Stanford University ACM Team Notebook (2011-12)

Table of Contents

Combinatorial optimization

- 1. Sparse max-flow (C++)
- 2. Min-cost max-flow (C++)
- 3. Push-relabel max-flow (C++)
- 4. Min-cost matching (C++)
- 5. Max bipartite matching (C++)
- 6. Global min cut (C++)

Geometry

- 7. Convex hull (C++)
- 8. Miscellaneous geometry (C++)
- 9. Java geometry (Java)
- 10. 3D geometry (Java)
- 11. Slow Delaunay triangulation (C++)

Numerical algorithms

- 12. Number theoretic algorithms (modular, Chinese remainder, linear Diophantine) (C++)
- 13. Systems of linear equations, matrix inverse, determinant (C++)
- 14. Reduced row echelon form, matrix rank (C++)
- 15. Fast Fourier transform (C++)
- 16. Simplex algorithm (C++)

Graph algorithms

- 17. Fast Dijkstra's algorithm (C++)
- 18. Strongly connected components (C)

Data structures

- 19. Suffix arrays (C++)
- 20. Binary Indexed Tree
- 21. Union-Find Set (C/C++)
- 22. KD-tree (C++)

Miscellaneous

- 23. Longest increasing subsequence (C++)
- 24. Dates (C++)
- 25. Regular expressions (Java)
- 26. Prime numbers (C++)
- 27. Knuth-Morris-Pratt (C++)

Dinic.cc 1/27

```
// Adjacency list implementation of Dinic's blocking flow algorithm.
// This is very fast in practice, and only loses to push-relabel flow.
// Running time:
// O(|V|^2 |E|)
// INPUT:
      - graph, constructed using AddEdge()
      - source
     - sink
// OUTPUT:
     - maximum flow value
      - To obtain the actual flow values, look at all edges with
       capacity > 0 (zero capacity edges are residual edges).
#include <vector>
#include <iostream>
#include <queue>
using namespace std;
const int INF = 2000000000;
struct Edge {
 int from, to, cap, flow, index;
  Edge(int from, int to, int cap, int flow, int index) :
    from(from), to(to), cap(cap), flow(flow), index(index) {}
struct Dinic {
 int N;
 vector<vector<Edge> > G;
  vector<Edge *> dad;
  vector<int> 0;
  Dinic(int N) : N(N), G(N), dad(N), Q(N) {}
  void AddEdge(int from, int to, int cap) {
   G[from].push_back(Edge(from, to, cap, 0, G[to].size()));
    if (from == to) G[from].back().index++;
    G[to].push_back(Edge(to, from, 0, 0, G[from].size() - 1));
  long long BlockingFlow(int s, int t) {
    fill(dad.begin(), dad.end(), (Edge *) NULL);
    dad[s] = &G[0][0] - 1;
    int head = 0, tail = 0;
    Q[tail++] = s;
    while (head < tail) {
      int x = 0[head++];
      for (int i = 0; i < G[x].size(); i++) {</pre>
       Edge &e = G[x][i];
       if (!dad[e.to] && e.cap - e.flow > 0) {
         dad[e.to] = &G[x][i];
          Q[tail++] = e.to;
    if (!dad[t]) return 0;
```

```
long long totflow = 0;
 for (int i = 0; i < G[t].size(); i++) {</pre>
   Edge *start = &G[G[t][i].to][G[t][i].index];
   int amt = INF;
   for (Edge *e = start; amt && e != dad[s]; e = dad[e->from]) {
     if (!e) { amt = 0; break; }
     amt = min(amt, e->cap - e->flow);
   if (amt == 0) continue;
   for (Edge *e = start; amt && e != dad[s]; e = dad[e->from]) {
     e->flow += amt;
     G[e->to][e->index].flow -= amt;
   totflow += amt;
 return totflow;
long long GetMaxFlow(int s, int t) {
 long long totflow = 0;
  while (long long flow = BlockingFlow(s, t))
   totflow += flow:
  return totflow;
```

MinCostMaxFlow.cc 2/27

```
// Implementation of min cost max flow algorithm using adjacency
// matrix (Edmonds and Karp 1972). This implementation keeps track of
// forward and reverse edges separately (so you can set cap[i][j] !=
// cap[j][i]). For a regular max flow, set all edge costs to 0.
// Running time, O(|V|^2) cost per augmentation
                       O(|V|^3) augmentations
     max flow:
      min cost max flow: O(|V|^4 * MAX_EDGE_COST) augmentations
// INPUT:
     - graph, constructed using AddEdge()
      - source
      - sink
// OUTPUT:
     - (maximum flow value, minimum cost value)
      - To obtain the actual flow, look at positive values only.
#include <cmath>
#include <vector>
#include <iostream>
using namespace std;
typedef vector<int> VI;
typedef vector<VI> VVI;
typedef long long L;
typedef vector<L> VL;
typedef vector<VI> VVI.;
typedef pair<int, int> PII;
typedef vector<PII> VPII;
```

```
const L INF = numeric limits<L>::max() / 4;
struct MinCostMaxFlow {
 int N;
  VVL cap, flow, cost;
  VI found:
  VL dist, pi, width;
  VPII dad;
  MinCostMaxFlow(int N) :
    N(N), cap(N, VL(N)), flow(N, VL(N)), cost(N, VL(N)),
    found(N), dist(N), pi(N), width(N), dad(N) {}
  void AddEdge(int from, int to, L cap, L cost) {
    this->cap[from][to] = cap;
    this->cost[from][to] = cost;
  void Relax(int s, int k, L cap, L cost, int dir) {
   L val = dist[s] + pi[s] - pi[k] + cost;
    if (cap && val < dist[k]) {
     dist[k] = val;
     dad[k] = make_pair(s, dir);
      width[k] = min(cap, width[s]);
  L Dijkstra(int s. int t) {
    fill(found.begin(), found.end(), false);
    fill(dist.begin(), dist.end(), INF);
    fill(width.begin(), width.end(), 0);
    dist[s] = 0;
    width[s] = INF;
    while (s != -1) {
     int best = -1;
      found[s] = true;
      for (int k = 0; k < N; k++) {
       if (found[k]) continue;
        Relax(s, k, cap[s][k] - flow[s][k], cost[s][k], 1);
        Relax(s, k, flow[k][s], -cost[k][s], -1);
        if (best == -1 || dist[k] < dist[best]) best = k;</pre>
      s = best;
    for (int k = 0; k < N; k++)
     pi[k] = min(pi[k] + dist[k], INF);
    return width[t];
  pair<L, L> GetMaxFlow(int s, int t) {
   L totflow = 0, totcost = 0;
    while (L amt = Dijkstra(s, t)) {
      totflow += amt;
      for (int x = t; x != s; x = dad[x].first) {
        if (dad[x].second == 1) {
          flow[dad[x].first][x] += amt;
          totcost += amt * cost[dad[x].first][x];
          flow[x][dad[x].first] -= amt;
          totcost -= amt * cost[x][dad[x].first];
    return make_pair(totflow, totcost);
```

```
};
```

PushRelabel.cc 3/27

```
// Adjacency list implementation of FIFO push relabel maximum flow
// with the gap relabeling heuristic. This implementation is
// significantly faster than straight Ford-Fulkerson. It solves
// random problems with 10000 vertices and 1000000 edges in a few
// seconds, though it is possible to construct test cases that
// achieve the worst-case.
// Running time:
      0(|V|^3)
// INPUT:
      - graph, constructed using AddEdge()
      - source
      - sink
// OUTPUT:
     - maximum flow value
      - To obtain the actual flow values, look at all edges with
        capacity > 0 (zero capacity edges are residual edges).
#include <cmath>
#include <vector>
#include <iostream>
#include <queue>
using namespace std;
typedef long long LL;
struct Edge {
  int from, to, cap, flow, index;
  Edge(int from, int to, int cap, int flow, int index) :
    from(from), to(to), cap(cap), flow(flow), index(index) {}
struct PushRelabel {
 int N;
 vector<vector<Edge> > G;
  vector<LL> excess;
 vector<int> dist, active, count;
  queue<int> Q;
 PushRelabel(int N) : N(N), G(N), excess(N), dist(N), active(N), count(2*N) \{ \}
  void AddEdge(int from. int to. int cap) {
   G[from].push_back(Edge(from, to, cap, 0, G[to].size()));
    if (from == to) G[from].back().index++;
    G[to].push_back(Edge(to, from, 0, 0, G[from].size() - 1));
  void Enqueue(int v) {
    \begin{tabular}{ll} \textbf{if} & (!active[v] & & excess[v] > 0) & active[v] = true; & Q.push(v); \\ \end{tabular} 
  void Push(Edge &e) {
    int amt = int(min(excess[e.from], LL(e.cap - e.flow)));
```

```
if (dist[e.from] <= dist[e.to] || amt == 0) return;</pre>
    e.flow += amt;
    G[e.to][e.index].flow -= amt;
    excess[e.to] += amt;
    excess[e.from] -= amt;
    Enqueue(e.to);
  void Gap(int k) {
    for (int v = 0; v < N; v++) {
      if (dist[v] < k) continue;</pre>
      count[dist[v]]--;
      dist[v] = max(dist[v], N+1);
      count[dist[v]]++;
      Enqueue(v);
  void Relabel(int v) {
    count[dist[v]]--;
    dist[v] = 2*N;
    for (int i = 0; i < G[v].size(); i++)</pre>
     if (G[v][i].cap - G[v][i].flow > 0)
       dist[v] = min(dist[v], dist[G[v][i].to] + 1);
    count[dist[v]]++;
    Enqueue(v);
  void Discharge(int v) {
    for (int i = 0; excess[v] > 0 && i < G[v].size(); i++) Push(G[v][i]);</pre>
    if (excess[v] > 0) {
      if (count[dist[v]] == 1)
        Gap(dist[v]);
      else
        Relabel(v);
  LL GetMaxFlow(int s, int t) {
   count[0] = N-1;
    count[N] = 1;
    dist[s] = N;
    active[s] = active[t] = true;
    for (int i = 0; i < G[s].size(); i++) {</pre>
      excess[s] += G[s][i].cap;
      Push(G[s][i]);
    while (!Q.empty()) {
     int v = 0.front();
      Q.pop();
      active[v] = false;
      Discharge(v);
    LL totflow = 0;
    for (int i = 0; i < G[s].size(); i++) totflow += G[s][i].flow;</pre>
    return totflow;
};
```

MinCostMatching.cc 4/27

```
// Min cost bipartite matching via shortest augmenting paths
\label{eq:continuous} This is an O(n^3) implementation of a shortest augmenting path
// algorithm for finding min cost perfect matchings in dense
// graphs. In practice, it solves 1000x1000 problems in around 1
// second.
    cost[i][j] = cost for pairing left node i with right node j
// Lmate[i] = index of right node that left node i pairs with
// Rmate[j] = index of left node that right node j pairs with
// The values in cost[i][j] may be positive or negative. To perform
// maximization, simply negate the cost[][] matrix.
#include <algorithm>
#include <cstdio>
#include <cmath>
#include <vector>
using namespace std;
typedef vector<double> VD;
typedef vector<VD> VVD;
typedef vector<int> VI;
double MinCostMatching(const VVD &cost, VI &Lmate, VI &Rmate) {
  int n = int(cost.size());
  // construct dual feasible solution
  VD u(n);
  VD v(n);
  for (int i = 0; i < n; i++) {
    u[i] = cost[i][0];
    for (int j = 1; j < n; j++) u[i] = min(u[i], cost[i][j]);</pre>
  for (int j = 0; j < n; j++) {
    v[j] = cost[0][j] - u[0];
    for (int i = 1; i < n; i++) v[j] = min(v[j], cost[i][j] - u[i]);</pre>
  // construct primal solution satisfying complementary slackness
  Lmate = VI(n, -1);
  Rmate = VI(n, -1);
  int mated = 0;
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < n; j++) {
     if (Rmate[j] != -1) continue;
      if (fabs(cost[i][j] - u[i] - v[j]) < le-10) {</pre>
       Lmate[i] = j;
       Rmate[j] = i;
        mated++;
        break;
  VD dist(n);
  VI dad(n);
  VI seen(n);
  // repeat until primal solution is feasible
  while (mated < n) {</pre>
```

```
// find an unmatched left node
 int s = 0;
 while (Lmate[s] != -1) s++;
 // initialize Dijkstra
 fill(dad.begin(), dad.end(), -1);
 fill(seen.begin(), seen.end(), 0);
  for (int k = 0; k < n; k++)
   dist[k] = cost[s][k] - u[s] - v[k];
 int i = 0;
 while (true) {
   // find closest
    for (int k = 0; k < n; k++) {
     if (seen[k]) continue;
     if (j == -1 || dist[k] < dist[j]) j = k;</pre>
    seen[j] = 1;
    // termination condition
    if (Rmate[j] == -1) break;
    // relax neighbors
    const int i = Rmate[j];
    for (int k = 0; k < n; k++) {
     if (seen[k]) continue;
     const double new_dist = dist[j] + cost[i][k] - u[i] - v[k];
     if (dist[k] > new_dist) {
       dist[k] = new_dist;
       dad[k] = j;
 // update dual variables
  for (int k = 0; k < n; k++) {
   if (k == j || !seen[k]) continue;
   const int i = Rmate[k];
   v[k] += dist[k] - dist[j];
   u[i] -= dist[k] - dist[j];
 u[s] += dist[j];
  // augment along path
  while (dad[j] >= 0) {
   const int d = dad[j];
   Rmate[i] = Rmate[d];
   Lmate[Rmate[j]] = j;
    j = d;
 Rmate[j] = s;
 Lmate[s] = j;
 mated++;
double value = 0;
for (int i = 0; i < n; i++)
 value += cost[i][Lmate[i]];
return value;
```

MaxBipartiteMatching.cc 5/27

```
// This code performs maximum bipartite matching.
// Running time: O(|E|\ |V|) -- often much faster in practice
     INPUT: w[i][j] = edge between row node i and column node j
     OUTPUT: mr[i] = assignment for row node i, -1 if unassigned
            mc[j] = assignment for column node j, -1 if unassigned
            function returns number of matches made
#include <vector>
using namespace std;
typedef vector<int> VI;
typedef vector<VI> VVI;
bool FindMatch(int i, const VVI &w, VI &mr, VI &mc, VI &seen) {
 for (int j = 0; j < w[i].size(); j++) {</pre>
    if (w[i][j] && !seen[j]) {
     seen[j] = true;
     if (mc[j] < 0 || FindMatch(mc[j], w, mr, mc, seen)) {</pre>
       mr[i] = i;
       mc[j] = i;
       return true;
 return false;
int BipartiteMatching(const VVI &w, VI &mr, VI &mc) {
 mr = VI(w.size(), -1);
 mc = VI(w[0].size(), -1);
  for (int i = 0; i < w.size(); i++) {</pre>
    VI seen(w[0].size());
    if (FindMatch(i, w, mr, mc, seen)) ct++;
  return ct;
```

MinCut.cc 6/27

```
// Adjacency matrix implementation of Stoer-Wagner min cut algorithm.
//
// Running time:
// O(|V|^3)
//
// INPUT:
// - graph, constructed using AddEdge()
//
// OUTPUT:
// - (min cut value, nodes in half of min cut)
#include <cmath>
#include <iostream>
```

```
using namespace std;
typedef vector<int> VI;
typedef vector<VI> VVI;
const int INF = 1000000000;
pair<int, VI> GetMinCut(VVI &weights) {
 int N = weights.size();
  VI used(N), cut, best_cut;
  int best_weight = -1;
  for (int phase = N-1; phase >= 0; phase--) {
   VI w = weights[0];
    VI added = used;
    int prev. last = 0;
    for (int i = 0; i < phase; i++) {
     prev = last;
      last = -1;
      for (int j = 1; j < N; j++)</pre>
       if (!added[j] && (last == -1 || w[j] > w[last])) last = j;
      if (i == phase-1) {
        for (int j = 0; j < N; j++) weights[prev][j] += weights[last][j];
        for (int j = 0; j < N; j++) weights[j][prev] = weights[prev][j];</pre>
        used[last] = true;
        cut.push_back(last);
        if (best_weight == -1 || w[last] < best_weight) {</pre>
          best cut = cut;
          best_weight = w[last];
      } else {
        for (int j = 0; j < N; j++)
          w[j] += weights[last][j];
        added[last] = true;
  return make_pair(best_weight, best_cut);
```

ConvexHull.cc 7/27

```
// Compute the 2D convex hull of a set of points using the monotone chain
// algorithm. Eliminate redundant points from the hull if REMOVE_REDUNDANT is
// #defined.
//
// Running time: O(n log n)
//
// INPUT: a vector of input points, unordered.
// OUTPUT: a vector of points in the convex hull, counterclockwise, starting
// with bottommost/leftmost point

#include <cstdio>
#include <cassert>
#include <cassert>
#include <calgorithm>
#include <cmath>
using namespace std;
#define REMOVE_REDUNDANT
```

```
typedef double T;
const T EPS = 1e-7;
struct PT {
 Tx, y;
 PT() {}
 PT(T x, T y) : x(x), y(y) {}
 bool operator<(const PT &rhs) const { return make_pair(y,x) < make_pair(rhs.y,rhs.x); }</pre>
 bool operator==(const PT &rhs) const { return make_pair(y,x) == make_pair(rhs.y,rhs.x); }
T cross(PT p, PT q) { return p.x*q.y-p.y*q.x; }
T area2(PT a, PT b, PT c) { return cross(a,b) + cross(b,c) + cross(c,a); }
#ifdef REMOVE REDUNDANT
bool between(const PT &a. const PT &b. const PT &c) {
 return (fabs(area2(a,b,c)) < EPS && (a.x-b.x)*(c.x-b.x) <= 0 && (a.y-b.y)*(c.y-b.y) <= 0);
#endif
void ConvexHull(vector<PT> &pts) {
 sort(pts.begin(), pts.end());
 pts.erase(unique(pts.begin(), pts.end()), pts.end());
  vector<PT> up, dn;
  for (int i = 0; i < pts.size(); i++) {
   while (dn.size() > 1 && area2(dn[dn.size()-2], dn.back(), pts[i]) <= 0) dn.pop_back();</pre>
   up.push_back(pts[i]);
   dn.push_back(pts[i]);
 for (int i = (int) up.size() - 2; i >= 1; i--) pts.push back(up[i]);
#ifdef REMOVE_REDUNDANT
 if (pts.size() <= 2) return;</pre>
 dn clear();
 dn.push_back(pts[0]);
 dn.push_back(pts[1]);
 for (int i = 2; i < pts.size(); i++) {</pre>
   if (between(dn[dn.size()-2], dn[dn.size()-1], pts[i])) dn.pop_back();
   dn.push_back(pts[i]);
  if (dn.size() >= 3 && between(dn.back(), dn[0], dn[1])) {
   dn[0] = dn.back();
   dn.pop_back();
 pts = dn;
#endif
```

