Signals and Circuits

AERN 35500

Passive Filters and resonance

Chapter 10: 10-8(Basic applications) pp. 473-477

Chapter 12: 12-8(Basic applications) pp. 561-563

Chapter 13: 13-4 (series Resonant Filter) pp. 595-603

Text books:

Floyd, T. L., and Buchla, D. M., *Electroics Fundamentals: Circuits, Devices & Applications*, 8th Edition, Pearson, 2009.

Filter

A circuit that discriminates among frequencies, attenuating (weakening) some while allowing others to pass.

They usually consist of a capacitor and/or an inductor connected in series to a resistor.

The output voltage is taken either from the reactive or the resistive element in the circuit.

$$V_{out} = \frac{X_C V_{in}}{\sqrt{R^2 + X_C^2}}$$

$$X_C = \frac{1}{2\pi f C}$$

(a)
$$f = 0.1 \text{ kHz}, X_C = 1.59 \text{ k}\Omega, V_{out} = 9.98 \text{ V}$$

(b)
$$f = 1 \text{ kHz}$$
, $X_C = 159 \Omega$, $V_{out} = 8.46 \text{ V}$

$$V_{out} = \frac{RV_{in}}{\sqrt{R^2 + X_C^2}} \qquad X_C = \frac{1}{2\pi f C}$$

(b)
$$f = 100 \text{ Hz}$$
, $X_C = 1.59 \text{ k}\Omega$, $V_{out} = 0.63 \text{ V}$

Passive RC filter

RC low-pass filter

A low-pass circuit is realized by taking the output across the capacitor, just as in a lag network

RC High-pass filter

A high-pass circuit is implemented by taking the output across the resistor, as in a lead network

E.g.

passive RC filter

RC low-pass filter

Cut-off frequency

$$R = X_C = \frac{1}{2\pi C f_c}$$

$$f_c = \frac{1}{2\pi RC}$$

$$\theta = 45^{\circ}$$

Bandwidth

The range of frequencies that is considered to be passed from the input to the output a circuit is called a bandwidth.

Note: Cut-off frequency $R = X_C = \frac{1}{2\pi C f_c}$ $f_c = \frac{1}{2\pi RC}$

$$R = X_C = \frac{1}{2\pi C f_c}$$

$$f_c = \frac{1}{2\pi RC}$$

passive RC filter

 $V_{out} = \frac{X_C V_{in}}{\sqrt{R^2 + X_C^2}}$

E.G.

$$R = 3.9k\Omega$$

$$V_{in}$$
 amplitude is $1v$

$$C = 0.039 uF$$

Draw a response curve for this circuit by plotting the output voltage versus frequency for 0 Hz to 10 KHz in 1 kHz increments.

RL passive filter

$$V_R = \frac{RV_S}{\sqrt{R^2 + X_L^2}}$$

$$V_R = \frac{3}{\sqrt{R^2 + X_L^2}}$$

$$V_L = \frac{X_L V_S}{\sqrt{R^2 + X_L^2}}$$

 $X_L = 2\pi L f$

RL High-pass filter

Passive RL filter

RL low-pass filter

Cut-off frequency

$$R = X_L = 2\pi L f_c$$

$$f_c = \frac{R}{2\pi L}$$

$$\theta = 45^{\circ}$$

Passive RL filter

E.g.

RCL impedance

voltage leads current by θ if $X_L > X_C$ voltage lags current by θ if $X_L < X_C$

Figures: https://slideplayer.com/slide/6379082/

RCL voltage

$$V_{R} = \frac{RV_{S}}{\sqrt{R^{2} + (X_{L} - X_{C})^{2}}}$$

$$V_L = \frac{X_L V_S}{\sqrt{R^2 + (X_L - X_C)^2}}$$

$$V_C = \frac{X_C V_S}{\sqrt{R^2 + (X_L - X_C)^2}}$$

$$V_{LC} = \frac{|X_L - X_C|V_S}{\sqrt{R^2 + (X_L - X_C)^2}}$$

Source voltage leads current by θ if $X_L > X_C$ Source voltage lags current by θ if $X_L < X_C$

Phase angel among I, V_R, V_L, V_C , and V_{LC} ?

 V_L and V_C always has 180 degree phase difference.

$$E.G.$$
 $V_L > V_C$

$$V_{R} = \frac{RV_{S}}{\sqrt{R^{2} + (X_{L} - X_{C})^{2}}}$$

$$V_L = \frac{X_L V_S}{\sqrt{R^2 + (X_L - X_C)^2}}$$

$$V_C = \frac{X_C V_S}{\sqrt{R^2 + (X_L - X_C)^2}}$$

$$V_{LC} = \frac{|X_L - X_C|V_S}{\sqrt{R^2 + (X_L - X_C)^2}}$$

Source voltage leads current by θ if $X_L > X_C$

Source voltage lags current by θ if $X_L < X_C$ Phase angel among I, V_R, V_L, V_C , and V_{LC} ? V_C and V_L always has 180 degree phase angle

When
$$X_L = X_C$$
? Resonance

$$V_L = V_C = \frac{X_L V_S}{R}$$

$$V_{LC}=0$$

Source voltage leads current by 0 degree

$$Z = R$$

when
$$X_L = X_C$$
 Resonance
$$2\pi L f_r = \frac{1}{2\pi C f_r}$$

Resonant frequency
$$f_r = \frac{1}{2\pi\sqrt{LC}}$$

Phase angle versus frequency.

19

Resonant band-pass filter

Resonant band-stop filter

Cutoff frequency:

when $R = |X_L - X_C|$ f_1 is the lower cutoff frequency;

 f_2 is the upper cutoff frequency.

 $Bandwidth = f_2 - f_1$

Note: Cutoff frequency:

when
$$R = |X_L - X_C|$$
 $X_C = \frac{1}{2\pi Cf}$

$$X_C = \frac{1}{2\pi Cf}$$

Practice

 f_1 is the lower cutoff frequency; $X_L = 2\pi L f$ f_2 is the upper cutoff frequency.

 $Bandwidth = f_2 - f_1$

$$R = 51\Omega$$

$$C = 0.0047uF$$

$$L = 10 mH$$

Determine the cutoff frequency and banthwidth.

