Dreaming with TensorFlow

Martin Wicke

Software For Lab

SSH Access Software: PuTTy and pscp for Windows can be downloaded from www.putty.org

Alternatively you may use a browser-based SSH option

You can copy files (Linux/Mac/Cygwin) to your computer using the following command and the generated password:

```
scp ubuntu@<ec2-address>:/file/location .
```

Or use Winscp from here: www.winscp.net

What we'll do today

- Introduction to machine learning and deep neural networks
- Introduction to convolutional neural networks
- Use a pre-trained model to classify images
- Visualize the features that this model has learned
 - Naive feature visualization
 - Using various optimizations
- Enhance images to look more like what the network expects

What to take away from this CodeLab

- Understand how image classification networks learn
- Play with TensorFlow
- Pretty pictures (and videos)

Connection Instructions

- Navigate to <u>nvlabs.qwiklab.com</u>
- Login or create a new account
- Select the "Instructor-Led Hands-on Labs" Class
- Find the lab called "Machine Learning Using TensorFlow", select it, click Select and then Start

After a short wait, lab instance Connection information will be shown

Please ask Lab Assistants for help!

TensorFlow

- Framework for distributed numerical computation
 - Operations similar to numpy
 - Special functionality for neural networks
 - Automatic differentiation
- Support for CPU and (multi-) GPU
- Computations can be distributed on many workers
- Support for mobile and web deployment
- Open-source: <u>tensorflow.org</u> or <u>github.com/tensorflow/tensorflow/</u>

Machine Learning

Learning some function from data

Supervised learning: Learning some function from examples

Features

Deep Learning

(Deep) Neural Networks

What is a neuron?

Computes weighted sum of the inputs + bias + activation function

Neural Network Layer

- Computes y = f(A*x + b)
- Large matrix multiplication in each layer
- We learn A and b, many parameters
- GPUs are very good at this

How do we compute Labels

- Last layer has a special activation function: softmax
- Outputs probabilities: y_3 = 0.5 means
 50% chance that this image should be labeled "3"
- Translate numerical IDs to strings

Convolutional Layer

- Input has repetitive structure (for example, image)
- Feature has local support (for example, corner)
- Neurons can share parameters
- Drastically reduces number of parameters to learn
- Drastically increases the amount of training data

The first Convolutional Layer

- Computes low-level features
- 7x7 convolution, for each pixel, looks only +/- 3 pixels around
- 7x7x3 parameters per feature
- Learned kernels can look like this, but usually don't:

Krizehvsky et al. (2012)

Visualization by Optimization

- Use the network to create images corresponding to features
- Make this image look more like whatever this layer measures
- Usually, start from random noise

Multiscale Optimization

Multiscale Optimization

Multiscale Optimization

Deep Dream

More fun!

- Play with the objective function
- Make pretty pictures
- Make videos
 - Using video input
 - Using infinite zoom

Do more tutorials on <u>tensorflow.org</u>

Further Hands-On Training

Check out the Self-Paced labs at the conference.

Deep Learning, CUDA, OpenACC, Tools and more!

Just grab a seat and take any available lab

Located in the lower-level outside of LL20C

You will also receive Credits to take additional labs at nvidia.gwiklab.com

Log in using the same account you used in this lab