Concours Nationaux d'Entrée aux Cycles de Formations d'Ingénieurs Session: Juin 2014

Concours en Mathématiques Physique

Correction de l'Épreuve de Mathématiques II

Exercice

les questions 1, 2 et 3 sont indépendantes.

- 1) Soit $n \in \mathbb{N}^*$ et $\bar{k} \in \mathbb{Z}/n\mathbb{Z}$.
 - a) Conséquence immédiate de l'identité de Bezout.
 - b) Les éléments $k \in [[1, n^2]]$ qui ne sont pas premiers avec n^2 sont αn où α entier compris entre 1 et n donc de cardinal n d'où le cardinal des èlèments inversibles de $\mathbb{Z}/n^2\mathbb{Z}$ est n(n-1).
- 2) a) II suffit de voir que l'application $f: \mathbb{R}_2[X] \to \mathbb{R}_2[X]$ qui à tout couple (P,Q) associée $f(P,Q) = \frac{1}{2}P(0)Q(1) + \frac{1}{2}P(1)Q(0)$ est une forme bilinéaire symétrique satisfaisant q(P) = f(P,P).
 - b) $P(0)P(1) = \left(\frac{1}{2}(P(0) + P(1))\right)^2 \left(\frac{1}{2}(P(0) P(1))\right)^2$. Soit alors $f_1 = \frac{1}{2}(P(0) + P(1))$ et $f_2 = \frac{1}{2}(P(0) P(1))$. Il est clair que f_1 et f_2 sont linéairement indépendantes vérifiant $q(P) = a_1^2 a_2^2$.
 - c) On pose $f_3: \mathbb{R}_2[X] \to \mathbb{R}$ qui à tout P associé P(-1). En vérifie aisément que (f_1, f_2, f_3) est une base de $(\mathbb{R}_2[X])^*$. Sa base préduale répond à la question.

) Soit

$$f: \begin{array}{ccc} \mathbb{R}^2 & \rightarrow & \mathbb{R} \\ (x,y) & \mapsto & x^4 + y^4 - 2(x-y)^2 \end{array}$$

- a) $\frac{\partial f}{\partial x}(x, y) = 4x^3 4(x y)$ et $\frac{\partial f}{\partial y}(x, y) = 4y^3 + 4(x y)$.
- b) Les solutions sont (0,0), $(\sqrt{2}, -\sqrt{2})$ et $(-\sqrt{2}, \sqrt{2})$.
- cas de (0,0): donc $f(x,x) f(0,0) = 2x^4 \le 0$. et $f(x,0)_f(0,0) = x^4 2x \sim -2x$ qui ne garde pas un signe constant donc (0,0) n'est pas un extremum.
 - cas de $(\sqrt{2}, -\sqrt{2})$ et $(-\sqrt{2}, \sqrt{2})$: le jacobien de f en ces points est égal $\begin{bmatrix} 20 & 4 \\ 4 & 20 \end{bmatrix}$ symétrique définie positive donc minimpum local.

Problème

Partie I

Soit $n \in \mathbb{N}^*$. Soient F et G deux sous espaces vectoriels de $\mathcal{M}_{n,1}(\mathbb{R})$.

- 1) On a $F \subset F + G \Rightarrow (F + G)^{\perp} \subset F^{\perp}$ d'où $(F + G)^{\perp} \subset F^{\perp} \cap G^{\perp}$ Rèciproquement, soit $X \in F^{\perp} \cap G^{\perp}$ et $z \in F + G$ alors $z = z_1 + z_2$ avec $z_1 \in F$ et $z_2 \in G$ donc $\langle X, Z \rangle = \langle X, Z_1 \rangle + \langle X, Z_2 \rangle = 0$ d'où $X \in (F + G)^{\perp}$ conclusion $(F + G)^{\perp} = F^{\perp} \cap G^{\perp}$.
- 2) $(F \cap G)^{\perp} = ((F^{\perp})^{\perp} \cap (G^{\perp})^{\perp})^{\perp} = ((F^{\perp} + G^{\perp})^{\perp})^{\perp} = F^{\perp} + G^{\perp}.$

