数学分析 A

指导教师: 李嘉 副教授

授课教师: 谭兵 副教授

主页: https://bingtan.me

西南大学数学与统计学院

2024年10月11日

目录

第一章	实数集与函数	5
1.1	实数及其性质	8
	1.1.1 实数的表示	9
	1.1.2 实数的比较	11
	1.1.3 实数的性质	12
1.2	绝对值与不等式	15
1.3	数集与确界原理	19
	1.3.1 区间和领域	20
	1.3.2 有界集 确界原理	23
		1/132

		1.3.3	上、下确界定义	27
		1.3.4	确界原理	32
		1.3.5	广义实数域 $\mathbb{R} \cup \{-\infty, +\infty\}$	35
	1.4	函数.		40
		1.4.1	复合函数与反函数	43
		1.4.2	几类重要的特殊函数初等函数	46
		1.4.3	两种特殊函数	56
		1.4.4	具有某些特性的函数	57
	1.5	习题答	案	75
第_	1章	数列极	· <mark>限</mark>	97
	2.1	数列极	限概念	98
		2.1.1	数列收敛	99
		2.1.2	数列发散的问题	110
				0 / 16

	2.1.3	无穷小量与无穷大量	112
2.2	收敛数	[列的性质	117
	2.2.1	唯一性	118
	2.2.2	有界性	120
	2.2.3	保号性	122
	2.2.4	保不等式性	125
	2.2.5	迫敛性	128
	2.2.6	四则运算法则	130
	2.2.7	唯一性	131
	2.2.8	插图示例	132

第一章 实数集与函数

1.1	实数及其性质	8
1.2	绝对值与不等式	15
1.3	数集与确界原理	19
1.4	函数	40
1.5	习题答案	75

数域说明. 通常用 N 表示为所有自然数之集合 (亦包含 0),而用 N_{*} 表示所有非零自然数之集合. 整数域, 有理数域, 实数域, 复数域分别表示为 Z, Q, R 和 C. 对给定的数域 $\mathbb{F} \in \{\mathbb{Z}, \mathbb{Q}, \mathbb{R}\}$,符号 \mathbb{F}_+ 或 $\mathbb{F}_{>0}$ 表示 \mathbb{F} 中大于零的元素构成的集合,同样地我们可以定义 $\mathbb{F}_{\geq 0}$, $\mathbb{F}_{>0}$ 或 $\mathbb{F}_{< 0}$ 和 $\mathbb{F}_{< 0}$.

我们在本文中使用如下记号:

- (1) Ø: "空集"
- (2)∀: "任意"
- (3) 3: "存在"
- (4) ∃!: "存在且唯一"
- $(5) A \Rightarrow B$: "A 推出 B"
- $(6) A \Leftrightarrow B$: "A 和 B 等价"
- (7) A := B: " $A \oplus B$ 定义"
- (8) n!: "自然数 n 的阶乘,即 $1 \times 2 \times 3 \cdots \times n$ "

1.1 实数及其性质

1.1.1	实数的表示	 9
1.1.2	实数的比较	 11
1.1.3	实数的性质	 12

1.1.1 实数的表示

y数 $\begin{cases} f理数: \frac{p}{q}(p,q) \Rightarrow y, q \neq 0) \\ (或用有限十进小数或无限十进循环小数表示.) \\ 无理数: 无限十进不循环小数,如: <math>\sqrt{2},\pi,e$ 等. 为了讨论的需要,我们把有限小数(包括整数)也表示为无限小数.

规定:

(1) 对于正有限小数 x (包括正整数); 当 $x = a_0.a_1a_2\cdots a_n$ 时, 其中 $0 \le a_i \le 9, i = 1, \cdots, n, a_n \ne 0$, a_0 为非负整数,记

$$x = a_0.a_1a_2\cdots(a_n-1)\,9999\cdots$$

当 $x = a_0$ 为正整数时,记 $x = (a_0 - 1).999...$

- (2) 对于负有限小数 y (包括负整数); 先将 -y 表示为无限小数,再在所得的无限小数前加负号.
- $(3) 0 = 0.0000 \cdots$

1.1.2 实数的比较

(1) **非负实数的比较:** 对于任意 $x, y \in \mathbb{R}_+$,若 $x = a_0.a_1a_2 \cdots a_n \cdots$ 和 $y = b_0.b_1b_2 \cdots b_n \cdots$ 是正规的十进制小数表示,规定:

$$x = y \Leftrightarrow a_k = b_k, \quad k = 0, 1, 2, \dots$$
 $x > y \Leftrightarrow a_0 > b_0$ 或者存在 $n \in \mathbb{N}_+$,使得
 $a_k = b_k, \quad k = 0, \dots, n, \quad \mathbb{H}a_{n+1} > b_{n+1}.$

- (2) **负实数的比较:** 对于任意 $x, y \in \mathbb{R}_-$,规定 $x = y \Leftrightarrow -x = -y$,且 $x < y \Leftrightarrow -x > -y$.
- (3) 非负实数与负实数的比较:规定任何非负实数大于任何负实数,即:

$$\forall x \ge 0, \quad y \in \mathbb{R}_-, \quad x > y.$$

1.1.3 实数的性质

- (1) 实数集对加、减、乘、除运算是封闭的.
- (2) 实数集是有序的,即任意两实数 x,y 必满足下述三个关系之一: x > y, x = y, x < y.
- (3) 实数的大小关系具有传递性,即若 x > y 且 y > z,则 x > z.
- (4) 实数具有阿基米德性,即 $\forall a,b \in \mathbb{R}, b > a > 0$,存在 $n \in \mathbb{N}_+$,使得 na > b.
- (5) <u>实数集具有稠密性</u>,即任何两个不相等的实数之间必有另一个实数,且既有有理数,也有无理数.
- (6) 实数集与数轴上的点一一对应.

1.1.3 实数的性质

- (1) 实数集对加、减、乘、除运算是封闭的.
- (2) 实数集是有序的,即任意两实数 x,y 必满足下述三个关系之一:x>y,x=y,x< y.
- (3) 实数的大小关系具有传递性,即若 x > y 且 y > z,则 x > z.
- (4) 实数具有阿基米德性,即 $\forall a,b \in \mathbb{R}, b > a > 0$,存在 $n \in \mathbb{N}_+$,使得 na > b.
- (5) <u>实数集具有稠密性</u>,即任何两个不相等的实数之间必有另一个实数,且既有有理数,也有无理数.
- (6) 实数集与数轴上的点一一对应.
- 注 1.1.1(1) 无理数的四则运算不是封闭的, 有理数的四则运算是封闭的.
- (2) 有理数集和无理数集在实数集上都有稠密性, 而整数集没有.

证明

用反证法. 倘若结论不成立,则根据实数集的有序性,有 a>b. 令 $\varepsilon=a-b$,则 ε 为正数且 $a=b+\varepsilon$,但这与假设 $a<b+\varepsilon$ 相矛盾. 从而必有 $a\leq b$.

证明

用反证法. 倘若结论不成立,则根据实数集的有序性,有 a>b. 令 $\varepsilon=a-b$,则 ε 为正数且 $a=b+\varepsilon$,但这与假设 $a<b+\varepsilon$ 相矛盾. 从而必有 $a\leq b$.

例 1.1.2. 设 $a,b \in \mathbb{R}$, 证明: 若对任何正数 ε , 有 $|a-b| < \varepsilon$, 则 a=b.

证明

用反证法. 倘若结论不成立,则根据实数集的有序性,有 a>b. 令 $\varepsilon=a-b$,则 ε 为正数且 $a=b+\varepsilon$,但这与假设 $a<b+\varepsilon$ 相矛盾. 从而必有 $a\leq b$.

例 1.1.2. 设 $a,b \in \mathbb{R}$, 证明: 若对任何正数 ε , 有 $|a-b| < \varepsilon$, 则 a=b.

证明

用反证法. 假设 $a \neq b$,那么 $a - b \neq 0$. 设 $|a - b| = \eta$,则 $\eta > 0$. 取 $\varepsilon = \frac{\eta}{2}$,因为 $|a - b| = \eta > \varepsilon$,所以 $|a - b| < \varepsilon$ 不成立,这与题设矛盾,故 a = b.

注 1.1.2. 思考: $\forall \varepsilon > 0, \exists a, b \in \mathbb{R}, \ f |a-b| < \varepsilon, \ 则一定有 a = b 吗?$

答: 错, 如 $\forall \varepsilon > 0, \exists a = \varepsilon, b = \frac{\varepsilon}{2}$.

1.2 绝对值与不等式

绝对值定义

$$|a| = \begin{cases} a, & a \ge 0 \\ -a, & a < 0 \end{cases}$$

几何意义:数轴上点 a 到原点的距离.

绝对值的性质

- $|a| = |a| \ge 0;$ 当且仅当 a = 0 时 |a| = 0.
- $(2) |a| \le a \le |a|.$
- $(3) |a| < h \Leftrightarrow -h < a < h, |a| \le h \Leftrightarrow -h \le a \le h.$ $|a| > h \Leftrightarrow a > h$ $\exists a < -h, |a| \ge h \Leftrightarrow a \ge h$ 或 $a \leq -h$.

$$||a| - |b|| \le |a \pm b| \le |a| + |b|.$$

$$(5) |ab| = |a||b|.$$

$$(5) |ab| = |a||b|.$$

$$(6) \left| \frac{a}{b} \right| = \frac{|a|}{|b|} (b \neq 0).$$

绝对值的性质

- $|a| = |a| \ge 0;$ 当且仅当 a = 0 时 |a| = 0.
- $(2) |a| \le a \le |a|.$
- $(3) |a| < h \Leftrightarrow -h < a < h, |a| \le h \Leftrightarrow -h \le a \le h.$ $|a| > h \Leftrightarrow a > h$ \overrightarrow{g} $a < -h, |a| \ge h \Leftrightarrow a \ge h$ 或 $a \leq -h$.
- $(4) \forall a, b \in \mathbb{R}, \ \ \overrightarrow{A}$

$$||a| - |b|| \le |a \pm b| \le |a| + |b|.$$

$$(5) |ab| = |a||b|.$$

(5)
$$|ab| = |a||b|$$
.
(6) $\left|\frac{a}{b}\right| = \frac{|a|}{|b|}(b \neq 0)$.

解答

我们这里只验证第(4)条的结论.

证明:根据第 (2)条有 $-|a| \le a \le |a|, -|b| \le b \le |b|$.即 $-(|a|+|b|) \le a+b \le |a|+|b|$.利

用性质 (3) 得 $|a+b| \le |a| + |b|$. 注意到

$$|b| = |a + b - a| \le |a + b| + |a| \Rightarrow |b| - |a| \le |a + b|$$

$$|a| = |a+b-b| \le |a+b| + |b| \Rightarrow |a| - |b| \le |a+b|$$

从而 $||a| - |b|| \le |a+b|$.

将 b 替换为 -b 可证 $||a| - |b|| \le |a - b| \le |a| + |b|$.

用性质 (3) 得 $|a+b| \le |a| + |b|$. 注意到

$$|b| = |a+b-a| \le |a+b| + |a| \Rightarrow |b| - |a| \le |a+b|$$

$$|a| = |a+b-b| \le |a+b| + |b| \Rightarrow |a| - |b| \le |a+b|$$

从而 $||a| - |b|| \le |a+b|$.

将 b 替换为 -b 可证 $||a| - |b|| \le |a - b| \le |a| + |b|$.

注 1.2.1. 在第 (4) 条中,当为 |a+b| 时,左边等号取到的条件上 a,b 异号,右边等号取到的条件是 a,b 同号. 当为 |a-b| 时,左边等号取到的条件上 a,b 同号,右边等号取到的条件是 a,b 异号.

1.3 数集与确界原理

1.3.1	区间和领域	20
1.3.2	有界集 确界原理	23
1.3.3	上、下确界定义	27
1.3.4	确界原理	32
1.3.5	广义实数域 $\mathbb{R} \cup \{-\infty, +\infty\}$	35

1.3.1 区间和领域

设 $a, b \in \mathbb{R}, a < b$.

(1) 点 a 的 δ 邻域: $U(a;\delta) = \{x \mid |x-a| < \delta\}.$

(2) 点 a 的 δ 空心邻域: $U^{\circ}(a;\delta) = \{x \mid 0 < |x - a| < \delta\}.$

(3) 点 a 的 δ 右邻域: $U_{+}(a;\delta) = [a, a + \delta)$.

(4) 点 a 的 δ 左邻域: $U_{-}(a;\delta) = (a - \delta, a]$.

(5) 点 a 的空心 δ 左、右邻域

- (6) ∞ 邻域: $U(\infty) = \{x \mid |x| > M\}$, 其中 M 为充分大的正数.
- $(7) + \infty$ \mathfrak{P} \mathfrak{I} : $U(+\infty; M) = \{x \mid x > M\}.$

(5) 点 a 的空心 δ 左、右邻域

- (6) ∞ 邻域: $U(\infty) = \{x \mid |x| > M\}$, 其中 M 为充分大的正数.
- $(7) + \infty \stackrel{\text{$\mathfrak{P}}_{\underline{\mathbf{J}}}}{\longleftarrow} U(+\infty; M) = \{x \mid x > M\}.$

注 1.3.1. 注意领域的概念,例如第 (1) 条是 $|x-a| < \delta$ 而不是 $|x-a| \le \delta$.

1.3.2 有界集 确界原理

定义 1.3.1 (有界集). 设 $S \subset \mathbb{R}, S \neq \emptyset$.

- (1) 若 ∃ $M \in \mathbb{R}$,使得 $\forall x \in S, x \leq M$,则称 M 为 S 的一个上界,称 S 为有上界的数集.
- (2) 若 $\exists L \in \mathbb{R}$,使得 $\forall x \in S, x \geq L$,则称 L 为 S 的一个下界,称 S 为有下界的数集.
- (3) <u>若 S 既有上界又有下界</u>,则称 S 为有界集. S 为有界集的充要条件为: $\exists M > 0$,使得 $\forall x \in S$,有 $|x| \leq M$.

1.3.2 有界集 确界原理

定义 1.3.1 (有界集). 设 $S \subset \mathbb{R}, S \neq \emptyset$.

- (1) 若 ∃ $M \in \mathbb{R}$,使得 $\forall x \in S, x \leq M$,则称 M 为 S 的一个上界,称 S 为有上界的数集.
- (2) 若 ∃ $L \in \mathbb{R}$,使得 $\forall x \in S, x \geq L$,则称 L 为 S 的一个下界,称 S 为有下界的数集.
- (3) \underline{A} 医有上界又有下界,则称 S 为有界集. S 为有界集的充要条件为: $\exists M > 0$,使得 $\forall x \in S$,有 $|x| \leq M$.

解答

我们这里对第(3)条进行证明.

证: 充分性 (\Leftarrow): 由已知: $\exists M > 0$, 使得 $\forall x \in S$, 有 $|x| \leq M$, 得 $-M \leq x \leq M$. 则 M 为 S 的一个上界,-M 为 S 的一个下界.

必要性 (⇒): 由已知: S 有界,得 $\exists M_1, M_2 \in \mathbb{R}$,对 $\forall x \in S$ 有 $M_2 \leq x \leq M_1$. 取 $M = \max\{|M_1|, |M_2|\}$,则易知: $[M_2, M_1] \subset [-M, M]$. 即有 $\forall x \in S, |x| \leq M$.

必要性 (⇒): 由已知: S 有界,得 $\exists M_1, M_2 \in \mathbb{R}$,对 $\forall x \in S$ 有 $M_2 \leq x \leq M_1$. 取 $M = \max\{|M_1|, |M_2|\}$,则易知: $[M_2, M_1] \subset [-M, M]$. 即有 $\forall x \in S, |x| \leq M$.

注 1.3.2. 思考: $\forall x \in S$, $\exists M \in \mathbb{R}$ 使得 $x \leq M$, 则称 S 为有上界的数集?

答:错误. 这个定义是错误的,因为它描述了集合 S 中的每一个元素 x 都有一个上界 M,但这个上界 M 可能因 x 而异. 举个反例:考虑集合 $S=\{1,2,3,\ldots\}=\mathbb{N}$ (即自然数集). 按照给出的定义,对于任意 $x\in S$,我们总可以找到一个上界 M,比如让 M=x+1,这样显然 $x\leq M$ 对于每个 $x\in S$ 都成立. 然而,这并不能保证存在一个共同的上界 M 使得所有 $x\in S$ 都满足 $x\leq M$.

定义 1.3.2 (无界集). 设 $S \subset \mathbb{R}, S \neq \emptyset$.

- (1) 若 S 不是有上界的数集,则称 S 无上界,即 $\forall M \in \mathbb{R}, \exists x_0 \in S$,使得 $x_0 > M$.
- (2) 若 S 不是有下界的数集,则称 S 无下界,即 $\forall L \in \mathbb{R}, \exists x_0 \in S$,使得 $x_0 < L$.
- (3) 若 S 不是有界的数集,则称 S 无界集,即 $\forall M > 0, \exists x_0 \in S$,使得 $|x_0| > M$.

定义 1.3.2 (无界集). 设 $S \subset \mathbb{R}, S \neq \emptyset$.

- (1) 若 S 不是有上界的数集,则称 S 无上界,即 $\forall M \in \mathbb{R}, \exists x_0 \in S$,使得 $x_0 > M$.
- (2) 若 S 不是有下界的数集,则称 S 无下界,即 $\forall L \in \mathbb{R}, \exists x_0 \in S$,使得 $x_0 < L$.
- (3) 若 S 不是有界的数集,则称 S 无界集,即 $\forall M > 0, \exists x_0 \in S$,使得 $|x_0| > M$.

例 1.3.1. 证明 $S = (3, +\infty)$ 无上界.

定义 1.3.2 (无界集). 设 $S \subset \mathbb{R}, S \neq \emptyset$.

- (1) 若 S 不是有上界的数集,则称 S 无上界,即 $\forall M \in \mathbb{R}, \exists x_0 \in S$,使得 $x_0 > M$.
- (2) 若 S 不是有下界的数集,则称 S 无下界,即 $\forall L \in \mathbb{R}, \exists x_0 \in S$,使得 $x_0 < L$.
- (3) 若 S 不是有界的数集,则称 S 无界集,即 $\forall M > 0, \exists x_0 \in S$,使得 $|x_0| > M$.

例 1.3.1. 证明 $S = (3, +\infty)$ 无上界.

证明

对 $\forall M \in \mathbb{R}$,① 若 $M \leq 3$,取 $x_0 = 4 \in S$,则 $x_0 > M$;② 若 M > 3,取 $x_0 = M + 1 \in S$,则 $x_0 > M$. 综上可得 S 无上界.

定义 1.3.2 (无界集). 设 $S \subset \mathbb{R}, S \neq \emptyset$.

- (1) 若 S 不是有上界的数集,则称 S 无上界,即 $\forall M \in \mathbb{R}, \exists x_0 \in S$,使得 $x_0 > M$.
- (2) 若 S 不是有下界的数集,则称 S 无下界,即 $\forall L \in \mathbb{R}, \exists x_0 \in S$,使得 $x_0 < L$.
- (3) 若 S 不是有界的数集,则称 S 无界集,即 $\forall M > 0, \exists x_0 \in S$,使得 $|x_0| > M$.

例 1.3.1. 证明 $S = (3, +\infty)$ 无上界.

证明

对 $\forall M \in \mathbb{R}$,① 若 $M \le 3$,取 $x_0 = 4 \in S$,则 $x_0 > M$;② 若 M > 3,取 $x_0 = M + 1 \in S$,则 $x_0 > M$. 综上可得 S 无上界.

例 1.3.2. 证明数集 $\mathbb{N}_{+} = \{n \mid n$ 力正整数 $\}$ 有下界而无上界.

证明

- ① 显然 $0 \in \mathbb{N}_+$ 的一个下界,故 N_+ 有下界.
- ② 对 $\forall M \in \mathbb{R}$. (i) 若 $M \le 1$, 取 $x_0 = 2$, 则 $x_0 \in \mathbb{N}_+$ 且 $x_0 > M$; (ii) 若 M > 1, 取

$$x_0 = [M] + 1$$
, $M x_0 \in \mathbb{N}_+ \coprod x_0 > M$.

证明

- ① 显然 $0 \in \mathbb{N}_+$ 的一个下界,故 N_+ 有下界.
- ② 对 $\forall M \in \mathbb{R}$. (i) 若 $M \le 1$, 取 $x_0 = 2$, 则 $x_0 \in \mathbb{N}_+$ 且 $x_0 > M$; (ii) 若 M > 1, 取

$$x_0 = [M] + 1$$
, $M x_0 \in \mathbb{N}_+ \coprod x_0 > M$.

1.3.3 上、下确界定义

定义 1.3.3 (上确界). 设 $S \subset \mathbb{R}, S \neq \emptyset$. 若数 η 满足

- $(1) \forall x \in S \ \text{fi} \ x \leq \eta; \ (\eta \ \mathcal{L} \Lambda \perp \mathcal{R})$
- $(2) \forall \alpha < \eta$, $\exists x_0 \in S$ 使得 $x_0 > \alpha$. (或 $\forall \varepsilon > 0$, $\exists x_0 \in S$ 使得 $x_0 > \eta \varepsilon$). ($\underline{\eta}$ 是最小上界)则称 η 是 S 的上确界,记为 $\eta = \sup S$.

1.3.3 上、下确界定义

定义 1.3.3 (上确界). 设 $S \subset \mathbb{R}, S \neq \emptyset$. 若数 η 满足

- $(1) \forall x \in S \ f \ x \leq \eta; \ (\eta \ 是一个上界)$
- $(2) \forall \alpha < \eta$, $\exists x_0 \in S$ 使得 $x_0 > \alpha$. (或 $\forall \varepsilon > 0$, $\exists x_0 \in S$ 使得 $x_0 > \eta \varepsilon$). ($\underline{\eta}$ 是最小上界)则称 $\underline{\eta}$ 是 \underline{S} 的上确界,记为 $\underline{\eta} = \sup S$.

