CSCE 222: Discrete Structures for Computing Section 503 Fall 2016

YOUR NAME HERE

October 9, 2016

Problem Set 6

Due: 9 October 2016 (Sunday) before 11:59 p.m. on eCampus (ecampus.tamu.edu). You must show your work in order to recieve credit.

Problem 1. (25 points)

- 1. Show that $\sum_{j=1}^{n} (a_j a_{j-1}) = a_n a_0$, where a_0, a_1, \ldots, a_n is a sequence of real numbers. This type of sum is called **telescoping**.
- 2. Sum both sides of the identity $k^2 (k-1)^2 = 2k-1$ from k=1 to k=n and use the previous step to find:
 - a. a formula for $\sum_{k=1}^{n} (2k-1)$.
 - b. a formula for $\sum_{k=1}^{n} k$.
- 3. Use the technique given in step 1, together with the results of step 2, to derive the formula for $\sum_{k=1}^{n} k^2$. Hint: take $a_k = k^3$ in the telescoping sum in step 1.

Solution.

1.
$$\sum_{j=1}^{n} (a_{j} - a_{j-1}) = a_{1} - a_{0} + a_{2} - a_{1} + a_{3} - a_{2} + a_{4} - a_{3} \dots + a_{n} - a_{n-1} + a_{n-1} - a_{n-2} + a_{n-2} - a_{n-3}$$

$$\sum_{j=1}^{n} (a_{j} - a_{j-1}) = y_{1} - a_{0} + y_{2} - y_{1} + y_{3} - y_{2} + y_{4} - y_{3} \dots + a_{n} - a_{n-1} + a_{n-1} - a_{n-2} + a_{n-2} - a_{n-3}$$

$$= a_{n} - a_{0}$$

2. sum

Problem 2. (25 points) Solve the recurrence relation:

- 1. $A_n = 2 \cdot A_{n-1} + 3$, where $A_0 = 1$
- 2. $A_n = A_{n-1} + 4n 2$, where $A_0 = 1$

Solution.

Problem 3. (25 points)

Let $V = \{S, A, B, a, b\}$ and $T = \{a, b\}$. Find the language generated by the grammar (V, T, S, P) when the set P of production rules consists of

1.
$$S \rightarrow AB$$
, $A \rightarrow ab$, $B \rightarrow bb$.

2.
$$S \to AB$$
, $S \to aA$, $A \to a$, $B \to ba$.

3.
$$S \to AB$$
, $S \to AA$, $A \to aB$, $A \to ab$, $B \to b$.

4.
$$S \to AA$$
, $S \to B$, $A \to aaA$, $A \to aa$, $B \to bB$, $B \to b$.

5.
$$S \to AB$$
, $A \to aAb$, $B \to bBa$, $A \to \lambda$, $B \to \lambda$.

Solution.

Problem 4. (25 points)

Find a phrase-structure grammar for each of these languages.

- 1. the set consisting of the bitstrings 00, 11, and 010.
- 2. the set of bitstrings that start with 10 and end with one or more 1s.
- 3. the set of bitstrings consisting of an odd number of 0s followed by a final 1.
- 4. the set of bitstrings that have neither two consecutive 0s nor two consecutive 1s.

Aggie Honor Statement: On my honor as an Aggie, I have neither given nor received any unauthorized aid on any portion of the academic work included in this assignment.

Checklist: Did you...

- 1. abide by the Aggie Honor Code?
- 2. solve all problems?
- 3. start a new page for each problem?
- 4. show your work clearly?
- 5. type your solution?
- 6. submit a PDF to eCampus?