CMSC452 Elementary Theory of Computation

Michael Li

Contents

1	Det	serministic Finite Automata (DFA)
	1.1	Alphabet and Strings
	1.2	Concatenation, Number of a's, Prefix
	1.3	Modular Arithmetic
	1.4	DFA Formal Definition
	1.5	DFA Representations

1 Deterministic Finite Automata (DFA)

1.1 Alphabet and Strings

 Σ is defined as the alphabet (e.g. $\{0,1,2\}$) and a **string** is a sequence of symbols of Σ

$$\Sigma^i = \{ \sigma_1 \cdots \sigma_i \mid \sigma_1, \cdots, \sigma_i \in \Sigma \}$$

 $\Sigma^0 = \{e\}$ the **empty string**. Useful for $w \cdot e = w$ (concatenation on string w)

 $\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \cdots$ set of all strings including e

1.2 Concatenation, Number of a's, Prefix

Let $x, y \in \Sigma^*$. Concatenation of x and y is denoted xy or $x \cdot y$.

If
$$A, B \subseteq \Sigma^*$$
 then $A \cdot B = \{x \cdot y \mid x \in A \land y \in B\}$

if $x \in \{a, b\}^*$ then $\#_a(x)$ is the number of a's in x

if $x \in \{a, b\}^*$ then $x \leq y$ means that x is a prefix of y

1.3 Modular Arithmetic

 $x \equiv y \pmod{n}$ iff n divides x - y

- Addition: wrap around n
- \bullet Multiplication: wrap around n
- Division: find a number y such that $\frac{1}{x} * y \equiv 1 \pmod{n}$

Example: $\frac{1}{3} \equiv 9 \pmod{26}$ since $9*3 \equiv 1 \pmod{26}$

Note: a number x only has an inverse (mod n) if x and n have no common factors

1.4 DFA Formal Definition

DFA is a tuple $(Q, \Sigma, \delta, s, f)$ where

- ullet Q is a finite set of ${f state}$
- Σ is a finite alphabet
- $\delta \colon Q \times \Sigma \to Q$ is the **transition function**
- $s \in Q$ is the start state
- $F \subseteq Q$ is the set of **final states**

If M is a DFA and $x \in \Sigma^*$, M(x) accepts x if when running x through m ends up in a final state.

The Language $L(M) = \{x \mid M(x) \text{ accepts}\}\$

Let $L \subseteq \Sigma^*$. If there exists a DFA M such that L(M) = L then L is **regular**

DFA Limitations:

• DFA can only read 1 letter at a time and can never look at it again (one scan)

- DFA only has a finite number of states, O(1) memory
- DFA CAN keep track of $\#_a(w) \pmod{17}$
- \bullet DFA CANNOT keep track of $\#_a(w)$

1.5 DFA Representations

Normal DFA that accepts and rejecs strings

DFA Classifier that DOES NOT accept or reject strings. It classifies possible states.

Proof the above DFA has at least 6 states.

Proof by contradiction: assume DFA M has ≤ 5 states.

- on input e, the empty string, goes to state q_e
- on input a, goes to state q_a
- on input b, goes to state q_b

- on input bb, goes to state q_{bb}
- on input ab, goes to state q_{ab}
- on input abb, goes to state q_{abb}
- Since ≤ 5 states, 2 of these go to the same state (e.g. q_{aa} and a_{bb}). However,
 - $-aa \cdot abb$ goes to some state q_i which must accept since $aaabb \in L$
 - $-bb \cdot abb$ goes to some state q_i which also must be accepted but $bbabb \notin L$. Thus, contradiction is reached.
 - Would need to repeat the above contradiction for all pairs of q

Transition Table Representation

$$\{w: \#_a(w) \equiv 0 \pmod{n} \land \#_b \equiv 0 \pmod{m}\}$$

$$Q = \{0, \dots, n-1\} \times \{0, \dots, m-1\}$$

$$s = (0,0)$$

$$F = \{(0,0)\}$$

$$\delta((i,j), a) = (i+1 \pmod{n}, j).$$

$$\delta((i,j), b) = (i, j+1 \pmod{m}).$$

Transition table will have nm states

Further Notes:

- For an alphabet $\Sigma = \{a, b\}$, $\Sigma^* a \Sigma^i$ can be done with 2^{i+1} states.
- Any finite set can be recognized by a DFA. Just draw a different state for each string in the set. This will take up around 2^n states, but typically can do this in fewer states.