МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №5 по дисциплине «Качество и метрология программного обеспечения»

Тема: Оценка параметров надежности программ по временным моделям обнаружения ошибок

Студент гр. 8304	Кирьянов Д. И.
Преподаватель	Ефремов М. А.

Цель работы.

Выполнить исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелинского-Моранды, для различных законов распределения времен обнаружения отказов и различного числа используемых для анализа данных.

Задание.

- 1. Сгенерировать массивы данных $\{X_i\}$, где X_i случайное значение интервала между соседними (i-1) –ой и i –ой ошибками (i=[1,30]), в соответствии с:
 - а. Равномерным законом распределения в интервале [0,20]; при этом средний интервал между ошибками будет $m_{\rm paвh}=10$, СКО $s_{\rm paвh}=20/(2*sqrt(3))=5.8;$
 - b. Экспоненциальным законом распределения, W(y) = b * exp(-b * y), $y \ge 0$, с параметром b = 0.1 и соответственно $m_{\text{эксп}} = s_{\text{эксп}} = 1/b = 10$. Значения случайной величины Y с экспоненциальным законом распределения с параметром «b» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле: Y = -ln(t)/b;
 - с. Релеевским законом распределения $W(y) = (y/c^2) * exp(-y^2/(2*c^2)),$ y>=0, с параметром c=8.0 и соответственно $m_{\rm pen}=c*sqrt(\pi/2),$ $s_{\rm pen}=c*sqrt(2-\pi/2).$ Значения случайной величины Y с релеевским законом распределения с параметром «с» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле: Y=c*sqrt(-2*ln(t)).
- 2. Каждый из 3-х массивов $\{X_i\}$ интервалов времени между соседними ошибками упорядочить по возрастанию.
- 3. Для каждого из 3-х массивов $\{X_i\}$ оценить значение первоначального числа ошибок в программе В. При этом для каждого закона использовать 100%, 80% и 60% входных данных (то есть в массивах $\{X_i\}$ использовать n=30, 24 и 18 элементов).

Примечание: для каждого значения n следует генерировать и сортировать новые массивы.

- 4. Если B > n, оценить значения средних времен X_j , $j = n + 1, n + 2 \dots, n + k$ до обнаружения $k \le 5$ следующих ошибок и общее время на выполнение тестирования.
- 5. Результаты вычислений представить в виде двух таблиц, одна из которых содержит оценки первоначального числа ошибок, а другая оценки полных времен проведения тестирования для разных законов распределения времен между отказами и разного числа используемых данных.
- 6. Сравнить и объяснить результаты, полученные для различных законов распределения времени между соседними отказами и различного числа используемых для анализа данных.

Ход работы.

1. Равномерный закон распределения.

100% входных данных.

Был сгенерирован и отсортирован массив из 30-ти элементов, равномерно распределенных в интервале [0,20] (см. Таблица 1).

Таблица 1 — Равномерное распределение при n = 30

i	1	2	3	4	5	6	7	8	9	10
X_i	0.202	0.309	0.403	0.85	1.038	1.076	2.662	2.67	2.696	3.49
i	11	12	13	14	15	16	17	18	19	20
X_i	4.416	4.948	5.577	6.733	7.311	9.072	11.636	11.845	12.878	13.175
i	21	22	23	24	25	26	27	28	29	30
X_i	14.9	15.711	16.003	16.225	16.622	16.842	16.915	17.705	18.647	19.843

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 21.743 > 15.5$$
 условие сходимости выполнено.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$ и $g(m,A) = \frac{n}{m-A}$ (см. Таблица 2).

Таблица 2 - 3начения функций для равномерного распределения при n = 30.

m	31	32	33
f	3.995	3.027	2.559
g	3.241	2.925	2.665
f-g	0.754	0.102	0.106

Минимум разности достигается при m=32. Первоначальное количество ошибок B=m-1=31. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.010738$.

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)}, \text{ где } j = n+1, n+2\dots, n+k. \text{ Результат представлен в таблице 3}.$

Таблица 3 — Время обнаружения следующих ошибок для равномерного распределения при n=30.

j	31
X_j	93.13

Было рассчитано время до завершения тестирования $t_k = 93.13$ дней.

Было рассчитано общее время тестирования $t_{\text{общ}} = 365.53$ дней.

80% входных данных.

Был сгенерирован и отсортирован массив из 24-ти элементов, равномерно распределенных в интервале [0,20](см Таблица 4).

