Végezze el az alábbi függvények teljes vizsgálatát, majd vázolja a grafikonjukat!

(1)
$$f(x) := \frac{x^3}{4} - 3x \quad (x \in \mathbb{R}),$$

(2)
$$f(x) := -4x^5 + 15x^3 \quad (x \in \mathbb{R}),$$

(3)
$$f(x) := 2 - 2x^2 - x^3 \quad (x \in \mathbb{R}),$$

(3)
$$f(x) := 2 - 2x^2 - x^3$$
 $(x \in \mathbb{R}),$ (4) $f(x) := 3x^4 - 4x^3 - 12x^2 + 2$ $(x \in \mathbb{R}),$

(5)
$$f(x) := \frac{x^2 - 9}{x^3}$$
 $(0 \neq x \in \mathbb{R}),$

(5)
$$f(x) := \frac{x^2 - 9}{x^3}$$
 $(0 \neq x \in \mathbb{R}),$ (6) $f(x) := \frac{2x + 1}{(x + 1)^2}$ $(-1 \neq x \in \mathbb{R}),$

(7)
$$f(x) := \frac{x^3 + 2x^2}{x^2 + 2x + 1}$$
 $(-1 \neq x \in \mathbb{R}),$ (8) $f(x) := \frac{x^3 - 2x^2}{x^2 - 4}$ $(x \in \mathbb{R} \setminus \{\pm 2\}),$

(8)
$$f(x) := \frac{x^3 - 2x^2}{x^2 - 4}$$
 $(x \in \mathbb{R} \setminus \{\pm 2\}),$

(9)
$$f(x) := \frac{(x-1)^2}{x^2}$$
 $(0 \neq x \in \mathbb{R}),$

(9)
$$f(x) := \frac{(x-1)^2}{x^2}$$
 $(0 \neq x \in \mathbb{R}),$ (10) $f(x) := \frac{x^2}{(x-1)^2}$ $(1 \neq x \in \mathbb{R}),$

(11)
$$f(x) := \frac{x^2 - 3}{2 - x}$$
 $(2 \neq x \in \mathbb{R}),$ (12) $f(x) := \frac{x^2 - 8}{3 - x}$ $(3 \neq x \in \mathbb{R}),$

(12)
$$f(x) := \frac{x^2 - 8}{3 - x}$$
 $(3 \neq x \in \mathbb{R}),$

(13)
$$f(x) := \frac{x-2}{\sqrt{x^2+1}}$$
 $(x \in \mathbb{R}),$ (14) $f(x) := -\frac{x+2}{\sqrt{x^2+1}}$ $(x \in \mathbb{R}),$

(14)
$$f(x) := -\frac{x+2}{\sqrt{x^2+1}}$$
 $(x \in \mathbb{R}),$

(15)
$$f(x) := x^2 \ln(x^2) \quad (0 \neq x \in \mathbb{R}),$$

(15)
$$f(x) := x^2 \ln(x^2)$$
 $(0 \neq x \in \mathbb{R}),$ (16) $f(x) := \frac{\ln(x^2)}{x}$ $(0 \neq x \in \mathbb{R}),$

(17)
$$f(x) := \frac{x}{e} - \ln(|x|) + 2 \quad (0 \neq x \in \mathbb{R}),$$

$$(17) \ \mathsf{f}(x) := \frac{x}{e} - \ln(|x|) + 2 \quad (0 \neq x \in \mathbb{R}), \quad (18) \ \mathsf{f}(x) := x \cdot \sqrt{8 - x^2} \ \left(x \in \left[-2\sqrt{2}, 2\sqrt{2} \right] \right).$$

Megoldás

(1) 1. lépés. (Kezdeti vizsgálatok) : A függvény páratlan, ui. tetszőleges $x \in \mathbb{R}$ esetén

$$f(-x) = \frac{(-x)^3}{4} - 3(-x) = \frac{-x^3}{4} + 3x = -f(x).$$

$$\text{Z\'erushely: } f(x) = 0 \Longleftrightarrow x \left(\frac{x^2}{4} - 3\right) = 0 \Longleftrightarrow x \in \left\{-2\sqrt{3}, 0, 2\sqrt{3}\right\}.$$

	$(-\infty, -2\sqrt{3})$	$-2\sqrt{3}$	$(-2\sqrt{3},0)$	0	$(0,2\sqrt{3})$	$2\sqrt{3}$	$(2\sqrt{3}, +\infty)$
1	_	0	+	0	_	0	+

2. lépés. (Monotonitás, lokális szélsőérték) : $f'(x) = \frac{3x^2}{4} - 3 = 0 \iff x \in \{-2; 2\}$. Tehát

	$(-\infty, -2)$	-2	(-2,2)	2	$(2,+\infty)$
f'	+	0	_	0	+
f	\uparrow	lok. max	<u> </u>	lok. min	\uparrow

3. lépés. (Görbületi viszonyok, inflexió) : $f''(x) = \frac{6x}{4} = 0 \iff x = 0$. Tehát

	$(-\infty,0)$	0	$(0,+\infty)$
f"	_	0	+
f	$\overline{}$	infl.)

