Использует непосредственную замену определенного интеграла интегральной суммой.

На каждом шаге интегрирования функция аппроксимируется полиномом нулевой степени — отрезком, параллельным оси абсцисс. Различают метод левых, правых и средних прямоугольников.

Площадь криволинейной трапеции приближенно заменяется площадью многоугольника, составленного из *n*- прямоугольников. Таким образом, вычисление определенного интеграла сводится к нахождению суммы *n*- элементарных прямоугольников.

$$\int_{a}^{b} f(x)dx \approx S_{n} = \sum_{i=1}^{n} f(\xi_{i}) \Delta x_{i}$$

В качестве точек ξ_i могут выбираться левые ($\xi_i = x_{i-1}$) или правые ($\xi_i = x_i$) границы отрезков, получим формулы левых и правых прямоугольников.

Обозначим:

$$f(x_i) = y_i$$
, $f(a) = y_0$, $f(b) = y_n$
 $\Delta x_i = x_i - x_{i-1} = h_i$

$$\int_a^b f(x) dx pprox h_1 y_0 + h_2 y_1 + \dots + h_n y_{n-1} = \sum_{i=1}^n h_i \ y_{i-1}$$
 - левые прямоугольники

$$\int_a^b f(x) dx pprox h_1 y_1 + h_2 y_2 + \dots + h_n y_n = \sum_{i=1}^n h_i y_i$$
 - правые прямоугольники

При
$$h_i = h = \frac{b-a}{n} = const$$
:

$$\int_{a}^{b} f(x)dx = h \sum_{i=1}^{n} y_{i-1}$$

$$\int_{a}^{b} f(x)dx = h \sum_{i=1}^{n} y_{i}$$

Метод прямоугольников. Метод средних

Для аналитически заданных функций более точным является использование значений в средних точках элементарных отрезков (полуцелых узлах):

$$\int_{a}^{b} f(x)dx \approx \sum_{i=1}^{n} h_{i} f(x_{i-1/2})$$

$$x_{i-1/2} = \frac{x_{i-1} + x_{i}}{2} = x_{i-1} + \frac{h_{i}}{2}, i = 1, 2, \dots n$$

При
$$h_i = h = \frac{b-a}{n} = const$$
:
$$\int_a^b f(x)dx = h \sum_{i=1}^n f(x_{i-1/2})$$

Пример 1. Найти значение интеграла методами прямоугольников:

$$I = \int_{1}^{2} x^{2} dx = \frac{8}{3} - \frac{1}{3} \approx 2,33 \dots$$

Разобьем отрезок интегрирования на 5 равных частей: n=5, $h=\frac{b-a}{n}=0$,2.

По формулам левых, правых и средних прямоугольников получим:

$$I_{\text{прав}} = h \sum_{i=1}^n y_i = 2,64$$
 $I_{\text{лев}} = h \sum_{i=1}^n y_{i-1} = 2,040$ $I_{\text{сред}} = h \sum_{i=1}^n y_{i-1/2} = 2,3300$ Погрешность в вычислении интеграла составляет :

$$\Delta I_{\text{сред}} = I - I_{\text{сред}} = 2,3333 - 2,3300 = 0,0033 \ (\approx 0,14\%)$$
 $\Delta I_{\text{лев}} = I - I_{\text{лев}} = 2,3333 - 2,040 = 0,2933 \ (\approx 12,5\%)$
 $\Delta I_{\text{прав}} = I - I_{\text{прав}} = 2,3333 - 2,64 = 0,3067 \ (\approx 13,1\%)$

i	0	1	2	3	4	5
x_i	1	1,2	1,4	1,6	1,8	2
y_i	1	1,44	1,96	2,56	3,24	4
$x_{i-1/2}$		1,1	1,3	1,5	1,7	1,9
$y_{i-1/2}$		1,21	1,69	2,25	2,89	3,61

