Uma Heurística Gulosa para Seleção de Conjunto Alvo em Redes Sociais

Braully Rocha da Silva, Erika Morais Martins Coelho, **Hebert Coelho da Silva**, Fábio Protti

> Universidade Federal de Goiás Instituto de Informática Universidade Federal Fluminense Instituto de Computação

9 de fevereiro de 2024

Agenda

- Introdução ao problema
- Revisão literatura e trabalhos relacionados
- Resultados dos algoritmos heurísticos e exatos
- Considerações finais

Introdução: Modelo de propagação

O processo de influência pode ser modelado pelo contexto:

- Alguns indivíduos estão inicialmente influenciados;
- Os demais indivíduos são influenciados à medida que seus vizinhos também ficam influenciados.
- Novos indivíduos influenciados podem propagar a influência a outros indivíduos.

Introdução: Problemas relacionados

- Propagação de informações em redes sociais
- Disseminação de notícias falsas
- Marketing viral
- Infecção e doenças contagiosas

Preliminares: Notações e definições

Grafo simples:
$$G = (V(G)), E(G))$$

Vizinhança:

- $N(v) = \{ u \in V(G) | vu \in E(G) \}$
- $N(S) = \bigcup_{u \in S} N(v)$

Grau:

- d(v) = |N(v)|
- $d_S(v) = |N(v) \cap S|$
- $\Delta(G) = \max\{d(v)|v \in V(G)\}$

Preliminares: Notações e definições

- ▶ função limite: $f: V(G) \to \mathbb{N}$ para cada $v \in V(G)$ temos que f(v) é a quantidade vizinhos necessários para que v seja influenciado.
- ▶ *intervalo fechado*: Seja $S \subseteq V(G)$ então I[S] é formado por S mais todos os vértices de $v \in V(G) \setminus S$ tal que $d_S(v) \ge f(v)$.
- processo de ativação: sequência $I^p[S] = I[I^{p-1}[S]]$ sendo $I^0[S] = S$.
- ▶ *conjunto ativado*: quando para algum p temos $I^q[S] = I^p[S]$ para todo $q \ge p$ temos $I^q[S] = I^p[S] = I^*[S]$.
- *conjunto alvo*: quando $I^*[S] = V(G)$.

▶
$$f(v) = 2$$

- ▶ f(v) = 2
- Processo de ativação:

 - $S = \{1, 2\}$ $I^0[S] = \{1, 2\}$

▶
$$f(v) = 2$$

- ► Processo de ativação:

 - $S = \{1, 2\}$ $I^0[S] = \{1, 2\}$
 - $I^1[S] = \{1, 2\} \cup \{3\}$

▶
$$f(v) = 2$$

- ► Processo de ativação:
 - $S = \{1, 2\}$
 - $I^0[S] = \{1, 2\}$
 - $I^1[S] = \{1, 2\} \cup \{3\}$
 - $I^2[S] = \{1, 2, 3\} \cup \{0\}$

- ▶ f(v) = 2
- ► *Processo de ativação*:

$$S = \{1, 2\}$$

$$I^0[S] = \{1, 2\}$$

$$I^1[S] = \{1, 2\} \cup \{3\}$$

$$I^{2}[S] = \{1, 2, 3\} \cup \{0\}$$

$$I^3[S] = \{1, 2, 3, 0\}$$

$$I^3 = \{1, 2, 3, 0\}$$

• $I^3 = I^2$ então $I^* = I^2$

▶
$$I^*[S] = V(G)$$
 então S é um conjunto alvo.

Seleção de Conjunto Alvo: Revisão literatura

Seleção de conjunto alvo: O problema de determinar a cardinalidade de um conjunto alvo mínimo.

Modelo e definições: Chen et al. (2009): Propõe o problema de seleção de conjunto alvo, definição do modelo, demonstração da complexidade NP-Completo e algoritmos heurísticos.

