Calculus I

Definite integrals and areas between curves

Todor Milev

2019

Outline

Integration and symmetry

Outline

Integration and symmetry

2 More About Areas

License to use and redistribute

These lecture slides and their LATEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work,

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/and the links therein.

Theorem (Integrals of Symmetric Functions)

- If f is even (that is, f(-x) = f(x)), then $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$.
- ② If f is odd (that is, f(-x) = -f(x)), then

$$\int_{-a}^{a} f(x) dx = \int_{0}^{a} f(x) dx + \int_{-a}^{0} f(x) dx = 0.$$

Theorem (Integrals of Symmetric Functions)

- 1 If f is even (that is, f(-x) = f(x)), then $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$.
- 2 If f is odd (that is, f(-x) = -f(x)), then

$$\int_{-a}^{a} f(x) dx = \int_{0}^{a} f(x) dx + \int_{-a}^{0} f(x) dx = 0.$$

Theorem (Integrals of Symmetric Functions)

- If f is even (that is, f(-x) = f(x)), then $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$.
- ② If f is odd (that is, f(-x) = -f(x)), then

$$\int_{-a}^{a} f(x) dx = \int_{0}^{a} f(x) dx + \int_{-a}^{0} f(x) dx = 0.$$

Theorem (Integrals of Symmetric Functions)

- If f is even (that is, f(-x) = f(x)), then $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$.
- 2 If f is odd (that is, f(-x) = -f(x)), then

$$\int_{-a}^{a} f(x) dx = \int_{0}^{a} f(x) dx + \int_{-a}^{0} f(x) dx = 0.$$

Theorem (Integrals of Symmetric Functions)

- If f is even (that is, f(-x) = f(x)), then $\int_{-a}^{x} f(x) dx = 2 \int_{0}^{x} f(x) dx$.
- 2 If f is odd (that is, f(-x) = -f(x)), then

$$\int_{-a}^{a} f(x) dx = \int_{0}^{a} f(x) dx + \int_{-a}^{0} f(x) dx = 0.$$

Theorem (Integrals of Symmetric Functions)

- If f is even (that is, f(-x) = f(x)), then $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$.
- ② If f is odd (that is, f(-x) = -f(x)), then

$$\int_{-a}^{a} f(x) dx = \int_{0}^{a} f(x) dx + \int_{-a}^{0} f(x) dx = 0.$$

Theorem (Integrals of Symmetric Functions)

- If f is even (that is, f(-x) = f(x)), then $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$.
- 2 If f is odd (that is, f(-x) = -f(x)), then

$$\int_{-a}^{a} f(x) dx = \int_{0}^{a} f(x) dx + \int_{-a}^{0} f(x) dx = 0.$$

Theorem (Integrals of Symmetric Functions)

- If f is even (that is, f(-x) = f(x)), then $\int_{-a}^{x} f(x) dx = 2 \int_{0}^{x} f(x) dx$.
- 2 If f is odd (that is, f(-x) = -f(x)), then

$$\int_{-a}^{a} f(x) dx = \int_{0}^{a} f(x) dx + \int_{-a}^{0} f(x) dx = 0.$$

Since
$$f(x) = x^6 + 1$$
 satisfies $f(-x) = f(x)$, it is even, and so
$$\int_{-2}^{2} (x^6 + 1) dx =$$

Since
$$f(x) = x^6 + 1$$
 satisfies $f(-x) = f(x)$, it is even, and so
$$\int_{-2}^{2} (x^6 + 1) dx = 2 \int_{0}^{2} (x^6 + 1) dx$$

Since
$$f(x) = x^6 + 1$$
 satisfies $f(-x) = f(x)$, it is even, and so
$$\int_{-2}^{2} (x^6 + 1) dx = 2 \int_{0}^{2} (x^6 + 1) dx$$
$$= 2 \left[\frac{1}{7} x^7 + x \right]_{0}^{2}$$

