

planetmath.org

Math for the people, by the people.

Kronecker's lemma

Canonical name KroneckersLemma
Date of creation 2013-03-22 18:33:54
Last modified on 2013-03-22 18:33:54

Owner gel (22282) Last modified by gel (22282)

Numerical id 6

Author gel (22282) Entry type Theorem Classification msc 40A05 Classification msc 40-00

Related topic StolzCesaroTheorem

Kronecker's lemma gives a condition for convergence of partial sums of real numbers, and for example can be used in the proof of Kolmogorov's strong law of large numbers.

Lemma (Kronecker). Let x_1, x_2, \ldots and $0 < b_1 < b_2 < \cdots$ be sequences of real numbers such that b_n increases to infinity as $n \to \infty$. Suppose that the sum $\sum_{n=1}^{\infty} x_n/b_n$ converges to a finite limit. Then, $b_n^{-1} \sum_{k=1}^n x_k \to 0$ as $n \to \infty$.

Proof. Set $u_n = \sum_{k=1}^n x_k/b_k$, so that the limit $u_\infty = \lim_{n \to \infty} u_n$ exists. Also set $a_n = \sum_{k=1}^{n-1} (b_{k+1} - b_k) u_k$ so that

$$\frac{a_{n+1} - a_n}{b_{n+1} - b_n} = u_n \to u_\infty$$

as $n \to \infty$. Then, the Stolz-Cesaro theorem says that a_n/b_n also converges to u_∞ , so

$$b_n^{-1} \sum_{k=1}^n x_k = b_n^{-1} \sum_{k=1}^n b_k (u_k - u_{k-1}) = u_n - b_n^{-1} a_n \to 0.$$