Preprations

* 1. Alphabets (Σ)

- **Definition**: A finite set of symbols.
- **Notation**: Usually written as Σ (sigma).
- Example:
 - ∘ $\Sigma = \{0, 1\}$ → Binary alphabet
 - \circ $\Sigma = \{a, b, c, ..., z\} \rightarrow English alphabet$
- Think of an alphabet as the basic building blocks.

🌟 2. Strings (Words)

- Definition: A finite sequence of symbols from an alphabet.
- Notation: Written as w (or any variable).
- Example:
 - \circ If $\Sigma = \{a, b\}$, then abba, aab, b are strings.
 - o aaabbb is a string of length 6.
- A string can be empty too!

🌟 3. Empty String (ε)

- **Symbol**: ε (Greek letter epsilon)
- Meaning: A string with zero symbols.
- Length: $|\varepsilon| = 0$

***** 4. Length of a String

- Notation: |w| = number of symbols in string w
- Examples:
 - \circ W = abc \Rightarrow |W| = 3

```
\circ w = aabb \Rightarrow |w| = 4
```

$$\circ$$
 W = $\epsilon \Rightarrow |\epsilon| = 0$

- Σ^* = Set of all possible strings (including ϵ) over Σ .
- Includes:
 - ε (empty string)
 - \circ All strings of length 1: a , b , c , ...
 - o All strings of length 2: aa, ab, bc, ...
 - And so on...

Example:

```
If \Sigma = \{a, b\}, then
\Sigma^* = \{\epsilon, a, b, aa, ab, ba, bb, aaa, aab, aba, ...\}
```


* 6. Words vs Strings

- In Automata Theory, word = string.
- Both mean a **finite sequence** of symbols from Σ .
- No difference, just terminology.

Summary Table:

Term	Definition	Example		
Alphabet (Σ)	Set of symbols	{0,1} or {a,b}		
String	Sequence of symbols from Σ	abba , 101		
Empty String	A string with no symbol	ε		
Length	Number of symbols in string		abc	= 3
Σ*	All possible strings from Σ (incl. ϵ)	{ε, a, b, aa, ab,}		

1. What is a String in Automata?

A string is just a sequence of symbols taken from a given alphabet (Σ).

Example:

Let's say:

 $\Sigma = \{a, b\}$

Then:

- a → a string of length 1
- ab → a string of length 2
- bba → a string of length 3
- ε (empty string) → string of length 0

Symbols must come from Σ only.

2. How to Count the Length of a String?

The **length** is simply the **number of symbols** in the string.

Examples:

String	Length
a	1
bb	2
abba	4
ε	0
babab	5

 \not Count every **symbol**, **not letters in English words**, but symbols from the **alphabet Σ**.

🛾 3. What Do We Mean by "Tokenizing" in Automata?

In Automata, **tokenizing** a string often means:

Breaking it into individual symbols from the alphabet.

Example:

Let
$$\Sigma = \{0, 1\}$$

Then:

• String 010 is made up of tokens: 0, 1, 0 \rightarrow 3 symbols \rightarrow Length = 3

Even if it looks like one chunk, it's really:

Common Confusion:

X Mistake:

You see a word like "dog" and count it as 1 word, so you think:

But if $\Sigma = \{d, o, g\}$, then:

$$\boxed{\hspace{0.5cm}}$$
 "dog" = $\boxed{\hspace{0.5cm}}$ d , $\boxed{\hspace{0.5cm}}$ o , $\boxed{\hspace{0.5cm}}$ g \rightarrow Length = 3

Each **symbol/character** is counted separately.

Key Point:

Length = Number of symbols from Σ in the string.

No matter what the word means in English!

Let's Practice Together

If I say:

- $\Sigma = \{a, b\}$
- String = ababa

🧠 Given:

- $\Sigma = \{ B, aB, bab, d \}$
- s = BaBbabBd

You are asking:

Is this a string over Σ ? And if yes, what is its **length**?

ightharpoonup Step 1: Understand Each Symbol in Σ

These are your allowed **symbols** (not characters):

- B → a single symbol
- aB → a symbol (made of 2 characters)
- bab → a symbol (made of 3 characters)
- d → a symbol

So here, even though some symbols look like "long words", they are treated as **one atomic unit**.

Step 2: Tokenize the String

Now let's try to **split** s = BaBbabBd using only valid symbols from Σ .

Try breaking it down:

All parts are in Σ:

- B \rightarrow in Σ
- aB \rightarrow in Σ
- bab \rightarrow in Σ
- B → in Σ
- d \rightarrow in Σ
- \leftarrow So the string **is valid** over Σ.

Step 3: Count the Length

We count the **number of symbols used**, not characters.

