

### Ministerul Educației și Cercetării - Serviciul National de Evaluare și Examinare

### EXAMENUL DE BACALAUREAT - 2007 Proba scrisă la Fizică

Proba E: Specializarea: matematică -informatică, stiinte ale naturii

Proba F: Profil: tehnic - toate specializările

♦ Sunt obligatorii toți itemii din două arii tematice dintre cele patru prevăzute în programă, adică: A.MECANICĂ, B.ELECTRICITATE ŞI MAGNETISM, C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ, D. OPTICĂ

♦Se acordă 10 puncte din oficiu.

♦Timpul efectiv de lucru este de 3 ore.

Varianta 17

# A. MECANICĂ

Se consideră  $g = 10 \, m/s^2$ ,  $R_P = 6400 \, km$ 

### I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului considerat corect.

15 puncte

1. Un corp este aruncat pe verticală în sus cu viteza inițială  $v_o = 20 \, m/s$ . Viteza lui la înălțimea  $h = \frac{16}{25} \, h_{\rm max}$ , măsurată de la nivelul de lansare este:

**a.** 0

**b.**  $6 \, m/s$ 

**c.** 12 m/s

**d.** 15 m/s

2. Un resort ideal, cu constanta elastică  $k = 10 \ N/m$ , este comprimat cu  $\Delta l = 10 \ cm$ . Lucrul mecanic efectuat de forța elastică la revenirea la forma inițială este:

**a.** 50 mJ

**b.** -50 mJ

**c.** -1 *J* 

**d.** 1*J* 

3. Asupra unui corp cu masa m=100~g, aflat inițial în repaus pe o suprafață orizontală foarte lucioasă acționează o forță orizontală, a cărei dependență de timp este reprezentată în figura alăturată. După t=4~s de la inceperea acțiunii acestei forțe, viteza corpului este:

**a.** 10 m/s

**b.** 20 m/s

**c.**  $30 \, m/s$ 

**d.** 40 m/s



**4.** O bilă cu masa  $m_1 = 3 \ kg$  ciocneşte perfect elastic o altă bilă aflată în repaus. După interacțiunea prima bilă are viteza  $\vec{v}'_1 = 0.5 \ \vec{v}_1$ . Masa bilei 2 este:

**a.** 0,5 kg

**b.** 1 kg

**c.** 2 kg

**d.** 3 *kg* 

**5.** Un satelit cu masa m = 1t se rotește uniform în jurul Pământului la altitudinea  $h = 100 \, km$  cu perioada  $T = 90 \, min$ . Lucrul mecanic efectuat de greutatea sa într-o rotație completă este:

**a.** 0

**b.** 1 GJ

c. 3,14 GJ

**d.** 408,2 GJ

# II. Rezolvați următoarele probleme:

1. Un resort ideal, cu constanta de elasticitate  $k=1\,N/cm$  are lungimea nedeformată  $I_o=1\,m$ . El este comprimat de către un corp cu masa  $m=1\,kg$  așezat peste resort, ca în figura alăturată și de o forță verticală  $F=30\,N$ . Determinați:



- a. valoarea forței elastice exercitate în resort;
- b. lungimea resortului comprimat;
- c. înălțimea maximă față de sol la care va urca acest corp, dacă forța  $\vec{F}$  își încetează acțiunea.

15 puncte

**2.** Două corpuri cu masele  $m_1 = 1 \, kg$ , respectiv  $m_2 = 2 \, kg$  sunt situate pe o suprafață orizontală și legate printr-un fir inextensibil și de masă neglijabilă. Sistemul este tras de o forță orizontală  $F = 6 \, N$ . Determinati:



a. accelerația sistemului celor două corpuri, dacă se neglijează orice frecări;

**b.** accelerația sistemului, dacă între corpuri și suprafața orizontală apare frecare, coeficientul de frecare la alunecare fiind  $\mu = 0.2$ ;

c. tensiunea din fir, în condițiile de la punctul b.

