Análise sintática O papel do analisador sintático

Prof. Edson Alves

Faculdade UnB Gama

Escrevendo um gramática

Sumário

1. Escrevendo um gramática

 Qualquer construção que pode ser descrita por uma expressão regular pode ser descrita por uma gramática

- Qualquer construção que pode ser descrita por uma expressão regular pode ser descrita por uma gramática
- A recíproca nem sempre é verdadeira

- Qualquer construção que pode ser descrita por uma expressão regular pode ser descrita por uma gramática
- A recíproca nem sempre é verdadeira
- Por exemplo, a expressão regular $(a \mid b)^*abb$ e a gramática

$$A_0 \rightarrow aA_0 \mid bA_0 \mid aA_1$$

$$A_1 \rightarrow bA_2$$

$$A_2 \rightarrow bA_3$$

$$A_3 \rightarrow \epsilon$$

descrevem a mesma linguagem

- Qualquer construção que pode ser descrita por uma expressão regular pode ser descrita por uma gramática
- A recíproca nem sempre é verdadeira
- lacktriangle Por exemplo, a expressão regular $(a\mid b)^*abb$ e a gramática

$$A_0 \rightarrow aA_0 \mid bA_0 \mid aA_1$$

$$A_1 \rightarrow bA_2$$

$$A_2 \rightarrow bA_3$$

$$A_3 \rightarrow \epsilon$$

descrevem a mesma linguagem

▶ É possível converter automaticamente um autômatico finito não-determinístico em uma gramática que gere a mesma linguagem do AFN

Algoritmo de conversão de um AFN para uma gramática livre de contexto

```
Input: um AFN
Output: uma gramática livre de contexto
 1. for cada estado i do AFN do
        crie um símbolo não-terminal A_i da gramática
        if o estado i possui um transição para o estado i com rótulo a then
 3.
           introduza a produção A_i \rightarrow aA_i na gramática
 4:
 5:
        else if o estado i possui um transicão para o estado i com rótulo \epsilon then
           introduza a produção A_i \rightarrow A_j na gramática
 6:
        if o estado i é um estado de aceitação then
 7:
           introduza a produção A_i \rightarrow \epsilon na gramática
 8.
        else if o estado i é o estado de partida then
 9.
           torne o estado A_i o símbolo de partida da gramática
10:
```

1. As regras léxicas de uma linguagem geralmente são simples, sendo as expressões regulares suficientes para descrevê-las

- 1. As regras léxicas de uma linguagem geralmente são simples, sendo as expressões regulares suficientes para descrevê-las
- 2. As expressões regulares, em geral, descrevem os tokens da linguagem de forma mais concisa e clara do que as gramáticas livres de contexto

- 1. As regras léxicas de uma linguagem geralmente são simples, sendo as expressões regulares suficientes para descrevê-las
- 2. As expressões regulares, em geral, descrevem os tokens da linguagem de forma mais concisa e clara do que as gramáticas livres de contexto
- 3. É possível gerar analisadores léxicos mais eficientes a partir de expressões regulares do que a partir de gramáticas arbitrárias

- 1. As regras léxicas de uma linguagem geralmente são simples, sendo as expressões regulares suficientes para descrevê-las
- 2. As expressões regulares, em geral, descrevem os tokens da linguagem de forma mais concisa e clara do que as gramáticas livres de contexto
- 3. É possível gerar analisadores léxicos mais eficientes a partir de expressões regulares do que a partir de gramáticas arbitrárias
- 4. A separação da estrutura léxica da estrutura sintática permite a modularização da interface de vanguarda

lacktriangle A prova que uma gramática G gera uma linguagem L(G) é feita em duas etapas:

- lacktriangle A prova que uma gramática G gera uma linguagem L(G) é feita em duas etapas:
 - 1. mostrar que cada cadeia gerada por ${\cal G}$ está em ${\cal L}({\cal G})$

- lacktriangle A prova que uma gramática G gera uma linguagem L(G) é feita em duas etapas:
 - 1. mostrar que cada cadeia gerada por G está em ${\cal L}(G)$
 - 2. mostrar que cada cadeia em ${\cal L}(G)$ pode ser gerada por ${\cal G}$

