划线

Jalr rd,rs

1)rd=PC+4

2)PC=rs

1.op:6 rs:5,0:5,rd: 5

2.Datapath

3.

```
1) IF, PC+=4
IorD=0(PC),
MemRead
IRWrite
ALUSTCA=0 #PC
ALUSTCB=01 #4
ALUop=00 #+
PCsource=00 #ALU
PCwrite
2)ID PC+Eft->ALUout
ALUSTCA=0 #PC
ALUSTCB=11 #Eft
ALUop=00
3)rd,PC
RegDst=0 #R3
MemtoReg=10 #PC(New)
PegWrite
ALUSTCA=1 #A
ALUSTCB=00 #B
ALUop=00/01 #+
PCsource=0
```

微程序

微程序的意思,和组合逻辑(快,可靠,复杂,板子的点点)的区别控制器,微程序类似查表,在使用时直接调用 单时钟直接给出操作对应的所有信号,多时钟是由于是一段一段的,分支,

存储器的字位扩展

译码器和片选 (大门钥匙)

大小头

0x12345678写到存储器

小头: , 78, 56, 34, 12,

Cache

32-bit byte-addressing, 32-bit=4G, 若说是2G则为31

cache:128KB, block:64B Blocks=128KB/64B-2K

TAG,Total (记得除以8)

一个数在哪个块

0x1234567

15TAG 11index 6offset

(0123)>>1 (1456>>2) (27)

cache行(index/64)%8

44. $(12 \, \%)$ 某计算机的主存地址空间大小为 256MB,字节编址。指令 Cache 和数据 Cache 分离,均有 8 个 Cache 行,每行 64B。数据 Cache 采用直接映射。现有两个功能相同的程序 A 和 B,其伪代码如下:

RAM

a[0][0]

a[0][1]

a[0][15]

a[0][16]

a[0][31]

a[0][32]

a[0][255]

a[1][0]

a[1][1]

a[1][255]

a[2][0]

a[255][255

. . .

320+0

444

320+1024

320+2048

256x256x4

```
程序 A:
int a[256][256];
                                     int a[256][256];
. . . . . .
int sum() {
                                     int sum() {
   inti, j, sum=0;
                                        inti, j, sum=0;
   for (i=0; i<256; i++)
                                         for (j=0; j<256; j++)
       for (j=0; j<256; j++)
                                            for (i=0; i<256; i++)
           sum += a[i][i];
                                                sum += a[i][j];
   return sum;
                                         return sum;
```

假定 int 为 32 位补码,变量 i, j, sum 均分配在寄存器中。数组 a 按行优先方式存放,其首地址为 320(十进制)。请回答下列问题,说明理由或给出计算过程。

- 1) 若不考虑用于 Cache 一性维护和替换算法的控制位,则数据 Cache 的总容量是多少?
- 2) 数组元素 a[0][31]和 a[1][1]各自所在的主存块对应的 Cache 行号分别是多少?
- 1)数据 Cache 有 8 行(block),每行 64B。Cache 中每块的 Tag 位数为: 28-9=19 位。 则数据 Cache 的总容量为: 8 * 64 + (19+1)/8*8=532B
- 2) 数组 a 首地址为 320, 所以: a[0][31], a[1][1]在内存的地址分别为: a[0][31]: 320+0*256*4+31*4 = 444, 对应的 Cache 行为: (444/64)%8 = 6 a[1][1]: 320+1*256*4+1*4 = 1348, 对应的 Cache 行为: (1348/64)%8 = 5
- 3) 程序 A 按行优先累加,命中率: 15/16=93.75% 程序 B 按列优先计算: 命中率: 0。

注: Cache 容量不足以存放数组 a 的 16 行数据。

0,0	0,1	0,2	 	0,15	0,16	0,17			0,31	0,32	 	 0,255
1,0	1,1	1,2	 	1,15	1,16	1,17			1,31	1,32	 	 1,255
15,0	15,1	15,2	 	15,15	15,16	15,17		-	15,31	15,32	 	 15,255
16,0	16,1	16,2	 	16,15	16,16	16,17			16,31	16,32	 	 16,255
			 				:				 	
255,0	255,1	255,2	 	255,15	255,16	255,17			255,31	255,32	 	 255,255

T=Tc+(1-H)Tm (cache那边有没有命中算时间)

虚拟存储与Cache技术的比较

PageTable=VM/PageSize *(1+log(PM/PageSize)+n)/8->VM/PageSize*4B

Overhead of Polling in an I/O System

Overhead of Interrupt-Driven I/O

注意比大小:

计算题:一个tag,一个根据地址求TAG+INDE+OFFSET, pageTable, 磁盘时间,一个overhead 总线同步异步总线的分类,总线的特点,总线的分类,总线的性能(存储器总线,IO总线,系统总线)三种方式

流水线

冒险和解决方案 (结构资源分支)

(structural control data)

如何加强。

控制Hazard

阻塞,猜,换。