Corso di Algebra Lineare e Geometria Rango. Sistemi lineari

Dott.ssa L. Marino

Università di Catania

http://www.dmi.unict.it/Imarino

Equazione lineare

Un'equazione del tipo

$$a_1x_1 + \ldots + a_nx_n = b$$

dove a_1, \ldots, a_n, b sono elementi di un campo \mathbb{K} e x_1, \ldots, x_n sono incognite, si dice **lineare**. L'elemento b si chiama anche *termine noto* dell'equazione.

Una **soluzione** dell'equazione lineare è una *n*-upla $(c_1, \ldots, c_n) \in \mathbb{K}^n$ che la verifica, ossia tale che

$$a_1c_1 + \ldots + a_nc_n = b$$

Sistema lineare

Un **sistema lineare** di m-equazioni in n-incognite sul campo \mathbb{K} è un insieme di m-equazioni in n-incognite x_1, \cdots, x_n a coefficienti in un campo \mathbb{K} . In tal caso si parlerà di sistema $m \times n$.

Un sistema lineare quindi si può indicare nella seguente forma

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

con $a_{ij}, b_l \in K$. Gli elementi a_{ij} si chiamano i coefficienti delle incognite, gli elementi b_l si chiamano termini noti.

Sia data un sistema lineare $m \times n$.

Diremo **soluzione** di tale sistema una n-upla $(\alpha_1, \alpha_2, \cdots, \alpha_n) \in \mathbb{K}^n$ tale che sostituendo essa ad ogni equazione esse vengano tutte soddisfatte. Un sistema lineare si dice **impossibile** se non ammette alcuna soluzione, si dice **possibile** se ne ammette almeno una.

Quando il sistema lineare ha una e una sola soluzione si dice **determinato**, quando ne ammette più di una allora si dice **indeterminato**.

Esempio

Il seguente sistema

$$\begin{cases} 3x_1 + 2x_2 - x_3 = 0 \\ x_1 + x_2 + x_3 = 1 \end{cases}$$

è un sistema lineare di due equazioni in tre incognite. Discutiamolo.

Rappresentazione di un sistema lineare mediante matrici

Il sistema lineare si può rappresentare in forma sintetica usando il prodotto di matrici. Infatti le equazioni del sistema equivalgono all'equazione matriciale

$$\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}$$

che si può scrivere così:

$$AX = B$$

dove $A = (a_{ij}); \ X = (x_1, \dots, x_n)^T, B = (b_1, \dots, b_m)^T.$

La matrice A si chiama matrice dei coefficienti e B si chiama matrice dei termini noti.

Matrice completa

Infine la matrice

$$(A,B) = \begin{pmatrix} a_{11} & \dots & a_{1n} & \vdots & b_1 \\ \dots & \dots & \ddots & \vdots & \dots \\ a_{m1} & \dots & a_{mn} & \vdots & b_m \end{pmatrix}$$

si chiama matrice completa del sistema

Un sistema lineare si dice **ridotto** se la sua matrice dei coefficienti è ridotta per righe

Sistemi lineari m equazioni in n incognite: Teorema di Rouchè- Capelli n.1

Teorema di **Rouchè-Capelli n.1**: Un sistema lineare $m \times n$

$$A \cdot X = B$$

ammette soluzioni se e solo se

$$\rho(A) = \rho(A, B)$$

Dimostrazione: Sia $W = \mathcal{L}(C_1, \cdots, C_n) \subseteq K^m$

$$V = \mathcal{L}(C_1, \cdots, C_n, B) \subseteq K^m$$

Notiamo che i due sottospazi differiscono solo per il generatore *B*. Per il teorema di Kronecker si ha:

$$\rho(A) = \dim W; \ \rho(A, B) = \dim V$$

e poichè $W \subseteq V$ si ha in modo ovvio che $\rho(A) \leq \rho(A, B)$.

 \Rightarrow Hp. Sistema possibile. Ts $\rho(A) = \rho(A, B)$

Per ipotesi quindi esiste una n-upla $(\alpha_1, \alpha_2, \dots, \alpha_n)$ tale che sostituita al posto delle incognite soddisfa il sistema

$$\alpha_1 C_1 + \ldots + \alpha_n C_n = B$$

Quindi B si vede che è c.l. di C_1, \dots, C_n quindi $V = \mathcal{L}(C_1, \dots, C_n, B) = \mathcal{L}(C_1, \dots, C_n) = W$ In particolare dim $W = \dim V$, cioè $\rho(A) = \rho(A, B)$ Viceversa \Leftarrow .

Sia per ipotesi $(\rho(A) = \rho(A, B))$, ovvero dim $W = \dim V$. Poichè il sottospazio $W \subseteq V$, segue che

$$W = V$$

Quindi ne segue che B deve essere c.l. di C_1, \dots, C_n per cui esistono $\alpha_1, \dots, \alpha_n \in K$ dove

$$B = \alpha_1 C_1 + \cdots + \alpha_n C_n$$

Così $(\alpha_1, \dots, \alpha_n)$ è una soluzione del nostro sistema, in questo moto abbiamo dimostrato che ammette almeno una soluzione.

Teorema di Rouchè- Capelli n.2

Teorema di **Rouchè-Capelli n.2**: Dato un sistema lineare $m \times n$ in cui $\rho(A) = \rho(A, B) = r$ e sia $A = (C_1, \dots, C_n)$. Allora vi sono C_1, \dots, C_r colonne l.i. in K^m se e solo se avremo n - r incognite libere. Dimostrazione omessa.

Osservazioni:

Quando un sistema lineare $m \times n$ ha $\rho(A) = \rho(A, B) = r$, vuol dire che vi sono n - r incognite libere, cioè ad esse possiamo attribuire valori arbitrari. Per tale motivo, in tal caso, si usa dire che il sistema lineare ammette

 ∞^{n-r} soluzioni.

Sistemi lineari $n \times n$

Consideriamo il caso particolare in cui il sistema lineare ha un numero di equazioni uguale al numero delle incognite, cioè un sistema lineare $A \cdot X = B$ di tipo $n \times n$. Un risultato relativo a questo tipo di sistemi è dato dal seguente teorema.

Teorema di Cramer

Teorema di **Cramer**: Un sistema lineare $A \cdot X = B$ di tipo $n \times n$ in cui det $A \neq 0$ è determinato, cioè ammette una e una sola soluzione. Essa è data da:

$$(\frac{\det B_1}{\det A}, \cdots, \frac{\det B_n}{\det A})$$

dove la matrice B_i è la matrice ottenuta da A sostituendo la i-esima colonna con B che è la colonna dei termini noti.

$$B_i = (C_1 \cdots C_{i-1} B C_{i+1} \cdots C_n)$$

Dimostrazione: \Rightarrow Hp. $A \cdot X = B$ di tipo $n \times n$ in cui det $A \neq 0$. Ts Esiste ed è unica la soluzione.

Proveremo prima l'unicità e poi l'esistenza.

1) Supponiamo di avere due soluzioni, X_1, X_2 . Da cui:

 $A\cdot X_1=B, A\cdot X_2=B\Rightarrow A\cdot X_1=A\cdot X_2$ e poichè per ipotesi det $A\neq 0$ ne segue che A è invertibile e quindi esiste A^{-1} . Per cui moltiplicando a sinistra I e II membro per A^{-1} si ottiene:

$$A^{-1}A \cdot X_1 = A^{-1}A \cdot X_2 \Rightarrow X_1 = X_2$$

2) Esistenza: Se verifichiamo che la n-upla $x_1 = \frac{\det B_1}{\det A}, \dots, x_n = \frac{\det B_n}{\det A}$ è una soluzione del nostro sistema abbiamo finito.

Partendo da
$$A \cdot X = B$$
 ne segue che $X = A^{-1}B = \frac{1}{\det A}A_a^tB = \frac{1}{\det A}(b_1A_{11} + \dots + b_nA_{n1}, \dots, b_1A_{1n} + \dots + b_nA_{nn}) = (\frac{\det B_1}{\det A}, \dots, \frac{\det B_n}{\det A})$
Viceversa. \Leftarrow Hp Esiste ed è unica la soluzione. Ts $\det A \neq 0$

Viceversa. \Leftarrow Hp Esiste ed è unica la soluzione. Ts $\det A \neq 0$ Supponiamo adesso per assurdo che $\det A = 0 \Rightarrow \rho(A) < n \Rightarrow n-r > 0$. Applichiamo adesso i due teoremi di Rouche-Capelli n.1, e n.2: per ipotesi il sistema è possibile, quindi per il teorema n.1 $\rho(A) = \rho(A,B)$. e per il n.2 ammette ∞^{n-r} soluzioni, dove nel nostro caso n-r è positivo, quindi sistema indeterminato, contro l'ipotesi. Assurdo.

Sistemi lineari omogenei

Un caso interessante è quello in cui i termini noti sono tutti nulli, ovvero B=0, cioè un sistema del tipo

$$A \cdot X = 0$$

Un tale sistema viene detto *omogeneo*. Ovviamente tutto quello che abbiamo finora detto continua a valere. Poichè abbiamo in questo caso che $\rho(A)=\rho(A,0)$ sempre allora i sistemi omogenei sono sempre possibili per il teorema R.-C n.1.

Questo è evidente dato che la n-upla $(0,0,\cdots,0)$ è sempre soluzione di qualsiasi sistema omogeneo. Tale soluzione verrà detta soluzione banale.

Teorema sui sistemi lineari omogenei

Caso particolare n = r + 1.

Teorema: Sia $A \cdot X = 0$ un sistema lineare omogeneo di tipo $(n-1) \times n$ con $\rho(A) = n-1$; allora le (∞^1) soluzioni del sistema sono $(\lambda A_1, \lambda A_2, \cdots, \lambda A_n), \forall \lambda \in K$

Dimostrazione omessa

Se il numero delle incognite è maggiore del rango ci sono altre soluzioni. Per trovarle si può usare il metodo di riduzione. Non occorre tuttavia trascrivere la colonna dei termini noti , in quanto essa rimane nulla qualunque trasformazione si faccia sulle righe. Basterà dunque ridurre la matrice A e risolvere il sistema ridotto.

Esercizi

 Stabilire se i seguenti sistemi sono risolubili. In caso affermativo trovare tutte le soluzioni:

$$\begin{cases} 3x + y - z = 0 \\ x + y - 3z = -5 \end{cases}; \begin{cases} 2x + y - z + t = 1 \\ 3x + y + 2z + t = 2 \\ x + z = 1 \end{cases}$$

•

$$\begin{cases} x - 3y + z = 0 \\ y + 2z = 1 \\ 2x - 5y + 4z = 2 \end{cases}; \begin{cases} (1 - m)x + y + mz = 0 \\ m(1 - m)x + (1 - m)y - 2mz = 5 \\ (1 - m)x + 2y - 2z = m + 3 \end{cases}$$

$$\begin{cases} x + y + 2z = 1 \\ x + 2y + 4z = 1 \\ x + 3y + 6z = m \end{cases}$$

Risultati

•

•

$$\begin{cases} 3x + y - z = 0 \\ x + y - 3z = -5 \\ x + y = 1 \end{cases}$$
;

sistema risolubile e una soluzione $(\frac{1}{2}, \frac{1}{2}, 2)$

$$\begin{cases} 2x + y - z + t = 1\\ 3x + y + 2z + t = 2\\ x + z = 1 \end{cases}$$

ho=3 pertanto sistema risolubile con una incognita libera (1,-1,-t,0,t)

Risultati¹

$$\begin{cases} x-3y+z=0\\ y+2z=1\\ 2x-5y+4z=2 \end{cases}$$
 ; sistema impossibile

$$\begin{cases} (1-m)x + y + mz = 0\\ m(1-m)x + (1-m)y - 2mz = 5\\ (1-m)x + 2y - 2z = m+3 \end{cases}$$

riduciamo il sistema prendendo come elemento speciale (m-1) dato che la terza riga è uguale $m \neq 1$ e successivamente 1 come elemento speciale. L'ultima riga è nulla se e solo se $m=\frac{1}{3}$ oppure m=-2. Quindi per $m \neq 1, \frac{1}{3}, -2$ il sistema ha una e una sola soluzione che si trova risolvendo il sistema per sostituzione.

Se m=-2 risulta $\rho=2$ quindi ∞^1 soluzioni Se $m=\frac{1}{3}$ sistema impossibile $(\rho(A)=2,\rho(A,B)=3)$ Se m=1 sost nella matr di part. (sist. imp.)

Risultati

•
$$\begin{cases} x+y+2z=1 \\ x+2y+4z=1 \end{cases}$$
 Se $m \neq 1$ la matrice A ha rango minore di 3
$$\begin{cases} x+3y+6z=m \\ \text{mentre la matrice completa ha rango 3: il sistema è incompatibile. Se invece } m=1$$
 le due matrici hanno rango 2 e quindi il sistema è possibile con una incognita libera

Esercizio:

Date le matrici:

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix} \quad e \quad B = \begin{pmatrix} -1 & 3 \\ 2 & 1 \end{pmatrix}$$

calcolare i determinanti delle matrici A, B, $A \cdot B$ e $B \cdot A$. Soluzione.

