Name: Muhammad Fazil

Roll Number: 9179

Special Topics In Computer Science

Assignment # 2

(Transfer Learning for Leaf Disease Classification)

Question 1 – Compare Accuracy: Your CNN vs Transfer Learning

Objective:

Train both your simple CNN model (from the lecture) and the Transfer Learning model (MobileNetV2 with frozen base) on the same dataset. Compare how they perform.

Solution:

Here is the comparison data of the Simple CNN Model & MobileNetV2 with Frozen Base.

A	В	С	D	E
Model	Training Time (min)	Final Test Accuracy	Trainable Params	Epoch to reach 80% Acc
Simple CNN	50.5	91.08 %	3,305,414	2
MobileNetV2 (Frozen	68.6	95.10 %	164,742	1

SIMPLE CNN Model

```
Training CNN Model...
Epoch 1/10
193/193 -
                                         919s 5s/step - accuracy: 0.4223 - loss: 1.4332 - val_accuracy: 0.8112 - val_loss: 0.6006
193/193 -
                                         - 223s 1s/step - accuracy: 0.7755 - loss: 0.6087 - val_accuracy: 0.8718 - val_loss: 0.3855
Epoch 3/10
193/193 -
                                         - 241s 1s/step - accuracy: 0.8264 - loss: 0.4829 - val accuracy: 0.8839 - val loss: 0.3251
Epoch 4/10
193/193
                                          241s 1s/step - accuracy: 0.8536 - loss: 0.3891 - val_accuracy: 0.8542 - val_loss: 0.3982
Epoch 5/10
                                         - 221s 1s/step - accuracy: 0.8839 - loss: 0.3314 - val_accuracy: 0.9020 - val_loss: 0.2831
193/193 -
Epoch 6/10
193/193
                                          221s 1s/step - accuracy: 0.9121 - loss: 0.2460 - val_accuracy: 0.9218 - val_loss: 0.2488
Epoch 7/10
193/193 -
                                         - 284s 1s/step - accuracy: 0.9131 - loss: 0.2562 - val_accuracy: 0.9020 - val_loss: 0.2701
Epoch 8/10
193/193
                                         - 242s 1s/step - accuracy: 0.9305 - loss: 0.1973 - val_accuracy: 0.9103 - val_loss: 0.2990
Epoch 9/10
193/193
                                         - 222s 1s/step - accuracy: 0.9436 - loss: 0.1573 - val_accuracy: 0.9152 - val_loss: 0.2860
Epoch 10/10
                                         - 217s 1s/step - accuracy: 0.9424 - loss: 0.1456 - val_accuracy: 0.9108 - val_loss: 0.2947
193/193 -
```

☼ Training Time: 50.52 minutes
✓ Final Test Accuracy: 0.9108

🌿 Classes Detected: ['early_blight', 'healthy', 'late_blight', 'leaf_mold', 'mosaic_virus', 'septoria_spot']

MOBILENETV2 WITH FROZEN BASE

```
Training with frozen base model.
Epoch 1/10
                                           445s 2s/step - accuracy: 0.7046 - loss: 0.8309 - val_accuracy: 0.9042 - val_loss: 0.2764
193/193 -
Epoch 2/10
193/193
                                           430s 2s/step - accuracy: 0.9116 - loss: 0.2759 - val_accuracy: 0.9136 - val_loss: 0.2381
193/193
                                           374s 2s/step - accuracy: 0.9377 - loss: 0.1915 - val_accuracy: 0.9323 - val_loss: 0.1932
Epoch 4/10
193/193
                                           442s 2s/step - accuracy: 0.9509 - loss: 0.1509 - val_accuracy: 0.9340 - val_loss: 0.1764
                                           376s 2s/step - accuracy: 0.9591 - loss: 0.1266 - val_accuracy: 0.9367 - val_loss: 0.1708
193/193
Epoch 6/10
                                           434s 2s/step - accuracy: 0.9639 - loss: 0.1067 - val_accuracy: 0.9521 - val_loss: 0.1531
193/193
Epoch 7/10
193/193
                                           376s 2s/step - accuracy: 0.9689 - loss: 0.0938 - val_accuracy: 0.9477 - val_loss: 0.1707
Epoch 8/10
                                          377s 2s/step - accuracy: 0.9758 - loss: 0.0767 - val_accuracy: 0.9472 - val_loss: 0.1619
193/193
193/193
                                          436s 2s/step - accuracy: 0.9830 - loss: 0.0577 - val_accuracy: 0.9532 - val_loss: 0.1554
Epoch 10/10
193/193
                                          426s 2s/step - accuracy: 0.9795 - loss: 0.0608 - val_accuracy: 0.9510 - val_loss: 0.1542
🍑 Training Time (Frozen Base): 68.62 minutes
Transfer Learning Test Accuracy: 0.9510
```

