Homework 2 Total points: 90

Due date: 11th Oct, 2022

Turn in your homework in class

Rules:

- Work on your own. Discussion is permissible, but extremely similar submissions will be judged as plagiarism.
- Please show all intermediate steps: a correct solution without an explanation will get zero credit.
- Please submit on time. No late submission will be accepted.
- Please prepare your submission in English only. No Chinese submission will be accepted.

10'

- 1. For the circuit below,
- (a) Use superposition theorem to find the voltage drop between a and b, namely V_{ab}
- (b) Use source transformation (at least twice) to find V_{ab}
- (c) Find the Norton equivalent circuit at terminals a and b

20 pls

- 2. (a) Apply superposition to find V_0 in the circuit below when $R_L=250\Omega$.
- (b) Find the Thevenin equivalent circuit for the left hand side circuit of node a and node b.
 - (c) Determine the value of R_L when maximum power could be transferred to it.
- (d) for the situation in (c), find the power absorbed by the 520V voltage source and the 1A current source, **respectively**.

(a) Koep 1A current source:

$$\frac{40}{3} \Omega^{\frac{40}{3}} \frac{61}{60} \frac{60}{3} \frac{1250}{1250}$$

$$\frac{40}{3} \sqrt{(250+10)} \frac{40}{3}$$

$$= \frac{40}{3} / (250+10) \frac{40}{3}$$

$$= \frac{2}{41} A$$

Keep 520 Voltage Source

(d)
$$\frac{4\Omega}{260\Omega^{2}i}$$
 $\frac{4\Omega}{M}$ $\frac{70}{2}$ $\frac{70}{3}\Omega$ $\frac{1}{14}$ $\frac{1}{14$

$$\begin{array}{lll}
\Rightarrow & \begin{cases} i_1 = 1 & A \\ i_2 = -\frac{17}{7} & A \\ i_3 = -\frac{64}{7} & A \end{cases}$$

$$\begin{array}{lll}
& \begin{cases} i_1 = 1 & A \\ i_3 = -\frac{64}{7} & A \end{cases}$$

$$\begin{array}{lll}
& \begin{cases} i_1 = 1 & A \\ i_3 = -\frac{64}{7} & A \end{cases}
\end{array}$$

$$\begin{array}{lll}
& \begin{cases} i_1 = 1 & A \\ i_3 = -\frac{14}{7} & A \end{cases}
\end{array}$$

$$\begin{array}{lll}
& \begin{cases} i_1 = 1 & A \\ i_3 = -\frac{14}{7} & A \end{cases}
\end{array}$$

$$\begin{array}{lll}
& \begin{cases} i_1 = 1 & A \\ i_3 = -\frac{14}{7} & A \end{cases}
\end{array}$$

$$\begin{array}{lll}
& \begin{cases} i_1 = 1 & A \\ i_3 = -\frac{14}{7} & A \end{cases}
\end{array}$$

$$\begin{array}{lll}
& \begin{cases} i_1 = 1 & A \\ i_3 = -\frac{14}{7} & A \end{cases}
\end{array}$$

$$\begin{array}{lll}
& \begin{cases} i_1 = 1 & A \\ i_3 = -\frac{14}{7} & A \end{cases}
\end{array}$$

$$\begin{array}{lll}
& \begin{cases} i_1 = 1 & A \\ i_3 = -\frac{14}{7} & A \end{cases}
\end{array}$$

$$\begin{array}{lll}
& \begin{cases} i_1 = 1 & A \\ i_3 = -\frac{14}{7} & A \end{cases}$$

$$\begin{array}{lll}
& \begin{cases} i_1 = 1 & A \\ i_3 = -\frac{14}{7} & A \end{cases}
\end{array}$$

$$\begin{array}{lll}
& \begin{cases} i_1 = 1 & A \\ i_3 = -\frac{14}{7} & A \end{cases}$$

$$\begin{array}{lll}
& \begin{cases} i_1 = 1 & A \\ i_3 = -\frac{14}{7} & A \end{cases}
\end{array}$$

$$\begin{array}{lll}
& \begin{cases} i_1 = 1 & A \\ i_3 = -\frac{14}{7} & A \end{cases}$$

$$\begin{array}{lll}
& \begin{cases} i_1 = 1 & A \\ i_3 = -\frac{14}{7} & A \end{cases}
\end{array}$$

$$\begin{array}{lll}
& \begin{cases} i_1 = 1 & A \\ i_3 = -\frac{14}{7} & A \end{aligned}$$

$$\begin{array}{lll}
& \begin{cases} i_1 = 1 & A \\ i_3 = -\frac{14}{7} & A \end{aligned}$$

$$\begin{array}{lll}
& \begin{cases} i_1 = 1 & A \\ i_3 = -\frac{14}{7} & A \end{aligned}$$

$$\begin{array}{lll}
& \begin{cases} i_1 = 1 & A \\ i_3 = -\frac{14}{7} & A \end{aligned}$$

$$\begin{array}{lll}
& \begin{cases} i_1 = 1 & A \\ i_3 = -\frac{14}{7} & A \end{aligned}$$

