Formale Sprachen und Automaten Prof. Dr. Uwe Nestmann - 23. Februar 2017

Schriftlicher Test

Studentenidentifikation:

NACHNAME	
VORNAME	
Matrikelnummer	
STUDIENGANG	□ Informatik Bachelor, □

Aufgabenübersicht:

AUFGABE	SEITE	Punkte	THEMENBEREICH
1	2	19	MODELLE REGULÄRER SPRACHEN
2	3	16	Untermengen-Konstruktion
3	4	22	MINIMIERUNG EINES DFA
4	5	17	Grenzen Regulärer Sprachen
5	6	11	Modelle Kontextfreier Sprachen I
6	7	15	Modelle Kontextfreier Sprachen II

Zwei Punkte in diesem Test entsprechen einem Portfoliopunkt.

Korrektur:

AUFGABE	1	2	3	4	5	6	\sum
PUNKTE	19	16	22	17	11	15	100
ERREICHT							
Korrektor							
EINSICHT							

Aufgabe 1: Modelle Regulärer Sprachen

(19 Punkte)

Gegeben seien das Alphabet $\Sigma \triangleq \{a, b\}$, die reguläre Sprache $A_1 \triangleq \{a^n b^m ab \mid n, m \in \mathbb{N}\}$, die reguläre Grammatik $G_2 \triangleq (\{S, T, U\}, \Sigma, P_2, S)$ und der DFA $M_3 \triangleq (\{q_0, q_1, q_2, q_3\}, \Sigma, \delta_3, q_0, \{q_2\})$ mit:

a. (**, 4 Punkte) Gib einen NFA M_1 mit $L(M_1) = A_1$ an.

b. (**, 4 Punkte) Gib eine Typ-3 Grammatik G_1 mit $L(G_1) = A_1$ an.

c. (*, 3 Punkte) Gib die Ableitung des Wortes bbaab in G_2 an.

d. (**, 3 Punkte) $Gib L(G_2)$ an, ohne auf Automaten oder Grammatiken zu verweisen.

e. (**, 3 Punkte) Gib die Ableitung des Wortes abbab in M_3 an.

f. (***, 2 Punkte) $Gib L(M_3)$ an, ohne auf Automaten oder Grammatiken zu verweisen.

Aufgabe 2: Untermengen-Konstruktion

(16 Punkte)

 $\text{Gegeben sei der NFA } M \triangleq \left(\left\{ \right. q_0, \right. q_1, \right. q_2, \left. q_3, \right. q_4, \left. q_5 \right. \right\}, \\ \Sigma, \Delta, \left\{ \right. q_0, \right. q_4 \left. \right\}, \left\{ \right. q_3 \left. \right\} \right) \text{mit } \Sigma \triangleq \left\{ \right. a, \left. b \right. \right\}$ und Δ :

a. (**, 13 Punkte) Konstruiere nur mit Hilfe der Untermengen-Konstruktion den DFA M^\prime zum NFA M. Gib die bei der Untermengen-Konstruktion entstehende Tabelle sowie das Tupel des entstehenden Automaten M' an.

Hinweis: Es ist nicht nötig die Übergangsfunktion δ' von M' (z.B. graphisch) anzugeben.

b. (***, 3 Punkte) Gib L(M) an, ohne auf Automaten oder Grammatiken zu verweisen.

Aufgabe 3: Minimierung eines DFA

(22 Punkte)

Gegeben sei der DFA $M \triangleq (\{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7\}, \Sigma, \delta, q_0, \{q_3\})$ mit $\Sigma \triangleq \{a, b\}$ und δ :

- a. (*, 1 Punkt) Gib an: Welche Zustände sind nicht erreichbar?
- b. (**, 9 Punkte) *Gib an:* Fülle die folgende Tabelle entsprechend des Table-Filling-Algorithmus zum Minimieren von DFAs mit Kreuzen (x) und Kreisen (o) aus. *Hinweis: Bitte streiche zunächst alle Zeilen und Spalten für nicht erreichbare Zustände, falls es solche Zustände in M gibt. Die zweite Tabelle ist ein Ersatz für Verschreiber.*

c. (**, 4 Punkte) Die Minimierung unterteilt Q in Äquivalenzklassen. Gib alle Äquivalenzklassen an, die sich aus der Tabelle ergeben.