Пример 2. Разобьем отрезок интегрирования на 10 равных частей: $n=10,\ h=\frac{b-a}{n}=0,1.$

По формулам левых, правых и средних прямоугольников получим:

$$I_{\text{прав}} = h \sum_{i=1}^{n} y_i = 2,485$$
 $I_{\text{лев}} = h \sum_{i=1}^{n} y_{i-1} = 2,185$ $I_{\text{сред}} = h \sum_{i=1}^{n} y_{i-1/2} = 2,3325$

Погрешность в вычислении интеграла составляет:

$$\Delta I_{\text{сред}} = I - I_{\text{сред}} = 2,3333 - 2,3325 = 0,0008 (\approx 0,034\%)$$

i	0	1	2	3	4	5	6	7	8	9	10
x_i	1	1,1	1,2	1,3	1,4	1,5	1,6	1,7	1,8	1,9	2
y_i	1	1,21	1,44	1,69	1,96	2,25	2,56	2,89	3,24	3,61	4
$x_{i-1/2}$		1,05	1,15	1,25	1,35	1,45	1,55	1,65	1,75	1,85	1,95
$y_{i-1/2}$		1,1025	1,3225	1,5625	1,8225	2,1025	2,4025	2,7225	3,0625	3,4225	3,8025

Метод трапеций

Подынтегральную функцию на каждом отрезке $[x_i; x_{i+1}]$ заменяют интерполяционным многочленом первой степени:

$$f(x) \approx \varphi_i(x) = a_i x + b$$

Используют линейную интерполяцию, т.е. график функции y=f(x) представляется в виде ломаной, соединяющий точки (x_i,y_i) . Площадь всей фигуры (криволинейной трапеции):

$$S_{\text{общ}} = S_1 + S_2 + \dots + S_n = \frac{y_0 + y_1}{2} h_1 + \frac{y_1 + y_2}{2} h_2 + \dots + \frac{y_{n-1} + y_n}{2} h_n$$
$$y_0 = f(a), \qquad y_n = f(b), \qquad y_i = f(x_i), \qquad h_i = x_i - x_{i-1}$$

Складывая все эти равенства, получаем формулу трапеций для численного интегрирования:

$$\int_{a}^{b} f(x)dx = \frac{1}{2} \sum_{i=1}^{n} h_{i}(y_{i-1} + y_{i})$$

При $h_i = h = \frac{b-a}{m} = const$ формула трапеций:

$$\int_{a}^{b} f(x)dx = h \cdot \left(\frac{y_{0} + y_{n}}{2} + \sum_{i=1}^{n-1} y_{i} \right)$$

или
$$\int_{a}^{b} f(x)dx = \frac{h}{2} \cdot \left(y_0 + y_n + 2 \sum_{i=1}^{n-1} y_i \right)$$

Метод трапеций

Пример 3. Разобьем отрезок интегрирования на 10 равных

частей:
$$n = 10$$
, $h = \frac{b-a}{n} = 0,1$.

$$I_{\text{трап}} = \int_{1}^{2} x^{2} dx = h \cdot \left(\frac{y_{0} + y_{n}}{2} + \sum_{i=1}^{n-1} y_{i} \right) = 0,1 \cdot \left(\frac{1+4}{2} + (1,21+1,44+\dots+3,61) \right) = 2,3350$$

Погрешность в вычислении интеграла составляет:

$$\Delta I = I - I_{\text{трап}} = 2,3333 - 2,3350 = 0,0017 (\approx 0,073\%).$$

i	0	1	2	3	4	5	6	7	8	9	10
x_i	1	1,1	1,2	1,3	1,4	1,5	1,6	1,7	1,8	1,9	2
y_i	1	1,21	1,44	1,69	1,96	2,25	2,56	2,89	3,24	3,61	4

Метод Симпсон Томас(20.8.1710–14.5.1751) – английский математик)

