Algorithm Design & Analysis (CSE222)

Lecture-8

Recap

• Fibonacci numbers

Recap

Fibonacci numbers

```
M = \{\}
Fig(n)
1 if n == 1
 return 0
3 if n == 2
  return 1
  if M[n] is not empty
      return M[n]
  else
      M[n] = Fib(n-1) + Fib(n-2)
  return M[n]
```

Recap

Fibonacci numbers

- Collection of non-adjacent heavy set
 - Greedy approach need not be optimal

1, 5, 8, 5, 4, 7

Outline

- Collection of non-adjacent heavy set
 - Dynamic Programming

Vertex Cover

Collection of non-adjacent heavy set

Subproblem:

MaxWt[k] = The weight of an optimal set B* \subseteq {b₁, b₂, ..., b_k} such that no two balls are adjacent to each other and their sum of weights is maximum. $B^* = \frac{1}{2}b_{i_1}, b_{i_2}, -\frac{1}{2}b_{i_4}$ If k = 0 then MaxWt[0] = 0

OPT for 16, 52. - 52-29

If k = 0 then MaxWt[0] = 0. If k = 1 then MaxWt[0] = b_1 .

Claim: Let B* be a collection of non-adjacent balls and their sum is maximum. We call B* be the optimal solution for the set $\{b_1, b_2, ..., b_k\}$.

- 1. If $b_k \in B^*$, then $B^* \setminus \{b_k\}$ is an optimal solution for $\{b_1, b_2, ..., b_{k-2}\}$.
- 2. If $b_k \notin B^*$, then B^* is an optimal solution for $\{b_1, b_2, ..., b_{k-1}\}$.

Proof by contradiction

- Identify the proposition (P) that has to be proved.
- Assume P is false, i.e., ~P is true.
- Check if, ~P being true implies falsehood, i.e., two mutually contradictory assertions (e.g., Q and ~Q both are true).
- Since, P being false leads to contradiction, hence P has to be true.

$$P \rightarrow 2$$
 $(NPV2)$
 $P \cap N2$

Claim: Let B* be a collection of non-adjacent balls and their sum is maximum. We call B* be the optimal solution for the set $\{b_1, b_2, ..., b_k\}$.

1. If $b_k \in B^*$, then B* \ $\{b_k\}$ is an optimal solution for $\{b_1, b_2, ..., b_{k-2}\}$.

Proof: If $b_k \in B^*$ then $b_{k-1} \notin B^*$.

C is upf of $(b_1, b_2, \dots, b_{1k-2})$

Claim: Let B* be a collection of non-adjacent balls and their sum is maximum. We call B* be the optimal solution for the set $\{b_1, b_2, ..., b_k\}$.

1. If $b_k \in B^*$, then B* \ $\{b_k\}$ is an optimal solution for $\{b_1, b_2, ..., b_{k-2}\}$.

<u>Proof:</u> If $b_k \in B^*$ then $b_{k-1} \notin B^*$. Suppose, $B^* \setminus \{b_k\}$ is not an optimal solution for the set $\{b_1, b_2, ..., b_{k-2}\}$. Let, $C \subseteq \{b_1, b_2, ..., b_{k-2}\}$ be optimal solution for the set.

outdon for the set.

$$W(c) = \sum w(b) > \sum w(b)$$

$$b \in C$$

$$C (1/5 k) \lor c$$

$$C (1/5$$

Claim: Let B* be a collection of non-adjacent balls and their sum is maximum. We call B* be the optimal solution for the set $\{b_1, b_2, ..., b_k\}$.

1. If $b_k \in B^*$, then B* \ $\{b_k\}$ is an optimal solution for $\{b_1, b_2, ..., b_{k-2}\}$.

<u>Proof:</u> If $b_k \in B^*$ then $b_{k-1} \notin B^*$. Suppose, $B^* \setminus \{b_k\}$ is not an optimal solution for the set $\{b_1, b_2, ..., b_{k-2}\}$. Let, $C \subseteq \{b_1, b_2, ..., b_{k-2}\}$ be optimal solution for the set.

Compare W(C) with W(B* \ $\{b_k\}$)

Claim: Let B* be a collection of non-adjacent balls and their sum is maximum. We call B* be the optimal solution for the set $\{b_1, b_2, ..., b_k\}$.

- 1. If $b_k \in B^*$, then $B^* \setminus \{b_k\}$ is an optimal solution for $\{b_1, b_2, ..., b_{k-2}\}$.
- 2. If $b_k \notin B^*$, then B^* is an optimal solution for $\{b_1, b_2, ..., b_{k-1}\}$.

