Московский физико-технический институт

ФАКУЛЬТЕТ ИННОВАЦИЙ И ВЫСОКИХ ТЕХНОЛОГИЙ

Дискретный анализ

Лектор: А.М. Райгородский

КОНСПЕКТ ЛЕКЦИЙ автор: Александр Марков 1 июня 2017 г.

Оглавление

1	1 ce	еместр		3
	1.1	Асимі	птотики комбинаторных величин	3
		1.1.1	Количество треугольников в $G(n, r, s)$	3
		1.1.2	Асимптотика биномиальных коэффициентов	4
	1.2	Основ	вы теории графов	6
		1.2.1	Определения. Деревья	6
		1.2.2	Унициклические графы	8
		1.2.3	Эйлеровы графы	10
		1.2.4	Планарные графы	11
		1.2.5	Гамильтоновы графы	13
	1.3	Случа	айные графы	16
		1.3.1	Немного о случайном блуждании	16
		1.3.2	Модель Эрдеша-Реньи случайного графа	16
		1.3.3	Теоремы о связности случайного графа	17
		1.3.4	Теоремы о хроматическом числе случайного графа	19
		1.3.5	Жадный алгоритм поиска χ, α, ω	23
	1.4	Основ	зы линейно-алгебраического метода	26
		1.4.1	Определение экстремальных велечин в гиперграфе	26
		1.4.2	Оценки для $f(n, k, t)$	26
		1.4.3	Оценки для $h(n,k,t)$ и $m(n,k,t)$	28
		1.4.4	Асимптотические оценки	30
	1.5	Хрома	атическое число пространства	32
2	2 00	MOCED		34
4		2 семестр 2.1 Турановские результаты		
	2.1	v -	евские задачи	34 36
	۷.۷	2.2.1	Оценки чисел Рамсея	36
				36
		2.2.2	Лиагональные числа Рамсея	- 50

	2.2.3	R(3,t)	42
	2.2.4	Двудольные диагональные числа Рамсея	43
2.3	Систе	мы общих представителей	46
	2.3.1	Тривиальные оценки	46
	2.3.2	Жадный алгоритм	46
	2.3.3	Конструктивная оценка размера минимальной соп	50
2.4	Разме	рность Вапника-Червоненкиса	51
	2.4.1	Теорема Вапника-Червоненкиса	51
	2.4.2	Некоторое практическое применение	55
2.5	Матри	ицы Адамара	57
	2.5.1	Гипотеза Адамара	57
	2.5.2	Раскраски гиперграфов	58
2.6	Кнезе	ровский граф	60
	2.6.1	Определение и некоторые свойства	60
	2.6.2	Хроматическое число кнезеровского графа	60

Глава 1

1 семестр

1.1 Асимптотики комбинаторных величин

1.1.1 Количество треугольников в G(n, r, s)

Определение 1.1.1. Графом называется пара множеств (V, E) = G, где V – множество каких-то объектов, а E – множество пар объектов из V.

Опишем некотрый граф G(n, r, s), где $n, r, s \in \mathbb{N}$.

Рассмотрим множество $\{1, \ldots, n\} =: [n]$. Пусть множество вершин описываемого графа V(n, r) - множество всех r-элементных подмножеств в [n]. Нетрудно понять, что $|V| = C_n^r$. Соединим две вершины этого графа ребром, если мощность их пересечения равна в точности s.

Утверждение 1.1.1.1. В графе G(n, r, s) число ребер равно $|E| = \frac{1}{2} C_n^r C_r^s C_{n-r}^{r-s}$

Доказательство. Разберем что написано: C_n^r – кол-во r-элементных подмножеств. C_r^s – кол-во способов выбрать s элементов из этого множества, по которым оно будет пересекаться с другим множеством. C_{n-r}^{r-s} – кол-во способов добрать оставшиеся элементы во 2-е множество. Деление на 2 возникает, т.к. каждое ребро было посчитано дважды.

Определение 1.1.2. Граф называется регулярным, если степени всех его вершин равны.

Для примера, граф $G(n,\,r,\,s)$ – регулярен. $\deg(v)=C_r^s\cdot C_{n-r}^{r-s}$

Утверждение 1.1.1.2. Количество треугольников в графе G(n, r, s) равно

$$\frac{|E|}{3} \Big(\sum_{i=0}^{s} C_s^i C_{r-s}^{s-i} C_{r-s}^{s-i} C_{n-2r+s}^{r-2s+i} \Big).$$

Доказательство. Зафиксируем 2 вершины, соединенные ребром. Кол-во способов сделать это |E|. Пусть i это мощность пересечения зафиксированных 2-х подмножеств с 3. Тогда:

• C_s^i – кол-во способов выбрать i элементов в пересечение всех троих множеств $v_1 \cap v_2 \cap v_3$

- C^{s-i}_{r-s} кол-во способов выбрать элементы в $v_2 \cap v_3$ и $v_3 \cap v_1$.
- В v_3 выбрано i+(s-i)+(s-i)=2s-i элементов. Т.к. $|v_3|=r$, то необходимо выбрать еще r-2s+i элементов, отличных от уже выбранных и не лежащих в $v_1 \cup v_2$. Кол-во способов сделать это C_{n-2r+s}^{r-2s+i}

• Деление на 3 возникает, т.к. каждый треугольник был посчитан три раза.

При $r=\frac{n}{2},\; s=\frac{n}{4}$ сумма в 1.1.1.2 равна: (для удобства $k=\frac{n}{4}$)

$$\sum_{i=0}^{k} \left(C_k^i \right)^4,$$

а значит, было бы приятно знать, чему равна сумма четвертых степеней биномиальных коэффициентов. Или же, чему она *асимптотически равна*.

1.1.2 Асимптотика биномиальных коэффициентов

Определение 1.1.3. Пусть даны две функции $f, g : \mathbb{N} \to \mathbb{R}$. Тогда они называются асимптотически равными при $n \to \infty$, если f(n) = (1 + o(1))g(n) или, что эквивалентно, $\lim_{n \to +\infty} \frac{f(n)}{g(n)} = 1$. Обозначение $f \sim g$.

Пример 1.1.1. Рассмотрим C_{2n}^n . Понятно, что

$$\frac{2^{2n}}{2n+1} \leqslant C_{2n}^n \leqslant 2^{2n}.$$

Логарифмируя, получаем:

 $2n \ln 2 - \ln(2n+1) \leqslant \ln C_{2n}^n \leqslant 2n \ln 2 \Rightarrow 2n \ln 2 (1 - \frac{\ln(2n+1)}{2n \ln 2}) \leqslant \ln C_{2n}^n \leqslant 2n \ln 2 \Rightarrow 2n \ln 2 (1 + o(1)) \leqslant \ln C_{2n}^n \leqslant 2n \ln 2 \Rightarrow \ln C_{2n}^n \sim 2n \ln 2$

Обозначение: Если a_n – некоторая функция и $\ln a_n \sim cn$, c>0, то $\ln a_n \sim cn \iff a_n=(e^c+o(1))^n$

Теорема 1.1.1. Формула Стирлинга $(6/\partial)$

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$
.

Теорема 1.1.2. Пусть $a \in (0, 1)$. Тогда

$$C_n^{[an]} = \left(\frac{1}{a^a(1-a)^{1-a}} + o(1)\right)^n.$$

Доказательство. Распишем $C_n^{[an]} = \frac{n!}{[an]!(n-[an])!} = \frac{\sqrt{2\pi n} \left(\frac{n}{e}\right)^n}{\sqrt{2\pi [an]} \left(\frac{[an]}{e}\right)^{[an]} \sqrt{2\pi (n-[an])} \left(\frac{(n-[an])}{e}\right)^{(n-[an])}} = P(n) \frac{n^n}{(an)^{an}(n-an)^{n-an}} = \left(\frac{1}{a^a(1-a)^{1-a}}\right)^n P(n)$

где
$$P(n) = \frac{\sqrt{2\pi n}}{\sqrt{2\pi[an]}\sqrt{2\pi(n-[an])}}.$$

Тогда

$$\ln C_n^{[an]} = \ln P(n) + n \ln \left(\frac{1}{(a)^a (1-a)^{1-a}} \right) \sim n \ln \left(\frac{1}{(a)^a (1-a)^{1-a}} \right)$$

что и требовалось.

(Поскольку $[an]^{[an]} = (an - \varepsilon)^{an-\varepsilon} \sim (an)^{an} (an)^{-\varepsilon} e^{-\varepsilon}$, а два последних множителя при логарифмировании "пропадают").

3 aмечание. Найдем асимптотику C_n^k при различных k.

$$C_n^k = \frac{n(n-1)\dots(n-k+1)}{k!} \leqslant \frac{n^k}{k!}$$

$$\frac{n(n-1)\dots(n-k+1)}{k!} = \frac{n^k}{k!} \exp\left[\ln\frac{n(n-1)\dots(n-k+1)}{n^k}\right] \leqslant \frac{n^k}{k!} \exp\left[-\frac{1}{n} - \frac{2}{n} - \dots - \frac{k-1}{n}\right]$$

$$= \frac{n^k}{k!} \exp\left[\frac{-k(k-1)}{2n}\right]$$

$$\frac{n(n-1)\dots(n-k+1)}{k!} = \frac{n^k}{k!} \exp\left[\frac{-k(k-1)}{2n} + o\left(\frac{1}{n^2} + \dots + \frac{(k-1)^2}{n^2}\right)\right] = \frac{n^k}{k!} \exp\left[\frac{-k(k-1)}{2n} + o\left(\frac{k^3}{n^2}\right)\right]$$

Следствие. При $k^2=o(n),\;(m.e.\;k=o(\sqrt{n})\;)$ имеем $C_n^k\sim \frac{n^k}{k!}.$

Следствие. При $k^3 = o(n^2)$, $(m.e.\ k = o\left(n^{\frac{2}{3}}\right)\ u\ o\left(\frac{k^3}{n^2}\right) \to 0)$, а значит $C_n^k \sim \frac{n^k}{k!}e^{-\frac{k^2}{2n}}$.

1.2 Основы теории графов

1.2.1 Определения. Деревья

Определение 1.2.1. Графом называется пара множеств (V, E) = G, где V – множество каких-то объектов, а E — множество пар объектов из V.

Определение 1.2.2. Маршрутом в графе G = (V, E) называется последовательность $v_1 e_1 v_2 \dots e_n v_{n+1}$. (e_i и v_i могут повторяться).

- Если $v_1 = v_{n+1}$, то маршрут называется замкнутым.
- Если все e_i в маршруте различны, то замкнутый маршрут называется *циклом*, а незамкнутый $uenbo\ (nymem)$.
- Цепь(цикл) называется простой (-ым), если все вершины в нем различны.

Определение 1.2.3. Граф называется *связным*, если любые две вершины графа соединены маршрутом.

Определение 1.2.4. Дерево — связный граф без циклов.

Теорема 1.2.1. Для любого графа G следующие утверждения эквивалентны:

- 1. $G \partial epeso$,
- 2. между любыми 2-мя вершинами G есть ровно один простой путь,
- 3. G связный граф и количество ребер в G на единицу меньше количества вершин,
- $4.\ \, {\it 6} \, \, {\it G} \,$ нет циклов и количество ребер в ${\it G}$ на единицу меньше количества вершин.

Доказательство. 1) \Rightarrow 2):

Граф G — связен \Rightarrow между любыми вершинами есть хотя бы 1 маршрут. Если же между какими-то 2-мя вершинами есть 2 пути, то значит в G найдется цикл. Путь не может зайти в одну вершину два раза, т.к. это противоречит ацикличности, а значит любой путь в графе G — простой.

$$2) \Rightarrow 3)$$
:

Очевидно, что G — связен. Докажем, что |E| = |V| - 1 по индукции по числу вершин. Для |V| = 1, 2 утверждение очевидно. Предположим, что |V| = n, а утверждение верно для всех k < n. Удалим из графа G некоторое ребро. Т.к. между любыми двумя вершинами существует **ровно один** простой путь, то G распался на 2 компоненты связности. Применим предположение индукции для каждой из них и получим требуемое.

$$3) \Rightarrow 4)$$
:

Если в G есть цикл, то одно из его ребер можно удалить из графа без потери связности. Получим связный граф на n вершинах с n-2 ребрами, чего быть не может.

 $4) \Rightarrow 1)$:

Если в G несколько компонент связности, то хотя бы в одной из компонент число дуг не меньше числа вершин. Но тогда в ней есть цикл. \Box

Обозначим за t_n количество различных деревьев на n занумерованных вершинах. Выпишем первые значения

$$t_1 = 1$$

$$t_2 = 1$$

$$t_3 = 3$$

$$t_4 = 16$$

$$t_5 = 125$$

Интуитивно можно догадаться до следующего утверждения:

Теорема 1.2.2. (формула Кэли)

Пусть
$$n > 1$$
. Тогда $t_n = n^{n-2}$.

Доказательство. Построим биекцию между помеченными деревьями и словами длины n-2 над алфавитом $\{1, \ldots, n\}$ (Эта биекция называется коды Прюфера). Для этого используется следующим очевидным утверждением:

Утверждение 1.2.1.1. В каждом дереве на n>1 вершинах есть висячая вершина (вершина степени 1). $(6/\partial)$

Докажем инъективность кодов Прюфера по индукции. Случаи когда |V|=2, 3 проверяются руками. Предположим, что два различных дерева T_1, T_2 отвечают одному коду $v_1 \dots v_n, v_i \in \{1, \dots, n\}$. Возможны следующие случаи:

- 1. Листы с наименьшем номером в T_1 и T_2 различны. Но тогда различны их коды Прюфера. (т.к. каждая вершина v_i появляется в коде ровно $\deg(v_i) 1$ раз.
- 2. Листы с наименьшим номером совпадают, но различны их соседи. Но тогда их коды отличаются по очевидным причинам.
- 3. Если совпадают листы с наименьшими номерами и их соседи, то первое число кодов деревьев совпадают, но после вычеркивания остаются два дерева, коды которых различны по предположению индукции.

Примем факт того, что φ — сюръекция, без доказательства.

1.2.2 Унициклические графы

Определение 1.2.5. Граф G называется yнициклическим, если он связен и содержит ровно один цикл.

Обозначим за U(n) количество унициклических графов на n вершинах. Достаточно трудно, но можно понять, что справедлива формула

$$U(n) = \sum_{r=3}^{n} C_n^r \frac{(r-1)!}{2} n^{n-1-r} r$$

где

- 1. $r \in \{3, \ldots, n\}$ длина единственного цикла,
- 2. C_n^r число способов выбрать r вершин в цикл,
- 3. $\frac{(r-1)!}{2}$ число способов расставить на них цикл,
- 4. Пусть цикл состоит из вершин v_1, \ldots, v_r . Если выкинуть ребра цикла, то останется лес из r деревьев на n вершинах, где i-ое дерево содержит v_i . Таких деревьев ровно $n^{n-1-r}r$.

Теорема 1.2.3.

$$U(n) \sim \sqrt{\frac{\pi}{8}} n^{n - \frac{1}{2}}.$$

Доказательство.

$$U(n) = \sum_{r=3}^{n} C_n^r \frac{(r-1)!}{2} n^{n-1-r} r$$

$$= \frac{1}{2} n^{n-1} \sum_{r=3}^{n} n(n-1) \dots (n-r+1) n^{-r}$$

$$= \frac{1}{2} n^{n-1} \sum_{r=3}^{n} (1 - \frac{1}{n}) \dots (1 - \frac{r-1}{n})$$

Рассмотрим отдельно $\sum\limits_{r=3}^{n} \left(1-\frac{1}{n}\right) \dots \left(1-\frac{r-1}{n}\right)$. По доказанному ранее

$$\sum_{r=3}^{n} \left(1 - \frac{1}{n}\right) \dots \left(1 - \frac{r-1}{n}\right) =$$

$$= \sum_{r=3}^{\lfloor n^{0.6} \rfloor} \left(1 - \frac{1}{n}\right) \dots \left(1 - \frac{r-1}{n}\right) + \sum_{r=\lfloor n^{0.6} \rfloor + 1}^{n} \left(1 - \frac{1}{n}\right) \dots \left(1 - \frac{r-1}{n}\right)$$

$$= S_1 + S_2,$$

Оценим сначала S_2 :

$$S_{2} \leq \sum_{r=[n^{0.6}]+1}^{n} \exp\left[-\frac{r(r-1)}{2n}\right]$$

$$\leq \sum_{r=[n^{0.6}]+1}^{n} \exp\left[-\frac{n^{0.6}(n^{0.6}-1)}{2n}\right]$$

$$= \sum_{r=[n^{0.6}]+1}^{n} \exp\left[-\frac{n^{1.2}(1+o(1))}{2n}\right]$$

$$= \sum_{r=[n^{0.6}]+1}^{n} \exp\left[-\frac{n^{0.2}(1+o(1))}{2}\right]$$

$$< ne^{-\frac{n^{0.2}(1+o(1))}{2}} \to 0$$

Теперь оценим S_1 . Для этого заметим сначала, что при $r>\sqrt{n}$ дробь $\frac{-r(r-1)}{2n}\to -\infty \Rightarrow \exp\left[\frac{-r(r-1)}{2n}\right]\to 0$, а при $r< n^{\frac{2}{3}}:\ O(\frac{r^3}{n^2})=o(1)$. Тогда имеем

$$S_{1} \sim \sum_{r=3}^{[n^{0.6}]} \exp\left[-\frac{r(r-1)}{2n} + O(\frac{r^{3}}{n^{2}})\right]$$

$$\sim \sum_{r=3}^{[n^{0.6}]} \exp\left[-\frac{r(r-1)}{2n}\right]$$

$$\sim \sum_{r=3}^{[n^{0.6}]} \exp\left[-\frac{r^{2}}{2n}\right]$$

$$= \sum_{r=0}^{\infty} \exp\left[-\frac{r^{2}}{2n}\right] - \sum_{r=0}^{2} \exp\left[-\frac{r^{2}}{2n}\right] - \sum_{r=[0.6n]+1}^{\infty} \exp\left[-\frac{r^{2}}{2n}\right]$$

Очевидно, что $\sum\limits_{r=0}^{2} \exp\left[-\frac{r^2}{2n}\right] \to 3$ при $n \to \infty,$ а

$$\sum_{r=0}^{\infty} \exp\left[-\frac{r^2}{2n}\right] \sim \int_{r=0}^{\infty} e^{-\frac{r^2}{2n}} dr$$

$$= \sqrt{n} \int_{x=0}^{\infty} e^{-\frac{x^2}{2}} dx$$

$$= \sqrt{n} \frac{\sqrt{\pi 2}}{2} = \sqrt{\frac{\pi n}{2}}$$

$$\sum_{r=[n^{0.6}]+1}^{\infty} \exp\left[-\frac{r^2}{2n}\right] = \sum_{r=[n^{0.6}]+1}^{n^2} \exp\left[-\frac{r^2}{2n}\right] + \sum_{n^2+1}^{\infty} \exp\left[-\frac{r^2}{2n}\right]$$

Аналогично оценке S_2 , $S_1' \leqslant \sum_{r=[n^{0.6}]+1}^{n^2} e^{-\frac{n^{1,2}}{2n}} < n^2 e^{-\frac{n^{0,2}}{2}} \to 0$. Для того, чтобы оценить S_2' заметим, что отношение соседних слагаемых в S_2' на самом деле не превосходит e^{-n} . Действительно

$$e^{-\frac{(r+1)^2-r^2}{2n}} = e^{-\frac{2r-1}{2n}} < e^{-\frac{r}{n}} < e^{-n}.$$

Тогда имеем:

$$S_2' < \exp\left[-\frac{(n^2+1)^2}{2n}\right](1+e^{-n}+e^{-2n}+\ldots) = \exp\left[-\frac{(n^2+1)^2}{2n}\right]\frac{1}{1-e^{-n}} \to 0.$$

Итого получается

$$U(n) \sim \frac{1}{2}n^{n-1}(S_1 + S_2) \sim \frac{1}{2}n^{n-1}\sqrt{\frac{\pi n}{2}} = \sqrt{\frac{\pi}{8}}n^{n-\frac{1}{2}}.$$

1.2.3 Эйлеровы графы

Определение 1.2.6. Граф называется *эйлеровым*, если он является циклом (т.е. существует простой замкнутый маршрут, проходящий по всем ребрам этого графа).

Теорема 1.2.4. Для связного графа следующие утверждения эквивалентны:

- 1. граф эйлеров,
- 2. степень каждой вершины графа четная,
- 3. множество ребер графа распадается в объединение непересекающихся по ребрам простых циклов.

Доказательство. 1) \Rightarrow 2): Очевидно.

$$2) \Rightarrow 3)$$
:

Зафиксируем вершину x_1 . Выберем любого его соседа x_2 . Так как $\deg(x_2)>0$ и четная, то $\exists x_3\neq x_1\in V$, связанный ребром с x_2 . Будем идти далее по произвольному ребру из только что выбранной вершины x_k , пока не вернемся в одну из уже выбранных вершин. Тогда мы найдем некоторый простой цикл Z_1 . Удалим все его ребра из G и получим новый граф, возможно с несколькими компонентами связности. Проделаем аналогичную операцию в остальных компонентах и заметим при этом, что величина |V|+|E| уменьшается. Проделая так в каждой компаненте, мы разобьем множество E на требуемое объединение.

$$3) \Rightarrow 1)$$
:

Доказательство по индукции. Для одного простого цикла утверждение очевидно. Предположим что в G больше простых циклов. Удалим один простой цикл C. Полученный граф G' расподется на некоторые компоненты связности, каждая из которых распадается на простые циклы. Начнем обходить граф G по вершинам цикла C, причем если мы попали в вершину $v \in V$, лежащую в одной из компонент связности G', то обойдем ее по предположению индукции и вернемся в v. Продолжим идти по циклу C, обходя еще не посещенные компоненты связности G'. Таким образом, мы обойдем весь граф G. \square

1.2.4 Планарные графы

Определение 1.2.7. Пусть дан граф G = (V, E). Укладкой графа G на плоскости назовем пару отображений (F, H), такую что:

$$F:V\to S,\ S\subset\mathbb{R}^2,\ |S|<\infty$$
 — биекция

$$H:E \to$$
 некоторые гладкие кривые, т.ч. $(u,v) \in E \iff H(u,v)$ соединяет $F(u)$ с $F(v)$

Плоской (планарной) называют такую укладку, у которой никакая пара кривых, соответствующих ребрам графа G, не пересекается в точках, отличных от образа F, причем если две кривых пересекаются в вершине, то эта вершина является концом этих кривых.

Граф называется планарным, если существует его плоская укладка на плоскости.

Определение 1.2.8. *Гранъ* планарной укладки — область, ограниченная циклом или незамкнутой кривой и не содержащая циклов внутри себя.

Теорема 1.2.5. (Эйлер)

Пусть граф G связен и планарен, |V|=n, |E|=e. Тогда для любой его планарной укладки с числом граней f верно равенство

$$n - e + f = 2$$

Доказательство. Индукция по e-n.

$$\textit{База: } e-n=-1 \Rightarrow G-$$
 дерево и $f=1.$

Переход: Поскольку G не дерево, то в нем имеются циклы. Удалим из G одно ребро (из некоторого цикла), отделяющее две различные грани. Получим граф G', в котором f' = f - 1, e' = e - 1, n' = n. Тогда

$$2 = n' - e' + f' = n - (e - 1) + (f - 1) = n - e + f.$$

Следствие. Пусть G- связный планарный граф u есть какая-то его укладка. Пусть t- длина наименьшего цикла в G. Тогда

$$e \geqslant \frac{t}{2}f$$
.

