

TABLE OF CONTENTS

Ol Introduction

project overview

04 Data & EDA

Data description

O2 Problem Statement,

What is the problem we are trying to solve?

06 Model and results

Models used and results

O3 Workflow and Tools

Project outline and used tools

07 Conclusion

Final results and recommendations

Ol Introduction

What is Bitcoin?

- Virtual currency or a digital currency (is a type of money that is completely virtual)
- You can use it to buy products and services.

What is a Ransomware?

- Ransomware is a type of malware that threatens to publish the victim's personal data or block access to it unless a ransom is paid.
- The payment in Bitcoin

Why Attacker prefer bitcoin payment?

Unlike credit card payment, The transactions with bitcoin are completely anonymous and hard to trace.

In May 19, 2021, hackers who shut down an oil company earned over

\$90M

Colonial Pipeline Ransomware

- In May 9, The company was shut down for two days.
- Money was transferred to 47 bitcoin wallets.
- Attackers sent the company a decryption tool.
- By May 13, all the wallets were emptied and they couldn't trace it.

How can this model help people?

Detecting this kind of attack can protect organizations and individuals from ransomware attacks by blocking the attacker's bitcoin address associated with suspicious transactions.

Topmost type of Ransomware

CryptoLocker

attackers received around 400K \$

CryptoWall

attackers received around 2M \$

DMA Locker

attackers received around 180K \$

Problem Statement

Binary classification problem

Build a classification model to detect whether the bitcoin transaction is a ransomware attack or not.

Workflow & Tools

(1) Data Acquisition

Data imported from **UCI.** have around **3 million** record

(3) Building the model

Training the model on the pre-processed data

(2) Pre-processing

Preparing the data for the model

(4) Evaluating

Scoring the model

Who collected the data?

It was collected by domain expertises.

<u>paper</u>

When it was collected?

The data was collected from 2009 to 2018.

What is the data size?

~3M records
With 41k records
labeled as a ransom
transaction

Features

1. Address

bitcoin transaction recipient.

2. Year and day

Indicates the exact day and year of the attack.

3. length

How many mixing rounds there was?

4. Weight and count

Indicates the merge behavior. (amount)

5. count

Indicates the merge behavior. (number of transactions)

Features

8. looped

How many there was rounds until merging the coins.
Goes through these steps:

- split their coins;
- 2. move coins using different wallets
- 3. merge them in a single address.

9. neighbors

The number of neighbors a transaction had.

10. income

Income in terms of Satoshi amount.

Features

Figure 3. Sample Bitcoin Graph Features: network of 10 addresses and 7 transactions.

Ransomware Distribution

Data Description

Domain experts

The data was collected from 2009 to 2018.

The dataset has 3 million record

The data collected using a time interval of 24 hours, they extracted daily bitcoin transactions on the network.

- 1. Who collected it (paper)
- 2. When it was collecting
- 3. Size
- 4. How it was collected
- Features (explanation)
- 6. Challenges

CV

Pre-Processing (1) Changing categorical data (3) Scaling (2) Handling (4) Transformations unbalanced data

Handle Unbalanced Data

Correlation before data processing

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

Correlation after data processing

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

--0.2

Transforming all Data

Data skewed to the left

Transforming all Data

Power Transformer (yoe johnson)

Data:

unbalanced, skewed data

Model:

Logistic regression

Scoring:

Accuracy = 0.99

Precision = 0.97

Recall = 0.99

F1 = 0.98

Data:

randomly undersampled and balanced, scaled with min-max

Model:

Gradient boost tree

Scoring:

Accuracy = 0.84

Precision = 0.81

Recall = 0.89

F1 = 0.85

Data:

randomly undersampled and balanced.

Model:

Ensembling for GBT, NB, EXT (highest score staking)

Scoring:

Accuracy =

Precision = 0.8704

Recall = 0.9114

F-Score = 0.8904

Data:

Undersampled and unbalanced, scaled with min-max

Model:

StackingClassifier with XGB, GBT and GNB

Scoring:

Accuracy = 0.9005

Precision = 0.8827

Recall = 0.9239

F-Score = 0.9028

Final Model

Data:

Undersampled and unbalanced, scaled with min-max

Model:

StackingClassifier with XGB, GBT and GNB

Scoring:

Accuracy = 0.9118

Precision = 0.896

Recall = 0.9319

F-Score = 0.9136

AdaBoost AUC

Ransomware Attack Simulation

How Ransomware Attack happen?

Final Result and Recommendations

Our best model was **AdaBoost** and has achieved the best score (F1-Score = 0.91)

- For future work, we recommend:
 - Collecting more updated data with more significant features like the time and targeted company information.

