Content

Executive summary	2
Content summary	2
Issues addressed in ETL process	2
Design of the ETL Process	2
Time Dimensional Table Transformation	2
Market Dimensional Table Transformation	3
Agent Dimensional Table Transformation	4
Product Dimensional Table Transformation	4
Production Dimensional Table Transformation	6
Sales Fact Table Transformation	7
Agent_commission Fact Table Transformation	12
Customer Dimension Table Transformation	16
Design of the data warehouse	20
Agent_commission Fact table	20
Market Dimension table	20
Time Dimension table	21
Sales_agent Dimension table	21
Customer Dimension table	21
Product Dimension table	21
Data Dictionary	21
Appendix – Work Breakdown	24

Name: Chiyu Chen StudentID: 901265 Name: Jie Niu StudentID: 890649

1 Executive summary

1.1 Content summary

This report mainly focuses on the design of ETL (Extract, Transform and Load) process, which aims to integrate the chaotic, scattered and inconsistent data in business and provides the analytical basis for the business decision. Additionally, the redesign of data warehouse is discussed in this report as well for proper storage. In the end of report, it represents the data dictionary that describes types of meta-data.

1.2 Issues addressed in ETL process

There are three issues met in the process of ETL design.

The first primary issue is scattered and chaotic types of data from original data systems. Since the different system choices and inconsistent data representations, to control data quality and yield uniform and high-quality data is the main topic in ETL process. It can reduce the dispensable workload significantly.

The second problem is to deal with the unvalued data such as null-value data. During the transform procedure, the Pentaho reports errors due to existence of null-value data. Deleting this kind of data can reduce the unnecessary computation and save storage space.

The last issue that needs to be overcame is how to address the Slowly Changing Dimension (SCD). According to Kimball's methods, this kind of dimension needs to store both current and historical data over time. And the method of Type 2 is what we apply in this report. In short, the surrogate key is applied in this case. This method is clear and powerful. It maintains the entire historical record.

2 Design of the ETL Process

2.1 Time Dimensional Table Transformation

Figure 1. Time Transformation

In this time transformation, it can be achieved by two steps. The first one is to input the *DimDates.xlsx* file and the second step is to create the relative table and output the data from source file to MySQL. The part of output as below:

	DateN ^	Date ^	YearMonthNum	Calendar_Qu	MonthNum	MonthName	MonthSho ~
▶	19910901	1991-09-01	199109	Qtr 3	9	September	Sep
	19910902	1991-09-02	199109	Qtr 3	9	September	Sep
	19910903	1991-09-03	199109	Qtr 3	9	September	Sep
	19910904	1991-09-04	199109	Qtr 3	9	September	Sep
	19910905	1991-09-05	199109	Qtr 3	9	September	Sep
	19910906	1991-09-06	199109	Qtr 3	9	September	Sep
	19910907	1991-09-07	199109	Qtr 3	9	September	Sep
	19910908	1991-09-08	199109	Qtr 3	9	September	Sep
	19910909	1991-09-09	199109	Qtr 3	9	September	Sep
	19910910	1991-09-10	199109	Qtr 3	9	September	Sep
	19910911	1991-09-11	199109	Qtr 3	9	September	Sep
	19910912	1991-09-12	199109	Qtr 3	9	September	Sep
	19910913	1991-09-13	199109	Qtr 3	9	September	Sep
	19910914	1991-09-14	199109	Qtr 3	9	September	Sep
	19910915	1991-09-15	199109	Qtr 3	9	September	Sep
	19910916	1991-09-16	199109	Qtr 3	9	September	Sep
	19910917	1991-09-17	199109	Qtr 3	9	September	Sep
	19910918	1991-09-18	199109	Qtr 3	9	September	Sep
	19910919	1991-09-19	199109	Qtr 3	9	September	Sep
	19910920	1991-09-20	199109	Qtr 3	9	September	Sep
	19910921	1991-09-21	199109	Qtr 3	9	September	Sep
	19910922	1991-09-22	199109	Qtr 3	9	September	Sep

Figure 2. Part of Time transformation output

2.2 Market Dimensional Table Transformation

Figure 3. Market Transformation

In the market transformation, the original design of data warehouse can meet the file *Market.xlsx* from source data system. Therefore, it can be transformed directly to data warehouse. The first step is to input source file *Market.xlsx* and the second one is to create a new relative table and output data to it.

