

Memristive Boltzmann Machine: A Hardware Accelerator for Combinatorial Optimization and Deep Learning*

Chris Kjellqvist

The Boltzmann Machine, Problem Mapping, and Memristors

BACKGROUND

 A Fully Connected Stochastic Recurrent Neural Network capable of solving optimization problems

- A Fully Connected Stochastic Recurrent Neural Network capable of solving optimization problems
 - Traveling Salesman

 A Fully Connected Stochastic Recurrent Neural Network capable of solving optimization problems

- Traveling Salesman
- Max-Cut

- A Fully Connected Stochastic Recurrent Neural Network capable of solving optimization problems
 - Traveling Salesman
 - Max-Cut
 - Maximum Satisfiability

- A Fully Connected Stochastic Recurrent Neural Network capable of solving optimization problems
 - Traveling Salesman
 - Max-Cut
 - Maximum Satisfiability
 - Deep Learning

- A Fully Connected Stochastic Recurrent Neural Network capable of solving optimization problems
- Nodes change state (on or off) as a function of their neighbor states and corresponding edge weights
- Goal to maximize "consensus" function

$$S = \{B, C\}$$

$$S = \{B, C\}$$

- In order to map all graphs to the Boltzmann Machine, we add an incidence matrix I
- Change edge weights to allow proper training

- In order to map all graphs to the Boltzmann Machine, we add an incidence matrix I
- Change edge weights to allow proper training

$$w_{jj} = \sum_{i} d_{ij} \qquad w_{ji} = -2d_{ji}$$

- In order to map all graphs to the Boltzmann Machine, we add an incidence matrix I
- Change edge weights to allow proper training

$$w_{jj} = \sum_{i} d_{ij} \qquad w_{ji} = -2d_{ji}$$

- In order to map all graphs to the Boltzmann Machine, we add an incidence matrix I
- Change edge weights to allow proper training

$$w_{jj} = \sum_{i} d_{ij} \qquad w_{ji} = -2d_{ji}$$

- In order to map all graphs to the Boltzmann Machine, we add an incidence matrix I
- Change edge weights to allow proper training

$$w_{jj} = \sum_{i} d_{ij} \qquad w_{ji} = -2d_{ji}$$

 The graph is mapped to a Boltzmann Machine but what's the task now?

- The graph is mapped to a Boltzmann Machine but what's the task now?
- Minimize "Energy"

- The graph is mapped to a Boltzmann Machine but what's the task now?
- Minimize "Energy"

$$E(X) = -\frac{1}{2} \sum_{j} \sum_{i \neq j} x_{j} x_{i} w_{ij} - \sum_{j} x_{j} w_{jj}$$

Example

$$E(X) = -\frac{1}{2} \sum_{j} \sum_{i \neq j} x_{j} x_{i} w_{ij} - \sum_{j} x_{j} w_{jj}$$

Example

$$E(X) = -\frac{1}{2} \sum_{j} \sum_{i \neq j} x_{j} x_{i} w_{ij} - \sum_{j} x_{j} w_{jj}$$

$$E(X) = -\frac{1}{2} \cdot (-16 + -16) - (12 + 17)$$
$$= 16 - 29 = -13$$

Simulated Annealing

What if the rabbit is feeling risky?

Learning the Solution

 Stochastically learn solution over time

$$\Delta E = (2x_j - 1)(\sum_{i \neq j} x_i w_{ji} + w_{jj})$$

Learning the Solution

 Stochastically learn solution over time

$$\Delta E = (2x_j - 1)(\sum_{i \neq j} x_i w_{ji} + w_{jj})$$

$$x^j = \langle x_0, x_1, ..., \neg x_j, ..., x_n \rangle$$

$$P(x^j | x) = \frac{1}{1 + e^{\frac{\Delta E}{C}}}$$

 C allows for probability control of suboptimal state changes

Learning the Solution

$$P(x^{j}|x) = \frac{1}{1 + e^{\frac{\Delta E}{C}}}$$

- The change in E can be continuously calculated in situ for each node
- C allows for simulated annealing, eventually probably resulting in a optimized graph

A component with variable conductance

- A component with variable conductance
- Recall $V = I \cdot R$

- A component with variable conductance
- Recall $V = I \cdot R$
- Used to perform multiplications with the assistance of hardware to detect current

- A component with variable conductance
- Recall $V = I \cdot R$
- Used to perform multiplications with the assistance of hardware to detect current
- Components of RRAM cells memory with density of FLASH but DRAM speed

$$V = I \cdot R$$

Application to Other Problems

- Different mappings for different problems
- Deep learning uses "Restricted Boltzmann Machines"
 - Combination of layered approach of modern neural nets and Boltzmann Machines

System Organization and Training

ORGANIZATION

Interface

- Interfaces through regular DDRx
- Envisioned as a modular addition to any system with applicable workload

Organization

Row Detector

Current pulled by this column is

$$P(x^{j} \mid x) = \frac{1}{1 + e^{\frac{\Delta E}{C}}}$$

Consensus

$$P(x^{j} \mid x) = \frac{1}{1 + e^{\frac{\Delta E}{C}}}$$

 Sigmoid function is hard to implement in hardware

Consensus

$$P(x^{j}|x) = \frac{1}{1 + e^{\frac{\Delta E}{C}}}$$

- Sigmoid function is hard to implement in hardware
- Use 64 evenly sampled points from expected range for values of ΔE [-4, 4]
- Different Cs are valid but paper uses C=1

Consensus

Notes on Sensing Circuits

- Sense amplifiers sense one bit of the current
- Tree structures to sum them in quick fashion
- A large machine must tolerate a lot of inaccuracy and noise generated by current sensing

D/S

Performance and Energy

RESULTS

Optimization Problems

- 57.75x speedup over single threaded kernel
- 6.19x over PIM (process in memory)
- Many workloads achieved closer to 100x speedup over single threaded kernel

Optimization Problems

- 57.75x speedup over single threaded kernel
- 6.19x over PIM (process in memory)
- Many workloads achieved closer to 100x speedup over single threaded kernel

- 25x less energy used than single threaded kernel
- 5.2x less energy used than PIM

Deep Learning

- Even faster... 68.79x faster than single thread
- 6.89x faster than PIM

Deep Learning

- Even faster... 68.79x faster than single thread
- 6.89x faster than PIM

- 63x less energy than single thread
- 5.3x less energy than PIM