MA2108S - Mathematical Analysis I(S) Suggested Solutions

(Semester 2 : AY2014/15)

Written by: Yip Jung Hon Audited by: Pan Jing Bin

Question 1

(a) We want to show that for all $\epsilon > 0$, there exists N such that $\left| \frac{a_n^n}{n!} \right| < \epsilon \ \forall n \ge N$. Since $\{a_n\}_{n=1}^{\infty}$ is a positive sequence, it suffices to prove that $\frac{a_n^n}{n!} < \epsilon$.

Let $\epsilon > 0$. Since $\{a_n\}_{n=1}^{\infty}$ converges to α , it is bounded, ie, there exists $B \ge |a_n| \ \forall n \in \mathbb{N}$.

 $\exists N' \in \mathbb{N} \text{ such that } N' \geq B \text{ and } \exists N > N' \text{ such that } N > \frac{B^{N'+1}}{N'!\epsilon}. \text{ Then } \frac{1}{N} < \frac{N'!\epsilon}{B^{N'+1}}.$

$$\begin{split} \forall n \geq N, \ \frac{a_n^n}{n!} \leq \frac{B^n}{n!} \\ &= (\frac{B}{n})(\frac{B}{n-1})...(\frac{B}{N'+1})(\frac{B^{N'}}{N'!}) \\ &\leq (\frac{B}{n})(\frac{B^{N'}}{N'!}) \\ &= (\frac{1}{n})(\frac{B^{N'+1}}{N'!}) \\ &< \epsilon. \end{split}$$

(b) Claim : $1 \le x_n \le 2 \ \forall n \in \mathbb{N}$.

The case for n=1 is clear. Suppose that $1 \le x_n \le 2$ for some $n \in \mathbb{N}$. Then we have

$$x_{n+1} = \frac{3}{1+x_n} \implies \frac{3}{1+2} \le x_{n+1} \le \frac{3}{1+1}$$
$$\implies 1 \le x_{n+1} \le \frac{3}{2}$$
$$\implies 1 \le x_{n+1} \le 2.$$

The rest follows from mathematical induction. Now observe that

$$|x_{n+2} - x_{n+1}| = \left| \frac{3}{1 + x_{n+1}} - \frac{3}{1 + x_n} \right|$$
$$= \frac{3|x_{n+1} - x_n|}{(1 + x_{n+1})(1 + x_n)}$$
$$\leq \frac{3}{4}|x_{n+1} - x_n|.$$

Since the sequence is a contraction, it is Cauchy and thus has a limit.

Question 2

Method 1: The idea is that if a sequence is increasing and starts off with f(a) > a and ends with f(b) < b, it must 'cross' the f(x) = x line at some point.

If f(a) = a or f(b) = b, then we are done, so assume f(a) > a and f(b) < b. Let the first interval $I_1 = [a, b]$ and pick the midpoint of I_1 , call it m. If f(m) = m, we are done, so for the sake of argument we will assume f(m) < m or f(m) > m. From here, we recursively pick I_2 as one of two intervals [a, m] or [m, b] such that the following condition (\star) is fulfilled:

Let s,t be the starting and ending points of the chosen interval I_2 respectively. Then:

$$f(s) \ge s$$
 and $f(t) \le t$ (\star)

Because the function is monotone increasing, we will not encounter a case whereby f(m) > f(a), f(b) or f(m) < f(a), f(b). It must be that $f(a) \le f(b)$ and this method output a well-defined interval. Now, keep applying the above method to get a nested sequence of intervals such that

$$I_1 \supset I_2 \supset I_3 \cdots$$

and that for each interval, if s, t are the starting and ending points respectively, then (\star) is fulfilled. If at any point f(s) = s or f(t) = t, then we are done.

Now, by Nested Interval Property, there exists some point which is in the intersection of all the intervals, x_0 . x_0 is in the intersection of all the intervals, so it fulfills (\star) , implying that $f(x_0) \leq x_0$ and $f(x_0) \geq x_0$.

