Formale Grundlagen der Informatik I 2. Übungsblatt

Fachbereich Mathematik Prof. Dr. Martin Ziegler

Davorin Lešnik, Ph.D.

Carsten Rösnick

Sommersemester 2013 22. 04. 2013

Gruppenübung

Aufgabe G4 (Stern-Operation)

L und M seien Σ -Sprachen.

- (a) Zeigen Sie, dass $L \subseteq L^*$ und $(L \subseteq M^* \Longrightarrow L^* \subseteq M^*)$.
- (b) Schließen Sie aus (a), dass $(L^*)^* = L^*$ und $(L \subseteq M \implies L^* \subseteq M^*)$.
- (c) Zeigen Sie, dass $(L \cup M)^* = (L^*M^*)^*$.

Aufgabe G5 (Wahrheitswertetafeln)

Zeigen Sie anhand von Wahrheitswertetafeln, dass die folgenden aussagenlogischen Formeln äquivalent sind:

$$\neg (p \to q), \qquad p \land \neg q, \qquad (p \lor q) \land \neg q.$$

Aufgabe G6 (Graphhomomorphismen)

Ein *gerichteter Graph* G = (V, E) besteht aus einer endlichen Menge V von Knoten und einer Teilmenge $E \subseteq V \times V$ von Kanten. Gegeben seien die folgenden fünf gerichteten Graphen:

Der Graph $G_1 = (V_1, E_1)$ ist beispielsweise wie folgt formal gegeben:

$$V_1 = \{a, b, c, d\}$$

$$E_1 = \{(d, a), (d, b), (b, c), (c, d)\}$$

Geben Sie an, zwischen welchen der Graphen Homomorphismen existieren, und geben Sie auch gegebenenfalls einen Homomorphismus an.

1

Hausübung

Wichtiger Hinweis:

- Wegen des Feiertages ist die Abgabe der Hausübungen für alle Studenten *in der Vorlesung am* 3.5. 2013.
- Um die Lösungen richtig zu sortieren, müssen Sie Ihre Abgabe *mit dem Namen Ihres Tutors* versehen (Sie können die Namen auf der Moodle-Seite der Veranstaltung finden). Die Lösungen ohne einen Tutor-Namen *werden nicht korrigiert*!
- Wie immer denken Sie daran Ihre Antworten zu begründen.

Aufgabe H3 (Äquivalenzrelationen, Injektivität, Surjektivität, Bijektivität) (6 Punkte) Sei $f: A \rightarrow B$ eine beliebige Abbildung.

(a) Sei auf A durch

$$x \sim y : \iff f(x) = f(y)$$

für $x, y \in A$ die Relation \sim definiert. Zeigen Sie, dass \sim eine Äquivalenzrelation ist.

- (b) Sei $q: A \to A/\sim$ durch $q(x) := [x]_{\sim}$ definiert. Zeigen Sie, dass q eine surjektive Abbildung ist.
- (c) Zeigen Sie, dass die Inklusionsabbildung i: Bild $(f) \rightarrow B$, i(x) := x, injektiv ist.
- (d) Sei durch $\overline{f}([x]) := f(x)$ eine Abbildung $\overline{f}: A/\sim \to \operatorname{Bild}(f)$ definiert. Zeigen Sie, dass \overline{f} wohldefiniert ist und dass sie bijektiv ist.
- (e) Schließen Sie, dass sich jede Abbildung als eine Verkettung einer surjektiven, bijektiven und injektiven Abbildung darstellen lässt.

Aufgabe H4 (4 Punkte)

Sei $\Sigma := \{a, b\}.$

- (a) Sei L_1 die kleinste Sprache über Alphabet Σ , für die gilt:
 - $aaaababa \in L_1$,
 - wenn das Wort aw ($w \in \Sigma^*$) zu L_1 gehört, so auch $w \in L_1$,
 - wenn das Wort wa ($w \in \Sigma^*$) zu L_1 gehört, so auch $w \in L_1$.

Geben Sie alle Wörter in der Sprache L_1 an.

(b) Sei noch eine Sprache L_2 definiert durch $w \in L_2 \iff ww \in L_1$. Geben Sie L_2 , $L_1 \cup L_2$ und $L_1 \cdot L_2$ an.

Minitest
Aufgabe M4 Sei $\Sigma = \{a, b, c\}$. Die Relation $R_1 = \{(v, w) \in \Sigma^* \times \Sigma^* \mid v \text{ ist Präfix von } w\}$ is: \Box reflexiv
□ symmetrisch
□ transitiv
Aufgabe M5 Die Relation $R_2 = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid a \cdot b \neq 0\}$ ist
□ reflexiv
□ symmetrisch
□ transitiv
Aufgabe M6
Seien A und B endliche Mengen und $f: A \rightarrow B$ eine Funktion.
(a) Ist f injektiv, so folgt stets
$\Box A \leq B $
$\Box A \ge B $
(b) Ist f surjektiv, so folgt stets

 $\Box |A| \le |B|$ $\Box |A| \ge |B|$