Calcoliamo il determinante di A:

$$|A| = \begin{vmatrix} 1 & 2 \\ 3 & 5 \end{vmatrix} = 1 \cdot 5 - 2 \cdot 3 = -1.$$

Calcoliamo il determinante di B:

$$|B| = \begin{vmatrix} -1 & 3 \\ 2 & 1 \end{vmatrix} = -1 \cdot 1 - 2 \cdot 3 = -7.$$

Per calcolare i determinanti di $A \cdot B$ e $B \cdot A$ utilizziamo il teorema di Binet:

$$|A \cdot B| = |A| \cdot |B| = -1 \cdot (-7) = 7$$

 $|B \cdot A| = |B| \cdot |A| = -7 \cdot (-1) = 7.$

Esercizio

Calcolare i determinanti delle matrici:

$$A = \begin{pmatrix} 2 & 1 & -1 \\ -1 & 4 & 1 \\ 3 & 2 & -1 \end{pmatrix} \quad \text{e} \quad B = \begin{pmatrix} 2 & -1 & 5 \\ 0 & 4 & 6 \\ 0 & 3 & 3 \end{pmatrix}.$$

Soluzione.

Calcoliamo il determinante di A con il metodo di Sarrus:

$$|A| = \begin{vmatrix} 2 & 1 & -1 \\ -1 & 4 & 1 \\ 3 & 2 & -1 \end{vmatrix} = 4.$$

Possiamo calcolare |A| anche utilizzando il primo teorema di Laplace, applicandolo, per esempio, alla seconda colonna:

$$|A| = \begin{vmatrix} 2 & 1 & -1 \\ -1 & 4 & 1 \\ 3 & 2 & -1 \end{vmatrix} = 1 \cdot (-1)^{1+2} \begin{vmatrix} -1 & 1 \\ 3 & -1 \end{vmatrix} + 4 \cdot (-1)^{2+2} \begin{vmatrix} 2 & -1 \\ 3 & -1 \end{vmatrix} + 4 \cdot (-1)^{3+2} \begin{vmatrix} 2 & -1 \\ -1 & 1 \end{vmatrix} = -1 \cdot (-2) + 4 \cdot 1 + (-2) \cdot 1 = 4.$$

Calcoliamo il determinante di B, prima con il metodo di Sarrus:

$$|B| = \begin{vmatrix} 2 & -1 & 5 \\ 0 & 4 & 6 \\ 0 & 3 & 3 \end{vmatrix} = -12.$$

Utilizziamo ora il primo teorema di Laplace, applicato alla prima colonna di *B*:

$$|B| = \begin{vmatrix} 2 & -1 & 5 \\ 0 & 4 & 6 \\ 0 & 3 & 3 \end{vmatrix} = (-1)^{1+1} \cdot 2 \begin{vmatrix} 4 & 6 \\ 3 & 3 \end{vmatrix} + 0 \cdot (-1)^{1+2} \begin{vmatrix} -1 & 5 \\ 3 & 3 \end{vmatrix} + 0 \cdot (-1)^{1+2} \begin{vmatrix} -1 & 5 \\ 4 & 6 \end{vmatrix} = 2 \cdot (-6) = -12.$$

Esercizio.

Calcolare il determinate della matrice:

$$A = \left(\begin{array}{cccc} 4 & 1 & -1 & 2 \\ 1 & -1 & 1 & -2 \\ 2 & 1 & 2 & 0 \\ 4 & 2 & 3 & 1 \end{array}\right).$$

Soluzione.

Per calcolare il determinante di una matrice 4×4 è obbligatorio utilizzare il primo teorema di Laplace. In questo caso lo applichiamo alla terza riga di A:

$$|A| = \begin{vmatrix} 4 & 1 & -1 & 2 \\ 1 & -1 & 1 & -2 \\ 2 & 1 & 2 & 0 \\ 4 & 2 & 3 & 1 \end{vmatrix} = 2 \cdot (-1)^{3+1} \begin{vmatrix} 1 & -1 & 2 \\ -1 & 1 & -2 \\ 2 & 3 & 1 \end{vmatrix} + 1 \cdot (-1)^{3+2} \begin{vmatrix} 4 & -1 & 2 \\ 1 & 1 & -2 \\ 4 & 3 & 1 \end{vmatrix} + 2 \cdot (-1)^{3+3} \begin{vmatrix} 4 & 1 & 2 \\ 1 & -1 & -2 \\ 4 & 21 \end{vmatrix} + 1 \cdot (-1)^{3+4} \begin{vmatrix} 4 & 1 & -1 \\ 1 & -1 & 1 \\ 4 & 2 & 3 \end{vmatrix} = -5.$$

Esercizio

Determinare i valori di $h \in \mathbb{R}$ per cui la seguente matrice ha determinante pari a zero:

$$A = \left(\begin{array}{ccc} 1 & -1 & h \\ 2 & 1 & 3 \\ 4 & h & 1 \end{array}\right).$$

Soluzione.

Calcoliamo il determinante di A:

$$|A| = \begin{vmatrix} 1 & -1 & h \\ 2 & 1 & 3 \\ 4 & h & 1 \end{vmatrix} = 1 - 12 + 2h^2 - 4h + 2 - 3h = 2h^2 - 7h - 9.$$

I valori di *h* cercati si ottengono risolvendo l'equazione:

$$2h^2 - 7h - 9 = 0,$$

cioè sono
$$h = \frac{9}{2}$$
 e $h = -1$.

Esercizio.

Ridurre per righe e per colonne le seguenti matrici:

$$A = \begin{pmatrix} 4 & 1 & 2 & 3 & -1 \\ 2 & 2 & 1 & 4 & 1 \\ -1 & 3 & 1 & 2 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & -1 & 4 \\ 3 & -2 & 5 \\ 1 & 1 & 2 \\ 4 & 2 & 1 \\ -2 & 1 & -5 \end{pmatrix}.$$

Soluzione.

Cominciamo col ridurre A per righe:

$$A = \begin{pmatrix} 4 & 1 & 2 & 3 & -1 \\ 2 & 2 & 1 & 4 & 1 \\ -1 & 3 & 1 & 2 & 3 \end{pmatrix}$$

$$\xrightarrow{R_2 \mapsto R_2 - 2R_1} \begin{pmatrix} 4 & 1 & 2 & 3 & -1 \\ -6 & 0 & -3 & -2 & 3 \\ -13 & 0 & -5 & -7 & 6 \end{pmatrix}$$

$$\xrightarrow{\mapsto R_3 - 2R_1} \begin{pmatrix} 4 & 1 & 2 & 3 & -1 \\ -6 & 0 & -3 & -2 & 3 \\ -1 & 0 & 1 & -3 & 0 \end{pmatrix}.$$

La matrice ottenuta è una matrice ridotta per righe. Riduciamo A per colonne:

$$A = \begin{pmatrix} 4 & 1 & 2 & 3 & -1 \\ 2 & 2 & 1 & 4 & 1 \\ -1 & 3 & 1 & 2 & 3 \end{pmatrix}$$

$$C_{2} \mapsto C_{2} - C_{1}$$

$$C_{3} \mapsto C_{3} - \frac{1}{2}C_{1}$$

$$C_{4} \mapsto C_{4} - 2C_{1}$$

$$C_{5} \mapsto C_{5} - \frac{1}{2}C_{1}$$

$$-1 & 4 & \frac{3}{2} & 4 & \frac{7}{2} \end{pmatrix}$$

$$C_{4} \mapsto C_{4} - \frac{5}{3}C_{2}$$

$$C_{5} \mapsto C_{5} - C_{2}$$

$$\begin{pmatrix} 4 & -3 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 \\ -1 & 4 & \frac{3}{2} & -\frac{8}{3} & -\frac{1}{2} \end{pmatrix}$$

$$C_4 \mapsto C_4 + \frac{16}{9}C_3$$

$$C_5 \mapsto C_5 + \frac{1}{3}C_3$$

$$\begin{pmatrix} 4 & -3 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 \\ -1 & 4 & \frac{3}{2} & 0 & 0 \end{pmatrix}.$$

La matrice ottenuta è una matrice ridotta per colonne. Riduciamo, adesso, per righe la matrice B:

$$B = \begin{pmatrix} 1 & -1 & 4 \\ 3 & -2 & 5 \\ 1 & 1 & 2 \\ 4 & 2 & 1 \\ -2 & 1 & -5 \end{pmatrix} \xrightarrow{R_3 \mapsto R_5 + 2R_1} \begin{pmatrix} 1 & -1 & 4 \\ 1 & 0 & -3 \\ 2 & 0 & 6 \\ 6 & 0 & 9 \\ 1 & 0 & 3 \end{pmatrix}$$

$$\xrightarrow{R_3 \mapsto R_3 + 2R_2} \begin{pmatrix} 1 & -1 & 4 \\ 1 & 0 & -3 \\ 4 & 0 & 0 \\ 9 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_4 \mapsto R_4 - \frac{9}{4}R_3} \begin{pmatrix} 1 & -1 & 4 \\ 1 & 0 & -3 \\ 4 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Questa matrice è ridotta per righe. Se riduciamo B per colonne otteniamo ad esempio la seguente matrice:

$$B = \left(\begin{array}{rrrr} 1 & -2 & 0 \\ 3 & -5 & 4 \\ 1 & 0 & 0 \\ 4 & -2 & -5 \\ -2 & 3 & -4 \end{array}\right)$$

Esercizio.

Calcolare il rango della matrice:

$$A = \left(\begin{array}{cccc} 4 & 1 & -1 & 1 \\ -5 & 1 & 1 & 2 \\ 1 & 2 & -1 & 3 \\ 2 & -2 & -4 & -1 \\ 3 & 2 & -1 & 1 \end{array}\right).$$

Soluzione.

Calcoliamo il rango della matrice A utilizzando il metodo di riduzione:

$$A = \begin{pmatrix} 4 & 1 & -1 & 1 \\ -5 & 1 & 1 & 2 \\ 1 & 2 & -1 & 3 \\ 2 & -2 & -4 & -1 \\ 3 & 2 & -1 & 1 \end{pmatrix} \xrightarrow{R_3 \mapsto R_5 - R_1} \begin{pmatrix} 4 & 1 & -1 & 1 \\ -13 & -1 & 3 & 0 \\ -11 & -1 & 2 & 0 \\ 6 & -1 & -5 & 0 \\ -1 & 1 & 0 & 0 \end{pmatrix}$$

$$\xrightarrow{\dots} \xrightarrow{R_5 \mapsto R_5 - \frac{76}{31}R_4} \begin{pmatrix} 4 & 1 & -1 & 1 \\ -13 & -1 & 3 & 0 \\ -11 & -1 & 2 & 0 \\ 6 & -1 & -5 & 0 \\ -1 & 1 & 0 & 0 \end{pmatrix}$$

$$0 & 0 & \frac{31}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

 $\rho(A) = 4.$

Esercizio.

Calcolare, usando la definizione, il rango delle seguenti matrici:

$$A = \begin{pmatrix} 2 & 3 & 2 & 1 \\ -1 & 1 & -1 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix}$$

$$C = \begin{pmatrix} 2 & 1 & 0 \\ -1 & 2 & 1 \\ 3 & 4 & 1 \end{pmatrix}.$$

Soluzione.

Consideriamo il seguente minore di A:

$$\begin{vmatrix} 2 & 3 & 2 \\ -1 & 1 & -1 \\ 1 & 0 & 1 \end{vmatrix} = 2 - 3 - 2 + 3 = 0.$$

è un minore di A di ordine 3 e risulta pari a 0. Per vedere se il rango di A è 3 o minore di 3 dobbiamo vedere se esiste un minore di A di ordine 3 diverso da zero. Calcoliamo il seguente:

$$\left| \begin{array}{ccc|c} 2 & 3 & 1 \\ -1 & 1 & 1 \\ 1 & 0 & 0 \end{array} \right| 3 - 1 = 2 \neq 0.$$

Avendo trovato un minore di ordine 3 diverso da zero possiamo concludere che $\rho(A) = 3$.

