Министерство образования Республики Беларусь

Учреждение образования Белорусский государственный университет информатики и радиоэлектроники

Факультет компьютерных систем и сетей

Кафедра ЭВМ

КОНТРОЛЬНАЯ РАБОТА

по дисциплине «Основы теории систем» на тему «Методология научного исследования системы на примере динамической симуляции объемного огня с помощью средств воксельной графики»

Выполнил	
магистрант 2 курса	
специальности ТВ и ОВ	
группы 858441	А.В. Стаховский
Пиод силь	
Проверил	
ктн, доцент	А.К. Дадыкин

ОГЛАВЛЕНИЕ

1	ОЫ	ЦАЯ ХАРАКТЕРИСТИКА РАБОТЫ	3
	1.1	Объект и предмет исследования	3
	1.2	Цели и задачи исследования	3
2	ОБЗ	ВОР ЛИТЕРАТУРЫ	4
	2.1	Эволюция алгоритмов симуляции огня	4
	2.2	Обзор и классификация алгоритмов симуляции огня	7
\mathbf{C}	ПИС	ОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	10

1 ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

1.1 Объект и предмет исследования

Объект исследования - огонь в трехмерной графике как один из элементов трехмерной сцены.

Предметом исследования является динамическая симуляция объемного огня в режиме реального времени, особенности использования воксельной графики для создания реалистичной симуляции.

1.2 Цели и задачи исследования

Цель исследования - разработка системы для динамической симуляции трехмерного огня с использованием средств воксельной графики для экспорта во внешние системы рендеринга.

Задачи исследования:

- 1. Обзор и анализ научных работ по теме исследования.
- 2. Теоретическая подготовка к исследованиям.
- 3. Анализ и составление требований к системе. Проектирование.
- 4. Реализация системы.
- 5. Тестирование и верификация работы системы.
- 6. Анализ проведенной работы.

2 ОБЗОР ЛИТЕРАТУРЫ

Моделирование бесформенных объектов, таких как дым, огонь, туман, дымка является предметом постоянных исследований в области компьютерной графики, поскольку данные объекты не имеют четко очерченных границ и являются мобильными по своей природе. Высокая коммерческая ценность данных эффектов в кинематографе и видеоиграх является двигателем постоянных исследований в данной области. Наибольший вызов представляет моделирование данных объектов в реальном времени, где необходимо получить максимально реалистичную симуляцию за время обновления экранного кадра (60Hz+) [1].

2.1 Эволюция алгоритмов симуляции огня

2.1.1 Истоки. Система частиц

Рисунок 2.1 – Первоначальный взрыв

Пионером компьютерной симуляции огня является Reewes W. Т. В 1983 году в своей работе он ввел понятие система частиц в качестве примитива для моделирования, анимации и рендеринга [2]. В фильме "Звездный путь 2: Гнев Хана" он смоделировал так называемую "расширяющуюся стену огня", созданную с помощью двухуровневой системы частиц. Система частиц верхнего уровня находилась в центре взрыва генезис-бомбы, она генерировала частицы, которые в свою очередь являлись системами частиц. Эти системы частиц использо-

вались для моделирования взрывов, при которых каждая такая система частиц вела себя как небольшой вулкан, извергающийся в сторону распространения взрывной волны и затухающий под воздействием силы гравитации. Поскольку частицы имеют дискретную природу, для достижения хороших результатов потребовалось колоссальное количество частиц. Но, поскольку моделирование в реальном времени не требовалось, это не оказалось проблемой.

Рисунок 2.2 – Стена огня вот-вот поглотит камеру

2.1.2 Оффлайн симуляция

В данное время наибольшего успеха исследователи добились в нечувствительном к времени симуляции кинематографе. Несмотря на то, что данная работа нацелена на компьютерную графику реального времени, необходимо упомянуть несколько работ в области оффлайн симуляции, поскольку понимание основных идей, заложенных в них, позволил перенести некоторые из них в область графики реального времени.

В публикации 2002 года Nguen и его коллеги представили метод моделирования огня, полностью основанный на физико-математическом подходе [3]. В симуляции использовались несжатые уравнения Навье-Строкса для горячих газов, это позволило также смоделировать эффект расширения, вызванный испарением, и эффект текучести поднимающихся дыма и сажи. Как видно на изображении, данная симуляция отличается реалистичным позиционировани-

ем и движением газообразных субстанций. Однако данный подход сложно реализовать в рендеринге реального времени, поскольку необходимо находить решение большого количества комплексных уравнений за время кадра.

Рисунок 2.3 – Два горящих полена находятся на земле и являются источником топлива. Бревно, лежащее поперек, еще не загорелось, поэтому пламя его обтекает

В 2008 году Horwath H. и Geiger W. представили инновационную комбинацию симуляции с помощью крупной решетки частиц и тонко настроенных визуально-ориентированных улучшений симуляции, рассчитываемых на GPU [4]. Полученные изображения имеют поразительную детализацию и могут быть легко интегрированы в кинематографические фотоснимки.

Данная техника улучшения симуляции использует особенности и ограничения зрительного восприятия, а также особенности концентрации внимания зрителя. Множество независимых GPU используются для быстрого увеличения качества изображения, что позволяет достичь очень высокого разрешения.