4. lépés. (Határérték, aszimptota) : $\lim_{\pm\infty} f = \pm \infty$

$$\frac{f(x)}{x} = \frac{x^2}{4} - 3 \to +\infty \ (x \to \pm \infty), \ {\rm teh\acute{a}t \ nincs \ aszimptota}.$$

(2) 1. lépés. (Kezdeti vizsgálatok) : A függvény páratlan, ui. tetszőleges
$$x \in \mathbb{R}$$
 esetén

$$f(-x) = -4(-x)^5 + 15(-x)^3 = 4x^5 - 15x^3 = -f(x).$$

$$\text{Z\'erushely: } f(x)=x^3(15-4x^2)=0 \Longleftrightarrow x \in \left\{-\frac{\sqrt{15}}{2},0,\frac{\sqrt{15}}{2}\right\}.$$

	$\left(-\infty, -\frac{\sqrt{15}}{2}\right)$	$-\frac{\sqrt{15}}{2}$	$\left(-\frac{\sqrt{15}}{2},0\right)$	0	$(0, \frac{\sqrt{15}}{2})$	$\frac{\sqrt{15}}{2}$	$(\frac{\sqrt{15}}{2}, +\infty)$
f	+	0	_	0	+	0	_

2. lépés. (Monotonitás, lokális szélsőérték) :

$$f'(x) = -20x^4 + 45x^2 = 5x^2(9 - 4x^2) = 0 \iff x \in \left\{-\frac{3}{2}, 0, \frac{3}{2}\right\}. \text{ Tehát}$$

	$\left(-\infty,-\frac{3}{2}\right)$	$-\frac{3}{2}$	$\left(-\frac{3}{2},0\right)$	0	$\left(0,\frac{3}{2}\right)$	$\frac{3}{2}$	$\left(\frac{3}{2},+\infty\right)$
f'	_	0	+	0	+	0	_
f	<u> </u>	lok. min	\uparrow		\uparrow	lok. max	<u></u>

3. lépés. (Görbületi viszonyok, inflexió) :

$$f''(x) = -80x^3 + 90x = 10x(9 - 8x^2) = 0 \Longleftrightarrow x\left\{-\frac{3}{\sqrt{8}}, 0, \frac{3}{\sqrt{8}}\right\}. \text{ Tehát}$$

		$\left(-\infty, -\frac{3}{\sqrt{8}}\right)$	$-\frac{3}{\sqrt{8}}$	$\left(-\frac{3}{\sqrt{8}},0\right)$	0	$\left(0, \frac{3}{\sqrt{8}}\right)$	$\frac{3}{\sqrt{8}}$	$\left(\frac{3}{\sqrt{8}}, +\infty\right)$
	f"	+	0		0	+	0	_
ſ	f)	infl.)	infl.)	infl.	

4. lépés. (Határérték, aszimptota):

$$\lim_{\pm \infty} f = \mp \infty, \ \frac{f(x)}{x} = -4x^4 + 14x^2 \to +\infty \ (x \to \pm \infty), \text{ tehát nincs aszimptota.}$$

(3) 1. lépés. (Kezdeti vizsgálatok) : f nem páros, nem páratlan, és nem is periodikus.

A [0,1] intervallumban zérushelye $/\xi/$ van, ui. $f\in\mathfrak{C}$ és $f(0)=2>0,\, f(1)=-1<0.$

	$(-\infty,\xi)$	ξ	$(\xi, +\infty)$
f	+	0	_

2. lépés. (Monotonitás, lokális szélsőérték) :

$$f'(x) = -4x - 3x^2 = (-x)(3x + 4) = 0 \iff x \in \left\{-\frac{4}{3}, 0\right\}$$
. Tehát

	$\left(-\infty, -\frac{4}{3}\right)$	$-\frac{4}{3}$	$\left(-\frac{4}{3},0\right)$	0	$(0,+\infty)$
f′	_	0	+	0	_
f	\downarrow	lok. min	\uparrow	lok. max	\downarrow

3. lépés. (Görbületi viszonyok, inflexió) :

$$f''(x) = -4 - 6x = 0 \iff x = -\frac{2}{3}$$
. Tehát

	$\left(-\infty,-\frac{2}{3}\right)$	$-\frac{2}{3}$	$\left(-\frac{2}{3},+\infty\right)$
f"	+	0	
f)	infl.	

4. lépés. (Határérték, aszimptota) :

 $\lim_{\pm \infty} f = \mp \infty, \frac{f(x)}{x} = \frac{2}{x} - 2x - x^2 \to +\infty \ (x \to \pm \infty), \text{ tehát nincs aszimptota.}$

(4) 1. lépés. (Kezdeti vizsgálatok) : f nem páros, nem páratlan, és nem is periodikus. A [-2,-1], [-1,0], [0,1] és a [2,3] intervallumban zérushelye $/\xi_1,\xi_2,\xi_3,\xi_4/$ van, ui. $f\in\mathfrak{C}$ és f(-2)=34, f(-1)=-3, f(0)=2, f(1)=-11, f(2)=-30, f(3)=29.

