Science and Technology Class 03

Previous Class Topic

- Applications of remote sensing and navigational satellites
- Introduction to Kepler's laws and Newton's laws of motion

Newton's Laws of Motion and the Concept of Frames of Reference

Newton's Laws of Motion

- **First Law:** An object remains at rest or in uniform motion unless acted upon by an external force.
- **Second Law:** Force is needed for any acceleration, including changing direction at a constant speed.
- **Third Law:** Every action has an equal and opposite reaction.

Universal Law of Gravitation

- All objects with mass attract each other via gravitational force.
- The force is extremely weak in daily life but very significant on astronomical scales (planets, stars, galaxies).

Relative Nature of Motion and Rest

- Motion and rest are relative concepts, meaning there is no absolute rest or absolute motion.
- The same object can be at rest or in motion depending on the observer's frame of reference.
- *Example:* Two people in a moving car are at rest relative to each other; however, from the road observer's frame, they are moving.
- For all observers on Earth, stars and the Sun seem to move, but from another frame (outside the solar system), both Earth and Sun are in motion.
- The frame of reference must be specified to apply Newton's laws correctly.

Importance of Frame of Reference

- Calculations involving Newton's laws require a defined frame of reference.
- Without a specific frame, mathematical and conceptual errors arise.
- Forces such as Coriolis and centrifugal forces are only meaningful in non-inertial (accelerating) frames.

Orbital Motion: Centripetal and Centrifugal Forces

Orbital and Circular Motion

- Objects in orbital or circular motion need a continuous force that changes their direction by acting towards the center (**centripetal force**).
- For planetary orbits, this force is provided by gravity.
- For a bicycle turning on a flat road, friction provides the centripetal force.
- Even at constant speed, changing direction means the object is accelerating, and therefore a force is required.

Centripetal and Centrifugal Force: Reference Frames

- Centripetal force: Directed towards the center of the circular path; keeps the object in orbit.
- **Centrifugal force:** An apparent force perceived in a rotating (non-inertial) reference frame, directed outward from the center.
- In an inertial frame, only centripetal force acts; in a rotating (non-inertial) frame, centrifugal force must be considered for calculations.

Table: Comparison of Centripetal and Centrifugal Forces

Force Type		Direction	Acts In	Origin	
	Centripetal Force	Towards the center	Inertial frames	Real force	
	Centrifugal Force	Away from the center	Non-inertial frames	Pseudo-force	

Concept of Pseudo-Force

- Pseudo-force appears when observing from a non-inertial (accelerating) frame.
- It is essential to introduce pseudo-forces in accelerating frames to correctly apply Newton's second law.
- Pseudo-forces are not generated by mass or charge but are a result of being in an accelerating reference frame.

Inertial and Non-Inertial Frames

Inertial Frames

- An inertial frame is either at rest or moves with uniform velocity (constant speed and direction).
- Newton's second law (F = ma) can be directly applied.
- *Example:* A truck moving at constant velocity—throwing a ball upward makes the ball land back into the thrower's hand, as observed from inside the truck.

Non-Inertial Frames

- A non-inertial frame is accelerating (changing speed or direction).
- Newton's laws cannot be directly applied; pseudo-forces must be introduced to maintain correct calculations.
- *Example:* A truck accelerating forward—objects inside appear to move backward due to a pseudo-force.

Planetary Motions and Solar System Dynamics

Motion of Earth, Sun, and Galaxy

- The Earth spins on its axis and revolves around the Sun; the Sun itself orbits the center of the Milky Way galaxy.
- The Milky Way and other galaxies move relative to each other; the universe itself is expanding.
- Traditional solar system diagrams are simplified because, in reality, everything is in motion.

