Ch5

Shang Xiaojin

2022年12月14日

目录

1	Euler's Method	3
	1.1 Ex	3
	1.2 Code	3
	1.3 Analyse	3
2	Runge-Kutta Methods	4
	2.1 Ex	4
	2.2 code	4
	2.3 OUTPUT	7
3	Multistep Method	8
	3.1 Ex	8
	3.2 code	8
	3.3 OUTCOM	10
4	Higher-Order Equations and Systems of Differential Equations	16
	4.1 Ex	16
	4.2 code	
	43 OUTPUT	17

1 Euler's Method

1.1 Ex

Given the initial-value problem

$$y' = -y + t + 1, 0 \le t \le 2, y(0) = 1$$

with exact solution $y(t) = e^{-t} + t$

- Approximate y(5) using Euler's Method with h=0.2,h=0.1,and h= 0.05
- Determine the optimal value of h to use in computing y(5), assuming $\delta = 10^{-6}$ and that Eq.(5.14) is valid

1.2 Code

• Euler

```
\begin{array}{ll} \textbf{function} \ w = \ Eulers\,(\,f\,\,,a\,\,,b\,\,,y0\,\,,N) \\ h = (\,b-a\,)/N; \\ w = & \textbf{zeros}\,(1\,\,,N+1); \\ w(1) = & y0\,; \\ T = & a\,:\,h\,:\,b\,; \\ t = & T(1)\,; \\ w = & y0\,; \\ \textbf{for} \ i = & 1\,:N \\ & w(\,i\,+1) = & w(\,i\,\,) \,+\,h\,*\,f\,(\,t\,\,,w(\,i\,\,)\,); \\ t = & T(\,i\,+1); \\ \textbf{end} \\ w = & [\,T\,;\,w\,]\,; \\ \textbf{end} \end{array}
```

• main Code

```
\begin{array}{l} f = @(x,y) - y + x + 1; \\ \textbf{format} \ \ long \\ A1 = Eulers(f,0,5,1,25); \\ ans1 = A1(2,26); \\ A2 = Eulers(f,0,5,1,50); \\ ans2 = A2(2,51); \\ A3 = Eulers(f,0,5,1,100); \\ ans3 = A3(2,101); \\ g = @(x) \ \ \textbf{exp}(-x) + x; \\ ture = ones(1,3)*g(5); \\ Anss = [ans1 \ ans2 \ ans3]; \\ Anly = [Anss; ture \ ; \ ture - Anss] \end{array}
```

1.3 Analyse

app	roximate	5.003777893186296	5.005153775207321	5.005920529220334
	true	5.003777893186296	5.005153775207321	5.005920529220334
	error	5.003777893186296	5.005153775207321	5.005920529220334

2 Runge-Kutta Methods

2.1 Ex

1. Use the Modified Euler method to approximate the solutions to each of the following initial value problem, and compare the results to the actual values

$$y' = -(y+1)(y+3), 0 \le t \le 2, y(0) = -2$$

with h = 0.2; actual solution $y(t) = t \tan(\ln t)$

2. Use the results of last question and linear interpolation to approximate values of y(t), and compare the results to the actual values.

$$y(1.3) and y(1.93) \\$$

- 3. repeat 1 using Heun's Method
- 4. repeat 2 using the results of E3
- 5. repeat 1 using the Midpoint Method
- 6. repeat 2 using the results of 5
- 7. repeat 1 using the Runge-Kutta method of order four
- 8. use the results of 7 and Cubic Hermite interpolation to approximate values of y(t)

2.2 code

• Midpoint Method

• Modified Euler

```
\begin{array}{l} \textbf{function} \ \ y = \ Modified\_Euler(f,a,b,y0,N) \\ h = (b-a)/N; \\ w = \ \textbf{zeros}(1,N+1); \\ T = a : h : b; \\ w(1) = y0; \\ \textbf{for} \ \ i = 1 : N \\ w(i+1) = w(i) + (h/2) * (f(T(i),w(i)) + f(T(i+1),w(i) + h * f(T(i),w(i)))); \end{array}
```

```
\mathbf{end}
  y = [T; w];
  end
• Heun
  function y = Heun(f, a, b, y0, N)
  h = (b-a)/N;
 T = a : h : b;
  w = zeros(1,N+1);
  w(1) = y0;
  for i = 1:N
      w(i+1)=w(i)+(h/4)*(f(T(i),w(i))+3*f(T(i)+2*h/3,w(i)+2*h/3*f(T(i),w(i))));
  \mathbf{end}
  y = [T; w];
  \mathbf{end}
• Runge-Kutta(four order)
  function y = Runge_4(f, a, b, y0, N)
  h = (b-a)/N;
  T = a : h : b;
  w = zeros(1,N+1);
  w(1) = y0;
  t = T(1);
  for i = 1:N
      K1 = h*f(t,w(i));
      K2 = h*f(t+h/2, w(i)+K1/2);
      K3 = h*f(t+h/2,w(i)+K2/2);
      K4 = h*f(t+h,w(i)+K3);
      w(i+1) = w(i) + (K1+2*K2+2*K3+K4)/6;
       t = T(i+1);
  \mathbf{end}
  y = [T;w];
  \mathbf{end}
• real
  function y = reals(f, a, b, y0, N)
  h = (b-a)/N;
  t = a : h : b;
  w = zeros(1,N+1);
  w(1) = y0;
  for i = 1:N
      w(i+1) = f(t(i+1));
  \mathbf{end}
  y = [t; w];
  \mathbf{end}
```

