1. Formas canónicas de Jordan

1.1. Invariancia

Definición 1 Sea $T: V \to V$ una transformación lineal. Un subespacio W de V se dice **invariante por** T si T aplica a W en si mismo, i.e., si $v \in W \Rightarrow T(v) \in W$. En este caso T restringido a W define un operador lineal,

$$\begin{array}{cccc} \hat{T}: & W & \rightarrow & W \\ & w & \mapsto & \hat{T}(w) = T(w). \end{array}$$

Ejemplo 1 Sea $T : \mathbb{R}^3 \to \mathbb{R}^3$, tal que $T(x, y, z) = (x \cos \theta - y \sin \theta, x \sin \theta + y \cos \theta, z)$. Es el operador lineal que rota cada vector alrededor del eje z un ángulo θ .

Observemos que cada vector $w = (a, b, 0) \in W$ donde W es el plano xy permanece en W al aplicarle la transformación T, luego W es invariante por T.

También resulta invariante el eje z.

Ejemplo 2 Los vectores propios de un operador lineal $T: V \to V$ pueden caracterizarse como generadores de subespacios invariantes por T de dimensión 1.

Supongamos que $T(v) = \lambda v, v \neq 0$, entonces $W = \{\alpha v : \alpha \in \mathbb{K}\}$ es invariante por T pues

$$T(\alpha v) = \alpha T v = \alpha(\lambda v) = (\lambda \alpha) v \in W.$$

Recíprocamente, supongamos que dim U=1, U=< u> y U invariante por T. Entonces como $T(u)\in U$ resulta $T(u)=\beta u$ para algún $\beta\in\mathbb{K}$, con lo que resulta u un autovector de T.

Teorema 1 Sean $T: V \to V$ y p(t) un polinomio un polinomio cualquiera. Entonces nul(p(T)) es invariante por T.

<u>Demos</u>: Sea $v \in nul(p(T))$, es decir p(T)v = 0. Debemos probar que $Tv \in nul(p(T))$, es decir si p(T)(Tv) = 0.

Observemos que como se verifica que p(t)t = tp(t) para cualquier polinomio, se tiene que p(T)T = Tp(T). Luego

$$p(T)(Tv) = (p(T)T)v = (Tp(T))v = T(p(T)v) = T(0) = 0.$$

como queríamos ver.

Teorema 2 Sea W un subespacio invariante de $T: V \to V$, espacio vectorial sobre \mathbb{K} de dimensión finita. Entonces T tiene una representación matricial por bloques

$$\begin{bmatrix} A & B \\ 0 & C \end{bmatrix},$$

donde A es una representación matricial de la restricción de T a W.

<u>Demos</u>: Sea una base ordenada $\{w_1, \dots, w_r\}$ de W y la extendemos a una base $\{w_1, \dots, w_r, v_1, \dots, v_s\}$ de V. Se tiene

$$\hat{T}(w_1) = T(w_1) = a_{11}w_1 + \dots + a_{1r}w_r
\vdots
\hat{T}(w_r) = T(w_r) = a_{r1}w_1 + \dots + a_{rr}w_r
T(v_1) = b_{11}w_1 + \dots + b_{1r}w_r + c_{11}v_1 + \dots + c_{1s}v_s
\vdots
T(v_s) = b_{s1}w_1 + \dots + b_{sr}w_r + c_{s1}v_1 + \dots + c_{ss}w_s$$

Pero la matriz de *T* en esta base es la transpuesta de la matriz de los coeficientes en el sistema anterior de ecuaciones. Por lo tanto tiene la forma

$$\begin{bmatrix} A & B \\ 0 & C \end{bmatrix}.$$

Por el mismo argumento A es la matriz de \hat{T} relativa a la base $\{w_i\}$ de W.

1.2. Descomposición en suma directa de invariantes

Recordemos que

Definición 2 Se dice que un espacio vectorial V es la suma directa de sus subespacios W_1, \dots, W_r , si todo vector $v \in V$ puede escribirse de manera única como

$$v = w_1 + \cdots + w_r, w_i \in W_i, i = 1, \cdots, r.$$

tal que $W_i \cap W_j = \{0\}$. Se nota $V = W_1 \oplus \cdots \oplus W_r$.

