- ES-S1 - 2018-2019

- Correction - Algèbre -

EXERCICE

Dans $\mathbb{R}[X]$, on définit

$$\forall P, Q \in \mathbb{R}[X], \quad (P|Q) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P(e^{it}) Q(e^{-it}) dt$$

1. Montrer que pour tout $P, Q \in \mathbb{R}[X], (P|Q) \in \mathbb{R}$.

Pour $P, Q \in \mathbb{R}[X]$,

$$\overline{\left(P|Q\right)} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \overline{P\left(e^{it}\right) Q\left(e^{-it}\right)} dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} P\left(e^{-it}\right) Q\left(e^{it}\right) dt$$

puisque P et Q sont à coefficients réels. Puis par le changement de variable u=-t, on obtient

$$\overline{(P|Q)} = (P|Q)$$

et par suite $(P|Q) \in \mathbb{R}$.

2. Montrer que $(\cdot|\cdot)$ est un produit scalaire sur $\mathbb{R}[X]$.

La symétrie et la bilinéarité sont évidentes.

Caractères positif et défini :

Si $P \in \mathbb{R}[X]$,

$$(P|P) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P\left(e^{it}\right) P\left(e^{-it}\right) dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} P\left(e^{it}\right) \overline{P\left(e^{it}\right)} dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left|P\left(e^{it}\right)\right|^{2} dt \ge 0$$

et

$$(P|P) = \frac{1}{2\pi} \int_{-\pi}^{\pi} |P(e^{it})|^2 dt = 0 \iff t \mapsto |P(e^{it})|^2 \text{ est nulle sur } [-\pi, \pi]$$

(puisque positive, continue et d'intégrale nulle sur $[-\pi, \pi]$).

En particulier, P admet une infinité de racines, et par suite P = 0.

3. Montrer que $(X^n)_{n\in\mathbb{N}}$ est une base orthonormée de $\mathbb{R}[X]$ pour ce produit scalaire. Soit $m,n\in\mathbb{N}$ tels que $m\neq n$. Alors :

$$(X^m|X^n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{it(m-n)} dt = \frac{1}{2\pi} \left[\frac{e^{it(m-n)}}{m-n} \right]_{-\pi}^{\pi} = 0$$

et

$$||X^m||^2 = (X^m|X^m) = \frac{1}{2\pi} \int_{-\pi}^{\pi} dt = 1$$

Ainsi la base $(X^n)_{n\in\mathbb{N}}$ est orthonormée.

PROBLEME

Notations

Dans tout le problème, n désigne un entier naturel supérieur ou égal à 2.

On note $\mathcal{M}_n(\mathbb{R})$ (respectivement $\mathcal{M}_n(\mathbb{C})$) l'ensemble des matrices carrées d'ordre n à coefficients réels (respectivement complexes), I_n la matrice unité et O_n la matrice nulle de $\mathcal{M}_n(\mathbb{R})$ (respectivement de $\mathcal{M}_n(\mathbb{C})$).

Si $A = (a_{i,j})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{R})$ (ou $\mathcal{M}_n(\mathbb{C})$), on note $\det(A)$ le déterminant de A et $\operatorname{tr}(A)$ la trace de A, égale à

la somme de ses éléments diagonaux : $tr(A) = \sum_{i=1}^{n} a_{i,i}$.

Si $A \in \mathcal{M}_n(\mathbb{R})$ (ou $\mathcal{M}_n(\mathbb{C})$), le polynôme caractéristique de A est $\chi_A = \det(XI_n - A)$.

Spé PT Page 1 sur 5

Partie 1 : réduction des matrices carrées réelles d'ordre 2

Soit A une matrice carrée réelle de taille 2, c'est à dire $A \in \mathcal{M}_2(\mathbb{R})$.

1. Généralités

a. Montrer que $\chi_A = X^2 - \operatorname{tr}(A)X + \operatorname{det}(A)$.