Method 2 : Consider the sequence $\{a, f(a), f^2(a), f^3(a), ...\}$.

Claim 1: $\forall n \in \mathbb{Z}_{\geq 0}, \ f^n(a) \in [a, b].$

Proof: We will prove by mathematical induction. The base case is trivial since $a \in [a, b]$.

Induction step: Assume $f^n(a) \in [a, b]$. Since f is monotonically increasing, we have

$$a \le f^n(a) \le b$$

$$f(a) \le f(f^n(a)) \le f(b)$$

$$a \le f^{n+1}(a) \le b$$

so $f^{n+1}(a) \in [a, b]$.

Claim 2: $f^{n+1}(a) \ge f^n(a) \ \forall n \in \mathbb{Z}_{>0}$.

Proof: Again by mathematical induction. The base case is trivial since it is given in the question that $f(a) \ge a$.

Induction step: Assume $f^{n+1}(a) \ge f^n(a)$. Since f is monotonically increasing, we have $f(f^{n+1}(a)) \ge f(f^n(a)) \implies f^{n+2}(a) \ge f^{n+1}(a)$.

Thus the sequence $\{a, f(a), f^2(a), f^3(a), ...\}$ is monotonically increasing and bounded above. By the monotone convergence theorem, the sequence converges to some $L \in [a, b]$. It is easy to check that f(L) = L.

(b) Suppose for contradiction that $\lim x_n \neq b$. That means that there exist some $\epsilon > 0$ such that $\forall N \in \mathbb{N}, \exists n > N$ such that $|x_n - b| \geq \epsilon$. This implies there are infinitely many points $|x_n - b| \geq \epsilon$. Since $x_n \leq b, |x_n - b| \geq \epsilon \implies b - x_n \geq \epsilon$. Construct a subsequence $\{y_n\}$ of $\{x_n\}$ consisting of all terms x_n that fulfill the inequality $b - x_n \geq \epsilon$. Then $y_n \leq b - \epsilon$ so $\gamma(y_n) \leq \gamma(b - \epsilon) < \gamma(b)$. This means that

$$|\gamma(y_n) - \gamma(b)| \ge |\gamma(b - \epsilon) - \gamma(b)| \ \forall n \in \mathbb{N}$$

so $\{\gamma(y_n)\}$ cannot converge to $\gamma(b)$. Yet, this is a contradiction since $\gamma(y_n)$ is a subsequence of $\gamma(x_n)$.

Question 3

We want to show the convergence of

$$\sum_{n=0}^{\infty} \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \right) \frac{\sin(\frac{n\pi}{2})}{n}.$$

First, $\sin(\frac{n\pi}{2}) = 1$ if $n \mod 4 = 1$, $\sin(\frac{n\pi}{2}) = -1$ if $n \mod 4 = 3$, $\sin(\frac{n\pi}{2}) = 0$ if $n \mod 4 = 0,2$. The sum simplifies to:

$$\sum_{n \text{ odd}}^{\infty} \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \right) \frac{\phi(n)}{n}$$

where $\phi(n) = 1$ if $n \mod 4 = 1$, $\phi(n) = -1$ if $n \mod 4 = 3$ and $\phi(n) = 0$ if $n \mod 4 = 0,2$. This sum will converge by the Alternating Series Test if we can show $\frac{1}{n} \left(1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}\right)$ is monotone decreasing. We want to show:

$$\frac{1}{n} + \frac{1}{2n} + \dots + \frac{1}{n^2} > \frac{1}{n+1} + \frac{1}{2(n+1)} + \dots + \frac{1}{n(n+1)} + \frac{1}{(n+1)^2}$$

This can be done by moving terms to the left,

$$\frac{1}{n} - \frac{1}{n+1} + \frac{1}{2n} - \frac{1}{2(n+1)} + \dots + \frac{1}{n^2} - \frac{1}{(n+1)n} > \frac{1}{(n+1)^2}$$

$$\iff \frac{1}{n(n+1)} + \frac{1}{2(n)(n+1)} + \dots + \frac{1}{n \times n(n+1)} > \frac{1}{(n+1)^2}$$

$$\iff \frac{1}{n(n+1)} \left(1 + \frac{1}{2} + \dots + \frac{1}{n} \right) > \frac{1}{(n+1)^2}$$

The last statement is obviously true, since $\frac{1}{n(n+1)} > \frac{1}{(n+1)^2}$ and $\left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right) > 1$. Applying the Alternating Series Test shows convergence.

