Vorlesung Elektronik II

Motivation

Schaltungsfamilien

Transistoren in analogen Schaltungen

- Inverter
- Kleinsignalverhalten
- Differenzstufe
- Transistor als Widerstand
- Stromquellen
- Inverter und Differenzstufe mit Stromspiegel
- Ausgangsstufen
- Kapazitäten eines Transistors
- Frequenzgang

3. Verstärker

- Aufbau einstufiger Verstärker
- Wirkung der Kapazitäten
- Aufbau zweistufige Verstärker
- Pole und Nullstellen
- CMRR
- **PSRR**
- Slew Rate

4. Anwendungen des OPV

- Invertierender Verstärker
- Übertragungsfunktion
- Frequenzgang (Bode-Diagramm)
- Verstärkungs-Bandbreite-Produkt
- Bandbreite eines gegengekoppelten OPV
- Summierer/ Subtrahierer
- Logarithmierer/ Integrierer
- Aktiver Tiefpass/ Hochpass 1. **Ordnung**
- Integrierer/ Differenzierer
- Komparator mit Hysterese

Gegen- und Mittkopplung

- Einfluss auf Eingangswiderstand
- Einfluss auf Ausgangswiderstand
- Frequenzgang
- Astabile Kippschaltung

SS2022

Einstufiger Verstärker

Eingangsstufe

$$u_{out} = u_{N2}$$

$$r_{out} = r_{out_{N2}}$$

$$r_{out_{N2}} = \frac{1}{g_{m2} + g_{DS_2}} || r_{DS_1}$$

$$\approx \frac{1}{g_{m_2}} || r_{DS_1} \approx \frac{1}{g_{m_2}}$$

$$A = \frac{u_{N_2}}{\frac{u_{in}}{2}} = g_{m_1} \cdot r_{out_{N2}}$$

$$u_{N_2} = -g_{m_1} \cdot r_{out_{N_2}} \cdot \frac{u_{in}}{2}$$
$$= -g_{m_1} \cdot \frac{1}{g_{m_2}} \cdot \frac{u_{in}}{2}$$

3

Ausgangsstufe

$$u_{out} = -g_{m3} \cdot r_{out_{N3}} \cdot u_{N2}$$

mit
$$u_{N2} \approx -\frac{g_{m1}}{g_{m2}} \cdot \frac{u_{in}}{2}$$
 und $r_{out_{N3}} = r_{DS_3} || r_{DS_4}$

$$u_{out} = g_{m3} \cdot r_{out_{N3}} \cdot \frac{g_{m1}}{g_{m2}} \cdot \frac{u_{in}}{2}$$

$$u_{out} = g_{m3} \cdot r_{out_{N3}} \cdot \frac{g_{m1}}{g_{m2}} \cdot \frac{u_{in}}{2}$$
Allgemein gilt: $g_m = \beta_0 \cdot \frac{W}{L} \cdot U_{GS_{eff}}$

$$\text{mit } U_{GS_{eff2}} = U_{GS_{eff3}} \colon \ u_{out} = g_{m1} \cdot \frac{\left(\frac{W}{L}\right)_3}{\left(\frac{W}{L}\right)_2} \cdot r_{out_{N3}} \cdot \frac{u_{in}}{2} \quad (*)$$

Die erzielte Verstärkung ist in der Größenordnung der Verstärkung eines einfachen Inverters, obwohl diese Schaltung viel mehr Transistoren benötigt. Um die Verstärkung zu erhöhen, soll nun auch der linke Zweig der Schaltung genutzt werden. Am Knoten N_2 liegt das Ausgangssignal mit umgekehrtem Vorzeichen an. Mit diesem Signal wird jetzt ein Transistor gesteuert, der die Stromquelle I_1 ersetzt (siehe nächstes Bild).

