Möbius Function, Inversion, and Beyond

Beifang Chen

Department of Mathematics Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong

mabfchen@ust.hk.

Combinatorics Senimar

August 26, 2020

Outline

- Möbius Function of Number Theory
- Möbius Function of Poset
- Subspace Arrangement
- Characteristic polynomial of matroid
- Satisfiability of Boolean Functions
- 6 Regular Cell Complexes
- Other Applications

ullet The Möbius function μ of number theory is defined as

$$\mu(n) = \left\{ \begin{array}{ll} 1 & \text{if } n = 1, \\ (-1)^r & \text{if } n \text{ is a protuct of } r \text{ distinct primes,} \\ 0 & \text{otherwise.} \end{array} \right.$$

• Möbius inversion: Given two functions f(n), g(n), where $n \in \mathbb{Z}_+$. The identity

$$g(n) = \sum_{d|n} f(d) = \sum_{ab=n} f(a), \quad \forall n \in \mathbb{Z}_+$$

holds if and only if

$$f(n) = \sum_{d|n} \mu(d)g(n/d)$$
$$= \sum_{ab=n} \mu(a)g(b), \quad \forall n \in \mathbb{Z}_+.$$

(Math Dept, HKUST) Möbius Function 21 March 2018 4 / 50

The Möbius function satisfies

$$\sum_{d|n} \mu(d) = \begin{cases} 1 & \text{if } n = 1, \\ 0 & \text{if } n > 1. \end{cases}$$

In other words, μ can be inductively defined by $\mu(1)=1$,

$$\mu(n) = \sum_{d|n, d\neq n} \mu(d), \quad n \geq 2.$$

Proof of the Möbius inversion:

$$\sum_{ab=n} \mu(a)g(b) = \sum_{ab=n} \mu(a) \sum_{d|b} f(d)$$

$$= \sum_{d|n} f(d) \sum_{a|\frac{n}{d}} \mu(a)$$

$$= f(n).$$

- Euler totient (phi) function $\phi(n) = |\{k \in [n] : \gcd(a, n) = 1\}|$. E.g., $\phi(10) = 4$, since 1, 3, 7, 9 are the only numbers in [10] coprime to 10.
- Fix an integer $n \ge 1$; the set $S_n = \{(a, b) : a \le b, \gcd(a, b) = 1, b | n\}$ of positive integer ordered pairs has the cardinality

$$|S_n| = \sum_{b|n} \phi(b).$$

The function $f: S_n \to [n], f(a, b) = an/b$, is a bijection. Injectivity is trivial. Surjectivity follows from f(a, b) = k with a = k/d, b = n/d, $d = \gcd(k, n)$. So

$$n=\sum_{d\mid n}\phi(d).$$

By the Möbius inversion,

$$\phi(n) = \sum_{d|n} \mu(d)n/d.$$

- Let M be an n-multiset of a k-set S of type (n_1, \ldots, n_k) , i.e., the first element of S appears n_1 times in M, the second element appears n_2 times in M, and so on. What is the number of circular permutations of M? That is, find the number of ways of arranging all members of M on a circle.
- ullet The number of permutations of M is just the multinomial coefficient

$$\binom{n}{n_1,\ldots,n_k}$$
.

• If m is the greatest common divisor of n_1, \ldots, n_k above. Then the number of circular permutations of M is

$$\frac{1}{n}\sum_{d|m}\binom{n/d}{n_1/d,\ldots,n_k/d}\phi(d).$$

• The convolution of two functions f, g on \mathbb{Z}_+ is the function

$$f * g(n) = \sum_{ab=n} f(a)g(b), \quad n \in \mathbb{Z}_+.$$

• The sequence $\delta(n) := \delta_{1n} \ (n \ge 1)$ is the identity of the convolution product:

$$\delta * f = f * \delta$$
.

• A sequence f(n) is invertible if and only if $f(1) \neq 0$. The inverse g of f can be inductively constructed as

$$g(1) = \frac{1}{f(1)},$$

$$g(n): = -\frac{1}{f(1)} \sum_{ab=n, b \neq n} f(a)g(b)$$

$$= -\frac{1}{f(1)} \sum_{d|n, d \neq n} f(n/d)g(d), \quad n > 1.$$

ullet The Möbius function μ is the inverse of the constant sequence

$$(1,1,\ldots).$$

• Associated with a complex-valued sequence f(n) $(n \ge 1)$ is the Dirichlet series (a complex function)

$$\widehat{f}(s) := \sum_{n=1}^{\infty} \frac{f(n)}{n^s}, \quad s = \text{complex.}$$

