课程名称: 数据库系统

第12讲:(第8章)

关系模式设计优化

单 位:重庆大学计算机学院

1.函数依赖和键(码)

- ▶ 给定 R(A, B, C).
 - A→ABC 意味着A 是一个键(码).
- 通常,X是R的属性集,
 - · X → R 意味着 X 是一个(超)码.
- ▶超码⊇候选码⊇主码

2.函数依赖集的闭包F+

- 函数依赖集的闭包?由F逻辑蕴含的所有函数依赖的 集合。
- 计算函数依赖集的闭包:

```
F* = F
repeat
for each F*中的函数依赖 f
在 f 上应用自反律和增补律
将结果加入到 F*中
for each F*中的一对函数依赖 f, 和 f,
if f, 和 f, 可以使用传递律结合起来
将结果加入到 F*中
until F*不再发生变化
```

F+例子

- $F = \{A \rightarrow B, B \rightarrow C, C D \rightarrow E\}$
- ▶ Step 1: F中的每一个函数依赖, 使用自反律
 - -得到:CD → C; CD → D
 - 加到F上:

$$F = \{A \rightarrow B, B \rightarrow C, C D \rightarrow E; CD \rightarrow C; CD \rightarrow D\}$$

- ▶ Step 2: F中的每一个函数依赖, 使用增广律
 - -A → B 得到: A → AB; AB → B; AC → BC; AD
 - → BD; ABC →BC; ABD → BD; ACD →BCD
 - -B → C 得到: AB → AC; BC → C; BD → CD;
 - $ABC \rightarrow AC$; $ABD \rightarrow ACD$, etc.
- Step 3: 使用传递律
- ▶ 重复1~3步骤...

可以看出计算F+代价太高.

3.属性集闭包

- 函数依赖集闭包的大小是(属性的)指数级的
- ▶ 很多时候, 我们仅仅是想判断一个函数依赖*X*
 - $\rightarrow Y$ 是否在F的闭包中. 一个有效的方式是:
 - 计算属性*X的闭包 (记为X+):*
 - · X的闭包 就是由X在F上蕴含的所有属性的集合。
 - · 计算属性的闭包仅仅需要一个线性的时间算法就够了.
 - -F = {A → B, B → C, C D → E } A → E成立吗?

将判断A →E是否在F闭包里面的问题转换为E 是否在A的属性集闭包里

属性集闭包的计算

- Input F (a set of FDs), and X (a set of attributes)
- Output: Result=X+ (under F)
 Method:
 - Step 1: Result := X;
 - Step 2: Take Y → Z in F, and Y is in Result, do:

Result := **Result** ∪ **Z**

Repeat step 2 until Result cannot be changed and then output Result.

属性集闭包例子

- F = {A → B, B → C, C D → E }
 A → E是否成立?
 - 也就是, 判断 A → E 是否在 F+中?
 等价于, E 是否在A+中?
- Step 1: Result = A
- Step 2: 考虑A → B, Result = AB
 考虑B → C, Result = ABC
 考虑CD → E, CD 不在ABC, 不添加
- Step 3: A+ = {ABC}
 E 不在A+中,所以 A → E 不在F+中

属性集闭包例子

- ▶ $F = \{A \rightarrow B, AC \rightarrow D, AB \rightarrow C\}$?
- ▶ 计算A⁺。

Answer: A⁺ = ABCD

属性集闭包例子

- R = (A, B, C, G, H, I) $F = \{A \to B; A \to C; CG \to H; CG \to I; B \to H\}$ $(AG)^{+} = ?$
- Answer: ABCGHI
- ▶ AG 是候选键吗?
- 这个问题包括两部分:
 - 1. AG 是一个超键吗?

$$-AG \rightarrow R? == Is (AG)^{+} \supseteq R$$

2. AG的子集是否是一个超键?

$$-A \rightarrow R? == Is (A)^+ \supseteq R$$

$$-G \rightarrow R? == Is (G)^+ \supseteq R$$

属性集闭包的作用

- 属性集闭包的作用:
 - 1. 检测超键:
 - 判断X是否是一个超键? 只需要计算 X+, 检查 X+ 是否包括*R的所有属性.*

2. 检测函数依赖

- 判断X → Y 是否成立 (或者说, 是否在F+中), 只需要 判断Y ⊆ X+.
- 因此, 我们计算X+, 然后检测这个属性集闭包是否包括 Y.
- 简单有用的方法
- 3. 计算F的函数依赖集闭包

计算 F+

F={ A → B, B → C}. 计算F+ (属性包括A, B, C).

