Univerza *v Ljubljani* Fakulteta za *matematik*o *in fizik*o

Elektrooptični pojav v feroelektričnem tekočem kristalu

7. naloga pri Fizkalnem praktikumu V

Avtor: Marko Urbanč (28191096) Asistent: Martin Rigler

Kazalo

1	Uvod	2
2	Potrebščine	3
3	Naloge	3
4	Meritve	3
5	Obdelava podatkov	4
3	Izračuni 6.1 Sorazmernost odziva z modulacijo	5
	6.2 Določanje rolakacijskoga časa	5

1 Uvod

Tekoče kristale tvorijo podolgovate molekule, ki se pri ne previsokih temperaturah orientacijsko uredijo. Za smektične tekoče kristale je poleg orientacijskega reda značilna tudi plastovita struktura. Molekule se uredujo v plasti, plasti same se pa vedejo kot dvorazsežna tekočina. V smektikih A kaže odlikovana smer, ki ji pravimo **direktor**, vzdolž normale plasti, v smektikih C pa ne, oklepa nek kot z normalo (10 - 30).

Feroelektrične smektične C* tvorijo molekule, ki imajo velik električni dipolni moment prečno na vzdolžno os molekul, zato se v teh snoveh pojavi električna polarizacija, ki leži v ravnini plasti in je pravokotna na direktor. Približno je sorazmerna s kotom nagiba. Tekoči kristali so posebej uporabni zaradi dvolomnosti, ki izhaja iz orientacijske urejenosti molekul, kjer je optična os vzporedna z direktorejm.

Polarizacijo plasti lahko uredimo v isto smer bodisi z zunanjim poljem ali tako, da vzorec vgradimo s ploščicama, ki prepisujeta orientacijo molekul. Če je razmik med ploščicama majhen (reda μm), se direktor uredi v predpisani smeri po vsem vzorcu. Smektične ravnine so pravokotne na ploščici električna polarizacija pa leži v ravnini ploščic.

Pri tankem površinsko stabiliziranem feroelektričnem tekočem kristalu v zunanjem polju se polarizacija deloma zasuka v smeri polja. Tudi direktor se deloma zasuče na stožcu smeri, ki ga določa nagib direktorja glede na normalo plasti. Zasuk električne polarizacije je sorazmeren z električnim poljem, posledično je sorazmeren tudi zasuk optične osi. Linearnemu odzivu lomnega količnika na zunanje električno polje pravimo **elektrooptični pojav**. Zasuk polarizacije je v izmeničnem polju odvisen tudi od frekvence. Če je previsoka polarizacija ne more več slediti polju. Odvisnost spremembe polarizacije (δP) od frekvence lahko opišemo z Debyjevim relaksacijskim modelom:

$$\delta P = \delta P_0 \frac{1}{1 + i\omega\tau} \tag{1}$$

Relaksacijski čas τ je odvisen od viskoznosti TK in od debeline vzorca.

Spremembno smeri optične osi zaznamo tako, da opazujemo kako se spremeni polarizacija svetlobe pri prehodu skozi vzorec. Na vzorec posvetimo s polarizirano svetlobo in merimo svetlobno moč, ki jo prepušča analizator za vzorcem. Prepuščeno moč merimo s pomočjo fotodiode. V TK je zasuk optične osi ψ zaradi viskoznosti snovi zakasnjen glede na zunanje električno polje. Del, ki je v fazi dobimo kot realni del enačbe 1, del ki je pa zamaknjen za 90 pa kot imaginarni del 1.

$$\psi_r = \frac{\psi_0}{1 + (\omega \tau)^2} \tag{2}$$

$$\psi_i = -\frac{\psi_0 \omega \tau}{1 + (\omega \tau)^2} \tag{3}$$

2 Potrebščine

- Laser
- Fazno občutljivi ojačevalec z multimetrom
- Foto diodo
- Analizator
- Vzorec
- Osciloskop

3 Naloge

- Prepričaj se, da je elektrooptični odziv sorazmeren z modulacijo do neke napetosti.
- Nariši obe komponenti signala kot funkciji frekvence in določi relaksacijski čas.
- Nariši razmerje med signaloma v odvisnosti od frekvence in določi relaksacijski čas.

4 Meritve

Meritve sem zapisal v svoj laboratorijski dnevnik. Ker imam težave z dotikanjem zvezka, ki je bil na faksu, sem se odločil poskusiti narediti poročilo v .pdf obliki.

Slika 1: Meritve v laboratorijskem dnevniku

Slika 2: Meritve v laboratorijskem dnevniku

Slika 3: Meritve v laboratorijskem dnevniku

5 Obdelava podatkov

Meritve sem prepisal v excel in jih izvozil kot .csv, kar sem nadaljno obdelal v Pythonu z standardnim setom paketov matplotlib, NumPy in rutino za prileganje krivulj scipy.optimize.curve_fit().

6 Izračuni

6.1 Sorazmernost odziva z modulacijo

Pri fiksni frekvenci $\nu=20$ Hz sem preveril, če sta obe komponenti signala odziva res sorazmerna. S prilaganjem premic se vidi, da je odziv res linearen.

Slika 4: Sorazmernost odziva z modulacijo

6.2 Določanje relaksacijskega časa

Sedaj sem meril pri fiksni napetosti U=0.242 V, spreminjal pa sem frekvenco. S prilaganjem funkcij (2) in (3) sem določil relaksacijski čas za vzorec kot (Slika 5):

$$\tau_1 = (0.0037 \pm 0.0002) \text{ s}$$
 $\tau_2 = (0.0034 \pm 0.0001) \text{ s}$

Za konec sem pa izračunal τ še tako da sem izračunal kvocient komponent. Z deljenjem (2) in (3) dobimo:

$$\psi_i/\psi_r = -\tau\omega \tag{4}$$

Tako sem dobil še čas (Slika 6):

$$\tau = (0.00306 \pm 0.00001) \; \mathrm{s}$$

Kar se pa le zelo grobo ujema z prej dobljenim časom. Verjetno je za odstopanje odgovorno nekoliko bolj slabo "fittanje" modelskih krivulj. Premico je mnogo lažje natančno določiti.

Slika 5: Določanje relaksacijskega časa z prileganjem modela

Slika 6: Razmerje komponent signala