Variable elimination: The basic ideas

Move summations inwards as far as possible

```
■ P(B \mid j, m) = \alpha \sum_{e,a} P(B) P(e) P(a \mid B,e) P(j \mid a) P(m \mid a)

= \alpha P(B) \sum_{e} P(e) \sum_{a} P(a \mid B,e) P(j \mid a) P(m \mid a)
```

- Do the calculation from the inside out
 - I.e., sum over *a* first, then sum over *e*
 - Problem: $P(a \mid B, e)$ isn't a single number, it's a bunch of different numbers depending on the values of B and e
 - Solution: use arrays of numbers (of various dimensions) with appropriate operations on them; these are called *factors*

Operation 1: Pointwise product

- First basic operation: pointwise product of factors (similar to a database join, not matrix multiply!)
 - New factor has union of variables of the two original factors
 - Each entry is the product of the corresponding entries from the original factors
- Example: $P(A,J) \times P(A,M) = P(A,J,M)$

0.045

false

0.855

A\M	true	false
true	0.07	0.03
false	0.009	0.891

J	\ M	tı	rue	fal	se	
J/W	true		false			
true					18	A=false
false			.00	03	A=	true

Operation 2: Summing out a variable

- Second basic operation: summing out (or eliminating) a variable from a factor
 - Shrinks a factor to a smaller one
- Example: $\sum_{j} P(A,J) = P(A,j) + P(A,\neg j) = P(A)$

Summing out from a product of factors

- Project the factors each way first, then sum the products
- Example: $\sum_{a} P(a|B,e) \times P(j|a) \times P(m|a)$
- $= P(a | B,e) \times P(j | a) \times P(m | a) +$
- $P(\neg a \mid B, e) \times P(j \mid \neg a) \times P(m \mid \neg a)$

Variable Elimination

Variable Elimination

- Query: P(Q|e)
- Start with initial factors:
 - Local CPTs (but instantiated by evidence)
- For each hidden variable H_i
 - Sum out H_j from the product of all factors mentioning H_j
- Join all remaining factors and normalize

Example

Query $P(B \mid j,m)$

P(B) P(E) P(A|B,E) P(j|A) P(m|A)

Choose A

P(A|B,E) P(j|A)P(m|A)

P(j,m|B,E)

P(B) P(E) P(j,m|B,E)

Example

Choose E

$$P(E)$$

 $P(j,m|B,E)$

$$P(B)$$
 $P(j,m|B)$

Finish with **B**

$$P(B)$$

 $P(j,m|B)$

Order matters

- Order the terms Z, A, B C, D
 - $P(D) = \alpha \sum_{z,a,b,c} P(z) P(a|z) P(b|z) P(c|z) P(D|z)$
 - $= \alpha \sum_{z} P(z) \sum_{a} P(a|z) \sum_{b} P(b|z) \sum_{c} P(c|z) P(D|z)$
 - Largest factor has 2 variables (D,Z)
- Order the terms A, B C, D, Z
 - $P(D) = \alpha \sum_{a,b,c,z} P(a|z) P(b|z) P(c|z) P(D|z) P(z)$
 - $= \alpha \sum_{a} \sum_{b} \sum_{c} \sum_{z} P(a|z) P(b|z) P(c|z) P(D|z) P(z)$
 - Largest factor has 4 variables (A,B,C,D)
 - In general, with n leaves, factor of size 2ⁿ

VE: Computational and Space Complexity

- The computational and space complexity of variable elimination is determined by the largest factor (and it's space that kills you)
- The elimination ordering can greatly affect the size of the largest factor.
 - E.g., previous slide's example 2ⁿ vs. 2
- Does there always exist an ordering that only results in small factors?
 - No!

Worst Case Complexity? Reduction from SAT

- Variables: W, X, Y, Z
- CNF clauses:
 - $C_1 = W \vee X \vee Y$
 - $C_2 = Y \vee Z \vee \neg W$
 - $C_3 = X \vee Y \vee \neg Z$
- Sentence $S = C_1 \wedge C_2 \wedge C_3$
- P(S) > 0 iff S is satisfiable
 - = > NP-hard
- $P(S) = K \times 0.5^{n}$ where K is the number of satisfying assignments for clauses
 - = => #P-hard

Polytrees

- A polytree is a directed graph with no undirected cycles
- For poly-trees the complexity of variable elimination is *linear in the* network size if you eliminate from the leaves towards the roots

CS 188: Artificial Intelligence

Bayes Nets: Approximate Inference

Instructors: Stuart Russell and Dawn Song

University of California, Berkeley

Sampling

Basic idea

- Draw N samples from a sampling distribution S
- Compute an approximate posterior probability
- Show this converges to the true probability P

Why sample?

