Lecture 5 : Multiple Access Protocols

Hema Murthy
Professor
Dept. of CSE, IIT Madras

Short Term Course on "Teaching Computer Networks Effectively". Sponsored by AICTE.

5.1 Medium Access Sublayer

- Topology of the Network
 - Bus, Ring, Tree
- Protocols
 - IEEE 802.3 for bus topology
 - IEEE 802.4 for token bus
 - IEEE 802.5 for token ring
 - FDDI for fibre ring
 - IEEE 802.11 for wireless networks

Network Topology

Tree topology:

Network Topology

Multipoint media

Tree and Bus Topologies

- multipoint medium
 - all stations attach through appropriate hardware interface called tap directly to the medium
 - full duplex operations on the bus
 - data propagates the length of medium in both directions
 - at each end bus terminated
 - absorbs any signal -> removes it from the bus
 - tree has a head end
 - since data propagated to all stations addressing required!

Star Topology

- central node acts as a broadcast
- although physically a star logically a bus
 - alternatively central node acts as a switch. frame switching – copy frame – send out on destination link
- problem central point failure

Ring Topology

- Repeaters joined by point to point links in a closed loop.
 - no buffering
- unidirectional links
- destination recognises its frames & copies it
- frame removed by source
- in all topologies ONLY one station transmits at a time

Transmission in Networks

- Networks
 - Point-to-Point
 - Broadcast Networks
- Broadcast networks
 - Only one station transmits at a time → competition
 - who gets access to the channel
 - conference calls:
 - between six people only one channel
 - Who gets access?
 - multiaccess or random access channels

Broadcast Network-Solutions

- static allocation
 - wasteful of Bandwidth
 - more senders than channels
- Solution: Dynamic allocation of channels!

- Station model
 - N independent stations
 - Each user generates a frame for transmission
 - Pr[frame generated in time Δt] = $\lambda \Delta t$
 - arrival rate for new frame
 - Once frame generated station blocks
 - does nothing until frame transmitted.

- Single channel assumptions:
 - Single channel for all communication
 - All stations can transmit and receive on it
 - All stations get a fair share of the channel

- Collision assumption:
 - Two frames transmitted at the same time
 - signal garbled
 - All stations can detect collisions
 - A collided frame is retransmitted
 - Errors only due to collision

- Continuous time:
 - Frames can begin at any instant of time
 - No master clock dividing time into discrete intervals.
- Slotted time:
 - time divided into slots
 - frames start at the beginning of a slot
 - multiple frame / slot

- Carrier Sense:
 - Station can tell whether channel is in use
 - If carrier sensed do not transmit
 - What is carrier sense an electrical signal
- No carrier sense:
 - Station cannot detect carrier
 - go ahead and transmit
 - Later worry about success or failure

5.2 Multiple Access Protocols: ALOHA

- ALOHA
 - pure slotted
- Basic idea: User transmit whenever they have data to send
- Collision detection:
 - use feed back property to determine collisions
- Originated as part of packet switched radio networks

ALOHA

- Very inefficient: 18%
 - Solution: Slotted ALOHA
- Slotted ALOHA
 - Time divided into Slots
 - Transmission only in slots
 - Efficiency: 36%

ALOHA

Collision Resolution: Wait random amount of time before retransmitting

ALOHA: Throughput

t – time required to send a frame

Throughput: maximised when frames across stations of same size

ALOHA: Efficiency

- population: infinite number of users generate frame (in a frame time)
 - S frames/frametime
 - Assume Poisson Distributed
 - S < 1 only then possible to successfully transmit.
 - S > 1 almost all frames suffer collision
 - G number of attempts/frame

ALOHA: Efficiency

- Throughput: $S = GP_0$
 - P₀ Probability that a frame does not suffer collision
 - Low Load: $S \approx 0$ $G \approx S$

Low Collisions, few transmissions

• High Load:

High Collisions, almost every frame collides

ALOHA-Analysis

- Probability of zero frames: e^{-G}
- In an interval two frames long
 - number of frames generated is 2G
- Probability that no other traffic during vulnerable period
 - $P_0 = e^{-2G}$
 - $S = G e^{-2G}$
- Max Throughput: G = 0.5, S = 1/2a (a is the propagation delay

ALOHA: Throughput vs Load

Successful transmission/frame time $S = G P_0$

- ALOHA: Utilisation very poor
 - need a better solution
- CSMA Carrier Sense Multiple Access Protocols
- CSMA / CD Additional overhead over CSMA –
 - once collision detected stop transmitting
- Ethernet Xerox Palo Alto Research

- All stations can detect when a station is idle / busy.
- Collision detection (CD)
 - collision a host listens as it transmits
 - knows when a collision has occurred (change in signal levels on the line)

