

University of Colorado Boulder

Spring 2019 **Tony Wong**

CSCI 3022: Intro to Data Science

Lecture 16: Introduction to Hypothesis Testing

Announcements and reminders

- HW 3 posted! And due Monday 18 March (2 weeks)
- Feedback survey on Canvas (closes 18 March)

https://canvas.colorado.edu/courses/24706/quizzes/53010

Previously, on CSCI 3022...

Proposition: If X is a normally distributed random variable with mean μ and standard deviation σ , then Z follows a standard normal distribution if we define:

$$Z=rac{X-\mu}{\sigma}$$
 and $X=\sigma Z+\mu$

Fun fact: If Z is a standard normal random variable, then we can compute probabilities using the standard normal cdf $\Phi(z) = P(Z \le z) = \int_{-z}^{z} f(x) \ dx$

A
$$100 \cdot (1-\alpha)\%$$
 confidence interval for the mean μ when the value of σ is known is given by

$$\left[\bar{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \quad \bar{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \right]$$
 or $\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$

A Thought Experiment

Example: After the introduction of the Euro, Polish mathematicians claimed that the new Belgian 1 Euro coin is not a fair coin. S'pose I hand you a Belgian 1 Euro coin. How could you decide whether or not it is fair?

P + 0.5

F | 100 + m e | 65 | 65 |

Statistical hypotheses

Definition: A <u>statistical hypothesis</u> is a claim about the value of a parameter of a population characteristic. Parameters : m pop mean

6² pop varrance

p pop proportion

Examples:

- S'pose the recovery time of a person suffering from a disease is normally distributed with mean μ₁ and standard deviation σ₁
 Hypothesis: μ₁ > 10 days
- S'pose μ₂ is the recovery time of a person suffering from the same disease, but also given some kind of new treatment.
 Hypothesis: μ₂ < μ₁
- S'pose μ₁ is the mean internet speed for Comcast and μ₂ is the mean internet speed for Century Link.
 Hypothesis: μ₁ ≠ μ₂

In any hypothesis-testing problem, there are always **two competing hypotheses** under consideration:

The objective of **hypothesis testing** is to choose, based on sampled data, between two competing hypotheses about the value of a population parameter

Classic Jury Analogy

Consider a jury in a criminal trial.

When a defendant is accused of a crime, the jury **presumes** that he or she is **not guilty**

 \rightarrow Null hypothesis: $H_0 = \text{not guilty}$

The jury is then presented with **evidence**. If the evidence seems implausible under the assumption of non-guilt, we might **reject the null hypothesis** of non-guilt, and claim that the defendant is (likely) **guilty**

 \rightarrow Evidence supported the Alternative hypothesis: $H_1 = guilty$

Is there strong evidence for the alternative hypothesis?

- The burden of proof is placed on those that believe the alternative claim
- The initially-favored claim (H₀) will not be rejected in favor of the alternative claim (H₁) unless the sample evidence provides enough support for the alternative
- 1) Reject H₀ (in favor of H₁)

 - Fail to reject the null hypothesis H_o

" we don't say " we accept H,"

Never prove to is true/prove to

Why assume the Null Hypothesis?

- Sometimes we don't want to accept a particular assertion unless (or until) data can be shown to strongly support it
 - Reluctance (cost, time, effort) to change

 H_A or 14, : always what we want to find evidence

 in favor of

Example: S'pose a company is considering hiring a new outside advertising company to help generate traffic to their website. Under their current advertising, they get 200,000 hits/day on average.

With μ denoting the true average number of hits/day they'd get using the new company's advertising, they would not want to switch companies (because it would be costly) unless evidence strongly suggested that μ exceed 200,000.

Example: S'pose a company is considering hiring a new outside advertising company to help generate traffic to their website. Under their current advertising, they get 200,000 hits/day on average. With µ denoting the true average number of hits/day they'd get using the new company's advertising, they would not want to switch companies (because it would be costly) unless evidence strongly suggested that μ exceed 200,000.

