Reinforcement Learning Cheat Sheet

Fundamentals of RL

may be modelled

May be deterministic: $\pi(s)$: a; or stochastic: $\pi(a|s) \ge 0$, $\sum \pi(a|s) = 1$.

Markov Decision Process (MDP): general framework for sequential decision making, 5-tuple

(\$\mathcal{G}\$, \$A, \$R, \$\gamma_{\eta}\$ \rightarrow\$).

p:
$$S \times R \times S \times A \rightarrow [0,1]$$

$$\sum_{s',r} \sum_{s,a} p(s',r|s,a) = 1$$

State - value function:
$$\nu_{\pi}(s) \equiv E_{\pi}[Q_{t} | S_{t} = s]$$

Action - value. function:
$$q_{\pi}(s,a) = \mathbb{E}_{\pi}[G_{\epsilon}|S_{\epsilon}: s, A_{\epsilon}:a]$$

$$q_{\pi}(s,a) = \sum_{s,r} p(s,r|s,a) [r+ v_{\pi}(s')]$$

Bellman's Equations

$$\nu_{n}(s) = \sum_{\alpha} \pi(\alpha|s) \sum_{s',r} p(s',r|s,\alpha)$$

$$\times [r + \gamma \nu_{\pi}(s')]$$

 $\pi_{x}(s) = \operatorname{argmax} q_{x}(s,a).$

=>
$$q_{\star}(s,a) = \max_{\pi} q_{\pi}(s,a)$$
, $v_{\star}(s) = \max_{\alpha} q_{\star}(s,a)$

. • Bootstrapping: use at least one estimated value in the update state . . . for the same kind of expeded value . .

· Requires a model

Policy Evaluation (Prediction): Determine a policy's value function.

Iteration (Control): Find a policy to maximize value functions

. DP: do both tasks iteratively.

Bellman's equations \mapsto update rule. $\lor '(s) = \sum_{s',r} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r_+ \forall V(s)]$. updated value old estimate

Policy Improvement. Theorem: $\forall s, q(s, \pi'(s)) \geq q(s, \pi(s)) \Rightarrow \pi' \geq \pi$. Greedified Policy = strict AND if . Is such that $q_{\pi}(s, \pi'(s)) > q_{\pi}(s, \pi(s)) \Rightarrow \pi' > \pi$. Improvement unless already

Evaluation: Sweep until $V \to V\pi$ [V'(s) - V(s)| $\leq \Theta$ (threshold) π V $\pi \to \text{greedyly}$ Improvement: greedify π w.r.t V. If π is stable, $\pi \simeq \pi_*$, $V \simeq V_*$

. General Policy Iteration (GPI): all algorithms iteratively performing evaluation + improvement.

Sample-based Learning Methods

Monte Carlo methods

(mc)

. No bootstrappine

Terminal State

• Generate an episode according to π , recording S_0 , A_0 , R_1 , S_2 , A_3 , ... S_{-1} , $A_{\tau-1}$, K_0 • From T-1 \rightarrow 0: $G=YG+R_{t+1}$. Keep track of multiple observed returns.

V(SE) = average [G] or Q(SE, AE) = average [G]

over generated

upproduct

where SE was vivited

SE. AE was vivited

For non-stationary problems: $V(S_k) = V(S_k) + d[G_k - V(S_k)]$ To maintain exploration:

- To maintain exploration:
 Exploring starts: As, So picked at random.
 - ε -greedy: $\pi(a|S_{\varepsilon}) = \begin{cases} 1 \varepsilon + \frac{\varepsilon}{|A(S_{\varepsilon})|} & \text{if } a = \text{argmax } Q(S_{\varepsilon}, a), \\ \frac{\varepsilon}{|A(S_{\varepsilon})|} & \text{otherwise.} \end{cases}$

Off- Policy Learning

Use two policies: T(a|s) - evaluated policy.

behaviour b(a|s) - used to generate episodes. Introduce importance sampling ratio $e_{t+1} = T$ $\frac{t(A_t|S_t)}{b(A_h|S_h)}$. $v_{\pi}(s) = E_b \left[e_{t+1}, G_t | S_t = s \right]$

Anielie Chatelain