Calcoliamo, adesso, il rango di B. Essendo B una matrice quadrata di ordine 3, l'unico minore di ordine 3 di B è il suo determinante:

$$|B| = \begin{vmatrix} 1 & 2 & 3 \\ -1 & 1 & 1 \\ 2 & 1 & 1 \end{vmatrix} = 1 + 4 - 3 - 6 + 2 - 1 = -3 \neq 0.$$

Essendo $|B| \neq 0$ ed essendo B quadrata di ordine 3, possiamo concludere che $\rho(B) = 3$. Calcoliamo, ora, il rango di C. Come per B, essendo C una matrice quadrata di ordine 3, il suo unico minore di ordine 3 è il suo stesso determinante:

$$|C| = \begin{vmatrix} 2 & 1 & 0 \\ -1 & 2 & 1 \\ 3 & 4 & 1 \end{vmatrix} = 4 + 3 + 1 - 8 = 0.$$

Dato che |C|=0, cioè dato che l'unico minore di ordine 3 di C è pari a 0, possiamo dire che $\rho(C)\neq$, anzi, più precisamente, che $\rho(C)\leq 2$. Sappiamo che $\rho(C)=2$ se esiste un minore di ordine 2 di C che è diverso da 0. calcoliamo il seguente:

$$\begin{vmatrix} 2 & 1 \\ -1 & 2 \end{vmatrix} = 4 + 1 = 5 \neq 0.$$

avendo trovato un minore di C di ordine 2 diverso da 0, possiamo concludere che $\rho(C)=2$.

Esercizio.

Calcolare, al variare di $h \in \mathbb{R}$, il rango delle matrici:

$$A = \begin{pmatrix} 1 & 2 & h \\ 3 & 1 & -1 \\ h & 1 & 2 \\ 1 & 1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 1 & -1 & 1 & h \\ 1 & h & 1 & 0 & 1 - h \\ h & h + 1 & 1 & -1 & 2 \end{pmatrix},$$

$$C = \begin{pmatrix} h & 1 & -1 & 0 \\ 0 & 1 & h & 1 \\ -1 - 2h & -2 & 2 & -1 \\ 2 & h - 1 & 0 & 1 \end{pmatrix}.$$

Soluzione.

Cominciamo col ridurre la matrice A per righe:

$$A = \begin{pmatrix} 1 & 2 & h \\ 3 & 1 & -1 \\ h & 1 & 2 \\ 1 & 1 & 0 \end{pmatrix}$$

$$\xrightarrow{R_2 \mapsto R_2 - 3R_1}$$

$$\xrightarrow{R_3 \mapsto R_3 - hR_1}$$

$$\xrightarrow{R_4 \mapsto R_4 - R_1}$$

$$0 & -5 & -1 - 3h \\ 0 & 1 - 2h & 2 - h^2 \\ 0 & -1 & -h \end{pmatrix}$$

$$\xrightarrow{\dots}$$

$$0 & 0 & h^2 - h + 2 \\ 0 & 0 & 2h - 1$$

Osserviamo che l'equazione $h^2-h+2=0$ non ha mai soluzioni reali, essendo, $\Delta=-7<0$. Questo significa che per ogni $h\in\mathbb{R}$ $h^2-h+2\neq 0$ e possiamo fare l'ultimo passo della riduzione, cioè:

$$\xrightarrow{R_4 \mapsto R_4 - \frac{2h-1}{h-h+2}R_3} \begin{pmatrix} 1 & 2 & h \\ 0 & -1 & -h \\ 0 & 0 & h^2 - h + 2 \\ 0 & 0 & 0 \end{pmatrix}.$$

Abbiamo ottenuto, per ogni $h \in \mathbb{R}$, una matrice ridotta con 3 righe non nulle e questo significa che per ogni $h \in \mathbb{R}$ $\rho(A) = 3$.

Riduciamo, adesso, la matrice B:

$$B = \begin{pmatrix} 2 & 1 & -1 & 1 & h \\ 1 & h & 1 & 0 & 1 - h \\ h & h + 1 & 1 & -1 & 2 \end{pmatrix}$$

$$\xrightarrow{R_3 \mapsto R_3 + R_1} \begin{pmatrix} 2 & 1 & -1 & 1 & h \\ 1 & h & 1 & 0 & 1 - h \\ h + 2 & h + 2 & 0 & 0 & h + 2 \end{pmatrix} . \text{ è evidente che se}$$

 $h+2\neq 0$, cioè se $h\neq -2$, abbiamo ottenuto una matrice ridotta con 3 righe non nulle. Di conseguenza, per $h\neq -2$ possiamo dire che $\rho(B)=3$. Se h=-2, abbiamo ottenuto una matrice ridotta con 2 righe non nulle e la terza nulle, da cui segue che per h=-2 $\rho(B)=2$.

Calcoliamo, ora, il rango di C:

$$C = \begin{pmatrix} h & 1 & -1 & 0 \\ 0 & 1 & h & 1 \\ -1 - 2h & -2 & 2 & -1 \\ 2 & h - 1 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{R_2 \mapsto R_2 + hR_1} \begin{pmatrix} h & 1 & -1 & 0 \\ h^2 & h + 1 & 0 & 1 \\ -1 & 0 & 0 & -1 \\ 2 & h - 1 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{R_3 \mapsto R_3 + R_2} \xrightarrow{R_4 \mapsto R_4 + R_2}$$

$$\xrightarrow{\begin{pmatrix} h & 1 & -1 & 0 \\ h^2 & h + 1 & 0 & 1 \\ h^2 - 1 & h + 1 & 0 & 0 \\ 2 - h^2 & -2 & 0 & 0 \end{pmatrix}}. (1)$$

Supponiamo che sia $h+1 \neq 0$, cioè $h \neq -1$. Allora possiamo continuare la riduzione e otteniamo:

$$\xrightarrow{R_4 \mapsto R_4 + \frac{2}{h+1}R_3} \begin{pmatrix} h & 1 & -1 & 0 \\ h^2 & h+1 & 0 & 1 \\ h^2 - 1 & h+1 & 0 & 0 \\ 2h - h^2 & 0 & 0 & 0 \end{pmatrix}.$$

Questa matrice, se $h \neq -1$ e $2h - h^2 \neq 0$, cioè se $h \neq -1, 0, 2$, è ridotta con quattro righe non nulle. Quindi, per $h \neq -1, 0, 2$ $\rho(C) = 4$.

Se $h \neq -1$ e $2h - h^2 = 0$, cioè se h = 0 oppure se h = 2, allora abbiamo una matrice ridotta con 3 righe non nulle e una tutta nulla.

Quindi, per h = 0 e h = 2 possiamo dire che $\rho(C) = 3$. Se h = -1, la riduzione in $(\ref{eq:continuous})$ ci porta a questa matrice:

$$\left(\begin{array}{cccc}
-1 & 1 & -1 & 0 \\
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
1 & -2 & 0 & 0
\end{array}\right),$$

che è ridotta con 3 righe non nulle e una tutta nulla. Dunque, se h=-1 possiamo dire che $\rho(C)=3$.

Esercizio.

Calcolare, usando la definizione il rango delle seguenti matrici:

$$A = \begin{pmatrix} 1 & -1 & 2 \\ 3 & h & 1 \\ h & 1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 2 & 3h & h+4 \\ 4 & 1 & 0 & 1 \\ h & 1 & -1 & 0 \\ 0 & -2 & 1 & -1 \\ 0 & 1 & h & 0 \end{pmatrix}$$

$$C = \left(\begin{array}{cccc} 1 & h & 1 & 0 \\ 2 & 1 & 3h - 1 & h \\ 1 & 0 & 1 & 1 \end{array}\right),$$

al variare di $h \in \mathbb{R}$.

Soluzione.

Cominciamo col calcolare il rango di *A*. Essendo *A* una matrice quadrata di ordine 3, il suo unico minore di ordine 3 è il suo stesso determinante, che calcoliamo:

$$|A| = \begin{vmatrix} 1 & -1 & 2 \\ 3 & h & 1 \\ h & 1 & 1 \end{vmatrix} = -2h^2 + 8 = -2(h+2)(h-2).$$

Questo significa che, se $h \neq \pm 2$, si ha $|A| \neq 0$ e, di conseguenza, $\rho(A) = 3$. Se h = 2 oppure se h = -2, possiamo dire che $\rho(A) \leq 2$. Calcoliamo il seguente minore di ordine 2 di A:

$$\left|\begin{array}{cc} 1 & 2 \\ 3 & 1 \end{array}\right| = -5 \neq 0.$$

Avendo A un minore di ordine 2 non nullo, possiamo dire che sia per h=2 che per h=-2 si ha $\rho(A)=2$.

Calcoliamo, ora, il rango di *B*. Per fare questo scegliamo il seguente minore di ordine 4 e lo calcoliamo applicando il primo teorema di Laplace all'ultime colonna:

$$\begin{vmatrix} 4 & 1 & 0 & 1 \\ h & 1 & -1 & 0 \\ 0 & -2 & 1 & -1 \\ 0 & 1 & h & 0 \end{vmatrix} = 1 \cdot (-1)^{1+4} \begin{vmatrix} h & 1 & -1 \\ 0 & -2 & 1 \\ 0 & 1 & h \end{vmatrix} +$$

$$+ (-1) \cdot (-1)^{3+4} \begin{vmatrix} 4 & 1 & 0 \\ h & 1 & -1 \\ 0 & 1 & h \end{vmatrix} = h^2 + 5h + 4 = (h+1)(h+4).$$

Questo significa che per $h \neq -1, -4$ abbiamo un minore di ordine 4 di B non nullo, cioè $\rho(B)=4$ se $h \neq -1, -4$.

Sia h = -1. In tal caso:

$$B = \left(\begin{array}{cccc} 1 & 2 & -3 & 3 \\ 4 & 1 & 0 & 1 \\ -1 & 1 & -1 & 0 \\ 0 & -2 & 1 & -1 \\ 0 & 1 & -1 & 0 \end{array}\right).$$

Calcoliamo il seguente minore di ordine 4:

$$\begin{vmatrix} 1 & 2 & -3 & 3 \\ 4 & 1 & 0 & 1 \\ -1 & 1 & -1 & 0 \\ 0 & 1 & -1 & 0 \end{vmatrix} = 3 \cdot (-1)^{1+4} \begin{vmatrix} 4 & 1 & 0 \\ -1 & 1 & -1 \\ 0 & 1 & -1 \end{vmatrix} +$$

$$+1 \cdot (-1)^{2+4} \begin{vmatrix} 1 & 2 & -3 \\ -1 & 1 & -1 \\ 0 & 1 & -1 \end{vmatrix} = -3 \cdot [-4 - 1 + 4] - 1 + 3 - 2 + 1 = 4 \neq 0.$$

Dunque, abbiamo trovato, nel caso h=-1 un minore di ordine 4 diverso da zero, il che significa che anche per h=-1 $\rho(B)=4$. Sia h=-4. In tal caso:

$$B = \left(\begin{array}{cccc} 1 & 2 & -12 & 0 \\ 4 & 1 & 0 & 1 \\ -4 & 1 & -1 & 0 \\ 0 & -2 & 1 & -1 \\ 0 & 1 & -4 & 0 \end{array}\right).$$

Calcoliamo il seguente minore di ordine 4 di B:

L'equazione $2h^2-h-1=0$ ha come soluzioni h=1 e $h=-\frac{1}{2}$. Questo significa che, se $h\neq 1-\frac{1}{2}$, il minore di ordine 3 di C che abbiamo calcolato è non nullo, cioè, se $h\neq 1,-\frac{1}{2}$, $\rho(C)=3$. Sia h=1. In questo caso:

$$C = \left(\begin{array}{rrrr} 1 & 1 & 1 & 0 \\ 2 & 1 & 2 & 1 \\ 1 & 0 & 1 & 1 \end{array}\right).$$

Abbiamo trovato in precedenza un minore di ordine 3 di C pari a 0. Calcoliamo gli altri minori di C di ordine 3:

$$\left|\begin{array}{ccc|c} 1 & 1 & 1 \\ 2 & 1 & 2 \\ 1 & 0 & 1 \end{array}\right| = 0, \quad \left|\begin{array}{ccc|c} 1 & 1 & 0 \\ 2 & 2 & 1 \\ 1 & 1 & 1 \end{array}\right| = 0, \quad \left|\begin{array}{ccc|c} 1 & 1 & 0 \\ 2 & 1 & 1 \\ 1 & 0 & 1 \end{array}\right| = 0.$$

Tutti i minori di C, nel caso h=1 di ordine 3 sono pari a 0. quindi, possiamo dire che $\rho(C) \leq 2$. Calcoliamo il seguente minore di ordine 2:

$$\left|\begin{array}{cc} 1 & 1 \\ 2 & 1 \end{array}\right| = -1 \neq 0.$$

Dato che questo minore di C di orine 2 è non nullo, deduciamo che per h=1 $\rho(C)=2$.

Sia $h = -\frac{1}{2}$. Allora:

$$C = \left(\begin{array}{cccc} 1 & -\frac{1}{2} & 1 & 0 \\ 2 & 1 & -\frac{5}{2} & -\frac{1}{2} \\ 1 & 0 & 1 & 1 \end{array}\right).$$

Calcoliamo il seguente minore di C di ordine 3:

$$\begin{vmatrix} 1 & -\frac{1}{2} & 1 \\ 2 & 1 & -\frac{5}{2} \\ 1 & 0 & 1 \end{vmatrix} = \frac{9}{4} \neq 0.$$

Dunque, per $h = -\frac{1}{2}$ C ha un minore di ordine 3 non nullo e, dunque, $\rho(C) = 3$.

