算法分析与设计: 第七次作业

朱云沁 PB20061372 May 30, 2023

- 16.1-2 假定我们不再一直选择最早结束的活动, 而是选择最晚开始的活动, 前提仍然是与之前选 出的所有活动均兼容. (1) 请利用这一方法设计贪心算法和动态规划算法;
 - (2) 证明贪心算法会产生最优解.
- **解:** 假设集合 $S = \{a_1, a_2, \ldots, a_n\}$ 中每个活动 a_i 的开始时间为 s_i , 结束时间为 f_i , 且活动按开始

时间递增排序, 即 $s_1 \le s_2 \le \cdots \le s_n$. 记 S_{ij} 为在 a_i 结束之后开始, 在 a_j 开始之前结束的活动 子集. • 最优子结构: $\Diamond A_{ij}$ 为 S_{ij} 的一个最大兼容活动子集, 包含活动 a_k . 下证 $A_{ik} = A_{ij} \cap S_{ik}$ 和 $A_{kj} = A_{ij} \cap S_{ik}$

 S_{kj} 分别为子问题 S_{ik} 和 S_{kj} 的最大兼容活动子集.

假设 A_{ik} 不是 S_{ik} 的最大兼容活动子集,则存在 A'_{ik} 为 S_{ik} 的最大兼容活动子集,且 $|A'_{ik}| > |A_{ik}|$. 由于 A'_{ik} 中的活动在 a_k 开始之前结束, 故 $A'_{ik} \cup \{a_k\} \cup A_{ij}$ 为 S_{ij} 的兼容活动

子集, 而 $|A'_{ik} \cup \{a_k\} \cup A_{ij}| > |A_{ij}|$, 与 A_{ij} 为 S_{ij} 的最大兼容活动子集矛盾. 因此 A_{ik} 为 S_{ik} 的最大兼容活动子集. 同理可证 A_{kj} 为 S_{kj} 的最大兼容活动子集. • 递归式: 令 c[i,j] 为 S_{ij} 的最大兼容活动子集的规模,则有

 $c[i,j] = egin{cases} 0 & ext{if } S_{ij} = \emptyset \ \max_{a_k \in S_{ii}} \{c[i,k] + c[k,j] + 1\} & ext{if } S_{ij}
eq \emptyset \end{cases}$

构造最优解
$$A_{0,n+1}$$
 的过程从略, 详见 OJ 代码.

Algorithm 1: 16.1-2 (dynamic programming)

• 动态规划算法:

Input: arrays s and f of length n, where s_i is the start time of activity a_i and f_i is the finish time of activity a_i for i = 1, 2, ..., n.

```
1. Sort the activities in non-decreasing order of their start times.
2. f_0 \leftarrow -\infty
```

 $3. s_{n+1} \leftarrow \infty$ 4. Initialize c[i, j] = 0 for i = 0, 1, 2, ..., n and j = 1, 2, ..., n, n + 1.

5. for $l \leftarrow 2$ to n+1for $i \leftarrow 0$ to n+1-l

Output: the size of a maximum set of mutually compatible activities.

7. j = i + l

for $k \leftarrow i+1$ to j-18. if $s_k \geq f_i$ and $f_k \leq s_j$ 9. $c[i,j] = \max\{c[i,j], c[i,k] + c[k,j] + 1\}$

• 贪心选择:

记 S_k 为在 a_k 开始之前结束的活动集合, 且 a_m 为 S_k 中开始时间最晚的活动, 则选择 a_m

后, S_m 为唯一非空的子问题. 下证 a_m 在 S_k 的某个最大兼容活动子集中. 令 A_k 为 S_k 的一个最大兼容活动子集, 且 a_j 为 A_k 中开始时间最晚的活动. 若 $a_j = a_m$,

则 a_m 在 A_k 中. 否则, 由于 a_m 的开始时间不早于 a_j , 故 a_m 与集合 $A_k\setminus\{a_j\}$ 中的活动不相 交, 进而 $A'_k = A_k \setminus \{a_j\} \cup \{a_m\}$ 为 S_k 的一个兼容活动子集. 又由于 $|A'_k| = |A_k|$, 故 A'_k 为

11. **return** c[0, n+1]

 S_k 的一个包含 a_m 的最大兼容活动子集. • 贪心算法: **Algorithm 2:** 16.1-2 (greedy)

