Higher-Order Model Checking

III: Reducing Model Checking to Type Inference
IV: Applications: Verifying Higher-order Functional Programs

Luke Ong

University of Oxford
http://www.cs.ox.ac.uk/people/luke.ong/personal/
http://mjolnir.cs.ox.ac.uk

Estonia Winter School in Computer Science, 3-8 Mar 2013

Some Background

Rabin (1969) answered Büchi's question, and developed a theory of automata on infinite trees.

Theorem (Rabin 1969)

A tree language over Σ is MSO-definable iff it is recognisable by a parity (Muller) tree automaton.

Over trees, MSO logic and modal mu-calculus are equi-expressive.

Equi-expressivity (Emerson + Jutla 1991)

For defining tree languages, the following are equi-expressive (in appropriate sense):

- alternating parity tree automata
- parity games
- modal mu-calculus

A type system characterising MSO / modal mu-calculus theories

Theorem (**Characterisation**. Kobayashi + O. LiCS 2009)

Given a (alternating) parity tree automaton A there is a type system \mathcal{K}_A such that for every recursion scheme G, the tree $\llbracket G \rrbracket$ is accepted by A iff G is \mathcal{K}_A -typable.

Theorem (Parameterised Complexity. Kobayashi + O. LiCS 2009)

There is a type inference algorithm polytime in size of recursion scheme, assuming the other parameters are fixed.

The runtime is

$$O(p^{1+\lfloor m/2 \rfloor} \exp_n((a|Q|m)^{1+\epsilon}))$$

where p is the number of equations of the recursion scheme, a is largest arity of the types, m the number of priorities and |Q| the number of states.

Intersection types embedded with states and priorities

Intersection types: Long history. First used to construct filter models for untyped λ -calculus (Dezani, Barendregt, et al. early 80s).

Fix an alternating parity tree automaton $\mathcal{A} = (\Sigma, \mathbf{Q}, \delta, q_I, \Omega)$.

Idea: Refine intersection types with APT states $q \in Q$ and priorities m_i .

Types
$$\theta$$
 ::= $q \mid \tau \rightarrow \theta$
 τ ::= $\bigwedge \{ (\theta_1, m_1), \cdots, (\theta_k, m_k) \}$

Intuition. A tree function described by $(q_1, m_1) \land (q_2, m_2) \rightarrow q$.

Typing judgement $\Gamma \vdash t : \theta$

Typing judgements are of the shape

$$\Gamma \vdash t : \theta$$

where the environment Γ is a finite set of variable bindings of the form $x:(\theta,m)$, with θ ranging over types, and m over priorities.

Idea: $\Gamma \vdash s : \theta$

If $x:(q,m)\in\Gamma$, then the largest priority seen in the path (of the value tree) from the current tree node to the node where x is used is exactly m.

Validity of the judgements are defined by induction over four rules.

Rules of the Type System $\mathcal{K}_{\mathcal{A}}$ where APT $\mathcal{A} = \langle \Sigma, Q, \delta, q_I, \Omega \rangle$

$$\frac{}{x:(\theta,\Omega(\theta))\vdash x:\theta} \tag{T-VAR}$$

$$\frac{\{(i,q_{ij}) \mid 1 \leq i \leq n, 1 \leq j \leq k_i\} \text{ satisfies } \delta_{\mathcal{A}}(q,a)}{\varnothing \vdash a : \bigwedge_{j=1}^{k_1} (q_{1j},m_{1j}) \to \cdots \to \bigwedge_{j=1}^{k_n} (q_{nj},m_{nj}) \to q}$$

$$\text{where } m_{ij} = \max(\Omega(q_{ij}),\Omega(q))$$

$$(T\text{-Const})$$

$$\begin{array}{c} \Gamma_0 \vdash s : (\theta_1, m_1) \land \cdots \land (\theta_k, m_k) \rightarrow \theta \\ \hline \Gamma_i \vdash t : \theta_i \text{ for each } i \in \{1, \dots, k\} \\ \hline \Gamma_0 \cup (\Gamma_1 \uparrow m_1) \cup \cdots \cup (\Gamma_k \uparrow m_i) \vdash s \ t : \theta \\ \hline \text{where } \Gamma \uparrow m = \{F : (\theta, \max(m, m')) \mid F : (\theta, m') \in \Gamma\} \end{array}$$

$$\frac{\Gamma, x : \bigwedge_{i \in I} (\theta_i, m_i) \vdash t : \theta \qquad I \subseteq J}{\Gamma \vdash \lambda x. t : \bigwedge_{i \in J} (\theta_i, m_i) \to \theta}$$
 (T-Abs)

Type-Checking Recursion Scheme G w.r.t. $\mathcal{K}_{\mathcal{A}}$

Definition

G is typable just if Verifier has a winning strategy in a **parity game**, parameterised by the APT $\mathcal{A}=\langle\ Q,\delta,q_I,\Omega\ \rangle$, defined (informally) as follows:

Finite bipartite game graph: two kinds of nodes " $F:(\theta,m)$ " and " Γ ". Verifier tries to prove that G is typable; Refuter tries to disprove it.

