LABORATORIO 4

Unidad 5

Camila Paladines

Computación Científica

Profesor: Hernán Darío Vargas Cardona, PhD

Mayo 21 de 2021

RESUMEN

En este informe se describen los resultados conseguidos al implementar algoritmos en Python para la obtención de respuestas a problemas matemáticos, como lo es el cómputo de la derivada y la integral de una función. Las derivadas son calculadas mediante los Métodos de Diferenciación Finita: Hacia Adelante, Hacia Atrás y Centrada. Las integrales son calculadas mediante las Reglas de Cuadratura Compuesta: Punto Medio, Trapezoide y Simpson. Además, se realizan algunos análisis sobre los métodos utilizados aplicándolos a funciones de diferente complejidad, donde se observa su comportamiento dependiendo de diversos factores. También se calcula la complejidad computacional y la exactitud, con el fin de comparar los métodos y determinar cuál obtuvo mejores resultados para las funciones usadas.

ABSTRACT

This report describes the results achieved by implementing algorithms in Python to obtain answers to mathematical problems, such as the computation of the derivative and the integral of a function. The derivatives are computed by the Finite Differentiation Methods: Forward, Backward and Centered. The integrals are calculated by the Composite Quadrature Rules: Midpoint, Trapezoid and Simpson. In addition, some analyses are made on the methods used by applying them to functions of different complexity, where their behavior is observed depending on different factors. The computational complexity and accuracy are also calculated, in order to compare the methods and determine which one obtained better results for the functions used.

${\bf Contenido}$

1.	Intr	oducci	ión	1
2.	Mat	teriales	s y Métodos	2
	2.1.	Mater	iales	2
	2.2.	Métod	los	2
		2.2.1.	Diferenciación numérica	2
		2.2.2.	Integración numérica	3
3.	Res	ultado	s de las Simulaciones	4
	3.1.	Difere	nciación	4
		3.1.1.	Ejemplo 1	4
		3.1.2.	Ejemplo 2	11
		3.1.3.	Ejemplo 3	18
	3.2.	Integra	ación	25
		3.2.1.	Ejemplo 1	25
		3.2.2.	Ejemplo 2	29
		3.2.3.	Ejemplo 3	33
4.	Disc	cusión	y Análisis	37
	4.1.	Difere	nciación	37
		4.1.1.	Resultados de los métodos	37
		4.1.2.	Complejidad computacional	37
	4.2.	Integra	ación	38
		4.2.1.	Resultados de los métodos	38
		4.2.2.	Complejidad computacional	39
5.	Con	clusio	nes	40
6	Ref	erencis	as	41

Índice de Figuras

1.	D.F.H.Adelante del Ejemplo 1 (Derivación)	5
2.	D.F.H. Atrás del Ejemplo 1 (Derivación) $\ \ldots \ \ldots \ \ldots \ \ldots$	6
3.	D.F.Centrada del Ejemplo 1 (Derivación) $\ \ \ldots \ \ \ldots \ \ \ldots$	7
4.	Métodos del Ejemplo 1 (Derivación)	8
5.	Tiempo en el Ejemplo 1 (Derivación)	9
6.	Error en el Ejemplo 1 (Derivación) $\ \ldots \ \ldots \ \ldots \ \ldots$	10
7.	D.F.H. Adelante del Ejemplo 2 (Derivación) $\ \ . \ \ . \ \ . \ \ . \ \ .$	12
8.	D.F.H. Atrás del Ejemplo 2 (Derivación) $\ \ldots \ \ldots \ \ldots \ \ldots$	13
9.	D.F.Centrada del Ejemplo 2 (Derivación)	14
10.	Métodos del Ejemplo 2 (Derivación)	15
11.	Tiempo en el Ejemplo 2 (Derivación)	16
12.	Error en el Ejemplo 2 (Derivación) $\ \ldots \ \ldots \ \ldots \ \ldots$	17
13.	D.F.H.Adelante del Ejemplo 3 (Derivación)	19
14.	D.F.H. Atrás del Ejemplo 3 (Derivación)	20
15.	D.F.C. del Ejemplo 3 (Derivación)	21
16.	Métodos del Ejemplo 3 (Derivación)	22
17.	Tiempo en el Ejemplo 3 (Derivación)	23
18.	Error en el Ejemplo 3 (Derivación)	24
19.	Tiempo en el Ejemplo 1 (Integración) $\ \ldots \ \ldots \ \ldots \ \ldots$	26
20.	Error en el Ejemplo 1 (Integración)	27
21.	Error del Punto Medio en el Ejemplo 1 (Integración)	28
22.	Error de Trapezoide en el Ejemplo 1 (Integración) $\ \ . \ \ . \ \ .$	28
23.	Error de Simpson en el Ejemplo 1 (Integración)	28
24.	Tiempo en el Ejemplo 2 (Integración) $\ \ldots \ \ldots \ \ldots \ \ldots$	30
25.	Error en el Ejemplo 2 (Integración)	31
26.	Error del Punto Medio en el Ejemplo 2 (Integración)	32
27.	Error de Trapezoide en el Ejemplo 2 (Integración)	32
28.	Error de Simpson en el Ejemplo 2 (Integración)	32
20	Tiempo en el Ejemplo 3 (Integración)	34

