iCharger MODBUS Protocol (V2.1)

Supports two hardware connection: serial-port and USB, adopting MODBUS bus protocol. Click http://www.modbus.org/ for more information.

Select the interface types as pictures shown

Serial signal:

TTL level signal, you can easily access uart to USB, uart to wifi, or the uart to bluetooth module

General description:

When connect serial-port, comply with the MODBUS bus protocol completely.

- 1 start bit
- 8 data bits
- 1 parity bit
- 1 stop bit

baud rate supports "9600bps","19200 bps ","38400 bps ","57600 bps ","115200 bps ","128000 bps "

The iCharge adopts packet length of 64 bytes HID protocol transmission when connecting USB, and on this basis, we have developed a MODBUS-HID protocol:

MODBUS-HID Frame Structure:

Data length: the total length of the MODBUD HID ADU is less than or equal to 64, so that the function codes 0x03, 0x04 a frame can read continuously register number is ≤ 30 ; function code 0x10 a frame can write continuously register number is ≤ 28 .

Frame Type: MODBUD HID fixed to 0x30. (Compatible with of LogView the frame type uses the 0x10, 0x11, 0x20, and not be elaborated here)

Function code and Data: the MODBUS PDU data, see details on the MODBUS protocol description

iCharge Duo only implements the Modbus 0x03, 0x04, 0x10 function code

HID Modbus Demo Code (VC2005) Download: http://www.hillrc.com/UploadFiles/DemoJunsiModBusHID.zip

iChargeDUO Address Map:

Function code(0x04)	0x0000—0x00ff	Device only reads message	
Read-only area	0x0100—0x01ff	Channel 1 only reads message	
	0x0200—0x02ff	Channel 2 only read smessage	
	0x0300—0x7fff	Reservation	
Read and write area	0x8000—0x83ff	Control register	
Function	0x8400—0x7fff	System storage area	
code(0x03)read	0x8800—0xbfff	Memory Index storage area	
Function	0x8c00—0x9000	Memory storage area	
code(0x10)write			

The detailed use of address for each area is related with the models.

The register of 4010DUO is as below

Device only reads message (base address: 0x0000)

Address	Name	Data type	Remark
Offset			
0	Device ID	U16	
1-6	Device SN	S8[12]	
7	Software version	U16	
8	Hardware version	U16	
9	SYSTEM length	U16	
10	MEMORY length	U16	
11	CH1 the general status word	U16	Bit0-run flag
			Bit1-error flag
			Bit2-control status flag
			Bit3-run status flag
			Bit4-dialog box status flag
			Bit5-cell voltage flag
			Bit6-balance flag
12	CH2 the general status word	U16	As above

Channel X input read-only (base address: 0x0100 (X=1); 0x0200 (X=2))

Address	Name	Data type	Remark
Offset			
0-1	Timestamp	U32	
2-3	The current output power	U32	
4	The current output current	S16	
5	The current input voltage	U16	
6	The current output voltage	U16	
7-8	The current output capacity	S32	
9	The current internal temperature	S16	
10	The current external temperature	S16	
11-26	Cell 0-15 voltage	U16	4010DUO only uses 1120
27-34	Cells 0-15 balance status	U8	4010DUO only uses 2731
35-50	Cell 0-15internal resistance	U16	4010DUO only uses 3544
51	The cells' total internal resistance	U16	
52	Line internal resistance	U16	
53	Cycles count	U16	
54	Control status	U16	
55	Run status	U16	
56	Run error	U16	
57	Dialog box ID	U16	

Control register (base address: 0x8000)

Address	Name	Data type	Remark
Offset			
0	Select to run operations	U16	Values 0—Charge;1—Storage;
			2—Discharge; 3—Cycle; 4—Only Balance
1	Select MEMORY	U16	Values 063
2	Select CHANNEL	U16	Values 0 or 1
3	Order lock	U16	0x55aa Unlock
4	Order	U16	See enum ORDER
5	Limit current	U16	
6	Limit voltage	U16	

Order register:

Send an order to order register should first unlock order lock, and write $\underline{0X55AA}$ to the order lock register to unlock, write any other values to lock.