Geometry.cc 8/27

```
// C++ routines for computational geometry.
#include <iostream>
#include <vector>
#include <cmath>
#include <casert>
using namespace std;
double INF = le100;
double EFS = le-12;
```

```
struct PT {
 double x, v;
  PT() {}
 PT(double x, double y) : x(x), y(y) {}
 PT(const PT &p) : x(p.x), y(p.y)
  PT operator + (const PT &p) const { return PT(x+p.x, y+p.y);
 PT operator - (const PT &p) const { return PT(x-p.x, y-p.y);
 PT operator * (double c) const { return PT(x*c, y*c );
 PT operator / (double c) const { return PT(x/c, y/c );
double dot(PT p, PT q)
                         { return p.x*q.x+p.y*q.y; }
double dist2(PT p, PT q) { return dot(p-q,p-q); }
double cross(PT p, PT q) { return p.x*q.y-p.y*q.x; }
ostream &operator << (ostream &os, const PT &p) {
 os << "(" << p.x << "," << p.y << ")";
// rotate a point CCW or CW around the origin
PT RotateCCW90(PT p) { return PT(-p.y,p.x);
PT RotateCW90(PT p)
                      { return PT(p.y,-p.x); }
PT RotateCCW(PT p, double t) {
 return PT(p.x*cos(t)-p.y*sin(t), p.x*sin(t)+p.y*cos(t));
// project point c onto line through a and b
// assuming a != b
PT ProjectPointLine(PT a PT b PT c)
 return a + (b-a)*dot(c-a, b-a)/dot(b-a, b-a);
// project point c onto line segment through a and b
PT ProjectPointSegment(PT a, PT b, PT c) {
 double r = dot(b-a,b-a);
 if (fabs(r) < EPS) return a;</pre>
 r = dot(c-a, b-a)/r;
 if (r < 0) return a;
 if (r > 1) return b;
 return a + (b-a)*r;
// compute distance from c to segment between a and b
double DistancePointSegment(PT a PT b PT c) {
 return sqrt(dist2(c, ProjectPointSegment(a, b, c)));
// compute distance between point (x,y,z) and plane ax+by+cz=d
double DistancePointPlane(double x, double y, double z,
                         double a, double b, double c, double d)
 return fabs(a*x+b*y+c*z-d)/sqrt(a*a+b*b+c*c);
// determine if lines from a to b and c to d are parallel or collinear
bool LinesParallel(PT a, PT b, PT c, PT d) {
 return fabs(cross(b-a, c-d)) < EPS;
bool LinesCollinear(PT a, PT b, PT c, PT d) {
 return LinesParallel(a, b, c, d)
      && fabs(cross(a-b, a-c)) < EPS
      && fabs(cross(c-d, c-a)) < EPS;
// determine if line segment from a to b intersects with
```

```
// line segment from c to d
bool SegmentsIntersect(PT a, PT b, PT c, PT d) {
 if (LinesCollinear(a, b, c, d)) {
    if (dist2(a, c) < EPS || dist2(a, d) < EPS ||</pre>
     dist2(b, c) < EPS | | dist2(b, d) < EPS) return true;
    if (dot(c-a, c-b) > 0 && dot(d-a, d-b) > 0 && dot(c-b, d-b) > 0)
     return false;
    return true;
  if (cross(d-a, b-a) * cross(c-a, b-a) > 0) return false;
 if (cross(a-c, d-c) * cross(b-c, d-c) > 0) return false;
 return true;
// compute intersection of line passing through a and b
// with line passing through c and d, assuming that unique
// intersection exists; for segment intersection, check if
// segments intersect first
PT ComputeLineIntersection(PT a, PT b, PT c, PT d) {
  b=b-a; d=c-d; c=c-a;
  assert(dot(b, b) > EPS && dot(d, d) > EPS);
 return a + b*cross(c, d)/cross(b, d);
// compute center of circle given three points
PT ComputeCircleCenter(PT a, PT b, PT c) {
 b=(a+b)/2;
 c = (a+c)/2;
 return ComputeLineIntersection(b, b+RotateCW90(a-b), c, c+RotateCW90(a-c));
// determine if point is in a possibly non-convex polygon (by William
// Randolph Franklin); returns 1 for strictly interior points, 0 for
// strictly exterior points, and 0 or 1 for the remaining points.
// Note that it is possible to convert this into an *exact* test using
// integer arithmetic by taking care of the division appropriately
// (making sure to deal with signs properly) and then by writing exact
// tests for checking point on polygon boundary
bool PointInPolygon(const vector<PT> &p, PT q) {
 bool c = 0;
  for (int i = 0; i < p.size(); i++){
   int i = (i+1)%p.size();
    if ((p[i].y <= q.y && q.y < p[j].y ||</pre>
     p[j].y <= q.y && q.y < p[i].y) &&
     q.x < p[i].x + (p[j].x - p[i].x) * (q.y - p[i].y) / (p[j].y - p[i].y))
     c = !c;
 return ca
// determine if point is on the boundary of a polygon
bool PointOnPolygon(const vector<PT> &p, PT q) {
  for (int i = 0; i < p.size(); i++)</pre>
    if (dist2(ProjectPointSegment(p[i], p[(i+1)%p.size()], q), q) < EPS)</pre>
     return true;
    return false;
// compute intersection of line through points a and b with
// circle centered at c with radius r > 0
vector<PT> CircleLineIntersection(PT a, PT b, PT c, double r) {
  vector<PT> ret;
 b = b-a;
  a = a-c;
  double A = dot(b, b);
```

```
double B = dot(a, b);
  double C = dot(a, a) - r*r;
  double D = B*B - A*C:
  if (D < -EPS) return ret;</pre>
  ret.push back(c+a+b*(-B+sgrt(D+EPS))/A);
  if (D > EPS)
   ret.push_back(c+a+b*(-B-sqrt(D))/A);
  return ret;
// compute intersection of circle centered at a with radius r
// with circle centered at b with radius R
vector<PT> CircleCircleIntersection(PT a, PT b, double r, double R) {
  vector<PT> ret:
  double d = sqrt(dist2(a, b));
  if (d > r+R \mid | d+min(r, R) < max(r, R)) return ret;
  double x = (d*d-R*R+r*r)/(2*d);
  double y = sqrt(r*r-x*x);
  PT v = (b-a)/d;
  ret.push back(a+v*x + RotateCCW90(v)*v);
  if (y > 0)
   ret.push_back(a+v*x - RotateCCW90(v)*y);
  return ret;
// This code computes the area or centroid of a (possibly nonconvex)
// polygon, assuming that the coordinates are listed in a clockwise or
// counterclockwise fashion. Note that the centroid is often known as
// the "center of gravity" or "center of mass".
double ComputeSignedArea(const vector<PT> &p) {
  double area = 0;
  for(int i = 0; i < p.size(); i++) {
   int j = (i+1) % p.size();
    area += p[i].x*p[j].y - p[j].x*p[i].y;
 return area / 2.0;
double ComputeArea(const vector<PT> &p) {
 return fabs(ComputeSignedArea(p));
PT ComputeCentroid(const vector<PT> &p) {
  PT c(0.0);
  double scale = 6.0 * ComputeSignedArea(p);
  for (int i = 0; i < p.size(); i++){
   int j = (i+1) % p.size();
    c = c + (p[i]+p[j])*(p[i].x*p[j].y - p[j].x*p[i].y);
 return c / scale;
// tests whether or not a given polygon (in CW or CCW order) is simple
bool IsSimple(const vector<PT> &p) {
  for (int i = 0; i < p.size(); i++) {
    for (int k = i+1; k < p.size(); k++) {
      int j = (i+1) % p.size();
      int l = (k+1) % p.size();
      if (i == 1 || j == k) continue;
      if (SegmentsIntersect(p[i], p[j], p[k], p[l]))
       return false;
  return true;
```

```
int main() {
  // expected: (-5.2)
 cerr << RotateCCW90(PT(2,5)) << endl;</pre>
 // expected: (5,-2)
 cerr << RotateCW90(PT(2,5)) << endl;</pre>
 // expected: (-5,2)
 cerr << RotateCCW(PT(2,5),M_PI/2) << endl;</pre>
 // expected: (5.2)
 cerr << ProjectPointLine(PT(-5,-2), PT(10,4), PT(3,7)) << endl;</pre>
 // expected: (5.2) (7.5.3) (2.5.1)
 cerr << ProjectPointSegment(PT(-5,-2), PT(10,4), PT(3,7)) << " "</pre>
       << ProjectPointSegment(PT(7.5,3), PT(10,4), PT(3,7)) << " "
       << ProjectPointSegment(PT(-5,-2), PT(2.5,1), PT(3,7)) << endl;</pre>
 // expected: 6.78903
 cerr << DistancePointPlane(4,-4,3,2,-2,5,-8) << endl;</pre>
 // expected: 1 0 1
 cerr << LinesParallel(PT(1,1), PT(3,5), PT(2,1), PT(4,5)) << " "
       << LinesParallel(PT(1,1), PT(3,5), PT(2,0), PT(4,5)) << " "
       << LinesParallel(PT(1,1), PT(3,5), PT(5,9), PT(7,13)) << endl;
 // expected: 0 0 1
 cerr << LinesCollinear(PT(1,1), PT(3,5), PT(2,1), PT(4,5)) << " "
       << LinesCollinear(PT(1,1), PT(3,5), PT(2,0), PT(4,5)) << " "
       << LinesCollinear(PT(1,1), PT(3,5), PT(5,9), PT(7,13)) << endl;
 // expected: 1 1 1 0
 cerr << SegmentsIntersect(PT(0,0), PT(2,4), PT(3,1), PT(-1,3)) << " "
       << SegmentsIntersect(PT(0,0), PT(2,4), PT(4,3), PT(0,5)) << " "
       << SegmentsIntersect(PT(0,0), PT(2,4), PT(2,-1), PT(-2,1)) << " "
       << SegmentsIntersect(PT(0,0), PT(2,4), PT(5,5), PT(1,7)) << end1;
 cerr << ComputeLineIntersection(PT(0.0), PT(2.4), PT(3.1), PT(-1.3)) << endl;</pre>
 // expected: (1,1)
 cerr << ComputeCircleCenter(PT(-3,4), PT(6,1), PT(4,5)) << endl;</pre>
 v.push back(PT(0.0));
 v.push back(PT(5,0));
 v.push back(PT(5,5));
 v.push back(PT(0,5));
 // expected: 1 1 1 0 0
 cerr << PointInPolygon(v, PT(2,2)) << " "
       << PointInPolygon(v, PT(2,0)) << " "
       << PointInPolygon(v, PT(0,2)) << " "
       << PointInPolygon(v, PT(5,2)) << " "
       << PointInPolygon(v, PT(2,5)) << endl;</pre>
 // expected: 0 1 1 1 1
 cerr << PointOnPolygon(v, PT(2,2)) << " "
       << PointOnPolygon(v, PT(2,0)) << " "
       << PointOnPolygon(v, PT(0,2)) << " "
       << PointOnPolygon(v, PT(5,2)) << " "
       << PointOnPolygon(v, PT(2,5)) << endl;
  // expected: (1,6)
```

```
(5,4) (4,5)
             blank line
             (4.5) (5.4)
             blank line
             (4.5) (5.4)
vector<PT> u = CircleLineIntersection(PT(0,6), PT(2,6), PT(1,1), 5);
for (int i = 0; i < u.size(); i++) cerr << u[i] << " "; cerr << endl;</pre>
u = CircleLineIntersection(PT(0.9), PT(9.0), PT(1.1), 5);
for (int i = 0; i < u.size(); i++) cerr << u[i] << " "; cerr << endl;</pre>
u = CircleCircleIntersection(PT(1,1), PT(10,10), 5, 5);
for (int i = 0; i < u.size(); i++) cerr << u[i] << " "; cerr << endl;</pre>
u = CircleCircleIntersection(PT(1,1), PT(8,8), 5, 5);
for (int i = 0; i < u.size(); i++) cerr << u[i] << " "; cerr << endl;</pre>
u = CircleCircleIntersection(PT(1,1), PT(4.5,4.5), 10, sqrt(2.0)/2.0);
for (int i = 0; i < u.size(); i++) cerr << u[i] << " "; cerr << endl;</pre>
u = CircleCircleIntersection(PT(1,1), PT(4.5,4.5), 5, sqrt(2.0)/2.0);
for (int i = 0; i < u.size(); i++) cerr << u[i] << " "; cerr << endl;</pre>
// area should be 5.0
// centroid should be (1.1666666, 1.166666)
PT pa[] = { PT(0,0), PT(5,0), PT(1,1), PT(0,5) };
vector<PT> p(pa, pa+4);
PT c = ComputeCentroid(p);
cerr << "Area: " << ComputeArea(p) << endl;</pre>
cerr << "Centroid: " << c << endl;
return 0:
```

JavaGeometry.java 9/27

```
// In this example, we read an input file containing three lines, each
// containing an even number of doubles, separated by commas. The first two
// lines represent the coordinates of two polygons, given in counterclockwise
// (or clockwise) order, which we will call "A" and "B". The last line
// contains a list of points, p[1], p[2], ...
// Our goal is to determine:
// (1) whether B - A is a single closed shape (as opposed to multiple shapes)
// (2) the area of B - A
// (3) whether each p[i] is in the interior of B-A
// INPUT:
// 0 0 10 0 0 10
// 0 0 10 10 10 0
// 86
// 5 1
// OUTPUT:
// The area is singular.
// The area is 25.0
// Point belongs to the area.
// Point does not belong to the area.
import java.util.*;
import java.awt.geom.*;
import java.io.*;
public class JavaGeometry {
    // make an array of doubles from a string
    static double[] readPoints(String s) {
```

```
String[] arr = s.trim().split("\\s++");
   double[] ret = new double[arr.length];
   for (int i = 0; i < arr.length; i++) ret[i] = Double.parseDouble(arr[i]);</pre>
// make an Area object from the coordinates of a polygon
static Area makeArea(double[] pts) {
   Path2D.Double p = new Path2D.Double();
   p.moveTo(pts[0], pts[1]);
   for (int i = 2; i < pts.length; i += 2) p.lineTo(pts[i], pts[i+1]);</pre>
   p.closePath();
   return new Area(p);
// compute area of polygon
static double computePolygonArea(ArrayList<Point2D.Double> points) {
   Point2D.Double[] pts = points.toArray(new Point2D.Double[points.size()]);
   double area = 0;
   for (int i = 0; i < pts.length; i++){</pre>
       int j = (i+1) % pts.length;
       area += pts[i].x * pts[j].y - pts[j].x * pts[i].y;
   return Math.abs(area)/2;
// compute the area of an Area object containing several disjoint polygons
static double computeArea(Area area) {
   double totArea = 0:
   PathIterator iter = area.getPathIterator(null);
   ArrayList<Point2D.Double> points = new ArrayList<Point2D.Double>();
   while (!iter.isDone()) {
       double[] buffer = new double[6];
        switch (iter.currentSegment(buffer)) {
       case PathIterator.SEG MOVETO:
        case PathIterator.SEG_LINETO:
           points.add(new Point2D.Double(buffer[0], buffer[1]));
           break:
        case PathIterator.SEG_CLOSE:
           totArea += computePolygonArea(points);
           points.clear();
           break:
        iter.next();
// notice that the main() throws an Exception -- necessary to
// avoid wrapping the Scanner object for file reading in a
// try { ... } catch block.
public static void main(String args[]) throws Exception {
   Scanner scanner = new Scanner(new File("input.txt"));
   // also,
   // Scanner scanner = new Scanner (System.in);
   double[] pointsA = readPoints(scanner.nextLine());
   double[] pointsB = readPoints(scanner.nextLine());
   Area areaA = makeArea(pointsA);
   Area areaB = makeArea(pointsB);
   areaB.subtract(areaA);
   // also.
   // areaB.exclusiveOr (areaA);
   // areaB.add (areaA):
```

```
// areaB.intersect (areaA);
// (1) determine whether B - A is a single closed shape (as
     opposed to multiple shapes)
boolean isSingle = areaB.isSingular();
// also.
// areaB.isEmpty();
if (isSingle)
   System.out.println("The area is singular.");
    System.out.println("The area is not singular.");
// (2) compute the area of B - A
System.out.println("The area is " + computeArea(areaB) + ".");
// (3) determine whether each p[i] is in the interior of B - A
while (scanner.hasNextDouble()) {
    double x = scanner.nextDouble();
    assert(scanner.hasNextDouble());
   double y = scanner.nextDouble();
    if (areaB.contains(x,v)) {
        System.out.println ("Point belongs to the area.");
       System.out.println ("Point does not belong to the area.");
// Finally, some useful things we didn't use in this example:
    Ellipse2D.Double ellipse = new Ellipse2D.Double (double x, double y,
                                                     double w. double h):
      creates an ellipse inscribed in box with bottom-left corner (x,y)
       and upper-right corner (x+y,w+h)
    Rectangle2D.Double rect = new Rectangle2D.Double (double x, double y,
                                                      double w. double h):
      creates a box with bottom-left corner (x,y) and upper-right
// Each of these can be embedded in an Area object (e.g., new Area (rect)).
```

Geom3D.java 10/27

```
public class Geom3D {
   // distance from point (x, y, z) to plane aX + bY + cZ + d = 0
   public static double ptPlaneDist(double x, double y, double z,
        double a, double b, double c, double d) {
        return Math.abs(a*x + b*y + c*z + d) / Math.sqrt(a*a + b*b + c*c);
   }

   // distance between parallel planes aX + bY + cZ + dl = 0 and
   // aX + bY + cZ + d2 = 0
   public static double planePlaneDist(double a, double b, double c,
        double d1, double d2) {
        return Math.abs(d1 - d2) / Math.sqrt(a*a + b*b + c*c);
   }
}
```

```
// distance from point (px, py, pz) to line (x1, y1, z1)-(x2, y2, z2)
// (or ray, or segment; in the case of the ray, the endpoint is the
// first point)
public static final int LINE = 0;
public static final int SEGMENT = 1;
public static final int RAY = 2;
public static double ptLineDistSq(double x1, double y1, double z1,
    double x2, double y2, double z2, double px, double py, double pz,
  double pd2 = (x1-x2)*(x1-x2) + (y1-y2)*(y1-y2) + (z1-z2)*(z1-z2);
  double x, y, z;
  if (pd2 == 0) {
   x = x1;
    y = y1;
    z = z1;
  } else {
    double u = ((px-x1)*(x2-x1) + (py-y1)*(y2-y1) + (pz-z1)*(z2-z1)) / pd2;
    x = x1 + u * (x2 - x1);
   y = y1 + u * (y2 - y1);
    z = z1 + u * (z2 - z1);
    if (type != LINE && u < 0) {</pre>
     x = x1;
      y = y1;
      z = z1;
    if (type == SEGMENT && u > 1.0) {
     x = x2;
     y = y2;
      z = z2i
  return (x-px)*(x-px) + (y-py)*(y-py) + (z-pz)*(z-pz);
public static double ptLineDist(double x1, double y1, double z1,
    double x2, double y2, double z2, double px, double py, double pz,
  return Math.sqrt(ptLineDistSq(x1, y1, z1, x2, y2, z2, px, py, pz, type));
```