定义 1.3.4 (下确界). 设 $S \subset \mathbb{R}, S \neq \emptyset$. 若数 ξ 满足

- $(1) \forall x \in S \ f \ x \geq \xi; \ (\xi \ 是一个下界)$
- $(2) \forall \beta > \xi$, $\exists x_0 \in S$ 使得 $x_0 < \beta$. (或 $\forall \varepsilon > 0$, $\exists x_0 \in S$ 使得 $x_0 < \xi + \varepsilon$). (ξ 是最大下界)则称 ξ 是 S 的下确界,记为 $\xi = \inf S$.

上、下确界统称为确界.

注 1.3.4. 我们指出以后时常会遇到的一个明显的推理.

若一集合的全部数x满足不等式 $x \le M$,则 $\sup\{x\} \le M$. 事实上,数M 是集合的所有上界中的一个,所以一切上界中的最小者不能超过它. 同样,从不等式 $x \ge M$ 推出 $\inf\{x\} \ge M$.

注 1.3.4. 我们指出以后时常会遇到的一个明显的推理.

若一集合的全部数x 满足不等式 $x \le M$,则 $\sup\{x\} \le M$. 事实上,数M 是集合的所有上界中的一个,所以一切上界中的最小者不能超过它. 同样,从不等式 $x \ge M$ 推出 $\inf\{x\} \ge M$.

例 1.3.3. 证明 S = (1,3) 的上确界是 3.

注 1.3.4. 我们指出以后时常会遇到的一个明显的推理.

若一集合的全部数x满足不等式 $x \le M$,则 $\sup\{x\} \le M$. 事实上,数M 是集合的所有上界中的一个,所以一切上界中的最小者不能超过它. 同样,从不等式 $x \ge M$ 推出 $\inf\{x\} \ge M$.

例 1.3.3. 证明 S = (1,3) 的上确界是 3.

证明

① 由 S 的定义知 3 是 S 的一个上界. ② $\forall \alpha < 3$, (i) 若 $\alpha \le 1$, 取 $x_0 = 2$, 则 $x_0 \in S$ 且 $x_0 > \alpha$; (ii) 若 $\alpha > 1$. 由实数集的稠密性可知: $\exists x_0 \in (\alpha, 3)$ 使得 $x_0 \in S$ 且 $x_0 > \alpha$. 综上可得 $\sup S = 3$.

例 1.3.4. 设 $S = \{x \mid x \ \textbf{为}(0,1)$ 上的有理数 $\}$,试证 $\sup S = 1$, $\inf S = 0$.

例 1.3.4. 设 $S = \{x \mid x \ \beta(0,1) \bot$ 的有理数 \ , 试证 $\sup S = 1$, $\inf S = 0$.

证明

法一: ① $\forall x \in S$,显然有 $x \le 1$,则 1 是 S 的上界; ② $\forall \varepsilon > 0$,若 $\varepsilon \ge 1$,则任取 $x_0 \in S$ 都有 $x_0 > 1 - \varepsilon$;若 $\varepsilon < 1$,则由有理数集在实数集中的稠密性,在 $(1 - \varepsilon, 1)$ 内必有有理数 x_0 ,即存在 $x_0 \in S$ 使得 $x_0 > 1 - \varepsilon$.

法二:① $\forall x \in S$,显然有 $x \le 1$,则 1 是 S 的上界.② $\forall \varepsilon > \forall$,不妨设 $\varepsilon < 1$,则由有理数集在实数集中的稠密性,在 $(1 - \varepsilon, 1)$ 内必有有理数 x_0 ,即存在 $x_0 \in S$ 使得 $x_0 > 1 - \varepsilon$.

法三: ① 对一切 $x \in S$, 显然有 $x \le 1$, 即 1 是 S 的上界. ② 对任何 $\alpha < 1$, 若 $\alpha \le 0$, 则任取 $x_0 \in S$ 都有 $x_0 > \alpha$; 若 $\alpha > 0$, 则由有理数集在实数集中的稠密性,在 $(\alpha, 1)$ 内必有有理数 x_0 , 即存在 $x_0 \in S$, 使得 $x_0 > \alpha$.

注 1.3.5(1) 若 S 存在上 (下) 确界,则一定唯一;

- (2) 若 S 存在上、下确界,则有 $\inf S \leq \sup S$;
- (3) S 的确界可能属于 S , 也可能不属于 S;
- (4) 一个集合的任一上界一定大于等于上确界,任一下界一定小于等于下确界.

注 1.3.5(1) 若 S 存在上 (下) 确界,则一定唯一;

- (2) 若 S 存在上、下确界,则有 $\inf S \leq \sup S$;
- (3) S 的确界可能属于 S , 也可能不属于 S;
- (4) 一个集合的任一上界一定大于等于上确界,任一下界一定小于等于下确界.

证明

我们证明注1.3.5的第(1)条.

法一: 设 η_1, η_2 是S的上确界. 若 $\eta_1 \neq \eta_2$,不妨设 $\underline{\eta_1 < \eta_2}$. 由 η_2 是S的上确界得: $\exists x_0 \in S$

使得 $x_0 > \eta_1$. 这与 eta_1 是 S 的上界矛盾. 故 $\eta_1 = \eta_2$.

法二:设 η_1 是S的上确界, η_2 是S的上界.则 $\eta_1 \leq \eta_2$.同理可得 $\eta_2 \leq \eta_1$.故 η_1 和 η_2 都为S的上确界时只能是 $\eta_1 = \eta_2$.

- 例 1.3.5. (1) 设数集 S 有上确界, 试证: $\eta = \sup S \in S \Leftrightarrow \eta = \max S$;
 - (2) 设数集 S 有下确界, 试证: $\xi = \inf S \in S \Leftrightarrow \xi = \min S$.

- 例 1.3.5. (1) 设数集 S 有上确界, 试证: $\eta = \sup S \in S \Leftrightarrow \eta = \max S$;
 - (2) 设数集 S 有下确界, 试证: $\xi = \inf S \in S \Leftrightarrow \xi = \min S$.

证明

(1) 必要性 (⇒): 设 $\eta = \sup \in S$. (i) 由已知得: $\eta \in S$. (ii) $\forall x \in S$, 由 $\eta = \sup S$ 得 $x \leq \eta$. 故 $\eta = \max S$.

充分性 (\Leftarrow): 设 $\eta = \max S$. 则由最大值定义知: $\eta \in S$. (i) 由 η 是 S 的最大值可得: $\forall x \in S, x \leq \eta$. (ii) $\forall \alpha < \eta$. 取 $x_0 = \eta$, 则 $x_0 \in S$ 且 $x_0 > \alpha$. 故 $\eta = \sup S \in S$.

(2) 必要性 (\Rightarrow): 设 inf $S = \xi \in S$,因为 $\xi \in S$ 的下确界,所以 $\xi \in S$ 的一个下界. 于是,对于 S 的任一元素 x , $x \geq \xi$. 又因为 $\xi \in S$,所以 $\xi \in S$ 中最小的数,即 $\xi = \min S$.

充分性 (\Leftarrow): 设 $\xi = \min S$, 则 $\xi \in S$, 并且对于 S 中的任意元素 x, $x \geq \xi$. 即 ξ 是 S 的一个下界. 对于任意 $\alpha > \xi$, 取 $x_0 = \xi \in S$, 则 $x_0 < \alpha$. 所以 ξ 是 S 的下确界,即 $\inf S = \xi \in S$.

1.3.4 确界原理

定理 1.3.1 (确界原理). 设 $S \subset R, S \neq \emptyset$. 若 S 有上界,则 S 必有上确界;若 S 有下界,则 S 必有下确界.

1.3.4 确界原理

定理 1.3.1 (确界原理). 设 $S \subset R, S \neq \emptyset$. 若 S 有上界,则 S 必有上确界;若 S 有下界,则 S 必有下确界.

例 1.3.6. 设 A, B 为非空数集满足: $\forall x \in A, \forall y \in B, \, fx \leq y$. 证明: A 有上确界,B 有下确界,且 $\sup A \leq \inf B$.

1.3.4 确界原理

定理 1.3.1 (确界原理). 设 $S \subset R, S \neq \emptyset$. 若 S 有上界,则 S 必有上确界;若 S 有下界,则 S 必有下确界.

例 1.3.6. 设 A, B 为非空数集满足: $\forall x \in A, \forall y \in B, \ fx \leq y$. 证明: A 有上确界, B 有下确界, 且 $\sup A \leq \inf B$.

证明

任取 $y_0 \in B$,则由已知可得,对 $\forall x \in A$, $x \leq y_0$,即 y_0 是 A 的一个上界. 由确界原理知 A 有上确界且 $\sup A \leq y_0$. 又由 y_0 的任意性及 $\sup A \leq y_0$,可得 $\sup A$ 是 B 的一个下界. 由确界原理知 B 有下确界且 $\sup A \leq \inf B$.

例 1.3.7. 设 A, B 为非空有界数集,证明: (1) $\sup A \cup B = \max\{\sup A, \sup B\}$; (2) $\inf A \cup B = \min\{\inf A, \inf B\}$.

例 1.3.7. 设 A, B 为非空有界数集,证明: (1) $\sup A \cup B = \max\{\sup A, \sup B\}$; (2) $\inf A \cup B = \min\{\inf A, \inf B\}$.

证明

我们证明第(1)条.

设 $\eta = \max\{\sup A, \sup B\}$.

法一: ① 先证 $\sup A \cup B \le \eta$. 因为对 $\forall x \in A \cup B$,有 $x \in A$ 或 $x \in B$. 若 $x \in A$,则 $x \le \sup A \le \eta$;若 $x \in B$,则 $x \le \sup B \le \eta$. 故对 $\forall x \in A \cup B$ 总有 $x \le \eta$. 即 η 是 $A \cup B$ 的一个上界. 从而由确界原理知 $A \cup B$ 有上确界且 $\sup A \cup B \le \eta$.

② 再证 $\eta \le \sup A \cup B$. 因为对 $\forall x \in A$,有 $x \in A \cup B$,从而 $x \le \sup A \cup B$,即 $\sup A \cup B$ 是 A的一个上界. 同理可得 $\sup B \le \sup A \cup B$. 从而可得 $\eta \le \sup A \cup B$.

综上可得 $\sup A \cup B = \eta$.

法二 (根据定义证明): 根据法一的①知 η 是 $A \cup B$ 的一个上界. 对 $\forall \alpha < \eta$, (i) 若 $\sup A \le \sup B$, 则 $\eta = \sup B$. 根据 $\sup B$ 的定义: $\forall \alpha < \eta$, $\exists x_0 \in B \subset A \cup B$ 使得 $x_0 > \alpha$; (ii) 若 $\sup A > \sup B$, 则 $\eta = \sup A$. 根据 $\sup A$ 的定义: $\forall \alpha < \eta$, $\exists x_0 \in A \subset A \cup B$ 使得 $x_0 > \alpha$. 综上可得 η 是 $A \cup B$ 的上确界. 即 $\sup A \cup B = \eta$.

1.3.5 广义实数域 $\mathbb{R} \cup \{-\infty, +\infty\}$

规定

- $(1) \, \forall a \in \mathbb{R}, -\infty < a < +\infty;$
- $(2) \infty < +\infty;$
- (3) 若 S 无上界,则定义 $+\infty$ 为 S 的非正常上确界;若 S 无下界,则定义 $-\infty$ 为 S 的非正常下确界.

推广的确界原理: 非空数集必有上、下确界.

1.3.5 广义实数域 $\mathbb{R} \cup \{-\infty, +\infty\}$

规定

- $(1) \, \forall a \in \mathbb{R}, -\infty < a < +\infty;$
- $(2) \infty < +\infty;$
- (3) 若 S 无上界,则定义 $+\infty$ 为 S 的非正常上确界;若 S 无下界,则定义 $-\infty$ 为 S 的非正常下确界.

推广的确界原理: 非空数集必有上、下确界.

例 1.3.8. 设 S 为非空数集,定义 $S^- = \{x \mid -x \in S\}$. 证明: (1) $\inf S^- = -\sup S$; (2) $\sup S^- = -\inf S$.

1.3.5 广义实数域 $\mathbb{R} \cup \{-\infty, +\infty\}$

规定

- $(1) \forall a \in \mathbb{R}, -\infty < a < +\infty;$
- $(2) \infty < +\infty;$
- (3) 若 S 无上界,则定义 +∞ 为 S 的非正常上确界;若 S 无下界,则定义 -∞ 为 S 的非正常下确界.

推广的确界原理: 非空数集必有上、下确界.

例 1.3.8. 设 S 为非空数集,定义 $S^- = \{x \mid -x \in S\}$. 证明: (1) $\inf S^- = -\sup S$; (2) $\sup S^- = -\inf S$.

证明

证 (1): 情形一: S 有上界. 记 $\alpha = \sup S$. ① $\forall x \in S^{-1}$, 有 $-x \in S$, 根据 $\alpha = \sup S$ 得 $-x \leq \alpha$. 则 $x \geq -\alpha$. 即 $-\alpha$ 是 S^{-1} 的一个下界. ② 对 $\forall \beta \geq -\alpha$, 则 $-\beta < \alpha = \sup S$. 由

情形 2: S 无上界,则 $\sup S = +\infty$. $\forall M \in \mathbb{R}$,根据 S 无上界,得到 $\exists y_0 \in S$ 使得 $y_0 > -M$. 则 $\exists -y_0 \in S^{-1}$ 且 $-y_0 < M$,故 S^{-1} 无下界且 $\inf S^- = -\infty$.

情形 2: S 无上界,则 $\sup S = +\infty$. $\forall M \in \mathbb{R}$,根据 S 无上界,得到 $\exists y_0 \in S$ 使得 $y_0 > -M$. 则 $\exists -y_0 \in S^{-1}$ 且 $-y_0 < M$,故 S^{-1} 无下界且 $\inf S^- = -\infty$.

例 1.3.9. (1)
$$\sup N_+ = __$$
, $\inf N_+ = __$;
 (2) $S = \{ y \mid y = 2 - x^2, x \in \mathbb{R} \}$, 则 $\sup S = __$, $\inf S = __$.

情形 2: S 无上界,则 $\sup S = +\infty$. $\forall M \in \mathbb{R}$,根据 S 无上界,得到 $\exists y_0 \in S$ 使得 $y_0 > -M$. 则 $\exists -y_0 \in S^{-1}$ 且 $-y_0 < M$,故 S^{-1} 无下界且 $\inf S^- = -\infty$.

例 1.3.9. (1)
$$\sup N_+ = __$$
, $\inf N_+ = __$;
 (2) $S = \{ y \mid y = 2 - x^2, x \in \mathbb{R} \}$, 则 $\sup S = __$, $\inf S = __$.

解答

$$(1) + \infty, 1. (2) 2, -\infty.$$

情形 2: S 无上界,则 $\sup S = +\infty$. $\forall M \in \mathbb{R}$,根据 S 无上界,得到 $\exists y_0 \in S$ 使得 $y_0 > -M$. 则 $\exists -y_0 \in S^{-1}$ 且 $-y_0 < M$,故 S^{-1} 无下界且 $\inf S^- = -\infty$.

例 1.3.9. (1)
$$\sup N_+ = __$$
, $\inf N_+ = __$;
 (2) $S = \{ y \mid y = 2 - x^2, x \in \mathbb{R} \}$, 则 $\sup S = __$, $\inf S = __$.

解答

$$(1) + \infty, 1. (2) 2, -\infty.$$

例 1.3.10. 解决以下问题

- (1) $E = \left\{ \frac{(-1)^n}{n} + 1 \mid n = 1, 2, \dots \right\}$, sup $E = \underline{\hspace{1cm}}$, inf $E = \underline{\hspace{1cm}}$;
- (2) $E = \{y \mid y = \sin x, x \in (0, \pi)\}, \sup E = __, \inf E = __;$
- (3) 设 $\emptyset \neq A \subset S \subset \mathbb{R}$, 证明: $\sup A \leq \sup S$, $\inf A \geq \inf S$;
- (4) 设 A 是非空有界数集, $a \in \mathbb{R}$,定义 $a + A = \{a + x \mid x \in A\}$,证明: (i) $\sup(a + A) = a + \sup A$; (ii) $\inf(a + A) = a + \inf A$.
- (5) 设 A 是非空有界数集, $a \in \mathbb{R}$,定义 $aA = \{ax \mid x \in A\}$,证明: (i) $a \ge 0$,则 $\sup(aA) = a \sup A, \inf(aA) = a \inf A$; (ii) a < 0,则 $\sup(aA) = a \inf A, \inf(aA) = a \sup A$.

- (1) $E = \left\{ \frac{(-1)^n}{n} + 1 \mid n = 1, 2, \dots \right\}, \sup E = \underline{\hspace{1cm}}, \inf E = \underline{\hspace{1cm}};$
- (2) $E = \{y \mid y = \sin x, x \in (0, \pi)\}, \sup E = __, \inf E = __;$
- (3) 设 $\emptyset \neq A \subset S \subset \mathbb{R}$, 证明: $\sup A \leq \sup S$, $\inf A \geq \inf S$;
- (4) 设 A 是非空有界数集, $a \in \mathbb{R}$,定义 $a + A = \{a + x \mid x \in A\}$,证明: (i) $\sup(a + A) = a + \sup A$; (ii) $\inf(a + A) = a + \inf A$.
- (5) 设 A 是非空有界数集, $a \in \mathbb{R}$,定义 $aA = \{ax \mid x \in A\}$,证明: (i) $a \ge 0$,则 $\sup(aA) = a \sup A, \inf(aA) = a \inf A$; (ii) a < 0,则 $\sup(aA) = a \inf A, \inf(aA) = a \sup A$.

- $(1)\frac{3}{2}$, 0.
- (2) 1, 0.
- (3)参见例子1.3.7的解答.
- (4) 证 (i): ① $\forall a + x \in a + A$ (其中 $x \in A$),由 $x \leq \sup A$ 得 $a + x \leq a + \sup A$; ② $\forall \varepsilon > 0$,由 上确界定义得到 $\exists x_0 \in A$ 使得 $x_0 > \sup A \varepsilon$. 则 $a + x_0 \in a + A$ 且 $a + x_0 > a + \sup A \varepsilon$. 故 $\sup(a + A) = a + \sup A$.
- (5) 证 (ii): ① 设 a < 0,对 $\forall ax \in aA$,其中 $x \in A$. 由 $x \ge \inf A$ 和 a < 0 得 $ax \le a \inf A$. 因此 $a \inf A$ 是 aA 的一个上界; ② 对 $\forall \varepsilon > 0$,由 a < 0,得 $-\frac{\varepsilon}{a} > 0$,从而由 A 的下确界定义知 $\exists x_0 \in A$, $x_0 < \inf A \frac{\varepsilon}{a}$. 则 $ax_0 \in aA$,且有 $ax_0 > a \inf A \varepsilon$. 综上得 $\sup(aA) = a \inf A$.

性质 1.3.1. 令 $A \subset \mathbb{R}$, $B \subset \mathbb{R}$, $c \in \mathbb{R}$, 定义

$$cA = \{y \in \mathbb{R} : y = cx, \ x \in A\},\$$

 $A + B = \{a + b : a \in A, b \in B\},\$
 $A - B = \{a - b : a \in A, b \in B\}.$

我们有如下结论:

- $(1)\inf A \leq \sup A;$
- (2) 若 $c \ge 0$, 则 $\sup cA = c \sup A$, $\inf cA = c \inf A$; 若 c < 0, 则 $\sup cA = c \inf A$, $\inf cA = c \sup A$;
- (3) $\sup(A + B) = \sup A + \sup B$, $\inf(A + B) = \inf A + \inf B$;
- $(4)\sup(A-B)=\sup A-\inf B,\ \inf(A-B)=\inf A-\sup B;$
- (5) $A \subset B$,则 $\sup A \leq \sup B$ 且 $\inf B \leq \inf A$;
- (6) 若对于 $\forall x \in A$ 和 $\forall y \in B$,有 $x \leq y$,则 $\sup A \leq \inf B$.

1.4 函数

1.4.1	复合函数与反函数	43
1.4.2	几类重要的特殊函数初等函数	46
1.4.3	两种特殊函数	56
1.4.4	具有某些特性的函数	57

映射 $D \to M$: 对于 D 中任意一个元素,存在某种对应法则使得 M 中的唯一元素与之对应.

定义 1.4.1 (函数). 给定两个实数集 D 和 M,若有对应法则 f,使对每一个 $x \in D$,都有唯一的 $y \in M$ 与它相对应,则称 f 是定义在数集 D 上的函数,记作

$$f: D \to M, x \mapsto y.$$

数集 D 称为函数 f 的定义域,x 所对应的 y 称为 f 在点 x 的函数值,常记为 f(x). 全体函数值的集合 $f(D) = \{y \mid y = f(x), x \in D\} (\subset M)$ 称为函数 f 的值域.

映射 $D \to M$: 对于 D 中任意一个元素,存在某种对应法则使得 M 中的唯一元素与之对应.

定义 1.4.1 (函数). 给定两个实数集 D 和 M,若有对应法则 f,使对每一个 $x \in D$,都有唯一的 $y \in M$ 与它相对应,则称 f 是定义在数集 D 上的函数,记作

$$f: D \to M, x \mapsto y.$$

数集 D 称为函数 f 的定义域,x 所对应的 y 称为 f 在点 x 的函数值,常记为 f(x). 全体函数值的集合 $f(D) = \{y \mid y = f(x), x \in D\} (\subset M)$ 称为函数 f 的值域.

注 1.4.1. (1) 我们说某两个函数相同,是指它们有相同的定义域和对应法则. 如果两个函数对应法则相同而定义域不同,那么这两个函数仍是不相同的. 例如 $f(x) = 1, x \in \mathbb{R}$ 和 $g(x) = 1, x \in \mathbb{R}$ \{0} 是不相同的两个函数. 另一方面,两个相同的函数,其对应法则的表达形式可能不同,例

如

$$\varphi(x) = |x|, x \in \mathbb{R} \neq \psi(x) = \sqrt{x^2}, x \in \mathbb{R}.$$

(2) 在函数定义中,对每一个 $x \in D$,只能有唯一的一个y 值与它对应,这样定义的函数称为单值函数. 若同一个x 值可以对应多于一个的y 值,则称这种函数为多值函数. 在本书范围内,我们只讨论单值函数.