- lacktriangle A prova que uma gramática G gera uma linguagem L(G) é feita em duas etapas:
 - 1. mostrar que cada cadeia gerada por G está em L(G)
 - 2. mostrar que cada cadeia em ${\cal L}({\cal G})$ pode ser gerada por ${\cal G}$
- Por exemplo, considere a gramática

$$S \to (S)S \mid \epsilon$$

- \triangleright A prova que uma gramática G gera uma linguagem L(G) é feita em duas etapas:
 - 1. mostrar que cada cadeia gerada por G está em L(G)
 - 2. mostrar que cada cadeia em L(G) pode ser gerada por G
- Por exemplo, considere a gramática

$$S \to (S)S \mid \epsilon$$

Esta gramática gera todas as cadeias de parêntesis balanceadas

- \blacktriangleright A prova que uma gramática G gera uma linguagem L(G) é feita em duas etapas:
 - 1. mostrar que cada cadeia gerada por G está em L(G)
 - 2. mostrar que cada cadeia em L(G) pode ser gerada por G
- Por exemplo, considere a gramática

$$S \to (S)S \mid \epsilon$$

- Esta gramática gera todas as cadeias de parêntesis balanceadas
- Para provar esta afirmação, primeiro é preciso provar que qualquer cada sentença derivável de S é balanceada

- lacktriangle A prova que uma gramática G gera uma linguagem L(G) é feita em duas etapas:
 - 1. mostrar que cada cadeia gerada por G está em L(G)
 - 2. mostrar que cada cadeia em ${\cal L}(G)$ pode ser gerada por ${\cal G}$
- Por exemplo, considere a gramática

$$S \to (S)S \mid \epsilon$$

- Esta gramática gera todas as cadeias de parêntesis balanceadas
- ightharpoonup Para provar esta afirmação, primeiro é preciso provar que qualquer cada sentença derivável de S é balanceada
- Esta prova é feita por indução no número de passos da derivação

Em apenas um passo de derivação, a única cadeia gerada é a cadeia vazia ε, a qual é trivialmente balanceada

- Em apenas um passo de derivação, a única cadeia gerada é a cadeia vazia ε, a qual é trivialmente balanceada
- Suponha que qualquer derivação com menos do que n passos gere uma cadeia balanceada

- Em apenas um passo de derivação, a única cadeia gerada é a cadeia vazia €, a qual é trivialmente balanceada
- \triangleright Suponha que qualquer derivação com menos do que n passos gere uma cadeia halanceada
- Uma derivação com exatamente n passos tem a forma

$$S \Rightarrow (S)S \stackrel{*}{\Rightarrow} (x)S \stackrel{*}{\Rightarrow} (x)y$$

onde x e y são derivações com que n passos

- Em apenas um passo de derivação, a única cadeia gerada é a cadeia vazia €. a qual é trivialmente balanceada
- \triangleright Suponha que qualquer derivação com menos do que n passos gere uma cadeia balanceada
- Uma derivação com exatamente n passos tem a forma

$$S \Rightarrow (S)S \stackrel{*}{\Rightarrow} (x)S \stackrel{*}{\Rightarrow} (x)y$$

- onde x e y são derivações com que n passos
- \triangleright Pela hipótese de inducão, x e y são balanceadas e, portanto, a derivação S com exatamente n passos também é balanceada

lacktriangle A prova que qualquer cadeia balanceada é derivável a partir de S é feita por meio de indução no comprimento da cadeia

- lacktriangle A prova que qualquer cadeia balanceada é derivável a partir de S é feita por meio de indução no comprimento da cadeia
- A menor cadeia balanceada é a cadeia vazia, que é derivável a partir de S por meio da produção $S \to \epsilon$

- \triangleright A prova que qualquer cadeia balanceada é derivável a partir de S é feita por meio de indução no comprimento da cadeia
- \triangleright A menor cadeia balanceada é a cadeia vazia, que é derivável a partir de S por meio da produção $S \rightarrow \epsilon$
- ightharpoonup Suponha que todas as cadeias balanceadas com comprimento menor do que 2nsejam deriváveis a partir de S e que w seja uma cadeia balanceada de tamanho 2n

