Advanced Smoothing

Good-Turing smoothing intuition

- You are fishing (a scenario from Josh Goodman), and caught:
 - 10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 eel = 18 fish
- How likely is it that next species is trout?
 - 1/18
- How likely is it that next species is new (i.e. catfish or bass)
 - Let's use our estimate of things-we-saw-once to estimate the new things.
 - 3/18 (because N₁=3)
- Assuming so, how likely is it that next species is trout?
 - Must be less than 1/18
 - How to estimate?

Good Turing calculations

$$P_{GT}^*$$
 (things with zero frequency) = $\frac{N_1}{N}$ $c^* = \frac{(c+1)N_{c+1}}{N_c}$

- Unseen (bass or catfish)
 Seen once (trout)
 - c = 0:
 - MLE p = 0/18 = 0
 - P_{GT}^* (unseen) = $N_1/N = 3/18$

- - c = 1
 - MLE p = 1/18
 - $C^*(trout) = 2 * N2/N1$ = 2 * 1/3

= 2/3

• $P_{GT}^*(trout) = 2/3 / 18 = 1/27$

Proof Sketch

- N_k: number of types which occur k times in the entire corpus
- Take each of the c tokens out of corpus in turn
- c "training" sets of size c-1, "held-out" of size 1
- How many "held-out" tokens are unseen in "training"?
 - N₁
- How many held-out tokens are seen k times in training?
 - (k+1)N_{k+1}
- There are N_k words with training count k
- Each should occur with expected count
 - (k+1)N_{k+1}/N_k
- Each should occur with probability:
 - (k+1)N_{k+1}/(cN_k)

Absolute discounting: just subtract a little from each count

- Church and Gale (1991)'s clever idea
- Divide up 22 million words of AP Newswire
 - Training and held-out set
 - for each bigram in the training set
 - see the actual count in the held-out set!
- It sure looks like c* = (c .75)

Bigram count in training	Bigram count in heldout set
0	.0000270
1	0.448
2	1.25
3	2.24
4	3.23
5	4.21
6	5.23
7	6.21
8	7.21
9	8.26

Absolute Discounting Interpolation

Save ourselves some time and just subtract 0.75 (or some d)!
 discounted bigram

$$P_{\text{AbsoluteDiscounting}}(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i) - d}{c(w_{i-1})} + \lambda(w_{i-1})P(w)$$
unigram

- (Maybe keeping a couple extra values of d for counts 1 and 2)
 - But should we really just use the regular unigram
- ⁶ P(w)²

Kneser-Ney Smoothing I

- Better estimate for probabilities of lower-order unigrams!
 - Shannon game: I can't see without my reading ?
 - "Kong" turns out to be more common than "glasses"
 - ... but "Kong" always follows "Hong"
- The unigram is useful exactly when we haven't seen this bigram!
- Instead of P(w): "How likely is w"
- P_{continuation}(w): "How likely is w to appear as a novel continuation?
 - For each word, count the number of bigram types it completes
 - Every bigram type was a novel continuation the first time it was seen

$$P_{CONTINUATION}(w) \propto \left| \{ w_{i-1} : c(w_{i-1}, w) > 0 \} \right|$$

Kneser-Ney Smoothing II

How many times does w appear as a novel continuation:

$$P_{CONTINUATION}(w) \propto |\{w_{i-1}: c(w_{i-1}, w) > 0\}|$$

Normalized by the total number of word bigram types

$$|\{(w_{j-1}, w_j): c(w_{j-1}, w_j) > 0\}|$$

$$P_{CONTINUATION}(w) = \frac{\left| \left\{ w_{i-1} : c(w_{i-1}, w) > 0 \right\} \right|}{\left| \left\{ (w_{j-1}, w_j) : c(w_{j-1}, w_j) > 0 \right\} \right|}$$

