

Welcome to STN International! Enter x:x

LOGINID: sssptal600rxa

PASSWORD:

TERMINAL (ENTER 1, 2, 3, OR ?):2

* * * * * * * * * Welcome to STN International * * * * * * * * * *

NEWS 1 Web Page URLs for STN Seminar Schedule - N. America
NEWS 2 Apr 08 "Ask CAS" for self-help around the clock
NEWS 3 Apr 09 BEILSTEIN: Reload and Implementation of a New Subject Area
NEWS 4 Apr 09 ZDB will be removed from STN
NEWS 5 Apr 19 US Patent Applications available in IFICDB, IFIPAT, and IFIUDB
NEWS 6 Apr 22 Records from IP.com available in CAPLUS, HCAPLUS, and ZCAPLUS
NEWS 7 Apr 22 BIOSIS Gene Names now available in TOXCENTER
NEWS 8 Apr 22 Federal Research in Progress (FEDRIP) now available
NEWS 9 Jun 03 New e-mail delivery for search results now available
NEWS 10 Jun 10 MEDLINE Reload
NEWS 11 Jun 10 PCTFULL has been reloaded
NEWS 12 Jul 02 FOREGE no longer contains STANDARDS file segment
NEWS 13 Jul 22 USAN to be reloaded July 28, 2002;
 saved answer sets no longer valid
NEWS 14 Jul 29 Enhanced polymer searching in REGISTRY
NEWS 15 Jul 30 NETFIRST to be removed from STN
NEWS 16 Aug 08 CANCERLIT reload
NEWS 17 Aug 08 PHARMAMarketLetter(PHARMAML) - new on STN
NEWS 18 Aug 08 NTIS has been reloaded and enhanced
NEWS 19 Aug 19 Aquatic Toxicity Information Retrieval (AQUIRE)
 now available on STN
NEWS 20 Aug 19 IFIPAT, IFICDB, and IFIUDB have been reloaded
NEWS 21 Aug 19 The MEDLINE file segment of TOXCENTER has been reloaded
NEWS 22 Aug 26 Sequence searching in REGISTRY enhanced
NEWS 23 Sep 03 JAPIO has been reloaded and enhanced

NEWS EXPRESS February 1st CURRENT WINDOWS VERSION IS V6.0d,
 CURRENT MACINTOSH VERSION IS V6.0a(ENG) AND V6.0Ja(JP),
 AND CURRENT DISCOVER FILE IS DATED 05 FEBRUARY 2002

NEWS HOURS STN Operating Hours Plus Help Desk Availability
NEWS INTER General Internet Information
NEWS LOGIN Welcome Banner and News Items
NEWS PHONE Direct Dial and Telecommunication Network Access to STN
NEWS WWW CAS World Wide Web Site (general information)

Enter NEWS followed by the item number or name to see news on that specific topic.

All use of STN is subject to the provisions of the STN Customer agreement. Please note that this agreement limits use to scientific research. Use for software development or design or implementation of commercial gateways or other similar uses is prohibited and may result in loss of user privileges and other penalties.

* * * * * STN Columbus * * * * *

FILE 'HOME' ENTERED AT 11:46:17 ON 09 SEP 2002

=> fil casreact	SINCE FILE	TOTAL
COST IN U.S. DOLLARS	ENTRY	SESSION
FULL ESTIMATED COST	0.21	0.21

FILE 'CASREACT' ENTERED AT 11:46:28 ON 09 SEP 2002
USE IS SUBJECT TO THE TERMS OF YOUR CUSTOMER AGREEMENT
COPYRIGHT (C) 2002 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications.

FILE CONTENT: 1974 - 8 Sep 2002 VOL 137 ISS 10

Some records from 1974 to 1991 are derived from the ZIC/VINITI data file and provided by InfoChem.

This file contains CAS Registry Numbers for easy and accurate substance identification.

Crossover limits have been increased. See HELP RNCROSSOVER for details.

Structure search limits have been raised. See HELP SLIMIT for the new, higher limits.

=>
Uploading 09961347b.str

L1 STRUCTURE UPLOADED

=> d
L1 HAS NO ANSWERS
L1 STR

Structure attributes must be viewed using STN Express query preparation.

=> s 11
SAMPLE SEARCH INITIATED 11:46:46 FILE 'CASREACT'
SCREENING COMPLETE - 13472 REACTIONS TO VERIFY FROM 672 DOCUMENTS

37.1% DONE 5000 VERIFIED 1639 HIT RXNS 50 DOCS

Examiner Anderson 703-605-1157

INCOMPLETE SEARCH (SYSTEM LIMIT EXCEEDED)
SEARCH TIME: 00.00.02

FULL FILE PROJECTIONS: ONLINE **COMPLETE**
BATCH **COMPLETE**
PROJECTED VERIFICATIONS: 262630 TO 276250
PROJECTED ANSWERS: 11722 TO 14748

L2 50 SEA SSS SAM L1 (1639 REACTIONS)

=> s 11 full
FULL SEARCH INITIATED 11:46:52 FILE 'CASREACT'
SCREENING COMPLETE - 242717 REACTIONS TO VERIFY FROM 12870 DOCUMENTS

89.1% DONE 216373 VERIFIED 211045 HIT RXNS (1 INCOMP) 11695 DOCS
98.9% DONE 240069 VERIFIED 234234 HIT RXNS (1 INCOMP) 12306 DOCS
100.0% DONE 242717 VERIFIED 236874 HIT RXNS (1 INCOMP) 12386 DOCS
SEARCH TIME: 00.00.44

L3 12386 SEA SSS FUL L1 (236874 REACTIONS)

=>
Uploading 09961347b.str

L4 STRUCTURE UPLOADED

=> d
L4 HAS NO ANSWERS
L4 STR

G1 O, S, Po, Se, Te

Structure attributes must be viewed using STN Express query preparation.

=> s 14
SAMPLE SEARCH INITIATED 11:47:49 FILE 'CASREACT'
SCREENING COMPLETE - 1220 REACTIONS TO VERIFY FROM 222 DOCUMENTS

100.0% DONE 1220 VERIFIED 230 HIT RXNS 50 DOCS
INCOMPLETE SEARCH (SYSTEM LIMIT EXCEEDED)
SEARCH TIME: 00.00.01

FULL FILE PROJECTIONS: ONLINE **COMPLETE**
BATCH **COMPLETE**
PROJECTED VERIFICATIONS: 22309 TO 26491
PROJECTED ANSWERS: 3390 TO 5130

L5 50 SEA SSS SAM L4 (230 REACTIONS)

Examiner Anderson 703-605-1157

```
=> s 14 full
FULL SEARCH INITIATED 11:47:54 FILE 'CASREACT'
SCREENING COMPLETE - 25432 REACTIONS TO VERIFY FROM 4279 DOCUMENTS

100.0% DONE 25432 VERIFIED 24308 HIT RXNS 4039 DOCS
SEARCH TIME: 00.00.03

L6 4039 SEA SSS FUL L4 ( 24308 REACTIONS)

=> s 16 and pyridine
    16818 PYRIDINE
    2730 PYRIDINES
    17675 PYRIDINE
        (PYRIDINE OR PYRIDINES)
L7 289 L6 AND PYRIDINE

=> s 17 and benzyl trichloromethyl sulfide
    20819 BENZYL
    2 BENZYLS
    20819 BENZYL
        (BENZYL OR BENZYLS)
    886 TRICHLOROMETHYL
    8490 SULFIDE
    3602 SULFIDES
    9325 SULFIDE
        (SULFIDE OR SULFIDES)
    1 BENZYL TRICHLOROMETHYL SULFIDE
        (BENZYL(W)TRICHLOROMETHYL(W)SULFIDE)
L8 1 L7 AND BENZYL TRICHLOROMETHYL SULFIDE

=> d
```

L8 ANSWER 1 OF 1 CASREACT COPYRIGHT 2002 ACS

RX(1) OF 11
Cl₃C-S-CH₂-Ph Olah's reagent F₃C-S-CH₂-Ph
95%

REF: Eur. Pat. Appl., 729930, 04 Sep 1996
NOTE: 0.degree. to room temp.

=> s 16 and benzyl trichloromethyl sulfide
20819 BENZYL
2 BENZYLS
20819 BENZYL
(BENZYL OR BENZYLS)
886 TRICHLOROMETHYL
8490 SULFIDE
3602 SULFIDES
9325 SULFIDE
(SULFIDE OR SULFIDES)
1 BENZYL TRICHLOROMETHYL SULFIDE
(BENZYL(W)TRICHLOROMETHYL(W)SULFIDE)
L9 1 L6 AND BENZYL TRICHLOROMETHYL SULFIDE

=> s 17 and HF
1858 HF
10 HFS
1868 HF
(HF OR HFS)
L10 10 L7 AND HF

=> d 110 1-10

RX(2) OF 52

RX(1) OF 36

REF: U.S., 6316636, 13 Nov 2001

REF: Journal of Labelled Compounds & Radiopharmaceuticals, 44(12), 815-829, 2001
NOTE: KEY STEP

RX(6) OF 61

REF: Journal of Combinatorial Chemistry, 3(3), 312-318, 2001
NOTE: resin supported reaction

RX(7) OF 15

REF: Bulletin of the Chemical Society of Japan, 73(2), 471-484, 2000

NOTE: ANALOGUES HAVE SIMILAR REACTION

L10 ANSWER 5 OF 10 CASREACT COPYRIGHT 2002 ACS

RX(2) OF 3

REF: Jpn. Kokai Tokkyo Koho, 11049759, 23 Feb 1999, Heisei

L10 ANSWER 6 OF 10 CASREACT COPYRIGHT 2002 ACS

RX(1) OF 9

REF: Chemical Communications (Cambridge), (3), 309-310; 1997

L10 ANSWER 7 OF 10 CASREACT COPYRIGHT 2002 ACS

RX(1) OF 11

95%

REF: Eur. Pat. Appl., 729930, 04 Sep 1996
NOTE: 0.degree. to room temp.

L10 ANSWER 8 OF 10 CASREACT COPYRIGHT 2002 ACS

RX(2) OF 13

Cl₃C-O-CHF₂REF: Eur. Pat. Appl., 562858, 29 Sep 1993
NOTE: 1torr, 50.degree. photochem., vapor phase, trichloro product formation inhibited by oxygen

=> s 16 and pyridine
 16818 PYRIDINE
 2730 PYRIDINES
 17675 PYRIDINE
 (PYRIDINE OR PYRIDINES)
L11 289 L6 AND PYRIDINE

=> s 111 and HF
 1858 HF
 10 HFS
 1868 HF
 (HF OR HFS)
L12 10 L11 AND HF

=> s 16 and benzyl trichloromethyl sulfide
 20819 BENZYL
 2 BENZYL
 20819 BENZYL
 (BENZYL OR BENZYL)
 886 TRICHLOROMETHYL
 8490 SULFIDE
 3602 SULFIDES
 9325 SULFIDE
 (SULFIDE OR SULFIDES)
 1 BENZYL TRICHLOROMETHYL SULFIDE
 (BENZYL(W)TRICHLOROMETHYL(W)SULFIDE)
L13 1 L6 AND BENZYL TRICHLOROMETHYL SULFIDE

=> s 16 and HF
 1858 HF
 10 HFS
 1868 HF
 (HF OR HFS)
L14 59 L6 AND HF

=> s 16 and peroxide
 4068 PEROXIDE
 789 PEROXIDES
 4303 PEROXIDE
 (PEROXIDE OR PEROXIDES)
L15 40 L6 AND PEROXIDE

=> d 114 1-59

REF: Journal of Combinatorial Chemistry, 3(3), 312-318; 2001
NOTE: resin supported reaction

REF: Journal of Fluorine Chemistry, 106(1), 25-34; 2000
NOTE: author caution of exothermic reaction

L14 ANSWER 7 OF 59 CASREACT COPYRIGHT 2002 ACS

L14 ANSWER 8 OF 59 CASREACT COPYRIGHT 2002 ACS

REF: Journal of Fluorine Chemistry, 103(1), 81-84; 2000
NOTE: alternate higher-yield procedure shown

REF: Bulletin of the Chemical Society of Japan, 73(2), 471-484; 2000
NOTE: ANALOGUES HAVE SIMILAR REACTION

L14 ANSWER 9 OF 59 CASREACT COPYRIGHT 2002 ACS
 RX(1) OF 2 - REACTION DIAGRAM NOT AVAILABLE

L14 ANSWER 10 OF 59 CASREACT COPYRIGHT 2002 ACS

L14 ANSWER 11 OF 59 CASREACT COPYRIGHT 2002 ACS

L14 ANSWER 12 OF 59 CASREACT COPYRIGHT 2002 ACS

1. $\text{AgO}3\text{SCF}_3$, THF
2. Hexane

$\text{Me-(CH}_2)_4-\text{Me}$ +
84%

RX(1) OF 9

REF: Journal of Fluorine Chemistry, 91(1), 9-12, 1998
NOTE: electrochem.

