<u>Симетрична и алтернативна група. Действие на група върху</u> множесво. Теорема на Кейли и формула за класовете.

///20. Симетрична и алтернативна група. Действие на група върху множество. Теорема на Кейли и формула за класовете.

Симетрична група S_n – представяне на елементите като произведение на независими цикли. Спрягане на елементите на S_n . Транспозиции и представяне на елементите като произведение на транспозиции. Алтернативна група. Действие на група върху множество – орбити и стабилизатори, транзитивно действие. Формула а класовете. Теорема на Кейли.

Примерна задача: Представяне на елементите на S_n като произведение на езависими цикли и действия в S_n .

Симетрична група.

<u>Дефиниция</u>: С Sn означаваме **симетричната група** от степен n, т.е. множеството от всички биекции на множеството $\Omega n = \{1,2,...,n\}$ в себе си с операцията композиция на изображения. Единицата на Sn е идентитетът на Ωn , който ще бележим с (1).

$$\Psi \in Sn$$
; $\Psi = (1 2 3 n) - къде отива всеки елемент. i1 i2 i3...... in$

- Тъй като Ψ е биекция, то i1, i2, i3,..... in е пермутация на 1,2,.... n => |Sn|=n!.
- Групата Sn не е комутативна, за n>2!

Пример:
$$\Psi = (1\ 2\ 3\)$$
: $\Psi = |3|$, защото $\Psi^3 = \mathrm{id} < \Psi > = \{\mathrm{id}, \Psi \,, \Psi^2\}$ 2 3 1

<u>Дефиниция:</u> Под **цикъл** разбираме пермутация Ψ, действаща по правилото : $\Psi(i1)=i2\Psi(i2)=i3.....$ $\Psi(ik-1)=ik\Psi(ik)=i1$, а всички останали числа от Ω n остават на място под действието на Ψ, където i1,i2...,ik са различни числа от Ω n. Числото k наричаме дължина на цикъла. Пишем $\Psi=(i1,i2,...,ik)$. Цикъл с дължина 2 наричаме **транспозиция.** Два цикъла (i1,i2,....,ik) и (j1,j2,....,jn) се наричат **назависими,** ако $\{i1,i2,....,ik\}$ $^{\{j1,j2,.....,jn\}} = 0$. Всеки 2 независими цикъла комутират, т.е. $t\delta=\delta t$. Всеки цикъл с дължина 1 съвпада с единичния елемент на Sn -(1).

<u>Теорема.</u>:Всеки неединичен елемент на Sn може да се представи като произведение на независими цикли т1 т2..... тt и това представяна е единствено с точност до реда на множителите.

Доказателство:

- 1.Съществуване: Нека i1 е произволно число от Ω n. Разглеждаме i1,i2= Ψ (i1), i3= Ψ (i2),....,ik= Ψ (ik-1), където k е максимално естествено число, за което тези числа са различни. Тогава Ψ (ik) е някое от тях. Твърдим, че Ψ (ik)=i1. Действително това е изпълнено при k=1, а ако к>1 и например Ψ (ik)=i2, то Ψ (ik)= Ψ (i1), а ik!=i1 => противоречие! => Ψ (ik)=i1. Нека τ 1=(i1,i2,....,ik) и j1 е число от Ω n(ако има такова), което не участва в τ 1. Аналогично получаваме циктл τ 2=(j1,j2,....,js), τ 1 и τ 2 са независими! Продължаваме така докато не изчерпаме всички числа. Очевидно Ψ е произведение на получените независими цикли.
- 2. Единственост: Нека $\Psi=\tau 1\tau 2.....\tau t=\tau 1'\tau 2'.....\tau m'$. Всяко число от Ω n участва и в двете разлагания. Наке например участва в $\tau 1$ и $\tau 1'$. Тогава $\tau 1=\tau 1'$ (иначе има противоречие с това, че е биекция) => $\tau 2...\tau t=\tau 2'....\tau m'$. Аналогично $\tau 2=\tau 2'......\tau t=\tau 1'$. Свойства:
 - 1. |(i1,i2,...,ik)|=k
 - 2. (i1,i2,....ik)^-1=(ik,ik-1,.....,i1)

Твърдение:

Нека Ψ =т1т2....тs Θ Sn, ті- независими цикли. Тогава редът на Ψ е $|\Psi|$ =HOK($|\tau 1|, |\tau 2|,, |\tau s|$).

