基于混合整数规划的图书采购模型

摘要

如何建立商品采购方案模型精确契合实际问题,给出最优购买方案,是消费者日常生活中普遍面临的一大问题。本文根据实际情况对"618"商家促销方案进行合理假设,在资金等约束条件下,建立了基于混合整数规划的图书采购模型,预测"618"商家促销方案的变动情况,利用分支定界法给出了一定促销方案下的最优购买方案,为消费者的采购方案提供了理论参考。

针对问题(1)

考虑到书本购买状态的二值特征以及 S4 促销方案的特殊性,根据合理假设,建立起线性规划中的混合整数规划模型。注意到问题的双目标要求,先将金额作为约束条件求解出买书的最大数量为 9 本;得到最大数量下有多组解,再将购书数量约束在 9 本求解购买费用的最值及其对应的购买方案,使用 LINGO 软件求得此时购买费用的最小值为 229.94 元,最大值为 249.42 元。

针对问题 2 (a)

在图书价格已知、促销方案一定、购买数量一定、资金充足的情况下求购买费用的最小值,实质上是线性约束下的单目标单变量规划求解问题。基于问题(1)建立的混合整数规划模型,并加入每行 x 加和为 1 的约束条件,应用 LINGO 求得最小购买费用为: 273.62 元。

针对问题 2 (b)

基于问题(2)(a)的模型,我们首先探索性地分析只有一家网店促销力度加大的情况,在 matlab 中以 0.01 元为步长进行迭代求解出最优解改变的临界促销方案;然后考虑多家网店促销力度同时加大的情况,我们拟将促销方案的取值分别限定于 5 个等差整数值的组合,在这些情况分别求出了最优解。

关键字: 混合整数规划 分支定界法 灵敏度分析 探索性分析 最优解

一、问题重述

1.1 问题背景

随着网络购物的普及,为了促进购物消费,购物网站与店家常在节假日联合推出优惠活动。4月23日是世界读书日,为了拉动图书消费,响应读书日意义,网络购物平台纷纷推出读书日优惠活动。然而,各个店家的优惠方式往往不同,包括总金额达到一定程度获得满减、总件数达到门槛进行打折等等方式,同时,不同店家的图书价格也不尽相同,因此如何合理地安排购买方式以最大化优惠是十分值得研究的。

1.2 问题提出

题目模拟了现实情况,提供了 S_1 、 S_2 、 S_3 与 S_4 四家店铺的图书定价与其各自的 优惠方式,如下所示。

书目	类别	S1	S2	S3	S4	S5
A	理学	25	20	19	22	23
B1	工学	19.5	19.5	20	21	19
B2	工学	22	22.5	21.3	20	21.5
B1+B2	工学	/	/	/	40	40
C1	管理科学	36.1	39	35.8	35.4	38.2
C2	管理科学	32.5	36	34	35.4	35.5
C3	管理科学	33.6	33	32	35	34
C1+C2+C3	管理科学	/	100	99.9	102	/
D	管理科学	40	38.8	42	43.5	46
E	理学	55	55.5	54	56	52
F	理学	30	32.5	29.5	31	33
G	工学	48.5	51	49.3	50	48.9

表 1 数目以及店铺价格

针对如上已知条件,需要研究三个问题:

- 1. 在保证最少要购买工学、管理科学和理学书各两本的前提下,如何尽可能地花掉 250 元,以购买更多的书籍。
- 2. 如果有 3 个各持有 250 元的人共同购书,且每个人都需要最少要购买工学、管理科学和理学书各两本,如何规划最经济的购书方案。

表 2 店铺优惠方案

店名	优惠方案
S_1	满 100 元减 10 元, 满 200 元减 25 元
S_2	每满 100 元送全网读书日书券 15 元
S_3	全店书目打九二折,免运费
S_4	全店购书满 130 元,价格最低的一本书免费
S_5	无

3. 如何适应折扣力度大于预期的情况。

二、模型假设

假设1同一本书购买不超过1本。

假设 2 网店 S_2 发放的书券可以与任意优惠活动叠加使用,并且 6.18 也会发放相应书券。

假设 3 假设对于网店 S_4 促销方案,若购买图书组合则免费书本的确定需考虑组合中书本单价。

假设 4 网店 S_5 一直没有促销活动。

假设 5 交易的最小单位为 0.01 元。

三、符号说明

表 3 符号说明

符号	符号描述
X_{ij}	是否购买第 j 家店的第 i 本书
a_{ij}	X_{ij} 对应的书目或套餐价格
F	网店 S_4 促销方案中,与在满足活动要求下免费获得的那本书的价格有关的变量
S_i	第i家店
ΔS_{1a}	店 S_1 金额达到 100 元的优惠变化(差值不变)
ΔS_{1b}	店 S_1 金额达到 200 元的优惠变化(差值不变)
ΔS_{1c}	店 S_1 金额达到 100 元的优惠变化(比值不变)
ΔS_{1d}	店 S_1 金额达到 200 元的优惠变化(比值不变)
ΔS_{2a}	店 S ₂ 优惠券金额变化
ΔS_{2b}	店 S ₂ 获得优惠券条件变化
ΔS_{3a}	店 S_3 折扣变化
ΔS_{4a}	店 S4 令最便宜的书免费的条件变化金额
f	代表购买书的本数
z	总的花费
maxz	目标函数中购买的最大金额
maxf	目标函数中购买书的最大本数
minz	目标函数中购买的最小金额
\sum_{ij}^{n}	遍历所有 ij 的变量并求和

