Математический анализ (базовый уровень) — 1 семестр

Занятие 6. Предел функции

- I. предел функции по определению Коши
- II. предел функции по определению Гейне
- III. исследование сходимости функции (в командах)
- IV. вычисление пределов по арифметическим свойствам (методами раскрытия неопределённостей)

Источники:

[Марон] И.А. Марон Дифференциаольное исчисление в примерах и задачах

[Кудрявцев] Кудрявцев Л.Д. и др. Сборник задач по математическому анализу Том 1 (2003)

Составила: Шиманская Г.С., Правдин К.В.

Редакторы: Правдин К.В.

В аудитории

І. Предел функции по определению Коши

Исходя из определения предела функии по Коши, докажите следующие равенства:

Задача 1. Исходя из определения предела функии по Коши, докажите следующие равенства:

a)
$$\lim_{x\to 1} (3x-8) = -5$$
; 6) $\lim_{x\to +\infty} \frac{5x+1}{3x+9} = \frac{5}{3}$; B) $\lim_{x\to 1} \frac{1}{(1-x)^2} = +\infty$; F) $\lim_{x\to 4} \frac{x^2-16}{x^2-4x} = 2$

[Марон 1.9.3 (а, б, в), Кудрявцев с. 175 Пример 1 – решения см. ниже]

II. Предел функции по определению Гейне

Задача 2. Пользуясь определением предела функции по Гейне и теоремами о пределах последовательностей, докажите, что $\lim_{r\to 2} \frac{3x+1}{5x+4} = \frac{1}{2}$.

[Марон 1.9.1 – решение см. ниже]

Задача 3. Докажите, что предел не существует:

a)
$$\lim_{x\to 0} \sin\left(\frac{\pi}{x}\right)$$
; 6) $\lim_{x\to 0} 2^{\frac{1}{x}}$

[Кудрявцев с. 176 Пример 2 – решение см. ниже]

III. Исследование сходимости функции (в командах)

Задача 4. Дана функция $f(x) = \left(\frac{2x-3}{3x+8}\right)^{4x+11}$. Известно, что $\lim_{x \to +\infty} f(x) = 0$ и $\lim_{x \to -\infty} f(x) = +\infty$.

- 1. Постройте график функции f(x) в графическом редакторе Desmos: https://www.desmos.com/
- 2. Проиллюстрируйте сходимость (расходимость) функции на бесконечностях:
 - а. сформулируйте определение конечного предела и бесконечных пределов функции в терминах $\varepsilon \delta$ и неравенств;
 - b. выберите по три различных положительных числа $\varepsilon_1 > \varepsilon_2 > \varepsilon_3$ для $x \to +\infty$ и $x \to -\infty$ отдельно:
 - с. для каждого такого числа изобразите на графике соответствующую ε -окрестность пределов (для $x \to +\infty$ и $x \to -\infty$ отдельно);
- 3. для каждого выбранного ε найдите на графике наибольшую δ -окрестность переменных x, в которой все значения функции f(x) попадают в ε -окрестность, или установите, что такой окрестности нет.

Варианты:

1)
$$f(x) = \left(\frac{2x-3}{3x+8}\right)^{4x+11}$$
; 2) $f(x) = \left(\frac{1-x^2}{2-7x^2}\right)^{x-13}$; 3) $f(x) = \left(\frac{x^3-1}{3x^3+1}\right)^{x^3-3}$; 4) $f(x) = \left(\frac{1-x}{2-10x}\right)^{5x-3}$;

5)
$$f(x) = \left(\frac{3x-1}{2x+11}\right)^{1-3x}$$
; 6) $f(x) = \left(\frac{4+3x}{5+x}\right)^{7x+2}$; 7) $f(x) = \left(\frac{13x+8}{10x-1}\right)^{x^3-1}$; 8) $f(x) = \left(\frac{5-3x}{1-2x}\right)^{0,3x-3}$.

Математический анализ (базовый уровень) — 1 семестр

Консультация

IV. Вычисление пределов по арифметическим свойствам (методами раскрытия неопределённостей)

Для всех основных элементарных функций в любой точке их области определения имеет место равенство:

$$\lim_{x \to a} f(x) = f\left(\lim_{x \to a} x\right) = f(a).$$

Это свойство непрерывности функции в точке, оно будет доказано в лекциях позднее (см. раздел 2).

Задача 5. Вычислить пределы функций:

a)
$$\lim_{x \to 1} \frac{4x^5 + 9x + 7}{3x^6 + x^3 + 1}$$
; 6) $\lim_{x \to 2} \frac{x^3 + 3x^2 - 9x - 2}{x^3 - x - 6}$; B) $\lim_{x \to -1} \frac{x + 1}{\sqrt{6x^2 + 3} + 3x}$; r) $\lim_{x \to 1} \frac{x^p - 1}{x^q - 1}$ $(p, q \in \mathbb{N})$.

Ответы: [Марон 1.10.1, решения см. ниже]

a) 4; 6)
$$\frac{15}{11}$$
; B) 1; r) $\frac{p}{q}$.

Задача 6. Вычислить пределы функций:

a)
$$\lim_{x \to \infty} \left(\frac{x^3}{3x^2 - 4} - \frac{x^2}{3x + 2} \right)$$
; 6) $\lim_{x \to +\infty} \left(\sqrt{9x^2 + 1} - 3x \right)$; B) $\lim_{x \to +\infty} \frac{2\sqrt{x} + 3\sqrt[3]{x} + 5\sqrt[5]{x}}{\sqrt{3x - 2} - \sqrt[3]{2x - 3}}$;

r)
$$\lim_{x \to -\infty} \left(\sqrt{2x^2 - 3} - 5x \right)$$
; д) $\lim_{x \to +\infty} x \left(\sqrt{x^2 + 1} - x \right)$; e) $\lim_{x \to \pm \infty} \frac{\sqrt{2x^2 + 3}}{4x + 2}$; ж) $\lim_{x \to \infty} 5^{\frac{2x}{x + 3}}$.

Ответы: [Марон 1.10.2, решения см. ниже]

а)
$$\frac{2}{9}$$
; б) 0; в) $\frac{2}{\sqrt{3}}$; г) $+\infty$; д) $\frac{1}{2}$; е) $\pm \frac{\sqrt{2}}{4}$; ж) 25.

Задача 7. Вычислить пределы функций:

a)
$$\lim_{x \to 1} \frac{2x - 2}{\sqrt[3]{26 + x} - 3}$$
; 6) $\lim_{x \to -1} \frac{x + 1}{\sqrt[4]{x + 17} - 2}$; B) $\lim_{x \to -1} \frac{1 + \sqrt[3]{x}}{1 + \sqrt[5]{x}}$;

$$\Gamma) \lim_{x \to 0} \frac{\sqrt[k]{1+x}-1}{x} \ (k \in \mathbb{N}); \quad \exists \lambda \lim_{x \to \frac{\pi}{6}} \frac{\sin\left(x-\frac{\pi}{6}\right)}{\sqrt{3}-2\cos x}; \quad e) \lim_{x \to \frac{\pi}{2}-0} \frac{\cos x}{\sqrt[3]{(1-\sin x)^2}}; \quad \exists \lambda \lim_{x \to \frac{\pi}{6}} \frac{2\sin^2 x + \sin x - 1}{2\sin^2 x - 3\sin x + 1}.$$

Ответы: [Марон 1.10.3, решения см. ниже]

а) 54; б) 32; в)
$$\frac{5}{3}$$
; г) $\frac{1}{k}$; д) 1; е) $\mp \infty$; ж) -3 .

Самостоятельно

І. Предел функции по определению Коши

Задача 8. Исходя из определения предела функии по Коши, докажите следующие равенства: a)
$$\lim_{x \to 1} \frac{x-1}{\sqrt{x}-1} = 2$$
; 6) $\lim_{x \to -7} \frac{5x^2 + 34x - 7}{x+7} = -36$; B) $\lim_{x \to +\infty} \frac{2x-1}{3x+2} = \frac{2}{3}$

[Марон 1.9.6 (б, -, д)]

II. Предел функции по определению Гейне

Задача 9. Докажите, что предел не существует:

a)
$$\lim_{x \to 0} \arctan\left(\frac{1}{x}\right)$$
; 6) $\lim_{x \to +\infty} \cos x$

[Кудрявцев с. 184 № 7 (1), № 8 (1)]

Математический анализ (базовый уровень) — 1 семестр

Решения - Занятие

Марон 1.9.1

1.9.1. Пользуясь определением предела по Гейне (т. е. на языке последовательностей) и теоремами о пределах последовательностей, доказать, что

$$\lim_{x \to 2} \frac{3x+1}{5x+4} = \frac{1}{2}.$$

Решение. Рассмотрим любую последовательность x_1, x_2, \ldots значений x, удовлетворяющую двум условиям: 1) числа x_1, x_2, \ldots принадлежат области существования функции f(x) = (3x+1)/(5x+4) (г. е. $x_n \neq -4/5$); 2) последовательность $\{x_n\}$ сходится к числу 2, 1. е. $\lim_{n\to\infty} x_n = 2$.

 \Im той последовательности $\{x_n\}$ соответствует последовательность значений функции

$$\frac{3x_1+1}{5x_1+4}$$
; $\frac{3x_2+1}{5x_2+4}$; ...;

причем на основании теорем о пределах (§ 1.7)

$$\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} \frac{3x_n + 1}{5x_n + 4} = \frac{\lim (3x_n + 1)}{\lim (5x_n + 4)} = \frac{6 + 1}{10 + 4} = \frac{1}{2}.$$

Таким образом, независимо от выбора последовательности $\{x_n\}$, сходящейся к числу 2 ($x_n \neq -4/5$), соответствующие последовательности значений функции $f(x_n)$ сходятся к числу 1/2. А это на основании определения предела функции значит, что

$$\lim_{x\to 2} \frac{3x+1}{5x+4} = \frac{1}{2}.$$

Марон 1.9.3 (а)

Решение. а) Согласно « ϵ — δ »-определению нам надо доказать, что для всякого $\epsilon > 0$ существует такое $\delta > 0$, что из неравенства $|x-1| < \delta$ следует $|f(x)-(-5)| = |f(x)+5| < \epsilon$.

Другими словами, необходимо решить неравенство

$$|3x-8+5|=3|x-1|<\epsilon$$
.

Последнее неравенство показывает, что как только $|x-1| < \varepsilon/3 = \delta$, выполняется требуемое неравенство $|f(x)+5| < \varepsilon$. Следовательно, $\lim_{x\to 1} (3x-8) = -5$.

Марон 1.9.3 (б)

б) Согласно « ε —M»-определению предела надо показать, что для любого $\varepsilon > 0$ можно найти число M > 0 такое, что для всех x > M будет выполняться неравенство

$$\left|\frac{5x+1}{3x+9}-\frac{5}{3}\right|<\varepsilon. \tag{*}$$

Преобразуя это неравенство, получим

$$\left|\frac{5x+1}{3x+9}-\frac{5}{3}\right|=\frac{14}{|3x+9|}<\varepsilon.$$

Математический анализ (базовый уровень) — 1 семестр

Так как x > 0, то остается решить неравенство

$$\frac{14}{3x+9} < \varepsilon,$$

откуда

$$x > \frac{14-9\varepsilon}{3\varepsilon}$$
;

таким образом, $M = (14 - 9\epsilon)/3\epsilon$.

Итак, для $\varepsilon > 0$ мы нашли $M = (14 - 9\varepsilon)/3\varepsilon$ такое, что для всех значений x > M выполняется неравенство (*). Это и означает, что

$$\lim_{x \to +\infty} \frac{5x+1}{3x+9} = \frac{5}{3}.$$

Пусть, например, $\varepsilon = 0.01$; тогда $M = \frac{14 - 0.09}{0.03} = 463 \frac{2}{3}$.

