Taller de Wireshark

Teoría de las Comunicaciones

Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

26.08.2015

Objetivos

Presentar:

- Protocolo ARP.
- Herramientas de monitore de red:
 - Wireshark.
 - Scapy.
- Presentar el TP1.

Algunas precauciones

Algunas precauciones

- Capa 2.5.
- Todavía no vimos IP.
- Nos estamos adelantando un poco.

Arquitectura en capas

Repaso de la clase de ayer

El Problema

- Existen muchos posibles protocolos de enlace. Cada uno utiliza direcciones diferentes:
 - Ejemplos: Ethernet:MAC Address (48bits);
- Existen muchos posibles protocolos de red. Cada uno utiliza direcciones diferentes:
 - Ejemplos: IP (32bits); CHAOS (16bits); PUP (8bits)
- Las direcciones de los protocolos de red no son compatibles con las direcciones de los protocolos de enlace

El Problema

- Existen muchos posibles protocolos de enlace. Cada uno utiliza direcciones diferentes:
 - Ejemplos: Ethernet:MAC Address (48bits);
- Existen muchos posibles protocolos de red. Cada uno utiliza direcciones diferentes:
 - Ejemplos: IP (32bits); CHAOS (16bits); PUP (8bits)
- Las direcciones de los protocolos de red no son compatibles con las direcciones de los protocolos de enlace

Es necesario mapar:

Direcciones de Red − > Direcciones de Enlace

Los Trabajos Prácticos: régimen y organización

HWAddr: todo un mundo

¿Perdón?

¿Qué es ARP?

- La sigla: Address Resoution Protocol.
- Es un protocolo que, en esencia, permite mapear direcciones de nivel de red a direcciones físicas.
- Utilizado unicamente en la red local.
- Especificado en el RFC 826 (circa 1982).
- ullet No está limitado a IP + Ethernet: la especificación es general.

Ethernet - MAC Address cont.

Los Trabajos Prácticos: régimen y organización

¿Cómo funciona?

Como funciona?

- La pregunta ARP consiste en un mensaje broadcast sobre la red local.
 - Recordar que no se propaga más allá de la red local!
- La respuesta, en cambio, es unicast.
- Optimización: se implementa una caché para guardar las direcciones resueltas (o conocidas).
 - Las entradas se agregan al resolver o bien al observar un pedido de otra máquina.
 - Cada entrada tiene un tiempo de expiración para evitar problemas.

Formato del paquete

Formato del paquete (cont.)

- El campo Oper puede tomar los valores 1 (who-has) o 2 (reply).
- Observar que la cantidad de bits asingada a las direcciones depende del valor que tomen los campos HW size y Proto size.
- Dichos campos tienen un largo de 8 bits (i.e., direcciones con un máximo de $2^8 1 = 255$ bits).
- HW type y Proto type indican los protocolos de nivel de enlace y de nivel de red respectivamente involucrados en la comunicación.

Otro uso interesante

- Cuando una máquina bootea o se levanta una de sus interfaces, muchos SOs envían automáticamente un pedido ARP gratuito.
- En él, Proto source addr == Proto target addr.
- Objetivos:
 - Detectar IPs duplicadas en la red local: esto ocurre si se recibe una respuesta.
 - Actualizar la caché ARP de los otros hosts.

...y otro uso más: ARP Spoofing

- Spoofing **1** To deceive.
 - To do a spoof of; satirize gently.

- De lo anterior se desprende que ARP es un protocolo sin estado y sin seguridad.
- La técnica de ARP spoofing se apoya precisamente en estas características.
- Idea: una máquina envía de la nada una respuesta ARP mapeando una IP objetivo con su propia MAC.
- ⇒ todo el tráfico destinado a dicha IP va a ser recibido por ella.

¿Qué es Wireshark?

- Wireshark es un capturador de paquetes/protocolos de red (aka: sniffer).
- Ademas, parsea paquetes capturados por una interfaz y los muestra con un alto grado de detalle.
- Se usa fundamentalmente como herramienta de diagnóstico de networking: es un "debugger" de la red.
- El mejor amigo del administrador de red, analista de seguridad, programador, hacker, etc.
- Es libre, abierto y gratis.

Algunas definiciones

• ¿NIC? Network Interface Controller (wlan0, eth0, lo, prueben haciendo ifconfig).

```
$ ifconfig
eth0: flags=4099<UP,BROADCAST,MULTICAST> mtu 1500
ether 3c:92:0e:33:4b:01 txqueuelen 1000 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

Algunas definiciones, cont.

Modo promiscuo

lo que significa que los paquetes con MAC destino ajena no se descartan. Suben hasta el kernel para que podamos consumir las tramas. **Igual veríamos** mensajes broadcast, multicast y unicast.

Modo monitor

lo que permite capturar tráfico por la WNIC, ya estemos asociados o no con el AP o la red Ad-Hoc, sin que este sea descartado.

Algunas definiciones, cont. 2

capabilites

Starting with kernel 2.2, Linux divides the privileges traditionally associated with superuser into distinct units, known as capabilities, which can be independently enabled and disabled. Capabilities are a per-thread attribute.

CAP_NET_ADMIN

Permite

- Allow interface configuration
- Allow modification of routing tables
- Allow setting promiscuous mode

Algunas definiciones, cont. 3

CAP NET RAW

Permite emitir:

Raw frames permiten escribir los headers de la capa física Packet frames obtienen los parámetros de la capa física

Ambos permiten escribir frames con los headers de capa 2 en adelante.

Captura de paquetes, pero...; cómo?

Figure 1: Packet sniffer structure

leer mas: http://www.tcpdump.org/faq.html

Para

Escenarios

Local

- loopback
- eth, wlan, etc

Red local

- Atrás de un hub. Todos los mensajes se floodean.
- Atrás de un switch. No podemos ver mensajes ajenos. (Salvo que...)

Wireshark 1

Filtros

• Es demasiada información, necesitamos poder manejarla.

Ejemplos

- broadcast ethernet: eth.dst == FF:FF:FF:FF:FF
- ethernet type: eth.type == 0xFFFF (2 bytes)
- ether src ehost: eth.src == 90:4c:e5:bb:e0:d6
- **ip src**: ip.src == 192.168.1.1
- **ip protocol**: ip.proto == 1
- etc. Ver secciones Expression y Filter en la barra de filtro.

Recomendado: http://biot.com/capstats/bpf.html

Wireshark 2

Intro a Scapy

• Scapy es un framework de manipulación de paquetes.

Intro a Scapy

- Scapy es un framework de manipulación de paquetes.
- Permite crear paquetes, capturar paquetes, enviar paquetes, analizar paquetes, etc.

Intro a Scapy

- Scapy es un framework de manipulación de paquetes.
- Permite crear paquetes, capturar paquetes, enviar paquetes, analizar paquetes, etc.
- Orientado a capas. pkt = Ether() / IP() / TCP() nos genera un paquete TCP valido.

Transmitiendo

