MATH 4081 TOPOLOGY I ASSIGNMENT 1

JOE TRAN

Question 1. Let (X,d) be a discrete metric space, (Y,ρ) be any metric space, and $f: X \to Y$ be any function. Then, always $f: (X,d) \to (Y,\rho)$ is continuous.

Question 2. Let (X,d) and (Y,ρ) be metric spaces and let $f:(X,d) \to (Y,\rho)$ be an isometry.

- (a) Prove that f is one-to-one.
- (b) If f is onto, prove that $f^{-1}:(Y,\rho)\to (X,d)$ exists and it is an onto isometry.

Question 3. Let (X, d) be a metric space.

- (a) For $x_0 \in X$ and $\varepsilon > 0$ prove that the set $B(x_0, \varepsilon)$ is open.
- (b) If $U_1, U_2, ..., U_n$ are open subsets of X, prove that $\bigcap_{i=1}^n U_i$ is open.
- (c) If $(U_i)_{i\in I}$ is an arbitrary collection of open subsets of X, prove that $\bigcup_{i\in I} U_i$ is open.

Question 4. Let X be an uncountable set equipped with the co-countable topology

$$\mathcal{T} = \{ A \subset X : X \setminus A \text{ is countable} \} \cup \{\emptyset\}$$

Prove that (X, \mathcal{T}) is not metrizable.

Question 5. In \mathbb{R} , show that the family

$$\mathcal{F} = \{(-\infty, a) : a \in \mathbb{R}\} \cup \{(b, \infty) : b \in \mathbb{R}\}$$

is a subbasis for the usual topology of \mathbb{R} .

Question 6. In \mathbb{N} with the cofinite topology show that

$$\mathcal{B} = \{ \{m\} \cup \{n, n+1, ...\} : m, n \in \mathbb{N} \}$$

is a basis for the topology.

Question 7. Let (X, \mathcal{T}) be a topological space and \mathcal{B} be a basis for \mathcal{T} . Prove a subset U of X is open if and only if for every $x \in U$, there exists a $V \in \mathcal{B}$ with $x \in V$ and $V \subset U$.