Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 4 з дисципліни «Ігрова фізика»

«Визначення коєфіцієнта в'язкості рідини методом Стокса»

Виконав(ла)	ІП-11 Панченко Сергій Віталійович	
	(шифр, прізвище, ім'я, по батькові)	
Перевірив(ла)	Скирта Юрій Борисович	
	(прізвище, ім'я, по батькові)	

Теоретичний конспект

Стояча хвиля виникає в результаті накладання (інтерференції) двох біжучих хвиль, що рухаються у протилежних напрямах і мають однакові частоти та амплітуди. Запишемо рівняння двох плоских хвиль, що поширюються у протилежних напрямах:

$$\xi_1 = A_0 \cos(\omega t - 2\pi x/\lambda), \xi_2 = A_0 \cos(\omega t + 2\pi x/\lambda)$$
,

де A0 — амплітуда біжучих хвиль; ω — циклічна частота; λ — довжина хвилі; х - координата точок середовища.

Суперпозиція цих хвиль дає рівняння стоячої хвилі:

$$\xi = \xi_1 + \xi_2 = 2A_0 \cos(2\pi x/\lambda)\cos(\omega t)$$

На графіку зображені залежності відхилення ξ від координати х для моменту часу, коли cos $\omega t = 1$ («миттєва фотографія»), тобто $\xi = 2$ A0 cos $2\pi x / \lambda$. Для зручності на графіку подано залежність $\xi / 2$ A0 від x (пунктирна крива — та сама залежність для моменту часу, коли cos $\omega t = -1$).

Пучності стячої хвилі— точки, де ампілітуда досягає максимального значення:

$$x_{nyuh} = \pm \frac{n \lambda/2}{i}$$

Вузли стоячої хвилі — точки, де апмлітуда дорівнює нулю:

$$x_{\text{eyan}} = \pm \frac{\left(n + \frac{1}{2}\right)\lambda}{2}$$

Довжина стоячої хвилі— це відстань мід двома сусідніми вузлами або пучностями.

Стояча хвиля не переносить енергію: в ній енергія коливання кожного елементаоб'єму середовища періодично переходить переходить із кінетичної в потенціальну енергію пружної деформації середовища і навпаки.

У даній роботі досліджується стояча хвиля, що виникає у стовпі

повітря в циліндричній трубі довжини L. Для утворення стоячої хвилі, має виконуватись умова, що на протилежних межах повітряного стовпа утворилися вузли або пучності, де відстань:

$$L=m \lambda/4; (m=1,2,3...).$$

Якщо на обох протилежних межах повітряного стовпа знаходяться пучності або вузли (парна кількість λ / 4), то умову можна подати у вигляді:

$$L=m \lambda/2$$
; $(m=1,2,3...)$.

Коли на одному кінці повітряного стовпа пучність, а на протилежному — вузол (непарна кількість λ / 4) умова перетворюється на:

$$L=m \lambda/2-m \lambda/4=(2m-1)\lambda/4$$
; $(m=1,2,3...)$.

Результати дослідів

Температура повітря у дослідах Т=299.5 К.

N _Ω 3/π	v1 = 1000 Гц			V2 = 1500 Гц		V3= 2000 Гц						
	L1	Lm	m	v1	L1	Lm	m	v2	L1	Lm	m	v3
1	1.01 8	1.89	6		1.029	1.956	9		1.04 2	1.997	12	
2	1.03 1	1.901	6		1.037	1.965	9		1.02 5	1.981	12	
3	1.00 7	1.874	6	348.8	1.002	1.928	9	347.625	1.01 6	1.97	12	347.273

Швидкість звуку обчислюється за формулою:

$$v = \frac{L_m - L_1}{m - 1} 2v$$

Теоретичне значення швидкості звуку:

$$v_{meop} = 20.1 * \sqrt{T} = 20.1 * \sqrt{(299.5)} \approx 347.852 (\frac{M}{c})$$

Похибки вимірювань

Середнє значення швидкостей звуку:

$$v_{cep} = \frac{\sum_{i=1}^{3} 3v_i}{3} \approx 347.899$$

Абсолютна похибка:

$$\Delta v = |v_{meop} - v_{cep}| = 0.047 (\frac{M}{C})$$

Відносна похибка:

$$\delta = \frac{\Delta v}{v_{meop}} \approx 0.000135 = 0.0135 \%$$

Висновок

Під час виконання лабораторної роботи виписав теоретичний матеріал, визначив швидкість звуку методом стоячої хвилі в імітаторі. Розрахував похибки вимірювань.

Підсумовуючи, метод стоячої хвилі— це фіксація пучностей стоячої породжної накладанням двох зустрічних хвиль хвилі звуку. Воно відбувається шляхом зміни довжини труби і фіксуванні максимальних або мінімальних значень амплітуди. Зміна довжини труби між фіксаціями двох максимумів або мінімумів є половиною довжини хвилі звуку, і тому ,знаючи всю довжину цієї хвилі та звукову частоту, можна визначити швидкість звуку.

Контрольні запитання

1. Вивести рівняння стоячої плоскої хвилі.

Рівняння двох плоских хвиль, що поширюються у протилежних напрямах:

$$\xi_1 = A_0 \cos(\omega t - 2\pi x/\lambda), \xi_2 = A_0 \cos(\omega t + 2\pi x/\lambda)$$

де A0 — амплітуда біжучих хвиль; ω — циклічна частота; λ — довжина хвилі; х -координата точок середовища. Стояча хвиля дорівнює суперпозиції цих двох хвиль:

$$\xi = \xi_1 + \xi_2 = A_0(\cos(\omega t - 2\pi x/\lambda) + \cos(\omega t + 2\pi x/\lambda)) = 2A_0(\cos(\omega t - 2\pi x/\lambda) + \cos(\omega t + 2\pi x/\lambda)/2)$$
$$\xi = 2A_0\cos(2\pi x/\lambda)\cos(\omega t)$$

2. Які головні відмінності між біжучою і стоячою хвилями?

	Стояча	Біжуча
Енергія	Не переносить	Переносить
Амплітуда	Періодична, змінюється від 0 до 2A0	Константа, А0

3. За якої умови виникає стояча хвиля в стовпі повітря, обмеженому трубою?

На межах повітряного стовпа повинні утворитися або вузли, або пучності. Відстань між пучністю і вузлом становить:

$$\lambda/4$$
 .

А тому умова існування:

$$L=m \lambda/4; (m=1,2,3...).$$

4. Що називають вузлом і пучністю стоячої хвилі?

Пучності стячої хвилі— точки, де ампілітуда досягає максимального значення:

$$x_{nyuh} = \pm \frac{n \lambda/2}{\lambda}$$

Вузли стоячої хвилі — точки, де апмлітуда дорівнює нулю:

$$x_{ey3n} = \pm \frac{\left(n + \frac{1}{2}\right)\lambda}{2}$$

5. Чи відбувається перенесення енергії стоячею хвилею?

Ні, не переносить, бо в ній енергія коливання кожного елемента об'єму середовища періодично переходить переходить із кінетичної в потенціальну енергію пружної деформації середовища і навпаки.