- Often very fast to get a decent approximate answer
- The algorithms are very simple and general (easy to apply to fancy models)
- They require very little memory (O(n))
- They can be applied to large models, whereas exact algorithms blow up

Example

- Suppose you have two agent programs A and B for Monopoly
- What is the probability that A wins?
 - Method 1:
 - Let s be a sequence of dice rolls and Chance and Community Chest cards
 - Given s, the outcome V(s) is determined (1 for a win, 0 for a loss)
 - Probability that **A** wins is $\sum_{s} P(s) V(s)$
 - Problem: infinitely many sequences s!
 - Method 2:
 - Sample N sequences from P(s), play N games (maybe 100)
 - Probability that A wins is roughly $1/N \sum_{i} V(s_{i})$ i.e., fraction of wins in the sample

Sampling basics: discrete (categorical) distribution

- To simulate a biased d-sided coin:
 - Step 1: Get sample u from uniform distribution over [0, 1)
 - E.g. random() in python
 - Step 2: Convert this sample u into an outcome for the given distribution by associating each outcome x with a P(x)-sized sub-interval of [0,1)

Example	2

С	<i>P</i> (<i>C</i>)		
red	0.6		
green	0.1		
blue	0.3		

$$0.0 \le u < 0.6, \rightarrow C=red$$

 $0.6 \le u < 0.7, \rightarrow C=green$
 $0.7 \le u < 1.0, \rightarrow C=blue$

- If random() returns u = 0.83, then the sample is C = blue
- E.g, after sampling 8 times:

Sampling in Bayes Nets

- Prior Sampling
- Rejection Sampling
- Likelihood Weighting
- Gibbs Sampling

- For i=1, 2, ..., n (in topological order)
 - Sample X_i from P(X_i | parents(X_i))
- Return $(x_1, x_2, ..., x_n)$

This process generates samples with probability:

$$S_{PS}(x_1,...,x_n) = \prod_i P(x_i \mid parents(X_i)) = P(x_1,...,x_n)$$

...i.e. the BN's joint probability

- Let the number of samples of an event be $N_{PS}(x_1,...,x_n)$
- Estimate from N samples is $Q_N(x_1,...,x_n) = N_{PS}(x_1,...,x_n)/N$
- Then $\lim_{N\to\infty} Q_N(x_1,...,x_n) = \lim_{N\to\infty} N_{PS}(x_1,...,x_n)/N$ = $S_{PS}(x_1,...,x_n)$ = $P(x_1,...,x_n)$
- I.e., the sampling procedure is consistent

Example

• We'll get a bunch of samples from the BN:

```
C, ¬S, r, W
C, S, r, W
¬C, S, r, ¬W
C, ¬S, r, W
¬C, ¬S, ¬r, W
```


- If we want to know P(W)
 - We have counts <w:4, ¬w:1>
 - Normalize to get $P(W) = \langle w:0.8, \neg w:0.2 \rangle$
 - This will get closer to the true distribution with more samples
 - Can estimate anything else, too
 - E.g., for query P(C|r, w) use $P(C|r, w) = \alpha P(C, r, w)$

Rejection Sampling

Rejection Sampling

- A simple modification of prior sampling for conditional probabilities
- Let's say we want P(C | r, w)
- Count the C outcomes, but ignore (reject) samples that don't have R=true, W=true
 - This is called rejection sampling
 - It is also consistent for conditional probabilities (i.e., correct in the limit)

Rejection Sampling

- Input: evidence $e_1,...,e_k$
- For i=1, 2, ..., n
 - Sample X_i from P(X_i | parents(X_i))
 - If x_i not consistent with evidence
 - Reject: Return, and no sample is generated in this cycle
- Return (x₁, x₂, ..., x_n)

- Problem with rejection sampling:
 - If evidence is unlikely, rejects lots of samples
 - Evidence not exploited as you sample
 - Consider P(Shape | Color=blue)

pyramid, green
pyramid, red
sphere, blue
cube, red
sphere, green

- Idea: fix evidence variables, sample the rest
 - Problem: sample distribution not consistent!
 - Solution: weight each sample by probability of evidence variables given parents

- Input: evidence $e_1,...,e_k$
- w = 1.0
- for i=1, 2, ..., n
 - if X_i is an evidence variable
 - x_i = observed value, for X_i
 - Set $w = w * P(x_i \mid parents(X_i))$
 - else
 - Sample x_i from P(X_i | parents(X_i))
- return $(x_1, x_2, ..., x_n), w$

Sampling distribution if Z sampled and e fixed evidence

$$S_{WS}(\mathbf{z}, \mathbf{e}) = \prod_{j} P(z_{j} \mid parents(Z_{j}))$$

Now, samples have weights

$$w(\mathbf{z}, \mathbf{e}) = \prod_{k} P(e_{k} \mid parents(E_{k}))$$

Together, weighted sampling distribution is consistent

$$S_{WS}(\mathbf{z}, \mathbf{e}) \cdot w(\mathbf{z}, \mathbf{e}) = \prod_{j} P(z_{j} \mid parents(Z_{j})) \prod_{k} P(e_{k} \mid parents(E_{k}))$$

= $P(\mathbf{z}, \mathbf{e})$

- Likelihood weighting is an example of importance sampling
 - Would like to estimate some quantity based on samples from P
 - P is hard to sample from, so use Q instead
 - Weight each sample x by P(x)/Q(x)

- Likelihood weighting is good
 - All samples are used
 - The values of *downstream* variables are influenced by *upstream* evidence

- Likelihood weighting still has weaknesses
 - The values of *upstream* variables are unaffected by downstream evidence
 - E.g., suppose evidence is a video of a traffic accident
 - With evidence in k leaf nodes, weights will be $O(2^{-k})$
 - With high probability, one lucky sample will have much larger weight than the others, dominating the result
- We would like each variable to "see" all the evidence!

Quiz

- Suppose I perform a random walk on a graph, following the arcs out of a node uniformly at random. In the infinite limit, what fraction of time do I spend at each node?
 - Consider these two examples:

