Soft sheaf representations in Barr-exact categories

Marco Abbadini

University of Birmingham, UK

Joint work with Luca Reggio

Peripatetic Seminar on Sheaves and Logic 108, Palermo, Italy, 17 Sept. 2023

I was supported in this research by the Italian Ministry of University and Research through the PRIN project n. 20173WKCM5

Theory and applications of resource sensitive logics.

We generalize a result for sheaves from varieties of universal algebras to Barr-exact categories.

1940s/1950s: sheaves introduced.

1960s: applications of sheaves to rings and modules (Grothendieck, Dauns & Hofmann, Pierce, \dots)

1970s: sheaf representations of universal algebras (Comer, Cornish, Davey, Keimel, Wolf, . . .)

 \sim A frame of commuting congruences of a universal algebra A yields a sheaf representation of A.

Example: let A be a Boolean algebra.

- 1. The whole poset of congruences on A is a frame of commuting congruences. This yields Stone duality: a sheaf representation of A over the Stone dual of A.
- 2. The poset $\{\Delta_A, A \times A\}$ is a frame of pairwise commuting congruences. (For simplicity: assume A to be non-singleton, so that $\Delta_A \neq A \times A$.) This yields a sheaf representation of A over a one-element space.

The bigger the frame, the bigger the space, the simpler the stalks.

Congruence \sim on $A \iff$ compact subspace K of X.

Quotient $A \to A/\sim \iff$ restriction map from global sections on X to local sections on K.

Definition (\sim Godement, 1958)

A sheaf $\Omega(X)^{\mathrm{op}} \to \mathsf{Set}$ on a compact Hausdorff space is **soft** if every local section on a compact subset of X can be extended to a global section.

Example: the sheaf of continuous real-valued functions on [0,1]

$$F \colon \Omega([0,1])^{\operatorname{op}} \longrightarrow \mathsf{Set}$$

$$U \longmapsto C(U,\mathbb{R})$$

is soft. Example: a section on $\left[\frac{1}{3},\frac{2}{3}\right]$ is (roughly speaking) a continuous functions from $\left[\frac{1}{3},\frac{2}{3}\right]$ to $\left[0,1\right]$ together with its local behaviour at $\frac{1}{3}$ and $\frac{2}{3}$ (a "stalk" at $\left[\frac{1}{3},\frac{2}{3}\right]$).

Gehrke and van Gool (2018) identified soft sheaf representations as the sheaf representations corresponding to frames of pairwise commuting congruences.

 $\mathcal{K}(X) := \text{poset of compact subsets of } X \text{ ordered by inclusion.}$ Con(A) := poset of congruences of A ordered by inclusion.

A sheaf representation of A over X is a sheaf F over X s.t. $F(X) \cong A$.

Theorem (Gehrke & van Gool, 2018) Let X be a compact Hausdorff space and A a nonempty algebra in a variety V.

- 1. isomorphism classes of soft sheaf representations of A over X;
- 2. (\land, \lor) -preserving maps $\mathcal{K}(X)^{\mathrm{op}} \to \mathsf{Con}(A)$ with image consisting of pairwise commuting congruences.
- $1 \rightsquigarrow 2$. To a soft sheaf representation $F: \Omega^{op}(X) \to A$ one associates

$$K \longmapsto \mathsf{alg.}\ F(K) \ \mathsf{of\ local\ sections}, \qquad K \longmapsto \mathsf{ker}(F(X) \twoheadrightarrow F(K)).$$
 $2 \rightsquigarrow 1. \ \mathsf{To}\ \rho \colon \mathcal{K}(X)^{\mathsf{op}} \to \mathsf{Con}(A) \ \mathsf{one\ associates}$

 $\mathcal{K}(X)^{\mathrm{op}} \longrightarrow \mathsf{Con}(A)$

There is a bijection between:

 $\mathcal{K}(X)^{\mathrm{op}} \longrightarrow \mathcal{V}$

We replace "variety of finitary algebras" with a Barr-exact category.

Examples of Barr-exact categories: varieties of (possibly infinitary) algebras, toposes.

Definition (Gray, 1965)

- A C-valued sheaf on a space X is a functor $F: \Omega(X)^{\mathrm{op}} \to \mathsf{C}$ s.t.
 - 1. $(\exists!$ gluing on finite families)
 - $ightharpoonup F(\emptyset)$ is a <u>terminal</u> object of C.
 - ▶ For all $U, V \in \Omega(X)$, the following is a pullback square in C:

$$F(U \cup V) \xrightarrow{\uparrow_{U \cup V, U}} F(U)$$

$$\downarrow_{\downarrow_{U \cup V, V}} \qquad \downarrow_{\uparrow_{U, U \cap V}} \downarrow_{\downarrow_{\downarrow_{U, U \cap V}}} F(U \cap V)$$

2. (\exists ! gluing on directed families) F preserves <u>codirected limits</u>, i.e.: for all directed $\mathcal{D} \subseteq \Omega(X)$, $F(\bigcup \mathcal{D}) \cong \lim_{U \in \mathcal{D}} F(U)$.

Softness? (Every local section on a compact subspace extends to a global section.)