• Lagrange interpolation

Temper = [];

```
function g = Lagrange(X, F, a)
 n = size(X, 2);
 L = zeros(1,n);
 T = a*ones(1,n);
 for i = 1:n
      temp = X(1,i) * ones(1,n);
      A = X;
      B = X;
      A(1,i) = a-1;
      B(1,i) = X(1,i) -1;
      L(1, i) = prod(T - A)/prod(temp - B);
 end
 g = \mathbf{dot}(F, L);
 \mathbf{end}
• Cubic Hermite interpolation
 function q = Hermite(X, F, F1)
 n = size(X, 2);
 Q = zeros(2*n);
 Z = \mathbf{zeros}(1, 2*n);
 q = \mathbf{zeros}(1, 2*n);
  for i = 1:n
      Z(1,2*i-1) = X(i);
      Z(1,2*i) = X(i);
      Q(2*i-1,1) = F(i);
      Q(2*i,1) = F(i);
      Q(2*i,2) = F1(i);
      if i > 1
           Q(2*i-1,2)=(Q(2*i-1,1)-Q(2*i-2,1))/(Z(1,2*i-1)-Z(1,2*i-2));
      \mathbf{end}
  for i = 3:2*n
      for j = 3:i
      Q(i,j) = (Q(i,j-1) - Q(i-1,j-1))/(Z(i)-Z(i-j+1));
      end
 \mathbf{end}
 end
  \mathbf{for} \quad i = 1:2*n
      q(i) = Q(i, i);
 end
 \mathbf{end}
• main Code
  f = @(x,y) - (y+1)*(y+3);
```

```
g = @(t) -3 + 2*(1+exp(-2*t))^(-1);
Real = reals (g, 0, 2, -2, 10);
M_E_m = Modified_Euler(f, 0, 2, -2, 10);
Temper = [\text{Temper}; \text{Real}; M_E_m(2,:)];
y1 = Lagrange(M_E_m(1,7:8), M_E_m(2,7:8), 1.3);
y2 = Lagrange(M_Em(1,10:11), M_Em(2,10:11), 1.93);
Interp = [g(1.3) g(1.93) ; y1 y2];
H_m = Heun(f, 0, 2, -2, 10);
Temper = [Temper; H_m(2,:)];
y1 = Lagrange(H_m(1,7:8), H_m(2,7:8), 1.3);
y2 = Lagrange(H_m(1,10:11),H_m(2,10:11),1.93);
Interp = [Interp ; y1 y2];
Mid m = Midpoint Method(f, 0, 2, -2, 10);
Temper = [Temper; Mid m(2,:)];
y1 = Lagrange(Mid_m(1,7:8),Mid_m(2,7:8),1.3);
y2 = Lagrange(Mid_m(1,10:11),Mid_m(2,10:11),1.93);
Interp = [Interp ; y1 y2];
Runge_4_m = Runge_4(f, 0, 2, -2, 10);
Temper = [\text{Temper}; \text{Runge}_4_m(2,:)]
F1 = [f(0,Runge_4_m(2,7)), f(0,Runge_4_m(2,8))];
C = Hermite(Runge_4_m(1,7:8), Runge_4_m(2,7:8), F1);
y1 = C(1) + C(2)*(1.3 - 1.2) + C(3)*(1.3 - 1.2)^2 + C(4)*(1.3 - 1.2)^2*(1.3 - 1.4);
F2 = [f(0,Runge_4_m(2,10)), f(0,Runge_4_m(2,11))];
C = Hermite(Runge\_4\_m(1,10:11), Runge\_4\_m(2,10:11), F2);
y2\!\!=\!\!C(1)+C(2)*(1.93-1.8)+C(3)*(1.93-1.8)^2+C(4)*(1.93-1.8)^2*(1.93-2.0);
Interp = [Interp ; y1 y2]
```

2.3 OUTPUT

	X	real value	Modified Euler	hune's	Midpoint	Runge
	0	-2.0000000000000000	-2.0000000000000000	-2.0000000000000000	-2.0000000000000000	-2.0000000000000000
0.20000000	00000000	-1.802624679775096	-1.8040000000000000	-1.802666666666667	-1.8020000000000000	-1.802627392079468
0.40000000	00000000	-1.620051037744775	-1.622920593716224	-1.620503746898940	-1.619296562227232	-1.620057638804308
0.60000000	00000000	-1.462950433001964	-1.467240245458374	-1.464254798809155	-1.462766901437550	-1.462962838790012
0.80000000	00000000	-1.335963229732151	-1.341320216751159	-1.338293908391554	-1.336789994698356	-1.335982382711483
1.00000000	00000000	-1.238405844044235	-1.244290314141912	-1.241586576320713	-1.240246987950836	-1.238430738149290
1.20000000	00000000	-1.166345392987845	-1.172210612839059	-1.169993230887207	-1.168897587973531	-1.166373542889978
1.40000000	00000000	-1.114648351797737	-1.120076330215134	-1.118361779329033	-1.117516487371196	-1.114676938045796
1.60000000	00000000	-1.078331445593529	-1.083078446495682	-1.081805369225573	-1.081178817189693	-1.078358205408060
1.80000000	00000000	-1.053193987153732	-1.057169890718042	-1.056250581139051	-1.055798721566814	-1.053217547197435