	$(-\infty,\xi_1)$	ξ1	(ξ_1, ξ_2)	ξ ₂	(ξ_2, ξ_3)	ξ_3	(ξ_3, ξ_4)	ξ_4	$(\xi_4, +\infty)$
f	+	0		0	+	0	_	0	+

2. lépés. (Monotonitás, lokális szélsőérték) :

$$f'(x) = 12x^3 - 12x^2 - 24x = 12x(x^2 - x - 2) = 12x(x + 1)(x - 2) = 0 \iff x \in \{-1, 0, 2\}.$$
 Tehát

	$(-\infty, -1)$	-1	(-1,0)	0	(0, 2)	2	$(2,+\infty)$
f′	_	0	+	0	_	0	+
f	\downarrow	lok. min	↑	lok. max	\downarrow	lok. min	\uparrow

3. lépés. (Görbületi viszonyok, inflexió) : $f''(x) = 36x^2 - 24x - 24 = 12(3x^2 - 2x - 2) = 0 \iff$

$$x = \frac{1 \pm \sqrt{7}}{3}$$
. Tehát

	3					
	$\left(-\infty, \frac{1-\sqrt{7}}{3}\right)$	$\frac{1-\sqrt{7}}{3}$	$\left(\frac{1-\sqrt{7}}{3},\frac{1+\sqrt{7}}{3}\right)$	$\frac{1+\sqrt{7}}{3}$	$\left(\frac{1+\sqrt{7}}{3},+\infty\right)$	
f"	+	0	_	0	+	
f	(infl.		infl.)	

4. lépés. (Határérték, aszimptota):

$$\lim_{\pm\infty} f = +\infty, \ \frac{f(x)}{x} = 3x^3 - 4x^2 - 12x + \frac{2}{x} \to +\infty \ (x \to \pm \infty), \ \text{tehát nincs aszimptota}.$$

(5) 1. lépés. (Kezdeti vizsgálatok) : $f(x) = 0 \iff x = \pm 3$

		$(-\infty, -3)$	-3	(-3,0)	(0,3)	3	$(3,+\infty)$
Ī	f	_	0	+	_	0	+

2. lépés. (Monotonitás, lokális szélsőérték) :

$$f'(x) = \frac{2x^4 - 3x^2(x^2 - 9)}{x^6} = \frac{27x^2 - x^4}{x^6} = \frac{27 - x^2}{x^4} = 0 \iff x = \pm\sqrt{27}. \text{ Tehát}$$

	$\left(-\infty, -\sqrt{27}\right)$	$-\sqrt{27}$	$(-\sqrt{27},0)$	$(0, \sqrt{27})$	$\sqrt{27}$	$(\sqrt{27}, +\infty)$
f′	_	0	+	0	+	_
f	\downarrow	lok. min	\uparrow	↑	lok. max.	\downarrow

3. lépés. (Görbületi viszonyok, inflexió) :

$$f''(x) = \frac{-2x^5 - 4x^3(27 - x^2)}{x^8} = \frac{-2x^2 - 4(27 - x^2)}{x^5} = \frac{2x^2 - 108}{x^5} = 0 \iff x = \pm \sqrt{54}. \text{ Tehát}$$

	$\left(-\infty, -\sqrt{54}\right)$	$-\sqrt{54}$	$(-\sqrt{54},0)$	$(0,\sqrt{54})$	$\sqrt{54}$	$(\sqrt{54}, +\infty)$
f"	_	0	+	_	0	+
f		infl.	Ú		infl.	(

4. lépés. (Határérték, aszimptota) :

 $\lim_{0 \pm 0} f = \pm \infty, \lim_{x \to \pm \infty} f = \lim_{x \to \pm \infty} \frac{1 + \frac{9}{x^2}}{x} = 0, \text{ tehát a } \phi(x) := 0 \ (x \in \mathbb{R}) \text{ függvény aszimptota a } \pm \infty \text{-ben.}$

(6) 1. lépés. (Kezdeti vizsgálatok) : $f(x) = 0 \iff x = -\frac{1}{2}$

	$(-\infty, -1)$	$\left(-1,-\frac{1}{2}\right)$	$-\frac{1}{2}$	$\left(-\frac{1}{2},+\infty\right)$
f	_	_	0	+

2. lépés. (Monotonitás, lokális szélsőérték) :

$$f'(x) = \frac{2(x+1)^2 - (2x+1)2(x+1)}{(x+1)^4} = \frac{2(x+1) - 2(2x+1)}{(x+1)^3} = \frac{-2x}{(x+1)^3} = 0 \iff x = 0. \text{ Tehát}$$

$$\boxed{\begin{array}{c|c} (-\infty, -1) & (-1, 0) & 0 & (0, +\infty) \\ \hline f' & - & + & 0 & - \end{array}}$$

