8 Компактні метричні простори

§8.1 Зв'язки між видами компактності

Означення 8.1. Нехай A — деяка множина в метричному просторі (X, ρ) і ε — деяке додатне число. Множина B із цього простору називається ε -сіткою для множини A, якщо $\forall x \in A \ \exists y \in B \colon \rho(x,y) < \varepsilon$.

Означення 8.2. Множина A називається **цілком обмеженою**, якщо для неї при довільному $\varepsilon > 0$ існує скінченна ε -сітка.

Теорема 8.1 (Хаусдорф)

Нехай (X, ρ) — метричний простір. Наступні твердження є еквівалентними.

- 1. (X, ρ) компактний;
- 2. (X, ρ) повний і цілком обмежений;
- 3. із довільної післідовності точок простору (X, ρ) можна вибрати збіжну підпослідовність (секвенціальна компактність);
- 4. довільна нескінченна підмножина в X має хоча б одну граничну точку (зліченна компактність).

Доведення. $1 \implies 2 \implies 3 \implies 4 \implies 1$.

Покажемо, що $1 \implies 2$. Нехай (X, ρ) — компактний простір. Покажемо його повноту. Нехай $\{x_n\}$ — фундаментальна послідовність в X. Покладемо $A_n = \{x_n, x_{n+1}, \dots\}$ і $B_n = \overline{A}_n$. Оскільки система $\{B_n\}$ є центрованою системою замкнених підмножин, то $\bigcap_{i=1}^{\infty} B_i$ — непорожня множина. Нехай $x_0 \in \bigcap_{i=1}^{\infty} B_i$. Тоді

$$\forall \varepsilon > 0 \forall N > 0 \exists n > N : \rho(x_0, x_n) < \varepsilon$$

$$\forall \varepsilon > 0 \exists N > 0 \forall n, m > N : \rho(x_n, x_m) < \varepsilon$$

$$\forall \varepsilon > 0 \exists N > 0 \forall n, m > N : \rho(x_0, x_m) \le \rho(x_0, x_n) + \rho(x_n, x_m) < 2\varepsilon.$$

З цього випливає, що

$$x_0 = \lim_{n \to \infty} x_n \in X.$$

Отже, (X, ρ) — повний простір. Припустимо тепер, що простір (X, ρ) не є цілком обмеженим. Інакше кажучи, припустимо, що існує таке число ε_0 таке, що в X немає скінченної ε_0 -сітки. Візьмемо довільну точку $x_1 \in X$.

- 1. $\exists x_2 \in X : \rho(x_1, x_2) > \varepsilon_0$. Інакше точка x_1 утворювала б ε_0 -сітку в X.
- 2. $\exists x_3 \in X : \rho(x_1, x_3), \rho(x_2, x_3) > \varepsilon_0$. Інакше точки x_1, x_2 утворювали б ε_0 -сітку в X.

. . .

 $n. \; \exists x_{n+1} \in X : \; \rho(x_i, x_{n+1}) > \varepsilon_0, \; i=1,2,\ldots,n.$ Інакше точки x_1, x_2,\ldots,x_n утворювали б ε_0 -сітку в X.

. . .

Таким чином, ми побудували послідовність $\{x_n\}$, яка не є фундаментальною, а, отже, не має границі. З цього випливає, що кожна із множин $A_n = \{x_n, x_{n+1}, \dots\}$, які утворюють центровану систему, є замкненою. Їх перетин є порожнім. Це протирічить компактності простору (X, ρ) .

Покажемо, що 2 \implies 3. Нехай $\{x_n\}$ — послідовність точок X.

1. Виберемо в X скінченну 1-сітку і побудуємо навколо кожної з точок, що її утворюють, кулю радіуса 1: $S_i(a_i,1), i=1,\ldots,N_1$. Оскільки X є цілком обмеженою,

$$\bigcup_{i=1}^{N_1} S_i(a_i, 1) = X.$$

З цього випливає, що принаймні одна куля, скажімо, S_1 , містить нескінченну підпослідовність $\{x_n^{(1)}\}_{n=1}^{\infty}$ послідовності $\{x_n\}$.

2. Виберемо в X скінченну $\frac{1}{2}$ -сітку і побудуємо навколо кожної з цих точок, що її утворюють кулю радіуса $\frac{1}{2}$: $S_i(b_i,\frac{1}{2}),\ i=1,2,\ldots,N_2$. Оскільки множина X є цілком обмеженою,

$$\bigcup_{i=1}^{N_2} S_i(b_i, \frac{1}{2}) = X.$$

3 цього випливає, що принаймні одна куля, скажімо, S_2 , містить нескінченну підпослідовність $\{x_n^{(2)}\}_{n=1}^\infty$ послідовності $\{x_n^{(1)}\}_{n=1}^\infty$.