Command	Name	Remark	
value			
0	ORDER_STOP	Stop running the selected channel charge/discharge procedures	
1	ORDER_RUN	Run the selected channel & MEMORY & PROGRAM	
2	ORDER_ MODIFY	Modify the limited current and voltage parameters when running	

3	ORDER_WRITE_SYS,	Save System data in the RAM to flash memory	
4	ORDER_WRITE_MEM_HEAD	Save MemHead data in the RAM to the flash memory	
5	ORDER_WRITE_MEM	Save Memory data in the RAM to the flash memory	
6	ORDER_TRANS_LOG_ON	Open Log transmission, this data is used for "Logview" software	
7	ORDER_TRANS_LOG_OFF	Close Log transmission	
8	ORDER_MSGBOX_YES	Dialog box to respond to <yes></yes>	
9	ORDER_MSGBOX_NO	Dialog box to respond to <no></no>	

System Storage area (base address: 0x8400)

Address	Name	Data type	Remark
Offset			
0	System parameters	SYSTEM	0 To ((sizeof(SYSTEM)+1)/2-1)

Reading register is read from the flash memory of the device iChargerDuo, and refresh at the same time the mirror in RAM; writing register is write changes to the mirror in RAM. Write the mirror to the flash memory of the device must through the ORDER_WRITE_SYS order.

```
#define MODEL MAX
typedef packed struct SYSTEM
    u16 TempUnit;
                                         //Temperature unit (P1 1)
    u16 TempStop;
                                         //Cut-off temperature(P1 2)
                                         //Fans on temperature(P1_4)
    u16 TempFansOn;
    u16 TempReduce;
                                         //Power reduce temperature(P1 3)
                                         //Reservation
    u16 Dump1;
    u16 FansOffDelay;
                                         //Fans off delay (P1 5)
    u16 LcdContraste;
                                         //LCD contrast (P2 1)
    u16 LightValue;
                                         //backlight value(P2_2)
    u16 Dump2;
                                         //Reservation
                                         //Beep type long beep, short beep, continuous beep (P3_3)
    u16 BeepType[4];
                                         //Beep enable (P3 1)
    u16 BeepEnable[4];
    u16 BeepVOL[4];
                                         //Beep volume (P3 2)
                                         // Reservation
    u16 Dump3;
    u16 SelectAdj;
                                         //The current calibration(P4_1)
                                         // Reservation fixed 0
    u16 Dump4;
                                         //select input source =0:DC =1:Bat. (P5 1)
    u16 SelInputSource;
    u16 DCInputLowVolt;
                                         //DC input low voltage protection (P6 1)
    u16 DCInputOverVolt;
                                         //DC input over voltage protection
    s16 DCInputCurrentLimit;
                                         //DC input current maximum limit (P6 2)
    u16 BatInputLowVolt;
                                         //BAT input low voltage protection (P7_1)
    u16 BatInputOverVolt;
                                         //BAT input over voltage protection
    s16 BatInputCurrentLimit;
                                         //BAT input current maximum limit(P7 2)
    u16 RegEnable;
                                         //Regenerative enable(P7 3)
    u16 RegVoltLimit;
                                         //Regenerative voltage limit(P7_4)
```

```
s16 RegCurrentLimit;
                                       //Regenerative current limit(P7_5)
    u16 ChargePower[MODEL MAX];
                                       //Charger power(P8_1 and P8_3)
    u16 DischargePower[MODEL_MAX]; //Discharge Power(P8_2 and P8_4)
    u16 ProPower;
                                       // Power priority (P8 5)
    u16 MonitorLogInterval[MODEL_MAX]; //Sampling interval 0.1S as an unit(P9_1)
    u16 MonitorLogSaveToSD[MODEL_MAX];//=0:do not output log to SD =1:output log to SD(P9_2)
    u16 ServoType;
                                       //Servo type (P10_1)
    u16 ServoUserCenter;
                                       //servo pulse center (P10 2)
    u16 ServoUserRate;
                                       //servo frame refresh rate (P10_3)
    u16 ServoUserOpAngle;
                                       //45 degrees pulse width (P10_4)
    u16 ModBusMode;
                                       // ModBus Mode (P11_1)
    u16 ModBusSerialAddr;
                                       // Serial communication address (P11 4)
                                       //Serial communication baud rate (P11_2)
    u16 ModBusSerialBaudRate;
    u16 ModBusSerialParity;
                                       // Serial communication parity (P11_3)
    u16 Dump[8];
                                       // Reservation
}SYSTEM;
```

