ABSTRACT OF JP62-53034B.txt

₹,

Abstract of JP62-53034B

PURPOSE:To prepare an electrically conductive paint having excellent migration resistance as well as electrical conductivity, and useful as the conductor of a printed circuit for electronic part, etc., at a low cost, by using powder of a specific Ag-Al-Cu alloy as electrically conductive powder in combination with a resin and a solvent.

CONSTITUTION: Powder of an alloy composed of 10-70wt% Ag, 0.1-10wt% Al and the remaining part of Cu is used as electrically conductive powder. The powder is preferably immersed in an organic solvent solution of 1,2,3-benzotriazole, and dried after separating the solution. The electrically conductive powder is kneaded together with e.g. a thermosetting resin and a solvent to obtain the objective paint.

For JP62-53034

ELECTRICALLY CONDUCTIVE PAINT

Patent number:

JP58101168

Publication date:

1983-06-16

Inventor:

OGAWA YASUHIRO; SHINODA SANKICHI;

TAKESHIMA AKIYOSHI

Applicant:

MATSUSHITA ELECTRIC IND CO LTD

Classification:

- international:

(IPC1-7): C09D5/24

- european:

Application number: JP19810199222 19811210 Priority number(s): JP19810199222 19811210

Report a data error here

Abstract of JP58101168

PURPOSE:To prepare an electrically conductive paint having excellent migration resistance as well as electrical conductivity, and useful as the conductor of a printed circuit for electronic part, etc., at a low cost, by using powder of a specific Ag-Al-Cu alloy as electrically conductive powder in combination with a resin and a solvent. CONSTITUTION: Powder of an alloy composed of 10-70wt% Ag, 0.1-10wt% Al and the remaining part of Cu is used as electrically conductive powder. The powder is preferably immersed in an organic solvent solution of 1,2,3-benzotriazole, and dried after separating the solution. The electrically conductive powder is kneaded together with e.g. a thermosetting resin and a solvent to obtain the objective paint.

Data supplied from the esp@cenet database - Worldwide

① 特許出願公告

⑫特 許 公 報(B2)

昭62-53034

@Int_Cl_4 . C 09 D

i

識別記号 PQW

庁内整理番号

❷❸公告 昭和62年(1987)11月9日

H 01 B 1/16 6845-4 J 8222-5E

発明の数 1 (全3頁)

図発明の名称 導電性ペイント

②特

頭 昭56-199222

❽公 開 昭58-101168

砂出 願 昭56(1981)12月10日 @昭58(1983)6月16日

⑦発 明 小 Ш 者 切発 明 者 信 太 匈発 明 者 竹 島 亵 34 \equiv 吉 明 美

門真市大字門真1006番地 松下電器產業株式会社内 門真市大字門真1006番地

門真市大字門真1006番地 松下電器產業株式会社内 松下電器產業株式会社内

松下電器産業株式会社 勿出 願 人

門真市大字門真1006番地

砂代 理 人 弁理士 中尾 敏男 外1名

審 査 官 永 坂 友 康

1

2

切特許請求の範囲

1 導電粉、樹脂、および溶剤からなり、前記導 電粉が、少なくともAg10~70重量%とAl0.1~10 重量%を含有し、残部がCuの組成よりなる合金 粉であることを特徴とする導電性ペイント。

2 合金粉が、1, 2, 3-ベンゾトリアゾール を有機溶媒に溶かした溶液に浸漬後、前記溶液を 分離し、乾燥させたものであることを特徴とする 特許請求の範囲第1項記載の導電性ペイント。

発明の詳細な説明

本発明は導電性ペイントに関し、安価で導電性 にすぐれ、しかも耐マイグレーション性にすぐれ た導電性ペイントの提供を目的とするものであ る。

従来、この種の導電性ペイントには、導電粉と 15 る。 して、Au, Ag, Pdなどの貴金属粉が用いられて きた。一般的には、導電粉にAgを用い、フェノ ール樹脂、エポキシ樹脂、キシレン樹脂などの熱 硬化型樹脂と、エチルカルビトールのような溶剤 と共に混練したAgペイントを、フエノール樹脂 20 性にすぐれ、しかも導電性をかなりのレベルで満 基板などにスクリーン印刷等の方法で盗布した 後、加熱硬化し、可変抵抗器などの電極、あるい は電子回路用の印刷配線導体として使用されてき た。