RX(1) OF 1

84%

REF: Chemical Communications (Cambridge), (20), 2263-2264; 1998

RX(1) OF 1

1. COF_2 CF_2

(step 1)

REF: Journal of Organic Chemistry, 62(18), 6160-6163; 1997
NOTE: FINAL STAGES ARE DECARBOXYLATION OF INTERMEDIATE PROPIONYL FLUORIDE

RX(1) OF 9

REF: Chemical Communications (Cambridge), (3), 309-310; 1997

L14 ANSWER 17 OF 59 CASREACT COPYRIGHT 2002 ACS

RX(4) OF 8

L14 ANSWER 18 OF 59 CASREACT COPYRIGHT 2002 ACS

RX(1) OF 11

L14 ANSWER 19 OF 59 CASREACT COPYRIGHT 2002 ACS

RX(5) OF 8

L14 ANSWER 20 OF 59 CASREACT COPYRIGHT 2002 ACS

RX(2) OF 3

L14 ANSWER 21 OF 59 CASREACT COPYRIGHT 2002 ACS

RX(1) OF 1

REF: Ger., 4332383, 27 Apr 1995

L14 ANSWER 22 OF 59 CASREACT COPYRIGHT 2002 ACS

RX(1) OF 10

REF: U.S., 5382704, 17 Jan 1995

NOTE: METAL TUBE, 150 DEGREES. FOR 8 H

L14 ANSWER 23 OF 59 CASREACT COPYRIGHT 2002 ACS

RX(3) OF 5

REF: PCT Int. Appl., 9504020, 09 Feb 1995

L14 ANSWER 24 OF 59 CASREACT COPYRIGHT 2002 ACS

RX(1) OF 1

REF: Jpn. Kokai Tokkyo Koho, 06298694, 25 Oct 1994, Heisei

L14 ANSWER 29 OF 59 CASREACT COPYRIGHT 2002 ACS

RX(1) OF 21

REF: J. Labelled Compd. Radiopharm., 33(6), 483-91, 1993

L14 ANSWER 30 OF 59 CASREACT COPYRIGHT 2002 ACS

RX(5) OF 20

REF: U.S., 5205914, 27 Apr 1993

NOTE: photochem.

L14 ANSWER 31 OF 59 CASREACT COPYRIGHT 2002 ACS

RX(1) OF 5

REF: U.S., 5196600, 23 Mar 1993

NOTE: photochem., product ratio? on reaction conditions, gas phase

L14 ANSWER 32 OF 59 CASREACT COPYRIGHT 2002 ACS

RX(1) OF 3

REF: Jpn. Kokai Tokkyo Koho, 05000988, 08 Jan 1993, Heisei

L14 ANSWER 33 OF 59 CASREACT COPYRIGHT 2002 ACS

REF: Zh. Org. Khim., 28(5), 892-900; 1992

L14 ANSWER 34 OF 59 CASREACT COPYRIGHT 2002 ACS

REF: Inorg. Chem., 31(20), 4147-50; 1992

L14 ANSWER 35 OF 59 CASREACT COPYRIGHT 2002 ACS

REF: Tetrahedron Lett., 33(29), 4173-6; 1992

L14 ANSWER 36 OF 59 CASREACT COPYRIGHT 2002 ACS

REF: Inorg. Chem., 31(2), 225-7; 1992

L14 ANSWER 37 OF 59 CASREACT COPYRIGHT 2002 ACS

RX(2) OF 2

REF: Fr. Demande, 2647106, 23 Nov 1990

L14 ANSWER 38 OF 59 CASREACT COPYRIGHT 2002 ACS

RX(2) OF 3

REF: J. Fluorine Chem., 49(2), 225-9; 1990

L14 ANSWER 39 OF 59 CASREACT COPYRIGHT 2002 ACS

RX(1) OF 3

REF: Ger. (East), 274820, 03 Jan 1990

L14 ANSWER 40 OF 59 CASREACT COPYRIGHT 2002 ACS

RX(1) OF 6

REF: J. Fluorine Chem., 44(2), 309-28; 1989

L14 ANSWER 41 OF 59 CASREACT COPYRIGHT 2002 ACS

L14 ANSWER 42 OF 59 CASREACT COPYRIGHT 2002 ACS
RX(18) OF 25 - REACTION DIAGRAM NOT AVAILABLE

RX(2) OF 233

REF: Carbohydr. Res., 187(1), 67-92; 1989

L14 ANSWER 43 OF 59 CASREACT COPYRIGHT 2002 ACS

RX(1) OF 1

REF: Eur. Pat. Appl., 196529, 08 Oct 1986

L14 ANSWER 44 OF 59 CASREACT COPYRIGHT 2002 ACS

RX(1) OF 52

REF: J. Fluorine Chem., 40(2-3), 365-73; 1988

RX(10) OF 26

REF: J. Org. Chem., 54(7), 1664-8, 1989

RX(3) OF 10

REF: Carbohydr. Res., 166(2), 309-13, 1987

RX(1) OF 1

REF: Ger. Offen., 3602680, 06 Aug 1987

RX(1) OF 14

REF: Bull. Soc. Chim. Fr., (6), 885-90, 1986

L14 ANSWER 49 OF 59 CASREACT COPYRIGHT 2002 ACS

RX(14) OF 51

REF: J. Am. Chem. Soc., 109(7), 2049-56, 1987

L14 ANSWER 50 OF 59 CASREACT COPYRIGHT 2002 ACS

RX(5) OF 25

REF: Chem. Ber., 120(3), 429-33, 1987

L14 ANSWER 51 OF 59 CASREACT COPYRIGHT 2002 ACS

RX(2) OF 7

REF: Ger. Offen., 3341515, 30 May 1985

L14 ANSWER 52 OF 59 CASREACT COPYRIGHT 2002 ACS

RX(3) OF 9

REF: Ger. Offen., 3341516, 30 May 1985

L14 ANSWER 53 OF 59 CASREACT COPYRIGHT 2002 ACS

RX(1) OF 13

REF: Z. Naturforsch., B: Anorg. Chem., Org. Chem., 39B(7), 897-902; 1984

L14 ANSWER 54 OF 59 CASREACT COPYRIGHT 2002 ACS

RX(1) OF 4

REF: Ger. Offen., 3304203, 09 Aug 1984

L14 ANSWER 55 OF 59 CASREACT COPYRIGHT 2002 ACS

RX(3) OF 3

REF: Eur. Pat. Appl., 110690, 13 Jun 1984

L14 ANSWER 56 OF 59 CASREACT COPYRIGHT 2002 ACS

RX(1) OF 1

REF: Ger. Offen., 3232624, 22 Mar 1984

L14 ANSWER 57 OF 59 CASREACT COPYRIGHT 2002 ACS

RX(1) OF 1

REF: Ger. Offen., 3128444, 03 Feb 1983

L14 ANSWER 58 OF 59 CASREACT COPYRIGHT 2002 ACS

RX(26) OF 82

REF: J. Org. Chem., 45(4), 672-8, 1980

L14 ANSWER 59 OF 59 CASREACT COPYRIGHT 2002 ACS

RX(1) OF 9

REF: J. Org. Chem., 44(16), 2907-10, 1979

09961347 Page 26 09/09/2002

=> d 115 1-40

Examiner Anderson 703-605-1157

RX(10) OF 11

REF: Journal of Organic Chemistry, 66(20), 6745-6755, 2001

RX(2) OF 4

REF: Jpn. Kokai Tokkyo Koho, 2001220376, 14 Aug 2001

NOTE: adding Br2 over 5 h at 60-70 degree, 65-75 degree, for 10 h

REF: PCT Int. Appl., 2001030760, 03 May 2001

RX(1) OF 4

RX(1) OF 4

REF: Comptes Rendus de l'Academie des Sciences, Serie IIc: Chimie, 3(10), 811-819, 2000

L15 ANSWER 5 OF 40 CASREACT COPYRIGHT 2002 ACS

REF: Journal of Organic Chemistry, 65(24), 8317-8325; 2000
NOTE: regioselective

L15 ANSWER 6 OF 40 CASREACT COPYRIGHT 2002 ACS

RX(1) OF 1

REF: Chemical Communications (Cambridge), (17), 1681-1682; 2000
NOTE: N-Me analog also used; other oxidn. agents gave no result

L15 ANSWER 7 OF 40 CASREACT COPYRIGHT 2002 ACS

RX(2) OF 3

REF: Chemical Communications (Cambridge), (17), 1671-1672; 1999
NOTE: gas-phase reactants over solid catalyst in sealed tube

L15 ANSWER 8 OF 40 CASREACT COPYRIGHT 2002 ACS

RX(1) OF 34

REF: Tetrahedron, 55(26), 8065-8074; 1999
NOTE: stereoselective

RX(3) OF 4

REF: Organometallics, 17(23), 4976-4982, 1998

RX(2) OF 7

REF: Journal of the Chemical Society, Perkin Transactions 1: Organic and Bio-Organic Chemistry, (10), 1643-1656, 1998

RX(1) OF 1

REF: PCT Int. Appl., 9700859, 09 Jan 1997

RX(6) OF 6

REF: Eur. Pat. Appl., 700885, 13 Mar 1996

NOTE: one-pot reaction

L15 ANSWER 13 OF 40 CASREACT COPYRIGHT 2002 ACS

1. KH, (CH₂OMe)₂,
Hexane
2. PhN(SO₂CF₃)₂, THF

REF: Journal of Medicinal Chemistry, 39(9), 1885-97, 1996

L15 ANSWER 14 OF 40 CASREACT COPYRIGHT 2002 ACS

RX(5) OF 88

REF: PCT Int. Appl., 9513284, 18 May 1995

L15 ANSWER 15 OF 40 CASREACT COPYRIGHT 2002 ACS

REF: Izvestiya Akademii Nauk, Seriya Khimicheskaya, (10), 1789-92,
1994
NOTE: THERMAL

L15 ANSWER 16 OF 40 CASREACT COPYRIGHT 2002 ACS

REF: Tetrahedron Letters, 35(43), 8015-18, 1994

REF: Inorganic Chemistry, 33(24), 5463-70; 1994

2 HCl

REF: Journal of Fluorine Chemistry, 68(1), 63-6; 1994

NOTE: stereoselective

HCl
48%

REF: Jpn. Kokai Tokkyo Koho, 05170689, 09 Jul 1993, Heisei

NOTE: 40.degree.

