Défense Presentation

Sunday, 5 November, 2023 7:51 PM

ARM Cortex-M

Original idea of the project (wearables):

Design	High clock frequency, Long pipeline, High performance, Multimedia support (NEON instruction set extension)	High clock frequency, Long to medium pipeline length, Deterministic (low interrupt latency)	Short pipeline, ultra low power, Deterministic (low interrupt latency)
System features	Memory Management Unit (MMU), cache memory, TrustZone® security extension	Memory Protection Unit (MPU), cache memory, Tightly Coupled Memory (TCM)	Memory Protection Unit (MPU), Nested Vectored Interrupt Controller (NVIC), Wakeup Interrupt Controller (WIC)
Targeted markets	Mobile computing, smart phones, energy efficient servers, high end microprocessors	Industrial microcontrollers, automotives, Hard disk controllers, Baseband modem.	Microcontrollers, Deeply embedded systems (e.g. sensors, MEMS, mixed signal IC), Internet of Things (IoT)

- Ultra-low power

Cortes FD flow males configuration includes 1 MG + 1 MS, exclude china; Cortes FD flow males configuration includes 1 MG + 1 MS, excludes china; Cortes FD flow males configuration includes 1 MG + 1 MS, excludes 1 MS FD flow.

- https://www.linkedin.com/pulse/arm-cortex-m4-embedded-systems-exploring/

Demo:

https://wiki.st.com/stm32mpu/wiki/Getting_started/STM32MP1_boards/STM32MP157x-DK2/Let%27s_start/Use_the_demo_launcher

STM MP1 Package + X-Linux-AI (ARM Cortex -M)

Model for Heart Disease Prediction

- INOGEL TOT HEART DISEASE PTED identification of Arrhythmia:

 Left Bundle Branch Block
 Normal
 Premature Atrial Contraction
 Premature Ventricular Contractions
 Right Bundle Branch Block
 Ventricular Fibrillation

https://github.com/TriparnoChatterjee/Heart_Disease_Prediction_Using_ECG_Images https://www.kaggle.com/datasets/erhmrai/ecg-image-data https://www.kaggle.com/datasets/mohamedeldakron/8/ecg-heart-categorization-dataset-image

- Ventricular Fibrillation

https://github.com/TriparnoChatterjee/Heart_Disease_Prediction_Using_ECG_Images

https://www.kaggle.com/datasets/erhimral/ecg-image-data https://www.kaggle.com/datasets/erhimral/ecg-image-data https://www.kaggle.com/datasets/mohamedeldakrory8/ecg-heart-categorization-dataset-image-version

Model for Emotion Recognition

Type of Emotions:

- Discrete Emotional Model (DEM) -> happy, sad, angry, fear, etc.
- Affective Dimensional Model (ADM) -> valence, arousal, dominance - Binary Emotional Model -> negative, positive

Dataset:

- Amigos (http://www.eecs.gmul.ac.uk/mmv/datasets/amigos/download.html)
 Dreamer (https://zenodo.org/records/546113#.YKLYOWYzaHs)
- Wesad (https://archive.ics.uci.edu/dataset/465/wesad+wearable+stress+and+affect+detection)
 Case (https://github.com/nosa999/Emotion-Recognition-from-ECG-Signal/blob/main/Case_ECG_EmotionI

5. https://www.kaggle.com/code/danielfesalbon/ecg-signals-emotion-recognition (Model display low accuracy

Architecture:

 $\underline{\text{https://github.com/joergsimon/SSL-ECG-Paper-Reimplementaton/tree/main}}$

- include DEAP (EEG data)

Representations of Emotions months of the | D. SWELL | Sec. | Sec

X-Linux-Al

Overview:

https://www.st.com/en/embedded-software/x-linux-ai.html

- XNNPACK TensorFlow Lite Leveraging CPU for ML inference: https://www.st.com/en/embedded-software/x-linux-ai.html

Package Library

https://wiki.st.com/stm32mpu/wiki/X-LINUX-Al_Starter_package

https://wiki.st.com/stm32mpu/wiki/Category:Al - Application_examples

https://wiki.st.com/stm32mcu/wiki/Al:How_to_use_transfer_learning_to_perform_image_classification_on_STM32 https://wiki.st.com/stm32mcu/wiki/Al:How_to_use_Teachable_Machine_to_create_an_image_classification_application_on_STM32

All-in-one Al solutions for the entire STM32MFU serie
Prei-integrated into Linux distribution based on ST environm
Include All frameworks to execute Neural Neterotic models
Include All model benchmark application tools for MFU
Early application prototyping using Python language and Al
C=+ API for embedded high-performance applications

Cloud Deployment (Optional)

Examples: https://github.com/avnet-iotconnect/iotc-python-examples/tree/main/STM32MP157F-DK2_Demo https://docs.iotconnect.io/iotconnect/git-resource/avnet-iotconnect-repository/https://github.com/STMicroelectronics/meta-predmnt

Initial Idea: Intel OpenVINO

(https://docs.openvino.ai/2023.1/openvino docs OV UG supported plugins Supported Devices.html)

Open/VINO Device	Supported Hardware Intel® Xeorill with Intel® Advanced Vector Extensions 2 (Intel® AVX2),		
сеч			
(x86)	Intel® Advanced Vector Extensions 512 (Intel® AVX-512), Intel® Advanced		
	Matrix Extensions (Intel® AMX), Intel® Core™ Processors with Intel® AVX		
	Intel® Atom® Processors with Intel® Streaming SIMD Extensions (Intel®		
	SSE)		
(Armill)			
	Raspberry PI™ 4 Model B, Apple® Mac with Apple silicon		
GPU	Intel® Processor Graphics including Intel® HD Graphics and Intel® Iris®		
	Graphics, Intel® Arc™ A-Series Graphics, Intel® Data Center GPU Flex		
	Series, Intel® Data Center GPU Max Series		
GNA	Intel® Speech Enabling Developer Kit, Amazon Alexa* Premium Far-Field		
(available in the Intel® Distribution of	Developer Kit, Intel® Pentium® Silver J5005 Processor, Intel® Pentium®		
OpenVINO ^{TA} toolkit)	Silver N5000 Processor, Intel® Celeron® J4005 Processor, Intel® Celeron®		
	J4105 Processor, Intel® Celeron® Processor N4100, Intel® Celeron®		
	Processor N4000, Intel® Core™ I3-8121U Processor, Intel® Core™ I7-		
	1065G7 Processor, Intel® Core™ (7-1060G7 Processor, Intel® Core™ (5-		
	1035G4 Processor, Intel® Core™ IS-1035G7 Processor, Intel® Core™ IS-		
	1035G1 Processor, Intel® Core™ IS-1030G7 Processor, Intel® Core™ IS-		
	1030G4 Processor, Intel® Core™ (3-1005G1 Processor, Intel® Core™ (3-		
	1000G1 Processor, Intel® Core™ (3-1000G4 Processor		

 $\underline{https://www.st.com/resource/en/product_presentation/dsh-predmnt_getting_started.pdf}$

Running on: AWS