Projektna zadaća

Direktne i nulte konstante voda

Zadani podaci:

Nazivni presjek vodiča	185/30		
Najveći provjes vodiča	14		
Broj vodiča u snopu	2		
Razmak	420		
Broj trojki	1		
Izolatorski lanac broj članaka	12		
Izolatorski lanac vrsta članka	K170/280		
Nazivni presjek zaštitnih užeta	35		
Najveći provjes zaštitnog vodiča	8		
Vrsta tla	Suhi krupni šljunak		
Naziv stupa	Jela		
X koordinata ovjesišta izolatora vodiča faze A	6		
Y koordinata ovjesišta izolatora vodiča faze A	28		
X koordinata ovjesišta izolatora vodiča faze B	-6		
Y koordinata ovjesišta izolatora vodiča faze B	32		
X koordinata ovjesišta izolatora vodiča faze	4		
Y koordinata ovjesišta izolatora vodiča faze	36		
X koordinata ovjesišta zaštitnog vodiča	0		
Y koordinata ovjesišta zaštitnog vodiča	44		

Očitavanje podataka iz tablica:

- Iz tablica s podacima o izvedbi vodiča (prilog I) određujemo sljedeće podatke:
 - o Vanjski radijus vodiča: $r_1 = 9.495 \text{ mm}$
 - \circ Stvani presjek vodiča (bez čelične jezgre): $S_{AI} = 183.783 \text{ mm}^2$
 - o Radijus čelične jezgre: r₂ = 3.4927 mm
- Iz tablice 2 (prilog I) određujemo vrijednosti za zaštitno uže:
 - \circ Vanjski radijus vodiča: $r_g = 3.75 \text{ mm}$
 - o Broj žica: 7
 - o Stvarni presjek vodiča: $S_{če} = 34.361 \text{ mm}^2$

• Iz tablica (prilog I) određujemo otpor kod istosmjerne struje za vodič i zaštitno uže:

$$\circ$$
 R₀ = 0.1571 $\frac{\Omega}{km}$

$$\circ R_{\rm g} = 4.1326 \frac{\Omega}{km}$$

Proračun:

Računanje prosječnih visina vodiča iznad tla:

$$h_a = y_a - (0.7 \cdot f_{max} + 12 \cdot 0.17 + 0.3) = 15.86 \text{ m}$$

$$h_b = y_b - (0.7 \cdot f_{max} + 12 \cdot 0.17 + 0.3) = 19.86 \text{ m}$$

$$h_c = y_c - (0.7 \cdot f_{max} + 12 \cdot 0.17 + 0.3) = 23.86 \text{ m}$$

• Računanje prosječne visine zaštitnog užeta iznad tla:

$$h_p = y_p - (0.7 \cdot f_{z. \text{ užeta}} + 0.3) = 38.1 \text{ m}$$

 Na osnovu ovih podataka, možemo odrediti i koordinate zrcalnih slika vodiča i zaštitnog užeta u zemlji:

Vodič	X – koordinata [m]	Y – koordinata [m]
Α	6	15.86
В	-6	19.86
С	4	23.86
P	0	38.1
A'	6	-15.86
В'	-6	-19.86
C'	4	-23.86
Ρ'	0	-38.1

• Proračun međusobnih udaljenosti vodiča i zaštitnog užeta računamo formulama:

$$D_{ij} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$

$$H_{ij} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$

• Budući da su nam udaljenosti točaka npr. A i B jednake kao i B i A, dovoljno je pisati vrijednosti s gornje strane dijagonale:

D _{ij} ,H _{ij} [m]	Α	В	С	Р	A'	B'	C'	Ρ'
Α	-	12.65	8.246	23.035	31.72	37.68	39.77	54.292
В		-	10.77	19.2	37.68	39.72	44.849	58.269
С			-	14.791	39.77	44.849	47.72	62.089
P				-	54.292	58.269	62.089	76.2
A'					-	12.65	8.246	23.035
B'						-	10.77	19.2
C'							-	14.791
Ρ'								-

• Formule za računanje matrica uzdužnih impedancija:

$$OZ_{ii} = R_{1f} + 0.05 + j \cdot 0.0628 \cdot \ln \frac{93.1\sqrt{\rho}}{D_s}$$

$$O(Z_{ii-z} = R_g + 0.05 + j \cdot 0.0628 \cdot \ln \frac{93.1\sqrt{\rho}}{D_g})$$

$$OZ_{ij} = 0.05 + j \cdot 0.0628 \cdot \ln \frac{93.1\sqrt{\rho}}{D_{ij}}$$

Gdje su:

$$R_1 = R_0 + \frac{\pi^2}{3} \cdot 10^{-8} \cdot \frac{f^2}{R_0} - \frac{4 \cdot \pi^4}{45} \cdot 10^{-6} \cdot \frac{f^4}{R_0^3} = 0.1576 \frac{\Omega}{km}$$

$$R_{1f} = \frac{R_1}{2} = 0.0788 \frac{\Omega}{km}$$

•
$$R_0 = 0.1571 \frac{\Omega}{km}$$
, $R_g = 4.1326 \frac{\Omega}{km}$

•
$$\rho = 1000 \,\Omega/m$$

•
$$\frac{ds}{r_1} = 0.8227$$
 (očitavanje iz priloga II, tablice 2)

$$ds=7.8115~mm$$
, pa je $D_s=\sqrt{ds\cdot D_{snopa}}=57.2786~mm$

• $D_g=ds$, gdje je $\,ds=0.727\,\cdot\,r_{\!g}\,$ očitan iz priloga II, tablice 1, pa je $D_g=2.72625\,mm$

