А. Ю. Пирковский

Функциональный анализ

Лекция 26

26.1. Двойственность. Слабые топологии

Мы уже немного знакомы с теорией двойственности для банаховых пространств (см. лекцию 13). Напомним, что теория двойственности — это, по сути, не совсем теория, а скорее совокупность методов, устанавливающих взаимосвязи между свойствами банаховых пространств и их сопряженных, а также линейных операторов и их сопряженных. Наша ближайшая задача будет состоять в том, чтобы обогатить уже известные нам методы теории двойственности новыми результатами, основанными на понятии слабой топологии.

Вы, возможно, заметили, что в ряде вопросов банахово пространство и его сопряженное в некотором смысле оказываются равноправными: заменив в той или иной теореме банаховы пространства на их сопряженные, а сопряженные — на исходные пространства, мы часто (хотя и не всегда) получаем верное утверждение, даже если пространства не рефлексивны (см. например, предложение 13.8, теоремы 13.10 и 13.12). Чтобы иметь дело с ситуациями такого рода, удобно ввести следующее понятие.

Определение 26.1. Пусть X, Y — векторные пространства и $\langle \, \cdot \, , \, \cdot \, \rangle$: $X \times Y \to \mathbb{K}$ — билинейная форма. Тройка $(X, Y, \langle \, \cdot \, , \, \cdot \, \rangle)$ называется *дуальной парой*, если выполняются следующие условия невырожденности:

- (i) для каждого $x \in X, \ x \neq 0$, найдется такой $y \in Y$, что $\langle x,y \rangle \neq 0$;
- (ii) для каждого $y \in Y$, $y \neq 0$, найдется такой $x \in X$, что $\langle x, y \rangle \neq 0$.

Дуальную пару $(X, Y, \langle \cdot, \cdot \rangle)$ мы в дальнейшем будем обозначать через $\langle X, Y \rangle$. Билинейная форма $\langle \cdot, \cdot \rangle$ обычно называется *спариванием* пространств X и Y.

Очевидно, что если $\langle X,Y \rangle$ — дуальная пара, то и $\langle Y,X \rangle$ — дуальная пара относительно спаривания $\langle y,x \rangle = \langle x,y \rangle$ (где $x \in X, y \in Y$).

Для векторного пространства X обозначим через $X^{\sharp} = \operatorname{Hom}_{\mathbb{K}}(X, \mathbb{K})$ пространство всех линейных функционалов¹ на X. Тогда условия невырожденности (i), (ii) из определения 26.1 означают, что имеют место вложения

$$i_{X,Y} \colon X \hookrightarrow Y^{\sharp}, \quad x \mapsto \langle x, \cdot \rangle;$$

 $i_{Y,X} \colon Y \hookrightarrow X^{\sharp}, \quad y \mapsto \langle \cdot, y \rangle.$ (26.1)

Соглашение 26.1. В дальнейшем, имея дело с дуальной парой $\langle X, Y \rangle$, мы обычно будем отождествлять X с подпространством в Y^{\sharp} , а Y — с подпространством в X^{\sharp} посредством вложений (26.1).

 $^{^{1}}$ Мы используем обозначение X^{\sharp} , т.к. более привычный символ X^{*} у нас уже зарезервирован для обозначения пространства непрерывных линейных функционалов на топологическом векторном пространстве X.

Лекция 26 175

Пример 26.1. Если X — векторное пространство, то $\langle X, X^{\sharp} \rangle$ — дуальная пара относительно спаривания $\langle x, f \rangle = f(x)$ (где $x \in X$, $f \in X^{\sharp}$).

Пример 26.2. Если X — хаусдорфово локально выпуклое пространство, то $\langle X, X^* \rangle$ — дуальная пара относительно того же спаривания, что в предыдущем примере. При этом одно из условий невырожденности (i), (ii) выполнено по очевидным причинам, тогда как второе является переформулировкой следствия 25.9 из теоремы Хана—Банаха.