Gesteuerte Stromquelle im linken Zweig

Das Signal gelangt nun über zwei Wege zum Ausgang:

- Die Spannung $\frac{u_{in}}{2}$ verändert das Potential N_2 . Dieses steuert den Transistor T_3 und damit das Ausgangspotential. Das Vorzeichen der Verstärkung kehrt sich dabei zweimal um.
- Die Spannung $-\frac{u_{in}}{2}$ verändert das Potential N_2 ', welches den Transistor T_3 ' steuert und damit das Potential N_4 '. Dieses steuert wiederum den Transistor T_4 und damit das Ausgangspotential. Das Vorzeichen der Verstärkung kehrt sich dabei dreimal um. Weil die Eingänge umgekehrte Vorzeichen haben, addieren sich die Effekte am Ausgang mit gleichem Vorzeichen.

Die Transistoren mit gleichen Indexnummern sind auch gleich ausgelegt, d.h. $T_i' \cong T_i$. Des Weiteren sind die Transistorlängen gleich. Man erhält dadurch also die doppelte Ausgangsspannung und Gleichung (*) wird zu:

$$u_{out} = g_{m1} \cdot \frac{W_3}{W_2} \cdot r_{out_{N3}} \cdot u_{in} (**)$$

Kaskode als Ausgangsstufe

8

Annahme: T_4 und T_3 bzw. T_5 und T_6 äquivalent

- => beide Pfade haben den gleichen Widerstand
- => Parallelschaltung führt damit zu einer Halbierung:

$$r_{out} = \frac{1}{2} \cdot g_{m5} \cdot r_{DS_5} \cdot r_{DS_3}$$

Daraus folgt:

$$A = \frac{u_{out}}{u_{in}} = g_{m1} \cdot g_{m5} \cdot r_{DS_5} \cdot r_{DS_3} \left(\frac{1}{2} \frac{W_3}{W_2}\right)$$

⇒ Damit hat sich die Verstärkung näherungsweise quadriert.

SS2022

Die Schaltung kann auch anhand der Stromverhältnisse betrachtet werden. Auch in diesem Fall sind zwei Signalwege erkennbar:

• $\frac{u_{in}}{2}$ erzeugt Strom i_1

$$\Rightarrow i_1 = g_{m1} \cdot \frac{u_{in}}{2}$$

• Spiegelung über T_2 und T_3 in i_3

$$\Rightarrow i_3 = \frac{W_3}{W_2} \cdot i_1$$

• $-\frac{u_{in}}{2}$ erzeugt den Strom i'_1

$$\Rightarrow i_1' = -g_{m1}' \cdot \frac{u_{in}}{2}$$

• Spiegelung über T_2 und T_3 in i_3

$$\Rightarrow i_3' = \frac{W_3'}{W_2'} \cdot i_1'$$

• Spiegelung über T_4 und T_4 in i_4

$$\Rightarrow i_4 = \frac{W_4}{W_4'} \cdot i_3'$$

Darüber hinaus gilt:

- $i_5 = i_3$
- $i_6 = i_4 = \frac{W_4}{W_4'} \cdot \frac{W_3'}{W_2'} \cdot i_1' = \frac{W_4}{W_4'} \cdot \frac{W_3'}{W_2'} \cdot \left(-g_{m1}' \cdot \frac{u_{in}}{2}\right)$

mit

- $W_i' = W_i$
- $g'_{m1} = g_{m1}$
- $\Rightarrow i_6 = -i_5$

$$\Rightarrow i_{out} = i_5 - i_6 = \frac{W_3}{W_2} \cdot g_{m1} \cdot u_{in}$$

wenn zusätzlich $W_3 = W_2$

$$\Rightarrow i_{out} = g_{m1} \cdot u_{in}$$

$$mit u_{out} = i_{out} \cdot r_{out}$$

$$\Rightarrow A = \frac{u_{out}}{u_{in}} = g_{m1} \cdot r_{out}$$

Wirkung der Kapazitäten

Bisher wurden die Kapazitäten vernachlässigt. Das Bild zeigt sie für den rechten Pfad.

