Universidade Federal Rural de Pernambuco - UACSA Lista I - Cálculo Numérico - Parte 1

Profa. Amanda Souza de Paula

Nome:	Turma:
- 1	

Questão 1

Deseja-se aproximar o número real p pelo número real p^* . Se o erro relativo máximo tolerado for de $\epsilon = 10^{-4}$, encontre o intervalo I que contenha as possíveis aproximações p^* para os seguintes valores de p:

- (a) $p = \pi$.
- (b) $p = \sqrt{2}$.
- (c) p = e.
- (d) $p = \ln(2)$.

Questão 2

Represente os seguintes números reais em base binária:

- (a) $x_1 = 0, 1$
- (b) $x_2 = 0,0625$
- (c) $x_3 = 1, 6$

Questão 3

Aplicando o método da Bisseção, encontre uma aproximação para a raiz positiva da função: f(x) = x - 2 * sin(x), sua aproximação ξ deve ser tal que $|f(\xi)| < 10^{-2}$. Utilize uma calculadora ou um software matemático. É importante descrever cada passa do algoritmo. Esboce os gráficos de g(x) = x e h(x) = 2 * sin(x) e interprete seu resultado.

Questão 4

Utilize o método da Bisseção para determinar uma aproximação para $\sqrt{3}$. Dica: busque a raiz positiva de $f(x) = x^2 - 3$. Sua aproximação ξ , deve ser tal que $|f(\xi)| < 10^{-2}$.

Questão 5

Considere a função $f(x) = x^4 + 2x^2 - x - 3$. Mostre que cada uma das funções abaixo é função de iteração de f(x):

(a)
$$\phi_1(x) = (3 + x - 2x^2)^{1/4}$$

(b)
$$\phi_2(x) = \sqrt{\frac{x+3-x^4}{2}}$$

(c)
$$\phi_3(x) = \sqrt{\frac{x+3}{x^2+2}}$$

(d)
$$\phi_4(x) = \frac{3x^4 + 2x^2 + 3}{4x^3 + 4x - 1}$$

Considere, agora, o ponto inicial $x_0 = 1, 5$. Utilizando sua calculadora ou um software matemático, itere quatro vezes cada uma das funções de iteração mostradas acima. Para quais funções de iteração há convergência para a raiz de f(x)? Para qual a convergência para ser mais rápida?

Questão 6

Utilize o método de Newton para encontrar raízes com precisão de 10^{-3} para as seguintes equações:

1.
$$f(x) = e^x + 2^{-x} + 2\cos(x) - 6$$
, $-1 \le x \le 2$

2.
$$f(x) = \ln(x-1) + \cos(x-1)$$
, $1, 3 \le x \le 2$

3.
$$e^x - 3x^2 = 0$$
, $0 \le x \le 1$

Questão 8

Repita o exercício anterior utilizando o método da secante

Questão 9

Repita os exercícios 6 e 7 utilizando um software matemático, considerando uma precisão de 10^{-6} .