

Laporan Tugas Kelompok Analisis Data Kategori B

Generalized Poisson Regression

Disusun Oleh:

 Bunga Tata Arinda
 06211840000044

 Haiva Qurrota A'yun
 06211840000045

 Lidya Cahya Aurellia
 06211840000054

Dosen Pengampu:

Dr. Purhadi, M.Sc.

Program Studi Sarjana Departemen Statistika Fakultas Sains Dan Analitika Data Institut Teknologi Sepuluh Nopember Surabaya 2021

Daftar Isi

Halaman Judul	1
Daftar Isi	ii
Daftar Tabel	iii
A. Sumber Data	1
B. Variabel yang Digunakan	1
C. Langkah Analisis	3
D. Analisis dan Pembahasan	3
1. Identifikasi Multikolinearitas	3
2. Identifikasi Ekuidispersi	3
3. Pemodelan Generalized Poisson Regression	4
4. Uji Signifikansi Parameter Secara Serentak	5
5. Uji Signifikansi Parameter Secara Parsial	6
6. Pemilihan Model Terbaik	7
E. Kesimpulan	8
Lampiran	9
Lampiran 1 Identifikasi Multikolinieritas	9
Lampiran 2 Identifikasi Equidispersi	9
Lampiran 3 Hasil Rangkuman Pemodelan GPR	9
Lampiran 4 Pemodelan GPR Variabel X ₁	11
Lampiran 5 Pemodelan GPR Variabel X ₁ dan X ₆	12
Lampiran 6 Pemodelan GPR Variabel X ₁ , X ₅ , dan X ₆	12
Lampiran 7 Pemodelan GPR Variabel X ₁ , X ₄ , X ₅ , dan X ₆	12
Lampiran 8 Pemodelan GPR Variabel X ₁ , X ₂ , X ₃ , X ₅ , dan X ₆	13
Lampiran 9 Pemodelan GPR Variabel X ₁ , X ₂ , X ₃ , X ₄ , X ₅ , dan X ₆	13
Lampiran 10 Uji Signifikansi Parameter Model Secara Serentak	13
Lampiran 11 Uji Signifikansi Parameter Model Secara Parsial dan Estimasi Parameter	14

Daftar Tabel

Tabel 1 Variabel Penelitian	1
Tabel 2 Nilai VIF	3
Tabel 3 Keputusan Ekuidispersi	4
Tabel 4 Pemodelan GPR	5
Tabel 5 Uji Serentak	5
Tabel 6 Keputusan Uji Serentak	6
Tabel 7 Uji Parsial	6
Tabel 8 Keputusan Uji Parsial	7

A. Sumber Data

Data yang digunakan dalam tugas ini adalah data sekunder yang diperoleh dari tugas akhir yang berjudul "Faktor-faktor yang Mempengaruhi Banyaknya Pneumonia Balita di Jawa Timur Menggunakan *Generalized Poisson Regression* (GPR) Dan *Negative Binomial Regression* (NBR)" dari mahasiswa Departemen Statistika, Institut Teknologi Sepuluh Nopember (ITS) Surabaya tahun 2016.

B. Variabel yang Digunakan

Terdapat 7 variabel yang digunakan dalam tugas ini dimana variabel banyaknya kasus Pneumonia pada Balita sebagai variabel respon dan 6 variabel lainnya sebagai variabel prediktor yang ditunjukkan dalam tabel sebagai berikut.

Tabel 1 Variabel Penelitian

Variabel	Keterangan	Skala Data
Y	Jumlah kasus Pneumonia pada Balita	Diskrit
X_1	Persentase Berat Badan Bayi Lahir Rendah	Kontinu
X_2	Persentase Cakupan Imunisasi BCG pada Bayi	Kontinu
X ₃	Persentase Cakupan Imunisasi DPT-HB3/DPT-HB-Hib3	Kontinu
X_4	Persentase Rumah Tangga Ber-PHBS	Kontinu
X ₅	Persentase Desa/Kelurahan dengan UCI	Kontinu
X_6	Kepadatan Penduduk per-km Persegi	Kontinu

Definisi dari variabel-variabel yang digunakan dalam penelitian ini adalah sebagai berikut.