Partie II

Soit n et p deux entiers naturels tels que $n \ge 2$ et 0 . Soit <math>A appartenant à $\mathcal{M}_{n-p,p}(\mathbb{R})$. Soit $S \in \mathcal{M}_n(\mathbb{R})$ telle que

$$S = \begin{bmatrix} I_p & {}^t A \\ A & 0_{n-p} \end{bmatrix}.$$

A- Etude des propriétés de A, tA et S

- 1) ${}^tS = S$ donc S est une matrice symétrique de $\mathcal{M}_n(\mathbb{R})$.
- 2) a) Montrer que
 - i) Soit $X \in \operatorname{Ker} A$ montrons que $X \in [\operatorname{Im}({}^tA)]^{\perp}$ en effet soit $Y \in \operatorname{Im}({}^tA)$ alors $Y = {}^tAZ, < X, Y > = {}^tXY = {}^tX^tAZ = {}^t(AX)Z = 0$ car AX = 0 dim $([\operatorname{Im}({}^tA)]^{\perp}) = p \operatorname{dim}(\operatorname{Im}({}^tA)) = p \operatorname{dim}(\operatorname{Im}({}^tA)) = \dim(\operatorname{Im}({}^tA)) = \dim(\operatorname{Im}({$
 - ii) D'après la question précédente on a $\operatorname{Ker}({}^tA) = [\operatorname{Im}(A)]^{\perp}$.
 - b) En déduire que
 - $i) \ \mathcal{M}_{p,1}(\mathbb{R}) = \operatorname{Ker}(A) \overset{\perp}{\oplus} [\operatorname{Ker}(A)]^{\perp} = \operatorname{Ker}(A) \overset{\perp}{\oplus} \operatorname{Im}({}^{t}A).$
 - ii) $\mathcal{M}_{n-p,1}(\mathbb{R}) = \operatorname{Ker}({}^{t}A) \stackrel{\perp}{\oplus} [\operatorname{Ker}({}^{t}A)]^{\perp} = \operatorname{Ker}({}^{t}A) \stackrel{\perp}{\oplus} \operatorname{Im}(A).$
 - c) i) A est injective si et seulement si $Ker A = \{0\}$ si et seulement si $[Im({}^tA)]^{\perp} = \{0\}$ si et seulement si $Im({}^tA) = \mathcal{M}_{p,1}(\mathbb{R})$ si et seulement si tA est surjective.
 - ii) Si A est injective on a $\operatorname{Ker}(A) = \{0\}$ et par suite $p = \dim(\mathcal{M}_{p,1}(\mathbb{R})) = \dim(\operatorname{Im}({}^tA)) = \operatorname{rg}({}^tA) = \operatorname{rg}(A) \leq n p$.
- 3) a) Soit $X \in \text{Ker}(S)$ on écrit $X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$ alors SX = 0 ce qui donne $\begin{cases} X_1 + ^t AX_2 = 0 \\ AX_1 = 0 \end{cases}$ ce qui équivaut $\tilde{A} \begin{cases} X_1 + \in \text{Ker}(A) \\ X_1 = ^t A(-X_2) \in \text{Im}(^t A) \end{cases} \Rightarrow X_1 \in \text{Ker}(A) \cap \text{Im}(^t A) = \{0\} \text{ d'après 2}(b)i) \text{ et par suite } ^t AX_2 = 0$ d'où $X_2 \in \text{Ker}(^t A)$ et donc

$$X = \begin{bmatrix} 0_{p,1} \\ X_2 \end{bmatrix}$$
, avec $X_2 \in \text{Ker}({}^t A)$.