The partial result of output as follow:

Figure 4. Part of Market transformation output

2.3 Agent Dimensional Table Transformation

Figure 5. Agent Transformation

As shows in the Figure 5, the agent transformation has two steps, one is to input the data source file *SalesAgent.xlsx* to Pentaho, and the other is to output the result of this process to data warehouse system.

The final result of this transformation is shown as below:

	AgentID	Name	Commission rate
	D1	Hi Min Chow	0.19
	D2	Peter Jones	0.08
	D3	Aimee Concroan	0.07
	M1	Alice McPherson	0.09
	M2	Pjan Ling	0.03
	D4	Jan Kennedy	0.04
	B1	Supradeek Densiman	0.2
	B2	Arit Arubne	0.12
	S1	Willy Wonka	0.18
	B3	Flame Blower	0.07
	S2	Quin Tan	0.05
	B4	Michelle Nguyen	0.07
	D1	Hi Min Chow	0.19
	D2	Peter Jones	0.08
	D3	Aimee Concroan	0.07

Figure 6. Part of Agent transformation output

2.4 Product Dimensional Table Transformation

Figure 7. Product Transformation

In the product dimensional table transformation, it needs four files from both two original systems as source data, which are *Product.xlsx* in SalesSystem marked as 'Product from sale', *SaleItem.xlsx* and *ProductionHistory.xlsx* and *Product.xlsx* in ProductionSystem marked as 'Product from production'.

The 'Product from sale' provides the major structure of this dimensional table. For example, the 'ProductKey' in this file is mapped as ProductID, and the 'Price' is modified as AdvisedPrice which is more specific and clearer. 'Description' and 'Group' are used as the same name and date format. Also, the 'ProdYear' is deleted as it is seen as a redundant data to product-relative information. This process is achieved by the second last step called 'Select values'.

The reason for applying *SaleItem.xlsx* is to provide the unit price for each product in product dimension table. The step to complete it is by 'saleitem lookup'. The details in this step is shown below:

Figure 8. saleitem lookup step of Product transformation

The input steps 'ProductionHistory' and 'Product from production' are used to offer the ProductionID and cost of each product. And this process is achieved by 'ProductCode lookup' step.

After the four files are 'assembled' separately in their systems, the 'Stream lookup' is to integrate them together. Finally, 'Table output' is to deliver the final result to data warehouse.

The partial final result is shown as below:

	ProductID	ProductionID	Description	Group	Cost	UnitPrice	AdvisedPrice
▶	1	29	Bellarine Pinot Grigio	White	111	160	163
	2	30	Bellarine Pinot Noir	Red	67	107	113
	3	31	Downunder Merlot	Red	79	109	127
	4	32	Downunder Pinot Grigio	White	54	77	79
	5	33	Downunder Pinot Noir	Red	83	98	100
	6	34	Overhill Merlot	Red	82	126	135
	7	35	Overhill Pinot Noir	Red	73	104	98
	8	29	Bellarine Pinot Grigio	White	111	142	139
	9	30	Bellarine Pinot Noir	Red	67	111	106
	10	31	Downunder Merlot	Red	79	108	111
	11	32	Downunder Pinot Grigio	White	54	83	85
	12	33	Downunder Pinot Noir	Red	83	104	116
	13	34	Overhill Merlot	Red	82	137	125
	14	35	Overhill Pinot Noir	Red	73	103	97
	15	36	Bellarine Pinot Grigio	White	112	170	177
	16	37	Bellarine Pinot Noir	Red	74	142	117
	17	38	Downunder Merlot	Red	86	161	127
	18	39	Downunder Pinot Grigio	White	57	102	87
	19	40	Downunder Pinot Noir	Red	95	124	129
	20	41	Overhill Merlot	Red	90	137	170
	21	42	Overhill Pinot Noir	Red	77	126	125
	22	43	Bellarine Pinot Grigio	White	121	160	151
	23	44	Bellarine Pinot Noir	Red	81	145	136