1. Jumlah Kejadian Pneumonia pada balita (Y)

Balita dengan pneumonia yang ditemukan dan diberikan tatalaksana sesuai standar di sarana kesehatan di Jawa Timur sepanjang tahun 2014 pada anak usia kurang dari atau sama dengan 59 bulan (5 tahun). Variabel ini berjenis diskrit berupa data *count*.

2. Persentase Berat Bayi Lahir Rendah (X1)

Persentase berat bayi lahir rendah diperoleh dari banyaknya bayi lahir dengan berat badan rendah dibagi dengan banyaknya bayi lahir hidup dikalikan 100% pada tahun 2014. Berat bayi lahir dikategorikan rendah jika kurang dari 2500 gr ketika baru lahir. Bayi dengan berat badan normal cenderung memiliki kondisi gizi dan kekebalan tubuh yang lebih baik dari serangan penyakit termasuk pneumonia.

3. Persentase Cakupan Imunisasi BCG pada Bayi (X2)

Imunisasi *Bacillus Calmette Guerin* (BCG) merupakan vaksinasi untuk mencegah TBC, diberikan pada bayi baru lahir atau anak, dengan suntikan pada pangkal lengan atas. Persentase cakupan imunisasi BCG diperoleh dari jumlah balita yang menerima imunisasi BCG dibagi jumlah seluruh balita yang ada di wilayah yang sama dikalikan 100% dalam kurun waktu yang sama. TBC dan pneumonia adalah penyakit yang sama-sama menyerang sistem saluran pernafasan.

4. Persentase Cakupan Imunisasi DPT-HB3/DPT-HB-Hib3 (X₃)

DPT (Difteri, Pertusis, Tetanus) merupakan vaksin untuk mencegah penyakit Difteri, Pertusis, dan Tetanus yang diberikan pada bayi berumur 3 bulan ke atas, dengan suntikan pada paha, diulang 1 bulan dan 2 bulan kemudian, sehingga suntikan imunisasi DPT lengkap pada balita berjumlah 3 kali (kadang-kadang selang waktu antar suntikan bisa lebih dari 1 bulan). Persentase cakupan imunisasi DPT-HB3/DPT-HB-Hib3 diperoleh dari jumlah balita yang menerima imunisasi DPT-HB3/DPT-HB-Hib3 dibagi jumlah seluruh balita yang ada di wilayah yang sama dikalikan 100% dalam kurun waktu yang sama.

5. Persentase Rumah Tangga Ber-PHBS (X4)

Rumah tangga berperilaku hidup bersih dan sehat, yang meliputi 10 indikator, yaitu pertolongan persalinan oleh tenaga kesehatan, bayi diberi ASI eksklusif, balita ditimbang setiap bulan, menggunakan air bersih, mencuci tangan dengan air bersih dan sabun, menggunakan toilet sehat, memberantas jentik di rumah sekali seminggu, makan sayur dan buah setiap hari, melakukan aktivitas fisik setiap hari dan tidak merokok di dalam rumah. Persentase RT ber-PHBS diperoleh dari banyaknya RT ber-PHBS dibagi dengan banyaknya RT yang diamati dikalikan 100%.

6. Persentase Desa/Kelurahan dengan UCI (X5)

Desa/Kelurahan Universal Child Immunization (UCI) adalah desa/kelurahan dimana ≥ 80% dari jumlah bayi yang ada di desa tersebut sudah mendapat imunisasi dasar lengkap pada tahun 2014. Persentase desa/kelurahan dengan UCI diperoleh dari desa/kelurahan UCI dibagi dengan banyaknya desa/kelurahan dalam satu kabupaten/kota tertentu.

7. Kepadatan Penduduk per-km Persegi (X₆)

Kepadatan penduduk adalah jumlah penduduk di satu kabupaten/kota tertentu setiap 1 kilometer persegi tahun 2014. Kepadatan penduduk diperoleh dari hasil bagi jumlah penduduk di suatu wilayah tertentu dengan luas wilayah tersebut dalam kilometer persegi dalam kurun waktu yang sama.

