

CS201 DISCRETE MATHEMATICS FOR COMPUTER SCIENCE

Dr. QI WANG

Department of Computer Science and Engineering

Office: Room903, Nanshan iPark A7 Building

Email: wangqi@sustech.edu.cn

Review

- 01. Propositional Logic
- 02. Predicate Logic
- 03. Mathematical Proofs
- 04. Sets
- 05. Functions
- 06. Complexity of Algorithms
- 07. Number Theory

- 08. Cryptography
- 09. Mathematical Induction
- 10. Recursion
- 11. Counting
- 12. Relation
- 13. Graphs
- 14. Tree

Review

- 01. Propositional Logic
- 02. Predicate Logic
- 03. Mathematical Proofs
- 04. Sets
- 05. Functions
- 06. Complexity of Algorithms
- 07. Number Theory

Discrete Probability
Groups, Rings and Fields

- 08. Cryptography
- 09. Mathematical Induction
- 10. Recursion
- 11. Counting
- 12. Relation
- 13. Graphs
- 14. Tree

Logical connectives

Logical connectives

$$\neg p, p \lor q, p \land q, p \oplus q, p \rightarrow q, p \leftrightarrow q$$

Logical connectives

$$\neg p, p \lor q, p \land q, p \oplus q, p \rightarrow q, p \leftrightarrow q$$

Logical equivalence

Logical connectives

$$\neg p, p \lor q, p \land q, p \oplus q, p \rightarrow q, p \leftrightarrow q$$

Logical equivalence

De Morgan's laws, communtative laws, distributive laws, ...

Logical connectives

$$\neg p$$
, $p \lor q$, $p \land q$, $p \oplus q$, $p \rightarrow q$, $p \leftrightarrow q$

Logical equivalence

De Morgan's laws, communtative laws, distributive laws, ...

Predicate logic

contains variables

Logical connectives

$$\neg p$$
, $p \lor q$, $p \land q$, $p \oplus q$, $p \rightarrow q$, $p \leftrightarrow q$

Logical equivalence

De Morgan's laws, communtative laws, distributive laws, ...

- Predicate logiccontains variables
- Quantified statements

universal, existential, equivalence

Methods of Proving Theorems

- Basic methods to prove theorems:
 - ♦ direct proof
 - $-p \rightarrow q$ is proved by showing that if p is true then q follows
 - proof by contrapositive
 - show the contrapositive $\neg q \rightarrow \neg p$
 - proof by contradiction
 - show that $(p \land \neg q)$ contradicts the assumptions
 - proof by cases
 - give proofs for all possible cases
 - proof of equivalence
 - $-p \leftrightarrow q$ is replaced with $(p \rightarrow q) \land (q \rightarrow p)$

function?

function?

one-to-one (injective) function?

function?

```
one-to-one (injective) function?
onto (surjective) function?
```


function?

```
one-to-one (injective) function?
onto (surjective) function?
bijective function (one-to-one correspondence)?
```


function?

```
one-to-one (injective) function?
onto (surjective) function?
bijective function (one-to-one correspondence)?
```

counting the number of such functions?

Big-O Notation

Let f and g be functions from the set of integers or the set of real numbers to the set of real numbers. We say that f(n) = O(g(n)) (reads: f(n) is O of g(n)), if there exist some positive constants C and k such that $|f(n)| \le C|g(n)|$, whenever n > k.

Divisibility

Divisibility

Congruence relation

Divisibility

Congruence relation

Primes

Divisibility

Congruence relation

Primes

GCD and Euclidean Algorithm

Divisibility

Congruence relation

Primes

GCD and Euclidean Algorithm

Modular Inverse

Divisibility

Congruence relation

Primes

GCD and Euclidean Algorithm

Modular Inverse

When does an inverse of a modulo m exist?

How to find inverses?

Divisibility

Congruence relation

Primes

GCD and Euclidean Algorithm

Modular Inverse

When does an inverse of a modulo m exist?

How to find inverses?

Chinese Remainder Theorem

Divisibility

Congruence relation

Primes

GCD and Euclidean Algorithm

Modular Inverse

When does an inverse of a modulo m exist?

How to find inverses?

Chinese Remainder Theorem

Back substitution

Divisibility

Congruence relation

Primes

GCD and Euclidean Algorithm

Modular Inverse

When does an inverse of a modulo m exist?

How to find inverses?

