CYBER 207 Applied Machine Learning for Cybersecurity

Summer 2023

Week 4

Regression

What will be the temperature tomorrow?

Fahrenheit

Classification

Will it be hot or cold tomorrow?

Fahrenheit

Regression

- 1. The system attempts to predict a value for an input based on past data.
- Real number / Continuous numbers Regression problem
- 3. Example 1. Temperature for tomorrow

Classification

- 1. In classification, predictions are made by classifying them into different categories.
- Discreate / categorical variable Classification problem
- 3. Example 1. Type of cancer 2. Cancer Y/N

In [1]:	import pandas as pd	
In [3]:	# Read a comma-separated values (csv) file into DataFrame. # filepath_or_bufferstr, path object or file-like object df = pd.read_csv("diabetes.csv")	
In [4]:	df.head(3)	

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
0	6	148	72	35	0	33.6	0.627	50	1
1	1	85	66	29	0	26.6	0.351	31	0
2	8	183	64	0	0	23.3	0.672	32	1

Species	PetalWidthCm	PetalLengthCm	SepalWidthCm	SepalLengthCm	
Iris-virginica	2.3	5.9	3.2	6.8	
Iris-virginica	2.3	5.1	3.1	6.9	
Iris-setosa	0.2	1.4	3.0	4.9	
Iris-versicolo	1.5	4.5	3.0	5.6	
Iris-setosa	0.2	1.6	3.1	4.8	
Iris-virginica	2.4	5.1	2.8	5.8	
Iris-virginica	2.5	6.1	3.6	7.2	
Iris-setosa	0.3	1.4	3.5	5.1	
Iris-setosa	0.2	1.6	3.2	4.7	
Iris-versicolo	1.4	4.4	3.0	6.6	

Fig.1: Iris dataset having three categories

Input features

 $1 + \exp\left[-\left(\widehat{b} + \widehat{w}_1 \cdot x_1 + \cdots \widehat{w}_n \cdot x_n\right)\right]$

$$W_0 + W_1 X_1 + W_2 X_2 = 0$$

Decision Boundary

Log Loss with Gradient Descent

$$y = g(z) = \frac{1}{1 + e^{-z}} = \frac{e^z}{1 + e^z}$$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

$$P(y = 1 | \theta, x) = g(z) = \frac{1}{1 + e^{-\theta^T x}}$$

$$P(y=0|\theta,x) = 1 - g(z) = 1 - \frac{1}{1 + e^{-\theta^T x}} = \frac{1}{1 + e^{\theta^T x}}$$

$$P(y|\theta, x) = \left(\frac{1}{1 + e^{-\theta^T x}}\right)^y \times \left(1 - \left(\frac{1}{1 + e^{\theta^T x}}\right)\right)^{1 - y}$$

5

$$cost(h_{\theta}(x), y) = \begin{cases} -log(h_{\theta}(x)) & \text{, if } y = 1\\ -log(1 - h_{\theta}(x)) & \text{, if } y = 0 \end{cases}$$

Cost Function

$$cost(h_{\theta}(x), y) = -y^{(i)} \times log(h_{\theta}(x^{(i)})) - (1 - y^{(i)}) \times log(h_{\theta}(x^{(i)}))$$

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \times log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \times log(h_{\theta}(x^{(i)})) \right]$$

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

$$\frac{\partial}{\partial \theta_j} J(\theta) = \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x_j^{(i)}$$

$$\theta_j \leftarrow \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x_j^{(i)}$$

Code Review