

ıı|ıı|ıı CISCO

Couche Réseau IP adressage IPv4

Présentation des réseaux V7.0 (ITN)

Module 4, partie 2: Rubriques (NetaCad, module 11.0)

Qu'est-ce que je vais apprendre dans ce module?

Rubrique	Objectif du rubrique
Structure de l'adresse IPv4	Décrire la structure d'une adresse IPv4, y compris la partie hôte, la partie réseau et le masque de sous-réseau.
PaquetlPV4:adresses particulières	Classer les types d'adresses: monodiffusion, diffusion et loopback
PaquetIPV4:adresses particulières	Expliquer et classer les valeurs des adresses publiques ou privées
Dépannage d'un petit réseau	Utiliser le module de simulation dans l'applications PT

Le module 4 « couche réseau » est associé au module 11 du site NetaCad© de Cisco

11.1 Structure de l'adresse IPv4

Structure d'une adresse IP-V4? (11.1.1)

• La structure générale d'une adresse IP-V4 est une séquence de 32 bits, regroupés en 4 blocs de 8 bits (1 octet) séparés par un point.

 Exemple: adresses d'un poste, d'une imprimante ou d'un serveur sur le réseau local

 2016 Cisco et/ou ses filiales. Tous droits réservés. Informations onfidentielles de Cisco

6

Structure d'une adresse IP-V4? (11.1.1)

Tout appareil qui désire communiquer avec d'autres appareils doit posséder une adresse IP.
 L'adresse IP est l'identifiant spécifique et UNIQUE de l'appareil sur le réseau local.

 Représentation d'une adresse IP-v4, en format décimal binaire et hexadécimale

IP version 4 (IPv4) is the current form of addressing used on the Internet.

confidentielles de Cisco

7

Sur quel réseau est situé mon équipement? (11.1.2)

- le masque de sous-réseau permet de répondre à cette question
- Masque de sous-réseau: structure IPv4
 - Série de « 1 » successifs suivis de « 0 » successifs.
 - Ajouté à la configuration de tous les équipements
 - Exemple de masque

• Représentation d'un masque IPv4, en format décimal et binaire

IP version 4 (IPv4) is the current form of addressing used on the Internet.

© 2016 Cisco et/ou ses filiales. Tous droits réservés. Information confidentielles de Cisco

Représentation par point ou barre oblique (11.1.3)

- Il existe deux formats équivalents pour représenter le masque de sous-réseau
- 1. « Point décimal»: bloc de 8 bits séparés par des points
- 2. « Barre oblique »: nombre de bits à « 1 » dans la partie gauche du masque

Sur quel réseau est situé mon équipement? (11.1.2)

- Le masque de sous-réseau détermine la « frontière » qui sépare la partie réseau de la partie hôte
- Cette « frontière » est repérée par le changement de séquences « 1 » à « 0 » dans le masque de sous-réseau.

Sur quel réseau est situé mon équipement? (11.1.4)

 Pour obtenir la valeur du réseau, la carte réseau applique un ET logique entre l'adresse IP et le masque de sous-réseau.

DONC

le poste

CISCO

192.168.10<mark>.10</mark> /24

Adresse de l'hôte

AND

Masque de sous-

Égal à

255 1111 1111

192

1100 0000

192

1100 0000

1111 1111

168

1010 1000

168

1010 1000

255

10 0000 1010

0000 1010

255

1111 1111

0 0000 0000

10

0000 1010

0

0000 0000

Est situé sur le réseau 192.168.10.0 /24

Adresse de

réseau

réseau

IPv4

 Toutes les valeurs de l'adresse vis-à-vis des «1» du masque sont conservées (192.168.10.X)

• Toutes les valeurs de l'adresse vis-à-vis des «0» du masque deviennent «0000 0000»

Vidéo 11.1.5

Sur quel réseau est situé mon équipement? (11.1.4)

• Exemple: deux appareils sur le même réseau

Masque de sous-réseau :

Passerelle par défaut :

Serveur

192.168.10 255.255.255 192.168.10.0

255 , 255 , 255 , 0

192 . 168 . 10 . 1

La structure d'une adresse IPv4 Qui d'autre est situé mon réseau? (11.1.6)

- Au sein de chaque réseau se trouvent trois types d'adresses IP:
- 1. L'adresse du réseau: réservée. Sa valeur est la plus petite du réseau
- 2. Adresse de diffusion: réservée : Sa valeur est la plus élevée du réseau
- 3. Adresses d'hôtes: un adresse située entre les deux extrémités

