Extending LaTeX's color facilities: the \mathbf{xcolor} package

Dr. Uwe Kern

v2.00 (2004/07/04) *

Abstract

xcolor provides easy driver-independent access to several kinds of colors, tints, shades, tones, and mixes of arbitrary colors by means of color expressions like \color{red!50!green!20!blue}. It allows to select a document-wide target color model and offers tools for automatic color schemes, conversion between nine color models, alternating table row colors, color blending and masking, and color separation.

Contents

1	Inti	roducti	ion
	1.1	Purpo	se of this package
	1.2	Color	tints, shades, tones, and complements
	1.3	Color	models
2	The	user User	Interface
	2.1	Prepar	ration
		2.1.1	Package installation
		2.1.2	Package options
		2.1.3	Executing additional initialisation commands
	2.2	Color	models
		2.2.1	Supported color models
		2.2.2	Changing the target color model within a document
	2.3	Argun	nents and terminology
		2.3.1	Additional remarks and restrictions on arguments
		2.3.2	Meaning of standard color expressions
		2.3.3	Meaning of extended color expressions
	2.4	Predef	fined colors

^{*}This package can be downloaded from the CTAN mirrors: /macros/latex/contrib/xcolor/. There is also an xcolor homepage: www.ukern.de/tex/xcolor.html. Please send error reports and suggestions for improvements to the author: xcolor@ukern.de.

	2.4.1 Colors that are always available	14
		14
2.5	Color definition	15
	2.5.1 Ordinary and named colors	15
		17
		17
		18
2.6		18
	2.6.1 Using the current color	19
2.7		22
2.8		22
2.9		23
		24
		25
		25
		26
2.10		26
	V -	28
		28
		29
3.1 3.2	Color models supported by drivers	30 30 30 31
0.0	It remark on accuracy	91
The	Formulas	31
4.1	Color mixing	31
4.2	Conversion between integer and real models	33
	4.2.1 Real to integer conversion	33
	4.2.2 Integer to real conversion	35
4.3	Color conversion and complements	36
	4.3.1 The rgb model	36
	4.3.2 The cmy model	38
	4.3.3 The cmyk model	39
	4.3.4 The hsb model	40
	4.3.5 The gray model	42
	4.3.6 The RGB model	42
	4.3.7 The HTML model	43
	4.3.8 The HSB model	43
	4.3.9 The Gray model	43
efere	nces	43
	2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 Tech 3.1 3.2 3.3 The 4.1 4.2	2.4.2 Additional sets of colors 2.5.1 Color definition 2.5.1.1 Ordinary and named colors 2.5.2 Color definition in xcolor 2.5.3 Defining sets of colors 2.5.4 Global color definitions 2.6 Color application 2.6.1 Using the current color 2.7 Color blending 2.8 Color masks and separation 2.9 Color series 2.9.1 Definition of a color series 2.9.2 Initialisation of a color series 2.9.3 Application of a color series 2.9.4 Differences between colors and color series 2.10 Border colors for hyperlinks 2.11 Color in tables 2.12 Color information 2.13 Color conversion Technical Supplement 3.1 Color models supported by drivers 3.2 Behind the scenes: internal color representation 3.3 A remark on accuracy The Formulas 4.1 Color mixing 4.2 Conversion between integer and real models 4.2.1 Real to integer conversion 4.2.2 Integer to real conversion 4.3.3 The grap model 4.3.4 The rgb model 4.3.5 The gray model 4.3.6 The RGB model 4.3.7 The HTML model 4.3.8 The HSB model

Know	n Issues	4
Histor	у	4
Index		4
\mathbf{List}	of Tables	
1	Package loading order	
2	Package options	
3	Supported color models	
4	Arguments and terminology	
5 6	Drivers and color models	
7	Driver-dependent internal color representation	
8	Color conversion pairs	
List	of Figures	
1	Target color model — Example	
2	$Standard\ color\ expressions Example \ldots \ldots \ldots \ldots$	
3	Standard color expressions — Box example	
4	Colors defined by the dvipsnames option	
5	Colors defined by the svgnames option	
6	Color example: MyGreen	
7	Color example: MyGreen-cmy	
8	Color example: MyGreen-rgb	
9	Color example: MyGreen-hsb	
10	Color example: MyGreen-gray	
11 12	Current color — Example	
13	Color masking — Example	
19		

1 Introduction

1.1 Purpose of this package

The color package provides a powerful tool for handling colors within (pdf)IATEX in a consistent and driver-independent way, supporting several color models (slightly less driver-independent).

Nevertheless, it is sometimes a bit clumsy to use, especially in cases where slight color variations, color mixes or color conversions are involved: this usually implies the usage of another program that calculates the necessary parameters, which are then copied into a \definecolor command in LATEX. Quite often, also a pocket calculator is involved in the treatment of issues like the following:

- My company has defined a corporate color, and the printing office tells me how expensive it is to use more than two colors in our new brochure, whereas all kinds of tints (e.g. a 75% version) of our color can be used at no extra cost. But how to access these color variations in LATEX?
- My friend uses a nice color which I would like to apply in my own documents; unfortunately, it is defined in the **hsb** model which is not supported in my favorite application pdfIAT_FX. What to do now?
- How does a mixture of 40% green and 60% yellow look like? (Answer: 40% + 60% = —)
- And how does its complementary color look like? (Answer:
- Now I want to mix three parts of the last color with two parts of its complement and one part of red. How does that look?
 (Answer: 3× +2× +1× = =)
- My printing office wants all color definitions in my document to be transformed into the **cmyk** model. How can I do the calculations efficiently?
- I have a table with 50 rows. How can I get alternating colors for entire rows without copying 50 \rowcolor commands?

These are some of the issues solved by the xcolor package.

1.2 Color tints, shades, tones, and complements

According to [11] we define the terms

- tint: a color with white added,
- \bullet $\,$ shade: a color with $\it black$ added,
- tone: a color with gray added.

These are special cases of a general function $\min(C, C', p)$ which constructs a new color, consisting of p parts of color C and 1-p parts of color C', where $0 \le p \le 1$. Thus, we set

$$tint(C, p) := mix(C, white, p)$$
 (1)

$$\operatorname{shade}(C, p) := \min(C, \operatorname{black}, p) \tag{2}$$

$$tone(C, p) := mix(C, gray, p)$$
(3)

where white, black, and gray are model-specific constants, see table 7 on page 34. Further we define the term

• complement: a color C^* that yields white if superposed with the original color C.

See section 4.3 on page 36 for details.

1.3 Color models

A color model is a tool to describe or represent a certain set of colors in a way that is suitable for the desired target device, e.g. a screen or a printer. There are proprietary models (like Pantone) that provide finite sets of colors, where the user has to choose from without caring about parametrisations; on the other hand, there are parameter-driven models like **gray**, **rgb**, and **cmyk**, that aim to represent large finite or even (theoretically) infinite sets of colors, built on very small subsets of base colors and rules, how to construct other colors from these base colors. For example, a large range of colors can be constructed by linear combinations of the base colors red, green, and blue.

2 The User Interface

2.1 Preparation

2.1.1 Package installation

First of all, put the file xcolor.sty to some place where (pdf)LATEX finds it. Then simply use xcolor (instead of color) in your document. Thus, the general command is \usepackage[\langle options \rangle] \{ xcolor \} in the document preamble. Table 1 on page 7 shows what has to be taken into account with respect to the package loading order.

2.1.2 Package options

In general, there are several types of options:

• options that determine the color driver as explained in [2] and [3] (currently: dvips, xdvi, dvipdf, dvipdfm, pdftex, dvipsone, dviwindo, emtex, dviwin, oztex, textures, pctexps, pctexwin, pctexhp, pctex32, truetex, tcidvi, vtex),

- options that determine the target color model¹ (natural, rgb, cmy, cmyk, hsb, gray, RGB, HTML, HSB, Gray) or disable colored output (monochrome),
- options that control whether certain sets of predefined colors are being loaded (dvipsnames, svgnames),
- options that determine which other packages are to be loaded (pst², table) or supported (hyperref),
- options that determine the behaviour of other commands (showerrors, hideerrors),
- obsolete options (override, usenames, nodvipsnames).

\GetGinDriver \GinDriver

All available package options (except driver selection and obsolete options) are listed in table 2 on the following page. In order to facilitate the co-operation with the hyperref package, there is a command \GetGinDriver³ that grabs the driver actually used and puts it into the command \GinDriver. The latter can then be used within hyperref (or other packages), see the code example on page 8. If there is no corresponding hyperref option, hypertex will be taken as default.

Warning: there is a substantial difference between xcolor and color regarding how the dvips option is being handled. The color package implicitly invokes the dvipsnames option, whenever one of the dvips, oztex, xdvi drivers is selected. This makes documents less portable, since whenever one of these colors is used without explicit dvipsnames option, other drivers like pdftex will issue error messages because of unknown colors. Therefore, xcolor always requires an explicit dvipsnames option to use these names — which then works for all drivers.

2.1.3 Executing additional initialisation commands

\xcolorcmd

Here is a simple interface to pass commands that should be executed at the end of the xcolor package (immediately before the initialising \color{black} is executed). Just say $\def\xcolorcmd{\langle commands \rangle}$ at some point before xcolor is loaded.

Example: assuming that a.tex is a complete LATEX document, the command latex \def\xcolorcmd{\colorlet{black}{red}}\input{a} at the console generates a file a.dvi with all occurences of black being replaced by red, without the necessity to change the source file itself.

2.2 Color models

2.2.1 Supported color models

The list of supported color models is given in table 3 on page 8. We emphasize that this color support is independent of the chosen driver.

¹Section 2.2.2 on page 8 explains how this setting can be overridden at any point in a document

ment. 2 This option will soon become obsolete, since recent pstricks.sty versions do load xcolor, whereas pstcol is no longer needed.

³This command is executed automatically if the package option hyperref is used.

Table 1: Package loading order

Action/Package	color	pstcol	colortbl	hyperref	
load before xcolor	no	${\rm allowed}^1$	allowed	allowed	
load with xcolor option		\mathtt{pst}^1	table	_	
load after xcolor	no	no	allowed	allowed	
¹ not recommended, better use recent pstricks.sty					

Table 2: Package options

Option	Description
natural	(Default.) Keep all colors in their model, except RGB (converted
	to rgb), HSB (converted to hsb), and Gray (converted to gray).
rgb	Convert all colors to the rgb model.
cmy	Convert all colors to the cmy model.
cmyk	Convert all colors to the cmyk model.
hsb	Convert all colors to the hsb model.
gray	Convert all colors to the gray model. Especially useful to simulate how a black & white printer will output the document.
RGB	Convert all colors to the RGB model (and afterwards to rgb).
HTML	Convert all colors to the $HTML$ model (and afterwards to rgb).
HSB	Convert all colors to the HSB model (and afterwards to hsb).
Gray	Convert all colors to the Gray model (and afterwards to gray).
pst	Load the pstcol package, in order to use 'normal' color definitions within pstricks macros (see footnote 2 on the previous page).
table	Load the colortbl package, in order to use the tools for coloring rows, columns, and cells within tables.
hyperref	Support the hyperref package in terms of color expressions by defining additional keys (cf. section 2.10 on page 26).
dvipsnames	Load a set of predefined colors as shown in figure 4 on page 15.
svgnames	Load a set of predefined colors as shown in figure 5 on page 16.
showerrors	(Default.) Display an error message if an undefined color is being
	used (same behaviour as in the original color package).
hideerrors	Display only a warning if an undefined color is being used, and replace this color by $black$.

Table 3: Supported color models

Name	Base colors/notions	Parameter range	Default			
rgb	red, green, blue	$[0,1]^3$				
cmy	$cyan,\ magenta,\ yellow$	$[0,1]^3$				
cmyk	cyan, magenta, yellow, black	$[0,1]^4$				
hsb	$hue,\ saturation,\ brightness$	$[0,1]^3$				
gray	gray	[0,1]				
RGB	Red, Green, Blue	$\{0,1,\ldots,L\}^3$	L = 255			
HTML	RRGGBB	$\{000000, \dots, FFFFFF\}$				
HSB	Hue, Saturation, Brightness	$\{0,1,\ldots,M\}^3$	M = 240			
Gray	Gray	$\{0,1,\ldots,N\}$	N = 15			
L, M, N are positive integers						

'Color model support' also means that it is possible to specify colors directly with their parameters, e.g. by saying \textcolor[cmy]{0.7,0.5,0.3}{foo} (foo) or \textcolor[HTML] {AFFE90}{foo} (foo). It is noteworthy that the **HTML** model accepts any combination of the characters 0-9, A-F, a-f, as long as the string has a length of exactly 6 characters. However, outputs of conversions to HTML will always consist of numbers and *uppercase* letters.

\adjustUCRBG

There is a special command to fine-tune the mechanisms of undercolor-removal and black-generation during conversion to the **cmyk** model, see section 4.3.2 on page 38 for details.

\rangeRGB \rangeHSB \rangeGray For the integer models RGB, HSB, and Gray, the constants L, M, N of table 3 are defined via the commands $\left(L\right)$, $\left(L\right)$, $\left(L\right)$, and $\operatorname{def}\operatorname{rangeGray}\{\langle N\rangle\}$. Changes of these constants should be done before the xcolor package is loaded, e.g.:

```
\documentclass{article}
\def\rangeRGB{15}
\usepackage[dvips]{xcolor}
\GetGinDriver
\usepackage[\GinDriver]{hyperref}
\begin{document}
. . .
```

2.2.2Changing the target color model within a document

\selectcolormodel

 $\{\langle num\ model \rangle\}$

Sets the target model to $\langle num\ model \rangle$, where the latter is one of the model names

allowed as package option (i.e., natural, rgb, cmy, cmyk, hsb, gray, RGB, HTML, HSB, Gray), see figure 1 for an example. There are two possible hooks, where the conversion to the target model can take place:

\ifconvertcolorsD

• at color *definition* time⁴ (i.e., within \definecolor and friends); this is controlled by the switch \ifconvertcolorsD;

\ifconvertcolorsU

• at time of color usage (immediately before a color is displayed, therefore covering colors that have been defined in other models or that are being specified directly like \color[rgb]{.1,.2,.3}); this is controlled by the switch \ifconvertcolorsU.

Both switches are set to 'true' by selecting any of the models, except natural, which sets them to 'false'. This applies for selection via a package option as well as via \selectcolormodel. Why don't we simply convert all colors at time of usage? If many colors are involved, it can save some processing time when all conversions are already done during color definitions. Best performance can be achieved by saying \usepackage[rgb,...]{xcolor}\convertcolorsUfalse, which is actually the way how xcolor worked up to version 1.07.

Figure 1: Target color model — Example

2.3 Arguments and terminology

Before we describe xcolor's color-related commands in detail, we define several elements or identifiers that appear repeatedly within arguments of those commands. A general syntax overview is given in table 4 on the following page.