Разобьем отрезок интегрирования [a, b] на четное число n равных частей с шагом h. На каждом отрезке $[x_{0_i}, x_2]$, $[x_{2_i}, x_4]$, ..., $[x_{i-1_i}, x_{i+1}]$, ..., $[x_{n-2_i}, x_n]$ подынтегральную функцию заменим интерполяционным многочленом второй степени:

$$f(x) \approx \varphi_i(x) = a_i x^2 + b_i x + c_i, \quad x_{i-1} \le x \le x_{i+1}$$

Коэффициенты этих квадратных трехчленов могут быть найдены из условий равенства многочлена и подынтегральной функции в узловых точках.

В качестве $\varphi_i(x)$ можно принять интерполяционный многочлен Лагранжа второй степени, проходящий через точки $(x_{i-1}, y_{i-1}), (x_i, y_i), (x_{i+1}, y_{i+1}).$

Метод Симпсона

Для точек x_0, x_1, x_2 :

$$\varphi_1(x) = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)}y_0 + \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)}y_1 + \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)}y_2.$$

При x_0 =0; x_1 =h; x_2 =2h, получим:

$$\varphi_1(x) = \frac{(x-h)(x-2h)}{h \cdot 2h} y_0 + \frac{x(x-2h)}{-h \cdot h} y_1 + \frac{x(x-h)}{2h \cdot h} y_2 = \frac{x^2 - x \cdot 3h + 2h^2}{2h^2} y_0 + \frac{x^2 - 2h \cdot x}{-h^2} y_1 + \frac{x^2 - h \cdot x}{2h^2} y_2$$

$$S_1 = \int_{x_0}^{x_0+2h} \varphi_1(x) dx = \int_0^{2h} \left(\frac{x^2 - x \cdot 3h + 2h^2}{2h^2} y_0 + \frac{x^2 - 2h \cdot x}{-h^2} y_1 + \frac{x^2 - h \cdot x}{2h^2} y_2 \right) dx = \int_0^{2h} \left(\frac{x^2 - x \cdot 3h + 2h^2}{2h^2} y_0 + \frac{x^2 - 2h \cdot x}{-h^2} y_1 + \frac{x^2 - h \cdot x}{2h^2} y_2 \right) dx = \int_0^{2h} \left(\frac{x^2 - x \cdot 3h + 2h^2}{2h^2} y_0 + \frac{x^2 - 2h \cdot x}{-h^2} y_1 + \frac{x^2 - h \cdot x}{2h^2} y_2 \right) dx = \int_0^{2h} \left(\frac{x^2 - x \cdot 3h + 2h^2}{2h^2} y_0 + \frac{x^2 - 2h \cdot x}{-h^2} y_1 + \frac{x^2 - h \cdot x}{2h^2} y_2 \right) dx = \int_0^{2h} \left(\frac{x^2 - x \cdot 3h + 2h^2}{2h^2} y_0 + \frac{x^2 - 2h \cdot x}{-h^2} y_1 + \frac{x^2 - h \cdot x}{2h^2} y_2 \right) dx = \int_0^{2h} \left(\frac{x^2 - x \cdot 3h + 2h^2}{2h^2} y_0 + \frac{x^2 - 2h \cdot x}{-h^2} y_1 + \frac{x^2 - h \cdot x}{2h^2} y_2 \right) dx = \int_0^{2h} \left(\frac{x^2 - x \cdot 3h + 2h^2}{2h^2} y_0 + \frac{x^2 - 2h \cdot x}{-h^2} y_1 + \frac{x^2 - h \cdot x}{2h^2} y_2 \right) dx = \int_0^{2h} \left(\frac{x^2 - x \cdot 3h + 2h^2}{2h^2} y_0 + \frac{x^2 - 2h \cdot x}{-h^2} y_1 + \frac{x^2 - h \cdot x}{2h^2} y_2 \right) dx = \int_0^{2h} \left(\frac{x^2 - x \cdot 3h + 2h^2}{2h^2} y_0 + \frac{x^2 - 2h \cdot x}{-h^2} y_1 + \frac{x^2 - h \cdot x}{2h^2} y_2 \right) dx = \int_0^{2h} \left(\frac{x^2 - x \cdot 3h + 2h^2}{2h^2} y_0 + \frac{x^2 - h \cdot x}{-h^2} y_1 + \frac{x^2 - h \cdot x}{2h^2} y_2 \right) dx = \int_0^{2h} \left(\frac{x^2 - x \cdot 3h + 2h^2}{2h^2} y_0 + \frac{x^2 - h \cdot x}{2h^2} y_1 + \frac{x^2 - h \cdot x}{2h^2} y_2 \right) dx = \int_0^{2h} \left(\frac{x^2 - x \cdot 3h + 2h^2}{2h^2} y_0 + \frac{x^2 - h \cdot x}{2h^2} y_1 + \frac{x^2 - h \cdot x}{2h^2} y_2 \right) dx$$

