FANselect API

Developer's Manual

Edition 0

0. Table of Contents

1	Introduction	2
2 2.0 2.1 2.2	Connect to FANselect Minimal Required Inputs Programming a DLL Reader Connect to FANselect Web API	3
3.2.0 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5	Inputs & Outputs All Inputs Explained All Outputs Explained Outputs of each cmd cmd: search Outputs cmd: select Outputs cmd: nominal_values Outputs cmd: set_chart Outputs cmd: motor_data Outputs cmd: status Outputs cmd: session Outputs	6 14 14 15 16 17 17
4. 4.0 4.1	Help and Support Contact Information Links	18
5.	About this Manual	19

1. Introduction

The FANselect API serves as an Application Programming Interface to FANselect. It requires a request string as input and outputs a response string.

Both request and response strings can be formatted as JSON or XML. It is up to the calling application to create the required input and parse the API's output.

This API can be:

A. Downloaded (as a Windows DLL) by clicking on the link below: http://www.ziehl-abegg.com/fileadmin/de/de/05 Support/Software/FANselect/FANselect DLL daily.zip

B. Accessed through the web via: http://fanselect.net:8079/FSWebService

The downloadable FANselect DLL folder can be placed anywhere on your machine. It is important to keep the folder intact. Your application would need to access the fanselect.dll file inside this folder.

To update your version of the DLL:

- 1. Download the new DLL folder from the URL above
- 2. Delete your actual DLL folder
- 3. Place the new DLL folder in that location vacated by your previous DLL folder

In every DLL folder there is a test tool, called **ZADIITest.exe** or **ZADIITest64.exe**, with which you can test input and output strings.

image 0: Left is the input area whereas the right side contains the outputs produced by the DLL. Click on the tab Text on the top left side to see the request string generated.

The FANselect web API is always update and hence does not require the user to update.

2. Connect to FANselect DLL

2.0 Minimal Required Inputs:

username:Your FANselect account's usernamepassword:Your FANselect account's passwordcmd:search (explained in section 2.1 below)

qv: Duty point's volumetric flow rate **psf:** Duty point's static pressure

spec_products: Portfolio containing required fans (explained in section 3.0 below)

language: Choose language for outputs to appear in (explained in section 3.0 below)

With these minimum inputs, your request string should look like the samples below:

```
JSON Request String example
          "username" : "ZAFS19946"
          "password": "bnexg5",
          "cmd": "search",
          "qv": "2500",
          "psf": "50",
          "spec products": "PF 00",
          "language": "EN",
       }
Identical Request String as XML:
       <?xml version="1.0" encoding="UTF-8"?>
       <request>
               <username> ZAFS19946</username>
               <password> bnexq5</password>
               <cmd>search</cmd>
               <qv>2500</qv>
               <psf>50</psf>
               <spec products>PF 00</spec products>
               <language>EN</language>
       </request>
```

2.1 Programming a DLL Reader

You can access the DLL via one of three functions.

ZAJsonRequestW: For Unicode Strings ZAJsonRequestA: For UTF-8 Strings ZAJsonRequestBSTR: For OLE objects

Your DLL reader has to pass the request string as an argument to one of the functions above, and then read the DLL's output.

```
return fanselect dll output
```

request_string is identical format to Request String example above, albeit with more inputs **dll_path**: is the path to the FANselect DLL, ie C.\FANselect DLL\FANselect DLL\fanselect.dll

DLL Reader function in VBA

Private Declare Function ZAJsonRequestBSTR Lib "C:\FANselect_DLL\FANselect_DLL\FANselect.dll" (ByVal sRequest As String) As String

Public Function vba reader(ByVal input request string As String) As String

```
Dim request_string As String
Dim response_string As String

Dim request_string_unicode As Variant
Dim response_string_unicode As Variant

request_string = "{" + input_request_string + "}"

request_string_unicode = StrConv(request_string, vbUnicode)
response_string_unicode = ZAJsonRequestBSTR(request_string_unicode)

response_string = StrConv(response_string_unicode, vbFromUnicode)

vba_reader = response_string
```