15 puncte

Proba scrisă la Fizică Proba E: Specializarea : matematică –informatică, stiințe ale naturii

Proba F: Profil: tehnic – toate specializările

1



### Ministerul Educației și Cercetării - Serviciul National de Evaluare și Examinare

### EXAMENUL DE BACALAUREAT - 2007 Proba scrisă la Fizică

Proba E: Specializarea: matematică -informatică, stiinte ale naturii

Proba F: Profil: tehnic - toate specializările

♦ Sunt obligatorii toți itemii din două arii tematice dintre cele patru prevăzute în programă, adică: A.MECANICĂ, B.ELECTRICITATE ŞI MAGNETISM, C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ, D. OPTICĂ

◆Se acordă 10 puncte din oficiu.

♦Timpul efectiv de lucru este de 3 ore.

Varianta 17

### **B. ELECTRICITATE ŞI MAGNETISM**

Permeabilitatea magnetică a vidului are valoarea  $\mu_0 = 4\pi \cdot 10^{-7} \, \text{N/A}^2$ .

### I. Pentru itemii 1-5 scrieti pe foaia de răspuns litera corespunzătoare răspunsului considerat corect

15 puncte

1. Prețul pentru 1 kWh de energie electrică este de 36 de bani. Pentru energia folosită de un dispozitiv electric care consumă puterea P = 100 W în timpul  $\Delta t = 2 h$  46 min 40 s trebuie plătit prețul de:

a. 01 han

**b.** 1 ban

c 10 har

**d.** 1 leu

2. Dacă pe un beculeț sunt trecute valorile 3 V și 0,1 A, energia consumată de acesta în 3 ore de funcționare normală este:

**a.**  $10^{-1} J$ 

**b.**  $9 \cdot 10^{-1} J$ 

**c.**  $9 \cdot 10^{-4} \, kWh$ 

**d.**  $10^{-1} kWh$ 

3. O sursă cu tensiunea electromotoare E debitează puterea P pe un rezistor cu rezistența  $R_1 = 4 \Omega$ . Dacă acesta se înlocuiește cu un alt rezistor de rezistență  $R_2 = 1 \Omega$  se constată că sursa debitează aceeași putere P pe circuitul exterior. Rezistența internă a sursei r este:

**a.** 0

**b**. 2 Ω

c.  $4\Omega$ 

d.  $5\Omega$ 

**4.** Printr-un conductor trece un curent a cărui intensitate variază după legea i = at, cu a = 2 A/s. Sarcina electrică care parcurge conductorul în intervalul  $t \in [1s, 4s]$  este

**a.** 30 *C* 

**b.** 20 C

**c.** 15 C

**d.** 5*C* 

**5.** Suprafața unui conductor circular este străbătută de un câmp magnetic omogen, crescător în timp, de forma B = kt. Curentul indus în spiră este:

a. nul

b. crescător

c. descrescător

d. constant



### II. Rezolvați următoarele probleme:

1. În circuitul electric, a cărui diagramă este ilustrată în figura alăturată, întrerupătorul K este deschis. Cunoscând tensiunea electromotoare  $E=10\,V$ , rezistența internă  $r=1\,\Omega$ , rezistența ampermetrului  $r_A=0$ , rezistențele rezistorilor  $R_1=R_2=R_3=6\,\Omega$  și neglijând rezistența electrică a firelor conductoare din circuit, determinati:

- a. intensitatea curentului de scurtcircuit al sursei;
- **b.** indicația ampermetrului;
- ${f c.}$  valoarea rezistenței rezistorului  ${\it R}_4$ , dacă, la închiderea întrerupătorului K, prin ampermetru nu mai trece curent.



**2.** Se consideră o spiră cu aria  $S=3,14~m^2$  și secțiunea firului  $s=1~mm^2$  din cupru cu rezistivitatea  $\rho=1,67\cdot 10^{-8}\Omega m$ . Ea este legată la bornele unei surse cu tensiunea electromotoare E=20~V. și de rezistență electrică neglijabilă Determinații:



b. valoare inducției magnetice din centrul spirei;

**c.** inducția magnetică ce apare în centrul spirei, dacă la bornele sursei se leagă în paralel o a doua spiră, identică cu prima și izolată electric față de aceasta. Cele două spire sunt perpendiculare și au același centru.