	30.	Error en el Ejemplo 3 (Integración)	35
	31.	Error del Punto Medio en el Ejemplo 3 (Integración)	36
	32.	Error de Trapezoide en el Ejemplo 3 (Integración) $\ \ldots \ \ldots \ \ldots$	36
	33.	Error de Simpson en el Ejemplo 3 (Integración)	36
Íı	ndio	ce de Tablas	
	1.	D.F.H.Adelante del Ejemplo 1 (Derivación)	4
	2.	D.F.H.Atrás del Ejemplo 1 (Derivación)	5
	3.	D.F.Centrada del Ejemplo 1 (Derivación)	6
	4.	Métodos del Ejemplo 1 (Derivación)	7
	5.	Tiempo en el Ejemplo 1 (Derivación)	8
	6.	Error (\bar{e}) en el Ejemplo 1 (Derivación)	9
	7.	Error (σ_e) en el Ejemplo 1 (Derivación)	10
	8.	D.F.H.Adelante del Ejemplo 2 (Derivación)	11
	9.	D.F.H. Atrás del Ejemplo 2 (Derivación) $\ \ldots \ \ldots \ \ldots \ \ldots$	12
	10.	D.F.Centrada del Ejemplo 2 (Derivación)	13
	11.	Métodos del Ejemplo 2 (Derivación) $\ \ldots \ \ldots \ \ldots \ \ldots$	14
	12.	Tiempo en el Ejemplo 2 (Derivación)	15
	13.	Error (\bar{e}) en el Ejemplo 2 (Derivación)	16
	14.	Error (σ_e) en el Ejemplo 2 (Derivación)	17
	15.	D.F.H. Adelante del Ejemplo 3 (Derivadas)	18
	16.	D.F.H. Adelante del Ejemplo 3 (Tiempo y Error) $\ \ . \ \ . \ \ . \ \ .$	18
	17.	D.F.H. Atrás del Ejemplo 3 (Derivadas)	19
	18.	D.F.H. Atrás del Ejemplo 3 (Tiempo y Error) $\ \ldots \ \ldots \ \ldots$	19
	19.	D.F.Centrada del Ejemplo 3 (Derivadas)	20
	20.	D.F.Centrada del Ejemplo 3 (Tiempo y Error) $\ \ \ldots \ \ \ldots \ \ \ldots$	20
	21.	Métodos del Ejemplo 3 (Derivadas)	21
	22.	Métodos del Ejemplo 3 (Tiempo y Error) $\ \ldots \ \ldots \ \ldots$	21
	23.	Tiempo en el Ejemplo 3 (Derivación)	22
	24.	Error (\bar{e}) en el Ejemplo 3 (Derivación)	23

25	. Error (σ_e) en el Ejemplo 3 (Derivación)	24
26	. Resultados del Ejemplo 1 (Integración)	25
27	. Tiempo en el Ejemplo 1 (Integración) $\ \ \ldots \ \ \ldots \ \ \ldots$	26
28	. Error en el Ejemplo 1 (Integración)	27
29	. Resultados del Ejemplo 2 (Integración)	29
30	. Tiempo en el Ejemplo 2 (Integración) \dots	30
31	. Error en el Ejemplo 2 (Integración)	31
32	. Resultados del Ejemplo 3 (Integración)	33
33	. Tiempo en el Ejemplo 3 (Integración) \dots	34
34	. Error en el Ejemplo 3 (Integración)	35

1. Introducción

La teoría del cálculo ha sido usada en diferentes campos, como en los motores de búsqueda, los pronósticos meteorológicos, la arquitectura, etc. Desde su planteamiento, la derivación e integración han sido la base para numerosas aplicaciones, por lo que el cálculo de estas expresiones o valores se torna importante en la construcción de herramientas o servicios que aporten al desarrollo de la humanidad.

Aunque realizar estas operaciones de manera clásica (a mano) es una opción factible, no sería lo ideal debido al inherente error humano y al tiempo que se tardaría en realizar estos cálculos. Es aquí donde la computación y la tecnología provistas se vuelven importantes en la aproximación de estas expresiones o valores, con el fin de realizar operaciones en un tiempo razonable y garantizando la baja presencia de error humano. Como se realiza una aproximación, el valor real de los resultados será diferente a los que se calcularon por computador, pero dependiendo del caso, es más viable tener una aproximación casi real del valor verdadero, que hacer los cálculos a mano y traer los problemas de error de procedimiento o tiempo de cálculo.

Para el cálculo de estas expresiones o valores se han planteado diferentes métodos numéricos. En el caso de la derivada se implementan las Diferencias Finitas (Hacia Adelante, Hacia Atrás y Centrada), mientras que para la integral (definida) se implementan los métodos que usan las Reglas de Cuadratura Compuesta (Punto Medio, Trapezoide y Simpson), mismos que son implementados y evaluados en el presente laboratorio.

2. Materiales y Métodos

2.1. Materiales

Para el desarrollo de esta unidad se usó Python 3.7, con las siguientes librerías:

- numpy. Para funciones matemáticas como promedio, desviación estándar, entre otros.
- pyplot. Para graficar las funciones en el plano y las estadísticas de los métodos con respecto a su exactitud y tiempo de ejecución.
- time. Para calcular los tiempos de cómputo de cada uno de los métodos en diferenciación e integración.
- sympy. Para modelar la variable t dentro de las operaciones de los métodos de diferenciación e integración.

2.2. Métodos

2.2.1. Diferenciación numérica

Dada una función f(x), su primera derivada f'(x) se puede aproximar mediante los siguientes métodos, para un $h \in \mathbb{R}$ seleccionado:

■ Diferencias Finitas Hacia Adelante

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

Diferencias Finitas Hacia Atrás

$$f'(x) \approx \frac{f(x) - f(x - h)}{h}$$

■ Diferencias Finitas Centrada

$$f'(x) \approx \frac{f(x+h) - f(x-h)}{2h}$$

Además, se puede aproximar su segunda derivada f''(x) mediante la siguiente expresión:

$$f''(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$

2.2.2. Integración numérica

Dada una función f(x), su integral definida $\int_a^b f(x) dx$ se puede aproximar mediante los siguientes métodos con las reglas de cuadratura compuesta, para $a = x_0 < x_1 < x_2 < \dots < x_{n-1} < x_n = b, n \in \mathbb{N}$:

• Regla del Punto Medio

$$I(f) \approx M_c(f) = \sum_{i=1}^{n} (x_i - x_{i-1}) f\left(\frac{x_{i-1} + x_i}{2}\right)$$

Regla del Trapezoide

$$I(f) \approx T_c(f) = \frac{1}{2} \sum_{i=1}^{n} (x_i - x_{i-1}) [f(x_{i-1}) + f(x_i)]$$

■ Regla de Simpson

$$I(f) \approx S_c(f) = \frac{1}{6} \sum_{i=1}^{n} (x_i - x_{i-1}) \left[f(x_{i-1}) + 4f\left(\frac{x_{i-1} + x_i}{2}\right) + f(x_i) \right]$$

3. Resultados de las Simulaciones

3.1. Diferenciación

3.1.1. Ejemplo 1

Para la función f(x) que se muestra a continuación:

$$f(x) = 2x^4 + 3x^2 + x$$

Su derivada analítica f'(x) es la siguiente:

$$f'(x) = 8x^3 + 6x + 1$$

En las siguientes tres secciones se muestran, para cada método, los resultados obtenidos con distintos valores de h, tanto las derivadas como las estadísticas de tiempo y exactitud, todas dentro de un intervalo [0, 3]. En las otras dos secciones se muestra más a detalle los resultados de los métodos en cuanto a tiempo y exactitud, respecto a los diferentes valores de h.

Diferencias Finitas Hacia Adelante

En la siguiente tabla se muestran las derivadas calculadas con cada valor de h, y sus respectivas estadísticas de tiempo de ejecución, error promedio (\bar{e}) y desviación del error (σ_e) :

h	Tiempo	Error (ē)	Error $(\sigma_{\mathbf{e}})$	$\mathbf{f}'(\mathbf{x})$
1	0.00025	53.018	38.987	$8x^3 + 12x^2 + 14x + 6$
2	0.00020	142.036	91.589	$8x^3 + 24x^2 + 38x + 23$
3	0.00019	279.054	157.906	$8x^3 + 36x^2 + 78x + 64$
4	0.00017	476.072	237.992	$8x^3 + 48x^2 + 134x + 141$

Cuadro 1: D.F.H.Adelante del Ejemplo 1 (Derivación)

Figura 1: D.F.H.Adelante del Ejemplo 1 (Derivación)

Diferencias Finitas Hacia Atrás

En la siguiente tabla se muestran las derivadas calculadas con cada valor de h, y sus respectivas estadísticas de tiempo de ejecución, error promedio (\bar{e}) y desviación del error (σ_e) :

h	Tiempo	Error (ē)	Error $(\sigma_{\mathbf{e}})$	$\mathbf{f'}(\mathbf{x})$
1	0.00026	29.018	25.578	$8x^3 - 12x^2 + 14x - 4$
2	0.00024	46.036	38.244	$8x^3 - 24x^2 + 38x - 21$
3	0.00021	63.054	39.490	$8x^3 - 36x^2 + 78x - 62$
4	0.00019	92.072	35.119	$8x^3 - 48x^2 + 134x - 139$

Cuadro 2: D.F.H.Atrás del Ejemplo 1 (Derivación)

Figura 2: D.F.H.Atrás del Ejemplo 1 (Derivación)

Diferencias Finitas Centrada

En la siguiente tabla se muestran las derivadas calculadas con cada valor de h, y sus respectivas estadísticas de tiempo de ejecución, error promedio (\bar{e}) y desviación del error (σ_e) :

h	Tiempo	$\mathbf{Error}\;(\bar{\mathbf{e}})$	Error $(\sigma_{\mathbf{e}})$	f'(x)
1	0.00037	12.000	6.935	$8x^3 + 14x + 1$
2	0.00027	48.000	27.741	$8x^3 + 38x + 1$
3	0.00024	108.000	62.416	$8x^3 + 78x + 1$
4	0.00026	192.000	110.962	$8x^3 + 134x + 1$

Cuadro 3: D.F.Centrada del Ejemplo 1 (Derivación)

Figura 3: D.F.Centrada del Ejemplo 1 (Derivación)

Comparación de los métodos

En la siguiente tabla se puede observar las derivadas calculadas por cada método y sus estadísticas en tiempo y exactitud, con h = 1:

Método	Tiempo	Error (ē)	Error $(\sigma_{\mathbf{e}})$	$\mathbf{f'}(\mathbf{x})$
Hacia Adelante	0.00026	53.018	38.987	$8x^3 + 12x^2 + 14x + 6$
Hacia Atrás	0.00035	29.018	25.578	$8x^3 - 12x^2 + 14x - 4$
Centrada	0.00030	12.000	6.935	$8x^3 + 14x + 1$

Cuadro 4: Métodos del Ejemplo 1 (Derivación)

Que se puede ver mejor en la siguiente gráfica:

Figura 4: Métodos del Ejemplo 1 (Derivación)

Tiempo de ejecución

En la siguiente tabla se puede observar el tiempo de ejecución de cada uno de los métodos con respecto al valor de h.

h	Hacia Adelante	Hacia Atrás	Centrada
0.1	0.00032	0.00032	0.00036
0.2	0.00022	0.00029	0.00034
0.3	0.00025	0.00029	0.00034
0.4	0.00022	0.00027	0.00033
0.5	0.00024	0.00030	0.00034
0.6	0.00021	0.00026	0.00031
0.7	0.00023	0.00028	0.00035
0.8	0.00027	0.00029	0.00036
0.9	0.00023	0.00037	0.00039
1.0	0.00028	0.00030	0.00036

Cuadro 5: Tiempo en el Ejemplo 1 (Derivación)

Que se puede ver mejor en la siguiente gráfica:

Figura 5: Tiempo en el Ejemplo 1 (Derivación)

Exactitud

En las siguientes tablas se pueden observar el error promedio (\bar{e}) y la desviación del error (σ_e) de cada uno de los métodos con respecto al valor de h.

h	Hacia Adelante	Hacia Atrás	Centrada
0.1	4.02380	3.78380	0.12000
0.2	8.29960	7.33960	0.48000
0.3	12.83941	10.67941	1.08000
0.4	17.65521	13.81521	1.92000
0.5	22.75901	16.75901	3.00000
0.6	28.16281	19.52281	4.32000
0.7	33.87861	22.11861	5.88000
0.8	39.91841	24.55841	7.68000
0.9	46.29422	26.85422	9.72000
1.0	53.01802	29.01802	12.00000

Cuadro 6: Error (\bar{e}) en el Ejemplo 1 (Derivación)

h	Hacia Adelante	Hacia Atrás	Centrada
0.1	3.29055	3.15626	0.06935
0.2	6.71566	6.17853	0.27741
0.3	10.27557	9.06712	0.62416
0.4	13.97052	11.82238	1.10962
0.5	17.80072	14.44470	1.73378
0.6	21.76635	16.93447	2.49665
0.7	25.86761	19.29217	3.39822
0.8	30.10466	21.51829	4.43849
0.9	34.47766	23.61338	5.61746
1.0	38.98675	25.57805	6.93513

Cuadro 7: Error (σ_e) en el Ejemplo 1 (Derivación)

El error se puede ver mejor en la siguiente gráfica:

Figura 6: Error en el Ejemplo 1 (Derivación)

3.1.2. Ejemplo 2

Para la función f(x) que se muestra a continuación:

$$f(x) = 3^{x+2} + x$$

Su derivada analítica f'(x) es la siguiente:

$$f'(x) = 3^{x+2}\log(3) + 1$$

En las siguientes tres secciones se muestran, para cada método, los resultados obtenidos con distintos valores de h, tanto las derivadas como las estadísticas de tiempo y exactitud, todas dentro de un intervalo [7, 10]. En las otras dos secciones se muestra más a detalle los resultados de los métodos en cuanto a tiempo y exactitud, respecto a los diferentes valores de h.

Diferencias Finitas Hacia Adelante

En la siguiente tabla se muestran las derivadas calculadas con cada valor de h, y sus respectivas estadísticas de tiempo de ejecución, error promedio (\bar{e}) y desviación del error (σ_e) :

h	Tiempo	Error (ē)	Error $(\sigma_{\mathbf{e}})$	$\mathbf{f}'(\mathbf{x})$
1	0.00022	140070.690	123391.250	$18 \cdot 3^x + 1$
2	0.00017	450859.685	397171.885	$36 \cdot 3^x + 1$
3	0.00018	1176034.006	1035993.367	$78 \cdot 3^x + 1$
4	0.00016	2937171.642	2587416.966	$180 \cdot 3^x + 1$

Cuadro 8: D.F.H.Adelante del Ejemplo 2 (Derivación)

Figura 7: D.F.H.Adelante del Ejemplo 2 (Derivación)

Diferencias Finitas Hacia Atrás

En la siguiente tabla se muestran las derivadas calculadas con cada valor de h, y sus respectivas estadísticas de tiempo de ejecución, error promedio (\bar{e}) y desviación del error (σ_e) :

h	Tiempo	Error (ē)	Error $(\sigma_{\mathbf{e}})$	$\mathbf{f}'(\mathbf{x})$
1	0.00023	67121.973	59129.173	$6 \cdot 3^x + 1$
2	0.00018	101654.083	89549.244	$4 \cdot 3^x + 1$
3	0.00014	120838.589	106449.283	$26 \cdot 3^x/9 + 1$
4	0.00014	132349.293	116589.307	$20 \cdot 3^x/9 + 1$

Cuadro 9: D.F.H.Atrás del Ejemplo 2 (Derivación)

Figura 8: D.F.H.Atrás del Ejemplo 2 (Derivación)

Diferencias Finitas Centrada

En la siguiente tabla se muestran las derivadas calculadas con cada valor de h, y sus respectivas estadísticas de tiempo de ejecución, error promedio (\bar{e}) y desviación del error (σ_e) :

h	Tiempo	Error (ē)	Error $(\sigma_{\mathbf{e}})$	$\mathbf{f}'(\mathbf{x})$
1	0.00025	36474.359	32131.038	$12 \cdot 3^x + 1$
2	0.00019	174602.801	153811.321	$20 \cdot 3^x + 1$
3	0.00030	527597.708	464772.042	$364 \cdot 3^x/9 + 1$
4	0.00018	1402411.175	1235413.830	$820 \cdot 3^{x}/9 + 1$

Cuadro 10: D.F.Centrada del Ejemplo 2 (Derivación)

Figura 9: D.F.Centrada del Ejemplo 2 (Derivación)

Comparación de los métodos

En la siguiente tabla se puede observar las derivadas calculadas por cada método y sus estadísticas en tiempo y exactitud, con h=1:

Método	Tiempo	Error (ē)	Error $(\sigma_{\mathbf{e}})$	$\mathbf{f}'(\mathbf{x})$
Hacia Adelante	0.00075	140070.690	123391.250	$18 \cdot 3^x + 1$
Hacia Atrás	0.00091	67121.973	59129.173	$6 \cdot 3^x + 1$
Centrada	0.00069	36474.359	32131.038	$12 \cdot 3^x + 1$

Cuadro 11: Métodos del Ejemplo 2 (Derivación)

Que se puede ver mejor en la siguiente gráfica:

Figura 10: Métodos del Ejemplo 2 (Derivación)

Tiempo de ejecución

En la siguiente tabla se puede observar el tiempo de ejecución de cada uno de los métodos con respecto al valor de h.

h	Hacia Adelante	Hacia Atrás	Centrada
0.1	0.00023	0.00024	0.00039
0.2	0.00020	0.00023	0.00030
0.3	0.00019	0.00022	0.00027
0.4	0.00020	0.00024	0.00028
0.5	0.00020	0.00022	0.00029
0.6	0.00019	0.00021	0.00027
0.7	0.00020	0.00022	0.00026
0.8	0.00019	0.00022	0.00027
0.9	0.00020	0.00024	0.00032
1.0	0.00021	0.00033	0.00030

Cuadro 12: Tiempo en el Ejemplo 2 (Derivación)

Que se puede ver mejor en la siguiente gráfica:

Figura 11: Tiempo en el Ejemplo 2 (Derivación)

Exactitud

En las siguientes tablas se pueden observar el error promedio (\bar{e}) y la desviación del error (σ_e) de cada uno de los métodos con respecto al valor de h.

h	Hacia Adelante	Hacia Atrás	Centrada
0.1	9730.71822	9043.47601	343.62110
0.2	20207.87484	17453.92509	1376.97488
0.3	31496.12526	25281.01678	3107.55424
0.4	43666.10955	32570.27114	5547.91921
0.5	56795.03017	39363.41943	8715.80537
0.6	70967.28696	45698.73264	12634.27716
0.7	86275.17541	51611.32066	17331.92738
0.8	102819.65452	57133.40485	22843.12483
0.9	120711.19138	62294.56644	29208.31247
1.0	140070.69031	67121.97281	36474.35875