Esercizio.

Calcolare, se possibile, le inverse delle seguenti matrici:

$$A = \begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 1 \\ -1 & 3 \\ 4 & 5 \end{pmatrix}, \quad C = \begin{pmatrix} 2 & 1 & 3 \\ 1 & -1 & 0 \\ 4 & 2 & -1 \end{pmatrix}.$$

Soluzione.

Cominciamo col ricordare che una matrice è invertibile se e solo se è quadrata e ha determinante non nullo. Dunque, possiamo già dire che B non è invertibile, in quanto è una matrice 3×2 . Vediamo cosa possiamo dire di A:

$$|A| = \left| \begin{array}{cc} 2 & 1 \\ 3 & 4 \end{array} \right| = 5 \neq 0.$$

Possiamo, perciò, dire che A è invertibile. Calcoliamo la sua inversa, utilizzando la formula:

$$A^{-1} = \frac{1}{|A|} {}^{\mathrm{t}} A_{\mathsf{a}},$$

dove A_a è la matrice aggiunta di A, cioè la matrice costituita dai complementi algebrici di A.

Calcoliamo questi complementi algebrici:

$$A_{11} = (-1)^{1+1} \cdot 4 = 4$$

$$A_{12} = (-1)^{1+2} \cdot 3 = -3$$

$$A_{21} = (-1)^{2+1} \cdot 1 = -1$$

$$A_{22} = (-1)^{2+2} \cdot 2 = 2$$

Quindi:

$$A_{\mathsf{a}} = \left(\begin{array}{cc} \mathsf{4} & -\mathsf{3} \\ -\mathsf{1} & \mathsf{2} \end{array} \right) \Rightarrow {}^{\mathsf{t}}\!A_{\mathsf{a}} = \left(\begin{array}{cc} \mathsf{4} & -\mathsf{1} \\ -\mathsf{3} & \mathsf{2} \end{array} \right).$$

E dunque la matrice inversa di A è:

$$A^{-1} = \frac{1}{5} \begin{pmatrix} 4 & -1 \\ -3 & 2 \end{pmatrix} = \begin{pmatrix} \frac{4}{5} & -\frac{1}{5} \\ -\frac{3}{5} & \frac{2}{5} \end{pmatrix}.$$

Calcoliamo il determinante di C:

$$|C| = \begin{vmatrix} 2 & 1 & 3 \\ 1 & -1 & 0 \\ 4 & 2 & -1 \end{vmatrix} = 21 \neq 0.$$

Essendo diverso da zero, possiamo dire che anche C è invertibile. Applichiamo la stessa formula di prima per calcolare C^{-1} . Calcoliamo i complementi algebrici di C:

$$A_{11} = (-1)^{1+1} \begin{vmatrix} -1 & 0 \\ 2 & -1 \end{vmatrix} = 1, \ A_{12} = (-1)^{1+2} \begin{vmatrix} 1 & 0 \\ 4 & -1 \end{vmatrix} = 1,$$

$$A_{13} = (-1)^{1+3} \begin{vmatrix} 1 & -1 \\ 4 & 2 \end{vmatrix} = 6, \ A_{21} = (-1)^{2+1} \begin{vmatrix} 1 & 3 \\ 2 & -1 \end{vmatrix} = 7,$$

$$A_{22} = (-1)^{2+2} \begin{vmatrix} 2 & 3 \\ 4 & -1 \end{vmatrix} = -14, \ A_{23} = (-1)^{2+3} \begin{vmatrix} 2 & 1 \\ 4 & 2 \end{vmatrix} = 0,$$

$$A_{31} = (-1)^{3+1} \begin{vmatrix} 1 & 3 \\ -1 & 0 \end{vmatrix} = 3, \ A_{32} = (-1)^{3+2} \begin{vmatrix} 2 & 3 \\ 1 & 0 \end{vmatrix} = 3,$$

$$A_{33} = (-1)^{3+3} \begin{vmatrix} 2 & 1 \\ 1 & -1 \end{vmatrix} = -3.$$

Quindi:

$$A_{a} = \begin{pmatrix} 1 & 1 & 6 \\ 7 & -14 & 0 \\ 3 & 3 & -3 \end{pmatrix} \Rightarrow {}^{t}A_{a} = \begin{pmatrix} 1 & 7 & 3 \\ 1 & -14 & 3 \\ 6 & 0 & -3 \end{pmatrix}$$
$$\Rightarrow C^{-1} = \frac{1}{21} \begin{pmatrix} 1 & 7 & 3 \\ 1 & -14 & 3 \\ 6 & 0 & -3 \end{pmatrix} = \begin{pmatrix} \frac{1}{21} & \frac{1}{3} & \frac{1}{7} \\ \frac{1}{21} & -\frac{2}{3} & \frac{1}{7} \\ \frac{2}{7} & 0 & -\frac{1}{7} \end{pmatrix}.$$

Esercizio.

Dire per quali valori di $h \in \mathbb{R}$ la matrice:

$$A = \left(\begin{array}{ccc} h & 1 & -1 \\ -h & -1 & h+1 \\ 1 & 0 & 1 \end{array}\right)$$

è invertibile e, in tali casi, calcolare l'inversa.

Soluzione.

Cominciamo col calcolare |A|:

$$|A| = \begin{vmatrix} h & 1 & -1 \\ -h & -1 & h+1 \\ 1 & 0 & 1 \end{vmatrix} = h.$$

Dunque, se $h \neq 0$, si ha $|A| \neq 0$ e A è invertibile per $h \neq 0$. Calcoliamo l'inversa, cominciando col trovarci i complementi algebrici:

$$A_{11} = (-1)^{1+1} \begin{vmatrix} -1 & h+1 \\ 0 & 1 \end{vmatrix} = -1, \ A_{12} = (-1)^{1+2} \begin{vmatrix} 1 & -1 \\ 0 & 1 \end{vmatrix} = -1,$$

$$A_{13} = (-1)^{1+3} \begin{vmatrix} -h & -1 \\ 1 & 0 \end{vmatrix} = 1, \ A_{21} = (-1)^{2+1} \begin{vmatrix} 1 & -1 \\ 0 & 1 \end{vmatrix} = -1,$$

$$A_{22} = (-1)^{2+2} \begin{vmatrix} h & -1 \\ 1 & 1 \end{vmatrix} = h+1, \ A_{23} = (-1)^{2+3} \begin{vmatrix} h & 1 \\ 1 & 0 \end{vmatrix} = 1,$$

$$A_{31} = (-1)^{3+1} \begin{vmatrix} 1 & -1 \\ -1 & h+1 \end{vmatrix} = h, \ A_{32} = (-1)^{5} \begin{vmatrix} h & -1 \\ -h & h+1 \end{vmatrix} = -h^{2},$$

$$A_{33} = (-1)^{3+3} \begin{vmatrix} h & 1 \\ -h & -1 \end{vmatrix} = 0.$$

Quindi:

$$A_{a} = \begin{pmatrix} -1 & -1 & 1 \\ -1 & h+1 & 1 \\ h & -h^{2} & 0 \end{pmatrix} \Rightarrow {}^{t}A_{a} = \begin{pmatrix} -1 & -1 & h \\ -1 & h+1 & -h^{2} \\ 1 & 1 & 0 \end{pmatrix}$$

$$\Rightarrow A^{-1} = \frac{1}{h} \begin{pmatrix} -1 & -1 & h \\ -1 & h+1 & -h^2 \\ 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} -\frac{1}{h} & -\frac{1}{h} & 1 \\ -\frac{1}{h} & \frac{h+1}{h} & -h \\ \frac{1}{h} & \frac{1}{h} & 0 \end{pmatrix}.$$

Esercizio

Dato il sistema lineare:

$$\begin{cases} 2x - 3y + 2z - t = 1\\ x + 2y - z = 0\\ y + z = -2 \end{cases}$$

verificare che la quaterna (1, -1, -1, 2) è soluzione del sistema e calcolare tutte le altre soluzioni.

Soluzione.

Per fare vedere che (1, -1, -1, 2) è soluzione del sistema basta fare vedere che la quaterna soddisfa le equazioni del sistema:

$$\begin{cases} 2 \cdot 1 - 3 \cdot (-1) + 2 \cdot (-1) - 1 \cdot 2 = 1 \\ 1 + 2 \cdot (-1) - (-1) = 0 \\ (-1) + (-1) = -2. \end{cases}$$

La matrice incompleta associata al sistema è:

$$A = \left(\begin{array}{cccc} 2 & -3 & 2 & -\frac{1}{0} \\ \frac{1}{0} & 2 & -1 & 0 \\ 0 & \frac{1}{1} & 1 & 0 \end{array}\right)$$

mentre quella completa è:

$$A|B = \left(\begin{array}{cccc|ccc} 2 & -3 & 2 & \underline{-1} & | & 1\\ \underline{1} & 2 & -1 & 0 & | & 0\\ 0 & 1 & 1 & 0 & | & -2 \end{array}\right).$$

Dal momento che entrambe le matrici sono ridotte e hanno entrambe tre righe non nulle ne deduciamo che $\rho(A)=\rho(A|B)=3$. Questo ci conferma che il sistema ammette soluzioni e ci dice che le soluzioni sono $\infty^{4-3}=\infty^1$ soluzioni. Per calcolare queste soluzioni, dato che il sistema è ridotto, procediamo per sostituzione procedendo dall'ultima equazione fino alla prima e ricaviamo per ogni equazione l'incognita corrispondente all'elemento speciale della relativa riga:

$$\begin{cases} y = -z - 2 \\ x = -2y + z \\ t = 2x - 3y + 2z - 1 \end{cases} \Rightarrow \begin{cases} y = -z - 2 \\ x = -2(-z - 2) + z = 3z + 4 \\ t = 2(3z + 4) - 3(-z - 2) + 2z - 1 = 11z + 3z + 4 \end{cases}$$

Dunque, tutte le soluzioni del sistema sono (3z + 4, -z - 2, z, 11z + 13) con $z \in \mathbb{R}$.

Esercizio

Determinare le soluzioni del sistema lineare ridotto:

$$\begin{cases} x + y - 2z - t = -1 \\ x - y - 2t = 2 \\ y + t = 3 \\ t = -1. \end{cases}$$

Soluzione.

Il sistema è ridotto in quanto la matrice incompleta è ridotta:

$$A = \left(\begin{array}{cccc} 1 & 1 & -2 & -1 \\ 1 & -1 & 0 & -2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{array}\right)$$

e ammette una sola soluzione in quanto anche la matrice completa A|B, che è, ovviamente, anch'essa ridotta, ha rango $\rho(A|B) = \rho(A) = 4$:

$$A|B = \left(\begin{array}{ccc|ccc|c} 1 & 1 & \underline{-2} & -1 & | & -1 \\ \underline{1} & -1 & 0 & -2 & | & 2 \\ 0 & \underline{1} & 0 & 1 & | & 3 \\ 0 & 0 & 0 & \underline{1} & | & -1 \end{array}\right).$$

Il sistema, essendo ridotto, va risolto per sostituzione partendo dall'ultima equazione fino alla prima, ricavando, man mano, le incognite relative all'elemento speciale di ogni riga:

$$\begin{cases} t = -1 \\ y = 3 - t \\ x = y + 2t + 2 \\ z = \frac{x + y - t + 1}{2} \end{cases} \Rightarrow \begin{cases} t = -1 \\ y = 3 - (-1) = 4 \\ x = 4 + 2 \cdot (-1) + 2 = 4 \\ z = \frac{4 + 4 - (-1) + 1}{2} = 5. \end{cases}$$

Dunque l'unica soluzione del sistema è (4, 4, 5, -1).

