CS4224/CS5424 Lecture 2 Data Partitioning

Partitioning in Centralized Databases

```
CREATE TABLE measurement (
   city_id int not null,
   logdate date not null,
   peaktemp int,
   unitsales int
) PARTITION BY RANGE (logdate);
CREATE TABLE measurement_y2006m02 PARTITION OF measurement
   FOR VALUES FROM ('2006-02-01') TO ('2006-03-01');
CREATE TABLE measurement_y2006m03 PARTITION OF measurement
   FOR VALUES FROM ('2006-03-01') TO ('2006-04-01');
```

Source: https://www.postgresql.org/docs/current/ddl-partitioning.html

Distributed Database Design Issues

- Data fragmentation / partitioning how to partition data into smaller pieces
- Data allocation how to allocate data to various sites
- Data replication what data to replicate at each site

Data Fragmentation

- Data Fragmentation / Partitioning
 - Partition data into pieces for distributed storage
- Relation R is partitioned into fragments $\{R_1,\cdots,R_n\}$
- Each R_i could be defined by a RA expression on
- Example: Student(sid, name, major, year, CAP)
 - $Student_1 = \sigma_{major="CS"}(Student)$
 - $Student_2 = \sigma_{major="Maths"}(Student)$
 - $Student_3 = \sigma_{(major \neq "CS") \land (major \neq "Maths")}(Student)$

Why Fragment?

- Support application's locality of access
 - Example:
 - ★ Query q_1 at site A: $\sigma_{region="Asia"}$ (Customers)
 - ★ Query q_2 at site B: $\sigma_{region="Europe"}(Customers)$
- Scale out to manage large data / workload
- Improve performance with parallelized query execution
 - Example:
 - * $R_1 = \sigma_{a<100}(R), R_2 = \sigma_{a>100}(R)$
 - * $S_1 = \sigma_{a < 100}(S), S_2 = \sigma_{a \ge 100}(S)$
 - \star $R\bowtie_a S=(R_1\bowtie_a S_1)\cup(R_2\bowtie_a S_2)$

Fragmentation Strategies

- Horizontal fragmentation
- Vertical fragmentation
- Hybrid fragmentation

Desirable Properties of Fragmentation

- Consider a relation R being fragmented
- Completeness: Each item in R can also be found in one of its fragments
- Reconstruction: R can be reconstructed from its fragments
- Disjointness: Data items are not replicated (modulo reconstruction property)

Horizontal Fragmentation

• Partition a relation R into subsets R_1, \dots, R_n

Student

sid	name	major	year	CAP
1	Charlie	CS	2	4.5
2	Lucy	Maths	4	4.2
3	Marcie	Music	2	4.0
4	Sally	CS	3	3.8

Student₁

sid	name	major	year	CAP
1	Charlie	CS	2	4.5
3	Marcie	Music	2	4.0

Student₂

sid	name	major	year	CAP
2	Lucy	Maths	4	4.2
4	Sally	CS	3	3.8

$$\sigma_{\textit{year} \leq 2}(\textit{Student})$$

$$\sigma_{\textit{year}>2}(\textit{Student})$$

Horizontal Fragmentation (cont.)

- Completeness: $\forall t \in R, \exists R_i \text{ such that } t \in R_i$
- Reconstruction: $R = R_1 \cup \cdots \cup R_n$
- Disjointness: $\forall R_i, R_j \ (i \neq j \implies R_i \cap R_j = \emptyset)$

Student

sid	name	major	year	CAP
1	Charlie	CS	2	4.5
2	Lucy	Maths	4	4.2
3	Marcie	Music	2	4.0
4	Sally	CS	3	3.8

Student₁

sid	name	major	year	CAP
1	Charlie	CS	2	4.5
3	Marcie	Music	2	4.0

Student₂

sid	name	major	year	CAP
2	Lucy	Maths	4	4.2
4	Sally	CS	3	3.8

 $\sigma_{year \leq 2}(Student)$

 $\sigma_{\textit{year}>2}(\textit{Student})$

Horizontal Fragmentation (cont.)

