Repetitorium Analysis 1 für Physiker WS08/09 Montag - Folgen und Reihen Übungsblatt

Thomas Blasi

1. Verständnisfragen

- (a) Sind folgende Aussagen richtig oder falsch:
 - i. Jede konvergente Folge hat einen Grenzwert.
 - ii. Der Grenzwert einer Folge kann sich ändern, wenn man endlich viele Folgenglieder abändert.
 - iii. Jede Nullfolge ist eine konvergente Folge.
 - iv. Jede konvergente Folge ist beschränkt.
 - v. Seien (a_n) , (b_n) zwei Folgen, dann gilt $\lim_{n\to\infty}(a_n+b_n)=\lim_{n\to\infty}(a_n)+\lim_{n\to\infty}(b_n)$.
 - vi. Die Summe zweier divergenter Folgen ist divergent.
 - vii. Es gibt Cauchyfolgen in $\mathbb R$ die nicht konvergieren.
 - viii. Teilfolgen von Teilfolgen einer Folge sind Teilfolgen der ursprünglichen Folge.
 - ix. Jede Folge hat einen Häufungspunkt.
 - x. Jede konvergente Folge hat mindestens einen Häufungspunkt.
 - xi. Der Wert einer Reihe ändert sich nicht, wenn man endlich viele Summanden abändert.
 - xii. Wenn $\sum_{n=0}^{\infty} a_n$ konvergiert, dann ist (a_n) eine Cauchyfolge.
 - xiii. Wenn (a_n) Cauchyfolge, dann konvergiert $\sum_{n=0}^\infty a_n$
 - xiv. Wenn (a_n) Nullfolge, dann konvergiert $\sum_{n=0}^{\infty} a_n$.
 - xv. Sind $\sum_{n=0}^{\infty} a_n$ und $\sum_{n=0}^{\infty} b_n$ konvergente Reihen, dann ist $\sum_{n=0}^{\infty} a_n b_n = \sum_{n=0}^{\infty} a_n \cdot \sum_{n=0}^{\infty} b_n$.
- (b) Geben Sie Beispiele an:
 - i. Für eine beschränkte Folge die nicht konvergiert.
 - ii. Für eine unbeschränkte Folge mit konvergenter Teilfolge.
 - iii. Für eine konvergente Reihe die nicht absolut konvergiert.
 - iv. Für eine divergente Reihe $\sum a_n$, wobei (a_n) eine Nullfolge ist.
 - v. Für eine Reihe die konvergiert, aber nicht das Quotientenkriterium erfüllt.

2. Folgen

- (a) Untersuchen Sie folgende Folgen auf Konvergenz. Geben Sie gegebenenfalls den Grenzwert an
 - i. $(a_n)_{n \in \mathbb{N}}$ mit $a_n = \frac{8n+2}{4n+17}$.
 - ii. $(a_n)_{n \in \mathbb{N}}$ mit $a_n = (\sqrt{n^2 + n} n)$.
 - iii. $(a_n)_{n\in\mathbb{N}}$ mit $a_n = \sqrt{n^4 + 12n^2 + 1} n^2 + 2$
 - iv. $(a_n)_{n\geq 1}$ mit $a_n = \frac{1}{n^2} + \frac{2}{n^2} + \dots + \frac{n}{n^2}$.
- (b) Bestimmen Sie die Grenzwerte und Häufungspunkte. Falls die Folge mehr als einen Häufungspunkt hat, geben Sie konvergente Teilfolgen an.
 - i. $a_n = \left(1 + \frac{k}{n}\right)^n$ für $k \in \mathbb{Z}$ (*Hinweis:* Verwenden Sie, dass für jede Nullfolge x_n mit $x_n \neq 0$ und $x_n > -1$ für alle $n \in \mathbb{N}$, $\lim_{n \to \infty} \left(1 + x_n\right)^{\frac{1}{x_n}} = e$).
 - ii. $a_n = \frac{\cos n}{n}$
 - iii. $a_n = \sin\left(\frac{\pi}{2}n\right)$

(c) Man zeige:

$$\lim_{n\to\infty}\sqrt[n]{n}=1$$

(d) Man berechne:

$$\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\dots}}}},$$

d.h. den Limes der Folge $(a_n)_{n\in\mathbb{N}}$ mit $a_0=1$ und $a_{n+1}=\sqrt{1+a_n}$ für $n\in\mathbb{N}$. (Hinweis: Um Aussagen über rekursiv definierte Folgen zu treffen benötigt man das Prinzip der vollständigen Induktion.)

(e) Beweisen Sie Satz 6 aus der Vorlesung: Jede konvergente Folge ist beschränkt.

3. Reihen

(a) Untersuchen Sie die folgenden Reihen auf (absolute) Konvergenz:

i.
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n-1}}$$

ii.
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} \text{ mit } x \in \mathbb{R}$$

iii.
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{n} \left(\frac{1}{3} + \frac{1}{n}\right)^n$$

iv.
$$\sum_{n=1}^{\infty} \frac{n}{4n^2 - 3}$$

v.
$$\sum_{n=1}^{\infty} (-1)^n \frac{\sin(\sqrt{n})}{n^{\frac{5}{2}}}$$

vi.
$$\sum_{n=1}^{\infty} \frac{1}{n}$$

(b) Bestimmen Sie die Werte der folgenden Reihen:

i.
$$\sum_{n=1}^{\infty} \frac{1}{4n^2 - 1}$$

ii.
$$\sum_{n=1}^{\infty} \frac{2^{n+1}}{n!}$$

$$\lim_{n=1}^{\infty} \frac{4n^2 - 1}{n!}$$
ii.
$$\sum_{n=1}^{\infty} \frac{2^{n+1}}{n!}$$
iii.
$$\sum_{n=1}^{\infty} \frac{1}{(3n+1)(3n-2)}$$

iv.
$$\sum_{n=1}^{\infty} 3^{\frac{n}{2}} 2^{1-n}$$

(c) Bestimmen Sie den Konvergenzradius der folgenden Reihen:

i.
$$\sum_{n=1}^{\infty} \frac{2^n}{n} z^n$$

ii.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} z^n$$

iii.
$$\sum_{n=0}^{\infty} 3^n \sqrt{(3n-2)2^n} z^n$$

iv.
$$\sum_{n=1}^{\infty} \frac{(2+(-1)^n)^n}{n} z^n$$