MEME15203 Statistical Inference

Assignment 4

UNIVERSITI TUNKU ABDUL RAHMAN

Faculty: FES Unit Code: MEME15203

Course: MAC Unit Title: Statistical Inference Year: 1,2 Lecturer: Dr Yong Chin Khian

Session: January 2024 Due by: 26/3/2024

Q1. Suppose $X \sim Beta(a=2\theta,b=1)$. Based on a random sample of size n=1, find the most powerful test of $H_0: \theta=4$ against $H_1: \theta=3$ with $\alpha=0.06$, then compute the power of the test for the alternative $\theta=3$.

(20 marks)

Q2. Let $X \sim NB(r, 0.53)$. Derive the most powerful test of size $\alpha = 0.136$ of $H_0: r = 1$ against $H_1: r = 3$ based on an observed value of X. Compute the power of this test for the alternative r = 3.

(20 marks)

Q3. Let X_1, \ldots, X_n denote a random sample from a gamma distribution with probability density function(p.d.f.)

$$f(x) = \begin{cases} \frac{1}{\Gamma(6)\theta^6} x^{6-1} e^{-x/\theta}, & x > 0\\ 0, & \text{oterwise} \end{cases}$$

- (a) show that the uniformly most powerful crtical region of size α for testing $H_0: \theta \leq 4$ versus $H_1: \theta > 4$ using monotone likelihood ratio(MLR) property is given by $\sum_{i=0}^{n} X_i \geq c$, where c is a constant.
- (b) Determine the value of c for $\alpha = 0.1$ and n = 16. [Note; qchisq(0.9,192) = 217.5024]
- (c) For the test in (b), find the value of the power for $\theta = 7.7615$. [Note: pchisq(112.093, 192) = 0.0]

(25 marks)

- Q4. Let $X_1, X_2, ..., X_v$ denote a random sample from a gamma distribution $X_i \sim GAM(\alpha_1 = 1, \theta_1)$ and let $Y_1, Y_2, ..., Y_w$ denote an independent random sample from a gamma distribution $Y_i \sim GAM(\alpha_2 = 1, \theta_2)$.
 - (a) Find the likelihood ratio criterion for testing $H_0: \theta_1 = \theta_2$ versus $H_1: \theta_1 \neq \theta_2$
 - (b) Show that the test in part (a) can be based on the statistic

$$T = \frac{v\bar{X}}{v\bar{X} + w\bar{Y}}.$$

MEME15203 Statistical Inference

(c) Find the distribution of T when H_0 is true.

(20 marks)

Q5. If $X_i | \lambda \sim POI(\lambda)$ and a Bayesian uses a prior for λ that is Gamma with parameters $\alpha = 6$ and $\theta = \frac{1}{90}$, suppose x_1, x_2, \dots, x_{10} have been observed, what is the Bayes test of $H_0: \lambda \leq 4$ versus $H_1: \lambda > 4$?

(15 marks)