En posant $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, un calcul rapide donne

$$\chi_A = \det(XI_2 - A) = \begin{vmatrix} X - a & -b \\ -c & X - d \end{vmatrix} = X^2 - (a+b)X + (ad - bc) = X^2 - \operatorname{tr}(A)X + \det(A)$$

b. Montrer que A est diagonalisable dans $\mathscr{M}_2(\mathbb{C})$ si et seulement si

$$\operatorname{tr}(A)^2 - 4\operatorname{det}(A) \neq 0$$
 ou $\exists \lambda_0 \in \mathbb{C}, \ A = \lambda_0 I_2$

Le discriminant du polynôme caractéristique est $\Delta = \operatorname{tr}(A)^2 - 4\operatorname{det}(A)$.

A diagonalisable dans $\mathcal{M}_2(\mathbb{C})$ si, et seulement si, χ_A scindé dans \mathbb{C} et les sous-espaces propres ont pour dimension la multiplicité de la valeur propre.

Or χ_A scindé dans \mathbb{C} on a donc deux possibilités :

- \rightsquigarrow soit χ_A admet deux racines distinctes (ce qui correspond à $\Delta \neq 0$), et par conséquent A est diagonalisable dans $\mathscr{M}_2(\mathbb{C})$;
- \rightsquigarrow soit χ_A admet une racine double $\lambda_0 \in \mathbb{C}$ (ce qui correspond à $\Delta = 0$), et dans ce cas, A est diagonalisable dans $\mathscr{M}_2(\mathbb{C})$ si, et seulement si, A est semblable à $\lambda_0 I_2$, et lui est donc égale.
- **c.** Montrer que A est diagonalisable dans $\mathscr{M}_2(\mathbb{R})$ si et seulement si

$$\operatorname{tr}(A)^2 - 4\operatorname{det}(A) > 0$$
 ou $\exists \lambda_0 \in \mathbb{R}, \ A = \lambda_0 I_2$

De manière analogue, le discriminant du polynôme caractéristique est $\Delta = \operatorname{tr}(A)^2 - 4\det(A)$.

A diagonalisable dans $\mathcal{M}_2(\mathbb{R})$ si, et seulement si, χ_A scindé dans \mathbb{R} et les sous-espaces propres ont pour dimension la multiplicité de la valeur propre.

Or χ_A scindé dans \mathbb{R} si, et seulement si, $\Delta \geq 0$, et dans ce cas, on a deux possibilités :

- \rightsquigarrow soit χ_A admet deux racines distinctes (ce qui correspond à $\Delta > 0$), et par conséquent A est diagonalisable dans $\mathscr{M}_2(\mathbb{R})$;
- \rightsquigarrow soit χ_A admet une racine double $\lambda_0 \in \mathbb{R}$ (ce qui correspond à $\Delta = 0$), et dans ce cas, A est diagonalisable dans $\mathscr{M}_2(\mathbb{R})$ si, et seulement si, A est semblable à $\lambda_0 I_2$, et lui est donc égale.

2. Applications

Soit $(u_k)_{k\in\mathbb{N}}$ et $(v_k)_{k\in\mathbb{N}}$ deux suites réelles définies par

$$\begin{cases} u_0 = 1 \\ v_0 = 2 \end{cases} \quad \text{et} \quad \forall k \in \mathbb{N}, \begin{cases} u_{k+1} = 4u_k - 2v_k \\ v_{k+1} = u_k + v_k \end{cases} (\star)$$

On pose, pour $k \in \mathbb{N}$, $X_k = \begin{pmatrix} u_k \\ v_k \end{pmatrix}$.

