NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF STATISTICS & APPLIED PROBABILITY

ST2334 PROBABILITY AND STATISTICS SEMESTER I, AY 2022/2023

Tutorial 05

This set of questions will be discussed by your tutors during the tutorial in Week 8.

Please work on the questions before attending the tutorial.

1. Let *X* denote the number of times a certain numerical control machine will malfunction: 1, 2, or 3 times on any given day. Let *Y* denote the number of times a technician is called on an emergency call. Their joint probability distribution is given below.

		x				
f_X	$_{,Y}(x,y)$	1	2	3		
	1	0.05	0.05	0.1		
у	2	0.05	0.10	0.35		
	3	0	0.2	0.1		

- (a) Evaluate the marginal distributions of X and Y.
- (b) Find P(Y = 3|X = 2).
- (c) Find the conditional distribution of Y given X = 2.
- (d) Determine whether *X* and *Y* are dependent or independent.
- 2. From a sack of fruit containing 3 oranges, 2 apples, and 3 bananas, a random sample of 4 pieces of fruit is selected. If *X* is the number of oranges and *Y* is the number of apples in the sample, find
 - (a) the joint probability distribution of X and Y;
 - (b) P(X = 1, Y = 1);
 - (c) $P(X + Y \le 2)$;
 - (d) $f_X(x)$;
 - (e) $f_{Y|X}(y|2)$ and hence P(Y = 0|X = 2).
- 3. Consider an experiment that consists of two rolls of a balanced die. If *X* is the number of fours and *Y* is the number of fives obtained in the two rolls of the die, find
 - (a) the joint probability distribution of *X* and *Y*;
 - (b) P(2X + Y < 3);
 - (c) Determine whether *X* and *Y* are dependent or independent.
- 4. Each rear tire on an experimental airplane is supposed to be filled to a pressure of 40 pound per square inch (psi). Let *X* denote the actual air pressure (in 10 pound per square inch) for the right tire and *Y* denote the actual air pressure (in 10 pound per square inch) for the left tire. Suppose that *X* and *Y* are random variables with the joint density

$$f_{X,Y}(x,y) = \begin{cases} k(x^2 + y^2), & 3 \le x \le 5; 3 \le y \le 5; \\ 0, & \text{elsewhere} \end{cases}$$

1

- (a) Determine k;
- (b) Compute $P(3 \le X \le 4 \text{ and } 4 \le Y < 5)$;
- (c) Find $f_X(x)$ and hence P(3.5 < X < 4).
- 5. Two random variables have the joint density

$$f(x_1, x_2) = \begin{cases} x_1 x_2, & \text{for } 0 < x_1 < 2, 0 < x_2 < 1 \\ 0, & \text{elsewhere.} \end{cases}$$

- (a) Find the probability that both random variables will take on values less than 1.
- (b) Find the marginal densities of the two random variables, and check whether the two random variables are independent.
- (c) Find the expected value of the random variable whose values are given by $g(x_1, x_2) = x_1 + x_2$.
- 6. Consider the random variables X and Y that have a joint probability density function given by

$$f(x,y) = x^2 e^{-x}$$
, for $x > 0$, $-1/4 < y < 1/4$.

- (a) Compute the probability P(X < 1, Y > 0).
- (b) Find the marginal distributions of *X* and *Y*. Are *X* and *Y* independent?

Answers

1. (a)
$$f_X(x) = 0.10, 0.35, 0.55$$
 for $x = 1, 2, 3$; $f_Y(y) = 0.2, 0.5, 0.3$ for $y = 1, 2, 3$;

(b) 4/7:

(c) $f_{Y|X}(y|x=2) = 1/7, 2/7$, and 4/7, for y = 1, 2, 3;

(d) X and Y are dependent.

2. (a)
$$f(x,y) = \frac{\binom{3}{x}\binom{2}{y}\binom{3}{4-x-y}}{\binom{8}{4}}, x = 0, 1, 2, 3; y = 0, 1, 2; 1 \le x+y \le 4;$$

- (b) 0.2571;
- (c) 0.5;

(d)
$$f_X(x) = \frac{\binom{3}{x}\binom{5}{4-x}}{\binom{8}{4}}, \quad x = 0, 1, 2, 3.$$

(e)
$$f_{Y|X}(y|2) = \frac{1}{10} {2 \choose y} {3 \choose 2-y}, \quad y = 0, 1, 2;$$

 $P(Y = 0|X = 2) = 0.3.$

	(a)	$f_{X,Y}(x,y)$		$\begin{bmatrix} x \\ 0 & 1 & 2 \end{bmatrix}$			$f_{V}(v)$
3.		JA,	0	4/9	2/9	1/36	25/36
		y	1	2/9	1/18	0	25/36 5/18 1/36
			2	1/36	0	0	1/36
			$f_X(x)$	25/36	5/18	1/36	1

- (b) 11/12.
- (c) dependent.
- 4. (a) 3/392;
- (b) 0.25;
- (c) 0.2328.
- 5. (a) 1/4;
- (b) $f_1(x_1) = 0.5x_1; 0 \le x_1 \le 2;$ $f_2(x_2) = 2x_2; 0 \le x_2 \le 1;$
- (c) 2.
- 6. (a) $\frac{1}{4} \left(2 \frac{5}{e} \right)$;
- (b) $f(x) = 0.5x^2e^{-x}$, x > 0; g(y) = 2, -1/4 < y < 1/4;

X and *Y* are independent.