Доказательство. Пусть e_i — число ребер, отделяющих i грань от других, $i=1,\ldots,f.$ Тогда

$$2e \geqslant \sum_{i=1}^{f} e_i \geqslant tk.$$

Следствие. Пусть G- связный планарный граф u есть какая-то его укладка. Пусть t- длина наименьшего цикла в G. Тогда

$$e \leqslant \frac{t}{t-2}(n-2).$$

Доказательство. По теореме Эйлера

$$2 = n - e + f \le n - e + \frac{2}{t}e = \frac{2 - t}{t}e + n.$$

Утверждение 1.2.4.1. Графы K_5 и $K_{3,3}$ не планарны.

Доказательство. Применяем следствие 1.2.4. Для K_5 : $n=5, e=10, t\geqslant 3$; для $K_{3,3}: n=6, e=9, t\geqslant 4$.

Утверждение 1.2.4.2. Если граф планарен, то $e \le 3n - 6$.

Доказательство.
$$e \leqslant \frac{t}{t-2}(n-2) \leqslant 3n-6$$
.

Определение 1.2.9. Граф G гомеоморфен графу H, если существует конечная цепочка преобразований f_1, \ldots, f_n , каждое из которых имеет один вид из следующих:

- 1. Изоморфизм графов.
- 2. Удаление ребра (u, v), добавление новой вершины w в граф и ребер (u, w), (w, v) разбиение ребра.
- 3. Удаление ребра (u, v) и вершин u, v, вставка новой вершины w, связанной ребрами со всеми, с кем были связаны u и v стягивание ребра (u, v),

которая начинается с G, а заканчивается в H.

Теорема 1.2.6. ($6/\partial$, Критерий Понтрягина-Куратовского)

 Γ раф планарен тогда и только тогда, когда он не содержит подграфа, гомеоморфного K_5 или $K_{3,3}$.

Определение 1.2.10. Граф H называется *минором* графа G, если из G можно получить H цепочкой преобразований, каждое из которых либо удаление, либо стягивание ребра.

Теорема 1.2.7. $(6/\partial, Kpumepuŭ Buзинга)$

 Γ раф G планарен тогда и только тогда, когда G не содержит подграфа, являющегося минором для K_5 или $K_{3,3}$.

Теорема 1.2.8. Вершины любого связного планарного графа G можно покрасить в 5 цветов так, чтобы любые две соседние вершины имели разный цвет.

Доказательство. Покажем сначала, что в G есть вершина степени ≤ 5 . Действительно, если $\forall v \deg v \geq 6$, то $e \geq \frac{1}{2} \sum \deg v_i \geq 3n$ — противоречие с утверждением 1.2.4.2.

Индукция по числу вершин.

База: n ≤ 5 ⇒ каждую вершину красим в свой цвет.

Шаг: Пусть v это вершина степени ≤ 5 . Если $\deg v < 5$, то удалим v, раскрасим оставшийся граф по предположению индукции в 5 цветов и покрасим v в оставшийся цвет.

Пусть $\deg v=5$ и все соседи v покрашены в разные цвета. Занумеруем связанные с v вершины по часовой стрелке: v_1, \ldots, v_5 . Пусть $V_{1,3}$ — все те вершины G, до которых можно дойти из v_1 только по вершинам 1 и 3 цвета. Если $v_3 \notin V_{1,3}$, то поменяем цвет всех вершин из $V_{1,3}$ на противоположный и покрасим v в первый цвет.

Если же $v_3 \in V_{1,3}$, то рассмотрим множество $V_{2,4}$ тех вершин, в которые можно дойти из вершины v_2 только по вершинам 2 и 4 цвета. Если $v_4 \in V_{2,4}$, то граф G не планарный, поскольку $V_{2,4}$ целиком содержится внутри цикла из вершин цветов 1, 3 и v. Тогда меняем цвет на противоположный в $V_{2,4}$ и красим v во второй цвет.

1.2.5 Гамильтоновы графы

Определение 1.2.11. Граф называется *гамильтоновым*, если существует простой цикл, проходящий через все вершины графа.

Теорема 1.2.9. (признак Дирака)

Если в связном графе n вершин степень любой вершины $\geqslant \frac{n}{2}$, то этот связный граф — гамильтонов.

Доказательство. Пусть $P = v_1 v_2 \dots v_k$ — самый длинный путь в графе G. Если v_1 смежна с некоторой вершиной $x \notin P$, то существует путь длиннее P — противоречие. Аналогичное рассуждение с $v_k \Rightarrow v_1$ и v_k смежны **только** с вершинами из P. Поскольку $\deg(v_1) \geqslant \frac{n}{2}$ и в графе нет петель, то $k \geqslant \frac{n}{2} + 1$. Утверждение 1.2.5.1. Существует $1 \leqslant j \leqslant k$, такое что v_j инцидентна с v_k , а v_{j+1} с v_1 .

Доказательство. Предположим, что такой ситуации не оказалось. Тогда в P есть как минимум $\deg(v_1)$ вершин, несвязанных с v_k (предыдущие в пути от соседей v_1). Поскольку все вершины, связанные с v_k находятся в пути и v_k не инцидентная сама с собой, то в P хотя бы $\deg(v_1) + \deg(v_k) + 1 = n + 1$ вершин. Противоречие.

Из утверждения следует, что в G существует простой цикл $C=v_{j+1}\dots v_kv_jv_{j-1}\dots v_1v_{j+1}$. Покажем, что этот цикл — гамильтонов. Предположим, что существует $v\in V\backslash C$. Поскольку граф связен, v должна быть связана каким-то путем с некоторой $v_i\in C$. Но тогда существует путь P'=v — путь от v до C — круг по C, длиннее чем P, что противоречит выбору P.

Определение 1.2.12. Пусть дан граф G = (V, E). Тогда его *числом независимости* называется число $\alpha(G) = \max\{k \in \mathbb{N} : \exists W \subseteq V : |W| = k \land \forall x, y \in W (x, y) \notin E\}$. Множество вершин W, между любыми двумя из которых нет ребра, называется *независимым* множеством вершин.

Определение 1.2.13. Вершинной связностью графа, обозначаемой k(G), называется минимальное количество вершин, в результате удаления которых граф перестает быть связным.

Теорема 1.2.10. (признак Эрдеша-Хватала)

Пусть G=(V,E) — граф, такой, что $|V|\geqslant 3$ и $\alpha(G)\leqslant k(G)$. Тогда G — гамильтонов.

Доказательство. Положим $n:=|V|\geqslant 3$.

Предположим сначала, что в G нет циклов. Поскольку $\alpha(G) \geqslant 1$ и $k(G) \geqslant \alpha(G)$, граф связный, а значит G это дерево. Т.к. $n \geqslant 3$, то в G есть хотя бы две несвязные висячие вершины (это упраженение), а значит

$$\begin{cases} \alpha(G)\geqslant 2\\ &\Rightarrow \text{ предположение неверно}\\ k(G)\leqslant 1 \end{cases}$$

а значит в G есть хотя бы один цикл.

Пусть $C = \{x_1, \dots, x_k\}$ — самый длинный простой цикл в G, причем k < n. Удалим из G все вершины, лежащие в C, и обозначим за W любую связную компоненту в оставшемся графе. Определим $N_W(G) = \{x \in V: x \notin W \land \exists y \in W: (x, y) \in E\}$. Сразу ясно, что $N_W(G) \subseteq C$ (действительно, связаность могла нарушиться только из-за удаления ребер в C). Более того, $N_W(G)$ не содержит $\{x_i, x_{i+1}\}$ для любого i из множества $\{1, \dots, k\}$ (положим $x_{k+1} = x_1$), иначе в G есть цикл, длиннее C (доказателство картинкой). Все вышесказанное означает, что $N_W(G) \subset C$ и $N_W(G) \neq C$, а значит $k(G) \leq |N_W(G)|$, поскольку

Рис. 1.1: цикл, длиннее чем C в первом случае

при удалении $N_W(G)$ множество W уже образует отдельную компоненту связности. Определим $M:=\{x_{i+1}\mid x_i\in N_W(G)\}=\{y_i\}$ — соседи всех x_i из $N_W(G)$, например, против часовой стрелки. Из рисунка выше следует, что $M\cap N_W(G)$ пусто $\Rightarrow |M|=|N_W(G)|\geqslant k(G)$. Заметим теперь, что M — независимое множество, иначе в G, опять-таки, есть цикл длиннее C (доказательство картинкой :)). а значит

Рис. 1.2: цикл, длиннее чем C во втором случае

 $|M| \leq \alpha(G)$, откуда $\alpha(G) \geqslant |M| \geqslant k(G)$.

Рассмотрим произвольную вершину $v \in W$ и множество $M \cup \{v\}$. Поскольку $N_W(G) \cap M = \emptyset$, то $M \cup \{v\}$ — тоже независимое множество, а значит $\alpha(G) \geqslant |M \cup \{v\}| = |M| + 1 \geqslant k(G) + 1 > k(G)$ — противоречие.

Следствие. Рассмотрим $G(n, 3, 1) - \varepsilon pa\phi$, $V = \{\overline{x} = (x_1, \ldots, x_n) : x_i \in \{0, 1\}, x_1 + \ldots + x_n = 3\} = \{A \subset \{1, \ldots n\} : |A| = 3\}, E = \{(\overline{x}, \overline{y}) : \langle \overline{x}, \overline{y} \rangle = 1\} = \{(A, B) : |A \cap B| = 1\}.$ Начиная с некоторого, $n \in \mathbb{R}$ этот $\varepsilon pa\phi - \varepsilon pawine$

Доказательство. Сначала поймем, почему для этого графа не применим признак Дирака. Действительно, $|V| = C_n^3 \sim \frac{n^3}{6}$, а степень любой вершины $\deg(x) = 3 \cdot C_{n-3}^2 \sim \frac{3n^2}{6}$, т.е. при больших n количество ребер, выходящих из каждой вершины, примерно в n раз меньше общего количества вершин. Воспользуемся теоремой Эрдеша-Хватала. Для этого найдем $\alpha(G)$ и k(G).

Пусть $W = \{x_1, \, \dots, \, x_s\}$ — независимое множество вершин в G. Это означает, что

$$\forall i \neq j, \ \langle x_i, \ x_j \rangle = \begin{cases} 0 \\ 2 \end{cases}$$

Это означает, что вектора $\{x_1, \ldots, x_s\}$ линейно-независимы в пространстве \mathbb{Z}_2^n . Действительно, рассмотрим их произвольную нулевую линейную комбинацию: $c_1x_1 + \ldots + c_nx_n = 0$ с $c_i \in \mathbb{Z}_2$. Умножение обеих частей равенства скалярно на x_i доказывает, что $c_i = 0$, откуда следует, что $|W| \leq \dim \mathbb{Z}_2^n = n \Rightarrow \alpha(G) \leq n$.

Рассмотрим теперь две несмежные вершины A и B и обозначим за $N \subset V$ множество их общих соседей. Легко понять, что $\min |N| \leq k(G)$. Рассмотирм случаи:

- 1. $A \cap B = \emptyset$. Тогда $|N| = 3 \cdot 3 \cdot C_{n-6}^1 = 9n 54$, что больше n при $n \geqslant 7$
- 2. $|A \cap B| = 1$. Тогда $|N| \ge C_{n-5}^2$ (посчитаны только соседи, пересекающиеся с A и B по их общему элементу), что с некоторого n тоже больше n.
- 3. $|A \cap B| = 2$. В таком случае $|N| \ge 2C_{n-4}^2$ (посчитаны только соседи, пересекающиеся с A и B по их общим элементам), что так же больше n с некоторого момента.

Мы получили, что начиная с некоторого n верно неравенство $\alpha(G) \leq k(G)$. По теореме Эрдеша-Хватала, граф G — гамильтонов.

Факт.

$$\alpha(G(n, 3, 1)) = \begin{cases} n, & n \equiv 0 \pmod{4}, \\ n - 1 & n \equiv 1 \pmod{4}, \\ n - 2 & unaue. \end{cases}$$

(попробуйте привести явную конструкцию)

1.3 Случайные графы

Предполагается, что читатель знаком с фактами из теории вероятностей, используемыми в этом разделе и далее в курсе, поэтому упоминаться и доказываться здесь отдельно они не будут.

1.3.1 Немного о случайном блуждании

Теорема 1.3.1. Рассмотрим модель простейшего симметричного случайного блуждания $S_n = \xi_1 + \dots + \xi_n$. Для удобства обозначим $S_n = \xi$. Тогда для любого a > 0 верно:

$$\mathsf{P}(\xi \geqslant a) \leqslant e^{-\frac{a^2}{2n}}.$$

Доказательство. Сначала проясним, почему эта оценка в значительной степени улучшает неравенство Чебышева. Заметим, что $\mathsf{E}\xi=0,$ а значит

$$\begin{split} \mathsf{P}(\xi \geqslant a) &= \mathsf{P}(\xi - \mathsf{E}\xi \geqslant a - \mathsf{E}\xi) \leqslant \mathsf{P}(|\xi - \mathsf{E}\xi| \geqslant a - \mathsf{E}\xi) = \\ &= \mathsf{P}(|\xi - \mathsf{E}\xi| \geqslant a) \leqslant \frac{\mathsf{D}\xi}{a^2} = \frac{n\mathsf{D}\xi_1}{a^2} = \frac{n}{a^2} \end{split}$$

Если взять $a=n^{\frac{2}{3}}$, то, по выше доказанному, $\mathsf{P}(\xi\geqslant a)\leqslant n^{-\frac{1}{3}}$. С другой стороны, применяя теорему, $\mathsf{P}(\xi\geqslant a)\leqslant\exp\left[-n^{\frac{1}{3}}/2\right]$, что с ростом n убывает к 0 значительно быстрее.

Приступим к доказательству теоремы: возьмем произвольное $\lambda > 0$. Получим

$$\mathsf{P}(\xi \geqslant a) = \mathsf{P}(\lambda \xi \geqslant \lambda a) = \mathsf{P}(e^{\lambda \xi} \geqslant e^{\lambda a}) \leqslant e^{-\lambda a} \mathsf{E} e^{\lambda a}.$$

Последняя оценка обусловлена неравенстом Маркова. Далее, т.к. $\xi_1, \dots \xi_n$ — независимые, имеем: $\mathsf{E} e^{\lambda \xi_1} \dots \mathsf{E} e^{\lambda \xi_n}$. При этом ясно, что

$$\mathsf{E}e^{\lambda\xi_i} = \frac{e^{\lambda} + e^{-\lambda}}{2} \leqslant e^{\frac{\lambda^2}{2}},$$

и в итоге

$$\mathsf{P}(\xi \geqslant a) \leqslant e^{-\lambda a} e^{n\frac{\lambda^2}{2}}.$$

Взяв $\lambda = \frac{a}{n}$ получаем требуемое.

Замечание. Это частный случай неравенства больших уклонений.

1.3.2 Модель Эрдеша-Реньи случайного графа

Для удобства будем считать, что множеством вершин случайного графа является $V = V_n = \{1, \ldots, n\}$.

Определение 1.3.1. Зафиксируем число вершин в графе n. Рассмотрим полный граф K_n и занумеруем все его ребра в некотором порядке: e_1, e_2, \ldots, e_N , где $N = C_n^2$. Пусть вероятность "появления" ребра в графе равна p, все ребра появляются с равной вероятностью и независимо друг от друга. Рассмотрим вероятностное пространство $(\Omega, \mathscr{F}, \mathsf{P})$, где $\Omega = \{$ множество последовательностей из 0 и 1 длины C_n^2 $\}$, $\mathscr{F}_n = 0$

 2^{Ω} , $P(G) = p^{|E|}q^{\binom{n}{2}-|E|}$ и |E| это число единиц в $\omega \in \Omega$. Тогда граф $G = G(n, p) = (\Omega_n, \mathscr{F}_n, P_{n, p})$ является моделью Эрдеша-Реньи случайного графа. При этом 0 на i-том месте означает отсутствие ребра e_i в графе, а 1 — присутствие.

Определение 1.3.2. Некоторое свойство A_n выполняется асимптотически почти наверное, если $P(A_n) \to 1, n \to \infty$.

Для знакомства со случайными графами полезно рассмотреть следующую теорему

Теорема 1.3.2. Пусть G(n, p) - cлучайный граф, вероятность появления ребра в котором равна $p = p(n) = o(\frac{1}{n})$. Тогда асимптотически почти наверное граф не содержит треугольников (т.е. подграфов K_3).

Доказательство. Рассмотрим случайную величину X равную числу треугольников в графе G. Нам нужно доказать, что $\mathsf{P}(X=0) \to 1$ при $n \to \infty$, что эквивалентно $\mathsf{P}(X\geqslant 1) \to 0$. Воспользуемся неравенством Маркова: $\mathsf{P}(X\geqslant 1) \leqslant \mathsf{E} X$. Покажем, что в случае $p=\frac{\alpha(n)}{n},\ \alpha(n) \to 0,\ n \to \infty$ математическое ожидание X стремится к 0.

Пусть t_1, \ldots, t_k — все тройки вершин из G. Нетрудно понять, что $k = C_n^3$. Введем случайные величины X_1, \ldots, X_k , такие что $X_i = I(t_i)$ образуют треугольник). Тогда, по свойствам математического ожидания, имеем

$$\mathsf{E} X = \mathsf{E} (X_1 + \ldots + X_k) = \mathsf{E} X_1 + \ldots + \mathsf{E} X_k = k \mathsf{E} X_1 = C_n^3 \mathsf{P} (t_1 \text{ образует треугольник}) =$$

$$= \frac{n(n-1)(n-2)}{6} p^3 = \frac{n(n-1)(n-2)\alpha^3}{6n^3} \sim \frac{\alpha^3}{6} \to 0, \ n \to \infty$$

откуда сразу следует требуемое утверждение.

1.3.3 Теоремы о связности случайного графа

Теорема 1.3.3. Рассмотрим случайный граф G(n, p). Пусть вероятность ребра в этом графе $p = p(n) = \frac{c \cdot \ln n}{n}$.

- 1. c > 1. Тогда асимптотически почти наверное случайный граф связан.
- $2.\ c < 1.\$ Тогда асимптотически почти наверное случайный граф не связан. Более того, в нем почти наверное содержатся изолированные вершины.
- 3. (6/d) $p = \frac{\ln n + \lambda + o(1)}{n}$. Тогда вероятность того, что граф связан, стремится к числу $e^{-e^{-\lambda}}$

Доказательство. 1. Покажем, что $P(G \text{ не связен}) \to 0$. Имеем

$$\begin{split} \mathsf{P}(G \text{ не связен }) &= \mathsf{P}\big(\text{ в графе есть хотя бы 2 компоненты связности}\big) \\ &= \mathsf{P}\big(\mathsf{в} \ G \text{ есть связные компоненты, содержащие} \leqslant n-1 \text{ вершин}\big) \\ &= \mathsf{P}\big(\bigcup_{k=1}^{n-1}\bigcup_{i=1}^{C_n^k} A_i^k \text{ образует к.с. в графе } G\big) \end{split}$$

где за $A_1^k, \ldots, A_{C_n^k}^k$ обозначим всевозможные подмножества V мощности k. Как известно, вероятность объединения не превосходит суммы вероятностей, а значит

$$\begin{split} \mathsf{P}(\bigcup_{k=1}^{n-1}\bigcup_{i=1}^{C_n^k}A_i^k \text{ образует к.с. в графе } G) &\leqslant \sum_{k=1}^{n-1}\sum_{i=1}^{C_n^k}\mathsf{P}(A_i^k \text{ образует к.с. в графе } G) \\ &\leqslant \sum_{k=1}^{n-1}\sum_{i=1}^{C_n^k}\mathsf{P}(\forall v \in A_i^k \ \forall w \in V \backslash A_i^k : \ (v, \ w) \notin E) \\ &= \sum_{k=1}^{n-1}\sum_{i=1}^{C_n^k}(1-p)^{k(n-k)} = \sum_{k=1}^{n-1}C_n^k(1-p)^{k(n-k)} \end{split}$$

Рассмотрим слагаемое при k=1. Воспользуемся тем, что $\ln(1+x)=x+o(x)$:

$$n(1-p)^{n-1} = ne^{(n-1)\ln(1-p)} = ne^{-pn(1+o(1))} = ne^{-c\ln n(1+o(1))} = \frac{n}{n^{c(1+o(1))}} \to 0.$$

Оставшуюся сумму оценим с помощью следующей идеи: обозначим за $a_k(n) = C_n^k (1-p)^{k(n-k)}$. Тогда

$$\sum_{k=1}^{n-1} a_k(n) \to 0 \Leftrightarrow \sum_{k=1}^{n/2} a_k(n) \to 0$$

поскольку $a_k(n)$ симметричны относительно центра $k_0 = \frac{n}{2}$. Предположим теперь, что выполнено неравенство

$$\frac{a_{k+1}(n)}{a_k(n)} \leqslant q(n) \to 0$$

В таком случае, имеем

$$\sum_{k=1}^{n/2} a_k(n) = a_1(n) \left(1 + \frac{a_2(n)}{a_1(n)} + \frac{a_3(n)}{a_2(n)} \cdot \frac{a_2(n)}{a_1(n)} + \dots \right) \leq a_1(n) (1 + q(n) + q^2(n) + \dots) < \frac{a_1(n)}{1 - q(n)} \to 0$$

Что ж, приступим к оценки оставшейся суммы:

$$\sum_{k=1}^{n/2} C_n^k (1-p)^{k(n-k)} = \sum_{k=1}^{n/\sqrt{\ln n}} a_k(n) + \sum_{k=n/\sqrt{\ln n}+1}^{n/2} a_k(n)$$

Оценим S_1 с помощью нашей идеи:

$$\frac{a_{k+1}(n)}{a_k(n)} = \frac{C_n^{k+1}(1-p)^{(k+1)(n-k-1)}}{C_n^k(1-p)^{k(n-k)}} = \frac{n-k}{k+1}(1-p)^{n-2k-1} <$$

$$< n(1-p)^{n-2k-1} \le n(1-p)^{n-\frac{2n}{\sqrt{\ln n}}-1} = n(1-p)^{n(1+o(1))}$$

$$= ne^{-pn(1+o(1))} = q(n) \to 0$$

а значит $S_1 \to 0$.

Займемся $S_2: k > \frac{n}{\sqrt{\ln n}}, \ k \leqslant \frac{n}{2}$. Для $a_k(n)$ имеем

$$a_k(n) = C_n^k (1-p)^{k(n-k)} < 2^n e^{-pk(n-k)} \le 2^n e^{-pk\frac{n}{2}} \le$$

$$\le 2^n \exp\left[-\frac{c \ln n}{n} \cdot \frac{n}{\sqrt{\ln n}} \cdot \frac{n}{2}\right]$$

$$= 2^n \exp\left[-\frac{c n \sqrt{\ln n}}{2}\right] = \exp\left[n \ln 2 - \frac{c}{2} n \sqrt{n}\right] \to 0$$

В таком случае вся сумма $S_2 \leqslant n \exp \left[n \ln 2 - \frac{c}{2} n \sqrt{n} \right] = \exp \left[\ln n + n \ln 2 - \frac{c}{2} n \sqrt{n} \right] \to 0$, откуда следует утверждение первого пункта теоремы.