C. Langkah Analisis

Langkah analisis yang dilakukan dalam penelitian ini adalah sebagai berikut.

- 1. Mengumpulkan data.
- 2. Mengidentifikasi dan menangani multikolinearitas.
- 3. Mengidentifikasi ekuidispersi.
- 4. Melakukan pemodelan Generalized Poisson Regression (GPR).
- 5. Menaksir parameter model GPR.
- 6. Menguji signifikansi parameter secara serentak.
- 7. Menguji signifikansi parameter secara parsial.
- 8. Memilih model GPR terbaik dan interpretasi.
- 9. Menarik kesimpulan.

D. Analisis dan Pembahasan

1. Identifikasi Multikolinearitas

Salah satu asumsi yang harus dipenuhi dalam pemodelan regresi adalah tidak terjadi multikolinearitas. Pendeteksian multikolinearitas dapat dilakukan dengan berbagai cara, salah satunya adalah dengan memperhatikan nilai VIF (*Variance Inflation Factor*).

Tabel 2 Nilai VIF

Variabel	VIF
Persentase berat badan bayi lahir rendah [X ₁]	1,372
Persentasi cakupan imunisasi BCG pada bayi [X ₂]	2,063
Persentasi cakupan imunisasi DPT-HB3/DPT-HB-Hib3 [X ₃]	2,499
Persentase rumah tangga ber-PHBS [X ₄]	1,161
Persentase desa/kelurahan dengan UCI [X ₅]	1,201
Kepadatan penduduk per-km persegi [X ₆]	1,279

Nilai VIF dari seluruh variabel memiliki nilai yang kurang dari 10 sehingga kesimpulan yang dapat diambil adalah tidak terdapat kasus multikolinearitas antar variabel prediktor.

2. Identifikasi Ekuidispersi

Variabel respon memiliki nilai varians sebesar 8183165,867 dan nilai rata-rata sebesar 2920,3947. Hal ini menunjukkan bahwa nilai varians lebih besar dari nilai rata-rata sehingga dapat dinyatakan bahwa data mengalami over dispersi dan selanjutnya dilakukan pengujian ekuidispersi.

Hipotesis

$$H_0: Var(Y) = \mu$$

$$H_1: Var(Y) = \mu + a.g(.)$$

Taraf Signifikansi

$$\alpha = 10\% = 0.10$$

Statistik Uji

$$T = \frac{1}{2} \sum_{i=1}^{n} \left\{ \left(y_i - \mu_i \right)^2 - Y_i \right\}$$

dimana distribusi yang asimtotik terhadap nilai *T* adalah distribusi normal standar di bawah hipotesis nol.

Daerah Kritis: Tolak H₀ jika
$$|Z| > Z_{\left(\frac{\alpha}{2}\right)}$$

Keputusan dan Kesimpulan

Tabel 3 Keputusan Ekuidispersi

Z	Z a		P-value
3,1037	2727,336	1,645	0,0009557

Keputusan yang dapat diambil adalah tolak $H_0|Z|>Z_{\left(\frac{\alpha}{2}\right)}$ karena 🕮 yaitu 3,1037 > 1,645

dan nilai a yang lebih dari nol sehingga kesimpulannya adalah data mengalami over dispersi. Kasus seperti ini tidak dapat menggunakan regresi Poisson sehingga diatasi dengan menggunakan *Generalized Poisson Regression* (GPR).

3. Pemodelan Generalized Poisson Regression

Generalized Poisson Regression dilakukan untuk mengatasi adanya over dispersi. Pemodelan dilakukan dengan meregresikan kombinasi dari keenam variabel yang digunakan untuk kombinasi 1 variabel, 2 variabel sampai 6 variabel. Generalized Poisson Regression dapat mengatasi over dispersi karena fungsi distribusi peluangnya memuat parameter dispersi didalamnya. Berikut adalah ringkasan dari 63 kemungkinan pemodelan yang dilakukan dalam 6 model terbaik yang telah dipilih berdasarkan AIC terkecil dan signifikansi parameter yang paling banyak.

