Propositions of solutions for Analysis II by Terence Tao

Frédéric Santos

March 22, 2022

Contents

12 Metric spaces 2

Remarks. The numbering of the Exercises follows the fourth edition of $Analysis\ II$. In order to make the references to $Analysis\ I$ easier, we consider that we begin with Chapter 12 here, as in earlier editions of the textbook. Thus, in particular, a reference to "Exercise 4.3.3" (for instance) will always mean "Exercise 4.3.3 from $Analysis\ I$ ".

12. Metric spaces

Exercise 12.1.1. — Prove Lemma 12.1.1

Consider the sequence $(a_n)_{n=m}^{\infty}$ defined by $a_n := d(x_n, x) = |x_n - x|$ for all $n \ge m$. We have to prove that $\lim_{n\to\infty} a_n = 0$ if and only if $\lim_{n\to\infty} x_n = x$.

- Let be $\varepsilon > 0$. If $\lim_{n \to \infty} a_n = 0$, then there exists an $N \ge m$ such that $|a_n| < \varepsilon$ whenever $n \ge N$. Thus, there exists an $N \ge m$ such that $|x_n x| < \varepsilon$ whenever $n \ge N$, which means that $\lim_{n \to \infty} x_n = x$.
- Let be $\varepsilon > 0$. Conversely, if $\lim_{n \to \infty} x_n = x$, then there exists an $N \ge m$ such that $|x_n x| < \varepsilon$ whenever $n \ge N$. But since $|a_n| := |x_n x|$, it means that $\lim_{n \to \infty} a_n = 0$, as expected.

EXERCISE 12.1.2. — Show that the real line with the metric d(x,y) := |x-y| is indeed a metric space.

Using Proposition 4.3.3, this claim is obvious. All claims (a)–(d) of Definition 12.1.2 are satisfied because:

- (a) comes from Proposition 4.3.3(e)
- (b) also comes from Proposition 4.3.3(e)
- (c) comes from Proposition 4.3.3(f)
- (d) comes from Proposition 4.3.3(g).

EXERCISE 12.1.3. — Let X be a set, and let $d: X \times X \to [0, \infty)$ be a function. With respect to Definition 12.1.2, give an example of a pair (X, d) which...

- (a) obeys the axioms (bcd) but not (a). Consider $X = \mathbb{R}$, and d defined by d(x, x) = 1 and d(x, y) = 5 for all $x \neq y \in \mathbb{R}$.
- (b) obeys the axioms (acd) but not (b). Consider $X = \mathbb{R}$, and d defined by d(x, y) = 0 for all $x, y \in \mathbb{R}$.
- (c) obeys the axioms (abd) but not (c). Consider $X = \mathbb{R}$, and d defined by $d(x, y) = \max(x - y, 0)$ for all $x, y \in \mathbb{R}$.
- (d) obeys the axioms (abc) but not (d). Consider the finite set $X := \{1, 2, 3\}$ and the application d defined by d(1, 2) = d(2, 1) = d(2, 3) = d(3, 2) := 1, and d(1, 3) = d(3, 1) := 5, and d(x, x) = 0 for all $x \in X$.

EXERCISE 12.1.4. — Show that the pair $(Y, d|_{Y\times Y})$ defined in Example 12.1.5 is indeed a metric space.

By definition, since $Y \subseteq X$, we have $x, y \in X$ whenever $x, y \in Y$. And furthermore, since $d|_{Y\times Y}(x,y):=d(x,y)$, then the application $d|_{Y\times Y}$ obeys all four statements (a)–(d) of Definition 12.1.2. Thus, $(Y,d|_{Y\times Y})$ is indeed a metric space.

EXERCISE 12.1.5. — Let $n \ge 1$, and let a_1, a_2, \ldots, a_n and b_1, b_2, \ldots, b_n be real numbers. Verify the identity $(\sum_{i=1}^n a_i b_i)^2 + \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n (a_i b_j - a_j b_i)^2 = \sum_{i=1}^n a_i^2 \sum_{j=1}^n b_j^2$, and conclude the Cauchy-Schwarz inequality. Then use the Cauchy-Schwarz inequality to prove the triangle inequality.

Let's prove these three statements.