	$(-\infty, -1)$	(-1,0)	0	$(0,+\infty)$
f'	_	+	0	_
f	\downarrow	↑	lok. max	\downarrow

3. lépés. (Görbületi viszonyok, inflexió) :

$$f''(x) = \frac{-2(x+1)^3 + 2x \cdot 3(x+1)^2}{(x+1)^6} = \frac{-2(x+1) + 6x}{(x+1)^4} = \frac{4x - 2}{(x+1)^4} = 0 \iff x = \frac{1}{2}. \text{ Tehát}$$

	$(-\infty, -1)$	$\left(-1,\frac{1}{2}\right)$	1/2	$\left(\frac{1}{2},+\infty\right)$
f"	_	_	0	+
f			infl.)

4. lépés. (Határérték, aszimptota):

 $\lim_{x\to \pm\infty} f = \lim_{x\to \pm\infty} \frac{2+\frac{1}{x}}{x+2+\frac{1}{x}} = 0. \text{ Tehát } \phi(x) := 0 \ (x\in\mathbb{R}) \text{ aszimptota } \pm\infty\text{-ben.}$

(7) 1. lépés. (Kezdeti vizsgálatok) :

$$f(x) = \frac{x^2(x+2)}{(x+1)^2} = 0 \iff x \in \{-2, 0\}.$$

	$(-\infty, -2)$	(-2, -2)	(-1,0)	0	$(0,+\infty)$
f	_	+	+	0	+

2. lépés. (Monotonitás, lokális szélsőérték) :

$$f'(x) = \frac{(3x^2 + 4x)(x+1)^2 - 2(x+1)(x^3 + 2x^2)}{(x+1)^4} = \frac{x(x^2 + 3x + 4)}{(x+1)^3} = 0 \qquad \Leftrightarrow \qquad x = 0.$$

Tehát

	$(-\infty, -1)$	(-1,0)	0	$(0,+\infty)$
f′	+	1	0	+
f	1	<u> </u>	lok. min	\uparrow

3. lépés. (Görbületi viszonyok, inflexió) :

$$f''(x) = \frac{2(2-x)}{(x+1)^4} = 0 \qquad \Leftrightarrow \qquad x = 2.$$

Tehát

	$(-\infty, -1)$	(-1,2)	2	$(2,+\infty)$
f"	+	+	0	$(2,+\infty)$
f))	infl.	(

4. lépés. (Határérték, aszimptota): Mivel

$$f(x) = \frac{x^2(x+2)}{(x+1)^2} \qquad (x \in \mathcal{D}_f),$$

ezért $f(x) \to +\infty \quad (x \to -1)$. Könnyen belátható, hogy $f(x) \to \pm \infty \quad (x \to \pm \infty)$.

$$\frac{f(x)}{x} = \frac{1 + \frac{2}{x}}{1 + \frac{2}{x} + \frac{1}{x^2}} \to 1 \quad (x \to \pm \infty)$$

és

$$f(x) - x = \frac{x^3 + 2x^2 - x^3 - 2x^2 - x}{x^2 + 2x + 1} = \frac{-x}{x^2 + 2x + 1} = \frac{-\frac{1}{x}}{1 + \frac{2}{x} + \frac{1}{x^2}} \to 0 \quad (x \to \pm \infty).$$

Tehát $\varphi(x) := x \ (x \in \mathbb{R})$ aszimptota $\pm \infty$ -ben.

5. lépés. (Grafikon) :

(8) 1. lépés. (Kezdeti vizsgálatok) :

f(x) =
$$\frac{x^2(x-2)}{(x-2)(x+2)} = \frac{x^2}{x+2}$$
 (x \in \mathbb{R}\{0; 2\}). Így f(x) = 0 \iff x = 0.

	$(-\infty, -2)$	(-2,0)	0	(0, 2)	$(2,+\infty)$
f	_	+	0	+	+

2. lépés. (Monotonitás, lokális szélsőérték) :
$$f'(x) = \frac{2x(x+2) - x^2}{(x+2)^2} = \frac{x^2 + 4x}{(x+2)^2} = 0 \Longleftrightarrow x \in \{-4, 0\}. \text{ Tehát}$$

	$(-\infty, -4)$	-4	(-4, -2)	(-2,0)	0	(0, 2)	$(2,+\infty)$
f'	+	0	_	_	0	-	+
f	1	lok. max.	\downarrow	\downarrow	lok. min.	\downarrow	\uparrow

3. lépés. (Görbületi viszonyok, inflexió) :
$$f''(x) = \frac{(2x+4)(x+2)^2 - 2(x^2+4x)(x+2)}{(x+2)^4} = \frac{(2x+4)(x+2) - 2(x^2+4x)}{(x+2)^3} = \frac{8}{(x+2)^3}. \text{ Tehát}$$

$$\boxed{(-\infty, -2) \ (-2, 2) \ (2, +\infty)}$$

	$(-\infty, -2)$	(-2, 2)	$(2,+\infty)$
f"		1	+
f		()