REF: J. Org. Chem., 58(7), 1762-5; 1993

L15 ANSWER 21 OF 40 CASREACT COPYRIGHT 2002 ACS

$$\text{RX(4) OF 8} \\ \text{S-C=S} \xrightarrow{\text{SF}_4, \text{HF, C12}} \text{F}_3\text{C-S-S-CF}_3 + \text{F}_3\text{C-S-S-CF}_3 \\ 90\% \qquad \qquad \qquad 90\% \\ \text{REF: Zh. Org. Khim., 28(5), 892-900; 1992}$$

REF: Zh. Org. Khim., 28(5), 892-900; 1992

L15 ANSWER 22 OF 40 CASREACT COPYRIGHT 2002 ACS

RX (6) OF 69

BEE: J. Org. Chem. 57(20) 5301-12; 1992

115 ANSWER 23 OF 40 CASREACT COPYRIGHT 2002 ACS

115 ANSWER 21 OF 40 CASREACT COPYRIGHT 2002 ACS

$$\text{RX(1) OF 7} \\ \text{HO}-\overset{\text{O}}{\underset{\text{S}-\text{CF}_3}{\text{S}}} + \text{EtO}-\overset{\text{O}}{\text{C}-\text{CH}_2-\text{CH}_2-\text{S}-\text{S}-\text{CH}_2-\text{CH}_2-\overset{\text{O}}{\text{C}-\text{EtO}}}$$

Na

C:17524-05-9, t-BuOOH,
Water, MeCN → EtO-C(=O)-CH₂-CH₂-S-CF₃
100%

REF: Eur. Pat. Appl., 458684, 27 Nov 1991

$$\text{RX(4) OF 16}$$

Allyl alcohol

REF: J. Am. Chem. Soc., 113(6), 2242-6; 1991

RX(5) OF 5

REF: J. Am. Chem. Soc., 113(5), 1730-6; 1991
NOTE: photochem.

RX(1) OF 2

RX(8) OF 18

REF: Carbohydr. Res., 200, 377-89, 1990

RX(1) OF 7

REF: J. Fluorine Chem., 47(1), 131-6; 1990
NOTE: TAUTOMERIC REACTANT ALSO PRESENT

L15 ANSWER 29 OF 40 CASREACT COPYRIGHT 2002 ACS

RX(1) OF 1

REF: Ger. Offen., 3712318, 20 Oct 1988

L15 ANSWER 30 OF 40 CASREACT COPYRIGHT 2002 ACS

RX(1) OF 1

REF: Bul. Stiint. Teh. Inst. Politeh. "Traian Vuia" Timisoara, Ser. Chim., 32(1-2), 53-8; 1987

NOTE: photochem.

L15 ANSWER 31 OF 40 CASREACT COPYRIGHT 2002 ACS

RX(18) OF 393

REF: J. Org. Chem., 53(13), 3098-104; 1988

L15 ANSWER 32 OF 40 CASREACT COPYRIGHT 2002 ACS

RX(1) OF 2

REF: J. Fluorine Chem., 37(1), 47-51; 1987
NOTE: gas phase

L15 ANSWER 33 OF 40 CASREACT COPYRIGHT 2002 ACS

RX(54) OF 72

REF: J. Chem. Soc., Perkin Trans. 1, (12), 2081-90; 1986
NOTE: photochem.

L15 ANSWER 34 OF 40 CASREACT COPYRIGHT 2002 ACS

RX(18) OF 314

REF: J. Org. Chem., 50(19), 3462-71; 1985

L15 ANSWER 35 OF 40 CASREACT COPYRIGHT 2002 ACS

RX(1) OF 13

REF: Angew. Chem., 97(1), 48; 1985

L15 ANSWER 36 OF 40 CASREACT COPYRIGHT 2002 ACS

RX(1) OF 3

REF: Zh. Vses. Khim. O-va., 29(1), 113-14; 1984

L15 ANSWER 37 OF 40 CASREACT COPYRIGHT 2002 ACS

REF: J. Org. Chem., 48(25), 4844-7; 1983

L15 ANSWER 38 OF 40 CASREACT COPYRIGHT 2002 ACS

REF: J. Fluorine Chem., 20(5), 695-8; 1982

L15 ANSWER 39 OF 40 CASREACT COPYRIGHT 2002 ACS

REF: Khimiya i Tekhnol. Elementoorgan. Poluproduktov. i Polimerov, Volgograd, 92-7; 1981

L15 ANSWER 40 OF 40 CASREACT COPYRIGHT 2002 ACS

REF: Zh. Org. Khim., 17(8), 1652-7; 1981

=> fil caplus	SINCE FILE	TOTAL
COST IN U.S. DOLLARS	ENTRY	SESSION
FULL ESTIMATED COST	464.31	464.52

FILE 'CAPLUS' ENTERED AT 11:55:11 ON 09 SEP 2002
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2002 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 9 Sep 2002 VOL 137 ISS 11
FILE LAST UPDATED: 8 Sep 2002 (20020908/ED)

This file contains CAS Registry Numbers for easy and accurate substance identification.

CAS roles have been modified effective December 16, 2001. Please check your SDI profiles to see if they need to be revised. For information on CAS roles, enter HELP ROLES at an arrow prompt or use the CAS Roles thesaurus (/RL field) in this file.

=> s fluorocarbon
12055 FLUOROCARBON
3750 FLUOROCARBONS
L16 13705 FLUOROCARBON
(FLUOROCARBON OR FLUOROCARBONS)

=> s l16 and process
1708883 PROCESS
1096956 PROCESSES
2519833 PROCESS
(PROCESS OR PROCESSES)
L17 2427 L16 AND PROCESS

=> s l17 and peroxide or halogen
159105 PEROXIDE
37803 PEROXIDES
174663 PEROXIDE
(PEROXIDE OR PEROXIDES)
92775 HALOGEN
17591 HALOGENS
102322 HALOGEN
(HALOGEN OR HALOGENS)
L18 102346 L17 AND PEROXIDE OR HALOGEN

=> s 117 and (peroxide or halogen)
159105 PEROXIDE
37803 PEROXIDES
174663 PEROXIDE
(PEROXIDE OR PEROXIDES)
92775 HALOGEN
17591 HALOGENS
102322 HALOGEN
(HALOGEN OR HALOGENS)

L19 72 L17 AND (PEROXIDE OR HALOGEN)

=> s 119 and benzyl trichloromethyl sulfide

120082 BENZYL
43 BENZYLS
120096 BENZYL
(BENZYL OR BENZYLS)
5762 TRICHLOROMETHYL
2 TRICHLOROMETHYLS
5763 TRICHLOROMETHYL
(TRICHLOROMETHYL OR TRICHLOROMETHYLS)
255284 SULFIDE
71298 SULFIDES
284092 SULFIDE
(SULFIDE OR SULFIDES)
1 BENZYL TRICHLOROMETHYL SULFIDE
(BENZYL(W) TRICHLOROMETHYL(W) SULFIDE)

L20 0 L19 AND BENZYL TRICHLOROMETHYL SULFIDE

=> s 119 and sulfur

274389 SULFUR
434 SULFURS
274609 SULFUR
(SULFUR OR SULFURS)

L21 12 L19 AND SULFUR

=> d ibib abs hitstr 1-12

L21 ANSWER 1 OF 12 CAPLUS COPYRIGHT 2002 ACS
 ACCESSION NUMBER: 2002:271049 CAPLUS
 DOCUMENT NUMBER: 136:258291
 TITLE: Etching with halogen-containing gas mixtures
 for removal of rhodium and/or iridium films
 INVENTOR(S): Vaartstra, Brian A.
 PATENT ASSIGNEE(S): Micron Technology, Inc., USA
 SOURCE: U.S., 9 pp.
 CODEN: USXXAM
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 6368518	B1	20020409	US 1999-382506	19990825

AB The Ir, Rh, or Ir-Rh alloy films on metal or semiconductor substrates are removed by etching with gas or plasma contg. halogen (or halide vapor) and preferably an auxiliary gas. The etching gas mixt. typically contains: (a) halogen, halide, and optionally fluorocarbon or chlorocarbon vapors; and (b) the auxiliary gas, typically CO or NO_x; and (c) optional O-contg. gas, esp. O₂. The process is suitable for pattern etching of the Ir or Rh films precoated with a resist layer. The typical gas mixt. for etching of Ir electrode film contains F₂, CO, and Ar.

REFERENCE COUNT: 15 THERE ARE 15 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L21 ANSWER 2 OF 12 CAPLUS COPYRIGHT 2002 ACS
 ACCESSION NUMBER: 2001:614312 CAPLUS
 DOCUMENT NUMBER: 135:161183
 TITLE: Method for planarizing polysilicon layer by etching with oxygen- and halogen-based gas mixture
 INVENTOR(S): Lin, Chingfu
 PATENT ASSIGNEE(S): Taiwan Semiconductor Manufacturing Co., Ltd., Taiwan
 SOURCE: U.S., 5 pp.
 CODEN: USXXAM
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 6277741	B1	20010821	US 1999-282052	19990329

PRIORITY APPLN. INFO.: TW 1999-88103215AA 19990303
 AB A method for planarizing a polysilicon layer is described. A polysilicon layer is etched with an O-based gas and a halogen-based gas. The O-based gas comprises an N oxide gas. The N oxide gas includes NO, NO₂, N₂O, or the combination thereof. The halogen-based gas includes a F, Cl, Br, I, NF₃, SF₆, Cl₂, HCl, SiCl₄, fluorocarbon, or a combination thereof. The fluorocarbon includes CF₄, CHF₃, CH₂F₂, CH₃F, or the like.

REFERENCE COUNT: 6 THERE ARE 6 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L21 ANSWER 3 OF 12 CAPLUS COPYRIGHT 2002 ACS
 ACCESSION NUMBER: 2001:214947 CAPLUS
 DOCUMENT NUMBER: 134:256151
 TITLE: Decomposition treatment agent and decomposition method for organic halogen compounds.
 INVENTOR(S): Furuta, Takyuki; Murakami, Tatsuo; Aitou, Shigeru; Akatsuwa, Yoshimasa; Takeuchi, Akihiro
 PATENT ASSIGNEE(S): Ueda Sekkai Seizo K. K., Japan; Chubu Electric Power Co., Inc.
 SOURCE: Jpn. Kokai Tokkyo Koho, 10 pp.
 CODEN: JKXXAF
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 2001079344	A2	20010327	JP 1999-262600	19990916

AB The org. halogen decomprn. agents contain magnesium oxide at >50 wt. % or magnesium oxide and calcium oxide at >50 wt. % in which the mol. ratio of CaO/CaO+MgO is >0.67. The granular agents do not melt and form lumpy masses when in contact with org. halogen decomprn. at high temp. (800-1400.degree.).

L21 ANSWER 4 OF 12 CAPLUS COPYRIGHT 2002 ACS
 ACCESSION NUMBER: 2001:101447 CAPLUS
 DOCUMENT NUMBER: 134:140485
 TITLE: Sidewall polymer forming gas additives for plasma etching processes in semiconductor device fabrication
 INVENTOR(S): Williams, Raney; Chinn, Jeffrey; Trevor, Jitske; Lill, Thorsten B.; Nallan, Padmapani; Varga, Tamas; Mace, Herve
 PATENT ASSIGNEE(S): Applied Materials, Inc., USA
 SOURCE: PCT Int'l. Appl., 32 pp.
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2001009934	AI	20010208	WO 2000-US21456	20000803

W: JP, KR
 RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE
 EP 1208588 AI 20020529 EP 2000-950996 20000803
 R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL
 PRIORITY APPLN. INFO.: US 1999-366509 A 19990803
 WO 2000-US21456 W 20000803
 AB A process of reducing crit. dimension (CD) microloading in dense and isolated regions of etched features of Si-contg. material on a substrate uses a plasma of an etchant gas and an additive gas. In one version, the etchant gas comprises halogen species absent F, and the additive gas comprises F species and C species, or H species and C species.

REFERENCE COUNT: 11 THERE ARE 11 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L21 ANSWER 5 OF 12 CAPLUS COPYRIGHT 2002 ACS
 ACCESSION NUMBER: 2000:540835 CAPLUS
 DOCUMENT NUMBER: 123:139536
 TITLE: Method and apparatus for suppressing greenhouse effect gases
 INVENTOR(S): Shoji, Yuichi; Unoki, Kazuo; Nagayama, Kenichi
 PATENT ASSIGNEE(S): Toshiba Corp., Japan
 SOURCE: Jpn. Kokai Tokkyo Koho, 8 pp.
 CODEN: JOKKAF
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 2000218129	A2	20000808	JP 1999-22284	19990129

AB Emission of CO₂ gas generated during treatment of usable resources such as fossil fuels, combustible wastes, and the like in a molten salt furnace is suppressed by utilizing CO₂ for synthesis of MeOH or storing CO₂ to be utilized later. Alternatively, greenhouse effect gases, e.g. CH₄, NO₂, fluorocarbons, SFC halogen-contg. gases, and their liqs., can be detoxicated by treating them in a molten salt reactor. The app. for suppressing greenhouse effect gases comprises a molten salt reactor into which the greenhouse effect gases and acidic gases are introduced, a filtration app. for filtering insol. components produced in the reactor, and a molten salt electrolytic regenerator for regenerating the salts in the filtered liq. Another app. is also claimed. CO₂ is utilized for MeOH synthesis or as pure CO₂ in a closed system and greenhouse effect gases besides CO₂ are detoxicated and decompd. with a miniaturized app.

L21 ANSWER 6 OF 12 CAPLUS COPYRIGHT 2002 ACS
 ACCESSION NUMBER: 1997:214996 CAPLUS
 DOCUMENT NUMBER: 126:334853
 TITLE: Ion/surface reactions, surface-induced dissociation and surface modification resulting from hyperthermal collisions of OCNCO⁺, OCNCS⁺, (CH₃)2SiNCO⁺, and (CH₃)2SiNCS⁺ with a fluorinated self-assembled monolayer surface
 AUTHOR(S): Miller, S. A.; Luo, H.; Jiang, X.; Rohrs, H. W.; Cooks, R. G.
 CORPORATE SOURCE: Department of Chemistry, Purdue University, West Lafayette, USA
 SOURCE: International Journal of Mass Spectrometry and Ion Processes (1997), 160(1-3), 83-105
 CODEN: IJMPDN; ISSN: 0168-1176
 PUBLISHER: Elsevier
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 AB Low-energy (10-90 eV) collisions of the pseudohalogen-contg. ions OCNCO⁺ (1), OCNCS⁺ (2), (CH₃)2SiNCO⁺ (3), and (CH₃)2SiNCS⁺ (4) with fluorinated self-assembled (F-SAM) monolayer surfaces lead to surface-induced dissociation (SID) and to a variety of ion/surface reactions. The lowest energy fragmentation process in both OC-NCO⁺ and OC-NCS⁺ is C-N bond cleavage but the strength of these bonds is significantly different. They are estd. from surface-induced dissociation data taken as a function of collision energy (energy resolved mass spectra) to be 4 and 3 eV, resp. The silyl ions, (3) and (4), preferentially fragment by Si-C bond cleavage and dissociate more readily than (1) and (2). Other SID processes also occur by simple cleavage of the various strong bonds in these ions and charge retention by the sulfur in preference to oxygen is evident in the isothiocyanate spectra. The collision energy dependence of the scattered ion spectra display the competition between elastic scattering, dissociation, reaction, and surface sputtering. The extent of sputtering increases with collision energy and is greater in (1) and (2) than it is in the silicon-contg. ions (3) and (4), and the implications of this result for the ionization energy of the radicals corresponding to (1)-(4) are addressed. On the other hand, OCNCO⁺ and OCNCS⁺ are less reactive than their silyl counterparts, and data suggest that the obd. reactions do not proceed by charge exchange but instead by a direct reaction mechanism. The reaction products in the two pairs of ions (e.g. FCO⁺ from (1), FCS⁺ from (2), vs. SiF⁺ and SiH2F⁺ from (3) and (4)) are notably different, consistent with the differences in the SID behavior and showing that the major reactive site in (3) and (4) is the silicon atom. Comparisons between the isocyanates and isothiocyanates show that the NCS group confers much greater reactivity than the NCO group within each pair of projectile ions. Analogies are found in the ion/surface reactions of the halogens and pseudohalogens, including the apparent displacement of fluorine in the F-SAM by NCO and NCS groups suggested by the scattered ions at m/z 73 (OCNCF²⁺), m/z 64 (NCF²⁺), and m/z 45 (NCF⁺). Evidence that a pseudohalogen group exchanges with a fluorine from the surface is also found in the presence of FCO⁺ and FCS⁺ among the scattered products of collisions of (2) with the fluorocarbon surface. The collision energy dependence of these ion/surface reaction products for the OCNCO⁺ and OCNCS⁺ projectile ions provides evidence for dissociation at the surface followed or accompanied by bond formation. A general mechanism is proposed for the obd. ion/surface reactions based on Lewis

L21 ANSWER 6 OF 12 CAPLUS COPYRIGHT 2002 ACS (Continued)
 acid/base rather than redox chem. and the occurrence of fragmentation at the surface rather than after departure. The silyl ions show ion/surface reactions which are dominated by fluorine abstraction from the surface but they also include such remarkable processes as fluorine-for-Me substitution, which occurs with the isothiocyanate projectile ion (4). Surface modification of fluorinated self-assembled monolayer surfaces was accomplished by prolonged bombardment with low-energy OCNCS⁺ and (CH₃)2SiNCS⁺ ions. Evidence is provided for incorporation of Me, silyl, and NCS groups into the modified surface, although the energetic conditions needed to cause the bond dissociations necessary for ion/surface reactions make the formation of modified surfaces esp. difficult in these cases.

L21 ANSWER 7 OF 12 CAPLUS COPYRIGHT 2002 ACS
 ACCESSION NUMBER: 1995:316220 CAPLUS
 DOCUMENT NUMBER: 123:45714
 TITLE: Dry etching of silicon compound layers
 INVENTOR(S): Yanagida, Toshiharu
 PATENT ASSIGNEE(S): Sony Corp., Japan
 SOURCE: U.S., 8 pp.
 CODEN: USXXAM
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 5376234	A	19941227	US 1993-78928	19930621
JP 3109253	B2	20000113	JP 1992-170980	19920629

PRIORITY APPLN. INFO.: JP 1992-170980 A 19920629
 AB A mercaptan, a thioether, and/or a disulfide having a fluorocarbon side chain is used as a main component of the etching gas. These compds. may form CF_xS and S on dissociation due to elec. discharges, and contribute to high-rate etching and surface protection of a wafer. If a halogen compd. such as CO₂, SO₂, or NO₂ is added to the etching gas, a high-rate etching reaction due to extn. of O atoms from SiO₂ and structural reinforcement of carbonaceous polymer become possible. Also, SF₆ may be added for reinforcing deposition of S. These effects lead to a redn. of the amt. of deposited polymer necessary for highly selective processing, and contribute greatly to low pollution in a process.

L21 ANSWER 8 OF 12 CAPLUS COPYRIGHT 2002 ACS
 ACCESSION NUMBER: 1994:686783 CAPLUS
 DOCUMENT NUMBER: 121:286783
 TITLE: Low-Energy Collisions of Group IIIA, IVA, VA, VIA, and VIIA Ions with fluoroalkyl SAM Surfaces: Reactions, Chemical Sputtering, and Mechanistic Implications
 AUTHOR(S): Pradeep, T.; Ast, T.; Cooks, R. G.; Feng, B.
 CORPORATE SOURCE: Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
 SOURCE: J. Phys. Chem. (1994), 98(37), 9301-11
 CODEN: JPCHAW; ISSN: 0022-3654
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 AB Low-energy (10-90 eV) at. ions of Group IIIA, IVA, VA, VIA, and VIIA elements (E) undergo reactions with a fluorinated self-assembled monolayer surface to give fluoride cations, EFn⁺; 1, 2, or 3 F atoms can be abstracted. Ion/surface reactions are also obstd. with polyat. ions of these elements, but in general, at. ions are much more reactive and react at lower collision energies than the corresponding polyat. species. The higher collision energies reflect increased energy consumption needed for fragmentation. Most of the ion/surface reactions studied in this study are endothermic and are driven by the translational energy of the projectile, although there remains a high degree of thermochem. control over reactivity. Thermochem. control over neutralization of the primary beam is also evident; ions with high recombination energies (e.g., N⁺ and O⁺) completely neutralize at the fluorocarbon surface. In addn., certain general trends in behavior are obstd. for elements within the same periodic group. The reactions occur in single scattering events, and they are not assocd. with electron transfer from the ion to the surface, as are the well-known H and alkyl group abstractions by org. radical ions. The surface has no memory of the projectile, even after prolonged ion beam exposure. In most cases, the ion/surface reaction seems to occur after, or in concert with, dissociation of the polyat. projectile. When multiple abstractions occur, the F atoms can be lost from the same alkyl chain; evidence for this is the enhanced intensity of specific sputtering products (e.g., CF3⁺) upon collisions of ions (e.g., Sb⁺) which readily abstr. > 1 F atom. Ion/surface reactions in which new bonds are formed in the surface alkyl group are also obstd.; such reactions produce unusual product ions which are sensitive to the chem. nature of the projectile. Examples include Cl-for-F atom substitution at the surface and PCF2⁺ formation in P₄ collisions. These processes suggest the possibility of selective chem. modification of the outermost monolayers of surfaces by using low-energy reactive ion beams.

L21 ANSWER 9 OF 12 CAPLUS COPYRIGHT 2002 ACS
 ACCESSION NUMBER: 1994:522988 CAPLUS
 DOCUMENT NUMBER: 121:122988
 TITLE: 1 MHz Parallel-plate discharges in etching gases: CF4 and SF6
 AUTHOR(S): Kobayashi, Hidehiko; Kusunoki, Hideki; Ishikawa, Itsuo; Nagaseki, Kazuya; Saito, Yukinori; Suganomata, Shinji
 CORPORATE SOURCE: Fac. Eng., Yamanashi Univ., Kofu, 400, Japan
 SOURCE: Shinku (1994), 37(3), 308-11
 CODEN: SHINAM; ISSN: 0559-8516
 DOCUMENT TYPE: Journal
 LANGUAGE: Japanese
 AB The electronegativities and discharge characteristics of halogen-contg. gases such as CF4 and SF6 are compared. These gases are discharged between parallel plate electrodes and used for etching process for semiconductor device fabrication.