ない、電子部品の小型化が強く要望される傾向に あり、このような状況下では、Agペイント硬化

膜中のAgが大気中の湿気と直流電界との相互作 用により、Agペイント電極相互間を移行する現 象、いわゆるマイグレーションを起こし、その結 果、回路の短絡を起こし、しばしばトラブルの大 5 きな要因となつている。

このようなAgペイントの欠点を補うために、 Ag-Pd粉を用いた導電性ペイントが市販されて いるが、まだ完全とはいえない。また、Ag-Pd 粉を用いた導電性ペイントは、Pdの価格がAgの 10 価格に較べて極めて高く、さらに、貴金属類、特 にAgの価格高騰が激しい近年の情勢では、経済 性の点で極めて不利である。

以上のような理由から、耐マイグレーション性 の良い安価な導電性ペイントの出現が望まれてい

本発明はこのような点に鑑みて成されたもので あり、発明者らは、卑金属を主成分とする合金粉 を調査検討した結果、Ag-Al-Cu合金粉を導電 粉とした導電性ペイントが、耐マイグレーション 足することを見い出した。

次に、本発明の構成を詳述する。

本発明にかかる導電性ペイントは、その導電粉 が少なくともAg10~70重量%とAi0.1~10重量% しかし、近年、電子機器の小型化や薄型化に伴 25 を含有し、残部がCuという組成のAgーAlーCu合 金粉であることを特徴とする導電性ペイントであ

3

この種の樹脂硬化型の導電性ペイントの導電粉 において望まれる条件は、

- a 導電性があること、
- b 加熱硬化時における耐熱酸化性があること、 があげられる。

合金粉の一成分であるCuは、導電性にすぐれ た金属であるが、耐熱酸化性、耐食性は良いとは いえない。したがつて、ペイント硬化処理におけ る加熱によつて、しばしばCu粉の表面に多量の 酸化スケールが発生し、ペイント硬化膜の十分な 10 させるという処理(以下、ベンゾトリアゾール処 導電性が得られない。このようなCu粉の欠点 は、合金元素としてAgを添加することにより改 善される。しかしながら、耐マイグレーション性 において、Cuがマイグレーションを起こしにく いということから、Ag-Cu合金粉はAg粉に較べ 15 ると改善される傾向にあるが、十分な耐マイグレ ーション性は得られない。このようなAgーCu合 金粉の難点は、さらにAlを合金元素として添加 することにより大幅に改良される。合金化が何故 らすかは明確ではないが、Al自身がマイグレー ションを起こしにくいということと、AlがAgに 較べて極めて卑な金属であるということが、Ag - AI - Cu合金粉が導電性ペイントとして使用さ れた場合のすぐれた耐マイグレーション性をひき 25 熱硬化後の面抵抗が大きくなる。 出しているものと推察される。また、合金元素と してのAlの添加は、Ag-Cu合金粉の耐熱酸化性 とも改善する傾向にある。これは、AI酸化物が 合金粉の過度の酸化を防止しているものと推察さ その添加により耐食性の効果を呈するものと考え られる。しかしながら、Alの添加量が適量を越 えると、合金粉自体の導電性が降下するため、望 ましい特性は得られない。

粉として、上述の長所を見い出し得る合金組成 は、Ag10~70重量%、Al0.1~10重量%、残Cuで ある。Ag量の下限は合金粉の耐熱酸化性から、 上限は経済性からそれぞれ制約される量である。 また、Al量の下限はその添加効果を見い出し得 40 1 , 2 , 3 - ベンゾトリアゾール10mgをアセトン る最少量、上限は合金粉の導電性の面から制約さ れる量である。

以上のように、AgーAlーCu合金粉を用いた導 電性ペイントは、導電性、耐マイグレーション性

の面で実用上十分な性能を見い出し得るものであ る。しかしながら、一般的にCuおよびCu系合合 の耐食性は過度の腐食環境においては必ずしも良 好ではないように、本発明における合金粉におい 5 ても、そのような雰囲気に放置された場合、耐食 性は必ずしも満足できるものではない。しかし て、このような欠点は、合金粉に、1, 2, 3-ベンゾトリアゾールをアセトンなどの有機溶媒に 溶かした溶液に浸漬した後、溶液を分離して乾燥 理と呼ぶ)により解決される。推察するに、上記 のベンゾトリアゾール処理によつて合金粉表面に 薄いキレート化合物の皮膜を形成することによ り、防食効果を発揮しているものと思われる。

