USING TIME SERIES MODELS FOR DEFECT PREDICTION IN SOFTWARE RELEASE PLANNING

A Thesis

Presented to

The Graduate Faculty

Central Washington University

In Partial Fulfillment
of the Requirements for the Degree
Master of Science

Computational Science

by

James W. Tunnell

June 2015

CENTRAL WASHINGTON UNIVERSITY

Graduate Studies

We hereby approve the thesis of		
	James W. Tunnell	
Candidate for the degree of Master of Science		
	APPROVED FOR THE GRADUATE FACULTY	
	Dr. John K. Anvik, Committee Chair	
	Dr. Yvonne Chueh	
	Dr. Kathryn Temple	
	Dean of Graduate Studies	

ABSTRACT

USING TIME SERIES MODELS FOR DEFECT PREDICTION IN SOFTWARE RELEASE PLANNING

by

James W. Tunnell

June 2015

To produce a high-quality software release, sufficient time should be allowed for testing and fixing defects. Otherwise, there is a risk of slip in the development schedule and/or software quality. A time series model is used to predict the number of bugs created during development. The model depends on the previous numbers of bugs created. The model also depends, in an exogenous manner, on the previous numbers of new features resolved and improvements resolved. This model structure would allow hypothetical release plans to be compared by assessing their predicted impact on testing and defect-fixing time. The VARX time series model was selected as a reasonable approach. The accuracy of the model varies for different sampling periods, window sizes, and degree of differencing.

ACKNOWLEDGEMENTS

The author is grateful to Dr. John Anvik, for his advice and patience, to Dr.

Yvonne Chueh for her help with exploratory data analysis, and to Dr. Kathryn Temple for her guidance with time series modeling.

TABLE OF CONTENTS

Chapter		Page
I	INTRODUCTION	1
II	LITERATURE REVIEW	3
III	MOTIVATION	6
IV	BACKGROUND	12
V	METHODS	16
VI	RESULTS	26
VII	DISCUSSION	43
VIII	THREATS TO VALIDITY	45
IX	FUTURE WORK	48
X	CONCLUSION	52
	REFERENCES	53
	APPENDIXES	55

LIST OF TABLES¹

Table		Page
1	The results of sampling example issues	19
2	The date ranges of data collected, and the number issues that resulted	27
3	The sliding windows sizes to be used for each sampling period	28
4	The parameter values selected from exploratory modeling	32
5	A comparison of the final modeling results across datasets	42
6	A comparison of the results for full and restricted sample ranges	49

¹ The tables shown in the Appendixes are not listed here.

LIST OF FIGURES²

Figure		Page
1	Using an explanatory model for defect prediction	7
2	Applying the defect prediction model to estimate overall cost	10
3	An overview of data methods	16
4	Sampling example issue data	19
5	An illustration of time-windowing	21
6	The none-valid proportion, using the MongoDB core server dataset	30
7	The in-interval proportion, using the MongoDB core server dataset	31
8	The actual and predicted distributions of the number of bugs	34
9	Histogram of forecast mean errors over sliding window	34
10	Q-Q plot of forecast mean errors	35
11	The actual and predicted distributions of the number of bugs	36
12	Histogram of forecast mean errors over sliding window	37
13	Q-Q plot of forecast mean errors	37
14	The actual and predicted distributions of the number of bugs	38
15	Histogram of forecast mean errors over sliding window	39
16	Q-Q plot of forecast mean errors	39
17	The actual and predicted distributions of the number of bugs	40
18	Histogram of forecast mean errors over sliding window	41
19	Q-Q plot of forecast mean errors	42

² The figures shown in the Appendixes are not listed here.

LIST OF FIGURES (CONTINUED)

Figure		Page
20	Forecast errors by window reveal the location of an outlier	49
21	Undifferenced time series data from the Hibernate <i>orm</i> dataset	50