Satellites and Orbits

- Artificial satellites, like planets and moons, are kept in orbit by gravity (the universal law of gravitation).
- Once placed in orbit, satellites do not require fuel for their motion; gravity provides the necessary centripetal force.
- The period of revolution (time to complete one orbit) depends only on the satellite's distance from Earth's center, not on its mass or inclination.
 - a) Low Earth Orbit (LEO):- 200 2000km
 - b) Medium Earth Orbit (MEO):- 2000 35,785km
 - c) High Earth Orbit (HEO):- greater than equal to 35,786km h = 35786km (Geosynchronous orbit)

Classification of Satellite Orbits

Based on

By Altitude

Table: Satellite Orbit Classifications by Altitude

Orbit Type	Approximate Altitude	Use Cases	Example Features
Low Earth Orbit (LEO)	~180–2,000 km	Remote sensing, Earth observation	Period: ~90 min at 500 km
Medium Earth Orbit (MEO)	~2,000–35,786 km	Navigation, some communications	
Geostationary Orbit (GEO)	35,786 km (above equator)	Communication, weather satellites	Fixed over equator, 24-hour period

In low orbits like 500 km, satellites orbit quickly (~90 minutes) and can only observe a specific location for a few seconds as they pass overhead. Satellites in higher orbits (like geosynchronous) have longer periods and can provide continuous coverage over specific regions.

Based on

By Inclination

Table: Satellite Orbit Classifications by Inclination

Orbit Type	Inclination Angle	Description	
Equatorial Orbit	~0°	Above the equator	
Polar Orbit	~90°	Passes over poles	
Inclined Orbit	Any angle between 0°-180°	Between equator and pole	

Inclination refers to the angle between the satellite's orbital plane and the equatorial plane. Polar orbits (near 90° inclination) allow satellites to pass over nearly every part of the globe as Earth rotates beneath them, while inclined orbits are used for various applications.

Earth's Shape and Effects on Orbits

Earth's Non-Spherical Shape

- Earth is not a perfect sphere; it has an equatorial bulge and is flattened at the poles.
- The equatorial radius is slightly greater than the polar radius, but this difference is negligible for most orbital calculations.
- The bulge affects certain orbital mechanics, especially in sun-synchronous orbits.

Launching Satellites: Constraints and Earth's Rotation

Influence of Earth's Rotation

- Launching satellites into equatorial orbits is easier from locations close to the equator due to assistance from Earth's rotation (*maximum linear speed*).
- Payload capacity is higher for equatorial launches due to this rotational boost.
- Launching into polar orbits is more challenging because Earth's rotation does not assist directly, resulting in reduced payload capacities.

Practical Launch Site Considerations

- Most spaceports are located on eastern coasts to capitalize on Earth's rotation (west to east launches).
- Geopolitical factors and proximity to the equator influence the site selection; maneuvers or alternate locations may be used to avoid populated or restricted regions.

Based on Earth's motion :a) Rotation on its axis -> Geosynchronous orbit.

b) Revolution around sun - -> Sun-Synchronous orbit.

Unique Types of Orbits: Geosynchronous/Geostationary and Sun-Synchronous Geosynchronous and Geostationary Orbits

Geosynchronous Orbits

- A geosynchronous orbit has a revolution period equal to Earth's rotation period: about 24 hours (more precisely, 23 hours and 56 minutes or one sidereal day).
- Any orbit with this period is geosynchronous, regardless of inclination; the path traced over Earth is not stationary except for a specific case.

Geostationary Orbit (Special Case)

- A geostationary orbit is a circular, equatorial geosynchronous orbit at 35,786 km altitude.
- The satellite appears fixed at a single point above the equator.
- It is ideal for continuous communication, broadcasting, and some navigation applications.

Comparison Table: Geosynchronous/Geostationary Orbits

Orbit	Revolution Period	Inclination	Altitude	Appearance from Earth	Applications
Geosynchronous	24 hours	Any	Varies	Moves in the sky	Navigation, comm.
Geostationary	24 hours	0°	35,786 km	Fixed over equator	TV, comm., weather

Most geostationary satellites are communication satellites, providing continuous coverage to large parts of the Earth (except the polar regions).