2.3.1 Additional remarks and restrictions on arguments

 $\langle empty
angle \ \langle minus
angle \ \langle plus
angle \ \langle int
angle \ \langle num
angle \ \langle dec
angle \ \langle div
angle$

Basic strings and numbers These arguments do not need much explanation. However, as far as numerical values are concerned, it is noteworthy that real numbers in (La)TEX are — as long as they are to be used in the context of lengths, dimensions, or skips — are restricted to a maximum absolute value < 16384. Certainly, in a chain of numerical calculations, this constraint has also to be obeyed

 $^{^4}$ This means that all newly defined colors will be first converted to the target model, then saved

Table 4: Arguments and terminology

Element	Replacement string						
$\langle empty \rangle$	\rightarrow empty string "						
$\langle minus \rangle$	\rightarrow non-empty string consisting of one or more minus sig	ns '-'					
$\langle plus \rangle$	\rightarrow non-empty string consisting of one or more plus signs '+'						
$\langle int \rangle$	\rightarrow integer number	(integer)					
$\langle num \rangle$	\rightarrow non-negative integer number	(number)					
$\langle dec \rangle$	\rightarrow real number	(decimal)					
$\langle div \rangle$	\rightarrow non-zero real number	$(\mathit{divisor})$					
$\langle pct \rangle$	\rightarrow real number from the interval [0, 100]	(percentage)					
$\langle name \rangle$	\rightarrow non-empty string consisting of letters and digits \rightarrow ' .'	$(explicit\ name) \ (implicit\ name)$					
$\langle core\ model \rangle$	\rightarrow 'rgb', 'cmy', 'cmyk', 'hsb', 'gray'	$(core\ models)$					
$\langle num \ model \rangle$	$\begin{array}{l} \rightarrow \langle core \ model \rangle \\ \rightarrow \text{`RGB'}, \text{`HTML'}, \text{`HSB'}, \text{`Gray'} \end{array}$	$(integer\ models)$					
$\langle model \rangle$	$ ightarrow \langle num \ model \rangle$ $ ightarrow$ 'named'	$(numerical\ models) \ (pseudo\ model)$					
$\langle spec \rangle$	\rightarrow comma-separated list of numerical values \rightarrow name of a 'named' color	(explicit specification) (implicit specification)					
$\langle type \rangle$	$\begin{array}{l} \rightarrow \langle \mathit{empty} \rangle \\ \rightarrow \text{`named'} \end{array}$						
$\langle expr \rangle$	$\rightarrow \langle prefix \rangle \langle name \rangle \langle mix \ expr \rangle \langle postfix \rangle \tag{8}$	tandard color expression)					
$\langle prefix \rangle$	$\begin{array}{l} \rightarrow \langle empty \rangle \\ \rightarrow \langle minus \rangle \end{array}$	$(complement\ indicator)$					
$\langle mix \ expr \rangle$	$\rightarrow !\langle pct \rangle_1 !\langle name \rangle_1 !\langle pct \rangle_2 !\langle name \rangle_2 !\dots !\langle pct \rangle_n !\langle name \rangle_n \\ \rightarrow !\langle pct \rangle_1 !\langle name \rangle_1 !\langle pct \rangle_2 !\langle name \rangle_2 !\dots !\langle pct \rangle_n$	(complete mix expr.) (incomplete mix expr.)					
$\langle postfix \rangle$		$(series\ step) \ (series\ access)$					
$\langle ext \ expr \rangle$	$ \rightarrow \langle core\ model \rangle, \langle div \rangle : \langle expr \rangle_1, \langle dec \rangle_1; \langle expr \rangle_2, \langle dec \rangle_2; \dots \\ \rightarrow \langle core\ model \rangle : \langle expr \rangle_1, \langle dec \rangle_1; \langle expr \rangle_2, \langle dec \rangle_2; \dots; \langle expr \rangle_2, \langle dec \rangle_2, \dots; \langle expr \rangle_2, \dots; \langle expr \rangle_2, \dots; \langle expr \rangle_2, \dots; \langle ex$						
$\langle color \rangle$		_					
Remarks:	Each \rightarrow denotes a possible replacement string for the element however, further restrictions may apply — depending the text for details. A string 'foo' is always to be understoon and k denote positive integers.	n the context. See main					

for every single interim result, which usually implies further range restrictions. Since xcolor makes extensive use of TEX's internal dimension registers for most types of calculations, this should be kept in mind whenever $\langle ext\ expr \rangle$ expressions are to be used.

(name) Color names A (name) denotes the declared name (or the name to be declared) of a color or a color series; it may be declared explicitly by one of the following commands: \definecolor, \providecolor, \colorlet, \definecolorset, \providecolorset, \definecolorseries. On the other hand, the reserved color name '.' is declared implicitly and denotes the current color. Actually, besides letters and digits, certain other characters do also work for \(name \) declarations, but the given restriction avoids misunderstandings and ensures compatibility with future extensions of xcolor.

Examples: 'red', 'MySpecialGreen1980', '.'.

 $\langle core\ model \rangle \ \langle num\ model \rangle \ \langle model \rangle$

Color models The differentiation between core models (rgb, cmy, cmyk, hsb, gray), integer models (RGB, HTML, HSB, Gray), and pseudo models (currently only 'named') has a simple reason: core models with their parameter ranges based on the unit interval [0, 1] are best suited for all kinds of calculations, whereas the purpose of the integer models is mainly to facilitate the input of parameters, followed by some transformation into one of the core models. Finally, the pseudo model 'named' has a special status, since it is 'calculation-averse': it is usually only possible to convert such a color into one of the other models, but not the other way round.

⟨spec⟩ Color specifications The ⟨spec⟩ argument — which specifies the parameters of a color — obviously depends on the underlying color model. We differentiate between explicit and implicit specification, the former referring to numerical parameters as explained in table 3 on page 8, the latter — ideally — referring to driver-provided names.

Examples: '.1,.2,.3', '0.56789', '89ABCD', 'ForestGreen'.

(type) The type argument This is used only in the context of color defining commands, see the description of \definecolor and friends.

 $\langle expr \rangle \ \langle prefix \rangle \ \langle mix \ expr \rangle \ \langle postfix \rangle$

Standard color expressions These expressions serve as a tool to easily specify a certain form of cascaded color mixing which is described in detail in section 2.3.2 on the following page. The $\langle prefix \rangle$ argument controls whether the color following thereafter or its complement will be relevant: an odd number of minus signs indicates that the color resulting from the remaining expression has to be converted into its complementary color. An incomplete mix expression is just an abbreviation for a complete mix expression with $\langle name \rangle_n = \text{white}$, in order to save some keystrokes in the case of tints. The $\langle postfix \rangle$ string is usually empty, but it offers some additional functionality in the case of a color series: the non-empty cases require that

- $\langle name \rangle$ denotes the name of a color series.
- $\langle mix \ expr \rangle$ is a *complete* mix expression.

Examples: 'red', '-red', '-red!50!green!12.345', 'red!50!green!20!blue', 'foo!!+', 'foo!![7]', 'foo!25!red!!+++', 'foo!25!red!70!green!![7]'.

(ext expr) Extended color expressions These expressions provide another method of color mixing, see section 2.3.3 on page 14 for details. The shorter form

$$\langle core\ model \rangle : \langle expr \rangle_1, \langle dec \rangle_1; \langle expr \rangle_2, \langle dec \rangle_2; \dots; \langle expr \rangle_k! \langle dec \rangle_k$$

is an abbreviation for the special (and probably most used) case

$$\langle core\ model \rangle$$
, $\langle div \rangle$: $\langle expr \rangle_1$, $\langle dec \rangle_1$; $\langle expr \rangle_2$, $\langle dec \rangle_2$; ...; $\langle expr \rangle_k$! $\langle dec \rangle_k$

with the following definition (requiring a non-zero sum of all $\langle dec \rangle_{\kappa}$ coefficients):

$$\langle div \rangle := \langle dec \rangle_1 + \langle dec \rangle_2 + \dots + \langle dec \rangle_k \neq 0.$$

Examples: 'rgb:red,1', 'cmyk:red,1;-green!25!blue!60,11.25;blue,-2'.

 $\langle color \rangle$ Colors Finally, $\langle color \rangle$ is the 'umbrella' argument, covering the different concepts of specifying colors. This means, whenever there is a $\langle color \rangle$ argument, the full range of names and expressions, as explained above, may be used.

2.3.2 Meaning of standard color expressions

We explain now how an expression

$$\langle prefix \rangle \langle name \rangle ! \langle pct \rangle_1 ! \langle name \rangle_1 ! \langle pct \rangle_2 ! \dots ! \langle pct \rangle_n ! \langle name \rangle_n \langle postfix \rangle$$

is being interpreted and processed:

- 1. First of all, the model and color parameters of $\langle name \rangle$ are extracted to define a temporary color $\langle temp \rangle$. If $\langle postfix \rangle$ has the form '!! [$\langle num \rangle$]', then $\langle temp \rangle$ will be the corresponding (direct-accessed) color $\langle num \rangle$ from the series $\langle name \rangle$.
- 2. Then a color mix, consisting of $\langle pct \rangle_1 \%$ of color $\langle temp \rangle$ and $(100 \langle pct \rangle_1) \%$ of color $\langle name \rangle_1$ is computed; this is the new temporary color $\langle temp \rangle$.
- 3. The previous step is being repeated for all remaining parameter pairs $(\langle pct \rangle_2, \langle name \rangle_2), \ldots, (\langle pct \rangle_n, \langle name \rangle_n)$.
- 4. If $\langle prefix \rangle$ consists of an odd number of minus signs '-', then $\langle temp \rangle$ will be changed into its complementary color.

Figure 2: Standard color expressions — Example

Figure 3: Standard color expressions — Box example

```
\fboxrule6pt
\fcolorbox
\{red!70!green}\% outer frame
\{yellow!30!blue}\% outer background
\{\fcolorbox
\{-yellow!30!blue}\% inner frame
\{-red!70!green}\% inner background
\{Test\textcolor\{red!72.75\}\{Test}\color\{-green}\{Test\}\}
```

- 5. If $\langle postfix \rangle$ has the form '!!+', '!!++', '!!++', etc., a number of step commands (= number of '+' signs) are performed on the underlying color series $\langle name \rangle$. This has no consequences for the color $\langle temp \rangle$.
- 6. Now the color $\langle temp \rangle$ is being displayed or serves as an input for other operations, depending on the invoking command.

Note that in a typical step 2 expression $\langle temp \rangle ! \langle pct \rangle_{\nu} ! \langle name \rangle_{\nu}$, if $\langle pct \rangle_{\nu} = 100$ resp. $\langle pct \rangle_{\nu} = 0$, the color $\langle temp \rangle$ resp. $\langle name \rangle_{\nu}$ is used without further transformations. In the true mix case, $0 < \langle pct \rangle_{\nu} < 100$, the two involved colors may have been defined in different color models, e.g. $\langle pct \rangle_{\nu} < 100$, the two involved colors may have been defined in different color models, e.g. $\langle pct \rangle_{\nu} < 100$, the two involved colors may have been defined in different color models, e.g. $\langle pct \rangle_{\nu} < 100$, the two involved colors may have been defined in different color models, e.g. $\langle pct \rangle_{\nu} < 100$, the two involved colors may have been defined in different color models, e.g. $\langle pct \rangle_{\nu} < 100$, the two involved colors may have been defined in different color models, e.g. $\langle pct \rangle_{\nu} < 100$, the two involved colors may have been defined in different color models, e.g. $\langle pct \rangle_{\nu} < 100$, the two involved colors may have been defined in different color models, e.g. $\langle pct \rangle_{\nu} < 100$, the two involved colors may have been defined in different color models, e.g. $\langle pct \rangle_{\nu} < 100$, the two involved colors may have been defined in different color models, e.g. $\langle pct \rangle_{\nu} < 100$, the two involved colors may have been defined in different color models, e.g. $\langle pct \rangle_{\nu} < 100$, the two involved colors may have been defined in different color models, e.g. $\langle pct \rangle_{\nu} < 100$, the two involved colors may have been defined in different color models, e.g. $\langle pct \rangle_{\nu} < 100$, the two involved colors may have been defined in different color models, e.g. $\langle pct \rangle_{\nu} < 100$, the two involved colors may have been defined in different color models, e.g. $\langle pct \rangle_{\nu} < 100$, the two involved colors may have been defined in different color models, e.g. $\langle pct \rangle_{\nu} < 100$, the two involved colors may have been defined in different color models, e.g. $\langle pct \rangle_{\nu} < 100$, the two involved colors may have been defined in different color models, e.g. $\langle pct \rangle_{\nu} < 100$, the

Figures 2 to 3 on this page show some first applications of colors and expressions. More examples are given in figures 6 to 10 on pages 19–21. Over and above that, a large set of color examples can be found in [6].

⁵Exception: in order to avoid strange results, this rule is being reversed if $\langle temp \rangle$ origins from the **gray** model; in this case it is converted into the underlying model of $\langle name \rangle_{\nu}$.

2.3.3 Meaning of extended color expressions

An extended color expression

$$\langle core\ model \rangle : \langle expr \rangle_1$$
, $\langle dec \rangle_1$; $\langle expr \rangle_2$, $\langle dec \rangle_2$; ...; $\langle expr \rangle_k ! \langle dec \rangle_k$

mimes color mixing as painters do it: specify a list of colors, each with a $\langle dec \rangle$ factor attached to. For such an $\langle ext\ expr \rangle$, each standard color expression $\langle expr \rangle_{\kappa}$ will be converted to $\langle core\ model \rangle$, then the resulting vector is multiplied by $\langle dec \rangle_{\kappa}/\langle div \rangle$, where

$$\langle div \rangle := \langle dec \rangle_1 + \langle dec \rangle_2 + \dots + \langle dec \rangle_k.$$

Afterwards the sum of all of these vectors is calculated.

Example: mixing 4 parts of red, 2 parts of green, and 1 part of yellow, we get by saying \color{rgb:red,4;green,2;yellow,1}. Trying the same with -1 parts of yellow instead, we get. Note that this mechanism can also be used to display an individual color (expression) in a certain color model: \color{rgb:yellow,1} results in such a conversion. The general form

$$\langle core\ model \rangle$$
, $\langle div \rangle$: $\langle expr \rangle_1$, $\langle dec \rangle_1$; $\langle expr \rangle_2$, $\langle dec \rangle_2$; ...; $\langle expr \rangle_k$! $\langle dec \rangle_k$

does the same operation with the only difference that the divisor $\langle div \rangle$ is being specified instead of calculated. In the above example, we get a shaded version by saying \color{rgb,9:red,4;green,2;yellow,1}. Note that it is not forbidden to specify a $\langle div \rangle$ argument which is smaller than the sum of all $\langle dec \rangle_{\kappa}$, such that one or more of the final color specification parameters could be outside the interval [0,1]. However, the mapping of equation (6) takes care of such cases.

2.4 Predefined colors

2.4.1 Colors that are always available

Within xcolor.sty, the following color names are defined: red, green, blue, cyan, magenta, yellow, orange, violet, purple, brown, black, darkgray, gray, lightgray, white.

This base set of colors can be used without restrictions in all kinds of color expressions, as explained in section 2.3 on page 9.

2.4.2 Additional sets of colors

There are also sets of color names that may be loaded by xcolor via package options:

• dvipsnames loads a set of 68 **cmyk** colors as defined in the dvips driver. However, these colors may be used in all supported drivers. See figure 4 on the following page.

• sygnames loads a set of 147 **rgb** color names⁶ according to the SVG 1.1 specification [12]⁷, see figure 5 on the next page.

Note that — due to some overlap in the names — the option order is important, if you plan to use more than one of these sets. See also [6] for a systematic set of color and mix examples.

Apricot OliveGreen RubineRed | Emerald ■ ForestGreen Aquamarine OrangeRed Salmon ■ Bittersweet Fuchsia \blacksquare SeaGreen Orange Black Goldenrod Orchid Sepia ■ BlueGreen Grav Peach SkvBlue | ■ BlueViolet ☐ Green Yellow Periwinkle ■ SpringGreen Blue Green PineGreen Tan BrickRed JungleGreen Plum TealBlue Lavender Brown ProcessBlue 4 Pr Thistle \square LimeGreen Purple BurntOrange Turquoise ■ RawSienna CadetBlue ■ VioletRed Magenta CarnationPink Mahogany ■ RedOrange Violet Cerulean Maroon ■ RedViolet White ■ CornflowerBlue Melon Red ■ WildStrawberry Cvan MidnightBlue Rhodamine YellowGreen Dandelion Mulberry RoyalBlue ■ YellowOrange DarkOrchid NavyBlue RoyalPurple Yellow

Figure 4: Colors defined by the dvipsnames option

2.5 Color definition

2.5.1 Ordinary and named colors

In the color package there is a distinction between 'colors' (defined by the command \definecolor) and 'named colors' (defined by \DefineNamedColor, which is allowed only in the preamble). Whenever an ordinary color is being used in a document, it will be translated into a \special command that contains a — driver-specific — numerical description of the color which is written to the dvi file. On the other hand, named colors offer the opportunity to store numerical values at a central place whereas during usage, colors may be identified by their names, thus enabling post-processing if required by the output device. Unfortunately, this concept is supported in quite a different way by different drivers, which leads to a strange situation:

• the dvips driver, which supports the concept of named colors, restricts their usage to the universe defined in dvipsnam.def (as shown in figure 4), any

⁶In fact, these names represent 138 different colors.

⁷Actually, the cited specification lists only lowercase names, and the original definitions are given in **RGB** parameters, converted to **rgb** by the author.

Figure 5: Colors defined by the svgnames option

AliceBlue	DarkSlateGrey	LightPink	PaleVioletRed
AntiqueWhite	DarkTurquoise	LightSalmon	PapayaWhip
\blacksquare Aqua	DarkViolet	\blacksquare LightSeaGreen	PeachPuff
Aquamarine	\square DeepPink	LightSkyBlue	Peru
Azure	DeepSkyBlue	\blacksquare LightSlateGray	Pink
Beige	\square DimGray	\blacksquare LightSlateGrey	\square Plum
Bisque	\square DimGrey	\blacksquare LightSteelBlue	PowderBlue
Black	DodgerBlue	Light Yellow	Purple
BlanchedAlmond	FireBrick	Lime	Red
B lue	FloralWhite	LimeGreen	RosyBrown
■ BlueViolet	ForestGreen	Linen	RoyalBlue
Brown	Fuchsia	Magenta Magenta	SaddleBrown
■ BurlyWood	☐ Gainsboro	Maroon	Salmon
CadetBlue	\Box GhostWhite	MediumAquamarine	SandyBrown
Chartreuse	\Box Gold	MediumBlue	SeaGreen
Chocolate	☐ Goldenrod	MediumOrchid	Seashell
Coral	Gray	MediumPurple	Sienna
CornflowerBlue	Grey	MediumSeaGreen	Silver
Cornsilk	Green	MediumSlateBlue	SkyBlue
Crimson	Green Yellow	MediumSpringGreen	SlateBlue
Cyan	☐ Honeydew	Medium Turquoise	\square SlateGray
DarkBlue	HotPink	MediumVioletRed	\square SlateGrey
■ DarkCyan	\blacksquare IndianRed	MidnightBlue	Snow
DarkGoldenrod	Indigo	MintCream	SpringGreen
☐ DarkGray	Ivory	MistyRose	SteelBlue
DarkGreen	Khaki	Moccasin	Tan
☐ DarkGrey	Lavender	NavajoWhite	Teal
DarkKhaki	LavenderBlush	Navy	Thistle
DarkMagenta	LawnGreen	OldLace	Tomato
DarkOliveGreen	LemonChiffon	Olive	Turquoise
DarkOrange	LightBlue	OliveDrab	Violet
DarkOrchid	LightCoral	Orange	Wheat
DarkRed	LightCyan	OrangeRed	White
DarkSalmon	LightGoldenrodYellow	Orchid	WhiteSmoke
DarkSeaGreen	Light Gray	PaleGoldenrod	Yellow
DarkSlateBlue	Light Green	PaleGreen	YellowGreen
DarkSlateGray	Light Grey	PaleTurquoise	10110 010011
zamoravo graj		raiorarquone	

 $\begin{aligned} & \text{Duplicate colors: } Aqua = Cyan, \ Fuchsia = Magenta; \ Gray = Grey, \ DarkGray = DarkGrey, \\ & LightGray = LightGrey, \ SlateGray = SlateGrey, \ DarkSlateGray = DarkSlateGrey, \\ & LightSlateGray = LightSlateGrey, \ DimGray = DimGrey. \end{aligned}$

other named colors have to be defined both in the document preamble and in separate dvips header files, thus making documents less portable.

• the pdftex driver, which does not support the named color concept, allows unrestricted definition and usage of named colors (although offering no added value through this).

Conclusion: don't use \DefineNamedColor unless you know exactly what you are doing!

2.5.2 Color definition in xcolor

\definecolor

 $[\langle type \rangle] \{\langle name \rangle\} \{\langle model \rangle\} \{\langle spec \rangle\}^8$

This is one of the commands that may be used to assign a $\langle name \rangle$ to a specific color. Afterwards, this color is known to the system (in the current group) and may be used in *color expressions*, as explained in section 2.3 on page 9. It replaces both color's \DefineNamedColor and \definecolor. Note that an already existing color $\langle name \rangle$ will be overwritten. The variable \tracingcolors controls whether such an overwriting will be logged or not (see section 2.12 on page 28 for details). The arguments are described in section 2.3 on page 9. Hence, valid expressions for color definitions are

- \definecolor{red}{rgb}{1,0,0},
- \definecolor[named]{Black}{cmyk}{0,0,0,1},
- \definecolor{myblack}{named}{Black},

where the last command is equivalent to \colorlet{myblack}{Black} (see below).

\providecolor

 $[\langle type \rangle] \{\langle name \rangle\} \{\langle model \rangle\} \{\langle spec \rangle\}$

Similar to \definecolor , but the color $\langle name \rangle$ is only defined if it does not exist already.

\colorlet

 $\{\langle name \rangle\} [\langle num \ model \rangle] \{\langle color \rangle\}$

Copies the actual color which results from $\langle color \rangle$ to $\langle name \rangle$. If $\langle num\ model \rangle$ is non-empty, $\langle color \rangle$ is first transformed to the specified model, before $\langle name \rangle$ is being defined. The pseudo model 'named' is *not* allowed here. Note that an already existing color $\langle name \rangle$ will be overwritten.

Example: we said \colorlet{tableheadcolor}{gray!25} in the preamble of this document. In most of the tables we then formatted the first row by using the command \rowcolor{tableheadcolor}.

2.5.3 Defining sets of colors

\definecolorset

 $[\langle type \rangle] \{\langle model \rangle\} \{\langle head \rangle\} \{\langle tail \rangle\} \{\langle set\ spec \rangle\}$

 $^{^8}$ Prior to version 2.00, this command was called **\xdefinecolor**, the latter name still being available for compatibility reasons.

This command facilitates the construction of *color sets* with common underlying $\langle model \rangle$ and $\langle type \rangle$. Here, $\langle set\ spec \rangle = \langle name \rangle_1, \langle spec \rangle_1, \ldots; \langle name \rangle_l, \langle spec \rangle_l$ ($l \geq 1$ name/specification pairs). Individual colors are being constructed by single

 $\label{eq:definecolor} $$ \ensuremath{ \langle type \rangle] {\langle head \rangle \langle name \rangle_{\lambda} \langle tail \rangle } {\langle model \rangle } {\langle spec \rangle_{\lambda} } $$$

commands, $\lambda = 1, \dots, l$. For example,

- \definecolorset{rgb}{}{}{red,1,0,0;green,0,1,0;blue,0,0,1} is used in xcolor to define the basic colors red, green, and blue;
- \definecolorset{rgb}{x}{10}{red,1,0,0;green,0,1,0;blue,0,0,1} would define the colors xred10, xgreen10, and xblue10.

\providecolorset

 $[\langle type \rangle] \{\langle model \rangle\} \{\langle head \rangle\} \{\langle tail \rangle\} \{\langle set\ spec \rangle\}$

Similar to \definecolorset, but based on \providecolor, thus the individual colors are defined only if they do not exist already.

\DefineNamedColor

 $\{\langle type \rangle\}\{\langle name \rangle\}\{\langle model \rangle\}\{\langle spec \rangle\}\$ is provided mainly for compatibility reasons, especially to support the predefined colors in dvipsnam.def. It is the same as $\langle type \rangle\}\{\langle name \rangle\}\{\langle model \rangle\}\{\langle spec \rangle\}\$. Note that color's restriction to allow $\langle type \rangle\}$ in the document preamble has been abolished in xcolor.

2.5.4 Global color definitions

\ifglobalcolors

By default, definitions via \definecolor, \providecolor, ... are available only within the current group. By setting \globalcolorstrue, all such definitions are being made globally available — until the current group ends⁹. Another method to specify that an individual color definition is to be made global is to prefix it by \xglobal, e.g., \xglobal\definecolor{foo}....

\xglobal

2.6 Color application

Here is the list of user-level color commands, as known from the color package, but with an extended syntax for the colors:

\color $\{\langle color \rangle\}$

 $[\langle model \rangle] \{\langle spec \rangle\}$

\textcolor $\{\langle color \rangle\}\{\langle text \rangle\}$

 $[\langle model \rangle] \{\langle spec \rangle\} \{\langle text \rangle\}$

\colorbox $\{\langle color \rangle\}\{\langle text \rangle\}$

 $[\langle model \rangle] \{\langle spec \rangle\} \{\langle text \rangle\}$

\fcolorbox $\{\langle frame\ color \rangle\} \{\langle background\ color \rangle\} \{\langle text \rangle\}$

 $[\langle model \rangle] \{\langle frame\ spec \rangle\} \{\langle background\ spec \rangle\} \{\langle text \rangle\}$

\pagecolor $\{\langle color \rangle\}$

 $[\langle model \rangle] \{\langle spec \rangle\}$

Hence, the formal difference to the color package is that color expressions may be

 $^{^{9}}$ The switch may also be set in the preamble in order to control the whole document.

Figure 6: Color example: MyGreen

used instead of pure color names. A previous section explains how color expressions are constructed.

Remark: all of these commands except \color require that the $\langle color \rangle$ resp. $\langle spec \rangle$ arguments are put into curly braces $\{\}$, even if they are buried in macros.

For example, after \def\foo{red}, one may say \color\foo, but one should always write \textcolor{\foo}{bar} instead of \textcolor\foo{bar} in order to avoid unexpected results.

Note that color-specific commands from other packages may give unexpected results if directly confronted with color expressions (e.g. soul's \sethlcolor and friends). However, one can turn the expression into a name via \colorlet and try to use that name instead.

2.6.1 Using the current color

Within a color expression, '.' serves as a placeholder for the current color. See figure 11 on page 22 for an example.

It is also possible to save the current color for later use, e.g., via the command \colorlet{foo}{.}.

Note that in some cases the current color is of rather limited use, e.g., the construction of an \footnote{lorbox} implies that at the time when the \footnote{lorbox} is evaluated, the current color equals the \footnote{lorbox} ; in this case '.' does not refer to the current color \footnote{lorbox} outside the box.

Figure 7: Color example: MyGreen-cmy

Figure 8: Color example: MyGreen-rgb

Figure 9: Color example: MyGreen-hsb

Definition of base color: ${\begin{tabular}{ll} {\bf 0.34065 \ 1 \ 0.91}{\bf 0.34065,1,0.91} \end{tabular}$

Figure 10: Color example: MyGreen-gray

Definition of base color: {}{gray 0.5383}{gray}{0.5383}

Figure 11: Current color — Example

2.7 Color blending

The purpose of *color blending* is to add some mixing color (expression) to all subsequent explicit color commands. Thus, it is possible to perform such a mix (or blend) operation for many colors without touching the individual commands.

```
\blendcolors \{\langle mix \; expr \rangle\} \blendcolors* \{\langle mix \; expr \rangle\}
```

\xglobal

Initialises all necessary parameters for color blending. The actual (completed) color blend expression is stored in \colorblend. In the starred version, the argument will be appended to a previously defined blend expression. An empty $\langle mix expr \rangle$ argument will switch blending off.

Example: after \blendcolors{!50!yellow}, the colors are transformed into _____, an additional \blendcolors*{!50} yields ____.

In order to achieve global scope, \blendcolors may be prefixed by \xglobal. Remark: color blending is applied only to explicit color commands, i.e. \color, \fcolorbox and the like. In the previous example the frames are not being blended because their color is set by an driver-internal command (switching back to the 'current color'). Thus, to influence these implicit colors as well, we have to set the current color after the blending: \blendcolors{!50!yellow}\color{black} results in ______, an additional \blendcolors*{!50}\color{black} yields

2.8 Color masks and separation

The purpose of color separation is to represent all colors that appear in the document as a combination of a finite subset of base colors and their tints. Most prominent is **cmyk** separation, where the base colors are cyan, magenta, yellow, and black, as required by the printers. This can be done by choosing the package option cmyk, such that all colors will be converted in this model, and post-processing the output file. We describe now another — and more general — solution: color masking. How does it work? Color masking is based on a specified color model $\langle m\text{-model}\rangle$ and a parameter vector $\langle m\text{-spec}\rangle$. Whenever a color is to be displayed in the document, it will first be converted to $\langle m\text{-model}\rangle$, afterwards each component of the resulting color vector will be multiplied by the

corresponding component of $\langle m\text{-}spec \rangle$. For example, let's assume that $\langle m\text{-}model \rangle$ equals cmyk, and $\langle m\text{-}spec \rangle$ equals $(\mu_c, \mu_m, \mu_y, \mu_k)$. Then an arbitrary color foo will be transformed according to

$$foo \mapsto (c, m, y, k) \mapsto (\mu_c \cdot c, \mu_m \cdot m, \mu_y \cdot y, \mu_k \cdot k) \tag{4}$$

Obviously, color separation is a special case of masking by the vectors (1,0,0,0), (0,1,0,0), etc. An interesting application is to shade or tint all colors by masking them with (x,x,x) in the **rgb** or **cmy** model, see the last two rows in figure 12 on the following page.

\maskcolors

 $[\langle num\ model \rangle] \{\langle color \rangle\}$

Initialises all necessary parameters for color masking: if $\langle num\ model \rangle$ is not specified (or empty), $\langle m\text{-}model \rangle$ will be set to the natural model of $\langle color \rangle$, otherwise to $\langle num\ model \rangle$; the color specification of $\langle color \rangle$ is extracted to define $\langle m\text{-}spee \rangle$. Additionally, \maskcolorstrue is performed. Color masking can be switched off temporarily by \maskcolorsfalse, or — in a more radical way — by \maskcolors{}}, which in addition clears the initialisation parameters. In general, the scope of \maskcolors is the current group (unless it is prefixed by the \maskcolors look but it may be used in the document preamble as well. The

\ifmaskcolors

\xglobal

final remark of the color blending section applies here similarly. Now it is easy to separate a complete document without touching the source code: latex \def\xcolorcmd{\maskcolors[cmyk]{cyan}}\input{a} will do the cyan part of the iob for a.tex.

\colormask

Caution: xcolor has no idea about colors in files that are included via the command \includegraphics, e.g. images of type eps, pdf, jpg, or png. Such files have to be separated separately. Nevertheless, xcolor offers some basic support by storing the mask color in \colormask, which can be used to decide which file is to be included:

\def\temp{cyan}\ifx\colormask\temp \includegraphics{foo_c}\else
\def\temp{magenta}\ifx\colormask\temp \includegraphics{foo_m}\else
...
\fi\fi

2.9 Color series

Automatic coloring may be useful in graphics or chart applications, where a — potentially large and unspecified — number of colors are needed, and the user does not want or is not able to specify each individual color. Therefore, we introduce the term *color series*, which consists of a base color and a scheme, how the next color is being constructed from the current color.

The practical application consists of three parts: definition of a color series (usually once in the document), initialisation of the series (potentially several times), and application — with or without stepping — of the current color of the series (potentially many times).

Figure 12: Color masking — Example

2.9.1 Definition of a color series

\definecolorseries

 ${\langle name \rangle} {\langle core\ model \rangle} {\langle method \rangle} {\langle b-model \rangle} {\langle b-spec \rangle} {\langle s-model \rangle} {\langle s-spec \rangle}$ Defines a color series called $\langle name \rangle$, whose calculations are performed within the color model $\langle core\ model \rangle$, where $\langle method \rangle$ selects the algorithm (one of step, grad, last, see below). The method details are determined by the remaining arguments:

- $[\langle b\text{-}model \rangle] \{\langle b\text{-}spec \rangle\}$ specifies the base (= first) color in the algorithm, either directly, e.g. $[rgb] \{1,0.5,0.5\}$, or as a $\langle color \rangle$, e.g. $\{-yellow!50\}$, if the optional argument is missing.
- $[\langle s\text{-}model \rangle] \{\langle s\text{-}spec \rangle\}$ specifies how the *step* vector is calculated in the algorithm, according to the chosen $\langle method \rangle$:
 - step, grad: the optional argument is meaningless, and $\langle s\text{-}spec \rangle$ is a parameter vector whose dimension is determined by $\langle core\ model \rangle$, e.g. $\{0.1,-0.2,0.3\}$ in case of rgb, cmy, or hsb.
 - last: the last color is specified either directly, e.g. [rgb]{1,0.5,0.5}, or as a $\langle color \rangle$, e.g. {-yellow!50}, if the optional argument is missing.

This is the general scheme:

$$color_1 := base, \qquad color_{n+1} := U(color_n + step)$$
 (5)

for $n = 1, 2, \ldots$, where U maps arbitrary real m-vectors into the unit m-cube:

$$U(x_1, \dots, x_m) = (u(x_1), \dots, u(x_m)), \qquad u(x) = \begin{cases} 1 & \text{if } x = 1 \\ x - [x] & \text{if } x \neq 1 \end{cases}$$
 (6)

Thus, every step of the algorithm yields a valid color with parameters from the interval [0,1].

Now, the different methods use different schemes to calculate the *step* vector:

- step, grad: the last argument, $\{\langle s\text{-}spec\rangle\}$, defines the directional vector grad.
- last: $\{\langle s\text{-}spec\rangle\}\$ resp. $[\langle s\text{-}model\rangle]\{\langle s\text{-}spec\rangle\}\$ defines the color parameter vector last.

Then, during \resetcolorseries, the actual step vector is calculated:

$$step := \begin{cases} grad & \text{if } \langle method \rangle = \text{step} \\ \frac{1}{\langle div \rangle} \cdot grad & \text{if } \langle method \rangle = \text{grad} \\ \frac{1}{\langle div \rangle} \cdot (last - base) & \text{if } \langle method \rangle = \text{last} \end{cases}$$
 (7)

Please note that it is also possible to use the current color placeholder '.' within the definition of color series. Thus, \definecolorseries{foo}{rgb}{last}{.}{-.} will set up a series that starts with the current color and ends with its complement. Of course, similar to TeX's \let primitive, the *current* definition of the current color at the time of execution is used, there is no relation to current colors in any later stage of the document.

2.9.2 Initialisation of a color series

\resetcolorseries

\colorseriescycle

 $[\langle div \rangle] \{\langle name \rangle\}$

This command has to be applied at least once, in order to make use of the color series $\langle name \rangle$. It resets the current color of the series to the base color and calculates the actual step vector according to the chosen $\langle div \rangle$, a non-zero real number, for the methods grad and last, see equation (7). If the optional argument is empty, the value stored in the macro \colorseriescycle is applied. Its default value is 16, which can be changed by \def\colorseriescycle{\langle} \div \rangle\$, applied before the xcolor package is loaded (similar to \rangle RGB and friends). The optional argument is ignored in case of the step method.

2.9.3 Application of a color series

There are two ways to display the current color of a color series: any of the color expressions in section 2.3 on page 9 used within a \color, \textcolor, \... command will display this color according to the usual syntax of such expressions. However, in the cases when $\langle postfix \rangle$ equals '!!+', \color{ $\langle name \rangle$!!+} etc., will not only display the color, but it will also perform a step operation.

Thus, the current color of the series will be changed in that case. An expression $\color{\langle name \rangle!![\langle num \rangle]}$ enables direct access to an element of a series, where $\langle num \rangle = 0, 1, 2, \ldots$, starting with 0 for the base color. See figure 13 on the following page for a demonstration of different methods.

2.9.4 Differences between colors and color series

Although they behave similar if applied within color expressions, the objects defined by \definecolor and \definecolorseries are fundamentally different with respect to their scope/availability: like color's original \definecolor command, \definecolor generates local colors, whereas \definecolorseries generates global objects (otherwise it would not be possible to use the stepping mechanism within tables or graphics conveniently). E.g., if we assume that bar is an undefined color, then after saying

```
\begingroup
\definecolorseries{foo}{rgb}{last}{red}{blue}
\resetcolorseries[10]{foo}
\definecolor{bar}{rgb}{.6,.5,.4}
\endgroup
```

commands like \color{foo} or \color{foo!!+} may be used without restrictions, whereas \color{bar} will give an error message. However, it is possible to say \colorlet{bar}{foo} or \colorlet{bar}{foo!!+} in order to save the current color of a series locally — with or without stepping.

2.10 Border colors for hyperlinks

The hyperref package offers all kinds of support for hyperlinks, pdfmarks etc. There are two standard ways to make hyperlinks visible (see the package documentation [10] for additional information on how to set up these features):

- print hyperlinks in a different color than normal text, using the keys citecolor, filecolor, linkcolor, menucolor, pagecolor, runcolor, urlcolor with color expressions, e.g. hypersetup{urlcolor=-green!50};
- display a colored border around hyperlinks, using the keys *citebordercolor*, *filebordercolor*, *linkbordercolor*, *menubordercolor*, *pagebordercolor*, *runbordercolor*, *urlbordercolor* with explicit numerical **rgb** parameter specification, e.g. \hypersetup{urlbordercolor={1 0.5 0.25}}.

Obviously, the second method is somewhat inconvenient since it does not allow for color names or even color expressions. Therefore, xcolor provides — via the package option hyperref — a set of extended keys xcitebordercolor, xfilebordercolor, xlinkbordercolor, xmenubordercolor, xpagebordercolor, xrunbordercolor, xurlbordercolor which are being used in conjunction with color expressions, e.g. \hypersetup{xurlbordercolor=-green!50}.

Figure 13: Color series — Example

S_1	S_2	G_1	G_2	L_1	L_2	L_3	L_4	L_5
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	9
10	10	10	10	10	10	10	10	10
11	11	11	11	11	11	11	11	11
12	12	12	12	12	12	12	12	12
13	13	13	13	13	13		_13_	13
14	14	14	14	14	14	14	14	14
15	15	15	15	15	15	15	15	15
16	16	16	16	16	16	16	16	16

Individual definitions

- $S_1 \qquad \texttt{\definecolorseries\{test\}\{rgb\}\{step\}[rgb]\{.95,.85,.55\}\{.17,.47,.37\}}$
- $S_2 \qquad \texttt{\definecolorseries\{test\}\{hsb\}\{step\}[hsb]\{.575,1,1\}\{.11,-.05,0\}}$
- $G_1 \quad \texttt{\definecolorseries\{test\}\{rgb\}\{grad\}[rgb]\{.95,.85,.55\}\{3,11,17\}}$
- $G_2 \qquad \texttt{\definecolorseries\{test\}\{hsb\}\{grad\}[hsb]\{.575,1,1\}\{.987,-.234,0\}}$
- L_1 \definecolorseries{test}{rgb}{last}[rgb]{.95,.85,.55}[rgb]{.05,.15,.55}
- $L_2 \qquad \texttt{\definecolorseries\{test\}\{hsb\}\{last\}[hsb]\{.575,1,1\}[hsb]\{-.425,.15,1\}}$
- $L_3 \qquad \texttt{\definecolorseries\{test\}\{rgb\}\{last\}\{yellow!50\}\{blue\}}$
- $L_4 \qquad \texttt{\definecolorseries\{test\}\{hsb\}\{last\}\{yellow!50\}\{blue\}}$
- $L_5 \qquad \texttt{\definecolorseries\{test\}\{cmy\}\{last\}\{yellow!50\}\{blue\}}$

Common definitions

\resetcolorseries[12]{test}

 $\verb|\cosetime="1"| {test!!+} {test!!+} \\$

\begin{tabular}{c}

\number\rownum\\ \number\rownum\\\ \number\rownum\\ \number\rownum\\\

\number\rownum\\ \number\rownum\\\ \number\rownum\\ \number\rownum\\\

 $\end{tabular}$

Another new key, xpdfborder, provides a way to deal with a dvips-related problem: for most of the drivers, a setting like pdfborder={0 0 1} will determine the width of the border that is drawn around hyperlinks in points. However, in the dvips case, the numerical parameters are interpreted in relation to the chosen output resolution for processing the dvi file into a ps file. Unfortunately, at the time when the dvi is constructed, nobody knows if and at which resolution a transformation into ps will take place afterwards. Consequently, any default value for pdfborder may be useful or not. Within hyperref, the default for dvips is pdfborder={0 0 12}, which works fine for a resolution of 600 or 1200 dpi, but which produces an invisible border for a resolution of 8000 dpi, as determined by the command-line switch -Ppdf. On the other hand, setting pdfborder={0 0 80} works fine for dvips at 8000 dpi, but makes a document unportable, since other drivers (or even dvips in a low resolution) will draw very thick boxes in that case. This is were the xpdfborder key comes in handy: it rescales its arguments for the dvips case by a factor 80 (ready for 8000 dpi) and leaves everything unchanged for other drivers. Thus one can say xpdfborder={0 0 1} in a driver-independent way.

2.11 Color in tables

\rowcolors
\rowcolors*

```
 \begin{tabular}{l} $ (commands) ] {(row)} {(odd-row\ color)} {(even-row\ color)} $ (commands) ] {(row)} {(odd-row\ color)} {(even-row\ color)} $ \end{tabular}
```

One of these commands has to be executed before a table starts. $\langle row \rangle$ tells the number of the first row which should be colored according to the $\langle odd\text{-}row \ color \rangle$ and $\langle even\text{-}row \ color \rangle$ scheme. Each of the color arguments may also be left empty (= no color). In the starred version, $\langle commands \rangle$ are ignored in rows with inactive $rowcolors \ status$ (see below), whereas in the non-starred version, $\langle commands \rangle$ are applied to every row of the table. Such optional commands may be \hline or \noalign{\langle} stuff{\rangle}.

\showrowcolors \hiderowcolors \rownum The rowcolors status is activated (i.e., use coloring scheme) by default and/or \showrowcolors, it is inactivated (i.e., ignore coloring scheme) by the command \hiderowcolors. The counter \rownum may be used within such a table to access the current row number. An example is given in figure 14 on the next page. These commands require the colorbl package.

Note that table coloring may be combined with color series. This method was used to construct the examples in figure 13 on the preceding page.

2.12 Color information

\extractcolorspec

 $\{\langle color \rangle\}\{\langle cmd \rangle\}$

Extracts the color specification of $\langle color \rangle$ and puts it into $\{\langle cmd \rangle\}$; equivalent to $\{def \cdot \{\langle model \rangle\} \{\langle spec \rangle\}\}$.

\tracingcolors

 $=\langle int \rangle$

Controls the amount of information that is written into the log file:

• $\langle int \rangle \leq 0$: no specific color logging.

Figure 14: Alternating row colors in tables: \rowcolors vs. \rowcolors*

 $\label{lower} $$\operatorname{shine}_{3}\{green!25\}\{yellow!50\} \arrayrulecolor\{red!75!gray\} \Big\} $$\left(tabular\right_{1}$$

```
test & row \number\rownum\\
                                          test
                                                 row 1
                                                                 test
                                                                       row 1
test & row \number\rownum\\
                                           test
                                                 row 2
                                                                 test
                                                                       row 2
test & row \number\rownum\\
                                                                       row 3
test & row \number\rownum\\
                                          test
                                                 row 3
                                                                 test
\arrayrulecolor{black}
                                                 row 4
                                                                       row 4
                                                                 test
                                          test
test & row \number\rownum\\
                                          test
                                                 row 5
                                                                 test
                                                                       row 5
test & row \number\rownum\\
                                          test
                                                 row 6
                                                                       row 6
                                                                 test
\rowcolor{blue!25}
                                                 row 7
                                                                       row 7
                                          test
                                                                 test
test & row \number\rownum\\
test & row \number\rownum\\
                                                 row 8
                                                                       row 8
                                          test
                                                                 test
\hiderowcolors
                                                 row 9
                                                                       row 9
                                          test
                                                                 test
test & row \number\rownum\\
                                          test
                                                 row 10
                                                                 test
                                                                       row 10
test & row \number\rownum\\
                                                                       row 11
                                                                 test
                                          test
                                                 row 11
\showrowcolors
                                                                       row 12
                                                 row 12
test & row \number\rownum\\
                                           test
                                                                 test
test & row \number\rownum\\
                                                                       row 13
                                                 {\rm row}~13
                                                                 test
                                          test
\multicolumn{1}%
```

{>{\columncolor{red!12}}}}{test} & row \number\rownum\\
\end{tabular}

- $\langle int \rangle \geq 1$: ignored color definitions due to \providecolor are logged.
- $\langle int \rangle \geq 2$: multiple (i.e. overwritten) color definitions are logged.
- $\langle int \rangle > 3$: every command that defines a color will be logged.
- $\langle int \rangle \geq 4$: every command that sets a color will be logged.

Like TeX's \tracing... commands, this command may be used globally (in the document preamble) or locally/block-wise. The package sets \tracingcolors=0 as default. Remark: since registers are limited and valuable, no counter is wasted for this issue.

Note that whenever a color is used that has been defined via color's \definecolor command rather than xcolor's new \definecolor and friends, a warning message 'Incompatible color definition' will be issued.¹⁰

2.13 Color conversion

\convertcolorspec

 ${\langle model \rangle} {\langle spec \rangle} {\langle target model \rangle} {\langle cmd \rangle}$

Converts a color, given by the $\langle spec \rangle$ in model $\langle model \rangle$, into $\langle target\ model \rangle$ and stores the new color specification in $\backslash cmd$. $\langle target\ model \rangle$ must be of type $\langle num \rangle$

¹⁰This should not happen since usually there is no reason to load color in parallel to xcolor.

 $model\rangle$, whereas $\langle model\rangle$ may also be 'named', in which case $\langle spec\rangle$ is simply the name of the color.

3 Technical Supplement

3.1 Color models supported by drivers

Since some of the drivers only pretend to support the **hsb** model, we included some code to bypass this behaviour. The models actually added by xcolor are shown in the log file. Table 5 lists the drivers that are part of current MiKTEX [8] distributions and their color model support. Probably, other distributions behave similarly.

Table 5: Drivers and color models

Driver	Version	rgb	cmy	cmyk	hsb	gray	RGB	HTML	HSB	Gray
dvipdf	1999/02/16 v 3.0 i	d	n	d	n	d	i	n	n	n
dvips	1999/02/16 v3.0i	d	n	d	d	d	i	n	n	n
dvipsone	1999/02/16 v 3.0 i	d	n	d	d	d	i	\mathbf{n}	\mathbf{n}	n
pctex32	1999/02/16 v3.0i	d	n	d	d	d	i	n	n	n
pctexps	1999/02/16 v 3.0 i	d	n	d	d	d	i	n	n	n
pdftex	2002/06/19 v0.03k	d	n	d	n	d	i	n	n	n
dvipdfm	1998/11/24 vx.x ¹	d	n	d	a	d	i	n	n	n
dvipdfm	$1999/9/6 \text{ vx.x}^2$	d	n	d	a	d	i	n	n	n
textures	1997/5/28 v0.3	d	n	d	a	i	n	n	n	n
vtex	1999/01/14 v6.3	d	n	d	n	i	i	n	n	n
tcidvi	1999/02/16 v3.0i	i	n	i	n	i	d	n	n	n
truetex	1999/02/16 v3.0i	i	n	i	n	i	d	n	n	n
dviwin	1999/02/16 v3.0i	n	n	n	n	n	n	n	n	n
emtex	1999/02/16 v3.0i	n	n	n	n	n	n	n	n	n
pctexhp	1999/02/16 v 3.0 i	n	n	n	n	n	n	\mathbf{n}	n	n
pctexwin	1999/02/16 v3.0i	n	n	n	n	n	n	n	n	n

 $\begin{array}{l} {\tt dviwindo} = {\tt dvipsone}; \ {\tt oztex} = {\tt dvips}; \ {\tt xdvi} = {\tt dvips} + {\tt monochrome} \\ {\tt ^1part} \ {\tt of} \ {\tt graphics} \ {\tt package} \\ \end{array} \ {\tt ^2additionally} \ {\tt distributed} \ {\tt with} \ {\tt MiKT}_{\hbox{\it E}} X \\ \end{array}$

Driver's color model support: d = direct, i = indirect, a = alleged, n = none

3.2 Behind the scenes: internal color representation

Every definition of a color in order to access it by its name requires an internal representation of the color, i.e. a macro that contains some bits of information required by the driver to display the color properly.

color's $definecolor\{foo\}\{...\}\{...\}$ generates a command $color@foo^{11}$

¹¹The double backslash is intentional.

which contains the color definition in a driver-dependent way; therefore it is possible but non-trivial to access the color model and parameters afterwards (see the colorinfo package [9] for a solution).

color's \DefineNamedColor{named}{foo}{...}{...} generates \col@foo¹² which again contains some driver-dependent information. In this case, an additional \\color@foo will only be defined if the package option usecolors is active.

xcolor's \definecolor{foo}{...}{...} generates¹³ a command \\color@foo as well, which combines the features of the former commands and contains both the driver-dependent and driver-independent information, thus making it possible to access the relevant parameters in a standardised way. Although it has now a different syntax, \\color@foo expands to the same expression as the original command. On the other hand, \col@foo commands are no longer needed and therefore not generated in the 'named' case: xcolor works with a single color data structure (as described).

Table 6 on the following page shows some examples for the two most prominent drivers. See also figures 6 to 10 on pages 19–21; the lines immediately below the captions display the definitions with respect to the driver that was used to process this document.

3.3 A remark on accuracy

Since the macros presented here require some computation, special efforts were made to ensure a maximum of accuracy for conversion and mixing formulas — all within TEX's limited numerical capabilities. ¹⁴ We decided to develop and include a small set of commands to improve the quality of division and multiplication results, instead of loading one of the packages that provide multi-digit arithmetic and a lot more, like realcalc or fp. The marginal contribution of the latter packages seems not to justify their usage for our purposes. Thus, we stay within a sort of fixed-point arithmetic framework, providing at most 5 decimal digits via TEX's dimension registers.

4 The Formulas

4.1 Color mixing

In general, we use linear interpolation for color mixing:

$$\min(C, C', p) = p \cdot C + (1 - p) \cdot C' \tag{8}$$

Note that there is a special situation in the hsb case: if saturation = 0 then the color equals a gray color of level brightness, independently of the hue value.

¹²The single backslash is intentional.

¹³This was introduced in version 1.10; prior to that, a command cowith a different syntax was generated.

¹⁴For example, applying the 'transformation' \dimen0=0. $\langle int \rangle$ pt \the\dimen0 to all 5-digit

 $^{^{14} \}text{For example, applying the 'transformation' \dimen0=0.} \langle int \rangle \text{pt \the \dimen0} to all 5-digit numbers $\langle int \rangle$ of the range 00000...99999, exactly 34464 of these 100000 numbers don't survive unchanged. We are not talking about gobbled final zeros here ...$

Table 6: Driver-dependent internal color representation

dvips driver		
\\color@Plum=macro:	$(\definecolor{Plum}{rgb}{.5,0,1})$	color
->rgb .5 0 1.		
\\color@Plum=macro:	(\definecolor{Plum}{rgb}{.5,0,1})	xcolor
->\xcolor@ {}{rgb 0.5 0	1}{rgb}{0.5,0,1}.	
\col@Plum=macro:	(\DefineNamedColor{Plum}{rgb}{.5,0,1})	color
->\@nil .		
\\color@Plum=macro:	(with option usenames)	
-> Plum.		
\\color@Plum=macro:	(\definecolor[named]{Plum}{rgb}{.5,0,1})	xcolor
->\xcolor@ {\@nil }{ Pl	um}{rgb}{0.5,0,1}.	
pdftex driver		
\\color@Plum=macro:	$(\texttt{\definecolor{Plum}{frgb}{\{.5,0,1\}}})$	color
->.5 0 1 rg .5 0 1 RG.		
\\color@Plum=macro:	$(\texttt{\definecolor{Plum}{frgb}{\{.5,0,1\}}})$	xcolor
->\xcolor@ {}{0.5 0 1 r	g 0.5 0 1 RG}{rgb}{0.5,0,1}.	
\col@Plum=macro:	(\DefineNamedColor{Plum}{rgb}{.5,0,1})	color
->.5 0 1 rg .5 0 1 RG.		
\\color@Plum=macro:	(with option usenames)	
->.5 0 1 rg .5 0 1 RG.		
\\color@Plum=macro:	(\definecolor[named]{Plum}{rgb}{.5,0,1})	xcolor
->\xcolor@ {0.5 0 1 rg	0.5 0 1 RG}{0.5 0 1 rg 0.5 0 1 RG}{rgb}{0	0.5,0,1}.

Therefore, to achieve smooth transitions of an arbitrary color to a specific gray (like white or black), we actually use the formulas

$$\operatorname{tint}_{\mathsf{hsb}}(C, p) = p \cdot C + (1 - p) \cdot (hue, 0, 1) \tag{9}$$

$$\operatorname{shade}_{\mathsf{hsb}}(C, p) = p \cdot C + (1 - p) \cdot (hue, 0, 0) \tag{10}$$

tone
$$_{\mathbf{hsb}}(C,p) = p \cdot C + (1-p) \cdot \left(hue, 0, \frac{1}{2}\right)$$
 (11)

where C = (hue, saturation, brightness).

From equation (8) and the way how color expressions are being interpreted, as described in section 2.3 on page 9, it is an easy proof by induction to verify that a color expression

$$C_0!P_1!C_1!P_2!\dots!P_n!C_n$$
 (12)

with $n \in \{0, 1, 2, ...\}$, colors $C_0, C_1, ..., C_n$, and percentages $P_1, ..., P_n \in [0, 100]$

will result in a parameter vector

$$C = \sum_{\nu=0}^{n} \left(\prod_{\mu=\nu+1}^{n} p_{\mu} \right) (1 - p_{\nu}) \cdot C_{\nu}$$

$$= p_{n} \cdots p_{1} \cdot C_{0}$$

$$+ p_{n} \cdots p_{2} (1 - p_{1}) \cdot C_{1}$$

$$+ p_{n} \cdots p_{3} (1 - p_{2}) \cdot C_{2}$$

$$+ \cdots$$

$$+ p_{n} (1 - p_{n-1}) \cdot C_{n-1}$$

$$+ (1 - p_{n}) \cdot C_{n}$$

$$(13)$$

where $p_0 := 0$ and $p_{\nu} := P_{\nu}/100$ for $\nu = 1, \dots, n$. We note also a split formula:

$$C_0!P_1!C_1!\dots!P_{n+k}!C_{n+k} = p_{n+k}\cdots p_{n+1}\cdot C_0!P_1!C_1!\dots!P_n!C_n$$

$$-p_{n+k}\cdots p_{n+1}\cdot C_n$$

$$+C_n!P_{n+1}!C_{n+1}!\dots!P_{n+k}!C_{n+k}$$
(14)

4.2 Conversion between integer and real models

We fix a positive integer n and define the sets $\mathcal{I}_n := \{0, 1, \dots, n\}$ and $\mathcal{R} := [0, 1]$. The complement of $\nu \in \mathcal{I}_n$ is $n - \nu$, the complement of $x \in \mathcal{R}$ is 1 - x.

4.2.1 Real to integer conversion

The straightforward mapping for this case is

$$\Gamma_n : \mathcal{R} \to \mathcal{I}_n, \ x \mapsto \text{round}(n \cdot x) = \left\lfloor \frac{1}{2} + n \cdot x \right\rfloor$$
 (15)

This mapping nearly always preserves complements, as shown in the next lemma.

Lemma 1 (Preservation of complements). For $x \in \mathcal{R}$,

$$\Gamma_n(x) + \Gamma_n(1-x) = n \iff x \notin \mathcal{R}_n^{\circ} := \left\{ \frac{1}{n} \left(\nu - \frac{1}{2} \right) \mid \nu = 1, 2, \dots, n \right\}. \tag{16}$$

Proof. Let $\nu := \Gamma_n(x)$, then from $-\frac{1}{2} \le \eta := n \cdot x - \nu < \frac{1}{2}$ we conclude

$$\Gamma_n(1-x) = \operatorname{round}(n(1-x)) = \operatorname{round}(n-\nu-\eta) = \begin{cases} n-\nu & \text{if } \eta \neq -\frac{1}{2} \\ n-\nu+1 & \text{if } \eta = -\frac{1}{2} \end{cases}$$

Now,
$$\eta = -\frac{1}{2} \iff x = \frac{1}{n} \left(\nu - \frac{1}{2} \right) \iff x \in \mathcal{I}'_n$$
.

Remark: the set \mathcal{R}_n° is obviously identical to the set of points where Γ_n is not continuous.

