HochleistungsrechnenVorlesung im Wintersemester 2017/18

Skriptversion 17.10.2017

Prof. Dr. Thomas Ludwig

Universität Hamburg – Informatik – Wissenschaftliches Rechnen

Einleitung

- 1. Definition, Anwendungsbereiche, Systeme
- 2. Themenüberblick
- 3. Literatur und weitere Informationen
- 4. Leistungsnachweis
- 5. Arbeitsbereich Wissenschaftliches Rechnen

Definition in Wikipedia:

- Hochleistungsrechnen (englisch: high-performance computing – HPC) ist ein Bereich des computergestützten Rechnens. Er umfasst alle Rechenarbeiten, deren Bearbeitung einer hohen Rechenleistung oder Speicherkapazität bedarf.
- Hochleistungsrechner sind Rechnersysteme, die geeignet sind, Aufgaben des Hochleistungsrechnens zu bearbeiten.

Ein wichtiges Gebiet der Informatik mit sehr vielen Facetten und Bezügen zur Mathematik

Anwendungsbereiche

Anwendungsbereiche sind in allen Wissenschaften mit einem hohen Bedarf an Rechenleistung und Speichervolumen

Klassisch:

- Physik (Astronomie, Teilchenphysik, ...)
- Erdsystemforschung (Klima, Ozeanographie, ...)
- Bioinformatik (Stammbaumberechnungen, Pharmazie, ...)

Neu dazugekommen:

- Finanzwirtschaft
- Sozialwissenschaften (Simulation von Gesellschaften)

Ausprägungen

Klein

- Mehrere Prozessoren in einem Rechner und/oder Prozessorkerne in einem Prozessor
- Einige hundert Euro

Groß

- Hunderttausende von Prozessorkernen in einem Großrechner
- Plattenspeicher im Bereich einzelner Petabyte
- Bandarchive im Bereich dutzender Petabyte
- 5...500 Millionen Euro

Rechnersystem am DKRZ: bullx DLC 720

3.300+ Knoten, 100.000+ Prozessorkerne Intel Haswell/Broadwell 3,6 PFLOPS Rechenleistung, 240 TB Hauptspeicher 54 PB Festplatten, 400 PB Bandarchiv im Endausbau Heißflüssigkeitskühlung für hohe Effizienz

2. Themenüberblick

Teil I: Hardware- und Software-Konzepte

Teil II: Programmierung

Teil III: Programmierwerkzeuge

Teil IV: Allgemeine Fragestellungen

Teil I: Hardware- und Software-Konzepte

- Klimaforschung und Hochleistungsrechnen (19-62)
- Hardware-Architekturen (63-95)
- Die TOP500-Liste (96-146)
- Vernetzungskonzepte (alt)
- Hochleistungs-Eingabe/Ausgabe (alt)
- Betriebssystemaspekte (147-179)

Teil II: Programmierung

- Parallele Programmierung (alt)
- Programmiermodell Nachrichtenaustausch (alt)
- Parallele Eingabe/Ausgabe (alt)
- Programmierung mit OpenMP (180-220)
- Programmierung mit Threads (221-256)
- Hybride Programmierung (separat)

Teil III: Programmierwerkzeuge

- Optimierung sequentieller Programme (257-298)
- Werkzeugarchitekturen (alt)
- Fehlersuche (299-339)
- Leistungsanalyse (alt)
- Leistungsoptimierung (separat)
- Lastausgleich (alt)
- Fehlertoleranz (alt)

Teil IV: Allgemeine Fragestellungen

- Grid- und Cloud-Computing (alt)
- Kosten-Nutzen-Analyse (340-386)
- Rechnerbeschaffung (387-431)
- Datenmanagement (Gastvortrag DKRZ)
- Visualisierung (Gastvortrag DKRZ)
- Reale Hochleistungsrechner (Gastvortrag Bull/Atos)
- Die Geschichte des parallelen Rechnens (ohne Folien)
- Die Zukunft des parallelen Rechnens (ohne Folien)

3. Literatur und weitere Informationen

- Materialienseite
 - http://wr.informatik.unihamburg.de/teaching/wintersemester 2017 2018/hochlei stungsrechnen
 - Foliensätze, Übungsblätter usw.

- Mailingliste
 - http://wr.informatik.uni-hamburg.de/listinfo/hr-1718
 - Wichtige Neuigkeiten und Diskussionen zwischen den Teilnehmern

Literatur

Heiko Bauke &
Stephan Mertens
Cluster Computing
Springer, 2006
460 Seiten

Amazon: ca. 10 Euro

ISBN-10: 3-540-42299-4

Literatur...

Georg Hager &
Gerhard Wellein
Introduction to High
Performance Computing
for Scientists and
Engineers

Chapman & Hall, 2010 330 Seiten

Amazon: 54 Euro

ISBN-10: 143981192X

4. Leistungsnachweis

- Für alle Studierenden aus den verschiedenen Studiengängen: Klausurtermine noch unbekannt
 - 1. Termin Freitag 23. Feb. 2018, 9:30-11:30 Uhr, ESA B
 - 2. Termin Freitag 16. Mär. 2018, 9:30-11:30 Uhr, ESA M
 - Welche Studiengänge sind vertreten?
- Übungen
 - Organisiert durch Michael Kuhn, Hermann Lenhart
 - Und: Michael Blesel, Tim Jammer, Kristina Tesch
 - Termine
 - MO 14-16, DI 12-14 und DI 16-18 im Raum 034 im DKRZ

5. Arbeitsbereich Wissensch. Rechnen

- Im Fachbereich für Informatik der Universität Hamburg seit Herbst 2009
- Leiter: Prof. Dr. Thomas Ludwig
 - Gleichzeitig Geschäftsführer des Deutschen Klimarechenzentrums
- Räumliche Unterbringung
 - Bundesstraße 45a
 - Keine Räume im Informatikum/Stellingen

Lehrveranstaltungen im WS 2017/18

Werden ggf. WS 2018/19 wiederholt!

- Vorlesung "Big Data Analytics" (Dr. Julian Kunkel)
- Proseminar "Neueste Trends im Hochleistungsrechnen" (Dr. Julian Kunkel)
- Proseminar "Speicher- und Dateisysteme" (Dr. Michael Kuhn)
- Seminar "Effiziente Programmierung" (Dr. Michael Kuhn)
- Seminar "Neueste Trends in Big Data Analytics" (Dr. Julian Kunkel)
- Projekt "Parallelrechnerevaluation" (Dr. Michael Kuhn)
- Projekt mit Seminar "Paralleles Rechnen für Fortgeschrittene" (Dr. Michael Kuhn)
- Praktikum "Aufbau eines Clusters" (Dr. Michael Kuhn)
- Projekt "Big Data" (Dr. Julian Kunkel)

Beachten Sie auch das Angebot für SS 2018!

Vorlesung "Hochleistungs-Ein-/Ausgabe" (Dr. Michael Kuhn)

Mitarbeit in der Arbeitsgruppe

Forschungsthemen

- Speicherung großer Datenmengen & Speichersysteme
- Simulation von Hochleistungsrechensystemen
- Energieeffizienz von Hochleistungsrechnern
- Anwendung in den Geowissenschaften

Wir betreuen:

Bachelor-, Master-, Diplomarbeiten, Promotionen

Wir stellen potentiell ein:

- Studentische Hilfskräfte in der Arbeitsgruppe / am DKRZ
- Mitarbeiter in der Arbeitsgruppe / am DKRZ