

KNOWLEDGE BASES WITH EXISTENTIAL RULES

 $\mathcal{K} = (F, \mathcal{R})$ where

 \mathcal{R} is a set of existential rules

F is a set of facts (rules with an empty body): existential conjunctions of atoms

Forward chaining called « chase » (let us still denote by F^* the result of the chase) Main change with respect to Datalog rules: F^* can be infinite

> $R = person(x) \rightarrow \exists y hasParent(x,y) \land person(y)$ F = person(a)

> > ^ person(y0) ^ hasParent(a, y0)
> > ^ person(y1) ^ hasParent(y0, y1)

Etc.

but it remains a universal model

Hence, for BCQs: $K \models q$ iff $q \ge F^*$

Other changes: F* is not unique (but all F*we will see are logically equivalent)

DERIVATION

- Trigger for a set of facts F: (R,h) | h homomorphism from body(R) to F
- o Derivation: $(F_0 = F) (R_1, h_1) F_1 (R_2, h_2) F_2$, ... where for all i, (h_i, R_i) trigger for F_{i-1} and $F_i = \alpha(F_{i-1}, R_i, h_i)$

When the triggers are not needed, we note $(F_0=F)$, F_1 , F_2 , ...

- \bullet The notion of derivation can be generalized by taking F $_i$ equivalent to $\alpha(F_{i-1},R_i,h_i)$ instead of equal
- o Different chase variants with their own rule application criteria
- → notion of *legal* rule application (or: *active* trigger (R_i, h_i)):
 A chase variant considers only derivations with active triggers

DIFFERENT VARIANTS OF THE CHASE

All variants we will see compute **universal models** of the KB but they differ on how they handle **redundancies** possibly caused by nulls

Core: set of atoms without homomorphism to one of its strict subsets

14

OBLIVIOUS CHASE

Oblivious (or naive): « performs all rule applications according to all new triggers »

A trigger (R,h) to F_i is *active on* F_i iff this trigger has *not* already been used in the derivation from F_0 to F_{i-1}

RuleML+RR 15

OBLIVIOUS / SEMI-OBLIVIOUS = SKOLEM CHASE

Semi-oblivious: consider only homomorphisms that differ on the rule frontier (x)

A trigger (R,h) to F_i is *active on* F_i iff there is *no* trigger (R,h') such that h'(x) = h(x) for all x in frontier(R) in the derivation from F_0 to F_{i-1}

F = p(a,b)

 $R = p(x,y) \rightarrow \exists z p(x,z)$

p(a,b)

Skolem chase: similar behavior

(1) skolemize rules: in R, replace each existential variable z by a function f_R^z(frontier(R))

(2) perform the oblivious chase on skolemized rules

 $R = p(x,y) \rightarrow p(x,f(x))$

p(a,f(a))

Skolemization can be seen as a way of naming existential variables and « tracking » the nulls created during the semi-oblivious chase

RuleML+RR 16

RESTRICTED (AKA STANDARD) CHASE

Restricted: do not perform a rule application that brings only redundant information

A trigger (R,h) to F_i is active on F_i iff

h cannot be extended to homomorphism h': body \cup head \rightarrow F_i

F: p(a,b) $R: p(x,y) \rightarrow \exists z p(y,z), p(z,y)$ $a \longrightarrow b \longrightarrow z_0 \longrightarrow z_1 \dots$

(semi-) oblivious chase: infinite

 $a \longrightarrow b \longrightarrow z_0 \qquad \begin{vmatrix} x \mapsto b \\ y \mapsto z_0 \\ z \mapsto b \end{vmatrix} \qquad \begin{vmatrix} x \mapsto z_0 \\ y \mapsto b \\ z \mapsto z_0 \end{vmatrix}$

restricted chase:

halts after one rule application

RuleML+RR

17

RESTRICTED CHASE: NATURAL BUT TRICKY

• For the same KB, some derivations may halt while others may not

$$F: p(a,b)$$
 $R_1: p(x,y) \rightarrow \exists z p(y,z)$
 $R_2: p(x,y) \rightarrow p(y,y)$

If R_1 is always applied before R_2 for a given homomorphism of p(x,y):

If R₂ is applied first:

RuleML+RR 18

CORE CHASE

Iterate:

- (1) perform a finite number of rule applications as in the restricted chase
- compute the core of the result

F: p(a,b), q(b,b), q(a,z)

where z is a variable

$$R_1: p(x,y) \rightarrow q(x,y)$$

 $R_2: q(x,y) \rightarrow \exists z q(y,z)$

The restricted chase only checks redundancy of **newly** added atoms ⇒ infinite here

The core chase outputs { p(a,b), q(b,b), q(a,b) } detect **global** redundancies

The core chase allows to

19

WHEN DOES A CHASE HALT?

- Terminating derivation:
 - (1) finite and (2) there is no active trigger on the last factbase
- A chase derivation has to be fair: no active trigger is indefinitely delayed Formally: if (R,h) is an active trigger on F_i

then there is F_j with j > i such that F_j is obtained by applying (R,h) or (R,h) is not active anymore on F_i

Terminating = finite and fair

 $R_1: p(x,y) \rightarrow \exists z p(y,z)$ $R_2: p(x,y) \rightarrow p(y,y)$

F = p(a,b)

unfair infinite derivation: apply only $R_1 \dots$

(semi-) oblivious: all fair derivations are infinite

restricted: some terminating derivations, some infinite fair derivations

core: all fair derivations are terminating

For a chase variant C, C halts on a KB K if all fair derivations on K are finite

IN SHORT

All previous chase variants compute universal models of a KB

They can be strictly ordered wrt termination:

oblivious < semi-oblivious = skolem < restricted < core

[X < Y means that: for any KB K, if X-chase halts on K then Y-chase halts on K and there is a KB on which Y-chase halts but not X-chase]

Only the **core** chase halts if and only if the KB admits a **finite** universal model but it is **costly** (involves homomorphisms from the whole factbase)

The **O**, **S-O** and **core** chases yield a **unique** result (up to the name of nulls): all fair derivations for a given chase variant yield the same result on a given KB but not the **R** chase: we can even have finite and infinite fair derivations

The **R chase** seems to achieve a good tradeoff redundancy elimination / efficiency of computation (when it stops) but its behavior is difficult to control

21

TRICKY RESTRICTED CHASE

Open question:

is there an ordering strategy that terminates more often than the others?

- Breadth-first ordering is a natural candidate (iterate:
 - (1) compute all rule body homomorphisms to the current factbase,
 - (2) apply all active triggers according to these homomorphisms)
- however, it is **not optimal for restricted chase** termination

Optimal order: apply R_2 then R_3 (ie delay application of R_1) a \longrightarrow b

- Usual heuristic: at each step, first saturate with all datalog rules, then apply an existential rule
- → would be optimal on this example, is it always the case?