四、问题分析

4.1 问题一分析

问题 1 需要结合书本种类、数量以及资金要求,求出一种购买费用最多,并且买的书最多的买书方案。注意到买书状态的二值特征以及 S4 促销方案的特殊性,我们拟建立混合整数规划模型。考虑到书本数量的离散性,拟先将金额作为约束条件求解出可买书的最大数量;若最大数量下有多组解,再将购书数量约束在最大值求解购买费用的最值,使用 LINGO 软件即可实现。

4.2 问题二(a)分析

问题 2 (a) 要求在给定资金的情况下,求出一种所有书各买一本的最经济的方案。对所需金额进行初步估算,不考虑促销方案将每本书最低价格相加远小于 500 元,因此资金是充足的,只需考虑购买费用的最小值。基于问题 1 中模型,加入对每一行 x 加和的约束条件,在 LINGO 中可以方便的求解。

4.3 问题二(b)分析

在问题 2 (a) 的基础上,问题 2 (b) 要求考虑促销力度加大的情况。首先探索性 地分析只有一家网店促销力度加大的情况,在 matlab 中以 0.01 元为步长进行迭代可以 求解出最优解不变时各优惠方案的变化范围; 然后考虑多家网店促销力度加大的情况,考虑到若分析一定优惠范围内的所有结果面临的计算量过于庞大,我们拟将促销方案的 取值分别限定于上一步确定范围内的 5 个等差整数值,在这些情况下分别求其最优解。

五、 模型建立

考虑到网店 S_4 优惠方案的特殊性,我们设 F 是网店 S_4 促销方案中,与在满足活动要求下免费获得的那本书的价格有关的变量,它的取值范围在 0 到免费书原价之间。 F 代表满足 S_4 优惠条件后,购买 S_4 店的书中最便宜书的价格,正常情况下,F 是符合要求的,但由于约束条件的关系,F 只设置了其上限,并没有设置下限,所以 F 在第一问的情况下其值是不准确的,因为 F 不需要足够大的值就可以使总花费小于 250,因此,在后续的最优解输出中,我们人工修正了 F 的变量值,经过验证后,F 的值是符合要求的。

5.1 促销模型的建立

在模型假设的条件下,我们对每家店分别建立起混合整数规划模型。 网店 S_1 的促销模型表达式为

$$\begin{cases}
100 - M (1 - y_1) \leqslant \sum_{i=1}^{12} a_{i1} x_{i1} < 100 + M (1 + y_1 + y_2 - y_6) \\
200 - M (1 - y_2) \leqslant \sum_{i=1}^{12} a_{i1} x_{i1} < 200 + M (1 - y_1 + y_2 - y_6)
\end{cases}$$
(1)

网店 S₂ 的促销模型表达式为

$$\begin{cases} 100 - M (1 - y_3) \leqslant \sum_{i=1}^{12} a_{i2} x_{i2} < 100 + M (1 + y_3 + y_4 - y_7) \\ 200 - M (1 - y_4) \leqslant \sum_{i=1}^{12} a_{i2} x_{i2} < 200 + M (1 - y_3 + y_4 - y_7) \end{cases}$$
(3)

$$200 - M(1 - y_4) \leqslant \sum_{i=1}^{12} a_{i2} x_{i2} < 200 + M(1 - y_3 + y_4 - y_7)$$
(4)

网店 S_3 的促销模型是简单的,因此略过不赘述。

网店 S4 的促销模型表达式为

$$\begin{cases}
130 - M (1 - y_4) \leqslant \sum_{i=1}^{12} a_{i4} x_{i4} < 130 + M (1 + y_5 - y_8) & (5) \\
F \leqslant a_{i4} + M (1 - y_5) + M (1 - x_{i4}) & i = 1, 2, \dots & (6) \\
F \leqslant M (1 - x_{44}) + 20 & (7) \\
F \leqslant M (1 - x_{84}) + 35 & (8) \\
0 \leqslant F \leqslant M y_5 & (9)
\end{cases}$$

$$F \leqslant a_{i4} + M(1 - y_5) + M(1 - x_{i4}) \qquad i = 1, 2, \dots$$
 (6)

$$F \leqslant M(1 - x_{44}) + 20 \tag{7}$$

$$F \leqslant M(1 - x_{84}) + 35 \tag{8}$$

$$0 \leqslant F \leqslant My_5 \tag{9}$$

5.2 运费模型的建立

各书店运费模型表达为

$$\int 0 - M (1 - y_6) \leqslant \sum_{i=1}^{12} a_{i1} x_{i1} < 60 + M (y_1 + y_2 + y_6)$$
(10)

$$0 - M(1 - y_7) \leqslant \sum_{i=1}^{12} a_{i2} x_{i2} < 200 + M(y_3 + y_4 + y_7)$$
(11)

$$\begin{cases}
0 - M (1 - y_6) \leqslant \sum_{i=1}^{12} a_{i1} x_{i1} < 60 + M (y_1 + y_2 + y_6) \\
0 - M (1 - y_7) \leqslant \sum_{i=1}^{12} a_{i2} x_{i2} < 200 + M (y_3 + y_4 + y_7) \\
0 - M (1 - y_8) \leqslant \sum_{i=1}^{12} a_{i4} x_{i4} < 60 + M (y_5 + y_8) \\
0 - M (1 - y_9) \leqslant \sum_{i=1}^{12} a_{i5} x_{i5} < 60 + M y_9
\end{cases} \tag{10}$$

$$\int_{0}^{10} 0 - M (1 - y_9) \leqslant \sum_{i=1}^{12} a_{i5} x_{i5} < 60 + M y_9$$
(13)