End Function

Further Examples can be downloaded from the links below

C++ http://downloads.fanselect.net//fanselect/dll examples/CPPConsoleApp.zip
C# http://downloads.fanselect.net//fanselect/dll examples/VCS10StandardApp.zip
Delphi http://downloads.fanselect.net//fanselect/dll examples/DelphiConsoleApp.zip
VB10 http://downloads.fanselect.net//fanselect/dll examples/VB10StandardApp.zip
VB10 http://downloads.fanselect.net//fanselect/dll examples/VB10StandardApp.zip

2.2 Connect to FANselect Web API

Accessing FANselect's web API is nearly identical to the process used to access the DLL. The only difference is that you have to send two requests:

1st Request: To obtain a Session ID

2nd Request: Usual request, which includes the session ID obtained in the first request

The major advantage of the web API is that it is (as mentioned before) always up to date and does not require to be downloaded. Please examine Internet reliability in your location and your machine's firewall / security settings, as these could hamper the web API's performance-

As with the downloadable DLL, requests to and responses from the web API can be sent as JSON or XML strings.

Both DLL and web API produce identical outputs, as both use the same selection and calculation algorithms. Any discrepancies between DLL and web API, are probably due to an outdated DLL.

```
Web API Reader function in Python
import json
dll_path = "http://fanselect.net:8079/FSWebService"

def za_api_fan_selection_0(request_string, dll_path):
    import requests
    fanselect_api_output = requests.post(url=dll_path, data=request_string)
    return fanselect_api_output
```

```
# Get Session ID
request string = "{'cmd' : 'create session', 'username' : 'USERNAME', 'password' : 'PASSWORD' }"
request_string = str(request_string)
dll path = str(dll path)
response string = za api fan selection 0(request string, dll path)
session id = json.loads(response string raw.content)['SESSIONID']
# Usual Request
request_string = "{"
request string = request string + "'username' : 'USERNAME',"
request_string = request_string + "'password' : 'PASSWORD',"
request string = request string + "'language' : 'EN',"
request_string = request_string + "'unit_system' : 'm',"
request string = request string + "'cmd': 'search',"
request_string = request_string + "'cmd_param' : '0',"
request_string = request_string + "'spec_products' : 'PF_00',"
request_string = request_string + "'product_range' : 'BR_01'," request_string = request_string + "'qv' : '2500',"
request_string = request_string + "'psf' : '50',"
request_string = request_string + "'current_phase' : '3',"
request string = request string + "'voltage': '400','
request string = request string + "nominal frequency': '50',"
request_string = request_string + "'sessionid' : "" + session_id + "',"
request_string = request_string + "'full_octave_band' : 'true',"
request_string = request_string + "}"
request string = str(request string)
response_string_initial = za_api_fan_selection_0(request_string, dll_path)
```

Further Examples can be downloaded from the links below

C# http://downloads.fanselect.net/fanselect/dll examples/VCS10WebService.zip

VB10 http://downloads.fanselect.net/fanselect/dll examples/VB10WebService.zip

3. Inputs & Outputs

3.0 All Inputs Explained language

Set language of outputs

input options:

CS: Czech DA: Danish DE: German EN: English

ES: Spanish FR: French FI: Finnish HU: Hungarian

IT: Italian JA: Japanese NL: Dutch PL: Polish

PT: Portuguese RU: Russian SV: Swedish TR: Turkish

ZH: Chinese

unit system

unit system to be used in calculations.

Input options: m: metric i: imperial

username

Your FANselect account's username

password

Your FANselect account's password

Users who are only interested in a limited set of articles, can acquire one or more username / password combinations (logins). Each login would offer a specific set of articles - predefined by the user.

