Basic Concept of Statistics

Paolo Girardi and Livio Finos

8/10/2020

Contents

Basic use of R	2
Working-space and helps	2
Basic operation	2
Vectors and Matrix	
Type of ojects in R	5
Import a dataset	
Reproducible Statistical Analysis with R-Markdown	7
Why use R-Markdown	7
Create a R-markdown file	7
Create an Rmd report	
Compareing the markup to the output	
What the software is doing	
Changing the output format	
Formatting the output	
Markdown basics	10
Including Plots	11
Data visualization and base statistics with R	11
The normal distribution	11
To build a function in R	13
Basic statistics function with R	13

Ph.D. Course in Neuroscience - Academic Year 2020-2021

Basic Concept of Statistics

Lesson 1 - Optional and preliminary course on use of R

Basic use of R.

Working-space and helps

R is an integrated software environment for data manipulation, computation and graphic representation. To start a session, it is necessary to perform a double mouse click on the icon of R or (RStudio). This will open the command window e the command prompt will be proposed:

The entities that R creates during a work session are called objects. These latter can be numbers, strings, vectors, matrices, functions, or more general structures. Such items are saved by name and stored in a dedicated area called workspace. At any time, it is possible check the objects available in the workspace using the command ls()

```
ls()
## character(0)
# empty workspace
I can remove an objects with the command rm()
rm(thing)
## Warning in rm(thing): oggetto "thing" non trovato
# attention... no thing in the working space
The working space can be saved and restored with the commands save.image() and load()
save.image("my_working_space.Rdata")
load("my working space.Rdata")
Files can be loaded and saved in a specific working directory in a local folder. We can use the functions
setwd() and getwd() to set or to retrieve the folder location.
setwd("/Users/Paolo/Dropbox/Dottorato_Neurosciences/2020_2021")
getwd()
## [1] "/Users/Paolo/Dropbox/Dottorato_neurosciences/2020_2021"
For any request of help about R functions, a series of help function can be used
help(setwd)
?setwd
# and if I don't remember the function name help.search() or apropos()
apropos("setw")
## [1] "setwd"
```

Basic operation

R can be employed as a simple scientific calculator

```
1+1
## [1] 2
```

```
3/2
## [1] 1.5
1>2
## [1] FALSE
using a several local functions. Each function can be applied by means of round brackets with an argument
inside
#squared root
sqrt(2)
## [1] 1.414214
#log - natural basis
log(10)
## [1] 2.302585
#exponential
exp(4)
## [1] 54.59815
#sin function
sin(pi)
## [1] 1.224647e-16
# the result is 0... pi is the greek pi constant
рi
## [1] 3.141593
#I can combine more functions
log(sqrt(2))*exp(4)
## [1] 18.92228
I can assign to an object values or results of operations as follows
x<-1
Х
## [1] 1
y<-3/2
У
## [1] 1.5
z<-1>2
## [1] FALSE
Vectors and Matrix
To create a vector, a basic function is c()
x < -c(1,2,3,9,12)
```

[1] 1 2 3 9 12

```
or a sequence can be created in these two ways
x1<-1:20
x1
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
x2 < -seq(from=1, to=20, by=1)
x2
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# the result is the same
Other useful functions are
#replicate
x < -rep(2,5)
## [1] 2 2 2 2 2
#multiplicate for scalar *
x<-1:5
x<-x*3
# x has been overwritten... pay attention!
## [1] 3 6 9 12 15
# other functions
sum(x)
## [1] 45
prod(x)
## [1] 29160
min(x)
## [1] 3
max(x)
## [1] 15
length(x)
## [1] 5
A matrix can be define with command matrix()
mat<-matrix(data=1:9,nrow=3,ncol=3)</pre>
{\tt mat}
##
        [,1] [,2] [,3]
## [1,]
           1
## [2,]
           2
                 5
                      8
## [3,]
           3
                 6
                      9
# by default elements are placed by col
and square brackets are used to select elements in a vector or matrix (or even a vector) as follows
# in a vector
x[3]
```

```
## [1] 9
x[1:2]
## [1] 3 6
# in a matrix
mat[1,2]
## [1] 4
mat[1:2,3]
## [1] 7 8
# creating subselection
x[-1] #dropping the first element
## [1] 6 9 12 15
mat[-1,] #for the first row
        [,1] [,2] [,3]
## [1,]
           2
                5
## [2,]
           3
                6
```

Type of ojects in R

In R we can define many type of data. R can automatically define an object on the basis of the object characteristics.

A numeric vector

```
x<-1:3
is(x)
## [1] "integer"
                                "double"
                                                         "numeric"
## [4] "vector"
                                "data.frameRowLabels"
is.numeric(x)
## [1] TRUE
A matrix
mat<-matrix(data=1:9,nrow=3,ncol=3)</pre>
is(mat)
## [1] "matrix"
                     "array"
                                  "structure" "vector"
A char vector (a vector of letters or even not numbers)
label<-c("white", "red", "black")</pre>
is(label)
## [1] "character"
                                "vector"
                                                         "data.frameRowLabels"
## [4] "SuperClassMethod"
I can combine numbers and characters in a list
list<-list(x,label)</pre>
list
## [[1]]
## [1] 1 2 3
## [[2]]
```

```
## [1] "white" "red" "black"
list[[1]] # first element of a list with double square brackets
## [1] 1 2 3
and rename each single element
names(list)<-c("numbers","colours")</pre>
```

We can combine number and characters in a data frame, that is the default object when I manage different type of variables (numeric, factor, char, boolean).

```
data<-data.frame(numbers=x,colours=label)
data # the result is a typical dataset format
## numbers colours
## 1    1    white
## 2    2    red
## 3    3    black</pre>
```

Import a dataset

R permits to import data in several formats and from other statistical softwares (STATA, SPSS, SAS, EXCEL, etc..). When R import a file it creates a *data.frame* object. For each format there are specific functions. We are going to explore the most used functions.

However, a beginner user can follow a guided importation process from $File > Import\ Dataset >$ and then to select the importing format.

A classical format for dataset is the text (extension csv, txt, dat).

Text can be imported in R with the function read.csv() or read.table().

This dataset called "test" collected the results on proficieny test (SAT and ACT score) in a sample of 150 respondents. Subject are by row, while characteristics by column. In Excel we have this output:

	В	C	D	E	F	G	Н		J
₩ ,	Age 🔻	BMI ▼	Gender ▼	Education =	ACT ▼	SATV =	SATQ =	Stress	Social
1	19	24,3	2	3	24	500	500	2	
2	23	24,6	2	3	35	600	500	1	6
3	20	28,1	2	3	21	480	470	6	2
4	27	24,5	1	4	26	550	520	1	
5	33	24,1	1	2	31	600	550	5	2
6	26	23,1	1	5	28	640	640	6	
7	30	23,2	2	5	36	610	500	5	
8	19	21,9	1	3	22	520	560	4	2
9	23	27,3	2	4	22	400	600	4	6
10	40	24,1	2	5	35	730	800	4	
11	23	26	1	3	32	760	710	1	2
12	34	25	2	4	29	710	600	2	
13	32	23,8	1	4	21	600	600	6	9
14	41	25,4	2	4	35	780	725	1	1
15	20	28	2	3	27	640	630	5	4
16	24	22,4	2	4	27	640	590	4	
17	19	22,7	2	3		640	650	5	
18	24	24,7	2	4	32	700	620	1	
19	35	23,2	1	4	28	640	580	5	1
20	46	24,8	2	4	32	610	680	3	4
21	55	24,3	2	2	28	620			
22	25	27	2	4	30	600	500	5	4
23	18	23,4	1	C	31	750			
24	50	22,6	1	4	30	600	600	6	
25	35	22,5				460	540		
26	21	25.2	1	3	30	680	650	6	1
24 25 26	C	50 35	50 22,6 35 22,5 21 25.2	50 22,6 1 35 22,5 1 21 25.2 1	50 22,6 1 4 35 22,5 1 4 21 25,2 1 3	50 22,6 1 4 30 35 22,5 1 4 31 21 25.2 1 3 30	50 22,6 1 4 30 600 35 22,5 1 4 31 460 21 25.2 1 3 30 680	50 22,6 1 4 30 600 600 35 22,5 1 4 31 460 540 21 25,2 1 3 30 680 650	50 22,6 1 4 30 600 600 6 35 22,5 1 4 31 460 540 3 21 25,2 1 3 30 680 650 6

Figure 1: The dataset in Excel

We save them in a CSV format and import with the function read.csv() in R.

```
test<-read.csv("test.csv",sep=";",header=T,dec=",")
head(test) #the first 6 rows

### ID Ago BMI Conder Education ACT SATV SATO
```

```
ID Age BMI Gender
                            Education ACT SATV SATQ Stress Social
## 1 1 19 24.3
                      F
                            secondary
                                       24
                                           500
                                                500
                                                          2
                                                                 3
## 2 2 23 24.6
                      F
                            secondary
                                           600
                                                500
                                                          1
                                                                 6
                                       35
## 3 3 20 28.1
                      F
                            secondary 21
                                                470
                                                          6
                                                                 2
                                           480
```

```
4 27 24.5
                                         26
                                             550
                                                  520
                                                            1
                                                                   3
                                degree
## 5 5 33 24.1
                                         31
                                             600
                                                  550
                                                            5
                                                                   2
                       M upper primary
## 6 6 26 23.1
                           post-degree
                                         28
                                             640
                                                  640
                                                                   1
names(test)
   [1] "ID"
                     "Age"
                                  "BMI"
                                              "Gender"
                                                           "Education" "ACT"
    [7] "SATV"
                     "SATO"
                                  "Stress"
                                              "Social"
```

Reproducible Statistical Analysis with R-Markdown

Why use R-Markdown

The use of RStudio with R-Markdown provides the basis to edit text and executable R code in the same text file.