Cuadro 13: Error (\bar{e}) en el Ejemplo 2 (Derivación)

h	Hacia Adelante	Hacia Atrás	Centrada
0.1	8571.99663	7966.59035	302.70314
0.2	17801.54672	15375.53381	1213.00645
0.3	27745.60659	22270.58535	2737.51062
0.4	38466.40458	28691.84454	4887.28002
0.5	50031.94997	34676.07334	7677.93832
0.6	62516.59239	40256.98549	11129.80345
0.7	76001.63689	45465.51002	15268.06344
0.8	90576.02040	50330.03143	20122.99448
0.9	106337.05573	54876.60843	25730.22365
1.0	123391.25007	59129.17337	32131.03835

Cuadro 14: Error (σ_e) en el Ejemplo 2 (Derivación)

El error se puede ver mejor en la siguiente gráfica:

Figura 12: Error en el Ejemplo 2 (Derivación)

3.1.3. Ejemplo 3

Para la función f(x) que se muestra a continuación:

$$f(x) = \sin(2x^3)$$

Su derivada analítica f'(x) es la siguiente:

$$f'(x) = 6x^2 \cos(2x^3)$$

En las siguientes tres secciones se muestran, para cada método, los resultados obtenidos con distintos valores de h, tanto las derivadas como las estadísticas de tiempo y exactitud, todas dentro de un intervalo [1, 2]. En las otras dos secciones se muestra más a detalle los resultados de los métodos en cuanto a tiempo y exactitud, respecto a los diferentes valores de h.

Diferencias Finitas Hacia Adelante

En las siguientes tablas se muestran las derivadas calculadas con cada valor de h, y sus respectivas estadísticas de tiempo de ejecución, error promedio (\bar{e}) y desviación del error (σ_e) :

h	$\mathbf{f'}(\mathbf{x})$	
0.1	$-10\sin(2x^3) + 10\sin(2x^3 + 0.6x^2 + 0.06x + 0.002)$	
0.2	$-5\sin(2x^3) + 5\sin(2x^3 + 1,2x^2 + 0,24x + 0,016)$	
0.3	$-3,33\sin(2x^3) + 3,33\sin(2x^3 + 1,8x^2 + 0,54x + 0,054)$	
0.4	$-2.5\sin(2x^3) + 2.5 * \sin(2x^3 + 2.4x^2 + 0.96x + 0.128)$	

Cuadro 15: D.F.H.Adelante del Ejemplo 3 (Derivadas)

h	Tiempo	Error (ē)	Error $(\sigma_{\mathbf{e}})$
0.1	0.0003132820	6.7716774399	5.6979497998
0.2	0.0002520084	10.5382875610	7.6497806670
0.3	0.0002276897	9.5351310244	5.6095676904
0.4	0.0002505779	9.4835156618	6.1063677698

Cuadro 16: D.F.H.Adelante del Ejemplo 3 (Tiempo y Error)

Figura 13: D.F.H.Adelante del Ejemplo 3 (Derivación)

Diferencias Finitas Hacia Atrás

En las siguientes tablas se muestran las derivadas calculadas con cada valor de h, y sus respectivas estadísticas de tiempo de ejecución, error promedio (\bar{e}) y desviación del error (σ_e) :

h	$\mathbf{f}'(\mathbf{x})$
0.1	$10\sin(2x^3) - 10\sin(2x^3 - 0.6x^2 + 0.06x - 0.002)$
0.2	$5\sin(2x^3) - 5\sin(2x^3 - 1,2x^2 + 0,24x - 0,016)$
0.3	$3,33\sin(2x^3) - 3,33\sin(2x^3 - 1,8x^2 + 0,54x - 0,054)$
0.4	$2.5\sin(2x^3) - 2.5\sin(2x^3 - 2.4x^2 + 0.96x - 0.128)$

Cuadro 17: D.F.H.Atrás del Ejemplo 3 (Derivadas)

h	Tiempo	$\mathbf{Error}\;(\bar{\mathbf{e}})$	Error $(\sigma_{\mathbf{e}})$
0.1	0.0003263950	6.2598528880	5.5351225605
0.2	0.0002508163	9.3395499886	7.5341421365
0.3	0.0002353191	9.7643085941	6.7718661788
0.4	0.0002140999	9.4291653087	5.8437961899

Cuadro 18: D.F.H.Atrás del Ejemplo 3 (Tiempo y Error)

Figura 14: D.F.H.Atrás del Ejemplo 3 (Derivación)

Diferencias Finitas Centrada

En las siguientes tablas se muestran las derivadas calculadas con cada valor de h, y sus respectivas estadísticas de tiempo de ejecución, error promedio (\bar{e}) y desviación del error (σ_e) :

h	$\mathbf{f}'(\mathbf{x})$	
0.1	$-5\sin(2x^3 - 0.6x^2 + 0.06x - 0.002) + 5\sin(2x^3 + 0.6x^2 + 0.06x + 0.002)$	
0.2	$-2.5\sin(2x^3 - 1.2x^2 + 0.24x - 0.016) + 2.5\sin(2x^3 + 1.2x^2 + 0.24x + 0.016)$	
0.3	$-1,67\sin(2x^3 - 1,8x^2 + 0,54x - 0,054) + 1,67\sin(2x^3 + 1,8x^2 + 0,54x + 0,054)$	
0.4	$-1,25\sin(2x^3-2,4x^2+0.96x-0.128)+1,25\sin(2x^3+2,4x^2+0.96x+0.128)$	

Cuadro 19: D.F.Centrada del Ejemplo 3 (Derivadas)

h	Tiempo	$\mathbf{Error}\;(ar{\mathbf{e}})$	Error $(\sigma_{\rm e})$
0.1	0.0003974438	3.6067600751	3.9717214665
0.2	0.0003359318	8.4611776416	7.5046909623
0.3	0.0002999306	9.1503046173	6.1708163929
0.4	0.0003378391	9.3111698093	5.8099578615

Cuadro 20: D.F.Centrada del Ejemplo 3 (Tiempo y Error)

Figura 15: D.F.C. del Ejemplo 3 (Derivación)

