4. EXTERNAL SURFACES (FINS)

WHY WE NEED FINS: From the Newton's Law of cooling, for increasing heat Transfer,

	Ç,	_	·
$T_{\infty} \downarrow$: Practically not Possible	$h \uparrow$: Practically not Possible		A_s \uparrow : Practically Possible

FINS: It's extra solid material attached to the base to increase heat transfer by increasing the surface area.

	, E
L = Length of Fins	W = Width of Fins
t = Thickness of Fins	T_0 = Base or Source Temperature of Fins
$\frac{h\delta}{W} < 0.2$ (Treat like a 1D Heat Flow)	δ = Thickness
$\frac{1}{K}$ < 0.2(11 eat like a 1D Heat Flow)	$A_{fin} = A_{Lateral} + A_{tip} \approx A_{Lateral} = 2(W + t)L = PL$

Heat Transfer in fins: $Q_1(\rightarrow) = Q_2(\uparrow) + Q_3(\rightarrow)$

IMPORTANT POINT W.R.T. FINS:

- 1. Fins should have higher thermal conductivity
- 2. Fins should be Strong and Anti-corrosive in nature
- 3. Fins should have Low Weight (Due to cantilever Struct.)
- 4. Fins should be environment friendly.
- 5. Fin cost Should be low or moderate.

USE-CASES:

- 1. Fin is used when h is less (Free Convection with gases)
- 2. Aluminium Material generally used.

GENERALISED DIFFERENTIAL EQUATION FOR FINS:

ASSUMPTIONS:

- 1D Heat Flow.
- Steady State.
- No internal heat generation
- Material homogenous and isotropic
- Thermal conductivity is constant.
- Base or Source temperature is constant. $T_0 = C$
- Surrounding fluid temperature is constant. $T_{\infty} = C$
- Heat transfer coefficient value is constant.
- Radiation heat loss neglected.
- Prefect contact between fin and base material.
- Fin having constant cross-sectional area.

$\frac{d\theta}{dx} = \frac{dT}{dx}$	$\frac{d^2\theta}{dx^2} = \frac{d^2T}{dx^2}$	$\theta = T - T_{\infty} = \text{Excess}$ $\theta_0 = T_0 - T_0$		$\frac{hP}{KA_c} = m^2$
$Q_{in} = Q_x = -KA_c \frac{\partial T}{\partial x}$	$Q_{x+dx} = Q_x + \frac{\partial Q_x}{\partial x} dx$	$Q_{Conv.} = hA_s(T$	$-T_{\infty}$) = $h P c$	$dx(T-T_{\infty})$
From the energy Balance, $Q_x - [Q_{x+dx} + Q_{Conv}] = 0$	$\frac{d^2T}{dx^2} - m^2(T - T_{\infty}) = 0$	$\frac{d^2\theta}{dx^2} - m^2\theta = 0$		$-mx + C_2 e^{mx}$ $mx + B \sinh mx$
mL = Constant	$(mL)^2 = \frac{hPL}{KA_c/L}$	$= \frac{hPA_s}{KA_c/L} = \frac{R_{Cond.}}{R_{Conv.}} = I$	Hybrid Biot N	lumber

NOTE: At the Base Surface: $Q_{in} = Q_{out} = -KA_c dT/dx|_{x=0} = -KA_c d\theta/dx|_{x=0} = \mathbf{Q}_{Fin}$

Circular Fin	Square Fin	Rectangle Fin	Equilateral Triangle Fin
$D = 4 A_c/P$	$a = 4 A_c/P$	$t = 2A_c/P \ (\because t \ll W)$	$a = 4\sqrt{3} A_c/P$
$m = \sqrt{4 h/KD}$	$m = \sqrt{4 h/Ka}$	$m = \sqrt{2 h/Kt}$	$m = \sqrt{4\sqrt{3}h/Ka}$

VERY LONG OR INFINITE LENGTH OF FIN:

At the Base Surface: $Q_{in} = Q_{out} = -KA_c m\theta_0 = \sqrt{hPKA_c}\theta_0 = Q_{Fin}$

CASE-I: Same temperature at different length for different fins with same base temperature.

