Year: 2015/2016

1 The real numbers: some basic concepts

In the following we consider the usual ordering on \mathbb{R} .

Definition 1.1. A set $A \subseteq \mathbb{R}$ is said to be

- bounded above: if $\exists u \in \mathbb{R}$ s.t. $\forall a \in A, a \leq u$. Every such u is called an upper bound of A. If, in addition, $u \in A$, then u is called a maximum (or greatest element) of A.
- bounded below: if $\exists v \in \mathbb{R}$ s.t. $\forall a \in A, v \leq a$. Every such v is called a lower bound of A. If, in addition, $v \in A$, then v is called a minimum (or least element) of A.
- bounded: if it is both bounded above and below.
- *unbounded*: if it is not bounded.

Remark 1.1. (i) Any $A \subseteq \mathbb{R}$ has at most one maximum (minimum). So, if it exists, we may refer to *the* maximum (minimum) of A instead of a maximum (minimum) and we denote it by max A (min A) - sometimes we also write max(A) (min(A)).

(ii) If a set has one upper (lower) bound, then it has infinitely many upper (lower) bounds.

Example 1.1. (i) $A = \{a \in \mathbb{R} \mid a \geq 2\}$: unbounded (since it is not bounded above), bounded below by any $v \leq 2$, min A = 2.

- (ii) $A = \{a \in \mathbb{R} \mid 0 < a < 1\}$: bounded (above by any $u \ge 1$, below by any $v \le 0$), no minimum, no maximum
- (iii) $A = \left\{ \frac{1}{n} \mid n \in \mathbb{N}^* \right\}$: bounded (above by any $u \geq 1$, below by any $v \leq 0$), max A = 1, no minimum.
- (iv) Every nonempty finite set has a minimum and a maximum.

Definition 1.2. Let $A \subseteq \mathbb{R}$.

- If $u \in \mathbb{R}$ is an upper bound of A s.t. for every upper bound u' of A, $u \le u'$, then u is called a supremum (or least upper bound) of A.
- If $v \in \mathbb{R}$ is a lower bound of A s.t. for every lower bound v' of A, $v \geq v'$, then v is called an infimum (or greatest lower bound) of A.

Remark 1.2. (i) Any $A \subseteq \mathbb{R}$ has at most one supremum (infimum). So, if it exists, we may refer to *the* supremum (infimum) of A instead of a supremum (infimum) and we denote it by $\sup A$ ($\inf A$) - sometimes we also write $\sup(A)$ ($\inf(A)$).

(ii) If the maximum (minimum) of $A \subseteq \mathbb{R}$ exists, then it is also the supremum (infimum). Conversely, if the supremum (infimum) of A exists and is contained in A, then it is also the maximum (minimum) of A.

Example 1.2. (i)
$$A = \{a \in \mathbb{Z} \mid 2 \le a \le 3\}$$
: $\max A = \sup A = 3$, $\min A = \inf A = 2$. (ii) $A = \{a \in \mathbb{R} \mid 0 < a \le 1\}$: $\max A = \sup A = 1$, $\inf A = 0$, no minimum.

Some additional conventions: We attach to \mathbb{R} two new elements $-\infty$ and $+\infty$ (sometimes we write ∞ instead of $+\infty$) s.t. $\forall x \in \mathbb{R}, -\infty < x$ and $x < +\infty$. By $\overline{\mathbb{R}}$ we denote the *extended set of real numbers* defined by $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$. If $A \subseteq \mathbb{R}$ is not bounded above (below), then we set $\sup A = +\infty$ (inf $A = -\infty$). Moreover, we set $\sup \emptyset = -\infty$ and $\inf \emptyset = +\infty$ (any real number is both an upper and a lower bound of \emptyset).

Theorem 1.1 (Supremum Property). Every nonempty subset of \mathbb{R} which is bounded above has a supremum in \mathbb{R} .

Remark 1.3. Using Theorem 1.1, one can prove that every nonempty subset of \mathbb{R} which is bounded below has an infimum in \mathbb{R} . Indeed, let $A \subseteq \mathbb{R}$, $A \neq \emptyset$, bounded below. Then the set $-A = \{-a \mid a \in A\}$ is nonempty and bounded above, so, by Theorem 1.1, it has a supremum in \mathbb{R} . Then inf $A = -\sup(-A)$.

