Grupo ARCOS Universidad Carlos III de Madrid

Tema 2 (repaso de representación) Representación de la información

Estructura de Computadores Grado en Ingeniería Informática

A recordar...

- I. Estudiar la teoría asociada:
 - Repasar lo visto en clase.
 - Estudiar el material asociado a la bibliografía: las transparencias solo no son suficiente.
- 2. Ejercitar las competencias:
 - Realizar las prácticas progresivamente.
 - Realizar todos los ejercicios posibles.

Contenidos

I. Introducción

- Motivación y objetivos
- 2. Sistemas posicionales

2. Representaciones

- 1. Alfanuméricas: letras y cadenas
- 2. Numéricas: naturales y enteras

Contenidos

I. Introducción

- Motivación y objetivos
- 2. Sistemas posicionales

2. Representaciones

- 1. Alfanuméricas: letras y cadenas
- 2. Numéricas: naturales y enteras

Introducción: computador

Un computador es una máquina destinada a procesar datos.

Se aplican unas instrucciones y se obtiene unos resultados

Introducción: computador

Un computador es una máquina destinada a procesar datos.

- Se aplican unas instrucciones y se obtiene unos resultados
- Los datos/información pueden ser de distintos tipo

Introducción: computador

Un computador es una máquina destinada a procesar datos.

- Se aplican unas instrucciones y se obtiene unos resultados
- Los datos/información pueden ser de distintos tipo
- Un computador solo usa una representación: binario.

Introducción: representación de la información

El uso de una representación permite transformar los distintos tipos de información en binario (y viceversa)

Introducción: características de la información

- Un ordenador maneja un conjunto finito de valores
 - Tipo binario (dos estados)
 - Finito (representación acotada)
 - N° de bits de palabra del computador
 - Con n bits tengo 2ⁿ valores distintos

- Hay algunos tipos de información que son infinitos
 - Imposible representar todos los valores de los números naturales, reales, etc.

La representación elegida tiene limitaciones

Ejemplo 1: la calculadora de Google con 15 dígitos...

Ejemplo 2: la profundidad de color...

I bit	2 colores
4 bits	16 colores
8 bits	256 colores

Ejemplo 2: la profundidad de color...

I bi	t	2 colores
4 bi	ts	16 colores
8 bi	ts	256 colores

Ejemplo 2: la profundidad de color...

I bit	2 colores				
4 bits	16 colores				
8 bits	256 colores				

Necesitaremos...

Conocer posibles representaciones:

Necesitaremos...

Conocer posibles representaciones:

- Conocer las características de las mismas:
 - Limitaciones

Necesitaremos...

Conocer posibles representaciones:

- Conocer las características de las mismas:
 - Limitaciones

Conocer cómo operar con la representación:

Ejemplo de fallo...

- Explosión del Ariane 5 (primer viaje)
 - Enviado por ESA en junio de 1996
 - Coste del desarrollo:
 10 años y 7000 millones de dólares
 - Explotó 40 segundos después de despegar,
 a 3700 metros de altura.

El software del sistema de referencia inercial realizó la conversión de un valor real en coma flotante de 64 bits a un valor entero de 16 bits. El número a almacenar era mayor de 32767 (el mayor entero con signo de 16 bits) y se produjo un fallo de conversión y una excepción.

Contenidos

I. Introducción

- Motivación y objetivos
- 2. Sistemas posicionales

2. Representaciones

- Alfanuméricas
- 2. Numéricas: naturales y enteras

- Un número se define por una cadena de dígitos, estando afectado cada uno de ellos por un factor de escala que depende de la posición que ocupa en la cadena.
- Dada una base de numeración b, un número X se define como la cadena de dígitos:

$$X = (... x_2 x_1 x_0, x_{-1} x_{-2} ...)_b$$
 Con $0 \le x_i < b$ con una lista de pesos asociados:

$$P = (\dots b^2 b^1 b^0 b^{-1} b^{-2} \dots)_b$$

- Un número se define por una cadena de dígitos, estando afectado cada uno de ellos por un factor de escala que depende de la posición que ocupa en la cadena.
- Dada una base de numeración b, un número X se define como la cadena de dígitos:

$$X = (... x_2 x_1 x_0, x_{-1} x_{-2} ...)_b$$
 Con $0 \le x_i < b$ con una lista de pesos asociados:

$$P = (\dots b^2 b^1 b^0 b^{-1} b^{-2} \dots)_b$$

Su valor es:

$$V(X) = \sum_{i=-\infty}^{+\infty} b^{i} \cdot x_{i} = \cdots b^{2} \cdot x_{2} + b^{1} \cdot x_{1} + b^{0} \cdot x_{0} + b^{-1} \cdot x_{-1} + b^{-2} \cdot x_{-2} \cdots$$

Decimal

$$X = 9 7 3 I$$

... $10^3 10^2 10^1 10^0$

Binario

$$X = 0 \ 1 \ 0 \ 1$$
... $2^3 \ 2^2 \ 2^1 \ 2^0$

Hexadecimal

$$X = I F A 8$$

... $I6^3 I6^2 I6^1 I6^0$

Decimal

$$X = 9 7 3 I$$

... $10^3 10^2 10^1 10^0$

Binario

$$X = 0 \ I \ 0 \ I$$
... $2^3 \ 2^2 \ 2^1 \ 2^0$

Hexadecimal

$$X = I F A 8$$

... $I6^3 I6^2 I6^1 I6^0$

Truco (de binario a hexadecimal):

- Agrupar de 4 en 4 bits, de derecha a izquierda
- Cada 4 bits es el valor del dígito hexadecimal

Decimal

$$X = 9 7 3 I$$
... $10^3 10^2 10^1 10^0$

Binario

$$X = 0 \ I \ 0 \ I$$
... $2^3 \ 2^2 \ 2^1 \ 2^0$

Hexadecimal

$$X = I F A 8$$

... $I6^3 I6^2 I6^1 I6^0$

Representar 342 en binario:

256	128	64	32	16	8	4	2	
?	?	?	?	?	?	?	?	?

Representar 342 en binario:

Ejemplo: cuántos pueden representarse

▶ Con 3 dígitos binarios, representación de 8 símbolos:

¿Cuántos valores se pueden representar con n bits?

L'Cuántos bits se necesitan para representar m'valores'?

Con n bits, si el valor mínimo representable corresponde al número 0, ¿Cuál es el máximo valor numérico representable?

- > ¿Cuántos valores se pueden representar con n bits?
 - **2**ⁿ
 - Ej.: con 4 bits se pueden representar 16 valores
- Les la Cuántos bits se necesitan para representar m'valores'?
 - Log₂(n) por exceso
 - Ej.: para representar 35 valores se necesitan 6 bits
- Con n bits, si el valor mínimo representable corresponde al número 0, ¿Cuál es el máximo valor numérico representable?
 - ▶ 2ⁿ-1

Ejemplos

10 segundos máx.

▶ Calcular el valor de (23 unos):

▶ Calcular el valor de (23 unos):

$$X = 2^{23} - 1$$

Truco:

 $||||||||_1 = X$

 $+ 0000000000000000001_2 = I$

 $10000000000000000000_2 = 2^{23}$

$$X = 2^{23} - 1$$

Ejemplos: operaciones

Sumar en binario:

Ejemplos: operaciones

Sumar en binario:

Restar en binario:

2 minutos máx.

2 minutos máx.

- Llenar la jarra de 5 litros
- Vaciarla en la de 3 (quedan 2 en la de 5)
- Tirar lo que hay en la de 3
- Pasar los 2 de la de 5 a la de 3
- Llenar de nuevo la de 5
- Rellenar a tope la de 3,lo que queda en la de 5 es 4 litros

2 minutos máx.

 Sobre los números 112 y -71 en base decimal realizar la suma en complemento a la base (base 10)

Ejercicio (solución)

2 minutos máx.

