

MLDS, 2022

UNSUPERVISED DOMAIN ADAPTATION BY BACKPROPAGATION

Davydkin Nikita

Plan

- Domain adaptation
- Model architecture
- Optimisation task
- Gradient reversal layer
- o Data
- o Experimental design
- o Results
- o Questions

Domain adaptation

Domain adaptation is the ability to apply an algorithm trained in one or more "source domains" to a different (but related) "target domain".

Model architecture

Goal: obtain domain invariant features by learning parameters of feature extractor to maximise domain classifier loss, while learning all parameters to make good label and domain classification.

Optimisation task

$$E(\theta_f, \theta_y, \theta_d) = \sum_{\substack{i=1..N\\d_i=0}} L_y \left(G_y(G_f(\mathbf{x}_i; \theta_f); \theta_y), y_i \right) - \lambda \sum_{\substack{i=1..N\\d_i=0}} L_d \left(G_d(G_f(\mathbf{x}_i; \theta_f); \theta_d), y_i \right) = \sum_{\substack{i=1..N\\d_i=0}} L_y^i(\theta_f, \theta_y) - \lambda \sum_{\substack{i=1..N\\d_i=0}} L_d^i(\theta_f, \theta_d)$$
(1)

$$(\hat{\theta}_f, \hat{\theta}_y) = \arg\min_{\theta_f, \theta_y} E(\theta_f, \theta_y, \hat{\theta}_d)$$
 (2)

$$\hat{\theta}_d = \arg\max_{\theta_d} E(\hat{\theta}_f, \hat{\theta}_y, \theta_d). \tag{3}$$

Optimisation task

$$\theta_f \leftarrow \theta_f - \mu \left(\frac{\partial L_y^i}{\partial \theta_f} - \lambda \frac{\partial L_d^i}{\partial \theta_f} \right)$$
 (4)

$$\theta_{y} \leftarrow \theta_{y} - \mu \frac{\partial L_{y}^{i}}{\partial \theta_{y}}$$

$$\theta_{d} \leftarrow \theta_{d} - \mu \frac{\partial L_{d}^{i}}{\partial \theta_{d}}$$

$$(5)$$

$$\theta_d \leftarrow \theta_d - \mu \frac{\partial L_d^i}{\partial \theta_d}$$
 (6)

Standard backpropagation can not be done without any modifications for this optimisation task. However, problem is solved by implementing the gradient reversal layer.

Gradient reversal layer

$$R_{\lambda}(\mathbf{x}) = \mathbf{x} \tag{7}$$

$$\frac{dR_{\lambda}}{d\mathbf{x}} = -\lambda \mathbf{I} \tag{8}$$

$$\tilde{E}(\theta_f, \theta_y, \theta_d) = \sum_{\substack{i=1..N\\d_i=0}} L_y \left(G_y(G_f(\mathbf{x}_i; \theta_f); \theta_y), y_i \right) + \sum_{\substack{i=1..N\\d_i=0}} L_d \left(G_d(R_\lambda(G_f(\mathbf{x}_i; \theta_f)); \theta_d), y_i \right) \tag{9}$$

Data

SOURCE MNIST SYN NUMBERS SVHN SYN SIGNS

TARGET SYN NUMBERS SVHN SYN SIGNS

ON A SYN SIGNS

ON

Experimental design

Baseline: source-only model trained without consideration for target-domain data

Upper bound: train-on-target model is trained on the target domain with class labels revealed

In addition: the approach is compared against the recently proposed unsupervised DA method based on subspace alignment (SA)

Results

METHOD	Source	MNIST	SYN NUMBERS	SVHN	SYN SIGNS
	TARGET	MNIST-M	SVHN	MNIST	GTSRB
SOURCE ONLY		.5749	.8665	.5919	.7400
SA (FERNANDO ET AL., 2013)		.6078 (7.9%)	$.8672\ (1.3\%)$.6157~(5.9%)	.7635~(9.1%)
PROPOSED APPROACH		. 8149 (57.9%)	.9048~(66.1%)	. 7107 (29.3%)	.8866~(56.7%)
TRAIN ON TARGET		.9891	.9244	.9951	.9987

Results

Results

METHOD	Source	AMAZON	DSLR	WEBCAM
METHOD	TARGET	WEBCAM	WEBCAM	DSLR
GFK(PLS, PCA) (GONG ET AL., 2012)		$.464 \pm .005$	$.613 \pm .004$	$.663 \pm .004$
SA (FERNANDO ET AL., 2013)	.450	.648	.699	
DA-NBNN (Tommasi & Caputo, 2013)	$.528 \pm .037$	$.766 \pm .017$	$.762 \pm .025$	
DLID (S. CHOPRA & GOPALAN, 2013)	.519	.782	.899	
DECAF ₆ Source Only (Donahue et al., 2014)		$.522 \pm .017$	$.915 \pm .015$	_
DANN (GHIFARY ET AL., 2014)		$.536 \pm .002$	$.712 \pm .000$	$.835 \pm .000$
DDC (TZENG ET AL., 2014)		$.594 \pm .008$	$.925 \pm .003$	$.917 \pm .008$
PROPOSED APPROACH		$.673\pm.017$	$.940\pm.008$	$.937 \pm .010$

Questions

- What is domain adaptation?
- Describe optimisation goals for each bundle of parameters (feature extractor, label predictor, domain classifier) with respect to 2 losses (classification loss, domain loss).
- How does the gradient reversal layer work?

Thank you for your attention!