Матанализ, 1курс, 2семестр, 2000/2001, Вариант 11

- 1) $V = \pi \left(\frac{7}{2} + 12 \ln \frac{3}{4} \right)$.
- 3) $df(1;3) = 2dx + \frac{1}{2}dy$; $d^2f(1;3) = -6dx^2 2dxdy \frac{1}{2}dy^2$; $f(x,y) = -6dx^2 2dxdy \frac{1}{2}dy^2$ $= \frac{\pi}{4} + 2(x-1) + \frac{1}{2}(y-3) - 3(x-1)^2 - \frac{1}{4}(y-3)^2 - (x-1)(y-3) + o(\rho^2).$
- 4) а) не дифференцируема; б) дифференцируема.
- 5) сходится \iff $-3 < \alpha < \frac{3}{2}$.
- 6) сходится абсолютно \iff 0 < α < 1; сходится условно \iff α =
- расходится.
- 8) $f(x) = \frac{x^3}{6}$; сходится равномерно на (0;1), неравномерно на $(1;+\infty)$.
- 9) сходится равномерно на $(1; +\infty)$, неравномерно на (0; 1).

10)
$$f(x) = \ln 2 + \sum_{k=0}^{\infty} \frac{C_{-1/2}^k}{(2k+1)2^{2k+1}} x^{2k+2}$$
; $R = 2$.

Матанализ, 1курс, 2семестр, 2000/2001, Вариант 12

1)
$$V = 216\pi a^4$$
.

2)
$$A = -\frac{20}{3}$$
.

- 3) $df(-1;1) = -\frac{dx}{\sqrt{3}} + \sqrt{3}dy$; $d^2f(-1;1) = -\frac{dx^2}{3\sqrt{3}} \sqrt{3}dy^2 \frac{8}{\sqrt{3}}dxdy$; $f(x,y) = -\frac{\pi}{6} + \frac{x+1}{\sqrt{3}} + \sqrt{3}(y-1) - \frac{(x+1)^2}{6\sqrt{3}} - \frac{\sqrt{3}}{2}(y-1)^2 - \frac{4}{\sqrt{3}}(x+1)^2 - \frac{4}{\sqrt{3}}(x+1)^2$ $+1)(y-1)+o(\rho^2)$.
- 4) а) дифференцируема;
- б) не дифференцируема.
- 5) сходится \iff $-\frac{3}{4} < \alpha < 0$.
- 6) не сходится абсолютно ни при одном α ; сходится условно $\iff 0 <$ $< \alpha < 1$.
- 7) сходится.
- 8) $f(x) = -\frac{x^2}{2}$; сходится равномерно на (0;1), неравномерно на $(1; +\infty)$.
- 9) сходится равномерно на (1;2), неравномерно на $(2;+\infty)$.
- 10) $f(x) = \frac{\pi}{2} + \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2k+1)3^{2k+1}} x^{2k+1}$; R = 3.

Матанализ, 1курс, 2семестр, 2000/2001, Вариант 13

- 1) $S = \frac{3}{2}$.
 - 2) $m = 8(3 \sinh 1 2 \cosh 1)$.
- 3) $df\left(\frac{1}{2};1\right) = (2-2\sqrt{3})dx dy; d^2f\left(\frac{1}{2};1\right) = -\frac{4}{\sqrt{3}}dx^2 2dy^2 + \frac{1}{2}dx^2 + \frac{1}{2}dx^2 -$ +4dxdy; $f(x,y) = (2-2\sqrt{3})\left(x-\frac{1}{2}\right)-(y-1)-\frac{2}{\sqrt{3}}\left(x-\frac{1}{2}\right)^2 -(y-1)^2 + 2\left(x-\frac{1}{2}\right)(y-1) + o(\rho^2).$
- 4) а) не дифференцируема; б) дифференцируема.
- 5) сходится \iff $-4 < \alpha < -3$.
- 6) сходится абсолютно $\iff \frac{1}{3} < \alpha < \frac{2}{5}$; сходится условно $\iff 0 <$ $< \alpha \le \frac{1}{3}$.
 7) расходится.
- 8) $f(x) = \frac{1}{6x^3}$; сходится равномерно на $(1; +\infty)$, неравномерно на (0;1).
- 9) сходится равномерно на (0;1), неравномерно на $(1;+\infty)$.
- 10) $f(x) = \frac{\pi}{4} + \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2k+1)4^{2k+1}} x^{2k+1}$; R = 4.

Матанализ, 1курс, 2семестр, 2000/2001, Вариант 14

- 1) $S = 18\pi \mp \frac{75\pi}{2} \arcsin \frac{4}{5}$. 2) $A = \frac{7}{2}$.
 - 3) df(1;1) = -dy; $d^2f(1;1) = 4dx^2 + dy^2 4dxdy$; $f(x,y) = -(y-1) + dy^2 + dy^$ $+2(x-1)^2+\frac{1}{2}(y-1)^2-2(x-1)(y-1)+o(\rho^2)$.

 - 4) а) дифференцируема; б) не дифференцируема.
 - 5) сходится \iff $-1 < \alpha < 2$.
 - 6) сходится абсолютно $\iff \frac{2}{3} < \alpha < 1$; сходится условно $\iff 0 <$ $<\alpha\leqslant\frac{2}{3}$.
 - 7) сходится.
 - 8) $f(x) = \frac{1}{2x^2}$; сходится равномерно на $(1; +\infty)$, неравномерно на (0;1).
 - 9) сходится равномерно на (0;1), неравномерно на $(1;+\infty)$.
- 10) $f(x) = \frac{\pi}{4} + \sum_{k=0}^{\infty} \frac{(-1)^{k+1} 3^{2k+1} C_{-1/2}^k}{4k+2} x^{2k+1}$; $R = \frac{1}{3}$.