-> These orbits are very useful for communication, Earth observation and Navigational satellites.

Sun-Synchronous Polar Orbits (SSO)

Definition and Concept

- A sun-synchronous orbit is a near-polar orbit where the satellite crosses any point on Earth at the same local solar time.
- The orbital plane slowly rotates (precesses) around Earth, matching Earth's revolution around the Sun (about 1 degree per day).
- This ensures a consistent sun angle during repeated observations—critical for optical remote sensing and accurate year-over-year data comparison.

Why Sun-Synchronous Orbits Are Needed

- Consistent lighting conditions are essential for remote sensing, especially for optical imaging (e.g., forest cover mapping).
- They eliminate issues related to varying shadows and lighting across different days and seasons.

How Sun-Synchronous Orbit Is Achieved

- Earth's equatorial bulge exerts an asymmetric gravitational force on inclined satellites, causing a torque.
- This torque results in the precession (rotation) of the satellite's orbital plane.
- At specific altitudes (600–800 km) and inclinations (94°–96°), the rate of this precession matches Earth's movement around the Sun.
- As a result, the satellite's orbital plane maintains a fixed orientation relative to the Sun, ensuring the local solar time of overpasses remains constant.
 - -> Earth is not a perfect sphere it has bulge on the equator and flatness on the pole because of this for high inclined orbits the asymmetric gravitational force exerts a torque on the orbit this causes satellites orbit to precess i.e. orbits in itself starts rotating such precess is a challenge most of the time but in sun synchoronous it is used as an opportunity we need to achieve a precession of about 1 degree everyday so that satellite's orbit maintains the same angle w.r.t sun even though Earth is revolving around Sun.

Key Points on Sun-Synchronous Orbits

- Precession, although usually undesirable, is used beneficially in sun-synchronous orbits.
- The calculation for achieving exact precession is complex and depends on altitude and inclination.
- Sun-synchronous orbits are typically used for remote sensing and environmental monitoring satellites.

Comparison Table: Geostationary/Geosynchronous vs. Sun-Synchronous Orbits

Feature	Geostationary/GSO	Sun-Synchronous Orbit	
Altitude	35,786 km	600–800 km	
Inclination	0° (geo), any (GSO)	~98° (polar)	
Coverage	Same region (global)	Different points, near-polar sweep	
Time for one orbit	24 hours	~90–100 minutes	
Sun angle for overpass Varies/constant (geo)		Constant for any location	
Applications	Communication, navigation	Remote sensing, Earth observation	

Effects of Earth's Motion on Air Travel and Satellite Launches

Air Travel and Non-Inertial Frames

- Passengers and the atmosphere move with Earth; simply elevating an aircraft does not allow travel via Earth's rotation.
- Earth's rotational momentum is shared by everything attached to its surface.
- To exploit Earth's rotation for travel, one must leave the atmospheric system, which is impractical for commercial aircraft.

Rocket Launches and Direction

- Launching from west to east leverages Earth's rotation for added velocity.
- Launches to polar orbits do not benefit from rotational assistance, requiring more energy and resulting in lighter payloads.

Orbit Shape: Circular vs. Elliptical

Types of Orbits by Shape

- Circular orbits: Maintain constant altitude and speed; geostationary orbits are always circular.
- Elliptical orbits: Feature varying altitude (perigee and apogee); many practical orbits are slightly elliptical for fuel efficiency or due to launch constraints.
- Satellites launched in elliptical "transfer orbits" (e.g., geosynchronous transfer orbit—GTO) later circularize at their operational altitude.

Launch Vehicles and Indian Space Program Examples

PSLV (Polar Satellite Launch Vehicle)

- Designed primarily for launching satellites into polar orbits, but can also be used for equatorial launches.
- Launches from Sriharikota and is subject to payload constraints particular to orbit type.

Geo-transfer Orbits (GTO)

- Intermediate elliptical orbits used to transfer a satellite to its final geosynchronous or geostationary position.
- Satellites use onboard fuel to reach and circularize at their intended altitude after separation from the launch vehicle.