$$\begin{array}{lll}
& \begin{cases} i_1 = 1 & A \\ i_3 = -\frac{14}{7} & A \end{aligned}$$

$$\begin{array}{lll}
& \begin{cases} i_1 = 1 & A \\ i_3 = -\frac{14}{7} & A \end{aligned}$$

$$\begin{array}{lll}
& \begin{cases} i_1 = 1 & A \\ i_3 = -\frac{14}{7} & A \end{aligned}$$

$$\begin{array}{lll}
& \begin{cases} i_1 = 1 & A \\ i_3 = -\frac{14}{7} & A \end{aligned}$$

$$\begin{array}{lll}
& \begin{cases} i_1 = 1 & A \\ i_3 = -\frac{14}{7} & A \end{aligned}$$

$$\begin{array}{lll}
& \begin{cases} i_1 = 1 & A \\ i_3 = -\frac{14}{7} & A \end{aligned}$$

$$\begin{array}{lll}
& \begin{cases} i_1 = 1 & A \\ i_3 = -\frac{14}{7} & A \end{aligned}$$

$$\begin{array}{lll}
& \begin{cases} i_1 = 1 & A \\ i_3 = -\frac{14}{7} & A \end{aligned}$$

$$\begin{array}{lll}
& \begin{cases} i_1 = 1 & A \\ i_3 = -\frac{14}{7} & A \end{aligned}$$

$$\begin{array}{lll}
& \begin{cases} i_1 = 1 & A \\ i_3 = -\frac{14}{7} & A \end{aligned}$$

$$\begin{array}{lll}
& \begin{cases} i_1 = 1 & A \\ i_3 = -\frac{14}{7} & A \end{aligned}$$

$$\begin{array}{lll}
& \begin{cases} i_1 = 1 & A \\ i_3 = -\frac{14}{7} & A \end{aligned}$$

$$\begin{array}{lll}
& \begin{cases} i_1 = 1 & A \\ i_3 = -\frac{14}{7} & A \end{aligned}$$

$$\begin{array}{lll}
& \begin{cases} i_1 = 1 & A \\ i_3 = -\frac{14}{7} & A \end{aligned}$$

$$\begin{array}{lll}
& \begin{cases} i_1 = 1 & A \\ i_3 = -\frac{14}{7} & A \end{aligned}$$

$$\begin{array}{lll}
& \begin{cases} i_1 = 1 & A \\ i_3 = -\frac{14}{7} & A \end{aligned}$$

$$\begin{array}{lll}
& \begin{cases} i_1 = 1 & A \\ i_3 = -\frac{14}{7} & A \end{aligned}$$

$$\begin{array}{lll}
& \begin{cases} i_1 = 1 & A \\ i_3 = -\frac{14}{7} & A \end{aligned}$$

$$\begin{array}{lll}
&$$

PZO means the source generates power.

3. (a) Find the Thevenin equivalent circuit at the terminals **a** and **b**.

20 Pes.

(b) If a load resistor \mathbf{R}_L is connected at terminals \mathbf{a} and \mathbf{b} , what is the maximum power that could be transferred to it by this circuit, and what is the value of \mathbf{R}_L in this situation? Also, find the power absorbed by the three sources, **respectively**.

4. For the circuit below, find the Norton equivalent with respect to the terminals **a**, **b**.

10 pt

Solution: .

Because there are no independent sources in the circuit,

$$i_N = 0$$

To calculate R_N , we write no de-voltage equation, and place an independent 1A current source between nodes a and b with the current going from node b to node a. \sim

$$\frac{v - 250i_x}{400} - 1.5i_x + i_x = 1$$

$$v = 500*i_x$$

Now we can calculate.

$$i_x=8A$$
 \downarrow $v=4000V$ \downarrow

Now we can calculate $R_N = 4000/1 = 4000\Omega_{\odot}$

ョ

5. The values of Vs, R1, R2, R3, R4 are known positive constants.

Use them to find:

- (a) The Thevenin equivalent circuit between node a and b.
- (b) The resistance of R_L that absorbs the maximum power, and the maximum power P_{max} absorbed by the load R_L

When finding DTM, Short circuit Vs, the equivalent circuit is

(b)
$$R_{L} = R_{TH} = R_{1} I R_{3} + R_{2} I I R_{4}$$
 2'
$$P_{mexo} = \frac{V_{oc}^{2}}{4R_{L}} = \frac{V_{s}^{2} \left(\frac{R_{3}}{L_{2} + R_{3}} - \frac{R_{4}}{R_{2} + R_{4}}\right)^{2}}{4 \left(R_{1} I R_{3} + R_{2} I I R_{4}\right)}$$

(OPts.

6. Find the voltage gain V_{out}/V_{in} of the following circuit, if R_1 =1 $k\Omega$, R_2 = R_3 =2 $k\Omega$, R_4 = R_5 =4 $k\Omega$.

Solutions:

$$\frac{V_{\text{out}}}{V_{\text{in}}} : -\frac{4}{3}.$$

10 pls.

7. For the following circuit, find the output voltage V_{out} in terms of V_1 to V_4 . Note that all the resistors in the circuit have the same resistance of $1k\Omega$. (Also, please pay attention to the given reference direction of the independent voltage sources)