Delaunay.cc 11/27

```
// Slow but simple Delaunay triangulation. Does not handle
// degenerate cases (from O'Rourke, Computational Geometry in C)
//
// Running time: O(n^4)
//
// INPUT: x[] = x-coordinates
// y[] = y-coordinates
//
// OUTPUT: triples = a vector containing m triples of indices
// corresponding to triangle vertices
#include<vector>
using namespace std;
typedef double T;
```

```
struct triple {
    int i. i. k;
    triple() {}
    triple(int i, int j, int k) : i(i), j(j), k(k) {}
vector<triple> delaunayTriangulation(vector<T>& x, vector<T>& y) {
        int n = x.size();
        vectorsT> z(n):
        vector<triple> ret;
        for (int i = 0; i < n; i++)
            z[i] = x[i] * x[i] + y[i] * y[i];
        for (int i = 0; i < n-2; i++) {
            for (int j = i+1; j < n; j++) {
                for (int k = i+1; k < n; k++) {
                    if (i == k) continue;
                    double xn = (y[j]-y[i])*(z[k]-z[i]) - (y[k]-y[i])*(z[j]-z[i]);
                    double yn = (x[k]-x[i])*(z[j]-z[i]) - (x[j]-x[i])*(z[k]-z[i]);
                    double zn = (x[j]-x[i])*(y[k]-y[i]) - (x[k]-x[i])*(y[j]-y[i]);
                    bool flag = zn < 0;
                    for (int m = 0; flag && m < n; m++)</pre>
                        flag = flag && ((x[m]-x[i])*xn +
                                        (v[m]-v[i])*vn +
                                        (z[m]-z[i])*zn <= 0);
                    if (flag) ret.push_back(triple(i, j, k));
        return ret;
int main()
    T xs[]={0, 0, 1, 0.9};
    T ys[]={0, 1, 0, 0.9};
    vector<T> x(&xs[0], &xs[4]), y(&ys[0], &ys[4]);
    vector<triple> tri = delaunayTriangulation(x, y);
    //expected: 0 1 3
              0 3 2
    for(i = 0; i < tri.size(); i++)</pre>
        printf("%d %d %d\n", tri[i].i, tri[i].j, tri[i].k);
```

Euclid.cc 12/27

```
// This is a collection of useful code for solving problems that
// involve modular linear equations. Note that all of the
// algorithms described here work on nonnegative integers.

#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;

typedef vector<int> VI;
typedef pair<int,int> PII;
```

```
// return a % b (positive value)
int mod(int a, int b) {
 return ((a%b)+b)%b;
// computes qcd(a,b)
int gcd(int a, int b) {
 int tmp;
  while(b){a%=b; tmp=a; a=b; b=tmp;}
 return a;
// computes lcm(a,b)
int lcm(int a, int b)
 return a/gcd(a,b)*b;
// returns d = gcd(a,b); finds x,y such that d = ax + by
int extended_euclid(int a, int b, int &x, int &y) {
 int xx = y = 0;
 int yy = x = 1;
  while (b) {
    int q = a/b;
   int t = b; b = a%b; a = t;
    t = xx; xx = x-q*xx; x = t;
   t = yy; yy = y-q*yy; y = t;
 return a;
// finds all solutions to ax = b (mod n)
VI modular_linear_equation_solver(int a, int b, int n) {
 int x, v;
  VI solutions:
  int d = extended_euclid(a, n, x, y);
  if (!(b%d)) {
    x = mod(x*(b/d), n);
    for (int i = 0; i < d; i++)</pre>
     solutions.push_back(mod(x + i*(n/d), n));
  return solutions;
// computes b such that ab = 1 \pmod{n}, returns -1 on failure
int mod_inverse(int a, int n) {
 int x, y;
  int d = extended euclid(a, n, x, y);
 if (d > 1) return -1;
 return mod(x.n);
// Chinese remainder theorem (special case): find z such that
// z % x = a, z % y = b. Here, z is unique modulo M = lcm(x,y).
// Return (z,M). On failure, M = -1.
PII chinese_remainder_theorem(int x, int a, int y, int b) {
 int s. t;
 int d = extended_euclid(x, y, s, t);
 if (a%d != b%d) return make_pair(0, -1);
 return make_pair(mod(s*b*x+t*a*y,x*y)/d, x*y/d);
// Chinese remainder theorem: find z such that
// z % x[i] = a[i] for all i. Note that the solution is
// unique modulo M = lcm_i (x[i]). Return (z,M). On
// failure, M = -1. Note that we do not require the a[i]'s
```

```
// to be relatively prime.
PII chinese_remainder_theorem(const VI &x, const VI &a) {
  PII ret = make pair(a[0], x[0]);
  for (int i = 1; i < x.size(); i++) {
   ret = chinese_remainder_theorem(ret.second, ret.first, x[i], a[i]);
    if (ret.second == -1) break;
 return ret;
// computes x and y such that ax + by = c; on failure, x = y = -1
void linear_diophantine(int a, int b, int c, int &x, int &y) {
 int d = gcd(a,b);
 if (c%d) {
   x = y = -1;
  } else {
   x = c/d * mod_inverse(a/d, b/d);
    y = (c-a*x)/b;
int main() {
  cout << gcd(14, 30) << endl;
  // expected: 2 -2 1
  int x, y;
  int d = extended_euclid(14, 30, x, y);
  cout << d << " " << x << " " << y << endl;
  // expected: 95 45
  VI sols = modular_linear_equation_solver(14, 30, 100);
  for (int i = 0; i < (int) sols.size(); i++) cout << sols[i] << " ";
  cout << endl;
  // expected: 8
  cout << mod_inverse(8, 9) << endl;</pre>
  // expected: 23 56
            11 12
  int xs[] = {3, 5, 7, 4, 6};
  int as[] = \{2, 3, 2, 3, 5\};
  PII ret = chinese_remainder_theorem(VI (xs, xs+3), VI(as, as+3));
  cout << ret.first << " " << ret.second << endl;
  ret = chinese_remainder_theorem (VI(xs+3, xs+5), VI(as+3, as+5));
  cout << ret.first << " " << ret.second << endl;
  // expected: 5 -15
 linear diophantine(7, 2, 5, x, y);
  cout << x << " " << y << endl;
```

GaussJordan.cc 13/27

```
// Gauss-Jordan elimination with full pivoting.
//
// Uses:
// (1) solving systems of linear equations (AX=B)
// (2) inverting matrices (AX=I)
// (3) computing determinants of square matrices
```

```
// Running time: O(n^3)
// INPUT:
            a[][] = an nxn matrix
             b[][] = an nxm matrix
// OUTPUT: X
                   = an nxm matrix (stored in b[][])
             A^{-1} = an nxn matrix (stored in a[][])
             returns determinant of a[][]
#include <iostream>
#include <vector>
#include <cmath>
using namespace std;
const double EPS = 1e-10;
typedef vectorcint> VI:
typedef double T;
typedef vector<T> VT;
typedef vector<VT> VVT;
T GaussJordan(VVT &a, VVT &b) {
 const int n = a.size();
 const int m = b[0].size();
 VI irow(n), icol(n), ipiv(n);
 T det = 1;
  for (int i = 0; i < n; i++) {
   int pj = -1, pk = -1;
    for (int j = 0; j < n; j++) if (!ipiv[j])</pre>
      for (int k = 0; k < n; k++) if (!ipiv[k])</pre>
       if (pj == -1 || fabs(a[j][k]) > fabs(a[pj][pk])) { pj = j; pk = k; }
    if (fabs(a[pj][pk]) < EPS) { cerr << "Matrix is singular." << endl; exit(0); }</pre>
    ipiv[pk]++;
    swap(a[pj], a[pk]);
    swap(b[pj], b[pk]);
    if (pj != pk) det *= -1;
    irow[i] = pj;
    icol[i] = pk;
    T c = 1.0 / a[pk][pk];
    det *= a[pk][pk];
    a[pk][pk] = 1.0;
    for (int p = 0; p < n; p++) a[pk][p] *= c;</pre>
    for (int p = 0; p < m; p++) b[pk][p] *= c;
    for (int p = 0; p < n; p++) if (p != pk) {
      c = a[p][pk];
      a[p][pk] = 0;
      for (int q = 0; q < n; q++) a[p][q] -= a[pk][q] * c;</pre>
      for (int q = 0; q < m; q++) b[p][q] -= b[pk][q] * c;</pre>
  for (int p = n-1; p >= 0; p--) if (irow[p] != icol[p]) {
   for (int k = 0; k < n; k++) swap(a[k][irow[p]], a[k][icol[p]]);</pre>
 return det;
int main() {
 const int n = 4;
  const int m = 2;
 double A[n][n] = \{ \{1,2,3,4\}, \{1,0,1,0\}, \{5,3,2,4\}, \{6,1,4,6\} \};
```

```
double B[n][m] = \{ \{1,2\}, \{4,3\}, \{5,6\}, \{8,7\} \};
VVT a(n), b(n);
for (int i = 0; i < n; i++) {
 a[i] = VT(A[i], A[i] + n);
  b[i] = VT(B[i], B[i] + m);
double det = GaussJordan(a, b);
// expected: 60
cout << "Determinant: " << det << endl;
// expected: -0.233333 0.166667 0.133333 0.0666667
            0.166667 0.166667 0.333333 -0.333333
            0.233333 0.833333 -0.133333 -0.0666667
            0.05 -0.75 -0.1 0.2
cout << "Inverse: " << endl;
for (int i = 0; i < n; i++)
 for (int j = 0; j < n; j++)
  cout << a[i][j] << ' ';
  cout << endl;
// expected: 1.63333 1.3
            -0.166667 0.5
            2.36667 1.7
            -1.85 -1.35
cout << "Solution: " << endl;
for (int i = 0; i < n; i++) {
 for (int j = 0; j < m; j++)
   cout << b[i][j] << ' ';
  cout << endl;
```

ReducedRowEchelonForm.cc 14/27

```
// Reduced row echelon form via Gauss-Jordan elimination
// with partial pivoting. This can be used for computing
// the rank of a matrix.
// Running time: O(n^3)
// INPUT: a[][] = an nxn matrix
// OUTPUT: rref[][] = an nxm matrix (stored in a[][])
            returns rank of a[][]
#include <iostream>
#include <vector>
#include <cmath>
using namespace std;
const double EPSILON = 1e-10;
typedef double T;
typedef vector<T> VT;
typedef vector<VT> VVT;
int rref(VVT &a) {
 int n = a.size();
```

```
int m = a[0].size();
 int r = 0;
 for (int c = 0; c < m; c++) {
   int j = r;
   for (int i = r+1; i < n; i++)
     if (fabs(a[i][c]) > fabs(a[j][c])) j = i;
   if (fabs(a[j][c]) < EPSILON) continue;</pre>
   swap(a[j], a[r]);
   T s = 1.0 / a[r][c];
    for (int j = 0; j < m; j++) a[r][j] *= s;</pre>
   for (int i = 0; i < n; i++) if (i != r) {
     T t = a[i][c];
     for (int j = 0; j < m; j++) a[i][j] -= t * a[r][j];</pre>
   r++;
 return r;
int main(){
 const int n = 5;
 const int m = 4;
 double A[n][m] = \{ \{16,2,3,13\}, \{5,11,10,8\}, \{9,7,6,12\}, \{4,14,15,1\}, \{13,21,21,13\} \};
 WWT a(n);
 for (int i = 0; i < n; i++)</pre>
   a[i] = VT(A[i], A[i] + n);
 int rank = rref (a);
 // expected: 4
 cout << "Rank: " << rank << endl;
  // expected: 1 0 0 1
             0 1 0 3
               0 0 1 -3
              0 0 0 2.78206e-15
              0 0 0 3.22398e-15
 cout << "rref: " << endl;
 for (int i = 0; i < 5; i++){
   for (int j = 0; j < 4; j++)
     cout << a[i][j] << ' ';
   cout << endl;
```

FFT_new.cpp 15/27

```
#include <cassert>
#include <cstdio>
#include <cmath>

struct cpx
{
    cpx(){}
    cpx(double aa):a(aa){}
    cpx(double aa, double bb):a(aa),b(bb){}
    double a;
    double b;
    double modsq(void) const
    {
        return a * a + b * b;
    }
}
```

```
cpx bar(void) const
    return cpx(a, -b);
cpx operator +(cpx a, cpx b)
  return cpx(a.a + b.a, a.b + b.b);
cpx operator *(cpx a, cpx b)
  return cpx(a.a * b.a - a.b * b.b, a.a * b.b + a.b * b.a);
cpx operator /(cpx a, cpx b)
  cpx r = a * b.bar();
  return cpx(r.a / b.modsq(), r.b / b.modsq());
cpx EXP(double theta)
  return cpx(cos(theta),sin(theta));
const double two_pi = 4 * acos(0);
// in: input array
// out: output array
// step: {SET TO 1} (used internally)
// size: length of the input/output {MUST BE A POWER OF 2}
// dir: either plus or minus one (direction of the FFT)
// RESULT: out[k] = \sum {j=0}^{size - 1} in[j] * exp(dir * 2pi * i * j * k / size)
void FFT(cpx *in, cpx *out, int step, int size, int dir)
  if(size < 1) return;</pre>
  if(size == 1)
    out[0] = in[0];
    return;
  FFT(in, out, step * 2, size / 2, dir);
  FFT(in + step, out + size / 2, step * 2, size / 2, dir);
  for(int i = 0 ; i < size / 2 ; i++)</pre>
    cpx even = out[i];
    cpx odd = out[i + size / 2];
    out[i] = even + EXP(dir * two_pi * i / size) * odd;
    out[i + size / 2] = even + EXP(dir * two_pi * (i + size / 2) / size) * odd;
// Usage:
// f[0...N-1] and g[0..N-1] are numbers
// Want to compute the convolution h, defined by
// h[n] = sum of f[k]g[n-k] (k = 0, ..., N-1).
// Here, the index is cyclic; f[-1] = f[N-1], f[-2] = f[N-2], etc.
// Let F[0...N-1] be FFT(f), and similarly, define G and H.
// The convolution theorem says H[n] = F[n]G[n] (element-wise product).
// To compute h[] in O(N \log N) time, do the following:
// 1. Compute F and G (pass dir = 1 as the argument).
// 2. Get H by element-wise multiplying F and G.
```

```
// 3. Get h by taking the inverse FFT (use dir = -1 as the argument)
       and *dividing by N*. DO NOT FORGET THIS SCALING FACTOR.
int main(void)
  printf("If rows come in identical pairs, then everything works.\n");
  cpx \ a[8] = \{0, 1, cpx(1,3), cpx(0,5), 1, 0, 2, 0\};
 cpx b[8] = \{1, cpx(0,-2), cpx(0,1), 3, -1, -3, 1, -2\};
 cpx A[8];
  cpx B[8];
 FFT(a, A, 1, 8, 1);
 FFT(b, B, 1, 8, 1);
  for(int i = 0 ; i < 8 ; i++)
    printf("%7.21f%7.21f", A[i].a, A[i].b);
  printf("\n");
  for(int i = 0 ; i < 8 ; i++)</pre>
    cpx Ai(0,0);
    for(int j = 0 ; j < 8 ; j++)
     Ai = Ai + a[j] * EXP(j * i * two_pi / 8);
    printf("%7.21f%7.21f", Ai.a, Ai.b);
 printf("\n");
  cpx AB[8];
  for(int i = 0 ; i < 8 ; i++)
   AB[i] = A[i] * B[i];
  cpx aconvb[8];
  FFT(AB, aconvb, 1, 8, -1);
  for(int i = 0 ; i < 8 ; i++)
    aconvb[i] = aconvb[i] / 8;
  for(int i = 0 ; i < 8 ; i++)
   printf("%7.21f%7.21f", aconvb[i].a, aconvb[i].b);
 printf("\n");
  for(int i = 0 ; i < 8 ; i++)</pre>
    cpx aconvbi(0,0);
    for(int j = 0 ; j < 8 ; j++)
     aconvbi = aconvbi + a[j] * b[(8 + i - j) % 8];
    printf("%7.21f%7.21f", aconvbi.a, aconvbi.b);
 printf("\n");
  return 0;
```

Simplex.cc 16/27

```
// Two-phase simplex algorithm for solving linear programs of the form // maximize c^T x // subject to Ax <= b
```

```
x >= 0
// INPUT: A -- an m x n matrix
         b -- an m-dimensional vector
         c -- an n-dimensional vector
          x -- a vector where the optimal solution will be stored
// OUTPUT: value of the optimal solution (infinity if unbounded
           above, nan if infeasible)
// To use this code, create an LPSolver object with A, b, and c as
// arguments. Then, call Solve(x).
#include <iostream>
#include <iomanip>
#include <vector>
#include <cmath>
#include <limits>
using namespace std;
typedef long double DOUBLE;
typedef vector<DOUBLE> VD:
typedef vector<VD> VVD;
typedef vector<int> VI;
const DOUBLE EPS = 1e-9;
struct LPSolver {
 int m. n;
 VI B, N;
  VVD D;
  LPSolver(const VVD &A, const VD &b, const VD &c) :
   m(b.size()), n(c.size()), N(n+1), B(m), D(m+2, VD(n+2)) {
    for (int i = 0; i < m; i++) for (int j = 0; j < n; j++) D[i][j] = A[i][j];</pre>
    for (int i = 0; i < m; i++) { B[i] = n+i; D[i][n] = -1; D[i][n+1] = b[i]; }</pre>
    for (int j = 0; j < n; j++) \{N[j] = j; D[m][j] = -c[j]; \}
   N[n] = -1; D[m+1][n] = 1;
  void Pivot(int r, int s) {
   for (int i = 0; i < m+2; i++) if (i != r)
      for (int j = 0; j < n+2; j++) if (j != s)</pre>
      D[i][j] = D[r][j] * D[i][s] / D[r][s];
    for (int j = 0; j < n+2; j++) if (j != s) D[r][j] /= D[r][s];</pre>
    for (int i = 0; i < m+2; i++) if (i != r) D[i][s] /= -D[r][s];</pre>
    D[r][s] = 1.0 / D[r][s];
    swap(B[r], N[s]);
 bool Simplex(int phase) {
   int x = phase == 1 ? m+1 : m;
    while (true) {
      int s = -1;
      for (int j = 0; j <= n; j++) {</pre>
        if (phase == 2 && N[j] == -1) continue;
        if (s == -1 \mid \mid D[x][j] < D[x][s] \mid \mid D[x][j] == D[x][s] && N[j] < N[s]) s = j;
      if (D[x][s] >= -EPS) return true;
      int r = -1;
      for (int i = 0; i < m; i++) {
        if (D[i][s] <= 0) continue;</pre>
        if (r == -1 | D[i][n+1] / D[i][s] < D[r][n+1] / D[r][s] | |</pre>
            D[i][n+1] / D[i][s] == D[r][n+1] / D[r][s] && B[i] < B[r]) r = i;
```

```
if (r == -1) return false;
     Pivot(r, s);
 DOUBLE Solve(VD &x) {
    int r = 0;
    for (int i = 1; i < m; i++) if (D[i][n+1] < D[r][n+1]) r = i;</pre>
    if (D[r][n+1] <= -EPS) {</pre>
     Pivot(r, n);
     if (!Simplex(1) | D[m+1][n+1] < -EPS) return -numeric_limits<DOUBLE>::infinity();
     for (int i = 0; i < m; i++) if (B[i] == -1) {
       int s = -1;
       for (int j = 0; j <= n; j++)
         if (s == -1 || D[i][j] < D[i][s] || D[i][j] == D[i][s] && N[j] < N[s]) s = j;
       Pivot(i, s);
    if (!Simplex(2)) return numeric_limits<DOUBLE>::infinity();
    for (int i = 0; i < m; i++) if (B[i] < n) x[B[i]] = D[i][n+1];
    return D[m][n+1];
};
int main() {
  const int m = 4;
 const int n = 3;
  DOUBLE _A[m][n] = {
    { 6, -1, 0 },
     -1, -5, 0 },
    { 1, 5, 1 },
    { -1, -5, -1 }
  DOUBLE _b[m] = { 10, -4, 5, -5 };
 DOUBLE _{c[n]} = \{ 1, -1, 0 \};
 VVD A(m);
 VD b(_b, _b + m);
 VD c(_c, _c + n);
  for (int i = 0; i < m; i++) A[i] = VD(_A[i], _A[i] + n);</pre>
 LPSolver solver(A, b, c);
 VD x;
 DOUBLE value = solver.Solve(x);
  cerr << "VALUE: "<< value << endl;
  cerr << "SOLUTION:";
 for (size t i = 0; i < x.size(); i++) cerr << " " << x[i];</pre>
  cerr << endl;
```