Наблюдение 26.1. Вы, возможно, уже заметили, что вложения (26.1) и каноническое вложение нормированного пространства в его второе сопряженное (см. определение 11.1) определяются совершенно одинаково. Точнее говоря, если X — нормированное пространство, то композиция канонического вложения $i_X \colon X \hookrightarrow X^{**}$ и включения $X^{**} \subset (X^*)^\sharp$ — это в точности вложение $i_{X,X^*} \colon X \hookrightarrow (X^*)^\sharp$, соответствующее дуальной паре $\langle X, X^* \rangle$. Стало быть, раз уж мы приняли соглашение 26.1, то всякое нормированное пространство X мы будем считать частью его второго сопряженного X^{**} посредством канонического вложения i_X .

Нас будут в первую очередь интересовать дуальные пары такого вида, как в примере 26.2, особенно в случае, когда X — банахово пространство. Конечно, может возникнуть вопрос: а зачем тогда нужно вводить общее понятие дуальной пары? Дело в том, что, как мы уже заметили выше, в определении дуальной пары оба пространства равноправны, поэтому наряду с дуальной парой $\langle X, X^* \rangle$ (где X — банахово пространство) мы имеем право рассматривать и дуальную пару $\langle X^*, X \rangle$. А она уже, вообще говоря, не может быть представлена в виде $\langle Y, Y^* \rangle$, где Y — какое-то банахово пространство (если только X не рефлексивно). В результате, доказывая какое-либо общее утверждение о дуальных парах, для банахова пространства X мы получаем сразу два следствия: одно — для дуальной пары $\langle X, X^* \rangle$, а другое — для дуальной пары $\langle X^*, X \rangle$.

Само по себе понятие дуальной пары — чисто алгебраическое; никаких топологий на пространствах X и Y, участвующих в определении 26.1, заранее не задано. На самом деле для любой дуальной пары $\langle X,Y\rangle$ пространства X и Y можно снабдить естественными локально выпуклыми топологиями, причем не единственным способом. Ниже мы обсудим самый простой (и, возможно, самый полезный) из этих способов.

Определение 26.2. Пусть $\langle X,Y \rangle$ — дуальная пара векторных пространств. Для каждого $y \in Y$ введем полунорму $\|\cdot\|_y$ на X, полагая $\|x\|_y = |\langle x,y \rangle|$. Топология на X, порожденная семейством полунорм $\{\|\cdot\|_y : y \in Y\}$, называется слабой топологией дуальной пары $\langle X,Y \rangle$ и обозначается через $\sigma(X,Y)$.

Наблюдение 26.2. Из предложения 24.7 следует, что топология $\sigma(X,Y)$ хаусдорфова. Кроме того, из предложения 24.6 следует, что направленность (x_{λ}) в X сходится к вектору x относительно топологии $\sigma(X,Y)$ тогда и только тогда, когда $\langle x_{\lambda},y\rangle \to \langle x,y\rangle$ для всех $y\in Y$. Иначе говоря, если интерпретировать элементы пространства X как функционалы на Y, то $\sigma(X,Y)$ — это топология поточечной сходимости (ср. с примером 24.3).

Вот два важных частных случая:

Определение 26.3. Пусть X — хаусдорфово локально выпуклое пространство. Топология $\sigma(X, X^*)$ называется слабой топологией на X, а топология $\sigma(X^*, X)$ — слабой

(произносится «слабой-со-звездочкой» или «слабой-со-звездой») топологией на X^* . В дальнейшем мы будем использовать обозначения $\sigma(X, X^*) = \text{wk } u \ \sigma(X^*, X) = \text{wk}^*$.

Отметим, что обе эти топологии можно рассматривать и в более общей ситуации, когда X — произвольное топологическое векторное пространство (не обязательно хаусдорфово и не обязательно локально выпуклое). Разумеется, слабая топология на X при этом уже не обязана быть хаусдорфовой, а вот слабая* топология на X^* хаусдорфова всегда — убедитесь.

Замечание 26.2. Может возникнуть вопрос: а зачем называть топологию $\sigma(X^*,X)$ именно «слабой*», почему бы не назвать ее просто «слабой»? Дело в том, что если X — нормированное пространство, то X^* — тоже нормированное пространство относительно стандартной нормы, поэтому на X^* есть слабая топология $\sigma(X^*,X^{**})$, которая, вообще говоря, сильнее, чем $\sigma(X^*,X)$ (см. об этом ниже). Поэтому, чтобы избежать путаницы и как-то различать эти две топологии, первую из них называют слабой, а вторую — слабой*.

Замечание 26.3. Когда говорят о слабой топологии, обычно используют следующую терминологию: направленность, сходящуюся относительно слабой топологии, называют слабо сходящейся, множество, замкнутое (соответственно, открытое, ограниченное) относительно слабой топологии — слабо замкнутым (соответственно, слабо открытым, слабо ограниченным), и т.п. Аналогичная терминология применяется и к слабой* топологии.

Замечание 26.4. Напомним (см. примеры 24.7 и 24.8), что для нормированных пространств X и Y на пространстве $\mathscr{B}(X,Y)$ определены сильная и слабая операторные топологии. Если положить $Y = \mathbb{K}$, то обе они превратятся в слабую* топологию на пространстве X^* (убедитесь!).

Наблюдение 26.3. Если X — произвольное топологическое векторное пространство, то его слабая топология не сильнее исходной (именно поэтому она и называется слабой). В самом деле, предбазу окрестностей точки $x \in X$ в слабой топологии образуют множества вида $U_{f,\varepsilon}(x) = \{y \in X : |f(y) - f(x)| < \varepsilon\}$, рассмотренные для всевозможных $f \in X^*$ и $\varepsilon > 0$. Из непрерывности f очевидным образом следует, что эти множества открыты и в исходной топологии пространства X. А это и означает, что слабая топология на X не сильнее исходной. Отметим, что для большинства (хотя и не для всех) естественно возникающих локально выпуклых пространств слабая топология строго слабее исходной; в частности, это так для всех бесконечномерных нормированных пространств. См. по этому поводу задачи 20.6 и 20.7 из листка 20.

Вернемся к общей ситуации и рассмотрим произвольную дуальную пару $\langle X,Y \rangle$. Обозначим через X_{σ} пространство X, снабженное слабой топологией $\sigma(X,Y)$. Что можно сказать про его сопряженное? Чтобы ответить на этот вопрос, вспомним, что для любых $x \in X$ и $y \in Y$ по определению справедливо равенство $|\langle x,y \rangle| = ||x||_y$. Отсюда и из следствия 25.7 вытекает, что y — непрерывный линейный функционал на X_{σ} . Оказывается, этот пример описывает общую ситуацию:

Предложение 26.4. Для любой дуальной пары $\langle X,Y \rangle$ справедливо равенство $X_{\sigma}^* = Y$.

Лекция 26 177

Для доказательства предложения 26.4 нам понадобится следующая алгебраическая лемма, доказательство которой проведите сами в качестве упражнения.

Лемма 26.5. Пусть X — векторное пространство, f, f_1, \ldots, f_n — линейные функционалы на X. Следующие утверждения эквивалентны:

- (i) Ker $f \supseteq \bigcap_{i=1}^n \operatorname{Ker} f_i$;
- (ii) $f \in \operatorname{span}\{f_1, \dots, f_n\}.$

Доказательство предложения 26.4. Мы уже заметили выше, что $Y \subseteq X_{\sigma}^*$. Для доказательства обратного включения зафиксируем $f \in X_{\sigma}^*$ и, пользуясь следствием 25.7, найдем такие $y_1, \ldots, y_n \in Y$ и C > 0, что

$$|f(x)| \le C \max_{1 \le i \le n} |\langle x, y_i \rangle| \qquad (x \in X).$$

Из последнего неравенства следует, что $\operatorname{Ker} f \supseteq \bigcap_{i=1}^n \operatorname{Ker} y_i$. Применяя лемму 26.5, заключаем, что $f \in \operatorname{span}\{y_1, \dots, y_n\} \subseteq Y$.