- 1	•	Š	
	For Fin-1: $At \ x = x_1, T = T_1$	For Fin-2: $At \ x = x_2, T = T_1$	222
	T T	T T	$m_1 x_2$
	$\frac{I_1 - I_{\infty}}{I_1 - I_{\infty}} - \rho^{-m_1 x_1}$	$\frac{I_1 - I_{\infty}}{I_1 - I_{\infty}} - \rho^{-m_2 x_2}$	 =
	$\frac{1}{T_{-}-T} = e^{-m_1 x_1}$	$\frac{1}{T_2-T}=e^{-it_2\lambda_2}$	$m_2 x_1$
	10 1∞	10 1∞	

For Circular Fins,

$$\frac{K_2 D_2}{K_1 D_1} = \left(\frac{x_2}{x_1}\right)^2 \qquad \qquad \begin{array}{c} \text{For } K_1 = K_2, \\ \frac{D_2}{D_1} = \left(\frac{x_2}{x_1}\right)^2 \\ \end{array} \qquad \begin{array}{c} \text{For } D_1 = D_2, \\ \frac{K_2}{K_1} = \left(\frac{x_2}{x_1}\right)^2 \\ \end{array} \qquad \begin{array}{c} \text{For } K_1 = K_2 \& D_1 = D_2, \\ \frac{K_2}{K_1} = \left(\frac{x_2}{x_1}\right)^2 \\ \end{array} \qquad \begin{array}{c} \text{For } K_1 = K_2 \& D_1 = D_2, \\ \text{If } x_1 \neq x_2, \text{ There is impurities} \\ \end{array}$$

CASE-II: Different temperature at different length in same fin with unknown base temperature.

For Fin-1: $At \ x = x_1, T = T_1$	For Fin-1: $At \ x = x_2, T = T_2$	T = T
$T_1 - T_{\infty}$	$T_2 - T_{\infty}$	$\frac{I_1-I_\infty}{m}=e^{m\Delta x}\neq f(time)$
$\frac{1}{T_0 - T_{00}} = e^{-mx_1}$	$\frac{12}{T_0 - T_{cc}} = e^{-mx_2}$	$T_2 - T_{\infty}$
-U -W	-υ -ω	

FIN OF FINITE LENGTH:

CASE-I: Insulated tip or adiabatic tip.

$BC x = 0, \theta = \theta_0$ $x = L, d\theta/dx = 0'$ $T_L \neq T_{\infty}$		(From 1st BC)	θ	$\cosh m(L-x)$	$T-T_{\infty}$
$x = L, d\theta/dx = 0, L^{-1}\infty$	$B = -A \tan \theta$	h mL (From 2nd BC)	$\overline{\theta_0}$	$ \cosh mL$	$-\frac{1}{T_0-T_\infty}$
At Tip, $x = L$, $T = T_L$, $\frac{T_L - T_\infty}{T_0 - T_\infty}$	$=\frac{1}{\cosh mL}$	$Q_{in} = Q_{out} = KA_c r$	$n\theta_0$ tanh m	$L = \sqrt{hPKA_c}\theta_0$ ta	$ nh mL = Q_{Fin} $

CASE-II: Convective Heat Loss from tip

$BC x = 0, \theta = \theta_0$ $x = L, -K d\theta/dx = h(T_L - T_\infty)$	$\frac{\theta}{\theta_0} = \frac{\cos \theta}{\cos \theta}$	$\frac{\cosh m(L-x) + \frac{h}{mK} \sinh m(L-x)}{\cosh mL + \frac{h}{mK} \sinh mL} = \frac{T - T_{\infty}}{T_0 - T_{\infty}}$	
$Q_{in} = Q_{out} = KA_c m\theta_0 \left[\frac{\tanh m}{1 + \frac{h}{mK}} \right]$	$\left[\frac{L + \frac{h}{mK}}{\tanh mL} \right] = Q_{Fin}$	We can use corrected length approach for the same problem, $\frac{\theta}{\theta_0} = \frac{\cosh m(L_C - x)}{\cosh mL_C} = \frac{T - T_\infty}{T_0 - T_\infty} \&$ $Q_{Fin} = KA_c m\theta_0 \tanh mL_C = \sqrt{hPKA_c}\theta_0 \tanh mL_C$	