- Fragmentation techniques:
 - Range partitioning
 - Hash partitioning
 - Derived horizontal fragmentation

Range Partitioning

- Partition R using predicates on some attributes of R
- Example:
 - Partition R based on values of attribute A
 - ► $R_1 = \sigma_{A < 100}(R)$
 - $R_2 = \sigma_{A \in [100,500)}(R)$
 - $R_3 = \sigma_{A>500}(R)$

R

$$R=R_2\cup R_3\cup R_5\cup R_6 \ R_2=\sigma_{
eg p_1}(R) \ R_3=\sigma_{p_1\wedge p_2}(R) \ R_5=\sigma_{p_1\wedge
eg p_2\wedge p_3}(R) \ R_6=\sigma_{p_1\wedge
eg p_2\wedge
eg p_3}(R)$$

Hash Partitioning

- Partition R into $\{R_1, \dots, R_n\}$ based on hash function on some attribute of R (say R.A)
- Method 1: Modulo Method
 - ► $R_{i+1} = \{t \in R \mid h(t.A) \mod n = i\}, i \in [0, n]$
- Method 2: Consistent Hashing
 - ► Partition the codomain of *h* using *n* values:

$$V_1 < V_2 < \cdots < V_n$$

- ► $R_i = \{t \in R \mid h(t.A) \in (v_{i-1}, v_i)\}, i \in [2, n]$
- $R_1 = R (R_2 \cup \cdots \cup R_n)$

Modulo Method

Customers

cname	city			
Alice	Singapore			
Bob	Jarkata			
Carol	Bangkok			
Dave	Jarkata			
Eve	Singapore			
Fred	Penang			
George	Hanoi			
Hal	Bangkok			
lvy	Singapore			
Joe	Penang			
Kathy	Singapore			
Larry	Jarkata			
	Alice Bob Carol Dave Eve Fred George Hal Ivy Joe Kathy			

Customers₁

cust#	cname	city
3	Carol	Bangkok
6	Fred	Penang
9	lvy	Singapore
12	Larry	Jarkata

Customers₂

cust#	cname	city
1	Alice	Singapore
4	Dave	Jarkata
7	George	Hanoi
10	Joe	Penang

Customers₃

cust#	cname	city
2	Bob	Jarkata
5	Eve	Singapore
8	Hal	Bangkok
11	Kathy	Singapore

Customer_{i+1} = { $t \in$ Customer | $h(t.cust\#) \mod 3 = i$ }, $i \in [0,3)$ where h(v) = v

Consistent Hashing

- Consider a cluster of 8 nodes {A, B, C, D, E, F, G, H}
- Each node N is assigned a hashed value h(N)
- Nodes are logically organized on a ring based on the order of their hashed values
- A record t is stored in node N if h(t.A) falls in N's region

Node	Region	
Α	$> h(H) \text{ or } \le h(A) \ (> 400 \text{ or } \le 17)$	
В	(h(A), h(B)] = (17, 45]	
С	(h(B), h(C)] = (45, 62]	
:	:	
G	(h(F), h(G)] = (201, 316]	
Н	(h(G), h(H)] = (316, 400]	

$$h(A) < h(B) < h(C) < h(D) < h(E) < h(F) < h(G) < h(H)$$

15

Incremental Scaling with C. Hashing

Adding a new node B ...