Figure 9. Part of Product transformation output

2.5 Production Dimensional Table Transformation

In this production transformation, to avoid the appearance of duplicate attributes in one data warehouse, the attributes selected in 'ProductionHistory' are ProdCode marked as ProductCode, ProdYear marked as YearOfProduction and volume. The 'Select values' is adopted to achieve this which is shown as below:

Figure 10. Select values in Production Transformation

Figure 11. Production Transformation

The part of final output is shown as below:

	ProductCode	YearOfProducti	Volume
▶	1	2017	1120
	2	2017	1090
	3	2017	1349
	4	2017	423
	5	2017	1422
	6	2017	1187
	7	2017	700
	1	2018	3700
	2	2018	3243
	3	2018	4655
	4	2018	4207
	5	2018	4737
	6	2018	5313
	7	2018	5298
	1	2019	8260
	2	2019	7592
	3	2019	8151
	4	2019	7876

Figure 12. Part of Production transformation output

2.6 Sales Fact Table Transformation

Figure 13. Sales Fact Table Transformation

In this transformation, based on the *sale* table in SalesSystem, the attributes required by the Sale fact table are provided to it through the relationship between the *sale* table and other tables.

The first thing that needs to be resolved is the acquisition of the Margin value. Because the same item may correspond to different production years, different costs are incurred. Therefore, the cost corresponding to each ProductKey in the *Product* table in SalesSystem needs to be matched.

Figure 14. Get description

The *Product* table in SalesSystem can query the corresponding cost from the *ProductionHistory* table by using the same Description value and ProdYear value.

Figure 15. Get cost

The *SaleItem* table has the transaction quantity and unit price of each item in each order, so by querying the value of Prod_Key, you can get the cost corresponding to each Prod_Key. Then you can calculate the benefit of each item in each order.

Figure 16. SaleItem + Cost

Figure 17. Margin

Then UnitSale, UnitPrice, and Margin are combined by the same SaleID in the *SaleItem* table, and the accumulated result values correspond to totalmargin, totalsales, and totalPrice, respectively. At the same time, LineID and Product_Key are combined using a "-" character connection. To preserve the diversity of LineID and ProductID, because a SaleID sometimes corresponds to multiple LineID or ProductID.

Figure 18. Get Total Value

The next step is to add to the *Sale* table the totalmargin, totalsales, totalPrice, LineID, and Product_Key corresponding to the SaleID in the above result. And changed to the corresponding attribute name in *Sale FACT* table. Some values are lost here, because the SaleID in the Sale table and the SaleID in the SaleItem table do not correspond one-to-one.

Figure 19. Sale+Margin

Since the Date in the *Sale* table is not the primary key in the *DimDates* table. Therefore, to obtain the primary key, the corresponding DateNum must be queried in the *DimDates* table through Date. The null values generated here will be deleted because some Date displays incorrect values in Sale, such as 29/02 / 2017.

Figure 20. Sale+Time ID

Finally, sort the required fields and output the final table.

Figure 21. The output of Sale Fact table

2.7 Agent commission Fact Table Transformation

Figure 22. Agent commission Fact Table Transformation

In this transformation, based on the *SalesItem* table provided by SalesSystem, it provides the required attributes in the *Agent commision Fact* table through its relationship with other tables.

Adding the Margin corresponding to each SaleID to the *SaleItem* table is the same as that in the Sales Fact Table Transformation.

