1) Sum Rule: 
$$P(x) = \sum_{y} P(x_{y})$$

(2) produce Rule: 
$$P(x_{2}y) = P(x|y) P(y) = P(y|x) P(x)$$

$$M = 6 \qquad 5 = 1.2$$

$$C(X) = \frac{1}{25^2} e^{-\frac{(X-M)^2}{25^2}}$$





$$L(5,N;X) = f(x_1,..., x_{300})$$

$$Max(5,N;X) \sim_{7} \text{ the best value for } 5,0$$

$$5,N'$$

$$"i.i.d" => f(x) = f(x_1) f(x_2,..., f(x_{n=300})$$

$$Max L(5,N:X) = \iint_{F(X_i)} f(x_i)$$

$$F(X_i) = \frac{P(X_i)P(X_i)}{P(X_i)} \xrightarrow{P(X_i)} P(X_i)$$

$$P(X_i) = \frac{P(X_i)P(X_i)}{P(X_i)} \xrightarrow{P(X_i)} P(X_i)$$

$$P(X_i) = \frac{P(X_i)P(X_i)}{P(X_i)} \xrightarrow{P(X_i)} P(X_i)$$

$$P(X_i) = \frac{P(X_i)P(X_i)}{P(X_i)} \xrightarrow{P(X_i)} P(X_i)$$



# Lecture 04 Information Theory

Mahdi Roozbahani Georgia Tech

These slides are based on slides from Le Song, Roni Rosenfeld, Chao Zhang, and Maneesh Sahani.

### **Outline**

Motivation

- Entropy
- Conditional Entropy and Mutual Information
- Cross-Entropy and KL-Divergence

# **Uncertainty and Information**

**Information** is processed data whereas **knowledge** is **information** that is modeled to be useful.

You need information to be able to get knowledge

• information ≠ knowledge
 Concerned with abstract possibilities, not their meaning

# **Uncertainty and Information**



Which day is more uncertain?

How do we quantify uncertainty?

High entropy correlates to high information or the more uncertain







$$X_1 = heigh($$

### Information

Let X be a random variable with distribution p(x)

$$I(X) = \log(\frac{1}{p(x)})$$

Have you heard a picture is worth 1000 words?

Information obtained by random word from a 100,000 word vocabulary:

$$I(word) = \log\left(\frac{1}{p(x)}\right) = \log\left(\frac{1}{1/100000}\right) = \underbrace{16.61 \ bits}$$

A 1000 word document from same source:

$$I(document) = 1000 \times I(word) = 16610$$

A 640\*480 pixel, 16-greyscale video picture (each pixel has 16 bits information):

$$I(Picture) = \log\left(\frac{1}{1/16^{640*480}}\right) = 1228800$$

A picture is worth (a lot more than) 1000 words!

- Suppose we observe a sequence of events:
  - Coin tosses
  - ► Words in a language
  - notes in a song
  - etc.
- ▶ We want to record the sequence of events in the smallest possible space.
- ► In other words we want the shortest representation which preserves all information.
- Another way to think about this: How much information does the sequence of events actually contain?

To be concrete, consider the problem of recording coin tosses in unary.



We used 9 characters

To be concrete, consider the problem of recording coin tosses in unary.

T, T, T, T, H

Approach 2:

H T 00 0

0,0,0,0,00

We used 6 characters

- Frequently occurring events should have short encodings
- We see this in english with words such as "a", "the", "and", etc.
- We want to maximise the information-per-character
- seeing common events provides little information
- seeing uncommon events provides a lot of information

# **Information Theory**

- Information theory is a mathematical framework which addresses questions like:
  - How much information does a random variable carry about?
  - ► How efficient is a hypothetical code, given the statistics of the random variable?
  - ► How much better or worse would another code do?
  - ► Is the information carried by different random variables complementary or redundant?