Tabel 4 Pemodelan GPR

Variabel	Parameter	Devians	Parameter	AIC	
variabei	Signifikan	Devians	Dispersi		
X_1	eta_0	682,5	0,02687	688,5	
$X_1 X_6$	eta_0	681,7	0,02658	689,7	
$X_1 X_5 X_6$	eta_0	681	0,02652	691	
X ₁ X ₄ X ₅ X ₆	eta_0	681	0,02571	693	
$X_1 X_2 X_3 X_5 X_6$	$\beta_1,\beta_2,\beta_3,\beta_6$	677,2	0,02493	691,2	
$X_1 X_2 X_3 X_4 X_5 X_6$	$\beta_1, \beta_2, \beta_3, \beta_5, \beta_6$	675,1	0,02427	691,1	

Nilai AIC yang paling kecil adalah 688,5 dan 689,7, namun hanya intersep yang signifikan pada kedua model tersebut. Model terakhir yang melibatkan seluruh variabel prediktor memiliki nilai AIC yang tidak jauh berbeda yaitu 691,1. Selain itu, model tersebut juga memiliki signifikansi parameter paling banyak dibandingkan dengan model lainnya sehingga model ini dipilih sebagai model terbaik dari metode *Generalized Poisson Regression*.

4. Uji Signifikansi Parameter Secara Serentak

Uji signifikansi parameter secara serentak bertujuan untuk mengetahui secara bersamasama apakah variabel prediktor berpengaruh terhadap model.

Hipotesis

$$\mathbf{H}_0: \beta_1 = \beta_2 = \beta_3 = \beta_4 = \beta_5 = \beta_6 = 0$$

 H_1 : Minimal terdapat satu $\beta_j \neq 0$; j = 1, 2, 3, 4, 5, 6

Taraf Signifikansi

$$\alpha = 10\% = 0.10$$

Statistik Uji

$$G^2 = D(\hat{\beta}) = -2 \left[\ln L(\Omega) - \ln L(\omega) \right]$$

Tabel 5 Uji Serentak

$$D(\hat{\beta})$$
 df 675,1 6

Daerah Kritis: Tolak H₀ jika $D(\hat{\beta}) > X_{(df;\alpha)}^2$

Keputusan dan Kesimpulan

Tabel 6 Keputusan Uji Serentak

$$D(\hat{\beta})$$
 df $X^{2}_{(df;\alpha)}$ 675,1 6 10,645

Keputusan yang dapat diambil adalah tolak H_0 karena $D(\hat{\beta}) > X_{(df;\alpha)}^2$ yaitu 675,1 > 10,645 sehingga kesimpulannya adalah variabel prediktor berpengaruh signifikan terhadap variabel respon secara bersama-sama (serentak).

5. Uji Signifikansi Parameter Secara Parsial

Uji signifikansi parameter secara parsial bertujuan untuk mengetahui variabel prediktor yang berpengaruh terhadap model.

Hipotesis

$$\mathbf{H}_0: \boldsymbol{\beta}_i = \mathbf{0}$$

$$H_1: \beta_j \neq 0 ; j = 1, 2, 3, 4, 5, 6$$

Taraf Signifikansi

$$\alpha = 10\% = 0.10$$

Statistik Uji

$$Z = \frac{\beta_j}{se(\beta_j)}$$

Tabel 7 Uji Parsial

Parameter	Z	df	P-Value
$ \beta_0$	0,19	38	0,8536
β_1	-2,42	38	0,0206
eta_2	2,57	38	0,0143
β_3	-2,33	38	0,0255
β_4	-1,48	38	0,1480
β_5	2,18	38	0,0353
β_6	1,75	38	0,0884

Daerah Kritis: Tolak H₀ jika $Z_{hit} > Z_{\left(\frac{\alpha}{2}\right)}$

Keputusan dan Kesimpulan

			•		
Parameter	Z	df	$Z_{\left(rac{lpha}{2} ight)}$	P-Value	Keputusan
$ \beta_0$	0,19	38	1,645	0,8536	Gagal Tolak H ₀
β_1	-2,42	38	1,645	0,0206	Tolak H ₀
eta_2	2,57	38	1,645	0,0143	Tolak H ₀
β_3	-2,33	38	1,645	0,0255	Tolak H ₀
eta_4	-1,48	38	1,645	0,1480	Gagal Tolak H ₀
β_5	2,18	38	1,645	0,0353	Tolak H ₀

