

(1) Publication number:

0 489 968 A1

(2)

EUROPEAN PATENT APPLICATION

(21) Application number: 90124241.2

(5) Int. Cl.5: C07K 7/10, G01N 33/576, A61K 39/29

2 Date of filing: 14.12.90

The applicant has subsequently filed a sequence listing and declared, that it includes no new matter.

- Date of publication of application: 17.06.92 Bulletin 92/25
- Designated Contracting States: AT BE CH DE DK ES FR GB GR IT LI LU NL SE
- Applicant: Innogenetics N.V. industriepark Zwijnaarde 7 Box 4 B-9710 Gent(BE)
- (72) Inventor: DeLeys, Robert J. Diepekanten 20 B-1850 Grimbergen(BE) Inventor: Pollet, Dirk Stokerijstraat 50 B-2110 Wijnegem(BE) Inventor: Maertens, Geert Zilversparrenstraat 64 B-8310 Brugge(BE) Inventor: Van Heuverswyn, Hugo

Colmanstraat 62

B-9270 Laarne(BE)

- Representative: Dost, Wolfgang, Dr.rer.nat., Dipl.-Chem. et al Patent- & Rechtsanwälte Bardehle. Pagenberg . Dost . Altenburg . Frohwitter . Geissler & Partner Galileiplatz 1 Postfach 86 06 20 W-8000 München 86(DE)
- Synthetic antigens for the detection of antibodies to hepatitis C virus.
- Peptide sequences having the amino acid sequences given in the Sequence Listing (Sequence ID No. 1 to 20) are provided which are capable of mimicking proteins encoded by HCV for use as reagents for screening of blood and blood products for prior exposure to HCV. The peptides are at least 5 amino acids long and can be used in various specific assays for the detection of antibodies to HCV, for the detection of HCV antigens, or as immunogens.

The implementation of systematic testing for hepatitis B virus (HBV) has been instrumental in eliminating this virus from the blood supply. Nevertheless, a significant number of post-transfusion hepatitis (PTH) cases still occur. These cases are generally attributable to non-A, non-B hepatitis (NANBH) virus(es), the diagnosis of which is usually made by exclusion of other viral markers.

The etiological agent responsible for a large proportion of these cases has recently been cloned (Choo, Q-L et al. Science (1988) 244:359-362) and a first-generation antibody test developed (Kuo, G. et al. Science (1989) 244:362-364). The agent has been identified as a positive-stranded RNA virus, and the sequence of its genome has been partially determined. Studies suggest that this virus, referred to subsequently as hepatitis C virus (HCV), may be related to flaviviruses and pestiviruses. A portion of the genome of an HCV isolated from a chimpanzee (HCV_{CDC/CHI}) is disclosed in EPO 88310922.5. The coding sequences disclosed in this document do not include sequences originating from the 5'-end of the viral genome which code for putative structural proteins. Recently however, sequences derived from this region of the HCV genome have been published (Okamoto, H. et al., Japan J. Exp. Med. 60:167-177, 1990.). The amino acid sequences encoded by the Japanese clone HC-J1 were combined with the HCV_{CDC/CHI} sequences in a region where the two sequences overlap to generate the composite sequence depicted in Figure 1. Specifically, the two sequences were joined at glycine451. It should be emphasized that the numbering system used for the HCV amino acid sequence is not intended to be absolute since the existence of variant HCV strains harboring deletions or insertions is highly probable. Sequences corresponding to the 5' end of the HCV genome have also recently been disclosed in EPO 90302866.0.

In order to detect potential carriers of HCV, it is necessary to have access to large amounts of viral proteins. In the case of HCV, there is currently no known method for culturing the virus, which precludes the use of virus-infected cultures as a source of viral antigens. The current first-generation antibody test makes use of a fusion protein containing a sequence of 363 amino acids encoded by the HCV genome. It was found that antibodies to this protein could be detected in 75 to 85% of chronic NANBH patients. In contrast, only approximately 15% of those patients who were in the acute phase of the disease, had antibodies which recognized this fusion protein (Kuo, G. et al. Science (1989) 244:362-364). The absence of suitable confirmatory tests, however, makes it difficult to verify these statistics. The seeming similarity between the HCV genome and that of flaviviruses makes it possible to predict the location of epitopes which are likely to be of diagnostic value. An analysis of the HCV genome reveals the presence of a continuous long open reading frame. Viral RNA is presumably translated into a long polyprotein which is subsequently cleaved by cellular and/or viral proteases. By analogy with, for example, Dengue virus, the viral structural proteins are presumed to be derived from the amino-terminal third of the viral polyprotein. At the present time, the precise sites at which the polyprotein is cleaved can only be surmised. Nevertheless, the structural proteins are likely to contain epitopes which would be useful for diagnostic purposes, both for the detection of antibodies as well as for raising antibodies which could subsequently be used for the detection of viral antigens. Similarly, domains of nonstructural proteins are also expected to contain epitopes of diagnostic value, even though these proteins are not found as structural components of virus particles.

Brief Description of the Drawings

20

40

45

Figure 1 shows the amino acid sequence of the composite HCV_{HC-J1/CDC/CHI}

Figure 2 shows the antibody binding to individual peptides and various mixtures in an ELISA assay

Description of the Specific Embodiments

It is known that RNA viruses frequently exhibit a high rate of spontaneous mutation and, as such, it is to be expected that no two HCV isolates will be completely identical, even when derived from the same individual. For the purpose of this disclosure, a virus is considered to be the same or equivalent to HCV if it exhibits a global homology of 60 percent or more with the HCV_{HC-J1/CDC/CHI} composite sequence at the nucleic acid level and 70 percent at the amino acid level.

Peptides are described which immunologically mimic proteins encoded by HCV. In order to accommodate strain-to-strain variations in sequence, conservative as well as non-conservative amino acid substitutions may be made. These will generally account for less than 35 percent of a specific sequence. It may be desirable in cases where a peptide corresponds to a region in the HCV polypeptide which is highly polymorphic, to vary one or more of the amino acids so as to better mimic the different epitopes of different viral strains.

The peptides of interest will include at least five, sometimes six, sometimes eight, sometimes twelve, usually fewer than about fifty, more usually fewer than about thirty-five, and preferably fewer than about

twenty-five amino acids included within the sequence encoded by the HCV genome. In each instance, the peptide will preferably be as small as possible while still maintaining substantially all of the sensitivity of the larger peptide. It may also be desirable in certain instances to join two or more peptides together in one peptide structure.

It should be understood that the peptides described need not be identical to any particular HCV sequence, so long as the subject compounds are capable of providing for immunological competition with at least one strain of HCV. The peptides may therefore be subject to insertions, deletions, and conservative or non-conservative amino acid substitutions where such changes might provide for certain advantages in their use.

Substitutions which are considered conservative are those in which the chemical nature of the substitute is similar to that of the original amino acid. Combinations of amino acids which could be considered conservative are Gly, Ala; Asp, Glu; Asn, Gln; Val, Ile, Leu; Ser, Thr; Lys, Arg; and Phe, Tyr.

Furthermore, additional amino acids or chemical groups may be added to the amino- or carboxyl terminus for the purpose of creating a "linker arm" by which the peptide can conveniently be attached to a carrier. The linker arm will be at least one amino acid and may be as many as 60 amino acids but will most frequently be 1 to 10 amino acids. The nature of the attachment to a solid phase or carrier need not be covalent.

Natural amino acids such as cysteine, lysine, tyrosine, glutamic acid, or aspartic acid may be added to either the amino- or carboxyl terminus to provide functional groups for coupling to a solid phase or a carrier. However, other chemical groups such as, for example, biotin and thioglycolic acid, may be added to the termini which will endow the peptides with desired chemical or physical properties. The termini of the peptides may also be modified, for example, by N-terminal acetylation or terminal carboxy-amidation. The peptides of interest are described in relation to the composite amino acid sequence shown in Figure 1. The amino acid sequences are given in the conventional and universally accepted three-letter code. In addition to the amino acids shown, other groups are defined as follows: Y is, for example, NH₂, one or more N-terminal amino acids, or other moieties added to facilitate coupling. Y may itself be modified by, for example, acetylation. Z is a bond, (an) amino acid(s), or (a) chemical group(s) which may be used for linking. X is intended to represent OH, NH₂, or a linkage involving either of these two groups.

Peptide I corresponds to amino acids 1 to 20 and has the following amino acid sequences:

- 30 (I) Y-Met-Ser-Thr-lle-Pro-Lys-Pro-Gln-Arg-Lys-Thr-Lys-Arg-Asn-Thr-Asn-Arg-Arg-Pro-Gln-Z-X. Peptide II corresponds to amino acids 7 to 26 and has the amino acid sequence:
 - (II) Y-Pro-Gln-Arg-Lys-Thr-Lys-Arg-Asn-Thr-Asn-Arg-Arg-Pro-Gln-Asp-Val-Lys-Phe-Pro-Gly-Z-X. Of particular interest is the oligopeptide IIA:
 - (IIA) Y-Gln-Arg-Lys-Thr-Lys-Arg-Asn-Thr-Asn-Arg-Arg-Z-X.
 Peptide III corresponds to amino acids 13 to 32 and has the sequence:

10

15

45

- (III) Y-Arg-Asn-Thr-Asn-Arg-Arg-Pro-Gln-Asp-Val-Lys-Phe-Pro-Gly-Gly-Gly-Gln-Ile-Val-Gly-Z-X. Peptide IV corresponds to amino acid 37 to 56 and has the sequences:
- (IV) Y-Leu-Pro-Arg-Arg-Gly-Pro-Arg-Leu-Gly-Val-Arg-Ala-Thr-Arg-Lys-Thr-Ser-Glu-Arg-Ser-Z-X. Peptide V corresponds to amino acids 49 to 68 and has the sequence:
- 40 (V) Y-Thr-Arg-Lys-Thr-Ser-Glu-Arg-Ser-Gln-Pro-Arg-Gly-Arg-Arg-Gln-Pro-Ile-Pro-Lys-Val-Z-X.
 Peptide VI corresponds to amino acid 61 to 80 and has the following sequence:
 - (VI) Y-Arg-Arg-Gln-Pro-Ile-Pro-Lys-Val-Arg-Arg-Pro-Glu-Gly-Arg-Thr-Trp-Ala-Gln-Pro-Gly-Z-X. Peptide VII corresponds to amino acids 73 to 92 and has the sequence:
 - (VII) Y-Gly-Arg-Thr-Trp-Ala-Gln-Pro-Gly-Tyr-Pro-Trp-Pro-Leu-Tyr-Gly-Asn-Glu-Gly-Cys-Gly-Z-X. Peptide VIII corresponds to amino acids 1688 to 1707 and has the sequence:
 - (VIII) Y-Leu-Ser-Gly-Lys-Pro-Ala-lle-lle-Pro-Asp-Arg-Glu-Val-Leu-Tyr-Arg-Glu-Phe-Asp-Glu-Z-X. Peptide IX corresponds to amino acids 1694 to 1713 and has the sequence:
 - (IX) Y-lle-lle-Pro-Asp-Arg-Glu-Val-Leu-Tyr-Arg-Glu-Phe-Asp-Glu-Met-Glu-Glu-Cys-Ser-Gln-Z-X. Peptide X corresponds to amino acids 1706 to 1725 and has the sequence:
- 50 (X) Y-Asp-Glu-Met-Glu-Glu-Cys-Ser-Gln-His-Leu-Pro-Tyr-lle-Glu-Gln-Gly-Met-Met-Leu-Ala-Z-X. Peptide XI corresponds to amino acids 1712 to 1731 and has the sequence:
 - (XI) Y-Ser-Gln-His-Leu-Pro-Tyr-Ile-Glu-Gln-Gly-Met-Met-Leu-Ala-Glu-Gln-Phe-Lys-Gln-Lys-Z-X. Peptide XII corresponds to amino acids 1718 to 1737 and has the sequence:
 - (XII) Y-Ile-Glu-Gln-Gly-Met-Met-Leu-Ala-Glu-Gln-Phe-Lys-Gln-Lys-Ala-Leu-Gly-Leu-Leu-Gln-Z-X. Peptide XIII corresponds to amino acids 1724 to 1743 and has the sequence:
 - (XIII) Y-Leu-Ala-Glu-Gln-Phe-Lys-Gln-Lys-Ala-Leu-Gly-Leu-Leu-Gln-Thr-Ala-Ser-Arg-Gln-Ala-Z-X. Peptide XIV corresponds to amino acids 1730 to 1749 and has the sequence:
 - (XIV) Y-Gin-Lys-Ala-Leu-Giy-Leu-Leu-Gin-Thr-Ala-Ser-Arg-Gin-Ala-Giu-Val-lle-Ala-Pro-Ala-Z-X.