2. Докажем, что в условиях 2) в графе а.п.н. есть изолированная вершина. Пусть X = X(G) — случайная величина, равная числу изолированных вершин в G, X_i — индикатор того, что $v_i \in V$ — изолированная. Найдем $\mathsf{D} X$. Легко понять, что

$$\mathsf{E}X = n(1-p)^{n-1} = ne^{(n-1)\ln(1-p)} = ne^{-pn(1+o(1))}$$

Далее

$$\mathsf{E}X^2 = \mathsf{E}X_1 + \ldots + \mathsf{E}X_n + \sum_{i \neq j} \mathsf{E}X_i X_j = n(1-p)^{n-1} + n(n-1)(1-p)^{2n-3}$$

а значит $DX = n(1-p)^{n-1} + n(n-1)(1-p)^{2n-3} - n^2(1-p)^{2n-2}$. Оценим P(в G есть изолированная вершина) по неравенству Чебышева.

$$\begin{split} \mathsf{P}(X\geqslant 1) &= 1 - \mathsf{P}(X\leqslant 0) = 1 - \mathsf{P}(\mathsf{E}X - X\geqslant \mathsf{E}X) \geqslant 1 - \mathsf{P}(|\mathsf{E}X - X|\geqslant \mathsf{E}X) \geqslant 1 - \frac{\mathsf{D}X}{(\mathsf{E}X)^2} \\ &= \frac{n(1-p)^{n-1} + n(n-1)(1-p)^{2n-3} - n^2(1-p)^{2n-2}}{(\mathsf{E}X)^2} = \\ &= \frac{1}{\mathsf{E}X} + \frac{n(n-1)(1-p)^{2n-3}}{n^2(1-p)^{2n-2}} - 1 = o(1) + 1 + o(1) - 1 = o(1) \to 0 \end{split}$$

поскольку $\frac{n(n-1)}{n^2}=1+o(1)$ и $\frac{(1-p)^{2n-3}}{(1-p)^{2n-2}}=\frac{1}{1-p}=1+o(1).$ Теорема доказана.

Теорема 1.3.4. (б/д) Рассмотрим случайный граф G(n, p), где $p = \frac{c}{n}$, c > 0.

- 1. если c<1, то $\exists \beta>0$ такая, что а.п.н. число вершин в каждой связной компоненте G не превосходит $\beta \ln n$,
- 2. если c > 1, то $\exists \beta > 0$, $\exists \gamma \in (0, 1)$ такие, что а.п.н. в G ровно одна связная компонента имеет $\geqslant \gamma n$ вершин, а все остальные связные компоненты состоят из $\leqslant \beta \ln n$ вершин.

1.3.4 Теоремы о хроматическом числе случайного графа

Определение 1.3.3. Хроматическим числом графа G называется величина $\chi(G) = \min\{k \in \mathbb{N}: V = V_1 \sqcup \ldots \sqcup V_k \ \forall i \ \forall x, \ y \in V_i \ (x, \ y) \notin E\}.$

Утверждение 1.3.4.1. $\chi(G) \geqslant \frac{|V|}{\alpha(G)}$.

Доказательство. Действительно,
$$|V| = \sum\limits_{i=1}^{\chi(G)} |V_i| \leqslant \chi(G) \cdot \max |V_i| \leqslant \chi(G) \cdot \alpha(G).$$

Определение 1.3.4. Кликовым числом графа G называется величина $\varkappa(G) = \max\{k \in \mathbb{N} : \exists W \subseteq V : |W| = k \land \forall x, y \in W (x, y) \in E\}.$

Заметим следующие очевидные соотношения между числом независимости, кликовым числом и хроматическим числом графа:

1.
$$\alpha(G) = \varkappa(\overline{G})$$

2.
$$\chi(G) \geqslant \max\{\varkappa(G), \frac{|V|}{\alpha(G)}\}$$

Теорема 1.3.5. А.п.н. число независимости $\alpha(G)$ графа $G(n, \frac{1}{2})$ не превосходит $2\log_2 n$.

Доказательство. Пусть $k := [2\log_2 n]$. Определим случайные величины $X_k(G) =$ количеству независимых множеств размера k в графе G. Тогда имеем

$$P(\alpha(G) < k) = P(X_k = 0) = 1 - P(X_k \ge 1) \ge 1 - EX_k = 1 - C_n^k 2^{-C_k^2}$$

Учитывая, что $k \in [2\log_2 n - 1, 2\log_2 n]$, получаем следующее

$$C_n^k 2^{-C_k^2} \leqslant \frac{n^k}{k!} 2^{-k(k-1)/2} = \frac{2^{k \log_2 n}}{k!} \cdot 2^{-\frac{k^2}{2} + \frac{k}{2}} \leqslant$$

$$\leqslant \frac{2^{2 \log_2^2 n} - \frac{(2 \log_2 n - 1)^2}{2} + \log_2 n}{k!} = \frac{2^{3 \log_2 n - \frac{1}{2}}}{k!} \to 0$$

поскольку

$$k! = [2\log_2 n]! > \left(\frac{k}{2}\right)^{\left(\frac{k}{2}\right)} > (\log_2 n - 1)^{\log_2 n - 1}$$

откуда $\mathsf{E} X_k \to 0 \Rightarrow \mathsf{P}(\alpha(G) < k) \to 1.$

Следствие. A.n.н. $\chi(G)\geqslant \frac{n}{2\log_2 n}$ для $G(n,\ \frac{1}{2}).$

Определение 1.3.5. Обхватом графа G называется величина g(G), равная длине кратчайшего цикла в графе.

Теорема 1.3.6. (Эрдёш, 1957)

$$\forall k, l \in \mathbb{N} \ \exists G = (V, E) : \ \chi(G) > k \land q(G) > l$$

Доказательство. Рассмотрим случайный граф G(n, p) с вероятностью ребра $p = p(n) = n^{\theta-1}$, где $\theta = \frac{1}{2l}$. Определим случайные величины X^r как количетсво простых циклов в графе G длины r и X_l , равные количество простых циклов длины $\leq l$. Имеем тогда:

$$\begin{split} \mathsf{E} X_l &= \sum_{r=3}^l \mathsf{E} X^r = \sum_{r=3}^l \sum_{\substack{W \subseteq V \\ |W| = r}} \sum_{\text{нумерациям } W} p^r = \sum_{r=3}^l C_n^r \frac{(r-1)!}{2} p^r \\ &\leqslant \sum_{r=3}^l \frac{n^r}{r!} \cdot \frac{(r-1)!}{2} p^r < \sum_{r=3}^l n^r p^r = \\ &= \sum_{r=3}^l n^{\theta r} \leqslant l n^{\theta l} = l \sqrt{n} \end{split}$$

а значит

$$\mathsf{P}(X_l \geqslant \frac{n}{2}) \leqslant \frac{\mathsf{E}X_l}{n/2} \leqslant \frac{l\sqrt{n}}{n/2} \to 0$$

откуда следует, что $\exists n_1 \ \forall n > n_1: \ \mathsf{P}(X_l \geqslant \frac{n}{2}) < \frac{1}{2} \Leftrightarrow \mathsf{P}(X_l < \frac{n}{2}) > \frac{1}{2}.$

Пусть $m := \lceil \frac{3 \ln n}{p} \rceil$. Определим случайную величину Y_m как количество независимых множеств на m вершинах в графе G.

$$P(\alpha(G) < m) = P(Y_m = 0) = 1 - P(Y_m \ge 1) \ge 1 - EY_m = 1 - C_n^m (1 - p)^{C_m^2}$$

причем

$$C_n^m (1-p)^{C_m^2} \leqslant \frac{n^m}{m!} e^{C_m^2 \ln(1-p)} < n^m e^{-\frac{m^2}{2}(1+o(1))p} = e^{m(\ln n - \frac{mp}{2}(1+o(1)))}$$

а, коль скоро

$$\ln n - \frac{mp}{2}(1 + o(1)) = \ln n - 1, 5 \ln n(1 + o(1)) \to -\infty$$

то
$$\mathsf{P}(\alpha(G) < m) \to 1 \Rightarrow \exists n_1 \ \forall n > n_1 \mathsf{P}(\alpha(G) < m) > \frac{1}{2}$$

Пусть $n \ge \max\{n_1, n_2\}$. Тогда

$$\exists G: V(G) = n \Rightarrow \alpha(G) < m, \ X_l(G) < \frac{n}{2}.$$

Перейдем от графа G к графу G', удаляя по одной любой вершины из каждого цикла длины $\leq l$. В полученном графе $V(G') \geq \frac{n}{2}$, $\alpha(G') \leq \alpha(G) < m \Rightarrow \chi(G') \geq \frac{n}{2m}$, $X_l(G) = 0$ (т.е. $g(G') \geq l$). Оценим $\chi(G')$:

$$\chi(G') = \frac{n}{2m} \sim \frac{n}{6 \ln n} p = \frac{n^{\theta}}{6 \ln n} = \frac{n^{1/2l}}{6 \ln n} \to +\infty \Rightarrow \exists n_3: \ \chi(G') > k$$
 при $n \geqslant n_3$

В таком случае, при $V(G)=n\geqslant \max\{n_1,\ n_2,\ n_3\}$ мы нашли требуемый граф.

Теорема 1.3.7. (Боллобаш)

Рассмотрим G(n, p). Пусть $\alpha \in \left(\frac{5}{6}, 1\right), p = n^{-\alpha}$. Тогда существует такая функция $u(n, \alpha)$, что a.n.н.

$$u \leqslant \chi(G) \leqslant u + 3$$

Прежде чем приступить к доказательству этой теоремы, установим несколько вспомогательных фактов.

Определение 1.3.6. Назовем функцию f от графа липшицевой по ребрам, если для любых двух графов G, G', таких что $V_G = V'_G$, отличающихся не более чем в одном в ребре, выполнено неравенство $|f(G) - f(G')| \le 1$.

Пример 1.3.1.
$$f(G) = |E_G|, f(G) = \chi(G),$$

Определение 1.3.7. Назовем функцию f от графа липшицевой по вершинам, если для любых двух графов G, G', таких что $V_G = V'_G$, отличающихся не более чем во всех ребрах, связанных с одной вершиной, выполнено неравенство $|f(G) - f(G')| \leq 1$.

Теорема 1.3.8. $(6/\partial, \, cnedcmbue \, us \, неравенства \, Азумы)$

 Π усть f — липшицева по вершинам функция. Тогда

$$\forall \lambda > 0: \ \mathsf{P}(|f - \mathsf{E}f| \geqslant \lambda \sqrt{n-1}) \leqslant 2^{-\frac{\lambda^2}{2}}$$

Пемма 1.3.1. Пусть $\alpha \in \left(\frac{5}{6}, 1\right), p = n^{-\alpha}$. Тогда $\exists n_0 \ \forall n \geqslant n_0$:

$$P(\forall S \subset V, |S| \le \sqrt{n} \ln n : \chi(G|S) \le 3) \ge 1 - \frac{1}{\ln n}$$

Доказательство.

$$\begin{split} \mathsf{P}(\exists S \subset V : |S| \leqslant \sqrt{n} \ln n : \ \chi(G|_S) \geqslant 4) &= \mathsf{P}(\exists S \subset V : \ |S| \in [4, \sqrt{n} \ln n] : \ \chi(G|_S) \geqslant 4) = \\ &= \mathsf{P}(\exists S \subset V : \ |S| \in [4, \sqrt{n} \ln n] : \ \chi(G|_S) \geqslant 4, \ \text{ho} \ \forall x \in S : \ \chi(G|_{S-x}) \leqslant 3) = \mathsf{P}(A) \end{split}$$

т.е. в конце рассматривается минимальное S по включению. Заметим, что если выполнено событие под вероятностью, то $\forall x \in S \deg_{G|_S}(x) \geqslant 3$. А значит

$$\begin{split} \mathsf{P}(A) &\leqslant \mathsf{P}(\exists S \subset V: \ |S| \in [4, \ \sqrt{n} \ln n], \ E(G|_S) \geqslant \frac{3|S|}{2}) \\ &\leqslant \sum_{s=4}^{\sqrt{n} \ln n} \sum_{S \subset V, \ |S| = s} \mathsf{P}(E(G|_S) \geqslant \frac{3s}{2}) \\ &\leqslant \sum_{s=4}^{\sqrt{n} \ln n} \sum_{S \subset V} C_{C_s^2}^{3s/2} p^{3s/2} \\ &= \sum_s C_n^s C_{C_s^2}^{3s/2} p^{3s/2} \leqslant \sum_s \left(\frac{en}{s}\right)^s \left(\frac{eC_s^2}{3s/2}\right)^{3s/2} p^{3s/2} \end{split}$$

где последнее неравенство верно из оценки $C_n^k \leqslant \frac{n^k}{k!}$ и формулы Стирлинга. Продолжаем

$$< \sum_{s} \left(\frac{en}{s} \cdot s^{3/2} \cdot p^{3/2} \right)^{s} = \sum_{s=4}^{\sqrt{n \ln n}} \left(en\sqrt{s}p^{3/2} \right)^{s}$$

$$\le \sum_{s=4}^{\sqrt{n \ln n}} \left(en\sqrt[4]{n}\sqrt{\ln n}p^{3/2} \right)^{s} < \sum_{s=4}^{\infty} \left(en^{5/4}n^{-3\alpha/2}\sqrt{\ln n} \right)^{s}$$

$$< \sum_{s=4}^{\infty} \left(n^{-\beta} \right)^{s} = \frac{n^{-4\beta}}{1 - n^{-\beta}} < \frac{1}{\ln n}$$

где последние два неравенства верны, начиная с некоторого n_0 . Лемма доказана.

Доказательство теоремы 1.3.7. Пусть n таково, что для него выполняется лемма 1.3.1. Возьмем минимальное u, такое что $\mathsf{P}(\chi(G) \leqslant u) > \frac{1}{\ln n}$ (такое существует, поскольку чем меньше $u = n, \, n-1, \, \dots, \, 1, \, 0,$ тем меньше соответствующая вероятность). Тогда $\mathsf{P}(\chi(G) \leqslant u-1) \leqslant \frac{1}{\ln n} \Rightarrow \mathsf{P}(\chi(G) \geqslant u) \geqslant 1 - \frac{1}{\ln n}.$

Введем функцию $f(G) := \min\{|S| : S \subset V \text{ и } \chi(G|_{V \setminus S}) \leq u\}$. Нетрудно понять, что f — липшицева по вершинам (действительно, рассмотрим некоторую $x \in V$. Удалим из графа все ребра, выходящие из x. Тогда x нужно либо добавить в множество |S|, либо же убрать из него. В любом случае, отличие

в значениях функции f максимум в один). Возьмем $\lambda := \sqrt{2n \ln \ln n}$ (тогда $e^{-\lambda^2/2} = \frac{1}{\ln n}$). По теореме 1.3.8, верны следующие неравенства:

$$\mathsf{P}(f - \mathsf{E}f \geqslant \lambda \sqrt{n-1}) \leqslant e^{-\lambda^2/2}$$
$$\mathsf{P}(f - \mathsf{E}f \leqslant -\lambda \sqrt{n-1}) \leqslant e^{-\lambda^2/2}$$

Предположим, что $\mathsf{E} f \geqslant \lambda \sqrt{n-1}$. Тогда

$$\mathsf{P}(f - \mathsf{E} f \leqslant -\lambda \sqrt{n-1}) = \mathsf{P}(f \leqslant \mathsf{E} f - \lambda \sqrt{n-1}) \geqslant \mathsf{P}(f \leqslant 0) = \mathsf{P}(\chi(G) \leqslant u) > \frac{1}{\ln n}$$

что противоречит следствию 1.3.8.

Значит, $\mathsf{E} f < \lambda \sqrt{n-1}$. Тогда

$$\begin{split} \mathsf{P}(f \geqslant \mathsf{E} f + \lambda \sqrt{n-1}) \leqslant \frac{1}{\ln n} \\ \Rightarrow \mathsf{P}(f \geqslant 2\lambda \sqrt{n-1}) \leqslant \frac{1}{\ln n} \\ \Rightarrow \mathsf{P}(f < 2\lambda \sqrt{n-1}) \geqslant 1 - \frac{1}{\ln n} \\ \Rightarrow \mathsf{P}(f < \sqrt{n} \ln n) \geqslant 1 - \frac{1}{\ln n} \text{ [t.k. } \sqrt{n} \ln n \geqslant 2\lambda \sqrt{n-1} \text{]} \end{split}$$

Определим события:

$$A_1:=\{\chi(G)\geqslant u\}$$

$$A_2:=\{\text{событие из леммы }1.3.1\ \}$$

$$A_3:=\{f(G)\leqslant \sqrt{n}\ln n\}$$

по доказанному выше, $P(A_i)\geqslant 1-\frac{1}{\ln n}.$ Пусть $A:=A_1\cap A_2\cap A_3.$ Тогда

$$\mathsf{P}(\overline{A}) = \mathsf{P}(\overline{A_1} \cup \overline{A_2} \cup \overline{A_3}) \leqslant \frac{3}{\ln n} \Rightarrow \mathsf{P}(A) \geqslant 1 - \frac{3}{\ln n} \to 1$$

Возьмем произвольный $G \in A$. Поскольку $G \in A_1$, то $\chi(G) \geqslant u$. Поскольку $G \in A_2 \cap A_3$, то $\chi(G) \leqslant u+3$ (действительно, рассмотрим множество, удаление которого дает u цветов, а потом покрасим это множество еще в 3 цвета). Теорема доказана.

1.3.5 Жадный алгоритм поиска χ , α , ω

Пусть нам дан граф G. Зафиксируем некоторую нумерацию его вершин. Покрасим первую вершину в первый цвет. Далее, если она связана со второй, то покрасим вторую вершину в новый цвет, а иначе в первый. И вообще, пусть $c:V\to \mathbb{N}$ — раскраска графа. Тогда $c(v_i)=\min\{k\in \mathbb{N}\mid$ вершину v_i можно покрасить в цвет k на данном шаге $\}$. Тогда $\max_{v_i}c=\chi_g(G)$, а мощность самого большого цвета в полученной раскраски — $\alpha_g(G)$, а описанный алгоритм называется эксадным алгоритмом раскраски графа.

Теорема 1.3.9. (Эрдеш-Боллобаш)

Для любого $\varepsilon > 0$ в модели $G(n, \frac{1}{2})$ а.п.н.

$$\frac{\alpha(G)}{\alpha_g(G)} \leqslant 2 + \varepsilon \iff \mathsf{P}\left(\frac{\alpha(G)}{\alpha_g(G)} \leqslant 2 + \varepsilon\right) \to 1.$$

Доказательство. Из теоермы 1.3.5 известно, что $P(\alpha(G) \le 2\log_2 n) \to 1$. Это означает, что достаточно доказать, что

$$P(\alpha_q(G) \leq (1 - \varepsilon) \log_2 n =: A) \to 1.$$

Пусть $m:=\left[\frac{n}{2(1-\varepsilon)\log_2 n}\right]\leqslant \frac{n}{2(1-\varepsilon)\log_2 n}.$ Если событие A выполнено, то

$$\exists a_1, \ldots, a_m \ \exists C_1, \ldots, C_m \subset V, \ \forall i \ |C_i| = a_i \leq (1 - \varepsilon) \log_2 n; \ \forall i, j : \ C_i \cap C_j = \varnothing.$$

Рассмотрим события $B_{a_1,...,a_m;\,C_1,\,...,\,C_m}:=\{\forall x\;\forall i\;\exists y\in C_i:\;(x,y)\in E_G\}.$ Для фиксированных x и i вероятность

$$P(\exists y \in C_i : (x,y) \in E_G) = 1 - \left(\frac{1}{2}\right)^{a_i},$$

откуда

$$\begin{split} \mathsf{P}(B_{a_1,\ldots,\,a_m;\,C_1,\,\ldots,\,C_m}) &= \left(\prod_{i=1}^m \left(1-\left(\frac{1}{2}\right)^{a_i}\right)\right)^{n-a_1-\ldots-a_m} \\ &\leqslant \left(\prod_{i=1}^m \left(1-\left(\frac{1}{2}\right)^{a_i}\right)\right)^{n-m(1-\varepsilon)\log_2 n} \\ &\leqslant \left(\prod_{i=1}^m \left(1-\left(\frac{1}{2}\right)^{a_i}\right)\right)^{\frac{n}{2}} \\ &\leqslant \left(\prod_{i=1}^m \left(1-\left(\frac{1}{2}\right)^{(1-\varepsilon)\log_2 n}\right)\right)^{\frac{n}{2}} \\ &= \left(1-\frac{1}{n^{1-\varepsilon}}\right)^{\frac{mn}{2}} \\ &= \exp\left[\frac{mn}{2}\ln\left(1-\frac{1}{n^{1-\varepsilon}}\right)\right] \leqslant \exp\left[-\frac{mn^\varepsilon}{2}\right] \\ &\leqslant \exp\left[-\frac{1}{8}\frac{n}{\log_2 n}n^\varepsilon\right] \leqslant e^{-n^{1+\frac{\varepsilon}{2}}} \end{split}$$

Зная это, оценим P(A):

$$\begin{split} \mathsf{P}(A) \leqslant & \sum_{a_1 = 1}^{(1 - \varepsilon) \log_2 n} \dots \sum_{a_m = 1}^{(1 - \varepsilon) \log_2 n} \sum_{C_1, \dots, C_m} \mathsf{P}(B_{a_1, \dots, a_m; \, C_1, \, \dots, \, C_m}) \\ \leqslant & e^{-n^{1 + \frac{\varepsilon}{2}}} \sum_{a_1} \dots \sum_{a_m} C_n^{a_1} \dots C_n^{a_m} \\ < & e^{-n^{1 + \frac{\varepsilon}{2}}} \sum_{a_1} \dots \sum_{a_m} n^{a_1 + \dots + a_m} \\ \leqslant & e^{-n^{1 + \frac{\varepsilon}{2}}} \sum_{a_1} \dots \sum_{a_m} n^{n/2} \\ < & e^{-n^{1 + \frac{\varepsilon}{2}} + \frac{1}{2} \ln n} \left(\log_2 n \right)^m = \exp \left[-n^{1 + \frac{\varepsilon}{2}} + \frac{n}{2} \ln n + m \ln \log_2 n \right] \\ \leqslant & \exp \left[-n^{1 + \frac{\varepsilon}{2}} + \frac{n}{2} \ln n + \frac{n \ln \log_2 n}{2(1 - \varepsilon) \log_2 n} \right] = \exp \left[-n^{1 + \frac{\varepsilon}{2}} (1 + o(1)) \right] \to 0. \end{split}$$

Теорема 1.3.10. $(6/\partial, Kyuepa)$

 $\forall \varepsilon, \ \delta > 0$ существует последовательность графов G_n на n вершинах, такая что

$$\mathsf{P}\left(\frac{\alpha(G_n)}{\alpha_g(G_n)} \geqslant n^{1-\varepsilon}\right) \geqslant 1-\delta.$$

Утверждение 1.3.5.1. Пусть в модели G(n,p) вероятность появления ребра $p=o\left(\frac{1}{n^2}\right)$. Тогда а.п.н. в G нет ребер.

