

GNN Based Food-Drug Interaction Prediction

Team 논알콜제로디카페인소주

18th Junhyeok Won, 20th Minseok Kwon, GunYoung Lee, 21st YunKyung Ko KUBIG(Korea University Data Science & AI Society), Korea University

8th CONFERENCE

Introduction

Drug-Drug Interaction Food - **Drug Interction**

→ Idea: Food is a collection of compounds

Data

1. Molecule Data

2. Knowledge Graph(DRKG based)

- 3. Interaction Labeling
 - Food, Drug type
 - \rightarrow Mapped and filtered using SapBERT Food-drug interaction
 - Drugbank: Expert defined text type label
 - → Mapped to DrugBank interaction labels using S-PubMedBERT

Method

Baseline: HetDDI

- Drug to drug interaction multi class prediction
- smilter structure knowledge graph embedding
- Interaction Labeling
- pre-training, graph representation to supervised learning

Our Method: Baseline + Food Information

- Used weighted sum of compound SMILES (like drugs) as food SMILES
- Applied the same predicton using a knowledge graph with food and FDI labels

Result

Food	Drug	Interaction Result
Port	Calcium Chloride	Drug and Food co-administration may lower clacium levels
Protein supplement	Ibrutinib	Drug may reduce serum levels of Food's active metabolites, decreasing efficacy

Conclusion

Significance

- Extends DDI to complex food structure
- potential for presonalized food, drug interaction studies using patient data

Limitation

- Reduced accuracy by label assumption
- limited food coverage