Comparación de los métodos

En la siguiente tabla se puede observar las derivadas calculadas por cada método y sus estadísticas en tiempo y exactitud, con h=1:

Método	$\mathbf{f'}(\mathbf{x})$
Adelante	$-10\sin(2x^3) + 10\sin(2x^3 + 0.6x^2 + 0.06x + 0.002)$
Atrás	$10\sin(2x^3) - 10\sin(2x^3 - 0.6x^2 + 0.06x - 0.002)$
Centrada	$ -5\sin(2x^3 - 0.6x^2 + 0.06x - 0.002) + 5\sin(2x^3 + 0.6x^2 + 0.06x + 0.002) $

Cuadro 21: Métodos del Ejemplo 3 (Derivadas)

Método	Tiempo	Error (ē)	Error $(\sigma_{\mathbf{e}})$
Hacia Adelante	0.00031	6.77168	5.69795
Hacia Atrás	0.00033	6.25985	5.53512
Centrada	0.00040	3.60676	3.97172

Cuadro 22: Métodos del Ejemplo 3 (Tiempo y Error)

Que se puede ver mejor en la siguiente gráfica:

Figura 16: Métodos del Ejemplo 3 (Derivación)

Tiempo de ejecución

En la siguiente tabla se puede observar el tiempo de ejecución de cada uno de los métodos con respecto al valor de h.

h	Hacia Adelante	Hacia Atrás	Centrada
0.1	0.00079	0.00034	0.00039
0.2	0.00030	0.00033	0.00038
0.3	0.00024	0.00025	0.00038
0.4	0.00031	0.00035	0.00037
0.5	0.00032	0.00032	0.00044
0.6	0.00028	0.00031	0.00040
0.7	0.00027	0.00028	0.00039
0.8	0.00025	0.00026	0.00035
0.9	0.00025	0.00027	0.00035
1.0	0.00028	0.00032	0.00039

Cuadro 23: Tiempo en el Ejemplo 3 (Derivación)

Que se puede ver mejor en la siguiente gráfica:

Figura 17: Tiempo en el Ejemplo 3 (Derivación)

Exactitud

En las siguientes tablas se pueden observar el error promedio (\bar{e}) y la desviación del error (σ_e) de cada uno de los métodos con respecto al valor de h.

h	Hacia Adelante	Hacia Atrás	Centrada
0.1	6.77168	6.25985	3.60676
0.2	10.53829	9.33955	8.46118
0.3	9.53513	9.76431	9.15030
0.4	9.48352	9.42917	9.31117
0.5	9.09009	9.31117	9.10521
0.6	9.28130	9.35701	9.21755
0.7	9.14118	9.37699	9.22168
0.8	9.09402	9.35043	9.17625
0.9	9.27134	9.30976	9.26585
1.0	9.07430	9.27712	9.15695

Cuadro 24: Error (\bar{e}) en el Ejemplo 3 (Derivación)

h	Hacia Adelante	Hacia Atrás	Centrada
0.1	5.69795	5.53512	3.97172
0.2	7.64978	7.53414	7.50469
0.3	5.60957	6.77187	6.17082
0.4	6.10637	5.84380	5.80996
0.5	5.62524	5.61845	5.54872
0.6	5.80200	5.73237	5.74517
0.7	5.82132	5.76518	5.70767
0.8	5.74470	5.71225	5.71317
0.9	5.54728	5.64969	5.57117
1.0	5.93488	5.60915	5.74685

Cuadro 25: Error (σ_e) en el Ejemplo 3 (Derivación)

El error se puede ver mejor en la siguiente gráfica:

Figura 18: Error en el Ejemplo 3 (Derivación)

3.2. Integración

3.2.1. Ejemplo 1

Para la función f(x) que se muestra a continuación:

$$3x\cos(x)$$

Su integral definida analítica es la siguiente:

$$\int_{-4.5}^{3} f(x) = 12,129146569508617$$

En las siguiente tabla se muestran, para cada método, los resultados obtenidos con n=1000, tanto la integral definida como las estadísticas de tiempo y exactitud (error promedio \bar{e}), todas dentro de un intervalo [-4.5, 3]. En las siguientes dos secciones se muestra más a detalle los resultados de los métodos en cuanto a tiempo y exactitud, respecto a los diferentes valores de n.

Método	Tiempo	Error	$\mathbf{I}(\mathbf{f})$
Punto Medio	0.00470	12.34729	24.476435695866634
Trapeziode	0.00580	22.74063	34.869777055436735
Simpson	0.00903	15.81174	27.94088281572333

Cuadro 26: Resultados del Ejemplo 1 (Integración)

Tiempo de ejecución

En la siguiente tabla se puede observar el tiempo de ejecución de cada uno de los métodos con respecto al valor de n.

n	Punto Medio	Trapezoide	Simpson
1000	0.00449	0.00608	0.00912
2000	0.00846	0.01099	0.01795
3000	0.01376	0.01684	0.02600
4000	0.01523	0.02175	0.03868
5000	0.01888	0.03033	0.04274
6000	0.02574	0.03261	0.05481
7000	0.02600	0.03742	0.05884
8000	0.02961	0.04706	0.06992
9000	0.03227	0.05040	0.07483
10000	0.03783	0.05258	0.08424

Cuadro 27: Tiempo en el Ejemplo 1 (Integración)

Que se puede ver mejor en la siguiente gráfica:

Figura 19: Tiempo en el Ejemplo 1 (Integración)

Exactitud

En la siguiente tabla se puede observar el error absoluto de cada uno de los métodos con respecto al valor de n.

n	Punto Medio	Trapezoide	Simpson
1000	12.347289126358	22.740630485928	15.811736246215
2000	12.347259518390	22.740689701798	15.811736246193
3000	12.347254041292	22.740700655989	15.811736246192
4000	12.347252125049	22.740704488476	15.811736246191
5000	12.347251238282	22.740706262010	15.811736246191
6000	12.347250756642	22.740707225289	15.811736246191
7000	12.347250466254	22.740707806065	15.811736246191
8000	12.347250277793	22.740708182989	15.811736246191
9000	12.347250148590	22.740708441393	15.811736246191
10000	12.347250056176	22.740708626221	15.811736246191