Доказательство. Пусть ξ — случайная величина, равная числу ребер в G. Тогда

$$\mathsf{P}(\xi \geqslant 1) \leqslant \mathsf{E}\xi = C_n^2 p \sim \frac{n^2}{2} p \to 0.$$

Утверждение 1.3.5.2. Пусть в модели G(n,p) вероятность появления ребра $p=o\left(\frac{1}{n}\right)$. Тогда а.п.н. $\chi(G)\leqslant 2$.

Доказательство. Пусть ξ — случайная величина, равная числу простых циклов в G. Тогда

$$\mathsf{P}(\xi \geqslant 1) \leqslant \mathsf{E}\xi = \sum_{r=3}^n C_n^r \frac{(r-1)!}{2} p^r < \sum_r \frac{n^r}{r!} \frac{(r-1)!}{2} p^r < \sum_{r=3}^\infty (np)^r = \frac{(np)^3}{1-np} \to 0.$$

Упраженение. Пусть $p=\frac{c}{n}, c\in(0,1)$. Тогда а.п.н. все компоненты связности в G либо деревья, либо унициклические графы и $\chi(G)\leqslant 3$.

П

1.4 Основы линейно-алгебраического метода

1.4.1 Определение экстремальных велечин в гиперграфе

Определение 1.4.1. Гипеграфом называется пара H = (V, E), где V — множество вершин, а E — произвольное подмножество 2^V (т.е. в отличие от обычного графа, ребро гиперграфа это произвольное неупорядоченное множество вершин).

Определение 1.4.2. Гиперграф называется k-однородным (для $k \ge 2$), если $\forall a \in E : |a| = k$.

Определение 1.4.3. Основные экстремальные величины, рассматриваемые в этом разделе:

 $f(n,\,k,\,t) = \max\{f\in\mathbb{N}:\,\exists\,\,k$ -однородный гиперграф $H=(V,\,E),\,|V|=n,\,|E|=f,\,\forall A,\,B\in E:\,|A\cap B|\geqslant t\}$ $h(n,\,k,\,t) = \max\{h\in\mathbb{N}:\,\exists\,\,k$ -однородный гиперграф $H=(V,\,E),\,|V|=n,\,|E|=h,\,\forall A,\,B\in E:\,|A\cap B|\leqslant t\}$ $m(n,\,k,\,t) = \max\{m\in\mathbb{N}:\,\exists\,\,k$ -однородный гиперграф $H=(V,\,E),\,|V|=n,\,|E|=m,\,\forall A,\,B\in E:\,|A\cap B|\neq t\}$

Для примера рассмотрим граф G(n, r, s) (надпись для тех, кто не помнит что это). Интерпретируем вершины этого графа как ребра некторого r-однородного гиперграфа, а пару вершин, пересекающихся по s элементам — ребром. Легко понять, что $\alpha(G(n, 3, 1)) = m(n, 3, 1)$, и вообще

$$\alpha(G(n, k, t)) = m(n, k, t)$$

1.4.2 Оценки для f(n, k, t)

Теорема 1.4.1. (Эрдеш-Ко-Радо)

$$f(n, k, 1) = \begin{cases} C_n^k & 2k > n \\ C_{n-1}^{k-1} & 2k \le n \end{cases}$$

Доказательство. Первый случай очевиден. Верхняя оценка $f(n,k,1) \geqslant C_{n-1}^{k-1}$ в случае $2k \leqslant n$ тоже проста: достаточно рассмотреть совокупнсоть $\mathcal{M} = \{M \subset [n], \ |M| = k \land \{1\} \in M\}$. Покажем теперь, что $f(n,k,1) \leqslant C_{n-1}^{k-1}$. Рассмотрим совокупность $\mathscr{F} = H_E = \{F_1,\ldots,F_s\}, \ \forall i \ |F_i| = k, \ \forall i,j: \ |F_i \cap F_j| \geqslant 1$. Наша цель показать, что $s \leqslant C_{n-1}^{k-1}$.

Рассмотрим семество множеств $\mathscr{A} = \{A_1, \dots, A_n\}$, где $A_1 = \{1, 2, \dots, k\}$, $A_2 = \{2, \dots, k+1\}$, ..., $A_n = \{n, 1, 2, \dots, k-1\}$. Докажем сначала следующую лемму:

Лемма 1.4.1. $|\mathscr{F} \cap \mathscr{A}| \leqslant k$ (круговой метод Катона)

Доказательство. Если $\mathscr{F} \cap \mathscr{A} = \varnothing$, то все очевидно. Иначе, без ограничения общности, считаем, что $A_1 \in \mathscr{F}$. Все остальные $A_i \in \mathscr{F} \cap \mathscr{A}$ должны пересекать A_1 и пересекаться между собой. Разобем их на пары следующим образом: (A_i, A_{n-k+i}) для $i \geq 2$ (например, пара $(A_2, A_{n-k+2}) - A_2$ начинается с 2, а A_{n-k+2} кончается в 1). Тогда $A_i \cap A_{n-k+i} = \varnothing$. Рассмотирм следующие пары: $(A_2, A_{n-k+2}), \ldots, (A_k, A_n)$.

В этих парах все множества пересекают A_1 , но при этом два множетсва из одной пары не пересекаются. Это означает, что в $\mathscr{A} \cap \mathscr{F}$ не более одного множества из каждой пары, откуда следует

$$|\mathscr{A} \cap \mathscr{F}| \leqslant 1 \ (A_1) + ($$
количество пар $) = 1 + k - 1 = k$

и лемма доказана.

Изначально $V=\{1,\ 2,\ \dots,\ n\}$. Рассмотрим любую перестановку $\sigma\in S_n$. Определим множества $V_\sigma=\{\sigma(1),\ \dots,\ \sigma(n)\}$ и $\mathscr{A}_\sigma=\{\sigma(A_1),\ \dots,\ \sigma(A_n)\}$, где $\sigma(A_i)$ означает множетсво $\{\sigma(i),\ \sigma(i+1),\ \dots\}$. Например, для n=7 и σ такой, что $V_\sigma=\{2,\ 5,\ 1,\ 3,\ 4,\ 6,\ 7\}$ совокупность \mathscr{A}_σ это множество $\{\{2,\ 5,\ 1\},\ \{5,\ 1,\ 3\},\ \dots,\ \{6,\ 7,\ 2\},\ \{7,\ 2,\ 5\}\}$

Лемма 1.4.2. $|\mathscr{F} \cap \mathscr{A}_{\sigma}| \leqslant k$ — доказательство аналогично предыдущей лемме.

Определим индикаторы $I(\sigma, F_i) = \begin{cases} 1 & F_i \in \mathscr{A}_{\sigma}, \\ 0 & \text{иначе} \end{cases}$ и посмотрим на следующую величину:

$$\sum_{\sigma} \sum_{i=1}^{s} I(\sigma, F_i) = \sum_{i=1}^{s} \sum_{\sigma} I(\sigma, F_i)$$

При фиксированной перестановке сумма $\sum_{i=1}^{s} I(\sigma, F_i) = |\mathscr{A}_{\sigma} \cap \mathscr{F}| \leqslant k$, а значит сумма слева не превосходит n!k. С другой стороны, при фиксированном i, F_i можт оказаться на одном из n мест в множестве \mathscr{A}_{σ} , и перестановок, в которых возникает F_i , ровно k!(n-k)!, а значит $\sum_{\sigma} I(\sigma, F_i) = nk!(n-k)!$ и вся сумма справа = snk!(n-k)!. Окончательно получаем

$$snk!(n-k)! = \sum_{i=1}^{s} \sum_{\sigma} I(\sigma, F_i) = \sum_{\sigma} \sum_{i=1}^{s} I(\sigma, F_i) \leqslant kn! \Rightarrow s \leqslant C_{n-1}^{k-1}$$

Пример 1.4.1. Аналогично теореме Эрдеша-Ко-Радо получаем оценку для f(n,k,2):

$$f(n,k,2) = \begin{cases} C_{n-2}^{k-2} & 2k \le n+1, \\ C_n^k & 2k > n+1 \end{cases}.$$

Рассмотрим f(8,4,2): имеем оценку

$$f(8,4,2) \geqslant C_6^2 = 15.$$

Однако, рассмотрим совокупность

$$\mathscr{F} = \{A \sqcup B \mid A \subset \{1, \ldots, 4\}, |A| = 3; B \subset \{5, \ldots, 8\}, |B| = 1\}.$$

Нетрудно понять, что $|\mathscr{F}|=16$ и любые два множества из \mathscr{F} пересекаются ровно по двум элементам. При этом в \mathscr{F} можно добавить, например, множество $\{1,\ldots,4\}$ и получить новую совокупность с $|\mathscr{F}'|=17$, подходящую под определение f(8,4,2), что говорит о том, что полученная оценка не является наилучшей.

Рассмотрим историю улучшений оценки для f(n, k, t).

Теорема 1.4.2. $(6/\partial, 1961\varepsilon - \Im p \partial e w - Ko - P a \partial o)$

$$\forall k, t, \exists n_0(k,t) : \forall n \ge n_0 : f(n,k,t) = C_{n-t}^{k-t}$$

Теорема 1.4.3. $(6/\partial, 1979\varepsilon - \Phi panks)$

 $E c л u \ k \geqslant 15, \ mo$

$$n_0(k,t) = (k-t+1)(t+1).$$

Теорема 1.4.4. $(6/\partial, 1983\varepsilon - Уилсон)$

$$\forall k,\ t:\ n_0=(k-t+1)(t+1).\ {\it Для}\ n\geqslant n_0\ f(n,k,t)=C_{n-t}^{k-t},\ a\ {\it для}\ m$$
еньших $n\ f(n,k,t)>C_{n-t}^{k-t}.$

Зафиксируем k и t и рассмотрим n, такое что $(k-t+1)(2+\frac{t-1}{2}) \leqslant n < (k-t+1)(t+1)$ (замечание: $t+1=2+\frac{t-1}{1}$). Тогда оптимальной является следующая конструкция:

$$\mathscr{F} = \{F \subset \{1, \ldots, n\}, |F| = k, |F \cap \{1, 2, \ldots, t + 2\} \ge t + 1\}$$

В таком случае $|F| = C_{t+2}^{t+1} \cdot C_{n-t-2}^{k-t-1} + C_{t+2}^{t+2} \cdot C_{n-t-2}^{k-t-2}$. Разумно задаться вопросом "что это?". Так вот, ответ на это дает последняя теорема в нашем списке:

Теорема 1.4.5. $(6/\partial, 1996\varepsilon - A \wedge c \otimes e \partial e - X a \vee a m p я H)$

 $Зафиксируем \ k,t.\ Пусть\ n,\ r\ таковы,\ что$

$$(k-t+1)(2+\frac{t-1}{r+1}) \le n < (k-t+1)(2+\frac{t-1}{r})$$

Тогда $f(n,k,t) = |\mathscr{F}|$, где

$$\mathscr{F} = \{ F \subset [n], |F| = k, |F \cap \{1, \dots, t + 2r\}| \ge t + r \}$$

 $(npu \ r = 0 \ это \ теорема \ Эрдеша-Ко-Радо).$

1.4.3 Оценки для h(n, k, t) и m(n, k, t)

Теорема 1.4.6.

$$h(n, k, t) = \frac{C_n^{t+1}}{C_k^{t+1}}$$

Доказательство. Пусть H = (V, E) — гиперграф с условием из определения h(n, k, t). Для каждого его ребра (мощность каждого ребра — k) рассмотрим все его t+1 элементные подмножетсва. Поскольку для любых двух ребер $|A \cap B| \le t < t+1$, то для разных ребер графа H множества их t+1-элементных подмножеств различны. При этом в каждом наборе ровно C_k^{t+1} элементов. Тогда

$$|E|C_k^{t+1} \leqslant C_n^{t+1}$$

откуда следует требуемое неравенство.

Теорема 1.4.7. (б/д, 1980e, Рёдль)

Если k и t фиксированные, а $n \to \infty$, то

$$h(n,k,t) \sim \frac{C_n^{t+1}}{C_k^{t+1}}$$

Теорема 1.4.8. $(6/\partial, 2014-2015, Kusow)$

Eсли k и t фиксированные, а $n \to \infty$, то, в естественных условиях делимости, выполнено равенство

$$h(n, k, t) = \frac{C_n^{t+1}}{C_k^{t+1}}$$

Теорема 1.4.9. (Франкл, Уилсон, 1981)

Пусть $k-t=p^{\alpha}$, где p-nростое, а $\alpha-н$ атуральное число больше нуля. Пусть $k-2p^{\alpha}<0$. Тогда выполнено неравенство

$$m(n,k,t) \leqslant \sum_{i=0}^{p^{\alpha}-1} C_n^i$$

Доказательство. (Доказательство для $\alpha = 1$, остальное — упражнение)

Рассмотрим произвольный гиперграф H с указанными в определении числа m ограничениями. $E=\{A_1,\ldots,A_s\},\ |A_i|=k,\ \forall i\neq j:\ |A_i\cap A_j|\neq t.$ Каждому A_i сопоставим вектор $\overline{x}_i=(x_1,\ldots,x_n),$ где $x_i=1,$ если $i\in A_i$ и $x_i=0$ иначе (заметим, что $|A_i\cap A_j|=\langle \overline{x}_i,\,\overline{x}_j\rangle$). Сопоставим тепреь каждому \overline{x}_i многочлен от n переменных над \mathbb{Z}_p следующим образом:

$$F_{\overline{x}_i}(\overline{y}) = \prod_{\substack{j=1\\ j \not\equiv t \pmod{p}}}^p (j - \langle \overline{x}_i, \overline{y} \rangle)$$

Докажем, что многочлены $F_{\overline{x}_1}, \ldots, F_{\overline{x}_s}$ — линейно независимы над \mathbb{Z}_p . Предположим противное: пусть нашлись коэффиценты $\{c_i\}$, такие что

$$c_1 F_{\overline{x}_1} + \ldots + c_s F_{\overline{x}_s} = 0$$

Тогда $\forall y: c_1 F_{\overline{x}_1}(y) + \ldots + c_s F_{\overline{x}_s}(y) \equiv 0 \pmod{p}$. В частности, рассмотрим $y = x_i$. Имеем $(x_i, x_i) = k \equiv t \pmod{p}$ (поскольку $k - t = p^{\alpha}$), а значит $F_{\overline{x}_i}(x_i)$ $\not \models p$.

Теперь

$$\langle x_i, \, x_j \rangle < k \text{ т.к. } i \neq j$$

$$\langle x_i, \, x_j \rangle \neq t \text{ т.к. граф из определения } m(n,k,t)$$

$$\langle x_i, \, x_j \rangle \neq t - p \text{ т.к. } t - p = k - 2p < 0$$

$$\Rightarrow \langle x_i, x_j \rangle \neq t \pmod{p} \Rightarrow F_{\overline{x}_j}(x_i) \equiv 0 \pmod{p}.$$

Отсюда следует, что $\forall i \, c_i = 0$, а значит количество многочленов не превосходит размерности пространства многочленов.

Раскроем в каждом многочлене скобки, и уменьшим в каждом одночлене степень входящих в него до 1. Получим новые многочлены $\tilde{F}_{\overline{x}_i}$, причем $\tilde{F}_{\overline{x}_i}(x) = F_{\overline{x}_i}(x)$ при $x \in \mathbb{Z}_2^n$. Базис, порождающий пространство $\tilde{F}_{\overline{x}_i}$, — это одночлены, коих $\sum\limits_{i=0}^{p-1} C_n^i$, откуда $s \leqslant \sum\limits_{i=0}^{p-1} C_n^i$.

Теорема 1.4.10. Пусть k-t=p, где $p-npocmoe,\ k-2p\geqslant 0,\ d=k-2p+1$. Тогда

$$m(n, k, t) \le \frac{C_n^d}{C_k^d} \sum_{i=0}^{p-1} C_{n-d}^i.$$

Доказательство. Рассмотрим всевозможные подмножества вершин гиперграфа мощности $d:D_1,\ldots,D_{C_n^d}$ и систему

$$\mathscr{F} = \{F_1, \ldots, F_s \mid |F_i| = k, |F_i \cap F_j| \neq t\}$$

и определим функции

$$I(D_i, F_j) = \begin{cases} 1 & D_i \subset F_j, \\ 0 & \text{иначе} \end{cases}$$
.

Заметим, что

$$\sum_{i=1}^{C_n^d} \sum_{j=1}^s I(D_i, F_j) = \sum_{j=1}^s \sum_{i=1}^{C_n^d} I(D_i, F_j)$$
$$= \sum_{j=1}^s C_k^d = sC_k^d$$

откуда $\exists i: \ \sum\limits_{j=1}^s I(D_i,\ F_j)\geqslant rac{sC_k^d}{C_n^d}.$

Рассмотрим совокупность \mathscr{F}' всех F_j из \mathscr{F} , таких что $D_i \subset F_j$. Сопоставим каждому F_j из \mathscr{F}' вектор $x_j \in \mathbb{Z}_2^k$ и многочлен F_{x_j} аналогично доказательству теоремы 1.4.9. Проводим дальше рассуждение, аналогичное доказательству теоремы 1.4.9, с той лишь разницей, что $\langle x_j, x_j' \rangle = |F_j \cap F_j'| \geqslant d$ и

$$\begin{cases} \langle x_j, \ x_j' \rangle = k \\ \langle x_j, \ x_j' \rangle \neq k - p \text{ по условию теоремы} \end{cases} \Rightarrow \langle x_j, \ x_j' \rangle \neq k \pmod{p} \text{ при } x_j \neq x_j'.$$

$$\langle x_j, \ x_j' \rangle \neq k - 2p < d$$

Тогда

$$\sum_{i=0}^{p-1} C_{n-d}^i \geqslant |\mathscr{F}'| \geqslant \frac{sC_k^d}{C_n^d} \Rightarrow s \leqslant \frac{C_n^d}{C_k^d} \sum_{i=0}^{p-1} C_{n-d}^i.$$

1.4.4 Асимптотические оценки

Пусть $k, t = \text{const}, \ n \to +\infty, \ p = k - t$ — простое. Тогда в условиях теоремы 1.4.9:

$$m(n,k,t) \leqslant \sum_{i=0}^{p-1} C_n^i \sim \frac{n^{p-1}}{(p-1)!} = \frac{n^{k-t-1}}{(k-t-1)!}.$$

При этом

$$m(n,k,t) \ge f(n,k,t+1) \ge C_{n-t-1}^{k-t-1} \sim \frac{(n-t-1)^{k-t-1}}{(k-t-1)!} \sim \frac{n^{k-t-1}}{(k-t-1)!}$$

Пусть теперь мы находимся в условиях теоремы 1.4.10. d = k - 2p + 1 = k - 2(k - t) + 1 = 2t - k + 1. Тогда

$$\begin{split} m(n,k,t) &\leqslant \frac{C_n^d}{C_k^d} \sum_{i=0}^{p-1} C_{n-d}^i \sim \frac{n^{2t-k+1}}{C_k^d d!} \frac{(n-d)^{p-1}}{(p-1)!} \\ &\sim \frac{n^{2t-k+k-t}}{d!(k-t-1)!C_k^{2t-k+1}} = \frac{n^t}{(k-t-1)!\frac{k!}{d!(k-d)!}d!} \\ &= n^t \left(\frac{(2k-2t-1)!}{k!(k-t-1)!}\right). \end{split}$$

Рассмотрим как можно большую совокупность F_1, \ldots, F_s , такую что $|F_i| = r$ и $|F_i \cap F_j| \le t-1$, причем любые два k-элементных подмножества r-элементного множества пересекаются по $\ge t+1$ элементу. Заметим, что $\min r = 2k-t-1$.

Ясно, что s = h(n, r, t-1). Возьмем все k-элементные подмножества, которые содержатся в одном F_i . Любые два таких множества не могут пересекаться по t. Таким множеств $C_r^k h(n, r, t-1)$. Тогда

$$\begin{split} m(n,k,t) &\geqslant C_r^k h(n,r,t-1) \sim C_r^k \cdot \frac{C_n^t}{C_r^t} \\ &\sim \frac{(2k-t-1)!}{k!(k-t-1)!} \cdot \frac{n^t t!(r-t)!}{t!r!} = \frac{(2k-t-1)!}{k!(k-t-1)!} \cdot \frac{n^t (2k-2t-1)!}{(2k-t-1)!} \\ &= n^t \frac{(2k-2t-1)!}{k!(k-t-1)!} \end{split}$$

1.5 Хроматическое число пространства

Определение 1.5.1.

$$\chi(\mathbb{R}^n) = \{ \min k \in \mathbb{N} \mid \mathbb{R}^n = V_1 \sqcup \ldots \sqcup V_k : \forall i : \forall x, y \in V_i : |x - y| \neq 1 \}.$$

Известные значения:

- 1. $\chi(\mathbb{R}) = 2$.
- 2. $4 \leqslant \chi(\mathbb{R}^2) \leqslant 7$, причем если потребовать измеримость множеств V_i по Лебегу, то $5 \leqslant \chi(\mathbb{R}^2) \leqslant 7$.
- 3. $6 \le \chi(\mathbb{R}^3) \le 15$.
- 4. $10 \le \chi(\mathbb{R}^4) \le 54$.

Утверждение 1.5.0.1.

$$n+1 \leqslant \chi(\mathbb{R}^n) \leqslant (4\sqrt{n})^n$$

Доказательство. Оценка $n+1 \le \chi(\mathbb{R}^n)$ следует из существования симплекса в \mathbb{R}^n , все вершины которого должны быть покрашены в разные цвета.

Рассмотрим n-мерный куб со стороной 2. Разобьем его на $(4\sqrt{n})^n$ маленьких кубиков со стороной $\frac{1}{2\sqrt{n}}$. Покрасим точки внутри одного маленького кубика в свой цвет. Поскольку мы правильно раскрасили куб со стороной 2, то аналогично мы раскрасим всё пространство, откуда

$$\chi(\mathbb{R}^n) \leqslant (4\sqrt{n})^n.$$

Teopeма 1.5.1. $(6/\partial)$

Пусть у бесконечного графа $(m.e. |V| = \infty)$ конечное хроматическое число. Тогда существует его конечный подграф, имеющий то же хроматическое число.

Определение 1.5.2. Граф называется *дистанционным*, если $V \subset \mathbb{R}^n$, а $E = \{(x,y) \in V : |x-y| = a > 0\}$.

Рассмотрим $G(n,k,t) = (V,E), \ V = \{(x_1,\ldots,x_n): x_1+\ldots+x_n=k, \ x_i \in \{0,1\}\}, \ E = \{(x,y): \langle x, \rangle = t \Leftrightarrow |x-y| = \sqrt{2k-2t}\}.$

Тогда

$$\chi(\mathbb{R}^n) \geqslant \chi(G(n,k,t)) \geqslant \frac{|V|}{m(n,k,t)} = \frac{C_n^k}{m(n,k,t)} \Rightarrow \chi(\mathbb{R}^n) \geqslant \max_{k,t} \left\{ \frac{C_n^k}{m(n,k,t)} \right\}.$$

Утверждение 1.5.0.2. (б/д)

Максимум достигается при $k=k(n)=\left[\frac{2-\sqrt{2}}{2}n\right],\ t=k-p$ где p — простое, такое что k-2p<0. А, как известно, на $[x,\ x+Cx^{0.525}]$ есть простое число $\Rightarrow p\sim \frac{k}{2}$.