Claude Shannon



### **Outline**

- Motivation
- Entropy
- Conditional Entropy and Mutual Information
- Cross-Entropy and KL-Divergence

# **Entropy**

• Entropy H(Y) of a random variable Y

$$V = \sum_{k=1}^{K} P(y=k) \log_2 P(y=k) = \sum_{k=1}^{K} P(y) \log_2 \frac{P(y)}{P(y)}$$

- H(Y) is the expected number of bits needed to encode a randomly drawn value of Y (under most efficient code)
- Information theory:

Most efficient code assigns  $-\log_2 P(Y=k)$  bits to encode the message Y=k, So, expected number of bits to code one random Y is:

$$-\sum_{k=1}^{K} P(y=k) \log_2 P(y=k)$$

# **Entropy**



- S is a sample of coin flips
- $p_+$  is the proportion of heads in S
- $p_-$  is the proportion of tails in S
- Entropy measure the uncertainty of S

$$H(S) \equiv -p_{+} \log_{2} p_{+} - p_{-} \log_{2} p_{-}$$

# **Entropy Computation: An Example**

$$H(S) \equiv -p_{+} \log_{2} p_{+} - p_{-} \log_{2} p_{-}$$

| head | 0   |
|------|-----|
| tail | 6 e |

$$P(h) = 0/6 = 0$$
  $P(t) = 6/6 = 1$ 

Entropy = 
$$-0 \log 0 - 1 \log 1 = -0 - 0 = 0$$

| head | 14         |
|------|------------|
| tail | 5 <b>~</b> |

$$P(h) = 1/6$$
  $P(t) = 5/6$ 

Entropy = 
$$-(1/6) \log_2 (1/6) - (5/6) \log_2 (5/6) = 0.65$$

| head | 2, |
|------|----|
| tail | 4  |

$$P(h) = 2/6$$
  $P(t) = 4/6$ 

Entropy = 
$$-(2/6) \log_2(2/6) - (4/6) \log_2(4/6) = 0.92$$

# Properties of Entropy = (x) = (P(x) g(x))

$$E(x) = P(x)g(x)$$

$$H(P) = \sum_{i} p_{i} \cdot \log \frac{1}{p_{i}}$$

$$(P) \ge 0 \qquad \qquad P_{i} = \bigcup_{k} p_{i} \Rightarrow \sum_{k} \bigcup_{k} p_{i} = 0$$

- 1. Non-negative:  $H(P) \ge 0$
- $= K \left( \frac{1}{K} \right) \log K$ 2. Invariant wrt permutation of its inputs:  $H(p_1, p_2, \dots, p_k) = H(p_{\tau(1)}, p_{\tau(2)}, \dots, p_{\tau(k)})$
- 3. For any *other* probability distribution  $\{q_1, q_2, \dots, q_k\}$ :

$$H(P) = \sum_{i} p_i \cdot \log \frac{1}{p_i} < \sum_{i} p_i \cdot \log \frac{1}{q_i}$$

- 4.  $H(P) \leq (\log k)$  with equality iff  $p_i = 1/k \ \forall i$
- 5. The further P is from uniform, the lower the entropy.

### **Outline**

- Motivation
- Entropy
- Conditional Entropy and Mutual Information
- Cross-Entropy and KL-Divergence

$$P(T) = \sum_{N} P(T,N)$$
Temperature

| )(W= | (w) | -c. |
|------|-----|-----|
|      |     |     |



|      | cold  | mild  | hot |     |
|------|-------|-------|-----|-----|
| low  | 0.1   | 0.4   | 0.1 | 0.6 |
| high | 0.2   | 0.1   | 0.1 | 0.4 |
|      | (0.3) | (0.5) | 0.2 | 1.0 |
|      |       |       |     |     |

- H(T) = H(0.3, 0.5, 0.2) = 1.48548
- H(M) = H(0.6, 0.4) = 0.970951
- H(T) + H(M) = 2.456431
- **Joint Entropy**: consider the space of (t, m) events H(T, M) = $\sum_{t,m} P(T=t, M=m) \cdot \log \frac{1}{P(T=t, M=m)}$ H(0.1, 0.4, 0.1, 0.2, 0.1, 0.1) = 2.32193

Notice that H(T, M) < H(T) + H(M) !!!