		Partie réseau	Partie hôte	Bits d'hôte
192.168.10.10/24 192.168.10.10/24 192.168.10.10/24 Network Address 192.168.10.0/24 192.168.10.12/24 3	Masque de sous- réseau . 255.255.255. 0 or /24	255 255 255 11111111 111111 111111	0	
	Adresse réseau 192.168.10. 0 or /24	192 168 10 11000000 10100000 00001010	0	All 0s
	First address 192.168.10 .1 or /24	192 168 10 11000000 10100000 00001010	1 00000001	All 0s and a 1
	Last address 192.168.10.254 or /24	192 168 10 11000000 10100000 00001010	254 11111110	All 1s and a 0
	Adresse de diffusion 192.168.10 .255 or /24	192 168 10 11000000 10100000 00001010	255 11111111	All 1s and a 0

cisco

2016 Cisco et/ou ses filiales. Tous droits réservés. Informations onfidentielles de Cisco

La structure d'une adresse IPv4 Qui d'autre est situé mon réseau? (11.1.6)

résumé

Topologie	réseau	Prem. Adr.	Dern. Adr.	Adr. diffusion
192.168.10.0/24	192.168.10 <mark>.0</mark>	192.168.10.1	192.168.10.254	192.168.10 <mark>.255</mark>
	réservé	Premier hôte	Dernier hôte	réservé

92.168.10.10/24

192.168.10.101/24

11.2 Adresses IPv4 de monodiffusion, de diffusion et de multidiffusion

Objectifs 11.2

- Distinguer les modes de diffusion
- Expliquer l'usage des modes monodiffusion et diffusion
- Identifier les adresses IP dans chaque mode

Adresses IPv4 de monodiffusion, de diffusion et de multidiffusion Monodiffusion (11.2.1)

- La transmission monodiffusion est une relation entre 2 équipements seulement.
- Par exemple, le PC désire imprimer du texte.
- La couche IP contiendra les 2 adresses IP. La partie « Données » contient le texte à imprimer

Adresses IPv4 de monodiffusion, de diffusion et de multidiffusion Diffusion (11.2.2)

- Dans certaines situations, le paquet est destiné à tous les appareils du réseau.
- L'adresse de destination est la dernière adresse du réseau, ici 172.16.4.255.
- Dans cet exemple, l'imprimante répond à la demande par son adresse IP par une monodiffusion

Adresses IPv4 de monodiffusion, de diffusion et de multidiffusion Multidiffusion (11.2.3)

- Dans certains cas, le message est destiné à échanger avec un groupe particulier de services. Une liste d'adresses est réservé pour cela
- La plage réservée est 224.0.0.0 à 239.255.255.255

• Seuls les équipements concernés répondent. Nous pouvons interpréter cela comme cisture diffusion partielle.

Les adresses IPv4 de monodiffusion, de diffusion et de multidiffusion

Résumé: Communication IPv4

 Monodiffusion : communication un à un.

 Diffusion : communication un à tous.

 Multidiffusion : communication un à un groupe sélectionné.

11.3 Types d'adresses IPv4

Adressage par classe

Dimensions des réseaux

historiquement, les réseaux ne contenaient que 3 classes

Classe A: IMMENSES RÉSEAUX

	Réseau	Hôte	Hôte	Hôte
Masque de sous-réseau	255	.0	.0	.0

Classe B: réseaux de dimension « moyenne :

	Réseau	Réseau	Hôte	Hôte
oyenne »				
Masque de	255	.255	.0	.0

Classe C: petits réseaux

	Réseau	Réseau	Réseau	Hôte
Masque de sous-réseau	255	.255	.255	.0

ıllıılıı CISCO

Adressage par classe

Gaspillage dans l'adressage par classe

Attribution d'adresses IP par classe = inefficace

Classe A (1 - 126)

Nb de réseaux possibles : 126 Nb d'hôtes/réseau: 16 777 214

Classe B (128 - 191)

Nb de réseaux possibles : 16 384

Nb d'hôtes/réseau: 65 534

Classe C (192 - 223)

Nb de réseaux possibles : 2 097 152 Nb d'hôtes/réseau : 254

Pourquoi des addresses publiques et privées ? (11.3.1)

- Le nombre total d'adresses IPv4 s'étend de 0.0.0.0 à 255.255.255.255,
- Internet est si Populaire que toutes les addresses publiques sont utilisées!
- Pour augmenter artificiellement les possibilités, les adresses sont divisées en 2 catégories
- Adresses publiques: attribuées aux fournisseurs d'accès internet (FAI)
- · Adresses privées: disponibles à toutes les organisations

pour leurs réseaux locaux

Classifier et définir les adresses IPv4

Passerelle 192.168.1.1

Types d'adresses IPv4 Les adresses IPv4 privées (11.3.1)

- Le tableau suivant donne la liste de valeurs qu'il est possible de donner à des reseaux privés.
- Ainsi, les reseaux 10.10.10.0 /24 et 172.16.4.0 /24 peuvent se trouver dans de nombreux pays.
- Ces addresses seront bloquées par les routeurs internet

Adresse réseau et préfixe	Gamme d'adresses privée RFC 1918
10.0.0.0/8	10.0.0.0 - 10.255.255.255
172.16.0.0/12	172.16.0.0 - 172.31.255.255
192.168.0.0/16	192.168.0.0 - 192.168.255.255

Types d'adresses IPv4 Routage vers l'internet (11.3.3)

- À la frontière d'Internet, le routeur va remplacer l'adresse privée par une adresse publique qui lui est exclusive. L'adresse publique peut se déplacer sur tous les continents.
- Ce procédé s'appelle NAT.
- Il traduit les adresses IP privées en adresses IP publiques.
- Le protocole NAT sera vu plus tard.