Since
$$f(x) = x^6 + 1$$
 satisfies $f(-x) = f(x)$, it is even, and so
$$\int_{-2}^{2} (x^6 + 1) dx = 2 \int_{0}^{2} (x^6 + 1) dx$$
$$= 2 \left[\frac{1}{7} x^7 + x \right]_{0}^{2}$$
$$= 2 \left(\frac{128}{7} + 2 \right)$$

Since
$$f(x) = x^6 + 1$$
 satisfies $f(-x) = f(x)$, it is even, and so
$$\int_{-2}^{2} (x^6 + 1) \, dx = 2 \int_{0}^{2} (x^6 + 1) \, dx$$
$$= 2 \left[\frac{1}{7} x^7 + x \right]_{0}^{2}$$
$$= 2 \left(\frac{128}{7} + 2 \right)$$
$$= \frac{284}{7}.$$

Since
$$f(x) = \frac{\tan x - x}{1 - 2x^2 + 2x^4}$$
 satisfies $f(-x) = -f(x)$, it is odd, and so

$$\int_{-1}^{1} \frac{\tan x - x}{1 - 2x^2 + 2x^4} dx =$$

Since
$$f(x) = \frac{\tan x - x}{1 - 2x^2 + 2x^4}$$
 satisfies $f(-x) = -f(x)$, it is odd, and so

$$\int_{-1}^{1} \frac{\tan x - x}{1 - 2x^2 + 2x^4} dx = 0.$$

More About Areas

Suppose two curves, y = f(x) and y = g(x), are given. How do we find the area bounded by those curves between the endpoints x = a and x = b?