(b) First note that $a_n \geq 0$ for all n. Now suppose a_n is some non-zero positive value, then there exists some $k \in \mathbb{Z}$ such that $\frac{1}{k} < a_1$. Now we show by induction that if $a_n > \frac{1}{k}$, then $a_{n+1} > \frac{1}{k+1}$.

Assume $a_n > \frac{1}{k}$, then,

$$a_n - a_{n+1} = a_{n+1}^2 \implies a_{n+1} = \sqrt{a_n + \frac{1}{4}} - \frac{1}{2} = \frac{-1 + \sqrt{1 + 4a_n}}{2}.$$

Note that the negative root is rejected as a_n is positive. Now,

$$a_{n+1} = \frac{-1 + \sqrt{1 + 4a_n}}{2} > \frac{-1 + \sqrt{1 + \frac{4}{k}}}{2} \tag{1}$$

Further,

$$\sqrt{1 + \frac{4}{k}} > 1 + \frac{2}{k+1}$$

$$\iff 1 + \frac{4}{k} > 1 + \frac{4}{k+1} + \frac{4}{(k+1)^2}$$

$$\iff \frac{1}{k} > \frac{1}{k+1} + \frac{1}{(k+1)^2}$$

$$\iff \frac{1}{k} - \frac{1}{k+1} > \frac{1}{(k+1)^2}$$

$$\iff \frac{1}{k(k+1)} > \frac{1}{(k+1)^2}$$

The last inequality is obviously true, means that we can replace (1) with:

$$a_{n+1} > \frac{-1 + \sqrt{1 + \frac{4}{k}}}{2}$$

$$> \frac{-1 + 1 + \frac{2}{k+1}}{2}$$

$$> \frac{1}{k+1}$$

If $a_1 = 0$, then $\{a_n\}_{n=1}^{\infty}$ is the zero sequence. If $a_1 > 0$, then $\exists K \in \mathbb{R}^+$ such that $a_1 > K$. Then $\forall n \in \mathbb{N}, a_n \geq \frac{K}{n}$. This means that $\{a_n\}_{n=1}^{\infty}$ cannot converge by comparison to p-series. As a result, we conclude that $\{a_n\}_{n=1}^{\infty}$ must be the zero sequence.

Question 4

(a) Note that

$$\min\{f(x_1), \dots f(x_n)\} \le \sum_{k=1}^n \lambda_k f(x_k) \le \max\{f(x_1), \dots f(x_n)\}.$$

Since [a, b] is connected, the range of f is connected as f is continuous. By the intermediate value theorem, f takes on every value between $\min\{f(x_1), \dots f(x_n)\}$ and $\max\{f(x_1), \dots f(x_n)\}$. So there exists an $x_0 \in [a, b]$ such that $f(x_0) = \sum_{k=1}^n \lambda_k f(x_k)$.

(b) Put

$$f(x) = \frac{2^{x^2} + 3^{x^2}}{2^x + 3^x}.$$

$$\lim_{x \to 0} f(x)^{1/x} = \exp\left\{\lim_{x \to 0} \frac{\ln f(x)}{x}\right\}$$

$$= \exp\left\{\lim_{x \to 0} \frac{f'(x)}{f(x)}\right\}$$
(2)

