Problem I Lexicographical Order

Time limit: 1 second Memory limit: 256 megabytes

Problem Description

The number of permutations of $\{1, \ldots, n\}$ is n!, and a permutation of $\{1, \ldots, n\}$ can be written as an n-tuple (p_1, \ldots, p_n) where $\{1, \ldots, n\} = \{p_1, \ldots, p_n\}$. Permutation (p_1, \ldots, p_n) is smaller than permutation (q_1, \ldots, q_n) in lexicographical order if and only if there exists $i \in \{1, \ldots, n\}$ such that $p_i < q_i$ and $p_j = q_j$ for j < i.

Write a program to compute the *i*-th smallest permutation of $\{1, \ldots, n\}$.

Input Format

The first line of the input contains an integer t ($t \le 10^4$) indicating the number of test cases. Each test case is a line containing two integers n and i where $0 < n \le 64$ and $0 < i \le \min(2^{64} - 1, n!)$.

Output Format

For each test case, output the *n*-tuple representing the *i*-th smallest permutation of $\{1, \ldots, n\}$ in lexicographical order.

Sample Input

3

5 1

4 2

3 6

Sample Output

(1,2,3,4,5)

(1,2,4,3)

(3,2,1)