2.1.3 Онлайн симуляция

Трехмерный огонь, моделируемый в реальном времени, находит свое применение в интерактивных приложениях. Среди интерактивных приложений можно выделить компьютерные игры, в которых необходимость показывать взры-

Рисунок 2.4 – Три различных кадра симуляции огня. Быстро движущийся огненный шар с искрами. Извивающийся костер. Плотная стена дыма и огня.

(а) Огонь создан с помощью пререндеренного ядра битмапа, которое окружают светящиеся анимированные в реальном времени частицы

(в) Объемный факел, созданный из непрозрачных полигонов

Рисунок 2.5 – Скриншоты из Quake (1996) [5]

вы появилась практически с самого момента их появления. Компьютерные игры являются основными потребителями графических компьютерных анимаций огня. Однако это стало возможным лишь пару десятилетий назад. С тех пор скорость аппаратного обеспечения для рендеринга время росла экспоненциально, открывая возможности для все более и более детализированных эффектов. К сожалению, поскольку игры зачастую являются проприетарными по своей природе, литературных источников по алгоритмам, используемых в играх крайне мало. Компания NVIDIA представила в 2014 году систему NVIDIA FlameWorks. Данная система позволяет добавлять реалистичный огонь, дым и эффекты взрывов в игры. Данная система совмещает передовую симуляцию жидкостей на основе решетки вместе с эффективной системой объемного рендеринга, все оптимизировано для работы в реальном времени. Все вычисления выполняются на GPU с помощью DirectX 11 [7].

2.2 Обзор и классификация алгоритмов симуляции огня

Различные методы применяемые при симуляции огня можно условно разделить на следующие группы:

- текстурный маппинг;

Рисунок 2.6 – Far Cry 2 (2008) [6]. На момент своего выхода в игре была наиболее реалистичная симуляция степных пожаров

Рисунок 2.7 – Демонстрация работы NVIDIA FlameWorks

- система частиц;
- физико-математические методы;
- клеточные автоматы;
- томографическая реконструкция и др.

В 2011 году ZhaoHui W., Zhong Z. и Wei W. представили статью [8], в которой проанализировали современные алгоритмы симуляции реалистичного огня. Ими был проведен анализ наиболее популярных методов по следующим критериям:

- применимость в реальном времени;
- степень реалистичности;
- пространственно-временная сложность;

- конфигурируемость;
- интерактивность.

Результаты данного исследования можно увидеть в таблице ниже.

Таблица 2.1 – Сравнение производительности различных методов симуляции огня

	Real-time	Realistic	Spatio-temporal complexity	Editability	Interactivity
Texture mapping	High	Low	Low	Low	No
Particle system	Inversely with particles count	Medium	Proportional to particles count	Random large and difficult to control	Medium
Mathematical physics-based	Low	High(physical consistency)	High	Parameter control	High
Cellular automation	Inversely proportional to the complexity of combined requirements	Have certain realistic	Cell simple but the combined complex	Modium	Limited
Tomographic reconstruction	No	High(visual consistency)	Data acquisition and processing complex	No	No

Для использования в магистерской диссертации был выбран физико-математи подход, поскольку он позволяет получить качественную реалистичную симуляцию с реалистичным взаимодействием с окружающим миром. Недостатки данного метода в скорости симуляции возможно сгладить с помощью использования современных GPU, оптимизации алгоритмов симуляции, уменьшения объемов симуляции (моделирование небольших источников огня).

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- [1] Gillies, Duncan Fyfe. Third Year and MSc Interactive Computer Graphics Course [Text] / Duncan Fyfe Gillies. [S. l. : s. n.].
- [2] Particle systems a technique for modeling a class of fuzzy objects [Text]. Detroit, Michigan : [s. n.], 1983. July. Proceedings of the 10th annual conference on computer graphics and interactive techniques.
- [3] Physically Based Modeling and Animation of Fire [Text]. San Antonio, Texas: [s. n.], 2002. July. Proceedings of the 29th annual conference on computer graphics and interactive techniques.
- [4] Stock, Mark. Smoke Water Fire [Text] / Mark Stock // ACM SIGGRAPH 2008 Art Gallery. SIGGRAPH '08. New York, NY, USA: ACM, 2008. P. 102–102. Access mode: http://doi.acm.org/10.1145/1400385.1400457.
- [5] de Kruijf, Marc. firestarter A Real-Time Fire Simulator [Text]: Master's thesis / Marc de Kruijf; Computer Science Capstone. [S. 1. : s. n.].
- [6] Стала ли Far Cry лучше? История серии Блоги блоги геймеров, игровые блоги, создать блог, вести блог про игры [Электронный ресурс]. 2018. Режим доступа: https://www.playground.ru/blogs/far_cry_new_dawn/stala_li_far_cry_luchshe istoriya serii-339049/.
- [7] Green, Simon. NVIDIA FlameWorks: Real-time Fire Simulation [Text] / Simon Green // ACM SIGGRAPH 2014 Computer Animation Festival. SIGGRAPH '14. New York, NY, USA: ACM, 2014. P. 1–1. Access mode: http://doi.acm.org/10.1145/2633956.2658828.
- [8] Realistic Fire Simulation: A Survey [Text]. [S. l.: s. n.], 2011. 12th International Conference on Computer-Aided Design and Computer Graphics.