- When station has data to send :
 - Listen to the channel
 - busy then wait
 - idle transmit
 - If collision occurs
 - wait random amount of time and then retransmit
- p-persistent:
 - station transmits with a probability p when idle

- Issues propagation delays become worse with large a.
 - two stations back off for same time retransmit more collision

5.3 Ethernet: Miscellaneous

- Cable: 10/100 Base T
 - 10/100 Mbps
 - T twisted pair
 - Splice T-joint in cable
 - Cables are connected to machines which connect to a hub
 - Maximum cable length from machine to hub
 - 100m
- Encoding: Manchester encoding

A Typical Ethernet LAN

Terminators attached at the end of each segment absorb the signal

daisy chain a number of hosts

- •almost like a star
- data transmitter on one segment received by every body else
- •single channel multi access
- •same collision domain

The Ethernet Frame Format

Ethernet Frame Format

- Data in each frame maximum 1500 bytes, minimum 46 bytes
- Bit oriented protocol
- Ethernet frame: 14 byte header (6 byte dest + 6 byte src + 2 byte type)
- Adapter attaches preamble, CRC, postamble before transmitting and receiving adapter, removes them

Ethernet Frame Format

- Every ethernet host has a unique address
 - 48 bit address:
 - Example: 8 : 0 : 2b : e4 : b1 : 2
 - 4 bit nibbles
 - each manufacturer of Ethernet device is allocated a fix prefix (24 bit)
 - Example: AMD: 24 bit 8:0:20
 - manufacturer ensures suffix is unique
 - frame transmitted is received by every adapter connected to Ethernet

Adapter Functions

- adapter recognises frame meant for itself passes to host (unicast address)
- adapter runs in promiscuous mode
 - listen to all frames
 - adapter must be programmed to do this
- adapter accepts frames with multicast address
 - provided adapter has been programmed to listen that address

Adapter Functions

- No centralised control
- Two station begin transmitting at the same time
- Each sender can detect collisions receiver detects collision sends
- A 32 bit jamming sequence is sent to indicate a collision

Ethernet Conventions

- Minimal transmission:
- 64 bit + 32 = 96 bit
- Preamble + jamming sequence
- To ensure frame did not collide with another send
 - 14 bytes header + 46 bytes data + 4 byte CRC
 = 512 bits

Ethernet Example

- 2500 m + 4 repeaters
- 10 Mbps delay 51.2 μs
- = 512 bits
- collision detected
 - use binary exponential backoff
- First: 0, 51.2 μs
- Second: 0, 51.2 μs , 102.4 μs

Ethernet Conventions

- Collision again
- wait $\mathbf{k} \times 51.2 \,\mu \,s$
- for $0, 2^3-1$
- randomly select k between 0 2ⁿ 1
- n number of collision experienced
- retry upto 16 times

Popularity of Ethernet

- 200 hosts / NW
- Most Ethernets shorter than 2500 m
 - delay 5 μ s rather than 51.2 μ s
- No routing
- No configuration
- Easy to add new hosts
- Cable cheap, adapter cheap switch based approaches expensive

Ethernet: Overhead: Collision detection

Contention detection: Depends on propagation delay

Ethernet Analysis

- B detects collision
 - sends jammer to A
 - Jammer takes 2a time to reach A
- frame size 1
- 2a end to end propagation delay
- CSMA / CD : medium organised as slots
 - length is 2a

Ethernet Analysis

- slot time max time from start of frame to detect collision = 2a.
- CSMA analysis:Assumptions
 - infinite population
 - Poisson arrival
 - unslotted non persistent
 - fixed frame size

Ethernet Analysis

 $P[success] = e^{-aG}$ Offered Load $S = Ge^{-aG}$ a is the propagation delay

Frame time is 1

CSMA – p-persistent

- Station acquires a slot
- p- probability of transmission during a slot
- Let k be the number of stations
- The probability that only one station transmits in a slot is
- $A = kp(1-p)^{k-1}$

Mean length of contention interval

 $E[(i-1) \ collision \ slots \ followed \ by \ a \ success]$

$$=\sum_{i=1}^{\infty}iP^{i-1}(1-P)$$

$$= \sum_{i=1}^{\infty} i(1-A)^{i-1}A$$

$$=\frac{1-A}{A}$$
 slots

Efficiency

time in slots for transmitting data
$$=\frac{1}{2a}$$

$$Utilisation = \frac{\frac{1}{2a}}{\frac{1}{2a} + \frac{1 - A}{A}}$$

$$k \to \infty, A \to 1/e$$

$$Utilisation = \frac{1}{1+3.44a}$$

Transmission interval 1/2a slots

Sequence of slots with no transmission or collision