Example 12 Worksheet: Fast Modular Exponentiation

Problem: Use Algorithm 5 to find $3^{544} \pmod{645}$.

Step-by-Step Solution

Algorithm 5 works by:

- 1. Writing the exponent (544) in binary.
- 2. Iterating through the bits, squaring at each step, and multiplying only when the current bit is 1.
- 3. Reducing by the modulus after every multiplication.

Binary form of 544: $(1000100000)_2$. Steps (values of i, x, and power):

- i = 0: $a_0 = 0$, x = 1, $power = 3^2 \pmod{645} = 9$.
- i = 1: $a_1 = 0$, x = 1, $power = 9^2 \pmod{645} = 81$.
- i = 2: $a_2 = 0$, x = 1, $power = 81^2 \pmod{645} = 111$.
- i = 3: $a_3 = 0$, x = 1, $power = 111^2 \pmod{645} = 66$.
- i = 4: $a_4 = 0$, x = 1, $power = 66^2 \pmod{645} = 486$.
- i = 5: $a_5 = 1$, $x = (1 \cdot 486) \pmod{645} = 486$, $power = 486^2 \pmod{645} = 126$.
- i = 6: $a_6 = 0$, x = 486, $power = 126^2 \pmod{645} = 396$.
- i = 7: $a_7 = 0$, x = 486, $power = 396^2 \pmod{645} = 81$.
- i = 8: $a_8 = 0$, x = 486, $power = 81^2 \pmod{645} = 111$.
- i = 9: $a_9 = 1$, $x = (486 \cdot 111) \pmod{645} = 36$, $power = 111^2 \pmod{645} = 36$.

Final answer: $3^{544} \pmod{645} = \boxed{36}$.

Practice Problems

- 1. Easier: Compute $2^{13} \pmod{19}$ using Algorithm 5.
- 2. Medium: Compute $7^{45} \pmod{50}$ using Algorithm 5.
- 3. Harder: Compute 11^{117} (mod 221) using Algorithm 5.