Доказателство: Нека Ψ = τ 1 τ 2 , $|\Psi|$ = r $|\tau$ 1| = k $|\tau$ 2| = t (τ 1 τ 2) ^r= τ 1^r τ 2^r = id => τ 1^r= τ 2^-r

Ако $\tau 1$ =(i1,i2,....,ik), то ($\tau 1$ (i1)) ^r \in {i1,i2,....,ik} и Ако $\tau 2$ = (j1,j2,....,jt) , то ($\tau 2$ (i1)) ^-r = i1 =>

 $(\tau 1(i1))$ ^r =i1 =>аналогично $(\tau 1(ip))$ ^r= ip за всяко p=1, ...k.

 τ 1^r=id и τ 2 ^r=id => k/r и t/r => HOK(k,t)/r.

 $(\tau \ 1 \ \tau 2)$ ^HOK(k,t)= $\tau 1$ ^ HOK(k,t) $\tau \ 2$ ^ HOK(k,t)= $(\tau 1$ ^k)^t1($\tau 2$ ^t)^k1= id => r/ HOK(k,t)=> r= HOK(k,t)

<u>Спрягане ' ~ ', Ψ~η :</u>

 $\tau \Psi \tau^{-1} = \eta \Rightarrow \tau^{-1} \eta \tau = \Psi \quad (\Psi^{-1}, \eta^{-1})$

- Ψ~Ψ=idΨid^-1
- Ψ~η => η~Ψ
- Ψ~η и η~ζ =>Ψ~ζ

 $(\Psi=\tau 1\eta\tau 1^{-1}, \zeta=\tau 2\Psi\tau 2^{-1}=\tau 1\tau 2\eta\tau 1^{-1}\tau 2^{-1}=(\tau 1\tau 2)\eta(\tau 1\tau 2)^{-1})=> ```$ е релация на еквивалентност!

Твърдение: Нека Ψ и η Θ Sn пермутациите са спрегнати <= > имат еднакъв цикличен строеж, т.е. η и Ψ са произведение на еднакъв брой независими цикли със съответно еднакви редове.

Свойства:

- 1. Всеки елемент от Sn може да се представи като произведение на транспозиции, като това представяне не е единствено.
- 2. Ако идентитетът id=t1t2.....tr, където ti са транспозиции то тогава r е четно.
- 3. Ако един елемент (пермутация) се представя по два начина като произведение на транспозиции, то броят на множителите в тези представяния е с една и съща четност, т.е. ако Ψ=τ1τ2...τr=η1η2.....ηs(τi,ηi са транспозиции), то r=s(mod 2).
- (i1....ir)=(i1ir)(i1ir-1)......(i1i3)(i1i2), T.e. i1->i2->.....->ir
- (i,j)(i,k)= (i,k)(k,j)
- (i,j)(j,i)=id
- (i,j)(k,s)=(k,s)(l,j)

Дефиниция:

Елементът $\Psi \in Sn$ е **четен**, ако може да се представи като произведение на четен брой транспозиции.

 Ψ - четен , η -нечетен => Ψ . η -нечетен , η . Ψ -нечетен Ψ -четен, Ψ -четен, Ψ -четен, Ψ -четен.

(!) - Когато всички транспозиции са нечетни пермутации, цикълът (i1,i2,.....,ik) е четна пермутация когато k е нечетно число.

Дефиниция:

Множеството от всички четни пермуСтации е подгрупа на Sn и се нарича алтернативна група от степен n.

An = $\{\Psi \mid \Psi \in Sn, \Psi - \text{четна пермутация}\}$ |An|= $|Sn|/2 = n!/2 => |Sn:An| = 2 => An <math>\Delta Sn$ или защото ако $\Psi, \eta \in An => \Psi. \eta \in An$

<u>Действие на група върху множество – орбити и стабилизатори. Теорема на</u> Кейли.