cisco

Les types d'adresses IPv4

L'attribution des adresses IP publiques (11.3.6)

- L'IANA est responsable de gérer les adresses publiques. Elle distribue des « blocs » d'adresses à des organismes qui les distribuent sur leur continent
 - American Registry for Internet Numbers (ARIN): Amérique du Nord
 - Réseaux IP européens (RIPE) : Europe, Moyen-Orient et Asie centrale
 - Asia Pacific Network Information Centre (APNIC): Asie et régions Pacifique
 - African Network Information Centre (AfriNIC): Afrique
 - Regional Latin-American and Caribbean IP Address Registry (LACNIC): Amérique du Sud et certaines îles des Caraïbes

cisco

Tableau des addresses

• Les fournisseurs internet possèdent des addresses publiques pour relier les reseaux privés entre eux

Publiques ou réservées			
réservée	0.0.0.0	0.255.255.255	
Publique	1.0.0.0	126.0.0.0	
Réservée	127.0.0.0	Loopback	
Publique	128.0.0.0	191.255.255.255	
Publique	192.0.0.0	223.255.255.255	
réservée	224.0.0.0	255.255.255.255	

Adresse réseaux privés	
10.0.0.0/8	10.0.0.0 - 10.255.255.255
172.16.0.0/12	172.16.0.0 - 172.31.255.255
192.168.0.0/16	192.168.0.0 - 192.168.255.255

Animation 11.3.7

11.3 saturation d'adresse IPv4

Délégation IANA

- IANA assigne des "pools" d'adresses publiques à des organismes partenaires dans différentes régions du monde
- Cette délégation facilite l'attribution et la gestion des addresses publiques
- Depuis, toutes les addresses sont attribuées

Paquet IPv6

Limites du protocole IPv4

- Depuis quelques années, les fournisseurs d'accès internet ne peuvent pas obtenir d'adresses publiques.
- La traduction NAT a été un moyen de retarder la panne d'adresses.
- IPv6 a pour but de remplacer progressivement le protocole IPv4.
- Les fournisseurs internet peuvent quand même offrir la connectivité
- Un paquet IPv4 local peut être encapsulé dans un paquet IPv6 durant le trajet internet. Ceci permet une transition sans interruption

11.4 dépannage IPv4

Configuration IP d'un poste

- Méthode statique: attribution fixe dans le temps
 - Données de base
 - valeur dans l'intervalle du réseau local;
 - masque identique aux autres appareils du réseau;
 - passerelle par défaut
- Dans Windows, configuration par...
- Panneau de configuration→. . . → Centre Réseau et partage → Modifier les paramètres de la carte

Dépannage IP d'un poste

Vérification de l'adresse IPv4

192 . 168 . 10 . 10

255 . 255 . 255 . 0

192 . 168 . 10 . 1

IP address:

Subnet mask:

Default gateway:

Routage et dépannage d'un hôte (8.4.2) rappel

Les commandes « ping » et «tracert» servent à tester et dépanner les transferts

La commande **ping** confirme un parcours réussi

- 1. vérifier la configuration du poste
- 2. Rejoindre la passerelle par défaut: ping adressePasserelle
- Rejoindre un autre périphérique du réseau local
- Rejoindre un périphérique distant. Si la commande ping ne réussit pas, la commande **tracert** peut servir

Ne passez une étape sans la corriger

C:\>ping 172.16.1.254

11.10 Module pratique et questionnaire

Animations, quiz sur NetaCad

 Et logique dans l'attribution des adresses IP: passerelle par défaut, plage d'adresses du réseau
 Vidéo 11.1.5

Adresses de monodiffusion, diffusion et multidiffusion

Animation 11.3.7

Module Pratique et Questionnaire

Qu'est-ce que j'ai appris dans ce module?

- La structure d'adressage IP est constituée d'une adresse réseau hiérarchique 32 bits qui identifie un réseau et une partie hôte.
- · Le masque de sous-réseau délimite les parties réseau et hôte
- Le processus (Et logique) est appliqué pour séparer les parties réseau et hôte.
- · Les paquets IPv4 de destination peuvent être monodiffusion, diffusion et multidiffusion.
 - Monodiffusion: envoie à une seule destination
 - Diffusion : envoie à tous les autres appareils du réseau local
 - Multidiffusion: envoie à un groupe spécialisé (non au programme)
- Les adresses IPv4 sont séparées en 2 catégories
 - Adresses publiques: notre fournisseur internet s'en sert pour transférer nos paquets sur internet
 - Adresses privées: notre poste communique avec les autres postes locaux

Module 11: Adressage IPv4

Nouveaux termes et commandes

- longueur de préfixe /24
- logique AND (ET)
- adresse de réseau
- adresse de diffusion
- Première adresse utilisable
- Dernière adresse utilisable
- Transmission en monodiffusion, diffusion et multidiffusion

adresse privée

d'adresses publiques

Adresses publiques
 Internet Assigned Numbers Authority (IANA)
 Attribution des adresses publiques

 IPv6 vise à résoudre le problème de manque