- Start vertex: $S:(q_I,\Omega(q_I))$.
- Verifier: Given a binding $F : (\theta, m)$, choose environment Γ such that $\Gamma \vdash rhs(F) : \theta$ is valid.
- Refuter: Given Γ , choose a binding $F:(\theta,m)$ in Γ , and then challenge Verifier to prove that F has type θ .

Intuition: The game is a way to construct an infinite type derivation, in a form suitable for reasoning about the parity condition.

How to decide "Given A and G, does APT A accept [G]?"

Fix $\mathcal{A}=\langle\,Q,\delta,q_I,\Omega\,\rangle$ and G. The type inference algorithm has two phases:

Step 1: Construct the parity game associated with the type system $\mathcal{K}_{\mathcal{A}}$.

Finite, bipartite game graph: Verifier nodes are bindings $F : (\theta, m)$; Refuter nodes are environments Γ .

- For each Γ , and each binding " $F:(\theta,m)$ " in Γ , there is an edge $\Gamma \longrightarrow F:(\theta,m)$.
- For each " $F:(\theta,m)$ ", and each Γ such that $\Gamma \vdash rhs(F):\theta$ is provable, there is an edge $F:(\theta,m)\longrightarrow \Gamma$.

Step 2: Decide whether there is a winning strategy for Verifier for the parity game.

Decidability

Theorem (**Characterisation**. Kobayashi + O. LiCS 2009)

Given a (alternating) parity tree automaton A there is a type system \mathcal{K}_A such that for every recursion scheme G, the tree $\llbracket G \rrbracket$ is accepted by A iff G is \mathcal{K}_A -typable.

Remark on proof.

"Standard" type-theoretic methods (e.g. type soundness via type preservation) apply, except reasoning about priorities, which is novel and may be of independent interest.

Four different proofs of the decidability result

- Game semantics and traversals (O. LiCS 2006) variable profiles
- Collapsible pushdown automata (HMOS LiCS 2008) equi-expressivity theorem + rank aware automata
- Type theory (KO LiCS 2009) intersection types
- Krivine machine (Salvati + Walukiewicz ICALP 2011) residuals

A common thread

- Decision problem equivalent to solving an infinite parity game.
- Simulate the infinite game by a finite parity game.
- The "control states" of the finite game are variable profiles / intersection types / residuals, which are strikingly similar.

Safety Fragment of Mu-Calculus / Trivial APT

Trivial APT are APT with a single priority of 0. [Aehlig, LMCS 2007] Trivial acceptance condition: A tree is accepted just if there is a run-tree (i.e. state-annotation of nodes respecting the transition relation). Equi-expressive with the "safety fragment" of mu-calculus:

$$\varphi, \psi ::= P_f \mid Z \mid \varphi \lor \psi \mid \varphi \land \psi \mid \langle i \rangle \varphi \mid \nu Z. \varphi.$$

But surprisingly

Theorem (Kobayashi + O., ICALP 2009)

The Trivial APT Acceptance Problem for order-n recursion schemes is still n-EXPTIME complete.

(n-EXPTIME hardness by reduction from word acceptance problem of order-n alternating PDA which is n-EXPTIME complete [Engelfriet 91].)

Disjunctive Fragment of Mu-Calculus / Disjunctive APT

Disjunctive APT are APT whose transition function maps each state-symbol pair to a purely disjunctive positive boolean formula.

Disjunctive APT capture path / linear-time properties; equi-expressive with "disjunctive fragment" of mu-calculus:

$$\varphi, \psi ::= P_f \wedge \varphi \mid Z \mid \varphi \vee \psi \mid \langle i \rangle \varphi \mid \nu Z. \varphi \mid \mu Z. \varphi$$

Theorem (Kobayashi + O., ICALP 2009)

The Disjunctive APT Acceptance Problem for order-n recursion schemes is (n-1)-EXPTIME complete.

(n-1)-EXPTIME decidable: For order-1 APT-types $\bigwedge S_1 \to \cdots \to \bigwedge S_k \to q$, we may assume at most one S_i 's is nonempty (and is singleton). Hence only $k \times |Q|^2 \times m$ many such types (N.B. exponential for general APT).