• The Dirichlet series of the sequence (1,0,0,...) is the constant function

$$\widehat{\delta} \equiv 1.$$

• The Dirichlet series of the constant sequence (1, 1, ...) is the Riemann zeta function

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}.$$

• The Dirichlet series of the convolution sequence f * g is

$$\widehat{f * g}(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \sum_{ab=n} f(a)g(b)$$

$$= \sum_{n=1}^{\infty} \sum_{ab=n} \frac{f(a)}{a^s} \cdot \frac{g(b)}{b^s}$$

$$= \left(\sum_{a=1}^{\infty} \frac{f(a)}{a^s}\right) \left(\sum_{b=1}^{\infty} \frac{f(b)}{b^s}\right)$$

$$= \widehat{f}(s)\widehat{g}(s).$$

• Dirichlet generating function of the Möbius function μ is related to the Riemann zeta function ζ as follow:

$$\widehat{\mu}(s) = \sum_{n=1}^{\infty} \frac{\mu(n)}{n^s} = \frac{1}{\zeta(s)}.$$

- The divisibility order of positive integers is crucial in the Möbius function and Möbius inversion of number theory.
- Let P be a partially ordered set (poset) with partial order \leq , i.e., (i) $x \leq x$ for all $x \in P$, (ii) if $x \leq y$ and $y \leq x$ then x = y, (iii) if $x \leq y$ and $y \leq z$ then $x \leq z$. We assume that P is locally finite, i.e., each interval $[x,y] := \{z \in P \mid x \leq z \leq y\}$ is finite.
- Let R be a commutative ring with the identity $1 \neq 0$ (the zero). The set $\mathcal{I}(P,R)$ of all functions from the set of all pairs (x,y) of P such that $x \leq y$ is an R-module by its usual addition and scalar multiplication, and is an algebra (call the incidence algebra) under the convolution

$$f * g(x,y) := \sum_{z \in P, x \le z \le y} f(x,z)g(z,y).$$

• The identity of the incidence algebra $\mathcal{I}(P,R)$ is

$$\delta(x,y) = \begin{cases} 1 & \text{if } x = y, \\ 0 & \text{if } x < y. \end{cases}$$

- Given an incidence function $f \in \mathcal{I}(P,R)$. The following statements are equivalent: (1) f has a left inverse; (2) f has a right inverse; (3) f(x,x) is invertible in R for all $x \in P$.
- The inverse g of an invertible $f \in \mathcal{I}(P,R)$ can be constructed as

$$g(x,x) = \frac{1}{f(x,x)},$$

$$g(x,y) := \frac{1}{f(y,y)} \sum_{x < z \le y} f(x,z)g(z,y)$$

$$= \frac{1}{f(x,x)} \sum_{x < z < y} g(x,z)f(z,y).$$

• Zeta function $\zeta \in \mathcal{I}(P,R)$ is the contant function $\zeta(x,y)=1$ for all $x \leq y$. Its inverse μ is called the Möbius function of the poset P. So

$$\zeta * \mu = \mu * \zeta = \delta.$$

• The Möbius function of a poset P can be inductively given by

$$\mu(x,x)=1,$$

$$\mu(x,y) := \sum_{x < z \le y} \mu(z,y)$$
$$= \sum_{x \le z < y} \mu(x,z), \quad x < y.$$

• Inversion formulas:

$$g(x) = \sum_{a \le x, a \in P} f(a)\alpha(a, x) \Leftrightarrow f(x) = \sum_{a \le x, a \in P} g(a)\alpha^{-1}(a, x)$$

$$g(x) = \sum_{x \le a \in P} \alpha(x, a) f(a) \Leftrightarrow f(x) = \sum_{x \le a \in P} \alpha^{-1}(x, a) g(a)$$

• The Möbius inversion of poset:

$$g(x) = \sum_{a \le x} f(a) \Leftrightarrow f(x) = \sum_{a \le x} g(a)\mu(a, x)$$

$$g(x) = \sum_{x \le a} f(a) \Leftrightarrow f(x) = \sum_{x \le a} \mu(x, a)g(a)$$

- ◆ロト ◆@ト ◆恵ト ◆恵ト · 恵 · かへで

 \bullet For the totally ordered set $\mathbb Z$ under its natural order of integers, its Möbius function is

$$\mu(a,b) = \begin{cases} 1 & \text{if } a = b, \\ -1 & \text{if } b = a+1, \\ 0 & \text{otherwise.} \end{cases}$$