• Matrica uzdužnih impedancija je:

$$[Z] = \begin{bmatrix} 0.1288 + j0.6812 & 0.05 + j0.34225 & 0.05 + j0.3691 & 0.05 + j0.3046 \\ 0.05 + j0.34225 & 0.1288 + j0.6812 & 0.05 + j0.3524 & 0.05 + j0.316 \\ 0.05 + j0.3691 & 0.05 + j0.3524 & 0.1288 + j0.6812 & 0.05 + j0.3324 \\ 0.05 + j0.3046 & 0.05 + j0.316 & 0.05 + j0.3324 & 4.1826 + j0.87244 \end{bmatrix} \frac{\Omega}{km}$$

• Reduciranjem matrice uzdužnih impedancija prema formuli:

$$Z^{e}[i][j] = Z[i][j] - \frac{Z[i][4] \cdot Z[4][j]}{Z[4][4]}$$
, za $i = 1,2,3$ $i = 1,2,3$

dobivamo ekvivalentnu matricu uzdužnih impedancija:

$$[Z^e] = \begin{bmatrix} 0.148 + j0.6699 & 0.0699 + j0.3306 & 0.0711 + j0.35708 \\ 0.0699 + j0.3306 & 0.14959 + j0.6693 & 0.071355 + j0.3403 \\ 0.0711 + j0.3425 & 0.0713 + j0.3403 & 0.151 + j0.66928 \end{bmatrix} \frac{\Omega}{km}$$

Srednje vrijednosti za vlastite i međusobne impedancije dobijemo formulama:

$$Z_s = \frac{1}{3} \cdot (Z_{aa} + Z_{bb} + Z_{cc})$$

$$Z_m = \frac{1}{3} \cdot (Z_{ab} + Z_{bc} + Z_{ac})$$

pa je:

$$[Z^{012}] = \begin{bmatrix} Z_s + 2 \cdot Z_m & 0 & 0 \\ 0 & Z_s - Z_m & 0 \\ 0 & 0 & Z_s - Z_m \end{bmatrix}$$

$$[Z^{012}] = \begin{bmatrix} 0.2915 + j1.35428 & 0 & 0 \\ 0 & 0.07885 + j0.3266 & 0 \\ 0 & 0 & 0.07885 + j0.3266 \end{bmatrix} \frac{\Omega}{km}$$

• Iz matrice $[Z^{012}]$ očitamo vrijednosti Z_0 i Z_1 :

$$Z_0 = R_0 + j\omega L_0 = 0.2915 + j1.35428 \frac{\Omega}{km}$$
$$Z_1 = R_1 + j\omega L_1 = 0.07885 + j0.3266 \frac{\Omega}{km}$$

Pa je:

$$R_0 = 0.2915 \frac{\Omega}{km}$$
 $X_0 = 1.35428 \frac{\Omega}{km}$
 $L_0 = 4.3106 \frac{mH}{km}$
 $R_1 = 0.07885 \frac{\Omega}{km}$
 $X_1 = 0.3266 \frac{\Omega}{km}$
 $L_1 = 1.03968 \frac{mH}{km}$

• Matrica potencijalnih koeficijenata:

Formule:

$$OP_{ii} = 18 \cdot 10^6 \cdot ln \frac{H_{ii}}{D_{sc}}$$

$$OP_{ii-z} = 18 \cdot 10^6 \cdot ln \frac{H_{ii}}{D_{gc}}$$

$$\circ P_{ij} = 18 \cdot 10^6 \cdot ln \frac{H_{ij}}{D_{ij}}$$

Gdje su:

•
$$D_{sc} = \sqrt{r_1 \cdot D_{snopa}} = 63.14982 \ mm$$

•
$$D_{gc} = r_g = 3.75 \ mm$$

$$[P] = \begin{bmatrix} 111.9454 & 19.6465 & 28.3209 & 15.4325 \\ 19.6465 & 115.9938 & 25.6776 & 19.98287 \\ 28.3209 & 25.6776 & 119.296 & 25.82189 \\ 15.4325 & 19.98287 & 25.82189 & 178.5485 \end{bmatrix} \cdot 10^6 \, \frac{km}{F}$$