# **Conditional Entropy**

$$P(T=t|M=m)$$

|      | cold | mild | hot |     |
|------|------|------|-----|-----|
| low  | 1/6  | 4/6  | 1/6 | 1.0 |
| high | 2/4  | 1/4  | 1/4 | 1.0 |

### Conditional Entropy:

- H(T|M = low) = H(1/6, 4/6, 1/6) = 1.25163
- H(T|M = high) = H(2/4, 1/4, 1/4) = 1.5
- Average Conditional Entropy (aka equivocation):
- $H(T/M) = \sum_{m} P(M = m) \cdot H(T|M = m) = 0.6 \cdot H(T|M = low) + 0.4 \cdot H(T|M = high) = 1.350978$

# **Conditional Entropy**

$$P(M=m|T=t)$$

|      | cold | mild | hot |
|------|------|------|-----|
| low  | 1/3  | 4/5  | 1/2 |
| high | 2/3  | 1/5  | 1/2 |
|      | 1.0  | 1.0  | 1.0 |

### Conditional Entropy:

- H(M|T = cold) = H(1/3, 2/3) = 0.918296
- H(M|T = mild) = H(4/5, 1/5) = 0.721928
- H(M|T = hot) = H(1/2, 1/2) = 1.0
- Average Conditional Entropy (aka Equivocation):  $H(M/T) = \sum_t P(T=t) \cdot H(M|T=t) = \\ 0.3 \cdot H(M|T=cold) + 0.5 \cdot H(M|T=mild) + 0.2 \cdot H(M|T=hot) = 0.8364528$

# **Conditional Entropy**

• Conditional entropy H(Y|X) of a random variable Y given  $X_i$ 

Discrete random variables: 
$$H(Y|X_i) \neq \sum_{x \in X} p(x_i) H(Y|X = x_i) = \sum_{x \in X, y \in Y} p(x_i, y_i) \log \frac{p(x_i)}{p(x_i, y_i)}$$
 Continuous: 
$$H(Y|X_i) = -\left(\int \left(\sum_{k=1}^K P(y = k|x_i) \log_2 P(y = k)\right) p(x_i) dx_i\right)$$

- Quantify the uncerntainty in Y after seeing feature X<sub>i</sub>
- H(Y) is the expected number of bits needed to encode a randomly drawn value of Y
  - given  $X_i$ , and
  - ullet average over the likelihood of seeing particular value of  $x_i$

# **Mutual Information**

Mutual information: quantify the reduction in uncerntainty in Y after seeing feature  $X_i$ 

$$I(X_i, Y) = H(Y) - H(Y|X_i)$$

- The more the reduction in entropy, the more informative a feature.
- Mutual information is symmetric

$$\int_{\bullet}^{\bullet} I(X_{i}, Y) = I(Y, X_{i}) = H(X_{i}) - H(X_{i}|Y)$$

$$\int_{\bullet}^{\bullet} I(Y, X_{i}) = \int_{0}^{K} \sum_{k=1}^{K} p(x_{i}, y = k) \log_{2} \frac{p(x_{i}, y = k)}{p(x_{i})p(y = k)} dx_{i}$$

$$\int_{0}^{\bullet} = \int_{0}^{K} \sum_{k=1}^{K} p(x_{i}|y = k) p(y = k) \log_{2} \frac{p(x_{i}|y = k)}{p(x_{i})} dx_{i}$$

### Properties of Mutual Information

$$I(X;Y) = H(X) - H(X/Y)$$

$$= \sum_{x} P(x) \cdot \log \frac{1}{P(x)} - \sum_{x,y} P(x,y) \cdot \log \frac{1}{P(x|y)}$$

$$= \sum_{x,y} P(x,y) \cdot \log \frac{P(x|y)}{P(x)}$$

$$= \left(\sum_{x,y} P(x,y) \cdot \log \frac{P(x,y)}{P(x)P(y)}\right)$$

Properties of Average Mutual Information:

- Symmetric (but  $H(X) \neq H(Y)$  and  $H(X/Y) \neq H(Y/X)$ )
- Non-negative (but H(X) H(X/y) may be negative!)
- Zero iff *X*, *Y* independent

CE and MI: Visual Illustration



Image Credit: Christopher Olah.