The Area Under a Curve

The Area Under a Curve

 $rectangle \ area = height\cdot width$

The Area Under a Curve

 $rectangle \ area = height \cdot \underline{width}$

The Area Under a Curve

rectangle area = height Δx

The Area Under a Curve

rectangle area = $height \cdot \Delta x$

The Area Under a Curve

rectangle area = $f(x) \cdot \Delta x$

The Area Under a Curve

rectangle area = $f(x) \cdot \Delta x$

rectangles =
$$n = 4$$

A = $\sum_{i=1}^{4} f(x_i) \Delta x$

The Area Under a Curve

rectangle area = $f(x) \cdot \Delta x$

rectangles =
$$n = 8$$

A = $\sum_{i=1}^{8} f(x_i) \Delta x$

The Area Under a Curve

rectangle area = $f(x) \cdot \Delta x$

rectangles = n = 16A = $\sum_{i=1}^{16} f(x_i) \Delta x$

The Area Under a Curve

rectangle area =
$$f(x) \cdot \Delta x$$

rectangles =
$$n \to \infty$$

$$A = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x$$

The Area Under a Curve

rectangle area =
$$f(x) \cdot \Delta x$$

rectangles =
$$n \to \infty$$

$$A = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x$$

The Area Under a Curve

rectangle area = $f(x) \cdot \Delta x$

rectangles =
$$n \to \infty$$

A = $\int_a^b f(x) dx$

The Area Under a Curve

rectangle area = $f(x) \cdot \Delta x$

rectangles = $n \to \infty$ A = $\int_a^b f(x) dx$

The Area Between Two Curves

rectangle area = height⋅width

The Area Under a Curve

rectangle area = $f(x) \cdot \Delta x$

rectangles =
$$n \to \infty$$

A = $\int_a^b f(x) dx$

The Area Between Two Curves

rectangle area = height⋅width

The Area Under a Curve

rectangle area = $f(x) \cdot \Delta x$

rectangles =
$$n \to \infty$$

A = $\int_a^b f(x) dx$

The Area Between Two Curves

rectangle area = height Δx

The Area Under a Curve

rectangle area = $f(x) \cdot \Delta x$

rectangles = $n \to \infty$ A = $\int_a^b f(x) dx$

The Area Between Two Curves

rectangle area = $height \cdot \Delta x$

The Area Under a Curve

rectangle area = $f(x) \cdot \Delta x$

rectangles =
$$n \to \infty$$

A = $\int_a^b f(x) dx$

The Area Between Two Curves

rectangle area =
$$(f(x) - g(x)) \cdot \Delta x$$

The Area Under a Curve

rectangle area = $f(x) \cdot \Delta x$

rectangles =
$$n \to \infty$$

A = $\int_a^b f(x) dx$

The Area Between Two Curves

rectangle area = $(f(x) - g(x)) \cdot \Delta x$

$$\#$$
 rectangles $= n = 4$

$$A = \sum_{i=1}^{4} (f(x_i) - g(x_i)) \Delta x$$

The Area Under a Curve

rectangle area = $f(x) \cdot \Delta x$

rectangles =
$$n \to \infty$$

A = $\int_a^b f(x) dx$

The Area Between Two Curves

rectangle area = $(f(x) - g(x)) \cdot \Delta x$

rectangles =
$$n = 8$$

$$A = \sum_{i=1}^{8} (f(x_i) - g(x_i)) \Delta x$$

Definite integrals and areas between curves

The Area Under a Curve

rectangle area = $f(x) \cdot \Delta x$

rectangles =
$$n \to \infty$$

A = $\int_a^b f(x) dx$

The Area Between Two Curves

rectangle area = $(f(x) - g(x)) \cdot \Delta x$

rectangles =
$$n = 16$$

A = $\sum_{i=1}^{16} (f(x_i) - g(x_i)) \Delta x$

The Area Under a Curve

rectangle area = $f(x) \cdot \Delta x$

rectangles =
$$n \to \infty$$

A = $\int_a^b f(x) dx$

The Area Between Two Curves

rectangle area = $(f(x) - g(x)) \cdot \Delta x$

rectangles =
$$n \to \infty$$

$$A = \int_a^b [f(x) - g(x)] dx$$

Definition (The Area Between Two Curves)

The area between two curves y = f(x) and y = g(x) bounded by the endpoints x = a and x = b is

$$\int_a^b |f(x)-g(x)| \mathrm{d}x.$$

Note that we use the absolute value, because in general we don't know which curve is above the other.

Example

Example

Find the area of the region bounded above by $y = x^2 + 1$, bounded below by y = x, and bounded on its sides by x = 0 and x = 1.

Graph the functions.

Example

Find the area of the region bounded above by $y = x^2 + 1$, bounded below by y = x, and bounded on its sides by x = 0 and x = 1.

Graph the functions.

Find the area of the region bounded above by $y = x^2 + 1$, bounded below by y = x, and bounded on its sides by x = 0 and x = 1.

Graph the functions.

Example

- Graph the functions.
- Identify the region.

Example

- Graph the functions.
- Identify the region.

Example

- Graph the functions.
- Identify the region.
- Integrate.

Example

- Graph the functions.
- Identify the region.
- Integrate.

$$A = \int_0^1 |(x^2 + 1) - x| dx$$
$$= \int_0^1 (x^2 - x + 1) dx$$

Example

- Graph the functions.
- Identify the region.
- Integrate.

$$A = \int_0^1 |(x^2 + 1) - x| dx$$
$$= \int_0^1 (x^2 - x + 1) dx$$
$$= \left[\frac{x^3}{3} - \frac{x^2}{2} + x \right]_0^1$$

Example

- Graph the functions.
- Identify the region.
- Integrate.

$$A = \int_0^1 |(x^2 + 1) - x| dx$$

$$= \int_0^1 (x^2 - x + 1) dx$$

$$= \left[\frac{x^3}{3} - \frac{x^2}{2} + x \right]_0^1$$

$$= \frac{1}{3} - \frac{1}{3} + 1$$

Example

- Graph the functions.
- Identify the region.
- Integrate.

$$A = \int_0^1 |(x^2 + 1) - x| dx$$

$$= \int_0^1 (x^2 - x + 1) dx$$

$$= \left[\frac{x^3}{3} - \frac{x^2}{2} + x \right]_0^1$$

$$= \frac{1}{3} - \frac{1}{2} + 1 = \frac{5}{6}.$$

Example

Find the point of intersection.

