Determinants of Trace Class Operators - Lidskii's Theorem

April Herwig

11.07.2023

1 Lidskii's Theorem

Theorem 1.1 (Lidksii). Let X be a Hilbert space and $A \in L(X)$ be a trace-class operator with eigenvalues $\lambda_1, \lambda_2, \ldots$ Then

$$\operatorname{Tr} A = \sum_{n=1}^{\infty} \lambda_n \ . \tag{1}$$

2 Tools: Generalized Eigenspaces and a Product Form

Definition 2.1 (Notation). We consider a separable Hilbert space X with inner product (\cdot, \cdot) . $A \in K(X)$ is a trace-class operator.

Let $\lambda_1, \lambda_2, \ldots$ (resp. s_1, s_2, \ldots) be the eigenvalues (resp. singular values) of A in descending order:

$$A v_j = \lambda_j v_j, \quad |\lambda_1| \ge |\lambda_2| \ge \dots, \quad s_1 \ge s_2 \ge \dots$$
 (2)

A can be decomposed as A = U|A| where U is unitary and |A| is positive and self-adjoint. $\{z_j\}_j$ is an orthonormal basis of $\overline{\text{Range } |A|}$. Writing $w_j = Uz_j$, we have

$$A = \sum_{j=1}^{\infty} s_j(\cdot, z_j) w_j.$$
 (3)

Theorem 2.2 (Generalized eigenspaces). Let $0 \neq \lambda \in \sigma(A)$. Then there exist subspaces $N = N(\lambda)$, $R = R(\lambda)$ of X with

a) (finiteness)
$$\dim N < \infty$$
, (4)

b) (splitting)
$$X = N \oplus R$$
, (5)

c) (invariance)
$$A(N) \subset N, A(R) \subset R,$$
 (6)

d) (isolation)
$$\lambda \in \sigma(A \mid N), \ \lambda \in \sigma(A \mid R).$$
 (7)

Write $P_{\lambda}: X \twoheadrightarrow N$ for the orthogonal projection of X into N.

Lemma 2.3 (Hadamard factorization). Let $f: \mathbb{C} \circlearrowleft$ be an entire function with f(0) = 1. Let $\{z_j\}_j$ be the zeros of f and assume $\sum_{j=1}^{\infty} |z_j|^{-1} < \infty$. Finally suppose the boundedness condition

$$\forall \epsilon > 0 \ \exists C > 0 : \ |f(z)| \le C \cdot e^{\epsilon|z|} \ \forall z \in \mathbb{C}.$$
 (8)

Then

$$f(z) = \prod_{j=1}^{\infty} (1 - \frac{z}{z_j}). \tag{9}$$

Lemma 2.4 (Weyl-Horn). We have the singular value inequality

$$\sum_{j=1}^{\infty} |\lambda_j| \le \sum_{j=1}^{\infty} s_j. \tag{10}$$

3 (Antisymmetric) Tensor Products in Hilbert Spaces

Definition 3.1. For $x_1, x_2, \ldots, x_n \in X$, let $x_1 \otimes x_2 \otimes \ldots \otimes x_n$ be the multilinear map

$$(x_1 \otimes x_2 \otimes \ldots \otimes x_n) : X \times X \times \ldots \times X \to \mathbb{C}, \quad (y_1, y_2, \ldots, y_n) \mapsto \prod_{j=1}^n (x_j, y_j).$$
 (11)

The (Hilbert) span of such $x_1 \otimes \ldots \otimes x_n$ (w.r.t. the natural inner product)

$$\langle x_1 \otimes x_2 \otimes \ldots \otimes x_n, y_1 \otimes y_2 \otimes \ldots \otimes y_n \rangle = \prod_{j=1}^n (x_j, y_j).$$
 (12)

forms a Hilbert space, denoted $X \otimes X \otimes \ldots \otimes X$.

If $\{e_j\}_j$ is an orthonormal basis of X, then $\{e_{\iota_1}\otimes e_{\iota_2}\otimes\ldots\otimes e_{\iota_n}\}_{\iota_1<\iota_2<\ldots<\iota_n}$ is an orthonormal basis of $X\otimes X\otimes\ldots\otimes X$.

Operators $A_1, A_2, \ldots, A_n \in L(X)$ induce a map $X \otimes \ldots \otimes X$ \circlearrowleft :

$$(A_1 \otimes A_2 \otimes \ldots \otimes A_n)(\ell) : (y_1, y_2, \ldots, y_n) \mapsto \ell(A_1^* y_1, A_2^* y_2, \ldots, A_n^* y_n)$$
 (13)

Denote the antisymmetrization of $x_1 \otimes \ldots \otimes x_n$ as

$$x_1 \wedge x_2 \wedge \ldots \wedge x_n = \frac{1}{\sqrt{n}} \sum_{\pi \in S_n} (-1)^{\pi} x_{\pi(1)} \otimes x_{\pi(2)} \otimes \ldots \otimes x_{\pi(n)}$$

$$\tag{14}$$

where S_n is the symmetric group with n elements, $(-1)^{\pi}$ is the sign of a permutation.

Denote by $\Lambda^n(X)$ the (Hilbert) span of such $x_1 \wedge x_2 \wedge \ldots \wedge x_n$. $\Lambda^0(X) = \mathbb{C}$, $\Lambda^1(X) = X$. The same statement about orthonormal bases can be made for $\Lambda^n(X)$.

Proposition 3.2 (Properties of the tensor products).

a)
$$(A_1 \otimes A_2 \otimes \ldots \otimes A_n)(x_1 \otimes x_2 \otimes \ldots \otimes x_n) = (A_1 x_1) \otimes (A_2 x_2) \otimes \ldots \otimes (A_n x_n),$$
 (15)

b)
$$|\Lambda^n(A)| = \Lambda^n(|A|),$$
 (16)

c)
$$\Lambda^n(A)$$
 has singular values $s_{\iota_1} \cdot s_{\iota_2} \cdot \ldots \cdot s_{\iota_n} \ \forall \iota_1 < \iota_2 < \ldots < \iota_n,$ (17)

d) If dim
$$X = d < \infty$$
, then $\operatorname{Tr} \Lambda^d(A) = \det A$, $\operatorname{Tr} \Lambda^{d+m}(A) = 0 \ \forall m > 0$. (18)

4 Operator Determinants

Definition 4.1 (Fredholm's determinant).

$$\det(I + zA) = \sum_{k=0}^{\infty} z^k \cdot \operatorname{Tr} \Lambda^k(A). \tag{19}$$

The technique to prove Lidskii's Theorem 1.1 is to show that Lemma 2.3 applies. This shows that the preceding definition is equivalent to the following:

Definition 4.2 (Groh'berg-Krein's determinant).

$$\det(I + zA) = \prod_{j=1}^{\infty} (1 + \lambda_j z). \tag{20}$$