Lab 6
Implement truth table enumeration algorithm for deciding propositional entailment.
Algorithm:

22/09/25		-		LAB- VI		-
Implem	norten	of touth t	able enui	nexation o	algorithm for	deciding
Impleme	oml on	tailment i o	(xente	r knowler	dge based usi	via
				me giveri	query entails	me
unowle	dge ba	se oa not-			L ZORE SHARE	MONION STILL
TOUTH -	table fr	or connectiv	105	,	of	
P	Q	-P P.	O PI	IQ P	>Q	
-	F	T	F		7 / 2	
F	T	TF	T	F		
T	F	FF	7	- 5	131	
T	T	F				
			To To	I EV	-	
sopositic	mad Int	fexence En	umeration	Method		
Z-AVI		B=(AVC)A				delining of
			6			
MECHINO	y max	KB1=X		-		
A	B	C AVC	BN-C	KB_	ed	
F	F	£ E	1 360	F		
E	F	TT	F	F	F	
+	T	FF	T	F	T	
FFT	T	TT	+	T	7	
-02	FF	T	7	+	T	
T	FT	7	7	-	4	
+	TF	+	T	N. H.	V	
	1 7	Ť	7	I	T	
	-				IT	
basobus	ENITERIA	- 1/10				
Simb	ge active	5 (KB, quesy)				
Rehier	CHECH	ymbols in K	a and does	sy		
Oction o	HELK A	ALL (KB, que	oy, symbols	5, { 3)		
if sumi	mis	LL (KB, quest	"anipole"	model):		
11000	ACC. 100 . 1 100 . 5	in model;				
5etu	on quer	y is true i	S. m. V.			
	1000	a is more	ii madel			
else:	OF TRUE	2				
retu	WILL FORE					
olse.						Erhal
clse: first	= Rust s	igmbol in sq ing symbols	mbols		KB, queay, rest, m	False)

Consider 5 4 T as variables and the following relations:

a:-(5vT) 6: (6AT) THE LABOR STREET IN STREET STREET THE PROPERTY OF LINE PROPERTY O

Write truth table and show whether: i) a entails b ii) a entails c

F	T T	a=SVT	b=SnT E	C-TV-T
F T	T	F	F	7
	T	F	T /	7

a entails b : false

a entails c: true at 5=F + T=F

sof tell made and biggi law

```
Code:
import pandas as pd
from itertools import product
import re
def tokenize(sentence):
  # Now also tokenize symbols like V (logical OR)
  # Added V, \Lambda, \neg in the regex to separate them as tokens
  token pattern = r' \wedge w + |[() \vee \Lambda \neg]'
  return re.findall(token pattern, sentence)
def pl true(sentence, model):
  tokens = tokenize(sentence)
  logical ops = \{'and', 'or', 'not', 'V', '\Lambda', '\neg'\}
  evaluated tokens = []
  for token in tokens:
     if token == 'V':
        evaluated tokens.append('or') # replace symbol with python 'or'
     elif token == '\Lambda':
        evaluated tokens.append('and') # replace symbol with python 'and'
     elif token == '\neg':
        evaluated tokens.append('not') # replace symbol with python 'not'
     elif token.lower() in logical ops:
        evaluated tokens.append(token.lower())
     elif token in model:
        evaluated tokens.append(str(model[token]))
     else:
```

```
evaluated tokens.append(token)
  eval_sentence = ' '.join(evaluated_tokens)
  try:
    return eval(eval sentence)
  except Exception as e:
     print(f"Error evaluating sentence: {eval sentence}")
     raise e
def tt entails(kb, alpha, symbols):
  truth_table = []
  for model in product([False, True], repeat=len(symbols)):
     model dict = dict(zip(symbols, model))
    kb value = pl true(kb, model dict)
     alpha value = pl true(alpha, model dict)
     row = {
       'A': model dict.get('A', False),
       'B': model dict.get('B', False),
       'C': model dict.get('C', False),
       'A V C': model dict.get('A', False) or model dict.get('C', False),
       'B V ¬C': model dict.get('B', False) or not model_dict.get('C', False),
       'KB': kb value,
       'α': alpha value
     truth table.append(row)
     if kb value and not alpha value:
       return False, pd.DataFrame(truth table)
  return True, pd.DataFrame(truth table)
```

```
def get_symbols(kb, alpha):
  return sorted(set(re.findall(r'[A-Z]', kb + alpha)))
# Example usage:
kb = "(A \lor C) \land (B \lor \neg C)"
alpha = "A \lor B"
symbols = get symbols(kb, alpha)
result, truth table = tt entails(kb, alpha, symbols)
def highlight kb alpha(row):
  if row['KB'] and row['\alpha']:
     return ['background-color: lightgreen' if col in ['KB', 'α'] else " for col in row.index]
  else:
     return [" for in row.index]
print("Shreya Raj 1BM23CS317")
styled table = truth table.style.apply(highlight kb alpha, axis=1)
display(styled table)
if result:
  print("\nKB entails \alpha")
else:
  print("\nKB does not entail \alpha")
```

Output:

→ Shreya Raj 1BM23CS317

	Α	В	C	AVC	B V ¬C	KB	α
0	False	False	False	False	True	False	False
1	False	False	True	True	False	False	False
2	False	True	False	False	True	False	True
3	False	True	True	True	True	True	True
4	True	False	False	True	True	True	True
5	True	False	True	True	False	False	True
6	True	True	False	True	True	True	True
7	True	True	True	True	True	True	True

KB entails α