1.4.1 复合函数与反函数

定义 1.4.2 (复合函数). 设有两函数

$$y = f(u), u \in D$$

$$u = g(x), x \in E$$

记 $E^* = \{x \mid g(x) \in D\} \cap E$. 若 $E^* \neq \emptyset$,则对每一个 $x \in E^*$,可通过函数 g 对应 D 上唯一的一个值 u,而 u 又通过函数 f 对应唯一的一个值 g. 这就确定了一个定义在 E^* 上的函数,它以 x 为自变量,g 为因变量,记作

称为函数 f 和 g 的复合函数. 并称 f 为外函数, g 为内函数, (2) 式中的 u 为中间变量. 函数 f 和 g 的复合运算也可简单地写作 $f \circ g$.

复合函数也可由多个函数相继复合而成. 例如,由三个函数 $y = \sin u$, $u = \sqrt{v}$ 与 $v = 1 - x^2$

(它们的定义域取为各自的存在域) 相继复合而得的复合函数为

$$y = \sin \sqrt{1 - x^2}, x \in [-1, 1].$$

(它们的定义域取为各自的存在域) 相继复合而得的复合函数为

$$y = \sin \sqrt{1 - x^2}, x \in [-1, 1].$$

注 1.4.2. 当且仅当 $E^* \neq \emptyset$ (即 $D \cap g(E) \neq \emptyset$) 时,函数 f 与 g 才能进行复合. 例如,以 $y = f(u) = \arcsin u, u \in D = [-1,1]$ 为外函数, $u = g(x) = 2 + x^2, x \in E = \mathbb{R}$ 为内函数,就不能进行复合. 这是因为外函数的定义域 D = [-1,1] 与内函数的值域 $g(E) = [2,+\infty)$ 不相交.

定义 1.4.3 (反函数). 设函数 $y = f(x), x \in D$. 满足: 对于值域 f(D) 上的每一个 y, D 中有且只有一个 x, 使得 f(x) = y, 则按此对应法则得到一个定义在 f(D) 上的函数,称这个函数为 f 的反函数,记作

$$f^{-1}: f(D) \to D$$
$$y \mapsto x$$

或
$$x = f^{-1}(y), y \in f(D)$$
.

注 1.4.3. 反函数存在的前提条件是:原函数必须是单射和满射.

注:函数 f 也是函数 f^{-1} 的反函数. 或者说, f 与 f^{-1} 互为反函数. 即 $f^{-1}(f(x)) = x, x \in D$; $f(f^{-1}(x)) = x, x \in f(D)$.

1.4.2 几类重要的特殊函数初等函数

基本初等函数有以下六类:

- (1) 常量函数 y=c (c 是常数);
- (2) 幂函数 $y = x^{\alpha} (\alpha)$ 为实数);
- (3) 指数函数 $y = a^x (a > 0, a \neq 1)$;
- (4) 对数函数 $y = \log_a x (a > 0, a \neq 1)$;
- (5) 三角函数 $y = \sin x$ (正弦函数), $y = \cos x$ (余弦函数), $y = \tan x$ (正切函数), $y = \cot x$ (余切函数), $y = \sec x = 1/\cos x$ (正割函数), $y = \csc x = 1/\sin x$ (余割函数);
- (6) 反三角函数 $y = \arcsin x$ (反正弦函数), $y = \arccos x$ (反余弦函数), $y = \arctan x$ (反正切函数), $y = \operatorname{arccot} x$ (反余切函数).

定义 1.4.4 (初等函数). 由基本初等函数经过有限次四则运算与复合运算所得到的函数, 统称为初等函数.

①符号函数

$$sgn x = \begin{cases} 1, & x > 0 \\ 0, & x = 0, \\ -1, & x < 0 \end{cases}$$

$$y = \operatorname{sgn} x$$

$$-1$$

②取整函数 f(x) = [x]: 不超过 x 的最大整数. $[x] \le x < [x] + 1$ 或 $x - 1 < [x] \le x$.

③幂函数 $y = x^a$.

④指数函数 $f(x) = a^x$, 对数函数 $f(x) = \log_a^x$.

⑤三角函数与反三角函数

正弦函数 $y = \sin x$ 在 $[-\pi/2, \pi/2]$ 上的反函数,叫做反正弦函数. 记作 $\arcsin x$,表示一个正弦值为 x 的角,该角的范围在 $[-\pi/2, \pi/2]$ 区间内. 定义域 [-1,1],值域 $[-\pi/2, \pi/2]$.

余弦函数 $y = \cos x$ 在 $[0,\pi]$ 上的反函数,叫做反余弦函数. 记作 $\arccos x$,表示一个余弦值为 x 的角,该角的范围在 $[0,\pi]$ 区间内. 定义域 [-1,1],值域 $[0,\pi]$.

正切函数 $y = \tan x$ 在 $(-\pi/2, \pi/2)$ 上的反函数,叫做反正切函数. 记作 $\arctan x$,表示一个正切值为 x 的角,该角的范围在 $(-\pi/2, \pi/2)$ 区间内. 定义域 \mathbb{R} ,值域 $(-\pi/2, \pi/2)$.

余切函数 $y = \cot x$ 在 $(0,\pi)$ 上的反函数,叫做反余切函数. 记作 $\operatorname{arccot} x$,表示一个余切值为 x 的角,该角的范围在 $(0,\pi)$ 区间内. 定义域 \mathbb{R} ,值域 $(0,\pi)$.

反三角函数的定义值及值域

反三角函数 三角函数	定义域	值域
$y = \arcsin(x) \mid x = \sin(y)$	$-1 \le x \le 1$	$-\frac{\pi}{2} \le y \le \frac{\pi}{2}$
$y = \arccos(x) x = \cos(y)$	$-1 \le x \le 1$	$0 \le y \le \pi$
$y = \arctan(x) x = \tan(y)$	$-\infty \le x + \infty$	$-\frac{\pi}{2} < y < \frac{\pi}{2}$
$y = \operatorname{arccot}(x) x = \cot(y)$	$-\infty \le x + \infty$	$0 < y < \pi$
$y = \operatorname{arcsec}(x) \mid x = \operatorname{sec}(y)$	$x \le -1 \text{ or } 1 \le x$	$0 \le y < \frac{\pi}{2} \text{ or } \frac{\pi}{2} < y \le \pi$
$y = \operatorname{arccsc}(x) \mid x = \operatorname{csc}(y)$	$x \le -1 \text{ or } 1 \le x$	$-\frac{\pi}{2} \le y < 0 \text{ or } 0 < y \le \frac{\pi}{2}$

反三角函数的定义值及值域

反三角函数	三角函数	定义域	值域
$y = \arcsin(x)$	$x = \sin(y)$	$-1 \le x \le 1$	$-\frac{\pi}{2} \le y \le \frac{\pi}{2}$
$y = \arccos(x)$	$x = \cos(y)$	$-1 \le x \le 1$	$0 \le y \le \pi$
$y = \arctan(x)$	$x = \tan(y)$	$-\infty \le x + \infty$	$-\frac{\pi}{2} < y < \frac{\pi}{2}$
$y = \operatorname{arccot}(x)$	$x = \cot(y)$	$-\infty \le x + \infty$	$0 < y < \pi$
$y = \operatorname{arcsec}(x)$	$x = \sec(y)$	$x \le -1 \text{ or } 1 \le x$	$0 \le y < \frac{\pi}{2} \text{ or } \frac{\pi}{2} < y \le \pi$
$y = \operatorname{arccsc}(x)$	$x = \csc(y)$	$x \le -1 \text{ or } 1 \le x$	$-\frac{\pi}{2} \le y < 0 \text{ or } 0 < y \le \frac{\pi}{2}$

注 1.4.4. 初等函数的几个特例:设函数 f(x) 和 g(x) 都是初等函数,则

- (1) |f(x)| 是初等函数,因为 $|f(x)| = \sqrt{f^2(x)}$.
- $(2) \phi(x) = \max\{f(x), g(x)\}\ \pi \varphi(x) = \min\{f(x), g(x)\}\$ 都是初等函数,因为,

$$\phi(x) = \max\{f(x), g(x)\} = \frac{1}{2}[f(x) + g(x) + |f(x) - g(x)|],$$

$$\varphi(x) = \min\{f(x), g(x)\} = \frac{1}{2}[f(x) + g(x) - |f(x) - g(x)|].$$

(3) 幂指函数 $f(x)^{g(x)}$ (f(x) > 0) 是初等函数,因为

$$f(x)^{g(x)} = e^{\ln f(x)^{g(x)}} = e^{g(x) \ln f(x)}.$$

定义 1.4.5 (实指数乘幂). 给定实数 $a > 0, a \neq 1$. 设 x 为无理数, 我们规定

$$a^{x} = \begin{cases} \sup_{r < x} \{a^{r} \mid r \ \text{为有理数}\}, \ \exists a > 1 \ \text{时}, \\ \inf_{r < x} \{a^{r} \mid r \ \text{为有理数}\}, \ \exists 0 < a < 1 \ \text{H}. \end{cases}$$

$$\phi(x) = \max\{f(x), g(x)\} = \frac{1}{2}[f(x) + g(x) + |f(x) - g(x)|],$$

$$\varphi(x) = \min\{f(x), g(x)\} = \frac{1}{2}[f(x) + g(x) - |f(x) - g(x)|].$$

(3) 幂指函数 $f(x)^{g(x)}$ (f(x) > 0) 是初等函数,因为

$$f(x)^{g(x)} = e^{\ln f(x)^{g(x)}} = e^{g(x) \ln f(x)}.$$

定义 1.4.5 (实指数乘幂). 给定实数 $a > 0, a \neq 1$. 设 x 为无理数, 我们规定

$$a^{x} = \begin{cases} \sup_{r < x} \{a^{r} \mid r \ \text{为有理数}\}, \ \exists a > 1 \ \text{时}, \\ \inf_{r < x} \{a^{r} \mid r \ \text{为有理数}\}, \ \exists 0 < a < 1 \ \text{H}. \end{cases}$$

对任一无理数 x,必有有理数 r_0 ,使 $x < r_0$,则当有理数 r < x 时,有 $r < r_0$,从而由有理数乘幂的性质,当 a > 1 时,有 $a^r < a^{r_0}$. 这表明非空数集

 $\{a^r \mid r < x, r$ 为有理数 $\}$

有一个上界 a^{r_0} . 由确界原理,该数集有上确界,所以(6)式右边是一个确定的数。同理,当 0 < a < 1 时,(7) 式右边也是一个定数.

注:如果把(6)、(7)两式中的"r < x"改为" $r \le x$ ",那么,无论 x 是无理数或是有理数, a^x 都可用如上两式的确界形式来统一表示.

对任一无理数 x,必有有理数 r_0 ,使 $x < r_0$,则当有理数 r < x 时,有 $r < r_0$,从而由有理数乘幂的性质,当 a > 1 时,有 $a^r < a^{r_0}$. 这表明非空数集

$$\{a^r \mid r < x, r$$
为有理数 $\}$

有一个上界 a^{r_0} . 由确界原理,该数集有上确界,所以(6)式右边是一个确定的数。同理,当 0 < a < 1 时,(7) 式右边也是一个定数.

注:如果把(6)、(7)两式中的"r < x"改为" $r \le x$ ",那么,无论 x 是无理数或是有理数, a^x 都可用如上两式的确界形式来统一表示.

例 1.4.1. 判断 $\sin(\arcsin x) = x$ 和 $\arcsin(\sin x) = x$ 的正确性.

对任一无理数 x,必有有理数 r_0 ,使 $x < r_0$,则当有理数 r < x 时,有 $r < r_0$,从而由有理数乘幂的性质,当 a > 1 时,有 $a^r < a^{r_0}$. 这表明非空数集

$$\{a^r \mid r < x, r$$
为有理数 $\}$

有一个上界 a^{r_0} . 由确界原理,该数集有上确界,所以(6)式右边是一个确定的数。同理,当 0 < a < 1 时,(7) 式右边也是一个定数.

注:如果把(6)、(7)两式中的"r < x"改为" $r \le x$ ",那么,无论 x 是无理数或是有理数, a^x 都可用如上两式的确界形式来统一表示.

例 1.4.1. 判断 $\sin(\arcsin x) = x$ 和 $\arcsin(\sin x) = x$ 的正确性.

第一个的定义域为 $x \in [-1,1]$. 令 $y = \arcsin x$,则 $x = \sin y$. 因此第一个是正确的. 对于第二个,它的定义域为 $x \in \mathbb{R}$,值域为 [-1,1],而等式右边的值域为 \mathbb{R} ,故第二个是错误的,例如, $\arcsin(\sin\frac{3\pi}{4}) = \frac{\pi}{4}$. 如果限制 $x \in [-\frac{\pi}{2},\frac{\pi}{2}]$,则第二个是正确的.

1.4.3 两种特殊函数

定义在 R 上的狄利克雷 (Dirichlet) 函数

和定义在 [0,1] 上的黎曼 (Riemann) 函数

1.4.4 具有某些特性的函数

有界函数

定义 1.4.6 (有上 (下) 界函数). 设 f 为定义在 D 上的函数. 若存在数 M(L),使得对每一个 $x \in D$,有

$$f(x) \le M(f(x) \ge L)$$

则称 f 为 D 上的有上 (Γ) 界函数,M(L) 称为 f 在 D 上的一个上 (Γ) 界.

定义 1.4.7 (有界函数). 设 f 为定义在 D 上的函数. 若存在正数 M,使得对每一个 $x \in D$,有 $|f(x)| \leq M$.

则称 f 为 D 上的有界函数.

注 1.4.6. 我们根据数集有界和无界的定义, 易得

- f 为 D 上的有上界函数 $\Leftrightarrow \exists M \in \mathbb{R}, \forall x \in D, \ f f(x) \leq M$.
- f 为 D 上的有下界函数 $\Leftrightarrow \exists L \in \mathbb{R}, \forall x \in D, \ f f(x) \geq L$.
- f 为 D 上的无上界函数 $\Leftrightarrow \forall M \in \mathbb{R}$ (无论 M 多大), $\exists x_0 \in D$,有 $f(x_0) > M$.
- f 为 D 上的无下界函数 $\Leftrightarrow \forall L \in \mathbb{R}$ (无论 L 多小), $\exists x_0 \in D$,有 $f(x_0) < L$.

注 1.4.6. 我们根据数集有界和无界的定义, 易得

- f 为 D 上的有上界函数 $\Leftrightarrow \exists M \in \mathbb{R}, \forall x \in D, \ f f(x) \leq M$.
- f 为 D 上的有下界函数 $\Leftrightarrow \exists L \in \mathbb{R}, \forall x \in D, \ f f(x) \geq L$.
- f 为 D 上的无上界函数 $\Leftrightarrow \forall M \in \mathbb{R}$ (无论 M 多大), $\exists x_0 \in D$,有 $f(x_0) > M$.
- f 为 D 上的无下界函数 $\Leftrightarrow \forall L \in \mathbb{R}$ (无论 L 多小), $\exists x_0 \in D$,有 $f(x_0) < L$.

例 1.4.2. 证明 $f(x) = \frac{1}{x}$ 为 (0,1] 上的无上界函数.

注 1.4.6. 我们根据数集有界和无界的定义, 易得

- f 为 D 上的有上界函数 $\Leftrightarrow \exists M \in \mathbb{R}, \forall x \in D, \ f f(x) \leq M$.
- f 为 D 上的有下界函数 $\Leftrightarrow \exists L \in \mathbb{R}, \forall x \in D, \ f f(x) \geq L$.
- f 为 D 上的无上界函数 $\Leftrightarrow \forall M \in \mathbb{R}$ (无论 M 多大), $\exists x_0 \in D$,有 $f(x_0) > M$.
- f 为 D 上的无下界函数 $\Leftrightarrow \forall L \in \mathbb{R}$ (无论 L 多小), $\exists x_0 \in D$,有 $f(x_0) < L$.

例 1.4.2. 证明 $f(x) = \frac{1}{x}$ 为 (0,1] 上的无上界函数.

法一: $\forall M \in \mathbb{R}$,若 M > 0,取 $x_0 = \frac{1}{M+1} \in (0,1]$,则有 $f(x_0) = M+1 > M$;若 $M \leq 0$,任取 $x_0 \in (0,1]$,则有 $f(x_0) > M$.则 f 为 (0,1] 上的无上界函数.

注: 其实只需要证明对充分大的 M 成立就行.

法二: 对任何正数 M, 取 (0,1] 上一点 $x_0 = \frac{1}{M+1}$, 则有

$$f(x_0) = \frac{1}{x_0} = M + 1 > M.$$

故按上述定义,f为(0,1]上的无上界函数.

定义 1.4.8 (函数的上确界和下确界). 今 $f: A \to \mathbb{R}$,则

$$\sup_{x \in A} f = \sup\{f(x) : x \in A\}, \quad \inf_{x \in A} f = \inf\{f(x) : x \in A\}.$$

注 1.4.7. $\sup f(D) = \sup_{x \in D} f(x)$

注 1.4.7. $\sup f(D) = \sup_{x \in D} f(x)$

例 1.4.3. 设 f 为定义在 D 上的有界函数,证明:(1) $\sup_{x \in D} \{-f(x)\} = -\inf_{x \in D} f(x)$;(2) $\inf_{x \in D} \{-f(x)\} = -\sup_{x \in D} f(x)$.

注 1.4.7. $\sup f(D) = \sup_{x \in D} f(x)$

例 1.4.3. 设 f 为定义在 D 上的有界函数,证明:(1) $\sup_{x \in D} \{-f(x)\} = -\inf_{x \in D} f(x)$;(2) $\inf_{x \in D} \{-f(x)\} = -\sup_{x \in D} f(x)$.

证明

法一:证 (1).记 $\inf_{x\in D} f(x) = \xi$,由下确界的定义知,对任意的 $x \in D, f(x) \geq \xi$,即 $-f(x) \leq -\xi$.可见 $-\xi$ 是 -f(x) 的一个上界;对任意的 $\varepsilon > 0$,存在 $x_0 \in D$,使 $f(x_0) < \xi + \varepsilon$.即 $-f(x_0) > -\xi - \varepsilon$,可见 $-\xi$ 是 -f(x) 的一个上界中最小者.故 $\sup_{x\in D} \{-f(x)\} = -\inf_{x\in D} f(x)$.

(2) 同理可证结论成立。

法二:证 (1). $\forall x \in D$,有 $-f(x) \leq \sup_{x \in D} \{-f(x)\}$,于是 $f(x) \geq -\sup_{x \in D} \{-f(x)\}$,即 $-\sup_{x \in D} \{-f(x)\}$ 是 f 在 D 上的一个下界,从而 $\inf_{x \in D} f(x) \geq -\sup_{x \in D} \{-f(x)\}$,所以

$$\sup_{x \in D} \{-f(x)\} \ge -\inf_{x \in D} f(x). \tag{1.4.1}$$

反之, $\forall x \in D$,有 $f(x) \ge \inf_{x \in D} f(x)$,于是 $-f(x) \le -\inf_{x \in D} f(x)$,即 $-\inf_{x \in D} f(x)$ 是 -f 在 D 上的一个上界,从而

$$\sup_{x \in D} \{-f(x)\} \le -\inf_{x \in D} f(x). \tag{1.4.2}$$

由
$$(1.4.1)$$
和 $(1.4.2)$ 得, $\sup_{x \in D} \{-f(x)\} = -\inf_{x \in D} f(x).$

法二:证 (1). $\forall x \in D$,有 $-f(x) \le \sup_{x \in D} \{-f(x)\}$,于是 $f(x) \ge -\sup_{x \in D} \{-f(x)\}$,即 $-\sup_{x \in D} \{-f(x)\}$ 是 f 在 D 上的一个下界,从而 $\inf_{x \in D} f(x) \ge -\sup_{x \in D} \{-f(x)\}$,所以

$$\sup_{x \in D} \{-f(x)\} \ge -\inf_{x \in D} f(x). \tag{1.4.1}$$

反之, $\forall x \in D$,有 $f(x) \ge \inf_{x \in D} f(x)$,于是 $-f(x) \le -\inf_{x \in D} f(x)$,即 $-\inf_{x \in D} f(x)$ 是 -f 在 D 上的一个上界,从而

$$\sup_{x \in D} \{-f(x)\} \le -\inf_{x \in D} f(x). \tag{1.4.2}$$

由
$$(1.4.1)$$
和 $(1.4.2)$ 得, $\sup_{x \in D} \{-f(x)\} = -\inf_{x \in D} f(x).$

例 1.4.4. 令 $f, g: A \to \mathbb{R}$ and $f \le g$. f 有下界且 g 有上界. 证明: (1) $\sup_{x \in A} f \le \sup_{x \in A} g$; (2) $\inf_{x \in A} f \le \inf_{x \in A} g$.

法二:证 (1). $\forall x \in D$,有 $-f(x) \le \sup_{x \in D} \{-f(x)\}$,于是 $f(x) \ge -\sup_{x \in D} \{-f(x)\}$,即 $-\sup_{x \in D} \{-f(x)\}$ 是 f 在 D 上的一个下界,从而 $\inf_{x \in D} f(x) \ge -\sup_{x \in D} \{-f(x)\}$,所以

$$\sup_{x \in D} \{-f(x)\} \ge -\inf_{x \in D} f(x). \tag{1.4.1}$$

反之, $\forall x \in D$,有 $f(x) \ge \inf_{x \in D} f(x)$,于是 $-f(x) \le -\inf_{x \in D} f(x)$,即 $-\inf_{x \in D} f(x)$ 是 -f 在 D 上的一个上界,从而

$$\sup_{x \in D} \{-f(x)\} \le -\inf_{x \in D} f(x). \tag{1.4.2}$$

由
$$(1.4.1)$$
和 $(1.4.2)$ 得, $\sup_{x \in D} \{-f(x)\} = -\inf_{x \in D} f(x).$

例 1.4.4. 令 $f, g: A \to \mathbb{R}$ and $f \le g$. f 有下界且 g 有上界. 证明: (1) $\sup_{x \in A} f \le \sup_{x \in A} g$; (2) $\inf_{x \in A} f \le \inf_{x \in A} g$.