Risolvere il seguente sistema lineare:

$$\begin{cases} x + y + z - 2t + v = 1 \\ x - y + z - 3v = 2 \\ x - z - v = -3. \end{cases}$$

Soluzione

Le matrici, completa e incompleta, associate al sistema sono:

$$A|B = \begin{pmatrix} 1 & 1 & 1 & -2 & 1 & | & 1 \\ 1 & -1 & 1 & 0 & -3 & | & 2 \\ \underline{1} & 0 & -1 & 0 & -1 & | & -3 \end{pmatrix}$$
$$A = \begin{pmatrix} 1 & 1 & 1 & -2 & 1 \\ 1 & -1 & 1 & 0 & -3 \\ 1 & 0 & -1 & 0 & -1 \end{pmatrix}$$

e sono entrambe ridotte di rango 3, questo vuol dire che il sistema ammette soluzioni e che le incognite libere sono 5-3=2, cioè abbiamo ∞^2 soluzioni. Come è stato fatto in precedenza, per risolvere il sistema ridotto, procediamo per sostituzione dal basso verso l'alto, ricavando per ogni equazione l'incognita corrispondente all'elemento speciale della relativa riga di A. Dunque:

$$\begin{cases} x = z + v - 3 \\ y = x + z - 3v - 2 \\ t = \frac{x + y + z + v - 1}{2} \end{cases} \Rightarrow \begin{cases} x = z + v - 3 \\ y = 2z - 2v - 5 \\ t = 2z - \frac{9}{2}. \end{cases}$$

Questo vuol dire che le soluzioni del sistema sono $\{(z+v-3,2z-2v-5,z,2z-\frac{9}{2},v)\in\mathbb{R}^5\}.$

Risolvere il seguente sistema:

$$\begin{cases} x - y + 2z = 1 \\ -x + 2y - z + 2t = 2 \\ 2x - y + 3z + t = 3. \end{cases}$$

La matrice completa associata al sistema è:

$$A|B = \left(\begin{array}{ccccc} 1 & -1 & 2 & 0 & | & 1 \\ -1 & 2 & -1 & 2 & | & 2 \\ 2 & -1 & 3 & 1 & | & 3 \end{array}\right).$$

Per risolvere il sistema dobbiamo ridurre per righe A|B facendo in modo tale che gli elementi speciali siano associati alle incognite.

$$A|B = \begin{pmatrix} 1 & -1 & 2 & 0 & | & 1 \\ -1 & 2 & -1 & 2 & | & 2 \\ 2 & -1 & 3 & 1 & | & 3 \end{pmatrix} \xrightarrow{R_2 \mapsto R_2 + R_1} \begin{pmatrix} \frac{1}{2} & -1 & 2 & 0 & | & 1 \\ R_3 \mapsto R_3 - 2R_1 & & & \\ 0 & 1 & 1 & 2 & | & 3 \\ 0 & 1 & -1 & 1 & | & 1 \end{pmatrix}$$

$$\xrightarrow{R_3 \mapsto R_3 - R_2} \left(\begin{array}{ccccc} 1 & -1 & 2 & 0 & | & 1 \\ 0 & 1 & 1 & 2 & | & 3 \\ 0 & 0 & -2 & -1 & | & -2 \end{array} \right).$$

La matrice ottenuta è una matrice ridotta di rango 3 ed è la matrice associata a un sistema equivalente a quello di partenza. Dal momento che la relativa matrice incompleta:

$$\left(\begin{array}{cccc}
1 & -1 & 2 & 0 \\
0 & 1 & 1 & 2 \\
0 & 0 & -2 & -1
\end{array}\right)$$

ha rango 3, possiamo dire che il sistema ammette soluzioni e che ha 4-3=1 incognite libere, cioè ha ∞^1 soluzioni. Il sistema ottenuto con la riduzione è, ovviamente, ridotto ed è il seguente:

$$\begin{cases} x - y + 2z = 1 \\ y + z + 2t = 3 \\ -2z - t = -2. \end{cases}$$

Risolviamo il sistema per sostituzione:

$$\begin{cases} t = -2z + 2 \\ y = -z - 2t + 3 \\ x = y - 2z + 1 \end{cases} \Rightarrow \begin{cases} t = -2z + 2 \\ y = 3z - 1 \\ x = z. \end{cases}$$

Dunque le soluzioni del sistema è l'insieme $\{(z, 3z - 1, z, 2z + 2) \in \mathbb{R}^4\}$.

Risolvere il sistema:

$$\begin{cases} -x + y + z + 2t - u = 2\\ x + y + 3z + t + 2u = 2\\ 2x + y + 2z + t + u = 2. \end{cases}$$

Riduciamo la matrice completa associata al sistema:

$$\frac{R_2 \mapsto R_2 - R_1}{R_3 \mapsto R_3 - R_1} \left(\begin{array}{cccccc}
-1 & 1 & 1 & 2 & -1 & | & 2 \\
2 & 0 & 2 & -1 & 3 & | & 0 \\
3 & 0 & 1 & -1 & 2 & | & 0
\end{array} \right)$$

$$\xrightarrow{R_3 \mapsto R_3 - R_2} \left(\begin{array}{cccccc} -1 & 1 & 1 & 2 & -1 & | & 2 \\ 2 & 0 & 2 & -1 & 3 & | & 0 \\ 1 & 0 & -1 & 0 & -1 & | & 0 \end{array} \right).$$

Abbiamo ottenuto una matrice ridotta di rango 3, la cui matrice incompleta associata ha ancora rango 3. Dunque, il sistema ammette soluzioni e ha 5-3=2 incognite libere. Risolviamo il sistema associato alla matrice ridotta per sostituzione:

$$\begin{cases}
-x + y + z + 2t - u = 2 \\
2x + 2z - t + 3u = 0 \\
x - z - u = 0
\end{cases} \Rightarrow \begin{cases}
u = x - z \\
t = 2x + 2z + 3u \\
y = x - z - 2t + u + 2
\end{cases} \Rightarrow \begin{cases}
u = x - z \\
t = 5x - y \\
y = -8x
\end{cases}$$

Dunque, l'insieme delle soluzioni del sistema è:

$$\{(x, -8x + 2, z, 5x - z, x - z) \in \mathbb{R}^5\}.$$

Risolvere il seguente sistema:

$$\begin{cases} 2x + 6y + 3z + t = 1\\ x + 4y + z + 2t = -1\\ x + 2y + 2z - t = 0. \end{cases}$$

Dobbiamo ridurre per righe la matrice incompleta associata al sistema:

$$\begin{pmatrix} 2 & 6 & 3 & 1 & | & 1 \\ 1 & 4 & 1 & 2 & | & 1 \\ 1 & 2 & 2 & -1 & | & 0 \end{pmatrix} \xrightarrow{R_2 \mapsto R_2 - 2R_1} \begin{pmatrix} 2 & 6 & 3 & 1 & | & 1 \\ R_3 \mapsto R_3 + R_1 & & & \\ -3 & -8 & -5 & 0 & | & -1 \\ 3 & 8 & 5 & 0 & | & 1 \end{pmatrix}$$

$$\xrightarrow{R_3 \mapsto R_3 + R_2} \left(\begin{array}{ccccc} 2 & 6 & 3 & 1 & | & 1 \\ -3 & -8 & -5 & 0 & | & -1 \\ 0 & 0 & 0 & 0 & | & 0 \end{array} \right).$$

Abbiamo ottenuto una matrice ridotta di rango 2 e la matrice incompleta associata ha anch'essa rango 2. Questo significa che il sistema ammette soluzioni e, inoltre, le incognite libere sono 4-2=2, cioè abbiamo ∞^2 soluzioni.

Possiamo risolvere il sistema associato alla matrice ridotta, che è equivalente a quello di partenza:

$$\begin{cases} 2x + 6y + 3z + t = 1 \\ -3x - 8y - 5z = -1 \end{cases} \Rightarrow \begin{cases} x = -\frac{8}{3}y - \frac{5}{3}z + \frac{1}{3} \\ t = -2x - 6y - 3z + 1 = -\frac{2}{3}y + \frac{1}{3}z + \frac{1}{3}. \end{cases}$$

Dunque, l'insieme delle soluzioni del sistema è:

$$\left\{ \left(-\frac{8}{3}y - \frac{5}{3}z + \frac{1}{3}, y, z, -\frac{2}{3}y + \frac{1}{3}z + \frac{1}{3} \right) \right\}.$$

Risolvere il sistema:

$$\begin{cases} x + y - 2z + 3t = 1 \\ -x + y + 5z + t = 2 \\ 3x - y - 12z + t = 0. \end{cases}$$

Riduciamo la matrice completa associata al sistema:

$$\begin{pmatrix} 1 & 1 & -2 & 3 & | & 1 \\ -1 & 1 & 5 & 1 & | & 2 \\ 3 & -1 & -12 & 1 & | & 0 \end{pmatrix} \xrightarrow{R_2 \mapsto R_2 - R_1} \begin{pmatrix} 1 & 1 & -2 & 3 & | & 1 \\ R_3 \mapsto R_3 + R_1 & & & \\ -2 & 0 & 7 & -2 & | & 1 \\ 4 & 0 & -14 & 4 & | & 1 \end{pmatrix}$$

$$\xrightarrow{R_3 \mapsto R_3 + 2R_2} \left(\begin{array}{ccccc} 1 & 1 & -2 & 3 & | & 1 \\ -2 & 0 & 7 & -2 & | & 1 \\ 0 & 0 & 0 & 0 & | & 3 \end{array} \right).$$

La matrice che abbiamo ottenuto è una matrice ridotta di rango 3, ma la matrice incompleta associata ha rango 2, cioè $\rho(A|B)=3\neq 2=\rho(A)$. Dunque, per il primo teorema di Rouchè-Capelli il sistema non ha soluzioni.

Risolvere il sistema AX = B. dove:

$$A = \begin{pmatrix} 1 & 3 & 2 \\ 2 & 4 & 3 \\ -3 & 2 & -1 \\ 1 & 12 & 6 \\ -3 & 11 & 3 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \quad B = \begin{pmatrix} 1 \\ 1 \\ 3 \\ 6 \\ 8 \end{pmatrix}.$$

Il sistema da risolvere è:

$$\begin{cases} x + 3y + 2z = 1 \\ 2x + 4y + 3z = 1 \\ -3x + 2y - z = 3 \\ x + 12y + 6z = 6 \\ -3x + 11y + 3z = 8. \end{cases}$$

Dobbiamo ridurre per righe la matrice completa associata al sistema:

$$A|B = \begin{pmatrix} 1 & 3 & 2 & | & 1 \\ 2 & 4 & 3 & | & 1 \\ -3 & 2 & -1 & | & 3 \\ 1 & 12 & 6 & | & 6 \\ -3 & 11 & 3 & | & 8 \end{pmatrix} \xrightarrow{R_2 \mapsto R_2 - 2R_1} \begin{pmatrix} R_3 \mapsto R_3 + 3R_1 \\ R_4 \mapsto R_4 - R_1 \\ R_5 \mapsto R_5 + 3R_1 \\ R_5 \mapsto R_5 + 3R_1$$

Questa è una matrice ridotta di rango 3 e la relativa matrice incompleta ha anch'essa rango 3. Inoltre, il sistema ha 3-3=0 incognite libere, cioè il sistema ha una sola soluzione. Per determinare la soluzione risolviamo il sistema associato alla matrice ridotta:

$$\begin{cases} x + 3y + 2z = 1 \\ -2y - z = -1 \end{cases} \Rightarrow \begin{cases} y = 1 \\ z = -2y + 1 \\ x = 1 - 3y - 2z \end{cases} \Rightarrow \begin{cases} y = 1 \\ z = -1 \\ x = 0. \end{cases}$$

Dunque l'unica soluzione del sistema è (0, 1, -1).

Risolvere il sistema lineare omogeneo:

$$\begin{cases} 2x - y + 4z - 5t = 0\\ 3x - 2y + 3z - 8t = 0\\ x + y - z + t = 0. \end{cases}$$

Per risolvere un sistema omogeneo basta ridurre per righe la matrice incompleta associata:

$$A = \begin{pmatrix} 2 & -1 & 4 & -5 \\ 3 & -2 & 3 & -8 \\ 1 & 1 & -1 & 1 \end{pmatrix} \xrightarrow{R_2 \mapsto R_2 - 2R_1} \begin{pmatrix} 2 & -1 & 4 & -5 \\ -1 & 0 & -5 & 2 \\ 3 & 0 & 3 & -4 \end{pmatrix} \xrightarrow{R_3 \mapsto R_3 + 3}$$

La matrice ha rango 3 e, dunque, abbiamo 4-3=1 incognita libera, cioè abbiamo ∞^1 soluzioni. Il sistema da risolvere per sostituzione è il seguente:

$$\begin{cases} 2x - y + 4z - 5t = 0 \\ -x - 5z + 2t = 0 \\ -12z + 2t = 0 \end{cases} \Rightarrow \begin{cases} t = 6z \\ x = -5z + 2t \\ y = 2x + 4z - 5t \end{cases} \Rightarrow \begin{cases} t = 6z \\ x = 7z \\ y = -12z. \end{cases}$$

Dunque l'insieme delle soluzioni del sistema è:

$$\{(7z, -12z, z, 6z) \in \mathbb{R}^4\}.$$

Risolvere il sistema omogeneo:

$$\begin{cases} 2x + y + z + t = 0 \\ 3x + 3y + z = 0 \\ x - y + z + 2t = 0 \\ x + y + z = 0. \end{cases}$$

Dobbiamo ridurre per righe la matrice incompleta associata al sistema:

$$A = \begin{pmatrix} 2 & 1 & 1 & 1 \\ 3 & 3 & 1 & 0 \\ 1 & -1 & 1 & 2 \\ 1 & 1 & 1 & 0 \end{pmatrix} \xrightarrow{R_3 \mapsto R_3 - 2R_1} \begin{pmatrix} 2 & 1 & 1 & 1 \\ 3 & 3 & 1 & 0 \\ -3 & -3 & -1 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix} \xrightarrow{R_3 \mapsto R_3 + R_2} \begin{pmatrix} R_4 \mapsto R_4 - R_2 \\ R_4 \mapsto R_4 - R_2 \\ R_4 \mapsto R_4 - R_2 \end{pmatrix}$$

La matrice ha rango 3 e, di conseguenza, abbiamo 4-3=1 incognita libera, cioè il sistema ammette ∞^1 soluzioni. Queste soluzioni si ricavano risolvendo per sostituzione il sistema omogeneo associato alla matrice ridotta:

$$\begin{cases} 2x + y + z + t = 0 \\ 3x + 3y + z = 0 \\ -2x - 2y = 0 \end{cases} \Rightarrow \begin{cases} y = -x \\ z = -3x - 3y \\ t = -2x - y - z \end{cases} \Rightarrow \begin{cases} y = -x \\ z = 0 \\ t = -x. \end{cases}$$

Dunque, l'insieme delle soluzioni è $\{(x, -x, 0, -x) \in \mathbb{R}^4\}$.