▶ El complemento a la base de -71 es:

1000 - 071 -----929

La suma es:

929 -----*****041 112 -071 -----

Curiosidad

 Añadir 45 minutos al minutero lo deja en la misma posición que restarle 15 minutos (complemento con base 60)

Contenidos

I. Introducción

- Motivación y objetivos
- 2. Sistemas posicionales

2. Representaciones

- 1. Alfanuméricas: letras y cadenas
- 2. Numéricas: naturales y enteras

Representación alfanumérica

- Cada carácter se codifica con un octeto.
- Para n bits $\Rightarrow 2^n$ caracteres representables:

# bits	# caracteres	Incluye	Ejemplo
6	64	 26 letras: az 10 números: 09 Puntuación: .,;: Especiales: + - [BCDIC
7	128	 añade mayúsculas y caracteres de control 	ASCII
8	256	 añade letras acentuadas, ñ, caracteres semigráficos 	EBCDIC ASCII extendido
16	34.168	Añade distintos idiomas (chino, árabe,)	UNICODE

ASCII value	Character	Control character	ASCII value	Character	ASCII value	Character	ASCII value	Character
000	(null)	NUL	032	(space)	064	a	096	
001	(in)	SOH	033	1	065	Ā	097	α
002	•	STX	034	n	066	В	098	b
003	¥	ETX	035	#	067	C	099	c
004	•	EOT	036	\$	068	D	100	d
005	*	ENQ	037	%	069	E	101	e
006	A	ACK	038	&z	070	F	102	f
007	(beep)	BEL	039	r	071	G	103	g
008	13	BS	040	(072	H	104	h
009	(tab)	HT	041)	073	I	105	i
010	(line feed)	LF	042		074	Ī	106	i
011	(home)	VT	043	+	075	K	107	k
012	(form feed)	FF	044		076	Ĺ	108	î
013	(carriage return)	CR	045	_	077	M	109	m
014	13	SO	046		078	N	110	n
015	.⇔	SI	047	/	079	0	111	0
016	-	DLE	048	0	080	P	112	р
017		DCl	049	1	081	Q	113	q
018	1	DC2	050	2	082	R	114	r
019	11	DC3	051	3	083	S	115	S
020	π	DC4	052	4	084	T	116	t
021	§	NAK	053	5	085	U	117	u
022	eaces	SYN	054	6	086	V	118	v
023	<u></u>	ETB	055	7	087	W	119	w
024	†	CAN	056	8	088	X	120	x
025	↓	EM	057	9	089	Y	121	У
026		SUB	058	:	090	Z	122	z
027	←	ESC	059	;	091	[123	{
028	(cursor right)	FS	060	<	092		124	1
029	(cursor left)	GS	061	= '	093]	125	}
030	(cursor up)	RS	062	>	094	^	126	~
031	(cursor down)	US	063	?	095	******	127	

Copyright 1998, JimPrice.Com Copyright 1982, Leading Edge Computer Products, Inc.

caracteres de control

ASCII value	Character	Control character	ASCII value	Character	ASCII value	Character	ASCII value	Character
000	(null)	NUL	032	(space)	064	@	096	
001	\odot	SOH	033		065	A	097	α
002	•	STX	034	**	066	В	098	b
003	♥	ETX	035	#	067	C	099	C
004	•	EOT	036	\$	068	D	100	d
005	*	ENQ	037	%	069	E	101	e
006	A	ACK	038	&	070	F	102	f
007	(beep)	BEL	039	r	071	G	103	g
800	12	BS	040	(072	H	104	h
009	(tab)	HT	041)	073	I	105	i
010	(line feed)	LF	042	•	074	J	106	i
011	(home)	VT	043	+	075	K	107	k
012	(form feed)	FF	044	,	076	L	108	1
013	(carriage return)	CR	045	-	077	M	109	m
014		SO	046		078	N	110	n
015	☼	SI	047	/	079	0	111	0
016		DLE	048	0	080	P	112	p
017	440.5	DC1	049	1	081	Q	113	q
018	1	DC2	050	2	082	R	114	r
019	!!	DC3	051	3	083	S	115	S
020	π	DC4	052	4	084	T	116	t
021	§	NAK	053	5	085	U	117	u
022	cakes	SYN	054	6	086	V	118	v
023	<u></u>	ETB	055	7	087	W	119	w
024	<u>†</u>	CAN	056	8	088	X	120	x
025	↓	EM	057	9	089	Y	121	У
026		SUB	058	:	090	Z	122	z
027		ESC	059	;	091	[123	{
028	(cursor right)	FS	060	<	092		124	İ
029	(cursor left)	GS	061	= '	093]	125	}
030	(cursor up)	RS	062	>	094	\wedge	126	Phys
031	(cursor down)	US	063	?	095	******	127	

