

CS-2001 DATA STRUCTURES FALL2021

Dr. Hashim Yasin

Mr. Muhammad Husnain

National University of Computer and Emerging Sciences,

Faisalabad, Pakistan.

Algorithm

 An algorithm is a definite procedure for solving a problem in a finite number of steps.

 Algorithm is a well-defined computational procedure that takes some value (s) as input and produces some value (s) as output.

 Algorithm is finite number of computational statements that transform input into the output

Algorithm

□ Finite sequence of instructions.

Each instruction having a clear meaning.

□ Each instruction requires finite amount of effort.

Each instruction requires finite time to complete.

Evaluation of Algorithm

- Completeness: is the strategy guaranteed to find a solution when there is one?
- Optimality: does the strategy find the highestquality (least-cost) solution when there are several different solutions?
- Time complexity: how long does it take to find a solution?
- Space complexity: how much memory is needed to perform the search?

Analysis of an Algorithm

- What is the goal of analysis of algorithms?
 - To compare algorithms mainly in terms of running time but also in terms of other factors (e.g., memory requirements, programmer's effort etc.)

- □ What do we mean by running time analysis?
 - Determine how running time increases as the size of the problem increases.

Analysis of an Algorithm

- Ways of measuring efficiency:
 - Run the program and see how long it takes
 - Run the program and see how much memory it uses

- □ Lots of variables to control:
 - What is the input data?
 - What is the hardware platform?
 - What is the programming language/compiler?

Types of Analysis

■ Worst case

- Provides an upper bound on running time
- An absolute guarantee that the algorithm would not run longer, no matter what the inputs are.

□ Best case

- Provides a lower bound on running time
- Input is the one for which the algorithm runs the fastest

Types of Analysis

□ Average case

- Provides a prediction about the running time
- Assumes that the input is random.

Lower Bound \leq Running Time \leq Upper Bound

Asymptotic Notation

- Asymptotic notations Asymptotic notations are the notations used to describe the behavior of the time or space complexity.
- \Box Let us represent the time complexity and the space complexity using the common function f(n).
 - O (Big Oh notation)
 - \triangleright Ω (Omega notation)
 - \triangleright θ (Theta notation)
 - o (Little Oh notation)

□ The big Oh notation provide s an upper bound for the function f(n).

The function f(n) = O(g(n)) if and only if there exists positive constants c and n_0 such that

$$f(n) \leq cg(n)$$
 for all $n \geq n_0$

$$f(n) = 3n + 2$$

$$f(n) \le cg(n)$$
 for all $n \ge n_0$

Let us take
$$g(n) = n$$

 $c = 4$
 $n_0 = 2$

Let us check the above condition

$$3n + 2 \le 4n$$
 for all $n \ge 2$

The condition is satisfied. Hence f(n) = O(n).

$$f(n) = 10n^2 + 4n + 2$$
 $f(n) \le cg(n)$ for all $n \ge n_0$

Let us take
$$g(n) = n^2$$

 $c = 11$
 $n_0 = 6$

Let us check the above condition

$$10n^2 + 4n + 2 \le 11n$$

for all $n \ge 6$

The condition is satisfied. Hence $f(n) = O(n^2)$.

Ω - Omega notation

The omega notation (Ω) provides a **lower bound** for the function f(n).

The function $f(n) = \Omega(g(n))$ if and only if there exists positive constants c and n_0 such that

$$f(n) \ge cg(n)$$
 for all $n \ge n_0$

Ω - Omega notation

θ — Theta notation (Tight Bound)

The theta notation (θ) is used when the function f(n) can be bounded by both from above and below the same function g(n).

The function $f(n) = \theta(g(n))$ if and only if there exists positive constants c_1, c_2 and n_0 such that

$$c_1g(n) \le f(n) \le c_2g(n)$$
 for all $n \ge n_0$

θ - Theta notation (Tight Bound)

o - Little Oh notation

□ The little o notation (o) is,

```
f(n) = o(g(n)) if and only if f(n) = O(g(n)) and f(n) \neq \Omega(g(n)) (OR)
```

- \Box (f(n)/g(n)) becomes zero as 'n' approaches to infinity
 - i.e., f(n) is strictly less than g(n) in order of growth

Reading Materials

- □ Mark Allen Weiss Chapter#2
- □ Nell Dale: Chapter # 3 (Section 3.4)
- □ D. S. Malik Chapter#1