Feuille d'exercice n° 18 : Fractions rationnelles

Exercice 1 Donner une CNS sur $f \in \mathbb{C}(X)$ pour qu'il existe $g \in \mathbb{C}(X)$ tel que f = g'.

Exercice 2 Soit $n \in \mathbb{N}^*$. Montrer que la décomposition en éléments simples de $\frac{1}{X^n - 1}$ est

$$\frac{1}{X^n-1} = \frac{1}{n} \sum_{\omega \in \mathbb{U}_n} \frac{\omega}{X-\omega}.$$

Exercice 3 (Soit $n \in \mathbb{N}$ tel que $n \ge 2$ et $p \in \{0, 1, \dots, n-1\}$. On pose pour $k \in \{0, 1, \dots, n-1\}$, $\omega_k = e^{\frac{2ik\pi}{n}}$. Mettre sous forme irréductible $\sum_{k=0}^{n-1} \frac{\omega_k^p}{X - \omega_k}$.

Exercice 4 Soient $n \in \mathbb{N}^*$ et $P \in \mathbb{C}[X]$ un polynôme scindé à racines simples notées x_1, \ldots, x_n .

- 1) Former la décomposition en éléments simples de $\frac{P''}{P}$.
- 2) En déduire que $\sum_{k=1}^{n} \frac{P''(x_k)}{P'(x_k)} = 0.$

Exercice 5 () Décomposer en éléments simples les fractions rationnelles suivantes.

1)
$$\frac{X^3 - 3X^2 + X - 4}{X - 1}$$

4)
$$\frac{X}{(X+i)^2}$$

7)
$$\frac{X^5 + X + 1}{X^6 - 1}$$

2)
$$\frac{X}{X^2-4}$$

$$5) \ \frac{X^5 + X + 1}{X^4 - 1}$$

8)
$$\frac{X}{(X^2+1)(X^2+4)}$$

3)
$$\frac{(3-2i)X-5+3i}{X^2+iX+2}$$

6)
$$\frac{X^5 + X^4 + 1}{(X-1)^3(X+1)^2}$$

9)
$$\frac{X^7+3}{(X^2+X+2)^3}$$

Indication: pour la dernière fraction, on pourra procéder par divisions euclidiennes successives.

Exercice 6 () Calculer une primitive pour chacune des fonctions rationnelles suivantes.

$$1) \int^x \frac{\mathrm{d}t}{1-t^2}$$

3)
$$\int^x \frac{\mathrm{d}t}{t^3 - 7t + 6}$$

5)
$$\int_{-\infty}^{\infty} \frac{t^3 + 2t + 1}{t^3 - 3t + 2} \, \mathrm{d}t$$

2)
$$\int_{-\infty}^{\infty} \frac{t}{t^4 + 16} dt$$

4)
$$\int_{-\infty}^{\infty} \frac{4t^2}{t^4 - 1} dt$$

$$6) \int^x \frac{-2t^2 + 6t + 7}{t^4 + 5t^2 + 4} \, \mathrm{d}t$$

Exercice 7 (🔄)

1) Montrer, que pour tout entier $n \in \mathbb{N}$, il existe un unique polynôme $P_n \in \mathbb{R}[X]$ de degré n tel que

$$X^n + \frac{1}{X^n} = P_n \left(X + \frac{1}{X} \right).$$

On factorisera P_n dans $\mathbb{C}[X]$.

2) Soit $n \in \mathbb{N}^*$, décomposer $\frac{1}{P_n}$ en éléments simples dans $\mathbb{C}(X)$.

Exercice 8 (\nearrow) Définition : le barycentre des points z_1, \ldots, z_m affectés des poids p_1, \ldots, p_m , si $\sum_{i=1}^m p_i \neq 0$, est le point

$$\frac{1}{\sum_{i=1}^{m} p_i} \sum_{i=1}^{m} p_i z_i.$$

Soit $P \in \mathbb{C}[X]$ de degré $n \in \mathbb{N}^*$.

- 1) Décomposer $\frac{P'}{P}$ en éléments simples.
- 2) En déduire que les racines de P' sont dans l'enveloppe convexe des racines de P c'est-à-dire que toute racine de P' s'écrit comme barycentre à poids positifs des racines de P.

