

🕮 databites.tech 🜀 💥 Orfeers 💵 in Josep Ferrer

ML BASICS - SIMPLE LINEAR REGRESSION THEORY

#1 SIMPLE LINEAR REGRESSION

Linear regression is the simplest statistical regression method used for predictive analysis.

- The most common is the SIMPLE LINEAR REGRESSION 1 independent variable + 1 dependent variable

The main goal?

Find a linear relationship between the independent variable (predictor) and the dependent (output)

#2 HOW TO COMPUTE IT?

To compute the best-fit line linear regression, we use the line function.

$$Y_i = Ax + B$$

 $Y_i = Dependent Variable > slope$

B = intercept A = slope

xi = Independent variable

The error between predicted values and the actual values should be minimum.

#3 HOW TO DEFINE THE BEST FIT?

We define the best fit line as the line that

presents the least error.

Random Errors (Residuals)

Residuals are defined as the difference between observed values of the dependent variable and the predicted ones.

$$\epsilon_i = y_{predicted} - y_i$$

#4 HOW TO OBTAIN IT MATHEMATICALLY?

We use a cost function that helps us work out the optimal values for A and B.

MEAN SQUARED ERROR (MSE)

We use the average of the squared error that occurs between predicted and observed values.

To find the optimal solution

$$MSE = \frac{1}{N} \sum_{i=1}^{n} (y_i - (Ax + B))^2$$

GRADIENT DESCENT

Gradient descent is one of the optimization algorithms that optimizes the cost function.

To obtain the optimal solution, we need to reduce MSE for all data points.

#5 EVALUATION

The most used metrics are,

- Coefficient of Determination or R-Squared (R2)
- Root Mean Squared Error (RMSE)

#6 ASSUMPTIONS TO APPLY IT

1. Linearity of the variables:

There needs to be linear dependency between the dependent and the independent variables.

2. Independence of residuals:

The error terms should not be dependent on one another

3. Normal distribution of residuals

The mean of residuals should follow a normal distribution with a mean close to zero.

4. The equal variance of residuals.

The error terms must have constant variance.

ML BASICS - SIMPLE LINEAR REGRESSION EXEMPLIFIED

#2 SOME FIRST ANALYSIS

We first check the table. It has 3 main variables:

- Gender
- Height - Weight

Gender	Height	Weight
Male	73.847017	241.893563
Male	68.781904	162.310473
Male	74.110105	212.740856
Male	71,730978	220.042470
Male	69.881796	206.349801

Check the size of the table aff.info() and the number of nulls with

Both present a normal distribution.

learn

APPROACH 1 - GRADIENT DESCENDENT

We use the mean square error (MSE) that occurs between predicted and observed values.

 $MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - (Ax + B))^2$

This translates into defining two main functions:

def compute_mse(y_true, y_pred): N = len(y_pred) N = en(y_pred) MSE = np.mean((y_true - y_pred) ** 2)/N return MSE

The function to compute MSE

def gradient_descent(x, y, A, B, learning_rate): y_pred = A * x + B

y_pred = A * x + B dA = -2 * np.sum(x * (y - y_pred)) / N dB = -2 * np.sum(y - y_pred) / N A -= learning_rate * dm B -= learning_rate * db

return A. B

The function to update A and B

APPROACH 2 - OLS (Ordinary Least Squares)

The goal of OLS is to find the values of A and B that minimize the sum of the squared residuals (S).

$$S = \sum_{i=1}^{N} (y_i - (Ax_i + B))^2$$

To minimize S, we can easily take its partial derivatives and set them to zero.

Solving these two equations we obtain a closed mathematical soltuion.

$$A = \frac{\sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{N} (x_i - \bar{x})^2}$$
$$B = \bar{y} - B\bar{x}$$

This translates into defining some lines of code to find this mathematical closed solution:

x_mean = np.mean(x) y_mean = np.mean(y)

numerator += (x[i] - x_mean) * (y[i] - y_mean) denominator += (x[i] - x_mean) ** 2

A = numerator / denominato B = y_mean - (A * x_mean)

APPROACH 3 - SCI-KIT LEARN

Scikit-learn is a versatile Python library offering a wide range of machine learning tools, including algorithms for:

- Classification
- Regression

A - value

- clustering
- And way more ...

Import the library from sklearn.linear_model import LinearRegression -# create linear regression object Create a Linear

fit linear regression

x = np.linspace(55,80,100)

#4 FINAL RESULTS

A = 7.71728764B =-350.737191812137

ASSUMPTIONS

- 1. Linearity of the variables
- 2. Independence of residuals
- 3. Normal distribution of residuals
- 4. The equal variance of residuals.

ML BASICS - LOGISTIC REGRESSIONS

#1 LOGISTIC REGRESSION

Logistic regression is used for binary classification problems (two categories). > can be extended

The main goal?

for more classes too!