Seleção Conjunto Alvo: Objetivo

 Propor e avaliar algoritmos heurísticos para o problema de seleção de conjunto alvo.

Seleção Conjunto Alvo: Objetivo

 Propor e avaliar algoritmos heurísticos para o problema de seleção de conjunto alvo.

Seleção de Conjunto Alvo

Função limite, $\forall v \in V$:

- ▶ Proporcional: $0 e <math>f(v) = p \times d(v)$.
- ▶ Majoritária ou Majorada: $f(v) = \lceil \frac{d(v)}{2} \rceil$.
- ▶ **K-Limitada ou Linear**: Constante inteira k e f(v) = k ou f(v) = min(d(v), k).

Seleção de Conjunto Alvo: NP-Díficil

- ▶ NP-Díficil para grafos gerais [Chen 2009]
- Tratável para alguns casos particulares [Dreyer et al. 2009, Centeno et al. 2011, Bollobás 2010, Chen 2009]
- NP-Díficil com função limite Proporcional e Majoritária [Peleg et al. 1998, Chen 2009]
- NP-Díficil com função k-Limitada ou Linear, mesmo se k=2 [Dreyer et al. 2009, Centeno et al. 2011, Bollobás 2010, Chen 2009]

Seleção de Conjunto Alvo: trabalhos relacionados

Kemp et al. (2003):

- Maximização de influência em redes sociais
- Heurísticas gulosas:
 - Maior contaminação
 - Maior grau
 - Centralidade
 - Aleatória.

Shakarian et al. (2013):

- Experimento com mais de 30 redes sociais.
- Programação Linear Inteira.

Uma Heurística Gulosa para Seleção de Conjunto Alvo em Redes Sociais

Explorou conjunto alvo com função k-limitado, função proporcional e tempo de ativação.

Trabalhos relacionados - Shakarian et al. (2013)

Algoritmo heurístico TIPDecomp:

- A cada iteração escolhe vnão marcado com a menor relação d(v) - f(v).
- Remove v do grafo.
- Atualiza o grau dos vértices dos vizinhos de v, marca os vértices u com d(u) < f(u).
- Ao final os vértices não removidos são um conjunto alvo.

Dinh (2014):

- Experimento com 3 redes sociais.
- Realizou experimentos com heurísticas tradicionais tais como Kemp e apontou dificuldades:
 - Baixa qualidade dos primeiros vértices selecionados.
 - ► Execução pouco escalável para redes sociais grandes.
- VIRAds: Algoritmo heurístico proposto.

Cordasco et al (2018):

- Experimento com 13 redes sociais de Shakarian (2013)
- TSS: Algoritmo de aproximação para o problema de seleção de conjunto alvo.
- Explorou conjunto alvo k-limitado e comparou com Shakarian e Dinh.

Algoritmo TSS - Cordasco et al (2018):

- A cada iteração escolhe o vértice v com a maior relação $\frac{f(v)}{d(v)(d(v)+1)}$.
- Remove o vértice v do grafo e atualiza o grau e a função limite dos vértices dos seus vizinhos.
- Adiciona os vértices u com d(u) < f(u) ao conjunto alvo.

Seleção de Conjunto Alvo: Resumo heurísticas

Grau: Nessa heurística a escolha de um novo vértice a ser incluído no conjunto alvo é sempre o vértice de maior grau.

TIPDecomp: Nessa abordagem, o grafo é decomposto, excluindo vértices até que os vértices restantes sejam um conjunto alvo.

TSSC: Neste algoritmo o grafo é decomposto, eliminando vértices até obter um grafo vazio. A medida que os vértices são retirados eles são testados para compor o conjunto alvo.

Delta: Escolhe o vértice disponível que trás o maior ganho marginal. Algumas variações incluem como critério de desempate a contaminação parcial de mais vértices.