4. lépés. (Határérték, aszimptota) :
$$\lim_{\pm \infty} f = +\infty$$
, $\lim_{-2 \pm 0} f = \pm \infty$ és $\lim_{2} f = 1$;
$$\frac{f(x)}{x} = \frac{x}{x+2} \to 1 \ (x \to \pm \infty), \ f(x) - x = \frac{x^2}{x+2} - x = \frac{-2x}{x+2} \to -2 \ (x \to \pm \infty).$$

Tehát $\varphi(x) := x - 2 \ (x \in \mathbb{R})$ aszimptota $\pm \infty$ -ben.

5. lépés. (Grafikon):

(9) 1. lépés. (Kezdeti vizsgálatok) :

$$f(x) = 0 \iff x = 1.$$

	$(-\infty,0)$	(0, 1)	1	$(1,+\infty)$
f	+	+	0	+

2. lépés. (Monotonitás, lokális szélsőérték) :
$$f'(x) = \frac{2(x-1)x^2 - 2x(x-1)^2}{x^4} = \frac{2x-2}{x^4} = 0 \iff x = 1. \text{ Tehát}$$

	$(-\infty,0)$	(0,1)	1	$(1,+\infty)$
f′	+	_	0	+
f	1	\downarrow	lok. min.	\uparrow

3. lépés. (Görbületi viszonyok, inflexió) :
$$f''(x) = 2 \cdot \frac{x^3 - 3x^2(x-1)}{x^6} = \frac{6-4x}{x^4} = 0 \iff x = \frac{3}{2}. \text{ Tehát}$$

	$(-\infty,0)$	$\left(0,\frac{3}{2}\right)$	$\frac{3}{2}$	$\left(\frac{3}{2},+\infty\right)$
f"	+	+	0	_
f))	infl.	

- 4. lépés. (Határérték, aszimptota) : $\lim_{0} f = +\infty$, $\lim_{\pm \infty} f = 1$. Tehát $\phi(x) := 1$ $(x \in \mathbb{R})$ aszimptota $\pm \infty$ -ben.
- 5. lépés. (Grafikon):

(10) 1. lépés. (Kezdeti vizsgálatok) :

$$f(x) = 0 \iff x = 0.$$

	$(-\infty,0)$	0	(0, 1)	$(1,+\infty)$
f	+	0	+	+

2. lépés. (Monotonitás, lokális szélsőérték) :

$$f'(x) = \frac{2x(x-1)^2 - 2x^2(x-1)}{(x-1)^4} = -\frac{2x}{(x-1)^3} = 0 \iff x = 0. \text{ Tehát}$$

	$(-\infty,0)$	0	(0, 1)	$(1,+\infty)$
f′	_	0	+	_
f	\rightarrow	lok. min.	\uparrow	\rightarrow

$$f''(x) = (-2) \cdot \frac{(x-1)^3 - 3x(x-1)^2}{(x-1)^6} = (-2) \cdot \frac{x-1-3x}{(x-1)^4} = \frac{2+4x}{(x-1)^4} = 0 \iff x = -\frac{1}{2}. \text{ Tehát}$$

	$\left(-\infty,-\frac{1}{2}\right)$	$-\frac{1}{2}$	$\left(-\frac{1}{2},1\right)$	$(1,+\infty)$
f"	_	0	+	+
f		infl.))

- 4. lépés. (Határérték, aszimptota) : $\lim_{1} f = +\infty$, $\lim_{\pm \infty} f = 1$. Tehát $\phi(x) := 1$ $(x \in \mathbb{R})$ aszimptota $\pm \infty$ -ben.
- 5. lépés. (Grafikon):

(11) 1. lépés. (Kezdeti vizsgálatok) :

$$f(x) = 0 \iff x = \pm \sqrt{3}$$
.

		$(-\infty, -\sqrt{3})$	$-\sqrt{3}$	$(-\sqrt{3},\sqrt{3})$	$\sqrt{3}$	$(\sqrt{3},2)$	$(2,+\infty)$
f	f	+	0	_	0	+	_

$$\textbf{2. lépés. (Monotonitás, lokális szélsőérték)}: \\ f'(x) = \frac{2x(2-x) - (x^2-3)(-1)}{(2-x)^2} = \frac{-x^2 + 4x - 3}{(2-x)^2} = \frac{(3-x)(x-1)}{(2-x)^2} = 0 \Longleftrightarrow x \in \{1;3\}. \text{ Tehát }$$

	$(-\infty,1)$	1	(1, 2)	(2,3)	3	$(3,+\infty)$
f′	_	0	+	+	0	1
f	\downarrow	lok. min.	\uparrow	\uparrow	lok. max	\downarrow

repes. (Gorbuleti Viszonyok, innexio):
$$f''(x) = \frac{(-2x+4)(2-x)^2 - (-x^2+4x-3) \cdot 2(2-x)(-1)}{(2-x)^4} = \frac{2}{(2-x)^3}.$$
 Tehát