Tabel 8 Keputusan Uji Parsial

Kesimpulan yang dapat diambil adalah variabel prediktor yang berpengaruh signifikan terhadap variabel respon adalah variabel persentase berat badan bayi lahir rendah (X_1) , persentase cakupan imunisasi BCG pada bayi (X_2) , persentase cakupan imunisasi DPT (X_3) , persentase desa/kelurahan dengan UCI (X_5) , dan kepadatan penduduk (X_6) .

1.645 0.0884

Tolak Ho

6. Pemilihan Model Terbaik

 β_6

1.75

Berdasarkan hasil pengujian asumsi multikolinearitas dan signifikansi parameter, variabel yang digunakan pada analisis *Generalized Poisson Regression* adalah variabel respom (jumlah kasus Pneumonia pada Balita) dengan variabel prediktor yaitu persentase berat badan bayi lahir rendah (X_1) , persentase cakupan imunisasi BCG pada bayi (X_2) , persentase cakupan imunisasi DPT (X_3) , persentase desa/kelurahan dengan UCI (X_5) , dan kepadatan penduduk (X_6) . Model terbaik yang didapatkan adalah sebagai berikut.

$$\mu = \exp(0,6817 - 0,3308X_1 + 0,1770X_2 - 0,1311X_3 - 0,02854X_4 + 0,07111X_5 - 0,00026X_6)$$

Interpretasi dari model yang terbentuk adalah sebagai berikut.

- 1. Setiap kenaikan persentase berat badan bayi lahir rendah sebesar 1% akan menurunkan banyaknya balita terkena pneumonia menjadi 0,718 kali dari semula.
- 2. Setiap kenaikan persentase cakupan imunisasi BCG sebesar 1% akan meningkatkan banyaknya balita terkena pneumonia menjadi 1,193 kali dari semula.
- 3. Setiap kenaikan persentase cakupan imunisasi DPT sebesar 1% akan menurunkan banyaknya balita terkena pneumonia menjadi 0,877 kali dari semula.
- 4. Setiap kenaikan persentase rumah tangga ber-PHBS sebesar 1% akan menurunkan banyaknya balita terkena pneumonia menjadi 0,972 kali dari semula.

- 5. Setiap kenaikan persentase desa/kelurahan dengan UCI sebanyak 1% akan meningkatkan banyaknya balita terkena pneumonia menjadi 1,074 kali dari semula.
- 6. Setiap kenaikan kepadatan penduduk sebaanyak 1 jiwa per km persegi akan menurunkan banyaknya balita terkena pneumonia menjadi 0,9997 kali dari semula.

E. Kesimpulan

Kesimpulan yang didapatkan dari hasil penelitian banyaknya pneumonia balita di Jawa Timur adalah data mengalami *over disperse* sehingga tidak dapat menggunakan model regresi poisson. Variabel persentase berat badan bayi lahir rendah (X_1) , persentase cakupan imunisasi BCG pada bayi (X_2) , persentase cakupan imunisasi DPT (X_3) , persentase desa/kelurahan dengan UCI (X_5) , dan kepadatan penduduk (X_6) merupakan faktor yang memengaruhi secara signifikan jumlah kasus pneumonia pada balita. Model terbaik dipilih dari yang terbentuk menggunakan metode GPR (*Generalized Poisson Regression*) yaitu:

$$\mu = \exp(0.6817 - 0.3308X_1 + 0.1770X_2 - 0.1311X_3 - 0.02854X_4 + 0.07111X_5 - 0.00026X_6)$$