Kneser-Ney Smoothing: Recursive formulation

$$P_{KN}(w_i \mid w_{i-n+1}^{i-1}) = \frac{\max(c_{KN}(w_{i-n+1}^i) - d, 0)}{c_{KN}(w_{i-n+1}^{i-1})} + \lambda(w_{i-n+1}^{i-1})P_{KN}(w_i \mid w_{i-n+2}^{i-1})$$

$$c_{KN}(\bullet) = \begin{cases} count(\bullet) & \text{for the highest order} \\ continuation count(\bullet) & \text{for lower order} \end{cases}$$

Continuation count = Number of unique single word contexts for •

Smoothing for Web-scale N-grams

- "Stupid backoff" (Brants et al. 2007 from Google)
- No discounting, just use relative frequencies

$$S(w_{i} \mid w_{i-k+1}^{i-1}) = \begin{cases} \frac{\text{count}(w_{i-k+1}^{i})}{\text{count}(w_{i-k+1}^{i-1})} & \text{if } \text{count}(w_{i-k+1}^{i}) > 0\\ 0.4S(w_{i} \mid w_{i-k+2}^{i-1}) & \text{otherwise} \end{cases}$$

$$S(w_i) = \frac{\text{count}(w_i)}{N}$$

Vector Space Model and Information Retrieval

Sparse Vector

Term-document matrix

Each document is represented by a vector of words

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle		0	7	13
good	14	80	62	89
fool	36	58	1	4
wit	20	15	2	3

Visualizing document vectors

Vectors are the basis of information retrieval

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle		0	7	13
good	14	80	62	89
fool	36	58	1	4
wit	20	15	2	3

Vectors are similar for the two comedies Different than the history

Comedies have more *fools* and *wit* and fewer *battles*.

Idea for word meaning: Words can be vectors too!!!

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13)
good fool	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

battle is "the kind of word that occurs in Julius Caesar and Henry V"

fool is "the kind of word that occurs in comedies, especially Twelfth Night"

More common: word-word matrix (or "term-context matrix")

 Two words are similar in meaning if their context vectors are similar

is traditionally followed by cherry often mixed, such as **strawberry** computer peripherals and personal **digital** a computer. This includes **information** available on the internet

pie, a traditional dessert rhubarb pie. Apple pie assistants. These devices usually

	aardvark	•••	computer	data	result	pie	sugar	
cherry	0		2	8	9	442	25	
strawberry	0	•••	0	0	1	60	19	•••
digital	0	•••	1670	1683	85	5	4	•••
information	0	•••	3325	3982	378	5	13	•••

Web Search: **Boolean 12 Ranked** retrieval

- Old system: query-doc match is Boolean.
 - Documents either match or don't.
- Good for expert users with precise understanding of their needs and the collection.
 - Also good for applications: Applications can easily consume 1000s of results.
- Not good for the majority of users.
 - Most users incapable of writing Boolean queries (or they are, but they think it's too much work).
 - Most users don't want to wade through 1000s of results.
 - This is particularly true of web search.

Problem with Boolean search: feast or famine

- Exact match queries often result in either too few (=0) or too many (1000s) results.
- Query 1: "standard user dlink 650" \rightarrow 200,000 hits
- Query 2: "standard user dlink 650 no card found":
 0 hits
- It takes a lot of skill to come up with a query that produces a manageable number of hits.
 - AND gives too few; OR gives too many

Ranked retrieval models

- Rather than a set of documents satisfying a query expression, in ranked retrieval, the system returns an ordering over the (top) documents in the collection for a query
- Free text queries: Rather than a query language of operators and expressions, the user's query is just one or more words in a human language

Feast or famine: not a problem in ranked retrieval

- When a system produces a ranked result set, large result sets are not an issue
 - Indeed, the size of the result set is not an issue
 - We just show the top k (\approx 10) results
 - We don't overwhelm the user
 - Premise: the ranking algorithm works

Scoring as the basis of ranked retrieval

- We wish to return in order the documents most likely to be useful to the searcher
- How can we rank-order the documents in the collection with respect to a query?
- Assign a score say in [0, 1] to each document
- This score measures how well document and query "match".