Марон 1.9.3 (в)

в) Нужно доказать, что для всякого K>0 существует такое $\delta>0$, что из неравенства

$$|x-1| < \delta$$

всегда следует неравенство

$$\left| \frac{1}{(1-x)^2} \right| = \frac{1}{(1-x)^2} > K.$$

Выберем произвольное число K > 0 и решим неравенство

$$\frac{1}{(1-x)^2} > K. \tag{**}$$

Отсюда

$$|1-x|<1/\sqrt{K} \qquad (K>0).$$

Таким образом, если положить $\delta = 1/\sqrt{K}$, то как только $|x-1| < \delta$, будет справедливо неравенство (**). А это означает, что $\lim_{x\to 1} \frac{1}{(1-x)^2} = +\infty$.

Кудрявцев с. 175 Пример 1

 Π р и м е р $\ 1.$ Доказать, используя определение Коши предела функции, что $\lim_{x \to 4} \frac{x^2 - 16}{x^2 - 4x} = 2.$

A Рассмотрим функцию $f(x)=\frac{x^2-16}{x^2-4x}$ в некоторой окрестности точки x=4, например на интервале (2;5).

Возьмем произвольное положительное число ε и преобразуем |f(x)-2| при $x \neq 4$ следующим образом:

$$\left| \frac{x^2 - 16}{x^2 - 4x} - 2 \right| = \left| \frac{x+4}{x} - 2 \right| = \frac{|x-4|}{x}.$$

Учитывая, что $x \in (2, 5)$, получаем неравенство

$$\left| \frac{x^2 - 16}{x^2 - 4x} - 2 \right| < \frac{|x - 4|}{2},$$

Математический анализ (базовый уровень) — 1 семестр

из которого видно, что если взять $\delta = 2\varepsilon$, то для всех $x \in (2;5)$ и удовлетворяющих неравенствам $0 < |x-4| < \delta$ выполняется неравенство

$$\left|\frac{x^2 - 16}{x^2 - 4x} - 2\right| < \frac{\delta}{2} = \varepsilon.$$

Согласно определению Коши число a=2 является пределом функции $f(x)=\frac{x^2-16}{x^2-4x}$ в точке x=4. \blacktriangle

Кудрявцев с. 176 Пример 2

Пример 2. Доказать, что функция $f(x) = \sin(\pi/x)$ не имеет предела в точке x = 0.

A Возьмем две последовательности $x_n = 1/n$ и $x'_n = 2/(4n+1)$, сходящиеся к точке x = 0.

Рассмотрим соответствующие последовательности $\{f(x_n)\}$ и $\{f(x_n')\}$ значений функции. Так как последовательность $f(x_n)= \sin n\pi$ сходится к нулю, а последовательность $f(x_n')=\sin(\pi(4n+1)/2)$ — к единице, то предел функции $f(x)=\sin(\pi/x)$ в точке x=0 не существует. \blacktriangle

Решения - Консультация

Марон 1.10.1

a)
$$\lim_{x \to 1} \frac{4x^5 + 9x + 7}{3x^6 + x^3 + 1} = \left(\frac{0}{0}\right)$$

Решение. a) Так как пределы числителя и знаменателя существуют и предел знаменателя отличен от нуля, то можно пользоваться теоремой о пределе частного:

$$\lim_{x \to 1} \frac{4x^5 + 9x + 7}{3x^6 + x^3 + 1} = \frac{\lim_{x \to 1} (4x^5 + 9x + 7)}{\lim_{x \to 1} (3x^6 + x^3 + 1)} = \frac{4 + 9 + 7}{3 + 1 + 1} = 4.$$

6)
$$\lim_{x \to 2} \frac{x^3 + 3x^2 - 9x - 2}{x^3 - x - 6} = \left(\frac{0}{0}\right)$$

б) Непосредственно теорему о пределе частного применять здесь нельзя, так как предел знаменателя при $x \to 2$ равен нулю. Здесь и предел числителя при $x \to 2$ также равен нулю. Имеем неопределенность вида $\frac{0}{0}$. Для $x \ne 2$ имеем

$$\frac{x^3+3x^2-9x-2}{x^3-x-6} = \frac{(x-2)(x^2+5x+1)}{(x-2)(x^2+2x+3)} = \frac{x^2+5x+1}{x^2+2x+3}.$$