Следствие 26.6. Для любого хаусдорфова локально выпуклого пространства X справедливы равенства $(X, wk)^* = X^*$ и $(X^*, wk^*)^* = X$. Иначе говоря,

- (i) линейный функционал на X непрерывен тогда и только тогда, когда он слабо непрерывен;
- (ii) образ пространства X при вложении $i_{X,X^*}\colon X\hookrightarrow (X^*)^\sharp$ (см. (26.1)) состоит в точности из тех функционалов, которые слабо* непрерывны.

Формула $(X^*, wk^*)^* = X$ из следствия 26.6 может, говоря неформально, трактоваться как свойство «ослабленной рефлексивности» пространства X. В самом деле, если канонически отождествить нормированное пространство X с подпространством в X^{**} (см. наблюдение 26.1), то равенство $X = X^{**}$ равносильно рефлексивности X, в то время как равенство $X = (X^*, wk^*)^*$ верно всегда.

Мы уже заметили выше, что для нормированного пространства X на его сопряженном X^* имеются как минимум три естественные топологии: топология, порожденная стандартной нормой, слабая топология wk = $\sigma(X^*, X^{**})$ и слабая* топология wk* = $\sigma(X^*, X)$. Следующее утверждение проясняет взаимосвязи между ними¹.

Следствие 26.7. Пусть X — нормированное пространство. Топологию на X^* , порожденную стандартной нормой, обозначим через norm.

- (i) На пространстве X^* имеют место включения $wk^* \subseteq wk \subseteq norm$.
- (ii) Равенство $wk^* = wk$ на X^* равносильно рефлексивности X.

Доказательство. (i) Слабая* топология на пространстве X^* порождается семейством полунорм $\{\|\cdot\|_x: x\in X\}$, а слабая — семейством полунорм $\{\|\cdot\|_\alpha: \alpha\in X^{**}\}$. Обозначим через $i\colon X\to X^{**}$ каноническое вложение и заметим, что для каждого $x\in X$ и каждого $f\in X^*$ справедливо равенство $\|f\|_x=\|f\|_{i(x)}$. Следовательно, первое из указанных

 $^{^{1}}$ На самом деле на пространстве X^{*} есть еще две важные топологии — топология компактной сходимости и топология Макки. О них можно прочитать в книгах по топологическим векторным пространствам (например, А. П. Робертсон и В. Дж. Робертсон, Топологические векторные пространства, М.: Мир, 1967).

выше семейств полунорм содержится во втором, а значит, порождает не более сильную топологию. Это доказывает включение wk* ⊆ wk. Включение wk ⊆ norm нам уже известно (см. наблюдение 26.3).

(ii) Если X рефлексивно, то указанные выше семейства полунорм совпадают и поэтому порождают одну и ту же топологию $wk = wk^*$ на X^* . Обратно, если $wk = wk^*$ на X^* , то примененное дважды следствие 26.6 дает равенства

$$X = (X^*, wk^*)^* = (X^*, wk)^* = X^{**}.$$

Замечание 26.5. Для сравнения отметим, что второе включение wk \subseteq norm из п. (i) обращается в равенство тогда и только тогда, когда X конечномерно (см. задачу 20.6 из листка 20).

Подводя итог сказанному выше, для любого нормированного пространства X получаем следующую картинку:

$$X = \frac{\sim}{\text{Kahohuy.}} (X^*, \text{wk}^*)^* \subseteq (X^*, \text{wk})^* = X^{**}.$$

Обратимся теперь к линейным операторам между дуальными парами. Следующее определение обобщает понятие сопряженного оператора из лекции 7.