Query-document matching scores

- We need a way of assigning a score to a query/document pair
- Let's start with a one-term query
- If the query term does not occur in the document:
 score should be 0
- The more frequent the query term in the document, the higher the score (should be)
- We will look at a number of alternatives for this.

Term-document count matrices

 Consider the number of occurrences of a term in a document:

• Each document is a count vector in \mathbb{N}^{v} : a column below

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	157	73	0	0	0	0
Brutus	4	157	0	1	0	0
Caesar	232	227	0	2	1	1
Calpurnia	0	10	0	0	0	0
Cleopatra	57	0	0	0	0	0
mercy	2	0	3	5	5	1
worser	2	0	1	1	1	0

Bag of words model

- Vector representation doesn't consider the ordering of words in a document
- John is quicker than Mary and Mary is quicker than John have the same vectors
- This is called the <u>bag of words</u> model.

Term frequency tf

- The term frequency tf_{t,d} of term t in document d is defined as the number of times that t occurs in d.
- Raw term frequency is not what we want:
- Relevance does not increase proportionally with term frequency.

Log-frequency weighting

The log frequency weight of term t in d is

$$w_{t,d} = \begin{cases} 1 + \log_{10} \mathsf{tf}_{t,d}, & \text{if } \mathsf{tf}_{t,d} > 0\\ 0, & \text{otherwise} \end{cases}$$

- $0 \to 0, 1 \to 1, 2 \to 1.3, 10 \to 2, 1000 \to 4$, etc.
- Score for a document-query pair: sum over terms t in both q and d:

• score
$$= \sum_{t \in a \cap d} (1 + \log t f_{t,d})$$

Document frequency

- Rare terms are more informative than frequent terms
 - Recall stop words
- Consider a term in the query that is rare in the collection (e.g., arachnocentric)
- A document containing this term is very likely to be relevant to the query arachnocentric
- → We want a high weight for rare terms like arachnocentric.

Document frequency, continued

- Frequent terms are less informative than rare terms
- Consider a query term that is frequent in the collection (e.g., high, increase, line)
- A document containing such a term is more likely to be relevant than a document that doesn't
- But it's not a sure indicator of relevance.
- → For frequent terms, we want high positive weights for words like high, increase, and line
- But lower weights than for rare terms.
- We will use document frequency (df) to capture this.

idf weight

- df_t is the <u>document</u> frequency of t: the number of documents that contain t
 - df_t is an inverse measure of the informativeness of t
 - df_t ≤ N (total number of docs)
- We define the idf (inverse document frequency) of t by $idf_t = log_{10} (N/df_t)$
 - We use $\log (N/df_t)$ instead of N/df_t to "dampen" the effect of idf.

idf example, suppose N = 1 million

term	df _t	idf_t
calpurnia	1	6
animal	100	4
sunday	1,000	3
fly	10,000	2
under	100,000	1
the	1,000,000	0

$$idf_t = \log_{10} (N/df_t)$$

There is one idf value for each term *t* in a collection.

Effect of idf on ranking

- Does idf have an effect on ranking for one-term queries, like
 - iPhone
- idf has no effect on ranking one term queries
 - idf affects the ranking of documents for queries with at least two terms
 - For the query capricious person, idf weighting makes occurrences of capricious count for much more in the final document ranking than occurrences of person.