FastDijkstra.cc 17/27

```
// Implementation of Dijkstra's algorithm using adjacency lists // and priority queue for efficiency. // // Running time: O(|E| \log |V|)
```

```
#include <queue>
#include <stdio.h>
using namespace std;
const int INF = 2000000000;
typedef pair<int,int> PII;
int main(){
  int N, s, t;
  scanf ("%d%d%d", &N, &s, &t);
  vectorsvectorsPIT> > edges(N);
  for (int i = 0; i < N; i++) {
    int M;
    scanf ("%d", &M);
    for (int j = 0; j < M; j++){
      int vertex, dist;
     scanf ("%d%d", &vertex, &dist);
      edges[i].push_back (make_pair (dist, vertex)); // note order of arguments here
  // use priority queue in which top element has the "smallest" priority
 priority_queue<PII, vector<PII>, greater<PII> > Q;
  vector<int> dist(N, INF), dad(N, -1);
  Q.push (make_pair (0, s));
  dist[s] = 0;
  while (!Q.empty()){
   PII p = O.top();
   if (p.second == t) break;
    Q.pop();
    int here = p.second;
    for (vector<PII>::iterator it=edges[here].begin(); it!=edges[here].end(); it++){
      if (dist[here] + it->first < dist[it->second]){
       dist[it->second] = dist[here] + it->first;
        dad[it->second] = here;
        Q.push (make_pair (dist[it->second], it->second));
  printf ("%d\n", dist[t]);
  if (dist[t] < INF)</pre>
   for(int i=t;i!=-1;i=dad[i])
     printf ("%d%c", i, (i==s?'\n':' '));
  return 0;
```

SCC.cc 18/27

```
#include<memory.h>
struct edge(int e, nxt;);
int V, E;
edge e[MAXE], er[MAXE];
int sp[MAXV], spr[MAXV];
int group_ent, group_num[MAXV];
bool v[MAXV];
int stk[MAXV];
void fill_forward(int x)
{
   int i;
```

```
for(i=sp[x];i;i=e[i].nxt) if(!v[e[i].e]) fill_forward(e[i].e);
 stk[++stk[0]]=x;
void fill backward(int x)
  int i;
 v[x]=false;
 group_num[x]=group_cnt;
  for(i=spr[x];i;i=er[i].nxt) if(v[er[i].e]) fill_backward(er[i].e);
void add_edge(int v1, int v2) //add edge v1->v2
 e [++E].e=v2; e [E].nxt=sp [v1]; sp [v1]=E;
 er[ E].e=v1; er[E].nxt=spr[v2]; spr[v2]=E;
void SCC()
  int i;
 stk[0]=0;
 memset(v, false, sizeof(v));
 for(i=1;i<=V;i++) if(!v[i]) fill_forward(i);</pre>
 group_cnt=0;
 for(i=stk[0];i>=1;i--) if(v[stk[i]]){group_cnt++; fill_backward(stk[i]);}
```

SuffixArray.cc 19/27

```
// Suffix array construction in O(L log^2 L) time. Routine for
// computing the length of the longest common prefix of any two
// suffixes in O(log L) time.
// INPUT: string s
// OUTPUT: array suffix[] such that suffix[i] = index (from 0 to L-1)
            of substring s[i...L-1] in the list of sorted suffixes.
           That is, if we take the inverse of the permutation suffix[],
            we get the actual suffix array.
#include <vector>
#include <iostream>
#include <string>
using namespace std;
struct SuffixArray {
 const int L;
  string s;
 vector<vector<int> > P;
  vector<pair<pair<int,int>,int> > M;
  SuffixArray(const string &s) : L(s.length()), s(s), P(1, vector<int>(L, 0)), M(L) {
    for (int i = 0; i < L; i++) P[0][i] = int(s[i]);</pre>
    for (int skip = 1, level = 1; skip < L; skip *= 2, level++) {</pre>
     P.push_back(vector<int>(L, 0));
     for (int i = 0; i < L; i++)
       M[i] = make_pair(make_pair(P[level-1][i], i + skip < L ? P[level-1][i + skip] : -1000), i);
      sort(M.begin(), M.end());
     for (int i = 0; i < T; i++)
       P[level][M[i].second] = (i > 0 \&\& M[i].first == M[i-1].first) ? P[level][M[i-1].second] : i;
```

```
vector<int> GetSuffixArray() { return P.back(); }
  // returns the length of the longest common prefix of s[i...L-1] and s[j...L-1]
  int LongestCommonPrefix(int i, int j) {
    int len = 0;
    if (i == j) return L - i;
    for (int k = P.size() - 1; k >= 0 && i < L && j < L; k--) {
     if (P[k][i] == P[k][j]) {
       i += 1 << k;
       j += 1 << k;
        len += 1 << k;
    return len;
int main() {
  // bobocel is the O'th suffix
 // obocel is the 5'th suffix
  // bocel is the 1'st suffix
       ocel is the 6'th suffix
        cel is the 2'nd suffix
        el is the 3'rd suffix
          1 is the 4'th suffix
  SuffixArray suffix("bobocel");
  vector<int> v = suffix.GetSuffixArray();
  // Expected output: 0 5 1 6 2 3 4
  for (int i = 0; i < v.size(); i++) cout << v[i] << " ";</pre>
  cout << endl:
  cout << suffix.LongestCommonPrefix(0, 2) << endl;</pre>
```

BIT.cc 20/27

```
#include <iostream>
using namespace std;
#define LOGSZ 17
int tree[(1<<LOGSZ)+1];
int N = (1<<LOGSZ);</pre>
// add v to value at x
void set(int x, int v) {
  while(x <= N) {
    tree[x] += v;
    x += (x & -x);
// get cumulative sum up to and including \boldsymbol{x}
int get(int x) {
  int res = 0;
  while(x) {
    res += tree[x];
    x -= (x & -x);
  return res;
```

```
}

// get largest value with cumulative sum less than or equal to x;

// for smallest, pass x-1 and add 1 to result
int getind(int x) {
   int idx = 0, mask = N;
   while(mask && idx < N) {
    int t = idx + mask;
    if(x >= tree[t]) {
    idx = t;
        x -= tree[t];
   }
   mask >>= 1;
   }
   return idx;
}
```

UnionFind.cc 21/27

```
//union-find set: the vector/array contains the parent of each node int find(vector <int>& C, int x){return (C[x]==x) ? x : C[x]=find(C, C[x]);} //C++ int find(int x){return (C[x]==x)?x:C[x]=find(C[x]);} //C
```

KDTree.cc 22/27

```
// A straightforward, but probably sub-optimal KD-tree implmentation that's
// probably good enough for most things (current it's a 2D-tree)
// - constructs from n points in O(n \lg^2 n) time
   - handles nearest-neighbor query in O(lq n) if points are well distributed
// - worst case for nearest-neighbor may be linear in pathological case
// Sonny Chan, Stanford University, April 2009
#include <iostream>
#include <vector>
#include <limits>
#include <cstdlib>
using namespace std;
// number type for coordinates, and its maximum value
typedef long long ntype;
const ntype sentry = numeric_limits<ntype>::max();
// point structure for 2D-tree, can be extended to 3D
struct point {
    ntype x, y;
    point(ntype xx = 0, ntype yy = 0) : x(xx), y(yy) {}
};
bool operator == (const point &a, const point &b)
    return a.x == b.x && a.y == b.y;
// sorts points on x-coordinate
```

```
bool on_x(const point &a, const point &b)
    return a.x < b.x;
// sorts points on y-coordinate
bool on_y(const point &a, const point &b)
    return a.y < b.y;
// squared distance between points
ntype pdist2(const point &a, const point &b)
    ntype dx = a.x-b.x, dy = a.y-b.y;
   return dx*dx + dy*dy;
// bounding box for a set of points
struct bbox
   ntype x0, x1, y0, y1;
   bbox() : x0(sentry), x1(-sentry), y0(sentry), y1(-sentry) {}
   // computes bounding box from a bunch of points
    void compute(const vector<point> &v) {
       for (int i = 0; i < v.size(); ++i) {
           x0 = min(x0, v[i].x); x1 = max(x1, v[i].x);
           y0 = min(y0, v[i].y); y1 = max(y1, v[i].y);
   // squared distance between a point and this bbox. 0 if inside
   ntype distance(const point &p) {
       if (p.x < x0) {
           if (p.y < y0)
                               return pdist2(point(x0, y0), p);
            else if (p.y > y1) return pdist2(point(x0, y1), p);
            else
                               return pdist2(point(x0, p.y), p);
        else if (p.x > x1) {
           if (p.y < y0)
                               return pdist2(point(x1, y0), p);
            else if (p.y > y1) return pdist2(point(x1, y1), p);
                               return pdist2(point(x1, p.y), p);
            else
           if (p.y < y0)
                               return pdist2(point(p.x, y0), p);
            else if (p.y > yl) return pdist2(point(p.x, yl), p);
                                return 0;
};
// stores a single node of the kd-tree, either internal or leaf
struct kdnode
   bool leaf;
                   // true if this is a leaf node (has one point)
                   // the single point of this is a leaf
   point pt;
    bbox bound;
                   // bounding box for set of points in children
   kdnode *first, *second; // two children of this kd-node
   kdnode() : leaf(false), first(0), second(0) {}
   ~kdnode() { if (first) delete first; if (second) delete second; }
   // intersect a point with this node (returns squared distance)
```

```
ntype intersect(const point &p) {
       return bound.distance(p);
    // recursively builds a kd-tree from a given cloud of points
    void construct(vector<point> &vp)
        // compute bounding box for points at this node
       bound.compute(vp);
        // if we're down to one point, then we're a leaf node
        if (vp.size() == 1) {
            leaf = true;
            pt = vp[0];
        else
            // split on x if the bbox is wider than high (not best heuristic...)
            if (bound.x1-bound.x0 >= bound.y1-bound.y0)
                sort(vp.begin(), vp.end(), on_x);
            // otherwise split on y-coordinate
               sort(vp.begin(), vp.end(), on_y);
            // divide by taking half the array for each child
            // (not best performance if many duplicates in the middle)
            int half = vp.size()/2;
            vector<point> vl(vp.begin(), vp.begin()+half);
            vector<point> vr(vp.begin()+half, vp.end());
            first = new kdnode(); first->construct(vl);
            second = new kdnode(); second->construct(vr);
};
// simple kd-tree class to hold the tree and handle queries
struct kdtree
    kdnode *root;
    // constructs a kd-tree from a points (copied here, as it sorts them)
    kdtree(const vector<point> &vp) {
       vector<point> v(vp.begin(), vp.end());
        root = new kdnode();
       root->construct(v);
    ~kdtree() { delete root; }
    // recursive search method returns squared distance to nearest point
    ntype search(kdnode *node, const point &p)
        if (node->leaf) {
            // commented special case tells a point not to find itself
             if (p == node->pt) return sentry;
             else
               return pdist2(p, node->pt);
        ntype bfirst = node->first->intersect(p);
        ntype bsecond = node->second->intersect(p);
        // choose the side with the closest bounding box to search first
        // (note that the other side is also searched if needed)
        if (bfirst < bsecond) {</pre>
            ntype best = search(node->first, p);
            if (bsecond < best)
```

```
best = min(best, search(node->second, p));
            return best;
            ntype best = search(node->second, p);
            if (bfirst < best)
               best = min(best, search(node->first, p));
            return best;
    // squared distance to the nearest
    ntype nearest(const point &p) {
       return search(root, p);
// some basic test code here
int main()
    // generate some random points for a kd-tree
    for (int i = 0; i < 100000; ++i) {
        vp.push_back(point(rand()%100000, rand()%100000));
    kdtree tree(vp);
    // query some points
    for (int i = 0; i < 10; ++i) {
        point q(rand()%100000, rand()%100000);
        cout << "Closest squared distance to (" << q.x << ", " << q.y << ")"
            << " is " << tree.nearest(g) << endl;
    return 0;
```

LongestIncreasingSubsequence.cc 23/27

```
// Given a list of numbers of length n, this routine extracts a
// longest increasing subsequence.
//
// Running time: O(n log n)
//
// INPUT: a vector of integers
// OUTPUT: a vector containing the longest increasing subsequence
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
typedef vector<int> VI;
typedef pair<int,int> PII;
typedef vector<PII> VPII;
#define STRICTLY_INCREASNG
```

```
VI LongestIncreasingSubsequence(VI v) {
 VPII best;
 VI dad(v.size(), -1);
  for (int i = 0; i < v.size(); i++) {
#ifdef STRICTLY INCREASING
    PII item = make_pair(v[i], 0);
    VPII::iterator it = lower_bound(best.begin(), best.end(), item);
    item second = i:
#else
    PII item = make_pair(v[i], i);
    VPII::iterator it = upper_bound(best.begin(), best.end(), item);
#endif
    if (it == best.end()) {
     dad[i] = (best.size() == 0 ? -1 : best.back().second);
     best.push_back(item);
     dad[i] = dad[it->second];
      *it = item;
  for (int i = best.back().second; i >= 0; i = dad[i])
    ret.push back(v[i]);
  reverse(ret.begin(), ret.end());
 return ret;
```

Dates.cc 24/27

```
// Routines for performing computations on dates. In these routines,
// months are expressed as integers from 1 to 12, days are expressed
// as integers from 1 to 31, and years are expressed as 4-digit
// integers.
#include <iostream>
#include <string>
using namespace std;
string dayOfWeek[] = {"Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"};
// converts Gregorian date to integer (Julian day number)
int dateToInt (int m, int d, int y){
 return
    1461 * (y + 4800 + (m - 14) / 12) / 4 +
    367 * (m - 2 - (m - 14) / 12 * 12) / 12 -
    3 * ((y + 4900 + (m - 14) / 12) / 100) / 4 +
    d - 32075;
// converts integer (Julian day number) to Gregorian date: month/day/year
void intToDate (int jd, int &m, int &d, int &y){
 int x, n, i, j;
  x = id + 68569;
 n = 4 * x / 146097;
 x -= (146097 * n + 3) / 4;
 i = (4000 * (x + 1)) / 1461001;
 x -= 1461 * i / 4 - 31;
  j = 80 * x / 2447;
  d = x - 2447 * j / 80;
```

```
x = j / 11;
 m = i + 2 - 12 * x_i
 y = 100 * (n - 49) + i + x;
// converts integer (Julian day number) to day of week
string intToDay (int jd){
 return dayOfWeek[jd % 7];
int main (int argc, char **argv){
 int jd = dateToInt (3, 24, 2004);
  int m, d, y;
 intToDate (id. m. d. v);
 string day = intToDay (jd);
 // expected output:
  // 2453089
 // 3/24/2004
 cout << id << endl
   << m << "/" << d << "/" << y << endl
    << day << endl;
```

LogLan.java 25/27

```
// Code which demonstrates the use of Java's regular expression libraries.
// This is a solution for
// Loglan: a logical language
// http://acm.uva.es/p/v1/134.html
// In this problem, we are given a regular language, whose rules can be
// inferred directly from the code. For each sentence in the input, we must
// determine whether the sentence matches the regular expression or not. The
// code consists of (1) building the regular expression (which is fairly
// complex) and (2) using the regex to match sentences.
import java.util.*;
import java.util.regex.*;
public class LogLan {
    public static String BuildRegex (){
        String space = " +";
        String A = "([aeiou])";
        String C = "([a-z&&[^aeiou]])";
        String MOD = "(a" + \Delta + ")";
        String BA = "(b" + A + ")";
        String DA = (d" + A + ")";
        String LA = "(1" + A + ")";
        String NAM = "([a-z]*" + C + ")";
        String PREDA = "(" + C + C + A + C + A + " | " + C + A + C + C + A + ")";
        String predstring = "(" + PREDA + "(" + space + PREDA + ")*)";
        String predname = "(" + LA + space + predstring + " | " + NAM + ")";
        String preds = "(" + predstring + "(" + space + A + space + predstring + ")*)";
        String predclaim = "(" + predname + space + BA + space + preds + " | " + DA + space +
        String verbpred = "(" + MOD + space + predstring + ")";
```

```
String statement = "(" + predname + space + verbpred + space + predname + "|" +
       predname + space + verbpred + ")";
   String sentence = "(" + statement + "|" + predclaim + ")";
   return "^" + sentence + "$";
public static void main (String args[]){
   String regex = BuildRegex();
   Pattern pattern = Pattern.compile (regex);
   Scanner s = new Scanner(System.in);
   while (true) {
       // In this problem, each sentence consists of multiple lines, where the last
       // line is terminated by a period. The code below reads lines until
       // encountering a line whose final character is a '.'. Note the use of
            s.length() to get length of string
           s.charAt() to extract characters from a Java string
            s.trim() to remove whitespace from the beginning and end of Java string
       // Other useful String manipulation methods include
            s.compareTo(t) < 0 if s < t, lexicographically
            s.indexOf("apple") returns index of first occurrence of "apple" in s
           s.lastIndexOf("apple") returns index of last occurrence of "apple" in s
       // s.replace(c.d) replaces occurrences of character c with d
            s.startsWith("apple) returns (s.indexOf("apple") == 0)
            s.toLowerCase() / s.toUpperCase() returns a new lower/uppercased string
            Integer.parseInt(s) converts s to an integer (32-bit)
            Long.parseLong(s) converts s to a long (64-bit)
            Double.parseDouble(s) converts s to a double
       String sentence = "";
       while (true) {
           sentence = (sentence + " " + s.nextLine()).trim();
           if (sentence.equals("#")) return;
           if (sentence.charAt(sentence.length()-1) == '.') break;
       // now, we remove the period, and match the regular expression
       String removed_period = sentence.substring(0, sentence.length()-1).trim();
       if (pattern.matcher (removed_period).find()){
           System.out.println ("Good");
       } else {
           System.out.println ("Bad!");
```