根据题意得 $\forall x \in A$,

$$f(x) \le g(x) \le \sup_{x \in A} g$$

因此 f 有一个上界 $\sup_{x \in A} g$,故 $\sup_{x \in A} f \le \sup_{x \in A} g$. 同样的,g 有一个下界 $\inf_{x \in A} f$ 且 $\inf_{x \in A} g \ge \inf_{x \in A} f$.

根据题意得 $\forall x \in A$,

$$f(x) \le g(x) \le \sup_{x \in A} g$$

因此 f 有一个上界 $\sup_{x \in A} g$,故 $\sup_{x \in A} f \le \sup_{x \in A} g$. 同样的,g 有一个下界 $\inf_{x \in A} f$ 且 $\inf_{x \in A} g \ge \inf_{x \in A} f$.

例 1.4.5. 令 $f,g:A\to\mathbb{R}$ 是有界函数. 证明

$$\sup_{x \in A} (f+g) \le \sup_{x \in A} f + \sup_{x \in A} g, \quad \inf_{x \in A} (f+g) \ge \inf_{x \in A} f + \inf_{x \in A} g.$$

根据题意得 $\forall x \in A$,

$$f(x) \le g(x) \le \sup_{x \in A} g$$

因此 f 有一个上界 $\sup_{x \in A} g$,故 $\sup_{x \in A} f \le \sup_{x \in A} g$. 同样的,g 有一个下界 $\inf_{x \in A} f$ 且 $\inf_{x \in A} g \ge \inf_{x \in A} f$.

例 1.4.5. 令 $f,g:A\to\mathbb{R}$ 是有界函数. 证明

$$\sup_{x \in A} (f+g) \le \sup_{x \in A} f + \sup_{x \in A} g, \quad \inf_{x \in A} (f+g) \ge \inf_{x \in A} f + \inf_{x \in A} g.$$

对于 $x \in [a, b]$,有 $f(x) \le \sup_{x \in A} f 且 g(x) \le \sup_{x \in A} g$. 故

$$f(x) + g(x) \le \sup_{x \in A} f + \sup_{x \in A} g.$$

因此 f+g 有一个上界 $\sup_{x\in A} f + \sup_{x\in A} g$. 即 $\sup_{x\in A} (f+g) \leq \sup_{x\in A} f + \sup_{x\in A} g$. 关于下确界的结论也可类似证明.

对于 $x \in [a, b]$,有 $f(x) \le \sup_{x \in A} f 且 g(x) \le \sup_{x \in A} g$. 故

$$f(x) + g(x) \le \sup_{x \in A} f + \sup_{x \in A} g.$$

因此 f+g 有一个上界 $\sup_{x\in A} f + \sup_{x\in A} g$. 即 $\sup_{x\in A} (f+g) \leq \sup_{x\in A} f + \sup_{x\in A} g$. 关于下确界的结论也可类似证明.

注 1.4.8. 例子1.4.5中的两个不等式,其严格的不等号有可能成立. 例如,设

$$f(x) = x, g(x) = -x, x \in [-1, 1],$$

则有
$$\inf_{|x| \le 1} f(x) = \inf_{|x| \le 1} g(x) = -1$$
, $\sup_{|x| \le 1} f(x) = \sup_{|x| \le 1} g(x) = 1$, 而

$$\inf_{|x| \le 1} \{ f(x) + g(x) \} = \sup_{|x| \le 1} \{ f(x) + g(x) \} = 0.$$

对于 $x \in [a, b]$,有 $f(x) \le \sup_{x \in A} f 且 g(x) \le \sup_{x \in A} g$. 故

$$f(x) + g(x) \le \sup_{x \in A} f + \sup_{x \in A} g.$$

因此 f+g 有一个上界 $\sup_{x\in A} f + \sup_{x\in A} g$. 即 $\sup_{x\in A} (f+g) \leq \sup_{x\in A} f + \sup_{x\in A} g$. 关于下确界的结论也可类似证明.

注 1.4.8. 例子1.4.5中的两个不等式,其严格的不等号有可能成立. 例如,设

$$f(x) = x, g(x) = -x, x \in [-1, 1],$$

则有
$$\inf_{|x| \le 1} f(x) = \inf_{|x| \le 1} g(x) = -1$$
, $\sup_{|x| \le 1} f(x) = \sup_{|x| \le 1} g(x) = 1$, 而

$$\inf_{|x| \le 1} \{ f(x) + g(x) \} = \sup_{|x| \le 1} \{ f(x) + g(x) \} = 0.$$

例 1.4.6. 令 $f,g:A\to\mathbb{R}$ 是有界函数. 证明

$$\left| \sup_{x \in A} f - \sup_{x \in A} g \right| \le \sup_{x \in A} |f - g|, \quad \left| \inf_{x \in A} f - \inf_{x \in A} g \right| \le \sup_{x \in A} |f - g|.$$

例 1.4.6. 令 $f,g:A\to\mathbb{R}$ 是有界函数. 证明

$$\left| \sup_{x \in A} f - \sup_{x \in A} g \right| \le \sup_{x \in A} |f - g|, \quad \left| \inf_{x \in A} f - \inf_{x \in A} g \right| \le \sup_{x \in A} |f - g|.$$

证明

根据 f = f - g + g 和 $f - g \le |f - g|$, 利用例子1.4.4和1.4.5的结论, 得

$$\sup_{x \in A} f \le \sup_{x \in A} (f - g) + \sup_{x \in A} g \le \sup_{x \in A} |f - g| + \sup_{x \in A} g.$$

即 $\sup_{x \in A} f - \sup_{x \in A} g \le \sup_{x \in A} |f - g|$. 改变上述不等式中 f 和 g 的顺序,得 $\sup_{x \in A} g - g$

$$\sup_{x \in A} f \le \sup_{x \in A} |f - g|. \ \exists \exists$$

$$\left| \sup_{x \in A} f - \sup_{x \in A} g \right| \le \sup_{x \in A} |f - g|.$$

在上述不等式中,将 f 替换为 -f, g 替换为 -g,结合 $\sup(-f) = -\inf f$, 得

$$\left| \inf_{x \in A} f - \inf_{x \in A} g \right| \le \sup_{x \in A} |f - g|.$$

例 1.4.7. 令 $f,g:A\to\mathbb{R}$ 是有界函数且满足

$$|f(x) - f(y)| \le |g(x) - g(y)|$$
 for all $x, y \in A$.

证明: $\sup_{x \in A} f - \inf_{x \in A} f \le \sup_{x \in A} g - \inf_{x \in A} g$.

例 1.4.7. 令 $f,g:A\to\mathbb{R}$ 是有界函数且满足

$$|f(x) - f(y)| \le |g(x) - g(y)|$$
 for all $x, y \in A$.

证明: $\sup_{x \in A} f - \inf_{x \in A} f \le \sup_{x \in A} g - \inf_{x \in A} g$.

证明

对于 $x, y \in A$,根据题意得

$$f(x) - f(y) \le |g(x) - g(y)| = \max[g(x), g(y)] - \min[g(x), g(y)] \le \sup_{x \in A} g - \inf_{x \in A} g,$$

即

$$\sup\{f(x) - f(y) : x, y \in A\} \le \sup_{x \in A} g - \inf_{x \in A} g.$$

根据例子1.5.8的结论,得

$$\sup\{f(x) - f(y) : x, y \in A\} = \sup_{x \in A} f - \inf_{x \in A} f.$$

故 $\sup_{x \in A} f - \inf_{x \in A} f \le \sup_{x \in A} g - \inf_{x \in A} g$.

单调函数

定义 1.4.9 (单调函数). 设 f 为定义在 D 上的函数. 若对任何 $x_1, x_2 \in D$,当 $x_1 < x_2$ 时,总有 $(1) f(x_1) \le f(x_2)$,则称 f 为 D 上的 (递) 增函数,特别当成立严格不等式 $f(x_1) < f(x_2)$ 时,称 f 为 D 上的严格 (递) 增函数;

 $(2) f(x_1) \ge f(x_2)$,则称 f 为 D 上的 (递) 减函数,特别当成立严格不等式 $f(x_1) > f(x_2)$ 时,称 f 为 D 上的严格 (递) 减函数;

增函数和减函数统称为单调函数,严格增函数和严格减函数统称为严格单调函数.

定理 1.4.1. 设 $y = f(x), x \in D$ 为严格增 (减) 函数,则 f 必有反函数 f^{-1} ,且 f^{-1} 在其定义域 f(D) 上也是严格增 (减) 函数。

设 f(D) 在 D 上严格递增.

- ① 显然 $f \in D$ 到 f(D) 的满射,下证 $f \in D$ 是单设. 任取 $x_1, x_2 \in D$, $x_1 \neq x_2$. 不妨设 $x_1 < x_2$,由 $f \in D$ 上严格递增,得 $f(x_1) < f(x_2)$,即 $f(x_1) \neq f(x_2)$. 综上, $f \in D$ 到 f(D) 的单满射. 故 f 必有反函数 f^{-1} .
- ② 任取 $y_1, y_2 \in f(D)$, $y_1 < y_2$. 设 $y_1 = f(x_1)$, $y_2 = f(x_2)$, $x_1, x_2 \in D$, 则 $x_1 = f^{-1}(y_1)$, $x_2 = f^{-1}(y_2)$. 若 $x_1 \ge x_2$, 则由 f(x) 的单调性可得 $f(x_1) \ge f(x_2)$, 即 $y_1 \ge y_2$, 这与假设矛盾. 故 $x_1 < x_2$, 即 $f^{-1}(y_1) < f^{-1}(y_2)$. 综上, f^{-1} 在 f(D) 上是严格增函数.

设 f(D) 在 D 上严格递增.

- ① 显然 $f \neq D$ 到 f(D) 的满射,下证 $f \neq E$ 单设. 任取 $x_1, x_2 \in D$, $x_1 \neq x_2$. 不妨设 $x_1 < x_2$,由 $f \in D$ 上严格递增,得 $f(x_1) < f(x_2)$,即 $f(x_1) \neq f(x_2)$. 综上, $f \neq D$ 到 f(D) 的单满射. 故 f 必有反函数 f^{-1} .
- ② 任取 $y_1, y_2 \in f(D)$, $y_1 < y_2$. 设 $y_1 = f(x_1)$, $y_2 = f(x_2)$, $x_1, x_2 \in D$, 则 $x_1 = f^{-1}(y_1)$, $x_2 = f^{-1}(y_2)$. 若 $x_1 \ge x_2$, 则由 f(x) 的单调性可得 $f(x_1) \ge f(x_2)$, 即 $y_1 \ge y_2$, 这与假设矛盾. 故 $x_1 < x_2$, 即 $f^{-1}(y_1) < f^{-1}(y_2)$. 综上, f^{-1} 在 f(D) 上是严格增函数.

注 1.4.9.(1) 若函数 f 在 D 上有反函数 f^{-1} ,则 f 在 D 上严格增 (减) 吗? (换个问题: 不严格单调的函数一定没有反函数吗?)

答: 严格单调仅仅是函数存在反函数的充分条件, 而不是必要条件. 举个例子: 函数 $f(x) = \begin{cases} -x, & -1 \leq x \leq 0 \\ & \text{. 它在 } [-1,1] \text{ 上不单调,但存在反函数} \end{cases}$

$$f^{-1}(x) = \begin{cases} -x, & 0 \le x \le 1\\ x - 1, & 1 < x \le 2 \end{cases}.$$

- (2) 若函数 f 在 D 上有反函数 f^{-1} 且连续,则 f 在 D 上严格单调.
- (3) 函数 $y = x^2$ 在 $[0, +\infty)$ 是严格增的,其值域为 $[0, +\infty)$,故有反函数 $y = \sqrt{x}, x \in [0, +\infty)$; $y = x^2$ 在 $(-\infty, 0)$ 是严格减的,有反函数 $y = -\sqrt{x}, x \in (-\infty, 0)$; 但 $y = x^2$ 在 $(-\infty, +\infty)$ 上不是单调的,也不存在反函数.

答: 严格单调仅仅是函数存在反函数的充分条件, 而不是必要条件. 举个例子: 函数 $f(x) = \begin{cases} -x, & -1 \leq x \leq 0 \\ & . \end{cases}$ 它在 [-1,1] 上不单调,但存在反函数 $x+1, \quad 0 < x \leq 1$

$$f^{-1}(x) = \begin{cases} -x, & 0 \le x \le 1\\ x - 1, & 1 < x \le 2 \end{cases}.$$

- (2) 若函数 f 在 D 上有反函数 f^{-1} 且连续,则 f 在 D 上严格单调.
- (3) 函数 $y = x^2$ 在 $[0, +\infty)$ 是严格增的,其值域为 $[0, +\infty)$,故有反函数 $y = \sqrt{x}, x \in [0, +\infty)$; $y = x^2$ 在 $(-\infty, 0)$ 是严格减的,有反函数 $y = -\sqrt{x}, x \in (-\infty, 0)$; 但 $y = x^2$ 在 $(-\infty, +\infty)$ 上不是单调的,也不存在反函数.

例 1.4.8. 证明: $y = a^x$ 当 a > 1 时在 \mathbb{R} 上严格递增,当 0 < a < 1 时在 \mathbb{R} 上严格递减.

答: 严格单调仅仅是函数存在反函数的充分条件, 而不是必要条件. 举个例子: 函数 $f(x) = \begin{cases} -x, & -1 \leq x \leq 0 \\ & . \end{cases}$ 它在 [-1,1] 上不单调,但存在反函数 $x+1, \quad 0 < x \leq 1$

$$f^{-1}(x) = \begin{cases} -x, & 0 \le x \le 1\\ x - 1, & 1 < x \le 2 \end{cases}.$$

- (2) 若函数 f 在 D 上有反函数 f^{-1} 且连续,则 f 在 D 上严格单调.
- (3) 函数 $y = x^2$ 在 $[0, +\infty)$ 是严格增的,其值域为 $[0, +\infty)$,故有反函数 $y = \sqrt{x}, x \in [0, +\infty)$; $y = x^2$ 在 $(-\infty, 0)$ 是严格减的,有反函数 $y = -\sqrt{x}, x \in (-\infty, 0)$; 但 $y = x^2$ 在 $(-\infty, +\infty)$ 上不是单调的,也不存在反函数.

例 1.4.8. 证明: $y = a^x$ 当 a > 1 时在 \mathbb{R} 上严格递增,当 0 < a < 1 时在 \mathbb{R} 上严格递减.

设 a > 1. 任取 $x_1, x_2 \in \mathbb{R}$, $x_1 < x_2$, 根据有理数集的稠密性,取 $r_1, r_2 \in \mathbb{Q}$, 满足 $x_1 < r_2 < x_2$. 对 $\forall r \leq x_1$, $r \in \mathbb{Q}$, 由 $r < r_1$, 从而 $a^r < a^{r_1}$, 即 a^{r_1} 是 $\{a^r \mid r \leq x_1, r \in \mathbb{Q}\}$ 的一个上界. 则有

这就证明了 a^x 当 a > 1 时在 \mathbb{R} 上严格递增.

设 a > 1. 任取 $x_1, x_2 \in \mathbb{R}$, $x_1 < x_2$, 根据有理数集的稠密性,取 $r_1, r_2 \in \mathbb{Q}$, 满足 $x_1 < r_2 < x_2$. 对 $\forall r \leq x_1$, $r \in \mathbb{Q}$, 由 $r < r_1$, 从而 $a^r < a^{r_1}$, 即 a^{r_1} 是 $\{a^r \mid r \leq x_1, r \in \mathbb{Q}\}$ 的一个上界. 则有

这就证明了 a^x 当 a > 1 时在 \mathbb{R} 上严格递增.

注 1.4.10. 对数函数 $y = \log_a x$ 当 a > 1 时在 $(0, +\infty)$ 上严格递增,当 0 < a < 1 时在 $(0, +\infty)$ 上严格递减.

奇函数和偶函数

定义 1.4.10 (奇 (偶) 函数). 设 D 为对称于原点的数集,f 为定义在 D 上的函数. 若对每一个 $x \in D$,有

$$f(-x) = -f(x)(f(-x) = f(x)),$$

则称f为D上的奇(偶)函数.

从函数图形上看,奇函数的图像关于原点对称,偶函数的图像则关于y轴对称.

奇函数和偶函数

定义 1.4.10 (奇 (偶) 函数). 设 D 为对称于原点的数集,f 为定义在 D 上的函数. 若对每一个 $x \in D$,有

$$f(-x) = -f(x)(f(-x)) = f(x),$$

则称f为D上的奇(偶)函数.

从函数图形上看,奇函数的图像关于原点对称,偶函数的图像则关于y轴对称.

例 1.4.9. 证明: 定义在对称区间 (-l,l) 内的任何函数 f(x), 必可表示成偶函数 H(x) 与奇函数 G(x) 之和的形式,且这种表示法是唯一的.

奇函数和偶函数

定义 1.4.10 (奇 (偶) 函数). 设 D 为对称于原点的数集,f 为定义在 D 上的函数. 若对每一个 $x \in D$,有

$$f(-x) = -f(x)(f(-x)) = f(x),$$

则称f为D上的奇(偶)函数.

从函数图形上看,奇函数的图像关于原点对称,偶函数的图像则关于y轴对称.

例 1.4.9. 证明: 定义在对称区间 (-l,l) 内的任何函数 f(x), 必可表示成偶函数 H(x) 与奇函数 G(x) 之和的形式,且这种表示法是唯一的.

证明

令 $H(x) = \frac{1}{2}[f(x) + f(-x)], G(x) = \frac{1}{2}[f(x) - f(-x)], 则 f(x) = H(x) + G(x), 且容易证明$ H(x) 是偶函数,G(x) 是奇函数.

下证唯一性. 若还有偶函数 $H_1(x)$ 与奇函数 $G_1(x)$, 满足 $f(x) = H_1(x) + G_1(x)$, 则有

$$H(x) - H_1(x) = G_1(x) - G(x), (1.4.3)$$

用 -x 代入(1.4.3)式,得

$$H(x) - H_1(x) = G(x) - G_1(x)$$
(1.4.4)

$$(1.4.3)+(1.4.3)$$
得 $H(x)=H_1(x)$,再代入 $(1.4.4)$ 式得 $G(x)=G_1(x)$.

周期函数

定义 1.4.11 (周期函数). 设 f 为定义在数集 D 上的函数. 若存在 $\sigma > 0$,使得对一切 $x \in D$, $x \pm \sigma \in D$,有 $f(x \pm \sigma) = f(x)$,则称 f 为周期函数, σ 称为 f 的一个周期. 显然,若 σ 为 f 的周期,则 $n\sigma$ (n 为正整数) 也是 f 的周期. 若在周期函数 f 的所有周期中有一个最小的周期,则称此最小周期为 f 的基本周期,或简称周期.

周期函数

定义 1.4.11 (周期函数). 设 f 为定义在数集 D 上的函数. 若存在 $\sigma > 0$,使得对一切 $x \in D$, $x \pm \sigma \in D$,有 $f(x \pm \sigma) = f(x)$,则称 f 为周期函数, σ 称为 f 的一个周期. 显然,若 σ 为 f 的周期,则 $n\sigma$ (n 为正整数) 也是 f 的周期. 若在周期函数 f 的所有周期中有一个最小的周期,则称此最小周期为 f 的基本周期,或简称周期.

注 $1.4.11.\sin x,\cos x$ 的基本周期为 2π ; $\tan x,\cot x$ 的基本周期为 π ; 常量函数 f(x)=c 是以任何正数为周期的周期函数,但不存在基本周期. 狄利克雷函数

周期函数

定义 1.4.11 (周期函数). 设 f 为定义在数集 D 上的函数. 若存在 $\sigma > 0$,使得对一切 $x \in D$, $x \pm \sigma \in D$,有 $f(x \pm \sigma) = f(x)$,则称 f 为周期函数, σ 称为 f 的一个周期. 显然,若 σ 为 f 的周期,则 $n\sigma$ (n 为正整数) 也是 f 的周期. 若在周期函数 f 的所有周期中有一个最小的周期,则称此最小周期为 f 的基本周期,或简称周期.

注 $1.4.11.\sin x,\cos x$ 的基本周期为 2π ; $\tan x,\cot x$ 的基本周期为 π ; 常量函数 f(x)=c 是以任何正数为周期的周期函数,但不存在基本周期. 狄利克雷函数

例 1.4.10. 讨论狄利克雷函数

$$D(x) = \begin{cases} 1, & \exists x \ \text{为有理数,} \\ 0, & \exists x \ \text{为无理数,} \end{cases}$$

的周期性.

解答

 $\forall r \in \mathbb{Q}^+$. \mathbb{Q}^+ 为有理数, \mathbb{Q}^c 为无理数.

① $x \in \mathbb{Q}$, 则 $x + r \in \mathbb{Q}$, 从而 D(x) = 1, D(x + r) = 1, 即 D(x) = D(x + r).

② $x \in \mathbb{Q}^c$, 则 $x + r \in \mathbb{Q}^c$, 从而 D(x) = 0, D(x + r) = 0, 即 D(x) = D(x + r).

1.5 习题答案

证明

用反证法. 假设 $a \neq b$,那么 $a - b \neq 0$. 设 $|a - b| = \eta$,则 $\eta > 0$. 取 $\varepsilon = \frac{\eta}{2}$,因为 $|a - b| = \eta > \varepsilon$,所以 $|a - b| < \varepsilon$ 不成立,这与题设矛盾,故 a = b.

证明

用反证法. 假设 $a \neq b$,那么 $a - b \neq 0$. 设 $|a - b| = \eta$,则 $\eta > 0$. 取 $\varepsilon = \frac{\eta}{2}$,因为 $|a - b| = \eta > \varepsilon$,所以 $|a - b| < \varepsilon$ 不成立,这与题设矛盾,故 a = b.

例 1.5.2. 证明: 对任何 $x \in \mathbb{R}$ 有

$$(1)|x-1|+|x-2| \ge 1;$$

$$(2) |x - 1| + |x - 2| + |x - 3| \ge 2.$$

证明

用反证法. 假设 $a \neq b$,那么 $a - b \neq 0$. 设 $|a - b| = \eta$,则 $\eta > 0$. 取 $\varepsilon = \frac{\eta}{2}$,因为 $|a - b| = \eta > \varepsilon$,所以 $|a - b| < \varepsilon$ 不成立,这与题设矛盾,故 a = b.