- \triangleright A prova que qualquer cadeia balanceada é derivável a partir de S é feita por meio de indução no comprimento da cadeia
- \triangleright A menor cadeia balanceada é a cadeia vazia, que é derivável a partir de S por meio da produção $S \rightarrow \epsilon$
- ightharpoonup Suponha que todas as cadeias balanceadas com comprimento menor do que 2nsejam deriváveis a partir de S e que w seja uma cadeia balanceada de tamanho 2n
- \triangleright Certamente w inicia com um parêntesis à esquerda

- \triangleright A prova que qualquer cadeia balanceada é derivável a partir de S é feita por meio de indução no comprimento da cadeia
- \triangleright A menor cadeia balanceada é a cadeia vazia, que é derivável a partir de S por meio da produção $S \rightarrow \epsilon$
- ightharpoonup Suponha que todas as cadeias balanceadas com comprimento menor do que 2nsejam deriváveis a partir de S e que w seja uma cadeia balanceada de tamanho 2n
- \triangleright Certamente w inicia com um parêntesis à esquerda
- ightharpoonup Seja (x) o menor prefixo de w com o mesmo número de parêntesis à esquerda e à direita

- A prova que qualquer cadeia balanceada é derivável a partir de S é feita por meio de indução no comprimento da cadeia
- \blacktriangleright A menor cadeia balanceada é a cadeia vazia, que é derivável a partir de S por meio da produção $S\to\epsilon$
- \blacktriangleright Suponha que todas as cadeias balanceadas com comprimento menor do que 2n sejam deriváveis a partir de S e que w seja uma cadeia balanceada de tamanho 2n
- lacktriangle Certamente w inicia com um parêntesis à esquerda
- ightharpoonup Seja (x) o menor prefixo de w com o mesmo número de parêntesis à esquerda e à direita
- Assim, w=(x)y, onde x e y são cadeias balanceadas com comprimento menor do que 2n

- lacktriangle A prova que qualquer cadeia balanceada é derivável a partir de S é feita por meio de indução no comprimento da cadeia
- \blacktriangleright A menor cadeia balanceada é a cadeia vazia, que é derivável a partir de S por meio da produção $S\to\epsilon$
- lacktriangle Suponha que todas as cadeias balanceadas com comprimento menor do que 2n sejam deriváveis a partir de S e que w seja uma cadeia balanceada de tamanho 2n
- lacktriangle Certamente w inicia com um parêntesis à esquerda
- ightharpoonup Seja (x) o menor prefixo de w com o mesmo número de parêntesis à esquerda e à direita
- Assim, w=(x)y, onde x e y são cadeias balanceadas com comprimento menor do que 2n
- Pela hipótese de indução, x e y são deriváveis a partir de S

- lacktriangle A prova que qualquer cadeia balanceada é derivável a partir de S é feita por meio de indução no comprimento da cadeia
- \blacktriangleright A menor cadeia balanceada é a cadeia vazia, que é derivável a partir de S por meio da produção $S\to\epsilon$
- \blacktriangleright Suponha que todas as cadeias balanceadas com comprimento menor do que 2n sejam deriváveis a partir de S e que w seja uma cadeia balanceada de tamanho 2n
- lacktriangle Certamente w inicia com um parêntesis à esquerda
- lackbox Seja (x) o menor prefixo de w com o mesmo número de parêntesis à esquerda e à direita
- Assim, w=(x)y, onde x e y são cadeias balanceadas com comprimento menor do que 2n
- lacktriangle Pela hipótese de indução, x e y são deriváveis a partir de S
- ightharpoonup Assim, w é derivável a partir de S, por meio da derivação

$$S \Rightarrow (S)S \stackrel{*}{\Rightarrow} (x)S \stackrel{*}{\Rightarrow} (x)y$$

▶ Uma gramática pode ser reescrita para eliminar possíveis ambiguidades

- Uma gramática pode ser reescrita para eliminar possíveis ambiguidades
- Por exemplo, considere a gramática abaixo, que torna o else opcional:

```
cmd \rightarrow  if expr then cmd | if expr then else cmd | outro
```