After SaleItem table adds Margin, you need to add the corresponding Date and Sales Agent to connect the DimeDates table with the Sales Agent table. Query the Sale table by SaleID to get the corresponding value.

Figure 23. Get Date, Sales Agent

After that, query the values corresponding to MonthNum and MonthName in the *DimeDates* table by the Date value. Because the granularity of the *Agent_commision Fact* table is a month, it needs to be sorted and organized according to each month.

Figure 24. Get Month

There are two problems here. The first is that the date recorded in the *SaleItem* table is wrong. The query cannot find the corresponding month. Another problem is that the SaleID in the *SaleItem* table and the SaleID in the *Sale* table do not correspond one-to-one. Here, all the null-valued rows that are not found can be filtered out.

Figure 25. Filter the null

Then the values of Margin, UnitSales, and Total Sale are merged and renamed by the same Sales Agent value and the same MonthName value.

Figure 26. Get total value

Then calculate the real profit through the Commission Rate.

Figure 27. Calculate earings

Add a primary key for the Agent_Commision Fact table.

Figure 28. Add primary key

Finally, sort the required fields and output the final table.

Figure 29. The output of Agent commission Fact Table

2.8 Customer Dimension Table Transformation

The main problem to be solved by Customer Dimension Table Transformation is to combine three Customer tables of different periods into one table. The main problem encountered here is the deletion of duplicate records and the modified way of saving the personal information of the same customer.

Figure 30. Customer Dimension Table Transformation

First, add the corresponding time fields to the three customer tables.

Figure 31. RecordDate

After that, sort by Cust ID from small to large and RecordDate from large to small, to make each customer display the latest data for the first time.

Figure 32. sort

Then remove the duplicate data and sort it again in ascending order according to Cust ID and RecordDate.

Figure 33. Remove duplicate

Figure 34. Sort 2

Then the Address field is divided into STREET, SUBURB, CITY, POSTCODE fields with ',' characters.

Figure 35. Split fields

To solve the problem of Slowly changing, SCD Type 2 (keeps the old values by creating a new row for each change) is used to record the data. Therefore, Customer_Record needs to be added as a surrogate key, and the Cust ID field is used as the basis for Screen for changes in other field values to see if there is a change. If there is a change, the value of Version will increase by one.

Figure 36. Dimension lookup / update

Finally, sort the required fields and output the final table.

Figure 37. The output of Customer Dimension Table

3. Design of the data warehouse

Figure 38. Redesign of data warehouse

3.1 Agent_commission Fact table

This fact table is a newly added table. In this table, the primary key is called Agent_commission_ID which is designed for identifying and looking up each agent sales information. The granularity is monthly business performance for each agent. So, this table is mapped with Time dimension table and Sales_agent dimension table and it has primary keys of both these two tables as foreign keys. The measurements of this table are number of sales, total amount sold and total earnings. Therefore, it shows these three measurements of each sale agent for every month.

3.2 Market Dimension table

The market table is simplified from four to two elements. The redundant elements such as the name and region of markets are integrated into descriptions. Mark_key is the primary key of this table to identify the market relative information.

3.3 Time Dimension table

The time table is normalized to a great extent. After redesign, each day, week, quarter and month is represented by number and name. It still indicates both calendar and financial quarters. It offers dates from all different granularity, which is helpful for different kinds of needs.

3.4 Sales_agent Dimension table

Sales_agent table is a dimension table which provides basic agent information for computing the commission of agents. The original agent dimension table is separated into a fact table that is introduced at the beginning of this part and this dimension table, which makes the structure more hierarchical in order to avoid unnecessary confusion.

3.5 Customer Dimension table

In customer dimension table, the address information is subdivided to be more specific and hierarchical, which makes the customer information much easier to look up. Additionally, customers' names are integrated, and the gender and age information are removed due to the redundancy concern.