Address Offset	Name	Data type	Remark
0	Temperature unit	U16	= 0: degrees Celsius
			= 1: Fahrenheit
1	Cut-off temperature	U16	60.0—75.0 (default 75.0)
2	Fans on temperature	U16	30.0—50.0(default 40.0)
3	Power reduce temperature	U16	5.0—20.0(default 10.0)
4	Tower reduce temperature	U16	3.0 20.0(detault 10.0)
5	Fans off delay	U16	0—10min(default 2min)
6	LCD contrast	U16	0—32(default 16)
7	Backlight value	U16	1—33(default 17)
8	Bucklight value	U16	1 35(dollare 17)
9-12	Beep type	U16[4]	
13-16	Beep enable	U16[4]	
17-20	Beep volume	U16[4]	
21	Beep volume	U16	
22	The current calibration value	U16	=0:system calibration value
<i>22</i>	The current cumoration value		=1:user calibration value
23	System parameter version	U16	1.doer canonation vide
24	Select input source	U16	=0:DC (default)
	Select input source		=1:Bat.
25	DC input low voltage protection	U16	90—480(default 100)
26	DC input over voltage protection	U16	Fixed 505
27	DC input current maximum limit	U16	10—650(default 650)
28	BAT input low voltage protection	U16	90—480(default 100)
29	BAT input over voltage protection	U16	Fixed 505
30	BAT input current maximum limit	U16	10—650(default 650)
31	Regenerative enable	U16	=0:not enable (default) =1: enable
32	Regenerative voltage limit	U16	90—480(default 145)
33	Regenerative current limit	U16	10—650(default 100)
34	CH1maximum charge power	U16	5—1400(default 1400)
35	CH2maximum charge power	U16	
36	CH1 maximum discharge power	U16	5—130(default 130)
37	CH2 maximum discharge power	U16	
38	Power priority	U16	0= average distribution (default)
			1=CH1 priority
			2=CH2 priority
39	CH1 monitor sampling interval	U16	5—600(default 10)
40	CH2 monitor sampling interval	U16	0.1S as an unit
41	CH1 allow Log output	U16	=0:do not output log to SD
42	CH2 allow Log output	U16	=1:do not output log to SD
43	Servo type	U16	=0:1500us analog servo(default) =1:1500us

			digital servo
			=2:760us digital servo =3:user -defined
44	Servo pulse center	U16	7000—16000(default15000)
45	servo frame refresh rate	U16	40—700(default1 50)
46	45 degrees pulse width	U16	1000—10000(default1 5000)
47	ModBus mode	U16	=0:do not enable ModBus (default1)
			=1:enable HID ModBus
			=2:enable Serial ModBus
48	Serial ModBus address	U16	1-247(default 1)
49	Serial ModBus BaudRate	U16	=0:9600bps(default)
			=1:19200bps =2:38400bps
			=3:57600bps =4:115200bps =5:128000bps
50	Serial ModBus Parity	U16	=0:None(default) =1:Even =2:Odd
51-58	Dump[8]	U16	Reservation