Teorema 3 Sean W_1, \dots, W_r subespacios de V, y supongamos que $B_1 = \{w_1^1, \dots, w_{n_1}^1\}, \dots, B_r = \{w_1^r, \dots, w_{n_r}^r\}$ son bases de W_1, \dots, W_r respectivamente. Entonces V es la suma directa de los W_i si y sólo si $B = \{w_1^1, \dots, w_{n_1}^1, \dots, w_{n_r}^1, \dots, w_{n_r}^r\}$ es una base de V.

<u>Demos</u>: \Leftarrow) Supongamos que *B* es base de *V*, luego para todo $v \in V$ existen escalares tales que

$$v = a_{11}w_1^1 + \dots + a_{1n_1}w_{n_1}^1 + \dots + a_{r1}w_1^r + \dots + a_{rn_1}w_{n_1}^r = w_1 + \dots + w_r,$$

con $w_i = a_{i1}w_1^i + \cdots + a_{in_i}w_{n_1}^i \in W_i$.

Veamos que la suma es única. Supongamos que $v = \tilde{w}_1 + \cdots + \tilde{w}_r$ con $\tilde{w}_i \in W_i$. Usando la base correspondiente a cada W_i se tendrá que existen escalares tales que $\tilde{w}_i = b_{i1}w_1^i + \cdots + b_{in_i}w_{n_i}^i$, luego se tiene que

$$v = b_{11}w_1^1 + \dots + b_{1n_1}w_{n_1}^1 + \dots + b_{r1}w_1^r + \dots + b_{rn_1}w_{n_1}^r.$$

Como B es una base de V, resulta $a_{ij} = b_{ij}$ para cada i y j, de ese modo los términos de la suma de v son únicos y así resulta V suma directa de W_i , \cdots , W_r .

 \Rightarrow) Supongamos que V suma directa de W_i, \dots, W_r . Luego todo $v \in V$ puede expresarse como $v = v_1 + \dots + v_r$ con $w_i \in W_i$ únicos. Como B_i es base de W_i , cada v_i es combinación lineal de los vectores $\{w_1^i, \dots, w_{n_i}^i\}$, resultando así v combinación lineal de los elementos de B por lo tanto $V = \langle B \rangle$.

Veamos que los vectores en *B* son *l.i.*. Consideremos

$$0 = a_{11}w_1^1 + \dots + a_{1n_1}w_{n_1}^1 + \dots + a_{r1}w_1^r + \dots + a_{rn_1}w_{n_1}^r.$$

Observemos que $a_{i1}w_1^i + \cdots + a_{in_i}w_{n_1}^i \in W_i$, por ser V suma directa de tales subespacios, el 0 se escribe de manera única y así se tiene que $a_{i1}w_1^i + \cdots + a_{in_i}w_{n_1}^i = 0$, $\forall i = 1, \dots, r$. Además como $\{w_{1}^i, \dots, w_{n_i}^i\}$ es base de W_i subespacio, se tiene que $a_{i1} = \cdots = a_{in_i} = 0$. Esto completa la prueba de que B es base de V.

Definición 3 Sean $T: V \to V$ un operador lineal sobre un espacio vectorial $V = W_1 \oplus \cdots \oplus W_r$, con W_i subespacios invariantes bajo $T(T(W_i) \subset W_i, i = 1, \cdots, r)$. Sea T_i la restricción de T a W_i . Se dice que T se descompone en los operadores T_i o que T es suma directa de los T_i y se escribe

$$T = T_1 \oplus T_2 \oplus \cdots \oplus T_r$$
.

También se dice que los subespacios W_1, \dots, W_r reducen a T, o que forman una descomposición de V en una suma directa invariante por T.

Observación 1 Consideremos los espacios U, W que reducen un operador $T: V \to V$, con $\{u_1, u_2\}$ y $\{w_1, w_2, w_3\}$ bases ordenadas de U y W respectivamente. Sean además T_1, T_2 las restricciones de T a U y a W respectivamente. Luego

$$T_1(u_1) = a_{11}u_1 + a_{12}u_2$$

 $T_1(u_2) = a_{21}u_1 + a_{22}u_2$,
 $T_2(w_1) = b_{11}w_1 + b_{12}w_2 + b_{13}w_3$
 $T_2(w_2) = b_{21}w_1 + b_{22}w_2 + b_{23}w_3$
 $T_2(w_3) = b_{31}w_1 + b_{32}w_2 + b_{33}w_3$

Quedan determinadas dos matrices

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}, \qquad B = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix}$$

que son las matrices asociadas a las transformaciones T_1 y T_2 relativas a las respectivas bases ordenadas dadas para U y W.