Peptide XV corresponds to amino acids 2263 to 2282 and has the sequence:

(XV) Y-Glu-Asp-Glu-Ile-Ser-Val-Pro-Ala-Glu-Ile-Leu-Arg-Lys-Ser-Arg-Phe-Ala-Z-X. Peptide XVI corresponds to amino acids 2275 to 2294 and has the sequence:

(XVI) Y-Leu-Arg-Lys-Ser-Arg-Arg-Phe-Ala-Gin-Ala-Leu-Pro-Val-Trp-Ala-Arg-Pro-Asp-Tyr-Asn-Z-X. Peptide XVII corresponds to amino acids 2287 to 2306 and has the sequence:

(XVII) Y-Val-Trp-Ala-Arg-Pro-Asp-Tyr-Asn-Pro-Pro-Leu-Val-Glu-Thr-Trp-Lys-Lys-Pro-Asp-Tyr-Z-X.
Peptide XVIII corresponds to amino acids 2299 to 2318 and has the sequence:

(XVIII) Y-Glu-Thr-Trp-Lys-Lys-Pro-Asp-Tyr-Glu-Pro-Pro-Val-Val-His-Gly-Cys-Pro-Leu-Pro-Pro-Z-X. Peptide XIX corresponds to amino acids 2311 to 2330 and has the sequence:

(XIX) Y-Val-His-Gly-Cys-Pro-Leu-Pro-Pro-Pro-Lys-Ser-Pro-Pro-Pro-Pro-Pro-Pro-Arg-Lys-Lys-Z-X.

Of particular interest is the use of the mercapto-group of cysteines or thioglycolic acids used for acylating terminal amino groups for cyclizing the peptides or coupling two peptides together. The cyclization or coupling may occur via a single bond or may be accomplished using thiol-specific reagents to form a molecular bridge.

The peptides may be coupled to a soluble carrier for the purpose of either raising antibodies or facilitating the adsorption of the peptides to a solid phase. The nature of the carrier should be such that it has a molecular weight greater than 5000 and should not be recognized by antibodies in human serum. Generally, the carrier will be a protein. Proteins which are frequently used as carriers are keyhole limpet hemocyanin, bovine gamma globulin, bovine serum albumin, and poly-L-lysine.

There are many well described techniques for coupling peptides to carriers. The linkage may occur at the N-terminus, C-terminus or at an internal site in the peptide. The peptide may also be derivatized for coupling. Detailed descriptions of a wide variety of coupling procedures are given, for example, in Van Regenmortel, M.H.V., Briand, J.P., Muller, S., and Plaué, S., Laboratory Techniques in Biochemistry and Molecular Biology, Vol. 19, Synthetic Polypeptides as Antigens, Elsevier Press, Amsterdam, New York, Oxford, 1988.

The peptides may also be synthesized directly on an oligo-lysine core in which both the alpha as well as the epsilon-amino groups of lysines are used as growth points for the peptides. The number of lysines comprising the core is preferably 3 or 7. Additionally, a cysteine may be included near or at the C-terminus of the complex to facilitate the formation of homo- or heterodimers. The use of this technique has been amply illustrated for hepatitis B antigens (Tam, J.P., and Lu, Y-A., Proc. Natl. Acad. Sci. USA (1989) 86:9084-9088) as well as for a variety of other antigens (see Tam, J.P., Multiple Antigen Peptide System: A Novel Design for Synthetic Peptide Vaccine and Immunoassay, in Synthetic Peptides, Approaches to Biological Problems, Tam, J.P., and Kaiser, E.T., ed. Alan R. Liss Inc., New York, 1989).

Depending on their intended use, the peptides may be either labeled or unlabeled. Labels which may be employed may be of any type, such as enzymatic, chemical, fluorescent, luminescent, or radioactive. In addition, the peptides may be modified for binding to surfaces or solid phases, such as, for example, microtiter plates, nylon membranes, glass or plastic beads, and chromatographic supports such as cellulose, silica, or agarose. The methods by which peptides can be attached or bound to solid support or surface are well known to those versed in the art.

Of particular interest is the use of mixtures of peptides for the detection of antibodies specific for hepatitis C virus. Mixtures of peptides which are considered particularly advantageous are:

A. II, III, V, IX, and XVIII

B. I, II, V, IX, XI, XVI, and XVIII

C. II, III, IV, V, VIII, XI, XVI, and XVIII

D. II, IX, and XVIII

20

45

E. II, III, IV, and V

F. VIII, IX, XI, XIII, and XIV

G. XV, XVI, XVII, XVIII, and XIX

Antibodies which recognize the peptides can be detected in a variety of ways. A preferred method of detection is the enzyme-linked immunosorbant assay (ELISA) in which a peptide or mixture of peptides is bound to a solid support. In most cases, this will be a microtiter plate but may in principle be any sort of insoluble solid phase. A suitable dilution or dilutions of serum or other body fluid to be tested is brought into contact with the solid phase to which the peptide is bound. The incubation is carried out for a time necessary to allow the binding reaction to occur. Subsequently, unbound components are removed by washing the solid phase. The detection of immune complexes is achieved using antibodies which specifically bind to human immunoglobulins, and which have been labeled with an enzyme, preferably but not limited to either horseradish peroxidase, alkaline phosphatase, or beta-galactosidase, which is capable of converting a colorless or nearly colorless substrate or co-substrate into a highly colored product or a

product capable of forming a colored complex with a chromogen. Alternatively, the detection system may employ an enzyme which, in the presence of the proper substrate(s), emits light. The amount of product formed is detected either visually, spectrophotometrically, electrochemically, or luminometrically, and is compared to a similarly treated control. The detection system may also employ radioactively labeled antibodies, in which case the amount of immune complex is quantified by scintillation counting or gamma counting.

Other detection systems which may be used include those based on the use of protein A derived from Staphylococcus aureus Cowan strain I, protein G from group C Staphylococcus sp. (strain 26RP66), or systems which make use of the high affinity biotin-avidin or streptavidin binding reaction.

Antibodies raised to carrier-bound peptides can also be used in conjunction with labeled peptides for the detection of antibodies present in serum or other body fluids by competition assay. In this case, antibodies raised to carrier-bound peptides are attached to a solid support which may be, for example, a plastic bead or a plastic tube. Labeled peptide is then mixed with suitable dilutions of the fluid to be tested and this mixture is subsequently brought into contact with the antibody bound to the solid support. After a suitable incubation period, the solid support is washed and the amount of labeled peptide is quantified. A reduction in the amount of label bound to the solid support is indicative of the presence of antibodies in the original sample. By the same token, the peptide may also be bound to the solid support. Labeled antibody may then be allowed to compete with antibody present in the sample under conditions in which the amount of peptide is limiting. As in the previous example, a reduction in the measured signal is indicative of the presence of antibodies in the sample tested.

Another preferred method of antibody detection is the homogeneous immunoassay. There are many possible variations in the design of such assays. By way of example, numerous possible configurations for homogeneous enzyme immunoassays and methods by which they may be performed are given in Tijssen, P., Practice and Theory of Enzyme Immunoassays, Elsevier Press, Amersham, Oxford, New York, 1985. Detection systems which may be employed include those based on enzyme channeling, bioluminescence, allosteric activation and allosteric inhibition. Methods employing liposome-entrapped enzymes or coenzymes may also be used (see Pinnaduwage, P. and Huang, L., Clin. Chem. (1988) 34/2: 268-272, and Ullman, E.F. et al., Clin. Chem. (1987) 33/9: 1579-1584 for examples).

The synthesis of the peptides can be achieved in solution or on a solid support. Synthesis protocols generally employ the use t-butyloxycarbonyl- or 9-fluorenylmethoxy-carbonyl-protected activated amino acids. The procedures for carrying out the syntheses, the types of side-chain protection, and the cleavage methods are amply described in, for example, Stewart and Young, Solid Phase Peptide Synthesis, 2nd Edition, Pierce Chemical Company, 1984; and Atherton and Sheppard, Solid Phase Peptide Synthesis, IRL Press, 1989.

Experimental

35

40

10

I. Peptide Synthesis

All of the peptides described were synthesized on Pepsyn K polyamide-Kieselguhr resin (Milligen, Novato, California) which had been functionalized with ethylenediamine and onto which the acid-labile linker 4-(alpha-Fmoc-amino-2',4'-dimethoxybenzyl) phenoxyacetic acid had been coupled (Rink, Tetrahedron Lett. (1987) 28:3787). t-Butyl-based side-chain protection and Fmoc alpha-amino-protection was used. The guanidino-group of arginine was protected by the 2,2,5,7,8-pentamethylchroman-6-sulfonyl moiety. The imidazole group of histidine was protected by either t-Boc or trityl and the sulfhydryl group of cysteine was protected by a trityl group. Couplings were carried out using performed O-pentafluorophenyl esters except in the case of arginine where diisopropylcarbodiimide-mediated hydroxybenzotriazole ester formation was employed. Except for peptide I, all peptides were N-acetylated using acetic anhydride. All syntheses were carried out on a Milligen 9050 PepSynthesizer (Novato, California) using continuous flow procedures. Following cleavage with trifluoroacetic acid in the presence of scavengers and extraction with diethylether, all peptides were analyzed by C₁₈ -reverse phase chromatography.

II. Detection of Antibodies to Hepatitis C Virus

A. Use of peptides bound to a nylon membrane.

Peptides were dissolved in a suitable buffer to make a concentrated stock solution which was then further diluted in phosphate-buffered saline (PBS) or sodium carbonate buffer, pH 9.6 to make working

solutions. The peptides were applied as lines on a nylon membrane (Pall, Portsmouth, United Kingdom), after which the membrane was treated with casein to block unoccupied binding sites. The membrane was subsequently cut into strips perpendicular to the direction of the peptide lines. Each strip was then incubated with a serum sample diluted 1 to 100, obtained from an HCV-infected individual. Antibody binding was detected by incubating the strips with goat anti-human immunoglobulin antibodies conjugated to the enzyme alkaline phosphatase. After removing unbound conjugate by washing, a substrate solution containing 5-bromo-4-chloro-3-indolylphosphate and nitro blue tetrazolium was added.

Positive reactions are visible as colored lines corresponding to the positions of the peptides which are specifically recognized. The reaction patterns of thirty-six different sera are tabulated in Table 1. The results shown in Table 1 are further summarized in Table 2.