X	1.3	1.93
real	-1.138276840686693	-1.041266594453812
linear + Modified Euler	-1.146143471527097	-1.045485444078921
linear + hune's	-1.144177505108120	-1.044740343780932
linear+Midpoint	-1.143207037672364	-1.044374305696879
Cubic Hermite interpolation $+$ Runge	-1.138303644117032	-1.041286207998959

3 Multistep Method

3.1 Ex

1. Use each of the Adams-Bashforth methods to approximate the solution to this initial-value problems. Use starting values obtained from the Runge-Kutta method of order fout.

$$y' = -(y+1)(y+3), 0 \le t \le 2, y(0) = -2,$$

with h = 0.1; actual solution $y(t) = -3 + 2/(1 + e^{2t})$

- 2. Use Algorithm5.4 to approximate the solution to the initial value problems in 1
- 3. Change Algorithm 5.4, st corrector can be iterated for a given number p iterations. Repeat 1 with p = 2,3 and 4.

3.2 code

• Adams-Bashforth two-Step Explicit Method

```
\begin{array}{l} \textbf{function} \;\; y = \; Adams\_two\_E(\,f\,\,,a\,\,,b\,\,,\!W,\!N) \\ h = \; (b-a)/N; \\ w = \; [W\;\, \textbf{zeros}\,(1\,,\!N-1)]; \\ t = \; a\,:\,h\,:\,b\,; \\ \textbf{for} \;\; i \; = \; 3\,:\,N+1 \\ \qquad w(\,i\,\,) \; = \; w(\,i\,-1) \; + \; (h/2)\,*\,(3\,*\,f\,(\,t\,(\,i\,-1)\,,\!w(\,i\,-1)) \; - \; f\,(\,t\,(\,i\,-2)\,,\!w(\,i\,-2))); \\ \textbf{end} \\ y = \; [\,t\,\,;\!w\,]; \\ \textbf{end} \end{array}
```

• Adams-Bashforth Three-Step Explicit Method

• Adams-Bashforth Four-Step Explicit Method

```
\begin{array}{lll} & \textbf{function} & y = Adams\_four\_E(\,f\,\,,a\,\,,b\,\,,\!W,\!N) \\ & h = (\,b\!-\!a\,)/N\,; \\ & w = [W\,\,\textbf{zeros}\,(1\,\,,\!N\!-\!3)]\,; \\ & t = a\,:\!h\,:\!b\,; \\ & \textbf{for} & i = 5\!:\!N\!+\!1 \\ & w(\,i\,) = w(\,i\,-\!1)\,+\,(h/24)\!*(55\!*f(\,t\,(i\,-\!1),\!w(\,i\,-\!1))\,-\,59\!*f(\,t\,(i\,-\!2),\!w(\,i\,-\!2))\,\ldots \\ & +\,37\!*f(\,t\,(i\,-\!3),\!w(\,i\,-\!3))\,-\,9\!*f(\,t\,(\,i\,-\!4),\!w(\,i\,-\!4)))\,; \end{array}
```

```
\label{eq:condition} \begin{array}{ll} \mathbf{end} \\ y \ = \ [\ t\ ; w\ ]\ ; \\ \mathbf{end} \end{array}
```

• Adams-Bashforth Five-Step Explicit Method

• Adams Fourth-Order Predictor-Corrector

```
function y =Adams_four_corrector(f,a,b,y0,N)
h = (b-a)/N;
t = a : h : b;
\mathbf{w} = [\mathbf{y}0 \ \mathbf{zeros}(1, \mathbf{N})];
for i = 1:3
    K1 = h*f(t(i),w(i));
    K2 = h*f(t(i)+h/2, w(i)+K1/2);
    K3 = h*f(t(i)+h/2,w(i)+K2/2);
    K4 = h*f(t(i)+h,w(i)+K3);
    w(i+1) = w(i) + (K1+2*K2+2*K3+K4)/6;
end
for i = 5:N+1
     w(i) = w(i-1) + (h/24)*(55*f(t(i-1),w(i-1)) - 59*f(t(i-2),w(i-2))...
     +37*f(t(i-3),w(i-3)) - 9*f(t(i-4),w(i-4)));
     w(i) = w(i-1) + (h/24)*(9*f(t(i),w(i)) + 19*f(t(i-1),w(i-1))...
      -5*f(t(i-2),w(i-2)) + f(t(i-3),w(i-3));
end
y = [t; w];
end
```

