.	0.2034
13/13		0 s	4ms/sten	_	accuracy:	0.8978	_	loss:	0.2603
	81/100		э, эсер			3.03.0			3.2005
•		0s	4ms/step	-	accuracy:	0.8978	-	loss:	0.2333
	82/100		•		•				
13/13		0s	3ms/step	-	accuracy:	0.9060	-	loss:	0.2570

Out[130... <keras.src.callbacks.history.History at 0x220f56d9a60>

In [131... ann.history.history.keys()

```
Out[131... dict_keys(['accuracy', 'loss'])

In [132... y_pred = ann.predict(X_test)
    y_pred = (y_pred > 0.5).astype(int) # Convert probabilities to binary class labels
    score_ann= accuracy_score(y_test, y_pred)
    print(f'Accuracy Score with ANN = {score_ann}')

4/4 ______ 0s 23ms/step
    Accuracy Score with ANN = 0.95
```

Accuracy score Comparison:

```
In [133... plt.figure(figsize=(10,5))
    models = ['Logistic Regression','SVM', 'Random Forest', 'ANN']
    scores = [0.91, 0.81, 0.88, 0.95]
    plt.bar(models,scores)
    plt.title('Accuracy Score Comparison')
    plt.ylabel('Accuracy Score')
    plt.show()
```


Summary:

• Exeploration Dataset:

Conducted thorough data cleaning, handled missing values, and detected outliers using the IQR method.

• Machine Learning Models:

Built and evaluated Logistic Regression, Support Vector Machine (SVM), and Random Forest models using cross-validation.

• Deep Learning Model (ANN):

Developed an Artificial Neural Network that achieved the highest performance among all models.

- Key Insights:
 - ANN outperformed all traditional models with higher accuracy.
 - Proper data preprocessing and feature scaling significantly impacted model performance.
 - Cross-validation provided a realistic evaluation compared to a simple train/test split.

Thank you