Collection vs. Document frequency

- The collection frequency of t is the number of occurrences of t in the collection, counting multiple occurrences.
- Example:

Word	Collection frequency	Document frequency
insurance	10440	3997
try	10422	8760

Quiz: Collection Frequency

Word	Collection frequency	Document frequency
insurance	10440	3997
try	10422	8760

 Which word is a better search term (and should get a higher weight)?

tf-idf weighting

 The tf-idf weight of a term is the product of its tf weight and its idf weight.

$$\mathbf{w}_{t,d} = (1 + \log_{10} tf_{t,d}) \times \log_{10} (N/df_t)$$

- Best known weighting scheme in information retrieval
 - Note: the "-" in tf-idf is a hyphen, not a minus sign!
 - Alternative names: tf.idf, tf x idf

Score for a document given a query

$$Score(q, d) = \sum_{t \in a \cap d} tf.idf_{t, d}$$

- There are many variants
 - How "tf" is computed (with/without logs)
 - Whether the terms in the query are also weighted
 - •

Binary → count → weight matrix

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	5.25	3.18	0	0	0	0.35
Brutus	1.21	6.1	0	1	0	0
Caesar	8.59	2.54	0	1.51	0.25	0
Calpurnia	0	1.54	0	0	0	0
Cleopatra	2.85	0	0	0	0	0
mercy	1.51	0	1.9	0.12	5.25	0.88
worser	1.37	0	0.11	4.15	0.25	1.95

Each document is now represented by a real-valued vector of tf-idf weights $\in \mathbb{R}^{|V|}$

Documents as vectors

- So we have a |V|-dimensional vector space
- Terms are axes of the space
- Documents are points or vectors in this space
- Very high-dimensional: tens of millions of dimensions when you apply this to a web search engine
- These are very sparse vectors most entries are zero.

Queries as vectors

- Key idea 1: Do the same for queries: represent them as vectors in the space
- Key idea 2: Rank documents according to their proximity to the query in this space
- proximity = similarity of vectors
- proximity ≈ inverse of distance

Formalizing vector space proximity

- First cut: distance between two points
 - (= distance between the end points of the two vectors)
- Euclidean distance?
- Euclidean distance is a bad idea . . .
- ... because Euclidean distance is large for vectors of different lengths.

WHY DISTANCE IS A BAD IDEA

The Euclidean distance between q and d_2 is large even though the distribution of terms <u>in</u> the query *q* and the distribution of terms in the document d, are very similar.

Use angle instead of distance

- Thought experiment: take a document d and append it to itself. Call this document d'.
- "Semantically" d and d' have the same content
- The Euclidean distance between the two documents can be quite large
- The angle between the two documents is 0, corresponding to maximal similarity.
- Key idea: Rank documents according to angle with query.

From angles to cosines

- The following two notions are equivalent.
 - Rank documents in <u>decreasing</u> order of the angle between query and document
 - Rank documents in <u>increasing</u> order of cosine(query,document)
- Cosine is a monotonically decreasing function for the interval [0°, 180°]

From angles to cosines

But how – and why – should we be computing cosines?

Length normalization

- A vector can be (length-) normalized by dividing each of its components by its length for this we use the L₂ norm: $\|x\|_2 = \sqrt{\sum_i x_i^2}$
- Dividing a vector by its L₂ norm makes it a unit (length) vector (on surface of unit hypersphere)
- Effect on the two documents d and d' (d appended to itself) from earlier slide: they have identical vectors after length-normalization.

cosine(query,document)

Dot product
$$\cos(q, d) = \frac{q \cdot d}{|q| d} = \frac{q}{|q|} \cdot \frac{d}{|q|} = \frac{\sum_{i=1}^{|V|} q_i d_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}$$

 q_i is the tf-idf weight of term i in the query d_i is the tf-idf weight of term i in the document

 $cos(\overrightarrow{q},\overrightarrow{d})$ is the cosine similarity of q and d ... or, equivalently, the cosine of the angle between q and d.

The law of cosines generalizes the Pythagorean theorem, which holds only for right triangles: if the angle γ is a right angle (of

sides a, b, and c.

measure 90° or $\frac{\pi}{2}$ radians), then $\cos\gamma=0$, and thus the law of cosines reduces to the Pythagorean theorem:

$$c^2 = a^2 + b^2.$$

The law of cosines is useful for computing the third side of a triangle when two sides and their enclosed angle are known, and in computing the angles of a triangle if all three sides are known.