L21 ANSWER 10 OF 12 CAPLUS COPYRIGHT 2002 ACS
 ACCESSION NUMBER: 1991:582630 CAPLUS
 DOCUMENT NUMBER: 115:182630
 TITLE: Fluorocarbon compounds and processes for preparation thereof
 INVENTOR(S): Kreppel, Carl George
 PATENT ASSIGNEE(S): du Pont de Nemours, E. I., and Co., USA
 SOURCE: PCT Int. Appl., 26 pp.
 CODEN: PIIXD2
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 9109010	A2	19910627	WO 1990-U57114	19901210
WO 9109010	A3	19910905		
V: CA, JP PW: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LU, NL, SE US 5102058	A	19920331	US 1989-448651	19891211
CA 2172199	AA	19910612	CA 1990-2071199	19901210
EP 504285	A1	19920923	EP 1991-901382	19901210
EP 504285	B1	19941012		
R: DE, FR, GB, IT	T2	19930520	JP 1991-501767	19901210
JP 05502666	B2	20010604		
JP 3172173	B2	20000232	JP 1999-201502	19901210
JP 2000053665	A2	19930209	US 1991-803441	19911206
US 5185477	A	20000222	JP 1999-201485	19900715
JP 2000053604	A2	20000222		
JP 3130303	B2	20010131		

 PRIORITY APPLN. INFO.: US 1989-448651 A 19891211
 JP 1991-501767 A3 19901210
 WO 1990-U57114 W 19901210
 OTHER SOURCE(S): MARPAT 115:182630
 GI

L21 ANSWER 11 OF 12 CAPLUS COPYRIGHT 2002 ACS
 ACCESSION NUMBER: 1994:478619 CAPLUS
 DOCUMENT NUMBER: 101:78619
 TITLE: On the scavenging of sulfur dioxide by cloud and raindrops. II. An experimental study of sulfur dioxide absorption and desorption for water drops in air
 AUTHOR(S): Walcek, C. J.; Fruppacher, H. R.; Topalian, J. H.; Mitra, S. K.
 CORPORATE SOURCE: Dep. Atmospheric Sci., Univ. California, Los Angeles, CA, 90024, USA
 SOURCE: J. Atmos. Chem. (1984), 1(3), 291-306
 CODEN: JATCZ
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 AB For the purpose of testing our previously described theory of SO₂ scavenging, a lab. investigation was carried out in the UCLA 33 m long rainshaft. Drops with radii between 250 and 2500 μm were allowed to come to terminal velocity, after which they passed through a chamber of variable length filled with various SO₂ concns. in air. After falling through a gas septa chamber consisting of a fluorocarbon gas, the drops were collected and analyzed for their total S content to det. the rate of SO₂ absorption. The SO₂ concn. in air was 1-60 vol.%. Such relatively large concns. were necessary due to the short times the drops were exposed to SO₂. Theor. S concn. in the drops agreed well with those obstd. if the drops had radii < 500 μm. To obtain agreement between predicted and obstd. S concns. in larger drops, an empirically derived eddy diffusivity for SO₂ in water had to be included in the theory to take into account the effect of turbulent mixing inside such large drops. In a subsequent set of expts., drops initially satd. with S (IV) were allowed to fall through S-free air to det. the rate of SO₂ desorption. The results agreed well with the results of the theor. model thus justifying the reversibility assumption. The effects of oxidn. on SO₂ absorption was studied by means of drops contg. various amts. of H₂O₂. For comparable exposure times to SO₂, the S concn. in drops with H₂O₂ was 10 times higher than the concn. in drops in which no oxidn. occurred.

AB Fluorinated (poly)sulfonates and halo(sulfonates) R2R3FC(X)CH(R1)(SO₃)_nZ (R1 = H, CFR2R3; R2, R3 = F, perfluoroalkyl; R1 = H, CFR2R3; X = Cl, Br, iodide; Z = Cl, Br, OCH₂CHCF2R3; n = 1-6) halohydins R2R3FC(X)CH(R1)CF2R3 and epoxides (I) useful as monomers and chem. intermediates, are prep'd. by reacting (perfluoroalkyl)ethylenes R2R3FCCH=CH₂ with SO₃ and a halogen, i.e. Cl, Br or iodine, and the optional presence of a solvent, and further reacting the products. Thus, 0.13 mol CF₃(CF₂)₃CH=CH₂ was added to 0.12 mol SO₃ with stirring at 25°. followed by 0.12 mol I, whereupon an exotherm carried to 45°. and then abated. The mixt. was stirred overnight at 25°. and then at 50°. for 30 min., evapd. in vacuo at 0.15 mmHg, stirred with H₂O, filtered and air-dried to give 58% (based on SO₃) [CF₃(CF₂)₃CH₂CH₂]SO₃.

L21 ANSWER 12 OF 12 CAPLUS COPYRIGHT 2002 ACS
ACCESSION NUMBER: 1983:514428 CAPLUS
DOCUMENT NUMBER: 99:114428
TITLE: Silicon surface treatment in halogen
-containing plasma
AUTHOR(S): Dikarev, Yu. I.; Esin, V. I.; Naumenko, N. I.
CORPORATE SOURCE: Voronezh, USSR
SOURCE: Fiz. Khim. Obrab. Mater. (1983), (4), 61-5
CODEN: FKOMAT; ISSN: 0015-3214
DOCUMENT TYPE: Journal
LANGUAGE: Russian
AB The processes of etching were studied of single-crystal Si with different orientations and surface treatments in the plasma of a high-frequency discharge of F-contg. gases at pressures of 13.3-133.3 Pa. By changing the tech. parameters of the process, one can obtain both pure etching of Si and deposition of films identified as fluorocarbon. During plasmachem. etching of a polished surface, only insignificant smoothing of the initial relief occurs with development of an etching figure characteristic for the given orientation. Electronog. studies of samples after plasmachem. etching in the polishing regime show the absence of amorphization of the surface in the treatment process.

=> s fluorocarbon/product
'PRODUCT' IS NOT A VALID FIELD CODE
L22 0 FLUOROCARBON/PRODUCT

=> s fluorocarbon/p
'P' IS NOT A VALID FIELD CODE
L23 0 FLUOROCARBON/P

=> fil caplus

COST IN U.S. DOLLARS	SINCE FILE ENTRY	TOTAL SESSION
FULL ESTIMATED COST	46.12	510.64
DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS)	SINCE FILE ENTRY	TOTAL SESSION
CA SUBSCRIBER PRICE	-7.43	-7.43

FILE 'CAPLUS' ENTERED AT 11:58:35 ON 09 SEP 2002
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2002 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 9 Sep 2002 VOL 137 ISS 11
FILE LAST UPDATED: 8 Sep 2002 (20020908/ED)

This file contains CAS Registry Numbers for easy and accurate substance identification.

CAS roles have been modified effective December 16, 2001. Please check your SDI profiles to see if they need to be revised. For information on CAS roles, enter HELP ROLES at an arrow prompt or use the CAS Roles thesaurus (/RL field) in this file.

=> fil reg

COST IN U.S. DOLLARS	SINCE FILE ENTRY	TOTAL SESSION
FULL ESTIMATED COST	0.40	511.04
DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS)	SINCE FILE ENTRY	TOTAL SESSION
CA SUBSCRIBER PRICE	0.00	-7.43

FILE 'REGISTRY' ENTERED AT 11:58:42 ON 09 SEP 2002
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.

COPYRIGHT (C) 2002 American Chemical Society (ACS)

STRUCTURE FILE UPDATES: 6 SEP 2002 HIGHEST RN 447682-31-7
DICTIONARY FILE UPDATES: 6 SEP 2002 HIGHEST RN 447682-31-7

TSCA INFORMATION NOW CURRENT THROUGH MAY 20, 2002

Please note that search-term pricing does apply when
conducting SmartSELECT searches.

Crossover limits have been increased. See HELP CROSSOVER for details.

Calculated physical property data is now available. See HELP PROPERTIES
for more information. See STNote 27, Searching Properties in the CAS
Registry File, for complete details:

<http://www.cas.org/ONLINE/STN/STNOTES/stnotes27.pdf>

=>
Uploading 09961347b.str

L24 STRUCTURE uploaded

=> d
L24 HAS NO ANSWERS
L24 STR

G1 O, S, Po, Se, Te

Structure attributes must be viewed using STN Express query preparation.

=> s 124
SAMPLE SEARCH INITIATED 11:59:11 FILE 'REGISTRY'
SAMPLE SCREEN SEARCH COMPLETED - 5036 TO ITERATE

19.9% PROCESSED 1000 ITERATIONS 50 ANSWERS
INCOMPLETE SEARCH (SYSTEM LIMIT EXCEEDED)
SEARCH TIME: 00.00.01

FULL FILE PROJECTIONS: ONLINE **COMPLETE**
BATCH **COMPLETE**
PROJECTED ITERATIONS: 96468 TO 104972
PROJECTED ANSWERS: 94495 TO 102915

L25 50 SEA SSS SAM L24

=> s 124 full
FULL SEARCH INITIATED 11:59:17 FILE 'REGISTRY'
FULL SCREEN SEARCH COMPLETED - 100762 TO ITERATE

100.0% PROCESSED 100762 ITERATIONS
 SEARCH TIME: 00.00.04

97689 ANSWERS

L26 97689 SEA SSS FUL L24

=> fil caplus			
COST IN U.S. DOLLARS	SINCE FILE ENTRY	TOTAL SESSION	
FULL ESTIMATED COST	140.28	651.32	
DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS)	SINCE FILE ENTRY	TOTAL SESSION	
CA SUBSCRIBER PRICE	0.00	-7.43	

FILE 'CAPLUS' ENTERED AT 11:59:30 ON 09 SEP 2002
 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
 PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
 COPYRIGHT (C) 2002 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 9 Sep 2002 VOL 137 ISS 11
 FILE LAST UPDATED: 8 Sep 2002 (20020908/ED)

This file contains CAS Registry Numbers for easy and accurate substance identification.

CAS roles have been modified effective December 16, 2001. Please check your SDI profiles to see if they need to be revised. For information on CAS roles, enter HELP ROLES at an arrow prompt or use the CAS Roles thesaurus (/RL field) in this file.

=> s 126
 L27 50443 L26

=> s 127 and (peroxide or halogen)
 159105 PEROXIDE
 37803 PEROXIDES
 174663 PEROXIDE
 (PEROXIDE OR PEROXIDES)
 92775 HALOGEN
 17591 HALOGENS
 102322 HALOGEN
 (HALOGEN OR HALOGENS)
 L28 2065 L27 AND (PEROXIDE OR HALOGEN)

=> s 128 and fluorocarbon
12055 FLUOROCARBON
. 3750 FLUOROCARBONS
13705 FLUOROCARBON
(FLUOROCARBON OR FLUOROCARBONS)
L29 16 L28 AND FLUOROCARBON

=> d ibib abs hitstr 1-16

L29 ANSWER 1 OF 16 CAPLUS COPYRIGHT 2002 ACS
 ACCESSION NUMBER: 2001:809199 CAPLUS
 DOCUMENT NUMBER: 135:318851
 TITLE: Method for preparing a fluoropolymer by radical polymerization in an aqueous emulsion
 INVENTOR(S): Kappeler, Patrick; Pascal, Thierry; Wille, Roice;
 Brulet, Daniel
 ATofina, Fr.
 SOURCE: Fr. Demande, 16 pp.
 CODEN: FRXKBL
 DOCUMENT TYPE: Patent
 LANGUAGE: French
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
FR 2804438	A1	20010803	FR 2000-1191	20000131

OTHER SOURCE(S): MARPAT 135:318851

AB Polymers based on vinylidene fluoride and, optionally, other fluoromonomers, with improved yellowing resistance and decreased fluorocarbon emission are manufd. by radical, emulsion polymn. in the presence of $C_nF_{2n+1}CO_2Li$ ($n = 6-12$) surfactant, $ROCOOCO_2R$ or $ROOR$ ($R = Et, Pr, iso-Pr, tert-Bu, or tert-amyl$) initiator, chain-transfer agent selected from iso-PrOH, AcOMe, AcEt, AcBu, di-Et malonate, and di-Et carbonate, and, optionally, a paraffin with m.p. 40-70. $^{\circ}$ degree.; and washing the coagulated emulsion with water until the I content is .
 stored. 200 ppm.