Banco de grafos utilizados neste trabalho

- Aleatórios de [Gilbert 1959], de 5 até 100 vértices variando de 5 com densidade variando de 0.1 até 0.9
- Grafos de interesse.
- Redes sociais:
 - Intersecção Shakarian e Cordasco: 13 grafos

Parâmetros utilizados neste trabalho

- degree: d(v) é o grau do vértice.
- difficulty: $f(v) d_C(v)$ é a dificuldade de contaminar o vértice.
- ▶ dist: $(d(v) f(v)) d_C(v)$ é a diferença entre o grau do vértice e seu limite de ativação, descontado os vizinhos já ativados.
- Δ : $I^*[S \cup \{v\}] \setminus I^*[S]$ novos vértices ativados ao contaminar o vértice v.
- ▶ distDelta: $\sum_{i \in \Delta} ((d(i) t(i)) d_C(i))$ a soma da *dist* dos vértices de Δ .
- ▶ **difDelta**: $\sum_{i \in \Delta} (t(i) d_C(i))$ soma da dificuldade dos vértices de Λ

Nossa Heurística para Conjunto Alvo k-limitado

- Divide o trabalho nas componentes conexas
- Os vértices são iterados por ordem descendente de grau
- O melhor vértice maximiza distDelta com desempate pelo maior difDelta.
- Todo vértice pertencente ao Δ são podados da iteração atual.
- Refinamento do resultado final transforma o conjunto alvo em minimal

Resultados: Conjunto alvo k-limitado

	Resultad	Resultado									
Algoritmo		Não ó	Tempo								
Algoriuno	Ótimos	Total	Del	ta				Total(ms)			
		Total	1	2	3	4	5				
Grau-refine	649	71	45	9	9	5	3	223			
TIPDecomp	675	45	30	12	3			257			
Delta-Parcial-refine	681	39	29	7	3			369			
TSS-Cordasco	685	35	31	4				273			
DistDifDelta-refine	691	29	25	4				527			
Exaustivo (Exato)	720							~03h			

Grafo	Grau-	ref	TIPD	ec.	Delta-	p-ref	TSSC		DDDI	3	Melhor
Giaio	ITSSI	T(m)	ITSSI	T(m)	ITSSI	T(m)	ITSSI	T(m)	ITSSI	T(m)	Memor
BlogCatalog	1	0,0	1	1,0	1	0,0	1	90,4	1	0,0	1
BlogCatalog2	1	0,0	1	2,0	1	0,0	1	93,8	1	0,0	1
BlogCatalog3	1	0,0	1	2,0	1	0,0	1	93,9	1	0,0	1
BuzzNet	6	0,1	6	3,6	6	0,1	6	96,9	6	0,1	6
Delicious	58870	0,1	58877	4,3	58870	0,1	58877	97,8	58870	0,1	58870
Douban	1	0,1	1	6,9	1	0,1	1	106,0	1	0,1	1
Last.fm	4596	0,1	4596	8,3	4596	0,1	4596	109,0	4596	0,1	4596
Livemocha	336	0,1	336	9,6	336	0,1	336	113,5	336	0,1	336
ca-AstroPh	290	0,1	298	9,7	290	0,1	298	113,5	290	0,1	290
ca-CondMat	567	0,1	594	9,7	567	0,1	594	113,6	567	0,1	567
ca-GrQc	355	0,1	380	9,7	355	0,1	380	113,6	355	0,1	355
ca-HepPh	278	0,1	291	9,7	278	0,1	291	113,6	278	0,1	278
ca-HepTh	429	0,1	453	9,7	429	0,1	453	113,6	429	0,1	429
Total tempo		0,8		86,1		1,1	1	369,3		1,1	
Total melhor		13		7		13		7		13	
Média ∆ melhor		0,0		17,3		0,0		17,3		0,0	