R-Markdown permits to

- create HTML, PDF, or MS Word output;
- use beamer, ioslides, and slidy presentations; manage tables, figures and bibliographies; create a customizable environment.

There are a lot of sites with guides and vignette. More about R Markdown:

- rmarkdown.rstudio.com
- online reference guide

Create a R-markdown file

Create an Rmd report

From RStudio, create a new R Markdown file

Figure 2: rmarkdown.rstudio.com

Select HTML output (for now). We can change it later.

An untitled R Markdown file is created with some default text and R code.

File -> Save As to the project directory with an Rmd suffix, for example, test-report.Rmd.

Click Knit HTML to render the document in HTML.

Figure 3: rmarkdown.rstudio.com

```
title: "Untitled"
a outhor: "Poolo Girardi"
date: "9/30/2020"
output: html_document

----
8 - ```{r setup, include=FALSE}
9 knitr::opts_chunk\(\frac{1}{2}\)set (echo = TRUE)

11
12 - ## R Markdown

13
14 This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see <a href="http://rmorkdown.rstudio.com">httml., PDF, and MS Word documents. For more details on using R Markdown see <a href="http://rmorkdown.rstudio.com">httml., PDF, and MS Word documents. For more details on using R Markdown see <a href="http://rmorkdown.rstudio.com">httml., PDF, and MS Word documents. For more details on using R Markdown see <a href="http://rmorkdown.rstudio.com">http://rmorkdown.rstudio.com</a>

15
16 When you click the **Knit** button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

17
18 - ```{r cars}
19 summary(cars)
20
21
22 - ## Including Plots
23
24 You can also embed plots, for example:
25
26 - ```{r pressure, echo=FALSE}
27 plot(pressure)
28
29
30 Note that the `echo = FALSE` parameter was added to the code chunk to prevent printing of the R code that generated the plot.
21 Untitled ** R Markdown **
```

Figure 4: rmarkdown.rstudio.com

The report appears in your RStudio viewer (or can be opened in other HTML viewer).

Comparing the markup to the output

To compare the Rmd markup to the HTML output. For example,

- markup http://rmarkdown.rstudio.com
- markup **Knit** produces a bold typeface, Knit
- single backtick markup 'produces highlighted inline code Knit.
- markup *Knit* produces an italic typeface, Knit

The code-chunk markup

echoes the R code in the HTML document, executes the *summary()* function, and writes the results to the output.

summary(cars)

```
##
        speed
                         dist
                              2.00
##
           : 4.0
##
    1st Qu.:12.0
                    1st Qu.: 26.00
   Median:15.0
                   Median : 36.00
##
           :15.4
                           : 42.98
    Mean
                   Mean
##
    3rd Qu.:19.0
                    3rd Qu.: 56.00
           :25.0
   Max.
                   Max.
                           :120.00
```

The next code chunk includes an echo=FALSE argument that prevents printing the R code chunk to the output.

However, the code is executed and the graph is printed to the output document.

What the software is doing

markup We create the knittable <u>Rmd</u> file that includes both marked-up prose and executable code.

Figure 5: rmarkdown.rstudio.com

The resulting output file is placed in the same directory as your Rmd file.

Changing the output format

The YAML header or front-matter in the Rmd file controls how the file is rendered. (YAML: YAML Ain't Markup Language)

Let's change the title to Test Report.

The output: option recognizes three document types:

- html_document
- pdf_document
- word document

You can type these directly in the Rmd YAML header or you can use the RStudio Knit pulldown menu

Formatting the output

Articles on the RStudio website for formatting output.

- Formatting an HTML document
- Formatting a PDF document
- Formatting a Word document

Markdown basics

Section headings

Figure 6: rmarkdown.rstudio.com

Emphasis

Figure 7: rmarkdown.rstudio.com

Itemize

Sub-items begin with 4 spaces. Every line ends with two spaces.

Enumerate

Sub-items begin with 4 spaces. Every line ends with two spaces.

Figure 8: rmarkdown.rstudio.com

Figure 9: rmarkdown.rstudio.com

Including Plots

You can also embed plots, for example:

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.

Data visualization and base statistics with R

The normal distribution

R has some basic functions for calculating density, cumulative distribution function and quantiles for many distributions of interest. It is also possible to generate achievements' pseudo-random from the distribution. For example, considering the distribution normal standard, there are 4 main functions:

- dnorm (x) calculates the density value in x;
- pnorm (x) calculates the value cumulative distribution function into x;

- qnorm (p) computes the quantile of level p;
- rnorm (n) generates a sample from a normal standard of size n (N(0,1)).

