12-1

方法一: 利用本原多项式的定义, 要满足三个条件:

(1) 第一个条件: f(x) 是既约的, 即不能再因式分解;

若 f(x) 能因式分解,则其因子必然是最高幂指数小于 3 的多项式,一共有以下几种: $x,x+1,x^2,x^2+1,x^2+x+1$ (【注】不包含 x^2+x ,因为 x^2+x 自己都还可以因式分解)。 但这几种都不能整除 $f(x)=x^3+x^2+1$,所以 f(x) 是既约的;

(2) 第二个条件: f(x) 能够整除 $x^7 + 1$;

$$\frac{x^7+1}{x^3+x^2+1} = x^4+x^3+x^2+1$$
, 能整除, 满足条件;

(3) 第三个条件: f(x) 不能够整除 $x^3 + 1, x^4 + 1, x^5 + 1, x^6 + 1$;

经验证, f(x)确实不能整除 $x^3 + 1, x^4 + 1, x^5 + 1, x^6 + 1$;

综上, f(x) 是本原多项式。

方法二:利用本原多项式与 m 序列的关系,一个线性反馈移存器能产生 m 序列的充要条件是:反馈移存器的特征多项式为本原多项式。

我们只要按照 $f(x)=x^3+x^2+1$ 的形式得到一个反馈移存器,若产生的序列周期为 $2^n-1=2^2-1=7$,则 $f(x)=x^3+x^2+1$ 即为本原多项式,否则,则不是本原多项式。此反馈移存器如下:

假设初始状态为: 001,则此反馈移存器的数值变换规律如下:

a ₂	a ₁	a ₀
0	0	1
1	0	0
0	1	0
1	0	1
1	1	0
1	1	1
0	1	1
0	0	1

此多项式 f(x) 产生的序列周期是 7, 即为 m 序列, 所以 f(x) 是本原多项式。

12-3

方法一: 按照本原多项式的定义

$$(x^{15}+1) = (x^4+x+1)(x^4+x^3+1)(x^4+x^3+x^2+x+1)(x^2+x+1)(x+1)$$
$$(x^5+1) = (x^4+x^3+x^2+x+1)(x+1)$$

虽然 $f(x) = x^4 + x^3 + x^2 + x + 1$ 是 $x^{15} + 1$ 的一个因子,但也是 $x^5 + 1$ 的一个因子,不复合本原多项式的定义,所以,不是本原多项式。

方法二:利用本原多项式与 m 序列的关系,一个线性反馈移存器能产生 m 序列的充要条件 是:反馈移存器的特征多项式为本原多项式。

我们只要按照 $f(x) = x^4 + x^3 + x^2 + x + 1$ 的形式得到一个反馈移存器, 若产生的序列周期为 $2^4 - 1 = 2^4 - 1 = 15$,则 $f(x) = x^4 + x^3 + x^2 + x + 1$ 即为本原多项式, 否则,则不是本原多项式。此反馈移存器如下:

假设初始状态为: 0001, 则此反馈移存器的数值变换规律如下:

a ₃	a ₂	a ₁	a_0				
0	0	0	1				
1	0	0	0				
1	1	0	0				
0	1	1	0				
0	0	1	1				
0	0	0	1				
1	0	0	0				
1	1	0	0				

此多项式 f(x) 产生的序列周期是 5,不是 m 序列,所以不 f(x) 是本原多项式。