Input: arrays s and f of length n, where s_i is the start time of activity a_i and f_i is the finish time of activity a_i for i = 1, 2, ..., n. Output: the size of a maximum set of mutually compatible activities. 1. Sort the activities in non-decreasing order of their start times. 2. $A = \{a_n\}$

• 最优子结构:

8. return |A|

3. k = n4. for $m = n - 1, n - 2, \dots, 1$

 $\textbf{if} \; f_m \leq s_k$ $A = A \cup \{a_m\}$ k = m

择一个兼容活动子集 A, 使得 $\sum_{a_k \in A} v_k$ 最大化. 设计一个多项式时间的算法求解此问题.

令 A_{ij} 为 S_{ij} 的一个加权最大兼容活动子集, 包含活动 a_k . 下证 $A_{ik} = A_{ij} \cap S_{ik}$ 和 $A_{kj} =$

16.1-5 考虑活动选择问题的一个变形: 每个活动 a_i 除了开始和结束时间外, 还有一个值 v_i . 目 标不再是求规模最大的兼容活动子集,而是求值之和最大的兼容活动子集.也就是说,选

 $A_{ij} \cap S_{kj}$ 分别为子问题 S_{ik} 和 S_{kj} 的加权最大兼容活动子集. 假设 A_{ik} 不是 S_{ik} 的加权最大兼容活动子集,则存在 A'_{ik} 为 S_{ik} 的加权最大兼容活动子集, 且 $\sum_{a_j \in A'_{ik}} v_j > \sum_{a_j \in A_{ik}} v_j$. 由于 A'_{ik} 中的活动在 a_k 开始之前结束, 故 $A'_{ik} \cup \{a_k\} \cup A_{ij}$ 为 S_{ij} 的兼容活动子集, 而 $\sum_{a_j \in A'_{ik}v_j} + v_k + \sum_{a_j \in A_{ij}} v_j > \sum_{a_j \in A_{ij}} v_j$, 与 A_{ij} 为 S_{ij} 的加权最大兼容活

动子集矛盾. 因此 A_{ik} 为 S_{ik} 的加权最大兼容活动子集. 同理可证 A_{kj} 为 S_{kj} 的加权最大兼

构造最优解 $A_{0,n+1}$ 的过程从略, 详见 OJ 代码.

Algorithm 3: 16.1-2 (dynamic programming)

解:沿用 16.1-2 的记号,将活动按开始时间递增排序.

容活动子集. • 递归式: 令 c[i,j] 为 S_{ij} 的加权最大兼容活动子集的规模,则有 $c[i,j] = egin{cases} 0 & ext{if } S_{ij} = \emptyset \ \max_{a_k \in S_{ii}} \{c[i,k] + c[k,j] + v_k\} & ext{if } S_{ij}
eq \emptyset \end{cases}$

Input: arrays s, f and v of length n, where s_i , f_i and v_i are the start time, finish time

6.

7.

• 时间复杂度:

3. $s[n+1] \leftarrow \infty$

5. for $l \leftarrow 2$ to n+1

11. $\mathbf{return}\ c[0,n+1]$

for $i \leftarrow 0$ to n+1-l

j = i + l

• 动态规划算法:

1. Sort the activities in non-decreasing order of their start times. 2. $f[0] \leftarrow -\infty$

and value of activity a_i for i = 1, 2, ..., n, respectively.

Output: the size of a maximum set of mutually compatible activities.

4. Initialize c[i, j] = 0 for i = 0, 1, 2, ..., n and j = 1, 2, ..., n, n + 1.

```
for k \leftarrow i+1 to j-1
8.
9.
               if s_k \geq f_i and f_k \leq s_j
                    c[i,j] = \max\{c[i,j], c[i,k] + c[k,j] + v_k\}
```

间. 若 $x_k = \alpha$, 则 $[x_k, x_k + 1] \in S_k$. 否则, 由于 $x_k > \alpha$, $[x_k, x_k + 1]$ 覆盖的点的数目不少于 I覆盖的点的数目, 故 $S'_k = S_k \setminus \{I\} \cup \{[x_k, x_k + 1]\}$ 为覆盖 X_k 的单位长度闭区间集. 又由于 $|S'_k| = |S_k|$, 故 S'_k 为覆盖 X_k 的最小单位长度闭区间集.