$$= \frac{y_0}{2h^2} \left(\frac{x^3}{3} - 3h \frac{x^2}{2} + 2h^2 x \right) \left| \frac{2h}{0} - \frac{y_1}{h^2} \left(\frac{x^3}{3} - 2h \frac{x^2}{2} \right) \right| \frac{2h}{0} + \frac{y_2}{2h^2} \left(\frac{x^3}{3} - h \frac{x^2}{2} \right) \left| \frac{2h}{0} = \frac{y_0 h}{3} + \frac{4y_1 h}{3} + \frac{y_2 h}{3} \right|$$

$$= \frac{h}{3} (y_0 + 4y_1 + y_2)$$

Для каждого элементарного отрезка $[x_{i-1}, x_{i+1}]$: $S_i = \frac{h}{3} (y_{i-1} + 4y_i + y_{i+1})$

$$S_{\text{общ}} = S_1 + S_2 + \dots + S_n = \frac{h}{3} (y_0 + 4y_1 + 2y_2 + 4y_3 + 2y_4 + \dots + 2y_{n-2} + 4y_{n-1} + 2y_n)$$

Формула Симпсона

$$\int_{a}^{b} f(x) = \frac{h}{3} \left[(y_0 + 4(y_1 + y_3 + \dots + y_{n-1}) + 2(y_2 + y_4 + \dots + y_{n-2}) + y_n) \right]$$

Пример 4. Найти значение интеграла методом Симпсона: $I = \int_1^2 x^2 dx \approx 2,33$ При n=4, h=0,25.

i	0	1	2	3	4
x_i	1	1,25	1,5	1,75	2
y_i	1	1,5625	2,25	3,0625	4

$$I = \frac{0,25}{3} \left[(1 + 4(1,5625 + 3,0625) + 2 \cdot 2,25)) + 4) \right] = 2,3333$$

Погрешность численного интегрирования

Выше рассмотренные методы объединяет общая идея: интегрируемая функция интерполируется на отрезке интегрирования многочленом Лагранжа. Семейство методов, основанных на замены подынтегральной функции интерполяционным многочленом Лагранжа называется методами Ньютона-Котеса. Точность решения растет с увеличением степени интерполяционного многочлена.

Погрешность квадратурной формулы определяется выражением:

$$R = \int_{a}^{b} f(x)dx - \sum_{i=0}^{n} \alpha_{i} y_{i}$$

где y_i — значения функции в узлах интерполяции; α_i — числовые коэффициенты, выбор которых зависит от используемого метода численного интегрирования.