4 5 7 6 8 i 2.93 5.734 6.732 7.6 7.68 7.863 8.09 8.361 X_i i 9 10 11 12 13 14 15 16 9.55 9.723 10.108 10.208 11.654 14.263 14.72 14.821 X_i 17 19 18 20 21 22 23 24 15.674 16.078 16.145 16.985 17.407 17.784 17.92 17.977 X_i

Таблица 4 – Равномерное распределение, n = 24.

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 15.044 > 12.5$$
 – условие сходимости выполнено.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$ (см. Таблица 5)

Таблица 5 – Расчёт значений функций для равномерного распределения n=24.

m	25	26	27	28	29	30	31	32	33	34
f	3.776	2.816	2.354	2.058	1.844	1.678	1.545	1.434	1.341	1.26
g	2.41	2.19	2.007	1.852	1.72	1.605	1.504	1.415	1.337	1.266
/f-g/	1.366	0.626	0.347	0.206	0.124	0.073	0.041	0.019	0.004	0.006

Минимум разности достигается при m=33. Первоначальное количество ошибок B=m-1=32. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.00467$.

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)}, \ \text{где} \ j = n+1, n+2 \dots, n+k. \ \text{Результат представлен в таблице 6}.$

Таблица 6 — Расчет времени обнаружения следующих ошибок для равномерного распределения при n=24.

j	25	26	27	28	29	30	31	32
X_j	26.747	30.568	35.663	42.795	53.494	71.326	106.989	213.977

Было рассчитано время до завершения тестирования $t_k=581.056$ дней. Было рассчитано общее время тестирования $t_{\rm общ}=867.567$ дней.

60% входных данных.

Был сгенерирован и отсортирован массив из 18-ти элементов, равномерно распределенных в интервале [0,20](см Таблица 7).

Таблица 7 — Равномерное распределение при n = 18.

i	1	2	3	4	5	6	7	8	9
X_i	0.349	0.534	6.923	8.049	8.446	10.477	12.249	12.692	14.546
i	10	11	12	13	14	15	16	17	18
X_i	14.773	15.742	17.004	17.445	17.628	17.99	18.195	18.263	18.919

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 11.676 > 9.5$$
 условие сходимости выполнено

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$ (см. Таблица 8)

Таблица 8 – Значения функций для равномерного распределения при n=18.

m	19	20	21	22	23	24	25
f	3.495	2.548	2.098	1.812	1.607	1.451	1.326
g	2.458	2.163	1.93	1.744	1.59	1.461	1.351
f-g	1.037	0.385	0.166	0.068	0.018	0.01	0.025

Минимум разности достигается при m=24. Первоначальное количество ошибок B=m-1=23. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.00634$.

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)}, \text{ где } j = n+1, n+2 \dots, n+k. \text{ Результат представлен в таблице 9}.$

Таблица 9 — Время обнаружения следующих ошибок для равномерного распределения при n=18.

j	19	20	21	22	23
X_j	31.525	39.406	52.541	78.812	157.623

Было рассчитано время до завершения тестирования $t_k=359.906$ дней. Было рассчитано общее время тестирования $t_{\rm общ}=590.13$ дней.

2. Экспоненциальный закон распределения.

100% входных данных.

Был сгенерирован и отсортирован массив из 30-ти элементов, распределенных по экспоненциальному закону с параметром b=0.1. Значения случайной величины Y с экспоненциальным законом распределения с параметром «b» были получены по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле: $Y = -\ln(t)/b$ (см Таблица 10).

Таблица 10 – Экспоненциальное распределение при n = 30

i	1	2	3	4	5	6	7	8	9	10
X_i	0.219	0.334	0.426	0.673	0.708	0.888	1.553	1.691	1.808	1.908
i	11	12	13	14	15	16	17	18	19	20
X_i	2.106	3.571	3.941	4.433	4.959	6.3	9.054	11.074	12.47	14.06
i	21	22	23	24	25	26	27	28	29	30
X_i	16.738	18.037	18.144	18.228	19.675	20.709	26.503	28.776	31.032	38.706

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 23.579 > 15.5$$
 – условие сходимости выполнено

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$ (см Таблица 11).

Таблица 11 — Значения функций для экспоненциального распределения при $\mathbf{n}=30.$

m	31	32
f	3.995	3.027
g	4.043	3.563
f-g	0.048	0.536

Минимум разности достигается при m=31. Первоначальное количество ошибок B=m-1=30. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.01268$.

