

DECADE UP-DOWN COUNTER/DECODER/LATCH/DRIVER

- SEPARATE CLOCK-UP AND CLOCK-DOWN LINES
- CAPABLE OF DRIVING COMMON CATHODE LEDS AND OTHER DISPLAYS DIRECTLY
- ALLOWS CASCADING WITHOUT ANY EX-TERNAL CIRCUITRY
- MAXIMUM INPUT CURRENT OF 1 μA AT 18 V (full package-temperature range)
- QUIESCENT CURRENT AT 20 V FOR HCC DE-VICE
- 5 V, 10 V AND 15 V PARAMETRIC RATINGS
- INPUT CURRENT OF 100 nA AT 18 V AND 25 °C FOR HCC DEVICE
- 100 % TESTED FOR QUIESCENT CURRENT
- MEETS ALL REQUIREMENTS OF JEDEC TEN-TATIVE STANDARD No. 13 A, "STANDARD SPECIFICATIONS FOR DESCRIPTION OF "B" SERIES CMOS DEVICES"

DESCRIPTION

The **HCC 40110B** (extended temperature range) and HCF 40110B (intermediate temperature range) are monolithic integrated circuits, available in 16lead dual in-line plastic or ceramic package. The HCC/HCF 40110B is a dual-clocked up/down counter with a special preconditioning circuit that allows the counter to be clocked, via positive going inputs, up or down regardless of that state or timing (within 100 ns typ.) of the other clock line. The clock signal is fed into the control logic and Johnson counter after is preconditioned. The outputs of the Johnson counter (which include antilock gating to avoid being locked at an illegal state) are fed into a latch. This data can be fed directly to the decoder through the latch or can be strobed to hold a particular count while the Johnson counter continues to be clocked. The decoder feeds a seven-segment bipolar output driver which can source up to 25 mA to drive LEDs and other displays such as low-voltage fluorescent and incandescent lamps. A short duration negative-going pulse appears on the BORROW output when the count changes from 0 to 9 or the CARRY output when the count changes from 9 to 0. At the other times the BORROW and CARRY output are a logic 1. The CARRY and BORROW outputs can be tied directly to the clock-up and clock-down lines respectively of another HCC/HCF 40110B for easy cascading of several counters.

September 1988 1/11

FUNCTIONAL DIAGRAM

ABSOLUTE MAXIMUM RATING

Symbol	Parameter	Value	Unit
V _{DD} *	Supply Voltage: HCC Types HCF Types	-0.5 to +20 -0.5 to +18	V V
Vi	Input Voltage	-0.5 to V _{DD} + 0.5	V
II	DC Input Current (any one input)	± 10	mA
P _{tot}	Total Power Dissipation (per package) Dissipation per Output Transistor	200	mW mW
T _{op}	for Top = Full Package Temperature Range Operating Temperature: HCC Types HCF Types	-55 to +125 -40 to +85	°C °C
T _{stg}	Storage Temperature	-65 to +150	°C

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for external periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage: HCC Types	3 to 18	V
	HCF Types	3 to 15	V
V_{I}	Input Voltage	0 to V _{DD}	V
T _{op}	Operating Temperature: HCC Types	-55 to +125	°C
	HCF Types	-40 to +85	-C

^{*} All voltage values are referred to Vss pin voltage.

LOGIC DIAGRAMS

LOGIC DIAGRAM (continued)

DISPLAY SEGMENTS

Ouptut Low (sink) Current Characterisitcs.

TRUTH TABLE

CLOCK UP*	CLOCK DOWN*	LATCH ENABLE	TOGGLE ENABLE	RESET	COUNTER	DISPLAY
	Х	0	0	0	Increments by 1	Follows Counter
Х		0	0	0	Decrement by 1	Follows Counter
		Х	Х	0	No Change	No Change
Х	Х	Х	Х	1	Goes to 00000	Follows Counter (Display = 0)
Х	Х	Х	1	0	Inhibited	Remains Fixed
	Х	1	0	0	Increments by 1	Remains Fixed
Х		1	0	0	Decrement by 1	Remains Fixed

x = Don't care 1 = High State <math>2 = Low State

^{*} Typically 100 ns between clock-up and clock-down positive transitions are required to ensure proper counting

STATIC ELECTRICAL CHARACTERISTICS (over recommended operating conditions)

