Sprint #2 Instrument Recognition Software

Members: Aleks, Aner, Axel, Cuong, Joe and Thomas

BRD and Management plan updates:

- Our team did not find it necessary to add any new information to the Business Requirement
 Document as our project is focused more on researching sound recognition technology
- For the Management Plan we updated the Sprint Board and the Burndown Chart

Frontend

- Javafx for GUI (building using JavaFX SDK)
 - Desktop App
 - Mobile App (potentially)

Backend

- Python for the server
- MongoDB (non-relational) database
 - Connect using pymongo
 - Store usernames and hashed passwords

Instrument Recognition Architectural Design

Controller <<device>> IR Backend Updates <<framework>> :Python Model User <<device>> Input :Server <<device>> MongoDB Database Desktop Application Notifies Security Music files User Login Information View <<device>> :IR Frontend <<framework>> :Java <ibrary>> :JavaFX

Features:

- ★ Mel-Frequency Cepstral Coefficients (MFCCs)
 - Commonly used as features in speech recognition systems, such as the systems which can automatically recognize numbers spoken into a telephone.
 - Increasingly finding uses in music information retrieval applications such as genre classification, audio similarity measures, etc.
 - Can be used to analyze the Timbre space (the uniqueness of an instrument from another).

Features:

• The difference in frequencies

Hz
20-40
40-80
80-160
160-320
320-640
640-1280
1280-2560
2560-5120
5120-10200
10200-20400

Equalization Chart

Features:

★ Power Spectral Density

- The power of each frequency in a signal
- Shows at which frequencies variations are strong and at which frequencies variations are weak
- Energy per frequency(width)
- Can obtain specific frequency range by integrating PSD within that frequency range

- ★ What is PSD good for?
 - From our current research we noticed that every instrument produces a relatively unique shape when graphed.
 - Also the image is not based on time is based on power and frequency.
 - This information on how all these power is distributed could be later used in filtering.
 - Where you choose to focus on a bandwidth that your signal of interest is.

Candidate Models

Label focused machine learning:

- Decision Tree
- Random Forest
- SVM
- Convolutional Neural Network

Candidate Models (cont.)

Progress and Plans:

Current Developments:

- Decision Tree (Regression)
 - Classification
 - Fast
 - Justifiable

Future Plans and Rational:

- Convolutional Neural Network
 - Image processing
 - Pattern recognition
- Naive Bayes
 - Large data

What is CNN?

- Built of layers that transform data
- Layers: composed of filters (feature matrix) that indicate desired patterns in the data
- Condensed using a dot product
- Pooling: most relevant data
- reLU (Normalization): removes negatives
- Drop out: random disabling
- Softmax: creates probabilities for all labels

Sprint Goals

Planned:

- Research
- Setting up the frontend, backend and database
- Understand Power Spectral Density
- Determine Candidate Models to use

Completed:

- Understanding CNN
- Research
- Setting up the frontend

Burndown Chart

Didn't quite have enough time to fully accomplish our goals in this sprint (idk what i'm saying someone fix this)