B. Use of peptides in an enzyme-linked immunosorbent assay (ELISA).

Peptide stock solutions were diluted in sodium carbonate buffer, pH 9.6 and used to coat microtiter plates at a peptide concentration of 2 micrograms per milliliter. A mixture consisting of peptides II, III, V, IX, and XVIII was also used to coat plates. Following coating, the plates were blocked with casein. Fifteen HCV-antibody-positive sera and control sera from seven uninfected blood donors were diluted 1 to 20 and incubated in wells of the peptide-coated plates. Antibody binding was detected by incubating the plates with goat anti-human immunoglobulin antibodies conjugated to the enzyme horseradish peroxidase. Following removal of unbound conjugate by washing, a solution containing H₂O₂ and 3,3',5,5'-tetramethylbenzidine was added. Reactions were stopped after a suitable interval by addition of sulfuric acid. Positive reactions gave rise to a yellow color which was quantified using a conventional microtiter plate reader. The results of these determinations are tabulated in Table 3. To correct for any aspecific binding which could be attributable to the physical or chemical properties of the peptides themselves, a cut-off value was determined for each peptide individually. This cut-off absorbance value was calculated as the average optical density of the negative samples plus 0.200. Samples giving absorbance values higher than the cut-off values are considered positive. The results for the fifteen positive serum samples are further summarized in Table 4.

While it is evident that some of the peptides are recognized by a large percentage of sera from HCV-infected individuals, it is also clear that no single peptide is recognized by all sera. In contrast, the peptide mixture was recognized by all fifteen sera and, for six of the fifteen sera, the optical densities obtained were equal to or higher than those obtained for any of the peptides individually. These results serve to illustrate the advantages of using mixtures of peptides for the detection of anti-HCV antibodies.

C. Binding of antibodies in sera from HCV-infected patients to various individual peptides and peptide mixtures in an ELISA.

Five peptides were used individually and in seven different combinations to coat microtiter plates. The plates were subsequently incubated with dilutions of fifteen HCV antibody-positive sera in order to evaluate the relative merits of using mixtures as compared to individual peptides for antibody detection. The mixtures used and the results obtained are shown in Figure 2.

In general, the mixtures functioned better than individual peptides. This was particularly evident for mixture 12 (peptides I, III, V, IX, and XVIII) which was recognized by all twelve of the sera tested. These results underscore the advantages of using mixtures of peptides in diagnostic tests for the detection of antibodies to HCV.

D. Use of a mixture of peptides in an ELISA assay for the detection of anti-HCV antibodies.

A mixture of peptides II, III, V, IX, and XVIII was prepared and used to coat microtiter plates according to the same procedure used to test the individual peptides. A total of forty-nine sera were tested from patients with clinically diagnosed but undifferentiated chronic non A non B hepatitis as well as forty-nine sera from healthy blood donors. Detection of antibody binding was accomplished using goat anti-human immunoglobulin antibodies conjugated to horseradish peroxidase. The resulting optical density values are given in Table 5. These results indicate that the mixture of peptides is not recognized by antibodies in sera from healthy donors (0/49 reactives) but is recognized by a large proportion (41/49, or 84%) of the sera from patients with chronic NANBH. These results demonstrate that the peptides described can be used effectively as mixtures for the diagnosis of HCV infection.

E. Detection of anti-HCV antibodies in sera from patients with acute NANB infection using individual peptides bound to nylon membranes and a mixture of peptides in an ELISA assay, and comparison with a commercially available kit.

Peptides were applied to nylon membranes or mixed and used to coat microtiter plates as previously described. The peptide mixture consisted of peptides II, III, V, IX, and XVIII. Sera obtained from twenty-nine patients with acute non-A, non-B hepatitis were then tested for the presence of antibodies to hepatitis C virus. These same sera were also evaluated using a commercially available kit (Ortho, Emeryville, CA, USA).

The results of this comparative study are given in Table 6. In order to be able to compare the peptide-based ELISA with the commercially available kit, the results for both tests are also expressed as signal to noise ratios (S/N) which were calculated by dividing the measured optical density obtained for each sample by the cut-off value. A signal-to-noise ratio greater or equal to 1.0 is taken to represent a positive reaction. For the commercially available kit, the cut-off value was calculated according to the manufacturer's instructions. The cut-off value for the peptide-based ELISA was calculated as the average optical density of five negative samples plus 0.200.

The scale used to evaluate antibody recognition of nylon-bound peptides was the same as that given in Table 1. Of the twenty-nine samples tested, twenty-five (86%) were positive in the peptide-based ELISA and recognized one or more nylon-bound peptides. In contrast, only fourteen of the twenty-nine sera scored positive in the commercially available ELISA. These results serve to illustrate the advantages of using peptide mixtures for the detection of anti-HIV antibodies as well as the need to include in the mixtures peptides which contain amino acid sequences derived from different regions of the HCV polyprotein.

	_	-1			٠,		·-ŗ	_r		~.!·	٠,	ı	į	:	:	ļ	•	i	.	- i	1	į	:	ļ	i	ļ	1			<u> </u>	امِ	į	••!	•	;	i	
					Ì			-						į		į	!	į			1	į	!							-	60		\$0	!		•	!
5	-	¥	-	-	-	-	+		- - -	~	1	ľ	~	i		1		- i	-	-			!	8	. i	-	1			-	-	-	6	0	:	-i	:
	į	2			-		_		_		_		.				. !	_;			. į		1	-	1			. -	-	-	_		_	_	į	-	: -;
		Ì	~	-		ا		S	-			Ì	1	8			1	į	7	7		!	i					15			١	-	Ì			ا	i
10	ŀ	X	~	-	4	-{	~	-	-	~	8	S	-	-	-	\dashv	-	- 50	-	~	-†	-	-	-	+	╁	\dagger	\dagger	+-	-	-	+	-		- -	-	-
		X									۱	٦					١					į			\perp								_	_			1
	Ī					_		~	-	~		T	~		8			١		~		8	-					1	1		-			Ì			
		X	Ц	~		_		-	4	<u>.</u>	١	_		-	\dashv		_		-		+	-	+	-	-	+	+	+	+-	-		-	-	+	\dashv	+	=
15		^								90	8						i		ŀ				۱						1							Ì	
	Ì	X	-	-		-		=	-	7	=	+	-1		20	7	-	7	-	-	-	-	_ 	7	1	1	1	1	T	1	0.8	0.6	-		T	7	~
		X				Ц								_		_	_		4		_		_	_	-	4	+	+	\downarrow	L		_	_		-		_
20	İ										-										1	İ															
		×		0.9	0.6		Н	=	-	1	-	-			9.0		~	-	-	-	┪	8	8	8	+	+	+	\dagger	†	T	\vdash	0.6	-	П		=	\$0
	<u>ė</u>	IX																							_			1						Ц		_	
25	Peptide				-			~	~	-	-	80	-		-		0.6			~		8	-	-				1				0.5	1		0.8		
		×	-		0.6	-	Н	2		-	-	-	0.8		Н	\square	0.6	Н	7			-	\dashv	+	-	+	+	+	╁	╁	\vdash	-	0.5	-		-+	-
		×			°								٦	,																L							╛
30		Ī	-		~			c	-	7		~	2			2	2	-	n					90	°				1	-	~		~			0.5	~
		2	L	L	L	L			_	_	-	_		0.5	9.6	0.5	-	_	_	0.5			-	_	-	8	+	+	+	+	0.5	_	-	9	S		\dashv
														٥	٥	٥				٥						١	1	ł	1		١			Ŭ		ļ	g
35		3	T		8			П			-		0.5	2		0.5				-	0.5				7	7	=	T	T	20		S				0.5	
		5		L	L	L	L						_			L	L			-	-				4	_	4	4	_		L	Ļ	<u> </u>	Ļ			9
							8	0.5			0.5		-			0.5				_							١		8 8			0.8		0.5		0.5	ē
40		1	-	H	-		-	-	-	Н		0.5	0.5	2,0	-	-	\$0	-		-	-	-			ᄏ	7	-	1	- ;	3 8	~	8	-	90	0.5		١
		_												_		L	_					_			_		╝	_	1	1	ļ.	_	_	L		Ц	ē
			ſ		~		~	~	n	0.5	~		0.5	r	-	~	-		-	-	0.5	S	7		-	~			~			-	~	~	[~		
45		┝╸	┝	<u> </u> 	80	<u> </u>	-	-	<u> </u> -	 -	90	-	-	 	-	0.5	-	 	- 2	0.5	0.5	 -	-	 	_	-	-	=	- -	S. 8	L.	- -	-	1			9
45					ľ						ľ					Ĭ		į				İ													:		5
		[Ī	-	!		80	So		9	-	~	-	8	: = :			80		"					-	-	7	- -	1	-			:	:	: !	i
			-	_	_	<u> </u> _	ļ	<u>_</u> .			-	2	-		-		 - •					! _	~		Ţ	-	8	_	1			-		<u> </u> -		ا ا	9
50		3	:! - !!		"			ĺ		2	2	2	2	2	~	*	22	2	~	2	8	ñ	~	â	X	ž	ñ	2									: :
		Ĺ	بــان	ــــــــــــــــــــــــــــــــــــــ	:	<u>. </u>	.L	١	١.	į.	!	L-	١.	۱.	1	١	i	:	:	:	;	i.	•	: !		: 1		1	:	•-	•	:					

Table 1. Recognition of peptides bound to nylon membranes by Blank: no reaction sera from persons infected by HCV.

Blank: no reaction; 0.5: weakly positive; 1: clearly positive; 2: strong reaction; 3: intense reaction; ND: not determined

Table 2.

_	antibody binding to ny	
Peptide	No. reactive sera	% reactive sera
ı	13/35	37
II	22/35	63
111	27/35	77
IV	24/35	69
V	14/35	40
VI	11/35	31
VII	11/35	31
· VIII	19/36	53
IX	9/36	25
X	17/36	47
ΧI	15/36	42
XII	1/36	3
XIII	13/36	36
XIV	7/36	19
XV	9/36	25
XVI	20/36	56
XVII	14/36	39
XVIII	14/36	39
XIX	8/36	22

Table 3. Comparison of Individual Peptides in an ELISA Assay for the Detection of Antibodies to HCV.

1.11 1.12
0.255 0.047 0.04 0.04 0.044 0
0.255 0.047 0.04 0.05 0.044 0.041 0
0.041 0.024 <th< td=""></th<>
0.542 0.647 0.147 0.965 0.644 0.051 0.064 0.047 0.042 0.046 0.044 0.053 0.044 0.053 0.044 0.053 0.044 0.054 0.045 <th< td=""></th<>
0.662 0.653 0.654 0.654 0.654 0.654 0.654 0.654 0.654 0.654 0.654 0.654 0.654 0.654 0.654 0.654 0.654 0.654 0.654 0.654 0.655 0.655 0.657 0.655 <th< td=""></th<>
0.504 1.277 0.432 0.61 0.62 0.172 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.044 0
0.004 0.02 0.01 0.02 0.01 1.539 0.044 0.024 0.014 0.024 0.011 0.024 0.013 0.024 0.011 0.024 0.011 0.024 0.011 0.027 0.013 0.023 0.013 0.023 0.011 0.026 0.011 0.027 0.023 0.013 0.023 0.014 0.014 0.026 0.011 0.027 0.023 0.015 0.026 0.014 0.026 0.011 0.027 0.023 0.015 0.026 0.014 0.026 0.011 0.027 0.023 0.012 0.012 0.012 0.014 0.014 0.014 0.014 0.024 0.014 0.024 0.014 0.024 0.014 0.024 0.014 0.024 0.014 0.024 0.0
0.052 0.119 0.059 0.11 0.054 0.154 0.056 0.144 0.054 0.147 0.057 0.051 0.058
0.000 0.000 0.001 0.017 0.014 0.001 0.002 0.003 0.004 0.003 <th< td=""></th<>
0.558 0.04 0.042 0.06 0.121 0.04 0.01
0.151 0.152 0.152 0.152 0.152 0.152 0.152 0.152 0.004 0.152 0.004 0.152 0.004 0.152 0.004 0.152 0.004 0.152 0.004 0.152 0.004 0.152 0.004 <th< td=""></th<>
0.077 0.055 0.074 0.054 0.013 0.028 0.029 0.029 0.014 0.018 0.029 0.013 0.029 0.029 0.013 0.029 0.029 0.013 0.029 0.029 0.013 0.029 0.029 0.013 0.029 0.029 0.013 0.029 0.029 0.013 0.029 0.027 0.049 0.049 0.029 0.029 0.041 0.049 <th< td=""></th<>
0.047 0.048 0.047 0.489 0.043 0.044 <th< td=""></th<>
0557 0006 0011 0021 0.154 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.015 0.0
1.256 1.374 0.659 0.073 0.645 0.074 0.041 0.041 0.041 0.041 0.041 0.048 0.056 0.044 0.025 0.047 0.025 0.047 0.045
1.289 1.374 0.64 1.064 1.45 1.523 0.079 1.069 0.056 0.056 0.059 0.025
0.044 0.036 0.041 0.044 0.036 0.041 0.044 0.056 0.041 0.042 0.044 0.056 0.041 0.042 0.044 0.056 0.044 <th< td=""></th<>
0044 0035 0042 0041 0049 0041 0040 0041 0044 0052 0044 0053 0043 0043 0045 0044 0055 0
0044 0038 0040 0040 0040 0040 0040 0040
0041 0035 0041 0042 0046 0041 0042 0049 0044 0038 0044 0038 0039 0049 0039 0049 0039 0039 0039 0039
0044 0028 00415 0046 0046 0047 0088 0041 0041 0041 0042 0049 0048 0041 0049 0049 0049 0049 0049 0049 0049
0044 0038 0051 0042 0041 0056 0066 0061 0041 0042 0041 0041 0041 0041 0050 0050 0050 0050
0.122 0.043 0.055 0.051 0.042 0.051 0.042 0.051 0.041 0.041 0.042 0.052 0.043 0.053 0.053 0.053 0.053 0.055
0.131 0.043 0.053 0.044 0.004 0.005 0.013 0.078 0.004 0.001 0.004 0.005 0.004 0.005
0.0043 0.0653 0.044 0.042 0.002 0.013 0.047 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.045 0.053 0.05
0.002 0.0037 0.004 0.0002 0.013 0.021 0.001 0.001 0.001 0.002 0.002 0.003 0.00
0.008 0.214 0.105 0.008 0.156 0.108 0.005 0.004 0.005 0.108 0.007 0.223 0.416 0.004 0.121

Table 4

Summary of an	tibody-binding to indivi ELISA assay.	idual peptides in a
Peptide	No. reactive sera	% reactive sera
ı	13	87
II	13	87
III	14	93
IV	10	67
V	10	67
VI	7	47
VII	8	53
VIII	13	87
IX	12	80
X	13	87
XI	13	87
XII	1	7
XIII	7	47
XIV	8	53
XV	2	13
XVI	5	33
XVII	4	27
XVIII	10	67
XIX	6	40

Table 5

5			of antibodies to HCV in sera from chronic to sera from healthy blood donors.					
	Chronic I	NANB Sera	Cont	trol Sera				
	Serum nr.	Optical Density	Serum nr.	Optical Density				
	101	0.041	1	0.049				
	102	1.387	2	0.047				
10	103	1.578	3	0.049				
	104	1.804	4	0.046				
	105	1.393	5	0.049				
	107	1.604	6	0.045				
10	108	1.148	7	0.043				
15	109	1.714	8	0.053				
	110	1.692	9	0.049				
	112	0.919	10	0.047				
	113	1.454	11	0.060				
20	114	0.936	12	0.044				
20	115	0.041	13	0.049				
	116	1.636	14	0.051				
	118	1.242	15	0.056				
	119	1.568	16	0.050				
25	120	1.290	17	0.049				
	121	1.541	18	0.055				
	122	1.422	19	0.054				
	123	1.493	20	0.058				
	124	1.666	21	0.050				
30	125	1.644	22	0.044				
00	126	1.409	23	0.043				
	127	1.625	24	0.045				
	128	1.061	25	0.046				
	129	1.553	26	0.049				
35	130	1.709	27	0.050				
	131	0.041	28	0.047				
	132	0.044	29	0.050				
	133	1.648	30	0.053				
	134	0.043	31	0.051				
40	135	1.268	32	0.053				
	136	1.480	33	0.055				
	138	0.628	34	0.064				
	139	0.042	35	0.063				
	140	0.040	36	0.057				
45	141	0.039	38	0.048				
	142	1.659	39	0.045				
	143	1.457	40	0.046				
	144	0.722	41	0.046				
	145	1.256	42	0.051				
50	146	0.373	43	0.057				
	147	1.732	44	0.050				
	148	1.089	45 46	0.050 0.045				
	149	1.606						
	150 451	1.725	47 48	0.041 0.064				
55	151 154	1.449	48 49	0.040				
	154	1.639	l .					
	155	1.775	50	0.036				

Cut-off: 0.623

Cut-off: 0.250

0: no reaction; 0.5: weakly positive; 1: clearly positive; 2: strong reaction; 3: intense reaction;

• O.D. exceeded 3.000 and was out of range. The values given are therefore minimum values.

Table 6. Comparison of anti-HCV antibody detection by nylon-bound peptides, a peptide-based ELISA, and a commercially available kit.

5

10

15

20

25

30

35

40

45

50

	_			;		Nylen-bound peptides	eptides 	3	3	2		Optical density	N/S	Optical density Commercial EUSA	S/N
E E		3	È		5	E A		,		,	1	3,00		305	27.0
5	0	0	0	•	0	0	•	0	D			0.00	5 6		
192	•	0	0	۰	0	•	0	0	0	0	0	0.042	2.5	0.789	9 9
193	0	0	0	0	0	0	0	•	0	0	•	0.039	9.0	781.0	250
161		•		•	•	0	•	0	0	•	0	0.044	0.18	0.183	0.29
40.	• -		• •		. c	•	6.0	8.0	-	n	-	1.692	6.77	3.000	4.82*
3		• ^	• -	• ~	· 6	9.0	8	5.0	9.9	~	•	1.569	6.28	0.386	0.62
26.		. ~		٠~	} 0	9	6.0	S.	-	~		1.523	6.09	0.447	0.72
50.		۰ ۵	. ~	. ~	•	0	0	0	-	~	•	1.578	6.31	0.354	0.57
			. 6	5		~	~	0	~	0	-	1.606	6.42	3.000	4.82
	} c	. 6	۵	} -		. a	. 0	•	•	0	•	0.369	1.48	0.127	0.20
71.	• =						0		0	0	•	0.444	1.78	0.101	0.16
2.5	• •	• •	• •		• •	·a	0	•	0	0	0	0.637	2.55	0.101	0.16
9 6	• •			8.0				0	0	0	0	0.812	3.25	0.092	5.0
	• c			} -		• •		• •		0	•	1.320	5.28	0.875	1.40
	, <u>*</u>	• -				6.0	. –		6.0	0.5	-	1.547	6.19	3.000	4.82
220	w (-	-	~		9	_	0	9.5	0.5	-	1.536	6.34	3.000•	4.82
221	٥		0	50	0	0	0	0	0	0	•	1.428	5.71	0.327	0.52
253		-	-	-		•	~	6.0	6.0	0	•	1.362	5,45	3.000	4.82
223		. -	-	-		a	-	. 0.5	9.5	0	•	1.316	5.26	3.000.	4.85
1	-	· •-				, G		6.0	6.0	0	•	1.30	5.22	3.000	4.82
22.6	. c				•	5	, O	6.5	0	٥	~	1,178	4.71	2.358	.83.
326	, c	• •	• •	. 0		~	"	~	0.5	9	•	1.236	5.14	3.000	4.82
227	, c	• •				۰ ۸	~	6,0	5.0	S, C	~	1.335	5.75	3.000	4.82
	, c		, «	, <u>*</u>		. ~		~	o	0	~	1,400	5.60	3.000	4.B2
7		, «	} <		• •				- 17		-	1.63.1	5.92	3.000	4.82
316	} c] c	· c	9 6	• •	• c			• 6	0	•	0.351	1.40	0.257	0.41
3 4		• c	• •) v	• <				. 0	0	0	0.475	7.90	0.245	0.39
220	• •		• 6	} -				. 0	. a	0	0	1,134	4.54	0.351	0.56
338	• •	. 0	• 0	. "_	. 0	· -			0	0	<u> </u>	1.096	4.38	1.074	1.72

55 SEQUENCE LISTING

SEQ ID NO: SEQUENCE TYPE:

amino acid sequence

20 amino acids **SEQUENCE LENGTH: MOLECULE TYPE:** peptide **ORIGINAL SOURCE ORGANISM:** hepatitis C Virus the peptide corresponds to amino acids 1 to 20 of the composite **FEATURES:** amino acid sequence shown in Figure 1. 5 Met Ser Thr Ile Pro Lys Pro Gln Arg Lys Thr Lys Arg Asn Thr Asn Arg Arg Pro Gln 10 20 **SEQ ID NO:** 2 **SEQUENCE TYPE:** amino acid sequence **SEQUENCE LENGTH:** 20 amino acids 15 peptide MOLECULE TYPE: **ORIGINAL SOURCE ORGANISM:** hepatitis C virus the peptide corresponds to amino acids 7 to 26 of the composite **FEATURES:** amino acid sequence shown in Figure 1. 20 Thr Lys Arg Asn Thr Pro Gln Arg Lys Asn Arg Arg Pro Gln Asp Val Lys Phe Pro Gly 25 20 SEQ ID NO: 3 amino acid sequence **SEQUENCE TYPE: SEQUENCE LENGTH:** 11 amino acids 30 **MOLECULE TYPE:** peptide **ORIGINAL SOURCE ORGANISM:** hepatitis C virus **FEATURES:** the peptide corresponds to amino acids 8 to 18 of the composite amino acid sequence shown in Figure 1. 35 Gln Arg Lys Thr Lys Arg Asn Thr Asn Arg 40 SEQ ID NO: **SEQUENCE TYPE:** amino acid sequence 20 amino acids **SEQUENCE LENGTH: MOLECULE TYPE:** peptide hepatitis C virus 45 **ORIGINAL SOURCE ORGANISM: FEATURES:** the peptide corresponds to amino acids 13 to 32 of the composite amino acid sequence shown in Figure 1. Arg Asn Thr Asn Arg Arg Pro Gln Asp Val Lys Phe Pro Gly 50 10 Gly Gly Gln Ile Val Gly

55

SEQ ID NO: 5

SEQUENCE TYPE: amino acid sequence SEQUENCE LENGTH: 20 amino acids

peptide

MOLECULE TYPE:

ORIGINAL SOURCE ORGANISM: hepatitis C virus the peptide corresponds to amino acids 37 to 56 of the composite **FEATURES:** amino acid sequence shown in Figure 1. 5 Leu Pro Arg Arg Gly Pro Arg Leu Gly Val Arg Ala Thr Arg Ser Lys Thr Ser Glu Arg 20 10 6 SEQ ID NO: **SEQUENCE TYPE:** amino acid sequence **SEQUENCE LENGTH:** 20 amino acids 15 peptide **MOLECULE TYPE: ORIGINAL SOURCE ORGANISM:** hepatitis C virus the peptide corresponds to amino acids 49 to 68 of the composite **FEATURES:** amino acid sequence shown in Figure 1. 20 Ser Glu Arg Ser Gln Thr Arg Lys Thr Pro Arg Gly Arg Arg Gln Pro Ile Pro Lys Val 25 20 SEQ ID NO: SEQUENCE TYPE: amino acid sequence **SEQUENCE LENGTH:** 20 amino acids 30 peptide **MOLECULE TYPE: ORIGINAL SOURCE ORGANISM:** hepatitis C virus **FEATURES:** the peptide corresponds to amino acids 61 to 80 of the composite amino acid sequence shown in Figure 1. 35 Arg Arg Gln Pro Ile Pro Lys Val Arg Arg Pro Glu Gly Arg Thr Trp Ala Gln Pro Gly 40 20 SEQ ID NO: **SEQUENCE TYPE:** amino acid sequence 45 **SEQUENCE LENGTH:** 20 amino acids **MOLECULE TYPE:** peptide **ORIGINAL SOURCE ORGANISM:** hepatitis C virus **FEATURES:** the peptide corresponds to amino acids 73 to 92 of the composite amino acid sequence shown in Figure 1. 50 Gly Arg Thr Trp Ala Gln Pro Gly Tyr Pro Trp Pro Leu Tyr 10 Gly Asn Glu Gly Cys Gly 20 55 SEQ ID NO: **SEQUENCE TYPE:** amino acid sequence

20 amino acids

hepatitis C virus

the peptide corresponds to amino acids 1688 to 1707 of the

peptide

SEQUENCE LENGTH:

ORIGINAL SOURCE ORGANISM:

MOLECULE TYPE:

FEATURES:

composite amino acid sequence shown in Figure 1. 5 Pro Ala Ile Ile Pro Asp Arg Glu Val Leu Leu Ser Gly Lys 10 Tyr Arg Glu Phe Asp Glu 20 SEQ ID NO: SEQUENCE TYPE: amino acid sequence 15 SEQUENCE LENGTH: 20 amino acids peptide MOLECULE TYPE: hepatitis C virus **ORIGINAL SOURCE ORGANISM:** the peptide corresponds to amino acids 1694 to 1713 of the **FEATURES:** composite amino acid sequence shown in Figure 1. 20 Ile Ile Pro Asp Arg Glu Val Leu Tyr Arg Glu Phe Asp Glu Met Glu Glu Cys Ser Gln 25 15 20 SEQ ID NO: 11 **SEQUENCE TYPE:** amino acid sequence 20 amino acids SEQUENCE LENGTH: 30 **MOLECULE TYPE:** peptide **ORIGINAL SOURCE ORGANISM:** hepatitis C virus the peptide corresponds to amino acids 1706 to 1725 of the **FEATURES:** composite amino acid sequence shown in Figure 1. 35 Asp Glu Met Glu Glu Cys Ser Gln His Leu Pro Tyr Ile Glu 10 Gln Gly Met Met Leu Ala 20 40 SEQ ID NO: 12 **SEQUENCE TYPE:** amino acid sequence **SEQUENCE LENGTH:** 20 amino acids **MOLECULE TYPE:** peptide 45 **ORIGINAL SOURCE ORGANISM:** hepatitis C virus the peptide corresponds to amino acids 1712 to 1731 of the **FEATURES:** composite amino acid sequence shown in Figure 1. 50 Ser Gln His Leu Pro Tyr Ile Glu Gln Gly Met Met Leu Ala 10 Glu Gln Phe Lys Gln Lys 20 55 SEQ ID NO: **SEQUENCE TYPE:** amino acid sequence 20 amino acids **SEQUENCE LENGTH:**

MOLECULE TYPE: peptide **ORIGINAL SOURCE ORGANISM:** hepatitis C virus the peptide corresponds to amino acids 1718 to 1737 of the **FEATURES:** composite amino acid sequence shown in Figure 1. 5 Gln Phe Lys Gln Lys Met Met Leu Ala Glu Ile Glu Gln Gly Ala Leu Gly Leu Leu Gln 20 10 SEQ ID NO: SEQUENCE TYPE: amino acid sequence **SEQUENCE LENGTH:** 20 amino acids **MOLECULE TYPE:** peptide 15 **ORIGINAL SOURCE ORGANISM:** hepatitis C virus the peptide corresponds to amino acids 1724 to 1743 of the **FEATURES:** composite amino acid sequence shown in Figure 1. 20 Leu Ala Glu Gln Phe Lys Gln Lys Ala Leu Gly Leu Leu Gln Ala Thr Ala Ser Arg Gln 15 20 25 SEQ ID NO: 15 **SEQUENCE TYPE:** amino acid sequence 20 amino acids **SEQUENCE LENGTH: MOLECULE TYPE:** peptide **ORIGINAL SOURCE ORGANISM:** hepatitis C virus 30 the peptide corresponds to amino acids 1730 to 1749 of the **FEATURES:** composite amino acid sequence shown in Figure 1. Gln Lys Ala Leu Gly Leu Leu Gln Thr Ala Ser Arg Gln Ala 35 Glu Val Ile Ala Pro Ala 20 15 40 SEQ ID NO: 16 SEQUENCE TYPE: amino acid sequence SEQUENCE LENGTH: 20 amino acids MOLECULE TYPE: peptide **ORIGINAL SOURCE ORGANISM:** hepatitis C virus 45 the peptide corresponds to amino acids 2263 to 2282 of the **FEATURES:** composite amino acid sequence shown in Figure 1. 50 Glu Ile Ser Val Pro Ala Glu Ile Leu Arg Lys Ser Arg Arg Phe Ala 20 55 SEQ ID NO: **SEQUENCE TYPE:** amino acid sequence

20 amino acids

SEQUENCE LENGTH:

MOLECULE TYPE:

ORIGINAL SOURCE ORGANISM:

FEATURES:

peptide hepatitis C virus

the peptide corresponds to amino acids 2275 to 2294 of the

composite amino acid sequence shown in Figure 1.

5

10

15

Leu Arg Lys Ser

Arg Arg Phe Ala Gln

Ala Leu Pro Val Trp

Ala Arg Pro Asp Tyr

15

Asn 20

SEQ ID NO:

SEQUENCE TYPE: SEQUENCE LENGTH: amino acid sequence 20 amino acids

MOLECULE TYPE:

ORIGINAL SOURCE ORGANISM:

peptide

18

hepatitis C virus

FEATURES:

the peptide corresponds to amino acids 2287 to 2306 of the

composite amino acid sequence shown in Figure 1.

20

25

30

Pro Asp Tyr Asn Pro Val Trp Ala Arg

Pro Leu Val Glu Thr 10

Trp Lys Lys Pro Asp

Tyr 20

SEQ ID NO:

19

SEQUENCE TYPE:

amino acid sequence

SEQUENCE LENGTH:

20 amino acids

MOLECULE TYPE:

peptide

ORIGINAL SOURCE ORGANISM:

hepatitis C virus

FEATURES:

the peptide corresponds to amino acids 2299 to 2318 of the

composite amino acid sequence shown in Figure 1.

35

40

45

Lys Pro Asp Tyr Glu

Pro Pro Val Val His

Pro

Gly Cys Pro Leu Pro 20

SEQ ID NO:

SEQUENCE TYPE:

amino acid sequence

SEQUENCE LENGTH:

20 amino acids

MOLECULE TYPE: ORIGINAL SOURCE ORGANISM: peptide

hepatitis C virus

FEATURES:

the peptide corresponds to amino acids 2311 to 2330 of the

composite amino acid sequence shown in Figure 1.

50

55

Pro Leu Pro Pro Pro Val His Gly Cys

Lys Ser Pro Pro Val

Pro Pro Pro Arg Lys

Lys

15

20

Claims

1. A peptide of the formula:

(I) Y-Met-Ser-Thr-lle-Pro-Lys-Pro-Gln-Arg-Lys-Thr-Lys-Arg-Asn-Thr-Asn-Arg-Arg-Pro-Gln-Z-X. Where Y is NH₂, one or more N-terminal amino acids, or other chemical entities added to facilitate coupling; Z is a bond, (an) amino acid(s), or (a) chemical group(s) which may be used for linking; and X is OH, NH₂, or a linkage involving either of these groups.

2. A peptide of the formula:

10

15

25

30

35

40

45

55

(II) Y-Pro-Gln-Arg-Lys-Thr-Lys-Arg-Asn-Thr-Asn-Arg-Pro-Gln-Asp-Val-Lys-Phe-Pro-Gly-Z-X.
Where Y is NH₂, one or more N-terminal amino acids, or other chemical entities added to facilitate coupling; Z is a bond, (an) amino acid(s), or (a) chemical group(s) which may be used for linking; and X is OH, NH₂, or a linkage involving either of these groups.

3. A peptide of the formula:

(III) Y-Arg-Asn-Thr-Asn-Arg-Arg-Pro-Gln-Asp-Val-Lys-Phe-Pro-Gly-Gly-Gly-Gln-Ile-Val-Gly-Z-X. Where Y is NH₂, one or more N-terminal amino acids, or other chemical entities added to facilitate coupling; Z is a bond, (an) amino acid(s), or (a) chemical group(s) which may be used for linking; and X is OH, NH₂, or a linkage involving either of these groups.

20 4. A peptide of the formula:

(IV) Y-Leu-Pro-Arg-Arg-Gly-Pro-Arg-Leu-Gly-Val-Arg-Ala-Thr-Arg-Lys-Thr-Ser-Glu-Arg-Ser-Z-X. Where Y is NH₂, one or more N-terminal amino acids, or other chemical entities added to facilitate coupling; Z is a bond, (an) amino acid(s), or (a) chemical group(s) which may be used for linking; and X is OH, NH₂, or a linkage involving either of these groups.

5. A peptide of the formula:

(V) Y-Thr-Arg-Lys-Thr-Ser-Glu-Arg-Ser-Gln-Pro-Arg-Gly-Arg-Gln-Pro-lle-Pro-Lys-Val-Z-X. Where Y is NH₂, one or more N-terminal amino acids, or other chemical entities added to facilitate coupling; Z is a bond, (an) amino acid(s), or (a) chemical group(s) which may be used for linking; and X is OH, NH₂, or a linkage involving either of these groups.

6. A peptide of the formula:

(VI) Y-Arg-Arg-Gln-Pro-lle-Pro-Lys-Val-Arg-Arg-Pro-Glu-Gly-Arg-Thr-Trp-Ala-Gln-Pro-Gly-Z-X. Where Y is NH₂, one or more N-terminal amino acids, or other chemical entities added to facilitate coupling; Z is a bond, (an) amino acid(s), or (a) chemical group(s) which may be used for linking; and X is OH, NH₂, or a linkage involving either of these groups.

7. A peptide of the formula:

(VII) Y-Gly-Arg-Thr-Trp-Ala-Gln-Pro-Gly-Tyr-Pro-Trp-Pro-Leu-Tyr-Gly-Asn-Glu-Gly-Cys-Gly-Z-X. Where Y is NH₂, one or more N-terminal amino acids, or other chemical entities added to facilitate coupling; Z is a bond, (an) amino acid(s), or (a) chemical group(s) which may be used for linking; and X is OH, NH₂, or a linkage involving either of these groups.

8. A peptide of the formula:

(VIII) Y-Leu-Ser-Gly-Lys-Pro-Ala-Ile-Ile-Pro-Asp-Arg-Glu-Val-Leu-Tyr-Arg-Glu-Phe-Asp-Glu-Z-X. Where Y is NH₂, one or more N-terminal amino acids, or other chemical entities added to facilitate coupling; Z is a bond, (an) amino acid(s), or (a) chemical group(s) which may be used for linking; and X is OH, NH₂, or a linkage involving either of these groups.

50 9. A peptide of the formula:

(IX) Y-lle-lle-Pro-Asp-Arg-Glu-Val-Leu-Tyr-Arg-Glu-Phe-Asp-Glu-Met-Glu-Glu-Cys-Ser-Gln-Z-X. Where Y is NH₂, one or more N-terminal amino acids, or other chemical entities added to facilitate coupling; Z is a bond, (an) amino acid(s), or (a) chemical group(s) which may be used for linking; and X is OH, NH₂, or a linkage involving either of these groups.

10. A peptide of the formula:

(X) Y-Asp-Glu-Met-Glu-Glu-Cys-Ser-Gln-His-Leu-Pro-Tyr-lle-Glu-Gln-Gly-Met-Met-Leu-Ala-Z-X.
Where Y is NH₂, one or more N-terminal amino acids, or other chemical entities added to facilitate

coupling; Z is a bond, (an) amino acid(s), or (a) chemical group(s) which may be used for linking; and X is OH, NH₂, or a linkage involving either of these groups.

11. A peptide of the formula:

5

15

20

25

30

45

50

55

(XI) Y-Ser-Gln-His-Leu-Pro-Tyr-Ile-Glu-Gln-Gly-Met-Met-Leu-Ala-Glu-Gln-Phe-Lys-Gln-Lys-Z-X. Where Y is NH₂, one or more N-terminal amino acids, or other chemical entities added to facilitate coupling; Z is a bond, (an) amino acid(s), or (a) chemical group(s) which may be used for linking; and X is OH, NH₂, or a linkage involving either of these groups.

10 12. A peptide of the formula:

(XII) Y-lle-Glu-Gln-Gly-Met-Met-Leu-Ala-Glu-Gln-Phe-Lys-Gln-Lys-Ala-Leu-Gly-Leu-Leu-Gln-Z-X. Where Y is NH₂, one or more N-terminal amino acids, or other chemical entities added to facilitate coupling; Z is a bond, (an) amino acid(s), or (a) chemical group(s) which may be used for linking; and X is OH, NH₂, or a linkage involving either of these groups.

13. A peptide of the formula:

(XIII) Y-Leu-Ala-Glu-Gln-Phe-Lys-Gln-Lys-Ala-Leu-Gly-Leu-Gln-Thr-Ala-Ser-Arg-Gln-Ala-Z-X. Where Y is NH₂, one or more N-terminal amino acids, or other chemical entities added to facilitate coupling; Z is a bond, (an) amino acid(s), or (a) chemical group(s) which may be used for linking; and X is OH, NH₂, or a linkage involving either of these groups.

14. A peptide of the formula:

(XIV) Y-Gln-Lys-Ala-Leu-Gly-Leu-Leu-Gln-Thr-Ala-Ser-Arg-Gln-Ala-Glu-Val-lle-Ala-Pro-Ala-Z-X. Where Y is NH₂, one or more N-terminal amino acids, or other chemical entities added to facilitate coupling; Z is a bond, (an) amino acid(s), or (a) chemical group(s) which may be used for linking; and X is OH, NH₂, or a linkage involving either of these groups.

15. A peptide of the formula:

(XV) Y-Glu-Asp-Glu-Arg-Glu-Ile-Ser-Val-Pro-Ala-Glu-Ile-Leu-Arg-Lys-Ser-Arg-Arg-Phe-Ala-Z-X. Where Y is NH₂, one or more N-terminal amino acids, or other chemical entities added to facilitate coupling; Z is a bond, (an) amino acid(s), or (a) chemical group(s) which may be used for linking; and X is OH, NH₂, or a linkage involving either of these groups.

16. A peptide of the formula:

(XVI) Y-Leu-Arg-Lys-Ser-Arg-Phe-Ala-Gln-Ala-Leu-Pro-Val-Trp-Ala-Arg-Pro-Asp-Tyr-Asn-Z-X. Where Y is NH₂, one or more N-terminal amino acids, or other chemical entities added to facilitate coupling; Z is a bond, (an) amino acid(s), or (a) chemical group(s) which may be used for linking; and X is OH, NH₂, or a linkage involving either of these groups.

40 17. A peptide of the formula:

(XVII) Y-Val-Trp-Ala-Arg-Pro-Asp-Tyr-Asn-Pro-Pro-Leu-Val-Glu-Thr-Trp-Lys-Lys-Pro-Asp-Tyr-Z-X. Where Y is NH₂, one or more N-terminal amino acids, or other chemical entities added to facilitate coupling; Z is a bond, (an) amino acid(s), or (a) chemical group(s) which may be used for linking; and X is OH, NH₂, or a linkage involving either of these groups.

18. A peptide of the formula:

(XVIII) Y-Glu-Thr-Trp-Lys-Lys-Pro-Asp-Tyr-Glu-Pro-Pro-Val-Val-His-Gly-Cys-Pro-Leu-Pro-Pro-Z-X. Where Y is NH₂, one or more N-terminal amino acids, or other chemical entities added to facilitate coupling; Z is a bond, (an) amino acid(s), or (a) chemical group(s) which may be used for linking; and X is OH, NH₂, or a linkage involving either of these groups.

19. A peptide of the formula:

(XIX) Y-Val-His-Gly-Cys-Pro-Leu-Pro-Pro-Lys-Ser-Pro-Pro-Val-Pro-Pro-Pro-Arg-Lys-Lys-Z-X. Where Y is NH₂, one or more N-terminal amino acids, or other chemical entities added to facilitate coupling; Z is a bond, (an) amino acid(s), or (a) chemical group(s) which may be used for linking; and X is OH, NH₂, or a linkage involving either of these groups.

20. A composition comprising at least one of the peptides of claims 1 to 19.

- 21. A composition comprising at least one of the peptides of claims 1 to 19 attached to a carrier.
- 22. A method for the detection of antibodies to hepatitis C virus in a biological fluid such as serum or plasma, characterized by contacting body fluid of a person to be diagnosed with any of the peptides of claims 1 to 19 or compositions of claims 20 and 21, and detecting the immunological complex formed between said antibodies and the antigen(s) used.
- 23. The method of claim 22, characterized in that said detection of said immunological complex is achieved by reacting said immunological complex with a labeled reagent selected from anti-human immunoglobulin-antibodies or staphylococcal A protein or streptococcal G protein or avidin or streptavidin and detecting the complex formed reagent between said conjugate and said reagent.
- 24. A kit for the detection of anti-hepatitis C virus antibodies in a biological fluid, comprising:
 - a composition as defined in either of claims 20 or 21.

5

10

15

20

25

30

35

40

45

50

55

- the means for detecting the immunological complex formed.
- 25. The kit of claim 24, characterized in that said means for detecting said immunological complex comprise anti-human immunoglobulin(s) or protein A or protein G or avidin or streptavidin and means for detecting the complex formed between the anti-HCV antibodies contained in the detected immunological conjugate.

Figure 1. Amino Acid Sequence of the Composite HCV_{HC-J1/CDC/CIII}

5 10	Thr
	ጥኮኮ
1 Met Ser Thr Ile Pro Lys Pro Gln Arg Lys Thr Lys Arg As	
16 Asp Arg Arg Pro Gln Asp Val Lvs Phe Pro Gly Gly Gly Gl	TIE
31 Val Cly Cly Val Tyr Leu Leu Pro Ard Ard Gly Pro Ard Le	GLY
A6 Val Arg Ala Thr Arg Lys Thr Ser Glu Arg Ser Gin Pro Ar	GTA
61 Arg Arg Glm Pro Ile Pro Lys Val Arg Arg Pro Glu Gly Ar	Thr
76 Trp Ala Gln Pro Gly Tyr Pro Trp Pro Leu Tyr Gly Asn Gl	GIY
91 Cys Gly Trp Ala Gly Trp Leu Leu Ser Pro Arg Gly Ser Ar	Cla
ING Ser Tro Siv Pro Thr Asp Pro Ard Ard Ard Ser Ard Ash De	GLY
121 Lys Val Ile Asp Thr Leu Thr Cys Gly Phe Ala Asp Leu Me	Ala
136 Tyr Ile Pro Leu Val Gly Ala Pro Leu Gly Gly Ala Ala Ar 151 Leu Ala His Gly Val Arg Val Leu Glu Asp Gly Val Asn Ty	Ala
166 Thr Gly Asn Leu Pro Gly Cys Ser Phe Ser Ile Phe Leu Le	Ala
181 Leu Leu Ser Cys Leu Thr Val Pro Ala Ser Ala Tyr Gln Va	Ara
196 Asn Ser Thr Gly Leu Tyr His Val Thr Asn Asp Cys Pro As	Ser
211 Ser Ile Val Tyr Glu Ala His Asp Ala Ile Leu His Thr Pr	Gly
226 Cys Val Pro Cys Val Arg Glu Gly Asn Val Ser Arg Cys Tr	vaĺ
241 Ala Met Thr Pro Thr Val Ala Thr Arg Asp Gly Lys Leu Pr	Ala
256 Thr Gln Leu Arg Arg His Ile Asp Leu Leu Val Gly Ser Al	Thr
271 Leu Cys Ser Ala Leu Tyr Val Gly Asp Leu Cys Gly Ser Va	Phe
286 Ten Tie Gly Gln Leu Phe Thr Phe Ser Pro Arg Arg His Tr	Thr
301 Thr Gln Glv Cvs Asn Cvs Ser Ile Tvr Pro Gly His Ile Th	GLY:
316 His Ard Met Ala Trp Asp Met Met Asn Trp Ser Pro Th	ALA
331 Ala Leu Val Met Ala Gln Leu Leu Arq Ile Pro Gin Ala Il	: Leu
346 Asp Met Tie Ala Gly Ala His Trp Gly Val Leu Ala Gly II	: Ala
361 Tur Phe Ser Met Val Gly Asn Trp Ala Lys Val Leu Val Va	Leu
376 Leu Leu Phe Ala Gly Val Asp Ala Glu Thr lie Val Ser Gl	GLY
391 Gln Ala Ala Arg Ala Met Ser Gly Leu Val Ser Leu Phe Th	Pro
406 Gly Ala Lys Gln Asn Ile Gln Leu Ile Asn Thr Asn Gly Se	Trp
421 His Ile Asn Ser Thr Ala Leu Asn Cys Asn Glu Ser Leu As	Thr
436 Gly Trp Leu Ala Gly Leu Ile Tyr Gln His Lys Phe Asn Se	. Ser
451 Gly Cys Pro Glu Arg Leu Ala Ser Cys Arg Pro Leu Thr As	Pne
466 Asp Gln Gly Trp Gly Pro Ile Ser Tyr Ala Asn Gly Ser Gl	/ Pro
481 Asp Gln Arg Pro Tyr Cys Trp His Tyr Pro Pro Lys Pro Cy	o mr~
496 Ile Val Pro Ala Lys Ser Val Cys Gly Pro Val Tyr Cys Ph	S INT
511 Pro Ser Pro Val Val Val Gly Thr Thr Asp Arg Ser Gly Al	, yen
526 Thr Tyr Ser Trp Gly Glu Asn Asp Thr Asp Val Phe Val Le	. Mot
541 Asn Thr Arg Pro Pro Leu Gly Asn Trp Phe Gly Cys Thr Tr	. Val
556 Asn Ser Thr Gly Phe Thr Lys Val Cys Gly Ala Pro Pro Cy	OVE
571 Ile Gly Gly Ala Gly Asn Asn Thr Leu His Cys Pro Thr As 586 Phe Arg Lys His Pro Asp Ala Thr Tyr Ser Arg Cys Gly Se	Cla
601 Pro Trp Ile Thr Pro Arg Cys Leu Val Asp Tyr Pro Tyr Ar	i Leu
616 Trp His Tyr Pro Cys Thr Ile Asn Tyr Thr Ile Phe Lys Il	a Ara
	s Asn
631 Met Tyr Val Gly Gly Val Glu His Arg Leu Glu Ala Ala Cy 646 Trp Thr Arg Gly Glu Arg Cys Asp Leu Glu Asp Arg Asp Ar	Ser
661 Glu Leu Ser Pro Leu Leu Leu Thr Thr Gln Trp Gln Va	Leu
676 Pro Cys Ser Phe Thr Thr Leu Pro Ala Leu Ser Thr Gly Le	ı Ile
691 His Leu His Gln Asn Ile Val Asp Val Gln Tyr Leu Tyr Gl	y Val

Figure 1. Continued.

									_	_	_			7	17_1
706	Glv	Ser	Ser	Ile	Ala	Ser	Trp	Ala	Ile	Lys	Trp	Glu '	ryr	val	val
	_		**	T ~	TAN	110	SAT	(- I N	Ala	GIU	VTG.	nia .	TIC 14	V	
	1	~	Th -	T	1721	שמט	UND	I VS	P116	Ala		T A T		_,_	1
811	Asp	Thr	GIU	Val	Wha	TAU	Ser	Pro	TVT	Tyr	Lvs	Arg	Tyr	Ile	Ser
826	Leu	Met	Ala	Tea.	TIIT	Leu	Cln	TYT	Phe	Leu	Thr	Arg	Val	Glu	Ala
856	Gln	Leu	His	vaı	Trp	116	Mot	Cuc	Ala	Val	Ris	Pro	Thr	Leu	Vaĺ
871	Asp	Ala	Val	ITE	Leu	Leu	met	Cys	y]a	Val	Dho	Glv	Pro	Leu	Trp
~ ~ *	•••		~1	T	V ~ ~	Acn	1.811	A 1 A	val	AT6	val	O + 0			
	1	60	TT	~1	7 I -	C 37	ツァカヤ	A T-C1	יייי	116	ALG	JEL	FIU	277	,
	_	T	Ŧ 1~	~ ~ ~	Ma+	44.4 44.11	ייויי	Agn	VAI	ABU	GLII	ASU	Tie a		1
		~		7	T ~ 11	44.6	1.011	vaı	Thr	ALU	птэ	VT G	ASP		
1126	GTA	Ser	Ser	Asp	Den.	C)	Den	Ser	Ara	Gly	Ser	Leu	Leu	Ser	Pro
1156	Arg	Pro	TIE	Ser	Tyr	y) a	Tys 1	Gly	Tle	Phe	Arg	Ala	Ala	Val	Cys
1171	Cys	Pro	Ala	GIY	ura	MIG	NIS	1721	Aen	Phe	Tle	Pro	Val	Glu	Asn
1186	Thr	Arg	GIA	val	Ala	гÀг	. Co.	AGT	val	Dhe	Trn	Asp	Asn	Ser	Ser
1201	Leu	GLu	Thr	Thr	Met	Alg	Ser	Dho	Cla	Phe	Ala	His	Leu	His	Ala
1216	Pro	Pro	Val	Val	Pro	GID	Ser	wr~	Tara	Val	Dro	Ala	Ala	Tvr	Ala
1231	Pro	Thr	GLY	Ser	GTA	rys	Ser	77.1	Lys	Val	DTO	Sor	Val	Ala	Ala
1246	Ala	Gln	Gly	Tyr	Lys	Val	Leu	val	Leu	Asn	Ala	Die.	Glv	Tle	Asp
		. Y	~1	. Bb.	~ 1	. Als	יוייייי	MAT	- Set	1.05	MIG	птэ	G y		
1001	T 7 ~	. m	. M		• mb~	• 17477	• (= 1 0	1.779	: PNE	: Leu	мта	rob	U. 7		-,-
		_ ^1_	_ ~1-	. * 1 -		. A ~ ~				. L.VS	MSU	GIU	~ 7 ~	44.0	
		~ ~		- 1813 -		. או מ		יום.ו	ı vaı	VAI	1.05.11	Ala			
		- 7			. 17-1	- N I -	יוייייי כ	~ ' '₹77	- 41	1 (-10	1.0-1.1	A D			
142	0 TT6	= PI(- Gl.	, was	· The	ינט -	Ast	Phe	Ast	Ser	Val	Ile	Asp	Cys	Asn Phe Thr
144	T WE	- C	- 57 - 1	7 1 Y 1	- Gl-	. The	r Val	Aer	o Phe	Ser	Leu	Asp	Pro	Thr	Phe
147	I Thi	. TT(= 3	י ברט - נמד ג	·	· wr·	- Cl-	, h-,	7 61	v T.ve	Pro	Glv	Ile	TVÍ	Arg
148	o GTI	n Ar	g Ar	A PT	Y AIG	i Ci	. A	A Draw	9 67	י כוי	, Mot	Phe	Asr	Ser	Ser
150	1 Pho	e Va.	T YT	a Pro	o GT	/ GTI	u Ar	, PI	. cl-	r Cris	. או	. m~~	 ነ ጥህነ	- Glu	Ser Leu
151	6 Va	l Le	u Cys	s Gi	u Cys	з Ту	r Asj	b WT9	a cri	у суз	, WTG	TTF	, .yı		

Figure 1. Continued.

											_	_		_	
1531	Thr	Pro	Ala	Glu	Thr	Thr	Val	Arg	Leu	Arg	Ala	Tyr	Met	ASD	TUL
3 5 4 6	D	~1	T	77-0	17 m !	Cvc	(: I n	ASD	HIS	Leu	GIU	PHE	110	OIL	917
1661	17	nh -	m L	C 1 11	I AII	יייוי	HIG	1 I E	ASD	WIG	DIS	FILE	Tierr		
1576	mb ~	T ***	C)	Car	GIV	GIB	Agn	Leu	PIO	TVI	ьeu	Val	WIG	1 y 1	0111
1 - 0 1	3 7	m L	77 - 7	~~	λla	Dra	ΔІА	GID	AIA	PEO	PIU	PIU	Jer	110	ASP.
1606	~1 -	M-+	m	T 37.0	Cve	1.011	110	ATO	Leu	LVS	PIU	TIIT	Tierr	11.7.3	U-1
1621	DZ0	The C	DEC	Leu	Len	Tvr	Ara	Leu	Glv	Ala	Val	Gln	Asn	Glu	Ile
1/1/	m }	T	mr	TI: ~	DYA	17 a l	יויוי די	1.VC	יועד	. i.e	Mel	7111	CYS	rie c	
1651	Thr	ren	Thr	UT2	17-1	Val	Thr	Ser	The	Trn	Val	Leu	Val	Glv	Glv
1666	Ala	Asp	Leu	GIU	Val	NAI.	71.2	Tur	Cve	LAU	Ser	Thr	Glv	Cvs	Vaĺ
1666	Val	Leu	Ala	ATA	Leu	MIG.	MIG	Tyr	Cys	Clar	Tye	Dro	Ala	Tle	Tle
1681	Val	Ile	Val	GTA	Arg	var	Val	rea	261	Dho	DA2	Glu	Mot	Glu	Glu
1696	Pro	Asp	Arg	GŢu	Val	ren	Tyr	AIG	GIU.	C)-	ASP	Mat	Mot	TAN	Ala
1711	Cys	Ser	Gln	His	Leu	Pro	TĂL	TIE	GIU	GIN	GLY	Cla	mb~	y) =	Sar
1726	Glu	Gln	Phe	Lys	Gln	Lys	Ala	Leu	GIA	ren	Leu	GT11	TIIT	WIG	Cla
7747	3	~1 ~	7 T -	C) 11	172 :	110	בו ב	PTO	АІА	val	GIII	T 11T	DO!!	***	
1756	*	¥	C]	mb ~	Dha	The second	בומ	T.vc	His	Met	TTD	ASD	rne	TIE	SET
11	~3	T 1 -	~7 -	m	Ton	Ala	(= XP	1. 0 11	SPT	THE	ьец	FLU	GTA	MO11	110
1706	7 J ~	716	M l a	Sar	T.em	Met	Ala	Pne	THI	WIG	MIG	A OT	TIIT	Jer	1 - 0
7001	Y	mr~	mr~	Car	Cln	ጥኮሎ	1.011	1.611	rne	ASN	TIE	Leu	GTA	GTA	LLP
1016	T7 - 7	ת וא	n l a	c_{1n}	T.ou	Ala	ДΙА	PTO	CLLV	ALA	WT G	TIIT	WTG	EIIC	ACIT
1021	Clu	Ala .	Clv	T.en	Ala	GIV	Ala	Ala	TTE	GTA	Ser	val	GLY	11000	011
1046	T	77-7	Tan	TIA	Den	T) 🛆	1.011	AIA	GIV	TVI	GTA	мла	GTA	v a.z.	ALG
3061	~1	× 1	T	₹7 ~]	7) a	Dha	T.ve	TIA	Met	Ser	GIV	GIU	var	PIU	Ser
1076	₩	G_{11}	yen	T.em	Val	Asn	Leu	Leu	PIO	WTG	TTE	TIGU	Ser	FLU	013
1 2 2 1	Al a	T.em	Val	Val	Glv	Val	val	CVS	Ala	Ала	TTE	Tierr	Mr. y	AL 9	nra
1006	77 - 1	C1	Dra	G 1 17	Gl 11	Cl v	Δla	Val	Gin	Trp	Met	ASN	AIG	Leu	тте
1001	77 -	Db.	71 -	CAT	2	Cl w	Yen	Hie	Val	Ser	Pro	Tnr	HlS	TVI	val
1921	Dro	Glu	Ser	Asp	Ala	Ala	Ala	Arg	Val	Thr	Ala	Ile	Leu	Ser	Ser
1951	TOU	ωp.~	Val	The	Gln	T.eu	Leu	Arg	Ara	Leu	Ris	Gln	Trp	Ile	Ser
1966	Den.	Clu	Crrc	Δp ~	Thr	Pro	Cve	Ser	Glv	Ser	Trp	Leu	Arq	Asp	Ile
1981	261	GIU	m~~	TIO	Care	Glu	Val	Leu	Ser	Asp	Phe	Lvs	Thr	Trp	Leu
1996	Trp	ASP	110	TOU	Wo+	Dro	Gln	Len	Pro	Glv	Tle	Pro	Phe	Val	Ser
2011	Lys	Ala	TAS	Clas	Mer.	Twe	Clar	Val	TED	Ara	Val	Asp	Glv	Ile	Met
2011	Cys	GIN	Arg	GTA	TAT	Гур	Clar	772	Clu	Tle	Thr	Gly	His	Val	Lvs
2026	HIS	Thr	Arg	Cys	nis	Cys	Gry	CJ.	Bro	7.5	Thr	Cve	Ara	Asn	Met
2041	Asn	GTĀ	Thr	Met	Arg	TIE	vai	GIA	NIO	WI A	4.0 ×	Thr	Gly	Pro	Cva
2056	Trp	Ser	GTĀ	Thr	Pne	PIO	TTE	Asn	wr-	TAT	y] -	Tou	T.Z	720	77.3 17.3
2071	Thr	Arg	Leu	Pro	YIS	Pro	ASD	Tyr	The	Phe Cl-	WIG	Clas	115	Dho	Val
2086	Ser	Ala	Glu	Glu	Tyr	Val	GIU	TTE	Arg	GIN	val	GIY	Asp	Cone	His
2101	Tyr	Val	Thr	GIA	Met	Thr	Thr	Asp	Asn	Leu	гÀг	Cys	PIO	Cys	Gln
2116	Val	Pro	Ser	Pro	Glu	Phe	Phe	Thr	Glu	Leu	Asp	GTĀ	AT	Arg	Leu
2131	His	Arg	Phe	Ala	Pro	Pro	Cys	Lys	Pro	Leu	Leu	Arg	GIu	GIU	Val
2146	Ser	Phe	Ara	Val	Glv	Leu	His	Glu	Tvr	Pro	Val	Gly	Ser	GIn	Leu
2161	Pro	Cvs	Glu	Pro	Glu	Pro	Asp	Val	Ala	. Val	Leu	Thr	Ser	met	Leu
2176	Thr	Asp	Pro	Ser	His	Ile	Thr	· Ala	. GLu	ALA	. Ala	GIY	Arg	Arg	Leu
2191	λla	Ara	Glv	Ser	Pro	Pro	Ser	· Val	Ala	Ser	Ser	Ser	Ala	Ser	GID
2206	T.en	Ser	Ala	Pro	Ser	Leu	Lvs	Ala	Thr	Cys	Thr	Ala	Asn	Hls	Asp
2221	Ser	Pro	Asp	Ala	Glu	Leu	: Ile	Glu	Ala	Asn	Leu	Leu	Trp	Arg	$_{\rm GTD}$
2236	Glu	Met	Glv	Glv	Asn	Ile	Thr	Ara	: Val	. Glu	Ser	Glu	Asn	Lys	vaı
2251	Val	Tle	Leu	Ast	Ser	·Phe	Asp	Pro	Leu	. Val	. Ala	GLu	GIU	Asp	GIU
2266	Ara	Glu	Ile	Ser	: Val	Pro	Ala	Glu	Ile	: Leu	Arg	Lys	Ser	Arg	Arg
2200	Pho	Ala	Gln	Ala	Len	Pro	Val	Tro	Ala	Ara	Pro	Asp	Tyr	Asn	Pro
2201	Dro	יום.	Val	Gli	The	Trr	Tve	Lvs	Pro	Asn	Tvr	Glu	Pro	Pro	Val
2270	77.7	ne.	61.	. Cv.	Dro	Ten	Pro	Pro	Pro	Tive	Ser	Pro	Pro	Val	Pro
222¢	val	D~~	D	. Tura	. T) y ~ ~	. TLC	. 17=1	V=1	יום. זום.ז	Thr	61,,	Ser	Thr	Leu
2320	PIO	PIO	, MIG	Tar	. туз-	WIG	Tan	. val	. WF-	. N	. Ca-	Dha	614	Ser	Ser
2341	ser	IUI	WTG	Leu	гита	CIU	, neo	WTG	TIIT	. Mrg	, ser	FIIC	U L y		

