SMART PÁTIO

Mottu Challenge - Prisma

Resumo

O projeto "Smart Pátio", desenvolvido pela equipe Prisma, tem como objetivo propor uma solução eficiente para o rastreamento e identificação rápida de motocicletas nos pátios da empresa Mottu, utilizando tecnologias de Internet das Coisas (IoT) com foco na sinalização multissensorial e comunicação sem fio.

[05/2025] - FIAP

Sumário

Objetivos do Projeto	2
Objetivo Geral:	2
Objetivos Específicos:	2
Justificativa e Contextualização	2
Arquitetura Proposta	2
Diagrama da Arquitetura Geral do Sistema	3
Tecnologias Utilizadas	4
Viabilidade e Benefícios Esperados	4
Referências	4

Integrantes:

RM 558843 - Laura de Oliveira Cintra

RM 558832 - Maria Eduarda Alves da Paixão

RM 554456 - Vinícius Saes de Souza

Objetivos do Projeto

Objetivo Geral:

Desenvolver uma solução baseada em IoT para permitir a localização rápida e remota de motocicletas estacionadas em pátios logísticos da Mottu.

Objetivos Específicos:

- Eliminar a busca manual das motos nos pátios.
- Criar um protótipo viável, robusto e de baixo custo.
- Utilizar sinalização sonora e visual personalizável.
- Propor comunicação via protocolo MQTT com controle remoto via aplicativo.

Justificativa e Contextualização

A empresa Mottu enfrenta dificuldades logísticas com o tempo e custo investidos na identificação de motocicletas nos pátios. A proposta apresentada visa resolver este problema com um sistema inteligente, de rápida implementação e escalável, promovendo eficiência e agilidade.

Arquitetura Proposta

A solução é baseada em dispositivos ESP32 acoplados a cada motocicleta, que podem ser ativados remotamente via MQTT, utilizando um aplicativo customizado. O dispositivo possui LEDs RGB e buzzer para facilitar a identificação.

Camadas da arquitetura:

- Física: ESP32, LEDs, buzzer, case 3D e bateria Li-Po.
- Comunicação: Wi-Fi local e protocolo MQTT com broker externo.
- Aplicação: Interface simples em tablet.

Diagrama de Fluxo Detalhado

O diagrama acima ilustra as camadas do sistema, mostrando o fluxo de dados desde o acionamento via tablet até a resposta física no dispositivo IoT instalado na moto.

Tecnologias Utilizadas

- ESP32: microcontrolador com suporte a Wi-Fi.
- MQTT: protocolo leve de comunicação.
- HiveMQ Cloud: broker externo.
- Case 3D IP65: para proteção do circuito.

Viabilidade e Benefícios Esperados

- Autonomia: até 30 dias com bateria Li-Po.
- Custo unitário estimado: R\$ 72,00.
- Redução de tempo operacional: de 30 minutos para menos de 2 minutos por moto.
- Economia estimada anual: R\$ 60.000,00.

Referências

- Documentação do ESP32 (Espressif).
- HiveMQ MQTT Client Libraries.
- Tinkercad e Wokwi (para simulação).