Logistic regression aims to find the probability that a given input belongs to a certain class. The predicted output is categorical!

#2 HOW TO COMPUTE IT?

A sigmoid function maps any real-valued number into a value between 0 and 1, suitable for probability interpretation.

$$\sigma(x) = \frac{1}{1 + e^{-Ax - B}}$$

#3 HOW TO DEFINE THE BEST FIT?

For every parametric machine learning algorithm, we need a LOSS FUNCTION

We want to minimize it

To find the global minimum.

Determine the optimal parameters.

#4 HOW TO OBTAIN IT MATHEMATICALLY?

For a binary classification problem, the model output corresponds the probability of prediction y being:

- 1 -> For a class.
- 0 -> For the other class.

) or vice versa!

If we define as our hypothesis: $P(y = 1|x; A; B) = y_{hat}$

$$P(y = 1|x; A; B) = y_{hat}$$

$$P(y = 0|x; A; B) = 1 - y_{hat}$$

Considering this both equations, the loss function to minimize can be obtained.

$$J(w,b) = \frac{1}{m} \sum_{i=1}^{m} L(\hat{y}^{(i)}, y^{(i)}) = -\frac{1}{m} \sum_{i=1}^{m} [(y^{(i)} \log(\hat{y}^{(i)}) + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})]$$

(Binary Coss-Entropy Loss or the Log Loss function)

By looking at the Loss function we see:

- The loss approaches 0 when we predict correctly.
- The loss function approaches infinity if we predict incorrectly.

#5 FIND THE OPTIMAL SOLUTION

Now that we know our hypothesis function and the loss function.

GRADIENT DESCENT

It is one of the most used algorithms to optimize our cost function.

To obtain the optimal solution, we reduce the cost function all data points.

#6 MODEL EVALUATION

- Confusion Matrix: A table used to describe the performance of a classification model.
- ROC Curve:

A graph showing the performance of a classification model at all classification thresholds.

The area under the ROC curve; a higher AUC indicates a better model.

#7 ASSUMPTIONS OF THE MODEL

- 1. Binary Outcome:
- The dependent variable is binary.

2. Linearity in Log Odds: The log odds of the outcome is modeled as a linear relationship with the independent variables.

- 3. No Multicollinearity: Independent variables should not be highly correlated with each other.
- 4. Large Sample Size:

Requires a sufficiently large sample size for reliable results.

ML BASICS - LOGISTIC REGRESSION WITH MULTIPLE CLASSES

To adapt it into a multiple class classification model, we have two options:

One-vs-Rest (OVR):

For each class, fit a logistic regression model to distinguish that class from all other classes.

Multinomial logistic regression Extend the Logistic Regression model

from a simple binary classification to multiple-class classification.

#1 ONE VS REST (OUR)

As many classifiers as many classes we have.

& Strategy: Train multiple Logistic Regression classifiers. Each classifier focuses on a single class (and considers the other classes as a single one)

We get three classification models:

The class with the highest score. argmax fo(x; wn)

#2 MULTINOMIAL LOGISTIC REGRESSION

Instead of assuming that we only have two classes (0 or 1) We build a model that outputs a vector of probabilities for each class.

 $P(y = 1|x; A; B) = y_{rot}$ $P(y = 0 | x; A; B) = 1 - y_{hat}$

Each element in f should be a probability for how well input x matches the class. For an input x, we can define the score as: $(\mathbf{w}_k^\top \mathbf{x})^2$ main problems: - It can be negative. - It it not limited between 0 and 1.

We get our final output!

$$f(x_i, W) = \frac{1}{\sum_{j=1}^k e^{w_j^T x}} \begin{bmatrix} e^{w_j^T x} \\ \dots \\ e^{w_k^T x} \end{bmatrix} = softmax(Wx)$$

To solve this we can easily:

Step 1. Use an exponential to make sure it is always

Step 2. Divide by the whole thing to make sure it is limited between 0 and 1.

BONUS - For K=2 we recover the Logistic Regression

For K=2, we get the

following probability function.

And it is reduced to our original assumption (binary probability)

$$P(y = 1|x; A; B) = y_{hat}$$

 $P(y = 0|x; A; B) = 1 - y_{hat}$

MODEL EVALUATION

- Accuracy:

This is a basic metric that measures the proportion of correctly predicted observations to the total observations.

- Confusion Matrix: A table used to describe the performance of a classification model.

- ROC Curve AUCH

Only for binary classification!

ASSUMPTIONS OF THE MODEL

1. Binary Multiple Outcome:

The dependent variable is binary, can be multiple!

2. No Multicollinearity: Independent variables should not be highly correlated with each other.

3. Large Sample Size:

Requires a sufficiently large sample size for reliable results.

