

Deep Learning Framework for Characterizing Tau-PET Heterogeneity in Alzheimer's Disease: A Self-supervised Approach

L SAT TIN L L D' D' L

Theyaneshwaran Jayaprakash¹, Connor Lee Cornelison¹, Plamena P. Powla², Lu Zhang³, Carolyn Fredericks⁴, Andrew Saykins², Selena Wang²

¹Indiana University Bloomington, ²Indiana University School of Medicine, ³Indiana University Indianapolis, ⁴Yale School of Medicine

Background

- Extracellular amyloid plaques and intraneuronal neurofibrillary tangles are defining features of Alzheimer disease (AD).
- AD patients exhibit spatially heterogeneous tau-PET composition across brain.
- This cross-sectional study uses self-supervised deep learning to identify tau-PET subtypes and characterize their functional connectivity and clinical profiles

Methods

- ADNI-3 cohort (n=318, ages 55-89): CN, EMCI, LMCI, SMC, AD subjects.
- Tau-PET imaging across 68 cortical regions (Desikan-Killiany atlas).
- Resting-state fMRI for functional connectivity analysis
 - **Stage I Subtype Discovery** Self-supervised deep learning identifies tau subtypes from PET data using Gaussian mixture clustering.

Stage II Subtype Validation - Multidimensional validation across clinical, cognitive, anatomical, and functional connectivity domains.

Results

Self-Supervised Framework – Subtype Discovery

Three Optimal Subtypes

Robust Model Selection & Validation

- 68 cortical regions → 10D latent space for optimal clustering.
- k=3 identified as optimal through multi-criteria evaluation (AIC, BIC, loss, stability) | AMI=0.96 \pm 0.09
- Superior stability: 36% lower validation loss variance vs. k=2, k≥4 showed clear overfitting

Subtype Distribution

S1: 67% (n=213), S2: 13% (n=40), S3: 20% (n=65)

Color: Cohen's d, Warm = 1st higher, Cool = 2nd higher Significant Pairwise Comparisons ($p_{FDR} < 0.05$) across 68 Regions

S1 vs S2 (48 regions): Large effects (d = 0.907)

S1 vs S3 (51 regions): Large effects (d = 0.745)

S2 vs S3 (4 regions): Small effects (d = 0.472)

Functional Connectivity Alterations

Bayesian Connectivity Model Performance

- Optimal latent dimensionality: k=5 S1 (r=0.84), S2 (r=0.76), S3 (r=0.77)

Three Distinct Network Signatures

- S1: Consistent Somatomotor-Ventral Attention connectivity
- S2: Insula-mediated cross-network connectivity (Default Mode + Limbic + Visual)
- S3: Default Mode-Ventral Attention coupling + preserved Somatomotor networks

Overall Disease Severity

Proportional Tau Distribution Analysis

Three Distinct Spatial Signatures

- S1: Visual-sensorimotor-entorhinal pattern (Contradicts classical Braak staging)
- S2: Widespread neocortical + default mode network
- S3: Posterior cortical as S2 subtype + selective limbic-cingulate

Metacognitive Dysfunction Profiles

Functional Insight Gap
Partner ECog - Patient ECog Scores

Three Distinct Awareness Patterns

- S1: Elevated concern about functional decline
- S2: Anosognosia-like reduced self-awareness
- S3: Highest variability

Conclusion

This study leveraged tau-PET data to uncover spatial heterogeneity in AD. Multimodal analyses revealed anatomical, cognitive, and functional connectivity differences between subtypes, underscoring the potential of deep learning to elucidate AD pathology.

Acknowledgment

This work was supported by the William H. Gates Sr. Fellowship from the Alzheimer's Disease Data Initiative and National Institutes of Health, P30AG072976.