Exercise Session Informatik III

1. Simple Imperative Language L_c

Blackbox Function m(x)

- To prove this exercise we define the following blackbox function m(x)
- The function m(x) will return true iff x ∈ C contains the same number of if as fi, and false otherwise.

$$m(x) = \begin{cases} true & \#if = \#fi \\ false & otherwise \end{cases}$$

Proof

Now we have to check if m(x) = true holds for all $x \in C$

$$-L := E$$
 $m(x) = true (#if = #fi)$
 $- skip$ $m(x) = true (#if = #fi)$

- if E then C₁ else C₂ fi ...

Semantic Valuation Functions

```
 \begin{split} & [[\mathsf{C}]] = [[\mathsf{loc}_1 := 1; \mathsf{loc}_2 := @\mathsf{loc}_1 + 1; \mathsf{skip}]] \\ & [[\mathsf{C}]] = [[\mathsf{C}_i, \mathsf{C}_2 : \mathsf{C}_3]] = [[\mathsf{C}_3]]([[\mathsf{C}_2]]([[\mathsf{C}_1]](\mathsf{s}))) \\ & s = <0,0,0,0> \\ & [[\mathsf{skip} : comm]]([[\mathsf{loc}_2 := @\mathsf{loc}_1 + 1: comm]]([[\mathsf{loc}_1 := 1: comm]](\mathsf{s}))) \\ & [[\mathsf{skip} : comm]]([[\mathsf{loc}_2 := @\mathsf{loc}_1 + 1: comm]](\mathsf{update}([[\mathsf{loc}_i : intloc]], [[1: intexp]](\mathsf{s}), \mathsf{s}))) \\ & s = <1,0,0,0> \\ & [[\mathsf{skip} : comm]]([[\mathsf{loc}_2 := @\mathsf{loc}_1 + 1: comm]](\mathsf{s})) \\ & [[\mathsf{skip} : comm]]([[\mathsf{loc}_2 := @\mathsf{loc}_1 + 1: comm]](\mathsf{s})) \\ & [[\mathsf{skip} : comm]](\mathsf{update}([[\mathsf{loc}_2 : intloc]], \mathsf{plus}([[\mathsf{loc}_1 : intexp]](\mathsf{s}), \mathsf{s})) \\ & [[\mathsf{skip} : comm]](\mathsf{update}([[\mathsf{loc}_2 : intloc]], \mathsf{plus}([[\mathsf{loc}_i : intloc]], \mathsf{s}), [[1: intexp]](\mathsf{s}), \mathsf{s})) \\ & [[\mathsf{skip} : comm]](\mathsf{update}([[\mathsf{loc}_2 : intloc]], \mathsf{plus}([1: intexp]](\mathsf{s}), [1: intexp]](\mathsf{s}), \mathsf{s})) \\ & s = <1,2,0,0> \\ \end{aligned}
```

[[**skip**: comm]](s) s = <1,2,0,0>

globis

Extending L_c with Booleans

To change L_c to handle **boolean values**, we have to extend

- syntax rules
- typing rules
- semantic valuation functions
- operations

Syntax Rules

B := true | false E := N | ... | $E_1 = E_2$ | B

Typing Rules

{true, false} : bool

B: bool B: boolexp

 $\frac{L: intloc \quad E: \tau exp}{L:= E: comm} \quad for \tau \in \{int, bool\}$

Semantic Valuation Functions

[[B:boolexp]](s) = [[B:bool]]

[[B:bool]] = b

$$\label{eq:linear_loss} \begin{split} &[[\mathit{L} := E : comm]](s) = update([[\mathit{L} : intloc]], [[E : \tau exp]](s), s) \\ & \text{ for } \tau \in \{int, bool\} \end{split}$$

 $[[@L: \tau exp]](s) = lookup([[L:intloc]], s)$

for $\tau \in \{int, bool\}$

Operations

 $Store = \left\{ \langle \mathsf{n}_1, \mathsf{n}_2, \dots \mathsf{n}_m \rangle \mid \mathsf{n}_i \in \{\mathit{int,bool}\}, \, 1 \leq i \leq m, \, m \geq 1 \right\}$

 $lookup : Location \times Store \rightarrow \{int, bool\}$

 $update : Location \times \{int,bool\} \times Store \rightarrow Store$

Simple Calculator

- **P** Program → Nat
 - [[ON S]] = [[S]](o)
- **S** ExprSequence → Nat → Nat* (Output)
 - [[E SUM S]](n) = let n' = [[E]](n) in n' cons [[S]](n')
 - [[E SUM OFF]](n) = [[E]](n) cons nil
- **E** Expression \rightarrow Nat \rightarrow Nat
 - $[[E_1 + E_2]](n) = plus([[E_1]](n), [[E_2]](n))$
 - $-[[E_1 * E_2]](n) = times([[E_1]](n), [[E_2]](n))$
 - $[[E_1 E_2]](n) = minus([[E_1]](n), [[E_2]](n))$

Simple Calculator

- **E** Expression \rightarrow Nat \rightarrow Nat
 - $-[[IF E_1, E_2, E_3]](n) =$
 - if $[[E_1]](n)$ equals zero then $[[E_2]](n)$ else $[[E_3]](n)$
 - [[IT]](n) = n
 - [[(E)]](n) = [[E]](n)
 - [[N]](n) = [[N]]
- N Numeral \rightarrow Nat
 - Maps numeral N to corresponding n ∈ Nat

Unicity of Typing

To proof the exercise we have to a case analysis for all $c \in C$

- i) L := E
- ii) **skip**
- iii) C₁; C₂
- iv) while E do C od
- v) if E then C_1 else C_2 fi