Find the point of intersection.

$$x^2 = 2x - x^2$$

Find the point of intersection.

$$x^2 = 2x - x^2$$

$$0=2x-2x^2$$

Find the point of intersection.

$$x^{2} = 2x - x^{2}$$

 $0 = 2x - 2x^{2} = 2x(1 - x)$

Example

Find the point of intersection.

$$x^{2} = 2x - x^{2}$$

 $0 = 2x - 2x^{2} = 2x(1 - x)$
 $x = 0$ or 1.

Example

Find the area of the region enclosed by the parabolas $y = x^2$ and $y = 2x - x^2$. $x^2 = 2x - x^2$

$$0 = 2x - 2x^2 = 2x(1-x)$$

- Find the point of intersection.
- @ Graph the functions.

Example

Find the area of the region enclosed by the parabolas $y = x^2$ and $y = 2x - x^2$. $x^2 = 2x - x^2$

$$0 = 2x - 2x^2 = 2x(1-x)$$

- Find the point of intersection.
- @ Graph the functions.

Example

Find the area of the region enclosed by the parabolas $y = x^2$ and $y = 2x - x^2$. $x^2 = 2x - x^2$

 $0 = 2x - 2x^2 = 2x(1-x)$

- Find the point of intersection.
- @ Graph the functions.

Example

Find the area of the region enclosed by the parabolas $y = x^2$ and $y = 2x - x^2$.

$$x^{2} = 2x - x^{2}$$

 $0 = 2x - 2x^{2} = 2x(1 - x)$

- Find the point of intersection.
- @ Graph the functions.
- Identify the region.

Example

$$x^2 = 2x - x^2$$

$$0 = 2x - 2x^2 = 2x(1-x)$$

$$x = 0 \text{ or } 1.$$

- Find the point of intersection.
- Graph the functions.
- Identify the region.

Example

$$x^2 = 2x - x^2$$

$$0 - 2x - 2x^2 - 2x(1)$$

$$0 = 2x - 2x^2 = 2x(1-x)$$

$$x = 0 \text{ or } 1.$$

- Find the point of intersection.
- @ Graph the functions.
- Identify the region.
- Integrate.

Example

- Find the point of intersection.
- @ Graph the functions.
- Identify the region.
- Integrate.

$$x^2 = 2x - x^2$$

$$0 = 2x - 2x^2 = 2x(1-x)$$

$$x = 0 \text{ or } 1.$$

$$A = \int_0^1 (2x - 2x^2) dx$$

Example

- Find the point of intersection.
- Graph the functions.
- Identify the region.
- Integrate.

$$x^{2} = 2x - x^{2}$$
$$0 = 2x - 2x^{2} = 2x(1 - x)$$

$$0 = 2x - 2x^2 = 2x(1 - x)$$

$$x = 0 \text{ or } 1.$$

$$A = \int_0^1 (2x - 2x^2) dx = 2 \int_0^1 (x - x^2) dx$$

Example

- Find the point of intersection.
- Graph the functions.
- Identify the region.
- Integrate.

$$x^{2} = 2x - x^{2}$$

 $0 = 2x - 2x^{2} = 2x(1 - x)$
 $x = 0 \text{ or } 1$

$$A = \int_0^1 (2x - 2x^2) dx = 2 \int_0^1 (x - x^2) dx$$
$$= 2 \left[\frac{x^2}{2} - \frac{x^3}{3} \right]_0^1$$

Example

- Find the point of intersection.
- Graph the functions.
- Identify the region.
- Integrate.

$$x^2 = 2x - x^2$$

 $0 = 2x - 2x^2 = 2x(1 - x)$
 $x = 0 \text{ or } 1.$

$$A = \int_0^1 (2x - 2x^2) dx = 2 \int_0^1 (x - x^2) dx$$
$$= 2 \left[\frac{x^2}{2} - \frac{x^3}{3} \right]_0^1 = 2 \left(\frac{1}{2} - \frac{1}{3} \right)$$