CORRECTED LENGTH (L_c) APPROACH:

$Q_{tip} = Q_{New\ Area} \Rightarrow hA_c \Delta T = hP\Delta L \Delta T$	$\Delta L = A_c/P = Volume/Surface Area$
---	--

$I = I + \Lambda I$	For Circular Fin,	For Rectangular Fin,
$L_C = L + \Delta L$	$L_C = L + D/4$	$L_C = L + t/2 \approx L$

SIGNIFICATION OF (h/mK): $h/mK = \sqrt{Bi}$

h/mK < 1	h/mK = 1	h/mK > 1
Fin Acts as Heat Conductor	No use of fins	Fin Acts like a heat insulator

HEAT TRANSFER WITHOUT USE OF FIN: $Q_{Without\ Fin} = hA_c\theta_0$

CONDITION FOR INFINITE LENGTH: $tanh mL = 1 \text{ or } mL \ge 5$

$Q_{Finite} = KA_c m \theta_0 \tanh mL = \sqrt{hPKA_c} \theta_0 \tanh mL$	$Q_{Infinite} = KA_c m\theta_0 = \sqrt{hPKA_c}\theta_0$
For $tanh mL = 1$ or $mL \ge 5$, $Q_{Finite} = Q_{Infinite}$	% $\frac{Error\ in}{Heat\ Transfer} = \frac{Q_{Infinite}}{Q_{Finite}} - 1 = \frac{1}{\tanh mL} - 1$
$L \ge 5/m$, Mathematically (Cost is more)	$L \ge 2.65/m$, Practically (Cost is Less)

TWO RESERVOIRS AT DIFFERENT TEMPERATURE: Fin of finite length connected between two reservoirs.

THE STATE OF THE S		
$T_1 > T_2 > T_{\infty}$ $BC x = 0, \theta = \theta_1$	$\theta_1 = T_1 - T_{\infty}$ $A = \theta_1$ $\theta_2 - A \cosh mL$	
$Q_{in} = Q_1 + Q_2 \qquad x = L, \theta = \theta_2$	$\theta_2 = T_2 - T_{\infty}$ $Sinh mL$	
$\theta = \theta_1 \frac{\sinh m(L - x)}{\sinh mL} + \theta_2 \frac{\sinh mx}{\sinh mL}$	$\frac{d\theta}{dx} = \frac{m}{\sinh mL} \left[\theta_1 \cosh mx + \theta_2 \cosh m(L - x) \right]$	
$Q_{Fin1} = -KA_c d\theta/dx _{x=0}$ $Q_{Fin2} = -KA_c d\theta/dx _{x=0}$	$Q_{Fin} = Q_{Fin1} + Q_{Fin2} = KA_c m(\theta_1 + \theta_2) \left[\frac{\cosh mL - 1}{\sinh mL} \right]$	
$at \frac{d\theta}{dx} = 0, \frac{\theta_2}{\theta_1} = \frac{\cosh m(L - x_{min})}{\cosh mL}$	$at x_{min}, \theta = \theta_{min} = T_{min} - T_{\infty}$ • Draw the Diagram & Show L	

At $\theta_1 = \theta_2 = \theta_0$, $\theta = \sinh m(L - x) = \sinh mx$ [cosh mL - 1]

θ sinh $m(L-x)$	sinh mx	$O = 2KA mQ \left[\cosh mL - 1 \right]$	$\frac{L}{r}$	θ_{min} 1
$\frac{1}{\theta_0} = \frac{1}{\sinh mL} + \frac{1}{\sinh mL}$	sinh mL	$Q_{Fin} = 2KA_c m\theta_0 \left[\frac{1}{\sinh mL} \right]$	$x_{min} = \frac{1}{2}$	

FIN EFFICIENCY (η) :

