Оглавление

1	Матрицы и определители			
	1.1	Определения	3	
	1.2	Виды матриц	3	
	1.3	Краткая запись различных видов матриц	4	
	1.4	Линейные операции	4	
		1.4.1 Сравнение матриц	4	
		1.4.2 Сложение матриц	5	
		1.4.3 Умножение матрицы на число	5	
		1.4.4 Умножение матриц	5	
1.5		Элементарные преобразования	5	
	1.6	Свойства транспонирования матриц	6	
	1.7	Вычисление определителей	8	
1.8 Присоединенная матрица				
1.9 Обратная матрица		Обратная матрица	9	
		1.9.1 Свойства обратной матрицы	9	
		1.9.2 Теоремы	10	
	1.10	Невырожденная матрица	10	
	1.11	Норма матрицы	10	

2 ОГЛАВЛЕНИЕ

Глава 1

Матрицы и определители

1.1 Определения

Определение 1.1.1. Матрица размером $m \times n$ — таблица выражений, состоящая из m строк и n столбцов:

$$A_{m\times n} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} = (a_{ij}).$$

Определение 1.1.2. След матрицы — это сумма диагональных элементов матрицы. Операция взятия следа обозначается tr:

$$\begin{array}{l} A \\ \underset{n \times n}{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \\ \end{pmatrix}; = (a_{ij}) \qquad {\rm tr} A = \sum_{i=1}^n = a_{11} + a_{22} + \dots + a_{nn} \\ \end{array}$$

Определение 1.1.3. Ранг матрицы — это наивысший порядок ненулевого минора. Ранг матрицы обозначается rang.

1.2 Виды матриц

В зависимости от размерности, матрицы имеют названия, приведенные в следующей таблице.

Размерность	Название	Размерность	Название	
$m \times n$	прямоугольная	$1 \times n$	матрица-строка	
$n \times n$	квадратная	$m \times 1$	матрица-столбец	

Элементы квадратной матрицы, имеющие одинаковые индексы $(a_{11}, a_{22}, ..., a_{nn})$, образуют главную диагональ матрицы. Диагональ, соединяющая элементы $a_{1n}, a_{2n}, ..., a_{n1}$, называется побочной диагональю матрицы.

Квадратная матрица, у которой все элементы, расположенные выше (ниже) главной диагонали, равны нулю, называется *нижней* (*верхней*) *треугольной матрицей*:

нижняя:
$$\begin{pmatrix} a_{11} & 0 & \dots & 0 \\ a_{21} & a_{22} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix};$$
 верхняя:
$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & a_{nn} \end{pmatrix}$$

Квадратная матрица, имеющая ненулевые элементы только на главной диагонали, называется диагональной:

$$\operatorname{diag}\{a_{11},a_{22},\dots,a_{nn}\} = \begin{pmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & a_{nn} \end{pmatrix}$$

Диагональная матрица, у которой все элементы главной диагонали равны единицам, называется единичной:

$$I_{n \times n} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

Прямоугольная матрица, все элементы которой равны нулю, называется нулевой:

$$\Theta_{m \times n} = \begin{pmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 0 \end{pmatrix}$$

Матрица A^T , у которой по отношению к матрице A элементы строк и столбцов поменялись местами, называется $mpahcnohupo aahho \ddot{u}$ по отношению к A:

$$A_{m\times n} = \begin{pmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \dots & \dots & \dots & \dots \\ a_{1n} & a_{2n} & \dots & a_{nm} \end{pmatrix} = A'_{m\times n}.$$

Матрица, для которой справедливо равенство $A = A^T$ называется *симметричной*.