- ▶ Uma gramática pode ser reescrita para eliminar possíveis ambiguidades
- Por exemplo, considere a gramática abaixo, que torna o else opcional:

```
cmd \rightarrow  if expr then cmd | if expr then else cmd | outro
```

Na gramática, **outro** significa qualquer outro enunciado

- Uma gramática pode ser reescrita para eliminar possíveis ambiguidades
- Por exemplo, considere a gramática abaixo, que torna o else opcional:

$$cmd \rightarrow$$
 if $expr$ then cmd $|$ if $expr$ then else cmd $|$ outro

- Na gramática, outro significa qualquer outro enunciado
- Esta gramática é ambígua: a cadeia

if
$$E_1$$
 then if E_2 then S_1 else S_2

possui duas árvores gramaticais distintas

Segunda árvore gramatical para a expressão 'if E_1 then if E_2 then S_1 else S_2 '

Na maioria das linguagens, a primeira das duas árvores seria a esperada

- Na maioria das linguagens, a primeira das duas árvores seria a esperada
- ▶ A regra geral é associar cada else ao then anterior mais próximo ainda não associado

- Na maioria das linguagens, a primeira das duas árvores seria a esperada
- A regra geral é associar cada else ao then anterior mais próximo ainda não associado
- Para reescrita, a ideia é que um enunciado entre um then e um else precisa estar associado, isto é, não pode terminar em um then não associado a um else

- Na maioria das linguagens, a primeira das duas árvores seria a esperada
- ▶ A regra geral é associar cada else ao then anterior mais próximo ainda não associado
- Para reescrita, a ideia é que um enunciado entre um **then** e um **else** precisa estar associado, isto é, não pode terminar em um **then** não associado a um **else**

▶ Uma gramática é recursiva à esquerda se possui um não-terminal A tal que existe um derivação $A \stackrel{\scriptscriptstyle +}{\Rightarrow} A \alpha$ para alguma cadeia α

- Uma gramática é recursiva à esquerda se possui um não-terminal A tal que existe um derivação $A \stackrel{\scriptscriptstyle +}{\Rightarrow} A \alpha$ para alguma cadeia α
- Métodos top-down não podem processar gramáticas recursivas à esquerda, demandando uma reescrita da gramática que elimine a recursão à esquerda

- Uma gramática é recursiva à esquerda se possui um não-terminal A tal que existe um derivação $A \stackrel{+}{\Rightarrow} A\alpha$ para alguma cadeia α
- Métodos top-down não podem processar gramáticas recursivas à esquerda. demandando uma reescrita da gramática que elimine a recursão à esquerda
- ightharpoonup Uma recursão simples à esquerda acontece se existe um produção A o A lpha

Análise sintática Prof Edson Alves

- Uma gramática é recursiva à esquerda se possui um não-terminal A tal que existe um derivação $A \stackrel{\scriptscriptstyle +}{\Rightarrow} A \alpha$ para alguma cadeia α
- Métodos top-down não podem processar gramáticas recursivas à esquerda, demandando uma reescrita da gramática que elimine a recursão à esquerda
- lacktriangle Uma recursão simples à esquerda acontece se existe um produção A o Alpha
- A recursão simples à esquerda de uma produção da forma $A \to A\alpha \mid \beta$ pode ser eliminada ao substituí-la pelas produções

$$\begin{array}{c} A \to \beta A' \\ A' \to \alpha A' \mid \epsilon \end{array}$$

Exemplo de eliminação de recursão simples à esquerda

$$\begin{array}{c} E \rightarrow E + T \mid T \\ T \rightarrow T \times F \mid F \\ F \rightarrow (E) \mid \operatorname{id} \end{array}$$

$$\begin{array}{l} E \rightarrow TE' \\ E' \rightarrow + TE' \mid \epsilon \\ T \rightarrow FT' \\ T' \rightarrow \times FT' \mid \epsilon \\ F \rightarrow (E) \mid \mathrm{id} \end{array}$$

▶ No caso geral, é possível eliminar todas as recursões simples à esquerda nas produções-A de uma só vez