Lampiran

Lampiran 1 Identifikasi Multikolinieritas

Coefficients^a

		Unstandardize	d Coefficients	Standardized Coefficients			C	Correlations		Collinearity	Statistics
Model		В	Std. Error	Beta	t	Sig.	Zero-order	Partial	Part	Tolerance	VIF
1	(Constant)	-12591.999	10019.575		-1.257	.218					
	Persentase berat badan bayi lahir	-416.967	323.441	236	-1.289	.207	243	226	201	.729	1.372
	Persentase cakupan imunisasi BCG	168.814	121.033	.313	1.395	.173	.244	.243	.218	.485	2.063
	Persentase cakupan imunisasi DPT-HB3/DPT- HB-Hib3	-66.751	93.128	177	717	.479	.166	128	112	.400	2.499
	Persentase rumah tangga ber-PHBS	49.689	33.255	.251	1.494	.145	.235	.259	.233	.861	1.161
	Persentase desa/kelurahan dengan UCI	64.137	55.660	.197	1.152	.258	.187	.203	.180	.833	1.201
	Kepadatan penduduk per-km persegi	397	.222	316	-1.789	.083	140	306	279	.782	1.279

a. Dependent Variable: Banyaknya kasus Pneumonia pada Balita

Lampiran 2 Identifikasi Equidispersi

1. Syntax R

```
# Test Overdispersi
over <- glm(Y~1, data = data, family = "poisson")
dispersiontest(over, trafo = 1)</pre>
```

2. Output R

Overdispersion test

```
data: over
z = 3.1037, p-value = 0.0009557
alternative hypothesis: true alpha is greater than 0
sample estimates:
    alpha
2727.336
```

Lampiran 3 Hasil Rangkuman Pemodelan GPR

Variabel	Parameter Signifikansi	Devians	AIC	df
$\overline{X_1}$	β_0	682,5	688,5	38
X_2	-	682,6	688,6	38
X_3	-	683,1	689,1	38
X_4	eta_0	682,9	688,9	38
X_5	eta_0	683,2	689,2	38

X_6	eta_0	683,3	689,3	38
$X_1 X_2$	-	681,1	689,1	38
$X_1 X_3$	eta_0	682,1	690,1	38
$X_1 X_4$	eta_0	682,3	690,3	38
$X_1 X_5$	eta_0	681,9	689,9	38
$X_1 X_6$	eta_0	681,7	689,7	38
X_2X_3	-	682,6	690,6	38
$X_2 X_4$	-	682,4	690,4	38
$X_2 X_5$	-	682,3	690,3	38
X_2X_6	-	682,2	690,2	38
$X_3 X_4$	-	682,6	690,6	38
$X_3 X_5$	-	682,9	690,9	38
$X_3 X_6$	eta_0	682,9	690,9	38
$X_4 X_5$	eta_0	682,8	690,8	38
$X_4 X_6$	eta_0	682,3	690,3	38
$X_5 X_6$	-	697,8	705,8	38
$X_1 X_2 X_3$	-	680,6	690,8	38
$X_1 X_2 X_4$	-	681,1	691,1	38
$X_1 X_2 X_5$	-	680,6	690,6	38
$X_1 X_2 X_6$	-	680,4	690,4	38
$X_2 X_3 X_4$	-	682,3	692,3	38
$X_2 X_3 X_5$	-	682,1	692,1	38
$X_2 X_3 X_6$	-	681,9	691,9	38
$X_3 X_4 X_5$	-	682,6	692,6	38
$X_3 X_4 X_6$	-	682,1	692,1	38
$X_4 X_5 X_6$	-	687,3	697,3	38
$X_1 \ X_3 \ X_4$	-	681,8	691,8	38
$X_1 X_3 X_5$	-	681,7	691,7	38
$X_1 X_3 X_6$	eta_0	681,6	691,6	38
$X_2 X_4 X_5$	-	682,3	692,3	38
$X_2 X_4 X_6$	-	681,8	691,8	38
$X_3 X_5 X_6$	-	682,6	692,6	38
$X_1 \ X_4 \ X_5$	eta_0	681,9	691,9	38
$X_1 X_4 X_6$	eta_0	681,3	691,3	38
$X_1 X_5 X_6$	eta_0	681	691	38
$X_2 X_5 X_6$	-	681,8	691,8	38