Por el teorema anterior sabemos que $\{u_1, u_2, w_1, w_2, w_3\}$ es una base de V. Además como $T(u_i) = T_1(u_i)$ y $T(w_i) = T_2(w_i)$, la matriz de T relativa a esta base es la matriz diagonal por bloques

$$\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}.$$

Teorema 4 Supongamos que $T: V \to T$ es lineal y V es la suma directa de subespacios invariantes invariantes por T, W_1, \cdots, W_r . Si A_i es la representación matricial de la restricción de T a W_i relativa a bases ordenadas dadas de W_i , entonces T tiene asociada la matriz diagonal por bloques

$$M = \begin{bmatrix} A_1 & 0 & \cdots & 0 \\ 0 & A_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A_r \end{bmatrix},$$

relativa a la base ordenada que resulta de concatenar en orden las bases de cada uno de los W_i.

Observación 2 La matriz diagonal por bloques M con bloques diagonales A_1, \dots, A_r se llama a veces la suma directa de las matrices A_1, \dots, A_r y se representa $M = A_1 \oplus \dots \oplus A_r$.

1.3. Descomposición primaria

Teorema 5 Sea $T: V \to V$ lineal, y f(t) = g(t)h(t) polinomios tales que f(T) = 0 y g(t) y h(t) son primos relativos. Entonces V es la suma directa de los subespacios U y W invariantes por T, donde U = nul(g(T)) y W = nul(h(T)).

Demos: Como g(t) y h(t) son primos relativos, existen polinomios r(t) y s(t) tales que

$$r(t)g(t) + s(t)h(t) = 1.$$

Luego aplicado al operador T esto nos da

$$r(T)g(T) + s(T)h(T) = \mathbb{I}.$$
 (1)

Sea $v \in V$, luego por la igualdad anterior se tiene que v = r(T)g(T)v + s(T)h(T)v. Se tiene que $r(T)g(T)v \in W = nul(h(T))$ pues

$$h(T)r(T)g(T)v = r(T)g(T)h(T)v = r(T)f(T)v = r(T)0v = 0.$$

De forma similar se tiene que $s(T)h(T)v \in U = nul(g(T))$. De este modo V es la suma de U y W.

Para ver que $V = U \oplus W$ debemos mostrar que para cada $v = u + w \in V$ la forma de escribirlo es única con $u \in U, w \in W$. Observemos que

$$r(T)g(T)v = r(T)g(T)(u+w) = r(T)g(T)u + r(T)g(T)w = r(T)g(T)w.$$

Aplicando (1) a w se tiene

$$w = r(T)g(T)w + s(T)h(T)w = r(T)g(T)w.$$

De estas últimas dos igualdades surge que w=r(T)g(T)v, de este modo vemos que w está determinado por v. De modo análogo se obtiene que u=s(T)h(T)v. Luego $V=U\oplus W$, como queríamos ver.

Observación 3 Sea A una matriz $n \times n$ sobre \mathbb{K} . Observemos que existen polinomios no nulos f(t) tales que f(A) = 0, por ejemplo el polinomio característico asociado a A. Entre todos estos polinomios consideramos los de grado mínimo y con coeficiente principal igual a y. Este polinomio y existe, es único y se llama polinomio minimal de y. Puede probarse que dicho polinomio divide a cualquier polinomio que aplicado a la matriz y de la matriz nula, en particular divide al polinomio característico de y. También puede probarse que el polinomio minimal y el polinomio característico de una matriz y tienen los mismos factores irreducibles.

Teorema 6 En el teorema 5, si f(t) es el polinomio minimal de T y (g(t) y h(t) son mónicos), entonces g(t) y h(t) son los polinomios minimales de las restricciones de T a U y W respectivamente.