(i) To prove the first identity, let's use induction on n.

The base case n = 1 is obvious: on the left-hand side, we just get $(a_1b_1)^2$, and on the right-hand side, we get $a_1^2b_1^2$, hence the statement.

Now let's suppose inductively that this identity is true for a given positive integer $n \ge 1$, and let's prove that it is still true for n + 1. We have to prove that

$$\underbrace{\left(\sum_{i=1}^{n+1} a_i b_i\right)^2}_{:=A} + \underbrace{\frac{1}{2} \sum_{i=1}^{n+1} \sum_{j=1}^{n+1} (a_i b_j - a_j b_i)^2}_{:=B} = \underbrace{\left(\sum_{i=1}^{n+1} a_i^2\right) \left(\sum_{j=1}^{n+1} b_j^2\right)}_{:=C}$$
(12.1)

where we gave a name to each part of the identity for an easier computation below. Indeed,

• for A, we have

$$A := \left(\sum_{i=1}^{n+1} a_i b_i\right)^2$$

$$= \left(a_{n+1} b_{n+1} + \sum_{i=1}^n a_i b_i\right)^2$$

$$= \left(a_{n+1} b_{n+1}\right)^2 + \left(\sum_{i=1}^n a_i b_i\right)^2 + 2\left(a_{n+1} b_{n+1}\right) \sum_{i=1}^n a_i b_i$$

• for B, we have

$$B := \frac{1}{2} \sum_{i=1}^{n+1} \sum_{j=1}^{n+1} (a_i b_j - a_j b_i)^2$$

$$= \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n+1} (a_i b_j - a_j b_i)^2 + \frac{1}{2} \sum_{j=1}^{n+1} (a_{n+1} b_j - a_j b_{n+1})^2$$

$$= \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} (a_i b_j - a_j b_i)^2 + \underbrace{\frac{1}{2} \sum_{i=1}^{n} (a_i b_{n+1} - a_{n+1} b_i)^2}_{:=1/2 \times S} + \underbrace{\frac{1}{2} \sum_{j=1}^{n} (a_{n+1} b_{n+1} - b_{n+1} a_{n+1})^2}_{=0}$$

$$= \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} (a_i b_j - a_j b_i)^2 + \sum_{k=1}^{n} (a_k b_{n+1} - a_{n+1} b_k)^2$$

• and thus, for A + B, we now use the induction hypothesis (IH) to get:

$$\begin{split} A+B &:= (a_{n+1}b_{n+1})^2 + \left(\sum_{i=1}^n a_ib_i\right)^2 + 2(a_{n+1}b_{n+1})\sum_{i=1}^n a_ib_i \\ &+ \frac{1}{2}\sum_{i=1}^n\sum_{j=1}^n (a_ib_j - a_jb_i)^2 + \sum_{k=1}^n (a_kb_{n+1} - a_{n+1}b_k)^2 \\ &= \underbrace{\left(\sum_{i=1}^n a_ib_i\right)^2 + \frac{1}{2}\sum_{i=1}^n\sum_{j=1}^n (a_ib_j - a_jb_i)^2}_{\text{apply (IH) here}} \\ &+ (a_{n+1}b_{n+1})^2 + 2(a_{n+1}b_{n+1})\sum_{i=1}^n a_ib_i + \sum_{k=1}^n (a_kb_{n+1} - a_{n+1}b_k)^2 \\ &= \left(\sum_{i=1}^n a_i^2\right) \left(\sum_{j=1}^n b_j^2\right) \\ &+ (a_{n+1}b_{n+1})^2 + 2(a_{n+1}b_{n+1})\sum_{i=1}^n a_ib_i + \sum_{k=1}^n (a_kb_{n+1} - a_{n+1}b_k)^2 \\ &= \left(\sum_{i=1}^n a_i^2\right) \left(\sum_{j=1}^n b_j^2\right) + (a_{n+1}b_{n+1})^2 \\ &+ 2\sum_{i=1}^n a_ia_{n+1}b_ib_{n+1} + \sum_{i=1}^n (a_i^2b_{n+1}^2 - 2a_ib_{n+1}a_{n+1}b_i + a_{n+1}^2b_i^2) \\ &= \left(\sum_{i=1}^n a_i^2\right) \left(\sum_{j=1}^n b_j^2\right) + \sum_{i=1}^n (a_i^2b_{n+1}^2 + a_{n+1}^2b_i^2) \\ &= \left(\sum_{i=1}^{n+1} a_i^2\right) \left(\sum_{j=1}^{n+1} b_j^2\right) \\ &= C \end{split}$$

so that the identity is indeed true for all natural number n.

