中国人民大学 2021-2022 春季学期高等代数 II 期中试题 (A)

(考试时间: 2022 年 4 月 26 日上午)

序号		姓名	学号_		-
我郑重承证誉和学生的		7,遵守考场纪律、自	尊自爱、平等竞争 承诺人签字:	,维护学校的勃	ŧ
1. 下列结 A. 三结 B. 数均 C. 一	后论正确的是(住空间 R ³ 中一个 或 P 上的线性空间 个向量组线性相关	题 5 分 , 共 30 分). 平面是一个子空间 人 可 <i>V</i> 的两个子空间的 当且仅当其中一个向直线是一个子空间	, 并也是子空间 ★ 量可以被其余向量纟	线性表出 ✓	
2. 下列说 A. 若- 系数多 B. 设力 域上不 C. 如身	上法错误的是(一个整系数多项式 项式之积 $p_1, p_2,, p_s$ 是 s 河约 \mathbb{R} $x = a$ 是多项式 $f(x)$ 的 $m+1$ 重相	,	则它一定能分解为的 $f(x) = x^n - p_1 p_2 \dots p_n$	f(x) 的根,那么	、ko !数
3. 已知向 3), β ₂ {β ₁ ,β ₂ A. a ≠ l]量组 $\alpha_1 = (1,0,2)$	$(2), \alpha_2 = (1, 1, 3), \alpha_3 = (2, 1, a + 4), 则 a$ 子空间 (人).	(1,-1,a+2), 及向皇	量组 $\beta_1=(1,2,\alpha_3)$ 时, $\{\alpha_1,\alpha_2,\alpha_3\}$	与

a + a aut a alta axt 4. 设多项式 $f(x) = x^4 + 3x^3 + 5x^2 + 12x + 4$ 的四个根为 $\alpha_1, \alpha_2, \alpha_3, \alpha_4,$ 那么 $\alpha_1^2 + \alpha_2^2 + \alpha_3^2 + \alpha_4^2 +$ $\alpha_3^2 + \alpha_4^2$ 的值为(). alazazay=

- A. -1

- C. 1

5. 下列结论错误的是(/

t+ 3(a1axx...) = 16

A. 线性相关的向量组在同构映射下的向量组仍然线性相关 \ /

- B. V 两个子空间 V_1 与 V_2 的和空间维数 dim $(V_1 + V_2)$ 不大于它们的维数之和 $\dim V_1 + \dim V_2$
- R^n 中的集合 $\{(a_1, a_2, \cdot, a_n) \in R^n : \, \text{有某个} a_i > 0, 1 \le i \le n\}$ 是 R^n 的一个子空

 $(a_1, a_2, \cdot, a_n) \in R^n : a_1, a_2, \cdots, a_n$ 不同时大于零,或不同时小于零

- 6. 多项式 $f(x) = 4x^4 7x^2 5x 1$ 的有理根个数为 (尺), 重根按重数计算. A. 0 B. 1 C. 2 D. 4 2
- 填空题 (共 4 题, 每题 5 分, 共 20 分.) $(x^2 3x^4)$ $(x^4 3x^3 + a_{1x} + a_{0x})$ 多项式 $f(x) = x^4 3x^3 + a_{1x} + a_{0x}$ 条件是 $(x^4 3x^3 + a_{1x} + a_{0x})$ 条件是 $(x^4 3x^3 + a_{1x} + a_{0x})$

 - 8. 在 P^3 中,写出由基 $\alpha_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, 到基 $\beta_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $\beta_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ 的过渡矩阵 A, 即 $(\beta_1, \beta_2, \beta_3) = (\alpha_1, \alpha_2, \alpha_3)A$, $A = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$, 同时写出 $\{\beta_1, \beta_2, \beta_3\}$ 到 $\{\alpha_1, \alpha_2, \alpha_3\}$ 的过渡矩阵 $B = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.
 - 9. 设 $\beta_1, \beta_2, \dots, \beta_n$ 是 n 次多项式 $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 (a_n \neq a_n)$ $0, a_0 \neq 0$) 的 n 个根,请写出多项式 $f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n$ 的
 - 10. 在 $P^{2\times 2}$ 中,所有形如 $\begin{pmatrix} -x & y \\ x & -z \end{pmatrix}$ 的矩阵集合记为 V_1 ,所有形如 $\begin{pmatrix} b & c \\ a & -a \end{pmatrix}$ 矩阵集合记为 V_2 , 可证 V_1 与 V_2 均为 $P^{2\times 2}$ 的子空间, 写出 $V_1 \cap V_2$ 的一组 (3 分), 同时 dim $(V_1 + V_2) =$ 4

三、计算和证明题,要求写出详细的解题或证明过程. 共 4 题, 共 50 分.

- 16. $(10\ \mathcal{G})$ 设 f(x) 是整系数多项式, 如果 f(1) 和 f(0) 都是奇数, 证明 f(x) 没有整数根. f(x) = G(x) f(x) (La) 校
- 12. (15 分) 数域 P 上 2n 维向量空间 P²ⁿ 中,记

$$\hat{f}(0) = -ag(0)$$
 a 63

$$V = \{(a_1, a_2, \dots, a_{2n}) \in P^{2n} : a_i = a_{2n+1-i}, \ 1 \le i \le n\},\$$

$$W = \{(a_1, a_2, \dots, a_{2n}) \in P^{2n} : a_i = -a_{2n+1-i}, \ 1 \le i \le n\}.$$

求解或证明以下结论:

- (1)(6 分) 分别写出 V 和 W 的一组基.
- (2)(5 分) 证明 $P^{2n} = V \oplus W$. $d_{n} \mathcal{V}^{n} > d_{n} \mathcal{V} + d_{n} \mathcal{W}$
- 13. (15 分) 设 $f(x) = x^3 + \alpha x + \beta$, 其中 α , β 为系数. (1)(9 分) 求多项式 f(x) 有重因式的充分必要条件.

 $(1)(9 \ f)$ 求多项式 f(x) 有重因式的<u>充分必要条件</u>. $(2)(6 \ f)$ 在 f(x) 有重因式的求一个多项式 g(x),使 g(x) 与 f(x) 有相同的不可 约因式,但没有重因式 f(x) f

- 14. (10 分) 设 V_1 , V_2 , V_3 为线性空间 V 的子空间, 求解或证明以下结论:
 - (1)(4 分) 举反例说明 $(V_1 + V_2) \cap (V_1 + V_3) = V_1 + (V_2 \cap V_3)$ 不成立.

(2)(6 分) 进而证明 $(V_1 + V_2) \cap (V_1 + V_3) = V_1 + (V_1 + V_2) \cap V_3$.

$$V_{2} = R^{3}$$

$$V_{1} = \{(m, o, o) \mid men\}$$

$$V_{2} = \{(o, k, o)\} \}$$

$$(V_{1} + V_{2}) \in R^{2}$$

$$(V_{1} + V_{3}) \in R^{2}$$

$$(V_{1} + V_{3}) \in R^{2}$$

$$(V_{1} + V_{3}) \in R^{2}$$

$$V_{1} + O = V_{1}$$

OLE (V+V2) (V) V26 (N+V2) N(V+V2) dz E VI+VZ i de VI+V2. 1 a e VI+V3 Ded. EVI : atdz EVI+V2 1 d= di+ dz ataze VIV, dievi deeve 1. OL EVITY i as E Vi+V3 1 /2 dz = d/+ ds' 1. d= d1-0,1+d3 db'eVs Bas'eV2 :as' e Y3 NV, · Vde _ Ade_

4x € 1,+(1,+1,2)/

d= d+ d2