在网店 S1, S2, S4 买书价格区间由下式约束

$$(y_1 + y_2 + y_6 \leqslant 1) \tag{14}$$

$$\begin{cases} y_1 + y_2 + y_6 \leqslant 1 \\ y_3 + y_4 + y_7 \leqslant 1 \end{cases} \tag{14}$$

$$y_5 + y_8 \leqslant 1 \tag{16}$$

组合优惠与其包含的单本图书的互斥关系表达为

$$\int_{j=1}^{5} \sum_{i=1}^{5} x_{4j} = 1 - y_0 \tag{17}$$

$$\begin{cases} \sum_{j=1}^{5} x_{4j} = 1 - y_0 \\ \sum_{j=1}^{5} x_{3j} \leqslant y_{10} \\ \sum_{j=1}^{5} x_{2j} \leqslant y_{10} \end{cases}$$
(17)

$$\sum_{j=1}^{5} x_{2j} \leqslant y_{10} \tag{19}$$

及

$$\int_{j=1}^{5} x_{8j} = 1 - y_1 1 \tag{20}$$

$$\int_{j=1}^{5} x_{5j} \leqslant y_{11} \tag{21}$$

$$\begin{cases} \sum_{j=1}^{5} x_{8j} = 1 - y_1 1 \\ \sum_{j=1}^{5} x_{5j} \leqslant y_{11} \\ \sum_{j=1}^{5} x_{6j} \leqslant y_{11} \\ \sum_{j=1}^{5} x_{7j} \leqslant y_{11} \end{cases}$$
(20)

$$\left(\sum_{j=1}^{5} x_{7j} \leqslant y_{11} \right) \tag{23}$$

此外,我们在建模时发现,对于 $y_1 = y_2 = y_6 = 0$ 、 $y_3 = y_4 = y_7 = 0$ 、 $y_5 = y_8 = 0$ 以及 $y_9 = 0$ 这一类情况,我们的模型在表示不买时,也将产生运费。为了修正模型的 不准确情况, 我们引入 y_{12} , y_{13} , y_{14} , y_{15} 来规避错误。

$$\begin{cases} 1 \sum_{i=1}^{12} x_{i1} = 0 \\ 0 \sum_{i=1}^{12} x_{i1} \neq 0 \end{cases}$$
 (24)

$$0 \sum_{i=1}^{12} x_{i1} \neq 0 \tag{25}$$

六、 问题解答

6.1 问题一解答

6.1.1 求解最大购买本数

对于第一问,根据题目要求,需要尽可能多地购买书籍,因此先求最大购买本数, 购买资金约束由下式表达。

$$\sum_{ij(j\neq3)}^{n} a_{ij} x_{ij} + 0.92 \sum_{i=1}^{12} a_{i3} x_{i3} - F - 10y_1 - 25y_2 - 15y_3 - 30y_4 + 5\left(4 - \sum_{k=1, k\neq10, 11}^{15} y_k\right) \leqslant 250$$
(26)

在如上分析下, 我们最终得到的目标函数为

$$Maxf = \sum_{ij}^{n} x_{ij} + 2\sum_{j=1}^{5} x_{4j} + 3\sum_{j=1}^{5} x_{8j}$$
 (27)

基于以上模型, 我们利用 LINGO 解出最大购买本数为 9, 且发现最大购买数并不唯一, 而是有多种解答。

6.1.2 求解购买花费最值

在 6.1.1 中我们已经求出最大购买本书为 9, 且方案并不唯一, 在这个前提下, 我们通过求解花费金额的最值对结果进行筛选, 以找到符合题目要求的最终解答。

6.1.1 中目标函数在此处变为约束条件

$$\sum_{ij}^{n} x_{ij} + 2\sum_{j=1}^{5} x_{4j} + 3\sum_{j=1}^{5} x_{8j} = 9 (i \neq 4, 8)$$
(28)

在如上条件下,现阶段目标函数为

$$Maxz = \sum_{ij(j\neq3)}^{n} a_{ij}x_{ij} + 0.92 \sum_{i=1}^{12} a_{i3}x_{i3} - F - 10y_1 - 25y_2 - 15y_3 - 30y_4 + 5\left(4 - \sum_{k=1, k\neq10, 11}^{15} y_k\right)$$
(29)

利用 LINGO 求解后,我们得到最大花费金额为 249.42 元,方案如下

表 4 最大花费金额购买方案

店名	书号	类别	金额
S_3	A	理学	19
S_2	B_1	工学	19.5
S_2	B_2	工学	22.5
S_4	C_2	管理科学	35.4
S_2	C_3	管理科学	33
S_4	E	理学	56
S_3	F	理学	29.5
S_4	G	工学	50
			249.42

考虑实际情况往往选择利用较少花费购买尽可能多的书,我们还求解了最小花费金 额,为 229.94 元,方案为

店名	书号	类别	金额
S_2	A	理学	19
S_2	B_1	工学	19.5
S_2	B_2	工学	22.5
S_4	$C_1 + C_2 + C_3$	/	102
S_2	D	管理科学	38.8
S_3	F	理学	56
S_3	E	理学	29.5
S_4	G	工学	50
			229.94

表 5 最小花费金额购买方案

6.2 检验

对于 6.1.1 没有引入运费修正得出的结果是否正确,作出如下检验:将 6.1.2 中约 束条件修改为

$$\sum_{ij}^{n} x_{ij} + 2\sum_{j=1}^{5} x_{4j} + 3\sum_{j=1}^{5} x_{8j} = 10 \ (i \neq 4, 8)$$
(30)