Teorema 7 Teorema de Descomposición Primaria

Sea $T: V \rightarrow V$ un operador lineal con polinomio minimal

$$m(t) = f_1(t)^{n_1} \cdots f_r(t)^{n_r},$$

donde los $f_i(t)$ son polinomios mónicos irreducibles diferentes. Entonces V es la suma directa de los subespacios invariantes por T, W_1, \cdots, W_r , donde W_i es el espacio nula de $f_i(T)^{n_i}$. Además $f_i(t)^{n_i}$ es el polinomio minimal de la restricción de T a W_i .

Demos: Hacemos inducción sobre r. Para r = 1 es trivial.

Supongamos que el resultado es válido para r-1, veamos que vale para r. Por el Teorema 5 sabemos que V puede escribirse como la suma directa de subespacios invariantes por T, W_1 y V_1 , donde $W_1 = nul(f_1(T)^{n_1})$ y $V_1 = nul(f_2(t)^{n_2} \cdots f_r(t)^{n_r})$.

Por el Teorema 6, los polinomios minimales de la restricción de T a W_1 y V_1 son respectivamente $f_1(T)^{n_1}$ y $f_2(t)^{n_2} \cdots f_r(t)^{n_r}$.

Representemos la restricción de T a V_1 por T_1 . Por la hipótesis de inducción, V_1 es la suma directa de subespacios W_2, \dots, W_r tales que $W_i = nul(f_i(T)^{n_i})$ y tales que $f_i(T)^{n_i}$ es el polinomio minimal de la restricción de T_1 a W_i .

Se tiene que $nul(f_i(T)^{n_i}) \subset V_1$ para $i=2,\cdots,r$ pues cada $f_i(t)^{n_i}$ divide a $f_2(t)^{n_2}\cdots f_r(t)^{n_r}$, luego $nul(f_i(T)^{n_i})$ es el mismo que $nul(f_i(T_i)^{n_i})$ que es W_i . También la restricción de T a W_i es la misma restricción que de T_1 a W_i , $i=1,\cdots,r$, con lo cual $f_i(t)^{n_i}$ también es el polinomio minimal de la restricción de T a W_i .

Luego $V = W_1 \oplus W_2 \oplus \cdots \oplus W_r$ resulta la descomposición buscada.

Teorema 8 Un operador lineal $T: V \to V$ tiene una representación matricial diagonal si y sólo si su polinomio minimal m(t) es un producto de polinomios lineales diferentes.

<u>Demos</u>: \Leftarrow) Sea $m(t) = (t - \lambda_1)(t - \lambda_2) \cdots (t - \lambda_n)$, donde los λ_i son escalares diferentes. Por el Teorema 7, V es la suma directa de subespacios W_1, \cdots, W_r donde $W_i = nul(T - \lambda_i I)$. Luego si $v \in W_i$ entonces $(T - \lambda_i I)v = 0$, es decir que todo vector de W_i es autovector de T correspondiente a λ_i .

Por el Teorema 3, la unión de bases de $W_1 \cdots$, W_r es una base de V. Esa base está formada por autovectores de T por lo tanto T es diagonalizable.

 \Rightarrow) Sea T diagonalizable, es decir que V tiene una base formada por autovectores de T. Sean $\lambda_1, \dots, \lambda_r$ los distintos autovalores de T. Luego el operador

$$f(T) = (T - \lambda_1 I)(T - \lambda_2 I) \cdots (T - \lambda_r I)$$

aplica cada vector de la base en 0. Resulta así f(T)=0 y por lo tanto el polinomio minimal m(t) de T divide al polinomio

$$f(t) = (t - \lambda_1)(t - \lambda_2) \cdots (t - \lambda_r)$$

en consecuencia, m(t) es un producto de polinomios lineales diferentes.

Observación 4 *Una forma equivalente del Teorema 8 es la siguiente:*

Una matriz A es semejante a una matriz diagonal si y solo si su polinomio minimal m(t) es un producto de polinomios lineales diferentes.

1.4. Operadores nilpotentes

Definición 4 Un operador $T: V \to V$ se llama nilpotente si $T^n = 0$ para algún n natural.

Definición 5 Se llama índice de nilpotencia de T a $k \in \mathbb{N}$ tal que $T^k = 0$ y $T^{k-1} \neq 0$.