Durch das Aufstellen sämtlicher Kleinsignalersatzschaltbilder wäre die Übertragungsfunktion mathematisch genau zu ermitteln; allerdings ist ein solches Vorgehen sehr aufwendig. Darum gehen wir anders vor:

- Aufgrund der Symmetrie der Schaltung genügt es, eine Seite zu betrachten.
- Die Stufen können einzeln betrachtet werden, wenn die Kopplung durch die Kapazitäten berücksichtigt werden.
- Für das Übertragungsverhalten sind die Gleichspannungsverstärkung A_0 sowie die Pole und Nullstellen der Übertragungsfunktion entscheidend. Wenn es gelingt, die dominanten Pole und Nullstellen zu ermitteln, kann das Übertragungsverhalten mit ausreichender Genauigkeit beschrieben werden.
- Die Gleichspannungsverstärkung A_0 kann für jede Stufe einzeln berechnet werden, solange $r_{out_1} \ll r_{in_2}$ ist; dann gilt:

$$A_{0ges} = A_{0_1} \cdot A_{0_2}$$

13

Pole

Im vorherigen Abschnitt zeigte sich, dass ein Pol quasi einen Tiefpass mit der Zeitkonstante $\tau = r_{out} \cdot C$ entspricht. Prinzipiell kann an jedem Knoten der Schaltung ein Pol vorliegen; dominante Pole liegen aber bei kleinen Frequenzen, d.h. großem τ , also Knoten mit großem $r_{out} \cdot C$.

Zunächst soll der Knoten N₂ betrachtet werden:

- C_2 beschreibt alle Kapazitäten vom Knoten N_2 nach Masse
- für C_{GD3} der Miller-Effekt berücksichtigt werden muss $(A_3$ ist die Verstärkung des Transistors T_3)

$$\Rightarrow C_2 = C_{DB2} + C_{GS2} + C_{GS3} + C_{DB1} + C_{GD3} \cdot (1 + A_3)$$

- Miller-Effekt bzw. $A_3 \gg 1$
- \Rightarrow Kapazität C_{GD_3} dominierend

$$\Rightarrow C_2 \approx C_{GD_3} \cdot (1 + A_3) \approx C_{GD_3} \cdot A_3$$

SS2022

Pole

Der Ausgangswiderstand an diesem Knoten ergibt sich aus der Parallelschaltung von T_2 und T_1 (mit dem Innenwiderstand der Stromquelle). Da T_2 mit der Source angeschlossen ist, ist sein Widerstand erheblich geringer und es gilt:

$$r_2 = \frac{1}{g_{m2} + g_{DS1} + g_{DS2}} \approx \frac{1}{g_{m2}}$$

Durch die Kapazität C_2 und den Widerstand r_2 wird quasi ein Art Tiefpass gebildet. Es ergibt sich ein Pol bei der Frequenz:

$$p_2 = -\frac{1}{r_2 \cdot C_2} \approx -\frac{g_{m2}}{C_{GD3} \cdot A_3}$$

Zur Bestimmung von A_3 ist der Ausganswiderstand r_3 wichtig. Er ergibt sich analog zur Berechnung von r_{in} zu r_{DS} (siehe Kap. 2. S. 119).

wegen
$$T_3 \cong T_4$$
: $r_3 = \frac{r_{DS3}}{2}$

folgt mit $A_3 = -g_{m3} \cdot r_3$:

$$p_2 = \frac{g_{m2}}{c_{GD_3} \cdot g_{m3} \cdot \frac{r_{DS3}}{2}} = \frac{\frac{W_2}{W_3}}{\frac{1}{2} \cdot c_{GD_3} \cdot r_{DS3}}$$

Das ist der Pol, der dadurch entsteht, dass am Knoten N_2 Kapazitäten vorhanden sind. Eigentlich bewirkt jeder Knoten, an dem sich Kapazitäten befinden, eine Polstelle; hier sollen aber nur die dominanten Pole, die für das Frequenzverhalten bestimmend sind, betrachtet werden.