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)}, \, \text{где} \,\, j = n+1, n+2 \dots, n+k.$

Условие B > n не выполняется.

Было рассчитано общее время тестирования $t_{\text{общ}} = 318.721$ дней.

80% входных данных.

Был сгенерирован и отсортирован массив из 24-ти элементов, распределенных по экспоненциальному закону с параметром b=0.1 (см Таблица 12).

i	1	2	3	4	5	6	7	8
X_i	0.268	0.347	0.465	0.59	0.666	1.752	2.668	2.903
i	9	10	11	12	13	14	15	16
X_i	3.091	3.197	3.425	3.539	3.915	4.117	4.304	6.115
i	17	18	19	20	21	22	23	24
X_i	7.273	7.336	8.834	16.286	17.507	30.148	42.508	43.36

Таблица 12 – Экспоненциальное распределение, n = 24.

$$A = \frac{\sum_{i=1}^{n} i X_i}{\sum_{i=1}^{n} X_i} = 19.895 > 12.5$$
 – условие сходимости выполнено

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$ (см. Таблица 13).

Таблица 13 – Значения функций для экспоненциального распределения при n = 24.

m	25	26
f	3.776	2.816
g	4.702	3.931
f-g	0.926	1.115

Минимум разности достигается при m=25. Первоначальное количество ошибок B=m-1=24. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.02191$.

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)}, \ \text{где} \ j = n+1, n+2 \dots, n+k.$

Условие B > n не выполняется.

Было рассчитано общее время тестирования $t_{
m oбщ} = 214.611$ дней.

60% входных данных.

Был сгенерирован и отсортирован массив из 18-ти элементов, распределенных по экспоненциальному закону с параметром b=0.1 (см Таблица 14).

Таблица 14 - Экспоненциальное распределение при <math>n = 18.

i	1	2	3	4	5	6	7	8	9
X_i	0.517	0.6	0.651	0.712	1.55	1.944	2.096	2.25	2.299
i	10	11	12	13	14	15	16	17	18
X_i	2.493	3.194	4.125	5.334	7.6	9.323	9.671	18.46	40.611

$$A = \frac{\sum_{i=1}^{n} i X_i}{\sum_{i=1}^{n} X_i} = 15.023 > 9.5$$
 – условие сходимости выполнено

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$ (см Таблица 15).

Таблица 15 — Значения функций для экспоненциального распределения при ${\bf n}=18$

m	19	20
f	3.495	2.548
g	4.526	3.616
/f-g/	1.031	1.068

Минимум разности достигается при m=19. Первоначальное количество ошибок B=m-1=18. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.0399$.

Условие B > n не выполняется.

Было рассчитано общее время тестирования $t_{\text{общ}} = 113.43$ дней.

3. Релеевский закон распределения.

100% входных данных.

Был сгенерирован и отсортирован массив из 30-ти элементов, распределенных по релеевскому закону с параметром c = 8.0. Значения случайной величины Y с релеевским законом распределения с параметром «с» были получены по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле: Y = c * sqrt(-2 * ln(t)) (см Таблица 16).

i	1	2	3	4	5	6	7	8	9	10
X_i	1.383	1.396	2.587	3.073	5.776	5.932	6.543	6.806	6.998	7.222
i	11	12	13	14	15	16	17	18	19	20
X_i	7.655	9.076	9.735	10.538	10.908	11.97	12.278	12.552	12.754	12.785
i	21	22	23	24	25	26	27	28	29	30
X_i	12.811	13.52	14.309	14.91	16.112	16.822	16.842	17.323	17.747	18.86

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 19.523 > 15.5$$
 – условие сходимости выполнено

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$ (см Таблица 17).

Таблица 17 - 3начения функций для релеевского распределения при n = 30.

m	31	32	33	34	35	36	37	38
f	3.995	3.027	2.559	2.255	2.035	1.863	1.725	1.609
g	2.614	2.404	2.226	2.072	1.938	1.821	1.717	1.624
/f-g/	1.381	0.623	0.333	0.183	0.097	0.042	0.008	0.015

Минимум разности достигается при m=37. Первоначальное количество ошибок B=m-1=36. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.00541$.

