

OpenFOAM tutorial Part I

Marco Atzori, Narges Tabatabaei

Part I: Marco

Part II: Narges

Plan for today:

Part I: Marco

- 1. Introduction
- 2. Your first case
- 3. Your second case (with post-processing!)
- 4. Let's create a new solver! (maybe)

Part II: Narges

Plan for today:

Part I: Marco

- 1. Introduction
- 2. Your first case
- 3. Your second case (with post-processing!)
- 4. Let's create a new solver! (maybe)

Part II: Narges

- 1. Additional notes on boundary conditions and control dictionary
- 2. Using finite-volume options
- 3. Modify a turbulent model

General information

First reference:

 "A tensorial approach to computational continuum mechanics using objectoriented techniques", Weller et al. (1998), Comput. Physics, 12, 620

General methodology:

• OpenFOAM uses the <u>finite-volume formulation</u>, and a combination of different algorithms to solve the Navier-Stokes eq. (and any other equation you want).

Different distributions and many external package:

- OpenFOAM Foundation: https://openfoam.org/
- ESI: https://openfoam.com/
- Foam Extend: https://sourceforge.net/projects/foam-extend/

What we will use today: https://github.com/OpenFOAM

Assuming you have compiled the code*:

• The last (and optional) step of the instructions was adding to your .bashrc:

alias of7x='source ~/OpenFOAM/OpenFOAM-7/etc/bashrc '

This defines variables such as:

\$WM PROJECT DIR=~/OpenFOAM/OpenFOAM-7

\$FOAM_TUTORIALS=~/OpenFOAM/OpenFOAM-7/tutorials

\$FOAM_RUN=~/OpenFOAM/marco-7/run

and allow the usage of executables:

blockMesh icoFoam pisoFoam simpleFoam etc...

Assuming you have compiled the code*:

• The last (and optional) step of the instructions was adding to your .bashrc:

alias of7x='source ~/OpenFOAM/OpenFOAM-7/etc/bashrc '

This defines variables such as:

\$WM PROJECT DIR=~/OpenFOAM/OpenFOAM-7

\$FOAM_TUTORIALS=~/OpenFOAM/OpenFOAM-7/tutorials

\$FOAM_RUN=~/OpenFOAM/marco-7/run

Note: certain variables depend on the user name!

and allow the usage of executables:

blockMesh

icoFoam

pisoFoam

simpleFoam

etc...

PART 1: Introduction

PART 1: Introduction

PART 1: Introduction

Located in:

~/OpenFOAM/OpenFOAM-7/tutorials/incompressible/icoFoam/cavity/cavity

Time-dependent N.S. eq., without turbulent models

Located in:

~/OpenFOAM/OpenFOAM-7/tutorials/incompressible/icoFoam/cavity/cavity

Incompressible flows

Case name

Time-dependent N.S. eq., without turbulent models

Located in:

~/OpenFOAM/OpenFOAM-7/tutorials/incompressible/icoFoam/cavity/cavity

Incompressible flows

Case name

It contains:

Time-dependent N.S. eq., without turbulent models

Located in:

~/OpenFOAM/OpenFOAM-7/tutorials/incompressible/icoFoam/cavity/cavity

Incompressible flows

Case name

It contains:

Time folder(s): Eulerian (and Lagrangian) variables, boundary and "initial" conditions

 $U_{\mathrm{wall}} = 0$ etc...

Time-dependent N.S. eq., without turbulent models

Located in:

~/OpenFOAM/OpenFOAM-7/tutorials/incompressible/icoFoam/cavity/cavity

Incompressible flows

Case name

It contains:

Time-dependent N.S. eq., without turbulent models

Located in:

~/OpenFOAM/OpenFOAM-7/tutorials/incompressible/icoFoam/cavity/cavity

Incompressible flows

Case name

Run the case

Create the mesh:

blockMesh

Run the solver:

icoFoam

Show the result:

Run the case

Create the mesh:

blockMesh

Run the solver:

icoFoam

Show the result:

PART 2: Your first case

Run the case

Create the mesh:

blockMesh

Run the solver:

icoFoam

Show the result:

PART 2: Your first case

Run the case

Create the mesh:

blockMesh

Run the solver:

icoFoam

Show the result:

- Differences between pitzDaily2 and pitzDaily:
- 1. Parallel running;
- 2. Lower residual tolerances;
- 3. Compute and sample the wall-shear stress.

#!/bin/sh . \$WM_PROJECT_DIR/bin/tools/RunFunctions application=\$(getApplication) runApplication foamCleanTutorials runApplication blockMesh runApplication decomposePar runParallel \$application runApplication reconstructPar simpleFoam -postProcess -latestTime > log.postProcess


```
application
                       simpleFoam;
startFrom
                       startTime;
startTime
                       0:
stopAt
                       endTime;
endTime
                       2000:
deltaT
                       1:
writeControl
                       timeStep;
writeInterval
                       100:
purgeWrite
                       0;
writeFormat
                       ascii;
writePrecision
                       6;
writeCompression
                       off;
timeFormat
                       general;
timePrecision
                       6:
runTimeModifiable
                       true:
functions
  #includeFunc wallShearStress
  #includeFunc wallShearStressGraph
  #includeFunc streamlines
```



```
start (0 -0.0254 0);
end (0.206 -0.0254 0);
fields (wallShearStress);

// Sampling and I/O settings
#includeEtc "caseDicts/postProcessing/graphs/sampleDict.cfg"

// Override settings here, e.g.
setConfig
{
    axis x;
}

// Must be last entry
#includeEtc "caseDicts/postProcessing/graphs/graph.cfg"
```


