Càlcul de derivades de polinomis i avaluació mitjançant l'algorisme de Horner

March 4, 2025

Introducció

En aquesta pràctica es treballarà amb memòria dinàmica per gestionar una matriu triangular que emmagatzema els coeficients de les derivades successives d'un polinomi. A més, es calcularà el valor de cada derivada en un punt determinat utilitzant l'algorisme de Horner, una tècnica eficient per avaluar polinomis.

Descripció del problema

Donat un polinomi real p(x) de grau n, s'han de dur a terme les operacions següents:

- Llegir el grau n i els n+1 coeficients p_0, p_1, \ldots, p_n .
- Calcular els coeficients de totes les derivades $p^{(i)}(x)$ per a $i = 0, 1, \dots, n$.
- Emmagatzemar aquests coeficients en una matriu triangular implementada amb memòria dinàmica.
- Llegir un valor real x_0 i calcular $p^{(i)}(x_0)$ per a cada i utilitzant l'algorisme de Horner.

Algorisme de Horner

L'algorisme de Horner permet avaluar un polinomi en un punt de manera eficient, reduint el nombre d'operacions necessàries. Donat un polinomi de grau n:

$$p(x) = q_0 + q_1 x + q_2 x^2 + \dots + q_n x^n,$$

es pot reescriure com:

$$p(x) = q_0 + x(q_1 + x(q_2 + x(q_3 + \dots + x(q_n)))).$$

Aquest enfocament permet calcular el valor del polinomi mitjançant un recorregut iteratiu pels coeficients, millorant així l'eficiència computacional.

Objectius

Amb aquesta pràctica es pretén assolir els objectius següents:

- Comprendre i aplicar la memòria dinàmica per gestionar estructures de dades variables.
- Implementar la derivació simbòlica de polinomis de manera eficient.
- Aplicar l'algorisme de Horner per avaluar polinomis i analitzar la seva eficiència.

Enunciat

Implementa les funcions següents en C:

- 1. Escriu una funció double horner(int n, double *pol, double x0) que, donats un enter positiu n, un vector de coeficients pol i un valor real x_0 , avaluï el polinomi en el punt x_0 utilitzant l'algorisme de Horner.
- 2. Escriu una funció double **reserva_mem(int n) que reservi memòria per a la matriu triangular, on s'han d'emmagatzemar els coeficients del polinomi i totes les seves derivades.
- 3. Escriu una funció void liberar_mem(double **pol, int n) que alliberi la memòria dinàmica utilitzada per la matriu triangular.
- 4. Implementa la funció main que:
 - Llegeixi el grau del polinomi n i els seus n+1 coeficients.
 - Calculi i emmagatzemi els coeficients de les derivades en una matriu triangular.
 - Demani un valor x_0 i avaluï el polinomi i les seves derivades en aquest punt utilitzant l'algorisme de Horner.
 - Mostri per pantalla els coeficients de cada derivada i els valors calculats en x_0 .

Exemple d'execució

```
n = ?
p0 p1 p2 ... pn ?
1 2 3 4 5 6 7
p^(0), grau 6, coeficients:
 +1.00 +2.00 +3.00 +4.00 +5.00 +6.00 +7.00
p^(1), grau 5, coeficients:
 +2.00 +6.00 +12.00 +20.00 +30.00 +42.00
p^(2), grau 4, coeficients:
 +6.00 +24.00 +60.00 +120.00 +210.00
p^(3), grau 3, coeficients:
 +24.00 +120.00 +360.00 +840.00
p^(4), grau 2, coeficients:
 +120.00 +720.00 +2520.00
p^(5), grau 1, coeficients:
 +720.00 +5040.00
p^(6), grau 0, coeficients:
 +5040.00
x0 = ?
0.25
p^{(0)}(x0) = +1.78
p^{(1)}(x0) = +4.72
p^{(2)}(x0) = +18.45
p^{(3)}(x0) = +89.62
p^{4}(x0) = +457.50
p^{(5)}(x0) = +1980.00
p^{(6)}(x0) = +5040.00
```