IT 35064-93-6, Perfluoromethyl vinyl ether)-vinylidene fluoride copolymer

RL: IMP (Industrial manufacture); PREP (Preparation)
 (prep., fluoropolymers by radical polymn. in aq. emulsions)

RN 35064-93-6 CAPLUS

CN Ethene, trifluoro(trifluoromethoxy)-, polymer with 1,1-difluoroethene (9CI) (CA INDEX NAME)

CM 1

CRN 1187-93-5

CMF C3 F6 O

CM 2

CRN 75-38-7

CMF C2 H2 F2

L29 ANSWER 1 OF 16 CAPLUS COPYRIGHT 2002 ACS (Continued)

L29 ANSWER 2 OF 16 CAPLUS COPYRIGHT 2002 ACS
 ACCESSION NUMBER: 1999:534597 CAPLUS
 DOCUMENT NUMBER: 131:336721
 TITLE: The reaction of difluorodioxirane with cesium trifluoromethoxide
 AUTHOR(S): Huang, Quan; DesMartheau, Darryl D.
 CORPORATE SOURCE: Department of Chemistry, Clemson University, Clemson,
 SC, USA
 SOURCE: Chemical Communications (Cambridge) (1999), (17),
 1671-1672
 CODEN: CHCOFS; ISSN: 1369-7345
 PUBLISHER: Royal Society of Chemistry
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 OTHER SOURCE(S): CASREACT 131:336721
 AB The reaction of difluorodioxirane with cesium trifluoromethoxide in the presence of CsF forms $CF_3OOC(O)F$ and the new compds. $CF_3O(OCF_2O)nOC(O)F$ ($n = 1-3$). ^{13}C labeling shows that the dioxirane undergoes ring opening at the O-O bond.
 IT 16118-40-4 249729-77-9P 249729-78-0P
 249729-80-4P
 RL: SPN (Synthetic preparation); PREP (Preparation)
 (reaction of difluorodioxirane with carbonyl difluoride in presence of cesium fluoride)
 RN 16118-40-4 CAPLUS
 CN Carbonofluoridoperoxoic acid, trifluoromethyl ester (9CI) (CA INDEX NAME)

RN 249729-77-9 CAPLUS
 CN Carbonofluoridoperoxoic acid, difluoro[(trifluoromethyl)dioxy)methyl ester (9CI) (CA INDEX NAME)

RN 249729-79-0 CAPLUS
 CN Carbonofluoridoperoxoic acid, [(difluoro[(trifluoromethyl)dioxy)methyl]dioxy]difluoromethyl ester (9CI) (CA INDEX NAME)

RN 249729-80-4 CAPLUS
 CN Carbonofluoridoperoxoic acid, [[[difluoro[(trifluoromethyl)dioxy)methyl]dioxy]difluoromethyl]dioxy]difluoromethyl ester (9CI) (CA INDEX NAME)

L29 ANSWER 2 OF 16 CAPLUS COPYRIGHT 2002 ACS (Continued)

REFERENCE COUNT: 10 THERE ARE 10 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L29 ANSWER 3 OF 16 CAPLUS COPYRIGHT 2002 ACS
 ACCESSION NUMBER: 1997:286376 CAPLUS
 DOCUMENT NUMBER: 126:264472
 TITLE: Manufacture of acyl peroxides
 INVENTOR(S): Diffendal, George Francis; Harding, Thomas William;
 Hockman, Joseph Norman; Targett, Matthew John;
 Wheland, Robert Clayton; Krespan, Carl George
 PATENT ASSIGNEE(S): E.I. Du Pont De Nemours and Company, USA
 SOURCE: PCT Int. Appl., 56 pp.
 CODEN: PIKKD2
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 9708142	A1	19970306	WO 1996-US13976	19960830
W: CA, JP RW: AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE				
US 5931131	A	19981103	US 1996-703232	19960826
CA 2230606	AA	19970306	CA 1996-2230606	19960830
EP 847387	A1	19980617	EP 1996-931442	19960830
EP 847387	B1	20020102		
R: DE				
JP 11511464	T2	19991005	JP 1996-510595	19960830
US 5962746	A	19991005	US 1998-128506	P 19950830
PRIORITY APPLN. INFO.:			US 1995-2961P	
			US 1996-703232	A 19960826
			WO 1996-US13976	W 19960830

AB A process for the faster manufg. of hydrocarbon, fluorocarbon and chlorocarbon acyl peroxides, useful as polymn. initiators and in org. synthesis, is disclosed wherein a metal or tetraalkylammonium hydroxide, a peroxide and an acyl halide are reacted under continuous vigorous agitation conditions so as to bring the reaction to substantial completion in less than one minute.
 IT 90275-06-29
 RL: CAT (Catalyst use); IMF (Industrial manufacture); PREP (Preparation); USES (Uses)
 (manuf. of acyl peroxides for polymn. catalysts by reaction of acyl halides, hydroxides, peroxides under vigorous agitation)
 RN 90275-06-2 CAPLUS
 CN Peroxide, bis[2,3,3,3-tetrafluoro-1-oxo-2-(trifluoromethoxy)propyl] (9CI)
 (CA INDEX NAME)

IT 2927-83-5
 RL: RCT (Reactant); RACT (Reactant or reagent)

L29 ANSWER 4 OF 16 CAPLUS COPYRIGHT 2002 ACS
 ACCESSION NUMBER: 1996:71567 CAPLUS
 DOCUMENT NUMBER: 124:178664
 TITLE: Fluorocarbon rubbers modified by silicone resins
 INVENTOR(S): Gentle, Thomas M.; Gornowicz, Gerald A.
 PATENT ASSIGNEE(S): Dow Corning Corporation, USA
 SOURCE: U.S. 11 pp.
 CODEN: USXXAM
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 5480930	A	19960102	US 1994-292305	19940818
EP 697437	A1	19960221	EP 1995-305600	19950811
EP 697437	B1	20020102		
R: DE, FR, GB JP 09170001	A2	19960702	JP 1995-210786	19950818
PRIORITY APPLN. INFO.:			US 1994-292305	A 19940818
AB Cured fluororubber compns., having high mech. strength, low-temp. flexibility, and solvent resistance and low fuel permeability, comprise fluororubbers with a Mooney viscosity of 5-160 50-95, amorphous silicone resins (degree of substitution 0.9-1.8) 5-50, and optionally polydiorganosiloxane gums or rubbers 0-40%. A compn. of Tecnoflon P 419 100, OH-contg. Me ₂ SiO _{1/2} /SiO ₂ -based siloxane 30, CaCO ₃ 8.5 triallylmonoguanate 2.2, and a peroxide 2.4 part was vulcanized to form a product with tensile strength 9.86 MPa, elongation 310%, 10% retraction (ASTM 1329-88) -7.degrees. and -25.degrees. in dry and ref. fuel C (RFC) condition, resp., and vol swelling 6% in RFC at 40.degree. for 1 wk.				
IT 56357-87-0				
Tetrafluoroethylene-trifluoromethyl trifluorovinyl ether-vinylidene fluoride copolymer				
RL: POF (Polymer in formulation); PRP (Properties); TEM (Technical or engineered material use); USES (Uses)				
(rubbers; siloxane resin-contg. fluororubber compns. with low fuel permeability and good cold resistance)				
RN 56357-87-0 CAPLUS				
CN Ethene, tetrafluoro-, polymer with 1,1-difluoroethene and trifluoro(trifluoromethoxy)ethene (9CI)				(CA INDEX NAME)

CM 1
 CRN 1187-93-5
 CMF C3 F6 O

CM 2
 CRN 116-14-3
 CMF C2 F4

Examiner Anderson 703-605-1157

L29 ANSWER 3 OF 16 CAPLUS COPYRIGHT 2002 ACS (Continued)
 (manuf. of acyl peroxides for polymn. catalysts by reaction of acyl halides, hydroxides, peroxides under vigorous agitation)
 RN 2927-83-5 CAPLUS
 CN Propanoyl fluoride, 2,3,3,3-tetrafluoro-2-(trifluoromethoxy)- (9CI) (CA INDEX NAME)

L29 ANSWER 4 OF 16 CAPLUS COPYRIGHT 2002 ACS (Continued)

L29 ANSWER 5 OF 16 CAPLUS COPYRIGHT 2002 ACS
 ACCESSION NUMBER: 1995:362702 CAPLUS
 DOCUMENT NUMBER: 122:239348
 TITLE: Cyclofluoroalkylated fullerenes compounds
 INVENTOR(S): Bekiarian, Paul G.; Fagan, Paul J.; Krusic, Paul J.
 PATENT ASSIGNEE(S): du Pont de Nemours, E. I., and Co., USA
 SOURCE: U.S. 6 pp.
 CODEN: USXXAM
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 5382718	A	19950117	US 1993-122118	19930916
US 5416243		19950516	US 1994-257334	19940829
WO 9507875	A1	19950323	WO 1994-US10103	19940915

AB: CA, JP
 RW: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE
 PRIORITY APPLN. INFO.: US 1993-122118 19930916

OTHER SOURCE(S): MARPAT 122:239348

AB: Mixts. of cyclofluoroalkylated fullerenes are provided by the thermal [2 + 2] cycloaddn. of fluoroalkenes to a soln. or slurry of a fullerene. The cyclofluoroalkylated fullerene mixts. are useful as lubricants or additives to lubricants; in fluorocarbon and/or chlorofluorocarbon based cooling systems; in adhesives for fluorocarbon based polymers and in gas sepn. membranes (no data).

IT 1187-93-5, Perfluoro(methyl vinyl ether), reaction products with fullerenes

RL: SPN (Synthetic preparation); PREP (Preparation)
 (prep. of cyclofluoroalkylated fullerene mixts. via thermal [2+2] cycloaddn. reaction of fullerenes with fluoroalkenes)

RN 1187-93-5 CAPLUS

CN Ethene, trifluoro(trifluoromethoxy)- (9CI) (CA INDEX NAME)

CF₂
 ||
 F-C-O-CF₃

L29 ANSWER 6 OF 16 CAPLUS COPYRIGHT 2002 ACS
 ACCESSION NUMBER: 1995:316220 CAPLUS
 DOCUMENT NUMBER: 123:45714
 TITLE: Dry etching of silicon compound layers
 INVENTOR(S): Yanagida, Toshiharu
 PATENT ASSIGNEE(S): Sony Corp., Japan
 SOURCE: U.S. 6 pp.
 CODEN: USXXAM
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 5376234	A	19941227	US 1993-78928	19930621
JP 3109253	B2	20001113	JP 1992-170980	19920629

PRIORITY APPLN. INFO.: JP 1992-170980 A 19920629

AB: A mercaptan, a thioether, and/or a disulfide having a fluorocarbon side chain is used as a main component of the etching gas. These compds. may form CFxS and S on dissocn. due to elec. discharges, and contribute to high-rate etching and surface protection of a wafer. If a halogen compd. such as COF₂, SOF₂, or NOF is added to the etching gas, a high-rate etching reaction due to extn. of O atoms from SiO₂ and structural reinforcement of carbonaceous polymer become possible. Also, SF₂ may be added for reinforcing deposition of S. These effects lead to a redn. of the amt. of deposited polymer necessary for highly selective processing, and contribute greatly to low pollution in a process.

IT 372-64-5, Bis(trifluoromethyl)disulfide

RL: PEP (Physical, engineering or chemical process); PROC (Process)
 (plasma etching of silicon compnd. layers in gas mixts. contg.)

RN 372-64-5 CAPLUS

CN Disulfide, bis(trifluoromethyl) (6CI, 7CI, 8CI, 9CI) (CA INDEX NAME)

F₃C-S-S-CF₃

L29 ANSWER 7 OF 16 CAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 1992:513758 CAPLUS

DOCUMENT NUMBER: 117:113758

TITLE: Solid materials with reduced surface energy and surface treatment for obtaining the same

INVENTOR(S): Tadenuma, Katsuoshi; Kawamura, Fumiaki

PATENT ASSIGNEE(S): Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 14 pp.

CODEN: JJOXAF

DOCUMENT TYPE: Patent

LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 04048075	A2	19920218	JP 1990-158500	19900615
JP 2986513	B2	19991206		

AB: The title materials have fluorocarbon groups chem. bonded on the surface. Treatment of glass and ceramics with Freon 12 and Freon 13 with gamma-ray or microwave irradn. was esp. effective for reduced surface energy (increased water contact angle).

IT 927-84-4, Bis(trifluoromethyl) peroxide

RL: USES (Uses)
 (solids surface energy redn. by surface treatment with)

RN 927-84-4 CAPLUS

CN Peroxide, bis(trifluoromethyl) (6CI, 7CI, 8CI, 9CI) (CA INDEX NAME)

F₃C-O-O-CF₃

L29 ANSWER 8 OF 16 CAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 1991:582630 CAPLUS

DOCUMENT NUMBER: 115:182630

TITLE: Fluorocarbon compounds and processes for preparation thereof

INVENTOR(S): Krespan, Carl George

PATENT ASSIGNEE(S): du Pont de Nemours, E. I., and Co., USA

SOURCE: PCT Int. Appl., 26 pp.