15 puncte

Proba scrisă la Fizică

Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările



### Ministerul Educatiei si Cercetării - Serviciul National de Evaluare si Examinare

# **EXAMENUL DE BACALAUREAT - 2007**

### Proba scrisă la Fizică

Proba E: Specializarea: matematică -informatică, stiinte ale naturii

Proba F: Profil: tehnic - toate specializările

◆ Sunt obligatorii toți itemii din două arii tematice dintre cele patru prevăzute în programă, adică: A.MECANICĂ, B.ELECTRICITATE ȘI MAGNETISM, C. ELEMENTE DE TERMODINAMICĂ ȘI FIZICĂ MOLECULARĂ, D. OPTICĂ

◆Se acordă 10 puncte din oficiu.

♦Timpul efectiv de lucru este de 3 ore.

Varianta 17

### C. ELEMENTE DE TERMODINAMICĂ SI FIZICĂ MOLECULARĂ

Numărului lui Avogadro  $N_A = 6{,}023 \cdot 10^{23} \, mol^{-1}$ ,  $p_o = 1 a t m \approx 10^5 \, N/m^2$ ,  $R \approx 8{,}31 \, J/(mol \cdot K)$ ,  $T_o = 273 \, K$ ,  $C_p = C_V + R$ 

# I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului considerat corect.

15 puncte

- 1. În figura alăturată este prezentată variatia presiunii unui gaz mentinut la volum constant. Masa gazului:
- a. crește
- b. scade
- c. este constantă
- d. are o evoluție ce nu poate fi precizată
- 2. Unitatea de măsură în S.I. pentru căldura molară este:



- 3. O cantitate constantă de gaz ideal suferă transformarea ciclică din figură. Lucrul mecanic efectuat de sistem este:
- a. pozitiv
- **b.** negativ
- c. nul
- d. dependent de sensul de parcurgere



- **4.** O masă constantă *m* de gaz este încălzită izocor. Densitatea gazului:
- a. creste
- **b.** scade
- c. este constantă
- d. nu are o evoluție previzibilă
- 5. Considerați o cantitate dată de gaz ideal ce ar parcurge un ciclu Carnot în sens orar. Dacă T<sub>c</sub> reprezintă temperatura sursei calde și  $T_r$  cea a sursei reci, atunci randamentul unui motor termic ce ar funcționa după acest ciclu ar avea expresia:
- **a.**  $\eta = 1 \frac{T_r}{T_r}$
- **b.**  $\eta = 1 + \frac{T_c}{T_r}$  **c.**  $\eta = 1 + \frac{T_r}{T_c}$  **d.**  $\eta = 1 \frac{T_c}{T_c}$

# II. Rezolvati următoarele probleme:

- 1. La mijlocul unui cilindru orizontal, cu lungimea l = 1 m și cu secțiunea  $S = 20 cm^2$  se află un piston foarte ușor ce se poate deplasa fără frecări. În compartimentul din stânga se află o masă  $m_1 = 4 g$  de hidrogen ( $\mu_1 = 2 g/mol$ ), la temperatura T = 300 K.
- a. concentratia moleculelor de hidrogen;
- b. densitatea oxigenului ( $\mu_2 = 32 \, g/mol$ ) care ocupă compartimentul din dreapta, aflat la aceeași temperatură T;
- c. distanța pe care se deplasează pistonul, dacă temperatura hidrogenului crește cu o fracțiune f = 20%, iar cea a oxigenului scade cu aceeași fracțiune.

15 puncte

- 2. Considerați o cantitate de oxigen ( $\mu = 32 \ g/mol$ ), aflată inițial în condiții fizice normale și care descrie transformarea ciclică  $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$  (vezi figura alăturată). Cunoscând că  $p_2 = 2 p_1$ , că  $C_V = 5/2 R$  și că transformarea  $2 \rightarrow 3$  este izotermă, determinați:
- a. viteza termică a moleculelor în starea 1;
- **b.** raportul lucrurilor mecanice corespunzătoare transformărilor  $2 \rightarrow 3$  si  $3 \rightarrow 1$ ;
- **c**. randamentul unui motor care funcționează conform ciclului  $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$  din figură. Se cunoaște  $c\bar{a} \ln 2 = 0.693.$



