1) Find inner product of given vectors.

$$\mathbf{R}^3$$
 $\mathbf{x} = (2, -3, 1), \mathbf{y} = (1, 5, -6)$

2) Inner product of polynomials can be calculated as $p(x), q(x) \in P_n(\mathbf{R})$

$$< p(x), q(x) > = \int_{0}^{1} p(x) \cdot q(x) dx$$

Calculate inner product of given polynomials;

$$P_2(\mathbf{R})$$
 $p(x) = 3x^2 + 2x + 5$, $q(x) = x + 1$

3) Calculate inner product of given vectors

$$M_{2\times 2} \qquad A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, B = \begin{pmatrix} 2 & 0 \\ 1 & -3 \end{pmatrix}$$

4) Find angle between two vectors in
$$M_{2x2}$$
 space. $M_{2x2} - A = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}$, $B = \begin{pmatrix} -1 & 0 \\ 2 & 3 \end{pmatrix}$

5) Show that given vectors are orthogonal and find orthonormal basis vectors.

$$\mathbf{R}^3$$
 $x_1 = (1, 0, 3)$, $x_2 = (0, 2, 0)$, $x_3 = (-3, 0, 1)$

6) Find orhonormal basis vectors in R³ from given vectors in R³

$$E = \{ (1, 1, 1), (1, 0, 2), (1, 2, 3) \}$$