Copyright 1998, JimPrice.Com Copyright 1982, Leading Edge Computer Products, Inc

distancia mayúsculas-minúsculas

ASCII value	Character	Control character	ASCII value	Character	ASCII value	Character	ASCII value	Character
000	(null)	NUL	032	(space)	064	@	096	
001	\odot	SOH	033	1	065	A	097	α
002	•	STX	034	n	066	В	098	b
003	*	ETX	035	#	067	C	099	C
004	*	EOT	036	\$	068	D	100	d
005	*	ENQ	037	%	069	E	101	е
006	A	ACK	038	&	070	F	102	f
007	(beep)	BEL	039	t	071	G	103	g
800		BS	040	(072	H	104	h
009	(tab)	HT	041)	073	I	105	i
010	(line feed)	LF	042	*	074	I	106	i
011	(home)	VT	043	+	075	K	107	k
012	(form feed)	FF	044	,	076	L	108	1
013	(carriage return)	CR	045	-	077	M	109	m
014	. 73	SO	046		078	N	110	n
015	☼	SI	047	/	079	0	111	0
016		DLE	048	0	080	P	112	p
017	-400	DCl	049	1	081	Q	113	q
018	\$	DC2	050	2	082	R	114	r
019	!!	DC3	051	3	083	S	115	S
020	π	DC4	052	4	084	T	116	t
021	§	NAK	053	5	085	U	117	u
022	sincesi	SYN	054	6	086	V	118	v
023	<u></u>	ETB	055	7	087	W	119	w
024	<u></u>	CAN	056	8	088	X	120	x
025	į	EM	057	9	089	Y	121	У
026		SUB	058	:	090	Z	122	z
027		ESC	059	;	091	[123	{
028	(cursor right)	FS	060	<	092		124	
029	(cursor left)	GS	061	= '.	093]	125	}
030	(cursor up)	RS	062	>	094	\wedge	126	~
031	(cursor down)	US	063	?	095		127	

97-65=32

Copyright 1998, JimPrice.Com Copyright 1982, Leading Edge Computer Products, Inc

conversión un número a carácter

ASCII value	Character	Control character	ASCII value	Character	ASCII value	Character	ASCII value	Character
000	(null)	NUL	032	(space)	064	@	096	
001	\odot	SOH	033		065	A	097	α
002	•	STX	034	**	066	В	098	b
003	♥	ETX	035	#	067	C	099	C
004	•	EOT	036	\$	068	D	100	d
005	*	ENQ	037	%	069	E	101	e
006	A	ACK	038	&	070	F	102	f
007	(beep)	BEL	039	r	071	G	103	g
800		BS	040	(072	H	104	h
009	(tab)	HT	041)	073	I	105	i
010	(line feed)	LF	042	•	074	J	106	i
011	(home)	VT	043	+	075	K	107	k
012	(form feed)	FF	044	,	076	L	108	1
013	(carriage return)	CR	045	-	077	M	109	m
014	្រា	SO	046		078	N	110	n
015	☼	SI	047	/	079	0	111	0
016		DLE	048	0	080	P	112	p
017	440.5	DC1	049	1	081	Q	113	q
018	‡	DC2	050	2	082	R	114	r
019	!!	DC3	051	3	083	S	115	S
020	π	DC4	052	4	084	T	116	t
021	§	NAK	053	5	085	U	117	u
022	cakes	SYN	054	6	086	V	118	v
023	<u></u>	ETB	055	7	087	W	119	w
024	<u>†</u>	CAN	056	8	088	X	120	x
025	↓	EM	057	9	089	Y	121	У
026		SUB	058	:	090	Z	122	z
027		ESC	059	;	091	[123	{
028	(cursor right)	FS	060	<	092		124	1
029	(cursor left)	GS	061	= '	093]	125	}
030	(cursor up)	RS	062	>	094	\wedge	126	Phys
031	(cursor down)	US	063	?	095	******	127	