Real Fin	Ideal Fin	Q_{Fin}
Temperature varies w. r. t. $x (R_{cond.} \neq 0)$	Temperature doesn't vary w. r. t. $x (R_{cond.} = 0)$	$\eta = \frac{\eta}{Q_{Fin\ Max}}$
$O_{PaglEin} = \int_{0}^{L} hPdx \theta$	$Q_{IdealFin} = hA_s heta_0$, $A_s = A_{fin} = PL$	$=\frac{Q_{RealFin}}{}$
$Q_{RealFin} = \int_{0}^{\infty} nPax \theta$	$\& \theta_0 = T_0 - T_{\infty}$	$\overline{}_{Q_{IdealFin}}$

For very long or infinite	For Finite length Fin, Insulated Tip with Adiabatic	For Finite length Fin, Convection
length of Fin, $\eta = 1/mL$	Tip, $\eta = \tanh mL/mL$ & as $mL \rightarrow 0$, $\eta = 1$	at tip, $\eta = \tanh mL_c/mL_c$

OVERALL EFFICIENCY (η_0) : It's used for multiple fins.

o vertice en trouble (70) to a about of manapie into				
$\eta_0 = rac{Q_{Tot.}}{Q_{Tot.Max}} = 1 - rac{A_F}{A_T} (1 - \eta)$		A_F = Area of all finned surfaces, A_{UF} = Area of un-finned surfaces = $A_T - A_F$,		
$Q_{Fin} = \frac{\theta_0}{1/NKA_c m \tanh mL} = \frac{\Delta T}{R_F}$	$Q_{UF} = \frac{\theta_0}{1/hA_{UF}} =$	$=\frac{\Delta T}{R_{UF}}$	$R_{Eq} = \frac{1}{R_{UF}} + \frac{1}{R_F}$	$R_T = R_{Pipe} + R_{Eq}$
$Q_{Fin} = \eta Q_{max} = \eta h A_F \theta_0$	$Q_{Tot.} = Q_{Fin} + Q_{UF} = hA_F\theta_0 \left[1 - \frac{A_F}{A_T} (1 - \eta) \right] \text{At } \eta = 1, \\ Q_{Tot.Max} = hA_F\theta_0$			

FIN EFFECTIVENESS (ϵ): $\epsilon = Q_{Fin}/Q_{Without\ Fin}$

$\epsilon > 1$	$\epsilon = 1$	$\epsilon < 1$
Fin Acts as Heat Conductor	No use of fins	Fin Acts like a heat insulator

Note: To justify the cost $\epsilon > 2$

For Very long or Infinite length of fin,

$$\epsilon = \frac{1}{\sqrt{Bi}} = \frac{mK}{h} = \sqrt{\frac{PK}{hA_c}}$$

- 1. $\propto \sqrt{K}$
- 2. $\propto \sqrt{1/h}$
- 3. $\propto \sqrt{P/A_c}$ (Thin fins are more effective)

For finite length of fin & Insulated tip or adiabatic tip,

$$\epsilon = \frac{\tanh mL}{\sqrt{Bi}} = \frac{mK}{h} \tanh mL = \sqrt{\frac{PK}{hA_c}} \tanh mL$$

 ϵ increases and η decreases with length. So, to get higher both values select the optimum length. Effectiveness is related to Thermal & economics.

$$\frac{\epsilon}{\eta} = \frac{Q_{Max}}{Q_{Without\ Fin}} = \frac{A_F}{A_C} = \frac{Surface\ Area}{C/s\ Area}$$
 For Circular Fin, $\epsilon/\eta = 4\ L/D$

Fin Effectiveness can be increased by

- 1. Select a fin material high thermal conductivity.
- 2. Attach a fin in environment having low value of heat transfer coefficient (Free convection with Gases).
- 3. Select a geometry having high value of ratio of perimeter to cross sectional area (Thin fin preferred).

Note:

- 1. In actual practice short, thin multiple fins in closed space arrangement required.
- 2. With increasing length if fin effectiveness increases but efficiency decreases.

OVERALL EFFECTIVENESS (ϵ_0): It's used for multiple fins.

$Q_{Tot.} = Q_{Tot.} = \eta A_F + A_{UF}$	$Q_{Tot.} = \eta h A_F \theta_0 + h A_{UF} \theta_0$
$\epsilon_0 - \frac{1}{Q_{No Fin}} - \frac{1}{Q_{Base}} - \frac{1}{A_{Base}}$	$Q_{Base} = hA_{Base}\theta_0$