Claim: Let B* be a collection of non-adjacent balls and their sum is maximum. We call B* be the optimal solution for the set $\{b_1, b_2, ..., b_k\}$.

- 1. If $b_k \in B^*$, then $B^* \setminus \{b_k\}$ is an optimal solution for $\{b_1, b_2, ..., b_{k-2}\}$.
- 2. If $b_k \notin B^*$, then B^* is an optimal solution for $\{b_1, b_2, ..., b_{k-1}\}$.

<u>Proof:</u> If $b_k \notin B^*$ then $B^* \subseteq \{b_1, b_2, ..., b_{k-1}\}$. Suppose, $C \subseteq \{b_1, b_2, ..., b_{k-1}\}$ be an optimal solution set.

Compare W(C) with W(B*)

Recurrence

For k > 1,
$$\max Wt[k] = \max \{\max Wt[k-1], w(k) + \max Wt[k-2]\}$$

Example, 1, 5, 8, 5, 4, 7
 $M(0) = 0$, $M(1) = 1$
 $M(2) = \max (1, 5+0) = 5$
 $M(3) = \max (5, 8+1) = 9$

M(y) = max(9,5+5)=10

Algorithm

Input: Weights of Balls Output: Maximum Weight of non-adjacent set.

```
MaximumWeight(W)
   MaxWt[0] = 0; MaxWt[1] = W[1];
  for i=2\cdots |W|
3
        t_1 = W[i] + \text{MaxWt}[i-2];
        t_2 = \text{MaxWt}[i-1];
5
        if (t_1 > t_2)
6
             MaxWt[i] = t_1;
        else
8
             MaxWt[i] = t_2;
   return MaxWt[|W|]
```

Running time: O(|W|)

Independent Set

For a given graph G = (V,E), a set of vertices $S \subseteq V(G)$ is independent if for every pair $u, v \in S$, $(u, v) \notin E(G)$.

Question: How can we efficiently compute the maximum weighted independent set in a path graph?

Outline

- Collection of non-adjacent heavy set
 - Dynamic Programming

Vertex Cover

Given an undirected graph G = (V, E), a set of vertices $S \subseteq V(G)$ is a vertex cover if for $(u, v) \in E(G)$, $u \in S$ or $v \in S$ (or both).

In a weighted graph (weights on vertices) G = (V, E, Wt), a vertex cover S is called the minimum weighted vertex cover of G if Wt(S) is minimum among all possible vertex covers.

{V1, V2, V4}? {V2, V3, V5}? ~~~~ {V1, V4, V5}?~~~~

Input: Weighted rooted tree. T = (V, E, Wt)

Output: Find vertex cover with minimum total weight.

Assume its a binary tree. For every vertex $x \in V(T)$, T_x be a subtree rooted at x.

Input: Weighted rooted tree. T = (V, E, Wt)

Output: Find vertex cover with minimum total weight.

Assume its a binary tree. For every vertex $x \in V(T)$, T_x be a subtree rooted at x.

For every $x \in V(T)$ define following subproblems

- MVC(x,1): Weight of a minimum weight vertex cover of T_x that contains x.
- MVC(x,0): Weight of a minimum weight vertex cover of T_x that does not contains x.
- VC(x): Minimum weight vertex cover of T_x.

Define VC(x): min (MVK(M1), MVC(N10))

Subproblem of VC

$$MVC(n, 0) = 17$$

 $MVC(n, 1) = 15$
 $VC(n) = 15$

$$MVC(411)=20$$
 $VC(41=19)$
 $MVC(410)=19$

VC(x)?

Recurrence of Subproblem

How to represent MVC(y) using its child's VC() / MVC(),

MVC(y,0) must account MVC(y1,1) & MVC(y2,1).

Recurrence of Subproblem

How to represent MVC(y) using its child's VC() /

MVC().

$$MVC(y,0) = MVC(y1,1) + MVC(y2,1)$$

$$MVC(y, 1) = Wt(y) + \min \begin{cases} MVC(y1, 0) + MVC(y2, 0), \\ MVC(y1, 0) + MVC(y2, 1), \\ MVC(y1, 1) + MVC(y2, 0) \end{cases}$$

If y is a leaf then, MVC(y,0) = 0 & MVC(y,1) = Wt(y).

Algorithm

For VC(z), compute MVC(z,0) & MVC(z,1)

For MVC(z,0), compute MVC(x,1) & MVC(y,1)

• So on...

Use postorder traversal.

A	3	1			-	[2]
						35
10	7	15	2	7	20 /	59
_				0 0 17 0	0 0 17 0 0	0 0 17 0 0 19 10 7 15 2 7 20

Reference

Slides