Challenges with Consistent Hashing

- 1. Non-uniform data & load distribution
- 2. Oblivious to heterogeneity in servers' performance
 - Example: 4 servers

Consistent Hashing with Virtual Nodes

• Example: 4 physical nodes & 8 virtual nodes

- Virtual nodes: A, B, · · · , G, H
- Physical nodes: 4 server nodes
 - Server 1 responsible for A & B
 - Server 2 responsible for C & D
 - Server 3 responsible for E & F
 - Server 4 responsible for G & H

- Partitions a relation R based on the partitioning defined for a related relation S
- Let $\{S_1, \dots, S_n\}$ be the partitioning of S
- If R & S are related by some attribute(s), R can be partitioned based on S's partitioning

• Example:

► S = Customers(<u>cust#</u>,name,region) is partitioned into:

```
* S_1 = \sigma_{region="Asia"}(S)
```

★
$$S_2 = \sigma_{region \neq "Asia"}(S)$$

- ► R = Orders(order#,cust#,amount) is related to S via cust#
- ▶ Partition R as follows: $R_i = R \ltimes_{cust\#} S_i$

- Consider $R_i = R \ltimes_A S_i$, where each S_i is a partition of S
- For partitioning of R to be complete, $R.A \subseteq S.A$

R_2			
• • •	Α		
• • •	4		
• • •	4		

 For partitioning of R to be disjoint, S.A must be a key

- For partitioning of R to be complete, $R.A \subseteq S.A$
- For partitioning of R to be disjoint, S.A must be a key
- Therefore, for partitioning of R to be complete & disjoint, R.A must be a foreign key of S with non-null values for R.A

Vertical Fragmentation

- Partition a relation R into $\{R_1, \dots, R_n\}$ where
 - ▶ attributes(R_i) \subset attributes(R), and
 - ▶ $key(R) \in attributes(R_i)$

Student

sid	name	major	year	CAP	
1	Charlie	CS	2	4.5	
2	Lucy	Maths	4	4.2	
3	Marcie	Music	2	4.0	
4	Sally	CS	3	3.8	

Student₁

sid	name	major	year	
1	Charlie	CS	2	
2	Lucy	Maths	4	
3	Marcie	Music	2	
4	Sally	CS	3	

 $\pi_{sid,name,major,year}(Student)$

Student₂

sid	CAP		
1	4.5		
2	4.2		
3	4.0		
4	3.8		

 $\pi_{sid,CAP}(Student)$

Vertical Fragmentation (cont.)

- Completeness: $\forall A_i \in attributes(R), \exists R_j \text{ such that } A_i \in attributes(R_j)$
- Reconstruction: $R = R_1 \bowtie \cdots \bowtie R_n$
- **Disjointness**: $\forall R_i, R_j \ (i \neq j \implies attributes(R_i) \cap attributes(R_i) = \{key(R)\})$

Student									
		sid	n	ame	major	year	CAP		
		1	Charlie		CS	2	4.5		
		2	L	ucy	Maths	4	4.2		
		3	M	arcie	Music	2	4.0		
		4	S	Sally	CS	3	3.8		
Student ₁ Student ₂						dent ₂			
sid	name	major		year				sid	CAP
1	Charlie	CS		2	\neg			1	4.5
2	Lucy	Maths		4				2	4.2
3	Marcie	Music		2				3	4.0
4	Sally	CS		3				4	3.8

 $\pi_{sid,name,major,year}(Student)$

 $\pi_{sid,CAP}(Student)$

Vertical Fragmentation: Heuristics

- Attribute affinity measure
 - ▶ **aff**(A_i , A_j): measures how often A_i & A_j are referenced in queries

$$A_1$$
 A_2 A_3 A_4
 A_1 $-$ 0 45 0
 A_2 0 - 5 75
 A_3 45 5 - 3
 A_4 0 75 3 -
(Özsu & Valdureiz, 2011)

• Apply clustering algorithm on aff(.,.)

