Funciones proposicionales y cuantificadores

Función Proposicional

Supongamos los siguientes enunciados:

" x es la capital de Buenos Aires"

Estos no tienen un valor de verdad ya que va a depender del valor que le demos a las variables x e y. Pero si en el primero de ellos hacemos x = La Plata, tenemos:

"La Plata es la capital de Buenos Aires" al cual le asociamos un valor de verdad (Verdadero)

Asimismo, si en el segundo hacemos x = 9, resulta: 9 + 4 = 11 lo cual es (Falso)

Podemos, entonces, dar la siguiente definición: "Una función proposicional es un enunciado abierto de la forma $P_{(x)}$ que se convierte en una proposición cuando se le asigna un valor específico a la variable".

EJEMPLO:

$$p_{(x)}$$
: " 2x + 5 > 11", si x = 4 : 13 > 11 (Verdadero)

$$q_{(x)}$$
: "3x + 7 = 11", si x = 5 : 22 = 16 (Falso)

$$r_{(x)}$$
: "2x + 1 = 5 ", si x = 2 : 5 = 5 (Verdadero)

 $s_{(x)}$: "x es un animal", si x = mesa se tendrá : mesa es un animal (Falso)

 $t_{(x)}$: "x es un ave", si x = flamenco se tiene: el flamenco es un ave (Verdadero)

[&]quot; y + 4 = 11"

Cuantificadores

A partir de funciones proposicionales es posible obtener proposiciones generales mediante un proceso llamado de cuantificación. Asociados a la indeterminada x, introducimos los símbolos $\forall x$ y $\exists x$, llamados cuantificador universal y cuantificador existencial respectivamente. Las expresiones

- \triangleright Para todo x, se verifica $p_{(x)}$ se denota por $\forall x : p_{(x)}$
- \triangleright Existe x, tal que se verifica p(x) se denota por $\exists x / p(x)$

Corresponden a una función proposicional $p_{(x)}$ cuantificada universalmente en el primer caso, y existencialmente en el segundo.

VALOR DE VERDAD DEL CUANTIFICADOR UNIVERSAL

- \checkmark \forall x, p(x) es verdad si p(x) es una proposición verdadera para todos los valores de x en el universo U.
- \checkmark \forall x, p(x) es falsa si hay, al menos, un valor de x en U para el cual el predicado p(x) sea una proposición falsa.

EJEMPLO:

Determinar el valor de verdad de las siguientes afirmaciones considerando el universo de los números enteros.

- 1. $\forall x, x^2 \ge 0$ El predicado $p(x): x^2 \ge 0$ es una proposición verdadera si sustituimos x por cualquier número entero, luego la proposición cuantificada $\forall x, x^2 \ge 0$ es verdad.
- 2. $\forall x, x = -190$ Esta proposición dice que "todos los números enteros son iguales a -190". Por lo tanto, el predicado p(x): x = -190 es una proposición falsa. Por ejemplo, se tomamos x=0 la proposición cuantificada $\forall x, x = -190$ es falsa.

VALOR DE VERDAD DEL CUANTIFICADOR EXISTENCIAL

- $\checkmark \exists x : p(x)$ es verdadera, si el predicado p(x) es una proposición verdadera para, al menos, uno de los valores de x en U .
- \checkmark $\exists x : p(x)$ es falsa, si el predicado p(x) es una proposición falsa para todos los valores de x en U

EJEMPLO:

Determinar el valor de verdad de las siguientes afirmaciones considerando el universo de los números enteros.

- 1. $\exists x: x^2 \ge 0$ La proposición es "existe, al menos, un entero que es mayor o igual a cero" El predicado $p(x): x^2 \ge 0$ es una proposición verdadera para cualquier entero x, por tanto, la proposición cuantificada es verdad.
- 2. ∃x : x = -190 La proposición es "existe, al menos, un entero igual a 5". El predicado p(x) : x = -190 es una proposición verdadera cuando x toma el valor -190, luego la proposición cuantificada es verdad.
- 3. $\exists x : x = x + 1$ La proposición es "existe, al menos, un número entero que es igual al siguiente" El predicado p(x) : x = x + 1 es una proposición falsa para cualquier número entero x, por tanto la proposición cuantificada es falsa.