Cuadro 28: Error en el Ejemplo 1 (Integración)

Que se puede ver mejor en la siguiente gráfica:

Figura 20: Error en el Ejemplo 1 (Integración)

En las siguientes gráficas se puede ver de manera más clara el error de cada uno de los métodos respecto al valor de n:

Figura 21: Error del Punto Medio en el Ejemplo 1 (Integración)

Figura 22: Error de Trapezoide en el Ejemplo 1 (Integración)

Figura 23: Error de Simpson en el Ejemplo 1 (Integración)

3.2.2. Ejemplo 2

Para la función f(x) que se muestra a continuación:

$$7x^3 + x^2 + 2x + 1$$

Su integral definida analítica es la siguiente:

$$\int_{-10}^{20} f(x) = 265830$$

En las siguiente tabla se muestran, para cada método, los resultados obtenidos con n=2000, tanto la integral definida como las estadísticas de tiempo y exactitud (error promedio \bar{e}), todas dentro de un intervalo [-10, 20]. En las siguientes dos secciones se muestra más a detalle los resultados de los métodos en cuanto a tiempo y exactitud, respecto a los diferentes valores de n.

Método	Tiempo	Error	$\mathbf{I}(\mathbf{f})$
Punto Medio	0.00946	27330.05968	238499.9403153303
Trapeziode	0.01249	742829.88063	-476999.8806306614
Simpson	0.01895	265830.00000	$1.6825651982799172 \times 10^{-11}$

Cuadro 29: Resultados del Ejemplo 2 (Integración)

Tiempo de ejecución

En la siguiente tabla se puede observar el tiempo de ejecución de cada uno de los métodos con respecto al valor de n.

n	Punto Medio	Trapezoide	Simpson
1000	0.00543	0.00722	0.00994
2000	0.00873	0.01249	0.01998
3000	0.01254	0.01701	0.02957
4000	0.01818	0.02563	0.03487
5000	0.01868	0.02769	0.04324
6000	0.02169	0.03134	0.05319
7000	0.02581	0.03939	0.05917
8000	0.03336	0.04737	0.07063
9000	0.03196	0.04672	0.07239
10000	0.04051	0.05370	0.08201

Cuadro 30: Tiempo en el Ejemplo 2 (Integración)

Figura 24: Tiempo en el Ejemplo 2 (Integración)

Exactitud

En la siguiente tabla se puede observar el error absoluto de cada uno de los métodos con respecto al valor de n.

n	Punto Medio	Trapezoide	Simpson
1000	27330.23898	742829.52204	265830.00000
2000	27330.05968	742829.88063	265830.00000
3000	27330.02652	742829.94696	265830.00000
4000	27330.01491	742829.97017	265830.00000
5000	27330.00954	742829.98091	265830.00000
6000	27330.00663	742829.98675	265830.00000
7000	27330.00487	742829.99026	265830.00000
8000	27330.00373	742829.99255	265830.00000
9000	27330.00295	742829.99411	265830.00000
10000	27330.00239	742829.99523	265830.00000

Cuadro 31: Error en el Ejemplo 2 (Integración)

Figura 25: Error en el Ejemplo 2 (Integración)

En las siguientes gráficas se puede ver de manera más clara el error de cada uno de los métodos respecto al valor de n:

Figura 26: Error del Punto Medio en el Ejemplo 2 (Integración)

Figura 27: Error de Trapezoide en el Ejemplo 2 (Integración)

Figura 28: Error de Simpson en el Ejemplo 2 (Integración)

3.2.3. Ejemplo 3

Para la función f(x) que se muestra a continuación:

$$2^{5-x}$$

Su integral definida analítica es la siguiente:

$$\int_{-18.5}^{-10} f(x) = 17067825,614574954$$

En las siguiente tabla se muestran, para cada método, los resultados obtenidos con n=3000, tanto la integral definida como las estadísticas de tiempo y exactitud (error promedio \bar{e}), todas dentro de un intervalo [-18.5, -10]. En las siguientes dos secciones se muestra más a detalle los resultados de los métodos en cuanto a tiempo y exactitud, respecto a los diferentes valores de n.

Método	Tiempo	Error	$\mathbf{I}(\mathbf{f})$
Punto Medio	0.00761	5299642.41399	11768183.200585555
Trapeziode	0.00868	50558212.12338	-33490386.508809015
Simpson	0.01424	20385832.31712	-3318006.702545944

Cuadro 32: Resultados del Ejemplo 3 (Integración)

Tiempo de ejecución

En la siguiente tabla se puede observar el tiempo de ejecución de cada uno de los métodos con respecto al valor de n.

n	Punto Medio	Trapezoide	Simpson
1000	0.00414	0.00344	0.00558
2000	0.00634	0.00747	0.01264
3000	0.00729	0.00938	0.01745
4000	0.00991	0.01221	0.01962
5000	0.01216	0.01424	0.02467
6000	0.01387	0.01607	0.02776
7000	0.01519	0.01879	0.03315
8000	0.01863	0.02270	0.04259
9000	0.02017	0.02444	0.04366
10000	0.02096	0.02734	0.04990

Cuadro 33: Tiempo en el Ejemplo 3 (Integración)

Figura 29: Tiempo en el Ejemplo 3 (Integración)

Exactitud

En la siguiente tabla se puede observar el error absoluto de cada uno de los métodos con respecto al valor de n.

n	Punto Medio	Trapezoide	Simpson
1000	5299664.404946	50558168.141450	20385832.317114
2000	5299645.846985	50558205.257391	20385832.317121
3000	5299642.413989	50558212.123384	20385832.317121
4000	5299641.212904	50558214.525555	20385832.317121
5000	5299640.657086	50558215.637191	20385832.317121
6000	5299640.355198	50558216.240966	20385832.317121
7000	5299640.173185	50558216.604992	20385832.317121
8000	5299640.055059	50558216.841244	20385832.317121
9000	5299639.974076	50558217.003210	20385832.317121
10000	5299639.916152	50558217.119059	20385832.317121

Cuadro 34: Error en el Ejemplo 3 (Integración)

Figura 30: Error en el Ejemplo 3 (Integración)

En las siguientes gráficas se puede ver de manera más clara el error de cada uno de los métodos respecto al valor de n:

Figura 31: Error del Punto Medio en el Ejemplo 3 (Integración)

Figura 32: Error de Trapezoide en el Ejemplo 3 (Integración)

Figura 33: Error de Simpson en el Ejemplo 3 (Integración)

4. Discusión y Análisis

4.1. Diferenciación

4.1.1. Resultados de los métodos

En los dos primeros ejemplos propuestos, el método que mejor exactitud tuvo fue el de Diferencias Finitas Centrada, seguido por el método de Diferencias Finitas Hacia Atrás, siendo el de Diferencias Finitas Hacia Adelante el que obtuvo la menor exactitud.

