UNSE -FCEyT

ELEMENTOS DE ALGEBRA

GUÍA PRÁCTICA Nº 5 - 2020

TEMA: NÚMEROS REALES Y NUMEROS COMPLEJOS

Objetivos:

Que los alumnos logren:

- Realizar cálculos y aplicar propiedades de las operaciones con números reales y
- > Identificar regiones en la recta real y en el plano complejo.
- 1) Escribir en orden creciente cinco números racionales que verifiquen:

$$\frac{3}{2} < r < \frac{7}{3}$$

- 2) Clasificar los siguientes números (Racionales o Irracionales)
 - a) $\sqrt{3}$
 - b) $\sqrt{16}$
 - c) $\sqrt{7}\sqrt{7}$
 - d) $\sqrt{64}\pi$
- 3) Decir si son Verdaderas o Falsas las siguientes proposiciones. En caso de ser Falsa escribir un contraejemplo:
 - a) El producto de dos números irracionales es un número irracional
 - b) La suma de dos números irracionales es un número irracional
 - c) El producto de un racional no nulo y un irracional es irracional
 - d) Los radicales $\sqrt[6]{49}$ y $\sqrt[3]{7}$ son equivalentes
 - e) $\sqrt{5} \sqrt{2} = \sqrt{3}$
- 4) Sea x > 0, y > 0, $z \ne 0$, tres números reales y además x > y. Decidir cuáles de las siguientes desigualdades son Verdaderas:

 - a) x+z > y+z b) x-z > y-z c) x.z > y.z

- d) $\frac{x}{7} > \frac{y}{7}$ e) $\frac{x}{7^2} > \frac{y}{7^2}$
- 5) Resolver las siguientes inecuaciones y representar el conjunto solución en la recta real.

 - a) 2x 3 < 4 + 3x b) 3(4 x) < 18x + 5 c) (x 1)(x + 2) > 0

- d) $\frac{3-x}{4x+1} < 0$ e) $|x-5| \le 3$ f) $|2-x|-6 \ge 0$

- 6) Dados los números complejos $z_1 = (-1,2)$; $z_2 = (0,-4)$; $z_3 = (5,3)$; $z_4 = (-7,-1)$ determine el opuesto, el conjugado y el inverso de cada uno.
- 7) Dados los números complejos $z_1 = (-4, 5)$; $z_1 = (1,-6)$. Verifique:

a)
$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$$

b)
$$\overline{z_1 - z_2} = \overline{z_1} - \overline{z_2}$$

- 8) Dados los siguientes números complejos : $z_1 = (2,-3)$: $z_2 = (-1,2)$: $z_3 = (0,4)$ Calcule:
 - a) $z_1 + z_3$ b) $z_2 + z_1$ c) $z_1 \cdot z_3$

- e) $z_2: z_3$ f) $z_2 z_1: z_3$ g) $(\overline{z_1} + \overline{z_3}): \overline{z_2}$ h) $(\overline{z_1} + z_3)z_1$
- 9) Escribir en forma binómica los números complejos z_1 , z_2 y z_3 del ejercicio anterior y realizar los cálculos anteriores en forma binómica.
- 10) Determinar los números complejos conjugados
 - a. Cuya diferencia es -4i
 - b. Cuya suma es 12
- 11) Determinar el complejo z

a)
$$(1-3i) - z - (4+3i) = (-4-5i)$$
 b) $(1-2i) : z = (2+i)$

c)
$$\frac{(2+i)z-2}{(1+i)} = i^2$$
 d) $z.(2-i) = (4+3i)$

- 12) Calcular
 - a) i^{28}
- b) $(-i)^{83}$ c) $i^{14} \cdot (-i)^{56}$ d) $i^{43} : i^{35}$
- 13) Obtener la forma polar de los siguientes números complejos:
 - (a) $z_1 = (2, \sqrt{3})$ (b) $z_2 = \sqrt{2} i$ (c) $z_3 = -5$ (d) $z_4 = (-4, -3)$ (e) $z_5 = -3i$ (f) $z_6 = -4 + 2i$

- 14) Determine gráficamente las regiones del plano complejos caracterizadas por los siguientes conjuntos:

 - a) $A=\{z\in\mathbb{C}\ /\ Re(z)\leq 4\ \land\ -3\leq Img(z)\leq 3\}$ b) $B=\{z\in\mathbb{C}\ /-3\leq Re(z)<1\ \land\ -3\leq Img(z)<-2\}$
 - c) $C = \left\{ z \in \mathbb{C} / \rho \le 3 \land \frac{\pi}{3} < \varphi \le \pi \right\}$
 - d) $C = \left\{ z \in \mathbb{C} \ / \ 2 < \rho \le 4 \ \land \frac{3\pi}{2} < \varphi < \frac{7\pi}{4} \right\}$

Dadas las siguientes regiones del plano complejo, determine las ecuaciones que lo definen.

> a) b)

16) Determine por extensión los siguientes conjuntos y graficar los elementos en el plano de

a)
$$A = \{z \in \mathbb{C} \ / \ z^2 = 1 + \sqrt{3}i\}$$
 b) $B = \{z \in \mathbb{C} \ / \ z^6 + 64 = 0\}$

b)
$$B = \{z \in \mathbb{C} \ / \ z^6 + 64 = 0\}$$

c)
$$C = \{z \in \mathbb{C} \ / \ z^4 = 36i\}$$

17) Dados $z_1 = 3 - 2i$, $z_2 = 2 + 4i$, $z_3 = (5,2)$, $z_4 = (-1,\sqrt{2})$. Escribirlos en forma exponencial y calcular:

a)
$$\frac{z_3.z_4}{z_1}$$

b)
$$z_4^2 \cdot z_2$$
 c) $z_2 : z_3$

c)
$$z_2:z_3$$

18) Hallar el conjunto solución

a)
$$z:(3+i)=(5-2i)-(1+3i)$$
 b) $e^z=(2-i)(1+4i)$ c) $\begin{cases} z+\bar{z}=-5\\ z-\bar{z}=3i \end{cases}$

b)
$$e^z = (2-i)(1+4i)$$

c)
$$\begin{cases} z + \bar{z} = -5 \\ z - \bar{z} = 3i \end{cases}$$