The prefix (d, p, q and r) descriminates the type of function associated to the random variable. R contains some functions related to several random variables by default. In particular

```
## Warning in rbind(c("norm", "normal", "mean, sd", "0, 1"), c("lnorm", "log- ## normal", : number of columns of result is not a multiple of vector length (arg ## 4)
```

norm	normal	mean, sd	0, 1
lnorm	log-normal	meanlog, sdlog	0, 1
\mathbf{t}	t di Student	df	-
chisq	chi-quadrato df	-	chisq
f	F	df1, df2	-, -
unif	uniform	min, max	0, 1
\exp	exponential	rate	1
gamma	gamma	shape, scale	-, 1
binom	binomial	size, prob	-,-
pois	Poisson	lambda	-

Other random variables can be added with "external R-Packages" or built by yourself. Some example of the functions related to the normal

```
## [1] 0.3989423
```

[1] 0.5

[1] 0

[1] 0.04646966 -0.42713869 -0.99031453

To build a function in R

R permits to build personal functions.

The structure is similar to other programming codes. The function function() permits to define a new function. Here an example that returns the area of a rectangle given the basis and the height

```
## [1] 40
```

We can expand this function calculating the perimeter and the area, and then returning this two results in a list

```
## $area
## [1] 40
##
## $perimeter
## [1] 28
```

Basic statistics function with R

From the last imported dataset test

```
test<-read.csv("test.csv",sep=";",header=T,dec=",")</pre>
head(test) #the first 6 rows
##
     ID Age BMI Gender
                              Education ACT SATV SATQ Stress Social
## 1
      1
         19 24.3
                       F
                              secondary
                                          24
                                              500
                                                    500
                                                              2
                                                                      3
##
  2
      2
         23 24.6
                       F
                              secondary
                                              600
                                                    500
                                                              1
                                                                      6
                                          35
                       F
                                                                      2
  3
      3
         20 28.1
                              secondary
                                          21
                                               480
                                                    470
                                                              6
         27 24.5
                                                    520
                                                              1
                                                                      3
##
      4
                       Μ
                                 degree
                                          26
                                              550
                                                                      2
      5
         33 24.1
                       M upper primary
                                          31
                                              600
                                                    550
                                                              5
         26 23.1
                                                              6
      6
                       Μ
                            post-degree
                                          28
                                              640
                                                    640
                                                                      1
```

Useful functions to visualize a dataset are:

• View(): to visualize a dataset like in rows and columns

- str(): to analyse the structure of a dataset
- names(): to obtain the name of each variable in a vector

```
#View(test)
str(test)
  'data.frame':
                    150 obs. of 10 variables:
   $ ID
                      1 2 3 4 5 6 7 8 9 10 ...
##
               : int
##
   $ Age
               : int
                      19 23 20 27 33 26 30 19 23 40 ...
##
   $ BMI
                      24.3 24.6 28.1 24.5 24.1 23.1 23.2 21.9 27.3 24.1 ...
               : num
   $ Gender
               : Factor w/ 2 levels "F", "M": 1 1 1 2 2 2 1 2 1 1 ...
   $ Education: Factor w/ 6 levels "degree", "lower primary", ..: 5 5 5 1 6 3 3 5 1 3 ...
##
                      24 35 21 26 31 28 36 22 22 35 ...
##
   $ ACT
               : int
   $ SATV
                      500 600 480 550 600 640 610 520 400 730 ...
##
##
   $ SATQ
               : int
                      500 500 470 520 550 640 500 560 600 800 ...
##
   $ Stress
               : int
                      2 1 6 1 5 6 5 4 4 4 ...
   $ Social
               : int 3623215265 ...
names(test)
   [1] "ID"
##
                    "Age"
                                "BMI"
                                             "Gender"
                                                         "Education" "ACT"
   [7] "SATV"
                    "SATO"
                                "Stress"
                                             "Social"
```

Some useful functions for basic statistics:

- summary(): compute a 5 number of Tukey + mean for numeric variables or frequency for categorical variables
- plot(): an object sensitive function, perform a barplot for categorical or dispersion diagram for numeric variables
- others: sd() compute standard deviation, length() the number of element in a vector, dim() the dimensions of a dataset or array, median() compute the median, quantile() calculates the quantile of a vector, scale() standardize a numeric vector, IQR() interquantile range

```
summary(test$Age)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 17.00 22.00 26.00 29.22 34.00 65.00
plot(test$Age)
```


summary(test\$Gender)

F M ## 94 56

plot(test\$Gender)

F M Now we try to build a function that extracts from a numeric vector the followings indices: mean, sd, median, IQR an the length.