1. **Connect the following I/O chip** to the bus using **full decoding logic** which gives the I/O ports addresses starting with hex **4050**:

COMP 2825 – Computer Architecture

Review Solutions – Week 5

Page 2 of 3

Circle **ALL of the correct answers** for **each** question below (1 mark each):

2. Computer systems can include the following **types of buses**:

	a. Embedded
	b. Silicon
	c. Software
	d. Memory
	e. I/O
3.	The following system buses have been used in microcomputer systems:
	a. AGP
	b. ASCII
	c. ISA
	d. DDR
	e. PCI
4.	The performance (it's transfer capacity in bytes/second) of a system bus can be improved by:
	a. Increasing the clock speed of the bus
	b. Increasing the number of data wires in the bus
	c. Increasing the number of address wires in the bus
	d. Increasing the number of control wires in the bus
	e. Increasing the number of devices connected to the bus
5.	An asynchronous system bus:
	a. Uses a clock signal to coordinate the signals flowing across the bus
	b. Uses special synchronization signals such as "Master Synch" and "Slave Synch" for coordination
	c. Can perform each bus transaction as quickly as the bus slave is able to handle the data
	d. Has a WAIT signal which can be asserted if the bus slave can't respond quickly enough
	e. Is easier to design and more commonly used than a synchronous bus
6.	A Bus Master :
	a. Can send data to a bus slave
	b. Can receive data from a bus slave
	c. Decides which device will take control of the bus
	d. Can move data to or from memory without the intervention of the CPU
	e. Is always associated with a particular bus slave
7.	The following bus signals are associated with Bus Arbitration :
	a. Memory Request
	b. I/O Request
	c. Bus Grant
	d. Bus Request
	e. Reset
8.	Which of the following are true with regard to the handling of Interrupts :
	a. The CPU can send an interrupt signal to an I/O device to interrupt what it is doing
	b. An I/O device can send an interrupt signal to the CPU to interrupt what it is doing
	c. An I/O device can send an interrupt signal to memory to interrupt what it is doing
	d. The CPU uses an Interrupt Vector Table when an interrupt occurs
	e. When an interrupt occurs, an Interrupt Service Routine is invoked to handle it

- **9.** The Pentium-4 uses a **pipelined bus**. Pipelining of signals on the bus is possible because:
 - a. The Pentium-4 uses negative logic signals
 - b. The Pentium-4 uses multiplexed address and data signals
 - c. The Pentium-4 has different pins for signals used in the different stages of the pipeline
 - d. The Pentium 4 uses the same pins for signals used in the different stages of the pipeline
 - e. Bus transactions don't last very long.
- 10. The following types of devices are connected to a PCI bus in a typical desktop computer system:
 - a. CPU
 - b. Memory
 - c. Keyboard (none of these are normally connected directly to the PCI bus)
 - d. Mouse
 - e. Modem
- 11. Newer versions of the **PCI bus** include:
 - a. PCI-Wireless
 - b. PCI Serial
 - c. PCI Express
 - d. PCI Parallel
 - e. PCI-X
- **12.** A **block transfer** on a computer bus:
 - a. Occurs when the bus is already in use by another device
 - b. Performs multiple data transfers
 - c. Performs multiple address transfers
 - d. Can be performed in a single bus cycle
 - e. Is faster than using individual read or write cycles to transfer data
- 13. The following types of devices are connected to a **USB bus** in a typical desktop computer system:
 - a. CPU
 - b. Memory
 - c. Keyboard
 - d. Mouse
 - e. Modem
- 14. USB V2 operates at the following speed:
 - a. 1.5MByte/sec
 - b. 12MByte/sec
 - c. 60MByte/sec
 - d. 133MByte/sec
 - e. 480MByte/sec
- 15. New versions of the USB standard include the following:
 - a. USB-Link
 - b. USB-Parallel
 - c. USB On the Go
 - d. WiFi USB
 - e. Wireless USB