Copyright 1998, JimPrice.Com Copyright 1982, Leading Edge Computer Products, Inc

Curiosidad: Visualización 'gráfica' con caracteres

Tiras de caracteres

Cadenas de longitud fija:

2. Cadenas de longitud variable con separador:

3. Cadenas de longitud variable con longitud en cabecera:

Contenidos

I. Introducción

- I. Objetivo
- 2. Motivación
- 3. Sistemas posicionales

2. Representaciones

- 1. Alfanuméricas: letras y cadenas
- 2. Numéricas: naturales y enteras

Representación numérica

- Clasificación de números reales:
 - Naturales: 0, 1, 2, 3, ...
 - ▶ Enteros: ... -3, -2, -1, 0, 1, 2, 3,
 - Racionales: fracciones (5/2 = 2,5)
 - Irracionales: $2^{1/2}$, π , e, ...
- Conjuntos infinitos y espacio de representación finito:
 - ▶ Imposible representar todos ⊗
- Características de la representación usada:
 - Elemento representado: Natural, entero, ...
 - Rango de representación: Intervalo entre el menor y mayor nº representable
 - Resolución de representación:
 Diferencia entre un n° representable y el siguiente.
 Representa el máximo error cometido. Puede ser cte. o variable.

Sistemas de representación binarios más usados

A. Coma fija sin signo o binario puro

naturales

- B. Signo magnitud
- c. Complemento a uno (Ca I)

enteros

- D. Complemento a dos (Ca 2)
- E. Exceso 2ⁿ⁻¹-1
- F. Coma flotante: Estándar IEEE 754

racionales

Coma fija sin signo o binario puro [naturales]

Sistema posicional con base 2 y sin parte fraccionaria.

$$V(X) = \sum_{i=0}^{n-1} 2^i \cdot X_i$$

- Rango de representación: [0, 2ⁿ 1]
- Resolución: I unidad

Ejemplo comparativo (3 bits)

Decimal	Binario Puro			
+7	111			
+6	110			
+5	101			
+4	100			
+3	011			
+2	010			
+1	001			
+0	000			
-0	N.D.			
-I	N.D.			
-2	N.D.			
-3	N.D.			
-4	N.D.			
-5	N.D.			
-6	N.D.			
-7	N.D.			

Coma fija con signo o signo magnitud [enteros]

• Se reserva un bit (S) para el signo $(0 \Rightarrow +; I \Rightarrow -)$

Si
$$x_{n-1} = 0$$
 $V(X) = \sum_{i=0}^{n-2} 2^{i} \cdot x_{i}$ $\Rightarrow V(X) = (1 - 2 \cdot x_{n-1}) \cdot \sum_{i=0}^{n-2} 2^{i} \cdot x_{i}$ Si $x_{n-1} = 1$ $V(X) = -\sum_{i=0}^{n-2} 2^{i} \cdot x_{i}$

- Rango de representación: [-2ⁿ⁻¹ +1, 2ⁿ⁻¹ -1]
- Resolución: I unidad
- Ambigüedad del 0

Ejemplo comparativo (3 bits)

Decimal	Binario Puro	Signo magnitud	
+7	111	N.D.	
+6	110	N.D.	
+5	101	N.D.	
+4	100	N.D.	
+3	011	011	
+2	010	010	
+1	001	001	
+0	000	000	
-0	N.D.	100	
- I	N.D.	101	
-2	N.D.	110	
-3	N.D.	111	
-4	N.D.	N.D.	
-5	N.D.	N.D.	
-6	N.D.	N.D.	
-7	N.D.	N.D.	

