```
In [1]: import matplotlib.pyplot as plt
import numpy as np
import numpy as np
import pandas as pd

In [34]: #Line Graphs:

    x=[0,1,2,3,4,5]
    y=[0,2,4,6,8,10]

    plt.figure(figsize=(3,2), dpi=200)
    plt.plot(x,y, label='Legends', color='black', linewidth=2, marker='.', linestyle='--', markersize=8, markeredgecolor='red')

    plt.title('First One', fontdict={'fontname': 'Comic Sans MS', 'fontsize':20})
    plt.xlabel('X Axis')
    plt.ylabel('Y axis')

    plt.sticks([0,1,2,3,4])
    plt.yticks([0,1,2,3,4])
    plt.legend()

    plt.show()
```

First One


```
In [40]: #Bar Charts:

labels=['a','b','c']
values=[1,4,2]
bars=plt.bar(labels,values)

bars[0].set_hatch('/')
bars[1].set_hatch('o')
bars[2].set_hatch('*')

plt.show()
```


Gas Prices:

In [9]: gas=pd.read_csv(r'C:\Users\SAMAD\Downloads\Datasets\gas_prices.csv')
 gas

, 12:57 PM										MatplotLi	b	
Out[9]:		Year	Australia	Canada	France	Germany	Italy	Japan	Mexico	South Korea	UK	USA
	0	1990	NaN	1.87	3.63	2.65	4.59	3.16	1.00	2.05	2.82	1.16
	1	1991	1.96	1.92	3.45	2.90	4.50	3.46	1.30	2.49	3.01	1.14
	2	1992	1.89	1.73	3.56	3.27	4.53	3.58	1.50	2.65	3.06	1.13
	3	1993	1.73	1.57	3.41	3.07	3.68	4.16	1.56	2.88	2.84	1.11
	4	1994	1.84	1.45	3.59	3.52	3.70	4.36	1.48	2.87	2.99	1.11
	5	1995	1.95	1.53	4.26	3.96	4.00	4.43	1.11	2.94	3.21	1.15
	6	1996	2.12	1.61	4.41	3.94	4.39	3.64	1.25	3.18	3.34	1.23
	7	1997	2.05	1.62	4.00	3.53	4.07	3.26	1.47	3.34	3.83	1.23
	8	1998	1.63	1.38	3.87	3.34	3.84	2.82	1.49	3.04	4.06	1.06
	9	1999	1.72	1.52	3.85	3.42	3.87	3.27	1.79	3.80	4.29	1.17
	10	2000	1.94	1.86	3.80	3.45	3.77	3.65	2.01	4.18	4.58	1.51
	11	2001	1.71	1.72	3.51	3.40	3.57	3.27	2.20	3.76	4.13	1.46
	12	2002	1.76	1.69	3.62	3.67	3.74	3.15	2.24	3.84	4.16	1.36
	13	2003	2.19	1.99	4.35	4.59	4.53	3.47	2.04	4.11	4.70	1.59
	14	2004	2.72	2.37	4.99	5.24	5.29	3.93	2.03	4.51	5.56	1.88
	15	2005	3.23	2.89	5.46	5.66	5.74	4.28	2.22	5.28	5.97	2.30
	16	2006	3.54	3.26	5.88	6.03	6.10	4.47	2.31	5.92	6.36	2.59
	17	2007	3.85	3.59	6.60	6.88	6.73	4.49	2.40	6.21	7.13	2.80
	18	2008	4.45	4.08	7.51	7.75	7.63	5.74	2.45	5.83	7.42	3.27

```
In [55]: gas=pd.read_csv(r'C:\Users\SAMAD\Downloads\Datasets\gas_prices.csv')
plt.figure(figsize=(7,4))
plt.title('Gas Prices over the Year')
plt.plot(gas.Year, gas.USA, 'b.-', label='United States')
```

```
plt.plot(gas.Year, gas.Canada, 'r.-', label='Canada')
plt.plot(gas.Year, gas['South Korea'], '.-', label='South Korea')
plt.plot(gas.Year, gas.Germany, 'y.-', label='Germany')

plt.xticks(gas.Year[::3].tolist()+[2011])
plt.legend()
plt.show()
```