- No caso geral, é possível eliminar todas as recursões simples à esquerda nas produções-A de uma só vez
- ightharpoonup Primeiramente, organize todas as produções-A na forma

$$A \to A\alpha_1 \mid A\alpha_2 \mid \dots \mid A\alpha_m \mid \beta_1 \mid \beta_2 \mid \dots \mid \beta_n$$

onde nenhum eta_j começa com um A

- No caso geral, é possível eliminar todas as recursões simples à esquerda nas produções-A de uma só vez
- ightharpoonup Primeiramente, organize todas as produções-A na forma

$$A \to A\alpha_1 \mid A\alpha_2 \mid \dots \mid A\alpha_m \mid \beta_1 \mid \beta_2 \mid \dots \mid \beta_n$$

onde nenhum β_i começa com um A

ightharpoonup Em seguida, substitua estas produções-A pelas produções

$$A \to \beta_1 A' \mid \beta_2 A' \mid \dots \mid \beta_n A'$$

$$A' \to \alpha_1 A' \mid \alpha_2 A' \mid \dots \mid \alpha_m A' \mid \epsilon$$

- No caso geral, é possível eliminar todas as recursões simples à esquerda nas produções-A de uma só vez
- lacktriangle Primeiramente, organize todas as produções-A na forma

$$A \to A\alpha_1 \mid A\alpha_2 \mid \dots \mid A\alpha_m \mid \beta_1 \mid \beta_2 \mid \dots \mid \beta_n$$

onde nenhum β_i começa com um A

ightharpoonup Em seguida, substitua estas produções-A pelas produções

$$A \to \beta_1 A' \mid \beta_2 A' \mid \dots \mid \beta_n A'$$

$$A' \to \alpha_1 A' \mid \alpha_2 A' \mid \dots \mid \alpha_m A' \mid \epsilon$$

Esta substituição elimina todas as recursões simples à esquerda de uma só vez, desde que $\alpha_i \neq \epsilon$ para todo $i=1,2,\ldots,m$

- No caso geral, é possível eliminar todas as recursões simples à esquerda nas produções-A de uma só vez
- ightharpoonup Primeiramente, organize todas as produções-A na forma

$$A \to A\alpha_1 \mid A\alpha_2 \mid \dots \mid A\alpha_m \mid \beta_1 \mid \beta_2 \mid \dots \mid \beta_n$$

onde nenhum β_i começa com um A

ightharpoonup Em seguida, substitua estas produções-A pelas produções

$$A \to \beta_1 A' \mid \beta_2 A' \mid \dots \mid \beta_n A'$$

$$A' \to \alpha_1 A' \mid \alpha_2 A' \mid \dots \mid \alpha_m A' \mid \epsilon$$

- Esta substituição elimina todas as recursões simples à esquerda de uma só vez, desde que $\alpha_i \neq \epsilon$ para todo $i=1,2,\ldots,m$
- ► Esta técnica, porém, não elimina recursões à esquerda envolvendo derivações com dois ou mais passos

Algoritmo para eliminação de recursão à esquerda

Input: Uma gramática G sem ciclos (isto é, produções $A \stackrel{\scriptscriptstyle +}{\Rightarrow} A$) e sem produções- ϵ (do tipo $A \to \epsilon$)

 $\begin{tabular}{ll} \textbf{Output:} & \textbf{Uma gramática equivalente a } G \ \text{sem recursão à esquerda} \\ \end{tabular}$

- 1: Liste, em alguma ordem, os não-terminais A_1,A_2,\ldots,A_n
- 2: for $i \leftarrow 1, n$ do
- 3: **for** $j \leftarrow 1, i 1$ **do**
- 4: substitua cada produção $A_i o A_j \gamma$ pelas produções

$$A_i \to \delta_1 \gamma \mid \delta_2 \gamma \mid \ldots \mid \delta_k \gamma,$$

- onde $A_j o \delta_1 \mid \delta_2 \mid \ldots \mid \delta_k$ são todas as produções- A_j atuais
- 5: elimine todas as recursões simples à esquerda nas produções- A_i