LINGO 求解结果无可行解,说明 6.1.1 的结果正确。

6.3 问题 2(a) 解答

由于该题由问题一的一人购买变为三人购买,因此原有模型并不能满足现阶段要 求,为了增强模型能力,我们增加了新的约束条件。

$$\begin{cases} \sum_{j=1}^{5} x_{1j} = \sum_{j=1}^{5} x_{9j} = \sum_{j=1}^{5} x_{10j} = \sum_{j=1}^{5} x_{11j} = \sum_{j=1}^{5} x_{12j} = 1 \\ \sum_{j=1}^{5} x_{2j} = \sum_{j=1}^{5} x_{3j} = 1 - \sum_{j=1}^{5} x_{4j} = y_{10} \\ \sum_{j=1}^{5} x_{5j} = \sum_{j=1}^{5} x_{6j} = \sum_{j=1}^{5} x_{7j} = 1 - \sum_{j=1}^{5} x_{8j} = y_{11} \end{cases}$$
(31)

$$\begin{cases} \sum_{j=1}^{5} x_{2j} = \sum_{j=1}^{5} x_{3j} = 1 - \sum_{j=1}^{5} x_{4j} = y_{10} \end{cases}$$
 (32)

$$\sum_{j=1}^{5} x_{5j} = \sum_{j=1}^{5} x_{6j} = \sum_{j=1}^{5} x_{7j} = 1 - \sum_{j=1}^{5} x_{8j} = y_{11}$$
(33)

目标函数为

$$Minz = \sum_{ij(j\neq3)}^{n} a_{ij}x_{ij} + 0.92 \sum_{i=1}^{12} a_{i3}x_{i3} - F - 10y_1 - 25y_2 - 15y_3 - 30y_4 + 5\left(4 - \sum_{k=1, k\neq10, 11}^{15} y_k\right)$$
(34)

利用 LINGO 求解, 最小金额为 273.62 (273.616) 元, 购买方案为

表 6 三人购书购买方案

店名	书号	类别	金额
S_3	A	理学	19
S_3	B_1	工学	20
S_3	B_2	工学	21.3
S_2	$C_1 + C_2 + C_3$	/	100
S_4	D	管理科学	43.5
S_4	E	理学	56
S_3	F	理学	29.5
S_4	G	工学	50
			273.62

6.4 问题 2(b) 解答

6.4.1 单变量的探索性分析

基于 2(a) 中的数学模型, 我们对各促销方案可能的优惠方式进行了单变量探索性分析, 得出最优解不变时各优惠方案变化方式如下表所示。

1. 当 S_1 优惠力度变化,但差值不变时。 此时, $0 < \Delta S_{1a} < 5, 0 < \Delta S_{1b} < 1$ —。建模后,得到此种情况最优解如下。

表 7 差值不变时的最优解

店名	书号	类别	金额
S_1	A	理学	25
S_1	B_1	工学	19.5
S_1	B_2	工学	22
S_4	C_1	管理科学	35.4
S_1	C_2	管理科学	32.5
S_1	C_3	管理科学	33.6
S_1	D	管理科学	40
S_4	E	理学	56
S_1	F	理学	30
S_4	G	工学	50
总计			344
折后实付			273.56

2. 当 S_1 优惠力度变化,但比值不变时。

此时, $0 < \Delta S_{1c} < 4,0 < \Delta S_{1d} < 10$ 。建模后,得到此种情况最优解如下。

表 8 比值不变时的最优解

店名	书号	类别	金额
S_1	A	理学	25
S_1	B_1	工学	19.5
S_1	B_2	工学	22
S_4	C_1	管理科学	35.4
S_1	C_2	管理科学	32.5
S_1	C_3	管理科学	33.6
S_1	D	管理科学	40
S_4	E	理学	56
S_1	F	理学	30
S_4	G	工学	50
总计			344
折后实付			273.56

3. 当 S_2 书券面额变化时。

此时, $0 < \Delta S_{2a} < 3.17$ 。建模后,得到此种情况最优解如下。

表 9 书券面额变化时的最优解

店名	书号	类别	金额
S_2	A	理学	20
S_2	B_1	工学	19.5
S_2	B_2	工学	22.5
S_3	C_1	管理科学	35.8
S_3	C_2	管理科学	34
S_3	C_3	管理科学	32
S_4	D	管理科学	43.5
S_4	E	理学	56
S_3	F	理学	29.5
S_4	G	工学	50
总计			341.1
折后实付			253.03

4. 当 S₂ 获得书券的条件变化。

此时, $-2.76 < \Delta S_{2b} < 0$ 。建模后,得到此种情况最优解如下。

表 10 获得书券的条件变化时的最优解

店名	书号	类别	金额
S_2	A	理学	20
S_2	B_1	工学	19.5
S_2	B_2	工学	22.5
S_2	$C_1 + C_2 + C_3$		100
S_3	D	管理科学	43.5
S_4	E	理学	56
S_2	F	理学	32.5
S_4	G	工学	50
总计			344
折后实付			270.5

5. 当 S₃ 折扣力度变化时。

此时, $-16 < \Delta S_{3a} < 0$ 。建模后,得到此种情况最优解如下。

表 11 书券面额变化时的最优解

店名	书号	类别	金额
S_3	A	理学	19
S_3	B_1	工学	20
S_3	B_2	工学	21.3
S_2	$C_1 + C_2 + C_3$		100
S_2	D	管理科学	38.8
S_4	E	理学	56
S_4	F	理学	31
S_4	G	工学	50
总计			337.8
折后实付			270.48

6. 当 S_4 最便宜的一本书免费的条件改变时

此时, $-24 < \Delta S_{4a} < 0$ 。建模后,得到此种情况最优解如下。

表 12 书券面额变化时的最优解

店名	书号	类别	金额
S_2	A	理学	20
S_2	B_1	工学	19.5
S_2	B_2	工学	22.5
S_2	$C_1 + C_2 + C_3$		100
S_2	D	管理科学	38.8
S_4	E	理学	56
S_3	F	理学	29.5
S_4	G	工学	50
总计			337.8
折后实付			270.48