Следствие.

$$\chi(\mathbb{R}^n) \geqslant (1.207 + o(1))^n$$

Доказательство. Пусть $a:=\frac{2-\sqrt{2}}{2},\;k=an.$ Имеем

$$\chi(\mathbb{R}^n) \geqslant \frac{C_n^k}{\sum\limits_{i=0}^{p-1} C_n^i} = \frac{\left(\frac{1}{a^a(1-a)^{1-a}} + o(1)\right)^n}{\left(\left(\frac{a}{2}\right)^{\frac{a}{2}} \left(1 - \frac{a}{2}\right)^{1-\frac{a}{2}} + o(1)\right)^n}$$
$$= \left(\frac{\left(\frac{a}{2}\right)^{\frac{a}{2}} \left(1 - \frac{a}{2}\right)^{1-\frac{a}{2}}}{a^a(1-a)^{1-a}} + o(1)\right)^n$$
$$= \left(\frac{1+\sqrt{2}}{2} + o(1)\right)^n = (1.207 + o(1))^n$$

Теорема 1.5.2. $(6/\partial, Paйгородский)$

$$(1.239 + o(1))^n \le \chi(\mathbb{R}^n) \le (3 + o(1))^n.$$

Глава 2

2 семестр

2.1 Турановские результаты

Теорема 2.1.1. (Туран)

Пусть у графа G=(V,E) число вершин |V|=n и $\alpha=\alpha(G)$. Тогда в этом графе

$$|E| \ge n \left[\frac{n}{\alpha} \right] - \left[\frac{n}{\alpha} \right] \left[\frac{n}{\alpha} + 1 \right] \cdot \frac{\alpha}{2}$$

Доказательство. Пусть $A \subset V$ — наибольшее независимое множество, $|A| = \alpha$. Тогда $\forall x \in V \setminus A \exists y \in A : (x,y) \in E$, что уже дает $\geqslant n-\alpha$ ребер. Удалим из графа множество A вместе со всеми ребрами. В оставшемся графе G' снова рассмотрим наибольшее независимое множество A', $|A'| \leqslant \alpha$. Аналогично находим еще как минимум $n-2\alpha$ ребер и снова повторяем наши действия.

Всего будет $\geqslant \left[\frac{n}{\alpha}\right]$ шагов, а суммарно найдено будет как минимум

$$\left[\frac{n}{\alpha}\right] \cdot n - \alpha \left(1 + 2 + \ldots + \left[\frac{n}{\alpha}\right]\right) = n \left[\frac{n}{\alpha}\right] - \left[\frac{n}{\alpha}\right] \left[\frac{n}{\alpha} + 1\right] \cdot \frac{\alpha}{2}$$

ребер. \square

Заметим, что полученная оценка неулучшаема. Действительно, пусть $\alpha \mid n$. Тогда оценка имеет вид $\frac{n^2}{\alpha} - \frac{n(n/\alpha+1)}{2} = \frac{n^2}{2\alpha} - \frac{n}{2}$. Рассмотрим тогда α клик на $\frac{n}{\alpha}$ вершинах. В таком графе число ребер равно $C^2_{\frac{n}{\alpha}} \cdot \alpha = \frac{n^2}{2\alpha} - \frac{n}{2}$.

Заметим также, что если в формулировке теоремы 2.1.1 от графа G перейти к графу \overline{G} , то, используя равенство $\alpha(G) = \omega(\overline{G})$, получим утверждение, что если в графе много ребер, то в нем обязательно есть клика.

Следствие. Пусть $G_n = (V_n, E_n) - nоследовательность графов <math>c |V_n| = n \ u \ \alpha_n = \alpha(G_n)$. Пусть $\alpha_n = o(n)$. Тогда

$$|E_n| \geqslant \frac{n^2}{2\alpha} (1 + o(1))$$

 $(B \ \text{этих условиях} \left[\frac{n}{\alpha}\right] o \infty \Rightarrow \left[\frac{n}{\alpha}\right] \sim \frac{n}{\alpha})$

Определение 2.1.1. Граф G называется $\partial ucmanuuonnым$ графов, если $V \subset \mathbb{R}^n$ и $E = \{(x,y) : |x-y| = a\}$

Теорема 2.1.2. Пусть $G = (V, E) - \partial u$ станционный граф на плоскости, |V| = 4n, $\alpha(G) = n$. Тогда $|E| \geqslant 7n$.

Доказательство. Повторяя полностью рассуждения из теоремы Турана получаем оценку $|E| \ge 6n$, при этом найдя на первом шаге $\ge 3n$ ребер. Покажем, что на первом шаге можно найти $\ge 4n$ ребер.

Пусть A — наибольшее независимое множество в V, $V \setminus A = V_1 \sqcup V_2$, где $V_1 = \{v \in V \setminus A | y \ v$ ровно один сосед в $A\}$ а $V_2 = \{v \in V \setminus A | y \ v$ хотя бы 2 соседа в $A\}$. Предположим, что $|V_1| > 2n$. Тогда $\exists y \in A : \exists x_1, x_2, x_3 \in V_1 : \{(x_1, y), (x_2, y), (x_3, y)\} \subset E$. Если одного из ребер (x_i, x_j) нет в графе, то добавив в A вершины x_i, x_j и удалив из A вершину y получим новое независимое множество большего размера. Иначе мы нашли A точки на плоскости A0, A1, A2, A3, попарные расстояние между которыми равны, чего быть не может A2 A3.

Из доказанного выше следует, что $|V_2| \ge n$, причем каждая вершина из V_2 дает хотя бы 2 ребра. Поскольку $|V_1| + |V_2| = 3n$, то всего на первом шаге будет набрано $\ge 4n$ ребер.

Факт. Самый лучший известный результат: $|E| \geqslant \frac{26}{3}n$.

Теорема 2.1.3. Пусть $G_d = (V_d, E_d)$ — последовательность дистанционных графов в \mathbb{R}^d . $|V_d| = n = n(d), \ \alpha(G_d) = \alpha(d)$ Тогда, если $d\alpha = o(n)$, то

$$|E_d| \geqslant \frac{n^2}{\alpha} (1 + o(1))$$

Доказательство. Аналогично теореме выше, рассмотрим $V \setminus A = V_1 \sqcup V_2$ и докажем, что $|V_1| \leqslant \alpha d$. Действительно, предположив противное, найдем в A вершину y, имеющую (d+1) соседа в V_1 и аналогично получим противоречие с тем, что в \mathbb{R}^d нет дистанционного графа K_{d+2} (б/д).

Тогда, пользуясь тем, что $|V_1|=v\leqslant \alpha d$, на первом шаге мы нашли $v+2(n-\alpha-v)\geqslant\underbrace{d\alpha}_{V_1}+\underbrace{2(n-\alpha-\alpha d)}_{V_2}$

ребер. Всего шагов $\left[\frac{n-\alpha d}{\alpha}\right]$, а суммарное число ребер

$$\left[\frac{n-\alpha d}{\alpha}\right] \cdot \alpha d + 2n \left[\frac{n-\alpha d}{\alpha}\right] - 2\alpha d \left[\frac{n-\alpha d}{\alpha}\right] - 2\alpha \left[\frac{n-\alpha d}{\alpha}\right] \left[\frac{n-\alpha d}{\alpha} + 1\right] / 2$$

$$= \frac{2n^2}{\alpha} - dn - \frac{n^2}{\alpha} = \frac{n^2 - n\alpha d}{\alpha} = \frac{n^2 + o(n^2)}{\alpha} \sim \frac{n^2}{\alpha}$$

2.2 Рамсеевские задачи

2.2.1 Оценки чисел Рамсея

Определение 2.2.1. Пусть $s, t \in \mathbb{N}$. Число Рамсея $R(s,t) := \min\{n \in \mathbb{N} : \text{при любой раскраски ребер}$ K_n в красный и синий цвета либо найдется K_s , все ребра у которого красные, либо K_t , все ребра которого синие $\}$.

Эквивалентное определение $R(s,t):=\min\{n\in\mathbb{N}:\ \forall G=(V,E),\ |V|=n$ и либо $\omega(G)\geqslant s$, либо $\alpha(G)\geqslant t\}$

Замечание. 1. R(1,t) = 1

- 2. R(2,t) = t
- 3. R(3,t) никто не знает.

Теорема 2.2.1. (Эрдеш, Секереш, 1935)

$$R(s,t) \le R(s-1,t) + R(s,t-1)$$

Доказательство. n:=R(s-1,t)+R(s,t-1). Зафиксируем произвольную раскраску K_n в 2 цвета и вершину $v\in V$. Из нее выходит n-1 ребро. От противного получаем, что из нее выходит либо $\geqslant R(s-1,t)$ красных ребер, либо $\geqslant R(s,t-1)$ синих. Без ограничения общности считаем, что $\geqslant R(s-1,t)$ красных. $V_1:=\{u\in V,\,(v,u)-$ красное $\}$. Поскольку $|V_1|\geqslant R(s-1,t)$, то в V_1 есть либо синий K_t , либо красный K_{s-1} , который вместе с вершиной v дает искомый красный K_s .

Следствие. $R(s,t) \leqslant C_{s+t-2}^{t-1} - u n \partial y \kappa u u s \ no \ s \ u \ t.$

Следствие. $R(s,s) \leqslant C_{2s-1}^{s-1} = \frac{4^{s-1}}{\sqrt{\pi s}}(1+o(1))$

Следствие. $R(3,3) \leqslant C_4^2 = 6$, при этом R(3,3) > 5 (цикл на 5 вершинах).

2.2.2 Диагональные числа Рамсея

Определение 2.2.2. Число Рамсея R(s,s) называется диагональным.

Выше доказана оценка $R(s,s) \leqslant C_{2s-1}^{s-1} = \frac{4^{s-1}}{\sqrt{\pi s}}(1+o(1))$

Теорема 2.2.2. (Туран)

$$R(s,s) > (s-1)^2$$

Доказательство. Рассмотрим s-1 копии K_{s-1} , несвязанные между собой. Для такого графа $\alpha(G)=s-1=\omega(G)$.

Теорема 2.2.3. (Эрдеш, Секереш, 1935)

$$R(s,s) \geqslant (1+o(1))\frac{1}{e\sqrt{2}} \cdot s2^{s/2}$$

Доказательство. $n:=(1+o(1))\frac{1}{e\sqrt{2}}\cdot s2^{s/2}$. Покажем, что существует раскраска K_n , в которой нет одноцветного K_s . Рассмотрим случайную раскраску ребер K_n в два цвета, где $\mathsf{P}(e-\mathsf{красное})=\mathsf{P}(e-\mathsf{синеe})=\frac{1}{2}$. Пусть $S\subset V,\ |S|=s$ и $A_S=\{K_s,\ \text{порожденный }S-\text{одноцветный }\}$. Тогда $\mathsf{P}(A_S)=2\cdot 2^{-C_s^2}=2^{1-C_n^2}$

$$\begin{split} & \mathsf{P}(\bigcup_{\substack{S \subset V \\ |S| = s}} A_S) \leqslant \sum_{\substack{S \subset V \\ |S| = s}} \mathsf{P}(A_S) = C_n^s 2^{1 - C_s^2} \leqslant \frac{n^s}{s!} 2^{1 - s^2/2 + s/2} \\ & = \frac{1}{s!} (1 + o(1))^s \cdot \frac{1}{e^s 2^{s/2}} \cdot s^s 2^{s^2/2} 2^{1 - s^2/2 + s/2} = \frac{(1 + o(1))^s}{\sqrt{2\pi} s \frac{s^s}{e^s} (1 + o(1))} \frac{s^s}{e^s} \cdot 2 = \frac{2}{\sqrt{2\pi} s} \cdot \frac{(1 + o(1))^s}{(1 + o(1))} \end{split}$$

Подбором o(1) в числителе и знаменателе можно сделать так, что полученное число < 1 при всех s. \square

Следствие. Пусть $s \in \mathbb{N}$ и п таково, что $C_n^s 2^{1-C_s^2} < 1$. Тогда R(s,s) > n.

Теорема 2.2.4. Пусть дано $s \in \mathbb{N}$. Тогда $\forall n$

$$R(s,s) \geqslant n - C_n^s 2^{1 - C_n^s}$$

Доказательство. Рассмотрим случайную раскраску K_n в два цвета. Определим случайную величину $\xi :=$ кол-во одноцветных K_s в раскраске.

$$\mathsf{E}\xi = C_n^s 2^{1 - C_s^2} \to \exists \chi : \, \xi(\chi) \leqslant C_n^s 2^{1 - C_s^2}$$

Если $C_n^s 2^{1-C_s^2} < 1$, то мы нашли подходящую раскраску.

Иначе зафиксируем расскраску χ и удалим из каждого одноцветного K_s по любой вершине (возможно, одну и ту же вершину для нескольких K_s). После удаления в графе осталось $\geqslant n-C_n^s 2^{1-C_s^2}$ вершин, причем для раскраски χ в нем нет одноцветных K_s .

Следствие.

$$R(s,s) \ge (1+o(1))\frac{1}{e}s2^{s/2}$$

Доказательство. Аналогично теореме 2.2.3 имеет $C_n^s 2^{1-C_s^2} = \frac{2}{\sqrt{2\pi s}} \cdot \frac{(1+o(1))^s}{(1+o(1))} \cdot 2^{s/2}$. Тогда, по теореме 2.2.4:

$$(1+o(1))\frac{s2^{s/2}}{e} - \frac{2}{\sqrt{2\pi s}} \cdot \frac{(1+o(1))^s}{(1+o(1))} \cdot 2^{s/2} = (1+o(1))\frac{1}{e} \cdot s2^{s/2}$$

Теорема 2.2.5. (Спенсер, 1975)

$$R(s,s) \ge (1+o(1))\frac{\sqrt{2}}{s}s2^{s/2}$$

Замечание. Это самый лучший известный результат.

Для доказательства этой теоремы мы будем использовать локалькую лемму Ловаса (далее ЛЛЛ), причем сначала мы покажем, как теорема следует из ЛЛЛ в симметричной форме, потом выведем ЛЛЛ в симметричной форме из ЛЛЛ в общем случае, а далее докажем ЛЛЛ в общем случае.

Теорема 2.2.6. (Локальная лемма Ловаса в симметричной форме, 1973г, Ловас)

Пусть A_1, \ldots, A_n — события на $(\Omega, \mathscr{F}, \mathsf{P})$. Пусть известно, что $\forall i \; \mathsf{P}(A_i) \leqslant p < 1 \; u \; \forall i \; A_i$ не зависит от совокупности всех остальных событий, кроме не более d штук (событие A не зависит от группы событий B_1, \ldots, B_k , если $\mathsf{P}(A_i|\mathsf{nepece}$ чение u объединение событий из B_1, \ldots, B_k) = $\mathsf{P}(A_i)$ 0 u числа p, d не зависят от i. Тогда, если ep(d+1) < 1 то

$$\mathsf{P}(\bigcap_{i=1}^{n} \overline{A}_i) > 0$$

Вывод теоремы Спенсера из ЛЛЛ в симметричной форме. Пусть $A_1, \ldots, A_{C_n^s}$ — события, заключающиеся в том, что конкретные s вершин образуют одноцветный K_s в случайной раскраске K_n , где $n = (1 + o(1)) \frac{\sqrt{2}}{s} s 2^{s/2}$.

 $d \le$ кол-во S-элементных множеств вершин, пересекающих множество, отвечающее событию A_i , хотя бы по 2 вершинам = $C_s^2 C_n^{s-2}$. Проверим условие ЛЛЛ:

$$\begin{split} &e2^{1-C_s^2}\left(C_s^2C_n^{s-2}+1\right) < e2^{1-s^2/2+s/2} \cdot \frac{s^2}{2} \cdot \frac{n^{s-2}}{(s-2)!} \\ &= es^22^{-s^2/2+s/2} \frac{1}{(1+o(1))\sqrt{2\pi s} \frac{(s-2)^{s-2}}{o^{s-2}}} \cdot (1+o(1))^s \frac{(\sqrt{2})^{s-2}}{e^{s-2}} 2 \end{split}$$

Перепишем
$$(s-2)^{s-2}=s^{s-2}(1-\frac{2}{s})^{s-2}\sim s^{s-2}(1-\frac{2}{s})^s\sim s^{s-2}e^{-2}$$
 и продолжим
$$\sim e^3s^22^{-s^2/2+s/2}\frac{1}{(1+o(1))\sqrt{2\pi s}}2^{\frac{s-2}{2}}2^{s^2/2-2s/2}(1+o(1))^{s-2}$$

$$=e^3\frac{s^2(1+o(1))^s}{2\sqrt{2\pi s}(1+o(1))}<1$$
 при всех s для подходящей $\varphi=o(1)$

Определение 2.2.3. Рассмотрим события A_1, \ldots, A_n . Граф G = (V, E) называется орграфом зависимостей для (A_1, \ldots, A_n) , если $V = (A_1, \ldots, A_n)$ и $\forall i : A_i$ не зависит от совокупности тех A_j , для которых $(A_i, A_j) \notin E$.

Замечание. Для зависимых событий ребра могут как быть в графе, так и не быть.

Замечание. Для фиксированной совокупности событий существует не единственный орграф зависимостей.

Теорема 2.2.7. (ЛЛЛ, общий случай)

Пусть A_1, \ldots, A_n — события на $(\Omega, \mathscr{F}, \mathsf{P})$ и G = (V, E) — их орграф зависимостей, такой что $\exists x_1, \ldots, x_n \in [0,1), \ m.ч. \ \forall i \ \mathsf{P}(A_i) \leqslant x_i \prod_{j:(A_i,A_j)\in E} (1-x_j).$ Тогда

$$\mathsf{P}(\bigcap_{i=1}^{n} \overline{A}_i) \geqslant \prod_{j=1}^{n} (1 - x_j) > 0$$

Вывод ЛЛЛ в симметричной форме из ЛЛЛ в общем случае. 1. $d=0 \Rightarrow A_1, \ldots A_n$ независимы в совокупности \Rightarrow

$$P(\bigcap \overline{A}_i) = \prod_{i=1}^n (1 - P(A_i)) \ge (1 - p)^n \ge (1 - \frac{1}{e})^n > 0$$

2. $d \geqslant 1$: Рассмотрим G — орграф зависимостей. Из A_i проводим ребра в те и только те события, от которых A_i может зависеть. Тогда $\forall i \ \deg_{\mathrm{out}}(A_i) \leqslant d$. Положим $x_1 = \ldots = x_n = \frac{1}{d+1} \in [0,1)$.

$$ep(d+1) \leqslant 1 \Rightarrow p(d+1) \leqslant \left(1 - \frac{1}{d+1}\right)^d \Rightarrow P(A_i) \leqslant p \leqslant \frac{1}{d+1} \left(1 - \frac{1}{d+1}\right)^d = x_i \prod_{j:(A_i, A_j) \in E} (1 - x_j)$$

Доказательство ЛЛЛ в общем случае.

$$\mathsf{P}(\bigcap_{i=1}^{n} \overline{A}_{i}) = \mathsf{P}(\overline{A}_{1}) \mathsf{P}(\overline{A}_{2} \mid \overline{A}_{1}) \dots \mathsf{P}(\overline{A}_{n} \mid \bigcap_{i=1}^{n-1} \overline{A}_{i}) = (1 - \mathsf{P}(A_{1}))(1 - \mathsf{P}(A_{2} \mid \overline{A}_{1})) \dots \left(1 - \mathsf{P}(A_{n} \mid \bigcap_{i=1}^{n-1} \overline{A}_{i})\right)$$

$$(2.1)$$

Заметим, что из следующей леммы будет следовать ЛЛЛ:

Лемма 2.2.1.

$$\forall i \ \forall J \subset \{1, \ldots, n\} \setminus \{i\} : \ \mathsf{P}(A_i \mid \bigcap_{j \in J} \overline{A}_j) \leqslant x_i$$

Доказательство. Пусть сначала $J=\varnothing$. Тогда имеем

$$\mathsf{P}(A_i \mid \bigcap_{j \in \varnothing} \overline{A}_j) = \mathsf{P}(A_i \mid \Omega) = \mathsf{P}(A_i) \leqslant x_i \prod (1 - x_j) \leqslant x_i$$

Иначе $J=J_1\sqcup J_2$, где $J_1:=\{j\in J:\; (A_i,A_j)\in E\},\; J_2:=J\backslash J_1.$ Будем вести индукцию по $|J_1|.$ База $|J_1|=0.$ Тогда $\mathsf{P}(A_i\mid\bigcap_{j\in J}\overline{A}_j)=\mathsf{P}(A_i\mid\bigcap_{j\in J_2}\overline{A}_j)=\mathsf{P}(A_i)\leqslant x_i.$

Пусть
$$J_1 \ \{j_1, \ \dots, j_r\}, \ r \geqslant 1$$
. Тогда имеем

$$\begin{split} P(A_i \mid \bigcap_{j \in J} \overline{A}_j) &= \mathsf{P}\left(A_i \mid \left(\bigcap_{j \in J_1} \overline{A}_j\right) \bigcap \left(\bigcap_{j \in J_2} \overline{A}_j\right)\right) = \frac{\mathsf{P}\left(A_i \bigcap \left(\bigcap_{j \in J_1} \overline{A}_j\right) \mid \bigcap_{j \in J_2} \overline{A}_j\right)}{\mathsf{P}\left(\bigcap_{j \in J_1} \overline{A}_j \mid \bigcap_{j \in J_2} \overline{A}_j\right)} \\ &\leq \frac{\mathsf{P}\left(A_i \mid \bigcap_{j \in J_2} \overline{A}_j\right)}{\mathsf{P}\left(\bigcap_{j \in J_1} \overline{A}_j \mid \bigcap_{j \in J_2} \overline{A}_j\right)} \leq \frac{x_i \prod\limits_{j : (A_i, A_j) \in E} (1 - x_j)}{\mathsf{P}\left(\bigcap_{j \in J_1} \overline{A}_j \mid \bigcap_{j \in J_2} \overline{A}_j\right)} \\ &\stackrel{}{\mathsf{P}\left(\bigcap_{j \in J_1} \overline{A}_j \mid \bigcap_{j \in J_2} \overline{A}_j\right)} \leq \frac{r_i \prod\limits_{j : (A_i, A_j) \in E} (1 - x_j)}{\mathsf{P}\left(\bigcap_{j \in J_1} \overline{A}_j \mid \bigcap_{j \in J_2} \overline{A}_j\right)} \end{split}$$

Г

Обозначим $A_{J_i} := \bigcap_{j \in J_i} \overline{A}_j, \ i = 1, 2$. Тогда осталось доказать, что $\mathsf{P}(A_{J_1} \mid A_{J_2}) \geqslant \prod_{j: (A_i, A_j) \in E} (1 - x_j)$. Имеем:

$$\begin{split} \mathsf{P}(A_{J_1} \mid A_{J_2}) &= \mathsf{P}(\overline{A}_{j_1} \mid A_{J_2}) \cdot \mathsf{P}(\overline{A}_{j_2} \mid \overline{A}_{j_1} \cap A_{J_2}) \cdot \ldots \cdot \mathsf{P}(\overline{A}_{j_r} \mid \overline{A}_{j_1} \cap \ldots \cap \overline{A}_{j_2} \cap A_{J_2}) \\ &= (1 - \mathsf{P}(A_{j_1} \mid A_{J_2})(1 - \mathsf{P}(A_{j_2} \mid \overline{A}_{j_1} \cap A_{J_2}) \ldots (1 - \mathsf{P}(A_{j_r} \mid \overline{A}_{j_1} \cap \ldots \cap \overline{A}_{j_2} \cap A_{J_2}) \\ & \stackrel{\text{I. H.}}{\geqslant} \prod_{j \in J_1} (1 - x_{j_1}) \ldots (1 - x_{j_r}) \geqslant \prod_{j: (A_i, A_j) \in E} (1 - x_j) \end{split}$$

Применяя лемму для событий из равенства 2.1 получаем утверждение ЛЛЛ.

