4.2 TEST MS

1. (a)
$$Total moles$$
 $n = pV/RT$ (1) $= 1.59 \times 10^6 \times 1.04 \times 10^{-3}/(8.31 \times 380) = 0.524$ moles (1) $Moles of methanol$ $0.524 - 0.122 - 0.298 = 0.104$ moles (1) 3 (b) $K_c = \frac{[CH_3OH]}{[CO][H_2]^2}$ (1) $= \frac{0.104}{0.122} \times \left(\frac{1.04}{0.298}\right)^2 = 10.4$ (1) $dm^6 mol^{-2}$ (1) dm^6

(1) (1) (1) If mol NO₂ = 0.02; K_C = 9.26 (9.3) or conseq on values from (a)

If vol missed, score only K_C and units

If K_C wrong: max 2 for correct use of vol and conseq units

3

4

If K_C wrong and no vol: max 1 for conseq units

(c)
$$pV = nRT (1)$$

$$T = \frac{pV}{nR} = \frac{(3.30 \times 10^5) \times (11.5 \times 10^{-3}) (1)}{0.683 \times 8.31}$$
(1) for using 11.5 × 10⁻³ as V
$$T = 669 \text{ K (1)}$$

	(d)		th of oxygen: increased (1) to of K_c : no effect (1)	[13] ²
5.	(a)	(i)	exothermic (1)	
			yield decreases as temperature increases (1) (this mark dependent on first mark)	2
		(ii)	vanadium (V) oxide / vanadium pentoxide / V_20_5 (1)	
			yield of sulphur trioxide unchanged (1) not just reference to position of equilibrium	
			(both / forward and reverse reaction) rates increase (1) equally (1)	4
		(iii)	advantage – higher yield of (sulphur trioxide) / equilibrium moves to the right (1) not "saves energy costs"	
			disadvantage – slower rate of reaction / lower throughput (1)	2
	(b)	(i)	rate increased (1)	1
		(ii)	% yield increased / more SO_3 / equilibrium shifts to the right (1)	
			fewer (gas) moles on right hand side of equation increased pressure favours (1)	
			smaller number of mols / molecules / volume	2 [11]