6.4.2 多变量的探索性分析

通过上一步的探索性分析,我们结合实际情况,假设促销力度增大含义如下:

- 1. S₁ 满减阈值不变,满减数值加大
- 2. S₂ 满减阈值降低, 书券价值不变
- 3. S₃ 折扣不变
- 4. S4 优惠阈值降低

随后,我们分别选取 S_1 , S_2 , S_4 的五种整数促销方案运用 matlab 对 (a) 中模型,进行迭代求解,步长为 0.01 元,在分别求出了每种情况下的最优解后,利用 python 处理所得数据,最终结果如图所示。

	(1, 1)	(1, 2)	(1, 3)	(1, 4)	(1, 5)		(2, 1)	(2, 2)	(2, 3)	(2, 4)	(2, 5)
5	FALSE	FALSE	TRUE	TRUE	TRUE	5	FALSE	FALSE	TRUE	TRUE	TRUE
10	FALSE	FALSE	TRUE	TRUE	TRUE	10	FALSE	FALSE	TRUE	TRUE	TRUE
15	FALSE	FALSE	TRUE	TRUE	TRUE	15	FALSE	FALSE	TRUE	TRUE	TRUE
20	FALSE	FALSE	TRUE	TRUE	TRUE	20	FALSE	FALSE	TRUE	TRUE	TRUE
25	TRUE	TRUE	TRUE	TRUE	TRUE	25	TRUE	TRUE	TRUE	TRUE	TRUE
	(3, 1)	(3, 1)	(3, 3)	(3, 4)	(3, 5)		(4, 1)	(4, 2)	(4, 3)	(4, 4)	(4, 5)
5	FALSE	FALSE	TRUE	TRUE	TRUE	5	FALSE	FALSE	TRUE	TRUE	TRUE
10	FALSE	FALSE	TRUE	TRUE	TRUE	10	FALSE	FALSE	TRUE	TRUE	TRUE
15	FALSE	FALSE	TRUE	TRUE	TRUE	15	FALSE	FALSE	TRUE	TRUE	TRUE
20	FALSE	FALSE	TRUE	TRUE	TRUE	20	FALSE	FALSE	TRUE	TRUE	TRUE
25	TRUE	TRUE	TRUE	TRUE	TRUE	25	TRUE	TRUE	TRUE	TRUE	TRUE
	(5, 1)	(5, 2)	(5, 3)	(5, 4)	(5, 5)						
5	TRUE	TRUE	TRUE	TRUE	TRUE						
10	TRUE	TRUE	TRUE	TRUE	TRUE						
15	TRUE	TRUE	TRUE	TRUE	TRUE						
20	TRUE	TRUE	TRUE	TRUE	TRUE						
25	TRUE	TRUE	TRUE	TRUE	TRUE						

图 1 适应性真值表

横坐标代表 $(\Delta X_1, \Delta X_2)$,纵坐标代表 ΔX_3 ,表中值 True 表示最优解改变,False 表示最优解相对 2 (a) 不变。为了区分多种最优解,我们使用相同颜色对应相同的最优解。

相应最优解如下表所示。

表 13: 黄色区域最优解

表 14: 淡红色区域最优解

店名	书号	类别	金额	_	店名	书号	类别	金额
S_3	A	理学	19		S_2	A	理学	20
S_3	B_1	工学	20		S_2	B_1	工学	19.5
S_3	B_2	工学	21.3		S_2	B_2	工学	22
S_2	$C_1 + C_2 + C_3$		100		S_2	$C_1 + C_2 + C_3$		100
S_4	D	管理科学	43.5		S_4	D	管理科学	43.5
S_4	E	理学	56		S_4	E	理学	56
S_3	F	理学	29.5		S_2	F	理学	32.5
S_4	G	工学	50		S_4	G	工学	50

表 15: 蓝色区域最优解

表 16: 绿色区域最优解

店名	书号	类别	金额	店名	书号	类别	金额
S_3	A	理学	19	S_3	A	理学	19
S_3	B_1	工学	20	S_2	B_1	工学	19.5
S_3	B_2	工学	21.3	S_3	B_2	工学	21.3
S_2	$C_1 + C_2 + C_3$		100	S_2	$C_1 + C_2 + C_3$		100
S_4	D	管理科学	43.5	S_2	D	管理科学	38.8
S_4	E	理学	56	S_4	E	理学	56
S_3	F	理学	29.5	S_2	F	理学	32.5
S_4	G	工学	50	S_4	G	工学	50

表 17: 紫色区域最优解

表 18: 绿色区域最优解

店名	书号	类别	金额
S_2	A	理学	20
S_2	B_1	工学	19.5
S_2	B_2	工学	22
S_4	C_1	管理科学	35.4
S_4	C_2	管理科学	35.4
S_1	C_3	管理科学	33.6
S_1	D	管理科学	40
S_1	E	理学	55
S_1	F	理学	30
S_4	G	工学	50

七、模型总结

7.1 伪灵敏度分析

由于本题采用的模型为混合整数规划模型,无法进行灵敏度分析,故采用伪灵敏度分析的方法,即与本题的 2 (b) 相同,利用迭代搜索各店优惠方案变化时引起的参数变化对模型的影响,得出了一系列保持最优基不变的情况下参数变化的范围。

7.2 模型优点

- 1. 本文模型基于混合整数规划模型建立,使用 lingo 与 matlab 的分支定界法求解模型 的最优解,经过验证后发现最优解正确,模型拟合度非常精确。
- 2. 本文的模型比较贴合实际的购买方案优化问题,可以通过交换约束条件与目标函数 来分别求出最优购买数量和最优购买成本,更改参数后能够适应大多数购买方案的 优化,灵活度较高。
- 3. 混合整数规划模型中的 01 变量能够直观的反应决策的情况,在问题表达方面非常 直观,容易理解。