15 puncte

Proba scrisă la Fizică Proba E: Specializarea: matematică -informatică, științe ale naturii

Proba F: Profil: tehnic - toate specializările



### Ministerul Educației și Cercetării - Serviciul Național de Evaluare și Examinare

# EXAMENUL DE BACALAUREAT - 2007 Proba scrisă la Fizică

Proba E: Specializarea: matematică -informatică, stiinte ale naturii

Proba F: Profil: tehnic - toate specializările

♦ Sunt obligatorii toți itemii din două arii tematice dintre cele patru prevăzute în programă, adică: A.MECANICĂ, B.ELECTRICITATE ŞI MAGNETISM, C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ, D. OPTICĂ

♦Se acordă 10 puncte din oficiu.

♦Timpul efectiv de lucru este de 3 ore.

Varianta 17

### D.OPTICĂ

Viteza luminii în vid  $c = 3 \cdot 10^8 \, m/s$ 

### I. Pentru itemii 1-5 scrieti pe foaia de răspuns litera corespunzătoare răspunsului considerat corect.

15 puncte

1. La trecerea luminii dintr-un mediu optic transparent în altul, indicele de refracție creşte cu f = 33%. Variația procentuală a vitezei luminii este de aproximativ:

**a.** -33 %

b. -25 %

**c.** 25 %

d. 33 %

2. Un fascicul de lumină provenind de la un dispozitiv laser, plasat în interiorul unui lichid cu indicele de refracție  $n=1,41 (\cong \sqrt{2})$  este incident pe suprafața de separare lichid – aer  $\binom{n_{aer}}{2}$ . În această situație, valoarea unghiului limită este:

a.  $15^{\circ}$ 

**b.** 30°

c. 45°

**d.** 60°

**3.** Pe o rețea de difracție cu *100* de trăsături pe mm cade perpendicular un fascicul de lumină monocromatică cu lungimea de undă  $\lambda = 490 \ nm$ . Ordinul maxim al spectrului de difracție care se poate obține are valoarea:

**a.** 2

**b**. 5

c 20

d. 41

4. Condiția ca două unde luminoase să formeze un maxim de interferență este ca diferența de drum optic  $\delta$  să fie:

a.  $2k\frac{\lambda}{4}$ 

**b.** *k* λ

c.  $(2k-1)\frac{\lambda}{2}$ 

**d.**  $(2k+1)\frac{\lambda}{2}$ 

**5.** Dacă o lentilă plan convexă, cu distanța focală *f*, este rotită cu 180º în jurul unei axe perpendiculare pe axul optic principal atunci noua distantă focală este:

a.f

b\_\_\_*f* 

c 2

d \_2

# II. Rezolvați următoarele probleme:

1. Un obiect luminos este plasat la d = 60 cm de o oglindă concavă. Imaginea sa este de 2 ori mai mică decât obiectul.

a. Determinați distanța focală a oglinzii.

**b.** Aflați noua valoare a măririi liniare  $\beta$ , dacă distanța dintre obiect și oglindă se mărește cu k = 50%.

c. Oglinda concavă se înlocuiește cu o lentilă plan concavă, din sticlă (n = 1,5) situată în aer ( $n_{aer} \cong 1$ ), având raza de curbură R = 40 cm. Determinați poziția imaginii obiectului față de lentilă, dacă distanța obiect – lentilă este d = 60 cm.

15 puncte

**2.** Un dispozitiv Young, cu distanța dintre fante  $2l = 1 \, mm$  şi cu distanța  $D = 2 \, m$  până la ecranul de observație, aflat în aer, este iluminat cu o radiație cu lungimea de undă  $\lambda_1 = 500 \, nm$ .

a. Calculati frecvența radiației utilizate.

**b.** Determinați valoarea interfranjei observate pe ecran.

c. Se înlocuiește sursa inițială cu o alta care emite două radiații cu lungimile de undă  $\lambda_1 = 500 \, nm$  respectiv  $\lambda_2 = 700 \, nm$ . Determinați poziția în raport cu maximul central a celui mai apropiat punct de pe ecran care nu este iluminat.

15 puncte

Varianta 17

Proba scrisă la Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările