0.0.1 K_S^0 Reconstruction

The following cuts were used to select good K_S^0 candidates:

- 1. Pion Daughter Cuts
 - (a) $|\eta| < 0.8$
 - (b) SetTPCnclsDaughters(80)
 - (c) SetStatusDaughters(AliESDtrack::kTPCrefic)
 - (d) SetMaxDcaV0Daughters(0.3)
 - (e) $p_T > 0.15$
 - (f) DCA to prim vertex > 0.3
- 2. K_S^0 Cuts
 - (a) $|\eta| < 0.8$
 - (b) $p_T > 0.2$
 - (c) $m_{PDG} 13.677 \text{ MeV} < m_{inv} < m_{PDG} + 2.0323 \text{ MeV}$
 - (d) Cosine of pointing angle > 0.9993
 - (e) OnFlyStatus = false
 - (f) Decay Length < 30 cm

Fig. 1: Mass assuming Λ -hypothesis for V0 candidates passing all K_S^0 cuts, i.e. assume the daughters are $p^+\pi^-$ instead of $\pi^+\pi^-$. The peak around $m_{inv}=1.115~{\rm GeV/c^2}$ likely contains misidentified Λ particles in our K_S^0 collection. If one simply cuts out the entire peak, some good K_S^0 particles will be lost. Ideally, the K_S^0 selection and $\Lambda(\bar{\Lambda})$ misidentification cuts can be selected such that the peak is removed from this plot while leaving the distribution continuous.

As can be seen in Figures ?? and ??, some misidentified Λ and $\bar{\Lambda}$ particles contaminate our K_S^0 sample. To attempt to remove these contaminations without throwing away good K_S^0 particles, the following misidentification cuts are imposed; a K_S^0 candidate is rejected if all of the following criteria are satisfied:

- $-|m_{inv, \Lambda(\bar{\Lambda}) \ Hypothesis} m_{PDG, \Lambda(\bar{\Lambda})}| < 9.0 \ \mathrm{MeV/c^2}$
- Positive daughter passes $p^+(\pi^+)$ daughter cut implemented for $\Lambda(\bar{\Lambda})$ reconstruction
- Negative daughter passes $\pi^-(\bar{p}^-)$ daughter cut implemented by $\Lambda(\bar{\Lambda})$ reconstruction

Fig. 2: Mass assuming Λ -hypothesis for V0 candidates passing all K_S^0 cuts, i.e. assume the daughters are $p^+\pi^-$ instead of $\pi^+\pi^-$. The peak around $m_{inv}=1.115~{\rm GeV/c^2}$ likely contains misidentified Λ particles in our K_S^0 collection. If one simply cuts out the entire peak, some good K_S^0 particles will be lost. Ideally, the K_S^0 selection and $\Lambda(\bar{\Lambda})$ misidentification cuts can be selected such that the peak is removed from this plot while leaving the distribution continuous.

Fig. 3: Mass assuming $\bar{\Lambda}$ -hypothesis for V0 candidates passing all K_S^0 cuts, i.e. assume the daughters are $\pi^+\bar{p}^-$ instead of $\pi^+\pi^-$. Similar to Figure ??

Fig. 4: Mass assuming $\bar{\Lambda}$ -hypothesis for V0 candidates passing all K_S^0 cuts, i.e. assume the daughters are $\pi^+\bar{p}^-$ instead of $\pi^+\pi^-$. Similar to Figure ??

