Отчет

По хакатону «Kryptonite ML Challenge»

Работу выполнила: Команда ММG, Студенты Финансового университета

Поиск модели

Первым что мы сделали это отсмотрели большое количество SOTA-моделей распознавания лиц. Среди них:

- FaceNet (2015)
- ArcFace (2019)
- MagFace (2021)
- <u>AdaFace</u> (2022)
- GhostFace (2023)

Сравнивали модели по популярным бенчмаркам и скорости работы. Среди бенчмарков были:

- LFW
- CPFLW
- CFPFP
- CALFW
- AGEDB
- IJBB
- IJBC
- TinyFace

Среди множества протестированных вариантов лучшими результатами по совокупности критериев (EER, скорость, устойчивость к «грязным» данным) выделилась модель AdaFace на базе ResNet101. Она динамически адаптирует маржинальную функцию, что особенно важно для «сложных» изображений.

Архитектура

Архитектура AdaFace

^{*}частично запускали сами, опирались на документации и статьи для сверки результатов и оценки решений.

AdaFace Loss

LFW	CPFL W	CFPF P	CALF W	AGED B			TinyF ace R1	•
99.82	95.65	99.30	95.93	98.10	96.55	97.82	76.10	78.92

Результаты работы AdaFace на популярных бенчмарках

Alignment

При работе с лицами важна правильная детекция лица и выравнивание (alignment). Даже самая точная модель может терять качество, если лицо «съехало» или неверно выделено. Поэтому мы перепробовали множество инструментов выравнивания.

Наиболее перспективными и запоминающимися были:

- MTCNN быстрый, но плохая точность, много ошибок обнаружения лица.
- **RetinaFace** отличное качество, но довольно медленный.
- <u>DFA</u> Differentiable Face Aligner на базе ResNet50, по совокупным показателям (точность, скорость, удобство интеграции) оказался лучшим решением в нашем случае.

Работа с датасетами

Чтобы расширить датасет, взяли 10 000 персон, 200 000 фото из датасета <u>CelebA</u> и дополнительно сгенерировали дипфейки (по 4 на каждую персону) с помощью <u>Roop</u>, <u>Ghost</u>, <u>Arc2Face</u>, <u>InstantID</u>. Таким образом мы получили

максимально «разноплановый» набор для обучения и тестирования с разными архитектурами (диффузии, GAN, автоэнкодеры).

На каждого человека мы генерировали по 4 дипфейка, чтобы получить широкий спектр фальшивых изображений.

Формирование пар для обучения:

- Реальное лицо + то же лицо метка 1 (50%)
- Реальное лицо + другое лицо метка 0 (25%)
- Реальное лицо + его дипфейк метка 0 (25%)

Такая пропорция помогла модели учиться различать разные лица, также как и выявлять синтетические подделки.

Алгоритм формирования пар

Мы берём комбинации реальных фото одного человека:

$$k = C_n^2$$

где n – количество реальных фото в папке.

Затем мы $^k/_2$ раз брали случайное фото из и этих n и случайное фото другого случайного человека — пары «реальное лицо + другое лицо».

После этого k/2 раз брали случайное лицо из тех же n и брали случайный дипфейк этого человека — пары «реальное лицо + его дипфейк».

Используя этот подход, мы обучили «претрейн» модель.

Ошибки в разметке

На выданном датасете же мы столкнулись с ошибочной разметкой в $\sim 10\%$ реальных фото. Проанализировав датасет, мы приняли решение провести его очистку.

Алгоритм следующий:

1. Используя исходную модель распознавания лиц AdaFace, для каждого набора реальных лиц в папке были построены матрицы сходства.

	0.jpg	1.jpg	2.jpg	3.jpg	4.jpg	5.jpg	6.jpg	7.jpg	8.jpg	9.jpg
0.jpg	1.000000	0.582046	-0.010843	-0.021038	-0.036042	-0.002022	0.027492	0.556213	-0.024669	-0.015600
1.jpg	0.582046	1.000000	-0.027603	-0.063650	-0.074505	-0.055325	-0.062826	0.916379	-0.077478	-0.078581
2.jpg	-0.010843	-0.027603	1.000000	0.770619	0.785005	0.579468	0.763535	-0.003984	0.772643	0.806771
3.jpg	-0.021038	-0.063650	0.770619	1.000000	0.852647	0.390069	0.793730	-0.070258	0.868653	0.855417
4.jpg	-0.036042	-0.074505	0.785005	0.852647	1.000000	0.414058	0.796396	-0.075372	0.851448	0.840460
5.jpg	-0.002022	-0.055325	0.579468	0.390069	0.414058	1.000000	0.457065	-0.013430	0.383513	0.395740
6.jpg	0.027492	-0.062826	0.763535	0.793730	0.796396	0.457065	1.000000	-0.048010	0.801057	0.799239
7.jpg	0.556213	0.916379	-0.003984	-0.070258	-0.075372	-0.013430	-0.048010	1.000000	-0.077718	-0.073854
8.jpg	-0.024669	-0.077478	0.772643	0.868653	0.851448	0.383513	0.801057	-0.077718	1.000000	0.859778
9.jpg	-0.015600	-0.078581	0.806771	0.855417	0.840460	0.395740	0.799239	-0.073854	0.859778	1.000000