Risolvere il seguente sistema omogeneo:

$$\begin{cases} 2x - y + z + 3t + 3v = 0 \\ 4x + 2y + z - t + 5v = 0 \\ -3x + y - 2z + 4t - 2v = 0 \\ x - y + 2t + 2v = 0. \end{cases}$$

Per risolvere un sistema omogeneo è sufficiente ridurre la matrice incompleta associata al sistema:

$$A = \begin{pmatrix} 2 & -1 & 1 & 3 & 3 \\ 4 & 2 & 1 & -1 & 5 \\ -3 & 1 & -2 & 4 & -2 \\ 1 & -1 & 0 & 2 & 2 \end{pmatrix} \xrightarrow{R_2 \mapsto R_2 - R_1} \begin{pmatrix} 2 & -1 & 1 & 3 & 3 \\ R_3 \mapsto R_3 + 2R_1 \\ \hline \\ R_3 \mapsto R_3 + 2R_1 \\ \hline \\ 1 & 3 & 0 & 10 & 4 \\ 1 & -1 & 0 & 2 & 2 \end{pmatrix}$$

Per risolvere il sistema, che ha sempre soluzioni in quanto è omogeneo e ammette sempre la soluzione tutta nulla (0,0,0,0,0), è sufficiente risolvere il sistema omogeneo associato alla matrice ridotta che abbiamo ottenuto. Notiamo che dato che la matrice ottenuta ha rango 4, abbiamo che $\rho(A)=4$ e che le incognite libere sono 5-4=1.

$$\begin{cases} 2x - y + z + 3t + 3v = 0 \\ 2x + 3y - 4t + 2v = 0 \\ -3x - 3y + 18t = 0 \\ -3y = 0 \end{cases} \Rightarrow \begin{cases} y = 0 \\ x = -y + 6t \\ v = -x - \frac{3}{2}y + 2t \\ z = -2x + y - 3t - 3v \end{cases} \Rightarrow \begin{cases} y = 0 \\ x = 6t \\ v = -4t \\ z = -3t \end{cases}$$

Dunque, l'insieme delle soluzioni del sistema è:

$$\{(6t,0,-3t,t,-4t)\in\mathbb{R}^5\}.$$

Risolvere il sistema omogeneo:

$$\begin{cases} x - y + 2z - t + v = 0 \\ y + z - 3t = 0 \\ 2x - y + 5z - 5t + 2v = 0. \end{cases}$$

La matrice incompleta associata al sistema è:

$$A = \left(\begin{array}{cccc} 1 & -1 & 2 & -1 & 1 \\ 0 & 1 & 1 & -3 & 0 \\ 2 & -1 & 5 & -5 & 2 \end{array}\right) \xrightarrow{R_3 \mapsto R_3 - 2R_1} \left(\begin{array}{cccc} 1 & -1 & 2 & -1 & 1 \\ 0 & 1 & 1 & -3 & 0 \\ 0 & 1 & 1 & -3 & 0 \end{array}\right)$$

$$\xrightarrow{R_3 \mapsto R_3 - R_2} \left(\begin{array}{cccc} 1 & -1 & 2 & -1 & 1 \\ 0 & 1 & 1 & -3 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right).$$

La matrice è ridotta di rango 2 e, quindi, $\rho(A)=2$ e il sistema ha 5-2=3 incognite libere e ammette ∞^3 soluzioni. Risolviamo il sistema:

$$\begin{cases} x - y + 2z - t + v = 0 \\ y + z - 3t = 0 \end{cases} \Rightarrow \begin{cases} z = -y + 3t \\ v = -x + y - 2z + t \end{cases} \Rightarrow \begin{cases} z = -y + 3t \\ v = -x + 3y \end{cases}$$

Dunque l'insieme delle soluzioni del sistema è:

$$\{(x, y, -y + 3t, t, -x + 3y - 5t) \in \mathbb{R}^5\}.$$

Risolvere il sistema omogeneo:

$$\begin{cases}
-2x + y - 3z + t = 0 \\
x - 2y + 3z - 2t = 0 \\
3x - y + 4z + t = 0 \\
2x + y - 4z + 3t = 0.
\end{cases}$$

Riduciamo per righe la matrice incompleta associata al sistema:

$$A = \begin{pmatrix} -2 & 1 & -3 & 1 \\ 1 & -2 & 3 & -2 \\ 3 & -1 & 4 & 1 \\ 2 & 1 & -4 & 3 \end{pmatrix} \xrightarrow{R_2 \mapsto R_2 + 2R_1} \begin{pmatrix} -2 & 1 & -3 & 1 \\ R_3 \mapsto R_3 + R_1 \\ R_4 \mapsto R_4 - R_1 \\ \hline \end{pmatrix} \begin{pmatrix} -2 & 1 & -3 & 1 \\ 5 & 0 & -3 & 0 \\ 1 & 0 & 1 & 2 \\ 4 & 0 & -1 & 2 \end{pmatrix}$$

$$\frac{R_2 \leftrightarrow R_3}{4} \begin{pmatrix}
-2 & 1 & -3 & 1 \\
1 & 0 & 1 & 2 \\
5 & 0 & -3 & 0 \\
4 & 0 & -1 & 2
\end{pmatrix}
\xrightarrow{R_4 \mapsto R_4 - R_2} \begin{pmatrix}
-2 & 1 & -3 & 1 \\
1 & 0 & 1 & 2 \\
5 & 0 & -3 & 0 \\
3 & 0 & -2 & 0
\end{pmatrix}
\xrightarrow{R_4 - \frac{3}{5}R_3} \begin{pmatrix}
-\frac{1}{5}R_3 \\
\frac{1}{5}R_3 \\$$

Dato che questa matrice è ridotta di rango 4, possiamo dire che abbiamo 4-4=0 incognite libere, cioè il sistema ammette una sola soluzione, ma, essendo omogeneo, possiamo dire che questa soluzione è necessariamente la soluzione tutta nulla, che è quella che esiste sempre per i sistemi omogenei. Concludendo, l'unica soluzione del sistema è (0,0,0,0).

Risolvere, utilizzando il metodo di Cramer, il seguente sistema:

$$\begin{cases} 2x - 3y = 1\\ 4x + 3y = -2. \end{cases}$$

La matrice incompleta associata al sistema è:

$$A = \left(\begin{array}{cc} 2 & -3 \\ 4 & 3 \end{array}\right)$$

e $|A| = 18 \neq 0$. Quindi, è possibile applicare il metodo di Cramer per risolvere il sistema, che è quadrato.

$$x = \frac{\begin{vmatrix} 1 & -3 \\ -2 & 3 \end{vmatrix}}{18} = -\frac{1}{6}$$
$$y = \frac{\begin{vmatrix} 2 & 1 \\ 4 & -2 \end{vmatrix}}{18} = -\frac{4}{9}.$$

Dunque, la soluzione del sistema è $\left(-\frac{1}{6}, -\frac{4}{9}\right)$.

Risolvere, utilizzando il metodo di Cramer, il seguente sistema:

$$\begin{cases} x - y + 3z = 1 \\ 2x + y + 4z = 0 \\ x + 3y + z = -1. \end{cases}$$

La matrice incompleta associata al sistema è:

$$A = \left(\begin{array}{rrr} 1 & -1 & 3 \\ 2 & 1 & 4 \\ 1 & 3 & 1 \end{array}\right).$$

Si vede che $|A|=2 \neq 0$. Questo significa, essendo il sistema quadrato, possiamo utilizzare il metodo di Cramer per calcolare l'unica soluzione del sistema:

$$x = \frac{\begin{vmatrix} 1 & -1 & 3 \\ 0 & 1 & 4 \\ -1 & 3 & 1 \end{vmatrix}}{|A|} = \frac{-4}{2} = -2$$

$$y = \frac{\begin{vmatrix} 1 & 1 & 3 \\ 2 & 0 & 4 \\ 1 & -1 & 1 \end{vmatrix}}{|A|} = \frac{0}{2} = 0$$

$$|1 & -1 & 1 |$$

Risolvere il seguente sistema lineare col metodo di Cramer:

$$\begin{cases} 4x + y + 2z - 3t = 1 \\ 3x - y + t = 0 \\ y - 2z - t = 0 \\ 3x + z - t = 1. \end{cases}$$

Calcoliamo il determinante della matrice incompleta associata al sistema:

$$|A| = \begin{vmatrix} 4 & 1 & 2 & -3 \\ 3 & -1 & 0 & 1 \\ 0 & 1 & -2 & -1 \\ 3 & 0 & 1 & -1 \end{vmatrix} \stackrel{R_2 \mapsto R_2 + R_1}{=} \begin{vmatrix} 4 & 1 & 2 & -3 \\ 7 & 0 & 2 & -2 \\ -4 & 0 & -4 & 2 \\ 3 & 0 & 1 & -1 \end{vmatrix} = - \begin{vmatrix} 7 & 2 \\ -4 & -4 \\ 3 & 1 \end{vmatrix}$$

Dato che $|A| \neq 0$, possiamo applicare il metodo di Cramer:

$$x = \frac{\begin{vmatrix} 0 & -1 & 0 & 1 \\ 0 & 1 & -2 & -1 \\ 1 & 0 & 1 & -1 \end{vmatrix}}{|A|} \xrightarrow{R_4 \mapsto R_4 - R_2} \frac{\begin{vmatrix} 0 & -1 & 0 & 1 \\ 0 & 1 & -2 & -1 \\ 0 & -1 & -1 & 2 \end{vmatrix}}{-2} = \frac{\begin{vmatrix} 1 \cdot (-1)^{1+1} & 1 \\ 1 \cdot (-1)^{1+1} & 1 \\ -1 \cdot (-1)^{1+1} & 1 \end{vmatrix}}{-2}$$

$$y = \frac{\begin{vmatrix} 4 & 1 & 2 & -3 \\ 3 & 0 & 0 & 1 \\ 0 & 0 & -2 & -1 \\ 3 & 1 & 1 & -1 \\ |A| \end{vmatrix}}{|A|} \xrightarrow{R_4 \mapsto R_4 - R_2} \frac{\begin{vmatrix} 4 & 1 & 2 & -3 \\ 3 & 0 & 0 & 1 \\ -1 & 0 & -1 & 2 \\ -2 & -2 & = \end{vmatrix}}{-1 \cdot (-1)^{1+2} \begin{vmatrix} 3 \\ 0 \\ -1 & -2 \end{vmatrix}}$$

$$z = \frac{\begin{vmatrix} 4 & 1 & 1 & -3 \\ 3 & -1 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ |A| & |A| & 1 & 2 & -1 \end{vmatrix}}{|A|} \xrightarrow{R_4 \mapsto R_4 - R_2} \frac{\begin{vmatrix} 4 & 1 & 2 & -3 \\ 3 & -1 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ -1 & -1 & 0 & 2 \end{vmatrix}}{-2} = \frac{1 \cdot (-1)^{1+3} \begin{vmatrix} 3 \\ 0 \\ -1 \\ -1 & -2 \end{vmatrix}}{-2}$$

Dott.ssa L. Marino (Università di Catania) Corso di Algebra Lineare e Geometria Rango. http://www.dmi.unict.it/lmarino

Risolvere il sistema lineare:

$$\begin{cases} 2x + 3y + 4z = 0 \\ 3x + 2y + 2z = 0. \end{cases}$$

La matrice incompleta associata al sistema è:

$$A = \left(\begin{array}{ccc} 2 & 3 & 4 \\ 3 & 2 & 2 \end{array}\right)$$

e dal momento che il seguente minore di ordine 2 è non nullo:

$$\left|\begin{array}{cc} 3 & 4 \\ 2 & 2 \end{array}\right| = -2 \neq 0,$$

possiamo dire che $\rho(A)=2$. Quindi, dal momento che A è una matrice 2×3 e $\rho(A)=2$, possiamo dire che le soluzioni del nostro sistema omogeneo sono:

$$\left(\left|\begin{array}{cc|c}3&4\\2&2\end{array}\right|\lambda,-\left|\begin{array}{cc|c}2&4\\3&2\end{array}\right|\lambda,\left|\begin{array}{cc|c}2&3\\3&2\end{array}\right|\lambda\right)=\left(-2\lambda,8\lambda,-5\lambda\right)$$

con $\lambda \in \mathbb{R}$.