In this case:

Symbol	Count
В	1
ав	1
bab	1
В	1
d	1

12 Length = 5

V Final Answer:

- BaBbabBd is a valid string over $\Sigma = \{B, aB, bab, d\}$
- Length of the string = 5 symbols

🔥 Bonus Tip:

When Σ has **multi-character symbols**, your job is to:

- 1. Break the string into **valid symbols** from Σ (like tokenization).
- 2. Count how many **symbols**, not characters.

V

Recap: What Is a Word in Automata?

In Automata Theory:

A word is simply a string made up of symbols from an alphabet Σ .

So:

- Word = String
- Both mean the same thing in this context.
- A word is any valid sequence of symbols from Σ .

In Your Case:

You gave:

- $\Sigma = \{B, aB, bab, d\}$
- String (or word) = BaBbabBd

We already showed:

- This string can be tokenized as:
 - \rightarrow B aB bab B d

So this string:

- Is made up only of symbols from Σ $\boxed{\hspace{-0.1cm} V}$
- Therefore, it is a valid word over Σ
- Its length (number of symbols) = 5

Final Answer:

- BaBbabBd is a **word** over $\Sigma = \{B, aB, bab, d\}$
- It is also called a string in automata theory
- The word contains 5 symbols from Σ

If a sequence can be made using only the **symbols in** Σ , it is a **word** over Σ .

✓ Great observation — and YES, you're on the right track now.

Let me clear it 100%:

Strings vs Words in Automata

Concept	Definition	Validity
String	Any sequence of symbols or characters	Can be valid or invalid
Word (over Σ)	A string that is made only from symbols in Σ	Always valid

So YES:

- All words are valid strings over Σ
- But not all strings are words over Σ

Section Example:

Let's say:

• $\Sigma = \{a, ab, c\}$

Now look at this string:

abcab

Can we break it into valid symbols from Σ ?

Try:

- 1. a 🗸
- 2. b \times \leftarrow b is **not in** Σ

So:

- abcab is **not** a valid word over Σ
- It is a **string**, but **not a word** over Σ

Valid Word Example:

Try: aabcc

Break it as:

- a 🗸
- a 🗸
- b X ← again, invalid

So again: X Not a word

Try: abac

- ab **/**
- a 🗸
- c ✓ → ✓ Valid word

🔁 Summary:

Term	Valid Over Σ?	Example	
String	Maybe 🗸 or 🗶	abc , xy , z	
Word	Always 🔽	abac , abab , c (only if all symbols $\in \Sigma$)	

Situation:

- $\Sigma = \{a, ab, c\}$
- String = abcab
- Goal: Check if abcab is a valid word over Σ using tokenization

We need to **break it into valid symbols from** Σ , which are:

```
{a, ab, c}
```

So we're allowed to pick:

- a 🗸
- ab 🔽
- c 🗸

Let's try to tokenize abcab:

Attempt 1: Greedy left-to-right

```
abcab
↑ try "ab"? Yes → match 🔽
   ab | cab
         ↑ try "c"? Yes → match 🔽
             ab | c | ab
                    ↑ "ab"? Yes → match 🔽
Final tokenization: ab \mid c \mid ab \rightarrow all in \Sigma \bigvee
```

Yes! This tokenization works!

Final Answer:

- abcab can be tokenized as ab, c, ab
- Each part is a valid $symbol from \Sigma$
- So, abcab is a valid word over $\Sigma = \{a, ab, c\}$

Important Tokenizing Rule:

In Automata, we often use **greedy matching**:

Always try to match the **longest possible symbol** from left to right.

• At ab, match ab (not a then b) — because b alone is **not** in Σ .

🧠 Atomic Value = Symbol in Σ

Each symbol from Σ (like ab, a, c) is considered an **atomic unit**. You can't break it further when validating a word.

Term	Meaning	
Atomic Value	Each indivisible symbol in Σ	
Tokenizing	Breaking a string into symbols from Σ	
Word	A string that can be tokenized with $\boldsymbol{\Sigma}$ only	

Awesome question! You're now stepping into the connection between **Automata Theory** and **Compiler Design** — specifically the **Lexical Analyzer (Lexer)**.

Let me explain how a lexical analyzer checks if a string is a valid word over a given Σ (alphabet) just like you do in Automata.

🎯 What is a Lexical Analyzer?

A **lexical analyzer** is the **first phase** of a compiler.

It reads an input string (source code) and breaks it into valid tokens (words) based on predefined **lexical rules** (a kind of Σ).

 \bigvee The tokens must match the patterns defined in the language grammar or symbol set (Σ) .