Memory Index Storage Area (base address: 0x8800)

```
#define LIST_MEM_MAX 64
typedef __packed struct _MEM_HEAD
{
    u16 Count; //0—LIST_MEM_MAX
    u8 Index[LIST_MEM_MAX]; //0xff-- empty 0xfe--hidden 0-LIST_MEM_MAX
}MEM_HEAD;
#define MEM_HEAD_DEFAULT {7,{0,1,2,3,4,5,6}}
```

For example:

Address Offset	Name	Data type	Remark
0		MEM_HEAD	0 TO ((sizeof(MEM_HEAD)+1)/2-1)

Reading register is read from the flash memory of the device iChargerDuo, and refresh at the same time the mirror in RAM; writing register is write changes to the mirror in RAM. Write the mirror to the flash memory of the device must through the ORDER_WRITE_MEM_HEAD order.

Memory storage area (base address: 0x8c00)

Address	Name	Data type	Remark
Offset			
0		MEMORY	0 TO ((sizeof(MEMORY)+1)/2-1)

Reading register is read from the flash memory of the device iChargerDuo, and refresh at the same time the mirror in RAM; writing register is write changes to the mirror in RAM. Write the mirror to the flash memory of the device must through the ORDER_WRITE_MEM order.

```
#define MEM NAME LEN 37
typedef packed struct MEMORY
                                                  0xffff—EMPTY 0x55aa—USED 0x0000—FIXED
    u16 UseFlag;
                                    //Use flag
    s8 Name[MEM NAME LEN+1]; // Program name (M1 1)
    u32 Capacity;
                                    // Nominal capacity (M1 4)
    u8 AutoSave;
                                    // The program runs automatically saved(M2 2)
    u8 LiBalEndMode;
                                    //Li -battery balance end current mode(M8_1)
                                    // Reservation
    u8 Dump1[7];
    u16 OpEnable;
                                    //Enable module or not, represents with bit0-15 respectively
                                    //Charge(bit0), Storage(bit2), Discharge(bit3), Cycle(bit4), OnlyBalance(bit5)
                                    // (M6 5) (M10 5) (M11 4) (M12 4) (M15 1)
    u8 ChannelMode;
                                    //=0: channel asynchronous mode = 1: channel synchronous mode (M2 1)
    u8 SaveToSD;
                                    //=0:do not output log to SD =1:output log to SD (M2 5)
    u16 LogInterval;
                                    //sampling interval 0.1S as an unit (M2 4)
    u16 RunCounter;
                                    //run counter (M2 3)
                                    //Bat. Type: LiPo,LiLo,LiFe,NiMH,Nicd,Pb (M1 2)
    u8 Type;
    u8 LiCell;
                                    //Li-battery number of cells (M1 3)
    u8 NiCell;
                                    //Ni-battery number of cells (M1 3)
    u8 PbCell;
                                    //Pb-battery number of cells (M1 3)
    u8 LiModeC;
                                    //Charge mode (M6 2)
    u8 LiModeD;
                                    //Discharge mode(M14_1)
    u8 NiModeC;
                                    //Charge mode: Normal, REFLEX (M19 2)
    u8 NiModeD;
                                    //Discharge mode: Reservation
    u8 PbModeC;
                                    //Charge mode: (M16 2)
    u8 PbModeD;
                                    //Discharge mode: Reservation
    u8 BalSpeed;
                                    //Balance speed: 0--slow 1--normal 2--fast (M6 2)
    u8 BalStartMode;
                                    //Balance start mode (M7 1)
                                    //Balance start voltage Reservation
    u16 BalStartVolt;
    u8 BalDiff;
                                    // Balanced stop accuracy (mV) (M7 2)
    u8 BalOverPoint;
                                    //Balance over point(M7 4)
    u8 BalSetPoint;
                                    //The minimum voltage difference and set point when balance charge terminates
                                    //for example: 4.2Vcharges LiPo,BalSetPoint=5, then stops at 4.195V
                                    //(M7 \ 3)
```

```
u8 BalDelay;
                                 //Balance delay end time(M7_5)
u8 KeepChargeEnable;
