Student Information

Full Name : Anıl Eren Göçer

 $Id\ Number:\ 2448397$

Answer 1

a)

 $L_0 = [(a \cup b)^* a a (a \cup b)^* b b (a \cup b)^*] \cup [(a \cup b)^* b b (a \cup b)^* a a (a \cup b)^*]$

b)

M: The NFA recognizing the language L_0

Now, let's formally define M:

$$M = (K, \Sigma, \delta, s, F)$$
 where,

$$\mathbf{K} = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7, q_8, q_9\}$$

$$\Sigma = \{a, b\}$$

$$s = q_0$$

$$F = \{q_9\}$$

and,

$$\delta = \{(q_0, \epsilon, q_1), (q_0, \epsilon, q_5), (q_1, a, q_1), (q_1, b, q_1), (q_1, a, q_2)(q_2, a, q_3), (q_3, a, q_3), (q_3, b, q_3), (q_3, b, q_4), (q_4, b, q_9), (q_5, a, q_5), (q_5, b, q_5), (q_5, b, q_6), (q_6, b, q_7), (q_7, a, q_7), (q_7, b, q_7), (q_7, a, q_8), (q_8, a, q_9), (q_9, a, q_9), (q_9, b, q_9)\}.$$

c)

Let's construct a DFA, called $M' = (K', \Sigma, \delta', s', F')$, which is equivalent to the NFA in part b.

Let's apply the subset construction algorithm to M. Since M has 10 states, M' will have 2^{10} states. However, only few of these states will be relevant to the operation of M' i.e. those states that can be reached from state s' by reading some input string. Obviously, any state in K' that is not reachable from s' is irrelevant to the operation of M' and to the language accepted by it. We shall build this reachable part of M' by starting from s' and introducing a new state only when it is needed as the value of $\delta'(q,x)$ for some state $q \in K'$ already introduced and some $x \in \Sigma$.

Now, let's define ϵ -closure of each state in M.

$$E(q_0) = \{q_0, q_1, q_5\}$$

$$E(q_5) = \{q_5\}$$

$$E(q_1) = \{q_1\}$$

$$E(q_6) = \{q_6\}$$

$$E(q_2) = \{q_2\}$$

$$E(q_7) = \{q_7\}$$

$$E(q_3) = \{q_3\}$$

$$E(q_8) = \{q_8\}$$

$$E(q_4) = \{q_4\}$$

$$E(q_9) = \{q_9\}$$

Since
$$s' = E(q_0) = \{q_0, q_1, q_5\}$$

 $(q_1, a, q_1), (q_1, a, q_2), (q_5, a, q_6)$ are all transition of the form (q, a, p) for some $q \in s'$. It follows that

$$\delta'(s', a) = E(q_1) \cup E(q_2) \cup E(q_5) = \{q_1, q_2, q_5\}$$

 $(q_1, b, q_1), (q_5, b, q_5), (q_5, b, q_6)$ are all transition of the form (q,b,p) for some $q \in s'$.

$$\delta'(s',b) = E(q_1) \cup E(q_5) \cup E(q_6) = \{q_1, q_5, q_6\}$$

Repeating this calculation for the newly introduced states, we have the following:

$$\delta'(\{q_1, q_2, q_5\}, a) = \{q_1, q_2, q_3, q_5\}$$

$$\delta'(\{q_1, q_2, q_5\}, b) = \{q_1, q_5, q_6\}$$

$$\delta'(\{q_1, q_5, q_6\}, a) = \{q_1, q_2, q_5\}$$

$$\delta'(\{q_1, q_5, q_6\}, b) = \{q_1, q_5, q_6, q_7\}$$

$$\delta'(\{q_1, q_2, q_3, q_5\}, a) = \{q_1, q_2, q_3, q_5\}$$

$$\delta'(\{q_1, q_2, q_3, q_5\}, b) = \{q_1, q_2, q_3, q_4, q_5, q_6\}$$

$$\delta'(\{q_1, q_5, q_6, q_7\}, a) = \{q_1, q_2, q_5, q_7, q_8\}$$

$$\delta'(\{q_1, q_5, q_6, q_7\}, b) = \{q_1, q_5, q_6, q_7\}$$

$$\delta'(\{q_1, q_3, q_4, q_5, q_6\}, a) = \{q_1, q_2, q_3, q_5\}$$

$$\delta'(\{q_1, q_3, q_4, q_5, q_6\}, b) = \{q_1, q_3, q_4, q_5, q_6, q_7, q_9\}$$

$$\delta'(\{q_1, q_2, q_5, q_7, q_8\}, a) = \{q_1, q_2, q_3, q_5, q_7, q_8, q_9\}$$

$$\delta'(\{q_1, q_2, q_5, q_7, q_8\}, b) = \{q_1, q_5, q_6, q_7\}$$

$$\delta'(\{q_1, q_3, q_4, q_5, q_6, q_7, q_9\}, a) = \{q_1, q_2, q_3, q_5, q_7, q_8, q_9\}$$

$$\delta'(\{q_1, q_3, q_4, q_5, q_6, q_7, q_9\}, a) = \{q_1, q_3, q_4, q_5, q_6, q_7, q_9\}$$

$$\delta'(\{q_1, q_2, q_3, q_5, q_7, q_8, q_9\}, a) = \{q_1, q_2, q_3, q_5, q_7, q_8, q_9\}$$

$$\delta'(\{q_1, q_2, q_3, q_5, q_7, q_8, q_9\}, b) = \{q_1, q_3, q_4, q_5, q_6, q_7, q_9\}$$

F', the set of final states, contains each set of states of which q_9 is a member, since q_9 is the sole member of F. So, $\{q_1,q_3,q_4,q_5,q_6,q_7,q_9\}$, $\{q_1,q_2,q_3,q_5,q_7,q_8,q_9\}$ are final states.