. . .

m. Виберемо в X скінченну $\frac{1}{m}$ -сітку і побудуємо навколо кожної з цих точок, що її утворюють кулю радіуса $\frac{1}{m}$: $S_i(c_i,\frac{1}{m}),\,i=1,2,\ldots,N_m$. Оскільки множина X є цілком обмеженою,

$$\bigcup_{i=1}^{N_m} S_i(c_i, \frac{1}{m}) = X.$$

З цього випливає, що принаймні одна куля, скажімо, S_m , містить нескінченну підпослідовність $\{x_n^{(m)}\}_{n=1}^\infty$ послідовності $\{x_n^{(m-1)}\}_{n=1}^\infty$.

. . .

Продовжимо цей процес до нескінченності. Розглянемо діагональну послідовність $\{x_n^{(n)}\}_{n=1}^{\infty}$. Вона є підпослідовністю послідовності $\{x_n\}_{n=1}^{\infty}$. Крім того, при $m \geq n_0$: $x_m^{(m)} \in \{x_n^{(n_0)}\} \subset S_{n_0}$. Це означає, що $\{x_n^{(n)}\}$ є фундаментальною і внаслідок повноти (X, ρ) має границю.

Твердження $3 \implies 4$ є тривіальним, оскільки із довільної нескінченної множини можна виділити зліченну множину $\{x_n\}_{n=1}^{\infty}$, яка внаслідок секвенціальної компактності містить збіжну підпослідовність: $\{x_{n_k}\}_{k=1}^{\infty} \to x_0 \in X$.

Покажемо тепер, що $4 \implies 1$. Для цього спочатку доведемо, що множина X є цілком обмеженою, тобто в ній для довільного числа $\varepsilon > 0$ існує ε -сітка. Якщо б це було не так, то застосувавши той же прийом, що і на етапі $1 \implies 2$, ми побудували б послідовність $\{x_n\}_{n=1}^{\infty}$, яка не має граничних точок, оскільки вона не є фундаментальною. Для кожного n побудуємо скінченну $\frac{1}{n}$ -сітку і розглянемо об'єднання всіх таких сіток. Воно є щільним і не більше ніж зліченним. Таким чином, простір (X, ρ) є сепарабельним, отже, має зліченну базу.

Для того щоб довести компактність простору, що має зліченну базу, достатньо перевірити, що із будь-якого зліченного (а не довільного нескінченного) відкритого

покриття можна виділити скінченне підпокриття. Припустимо, що $\{U_{\alpha}\}$ — довільне покриття простору (X,ρ) , а $\{V_n\}$ — його зліченна база. Кожна точка $x\in X$ міститься в деякому U_{α} . За означенням бази знайдеться деяке $V_i\in \{V_n\}$ таке, що $x\in V_i\subset U_{\alpha}$. Якщо кожній точці $x\in X$ поставити у відповідність окіл $V_i\in \{V_n\}$, то сукупність цих околів утворить зліченне покриття множини X.

Залишилося довести, що із довільного зліченного відкритого покриття множини X можна вибрати скінченне підпокриття. Для цього достатньо довести еквівалентне твердження для замкнених підмножин, що утворюють зліченну центровану систему.

Нехай $\{F_n\}_{n=1}^{\infty}$ — центрована система замкнених підмножин X. Покажемо, що

$$\bigcap_{n=1}^{\infty} F_n \neq \emptyset.$$

Нехай $\Phi_n = \bigcap_{k=1}^n F_k$. Ясно, що множини Φ_n є замкненими і непорожніми, оскільки система $\{F_n\}_{n=1}^{\infty}$ є центрованою, і

$$\Phi_1 \supset \Phi_2 \supset \dots, \quad \bigcap_{n=1}^{\infty} \Phi_n = \bigcap_{n=1}^{\infty} F_n.$$

Можливі два випадки.

1. Починаючи з деякого номера

$$\Phi_{n_0} = \Phi_{n_0+1} = \dots = \Phi_{n_0+k} = \dots$$

Тоді

$$\bigcap_{n=1}^{\infty} F_n = \bigcap_{n=1}^{\infty} \Phi_n = \Phi_{n_0} \neq \varnothing.$$

2. Серед Φ_n є нескінченно багато попарно різних. Достатньо розглянути випадок, коли всі вони відрізняються одна від одної. Нехай $x_n \in \Phi_n \setminus \Phi_{n+1}$. Тоді послідовність $\{x_n\}$ є нескінченною множиною різних точок із X і, внаслідок уже доведеного факту (зліченна компактність), має хоча б одну граничну точку x_0 . Оскільки Φ_n містить всі точки x_n, x_{n+1}, \ldots то x_0 — гранична точка для кожної множини Φ_n і внаслідок замкненості Φ_n

$$\forall n \in \mathbb{N} : x_0 \in \Phi_n$$
.

Отже,

$$x_0 \in \bigcap_{n=1}^{\infty} \Phi_n = \bigcap_{n=1}^{\infty} F_n,$$

тобто $\bigcap_{n=1}^{\infty} F_n$ є непорожнім.

§8.2 Література

[1] **Садовничий В. А.** Теория операторов / В. А. Садовничий — М.: Изд-во Моск. ун-та, 1986 (стр. 49–51).