Figure 1. Continued.

```
2356 Ser Thr Ser Gly Ile Thr Gly Asp Asn Thr Thr Thr Ser Ser Glu
2371 Pro Ala Pro Ser Gly Cys Pro Pro Asp Ser Asp Ala Glu Ser Tyr
2386 Ser Ser Met Pro Pro Leu Glu Gly Glu Pro Gly Asp Pro Asp Leu 2401 Ser Asp Gly Ser Trp Ser Thr Val Ser Ser Glu Ala Asn Ala Glu 2416 Asp Val Val Cys Cys Ser Met Ser Tyr Ser Trp Thr Gly Ala Cys
2431 Val Thr Pro Cys Ala Ala Glu Glu Gln Lys Leu Pro Ile Asn Ala
2446 Leu Ser Asn Ser Leu Leu Arg His His Asn Leu Val Tyr Ser Thr
2461 Thr Ser Arg Ser Ala Cys Gln Arg Gln Lys Lys Val Thr Phe Asp
2476 Arg Leu Gln Val Leu Asp Ser His Tyr Gln Asp Val Leu Lys Glu
2491 Val Lys Ala Ala Ala Ser Lys Val Lys Ala Asn Leu Leu Ser Val
2506 Glu Glu Ala Cys Ser Leu Thr Pro Pro His Ser Ala Lys Ser Lys
2521 Phe Gly Tyr Gly Ala Lys Asp Val Arg Cys His Ala Arg Lys Ala
2536 Val Thr His Ile Asn Ser Val Trp Lys Asp Leu Leu Glu Asp Asn
2551 Val Thr Pro Ile Asp Thr Thr Ile Met Ala Lys Asn Glu Val Phe
2566 Cys Val Gln Pro Glu Lys Gly Gly Arg Lys Pro Ala Arg Leu Ile
2581 Val Phe Pro Asp Leu Gly Val Arg Val Cys Glu Lys Met Ala Leu
2596 Tyr Asp Val Val Thr Lys Leu Pro Leu Ala Val Met Gly Ser Ser
2611 Tyr Gly Phe Gln Tyr Ser Pro Gly Gln Arg Val Glu Phe Leu Val
2626 Gln Ala Trp Lys Ser Lys Lys Thr Pro Met Gly Phe Ser Tyr Asp
2641 Thr Arg Cys Phe Asp Ser Thr Val Thr Glu Ser Asp Ile Arg Thr
2656 Glu Glu Ala Ile Tyr Gln Cys Cys Asp Leu Asp Pro Gln Ala Arg
2671 Val Ala Ile Lys Ser Leu Thr Glu Arg Leu Tyr Val Gly Gly Pro
2686 Leu Thr Asn Ser Arg Gly Glu Asn Cys Gly Tyr Arg Arg Cys Arg
2701 Ala Ser Gly Val Leu Thr Thr Ser Cys Gly Asn Thr Leu Thr Cys
2716 Tyr Ile Lys Ala Arg Ala Ala Cys Arg Ala Ala Gly Leu Gln Asp
2731 Cys Thr Met Leu Val Cys Gly Asp Asp Leu Val Val Ile Cys Glu
2746 Ser Ala Gly Val Gln Glu Asp Ala Ala Ser Leu Arg Ala Phe Thr
2761 Glu Ala Met Thr Arg Tyr Ser Ala Pro Pro Gly Asp Pro Pro Gln
2776 Pro Glu Tyr Asp Leu Glu Leu Ile Thr Ser Cys Ser Ser Asn Val
2791 Ser Val Ala His Asp Gly Ala Gly Lys Arg Val Tyr Tyr Leu Thr
2806 Arg Asp Pro Thr Thr Pro Leu Ala Arg Ala Ala Trp Glu Thr Ala
2821 Arg His Thr Pro Val Asn Ser Trp Leu Gly Asn Ile Ile Met Phe
2836 Ala Pro Thr Leu Trp Ala Arg Met Ile Leu Met Thr His Phe Phe
2851 Ser Val Leu Ile Ala Arg Asp Gln Leu Glu Gln Ala Leu Asp Cys
2866 Glu Ile Tyr Gly Ala Cys Tyr Ser Ile Glu Pro Leu Asp Leu Pro
2881 Pro Ile Ile Gln Arg Leu Gly Cys Pro Glu Arg Leu Ala Ser
```

Figure 2. Antibody binding to individual peptides and various mixtures in an ELISA assay.

PEPTIDE COATING COMBINATIONS SAMPLE 272 COATING COMBINATIONS USED COATING COMBINATIONS 1: IX
2: XVIII
3: 1
4: III
5: V
6: IX+XVIII
7: FXVIII
8: I-III+V+XVIII
10: I-III+V+XVIII
12: I-III+V+XVIII 00 460 nm PEPTIDE COATING COMBINATIONS SAMPLE 273 PEPTIDE COATING COMBINATIONS SAMPLE 266 COATING COMBINATIONS COATING COMBINATIONS Figure 2. continued. 00 450 nm OD 450 nm

PEPTIDE COATING COMBINATIONS COATING COMBINATIONS USED COATING COMBINATIONS SAMPLE 282 9: I-III+V+XVIII 10: I-III+V+IX 11: I-III+IX+XVIII 12: I-III+V+IX+XVIII 00 450 nm PEPTIDE COATING COMBINATIONS SAMPLE 8247 PEPTIDE COATING COMBINATIONS COATING COMBINATIONS COATING COMBINATIONS SAMPLE 278 Figure 2. continued. OD 450 nm OD 450 nm

PEPTIDE COATING COMBINATIONS SAMPLE 8290 COATING COMBINATIONS USED COATING COMBINATIONS 12: I+III+V+IX+XVIII 11: I+III-4X+XVIII 10: I+III+V+IX 00 450 nm 9.0 2 PEPTIDE COATING COMBINATIONS SAMPLE 8287 PEPTIDE COATING COMBINATIONS COATING COMBINATIONS COATING COMBINATIONS SAMPLE 257 Figure 2. continued. 00 450 nm 3 r 00 450 nm 5.6 5.

EP 90 12 4241

11 23	of relevant passag P-A-0 388 232 (CHIRC Entire document, esp ine 58 - page 5, line 3-29; page 6, lines 1 0-12,18,21-23; figure	ON CORP.) Decially page 4, 9; page 5, lines 17-56: claims	1-7,20- 25	C 07 K 7/10 G 01 N 33/576 A 61 K 39/29
				TECHNICAL FIELDS SEARCHED (Int. CL5) C 07 K A 61 K G 01 N
Plac	no present search report has been d	Date of completion of the search		Examiner
X: particular Y: particular document A: technolog O: non-writt	IAGUE	16-08-1991 T: theory or prize: E: earlier patent after the filin D: document cit L: document it	NENDIJK M.S.M.	

	CLA	IMS INCURRING FEES
Thep	resent	European patent application comprised at the time of filling more than ten cialms.
[]	All claims fees have been paid within the prescribed time limit. The present European search report has been drawn up for all claims.
		Only part of the claims fees have been paid within the prescribed time fimit. The present European search report has been drawn up for the first ten claims and for those claims for which claims fees have been paid,
		report has been drawn up for the lirst ten claims and for those claims for which claims fees have been paid, namely claims:
Г	7	No claims fees have been paid within the prescribed time limit. The present European search report has been
	_	drawn up for the first ten claims.
	LAC	CK OF UNITY OF INVENTION
The S	Search (Division considers that the present European patent application does not comply with the requirement of unity of
invent		relates to several inventions or groups of inventions,
110176	ну.	
		·
	See	sheet -B-
		·
:		
		All further search fees have been paid within the fixed time limit. The present European search report has been drawn up for all claims.
		Only part of the further search fees have been paid within the fixed time limit. The present European search report has been drawn up for those parts of the European patent application which relate to the inventions in
		respect of which search fees have been paid.
_	=	namely claims:
Ł	X	None of the further search fees has been paid within the fixed time limit. The present European search report has been drawn up for those parts of the European patent application which relate to the invention first mentioned in the claims,
		namety claims: 1-7 and 20-25 (partially)

LACK OF UNITY OF INVENTION

The Search Division considers that the present European patent application does not comply with the requirement of unity of invention and relates to several inventions or groups of inventions, namely:

- 1. Claims 1-7 and 20-25(partially): Peptides of the formula I-VII, their compositions and use as diagnostic.
- 2. Claims 8-14 and 20-25(partially): Peptides of the formula VIII-XIV, their compositions and use as diagnostic.
- 3. Claims 15-19 and 20-25(partially): Peptides of the formula

XV-XIX, their compositions and use as diagnostic. ...