Lab 6

Propositional Logic

Statement:

- The car is either at John's house or at Fred's house.
- If the car is not at John's house, then it must be at Fred's house

1 (a)

Set of propositional letters which can be used to represent this statement:

X: car is at John's house

Y: car is at Fred's house

¬X: car is not at John's house

1 (b)

- The car is either at John's house or at Fred's house:
 - -XVY
 - $-(X \land \neg Y) \lor (\neg X \land Y)$ (car cannot be at John's house and at Fred's house at the same time)
- If the car is not at John's house, then it must be at Fred's house
 - $-\neg X=>Y$

1 (c)

Can we determine where the car is?

X	Y	X∧¬Y	¬X/Y	$(X \land \neg Y) \lor (\neg X \land Y)$	¬X=>Y	$(X \land \neg Y) \lor (\neg X \land Y))$ $\land (\neg X => Y)$
Т	Т	F	F	F	Т	F
Т	F	Т	F	Т	Т	Т
F	Т	F	Т	Т	Т	Т
F	F	F	F	F	F	Т

No – the car can be either at John's or at Fred's house

2.
$$\neg^*((P \lor \neg Q) \rightarrow R) \rightarrow (P \land R)$$

$$\neg [((P \lor \neg Q) \to R) (\to) (P \land R)] \equiv \text{Implication elimination: (a \to b)} \equiv (\neg a \lor b)$$

$$\neg [((P \lor \neg Q) \to R) \to (P \land R)] \equiv \text{Implication elimination: (a \Rightarrow b) $\equiv (\neg a \lor b)$}$$
$$\neg [\neg ((P \lor \neg Q) \to R) \lor (P \land R)] \equiv \text{Implication elimination: (a \Rightarrow b) $\equiv (\neg a \lor b)$}$$

$$\neg [((P \lor \neg Q) \to R) \to (P \land R)] \equiv \text{Implication elimination: } (a \to b) \equiv (\neg a \lor b)$$

$$\neg [\neg ((P \lor \neg Q) \to R) \lor (P \land R)] \equiv \text{Implication elimination: } (a \to b) \equiv (\neg a \lor b)$$

$$\neg [\neg ((P \lor \neg Q) \lor R) \lor (P \land R)] \equiv \text{De Morgan: } \neg (a \lor b) \equiv (\neg a \land \neg b)$$

$$\neg [((P \lor \neg Q) \to R) \to (P \land R)] \equiv \text{Implication elimination: } (a \to b) = (\neg a \land b)$$

$$\neg [\neg ((P \lor \neg Q) \to R) \lor (P \land R)] \equiv \text{Implication elimination: } (a \to b) = (\neg a \land b)$$

$$\neg [\neg ((P \lor \neg Q) \lor R) \lor (P \land R)] \equiv \text{De Morgan: } \neg (a \lor b) = (\neg a \land \neg b)$$

$$\neg [\neg ((\neg P \land Q) \lor R) \lor (P \land R)] \equiv \text{De Morgan: } \neg (a \lor b) = (\neg a \land \neg b)$$

$$\neg [((P \lor \neg Q) \to R) \to (P \land R)] \equiv \text{Implication elimination: } (a \to b) = (\neg a \land b)$$

$$\neg [\neg ((P \lor \neg Q) \to R) \lor (P \land R)] \equiv \text{Implication elimination: } (a \to b) = (\neg a \land b)$$

$$\neg [\neg ((P \lor \neg Q) \lor R) \lor (P \land R)] \equiv \text{De Morgan: } \neg (a \lor b) = (\neg a \land \neg b)$$

$$\neg [\neg ((\neg P \land Q) \lor R) \lor (P \land R)] \equiv \text{De Morgan: } \neg (a \lor b) = (\neg a \land \neg b)$$

$$[((\neg P \land Q) \lor R) \land \neg (P \land R)] \equiv \text{De Morgan: } \neg (a \land b) = (\neg a \lor \neg b)$$

$$\neg [((P \lor \neg Q) \to R) \to (P \land R)] \equiv \text{Implication elimination: } (a \to b) \equiv (\neg a \land b)$$

$$\neg [\neg ((P \lor \neg Q) \to R) \lor (P \land R)] \equiv \text{Implication elimination: } (a \to b) \equiv (\neg a \land b)$$

$$\neg [\neg ((P \lor \neg Q) \lor R) \lor (P \land R)] \equiv \text{De Morgan: } \neg (a \lor b) \equiv (\neg a \land \neg b)$$

$$\neg [\neg ((\neg P \land Q) \lor R) \lor (P \land R)] \equiv \text{De Morgan: } \neg (a \lor b) \equiv (\neg a \land \neg b)$$

$$[((\neg P \land Q) \lor R) \land (P \land R)] \equiv \text{De Morgan: } \neg (a \land b) \equiv (\neg a \lor \neg b)$$

$$[((\neg P \land Q) \lor R) \land (\neg P \lor \neg R)] \equiv \text{Distributivity of v over r: } (a \land b) \lor c \equiv ((a \lor c) \land (b \lor c)$$

$$[(\neg P \lor R) \land (Q \lor R) \land (\neg P \lor \neg R)] \equiv (\neg P \lor R) \land (Q \lor R) \land (\neg P \lor \neg R)$$

```
Given (KB):
          B^{A}C \rightarrow A
          B
          D^E \rightarrow C
          EvF
          D^¬F
Query:
          Α
                 KB \models A \text{ iff } (KB \land \neg A) \text{ is unsatisfiable}
```

Can we entail the query from the knowledge base

Resolution rule:

New clause contains all the literals of two original clauses except the two complementary literals (b and ¬b)

And-Elimination:

From a conjunction any of the conjuncts can be inferred

Given (KB):

B
$$^{\wedge}$$
 C \rightarrow A \equiv (¬(B $^{\wedge}$ C) v A) \equiv (¬B v ¬C v A)
B
D $^{\wedge}$ E \rightarrow C \equiv (¬(D $^{\wedge}$ E) v C) \equiv (¬D v ¬E v C)
E v F
D $^{\wedge}$ ¬F

Thus, we can entail query A from the knowledge base KB

Code filling

```
knowledge.add(
  Or(Symbol("GilderoyGryffindor"),
Symbol("GilderoyRavenclaw"))
knowledge.add(
  Not(Symbol("PomonaSlytherin"))
```

```
knowledge.add(
Symbol("MinervaGryffindor")
```

```
for symbol in symbols:

if model_check(knowledge, symbol):

   print(symbol)
```