Consequences of the Supremum Property:

1. (Nested Interval Property). For $n \in \mathbb{N}^*$, consider the closed intervals $I_n = [a_n, b_n]$, where $a_n \leq b_n$, and suppose that $I_n \supseteq I_{n+1}$. Then $\bigcap_{n=1}^{\infty} I_n \neq \emptyset$ (that is, $\exists x \in \mathbb{R} \ s.t. \ \forall n \in \mathbb{N}^*, x \in I_n$).

$$I_1 \supseteq I_2 \supseteq \ldots \supseteq I_n \supseteq I_{n+1} \supseteq \ldots$$
 - nested sequence of closed intervals

Proof. Let $A = \{a_k \mid k \in \mathbb{N}^*\}$. Then, $\forall n \in \mathbb{N}^*$, b_n is an upper bound of A. Hence, A is nonempty and bounded above, so, by Theorem 1.1, it has a supremum in \mathbb{R} . Thus, $\forall n \in \mathbb{N}^*$, $a_n \leq \sup A \leq b_n$,

from where,
$$\sup A \in \bigcap_{n=1}^{\infty} I_n$$
.

2. (Archimedean Property - AP). Let $x \in \mathbb{R}$. Then $\exists n \in \mathbb{N} \ s.t. \ n > x$.

Proof. Suppose $x \ge n$, $\forall n \in \mathbb{N}$. Then \mathbb{N} is nonempty and bounded above by x, so, by Theorem 1.1, it has a supremum $u \in \mathbb{R}$. Since u-1 < u, u-1 cannot be an upper bound of \mathbb{N} . This means that $\exists m \in \mathbb{N}$ s.t. u-1 < m. Thus, $u < m+1 \in \mathbb{N}$, which is a contradiction to the fact that u is an upper bound of \mathbb{N} .

Applications of (AP):

1. Example 1.1. iii) $A = \left\{ \frac{1}{n} \mid n \in \mathbb{N}^* \right\}$, inf A = 0.

Proof. Since $A \neq \emptyset$ and bounded below by 0, using Remark 1.3, it has an infimum in \mathbb{R} . Note that inf $A \geq 0$. Let $\varepsilon > 0$. By (AP), $\exists n \in \mathbb{N}$ s.t. $n > 1/\varepsilon > 0$. Thus, $n \in \mathbb{N}^*$ and $1/n < \varepsilon$. Hence, $0 \leq \inf A \leq 1/n < \varepsilon$. As $\varepsilon > 0$ is arbitrary, $\inf A = 0$.

2. (Density Property of \mathbb{Q}). Let $x, y \in \mathbb{R}$, x < y. Then $\exists q \in \mathbb{Q}$ s.t. x < q < y.

Definition 1.3. The absolute value of
$$x \in \mathbb{R}$$
 is $|x| = \begin{cases} x, & \text{if } x \geq 0, \\ -x & \text{if } x < 0. \end{cases}$

The distance between $x, y \in \mathbb{R}$ is |x - y| (sometimes denoted also by d(x, y)).

Definition 1.4. A neighborhood of $x \in \mathbb{R}$ is a set $V \subseteq \mathbb{R}$ for which $\exists \varepsilon > 0$ s.t. $(x - \varepsilon, x + \varepsilon) \subseteq V$. A neighborhood of $+\infty$ is a set $V \subseteq \mathbb{R}$ for which $\exists a \in \mathbb{R}$ s.t. $(a, +\infty) \subseteq V$. Likewise, a neighborhood of $-\infty$ is a set $V \subseteq \mathbb{R}$ for which $\exists a \in \mathbb{R}$ s.t. $(-\infty, a) \subseteq V$.

For $x \in \overline{\mathbb{R}}$, we denote by $\mathcal{V}(x)$ the family of all neighborhoods of x.

Properties. Let $x \in \overline{\mathbb{R}}$. Then

- (i) if $x \in \mathbb{R}$ and $V \in \mathcal{V}(x)$, then $x \in V$.
- (ii) if $V \in \mathcal{V}(x)$ and $U \subseteq \mathbb{R}$ s.t. $V \subseteq U$, then $U \in \mathcal{V}(x)$.
- (iii) if $U, V \in \mathcal{V}(x)$, then $U \cap V \in \mathcal{V}(x)$.