Indian Satellite Navigation & Remote Sensing Systems

NAVIC

- Utilizes a constellation of seven satellites: three geostationary and four geosynchronous.
- Provides navigation and location information exclusively over India and surrounding regions.
- The satellites remain positioned above India, not covering the entire globe.

GAGAN

- An Indian Satellite-Based Augmentation System (SBAS) designed for improved accuracy in civil aviation.
- Uses three geostationary communication satellites as primary relays.
- Relies on both Indian satellites and GPS signals; includes ground-based antennas and computational infrastructure.
- Initially intended for aviation, it is now used in railways, mapping, surveying, and ocean sciences.
- Serves as both a precursor and a complement to NAVIC.

Satellite Resolving Power

Concept of Resolving Power

- The ability of an optical instrument (or the human eye) to distinguish between two closely spaced objects or wavelengths.
- *Example*: When viewing distant car headlights, they may appear as one light; as the car approaches, the two become distinguishable.
- All optical devices have a finite resolving power, which defines the level of detail visible in images or observations.

Current and Upcoming Satellite Missions

NISAR Mission

- A joint NASA-ISRO radar imaging mission targeting environmental monitoring and disaster management.
- The satellite will be launched into a sun-synchronous polar orbit.
- Utilizes L-band and S-band synthetic aperture radars for detecting changes on Earth's surface, including minute alterations by natural or human causes.
- Aims for global mapping and continuous collection of environmental data.

Application and Limitations of Satellite Data

Revisiting and Coverage Constraints

- Low Earth Orbit (LEO) satellites revisit the same location only after several days; they do not provide continuous coverage.
- Geostationary satellites offer persistent coverage for their fixed region but at a lower spatial resolution.
- Polar/sun-synchronous satellites are crucial for global mapping and climate change monitoring, especially in remote or high-latitude regions (poles).
- Navigation satellites (like NAVIC) have restricted coverage, focusing on their targeted area, such as the Indian subcontinent.

Phenomena Related to Rotating Reference Frames

Coriolis Force

- An apparent force in rotating reference frames that causes moving objects to deviate from a straight path.
- It is responsible for the direction of cyclones and prevailing winds.

Centrifugal Force (as Pseudo-Force)

- An apparent outward force on a body moving in a circle, which is felt only in the rotating frame.
- This force is physically real in the non-inertial frame, yet it vanishes when analyzed from an inertial frame.

Key Physics Concepts in Orbit Determination

Escape Velocity and Period Independence

- Both the orbital period and escape velocity are **independent** of the satellite's mass.
- The orbital period depends solely on the satellite's altitude (distance from Earth's center).
- The height required for a 24-hour revolution (geosynchronous orbit) is approximately 35,786 km.

Torque, Precession, and Orbit Adjustment

- **Torque**: The rotational equivalent of force, defined as the product of an applied force and its distance from the axis of rotation.
- **Precession**: The gradual change in the orientation of the orbital plane, driven by asymmetric gravitational forces due to Earth's shape.
- Precession can be undesirable for certain missions, yet it enables sun-synchronous satellites to maintain a constant solar alignment.

Satellite Collisions and Crowding

Probability and Risks

- Due to the vastness of space, actual satellite collisions are extremely rare.
- Most orbital regimes, including popular ones like geostationary and polar, have ample separation between satellites.

Practical Examples and Analogies

Everyday Analogies for Reference Frames

- Motion in a moving bus or car illustrates relative motion and the importance of defining a frame of reference.
- Exiting a moving vehicle without adjusting your speed can lead to a fall due to retained momentum.
- Earth's rotational frame is shared by land, air, and water, affecting perceptions of motion.

Topic to be Discussed in the Next Class

- Rockets: Detailed discussion on principles, operation, and launch mechanisms.
- Overview of Indian space science missions and astronomical observatories (Chandrayaan, Mangalyaan, current, and upcoming missions).