a. Trouver une matrice A dans $M_2(\mathbb{R})$ telle que, pour tout entier naturel $k, X_{k+1} = AX_k$. Pour tout entier naturel $k, X_{k+1} = AX_k$ où

$$A = \begin{pmatrix} 4 & -2 \\ 1 & 1 \end{pmatrix}$$

b. Soit k dans \mathbb{N} . Exprimer X_k en fonction de A, X_0 et k. Par récurrence immédiate, pour tout entier naturel k,

$$X_k = A^k X_0$$

 $\operatorname{Sp\'{e}}\operatorname{PT}$ Page 2 sur 5

c. Prouver que A est diagonalisable puis déterminer une matrice P de $\mathcal{M}_2(\mathbb{R})$, inversible telle que

$$P^{-1}AP = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} = D$$

 $\chi_A = (X-2)(X-3)$. Donc A, d'ordre 2, admet deux valeurs propres distinctes, et par suite A est diagonalisable dans $\mathcal{M}_2(\mathbb{R})$. On trouve alors, par exemple,

$$P = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$$

et on a:

$$P^{-1}AP = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} = D$$

d. Soit k dans \mathbb{N} . Exprimer les coefficients de A^k en fonction de k. De manière classique, pour tout entier naturel k, $A^k = PD^kP^{-1}$. Par le pivot de Gauss, par exemple, on trouve $P^{-1} = \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix}$, puis, comme $D^k = \begin{pmatrix} 2^k & 0 \\ 0 & 3^k \end{pmatrix}$, on trouve

$$A^{k} = \begin{pmatrix} 2.3^{k} - 2^{k} & -2.3^{k} + 2^{k+1} \\ 3^{k} - 2^{k} & -3^{k} + 2^{k+1} \end{pmatrix}$$

e. En déduire l'expression de u_k et v_k en fonction de k. De $X_k = A^k X_0$, on tire, pour tout entier naturel k,

$$u_k = 3.2^k - 2.3^k$$
 et $v_k = 3.2^k - 3^k$

f. Proposer un programme Python qui permette de calculer et d'afficher directement les 10 premiers termes des suites $(u_k)_{k\in\mathbb{N}}$ et $(v_k)_{k\in\mathbb{N}}$ à partir des relations (\star) définissant ces suites.

```
U = [1]
V = [2]
print("u[",0,"] = ",U[0])
print("v[",0,"] = ",V[0])
n = 10
for k in range(1,n):
    U.append( 4 * U[k-1] - 2 * V[k-1] )
    V.append( U[k-1] + V[k-1] )
    print("u[",k,"] = ",U[k])
    print("v[",k,"] = ",V[k])
```

Partie 2 : réduction des matrices carrées d'ordre 3

On définit la matrice J par

$$J = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

1. Calculer J^2 et J^3 . Soit $k \in \mathbb{N}$. Préciser J^k en fonction de k. On trouve

$$J^2 = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \quad \text{et} \quad J^3 = I_3$$

Puis, pour $k \in \mathbb{N}$, on a k = 3q + r où $q \in \mathbb{N}$, et $r \in \{0, 1, 2\}$ est le reste de la division euclidienne de k par 3, et ainsi $J^k = J^{3q+r} = (J^3)^q J^r = J^r$

 $\operatorname{Sp\'{e}}\operatorname{PT}$ Page 3 sur 5

2. On note j le nombre complexe égal à $e^{\frac{2i\pi}{3}}$. Rappeler sans justification la valeur de $1+j+j^2$. Sachant que $j^3=1$, on a;

$$1 + j + j^2 = \frac{1 - j^3}{1 - j} = 0$$

3. Déterminer le polynôme caractéristique de J ainsi que ses valeurs propres. Un calcul simple (et rapide) donne

$$\chi_J = X^3 - 1$$

et

$$\mathrm{Sp}_{\mathbb{C}}(J) = \{1, j, j^2\}$$

On peut aussi remarquer que $j^2 = \overline{j}$.