QUESTION TO ANSWER:

Which model performs better and why? Explain the difference in performance based on what you learned about transfer learning.

ANSWER:

The MobileNetV2 transfer learning model performed better with about 95% accuracy compared to 91% from the simple CNN, because it uses pre-trained ImageNet features like edges and colors, while the simple CNN learns everything from scratch, making it slower and less accurate.

QUESTION 2

WHY IS TRANSFER LEARNING FASTER?

Model	Train Time per Epoch (min)	Trainable Params			
CNN	5.05	3,305,414			
MobileNetV2 (Frozen	0.43	164,742			

Training time per epoch for both models:

Simple CNN

Model Summary:
Model: "sequential_1"

Layer (type)	Output Shape	Param
conv2d_3 (Conv2D)	(None, 126, 126, 32)	896
max_pooling2d_3 (MaxPooling2D)	(None, 63, 63, 32)	0
conv2d_4 (Conv2D)	(None, 61, 61, 64)	18,496
max_pooling2d_4 (MaxPooling2D)	(None, 30, 30, 64)	0
conv2d_5 (Conv2D)	(None, 28, 28, 128)	73,856
max_pooling2d_5 (MaxPooling2D)	(None, 14, 14, 128)	Θ
flatten_1 (Flatten)	(None, 25088)	Θ
dense_2 (Dense)	(None, 128)	3,211,392
dropout_1 (Dropout)	(None, 128)	0
dense_3 (Dense)	(None, 6)	774

Total params: 3,305,414 (12.61 MB) Trainable params: 3,305,414 (12.61 MB)

Frozen Base:

Layer (type)	Output Shape	Param #
mobilenetv2_1.00_224 (Functional)	(None, 7, 7, 1280)	2,257,984
global_average_pooling2d_3 (GlobalAveragePooling2D)	(None, 1280)	0
dense_5 (Dense)	(None, 128)	163,968
dropout_3 (Dropout)	(None, 128)	0
dense_6 (Dense)	(None, 6)	774

Question:

Why does the transfer learning model train faster even though it has more total layers?

Answer:

- Even though MobileNetV2 has more total layers, most layers are frozen (not updated).
- Only the last few layers train, so fewer weights are adjusted every step.
- Fewer trainable parameters → less computation → faster training.

What does "freezing layers" mean and how does it affect training speed?

Answer:

- Setting layer.trainable = False stops updates to those layers.
- Frozen layers act like fixed feature extractors and speed up training.

Explain in your own words: How does using pre-trained weights on ImageNet help with leaf disease classification?

Answer:

- ImageNet has millions of images with common visual patterns (edges, colors, textures).
- These patterns are also useful in plant leaves.
- So, MobileNetV2 already "knows" how to detect such details we only adjust the top layers for our leaf disease classes.

QUESTION 3

WHAT HAPPENS IF YOU UNFREEZE ALL LAYERS?

