

Feladat: K-rész (Kpart)

Bemenet stdin Kimenet stdout

Virgil a tömbök tulajdonságait kezdte tanulmányozni. Ennek során definiálta a K-tömböt, ami egy olyan pozitív számokból álló A tömb, aminek minden K hosszú folytonos részsorozata két olyan különálló, nem feltétlenül folytonos részsorozatra bontható, amelyeknek az összege egyenlő. Például 1, 2, 1, 3 egy 3-tömb, mivel az 1, 2, 1 részsorozat felbontható 1, 1 és 2 részsorozatokra, mindkettőnek 2 az összege; és a 2, 1, 3 részsorozat felbontható 2, 1 és 3 részsorozatokra, mindkettőnek 3 az összege. Ez nem egy 2-tömb, mivel 1, 2 nem bontható fel két, nem feltétlenül folytonos részsorozatra, amiknek egyenlő az összege. Hasonlóképpen, ez nem is 4-tömb.

A feladatban adott lesz T darab, pozitív számokból álló tömb. Ezek közül mindegyik A tömbre Virgil tudni szeretné az összes olyan K értéket, amelyekre A egy K-tömb.

Bemenet

A bemenet első sora a T egész számot tartalmazza. Ezt a T darab tömb követi. Mindegyik tömböt két sor ad meg. Az első sor a tömb N hosszát tartalmazza. A második sor a tömb szóközzel elválasztott elemeit tartalmazza.

Kimenet

A kimenetre mindegyik A tömbre adott választ kell kiírni sorrendben. Minden egyes tömbnél egy sort kell kiírni, először azon K értékek számát, amikre az adott tömb egy K-tömb, majd azokat a K értékeket, amikre a tömb K-tömb, növekvő sorrendben.

Korlátok

- 1 < T < 20.
- Jelölje $\sum A$ bármelyik tömbben lévő értékek összegét (nem az összes tömb értékeinek összegét). Ekkor $1 \leq \sum A \leq 100\,000$.

#	Pontszám	Korlátok
1	10	$1 \le N \le 30$
2	20	$31 \le N \le 120$
3	70	$121 \le N \le 1000$

Példák

Bemenet	Kimenet
2	2 4 6
7	2 3 6
7 3 5 1 3 3 5	
6	
1 2 3 5 8 3	

Magyarázatok

Az első tömb, amelyiknek 7 eleme van, egy 4-tömb és egy 6-tömb, mivel mindegyik 4, illetve 6 hosszú folytonos részsorozata felbontható két, nem feltétlenül folytonos részsorozatra egyenlő összegekkel.

A második tömb, hat elemmel, 3-tömb és 6-tömb, mivel mindegyik 3, illetve 6 hosszú folytonos részsorozata felbontható két, nem feltétlenül folytonos részsorozatra egyenlő összegekkel.