X ₁ X ₂ X ₃ X ₄	_	680,6	692,6	38
	-			
$X_1 X_2 X_3 X_5$	-	679,7	691,7	38
$X_1 X_2 X_3 X_6$	-	697,8	709,8	38
$X_2 X_3 X_4 X_5$	-	681,9	693,9	38
$X_2 X_3 X_4 X_6$	-	681,5	693,5	38
$X_3 X_4 X_5 X_6$	-	682,1	694,1	38
$X_1 X_2 X_4 X_5$	-	680,5	692,5	38
$X_1 X_2 X_4 X_6$	-	680,1	692,1	38
$X_2 X_3 X_5 X_6$	-	681,1	693,1	38
$X_1 X_2 X_5 X_6$	-	679,3	691,3	38
$X_2 X_4 X_5 X_6$	-	-	-	-
$X_1 X_3 X_4 X_5$	-	681,7	693,7	38
$X_1 \ X_3 \ X_4 \ X_6$	-	681,1	693,1	38
$X_1 X_3 X_5 X_6$	-	680,9	692,9	38
$X_1 \ X_4 \ X_5 \ X_6$	eta_0	681	693	38
$X_1 \; X_2 \; X_3 \; X_4 \; X_5$	-	678,3	692,3	38
$X_1 \ X_2 \ X_3 \ X_4 \ X_6$	-	-	-	-
$X_1 \ X_2 \ X_3 \ X_5 \ X_6$	$\beta_1,\beta_2,\beta_3,\beta_6$	677,2	691,2	38
$X_1 X_2 X_4 X_5 X_6$	-	679,3	693,3	38
$X_1 X_3 X_4 X_5 X_6$	-	681,7	693,7	38
$X_2 X_3 X_4 X_5 X_6$	-	-	-	-
$X_1 \ X_2 \ X_3 \ X_4 \ X_5 \ X_6$	$\beta_1,\beta_2,\beta_3,\beta_5,\beta_6$	675,1	6921,1	38

$Lampiran \ 4 \ Pemodelan \ GPR \ Variabel \ X_1$

Parameter Estimates										
Parameter	Estimate	Standard Error	DF	t Value	Pr > t	95% Confidence Limits		Gradient		
a0	8.5653	0.6414	38	13.35	<.0001	7.2668	9.8638	6.588E-6		
a1	-0.1683	0.1465	38	-1.15	0.2579	-0.4649	0.1283	-1.68E-6		
teta	0.02687	0.003217	38	8.35	<.0001	0.02036	0.03338	-1.79E-6		

Lampiran 5 Pemodelan GPR Variabel X1 dan X6

Parameter Estimates										
Parameter	Estimate	Standard Error	DF	t Value	Pr > t	95% Confid	Gradient			
a0	8.7166	0.5825	38	14.96	<.0001	7.5373	9.8959	-0.00002		
a1	-0.1734	0.1196	38	-1.45	0.1554	-0.4155	0.06878	-0.00008		
a6	-0.00008	0.000080	38	-0.99	0.3300	-0.00024	0.000083	-0.14253		
teta	0.02658	0.003185	38	8.34	<.0001	0.02013	0.03303	-0.00046		

Lampiran 6 Pemodelan GPR Variabel X1, X5, dan X6

Parameter Estimates										
Parameter	Estimate	Standard Error	DF	t Value	Pr > t	95% Confid	Gradient			
a0	7.2339	3.6370	38	1.99	0.0539	-0.1287	14.5965	-9.01E-7		
a1	-0.1573	0.1234	38	-1.28	0.2100	-0.4071	0.09243	-3.66E-6		
a3	0.01409	0.03461	38	0.41	0.6861	-0.05597	0.08415	-0.00008		
a6	-0.00007	0.000084	38	-0.78	0.4374	-0.00024	0.000105	0.014889		
teta	0.02652	0.003179	38	8.34	<.0001	0.02009	0.03296	-0.00002		