Таким образом, во всякой области, не содержащей точки x=2, функции

$$f(x) = \frac{x^3 + 3x^2 - 9x - 2}{x^3 - x - 6} \quad \text{if} \quad \phi(x) = \frac{x^2 + 5x + 1}{x^2 + 2x + 3}$$

равны; следовательно, равны и их пределы. Но предел функции $\phi(x)$ находится непосредственно:

$$\lim_{x\to 2} \varphi(x) = \lim_{x\to 2} \frac{x^2 + 5x + 1}{x^2 + 2x + 3} = \frac{15}{11},$$

следовательно, и

$$\lim_{x \to 2} f(x) = \lim_{x \to 2} \frac{x^3 + 3x^2 - 9x - 2}{x^3 - x - 6} = \frac{15}{11}.$$

Математический анализ (базовый уровень) — 1 семестр

B)
$$\lim_{x \to -1} \frac{x+1}{\sqrt{6x^2+3}+3x} = \left(\frac{0}{0}\right)$$

в) Так же как и в п. б), устраняем неопределенность вида $\frac{0}{0}$ преобразованием:

$$\lim_{x \to -1} \frac{x+1}{\sqrt{6x^2+3}+3x} = \lim_{x \to -1} \frac{(x+1)(\sqrt{6x^2+3}-3x)}{3-3x^2} =$$

$$= \lim_{x \to -1} \frac{\sqrt{6x^2+3}-3x}{3(1-x)} = 1.$$

r)
$$\lim_{x\to 1} \frac{x^p-1}{x^q-1}$$
 $(p,q\in\mathbb{N}) = \left(\frac{0}{0}\right)$

Вспомнить формулу: $x^n-1=(x-1)(x^{n-1}+x^{n-2}+\cdots+x+1)$. Ответ: $\frac{p}{q}$

Марон 1.10.2

a)
$$\lim_{x \to \infty} \left(\frac{x^3}{3x^2 - 4} - \frac{x^2}{3x + 2} \right) = ((\pm \infty) - (\pm \infty))$$

Здесь имеем неопределенность вида $\infty - \infty$; произведем вычитание дробей

$$\lim_{x \to \infty} \left(\frac{x^3}{3x^2 - 4} - \frac{x^2}{3x + 2} \right) = \lim_{x \to \infty} \frac{2x^3 + 4x^2}{9x^3 + 6x^2 - 12x - 8} = \lim_{x \to \infty} \frac{2 + 4/x}{9 + 6/x - 12/x^2 - 8/x^3} = \frac{2}{9}.$$

Замечание. Мы видим, что в подобных примерах предел равен отношению коэффициентов при старшей степени x (если только степени многочленов одинаковы).

6)
$$\lim_{x \to +\infty} \left(\sqrt{9x^2 + 1} - 3x \right) = \left((+\infty) - (+\infty) \right) = \lim_{x \to +\infty} \frac{1}{\sqrt{9x^2 + 1} + 3x} = 0$$
.

B)
$$\lim_{x \to +\infty} \frac{2\sqrt{x} + 3\sqrt[3]{x} + 5\sqrt[5]{x}}{\sqrt{3x - 2} - \sqrt[3]{2x - 3}} = \left(\frac{\infty}{\infty}\right)$$

