Center for Game Science

 Over 35 PhD, ugrads, SDEs, desginers, artists

6 games currently in development

Solving Hard Problems with Human-Computer Symbiosis

Coadaptation:

- 1. People \rightarrow Experts
- 2. Programs/Games → Optimal problem tools

Games are an ideal vehicle of coadaptation

Center for Game Science

 Over 35 PhD, ugrads, SDEs, desginers, artists

6 games currently in development

The Challenge:

- 1. hard to make an entertaining game
- 2. even harder do it and solve a hard problem
 - constraints on game design
 - make real discovery, really learn something
 - Long term involvement
- cannot separate the two objectives
- Very different than standard game design

Evidence?

Proteins

MQIFVKTLTGKTILEVEPSDTIE... MGKYDKQIDLSTVDLKKLRVKEL... KPVSLSYRCPCRFFESHVARANV... 3D Structure Sequence

Foldit

Biochemistry not just for experts...

Prior knowledge of biochemistry

Experimental Structure Solved

- Mason-Pfizer Monkey Virus Retroviral Protease (MPMV PR)
- Plays a role in AIDS in monkeys
- Experimentalists worked on for ~15 years
- Computational methods failed to solve
- Gave to players for 3 weeks

Useful field of view

Can low-level visual cognition be improved through game play?

Mech. Turk Incentive Optimization

Math Bottlenecks

Fractions

Algebra Geometry

"Difficulty with fractions... is **pervasive** and is a **major obstacle to further progress** in mathematics."

 US National Mathematics Advisory Panel final report, 2006, 2008

Repeated Gameplay Produces Consistent Improvement

- 4,000 3rd Graders
- Three weekly level packs
- Pretests integrated into gameplay

Novice to Experts

In each case, Data-driven evolution with large number of players is 1 to 3 times as long as initial development

Standard trickle down approach

Knowledge, Expert Principles Novice or Student Tools

People

Outcomes

Incentivized Expert Creation

People

Incentive Structure Expertise, Knowledge Discoveries, Education

Extrinsic Motivation: short term effect

Hierarchical randomized trials

In-game assessment and intelligent tutor refinement

Level Adaptation

- Adapt to maximize long term engagement
- Optimize for persistence
- Expand at the boundary of understanding

Playtracer Query Tool

```
put_down_wrong_splitter(Action, Trace, Level, Player) :-
    is_action(Action, Trace, Level, Player),
    is_bad_splitter_on_board(Splitter, Level),
    happens(Action, dropped piece(Splitter)),
```

- Uses logging data to generate facts (e.g., happens)
- Leverages complex query language to encode game-specific logic in rules (e.g., is_bad_splitter_on_board)
- Backed by database system that allows these queries to be run on a large amount data

Writing Rules

```
% holds if the user dropped a 2-splitter Piece on Action
did drop 2splitter(Action, Piece) :-
        happens (Action, drop (Piece, )),
        action (Action, Trace),
        trace(Trace, , Level),
        holds (Level, piece type (Piece, splitter2).
% action A2 happens after A1 in the same trace
% assumes next action is correctly defined
later action(A1, A2) :- next_action(A1, A2).
later action(A1, A3) :-
        next action(A1, A2),
        later action(A2, A3).
% holds if the user dropped a 2-splitter Piece on A1
% but then picked it up later on A2
dropped 2splitter then picked it up(A1, A2, Piece) :-
        did drop 2splitter(A1, Piece),
        happens (A2, pickup (Piece)),
        later action(A1, A2).
```


"Playtraces"

"Playtraces"

Reinforcement Learning problem

Goal: Maximize student's learning & engagement

Early Experiment

Key RL experiments

Dwell Time (Time on Task)

Challenge layering

ABC	D	AD	BD	CD	ABD	ACD	ABCD
ABC	D	ABC	D	E	ABC	DE	

Challenge Ordering

В	BC	Α	ABC			
AB	С	ABC	F	D	FD	ABCDF

Key RL experiments

- Optimal hinting strategies
- Persistence and tenacity
- Long-term effects on domains
- Self-identification

Effects of hinting depth

Two 1/3 Ships:

- (1) "Try this piece" <point to the 3-splitter>
- (2) "To make 1/3, split the laser in three"
- (3) "How much power do the ships need?"

Make 1/4:

- (1) "Try using BOTH two-splitters" <point to one two-splitter>
- (2) "To make 1/4, split the laser two times"
- (3) "None of the pieces split into four. How do you make 1/4?" Split Ordering:
- (1) "Try this piece first" <point to three-splitter>
- (2) "Split the laser in thirds first"
- (3) "Which splitter should you use first?"

RL Policy

Social elements

- Team play
 - Direct realtime collaboration
 - Collective inteligence
 - Team competition
- Peer tutoring
- Intrinsic Motivation

Player Strategy Wiki

Foldit Cookbook

88%32%

of players run
others' recipes
of players run only
others' recipes

players are taking and modifying shared recipes

Algorithm Comparison

Player Algorithm (Blue Fuse v1.1)

- Adjust repulsive force
- Discrete optimization
- Continuous optimization

Algorithm Comparison

Algorithm Comparison

Self Identification

Iterative dual objective optimization

Program plan

Our reality

