NRP: 2040221060

1. Mengatur *input* sesuai dengan yang diinginkan. Pada *input* 1 diberi nama suhu dengan ketentuan mf1 diganti menjadi dingin dengan rentang params 0-15, mf2 diganti menjadi sejuk dengan params 11-25, mf3 diganti menjadi normal dengan rentang params 21-30, mf4 diganti menjadi hangat dengan params 28-40, dan yang terakhir mf5 diganti menjadi panas dengan params 36-50.

Table 1 Input Suhu

INPUT 1(SUHU)			
SUHU	KETERANGAN		
Dingin	0 – 15		
Sejuk	11 – 25		
Normal	21 – 30		
Hangat	28 – 40		
Panas	36 – 50		

Figure 1 Input suhu yang telah disesuaikan dengan parameter yang ditentukan

NRP: 2040221060

2. Pada *input* 2 diberi nama cahaya dengan ketentuan mf1 diganti menjadi gelap dengan rentang params 0-35, mf2 diganti menjadi normal dengan params 31-85, mf3 diganti menjadi terang dengan rentang params 81-100.

Table 2 Input Cahaya

INPUT 2 (CAHAYA)		
САНАУА	KETERANGAN	
Gelap	0 – 35	
Normal	31 – 85	
Terang	81 – 100	

Figure 2 Input cahaya yang telah disesuaikam dengan parameter yang ditentukan

NRP: 2040221060

3. Mengatur *output* sesuai dengan yang diinginkan. Pada *output* diberi nama kecepatan mesin dengan ketentuan mf1 diganti menjadi lambat dengan rentang params 0-15, mf2 diganti menjadi sedang dengan params 11-21, mf3 diganti menjadi cepat dengan rentang params 19-45.

Table 3 Output Kecepatan Mesin

OUTPUT (KECEPATAN MESIN)		
KEC. MESIN	KETERANGAN	
Lambat	0 – 15	
Sedang	11 – 21	
Cepat	19 – 45	

Figure 3 Output Kecepatan Mesin

NRP: 2040221060

Table 4 Percobaan

No.	INPUT		OUTPUT
110.	SUHU	САНАҮА	KEC. MESIN
1	Dingin	Gelap	Lambat
2	Dingin	Normal	Lambat
3	Dingin	Terang	Lambat
4	Sejuk	Gelap	Lambat
5	Sejuk	Normal	Lambat
6	Sejuk	Terang	Sedang
7	Normal	Gelap	Sedang
8	Normal	Normal	Sedang
9	Normal	Terang	Sedang
10	Hangat	Gelap	Sedang
11	Hangat	Normal	Cepat
12	Hangat	Terang	Cepat
13	Panas	Gelap	Cepat
14	Panas	Normal	Cepat
15	Panas	Terang	Cepat

Figure 4 Percobaan Rules Antara Suhu, Cahaya, dan Kecepatam Mesin

NRP: 2040221060

Figure 5 Grafik 3D Antara Suhu, Cahaya, dan Kecepatan Mesin

- 4. Setelah memasukkan data Input 1 berupa suhu dan Input 2 berupa cahaya, serta menghasilkan grafik 3D sebagai output, file FIS disimpan di direktori
 - a. "Documents > MATLAB > mesin.fis".
 - b. Untuk memverifikasi hasil keluaran sistem FIS yang telah dibuat, jalankan perintah berikut pada Command Window: fis = readfis('mesin');
 - c. diikuti dengan output = evalfis([10 20], fis);, yang menghasilkan nilai output = 6.2059.

Nilai ini menunjukkan bahwa jika suhu sebesar 10°C (dingin) dan cahaya sebesar 20 Cd (gelap), maka kecepatan mesin adalah 6.2059 m/s (lambat). Dengan demikian, hasil keluaran FIS sesuai dengan konsep sistem kontrol yang telah dirancang, membuktikan bahwa sistem bekerja dengan baik.