4. Déterminer une matrice inversible P de $\mathcal{M}_3(\mathbb{C})$ telle que :

$$J = P \begin{pmatrix} 1 & 0 & 0 \\ 0 & j & 0 \\ 0 & 0 & \overline{j} \end{pmatrix} P^{-1}$$

D'abord, J, d'ordre 3, admet trois valeurs propres distinctes dans $\mathbb C$ donc J est diagonalisable dans $\mathcal M_3(\mathbb C)$.

On trouve rapidement $E_1(J) = \text{Vect}\left(\begin{pmatrix} 1\\1\\1 \end{pmatrix}\right)$, puis $E_j(J) = \text{Vect}\left(\begin{pmatrix} 1\\j\\j^2 \end{pmatrix}\right)$ et $E_{j^2}(J) = \text{Vect}\left(\begin{pmatrix} 1\\j^2\\j \end{pmatrix}\right)$.

On obtient donc, par exemple,

$$P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & j & j^2 \\ 1 & j^2 & j \end{pmatrix}$$

et on a

$$J = P \begin{pmatrix} 1 & 0 & 0 \\ 0 & j & 0 \\ 0 & 0 & \bar{j} \end{pmatrix} P^{-1}$$

A noter que l'on ne demande pas le calcul de P^{-1} .

5. Soient trois nombres complexes a, b et c. On pose

$$A(a,b,c) = \begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix}$$

a. Exprimer A(a, b, c) en fonction de a, b, c et des matrices I_3 , J et J^2 . On a clairement

$$A(a,b,c) = aI_3 + bJ + cJ^2$$

b. En déduire que A(a, b, c) est diagonalisable dans $\mathcal{M}_3(\mathbb{C})$ dans une base indépendante du choix des valeurs des complexes a, b et c.

On a
$$J = PDP^{-1}$$
 avec $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & j & 0 \\ 0 & 0 & \bar{j} \end{pmatrix}$ donc $J^2 = PD^2P^{-1}$, et par suite,

$$A(a,b,c) = aI_3 + bJ + cJ^2 = aPI_3P^{-1} + bPDP^{-1} + cPD^2P^{-1} = P(aI_3 + bD + cD^2)P^{-1}$$

avec

$$aI_3 + bD + cD^2 = \begin{pmatrix} a+b+c & 0 & 0\\ 0 & a+bj+cj^2 & 0\\ 0 & 0 & a+bj^2+cj \end{pmatrix}$$

qui est diagonale. Par conséquent, A(a,b,c) est semblable à une matrice diagonale, et donc par définition, est diagonalisable au moyen de la matrice P qui ne dépend pas du choix des valeurs des complexes a,b et c.

 $\operatorname{Sp\'{e}}\operatorname{PT}$ Page 4 sur 5

c. Préciser les valeurs propres de la matrice A(a, b, c). De la question précédente,

$$Sp(A(a,b,c)) = \{a+b+c, a+bj+cj^2, a+bj^2+cj\}$$

d. Exprimer le déterminant de A(a,b,c) en fonction de a,b,c et du nombre complexe j sous la forme d'un produit.

Dans \mathbb{C} , le déterminant de A(a,b,c) est égal au produit des valeurs propres donc

$$\det(A(a, b, c)) = (a + b + c)(a + bj + cj^{2})(a + bj^{2} + cj)$$

- **6.** On pose $E = \{A(a, b, c), (a, b, c) \in \mathbb{C}^3\}.$
 - **a.** Montrer que E est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{C})$. On peut remarquer que

$$E = \text{Vect}\{I_3, J, J^2\}$$

donc E est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{C})$.

b. Donner la dimension de E en justifiant avec soin. $E = \text{Vect}\{I_3, J, J^2\} \text{ donc } (I_3, J, J^2) \text{ engendre } E.$

On vérifie aisément qu'il s'agit d'une famille libre de E. Par suite, c'est une base de E et donc

$$\dim(E) = 3$$

 $\operatorname{Sp\'{e}}\operatorname{PT}$ Page 5 sur 5