Complemento a uno (a la base menos uno) [enteros] (1/3)

Número positivo: se representa en binario puro con n-1 bits

$$V(X) = \sum_{i=0}^{n-1} 2^{i} \cdot X_{i} = \sum_{i=0}^{n-2} 2^{i} \cdot X_{i}$$

- Rango de representación (+): [0, 2ⁿ⁻¹ -1]
- Resolución: I unidad

Complemento a uno (a la base menos uno) [enteros] (2/3)

Número negativo: se complementa a la base menos uno

$$V(X) = -2^{n} + \sum_{i=0}^{n-1} 2^{i} \cdot y_{i} + 1$$

- Rango de representación (-): [-2ⁿ⁻¹+1, -0]
- Resolución: I unidad

Complemento a uno (a la base menos uno) [enteros] (3/3)

- ► Ejemplo: Para n=4 \Rightarrow el +3₁₀ = 00 l l₂
- ► Ejemplo: Para n=4 \Rightarrow el -3₁₀ = 1100₂
 - → I (bit signo y también parte de magnitud)
 - Ca $I(3) \Rightarrow 2^4 00II_2 I = 2^4 3 I = I2 \Rightarrow II00_2$
 - Rango de representación: [-2ⁿ⁻¹+1,2ⁿ⁻¹-1]
 - Resolución: I unidad
 - El 0 tiene doble representación (+0 y -0)
 - Rango simétrico

Ejemplo comparativo (3 bits)

Decimal	Binario Puro	Signo magnitud	Complemento a uno
+7	111	N.D.	N.D.
+6	110	N.D.	N.D.
+5	101	N.D.	N.D.
+4	100	N.D.	N.D.
+3	011	011	011
+2	010	010	010
+1	001	001	001
+0	000	000	000
-0	N.D.	100	111
-1	N.D.	101	110
-2	N.D.	110	101
-3	N.D.	111	100
-4	N.D.	N.D.	N.D.
-5	N.D.	N.D.	N.D.
-6	N.D.	N.D.	N.D.
-7	N.D.	N.D.	N.D.

Complemento a dos (complemento a la base) [enteros] (1/3)

Número positivo: se representa en binario puro con n-1 bits

$$V(X) = \sum_{i=0}^{n-1} 2^{i} \cdot x_{i} = \sum_{i=0}^{n-2} 2^{i} \cdot x_{i}$$

- Rango de representación (+): [0, 2ⁿ⁻¹ -1]
- Resolución: Lunidad

Complemento a dos (complemento a la base) [enteros] (2/3)

Número negativo: se complementa a la base

$$V(X) = -2^n + \sum_{i=0}^{n-1} 2^i \cdot y_i$$

- Rango de representación (-): [-2ⁿ⁻¹, -1]
- Resolución: Lunidad

Complemento a dos (complemento a la base) [enteros] (3/3)

Truco:
$$C \ a \ 2 \ (X) = X$$

 $C \ a \ 2 \ (-X) = C \ a \ I \ (X) + I$

- ► Ejemplo: Para $n=4 \Rightarrow +3 = 0011_2$
- ► Ejemplo: Para $n=4 \Rightarrow -3 = 1101_2$
 - ► $I \Rightarrow$ (bit signo y también parte de magnitud)
 - C a 2 (3) = C a 2(00|12) = 2^4 3 = $13 \Rightarrow 1101_2$
 - Rango de representación: [-2ⁿ⁻¹, 2ⁿ⁻¹-1]
 - Resolución: I unidad
 - El 0 tiene una única representación (No ∃ -0)
 - Rango asimétrico

Ejemplo comparativo (3 bits)

Decimal	Binario Puro	Signo magnitud	Complemento a uno	Complemento a dos
+7	111	N.D.	N.D.	N.D.
+6	110	N.D.	N.D.	N.D.
+5	101	N.D.	N.D.	N.D.
+4	100	N.D.	N.D.	N.D.
+3	011	011	011	011
+2	010	010	010	010
+1	001	001	001	001
+0	000	000	000	000
-0	N.D.	100	111	N.D.
-1	N.D.	101	110	Ш
-2	N.D.	110	101	110
-3	N.D.	111	100	101
-4	N.D.	N.D.	N.D.	100
-5	N.D.	N.D.	N.D.	N.D.
-6	N.D.	N.D.	N.D.	N.D.
-7	N.D.	N.D.	N.D.	N.D.

