UNIVERZA V LJUBLJANI

FAKULTETA ZA MATEMATIKO IN FIZIKO

Poročilo vaje

Vaja 15 - Težno nihalo

Luka Orlić

Kazalo

Se	Seznam uporabljenih simbolov	
1	Teoretični uvod	3
2	Naloga	6
3	Potrebščine	6
4	Skica	6
5	Meritve	7
6	Obdelava meritev	8
7	Analiza rezultatov	9

${\bf Seznam\ uporabljenih\ simbolov}$

Oznaka	Pomen
Δ	TEXT, enota: UNIT

1 Teoretični uvod

Nihajni čas matematičnega nihala (točkastega telesa na breztežni nitki) ki niha nedušeno in z majhno amplitudo, je:

$$T = 2\pi \sqrt{\frac{l}{g}} \tag{1}$$

Iz izmerjene dolžine nihala in nihajnega časa T lahko izračunamo težni pospešek:

$$g = l(\frac{2\pi}{T})^2 \tag{2}$$

Matematičnega nihala sicer ne moremo narediti, vendar se mu lahko približamo tako, da so odmiki nihala obravnavanega v zgornji formuli majhni. Upoštevamo jih s tem, da formuli dodamo naslednje popravke:

1. Natančnejša formula, ki velja pri matematičnemu nihalu za poljubno amlitudo α , je:

$$T = 2\pi \sqrt{\frac{l}{g}} \left[1 + (\frac{1}{2})^2 \sin^2(\frac{\alpha}{2}) + (\frac{3}{8})^2 \sin^4(\frac{\alpha}{2}) \dots \right]$$
 (3)

2. Naše nihalo ni matematično, ker imamo namesto masne točke kroglo in ker ta visi na žici, ki ni brez mase. Pri majhnih amplitudah ima togo težno nihalo lastni nihajni čas:

$$T = 2\pi \sqrt{\frac{J}{mgl'}},\tag{4}$$

kjer je J vztrajnostni moment nihala okrog osi, m je masa, l' pa razdalja od težišča do osi. Vztrajnostni moment izračunamo po Steinerjevem izreku:

$$J = m_k l_o^2 + 2\frac{m_k r^2}{5} + m_z \frac{(l_o - r)^2}{3},\tag{5}$$

pri čemer je m_k masa krogle in m_z masa žice, l_o pa razdalja od osi nihala do središča krogle, ter r je radij krogle. Za moment mase pa dobimo:

$$ml' = m_k l_o + m_z \frac{l_o - r}{2}. (6)$$

Nihajni čas pri majhni amplitudi je torej:

$$T = 2\pi \sqrt{\frac{J}{mgl'}}$$

$$T = 2\pi \sqrt{\frac{m_k l_o^2 + 2\frac{m_k r^2}{5} + m_z \frac{(l_o - r)^2}{3}}{[m_k l_o + m_z \frac{l_o - r}{2}]g}}$$

$$T \approx 2\pi \sqrt{\frac{l_o}{g} (1 + \frac{2}{5} \frac{r}{l_o} - \frac{1}{6} \frac{m_z}{m_k})}$$
(7)

3. Zaradi vzgona v zraku dobimo z našim nihalom vrednost g, ki je premajhna za faktor (f^2) :

$$f^2 = 1 + \frac{\rho_{zr}}{\rho_{fe}} \tag{8}$$

4. Zaradi dušenja nihajni čas:

$$1 + (\Lambda/2)^2, \tag{9}$$

-krat daljši od prej izračunanega. Pri tem je Λ logaritemski dekrement, ki je enak naravnemu logaritmu razmerja med dvema zaporednima amplitudama na isti strani:

$$\Lambda = \ln(\frac{s_n}{s_{n+1}}). \tag{10}$$

Zaporednih amplitud ne moremo odčitati dovolj natančno, da bi dekrement lahko izračunali. Odčitajte začetno amplitudo s_0 ter amplitudo po 150 nihajih (s_150) in upoštevajte dušenje:

$$s_n = s_0 e^{-\beta nT} \tag{11}$$

5. Poleg krogle niha še zrak okoli nje. Za približen račun lahko vzamemo, da niha s kroglo še k-krat tolikšna prostornina zraka, pri čemer je k empirično določe koeficient (po Besselu je za kroglo k = 0, 6). Računati moramo torej z vstrajnostnim momentom povečanim za faktor (f^2) :

$$f^2 = 1 + \frac{k\rho_{zr}}{\rho_{fe}} \tag{12}$$

tako, da je nihajni čas podaljšan za:

$$f = \sqrt{1 + \frac{k\rho_{zr}}{\rho_{fe}}} \tag{13}$$

6. Popravek zaradi mehaničnih napak nihala je najtežje oceniti; upoštevati bi bilo treba sonihanje obesišča, nenatančnost ležaja (ostrine), elastičnost žice, i.dr. Pri dobrem nihalu pa so ti popravki manjši kot prejšni.

Če upoštevamo vse popravke od 1 do 5 in jih poenostavimo tako, kot je bilo opisano v uvodnem poglavju o računanju z majhnimi količinami, dobimo končni izraz za g:

$$g = l_o \left(\frac{2\pi}{T}\right)^2 \left[1 + \frac{1}{2}\sin^2(\frac{\alpha}{2}) + \frac{2}{5}\left(\frac{r}{l_o}\right)^2 - \frac{1}{6}\frac{m_z}{m_k} + (1+k)\frac{\rho_{zt}}{\rho_{fe}} + \left(\frac{\Lambda}{2\pi}\right)^2\right]$$
(14)

2 Naloga

i.) Določigna 0,1% natančno.

3 Potrebščine

- Nihalo, obešeno na strop
- Merilo z zrcalcem, pritrjenim na zid
- \bullet Kreda
- Štoparica*
- Kljunasto merilo*
- Vžigalice*
- Vrv*

4 Skica

Slika 1: Težno nihalo

5 Meritve

Meritve nihajev - 1				
N	čas $[s]$	g $[m/s^2]$		
5	14.9	n/a		
10	29.8	9.87		
15	44.7	9.84		
20	59.8	9.83		
25	74.6	9.82		
30	89.5	9.82		
35	104.2	9.81		
40	119.3	9.81		
45	134.2	9.81		
50	149.1	9.81		
55	164.2	9.81		
60	179.0	9.81		
65	193.9	9.81		
70	208.8	9.81		
75	223.7	9.80		
80	238.6	9.80		
85	253.9	9.80		
90	268.5	9.80		
95	283.4	9.80		
100	298.3	9.80		
105	313.2	9.80		
110	328.1	9.80		
115	343.0	9.80		
120	358.9	9.80		
125	372.9	9.80		
130	387.8	9.80		
135	402.7	9.80		
140	417.6	9.80		
145	432.5	9.80		
150	447.4	9.80		

N	Meritve nihajev - 1		
N	čas $[s]$	g $[m/s^2]$	
5	14.9	n/a	
10	30.8	9.87	
15	44.7	9.84	
20	59.7	9.83	
25	74.6	9.82	
30	90.5	9.82	
35	105.2	9.81	
40	119.3	9.81	
45	134.2	9.81	
50	149.1	9.81	
55	164.3	9.81	
60	179.0	9.81	
65	193.9	9.81	
70	208.8	9.81	
75	223.2	9.80	
80	238.6	9.80	
85	253.2	9.80	
90	268.5	9.80	
95	287.4	9.80	
100	299.3	9.80	
105	313.1	9.80	
110	328.1	9.80	
115	335.0	9.80	
120	358.2	9.80	
125	372.9	9.80	
130	383.4	9.80	
135	402.7	9.80	
140	417.6	9.80	
145	432.6	9.80	
150	447.2	9.80	

- 1. Radij r=0,125m
- 2. Dolžina vrvi $l_o=2,14m\,$
- 3. Debelina vrvi $d=0,0016m\,$
- 4. Amplituda $\alpha=0,104m$

6 Obdelava meritev

$$g = l_o \left(\frac{2\pi}{T}\right)^2 \left[1 + \frac{1}{2}\sin^2(\frac{\alpha}{2}) + \frac{2}{5}\left(\frac{r}{l_o}\right)^2 - \frac{1}{6}\frac{m_z}{m_k} + (1+k)\frac{\rho_{zt}}{\rho_{fe}} + \left(\frac{\Lambda}{2\pi}\right)^2 \right]$$

(15)

$$g = 9,81 * (1 \pm 7 * 10^{-6})m/s^2$$
(16)

7 Analiza rezultatov

Določili smo gravitacijski pospešek na $7*10^{-4}~\%$ natnačno!