Definición 6 Análogamente, una matriz $A \in \mathcal{M}_{n \times n}(\mathbb{K})$ se llama **nilpotente** si $A^n = 0$ para algún natural n y de **indice** de **nilpotencia** k si $A^k = 0$ y $A^{k-1} \neq 0$.

Observación 5 Es claro que el polinomio minimal de un operador (matriz) nilpotente de índice k es $m(t) = t^k$, luego 0 es su único valor propio.

Teorema 9 Sea $T:V\to V$ un operador nilpotente de índice k, entonces T tiene una representación matricial diagonal por bloques y los bloques diagonales son de la forma

$$N = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix}$$

<u>Demos</u>: Supongamos que dim(V) = n. Sean $W_1 = nul(T)$, $W_2 = nul(T^2)$, \cdots , $W_k = nul(T^k)$. Sean $m_i = \dim(W_i)$, $i = 1, \cdots$, k. Como T tiene índice de nilpotencia k, $W_k = V$ y $W_{k-1} \neq V$ por lo tanto $m_{k-1} < m_k = n$. Entonces $W_1 \subset W_2 \subset \cdots \subset W_k = V$.

Luego por inducción podemos elegir una base $\{u_1, \dots, u_n\}$ de V tal que $\{u_1, \dots, u_{m_i}\}$ sea base de W_i .

Elegimos ahora una nueva base de V respecto de la cual T tenga la forma deseada. Es conveniente señalar los miembros de esta nueva base por parejas de índices

$$v(1,k) = u_{m_{k-1}+1}, v(2,k) = u_{m_{k-1}+2}, \cdots, v(m_k - m_{k-1}, k) = u_{m_k}$$

$$m_k-m_{k-1}$$
 componentes diagonales de orden k $(m_{k-1}-m_{k-2})-(m_k-m_{k-1})=2m_{k-1}-m_k-m_{k-2}$ componentes diagonales de orden $k-1$:
$$2m_2-m_1-m_3$$
 componentes diagonales de orden 2
$$2m_1-m_2$$
 componentes diagonales de orden 2 componentes diagonales de orden 1.

y tomando

$$v(1, k-1) = Tv(1, k), v(2, k-1) = Tv(2, k), \cdots, v(m_k - m_{k-1}, k-1) = Tv(m_k - m_{k-1}, k)$$

podemos mostrar que

$$S_1 = \{u_1, \dots, u_{m_{k-2}}, v(1, k-1), \dots, v(m_k - m_{k-1}, k-1)\}$$

es un subconjunto l.i. de W_{k-1} . Extendemos S_1 a una base de W_{k-1} , agregando nuevos elementos (si es necesario) los cuales representamos por

$$v(m_k - m_{k-1} + 1, k - 1), v(m_k - m_{k-1} + 2, k - 1), \dots, v(m_{k-1} - m_{k-2}, k - 1)$$

Luego establecemos

$$v(1,k-2) = Tv(1,k-1), v(2,k-2) = Tv(2,k-1), \cdots, v(m_{k-1}-m_{k-2},k-2) = Tv(m_{k-1}-m_{k-2},k-1).$$

Nuevamente se tiene que

$$S_2 = \{u_1, \dots, u_{m_{k-3}}, v(1, k-2), \dots, v(m_{k-1} - m_{k-2}, k-2)\}$$

es un subconjunto l.i. de W_{k-2} , el cual puede extenderse a una base de dicho subespacio agregando elementos

$$v(m_{k-1}-m_{k-2}+1,k-2),v(m_{k-1}-m_{k-2}+2,k-2),\cdots,v(m_{k-2}-m_{k-3},k-2).$$

Prosiguiendo de este modo se consigue una nueva base de V, que podemos ordenar por comodidad de referencia como

$$\begin{array}{l} v(1,k),\cdots,v(m_k-m_{k-1},k)\\ v(1,k-1),\cdots,v(m_k-m_{k-1},k-1)\cdots,v(m_{k-1}-m_{k-2},k-1)\\ \vdots\\ v(1,2),\cdots,v(m_k-m_{k-1},2),\cdots,v(m_{k-1}-m_{k-2},2),v(m_2-m_1,2)\\ v(1,1),\cdots,v(m_k-m_{k-1},1),\cdots,v(m_{k-1}-m_{k-2},1),\cdots,v(m_2-m_1,1),\cdots,v(m_1,1) \end{array}$$