SS2022

Auf der linken Seite liegt ein ähnlicher Fall vor, wenn man den Knoten N_2 betrachtet.

- T₄' ist als Diode geschaltet
- \Rightarrow Ausgangswiderstand und damit die Verstärkung von T_3 sind nicht so hoch
- \Rightarrow Miller-Effekt für C_{GD_3}' nicht so stark (In den folgenden Gleichungen müssten entsprechend außer C_{GD_3}' auch die übrigen Kapazitäten am Knoten N_2' betrachtet werden, sie sollen aber vernachlässigt werden, weil nur die Größenordnung interessant ist).

$$\Rightarrow p_2' = -\frac{1}{r_3' \cdot c_{GD_3}'}$$

mit
$$r_3' \approx \frac{1}{g_{M4'}} \ll r_3 \left(= \frac{r_{DS3}}{2} \right)$$

$$\Rightarrow |p_2'| \gg |p_2|$$

Damit ist p_2 dominant gegenüber p_2' .

Jetzt soll noch der Pol am Ausgangsknoten betrachtet werden.

- Transistoren T_5 und T_6 : kein Miller- Effekt auf, weil die Gates kleinsignalmäßig auf Masse liegen
- Gate-Drain- und die Drain-Bulk-Kapazitäten: Bereich einiger 10 fF
- Lastkapazität kann einige pF groß sein kann

$$\Rightarrow C_{out} = C_L + C_{GD_5} + C_{DB_5} + C_{GD_6} + C_{DB_6} \approx C_L$$

$$\Rightarrow r_{out} = (g_{m5} \cdot r_{DS5} \cdot r_{DS3}) \parallel (g_{m6} \cdot r_{DS6} \cdot r_{DS4})$$
$$\approx \frac{1}{2} \cdot g_{m5} \cdot r_{DS5} \cdot r_{DS3}$$

Damit gilt mit Gleichung $A = -\frac{g_m \cdot r_{out} - j_\omega \cdot c_{GD} \cdot r_{out}}{1 + j_\omega \cdot r_{out} \cdot (c_L + c_{GD})}$ aus dem Abschnitt zur Schein-Eingangsimpedanz (106, Kap. 2):

$$p_{out} = -\frac{1}{r_{out} \cdot c_{out}}$$

$$p_{out} \approx -\frac{1}{\frac{1}{2} \cdot g_{m5} \cdot r_{DS5} \cdot r_{DS3} \cdot C_L}$$

Um die Größenordnung abzuschätzen, soll der Quotient der beiden Pole gebildet werden (nur Beträge!):

$$\frac{p_{out}}{p_2} = \frac{\frac{1}{2} \cdot c_{GD3} \cdot r_{DS3} \cdot \frac{W_3}{W_2}}{\frac{1}{2} \cdot g_{m5} \cdot r_{DS5} \cdot r_{DS3} \cdot c_L} = \frac{c_{GD3} \cdot \frac{W_3}{W_2}}{g_{m5} \cdot r_{DS5} \cdot c_L}$$

mit $C_{GD3} \ll C_L$ und $g_{m5} \cdot r_{DS5} \gg 1$:

$$\Rightarrow \frac{p_{out}}{p_2} \ll 1$$

Der Pol p_{out} ist also der dominante Pol, da er die niedrigste Frequenz hat.

Nullstellen

Die Übertragungsfunktion besitzt auch mehrere Nullstellen. Eine Nullstelle bedeutet, dass ab dieser Frequenz die Verstärkung ansteigt. Zum Verständnis soll Transistor T_3 betrachtet werden:

- Ohne die Drain-Gate-Kapazität C_{GD_3} ist der Strom i_3 nur von g_{m3} und u_2 bestimmt.
- Mit C_{GD_3} gibt es einen zusätzlichen Signalpfad direkt vom Eingang zum Ausgang; bei sehr hohen Frequenzen wird er zum Kurzschluss. Das ergibt einen zusätzlichen Ausgangsstrom und führt bei hohen Frequenzen zu einer höheren Verstärkung.