An appropriate problem formulation for hypothesis testing would be:

The conclusion that action is justified is identified with the alternative hypothesis, and it would take conclusive evidence to justify rejecting H₀ and switching to the new company.

$$\theta = \mu_1$$
 or r^2 or p

The alternative to the null hypothesis H_0 : $\theta = \theta_0$ will look like one of the following assertions

1)
$$\theta > \theta_0$$
 $\mu > 200,000$

- The equals sign is **always** in the null hypothesis
- The alternative hypothesis is the one for which we are seeking statistical evidence

The alternative hypothesis is the one for which we are seeking statistical some books:
$$H_0: P \leq -5$$
 US: $P \leq 0.5$

The alternative to the null hypothesis H_0 : $\theta = \theta_0$ will look like one of the following assertions (and variations of these)

- 1) $\theta > \theta_0$
- 2) $\theta < \theta_0$
- 3) $\theta \neq \theta_0$
- The equals sign is **always** in the null hypothesis
- The alternative hypothesis is the one for which we are seeking statistical evidence

Definition: A <u>test statistic</u> is a quantity derived from the sample data and calculated assuming that the <u>null hypothesis</u> is true. It is used in the decision about whether or not to reject the <u>null hypothesis</u>.

Intuition:

- We can think of the test statistics as our evidence about the competing hypotheses
- We consider the test statistic under the assumption that the null hypothesis is true by asking questions like

How likely would we be to obtain this evidence if the null hyp were true?

How likely would we be to obtain this evidence if the null hyp were true?

Example: To determine if the Belgian 1 Euro coin is fair, you flip it 100 times and record the number of heads. What is the test statistic? What are the null and alternative hypotheses?

Test statistic:
$$X = \# \text{ flips that come up heads}$$

Null Hypothesis; $H_0: P=0.5$

Alt Hyp: $H_1: P \# 0.5$

How likely would we be to obtain this evidence if the null hyp were true?

Example: To determine if the Belgian 1 Euro coin is fair, you flip it 100 times and record the number of heads. What is the test statistic? What are the null and alternative hypotheses?

How likely would we be to obtain this evidence if the null hyp were true?

Example: To determine if the Belgian 1 Euro coin is fair, you flip it 100 times and record the number of heads. What is the test statistic? What are the null and alternative hypotheses?

Question: What would it take to convince **you** that the coin is not fair? Let's say we wanted a 95% CI -> 5% area in the tails with a lot of flips/Assume to true;

Rejection regions and significance level

Example: To determine if the Belgian 1 Euro coin is fair, you flip it 100 times and record the number of heads. What is the test statistic? What are the null and alternative hypotheses?

Definition: The <u>rejection region</u> is a range of values of the test statistic that would lead you to L= 1_[confidence level] reject the null hypothesis.

Definition: The <u>significance level</u> α indicates the largest probability of the test statistic occurring under the null hypothesis that would lead you to reject the null hypothesis.

Example: To determine if the Belgian 1 Euro coin is fair, you flip it 250 times and it comes up heads 139 times. Do you reject the null at the 0.1 significance level or not?

Ho:
$$p = 0.5$$

H₁: $p \neq 0.5$

total area in tail

Bet our z_{crit} critical value by calculate test statistice: Assume Hors true

$$\frac{139}{250} \sim N (\hat{p} = 0.5, 8^2 - P(1-P))$$

Box-Moller to standardizes

$$\frac{139}{250} \sim 0.5$$
P-P $\frac{139}{250} \sim 0.5$

P-P $\frac{139}{250} \sim 0.5$

Test statistice

$$\frac{139}{250} \sim 0.5$$
The standardizes

$$\frac{139}{250} \sim 0.5$$
The standardizes are tail

$$\frac{139}{250} \sim 0.5$$
The standardizes are tail are tail

$$\frac{139}{250} \sim 0.5$$
The standardizes are tail

$$\frac{139}{250} \sim 0.5$$
The standardizes are tail

$$\frac{139}{250} \sim 0.5$$
The standardizes are tail are tail

$$\frac{139}{250} \sim 0.5$$
The standardizes are tail

$$\frac{139}{250} \sim 0.5$$
The standardizes are tail are tail

$$\frac{139}{250} \sim 0.5$$
The standardizes are tail are tail

$$\frac{139}{250} \sim 0.5$$
The standardizes are tail are tail

$$\frac{139}{250} \sim 0.5$$

Example: To determine if the Belgian 1 Euro coin is fair, you flip it 250 times and it comes up heads 139 times. Do you reject the null at the 0.1 significance level or not?

$$H_0: p = 0.5$$

 $H_1: p \neq 0.5$ $\left(1 - \frac{0.1}{2}\right) = 0.95$

$$\alpha = 0.1 \rightarrow z_{\alpha/2} = \text{stats.norm.ppf}(0.95) = 1.645$$

extreme than
$$z_{crit} = \pm 1.645$$
How many flips 10 to 7 signs. Level

$$\Rightarrow z = \frac{\frac{139}{250} - 0.5}{\sqrt{\frac{0.5(1 - 0.5)}{250}}}$$

 $=\ldots\approx1.771$

$$z < -z_{\alpha/2}$$
 or $z > z_{\alpha/2}$

$$\rightarrow$$
 z = 1.771 > $z_{\alpha/2}$ = 1.645

→ Conclusion: evidence

6 This nuter depend on sig. level 1. c & 5

Example: To determine if the Belgian 1 Euro coin is fair, you flip it 250 times and it comes up heads 139 times. Do you reject the null at the 0.05 significance level or not?

