

Documentație Proiect Identificarea Sistemelor

Facultatea de Automatica si Calculatoare

Dunca Denis Ionuț

Cuprins:

1. Dat	tele experimentale	2
2. Ide	ntificarea Neparametrica	3
2.1 Id	entificarea sistemului de ordin 2 prin exploatarea fenomenului de rezonanta	3
3. Est	imarea diagramelor Bode	4
3.1 Si	stemul de ordinul 2	4
4. Ide	entificarea Parametrica	6
4.1 Si	stemul de ordinul 2	6
A.	ARX	6
B.	ARMAX	7
4.2 Si	stemul de ordinul 2 cu zero	9
A.	ARX	9
В.	ARMAX	10

1. Datele experimentale

Unde:

- u(y) reprezintă intrarea sistemului
- y1(t) reprezintă ieșirea sistemului de ordinul doi
- y2(t) reprezintă ieșirea sistemului de ordinul doi cu zero

2. Identificarea Neparametrica

Identificarea sistemului de ordin 2 prin exploatarea fenomenului de rezonanta

Pași:

1. Achiziția Datelor:

2. Factorul de proporționalitate K, Modulului de rezonanta M_r si ζ : $K = \frac{mean(y1)}{mean(u)} = 1.0132;$

 $M_r = \frac{A_y}{A_u}$; unde A_y -amplitudinea ieșirii, iar A_u - amplitudinea intrării Mr1=(y2(257)-y2(265))/(u(254)-u(262))= 1.4483

Se identifica ζ din: $Mr = \frac{1}{2 \cdot \zeta \sqrt{(1-\zeta^2)}}$;

de aici: $4 \cdot \zeta^4 - 4 \cdot \zeta^2 + \frac{1}{Mr^2} = 0 = > \zeta = 0.3719$

3. Perioadei de rezonanta T_r , a pulsației de rezonanta ω_r si a pulsației naturale ω_n : $T_r = t(274) - t(257) = 1.6e - 04[sec];$

$$\omega_r = \frac{2\pi}{T_r} = 3.9270e04 [\text{rad/sec}]; \quad \omega_n = \frac{\omega_r}{\sqrt{1 - 2\zeta^2}} = 4.6172e04 [\text{rad/sec}]$$

4. Scrierea funcției de transfer H, simularea ieșirii si calcularea erorii:

$$\begin{split} &H(s) \!\!=\!\! \frac{\omega_n^2}{s^2 \!+\! 2\zeta\omega_n s \!+\! \omega_n^2} \!\!=\!\! \frac{2.16e09}{s^2 \!+\! 3.434e04s \!+\! 2.132e09} \\ &A \!\!=\!\! [0\ 1; \, -\! \omega_n^2 \, -\! 2\zeta\omega_n]; \quad B \!\!=\!\! [0; \, K^*\omega_n^2]; \quad C \!\!=\!\! [1\ 0]; \end{split}$$

3. Estimarea diagramelor Bode

3.1 Sistemul de ordinul 2

Pași:

1. Alegerea punctelor de la frecvente joase, înalte, de la modul =1 si de la final:

2. Extragerea punctelor in Matlab:

28	1x1 Line	[4.8000e-04,	807				
29	1x1 Line	[4.7000e-04,	806	Fields	Target	Position	DataIndex
30	1x1 Line	[4.4000e-04,	803			_	
31	1x1 Line	[-0.0028,2.5	489	1	1x1 Line	[0.0024,2.0313]	997
32	1x1 Line	[-0.0028,2.5	486	2	1x1 Line	[0.0024,2.4750]	994
33	1x1 Line	[-0.0028,0.7	484	3	1x1 Line 1x1 Line	[0.0023,1.2188]	993
34	1x1 Line	[-0.0029,0.7	480	5	1x1 Line	[0.0023,0.0935]	989
35	1x1 Line	[-0.0056,0.3	195	6	1x1 Line	[0.0023,2.5063]	986
36	1x1 Line	[-0.0057,0.6	193	7	1x1 Line	[9.6000e-04,1.1563]	855
37	1x1 Line	[-0.0057,2.8	185	8	1x1 Line	[9.3000e-04,0.6938]	852
38	1x1 Line	[-0.0058,2.5	183	9	1x1 Line	[9.2000e-04,2.1563]	851
39	1x1 Line	[-0.0058,0.4	175	10	1x1 Line	[8.9000e-04,2.4750]	848
40	1x1 Line	[-0.0059,0.6	173	11	1x1 Line	[8.8000e-04,1.1250]	847
41	1x1 Line	[-0.0060,2.8	164	12	1x1 Line	[8.4000e-04,0.7250]	843
42	1x1 Line	[-0.0060,2.5	162	13	1x1 Line	[8.3000e-04,2.0938]	842
43	1x1 Line	[-0.0061,0.4	154	14	1x1 Line	[8.0000e-04,2.4750]	839
	1x1 Line			15	1x1 Line	[7.8000e-04,1.1563]	837
44		[-0.0061,0.6	151	16	1x1 Line	[7.5000e-04,0.7563]	834
45	1x1 Line	[-0.0062,2.7	141	17	1x1 Line	[7.4000e-04,2.1250]	833
46	1x1 Line	[-0.0062,2.5	140	18	1x1 Line	[7.1000e-04,2.4750]	830
47	1x1 Line	[-0.0063,0.5	129	19	1x1 Line	[7.0000e-04,1.1250]	829 825
48	1x1 Line	[-0.0063,0.6	127	20	1x1 Line 1x1 Line	[6.6000e-04,0.7250] [6.5000e-04,2.1563]	824
49	1x1 Line	[-0.0064,2.6	116	21 22	1x1 Line	[6.2000e-04,2.4750]	824
50	1x1 Line	[-0.0064,2.5	115	23	1x1 Line	[6.1000e-04,1.1250]	820
51	1x1 Line	[-0.0066,0.5	102	24	1x1 Line	[5.7000e-04,0.7563]	816
52	1x1 Line	[-0.0066,0.6	101	25	1x1 Line	[5.6000e-04,2.1563]	815
53	1x1 Line	[-0.0067,2.6	86	26	1x1 Line	[5.3000e-04,2.4750]	812
54	1x1 Line	[-0.0067,2.5	85	27	1x1 Line	[5.1000e-04,1.1250]	810

3. Calcul pulsației, modul si faza pentru fiecare punct:

$$\omega_i = \frac{\pi}{t(uvarf2) - t(uvarf1)} [\text{rad/s}]; \ M_i = \frac{y1(sus) - y1(jos)}{u(sus) - u(jos)};$$

$$\textit{Ph}_i = \texttt{rad2deg}(\omega_i \cdot \big(t(uvarf1) - t(yvarf1)\big)); [\texttt{grade}]$$

ω	М	Ph	
$\omega_1 = 1.9635 e + 04 [rad/s]$	M_1 =1.1186= 0.9738[dB]	$Ph_1 = -22.5000[grade]$	
$\omega_9 = 3.1416e + 04 \text{ [rad/s]}$	$M_9 = 1.300 = 2.2798 [dB]$	<i>Ph</i> ₉ =-36.0000[grade]	
$\omega_r = 3.9270 \text{e} + 04 \text{[rad/s]}$	M_r =1.4483= 3.2170[dB]	Ph_r = -67.5000[grade]	
$\omega_{20} = 6.2832 \text{e} + 04 \text{[rad/s]}$	M_{20} =0.5893= -4.593[dB]	$Ph_{20} = -126.0000[grade]$	
$\omega_{24} = 7.8540e + 04[rad/s]$	M_{24} =0.4561= -6.818[dB]	Ph ₂₄ = -135.0000[grade]	
$\omega_{10} = 5.2360 \text{e} + 04 \text{[rad/s]}$	M_{10} =0.9828= -0.151[dB]	$Ph_{10} = -120.0000[grade]$	

4. Plotarea punctelor si suprapunerea lor cu Diagrama Bode a sistemului:

5. Calcului pantei de atenuare pe decada:

Am calculat folosind punctul unde modulul este aproximativ 1 si pentru punctul de final: ω_{24} =7.8540e+04[rad/sec]; ω_{10} =5.2360e+04[rad/sec];

$$M_{24}$$
=0.4561=-6.8180[dB]; M_{10} =0.9828= -0.1511[dB];

$$p = \frac{20 \cdot \log 10 \left(\frac{M_{24}}{M_{10}}\right)}{\left(\frac{\omega_{24}}{\omega_{10}}\right)} \cdot 10 = -44.4464 \text{ dB/dec}$$

4. Identificarea Parametrica

4.1 Sistemul de ordinul 2

A. ARX

Paşi:

1. Determinarea perioadei de achizitie:

$$dt=t(2)-t(1)=1e-05[sec]$$

- 2. Pregatirea datelor pentru identificare folosind iddata
- 3. Alegerea gradelor si utilizarea funcției arx:

$$n_A = 2$$
, $n_B = 2$, $n_d = 0$;

Obtinem:

Discrete-time ARX model: A(z)y(t) = B(z)u(t) + e(t)

$$A(z) = 1 - 1.501 z^{-1} + 0.6771 z^{-2}$$

$$B(z) = -0.003182 + 0.182 z^{-1}$$

Sample time: 1e-05 seconds

Fit to estimation data: 94.34% (prediction focus)

FPE: 0.001295, MSE: 0.001279

4. Validarea modelului si compararea cu semnalul de iesire y1:

Se observa ce testul de autocorelație nu este validat, in schimb testul de intercorelație se validează . Compararea cu semnalul y1 utilizând funcția compare: eroare de 5.52%

5. Comparare utilizând simularea modelului discret:

B. ARMAX

Pași:

1. Cum datele, respectiv perioada de achizitie le avem deja, alegem gradele polinoamelor, numarul tactilor de intarziere si folosim direct functia ARMAX din Matlab:

$$n_A = 2$$
, $n_B = 2$, $n_C = 2$, $n_d = 1$;

Obținem:

Discrete-time ARMAX model: A(z)y(t) = B(z)u(t) + C(z)e(t)

$$A(z) = 1 - 1.527 z^{-1} + 0.6981 z^{-2}$$

$$B(z) = 0.1844 z^{-1} - 0.01093 z^{-2}$$

$$C(z) = 1 - 1.161 z^{-1} + 0.4424 z^{-2}$$

Status:

Estimated using ARMAX on time domain data "datay1".

Fit to estimation data: 96.45% (prediction focus)

FPE: 0.0005118, MSE: 0.0005037

2. Validarea modelului si compararea cu semnalul de iesire y1 folosind functia compare:

Se observa ca autocorelația este validata, însă intercorelația nu este validata. Compararea cu semnalul y1 utilizând funcția compare: EMPN=4.1%

3. Comparare prin simularea modelului discret:

EMPN=4.33%

-1.527z+0.6981

4.2 Sistemul de ordinul 2 cu zero

A. ARX

Pasi:

1. Determinarea perioadei de achizitie

$$dt=t(2)-t(1)=1e-05[sec]$$

- 2. Pregatirea datelor pentru identificare folosind functia iddata
- 3. Alegerea gradelor si utilizarea funcției arx:

$$n_A = 3$$
, $n_B = 2$, $n_d = 0$;

Obtinem:

Discrete-time ARX model: A(z)y(t) = B(z)u(t) + e(t)

$$A(z) = 1 - 0.8287 z^{-1} - 0.3347 z^{-2} + 0.474 z^{-3}$$

 $B(z) = 0.1006 + 0.2169 z^{-1}$

Sample time: 1e-05 seconds

Status:

Estimated using ARX on time domain data "datay2".

Fit to estimation data: 95.72% (prediction focus)

FPE: 0.0008553, MSE: 0.0008418

4. Validarea modelului si compararea cu semnalul de iesire y2 folosind functia compare:

Se observa ca testul de autocorelatie nu este validat, dar cel de intercorelatie se valideaza. Compararea cu semnalul y2 utilizând funcția compare: EMPN=4.08%

5. Comparare prin simularea modelului:

$$H(z) = \frac{0.1006z^3 + 0.2169z^2}{z^3 - 0.8287z^2 - 0.3347z + 0.474}$$

B. ARMAX

Pasi:

1. Si aici avem deja datele si perioada de esatnionare, deci alegem gradele si aplicam functia ARMAX din Matlab: $n_A = 2$, $n_B = 3$, $n_C = 2$, $n_d = 0$;

Obtinem:

Discrete-time ARMAX model: A(z)y(t) = B(z)u(t) + C(z)e(t)

$$A(z) = 1 - 1.524 z^{-1} + 0.7 z^{-2}$$

$$B(z) = 0.104 + 0.1265 \text{ z}^{-1} - 0.0505 \text{z}^{-2}$$
 C(z)

 $= 1 - 1.29 z^{-1} + 0.5319 z^{-2}$

Status:

Estimated using ARMAX on time domain data "datay2".

Fit to estimation data: 96.62% (prediction focus)

FPE: 0.0005363, MSE: 0.000526

2. Validarea modelului si compararea cu semnalul de iesire y2 folosind functia compare:

- 3. Se observa ca se valideaza atat autocorelatia cat si intercorelatia. Compararea cu semnalul y2 utilizând funcția compare: EMPN=3.57%
- 4. Simularea modelului in discret:

EMPN=3.61%

 $H(z) = \frac{0.104z^2 + 0.1265z - 0.05053}{z^2 - 1.524z + 0.7}$