Design and Analysis of Algorithms: Lecture 4

Ben Chaplin

Contents

1	Bac	kground	1
	1.1	Operations	1
	1.2	Problem	1
	1.3	Recurrences	1
2	Van	Emde Boas Trees	2
	2.1	Data structure	2
	2.2	Definitions	2
	2.3	Algorithms	2

1 Background

1.1 Operations

We want to maintain n elements from the set $\{0, 1, \dots, u-1\}$, and support the following operations:

- INSERT(V, x): insert x into V
- DELETE(V, x): delete x from V
- SUCCESSOR(V, x): return the smallest element in V which is larger than x

1.2 Problem

Balanced binary search trees support all three of the above operations in $O(\log n)$ time. The goal of **van Emde Boas trees** is to support operations in $O(\log \log n)$ time.

Let n and u be defined as they were above. If $u = n^{O(1)}$, then $\log \log u = O(\log \log n)$.

1.3 Recurrences

Recall the binary search recurrence:

$$T(k) = T\left(\frac{k}{2}\right) + O(1) \tag{1}$$

$$= O(\log k) \tag{2}$$

So we're seeking:

$$T(\log u) = T\left(\frac{\log u}{2}\right) + O(1) \tag{3}$$

$$= O(\log \log u) \tag{4}$$

Which can be written:

$$T'(u) = T'(\sqrt{u}) + O(1)$$

$$= O(\log \log u)$$
(5)
(6)

2 Van Emde Boas Trees

2.1 Data structure

At their core, van Emde Boas Trees are bit vectors of size u where:

$$V[i] = \begin{cases} 0 & \text{if } i \text{ is not present} \\ 1 & \text{if } i \text{ is present} \end{cases}$$

The vector is split into **clusters** of size \sqrt{u} .

Above each cluster is a tree structure. Consider the elements of the cluster as the leaves of the tree, and store $(l_0 \vee l_1)$ in the parent node for each two neighboring leaves l_0, l_1 . The **summary** vector contains the root from each tree above each cluster.

Both clusters and summary vectors store their minimum and maximum values.

2.2 Definitions

To make writing algorithms quicker:

Definition. Given $x \in \{1, \dots, u-1\} \subseteq \mathbb{N}$, $\mathbf{high}(x) = \lfloor \frac{x}{\sqrt{u}} \rfloor$.

Definition. Given $x \in \{1, \dots, u-1\} \subseteq \mathbb{N}$, $\mathbf{low}(x) = x \mod \sqrt{u}$.

Definition. Given $i, j \in \{1, \dots, u-1\} \subseteq \mathbb{N}$, $\mathbf{index}(i, j) = i\sqrt{u} + j$.

2.3 Algorithms

```
1: procedure SUCCESSOR(V, x)
 2:
       i = high(x)
       if low(x) < V.cluster[i].max then
 3:
                                                                                            \triangleright successor is in cluster i
           j = SUCCESSOR(V.cluster[i], low(x))
 4:
                                                           \triangleright successor is not in cluster i, check next in summary
 5:
       else
           i = SUCCESSOR(V.summary, high(x))
 6:
 7:
           j = V.\text{cluster}[i].\text{min}
       end if
 8:
 9:
       return index(i, j)
10: end procedure
```

Runtime analysis: SUCCESSOR runs in $O(\log \log u)$ time. Because each