Risolvere il sistema lineare:

$$\begin{cases} 2x + y - z + 3t = 0 \\ x + 2y + 3z - 5t = 0 \\ -x + 3y + 2z = 0. \end{cases}$$

La matrice incompleta associata al sistema omogeneo è:

$$A = \left(\begin{array}{rrrr} 2 & 1 & -1 & 3 \\ 1 & 2 & 3 & -5 \\ -1 & 3 & 2 & 0 \end{array}\right).$$

Calcoliamo il seguente minore di ordine 3 di A:

$$\begin{vmatrix} 1 & -1 & 3 \\ 2 & 3 & -5 \\ 3 & 2 & 0 \end{vmatrix} = 10 \neq 0.$$

Quindi, A è una matrice 3×4 di rango 3. Possiamo, perciò, dire che tutte le soluzioni del sistema sono del tipo:

$$\left(\begin{array}{c|ccc|c} 1 & -1 & 3 & \lambda, - & 2 & -1 & 3 & \lambda, - & 2 & 1 & 3 \\ 2 & 3 & -5 & \lambda, - & 1 & 3 & -5 & \lambda, & 1 & 2 & -5 & \lambda, - & 1 & 2 & 3 \\ 3 & 2 & 0 & -1 & 2 & 0 & -1 & 3 & 0 & -1 & 3 & 2 \end{array} \right)$$

al variare di $\lambda \in \mathbb{R}$. Dal momento che otteniamo tutte le soluzioni al variare di λ nell'insieme dei numeri reali, possiamo dire che l'insieme delle soluzioni è $\{(\lambda, -3\lambda, 5\lambda, 2\lambda) \in \mathbb{R}^4\}$.

Risolvere, al variare del parametro $k \in \mathbb{R}$, il seguente sistema:

$$\begin{cases} 4x + 2ky - z = 3 \\ kx - ky + z = k + 1. \end{cases}$$

La matrice completa associata al sistema è:

$$A|B = \left(\begin{array}{ccccc} 4 & 2k & -1 & | & 3 \\ k & -k & 1 & | & k+1 \end{array} \right) \xrightarrow{R_2 \mapsto R_2 + R_1} \left(\begin{array}{ccccc} 4 & 2k & -1 & | & 3 \\ k+4 & k & 0 & | & k+4 \end{array} \right)$$

Dunque, se $k \neq -4$, $\rho(A|B) = \rho(A) = 2$ e abbiamo 3-2=1 incognita libera, cioè abbiamo ∞^1 soluzioni. Possiamo risolvere il sistema ridotto per sostituzione:

$$\begin{cases} 4x + 2ky - z = 3\\ (k+4)x + ky = k+4 \end{cases} \Rightarrow \begin{cases} x = -\frac{k}{k+4}y + 1\\ z = 4x + 2y - 3 \end{cases} \Rightarrow \begin{cases} x = -\frac{k}{k+4}y + 1\\ z = \frac{2k^2 + 4k}{k+4}y + 1 \end{cases}$$

Dunque, se $k \neq -4$, le soluzioni sono tutte del tipo:

$$\left(-\frac{k}{k+4}y+1, y, \frac{2k^2+4k}{k+4}y+1\right),$$

al variare di $y \in \mathbb{R}$. Sia, ora, k=-4. In tal caso, la matrice completa ridotta è:

$$(4 -8 -1 | 3)$$

Risolvere, al variare di $k \in \mathbb{R}$, il seguente sistema lineare:

$$\begin{cases} x + 5y + 7z + kt = 1 \\ -x + y + (k - 1)z = 2 \\ 2x - 3y + z = -1. \end{cases}$$

 $(1 \ 5 \ 7 \ k \ | \ 1)$

La matrice completa associata al sistema è:

$$A|B = \left(\begin{array}{ccccc} 1 & 5 & 7 & k & | & 1 \\ -1 & 1 & k-1 & 0 & | & 2 \\ 2 & -3 & 1 & 0 & | & -1 \end{array}\right).$$

Supponiamo $k \neq 0$: con questa ipotesi l'elemento k di posto (1,4) nella prima riga è un elemento speciale. Procediamo con la riduzione sostituendo al posto di R_3 $R_3 + 2R_2$:

$$\left(\begin{array}{cccccc} 1 & 5 & 7 & k & | & 1 \\ -1 & 1 & k-1 & 0 & | & 2 \\ 0 & -1 & 2k-1 & 0 & | & 3 \end{array}\right).$$

Quindi, per $k \neq 0$ vediamo che $\rho(A|B) = \rho(A) = 3$, cioè il sistema è possibile e ha ∞^1 soluzioni. Calcoliamo queste soluzioni risolvendo per sostituzione il sistema ridotto:

$$\begin{cases} x + 5y + 7z + kt = 1 \\ -x + y + (k - 1)z = 2 \\ -y + (2k - 1)z = 3 \end{cases} \Rightarrow \begin{cases} y = (2k - 1)z - 3 \\ x = y + (k - 1)z - 2 \\ t = -\frac{1}{L}x - \frac{5}{L}y - \frac{7}{L}z + \frac{1}{L} \end{cases} \Rightarrow \begin{cases} y = (2k - 1)z - 3 \\ x = (3k - 1)z - 2 \\ t = -13z - 13z - 14z -$$

Risolvere, al variare di $k \in \mathbb{R}$, il seguente sistema lineare:

$$\begin{cases} x + 3y + 2z - kt = 1\\ x + 4y + (k+1)z = 1\\ -2x - 5y - 5z = -2. \end{cases}$$

Riduciamo la matrice completa:

$$A|B = \begin{pmatrix} 1 & 3 & 2 & -k & | & 1 \\ 1 & 4 & k+1 & 0 & | & 1 \\ -2 & -5 & -5 & 0 & | & -2 \end{pmatrix} \xrightarrow{R_2 \mapsto R_2 - R_1} \begin{pmatrix} 1 & 3 & 2 \\ R_3 \mapsto R_3 + 2R_1 \\ \hline & & & & & \\ 0 & 1 & k-1 \\ \hline & & & & & \\ 0 & 1 & k-1 & k & | & 0 \\ 0 & 0 & -k & -3k & | & 0 \end{pmatrix}.$$

Quindi, per $k \neq 0$ vediamo che $\rho(A|B) = \rho(A) = 3$, cioè il sistema è possibile e ha ∞^1 soluzioni. Calcoliamo questa soluzioni, ricordando che $k \neq 0$:

$$\begin{cases} x + 3y + 2z - kt = 1 \\ y + (k-1)z + kt = 0 \\ -kz - 3kt = 0 \end{cases} \Rightarrow \begin{cases} z = -3t \\ y = -(k-1)z - kt \\ x = -3y - 2z + kt + 1 \end{cases} \Rightarrow \begin{cases} z = -3t \\ y = (2k - 3)z - 2z + kt + 1 \end{cases}$$

Dunque, per $k \neq 0$ l'insieme delle soluzioni è:

$$\{((-5k+15)t+1,(2k-3)t,-3t,t)\in\mathbb{R}^4\}.$$

Risolvere, al variare di $k \in \mathbb{R}$, il seguente sistema:

$$\begin{cases} kx + z = 0 \\ x + 2y + kz = 1 + k \\ kx + y + z = 1. \end{cases}$$

Riduciamo la matrice completa associata al sistema:

$$A|B = \left(\begin{array}{ccc|c} k & 0 & 1 & | & 0 \\ 1 & 2 & k & | & 1+k \\ k & 1 & 1 & | & 1 \end{array}\right) \xrightarrow{R_2 \mapsto R_2 - kR_1} \left(\begin{array}{ccc|c} k & 0 & 1 & | & 0 \\ 1-k^2 & 2 & 0 & | & 1+k \\ 0 & 1 & 0 & | & 1 \end{array}\right)$$

La matrice ottenuta è ridotta se $1-k^2\neq 0$, cioè per $k\neq \pm 1$. Quindi, per $k\neq \pm 1$, vediamo che $\rho(A|B)=\rho(A)=3$ e il sistema è possibile, più precisamente è determinato, cioè ammette una sola soluzione. Calcoliamo la soluzione:

$$\begin{cases} kx + z = 0 \\ (1 - k^2)x + 2y = 1 + k \\ y = 1 \end{cases} \Rightarrow \begin{cases} y = 1 \\ x = \frac{1}{1 - k} - \frac{2}{1 - k^2}y \\ z = -kx \end{cases} \Rightarrow \begin{cases} y = 1 \\ x = -\frac{1}{k + 1} \\ z = \frac{k}{k + 1} \end{cases}$$

 $\left(-\frac{1}{k+1}, 1, \frac{k}{k+1}\right)$. Sia k = 1. In tal caso la matrice ottenuta è:

$$\left(\begin{array}{ccc|c} 1 & 0 & 1 & | & 0 \\ 0 & 2 & 0 & | & 2 \end{array}\right) \xrightarrow{R_3 \mapsto R_3 - \frac{1}{2}R_2} \left(\begin{array}{ccc|c} 1 & 0 & 1 & | & 0 \\ 0 & 2 & 0 & | & 2 \end{array}\right).$$

Quindi, per $k \neq \pm 1$ vediamo che il sistema ha come unica soluzione

Vediamo che $\rho(A|B)=\rho(A)=2$ e che il sistema ammette ∞^2 soluzioni:

$$\begin{cases} x + z = 0 \\ 2y = 2 \end{cases} \Rightarrow \begin{cases} z = -x \\ y = 1. \end{cases}$$

Risolvere, al variare di $k \in \mathbb{R}$, il seguente sistema:

$$\begin{cases} x + 2y + z = 1 \\ -x + y + 2z = 1 \\ 2x + 2y = 1 - k. \end{cases}$$

Riduciamo la matrice completa associata al sistema:

$$A|B = \begin{pmatrix} 1 & 2 & 1 & | & 1 \\ -1 & 1 & 2 & | & 1 \\ 2 & 2 & 0 & | & 1-k \end{pmatrix} \xrightarrow{R_2 \mapsto R_2 - 2R_1} \begin{pmatrix} 1 & 2 & 1 & | & 1 \\ -3 & -3 & 0 & | & -1 \\ 2 & 2 & 0 & | & 1-k \end{pmatrix}$$
$$\xrightarrow{R_3 \mapsto R_3 + \frac{2}{3}R_2} \begin{pmatrix} 1 & 2 & 1 & | & 1 \\ -3 & 3 & 0 & | & -1 \\ 0 & 0 & 0 & | & \frac{1}{3} - k \end{pmatrix}.$$

Vediamo che, se $k \neq \frac{1}{3}$, allora $\rho(A|B) = 3$, mentre $\rho(A) = 2$. Quindi, per $k \neq \frac{1}{3}$, il sistema è impossibile. Invece, per $k = \frac{1}{3}$, $\rho(A|B) = \rho(A) = 2$ e, quindi, il sistema è possibile e ha ∞^1 soluzioni. Per $k = \frac{1}{3}$ la matrice ridotta diventa:

$$\left(\begin{array}{ccccccc}
1 & 2 & 1 & | & 1 \\
-3 & -3 & 0 & | & -1 \\
0 & 0 & 0 & | & 0
\end{array}\right)$$

e il sistema da risolvere è:

Risolvere, al variare di $k \in \mathbb{R}$, il sistema:

$$\begin{cases} kx + y + z = 1 \\ x + ky + z = k \\ x + y + kz = k^2. \end{cases}$$

Riduciamo la matrice completa associata al sistema:

$$A|B = \begin{pmatrix} k & 1 & 1 & | & 1 \\ 1 & k & 1 & | & k \\ 1 & 1 & k & | & k^2 \end{pmatrix} \xrightarrow{R_3 \mapsto R_3 - kR_1} \begin{pmatrix} k & 1 & 1 & | & 1 \\ 1 - k & k - 1 & 0 & | & k - \\ 1 - k^2 & 1 - k & 0 & | & k^2 - k^2 \end{pmatrix}$$

$$\xrightarrow{R_3 \mapsto R_3 + R_2} \begin{pmatrix} k & 1 & 1 & | & 1 \\ 1 - k & k - 1 & 0 & | & k - 1 \\ 2 - k - k^2 & 0 & 0 & | & k^2 - 1 \end{pmatrix} = \begin{pmatrix} k \\ 1 - k & k \\ (k+2)(1-k) \end{pmatrix}$$