(n-1)-EXPTIME hardness: by reduction from emptiness problem of order-n deterministic PDA [Engelfriet 91].

Why study trivial and disjunctive APT?

Corollary

The following problems are (n-1)-EXPTIME complete: assume G is an order-n recursion scheme

- Reachability: "Does [G] have a node labelled by a given symbol?"
- **2** LTL Model-Checking: "Does every path in $\llbracket G \rrbracket$ satisfy a given φ ?"
- 3 Resource Usage Problem

Program Classes	Models of Computation			
imperative programs + iteration imperative programs + rectification specification transformation order-n functional programs	finite GRSe+automata PDA viormaton PDA poolean programs Model for infinite Checking CPDA order-n reqursion schemes			

Resource Usage Verification Problem (Igarashi + Kobayashi 2006)

Scenario. Higher-order recursive functional programs generated from finite base types, with dynamic resource creation and access primitives.

Resources model stateful objects such as files, locks and memory cells.

Question. Does program D access each resource ρ in accord with φ , where φ is a formula (e.g. linear-time or branching-time temporal formula) or an automaton (e.g. alternating parity automaton).

Example. A simple resource specification: $\varphi =$ "An opened file is eventually closed, and after which it is not read". E.g. set $\varphi = \mathbf{r}^* \, \mathbf{c}$.

```
let rec g x = if b then close(x)
else read(x); g(x) in
let r = open_in "foo" in g(r)
```

Does program access resource foo in accord with φ ?

Are guestions of this kind decidable?

An approach to verifying Resource Usage (Kobayashi, POPL 2009)

1. Transform source program (by CPS and lambda-lifting) to rec. scheme

$$\begin{cases}
S \rightarrow \nu(Gd\star) \\
G\times k \rightarrow br(ck)(r(G\times k))
\end{cases}$$

that generates an infinite tree, each of whose path (from root) corresponds to a possible access sequence to resource in question.

2. Reduce

resource usage problem to model checking the scheme against a transformed property given by an APT (in this case, a trivial automaton).

3. Further reduce model checking problem to a type inference problem.

Resource Usage Verification Problem

Resource Usage Verification Problem

Instance: A functional program P using resources (λ^{\rightarrow} + recursion + booleans + resource creation / access primitives), and specification φ as a parity word automaton.

Question: Does P use resources in accord with φ ?

Resource usage properties translate into alternating parity tree automata. Thus we have:

Theorem (Lester, Neatherway, O. + Ramsay 2010)

For an order-n source program, the Resource Usage Verification Problem is n-EXPTIME complete.

Many verification problems reducible to Resource Usage Problem

- Program Reachability: "Given a program (closed term of ground type), does its computation reach a special construct fail?"
- Assertion-based verification problems; safety properties
- Flow Analysis: "Given a program and its subterms s and t, does the value of s flow to the value of t?"

An interesting exception!

What is reachability in higher-order functional programs?

Contextual Reachability

"Given a term P and its (coloured) subterm N^{α} , is there a program context C[] such that evaluating C[P] cause control to flow to N^{α} ?"

Many versions of the problem. Connexions with Stirling's dependency tree automata.

(See O. + Tzevelekos, "Functional Reachability", In Proc. LiCS, 2009).

Experiments with Thors (Ramsay, Lester, Neatherway + O. 2010)

Brute-force search will not work!

Order	Types	# Intersection Types (assume 2 states)
1	o o o	$2^2 \times 2 = 8$
2		$2^8 \times 2 = 512$
3	$((\circ \to \circ) \to \circ) \to \circ$	$2^{512} \times 2 = 2^{513} \approx 10^{154} \gg \#$ atoms in univ.!

Thors (Types for Higher-Order Recursion Schemes)

- An implementation of the type-inference algorithm for alternating weak tree automata (equivalently alternation-free mu-calculus). So can deal with CTL properties.
- Builds on and extends Kobayashi's TRECS ("hybrid algorithm").
- Uses partial evaluation and symmetry reduction to drastically reduce search space.

Available at https://mjolnir.comlab.ox.ac.uk/thors

Example 1: A network-oriented OCaml program intercept

This program¹ reads an arbitrary amount of data from a network socket into a queue and is then responsible for forwarding the data on to another socket.

```
let rec g y n = for i in 1 to n do write(y); done; close(y) let rec f x y n = if b then read(x); f(x,y,n+1) else close(x); g(y,n) let t = open_out "socket2" in let s = open_in "socket1" in f(s,t,0)
```

An order-4 recursion scheme is obtained after "slicing" the source program and CPS transform; # rules = 15, # APT states = 2.