### **Outline**

- Motivation
- Entropy
- Conditional Entropy and Mutual Information
- Cross-Entropy and KL-Divergence

# **Cross Entropy**

**Cross Entropy**: The expected number of bits when a wrong distribution Q is assumed while the data actually follows a distribution P

$$H(p,q) = -\sum_{x \in \mathcal{X}} p(x) \, \log q(x)$$

This is because:

$$egin{align} H(p,q) &= \mathrm{E}_p[l_i] = \mathrm{E}_p\left[\lograc{1}{q(x_i)}
ight] \ H(p,q) &= \sum_{x_i} p(x_i)\,\lograc{1}{q(x_i)} \ H(p,q) &= -\sum_{x} p(x)\,\log q(x). \ \end{array}$$

# Kullback-Leibler Divergence

Another useful information theoretic quantity measures the difference between two distributions.

$$\begin{aligned} \mathbf{KL}[P(S) \| Q(S)] &= \sum_{s} P(s) \log \underbrace{\frac{P(s)}{Q(s)}}_{} \\ &= \underbrace{\sum_{s} P(s) \log \frac{1}{Q(s)}}_{} - \mathbf{H}[P] \end{aligned}$$
 cross entropy

Excess cost in bits paid by encoding according to Q instead of P.

KL Divergence is a distance measurement

$$-\mathbf{KL}[P\|Q] = \sum_{s} P(s) \log \frac{Q(s)}{P(s)}$$

$$\sum_{s} P(s) \log \frac{Q(s)}{P(s)} \le \log \sum_{s} P(s) \frac{Q(s)}{P(s)} \quad \text{by Jensen}$$

$$= \log \sum_{s} Q(s) = \log 1 = 0$$

So 
$$KL[P||Q] \ge 0$$
. Equality iff  $P = Q$ 

When 
$$P = Q$$
,  $KL[P||Q] = 0$ 

# Take-Home Messages

### Entropy

- ► A measure for uncertainty
- Why it is defined in this way (optimal coding)
- ► Its properties
- Joint Entropy, Conditional Entropy, Mutual Information
  - ► The physical intuitions behind their definitions
  - ► The relationships between them
- Cross Entropy, KL Divergence
  - ► The physical intuitions behind them
  - ► The relationships between entropy, cross-entropy, and KL divergence

$$I(x) = \log_2 \frac{1}{P(x)}$$

$$H(x) = \sum_{k=1}^{K} P(x) \Gamma(x)$$

Likelihood

P(Y=BP|X=6) = P(X=6|Y=BP) P(Y=BP)

Posteriar probability

$$P(x=6|Y=BP)\sqrt{}$$

(P(X)) marginalization

$$M = \frac{\sum x_i}{n} \quad \mathcal{E} = \frac{\sum (x_i - M)^2}{n}$$

Prior knowledge

$$P(x) = \sum_{y} P(x, y) = \sum_{y} P(x|y)P(y)$$
3P & NBP

| Common langua | ge (jangons)                                                    |
|---------------|-----------------------------------------------------------------|
|               | PM<br>Pro babilistic models ~>> GMM, NB                         |
| ML            | non probabilistic models ~> Regression                          |
| PM ~>         | we need to create likelihood function to optimal the Draameters |

NPM ~> hagrangian function

per month
$$S.t \quad A+T=100$$

$$S(x) = A+T-100$$

$$S(x) = A+T-100$$

$$\frac{\partial L}{\partial A} = 0 \implies 12A - S = 0 \implies A = \frac{S}{12} = 33.3$$

$$\frac{\partial L}{\partial A} = 0 \implies 6T - S = 0 \implies T = \frac{S}{6} = 66.6$$

$$\frac{\partial L}{\partial S} = 0 \implies A + T = 100 \implies \frac{S}{12} + \frac{2S}{12} = 100 \implies S = 400$$

f(x)=270 ~ Hessian Matrix  $L = f - \sum_{i} g_{i}(x)$ M constrained Eq s.t 9 (x) A+T < 100 ~> A+T=100 & you follow KKT assumptions 5,50