Primes.cc 26/27

```
// O(sqrt(x)) Exhaustive Primality Test
#include <math>
#define EPS le-7
typedef long long LL;
bool IsPrimeSlow (LL x)
```

```
if(x<=1) return false;</pre>
 if(x<=3) return true;
  if (!(x%2) || !(x%3)) return false;
 LL s=(LL)(sgrt((double)(x))+EPS);
  for(LL i=5;i<=s;i+=6)
   if (!(x%i) | | !(x%(i+2))) return false;
// Primes less than 1000:
   2 3 5 7
         43
              47
                   53
                       59
                             61
                                 67
                                      71 73 79
                                                     83
         101
              103
                  107
                       109
                            113 127
                                      131
                                          137
                                               139
                                                    149
                                                         151
    157
         163
              167
                   173
                       179
                            181 191
                                      193
                                           197
                                               199
                                                    211
    227 229 233 239
                       241 251 257
                                      263 269
                                              271
                                                    277
                                                         281
    283 293 307 311 313 317 331
                                     337 347 349
                                                    353
    367
         373
              379
                   383
                       389
                            397
                                 401
                                      409
                                          419
                                               421
                                                    431
    439 443
              449
                  457
                       461
                            463
                                 467
                                      479
                                           487
                                               491
                                                    499
                                                         503
    509 521 523 541
                       547 557
                                563
                                     569 571 577
                                                    587
                                                         593
    599 601
                   613
                       617
                            619
    661 673 677
                                               733
                   683
                       691
                            701
                                709
                                      719
                                          727
                                                    739
                                                         743
    751
         757
              761
                   769
                       773
                            787
                                 797
                                      809
                                           811
                                               821
                                                    823
    829 839 853 857 859 863 877 881 883 887
                                                   907
                                                         911
    919 929 937 941 947 953 967 971 977 983 991
// Other primes:
// The largest prime smaller than 10 is 7.
// The largest prime smaller than 100 is 97.
    The largest prime smaller than 1000 is 997.
    The largest prime smaller than 10000 is 9973.
    The largest prime smaller than 100000 is 99991.
    The largest prime smaller than 1000000 is 999983.
    The largest prime smaller than 10000000 is 9999991.
    The largest prime smaller than 100000000 is 99999989.
    The largest prime smaller than 1000000000 is 999999937.
    The largest prime smaller than 10000000000 is 9999999967.
    The largest prime smaller than 10000000000 is 99999999977.
    The largest prime smaller than 100000000000 is 999999999971.
    The largest prime smaller than 1000000000000 is 9999999999973.
    The largest prime smaller than 100000000000000 is 99999999999937.
    The largest prime smaller than 1000000000000000 is 99999999999997.
```

KMP.cpp 27/27

```
/*
Searches for the string w in the string s (of length k). Returns the
0-based index of the first match (k if no match is found). Algorithm
runs in O(k) time.
*/
#include <iostream>
#include <string>
#include <vector>
using namespace std;
```

```
typedef vector<int> VI;
void buildTable(string& w, VI& t)
 t = VI(w.length());
 int i = 2, j = 0;
 t[0] = -1; t[1] = 0;
 while(i < w.length())</pre>
    if(w[i-1] == w[j]) { t[i] = j+1; i++; j++; }
   else if(j > 0) j = t[j];
else { t[i] = 0; i++; }
int KMP(string& s, string& w)
 int m = 0, i = 0;
 VI t;
 buildTable(w, t);
 while(m+i < s.length())</pre>
    if(w[i] == s[m+i])
     if(i == w.length()) return m;
    else
     m += i-t[i];
     if(i > 0) i = t[i];
  return s.length();
int main()
 string a = (string) "The example above illustrates the general technique for assembling "+
    "the table with a minimum of fuss. The principle is that of the overall search: "+
    "most of the work was already done in getting to the current position, so very "+
    "little needs to be done in leaving it. The only minor complication is that the "+
    "logic which is correct late in the string erroneously gives non-proper "+
    "substrings at the beginning. This necessitates some initialization code.";
 string b = "table";
 int p = KMP(a, b);
 cout << p << ": " << a.substr(p, b.length()) << " " << b << endl;
```

Generated by GNU enscript 1.6.1.

	Theoretical	Computer Science Cheat Sheet
	Definitions	Series
f(n) = O(g(n))	iff \exists positive c, n_0 such that $0 \le f(n) \le cg(n) \ \forall n \ge n_0$.	$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}, \sum_{i=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6}, \sum_{i=1}^{n} i^{3} = \frac{n^{2}(n+1)^{2}}{4}.$
$f(n) = \Omega(g(n))$	iff \exists positive c, n_0 such that $f(n) \ge cg(n) \ge 0 \ \forall n \ge n_0$.	In general:
$f(n) = \Theta(g(n))$	iff $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.	$\sum_{i=1}^{n} i^{m} = \frac{1}{m+1} \left[(n+1)^{m+1} - 1 - \sum_{i=1}^{n} \left((i+1)^{m+1} - i^{m+1} - (m+1)i^{m} \right) \right]$
f(n) = o(g(n))	iff $\lim_{n\to\infty} f(n)/g(n) = 0$.	$\sum_{i=1}^{m-1} i^m = \frac{1}{m+1} \sum_{k=0}^{m} {m+1 \choose k} B_k n^{m+1-k}.$
$\lim_{n \to \infty} a_n = a$	iff $\forall \epsilon > 0$, $\exists n_0$ such that $ a_n - a < \epsilon$, $\forall n \ge n_0$.	Geometric series:
$\sup S$	least $b \in \mathbb{R}$ such that $b \ge s$, $\forall s \in S$.	$\sum_{i=0}^{n} c^{i} = \frac{c^{n+1}-1}{c-1}, c \neq 1, \sum_{i=0}^{\infty} c^{i} = \frac{1}{1-c}, \sum_{i=1}^{\infty} c^{i} = \frac{c}{1-c}, c < 1,$
$\inf S$	greatest $b \in \mathbb{R}$ such that $b \le s$, $\forall s \in S$.	$ \sum_{i=0}^{n} ic^{i} = \frac{nc^{n+2} - (n+1)c^{n+1} + c}{(c-1)^{2}}, c \neq 1, \sum_{i=0}^{\infty} ic^{i} = \frac{c}{(1-c)^{2}}, c < 1 $
$ \liminf_{n \to \infty} a_n $	$\lim_{n\to\infty}\inf\{a_i\mid i\geq n, i\in\mathbb{N}\}.$	Harmonic series: $H_n = \sum_{i=1}^{n} \frac{1}{i}, \qquad \sum_{i=1}^{n} iH_i = \frac{n(n+1)}{2}H_n - \frac{n(n-1)}{4}.$
$\limsup_{n\to\infty} a_n$	$\lim_{n \to \infty} \sup \{ a_i \mid i \ge n, i \in \mathbb{N} \}.$	<i>i</i> =1
$\binom{n}{k}$	Combinations: Size k subsets of a size n set.	$\sum_{i=1}^{n} H_i = (n+1)H_n - n, \sum_{i=1}^{n} {i \choose m} H_i = {n+1 \choose m+1} \left(H_{n+1} - \frac{1}{m+1} \right).$
$\begin{bmatrix} n \\ k \end{bmatrix}$	Stirling numbers (1st kind): Arrangements of an n ele-	1. $\binom{n}{k} = \frac{n!}{(n-k)!k!}$, 2. $\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$, 3. $\binom{n}{k} = \binom{n}{n-k}$, 4. $\binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}$, 5. $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$,
(n)	ment set into k cycles. Stirling numbers (2nd kind):	$4. \binom{n}{l} = \frac{n}{l} \binom{n-1}{l}, \qquad \qquad 5. \binom{n}{l} = \binom{n-1}{l} + \binom{n-1}{l},$
$\binom{n}{k}$	Partitions of an n element set into k non-empty sets.	$ \begin{bmatrix} k & k & k-1 \\ 0 & \binom{n}{m} \binom{m}{k} = \binom{n}{k} \binom{n-k}{m-k}, & (k) & (k-1) \\ 0 & \binom{n}{m} \binom{m}{k} = \binom{n-k}{k} \binom{n-k}{m-k}, & (k) & (k) & (k-1) \\ 0 & \binom{n}{m} \binom{m}{k} = \binom{n-k}{k} \binom{n-k}{m-k}, & (k) & (k) & (k-1) \\ 0 & \binom{n}{m} \binom{m}{k} = \binom{n-k}{k} \binom{n-k}{m-k}, & (k) & (k) & (k-1) \\ 0 & \binom{n}{m} \binom{m}{k} = \binom{n-k}{k} \binom{n-k}{m-k}, & (k) & (k) & (k-1) \\ 0 & \binom{n}{m} \binom{m}{k} = \binom{n-k}{k} \binom{n-k}{m-k}, & (k) & (k) & (k) & (k-1) \\ 0 & \binom{n}{m} \binom{m}{k} = \binom{n-k}{k} \binom{n-k}{m-k}, & (k) & (k) & (k) & (k) \\ 0 & \binom{n}{m} \binom{n-k}{k} \binom{n-k}{m-k}, & (k) & (k) & (k) & (k) & (k) \\ 0 & \binom{n}{m} \binom{n-k}{k} \binom{n-k}{m-k}, & (k) & (k) & (k) & (k) & (k) \\ 0 & \binom{n}{m} \binom{n-k}{m-k}, & (k) & (k) & (k) & (k) & (k) \\ 0 & \binom{n}{m} \binom{n-k}{m-k}, & (k) & (k) & (k) & (k) \\ 0 & \binom{n}{m} \binom{n-k}{m-k}, & (k) & (k) & (k) & (k) \\ 0 & \binom{n}{m} \binom{n-k}{m-k}, & (k) & (k) & (k) \\ 0 & \binom{n}{m} \binom{n-k}{m-k}, & (k) & (k) & (k) \\ 0 & \binom{n}{m} \binom{n-k}{m-k}, & (k) & (k) & (k) \\ 0 & \binom{n}{m} \binom{n-k}{m-k}, & (k) & (k) \\ 0 & \binom{n}{m} \binom{n-k}{m-k}, & (k) & (k) \\ 0 & \binom{n}{m} \binom{n-k}{m-k}, & (k) & (k) \\ 0 & \binom{n}{m} \binom{n-k}{m-k}, & (k) & (k) \\ 0 & \binom{n}{m} \binom{n-k}{m}, & (k) \\ 0 & \binom{n}{m} \binom{n}{m}, & (k) \\ 0 & \binom{n}{m}, & (k) \\ 0 & \binom{n}{m} \binom{n}{m}, & (k) \\ 0 & \binom{n}{m}, & (k) \\ 0 & $
$\langle {n \atop k} \rangle$	1st order Eulerian numbers: Permutations $\pi_1\pi_2\pi_n$ on	
// m \\	$\{1,2,\ldots,n\}$ with k ascents.	$ \frac{10}{k=0} \binom{n}{m} \binom{m+1}{m+1} $ $ \frac{10}{k=0} \binom{n}{k} \binom{n-k}{m-1} \binom{n}{m} \binom{n}{m} $
$\binom{n}{k}$ C_n	2nd order Eulerian numbers. Catalan Numbers: Binary	$ \begin{array}{c} 10. \begin{pmatrix} k \end{pmatrix} = \begin{pmatrix} -1 \end{pmatrix} \begin{pmatrix} k \end{pmatrix}, \qquad \qquad 11. \begin{pmatrix} 1 \end{pmatrix} = \begin{pmatrix} n \end{pmatrix} = 1, \\ 1 \end{pmatrix} $
- 70	trees with $n+1$ vertices.	$ 8. \sum_{k=0}^{n} {n \choose m} = {n+1 \choose m+1}, $ $ 9. \sum_{k=0}^{n} {n \choose k} {s \choose n-k} = {n+s \choose n}, $ $ 10. {n \choose k} = (-1)^k {k-n-1 \choose k}, $ $ 11. {n \choose 1} = {n \choose n} = 1, $ $ 12. {n \choose 2} = 2^{n-1} - 1, $ $ 13. {n \choose k} = k {n-1 \choose k} + {n-1 \choose k-1}, $
L 3		- 1)! H_{n-1} , 16. $\begin{bmatrix} n \\ n \end{bmatrix} = 1$, 17. $\begin{bmatrix} n \\ k \end{bmatrix} \ge \begin{Bmatrix} n \\ k \end{Bmatrix}$,
		$ \binom{n}{1-1} = \binom{n}{n-1} = \binom{n}{2}, 20. \sum_{k=0}^{n} \binom{n}{k} = n!, 21. \ \ C_n = \frac{1}{n+1} \binom{2n}{n}, $
$22. \ \left\langle \begin{matrix} n \\ 0 \end{matrix} \right\rangle = \left\langle \begin{matrix} r \\ n \end{matrix} \right\rangle$	$\begin{pmatrix} n \\ -1 \end{pmatrix} = 1,$ 23. $\begin{pmatrix} n \\ k \end{pmatrix} = \langle$	$ \begin{pmatrix} n \\ n-1-k \end{pmatrix}, $ $ 24. \left\langle n \\ k \right\rangle = (k+1) {n-1 \choose k} + (n-k) {n-1 \choose k-1}, $ $ n \\ 1 \\ 2 = 2^n - n - 1, $ $ 27. \left\langle n \\ 2 \right\rangle = 3^n - (n+1)2^n + {n+1 \choose 2}, $
$25. \ \left\langle \begin{array}{c} 0 \\ k \end{array} \right\rangle = \left\{ \begin{array}{c} 1 \\ 0 \end{array} \right.$	if $k = 0$, otherwise 26. $\binom{n}{2}$	$\binom{n}{1} \ge 2^n - n - 1,$ 27. $\binom{n}{2} = 3^n - (n+1)2^n + \binom{n+1}{2},$
	$\left. \left\langle {x+k \atop n} \right\rangle, \qquad $ 29. $\left\langle {n \atop m} \right\rangle = \sum_{k=1}^{m}$	$\sum_{k=0}^{n} \binom{n+1}{k} (m+1-k)^n (-1)^k, \qquad 30. \ m! \binom{n}{m} = \sum_{k=0}^{n} \binom{n}{k} \binom{k}{n-m},$
	$ \binom{n}{k} \binom{n-k}{m} (-1)^{n-k-m} k!, $	32. $\left\langle {n \atop 0} \right\rangle = 1,$ 33. $\left\langle {n \atop n} \right\rangle = 0$ for $n \neq 0,$
34. $\left\langle \!\! \left\langle \!\! \right\rangle \!\! \right\rangle = (k+1)^n$	$+1$ $\binom{n-1}{k}$ $+(2n-1-k)$ $\binom{n}{k}$ $\frac{n}{k}$	$ \begin{array}{c} -1\\ -1\\ \end{array} \right), \qquad \qquad \qquad 35. \ \sum_{k=0}^n \left\langle \!\! \left\langle \!\! \begin{array}{c} n\\ k \end{array} \!\! \right\rangle \!\! \right\rangle = \frac{(2n)^n}{2^n}, $
$36. \left\{ \begin{array}{c} x \\ x-n \end{array} \right\} = \frac{1}{2}$	$\sum_{k=0}^{n} \left\langle \!\! \left\langle n \atop k \right\rangle \!\! \right\rangle \left(\!\! \left(\!\! \begin{array}{c} x+n-1-k \\ 2n \end{array} \!\! \right),$	37. $ {n+1 \choose m+1} = \sum_{k} {n \choose k} {k \choose m} = \sum_{k=0}^{n} {k \choose m} (m+1)^{n-k}, $

Theoretical Computer Science Cheat Sheet				
Identities Cont.	Trees			
$\boxed{ 38. \begin{bmatrix} n+1 \\ m+1 \end{bmatrix} = \sum_{k} \begin{bmatrix} n \\ k \end{bmatrix} \binom{k}{m} = \sum_{k=0}^{n} \begin{bmatrix} k \\ m \end{bmatrix} n^{\underline{n-k}} = n! \sum_{k=0}^{n} \frac{1}{k!} \begin{bmatrix} k \\ m \end{bmatrix}, \qquad 39. \begin{bmatrix} x \\ x-n \end{bmatrix} = \sum_{k=0}^{n} \left\langle \binom{n}{k} \right\rangle \binom{x+k}{2n}, }$				
	edges. Kraft inequal- ity: If the depths			
	of the leaves of a binary tree are			
44. $\binom{n}{m} = \sum_{k} {\binom{n+1}{k+1}} {\binom{k}{m}} (-1)^{m-k},$ 45. $(n-m)! \binom{n}{m} = \sum_{k} {\binom{n+1}{k+1}} {\binom{k}{m}} (-1)^{m-k},$ for $n \ge m$,	$d_1, \dots, d_n:$ $\sum_{i=1}^{n} 2^{-d_i} \le 1,$			
$ 46. \begin{Bmatrix} n \\ n-m \end{Bmatrix} = \sum_{k} \binom{m-n}{m+k} \binom{m+n}{n+k} \binom{m+k}{k}, \qquad 47. \begin{Bmatrix} n \\ n-m \end{Bmatrix} = \sum_{k} \binom{m-n}{m+k} \binom{m+n}{n+k} \binom{m+k}{k}, $	and equality holds			
$48. {n \atop \ell+m} {\ell+m \atop \ell} = \sum_{k} {k \atop \ell} {n-k \atop m} {n \atop k}, \qquad 49. {n \atop \ell+m} {\ell+m \atop \ell} = \sum_{k} {k \atop \ell} {n-k \atop m} {n \atop k}.$	only if every in- ternal node has 2 sons.			

Recurrences

Master method:

 $T(n) = aT(n/b) + f(n), \quad a \ge 1, b > 1$

If $\exists \epsilon > 0$ such that $f(n) = O(n^{\log_b a - \epsilon})$ then

$$T(n) = \Theta(n^{\log_b a}).$$

If
$$f(n) = \Theta(n^{\log_b a})$$
 then $T(n) = \Theta(n^{\log_b a} \log_2 n)$.