```
#! /usr/bin/env python
# arping2tex : arpings a network and outputs a LaTeX table as a result
import sys
if len(sys.argy) != 2:
    print "Usage:_arping2tex_<net>\n__eg:_arping2tex_192.168.1.0/24"
    sys.exit(1)
from scapy. all import srp, Ether, ARP, conf
conf.verb=0
ans, unans=srp(Ether(dst="ff:ff:ff:ff:ff:ff")/ARP(pdst=sys.argv[1]),
          timeout=2)
print r"\begin{tabular}{|||||}"
print r"\hline"
print r"MAC_&_IP\\"
print r"\hline"
for snd.rcv in ans:
    print rcv.sprintf(r" %Ether.src %&_ %ARP.psrc %\\")
print r"\hline"
print r"\end{tabular}"
```

Escuchando

```
#! /usr/bin/env python
from scapy.all import *
def monitor_callback(pkt):
    print pkt.show()

if __name__ == '__main__':
    sniff(prn=monitor_callback, filter = "arp", store = 0)
```

ARP: navegando entre dos mundos Wireshark Scapy Los Trabajos Prácticos: régimen y organización

Trabajos Prácticos

¿Cómo son los Trabajos Prácticos?

- 2 Trabajos Prácticos (2 entregas)
 - 1. TP1: Wiretapping (Information Gathering)
 - 2. TP2: ICMP (Rutas en Internet)
- Objetivos
 - 1. Experimentar con la red. No siempre es lo que parece.
 - 2. Hacer análisis acerca de los comportamientos no esperados.
 - 3. Enmarcar el análisis en un informe (o tech rep).

¿Qué esperamos que hagan?

- Que reflexionen sobre lo que es una red.
- Que se vayan con herramientas prácticas para hacer diagnóstico.
- Que profundicen la comprensión de los conceptos a partir de su aplicación.
- Que entreguen informes rigurosos sobre lo que experimentaron.

Dinámica de presentación y entrega.

- 3 o 4 integrantes.
- Fechas de entrega por mail.
 - **1** TP1: 23/09/2015
 - ② TP2: 10/11/2015
- Pautas para los informes.
 - Tener en cuenta la estructura de informe científico (introducción, métodos, resultados, conclusiones).
 - El código no es tan importante.
 - Ojo con las figuras. Que sean claras y tengan leyendas.
- Template (recomendado): http://mocha-java.uccs.edu/ieee/

¡A trabajar!: Primera consigna

- En base a las siguientes fuentes de informacion:
 - $P_{t_i,t_f} = \{p_1 \cdots p_n\}$ siendo p_i el i-esimo paquete transmitido en la red entre los instantes de tiempo $[t_i, t_f]$.
 - $S_{t_i,t_f} = \{s_1 \cdots s_n\}$ siendo $s_i = p_i.type / p_i \in P$ entre los instantes de tiempo $[t_i, t_f]$.
- Implementar una herramienta que simule la fuente de información P para redes locales. Es decir, la herramienta debe escuchar pasivamente los paquetes Ethernet transmitidos en la red local durante un tiempo $t_f t_i$ y quedarse solo con los smbolos de la fuente correspondiente.

- Adaptar la herramienta del punto anterior para estimar la probabilidad y la entropía de la fuente S para la red local.
- ② Proponga una fuente de información S_1 con el objetivo de distinguir, en lugar de los protocolos como hace S, los nodos (hosts) de la red. La distincin de S_1 debe estar basada *únicamente* en paquetes que utilicen el protocolo ARP.
- ① Utilizando la herramienta, realizar experimentos (uno por integrante) capturando paquetes en redes de acceso compartido. Las capturas deben ser lo ms extensas posibles $(t_f t_i \ge 10 \text{ minutos})$. En la medida de lo posible, intentar capturar en al menos una red que no sea controlada (en el trabajo, en un shopping, etc.).

¡A trabajar!: Segunda consigna

Presentar un informe científico donde se analice, para cada experimento, las fuentes S y S_1 y a partir de ello determinar:

- (a) Los protocolos distinguidos.
- (b) La proporción de paquetes ARP sobre el total de la información transmitida.
- (c) Los nodos distinguidos.

Los resultados de esta consigna deben estar basados en conceptos formales de la teoría de la información.

Referencias

- http://www.tcpdump.org/papers/bpf-usenix93.pdf
- http://biot.com/capstats/bpf.html
- man capabilities
- man packet