

Description

These N-Channel enhancement mode power field effect transistors are using trench DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and with stand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency fast switching applications.

Features

- 60V, 5A, $R_{DS(ON).max}$ =34m Ω @ V_{GS} =10V
- Improved dv/dt capability
- Fast switching
- Green device available

Applications

- Motor Drives
- UPS
- DC-DC Converter

Product Summary

 $\begin{array}{ll} V_{DSS} & 60V \\ R_{DS(on).max} \textcircled{0} \ V_{GS} = 10V & 34m\Omega \\ I_{D} & 5A \end{array}$

SOP-8 Pin Configuration

SOP-8

Schematic

Absolute Maximum Ratings T_A = 25°C unless otherwise noted

Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	60	V
Continuous drain current (T _A = 25°C)		5	А
Continuous drain current (T _A = 100°C)	l _D	3.5	А
Pulsed drain current ¹⁾	І	20	А
Gate-Source voltage	V _{GSS}	±20	٧
Power Dissipation (T _A = 25°C)	P _D	2	W
Storage Temperature Range	T _{STG}	-55 to +150	°C
Operating Junction Temperature Range	TJ	-55 to +150	°C

Thermal Characteristics

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Ambient	Reja	62.5	°C/W

Package Marking and Ordering Information

Device	Device Package	Marking
VSM5N06-S8	SOP-8	VSM5N06-S8

Electrical Characteristics T_J = 25°C unless otherwise noted

Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Static characteristics	1			I		1
Drain-source breakdown voltage	BV _{DSS}	V _{GS} =0 V, I _D =250uA	60			V
Gate threshold voltage	V _{GS(th)}	V _{DS} =V _{GS} , I _D =250uA	0.9	1.4	1.9	V
Drain-source leakage current		V _{DS} =60 V, V _{GS} =0 V, T _J = 25°C			1	μΑ
	I _{DSS}	V _{DS} =48 V, V _{GS} =0 V, T _J = 125°C			10	μΑ
Gate leakage current, Forward	I _{GSSF}	V _{GS} =20 V, V _{DS} =0V			100	nA
Gate leakage current, Reverse	I _{GSSR}	V _{GS} =-20 V, V _{DS} =0V			-100	nA
Drain-source on-state resistance	_	V _{GS} =10 V, I _D =5A		27	34	mΩ
	R _{DS(on)}	V _{GS} =4.5 V, I _D =4A		31	42	mΩ
Forward transconductance	g fs	V _{DS} =5 V , I _D =5A		11		S
Dynamic characteristics						
Input capacitance	C _{iss}			858		pF
Output capacitance	Coss	$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V},$ $F = 1 \text{MHz}$		63.4		
Reverse transfer capacitance	Crss	- F - 11VIDZ		50.8		
Turn-on delay time	t _{d(on)}			14.2		ns
Rise time	t _r	V _{DD} = 30V,V _{GS} =10V, I _D =5A		85.6		
Turn-off delay time	t _{d(off)}			56.6		
Fall time	t _f			18.5		
Gate charge characteristics						
Gate to source charge	Q _{gs}			3.7		
Gate to drain charge	Q _{gd}	V_{DS} =30V, I_D =10A, V_{GS} = 10 V		3.6		nC
Gate charge total	Qg			20.4		1
Drain-Source diode characteristic	s and Maxi	mum Ratings				•
Continuous Source Current	Is				5	А
Pulsed Source Current	I _{SM}]			20	А
Diode Forward Voltage ²⁾	V _{SD}	V _{GS} =0V, I _S =5A, T _J =25°C			1.2	V
Reverse Recovery Time	t _{rr}	I _S =5A,di/dt=100A/us, T _J =25℃		24		ns
Reverse Recovery Charge	Qrr			12		nC

Notes:

- 1: Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2: Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.

Electrical Characteristics Diagrams

Figure 1. Typ. Output Characteristics

Figure 3. Capacitance Characteristics

Figure 2. Transfer Characteristics

Figure 4. Gate Charge Waveform

Figure 6. Rdson-Drain Current

0.01 └─ 1E-5

1E-4

1E-3

0.01

Figure 8. Maximum Safe Operating Area

100

(V)

1 tuest of the property of th

Drain-Source Voltage $V_{_{DS}}$ (V)

D=Ton/T
T_{J,PK}=T_C+P_{DM}.Z_{e,JC}.R_{e,ic}
R_{e,JC}=62.5°C/W

0.1

D=Ton/T
T_{J,PK}=T_C+P_{DM}.Z_{e,JC}.R_{e,ic}
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse

Single Pulse

0.1

Pulse Width t (s)

1

10

100

1000

Figure 9. Normalized Maximum Transient Thermal Impedance (RthJA)

Test Circuit & Waveform

Figure 10. Gate Charge Test Circuit & Waveform

Figure 11. Resistive Switching Test Circuit & Waveforms

Figure 12. Unclamped Inductive Switching (UIS) Test Circuit & Waveform

Figure 13. Diode Recovery Circuit & Waveform

