

VE 320 – Summer 2012 Introduction to Semiconductor Device

Solar Cell and LED

Instructor: Professor Hua Bao

NANO ENERGY LAB

Bao Ve320 S12

1

Optical Generation Both energy and momentum conservation needs to be satisfied. The momentum of a photon is small Indirect Bandgap (e.g. Si) Direct Bandgap (e.g. GaAs) Unlikely (requires phonons to provide *K*) Direct gap Not allowed $hv > E_g$ Indirect gap E_g Direct (no state available) gap E_g $h\nu = E_o$ (K conserved) University of Michigan – Shanghai Jiao Tong University Joint Institute Bao Ve320 S12 **Center of Optics and Optoelectronics** 2

Band Gap

- Onset of photon absorption
- The energy of photon that is emitted.

Energy unit to wavelength unit.

$$\lambda(\mu m) = \frac{1.24}{E(eV)}$$

Si ~ 1.1 um =1100 nm Ge ~ 1.8 um = 1800 nm GaAs ~ 0.87 um = 870 nm

Bao Ve320 S12

5

Operating wavelength depends on band gap energy

University of Michigan – Shanghai Jiao Tong University Joint Institute
Center of Optics and Optoelectronics

Bao Ve320 S12

Semiconductor Optoelectronic Diodes

Detectors convert optical signals into electrical signals

- Photodetectors: primary purpose to detect photons
- Solar Cells: primary purpose is photo-to electrical energy conversion

Emitters are a source of optical radiation

- Light-emitting diodes (LEDs)
- Lasers –may be obtained using optical cavity

Bao Ve320 S12

PN-Junction Photodiode

- Minority carriers generated near the depletion region will diffuse to the depletion region and be swept across by the electric field, thereby contributing to current flow.
- Minority carriers generated away from the depletion region will recombine before reaching the depletion region and therefore not contribute to current flow.

Bao Ve320 S12

9

Solar Cell

A reverse going current due to photo generation

$$I_L = -qA(L_N + W + L_P)G_L$$

$$I = I_{dark} + I_L$$

The shift in the I-V curve caused by photo generation leads to electrical power generation

Bao Ve320 S12

Power Generation

 V_{oc} Open circuit voltage I_{sc} Short circuit current

Fill Factor:

$$FF = \frac{P_{max}}{I_{sc}V_{oc}}$$

Power conversion efficiency

$$\eta = \frac{FF \; I_{sc} V_{oc}}{P_{im}}$$

Bao Ve320 S12

11

Shockley-Queisser Limit for Solar Cell Efficiency

Every photon with energy (hv) > Eg creates one electron-hole pair

Thermalization Loss

To break this limit:

- 1. Multi-junction solar cell
- 2. Concentrator solar cell
- 3. Quantum dot solar cell?

Bao Ve320 S12

Why is silicon a good solar cell material?

Typically want:

Direct band gap semiconductor (so that absorption depth is small)

-- but silicon is indirect band gap

Eg ~ 1.4 eV (Silicon has 1.1 eV)

However, silicon can be made very pure, so recombination times are long.

Bao Ve320 S12

13

Multi-junction Cell Viu = Viu + Viu + Viu Liu = Min (III + Viu = Min (III + Vi

Light Emitting Diode (LED)

- Directly produce light through electron relaxation in a solid
- · Compact, efficient light emitters
- Lifetime ~100,000 hours
- · Challenges for lighting: white light, efficiency, cost

Bao Ve320 S12

17

Light Emitting Diode (LED)

Forward bias diode –minority carrier recombination in form of radiative recombination

External efficiency: η = photo power out / electrical power in

Bao Ve320 S12

LED

- · Direct band gap
- Band gap value between 1.77 eV and 3.10 eV (to be visible)
- Be amenable to the formation of pn-junction diode.
- No elemental or compound semiconductors meet these requirements

Alloy

Semiconductor	Color	Peak λ(μm)	External Efficiency η (%)	Performance (lumens/watt)
		Established Ma	terials	
$\mathrm{GaAs}_{0.6}\mathrm{P}_{0.4}$	Red	0.650	0.2	0.15
GaAs _{0.35} P _{0.65} :N	Orange-Red	0.630	0.7	- A - A - A - A - A - A - A - A - A - A
$GaAs_{0.14}P_{0.86}{:}N$	Yellow	0.585	0.2	1
GaP:N	Green	0.565	0.4	2.5
GaP:Zn-O	Red	0.700	2	0.40
		Recent Addition	ons	al chargones
AlGaAs	Red	0.650	4-16	2-8
AlInGaP	Orange	0.620	6	20
AlInGaP	Yellow	0.585	5	20
AlInGaP	Green	0.570	1	6
SiC	Blue	0.470	0.02	0.04
GaN	Blue	0.450	2	0.6

University of Michigan – Shanghai Jiao Tong University Joint Institute
Center of Optics and Optoelectronics

Bao Ve320 S12

19

Lighting History 8 8 8 Solid-State Lighting Fluorescence/HID Light Luminous E ffic acy (Im/W) 10 10⁰ 1900 1950 2000 2050 Year J. Tsao, IEEE Circuits and Devices Vol20, No 3, pp 28-37 Bao Ve320 S12 **Center of Optics and Optoelectronics** 20

Summary

- Basic concepts about solar cell... efficiency, fill factor, open circuit voltage, short-circuit current
- Limiting factors for solar cell efficiency
- Basic concepts about LED

Bao Ve320 S12