2. На основе этих матриц формировался граф, в котором ребро между двумя лицами создавалось при высоком значении сходства и отсутствовало при низком. Порог специально брали больше, чем требовалось для того, чтобы не пропустить ошибки в разметке.

Графовая кластеризация

- 3. Далее была выполнена кластеризация графа из него удалялись изолированные вершины, после чего он был разделён на отдельные компоненты связности.
- 4. После этого мы отсматривали глазами сложные и ошибочные случаи, которые выявила модель и корректировали их.

В данном случае всё верно, модель разделила двух разных людей в два кластера.

Таким образом, у нас получилось быстро и эффективно очистить датасет, отбросив очевидно верные случаи, что составляли большую часть датасета, около $\sim 20\%$.

Обучение модели

В качестве loss для обучения мы пробовали множество различных вариантов. По кажому из использованных мы составили краткий список плюсов и минусов. Исходя из наших исследований, мы выяснили, что:

1) Adaptive Margin Loss:

- + адаптирует отступ (margin) динамически в зависимости от сходства между примерами, улучшая точность различения сложных случаев
- + увеличивает margin при низком сходстве (cos_sim), что позволяет модели эффективнее отталкивать негативные примеры и снижает влияние выбросов
- + уменьшает чувствительность к ошибочным меткам и аномальным примерам, обеспечивая стабильность и устойчивость обучения
- сложность подбора оптимальных параметров адаптации margin может привести к нестабильности обучения
- требует дополнительного вычислительного ресурса на расчет адаптивного отступа по сравнению с фиксированными margin

2) Contrastive Loss:

- + хорошо разделяет эмбеддинги настоящих и поддельных лиц
- + эффективно отталкивает дипфейки от оригиналов

 снижает компактность кластеров эмбеддингов одного и того же лица, что ухудшает качество распознавания

3) Circle Loss:

- + позволяет тонко контролировать сходство и различие между эмбеддингами
- + улучшает разделение дипфейков и оригиналов за счёт адаптивных границ принятия решений
- приводит к чрезмерному разнесению эмбеддингов, что негативно влияет на точность распознавания лиц

4) Center Loss:

- эмбеддингов одного класса вокруг общего центра, тем самым улучшая качество распознавание лиц
- + является менее эффективным в задаче отделения дипфейков, так как не создаёт чёткой границы между поддельными и оригинальными изображениями

5) Triplet Loss:

- + явно формулирует разницу расстояний между положительными и отрицательными примерами, помогая отделить дипфейки от реальных изображений
- генерация подходящих троек изображений является сложной задачей
- методика отрицательно влияет на стабильность и скорость сходимости обучения

6) Hard Negative Mining:

- + позволяет фокусироваться на сложных негативных примерах, усиливая различия между дипфейками и оригиналами в эмбеддинговом пространстве
- использование большого количества «жёстких» негативных примеров приводит к тому, что модель переобучается на отделении дипфейков, одновременно теряет обобщающую способность при распознавании лиц

7) Knowledge Distillation:

- + переносит знания распознавания лиц из предобученной модели-учителя приближает эмбеддинги реальных лиц к эмбеддингам модели до обучения на дипфейках
- сильно ухудшает обучение детекции дипфейков

Резюмируя, многие loss-функции хорошо отталкивали дипфейки в другую часть эмбеддингового пространства, но при этом ухудшали качество распознавания лиц. Требовалось подобрать loss, который бы сохранял баланс между всеми факторами. В итоге мы остановились на адаптивном маржине (Adaptive margin).

На чистых данных — нашей валидационной выборке такой подход показал наилучшую сходимость. Буквально за 100 шагов с батчем 32 он уже достигал неплохих результатов, а через несколько сотен уже показывал стабильность на дипфейках. Мы приняли решение ориентироваться именно на него, ведь публичный лидерборд не отражал качество модели ввиду большого процента ошибочной разметки.

Тупиковые решения

В нашем исследовании мы старались пробовать, как и популярные, так и нестандартные подходы улучшения качества.