Hinweis: Die Namen der Klassen in der Form $[q_0]$ genügen hier nicht. Es müssen auch die zugehörigen Mengen, also so etwas wie $[q_0] = \{\ldots\}$, angegeben werden.

d. (**, 5 Punkte) Gib den minimierten DFA M' an.

e. (***, 3 Punkte) Gib L(M) an, ohne auf Automaten oder Grammatiken zu verweisen.

Aufgabe 4: Grenzen Regulärer Sprachen

(17 Punkte)

a. **(***, 11 Punkte)** *Beweise* nur mit Hilfe des Pumping Lemma, dass die Sprache $A_1 \triangleq \left\{ \ a^i b^j c^k d^l \mid i,j,k,l \in \mathbb{N} \land j < k+l \ \right\}$ mit $\Sigma \triangleq \left\{ \ a,\ b,\ c,\ d \ \right\}$ nicht regulär ist.

b. **(***, 6 Punkte)** Gib alle Myhill-Nerode Äquivalenzklassen für die Sprache $A_2 \triangleq \{ xy \mid x \in \{ a, b \}^* \land y \in \{ c, d \}^* \land |x| = |y| \}$ über $\Sigma \triangleq \{ a, b, c, d \}$ an. Hinweis: Die Namen der Klassen in der Form [0] genügen hier nicht. Es müssen auch die zugehörigen Mengen, also so etwas wie $[0] = \{ \dots \}$ oder $[0] = L(\dots)$, angegeben werden.

Matrikelnummer:	Name:
1V1ati 1NC111u11111tc1	I VAIIIC

Aufgabe 5: Modelle Kontextfreier Sprachen I

(11 Punkte)

Gegeben seien das Alphabet $\Sigma \triangleq \{\ a,\ b,\ c\ \}$ und die kontextfreie Sprache:

$$A \triangleq \left\{ \ b^n a^{2m} c^p \mid n,m,p \in \mathbb{N} \land p = n+1 \ \right\}$$

a. (**, 4 Punkte) Gib eine Typ-2 Grammatik G mit L(G)=A an.

b. (**, 7 Punkte) Gib einen PDA M mit $L_{End}(M) = L_{Kel}(M) = A$ an.

Aufgabe 6: Modelle Kontextfreier Sprachen II

(15 Punkte)

Gegeben seien das Alphabet $\Sigma \triangleq \{\ a,\ b\ \}$ und der PDA $M \triangleq (\{\ q_0,\ q_1,\ q_2\ \},\ \Sigma,\ \{\ \square,\ +,\ -\ \},\ \square,\ \Delta,\ q_0,\ \{\ q_2\ \})$ mit Δ :

- a. (*, 3 Punkte) Gib eine Ableitung von bbaa in M an, die zeigt das $bbaa \in L_{Kel}(M)$.
- b. (***, 3 Punkte) $Gib \ L_{Kel}(M)$ an, ohne auf Automaten oder Grammatiken zu verweisen.
- c. (*, 2 Punkte) Gib eine Ableitung von aba in M an, die zeigt das $aba \in L_{End}(M)$.
- d. (***, 3 Punkte) $Gib \ L_{End}(M)$ an, ohne auf Automaten oder Grammatiken zu verweisen.
- e. **(**, 4 Punkte)** *Beweise* nur mit Hilfe von Abschlusseigenschaften, dass die Sprache $A \triangleq \{ w \in \Sigma^+ \mid |w|_a = |w|_b \}$ nicht regulär ist.

Hinweis: Es darf ohne Beweis benutzt werden, dass L(e) für einen regulären Ausdruck e regulär und $\{a^nb^n\mid n\in\mathbb{N}\}$ nicht regulär aber kontextfrei ist. Sprachen L(e) für reguläre Ausdrücke e sowie Operationen auf Mengen müssen nicht berechnet oder umgeformt werden.

Matrikelnummer:	Name:
Auf dieser Seite löse ich einen T	eil der Aufgabe <u> </u> :
Teilaufgabe:	_