Lampiran 7 Pemodelan GPR Variabel X1, X4, X5, dan X6

	Parameter Estimates										
Parameter	Estimate	Standard Error	DF	t Value	Pr > t	95% Confid	Gradient				
a0	0.8630	5.1150	38	0.17	0.8669	-9.4918	11.2178	-0.00003			
a1	-0.2066	0.1273	38	-1.62	0.1128	-0.4642	0.05107	-0.00013			
a2	0.05536	0.04567	38	1.21	0.2330	-0.03710	0.1478	-0.00285			
a5	0.02993	0.03016	38	0.99	0.3273	-0.03113	0.09100	-0.00266			
a6	-0.00011	0.000090	38	-1.21	0.2326	-0.00029	0.000073	-0.17404			
teta	0.02571	0.003088	38	8.33	<.0001	0.01946	0.03196	-0.00073			

Lampiran 8 Pemodelan GPR Variabel X1, X2, X3, X5, dan X6

Parameter Estimates										
Parameter	Estimate	Standard Error	DF	t Value	Pr > t	95% Confidence Limits		Gradient		
a0	4.2115	3.8620	38	1.09	0.2824	-3.6068	12.0297	-0.00002		
a1	-0.2980	0.1472	38	-2.02	0.0500	-0.5960	-8.2E-6	-0.00009		
a2	0.1277	0.05498	38	2.32	0.0256	0.01643	0.2390	-0.00202		
a3	-0.1031	0.06008	38	-1.72	0.0944	-0.2247	0.01856	-0.00203		
a5	0.03341	0.02553	38	1.31	0.1986	-0.01829	0.08510	-0.00184		
a6	-0.00020	0.000114	38	-1.73	0.0910	-0.00043	0.000033	0.005430		
teta	0.02493	0.003000	38	8.31	<.0001	0.01886	0.03100	-0.00056		

Lampiran 9 Pemodelan GPR Variabel X1, X2, X3, X4, X5, dan X6

	Parameter Estimates										
Parameter	Estimate	Standard Error	DF	t Value	Pr > t	95% Confidence Limits		Gradient			
a0	0.6817	3.6690	38	0.19	0.8536	-6.7459	8.1093	9.064E-7			
a1	-0.3308	0.1369	38	-2.42	0.0206	-0.6079	-0.05365	4.818E-6			
a2	0.1770	0.06893	38	2.57	0.0143	0.03744	0.3165	0.000098			
a3	-0.1311	0.05635	38	-2.33	0.0255	-0.2452	-0.01700	0.000091			
a4	-0.02854	0.01933	38	-1.48	0.1480	-0.06766	0.01059	0.000055			
a5	0.07111	0.03258	38	2.18	0.0353	0.005154	0.1371	0.000094			
a6	-0.00026	0.000150	38	-1.75	0.0884	-0.00057	0.000041	0.032544			
teta	0.02427	0.002915	38	8.33	<.0001	0.01837	0.03018	0.000029			

Lampiran 10 Uji Signifikansi Parameter Model Secara Serentak

Fit Statistics							
-2 Log Likelihood	675.1						
AIC (smaller is better)	691.1						
AICC (smaller is better)	696.0						
BIC (smaller is better)	704.2						

Lampiran 11 Uji Signifikansi Parameter Model Secara Parsial dan Estimasi Parameter

	Parameter Estimates										
Parameter	Estimate	Standard Error	DF	t Value	Pr > t	95% Confidence Limits		Gradient			
a0	0.6817	3.6690	38	0.19	0.8536	-6.7459	8.1093	9.064E-7			
a1	-0.3308	0.1369	38	-2.42	0.0206	-0.6079	-0.05365	4.818E-6			
a2	0.1770	0.06893	38	2.57	0.0143	0.03744	0.3165	0.000098			
a3	-0.1311	0.05635	38	-2.33	0.0255	-0.2452	-0.01700	0.000091			
a4	-0.02854	0.01933	38	-1.48	0.1480	-0.06766	0.01059	0.000055			
a5	0.07111	0.03258	38	2.18	0.0353	0.005154	0.1371	0.000094			
a6	-0.00026	0.000150	38	-1.75	0.0884	-0.00057	0.000041	0.032544			
teta	0.02427	0.002915	38	8.33	<.0001	0.01837	0.03018	0.000029			