The user's application would then call the dll with one of these specific logins to select from a limited pool of articles. Advantages: Faster selection process and smaller number of articles among found set

cmd

cmd, short for command, is needed to instruct the DLL on the type of outputs required

Input Options:

search selection by duty point + filters such as size, design etc

status Delivers **username** and software version. Web API also outputs **SESSIONID**.

create_session Obtain SESSIONID. This cmd is only relevant for the web API

The following cmd's require an article number in article_no

select Select by article number. Article's nominal data is output if duty point is not achieved

nominal_values Obtain article's electric nominal values. This data also be obtained with your initial

search request by setting insert_nominal_values to true.

motor_data Article motor data. Can also be obtained with search and insert_motor_data: true

geo_data Article dimensions. Get this data with search by setting insert_geo_data to true.

accessories Depict accessories associated with article

get_chart Create charts for selected article

cmd param

You can set the index of the article you wish

zawall mode

Pick whether you want to select multiple fans, with either one of two options

ZAWALL: Select using multiple fans only Select using multiple and single fans

zawall size

Set the number of fans you want to use in your multiple fans array. Maximum number of fans is set to 20. **zawall_size** can also be left empty. FANselect will automatically determine the number of fans required. Selections without a pre-set number of fans usually come with a longer response time.

qv

Volumetric rate either in m³/h for unit_system choice m or CFM for unit_system choice i.

psf

Static pressure either in Pa for unit system choice m or in wg for unit system choice i.

pf

Total pressure either in Pa for **unit_system** choice **m** or **in** wg for **unit_system** choice **i** In your request string, you either specify **psf** or **pf**.

spec_products

Fans in FANselect are placed in discrete portfolios, denoted by the PF codes listed below. It is mandatory to input a specific portfolio. Currently it is not possible to select across multiple portfolios.

Input Options

PF_00: Standard Worldwide
PF_01: USA Standard Products
PF_02: Brasil Portfolio

PF_02: Brasil Portfolio
PF_03: AMCA USA Products
PF_04: AMCA Thailand Products

PF_06: India Portfolio

PF_07: AMCA Germany Products

product_range

Fans are placed in clusters called product ranges and denoted by the BR codes listed below. It is not mandatory to input a **product_range**. It is also possible to use multiple BR codes per selection. These BR codes would have to be separated by |, i.e. BR_01 | BR_57 | BR_59

Input Options

BR_01	EC fans	BR_41	Fans for agriculture applications
BR_04	Vpro ECblue fans	BR_44	MAXvent Owlet series
BR_07	FEowlet AC fans	BR_56	Fans for clean room applications
BR_08	Cpro AC fans	BR_57	Cpro PMblue fans
BR_09	C AC fans	BR_58	C PMblue fans
BR_10	Vpro AC fans	BR_59	Cpro AMblue fans
BR_12	FE2owlet ECblue fans	BR_60	C AMblue fans
BR_13	FE2owlet ECblue fans	BR_60	ZAvblue ECblue fans
BR_15	C ECblue fans	BR_61	ZAvblue series
BR_17	Cpro fan series	BR_82	ZAbluefin fans with PMblue motors
BR_18	C fan series	BR_84	ZApilot Series
BR_19	Vpro fan series	BR_85	ZAbluefin fans with IEC motors
BR_21	Fans for air handling units	BR_87	ZAcube Series
BR_28	Fans for transformer cooling	BR_105	ZAventero Series
BR_40	Cpro ECblue fans	BR_106	ZAbluefin fans with ECblue motors

product design

Every article can come in one of a multitude of designs. Leave empty if design is not known

Input Options

Axial flow fans with airflow direction A: Air is sucked over motor

A-A: Axial fan consisting only of impeller **A-D**: Axial fan sucking through grille

A-F: Tube axial fan with longer tube, round housing
A-L: Tube axial fan with shorter tube, round housing
A-Q: Tube axial fan with shorter tube, rectangular housing

A-W: Axial fan sucking through grille

Axial flow fans with airflow direction V: Air is blown over motor

V-A: Axial fan consisting only of impeller

V-E: Tube axial fan with shorter tube and sucking through contact protection

V-F: Tube axial fan with very long tube

V-H: Tube axial fan with shorter tube, round housing

V-H: Wall-mounted Tube axial fan with shorter tube and guide-vanes
V-L: Wall-mounted Tube axial fan with shorter tube and guide-vanes
V-Q: Wall-mounted Tube axial fan with shorter tube and guide-vanes

V-I: Axial fan blowing through grille V-K: Axial fan blowing through grille

V-L: Tube axial fan with shorter tube, round housing V-Q: Tube axial fan with shorter tube, rectangular housing

