

Michał Kruczek

Sprawozdanie z projektu nr 1

Spis treści

1 Wstęp	1
1.1. Opis problemu	1
2 Opis podstaw teoretycznych zagadnienia	
3 Opis szczegółów implementacji problemu	2
3.1. Biblioteki	2
3.2. Zmienne	2
3.3. Funkcje	
4 Pseudokod programu	
5 Schemat blokowy algorytmu	
6 Czas obliczania algorytmu	
7 Złożoność obliczeniowa	
8 Podsumowanie	7
9 Netografia	7
0	

1 Wstęp

Treść zadania jest następująca:

Znajdź liczbę trójelementowych kombinacji liczb z zadanego ciągu,których suma jest równa zadanej liczbie M.

Przykład:

Wejście: [1,2,5,1,2,1,2,4]

M = 6

Wyjście: Liczba kombinacji wynosi 2: [2,2,2], [1,1,4]

1.1. Opis problemu

Problem zadania projektowego polega na odnalezieniu w ciągu liczb podciągu trójelementowego równego zadanej liczbie M. Ciąg użyty w zadaniu jest wprowadzany ręcznie przy każdym uruchomieniu programu. Można również użyć do tego generatora liczb pseudolosowych,tworzącego nową tablice wraz z rozpoczęciem pracy programu.

2 Opis podstaw teoretycznych zagadnienia

Rozwiązanie zadania polegało na napisaniu algorytmu takiego,żeby potrafił on pogrupować elementy tablicy w trójki,dodać je ze sobą, porównać do podanej liczby M oraz wyświetlić ilość takich trójelementowych kombinacji.

3 Opis szczegółów implementacji problemu

3.1. Biblioteki

iostream	Deklaruje obiekty kontrolują odczytywanie ze strumieni standardowych i zapisywanie ich w tych strumieniach. Jest to często jedyny nagłówek potrzebny do wprowadzania danych i danych wyjściowych z programu w języku C++.
fstream	Definiuje kilka klas, które obsługują operacje iostream na sekwencjach przechowywanych w plikach zewnętrznych.
chrono	Dołącza standardowy nagłówek, aby zdefiniować klasy i funkcje, które reprezentują czasy trwania i czasy natychmiastowe oraz manipulują nimi.
cstdlib	Dodanie tego nagłówka gwarantuje, że nazwy zadeklarowane przy użyciu powiązania zewnętrznego w nagłówku standardowej biblioteki języka C są zadeklarowane w przestrzeni std nazw .

3.2. Zmienne

zapis	Służy do zapisu danych do pliku zewnętrznego
n	Przechowuje rozmiar tablicy ciągu
start	Przechowuje czas na początku działania programu
finish	Przechowuje czas na końcu działania programu
elapsed	Przechowuje czas, który upłynął przez okres działania programu
A[n]	Przechowuje elementy tablicy o rozmiarze n
М	Przechowuje liczbę ,do której przyrównywana jest suma wyrazów trójelementowego podciągu
a,i,k,j	Liczniki pętli for
ilosc	Zawiera ilosc kombinacji trzech wyrazów tablicy równych liczbie M
obecnyIndeks	Zmienna pomocnicza,przechowująca indeks danego licznika pętli

rand	Wygenerowanie pseudolosowych liczb
	Ustawia punkt startowy generatora pseudolosowego.

3.3. Funkcje

main	Funkcja programu, zawiera inicjalizacje i deklaracje zmiennych, funkcje związane z obliczaniem czasu obliczeń oraz zapisywaniem danych do pliku; w niej wywoływane są pozostałe funkcje,za pomocą zagnieżdżonych pętli for znajduje ona powtarzające się elementy tablicy, a wyniki działań zapisuje do pliku
SprawdzCzyKombinacjaIstnieje	Funkcja,która sprawdza wynik,będący efektem działania funkcji main
DodajAktualnaKombinacje	Funkcja,która usuwa duplikaty znalezionych w ciągu kombinacji

4 Pseudokod programu

```
c = 100
B[c]
indeks=0,liczba kombinacji=0,n=8
A[n]
ilosc=0
dla i=1 do n wykonuj
       Wygeneruj A[n]
dla i=1 do n wykonuj
      Wypisz A[n]
Wygeneruj M
dla i=1 do n,dla j=i+1 do n oraz dla k=j+1 do n,wykonuj
      jeżeli indeks=0,oraz kombinacja A[i],A[j],A[k] istnieje dla M
       wyprowadź [ A[i],A[j],A[k] ]
wyprowadź ilość kombinacji wynosi M
w przeciwnym razie
wyprowadź ilość kombinacji wynosi 0
```

5 Schemat blokowy algorytmu

6 Czas obliczania algorytmu

Czas podany jest w sekundach. Wynik jest średnią 10 uruchomień programu.

10-elementowy ciąg	0,028 sekund
100-elementowy ciąg	0,142 sekund
500-elementowy ciąg	1,146 sekund
1000-elementowy ciąg	3,363 sekund

Wykres czasu od liczby elementów:

Wykres czasu od liczby elementów

7 Złożoność obliczeniowa

Ukazany wyżej algorytm posiada złożoność rzędu O (n^3). Wynika to z potrójnie zagnieżdżonej pętli for wykonującej powstawanie kolejnych trójelementowych kombinacji.

8 Podsumowanie

Powyższy algorytm rozwiązuje problem podany w treści zadania. Ukazuje on składające się z trzech wyrazów podciągi równe podanej przez użytkownika liczbie M. Co prawda, jest on dosyć powolny ze względu na złożoność rzędu O (n^3) , jednak spełnia wymagania niezbędne do prawidłowego funkcjonowania. Opisany algorytm poprawie wykonuje warunki zadania

Ilustracja 1: Wynik przykładowego uruchomienia programu

9 Netografia

https://www.samouczekprogramisty.pl/podstawy-zlozonosci-obliczeniowej/

 $\underline{https://docs.microsoft.com/pl-pl/cpp/standard-library/cpp-standard-library-header-files?view=msvc-160}$

https://home.agh.edu.pl/~pamalino/programowanie/cpp/index.php

https://eduinf.waw.pl/inf/alg/001 search/index.php

http://pa.prz.edu.pl/index.php?page=md0