If $\exists \epsilon > 0$ such that $f(n) = \Omega(n^{\log_b a + \epsilon})$, and $\exists c < 1$ such that $af(n/b) \leq cf(n)$ for large n, then

$$T(n) = \Theta(f(n)).$$

Substitution (example): Consider the following recurrence

$$T_{i+1} = 2^{2^i} \cdot T_i^2, \quad T_1 = 2.$$

Note that T_i is always a power of two. Let $t_i = \log_2 T_i$. Then we have $t_{i+1} = 2^i + 2t_i, \quad t_1 = 1.$

Let $u_i = t_i/2^i$. Dividing both sides of the previous equation by 2^{i+1} we get

$$\frac{t_{i+1}}{2^{i+1}} = \frac{2^i}{2^{i+1}} + \frac{t_i}{2^i}.$$

Substituting we find

$$u_{i+1} = \frac{1}{2} + u_i, \qquad u_1 = \frac{1}{2},$$

which is simply $u_i = i/2$. So we find that T_i has the closed form $T_i = 2^{i2^{i-1}}$. Summing factors (example): Consider the following recurrence

$$T(n) = 3T(n/2) + n$$
, $T(1) = 1$.

Rewrite so that all terms involving T are on the left side

$$T(n) - 3T(n/2) = n.$$

Now expand the recurrence, and choose a factor which makes the left side "telescope"

$$1(T(n) - 3T(n/2) = n)$$
$$3(T(n/2) - 3T(n/4) = n/2)$$

: : : :
$$3^{\log_2 n - 1} (T(2) - 3T(1) = 2)$$

Let $m = \log_2 n$. Summing the left side we get $T(n) - 3^m T(1) = T(n) - 3^m =$ $T(n) - n^k$ where $k = \log_2 3 \approx 1.58496$.

Summing the right side we get
$$\sum_{i=0}^{m-1} \frac{n}{2^i} 3^i = n \sum_{i=0}^{m-1} \left(\frac{3}{2}\right)^i.$$

Let
$$c = \frac{3}{2}$$
. Then we have
$$n \sum_{i=0}^{m-1} c^i = n \left(\frac{c^m - 1}{c - 1} \right)$$
$$= 2n(c^{\log_2 n} - 1)$$
$$= 2n(c^{(k-1)\log_c n} - 1)$$
$$= 2n^k - 2n.$$

and so $T(n) = 3n^k - 2n$. Full history recurrences can often be changed to limited history ones (example): Consider

$$T_i = 1 + \sum_{j=0}^{i-1} T_j, \quad T_0 = 1$$

$$T_{i+1} = 1 + \sum_{j=0}^{i} T_j$$
.

Subtracting we find
$$T_{i+1} - T_i = 1 + \sum_{j=0}^{i} T_j - 1 - \sum_{j=0}^{i-1} T_j$$

And so
$$T_{i+1} = 2T_i = 2^{i+1}$$
.

Generating functions:

- 1. Multiply both sides of the equation by x^i .
- 2. Sum both sides over all i for which the equation is valid.
- 3. Choose a generating function G(x). Usually $G(x) = \sum_{i=0}^{\infty} x^i g_i$.
- 3. Rewrite the equation in terms of the generating function G(x). Solve for G(x).
- 5. The coefficient of x^i in G(x) is g_i . Example:

$$g_{i+1} = 2g_i + 1, \quad g_0 = 0.$$

Multiply and sum:
$$\sum_{i\geq 0} g_{i+1}x^i = \sum_{i\geq 0} 2g_ix^i + \sum_{i\geq 0} x^i.$$

We choose $G(x) = \sum_{i \geq 0} x^i g_i$. Rewrite in terms of G(x): $\frac{G(x) - g_0}{x} = 2G(x) + \sum_{i \geq 0} x^i.$

$$\frac{G(x) - g_0}{x} = 2G(x) + \sum_{i>0} x^i.$$

Simplify:
$$\frac{G(x)}{x} = 2G(x) + \frac{1}{1-x}.$$
 Solve for $G(x)$:

Solve for
$$G(x)$$
:
$$G(x) = \frac{x}{(1-x)(1-2x)}.$$

Expand this using partial fractions:
$$G(x) = x \left(\frac{2}{1-2x} - \frac{1}{1-x}\right)$$
$$= x \left(2\sum_{i \geq 0} 2^i x^i - \sum_{i \geq 0} x^i\right)$$
$$= \sum_{i \geq 0} (2^{i+1} - 1)x^{i+1}.$$

So
$$a_i = 2^i = 1$$

Theoretical Computer Science Cheat Sheet				
$\pi \approx 3.14159, \qquad e \approx 2.71828, \qquad \gamma$		1828, $\gamma \approx 0.57721$, $\phi = \frac{1+\sqrt{5}}{2} \approx$	1.61803, $\hat{\phi} = \frac{1-\sqrt{5}}{2} \approx61803$	
i	2^i	p_i	General	Probability
1	2	2	Bernoulli Numbers ($B_i = 0$, odd $i \neq 1$):	Continuous distributions: If
2	4	3	$B_0 = 1$, $B_1 = -\frac{1}{2}$, $B_2 = \frac{1}{6}$, $B_4 = -\frac{1}{30}$,	$\Pr[a < X < b] = \int_{a}^{b} p(x) dx,$
3	8	5	$B_6 = \frac{1}{42}, B_8 = -\frac{1}{30}, B_{10} = \frac{5}{66}.$	then p is the probability density function of
4	16	7	Change of base, quadratic formula:	then p is the probability density function of X . If
5	32	11	$\log_b x = \frac{\log_a x}{\log_a b}, \qquad \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$	$\Pr[X < a] = P(a),$
6	64	13		then P is the distribution function of X . If
7	128	17	Euler's number e : $e = 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \frac{1}{120} + \cdots$	P and p both exist then
8	256	19	2 0 24 120	$P(a) = \int_{-a}^{a} p(x) dx.$
9	512	23	$\lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n = e^x.$	$J-\infty$
10	1,024	29	$\left(1 + \frac{1}{n}\right)^n < e < \left(1 + \frac{1}{n}\right)^{n+1}$.	Expectation: If X is discrete
11	2,048	31	(11/	$E[g(X)] = \sum_{x} g(x) \Pr[X = x].$
12	4,096	37	$\left(1 + \frac{1}{n}\right)^n = e - \frac{e}{2n} + \frac{11e}{24n^2} - O\left(\frac{1}{n^3}\right).$	If X continuous then
13	8,192	41	Harmonic numbers:	$E[g(X)] = \int_{-\infty}^{\infty} g(x)p(x) dx = \int_{-\infty}^{\infty} g(x) dP(x).$
14	16,384	43	$1, \frac{3}{2}, \frac{11}{6}, \frac{25}{12}, \frac{137}{60}, \frac{49}{20}, \frac{363}{140}, \frac{761}{280}, \frac{7129}{2520}, \dots$	* &
15	32,768	47		Variance, standard deviation:
16	65,536	53	$ \ln n < H_n < \ln n + 1, $	$VAR[X] = E[X^2] - E[X]^2,$
17	131,072	59	$H_n = \ln n + \gamma + O\left(\frac{1}{n}\right)$.	$\sigma = \sqrt{\text{VAR}[X]}.$
18	262,144	61	Factorial, Stirling's approximation:	For events A and B: $P_{\sigma}[A \lor B] = P_{\sigma}[A] + P_{\sigma}[B] = P_{\sigma}[A \land B]$
19 20	524,288	67 71	1, 2, 6, 24, 120, 720, 5040, 40320, 362880,	$\Pr[A \lor B] = \Pr[A] + \Pr[B] - \Pr[A \land B]$ $\Pr[A \land B] = \Pr[A] \cdot \Pr[B]$
	1,048,576	73	1, 2, 0, 24, 120, 720, 0040, 40320, 302000,	$\Pr[A \land B] = \Pr[A] \cdot \Pr[B],$:ff A and B are independent
21 22	2,097,152 4,194,304	79	$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right).$	iff A and B are independent. $P_{\mathbf{r}}[A \land B]$
23	8,388,608	83		$\Pr[A B] = \frac{\Pr[A \land B]}{\Pr[B]}$
24	16,777,216	89	Ackermann's function and inverse:	For random variables X and Y :
25	33,554,432	97	$a(i,j) = \begin{cases} 2^j & i = 1\\ a(i-1,2) & j = 1\\ a(i-1,a(i,j-1)) & i,j \ge 2 \end{cases}$	$E[X \cdot Y] = E[X] \cdot E[Y],$
26	67,108,864	101	$\begin{cases} a(i-1,a(i,j-1)) & i,j \ge 2 \end{cases}$	if X and Y are independent.
27	134,217,728	103	$\alpha(i) = \min\{j \mid a(j,j) \ge i\}.$	E[X+Y] = E[X] + E[Y],
28	268,435,456	107	Binomial distribution:	E[cX] = c E[X].
29	536,870,912	109		Bayes' theorem:
30	1,073,741,824	113	$\Pr[X = k] = \binom{n}{k} p^k q^{n-k}, \qquad q = 1 - p,$	$\Pr[A_i B] = \frac{\Pr[B A_i] \Pr[A_i]}{\sum_{i=1}^n \Pr[A_i] \Pr[B A_i]}.$
31	2,147,483,648	127	$\mathbf{E}[\mathbf{Y}] = \sum_{n=1}^{n} \mathbf{k} (n)_{-k} \mathbf{k}_{-n-k}$	<i>□</i> _{j=1}
32	4,294,967,296	131	$E[X] = \sum_{k=1}^{n} k \binom{n}{k} p^k q^{n-k} = np.$	Inclusion-exclusion:
Pascal's Triangle		e	Poisson distribution:	$\Pr\left[\bigvee_{i=1} X_i\right] = \sum_{i=1} \Pr[X_i] +$
1			$\Pr[X = k] = \frac{e^{-\lambda} \lambda^k}{k!}, E[X] = \lambda.$	n i=1 k
1 1			Normal (Gaussian) distribution:	$\sum_{k=2}^{n} (-1)^{k+1} \sum_{i_i < \dots < i_k} \Pr\left[\bigwedge_{j=1}^{k} X_{i_j} \right].$
1 2 1			$p(x) = \frac{1}{\sqrt{2\pi\sigma}}e^{-(x-\mu)^2/2\sigma^2}, E[X] = \mu.$	$k=2$ $i_i < \cdots < i_k$ $j=1$ Moment inequalities:
1 3 3 1			¥ =····	*
1 4 6 4 1			The "coupon collector": We are given a random coupon each day, and there are n	$\Pr\left[X \ge \lambda \operatorname{E}[X]\right] \le \frac{1}{\lambda},$
1 5 10 10 5 1			different types of coupons. The distribu-	$\Pr\left[\left X - \operatorname{E}[X]\right \ge \lambda \cdot \sigma\right] \le \frac{1}{\lambda^2}$.
1 6 15 20 15 6 1			tion of coupons is uniform. The expected	Geometric distribution:
1 7 21 35 35 21 7 1			number of days to pass before we to col- lect all n types is	$\Pr[X = k] = pq^{k-1}, \qquad q = 1 - p,$
1 8 28 56 70 56 28 8 1			ect all n types is nH_n .	
1 9 36 84 126 126 84 36 9 1			m_n .	$E[X] = \sum_{k=1}^{\infty} kpq^{k-1} = \frac{1}{p}.$
1 10 45 120 210 252 210 120 45 10 1		.ZU 45 1U I		k=1 ^

More Trig.
C
b h a A c B
Law of cosines: $c^2 = a^2 + b^2 - 2ab \cos C.$
$c = a + b - 2ab \cos C$. Area:
$A = \frac{1}{2}hc$,
$=\frac{1}{2}ab\sin C,$
$= \frac{c^2 \sin A \sin B}{2 \sin C}.$
Heron's formula:
$A = \sqrt{s \cdot s_a \cdot s_b \cdot s_c},$ $s = \frac{1}{2}(a + b + c),$
$s_a = s - a$,
$s_b = s - b,$
$s_c = s - c$.
More identities:
$\sin \frac{x}{2} = \sqrt{\frac{1 - \cos x}{2}},$
$\cos\frac{x}{2} = \sqrt{\frac{1 + \cos x}{2}},$
$\sqrt{1-\cos x}$
$\tan \frac{\pi}{2} = \sqrt{\frac{1 + \cos x}{1 + \cos x}},$ $1 - \cos x$
$=\frac{\sin x}{\sin x}$, $\sin x$
$=\frac{\sin x}{1+\cos x}$
$\cot \frac{x}{2} = \sqrt{\frac{1 + \cos x}{1 - \cos x}},$
$1 + \cos x$
$=\frac{\sin x}{\sin x}$, $\sin x$
$=\frac{1-\cos x}{1-\cos x}$
$\sin x = \frac{e^{ix} - e^{-ix}}{2i},$
$\cos x = \frac{e^{ix} + e^{-ix}}{2},$
$\tan x = -i\frac{e^{ix} - e^{-ix}}{e^{ix} + e^{-ix}},$
$e^{ix} + e^{-ix}$,
$e^{ix} + e^{-ix}$ $= -i\frac{e^{2ix} - 1}{e^{2ix} + 1},$
$\sin x = \frac{\sinh ix}{\sin^2 x}$.
i $\cos x = \cosh ix$,
Annalis Co.

 $\tanh ix$

 $\tan x = \frac{\pi}{2}$

Theoretical Computer Science Cheat Sheet						
Number Theory	Graph Theory					
The Chinese remainder theorem: There ex-	Definitions:		Notation:			
ists a number C such that:	Loop	An edge connecting a ver-	E(G) Edge set			
$C \equiv r_1 \bmod m_1$	Directed	tex to itself. Each edge has a direction.	V(G) Vertex set c(G) Number of components			
: : :	Simple	Graph with no loops or	G[S] Induced subgraph			
$C \equiv r_n \mod m_n$		multi-edges.	deg(v) Degree of $v\Delta(G) Maximum degree$			
if m_i and m_j are relatively prime for $i \neq j$.	Walk Trail	A sequence $v_0e_1v_1 \dots e_\ell v_\ell$. A walk with distinct edges.	$\delta(G)$ Minimum degree $\delta(G)$			
Euler's function: $\phi(x)$ is the number of	Path	A trail with distinct	$\chi(G)$ Chromatic number			
positive integers less than x relatively		vertices.	$\chi_E(G)$ Edge chromatic number G^c Complement graph			
prime to x . If $\prod_{i=1}^{n} p_i^{e_i}$ is the prime fac-	Connected	A graph where there exists a path between any two	K_n Complete graph			
torization of x then		vertices.	K_{n_1,n_2} Complete bipartite graph			
$\phi(x) = \prod_{i=1} p_i^{e_i - 1} (p_i - 1).$	Component	A maximal connected subgraph.	$r(k, \ell)$ Ramsey number Geometry			
Euler's theorem: If a and b are relatively	Tree	A connected acyclic graph.	Projective coordinates: triples			
prime then $1 \equiv a^{\phi(b)} \mod b$.	Free tree DAG	A tree with no root. Directed acyclic graph.	(x, y, z), not all x, y and z zero.			
Fermat's theorem:	Eulerian	Graph with a trail visiting	$(x, y, z) = (cx, cy, cz) \forall c \neq 0.$			
$1 \equiv a^{p-1} \bmod p.$		each edge exactly once.	Cartesian Projective			
The Euclidean algorithm: if $a > b$ are in-	Hamiltonian	Graph with a cycle visiting each vertex exactly once.	(x,y) $(x,y,1)y = mx + b$ $(m,-1,b)$			
tegers then	Cut	A set of edges whose re-	x = c (1, 0, -c)			
$\gcd(a,b) = \gcd(a \bmod b,b).$		moval increases the num- ber of components.	Distance formula, L_p and L_{∞} metric:			
If $\prod_{i=1}^{n} p_i^{e_i}$ is the prime factorization of x then	Cut-set	A minimal cut.	$\sqrt{(x_1-x_0)^2+(y_1-y_0)^2}$.			
$S(x) = \sum_{d x} d = \prod_{i=1}^{n} \frac{p_i^{e_i+1} - 1}{p_i - 1}.$	Cut edge	A size 1 cut.	$[x_1 - x_0 ^p + y_1 - y_0 ^p]^{1/p},$			
$S(x) = \sum_{d x} a - \prod_{i=1} p_i - 1$	k-Connected	A graph connected with the removal of any $k-1$				
Perfect Numbers: x is an even perfect num-		vertices.	$\lim_{p \to \infty} \left[x_1 - x_0 ^p + y_1 - y_0 ^p \right]^{1/p}.$			
ber iff $x = 2^{n-1}(2^n - 1)$ and $2^n - 1$ is prime.	$k ext{-} Tough$	$\forall S \subseteq V, S \neq \emptyset$ we have $k \cdot c(G - S) \leq S $.	Area of triangle (x_0, y_0) , (x_1, y_1) and (x_2, y_2) :			
Wilson's theorem: n is a prime iff $(n-1)! \equiv -1 \mod n$.	k-Regular	$\kappa \cdot c(G - S) \le S $. A graph where all vertices				
$(n-1)$: $\equiv -1 \mod n$. Möbius inversion:	,	have degree k .	$\frac{1}{2}$ abs $\begin{vmatrix} x_1 - x_0 & y_1 - y_0 \\ x_2 - x_0 & y_2 - y_0 \end{vmatrix}$.			
	$k ext{-}Factor$	A k-regular spanning subgraph.	Angle formed by three points:			
$\mu(i) = \begin{cases} 1 & \text{if } i = 1. \\ 0 & \text{if } i \text{ is not square-free.} \\ (-1)^r & \text{if } i \text{ is the product of} \\ r & \text{distinct primes.} \end{cases}$	Matching	A set of edges, no two of which are adjacent.	(x_2, y_2)			
If	Clique	A set of vertices, all of	$\begin{pmatrix} \ell_2 \\ \ell_2 \\ (0,0) & \ell_1 \\ \end{pmatrix} \begin{pmatrix} (x_2,y_2) \\ \ell_1 \\ \end{pmatrix}$			
$G(a) = \sum_{d a} F(d),$	Ind. set	which are adjacent. A set of vertices, none of	$(0,0)$ ℓ_1 (x_1,y_1)			
u u	ma. sei	which are adjacent.	$\cos \theta = \frac{(x_1, y_1) \cdot (x_2, y_2)}{\ell_1 \ell_2}.$			
then $F(z) = \sum_{a} u(z) C(a)$	Vertex cover	A set of vertices which				
$F(a) = \sum_{d a} \mu(d)G\left(\frac{a}{d}\right).$	Planar arank	cover all edges. A graph which can be em-	Line through two points (x_0, y_0) and (x_1, y_1) :			
Prime numbers:	beded in the plane.					
$p_n = n \ln n + n \ln \ln n - n + n \frac{\ln \ln n}{\ln n}$	Plane graph	An embedding of a planar graph.	$\begin{vmatrix} x & y & 1 \\ x_0 & y_0 & 1 \\ x_1 & y_1 & 1 \end{vmatrix} = 0.$			
$+O\left(\frac{n}{\ln n}\right),$	$\sum_{v \in V} \deg(v) = 2m.$		Area of circle, volume of sphere: $A = \pi r^2, \qquad V = \frac{4}{3}\pi r^3.$			
$\pi(n) = \frac{n}{\ln n} + \frac{n}{(\ln n)^2} + \frac{2!n}{(\ln n)^3}$	$ \overline{v \in V} $ If G is planar then $n - m + f = 2$, so					
	if G is planar then $n-m+f=2$, so $f<2n-4$, $m<3n-6$.		If I have seen farther than others,			
$+O\left(\frac{n}{(\ln n)^4}\right).$	Any planar graph has a vertex with de-		it is because I have stood on the shoulders of giants.			
(11111)-/	gree ≤ 5 .		- Issac Newton			

