

Overview

- What is Reinforcement Learning (RL)?
- Markov Decision Processes
- Q-Learning

Types of Learning

Source: cognub.com

Supervised Learning

- **Data**: (x,y)
 - o x is data
 - o y is label
- **Goal:** Learn a function to map $x \rightarrow y$
- **Example**: Classification, regression, object detection, semantic segmentation, image captioning, etc.

CLASSIFICATION

→ cat

Unsupervised Learning

- Data: x
 - Just data, NO label!
- **Goal**: Learn some underlying *hidden structure* of the data
- **Example**: Clustering, dimensionality reduction, feature learning, density estimation, etc.

Reinforcement Learning

- Problems involving an AGENT interacting with an ENVIRONMENT, which provides numeric REWARD signals
- Goal: Learn how to take actions in order to maximize reward

Atari's Arcade Game

Reinforcement Learning

Atari Games

■ **Objective**: Complete the game with the highest score

- **State**: Raw pixel inputs of the game state
- **Action**: Game controls e.g. Left, Right, Up, Down
- **Reward**: Score increase/decrease at each time step

Robot Locomotion

- **Objective**: Make the robot move forward
- **■** State:
- Action:
- **■** Reward:

Go

- **Objective**: Win the game!
- **■** State:
- Action:
- **■** Reward:

Reinforcement Learning

How can we mathematically formalize the RL problem?

Markov Decision Process

- Mathematical formulation of the RL problem –
- **Markov property**: Current state completely characterizes the state of the world

Defined by: $(S, \mathcal{A}, \mathcal{R}, \mathbb{P}, \gamma)$

s : set of possible states

 ${\cal A}$: set of possible actions

 \mathcal{R} : distribution of reward given (state, action) pair

 $\ensuremath{\mathbb{P}}$: transition probability i.e. distribution over next state given (state, action) pair

 γ : discount factor

Markov Decision Process: Example

Markov Decision Process

- At time step t=0, environment samples initial state $s_0 \sim p(s_0)$
- Then, for t=0 until done:
 - Agent selects action at at
 - Environment samples reward

$$r_t \sim R(.|s_t, a_t)$$

Environment samples next state

$$s_{t+1} \sim P(.|s_t, a_t)$$

• Agent receives reward r_t and next state s_{t+1}

Markov Decision Process

- \blacksquare A policy π is a function from S to A that specifies what action to take in each state
- **Objective**: find policy π^* that maximizes cumulative discounted reward:

$$\sum_{t=0} \gamma^t r_t$$

$$= r_t + \gamma^t r_{t+1} + \gamma^2 r_{t+2} + \cdots$$

A Simple MDP: Grid World

actions = {

1. right

2. left

3. up

4. down

Set a negative "reward" for each transition (e.g.
$$r = -1$$
)

Objective: reach one of terminal states (greyed out) in least number of actions

A Simple MDP: Grid World

Random Policy

Optimal Policy

Objective: reach one of terminal states (greyed out) in least number of actions

The Optimal Policy π^*

- **Objective:** find optimal policy π^* that maximizes the sum of rewards
- To handle the randomness (initial state, transition probability, etc.), we need to maximize the **expected** sum of rewards!

$$\pi^* = rg \max_{\pi} \mathbb{E}\left[\sum_{t \geq 0} \gamma^t r_t | \pi
ight] \; ext{ with } \; s_0 \sim p(s_0), a_t \sim \pi(\cdot|s_t), s_{t+1} \sim p(\cdot|s_t, a_t)$$

Value Function

• Following a policy produces sample trajectories (or paths): (s_0, a_0, r_0) , (s_1, a_1, r_1) , ...

• How good is a state?

