Travail individuel de rédaction en temps libre À rendre le lundi 24 octobre 2022

Problème 1

On pose $E = \mathbb{R} \setminus \{-1, 1\}$. On considère les fonctions définies sur E par

$$f_1: x \mapsto 2\arccos\frac{1-x^2}{1+x^2}; \qquad f_2: x \mapsto \arcsin\frac{2x}{1+x^2}; \qquad f_3: x \mapsto -\arctan\frac{2x}{1-x^2}.$$

1. Calculer $\arcsin(\sin \alpha)$, $\arccos(\cos \alpha)$ et $\arctan(\tan \alpha)$ dans les cas suivants

(a)
$$\alpha = \frac{59}{5}\pi$$
;

(c)
$$\alpha = \frac{76}{5}\pi$$
.

(b)
$$\alpha = \frac{84}{5}\pi$$
;

Votre calculatrice a-t-elle l'air d'accord?

2. Calculer $\arcsin(\sin u)$, $\arccos(\cos u)$ et $\arctan(\tan u)$ pour

(a)
$$u \in \left] -\pi, -\frac{\pi}{2} \right[;$$

(c)
$$u \in \left[0, \frac{\pi}{2}\right]$$
;

(b)
$$u \in \left] -\frac{\pi}{2}, 0 \right[;$$

(c)
$$u \in \left]0, \frac{\pi}{2}\right[;$$

(d) $u \in \left]\frac{\pi}{2}, \pi\right[.$

Vérifiez vos formules sur des exemples simples.

3. Ici ϕ est un réel de $\left|-\frac{\pi}{2}, \frac{\pi}{2}\right|$.

(a) Montrer que
$$\cos(2\phi) = \frac{1 - \tan^2 \phi}{1 + \tan^2 \phi}$$
.

(b) Montrer de même que
$$\sin(2\phi) = \frac{2\tan\phi}{1+\tan^2\phi}$$
.

(c) Montrer enfin que
$$\tan(2\phi) = \frac{2\tan\phi}{1-\tan^2\phi}$$

4. On étudie f_1 dans cette question.

(a) Déterminer la dérivée de f_1 sur $E \setminus \{0\}$. Comparer avec la dérivée de arctan. Dans la suite, on pose $\phi = \arctan x \ avec \ x \in E$.

(b) Calculer $g_1(\phi) = f_1(\tan \phi)$ en utilisant la question 2.. Retrouver le résultat de la question précédente.

5. Calculer, de même $g_2(\phi) = f_2(\tan \phi)$.

6. Calculer, enfin $g_3(\phi) = f_3(\tan \phi)$.

7. Soit $h: x \mapsto f_1(x) + f_2(x) + f_3(x)$. On pose $g(\phi) = g_1(\phi) + g_2(\phi) + g_3(\phi)$. En utilisant les questions précédentes, déterminer l'expression de $g(\phi)$ sur les intervalles

1

$$\left] -\frac{\pi}{2}, -\frac{\pi}{4} \right[, \quad \left] -\frac{\pi}{4}, 0 \right[, \quad \left] 0, \frac{\pi}{4} \right[\quad \text{et} \quad \left] \frac{\pi}{4}, \frac{\pi}{2} \right[.$$

En déduire l'expression de *h*.

8. Faire un beau dessin de la courbe de h.

9. Résoudre l'équation $h(x) = \frac{2\pi}{3}$.