Home Work 2

Daniel Ginsburg

We must prove that $f(n) = n^2 + 3n^3 \in (n^3)$

Let $g(n) = n^3$. First we prove that f(n) = O(g(n)). Thus for some c and all $n \ge n_0$, $f(n) \le cg(n)$. If we choose c = 4 and $n_0 = 1$ then

$$g(n) = 4n^3 = 3n^3 + 1n^3 \ge 3n^3 + 1n^2 = f(n)$$
 (1)

Essentially this equation boils down to $n^3 \ge n^2$, which means $n \ge 1$ (if n is positive). Thus we see f(n) = O(g(n)).

Now we prove that $f(n) = \Omega(g(n))$. This means $f(n) \ge cg(n)$ for some c, and for all n such that $n \ge n_0$. This is true for $n_0 = 1$ and c = 1. we know that as long as n is positive then

$$3*(1n^3) \ge 1n^3$$

 $3n^3 + n^2 \ge 1n^3$ (because n is positive)
 $f(n) \ge cg(n)$

Prove 2:

Let $g(n) = 2n^{10}$. We prove that $2n^{n+10} = O(g(n))$. Thus for some c and all $n \ge n_0$, $f(n) \le cg(n)$. If we rewrite 2^{n+10} as $2^n + 2^{10}$ then the equation holds true for $c = 2^{10}$ and $n_0 = 1$. This is because

$$f(n) = 2^{n+10} = 2^n * 2^{10} \le 2^{10} * 2^n$$

 $f(n) \le cg(n) \text{ (every number is } \le \text{ than itself)}$