• Let P_1, P_2 be posets with Möbius functions μ_1, μ_2 respectively. Then the product set $P := P_1 \times P_2$ is a poset whose partial order is

$$(x_1, x_2) \le (y_1, y_2)$$
 if $x_1 \le y_1, x_2 \le y_2$,

and the Möbius function of P is given by

$$\mu((x_1,x_2),(y_1,y_2)) = \mu_1(x_1,y_1)\mu_2(x_2,y_2).$$

- Let $\mathbb{P} = \{p_1, p_2, \ldots\}$ be the set of all primes. Each rational number q, when uniquely factorized into $q = p_{i_1}^{a_{i_1}} \cdots p_{i_k}^{a_{i_k}}$, can be considered as a function $a: \mathbb{Q} \to \mathbb{Z}$ with finite support. Then \mathbb{Q} can be identified as the set \mathbb{Z}^{∞} , whose members are integer-valued sequences (a_1, a_2, \ldots) having the zero tail.
- ullet The natural linear order on $\mathbb Z$ induces a product partial order on $\mathbb Z^\infty$, which imposes the divisibility partial order on $\mathbb Q$. The divisibility in $\mathbb Q$ is

$$q \mid r \Leftrightarrow r/q \in \mathbb{Z}_+$$
.

There is an isomorphism $[q, r] \simeq [1, r/q]$ of divisibility intervals.

• Functions $f(n), n \in \mathbb{Z}_+$ can be identified to the incidence function

$$f(q,r) = f(r/q), \quad r/q \in \mathbb{Z}_+.$$

The convolution of sequences is isomorphic to the convolution of incidence functions.

ullet For $q=p_1^{d_1}\cdots p_k^{d_k}, r=p_1^{e_1}\cdots p_k^{e_k}\in \mathbb{Q}$ such that $n:=r/q\in \mathbb{Z}_+$,

$$\mu(n) = \mu_{\mathbb{Q}}(q, r) = \mu_{\mathbb{Z}}(d_1, e_1) \cdots \mu_{\mathbb{Z}}(d_k, e_k)$$

$$= \begin{cases} \prod_{i=1}^k (-1)^{e_i - d_i} & \text{if } e_i \leq d_i + 1, \\ 0 & \text{otherwise.} \end{cases}$$

$$= \begin{cases} 1 & \text{if } n = 1, \\ (-1)^j & \text{if } n \text{ is a product of } j \text{ distinct primes,} \\ 0 & \text{otherwise.} \end{cases}$$

- For $k \in \mathbb{Z}_+$, $(\zeta \delta)^k(x, y) = \sum_{x=x_0 < x_1 < \dots < x_k = y} 1$ is the number of chains of length k from x to y.
- The function $2\delta \zeta$ is invertible, and $(2\delta \zeta)^{-1}(x,y)$ is the total number of chains from x to y, since $(\delta (\zeta \delta))^{-1} = \sum_{k=1}^{\infty} (\zeta \delta)^k$.

10.10.15.15. 5.000

• Theorem (Rota): Let P be a finite poset with the minimum element 0 and the maximum element 1. Let c_k be the number of chains $0 = x_0 < x_1 < \cdots < x_k = 1$ of length k from 0 and 1. Then

$$\mu_P(0,1) = c_0 - c_1 + c_2 - \cdots.$$
Proof: $\mu = \zeta^{-1} = (\delta + (\zeta - \delta))^{-1} = \sum_{k=0}^{|P|-1} (-1)^k (\zeta - \delta)^k.$

- A poset is lower graded if for each $x \in P$ all maximal chains of $[\cdot, x]$ have the same length.
- Each lower graded poset P has a rank function $r: P \to \mathbb{N}$ such that r(x) = 0 for each minimal element x, and r(y) = r(x) + 1 if y covers x (i.e., #[x,y] = 2).
- Associate with a lower graded finite poset P with a minimum element
 0 is Rota's characteristic polynomial

$$\chi(P,t) := \sum_{\mathbf{x} \in P} \mu(\hat{\mathbf{0}}, \mathbf{x}) t^{n-r(\mathbf{x})}. \tag{1}$$

• The Möbius algebra M(L, R) of a finite lattice L over a commutative ring R is the algebra generated by members of L, whose multiplication is induced by the meet operation \land , i.e.,

$$\left(\sum_{x\in L}a_{x}x\right)\left(\sum_{y\in L}a_{y}y\right):=\sum_{x,y\in L}a_{x}b_{y}(x\wedge y).$$

• For each $x \in L$, define

$$\sigma_{\mathsf{x}} := \sum_{\mathsf{y} \leq \mathsf{x}} \mu(\mathsf{y}, \mathsf{x}) \mathsf{y}$$

in M(L, R). By the Möbius inversion,

$$x = \sum_{y \le x} \sigma_y.$$

• This means that the collection $\{\sigma_x : x \in L\}$ forms a basis of the Möbius algebra M(L, R).