	$(-\infty,2)$	$(2, +\infty)$
f"	+	_
f)	

- 4. lépés. (Határérték, aszimptota) : $\lim_{2 \pm 0} f = \mp \infty$; $\lim_{\pm \infty} f = \mp \infty$, ui. $\frac{x^2 3}{2 x} \sim \frac{2x}{-1} \to \mp \infty$. Mivel $\frac{f(x)}{x} = \frac{1}{x} \cdot \frac{x^2 3}{2 x} \to -1 \ (x \to \pm \infty) \text{ és } f(x) + \cdot x = \frac{-3 + 2x}{2 x} \to -2 \ (x \to \pm \infty), \text{ ezért } \phi(x) := -x 2 \ (x \in \mathbb{R}) \text{ aszimptota } \pm \infty\text{-ben.}$
- 5. lépés. (Grafikon) :

(12) 1. lépés. (Kezdeti vizsgálatok) :

$$f(x) = 0 \iff x = \pm \sqrt{8}$$
.

		$\left(-\infty,-\sqrt{8}\right)$	$-\sqrt{8}$	$(-\sqrt{8},\sqrt{8})$	$\sqrt{8}$	$(\sqrt{8},3)$	$(3,+\infty)$
-	f	+	0	_	0	+	_

2. lépés. (Monotonitás, lokális szélsőérték) :

$$f'(x) = \frac{2x(3-x) - (x^2 - 8)(-1)}{(3-x)^2} = \frac{-x^2 - 6x + 8}{(3-x)^2} = \frac{(2-x)(x-4)}{(3-x)^2} = 0 \iff x \in \{2;4\}. \text{ Tehát}$$

	$(-\infty,2)$	2	(2,3)	(3,4)	4	$(4,+\infty)$
f′	_	0	+	+	0	_
f	\downarrow	lok. min.	1	\uparrow	lok. max	\rightarrow

$$f''(x) = \frac{(-2x+6)(3-x)^{\frac{3}{2}} - (-x^2+6x-8) \cdot 2(3-x)(-1)}{(3-x)^4} = \frac{2}{(3-x)^3}.$$
 Tehát

	$(-\infty,3)$	$(3,+\infty)$
f"	+	_
f)	

- 4. lépés. (Határérték, aszimptota) : $\lim_{3 \pm 0} f = \mp \infty$; $\lim_{\pm \infty} f = \mp \infty$, ui. $\frac{x^2 8}{2 x} \sim \frac{2x}{-1} \to \mp \infty$. Mivel $\frac{f(x)}{x} = \frac{1}{x} \cdot \frac{x^8 3}{3 x} \to -1 \ (x \to \pm \infty) \text{ és } f(x) + \cdot x = \frac{-8 + 3x}{3 x} \to -3 \ (x \to \pm \infty), \text{ ezért } \phi(x) := -x 3 \ (x \in \mathbb{R}) \text{ aszimptota } \pm \infty\text{-ben.}$
- 5. lépés. (Grafikon) :

(13) 1. lépés. (Kezdeti vizsgálatok) :

$$f(x) = 0 \iff x = 2.$$

	$(-\infty,2)$	2	$(2,+\infty)$
f	_	0	+

2. lépés. (Monotonitás, lokális szélsőérték) :

$$f'(x) = \frac{\sqrt{x^2 + 1} - (x - 2)\frac{x}{\sqrt{x^2 + 1}}}{x^2 + 1} = \frac{x^2 + 1 - (x - 2)x}{\sqrt{(x^2 + 1)^3}} = \frac{1 + 2x}{\sqrt{(x^2 + 1)^3}} = 0 \iff x = -\frac{1}{2}. \text{ Tehát}$$

$$\boxed{(-\infty, -1/2) \quad -1/2 \quad (-1/2, +\infty)}$$

	$(-\infty, -1/2)$	-1/2	$(-1/2, +\infty)$
f'		0	+
f	\rightarrow	lok. min.	\uparrow

$$f''(x) = \frac{2\sqrt{(x^2+1)^3} - (1+2x) \cdot \frac{3(x^2+1)^2 \cdot x}{\sqrt{(x^2+1)^3}}}{(x^2+1)^3} = \frac{2(x^2+1) - 3x(1+2x)}{\sqrt{(x^2+1)^5}} = \frac{2 - 3x - 4x^2}{\sqrt{(x^2+1)^5}} = 0$$

$$\iff 8x = -3 \pm \sqrt{41}. \text{ Tehát}$$

	$\left(-\infty, \frac{-3-\sqrt{41}}{8}\right)$	$\frac{-3-\sqrt{41}}{8}$	$\left(\frac{-3-\sqrt{41}}{8},\frac{-3+\sqrt{41}}{8}\right)$	$\frac{-3+\sqrt{41}}{8}$	$\left(\frac{-3+\sqrt{41}}{8},+\infty\right)$
f"		0	+	0	_
f		infl.	\sim	infl.	

