Москва 2024

Криптографические методы защиты информации

Теоретико-числовые алгоритмы

Московский институт электроники

и математики им. А.Н. Тихонова

Алгоритмы вычисления наибольшего общего делителя

Наибольший общий делитель

- Наибольшим общим делителем целых чисел $a,b \in \mathbb{Z}$ (HOД(a,b)) называется такое целое число $d \ge 1$, которое удовлетворяет следующим условиям:
 - d есть общий делитель a и b;
 - если $d' \in \mathbb{Z}$ есть любой общий делитель a и b, то d делится на d'.
- Если НОД(a,b)=1, то a и b называются взаимно простыми числами.

- Целое число p , делители которого исчерпываются числами ± 1 и $\pm p$, называется **простым числом**.
- Основная теорема арифметики. Каждое натуральное число n>1 может быть записано в виде произведения простых чисел, не обязательно различных, а именно: $n=p_1p_2\dots p_k$, причём эта запись единственна с точностью до порядка сомножителей.

Деление с остатком в кольце целых чисел

- **Теорема**. Для заданных чисел $a, b \in \mathbb{Z}$, b > 0 существуют числа $q, r \in \mathbb{Z}$, такие, что $a = qb + r, 0 \le r < b$.
- **Теорема**. В \mathbb{Z} для любых двух целых чисел a и b существует $d = \mathrm{HOД}(a,b)$. Более того, существуют целые числа u, v, такие, что au + bv = d.
- Запись au + bv = d будем называть **целочисленной линейной комбинацией** a и b.

- Алгоритмы нахождения наибольшего общего делителя целых чисел:
 - алгоритм Евклида.
 - расширенный алгоритм Евклида.

Алгоритм Евклида

Вход: целые числа $a \ge b > 0$.

Выход: d = HOД(a, b).

Шаг 1. Пока $b \neq 0$, выполнять следующее:

Шаг 1.1. Вычислить $r \leftarrow a \mod b$.

Шаг 1.2 Присвоить $a \leftarrow b$, $b \leftarrow r$.

Шаг 2. Возврат (а).

Теоретико-числовые алгоритмы

Расширенный алгоритм Евклида

целые числа $a \ge b > 0$. Вход:

d = HOД(a,b) и целые x,y, такие, что ax + by = d. Выход:

Шаг 1. Полагаем $x_2 \leftarrow 1, x_1 \leftarrow 0, y_2 \leftarrow 0, y_1 \leftarrow 1.$

Шаг 2. Пока $b \neq 0$, выполнять следующее:

Шаг 2.1. $q \leftarrow [a/b]$, $r \leftarrow a - qb$, $x \leftarrow x_2 - qx_1$, $y \leftarrow y_2 - qy_1$.

Шаг 2.2. $a \leftarrow b$, $b \leftarrow r$, $x_2 \leftarrow x_1$, $x_1 \leftarrow x$, $y_2 \leftarrow y_1$, $y_1 \leftarrow y$.

Шаг 3. $d \leftarrow a, x \leftarrow x_2, y \leftarrow y_2$ и возврат (d, x, y).

Пример работы расширенного алгоритма Евклида

• **Вход**: целые числа $1120 \ge 73 > 0$.

q	r	x	y	а	b	x_2	x_1	y_2	y_1
_	_	_		1120	73	1	0	0	1
15	25	1	-15	73	25	0	1	1	-15
2	23	-2	31	25	23	1	-2	-15	31
1	2	3	-46	23	2	-2	3	31	-46
11	1	-35	537	2	1	3	-35	-46	537
2	0			1	0	-35		537	

• Выход: $-35 \cdot 1120 + 537 \cdot 73 = \text{НОД}(1120, 73) = 1.$

Теоретико-числовые алгоритмы

Московский институт электроники

и математики им. А.Н. Тихонова

Некоторые теоретико-числовые свойства колец классов вычетов

Нахождение обратных элементов по модулю n

- При проведении криптографических преобразований возникает задача нахождения обратных элементов в кольце \mathbb{Z}_n , а именно: по данному элементу $a \in \mathbb{Z}_n^*$ найти $a^{-1} \in \mathbb{Z}_n^*$ или же $a^{-1} \pmod{n}$.
- Пусть xn + ya = d = HOД(n, a). Если d = 1, то верно следующее:
 - -xn + ya = 1;

Московский институт электроники

и математики им. А.Н. Тихонова

- $-(xn + ya) \mod n \equiv 1 \mod n$;
- $-ya \equiv 1 \mod n$;
- $y = a^{-1} \pmod{n}.$

Алгоритм вычисления $a^{-1} \pmod{n}$.

