

Timothy D. Meehan, Nicole L. Michel, Håvard Rue

1900 Christmas Bird Count

- 27 volunteers
- 25 count circles
- 18,500 birds counted
- 89 species recorded
- 2 Countries

2017 Christmas Bird Count

- 73,153 volunteers
- 2,536 count circles
- 56,139,812 birds counted
- 2,636 species recorded
- Across North and South America, Caribbean, Pacific Islands

CBC Trends and Conservation

- Count trends
- 1966-2017
- 550 species
- Partners in Flight
- North American
 Bird
 Conservation
 Initiative

Standard Approach: Independent Strata

Standard Approach: Model Counts

Standard Approach: Abundance Index

Standard Approach: Abundance Index Trend

$$T_i = \left\{ \frac{N_{i,t_b}}{N_{i,t_a}} \right\}^{1/(t_b - t_a)}$$

Different Approach: Emphasize Fine-Scaled Trends

Different Approach: Emphasize Fine-Scaled Trends

1. Global and CAR-random abundance index for reference year

2. Global and CAR-random effort slope (SVC)

3. Global and CAR-random year slope (SVC)

4. Exchangeable random circle effect

Example: American Robin

Example: Computing with R-INLA

Model statement

```
formula <- count ~ 1 + f(grid_id1, model="besag", graph=g) + log_hrs +
    f(grid_id2, log_hrs, model="besag", graph=g) + std_yr + f(grid_id3, std_yr,
        model="besag", graph=g) + f(circle, model="iid")</pre>
```

Function call

```
result <- inla(formula, family="nbinomial", data=modeling_data,
  control.compute=list(cpo=T, waic=T, config=T),
  control.inla=list(int.strategy='eb'))</pre>
```


Example: Computing with R-INLA

Time used: 61.68 min

Fixed effect:

Global intercept
Global log_hrs effect
Global std yr effect

Hyperparameter:

1/Overdispersion
Precision alpha CAR
Precision epsilon CAR
Precision tau CAR
Precision kappa iid

0.025quant 0.5quant 0.975quant

0.6020.7720.9410.7740.8150.8570.0220.0250.027

0.025quant 0.5quant 0.444

0.673 0.688 33.055 33.691 678.391 707.756 0.927 0.969

0.975quant

0.453 0.703 34.340 738.433 1.012

Alpha: 2017 Abundance Indices

Epsilon: Effort Effects

Tau: Year Effects

Tau: Significant Year Effects

Aggregation: Trend Estimates Compared

Aggregation: Trend Estimates Compared

Aggregation: Trend Precision Compared

Aggregation: Trend Precision Compared

Timothy D. Meehan, Nicole L. Michel, Haavard Rue

