Algebra

D. Zack Garza

August 15, 2019

Contents

1	Lecture 1 (Thu 15 Aug 2019)			
	1.1	Cyclic Groups	2	
		Homomorphisms		

1 Lecture 1 (Thu 15 Aug 2019)

Definition: A group is an ordered pair $(G, \cdot : G \times G \to G)$ where G is a set and \cdot is a binary operation, which satisfies the following axioms:

- 1. Associativity: $(g_1g_2)g_3 = g_1(g_2g_3)$
- 2. Identity: $\exists e \in G \ni ge = eg = g$
- 3. Inverses: $g \in G \implies \exists h \in G \ni gh = gh = e$.

Some examples of groups:

- \bullet $(\mathbb{Z},+)$
- \bullet $(\mathbb{Q},+)$
- $(\mathbb{Q}^{\times}, \times)$
- $(\mathbb{R}^{\times}, \times)$
- $(GL(n, \mathbb{R}), \times) = \{A \in Mat_n \ni \det(A) \neq 0\}$
- (S_n, \circ)

Definition: A subset $S \subseteq G$ is a *subgroup* of G iff

- 1. $s_1, s_2 \in S \implies s_1 s_2 \in S$
- $2. \ e \in S$
- $3. \ s \in S \implies s^{-1} \in S$

We denote such a subgroup $S \leq G$.

Examples:

- $(\mathbb{Z},+) \leq (\mathbb{Q},+)$
- $SL(n, \mathbb{R}) \leq GL(n, \mathbb{R})$, where $SL(n, \mathbb{R}) = \{A \in GL(n, \mathbb{R}) \ni \det(A) = 1\}$

1.1 Cyclic Groups

Definition: A group G is cyclic iff G is generated by a single element.

Exercise: Show $\langle g \rangle = \{g^n \ni n \in \mathbb{Z}\} \cong \bigcap \{H \leq G \ni g \in H\}.$

Theorem: Let G be a cyclic group, so $G\langle g \rangle$.

- 1. If $|G| = \infty$, then $G \cong \mathbb{Z}$.
- 2. If $|G| = n < \infty$, then $G \cong \mathbb{Z}_n$

Definition: Let $H \leq G$, and define a right coset of G by $aH = \{ah \ni H \in H\}$. A similar definition can be made for left cosets.

Then $aH = bH \iff b^{-1}a \in G \text{ and } Ha = Hb \iff ab^{-1} \in H.$

Some facts:

- Cosets partition H, i.e. $b \notin H \implies aH \cap bH = \{e\}$.
- |H| = |aH| = |Ha| for all $a \in G$.

Theorem (Lagrange): If G is a finite group and $H \leq G$, then $|H| \mid |G|$.

Definition: $N \leq G$ is normal iff gN = Ng for all $g \in G$, or equivalently $gNg^{-1} \subseteq N$. I denote this $N \leq G$.

When $N \subseteq G$, the set of left/right cosets of N themselves have a group structure. So we define $G/N = \{gN \ni g \in G\}$ where $(g_1N)(g_2N) = (g_1g_2)N$.

Given $H, K \leq G$, define $HK = \{hk \ni h \in H, k \in K\}$. We have a general formula,

$$|HK| = \frac{|H||K|}{|H \cap K|}.$$

1.2 Homomorphisms

Let G, G' be groups, then $\varphi: G \to G'$ is a homomorphism if $\varphi(ab) = \varphi(a)\varphi(b)$.

Examples:

- $\exp: (\mathbb{R}, +) \to (\mathbb{R}^{>0}, \cdot)$ where $\exp(a+b) = e^{a+b} = e^a e^b = \exp(a) \exp(b)$.
- det: $(GL(n,\mathbb{R}),\times) \to (\mathbb{R}^{\times},\times)$ where $\det(AB) = \det(A)\det(B)$.
- Let $N \subseteq G$ and $\varphi G \to G/N$ given by $\varphi(g) = gN$.
- Let $\varphi : \mathbb{Z} \to \mathbb{Z}_n$ where $\phi(g) = [g] = g \mod n$ where $\mathbb{Z}_n \cong \mathbb{Z}/n\mathbb{Z}$

Definitions: Let $\varphi: G \to G'$. Then φ is a monomorphism iff it is injective, an epimorphism iff it is surjective, and an ismorphism iff it is bijective.