V-S: Axial fan blowing through grille, surrounding whole backside of fan

Centrifugal Fans

ER: Centrifugal plug fan design

GR-H: Wall mounted centrifugal fan design, horizontally mounted

GR-Vo: Wall mounted centrifugal fan design, vertically mounted facing upward **GR-Vu**: Wall mounted centrifugal fan design, vertically mounted facing downward

GR: Wall mounted centrifugal fan design
 RH: Centrifugal fan consisting only of impeller
 WR: Centrifugal fan placed in cube design

fan type

Filter by defining part of fan's type key. Wild cards are: * for multiple characters and ? for 1 character. i.e.: GR56C*1C to get all size 560 C impellers in GR design, ER??I-4* to get all ZAbluefin in ER design

article_no

Article number (if known) of the required fan.

Multiple article numbers can be input at once, each separated by a |, such as: 178125 | 178153 | 178113.

fan_size

fan size of required fans (if known)

mains operation

Choose whether required fan should be connected to a controller or not.

Input Options:

NETZ: Fan directly connected to electric grid **FZ**: Fan connected to frequency converter

motor_technology

Select the type of motor best suited for your application. Multiple choices can be input separated by a | i.e.: ZAmotpremium IE2 | PMblue IE4 | ZAmotpremium IE3

Input Options;

AC ERM: External rotor AC motor

AMblue IE3: Internal rotor IE3 motor with controller

ECblue: External rotor EC motors
ECQ: External rotor EC motor

PMblue IE4: Permanent magnet IE4 internal rotor motor

PMblue Standalone: Permanent magnet IE4 internal rotor motor without controller

ZAmotbasic EX:
ZAmotbasic IE2:
Low cost internal rotor ATEX motor
Low cost internal rotor IE2 motor
Low Cost iInternal rotor IE3 motor
ZAmotpremium IE2:
ZAmotpremium IE3:
Premium internal rotor IE3 motor
Premium internal rotor IE3 motor

ZAmotpremium PE: Premium internal rotor Premium Efficiency (USA) motor

current phase

Electric current phases. Input Options: 1 or 3.

voltage

Electric voltage Input Options: 230 400 460 690

nominal_frequency

Electric nominal frequency. Input Options: 50 60

search tolerance

Required selection tolerance

motor safety margin

Motor power reserve, if required

ie motor_safety_margin = 10 => 10 kW shaft power requires 11 kW motor

airflow_volume_reserve

Airflow volumetric reserve, if required

ie airflow volum reseve = 10 => 1000 m³/h required flow means fan must deliver 1100 m³/h

air density

Fan operating air density. Fan selection and duty point calculations will adjust to the density.

ambient temperature

Medium Temperature at which fan is operating

grill influence

Only applicable to centrifugal fans

Input Options:

false: no grill taken into account

true: duty point calculations affecting fan performance and acoustics take grill into account

installation height mm

Height of enclosure in mm

Placing fans within enclosures requires the overall dimensions of these enclosures, as they negatively affect fan performance. The smaller the enclosure is relative to fan size the more detrimental it is to fan performance

installation_width_mm

Width of enclosure in mm.

installation_length_mm

Length of enclosure in mm.

installation mode

Enclosure performance losses are calculated by specific algorithms. FANselect offers multiple loss calculating algorithms for single fans, yet only one (**RLT_2017**) for multiple fan layouts

Input Options:

ZA: Inhouse developed algorithm

RLT_2017: Most recent Algorithm developed by the AHU Manufacturer's Association

protection class

Input required protection class (if known) as an IPxx number.

erp class

Input ERP (Energy Related Products-Directive) class ie 2015.

The ErP class defines the minimum efficiency a fan can have to be sold in certain markets

sfp class

Input SFP (Specific Fan Performance) Class as a digit, ie 3, 4. SFP is basically the input electric power in relation to the output airflow.

full octave band

To display the full octave band with **cmd: search**, set this parameter to **true**.

insert_nominal_values

Set this parameter to true to show all the electrical nominal values with cmd: search.

insert motor data

Set this parameter to **true** to show relevant moor data with **cmd: search**.

insert_geo_data

Set this parameter to true to depict article's dimensions

pricelist_name

By entering the name of the Excel sheet found in the DLL folder: **Product_Price_Reference..xls**, you can have the price appear among the DLL's outputs. Excel file has one spreadsheet with three columns

Column 1: Customer article number. Here any number system can be used.