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)}, \text{ где } j = n+1, n+2 \dots, n+k. \text{ Результат представлен в таблице } 18.$

Таблица 18 — Время обнаружения следующих ошибок для релеевского распределения при n=30.

j	31	32	33	34	35	36
X_j	30.801	36.962	46.202	61.603	92.404	184.808

Было рассчитано время до завершения тестирования $t_k = 452.779$ дней.

Было рассчитано общее время тестирования $t_{\text{общ}} = 770.002$ дней.

80% входных данных.

Был сгенерирован и отсортирован массив из 24-ти элементов, распределенных по релеевскому закону с параметром c = 8.0 (см Таблица 19).

Таблица 19 — Релеевское распределение при n=24

i	1	2	3	4	5	6	7	8
X_i	2.044	2.685	2.829	3.944	3.962	5.802	6.444	7.103
i	9	10	11	12	13	14	15	16
X_i	7.8	9.213	9.269	10.065	10.598	10.703	10.924	12.441
i	17	18	19	20	21	22	23	24
X_i	13.678	14.198	14.586	16.291	18.122	18.632	18.861	21.242

$$A = \frac{\sum_{i=1}^{n} i X_i}{\sum_{i=1}^{n} X_i} = 16.103 > 12.5$$
 – условие сходимости выполнено

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$ (см Таблица 20).

Таблица 20 – Расчёт значений функций для релеевского распределения (80%).

m	25	26	27	28	29	30
f	3.776	2.816	2.354	2.058	1.844	1.678
g	2.698	2.425	2.202	2.017	1.861	1.727
f-g	1.078	0.391	0.152	0.041	0.017	0.049

Минимум разности достигается при m=29. Первоначальное количество ошибок B=m-1=28. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.0074$.

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)}$, где $j=n+1,n+2\dots,n+k$. Результат представлен в таблице 21.

Таблица 21 — Время обнаружения следующих ошибок для релеевского распределения при ${\rm n}=24$

j	25	26	27	28
X_j	33.778	45.038	67.557	135.114

Было рассчитано время до завершения тестирования $t_k = 281.487$ дней.

Было рассчитано общее время тестирования $t_{\text{общ}} = 532.925$ дней.

60% входных данных.

Был сгенерирован и отсортирован массив из 18-ти элементов, распределенных по релеевскому закону с параметром с = 8.0 (см Таблица 22).

Таблица 22 – Релеевское распределение при n = 18

i	1	2	3	4	5	6	7	8	9
X_i	2.216	3.514	3.531	3.715	3.805	5.302	5.513	7.456	7.539
i	10	11	12	13	14	15	16	17	18
X_i	8.112	8.831	9.504	10.555	11.339	11.345	12.914	15.794	31.758

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 12.639 > 9.5$$
 – условие сходимости выполнено.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$ (см Таблица 23).

Таблица 23 – Значения функций для релеевского распределения при n = 18.

m	19	20	21	22
f	3.495	2.548	2.098	1.812
g	2.83	2.445	2.153	1.923
f-g	0.665	0.103	0.055	0.111

Минимум разности достигается при m=21. Первоначальное количество ошибок B=m-1=20. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.01323$.

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)}, \text{ где } j = n+1, n+2 \dots, n+k. \text{ Результат представлен в таблице 24}.$

Таблица 24 — Время обнаружения следующих ошибок для релеевского распределения при n=18

m	19	20
X_j	37.799	75.597

Было рассчитано время до завершения тестирования $t_k=113.396$ дней. Было рассчитано общее время тестирования $t_{
m oбщ}=276.136$ дней.

4. Результаты расчетов.

В таблицах 25 и 26 представлены сводные результаты оценки первоначального числа ошибок и полного времени проведения тестирования соответственно.

Таблица 25 – Оценка первоначального числа ошибок.

n	Входные	Распределение		
	данные, %	Равномерное	Экспоненциальное	Релеевское
30	100	31	30	36
24	80	32	24	28
18	60	23	18	20

Таблица 26 – Оценка полного времени проведения тестирования.

n	Входные	Распределение		
	данные, %	Равномерное	Экспоненциальное	Релеевское
30	100	365.53	318.721	770.002
24	80	867.567	214.611	532.925
18	60	590.13	113.43	276.136

Результаты при экспоненциальном распределении ниже, чем при равномерном или релеевском. Релеевское и равномерное распределения показывают примерно одинаковые результаты.

Выводы.

В ходе выполнения работы было выполнено исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелинского-Моранды, для различных законов распределения времен обнаружения отказов и различного числа используемых для анализа данных.