UNIVERSIDAD NACIONAL DE LANÚS DEPARTAMENTO DE DESARROLLO PRODCUTIVO Y TECNOLÓGICO LICENCIATURA EN SISTEMA **MATEMÁTICAS III**

Compilación de problemas y ejercicios Varios autores

PUNTOS Y VECTORES

1. Describa geométricamente los puntos P(x, y, z) que satisfacen las siguientes condiciones:

7.
$$z = 5$$

8.
$$x =$$

9.
$$x = 2, y = 3$$

7.
$$z = 5$$

8. $x = 1$
9. $x = 2, y = 3$
10. $x = 4, y = -1, z = 7$

- 2. Halle las coordenadas de los vértices del paralelepípedo formado por los planos coordenados y los planos de coordenadas: x = 2, y = 5, z = 8.
- 3. En la figura siguiente se muestran dos vértices de un paralelepípedo rectangular que tiene lados paralelos a los planos de coordenadas. Determine las coordenadas de los restantes seis vértices.

4. Si el módulo del vector \vec{A} es 3, calcule el módulo del vector \vec{B} . Sabiendo que:

$$\vec{A} = \langle 1, a, a \rangle$$
 $\vec{B} = 2a\hat{\imath} + a\hat{\jmath} + 4\hat{k}$

5. Determine los valores de m y n, si se cumple la siguiente relación:

$$\vec{A} = m\vec{B} + n\vec{C} \text{ donde: } \vec{A} = \hat{\imath} - \hat{\jmath} \ ; \ \vec{B} = 2\hat{\imath} + \hat{\jmath} + 3\hat{k} \ ; \ \vec{C} = \hat{\imath} + \hat{\jmath} + 2\hat{k}$$

- 6. Un vector \vec{A} tiene su origen en el punto (2,-1,-2) y su extremo en un punto P. Un segundo vector, tiene su origen en P y su respectivo extremo en el punto (-3,1,3). Calcular el modulo que resulta de sumar estos dos vectores.
- 7. Calcular el vector normal del vector de la siguiente figura:

8. Calcular el resultado de la suma de los dos vectores de la siguiente imagen, sabiendo que la arista del cubo mide dos unidades:

9. ¿Cómo podrías probar que el *punto medio* entre los puntos de coordenadas $P_1(x_1, y_1, z_1)$ y $P_2(x_2, y_2, z_2)$ viene dado por la expresión:

$$\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}, \frac{z_1+z_2}{2}\right)$$

10. En la siguiente figura:

Escribe cada una de las siguientes expresiones como un solo vector:

(a)
$$\overrightarrow{PQ} + \overrightarrow{QR}$$

(b)
$$\overrightarrow{RP} + \overrightarrow{PS}$$

(c)
$$\overrightarrow{QS} - \overrightarrow{PS}$$

(a)
$$\overrightarrow{PQ} + \overrightarrow{QR}$$
 (b) $\overrightarrow{RP} + \overrightarrow{PS}$ (c) $\overrightarrow{QS} - \overrightarrow{PS}$ (d) $\overrightarrow{RS} + \overrightarrow{SP} + \overrightarrow{PQ}$

- 11. Construye un vector unitario que tenga la misma dirección que el vector $8\hat{i} \hat{j} + 4\hat{k}$.
- 12. Si v es un vector que está en el primer cuadrante y tiene un ángulo de $\frac{\pi}{3}$ con la parte positiva del eje horizontal y |v| = 4, expresar a v en función de sus coordenadas cartesianas.
- 13. Problema difícil. La tensión T en cada extremo de la cadena es de 25N. ¿Cuál es el peso de la cadena?

14. **Problema difícil.** Suponga que un vector tiene los ángulos respectivos α , β y γ con las partes positivas de los ejes x, y, z. Encuentre los componentes del vector y demuestre que:

$$\cos^2 x + \cos^2 y + \cos^2 z = 1$$

CONJUNTOS ECUACIONES Y DESIGUALDADES

15. Describa las regiones del espacio tridimensional que definen el par de ecuaciones en cada caso:

1.
$$x = 2$$
, $y = 3$

1.
$$x = 2$$
, $y = 3$ 2. $x = -1$, $z = 0$

3.
$$v = 0$$
, $z = 0$

4.
$$x = 1$$
, $y = 0$

5.
$$x^2 + y^2 = 4$$
, $z = 0$

3.
$$y = 0$$
, $z = 0$ **4.** $x = 1$, $y = 0$ **5.** $x^2 + y^2 = 4$, $z = 0$ **6.** $x^2 + y^2 = 4$, $z = -2$

7.
$$x^2 + z^2 = 4$$
, $y = 0$ 8. $y^2 + z^2 = 1$, $x = 0$

8.
$$v^2 + z^2 = 1$$
. $x = 0$

9.
$$x^2 + v^2 + z^2 = 1$$
, $x = 0$

10.
$$x^2 + y^2 + z^2 = 25$$
, $y = -4$

11.
$$x^2 + y^2 + (z + 3)^2 = 25$$
, $z = 0$

12.
$$x^2 + (y-1)^2 + z^2 = 4$$
, $y = 0$

16. Describa las regiones del espacio tridimensional que definen las siguientes desigualdades y combinaciones de desigualdades y ecuaciones:

13. a.
$$x \ge 0$$
, $y \ge 0$, $z = 0$ **b.** $x \ge 0$, $y \le 0$, $z = 0$

b.
$$x \ge 0$$
, $y \le 0$, $z = 0$

14. a.
$$0 \le x \le 1$$

b.
$$0 \le x \le 1$$
, $0 \le y \le 1$

c.
$$0 \le x \le 1$$
, $0 \le y \le 1$, $0 \le z \le 1$

15. a.
$$x^2 + y^2 + z^2 \le 1$$
 b. $x^2 + y^2 + z^2 > 1$

b.
$$x^2 + y^2 + z^2 > 1$$

16. a.
$$x^2 + y^2 \le 1$$
, $z = 0$ b. $x^2 + y^2 \le 1$, $z = 3$

b.
$$x^2 + y^2 \le 1$$
, $z = 3$

c.
$$x^2 + y^2 \le 1$$
, sin restricción sobre z

17. a.
$$x^2 + v^2 + z^2 = 1$$
, $z \ge 0$

b.
$$x^2 + y^2 + z^2 \le 1$$
, $z \ge 0$

18. a.
$$x = y$$
, $z = 0$

b.
$$x = y$$
, sin restricción sobre z

La ecuación general de una esfera de centro (h, k, l) y radio r

$$(x - h)^2 + (y - k)^2 + (z - l)^2 = r^2$$

17. A continuación, halle el centro y el radio de las esferas expresadas mediante las siguientes ecuaciones:

35.
$$x^2 + y^2 + z^2 - 2x - 4y - 6z + 10 = 0$$

36.
$$x^2 + y^2 + z^2 + 4x - 5y + 2z + 5 = 0$$

37.
$$x^2 + y^2 + z^2 - 4x + 6y = 0$$

38.
$$x^2 + y^2 + z^2 = y$$

39.
$$2x^2 + 2y^2 + 2z^2 - 6x - 4y + 2z = 1$$

40.
$$3x^2 + 3y^2 + 3z^2 = 6z + 1$$