• Algorithm 5.4 Changed

```
\begin{array}{ll} \textbf{function} & y = & \text{Adams\_four\_corrector\_any} (\,f\,\,, a\,\,, b\,\,, W, N) \\ h = & (b-a)/N; \\ n = & \textbf{max} (\,\textbf{size} \,(W)\,); \\ t = & a\,:\, h\,:\, b\,; \\ \textbf{if} & n < 4 \\ & a1 = a + (n-1)*h; \\ & a2 = a + 3*h; \\ & y0 = & W(n\,); \end{array}
```

```
\begin{array}{l} N1 = 4-n\,; \\ temp = Runge\_4(\,f\,,a1\,,a2\,,y0\,,N1\,)\,; \\ w = [W\,\,temp\,(2\,,2\,:N1+1)\,\,\,\mathbf{zeros}\,(1\,,N-4)]\,; \\ \textbf{else} \\ w = [W\,\,\mathbf{zeros}\,(1\,,N-3)]\,; \\ \textbf{end} \\ \textbf{for} \,\,\, \mathbf{i} \,=\, 5\,:N+1 \\ w(\,\mathbf{i}\,) \,=\, w(\,\mathbf{i}\,-1)\,+\,\,(h/24)\,*(55\,*\,f\,(\,\mathbf{t}\,(\,\mathbf{i}\,-1)\,,w(\,\mathbf{i}\,-1))\,-\,\,59\,*\,f\,(\,\mathbf{t}\,(\,\mathbf{i}\,-2)\,,w(\,\mathbf{i}\,-2))\,\ldots\, \\ +\,\,37\,*\,f\,(\,\mathbf{t}\,(\,\mathbf{i}\,-3)\,,w(\,\mathbf{i}\,-3))\,-\,\,9\,*\,f\,(\,\mathbf{t}\,(\,\mathbf{i}\,-4)\,,w(\,\mathbf{i}\,-4)))\,; \\ w(\,\mathbf{i}\,) \,=\, w(\,\mathbf{i}\,-1)\,+\,\,(h/24)\,*(9\,*\,f\,(\,\mathbf{t}\,(\,\mathbf{i}\,)\,,w(\,\mathbf{i}\,))\,+\,\,19\,*\,f\,(\,\mathbf{t}\,(\,\mathbf{i}\,-1)\,,w(\,\mathbf{i}\,-1))\,\ldots\, \\ -\,\,5\,*\,f\,(\,\mathbf{t}\,(\,\mathbf{i}\,-2)\,,w(\,\mathbf{i}\,-2))\,+\,\,f\,(\,\mathbf{t}\,(\,\mathbf{i}\,-3)\,,w(\,\mathbf{i}\,-3)))\,; \\ \textbf{end} \\ y \,=\, [\,\mathbf{t}\,;w\,]\,; \\ \textbf{end} \\ y \,=\, [\,\mathbf{t}\,;w\,]\,; \\ \textbf{end} \end{array}
```

• main Code

```
format long
f = @(x,y) - (y+1)*(y+3);
g = @(t) -3 + 2*(1+exp(-2*t))^(-1);
W = Runge_4(f, 0, 0.1, -2, 1); W = W(2, :);
Real = reals (g,0,2,-2,20);
two = Adams_two_E(f, 0, 2, W, 20);
two = [Real,;two(2,:);abs(Real(2,:) - two(2,:))./abs(Real(2,:))] %X值 真实值 近似值 相对误差
W = Runge_4(f, 0, 0.2, -2, 2); W = W(2, :);
three = Adams_three_E(f, 0, 2, W, 20);
three = [\text{Real}; \text{three}(2,:); abs(\text{Real}(2,:) - \text{three}(2,:))./abs(\text{Real}(2,:))]
W = Runge_4(f, 0, 0.3, -2, 3); W = W(2, :);
four = Adams_four_E(f, 0, 2, W, 20);
four = [Real; four(2,:); abs(Real(2,:) - four(2,:))./abs(Real(2,:))]
W = Runge_4(f, 0, 0.4, -2, 4); W = W(2, :);
five = Adams\_five\_E(f, 0, 2, W, 20);
five = [Real; five (2,:); abs(Real(2,:) - five (2,:))./abs(Real(2,:))]
Adams_C = Adams_four_corrector(f, 0, 2, -2, 20);
Adams\_C = [Real; Adams\_C(2,:); abs(Real(2,:) - Adams\_C(2,:))./abs(Real(2,:))]
W = Real(2, 1:2);
Adams_2 = Adams_four_corrector_any(f,0,2,W,20);
Adams_2 = [Real; Adams_2(2,:); abs(Real(2,:) - Adams_2(2,:))./abs(Real(2,:))]
W = Real(2, 1:3);
Adams_3 = Adams_four_corrector_any(f,0,2,W,20);
Adams_3 = [Real; Adams_3(2,:); abs(Real(2,:) - Adams_3(2,:))./abs(Real(2,:))]
W = Real(2, 1:4);
Adams_4 = Adams_four_corrector_any(f,0,2,W,20);
Adams\_4 = [Real; Adams\_4(2,:); abs(Real(2,:) - Adams\_4(2,:))./abs(Real(2,:))]
```