Negación de funciones proposicionales cuantificadas

Un problema de interés es la negación de funciones proposicionales cuantificadas.

Por ejemplo: La negación de "Todos los enteros son impares" es "Existen enteros que no son impares" y en símbolos: $\exists x / \sim p_{(x)}$

Entonces, para negar una función proposicional cuantificada universalmente se cambia el cuantificador en existencial, y se niega la función proposicional.

Negación de cuantificadores.

Se tienen las siguientes relaciones universales:

$$\sim [\forall x : P(x)] \equiv \exists x : \sim P(X)$$

$$\sim [\exists x : P(x)] \equiv \forall x : \sim P(x)$$

EJEMPLO:

Negar cada una de las siguientes proposiciones

$$p(x): \forall x \in \mathbb{R}: (x>0 \to x + 3 \ge 5)$$

$$q(x)$$
: $\exists x \in \mathbb{Z} : (x + 2 = 6 \land x \ge 3)$

Solución

$$\neg p(x): \neg (\forall x \in \mathbb{R}: (x>0 \to x + 3 \ge 5))$$

$$\neg p(x)$$
: $\neg (\forall x \in \mathbb{R})$: $\neg (x>0 \to x + 3 \ge 5))$

$$\neg p(x)$$
: $\exists x \in \mathbb{R}$: $\neg(\neg(x \le 0) \lor x + 3 \ge 5)$

$$\neg p(x)$$
: $\exists x \in \mathbb{R}$: $x > 0 \land \neg (x + 3 \ge 5)$

$$\neg p(x): \exists x \in \mathbb{R}: x > 0 \land x + 3 < 5$$

$$\neg p(x)$$
: $\exists x \in \mathbb{R}$: $x > 0 \land x < 2$

$$\neg q(x): \neg (\exists x \in \mathbb{Z}: (x + 2 = 6 \land x \ge 3))$$

$$\neg q(x): \neg (\exists x \in \mathbb{Z}): \neg (x + 2 = 6 \land x \ge 3))$$

$$\neg q(x): \forall x \in \mathbb{Z}: x + 2 \neq 6 \lor x < 3$$

Ejercicios

Escribe en forma simbólica cada enunciado, niega la expresión simbólica y expresa en forma coloquial dicha negación.

1.Todos los miembros del equipo de Vóley argentino son grandes jugadores de vóley.

Solución

A=Conjunto formado por los miembros del equipo de vóley.

p(x) = x es un gran jugador de vóley.

En símbolos nos queda:

$$\forall x \in A: p(x)$$

Cuya negación es:

$$\neg(\forall x \in A: p(x)) = \neg(\forall x \in A): \neg p(x)) = \exists x \in A: \neg p(x)$$

En lenguaje coloquial:

Algunos miembros del equipo de vóley no son grandes jugadores de vóley.

2.Algunos alumnos no regulares de Matemática I de UNAHUR no aprobaron el examen final de la materia.

<u>Solución</u>

A=Conjunto formado por los alumnos de Matemática I de UNAHUR.

q(x)= x es regular en Matemática I de UNAHUR.

h(x)=x aprobó el examen final de la materia.

En símbolos nos queda:

$$\exists x \in A: \neg p(x) \land \neg q(x)$$

Cuya negación es:

$$\neg(\exists x \in A: \neg p(x) \land \neg q(x)) = \neg(\exists x \in A): \neg (\neg p(x) \land \neg q(x)) =$$

 $\forall x \in A : p(x) \lor q(x)$

En lenguaje coloquial:

Todos los alumnos de Matemática I de UNAHUR son regulares o aprobaron el examen final de la materia.