4. lépés. (Határérték, aszimptota) : Mivel tetszőleges $0 \neq x \in \mathbb{R}$ esetén

$$\sqrt{1+1/x^2} \cdot f(x) = \left\{ \begin{array}{ll} 1-2/x & (x>0) \\ 2/x-1 & (x<0) \end{array} \right. ,$$

ezért $\lim_{\substack{\pm \infty \ -\infty}} f = \pm 1$. Tehát $\phi(x) := 1 \ (x \in \mathbb{R})$ aszimptota $+\infty$ -ben és $\psi(x) := -1 \ (x \in \mathbb{R})$ aszimptota $-\infty$ -ben.

5. lépés. (Grafikon) :

(14) 1. lépés. (Kezdeti vizsgálatok) :

2. lépés. (Monotonitás, lokális szélsőérték) :

$$f'(x) = -\frac{\sqrt{x^2 + 1} - (x + 2)\frac{x}{\sqrt{x^2 + 1}}}{x^2 + 1} = -\frac{x^2 + 1 - (x + 2)x}{\sqrt{(x^2 + 1)^3}} = \frac{2x - 1}{\sqrt{(x^2 + 1)^3}} = 0 \iff x = \frac{1}{2}.$$

Tehát

	$\left(-\infty,\frac{1}{2}\right)$	$\frac{1}{2}$	$\left(\frac{1}{2},+\infty\right)$
f'	_	0	+
f	\downarrow	lok. min.	1

3. lépés. (Görbületi viszonyok, inflexió) :

Figure 1. (Gorbulett Viszoniyok, immexio):
$$f''(x) = \frac{2\sqrt{(x^2+1)^3} - (2x-1)\frac{3(x^2+1)^2 \cdot x}{\sqrt{(x^2+1)^3}}}{(x^2+1)^3} = \frac{2(x^2+1) - 3x(2x-1)}{\sqrt{(x^2+1)^5}} = 0 \iff 8x = 3 \pm \sqrt{41}.$$
Takét

Tehát

	$\left(-\infty, \frac{3-\sqrt{41}}{8}\right)$	$\frac{3-\sqrt{41}}{8}$	$\left(\frac{3-\sqrt{41}}{8},\frac{3+\sqrt{41}}{8}\right)$	$\frac{3+\sqrt{41}}{8}$	$\left(\frac{3+\sqrt{41}}{8},+\infty\right)$
f"	_	0	+	0	_
f		infl.	$\overline{}$	infl.	

4. lépés. (Határérték, aszimptota) : Mivel tetszőleges 0 $\neq x \in \mathbb{R}$ esetén

$$\sqrt{1+1/x^2} \cdot f(x) = \left\{ \begin{array}{ll} -1-2/x & (x>0) \\ 1+2/x & (x<0) \end{array} \right.,$$

ezért $\lim_{\substack{\pm \infty}} f = \mp 1$. Tehát $\phi(x) := -1$ $(x \in \mathbb{R})$ aszimptota $+\infty$ -ben és $\psi(x) := 1$ $(x \in \mathbb{R})$ aszimptota $-\infty$ -ben.

(15) 1. lépés. (Kezdeti vizsgálatok) :

$$f(x) = 0 \iff x^2 = 1 \iff x = \pm 1.$$

	$(-\infty, -1)$	-1	(1,0)	(0, 1)	1	$(1,+\infty)$
f	+	0	_		0	+

2. lépés. (Monotonitás, lokális szélsőérték) :

$$f'(x) = 2x \ln(x^2) + x^2 \cdot \frac{2x}{x^2} = 2x(\ln(x^2) + 1) = 0 \iff x = \pm \frac{1}{\sqrt{e}}.$$
 Tehát

	$\left(-\infty, -\frac{1}{\sqrt{e}}\right)$	$-\frac{1}{\sqrt{e}}$	$\left(-\frac{1}{\sqrt{e}},0\right)$	$\left(0,\frac{1}{\sqrt{e}}\right)$	$\frac{1}{\sqrt{e}}$	$\left(\frac{1}{\sqrt{e}}, +\infty\right)$
f'		0	+	_	0	+
f	<u> </u>	lok. min.	\uparrow	\downarrow	lok. min.	\uparrow

3. lépés. (Görbületi viszonyok, inflexió) :

$$f''(x) = 2(\ln(x^2) + 1) + 2x \cdot \frac{2x}{x^2} = 2\ln(x^2) + 6 = 0 \iff x = \pm \frac{1}{\sqrt{e^3}}$$
. Tehát

	$\left(-\infty, -\frac{1}{\sqrt{e^3}}\right)$	$-\frac{1}{\sqrt{e^3}}$	$\left(-\frac{1}{\sqrt{e^3}},0\right)$	$\left(0,\frac{1}{\sqrt{e^3}}\right)$	$\frac{1}{\sqrt{e^3}}$	$\left(\frac{1}{\sqrt{e^3}}, +\infty\right)$
f"	+	0			0	+
f)	infl.			infl.	$\overline{}$