• The multiplication of the generators σ_x in the Möbius algebra M(L, R) is given by

$$\sigma_x \sigma_y = \left\{ \begin{array}{ll} \sigma_x & \text{if } x = y, \\ 0 & \text{if } x \neq y. \end{array} \right.$$

• Proof: In the R-module M(L,R) we define a new multiplication

$$\sigma_{\mathsf{x}} \cdot \sigma_{\mathsf{y}} := \delta_{\mathsf{x}\mathsf{y}} \sigma_{\mathsf{x}}$$

through linear extension. Then

$$x \cdot y = \left(\sum_{z \le x} \sigma_z\right) \cdot \left(\sum_{w \le y} \sigma_w\right)$$
$$= \sum_{z \le x, w \le y} \sigma_z \cdot \sigma_w = \sum_{z \le x, z \le y} \sigma_z$$
$$= \sum_{z \le x \land y} \sigma_z = x \land y = xy.$$

This means that the multiplications · and A are the same.

(Math Dept, HKUST) Möbius Function 21 March 2018 21 / 50

• Weisner's Thm: Let L be a finite lattice with $\hat{0}, \hat{1}$. Let $a \in L$ with $a \neq \hat{1}$. Then

$$\sum_{x \wedge a = \hat{0}} \mu(x, \hat{1}) = 0.$$

• *Proof.* Consider the element $a \cdot \sigma_{\hat{1}} \in M(L, R)$. Since $a \neq \hat{1}$, we have

$$a \cdot \sigma_{\hat{1}} = \left(\sum_{x \leq a} \sigma_x\right) \cdot \sigma_{\hat{1}} = \sum_{x \leq a} \sigma_x \cdot \sigma_{\hat{1}} = 0$$

on the one hand. On the other hand,

$$a \cdot \sigma_{\hat{1}} = a \cdot \left(\sum_{x \le \hat{1}} \mu(x, \hat{1}) x \right) = \sum_{x \in L} \mu(x, \hat{1}) (x \wedge a)$$
$$= \sum_{y \in L} \sum_{x \wedge a = y} \mu(x, \hat{1}) y$$

• It follows that $\sum_{x \wedge a = y} \mu(x, \hat{1}) = 0$ for $y \in L$. In particular, for $y = \hat{0}$.

- Let \mathbb{F}_q be a finite field of q elements and V a vector space over \mathbb{F}_q . Let L(V) denote the lattice of all subspaces of V. The Möbius function $\mu_n := \mu(V_1, V_2)$ depends only on $n := \dim(V_2/V_1)$.
- Assume $n = \dim V$. Given a co-dimension 1 subspace H of V. The number of 1-dim subspaces that are not contained in H is

$$\frac{q^n-1}{q-1}-\frac{q^{n-1}-1}{q-1}=q^{n-1}.$$

Note that $\hat{0} = \{0\}$, $\hat{1} = V$. Let a = H. Then by Weisner's Thm

$$\sum_{x \wedge a = \hat{0}} \mu(x, \hat{1}) = \mu(\hat{0}, \hat{1}) + \sum_{\dim X = 1, X \cap H = \{0\}} \mu(X, \hat{1}) = 0.$$

Hence $\mu_n = \mu(\{0\}, V) = -q^{n-1}\mu_{n-1} \Rightarrow \mu_n = (-1)^n q^{n(n-1)/2}$.

- A hyperplane arrangement is a collection $A := \{H_1, \dots, H_m\}$ of some hyperplanes H_i of a vector space V.
- If $V = \mathbb{R}^n$ and m hyperplanes are in general position, then the number of regions divided by the m hyperplanes has the nice formula

$$\binom{m}{0}+\binom{m}{1}+\cdots+\binom{m}{n}.$$

• How about the situation when the hyperplanes are not in general position? If $V = \mathbb{C}^n$, what is the topological information of the complement

$$M(A) := V \setminus \bigcup_{H \in A} H,$$

which is a connected topological space?

 Many combinatorial problems can be formulated as counting or measuring the size of the complement of a hyperplane arrangement.

- Graph coloring problem: How many ways to color vertices of a graph by t colors such that no two adjacent vertices receive the same color?
- Given a graph G having vertex set $\{1, 2, \ldots, n\}$. If the colors are indexed by real numbers, i.e., the color set is \mathbb{R} , then the set of all proper colorings is the complement of the hyperplanes

$$x_i - x_j = 0$$
, $ij = edge$.

The collection of such hyperplanes is known as graphical hyperplane arrangement $\mathcal{A}(G)$ of G.

• The number of proper colorings of a graph G with t colors, $\chi(G,t)$, is a polynomial function of t. In fact, choose an edge e=ij, then

$$\chi(G,t)=G(G\backslash e,t)-\chi(G/e,t),$$

where $G \setminus e$ and G / e are graphs obtained from G by deleting e and contracting e respectively.