Table 7: Color constants

model/constant	white	black	gray
rgb	(1, 1, 1)	(0, 0, 0)	$(\frac12,\frac12,\frac12)$
сту	(0, 0, 0)	(1, 1, 1)	$(\frac12,\frac12,\frac12)$
cmyk	(0,0,0,0)	(0,0,0,1)	$(0,0,0,\frac{1}{2})$
hsb	(h, 0, 1)	(h, 0, 0)	$(h, 0, \frac{1}{2})$
gray	1	0	$\frac{1}{2}$
RGB	(L, L, L)	(0, 0, 0)	$\left(\left\lfloor \frac{L+1}{2}\right\rfloor,\left\lfloor \frac{L+1}{2}\right\rfloor,\left\lfloor \frac{L+1}{2}\right\rfloor\right)$
HTML	FFFFFF	000000	808080
HSB	(H,0,M)	(H, 0, 0)	$(H,0,\lfloor \frac{M+1}{2} \rfloor)$
Gray	N	0	$\lfloor \frac{N+1}{2} \rfloor$

Table 8: Color conversion pairs

from/to	rgb	cmy	cmyk	hsb	gray	RGB	HTML	HSB	Gray
rgb	id	*	(cmy)	*	*	*	*	(hsb)	(gray)
cmy	*	id	*	(rgb)	*	(rgb)	(rgb)	(rgb)	(gray)
cmyk	(cmy)	*	id	(cmy)	*	(cmy)	(cmy)	(cmy)	(gray)
hsb	*	(rgb)	(rgb)	id	(rgb)	(rgb)	rgb	*	(rgb)
gray	*	*	*	*	id	*	*	*	*
RGB	*	(rgb)	(rgb)	(rgb)	(rgb)	id	(rgb)	(rgb)	(rgb)
HTML	*	(rgb)	(rgb)	(rgb)	(rgb)	(rgb)	id	(rgb)	(rgb)
HSB	(hsb)	(hsb)	(hsb)	*	(hsb)	(hsb)	(hsb)	id	(hsb)
Gray	(gray)	(gray)	(gray)	(gray)	*	(gray)	(gray)	(gray)	id

id = identity function; * = specific conversion function;
(model) = conversion via specified model

4.2.2 Integer to real conversion

The straightforward way in this case is the function

$$\Delta_n^*: \mathcal{I}_n \to \mathcal{R}, \ \nu \mapsto \frac{\nu}{n}.$$
 (17)

This is, however, only one out of a variety of solutions: every function $\Delta_n : \mathcal{I}_n \to \mathcal{R}$ that obeys the condition

$$\nu \in \mathcal{I}_n \Rightarrow \Gamma_n (\Delta_n(\nu)) = \nu \tag{18}$$

which is equivalent to

$$\nu \in \mathcal{I}_n \Rightarrow \nu + \frac{1}{2} > n \cdot \Delta_n(\nu) \ge \nu - \frac{1}{2}$$
 (19)

does at least guarantee that all integers ν may be reconstructed from $\Delta_n(\nu)$ via multiplication by n and rounding to the nearest integer. Preservation of complements means now

$$\nu \in \mathcal{I}_n \Rightarrow \Delta_n(\nu) + \Delta_n(n-\nu) = 1 \tag{20}$$

which is obviously the case for $\Delta_n = \Delta_n^*$. If we consider, more generally, a transformation

$$\Delta_n(\nu) = \frac{\nu + \alpha}{n + \beta} \tag{21}$$

with $\beta \neq -n$, then the magic inequality (19) is equivalent to

$$\frac{1}{2} > \frac{\alpha n - \beta \nu}{n + \beta} \ge -\frac{1}{2} \tag{22}$$

which is obeyed by the function

$$\Delta'_n: \mathcal{I}_n \to \mathcal{R}, \ \nu \mapsto \begin{cases} \frac{\nu}{n+1} & \text{if } \nu \le \frac{n+1}{2} \\ \frac{\nu+1}{n+1} & \text{if } \nu > \frac{n+1}{2} \end{cases}$$
(23)

that has the nice feature $\Delta'_n(\frac{n+1}{2}) = \frac{1}{2}$ for odd n.

Lemma 2 (Preservation of complements). For odd n and each $\nu \in \mathcal{I}_n$,

$$\Delta'_n(\nu) + \Delta'_n(n-\nu) = 1 \iff \nu \notin \mathcal{I}_n^{\circ} := \left\{ \frac{n-1}{2}, \frac{n+1}{2} \right\}. \tag{24}$$

Proof. The assertion is a consequence of the following arguments:

•
$$\nu < \frac{n-1}{2} \iff n - \nu > \frac{n+1}{2} \text{ and } \frac{n-1}{2} + \frac{n+1}{2} = n;$$

•
$$\nu < \frac{n-1}{2} \Rightarrow \Delta'_n(\nu) + \Delta'_n(n-\nu) = \frac{\nu}{n+1} + \frac{n-\nu+1}{n+1} = 1;$$

•
$$\nu = \frac{n-1}{2} \Rightarrow \Delta'_n(\nu) + \Delta'_n(n-\nu) = \frac{n-1}{2(n+1)} + \frac{1}{2} = \frac{n}{n+1} \neq 1.$$

For the time being, we choose $\Delta_n := \Delta_n^*$ as default transformation function.

4.3 Color conversion and complements

We collect here the specific conversion formulas between the supported color models. Table 8 on page 34 gives an overwiew of how each conversion pair is handled. In general, PostScript (as described in [1]) is used as a basis for most of the calculations, since it supports the color models **rgb**, **cmyk**, **hsb**, and **gray** natively. Furthermore, Smith's paper [11] is cited in [1] as reference for **hsb**-related formulas. First, we define a constant which is being used throughout the conversion formulas:

$$E := (1, 1, 1) \tag{25}$$

4.3.1 The rgb model

Conversion rgb to cmy Source: [1], p. 475.

$$(cyan, magenta, yellow) := E - (red, green, blue)$$
 (26)

Conversion rgb to hsb (1) We set

$$x := \max\{red, green, blue\} \tag{27}$$

$$y := \text{med}\{red, green, blue\}$$
 (28)

$$z := \min\{red, green, blue\} \tag{29}$$

(30)

where 'med' denotes the median of the values. Then,

$$brightness := x$$
 (31)

Case x = z:

$$saturation := 0 (32)$$

$$hue := 0 (33)$$

Case $x \neq z$:

$$saturation := \frac{x - z}{x} \tag{34}$$

$$f := \frac{x - y}{x - z} \tag{35}$$

$$hue := \frac{1}{6} \cdot \begin{cases} 1 - f & \text{if } x = red \ge green \ge blue = z \\ 1 + f & \text{if } x = green \ge red \ge blue = z \\ 3 - f & \text{if } x = green \ge blue \ge red = z \\ 3 + f & \text{if } x = blue \ge green \ge red = z \\ 5 - f & \text{if } x = blue \ge red \ge green = z \\ 5 + f & \text{if } x = red \ge blue > green = z \end{cases}$$

$$(36)$$

This is based on [11], RGB to HSV Algorithm (Hexcone Model), which reads (slightly reformulated):

$$r := \frac{x - red}{x - z}, \qquad g := \frac{x - green}{x - z}, \qquad b := \frac{x - blue}{x - z}$$
 (37)

$$hue := \frac{1}{6} \cdot \begin{cases} 5+b & \text{if } red = x \text{ and } green = z \\ 1-g & \text{if } red = x \text{ and } green > z \\ 1+r & \text{if } green = x \text{ and } blue = z \\ 3-b & \text{if } green = x \text{ and } blue > z \\ 3+g & \text{if } blue = x \text{ and } red = z \\ 5-r & \text{if } blue = x \text{ and } red > z \end{cases}$$

$$(38)$$

Note that the singular case x = z is not covered completely in Smith's original algorithm; we stick here to PostScript's behaviour in real life.

Because we need to sort three numbers in order to calculate x, y, z, several comparisons are involved in the algorithm. We present now a second method which is more suited for $T_{\rm F}X$.

Conversion rgb to hsb (2) Let β be a function that takes a Boolean expression as argument and returns 1 if the expression is true, 0 otherwise; set

$$i := 4 \cdot \beta(red \ge green) + 2 \cdot \beta(green \ge blue) + \beta(blue \ge red),$$
 (39)

and

$$(hue, saturation, brightness) := \begin{cases} \Phi(blue, green, red, 3, 1) & \text{if } i = 1 \\ \Phi(green, red, blue, 1, 1) & \text{if } i = 2 \\ \Phi(green, blue, red, 3, -1) & \text{if } i = 3 \\ \Phi(red, blue, green, 5, 1) & \text{if } i = 4 \\ \Phi(blue, red, green, 5, -1) & \text{if } i = 5 \\ \Phi(red, green, blue, 1, -1) & \text{if } i = 6 \\ (0, 0, blue) & \text{if } i = 7 \end{cases}$$

$$(40)$$

where

$$\Phi(x,y,z,u,v) := \left(\frac{u \cdot (x-z) + v \cdot (x-y)}{6(x-z)}, \frac{x-z}{x}, x\right) \tag{41}$$

The singular case x = z, which is equivalent to red = green = blue, is covered here by i = 7.

It is not difficult to see that this algorithm is a reformulation of the previous method. The following table explains how the transition from equation (36) to equation (40) works:

$6 \cdot hue$	Condition	$red \geq green$	$green \geq blue$	$blue \geq \mathit{red}$	i
1-f	$red \geq green \geq blue$	1	1	*	6 /7
1+f	$green \geq red \geq blue$	*	1	*	2/3/6/7
3-f	$green \geq blue \geq red$	*	1	1	3/7
3+f	$blue \geq green \geq red$	*	*	1	1/3/5/7
5-f	$blue \geq red \geq green$	1	*	1	5/7
5+f	$red \geq blue \geq green$	1	*	*	4/5/6/7

Here, * denotes possible 0 or 1 values. Bold i values mark the main cases where all * values of a row are zero. The slight difference to equation (36) in the last inequality is intentional and does no harm.

Conversion rgb to gray Source: [1], p. 474.

$$gray := 0.3 \cdot red + 0.59 \cdot green + 0.11 \cdot blue \tag{42}$$

Conversion rgb to RGB As described in section 4.2.1 on page 33.

$$Red := \Gamma_L(red)$$
 (43)

$$Green := \Gamma_L(green)$$
 (44)

$$Blue := \Gamma_L(blue) \tag{45}$$

Conversion rgb to HTML As described in section 4.2.1 on page 33. Convert to hexadecimal afterwards.

$$RR := \Gamma_L(red)_{hex} \tag{46}$$

$$GG := \Gamma_L(green)_{hex} \tag{47}$$

$$BB := \Gamma_L(blue)_{hex} \tag{48}$$

Complement of rgb color We simply take the complementary vector:

$$(red^*, green^*, blue^*) := E - (red, green, blue)$$
 (49)

4.3.2 The cmy model

Conversion cmy to rgb This is simply a reversion of the rgb \rightarrow cmy case, cf. section 4.3.1 on page 36.

$$(red, green, blue) := E - (cyan, magenta, yellow)$$
 (50)

Conversion cmy to cmyk This is probably the hardest of our conversion tasks: many sources emphasize that there does not exist any universal conversion algorithm for this case because of device-dependence. The following algorithm is an

extended version of the one given in [1], p. 476.

$$k := \min\{cyan, magenta, yellow\}$$
 (51)

$$cyan := \min\{1, \max\{0, cyan - UCR_c(k)\}\}$$
(52)

$$magenta := \min\{1, \max\{0, magenta - UCR_m(k)\}\}$$
 (53)

$$yellow := \min\{1, \max\{0, yellow - UCR_u(k)\}\}$$
(54)

$$black := BG(k) \tag{55}$$

Here, four additional functions are required:

$$UCR_c, UCR_m, UCR_y : [0,1] \rightarrow [-1,1]$$
 undercolor-removal
 $BG : [0,1] \rightarrow [0,1]$ black-generation

These functions are device-dependent, see the remarks in [1]. Although there are some indications that they should be chosen as nonlinear functions, as long as we have no further knowledge about the target device we define them linearly:

$$UCR_c(k) := \beta_c \cdot k \tag{56}$$

$$UCR_m(k) := \beta_m \cdot k \tag{57}$$

$$UCR_{u}(k) := \beta_{u} \cdot k \tag{58}$$

$$BG(k) := \beta_k \cdot k \tag{59}$$

\adjustUCRBG where the parameters are given by \def\adjustUCRBG{ $\langle \beta_c \rangle, \langle \beta_m \rangle, \langle \beta_y \rangle, \langle \beta_k \rangle$ } at any point in a document, defaulting to {1,1,1,1}.

Conversion cmy to gray This is derived from the conversion chain cmy \rightarrow rgb \rightarrow gray.

$$gray := 1 - (0.3 \cdot cyan + 0.59 \cdot magenta + 0.11 \cdot yellow) \tag{60}$$

Complement of cmy color We simply take the complementary vector:

$$(cyan^*, magenta^*, yellow^*) := E - (cyan, magenta, yellow)$$
 (61)

4.3.3 The cmyk model

Conversion cmyk to cmy Based on [1], p. 477, in connection with $\mathbf{rgb} \to \mathbf{cmy}$ conversion.

$$cyan := \min\{1, cyan + black\} \tag{62}$$

$$magenta := min\{1, magenta + black\}$$
 (63)

$$yellow := \min\{1, yellow + black\} \tag{64}$$

Conversion cmyk to gray Source: [1], p. 475.

$$gray := 1 - \min\{1, 0.3 \cdot cyan + 0.59 \cdot magenta + 0.11 \cdot yellow + black\}$$
 (65)

Complement of cmyk color The simple vector complement does not yield useful results. Therefore, we first convert C = (cyan, magenta, yellow, black) to the cmy model, calculate the complement there, and convert back to cmyk.

4.3.4 The hsb model

Conversion hsb to rgb

$$(red, green, blue) := brightness \cdot (E - saturation \cdot F)$$
 (66)

with

$$i := [6 \cdot hue], \qquad f := 6 \cdot hue - i \tag{67}$$

and

$$F := \begin{cases} (0, 1 - f, 1) & \text{if } i = 0\\ (f, 0, 1) & \text{if } i = 1\\ (1, 0, 1 - f) & \text{if } i = 2\\ (1, f, 0) & \text{if } i = 3\\ (1 - f, 1, 0) & \text{if } i = 4\\ (0, 1, f) & \text{if } i = 5\\ (0, 1, 1) & \text{if } i = 6 \end{cases}$$

$$(68)$$

This is based on [11], HSV to RGB Algorithm (Hexcone Model), which reads (slightly reformulated):

$$m := 1 - saturation \tag{69}$$

$$n := 1 - f \cdot saturation \tag{70}$$

$$k := 1 - (1 - f) \cdot saturation \tag{71}$$

$$(red, green, blue) := brightness \cdot \begin{cases} (1, k, m) & \text{if } i = 0, 6 \\ (n, 1, m) & \text{if } i = 1 \\ (m, 1, k) & \text{if } i = 2 \\ (m, n, 1) & \text{if } i = 3 \\ (k, m, 1) & \text{if } i = 4 \\ (1, m, n) & \text{if } i = 5 \end{cases}$$

$$(72)$$

Note that the case i=6 (which results from hue=1) is missing in Smith's algorithm. Because of

$$\lim_{f \to 1} (0, 1, f) = (0, 1, 1) = \lim_{f \to 0} (0, 1 - f, 1) \tag{73}$$

it is clear that there is only one way to define F for i=6 in order to get a continuous function, as shown in equation (68). This has been transformed back to equation (72). A similar argument shows that F indeed is a continuous function of hue over the whole range [0,1].

Conversion hsb to HSB As described in section 4.2.1 on page 33. Convert to hexadecimal afterwards.

$$Hue := \Gamma_M(hue) \tag{74}$$

$$Saturation := \Gamma_M(saturation) \tag{75}$$

$$Brightness := \Gamma_M(brightness) \tag{76}$$

Complement of hsb color We have not found a formula in the literature, therefore we give a short proof afterwards.

Lemma 3. The **hsb**-complement can be calculated by the following formulas:

$$hue^* := \begin{cases} hue + \frac{1}{2} & \text{if } hue < \frac{1}{2} \\ hue - \frac{1}{2} & \text{if } hue \ge \frac{1}{2} \end{cases}$$
 (77)

$$brightness^* := 1 - brightness \cdot (1 - saturation)$$
 (78)

$$saturation^* := \begin{cases} 0 & \text{if } brightness^* = 0\\ \frac{brightness \cdot saturation}{brightness^*} & \text{if } brightness^* \neq 0 \end{cases}$$

$$(79)$$

Proof. Starting with the original color C=(h,s,b), we define color $C^*=(h^*,s^*,b^*)$ by the given formulas, convert both C and C^* to the **rgb** model and show that

$$C_{\text{rgb}} + C_{\text{rgb}}^* = b \cdot (E - s \cdot F) + b^* \cdot (E - s' \cdot F^*) \stackrel{!}{=} E,$$
 (80)

which means that C_{rgb} is the complement of C^*_{rgb} . First we note that the parameters of C^* are in the legal range [0,1]. This is obvious for h^*, b^* . From $b^* = 1 - b \cdot (1 - s) = 1 - b + b \cdot s$ we derive $b \cdot s = b^* - (1 - b) \leq b^*$, therefore $s^* \in [0,1]$, and

$$b^* = 0 \Leftrightarrow s = 0 \text{ and } b = 1.$$

Thus, equation (80) holds in the case $b^* = 0$. Now we assume $b^* \neq 0$, hence

$$C_{rgb} + C_{rgb}^* = b \cdot (E - s \cdot F) + b^* \cdot \left(E - \frac{b \cdot s}{b^*} \cdot F^*\right)$$
$$= b \cdot E - b \cdot s \cdot F + b^* \cdot E - b \cdot s \cdot F^*$$
$$= E - b \cdot s \cdot (F + F^* - E)$$

since $b^* = 1 - b + bs$. Therefore, it is sufficient to show that

$$F + F^* = E. (81)$$

From

$$h < \frac{1}{2} \Rightarrow h^* = h + \frac{1}{2} \Rightarrow 6h^* = 6h + 3 \Rightarrow i^* = i + 3$$
 and $f^* = f$

it is easy to see from (68) that equation (81) holds for the cases i=0,1,2. Similarly,

$$h \ge \frac{1}{2} \Rightarrow h^* = h - \frac{1}{2} \Rightarrow 6h^* = 6h - 3 \Rightarrow i^* = i - 3 \text{ and } f^* = f$$

and again from (68) we derive (81) for the cases i=3,4,5. Finally, if i=6 then f=0 and $F+F^*=(0,1,1)+(1,0,0)=E$.

4.3.5 The gray model

Conversion gray to rgb Source: [1], p. 474.

$$(red, green, blue) := gray \cdot E$$
 (82)

Conversion gray to cmy This is derived from the conversion chain gray \rightarrow rgb \rightarrow cmy.

$$(cyan, magenta, yellow) := (1 - gray) \cdot E$$
 (83)

Conversion gray to cmyk Source: [1], p. 475.

$$(cyan, magenta, yellow, black) := (0, 0, 0, 1 - gray)$$
(84)

Conversion gray to hsb This is derived from the conversion chain gray \rightarrow rgb \rightarrow hsb.

$$(hue, saturation, brightness) := (0, 0, gray)$$
 (85)

Conversion gray to Gray As described in section 4.2.1 on page 33.

$$Gray := \Gamma_N(gray)$$
 (86)

Complement of gray color This is similar to the rgb case:

$$gray^* := 1 - gray \tag{87}$$

4.3.6 The RGB model

Conversion RGB to rgb As described in section 4.2.2 on page 35.

$$(red, green, blue) := (\Delta_L(Red), \Delta_L(Green), \Delta_L(Blue))$$
 (88)

4.3.7 The HTML model

Conversion HTML to rgb As described in section 4.2.2 on page 35: starting with RRGGBB set

$$(red, green, blue) := (\Delta_{255}(RR_{dec}), \Delta_{255}(GG_{dec}), \Delta_{255}(BB_{dec}))$$
 (89)

4.3.8 The HSB model

Conversion HSB to hsb As described in section 4.2.2 on page 35.

$$(hue, saturation, brightness) := (\Delta_M(Hue), \Delta_M(Saturation), \Delta_M(Brightness))$$

$$(90)$$

4.3.9 The Gray model

Conversion Gray to gray As described in section 4.2.2 on page 35.

$$gray := \Delta_N(Gray)$$
 (91)

References

- [1] Adobe Systems Incorporated: "PostScript Language Reference Manual". Addison-Wesley, third edition, 1999.
 www.adobe.com/products/postscript/pdfs/PLRM.pdf
- [2] David P. Carlisle: "Packages in the 'graphics' bundle", 1999. CTAN/macros/latex/required/graphics/grfguide.tex
- [3] David P. Carlisle: color package, "1999/02/16 v1.0i Standard LATEX Color". CTAN/macros/latex/required/graphics/color.*
- [4] David P. Carlisle: colortbl package, "2001/02/13 v0.1j Color table columns". CTAN/macros/latex/contrib/carlisle/colortbl.*
- [5] David P. Carlisle: pstcol package, "2001/06/20 v1.1 PSTricks color compatibility". CTAN/macros/latex/required/graphics/pstcol.*
- [6] Uwe Kern: "Chroma: a reference book of LATEX colors". CTAN/info/colour/chroma/ www.ukern.de/tex/chroma.html
- [7] Uwe Kern: xcolor package, "IATEX color extensions". CTAN/macros/latex/contrib/xcolor/ www.ukern.de/tex/xcolor.html
- [8] MiKT_FX Project: http://www.miktex.org/
- [9] Rolf Niepraschk: colorinfo package, "2003/05/04 v0.3c Info from defined colors". CTAN/macros/latex/contrib/colorinfo/

- [10] Sebastian Rahtz: hyperref package, "2003/11/30 v6.74m Hypertext links for LATFX". CTAN/macros/latex/contrib/hyperref/
- [11] Alvy Ray Smith: "Color Gamut Transform Pairs". Computer Graphics (ACM SIGGRAPH), Volume 12, Number 3, August 1978. alvyray.com/Papers/PapersCG.htm
- [12] World Wide Web Consortium: "Scalable Vector Graphics (SVG) 1.1 Specification Basic Data Types and Interfaces".

 www.w3.org/TR/SVG11/types.html#ColorKeywords

Acknowledgement

This package is based on and contains code copied from [3] (Copyright (C) 1994–1999 David Carlisle), which is part of the Standard LATEX 'Graphics Bundle'. Although many commands and features have been added and most of the original color commands have been rewritten or adapted within xcolor, the latter package would not exist without color. Thus, the author is grateful to David Carlisle for having created color and its accompanying files.

Known Issues

• Incompatibility with textures driver.

History

2004/07/04 v2.00

- New features:
 - extended functionality for color expressions: mix colors like a painter;
 - support for color blending: specify color mix expressions that are being blended with every displayed color;
 - \xglobal command for selective control of globality for color definitions, blends, and masks;
 - multiple step operations (e.g. \color{foo!!+++}) and access to individual members (e.g. \color{foo!![7]}) in color series;
 - \providecolor command to define only non-existent colors;
 - \definecolorset and \providecolorset commands to facilitate the construction of color sets with common underlying color model;
 - additional 147 predefined color names according to SVG 1.1 specification;

- xpdfborder key for setting the width of hyperlink borders in a more driver-independent way if dvips is used.

• Changes:

- color package now completely integrated within xcolor;
- override, usenames, nodvipsnames options and \xdefinecolor command no longer needed;
- dvips and dvipsnames options now independent of each other;
- \tracingcolors's behaviour changed to make it more versatile and reduce log file size in standard cases;
- \rdivide's syntax made more flexible (divide by numbers and/or dimensions);
- code restructured, some internal commands renamed;
- documentation rearranged and enhanced.

• Bugfixes:

- $\displaystyle \frac{1}{1}$; did not work (error introduced in v1.11);
- more robust behaviour of conditionals within pstricks key-values.

2004/05/09 v1.11

• New features:

- switch \ifglobalcolors to control whether color definitions are global or local:
- option hyperref provides color expression support for the border colors of hyperlinks, e.g. \hypersetup{xurlbordercolor=red!50!yellow};
- internal hooks \XC@bcolor, \XC@mcolor, and \XC@ecolor for additional code that has to be executed immediately before/after the current color is being displayed.

• Changes:

- \XC@logcolor renamed to \XC@display, which is now the core color display command;
- improved interface to pstricks.

2004/03/27 v1.10

- New features:
 - support for 'named' model;
 - support for dvips colors (may now be used within color expressions);
 - internal representation of 'ordinary' and 'named' colors merged into unified data structure;
 - allow multiple '-' signs at the beginning of color expressions.

• Bugfixes:

- commands like \color[named]{foo} caused errors when color masking or target model conversion were active;
- incompatibility with soul package: commands \hl, \ul, etc. could yield unexpected results.

• Documentation:

- added formula for general color expressions;
- enhanced text and index;
- removed dependence of index generation on local configuration file.

2004/02/16 v1.09

- New features:
 - color model HTML, a 24-bit hexadecimal RGB variant; allows to specify colors like \color [HTML] {AFFE90};
 - color names orange, violet, purple, and brown added to the set of predefined colors.
- New xcolor homepage: www.ukern.de/tex/xcolor.html
- Bugfix: \xdefinecolor sometimes did not normalise its parameters.
- Changes:
 - slight improvements of the documentation;
 - example file ${\tt xcolor1.tex}$ reorganised and abridged.

2004/02/04 v1.08

- New commands:
 - \selectcolormodel to change the target model within a document;
 - \adjustUCRBG to fine-tune undercolor-removal and black-generation during conversion to cmyk.
- Bugfix: color expressions did not work correctly in connection with active '!' character, e.g. in case of \usepackage[frenchb]{babel}.
- Code re-organisation:
 - \XC@xdefinecolor merged into \xdefinecolor, making the first command obsolete;
 - several internal commands improved/streamlined.

2004/01/20 v1.07

- New feature: support for color masking and color separation.
- New commands:
 - \rmultiply to multiply a dimension register by a real number;
 - \xcolorcmd to pass commands that are to be executed at the end of the package.
- Changes:
 - more consistent color handling: extended colors now always take precedence over standard colors;
 - several commands improved by using code from the L⁴TEX kernel.
- Documentation: some minor changes.
- Example files: additional pstricks examples (file xcolor2.tex).

2003/12/15 v1.06

- New feature: extended color expressions, allowing for cascaded mix operations, e.g. \color{red!30!green!40!blue}.
- Documentation: new section on color expressions.
- Bugfix: color series stepping did not work correctly within non-displaying commands like \extractcolorspec{foo!!+} (this bug was introduced in v1.05).
- Renamed commands: \ukfileversion and similar internal constants renamed to \XCfileversion etc.
- Removed commands: \ifXCpst and \ifXCtable made obsolete by a simple trick.

2003/11/21 v1.05

- Bugfixes:
 - package option hideerrors should now work as expected;
 - usage of '.' in the first color expression in a document caused an error due to incorrect initialisation.
- Code re-organisation: \extractcolorspec now uses \XC@splitcolor, making \XC@extract obsolete.

2003/11/09 v1.04

- New feature: easy access to current color within color expressions.
- New option: override to replace \definecolor by \xdefinecolor.
- New command: \tracingcolors for logging color-specific information.

2003/09/21 v1.03

- Change: bypass strange behaviour of some drivers.
- New feature: driver-sharing with hyperref.

2003/09/19 v1.02

• Change: \extractcolorspec and \colorlet now also accept color series as arguments.

2003/09/15 v1.01

- New feature: \definecolorseries and friends.
- Documentation: removed some doc-related side-effects.
- Code re-organisation: all calculation-related tools put to one place.
- Bugfixes:
 - \Ordivide: added \relax to fix problem with negative numerators;
 - \rowc@l@rs: replaced \@ifempty by \@ifxempty.

2003/09/09 v1.00

• First published release.

Index

Numbers written in italic refer to the page where the corresponding entry is described; numbers underlined refer to the code line of the definition; numbers in roman refer to the code lines where the entry is used.

Α	cmy 7 8 11 02 20	DarkCyan 16
\adjustUCRBG 8, 39	cmy 7, 8, 11, 23, 30, 34, 36, 38–40, 42	DarkGoldenrod 16
- ·		DarkGray 16
arguments $\langle color \rangle$ 10, 12	gray 5, 7, 8, 11, 13, 30, 34,	DarkGreen 16
	36, 38, 39, 42, 43	
$\langle core\ model \rangle$. 10, 11	hsb 4,	DarkGrey 16 DarkKhaki 16
$\langle dec \rangle \dots 9, 10$	7, 8, 11, 30–32,	DarkMagenta 16
$\langle div \rangle \dots 9, 10$	34, 36, 37, 40–43	DarkOliveGreen . 16
$\langle empty \rangle$ 9, 10	rgb 5,	DarkOrange 16
$\langle expr \rangle \dots 10, 11$	7, 8, 11, 15, 23,	DarkOrchid 15, 16
$\langle ext \ expr \rangle \dots 10, 12$	26, 30, 34, 36–43	DarkRed 16
$\langle int \rangle \dots 9, 10$	'named' 11, 17, 46	DarkSalmon 16
$\langle minus \rangle$ 9, 10	color names	DarkSeaGreen 16
$\langle mix \ expr \rangle$ 10, 11	AliceBlue 16	DarkSeaGreen 16 DarkSlateBlue 16
$\langle model \rangle \dots 10, 11$	AntiqueWhite 16	
$\langle name \rangle \dots 10, 11$	Antique V inte 1 10 Apricot 1 15	DarkSlateGray 16
$\langle num \ model \rangle$. 10, 11	Aquamarine . 15, 16	DarkSlateGrey 16
$\langle num \rangle \dots g, 10$		DarkTurquoise 16
$\langle pct \rangle$	Aqua 16	DarkViolet 16
$\langle plus \rangle$ 9, 10	Azure 16	DeepPink 16
$\langle postfix \rangle$ 10, 11	Beige 16	DeepSkyBlue 16
$\langle prefix \rangle$ 10, 11	Bisque 16	DimGray 16
$\langle spec \rangle$ 10, 11	Bittersweet 15	DimGrey 16
$\langle type \rangle$ 10, 11	Black 15, 16	DodgerBlue 16
_	BlanchedAlmond . 16	Emerald 15
В	BlueGreen 15	FireBrick 16
\blendcolors 22	BlueViolet 15, 16	FloralWhite 16
\blendcolors* 22	Blue 15, 16	ForestGreen . 15, 16
_	BrickRed 15	Fuchsia 15, 16
\mathbf{C}	Brown 15, 16	Gainsboro 16
\color 18	BurlyWood 16	GhostWhite 16
color expression 17	BurntOrange 15	Goldenrod 15, 16
color models	CadetBlue 15, 16	Gold 16
Gray γ ,	CarnationPink 15	Gray 15, 16
8, 11, 30, 34, 42, 43	Cerulean 15	GreenYellow . 15, 16
$HSB \ \ldots \ \gamma,$	Chartreuse 16	Green 15, 16
8, 11, 30, 34, 41, 43	Chocolate 16	Grey 16
HTML . 7, 8, 11,	Coral 16	Honeydew 16
30, 34, 38, 43, 46	CornflowerBlue 15, 16	HotPink 16
RGB . 7, 8, 11, 15,	Cornsilk 16	IndianRed 16
30, 34, 38, 42, 46	Crimson 16	Indigo 16
cmyk $4, 5, 7, 8, 11,$	Cyan 15, 16	Ivory 16
14, 22, 30, 34,	Dandelion 15	JungleGreen 15
36, 38-40, 42, 47	DarkBlue 16	Khaki 16

	4.0	O D 1 45 4	C 1171
LavenderBlush		OrangeRed 15, 16	
Lavender 15,		Orange 15, 16	
LawnGreen	16	Orchid 15, 16	· · · · · · · · · · · · · · · · · · ·
LemonChiffon	16	PaleGoldenrod 10	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
LightBlue	16	PaleGreen 10	Tonow aroun . 10, 10
LightCoral	16	PaleTurquoise 10	9 YellowOrange 15
$LightCyan \dots$	16	PaleVioletRed 10	9 Yellow 15, 16
LightGoldenrodYel-		PapayaWhip 10	β black
low	16	PeachPuff 10	6 . 4, 6, 7, 14, 19–22
$LightGray \dots$	16	Peach 18	blue 5, 14, 18–21
$LightGreen \dots$	16	Periwinkle 18	5 brown 14, 46
$LightGrey \dots$	16	Peru 10	
$LightPink \dots \dots$	16	PineGreen 1	
$LightSalmon \dots$	16	Pink 10	foo
$LightSeaGreen \dots$	16	Plum 15, 16	$gray \dots 4, 14, 19-21$
LightSkyBlue	16	PowderBlue 10	
LightSlateGray	16	ProcessBlue 18	green 4, 5, 14, 18
LightSlateGrey	16	Purple 15, 16	$\frac{1}{6}$ lightgray 14
LightSteelBlue	16	RawSienna 1	$\tilde{1}$ magenta 14, \mathbb{Z}
Light Yellow	16	RedOrange 18	$orange \dots 14, 46$
LimeGreen 15,		RedViolet 1	5 purple 14, 46
Lime	16	Red 15, 16	red 4-6, 14, 18-21
Linen	16	Rhodamine 18	violet $\dots 14, 46$
Magenta 15,	-	RosyBrown 10	white 1 5 11 10-91
Mahogany	15 15	RoyalBlue 15, 16	reller / 1 / 10 00
Maroon 15,		RoyalPurple 15, 16	color set 18
	10	RubineRed 18	\colorbox 18
${\small Medium Aquama-} \ .$	10		\colorlot 17
rine		SaddleBrown 10) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
MediumBlue	16	Salmon 15, 16) ·
MediumOrchid	16	SandyBrown 10	, , , , , , , , , , , , , , , , , , , ,
MediumPurple	16	SeaGreen 15, 16	-
MediumSeaGreen	16	Seashell 10	D
MediumSlateBlue	16	Sepia 1) \
MediumSpring-		Sienna 10)
$Green \dots$		Silver 10	,
Medium Turquoise	16	SkyBlue 15, 16	definecolorset 17
MediumVioletRed	16	SlateBlue 10	\mathcal{G} \DefineNamedColor . 18
Melon	15	SlateGray 10	
MidnightBlue 15,	16	SlateGrey 10	
$MintCream \dots$	16	Snow 10	
$MistyRose \dots$	16	SpringGreen . 15, 16	
Moccasin	16	SteelBlue 16	
Mulberry	15	Tan 15, 10	6 \fcolorbox 18
$NavajoWhite \dots$	16	TealBlue 1	5 files
NavyBlue	15	Teal 10	dvipsnam.def $15, 18$
Navy	16	Thistle 15, 16	g eps
OldLace	16	Tomato 10	
OliveDrab	16	Turquoise 15, 16	
OliveGreen	15	VioletRed 18	•
Olive	16	Violet 15, 16	
011.0	10	, 10100 10, 10	pourions.boy 0, 7

G	HSB 6, 7, 9	colortbl 7, 28, 43
\GetGinDriver 6	HTML 6, 7, 9	color
\GinDriver 6	RGB 6, 7, 9	4-7, 15, 17, 18,
	cmyk 6, 7, 9, 22	26, 29-32, 43-45
Н	cmy 6, 7, 9	doc 48
\hiderowcolors 28	dvipdfm 5, 30	dvips 46
	dvipdf 5, 30	fp
I	dvipsnames	graphics 30
$\label{local_state} $$ \if convert colors D 9$	6, 7, 14, 15, 45	hyperref
$\label{linear_convert} \$ g	dvipsone \dots 5, 30	6, 7, 26, 28, 44, 48
\ifglobalcolors 18	dvips	pstcol 6, 7, 43
\ifmaskcolors 23	5, 6, 15, 30, 32, 45	pstricks 7, 45, 47
	dviwindo $5,30$	realcalc 31
\mathbf{K}	dviwin 5, 30	soul 19, 46
keys	emtex 5, 30	xcolor
citebordercolor 26	gray 6, 7, 9	. 1, 4-9, 11, 14,
citecolor 26	hideerrors . $6, 7, 48$	17, 18, 23, 25,
filebordercolor 26	hsb 6, 7, 9	26, 29-32, 43-46
filecolor 26	hyperref 6, 7, 26, 45	\pagecolor 18
linkbordercolor 26	hypertex 6	\providecolor 17
linkcolor	monochrome 6, 30	\providecolorset 18
menuborder color . 26	natural 6, 7, 9	_
menucolor 26	, ,	\mathbf{R}
	nodvipsnames . $6, 45$	
pageborder color 26	nodvipsnames $.$ $6, 45$ override $.$ $.$ $6, 45, 48$	\rangeGray 8
pagebordercolor 26 $pagecolor$ 26	nodvipsnames $.6, 45$ override $6, 45, 48$ oztex $5, 30$	\rangeGray 8 \rangeHSB 8
pagebordercolor 26 pagecolor 26 pdfborder 28	override $$ $6,$ $45,$ 48	\rangeGray 8 \rangeHSB 8 \rangeRGB 8
pagebordercolor26pagecolor26pdfborder28runbordercolor26	override 6, 45, 48 oztex 5, 30	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
pagebordercolor	override 6, 45, 48 oztex 5, 30 pctex32 5, 30	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
pagebordercolor	override $6, 45, 48$ oztex $5, 30$ pctex32 $5, 30$ pctexhp $5, 30$	\rangeGray
pagebordercolor 26 pagecolor 26 pdfborder 28 runbordercolor 26 urlbordercolor 26 urlcolor 26	override $6, 45, 48$ oztex $5, 30$ pctex32 $5, 30$ pctexhp $5, 30$ pctexps $5, 30$	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
pagebordercolor 26 pagecolor 26 pdfborder 28 runbordercolor 26 runcolor 26 urlbordercolor 26 urlcolor 26 xcitebordercolor 26	override . 6, 45, 48 oztex . 5, 30 pctex32 . 5, 30 pctexhp . 5, 30 pctexps . 5, 30 pctexwin . 5, 30	\rangeGray 8 \rangeHSB 8 \rangeRGB 8 \resetcolorseries 25 \rowcolors 28 \rowcolors* 28 \rownum 28
pagebordercolor 26 pagecolor 26 pdfborder 28 runbordercolor 26 urlbordercolor 26 urlcolor 26	override . 6, 45, 48 oztex 5, 30 pctex32 5, 30 pctexhp 5, 30 pctexps 5, 30 pctexwin 5, 30 pdftex . 5, 17, 30, 32	\rangeGray
pagebordercolor 26 pagecolor 26 pdfborder 28 runbordercolor 26 runcolor 26 urlbordercolor 26 xcitebordercolor 26 xfilebordercolor 26	override . 6, 45, 48 oztex 5, 30 pctex32 5, 30 pctexhp 5, 30 pctexps 5, 30 pctexwin 5, 30 pdftex . 5, 17, 30, 32 pst 6, 7 rgb 6, 7 showerrors 6, 7	\rangeGray 8 \rangeHSB 8 \rangeRGB
pagebordercolor26pagecolor26pdfborder28runbordercolor26runcolor26urlbordercolor26urlcolor26xcitebordercolor26xfilebordercolor26xlinkbordercolor26xmenubordercolor26	override . 6, 45, 48 oztex 5, 30 pctex32 5, 30 pctexhp 5, 30 pctexps 5, 30 pctexwin 5, 30 pdftex . 5, 17, 30, 32 pst 6, 7 rgb 6, 7, 9	\rangeGray 8 \rangeHSB 8 \rangeRGB 25 \rowcolors 28 \rowcolors* 28 \rownum 28 S \selectcolormodel 8 shade 4
pagebordercolor 26 pagecolor 26 pdfborder 28 runbordercolor 26 runcolor 26 urlbordercolor 26 urlcolor 26 xcitebordercolor 26 xfilebordercolor 26 xlinkbordercolor 26 xmenubordercolor 26	override . 6, 45, 48 oztex 5, 30 pctex32 5, 30 pctexhp 5, 30 pctexps 5, 30 pctexwin 5, 30 pdftex . 5, 17, 30, 32 pst 6, 7 rgb 6, 7 showerrors 6, 7	\rangeGray
$\begin{array}{ccccc} pagebordercolor & 26 \\ pagecolor & 26 \\ pdfborder & 28 \\ runbordercolor & 26 \\ runcolor & 26 \\ urlbordercolor & 26 \\ urlbordercolor & 26 \\ urlcolor & 26 \\ xcitebordercolor & 26 \\ xfilebordercolor & 26 \\ xlinkbordercolor & 26 \\ xmenubordercolor & 26 \\ xpagebordercolor & 26 \\ xpagebordercolor & 26 \\ \end{array}$	override . 6, 45, 48 oztex . 5, 30 pctex32 . 5, 30 pctexhp . 5, 30 pctexps . 5, 30 pctexwin . 5, 30 pdftex . 5, 17, 30, 32 pst . 6, 7 rgb . 6, 7, 9 showerrors . 6, 7 svgnames 6, 7, 15, 16 table . 6, 7 tcidvi . 5, 30	\rangeGray 8 \rangeHSB 8 \rangeRGB 25 \rowcolors 28 \rowcolors* 28 \rownum 28 S \selectcolormodel 8 shade 4
pagebordercolor	override . 6, 45, 48 oztex . 5, 30 pctex32 . 5, 30 pctexhp . 5, 30 pctexps . 5, 30 pctexwin . 5, 30 pdftex . 5, 17, 30, 32 pst . 6, 7 rgb . 6, 7 showerrors . 6, 7 svgnames 6, 7, 15, 16 table . 6, 7 tcidvi . 5, 30 textures . 5, 30, 44	\rangeGray
pagebordercolor	override . 6, 45, 48 oztex . 5, 30 pctex32 . 5, 30 pctexhp . 5, 30 pctexps . 5, 30 pctexwin . 5, 30 pdftex . 5, 17, 30, 32 pst . 6, 7 rgb . 6, 7 showerrors . 6, 7 svgnames 6, 7, 15, 16 table . 6, 7 tcidvi . 5, 30 textures . 5, 30, 44 truetex . 5, 30	\rangeGray
pagebordercolor	override . 6, 45, 48 oztex . 5, 30 pctex32 . 5, 30 pctexhp . 5, 30 pctexps . 5, 30 pctexwin . 5, 30 pdftex . 5, 17, 30, 32 pst . 6, 7 rgb . 6, 7 showerrors . 6, 7 svgnames 6, 7, 15, 16 table . 6, 7 tcidvi . 5, 30 textures . 5, 30, 44 truetex . 5, 30 usecolors . 31	\rangeGray
pagebordercolor 26 pagecolor 26 pdfborder 28 runbordercolor 26 runcolor 26 urlbordercolor 26 urlcolor 26 xcitebordercolor 26 xfilebordercolor 26 xlinkbordercolor 26 xmenubordercolor 26 xpagebordercolor 26 xpdfborder 28, 45 xrunbordercolor 26 xurlbordercolor 26 xurlbordercolor 26	override . 6, 45, 48 oztex . 5, 30 pctex32 . 5, 30 pctexhp . 5, 30 pctexps . 5, 30 pctexwin . 5, 30 pdftex . 5, 17, 30, 32 pst . 6, 7 rgb . 6, 7, 9 showerrors . 6, 7 svgnames 6, 7, 15, 16 table . 6, 7 tcidvi . 5, 30 textures . 5, 30, 44 truetex . 5, 30 usecolors . 31 usenames . 6, 32, 45	\rangeGray
pagebordercolor 26 pagecolor 26 pdfborder 28 runbordercolor 26 runcolor 26 urlbordercolor 26 urlcolor 26 xcitebordercolor 26 xfilebordercolor 26 xlinkbordercolor 26 xmenubordercolor 26 xpdfborder 28, 45 xrunbordercolor 26 xurlbordercolor 26 xurlbordercolor 26 M \maskcolors \maskcolors 23	override . 6, 45, 48 oztex . 5, 30 pctex32 . 5, 30 pctexhp . 5, 30 pctexps . 5, 30 pctexwin . 5, 30 pdftex . 5, 17, 30, 32 pst . 6, 7 rgb . 6, 7, 9 showerrors . 6, 7 svgnames 6, 7, 15, 16 table . 6, 7 tcidvi . 5, 30 textures . 5, 30, 44 truetex . 5, 30 usecolors . 31 usenames . 6, 32, 45 vtex . 5, 30	\rangeGray
pagebordercolor 26 pagecolor 26 pdfborder 28 runbordercolor 26 runcolor 26 urlbordercolor 26 urlcolor 26 xcitebordercolor 26 xfilebordercolor 26 xlinkbordercolor 26 xmenubordercolor 26 xpdfborder 28 xrunbordercolor 26 xrunbordercolor 26 xurlbordercolor 26 xurl	override . 6, 45, 48 oztex . 5, 30 pctex32 . 5, 30 pctexhp . 5, 30 pctexps . 5, 30 pctexwin . 5, 30 pdftex . 5, 17, 30, 32 pst . 6, 7 rgb . 6, 7, 9 showerrors . 6, 7 svgnames 6, 7, 15, 16 table . 6, 7 tcidvi . 5, 30 textures . 5, 30 usecolors . 31 usenames . 6, 32, 45 vtex . 5, 30 xdvi . 5, 30	\rangeGray
pagebordercolor 26 pagecolor 26 pdfborder 28 runbordercolor 26 runcolor 26 urlbordercolor 26 urlcolor 26 xcitebordercolor 26 xfilebordercolor 26 xlinkbordercolor 26 xmenubordercolor 26 xpdfborder 28, 45 xrunbordercolor 26 xurlbordercolor 26 xurlbordercolor 26 M \maskcolors \maskcolors 23	override . 6, 45, 48 oztex . 5, 30 pctex32 . 5, 30 pctexhp . 5, 30 pctexps . 5, 30 pctexwin . 5, 30 pdftex . 5, 17, 30, 32 pst . 6, 7 rgb . 6, 7, 9 showerrors . 6, 7 svgnames 6, 7, 15, 16 table . 6, 7 tcidvi . 5, 30 textures . 5, 30, 44 truetex . 5, 30 usecolors . 31 usenames . 6, 32, 45 vtex . 5, 30	\rangeGray