Column 2: Ziehl-Abegg article number, which is used for the selection calculations

Column 3: Price of this article

3.1 All Outputs Explained

CALC_N_RATED

ARTICLE_NO	Article number
CALC_AIR_DENSITY	Air Density used in selection and calculation (kg/m³)
CALC_ALTITUDE	Altitude used in selection and calculation (m above sea level)
CALC_LW5_OKT	Suction side octave band, values separated by commas (dB)
CALC_LW6_OKT	Pressure side octave band, values separated by commas (dB)
CALC_LWA5_OKT	Suction side weighted octave band values (dBA)
CALC_LWA6_OKT	Pressure side weighted octave band values (dBA)
CALC_NOZZLE_PRESSURE	Pressure in nozzle, used to determine air flow (Pa)

Ratio of duty point fan rpm to maximum fan rpm (%)

CALC_P1_MAX Maximum absorbed electrical power at duty point (W)

CALC_PL_MAX Maximum absorbed shaft power at duty point (W)

CALC_PSYS_MAX Maximum absorbed system power

= motor + controller absorbed power (W)

CALC_TEMP_C Medium temperature (°C)

CAPACITOR_CAPACITANCE Capacitor capacitance (μ F)

CAPACITOR_VOLTAGE Capacitor voltage (V)

CHART_VIEWER_URL URL to chart depicting fan curves

CIRCUIT Type of electrical circuit

COSPHI Fan motor Cosine Phi value

CURRENT_PHASE Fan motor phases

DENSITY_INFLUENCE Density used in determining duty point

measurement density => Selection at fan's measured density density => Selection at density different from measured density

DRAWING_FILE Path to fan drawing

EC_TYPE Output is 1 if fan is powered by an EC motor and an empty string if

fan motor is not an EC motor

EFFICIENCY_CLASS Efficiency Class of IEC motor. Parameters only shows up alongside

fans powered by IEC motors

EFFICIENCY_STAT Static efficiency of fan = Volumetric Rate X Static Pressure / Power

Absorbed by System (%)

EFFICIENCY_TOT Total efficiency of fan = Volumetric Rate X Static Pressure / Power

Absorbed by System (%)

ERP_CLASS Fan ERP class

ERP_METHOD Method used to measure ERP class

ERP_N_ACTUAL ERP efficiency factor = Best efficiency possible

ERP_N_STAT Actual ERP Efficiency at duty point (%)

ERP_N_TRAGET ERP required efficiency factor

ERP_VSD Returns EC controller integrated if fan is so equipped. and an

empty string for fans without an integrated speed control system

FAN_EFFICIENCY_GRADE This is a factor assigned to individual fans and is only relevant for

AMCA fans

FEI_FACTOR This factor is calculated based on the duty point and is only relevant

for AMCA fans

GRILL_INFLUENCE Returns **no** if grill influence is not factored into calculations, and **yes**

if grill's influence is taken into account.

INCREASE_OF_CURRENT Current increase (%)

INDEX Sequence number of fan in found set. First fan in found set would

have index 0, second fan index 1 etc.

INSTALLATION_HEIGHT_MM Height of Fan (mm)

INSTALLATION_LENGTH_MM Length of fan (mm)

INSTALLATION_POS Returns fan orientation(s):

H: Horizontal

VO: Vertical facing up **VU**: Vertical facing down

INSTALLATION_POS_H Returns 1 for horizontally oriented fans (**INSTALLATION_POS = H**),

and an empty string for remaining fans.

