CALCULATION OF LIVE LOAD REACTION FOR PIER SUBSTRUCTURE FOR SIMPLY SUPPORTED SPANS OF A TWO LANE BRIDGE STRUCTURE

Centre line of pier w.r.t. the bearings :-

span	load	CQ	9
4.4	12	51	1.93
5.7	' 9	68	2.89
7.9	92	80	3.6
9.4	14	92	4.4
13	.4	100	5.12

8.78

SPAN	LOAD	CG
5.5	29.6	1.73
8.5	36.4	2.99
11.5	43.2	4.33
14.5	50	5.71
24	50	5.71
8 78	ł	

1/{4} cross section

Condition B: MAXIMUM TRANSVERSE MOMENT / REACTION CASE

CASE 1: ONE LANE OF CLASS 70-R(W)

irst span							
SPAN	LOAD	CG					
	8.28	49	3.33				
	5.04	58	2.18				
	8.95						

34	3.715 3.19
51	3.19

second span							
SPAN	LOAD		CG				
;	3	80		3.65			
4.5	2	92		4.4			
8.48	3	100		5.12			
24	4	100		5.12			
8.9	5						
			•				

first span		
3	17	0.87
4.52	29	1.75
8.48	41	2.56
24	49	3.53
8.05		

2/{4} cross section

3/{4}

two span length	load	cg6.8 end	cg2.7 end
9	27.2	4.5	4.5
13.3	38.6	7.1	6.2
14.5	50	8.79	5.71
18.7	52.7	9.24	9.46
18.8	55.4	9.71	9.09
17.6	55.4	9.71	9.09

load	Span2load	cg 6.8	load	Span2 load	cg 6.8
27.2	13.6	1.5	55.4	27.2	4.5
38.6	20.4	4.14	52.7	27.2	4.5
00.0	20.4	7.17	02.1	21.2	4.0
5 0	00.4	4.44	50	00.4	4.4.4
50	20.4	4.14	50	20.4	4.14
52.7	27.2	4.5	38.6	20.4	4.14
55.4	27.2	4.5	27.2	13.6	1.5
			span2	8.78	

load 1	Cg 2.7 end	load 1	Cg 2.7 end
13.6	1.5	28.2	4.07
18.2	1.81	25.5	3.4
25.5	3.4	29.6	1.73
28.2	4.07	18.2	1.81

cross section LLOAD

Braking Force = 16 + 5' (5% extra taken for class A)	% of 55.4		=	18.8	t
Dead load reaction on the pier	, Rg		=	485.0	t
Value of " μ " =	-		=	0.00	
Horizontal force due to temper	ature, $T = \mu^*(Rg+R)$	a)	=	0.0	t
Design horizontal force is high	er of either (B/2+T) or (B-T)	=	18.8	t
(neglecting shear rating of ela	stomeric bearing in	the adjacent s	pan, which is o	n the conse	ervative sid
CL class 70-R- 2.595	2.905	CL o	f c/w 0.84	– CL class	A(1L)
		+	•		_
•		8.4			
Transverse ecc.(class 70 R)			=	2.905	m
Transverse ecc.(class A)			=	-0.84	m
Trans. moment = $0.9*(60)$	0.4*2.9-0*-0.8)		=	112.4	
Net transverse ecc. (for input)			=	1.426	t.m
Long. moment = 50.5*0	.3-28.4*0.3		=	6.6	t.m
Long. Eccentricity (for input)			=	0.084	m

4/{4} cross section