4. while $k \leq n$

8. return S

Algorithm 4: 16.2-5 (version 1)

 $S=S\cup\{[x_i,x_i+1]\}$

Algorithm 5: 16.2-5 (version 2)

1. Sort X in non-decreasing order.

 $S=S\cup\{[x_i,x_i+1]\}$

2. $S \leftarrow \{[x_1, x_1 + 1]\}$

if $x_i > x_k + 1$

k = i

4. for $i \leftarrow 2$ to n

 $k = \text{Upper-Bound}(X, k, n, x_k + 1)$

Input: a point set $X = \{x_1, x_2, \dots, x_n\}$ of real numbers.

• 贪心算法:

Input: a point set $X = \{x_1, x_2, \dots, x_n\}$ of real numbers. **Output:** a minimum set of unit-length closed intervals that contains all points in X. 1. Sort X in non-decreasing order. $2. S \leftarrow \emptyset$ 3. k = 1

Output: a minimum set of unit-length closed intervals that contains all points in X.

// binary-search the smallest index i such that $x_i > x_k + 1$

8. $\mathbf{return} S$ • 时间复杂度:

5.

6.

7.

3. k = 1

 $dis^+[S,x] = \min\left\{dis^+[S\setminus \{v\},v] + d[v,x],\ dis^+[S\setminus \{v\},x]
ight\}, orall x\in T$ **Algorithm 6:** 24.3-6

4. for each $(u, v) \in E$ if r(u, v) > 0 $d[u,v] = -\log r(u,v)$

source vertex s and a target vertex t.

Output: the most reliable path from s to t.

1. Initialize $d[u,v] = \infty$ for each $(u,v) \in V \times V$

2. $T = V \setminus \{s\}$ 3. for each $v \in T$

 $S = S \cup \{v\}$

for each $x \in T$

function Shortest-Path(G,d,s,t)1. $S = \{s\}$

 $v = rg \min_{v \in T} dis[S,v]$ 6.

7. $T = T \setminus \{v\}$ 8.

 $dis^+[S,x]$ 进而求解子问题. 伪代码如下:

 $\langle V, E^+(S) \rangle$ 中从 s 到 x 的最短路径长度. 初始状态下, $S = \{s\}$, $T = V \setminus \{s\}$. 每次递归计算 (1) 式, Dijkstra 算法贪心地选择 $v = \arg\min_{v \in T} dis^+[S, v]$, 将 v 从 T 中移入 S, 并按 (2) 式更新

除排序操作以外, 则算法 4 剩余部分的时间复杂度为 $O(|S| \log n)$, 算法 5 剩余部分的时间 复杂度为 O(n). **24.3-6** 给定有向图 $G = \langle V, E \rangle$, 每条边 (u, v) 有一个关联值 r(u, v), 该关联值是一个实数, 其范 围是 $0 \le r(u,v) \le 1$, 代表的意思是从节点 u 到节点 v 之间的通信链路的可靠性. 可以 认为, r(u,v) 代表的是从结点 u 到结点 v 之间的通信链路不失效的概率, 并且假设这些 概率之间相互独立. 请给出一个有效的算法来找到任何两个结点之间最可靠的通信链路.

解: 给定 G 上的一条路径 $p=\langle v_1,v_2,\ldots,v_k\rangle$,其对应通信链路的可靠性为 $\prod_{i=1}^{k-1}r(v_i,v_{i+1})$. 从 G中删除关联值为 0 的边, 并定义 $d[u,v] = -\log r(u,v) \ge 0$ 为边 (u,v) 的权重. 最大化通信链路 的可靠性等价于最小化路径的权重之和. 因此, 问题转化为求解 G 上任意两点间的最短路径, 可

(1)

(2)

用 Dijkstra 算法求解. 最优子结构及贪心选择性质已在课本/课件中证明, 此处略去.

假设路径起点为 s, 终点为 t. 令 $T \subseteq V$ 为顶点的子集, $E^-(T)$ 为 T 中所有顶点的入边的集合. 记 $dis^-[x,T]$ 为子图 $G_T=\langle V,E^-(T)\rangle$ 中从 x 到 t 的最短路径长度. 则有 $dis^-[x,T] = \min_{v \in T} \left\{ d[x,v] + dis^-[v,T \setminus \{v\}] \right\}$ 令 $S = V \setminus T$. 类似地, 记 $E^+(S)$ 为 S 中所有顶点的出边的集合, $dis^+[S,x]$ 为子图 $G_S^+ =$

Input: a directed graph $G = \langle V, E \rangle$, where each edge $(u, v) \in E$ has a reliability r(u, v); a

7. **return** Shortest-Path(G, d, s, t)

2. for each $v \in V$ d[v,v]=0

3.