Theoretical Computer Science Cheat Sheet

Wallis' identity:
$$\pi = 2 \cdot \frac{2 \cdot 2 \cdot 4 \cdot 4 \cdot 6 \cdot 6 \cdots}{1 \cdot 3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdots}$$

$$\frac{\pi}{4} = 1 + \frac{1}{2 + \frac{3^2}{2 + \frac{5^2}{2 + \frac{7^2}{2 + \dots}}}}$$

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \dots$$

$$\frac{\pi}{6} = \frac{1}{2} + \frac{1}{2 \cdot 3 \cdot 2^3} + \frac{1 \cdot 3}{2 \cdot 4 \cdot 5 \cdot 2^5} + \cdots$$

$$\frac{\pi}{6} = \frac{1}{\sqrt{3}} \left(1 - \frac{1}{3^1 \cdot 3} + \frac{1}{3^2 \cdot 5} - \frac{1}{3^3 \cdot 7} + \cdots \right)$$

$$\begin{array}{l} \frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \cdots \\ \frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \frac{1}{9^2} + \cdots \\ \frac{\pi^2}{19} = \frac{1}{1^2} - \frac{1}{9^2} + \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{5^2} - \cdots \end{array}$$

Partial Fractions

Let N(x) and D(x) be polynomial functions of x. We can break down N(x)/D(x) using partial fraction expansion. First, if the degree of N is greater than or equal to the degree of D, divide N by D, obtaining

$$\frac{N(x)}{D(x)} = Q(x) + \frac{N'(x)}{D(x)}$$

where the degree of N' is less than that of D. Second, factor D(x). Use the following rules: For a non-repeated factor:

$$\frac{N(x)}{(x-a)D(x)} = \frac{A}{x-a} + \frac{N'(x)}{D(x)},$$

$$A = \left[\frac{N(x)}{D(x)}\right]_{x=a}.$$

For a repeated factor:

$$\frac{N(x)}{(x-a)^m D(x)} = \sum_{k=0}^{m-1} \frac{A_k}{(x-a)^{m-k}} + \frac{N'(x)}{D(x)}$$

$$A_k = \frac{1}{k!} \left[\frac{d^k}{dx^k} \left(\frac{N(x)}{D(x)} \right) \right]_{x=a}.$$

The reasonable man adapts himself to the world; the unreasonable persists in trying to adapt the world to himself. Therefore all progress depends on the unreasonable - George Bernard Shaw

Derivatives:

1.
$$\frac{d(cu)}{dx} = c\frac{du}{dx}$$

1.
$$\frac{d(cu)}{dx} = c\frac{du}{dx}$$
, 2. $\frac{d(u+v)}{dx} = \frac{du}{dx} + \frac{dv}{dx}$,

3.
$$\frac{d(uv)}{dx} = u\frac{dv}{dx} + v\frac{dv}{dx}$$

4.
$$\frac{d(u^n)}{dx} = nu^{n-1}\frac{du}{dx}$$
, 5. $\frac{d(u/v)}{dx} = \frac{v(\frac{du}{dx}) - u(\frac{dv}{dx})}{v^2}$, 6. $\frac{d(e^{cu})}{dx} = ce^{cu}\frac{du}{dx}$
7. $\frac{d(c^u)}{dx} = (\ln c)c^u\frac{du}{dx}$, 8. $\frac{d(\ln u)}{dx} = \frac{1}{2}\frac{du}{dx}$

$$\frac{\overline{dx}}{dx}$$
, 6. $\frac{a(e)}{dx}$

9.
$$\frac{d(\sin u)}{dx} = \cos u \frac{du}{dx}$$

10.
$$\frac{d(\cos u)}{dx} = -\sin u \frac{du}{dx}$$

11.
$$\frac{d(\tan u)}{dx} = \sec^2 u \frac{du}{dx},$$

12.
$$\frac{d(\cot u)}{dx} = \csc^2 u \frac{du}{dx}$$

13.
$$\frac{d(\sec u)}{dx} = \tan u \sec u \frac{du}{dx},$$

14.
$$\frac{d(\csc u)}{dx} = -\cot u \csc u \frac{du}{dx}$$

15.
$$\frac{d(\arcsin u)}{dx} = \frac{1}{\sqrt{1 - u^2}} \frac{du}{dx},$$

16.
$$\frac{d(\arccos u)}{dx} = \frac{-1}{\sqrt{1-u^2}} \frac{du}{dx},$$

17.
$$\frac{d(\arctan u)}{dx} = \frac{1}{1+u^2} \frac{du}{dx}$$

18.
$$\frac{d(\operatorname{arccot} u)}{dx} = \frac{-1}{1+u^2} \frac{du}{dx}$$

19.
$$\frac{d(\operatorname{arcsec} u)}{dx} = \frac{1}{u\sqrt{1-u^2}} \frac{du}{dx},$$
21.
$$\frac{d(\sinh u)}{du} = \cosh u \frac{du}{du},$$

20.
$$\frac{d(\arccos u)}{dx} = \frac{-1}{u\sqrt{1-u^2}} \frac{du}{dx}$$
22.
$$\frac{d(\cosh u)}{dx} = \sinh u \frac{du}{dx}$$

23.
$$\frac{d(\tanh u)}{dx} = \operatorname{sech}^2 u \frac{du}{dx}$$

24.
$$\frac{d(\coth u)}{dx} = -\operatorname{csch}^{2} u \frac{du}{dx}$$

25.
$$\frac{d(\operatorname{sech} u)}{dx} = -\operatorname{sech} u \tanh u \frac{du}{dx}$$

26.
$$\frac{d(\operatorname{csch} u)}{dx} = -\operatorname{csch} u \operatorname{coth} u \frac{du}{dx}$$

27.
$$\frac{d(\arcsin u)}{dx} = \frac{1}{\sqrt{1+u^2}} \frac{du}{dx},$$

28.
$$\frac{d(\operatorname{arccosh} u)}{dx} = \frac{1}{\sqrt{u^2 - 1}} \frac{du}{dx},$$

$$29. \ \frac{d(\operatorname{arctanh} u)}{dx} = \frac{1}{1 - u^2} \frac{du}{dx},$$

30.
$$\frac{d(\operatorname{arccoth} u)}{dx} = \frac{1}{u^2 - 1} \frac{du}{dx}$$

31.
$$\frac{d(\operatorname{arcsech} u)}{dx} = \frac{-1}{u\sqrt{1-u^2}} \frac{du}{dx},$$

32.
$$\frac{d(\operatorname{arccsch} u)}{dx} = \frac{-1}{|u|\sqrt{1+u^2}} \frac{du}{dx}.$$

1.
$$\int cu \, dx = c \int u \, dx,$$

$$2. \int (u+v) dx = \int u dx + \int v dx,$$

3.
$$\int x^n dx = \frac{1}{n+1}x^{n+1}, \quad n \neq$$

3.
$$\int x^n dx = \frac{1}{n+1} x^{n+1}$$
, $n \neq -1$, 4. $\int \frac{1}{x} dx = \ln x$, 5. $\int e^x dx = e^x$,

$$6. \int \frac{dx}{1+x^2} = \arctan x,$$

7.
$$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx,$$

8.
$$\int \sin x \, dx = -\cos x,$$

$$9. \int \cos x \, dx = \sin x,$$

$$\mathbf{10.} \int \tan x \, dx = -\ln|\cos x|,$$

11.
$$\int \cot x \, dx = \ln|\cos x|,$$

12.
$$\int \sec x \, dx = \ln|\sec x + \tan x|,$$

13.
$$\int \csc x \, dx = \ln|\csc x + \cot x|,$$

14.
$$\int \arcsin \frac{x}{a} dx = \arcsin \frac{x}{a} + \sqrt{a^2 - x^2}, \quad a > 0,$$

Theoretical Computer Science Cheat Sheet

Calculus Cont.

15.
$$\int \arccos \frac{x}{a} dx = \arccos \frac{x}{a} - \sqrt{a^2 - x^2}, \quad a > 0,$$

16.
$$\int \arctan \frac{x}{a} dx = x \arctan \frac{x}{a} - \frac{a}{2} \ln(a^2 + x^2), \quad a > 0,$$

17.
$$\int \sin^2(ax)dx = \frac{1}{2a}(ax - \sin(ax)\cos(ax)),$$

18.
$$\int \cos^2(ax)dx = \frac{1}{2a}(ax + \sin(ax)\cos(ax)),$$

19.
$$\int \sec^2 x \, dx = \tan x,$$

$$20. \int \csc^2 x \, dx = -\cot x,$$

21.
$$\int \sin^n x \, dx = -\frac{\sin^{n-1} x \cos x}{n} + \frac{n-1}{n} \int \sin^{n-2} x \, dx,$$

$$\mathbf{21.} \ \int \sin^n x \, dx = -\frac{\sin^{n-1} x \cos x}{n} + \frac{n-1}{n} \int \sin^{n-2} x \, dx, \\ \mathbf{22.} \ \int \cos^n x \, dx = \frac{\cos^{n-1} x \sin x}{n} + \frac{n-1}{n} \int \cos^{n-2} x \, dx, \\ \mathbf{23.} \ \int \cos^n x \, dx = \frac{\cos^{n-1} x \sin x}{n} + \frac{n-1}{n} \int \cos^{n-2} x \, dx, \\ \mathbf{24.} \ \int \cos^n x \, dx = \frac{\cos^{n-1} x \sin x}{n} + \frac{n-1}{n} \int \cos^{n-2} x \, dx,$$

23.
$$\int \tan^n x \, dx = \frac{\tan^{n-1} x}{n-1} - \int \tan^{n-2} x \, dx, \quad n \neq 1,$$

24.
$$\int \cot^n x \, dx = -\frac{\cot^{n-1} x}{n-1} - \int \cot^{n-2} x \, dx, \quad n \neq 1,$$

25.
$$\int \sec^n x \, dx = \frac{\tan x \sec^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \sec^{n-2} x \, dx, \quad n \neq 1,$$

29.
$$\int \tanh x \, dx = \ln|\cosh x|, \ \textbf{30.} \int \coth x \, dx = \ln|\sinh x|, \ \textbf{31.} \int \operatorname{sech} x \, dx = \arctan \sinh x, \ \textbf{32.} \int \operatorname{csch} x \, dx = \ln|\tanh \frac{x}{2}|$$

33.
$$\int \sinh^2 x \, dx = \frac{1}{4} \sinh(2x) - \frac{1}{2}x$$
, **34.** $\int \cosh^2 x \, dx = \frac{1}{4} \sinh(2x) + \frac{1}{2}x$, **35.** $\int \operatorname{sech}^2 x \, dx = \tanh x$,

34.
$$\int \cosh^2 x \, dx = \frac{1}{4} \sin^2 x \, dx$$

$$35. \int \operatorname{sech}^2 x \, dx = \tanh x$$

$$\textbf{36.} \int \operatorname{arcsinh} \frac{x}{a} dx = x \operatorname{arcsinh} \frac{x}{a} - \sqrt{x^2 + a^2}, \quad a > 0, \\ \textbf{37.} \int \operatorname{arctanh} \frac{x}{a} dx = x \operatorname{arctanh} \frac{x}{a} + \frac{a}{2} \ln |a^2 - x^2|, \\ \textbf{37.} \int \operatorname{arctanh} \frac{x}{a} dx = x \operatorname{arctanh} \frac{x}{a} + \frac{a}{2} \ln |a^2 - x^2|, \\ \textbf{37.} \int \operatorname{arctanh} \frac{x}{a} dx = x \operatorname{arctanh} \frac{x}{a} + \frac{a}{2} \ln |a^2 - x^2|, \\ \textbf{37.} \int \operatorname{arctanh} \frac{x}{a} dx = x \operatorname{arctanh} \frac{x}{a} + \frac{a}{2} \ln |a^2 - x^2|, \\ \textbf{37.} \int \operatorname{arctanh} \frac{x}{a} dx = x \operatorname{arctanh} \frac{x}{a} + \frac{a}{2} \ln |a^2 - x^2|, \\ \textbf{37.} \int \operatorname{arctanh} \frac{x}{a} dx = x \operatorname{arctanh} \frac{x}{a} + \frac{a}{2} \ln |a^2 - x^2|, \\ \textbf{37.} \int \operatorname{arctanh} \frac{x}{a} dx = x \operatorname{arctanh} \frac{x}{a} + \frac{a}{2} \ln |a^2 - x^2|, \\ \textbf{37.} \int \operatorname{arctanh} \frac{x}{a} dx = x \operatorname{arctanh} \frac{x}{a} + \frac{a}{2} \ln |a^2 - x^2|, \\ \textbf{37.} \int \operatorname{arctanh} \frac{x}{a} dx = x \operatorname{arctanh} \frac{x}{a} + \frac{a}{2} \ln |a^2 - x^2|, \\ \textbf{37.} \int \operatorname{arctanh} \frac{x}{a} dx = x \operatorname{arctanh} \frac{x}{a} + \frac{a}{2} \ln |a^2 - x^2|, \\ \textbf{37.} \int \operatorname{arctanh} \frac{x}{a} dx = x \operatorname{arctanh} \frac{x}{a} + \frac{a}{2} \ln |a^2 - x^2|, \\ \textbf{37.} \int \operatorname{arctanh} \frac{x}{a} dx = x \operatorname{arctanh} \frac{x}{a} + \frac{a}{2} \ln |a^2 - x^2|, \\ \textbf{37.} \int \operatorname{arctanh} \frac{x}{a} dx = x \operatorname{arctanh} \frac{x}{a} + \frac{a}{2} \ln |a^2 - x^2|, \\ \textbf{37.} \int \operatorname{arctanh} \frac{x}{a} dx = x \operatorname{arctanh} \frac{x}{a} + \frac{a}{2} \ln |a^2 - x^2|, \\ \textbf{37.} \int \operatorname{arctanh} \frac{x}{a} dx = x \operatorname{arctanh} \frac{x}{a} + \frac{a}{2} \ln |a^2 - x^2|, \\ \textbf{37.} \int \operatorname{arctanh} \frac{x}{a} dx = x \operatorname{arctanh} \frac{x}{a} + \frac{a}{2} \operatorname{arctanh} \frac{x}{a$$

37.
$$\int \operatorname{arctanh} \frac{x}{a} dx = x \operatorname{arctanh} \frac{x}{a} + \frac{a}{2} \ln |a^2 - a|$$

$$\mathbf{38.} \ \int \operatorname{arccosh} \frac{x}{a} dx = \left\{ \begin{aligned} x \operatorname{arccosh} \frac{x}{a} - \sqrt{x^2 + a^2}, & \text{if } \operatorname{arccosh} \frac{x}{a} > 0 \text{ and } a > 0, \\ x \operatorname{arccosh} \frac{x}{a} + \sqrt{x^2 + a^2}, & \text{if } \operatorname{arccosh} \frac{x}{a} < 0 \text{ and } a > 0, \end{aligned} \right.$$

39.
$$\int \frac{dx}{\sqrt{a^2 + x^2}} = \ln\left(x + \sqrt{a^2 + x^2}\right), \quad a > 0,$$

40.
$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a}, \quad a > 0,$$

41.
$$\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a}, \quad a > 0,$$

42.
$$\int (a^2-x^2)^{3/2}dx = \frac{x}{8}(5a^2-2x^2)\sqrt{a^2-x^2} + \frac{3a^4}{8}\arcsin\frac{x}{a}, \quad a>0,$$

43.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a}, \quad a > 0,$$
 44. $\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right|,$ 45. $\int \frac{dx}{(a^2 - x^2)^{3/2}} = \frac{x}{a^2 \sqrt{a^2 - x^2}}$

44.
$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right|$$

45.
$$\int \frac{dx}{(a^2 - x^2)^{3/2}} = \frac{x}{a^2 \sqrt{a^2 - x^2}}$$

46.
$$\int \sqrt{a^2 \pm x^2} \, dx = \frac{x}{2} \sqrt{a^2 \pm x^2} \pm \frac{a^2}{2} \ln \left| x + \sqrt{a^2 \pm x^2} \right|,$$

47.
$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \ln \left| x + \sqrt{x^2 - a^2} \right|, \quad a > 0,$$

48.
$$\int \frac{dx}{ax^2 + bx} = \frac{1}{a} \ln \left| \frac{x}{a + bx} \right|,$$

49.
$$\int x\sqrt{a+bx}\,dx = \frac{2(3bx-2a)(a+bx)^{3/2}}{15b^2},$$

50.
$$\int \frac{\sqrt{a^2 + x^2}}{x} dx = 2\sqrt{a} + bx + a \int \frac{1}{x\sqrt{a + bx}} dx,$$
52.
$$\int \frac{\sqrt{a^2 - x^2}}{x} dx = \sqrt{a^2 - x^2} - a \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|,$$

$$50. \int \frac{\sqrt{a+bx}}{x} dx = 2\sqrt{a+bx} + a \int \frac{1}{x\sqrt{a+bx}} dx,$$

$$51. \int \frac{x}{\sqrt{a+bx}} dx = \frac{1}{\sqrt{2} \ln \left| \frac{\sqrt{a+bx} - \sqrt{a}}{\sqrt{a+bx} + \sqrt{a}} \right|, \quad a > 0,$$

$$52. \int \frac{\sqrt{a^2 - x^2}}{x} dx = \sqrt{a^2 - x^2} - a \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|,$$

$$53. \int x \sqrt{a^2 - x^2} dx = -\frac{1}{3} (a^2 - x^2)^{3/2},$$

54.
$$\int x^2 \sqrt{a^2 - x^2} \, dx = \frac{\pi}{8} (2x^2 - a^2) \sqrt{a^2 - x^2} + \frac{a^4}{8} \arcsin \frac{\pi}{a}, \quad a > 0,$$
55.
$$\int \frac{dx}{\sqrt{-2 - x^2}} = -\frac{1}{a} \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|,$$

55.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = -\frac{1}{a} \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|$$

56.
$$\int \frac{x \, dx}{\sqrt{a^2 - x^2}} = -\sqrt{a^2 - x^2},$$

57.
$$\int \frac{x^2 dx}{\sqrt{a^2 - x^2}} = -\frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a}, \quad a > 0,$$

