# A Re-evaluation of Knowledge **Graph Completion Methods**



Zhiqing Sun<sup>1\*</sup> zhiqings@cs.cmu.edu



Shikhar Vashishth<sup>1,2\*</sup>Soumya Sanyal<sup>2\*</sup> svashish@cs.cmu.edu



soumyasanyal@iisc.ac.in



Partha Talukdar<sup>2</sup> ppt@iisc.ac.in



Yiming Yang<sup>1</sup> yiming@cs.cmu.edu

<sup>1</sup>Carnegie Mellon University, <sup>2</sup>Indian Institute of Science





### **Knowledge Graphs**

- Knowledge in graph form
- Nodes represent entities
- Edges represent relationships
- Examples: Freebase, Wikidata ...
- Use cases:
  - Question Answering
  - Dialog systems
  - Web Search







## Link Prediction (KG Completion)

#### Definition:

Task of inferring missing facts based on known ones.



 General technique involves learning a representation for all entities and relations in KG.



## Why Re-evaluation?

- Calming SOTA hype in Knowledge Graph Link Prediction
- Recently, a large number of papers have reported inconsistent high-performance gains





#### Contributions

- Identify that inflated performance is because of inappropriate evaluation protocol
- Propose RANDOM, a novel evaluation protocol which addresses the concern and detects inflated performance
- Perform extensive re-examination on recent neural network based KGC techniques

### KGC Evaluation

- For a triple (h, r, t) in the evaluation set:
  - We predict t given (h, r) by scoring all  $T' = \{(h, r, t') \mid t' \in E\}$
  - Triplets are sorted based on the score, and rank of the valid triplet (h,r,t) is used as an evaluation metric.
  - Similarly, we predict h given (r, t). Report average across
     both
- Filtered Setting (Bordes et al., 2013)
  - All known correct triplets are removed from T' except one being evaluated.



### **Issues with Existing Methods**

- 58.5% negative sampled triplets obtain the exact same score as the valid triplet with ConvKB on FB15k-237.
- On average, ConvKB and CapsE have 125 and 197 such entities, whereas
   ConvE has around 0.002 over the entire evaluation dataset of FB15k-237





**Number of Triplets with Same Score** 

## **Current Evaluation Protocol (TOP)**

- Place the valid entity at the beginning among all entities with the same score 'c'.
- Problem: A naive baseline which gives an identical score (f(h,r,t)

= c,  $\forall$  h,r,t) to all triples achieves 100% performance.

Given: (h,r)
Predict: t

$$T' = \{(h, r, t') \mid t' \in E\}$$



### **Proposed Evaluation Protocol**

#### RANDOM:

Place the valid entity at a random position among entities with the same score 'c'



RANDOM protocol eliminates the bias in evaluation.

#### Results

- We observe a drastic change in results on FB15k-237 on switching the evaluation protocol
- BOTTOM: Place valid entity at the end among entities with the same score

|        | Reported |      |       | RANDOM        |             |               | Тор             |              |                 | Воттом    |              |               |
|--------|----------|------|-------|---------------|-------------|---------------|-----------------|--------------|-----------------|-----------|--------------|---------------|
|        | MRR ↑    | MR↓  | H@10↑ | MRR ↑         | MR↓         | H@10↑         | MRR ↑           | MR↓          | H@10↑           | MRR ↑     | MR↓          | H@10↑         |
| ConvE  | .325     | 244  | .501  | $.324 \pm .0$ | $285 \pm 0$ | $.501 \pm .0$ | .324            | 285          | .501            | .324      | 285          | .501          |
| RotatE | .338     | 177  | .533  | $.336 \pm .0$ | $178 \pm 0$ | $.530 \pm .0$ | .336            | 178          | .530            | .336      | 178          | .530          |
| TuckER | .358     | 1171 | .544  | $.353\pm.0$   | $162 \pm 0$ | $.536 \pm .0$ | .353            | 162          | .536            | .353      | 162          | .536          |
| ConvKB | .396     | 257  | .517  | .243 ± .0     | 309 ± 2     | .421 ± .0     | .407<br>(+.164) | 246<br>(-63) | .527<br>(+.106) | .130      | 373<br>(+64) | .383<br>(038) |
| CapsE  | .523     | 303  | .593  | .150 ± .0     | 403 ± 2     | .356 ± .0     | .511<br>(+.361) | 305<br>(-99) | .586<br>(+.229) | 134 (016) | 502<br>(+99) | .297<br>(059) |
| KBAT   | .518†    | 210† | .626† | $.157\pm.0$   | $270\pm0$   | $.331 \pm .0$ | .157            | 270          | .331            | .157      | 270          | .331          |



#### Conclusion

- Along with making progress on KG embedding techniques, it is equally important to use the right evaluation.
- Experimentally demonstrate that many recent KGE methods suffer from using biased evaluation protocols.
- Strongly recommend using the RANDOM evaluation strategy for evaluating the task of Link Prediction.

#### **Paper Link:**

A Re-evaluation of Knowledge Graph

Completion Methods

# Thank you!

#### **Research Supported by:**







**Source Code:** 

github.com/svjan5/kg-reeval