Termination Analysis of a subset of CoreML

William Blum

william.blum@comlab.ox.ac.uk

Oxford University Computing Laboratory

BCTCS Nottingham

Outline

Size-change Principle for first-order programs

An extension for a subset of Core ML

First order programs

Untyped functional language recursion, if-then-else, primitive operators, single data type

Call-by-value evaluation semantics:

$$\mathcal{E}[\![f]\!] \overrightarrow{x} = v$$
 f evaluates to v on input \overrightarrow{x} , $\mathcal{E}[\![f]\!] \overrightarrow{x} = \bot$ f does not terminate on input \overrightarrow{x} .

Exact call semantics: a computation is described by a state transition sequence.

Finite approximation of the call semantics: the control flow graph.

Example

$$f(x) = gcd(x,18)$$

 $gcd(x,y) =$
if $y == 0$ then x
else $gcd(y, x mod y)$

$$\begin{array}{l} \textit{f}, 4 \rightarrow \textit{gcd}, (4, 18) \rightarrow \\ \textit{gcd}, (18, 2) \rightarrow \\ \textit{gcd}, (2, 2) \rightarrow \textit{gcd}, (2, 0) \end{array}$$

Termination

Characterization of termination

P terminates on all input values

← Infinite state transition sequences are invalid computations.

- What is an invalid computation?
 For instance: a computation in which some positive integer variable decreases infinitely...
- The Size-Change Principle proves that for any computation corresponding to an infinite path in the control flow, the value of some well-founded variable decreases infinitely.

Size-change graphs (SCG)

Definition: A SCG describes a program call. It consists of a source set of vertices, a target set of vertices and a set of labeled arcs.

The SCG
$$\begin{pmatrix} x & \xrightarrow{=} x \\ y \end{pmatrix}$$
 describes the call from f to gcd.

Safety: $\xrightarrow{\downarrow}$ arcs denote decreases in parameter value, $\xrightarrow{=}$ arcs denote non increase in parameter value.

Example: consider the call "gcd(
$$\underbrace{y}$$
, $\underbrace{x} \mod y$)":
$$\begin{pmatrix} x & x \\ y & y \end{pmatrix} \qquad \begin{pmatrix} x & x \\ y & y \end{pmatrix} \qquad \begin{pmatrix} x & x \\ y & y \end{pmatrix}$$

Only one of these SCG is not safe for this call.

Composition of size-change graphs

If
$$f \xrightarrow{G_1} g$$
 and $g \xrightarrow{G_2} h$ then $f \xrightarrow{G_1;G_2} h$

$$\overbrace{a \xrightarrow{=} x \xrightarrow{\downarrow} u} = \overbrace{a \xrightarrow{\downarrow} u} = \underbrace{A \xrightarrow{\downarrow} u}_{V}$$

If $\mathcal G$ is a set of size-change graphs then $\overline{\mathcal G}$ denotes the composition closure of $\mathcal G$.

Size-change termination (SCT)

Definition Consider G a set of size-change graphs.

A program P is G-SCT if

- \mathcal{G} safely describes \mathbb{P} (for every reachable call c there is a corresponding SCG $G_c \in \mathcal{G}$)
- for all infinite computation $cs = \langle c_0 c_1 \ldots \rangle$, any sequence of size-change graphs $G_{c_0} G_{c_1} \ldots$ (describing safely the calls of cs) has an infinite descending thread.

We assume that data-types are well-founded.

Theorem

If P is G-SCT then P terminates for all input values

Deciding Size-Change Termination

G-SCT characterization [Jones et al. 2001]

$$P$$
 is **not** G -SCT

$$\exists \mathtt{f} \overset{G}{\to} \mathtt{f} \in \overline{\mathcal{G}} \; \mathsf{such} \; \mathsf{that} \; \left(\begin{array}{c} G ; \, G = G \\ \forall \mathtt{x} \in gb(\mathtt{f}) : \mathtt{x} \overset{\downarrow}{\to} \mathtt{x} \not \in G \end{array} \right)$$

Hence G-SCT is decidable. And it is PSPACE-complete (see [1])

The language \mathcal{L}_{ml}

Grammar:

value identifiers boolean constants conditional integer constants ($n \in \mathbb{N}$) integer equality successor and predecessor function abstraction recursively defined function function application local variable definition

A program is a single closed expression.

Data types: ground values + higher-order functions.

