Antwoorden van de extra opgaven bij hoofdstuk 4

Complex Analysis (EE2M11-2021v1)

1. (a)
$$-14 + \frac{32}{3}i$$
;

(b)
$$-14 + 12i$$
.

Notice that these two answers are different.

2. 0 for
$$k \neq -1$$
, $2\pi i$ for $k = -1$.

3.
$$R^2 + 2R + 3$$
 and $R^2 - 2R - 3$, respectively.

4. (a)
$$\frac{\sqrt{r}}{r(1-r)}$$
.

(b)
$$\frac{2\pi\sqrt{r}}{1-r}.$$

6.
$$\frac{f'(z)}{f(z)}$$
 is analytic on D . Because D is simple and connected, f is certainly analytic in and on every closed contour in D . According to the Cauchy-Goursat theorem, the given integral must then be zero.

An example why this is not true for an open, connected, not necessarily simple domain is f(z) = z on $D = \mathbb{C} \setminus \{0\}$. Namely, then

$$\int_{|z|=1} \frac{f'(z)}{f(z)} dz \neq 0.$$

ı	۰	,	,
	4	1	

k	integral	
κ	integral	
0	0	
1	2π	
2	$-6\pi i$	
3	-6π	
4	$2\pi i$	
≥ 5	0	

8. $2\pi i \sinh 1$

9. (a)
$$\frac{\pi R}{R^2 - 1}$$
.

(b) The solution is
$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx = \pi$$
. You can also solve this integral using techniques

learned earlier in your academic career.....

10. Branch: for example
$$-\pi/2 < \arg(z) < 3\pi/2$$
, but Log z is okay too! ML-bound: $\frac{\pi R(\ln R + \pi)}{R^2 - 1}$.

11. 0.

1

- **13.** No; as counterexample, take $f(z) = \frac{1}{z^2}$.
- **14.** $\cos(z^2+z)$ is an entire function (analytic on \mathbb{C}). If $\cos(z^2+z)$ on \mathbb{C} would be bounded, then $\cos(z^2+z)$ would be constant, according to Liouville. But $\cos(z^2+z)$ is obviously not constant (see for yourself by filling in z=0 and z=1), thus $\cos(z^2+z)$ must be unbounded.
- **15.** $i, -\frac{1}{2}\sqrt{3} \frac{1}{2}i, \frac{1}{2}\sqrt{3} \frac{1}{2}i.$
- **16.** $11e^2$
- **17.** −1.
- 18. Modify the proof of Liouville.
- **B-C 42.2.** (a) $\frac{2}{3} + i;$
 - (b) $-\frac{1}{2} i \ln 4;$
 - (c) $\frac{\sqrt{3}}{4} + \frac{i}{4}$;
 - (d) $\frac{1}{2}$.
- **B-C 42.4.** $-(1+e^{\pi})/2$, $(1+e^{\pi})/2$.
- **B-C** 46.3. $4(e^{\pi}-1)$.
- **B-C 46.6.** $-\frac{1+e^{-\pi}}{2}(1-i)$.
- **B-C 46.7.** $i\frac{e^{\pi}-1}{2}$.
- **B-C 49.2.** (a) $\frac{2}{3}(-1+i)$;
 - (b) $e + \frac{1}{e}$;
- **B-C 57.1.** (a) 2π ;
 - (b) $\pi i/4$;
 - (c) $-\pi i/2$;

 - (d) 0; (e) $\frac{i\pi}{\cos^2(x_0/2)}$.
- **B-C 57.2.** (a) $\pi/2$;
 - (b) $\pi/16$.