La réciproque est évidente d'où $\operatorname{Ker}(S) = \left\{ \begin{bmatrix} 0_{p,1} \\ X_2 \end{bmatrix}, \text{ avec } X_2 \in \operatorname{Ker}(^t A) \right\}.$

b)
$$\operatorname{Im}(S) = \left(\operatorname{Ker}({}^tS)\right)^{\perp} = (\operatorname{Ker} S)^{\perp} \operatorname{d'où}$$

$$\mathrm{Im}(S) = \left\{ \begin{bmatrix} X_1 \\ AX_2 \end{bmatrix} \colon X_1, X_2 \in \mathcal{M}_{p,1}(\mathbb{R}) \right\}$$

B- Etude des valeurs propres de 'AA et A'A

Pour tout réel A, on note par :

$$U_{\lambda} = \operatorname{Ker}({}^{t}AA - \lambda I_{p}),$$

 $V_{\lambda} = \operatorname{Ker}(A^{t}A - \lambda I_{n-p}).$

1) ${}^tAA \in \mathcal{M}_p(\mathbb{R})$ (respectivement $A^tA \in \mathcal{M}_{n-p}(\mathbb{R})$) de plus ${}^t({}^tAA) = {}^tAA$ (respectivement ${}^t(A^tA) = A^tA$) donc ${}^tAA \in \mathcal{S}_p(\mathbb{R})$ (respectivement $A^tA \in \mathcal{S}_{n-p}(\mathbb{R})$)

de plus < tAAX , $X > = ^t(AX)AX = ||AX||^2 \ge 0$ (respectivement < A^tAX , $X > = ^t(^tAX)^tAX = ||^tAX||^2 \ge 0$) et donc $^tAA \in S_p^+(\mathbb{R})$ (respectivement $A^tA \in S_{n-p}^+(\mathbb{R})$).

- 2) Soit λ (respectivement β) valeur propre de tAA (respectivement A^tA) donc $<^tAAX$, $X >= \lambda ||X||^2 = ||AX||^2$ (respectivement $< A^tAX$, $X >= \beta ||X||^2 = ||^tAX||^2$) d'où les valeurs propres sont positives.
- 3) On a $\operatorname{Ker}(A) \subset \operatorname{Ker}({}^tAA)$ réciproquement, soit $X \in \operatorname{Ker}({}^tAA)$ alors ${}^tAAX = 0 \Rightarrow {}^tX{}^tAAX = 0$ d'où $\|AX\|^2 = 0$ soit AX = 0 et donc $X \in \operatorname{Ker}(A)$ en fin $U_0 = \operatorname{Ker}(A)$ de $m\bar{A}^a$ me pour $V_0 = \operatorname{Ker}({}^tA)$.
- 4) Soit λ un réel non nul.
 - a) $\lambda \in \operatorname{Sp}({}^tAA)$ donc il existe $X \in \mathcal{M}_{p,1}(\mathbb{R})$ non nul tel que ${}^tAAX = \lambda X$ on remarque que $AX \neq 0$ car si non on aura ${}^tAAX = 0$ et par suite $\lambda X = 0$ ce qui est absurde. Donc on a $\begin{cases} (A^tA)(AX) = \lambda(AX) \\ AX \neq 0 \end{cases}$ donc $\lambda \in \operatorname{Sp}(A^tA)$ de même la réciproque.
 - b) Montrer que
 - i) Soit $X \in U_{\lambda}$ donc ${}^t AAX = \lambda X$ en compose par A on obtient $(A^t A)(AX) = \lambda(AX)$ d'où $AX \in V_{\lambda}$ par suite $A(U_{\lambda}) \subset V_{\lambda}$.
 - ii) Soit $X \in V_{\lambda}$ donc $A^tAX = \lambda X$ en compose par tA on obtient $(^tAA)(^tAX) = \lambda(^tAX)$ d'où $^tAX \in U_{\lambda}$ par suite $^tA(V_{\lambda}) \subset U_{\lambda}$.
 - c) Montrer que si λ est une valeur propre de ${}^t\!AA$, on a
 - i) $\lambda \in \mathbb{R}^*$ et $\lambda \in \operatorname{Sp}({}^tAA)$ on a $A(U_\lambda) \subset V_\lambda$ soit $X \in V_\lambda$ donc ${}^tAAX = \lambda X$ soit $A({}^tAX) = \lambda X$ d'où $X = A(\frac{1}{\lambda}{}^tAX) = AY$ avec $({}^tAA)(Y) = {}^tAA(\frac{1}{\lambda}{}^tAX) = \frac{1}{\lambda}{}^tAA^tAX = \frac{1}{\lambda}\lambda{}^tAX = \lambda(\frac{1}{\lambda}{}^tAX) = \lambda Y$ d'où $\begin{cases} X = AY \\ Y \in U_\lambda \end{cases}$ par suite $X \in A(U_\lambda)$ d'où $A(U_\lambda) = V_\lambda$.
 - ii) De même on a : ${}^tA(V_{\lambda}) = U_{\lambda}$.
- d) $\dim(V_{\lambda}) = \dim(A(U_{\lambda})) \leq \dim(U_{\lambda}) = \dim({}^{t}A(V_{\lambda})) \leq \dim(V_{\lambda})$ d'où $\dim(U_{\lambda}) = \dim(V_{\lambda})$.