				Test Con	ditios		Value							
Symbol	Parame	eter	V _I V _O		Io V _{DD}		TLC	w *		25 °C		T _{HIGH} *		Unit
			(V)	(V)	(μA)	(V)	Min.	Max.	Min.	Тур.	Max.	Min.	Max.]
ΙL	Quiescent		0/5			5		5		0.04	5		150	
		HCC	0/10			10		10		0.04	10		300	
		Types	0/15			15		15		0.04	20		600	
			0/20			20		20		0.48	100		3000	μΑ
		HCF	0/5			5		5		0.04	20		150	
		Types	0/10			10		10		0.04	40		300	
		',	0/15			15		15		0.04	80		600	
V_{OH}	Output High	1	0/5			5				4.95				
	Voltage		0/10			10				9.55				V
			0/15			15				14.55				
V _{OL}	Output Low		5/0			5		0.05		0	0.05		0.05	
	Voltage		10/0			10		0.05		0	0.05		0.05	5 V
			15/0			15		0.05		0	0.05		0.05	
V_{IH}	Input High			0.5/3.8		5	3.5		3.5			3.5		
Voltage			1/8.8		10	7		7			7		V	
				1.5/3.8		15	11		11			11		
V _{IL}	Input Low	Input Low		0.5/3.8		5		1.5			1.5		1.5	
	Voltage			1/8.8		10		3			3		3	V
				1.5/3.8		15		4			4		4	
Vol	Output Drive	Э			0	5				4.55				
	Voltage				10	5				4.13				
	(for HCC/H (CF)			25	5				3.64				
					0	10				9.55				V
					10	10				9.25				•
					25	10				8.85				
					0	15				14.55				
					10	15				14.21				
					25	15				13.9				
I _{OL}	Output	нсс	0/5	0.4		5	0.64		0.51	1		0.36		
	Sink	Types	0/10	0.5		10	1.6		1.3	2.6		0.9		
	Current		0/15	1.5		15	4.2		3.4	6.8		2.4		mΑ
		HCF	0/5	0.4		5	0.52		0.44	1		0.36		
		Types	0/10	0.5		10	1.3		1.1	2.6		0.9		
			0/15	1.5		15	3.6		3.0	6.8		2.4		
I _{IH} , I _{IL}	Input Leakage	HCC Types	0/18	Any In	nut	18		±0.1		±10 ⁻⁵	±0.1		±1	μΑ
	Current	HCF Types	0/15	Ally III	μ ι ι 	15		±0.3		±10 ⁻⁵	±0.3		±1	μΑ
C_{I}	Input Capac	itance		Any In	put					5	7.5			рF

^{*} T_{LOW} = -55 °C for **HCC** device: -40 °C for **HCF** device.

The Noise Margin for both "1" and "0" level is: 1V min. with $V_{DD} = 5 \text{ V}$, 2 V min. with $V_{DD} = 10 \text{ V}$, 2.5 V min. with $V_{DD} = 15 \text{ V}$

^{*} T_{HIGH} = +125 °C for **HCC** device: +85 °C for **HCF** device.

DYNAMIC ELECTRICAL CHARACTERISTICS ($T_{amb} = 25$ °C, $C_L = 50$ pF, $R_L = 200$ K Ω , typical temperature coefficent for all V_{DD} values is 03 %/°C, all input rise and fall times= 20 ns)

Symbol	Parameter	Test Conditions	Value			Unit
Symbol	Farameter	V _{DD} (V)	Min.	Тур.	Max.	Unit
CLOCK	UP/CLOCK DOWN					
tw	Pulse Width	5		85		
		10		35		ns
		15		15		
f _{CL} Maximu	Maximum Frequency	5		2.5		
		10		5		MHz
		15		8		
twc	Carry Pulse Width	5		225		
		10		100		
		15		70		ns
t _{WB}	Borrow Pulse Width	5		260		
		10		110		
		15		80		
RESET						
t _{PLH}	Propagation Delay Time	5		750		
t_{PHL}	Reset to Clock	10		285		
		15		200		
	Delay from Reset to First Allowable Clock	5		300		ns
		10		125		
		15		75		
t_W	Pulse Width	5		150		
		10		60		
		15		40		

TEST CIRCUITS

Quiescent Device Current.

Noise Immunity.

TEST CIRCUITS

Input Leakage Current.

Plastic DIP16 (0.25) MECHANICAL DATA

DIM.		mm		inch		
Diiii.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
В	0.77		1.65	0.030		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20			0.787
E		8.5			0.335	
е		2.54			0.100	
e3		17.78			0.700	
F			7.1			0.280
I			5.1			0.201
L		3.3			0.130	
Z			1.27			0.050

Ceramic DIP16/1 MECHANICAL DATA

DIM.		mm				
Dilli.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α			20			0.787
В			7			0.276
D		3.3			0.130	
Е	0.38			0.015		
e3		17.78			0.700	
F	2.29		2.79	0.090		0.110
G	0.4		0.55	0.016		0.022
Н	1.17		1.52	0.046		0.060
L	0.22		0.31	0.009		0.012
M	0.51		1.27	0.020		0.050
N			10.3			0.406
Р	7.8		8.05	0.307		0.317
Q			5.08			0.200

PLCC20 MECHANICAL DATA

DIM.		mm				
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	9.78		10.03	0.385		0.395
В	8.89		9.04	0.350		0.356
D	4.2		4.57	0.165		0.180
d1		2.54			0.100	
d2		0.56			0.022	
E	7.37		8.38	0.290		0.330
е		1.27			0.050	
e3		5.08			0.200	
F		0.38			0.015	
G			0.101			0.004
М		1.27			0.050	
M1		1.14			0.045	

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