By changing which sides of the triangle play the roles of a, b, and c in the original formula, the following two formulas also state the law of cosines:

$$a^{2} = b^{2} + c^{2} - 2bc \cos \alpha$$

 $b^{2} = a^{2} + c^{2} - 2ac \cos \beta$.

Though the notion of the cosine was not yet

Cosine for length-normalized vectors

 For length-normalized vectors, cosine similarity is simply the dot product (or scalar product):

$$\cos(q,d) = q \cdot d = \sum_{i=1}^{|V|} q_i d_i$$

for q, d length-normalized.

Cosine similarity illustrated

Cosine similarity amongst 3 documents

How similar are the novels?

•	SaS: Sense and
	Sensibility

PaP: Pride and Prejudice

• WH: Wuthering Heights

Ŧ			
term	SaS	PaP	WH
affection	115	58	20
jealous	10	7	11
gossip	2	0	6
wuthering	0	0	38

Term frequencies (counts)

Note: To simplify this example, we don't do idf weighting.

3 documents example contd.

term	SaS	PaP	WH	
affection	3.06	2.76	2.30	
jealous	2.00	1.85	2.04	
gossip	1.30	0	1.78	
wutherin	0	0	2.58	
g				

term	SaS	PaP	WH	
affection	0.789	0.832	0.524	
jealous	0.515	0.555	0.465	
gossip	0.335	0	0.405	
wuthering	0	0	0.588	

$$\cos(\text{SaS,PaP}) \approx 0.789 \times 0.832 + 0.515 \times 0.555 + 0.335 \times 0.0 + 0.0 \times 0.0 \approx 0.94$$

 $\cos(\text{SaS,WH}) \approx 0.79$
 $\cos(\text{PaP,WH}) \approx 0.69$

Computing cosine scores

```
CosineScore(q)
  1 float Scores[N] = 0
  2 float Length[N]
  3 for each query term t
    do calculate w_{t,q} and fetch postings list for t
         for each pair(d, tf<sub>t,d</sub>) in postings list
         do Scores[d] + = w_{t,d} \times w_{t,a}
     Read the array Length
     for each d
     do Scores[d] = Scores[d]/Length[d]
     return Top K components of Scores[]
10
```

tf-idf weighting has many variants

Term frequency		Document frequency		Normalization		
n (natural)	$tf_{t,d}$	n (no)	1	n (none)	1	
I (logarithm)	$1 + \log(tf_{t,d})$	t (idf)	$\log \frac{N}{df_t}$	c (cosine)	$\frac{1}{\sqrt{w_1^2 + w_2^2 + \dots + w_M^2}}$	
a (augmented)	$0.5 + \frac{0.5 \times tf_{t,d}}{max_t(tf_{t,d})}$	p (prob idf)	$\max\{0,\log\frac{N-\mathrm{df}_t}{\mathrm{df}_t}\}$	u (pivoted unique)	1/u	
b (boolean)	$\begin{cases} 1 & \text{if } \operatorname{tf}_{t,d} > 0 \\ 0 & \text{otherwise} \end{cases}$			b (byte size)	$1/\mathit{CharLength}^{lpha}$, $lpha < 1$	
L (log ave)	$\frac{1 + \log(\operatorname{tf}_{t,d})}{1 + \log(\operatorname{ave}_{t \in d}(\operatorname{tf}_{t,d}))}$					

Columns headed 'n' are acronyms for weight schemes.

Summary – vector space ranking

- Represent the query as a weighted tf-idf vector
- Represent each document as a weighted tf-idf vector
- Compute the cosine similarity score for the query vector and each document vector
- Rank documents with respect to the query by score
- Return the top K (e.g., K = 10) to the use \mathfrak{g}_4