

PROFESOR: Mareo Negruz

APELLIDG.

CARN ...

Sartenejas, 6 de marzo de 2024

 No se permite el uso de implementos electrónicos (calculadoras, celulares, tabletas, iPods, etc.) ni de audífonos.
 No pueden desengrapar las pruebas ni sacar papel adicional.
1) Una partícula de masa m está sometida a una uerza central cuya magnitud es kh^2 (k
es una constante). Su rapidez es $v_1 = \sqrt{k/(2 n r_1)}$ en el instante en que la partícula
se encuentra en un extremo de su trayectoria errada a una distancia r_1 del centro de
fuerzas.
a) ¿Qué cantidades se conservou para la partícula m? Explique (? ponto.).
b) Determinar r_2 , la otra posición extrema de la órbita (5 pto (0s).
c) Determinar la rapidez v_2 de la partícula en esa posición (5 puntos).
a) Dado que se encuentra en una trayectoria cerrada y la
Particula se encuentra sometida per una fuena Central, en el
Mesterna de Conseva:
& El momente Angulae: L, = LFL
Je que hay consevación de momente angular, tambien
hay consevación de energia cinética: Ki = Kff

CÉDUL : _ &

Segundo Parcial IS1112

2) Una varilla delgada de longitud L descarsa sobre una mesa horizontal sin rozamiento. Tiene una masa M y puede mo erse libremente de cualquier manera sobre la mesa. Un disco de hockey de masa m_{\parallel} e mueve como se muestra en la figura $(d \ {
m es \ dato})$ con una velocidad ν y choca elást amente contra la varilla.

a) ¿Qué cantidades se conservan en el cloque? Explique (3 puntos). inmediatamente después del choque? 7 puntos).

b) ¿Cuál debe ser la masa m del disco para que el mismo quede en reposo

 $Dato: J = ML^2/12$ para la varilla delgada con a specto a un eje que pasa por el centro y que es perpendicular a la longitud L.

a) Dado que no hay Juenas externas enfluyendo Centro mel sistema y que el choque es élastico en el litema de consera : D. El mormente angula: Li=Lef 1 La energia cinetica: Ki= Kg/ b) Mediante la Consvación del momento angular $L_1 = L_f$ => m Vo(=+el) = m Vo(=+el) + IBaua. Wf; Ibaua = 1 M.12+ M.d => m /6(L+2el). 1= m /f(L+2el). 1+(12 ML2+Mel2) WF => m /o (L+2d) = m / (L+2d) = + (ML2+12Md2) Wp. 12 => m/6(L+2d)=m/6(L+2d)=+(ML2+12Md2)Wf - 12

3) En la escalera de tijera que se muestra en la figura, AC y CE tienen una longitud L_1 y están articuladas en C. BD es un travesaño de largo L_2 ubicada a la mitad de AC. Un hombre de peso W se encuentra a una distincia $3L_1/4$ del punto A, medida a lo largo de AC. Suponiendo que el suelo carezca de fricción y despreciando el peso de la escalera, halle

a). la tensión en el travesaño (4 puntos).

- b) la magnitud de la fuerza ejercida sobre la escalera por el suelo en A (4 puntos).
- Is magnitud de la fuerza ejercida so re la escalera por el suelo en E (4 puntos).

Sugerencia: al aplicar las condiciones de equilibrio será conveniente aislar diversas partes de la escalera y hacer los diagramas de cuerpo libre.