3.3 OUTCOM

X	real value	approximate	relative value
0	-2.00000000000000000	-2.00000000000000000	0
0.1000000000000000	-1.900332005375044	-1.900332089046914	0.000000044030132
0.2000000000000000	-1.802624679775096	-1.801822142917977	0.000445204631959
0.3000000000000000	-1.708687387548409	-1.707216627749933	0.000860754172586
0.4000000000000000	-1.620051037744775	-1.618111220057970	0.001197380601975
0.5000000000000000	-1.537882842739990	-1.535700970941505	0.001418750335102
0.6000000000000000	-1.462950433001964	-1.460745057186924	0.001507484987386
0.7000000000000000	-1.395632222882836	-1.393585761769941	0.001466332662246
0.8000000000000000	-1.335963229732151	-1.334206701351746	0.001314802938669
0.9000000000000000	-1.283702129800975	-1.282311897414077	0.001082986741725
1.00000000000000000	-1.238405844044235	-1.237409293476838	0.000804704348086
1.10000000000000000	-1.199500978239370	-1.198887170698494	0.000511719083196
1.20000000000000000	-1.166345392987845	-1.166077206205439	0.000229937704576
1.3000000000000000	-1.138276840686694	-1.138302201843384	0.000022280306323
1.4000000000000000	-1.114648351797737	-1.114909304845072	0.000234112441752
1.5000000000000000	-1.094851746355133	-1.095290980875149	0.000401181732118
1.6000000000000000	-1.078331445593529	-1.078896465335535	0.000523975948504
1.70000000000000000	-1.064590929396901	-1.065236303106948	0.000606217554768
1.80000000000000000	-1.053193987153732	-1.053882192382754	0.000653445839434
1.90000000000000000	-1.043762541872261	-1.044463869814866	0.000671922889038
2.00000000000000000	-1.035972419924183	-1.036664318933720	0.000667873966748
_			

X	real value	approximate	relative value
0	-2.00000000000000000	-2.0000000000000000	0
0.1000000000000000	-1.900332005375044	-1.900332089046914	0.000000044030132
0.2000000000000000	-1.802624679775096	-1.802624856125257	0.000000097829661
0.3000000000000000	-1.708687387548409	-1.708767112050842	0.000046658331427
0.4000000000000000	-1.620051037744775	-1.620243270294086	0.000118658329171
0.5000000000000000	-1.537882842739990	-1.538198838736886	0.000205474687742
0.6000000000000000	-1.462950433001964	-1.463379066932855	0.000292992791294
0.7000000000000000	-1.395632222882836	-1.396146045779654	0.000368164970966
0.800000000000000	-1.335963229732151	-1.336526211650152	0.000421405249390
0.9000000000000000	-1.283702129800975	-1.284277197655288	0.000447976084921
1.00000000000000000	-1.238405844044235	-1.238960518407062	0.000447893851191
1.1000000000000000	-1.199500978239370	-1.200010571664499	0.000424837857054
1.20000000000000000	-1.166345392987845	-1.166793981111214	0.000384610018667
1.3000000000000000	-1.138276840686694	-1.138656633640604	0.000333656049508
1.4000000000000000	-1.114648351797737	-1.114958168543800	0.000277950212336
1.50000000000000000	-1.094851746355133	-1.095095177144217	0.000222341326023
1.6000000000000000	-1.078331445593529	-1.078515096001344	0.000170309795347
1.7000000000000000	-1.064590929396901	-1.064722956444133	0.000124016693724
1.8000000000000000	-1.053193987153732	-1.053283000177796	0.000084517216344
1.9000000000000000	-1.043762541872261	-1.043816854832376	0.000052035743702
2.00000000000000000	-1.035972419924183	-1.035999598668512	0.000026235007618

X	real value	approximate	relative value
0	-2.00000000000000000	-2.00000000000000000	0
0.10000000000000000	-1.900332005375044	-1.900332089046914	0.000000044030132
0.20000000000000000	-1.802624679775096	-1.802624856125257	0.000000097829661
0.3000000000000000	-1.708687387548409	-1.708687676018630	0.000000168825627
0.4000000000000000	-1.620051037744775	-1.620089945099723	0.000024016129147
0.50000000000000000	-1.537882842739990	-1.537937175207833	0.000035329393328
0.6000000000000000	-1.462950433001964	-1.463005338962106	0.000037530977744
0.70000000000000000	-1.395632222882836	-1.395671437512254	0.000028098111218
0.8000000000000000	-1.335963229732151	-1.335979246211470	0.000011988712685
0.90000000000000000	-1.283702129800975	-1.283692373546538	0.000007600092117
1.00000000000000000	-1.238405844044235	-1.238373355911001	0.000026233833917
1.10000000000000000	-1.199500978239370	-1.199451219736751	0.000041482669479
1.20000000000000000	-1.166345392987845	-1.166285129741235	0.000051668439702
1.30000000000000000	-1.138276840686694	-1.138212275019395	0.000056722288455
1.4000000000000000	-1.114648351797737	-1.114584644111368	0.000057154963955
1.50000000000000000	-1.094851746355133	-1.094792499471376	0.000054114069740
1.60000000000000000	-1.078331445593529	-1.078278907620805	0.000048721543768
1.70000000000000000	-1.064590929396901	-1.064546121119952	0.000042089666286
1.80000000000000000	-1.053193987153732	-1.053157083405705	0.000035039839267
1.90000000000000000	-1.043762541872261	-1.043733105761996	0.000028201922453
2.00000000000000000	-1.035972419924183	-1.035949689324408	0.000021941317489