Application:

n = 4, p = 3 et A = (1, -1, 1) soit ${}^tAA = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix}$ et $A^tA = (3)$ soit $Sp({}^tAA) = \{3\}$ donc $A \in Sp({}^tAA)$ et $A \neq 0$ donc A = 3 finalement $Sp(A^tA) = \{0, 3\}$.

$$V_3 = <1 > \text{et par suite } U_3 = ^t A(V_3) = <^t (1, -1, 1) >$$

$$X = ^t (x, y, z) \in U_0 = \text{Ker}(^t AA) \text{ \'equivaut \`a} \begin{cases} x - y + z = 0 \\ -x + y - z = 0 \end{cases}$$

$$\text{donc } U_0 = <^t (1, 0, -1), ^t (0, 1, 1) > .$$

C- Etude des valeurs propres de S

Pour tout réel \(\lambda\), on note par :

$$F_{\lambda} = \text{Ker}(S - \lambda I_n).$$

1) a)
$$F_0 = \operatorname{Ker}(S) = \left\{ \begin{bmatrix} 0_{p,1} \\ X_2 \end{bmatrix}, \text{ avec } X_2 \in \operatorname{Ker}(^t A) \right\}. \text{ d'après } A)3)a).$$

b) $0 \notin Sp(S)$ si et seulement si tA est injective.

c)
$$F_1 = \operatorname{Ker}(S - I_n) \operatorname{soit} X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} X \in F_1$$

signifie
$$\begin{bmatrix} I_p & {}^tA \\ A & 0_{n-p} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$

soit
$$\begin{cases} X_1 + {}^tAX_2 = X_1 \\ AX_1 = X_2 \end{cases}$$
d'où
$$\begin{cases} {}^tAX_2 = 0 \\ AX_1 = X_2 \end{cases}$$
donc $X_2 \in \operatorname{Ker}({}^tA) \cap \operatorname{Im}(A) = \{0\} \operatorname{soit}$

$$\begin{cases} X_2 = 0 \\ AX_1 = 0 \end{cases}$$
finalement
$$\begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = \begin{bmatrix} X_1 \\ 0 \end{bmatrix} \operatorname{avec} X_1 \in \operatorname{Ker}(A) \operatorname{d'où} F_1 = \left\{ \begin{bmatrix} X_1 \\ 0 \end{bmatrix}, X_1 \in \operatorname{Ker}(A) \right\}.$$

- d) On a $1 \notin Sp(S)$ siginfie A est injective.
- 2) Soit $\lambda \in \operatorname{Sp}(S)\setminus \{0,1\}$ et $X=\begin{bmatrix} X_1\\ X_2 \end{bmatrix}$ avec $X_1 \in \mathcal{M}_{p,1}(\mathbb{R})$ et $X_2 \in \mathcal{M}_{n-p,1}(\mathbb{R})$ tels que $SX=\lambda X$ montrons que $X_1=0$ èquivaut \tilde{A} $X_2=0$ $SX=\lambda X$ si et seulement si

$$\begin{cases} X_1 +^t A X_2 = \lambda X_1 & (1) \\ A X_1 = \lambda X_2 & (2) \end{cases}$$

si $X_1=0$ l'èquation (2) donne $\lambda X_2=0$ or $\lambda \neq 0$ donc $X_2=0$ si $X_2=0$ l'èquation (1) donne $X_1=\lambda X_1$ or $\lambda \neq 1$ donc $X_1=0$ d'où l'èquivalence.