7.3 模型缺点

- 1. 混合整数规划无法进行灵敏度分析,故不方便确定最优购买方案不变的前期下优惠方案变化的范围,使用伪灵敏度分析的方案耗时较长。
- 2. 优惠方案改变的种类复杂且数量庞大,本文只考虑了比较贴合实际的优惠方案,并求出了其最优购买方案。

参考文献

- [1] 周军, 周柳玲, 梁光川, 等 基于混合整数规划模型的星树型油气管网布局整体优化研究 [J]. 中国海上油气,2020,32(6):165-171
- [2] 姚志洪, 蒋阳升, 胡蓉, 等 基于混合整数规划的智能网联车冲突区时序优化模型 [J] 控制与决策,2021,36(3):705-710.
- [3] 周隽, 王天淇 基于分支定界法的机场终端区单一进离场程序设计优化 [J] 计算机科 学,2020,47(z1):552-555,571.

附录 A 第一问规划解决程序-lingo 源代码

```
\max = @sum(T(j):X(4,j))*2
   +@sum(T(j):X(8,j))*3
   +@sum(T(j):X(1,j))
   +@sum(T(j):X(2,j))
   +@sum(T(j):X(3,j))
   +@sum(T(j):X(5,j))
   +@sum(T(j):X(6,j))
   +@sum(T(j):X(7,j))
   +@sum(T(j):X(9,j))
   +@sum(T(j):X(10,j))
   +@sum(T(j):X(11,j))
   +@sum(T(j):X(12,j));!目标函数, 寻找如何买最多书;
!决定是否拥有书店s1优惠;
@sum(S(i):A(i,1)*X(i,1))>=100-999*(1-Y(1));
@sum(S(i):A(i,1)*X(i,1))<100+999*(1-Y(6)+Y(1)+Y(2));
@sum(S(i):A(i,1)*X(i,1)) > =200-999*(1-Y(2));
@sum(S(i):A(i,1)*X(i,1)) < 200+999*(1-Y(6)-Y(1)+Y(2));
!决定是否拥有书店s2优惠;
@sum(S(i):A(i,2)*X(i,2))>=100-999*(1-Y(3));
@sum(S(i):A(i,2)*X(i,2))<100+999*(1-Y(7)+Y(3)+Y(4));
@sum(S(i):A(i,2)*X(i,2))>=200-999*(1-Y(4));
@sum(S(i):A(i,2)*X(i,2))<200+999*(1-Y(7)-Y(3)+Y(4));
!决定是否拥有书店s4优惠;
@sum(S(i):A(i,4)*X(i,4))>=130-999*(1-Y(5));
@sum(S(i):A(i,4)*X(i,4))<130+999*(1-Y(8)+Y(5));
F > = 0;
@for(S(i):A(i,4)+999*(1-X(i,4))+999*(1-Y(5))>=F);
F <= 999*Y(5);
F <= 999*(1-X(4,4))+20;
F <= 999*(1-X(8,4))+35;
!决定是否有运费;
@sum(S(i):A(i,1)*X(i,1))>=60-999*(1-Y(6));
@sum(S(i):A(i,1)*X(i,1)) < 60 + 999*(Y(6)+Y(1)+Y(2));
@sum(S(i):A(i,2)*X(i,2))>=60-999*(1-Y(7));
@sum(S(i):A(i,2)*X(i,2)) < 60+999*(Y(7)+Y(3)+Y(4));
@sum(S(i):A(i,4)*X(i,4))>=60-999*(1-Y(8));
@sum(S(i):A(i,4)*X(i,4)) < 60+999*(Y(8)+Y(5));
@sum(S(i):A(i,5)*X(i,5))>=60-999*(1-Y(9));
@sum(S(i):A(i,5)*X(i,5)) < 60 + 999*Y(9);
```

```
!决定每家店购书总额区间;
Y(1)+Y(2)+Y(6)<=1;
Y(3)+Y(4)+Y(7)<=1;
Y(5)+Y(8)<=1;
!总钱数约束;
-10*Y(1)-25*Y(2)-15*Y(3)-30*Y(4)-F
+0.92*@sum(S(i):A(i,3)*X(i,3))
+@sum(S(i):A(i,1)*X(i,1))
+@sum(S(i):A(i,2)*X(i,2))
+@sum(S(i):A(i,4)*X(i,4))
+@sum(S(i):A(i,5)*X(i,5))
+5*(1-Y(1)-Y(2)-Y(6))+5*(1-Y(3)-Y(4)-Y(7))+5*(1-Y(5)-Y(8))+5*(1-Y(9))
-5*Y(12)-5*Y(13)-5*Y(14)-5*Y(15)
<=250:
!判断在某家店中买的书是否为0本;
Y(12) = @if(@sum(S(i):X(i,1))#eq#0,1,0);
Y(13) = @if(@sum(S(i):X(i,2))#eq#0,1,0);
Y(14) = @if(@sum(S(i):X(i,4))#eq#0,1,0);
Y(15)=@if(@sum(S(i):X(i,5))#eq#0,1,0);
!不买重复的书;
@for(S(i)\!:\!@sum(T(j)\!:\!X(i,\!j))\!<=\!1);
!B1、B2与B1+B2冲突;
@sum(T(j):X(4,j))=1-Y(10);
@sum(T(j):X(2,j)) <= Y(10);
@sum(T(j):X(3,j)) <= Y(10);
!C1、C2、C3与C1+C2+C3冲突;
@sum(T(j):X(8,j))=1-Y(11);
@sum(T(j):X(5,j)) <= Y(11);
@sum(T(j):X(6,j)) <= Y(11);
@sum(T(j):X(7,j)) <= Y(11);
!每种书至少购买两本;
@sum(T(j){:}X(1,j)) + @sum(T(j){:}X(10,j)) + @sum(T(j){:}X(11,j)) > = 2;
@sum(T(j):X(2,j)) + @sum(T(j):X(3,j)) + 2*@sum(T(j):X(4,j)) + @sum(T(j):X(12,j)) > = 2;
@sum(T(j):X(5,j)) + @sum(T(j):X(6,j)) + @sum(T(j):X(7,j)) + 3*@sum(T(j):X(8,j)) + @sum(T(j):X(9,j)) > = 2;
!设置01变量;
@for(S(i):@for(T(j):@bin(X(i,j))));
@for(R(i):@bin(Y(i)));
end
```

