The Brattle Group

Cost-Benefit Analysis of Smart Metering and Smart Pricing

Ahmad Faruqui, Ph. D.

NARUC Annual Convention

Miami Beach, Florida

November 14, 2006

A framework for quantifying costs and benefits

- Identify and measure costs
 - ▶ Deploying advanced metering infrastructure (AMI)
 - Advanced meters
 - Two-way communication links
 - Meter data management system
 - Billing system
 - Offering dynamic pricing signals
 - Administrative costs
 - Marketing costs

Framework (concluded)

- Identify and measure benefits
 - Operational benefits of AMI
 - ▶ Demand response (DR) benefits of dynamic pricing
- Operational benefits
 - Avoided meter reading costs
 - ► Faster outage detection
 - Remotely connect/disconnect service
- DR benefits
 - See next several slides
- Develop a present value of net benefits

Quantifying DR benefits

- Primary benefits = Quantity of DR (MW) * Value of avoided MW
- Quantity of DR = kW reduction per participant * Number of participants
- Value of avoided load = Cost of peaking capacity net of energy profits
- Secondary benefits = Reduction in wholesale prices

 increased system reliability + reduced
 planning reserves + customer choice of rates

Will customers exhibit DR?

- Even a mild time-of-use (TOU) rate caused peak loads to drop by 5 % in Puget Sound
- Additional evidence is beginning to emerge from other pilots
 - ► AmerenUE, Missouri
 - Anaheim Public Utilities, California
 - ▶ BC Hydro, British Columbia, Canada
 - ► Commonwealth Edison, Illinois
 - ► Hawaiian Electric, Hawaii
 - ▶ Idaho Power, Idaho
 - ▶ Ontario, Canada
 - ► Pepco, Washington, D.C.
 - ► Public Service Electric & Gas, New Jersey

The most comprehensive evidence comes from California

- Two state commissions and three investor-owned utilities conducted a scientifically designed experiment with 2,500 residential and small commercial and industrial customers in 2003-05
- Impacts were estimated for standard time-of-use (TOU) and dynamic critical peak pricing (CPP) rates
- Customers on TOU rates dropped peak loads by 5 %, when prices doubled
- Customers on CPP rates dropped loads by 13 %, when prices quintupled
 - ▶ 30% of the customers accounted for 80% of the impact

Price responsiveness varies by customer characteristics

Enabling technologies boost the drop in critical peak loads

Dynamic prices have a substantial impact in a hot climate (Central Valley)

Dynamic prices even have an impact in a mild climate (San Francisco)

California's utilities are developing advanced metering infrastructure (AMI) business cases

- PG&E's \$1.7 billion AMI filing was unanimously approved by the CPUC in July
 - ► Almost 90% of the benefits come from operational savings
 - ▶ By 2011, the utility projects more than 500 MW of demand response if a third of its customers with central air conditioning adopt dynamic pricing tariffs
 - It is proceeding to deploy five million electric meters and four million gas meters
- SDG&E's AMI filing is currently in hearings before the CPUC
- SCE has filed a Phase I feasibility report
 - ▶ It plans to file an application next year

Can others make use of the California results?

- Magnitude of response is driven by several factors
 - Existing rate design
 - ▶ New dynamic rate design
 - Existing load shape
 - Saturation of central air conditioning
 - Weather conditions
- Once these "initial conditions" are specified, the California pricing model can be used to make preliminary forecasts of dynamic pricing impacts in other regions
- Responses may be more transferable across regions than is generally believed
 - ► In the mid-1980s, EPRI pooled data from five pricing experiments and showed that customer response patterns were consistent across California, Connecticut, North Carolina and Wisconsin

Percent drop in critical-peak load will vary with price and climate

Figure 1-2
Percent Reduction in Peak-Period Energy Use on Critical Days
Average Summer, 2003/04

Putting it all together in five easy steps

- 1: Develop a dynamic pricing rate and estimate its impact per customer
 - ▶ Ball park estimate: 10-30 % per participant
- 2: Identify the number of participants and associated marketing costs
 - ► Ball park estimate: 10 30 % of the target market
- 3: Compute aggregate DR impact
 - ▶ Ball park estimate: 1 to 9 % of peak demand
- 4: Estimate value of avoided costs
 - ▶ Ball park estimate: \$52 85 /kW-yr
- 5: Estimate the present value of benefits with the present value of costs and derive an estimate of net benefits

Additional reading

- Ahmad Faruqui, "2050: A pricing odyssey," The Electricity Journal, October 2006
- Roger Levy, "A vision of demand response: 2016," The Electricity Journal, October 2006
- Plexus Research, Inc., Deciding on Smart Meters, Edison Electric Institute, September 2006
- FERC, Demand Response and Advanced Metering, Staff Report, August 2006
- Robert Earle and Ahmad Faruqui, "Toward a new paradigm for valuing demand response," The Electricity Journal, May 2006
- US Department of Energy, Benefits of Demand Response in Electricity Markets, February 2006

Contact information

Ahmad Faruqui, Ph. D. Principal

The Brattle Group

353 Sacramento Street, Suite 1140

San Francisco, CA 94111

Voice: 415.217.1026

Fax: 415.217.1099

Cell: 925.408.0149

Email: Ahmad.Faruqui@Brattle.Com