Exceso 2ⁿ⁻¹-1 [enteros]

Con n bits, se suma 2ⁿ⁻¹-1 al valor.

$$V(X) = \sum_{i=0}^{n-1} 2^{i} \cdot x_{i} - (2^{n-1} - 1)$$

- Rango de representación: [-2ⁿ⁻¹ + 1, 2ⁿ⁻¹]
- Resolución: I unidad
- No existe ambigüedad con el 0

Ejemplo comparativo (3 bits)

Decimal	Binario Puro	Signo magnitud	Complemento a uno	Complemento a dos	Exceso 3
+7	111	N.D.	N.D.	N.D.	N.D.
+6	110	N.D.	N.D.	N.D.	N.D.
+5	101	N.D.	N.D.	N.D.	N.D.
+4	100	N.D.	N.D.	N.D.	Ш
+3	011	011	011	011	110
+2	010	010	010	010	101
+1	001	001	001	001	100
+0	000	000	000	000	011
-0	N.D.	100	111	N.D.	N.D.
-1	N.D.	101	110	111	010
-2	N.D.	110	101	110	001
-3	N.D.	111	100	101	000
-4	N.D.	N.D.	N.D.	100	N.D.
-5	N.D.	N.D.	N.D.	N.D.	N.D.
-6	N.D.	N.D.	N.D.	N.D.	N.D.
-7	N.D.	N.D.	N.D.	N.D.	N.D.

Comparación de aritmética en BP, C1 y C2

	Binario puro	Complemento a I	Complemento a 2
Suma	10110 01100 100010	igual que B.P.	igual que B.P.
Resta	10110 01100 01010	sumar y si hay Cn-I entonces sumar Cn-I al total	sumar y si hay Cn-I entonces descartarlo

En hardware, es más fácil operar con complemento

Comparación de aritmética en BP, C1 y C2

En hardware, es más fácil operar con complemento

Comparación de aritmética en BP, C1 y C2

	Binario puro	Complemento a I	Complemento a 2
Detectar	El resultado necesita I bit más	Suma de 2 + es –, Suma de 2 – es +	Suma de 2 + es –, Suma de 2 – es +
desbordamiento	Hay Cn	Cn <> Cn-I	Cn <> Cn-I
Extensión de signo	00 10110	11*10110 00*00110	11*10110 00*00110
		•••	•••

Recordatorio: necesitaremos...

Conocer posibles representaciones:

- Conocer las características de las mismas:
 - Limitaciones

Conocer cómo operar con la representación:

4 minutos máx.

Indique la representación de los siguientes números, razonando brevemente su respuesta:

- 1. -32 en complemento a uno con 6 bits
- 2. -32 en complemento a dos con 6 bits
- 3. -10 en signo magnitud con 5 bits
- 4. +14 en complemento a dos con 5 bits

Ejemplos (solución)

4 minutos máx.

- Con 6 bits **no es representable** en CI: $[-2^{6-1}+1,...,-0,+0,....2^{6-1}-1]$
- C| + | -> |00000|
- Signo=1, magnitud=1010 -> 11010 3.
- Positivo -> CI=C2=SM -> 01110

Fallos típicos

- Negativo en complemento a dos
 - No comprobar el rango (si es representable)
- Negativo en signo magnitud
 - Tratarlo como complemento a uno
 - Olvidarse del signo
- Positivo en complemento a dos
 - Tratarlo como negativo (complementarlo a I + I)

Grupo ARCOS Universidad Carlos III de Madrid

Tema 2 (repaso de representación) Representación de la información

Estructura de Computadores Grado en Ingeniería Informática