附录 B 第二问(a)题规划解决程序-lingo 源程序

```
min = -10*Y(1)-25*Y(2)-15*Y(3)-30*Y(4)-F
  +0.92*@sum(S(i):A(i,3)*X(i,3))
  +@sum(S(i):A(i,1)*X(i,1))
  +@sum(S(i):A(i,2)*X(i,2))
  +@sum(S(i):A(i,4)*X(i,4))
  + @sum(S(i){:}A(i,5)*X(i,5))
  +5*(1-Y(1)-Y(2)-Y(6))+5*(1-Y(3)-Y(4)-Y(7))+5*(1-Y(5)-Y(8))+5*(1-Y(9))
  -5*Y(12)-5*Y(13)-5*Y(14)-5*Y(15);
Y(12)=@if(@sum(S(i):X(i,1))#eq#0,1,0);
Y(13) = @if(@sum(S(i):X(i,2))#eq#0,1,0);
Y(14) = @if(@sum(S(i):X(i,4))#eq#0,1,0);
Y(15) = @if(@sum(S(i):X(i,5))#eq#0,1,0);
@sum(S(i):A(i,1)*X(i,1))>=100-999*(1-Y(1));
@sum(S(i):A(i,1)*X(i,1))<100+999*(1-Y(6)+Y(1)+Y(2));
@sum(S(i):A(i,1)*X(i,1)) > = 200-999*(1-Y(2));
@sum(S(i):A(i,1)*X(i,1))<200+999*(1-Y(6)-Y(1)+Y(2));
@sum(S(i):A(i,2)*X(i,2))>=100-999*(1-Y(3));
@sum(S(i):A(i,2)*X(i,2))<100+999*(1-Y(7)+Y(3)+Y(4));
@sum(S(i):A(i,2)*X(i,2))>=200-999*(1-Y(4));
@sum(S(i):A(i,2)*X(i,2))<200+999*(1-Y(7)-Y(3)+Y(4));
@sum(S(i):A(i,4)*X(i,4))>=130-999*(1-Y(5));
@sum(S(i):A(i,4)*X(i,4))<130+999*(1-Y(8)+Y(5));
F > = 0;
@for(S(i):A(i,4)+999*(1-X(i,4))+999*(1-Y(5))>=F);
F < =999*Y(5);
F <= 999*(1-X(4,4))+20;
F < =999*(1-X(8,4))+35;
@sum(S(i):A(i,1)*X(i,1))>=60-999*(1-Y(6));
@sum(S(i):A(i,1)*X(i,1)) < 60+999*(Y(6)+Y(1)+Y(2));
@sum(S(i):A(i,2)*X(i,2))>=60-999*(1-Y(7));
@sum(S(i):A(i,2)*X(i,2))<60+999*(Y(7)+Y(3)+Y(4));
@sum(S(i):A(i,4)*X(i,4))>=60-999*(1-Y(8));
@sum(S(i):A(i,4)*X(i,4)) < 60+999*(Y(8)+Y(5));
@sum(S(i):A(i,5)*X(i,5))>=60-999*(1-Y(9));
@sum(S(i):A(i,5)*X(i,5)) < 60 + 999*Y(9);
Y(1)+Y(2)+Y(6)<=1;
Y(3)+Y(4)+Y(7)<=1;
Y(5)+Y(8)<=1;
```

```
 \begin{aligned} &\operatorname{@sum}(T(j); X(1,j)) = 1; \\ &\operatorname{@sum}(T(j); X(9,j)) = 1; \\ &\operatorname{@sum}(T(j); X(10,j)) = 1; \\ &\operatorname{@sum}(T(j); X(11,j)) = 1; \\ &\operatorname{@sum}(T(j); X(2,j)) = 1; \\ &\operatorname{@sum}(T(j); X(2,j)) = 1 - Y(10); \\ &\operatorname{@sum}(T(j); X(2,j)) = Y(10); \\ &\operatorname{@sum}(T(j); X(3,j)) = Y(10); \\ &\operatorname{@sum}(T(j); X(3,j)) = Y(11); \\ &\operatorname{@sum}(T(j); X(8,j)) = 1 - Y(11); \\ &\operatorname{@sum}(T(j); X(5,j)) = Y(11); \\ &\operatorname{@sum}(T(j); X(6,j)) = Y(11); \\ &\operatorname{@sum}(T(j); X(7,j)) = Y(11); \\ &\operatorname{@sum}(T(j); X(7,j)) = Y(11); \\ &\operatorname{@for}(S(i); \operatorname{@for}(T(j); \operatorname{@bin}(X(i,j)))); \\ &\operatorname{@for}(R(i); \operatorname{@bin}(Y(i))); \\ &\operatorname{end} \end{aligned}
```