• Associated with a hyperplane arrangement $\mathcal{A} = \{H_1, \dots, H_m\}$ is the characteristic polynomial

$$\chi(A, t) := \sum_{X \in L(A)} \mu(X, V) t^{\dim X},$$

where L(A) is the collection of all possible intersections $\bigcap_{i \in I} H_i \neq \emptyset$, including the whole space $V := \bigcap_{i \in \emptyset} H_i$, and μ is the Möbius function of the poset L(A) whose partial order is the set inclusion.

- The polynomial $\chi(\mathcal{A},t)$ is just the characteristic polynomial of the graded poset $L(\mathcal{A})$ whose partial order is the reverse of the set inclusion so that V is the minimum and $\operatorname{rank}(X) = \dim V \dim X$.
- It turns out that for a graph G,

$$\chi(G,t)=\chi(\mathcal{A}(G),t).$$

- Why the characteristic polynomial of a subspace arrangement is interesting and important? What is the meaning of such a polynomial?
- Fix a finite dimensional vector space V over a field \mathbb{K} . Consider the lattice $\mathcal{L}(V)$ of its all flats (affine subspaces) and the Boolean algebra $\mathcal{B}(V)$ generated by $\mathcal{L}(V)$. We want count (measure) the size of each member of $\mathcal{B}(V)$, satisfying certain obvious rules (common sense).
- Given a nonempty set S. A relative Boolean algebra is a class of some subsets of S, closed under set intersection, union, and relative complement, i.e., if $S_1, S_2 \in \mathcal{B}$, then $S_1 \cap S_2, S_1 \cup S_2, S_2 S_1 \in \mathcal{B}$.
- The relative Boolean algebra $\mathcal{B}(\mathcal{C})$, generated by a class \mathcal{C} of subsets of a set S, is the smallest relative Boolean algebra that contains \mathcal{C} .
- A class \mathcal{I} of subsets of a set S is said to be intersectional if it is closed under set intersection.

• A valuation (=finitely additive measure) on a relative Boolean algebra \mathcal{B} of a set S is a function $\nu: \mathcal{B} \to A$, where A is an abelian group, such that for $S_1, S_2 \in \mathcal{B}$,

$$u(\emptyset) = 0,$$
 $\nu(S_1) + \nu(S_2) = \nu(S_1 \cap S_2) + \nu(S_1 \cup S_2).$

• Groemer's Theorem: A set function $\nu: \mathcal{I} \to A$, where \mathcal{I} is an intersectional class and A an abelian group, can be extended to a valuation on $\mathscr{B}(\mathcal{I})$ if and only if the Inclusion-Exclusion Formula

$$\nu(S_1 \cup \cdots \cup S_n) = \sum_{k=1}^n (-1)^{k-1} \sum_{i_1 < \cdots < i_k} \nu(S_{i_1} \cap \cdots \cap S_{i_k}),$$

is satisfied, where $S_1, \ldots, S_n \in \mathcal{I}$ and $S_1 \cup \cdots, S_n \in \mathcal{I}$.

• Given a relative Boolean algebra \mathscr{B} on a set S. A function $f: S \to R$ is said to be \mathscr{B} -measurable if f has finitely many values and $f^{-1}(a) \in \mathscr{B}$ for each nonzero $a \in R$.

• The integral of a \mathscr{B} -measurable function $f: S \to R$, with respect to a valuation $\nu: \mathscr{B} \to M$, is the sum

$$\int f d\nu := \sum_{a \in R} a \, \nu(f^{-1}(a)),$$

where \mathcal{B} is a relative Boolean algebra and M is an R-module M.

- The class $\mathcal{L}(V)$ of all flats (=affine subspaces) of a vector space V over \mathbb{K} is an intersectional class. The relative Boolean algebra $\mathcal{B}(V)$ generated by $\mathcal{L}(V)$ is just the Boolean algebra generated by $\mathcal{L}(V)$.
- Theorem (Ehrenborg and Readdy 1998). If $\mathbb K$ is an infinite field, then there exists a unique affine linear group invariant valuation $\nu: \mathcal B(V) \to \mathbb Z[t]$ such that for each flat W,

$$\nu(W)=t^{\dim W}.$$

• If \mathcal{A} is an arrangement of affine subspaces of a vector space V over an infinite field \mathbb{K} , then the indicator function $1_{M(\mathcal{A})}$ of the complement $M(\mathcal{A})$ is $\mathscr{B}(V)$ -measurable, and

$$\chi(\mathcal{A},t) = \int 1_{\mathcal{M}(\mathcal{A})} \mathrm{d}\nu.$$

- If $\mathbb{K} = \mathbb{R}$ and \mathcal{A} is a hyperplane arrangement, then $M(\mathcal{A})$ is a disjoint union of some convex regions. However, the indicator function of each of these convex regions is *not* $\mathscr{B}(V)$ -integrable.
- Zaslavsky's Formula: If A is a hyperplane arrangement in a real vector space V, then the number of regions of the complement M(A) is

$$|\chi(\mathcal{A},-1)|,$$

and the number of bounded regions (or regions bounded only by parallel hyperplanes) of $M(\mathcal{A})$ is

 $|\chi(\mathcal{A},1)|$.