$$\frac{d}{dx} \left(\frac{2^{x^2} + 3^{x^2}}{2^x + 3^x} \right) = \frac{\left(\ln\left(2\right) \cdot 2^{x^2 + 1}x + 2\ln\left(3\right) \cdot 3^{x^2}x \right) \left(2^x + 3^x \right) - \left(2^x \ln\left(2\right) + 3^x \ln\left(3\right) \right) \left(2^{x^2} + 3^{x^2} \right)}{\left(2^x + 3^x \right)^2}$$

$$\frac{f'(x)}{f(x)} = \frac{\left(\ln\left(2\right) \cdot 2^{x^2 + 1}x + 2\ln\left(3\right) \cdot 3^{x^2}x \right) \left(2^x + 3^x \right) - \left(\ln\left(2\right) \cdot 2^x + \ln\left(3\right) \cdot 3^x \right) \left(2^{x^2} + 3^{x^2} \right)}{\left(2^x + 3^x \right) \left(2^{x^2} + 3^{x^2} \right)}$$

Take the limit as $x \to 0$ gives:

$$\frac{f'(x)}{f(x)} = \frac{0 - 2(\ln 2 + \ln 3)}{2^2}$$

Subbing in back into (2), we have

$$\lim_{x \to 0} f(x)^{\frac{1}{x}} = \exp\left\{\frac{-(\ln 2 + \ln 3)}{2}\right\}$$
$$= \exp\left\{\frac{-\ln 2}{2}\right\} \cdot \exp\left\{\frac{-\ln 3}{2}\right\}$$
$$= \frac{1}{\sqrt{6}}.$$

Question 5

(a) We want to prove that $f(x) = \cos(rx)$ for some $r \in \mathbb{R}$ or f(x) = 0, and these are the only functions that satisfies the properties:

- f(x+y) + f(x-y) = 2f(x)f(y) for $x, y \in \mathbb{R}$.
- |f| < 1.

Obviously the zero function satisfies both properties. We will now prove that if f is not the zero function, then $f(x) = \cos(rx)$ for some $r \in \mathbb{R}$.

Claim 1: If f is not the zero function, then f(0) = 1.

Proof : Set x = 0, y = 0. One has:

$$f(0) + f(0) = 2[f(0)]^2 \implies f(0) = 0 \text{ or } f(0) = 1.$$

If f(0) = 0, for $y \in \mathbb{R}$, by setting x = 0, one has $f(y) + f(y) = 0 \implies f(y) = -f(y) = 0$ for all $y \in \mathbb{R}$, which means that f is the zero function. Thus if f is not the zero function, then f(0) = 1.

Claim 2: If f is not the zero function then there exists a point a such that $0 < f(a) \le 1$.

Proof: Assume, for the sake of contradiction, that $f(a) \leq 0 \ \forall a \in \mathbb{R}$. Since f is not the zero function, $\exists a' \in \mathbb{R}$ such that f(a') < 0. By choosing x = y = a', we have

$$f(2a') + f(0) = 2f(a')^2$$
.

Since $f(a') \neq 0$, 2f(a') > 0 so f(2a') > 0 or f(0) > 0. This is a contradiction and the proof is complete.

There will be a point $0 \le \theta < \pi$ such that $f(a) = \cos(\theta)$. We can use strong induction to show that $f(ma) = \cos(m\theta)$ and $f(\frac{a}{2^n}) = \cos(\frac{\theta}{2^n})$. Using the base cases f(0) = 1 and $f(a) = \cos(\theta)$, suppose $f(ka) = \cos(k\theta)$ for $0 \le k \le m - 1$. To show $f(ma) = \cos(m\theta)$, set x = (m-1)a, y = a.

$$f(ma) + f((m-2)a) = 2f((m-1)a)f(a)$$

$$f(ma) + \cos((m-2)\theta) = 2\cos((m-1)\theta)\cos(\theta)$$

$$f(ma) = 2\cos((m-1)\theta)\cos(\theta) - \cos((m-2)\theta)$$

However, factor formula tells us that $\cos(m\theta) + \cos((m-2)\theta) = 2\cos((m-1)\theta)\cos(\theta)$, which gives us $f(ma) = \cos(m\theta)$. One may replace m with -k to see that $f(ma) = \cos(m\theta)$ holds for all $m \in \mathbb{Z}$, not just for positive m.