附录 C 第二问(b) 题代码-matlab 源程序

```
%读取一系列模型矩阵
c = load('C:\Users\26067\Desktop\c.txt');
a = load('C: \Users \26067 \Desktop \c.txt');
b = load('C:\Users\26067\Desktop\c.txt');
aeq=load('C:\Users\26067\Desktop\c.txt')
beq = load('C: \Users \26067 \Desktop \c.txt')
%计算出最优解
[x, fval]=intlinprog(c, ic, a, b, aeq, beq, lb_12, ub_12)
%s1变化,差值不变:
while round(x1(4))==1\&round(x1(9))==1\&
round(x1(14)) == 1&round(x1(38)) == 1&round(x1(45)) == 1&
round(x1(50)) == 1&round(x1(54)) == 1&round(x1(60)) == 1
[x1,fval1] = intlinprog(c1,ic,a,b,aeq,beq,lb\_12,ub\_12);
c1(62)=c1(62)-0.01;
c1(63)=c1(63)-0.02;
end
%重置x1、c1、b1,下同
x1=x;
c1=c;
b1=b;
%s1变化,按比例变
```

```
while round(x1(4))==1\&round(x1(9))==1\&
round(x1(14)) == 1&round(x1(38)) == 1&round(x1(45)) == 1
&\text{round}(x1(50)) == 1 &\text{round}(x1(54)) == 1 &\text{round}(x1(60)) == 1
[x1,fval1]=intlinprog(c1,ic,a,b,aeq,beq,lb_12,ub_12);
c1(62)=c1(62)-0.01;
c1(63)=c1(63)-0.025;
end
x1=x;
c1=c;
b1=b;
%s2变化, 书券的面额变化
while round(x1(4))==1&round(x1(9))==1
\& round(x1(14)) = 1\& round(x1(38)) = 1\& round(x1(45)) = 1
\&round(x1(50)) = 1\&round(x1(54)) = 1\&round(x1(60)) = 1
[x1,fval1]=intlinprog(c1,ic,a,b,aeq,beq,lb_12,ub_12);
c1(64)=c1(64)-0.01;
c1(65)=c1(65)-0.02;
end
x1=x;
c1=c;
b1=b;
%s2变化, 获得书券的条件变化
while round(x1(4))==1&round(x1(9))==1
& \text{round}(x1(14)) = 1 & \text{round}(x1(38)) = 1 & \text{round}(x1(45)) = 1
& \text{round}(x1(50)) = 1 & \text{round}(x1(54)) = 1 & \text{round}(x1(60)) = 1 & \text{b1}(5) < 939
[x1,fval1]=intlinprog(c,ic,a,b1,aeq,beq,lb_12,ub_12);
b1(5)=b1(5)+0.01;
b1(6)=b1(6)-0.01;
b1(7)=b1(7)+0.02;
b1(8)=b1(8)-0.02;
end
x1=x;
c1=c;
b1=b;
%s3变化, 折扣变化
while
round(x1(4)) == 1&round(x1(9)) == 1&
round(x1(14)) = 1&round(x1(38)) = 1&
round(x1(45)) == 1&round(x1(50)) == 1&round(x1(54)) == 1&
round(x1(60)) = = 1
[x1, fval1] = intlinprog(c1, ic, a, b1, aeq, beq, lb_12, ub_12);
c1(4)=c1(4)-0.01;
c1(9)=c1(9)-0.01;
c1(14)=c1(14)-0.01;
```

```
c1(19)=c1(19)-0.01;
c1(24)=c1(24)-0.01;
c1(29)=c1(29)-0.01;
c1(34)=c1(34)-0.01;
c1(39)=c1(39)-0.01;
c1(44)=c1(44)-0.01;
c1(49)=c1(49)-0.01;
c1(54)=c1(54)-0.01;
c1(59)=c1(59)-0.01;
end
x1=x;
c1=c;
b1=b;
%s4变化, 书免费的条件变化
while
round(x1(4)) == 1&round(x1(9)) == 1
& \text{round}(x1(14)) = 1 & \text{round}(x1(38)) = 1 & \text{round}(x1(45)) = 1
\& \text{round}(x1(50)) = 1\& \text{round}(x1(54)) = 1\& \text{round}(x1(60)) = 1
[x1,fval1] = intlinprog(c1,ic,a,b1,aeq,beq,lb\_12,ub\_12);
b1(9)=b1(9)+0.01;
b1(10)=b1(10)-0.01;
end
x1=x;
c1=c;
b1=b;
%寻找优惠条件按原先设定顺序变时的最优解
[x1,fval1] = intlinprog(c1,ic,a,b1,aeq,beq,lb\_12,ub\_12);
%每寻找一次最优解, 就运行一次, 改变s2的优惠条件
b1(5)=b1(5)+1;
b1(6)=b1(6)-1;
b1(7)=b1(7)+2;
b1(8)=b1(8)-2;
%每轮s2变完后,重置s2,变s1,继续重复寻找最优解
b1(5)=b(5)+1;
b1(6)=b(6)-1;
b1(7)=b(7)+2;
b1(8)=b(8)-2;
c1(62)=c1(62)-1;
c1(63)=c1(63)-1;
%每轮s1变完后, 重置s1、s2, 变s4, 继续重复寻找最优解
b1(5)=b(5)+1;
b1(6)=b(6)-1;
b1(7)=b(7)+2;
b1(8)=b(8)-2;
c1(62)=c(62)-1;
```

```
c1(63)=c(63)-1;
b1(9)=b1(9)+5;
b1(10)=b1(10)-5;
%每次寻找一次最优解之后,都会记录到附件中"变化最优解.txt"中
```