Решение двумерных задач. Персистентные и двумерные структуры данных

Россия, Санкт-Петербург

13 мая 2020

Пример задачи

- ullet Заданы n точек на плоскости (x_i,y_i)
- ullet Запросы: прямоугольники $[l_x,r_x] imes [l_y,r_y]$ сколько точек внутри
- ullet Ответ на запрос за $\mathcal{O}(\log n)$.

Offline: сканирующая прямая

Offline: сканирующая прямая

Offline: сканирующая прямая

- ullet Отсортировать все вертикальные стороны и точки по x.
- ullet Сжать координаты по y.
- Каждый прямоугольник это разность:
 - $(-\infty, r_x] \times [l_y, r_y];$
 - $(-\infty, l_x) \times [l_y, r_y].$
- Дерево отрезков:
 - ullet для каждого y сохраним сколько точек встретили.
- Ответ на запрос: сумма на отрезке.
- Время работы: $\mathcal{O}((n+m)\log{(n+m)})$.

- Пользуемся той же идеей, но точек не знаем.
- Сортируем только точки.
- Сжимаем координаты только точек.
- Прямоугольник делим на два прямоугольника:
 - двоичным поиском ищем, когда добавлена последняя точка;
 - берем версию дерева отрезков;
 - ищем в ней сумму;
 - отрезок тоже ищем двоичным поиском.
- Ответ на запрос: $\mathcal{O}(\log n)$.

- Возьмем точки (x_i, y_i) .
- Посортируем по x_i .
- ullet Двумерное дерево для $\{y_i\}.$

• На картинке дерево для: (1,5), (2,3), (3,3), (4,1), (4,7), (5,8), (7,1), (7,4).

- ullet $[l_x,r_x] imes[l_y,r_y]$ выглядит так:
- ullet $[l_x, r_x]$ отрезок дерева;
- ullet $[l_y, r_y]$ значения в вершине, которые отсортированы.

- На картинке дерево для: (1,5), (2,3), (3,3), (4,1), (4,7), (5,8), (7,1), (7,4).
- Прямоугольник: $[3, 10] \times [3, 7]$

- Построение: MERGE детей.
- Запрос: выделить вершины + двоичный поиск в каждой вершине.
- ullet Время построения: $\mathcal{O}(n\log n)$, время на запрос: $\mathcal{O}(\log^2 n)$

- English: Layered range tree
- Gabow, Bentley, Tarjan (1984)

Fractional cascading

Fractional cascading

Fractional cascading

- Для каждого элемента сохраним два указателя:
 - по одному в каждого из детей;
 - ullet для элемента x указатель в минимальное y, что $y\geqslant x$;
- Это можно считать по ходу операции MERGE.
- Двоичный поиск делаем в корне:
 - из найденного элемента по указателям переходим в детей;
 - в детях двоичный поиск не нужен.
- Построение указателей: $\mathcal{O}(n \log n)$.
- ullet Ответ на запрос: $\mathcal{O}(\log n)$ на бинпоиск в корне $+ \mathcal{O}(\log n)$ на поиск вершин дерева отрезков.

Описание задачи

- Задан массив чисел: a_1, a_2, \ldots, a_n .
- Запросы:
 - Задан отрезок [L,R) и число k;
 - ullet Найти k-й по возрастанию элемент среди $a_L, a_{L+1}, \dots, a_{R-1}$.

Сведение к числу точек в прямоугольнике

- ullet k-й по возрастанию элемент $\leqslant x$,
 - если число элементов $\leqslant x$ среди $a_L, a_{L+1}, \ldots, a_{R-1}$ хотя бы k;
 - $|\{i \mid a_i \leqslant x \land L \leqslant i < R\}| \geqslant k$.
- Сделаем двоичный поиск по x:
 - требуется проверить, сколько есть точек (i,a_i) в прямоугольнике $[L,R) \times (-\infty,x].$
- Минимальное такое x и есть k-й элемент.
- Персистентное дерево или Двумерное дерево c fractional cascading
 - ullet log n на бинпоиск, и $\log n$ на подсчет числа точек;
 - ullet ответ на запрос за время $\mathcal{O}(\log^2 n)$.

- Структура данных для подсчета числа точек в прямоугольнике:
 - ullet $c_i[x]$ сколько чисел равных x на префиксе $[1\dots i]$;
 - увеличение префикса +1 число.
- ullet k-й по возрастанию элемент $\leqslant x$,
 - ullet если число элементов $\leqslant x$ среди $a_L, a_{L+1}, \dots, a_{R-1}$ хотя бы k;
 - $|\{i \mid a_i \leqslant x \land L \leqslant i < R\}| \geqslant k;$
 - $|\{i \mid a_i \leq x \land L \leq i < R\}| = c_{R-1}[-\infty \dots x] c_{L-1}[-\infty \dots x].$

- L = 3, R = 7, k = 3 x $\begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 3 - 1 = 2 \\ c_2[x] & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ c_6[x] & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 3 \end{vmatrix}$
 - элементов $\leqslant 4$ на отрезке 2, что меньше k=3;
 - уменьшаем k на 2, теперь k=1.
- - элементов ≤ 6 и > 4 на отрезке 1, что $\leq k = 1$;
 - сдвигаем влево.

- L = 3, R = 7, k = 1 x $\begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ c_{6}[x] & 1 & 0 & 1 & 1 & 1 & 1 & 0 \end{vmatrix} \begin{vmatrix} 1 - 1 = 0 \\ 1 & 1 & 1 & 1 & 1 \end{vmatrix}$
 - элементов ≤ 5 и > 4 на отрезке 0, что меньше k = 1;
 - сдвигаем вправо;
 - Ответ: 6.
- Строим $c_i[x]$ для всех i: персистентное дерево.
- Делаем спуск по двум деревьям параллельно:
 - в обоих деревьях идем налево;
 - если разность $\geqslant k$, то остаемся слева;
 - ullet если разность < k, то идем вправо уменьшая k.
- ullet Время работы: $\mathcal{O}(n\log n)$ препроцессинг, $\mathcal{O}(\log n)$ на запрос.

Двумерное дерево, другие координаты

Отсортируем:
$$i \mid 4 \mid 7 \mid 1 \mid 6 \mid 2 \mid 3 \mid 5 \mid 8$$
 $a_i \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8$

Построим двумерное дерево для (a_i,i) :

1 2 3 4 5 6 7 8							
1 4 6 7				2 3 5 8			
4 7		1 6		2 3		5 8	
4	7	1	6	2	3	5	8