Для оценки погрешности R приближенного интегрирования:

- 1) Формулы средних прямоугольников: $|R| \leq \max_{x \in [a,b]} |f''(x)| \cdot \frac{(b-a)^3}{24n^2}$: второй порядок точности $O(h^2)$
- 2) Формула трапеций: $|R| \leq \max_{x \in [a,b]} |f''(x)| \cdot \frac{(b-a)^3}{12n^2} : O(h^2)$
- 3) Формула Симпсона: $|R| \le \max_{x \in [a,b]} |f''''(x)| \cdot \frac{(b-a)^5}{180n^4} : O(h^4)$

Примеры приближенного вычисления определенных интегралов

В основном встречаются две разновидности заданий:

- либо вычислить определенный интеграл численным методом для заданного числа разбиения отрезка *n* (см. примеры 1,2,3,4)
- либо найти приближенное значение определенного интеграла с требуемой точностью.

Пример 4. Вычислите определенный интеграл $\int_1^2 (\frac{1}{10}x^4 + \frac{1}{5}x^2 - 7) dx$ методом трапеций с точностью до 0.01.

Решение: найдем количество точек разбиения отрезка интегрирования n, используя неравенство для оценки абсолютной погрешности $|R| \leq \max_{x \in [a,b]} |f''(x)| \cdot \frac{(b-a)^3}{12n^2}$.

$$f'(x) = \left(\frac{1}{10}x^4 + \frac{1}{5}x^2 - 7\right)' = \frac{4}{10}x^3 + \frac{2}{5}x, \quad f''(x) = \left(\frac{4}{10}x^3 + \frac{2}{5}x\right)'' = 1,2x^2 + 0,4$$

$$\max_{x \in [a,b]} |f''(2)| = 1,2 \cdot 4 + 0,4 = 5,2$$

Подставим полученное значение в неравенство $\max_{x \in [a,b]} |f''(x)| \cdot \frac{(b-a)^3}{12n^2} \ge 0.01 \rightarrow 5.2 \frac{(2-1)^3}{12n^2} \ge 0.01$

Тогда
$$n^2 \geq \frac{520}{12} \rightarrow |n| \geq 6,58$$
. Возьмем $n=8$ $h = \frac{b-a}{n} = \frac{2-1}{8} = 0,125$

Занесем в таблицу результаты расчетов:

Примеры приближенного вычисления определенных интегралов

i	0	1	2	3	4	5	6	7	8
x_i	1	1,125	1,25	1,375	1,5	1,625	1,75	1,875	2
$f(x_i)$	-6,7	-6,58669	-6,44336	-6,26443	-6,04375	-5,77458	-5,44961	-5,06091	-4,6

$$\int_{1}^{2} \left(\frac{1}{10}x^{4} + \frac{1}{5}x^{2} - 7\right)dx \approx h \cdot \left(\frac{y_{0} + y_{n}}{2} + \sum_{i=1}^{n-1} y_{i}\right) = 0,125(-5,65 - 41,6233) = -5,9092$$

Найдем интеграл по формуле Ньютона-Лейбница:

$$\int_{1}^{2} \left(\frac{1}{10} x^{4} + \frac{1}{5} x^{2} - 7 \right) dx = \left(\frac{x^{5}}{50} + \frac{x^{3}}{15} - 7x \right) \Big|_{1}^{2} = -12,8267 + 6,9133 = -5,9134$$

 $|R| = |I - I_{\rm Tp}| = 0,0042$, точность достигнута.

Погрешность численного интегрирования

Т.к. нахождение *п* из неравенства для оценки абсолютной погрешности для подынтегральных функций сложного вида является не очень простой процедурой, используется правило Рунге.

Правило Рунге - это эмпирический способ оценки погрешности, основанный на сравнении результатов вычислений, проводимых с разными шагами *h*:

$$I - I_{h/2} \approx \frac{I_{h/2} - I_h}{2^k - 1}$$

I — точное значение интеграла;

 $I_{h/2}$, I_h - приближенные значения интеграла, вычисленные с различными шагами h; k - порядок точности квадратурной формулы,

(k=2 - для формул средних прямоугольников и трапеций, k=4 - для формулы Симпсона).

Алгоритм вычисления интеграла