1.3 Краткая запись различных видов матриц

Перечисленные выше основные виды матриц характеризуются определенными свойствами ее элементов. Введем *символ Кронекера*:

$$\delta_{ij} = egin{cases} 1, \ ext{ecли} \ i = j, \ 0, \ ext{ecли} \ i
eq j \end{cases}$$

В таблице ниже приведены условия, с помощью которых можно выразить ранее приведеные свойства для квадратных матриц $A=(a_{ij})\ (i,j=\overline{1,n}).$

Условие	Название	Условие	Название	
$a_{ij}=0$ при $i>j$	верхняя треугольная	$a_{ij} = \delta_{ij}$	единичная	
$a_{ij} = 0$ при $i < j$	нижняя треугольная	$a_{ij} = 0$	нулевая	
$a_{ij} = a_i \delta_{ij}$	диагональная	$a_{ij} = a_{ji}$	симметричная	

1.4 Линейные операции

Рассмотрим операции, справедливые для матриц с размерностью $m \times n$.

1.4.1 Сравнение матриц

Две матрицы одинаковых размеров называются равными, если совпадают их элементы с одинаковыми индексами:

$$A = B \iff a_{ij} = b_{ij}$$

1.4.2 Сложение матриц

Сложение матриц A+B есть операция нахождения матрицы C, все элементы которой равны попарной сумме всех соответствующих элементов матриц A и B:

$$C = A + B \iff c_{ij} = a_{ij} + b_{ij}$$

Свойства сложения матриц:

- Коммутативность: A + B = B + A
- Ассоциативность: A + B + C = (A + B) + C = A + (B + C)
- Сложение с нулевой матрицей: $A + \theta = \theta + A = A$
- Существование противоположной матрицы: $A + A^{-1} = 0$

1.4.3 Умножение матрицы на число

Умножение матрицы A на число $\lambda \in \mathcal{K}$ заключается в построении матрицы $\lambda A = (\lambda a_{ij}).$ Свойства умножения матриц на число:

- Ассоциативность: $(\lambda \beta) A = \lambda (\beta A)$
- Дистрибутивность: $(\lambda + \beta)A = \lambda A + \beta A$; $\lambda(A+B) = \lambda A + \lambda B$
- Умножение на единицу: $1 \cdot A = A \cdot 1 = A$

1.4.4 Умножение матриц

Умножение матриц — операция вычисления матрицы C, каждый элемент которой равен сумме произведений элементов в соответствующей строке первого множителя и столбце второго:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

Количество столбцов в матрице A должно совпадать с количеством строк в матрице B. Если матрица A имеет размерность $m \times n$, $B - n \times k$, то размерность их произведения AB = C есть $m \times k$. Свойства умножения матриц:

- Некоммутативность (в общем случае): $AB \neq BA$
- Ассоциативность: (AB)C = A(BC)
- Коммутативность при умножении с единичной матрицей: AE = EA = A
- Дистрибутивность: (A + B)C = AC + BC; A(B + C) = AB + BC
- Ассоциативность и коммутативность умножения на число: $(\lambda A)B = A(\lambda B) = \lambda(AB)$

1.5 Элементарные преобразования

Определение 1.5.1. Элементарные преобразования — это такие преобразования матрицы, в результате которых сохраняется эквивалентность матриц.

Таким образом, элементарные преобразования не изменяют множество решений системы линейных алгебраических уравнений, которую представляет эта матрица. Элементарные операции обратимы. Обозначение $A \sim B$ указывает на то, что матрица A может быть получена из матрицы B путем элементарных преобразований.

Примеры элементарных преобразований строк:

• перестановка местами любых двух строк матрицы;

- умножение любой строки матрицы на константу $k \neq 0$, при этом определитель матрицы увеличивается в k раз;
- прибавление к любой строке матрицы другой строки, умноженной на некоторую константу;
- удаление нулевых строк;
- транспонирование.

Аналогично определяются элементарные преобразования столбцов.

1.6 Свойства транспонирования матриц

Свойство 1.6.1.

$$(A^T)^T = A$$

Доказательство.

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \implies A^T = \begin{pmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \dots & \dots & \dots & \dots \\ a_{1n} & a_{2n} & \dots & a_{mn} \end{pmatrix} \implies \\ \Rightarrow (A^T)^T = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} = A$$

Что и требовалось доказать.