Dunque, vediamo che $\rho(A|B)=\rho(A)=3$ per $k\neq 1,-2$. In questo caso abbiamo 1 sola soluzione:

$$\begin{cases} kx + y + z = 1 \\ (1 - k)x + (k - 1)y = k - 1 \\ (k + 2)(1 - k)x = k^2 - 1 \end{cases} \Rightarrow \begin{cases} x = -\frac{k+1}{k+2} \\ y = x + 1 \\ z = 1 - kx - y \end{cases} \Rightarrow \begin{cases} x = -\frac{k+1}{k+2} \\ y = \frac{1}{k+2} \\ z = \frac{k^2 + 2k - k}{k+2} \end{cases}$$

Dunque, per $k \neq 1, -2$ l'unica soluzione del sistema è

Risolvere, al variare di $k \in \mathbb{R}$, il seguente sistema lineare:

$$\begin{cases} (k+3)x + y + 2z = 1\\ kx + (k-1)y + z = -1\\ (3k+3)x + ky + (k+3)z = 0. \end{cases}$$

Calcoliamo il determinante della matrice incompleta associata al sistema:

$$|A| = \begin{vmatrix} k+3 & 1 & 2 \\ k & k-1 & 1 \\ 3k+3 & k & k+3 \end{vmatrix} = k^2(k-1).$$

Se $k \neq 0, 1$, allora $|A| \neq 0$. Dunque, se $k \neq 0, 1$ possiamo dire che il sistema ammette una sola soluzione e possiamo calcolare questa soluzione con il metodo di Cramer.

$$x = \frac{\begin{vmatrix} 1 & 1 & 2 \\ -1 & k-1 & 1 \\ 0 & k & k+3 \end{vmatrix}}{|A|} = \frac{1}{k-1}$$

$$y = \frac{\begin{vmatrix} k+3 & 1 & 2 \\ k & -1 & 1 \\ 3k+3 & 0 & k+3 \end{vmatrix}}{|A|} = -\frac{2}{k-1}$$

Risolvere, al variare del parametro reale h, il seguente sistema:

$$\begin{cases} x + 2hy + hz = h \\ x + hy + z + 3ht = 0 \\ -x + y + 3t = 0 \\ y + 3t = -1. \end{cases}$$

Calcoliamo il determinante della matrice incompleta:

$$|A| = \begin{vmatrix} 1 & 2h & h & 0 \\ 1 & h & 1 & 3h \\ -1 & 1 & 0 & 3 \\ 0 & 1 & 0 & 3 \end{vmatrix} = -6h.$$

Quindi, per $h \neq 0$, $|A| \neq 0$ e possiamo dire che il sistema ammette una sola soluzione, che possiamo calcolare con il metodo di Cramer:

$$x = \frac{\begin{vmatrix} h & 2h & h & 0 \\ 0 & h & 1 & 3h \\ 0 & 1 & 0 & 3 \\ -1 & 1 & 0 & 3 \end{vmatrix}}{|A|} = -1$$
$$y = \frac{\begin{vmatrix} 1 & h & h & 0 \\ 1 & 0 & 1 & 3h \\ -1 & 0 & 0 & 3 \\ 0 & -1 & 0 & 3 \end{vmatrix}}{|A|} = \frac{1 - h^2}{2h}$$

Risolvere, al variare di $h \in \mathbb{R}$, il seguente sistema:

$$\begin{cases} (h+1)x + y + hz = 1\\ x + hy + z = 2\\ (2h+1)x + (2-h)y + (2h-1)z = h. \end{cases}$$

Riduciamo la matrice incompleta associata al sistema:

$$A|B = \begin{pmatrix} h+1 & 1 & h & | & 1 \\ 1 & h & 1 & | & 2 \\ 2h+1 & 2-h & 2h-1 & | & h \end{pmatrix} \xrightarrow{R_2 \mapsto R_2 - hR_1} \begin{pmatrix} h+1 \\ R_3 \mapsto R_3 - (2-h)R_1 \\ \hline \\ R_3 \mapsto R_3 - (2-h)R_1 \\ \hline \\ h^2 + h - R_2 + R_3 + R_2 \\ \hline \\ R_3 \mapsto R_3 + R_2 \\ \hline \\ \end{pmatrix} \begin{pmatrix} h+1 & 1 & h & | & 1 \\ -h^2 - h + 1 & 0 & 1 - h^2 & | & 2-h \\ 0 & 0 & 0 & | & h \end{pmatrix}.$$

Osserviamo che $-h^2-h+1=0$ per $h=\frac{1+\sqrt{5}}{2}$ e $h=\frac{1-\sqrt{5}}{2}$, mentre $1-h^2=0$ per $h=\pm 1$. Questo significa che per ogni $h\in \mathbb{R}$ $\rho(A)=2$. Invece, per $h\neq 0$ si vede che la terza riga della matrice ottenuta è non nulla e sarà $\rho(A|B)=3$. Concludendo, se $h\neq 0$, $\rho(A|B)=3\neq 2=\rho(A)$. Quindi, per $h\neq 0$ il sistema non ha soluzioni, mentre per h=0 $\rho(A|B)=\rho(A)=2$ e abbiamo ∞^1 soluzioni. In questo caso, la matrice ottenuta diventa:

$$\left(\begin{array}{ccc|ccc}
1 & 1 & 0 & | & 1 \\
1 & 0 & 1 & | & 2 \\
0 & 0 & 0 & | & 0
\end{array}\right)$$

Risolvere, al variare di $h \in \mathbb{R}$, il seguente sistema:

$$\begin{cases} x - hy + 1 = 2 \\ 2x + hy - z = 1 \\ -3x - y + z = 1 \\ 2x + hz = 1 \\ x + y + hz = -2. \end{cases}$$

La matrice completa associata al sistema è:

$$A|B = \left(\begin{array}{ccc|ccc} 1 & -h & 1 & | & 2 \\ 2 & h & -1 & | & 1 \\ -3 & -1 & 1 & | & 1 \\ 2 & 0 & h & | & 1 \\ 1 & 1 & h & | & -2 \end{array}\right).$$

Consideriamo il seguente minore di A|B di ordine 4:

$$\begin{vmatrix} 1 & -h & 1 & | & 2 \\ 2 & h & -1 & | & 1 \\ -3 & -1 & 1 & | & 1 \\ 2 & 0 & h & | & 1 \end{vmatrix} = 3 - 12h^{2}.$$

Questo minore è non nullo per $h \neq \pm \frac{1}{2}$ e, quindi, per $h \neq \pm \frac{1}{2}$ vediamo che $\rho(A|B) = 4$, ma $\rho(A) \leq 3$, in quanto A è una matrice 5×3 . Dunque, per $h \neq \pm \frac{1}{2}$ vediamo che il sistema è impossibile.

Sia $h = -\frac{1}{2}$. In tal caso abbiamo:

Risolvere, al variare del parametro reale k, il seguente sistema omogeneo:

$$\begin{cases} x + 2y + 3z = 0 \\ -x + kz = 0 \\ x + ky + 2kz = 0 \\ x + 2y + kz = 0. \end{cases}$$

Riduciamo la matrice incompleta associata al sistema:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 0 & k \\ 1 & k & 2k \\ 1 & 2 & k \end{pmatrix} \xrightarrow{R_3 \mapsto R_3 - R_1} \begin{pmatrix} 1 & 2 & 3 \\ 0 & 2 & k + 3 \\ 0 & k - 2 & 2k - 3 \\ 0 & 0 & k - 3 \end{pmatrix} \xrightarrow{R_3 \mapsto R_3 - \frac{k-2}{2}R_2}$$

$$\xrightarrow{R_3 \leftrightarrow R_4} \begin{pmatrix}
1 & 2 & 3 \\
0 & 2 & k+3 \\
0 & 0 & k-3 \\
0 & 0 & -\frac{k(k-3)}{2}
\end{pmatrix} \xrightarrow{R_4 \mapsto R_4 + \frac{k}{2}R_3} \begin{pmatrix}
1 & 2 & 3 \\
0 & 2 & k+3 \\
0 & 0 & k-3 \\
0 & 0 & 0
\end{pmatrix}.$$

Si vede che per $k \neq 3$ $\rho(A) = 3$, da cui segue che abbiamo una sola soluzione, che deve necessariamente essere quella tutta nulla, cioè (0,0,0). Per k=3, $\rho(A)=2$ e abbiamo ∞^1 soluzioni e, in tal caso, la matrice ottenuta è:

Risolvere il sistema lineare omogeneo:

$$\begin{cases} kx + 2y + 2kz = 0\\ 2x + y + (k - 1)z + kt = 0\\ 3kx + 3y + 2z + kt = 0. \end{cases}$$

La matrice incompleta associata al sistema è:

$$A = \left(\begin{array}{cccc} k & 2 & 2k & 0 \\ 2 & 1 & k-1 & k \\ 3k & 3 & 2 & k \end{array}\right).$$

Calcoliamo i minori di ordine 3 di A:

$$\begin{vmatrix} 2 & 2k & 0 \\ 1 & k-1 & k \\ 3 & 2 & k \end{vmatrix} = 2k(k-1)$$

$$\begin{vmatrix} k & 2k & 0 \\ 2 & k-1 & k \\ 3k & 2 & k \end{vmatrix} = 7k^2(k-1)$$

$$\begin{vmatrix} k & 2 & 0 \\ 2 & 1 & k \\ 3k & 3 & k \end{vmatrix} = 4k(k-1)$$

$$\begin{vmatrix} k & 2 & 2k \\ 2 & 1 & k-1 \\ 2k & 3 & 2 \end{vmatrix} = -3k^2 + 11k - 8 = -(k-1)(3k-8).$$

Risolvere il sistema lineare:

$$\begin{cases} x + hy + kz = k \\ kx + z = 0 \\ x + hy + z = 2, \end{cases}$$

al variare di $h, k \in \mathbb{R}$.

Consideriamo la matrice completa:

$$A|B = \left(\begin{array}{ccc|c} 1 & h & k & | & k \\ k & 0 & 1 & | & 0 \\ 1 & h & 1 & | & 2 \end{array}\right) \xrightarrow{R_3 \mapsto R_3 - R_2} \left(\begin{array}{ccc|c} 1 & h & k & | & k \\ k & 0 & 1 & | & 0 \\ 0 & 0 & 1 - k & | & 2 - k \end{array}\right).$$

Si vede che, se $h \neq 0$ e $k \neq 0, 1$, $\rho(A|B) = \rho(A) = 3$, cioè per $h \neq 0$ e $k \neq 0, 1$ abbiamo una sola soluzione. Calcoliamo la soluzione:

$$\begin{cases} x + hy + kz = k \\ kx + z = 0 \\ (1 - k)z = 2 - k \end{cases} \Rightarrow \begin{cases} z = \frac{k - 2}{k - 1} \\ x = -\frac{1}{k}z \\ y = -\frac{1}{h}x - \frac{k}{h}z + \frac{k}{h} \end{cases} \Rightarrow \begin{cases} z = \frac{k - 2}{k - 1} \\ x = -\frac{k - 2}{k(k - 1)} \\ y = \frac{k + 2}{hk}. \end{cases}$$

Quindi per $h \neq 0$ e $k \neq 0, 1$ l'unica soluzione del sistema è:

$$\left(-\frac{k-2}{k(k-1)}, \frac{k+2}{hk}, \frac{k-2}{k-1}\right).$$

Sia $h \neq 0$ e sia k = 1. In tal caso, la matrice ottenuta diventa:

Risolvere, al variare di $h, k \in \mathbb{R}$, il seguente sistema:

$$\begin{cases} x - y = h \\ -2x + 2hy = -1 \\ x + ky = k + h. \end{cases}$$

Calcoliamo il determinante della matrice completa:

$$|A|B| = \begin{vmatrix} 1 & -1 & | & h \\ -2 & 2h & | & -1 \\ 1 & k & | & k+h \end{vmatrix} = -k - 2h + 1.$$

Quindi, se $-k-2h+1\neq 0$, $\rho(A|B)=3$, mentre, essendo A un matrice 3×2 , certamente $\rho(A)\leq 2$. Quindi, se $-k-2h-1\neq 0$, concludiamo che il sistema non ha soluzioni.

Sia -k - 2h + 1 = 0, cioè k = -2h + 1. In tal caso:

$$A|B = \begin{pmatrix} 1 & -1 & | & h \\ -2 & 2h & | & -1 \\ 1 & -2h+1 & | & -h+1 \end{pmatrix} \xrightarrow{R_2 \mapsto R_2 + 2R_1} \begin{pmatrix} 1 & -1 & | \\ 0 & 2h-2 & | \\ 0 & -2h+2 & | \\ & & & \\$$

Se $h \neq 1$, vediamo che $\rho(A|B) = \rho(A) = 2$ e il sistema ha una sola soluzione: