

IIC 2433 Minería de Datos

https://github.com/marcelomendoza/IIC2433

Cierre de la clase 8 – Dependencias entre variables

Dependencias:

¿Cuál es la diferencia entre asociación y dependencia?

Redes Bayesianas:

¿Qué representan las relaciones en una red Bayesiana?

¿Qué representa la red Bayesiana?

¿Qué es un razonamiento basado en evidencia?

Cierre de la clase 8 – Actividad formativa

¿Qué representan estas relaciones?

- Causalidad -

Dependencia no es lo mismo que causalidad

La escala de la causalidad

Rung	Action	Question
Association (1)	Observing	How does observing X change my belief in Y?
Intervention (2)	Doing	What will happen to Y if I do X?
Counterfactual (3)	Imagining	If I had done X, what would Y be?

¿Qué entendemos por independencia entre variables?

$$P(Y) = P(Y|X)$$

$$P(X) = P(X|Y)$$

La probabilidad marginal de Y es igual a la probabilidad condicional de Y|X|. Análogamente, la probabilidad marginal de X es igual a la probabilidad condicional de X|Y|.

Una consecuencia importante de independencia es que su distribución conjunta es el producto de las marginales:

$$P(X, Y) = P(X)P(Y)$$

Usaremos como notación de independencia:

$$X \perp \!\!\! \perp Y$$

¿Qué entendemos por independencia condicional entre variables?

$$P(X, Y|Z) = P(X|Z)P(Y|Z)$$

X e Y son condicionalmente independientes en relación con Z si su distribución conjunta, dado Z, es el producto de las condicionales X|Z e Y|Z.

La notación será:

$$X \perp \!\!\! \perp Y|Z$$

Distinguiremos además entre independencia en el modelo (grafo) y en la distribución conjunta:

$$X \perp \!\!\!\perp_{\scriptscriptstyle \mathrm{P}} Y$$
 $X \perp \!\!\!\perp_{\scriptscriptstyle \mathrm{G}} Y$

Independencia en G

Dos variables X e Y serán independientes en G si no existe un camino que las conecte directa o indirectamente.

Dos variables X e Y serán condicionalmente independientes en G dado Z cuando Z **bloquee** todos los caminos entre X e Y.

Condiciones para inferencia causal

Necesitamos asegurar que podemos mapear las independencias condicionales de G a independencias estadísticas (p). Para esto se necesita la condición causal de Markov, la cual indica que toda variable debe ser independiente de sus no descendientes si conozco a sus padres:

$$V_{i} \coprod_{G} V_{j} \mid PA(V_{i}) \forall_{j \neq i \in G(V,E) \setminus \{DE(V_{i}), PA(V_{i})\}}$$

Condición causal de Markov

La clave está en si la variable es observada o no

Vi y Vj son dependientes porque tienen una causa común

... esperamos que Vi y Vj se vuelvan **independientes**

Condición causal de Markov

La clave está en si la variable es observada o no

Si controlamos PA(Vi)...

Vi y Vj son dependientes porque la información fluye desde Vj a Vi pasando por PA(Vi)

... esperamos que Vi y Vj se vuelvan independientes

Condición causal de Markov

La condición causal de Markov es relevante ya que:

$$X \!\!\perp\!\!\!\perp_{\mathbf{G}} Y \!\!\mid\!\! Z \Rightarrow X \!\!\perp\!\!\!\perp_{\mathbf{P}} Y \!\!\mid\!\! Z$$

Observemos que el reverso no es necesariamente cierto:

$$X \coprod_{\mathbf{P}} Y | Z \Rightarrow X \coprod_{\mathbf{G}} Y | Z$$

¿Por qué? Al testear independencia condicional sobre la base de una muestra finita, se introduce un error de estimación.

Estructuras frecuentes en modelos causales

Estructuras frecuentes en modelos causales

Sin embargo:

 $A \not\perp C \mid B$

d-separación

Diremos que dos variables en G están *d*-separadas si todos los caminos entre ellas están bloqueados.

¿Cuándo se bloquea un camino entre dos variables?

Se bloquea el camino cuando hay un collider en el camino entre ellas y no podemos controlar el consecuente o si hay un fork o cadena que contiene una variable en el medio que podemos controlar.

Variables que podemos controlar:

Condiciones para bloqueo entre *i* y *k*:

- Existen $i \leftarrow j \rightarrow k$ o bien $i \rightarrow j \rightarrow k$ tal que $j \in \mathcal{Z}$ o bien existe $i \rightarrow j \leftarrow k$ tal que $j \notin \mathcal{Z}$

La d es de direccional.

d-separación

... entendiendo el concepto

¿Cuáles variables debiera controlar para que X e Y sean d-separables?

d-separación

... entendiendo el concepto

¿Cuáles variables debiera controlar para que X e Y sean d-separables?

R.: **A**