Frozen Base: All base_model layers frozen (as shown in assignment code)

```
Training with frozen base model..
Epoch 1/10
193/193
                                               445s 2s/step - accuracy: 0.7046 - loss: 0.8309 - val_accuracy: 0.9042 - val_loss: 0.2764
Epoch 2/10
193/193
                                              - 430s 2s/step - accuracy: 0.9116 - loss: 0.2759 - val_accuracy: 0.9136 - val_loss: 0.2381
Epoch 3/10
193/193
                                               374s 2s/step - accuracy: 0.9377 - loss: 0.1915 - val accuracy: 0.9323 - val loss: 0.1932
Epoch 4/10
193/193 —
                                              - 442s 2s/step - accuracy: 0.9509 - loss: 0.1509 - val_accuracy: 0.9340 - val_loss: 0.1764
Epoch 5/10
193/193 ---
                                             — 376s 2s/step - accuracy: 0.9591 - loss: 0.1266 - val_accuracy: 0.9367 - val_loss: 0.1708
193/193 ---
Epoch 7/10
                                              – 434s 2s/step - accuracy: 0.9639 - loss: 0.1067 - val_accuracy: 0.9521 - val_loss: 0.1531
193/193
                                              – 376s 2s/step - accuracy: 0.9689 - loss: 0.0938 - val_accuracy: 0.9477 - val_loss: 0.1707
Epoch 8/10
193/193 ---
Epoch 9/10
                                             — 377s 2s/step - accuracy: 0.9758 - loss: 0.0767 - val_accuracy: 0.9472 - val_loss: 0.1619
                                             - 436s 2s/step - accuracy: 0.9830 - loss: 0.0577 - val_accuracy: 0.9532 - val_loss: 0.1554
Epoch 10/10
193/193 ---
                                              – 426s 2s/step - accuracy: 0.9795 - loss: 0.0608 - val_accuracy: 0.9510 - val_loss: 0.1542
Training Time (Frozen Base): 68.62 minutes
Transfer Learning Test Accuracy: 0.9510
```

Fully Unfrozen: All layers trainable from the start

Epoch 1/10													
193/193	1882s	9s/step	-	accuracy:	0.8266	- 1	oss:	0.5262	-	val_accuracy:	0.2922	val_loss:	17.2822
Epoch 2/10													
193/193 Epoch 3/10	1457s	8s/step	-	accuracy:	0.9230	- 1	oss:	0.2549	-	val_accuracy:	0.3511	· val_loss:	9.9643
193/193	1437s	7s/step	_	accuracy:	0.9639	- 1	oss:	0.1293	_	val_accuracy:	0.2466	val loss:	18.7069
Epoch 4/10													
	1450s	8s/step	-	accuracy:	0.9712	- 1	oss:	0.0937	-	val_accuracy:	0.4408	<pre>val_loss:</pre>	7.3046
Epoch 5/10 193/193	14460	7c/oton			0.0000	,		0.0007		ual accuracus	0 2070	wal lacer	14 4026
Epoch 6/10	14465	/s/scep	-	accuracy.	0.3080		uss.	0.0007		val_accuracy:	0.2070	vai_1055:	14.4930
193/193	1461s	8s/step	-	accuracy:	0.9575	- 1	oss:	0.1375	-	val_accuracy:	0.2757	val_loss:	10.7467
Epoch 7/10													
193/193	1456s	8s/step	-	accuracy:	0.9737	- 1	oss:	0.0899	-	val_accuracy:	0.4959	val_loss:	3.6483
Epoch 8/10 193/193	14200	7c/cton		accuracu:	0 0747	. 1	000	0 0027		val_accuracy:	0 6900	ual lace:	2 5725
Epoch 9/10	14203	/s/scep	-	accur acy.	0.3/4/		055.	0.0037		vai_accuracy.	0.0030	· vai_1055.	3.5735
	1460s	8s/step	-	accuracy:	0.9804	- 1	oss:	0.0623	-	val_accuracy:	0.7265 -	val_loss:	2.5629
Epoch 10/10													
193/193			-	accuracy:	0.9727	- 1	oss:	0.0782	-	val_accuracy:	0.7909 -	val_loss:	1.4151
Training Time (unFrozen Base): 250.09 Transfer Learning Test Accuracy: 0.7909	minute	5											

Partially Unfrozen: Only last 20 layers trainable (fine-tuning approach)

Version, Accuracy, Training Time & Behaviour.

Version	Training Time / Epoch (min)	Final Accuracy	Behavior	
Frozen Base	5	0.951	Stable, fast training	
Fully Unfrozen	25	0.709	Slow training, sometimes	unstable / overfitting
Partially Unfrozen (Last 20 Layers	4.11	0.9521	0.9521 Best balance — stable and high accur-	

Questions to answer:

• Which approach gives the best test accuracy?

Answer: Partial fine-tuning (good accuracy & stability).

 What problems (if any) did you observe when unfreezing all layers from the start?

Answer: Training slows down and can overfit quickly.

• Why is fine-tuning (partial unfreezing with low learning rate) often better than unfreezing everything?

Answer: It keeps strong general ImageNet features and only adjusts the last few layers, saving time and improving stability.