En el caso del ejemplo 3 se puede observar que hay diferencias significativas con el mismo comportamiento de los ejemplos 1 y 2, sin embargo, a partir de un h, en este caso 0.4, el error comienza a ser muy parecido en los tres métodos. Esta diferencia puede darse a la naturaleza oscilante de la función, donde es más difícil aproximar un buen valor para la derivada, lo que lleva consigo un comportamiento distintivo en sus resultados.

4.1.2. Complejidad computacional

En los ejemplos 1 y 2, se puede notar que el método que más toma tiempo en ejecutarse es el de Diferencias Finitas Centrada, el segundo es el de Diferencias Finitas Hacia Atrás y, finalmente, el que menos tarda es el de Diferencias Finitas Hacia Adelante. Con este comportamiento se puede observar que para estos casos, el método que mejor exactitud obtuvo es el que más tiempo gasta, y el que tiene menor exactitud es el que toma menos tiempo.

Dado lo anterior es posible plantearse la situación en el que se deba priorizar una de las dos, tiempo o exactitud, que dependerá de las necesidades que se tengan, bien sea eligiendo el método de Diferencias Finitas Centrada obteniendo un mejor resultado y tardando más tiempo, o eligiendo el método de Diferencias Finitas Hacia Adelante tardando menos tiempo pero obteniendo una exactitud más baja. También sería posible elegir el método de Diferencias Finitas Hacia Atrás, llegando a un equilibrio entre estos dos aspectos importantes.

Para el caso del ejemplo 3 se obtiene un comportamiento similar al de los ejemplos 1 y 2, aunque la diferencias es menos significativa en algunos puntos, lo que lleva a una conclusión similar a la que se planteó en el apartado de Resultados de los Métodos.

4.2. Integración

4.2.1. Resultados de los métodos

Para los tres casos, el error que se obtuvo fue muy diferente entre los métodos usados. Se observa que el método empleando la regla del Punto Medio es más exacto que el que lo hace con la regla de Simpson, y mucho mejor comparado con la que usa la regla del Trapezoide. También se puede destacar que en los tres ejemplos, a medida que aumenta n, el error del Punto Medio tiende a disminuir y el error del Trapezoide tiende a aumentar. Esto no sucede con el error de Simpson, que en el ejemplo 1 disminuye, en el ejemplo 2 se mantiene constante, y en el ejemplo 3 aumenta.

Dado lo anterior y la naturaleza de los ejemplos propuestos, se podría plantear que aunque las funciones sean muy diferentes, el método de cuadratura compuesta que usa la regla del Punto Medio es la mejor opción en cuanto a exactitud se refiere, ya que además de obtener el menor error, este disminuye al aumentar n, lo que lo hace una muy buena opción si se quiere una excelente aproximación al resultado real.

Al usar la regla del Trapezoide, el error que se obtiene es alto comparado con los otros dos métodos, además que aumenta a medida que crece n, con lo que se concluye que no es una buena opción si se quiere obtener la mejor aproximación. Un punto intermedio entre los dos casos presentados anteriormente es haciendo uso de la regla de Simpson, aunque como se muestra en los ejemplos, su error varía mucho dependiendo de la función.

4.2.2. Complejidad computacional

Al analizar el tiempo que tardan cada uno de los métodos en los ejemplos propuestos, es posible observar que el método que usa la regla del Punto Medio es el que toma menos tiempo en ejecutarse, seguido por el que usa la regla del Trapezoide, y siendo el que usa la regla de Simpson el que más se demora.

Dado lo anterior se puede concluir que los beneficios de usar la regla del Punto Medio en cuanto a exactitud y tiempo de ejecución son mucho mejores que los que se obtiene al usar los otros métodos. Además cabe anotar que aunque el método que usa la regla del Trapezoide no obtiene buenos resultados en exactitud, no es el menos óptimo de todos.

5. Conclusiones

La implementación del cálculo aproximado de la derivada y la integral de una función en un computador, se vuelve importante para diversas aplicaciones que hacen uso de esta teoría y que requieren resultados rápidos y con la máxima garantía de su correctitud, lo que no siempre se puede lograr usando los métodos tradicionales donde el tiempo gastado y el error inherente del ser humano suele ser un grave problema.

Es relevante analizar los diferentes métodos definidos para un problema, tanto en exactitud como en complejidad, ya que esto permite decidir, según el problema y los datos, cuál es el más apropiado para realizar los cálculos.

Se logró comprender las diferentes formas de obtener la derivada y la integral de una función dada y la importancia de los métodos aprendidos para diversas aplicaciones del mundo real.

Se comprendió que al usar la computación para resolver problemas matemáticos se puede profundizar en el comportamiento de los métodos tanto a nivel de exactitud como a nivel de complejidad, con lo que se logra aprender más sobre ellos e identificar en qué caso usarlos y de qué manera se puede aprovechar mejor.

6. Referencias

- Material del curso, disponible en BlackBoard
- \blacksquare Bornemann, F., 2016. Numerical linear algebra. 1st ed. Simson, W.
- Mathews, J., Fink, K., Fernández Carrión, A. & Contreras Márquez, M., 2011. Métodos Numéricos con MATLAB. 3rd ed. Madrid: Pearson Prentice Hall.
- Librería Numpy
- Librería Pyplot (Matplotlib)
- <u>Librería Time</u>
- Librería Sympy