Предоставляем часть из них:

- 1) Аугументации, не меняющие признаки лица: световые, шум, повороты не дали ощутимого прироста по сравнению с базовым решением.
- 2) Автолейблинг публичного датасета не дал прироста, вероятно из-за ощутимого количества ошибок в автоматической разметке.
- 3) Заморозка слоёв всё кроме последних слоёв. Модель недостаточно эффективно адаптировалась к новым признакам дипфейков.
- 4) Добавляли в модель ветку с механизмом внимания (attention) скорее всего, механизм внимания не давал преимуществ из-за избыточной сложности архитектуры.
- 5) Различные гиперпараметры, оптимизаторы, планировщики.
- 6) Обучение модель без претрейна на нашем датасете, только на выданном модель плохо сходилась из-за ошибок в разметке.

Методика обучения

Мы обучали модель на нашем датасете, а после обученный претрейн использовали для подстройки под датасет хакатона.

В ходе обучения обнаружилось, что изображения недиффузионных моделей генерации дипфейков распознаются гораздо хуже, чем изображения диффузионных.

Качество распознавания дипфейков на InstanID и Arc2Face очень быстро достигало 99%+ точности, в то время как другие модели сходились гораздо медленнее.

Вероятно, это потому, что у диффузионных моделей очень узнаваемые паттерны из-за специфики итеративной генерации.

Лучшие гиперпараметры

 $\cos \theta$ — косинусное сходство

y ∈ {0, 1} — метка

s — масштабный коэффициент

m_b — базовый margin

lpha — кф. динамического масштабирования

1. Динамический margin:

$$m_d = m_b + \alpha \cdot (1 - \cos \theta)$$

2. Определение логита:

$$\text{logit} = s \cdot \Big(\cos \theta - m_d \cdot y \Big) = s \cdot \Big(\cos \theta - \big(m_b + \alpha \cdot (1 - \cos \theta) \big) y \Big)$$

3. Функция потерь Adaptive Margin Loss:

$$\mathcal{L} = -\Big[y \cdot \log \big(\sigma(\text{logit})\big) + (1-y) \cdot \log \Big(1 - \sigma(\text{logit})\Big)\Big]$$

- Batch size: 32

– Learning rate: 5e-6

– Validation interval: 100

- Base margin: 0.35

- Dynamic scale: 0.1

- Weight decay: 1e-2 - 1e-4

Оптимизатор AdamW:

- Learning Rate: 5e-6

– Weight decay: 1e-2

Scheduler ReduceLROnPlateau:

- Mode: min

- Factor: 0.5

– Patience: 10

- Threshold: 1e-4

Validation accuracy threshold: 0.2

Графики обучения

error_real_another_real

Инференс

Процесс инференса был существенно ускорен благодаря оптимизации нескольких ключевых этапов обработки данных и расчетов. Мы применили параллельную загрузку и предварительную обработку изображений, что позволило снизить время простоя при чтении данных.

Для ускорения вычислений модель была переведена в формат ONNX, что обеспечило значительное повышение скорости работы за счёт эффективной реализации и оптимизации вычислений на GPU.

Дополнительно была реализована быстрая и точная процедура выравнивания лиц (alignment) с использованием модели DFA, работающей на GPU. Это позволило снизить задержки, связанные с препроцессингом и избежать узких мест при обработке большого количества данных.

Итоговый расчёт косинусного сходства эмбеддингов и сохранение результатов в CSV-файл также были оптимизированы. В итоге производительность решения существенно возросла, позволяя обрабатывать большие объёмы изображений за короткое время без потери точности и стабильности работы модели.

Результаты

Предложенное нами решение, основанное на модели AdaFace с архитектурой ResNet101 и адаптивной функцией потерь Adaptive Margin Loss, показало выдающиеся результаты на задаче распознавания и верификации лиц, в том числе и в условиях наличия дипфейков.

Проведённые эксперименты по оптимизации датасета, включая его очистку и расширение за счёт дополнительных реальных лиц, позволили значительно повысить стабильность и обобщающую способность модели. В частности, очистка ошибочной разметки позволила улучшить общие результаты.

Использование подхода с адаптивным margin обеспечило оптимальный баланс между способностью модели различать сложные реальные случаи и эффективно выявлять дипфейки. Этот подход показал наилучшую сходимость и стабильность на валидационной выборке, достигая высоких показателей за минимальное количество эпох.

Реализованные нами оптимизации препроцессинга и инференса позволили достичь скорости обработки изображений, подходящей для практического применения в реальных задачах.

Таким образом, модель AdaFace, дополненная эффективными подходами выравнивания и обработки данных, продемонстрировала высокую точность, устойчивость к сложным данным и эффективность на реальных и синтетических изображениях, подтверждая её перспективность для решения задач распознавания лиц и обнаружения дипфейков.