Homework 1 - ISYE 3770

Darnell Chen

2024-08-23

PART 1 - Textbook Questions

Q2.1.13

- a) 3 + 5 + 6 + 8
- **b)** 1 + 2
- c) 1+2+3+4+5
- $(\mathbf{d}) 7 + 8$
- e) 3 + 4 + 5

Q2.1.21

- a) $A' = \{x \mid x \ge 72.5\}$
- **b)** $B' = \{x \mid 0 < x \le 52.5\}$
- c) $A \cap B = \{x \mid 52.5 < x < 72.5\}$
- **d)** $A \cup B = \{x \mid x = S\}$

Note: Sample space is positive real numbers.

Q2.2.13

$$C_4^5 \times C_6^{45} + C_5^5 \times C_5^{45} = \frac{5!}{4!1!} \times \frac{45!}{6!39!} + \frac{5!}{5!0!} \times \frac{45!}{5!40!}$$
$$= 41,947,059$$

 $\verb|choose|(5, 4) * choose(45, 6) + choose(5, 5) * choose(45, 5)|$

[1] 41947059

Q2.3.1

- a) P(A) = 0.1 + 0.1 + 0.2 = 0.4
- **b)** P(B) = 0.2 + 0.4 + 0.2 = 0.8
- c) P(A') = 0.4 + 0.2 = 0.6
- d) $P(A \cup B) = 0.1 + 0.1 + 0.2 + 0.4 + 0.2 = 1$
- e) $P(A \cap B) = 0.2$

Q2.3.17

a)
$$A = \frac{52^8}{62^8}$$

52**8 / 62**8

[1] 0.2448461

b) $B = \frac{10^8}{62^8}$

10**8 / 62**8

[1] 4.580011e-07

c) $\frac{62^8-52^8}{62^8}$

(62**8 - 52**8) / 62**8

[1] 0.7551539

d) $\frac{10^2 \cdot 52^6}{52^8}$

(10**2 * 52**6) / 52**8

[1] 0.03698225

Q2.4.7

b) $\frac{36^5 \times C_1^5}{36^6} = \frac{5 \times 36^5}{36^6}$

choose(5, 1) * (36**5) / 36**6

[1] 0.1388889

 $\mathbf{b)} \ \frac{36^5 \times C_1^5}{36^6} = \frac{36^5 \times 5}{36^6}$

(36**5) * choose(5, 1) / 36**6

[1] 0.1388889

c) $\frac{C_1^5 \times 36^4 \times C_1^5}{36^6} = \frac{5 \times 36^4 \times 5}{36^6}$

```
choose(5, 1) * (36**4) * choose(5, 1) / 36**6
```

[1] 0.01929012

d)
$$\frac{2 \times C_1^5 \times 36^5 - C_1^5 \times 36^4 \times C_1^5}{36^6} = \frac{2 \times 5 \times 36^5 - 5 \times 36^4 \times 5}{36^6}$$

[1] 0.2584877

PART 2

Find the numbers of combinations for the following 5-card Poker hand.

a) Three of a Kind It contains three cards of the same number(rank), plus two cards which are not of this number nor the same as each other. For example: AAA83, KKK72, . . .

solution:

$$C_1^{13} \times C_3^4 \times C_2^{12} \times C_1^4 \times C_1^4 = \frac{13!}{1!12!} \times \frac{4!}{3!1!} \times \frac{12!}{2!10!} \times \frac{4!}{1!3!} \times \frac{4!}{$$

```
choose(13, 1) * choose(4, 3) * choose(12, 2) * choose(4, 1) * choose(4, 1)
```

[1] 54912

PART 3

Four Candidates: A, B, C, and D run for the president of GT Elementary School. Suppose we have 100 voters (students) and everyone needs to vote for exactly one candidate from A, B, C, and D and the votes are anonymous. How many different voting results (combinations) can we have here? [5 pts]

solution:

$$C_{4-1}^{100+4-1} = \frac{(100+4-1)!}{3!(103-3)!}$$
$$= \frac{103!}{3!100!}$$
$$= 176,851$$

```
choose (100+4-1, 4-1)
```

[1] 176851