Gas Prices over the Year

FiFa Datasets

```
In [3]: fifa=pd.read_csv(r'C:\Users\SAMAD\Downloads\Datasets\fifa_data.csv')
fifa.head()
```

Out[3]:	Unname	d: 0	ID	Name	Age	Photo	Nationality	Flag	Overall	Potential	С
	0	0	158023	L. Messi	31	https://cdn.sofifa.org/players/4/19/158023.png	Argentina	https://cdn.sofifa.org/flags/52.png	94	94	Barcel
	1	1	20801	Cristiano Ronaldo	33	https://cdn.sofifa.org/players/4/19/20801.png	Portugal	https://cdn.sofifa.org/flags/38.png	94	94	Juver
	2	2	190871	Neymar Jr	26	https://cdn.sofifa.org/players/4/19/190871.png	Brazil	https://cdn.sofifa.org/flags/54.png	92	93	Paris Sa Germ
	3	3	193080	De Gea	27	https://cdn.sofifa.org/players/4/19/193080.png	Spain	https://cdn.sofifa.org/flags/45.png	91	93	Manche: Uni
	4	4	192985	K. De Bruyne	27	https://cdn.sofifa.org/players/4/19/192985.png	Belgium	https://cdn.sofifa.org/flags/7.png	91	92	Manche:

5 rows × 89 columns

Histogram

```
In [70]: bins=[0,10,20,30,40,50,60,70,80,90,100]
  plt.hist(fifa.Overall, bins=bins)
  plt.xticks(bins)
  plt.title('Players Rating Distribution')
  plt.show()
```


Pie Chart:

Foot Preference


```
In [31]: fifa.Weight = [int(x.strip('lbs')) if type(x)==str else x for x in fifa.Weight]

plt.style.use('ggplot')

light = fifa.loc[fifa.Weight < 125].count()[0]
light_medium = fifa.loc[(fifa.Weight >= 125) & (fifa.Weight < 150)].count()[0]
medium = fifa[(fifa.Weight >= 150) & (fifa.Weight < 175)].count()[0]
medium_heavy = fifa[(fifa.Weight >= 175) & (fifa.Weight < 200)].count()[0]
heavy = fifa[(fifa.Weight > 200)].count()[0]

weights = [light, light_medium, medium, medium_heavy, heavy]
labels=['Under 125', '125-150', '150-175', '175-200', 'Over 200']
explode=(.4,.2, 0, 0, 0.4)

plt.title('Weight distribution of FIFA Players(in LBS)')
```

```
plt.pie(weights, labels=labels, autopct='%.2f%%', pctdistance=0.9, explode=explode)
plt.show()
```

Weight distribution of FIFA Players(in LBS)


```
In [60]: plt.style.use('default')
plt.figure(figsize= (14,8))

barcelona = fifa.loc[fifa.Club == 'FC Barcelona']['Overall']
madrid = fifa.loc[fifa.Club == 'Real Madrid']['Overall']
revs = fifa.loc[fifa.Club == 'New England Revolution']['Overall']
MU = fifa.loc[fifa.Club == 'Manchester United']['Overall']
Juv = fifa.loc[fifa.Club == 'Juventus']['Overall']

labels= ['FC Barcelona', 'Real Madrid', 'New England Revolution', 'Manchester United', 'Juventus']
boxes = plt.boxplot([barcelona, madrid, revs, MU, Juv], labels=labels)
for box in boxes['boxes']:
```

```
box.set(color='#4286f9', linewidth=2)

plt.title("FIFA Football Ratings")

plt.show()
```


In []: