Digital Image Processing COSC 6380/4393

Lecture – 7

Feb 7th, 2023

Pranav Mantini

Slides from Dr. Shishir K Shah and Frank (Qingzhong) Liu

UNIVERSITY of **HOUSTON**

Review: DIGITAL IMAGE REPRESENTATION

- Once an image is **digitized** (A/D) and stored it is an array of **voltage or magnetic potentials**
- Not easy to work with from an algorithmic point of view
- The representation that is easiest to work with from an algorithmic perspective is that of a matrix of integers

Matrix Image Representation

- Denote a (square) image matrix I = [I(i, j); 0 < i, j < N-1] where
- (i, j) = (row, column)
- I(i, j) = image value at coordinate or pixel (i, j)

Review: DIGITAL IMAGE REPRESENTATION (contd.)

• **Example** - Matrix notation

$$\mathbf{I} = \begin{bmatrix} I(0,0) & I(0,1) & \dots & I(0,N-1) \\ I(1,0) & I(1,1) & \dots & I(1,N-1) \\ \vdots & \vdots & \ddots & \vdots \\ I(N-1,0) & I(N-1,1) & \dots & I(N-1,N-1) \end{bmatrix}$$

• Example - Pixel notation - an N x N image

What's the minimum number of bits/pixel allocated?

columns

rows

Review: DIGITAL IMAGE REPRESENTATION (contd.)

• Example - Binary Image (2-valued, usually BLACK and WHITE)

Another way of depicting the image:

columns

BINARY IMAGES

- Since binary = bi-valued, the (logical) values '0' or '1' usually indicate the absence or presence of an image property in an associated gray-level image:
 - Points of high or low intensity (brightness)
 - Points where an object is present or absent
 - More abstract properties, such as smooth vs. nonsmooth, etc.
- Convention We will make the associations
- '1' = BLACK
- '0' = WHITE

BINARY IMAGE GENERATION

- Tablet-Based Input:
- Binary images can derive from **simple sensors** with binary output
- Simplest example: tablet, resistive pad, or light pen
- All pixels initially assigned value '0':
 I = [I(i, j)], I(i, j) = '0' for all (i, j) = (row column)
- When pressure or light is applied at (i_0, j_0) , the image is assigned the value '1': $I(i_0, j_0) = '1'$
- This continues until the user completes the drawing

BINARY IMAGE

- Usually a binary image is obtained from a gray-level image
- Advantages:
 - B-fold reduction in required storage
 - Simple abstraction of information
 - Fast processing logical operators
 - Can be further compressed

8X8 image → Black box on white background

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	255	255	255	255	0	0
0	0	255	255	255	255	0	0
0	0	255	255	255	255	0	0
0	0	255	255	255	255	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	1	1	1	1	0	0
0	0	1	1	1	1	0	0
0	0	1	1	1	1	0	0
0	0	1	1	1	1	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Grey scale Pixels values

Binary image

GRAY-LEVEL THRESHOLDING

Simple Thresholding

- The simplest of image processing operations
- An extreme form of gray-level quantization
- Define an integer **threshold** T (in the gray-scale range)
- Compare each pixel intensity to T

THRESHOLDING

- Suppose gray-level image I has K gray-levels: 0, 1, 2,, K-1
- Select threshold $T \in \{0, 1, 2, ..., K-1\}$
- Compare every gray-level in I to T
- Define a new **binary image J** as follows:
- $J(i, j) = '0' \text{ if } I(i, j) \le T$
- J(i, j) = '1' if I(i, j) > T
- A new binary image J is created from a gray-level image I

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	255	255	255	255	0	0
0	0	255	255	255	255	0	0
0	0	255	255	255	255	0	0
0	0	255	255	255	255	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Threshold(T)

Grey scale Pixels values

Binary image

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	255	255	255	255	0	0
0	0	255	255	255	255	0	0
0	0	255	255	255	255	0	0
0	0	255	255	255	255	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Threshold(T)

Grey scale Pixels values

Binary image

What is good value of T?

8X8 image → grey box on black background

What is good value of T?

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	10	10	10	10	0	0
0	0	10	10	10	10	0	0
0	0	10	10	10	10	0	0
0	0	10	10	10	10	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

240	240	240	240	240	240	240	240
240	240	240	240	240	240	240	240
240	240	255	255	255	255	240	240
240	240	255	255	255	255	240	240
240	240	255	255	255	255	240	240
240	240	255	255	255	255	240	240
240	240	240	240	240	240	240	240
240	240	240	240	240	240	240	240

8X8 image → grey box on black background
What is good value of T?

8X8 image → white box on dark white background

What is good value of T?

THRESHOLD SELECTION

- The quality of the **binary image J** obtained by thresholding I depends very heavily on the **threshold T**
- Indeed it is instructive to observe the result of thresholding an image at many different levels in sequence
- Different thresholds can produce different valuable abstractions of the image
- Some images do not produce any interesting results when thresholded by any T
- So: How does one decide if thresholding is possible?
- How does one decide on a threshold T?

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	10	10	10	10	0	0
0	0	10	10	10	10	0	0
0	0	10	10	10	10	0	0
0	0	10	10	10	10	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

240	240	240	240	240	240	240	240
240	240	240	240	240	240	240	240
240	240	255	255	255	255	240	240
240	240	255	255	255	255	240	240
240	240	255	255	255	255	240	240
240	240	255	255	255	255	240	240
240	240	240	240	240	240	240	240
240	240	240	240	240	240	240	240

8X8 image → black box on grey background

8X8 image → light white box on white background

How do we determine *T*?

Determine modes

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	10	10	10	10	0	0
0	0	10	10	10	10	0	0
0	0	10	10	10	10	0	0
0	0	10	10	10	10	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Pixel Count

Pixel Count

UNIVERSITY of HOUSTON

Determine modes

 $mode_1 = 0; mode_2 = 10$ T = avg(mode) = 5 UNIVERSITY of **HOUSTON** T = avg(mode) = 247.5

Pixel Count

 $mode_1 = 240; mode_2 = 255$

GRAY-LEVEL IMAGE HISTOGRAM

- The histogram H_I of image I is a plot or graph of the frequency of occurrence of each gray level in I
- $\mathbf{H}_{\mathbf{I}}$ is a one-dimensional function with domain 0, ..., K-1
- $\mathbf{H}_{\mathbf{I}}(\mathbf{x}) = \mathbf{n}$ if I contains **exactly** n occurrences of gray level x, for each $\mathbf{x} = 0, \dots K-1$

Histogram Example

Black = 0

Gray = 190

White = 254

HISTOGRAM APPEARANCE

• The appearance of a histogram suggests much about the image

HISTOGRAM APPEARANCE

• The appearance of a histogram suggests much about the image

• These could be histograms of **underexposed** and **overexposed** images, respectively

HISTOGRAM APPEARANCE

• This histogram may show better use of the gray-scale range

Well-distributed histogram

Histogram Example

Black = 0

Gray = 190

White = 254

Histogram Example

Reality

BIMODAL HISTOGRAM

- Thresholding usually works best when there are dark objects on a light background
- Or when there are **light objects** on a **dark background**
- Images of this type tend to have histograms with multiple distinct peaks or modes in them

BIMODAL HISTOGRAM

• If the peaks are well-separated, threshold selection can be easy

- Set the threshold T somewhere between the peaks
- It may be an interactive trial-and-error process

THRESHOLD SELECTION FROM HISTOGRAM

- Placing threshold T between modes may yield acceptable results
- Exactly **where in between** can be difficult to determine
- An image histogram may contain multiple modes.
 Placing the threshold in different places will produce very different results
- Histogram may be "flat," making threshold selection difficult

- Microscopic image
- Grey level → binary image
- Binary: 1-cell present, 0-cell absent

- If the peaks are known
- We can choose T between peaks (say average)

- If the peaks are known
- We can choose T between peaks (say average)

We do not know the peaks!!

UNIVERSITY of HOUSTON

- If the Threshold (T) is known
- Can we determine the peaks?

Recap: Probability

- Data: {5,5,6,6,6,7,7,7,7,7,8,8,8,9,9,10,10}
- X: random variable
- P: X \rightarrow [0,1] probability function
- P(X = 7) = ?

Recap: Probability

- Data: {5,5,6,6,6,7,7,7,7,7,8,8,8,9,9,10,10}
- X: random variable
- P: probability function
- P(X = 7) = 0.33

Recap: Histogram

- Data: {5,5,6,6,6,7,7,7,7,7,8,8,8,9,9,10,10}
- *X*: random variable
- p: probability function
- p(X = 7) = 0.33
- Histogram

Recap: Probability Distribution

- Data: {5,5,6,6,6,7,7,7,7,7,8,8,8,9,9,10,10}
- *X*: random variable
- p: probability function
- p(X = 7) = 0.33
- p→Normalize(Histogram)

Where is the peak for this case?

Expectation

- $E(X) \rightarrow$ Expected value of random variable X
- ~Average of all the expected values of random variable X
- E(X) = ?

Expectation

- $E(X) \rightarrow$ Expected value of random variable X
- ~Average of all the values
- $E(X) = \sum X p(X)$

Recap: Probability Distribution

- Data: {5,5,6,6,6,7,7,7,7,7,8,8,8,9,9,10,10}
- *X*: random variable
- p: probability function
- p(X = 7) = 0.33
- p→Normalize(Histogram)

P

- Where is the peak for this case?
- E(X) = 5 * 0.11 + 6*0.17 + 7*0.33 + ... = 7.33

- If the Threshold (T) is known
- Can we determine the peaks?
- Yes, Compute Expectation on either side of the threshold.

Algorithm

Initialize
$$T = K/2$$

Do

$$Compute \mu_1 = E(X) \forall X < T$$

$$Compute \mu_2 = E(X) \forall X \ge T$$

$$Set T = \frac{\mu_1 + \mu_2}{2}$$

$$While \Delta \mu_1! = 0 \& \Delta \mu_2! = 0$$

AKA: Expectation Maximization (simple version)

bimodal histogram well separated peaks

BIMODAL HISTOGRAM