CODEN: PIXX02

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 9109010	A2	19910627	WO 1990-U57114	19901210
WO 9109010	A3	19910905		

AB: CA, JP
 RW: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LU, NL, SE
 US 5101058 A 19920331 US 1989-448651 19891211
 CA 2071199 AA 19910612 CA 1990-2071199 19901210
 EP 504285 A1 19920923 EP 1991-901382 19901210
 EP 504285 B1 19941012

RL: DE, FR, GB, IT
 JP 0552066 T2 19930520 JP 1991-501767 19901210
 JP 3172473 B2 20010604

JP 2000053665 A2 20000222 JP 1999-201502 19901210
 US 5185477 A 19930209 US 1991-034341 19911206
 JP 2000053604 A2 20000222 JP 1999-201485 19900715

JP 3130303 B2 20010131

PRIORITY APPLN. INFO.: US 1989-448651 A 19891211
 JP 1991-501767 A3 19901210
 WO 1990-U57114 W 19901210

OTHER SOURCE(S): MARPAT 115:182630

G1

AB: Fluorinated (poly)sulfonates and halosulfonates R2R3FC(=O)X(R1)(OSO₃)_n (R1 = H, CFR2R3; R2, R3 = F, perfluoroalkyl; X = Cl, Br, iodide; Z = Cl, Br, OCH(R1)CH(R2)CFR2R3; n = 1-6). halohydrides R2R3CH(XH)CFR2R3, and epoxides (I), useful as monomers and chem. intermediates, are prep'd. by reacting (perfluoroalkyl)ethylenes R2R3FC(=O)CH=CH₂ with SO₃ and a halogen, i.e., Cl, Br or Iodine, in the optional presence of a solvent, and further reacting the products with 0.1-1 mol % CF₃(CF₂)₃CH₂CH₂Cl, which was added to 0.12 mol % SO₃ with stirring at 25 degree, followed by 0.12 mol l, whereupon an exotherm caused to 45 degree, and the abated. The mixt. was stirred overnight at 25 degree, and then at 50 degree, for 30 min., evap'd. in vacuo at 0.15 mmHg, stirred with H₂O, filtered and air-dried to give 58% (based on SO₃) [CF₃(CF₂)₃CH(XH)SO₃]₂SO₃.

IT 1493-13-6, Trifluoromethanesulfonic acid

RL: RCT (Reactant)
 (addn. reaction of, with bis(perfluorobutyl)ethylene oxide)

RN 1493-13-6 CAPLUS

L29 ANSWER 10 OF 16 CAPLUS COPYRIGHT 2002 ACS (Continued)

IT 34511-13-2
RL: RCT (Reactant)
(reaction of, with alkenes)
RN 34511-13-2 CAPLUS
CN Peroxyhypofluorous acid, trifluoromethyl ester (9CI) (CA INDEX NAME)

F₃C-O-O-F

L29 ANSWER 11 OF 16 CAPLUS COPYRIGHT 2002 ACS
ACCESSION NUMBER: 1975:72506 CAPLUS
DOCUMENT NUMBER: 82:72506
TITLE: Direct synthesis of fluorocarbon peroxides. III. Addition of chloroperoxytrifluoromethane to olefins
AUTHOR(S): Walker, Nyall; DesMarais, Darryl D.
CORPORATE SOURCE: Dep. Chem., Kansas State Univ., Manhattan, Kans., USA
SOURCE: J. Am. Chem. Soc. (1975), 97(1), 13-17
CODEN: JACSAT

DOCUMENT TYPE: Journal
LANGUAGE: English
AB CF₃OOC added to olefins to give trifluoromethyl-peroxy derivs. in high yield. The reactions were unidirectional and proceeded by an electrophilic mechanism, in which the positive chlorine of CF₃OOC adds to the carbon with the greatest no. of hydrogens or the fewest fluorines. Reactions with C₂H₄, C₂F₄, C₂F₃Cl, CF₂:CCl₂, CF₂:CH₂, CFH:CH₂, and cis-CFH₂-CFH occurred readily >0.degree.; perfluoropropene and perfluoro-cyclopentene were unreactive under all conditions tried. With cis-CFH₂-CFH, the reaction is stereo-specific.

IT 32755-26-3
RL: RCT (Reactant)
(addn. reaction with olefins)
RN 32755-26-3 CAPLUS
CN Peroxyhypochlorous acid, trifluoromethyl ester (8CI, 9CI) (CA INDEX NAME)

F₃C-O-O-Cl

IT 1561-50-8 1645-95-0P 25476-71-5P
25957-33-9P 54362-30-0P 54362-31-1P
54362-32-2P 54362-33-3P 54362-34-4P
54362-35-5P 54362-36-6P 54362-37-7P
54362-38-8P 54362-39-9P
RL: SPN (Synthetic preparation); PREP (Preparation)
(prep. of)
RN 1561-50-8 CAPLUS
CN Ethane, 1-chloro-1,1,2,2-tetrafluoro-2-(trifluoromethoxy)- (9CI) (CA INDEX NAME)

F₃C-O-CF₂-CF₂-Cl

RN 1645-95-0 CAPLUS
CN Ethane, 1-chloro-2-(trifluoromethoxy)- (9CI) (CA INDEX NAME)

F₃C-O-CH₂-CH₂Cl

RN 25476-71-5 CAPLUS
CN Ethane, 1,1-dichloro-1,2,2-trifluoro-2-(trifluoromethoxy)- (9CI) (CA INDEX NAME)

L29 ANSWER 11 OF 16 CAPLUS COPYRIGHT 2002 ACS (Continued)

F₃C-O-CF₂-CCl₂-F

RN 25957-33-9 CAPLUS
CN Ethane, 2-chloro-1,1-difluoro-1-(trifluoromethoxy)- (9CI) (CA INDEX NAME)

F₃C-O-CF₂-CH₂Cl

RN 54362-30-0 CAPLUS
CN Peroxide, 2-chloroethyl trifluoromethyl (9CI) (CA INDEX NAME)

F₃C-O-O-CH₂-CH₂Cl

RN 54362-31-1 CAPLUS
CN Peroxide, 2-chloro-1,1,2,2-tetrafluoroethyl trifluoromethyl (9CI) (CA INDEX NAME)

F₃C-O-O-CF₂-CF₂-Cl

RN 54362-32-2 CAPLUS
CN Peroxide, 2,2-dichloro-1,1,2-trifluoroethyl trifluoromethyl (9CI) (CA INDEX NAME)

F₃C-O-O-CF₂-CCl₂-F

RN 54362-33-3 CAPLUS
CN Peroxide, 2,2,2-trichloro-1,1-difluoroethyl trifluoromethyl (9CI) (CA INDEX NAME)

F₃C-O-O-CF₂-CCl₃

RN 54362-34-4 CAPLUS
CN Ethane, 1,1,1-trichloro-2,2-difluoro-2-(trifluoromethoxy)- (9CI) (CA INDEX NAME)

F₃C-O-CF₂-CCl₃

RN 54362-35-5 CAPLUS
CN Peroxide, 2-chloro-1,1-difluoroethyl trifluoromethyl (9CI) (CA INDEX NAME)

F₃C-O-CF₂-CH₂Cl

RN 54362-36-6 CAPLUS

Examiner Anderson 703-605-1157

L29 ANSWER 11 OF 16 CAPLUS COPYRIGHT 2002 ACS (Continued)
CN Peroxide, 2,2-dichloro-1-fluoroethyl trifluoromethyl (9CI) (CA INDEX NAME)

RN 54362-37-7 CAPLUS
CN Ethane, 1,1-dichloro-2-fluoro-2-(trifluoromethoxy)- (9CI) (CA INDEX NAME)

RN 54362-38-8 CAPLUS
CN Peroxide, 2-chloro-1,2-difluoroethyl trifluoromethyl (9CI) (CA INDEX NAME)

RN 54362-39-9 CAPLUS
CN Ethane, 1-chloro-1,2-difluoro-2-(trifluoromethoxy)- (9CI) (CA INDEX NAME)

IT 16118-40-4
RL: RCT (Reactant)
(reaction of, with chlorine fluoride)
RN 16118-40-4 CAPLUS
CN Carbonfluoridoperoxic acid, trifluoromethyl ester (9CI) (CA INDEX NAME)

L29 ANSWER 12 OF 16 CAPLUS COPYRIGHT 2002 ACS
 ACCESSION NUMBER: 1975:50798 CAPLUS
 DOCUMENT NUMBER: 82:50798
 TITLE: Halogen perchlorates. Reactions with fluorocarbon halides
 AUTHOR(S): Schack, Carl J.; Filipovich, Don; Christe, Karl O.
 CORPORATE SOURCE: Rocketdyne Div., Rockwell Int., Canoga Park, Calif., USA
 SOURCE: Inorg. Chem. (1975), 14(1), 145-51
 DOCUMENT TYPE: CODEN: INOCAJ
 Journal
 LANGUAGE: English
 AB The reactions of XClO_4 ($\text{X} = \text{Cl, Br}$) with numerous fluoralkyl halides were examined. For fluorocarbon iodides, these reactions generally produced high yields of the novel fluorocarbon perchlorates CF_3ClO_4 , $\text{CF}_3\text{CF}_2\text{ClO}_4$, $\text{n-C}_7\text{F}_{15}\text{ClO}_4$, $\text{O}_2\text{ClCF}_2\text{CF}_2\text{ClO}_4$, and $\text{ICl}_2\text{CF}_2\text{ClO}_4$. Important insight into the mechanism of formation of these compds. was obtained through the isolation of complex intermediates such as $(\text{CF}_3)_2\text{CF}(\text{ClO}_4)_2$ and $\text{n-C}_7\text{F}_{15}\text{I}(\text{ClO}_4)_2$. Based on their vibrational spectra, these intermediates have the ionic structure $[(\text{Rf})_2\text{I}]^+[\text{I}(\text{ClO}_4)_4]^-$. Fluorocarbon bromides reacted less readily but sometimes did produce perchlorate derivs. such as $(\text{O}_2\text{ClCF}_2\text{CFBr})_2$, $\text{CF}_3\text{CBrCF}_2\text{ClO}_4$, and $\text{BrCF}_2\text{CF}_2\text{ClO}_4$. Neither mono nor di, primary nor secondary Cl contained in satd. RfCl materials interacted with these halogen perchlorates. These and other related reactions are discussed and characteristic data are given for this new and interesting class of compds.
 IT 52003-45-8P
 RL: SPN (Synthetic preparation); PREP (Preparation)
 (prepns. of)
 RN 52003-45-9 CAPLUS
 CN Perchloric acid, trifluoromethyl ester (9CI) (CA INDEX NAME)

L29 ANSWER 13 OF 16 CAPLUS COPYRIGHT 2002 ACS
 ACCESSION NUMBER: 1974:403295 CAPLUS
 DOCUMENT NUMBER: 81:3295
 TITLE: Direct synthesis of fluorocarbon peroxides. I. Addition of bis(trifluoromethyl) trioxide to selected carbon-carbon multiple bonds
 AUTHOR(S): Hohorst, Frederick A.; Paukstelis, Joseph V.; DesMarteau, Darryl D.
 CORPORATE SOURCE: Dep. Chem., Kansas State Univ., Manhattan, Kans., USA
 SOURCE: J. Org. Chem. (1974), 39(9), 1298-1302
 DOCUMENT TYPE: CODEN: JOCEAH
 Journal
 LANGUAGE: English
 AB The addn. of bis(trifluoromethyl) trioxide, $\text{CF}_3\text{OOOCF}_3$, to a variety of C=C multiple bonds is reported. With ethylene, tetrafluoroethylene, chlorotrifluoroethylene, hexafluoropropylene, perfluorobutene-2, and perfluorocyclopentene the usual products are $\text{CF}_3\text{OOCRR}_1\text{CR}_2\text{R}_3\text{OCF}_3$ and $\text{CF}_3\text{OCRR}_1\text{CR}_2\text{R}_3\text{OCF}_3$. These products form in 50-80% yield with alkenes which are not prone to radical polymn. In the case of tetrafluoroethylene and chlorotrifluoroethylene, addnl. products contg. two mol. of alkene are obtd. as well as several trifluoromethyl ethers. The proposed reaction mechanism of initial addn. of CF_3OOCF_3 to the alkene is consistent with the obtd. products.
 IT 1718-18-9
 RL: RCT (Reactant)
 (addn. reaction of, with alkenes)
 RN 1718-18-9 CAPLUS
 CN Trioxide, bis(trifluoromethyl) (8CI, 9CI) (CA INDEX NAME)