Example

- Find the point of intersection.
- Graph the functions.
- Identify the region.
- Integrate.

$$x^{2} = 2x - x^{2}$$

 $0 = 2x - 2x^{2} = 2x(1 - x)$
 $x = 0 \text{ or } 1.$

$$A = \int_0^1 (2x - 2x^2) dx = 2 \int_0^1 (x - x^2) dx$$

$$=2\left[\frac{x^2}{2}-\frac{x^3}{3}\right]_0^1=2\left(\frac{1}{2}-\frac{1}{3}\right)=\frac{1}{3}.$$

Example

Find the area of the region enclosed by the curves $y = \sin x$, $y = \cos x$, x = 0 and $x = \pi/2$.

Example

Find the area of the region enclosed by the curves $y = \sin x$, $y = \cos x$, x = 0 and $x = \pi/2$.

Find the point of intersection.

Example

Find the area of the region enclosed by the curves $y = \sin x$, $y = \cos x$, x = 0 and $x = \pi/2$.

The only point of intersection in the interval $[0, \pi/2]$ is $(\pi/4, 1/\sqrt{2})$.

Find the point of intersection.

Example

Find the area of the region enclosed by the curves $y = \sin x$, $y = \cos x$, x = 0 and $x = \pi/2$.

- Find the point of intersection.
- Graph the functions.

Example

Find the area of the region enclosed by the curves $y = \sin x$, $y = \cos x$, x = 0 and $x = \pi/2$.

- Find the point of intersection.
- Graph the functions.

Example

Find the area of the region enclosed by the curves $y = \sin x$, $y = \cos x$, x = 0 and $x = \pi/2$.

- Find the point of intersection.
- @ Graph the functions.

Example

Find the area of the region enclosed by the curves $y = \sin x$, $y = \cos x$, x = 0 and $x = \pi/2$.

- Find the point of intersection.
- Graph the functions.
- Identify the region.

Example

Find the area of the region enclosed by the curves $y = \sin x$, $y = \cos x$, x = 0 and $x = \pi/2$.

$$A=A_1+A_2$$

- Find the point of intersection.
- @ Graph the functions.
- Identify the region.

Example

- Find the point of intersection.
- @ Graph the functions.
- Identify the region.
- Integrate.

Find the area of the region enclosed by the curves $y = \sin x$, $y = \cos x$, x = 0 and $x = \pi/2$.

$$A = A_1 + A_2$$

$$= \int_0^{\pi/4} (\cos x - \sin x) dx$$

$$+ \int_{\pi/4}^{\pi/2} (\sin x - \cos x) dx$$

Example

- Find the point of intersection.
- Graph the functions.
- Identify the region.
- Integrate.

Find the area of the region enclosed by the curves $y = \sin x$, $y = \cos x$, x = 0 and $x = \pi/2$.

$$A = A_1 + A_2$$

$$= \int_0^{\pi/4} (\cos x - \sin x) dx$$

$$+ \int_{\pi/4}^{\pi/2} (\sin x - \cos x) dx$$

$$= [\sin x + \cos x]_0^{\pi/4} + [-\cos x - \sin x]_{\pi/4}^{\pi/2}$$

Example

- Find the point of intersection.
- Graph the functions.
- Identify the region.
- Integrate.

Find the area of the region enclosed by the curves $y = \sin x$, $y = \cos x$, x = 0 and $x = \pi/2$. The only point of intersection in the interval $[0, \pi/2]$ is $(\pi/4, 1/\sqrt{2})$. $A = A_1 + A_2$

$$= \int_0^{\pi/4} (\cos x - \sin x) dx$$

$$+ \int_{\pi/4}^{\pi/2} (\sin x - \cos x) dx$$

$$= [\sin x + \cos x]_0^{\pi/4} + [-\cos x - \sin x]_{\pi/4}^{\pi/2}$$

$$=2\sqrt{2}-2$$
.