Homework 2

Aiden Kenny STAT GR5204: Statistical Inference Columbia University

November 26, 2020

Question 1

Question 9

If $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$ with unknown μ and σ^2 , then a γ % confidence interval for μ is given by

$$\mathcal{I} = \left(\bar{X} - t_{\gamma}(n) \cdot S / \sqrt{n} , \bar{X} + t_{\gamma}(n) \cdot S / \sqrt{n} \right),$$

where $t_{\gamma}(n) = T_{n-1}^{-1}((1+\gamma)/2)$ is the $(1+\gamma)/2$ th quantile of the t distribution with df = n-1 and S is the sample standard deviation. The length of this confidence interval is given by

$$\Delta = \max(\mathcal{I}) - \min(\mathcal{I}) = \left(\bar{X} + t_{\gamma}(n) \cdot S / \sqrt{n}\right) - \left(\bar{X} - t_{\gamma}(n) \cdot S / \sqrt{n}\right) = 2t_{\gamma}(n) \cdot S / \sqrt{n}.$$

The squared length is then given by $\Delta^2=4t_\gamma^2(n)\cdot S^2/n$. Because the sample variance is an unbiased estimator for σ^2 , we have $\mathbb{E}[\Delta^2]=\mathbb{E}\big[4t_\gamma^2(n)\cdot S^2/n\big]=4t_\gamma^2(n)\cdot \sigma^2/n$. We now set $\mathbb{E}[\Delta^2]<\sigma^2/2$, and after some cancellations, we see that we need $t_\gamma^2(n)/n<1/8$. There is no way to find a closed-form expression for this, so we will have to check the value of $t_\gamma^2(n)/n$ for increasing values of n. I set up a while loop in R to solve for it, and when $\gamma=0.9$, we find that n=24 is the smallest value of n such that $\mathbb{E}[\Delta^2]<\sigma^2/2$.

Question 10

Let $X \stackrel{\text{iid}}{\sim} N(\theta, \sigma^2)$, where θ is unknown and σ^2 is known, and we assume prior that $\theta \sim N(\mu, \nu^2)$, where both μ and ν^2 are known.

(a) Since normal distributions are are conjugate to normal sampling, it follows that $\theta \mid \mathbf{x} \sim N(\tilde{\mu}, \tilde{\sigma}^2)$, where

$$\tilde{\mu} = \frac{\sigma^2 \mu + n \nu^2 \bar{x}}{\sigma^2 n \nu^2} \quad \text{and} \quad \tilde{\sigma}^2 = \frac{\sigma^2 \nu^2}{\sigma^2 + n \mu^2}.$$

We also know that $(\theta \mid \mathbf{x} - \tilde{\mu})/\tilde{\sigma} \sim N(0,1)$, and so a 95% confidence interval for $\theta \mid \mathbf{x}$ is given by

$$\mathcal{I} = (\tilde{\mu} - \Phi^{-1}(0.975) \cdot \tilde{\sigma}, \tilde{\mu} + \Phi^{-1}(0.975) \cdot \tilde{\sigma}).$$

(b) We can think of our interval \mathcal{I} as a function of ν^2 . To examine what happens to $\mathcal{I}(\mu^2)$ as $\nu^2 \to \infty$, we will first look at $\tilde{\mu}$ and $\tilde{\sigma}$. Using L'Hopital's rule, we have

$$\begin{split} &\lim_{\nu^2 \to \infty} \tilde{\mu} = \lim_{\nu^2 \to \infty} \frac{\sigma^2 \mu + n \nu^2 \bar{x}}{\sigma^2 n \nu^2} = \lim_{\nu^2 \to \infty} \frac{n \bar{x}}{n} = \bar{x}, \\ &\lim_{\nu^2 \to \infty} \tilde{\sigma} = \lim_{\nu^2 \to \infty} \sqrt{\frac{\sigma^2 \nu^2}{\sigma^2 + n \mu^2}} = \sqrt{\lim_{\nu^2 \to \infty} \frac{\sigma^2 \nu^2}{\sigma^2 + n \mu^2}} = \sqrt{\lim_{\nu^2 \to \infty} \frac{\sigma^2}{n}} = \frac{\sigma}{\sqrt{n}}, \end{split}$$

and so $\mathcal{I}(\nu^2) \to (\bar{x} - \Phi^{-1}(0.975) \cdot \sigma/\sqrt{n}, \bar{x} + \Phi^{-1}(0.975) \cdot \sigma/\sqrt{n})$, which is a 95% confidence interval for θ .

1