X	real value	approximate	relative value
0	-2.00000000000000000	-2.00000000000000000	0
0.1000000000000000	-1.900332005375044	-1.900332089046914	0.000000044030132
0.2000000000000000	-1.802624679775096	-1.802624856125257	0.000000097829661
0.3000000000000000	-1.708687387548409	-1.708687676018630	0.000000168825627
0.4000000000000000	-1.620051037744775	-1.620051464009317	0.000000263117971
0.5000000000000000	-1.537882842739990	-1.537867616851528	0.000009900551615
0.60000000000000000	-1.462950433001964	-1.462922613604022	0.000019015953866
0.7000000000000000	-1.395632222882836	-1.395592813296701	0.000028237801829
0.8000000000000000	-1.335963229732151	-1.335920420345938	0.000032043835683
0.90000000000000000	-1.283702129800975	-1.283659516989099	0.000033195249028
1.00000000000000000	-1.238405844044235	-1.238369304598727	0.000029505226969
1.10000000000000000	-1.199500978239370	-1.199471171030549	0.000024849674458
1.20000000000000000	-1.166345392987845	-1.166324435299833	0.000017968680751
1.3000000000000000	-1.138276840686694	-1.138262570458784	0.000012536693535
1.4000000000000000	-1.114648351797737	-1.114640966295674	0.000006625858327
1.50000000000000000	-1.094851746355133	-1.094848145492648	0.000003288904180
1.60000000000000000	-1.078331445593529	-1.078331786665552	0.000000316296093
1.70000000000000000	-1.064590929396901	-1.064592294564497	0.000001282340060
1.80000000000000000	-1.053193987153732	-1.053197257236194	0.000003104919419
1.9000000000000000	-1.043762541872261	-1.043765134846931	0.000002484257258
2.00000000000000000	-1.035972419924183	-1.035976006728739	0.000003462258731

• Adams Corrector

X	real value	approximate	relative value
0	-2.00000000000000000	-2.00000000000000000	0
0.1000000000000000	-1.900332005375044	-1.900332089046914	0.000000044030132
0.2000000000000000	-1.802624679775096	-1.802624856125257	0.000000097829661
0.3000000000000000	-1.708687387548409	-1.708687676018630	0.000000168825627
0.4000000000000000	-1.620051037744775	-1.620048210750588	0.000001745003164
0.5000000000000000	-1.537882842739990	-1.537878842588273	0.000002601077017
0.6000000000000000	-1.462950433001964	-1.462947169978559	0.000002230440165
0.7000000000000000	-1.395632222882836	-1.395631160671330	0.000000761097006
0.8000000000000000	-1.335963229732151	-1.335965152386325	0.000001439152015
0.9000000000000000	-1.283702129800975	-1.283707122024276	0.000003888926555
1.00000000000000000	-1.238405844044235	-1.238413444347288	0.000006137166656
1.10000000000000000	-1.199500978239370	-1.199510408550067	0.000007861861614
1.20000000000000000	-1.166345392987845	-1.166355781050363	0.000008906506238
1.30000000000000000	-1.138276840686694	-1.138287385634645	0.000009263957215
1.4000000000000000	-1.114648351797737	-1.114658418442201	0.000009031228950
1.50000000000000000	-1.094851746355133	-1.094860897430323	0.000008358277931
1.60000000000000000	-1.078331445593529	-1.078339431346485	0.000007405657128
1.70000000000000000	-1.064590929396901	-1.064597654254872	0.000006316846955
1.80000000000000000	-1.053193987153732	-1.053199468693826	0.000005204682291
1.90000000000000000	-1.043762541872261	-1.043766871670757	0.000004148260090
2.00000000000000000	-1.035972419924183	-1.035975731058299	0.000003196160489