Example: To determine if the Belgian 1 Euro coin is fair, you flip it 250 times and it comes up heads 139 times. Do you reject the null at the 0.05 significance level or not?

We still find
$$z = 1.77$$

$$\left(1 - \frac{2}{3}\right) = 0.976$$

What changes? Now z_{crit} is given by: $\alpha = 0.05 \rightarrow z_{\alpha/2} = stats.norm.ppf(0.975) = 1.96$

$$\rightarrow$$
 z = 1.77 is **not** in the rejection region

1.685

Different tests for different hypotheses

The coin example was an example of a **two-tailed hypothesis test**, because we would have rejected the null hypothesis if the coin had been biased towards heads **or** towards tails

Alternative hypothesis	Rejection region for level α test		
H_1 : $\theta > \theta_0$	$z \ge z_{\alpha}$		
H_1 : $\theta < \theta_0$	$z \le -z_{\alpha}$		
H_1 : $\theta \neq \theta_0$	$(z \ge z_{\alpha/2})$ or $(z \le -z_{\alpha/2})$		

Switching advertising strategies

Example: S'pose a company is considering hiring a new outside advertising company to help generate traffic to their website. They currently get 200 thousand hits/day, with a standard deviation of 50 thousand hits per day. Suppose they hire the new ad agency for a 30-day trial. During those 30 days, their website gets 210 thousand hits/day. Perform a statistical hypothesis test to determine if the new ad campaign outperforms the old one at the 0.05 significance level.

Switching advertising strategies

Example: S'pose a company is considering hiring a new outside advertising company to help generate traffic to their website. They currently get 200 thousand hits/day, with a standard deviation of 50 thousand hits per day. Suppose they hire the new ad agency for a 30-day trial. During those 30 days, their website gets 210 thousand hits/day. Perform a statistical hypothesis test to determine if the new ad campaign outperforms the old one at the 0.05 significance level.

Testing H_0 : $\mu \le 200$ against H_1 : $\mu > 200$

 α = 0.05 and one-tail

→ rejection region critical value:

$$z_{crit} = norm.ppf(0.95) = 1.645$$

Test statistic:

$$X \sim N\left(200, \frac{50^2}{30}\right)$$
$$210 - 200$$

$$\Rightarrow z = \frac{210 - 200}{\frac{50}{\sqrt{30}}}$$

$$\approx 1.095$$

 \Rightarrow 1.095 < 1.645, so fail to reject H_o

Important assumptions

Question: What assumptions did we make in the previous example?

Important assumptions

Question: What assumptions did we make in the previous example?

- 1) Assumed that the CLT would hold -- n=30 samples (days)
- 2) Assumed that we can represent the distributions involved as Normal

Emerica in home of heads to	. 45	Ho true	Ho falso	
Errors in hypothesis te	sting Rej. Ho	type 1 Error	\ddot{c}	
Definitions:	Fasl to reject	· ·	Type 2 error	

A **Type I Error** occurs when the null hypothesis is incorrectly rejected (it was, in fact, true)

 $\rightarrow \text{false positive}$

A **Type II Error** occurs when the null hypothesis is incorrectly not rejected (it was false)

 $\rightarrow \textbf{false negative}$

Question: What is the probability we commit a Type I Error?

2 = P(P(or other T.s) just happens by chance to land in the rejection region)

2= P(

Errors in hypothesis testing

Definitions:

A **Type I Error** occurs when the null hypothesis is incorrectly rejected (it was, in fact, true)

 \rightarrow false positive

A **Type II Error** occurs when the null hypothesis is incorrectly not rejected (it was false)

→ false negative

Question: What is the probability we commit a **Type I Error**?

Answer: This is exactly the significance level α

Why we care: Choose φ by considering how willing you are to risk a Type I Error

What just happened?

- Hypothesis testing happened!
 - A way to formally ask questions like:

$$\mu_A \neq \mu_B$$
 or $\mu_A < \mu_B$

- **Significance level** -- how much evidence do you need in order to reject the null hypothesis?
- Rejection regions -- if your test statistic falls in here, you
 have evidence to reject the null hypothesis
- Type I and Type II Errors
 (false positives and negatives, respectively)