3) Pour tout $\lambda \in \mathbb{R} \setminus \{0, 1\}$, on pose:

$$H_{\lambda} = \frac{1}{\sqrt{2}} \begin{bmatrix} I_p \\ \frac{1}{\lambda} A \end{bmatrix} \in \mathcal{M}_{n,p}(\mathbb{R})$$

a) Soit
$$Y \in H_{\lambda}(U_{\lambda(\lambda-1)})$$
 donc $Y = H_{\lambda}X$ avec $X \in U_{\lambda(\lambda-1)}$ soit
$$\begin{cases} Y = H_{\lambda}X \\ {}^{t}AAX = \lambda(\lambda-1)X \end{cases}$$

$$SY = SH_{\lambda}X = \frac{1}{\sqrt{2}} \begin{bmatrix} I_{p} + \frac{1}{\lambda}{}^{t}AA \end{bmatrix} \begin{pmatrix} X \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} X + \frac{1}{\lambda}{}^{t}AAX \\ AX \end{bmatrix}$$
$$= \frac{1}{\sqrt{2}} \begin{bmatrix} X + (\lambda - 1)X \\ AX \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} \lambda X \\ AX \end{bmatrix} =$$
$$\lambda \begin{pmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} X \\ \frac{1}{\lambda}AX \end{bmatrix} \end{pmatrix} = \lambda \begin{pmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} I_{p} \\ \frac{1}{\lambda}A \end{bmatrix} \begin{pmatrix} X \end{pmatrix} \end{pmatrix}$$

soit $SY = \lambda(H_{\lambda}(X)) = \lambda Y d'où la première inclusion.$

Réciproquement, Soit $X \in F_{\lambda}$ ce qui signifie $SX = \lambda X$; $X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$

$$\begin{cases} X_1 +^t A X_2 = \lambda X_1 \\ A X_1 = \lambda X_2 \end{cases}$$

Soit alors
$$X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = \begin{bmatrix} X_1 \\ \frac{1}{\lambda}AX_1 \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} I_p \\ \frac{1}{\lambda}A \end{bmatrix} \begin{pmatrix} X_1 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} I_p \\ \frac{1}{\lambda}A \end{bmatrix} \begin{pmatrix} \sqrt{2}X_1 \end{pmatrix} = H_{\lambda}(Y)$$

avec $Y = \sqrt{2}X_1$

Vérifions que $Y \in U_{\lambda(\lambda-1)}$, en effet

$${}^tAA(Y) = \sqrt{2}{}^tAAX_1 = \sqrt{2}{}^tA(\lambda X_2) = \sqrt{2}\lambda{}^tAX_2 = \sqrt{2}\lambda(1-\lambda)X_1 = \lambda(1-\lambda)(\sqrt{2}X_1) = \lambda(1-\lambda)Y$$

D'où l'égalité $F_A = H_A(U_{\lambda(A-1)})$.