Wie von der allgemeinen Betrachtung bekannt $(A = -\frac{gm \cdot r_{out} - J\omega \cdot C_{GD} \cdot r_{out}}{1 + i\omega \cdot r_{out} \cdot (C_1 + C_{GD})})$, befindet sich die Nullstelle bei $z = \frac{g_{m3}}{c_{GD_3}}$

SS2022

20

Zum Vergleich mit den Größenordnungen der Pole werden die Quotienten gebildet:

$$\left|\frac{p_{out}}{z}\right| = \frac{1}{r_{out} \cdot c_L} \cdot \frac{c_{GD_3}}{g_{m3}} = \frac{c_{GD_3}}{g_{m3} \cdot \frac{1}{2} \cdot g_{m5} \cdot r_{DS5} \cdot r_{DS3} \cdot c_L} = \frac{1}{\frac{1}{2} \cdot g_{m3} \cdot r_{DS3} \cdot g_{m5} \cdot r_{DS5}} \cdot \frac{c_{GD_3}}{c_L}$$
mit $C_{GD_3} \ll C_L$, $g_{m3} \cdot r_{DS_3} \gg 1$ und $g_{m5} \cdot r_{DS_5} \gg 1$:

$$\Rightarrow \left| \frac{p_{out}}{z} \right| \ll \ll 1$$

$$\left|\frac{p_2}{z}\right| = \frac{g_{m2}}{c_{GD_3} \cdot g_{m3} \cdot \frac{r_{DS3}}{2}} \cdot \frac{c_{GD_3}}{g_{m3}} = \frac{\frac{W_2}{W_3}}{\frac{1}{2} \cdot r_{DS3} \cdot g_{m3}} \ll 1$$

21

Anhand einiger Zahlenwerte sollen die Größenordnungen der Pole und Nullstellen verdeutlicht werden:

$$C_{GD} = 8.6 fF \approx 10 fF$$

 $g_m = 500 \mu S$
 $r_{DS} = 400 k\Omega$
 $C_L = 100 fF$
 $W_3 = W_2$

$$\rightarrow$$
 A₀ = 20.000

$$p_2 = 500MHz$$

$$p_{out} = 250kHz$$

$$z = 50GHz$$

Diese Pole bzw. Nullstellen liegen also weit genug auseinander.

Frequenz- und Phasengang

Als *Gainbandwith* (GBW) wird der Schnittpunkt des Frequenzgangs mit der 0-dB-Linie bezeichnet, also der Punkt, bei dem die Verstärkung zu 1wird. Bei dem Ein-Pol-System erhielten wir für diesen Wert:

$$GBW = A_0 \cdot \omega_p$$

Daher heißt dieser Wert auch Verstärkung-Bandbreiten-Produkt.

Hier soll näherungsweise der dominante Pol p_{out} anstelle von ω_n verwendet werden; falls der zweite Pol kleiner als GBW ist, führt er zu einer zusätzlichen Absenkung und GBW wird kleiner.

Wenn der zweite Pol gleich GBW ist, hat die Phase bei der Verstärkung A = 1 eine Drehung von -90° vom dominanten Pol und eine weitere Drehung von −45° vom zweiten Pol, man erhält also eine Phasenreserve von $180^{\circ} - 135^{\circ} = 45^{\circ}$. Dieser Wert sollte mindestens erreicht werden, entsprechend sollte gelten: $|GBW| \le |p_2| \rightarrow |A \cdot p_{out}| \le |p_2|$ mit: $A = g_{m1} \cdot g_{m5} \cdot r_{DS5} \cdot r_{DS3} \cdot \left(\frac{1}{2} \frac{W_3}{W_2}\right), \quad p_{out} = -\frac{1}{\frac{1}{2} \cdot g_{m5} \cdot r_{DS5} \cdot r_{DS3} \cdot C_L}$