Свойство 1.6.2.

$$(A+B)^T = A^T + B^T$$

Доказательство.

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \qquad B = \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \dots & \dots & \dots & \dots \\ b_{m1} & b_{m2} & \dots & b_{mn} \end{pmatrix}$$

$$A^{T} = \begin{pmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{11} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{1n} & a_{2n} & \dots & a_{mn} \end{pmatrix} \qquad B^{T} = \begin{pmatrix} b_{11} & b_{21} & \dots & b_{m1} \\ b_{11} & b_{22} & \dots & b_{2n} \\ \dots & \dots & \dots & \dots \\ b_{1n} & b_{2n} & \dots & b_{2n} \end{pmatrix}$$

$$A + B = \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \dots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \dots & a_{2n} + b_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \dots & a_{mn} + b_{mn} \end{pmatrix}$$

$$(A + B)^{T} = \begin{pmatrix} a_{11} + b_{11} & a_{21} + b_{21} & \dots & a_{m1} + b_{m1} \\ a_{12} + b_{12} & a_{22} + b_{22} & \dots & a_{mn} + b_{mn} \\ \dots & \dots & \dots & \dots \\ a_{1n} + b_{1n} & a_{2n} + b_{2n} & \dots & a_{mn} + b_{mn} \end{pmatrix}$$

$$A^{T} + B^{T} = \begin{pmatrix} a_{11} + b_{11} & a_{21} + b_{21} & \dots & a_{m1} + b_{m1} \\ a_{12} + b_{12} & a_{22} + b_{22} & \dots & a_{m2} + b_{m2} \\ \dots & \dots & \dots & \dots \\ a_{n} + b_{n} & a_{n} + b_{n} & \dots & \dots \\ a_{n} + b_{n} & a_{n} + b_{n} & \dots & \dots \\ a_{n} + b_{n} & a_{n} + b_{n} & \dots & \dots \\ a_{n} + b_{n} & a_{n} + b_{n} & \dots & \dots \\ a_{n} + b_{n} & \dots & \dots & \dots \\ a_{n} +$$

Что и требовалось доказать.

Свойство 1.6.3.

$$(\lambda A)^T = \lambda A^T$$

Доказательство.

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

$$\lambda A = \begin{pmatrix} \lambda a_{11} & \lambda a_{12} & \dots & \lambda a_{1n} \\ \lambda a_{21} & \lambda a_{22} & \dots & \lambda a_{2n} \\ \dots & \dots & \dots & \dots \\ \lambda a_{m1} & \lambda a_{m2} & \dots & \lambda a_{mn} \end{pmatrix} \qquad (\lambda A)^T = \begin{pmatrix} \lambda a_{11} & \lambda a_{21} & \dots & \lambda a_{m1} \\ \lambda a_{12} & \lambda a_{22} & \dots & \lambda a_{m2} \\ \dots & \dots & \dots & \dots \\ \lambda a_{1n} & \lambda a_{m2} & \dots & \lambda a_{mn} \end{pmatrix}$$

$$A^T = \begin{pmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \dots & \dots & \dots & \dots \\ a_{1n} & a_{m2} & \dots & a_{mn} \end{pmatrix} \qquad \lambda A^T = \begin{pmatrix} \lambda a_{11} & \lambda a_{21} & \dots & \lambda a_{m1} \\ \lambda a_{12} & \lambda a_{22} & \dots & \lambda a_{m2} \\ \dots & \dots & \dots & \dots \\ \lambda a_{1n} & \lambda a_{m2} & \dots & \lambda a_{mn} \end{pmatrix}$$

Что и требовалось доказать.

Свойство 1.6.4.

$$(A \cdot B)^T = B^T \cdot A^T$$

Доказательство.

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \qquad B = \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \dots & \dots & \dots & \dots \\ b_{m1} & b_{m2} & \dots & b_{mn} \end{pmatrix}$$

$$A^T = C = \begin{pmatrix} c_{11} & c_{21} & \dots & c_{m1} \\ c_{11} & c_{22} & \dots & c_{2n} \\ \dots & \dots & \dots & \dots \\ c_{1n} & c_{2n} & \dots & c_{mn} \end{pmatrix} \qquad B^T = D = \begin{pmatrix} d_{11} & d_{21} & \dots & d_{m1} \\ d_{11} & d_{22} & \dots & d_{2n} \\ \dots & \dots & \dots & \dots \\ d_{1n} & d_{2n} & \dots & d_{mn} \end{pmatrix} \qquad \begin{cases} a_{ij} = c_{ji} \\ b_{\alpha\beta} = d_{\beta\alpha} \end{cases}$$

$$A \cdot B = F = \begin{pmatrix} f_{11} & f_{21} & \dots & f_{m1} \\ f_{11} & f_{22} & \dots & f_{2n} \\ \dots & \dots & \dots & \dots \\ f_{1n} & f_{2n} & \dots & f_{mn} \end{pmatrix} \qquad B^T \cdot A^T = G = \begin{pmatrix} g_{11} & g_{21} & \dots & g_{m1} \\ g_{11} & g_{22} & \dots & g_{2n} \\ \dots & \dots & \dots & \dots \\ g_{1n} & g_{2n} & \dots & g_{mn} \end{pmatrix}$$

$$g_{ji} = \sum_{\alpha=1}^k d_{j\alpha} c_{\alpha i} = \sum_{\alpha=1}^k b_{\alpha j} a_{i\alpha} = \sum_{\alpha=1}^k a_{i\alpha} b_{\alpha j} = f_{ij}$$

$$G = F^T \implies (A \cdot B)^T = B^T \cdot A^T$$

1.7 Вычисление определителей

Теорема 1.7.1 (о раздложении определителя). Определителем порядка n, соответствующим квадратной матрице порядка n, называется число, равное

$$\det A = \sum_{i=1}^n a_{ij} A_{ij} = \sum_{j=1}^n a_{ij} A_{ij} = \sum_{i=1}^n (-1)^{i+j} a_{ij} M_{ij}.$$

где

- $i, j \in (\overline{1,n})$;
- A_{ij} соответствующее алгебраическое дополнение a_{ij} ;
- M_{ij} соответствующий минор элемента a_{ij} .

Доказательство. Опираясь на основные свойства определителей, выпишем цепочку равенств:

$$\det A = \begin{vmatrix} a_{11} & \dots & a_{1j} & \dots & a_{1n} \\ a_{21} & \dots & a_{2j} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots & \dots \\ a_{n1} & \dots & a_{nj} & \dots & a_{nn} \end{vmatrix} = \\ = \begin{vmatrix} a_{11} & \dots & a_{1j} & \dots & a_{1n} \\ a_{21} & \dots & 0 & \dots & a_{2n} \\ \dots & \dots & \dots & \dots & \dots \\ a_{n1} & \dots & 0 & \dots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & \dots & 0 & \dots & a_{1n} \\ a_{21} & \dots & a_{2j} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots & \dots \\ a_{n1} & \dots & 0 & \dots & a_{nn} \end{vmatrix} + \dots + \begin{vmatrix} a_{11} & \dots & 0 & \dots & a_{1n} \\ a_{21} & \dots & 0 & \dots & a_{2n} \\ \dots & \dots & \dots & \dots & \dots \\ a_{n1} & \dots & 0 & \dots & a_{nn} \end{vmatrix} + \dots + \begin{vmatrix} a_{11} & \dots & 0 & \dots & a_{1n} \\ a_{21} & \dots & 0 & \dots & a_{2n} \\ \dots & \dots & \dots & \dots & \dots \\ a_{n1} & \dots & a_{nj-1} & 0 & a_{1j+1} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ a_{11} & \dots & a_{1j-1} & a_{1j+1} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ a_{n1} & \dots & a_{1j-1} & a_{1j+1} & \dots & a_{1n} \\ 0 & a_{11} & \dots & a_{1j-1} & a_{1j+1} & \dots & a_{1n} \\ 0 & a_{11} & \dots & a_{1j-1} & a_{1j+1} & \dots & a_{1n} \\ 0 & a_{11} & \dots & a_{1j-1} & a_{1j+1} & \dots & a_{1n} \\ 0 & a_{1+1,1} & \dots & a_{1-1,j-1} & a_{1-1,j+1} & \dots & a_{1-1,n} \\ 0 & a_{1+1,1} & \dots & a_{1+1,j-1} & a_{1+1,j+1} & \dots & a_{1+1,n} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & a_{n1} & \dots & a_{nj-1} & a_{nj+1} & \dots & a_{nn} \end{vmatrix} = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} M_{ij}.$$

Таким образом, часть теоремы доказана. Положим теперь $A^T=(a_{ij}')$, где $a_{ji}'=a_{ij}$. Заметим, что соответствующим элементу a_{ji}' в $\det A^T$ будет $M_{ji}'=M_{ij}$. Как было показано выше,

$$\det A = \det A^T = \sum_{j=1}^n (-1)^{j+i} a'_{ji} M'_{ji} = \sum_{j=1}^n (-1)^{i+j} a_{ij} M_{ij}.$$

Что и требовалось доказать.

1.8 Присоединенная матрица

Определение 1.8.1. Присоединенная матрица A^c — это транспонированная матрица алгебраических дополнений A_{ij} элементов a_{ij} матрицы A:

$$A^c = \begin{pmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \dots & \dots & \dots & \dots \\ A_{1n} & A_{2n} & \dots & A_{nn} \end{pmatrix};$$

Теорема 1.8.1 (Аннулирование). Сумма произведений элементов любой строки (или столбца) на алгебраические дополнения элементов другой строки (столбца) равна нулю:

$$\sum_{k=1}^{n} a_{ik} A_{jk} = 0, \quad (i \neq j); \qquad \sum_{k=1}^{n} a_{ki} A_{kj} = 0, \quad (i \neq j).$$

Доказательство. Рассмотрим вспомогательную матрицу A', полученную из матрицы A, заменой j-ой строки i-ой строкой:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots \\ a_{i1} & a_{i2} & \dots & a_{in} \\ \dots & \dots & \dots & \dots \\ a_{j1} & a_{j2} & \dots & a_{jn} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}; \qquad A' = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots \\ a_{i1} & a_{i2} & \dots & a_{in} \\ \dots & \dots & \dots & \dots \\ a_{j1} & a_{j2} & \dots & a_{jn} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}.$$

$$\det A' = \sum_{k=1}^{n} a_{jk} A'_{jk} = \sum_{k=1}^{n} a_{ik} A'_{jk}.$$

Заметим, что алгебраическое дополнение элемента некоторой строки не зависит от элементов этой строки (поскольку при вычислении алгебраического дополнения эта строка просто вычеркивается). Однако матрицы A и A' отличаются только j-ой строкой, следовательно, $A_{jk}=A'_{jk}$. Тогда

$$\det A' = \sum_{k=1}^n a_{ik} A_{jk}.$$

Поскольку матрица A' имеет две одинаковые строки, ее определитель равен нулю. Аналогично доказывается случай со столбцами.

Что и требовалось доказать.

1.9 Обратная матрица

Определение 1.9.1. Обратная матрица — это такая матрица A^{-1} , при умножении которой на исходную матрицу A получается единичная матрица E:

$$AA^{-1} = A^{-1}A = E$$
.

1.9.1 Свойства обратной матрицы

Свойство 1.9.1.

$$\det A^{-1}=(\det A)^{-1}$$

Доказательство.

$$\det E = \det(A^{-1}A) = \det A^{-1} \det A \quad \Longrightarrow \quad \det A^{-1} = \frac{\det E}{\det A} = \frac{1}{\det A} = (\det A)^{-1}.$$

Что и требовалось доказать.

Свойство 1.9.2.

$$(AB)^{-1} = B^{-1}A^{-1}$$

Доказательство.

$$\begin{cases} B^{-1}A^{-1}AB = B^{-1}EB = E \\ ABB^{-1}A^{-1} = AEA^{-1} = E \end{cases} \implies (AB)^{-1} = B^{-1}A^{-1}.$$

Что и требовалось доказать.

Свойство 1.9.3.

$$(A^T)^{-1} = (A^{-1})^T$$

Доказательство. Воспользуемся одним из свойств транспонированных матриц

$$\begin{cases} (A^{-1})^T A^T = (A^{-1}A)^T = E^T = E \\ A^T (A^{-1})^T = (AA^{-1})^T = E^T = E \end{cases} \implies (A^{-1})^T = A^T.$$

Что и требовалось доказать.

Свойство 1.9.4.

$$(A^{-1})^{-1} = A$$

Доказательство.

$$(A^{-1})^{-1} = A \quad \Longrightarrow \quad (A^{-1})^{-1}A^{-1}A = A \quad \stackrel{\text{2 cb.}}{\Longrightarrow} \quad (AA^{-1})^{-1}A = A \quad \Longrightarrow \quad A = A$$

$$\Longrightarrow \quad (AA^{-1})^{-1}A = A \quad \Longrightarrow \quad E^{-1}A = A \quad \Longrightarrow \quad A = A$$

Что и требовалось доказать.

Свойство 1.9.5.

$$(\lambda A)^{-1}=\lambda^{-1}A^{-1}$$

Доказательство.

$$\begin{cases} \lambda A \lambda^{-1} A^{-1} = 1E = E \\ \lambda^{-1} A^{-1} \lambda A = 1E = E \end{cases} \implies (\lambda A)^{-1} = \lambda^{-1} A^{-1}.$$

Что и требовалось доказать.

1.9.2 Теоремы

Теорема 1.9.6. Для всякой невырожденной матрицы A существует единственная обратная матрица.

1.10 Невырожденная матрица

Определение 1.10.1. Невырожденная матрица — это квадратная матрица, определитель которой отличен от нуля. В противном случае матрица называется вырожденной.

1.11 Норма матрицы

Определение 1.11.1. Нормой матрицы $A \in \mathcal{K}^{m \times n}$ (обычно $\mathcal{K} = \mathbb{R}$ или $\mathcal{K} = \mathbb{C}$) понимается неотрицательное число $\|A\|$, удовлетворяющее следующим аксиомам:

- 1. $||A|| \ge 0$;
- 2. $\|\lambda A\| = |\lambda| \|A\|$, где $\lambda \in \mathbb{R}$ или $\lambda \in \mathbb{C}$;

- 3. $||A + B|| \le ||A|| + ||B||$, где A и B матрицы, допускающие сложение;
- 4. $||AB|| \le ||A|| ||B||$, где A и B матрицы, допускающие умножение.

Определение 1.11.2. Норма ||A|| называется *мультипликативной*, если выполняются все 4 аксиомы, и $a\partial dumu$ вной, если выполняются первые 3 аксиомы.

Определение 1.11.3. Если матрица удовлетворяет условию

$$\|\lambda A\| \le |\lambda| \|A\|$$
,

то такая норма называются согласованной с нормой вектора.

Определим некоторые наиболее употребительные на практике матричные нормы:

• Евклидова норма или норма Фробениуса:

$$||A||_E = \sqrt{\sum_{i=1}^m \sum_{j=1}^n a_{ij}^2}.$$

• Столбцовая норма:

$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^m |a_{ij}|.$$

• Строковая форма:

$$\|A\|_{\infty}=\max_{1\leq i\leq m}\sum_{j=1}^n|a_{ij}|.$$

• Спектральная норма:

$$\|A\|_2 = \sqrt{\max_i(\sigma_i)},$$

где σ_i — собственные значения симметричной матрицы A^TA .