Lecture-33 Circuit model of a Transformer

Lecture delivered by:

Topics

- Ideal Transformer under On Load
- Circuit Model of Transformer under No-Load condition
- Circuit Model of Transformer under Load condition

Objectives

At the end of this lecture, student will be able to:

- State the meaning of a "no-load condition" and "on-load condition" relative to a transformer
- Describe the operation of ideal transformer under on-load condition
- Construct a transformer on-load phasor diagram for different loads
- Derive the equivalent resistance and reactance referred to the primary and secondary side of a transformer

Ideal Transformer On Load

Phasor Diagram of Ideal Transformer For Resistive Load:

Phasor diagram for resistive load

Phasor Diagram of Ideal transformer for inductive load

Phasor diagram for inductive load

Phasor Diagram of Ideal transformer for Capacitive load

Phasor diagram for capacitive load

Equivalent Circuit of Transformer

No Load Equivalent Circuit

$$R_0 = \frac{V_1}{I_c}$$

$$X_0 = \frac{V_1}{I_m}$$

$$I_m = I_0 \sin \phi_0 = Magnetising component$$

$$I_c = I_0 \cos \phi_0 = Active component$$

Equivalent Circuit with Load

Equivalent Circuit with Load Cont...

$$I_{2}^{2}R_{2} = I_{1}^{2}R_{2}^{-1}$$
 $\therefore R_{2}^{-1} = \frac{I_{2}^{2}}{I_{1}^{2}}R_{2}^{-1}$
 $R_{2}^{-1} = \frac{R_{2}}{K^{2}}$ where $K = \frac{I_{1}}{I_{2}}$

The R_2^{-1} is called the secondary resistance referred to primary.

Equivalent Circuit Referred to Primary Side

Transferring Secondary Side Parameters to Primary Side

$$R_{2}' = \frac{R_{2}}{K^{2}}, \qquad X_{2}' = \frac{X_{2}}{K^{2}}, \qquad Z_{2}' = \frac{Z_{2}}{K^{2}}$$
While
$$E_{2}' = \frac{E_{2}}{K}, \qquad I_{2}' = KI_{2}$$
where
$$K = \frac{N_{2}}{N_{1}}$$

$$I_{1} = \frac{X_{1}}{V_{1}} = \frac{X_{2}}{V_{2}} = \frac{X_{2}}{V_{2}}$$

$$I_{3} = \frac{X_{1}}{V_{2}} = \frac{X_{2}}{V_{2}} = \frac{X_{2}}{V_{2}} = \frac{X_{2}}{V_{2}} = \frac{Z_{2}}{K^{2}}$$

$$I_{4} = \frac{X_{1}}{V_{2}} = \frac{X_{2}}{K^{2}} = \frac{X_{2}$$

Problem

Equivalent Circuit Referred to Secondary Side

Transferring Primary Side Parameters to Secondary Side

$$R'_1 = K^2 R_1, \quad X'_1 = K^2 X_1, \quad Z'_1 = K^2 Z_1$$
 $E'_1 = K E_1, \quad I'_1 = \frac{I_1}{K}, \quad I'_0 = \frac{I_0}{K}$

Similarly exciting circuit parameters are also transferred to secondary as R_0 , and X_0 ,

Approximate Equivalent Circuit

$$I_1^2 R_{2'} = I_2^2 R_2$$

$$R_{2'} = R_2 \left(\frac{I_2}{I_1}\right)^2 \approx R_2 \left(\frac{V_1}{V_2}\right)^2$$

Similarly
$$X_{2'} = X_2 \left(\frac{N_1}{N_2}\right)^2 \approx X_2 \left(\frac{V_1}{V_2}\right)^2$$

Equivalent Circuit

$$R_e = R_1 + R_2 = R_1 + R_2 \left(\frac{V_1}{V_2}\right)^2$$

$$X_e = X_1 + X_{2'} = X_1 + X_2 \left(\frac{V_1}{V_2}\right)^2$$

then
$$Z_e = \sqrt{R_e^2 + X_e^2}$$

where $R_e = Z_e \cos \phi_e$

$$X_e = Z_e \sin \phi_e$$

and $\tan \phi_e = \frac{X_e}{R_e}$

transformer simplified circuit

Example

•A single-phase transformer has 1000 turns on the primary and 200 turns on the secondary. The no load current is 3A at a power factor 0.2 lagging when secondary current is 280A at a power factor of 0.8 lagging. Calculate the primary current and the power factor. Assume the voltage drop in the windings to be negligible.

Solution:

$$\frac{I_p}{I_s} = \frac{N_s}{N_p}$$

$$I_{P} = \frac{N_{S}}{N_{P}} \times I_{S} = \frac{200}{1000} \times 280 = 56A$$

∴ Problem $\sin \phi_2 = 0.6$

 V_1 , E_1

$$\cos \phi_{2'} = 0.8$$

$$\therefore \sin \phi_{2'} = 0.6$$

$$\cos \phi_o = 0.2$$

$$\cos \phi_o = 0.2$$
 $\therefore \sin \phi_o = 0.98$

Solve for horizontal and vertical components

$$I_1 \cos \phi_1 = I_{2'} \cos \phi_{2'} + I_o \cos \phi_o$$
$$= (56 \times 0.8) + (3 \times 0.2) = 45.4A$$

$$I_1 \sin \phi_1 = I_{2'} \sin \phi_{2'} + I_o \sin \phi_o$$

$$=(56\times0.6)+(3\times0.98)=36.54A$$

$$I_1 = \sqrt{(45.4)^2 + (36.54)^2} = 58.3A$$

$$\tan \phi_1 = \frac{36.54}{45.4} = 0.805$$
 $\phi_1 = 38^{\circ}50'$

Power factor $\cos \phi_1 = \cos 38^{\circ} 50' = 0.78 \ lagging$

Summary

- Operation of ideal transformer under on-load condition
- Phasor diagrams of the transformer at different loads
- Development of equivalent circuit of a transformer referred to primary side
- Development of equivalent circuit of a transformer referred to secondary side