INSTALLATION_POS_VO Returns 1 for vertical upwards facing fans (INSTALLATION_POS =

VO) and an empty string for remaining fans

INSTALLATION_POS_VU Returns 1 for vertical downwards facing fans (INSTALLATION_POS

= VU) and an empty string for remaining fans

INSTALLATION WIDTH MM Width of fan (mm)

IS_EC Returns 1 if fan has EC motor and empty string for non-EC motors

KFACTOR Fan's nozzle pressure

MAX_CURRENT Fan's maximum current (A)

MAX_FREQUENCY Fan's maximum frequency (Hz)

MAX_TEMPERATURE_C Fan's maximum temperature (°C)

MAX_VOLTAGE Fan's maximum voltage (V)

MDRAWING Name of drawing file

MIN_CURRENT Fan's minimum current (A)

MIN_TEMPERATURE_C Fan's minimum temperature (°C)

MIN_VOLTAGE Fan's maximum voltage (V)

MOTOR_DESIGN Type of motor design: (only for IEC motors)

IMB 3: Foot mounted IMB 5: Flange mounted

MOTOR_POLES Number of motor poles (for IEC powered fans)

MOTOR_SHAFT IEC motor shaft description: number / diameter X length

MOTOR_SIZE IEC motor size

NOMINAL_CURRENT Fan motor nominal current (A)

NOMINAL_FREQUENCY Fan motor nominal frequency (Hz)

NOMINAL IECMOTOR

_EFFICIENCY

IEC Motor nominal efficiency as a decimal number

NOMINAL_SPEED Fan's nominal speed (1/min)

NOMINAL_VOLTAGE Fan motor nominal voltage

NOZZLE_GUARD Information on how fan was measured. Predominantly for axial fans

NUMBER_OF_POLES IEC motor number of poles

PHASE_DIFFERENCE Phase difference

POWER_INPUT_KW Power required by motor (kW)

POWER_INPUT_KW Power Output by motor (kW)

PRODUCT_IMG Path to product image

PROTECTION_CLASS_IP Protection class as IP number

PROTECTION_CLASS_THCL Temperature protection class as THCL number

RUBBER_MOT_DIAMETER Motor rubber damper diameter

RUBBER_MOT_HEIGHT Motor rubber damper height

SPRING_MOT_DIAMETER Motor spring damper diameter

SPRING_MOT_HEIGHT Motor spring damper height

TYPE Type key of fan

VOLTAGE_TOLERANCE Voltage tolerance (%)

ZAWALL_ARRANGEMENT Multiple fan layout. Returns 0 if no multiple fans are selected

ZA BG Fan nominal size

ZA COSPHI Fan motor Cos Phi

ZA_ETAFTotal efficiency of fan = Volumetric Rate X Total Pressure / Power

Absorbed by System (%)

ZA ETAF L Fan impeller total efficiency (%)

ZA_ETAF_SYS System total efficiency (%)

ZA_ETAM Motor efficiency (%)

ZA ETASF Static efficiency of fan = Volumetric Rate X Static Pressure / Power

Absorbed by System (%)

ZA_ETASF_L Fan impeller static efficiency (%)

ZA_ETASF_SYS System static efficiency (%)

ZA_F Fan nominal electrical frequency (Hz)

ZA FBP Fan electrical frequency at duty point (Hz)

ZA_I Fan current at duty point (A)

ZA IN Fan nominal current (A)

ZA_LW5 Duty point acoustic power level suction side (dB)

ZA LW6 Duty point acoustic power level pressure side (dB)

ZA LWA5 Duty point weighted acoustic power level suction side (dBA)

ZA_LWA6 Duty point weighted acoustic power level pressure side (dBA)

ZA_MAINS_SUPPLY Mains supply: phases, voltage and electric frequency

ZA_N RPM at duty point (1/min)

ZA_NMAX Maximum RPM of fan (1/min)

ZA_PD Dynamic pressure at duty point (Pa)

ZA_PF Total pressure of fan. ZA_PF = ZA_PSF + ZA_PD (Pa)

ZA_PF_MAINS_OPERATED Total Pressure of fan in mains operation (Pa)

ZA_PSF Static pressure of fan (Pa)

ZA_PSF_MAINS_OPERATED Static pressure of fan in mains operation (Pa)

ZA_P1 Electrical power required at duty point (W)

ZA_PD Duty point dynamic pressure (Pa)

ZA_PF Duty point total pressure (Pa)

