

GLOBAL INDIAN SCHOOL, AJMAN

GRADE X WORKSHEET [ANSWER KEY] MATHEMATICS

CHAPTER 3: PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

LEVEL 1	
1	(c) $y = 6$
2	(a) unique solution
3	(b) 5, 1
4	149x - 330y = -511 (1)
	-330x + 149y = -32(2)
	$(1) + (2) \Rightarrow -181x - 181y = -543 (\div -181)$
	$\Rightarrow x + y = 3(3)$
	$(1) - (2) \Rightarrow 479x - 479y = -479 (\div 479)$
	$\Rightarrow x - y = -1 (4)$
	Solve (3) and (4) $\Rightarrow x = 1, y = 2$
5	Let Ritu's speed of rowing in still water and the speed of the stream be x
	km/h and y km/h respectively.
	Ritu's speed of rowing;
	Upstream = $(x - y) \text{ km/h}$ & Downstream = $(x + y) \text{ km/h}$
	According to question,
	Ritu can row downstream 20 km in 2 hours,
	\Rightarrow 2(x + y) = 20 [Since, Distance = Speed × Time] \Rightarrow x + y = 10(1)
	Ritu can row upstream 4 km in 2 hours,
	⇒ $2(x - y) = 4$ ⇒ $x - y = 2(2)$

	Solving (1) and (2), we obtain	
	x = 6 & y = 4	
	Hence, Ritu's speed of rowing in still water is 6 km/h and the speed of the	
	stream is 4 km/h.	
6	According to the question, equations are	
	x + 3y = 13(1) & $x + y = 7(2)$	
	From (1), $x = 13 - 3y$	
	put the value of x in (2)	
	$\Rightarrow 3(13-3y) + y = 7$	
	\Rightarrow 39-9y+y=7 \Rightarrow -8y=-32 \Rightarrow y=4	
	put the value of y in $x=13-3y$	
	$\Rightarrow x = 13 - (3 \times 4) \Rightarrow x = 1$	
	$\Rightarrow x = 1, y = 4$	
LEVEL 2		
7	(d) no solution	
8	(d) 36	
9	(c) $(0,0)$ [Solve: $ax + by = 0 & ax - by = 0$]	
10	<u>(i)</u>	
	px + qy = p - q(1)	
	qx - py = p + q(2)	
	Multiplying (1) by p and (2) by q, we obtain	
	$p^2 x + pqy = p^2 - pq \dots (3)$	
	$q^2 x - pqy = pq + q^2 \dots (4)$	
	Adding equations (3) and (4), we obtain	
	$p^2x + q^2x = p^2 + q^2$	
	$(p^2 + q^2) x = p^2 + q^2$	
	$x = (p^2 + q^2)/p^2 + q^2 = 1$	

Substituting x = 1 in equation (1), we obtain y = -1

Therefore, x = 1 and y = -1

<u>(ii)</u>

$$(a - b)x + (a + b) y = a^2 - 2ab - b^2(1)$$

$$(a + b)(x + y) = a^2 + b^2 \dots (2)$$

By solving equation (2), we obtain

$$(a + b)(x + y) = a^2 + b^2$$

$$(a + b)x + (a + b)y = a^2 + b^2(3)$$

Subtracting equation (3) from (1), we obtain

$$(a - b)x - (a + b)x = (a^2 - 2ab - b^2) - (a^2 + b^2)$$

$$[(a - b) - (a + b)] x = a^2 - 2ab - b^2 - a^2 - b^2$$

$$[a - b - a - b] x = -2ab - 2b^2$$

$$-2bx = -2b (a + b)$$

x = (a + b)

Substituting x = (a + b) in equation (1), we obtain

$$(a - b)(a + b) + (a + b) y = a^2 - 2ab - b^2$$

$$(a^2 - b^2) + (a + b) y = a^2 - 2ab - b^2$$

$$(a + b) y = a^2 - 2ab - b^2 - (a^2 - b^2)$$

$$(a + b) y = a^2 - 2ab - b^2 - a^2 + b^2$$

$$y = -2ab/(a+b)$$

Hence,
$$x = a + b$$
, $y = \frac{-2ab}{a+b}$

- Let x be the number of right answers and y be the number of wrong answers.
 - : According to the question,

$$3x-y=40 \rightarrow (i)$$
 and $2x-y=25 \rightarrow (ii)$

On subtraction: x=15

putting the value of x in \rightarrow (i)

$$3(15)-y=40y=5$$

∴ Number of right answers=15 answers

Number of wrong answers=5 answers.

Total Number of questions 5+15=20

Let the number of rows be x and number of students in a row be y.

Total students of the class= Number of rows × Number of students in a

$$row = xy$$

Case 1

Total number of students =(x-1)(y+3)

$$\Rightarrow$$
xy = (x-1)(y+3) = xy-y+3x-3

$$\Rightarrow$$
3x-y-3 = 0

$$\Rightarrow 3x-y = 3.....(i)$$

Case 2

Total number of students=(x+2) (y-3)

$$\Rightarrow$$
xy = xy+2y-3x-6

$$\Rightarrow 3x-2y = -6.....(ii)$$

Subtracting equation (ii) from (i),

$$\Rightarrow$$
(3x-y)-(3x-2y) = 3-(-6)

$$\Rightarrow$$
-y+2y=3+6

By substituting value of y in (i), we get

 \Rightarrow 3x-9=3 \Rightarrow 3x=9+3=12 \Rightarrow x=4 Number of rows, x = 4Number of students in a row, y = 9Number of total students in a class, $xy = 4 \times 9 = 36$ LEVEL 3 (c) $k \neq \sqrt{3}$ 13 14 C (0, b) B (a, 0) A = (0, 0)The area of the triangle = $\frac{1}{2}$ ab [opt (c)] 15 (a) $\alpha = -6$ 16 (3,6) B(2,4) C(3,3) (1, 2)A(0,0)(1,1) (6,0)y+x=6It is seen that the coordinates of the vertices of the obtained triangle are A(0,0), B(2,4), C(3,3)17 Case 1 100 km

when the car travel in same direction, Relative Speed is x - y

Dist = 100km, t = 5 hours

$$100 = (x-y)5 \qquad (: Dist = S \times T)$$

$$x - y = 20 \longrightarrow (1)$$

<u>Case 2:</u>

when car travel in opposite direction, Relative Speed is x + y

Dist = 100km, t = 1 hours

$$100 = (x+y)1$$

$$x + y = 100 \longrightarrow (2)$$

Solving (1) & (2)

Speed of the car at A = 60 km/h, Speed of the car at B = 40 km/h &

The difference of speeds is 20 km/h

18. Let the speed of the train be xkm/h and the time taken by train to travel the given distance be t hours and the distance to travel be d km. We know that, Distance (d) = Speed x Time

Case 1

$$\Rightarrow$$
(x+10)×(t-2)=d

$$\Rightarrow$$
xt+10t-2x-20=d

$$\Rightarrow$$
d+10t-2x-20=d

$$\Rightarrow -2x+10t=20.....(1)$$

Case 2

$$\Rightarrow$$
(x-10)×(t+3)=d

$$\Rightarrow$$
xt-10t+3x-30=d

$$\Rightarrow$$
d-10t+3x-30=d

$$\Rightarrow 3x-10t=30....(2)$$

Solving (1) and (2), we gets

$$\Rightarrow$$
x = 50 & t = 12 hours

Distance covered, $d = xt = 12 \times 50 = 600 \text{Km}$

Hence, the distance covered by the train is 600km.