Теорема 2.2.8. (Франкл, Уилсон)

Можно явно указать графы, у которых число вершин f ведет себя как $f = \left(e^{1/4} + o(1)\right)^{\ln^2 s/\ln \ln s}$, в которых нет ни s клик, не независимых множеств размера s.

Замечание. $s^c = e^{c \ln s} < f << e^{sc}$, поскольку $\ln^2 s \geqslant c \ln s \ln \ln s$.

Доказательство. Рассмотрим произвольное простое p и $m:=p^3, k:=p^2$. Определим граф $G=(V,E):V=\{x=(x_1,\ldots,x_m): x_i\in\{0,1\},\ x_1+\ldots+x_m=k\};\ E=\{(x,y):\langle x,y\rangle\equiv 0\pmod p\},\ |V|=n=C_m^k$. Мы покажем, что $\alpha(G)<\sum_{i=0}^{p-1}C_m^i+1;\ \omega(G)>\sum_{i=0}^pC_m^i+1$. Доказав это, теорема Франка-Уилсона будет доказана для всех s вида $\sum_{i=0}^pC_m^i+1$, где p— простое, но нужно будет проверить, что $C_m^k=(e^{1/4}+o(1))^{\ln^2 s/\ln\ln s}$.

Лемма 2.2.2.

$$C_m^k = \left(e^{1/4} + o(1)\right)^{\ln^2 s/\ln \ln s}$$

Доказательство. $C_m^k = C_{p^3}^{p^2} = \frac{p^3(p^3-1)\dots(p^3-p^2+1)}{(p^2)!}$. Перепишем отдельно числитель и знаменатель: $(p^2)! = (1+o(1))\sqrt{2\pi p^2} \left(\frac{p^2}{e}\right)^{p^2} = (p^2)^{(1+o(1))p^2}.$ Аналогично $p^3(p^3-1)\dots(p^3-p^2+1) = (p^3)^{p^2(1+o(1))}$ Тогда имеем

$$C_m^k = \frac{(p^3)^{p^2(1+o(1))}}{(p^2)^{p^2(1+o(1))}} = p^{p^2(1+o(1))}$$

Для $s=\sum\limits_{i=0}^p C_m^i+1$ верны оценки: $C_m^p+1< s<(p+1)C_m^p+1,$ откуда, пользуясь тем, что $C_m^p=C_{p^3}^p=\frac{p^{3(1+o(1))p}}{p^{p(1+o(1))}}=p^{2p(1+o(1))},$ получаем, что $s\sim p^{2p(1+o(1))}.$

Имеем $\ln s(1+o(1))2p\ln p$; $\ln \ln s = (1+o(1))\ln p$; $\ln^2 s = 4(1+o(1))p^2\ln^2 p$, a $\frac{\ln^2 s}{\ln \ln s} = 4(1+o(1))p^2\ln p$

$$\ln n = (1 + o(1))p^2 \ln p = \frac{1}{4}(1 + o(1))\frac{\ln^2 s}{\ln \ln s} \Rightarrow n = \left(e^{1/4} + o(1)\right)^{\ln^2 s / \ln \ln s}$$

Лемма 2.2.3.

$$\alpha(G) < \sum_{i=0}^{p-1} C_m^i + 1$$

Доказательство. Рассмотрим независимое множество $W \subset V, \ \forall x,y \in W: \ \langle x,y \rangle \neq 0 \ (\text{mod } p)$. Пусть $W = \{x_1, \ldots, x_t\}$. Нам необходимо доказать, что $t \leqslant \sum\limits_{i=1}^{p-1} C_m^i$.

Поставим в соответствие каждой вершине x_i многочлен $F_{x_i}(y) \in \mathbb{Z}_p[y_1, \ldots, y_m]$ от m переменных степени $\leq p-1$:

$$F_{x_i}(y) = \prod_{i=1}^{p-1} (j - \langle x_i, y \rangle)$$

Раскроем все скобки и уменьшим степень всех одночленов $F_{x_i} \mapsto \tilde{F}_{x_i} : \sum y_{i_1}^{\alpha_{i_1}} \dots y_{i_q}^{\alpha_{i_q}} = \sum c y_{i_1} \dots y_{i_q}$. Размерность пространства многочленов, в котором лежат \tilde{F}_{x_i} не превосходит $C_m^0 + \dots + C_m^{p-1}$, поскольку порождается одночленами. Осталось показать, что многочлены $\tilde{F}_{x_1}, \dots, \tilde{F}_{x_t}$ линейно независимы над \mathbb{Z}_p^2 , откуда будет следовать утверждение леммы.

Рассмотирм произвольную нулевую линейную комбинацию $G=c_1\tilde{F}_{x_1}+\ldots+c_t\tilde{F}_{x_t}\equiv 0 \Rightarrow \forall y\in \{0,1\}^m: G(y)\equiv 0\pmod p$. Для таких y выполнено равенство: $F_{x_i}(y)=\tilde{F}_{x_i}(y)$

$$\begin{cases} F_{x_i}(x_i) = \prod_{\substack{j=1 \ p-1}}^{p-1} (j-k) \neq 0 \pmod{p} \\ F_{x_i}(x_j) = \prod_{\substack{j=1 \ j=1}}^{p-1} (j-\langle x_i, x_l \rangle) \equiv 0 \pmod{p} \end{cases} \Rightarrow c_i \equiv 0 \pmod{p} \quad \forall i$$

Лемма 2.2.4.

$$\omega(G) < \sum_{i=0}^{p} C_m^i + 1$$

Доказательство. $W = \{x_1, \dots, x_t \mid \langle x_i, x_j \rangle \equiv 0 \pmod{p} \}$. Опять же, поставим в соответствие вершинам из W многочлены

$$F_{x_i}(y) := \langle x_i, y \rangle (\langle x_i, y \rangle - p) \dots (\langle x_i, y \rangle - p(p-1)) \in \mathbb{R}[y_1, \dots, y_m]$$

причем $\deg F_{x_i}\leqslant p$. Построим новые многочленые $F_{x_i}\mapsto \tilde{F}_{x_i}$ по тому же правилу, что и выше. Аналогично, если новые многочлены ЛНЗ, то $t\leqslant \sum\limits_{i=0}^p C_m^i$.

$$\begin{cases} F_{x_1}(x_1) = p^2(p^2-p)(p^2-2p)\dots(p^2-p(p-1)) \neq 0 \text{ т.к. многочлены над } \mathbb{R} \\ i \geqslant 2: \ F_{x_1}(x_i) = \langle x_1, x_i \rangle (\langle x_1, x_i \rangle - p) \dots (\langle x_1, x_i \rangle - p(p-1)) = 0 \end{cases}$$

и лемма доказана.

Применяя 3 леммы, получаем, что теорема верна для всех s вида $\sum_{i=0}^{p} C_m^i + 1$. **Б**/д: теорема верна для произвольного s.

2.2.3 R(3,t)

В этой главе мы займемся оценкой числа R(3,t). Как мы помним, $R(s,t) \leq C_{s+t-2}^{t-1}$. Пользуясь этим, легко получить оценку $R(3,t) \leq C_{t-1}^2 \sim \frac{t^2}{2}$. Попытаемся улучшить ее.

Рассмотрим случайную раскраску K_n в два цвета с $p \in [0,1]$ — вероятностью, что ребро красного цвета и 1-p — синего. Пусть $A_1, \ldots, A_{C_n^3}$ — события, отвечающие тому, что фиксированная тройка вершин образует красный треугольнк, а $B_1, \ldots, B_{C_n^t}$ события, заключающиеся в том, что i-тое фиксированное множество из t вершин образует синий K_t . Тогда $R(3,t) > n \iff \mathsf{P}(\bigcap_{i=1}^{C_n^3} \overline{A_i} \bigcap_{i=1}^{C_n^t} \overline{B_i}) > 0$ (аналогично доказательству теоремы Спенсера 2.2.2). Воспользуемся ЛЛЛ.

Зафиксируем событие A_i . В ор.графе зависимостей $(A_i, A_j) \in E \iff$ тройка, отвечающая A_j , имеет 2 общие вершины с i-той тройкой, а $(A_i, B_j) \in E \iff$ набор из t вершин, отвечающий B_j , имеет не менее 2 общих вершин с i-той тройкой. Аналогично для фиксированного B_i . Обозначим за $\#(A \to B)$ количество ребер из события A в событие B в ор.графе зависимостей. Тогда

$$\begin{cases} \#(A_i \to A_j) = 3(n-3) \\ \#(A_i \to B_j) = 3C_{n-3}^{t-2} + C_{n-3}^{t-3} \\ \#(B_i \to B_j) = (n-t)C_t^2 + C_t^3 \\ \#(B_i \to B_j) = C_n^t - tC_{n-1}^{t-1} - C_{n-t}^t \end{cases}$$

Теорема 2.2.9. Пусть дано t, а n — максимальное число, для которого найдутся $p \in [0,1]; x,y \in [0,1)$, такие что выполнена система неравенств

$$\begin{cases} \mathsf{P}(A_i) \leqslant x(1-x)^{\#(A_i \to A_j)} (1-y)^{\#(A_i \to B_j)} \\ \mathsf{P}(B_i) \leqslant y(1-x)^{\#(B_i \to A_j)} (1-y)^{\#(B_i \to B_j)} \end{cases}$$

Тогда R(3,t) > n.

Следствие. $R(3,t)\geqslant c\frac{t^2}{\ln^2 t}$ — без доказательства.

История улучшений

Теорема 2.2.10. (1980, б/д, Ajtai–Komlós–Szemeréd)

$$R(3,t) \le (1+o(1))\frac{t^2}{\ln t}$$

Теорема 2.2.11. (1995, б/д, Ким)

$$R(3,t) \geqslant \left(\frac{1}{162} + o(1)\right) \frac{t^2}{\ln t}$$

Теорема 2.2.12. (2013, $6/\partial$)

$$R(3,t) \geqslant \left(\frac{1}{4} + o(1)\right) \frac{t^2}{\ln t}$$

Замечание. Это наилучшие известные результаты на текущий момент

Замечание. Про число R(4,t) известно лишь, что $R(4,t)=t^{5/2+o(1)}$.

2.2.4Двудольные диагональные числа Рамсея

Определение 2.2.4. $b(k):=\min\{n\in\mathbb{N}:$ для любой раскраски ребер $K_{n,n}$ в два цвета найдется одноцветный $K_{k,k}$

Теорема 2.2.13.

$$b(k) \ge (1 + o(1)) \frac{2\sqrt{2}}{e} k 2^{k/2} = n$$

Замечание. В два раза больше, чем оценка R(k,k).

Доказательство. Рассмотрим случайную раскраску $K_{n,n}$ в два цвета с $p_k=p_c=rac{1}{2}$. Пусть события $A_i, \ i=1,\dots,\left(C_n^k\right)^2$ отвечают тому, что i-тая пара k-элементных множеств образует одноцветный $K_{k,k}$. Воспользуемся ЛЛЛ.

 $\mathsf{P}(A_i) = 2\left(\frac{1}{2}\right)^{k^2} = 2^{1-k^2} =: p, \ d \leqslant k^2 \left(C_{n-1}^{k-1}\right)^2$ — зафиксировали по одной вершине в каждой доле. При подстановки n из условия теоремы имеем $ep(d+1) \leqslant 1 \Rightarrow \mathsf{P}(\bigcap \overline{A}_i) > 0.$

Определение 2.2.5. Пусть H подграф графа G. Тогда его *плотность* равна $\frac{|E_H|}{|E_C|}$.

Теорема 2.2.14. Пусть G — произвольный подграф $K_{l,m}$, плотность которого равна $p \in [0,1]$ u $(s-1)C_l^r < mC_{lp}^r$. Тогда G содержит подграф $K_{r,s}$.

Доказательство. Предположим, что в G нет $K_{r,s}$. Для определенности будем считать, что l вершин содержится в первой доле $K_{l,m}$ и m во второй. Посчитаем двумя способами число подграфов $K_{r,1}$ в G.

- $1. \leqslant C_I^r(s-1)$, поскольку для любого r-элементного подмножества первой доли во второй существует не боле
еs-1 вершины, связанной с каждой из фиксированных вершин первой доли.
- 2. Пусть d_1, \ldots, d_m степени вершин нижней доли. Тогда

$$\#K_{r,1} = C_{d_1}^r + \ldots + C_{d_m}^r \geqslant mC_{\frac{d_1 + \ldots + d_m}{m}}^r = mC_{\lfloor E \rfloor}^r = mC_{lp}^r$$

где неравенство следует из неравенства Йенсена.

Тогда имеем $mC_{lp}^r \leqslant \#K_{r,1} \leqslant (s-1)C_l^r$ что противоречит условию теоремы.

Пусть $k^2 = o(n), \ r^2 = o(l), \ p \geqslant \text{const} \Rightarrow C_n^k \sim \frac{n^k}{k!}, \ C_l^r \sim \frac{l^r}{r!}, \ C_{lp}^r \sim \frac{l^r p^r}{r!}$. В таких условиях неравенство в теореме переписывается как

$$(s-1) < mp^r$$
 или $m \ge (s-1)p^{-r}(1+\varepsilon), \ \varepsilon > 0$

подграф, такой что его плотность $\geqslant p$. Пусть $\varepsilon > 0$ и

$$m \geqslant (s-1)p^{-r}(1+\varepsilon)$$

Тогда $\exists k_0 \ \forall k \geqslant k_0 \ \textit{в} \ G_{l,m} \ \textit{есть подграф} \ K_{r,s}$

Доказательство. Это иная формулировка доказанной выше теоремы.

Теорема 2.2.16.

$$b(k) \leqslant (1 + o(1))2^k k$$

Доказательство. Положим $n := (1+\varepsilon)2^k k, \varepsilon > 0$. Тогда $b(k) \leqslant n \iff$ в любой раскраски $K_{n,n}$ найдется одноцветный $K_{k,k}$. Пусть G^{κ} и G^{c} графы на всех красных и синих ребрах раскарски соответственно. Б.о.о. плотность G^{κ} $p \geqslant \frac{1}{2}$.

В условиях теоремы 2.2.15 имеем m = l = n, s = r = k. Имеем

$$n > (k-1) \left(\frac{1}{2}\right)^{-k} (1+\varepsilon) = (k-1)2^k (1+\varepsilon)$$

и по теореме $2.2.15 \ b(k) \le n$.

Теорема 2.2.17.

$$b(k) \le (1 + o(1))2^{k+1} \log_2 k$$

Доказательство. Положим $n := (1+\varepsilon)2^{k+1}\log_2 k$ и зафиксируем некоторую раскраску $K_{n,n}$. Рассмотрим вершины второй доли. Назовем вершину из второй доли красной, если из нее выходит красных ребер *больше*, чем синих (а иначе —синей). Без ограничения общности считаем, что красных вершин $\geq \frac{n}{2}$.

Рассмотрим красный граф $G_{n,\frac{n}{2}}$, где $\frac{n}{2}$ отвечает множеству красных вершин из второй доли. Из определения красной вершины, плотность $G=p\geqslant \frac{1}{2}$. Тогда, по теореме 2.2.15 имеем (для $l=n,m=\frac{n}{2}$)

$$\frac{n}{2} > (s-1)2^r(1+\varepsilon') \Leftrightarrow (1+\varepsilon)2^k \log_2 k > (s-1)2^r(1+\varepsilon')$$

Возьмем $r := k - 2\log_2 k$, $s := k^2\log_2 k$. Тогда

$$(s-1)2^r = k^2 \log_2 k(1+o(1))2^{k-2\log_2 k} = 2^k (1+o(1)) \log_2 k$$

И

$$(1+\varepsilon)2^k \log_2 k > 2^k (1+o(1)) \log_2 k (1+\varepsilon')$$

что соблюдается для $\varepsilon'=\frac{\varepsilon}{2}$. Тогда, по теореме 2.2.15, мы нашли в G подграф $K_{r,s}$.

В графе $K_{r,s} \subset G_{n,n/2}$ имеется $k-2\log_2 k$ вершин в верхней доле и $k^2\log_2 k$ в нижней. Пусть A это множество вершин из нижей доли, лежащие в $K_{r,s}$, а C — множество вершин из верхней доли, не лежащие в $K_{r,s}$. Тогда нам необходимо найти $2\log_2 k$ вершин в C и k вершин из A, связанных между собой только красными ребрами. Тогда, вершины из верхней доли в графе $K_{r,s}$ вместе с вершинами из C и k вершин из нижней доли дадут нам искомый одноцветный $K_{k,k}$.

Возьмем $G_{l,m}$, такой что $l=k^2\log_2 k$, $m=n-(k-2\log_2 k)=n(1+o(1))$, r=k, $s=2\log_2 k$. Покажем, что его плотность $p\geqslant \frac{1}{2}-\frac{k}{2^k}$.

Из каждой вершины нижней доли вверх идет хотя бы $\frac{n}{2}$ ребер \Rightarrow из каждой вершины A в C идет не меньше чем $\frac{n}{2}-(k-2\log_2 k)$ ребер. Тогда

$$p \geqslant \frac{l\left(\frac{n}{2} - k + 2\log_2 k\right)}{lm} > \frac{\frac{n}{2} - k}{m} > \frac{\frac{n}{2} - k}{n} = \frac{1}{2} - \frac{k}{n} > \frac{1}{2} - \frac{k}{2^k}$$

Заметим, что

$$\left(\frac{1}{2} - \frac{k}{n}\right)^k = \left(\frac{1}{2} - \frac{k}{2^{k+1}\log_2 k}(1 + o(1))\right)^k \sim \frac{1}{2^k}$$

Тогда, для $G_{l,m}$ имеем

$$\begin{split} m &> (s-1)p^{-r}(1+\varepsilon') \Leftrightarrow n(1+o(1)) > 2\log_2 k(1+o(1))2^k(1+\varepsilon') \\ &\Leftrightarrow 2^{k+1}(1+\varepsilon)\log_2 k(1+o(1)) > 2\log_2 k(1+o(1))2^k(1+\varepsilon') \\ &\Leftrightarrow (1+\varepsilon)(1+o(1)) > (1+\varepsilon')(1+o(1)) \end{split}$$

что верно для $\varepsilon'=\frac{\varepsilon}{2}$ и при достаточно больших k. Применяем теорему 2.2.15 и получаем требуемое. $\ \square$

2.3 Системы общих представителей

2.3.1 Тривиальные оценки

Определим $R_n := \{1, \ldots, n\}$ $\mathcal{M} := \{M_1, \ldots M_s \mid \forall i \ M_i \subseteq R_n \ \text{и} \ M_i \neq M_j\}.$

Определение 2.3.1. Системой общих представителей (далее — соп) для совокупности множеств \mathcal{M} назовем любое $S \subseteq R_n$, т.ч. $\forall i \ M_i \cap S \neq \emptyset.\tau(\mathcal{M}) := \min\{\tau \in \mathbb{N} \mid \exists S \subseteq R_n, \ |S| = \tau \text{ и } S - \text{соп для } \mathcal{M}\}.$

Замечание. Для гиперграфа $H=(\mathbb{R}_n,\mathcal{M})$ соп системы \mathcal{M} это вершинное покрытие H.

Пусть $\forall i \ |M_i| = k, \ |\mathcal{M}| = s$ и $M_i \subseteq R_n$. При фиксированных n, s, k количество \mathcal{M} с такими параметрами равно $C^s_{C^k_n}$.

Теорема 2.3.1.

$$\forall \mathcal{M}: \ \tau(\mathcal{M}) \leq \min\{s, n-k+1\}$$

Доказательство. От n-k+2 до n ровно k-1 число, а значит, взяв все числа от 1 до n-k+1, мы получим соп.

Теорема 2.3.2.

$$\exists \mathcal{M}: \ \tau(\mathcal{M}) \geqslant \min\{\left[\frac{n}{k}\right], s\}$$

Доказательство. Возможно два случая:

- 1. $s \leq \left\lceil \frac{n}{k} \right\rceil$. Тогда $\mathcal{M} = \{\{1, 2, \dots, k\}, \{k+1, \dots, 2k\}, \dots, \{(s-1)k+1, \dots, sk\}\}$
- 2. $s > \left[\frac{n}{k}\right]$. В таком случае систему \mathcal{M} так же, как и в первый раз, добирая новые множества пока можем, а после добавляем произвольные множества, пока $|\mathcal{M}|$ не равна s.

2.3.2 Жадный алгоритм

Теорема 2.3.3.

$$\forall n, k, s \ \forall \mathcal{M} \ \tau(M) \leq \max\{\frac{n}{k}, \frac{n}{k} \ln \frac{sk}{n}\} + \frac{n}{k} + 1$$

Доказательство. Зафиксируем М. Возможны следующие случаи:

1.
$$s \leqslant \frac{n}{k} \Rightarrow \tau(M) \leqslant s \leqslant \frac{n}{k}$$

2.
$$\frac{n}{k} \ln \frac{sk}{n} \ge n \Rightarrow \tau(M) \le n \le \frac{n}{k} \ln \frac{sk}{n}$$

3.
$$s > \frac{n}{k}$$
, $\frac{n}{k} \ln \frac{sk}{n} < n$.

Для доказательства последнего случая воспользуемся жадным алгоритмом построения соп.

Возьмем любой элемент $\nu_1 \in R_n$, который принадлежит наибольшему числу множеств в \mathcal{M} . Пусть их ρ_1 штук. Тогда $\rho_1 \geqslant \frac{sk}{n}$, поскольку $sk = \sum\limits_{i=1}^n \sum\limits_{M \in \mathcal{M}} I_{\{i \in M\}} \leqslant \rho_1 n$. Выкинем из \mathcal{M} все множества, содержавшие ν_1 . Осталась совокупность $\mathcal{M}_1, |\mathcal{M}_1| = s - \rho_1 = s_1$. Снова сделаем шаг жадного алгоритма.