ZA_PL Calculated shaft power at duty point (W)

ZA_PSF Duty point static pressure (Pa)

ZA_PSYS Absorbed power by system (W)

ZA_QV Duty point volumetric flow rate (m³/h)

ZA_QV_MAINS_OPERATED Duty point volumetric flow rate in mains operation (m³/h)

ZA_SFP SFP number of fan

ZA_SFP_CLASS Fan's SFP class

ZA_U Fan voltage at duty point (V)

ZA_UN Fan nominal voltage (V)

ZA_WEIGHT Mass of fan

3.2 Outputs of each cmd

3.2.0 cmd: search Outputs

ARTICLE_NO	CALC_AIR_DENSITY	CALC_ALTITUDE
CALC_NOZZLE_PRESSURE	CALC_N_RATED	DENSITY_INFLUENCE
DRAWING_FILE	ERP_CLASS	ERP_METHOD
ERP_N_ACTUAL	ERP_N_STAT	ERP_N_TRAGET
ERP_VSD	FAN_EFFICIENCY_GRADE	FEI_FACTOR
GRILL_INFLUENCE	INDEX	INSTALLATION_HEIGHT_MM
INSTALLATION_LENGTH_MM	INSTALLATION_POS	INSTALLATION_POS_H

INSTALLATION_POS_VU	INSTALLATION_WIDTH_MM
IS_VALID	KFACTOR
PRODUCT_IMG	TYPE
ZA_BG	ZA_COSPHI
ZA_ETAF_SYS_ MAINS_OPERATED	ZA_F
ZA_I	ZA_LW5
ZA_LWA5	ZA_LWA6
ZA_N	ZA_NMAX
ZA_PF	ZA_PF_MAINS_OPERATED
ZA_PSF_MAINS_OPERATED	ZA_PSYS
ZA_QV_MAINS_OPERATED	ZA_SFP
ZA_U	ZA_UN
	IS_VALID PRODUCT_IMG ZA_BG ZA_ETAF_SYS_ MAINS_OPERATED ZA_I ZA_LWA5 ZA_N ZA_PF ZA_PSF_MAINS_OPERATED ZA_QV_MAINS_OPERATED

3.2.1 cmd: select OutputsThis **cmd** requires that you input an article number in **article_no**.

ARTICLE_NO	CALC_AIR_DENSITY	CALC_ALTITUDE
CALC_LW5_OKT	CALC_LW6_OKT	CALC_LWA5_OKT
CALC_LWA6_OKT	CALC_NOZZLE_PRESSURE	CALC_N_RATED
CAPACITOR_CAPACITANCE	CAPACITOR_VOLTAGE	CHART_VIEWER_URL
CIRCUIT	COSPHI	CURRENT_PHASE
DENSITY_INFLUENCE	DRAWING_FILE	EC_TYPE
EFFICIENCY_STAT	EFFICIENCY_TOT	ERP_CLASS
ERP_METHOD	ERP_N_ACTUAL	ERP_N_STAT
ERP_N_TRAGET	ERP_VSD	FAN_EFFICIENCY_GRADE
FEI_FACTOR	GRILL_INFLUENCE	INCREASE_OF_CURRENT
INSTALLATION_HEIGHT_MM	INSTALLATION_LENGTH_MM	INSTALLATION_POS
INSTALLATION_POS_H	INSTALLATION_POS_VO	INSTALLATION_POS_VU
INSTALLATION_WIDTH_MM	IS_EC	IS_VALID
KFACTOR	MAX_CURRENT	MAX_TEMPERATURE_C
MAX_VOLTAGE	MIN_CURRENT	MIN_TEMPERATURE_C