Correctness property: If the "in" socket stops transmitting data then the "out" socket is eventually closed i.e. $AG(close_{in} \Rightarrow AF close_{out})$.

¹obtained by "slicing" intercept.ml (about 110 LOC) at http://abaababa.ouvaton.org/caml.

Example 2. Liveness with fairness assumption

Say an access sequence is unfair if, from some point onwards, it only takes the right branch of $br_{\rm if}$ (intuitively because it corresponds to reading an infinite "readonly" resource). Set φ to be the CTL formula

$$AG(r \Rightarrow A((r \lor br_{\mathrm{if}}) U c)).$$

Restricted to fair paths, the tree satisfies φ .

Example 3: Fibonacci numbers.

Recall: fib generates an infinite spine, with each member of the Fibonacci sequence (encoded as a unary numerals) appearing in turn as a left branch from the spine.

Using a DWT we can check that they obey the ordering

(even odd odd) $^{\omega}$.

Experimental data for AWT model checking

Example	0	R	Q	Time	Nodes	Game	Result	Property
D1	4	7	2	1	19	16	Υ	Det. Weak
D2	4	7	3	1	26	17	Υ	Conj. Weak
D2-ex	4	7	3	1	26	-	Υ	Alt. Trivial
intercept	4	15	2	35	200	31	Υ	Conj. Weak
imperative	3	6	3	129	200	17	Υ	Det. Weak
boolean2	2	15	1	1	13	-	Υ	Det. Trivial
order5-2	5	9	4	19	200	37	Ν	Det. Co-trivial
lock1	4	12	3	2	32	32	Υ	Det. Co-trivial
order5-v-dwt	5	11	4	163	400	53	Υ	Det. Weak
lock2	4	11	4	109	800	-	Υ	Det. Trivial
example2-1	1	2	2	190	200	-	Υ	Det. Trivial

Time in ms

O (resp. R) = order (resp. # rules) of recursion scheme; Q = # states of automaton; Game = # nodes in game graph;

Verifying (nearly) all of Haskell: pattern-matching alg. data types

Pattern-matching rec. schemes (PMRS) (O.+Ramsay POPL'11) Virtually all interesting properties are undecidable.

Verification Problem

Given a correctness property φ , a functional program P (qua PMRS) and an input set I, does every term that is reachable from I under rewriting by P satisfy φ ?

Our algorithm constructs an order-n weak pattern-matching recursion scheme which over-approximates the set of terms reachable from the input set—giving the most accurate reachability / flow analysis of its kind.

Further, the (trivial automaton) model checking problem for wPMRS is decidable.

Finally, there is a simple notion of automatic abstraction-refinement giving rise to a semi-completeness property.

References

- O. On model checking trees generated by higher-order recursion schemes. In Proc. LiCS, 2006.
- O. Verification of higher-order computation: a game-semantic approach (Invited ETAPS Unifying Lecture). In Proc. ESOP, 2008.
- Hague, Murawski, O. + Serre. Recursion schemes and collapsible pushdown automata. In *Proc. LiCS*, 2008.
- Carayol, Hague, Meyer, O. + Serre. Winning regions of higher-order pushdown games. In *Proc. LiCS*, 2008.
- Broadbent + O. On global model checking trees generated by higher-order recursion schemes. In Proc. FoSSaCS, 2009.
- Kobayashi + O. A type theory equivalent to the model checking of higher-order recursion schemes. In Proc. LiCS, 2009.
- O. + Tzevelekos. Functional Reachability. In *Proc. LiCS*, 2009.
- Kobayashi + O. Complexity of model-checking recursion schemes for fragments of the modal mu-calculus. In Proc. ICALP, 2009.
- Broadbent, Carayol, O. + Serre. Recursion schemes and logical refection. In Proc. LiCS 2010.
- S. Ramsay + O. Verification of higher-order functional programs with pattern matching ADT. In Proc. POPL 2011.

Conclusions

- Verification of higher-order programs is challenging and worthwhile.
- Recursion schemes are a robust and highly expressive language for infinite structures. They have rich algorithmic properties.
- Recent progress in the theory has been made possible by semantic methods, enabling the extraction of new (but necessarily highly complex) algorithms.
- Verification of functional programs can be reduced to model checking recursion schemes. The approach is automatic, sound and complete.

Further directions:

- Is safety a genuine constraint on expressiveness? Equivalently, are order-n CPDA more expressive than order-n PDA for generating trees?
- Major case study: Develop a fully-fledged model checker for Haskell / OCaml.