в) В подобных примерах полезно иметь в виду, что функция $f(x) = \sqrt[m]{p_n(x)}$, где $p_n(x)$ —многочлен степени n, стремится к бесконечности так же, как и функция $\sqrt[m]{x^n}$. Это позволяет выделить высшую степень x, входящую в данное выражение, и разделить числитель и знаменатель на эту степень x. В данном примере надо делить на $\sqrt[n]{x}$; тогда получим

$$\lim_{x \to +\infty} \frac{2\sqrt{x} + 3\sqrt[3]{x} + 5\sqrt[5]{x}}{\sqrt{3x - 2} + \sqrt[3]{2x - 3}} = \lim_{x \to +\infty} \frac{2 + 3/\sqrt[6]{x} + 5/\sqrt[10]{x^3}}{\sqrt{3 - 2/x} + \sqrt[6]{4/x - 12/x^2 + 9/x^3}} = \frac{2}{\sqrt{3}}.$$

r)
$$\lim_{x \to -\infty} \left(\sqrt{2x^2 - 3} - 5x \right) = \lim_{x \to -\infty} \sqrt{2x^2 - 3} + \lim_{x \to -\infty} (-5x) = (+\infty) + (+\infty) = +\infty$$

д)
$$\lim_{x \to +\infty} x \left(\sqrt{x^2 + 1} - x \right) = \left(0 \cdot \left((+\infty) - (+\infty) \right) \right) = \lim_{x \to +\infty} x \cdot \frac{(x^2 + 1) - x^2}{\sqrt{x^2 + 1} + x} = \lim_{x \to +\infty} \frac{x}{\sqrt{x^2 + 1} + x} = \frac{1}{2}$$

e)
$$\lim_{x \to +\infty} \frac{\sqrt{2x^2 + 3}}{4x + 2} = \left(\frac{\infty}{\infty}\right)$$

Математический анализ (базовый уровень) — 1 семестр

e) При x > 0 имеем $\sqrt{x^2} = x$, поэтому

$$\lim_{x \to +\infty} \frac{\sqrt{x^2(2+3/x^2)}}{x(4+2/x)} = \lim_{x \to +\infty} \frac{x\sqrt{2+3/x^2}}{x(4+2/x)} = \frac{\sqrt{2}}{4}.$$

При x < 0 имеем $\sqrt{x^2} = -x$ и, следовательно,

$$\lim_{x \to -\infty} \frac{\sqrt{x^2 (2+3/x^2)}}{x (4+2/x)} = \lim_{x \to -\infty} \frac{-x \sqrt{2+3/x^2}}{x (4+2/x)} = -\frac{\sqrt{2}}{4}.$$

Замечание. Отсюда, между прочим, следует, что $\lim_{x \to \infty} \frac{\sqrt[4]{2x^2 + 3}}{4x + 2}$ не существует.

ж)
$$\lim_{x \to \infty} 5\frac{2x}{x+3} = 5\lim_{x \to \infty} \frac{2x}{x+3} = 5^2 = 25$$

 $f(x) = 5^x$ непрерывна в x = 2 (доказательство будет в лекциях позднее).

Марон 1.10.3

a)
$$\lim_{x \to 1} \frac{2x - 2}{\sqrt[3]{26 + x} - 3} = \left(\frac{0}{0}\right)$$

Решение (метод подстановки). а) Положим $26 + x = z^3$. Тогда $x = z^3 - 26$ и $z \to 3$ при $x \to 1$; отсюда

$$\lim_{x \to 1} \frac{2x - 2}{\sqrt[3]{26 + x} - 3} = \lim_{z \to 3} \frac{2z^3 - 54}{z - 3} = \lim_{z \to 3} \frac{2(z - 3)(z^2 + 3z + 9)}{z - 3} = \lim_{z \to 3} 2(z^2 + 3z + 9) = 54.$$

6)
$$\lim_{x \to -1} \frac{x+1}{\sqrt[4]{x+17}-2} = \left(\frac{0}{0}\right) = \left|$$
 замена $z = \sqrt[4]{x+17}$, $z \to 2$, $x = z^4 - 17$ $\left| = \lim_{z \to 2} \frac{z^4 - 16}{z-2} = \lim_{z \to 2} \frac{(z-2)(z+2)(z^2+4)}{z-2} = \lim_{z \to 2} (z+2)(z^2+4) = 32$.

$$\text{B)} \quad \lim_{x \to -1} \frac{1 + \sqrt[3]{x}}{1 + \sqrt[5]{x}} = \left(\frac{0}{0}\right) = \left| \text{ замена } z = \sqrt[15]{x}, \ z \to -1, \ x = z^{15} \right| = \lim_{z \to -1} \frac{1 + z^5}{1 + z^3} = \lim_{z \to -1} \frac{(1 + z)(1 - z + z^2 - z^3 + z^4)}{(1 + z)(1 - z + z^2)} = \frac{5}{3}.$$

r)
$$\lim_{x\to 0} \frac{\sqrt[k]{1+x}-1}{x}$$
 $(k \in \mathbb{N}) = \left(\frac{0}{0}\right)$

г) Положим $1+x=z^k$; тогда $x=z^k-1$ и $z\to 1$ при $x\to 0$. Следовательно,

$$\lim_{x \to 0} \frac{\sqrt[k]{1+x}-1}{x} = \lim_{x \to 1} \frac{z-1}{z^k-1} = \frac{1}{k} \text{ (cm. 1.10.1. r)}.$$

д)
$$\lim_{x \to \frac{\pi}{4}} \frac{\sin\left(x - \frac{\pi}{6}\right)}{\sqrt{3} - 2\cos x} = \left(\frac{0}{0}\right)$$

д) Положим $x - \pi/6 = z$; отсюда $x = z + \pi/6$ и $z \to 0$ при $x \to \pi/6$.

Подставив, получим

$$\lim_{x \to \pi/6} \frac{\sin(x - \pi/6)}{\sqrt{3} - 2\cos x} = \lim_{z \to 0} \frac{\sin z}{\sqrt{3} - 2\cos(z + \pi/6)} =$$

$$= \lim_{z \to 0} \frac{\sin z}{\sqrt{3} - \sqrt{3} \cos z + \sin z} = \lim_{z \to 0} \frac{2 \sin(z/2) \cos(z/2)}{2 \sqrt{3} \sin^2(z/2) + 2 \sin(z/2) \cos(z/2)} = \lim_{z \to 0} \frac{\cos(z/2)}{\cos(z/2)} = 1$$

Математический анализ (базовый уровень) — 1 семестр

$$\begin{array}{l} \mathrm{e)} \quad \lim_{x \to \frac{\pi}{2}} \frac{\cos x}{\sqrt[3]{(1-\sin x)^2}} = \left(\frac{0}{0}\right) = \Big| \text{ замена } z = \frac{\pi}{2} - x, \;\; x = \frac{\pi}{2} - z, \;\; x \to 0 \; \Big| = \lim_{z \to 0} \frac{\sin z}{\sqrt[3]{(1-\cos z)^2}} \\ = \lim_{z \to 0} \frac{2\sin\left(\frac{z}{2}\right)\cos\left(\frac{z}{2}\right)}{\sqrt[3]{\left(2\sin^2\left(\frac{z}{2}\right)\right)^2}} = \lim_{z \to 0} \frac{2\cos\left(\frac{z}{2}\right)}{\sqrt[3]{4\sin\left(\frac{z}{2}\right)}} = \frac{2}{0} = (\mathrm{предел} \; \mathrm{не} \; \mathrm{существует}) \\ = \left(\mathrm{есть} \; \mathrm{различные} \; \mathrm{односторонние} \; \mathrm{пределы} \; \mathrm{при} \;\; x \to \frac{\pi}{2} \pm 0, \;\; z \to \mp 0\right) = \mp \infty. \end{array}$$

ж)
$$\lim_{x \to \frac{\pi}{6}} \frac{2\sin^2 x + \sin x - 1}{2\sin^2 x - 3\sin x + 1} = \left(\frac{0}{0}\right) = \left|\text{ замена } y = \sin x, \ x \to \frac{1}{2}\right| = \lim_{x \to \frac{1}{2}} \frac{2y^2 + y - 1}{2y^2 - 3y + 1} = \lim_{x \to \frac{1}{2}} \frac{2\left(y - \frac{1}{2}\right)(y + 1)}{2\left(y - \frac{1}{2}\right)(y - 1)}$$
$$= \lim_{x \to \frac{1}{2}} \frac{(y + 1)}{(y - 1)} = -3.$$