ullet Algorithm Changed with 2

X	real value	approximate	relative value
0	-2.00000000000000000	-2.00000000000000000	0
0.1000000000000000	-1.900332005375044	-1.900332005375044	0
0.20000000000000000	-1.802624679775096	-1.802624774906202	0.000000052773662
0.3000000000000000	-1.708687387548409	-1.708687598679180	0.000000123563135
0.4000000000000000	-1.620051037744775	-1.620048138440666	0.000001789637512
0.5000000000000000	-1.537882842739990	-1.537878776127216	0.000002644292960
0.6000000000000000	-1.462950433001964	-1.462947109846071	0.000002271543737
0.7000000000000000	-1.395632222882836	-1.395631107033229	0.000000799529839
0.800000000000000	-1.335963229732151	-1.335965105144497	0.000001403790392
0.9000000000000000	-1.283702129800975	-1.283707080878461	0.000003856874092
1.00000000000000000	-1.238405844044235	-1.238413408858117	0.000006108509515
1.10000000000000000	-1.199500978239370	-1.199510378195962	0.000007836556003
1.20000000000000000	-1.166345392987845	-1.166355755274272	0.000008884406360
1.3000000000000000	-1.138276840686694	-1.138287363879390	0.000009244844769
1.4000000000000000	-1.114648351797737	-1.114658400175034	0.000009014840672
1.50000000000000000	-1.094851746355133	-1.094860882158313	0.000008344329002
1.60000000000000000	-1.078331445593529	-1.078339418624741	0.000007393859509
1.70000000000000000	-1.064590929396901	-1.064597643689502	0.000006306922608
1.80000000000000000	-1.053193987153732	-1.053199459941324	0.000005196371855
1.90000000000000000	-1.043762541872261	-1.043766864435137	0.000004141327843
2.00000000000000000	-1.035972419924183	-1.035975725086961	0.000003190396495

X	real value	approximate	relative value
0	-2.00000000000000000	-2.00000000000000000	0
0.1000000000000000	-1.900332005375044	-1.900332005375044	0
0.2000000000000000	-1.802624679775096	-1.802624679775096	0
0.3000000000000000	-1.708687387548409	-1.708687508092220	0.000000070547609
0.4000000000000000	-1.620051037744775	-1.620048053749162	0.000001841914571
0.5000000000000000	-1.537882842739990	-1.537878698260651	0.000002694925272
0.60000000000000000	-1.462950433001964	-1.462947039394377	0.000002319701004
0.70000000000000000	-1.395632222882836	-1.395631044190443	0.000000844558025
0.8000000000000000	-1.335963229732151	-1.335965049795591	0.000001362360430
0.90000000000000000	-1.283702129800975	-1.283707032671695	0.000003819321169
1.00000000000000000	-1.238405844044235	-1.238413367278721	0.000006074934580
1.10000000000000000	-1.199500978239370	-1.199510342632848	0.000007806907745
1.20000000000000000	-1.166345392987845	-1.166355725074797	0.000008858513965
1.30000000000000000	-1.138276840686694	-1.138287338390760	0.000009222452474
1.4000000000000000	-1.114648351797737	-1.114658378773074	0.000008995640033
1.50000000000000000	-1.094851746355133	-1.094860864265506	0.000008327986326
1.60000000000000000	-1.078331445593529	-1.078339403719845	0.000007380037324
1.70000000000000000	-1.064590929396901	-1.064597631311030	0.000006295295164
1.80000000000000000	-1.053193987153732	-1.053199449686824	0.000005186635281
1.90000000000000000	-1.043762541872261	-1.043766855957827	0.000004133205967
2.00000000000000000	-1.035972419924183	-1.035975718090894	0.000003183643355

X	real value	approximate	relative value
0	-2.0000000000000000	-2.0000000000000000	0
0.10000000000000000	-1.900332005375044	-1.900332005375044	0
0.2000000000000000	-1.802624679775096	-1.802624679775096	0
0.300000000000000	-1.708687387548409	-1.708687387548409	0
0.4000000000000000	-1.620051037744775	-1.620047941741467	0.000001911052946
0.5000000000000000	-1.537882842739990	-1.537878595332317	0.000001911052940
			0.00000=.0=000000
0.6000000000000000	-1.462950433001964	-1.462946946191019	0.000002383410174
0.7000000000000000	-1.395632222882836	-1.395630961054740	0.000000904126514
0.800000000000000	-1.335963229732151	-1.335964976573867	0.000001307552242
0.9000000000000000	-1.283702129800975	-1.283706968898228	0.000003769641835
1.000000000000000000	-1.238405844044235	-1.238413312272710	0.000006030517791
1.10000000000000000	-1.199500978239370	-1.199510295585869	0.000007767685619
1.20000000000000000	-1.166345392987845	-1.166355685123456	0.000008824260526
1.30000000000000000	-1.138276840686694	-1.138287304671467	0.000009192829371
1.40000000000000000	-1.114648351797737	-1.114658350460099	0.000008970239220
1.50000000000000000	-1.094851746355133	-1.094860840594841	0.000008306366353
1.60000000000000000	-1.078331445593529	-1.078339384001934	0.000007361751748
1.70000000000000000	-1.064590929396901	-1.064597614935364	0.000006279913043
1.8000000000000000	-1.053193987153732	-1.053199436120990	0.000005173754621
1.90000000000000000	-1.043762541872261	-1.043766844743066	0.000004122461415
2.00000000000000000	-1.035972419924183	-1.035975708835690	0.000003174709523

4 Higher-Order Equations and Systems of Differential Equations

4.1 Ex

Use the Runge-Kutta for systems Algorithm to approximate the solutions of the following higer-order differential equations, and compare the results to the actual solutions.

$$y''' + 2y'' - y' - 2y = e^t, 0 \le t \le 3, y(0) = 1, y'(0) = 2y''(0) = 0$$

with h = 0.2, actual solution y(t) = $\frac{43}{36}e^t + \frac{1}{4}e^{-t} - \frac{4}{9}e^{-2t} + \frac{1}{6}te^t$