Определение 26.4. Пусть $\langle X_1, Y_1 \rangle$ и $\langle X_2, Y_2 \rangle$ — дуальные пары. Говорят, что линейные операторы $T \colon X_1 \to X_2$ и $S \colon Y_2 \to Y_1$ сопряжены друг другу, если $\langle Tx, y \rangle = \langle x, Sy \rangle$ для всех $x \in X_1, y \in Y_2$.

Наблюдение 26.8. Для линейного оператора $T\colon X_1\to X_2$ рассмотрим его алгебраически сопряженный оператор $T^\sharp\colon X_2^\sharp\to X_1^\sharp$, действующий по правилу

$$T^{\sharp}(f) = f \circ T \qquad (f \in X_2^{\sharp}).$$

Легко видеть, что оператор $S\colon Y_2\to Y_1$, сопряженный к T в смысле определения 26.4, существует тогда и только тогда, когда $T^\sharp(Y_2)\subseteq Y_1$, и при этом $S=T^\sharp|_{Y_2}$. В частности, если такой оператор S существует, то он однозначно определен оператором T.

В дальнейшем оператор $S\colon Y_2\to Y_1$, сопряженный к оператору $T\colon X_1\to X_2$ в смысле определения 26.4, будет обозначаться через T'. Заметим, что если такой оператор существует, то существует и оператор T''=(T')', и T''=T.

Следующее предложение устанавливает условия существования сопряженного оператора.

Предложение 26.9. Пусть $\langle X_1, Y_1 \rangle$ и $\langle X_2, Y_2 \rangle$ — дуальные пары и $T \colon X_1 \to X_2$ — линейный оператор. Следующие утверждения эквивалентны:

- (i) оператор T непрерывен относительно топологий $\sigma(X_1, Y_1)$ и $\sigma(X_2, Y_2)$;
- (ii) one pamop $T': Y_2 \to Y_1$ cywecmeyem;
- (iii) оператор $T'\colon Y_2\to Y_1$ существует и непрерывен относительно топологий $\sigma(Y_2,X_2)$ и $\sigma(Y_1,X_1)$.

Лекция 26 179

Доказательство. (i) \iff (ii). Условие (i) означает в точности, что для любого $y \in Y_2$ полунорма $x \mapsto ||Tx||_y$ непрерывна на $(X_1, \sigma(X_1, Y_1))$ (см. теорему 25.4 (ii)). Замечая, что

$$||Tx||_y = |\langle Tx, y \rangle| = |(y \circ T)(x)|$$

и снова применяя теорему 25.4 (ii) — на этот раз к функционалу $y \circ T$, — заключаем, что условие (i) равносильно непрерывности функционала $y \circ T = T^\sharp(y)$ на X_1 относительно топологии $\sigma(X_1,Y_1)$ для каждого $y \in Y_2$. В силу предложения 26.4 это означает в точности, что $T^\sharp(y) \in Y_1$ для всех $y \in Y_2$, а это, с учетом наблюдения 26.8, равносильно существованию оператора T'.

(ii) \Longrightarrow (iii). Как уже было отмечено выше, если существует оператор T', то существует и T'', а именно, T'' = T. Применяя к оператору T' уже доказанную эквивалентность (i) \iff (ii), получаем утверждение (iii).

$$(iii) \Longrightarrow (ii)$$
: очевидно.

Следствие 26.10. Пусть X и Y — хаусдорфовы локально выпуклые пространства и $T: X \to Y$ — линейный оператор. Рассмотрим следующие утверждения:

- (i) onepamop T непрерывен;
- (ii) оператор T непрерывен относительно слабых топологий на X и Y соответственно;
- (iii) существует оператор $T^*: Y^* \to X^*$, действующий по правилу

$$T^*(f) = f \circ T \qquad (f \in Y^*);$$

(iv) оператор из n. (iii) существует и непрерывен относительно слабы x^* топологий на Y^* и X^* соответственно.

$$Tor\partial a$$
 (i) \Longrightarrow (ii) \Longleftrightarrow (iv).