• Reducirana matrica potencijalnih koeficijenata se računa prema formuli:

$$P^{e}[i][j] = P[i][j] - \frac{P[i][4] \cdot P[4][j]}{P[4][4]} za i = 1,2,3 i j = 1,2,3$$

pa je:

$$[P^e] = \begin{bmatrix} 110.6115 & 17.919318 & 26.089 \\ 17.919318 & 113.7573 & 22.7876 \\ 26.089 & 22.7876 & 115.5616 \end{bmatrix} \cdot 10^6 \frac{km}{F}$$

• Matrica kapacitivnih koeficijenata:

$$[K] = [P]^{-1}$$

$$[K] = \begin{bmatrix} 9.687 & -1.1326 & -1.9636 \\ -1.1326 & 9.28458 & -1.57513 \\ -1.9636 & -1.57513 & 9.4073 \end{bmatrix} \cdot 10^{-9} \frac{F}{km}$$

Matrica kapacitivnih susceptancija:

$$[B] = \omega[K]$$

$$[B] = \begin{bmatrix} 3.0417 & -0.3556 & -0.616 \\ -0.3556 & 2.9153 & -0.4945 \\ -0.616 & -0.4945 & 2.95389 \end{bmatrix} \cdot 10^{-6} \frac{S}{km}$$

Matrica simetričnih komponenata za sustav ekvivalentnih faza susceptancija vodiča se dobije iz formula:

$$B_{s} = \frac{1}{3} \cdot (B_{aa} + B_{bb} + B_{cc})$$

$$B_m = \frac{1}{3} \cdot (B_{ab} + B_{bc} + B_{ac})$$

pa je:

$$[B^{012}] = \begin{bmatrix} 1.98 & 0 & 0 \\ 0 & 3.446 & 0 \\ 0 & 0 & 3.446 \end{bmatrix} \cdot 10^{-6} \frac{S}{km}$$

Iz matrice $[B^{012}]$ izvučemo vrijednosti $B_0 \ i \ B_1$ te izračunamo:

$$C_0 = \frac{B_0}{2 \cdot \omega} = 6.302 \cdot 10^{-9} \frac{F}{km}$$

$$C_1 = \frac{B_1}{\omega} = 1.09689 \cdot 10^{-8} \frac{F}{km}$$

Najveća struja jedne faze u normalnom pogonu

$$I_{max 1} = \sqrt{\frac{x_{Al80}}{x_{Cu80}} \cdot 2 \cdot r_1 \cdot 85 \cdot S_{Al}} = 428.346 A$$

$$I_{max} = I_{max \, 1} \cdot s = 856.693 \, A$$

Gdje su:

$$\chi_{Al80} = 28.08 \frac{Sm}{mm^2}$$

$$\chi_{Cu80} = 45.4 \frac{Sm}{mm^2}$$

•
$$r_1 = 9.495 \, mm$$

•
$$S_{Al} = 183.783 \ mm^2$$

•
$$s = 2$$

Nazivni napon voda

Nazivni napon voda se očita iz broja članaka izolatorskog lanca.

$$U_n = 110 \, kV$$

• Najveća snaga u normalnom pogonu

$$S_{max} = \sqrt{3} \cdot U_n \cdot I_{max} = 163.2219 \text{ MVA}$$

• Jakost električnog polja na površini vodiča

$$E_{max} = \frac{U_{max} \cdot (1 + (s - 1) \cdot \frac{r_1}{r_{snop}})}{\sqrt{3} \cdot s \cdot r_1 \cdot \ln \frac{D_m}{D_s}} = 7.408 \frac{kV}{cm}$$

Gdje su:

•
$$U_{max} = 1.1 \cdot U_n = 121 \ kV$$

•
$$s = 2$$

•
$$r_1 = 9.495 \, mm$$

$$r_{snop} = \frac{1}{2} \cdot D_{snopa} = 200 \ mm$$

$$D_m = \sqrt[3]{D_{AB} \cdot D_{BC} \cdot D_{AC}} = 10.395 \, m$$

•
$$D_s = 57.2786 \, mm$$

Kritični napon

$$U_{KR} = \frac{21.1 \cdot \sqrt{3} \cdot s \cdot r_1 \cdot ln \frac{D_m}{D_s}}{1 + (s - 1) \cdot \frac{r_1}{r_{snong}}} = 344.6 \frac{kV}{cm}$$

• Rješenja:

R ₁	$0.07885\frac{\Omega}{\mathrm{km}}$
X ₁	$0.3266\frac{\Omega}{\mathrm{km}}$
L ₁	1.03968 mH km
B ₁	$3.446 \frac{\mu S}{km}$
C ₁	10.9689 nF km
R_0	$0.2915 \frac{\Omega}{\mathrm{km}}$
X_0	$1.35428\frac{\Omega}{\mathrm{km}}$
L_0	4.3106 mH km
\mathbf{B}_0	1.98 <mark>μS</mark> km
C_0	6.3 nF/km
I _{max}	856.693 A
U_n	110 kV
S _{max}	163.2219 MVA
E _{max}	$7.408 \frac{\text{kV}}{\text{cm}}$
U_{KR}	$344.6\frac{\text{kV}}{\text{cm}}$