 The value function at state s, is the expected cumulative reward from following the policy from state s:

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{t \geq 0} \gamma^t r_t | s_0 = s, \pi
ight]$$

Q-Value Function

- Following a policy produces sample trajectories (or paths): $(s_0, a_0, r_0), (s_1, a_1, r_1), ...$
- How good is a state-action pair?
 - The Q-value function at state s and action a, is the expected cumulative reward from taking action a in state s and then following the policy:

$$Q^{\pi}(s,a) = \mathbb{E}\left[\sum_{t \geq 0} \gamma^t r_t | s_0 = s, a_0 = a, \pi
ight]$$

Bellman Equation

■ The optimal Q-value function Q* is the maximum expected cumulative reward achievable from a given (state, action) pair:

$$Q^*(s,a) = \max_{\pi} \mathbb{E}\left[\sum_{t \geq 0} \gamma^t r_t | s_0 = s, a_0 = a, \pi\right]$$

Q* satisfies the following Bellman equation:

$$Q^*(s, a) = \mathbb{E}_{s' \sim \mathcal{E}} \left[r + \gamma \max_{a'} Q^*(s', a') | s, a \right]$$

Solving for the Optimal Policy

■ Value iteration algorithm: Use Bellman equation as an iterative update

$$Q_{i+1}(s, a) = \mathbb{E}\left[r + \gamma \max_{a'} Q_i(s', a') | s, a\right]$$

Q_i will converge to Q* as i -> infinity

- Problem: Not scalable.
 - \circ Must compute Q(s,a) for every state-action pair.
 - If state, e.g. current game state pixels,is computationally infeasible to compute for entire state space!

Solving for the Optimal Policy: Q-Learning

- **Solution:** use a function approximator to estimate Q(s,a) e.g. a neural network!
- Q-learning uses a function approximator to estimate the action-value function

$$Q(s,a;\theta) pprox Q^*(s,a)$$
 function parameters (weights)

If the function approximator is a deep neural network => Deep Q-learning!

Simple Q-learning Algorithm Process

	1	2	3
actions = {			
 right → 	4	5	6
2. left ←			
3. up			
4. down			
}	7	8	9

Empty cell = -1

- (1) Cricket = +1
- (5) Eagle = -10 [End Game]
- (9) Crickets = +10 [End Game]

Q-Table		Action			
		Left	Right	Up	Down
States	1 cricket	0	0	0	0
	2	0	0	0	0
	3	0	0	0	0
	4	0	0	0	0
	5 eagle	0	0	0	0
	6	0	0	0	0
	7 lizard	0	0	0	0
	8	0	0	0	0
	9 crickets	0	0	0	0

Q-Learning

Goal: want to find a Q-function that satisfies the Bellman Equation:

$$Q^*(s, a) = \mathbb{E}_{s' \sim \mathcal{E}} \left[r + \gamma \max_{a'} Q^*(s', a') | s, a \right]$$

Forward Feeding

Loss Function:

$$L_i(\theta_i) = \mathbb{E}_{s,a \sim \rho(\cdot)} \left[(y_i - Q(s,a;\theta_i))^2 \right]$$

where

$$y_i = \mathbb{E}_{s' \sim \mathcal{E}} \left[r + \gamma \max_{a'} Q(s', a'; \theta_{i-1}) | s, a \right]$$

Q-Learning

■ Goal: want to find a Q-function that satisfies the Bellman Equation:

$$Q^*(s, a) = \mathbb{E}_{s' \sim \mathcal{E}} \left[r + \gamma \max_{a'} Q^*(s', a') | s, a \right]$$

Backpropagation

• Gradient update (with respect to Q-function parameters θ):

$$\nabla_{\theta_i} L_i(\theta_i) = \mathbb{E}_{s, a \sim \rho(\cdot); s' \sim \mathcal{E}} \left[r + \gamma \max_{a'} Q(s', a'; \theta_{i-1}) - Q(s, a; \theta_i)) \nabla_{\theta_i} Q(s, a; \theta_i) \right]$$

Update Q-Table

Discount rate

Learning Rate

Empty cell = -1

- (1) Cricket = +1
- (5) Eagle = -10 [End Game]
- (9) Crickets = +10 [End Game]

Q-Table		Action				
		Left	Right	Up	Down	
	1 cricket					
	2					
	3					
	4	UPDATE THE				
States	5 eagle					
	6	TABLE!!				
	7 lizard					
	8					
	9 crickets					