Hybrid Fragmentation

- Combinations of horizontal/vertical fragmentations
- Example:

Complete Partitioning wrt Query

- Let $F = \{R_1, \dots, R_m\}$ be a partitioning of relation R
 - $ightharpoonup R = R_1 \cup R_2 \cup \cdots \cup R_m$
- Let Q be a query on R
- F is a complete partitioning of R wrt Q if for every fragment $R_i \in F$, either every tuple in R_i matches Q or every tuple in R_i does not match Q

Complete Partitioning: Example

- Student(<u>sid</u>, name, major, year, CAP)
 - ► Domain(major) = { *CS*, *Maths*}
 - ightharpoonup Domain(year) = $\{1, 2, 3, 4, 5\}$
- Let $F = \{S_1, S_2, S_3, S_4, S_5\}$ be a partitioning of Student
 - $S_1 = \sigma_{major="Maths" \land year=1}(Student)$
 - $S_2 = \sigma_{major="Maths" \land year=5}(Student)$
 - $S_3 = \sigma_{major="Maths" \land year > 1 \land year < 5}(Student)$
 - $S_4 = \sigma_{major="CS" \land year=1}(Student)$
 - $S_5 = \sigma_{major="CS" \land year>1}(Student)$
- Is F a complete partitioning wrt
 - $Q_1 = \sigma_{major="CS"}(Student)$?
 - $Q_2 = \sigma_{year>1}(Student)$?
 - $Q_3 = \sigma_{(Major="Maths") \land (year < 5)}(Student)$?
 - $Q_4 = \sigma_{year < 3}(Student)$?

Minterm Predicates

- Let $P = \{p_1, \dots, p_n\}$ be a set of selection predicates on a relation R
- A minterm predicate m for P is the conjunction of all the predicates in P of the form

$$m = p_1^* \wedge p_2^* \wedge \cdots \wedge p_n^*$$

where

CS4224/CS5424: Sem 1, 2023/24

$$p_i^*$$
 is either p_i or $\neg p_i$

 Let MTPred(P) denote the set of all minterm predicates for a set of predicates P

Minterm Predicates: Example

- Student(sid, name, major, year, CAP)
 - ► Domain(major) = { *CS*, *Maths*}
 - ► Domain(year) = $\{1, 2, 3, 4, 5\}$
- Query workload = $\{Q_1, Q_2, Q_3\}$, where $Q_i = \sigma_{p_i}(Student)$
 - ▶ $p_1 = (major = "CS")$
 - $p_2 = (year > 1)$
 - ▶ $p_3 = (major = "Maths") \land (year < 5)$

- $P = \{p_1, p_2, p_3\}$
- MTPred(P) = $\{m_0, m_1, \cdots, m_6, m_7\}$
 - $\qquad \qquad m_0 = \neg p_1 \wedge \neg p_2 \wedge \neg p_3$
 - $\qquad \qquad m_1 = \neg p_1 \wedge \neg p_2 \wedge p_3$
 - $\qquad \qquad m_2 = \neg p_1 \wedge p_2 \wedge \neg p_3$
 - $\qquad \qquad m_3 = \neg p_1 \wedge p_2 \wedge p_3$
 - $\qquad \qquad m_4 = p_1 \wedge \neg p_2 \wedge \neg p_3$
 - $ightharpoonup m_5 = p_1 \wedge \neg p_2 \wedge p_3$
 - $ightharpoonup m_6 = p_1 \wedge p_2 \wedge \neg p_3$
 - $\qquad \qquad m_7 = p_1 \wedge p_2 \wedge p_3$