La última fila forma una base de W_1 , las últimas 2 filas forman una base de W_2 , etc. Además notemos que T aplica a cada vector en el vector inmediatamente inferior en la tabla o en 0 si es un vector de la última fila. Es decir

$$Tv(i,j) = \begin{vmatrix} v(i,j-1) & j>1 \\ 0 & j=1 \end{vmatrix}.$$

Ahora, T tendrá la forma deseada si los v(i,j) están ordenados lexicográficamente, empezando con v(1,1) y avanzando sobre la primera columna hasta el v(1,k), luego saltando a v(2,1) y avanzando por la segunda columna tanto como sea posible, etc.

Además, hay exactamente como se ve directamente de la tabla. En particular, como los números m_1, \dots, m_k están determinados únicamente por T, el número de componentes diagonales en cada orden está únicamente determinado por T.

Finalmente la identidad

$$m_1 = (m_k - m_{k-1}) + (2m_{k-1} - m_k - m_{k-2} + \cdots + (2m_2 - m_1 - m_3) + (2m_1 - m_2),$$

muestra que la dim(nul(T)) es la cantidad total de componentes de la diagonal de T.

Observación 6 La matriz N es nilpotente y su índice de nilpotencia es igual a su orden. Además notemos que la matriz N de orden 1 es la matriz 0.

1.5. Forma canónica de Jordan

Nota 1 Un operador T puede expresarse en la forma canónica de Jordan si sus polinomios minimales y característico se factorizan en polinomios lineales. Esto siempre es posible si $\mathbb{K} = \mathbb{C}$. En cualquier caso podemos extender el cuerpo \mathbb{K} a uno en el cual los polinomios minimales y característicos puedan factorizarse en factores lineales, entonces en un sentido amplio cualquier operador tiene una forma canónica de Jordan. Análogamente, toda matriz es semejante a una matriz en forma canónica de Jordan.

Teorema 10 Sea $T: V \to V$ un operador lineal cuyos polinomios minimal y característico son respectivamente

$$p(t) = \det(T - tI) = (t - \lambda_1)^{n_1} \cdots (t - \lambda_r)^{n_r}$$
$$m(t) = (t - \lambda_1)^{m_1} \cdots (t - \lambda_r)^{m_r},$$

donde los λ_i son escalares distintos. Entonces T tiene una representación matricial diagonal por bloques J cuyos elementos diagonales son de la forma

$$J_{ij} = \begin{bmatrix} \lambda_i & 1 & 0 & \cdots & 0 & 0 \\ 0 & \lambda_i & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda_i & 1 \\ 0 & 0 & 0 & \cdots & 0 & \lambda_i \end{bmatrix}.$$

Para cada λ_i *los bloques correspondientes* J_{ij} *tienen las siguientes propiedades:*

- i) Existe al menos un J_{ij} de orden m_i , los demás J_{ij} son de orden $\leq m_i$.
- ii) La suma de los órdenes de los J_{ij} es n_i .
- iii) La cantidad de J_{ij} es igual a la multiplicidad geométrica de λ_i (es decir la dimensión de su autoespacio).
- iv) La cantidad de J_{ij} de cada orden posible está determinado únicamente por T.

A la matriz J se la llama forma canónica de Jordan.

<u>Demos</u>: Por el Teorema 7, T se puede descomponer en operadores T_1, \dots, T_r , esto es $T = T_1 \oplus \dots \oplus T_r$, donde $(t - \lambda_i)^{m_i}$ es el polinomio minimal de T_i . Luego en particular

$$(T_1 - \lambda_1 I)^{m_1} = 0$$
, cdots, $(T_r - \lambda_r I)^{m_r} = 0$.

Sea $N_i = T_i - \lambda_i I$, entonces para cada $i = 1, \dots, r$ $T_i = N_i + \lambda_i I$, con $N_i^{m_i} = 0$. Esto es, T_i es la suma del operador $\lambda_i I$ y un operador nilpotente N_i , el cual es tiene índice m_i ya que $(t - \lambda_i)^{m_i}$ es el polinomio minimal de T_i .