4. lépés. (Határérték, aszimptota) : $\lim_{\pm \infty} f = +\infty$, mivel tetszőleges $0 \neq x \in \mathbb{R}$ esetén $\ln(x^2)/(1/x^2) \sim$

 $(2x/x^2)/(-2/x^3) = -x^2 \to 0 \ (x \to 0)$, ezért $\lim_0 f = 0$ és mivel $\frac{f(x)}{x} \to \pm \infty \ (x \to \pm \infty)$, ezért nincsen aszimptota.

(16) 1. lépés. (Kezdeti vizsgálatok) :

$$f(x) = 0 \iff x = \pm 1.$$

	$(-\infty, -1)$	-1	(-1,0)	(0, 1)	1	$(1,+\infty)$
f	_	0	+	_	0	+

2. lépés. (Monotonitás, lokális szélsőérték) :

$$f'(x) = \frac{2 - \ln(x^2)}{x^2} = 0 \iff x = \pm e$$
. Tehát

	$(-\infty, -e)$	-е	(-e, 0)	(0,e)	е	$(e, +\infty)$
f'	_	0	+	+	0	_
f	\downarrow	lok. min.	↑	\uparrow	lok. max.	\downarrow

3. lépés. (Görbületi viszonyok, inflexió) :

$$f''(x) = 2 \cdot \frac{\ln(x^2) - 3}{x^3} = 0 \iff x = \pm \sqrt{e^3}$$
. Tehát

	$(-\infty, -\sqrt{e^3})$	$-\sqrt{e^3}$	$(-\sqrt{e^3},0)$	$(0,\sqrt{e^3})$	$\sqrt{e^3}$	$(\sqrt{e^3}, +\infty)$
f"	_	0	+	_	0	+
f		infl.)		infl.	· ·

4. lépés. (Határérték, aszimptota) : $\lim_{0 \pm 0} f = \mp 0$ és $\lim_{\pm \infty} f = 0$, ui. $\ln(x^2)/(1/x) \sim -2x \to 0$ $(x \to \pm \infty)$, ezért $\phi(x) := 0$ $(x \in \mathbb{R})$ aszimptota $\pm \infty$ -ben.

(17) 1. lépés. (Kezdeti vizsgálatok) :

$f(x) = 0 \iff x = -e$.		$(-\infty, -e)$	-е	(-e, 0)	$(0,+\infty)$
$I(x) = 0 \iff x = -\epsilon$.	f	_	0	+	+

2. lépés. (Monotonitás, lokális szélsőérték) :

$f'(x) = \frac{1}{e} - \frac{1}{x} = 0 \iff x = e$. Tehát		$(-\infty,0)$	(0,e)	е	$(e, +\infty)$
	f′	+	_	0	+
	f	\uparrow	\rightarrow	lok min.	\uparrow

3. lépés. (Görbületi viszonyok, inflexió) :

1		$(-\infty,0)$	$(0,+\infty)$
$f''(x) = \frac{1}{x^2}$. Tehát	f"	+	+
χ-	f)	(

4. lépés. (Határérték, aszimptota):

Mivel
$$\ln(x)/x \sim 1 = x \to 0 \ (x \to +\infty)$$
 ezért $\frac{1}{e} - \frac{\ln(|x|)}{x} + \frac{2}{x} \to \frac{1}{e} \ (x \to \pm \infty)$. Így $f(x) = x \left(\frac{1}{e} - \frac{\ln(|x|)}{x} + \frac{2}{x}\right) \to \pm \infty \ (x \to \pm \infty)$. $\lim_{0 \to 0} f = +\infty$.

(18) 1. lépés. (Kezdeti vizsgálatok) :

$f(x) = 0 \iff x = \in \left\{-2\sqrt{2}, 0, 2\sqrt{2}\right\}.$		$-2\sqrt{2}$	$-2\sqrt{2},0$)	0	$\left(0,2\sqrt{2}\right)$	$2\sqrt{2}$
	f	0	+		0		0

2. lépés. (Monotonitás, lokális szélsőérték) :

3. lépés. (Görbületi viszonyok, inflexió) :

Teszőleges
$$x \in \left(-2\sqrt{2}, 2\sqrt{2}\right)$$
 esetén
$$f''(x) = \frac{-x}{\sqrt{8-x^2}} - \frac{2x\sqrt{8-x^2}-x^2\cdot\frac{-x}{\sqrt{8-x^2}}}{8-x^2} = \dots = \frac{2x^3-24}{\sqrt{(8-x^2)^3}} = 0 \iff x = 0. \text{ Tehát}$$

	$\left(-2\sqrt{2},0\right)$	0	$(0, 2\sqrt{2})$
f"	+	0	_
f)	infl.	(