Review of Boolean Algebra

1.
$$p_1 \wedge p_2 \equiv p_2 \wedge p_1$$

2.
$$p_1 \lor p_2 \equiv p_2 \lor p_1$$

3.
$$p_1 \wedge (p_2 \wedge p_3) \equiv (p_1 \wedge p_2) \wedge p_3$$

4.
$$p_1 \vee (p_2 \vee p_3) \equiv (p_1 \vee p_2) \vee p_3$$

5.
$$p_1 \wedge (p_2 \vee p_3) \equiv (p_1 \wedge p_2) \vee (p_1 \wedge p_3)$$

6.
$$p_1 \vee (p_2 \wedge p_3) \equiv (p_1 \vee p_2) \wedge (p_1 \vee p_3)$$

7.
$$p \wedge true \equiv p$$

8.
$$p \lor false \equiv p$$

9.
$$p \land false \equiv false$$

10.
$$p \lor true \equiv true$$

10.
$$p \wedge p \equiv p$$

11.
$$p \lor p \equiv p$$

12.
$$p_1 \wedge (p_1 \vee p_2) \equiv p_1$$

13.
$$p_1 \vee (p_1 \wedge p_2) \equiv p_1$$

14.
$$p \land \neg p \equiv false$$

15.
$$p \lor \neg p \equiv true$$

16.
$$\neg (\neg p_1) \equiv p_1$$

17.
$$\neg (p_1 \land p_2) \equiv \neg p_1 \lor \neg p_2$$

18.
$$\neg (p_1 \lor p_2) \equiv \neg p_1 \land \neg p_2$$

```
p_1 = (\text{major} = "CS")
p_2 = (year > 1)
p_3 = (\text{major} = \text{"Maths"}) \land (\text{year} < 5)
      major\neq"CS" \land year\neq1 \land (major\neq"Maths" \lor year\neq5)
m_0:
       major\neq"CS" \land year\neq1 \land (major="Maths" \land year<5)
m_1:
      major≠"CS" ∧ year>1 ∧ (major≠"Maths" ∨ year < 5)
m_2:
      major\neq"CS" \land year>1 \land (major="Maths" \land year<5)
m_3:
      major="CS" \land year\not>1 \land (major\neq"Maths" \lor year\not<5)
m_4:
      major="CS" ∧ year > 1 ∧ (major="Maths" ∧ year < 5)
m_5:
      major="CS" ∧ year>1 ∧ (major≠"Maths" ∨ year < 5)
m_6:
      major="CS" \land year>1 \land (major="Maths" \land year<5)
m_7:
```

```
p_1 = (major = "CS")
p_2 = (year > 1)
p_3 = (\text{major} = \text{"Maths"}) \land (\text{year} < 5)
        major \neq "CS" \land year \neq 1 \land (major \neq "Maths" \lor year \not < 5)
m_0:
       major≠"CS" ∧ year≯1 ∧ (major="Maths" ∧ year<5)
m_1:
        major="Maths" ∧ year>1 ∧ year<5
        major≠"CS" ∧ year>1 ∧ (major≠"Maths" ∨ year <5)
m_2:
        major="Maths" ∧ year>1 ∧ year < 5
        major≠"CS" \(\triangle\) year \(\triangle\) (major="Maths" \(\triangle\) year \(<5\)
m_3:
        major="Maths" \( \text{year} > 1 \( \text{year} < 5 \)
        major="CS" ∧ year > 1 ∧ (major + "Maths" ∨ year < 5)
m_4:
        major="CS" ∧ year≯1
        major="CS" \(\triangle\) year \(\frac{1}{2}\) \(\lambda\) (major="Maths" \(\triangle\) year \(<5\))
m_5:
        major="CS" ∧ year>1 ∧ (major≠"Maths" ∨ year<5)
m_6:
        major="CS" ∧ year>1
        major="CS" \(\triangle\) year \(\triangle\) (major="Maths" \(\triangle\) year \(<5\)
```

```
p_1 = (\text{major} = "CS")
p_2 = (year > 1)
p_3 = (\text{major} = \text{"Maths"}) \land (\text{year} < 5)
                           major \neq "CS" \land year \neq 1 \land (major \neq "Maths" \lor year \not < 5)
                           major≠"CS" \(\triangle\) year \(\frac{1}{2}\) \(\lambda\) (major="Maths" \(\triangle\) year \(<5\)
m_1:
                            major="Maths" ∧ <del>year > 1</del> ∧ <del>year < 5</del> year=1
                           major≠"CS" ∧ year>1 ∧ (major≠"Maths" ∨ year<5)
m_2:
                            major="Maths" \land \frac{\forall \text{vear} \setminus 1 \land \forall \text{vear} \land 5 \rightarrow 5 \rightarrow \text{vear} \rightarrow 5 \rightarrow \text{vear} \rightarrow 5 \rightarrow 5 \rightarrow \text{vear} \rightarrow 5 \rightarrow \text{vear} \rightarrow 5 \rightarrow \text{vear} \rightarrow 5 \rightarrow 5 \rightarrow \text{vear} \rightarrow 5 \rightarrow \text{vear} \rightarrow 5 \rightarrow \text{vear} \rightarrow 5 \rightarrow 5 \rightarrow \text{vear} \rightarrow 5 \rightarrow \text{vear} \rightarrow 5 \rightarrow 5 \rightarrow \text{vear} \rightarrow 5 \rightarrow \text{vear} \rightarrow 5 
                           major≠"CS" \(\triangle\) year \(\triangle\) (major="Maths" \(\triangle\) year \(<5\)
m_3:
                            major="Maths" \( \text{year} > 1 \( \text{year} < 5 \)
                           major="CS" ∧ year > 1 ∧ (major + "Maths" ∨ year < 5)
m_4:
                            major="CS" ∧ <del>year>1</del> year=1
                           major="CS" \(\triangle\) year \(\frac{1}{2}\) \(\lambda\) (major="Maths" \(\triangle\) year \(<5\)
m_5:
                           major="CS" ∧ year>1 ∧ (major≠"Maths" ∨ year <5)
m_6:
                            major="CS" \( \text{year} > 1
                            major="CS" \(\triangle\) year \(> 1 \) \(\triangle\) (major="Maths" \(\triangle\) year \(< 5 \)
```

```
p_1 = (\text{major} = "CS")

p_2 = (\text{year} > 1)

p_3 = (\text{major} = "Maths") \land (\text{year} < 5)
```