Definition (Lurie, 2009 (HTT))

- A C-valued K-sheaf on a space X is a functor $F: K(X)^{\mathrm{op}} \to C$ s.t.
 - 1. $(\exists!$ gluing on finite families)
 - $ightharpoonup F(\emptyset)$ is a <u>terminal</u> object of C.
 - ▶ For all $K, L \in \mathcal{K}(X)$, the following is a pullback square in C:

$$F(K \cup L) \xrightarrow{\uparrow_{K \cup L, K}} F(K)$$

$$\uparrow_{K \cup L, L} \downarrow \qquad \qquad \downarrow_{\uparrow_{K, K \cap L}}$$

$$F(L) \xrightarrow{\uparrow_{L, K \cap L}} F(K \cap L)$$

2. F preserves <u>directed colimits</u>, i.e.: for all codirected $\mathcal{D} \subseteq \mathcal{K}(X)$, $F(\cap \mathcal{D}) \cong \operatorname{colim}_{K \in \mathcal{D}} F(K)$.

Theorem (Lurie, 2009)

Let X be a compact Hausdorff space and C a complete and cocomplete regular category where directed colimits commute with finite limits. There is a bijection between C-valued sheaves on X and C-valued K-sheaves on X.

Idea:

- 1. An open is approximated by the compact sets contained in it.
- 2. A compact set is approximated by the open sets containing it.

Definition

Let C be a complete and cocomplete regular category.

- 1. A C-valued K-sheaf $F: K(X)^{\mathrm{op}} \to C$ is **soft** if for every compact $K \subseteq X$ the restriction morphism $F(X) \to F(K)$ is regular epic.
- 2. A C-valued sheaf $F: \Omega(X)^{\operatorname{op}} \to \mathbb{C}$ over a compact Hausdorff space X is **soft** if for every compact $K \subseteq X$ the morphism $F(X) \to \operatorname{colim}_{U \in \Omega(X): K \subset U} F(U)$ is regular epic.

For an object A, Eq(A) := poset of internal equivalence relations on A. We say that two equivalence relations R and S commute if $R \circ S = S \circ R$.

Theorem (A. & Reggio, 2023)

Let C be a complete and cocomplete Barr-exact category where directed colimits commute with finite limits. Let A be an object of C such that the unique morphism $A \to 1$ is regular epic. Let X be a compact Hausdorff space. There is a bijection between:

- 1. isomorphism classes of soft sheaf representations of A over X;
- 2. isomorphism classes of soft K-sheaf representations of A over X;
- 3. (\land, \bigvee) -preserving maps $\mathcal{K}(X)^{\mathrm{op}} \to \mathsf{Eq}(A)$ with image consisting of pairwise commuting internal equivalence relations.

Our result holds also when X is a stably compact space (replace "compact" by "compact saturated"). Even further, one can go pointfree replacing $\Omega(X)$ with a stably continuous lattice and $\mathcal{K}(X)$ with the order-dual of its Lawson dual.

We weaken the notions of sheaves and $\mathcal{K}\text{-sheaves}$ so to obtain perfectly dual notions.

Definition

Let X be a compact Hausdorff space and C a complete category. A C-valued directed-sheaf on X is a functor $F \colon \Omega(X)^{\operatorname{op}} \to C$ that preserves codirected limits.

Definition

Let X be a compact Hausdorff space and C a cocomplete category. A C-valued directed- \mathcal{K} -sheaf on X is a functor $F:\mathcal{K}(X)^{\operatorname{op}}\to C$ that preserves directed colimits.

These are dual notions: F is a C-valued directed-sheaf on X iff F^{op} is a C^{op} -valued codirected- \mathcal{K} -sheaf on (the de Groot dual of) X. If a property holds for all directed-sheaves, then the dual property holds for all directed \mathcal{K} -sheaves.

Example: Priestley duality for bounded distributive lattices.

The elements of a bounded distributive lattice are represented as continuous monotone functions from a Priestley space X to $\mathbf{2}$.

Priestley duality is not a sheaf representation: the gluing of two monotone functions might fail to be monotone. This is related to the failure of commutativity of congruences.

However, the gluing over a directed family preserves monotonicity.

Priestley duality is not a sheaf representation, but is a directed-sheaf representation. Directed-sheaf representations allow non-congruence-permutable algebras to be represented.

Theorem

Let X be a compact Hausdorff space and C a complete and cocomplete category. There is a bijection between C-valued directed-sheaves on X and C-valued directed-K-sheaves on X.

Idea:

- 1. An open is approximated by the compact sets contained in it.
- 2. A compact set is approximated by the open sets containing it.

This generalizes to the pointfree context in the setting of continuous dcpos.

To sum up

- 1. From varieties of algebras to Barr-exact categories: bijection between
 - ▶ isomorphism classes of soft sheaf representations of A over X;
 - (\land, \lor) -preserving maps $\mathcal{K}(X)^{\mathrm{op}} \to \mathsf{Eq}(A)$ with image consisting of pairwise commuting internal equivalence relations.
- 2. We defined directed-sheaves and directed- \mathcal{K} -sheaves, which are dual notions: C-valued directed-sheaf \longleftrightarrow C^{op}-valued directed- \mathcal{K} -sheaf.
- 3. Bijection between C-valued directed-sheaves and C-valued directed-*K*-sheaves.

M. Abbadini, L. Reggio.

Barr-exact categories and soft sheaf representations.

Journal of Pure and Applied Algebra, 227(12):107413 (2023).

Thank you!