例 1.5.2. 证明: 对任何 $x \in \mathbb{R}$ 有

$$(1)|x-1|+|x-2| \ge 1;$$

$$(2) |x - 1| + |x - 2| + |x - 3| \ge 2.$$

证明: (1) 由三角不等式 $|a| + |b| \ge |a + b|$ 可知,

$$|x-1|+|x-2|=|x-1|+|2-x| \ge |(x-1)+(2-x)| = 1.$$

当且仅当 $x \in [1,2]$ 时,等号成立.

(2)

$$|x-1| + |x-2| + |x-3| \ge |x-1| + |x-3| = |x-1| + |3-x|$$

 $\ge |(x-1) + (3-x)| = 2.$

当且仅当 x=2 时,等号成立.

证明: (1) 由三角不等式 $|a| + |b| \ge |a + b|$ 可知,

$$|x-1|+|x-2|=|x-1|+|2-x| \ge |(x-1)+(2-x)|=1.$$

当且仅当 $x \in [1,2]$ 时,等号成立.

(2)

$$|x-1| + |x-2| + |x-3| \ge |x-1| + |x-3| = |x-1| + |3-x|$$

 $\ge |(x-1) + (3-x)| = 2.$

当且仅当 x=2 时,等号成立.

注 1.5.1. 【方法点击】例子1.5.2(1)的几何意义为数轴上任意点到 1 和 2 的距离之和大于等于 1,

(2) 的几何意义为任意点到 1,2,3 的距离之和大于等于 2.

证明: (1) 由三角不等式 $|a| + |b| \ge |a + b|$ 可知,

$$|x-1|+|x-2|=|x-1|+|2-x| \ge |(x-1)+(2-x)|=1.$$

当且仅当 $x \in [1,2]$ 时,等号成立.

(2)

$$|x-1| + |x-2| + |x-3| \ge |x-1| + |x-3| = |x-1| + |3-x|$$

 $\ge |(x-1) + (3-x)| = 2.$

当且仅当 x=2 时,等号成立.

注 1.5.1. 【方法点击】例子1.5.2(1)的几何意义为数轴上任意点到 1 和 2 的距离之和大于等于 1,

(2) 的几何意义为任意点到 1,2,3 的距离之和大于等于 2.

例 1.5.3. 设 $a, b, c \in \mathbb{R}^+(\mathbb{R}^+$ 表示全体正实数的集合). 证明

$$\left| \sqrt{a^2 + b^2} - \sqrt{a^2 + c^2} \right| \le |b - c|.$$

你能说明此不等式的几何意义吗?

例 1.5.3. 设 $a,b,c \in \mathbb{R}^+(\mathbb{R}^+$ 表示全体正实数的集合). 证明

$$\left| \sqrt{a^2 + b^2} - \sqrt{a^2 + c^2} \right| \le |b - c|.$$

你能说明此不等式的几何意义吗?

证明

由于 $\forall x \in \mathbb{R}$, |-x| = |x|, 故只需对 $b \ge c > 0$ 的情形进行证明.

当 $b \ge c > 0$ 时,原不等式化为 $\sqrt{a^2 + b^2} - \sqrt{a^2 + c^2} \le b - c$. 上式等价于 $\sqrt{a^2 + b^2} + c \le \sqrt{a^2 + c^2} + b$,两边平方,得

$$a^{2} + b^{2} + c^{2} + 2c\sqrt{a^{2} + b^{2}} \le a^{2} + b^{2} + c^{2} + 2b\sqrt{a^{2} + c^{2}},$$

即 $c\sqrt{a^2+b^2} \le b\sqrt{a^2+c^2}$. 由于 $b,c \in \mathbb{R}^+$,所以,上式等价于 $c^2a^2+c^2b^2 \le b^2a^2+b^2c^2$. 即 $c^2 \le b^2$,当 b > c > 0 时,这个不等式是成立的. 所以,原命题成立.

注:题中不等式的几何意义如右图所示,其中 A AB = a, BD = b, BC = c. 其几何意义表示 $\triangle ACD$ 的两边之差小于第三边.

注:题中不等式的几何意义如右图所示,其中 A
Arr AB = a,BD = b,BC = c. 其几何意义表示 $\triangle ACD$ 的两边之差小于第三边.

例 1.5.4. 设 $x > 0, b > 0, a \neq b$. 证明 $\frac{a+x}{b+x}$ 介于 1 与 $\frac{a}{b}$ 之间.

注:题中不等式的几何意义如右图所示,其中 A
ightharpoonup AB = a,BD = b,BC = c. 其几何意义表示 $\triangle ACD$ 的两边之差小于第三边.

例 1.5.4. 设 $x > 0, b > 0, a \neq b$. 证明 $\frac{a+x}{b+x}$ 介于 1 与 $\frac{a}{b}$ 之间.

证明

$$\left(\frac{a+x}{b+x}-1\right)\left(\frac{a+x}{b+x}-\frac{a}{b}\right) = \frac{a-b}{b+x}\cdot\frac{bx-ax}{(b+x)b} = -\frac{x(a-b)^2}{b(b+x)^2},$$

由题设 $x > 0, b > 0, a \neq b$ 可知 $-\frac{x(a-b)^2}{b(b+x)^2} < 0$. 于是原命题得证.

注:题中不等式的几何意义如右图所示,其中 $A \ AB = a$,BD = b,BC = c. 其几何意义表示 $\triangle ACD$ 的两边之差小于第三边.

例 1.5.4. 设 $x > 0, b > 0, a \neq b$. 证明 $\frac{a+x}{b+x}$ 介于 1 与 $\frac{a}{b}$ 之间.

证明

$$\left(\frac{a+x}{b+x} - 1\right) \left(\frac{a+x}{b+x} - \frac{a}{b}\right) = \frac{a-b}{b+x} \cdot \frac{bx - ax}{(b+x)b} = -\frac{x(a-b)^2}{b(b+x)^2},$$

由题设 $x > 0, b > 0, a \neq b$ 可知 $-\frac{x(a-b)^2}{b(b+x)^2} < 0$. 于是原命题得证.

注 1.5.2. 【方法点击】比较两数的大小通常用作差法或作商法. 而如果要证某数 a 介于另外两数

例 1.5.5. 设 S 为非空数集. 试对下列概念给出定义: (1) S 无上界; (2) S 无界.

例 1.5.5. 设 S 为非空数集. 试对下列概念给出定义: (1) S 无上界; (2) S 无界.

解答

- (1) 设 S 为非空数集,若对任意的正数 M,总存在 $x_0 \in S$,使得 $x_0 > M$,则称数集 S 无上界.
- (2) 设 S 为非空数集,若对任意的正数 M,总存在 $x_0 \in S$,使得 $|x_0| > M$,则称数集 S 无界.

例 1.5.5. 设 S 为非空数集. 试对下列概念给出定义: (1) S 无上界; (2) S 无界.

解答

- (1) 设 S 为非空数集,若对任意的正数 M,总存在 $x_0 \in S$,使得 $x_0 > M$,则称数集 S 无上界.
- (2) 设 S 为非空数集,若对任意的正数 M,总存在 $x_0 \in S$,使得 $|x_0| > M$,则称数集 S 无界.

例 1.5.6. 求下列数集的上、下确界,并依定义加以验证:

- $(1) S = \{x \mid x^2 < 2\};$
- (2) $S = \{x \mid x = n!, n \in \mathbb{N}_+\};$
- (3) $S = \{x \mid x \ \beta(0,1) \ \text{内的无理数}\};$
- $(4) S = \{ x \mid x = 1 \frac{1}{2^n}, n \in \mathbb{N}_+ \}.$

- $(1) S = \{x \mid x^2 < 2\};$
- (2) $S = \{x \mid x = n!, n \in \mathbb{N}_+\};$
- (3) $S = \{x \mid x \$ 为(0,1)内的无理数 $\};$
- $(4) S = \{ x \mid x = 1 \frac{1}{2^n}, n \in \mathbb{N}_+ \}.$

解答

(1) S 的上、下确界分别为 $\sqrt{2}$ 和 $-\sqrt{2}$. 这里只证明 $\sqrt{2}$ 是上确界. 显然有 $\sqrt{2}$ 是集合 S 的一个上界. 对任意的 $\varepsilon > 0$,不妨设 $\varepsilon < 4\sqrt{2}$,取 $x_0 = \sqrt{2} - \frac{\varepsilon}{2}$,则

$$x_0^2 = \left(\sqrt{2} - \frac{\varepsilon}{2}\right)^2 = 2 + \frac{\varepsilon^2}{4} - \sqrt{2}\varepsilon < 2,$$

即 $x_0 \in S$ 且 $x_0 > \sqrt{2} - \varepsilon$. 因此, $\sqrt{2}$ 是 S 的上确界.

(2) S 的上、下确界分别为 +∞ 和 1. 1 是 S 的一个下界,并且任何大于 1 的数都不是 S 的下界,所以 1 是 S 的最大下界,即 1 是 S 的下确界. 对任意的 M>0,取 $n=[M]+1 \in \mathbb{N}_+$,

则 $x = n! \ge n > M$,故 S 无上界,即 S 的上确界为 $+\infty$.

- (3) S 的上、下确界分别为 1 和 0. 这里只证明 1 是 S 的上确界. 设 $\alpha < 1$,不妨设 $\alpha > 0$. 由无理数的稠密性可知,存在无理数 $x_0 \in (\alpha, 1)$. 于是 $x_0 \in \mathbb{S}$,并且 $x_0 > \alpha$. 因此,1 是 S 的上确界.
- (4) S 的上确界为 1,下确界为 $\frac{1}{2}$. 因为 S 中的最小元素为 $\frac{1}{2}$,所以 $\frac{1}{2}$ 是 S 的最大下界,即 $\frac{1}{2}$ 是 S 的下确界. 由于 $1-\frac{1}{2^n}<1$ ($n\in\mathbb{N}_+$),所以 1 是 S 的一个上界. 对任意的 $\varepsilon>0$,存在 $n_0\in\mathbb{N}_+$,使得 $\frac{1}{2^{n_0}}<\varepsilon$,于是取 $x_0=1-\frac{1}{2^{n_0}}\in\mathbb{S}$,且满足不等式 $x_0>1-\varepsilon$. 因此,1 是 S 的上确界.

则 $x = n! \ge n > M$,故 S 无上界,即 S 的上确界为 $+\infty$.

- (3) S 的上、下确界分别为 1 和 0. 这里只证明 1 是 S 的上确界. 设 $\alpha < 1$,不妨设 $\alpha > 0$. 由无理数的稠密性可知,存在无理数 $x_0 \in (\alpha, 1)$. 于是 $x_0 \in \mathbb{S}$,并且 $x_0 > \alpha$. 因此,1 是 S 的上确界.
- (4) S 的上确界为 1,下确界为 $\frac{1}{2}$. 因为 S 中的最小元素为 $\frac{1}{2}$,所以 $\frac{1}{2}$ 是 S 的最大下界,即 $\frac{1}{2}$ 是 S 的下确界. 由于 $1-\frac{1}{2^n}<1$ ($n\in\mathbb{N}_+$),所以 1 是 S 的一个上界. 对任意的 $\varepsilon>0$,存在 $n_0\in\mathbb{N}_+$,使得 $\frac{1}{2^{n_0}}<\varepsilon$,于是取 $x_0=1-\frac{1}{2^{n_0}}\in\mathbb{S}$,且满足不等式 $x_0>1-\varepsilon$. 因此,1 是 S 的上确界.

例 1.5.7. 设 S 为非空数集,定义 $S^- = \{x \mid -x \in S\}$. 证明: (1) inf $S^- = -\sup S$; (2) $\sup S^- = -\inf S$.

则 $x = n! \ge n > M$,故 S 无上界,即 S 的上确界为 $+\infty$.

- (3) S 的上、下确界分别为 1 和 0. 这里只证明 1 是 S 的上确界. 设 $\alpha < 1$,不妨设 $\alpha > 0$. 由无理数的稠密性可知,存在无理数 $x_0 \in (\alpha, 1)$. 于是 $x_0 \in \mathbb{S}$,并且 $x_0 > \alpha$. 因此,1 是 S 的上确界.
- (4) S 的上确界为 1,下确界为 $\frac{1}{2}$. 因为 S 中的最小元素为 $\frac{1}{2}$,所以 $\frac{1}{2}$ 是 S 的最大下界,即 $\frac{1}{2}$ 是 S 的下确界. 由于 $1-\frac{1}{2^n}<1$ ($n\in\mathbb{N}_+$),所以 1 是 S 的一个上界. 对任意的 $\varepsilon>0$,存在 $n_0\in\mathbb{N}_+$,使得 $\frac{1}{2^{n_0}}<\varepsilon$,于是取 $x_0=1-\frac{1}{2^{n_0}}\in\mathbb{S}$,且满足不等式 $x_0>1-\varepsilon$. 因此,1 是 S 的上确界.

例 1.5.7. 设 S 为非空数集,定义 $S^- = \{x \mid -x \in S\}$. 证明: (1) inf $S^- = -\sup S$; (2) $\sup S^- = -\inf S$.

- (1) ①设 $\sup S = \eta$,则任意 $x_0 \in S^{-1}$, $-x_0 \in S$,则 $-x_0 \leq \eta$,即 $x_0 \geq -\eta$. 故 $-\eta$ 是 S^- 的一个下界. ②又有对于任意正数 ε ,存在 $-x_0 \in S$,使得 $-x_0 > \eta \varepsilon$. 于是, $x_0 \in S^-$, $x_0 < -\eta + \varepsilon$. 故 $-\eta$ 是 S^- 的下确界,即 $\inf S^- = -\sup S$. 注: 对于 S 无界的情形也可证. 参见例子1.3.8的解答.
 - (2) 同理可证.

- (1) ①设 $\sup S = \eta$,则任意 $x_0 \in S^{-1}$, $-x_0 \in S$,则 $-x_0 \leq \eta$,即 $x_0 \geq -\eta$. 故 $-\eta$ 是 S^- 的一个下界. ②又有对于任意正数 ε ,存在 $-x_0 \in S$,使得 $-x_0 > \eta \varepsilon$. 于是, $x_0 \in S^-$, $x_0 < -\eta + \varepsilon$. 故 $-\eta$ 是 S^- 的下确界,即 $\inf S^- = -\sup S$. 注:对于 S 无界的情形也可证. 参见例子1.3.8的解答.
 - (2) 同理可证.

例 1.5.8. 设 A, B 皆为非空有界数集,定义数集

$$A + B = \langle z \mid z = x + y, x \in A, y \in B \}.$$

延明: (1) $\sup(A+B) = \sup A + \sup B$; (2) $\inf(A+B) = \inf A + \inf B$; (3) $\sup(A-B) = \sup A - \inf B$; (4) $\inf(A-B) = \inf A - \sup B$.

- (1) ①设 $\sup S = \eta$,则任意 $x_0 \in S^{-1}$, $-x_0 \in S$,则 $-x_0 \leq \eta$,即 $x_0 \geq -\eta$. 故 $-\eta$ 是 S^- 的一个下界. ②又有对于任意正数 ε ,存在 $-x_0 \in S$,使得 $-x_0 > \eta \varepsilon$. 于是, $x_0 \in S^-$, $x_0 < -\eta + \varepsilon$. 故 $-\eta$ 是 S^- 的下确界,即 $\inf S^- = -\sup S$. 注:对于 S 无界的情形也可证. 参见例子1.3.8的解答.
 - (2) 同理可证.

例 1.5.8. 设 A, B 皆为非空有界数集,定义数集

$$A + B = \langle z \mid z = x + y, x \in A, y \in B \}.$$

延明: (1) $\sup(A+B) = \sup A + \sup B$; (2) $\inf(A+B) = \inf A + \inf B$; (3) $\sup(A-B) = \sup A - \inf B$; (4) $\inf(A-B) = \inf A - \sup B$.

- (1) 法一: ①对任意的 $c \in A + B$,存在 $a \in A, b \in B$,使得 c = a + b ,则设 $\sup A = \eta_1, \sup B = \eta_2$,于是 $a \leq \eta_1, b \leq \eta_2, c \leq \eta_1 + \eta_2$ 。因此 $\eta_1 + \eta_2$ 是 A + B 的一个上界。②对于任意正数 ε ,存在 $a \in A, b \in B$,使得 $a > \eta_1 \frac{\varepsilon}{2}, b > \eta_2 \frac{\varepsilon}{2}$ 于是, $a + b \in A + B$,并且 $a + b > (\eta_1 + \eta_2) \varepsilon$,故 $\sup(A + B) = \eta_1 + \eta_2$,即 $\sup(A + B) = \sup A + \sup B$.
- 法二:根据法一①知 $\eta_1 + \eta_2$ 是 A + B 的一个上界.由确界原理知 A + B 存在上确界且 $\sup(A + B) \leq \sup A + \sup B$.根据法一②得 $\forall \varepsilon > 0$, $\exists a \in A, b \in B$,使得 $a + b \in A + B$ 且 $a + b > (\eta_1 + \eta_2) \varepsilon$.即 $\eta_1 + \eta_2 \leq a + b \leq \sup(A + B)$ (参见例子1.1.1的结论).综上可得 $\sup(A + B) = \sup A + \sup B$.
- (3) 结合第一问的结论和例子1.3.10第 (5) 条的结论,得 $\sup(A B) = \sup A + \sup(-B) = \sup A \inf B$.
- (2) 和 (4) 关于 $\inf(A + B)$ 和 $\inf(A B)$ 的证明是类似的,或使用 (1) 和 (3) 中关于 -A 和 -B 的上确界的结论.

例 1.5.9. 确定下列初等函数的存在域:

(1)
$$y = \sin(\sin x)$$
, (2) $y = \lg(\lg x)$,

(3)
$$y = \arcsin\left(\lg\frac{x}{10}\right)$$
, (4) $y = \lg\left(\arcsin\frac{x}{10}\right)$.

例 1.5.9. 确定下列初等函数的存在域:

(1)
$$y = \sin(\sin x)$$
, (2) $y = \lg(\lg x)$,

(3)
$$y = \arcsin\left(\lg\frac{x}{10}\right)$$
, (4) $y = \lg\left(\arcsin\frac{x}{10}\right)$.

解答

- (1) $y = \sin(\sin x)$ 的存在域为 \mathbb{R} .
- (2) 由 $\lg x > 0$,得 x > 1. 故 $y = \lg(\lg x)$ 的存在域为 $(1, +\infty)$.
- (3) $y = \arcsin x$ 的存在域为 [-1,1]. 由 $-1 \le \lg \frac{x}{10} \le 1$ 得 $\frac{1}{10} \le \frac{x}{10} \le 10$. 故 $y = \arcsin \left(\lg \frac{x}{10}\right)$ 的存在域为 [1,100].
- (4) $y = \lg x$ 的存在域为 $(0, +\infty)$. 由 $0 < \arcsin \frac{x}{10} < +\infty$ 得 $0 < \frac{x}{10} \le 1$. 故 $y = \lg \left(\arcsin \frac{x}{10}\right)$ 的存在域为 (0, 10].

例 1.5.10. 试问下列函数是由哪些基本初等函数复合而成: $(1)y = (1+x)^{20}$; $(2)y = \left(\arcsin x^2\right)^2$; (3) $y = \lg\left(1 + \sqrt{1+x^2}\right)$; (4) $y = 2^{\sin^2 x}$.

例 1.5.10. 试问下列函数是由哪些基本初等函数复合而成: $(1)y = (1+x)^{20}$; $(2)y = \left(\arcsin x^2\right)^2$; (3) $y = \lg\left(1+\sqrt{1+x^2}\right)$; (4) $y = 2^{\sin^2 x}$.

解答

- (1) $y = (1+x)^{20}$ 由 $y = u^{20}, u = 1+v, v = x$ 复合而成.
- (2) $y = (\arcsin x^2)^2$ 由 $y = u^2, u = \arcsin v, v = x^2$ 复合而成.
- (3) $y = \lg\left(1 + \sqrt{1 + x^2}\right) \implies y = \lg u, u = 1 + w, w = s^{\frac{1}{2}}, s = 1 + t, t = x^2 \not \exists \land \vec{m} \vec{m}.$
- (4) $y = 2^{\sin^2 x}$ 由 $y = 2^{\alpha}, u = v^2, v = \sin x$ 复合而成.

【方法点击】牢记基本初等函数的表达式是解决此类问题的基础,而由里到外,逐级分解是解决问题的关键. 做题时不能跨越某个级别,漏掉某个基本初等函数,要分清复合函数的成分或结构.

例 1.5.11. 证明关于函数 y = [x] 的如下不等式: (1) 当 x > 0 时, $1 - x < x\left[\frac{1}{x}\right] \le 1$; (2) 当 x < 0 时, $1 \le x\left[\frac{1}{x}\right] < 1 - x$.

例 1.5.11. 证明关于函数 y = [x] 的如下不等式: (1) 当 x > 0 时, $1 - x < x\left[\frac{1}{x}\right] \le 1$; (2) 当 x < 0 时, $1 \le x\left[\frac{1}{x}\right] < 1 - x$.

解答

(1) 当 x > 0 时,式(1.5.1)两边同乘以x,得到 $1-x < x\left[\frac{1}{x}\right] \le 1$. (2) 当 x < 0 时,式(1.5.1)两边同乘以x,得到 $1 \le x\left[\frac{1}{x}\right] < 1-x$.

例 1.5.11. 证明关于函数 y = [x] 的如下不等式: (1) 当 x > 0 时, $1 - x < x\left[\frac{1}{x}\right] \le 1$; (2) 当 x < 0 时, $1 \le x\left[\frac{1}{x}\right] < 1 - x$.

解答

 $\left[\frac{1}{x}\right] 是不超过 \frac{1}{x} 的最大整数,因此 <math>0 \le \frac{1}{x} - \left[\frac{1}{x}\right] < 1.$ 即 $\frac{1}{x} - 1 < \left[\frac{1}{x}\right] \le \frac{1}{x}. \tag{1.5.1}$

(1) 当 x > 0 时,式(1.5.1)两边同乘以 x,得到 $1-x < x\left[\frac{1}{x}\right] \le 1$. (2) 当 x < 0 时,式(1.5.1)两边同乘以 x,得到 $1 \le x\left[\frac{1}{x}\right] < 1-x$.

例 1.5.12. 证明 $f(x) = \frac{x}{x^2+1}$ 是 \mathbb{R} 上的有界函数.

由平均值不等式可得 $\frac{x^2+1}{2} \ge \sqrt{x^2} = |x|$. 于是, $|f(x)| = \frac{|x|}{x^2+1} \le \frac{1}{2}$,故 f(x) 是 \mathbb{R} 上的有界函数.

由平均值不等式可得 $\frac{x^2+1}{2} \ge \sqrt{x^2} = |x|$. 于是, $|f(x)| = \frac{|x|}{x^2+1} \le \frac{1}{2}$,故 f(x) 是 \mathbb{R} 上的有界函数.

例 1.5.13. (1) 叙述无界函数的定义; (2) 证明 $f(x) = \frac{1}{x^2}$ 为 (0,1) 上的无界函数; (3) 举出函数 f 的例子, 使 f 为闭区间 [0,1] 上的无界函数.

由平均值不等式可得 $\frac{x^2+1}{2} \ge \sqrt{x^2} = |x|$. 于是, $|f(x)| = \frac{|x|}{x^2+1} \le \frac{1}{2}$,故 f(x) 是 \mathbb{R} 上的有界函数.

例 1.5.13. (1) 叙述无界函数的定义; (2) 证明 $f(x) = \frac{1}{x^2}$ 为 (0,1) 上的无界函数; (3) 举出函数 f 的例子, 使 f 为闭区间 [0,1] 上的无界函数.

证明

(1) 设 f 为定义在 D 上的函数. 若对于任意正数 M, 都存在 $x_0 \in D$, 使得 $|f(x_0)| > M$, 则称函数 f 为 D 上的无界函数.

(2) 对任意正数 M,由 $\frac{1}{x^2} > M$ 得 $x < \frac{1}{\sqrt{M}}$. 于是,取 $x_0 = \frac{1}{\sqrt{M+1}}$,则 $x_0 \in (0,1)$,并且 $|f(x_0)| = \frac{1}{x_0^2} = M + 1 > M$

(2) 对任意正数 M,由 $\frac{1}{x^2} > M$ 得 $x < \frac{1}{\sqrt{M}}$. 于是,取 $x_0 = \frac{1}{\sqrt{M+1}}$,则 $x_0 \in (0,1)$,并且 $|f(x_0)| = \frac{1}{x_0^2} = M + 1 > M$

例 1.5.14. 设 f 为定义在 D 上的有界函数,证明: (1) $\sup_{x \in D} \{-f(x)\} = -\inf_{x \in D} f(x)$; (2) $\inf_{x \in D} \{-f(x)\}$ $-\sup_{x\in\mathbb{D}}f(x).$

(2) 对任意正数 M,由 $\frac{1}{x^2} > M$ 得 $x < \frac{1}{\sqrt{M}}$. 于是,取 $x_0 = \frac{1}{\sqrt{M+1}}$,则 $x_0 \in (0,1)$,并且 $|f(x_0)| = \frac{1}{x_0^2} = M + 1 > M$

例 1.5.14. 设 f 为定义在 D 上的有界函数,证明: (1) $\sup_{x \in D} \{-f(x)\} = -\inf_{x \in D} f(x)$; (2) $\inf_{x \in D} \{-f(x)\}$ $-\sup_{x\in\mathbb{D}}f(x).$

证明

(1) 设 $\inf_{x \in D} f(x) = \xi$, 则对一切 $x \in D$, $f(x) \ge \xi$, 即 $-f(x) \le -\xi$. 对任意 $\varepsilon > 0$, 存在

 $x_0 \in D$,使得 $f(x_0) < \xi + \varepsilon$,即

$$-f\left(x_{0}\right)>-\xi-\varepsilon.$$

所以 $\sup_{x \in D} \{-f(x)\} = -\xi = \inf_{x \in D} f(x)$. (2) 同理可证.

 $x_0 \in D$,使得 $f(x_0) < \xi + \varepsilon$,即

$$-f\left(x_{0}\right)>-\xi-\varepsilon.$$

所以 $\sup_{x \in D} \{-f(x)\} = -\xi = \inf_{x \in D} f(x)$. (2) 同理可证.

例 1.5.15. 证明: $\tan x$ 在 $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ 上无界,而在任一闭区间 $[a,b] \subset \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ 上有界.

 $x_0 \in D$,使得 $f(x_0) < \xi + \varepsilon$,即

$$-f\left(x_{0}\right)>-\xi-\varepsilon.$$

所以 $\sup_{x \in D} \{-f(x)\} = -\xi = \inf_{x \in D} f(x)$. (2) 同理可证.

例 1.5.15. 证明: $\tan x$ 在 $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ 上无界,而在任一闭区间 $[a, b] \subset \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ 上有界.

证明

(1) 对任意正数 M,以 1 和 M+1 为两直角边作一直角三角形. 设其较大的锐角为 α ,则 $\alpha \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ 且

$$\tan \alpha = M + 1 > M.$$

故 $\tan x$ 为 $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ 上的无界函数.

(2) 由 $[a,b] \subset \left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ 可知, $\tan x$ 在 [a,b] 上严格递增,从而当 $x \in [a,b]$ 时, $\tan a \leq 1$

 $\tan x \le \tan b$, 令 $M = \max\{|\tan a|, |\tan b|\}$,则对一切 $x \in [a,b]$ 都有 $|\tan x| \le M$. 故 $\tan x$ 在 [a,b] 上有界.

 $\tan x \le \tan b$, 令 $M = \max\{|\tan a|, |\tan b|\}$,则对一切 $x \in [a, b]$ 都有 $|\tan x| \le M$. 故 $\tan x$ 在 [a, b] 上有界.

例 1.5.16. 设 f,g 和 h 为增函数,满足

$$f(x) \le g(x) \le h(x), x \in \mathbb{R}.$$

证明: $f(f(x)) \leq g(g(x)) \leq h(h(x))$.

 $\tan x \le \tan b$,令 $M = \max\{|\tan a|, |\tan b|\}$,则对一切 $x \in [a, b]$ 都有 $|\tan x| \le M$. 故 $\tan x$ 在 [a, b] 上有界.

例 1.5.16. 设 f,g 和 h 为增函数,满足

$$f(x) \le g(x) \le h(x), x \in \mathbb{R}.$$

证明: $f(f(x)) \le g(g(x)) \le h(h(x))$.

证明

由 $f(x) \le g(x) \le h(x)$ 和 f, g, h 均为增函数可得

$$f(f(x)) \le f(g(x)) \le g(g(x)) \le g(h(x)) \le h(h(x)).$$

于是 $f(f(x)) \le g(g(x)) \le h(h(x))$.

例 1.5.17. 设 f, g 为 D 上的有界函数,证明: (1) $\inf_{x \in D} \{ f(x) + g(x) \} \le \inf_{x \in D} f(x) + \sup_{x \in D} g(x)$; (2) $\sup_{x \in D} f(x) + \inf_{x \in D} g(x) \le \sup_{x \in D} \{ f(x) + g(x) \}$.

例 1.5.17. 设 f, g 为 D 上的有界函数,证明: (1) $\inf_{x \in D} \{ f(x) + g(x) \} \le \inf_{x \in D} f(x) + \sup_{x \in D} g(x)$; (2) $\sup_{x \in D} f(x) + \inf_{x \in D} g(x) \le \sup_{x \in D} \{ f(x) + g(x) \}$.

证明

法一: (1) 对任意的 $x \in D$ 有

$$\inf_{x \in D} \{ f(x) + g(x) \} - \sup_{x \in D} g(x) = \inf_{x \in D} \{ f(x) + g(x) \} + \inf_{x \in D} \{ -g(x) \}$$

$$\leq [f(x) + g(x)] + [-g(x)] = f(x)$$

于是 $\inf_{x \in D} \{f(x) + g(x)\} - \sup_{x \in D} g(x) \le \inf_{x \in D} f(x)$,故 $\inf_{x \in D} \{f(x) + g(x)\} \le \inf_{x \in D} f(x) + \sup_{x \in D} g(x)$.

法二: (1) 由例子1.4.5的结论得

$$\inf_{x \in D} \{ f(x) + g(x) \} + \inf_{x \in D} \{ -g(x) \} \le \inf_{x \in D} f(x).$$

又因为 $f(f(x)) \le g(g(x)) \le h(h(x))$,结合可得 $\inf_{x \in D} \{f(x) + g(x)\} \le \inf_{x \in D} f(x) + \sup_{x \in D} g(x)$.

法三: 记 $\inf_{x \in D} \{f(x) + g(x)\} = A$. 则 $\forall x \in D$,有 $f(x) + \sup_{x \in D} g(x) \ge f(x) + g(x) \ge A$, 从而 $f(x) \ge A - \sup_{x \in D} g(x)$. 故 $\inf_{x \in D} f(x) \ge A - \sup_{x \in D} g(x)$. 结 $\inf_{x \in D} f(x) + \sup_{x \in D} g(x)$.

(2) 对任意的 $x \in D$,

$$\sup_{x \in D} \{ f(x) + g(x) \} - \inf_{x \in D} g(x) = \sup_{x \in D} \{ f(x) + g(x) \} + \sup_{x \in D} \{ -g(x) \}$$
$$\ge f(x) + g(x) + [-g(x)] = f(x).$$

于是 $\sup_{x \in D} \{f(x) + g(x)\} - \inf_{x \in D} g(x) \ge \sup_{x \in D} f(x)$,故 $\sup_{x \in D} f(x) + \inf_{x \in D} g(x) \le \sup_{x \in D} \{f(x) + g(x)\}$.

又因为 $f(f(x)) \leq g(g(x)) \leq h(h(x))$,结合可得 $\inf_{x \in D} \{f(x) + g(x)\} \leq \inf_{x \in D} f(x) + \sup_{x \in D} g(x)$. 法三: 记 $\inf_{x \in D} \{f(x) + g(x)\} = A$. 则 $\forall x \in D$,有 $f(x) + \sup_{x \in D} g(x) \geq f(x) + g(x) \geq A$, 从而 $f(x) \geq A - \sup_{x \in D} g(x)$. 故 $\inf_{x \in D} f(x) \geq A - \sup_{x \in D} g(x)$.

(2) 对任意的 $x \in D$,

$$\sup_{x \in D} \{f(x) + g(x)\} - \inf_{x \in D} g(x) = \sup_{x \in D} \{f(x) + g(x)\} + \sup_{x \in D} \{-g(x)\}$$
$$\geq f(x) + g(x) + [-g(x)] = f(x).$$

于是 $\sup_{x \in D} \{f(x) + g(x)\} - \inf_{x \in D} g(x) \ge \sup_{x \in D} f(x)$,故 $\sup_{x \in D} f(x) + \inf_{x \in D} g(x) \le \sup_{x \in D} \{f(x) + g(x)\}$.

例 1.5.18. 设 f 为定义在 \mathbb{R} 上以 h 为周期的函数,a 为实数. 证明: 若 f 在 [a,a+h] 上有界,则 f 在 \mathbb{R} 上有界.

因为 f(x) 在 [a,a+h] 上有界,所以存在 M>0,使得对任意 $x\in [a,a+h]$ 有 $|f(x)|\leq M$. 正数 h 的所有整数倍从小到大依次为: \cdots , -2h, -h, 0, h, 2h, \cdots . 对于任意 $x\in \mathbb{R}$,必存在唯一整数 k,使得 $kh\leq x-a\leq (k+1)h$.于是 $a\leq x-kh\leq a+h$,即 $x-kh\in [a,a+h]$.由于 h 是 f 的周期,因而 $|f(x)|=|f(x-kh)|\leq M$,故 f(x) 在 \mathbb{R} 上有界.

因为 f(x) 在 [a,a+h] 上有界,所以存在 M>0,使得对任意 $x\in [a,a+h]$ 有 $|f(x)|\leq M$. 正数 h 的所有整数倍从小到大依次为: ..., -2h,-h,0,h,2h,.... 对于任意 $x\in \mathbb{R}$,必存在唯一整数 k,使得 $kh\leq x-a\leq (k+1)h$. 于是 $a\leq x-kh\leq a+h$,即 $x-kh\in [a,a+h]$. 由于 h 是 f 的周期,因而 $|f(x)|=|f(x-kh)|\leq M$,故 f(x) 在 \mathbb{R} 上有界.

例 1.5.19. 设 f 在区间 I 上有界,记

$$M = \sup_{x \in I} f(x), m = \inf_{x \in I} f(x),$$

证明

$$\sup_{x',x''\in I} |f(x') - f(x'')| = M - m.$$

① 对任意的 $x', x'' \in I$ 有 $m \le f(x') \le M, m \le f(x'') \le M$, 于是有

$$m - M \le f(x') - f(x'') \le M - m$$

即 $|f(x') - f(x'')| \le M - m$, 这表明 M - m 是 |f(x') - f(x'')| 的一个上界.

② 设 ε 为任意正数,则存在 $x',x'' \in I$,使得

$$f(x') > M - \frac{\varepsilon}{2}, f(x'') < m + \frac{\varepsilon}{2}.$$

于是有

$$|f(x') - f(x'')| \ge f(x') - f(x'')$$

$$> \left(M - \frac{\varepsilon}{2}\right) - \left(m + \frac{\varepsilon}{2}\right) = M - m - \varepsilon,$$

这表明 M - m 是 |f(x') - f(x'')| 的最小上界.

综上可得 $\sup |f(x') - f(x'')| = M - m$.

【方法点击】要证明 M-m 是上确界,依照定义,只需证明两点: (1) M-m 是上界; (2) M-m 是最小的上界.

第二章 数列极限

2.1	文列极限概念	98
2.2	女敛数列的性质	117

2.1 数列极限概念

2.1.1	数列收敛	99
2.1.2	数列发散的问题	110
2.1.3	无穷小量与无穷大量	112

2.1.1 数列收敛

定义 2.1.1 (数列). 若函数 f 的定义域为全体正整数集合 \mathbb{N}_+ , 则称

$$f: \mathbb{N}_+ \to \mathbb{R} \quad \text{ if } f(n), n \in \mathbb{N}_+$$

为数列. 因正整数集 \mathbb{N}_+ 的元素可按由小到大的顺序排列,故数列 f(n) 也可写作

$$a_1, a_2, \cdots, a_n, \cdots,$$

或简单地记为 $\{a_n\}$,其中 a_n 称为该数列的通项.

2.1.1 数列收敛

定义 2.1.1 (数列). 若函数 f 的定义域为全体正整数集合 \mathbb{N}_+ , 则称

$$f: \mathbb{N}_+ \to \mathbb{R} \quad \text{ if } f(n), n \in \mathbb{N}_+$$

为数列. 因正整数集 \mathbb{N}_+ 的元素可按由小到大的顺序排列, 故数列 f(n) 也可写作

$$a_1, a_2, \cdots, a_n, \cdots,$$

或简单地记为 $\{a_n\}$, 其中 a_n 称为该数列的通项.

注 2.1.1. (1) 注意数列与数集的区别; (2) 当数列作为函数是有界函数、无界函数、单调函数时, 就分别称之为有界数列、无界数列、单调数列.

- (1)数列 $\{a_n\}$ 有上界 $\Leftrightarrow \exists M \in \mathbb{R}$, 使得 $\forall n \in \mathbb{N}_+$, 有 $a_n \leq M$;
- (2) 数列 $\{a_n\}$ 有下界 $\Leftrightarrow \exists L \in \mathbb{R}$,使得 $\forall n \in \mathbb{N}_+$,有 $a_n \geq L$;
- (3) 数列 $\{a_n\}$ 有界 $\Leftrightarrow \exists M > 0$,使得 $\forall n \in \mathbb{N}_+$,有 $|a_n| \leq M$;
- (4) 数列 $\{a_n\}$ 无上界 $\Leftrightarrow \forall M \in \mathbb{R}, \exists n_0 \in \mathbb{N}_+, \notin a_{n_0} > M;$
- (5) 数列 $\{a_n\}$ 无下界 $\Leftrightarrow \forall L \in \mathbb{R}, \exists n_0 \in \mathbb{N}_+, \notin a_{n_0} < L;$
- (6)数列 $\{a_n\}$ 无界 $\Leftrightarrow \forall M > 0$, $\exists n_0 \in \mathbb{N}_+$,有 $|a_{n_0}| > M$;
- (7)数列 $\{a_n\}$ 的上确界和下确界分别记为 $\sup_n\{a_n\}$ 和 $\inf_n\{a_n\}$.

定义 2.1.2 (数列极限的 $\varepsilon - N$ 定义). 设 $\{a_n\}$ 为数列,a 为定数. 若对任给的正数 ε ,总存在正整数 N,使得当 n > N 时,有

$$|a_n - a| < \varepsilon,$$

则称数列 $\{a_n\}$ 收敛于 a,定数 a 称为数列 $\{a_n\}$ 的极限,并记作

证明

对
$$\forall \varepsilon > 0$$
,取 $N = \left[\frac{1}{\varepsilon}\right] + 1$,则当 $n > N$ 时,有 $\left|\frac{1}{n} - 0\right| = \frac{1}{n} < \varepsilon$. 故 $\lim_{n \to \infty} \frac{1}{n} = 0$.

证明

对
$$\forall \varepsilon > 0$$
,取 $N = \left[\frac{1}{\varepsilon}\right] + 1$,则当 $n > N$ 时,有 $\left|\frac{1}{n} - 0\right| = \frac{1}{n} < \varepsilon$. 故 $\lim_{n \to \infty} \frac{1}{n} = 0$.

例 2.1.2. 利用定义证明 $\lim_{n\to\infty}\frac{1}{n^{\alpha}}=0\ (\alpha>0)$.

证明

对
$$\forall \varepsilon > 0$$
,取 $N = \left[\frac{1}{\varepsilon}\right] + 1$,则当 $n > N$ 时,有 $\left|\frac{1}{n} - 0\right| = \frac{1}{n} < \varepsilon$. 故 $\lim_{n \to \infty} \frac{1}{n} = 0$.

例 2.1.2. 利用定义证明 $\lim_{n\to\infty}\frac{1}{n^{\alpha}}=0\ (\alpha>0)$.

证明

对
$$\forall \varepsilon > 0$$
,取 $N = \left[\frac{1}{\varepsilon^{1/\alpha}}\right] + 1$,则当 $n > N$ 时,有 $\left|\frac{1}{n^{\alpha}} - 0\right| = \frac{1}{n^{\alpha}} < \varepsilon$. 故 $\lim_{n \to \infty} \frac{1}{n^{\alpha}} = 0$.

证明

对 $\forall \varepsilon > 0$,取 $N = \left[\frac{1}{\varepsilon}\right] + 1$,则当 n > N 时,有 $\left|\frac{1}{n} - 0\right| = \frac{1}{n} < \varepsilon$. 故 $\lim_{n \to \infty} \frac{1}{n} = 0$.

例 2.1.2. 利用定义证明 $\lim_{n\to\infty}\frac{1}{n^{\alpha}}=0\ (\alpha>0)$.

证明

对 $\forall \varepsilon > 0$,取 $N = \left[\frac{1}{\varepsilon^{1/\alpha}}\right] + 1$,则当 n > N 时,有 $\left|\frac{1}{n^{\alpha}} - 0\right| = \frac{1}{n^{\alpha}} < \varepsilon$. 故 $\lim_{n \to \infty} \frac{1}{n^{\alpha}} = 0$.

例 2.1.3. 利用定义证明 $\lim_{n\to\infty} \frac{n+1}{n} = 1$.

对 $\forall \varepsilon > 0$,取 $N = \left[\frac{1}{\varepsilon}\right] + 1$,则当 n > N 时,有 $\left|\frac{n+1}{n} - 1\right| = \frac{1}{n} < \varepsilon$. 故 $\lim_{n \to \infty} \frac{n+1}{n} = 1$.

对 $\forall \varepsilon > 0$,取 $N = \left[\frac{1}{\varepsilon}\right] + 1$,则当 n > N 时,有 $\left|\frac{n+1}{n} - 1\right| = \frac{1}{n} < \varepsilon$. 故 $\lim_{n \to \infty} \frac{n+1}{n} = 1$.

例 2.1.4. 利用定义证明 $\lim_{n\to\infty} C = C$, 其中 C 为常数.

对 $\forall \varepsilon > 0$,取 $N = \left[\frac{1}{\varepsilon}\right] + 1$,则当 n > N 时,有 $\left|\frac{n+1}{n} - 1\right| = \frac{1}{n} < \varepsilon$. 故 $\lim_{n \to \infty} \frac{n+1}{n} = 1$.

例 2.1.4. 利用定义证明 $\lim_{n\to\infty} C = C$, 其中 C 为常数.

证明

对 $\forall \varepsilon > 0$,取 N = 1,则当 n > N 时,有 $|C - C| = 0 < \varepsilon$. 故 $\lim_{n \to \infty} C = C$.

对 $\forall \varepsilon > 0$,取 $N = \left[\frac{1}{\varepsilon}\right] + 1$,则当 n > N 时,有 $\left|\frac{n+1}{n} - 1\right| = \frac{1}{n} < \varepsilon$. 故 $\lim_{n \to \infty} \frac{n+1}{n} = 1$.

例 2.1.4. 利用定义证明 $\lim_{n\to\infty} C = C$, 其中 C 为常数.

证明

对 $\forall \varepsilon > 0$,取 N = 1,则当 n > N 时,有 $|C - C| = 0 < \varepsilon$. 故 $\lim_{n \to \infty} C = C$.

例 2.1.5. 利用定义证明 $\lim_{n\to\infty} \frac{3n^2}{n^2-3} = 3$.

对 $\forall \varepsilon > 0$,取 $N = \left[\frac{1}{\varepsilon}\right] + 1$,则当 n > N 时,有 $\left|\frac{n+1}{n} - 1\right| = \frac{1}{n} < \varepsilon$. 故 $\lim_{n \to \infty} \frac{n+1}{n} = 1$.