3.6 Product Dimension table

There are not many modifications in the product dimension table. The only change is to rename some elements about product price to reduce evitable errors. It makes the price of product much clearer especially during the calculations of profits.

4. Data Dictionary

Market dimension table

Name	Market Dimension Table Transformation
Purpose	Analysis sale information from market view
Source Tables/Files	Market (SalesSystem)
Target Tables/Files	Customer dimension table and Sale fact table
Pre Processes	Configurate the source file format .xlsx into Pentaho software
Frequency	Monthly

Time dimension table

Name	Time Dimension Table Transformation
Purpose	Offer a view and dimension of time for
ruipose	analysis
Source Tables	DimDates
Target Tables	Sale Fact Table and
Target Tables	Agent_commission Fact Table
Pre Processes	Configurate the source file format .xlsx into
rie riocesses	Pentaho software
Frequency	None

Product dimension table

Name	Product Dimension Table Transformation
Purpose	Provide the basic product information
	Product (SaleSystem),
Source Tables	SaleItem (SaleSyetem),
Source Tables	Product (ProductionSystem) and
	ProductionHistory (ProductionSystem)
Towart Tables	Production Dimension Table and
Target Tables	Sale Fact Table
	Extract UnitPrice for each product from
Pre Processes	SaleItem, extract ProductionID and cost for
	each product
Frequency	Monthly

Production dimension table

Name	Production Dimension Table
Ivanie	Transformation
Purpose	Offer the basic production information
Source Tables	ProductionHistory(ProductionSystem)
Target Tables	Product Dimension Table
Pre Processes	Configurate the source file format .xlsx into
Pre Processes	Pentaho software
Frequency	Yearly

Sales_agent dimension table

Name	Sales_agent Dimension Table Transformation
Purpose	Provide basic agents information
Source Tables	Sales Agent (SalesSystem)
Target Tables	Agent commission Fact Table
Pre Processes	Configurate the source file format .xlsx into
Fie Flocesses	Pentaho software
Frequency Monthly	

Sales Fact Table

Name	Sales Fact Table Transformation
Purpose	Record the details of each order in the actual transaction
Source	ProductionHistory, Product(ProductionSystem),
Tables	Product(SalesSystem), SaleItem, Sale, DimDates, Customer
Target	Sales Fact Table
Tables	
Pre	Query the cost for each Prod Key, calculate the profit for each
Processes	SaleID, query the primary key in the timetable for each SaleID, and
	query the primary key in the customer table for each SaleID, and
	merge the customer tables
Frequency	Updated daily

Agent commission Fact Table

Name	Agent_commission Fact Table Transformation
Purpose	Record the specific sales situation of each agent every month
Source	ProductionHistory, Product(ProductionSystem),
Tables	Product(SalesSystem), SaleItem, Sale, DimDates, Sales Agent
Target	Agent_commission Fact Table
Tables	
Pre	Query the cost for each Prod_Key, calculate the profit for each
Processes	SaleID, Combine profits and sort by agent and month
Frequency	Updated monthly

Customer Dimension Table

Name	Customer Dimension Table Transformation
Purpose	Analyze the data in Sales Fact Table from the customer's perspective
Source Tables	Customer(SalesSystem)
Target Tables	Customer Dimension Table
Pre	Add the record time of the table, merge the table, deduplicate the
Processes	data, separate Address into multiple attributes, Dimension lookup /
	update
Frequency	Updated daily

Word Count: 2277

Appendix - Work Breakdown

Both members participate in the design of ETL process and the redesign of data warehouse.

To be more specific, the details are shown as below:

Name: Chiyu Chen

StudentID: 901265

Contribution:

Design of ETL process

Executive summary

Explanation of part of ETL process

Design of data warehouse

Part of data dictionary

Name: Jie Niu

StudentID: 890649

Contribution:

Design of ETL process

Explanation of part of ETL process

Design of data warehouse

Part of data dictionary