Ahora, podemos elegir una base tal que N_i esté en su forma canónica. En este base $T_i = N_i + \lambda_i I$ se representa por una matriz diagonal por bloques M_i , cuyos elementos de la diagonal son las matrices J_{ij} . La suma directa de las matrices M_i es una matriz J que es una forma canónica de Jordan y por el Teorema 4 es una representación matricial de T.

Por último, veamos que los bloques J_{ij} satisfacen las propiedades requeridas:

- i) Se obtiene por ser N_i de índice m_i .
- ii) Vale porque T y J tiene el mismo polinomio característico.
- iii) Vale pues la $\dim(nul(N_i)) = \dim(nul(T_i \lambda_i I))$ es igual a la dimensión del autoespacio correspondiente a λ_i .
- iv) Vale por estar los T_i (y los N_i) determinados únicamente por T.

Observación 7
$$J_{ij} = \lambda_i I + N_i$$

Ejemplo 3 Hallar la forma canónica de Jordan de la siguiente matriz

$$A = \begin{bmatrix} 5 & 4 & 0 & 0 & 4 & 3 \\ 2 & 3 & 1 & 0 & 5 & 1 \\ 0 & -1 & 2 & 0 & 2 & 0 \\ -8 & -8 & -1 & 2 & -12 & -7 \\ 0 & 0 & 0 & 0 & -1 & 0 \\ -8 & -8 & -1 & 0 & -9 & -5 \end{bmatrix}.$$

Primero calculamos los autovalores, obteniéndose $\lambda_1=2$ y $\lambda_2=-1$, por lo tanto existirán dos bloques de Jordan

$$J = \begin{bmatrix} J_1(2) & 0 \\ 0 & J_2(-1) \end{bmatrix}.$$

Calculamos los rangos $rg_i((A-2I)^i) = rg_i(2)$ y $rg_j((A+I)^j) = rg_j(-1)$ hasta que $rg_k(\star) = rg_{k+1}(\star)$, así tenemos:

$$rg_1(2) = rg(A - 2I) = 4,$$
 $rg_1(-1) = rg(A + I) = 4,$ $rg_2(2) = rg(A - 2I)^2 = 3,$ $rg_2(-1) = rg(A + I)^2 = 4.$ $rg_3(2) = rg(A - 2I)^3 = 2,$ $rg_4(2) = rg(A - 2I)^4 = 2,$

Entonces $m_1 = 3$, el índice de $\lambda_1 = 2$ y $m_2 = 1$.

Esto nos dice que el bloque de Jordan más grande de $J_1(2)$ es 3×3 , mientras que el bloque de Jordan más grande de $J_2(-1)$ es 1×1 . Esto significa que J(-1) es una matriz diagonal. Más aun, como $\det(A - \lambda I) = (t-2)^4(t+1)^2$, sabemos que la suma de los órdenes de $J_{1j}(2)$ es 4 y la de $J_{2j}(-1)$ es 2. Como también sabemos que existe al menos un $J_{1j}(2)$ de orden $m_1 = 3$ tenemos que la forma canónica de Jordan de A debe ser

$$J = \begin{bmatrix} 2 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 \end{bmatrix}.$$

REFERENCIAS

- [1] Axler S., Linear Algebra done right, (3era edición), Springer, 2015.
- [2] Escalante M.S., Notas de clases, 2013.
- [3] Friedberg S.H., Insel A.J., Spence L.E., Linear Algebra, Prentice Hall, New York,1989.
- [4] Hoffman K., Kunze R., Linear algebra, Prentice Hall, México 1971.
- [5] Lankham I., Nachtergaele B., Schilling A., *Linear algebra as an introduction to abstract mathematics*, World Scientific, 2016.
- [6] Lay D.C., Álgebra lineal y sus aplicaciones, Pearson Educación, México 2007.
- [7] Santillán Marcus E.A., Notas de clases, 2012.
- [8] Strang G., Linear algebra and its applications, 3rd ed, Harcourt College Publishers. 1988.
- [9] Strang G., Introduction to linear algebra, 4th ed., Wellesley. Cambridge Press, 2009.