Доказательство. Очевидно, (i) \Longrightarrow (iii). Эквивалентности (ii) \Longleftrightarrow (iii) \Longleftrightarrow (iv) следуют из предложения 26.9, примененного к дуальным парам $\langle X, X^* \rangle$ и $\langle Y, Y^* \rangle$. \square

Обсудим теперь слабо ограниченные множества в локально выпуклых пространствах. Возьмем какую-нибудь дуальную пару $\langle X,Y \rangle$ и заметим, что подмножество $B \subset X$ ограничено относительно слабой топологии $\sigma(X,Y)$ тогда и только тогда, когда $\sup_{x \in B} |\langle x,y \rangle| < \infty$ для каждого $y \in Y$ (см. наблюдение 25.11), т.е. тогда и только тогда, когда множество $y(B) \subset \mathbb{K}$ ограничено для каждого $y \in Y$. Вы, возможно, уже заметили, что «запахло теоремой Банаха–Штейнгауза». Так оно и есть:

Предложение 26.11. Подмножество хаусдорфова локально выпуклого пространства ограничено тогда и только тогда, когда оно слабо ограничено.

Доказательство. Пусть X — хаусдорфово локально выпуклое пространство. Поскольку слабая топология на X не сильнее исходной (см. наблюдение 26.3), из ограниченности, очевидно, следует слабая ограниченность. Докажем обратное утверждение. Если X — нормированное пространство, то все сводится к теореме Банаха—Штейнгауза (см. следствие 11.8). Рассмотрим теперь общий случай. Нам достаточно доказать, что для любой непрерывной полунормы p на X множество $p(B) \subset \mathbb{R}$ ограничено. Рассмотрим пару (X,p) как полунормированное пространство и обозначим через $X_p = (X,p)/p^{-1}(0)$

ассоциированное с ним нормированное пространство (см. определение 1.2). Очевидно, оператор

$$\pi_p \colon X \to X_p \,, \quad x \mapsto x + p^{-1}(0),$$

непрерывен, а значит, непрерывен и относительно слабых топологий на X и X_p соответственно (см. следствие 26.10). Применяя предложение 25.13, заключаем, что множество $\pi_p(B)$ слабо ограничено в X_p . Поскольку для нормированных пространств предложение уже доказано, множество $\pi_p(B)$ ограничено по норме. Остается заметить, что $p(B) = \{\|\pi_p(x)\| : x \in B\}$.

Следующее утверждение является частичным обращением следствия 26.10.

Следствие 26.12. Пусть X и Y — хаусдорфовы локально выпуклые пространства, причем X нормируемо. Линейный оператор $T\colon X\to Y$ непрерывен тогда и только тогда, когда он непрерывен относительно слабых топологий на X и Y соответственно.

Доказательство. Если оператор T непрерывен относительно слабых топологий, то в силу предложения 25.13 он переводит слабо ограниченные множества в слабо ограниченные, т.е. (с учетом предложения 26.11) ограниченные в ограниченные. Пользуясь нормируемостью X и снова применяя предложение 25.13, заключаем, что T непрерывен. Утверждение «только тогда» вытекает из следствия 26.10.

Замечание 26.6. Если принять на веру утверждения, сделанные в замечании 25.1, то становится ясно, что следствие 26.12 справедливо не только для нормируемых, но и для всех борнологических (в частности, для всех метризуемых) пространств X. В то же время без каких-либо дополнительных предположений о пространстве X оно неверно (приведите пример!).

Замечание 26.7. На самом деле нетрудно убедиться (убедитесь), что в следствии 26.10, предложении 26.11 и следствии 26.12 хаусдорфовость рассматриваемых пространств несущественна.