本発明に従えば、Ag-Al-Cu合金粉、あるい は、ベンゾトリアゾール処理を行なつたAgーAl -Cu合金粉を、熱硬化型の樹脂と溶剤と共に混 練して導電性ペイントとなす。この導電性ペイン トは、通常のAgペイントと同様にフェノール街 にこのような耐マイグレーション性の改良をもた 20 脂基板等にスクリーン印刷等の方法で盤布した 後、大気中で加熱硬化して、電極や導電路として 利用される。合金粉の粒径は0.05~10μの範囲、 好ましくは0.5~5 μ程度が良い。10μ以上にな るとスクリーン印刷時の印刷性が悪化し、最終加

次に、本発明をより具体化するために実施例に ついて詳述する。

本発明に従うAg-Al-Cu合金粉は、次のよう にして作製した。本発明に従う合金組成に合わせ れる。さらに、Al自身の耐環境性によつても、30 て、Ag, Al, Cuの各素材を秤量し、全量を 1 kg とした。これを窒素ガス中で溶解し、さらに、溶 湯噴霧法によつて粉体化した。噴霧媒として窒素 ガスを利用し、水中投入冷却した。得られた合金 粉の粒径は5~100μ程度のものであるが、これ Ag-Al-Cu合金粉が、導電性ペイントの導電 35 を機械式粉砕機にて再度粉体化し、平均粒径約2 μとした。

上記の方法によつて得られた合金粉の一部につ いては、ベンゾトリアゾール処理を行なつた。ベ ンゾトリアゾール処理は次の手順で行なつた。 100ml中に溶解させ、この溶液に合金粉109を浸 潰し十分に分散させた。この後、合金粉と溶液を 分離し、合金粉を乾燥した。

以上の方法によつて得られた合金粉28、ある

5

いはベンゾトリアゾール処理を行なつた合金粉2 gを、キシレン樹脂1g、エチルカルビトール 0.2gと共にフーバーマーラを用いて混練した。 フーバーマーラによる混練は、荷重100ポンド、 40回転を4回繰り返して行なつた。

以上作製した導電性ペイントをスクリーン印刷 法を用いてフェノール樹脂基板上に所定の形状に 印刷後、大気中190℃10分間の条件で加熱硬化し た

上記印刷パターンの両端間の抵抗値を測定した 10 結果と、さらに40°C95%RHの恒温恒湿槽に120時間放置した後で測定した結果を次表に示す。表には参考として、市販のAg粉、Cu粉を導電粉とした場合の結果を併せて示す。

導電粉合金 組成 (重量%)	ベトゾ 処有 知事無	面抵抗(Ω/□)		
		加熱硬 化後	恒温恒 湿槽に 放置後	備考
10Ag-1Al- 残Cu	無	0.3~3	0.5~5	本発 明
	有	0.5~2	0.5~3	"
50Ag-10A1- 残Cu	無	0.1~ 0.3	0.2~ 0.4	"
30Ag-0.1Al -残Cu	無	0.1~ 0.3	0.2~ 0.5	"
	有	0.15~ 0.3	0.15~ 0.4	"
70Ag-5Al- 残Cu	無	0.08~ 0.2	0.1~ 0.2	//
Cu	無	10~50	8	参考

6

導電粉合金 組成 (重量%)	ベトゾ リー 処 有 無	面抵抗(Ω/□)		
		加熱硬 化後	恒温恒 湿槽に 放置後	備考
	有	25~80	310~ 680	"
Ag	無	0.005~ 0.05	0.005~ 0.05	"

10 また、耐マイグレーション性の試験として、上記作製したペイントを、フェノール樹脂基板上に、間隙 0.5mmのパターンにスクリーン印刷し、加熱硬化させた後、間隙部に純水 0.2mlを滴下した状態で、間隙間に直流 3V の電圧を印加し、間が間に流れる電流を測定したところ、電圧印加後 2時間経過後の電流値は、いずれも 10 μ A 程度であった。これに対し、Ag粉を導電粉としたペイントについて同様の試験を行なったところ、電圧印加後 1 分間経過時点で間隙部で Agの移行が観 20 察され短絡を起こした。したがつて、本発明にかかる導電性ペイントは、従来の Agペイントに較べて、耐マイグレーション性が極めてすぐれていると言える。

上記した説明および表から明らかなように、本 25 発明にかかる導電性ペイントは、従来のAgペイントに比較して、導電性、耐食性の面で多少劣る面があるものの、十分実用に供し得る特性を示すものであり、特に耐マイグレーション性にすぐれており、経済的には、従来のAgペイントに較べ 30 て極めて安価に作製し得ることから、その工業的価値は大なるものがある。

THIS PACE BLANK (USPTO)