例 2.1.4. 利用定义证明 $\lim_{n\to\infty} C = C$, 其中 C 为常数.

证明

对 $\forall \varepsilon > 0$,取 N = 1,则当 n > N 时,有 $|C - C| = 0 < \varepsilon$. 故 $\lim_{n \to \infty} C = C$.

例 2.1.5. 利用定义证明 $\lim_{n\to\infty} \frac{3n^2}{n^2-3} = 3$.

法一:
$$\forall \varepsilon > 0$$
,取 $N = \max\left\{3, \left[\sqrt{\frac{9}{\varepsilon} + 3}\right] + 1\right\}$,则当 $n > N$ 时,
$$\left|\frac{3n^2}{n^2 - 3} - 3\right| = \frac{9}{n^2 - 3} < \varepsilon \quad (n \ge 3).$$

法二:
$$\forall \varepsilon > 0$$
, 取 $N = \max\{3, \frac{9}{\varepsilon}\}$, 则当 $n > N$ 时,

$$\left| \frac{3n^2}{n^2 - 3} - 3 \right| = \frac{9}{n^2 - 3} = \frac{9}{(n + \sqrt{3})(n - \sqrt{3})} < \frac{9}{n + \sqrt{3}} < \frac{9}{n} < \varepsilon \quad (n \ge 3).$$

法一:
$$\forall \varepsilon > 0$$
,取 $N = \max \left\{ 3, \left[\sqrt{\frac{9}{\varepsilon} + 3} \right] + 1 \right\}$,则当 $n > N$ 时,
$$\left| \frac{3n^2}{n^2 - 3} - 3 \right| = \frac{9}{n^2 - 3} < \varepsilon \quad (n \ge 3).$$

法二: $\forall \varepsilon > 0$, 取 $N = \max\{3, \frac{9}{\varepsilon}\}$, 则当 n > N 时,

$$\left| \frac{3n^2}{n^2 - 3} - 3 \right| = \frac{9}{n^2 - 3} = \frac{9}{(n + \sqrt{3})(n - \sqrt{3})} < \frac{9}{n + \sqrt{3}} < \frac{9}{n} < \varepsilon \quad (n \ge 3).$$

注 2.1.2. 概念理解: (1) ε 的任意性; (2) N 的相应性与不唯一性.

用极限定义证明极限常用技巧: (1) 常需要放大不等式以方便寻找 N; (2) 不妨设 $0 < \varepsilon < 1$, ...; (3) 不妨设 $n > N_0$,

法一:
$$\forall \varepsilon > 0$$
,取 $N = \max \left\{ 3, \left[\sqrt{\frac{9}{\varepsilon} + 3} \right] + 1 \right\}$,则当 $n > N$ 时,
$$\left| \frac{3n^2}{n^2 - 3} - 3 \right| = \frac{9}{n^2 - 3} < \varepsilon \quad (n \ge 3).$$

法二: $\forall \varepsilon > 0$, 取 $N = \max\{3, \frac{9}{\varepsilon}\}$, 则当 n > N 时,

$$\left| \frac{3n^2}{n^2 - 3} - 3 \right| = \frac{9}{n^2 - 3} = \frac{9}{(n + \sqrt{3})(n - \sqrt{3})} < \frac{9}{n + \sqrt{3}} < \frac{9}{n} < \varepsilon \quad (n \ge 3).$$

注 2.1.2. 概念理解: (1) ε 的任意性; (2) N 的相应性与不唯一性.

用极限定义证明极限常用技巧: (1) 常需要放大不等式以方便寻找 N; (2) 不妨设 $0 < \varepsilon < 1$, \cdots ; (3) 不妨设 $n > N_0$, \cdots .

例 2.1.6. 证明下面两个定义是等价的: (1) $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}_+$, 当 n > N 时, $|a_n - a| < \varepsilon$; (2)

 $\forall 0 < \varepsilon < \varepsilon_0, \ \exists N \in \mathbb{N}_+, \ \ \text{\underline{s} } n > N \ \ \text{th}, \ |a_n - a| < \varepsilon.$

 $\forall 0 < \varepsilon < \varepsilon_0, \ \exists N \in \mathbb{N}_+, \ \ \underline{\ } \ n > N \ \ \mathrm{tf}, \ \ |a_n - a| < \varepsilon.$

证明

- (1) \Rightarrow (2) 是显然的
- (2) \Rightarrow (1): 当 $0 < \varepsilon < \varepsilon_0$ 时显然成立; 当 $\varepsilon > \varepsilon_0$ 时,取 $0 < \tilde{\varepsilon} < \varepsilon_0$, $\exists N \in \mathbb{N}_+$,当 n > N

时,
$$|a_n - a| < \tilde{\varepsilon} < \varepsilon$$
.

 $\forall 0 < \varepsilon < \varepsilon_0, \exists N \in \mathbb{N}_+, \ \text{ if } n > N \ \text{ if }, |a_n - a| < \varepsilon.$

证明

- (1) \Rightarrow (2) 是显然的
- $(2)\Rightarrow(1)$: 当 $0<\varepsilon<\varepsilon_0$ 时显然成立; 当 $\varepsilon>\varepsilon_0$ 时,取 $0<\tilde{\varepsilon}<\varepsilon_0$, $\exists N\in\mathbb{N}_+$,当 n>N

时, $|a_n - a| < \tilde{\varepsilon} < \varepsilon$.

例 2.1.7. 证明 $\lim_{n\to\infty} q^n = 0$, 这里 |q| < 1.

 $\forall 0 < \varepsilon < \varepsilon_0, \exists N \in \mathbb{N}_+, \ \ \text{\underline{s} } n > N \ \ \text{\underline{n}}, \ \ |a_n - a| < \varepsilon.$

证明

- (1) \Rightarrow (2) 是显然的
- $(2)\Rightarrow(1)$: 当 $0<\varepsilon<\varepsilon_0$ 时显然成立; 当 $\varepsilon>\varepsilon_0$ 时,取 $0<\tilde{\varepsilon}<\varepsilon_0$, $\exists N\in\mathbb{N}_+$, 当 n>N

时, $|a_n - a| < \tilde{\varepsilon} < \varepsilon$.

例 2.1.7. 证明 $\lim_{n\to\infty} q^n = 0$, 这里 |q| < 1.

证明

法一: 若 q=0,则结果是显然的. 现设 0<|q|<1. 对 $\forall \varepsilon>0$ (不妨设 $\varepsilon<1$),取 $N=\frac{\lg\varepsilon}{\lg|q|}$,

则

$$|q^n - 0| = |q|^n < \varepsilon.$$

这就证明了 $\lim_{n\to\infty}q^n=0$.

法二: 若 q=0,则结果是显然的. 现设 0<|q|<1. 则 $\frac{1}{|q|}>1$. 记 $\frac{1}{|q|}=1+h$,其中 h>0.

即 $|q| = \frac{1}{1+h}$.由 $(1+h)^n \ge 1+nh$ (伯努利不等式),我们有

$$|q^n - 0| = |q|^n = \frac{1}{(1+h)^n} \le \frac{1}{1+nh} < \frac{1}{nh}.$$
 (2.1.1)

对任给的 $\varepsilon > 0$,只要取 $N = \frac{1}{\varepsilon h}$,则当 n > N 时,由式(2.1.1)得 $|q^n - 0| < \varepsilon$. 这就证明了

$$\lim_{n\to\infty} q^n = 0.$$

则

$$|q^n - 0| = |q|^n < \varepsilon.$$

这就证明了 $\lim_{n\to\infty}q^n=0$.

法二: 若 q=0,则结果是显然的. 现设 0<|q|<1. 则 $\frac{1}{|q|}>1$. 记 $\frac{1}{|q|}=1+h$,其中 h>0.

即 $|q| = \frac{1}{1+h}$.由 $(1+h)^n \ge 1+nh$ (伯努利不等式),我们有

$$|q^n - 0| = |q|^n = \frac{1}{(1+h)^n} \le \frac{1}{1+nh} < \frac{1}{nh}.$$
 (2.1.1)

对任给的 $\varepsilon > 0$,只要取 $N = \frac{1}{\varepsilon h}$,则当 n > N 时,由式(2.1.1)得 $|q^n - 0| < \varepsilon$. 这就证明了

$$\lim_{n\to\infty}q^n=0.$$

例 2.1.8. 证明 $\lim_{n\to\infty} \sqrt[n]{a} = 1$,其中 a > 0.

则

$$|q^n - 0| = |q|^n < \varepsilon.$$

这就证明了 $\lim_{n\to\infty}q^n=0$.

法二: 若 q=0,则结果是显然的. 现设 0<|q|<1. 则 $\frac{1}{|q|}>1$. 记 $\frac{1}{|q|}=1+h$,其中 h>0.

即 $|q| = \frac{1}{1+h}$.由 $(1+h)^n \ge 1+nh$ (伯努利不等式),我们有

$$|q^n - 0| = |q|^n = \frac{1}{(1+h)^n} \le \frac{1}{1+nh} < \frac{1}{nh}.$$
 (2.1.1)

对任给的 $\varepsilon > 0$,只要取 $N = \frac{1}{\varepsilon h}$,则当 n > N 时,由式(2.1.1)得 $|q^n - 0| < \varepsilon$. 这就证明了

$$\lim_{n\to\infty}q^n=0.$$

例 2.1.8. 证明 $\lim_{n\to\infty} \sqrt[n]{a} = 1$,其中 a > 0.

法一: 当 a=1 时,结论显然成立. 现设 a>1. $\forall \varepsilon>0$,取 $N=\frac{1}{\log_a^{(1+\varepsilon)}}$,则当 n>N 时,有 $a^{1/n}<1+\varepsilon$,而 $a^{1/n}>1-\varepsilon$ 显然成立(根据图像性质,左边恒大于 1,右边小于 1). 即有 $1-\varepsilon< a^{1/n}<1+\varepsilon$. 因此 $|\sqrt[n]{a}-1|<\varepsilon$.

若 0 < a < 1, $\forall \varepsilon > 0$ (不妨设 $0 < \varepsilon < 1$),取 $N = \frac{1}{\log_a^{(1-\varepsilon)}}$,则当 n > N 时,有 $1 - \varepsilon < a^{1/n}$. 而 $a^{1/n} < 1 + \varepsilon$ 显然成立. 即有 $1 - \varepsilon < a^{1/n} < 1 + \varepsilon$. 因此 $|\sqrt[n]{a} - 1| < \varepsilon$.

法二 (书上做法): 当 a=1 时,结论显然成立. 现设 a>1. 记 $\alpha_n=a^{1/n}-1$,则 $\alpha_n>0$. 由

$$a = (1 + \alpha_n)^n \ge 1 + n\alpha_n = 1 + n(a^{1/n} - 1)$$

得

$$a^{1/n} - 1 \le \frac{a-1}{n}. (2.1.2)$$

任给 $\varepsilon > 0$,由(2.1.2)式可见,当 $n > \frac{a-1}{\varepsilon} = N$ 时,就有 $a^{1/n} - 1 < \varepsilon$,即 $\left| a^{1/n} - 1 \right| < \varepsilon$. 所

以 $\lim_{n\to\infty} \sqrt[n]{a} = 1$. 对于 0 < a < 1 的情形, 其证明留给读者.

以 $\lim_{n\to\infty} \sqrt[n]{a} = 1$. 对于 0 < a < 1 的情形, 其证明留给读者.

例 2.1.9. 证明 $\lim_{n\to\infty} \frac{a^n}{n!} = 0$.

以 $\lim_{n\to\infty} \sqrt[n]{a} = 1$. 对于 0 < a < 1 的情形, 其证明留给读者.

例 2.1.9. 证明 $\lim_{n\to\infty} \frac{a^n}{n!} = 0$.

证明

若 a = 0,结论是显然的,现设 $a \neq 0$, $m_0 = [|a|] + 1$, $K = \frac{|a| \cdot |a| \cdot \cdots \cdot |a|}{1 \cdot 2 \cdot \cdots \cdot m_0}$, 有

$$\left| \frac{a^n}{n!} - 0 \right| = \frac{|a|^n}{n!} = \frac{|a| \cdot |a| \cdot \dots \cdot |a| \cdot \dots \cdot |a|}{1 \cdot 2 \cdot \dots \cdot m_0 \cdot \dots \cdot n} \le K \frac{|a|}{n},$$

(注意到当 $n_1 > m_0$ 时,有 $\frac{|a|}{n_1} < 1$) . 所以对于任给的 $\varepsilon > 0$,取 $N = \max\left\{m_0, \frac{K|a|}{\varepsilon}\right\}$,只要 n > N,就有

$$\left| \frac{a^n}{n!} - 0 \right| \le K \frac{|a|}{n} < \varepsilon.$$

故 $\lim_{n\to\infty} \frac{a^n}{n!} = 0.$

注 2.1.3. 思考:为什么要取 $N=\max\left\{m_0,\frac{K|a|}{\varepsilon}\right\}$. 答:在求解 $K^{|a|}_n$ 之前就要求 $n\geq m_0$,因为中间省掉许多项的分母大于 m_0 .

注 2.1.3. 思考: 为什么要取 $N = \max\left\{m_0, \frac{K|a|}{\varepsilon}\right\}$.

答: 在求解 $K^{\underline{|a|}}_n$ 之前就要求 $n \geq m_0$,因为中间省掉许多项的分母大于 m_0 .

注 2.1.4. 几何意义: $\lim_{n\to\infty} a_n = a \Leftrightarrow \forall \varepsilon > 0$, $\{a_n\}$ 除有限项外, 其他项都落在 $U(a;\varepsilon)$ 中.

定义 2.1.3 (数列极限另一种等价定义). 任给 $\varepsilon > 0$,若在 $U(a;\varepsilon)$ 之外数列 $\{a_n\}$ 中的项至多只有有限个,则称数列 $\{a_n\}$ 收敛于极限 a.

注 2.1.3. 思考: 为什么要取 $N = \max \left\{ m_0, \frac{K|a|}{\varepsilon} \right\}$.

答: 在求解 $K^{\underline{|a|}}_n$ 之前就要求 $n \geq m_0$,因为中间省掉许多项的分母大于 m_0 .

注 2.1.4. 几何意义: $\lim_{n\to\infty} a_n = a \Leftrightarrow \forall \varepsilon > 0$, $\{a_n\}$ 除有限项外, 其他项都落在 $U(a;\varepsilon)$ 中.

定义 2.1.3 (数列极限另一种等价定义). 任给 $\varepsilon > 0$,若在 $U(a;\varepsilon)$ 之外数列 $\{a_n\}$ 中的项至多只有有限个,则称数列 $\{a_n\}$ 收敛于极限 a.

例 2.1.10. 设 $\lim_{n\to\infty} x_n = a$, $\lim_{n\to\infty} y_n = b$. 作数列 $\{z_n\}$ 为

$$x_1,y_1,x_2,y_2,\cdots,x_n,y_n,\cdots$$

求证:数列 $\{z_n\}$ 收敛的充分必要条件是 a=b.

求证: 数列 $\{z_n\}$ 收敛的充分必要条件是 a=b.

证明

(必要性) 设 $\lim_{n\to\infty} z_n = A$. 那么对于任给的 $\varepsilon > 0$,数列 $\{z_n\}$ 落在 $U(A;\varepsilon)$ 之外的项至多只有有限个,从而数列 $\{x_n\}$ 和 $\{y_n\}$ 落在 $U(A;\varepsilon)$ 之外的项也至多只有有限个. 由定义2.1.3,证得

$$a = \lim_{n \to \infty} x_n = A = \lim_{n \to \infty} y_n = b.$$

(充分性) 因为 a = b,即 $\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n = a$,所以对于任给的 $\varepsilon > 0$,数列 $\{x_n\}$ 和 $\{y_n\}$ 落在 $U(a;\varepsilon)$ 之外的项至多只有有限个,从而数列 $\{z_n\}$ 落在 $U(a;\varepsilon)$ 之外的项至多只有有限个,由定义2.1.3,证得 $\lim_{n\to\infty} z_n = a$.

求证: 数列 $\{z_n\}$ 收敛的充分必要条件是 a=b.

证明

(必要性) 设 $\lim_{n\to\infty} z_n = A$. 那么对于任给的 $\varepsilon > 0$,数列 $\{z_n\}$ 落在 $U(A;\varepsilon)$ 之外的项至多只有有限个,从而数列 $\{x_n\}$ 和 $\{y_n\}$ 落在 $U(A;\varepsilon)$ 之外的项也至多只有有限个. 由定义2.1.3,证得

$$a = \lim_{n \to \infty} x_n = A = \lim_{n \to \infty} y_n = b.$$

(充分性) 因为 a = b,即 $\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n = a$,所以对于任给的 $\varepsilon > 0$,数列 $\{x_n\}$ 和 $\{y_n\}$ 落在 $U(a;\varepsilon)$ 之外的项至多只有有限个,从而数列 $\{z_n\}$ 落在 $U(a;\varepsilon)$ 之外的项至多只有有限个,由定义2.1.3,证得 $\lim_{n\to\infty} z_n = a$.

注 2.1.5. 数列 $\{(-1)^n\}$ 的奇数项极限为-1, 偶数项极限为 1, 因此该数列是发散的.

注 2.1.6. 请阐述 $\lim_{n\to\infty} a_n \neq a$: ① $\exists \varepsilon_0 > 0$,使得在 $U(a; \varepsilon_0)$ 之外数列 $\{a_n\}$ 中的项有无限个;② $\exists \varepsilon_0 > 0$, $\forall N \in \mathbb{N}_+$,都 $\exists n_0 > N$,有 $|a_{n_0} - a| \geq \varepsilon_0$.

注 2.1.6. 请阐述 $\lim_{n\to\infty} a_n \neq a$: ① $\exists \varepsilon_0 > 0$,使得在 $U(a; \varepsilon_0)$ 之外数列 $\{a_n\}$ 中的项有无限个; ② $\exists \varepsilon_0 > 0$, $\forall N \in \mathbb{N}_+$,都 $\exists n_0 > N$,有 $|a_{n_0} - a| \geq \varepsilon_0$.

注 2.1.7. 如何判断数列 $\{a_n\}$ 发散?

答: 不以任何数为极限.

注 2.1.6. 请阐述 $\lim_{n\to\infty} a_n \neq a$: ① $\exists \varepsilon_0 > 0$,使得在 $U(a; \varepsilon_0)$ 之外数列 $\{a_n\}$ 中的项有无限个; ② $\exists \varepsilon_0 > 0$, $\forall N \in \mathbb{N}_+$,都 $\exists n_0 > N$,有 $|a_{n_0} - a| \geq \varepsilon_0$.

注 2.1.7. 如何判断数列 $\{a_n\}$ 发散?

答: 不以任何数为极限.

例 2.1.11. 证明: $\{n^2\}$ 和 $\{(-1)^n\}$ 都是发散数列.

注 2.1.6. 请阐述 $\lim_{n\to\infty} a_n \neq a$: ① $\exists \varepsilon_0 > 0$,使得在 $U(a; \varepsilon_0)$ 之外数列 $\{a_n\}$ 中的项有无限个; ② $\exists \varepsilon_0 > 0$, $\forall N \in \mathbb{N}_+$,都 $\exists n_0 > N$,有 $|a_{n_0} - a| \geq \varepsilon_0$.

注 2.1.7. 如何判断数列 $\{a_n\}$ 发散?

答: 不以任何数为极限.

例 2.1.11. 证明: $\{n^2\}$ 和 $\{(-1)^n\}$ 都是发散数列.

证明

对 $\forall a \in \mathbb{R}$,取 $\varepsilon_0 = 1$,只需满足 n > a + 1,则 $n^2 > a + 1$,即 $U(a; \varepsilon_0)$ 有数列 $\{n^2\}$ 中所有的项 (有无穷多个),故 $\{n^2\}$ 不以任何数 a 为极限,即 $\{n^2\}$ 为发散数列.

至于数列 $\{(-1)^n\}$, 当 $a \neq 1$ 时,取 $\varepsilon_0 = \frac{1}{2}|a-1|$,则 $1 \notin U(a; \varepsilon_0)$,即在 $U(a; \varepsilon_0)$ 之外有

 $\{(-1)^n\}$ 中的所有偶数项; 当 a=1 时,取 $\varepsilon_0=1$,则 $-1 \notin U(a;\varepsilon_0)$,即在 $U(a;\varepsilon_0)$ 之外有 $\{(-1)^n\}$ 中的所有奇数项. 所以 $\{(-1)^n\}$ 不以任何数 a 为极限,即 $\{(-1)^n\}$ 为发散数列.

 $\{(-1)^n\}$ 中的所有偶数项; 当 a = 1 时,取 $\varepsilon_0 = 1$,则 $-1 \notin U(a; \varepsilon_0)$,即在 $U(a; \varepsilon_0)$ 之外有 $\{(-1)^n\}$ 中的所有奇数项. 所以 $\{(-1)^n\}$ 不以任何数 a 为极限,即 $\{(-1)^n\}$ 为发散数列.

例 2.1.12. 证明: $\{\frac{1}{n}\}$ 的极限不是 1.

 $\{(-1)^n\}$ 中的所有偶数项; 当 a = 1 时,取 $\varepsilon_0 = 1$,则 $-1 \notin U(a; \varepsilon_0)$,即在 $U(a; \varepsilon_0)$ 之外有 $\{(-1)^n\}$ 中的所有奇数项. 所以 $\{(-1)^n\}$ 不以任何数 a 为极限,即 $\{(-1)^n\}$ 为发散数列.

例 2.1.12. 证明: $\{\frac{1}{n}\}$ 的极限不是 1.

证明

法一: 取 $\varepsilon = \frac{1}{2}$, 易得当 n > 2 时, $\frac{1}{n} \notin U(1; \varepsilon_0)$, 即在 $\frac{1}{n} \notin U(1; \varepsilon_0)$ 之外有 $\{\frac{1}{n}\}$ 的无限多项. 故 $\{\frac{1}{n}\}$ 的极限不是 1.

法二: 取 $\varepsilon = \frac{1}{2}$, $\forall N \in \mathbb{N}_+$, 取 $n_0 = \max\{2, N\}$, 都 $\exists n_0 > N$, 有 $\left|\frac{1}{n_0} - 1\right| = 1 - \frac{1}{n_0} > \frac{1}{2}$.

性质 2.1.1. 设 $\{a_n\}$ 为给定的数列, $\{b_n\}$ 为对 $\{a_n\}$ 增加、减少或改变有限项之后得到的数列. 则数列 $\{b_n\}$ 与 $\{a_n\}$ 同时收敛或发散,且在收敛时两者的极限相等.

2.1.3 无穷小量与无穷大量

定义 2.1.4 (无穷小). 若 $\lim_{n\to\infty} a_n = 0$,则称 $\{a_n\}$ 为无穷小数列.

定理 2.1.1. 数列 $\{a_n\}$ 收敛于 a 的充要条件是: $\{a_n - a\}$ 为无穷小数列.

2.1.3 无穷小量与无穷大量

定义 2.1.4 (无穷小). 若 $\lim_{n\to\infty} a_n = 0$,则称 $\{a_n\}$ 为无穷小数列.

定理 2.1.1. 数列 $\{a_n\}$ 收敛于 a 的充要条件是: $\{a_n-a\}$ 为无穷小数列.

证明

性质 2.1.2. 设 $\{a_n\}$ 为有界数列, $\{b_n\}$ 为无穷小量,则 $\{a_nb_n\}$ 是无穷小量.

证明

因为 $\{a_n\}$ 有界,则 $\exists M > 0$,对 $\forall n$,有 $|a_n| \leq M$.对 $\varepsilon > 0$,由 $\lim_{n \to \infty} b_n = 0$ 得 $\exists N$,当 n > N 时, $|b_n - 0| = |b_n| < \frac{\varepsilon}{M}$,从而当 n > N 时,有

$$|a_n b_n - 0| = |a_n||b_n| \le M|b_n| < M \frac{\varepsilon}{M} = \varepsilon.$$

故 $\lim_{n\to\infty} a_n b_n = 0$.

定义 2.1.5 (发散于无穷大). 若数列 $\{a_n\}$ 满足: 对任意正数 M>0,总存在正整数 N,使得当 n>N 时,有

$$|a_n| > M$$
,

则称数列 $\{a_n\}$ 发散于无穷大,并记作

$$\lim_{n\to\infty}a_n=\infty,\ \vec{\boxtimes}\ a_n\to\infty.$$

定义 2.1.5 (发散于无穷大). 若数列 $\{a_n\}$ 满足: 对任意正数 M>0,总存在正整数 N,使得当 n>N 时,有

$$|a_n| > M$$
,

则称数列 $\{a_n\}$ 发散于无穷大,并记作

注 2.1.8. 若 $\lim_{n\to\infty} a_n = \infty$, 则称 $\{a_n\}$ 是一个无穷大数列或无穷大量.

定义 2.1.6 (发散于正 (负) 无穷大). 若数列 $\{a_n\}$ 满足: 对任意正数 M > 0,存在正整数 N,使 得当 n > N 时,有

$$a_n > M \quad (a_n < -M),$$

则称数列 $\{a_n\}$ 发散于正 (\mathfrak{g}) 无穷大,并记作

$$\lim_{n \to \infty} a_n = +\infty, \ \ \, \ \, \ \, \ \, \text{in} \ \, a_n \to +\infty \qquad \left(\lim_{n \to \infty} a_n = -\infty, \ \ \, \ \, \text{in} \ \, a_n \to -\infty\right).$$

定义 2.1.6 (发散于正 (负) 无穷大). 若数列 $\{a_n\}$ 满足: 对任意正数 M > 0,存在正整数 N,使得当 n > N 时,有

$$a_n > M \quad (a_n < -M),$$

则称数列 $\{a_n\}$ 发散于正 (\mathfrak{g}) 无穷大,并记作

$$\lim_{n \to \infty} a_n = +\infty, \ \ \, \ \, \ \, \ \, \text{in} \ \, a_n \to +\infty \qquad \left(\lim_{n \to \infty} a_n = -\infty, \ \ \, \ \, \text{in} \ \, a_n \to -\infty\right).$$

例 2.1.13. 例如数列 $\{n\}$, $\{(-1)^n \frac{n^2+1}{n}\}$ 均是无穷大量;而数列 $\{[1+(-1)^n]n\}$ 虽然是无界数列,但却不是无穷大量.

定义 2.1.6 (发散于正 (负) 无穷大). 若数列 $\{a_n\}$ 满足: 对任意正数 M > 0,存在正整数 N,使得当 n > N 时,有

$$a_n > M \quad (a_n < -M),$$

则称数列 $\{a_n\}$ 发散于正 (\mathfrak{g}) 无穷大,并记作

$$\lim_{n \to \infty} a_n = +\infty, \ \ \, \ \, \ \, \ \, \text{in} \ \, a_n \to +\infty \qquad \left(\lim_{n \to \infty} a_n = -\infty, \ \ \, \ \, \text{in} \ \, a_n \to -\infty\right).$$

例 2.1.13. 例如数列 $\{n\}$, $\{(-1)^n \frac{n^2+1}{n}\}$ 均是无穷大量;而数列 $\{[1+(-1)^n]n\}$ 虽然是无界数列,但却不是无穷大量.

注 2.1.9. 无穷大数列是无界数列, 反之不然.

定义 2.1.6 (发散于正 (负) 无穷大). 若数列 $\{a_n\}$ 满足: 对任意正数 M > 0,存在正整数 N,使得当 n > N 时,有

$$a_n > M \quad (a_n < -M),$$

则称数列 $\{a_n\}$ 发散于正 (\mathfrak{g}) 无穷大,并记作

$$\lim_{n \to \infty} a_n = +\infty, \ \ \, \ \, \ \, \ \, \text{in} \ a_n \to +\infty \qquad \left(\lim_{n \to \infty} a_n = -\infty, \ \ \, \ \, \ \, \text{in} \ \, \right).$$

例 2.1.13. 例如数列 $\{n\}$, $\{(-1)^n \frac{n^2+1}{n}\}$ 均是无穷大量;而数列 $\{[1+(-1)^n]n\}$ 虽然是无界数列,但却不是无穷大量.

注 2.1.9. 无穷大数列是无界数列, 反之不然.

例 2.1.14. 设 $a_n \neq 0$,数列 $\{a_n\}$ 为无穷大量 $\Leftrightarrow \{\frac{1}{a_n}\}$ 为无穷小量.

性质 2.1.3. 下面几种陈述等价:

- $|(1) \forall \varepsilon > 0$, $\exists N$, 当 n > N 时, 有 $|a_n a| < \varepsilon$.
- $(3) \forall \varepsilon > 0$, $\exists N$, 当 n > N 时,有 $|a_n a| < M\varepsilon$,其中 M 为正常数.
- $(4) \forall \varepsilon > 0$, $\exists N$,当 n > N 时,有 $|a_n a| < \varepsilon^k$,其中 k 为正整数. 从而,以上几条都可以作为 $\lim_{n \to \infty} a_n = a$ 的定义和判别方法.

2.2 收敛数列的性质

2.2.1	唯一性	118
2.2.2	有界性	120
2.2.3	保号性	122
2.2.4	保不等式性	125
2.2.5	迫敛性	128
2.2.6	四则运算法则	130
2.2.7	唯一性	131
2.2.8	插图示例	132

2.2.1 唯一性

定理 2.2.1 (唯一性). 若数列 $\{a_n\}$ 收敛,则它只有一个极限.

2.2.1 唯一性

定理 2.2.1 (唯一性). 若数列 $\{a_n\}$ 收敛,则它只有一个极限.

证明

法一:设 a,b 都是 $\{a_n\}$ 的极限, $a \neq b$. 不妨设 a < b. 取 $\varepsilon = \frac{b-a}{4}$ (事实上, $0 < \varepsilon \leq \frac{b-a}{2}$). 则由 a 是 $\{a_n\}$ 的极限,得 $\exists N_1$,当 $n > N_1$ 时, $a_n \in U(a;\varepsilon)$. 同理,由 b 是 $\{a_n\}$ 的极限,得 $\exists N_2$,当 $n > N_2$ 时, $b_n \in U(b;\varepsilon)$. 取 $N = \max\{N_1, N_2\}$,则当 n > N 时, $a_n \in U(a;\varepsilon) \cap U(b;\varepsilon)$,但显然由 ε 的取法易得 $U(a;\varepsilon) \cap U(b;\varepsilon) = \emptyset$,矛盾. 故 a = b.

法二:设a,b都是 $\{a_n\}$ 的极限,则对 $\forall \varepsilon > 0$, $\exists N_1$,当 $n > N_1$ 时, $|a_n - a| < \frac{\varepsilon}{2}$. $\exists N_2$,当 $n > N_2$ 时, $|a_n - b| < \frac{\varepsilon}{2}$. 取 $n_0 > \max\{N_1, N_2\}$,则

$$|a-b| = |a-a_{n_0}+a_{n_0}-b| \le |a_{n_0}-a|+|a_{n_0}-b| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

故 a = b (根据例子1.1.2的结论).

法三(书上做法): 设 a 是 $\{a_n\}$ 的一个极限. 我们证明: 对任何数 $b \neq a$,b 不是 $\{a_n\}$ 的极限. 事实上,若取 $\varepsilon_0 = \frac{1}{2}|b-a|$,则按定义2.1.3,在 $U(a;\varepsilon_0)$ 之外至多只有 $\{a_n\}$ 中有限个项,从而在 $U(b;\varepsilon_0)$ 内至多只有 $\{a_n\}$ 中有限个项,所以 b 不是 $\{a_n\}$ 的极限. 这就证明了收敛数列只能有一个极限.

2.2.2 有界性

定理 2.2.2 (有界性). 若数列 $\{a_n\}$ 收敛,则 $\{a_n\}$ 为有界数列,即存在正数 M,使得对一切正整数 n,都有

$$|a_n| \leq M$$
.

2.2.2 有界性

定理 2.2.2 (有界性). 若数列 $\{a_n\}$ 收敛,则 $\{a_n\}$ 为有界数列,即存在正数 M,使得对一切正整数 n,都有

$$|a_n| \leq M$$
.

证明

法一:设 $\lim_{n\to\infty} a_n = a$. 取 $\varepsilon = 1$,存在正数 N,对一切 n > N,有 $|a_n - a| < 1$.

注意到 $|a_n| - |a| \le |a_n - a| < 1$,即有 $|a_n| < |a| + 1$.取 $M = \max\{|a_1|, |a_2|, \cdots, |a_N|, |a| + 1\},$

则对一切正整数 n, 都有 $|a_n| \leq M$.

法二 (书上做法): 设 $\lim_{n\to\infty} a_n = a$. 取 $\varepsilon = 1$, 存在正数 N, 对一切 n > N, 有

$$|a_n - a| < 1, \ \exists \exists a - 1 < a_n < a + 1.$$

记

$$M = \max\{|a_1|, |a_2|, \cdots, |a_N|, |a-1|, |a+1|\},$$

则对一切正整数 n, 都有 $|a_n| \leq M$.

则对一切正整数 n, 都有 $|a_n| \leq M$.

法二 (书上做法): 设 $\lim_{n\to\infty} a_n = a$. 取 $\varepsilon = 1$, 存在正数 N, 对一切 n > N, 有

$$|a_n - a| < 1, \ \exists \exists a - 1 < a_n < a + 1.$$

记

$$M = \max\{|a_1|, |a_2|, \cdots, |a_N|, |a-1|, |a+1|\},\$$

则对一切正整数 n, 都有 $|a_n| \leq M$.

注 2.2.1. 有界性只是数列收敛的必要条件,而非充分条件. 例如数列 $\{(-1)^n\}$ 有界,但它并不收敛.

定理 2.2.3 (保号性). 若 $\lim_{n\to\infty} a_n = a > 0$ (或 < 0),则对任何 $a' \in (0,a)$ (或 $a' \in (a,0)$),存在正数 N,使得当 n > N 时,有 $a_n > a'$ (或 $a_n < a'$).

定理 2.2.3 (保号性). 若 $\lim_{n\to\infty} a_n = a > 0$ (或 < 0),则对任何 $a' \in (0,a)$ (或 $a' \in (a,0)$), 存在正数 N,使得当 n > N 时,有 $a_n > a'$ (或 $a_n < a'$).

证明

设 a > 0. 取 $\varepsilon = a - a'(>0)$,则存在正数 N,使得当 n > N 时,有 $|a_n - a| < \varepsilon$,即 $a' = a - \varepsilon < a_n < a + \varepsilon$,这就证得结果. 对于 a < 0 的情形,也可类似地证明.

定理 2.2.3 (保号性). 若 $\lim_{n\to\infty} a_n = a > 0$ (或 < 0),则对任何 $a' \in (0,a)$ (或 $a' \in (a,0)$),存在正数 N,使得当 n > N 时,有 $a_n > a'$ (或 $a_n < a'$).

证明

设 a > 0. 取 $\varepsilon = a - a'(>0)$,则存在正数 N,使得当 n > N 时,有 $|a_n - a| < \varepsilon$,即 $a' = a - \varepsilon < a_n < a + \varepsilon$,这就证得结果. 对于 a < 0 的情形,也可类似地证明.

注 2.2.2. 在应用保号性时, 经常取 $a' = \frac{a}{2}$.

定理 2.2.3 (保号性). 若 $\lim_{n\to\infty} a_n = a > 0$ (或 < 0),则对任何 $a' \in (0,a)$ (或 $a' \in (a,0)$),存在正数 N,使得当 n > N 时,有 $a_n > a'$ (或 $a_n < a'$).

证明

设 a > 0. 取 $\varepsilon = a - a'(>0)$,则存在正数 N,使得当 n > N 时,有 $|a_n - a| < \varepsilon$,即 $a' = a - \varepsilon < a_n < a + \varepsilon$,这就证得结果. 对于 a < 0 的情形,也可类似地证明.

注 2.2.2. 在应用保号性时, 经常取 $a' = \frac{a}{2}$.

推论 2.2.1. 设 $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} b_n = b$, a < b, 则存在 N, 使得当 n > N 时,有 $a_n < b_n$.

推论 2.2.1. 设 $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} b_n = b$, a < b, 则存在 N, 使得当 n > N 时,有 $a_n < b_n$.

证明

取 a < c < b, 所以由 $\lim_{n\to\infty} a_n = a$ 和保号性, 存在 N_1 , 当 $n > N_1$ 时, 有

$$a_n < c$$
.

同理,由 $\lim_{n\to\infty}b_n=b$ 和保号性,存在 N_2 ,当 $n>N_2$ 时,有

$$b_n > c$$
.

取 $N = \max\{N_1, N_2\}$, 那么当 n > N 时, 有

$$a_n < b_n$$
.

结论得证.

注 2.2.3. 在上述证明中可取 $c = \frac{a+b}{2}$.

注 2.2.3. 在上述证明中可取 $c = \frac{a+b}{2}$.

例 2.2.1. 求证: $\lim_{n\to\infty} \frac{1}{\sqrt[n]{n!}} = 0$.

注 2.2.3. 在上述证明中可取 $c = \frac{a+b}{2}$.

例 2.2.1. 求证: $\lim_{n\to\infty} \frac{1}{\sqrt[n]{n!}} = 0$.

证明

2.2.4 保不等式性

定理 2.2.4 (保不等式性). 设 $\{a_n\}$ 与 $\{b_n\}$ 均为收敛数列. 若存在正数 N_0 ,使得当 $n > N_0$ 时,有 $a_n \leq b_n$,则 $\lim_{n\to\infty} a_n \leq \lim_{n\to\infty} b_n$.

2.2.4 保不等式性

定理 2.2.4 (保不等式性). 设 $\{a_n\}$ 与 $\{b_n\}$ 均为收敛数列. 若存在正数 N_0 ,使得当 $n > N_0$ 时,有 $a_n \leq b_n$,则 $\lim_{n\to\infty} a_n \leq \lim_{n\to\infty} b_n$.

证明

证设 $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} b_n = b$. 任给 $\varepsilon > 0$,分别存在正数 N_1 与 N_2 ,使得当 $n > N_1$ 时,有

$$a - \varepsilon < a_n$$

当 $n > N_2$ 时,有

$$b_n < b + \varepsilon$$

取 $N = \max\{N_0, N_1, N_2\}$, 则当 n > N 时,按假设及不等式(1)和(2),有

$$a - \varepsilon < a_n \le b_n < b + \varepsilon$$

由此得到 $a < b + 2\varepsilon$. 由 ε 的任意性推得 $a \le b$ (参见第一章 §1 例 2), 即 $\lim_{n \to \infty} a_n \le \lim_{n \to \infty} b_n$.

取 $N = \max\{N_0, N_1, N_2\}$,则当 n > N 时,按假设及不等式(1)和(2),有

$$a - \varepsilon < a_n \le b_n < b + \varepsilon$$

由此得到 $a < b + 2\varepsilon$. 由 ε 的任意性推得 $a \le b$ (参见第一章 §1 例 2), 即 $\lim_{n \to \infty} a_n \le \lim_{n \to \infty} b_n$.

注 2.2.4. 若定理2.2.4中条件 $a_n \leq b_n$ 换成 $a_n < b_n$,则结论仍为 $\lim_{n \to \infty} a_n \leq \lim_{n \to \infty} b_n$ (而不是 $\lim_{n \to \infty} a_n < \lim_{n \to \infty} b_n$). 例: $a_n = 0, b_n = \frac{1}{n}$.

取 $N = \max\{N_0, N_1, N_2\}$, 则当 n > N 时, 按假设及不等式(1)和(2), 有

$$a - \varepsilon < a_n \le b_n < b + \varepsilon$$

由此得到 $a < b + 2\varepsilon$. 由 ε 的任意性推得 $a \le b$ (参见第一章 §1 例 2), 即 $\lim_{n \to \infty} a_n \le \lim_{n \to \infty} b_n$.

注 2.2.4. 若定理2.2.4中条件 $a_n \leq b_n$ 换成 $a_n < b_n$,则结论仍为 $\lim_{n\to\infty} a_n \leq \lim_{n\to\infty} b_n$ (而不是 $\lim_{n\to\infty} a_n < \lim_{n\to\infty} b_n$). 例: $a_n = 0, b_n = \frac{1}{n}$.

例 2.2.2. 设
$$a_n \ge 0 (n = 1, 2, \cdots)$$
,证明:若 $\lim_{n \to \infty} a_n = a$,则
$$\lim_{n \to \infty} \sqrt{a_n} = \sqrt{a}.$$

取 $N = \max\{N_0, N_1, N_2\}$, 则当 n > N 时, 按假设及不等式(1)和(2), 有

$$a - \varepsilon < a_n \le b_n < b + \varepsilon$$

由此得到 $a < b + 2\varepsilon$. 由 ε 的任意性推得 $a \le b$ (参见第一章 §1 例 2), 即 $\lim_{n \to \infty} a_n \le \lim_{n \to \infty} b_n$.

注 2.2.4. 若定理2.2.4中条件 $a_n \leq b_n$ 换成 $a_n < b_n$,则结论仍为 $\lim_{n\to\infty} a_n \leq \lim_{n\to\infty} b_n$ (而不是 $\lim_{n\to\infty} a_n < \lim_{n\to\infty} b_n$). 例: $a_n = 0, b_n = \frac{1}{n}$.

例 2.2.2. 设
$$a_n \ge 0 (n = 1, 2, \cdots)$$
,证明:若 $\lim_{n \to \infty} a_n = a$,则
$$\lim_{n \to \infty} \sqrt{a_n} = \sqrt{a}.$$

证明

content

2.2.5 追敛性

定理 2.2.5 (迫敛性). 设收敛数列 $\{a_n\}$, $\{b_n\}$ 都以 a 为极限, 数列 $\{c_n\}$ 满足: 存在正数 N_0 , 当 $n > N_0$ 时, 有

$$a_n \le c_n \le b_n$$

则数列 $\{c_n\}$ 收敛,且 $\lim_{n\to\infty} c_n = a$.

2.2.5 追敛性

定理 2.2.5 (迫敛性). 设收敛数列 $\{a_n\}$, $\{b_n\}$ 都以 a 为极限, 数列 $\{c_n\}$ 满足: 存在正数 N_0 , 当 $n > N_0$ 时, 有

$$a_n \le c_n \le b_n$$

则数列 $\{c_n\}$ 收敛,且 $\lim_{n\to\infty} c_n = a$.

证明

证任给 $\varepsilon > 0$,由 $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = a$,分别存在正数 N_1 与 N_2 ,使得当 $n > N_1$ 时,有

$$a - \varepsilon < a_n$$

$$b_n < a + \varepsilon$$

取 $N = \max\{N_0, N_1, N_2\}$, 则当 n > N 时,不等式 (4)、(5)、(6) 同时成立,即有

$$a - \varepsilon < a_n \le c_n \le b_n < a + \varepsilon$$
.

从而有 $|c_n - a| < \varepsilon$, 这就证得所要的结果.

2.2.6 四则运算法则

定理 2.2.6 (四则运算法则). 若 $\{a_n\}$ 与 $\{b_n\}$ 为收敛数列,则 $\{a_n+b_n\}$, $\{a_n-b_n\}$, $\{a_n\cdot b_n\}$ 也都是收敛数列,且有

$$\lim_{n \to \infty} (a_n \pm b_n) = \lim_{n \to \infty} a_n \pm \lim_{n \to \infty} b_n$$
$$\lim_{n \to \infty} (a_n \cdot b_n) = \lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} b_n$$

特别当 b_n 为常数c 时,有

$$\lim_{n \to \infty} (a_n + c) = \lim_{n \to \infty} a_n + c, \lim_{n \to \infty} ca_n = c \lim_{n \to \infty} a_n$$

2.2.7 唯一性

定理 2.2.7. 若再假设 $b_n \neq 0$ 及 $\lim_{n\to\infty} b_n \neq 0$,则 $\left\{\frac{a_n}{b_n}\right\}$ 也是收敛数列,且有

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} a_n / \lim_{n \to \infty} b_n$$

2.2.8 插图示例

插入一个图形并居中放置,如图??.
两个图左右并排放置,共用一个标题,如图??.