• Given a subset arrangement $A = \{S_1, \dots, S_m\}$ of a nonempty set S. For each $X \in L(A)$, set

$$\mathring{X} := X - \bigcup_{Y \in L(\mathcal{A}), \ Y < X} Y.$$

• For each $X \in L(A)$,

$$X = \bigcup_{Y \in L(A), Y \leq X} \mathring{Y}$$
 (disjoint).

In fact, it is clear that RHS is contained in LHS. For each $x \in X$, let Y_1, \ldots, Y_k be all members of $L(\mathcal{A})$ that contains x. Then $Y := \bigcap_{i=1}^k Y_i$ is the smallest unique member of $L(\mathcal{A})$ such that $x \in Y$, i.e., $x \notin Z$ for Z < Y. By definition, $x \in Y$. Hence

$$1_X = \sum_{Y \le X} \mathring{Y}.$$

By the Möbius inversion,

$$1_{\mathring{X}} = \sum_{Y \le X} \mu(Y, X) 1_{Y}. \tag{2}$$

In particular, if X = V, then $\check{V} = M(A)$. We thus have

$$1_{M(\mathcal{A})} = \sum_{Y \le V} \mu(Y, V) 1_{Y}. \tag{3}$$

• Apply the valuation ν to both sides of (3), we have

$$\nu(M(\mathcal{A})) = \sum_{Y < V} \mu(Y, V) t^{\dim Y} = \chi(\mathcal{A}, t).$$

• Applying the Euler characteristic χ to (3),

$$\chi(\mathcal{A}, -1) = \sum_{Y \le V} \mu(Y, V) (-1)^{\dim Y} = \chi(\mathcal{M}(\mathcal{A}))$$
$$= (-1)^{\dim V} \#\{\text{regions of } \mathcal{M}(\mathcal{A})\}.$$

• There is another Euler characteristic $\bar{\chi}$, defined for each polyhedral set X of \mathbb{R}^d as

$$\bar{\chi}(X) = \lim_{r \to \infty} \chi(X \cap B(o, r)),$$

where B(o, r) is the closed ball in \mathbb{R}^d of center o and radius r.

• For each relatively open convex set *U*,

$$\bar{\chi}(U) = \left\{ \begin{array}{cc} (-1)^{\dim P} & \text{if } U = K^{\circ} \oplus V, \\ 0 & \text{if } U = M \oplus L, \end{array} \right.$$

where K° is a bounded relatively open convex set, V is vector subspace, M is a manifold without boundary, and L is a half-line.

ullet If U is a bounded relatively open convex set, then

$$\bar{\chi}(U) = \chi(U) = (-1)^{\dim U}.$$

• Apply the Euler characteristic $\bar{\chi}$ to both sides of (3), we have

$$\begin{split} \bar{\chi}(M(\mathcal{A})) &= \sum_{Y \leq V} \mu(Y, V) \bar{\chi}(Y) \\ &= \sum_{Y \leq V} \mu(Y, V) \cdot 1 \\ &= \chi(\mathcal{A}, 1). \end{split}$$

Thus

$$\chi(A,1) = (-1)^d \# \{ \text{bounded regions of } M(A) \}.$$

Characteristic Polynomial of Matroid

Characteristic polynomial of matroid

- A matroid is a system $M(E,\mathcal{I})$, where E is a finite set and \mathcal{I} is a class of independent subsets of E satisfying the three properties:
 - $\emptyset \varnothing \in \mathcal{I}.$
 - If $I \in \mathcal{I}$ and $I' \subseteq I$ then $I' \in \mathcal{I}$.
 - If $I_1, I_2 \in \mathcal{I}$ and $|I_1| < |I_2|$, then $\exists e \in I_2 I_1$ such that $I_1 \cup e \in \mathcal{I}$.
- Dependant sets of E are subsets of E that are not independent.
- A circuit of M is a (set-inclusion) minimal dependent subset. A single element circuit is called a matroid loop.
- There exists a rank function $r: \mathcal{P}(E) \to \mathbb{Z}_{\geq 0}$ defined by

$$r(X) = \max\{|I| : I \subseteq X \text{ independent}\}.$$

• The characteristic polynomial of *M* is

$$\chi(M,t) = \sum_{X \subseteq E} (-1)^{|X|} t^{r(E)-r(X)}.$$
 (4)

Characteristic polynomial of matroid

• There is a closure operator $\mathcal{P}(E) \to \mathcal{P}(E)$, $X \mapsto \bar{X}$, where

$$\bar{X} = X \cup \{e \in E : \exists \text{ circuit } C \text{ s.t. } e \in C \subseteq X \cup e\}.$$

• A flat of a matroid M is a subset $X \subseteq E$ such that $\bar{X} = X$. The class of flats of M forms a graded poset under set-inclusion:

$$\mathcal{L}(M) = \{ \text{flats of } M \}.$$

ullet Rota's characteristic polynomial of the lattice $\mathscr{L}(M)$ of flats is

$$\chi(\mathscr{L}(M),t) = \sum_{F \in \mathscr{L}(M)} \mu(\bar{\varnothing},F) t^{r(E)-r(F)}.$$

• The two characteristic polynomials of M are related by

$$\chi(\mathscr{L}(M),t)=\chi(M\setminus\bar{\varnothing},t).$$

Characteristic polynomial of matroid

- Given a total order on the ground set E of a matroid M. A broken circuit M is a set of the form C \ e, where C is a circuit and e is the minimal element of C under the total order.
- Rota's Cross-cut Thm: For each flat F of M,

$$\mu(\bar{\varnothing},F) = \sum_{\substack{S \subseteq F \setminus \bar{\varnothing} \\ r(S) = r(F)}} (-1)^{|S|} = (-1)^{r(F)} \# \{ \mathsf{NBC bases of } F \}.$$

• NBC Thm of Characteristic polynomial:

$$\chi(M \setminus \bar{\varnothing}, t) = \chi(\mathscr{L}(M), t) = \sum_{i=0}^{r(E)} (-1)^i c_i t^{r(E)-i},$$

where c_i is the number of *i*-subsets of E containing no broken circuit.

• The NBC thm does not need the total order.

(Math Dept, HKUST) Möbius Function 21 March 2018 39 / 50

Satisfiability of Boolean Functions

Satisfiability of Boolean function

- One can consider subspace arrangement over a finite field of q elements. For q=2, we have $\mathbb{Z}/2\mathbb{Z}=\{0,1\}$ with 1+1=0. We adopt Boolean operations on $B = \{0, 1\}$.
- A literal is a bijection $x': B \to B$, either the identity function x or its negation \bar{x} . Every Boolean function $f:B^n\to B$ has a disjunctive normal form

$$F(x_1,\ldots,x_n)=\bigvee_{i=1}^m G_i(x_1,\ldots,x_n),$$

where $G_i = \wedge_{j \in J_i} x_i'$ are clauses with either $x_i' = x_i$ or $x_i' = \bar{x}_i$.

- A Boolean function F of n variables is said to be satisfied at $(a_1, \ldots, a_n) \in B^n \text{ if } F(a_1, \ldots, a_n) = 1.$
- The satisfiability problem is to verify (by certain algorithm) whether a Boolean function F is identically the constant function 1.

Satisfiability of Boolean function

 The disjunctive normal form can be changed to the conjunctive normal form

$$f(x_1,\ldots,x_n)=\bigwedge_{i=1}^m g_i(x_1,\ldots,x_n)$$

with $f = \overline{F}$, $g_i = \overline{G}_i = \bigvee_{j \in J_i} x'_j$, $x'_j = x_j$ or $x'_j = \overline{x}_j$. Write \vee as addition + and wedge as multiplication. Then each $g_i(x_1, \ldots, x_n)$ becomes

$$\sum_{j\in J_i}x_j'=a_{i1}x_1'+\cdots+a_{in}x_n',\quad a_{ij}\in B.$$

• Consider the subspace (hyperplane) arrangement $A = \{H_i : i = 1, ..., m\}$, where

$$H_i = \{x \in B^n : g_i(x) = 0\}.$$

ullet The subspace arrangement $\mathcal{A}(F)$ has the characteristic polynomial

$$\chi(\mathcal{A}(F),t) = \sum_{X \in L(\mathcal{A})} \mu(X,B^n) t^{\dim X}.$$

Satisfiability of Boolean function

• (F is satisfied if there exists an instance of values such that F has value 1.) The Boolean formula F is satisfiable if and only if

$$\chi(\mathcal{A}(F), 2) = 0. \tag{5}$$

The big problem is whether there exists a polynomial (of m and n) algorithm to check (5). This is equivalent to whether P = NP?

• Critical problem of Rota: Given a subspace arrangement $\mathcal A$ of a the vector space V over the finite field $\mathbb F_q$ of q elements. The critical exponent over $\mathbb F_q$ is

$$c(\mathcal{A},q) := \min\{k \in \mathbb{Z}_+ : \chi(\mathcal{A},q^k) \neq 0\}.$$

The motivation is to find the chromatic number of the chromatic polynomial of a graph.

ullet This problem can be modified to any field or to lattice arrangements over $\mathbb Z$ or to subgroup arrangement.

Regular Cell Complexes

Simplicial Complex

- A simplicial complex K on a finite nonempty set V is a class K of nonempty finite subsets of V, satisfying
 - (1) If $\{x\} \in K$ for each $x \in V$.
 - (2) If $\sigma \in K$, then $\tau \in K$ for all nonempty $\tau \subseteq \sigma$.

Set $\dim \sigma := |\sigma| - 1$ for $\sigma \in K$, and $\dim K = \max\{\dim \sigma : \sigma \in K\}$.

• The Euler number of a simplicial complex K is

$$\chi(K) = \sum_{i=0}^{\dim K} (-1)^i b_i = \sum_{i=0}^{\dim K} (-1)^i c_i,$$

where $b_i = \operatorname{rank} H_i(K, \mathbb{Z})$ and $c_i = \text{number of } i\text{-cells.}$

• Order complex of a finite poset P is the simplicial complex $\Delta(P)$, whose i-simplices are chains of P of length $i \geq 0$. Let \hat{P} be the poset with a new minimum element $\hat{0}$ and a new maximum element $\hat{1}$ joined to P. Then

$$\mu_{\hat{P}}(\hat{0},\hat{1}) = -1 + \chi(\Delta(P)) = \tilde{\chi}(\Delta(P)).$$

Simplicial Complex

ullet The link of each $\sigma \in \Delta$ (simplicial complex) is the subcomplex

$$lk(\Delta, \sigma) := \{ \tau \in \Delta \mid \tau \cap \sigma = \emptyset, \tau \cup \sigma \in \Delta \}.$$

• If P is a finite poset and x < y in P, then choose saturated chains

$$x_1 < x_2 < \dots < x_i = x, \quad y = y_1 < y_2 < \dots < y_j$$

such that x_1 is a minimal element and y_j is a maximal element of P. Let $\sigma:=\{x_1,\ldots,x_i,y_1,\ldots,y_j\}$. Then $\mathrm{lk}(\Delta P,\sigma)$ is the order complex of the open subposet $(x,y):=\{z\in P\mid x< z< y\}$, and

$$\mu(x,y) = \tilde{\chi}(\operatorname{lk}(\Delta P, \sigma)).$$

• Let X be a topological manifold with or without boundary with a finite triangulation Δ . Then $\Delta(X)$ is a graded poset.

Simplicial Complex

• Let K be a finite simplicial (or regular cell) complex such that |K| is a manifold with or without boundary. Then for the poset P = P(K),

$$\mu_{\widehat{P}}(\sigma,\tau) = \begin{cases} (-1)^{r(\tau)-r(\sigma)} & \text{if} \quad \widehat{0} \le \sigma \le \tau \in K, \\ (-1)^{r(\tau)-r(\sigma)} & \text{if} \quad \sigma \in K - \partial K, \ \tau = \widehat{1}, \\ (-1)^{r(\widehat{1})-r(\sigma)}\beta & \text{if} \quad \sigma \in \partial K, \ \tau = \widehat{1}, \end{cases}$$

where $\hat{P} = P \cup \{\hat{0}, \hat{1}\}$ with $\hat{0}, \hat{1} \notin P$.

- Manifold with boundary can be extended to stratified space, which is described by the Möbius function between strata. A general (non-pathological) topological space can be viewed as a stratified space by its intrinsic stratification.
- The idea can be developed into a theory on stratified posets, which is not yet explored. Posets of two strata was done.

Other Applications

Other aspects

 Poset of polyhedral cones: For polyhedral cones F, P such that F is a face of P,

$$\mu(F,P) = (-1)^{\dim P - \dim F}.$$

• Bruhat ordering on Weyl group W of a root system: For $x, y \in W$ with $x \le y$,

$$\mu(x,y) = (-1)^{\ell(y)-\ell(x)}.$$

- Poset of Schubert cells of Grassmannian: Not yet computed myself.
- Poset of non-locally finite such as $\mathscr{L}(V)$, the poset of all subspaces of a vector space V over an infinite field \mathbb{K} . I only considered the cases of $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$.

Thank you!