MIN_VOLTAGE	NOMINAL_FREQUENCY	NOMINAL_SPEED
NOMINAL_VOLTAGE	NOZZLE_GUARD	PHASE_DIFFERENCE
POWER_INPUT_KW	PRODUCT_IMG	PROTECTION_CLASS_IP
PROTECTION_CLASS_THCL	TYPE	VOLTAGE_TOLERANCE
ZAWALL_ARRANGEMENT	ZA_BG	ZA_COSPHI
ZA_ETAF_SYS	ZA_ETAF_SYS_ MAINS_OPERATED	ZA_ETASF_SYS
ZA_ETASF_SYS_ MAINS_OPERATED	ZA_F	ZA_FBP
ZA_I	ZA_LW5	ZA_LW6
ZA_LWA5	ZA_LWA6	ZA_MAINS_SUPPLY
ZA_N	ZA_NMAX	ZA_PD
ZA_PF	ZA_PF_MAINS_OPERATED	ZA_PSF
ZA_PSF_MAINS_OPERATED	ZA_PSYS	ZA_QV
ZA_QV_MAINS_OPERATED	ZA_SFP	ZA_SFP_CLASS
ZA_U	ZA_UN	ZA_WEIGHT

3.2.2 cmd: nominal_values Outputs

This cmd requires that you input an article number in article_no.

The outputs below can also be output using cmd search by setting insert_nominal_values to true

ARTICLE_NO	CAPACITOR_CAPACITANCE	CAPACITOR_VOLTAGE
CIRCUIT	COSPHI	CURRENT_PHASE
EC_TYPE	EFFICIENCY_STAT	EFFICIENCY_TOT
INCREASE_OF_CURRENT	MAX_CURRENT	MAX_FREQUENCY
MAX_SPEED	MAX_TEMPERATURE_C	MAX_VOLTAGE
MIN_CURRENT	MIN_PSF	MIN_TEMPERATURE_C
MIN_VOLTAGE	NOMINAL_CURRENT	NOMINAL_FREQUENCY
NOMINAL_SPEED	NOMINAL_VOLTAGE	PHASE_DIFFERENCE
POWER_INPUT_HP	POWER_INPUT_KW	POWER_OUTPUT_HP
POWER_OUTPUT_KW	PROTECTION_CLASS_IP	PROTECTION_CLASS_THCL
VOLTAGE_TOLERANCE		

3.2.3 cmd: get_chart Outputs

This **cmd** requires that you input an article number in **article_no**. get_chart produces the outputs below plus the selected fan's curves

BOTTOM_MARGIN	CHART_FILE	CHART_MAX_X
CHART_MAX_Y	CHART_MIN_X	CHART_MIN_Y
LEFT_MARGIN	MEASUREMENT_ID	RIGHT_MARGIN
TOP_MARGIN		

3.2.4 cmd: motor_data Outputs For EC Motors

CIRCUIT	NOMINAL_VOLTAGE	PROTECTION_CLASS_IP
Olitoon	NOMINAL_VOLTAGE	THOTEOTION_OLAGO_II

FOR IEC Motors

CIRCUIT	EFFICIENCY_CLASS	MOTOR_DESIGN
MOTOR_SHAFT	MOTOR_SIZE	NOMINAL_CURRENT
NOMINAL_VOLTAGE	NUMBER_OF_POLES	POWER_OUTPUT_KW
PROTECTION_CLASS_IP	RUBBER_MOT_DIAMETER	RUBBER_MOT_HEIGHT
SPRING_MOT_DIAMETER	SPRING_MOT_HEIGHT	

3.2.5 cmd: status Outputs

This **cmd** is useful to obtain the DLL's version and the user's username

USERNAME	VERSION	
USERNAME	VERSION	

3.2.6 cmd: create_session

This cmd is used to create a session, before calling the web DLL

USERNAME	VERSION	
----------	---------	--

4. Help and Support

4.0 Contact Information

Please feel free to contact us, should you need further help or council on how to integrate the FANselect API into your application.

Contact Person:

Sargon Baki

Email: sargon.baki@ziehl-abegg.de

Tel: 0049 7940 16 257

4.1 Links

FANselect DLL Download

http://www.ziehl-abegg.com/fileadmin/de/de/05 Support/Software/FANselect/FANselect DLL daily.zip

FANselect Web API

http://fanselect.net:8079/FSWebService

Article Images and Drawings

https://www.ziehl-abegg.com/fileadmin/de/de/05 Support/Software/FANselect/catalog.zip

5. About this Manual

Author

Sargon Baki V-SPT – Product Management / Tools & Training Department

Edition

Publication Date 11.04.2019