(ii) We can use this identity to prove the Cauchy-Schwarz identity,

$$\left| \sum_{i=1}^{n} a_i b_i \right| \leqslant \left(\sum_{i=1}^{n} a_i^2 \right)^{1/2} \left(\sum_{i=1}^{n} b_i^2 \right)^{1/2}. \tag{12.2}$$

Indeed, since $B \ge 0$ in the identity (12.1), we have

$$\left(\sum_{i=1}^{n} a_i b_i\right)^2 \leqslant \left(\sum_{i=1}^{n} a_i^2\right) \left(\sum_{j=1}^{n} b_j^2\right)$$

and thus, taking the square root on both sides, we get (12.2), as expected.

(iii) Finally, we can use the Cauchy-Schwarz inequality to prove the triangle inequality.

We have

$$\sum_{i=1}^{n} (a_i^2 + b_i^2) = \sum_{i=1}^{n} a_i^2 + \sum_{i=1}^{n} b_i^2 + 2 \sum_{i=1}^{n} a_i b_i$$

$$\leq \sum_{i=1}^{n} a_i^2 + \sum_{i=1}^{n} b_i^2 + 2 \left(\sum_{i=1}^{n} a_i^2\right)^{1/2} \left(\sum_{i=1}^{n} b_i^2\right)^{1/2}$$

$$\leq \left(\left(\sum_{i=1}^{n} a_i^2\right)^{1/2} + \left(\sum_{i=1}^{n} b_i^2\right)^{1/2}\right)^2$$
(by eq. (12.2))

and, since everything is positive, we get the triangle inequality by taking square roots on both sides.

Exercise 12.1.6. — Show that (\mathbb{R}^n, d_{l^2}) in Example 12.1.6 is indeed a metric space.

We have to show the four axioms of Definition 12.1.2.

- (a) For all $x \in \mathbb{R}^n$, we have $d_{l^2}(x,x) = \sqrt{\sum_{i=1}^n (x_i x_i)^2} = 0$, as expected.
- (b) Positivity: for all $x \neq y \in \mathbb{R}^n$, there exists at least one $1 \leq i \leq n$ such that $x_i \neq y_i$, so that $(x_i y_i)^2 > 0$, and $d_{l^2}(x, y) = \sqrt{\sum_{i=1}^n (x_i y_i)^2} > 0$, as expected.
- (c) Symmetry: for all $x, y \in \mathbb{R}^n$, we have

$$d_{l^2}(y,x) = \sqrt{\sum_{i=1}^{n} (y_i - x_i)^2} = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} = d_{l^2}(x,y)$$

as expected.

(d) Triangle inequality: for all $x, y, z \in \mathbb{R}^n$, we have

$$d_{l^{2}}(x,z) := \left(\sum_{i=1}^{n} (x_{i} - z_{i})^{2}\right)^{1/2}$$

$$= \left(\sum_{i=1}^{n} (a_{i} + b_{i})^{2}\right)^{1/2} \quad \text{with } a_{i} := x_{i} - y_{i} \text{ and } b_{i} := y_{i} - z_{i}$$

$$\leqslant \left(\sum_{i=1}^{n} a_{i}^{2}\right)^{1/2} + \left(\sum_{i=1}^{n} b_{i}^{2}\right)^{1/2} \quad \text{(Exercise 12.1.5(iii))}$$

$$\leqslant \left(\sum_{i=1}^{n} (x_{i} - y_{i})^{2}\right)^{1/2} + \left(\sum_{i=1}^{n} (y_{i} - z_{i})^{2}\right)^{1/2}$$

$$\leqslant d_{l^{2}}(x, y) + d_{l^{2}}(y, z)$$

as expected.

Thus, (\mathbb{R}^n, d_{l^2}) is indeed a metric space.