Tabela 4.3: Resultados para redes sociais e f(v) = 1

Grafo	Grau-r	ef	TIPDec	: .	Delta-p	-ref	TSSC		DDDR		Melhor
Giaio	ITSSI	T(m)	ITSSI	T(m)	ITSSI	T(m)	ITSS	T(m)	ITSSI	T(m)	Memor
BlogCatalog	20290	0,1	20291	10,6	20290	0,1	20290	82,3	20290	0,3	20290
BlogCatalog2	27638	0,1	27638	11,7	27638	0,1	27638	82,4	27638	0,3	27638
BlogCatalog3	270	0,1	270	11,7	270	0,1	270	82,4	270	0,3	270
BuzzNet	7561	0,1	7561	12,8	7561	0,2	7561	82,4	7561	0,3	7561
Delicious	76693	0,1	76688	13,3	76681	0,2	76681	83,9	76681	0,3	76681
Douban	103158	0,2	103158	14,6	103158	0,2	103158	88,2	103158	0,4	103158
Last,fm	13465	0,2	13463	16,3	13460	0,2	13460	88,2	13460	0,4	13460
Livemocha	7182	0,2	7182	17,9	7182	0,2	7182	88,2	7182	0,5	7182
ca-AstroPh	1882	0,2	1868	17,9	1859	0,2	1859	88,2	1858	0,5	1858
ca-CondMat	3631	0,2	3608	17,9	3554	0,2	3554	88,2	3554	0,5	3554
ca-GrQc	1694	0,2	1690	17,9	1666	0,2	1665	88,2	1665	0,5	1665
ca-HepPh	2033	0,2	2019	17,9	2003	0,2	2003	88,2	2003	0,5	2003
ca-HepTh	2774	0,2	2742	17,9	2725	0,2	2724	88,3	2723	0,5	2723
Total tempo	2,0		198,6		2,3		1119,3		5,4		
Total melhor	6		5		10		11		13		
Média ∆ melhor	32,6		16,9		1,3		1,0		0,0		

Tabela 4.4: Resultados para redes sociais e f(v) = 2

Grafo	Grau-r	ef	TIPDec	c .	Delta-p	-ref	TSSC		DDDR		Melhor
Graio	ITSSI	T(m)	ITSSI	T(m)	ITSSI	T(m)	ITSSI	T(m)	ITSSI	T(m)	Memor
BlogCatalog	30769	0,2	30770	18,7	30769	0,2	30769	73,5	30769	0,6	30769
BlogCatalog2	40662	0,2	40662	19,6	40662	0,2	40662	74,1	40662	0,6	40662
BlogCatalog3	643	0,2	643	19,6	643	0,2	643	74,1	643	0,6	643
BuzzNet	19630	0,2	19630	20,7	19630	0,3	19630	74,2	19630	0,7	19630
Delicious	84508	0,2	84487	21,1	84480	0,3	84478	76,0	84477	0,7	84477
Douban	125197	0,2	125199	21,8	125197	0,3	125197	82,1	125197	0,8	125197
Last,fm	21539	0,3	21521	23,5	21516	0,3	21516	82,2	21516	1,4	21516
Livemocha	13605	0,3	13604	25,0	13603	0,3	13603	82,2	13603	1,5	13603
ca-AstroPh	3679	0,3	3631	25,1	3625	0,3	3624	82,2	3622	1,5	3622
ca-CondMat	7130	0,3	7026	25,1	6985	0,3	6970	82,2	6966	1,5	6966
ca-GrQc	2727	0,3	2702	25,1	2682	0,3	2679	82,2	2678	1,6	2678
ca-HepPh	3847	0,3	3815	25,1	3806	0,3	3799	82,3	3798	1,6	3798
ca-HepTh	4686	0,3	4632	25,1	4622	0,3	4614	82,3	4615	1,6	4614
Total tempo	3,3	•	295,5		3,7		1029,6		14,7		
Total melhor	5		3		7		8		12		
Média ∆ melhor	55,9		14,7		7,5		1,8		1,0		

Tabela 4.5: Resultados para redes sociais e f(v) = 3

Grafo	Grau-r	ef	TIPDe	c .	Delta-p	-ref	TSSC		DDDR		Melhor
Graio	ITSSI	T(m)	ITSSI	T(m)	ITSSI	T(m)	ITSSI	T(m)	ITSSI	T(m)	Memor
BlogCatalog	37618	0,3	37617	25,8	37616	0,3	37616	67,4	37616	1,7	37616
BlogCatalog2	48604	0,3	48604	26,6	48604	0,3	48604	68,3	48604	1,7	48604
BlogCatalog3	995	0,3	995	26,6	995	0,3	995	68,4	995	1,7	995
BuzzNet	23647	0,3	23647	27,9	23647	0,4	23647	68,4	23647	1,8	23647
Delicious	88739	0,3	88710	28,1	88702	0,4	88704	70,3	88702	1,9	88702
Douban	133846	0,4	133846	28,7	133846	0,4	133846	73,0	133846	1,9	133846
Last,fm	28702	0,4	28665	30,3	28655	0,4	28655	73,1	28654	2,6	28654
Livemocha	19346	0,4	19345	31,9	19345	0,4	19345	73,2	19345	2,8	19345
ca-AstroPh	5199	0,4	5147	31,9	5135	0,4	5131	73,2	5130	2,8	5130
ca-CondMat	10045	0,4	9857	31,9	9847	0,4	9817	73,2	9811	2,9	9811
ca-GrQc	3398	0,4	3348	31,9	3341	0,4	3332	73,2	3333	2,9	3332
ca-HepPh	5208	0,4	5158	31,9	5146	0,4	5143	73,2	5141	2,9	5141
ca-HepTh	5892	0,4	5853	31,9	5845	0,4	5837	73,2	5837	2,9	5837
Total tempo	4,7		385,4		5,2		928,4		30,5		
Total melhor	4		5		7		8		12		
Média ∆ melhor	64,3		16,5		10,7		2,4		1,0		

Tabela 4.6: Resultados para redes sociais e f(v) = 4

Grafo	Grau-r	ef	TIPDec	c.	Delta-p	-ref	TSSC		DDDR		Melhor
Graio	ITSSI	T(m)	ITSSI	T(m)	ITSSI	T(m)	ITSSI	T(m)	ITSSI	T(m)	Memor
BlogCatalog	42444	0,4	42441	32,6	42440	0,5	42440	60,4	42440	3,1	42440
BlogCatalog2	54171	0,4	54171	33,4	54171	0,5	54171	61,7	54171	3,1	54171
BlogCatalog3	1370	0,4	1369	33,4	1369	0,5	1369	61,7	1369	3,1	1369
BuzzNet	27243	0,4	27242	34,5	27242	0,5	27242	61,8	27242	3,2	27242
Delicious	91473	0,4	91433	34,8	91426	0,5	91423	63,8	91424	3,3	91423
Douban	138188	0,5	138187	35,2	138187	0,5	138187	66,6	138187	3,3	138187
Last,fm	35092	0,5	35045	36,6	35032	0,5	35030	66,8	35030	4,2	35030
Livemocha	24467	0,5	24466	38,3	24466	0,5	24466	66,9	24466	4,4	24466
ca-AstroPh	6365	0,5	6325	38,3	6311	0,5	6302	66,9	6302	4,4	6302
ca-CondMat	12246	0,5	12043	38,4	12051	0,5	12008	66,9	12006	4,5	12006
ca-GrQc	3782	0,5	3756	38,4	3749	0,5	3744	66,9	3744	4,5	3744
ca-HepPh	6094	0,5	6048	38,4	6038	0,5	6031	66,9	6029	4,6	6029
ca-HepTh	6703	0,5	6655	38,4	6642	0,5	6636	66,9	6635	4,6	6635
Total tempo	6,0		470,5		6,6		844,1		50,2		
Total melhor	1		5		6		10		12		
Média ∆ melhor	49,5		17,1		11,4		1,7		1,0		

Tabela 4.7: Resultados para redes sociais e f(v) = 5

Grafo	Grau	-ref	TIPI	ec.	Delta-	p-ref	TSS	C	DDI	R	Melhor
Graio	ITSSI	T(m)	ITSSI	T(m)	ITSSI	T(m)	ITSSI	T(m)	ITSSI	T(m)	ivienioi
BlogCatalog	46056	0,5	46054	38,9	46055	0,6	46054	52,4	46054	4,7	46054
BlogCatalog2	58325	0,5	58325	39,7	58325	0,6	58325	52,6	58325	4,7	58325
BlogCatalog3	1736	0,5	1736	39,7	1736	0,6	1736	52,6	1736	4,7	1736
BuzzNet	30851	0,5	30851	40,9	30850	0,6	30850	52,7	30850	4,9	30850
Delicious	93414	0,6	93383	41,1	93379	0,6	93376	54,9	93375	5,0	93375
Douban	140694	0,6	140697	41,5	140694	0,6	140694	59,7	140694	5,1	140694
Last,fm	40777	0,6	40739	43,0	40717	0,6	40714	60,2	40714	6,1	40714
Livemocha	29079	0,6	29079	44,6	29079	0,6	29079	60,3	29079	6,3	29079
ca-AstroPh	7337	0,6	7275	44,6	7264	0,6	7248	60,3	7248	6,4	7248
ca-CondMat	13972	0,6	13778	44,7	13803	0,7	13750	60,3	13747	6,5	13747
ca-GrQc	4053	0,6	4029	44,7	4027	0,7	4021	60,3	4021	6,5	4021
ca-HepPh	6735	0,6	6685	44,7	6675	0,7	6669	60,3	6669	6,5	6669
ca-HepTh	7269	0,6	7230	44,7	7222	0,7	7218	60,3	7217	6,6	7217
Total tempo		7,3		552,8		8,0		746,9		74,2	
Total melhor		4		4		5		10		13	
Média ∆ melhor		63,2		14,7		12,1		1,7		0,0	

Tabela 4.8: Resultados para redes sociais e f(v) = 6

Resultados: Conjunto alvo k-limitado

Grafo	Grau-r	ef	TIPDe	c .	Delta-p	-ref	TSSC		DDDR		Melhor
Graio	ITSSI	T(m)	ITSSI	T(m)	ITSSI	T(m)	ITSSI	T(m)	ITSSI	T(m)	Memor
BlogCatalog	48926	0,6	48925	45,2	48924	0,7	48923	39,8	48923	6,7	48923
BlogCatalog2	61589	0,6	61589	45,9	61589	0,7	61589	40,1	61589	6,7	61589
BlogCatalog3	2090	0,6	2090	45,9	2090	0,7	2090	40,1	2090	6,7	2090
BuzzNet	34516	0,7	34506	47,1	34503	0,7	34503	40,2	34503	7,1	34503
Delicious	94726	0,7	94701	47,3	94699	0,7	94696	43,0	94696	7,3	94696
Douban	142374	0,7	142373	47,6	142373	0,7	142373	51,0	142373	7,4	142373
Last,fm	45896	0,7	45849	48,9	45820	0,7	45821	51,4	45819	8,6	45819
Livemocha	33184	0,7	33180	50,3	33179	0,8	33179	51,5	33179	8,9	33179
ca-AstroPh	8086	0,7	8043	50,3	8034	0,8	8018	51,5	8017	9,0	8017
ca-CondMat	15281	0,7	15105	50,3	15135	0,8	15085	51,5	15083	9,1	15083
ca-GrQc	4269	0,7	4238	50,3	4236	0,8	4231	51,5	4230	9,1	4230
ca-HepPh	7251	0,7	7213	50,3	7202	0,8	7197	51,5	7197	9,2	7197
ca-HepTh	7683	0,7	7650	50,3	7645	0,8	7641	51,5	7641	9,2	7641
Total tempo	8,7		630,0		9,5		614,3		105,1		
Total melhor	2		3		5		9		13		
Média ∆ melhor	48,3		12,2		11,1		1,5		0,0		

Tabela 4.9: Resultados para redes sociais e f(v) = 7

Algoritmo Exaustivo (exato)

```
Algoritmo 4.3: ExaustivoTSS(G, k)
  Entrada: grafo G, k-limite
  Saída: inteiro t, tamanho do menor conjunto alvo de G para k-limite
1 t ← Min(DistDifDeltaRefine(G), TSS – Cordasco(G))
2 tamAtual ← minValido – 1
3 fim ← Falso
4 enquanto \neg fim \land t > 0 faca
      se temConjuntoAlvoKLimiteTamanhoT(G, k, tamAtul) então
          t \leftarrow tamAtual
          tamAtual ← tamAtual - 1
      fim
8
      senão
          fim ← Verdadeiro
      fim
11
12 fim
13 retorna S
```

Resultados: Algoritmos exatos

- Banco de dados de interesse
- Modelo de programação linear

Gr	afos	T	empo (s)	
N° vértices	Quantidade de grafos	CPLEX	Exaustivo	Heurística
20	661	4.364,52	10,18	1,514
21	217	2.577,42	2,976	0,426
22	710	17.864,62	11,603	1,369
23	600	20.426,96	7,048	1,473
24	807	41.987,76	206,894	2,098
25	628	12.529,86	37,879	2,822
26	388	85.753,76	263,21	1,212
27	1.524	32.175,22	188,57	7,96
28	578	199.531,50	1.179,85	3,2
29	1.367	104.911,65	583,701	9,95
30-50*	2.065	1.276.873,50	2.379,871	1,722
Total	8.934	1.798.996,78	4.871,78	33,74
Iotai	8.934	(20d:19h:43m:16s)	(1h:21m:11s)	33,74

Considerações finais e trabalhos futuros

Esperamos já ter relevantes contribuições para Heurística de Seleção de Conjunto alvo Majoritário.

- Demonstrar a exatidão dos algoritmos para algumas classes de grafos.
- Trabalho consolidado para um periódico:
 - Contemplar resultados k-limitado
 - Estender o banco de grafos avaliados
 - Expandir os resultados para bancos de grafos maiores e mais diversificados.

Referências

- Centeno et al. 2011: Irreversible conversion of graphs. Theoretical Computer Science, Elsevier B.V., v. 412, n. 29, p. 3693–3700, 2011.
- Chen et al. 2009: Efficient influence maximization in social networks. Proceedings of the 15th ACM SIGKDD International Confe- rence on Knowledge Discovery and Data Mining.
- Cordasco et al. 2018: Discovering Small Target Sets in Social Networks: A Fast and Effective Algorithm. Algorithmica, v. 80, n. 6, p. 1804–1833, 2018.
- ▶ Dinh et al. 2014: Cost-effective viral marketing for time-critical campaigns in large-scale social networks. IEEE/ACM Transactions on Networking, v. 22, n. 6, p. 2001–2011, 2014. ISSN 10636692.

Referências

- Dreyer e Roberts 2009: Irreversible k-threshold processes: Graph-theoretical threshold models of the spread of disease and of opinion. Discrete Applied Mathematics, Elsevier B.V., v. 157, n. 7, p. 1615–1627, 2009. ISSN 0166218X.
- Kemp et al. 2003: Maximizing the spread of influence through a social network. Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
- Peleg 1998: Size bounds for dynamic monopolies. Discrete Applied Mathematics, v. 86, n. 2, p. 263–273, 1998. ISSN 0166-218X.

Imagens:

- Wikimedia Grafos
- ► WikWiley Knowledge-Discovery-1942-4795

Fim

- Obrigado!
- Dúvidas?