Structure of the case

```
start (0 -0.0254 0);
       (0.206 - 0.0254 0);
end
fields (wallShearStress);
// Sampling and I/O settings
#includeEtc "caseDicts/postProcessing/graphs/sampleDict.cfg"
// Override settings here, e.g.
setConfig
  axis x;
// Must be last entry
#includeEtc "caseDicts/postProcessing/graphs/graph.cfg"
interpolationScheme cellPoint;
setFormat raw:
setConfig
  type
         lineUniform; // lineCell, lineCellFace
        distance; // x, y, z, xyz
  axis
  nPoints 100;
```


Structure of the case

```
start (0 -0.0254 0);
      (0.206 - 0.0254 0);
end
fields (wallShearStress);
// Sampling and I/O settings
#includeEtc "caseDicts/postProcessing/graphs/sampleDict.cfg"
// Override settings here, e.g.
setConfig
  axis x;
// Must be last entry
#includeEtc "caseDicts/postProcessing/graphs/graph.cfg"
interpolationScheme cellPoint;
setFormat raw:
setConfig
  type
         lineUniform; // lineCell, lineCellFace
        distance; // x, y, z, xyz
  axis
  nPoints 100;
```

```
type
           sets:
          ("libsampling.so");
libs
writeControl writeTime;
sets
  line
    $setConfig;
    start $start;
    end $end;
    system
      blockMeshDict
      controlDict
      decomposeParDict
      fvSchemes
      fvSolution
      - streamlines
      wallShearStressGraph
```


• Try to measure the length of the separation bubble?

The source code for all solvers is located in:

~/OpenFOAM/OpenFOAM-7/applications/solvers

The source code for all solvers is located in:

~/OpenFOAM/OpenFOAM-7/applications/solvers

• The source code for all solvers is located in:

~/OpenFOAM/OpenFOAM-7/applications/solvers

The source code for all solvers is located in:

~/OpenFOAM/OpenFOAM-7/applications/solvers

The source code for all solvers is located in:

~/OpenFOAM/OpenFOAM-7/applications/solvers

The source code for all solvers is located in:

~/OpenFOAM/OpenFOAM-7/applications/solvers

1. (Check if it does not exist already...)

1. (Check if it does not exist already...)

- 1. (Check if it does not exist already...)
- 2. It is a good idea to start from the existing ones!

3. Modify *Make/files* for name and path.

- 1. (Check if it does not exist already...)
- 2. It is a good idea to start from the existing ones!
- 3. Modify *Make/files* for name and path.

- 1. (Check if it does not exist already...)
- 2. It is a good idea to start from the existing ones!
- 3. Modify Make/files for name and path.
- 4. Add libraries with relevant tools.

- 1. (Check if it does not exist already...)
- 2. It is a good idea to start from the existing ones!
- 3. Modify *Make/files* for name and path.
- 4. Add libraries with relevant tools.
- 5. Initialize variables.

Add one-way coupled colliding particles to incompressible flow.

Add one-way coupled colliding particles to incompressible flow.

~/OpenFOAM/OpenFOAM-7/applications/solvers/lagrangian/icoUncoupledKinematicParcelFoam

Add one-way coupled colliding particles to incompressible flow.

~/OpenFOAM/OpenFOAM-7/applications/solvers/lagrangian/icoUncoupledKinematicParcelFoam

~/OpenFOAM/OpenFOAM-7/applications/solvers/incompressible/pisoFoam

 $Re = 1,000, \rho_p/\rho_f = 1$

Add one-way coupled colliding particles to incompressible flow.

~/OpenFOAM/OpenFOAM-7/applications/solvers/lagrangian/icoUncoupledKinematicParcelFoam

- $Re = 1,000, \, \rho_p/\rho_f = 1$
- $Re = 1,000, \rho_p/\rho_f = 10$

Add one-way coupled colliding particles to incompressible flow.

~/OpenFOAM/OpenFOAM-7/applications/solvers/lagrangian/icoUncoupledKinematicParcelFoam

$$Re = 1,000, \, \rho_p/\rho_f = 10$$

$$Re = 1,000, \, \rho_p/\rho_f = 100$$

Add one-way coupled colliding particles to incompressible flow.

~/OpenFOAM/OpenFOAM-7/applications/solvers/lagrangian/icoUncoupledKinematicParcelFoam

$$Re = 1,000, \, \rho_p/\rho_f = 10$$

$$Re = 1,000, \, \rho_p/\rho_f = 100$$

$$Re = 1,000, \rho_p/\rho_f = 1,000$$

KTH Summary Summary

- 1. Introduction
- 2. Your first case
- 3. Your second case (with post-processing!)
- 4. Let's create a new solver!

Just check that everything is properly built.

- 1. Introduction
- 2. Your first case
- 3. Your second case (with post-processing!)
- 4. Let's create a new solver!

Just check that everything is properly built.

- 1. Introduction
- 2. Your first case

- Try different turbulence models!
- Use the wall-shear stress to study the separation bubble!
- 3. Your second case (with post-processing!)
- 4. Let's create a new solver!

Thanks for your kind attention!