Всего сделаем $N = \left[\frac{n}{k} \ln \frac{sk}{n}\right] + 1$ шагов ж.а, причем $\rho_i \geqslant \frac{s_{i-1}k}{n}$. После этого имеем построенное ж.а. множество $S = \{\nu_1, \ldots, \nu_N\}$ и совокупность \mathcal{M}_N т.ч.

$$|\mathcal{M}_N| = s_N = s_{N-1} - \rho_N \leqslant s_{N-1} - \frac{s_{N-1}k}{n} \leqslant \dots \leqslant s(1 - \frac{k}{n})^N = se^{N\ln(1 - \frac{k}{n})} \leqslant se^{-\frac{kN}{n}} \leqslant se^{-\frac{k}{n} \cdot \frac{n}{k}\ln\frac{sk}{n}} = \frac{n}{k}$$

$$\text{MToro } \tau(M) \leqslant N + \frac{n}{k} \leqslant \frac{n}{k}\ln\frac{sk}{n} + 1 + \frac{n}{k}$$

Теорема 2.3.4. Пусть $n \geqslant 4$, $k \leqslant \frac{n}{4}$, $4 \leqslant \ln \frac{sk}{n} \leqslant k$. Тогда

$$\exists \mathcal{M}: \ \tau(M) \geqslant \frac{1}{32} \frac{n}{k} \ln \frac{sk}{n}$$

Доказательство. Возьмем $m:=\left[\frac{1}{2}\ln\frac{sk}{n}\right]\geqslant 2$. Для удобства введем обозначение $R_{i,j}=\{i,\;\ldots,\;j\}$. Рассмотрим разбиение

$$R_{2qm} = R_{1,2qm} = R_{1,2m} \sqcup R_{2m+1,4m} \sqcup \ldots \sqcup R_{2(q-1)m+1,2qm}$$

где $q = \left[\frac{2k}{m}\right]$. Заметим, что разбиение определено корректно, поскольку из неравенства $\ln \frac{sk}{n} \leqslant k$ вытекает оценка

$$\frac{2k}{m} \geqslant \frac{2k}{\frac{1}{2} \ln \frac{sk}{n}} = \frac{4k}{\ln \frac{sk}{n}} \geqslant 4$$

означающая, во-первых, что q>1 и $q\geqslant\frac{k}{m}$ (мы воспользовались неравенством $[x]\geqslant\frac{x}{2}$ для $x\geqslant1$). Во-вторых, $2qm\leqslant4k\leqslant\frac{n}{8}$.

Занумеруем в некотором порядке все m элементные подмножества множетсв $R_{1,2m},\ldots,R_{2(q-1)m+1,2q}$. Получим совокупности $N^i=\{N_1^i,\ldots,N_{C_{2m}^m}^i\}, i=1,\ldots,q$. Заметим, что $|N^i|=C_{2m}^m<2^{2m}\leqslant 2^{\ln\frac{sk}{n}}<\frac{sk}{n}$ и что $\tau(N^i)=m+1>m$.

Пусть $\mathcal{M}^1=\{\mathcal{M}^1_1,\,\dots,\mathcal{M}^1_{C^m_{2m}}\}$ это совокупность, состоящая из множеств

$$\mathcal{M}_{i}^{1} = N_{i}^{1} \cup N_{i}^{2} \cup \ldots \cup N_{i}^{q}, \quad j = 1, \ldots, C_{2m}^{m}$$

как показано выше, $|\mathcal{M}^1| < \frac{sk}{n}$ и $\tau(\mathcal{M}^1) = m+1$. Более того,

$$|\mathcal{M}_j^1| = qm \geqslant \frac{mk}{m} = k$$

Положим $t = \left\lceil \frac{n}{2am} \right\rceil$. Рассмотрим разбиение

$$R_{2qmt} = R_{1,2qmt} = R_{1,2qm} \sqcup \ldots \sqcup R_{2qm(t-1)+1,2qmt} \subset R_n.$$

Очевидно, что $t \geqslant 1$ и $2qmt \leqslant n$. В каждый элемент последнего разбиения поместим копию совокупности \mathcal{M}^1 . Появятся совокупности $\mathcal{M}^2, \ldots, \mathcal{M}^t$ и рассмотрим совокупность

$$\mathcal{M}' := \mathcal{M}^1 \cup \ldots \cup \mathcal{M}^t$$

Понятно, что

$$|\mathcal{M}'| < \frac{sk}{n}t \leqslant \frac{n}{2mq}\frac{sk}{n} \leqslant \frac{n}{2k}\frac{sk}{n} < s.$$

Далее, мощность каждого множества $M \in \mathcal{M}'$ не меньше k. Наконец,

$$\tau(\mathcal{M}') \geqslant (m+1)t > mt \geqslant m\frac{n}{4am} \geqslant \frac{nm}{4 \cdot 2k} \geqslant \frac{n}{8k} \cdot \frac{1}{4} \ln \frac{sk}{n} = \frac{1}{32} \frac{n}{k} \ln \frac{sk}{n}.$$

Если $|\mathcal{M}'| < s$, то добавим к ней произвольные множества мощности k. Далее, если какое-то множество $A \in \mathcal{M}'$ содержит больше k элементов, то удалим из него любые произвольные элементы, сделав его мощность равной k. Получим итоговую совокупность \mathcal{M} , имеющую мощность s и состояющую только из k-элементных множеств. Поскольку $\mathcal{M} \supseteq \mathcal{M}'$, получаем неравенство

$$\tau(\mathcal{M}) \geqslant \tau(M') \geqslant \frac{1}{32} \frac{n}{k} \ln \frac{sk}{n}.$$

Теорема 2.3.5. Пусть для данных n, s, k число l таково, что

$$C_n^l \cdot \frac{C_{C_n^k - C_{n-l}^k}^s}{C_{C_n^k}^s} < 1.$$

Тогда $\exists \mathcal{M} \ c \ nараметрами \ n, s, k, \ maкая что \ \tau(\mathcal{M}) > l.$

 \mathcal{A} оказательство. Берем случайную совокупность \mathcal{M} с параметрами n,s,k и $\mathsf{P}(\mathcal{M}) = \frac{1}{C^s_{C^k_n}}$. Зафиксируем $L \subseteq \{1, \ldots, n\}$, т.ч. |L| = l.

$$\mathsf{P}($$
для случ. \mathcal{M} фикс. мн-во L является $\mathsf{con}) = \dfrac{C^s_{C^k_n - C^k_{n-l}}}{C^s_{C^k_n}}$

Выберем далее все множества, пересекающиеся с L, и возьмем любые s из них.

$$\mathsf{P}(\exists L \text{ т.ч. } \mathcal{M} \text{ имеет } L \text{ в качестве соп}) \leqslant C_n^l \cdot \frac{C_{C_n^k - C_{n-l}^k}^s}{C_{C_n^k}^s} < 1.$$

Теорема 2.3.6. Пусть $n \to \infty$. Пусть $s = s(n) \to \infty$, $k = k(n) \to \infty$, $\frac{sk}{n} \to \infty$. Пусть дополнительно $k^2 = o(n)$, $\ln \ln k = o\left(\ln \frac{sk}{n}\right)$, $\left(\ln \frac{sk}{n}\right)^2 = o(k)$. Тогда

$$\exists n_0 \ \forall n \geqslant n_0 \ \exists \mathcal{M}: \ \tau(\mathcal{M}) \geqslant \frac{n}{k} \ln \frac{sk}{n} - \frac{n}{k} \ln \ln \frac{sk}{n} - \frac{n}{k} \ln \ln k - \frac{3n}{k} = (1 + o(1)) \frac{n}{k} \ln \frac{sk}{n}$$

Доказательство. Обозначим $l := \frac{n}{k} \ln \frac{sk}{n} - \frac{n}{k} \ln \ln \frac{sk}{n} - \frac{n}{k} \ln \ln k - \frac{3n}{k}$ и подставим это в утверждение теоремы 2.3.5. Покажем, что для данного l выполнена сходимость

$$C_n^l \cdot \frac{C_{C_n^k - C_{n-l}^k}^s}{C_{C_n^k}^s} \to 0.$$

$$\begin{split} \frac{C_{C_n^k - C_{n-l}^k}^s}{C_{C_n^k}^s} &= \frac{\left(C_n^k - C_{n-l}^k\right) \dots \left(C_n^k - C_{n-l}^k - s + 1\right)}{C_n^k \left(C_n^k - 1\right) \dots \left(C_n^k - s + 1\right)} \\ &= \left(1 - \frac{C_{n-l}^k}{C_n^k}\right) \left(1 - \frac{C_{n-l}^k}{C_n^k - 1}\right) \dots \left(1 - \frac{C_{n-l}^k}{C_n^k - s + 1}\right) \\ &\sim \left(1 - \frac{C_{n-l}^k}{C_n^k}\right)^s \end{split}$$

Покажем последний переход:

$$\frac{C_{n-l}^k}{C_n^k} = \left(1 - \frac{l}{n}\right) \dots \left(1 - \frac{l}{n-k+1}\right) = \exp\left[\ln\left(1 - \frac{l}{n}\right) + \dots + \ln\left(1 - \frac{l}{n-k+1}\right)\right]$$

$$= \exp\left[-\frac{l}{n} + o\left(\frac{l^2}{n^2}\right) - \frac{l}{n-1} + \dots - \frac{l}{n-k+1} + o\left(\frac{l^2}{n^2}\right)\right]$$

$$= \exp\left[-\frac{l}{n}\left(1 + o\left(\frac{k}{n^2}\right)\right)\right] = \exp\left[-\frac{l}{n}\left(1 + o\left(\frac{k}{n}\right)\right)\right]$$

$$\sim e^{-(1+o(1)\ln\frac{sk}{n}} \to 0$$

поскольку

$$\begin{split} \frac{1}{n-1} &= \frac{1}{n} \left(\frac{1}{1 - \frac{1}{n}} \right) = \frac{1}{n} \left(1 + \frac{1}{n} + o\left(\frac{1}{n^2}\right) \right) = \frac{1}{n} + o\left(\frac{1}{n^2}\right) \\ \frac{1}{n-k+1} &= \frac{1}{n} \left(\frac{1}{1 - \frac{k-1}{n}} \right) = \frac{1}{n} + o\left(\frac{k}{n^2}\right) \end{split}$$

И

$$\frac{C_{n-l}^k}{C_n^k-s} = \frac{C_{n-l}^k}{C_n^k} \cdot \frac{1}{1-\frac{s}{C_n^k}} = \frac{C_{n-l}^k}{C_n^k} \left(1+\frac{s}{C_n^k}\right) (1+o(1)) \ \text{при } s/C_n^k \to 0.$$

установим это. Пусть $\frac{s}{C_n^k} > a$ (т.е. $\to 0). Тогда <math display="inline">s > a C_n^k$ и

$$\ln \frac{sk}{n} > \ln \frac{akC_n^k}{n} \sim \ln \frac{akn^k}{nk!} = \ln \frac{an^{k-1}}{(k-1)!} \ge \ln \frac{an^{k-1}}{k^{k-1}} = \ln \left[a \left(\frac{n}{k} \right)^{k-1} \right] \sim k \ln \frac{n}{k} > k$$

что противоречит условию $\ln^2\frac{sk}{n}=o(k)\Rightarrow \frac{C_{n-l}^k}{C_n^k-s}\sim \frac{C_{n-l}^k}{C_n^k}.$ Поскольку $l\frac{k^2}{n^2}\sim \frac{k}{n}\ln\frac{sk}{n}=o\left(\frac{\ln\frac{sk}{n}}{k}\right)\to 0,$

имеем $\exp \left[-\frac{lk}{n} (1 + o\left(\frac{k}{n}\right)) \right] \sim e^{-\frac{lk}{n}}$, а значит

$$\frac{C^s_{C^k_n - C^k_{n-l}}}{C^s_{C^k_n}} \sim \left(1 - \frac{C^k_{n-l}}{C^k_n}\right)^s = \exp\left[-\left(1 + o(1)\right)s\frac{C^k_{n-l}}{C^k_n}\right] \sim \exp\left[-\left(1 + o(1)\right)se^{-\frac{lk}{n}}\right]$$

Подставляя l, получаем

$$e^{-\frac{lk}{n}} = \frac{n}{sk} \left(\ln \frac{sk}{n} \right) (\ln k) e^3 \Rightarrow \exp\left[-(1+o(1))se^{-\frac{lk}{n}} \right] = \exp\left[-\frac{n}{k} \ln \frac{sk}{n} \ln ke^3 \right]$$

Оценим теперь C_n^l , пользуясь тем, что $l(1+o(1))\frac{n}{k}\ln\frac{sk}{n}$:

$$C_n^l \leqslant \left(\frac{ne}{l}\right)^l \leqslant \left(\frac{2ek}{\ln\frac{sk}{n}}\right)^l < k^l = e^{l\ln k} \leqslant e^{\frac{n}{k}\ln\frac{sk}{n}\cdot \ln k}$$

Объединяя все вместе, получаем:

$$C_n^l \cdot \frac{C_{C_n^k - C_{n-l}^k}^s}{C_{C_n^k}^s} \sim \exp\left[\frac{n}{k}\ln\frac{sk}{n}\ln k\right] \cdot \exp\left[-(1+o(1))\frac{n}{k}\ln\frac{sk}{n}\ln ke^3\right] = \exp\left[(1+o(1))(1-e^3)\frac{n}{k}\ln\frac{sk}{n}\ln k\right] \rightarrow 0$$

2.3.3 Конструктивная оценка размера минимальной соп

Зафиксируем n, s, k. Мы хотим построить $\mathcal{M} = \{M_1, \ldots, M_s \mid |M_i| = k$ и $M_i \subseteq R_n\}$ с $\tau(\mathcal{M}) > l$.

Рассмотрим систему всех k-элементных подмножеств: $K_1, \ldots, K_{C_n^k} = \mathcal{K}$. Нужно выбрать такие $M_1, \ldots, M_s \in \mathcal{K}$, что

$$\forall L: |L| = n - l \ \exists i \ M_i \subseteq L \tag{2.2}$$

"Заменим" $K_1,\,\dots,\,K_{C_n^k}$ на числа $1,\,\dots,\,C_n^k$. Тогда условие 2.2 эквивалентно выбору

$$i_1, \ldots, i_s : \forall L \mid L \mid = n - l \exists i_{\nu} : K_{i_{\nu}} \subseteq L$$
 (2.3)

Сопоставим каждому L все его k-элементные подмножества, т.е. множество $\mathcal{L} \subseteq \{1, \dots, C_n^k\}$ их номеров. Очевидно $|\mathcal{L}| = C_{n-l}^k$.

Множества $\mathcal{L}_1, \ldots, \mathcal{L}_{C_n^l}$ образуют совокупность в $\{1, \ldots, C_n^k\}$ и i_1, \ldots, i_{τ} — ее соп. Тогда множества $K_{i_1}, \ldots, K_{i_{\tau}}$ это как раз те множества, обладающие свойством 2.3.

Мы построили τ множеств, а хотели изначально s. Если $\tau \leq s$, то добавим проивзольные множества в совокупность и размер соп не уменьшится. Значит необходимо проверить, что $\tau < s$.

По теореме о жадном алгоритме

$$\tau \leqslant \max \left\{ \frac{C_n^k}{C_{n-l}^k}, \, \frac{C_n^k}{C_{n-l}^k} \ln \frac{C_n^l C_{n-l}^k}{C_n^k} \right\} + \frac{C_n^k}{C_{n-l}^k} + 1$$

Следствие. Пусть для фиксированных n, s, k число l таково, что

$$\max \left\{ \frac{C_n^k}{C_{n-l}^k}, \, \frac{C_n^k}{C_{n-l}^k} \ln \frac{C_n^l C_{n-l}^k}{C_n^k} \right\} + \frac{C_n^k}{C_{n-l}^k} + 1 \leqslant s$$

Тогда $\exists \mathcal{M} \ c \ nараметрами \ n, s, k, \ maкая что \ \tau(M) > l.$

2.4 Размерность Вапника-Червоненкиса

Рассмотрим множество точек $S \subset \mathbb{R}^n$ конечной мощности. Начнем пересекать его со всевозможными треугольниками в любой плоскости и пусть \mathcal{M} это система всех подмножеств S, которые можно получить, пересекая S с треугольниками.

Зафиксируем теперь $\varepsilon \in (0,1)$ и пусть $\mathcal{M}_{\varepsilon} \subseteq \mathcal{M} = \{M \in \mathcal{M} \mid |M| \geqslant \varepsilon |S|\}.$

Теорема 2.4.1. (Вапника-Червоненкиса, частный случай)

 $\forall \varepsilon \; \exists c.o.n.N \; \partial$ ля совокупности $\mathcal{M}_{\varepsilon}$, такая что

$$|N| \leqslant \frac{500}{\varepsilon} \log_2 \frac{500}{\varepsilon}$$

3амечание. Мощность N не зависит от S и n.

2.4.1 Теорема Вапника-Червоненкиса

Рассмотрим пару (\mathcal{X}, R) — произвольное множество и систему его подмножеств.

Определение 2.4.1. Пара (\mathcal{X}, R) называется ранжированным пространством.

Подмножество $A \subseteq \mathcal{X}$ дробится системой R, если

$$\forall B \subseteq A \ \exists r \in R : \ A \cap r = B,$$

причем проекцией системы R на A назовем множество $Pr_AR = \{r \cap A \mid r \in R\}$ всевозможных пересечений $r \in R$ с A. Очевидно, что A дробится тогда и только тогда, когда $Pr_AR = 2^A$.

Пример 2.4.1. (\mathbb{R}^n , \mathcal{H}), где \mathcal{H} — семейство всех открытых полупространств (например для n=2 это полупоскости).

Определение 2.4.2. Размерность Вапника-Червоненкиса $VC(\mathcal{X};R)$ ранжированного пространства (\mathcal{X},R) по определению равна

$$VC(\mathcal{X}; R) := \max\{m \in \mathbb{N} \mid \exists A \subseteq \mathcal{X}, |A| = m : Pr_A R = 2^A\}$$

(если такого m не существует, то $VC(\mathcal{X};R) = +\infty$).

Пример 2.4.2. $VC(\mathbb{N}; 2^{\mathbb{N}}) = +\infty$.

Теорема 2.4.2. ($Pa\partial on, \, 6/\partial$)

Любое множество из n+2 точек $S \subset \mathbb{R}^n$ можно представить как $S = A_1 \sqcup A_2$, причем выпуклые оболочки A_1 и A_2 пересекаются, т.е.

$$\operatorname{conv}(A_1) \cap \operatorname{conv}(A_2) \neq \emptyset.$$

Утверждение 2.4.1.1. $VC(\mathbb{R}^n; \mathcal{H}) = n + 1$.

Доказательство. Поскольку n+1 вершина симплекса в \mathbb{R}^n дробится, то верно неравенство $VC\left(\mathbb{R}^n;\mathcal{H}\right) \geqslant n+1$.

Для множества $S, |S| \geqslant n+2$ найдем предстваление $A_1 \sqcup A_2$ из теоремы Радона. Тогда очевидно, что отдробить A_1 не получится.

Лемма 2.4.1. Пусть (\mathcal{X}, R) — ранжированное пространство, такое что $VC(\mathcal{X}; R) = d$, $|\mathcal{X}| = n$. Тогда верно неравенство

$$|R| \leqslant g(n,d) = \sum_{i=0}^{d} C_n^i.$$

Доказательство. Заметим сначала, что g(n,d)=g(n-1,d)+g(n-1,d-1) — следствие из треугольника Паскаля.

Воспользуемся индукцией по n и d.

База: пусть n=0 и d произвольное. Тогда R равно либо $\{\varnothing\}$, либо \varnothing . В любом случае, $|R|\leqslant 1$. В то же время, очевидно, что $VC\left(\mathcal{X};R\right)\leqslant n=0$. Но тогда $|R|\leqslant 1=g(0,0)$. Пусть, наоборот, d=0 и $n\geqslant 1$ — произвольное. Предположим, что $|R|\geqslant 2$. Тогда $\exists r_1\neq r_2\in R$, причем либо в $r_1\backslash r_2$, либо в $r_2\backslash r_1$ содержится элемент $x\in\mathcal{X}$. Тогда множество $A=\{x\}$ дробится r_1 и r_2 , что противоречит d=0. Получаем $|R|\leqslant 1=g(n,0)$ и база доказана.

 Π ереход: зафиксируем (\mathcal{X}, R) с $VC(\mathcal{X}; R) = d \ge 1$ и $|\mathcal{X}| = n \ge 1$. Рассмотрим произвольный $x \in \mathcal{X}$ и определим пространства $(\mathcal{X}_1, R_1), (\mathcal{X}_2, R_2)$ следующим образом:

$$\mathcal{X}_1=\mathcal{X}_2=\mathcal{X}\backslash\{x\}$$

$$R_1=\{r\backslash\{x\}\ |\ r\in R\},\ R_2=\{r\in R\ |\ x\notin r\ \text{ho}\ r\cup\{x\}\in R\}$$

Тогда имеем $|R|=|R_1|+|R_2|$ (рассмотреть такие $r\in R$, что $r\in R$ и $r\cup\{x\}\in R$). Докажем два неравенства:

- 1. $VC(X_1; R_1) \leq d$ очевидно.
- 2. $VC(\mathcal{X}_2; R_2) \leq d-1$ предположим $VC(\mathcal{X}_2; R_2) \geq d$ и рассмотрим $A \subseteq \mathcal{X}_2$, |A| = d, $Pr_{R_2}A = 2^A$. По определению R_2 , множество $A \cup \{x\}$ дробится системой R, но $|A \cup \{x\}| \geq d+1$, что противоречит $VC(\mathcal{X}; R) = d$.

Тогда, по предположению индукции, верно

$$|R| = |R_1| + |R_2| \le q(n-1,d) + q(n-1,d-1) = q(n,d).$$

Следствие. Пусть $VC(\mathcal{X};R) = d, \ A \subseteq \mathcal{X}, \ |A| = n. \ Tor\partial a \ |Pr_AR| \leqslant g(n,d).$

Доказательство. Рассмотрим пространство $(A, Pr_A R)$ и применим к нему лемму 2.4.1.

Определение 2.4.3. $h \in \mathbb{N}$. Тогда h—измельчение R это множество

$$R_h := \{r_1 \cap \ldots \cap r_h : r_i \in R\}$$

Пример 2.4.3. Для (\mathbb{R}^n , \mathcal{H}) измельчение R_h целиком содержит в себе совокупность всех выпуклых многогранников в \mathbb{R}^n , имеющих h граней. Для h=3, n=2 это все треугольники на плоскости.

Лемма 2.4.2. Пусть $d \geqslant 2$, $h \geqslant 2$ и $VC(\mathcal{X}; R) = d$. Тогда

$$VC(\mathcal{X}; R_h) \leq 2dh \log_2 dh$$

Доказательство. Зафиксируем любое $A \subseteq \mathcal{X}$, имеющее $|A| = n > 2dh \log_2 dh$ и дробящееся R_h (если такое существует). По лемме 2.4.1 имеем $|Pr_R A| \leqslant g(n,d)$. Тогда

$$|Pr_AR_h| \leq |Pr_AR|^h \leq n^{dh}$$
.

Поскольку $n \ge 2$, то в сумме g(n,d) максимально последнее слагаемое и $g(n,d) \le n^d$ ($6/\partial$, по индукции). Поскольку $|Pr_AR_h| = 2^n$, то должно быть выполнено неравенство

$$|Pr_A R_h| = 2^n \leqslant |Pr_A R|^h \leqslant n^{dh},$$

что неверно при $n>2dh\log_2 dh$, а множества A с |A|=n, дробящегося R_h , не существует.