Step 1: 构建二维表, 行和列列出所有可能的属性组合

Step 2: 计	算所有的原	禹性组合的原	島
性集闭包			

	A	В	С	AB	AC	BC	ABC
A							
В							
C							
AB							
AC							
BC							
ABC							

Step 3: 将结果填写到二维表中

Attribute closure
A+=?
B+=?
C+=?
AB+=?
AC+=?
BC+=?
ABC+=?

计算 F+

F={ A → B, B → C}. 计算F+ (属性包括A, B, C).

▶ 例如: A+.

Step 1: Result = A

Step 2: 考虑A \rightarrow B, Result = A \cup B = AB

考虑B \rightarrow C, Result = AB \cup C = ABC

Step 3: $A^+ = \{ABC\}$

Computing F⁺

F={ A → B, B → C}. 计算F+ (包括属性A, B, C).

Step 1: 构建一个空的二维表, 行和列列 出所有可能的属性组合

	A	В	С	AB	AC	BC	ABC
A		\checkmark	\checkmark			\checkmark	$\sqrt{}$
В							
С							
:							

Step 3:将结果填写到二维表中.

由于A+=ABC. 填写标的时候,考虑第一列, A是 A+的一部分吗? 是, 勾选. B是 A+的一部分吗? 是, 勾选...

Step 2: 计算所有的属性组合的属性集闭包

Attribute closure
$A^{+}=ABC$
B+=?
C+=?
AB+=?
AC+=?
BC+=?
ABC+=?

计算F+

F={ A → B, B → C}. Compute F+ (包括属性A, B, C).

	A	В	С	AB	AC	BC	ABC
A	$\sqrt{}$			$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
В		V	V			V	
C							
AB	V	V	V	V	V	V	V
AC	V			$\sqrt{}$	$\sqrt{}$	V	V
BC							
ABC	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$			V

Attribute closure
A+=ABC
B+=BC
C+=C
AB+=ABC
AC+=ABC
BC+=BC
ABC+=ABC

- •每一个√表示FD (行) → (列) 在 F+中.
- •每一个√(列)在(行)+中

计算F+

• F={ A → B, B → C}. Compute F+ (包括属性A, B, C).

	A	В	С	AB	AC	BC	ABC
A	$\sqrt{}$	$\sqrt{}$		V	V	V	V
В		$\sqrt{}$	$\sqrt{}$			$\sqrt{}$	
C							
AB	$\sqrt{}$			$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
AC	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
BC		$\sqrt{}$					
ABC	$\sqrt{}$						V

7 DC
Attribute closure
A+=ABC
B+=BC
C+=C
AB+=ABC
AC+=ABC
BC+=BC
ABC+=ABC

- •每一个√表示FD (行) → (列) 在 F+中.
- •每一个√(列)在(行)+中

例子

F={ A → BC, B → C }. 判断 C → AB 是否在 F+?

▶ Answer: 不在.

Reason 1) C+=C, 不包括 AB.

Reason 2) 反例,不存在 C → AB.

A	В	С
1	1	2
2	1	2

例子

- ▶ R(A, B, C, D, E),
- $F = \{A \rightarrow B, C \rightarrow D\}$
- 候选键?
- ACE.
- ▶ 怎么计算?
- Intuitively,
 - A is not determined by any other attributes (like E), and A has to be in a candidate key (because a candidate key has to determine all the attributes).
 - Now if A is in a candidate key, B cannot be in the same candidate key, since we can drop B from the candidate without losing the property of being a "key".
 - So B cannot be in a candidate key
 - Same reasoning apply to others attributes.