58.
$$\int \frac{\sqrt{a^2 + x^2}}{x} dx = \sqrt{a^2 + x^2} - a \ln \left| \frac{a + \sqrt{a^2 + x^2}}{x} \right|,$$
60.
$$\int x \sqrt{x^2 \pm a^2} dx = \frac{1}{3} (x^2 \pm a^2)^{3/2},$$

59.
$$\int \frac{\sqrt{x^2 - a^2}}{x} dx = \sqrt{x^2 - a^2} - a \arccos \frac{a}{|x|}, \quad a > 0,$$

61.
$$\int \frac{dx}{x\sqrt{x^2 + a^2}} = \frac{1}{a} \ln \left| \frac{x}{a + \sqrt{a^2 + x^2}} \right|,$$

Calcul	Finite Calculus	
$c_{2}\int dx$ 1 a	Difference, shift operators:	
62. $\int \frac{dx}{x\sqrt{x^2 - a^2}} = \frac{1}{a} \arccos \frac{a}{ x }, a > 0,$ 63. $\int \frac{dx}{x^2\sqrt{x^2 \pm a^2}} = \mp \frac{\sqrt{x^2 \pm a^2}}{a^2x},$		$\Delta f(x) = f(x+1) - f(x),$
64 $\int x dx = \sqrt{x^2 + a^2}$	65. $\int \frac{\sqrt{x^2 \pm a^2}}{x^4} dx = \mp \frac{(x^2 + a^2)^{3/2}}{3a^2 x^3},$	$\mathbf{E} f(x) = f(x+1).$
$\int \frac{\sqrt{x^2 \pm a^2}}{\sqrt{x^2 \pm a^2}} = \sqrt{x^2 \pm a^2},$	$\int \frac{1}{x^4} dx = \frac{1}{3}a^2x^3,$	Fundamental Theorem:
- 1 ln 2	$ ax + b - \sqrt{b^2 - 4ac} $, if $b^2 > 4ac$,	$f(x) = \Delta F(x) \Leftrightarrow \sum f(x)\delta x = F(x) + C.$
66. $\int \frac{dx}{a} = \begin{cases} \sqrt{b^2 - 4ac} & 2 \end{cases}$	$ax + b + \sqrt{b^2 - 4ac}$	b b-1
66. $ \int \frac{dx}{ax^2 + bx + c} = \begin{cases} \frac{1}{\sqrt{b^2 - 4ac}} \ln \left \frac{2}{2} \right \\ \frac{2}{\sqrt{4ac - b^2}} \text{ arct} \end{cases} $	$an \frac{2ax + b}{a}$ if $b^2 < 4ac$	$\sum_{i=1}^{b} f(x)\delta x = \sum_{i=1}^{b-1} f(i).$
V 400 0	v tuc o	Differences:
(1 10 200	$b+2\sqrt{\pi}\sqrt{\pi}\sqrt{\pi}\sqrt{\pi}$ if $a>0$	$\Delta(cu) = c\Delta u, \qquad \Delta(u+v) = \Delta u + \Delta v,$
$\int \frac{dx}{\sqrt{a}} = \int \frac{dx}{\sqrt{a}} \ln \left 2dx + \frac{1}{a} \right $	$b+2\sqrt{a}\sqrt{ax}+bx+c$, if $a>0$,	$\Delta(uv) = u\Delta v + E v\Delta u,$
67. $\int \frac{dx}{\sqrt{ax^2 + bx + c}} = \begin{cases} \frac{1}{\sqrt{a}} \ln \left 2ax + \frac{1}{\sqrt{-a}} \arcsin \frac{1}{\sqrt{-a}} \right \end{cases}$	$\frac{-2ax - b}{a}$, if $a < 0$,	$\Delta(x^{\underline{n}}) = nx^{\underline{n}-1},$
$(\sqrt{-a})$	$b^{2} - 4ac$	$\Delta(H_x) = x \frac{-1}{2}, \qquad \Delta(2^x) = 2^x,$
$68. \int \sqrt{ax^2 + bx + c} dx = \frac{2ax + b}{4a} \sqrt{ax}$	$\frac{1}{2} + \frac{1}{4} = \frac{1}$	
$\int \sqrt{ax^2 + bx + cax} = \frac{1}{4a} \sqrt{ax}$	$-+bx+c+{8a}\int {\sqrt{ax^2+bx+c}},$	$\Delta(c^x) = (c-1)c^x, \qquad \Delta\binom{x}{m} = \binom{x}{m-1}.$
		Sums:
69. $\int \frac{x dx}{\sqrt{ax^2 + bx + c}} = \frac{\sqrt{ax^2 + bx + c}}{a}$	$-\frac{b}{2\pi}\int \frac{dx}{\sqrt{2}+L}$	$\sum cu \delta x = c \sum u \delta x,$
J V dab Ob O	. 5 4 4 2 7 5 2 7 5	$\sum (u+v) \delta x = \sum u \delta x + \sum v \delta x,$
70. $\int \frac{dx}{x\sqrt{ax^2 + bx + c}} = \begin{cases} -\frac{1}{\sqrt{c}} \ln \left \frac{2\sqrt{c}}{\sqrt{-c}} \right \\ \frac{1}{\sqrt{-c}} \arcsin \end{cases}$	$\frac{\sqrt{ax^2 + bx + c + bx + 2c}}{x}$, if $c > 0$,	$\sum u \Delta v \delta x = uv - \sum \mathbf{E} v \Delta u \delta x,$
70. $\int \frac{dx}{x\sqrt{ax^2 + bx + c}} = \begin{cases} \sqrt{c} & 1 \\ 1 & 1 \end{cases}$	$\frac{x}{hx + 2c}$	$\sum x^{\underline{n}} \delta x = \frac{x^{\underline{n+1}}}{\underline{m+1}}, \qquad \qquad \sum x^{\underline{-1}} \delta x = H_x,$
$\frac{1}{\sqrt{-c}} \arcsin$	$\frac{6x + 2c}{ x \sqrt{h^2 - 4ac}}$, if $c < 0$,	$\sum c^x \delta x = \frac{c^x}{c-1}, \qquad \sum {x \choose m} \delta x = {x \choose m+1}.$
	101.	Falling Factorial Powers:
71. $\int x^3 \sqrt{x^2 + a^2} dx = \left(\frac{1}{3}x^2 - \frac{2}{15}a^2\right)(x^2 + a^2) = \left(\frac{1}{3}x^2 - \frac{2}{15}a^2\right)$	$(a^2 + a^2)^{3/2}$,	$x^{\underline{n}} = x(x-1) \cdot \cdot \cdot (x-n+1), n > 0,$
	$\int_{-\infty}^{\infty} \pi^{-1}$	$x^{0} = 1$,
72. $\int x^n \sin(ax) dx = -\frac{1}{a} x^n \cos(ax) + \frac{\tau}{a}$	$\int x^{n-1}\cos(ax)dx,$	$x^{\underline{n}} = \frac{1}{(x+1)\cdots(x+ n)}, n < 0,$
73. $\int x^n \cos(ax) dx = \frac{1}{a} x^n \sin(ax) - \frac{n}{a}$	$\int d^{n} d^$	$x = -\frac{1}{(x+1)\cdots(x+ n)}, n < 0,$
13. $\int x \cos(ax) dx = \frac{1}{a}x \sin(ax) - \frac{1}{a}$	$\int x = \sin(ax) dx$,	$x^{\underline{n+m}} = x^{\underline{m}}(x-m)^{\underline{n}}.$
74. $\int x^n e^{ax} dx = \frac{x^n e^{ax}}{a} - \frac{n}{a} \int x^{n-1} e^{ax}$	dx	Rising Factorial Powers:
$\int x dx = a \qquad a \int x dx$	$x^{\overline{n}} = x(x+1)\cdots(x+n-1), n > 0,$	
75. $\int x^n \ln(ax) dx = x^{n+1} \left(\frac{\ln(ax)}{n+1} - \frac{\ln(ax)}{n+1} \right)$	$\frac{1}{1+1}$,	$x^{0} = 1,$
J (1011 (1	(1 -) /	$x^{\overline{n}} = \frac{1}{(x-1)\cdots(x- n)}, n < 0,$
76. $\int x^{n} (\ln ax)^{m} dx = \frac{x^{n+1}}{n+1} (\ln ax)^{m} - \frac{x^{n+1}}{n+1}$	$\frac{m}{n+1}\int x^n(\ln ax)^{m-1}dx.$	() ()
$J \longrightarrow II + 1$	n+1 J	$x^{\overline{n+m}} = x^{\overline{m}}(x+m)^{\overline{n}}.$
	-	Conversion: $x^{\underline{n}} = (-1)^n (-x)^{\overline{n}} = (x - n + 1)^{\overline{n}}$
$x^{1} = x^{\underline{1}}$ $x^{2} = x^{\underline{2}} + x^{\underline{1}}$	$=$ $x^{\overline{1}}$ $=$ $x^{\overline{2}} - x^{\overline{1}}$	$x = (-1)(-x) = (x - n + 1)$ $= 1/(x + 1)^{-n},$
$x^2 = x^2 + x^1$ $x^3 = x^3 + 3x^2 + x^1$		
$x^3 = x^2 + 3x^2 + x^1$ $x^4 = x^4 + 6x^3 + 7x^2 + x^1$		$x^{\overline{n}} = (-1)^n (-x)^{\underline{n}} = (x+n-1)^{\underline{n}}$
$x^4 = x^{\frac{1}{2}} + 6x^{\frac{3}{2}} + 7x^{\frac{3}{2}} + x^{\frac{1}{2}}$ $x^5 = x^{\frac{5}{2}} + 15x^{\frac{4}{2}} + 25x^{\frac{3}{2}} + 10x^{\frac{2}{2}} + x^{\frac{1}{2}}$	$= x^{4} - 6x^{3} + 7x^{2} - x^{1}$ $= x^{\underline{5}} - 15x^{\overline{4}} + 25x^{\overline{3}} - 10x^{\overline{2}} + x^{\overline{1}}$	$=1/(x-1)\frac{-n}{n},$
		$x^{n} = \sum_{k=1}^{n} \begin{Bmatrix} n \\ k \end{Bmatrix} x^{\underline{k}} = \sum_{k=1}^{n} \begin{Bmatrix} n \\ k \end{Bmatrix} (-1)^{n-k} x^{\overline{k}},$
$x^{\overline{1}} = x^1$	$x^{\frac{1}{2}} = x^{1}$	k=1 \ / k=1 \ /
$x^{\frac{1}{2}} = x^2 + x^1$	$x^2 = x^2 - x^1$	$x^{\underline{n}} = \sum_{k=1}^{n} {n \brack k} (-1)^{n-k} x^k,$
$x^{\overline{3}} = x^3 + 3x^2 + 2x^1$	$x^{3} = $ $x^{3} - 3x^{2} + 2x^{1}$	k=1 = 3
$x^{\frac{7}{4}} = x^4 + 6x^3 + 11x^2 + 6x^1$	$x^{4} = x^{4} - 6x^{3} + 11x^{2} - 6x^{1}$	$x^{\overline{n}} = \sum_{k=1}^{n} {n \brack k} x^{k}.$
$x^{\overline{5}} = x^5 + 10x^4 + 35x^3 + 50x^2 + 24x^1$	$x^{\underline{5}} = x^5 - 10x^4 + 35x^3 - 50x^2 + 24x^1$	$\underset{k=1}{\overset{\longleftarrow}{\bigsqcup}} \lfloor k \rfloor$

Theoretical Computer Science Cheat Sheet

Theoretical Computer Science Cheat Sheet

Taylor's series:

 $\frac{x}{1 - x - x^2} = x + x^2 + 2x^3 + 3x^4 + \dots = \sum_{i=1}^{\infty} F_i x^i,$

 $\frac{F_n x}{1 - (F_{n-1} + F_{n+1}) x - (-1)^n x^2} = F_n x + F_{2n} x^2 + F_{3n} x^3 + \dots = \sum_{i=0}^{\infty} F_{ni} x^i.$

 $f(x) = f(a) + (x - a)f'(a) + \frac{(x - a)^2}{2}f''(a) + \dots = \sum_{i=0}^{\infty} \frac{(x - a)^i}{i!}f^{(i)}(a).$

Ordinary power series:

$$A(x) = \sum_{i=0}^{\infty} a_i x$$

Exponential power series:

$$A(x) = \sum_{i=1}^{\infty} a_i \frac{x^i}{i!}$$

Dirichlet power series:

$$A(x) = \sum_{i=1}^{\infty} \frac{a_i}{i^x}.$$

Binomial theorem:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k.$$

Difference of like powers:

$$x^{n} - y^{n} = (x - y) \sum_{k=0}^{n-1} x^{n-1-k} y^{k}$$

For ordinary power series:

$$\begin{split} \alpha A(x) + \beta B(x) &= \sum_{i=0}^{\infty} (\alpha a_i + \beta b_i) x^i, \\ x^k A(x) &= \sum_{i=k}^{\infty} a_{i-k} x^i, \\ \frac{A(x) - \sum_{i=0}^{k-1} a_i x^i}{x^k} &= \sum_{i=0}^{\infty} a_{i+k} x^i, \\ A(cx) &= \sum_{i=0}^{\infty} c^i a_i x^i, \\ A'(x) &= \sum_{i=0}^{\infty} (i+1) a_{i+1} x^i, \\ xA'(x) &= \sum_{i=1}^{\infty} i a_i x^i, \\ \int A(x) \, dx &= \sum_{i=1}^{\infty} \frac{a_{i-1}}{i} x^i, \\ \frac{A(x) + A(-x)}{2} &= \sum_{i=0}^{\infty} a_{2i} x^{2i}, \\ \frac{A(x) - A(-x)}{2} &= \sum_{i=0}^{\infty} a_{2i+1} x^{2i+1}. \\ \text{Summation: If } b_i &= \sum_{j=0}^{i} a_i \text{ then} \\ B(x) &= \frac{1}{1-x} A(x). \end{split}$$

God made the natural numbers; all the rest is the work of man. Leopold Kronecker

 $A(x)B(x) = \sum_{i=1}^{\infty} \left(\sum_{j=1}^{i} a_{j}b_{i-j}\right) x^{i}.$

Theoretical Computer Science Cheat Sheet Escher's Knot $\frac{1}{\zeta(x)}$ $\zeta(x)$ Stieltjes Integration If G is continuous in the interval [a,b] and F is nondecreasing then $= \sum_{i=1}^{\infty} \frac{d(i)}{x^i} \quad \text{where } d(n) = \sum_{d|n} 1,$ $\zeta^2(x)$ $\zeta(x) = \sum_{i=1}^{\infty} \frac{1}{x^i} \quad \text{where } a(n) = \sum_{d \mid n} 1,$ $\zeta(x)\zeta(x-1) = \sum_{i=1}^{\infty} \frac{S(i)}{x^i} \quad \text{where } S(n) = \sum_{d \mid n} d,$ $\zeta(2n) = \frac{2^{2n-1} |B_{2n}|}{(2n)!} \pi^{2n}, \quad n \in \mathbb{N},$ $\text{exists. If } a \leq b \leq c \text{ then}$ $\int_a^c G(x) \, dF(x) = \int_a^b G(x) \, dF(x) + \int_b^c G(x) \, dF(x).$ If the integrals involved exist $= \frac{2^{2n-1}|B_{2n}|}{(2n)!} \pi^{2n}, \quad n \in \mathbb{N},$ If the integrals involved exist $= \sum_{i=0}^{\infty} (-1)^{i-1} \frac{(4^i - 2)B_{2i}x^{2i}}{(2i)!},$ $= \int_{a}^{b} (G(x) + H(x)) dF(x) = \int_{a}^{b} G(x) dF(x) + \int_{a}^{b} H(x) dF(x),$ $\int_{a}^{b} (G(x) + H(x)) dF(x) = \int_{a}^{b} G(x) dF(x) + \int_{a}^{b} H(x) dF(x),$ $\int_{a}^{b} G(x) d(F(x) + H(x)) = \int_{a}^{b} G(x) dF(x) + \int_{a}^{b} G(x) dH(x),$ $\int_a^b c \cdot G(x) \, dF(x) = \int_a^b G(x) \, d\bigl(c \cdot F(x)\bigr) = c \int_a^b G(x) \, dF(x),$ $\int_{a}^{b} G(x) dF(x) = G(b)F(b) - G(a)F(a) - \int_{a}^{b} F(x) dG(x).$ If the integrals involved exist, and F possesses a derivative F' at every point in [a,b] then $\int_{a}^{b} G(x) dF(x) = \int_{a}^{b} G(x)F'(x) dx.$

Cramer's Rule

If we have equations:

$$a_{1,1}x_1 + a_{1,2}$$
:

$$\begin{aligned} a_{1,1}x_1 + a_{1,2}x_2 + \cdots + a_{1,n}x_n &= b_1 \\ a_{2,1}x_1 + a_{2,2}x_2 + \cdots + a_{2,n}x_n &= b_2 \\ \vdots & & \vdots \\ a_{n,1}x_1 + a_{n,2}x_2 + \cdots + a_{n,n}x_n &= b_n \end{aligned}$$

Let $A=(a_{i,j})$ and B be the column matrix (b_i) . Then there is a unique solution iff $\det A\neq 0$. Let A_i be A with column i replaced by B. Then

$$x_i = \frac{\det A_i}{\det A}$$
.

Improvement makes strait roads, but the crooked roads without Improvement, are roads of Genius. – William Blake (The Marriage of Heaven and Hell)

00 47 18 76 29 93 85 34 61 52 86 11 57 28 70 39 94 45 02 63 95 80 22 67 38 71 49 56 13 04 59 96 81 33 07 48 72 60 24 15 68 74 09 91 83 55 27 12 46 30 37 08 75 19 92 84 66 23 50 41 14 25 36 40 51 62 03 77 88 99 12 13 24 35 46 16 10 89 97 78 42 53 64 05 16 20 31 98 79 87

The Fibonacci number system: Every integer n has a unique representation

$$n = F_{k_1} + F_{k_2} + \dots + F_{k_m},$$

where $k_i \ge k_{i+1} + 2$ for all i ,
 $1 \le i < m$ and $k_m \ge 2$.

Fibonacci Numbers

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ... Definitions:

$$\begin{split} F_i &= F_{i-1} {+} F_{i-2}, \quad F_0 = F_1 = 1, \\ F_{-i} &= (-1)^{i-1} F_i, \\ F_i &= \frac{1}{\sqrt{5}} \left(\phi^i - \hat{\phi}^i \right), \\ \text{Cassini's identity: for } i > 0 \text{:} \end{split}$$

 $F_{i+1}F_{i-1} - F_i^2 = (-1)^i.$ Additive rule:

 $F_{n+k} = F_k F_{n+1} + F_{k-1} F_n,$ $F_{2n} = F_n F_{n+1} + F_{n-1} F_n.$