IT 39479-36-2P 42028-65-9P 42028-66-0P
 50921-20-5P 50921-48-7P 50921-49-8P
 50921-50-1P 50921-51-2P 50921-52-3P
 50921-53-4P 50921-54-5P 50921-55-6P
 50921-57-8P 50921-74-9P 50921-75-0P
 50921-76-1P 50921-77-2P
 RL: SPN (Synthetic preparation); PREP (Preparation)
 (prepns. of)
 RN 39479-36-2 CAPLUS
 CN Butane, 1,1,2,2,3,3,4,4-octafluoro-1,4-bis(trifluoromethoxy)- (9CI) (CA INDEX NAME)

RN 42028-65-9 CAPLUS
 CN Peroxide, 2-chloro-1,1,2-trifluoro-2-(trifluoromethoxy)ethyl trifluoromethyl (9CI) (CA INDEX NAME)

L29 ANSWER 13 OF 16 CAPLUS COPYRIGHT 2002 ACS (Continued)

RN 42028-66-0 CAPLUS
 CN Peroxide, 1-chloro-1,2,2-trifluoro-2-(trifluoromethoxy)ethyl trifluoromethyl (9CI) (CA INDEX NAME)

RN 50921-20-5 CAPLUS
 CN Butane, dichlorohexafluoro-1,4-bis(trifluoromethoxy)- (9CI) (CA INDEX NAME)

2 (D1-C1)

6 (D1-F)

RN 50921-48-7 CAPLUS
 CN Peroxide, 2-(trifluoromethoxy)ethyl trifluoromethyl (9CI) (CA INDEX NAME)

RN 50921-49-8 CAPLUS
 CN Peroxide, 1,1,2,2-tetrafluoro-2-(trifluoromethoxy)ethyl trifluoromethyl (9CI) (CA INDEX NAME)

RN 50921-50-1 CAPLUS
 CN Peroxide, 1,4-dichloro-1,2,2,3,3,4-hexafluoro-4-(trifluoromethoxy)butyl trifluoromethyl (9CI) (CA INDEX NAME)

L29 ANSWER 13 OF 16 CAPLUS COPYRIGHT 2002 ACS (Continued)

RN 50921-51-2 CAPLUS
 CN Peroxide, 1,3-dichloro-1,2,2,3,3,4-hexafluoro-4-(trifluoromethoxy)butyl trifluoromethyl (9CI) (CA INDEX NAME)

RN 50921-52-3 CAPLUS
 CN Peroxide, 1-[difluoro(trifluoromethoxy)methyl]-1,2,2,2-tetrafluoroethyl trifluoromethyl (9CI) (CA INDEX NAME)

RN 50921-53-4 CAPLUS
 CN Peroxide, 1,1,2,3,3,3-hexafluoro-2-(trifluoromethoxy)propyl trifluoromethyl (9CI) (CA INDEX NAME)

RN 50921-54-5 CAPLUS
 CN 2-Butanone, 1,1,1,4,4-hexafluoro-3,3-bis(trifluoromethoxy)- (9CI) (CA INDEX NAME)

RN 50921-55-6 CAPLUS
 CN 2-Butanone, 1,1,1,4,4-hexafluoro-3-(trifluoromethoxy)-3-[(trifluoromethyl)dioxy]- (9CI) (CA INDEX NAME)

L29 ANSWER 16 OF 16 CAPLUS COPYRIGHT 2002 ACS
 ACCESSION NUMBER: 1968:402462 CAPLUS
 DOCUMENT NUMBER: 69:2462
 TITLE: Fluorocarbon peroxides. Novel peroxides prepared from bis(fluoroformyl) peroxide
 AUTHOR(S): Talbott, Richard L.
 CORPORATE SOURCE: Minnesota Mining and Mfg. Co., Saint Paul, Minn., USA
 SOURCE: J. Org. Chem. (1968), 33(5), 2095-9
 CODEN: JOCEAH
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 AB The photodecompn. of bis(fluoroformyl) peroxide in a quartz app. gives fragments trapped with difluorodiazirine to give fluoroformyl perfluoromethyl peroxide (I). Hydrolysis of I affords either bis(perfluoromethyl) bis(peroxy)carbonate or perfluoromethyl hydroperoxide, depending on the reaction conditions. Fluorination of fluoroformyl perfluoromethyl peroxide and bis(perfluoromethyl) bis(peroxy)carbonate provides the corresponding fluoroxy compds. in high yields. The peroxides prep'd. are stable in the dark at room temp. 18 references.
 IT 16118-40-4P 16156-35-7P 16156-36-8P
 16156-37-9P
 RL: SPN (Synthetic preparation); PREP (Preparation)
 (prepn. of)
 RN 16118-40-4 CAPLUS
 CN Carbonofluoridoperoxoic acid, trifluoromethyl ester (9CI) (CA INDEX NAME)

RN 16156-35-7 CAPLUS
 CN Carbonodiperoxoic acid, bis(trifluoromethyl) ester (9CI) (CA INDEX NAME)

RN 16156-36-8 CAPLUS
 CN Hydroperoxide, trifluoromethyl (8CI, 9CI) (CA INDEX NAME)

RN 16156-37-9 CAPLUS
 CN Hypofluorous acid, difluoro[(trifluoromethyl)dioxy]methyl ester (9CI) (CA INDEX NAME)

L29 ANSWER 16 OF 16 CAPLUS COPYRIGHT 2002 ACS (Continued)
 $\text{F}_3\text{C}-\text{O}-\text{O}-\text{CF}_2-\text{O}-\text{F}$

=> log y		
COST IN U.S. DOLLARS	SINCE FILE ENTRY	TOTAL SESSION
FULL ESTIMATED COST	76.29	727.61
DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS)	SINCE FILE ENTRY	TOTAL SESSION
CA SUBSCRIBER PRICE	-9.91	-17.34

STN INTERNATIONAL LOGOFF AT 12:01:20 ON 09 SEP 2002

Day : Monday
Date: 9/9/2002
Time: 12:08:12

PALM INTRANET

Inventor Name Search Result

Your Search was:

Last Name = JANIN

First Name = ROBERT

Application#	Patent#	Status	Date Filed	Title	Inventor Name
08608519	6316636	150	02/28/1996	SYNTHESIS OF FLUOROCARBON COMPOUNDS	JANIN , ROBERT
09961347	Not Issued	071	09/25/2001	SYNTHESIS OF FLUOROCARBON COMPOUNDS	JANIN, ROBERT

Inventor Search Completed: No Records to Display.

Search Another: Inventor

Last Name

First Name

To go back use Back button on your browser toolbar.

Back to [PALM](#) | [ASSIGNMENT](#) | [OASIS](#) | Home page

Day : Monday
 Date: 9/9/2002
 Time: 12:13:00

PALM INTRANET
Inventor Name Search Result

Your Search was:

Last Name = SAINT-JALMES

First Name = LAURENT

Application#	Patent#	Status	Date Filed	Title	Inventor Name
09171990	6201149	150	01/19/1999	ORGANIC BASE HYDROGENOFLUOROSULPHONATES, THEIR USE IN RELEASING ORGANIC BASES FROM THEIR FLUOROHYDRATE, METHOD OF PREPARATION THEREOF, COMPOUND CONTAINING THEM	SAINT-JALMES , LAURENT
09180598	6166271	150	01/19/1999	METHOD FOR SYNTHESIS OF HYDROCARBON COMPOUNDS CONTAINING FLUORINE ON AT LEAST ONE ALKYL CHAIN CARBON	SAINT-JALMES , LAURENT
09012232	Not Issued	161	01/23/1998	REAGENT AND PROCESS WHICH ARE USEFUL FOR GRAFTING A SUBSTITUTED DIFLUOROMETHYL GROUP ONTO A COMPOUND CONTAINING AT LEAST ONE ELECTROPHILIC FUNCTION	SAINT-JALMES , LAURENT
09230761	6203670	150	04/06/1999	METHOD FOR GRAFTING A SUBSTITUTED DIFLUOROMETHYL GROUP	SAINT-JALMES , LAURENT
08620359	5859288	150	03/22/1996	REAGENT AND PROCESS FOR THE SYNTHESIS OF OXYSULPHIDE-CONTAINING FLUORINE-CONTAINING ORGANIC DERIVATIVES	SAINT-JALMES , LAURENT
08620348	5756849	150	03/22/1996	REAGENT AND PROCESS WHICH ARE USEFUL FOR GRAFTING A SUBSTITUTED DIFLUOROMETHYL GROUP ONTO A COMPOUND CONTAINING AT LEAST ONE ELECTROPHILIC FUNCTION	SAINT-JALMES , LAURENT
08608519	6316636	150	02/28/1996	SYNTHESIS OF FLUOROCARBON COMPOUNDS	SAINT-JALMES , LAURENT

<u>09201854</u>	Not Issued	094	12/01/1998	REAGENT AND PROCESS WHICH ARE USEFUL FOR GRAFTING A SUBSTITUTED DIFLUOROMETHYL GROUP ONTO A COMPOUND CONTAINING AT LEAST ONE ELECTROPHILIC FUNCTION	SAINT-JALMES , LAURENT
<u>09308257</u>	6203721	150	07/19/1999	COMPOUNDS USEFUL FOR PERHALOGENOALKYLATION, REAGENT FOR IMPLEMENTING THESE COMPOUNDS AND SYNTHESIS METHOD FOR OBTAINING THESE COMPOUNDS	SAINT-JALMES , LAURENT
<u>09609216</u>	Not Issued	061	07/05/2000	EXCHANGE AND TO THE RELEASE OF AN AMINE FROM ITS CARBAMOYL FLUORIDE	SAINT-JALMES, LAURENT
<u>10019694</u>	Not Issued	030	05/03/2002	METHOD FOR DEHYDROGENOFLUORINATION OF AN AROMATIC CARBAMOYL FLUORIDE	SAINT-JALMES, LAURENT
<u>09937856</u>	Not Issued	030	01/10/2002	METHOD FOR ACTIVATING MINERAL FLUORIDE IN AN ORGANIC MEDIUM	SAINT-JALMES, LAURENT
<u>09937853</u>	Not Issued	020	01/10/2002	METHOD FOR ACTIVATING AROMATIC SUBSTRATES BY MICROWAVES	SAINT-JALMES, LAURENT
<u>09961347</u>	Not Issued	071	09/25/2001	SYNTHESIS OF FLUOROCARBON COMPOUNDS	SAINT-JALMES, LAURENT
<u>09786665</u>	Not Issued	093	03/07/2001	METHOD FOR CONDENSATION OF AROMATIC DERIVATIVE(S) AND A SULPHINIC DERIVATIVE	SAINT-JALMES, LAURENT
<u>09768604</u>	6388126	150	01/25/2001	ORGANIC BASE HYDROGENOFLUOROSULPHONATES, THEIR USE IN RELEASING ORGANIC BASES FROM THEIR FLUOROHYDRATE, METHOD OF PREPARATION THEREOF, COMPOUND CONTAINING THEM	SAINT-JALMES, LAURENT

Inventor Search Completed: No Records to Display.

Search Another: Inventor

Last Name	First Name
<input type="text" value="SAINT-JALMES"/>	<input type="text" value="LAURENT"/>
<input type="button" value="Search"/>	

To go back use Back button on your browser toolbar.

Back to [PALM](#) | [ASSIGNMENT](#) | [OASIS](#) | Home page