Chinese Remainder Theorem

Back substitution
$$x \equiv 2 \pmod{3}$$

 $x \equiv 3 \pmod{5}$
 $x \equiv 2 \pmod{5}$

Cryptography

Fermat's Little Theorem

Cryptography

Fermat's Little Theorem

Euler's Theorem

Primitive roots, multiplicative order

Cryptography

Fermat's Little Theorem

Euler's Theorem

Primitive roots, multiplicative order

RSA cryptosystem

DLP, Diffie-Hellman protocol

■ A *typical* proof by mathematical induction, showing that a statement P(n) is true for all integers $n \ge b$ consists of three steps:

- A *typical* proof by mathematical induction, showing that a statement P(n) is true for all integers $n \ge b$ consists of three steps:
 - 1. We show that P(b) is true. Base Step

- A *typical* proof by mathematical induction, showing that a statement P(n) is true for all integers $n \ge b$ consists of three steps:
 - 1. We show that P(b) is true. Base Step
 - 2. We then, $\forall n > b$, show either

(*)
$$P(n-1) \rightarrow P(n)$$
 or $(**)$ $P(b) \land P(b+1) \land \cdots \land P(n-1) \rightarrow P(n)$

- A *typical* proof by mathematical induction, showing that a statement P(n) is true for all integers $n \ge b$ consists of three steps:
 - 1. We show that P(b) is true. Base Step
 - 2. We then, $\forall n > b$, show either

$$(*)$$
 $P(n-1) o P(n)$ or $(**)$ $P(b) \wedge P(b+1) \wedge \cdots \wedge P(n-1) o P(n)$

We need to make the inductive hypothesis of either P(n-1) or $P(b) \wedge P(b+1) \wedge \cdots \wedge P(n-1)$. We then use (*) or (**) to derive P(n).

- A *typical* proof by mathematical induction, showing that a statement P(n) is true for all integers $n \ge b$ consists of three steps:
 - 1. We show that P(b) is true. Base Step
 - 2. We then, $\forall n > b$, show either

$$(*) \qquad P(n-1) \to P(n)$$

or

$$(**) \qquad P(b) \land P(b+1) \land \cdots \land P(n-1) \rightarrow P(n)$$

We need to make the inductive hypothesis of either P(n-1) or $P(b) \wedge P(b+1) \wedge \cdots \wedge P(n-1)$. We then use (*) or (**) to derive P(n).

3. We conclude on the basis of the principle of mathematical induction that P(n) is true for all $n \ge b$.

Recurrence

Iterating a recurrence

Recurrence

Iterating a recurrence

bottom up or top down

Recurrence

Iterating a recurrence

bottom up or top down

prove by induction, complexity, ...

■ The sum rule and product rule

The sum rule and product rule

The Inclusion-Exclusion Principle

The sum rule and product rule

The Inclusion-Exclusion Principle

The Pigeonhole Principle

The sum rule and product rule

The Inclusion-Exclusion Principle

The Pigeonhole Principle

Theorem If N is a positive integer and k is an integer with $1 \le k \le n$, then there are

$$P(n, k) = n(n-1)(n-2)\cdots(n-k+1)$$

k-element permutations with n distinct elements.

The sum rule and product rule

The Inclusion-Exclusion Principle

The Pigeonhole Principle

Theorem If N is a positive integer and k is an integer with $1 \le k \le n$, then there are

$$P(n,k) = n(n-1)(n-2)\cdots(n-k+1)$$

k-element permutations with *n* distinct elements.

$$P(n,3) = 3! \cdot C(n,3)$$

The sum rule and product rule

The Inclusion-Exclusion Principle

The Pigeonhole Principle

Theorem If N is a positive integer and k is an integer with $1 \le k \le n$, then there are

$$P(n, k) = n(n-1)(n-2)\cdots(n-k+1)$$

k-element permutations with n distinct elements.

$$P(n,3) = 3! \cdot C(n,3)$$

Pascal's Triangle, Identity

The sum rule and product rule

The Inclusion-Exclusion Principle

The Pigeonhole Principle

Theorem If N is a positive integer and k is an integer with $1 \le k \le n$, then there are

$$P(n,k) = n(n-1)(n-2)\cdots(n-k+1)$$

k-element permutations with n distinct elements.

$$P(n,3) = 3! \cdot C(n,3)$$

Pascal's Triangle, Identity

The Binomial Theorem, Trinomial

Properties of relations

Properties of relations

Representing relations

Properties of relations

Representing relations

Closures on relations

Properties of relations

Representing relations

Closures on relations

Equivalence relation

Definition A relation R on a set A is called an *equivalence* relation if it is reflexive, symmetric, and transitive.

Properties of relations

Representing relations

Closures on relations

Equivalence relation

Definition A relation R on a set A is called an *equivalence* relation if it is reflexive, symmetric, and transitive.

Partial ordering

Properties of relations

Representing relations

Closures on relations

Equivalence relation

Definition A relation R on a set A is called an *equivalence* relation if it is reflexive, symmetric, and transitive.

Partial ordering

Definition A relation R on a set A is called a *partial* ordering if it is reflexive, antisymmetric, and transitive.

Graphs & Trees

Basic concepts

Graphs & Trees

Basic concepts

connected graph, simple graph, isomophism, chromatic number, Euler circuit, Hamilton circuit, shortest path, bipartite graph, complete graph, special graphs $(K_n, K_{m,n}, C_n, W_n)$, m-ary tree, tree traversal, spanning tree ...

Next Lecture

Good Luck!