After simplification, MTPred(P) = $\{m_1, m_2, m_3, m_4, m_6\}$

```
m_1: major="Maths" \land year=1 m_2: major="Maths" \land year=5 m_3: major="Maths" \land year>1 \land year<5 m_4: major="CS" \land year=1 m_6: major="CS" \land year>1
```

Minterm Predicate Partitioning

- Student(sid, name, major, year, CAP)
 - ► Domain(major) = { *CS*, *Maths*}
 - Domain(year) = $\{1, 2, 3, 4, 5\}$
- Query workload $Q = \{Q_1, Q_2, Q_3\}$, where $Q_i = \sigma_{p_i}(Student)$
 - ▶ $p_1 = (major = "CS")$
 - $p_2 = (year > 1)$
 - ▶ $p_3 = (major = "Maths") \land (year < 5)$
- $P = \{p_1, p_2, p_3\}$, MTPred(P) = $\{m_1, m_2, m_3, m_4, m_6\}$
- Student = $S_1 \cup S_2 \cup S_3 \cup S_4 \cup S_6$, where $S_i = \sigma_{m_i}$ (Student)
- {S₁, S₂, S₃, S₄, S₆} is the minterm predicate partitioning of Student wrt Q

Property of Minterm Predicate Partitioning

- Let $Q = \{Q_1, \dots, Q_k\}$ be a set of queries on relation R, where each $Q_i = \sigma_{p_i}(R)$
- Let $P = \{p_1, \dots, p_k\}$
- Let $F = \{R_1, \dots, R_m\}$ be the minterm partitioning of R based on MTPred(P)
- Theorem: F is a complete partitioning wrt every query in Q

References

- T. Özsu & P. Valdureiz, Distributed Database Design, Chapter 2, Principles of Distributed Database Systems, 4th Edition, 2020
- G. DeCandia, et al., *Dynamo: Amazon's highly available key-value store*, SOSP 2007.

http://www.allthingsdistributed.com/2007/10/amazons_dynamo.html