Queueing Theory Exercise Sheet Solutions

1. Fill in the gaps in the following table:

Statistic	Notation	M/M/1	M/M/2	M/M/k
Number of people in queue	L_q	$\frac{\rho^2}{1-\rho}$	$\frac{2\rho^3}{1-\rho^2}$	$\frac{\left(\frac{\lambda}{\mu}\right)^{k+1}\pi_0}{kk!\left(1-\frac{\lambda}{k\mu}\right)^2}$
Number of people in system	L_c	$\frac{ ho}{1- ho}$	$\frac{2\rho}{1-\rho^2}$	$\frac{\left(\frac{\lambda}{\mu}\right)^{k+1}\pi_0}{kk!\left(1-\frac{\lambda}{k\mu}\right)^2} + \frac{\lambda}{\mu}$
Average waiting time in queue	W_q	$\frac{ ho}{\mu(1- ho)}$	$\frac{\rho^2}{\mu(1-\rho^2)}$	$\frac{\left(\frac{\lambda}{\mu}\right)^k \pi_0}{kk! \left(1 - \frac{\lambda}{k\mu}\right)^2 \mu}$
Average time in system	W_c	$\frac{1}{\mu(1- ho)}$	$\frac{1}{\mu(1-\rho^2)}$	$\frac{\left(\frac{\lambda}{\mu}\right)^k \pi_0}{kk! \left(1 - \frac{\lambda}{k\mu}\right)^2 \mu} + \frac{1}{\mu}$

2. • FIFO:

Total waiting time = 0 + 1 + (1 + 2) + (1 + 2 + 3) + ···· + (1 + 2 + 3 + ···· + (n - 1))
=
$$\sum_{k=1}^{n-1} \sum_{j=0}^{k} j = \sum_{k=1}^{n-1} \frac{k(k+1)}{2}$$

= $\frac{1}{2} \left(\sum_{k=1}^{n-1} k^2 + \sum_{k=1}^{n-1} k \right)$
= $\frac{1}{2} \left(\frac{(n-1)n(2n-1)}{6} + \frac{n(n-1)}{2} \right)$
= $\frac{1}{2} \left(\frac{(n-1)n(2n+2)}{6} \right) = \frac{(n-1)n(n+1)}{6}$

However a total of n customers are served thus:

$$W_q = \frac{(n-1)(n+1)}{6} = \frac{n-1^2}{6}$$

as required.

• LIFO

Total waiting time = 0 + n + (n + (n - 1)) + ··· + (n + ··· + 2)
=
$$\sum_{k=0}^{n-2} \sum_{j=0}^{k} (n - j) = \sum_{k=0}^{n-2} \sum_{j=n-k}^{n} j = \sum_{k=0}^{n-2} \left(\sum_{j=0}^{n} j - \sum_{j=0}^{n-k-1} j \right)$$

= $\sum_{k=0}^{n-2} \left(\frac{n(n+1)}{2} - \frac{(k-n)(1+k-n)}{2} \right) = \sum_{k=0}^{n-2} \frac{(k+1)(2n-k)}{2}$
= $\frac{1}{2} \left(-\sum_{k=0}^{n-2} k^2 + (2n-1) \sum_{k=0}^{n-2} k + \sum_{k=0}^{n-2} 2n \right)$
= $\frac{1}{2} \left(-\frac{(n-2)(n-1)(2n-3)}{6} + \frac{(n-2)(n-1)(2n-1)}{2} + 2n(n-1) \right) = \frac{(n-1)n(n+1)}{3}$

However a total of n customers are served thus:

$$W_q = \frac{(n-1)(n+1)}{3} = \frac{n-1^2}{3}$$

as required.