Lexical Analyzer vs Automata

Automata	Lexical Analyzer	
Uses Σ to define valid symbols	Uses token definitions (keywords, IDs, etc.)	
Checks if a string is a valid word	Breaks source code into valid tokens	
DFA (Deterministic Finite Automata)	Is built using DFAs internally	

So a lexer is basically an automaton (DFA) that recognizes valid words/tokens from a stream of characters.

PROCESS: How Lexical Analyzer Checks a Word

Let's go step by step using two examples:

Example 1: Simple

- Σ = {int, main, =, +, num, ;}
- Input String: int num = num + num ;
- Lexer should tokenize this as:

Token	Valid in Σ?
int	
num	
=	
num	
+	
num	
;	

 \blacksquare All tokens are valid \rightarrow \checkmark This is a **valid word** (program statement) over Σ

X Example 2: Complex / Invalid

- Σ = {int, main, =, +, num, ;}
- Input String: int numb = num num ;

Try tokenizing:

Token	Valid in Σ?
int	
numb	×
=	
num	
-	×
num	
·,	

🚺 numb and - are **not in Σ**

So lexer flags this string as invalid X

🧠 What's Happening Internally?

- 1. Lexer scans from left to right
- 2. Tries to match the longest possible valid token
- 3. Uses a **DFA** for each token definition (keyword, identifier, operator, etc.)
- 4. If it finds a symbol that doesn't match any DFA:
 - It reports an invalid token error

Automata Behind the Scenes

Each token is accepted by a **DFA**.

For example:

- int is accepted by DFA1
- num by DFA2

+ by DFA3, etc.

The lexer runs the **input through all DFAs** in parallel or in order to find the **longest valid match**.

Summary: Lexical Analyzer vs Word Checking

Concept	Description	
Alphabet (Σ)	Set of valid symbols/tokens	
String	Sequence of characters (program code or sentence)	
Tokenizing	Breaking string into symbols from Σ	
Valid Word	A string that is fully made of valid tokens from Σ	
Lexical Analyzer	DFA-based tool to tokenize and validate the input string	

Want to try?

Here's a challenge for you:

```
Σ = {if, else, id, ==, =, +, ;}
String: if id == id + id ; else id = id + id ;
```

Can you:

- 1. Tokenize this string
- 2. Check if all tokens are in Σ ?

Reply and I'll check it for you!

Of course! Here's your teacher's statement translated into **clear, simple language**, just like the explanation above:

Original Statement:

"As when the string is scanned by lexical analyzer (compiler) first symbol 'B' is identified as a letter the lexical analyzer would not be able to identify, so while defining an alphabet it should be kept in mind that ambiguity should not be created."

Easy Explanation:

When the **compiler** (lexical analyzer) starts scanning the string from left to right, it sees the first symbol is B.

Now, because B, Ba, and bab are all in the alphabet (Σ), the analyzer might get **confused** — should it pick just B, or try for Ba?

If the lexer picks the wrong one first (like just $\, _{B} \,$), it may fail to understand the rest of the string.

So, to avoid this confusion (ambiguity), when we design our alphabet Σ , we should not include overlapping symbols like B and Ba.

This makes tokenization clear and avoids errors when recognizing words (valid strings).

1 In One Line:

Avoid using symbols in Σ that start with the same letters, or it will confuse the compiler during scanning.

Absolutely! Let's add **reverse of a string** (according to Automata Theory) to your study summary — using **your example** too.

7

Reverse of a String in Automata

Definition:

The **reverse** of a string w, written as w^R , is the string obtained by **reversing the order of symbols** (not characters) in w.

🛕 Important:

In Automata, when reversing:

- You reverse symbols from Σ, not characters
- So, tokenization must come first

🧠 Example Based on Your Case:

Given:

- $\Sigma = \{B, Ba, bab, d\}$
- String s = BababB

Step 1: Tokenize

We use the correct tokenization (as discussed earlier):

```
s = (Ba)(bab)(B)
```

Step 2: Reverse the Tokens

Now reverse the **symbols**, not characters:

```
Original: Ba | bab | B
Reversed: B | bab | Ba
```

Step 3: Final Reversed String:

```
Reverse(s) = BbabBa
```

 \checkmark This is the reversed string, made using symbols from Σ , in reverse order.

Summary of Reversal

Original String	Tokenized as	Reversed Order	Final Reversed String
BababB	Ba, bab, B	B, bab, Ba	BbabBa

Why Not Reverse Characters?

If you did reverse("BababB") by character, you'd get:

Original: B a b a b B

Reversed: B b a b a B \rightarrow Bbabab

But this may not tokenize properly based on Σ .

📌 Automata Rule:

Always reverse symbols (tokens), not characters, especially when Σ contains multi-character symbols.