<u>Определение:</u> Нека Ω – множество, G- група. Ще казваме, че групата G действа в/у множеството Ω , ако на всеки елемент g Θ G и на всеки елемент x Θ Ω е съпоставен елемент gx Θ Ω , като се изпълняват следните две условия:

- 1) 1x=x, всяко $x \in \Omega$ (1 единичен елемент на G).
- 2) (g1g2)x = g1(g2x), за всеки g1,g2 \oplus G, всяко x \oplus Ω Свойства:
 - Ако G действа върху Ω , то всеки елемент $g \in G$ задава изображение $\Phi g : \Omega \to \Omega$ чрез равенството $\Phi g(x) = gx$ ($x \in \Omega$). Директно се проверява, че Φg е биекция $=> \Phi g$ е елемент на симетричната група $S\Omega$ ($\Phi g \in S\Omega$).
 - Всяко действие на G върху Ω задава изображение Ψ : G-> S Ω чрез равенството Ψ (g)= Φ g, като Ψ е хомоморфизъм на групи. Φ g. Φ h(x) = Φ g(hx)= g(hx)= gh(x) = Φ gh(x).
 - Извод: Задаването на действие на група върху множество е еквивалентно на хомоморфизъм Ψ от групата G в симетричната група SΩ
 КегΨ={g ∈ G | g(x)=x, всяко x ∈ G} = {1} = {e}
 G/Ker Ψ≈ImΨ е подгрупа на SΩ.

Теорема на Кейли : Всяка група от ред n е изоморфна на подгрупа на симетричната група Sn.

<u>Доказателство:</u> Нека G е крайна група и |G| = n. Нека <u>а</u> е фиксиран елемент на G. Дефинираме изображение La : G -> G посредством умножение от ляво с a, т.е. ако g \oplus G,

то La(g) = ag.

Проверка дали La е биекция:

Нека g1 ≠ g2. Да допуснем, че La(g1) = La(g2) => ag1=ag2/ .a^-1 отляво => g1=g2 => противоречие => La(g1)≠La(g2). Нека g \oplus G е произволен елемент от G и h=a^-1g. Имаме La(h) = ah=(aa^-1)g=eg=g => съществува h \oplus G:, че за всяко g \oplus G La(h)=g => La \oplus SG = Sn.

 $G'=\{La \mid a ∈ G\}$ е подмножество на Sn.Ще докажем, че G' ≤ Sn:

Нека La, Lb \bigcirc G' и g — произволен елемент от G. Имаме (LaLb)(g) = La(Lb(g)) = La(bg) = a(bg) = (ab)g = Lab(g) => LaLb = Lab \bigcirc G' (1)

Също така LaLa^-1 = Laa^-1 = Le = e

Аналогично La^-1La=La^-1a = Le = e $\}$ => (La)^-1 = La^-1 \oplus G' (2)

От (1) и (2) => $G' \le Sn$.

Разглеждаме изображението Ψ : G ->G', дефинирано чрез развенството Ψ (a) = La. Ще докажем, че Ψ е изоморфизъм.

- Oт Lab = LaLb => Ψ (ab)= Ψ (a) Ψ (b)=> Ψ хомоморфизъм.
- Ψ очевидно е изображение на G върху G'.
- Нека a,b ← G, a≠b. Допускаме, че Ψ(a) = Ψ(b), т.е. La=Lb => La(e)=Lb(e) => a=b => противоречие => Ψ(a)≠Ψ(b)
- ⇒ Ψ е изоморфизъм => G≈G′≤Sn.

Определение: Нека $x \in \Omega$. Под **стабилизатор на х** в групата G ще разбираме множеството $StG(x)=\{g \in G \mid gx=x\}.$

<u>Свойство1:</u> Стабилизаторът в G на всеки елемент х Θ Ω е подгрупа на G, т.е. х Θ Ω => StG(x) < G.

<u>Д-во:</u> Нека S = StG(x) и g1,g2 \oplus S, т.е. g1x=x и g2x=x . Искаме S≤G, като имаме g1,g2 \oplus S и S е подмножество на G и (g1g2)x = g1(g2x) = g1x = x => g1g2 \oplus S.

Ako g \odot S(r.e. gx=x) , to g^-1x = g^-1(gx) = (g^-1g)x = x => g^-1 \odot S => S \le G.

<u>Дефиниция</u>: Нека X,Y $\in \Omega$. X $^{\sim}$ Y(x е еквивалентно на y) ако съществува g \in G :, че Y=gX.

 $^{\sim}$ е релация на еквивалентност. Тогава множеството Ω се разбива на непрецичащи се класове на еквивалнтност, които се наричат G – орбити. Орбитата съдържаща даден елемент x бележим c O(x). Очевидно O(x) = $\{gx \mid g \in G\}$ – орбита на x. Свойство2: $x \in \Omega$; $X^{\sim}Y$, т.е. $Y \in O(x) <=> O(x)$ = O(y).

