注:

*没有把取对数的那些变量列放在里面考虑,即只用了"原始数据"的数据列。原来想加 date 进去的,觉得也许可以搞天气,但是好像要换格式而且会议论文里没提,所以我想着后面再说吧。

*因变量 drivingscore

```
#数据导入
df = pd.read_excel('eng317.xlsx',
                 usecols=['ranking', 'alert', 'age', 'gender', 'accident', 'drivingexp',
'CO2emission',
'date',
'mileage',
'totalm',
'time',
'Speed_KMH',
'rapid_acc',
 rapid_deacc',
'sharp_turn',
'fatigdriving',
'nightdriving',
'drivingscore',
 app_usage'])
```

- *图都有清晰版本的,这个文档里可能看不清,就随便意思下
- *ipynb 文件是 python 代码; 然后 STATA 的 log 文件我就不发了,就几行

*因为是初步结果,随便看看那种,所以那个 linearRegression 我没有用 python 看系数和 p-value 啥的,而是直接丢进了 STATA 后面确定了一些东西之后可能还是要用同一个软件? (还是说就这样也行?)

1. 数据处理

eng371.xlsx 这个数据集是由最全的那个数据集经过如下处理:

- ▶ 删除所有 CO2emission 为 0 的值——没出行
- ▶ 删除所有"闽 xxxx"和"1.22E"乱码车牌——那些跟 2019-2020 那年的实验不是 一批
- ▶ 所有变量名为英文

最终得到11187条数据

2. 特征选择 (Python, 最优特征子集选择)

1) 观察 df 中所有变量相关性

发现几个相关度太高的: CO2 和 gasconsumption、mileage、time 强相关,这里仅选择 gascons

于是只剩下15个自变量和一个因变量。

2) 利用 RFECV 方法进行特征选择 (特征子集与交叉验证)

这个方法不能容忍缺失值,所以这里我分了两种情况处理缺失值。

a) 直接删除有缺失值的变量

能够直接删除的原因: 只有 age, gender, accident, drivingexp 存在缺失值(这玩意儿全都是那个问卷上录下来的)

删除后特征选择结果: 11 个特征都保留

b) 删除所有含缺失值的行

能够直接删除的原因: 只有 age, gender, accident, drivingexp 存在缺失值, 且缺失值占比不大

# 每列缺失值占 print(feature.	比isnull().sum()/feature.shape[0])
ranking	0. 000000
alert	0.000000
age	0. 350496
gender	0. 348351
accident	0. 323947
drivingexp	0. 323947
gcons	0. 000000
totalm	0. 000000
Speed_KMH	0. 000000
rapid_acc	0. 000000
rapid_deacc	0. 000000
sharp_turn	0. 000000
fatigdriving	0. 000000
nightdriving	0.000000
app_usage dtype: float64	0. 000000

删除后特征选择结果: 14 个特征保留,删除 totalm

3. **跑模型与评估**

(1) Python

*我看了五种回归模型,这个结果最好的是 GBR-梯度提升线性回归,其次就是 LinearR。但 GBR 这玩意儿系数、p-value 啥的我还在寻找中,暂时不知道怎么显示

删除有缺失值的列跑模型,即用 11 个 features:

In [92]: # *各种评估结果* df_met

Out[92]:

	ev	mae	mse	r2
BayesianRidge	0.593162	11.393480	275.534381	0.593162
LinearRegression	0.593165	11.394226	275.532348	0.593165
ElasticNet	0.567244	11.929585	293.087262	0.567244
SVR	0.080373	20.958478	622.867108	0.080310
GBR	0.868094	6.741127	89.334588	0.868094

删除有缺失值的行后跑模型,即用 14 个 features, 6993 个 obsevations:

In [96]: # *各种评估结果* df_met

Out[96]:

	ev	mae	mse	r2
BayesianRidge	0.552181	10.559876	201.265388	0.552181
LinearRegression	0.552193	10.559920	201.260138	0.552193
ElasticNet	0.523547	10.987193	214.134391	0.523547
SVR	0.102873	15.892452	403.208416	0.102855
GBR	0.773510	7.610738	101.792393	0.773510

(2) STATA

我好像不大会用 STATA,老师你看下是不是有问题 QAQ

Linear regress	sion			Number	of obs =	=	11,187		
			F(11, 1	1175) =	=	1632.81			
				Prob >	F =	=	0.0000		
				R-squar	ed =	=	0.5932		
				Root MS	E =	=	16.608		
		Robust							
drivingscore	Coef.	Std. Err.	t	P> t	[95% Conf	E. I	nterval]		
ranking	3.325944	.3397733	9.79	0.000	2.659928		3.991959		
alert	2.257169	.336778	6.70	0.000	1.597025		2.917314		
gcons	016531	.0165344	-1.00	0.317	0489414		.0158794		
totalm	0000839	6.34e-06	-13.24	0.000	0000964	-	.0000715		
Speed KMH	125756	.0310783	-4.05	0.000	1866749	-	.0648371		
rapid_acc	0300621	.0025197	-11.93	0.000	0350012	-	.0251231		
rapid_deacc	0366178	.0024718	-14.81	0.000	0414631	-	.0317726		
sharp_turn	0137586	.0013368	-10.29	0.000	0163789	-	.0111382		
fatigdriving	-9.841109	.2058287	-47.81	0.000	-10.24457	-	9.437649		
nightdriving	-1.125353	.0600852	-18.73	0.000	-1.243131	-	1.007575		
app_usage	-1.883212	.6444087	-2.92	0.003	-3.146367	-	.6200575		
cons	82.09536	.9605125	85.47	0.000	80.21259		83.97813		

Linear regress	ion			Number	of obs =	6,993
				F(15, 6	5977) =	552.98
				Prob >	F =	0.0000
				R-squar	ed =	0.5539
				Root MS	EE =	14.176
		Robust				
drivingscore	Coef.	Std. Err.	t	P> t	[95% Conf.	. Intervall
					[
ranking	.3056983	.4176007	0.73	0.464	512926	1.124323
alert	.1521831	.3710628	0.41	0.682	5752128	.879579
age	0343025	.0325354	-1.05	0.292	0980819	.0294769
gender	2.386824	.6376597	3.74	0.000	1.136817	3.636831
accident	-1.297761	.3903241	-3.32	0.001	-2.062915	5326076
drivingexp	085139	.048653	-1.75	0.080	1805136	.0102356
gcons	.0799874	.0195902	4.08	0.000	.0415847	.1183902
totalm	0000364	7.04e-06	-5.16	0.000	0000502	0000226
Speed KMH	.0982591	.0544377	1.80	0.071	0084554	.2049736
rapid acc	026556	.0024016	-11.06	0.000	0312639	021848
rapid deacc	0374228	.0024873	-15.05	0.000	0422987	0325468
sharp turn	0146239	.0013633	-10.73	0.000	0172963	0119515
fatigdriving	-8.816613	.2161982	-40.78	0.000	-9.240428	-8.392799
nightdriving	-1.16681	.0633085	-18.43	0.000	-1.290914	-1.042706
app usage	.3558633	.6255467	0.57	0.569	8703984	1.582125
cons	72.59031	2.133729	34.02	0.000	68.40755	76.77307