- b) si λ est une valeur propre de S alors $F_{\lambda} \neq \{0\}$ et par suite $H_{\lambda}(U_{\lambda(\lambda-1)}) \neq \{0\}$ c'est à dire $\lambda(\lambda-1)$ est une valeur propre de ^tAA.
- Réciproquement si $\lambda(\lambda 1)$ est une valeur propre de tAA alors il existe $X \neq \{0\}$ et $X \in U_{\lambda(\lambda 1)}$. On a $H_{\lambda}X = \begin{pmatrix} X \\ AX \end{pmatrix} \neq 0$ donc $F_{\lambda} \neq \{0\}$ et par suite λ est une valeur propre de S.
- En déduire que λ est une valeur propre de S si et seulement si $\lambda(\lambda-1)$ est une valeur propre de
- c) si $\frac{1}{2} \in Sp(S)$ alors $F_{\frac{1}{4}} \neq \{0\}$ ce qui donne $U_{\frac{1}{4}(\frac{1}{4}-1)} \neq \{0\}$ donc $\frac{-1}{4} \in Sp({}^tAA) \subset \mathbb{R}_+$ ce qui est impossible.
- d) Si $\lambda \in Sp(S)$ alors $F_{\lambda} \neq \{0\}$ donc $U_{\lambda(\lambda-1)} \neq \{0\}$ par suite $\lambda(\lambda-1) \subset \mathbb{R}_{+}$ comme $\lambda \notin \{0,1\}$ on a $\lambda(\lambda - 1) > 0$ ce qui donne $\lambda \notin [0, 1]$.

a)
$$\Sigma S + S\Sigma = \begin{bmatrix} I_{p} & 0_{p,n-p} \\ 0_{n-p,p} & -I_{n-p} \end{bmatrix} \begin{bmatrix} I_{p} & {}^{t}A \\ A & 0_{n-p} \end{bmatrix} + \begin{bmatrix} I_{p} & 0_{p,n-p} \\ A & 0_{n-p} \end{bmatrix} \begin{bmatrix} I_{p} & 0_{p,n-p} \\ A & 0_{n-p} \end{bmatrix} = \begin{bmatrix} I_{p} & {}^{t}A \\ -A & 0_{n-p} \end{bmatrix} + \begin{bmatrix} I_{p} & {}^{-t}A \\ A & 0_{n-p} \end{bmatrix} = \begin{bmatrix} 2I_{p} & {}^{t}A \\ 0_{n-p,p} & 0_{n-p} \end{bmatrix} = \begin{bmatrix} I_{p} & 0_{p,n-p} \\ 0_{n-p,p} & I_{n-p} \end{bmatrix} + \begin{bmatrix} I_{p} & 0_{p,n-p} \\ 0_{n-p,p} & -I_{n-p} \end{bmatrix} = I_{n} + \Sigma$$
(5) Soit $A \in \mathbb{R} \setminus \{0,1\}$

b) Soit $\lambda \in \mathbb{R} \setminus \{0, 1\}$

i) Soit $X \in F_{\lambda}$ montrons que $(a_{\lambda}I_n + \Sigma)(X) \in F_{1-\lambda}$ c'est à dire $S(a_{\lambda}I_n + \Sigma)X = (1 - \lambda)(a_{\lambda}I_n + \Sigma)X$ ou encore $a_{\lambda}\lambda X + S\Sigma X = (1 - \lambda)a_{\lambda}X + (1 - \lambda)\Sigma X$ soit $a_{\lambda}\lambda X + (I_n + \Sigma - \Sigma S)X = (1 - \lambda)a_{\lambda}X + (1 - \lambda)\Sigma X$ ce qui donne $(a_{\lambda}\lambda + 1)X = (1 - \lambda)a_{\lambda}X$ d'où il suffit de choisir $(a_{\lambda}\lambda + 1) = (1 - \lambda)a_{\lambda}$ c'est \tilde{A} dire $a_{\lambda} = \frac{1}{1 - 2\lambda}$ ceci est possible car $\lambda \neq \frac{1}{2} \left(\frac{1}{2} \notin \operatorname{Sp}(S) \right).$

- ii) Puisque $a_{\lambda}I_n+\Sigma$ est injectif on a $\dim F_{\lambda}\leq \dim F_{1-\lambda}$ pour des raisons de symétrie on a $\dim F_{1-\lambda}\leq \dim F_{\lambda}$ d'où $\dim F_{1-\lambda}=\dim F_{\lambda}$ et par suite $F_{\lambda}\neq\{0\}$ si et seulement si $F_{1-\lambda\neq\{0\}}$ ou encore λ est une valeur propre de S si et seulement $1-\lambda$ est une valeur propre de S.
- 5) Conséquence immédiate du théorème spectrale et de la question 4)b)ii).