Вход: n > a > 0, $a, n \in \mathbb{Z}$.

Выход: $a^{-1} \pmod{n}$.

- Шаг 1. Используя расширенный алгоритм Евклида, найти целые числа x,y, такие, что $xn+ya=d=\mathrm{HOД}(n,a)$.
- Шаг 2. Если d>1 , то $a^{-1} \pmod n$ не существует.
- Шаг 3. Если d = 1, то возврат (y).

Пример нахождения обратного элемента по модулю n

Найти 13^{-1} (mod 267).

целые числа 267 > 13 > 0. Вход:

q	r	y	n	а	y_2	y_1
_	_	1	267	13	0	1
20	7	-20	13	7	1	-20
1	6	21	7	6	-20	21
1	1	-41	6	1	21	-41
6	0		1	0	-41	

Теоретико-числовые алгоритмы

 $13^{-1} \pmod{267} = -41 = 226.$ Выход:

Функция Эйлера

Московский институт электроники

и математики им. А.Н. Тихонова

- Функцией Эйлера $\varphi(m)$, $m \in \mathbb{N}$ называется число натуральных чисел, не превосходящих m и взаимно простых с m.
- Теорема. Пусть HOД(k,l) = 1, тогда $\varphi(kl) = \varphi(k) \cdot \varphi(l)$.
- **Теорема**. Пусть $m=p^k$, где p простое число, тогда $\varphi(m)=p^{k-1}(p-1)$.
- **Теорема**. Пусть число m имеет каноническое разложение $m=p_1^{k_1}p_2^{k_2}\dots p_l^{k_l}$, тогда $\varphi(m)=p_1^{k_1-1}p_2^{k_2-1}\dots p_l^{k_l-1}(p_1-1)(p_2-1)\dots (p_l-1).$

$$|\mathbb{Z}_m^*| = \boldsymbol{\varphi}(m)$$

Примеры нахождения $|\mathbb{Z}_m^*|$

• \mathbb{Z}_{55}^* :

$$-55 = 5 \cdot 11, \Rightarrow |\mathbb{Z}_{55}^*| = \varphi(5 \cdot 11) = 4 \cdot 10 = 40.$$

• \mathbb{Z}_{1024}^* :

$$-1024 = 2^{10}, \Rightarrow |\mathbb{Z}_{1024}^*| = \varphi(2^{10}) = 2^9 \cdot (2-1) = 512.$$

- \mathbb{Z}^*_{243000} :
 - $-243000 = 2^{3} \cdot 3^{5} \cdot 5^{3}, \Rightarrow$ $|\mathbb{Z}_{243000}^{*}| = \varphi(2^{3} \cdot 3^{5} \cdot 5^{3}) = 2^{2} \cdot 3^{4} \cdot 5^{2} \cdot (2-1) \cdot (3-1) \cdot (5-1) = 64800.$

Теорема Эйлера и малая теорема Ферма

- **Теорема Эйлера**. Пусть натуральное число $a \in \mathbb{Z}_n$. Если HOД(a,n) = 1, то верно следующее сравнение $a^{\varphi(n)} \equiv 1 \pmod{n}$.
- Теорема Эйлера определяет альтернативный способ вычисления $a^{-1} \in \mathbb{Z}_n^*$:
 - $-a^{\varphi(n)} \equiv 1 \pmod{n}$;
 - $-a \cdot a^{\varphi(n)-1} \equiv 1 \pmod{n};$
 - $-a^{\varphi(n)-1}=a^{-1} \pmod{n}.$
- Следствием из теоремы Эйлера является малая теорема Ферма.
- Малая теорема Ферма. Если p простое число, то для любого ненулевого числа $a \in \mathbb{Z}_p$ верно $a^{p-1} \equiv 1 \pmod p$.

Кафедра информационной безопасности киберфизических систем

Криптографические методы защиты информации

Спасибо за внимание!

Евсютин Олег Олегович

Заведующий кафедрой информационной безопасности киберфизических систем Канд. техн. наук, доцент

+7 923 403 09 21 oevsyutin@hse.ru