$$p_2 = -\frac{g_{m2}}{c_{GD3} \cdot g_{m3} \cdot \frac{r_{DS3}}{2}}$$

$$\rightarrow \frac{g_{m1} \cdot g_{m5} \cdot r_{DS5} \cdot r_{DS3} \cdot \left(\frac{1}{2} \frac{W_3}{W_2}\right)}{\frac{1}{2} \cdot g_{m5} \cdot r_{DS5} \cdot r_{DS3} \cdot c_L} \leq \frac{g_{m2}}{c_{GD_3} \cdot g_{m3} \cdot \frac{r_{DS3}}{2}}$$

$$\Rightarrow \frac{g_{m1} \cdot \frac{W_3}{W_2}}{C_L} \le \frac{\frac{W_2}{W_3}}{C_{GD_3} \cdot \frac{r_{DS_3}}{2}}$$

$$\rightarrow \frac{1}{2} \cdot g_{m1} \cdot \left(\frac{W_3}{W_2}\right)^2 \cdot C_{GD_3} \cdot r_{DS3} \le C_L$$

Die Lastkapazität \mathcal{C}_L ist also entscheidend, weil sie die Größe des dominanten Pols p_{out} mitbestimmt. Durch ein größeres \mathcal{C}_L wird p_{out} kleiner, dadurch wird die GBW früher erreicht, was einen Verlust von Bandbreite bedeutet.

Andererseits führt eine größere Lastkapazität zu einer größeren Phasenreserve; daher sollte Lastkapazität C_L mindestens $A \cdot C_{GD_3}$ sein, dann beträgt die Phasenreserve mehr als -45° . Seite 26 zeigt den Frequenz- und den Phasengang mit einem um den Faktor 100 vergrößerten C_L .

Frenquenz- und Phasengang bei $C'_L = 100 \cdot C_L$

Der hier vorgestellte Verstärker wird als einstufiger Verstärker bezeichnet, weil seine Übertragungscharakteristik im unteren Frequenzbereich durch einen dominanten Pol gekennzeichnet ist; der zweite Pol und die erste Nullstelle liegen erst bei sehr viel höheren Frequenzen. Entsprechend kommen diese in einem genäherten Kleinsignalersatzschaltbild nicht vor:

Die Verstärkung berechnet sich aus:

$$A = -g_{m1} \cdot r_{out}$$

SS2022

Die Verstärkung wird von der zweiten Stufe bestimmt, die erste Stufe trägt fast nichts zur Verstärkung bei; lediglich über das $\left(\frac{w}{L}\right)$ -Verhältnis der Transistoren T_2 und T_3 lässt sich eine Vergrößerung erzielen. Deshalb ist die Betrachtung als Ein-Pol-System eine erlaubte Näherung.

Kapazitäten als Last sind für diesen Verstärker unproblematisch. Zwar sinkt bei einem großen \mathcal{C}_L die Bandbreite, aber das System schwingt weniger, weil sich der dominante Pol kleiner wird. Anders verhält es sich mit Widerständen wie R_L auf der vorherigen Seite. Ein solcher Widerstand am Ausgang liegt parallel zu r_{out} .

Dann gilt für die Verstärkung: $A = -g_{m1} \cdot (r_{out} \parallel R_L)$

Wenn $R_L < r_{out}$ ist, sinkt also die Verstärkung entsprechend. Es sollte also $R_L > r_{out}$ gelten; je nach Anwendung ist ein kleines R_L aber oft nicht zu vermeiden. In diesen Fällen sollte auf andere Verstärkerstufen zurückgegriffen werden, die ein niedrigeres r_{out} besitzen.