6.

9.

10.

dis[v] = d[s, v]5. while $t \in T$

 $dis[x] = \min\{dis[x], dis[v] + d[v, x]\}$ 11. return dis[t]

构造最优解的过程从略, 详见 OJ 代码.

由于三重循环的迭代次数均为 O(n), 故算法的时间复杂度为 $O(n^3)$, 满足多项式时间要求. **16.2-5** 设计一个高效算法, 对实数线上给定的一个点集 $\{x_1, x_2, \ldots, x_n\}$, 求一个单位长度闭区间 的集合,包含所有给定的点,并要求此集合最小. **解:** 假设集合 $X = \{x_1, x_2, \dots, x_n\}$ 满足 $x_1 \leq x_2 \leq \dots \leq x_n$. 记 $X_{ij} = \{x_i, x_{i+1}, \dots, x_j\}$, 并约定 当 i > j 时, $X_{ij} = \emptyset$. • 最优子结构: 令 S_{ij} 为覆盖 X_{ij} 的最小单位长度闭区间集, 其包含单位长度闭区间 I=[lpha,lpha+1]. 令 X_{kl} 为 X_{ij} 中被区间 I 覆盖的点的集合, 使得 $X_{kl} \subseteq I$ 且 $X_{i,k-1} \cap I = X_{l+1,j} \cap I = \emptyset$. 下证 $S_{i,k-1} = \{[x,x+1] \in S_{ij} \mid x < \alpha\}$ 和 $S_{l+1,j} = \{[x,x+1] \in S_{ij} \mid x > \alpha\}$ 分别为覆盖子问题 $X_{i,k-1}$ 和 $X_{l+1,i}$ 的最小单位长度闭区间集. 假设 $S_{i,k-1}$ 不是覆盖 $X_{i,k-1}$ 的最小单位长度闭区间集,则存在 $S'_{i,k-1}$ 为覆盖 $X_{i,k-1}$ 的最小 单位长度闭区间集,且 $|S'_{i,k-1}| < |S_{i,k-1}|$.由于 $S'_{i,k-1}$, $\{I\}$, $S_{l+1,k}$ 分别覆盖 $X_{i,k-1}$, X_{kl} , $X_{l+1,j}$, 故 $S'_{i,k-1} \cup \{I\} \cup S_{l+1,j}$ 为覆盖 X_{ij} 的单位长度闭区间集, 而 $|S'_{i,k-1} \cup \{I\} \cup S_{l+1,j}| < |S_{ij}|$, 与 S_{ij} 为覆盖 X_{ij} 的最小单位长度闭区间集矛盾. 因此 $S_{i,k-1}$ 为覆盖子问题 $X_{i,k-1}$ 的最小单位 长度闭区间集. 同理可证 $S_{l+1,j}$ 为覆盖子问题 $X_{l+1,j}$ 的最小单位长度闭区间集.

• 递归式: 令 c[i,j] 为覆盖 X_{ij} 的最小单位长度闭区间集的规模,则有 $c[i,j] = egin{cases} 0 & ext{if } X_{ij} = \emptyset \ \min_{\substack{i \leq k \leq l \leq j \ x_l < x_k + 1 < x_{k+1}}} \{c[i,k-1] + c[l+1,j] + 1\} & ext{if } X_{ij}
eq \emptyset \end{cases}$ • 贪心选择: 记 $X_k = \{x_k, x_{k+1}, \dots, x_n\}$. 若选择 x_k 作为闭区间的左端点, 且有 $x_l \le x_k + 1 < x_{l+1}$, 则 X_{l+1} 为唯一非空的子问题. 下证 $[x_k, x_k+1]$ 在 X_k 的某个最小单位长度闭区间集中. 令 S_k 为覆盖 X_k 的最小单位长度闭区间集, 且 $I = [\alpha, \alpha + 1]$ 为 S_k 中左端点最小的闭区