4.2 code

```
format long  \begin{split} &\text{f1} = @(\texttt{t} \, , \texttt{x} \, , \texttt{y} \, , \texttt{z} \, ) \, \texttt{y} \, ; \\ &\text{f2} = @(\texttt{t} \, , \texttt{x} \, , \texttt{y} \, , \texttt{z} \, ) \, \texttt{z} \, ; \\ &\text{f3} = @(\texttt{t} \, , \texttt{x} \, , \texttt{y} \, , \texttt{z} \, ) \, \textbf{exp}(\texttt{t}) \, - \, 2*\texttt{z} \, + \, \texttt{y} + 2*\texttt{x} \, ; \\ &\text{w} = [] \, ; \\ &\text{k} = [] \, ; \\ &\text{k} = [] \, ; \\ &\text{t} = 0 \, ; \\ &\text{w}(\texttt{1} \, , \texttt{1}) \, = \, \texttt{1} \, ; \\ &\text{w}(\texttt{2} \, , \texttt{1}) \, = \, \texttt{2} \, ; \\ &\text{w}(\texttt{3} \, , \texttt{1}) \, = \, \texttt{0} \, ; \end{split}
```

```
h = 0.2;
N = 3/0.2;
for i = 2:N+1
    k(1,1) = h*f1(t,w(1,i-1),w(2,i-1),w(3,i-1));
    k(1,2) = h*f2(t,w(1,i-1),w(2,i-1),w(3,i-1));
    k(1,3) = h*f3(t,w(1,i-1),w(2,i-1),w(3,i-1));
    k(2,1) = h*f1(t+h/2,w(1,i-1) + k(1,1)/2,w(2,i-1) + k(1,2)/2,w(3,i-1)+k(1,3)/2);
    k(2,2) = h*f2(t+h/2,w(1,i-1) + k(1,1)/2,w(2,i-1) + k(1,2)/2,w(3,i-1)+k(1,3)/2);
    k(2,3) = h*f3(t+h/2,w(1,i-1) + k(1,1)/2,w(2,i-1) + k(1,2)/2,w(3,i-1)+k(1,3)/2);
    k(3,1) = h*f1(t+h/2,w(1,i-1) + k(2,1)/2,w(2,i-1) + k(2,2)/2,w(3,i-1)+k(2,3)/2);
    k(3,2) = h*f2(t+h/2,w(1,i-1) + k(2,1)/2,w(2,i-1) + k(2,2)/2,w(3,i-1)+k(2,3)/2);
    k(3,3) = h*f3(t+h/2,w(1,i-1) + k(2,1)/2,w(2,i-1) + k(2,2)/2,w(3,i-1)+k(2,3)/2);
    k(4,1) = h*f1(t+h,w(1,i-1) + k(3,1),w(2,i-1) + k(3,2),w(3,i-1)+k(3,3));
    k(4,2) = h * f2(t+h, w(1,i-1) + k(3,1), w(2,i-1) + k(3,2), w(3,i-1) + k(3,3));
    k(4,3) = h*f3(t+h,w(1,i-1) + k(3,1),w(2,i-1) + k(3,2),w(3,i-1)+k(3,3));
    for j = 1:3
        w(j,i) = w(j,i-1) + (k(1,j) + 2*k(2,j) + 2*k(3,j) + k(4,j))/6;
    end
    t = (i-1)*h;
end
t = 0:0.2:3;
[t;w]
g = @(t) 43/36*exp(t) + 1/4*exp(-t) -4/9 * exp(-2*t) + 1/6*t*exp(t);
Real = reals(g, 0, 3, 1, 15)
abs(Real(2,:) - w(1,:))./abs(Real(2,:))
```

4.3 OUTPUT

t	real value	approximate	relative error
0	1.00000000000000000	1.00000000000000000	0
0.20000000000000000	1.406373831994753	1.406336780612050	0.000026345329997
0.4000000000000000	1.849234951704414	1.849181455163592	0.000028929012386
0.6000000000000000	2.361970373123576	2.361909032700863	0.000025970022068
0.8000000000000000	2.977624243641124	2.977556432805527	0.000022773469736
1.00000000000000000	3.731704445368067	3.731626953085328	0.000020765921812
1.20000000000000000	4.664698060443165	4.664604403001034	0.000020077921640
1.4000000000000000	5.824546943591313	5.824427826233221	0.000020450922492
1.60000000000000000	7.269288303374473	7.269131509917554	0.000021569299548
1.80000000000000000	9.070042889451500	9.069832748305053	0.000023168704824
2.00000000000000000	11.314529243558209	11.314245733682135	0.000025057151736
2.200000000000000000000000000000000000	14.111293045972488	14.110910548085377	0.000027105800005
2.400000000000000000	17.594864163212449	17.594349818173889	0.000029232680275
2.6000000000000000	21.932090167341553	21.931401767283631	0.000031387799916
2.80000000000000000	27.329944490437967	27.329027793513237	0.000033541850956
3.00000000000000000	34.045171552636994	34.043956875177194	0.000035678406200