Определение 2.4.4. Пусть (\mathcal{X}, R) — произвольное ранжированное пространство. Зафиксируем любое конечное $A \subset \mathcal{X}$ с n = |A| и $\varepsilon \in (0, 1)$. Определим совокупность

$$\mathcal{M} = \mathcal{M}_{\varepsilon}(A, R) = \{M_1, \dots, M_s\} = \{A \cap r \mid \forall r \in R : |r \cap A| \geqslant n\varepsilon\}.$$

Тогда ε -сетью для A называется любая с.о.п. совокупности \mathcal{M} .

Теорема 2.4.3. (Вапника-Червоненкиса)

Пусть $VC(\mathcal{X};R) \leqslant d$, $\varepsilon \in (0,1)$. Тогда $\forall A \subseteq \mathcal{X}$, таких что $|A| < +\infty$ существует ε -сеть N, такая что

$$|N| \leqslant \frac{8d}{\varepsilon} \log_2 \frac{8d}{\varepsilon}$$

Доказательство. Введем обозначения $n:=|A|,\ m:=\left\lceil\frac{8d}{\varepsilon}\log_2\frac{8d}{\varepsilon}\right\rceil$. Построим по схеме выбора с возвращением по очереди два мультимножества $N=\{x_1,\ldots,x_m\}$ и $T=\{y_1,\ldots,y_m\}$. Введем вероятностное пространство $(\Omega,\mathscr{F},\mathsf{P})$ следующим образом:

$$\Omega = \{(N,T)\} = \{(\{x_1, \ldots, x_m\}, \{y_1, \ldots, y_m\}) : x_i, y_i \in A\},$$
$$|\Omega| = n^{2m}; \quad \mathscr{F} = 2^{\Omega}; \quad \mathsf{P}((N,T)) = \frac{1}{n^{2m}} \quad \forall (N,T) \in \Omega$$

и определим на нем два события:

$$E_{1} = \{(N,T): \exists r \in R: |r \cap A| \geqslant \varepsilon n, \ r \cap N = \emptyset\}$$

$$E_{2} = \{(N,T): \exists r \in R: |r \cap A| \geqslant \varepsilon n, \ r \cap N = \emptyset, \ |T \cap r| \geqslant \varepsilon \frac{m}{2}\}$$

где $|r \cap T|$ считается с учетом кратности элементов в мультимножестве T, т.е. $r \cap T$ по-прежнему мультимножество.

Лемма 2.4.3. $P(E_2) \ge \frac{1}{2} P(E_1)$

Доказательство леммы 2.4.3. Поскольку $P(E_2|E_1) = \frac{P(E_2 \cap E_1)}{P(E_1)} = \frac{P(E_2)}{P(E_1)}$, то достаточно установить неравенство $P(E_2|E_1) \geqslant \frac{1}{2}$.

При условии E_1 найдется $r_1 \in R$, такой что $|r_1 \cap A| \geqslant \varepsilon n$ и $r_1 \cap N = \varnothing$. Тогда $\mathsf{P}(E_2|E_1) \leqslant \mathsf{P}(|r_1 \cap T| \geqslant \frac{\varepsilon m}{2})$. r_1 не обязано целиком лежать в A, а поскольку все элементы T лежат в A, то уместно рассмотреть $u := r_1 \cap A$ (помним, что $|u| \geqslant \varepsilon n$) и оценить вероятность $\mathsf{P}(T: |u \cap T| \geqslant \frac{\varepsilon m}{2})$. Фактически, мы рассматриваем схему испытаний Бернулли: всего m испытаний (извлекаем по элементу из T) и успех состоит в том, что извлеченный элемент лежит в u, а искомая вероятность — это вероятность того, что произошло не менее $\frac{\varepsilon m}{2}$ успехов. Причем вероятность отдельного успеха есть $\frac{|u|}{|A|} \geqslant \varepsilon$.

Рассмотрим случайную величину $\xi \sim Bin(m,\varepsilon)$. Как известно, $\mathsf{E}\xi = m\varepsilon, \ \mathsf{D}\xi = m\varepsilon(1-\varepsilon) \leqslant m\varepsilon.$ Имеем

$$\begin{split} \mathsf{P}(E_2|E_1) \geqslant \mathsf{P}\left(\xi \geqslant \frac{\varepsilon m}{2}\right) &= \mathsf{P}\left(\xi - \mathsf{E}\xi \geqslant -\frac{\varepsilon m}{2}\right) = 1 - \mathsf{P}\left(\xi - \mathsf{E}\xi < -\frac{\varepsilon m}{2}\right) \\ \geqslant 1 - \mathsf{P}\left(|\xi - \mathsf{E}\xi| > \frac{\varepsilon m}{2}\right) \geqslant 1 - 4\frac{\mathsf{D}\xi}{\varepsilon^2 m^2} \geqslant 1 - \frac{4}{\varepsilon m} \end{split}$$

Вспоминаем, что

$$m \geqslant \frac{8d}{\varepsilon} \log_2 \frac{8d}{\varepsilon} \geqslant \frac{24}{\varepsilon}.$$

Следовательно,

$$1 - \frac{4}{\varepsilon m} \geqslant 1 - \frac{4}{24} = \frac{5}{6} \geqslant \frac{1}{2}.$$

и лемма доказана.

Лемма 2.4.4.

$$P(E_2) \leqslant 2^{-\frac{\varepsilon n}{2}} g(2m, d)$$

Доказательство леммы 2.4.4. Чтобы установить утверждение леммы немного поменяем вероятностное пространство. А именно будет состовлять пару (N,T) новым образом, не изменив вероятность E_2 и E_1 :

- 1. По схеме выбора с возвращением из A построим мультимножество $U=\{z_1,\ldots,z_{2m}\}$ с $\mathsf{P}(U)=\frac{1}{n^{2m}}$.
- 2. Разбиваем множество индексов $\{1, \ldots, 2m\}$ на две равные части так, что все разбиения равновероятны с вероятностью $\frac{1}{C_{2m}^m}$.
- 3. Элементы, соответствующие первому множеству индексов относим в мультимножество N, а второму в T.

По формуле полной вероятности $\mathsf{P}(E_2) = \sum\limits_{U} \mathsf{P}(E_2 \mid U) \mathsf{P}(U)$. Поскольку $\sum\limits_{U} \mathsf{P}(U) = 1$ достаточно показать, что $\mathsf{P}(E_2 \mid U) \leqslant 2^{-\varepsilon m/2} g(2m,d)$.

Представим E_2 в следующем виде:

$$E_2 = \bigcup_{\substack{r \in R \\ |r \cap A| \ge \varepsilon n}} E_{2,r}; \quad E_{2,r} := \{(N,T) \mid r \cap N = \varnothing, |r \cap T| \ge \frac{\varepsilon m}{2}\}.$$

Заметим, что если U фиксированно, то для любых $r_1, r_2 \in R$, удовлетворяющих условию $r_1 \cap U = r_2 \cap U$ события E_{2,r_1} и E_{2,r_2} совпадают \Rightarrow количество различных событий вида $E_{2,r}$ это в точности число различных $r \cap U$, т.е. $|Pr_U R| \leq g(2m,d)$ по лемме 2.4.1.

Осталось показать, что $\mathsf{P}(E_{2,r}|U)\leqslant 2^{-\varepsilon m/2}$. Действительно, пусть $|r\cap U|=p\geqslant \frac{\varepsilon n}{2}$. Тогда

$$\mathsf{P}(E_{2,r}|U) \leqslant \mathsf{P}(r \cap N = \varnothing|U) = \frac{C_{2m-p}^p}{C_{2m}^m} = \frac{(2m-p)!}{(2m)!} \cdot \frac{m!}{(m-p)!} = \frac{m(m-1)\dots(m-p+1)}{2m(2m-1)\dots(2m-p+1)} \leqslant 2^{-p} \leqslant 2^{-\varepsilon m/2}.$$

Тогда как для $p < \frac{\varepsilon n}{2}$ вероятность $\mathsf{P}(E_{2,r}|U) = 0.$

Лемма **2.4.5.** $(6/\partial)$: $g(2m,d)2^{-\varepsilon m/2} < \frac{1}{2}$

Используя леммы 2.4.3-2.4.5 получаем цепочку неравенств:

$$\frac{1}{2} > \mathsf{P}(E_2) \geqslant \frac{1}{2} \mathsf{P}(E_1) \Rightarrow \mathsf{P}(E_1) < 1,$$

что и завершает доказательство.

Вывод теоремы 2.4.1 из теоремы общего случая: по лемме 2.4.2

$$VC\left(\mathbb{R}^2; \Delta\right) = VC\left(\mathbb{R}^2; \mathcal{H}_3\right) \leqslant 2 \cdot 3 \cdot 3 \cdot \log_2(3 \cdot 3) \leqslant 60$$

и $8 \cdot 60 < 500$. А дальше применяем теорему 2.4.3.

2.4.2 Некоторое практическое применение

Вспомним теорему Гливенко-Кантелли из математической статистики:

$$\mathsf{P}\left(\sup_{x\in\mathbb{R}}|F_n^*(x) - F(x)| \to 0\right) = 1,$$

где $F_n^*(x) = \frac{1}{n} \sum_{i=1}^n I\{X_i \leqslant x\}$ — эмпирическая функция распределения. Однако, по УЗБЧ верна сходимость

$$\frac{1}{n} \sum_{i=1}^{n} I\{X_i \leqslant x\} \stackrel{\text{\tiny II.H.}}{\to} \mathsf{E} I\{X_1 \leqslant x\} = \mathsf{P}(X_1 \leqslant x) = F(x),$$

т.е. теорема Гливенко-Кантелли утверждает, что в законе больших чисел для схемы испытаний Бернулли выполнена равномерная сходимость.

Теорема 2.4.4. (б/д, 1971, Вапник, Червоненкис)

Пусть $x \in \mathcal{X}$. Рассмотрим последовательность событий $A_1^x, \ldots, A_n^x, \ldots$ на некотором вероятностном пространстве, для которой $\forall x: A_i^x$ независимы в совокупности и $\forall x \ \forall n \ \mathsf{P}(A_n^x) = p_x$.

Тогда $\frac{1}{n}\sum_{i=1}^n I\{A_i^x\}$ сходится по x равномерно κ p_x тогда u только тогда, когда $VC\left(\mathcal{X};A_1^x,\ldots,A_n^x,\ldots\right)<+\infty$.

2.5 Матрицы Адамара

2.5.1 Гипотеза Адамара

Определение 2.5.1. Матрица $A \in \operatorname{Mat}_{n \times n}(\mathbb{R}^n)$, составленная из ± 1 , такая что любые ее две строки (или два столбца, что эквивалентно) ортогональны, называется *матрицей* $A \partial a M a p a$.

Пример 2.5.1. Матрицы Адамара для различных n:

1. n = 1: (1), (-1).

$$2. \ n = 2: \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

3. n = 2k + 1: не существует.

Определение 2.5.2. Матрицей Адамара ϵ нормальной форме называется матрица Адамара H, у которой первая строка и первый столбец составлены только из 1.

Для матрицы Адамара в нормальной форме порядка n > 3 все строки (и столбцы), кроме первых, содержат по $\frac{n}{2}$ минус единиц, причем количество "пересечений" (-1) с 1 в соседних строках делится на 4.

Гипотеза (Адамара). Матрица Адамара существует для любого п, кратного 4.

Рассмотрим граф $G\left(n;\frac{n}{2};\frac{n}{4}\right)$ — вектора из $\{0,1\}^n$, т.ч. $\|x\|=\frac{n}{2}$ и ребро проводится, если $\langle x,y\rangle=\frac{n}{4}$. Тогда матрица Адамара в нормальной форме H порядка n без первой строки задает (n-1) клику в графе $G\left(n;\frac{n}{2};\frac{n}{4}\right)$.

Утверждение 2.5.1.1. В графе $G\left(n; \frac{n}{2}; \frac{n}{4}\right)$ нет клик размера > n.

Доказательство. $G\left(n; \frac{n}{2}; \frac{n}{4}\right)$ — дистанционный граф \Rightarrow клика в G это симплекс в пространстве. Поскольку сумма координат вершин G фиксирована, то размерность пространства равна n-1 и симплекса из > n вершин (а значит и (> n)-клики) не существует.

Доказано, что $\exists m \in [n, n + o(n)]$, такое, что существует A порядка m.

 $Утвержсдение\ 2.5.1.2.\$ Гипотеза Адамара верна для $n=2^k.$

 \mathcal{A} оказательство. Пусть $A \in \operatorname{Mat}_{n \times n}$; $B \in \operatorname{Mat}_{m \times m}$. Тогда кронекеровским произведением A на B назовем матрицу

$$A \otimes B = \begin{pmatrix} a_{11}B & a_{12}B & \cdots & a_{1n}B \\ \vdots & \ddots & \ddots & \vdots \\ a_{n1}B & \cdots & \cdots & a_{nn}B \end{pmatrix} \in \operatorname{Mat}_{nm \times nm}$$

Покажем, что если A и A' — матрицы Адамара, то и $B = A \otimes A'$ тоже. Действительно, найдем скалярное произведение первых двух строк матрицы B:

$$a_{11}a'_{11} \cdot a_{1}1a'_{21} + a_{11}a'_{12} \cdot a_{11}a'_{22} + \dots + a_{11}a'_{1m} \cdot a_{11}a'_{2m} + \dots + a_{1n}a'_{11} \cdot a_{1n}a'_{21} + \dots + a_{1n}a'_{1m} \cdot a_{1n}a'_{2m} =$$

$$= a'_{11}a'_{22}(a_{11}a_{11} + \dots + a_{1n}a_{1n}) + \dots + a'_{1m}a'_{2m}(a_{11}a_{11} + \dots + a_{1n}a_{1n}) =$$

$$= n(a'_{11}a'_{21} + \dots + a'_{1m}a'_{2m}) = 0$$

поскольку A' — матрица Адамара.

2.5.2 Раскраски гиперграфов

Рассмотрим гиперграф $H=(V,E),\ V=\{1,\ldots,n\},\ E=\{M_1,\ldots,M_s\mid n\geqslant |M_i|\geqslant 2\}.$ Раскраской гиперграфа назовем функцию $\chi:\{1,\ldots,n\}\to\{-1,1\}.$ Определим $\chi(M_i)=\sum\limits_{j\in M_i}\chi(j)$ и

$$\operatorname{disc}(E) := \min_{\chi} \max_{i} |\chi(M_i)|.$$

Теорема 2.5.1.

$$\operatorname{disc}(E) \leqslant \sqrt{2n \ln 2s}$$
.

Доказательство. Зафиксируем гиперграф H и рассмотрим случайную раскраску. По неравенству больших уклонений 1.3.1 выполнено

$$\mathsf{P}(|\chi(M_i)| \geqslant a) \leqslant 2 \exp\left[-\frac{a^2}{2|M_i|}\right] \leqslant 2e^{-\frac{a^2}{2n}}.$$

Тогда

$$P(\exists i: |\chi(M_i)| \geqslant a) \leqslant 2se^{-\frac{a^2}{2n}},$$

что меньше 1 при $a = \sqrt{2n \ln 2s}$.

Теорема 2.5.2. $(6/\partial, Cnencep)$

 $Ecлu\ s=n,\ mo$

$$\operatorname{disc}(E) \leq 6\sqrt{n}$$
.

Теорема 2.5.3. Если s=n и n — порядок матрицы Адамара, то $\exists E: \operatorname{disc}(E)\geqslant \frac{\sqrt{n}}{2}.$

Доказательство. Рассмотрим матрицу Адамара в нормальной форме H и матрицу $J=\begin{pmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{pmatrix}$.

Рассмотрим матрипу $\frac{1}{2}(H+J)$, строки который будут отвечать ребрам гиперграфа, и пусть $v=(v_1,\,\ldots,\,v_n)^T,\,v_i\in\{\pm 1\}$ — вектор-раскраска. В введенных обозначениях выполнено равенство

$$\frac{1}{2}(H+J)v = \begin{pmatrix} L'_1 := \chi(M_1) \\ \vdots \\ L'_n := \chi(M_n) \end{pmatrix},$$

и нам нужно проверить, что $\forall v_1,\,\dots,\,v_n\,\,\exists i:\,\,|L_i'|\geqslant \frac{\sqrt{n}}{2}.$

Положим $\lambda := \sum\limits_{i=1}^n v_i, \ H = (h_1, \, \ldots, \, h_n)$ — столбцы матрицы H. Тогда

$$Hv = h_1v_1 + \ldots + h_nv_n = (L_1, \ldots, L_n)^T = L$$

И

$$L_1^2 + \ldots + L_n^2 = (L, L) = v_1^2 \langle h_1, h_1 \rangle + \ldots + v_n^2 \langle h_n, h_n \rangle = n^2$$

откуда $\exists i \ L_i^2 \geqslant n \Rightarrow |L_i| \geqslant \sqrt{n}.$

Заметим теперь, что $(H+J)v=(L_1+\lambda,\ \dots,\ L_n+\lambda)^T=(2L_1',\ \dots,\ 2L_n')^T=N.$ Покажем, что $\langle N,N\rangle\geqslant n^2.$

$$\langle N, N \rangle = (L_1 + \lambda)^2 + \dots + (L_n + \lambda)^2 = L_1^2 + \dots + L_n^2 + 2\lambda(L_1 + \dots + L_n) + n\lambda^2$$

= $n^2 + n\lambda^2 + 2\lambda nv_1 = n^2 \pm 2\lambda n + n\lambda^2$

поскольку $\sum L_i = \sum\limits_{i=1}^n v_i \sum\limits_{j=1}^n h_{ij} = v_1 \sum\limits_{j=1}^n h_{1j} = nv_1.$

Рассмотрим $f(\lambda) = n^2 \pm 2\lambda n + n\lambda^2$. Поскольку $2 \mid n \pmod{n}$ порядок матрицы Адамара), то $2 \mid \lambda$. $\min f(\lambda)$ достигается в точке $\mp \frac{2n}{2\lambda} = \mp 1$, но, поскольку λ четное, необходимо перебрать $\lambda \in \{\pm 2, 0\}$. В любом случае получим $f(\lambda) \geqslant n^2$, откуда следует условие теоремы.

2.6 Кнезеровский граф

2.6.1 Определение и некоторые свойства

Определение 2.6.1. *Кнезеровским графом* $KG_{n,k} = (V, E)$ называется граф, такой, что V — все kэлементые подмножества $\{1, \ldots, n\}$, а $E = \{(A, B) : A \cap B = \varnothing\}$.

Из теоремы Эрдеша-Ко-Радо следует, что

$$\alpha(KG_{n,k}) = \begin{cases} C_{n-1}^{k-1} & k \leq \frac{n}{2} \\ C_n^k & k > \frac{n}{2} \end{cases}$$

а $\omega(KG_{n,k}) = \left\lceil \frac{n}{k} \right\rceil$. Тривиальными оценками для хроматического числа являются:

$$\chi(KG_{n,k}) \geqslant \omega = \left[\frac{n}{k}\right]$$

$$\geqslant \frac{|V|}{\alpha} = \frac{n}{k}$$

Попробуем улучшить их.

2.6.2 Хроматическое число кнезеровского графа

Покрасим все множества, содержащие 1, в первый цвет. Аналогично поступим так со всеми остальными $i=2,\ldots,n$. Получим, что $\chi(KG_{n,k})\leqslant n$. Заметим теперь, что нам достаточно покрасить в свой цвет только множества, содержащие $1,2,\ldots,n-2k+1$, и оставшиеся 2k-1 число в еще один цвет, ведь любые два k-элементных подмножества из этих чисел пересекаются. В итоге имеем оценку $\chi(KG_{n,k})\leqslant n-2k+2$.

Гипотеза (Кнезер).

$$\chi(KG_{n,k}) = n - 2k + 2$$

Для продолжения сформулироваем результат, который, казалось бы, никак не относится к этому вопросу.

Теорема 2.6.1. (б/д 1930: Борсук, Улам; 1932: Люстерник, Шнирельман)

Пусть $S^{n-1} \subset \mathbb{R}^n$ — сфера в \mathbb{R}^n размерности n-1 с центром в начале координат покрыта множествами A_1, \ldots, A_n (т.е. $S^{n-1} = A_1 \cup \ldots \cup A_n$), причем $\forall i: A_i$ либо открыто, либо замкнуто. Тогда $\exists i: \$ 6 A_i лежит две диаметрально противоположные точки.

Докажем здесь частный случай этой теоремы, когда n=2 и оба A_1 , A_2 — замкнутые. Рассмотрим произвольную точку x окружности S^1 . Пусть $x\in A_1$. Если -x тоже лежит в A_1 , то утверждение доказано. Иначе будем двигаться по окружности по часовой стрелке. Поскольку $-x\in A_2$ и A_1 — замкнуто, то на дуге от x до -x найдется "крайняя" точка $y\in A_1$.

Заметим. что если $y \notin A_2$, то сдвинувшись еще дальше по окружности, мы найдем либо точку окружности, не лежащую в $A_1 \cup A_2$, что противоречит условию теоремы БУЛШ. Тогда $y \in A_1 \cap A_2$ и $-y \in A_i$ — искомая диаметрально противоположная пара точек.

Замечание. Теорема БУЛШ равносильна утверждению: Если $f:S^n \to \mathbb{R}^n$ — непрерывная функция, то $\exists x \in S^n: \ f(x) = f(-x)$

Теорема 2.6.2. (Ловас)

$$\chi(KG_{n,k}) \geqslant n + 2k - 2$$

Доказательство. Предположим, что $\chi(KG_{n,k}) \leq n-2k+1=d$. Пусть χ_1, \ldots, χ_d — цвета раскраски вершин $K_1, \ldots K_{C_n^k}$ вершин $KG_{n,k}$. Пусть $S^d \subseteq \mathbb{R}^{d+1}-d$ -мерная сфера в (d+1)-мерном пространстве. Назовем экватором любое центральное сечение этой сферы гиперплоскостью. Заметим, что экватор это всегда S^{d-1} .

Сопоставим числам $\{1, \ldots, n\}$ точки сферы $x_1, \ldots, x_n \in S^d$ так, чтобы на каждом экваторе лежало не более d точек. Теперь определим для точки $y \in S^d$ множество H(y) — открытую полусферу с центром в точке y. Введем множества

$$A_i:=\{x\in S^d:\ H(x)$$
содержит целиком одно множество цвета $\chi_i,\ i=1,\ \dots,\ d$
$$A_{d+1}:=\{x\in S^d:\ |H(x)\cap\{x_1,\ \dots,\ x_n\}|\leqslant k-1\}$$

Легко понять, что $S^d = A_1 \cup \ldots \cup A_n$. Поскольку все H(x) открыты, то открыты и A_i для $i = 1, \ldots, d$, а A_{d+1} — замкнуто, поскольку это дополнение открытых до S^d . Тогда, по теореме БУЛШта $\exists i \; \exists x : x, -x \in A_i$.

Пусть $i \leq d$. Тогда в полусфере с центром в x содержится k точек цвета χ_i и в полусфере с цетром в -x тоже содержится k точек цвета χ_i . Поскольку полусферы открытые, эти два множества не пересекаются, а значит не могут быть одного цвета по определнию $KG_{n,k}$.

Пусть i=d+1. В таком случае H(x) и H(-x) содержат $\leq 2(k-1)$ точек. Это значит, что все остальные точки лежат на экваторе. Но их

$$\geq n - 2(k-1) = n - 2k + 2 = d + 1,$$

что противоречит выбору x_1, \ldots, x_n .