Semantics of \mathcal{L}_{ml} (environment based)

```
Canonical expressions: \mathbb{N} \cup \mathbb{B} \cup \{e \mid e \text{ is an abstraction}\}\
     State = \{e : \rho \mid e \in subexp(P), \rho \in Env, fv(e) \subseteq dom(\rho)\}
     Value = \{e : \rho \in State \mid e \text{ canonical}\}
       Env = \{\rho: X \rightarrow Value \mid X \text{ finite set of variables}\}
Let s \in State, v \in Value and \rho \in Env
Call-by-value evaluation semantics "s \downarrow v"
                                  \frac{}{\forall : \rho \downarrow \forall : \rho} (\forall \text{ canonical})
                                              (ErrOp1)\frac{e: \rho \downarrow 0}{pred e: \rho}
Run-time errors "s ⊘"
Call semantics "s \rightarrow s'"
         (CallG) \frac{e_1 : \rho \Downarrow fun (x:ty) -> e_0 : \rho_0 \qquad e_2 : \rho \Downarrow v_2}{e_1 e_2 : \rho \underset{c}{\longrightarrow} e_0 : \rho_0[x \mapsto v_2]}
```

Graph generation

- Two SCG generated per call: G^+ describing higher-order values and G^0 for ground type values.
- The *free variables* of an expression correspond to the *input* parameters in the first-order case.
- We define well-founded notions of size for higher-order and ground type expressions.
- We extend the semantic rules to generate safe SCG:

(ValueG)
$$\frac{1}{v \downarrow v, ide|ide|}(v = e : \rho \text{ in canonical form})$$

$$\text{(CallG)} \ \frac{\texttt{e}_1 : \rho \biguplus \texttt{fun} \ (\texttt{x:ty}) \to \texttt{e}_0 : \rho_0, \textit{G}_1 | \textit{G}_1^+ \qquad \texttt{e}_2 : \rho \biguplus \texttt{v}_2, \textit{G}_2 | \textit{G}_2^+ \\ \texttt{e}_1 \texttt{e}_2 : \rho \biguplus \texttt{e}_0 : \rho_0 [\texttt{x} \mapsto \texttt{v}_2], \textit{CallGr}_x^0 (\textit{G}_1, \textit{G}_2) | \textit{CallGr}_x^+ (\textit{G}_1^+, \textit{G}_2^+) \\ \end{aligned}$$

Finite approximation of the call semantics

We need a "control flow graph" for ML programs Solution:

- drop the ρ components of the states
- abstract integers by a single symbol "?int".

We obtain a finite abstraction of the computation.

The set of vertices of the control flow graph (i.e control points) is:

$$\mathcal{P} = subexp(P) \cup \{?^{int}\}$$

The size-change principle

What do we have:

- Termination characterized by infinite call sequences
- Well-founded order on the data values
- Finite approximation of call semantics
- We can compute two safe sets of size-change graphs describing the calls (by applying the semantic rules exhaustively).

Hence the SCP can be applied! (twice)

Results

Counter example

```
let rec counter x =
  if x = 0 then counter (succ x) else 1
in counter 7;;
```

is terminating but not SCT.

- Ackerman's function: SCT relatively to ground-type values.
- Function computing the minimum of two numbers:
 - is SCT if we use the native representation of integers provided by \mathcal{L}_{ml} ,
 - is not SCT if we use Church numeral to encode integers.

Conclusion

- The Size-Change Principle from Neil D. Jones et al.
 - based on a finite approximation of the call semantics,
 - and a safe description of the calls.
- Extension to a higher-order functional language
 - detects decrease on ground-type values as well as higher-order values
 - allows local definition let
 - handles recursion natively (no need to define a Y combinator)
 - handles numbers natively
- Further direction sequential composition, storage location and references, tuples list, user defined structures, for and while loop structures.

Bibliography

- Chin Soon Lee, Neil D. Jones, and Amir Ben-Amram.
 The Size-Change Principle for Program Termination.

 Principles of Programming Languages, pp. 81-92. Volume 28 of Principles of Programming Languages. ACM press 2001
- Neil D. Jones and Nina Bohr
 Termination Analysis of the Untyped λ-Calculus.

 Rewriting Techniques and Applications., Proceedings (V van Oostrom, ed.), pp. 1-23. Volume 3091 of LNCS.

 Springer-Verlag 2004.
 - Andrew M. Pitts
 Operational Semantics and Program Equivalence.

 Applied Semantics., pp. 378-412. Volume 2395 of LNCS.
 Springer-Verlag 2002