State Diagram of the \boldsymbol{M}'

d)

Trace on NFA:

w' is accepted if and only if there is at least one sequence of moves terminating at a final state.

There are 8 possible sequence of moves which this NFA can follow when it is given w'. We need to check all of them.

1)
$$(q_0, bbabb) \vdash (q_1, bbabb) \vdash (q_1, babb) \vdash (q_1, abb) \vdash (q_1, bb) \vdash (q_1, b) \vdash (q_1, \epsilon)$$

The NFA terminates at q_1 , which is not a final state.

2)
$$(q_0, bbabb) \vdash (q_1, bbabb) \vdash (q_1, babb) \vdash (q_1, abb) \vdash (q_2, bb)$$

The NFA gets stuck at q_2 .

3)
$$(q_0, bbabb) \vdash (q_5, bbabb) \vdash (q_5, babb) \vdash (q_5, abb) \vdash (q_5, bb) \vdash (q_5, b) \vdash (q_5, \epsilon)$$

The NFA terminates at q_5 , which is not a final state.

4)
$$(q_0, bbabb) \vdash (q_5, bbabb) \vdash (q_5, babb) \vdash (q_5, abb) \vdash (q_5, bb) \vdash (q_5, b) \vdash (q_6, \epsilon)$$

The NFA terminates at q_6 , which is not a final state.

5)
$$(q_0, bbabb) \vdash (q_5, bbabb) \vdash (q_5, babb) \vdash (q_5, abb) \vdash (q_5, bb) \vdash (q_6, b) \vdash (q_7, \epsilon)$$

The NFA terminates at q_7 , which is not a final state.

2)
$$(q_0, bbabb) \vdash (q_5, bbabb) \vdash (q_5, babb) \vdash (q_6, abb) \vdash (q_2, bb)$$

The NFA gets stuck at q_6 .

7)
$$(q_0, bbabb) \vdash (q_5, bbabb) \vdash (q_6, babb) \vdash (q_7, abb) \vdash (q_7, bb) \vdash (q_7, b) \vdash (q_7, \epsilon)$$

The NFA terminates at q_7 , which is not a final state.

8)
$$(q_0, bbabb) \vdash (q_5, bbabb) \vdash (q_6, babb) \vdash (q_7, abb) \vdash (q_8, bb)$$

The NFA gets stuck at q_8 .

Therefore, there is no sequence of moves terminating at a final state. Hence, w' is **not accepted** by the NFA.

Trace on DFA:

```
 \begin{array}{c} (\{q_0,q_1,q_5\},bbabb) \vdash (\{\mathbf{q}_1,q_5,q_5\},babb) \\ \vdash (\{\mathbf{q}_1,q_5,q_6,q_7\},abb) \\ \vdash (\{\mathbf{q}_1,q_2,q_5,q_7,q_8\},bb) \\ \vdash (\{\mathbf{q}_1,q_5,q_6,q_7\},b) \\ \vdash (\{\mathbf{q}_1,q_5,q_6,q_7\},\epsilon) \end{array}
```

As you can see, the DFA terminates at the state ($\{q_1, q_5, q_6, q_7\}$, which is not a final (accept) state. Hence, w' is **not accepted** by the DFA.

Answer 2

a)

Assume that L_1 is regular.

Let p be the **pumping length** for L_1 given by the pumping lemma.

Let $s = a^{p+1}b^p$. Then s can be split into s = xyz, satisfying the conditions of the pumping lemma which are as follows:

- (1) For each $i \geq 0$, $xy^i z \in L_1$.
- (2) |y| > 0
- $(3) |xy| \leq p$

By condition 3 of the pumping lemma, $|xy| \le p$, y consists only of a's.

The pumping lemma states that $xy^iz \in L_1$ even when i=0, so let's consider string $xy^0z = xz$. Removing string y decreases the number of a's in s because of condition 2 of pumping lemma, |y| > 0. Recall that s has just one more a than b. Therefore, xz cannot have more a's than b's, so it cannot be a member of L_1 . Thus, we obtain a contradiction.

Hence, L_1 is not regular.

Remember that class of regular languages is closed under complementation. So, a language A is regular if and only if \overline{A} is regular. This means that class of non-regular languages is also closed under complementation, so a languages A is non-regular if and only if \overline{A} is non regular.

As seen abover, we have proven that L_1 is non-regular. Thus, $\overline{L_1}$ is also non-regular.

Hence, $L_2 = \overline{L_1}$ is **not regular**.

b)

Note that L_4 is a subset of L_5 , namely $L_4 \subseteq L_5$.

Thus, $L_4 \cup L_5 \equiv L_5$

Observe that $L_5 = \{\epsilon, a, b, aa, bb, ab,\} = a^*b^*$, which is a regular expression showing that L_5 is regular.

Also, L_5 is recognized by the finite automaton given below:

Thus, L_5 is regular.

Now, consider $L_6 = b^*a(ab^*a)^*$. Because L_6 is generated by a regular expression, L_6 is regular.

Note that $L_4 \cup L_5 \cup L_6 \equiv L_5 \cup L_6$.

We have shown that L_5 and L_6 are regular.

Since regular languages are closed under union. $L_5 \cup L_6$ is regular.

Thus, $L_4 \cup L_5 \cup L_6$ is **regular**.