                                 //keep charging(M9 4)
u16 LiPoChgCellVolt;
                                 //LiPo cell charge voltage (M6 4)
u16 LiLoChgCellVolt;
                                 //LiLo cell charge voltage (M6_4)
                                 //LiFe cell charge voltage (M6 4)
u16 LiFeChgCellVolt;
                                 //LiPo cell storage voltage(M11 1)
u16 LiPoStoCellVolt:
                                 //LiLo cell storage voltage(M11_1)
u16 LiLoStoCellVolt;
                                 //LiFe cell storage voltage(M11 1)
u16 LiFeStoCellVolt;
u16 LiPoDchgCellVolt;
                                 //LiPo cell discharge end voltage(M10 2)
                                 //LiLo cell discharge end voltage(M10 2)
u16 LiLoDchgCellVolt;
                                 //LiFe cell discharge end voltage(M10 2)
u16 LiFeDchgCellVolt;
u16 ChargeCurrent;
                                 // Set charge current(M6_1)
u16 DischargeCurrent;
                                 //Set discharge current(M10 1)
u16 EndCharge;
                                 //Charge end current(M6 3)
u16 EndDischarge;
                                 //Discharge end current(M10 3)
                                 // Discharge mode(M10_4)
u16 RegDchgMode;
u16 NiPeak;
                                 // Ni-battery sensitive voltage(M18 1)
                                 // deltaV check delay(M18 2)
u16 NiPeakDelay;
u16 NiTrickleEnable;
                                 //Enable trickle charge(M18_3)
                                 //Trickle charge current(M18 4)
u16 NiTrickleCurrent;
u16 NiTrickleTime;
                                 // Trickle charge(M18_5)
                                 // Ni charging 0 voltage allowed (M18_6)
u16 NiZeroEnable;
u16 NiDischargeVolt;
                                 //Ni discharge voltage (M20 2)
u16 PbChgCellVolt;
                                 //Pb cell charge voltage (M16_4)
u16 PbDchgCellVolt;
                                 //Pb cell discharge voltage (M17 2)
u16 PbFloatEnable;
                                 //Pb cell float enable Reservation
u16 PbFloatCellVolt;
                                 //Pb cell float voltage Reservation
u16 RestoreVolt;
                                //Low voltage restore voltage (M3 1) (M9 1)
                                 // Low voltage restore time (M3 2) (M9 2)
u16 RestoreTime:
u16 RestoreCurent;
                                 // Low voltage restore current (M3 3) (M9 3)
u16 CycleCount;
                                 //Cycle count(M12_2)
u16 CycleDelay;
                                 //Cycle interval(M12_3)
```

```
u8 CycleMode;
                                    //Cycle mode(M12_1)
    u16 SafetyTimeC;
                                    //Safety time (M4_3)
    u16 SafetyCapC;
                                    //Safety capacity%(M4 2)
    u16 SafetyTempC;
                                    //Safety temperature(M4_1)
    u16 SafetyTimeD;
                                    //Safety time(M5_3)
    u16 SafetyCapD;
                                    //Safety capacity%(M5_2)
    u16 SafetyTempD;
                                    // Safety temperature(M5_1)
    u8 RegChMode;
                                    //Channel regenerative mode(M13_1)
    u16 RegChVolt;
                                    // Channel regenerative limited voltage(M13_2)
    u16 RegChCurrent;
                                    // Channel regenerative limited current(M13_3)
    u8 FastSto;
                                    //Li-battery fast storage (M11 3)
                                    //Storage compensation voltage(M11_2)
    u16 StoCompensation;
                                    // NiZn cell charge voltage (M6_4)
    u16 NiZnChgCellVolt;
                                    // NiZn cell discharge end voltage(M10 2)
    u16 NiZnDchgCellVolt;
    u8 NiZnCell;
                                    // NiZn-battery number of cells(M1 3)
                                    // Reservation
    u8 Dump;
}MEMORY;
```


