CSW41 - Sistemas Embarcados

Maria Fernanda Azolin

21 de outubro de 2021

Laboratório 2

1. Planejamento das fases do processo de desenvolvimento

O planejamento das fases de desenvolvimento do laboratório iniciou com a leitura atenta das especificações do trabalho a ser desenvolvido. A partir do material disponibilizado pelo professor no Classroom, entendeu-se o que seria necessário estudar para realizar essa prática e em que ordem as tarefas seriam feitas.

2. Definição do problema a ser resolvido.

Os problemas principais a serem resolvidos nesta atividade seriam entender o uso da biblioteca SysTick e das interrupções, e fazer a integração correta do código com a placa.

3. Especificação da solução.

A solução para esse laboratório foi criar um código, em C, e compilar o mesmo usando a IDE IAR para a placa Tiva, a fim de ver a implementação do jogo de reação funcionando.

4. Estudo da plataforma de HW (placa Tiva e seu processador).

Nesta etapa, as aulas gravadas pelo professor e os manuais da placa/processador disponibilizados foram fundamentais para o entendimento do Hardware utilizado.

5. Estudo da plataforma de SW (TivaWare).

A principal fonte aqui foi o manul da TivaWare disponibilizado no classroom, que foi estudado (apenas os capítulos correspondentes ao necessário para este laboratório) juntamente com alguns fóruns online de programação.

6. Projeto (design) da solução.

Aqui, foi esboçado um fluxograma que representa o código que seria implementado mais tarde. Nesse fluxograma, tentou-se desenhar uma solução básica de baixa fidelidade para o problema especificado (jogo do tempo de reação).

7. Identificação (e entendimento) da funcionalidade do TivaWare e do HW que serão utilizadas na solução.

Nessa etapa, estudou-se o código template disponibilizado pelo professor. Dentre algumas coisas notadas sobre esse código, destaca-se o uso de variáveis volatile. Essas variáveis são declaradas assim para sinalizar ao compilador que ele não deve otimizar nada relacionado a essa variável, para facilitar o acesso a hardware, mapeamento de memória de I/O e uso de threads.

8. Configuração do projeto na IDE (IAR).

A configuração do ambiente usado (IAR) não foi um problema muito grande, uma vez que a adaptação a essa IDE havia sido feita já no Laboratório 1. Bastou seguir os passos e divisão de pastas sugeridos pelo professor.

9. Edição do código da solução.

Sobre o código, a parte mais desafiadora foi lidar com o clock da placa para acertar os tempos requeridos com o SysTick. Como o clock da placa é de 120MHz, foi necessário configurar um timer de 1M, para que 1 segundo valesse 12 interrupções. Essas 12 interrupções valem 120M de ciclos.

Além disso, foi preciso lembrar da necessidade de configurar um resistor de pull down para o correto funcionamento do botão.

10. Teste e depuração.

Com o código pronto, a execução foi depurada e testes foram feitos. A partir destes, correções cabíveis foram realizados na implementação. Abaixo, o resultado dos prints no terminal I/O do IAR nas duas situações do jogo (tempo de reação menor e maior do que 3 segundos).