Д-во: Y \odot O(x) => Y=gX => X = g^-1Y

а Θ O(x) => a=hx = (hg^-1)Y => а Θ O(Y) => O(X) е подмножество на O(Y) *

 $b \ominus O(y) => b = ty = (tg)x => b \ominus O(X) => O(Y)$ е подмножество на O(X) **

OT * u ** => O(X) = O(Y).

Свойство3: x Θ Ω , g1,g2 Θ G: g1x=g2x ⇔ g2 $^-$ 1g1 Θ StG(x)

^{*}Нека до края Ω е крайно множество, а Gкрайна група, действаща върху Ω .

 $g1x=g2x \Leftrightarrow g2^-1g1x=g2^-1g2x \Leftrightarrow g2^-1g1x=x \Leftrightarrow g2^-1g1 \ominus StG(x) \Leftrightarrow g2 StG(x)=g1 StG(x)$

Свойство4:Съществува биективно съответствие между $\{g \ StG(x) | \ g \ \Theta \}$ и O(x)

Твърдение: Нека $x \in \Omega$. Тогава |O(x)| = |G: StG(x)| в частност |O(x)|/|G|. Д-во: Нека S = StG(x) и $g1,g2 \in G$.

 $g1x=g2x \Leftrightarrow (g2^{-1}g1)x = x \Leftrightarrow g2^{-1}g1 \ominus S \Leftrightarrow g1S=g2S$. Това означава, че броят на различните образи на x под дествието на всевъзможните елементи на групата G е равен на броя на различните съседни класове на G по подгрупата S. С други думи |O(x)| = |G:S|.

По Теоремата на Лагранж => |G|=|S|.|G:S| => |G|=|S|.|O(x)| => |O(x)| / |G|.

Твърдение: Нека $\Omega 1, \Omega 2, \Omega$ s са всичките G – орбити в Ω и нека xi Θ Ω i т.е. Ω i=O(xi), i=1,....,s. Тогава

 $|\Omega| = \sum |\Omega| = \sum |G: StG(xi)|$ /i=1..... за сумите/.

<u>Определение:</u> Ще казваме, че групата **G действа транзитивно** върху множеството Ω , ако за всеки два елемента X,Y Θ Ω , съществува елемент g Θ G:, че Y=gX.

От определението за транзитивно действие => че за всяко х Θ Ω орбитата O(x) съвпада с Ω , т.е. Ω е единствената G – орбита.

Твърдение: Ако G действа транзитивно върху Ω, то числото $|\Omega|$ дели числото |G|. **Формула за класовете:**

Определение: Нека групата G действа върху себе си чрез спрягане. Тогава орбитата O(x) на елемент $x \in G$ Ссе нарича клас спрегнати с x елементи и се бележи с Cx, $Cx = \{gxg^-1 \mid g \in G\}$. Стабилизаторът $StG(x) = \{g \in G \mid gxg^-1\}$ се нарича централизатор на G и се бележи CG(x) или C(x). Тогава $|\Omega| = \sum |\Omega| = \sum |G|$: StG(xi) приема вида :

$$|G| = \sum |Cx i| = \sum |G: CG(xi)| = 1...s$$
 (1)

Нека Z(G) е центъра на G, т.е. Z(G) = $\{x \in G \mid xg=gx \text{ за всяко } g \in G \}$. Тъй като $xg=gx <<> gxg^-1 = x$, то Z(G) се състои от тези елементи x на G, за които Cx = x. Тогава всеки елемент $x \in Z(G)$ участва като някое xi в равенството (1) и съответно събираемо |Cx i| има стойност равна на 1.

Нека $Z(G) = \{x1,xt\}$ 1<= t<=s и сега равенството (1) може да се запише така:

$$|G| = \sum |Cx \mathbf{i}| + \sum |Cx \mathbf{j}| = |Z(G)| + \sum |Cx \mathbf{j}| = |Z(G)| + \sum |G:CG(x\mathbf{j})| = 1,...,t; j = t+1,...,s$$

$$\Rightarrow$$
 |G| = |Z(G)| + \sum |G: CG(xi)|

Където xt+1,.....xs са представители на класовете спрегнати елементи на G, нележащи в Z(G), се нарича формула за класовете.