Further, we want to show $f(\frac{a}{2^n}) = \cos(\frac{\theta}{2^n})$. Using the base case $f(a) = \cos(\theta)$, assume true for k = m - 1, set $x = y = \frac{a}{2^n}$. One has:

$$f\left(\frac{a}{2^n} + \frac{a}{2^n}\right) = 2f\left(\frac{a}{2^n}\right)f\left(\frac{a}{2^n}\right) - f(0)$$

Since f is not the zero function, f(0) = 1. Thus

$$\cos\left(\frac{\theta}{2^{n-1}}\right) = 2f\left(\frac{a}{2^n}\right)^2 - 1.$$

However, the double angle formula gives us $\cos x = 2\cos^2\left(\frac{x}{2}\right) - 1$. Replacing $x = \frac{\theta}{2^{n-1}}$ gives $f\left(\frac{a}{2^n}\right) = \cos\left(\frac{\theta}{2^n}\right)$.

Consider the set $\mathscr{G}=\{\frac{m}{2^n}, m\in\mathbb{Z}, n\in\mathbb{N}\}$. \mathscr{G} is a dense set in \mathbb{R} . This is because \mathbb{Q} is dense in \mathbb{R} , so given some real number r, there exists a rational number $\frac{p}{q}$ such that $|r-\frac{p}{q}|<\epsilon/2$. This means that $r\in(\frac{p}{q}-\frac{\epsilon}{2},\frac{p}{q}+\frac{\epsilon}{2})$. The width of this interval is ϵ . One may choose n sufficiently big such that $\frac{1}{2^n}<\epsilon$. So the sequence $\frac{1}{2^n},\frac{2}{2^n},\frac{3}{2^n}\cdots$ will not 'skip' over the $(\frac{p}{q}-\frac{\epsilon}{2},\frac{p}{q}+\frac{\epsilon}{2})$ interval, meaning there is some element of \mathscr{G} also within $(\frac{p}{q}-\frac{\epsilon}{2},\frac{p}{q}+\frac{\epsilon}{2})$, which is within an ϵ distance from r, so \mathscr{G} is dense in \mathbb{R} .

Write $r = \frac{\theta}{a}$, for $r \in \mathbb{R}$. We know that $f(x) = \cos(rx)$ for all $x \in \mathcal{G}$. Since $f(x) = \cos(rx)$ on a dense set, $f(x) = \cos(rx)$ for all $x \in \mathbb{R}$. This comes from the continuity of f. Take a point $b \in \mathbb{R}$. Since \mathcal{G} is dense, there exists a sequence in $(g_n) \to b$, where each $g_n \in \mathcal{G}$. Continuity of f gives us $(f(g_n)) \to f(b)$, which is $\lim_{x\to b} \cos(rx)$. Since $\cos(rx)$ is continuous, $\lim_{x\to b} \cos(rx) = \cos(rb) = f(b)$, and we are done.

(b) Set the limit of $\frac{\sum_{i=1}^{n} a_i}{n}$ to be L. Then note

$$\frac{a_1 + \dots + a_n}{n} = \frac{a_1 + \dots + a_{n-1}}{n-1} \cdot \left(1 - \frac{1}{n}\right) + \frac{a_n}{n}$$

For any sequence, if (x_n) converges to L, then so does x_{n-1} . This means that the sequence $\frac{a_1+\cdots+a_{n-1}}{n-1}$ converges to L. Taking limits on both sides:

$$\lim_{n \to \infty} \frac{a_1 + \dots + a_n}{n} = \lim_{n \to \infty} \frac{a_1 + \dots + a_{n-1}}{n-1} \cdot \left(1 - \frac{1}{n}\right) + \frac{a_n}{n}$$

$$L = L(1) + \lim_{n \to \infty} \frac{a_n}{n}$$

$$\lim_{n \to \infty} \frac{a_n}{n} = 0.$$