Valószínűségszámítás gyakorlat

Valószínűségi változók transzformációja: 1,2,3,4.a , 5.a, 7, 9 A többi esetleges.

- 1. Legyen a ξ valószínűségi változó egyenletes eloszlású a [-6.60, 6.60] intervallumon. Számítsa ki a $P(2\xi + 1 < 0.60)$ valószínűséget!
- 2. Szószátyár Szaniszló körmondatainak hossza exponenciális eloszlású, átlagosan fél perc.
 - (a) Mekkora a valószínűsége, hogy egy körmondata legalább 10 mp hosszú?
 - (b) Mondatainak kb. hány százaléka rövidebb 15 mp-nél?
 - (c) Hogy kérdezne az örök ifjú tulajdonságra?
- 3. Egy gépalkatrész átmérője normális eloszlású valószínűségi változó, melynek várható értéke 20 mm, szórása 0,5 mm.
 - (a) Véletlenszerűen kiválasztva egy ilyen gépalkatrészt, mekkora annak a valószínűsége, hogy az átmérője 19 és 21 mm közé esik?
 - (b) Véletlenszerűen kiválasztva egy ilyen gépalkatrészt, mekkora annak a valószínűsége, hogy az átmérője legalább a várható érték?
 - (c) Véletlenszerűen kiválasztva egy ilyen gépalkatrészt, mekkora annak a valószínűsége, hogy az átmérője a várható értéktől a szórásnál kevesebbel tér el?
 - (d) Véletlenszerűen kiválasztva egy ilyen gépalkatrészt, mekkora annak a valószínűsége, hogy az átmérője a várható értéktől a szórás kétszeresénél kevesebbel tér el?
 - (e) A legkisebbek 25%-a legfeljebb mekkora?
- 4. Legyen ξ a [0; 1] intervallumon egyenletes eloszlású. Mi lesz
 - (a) $\eta = 3\xi + 2$
 - (b) $\alpha = \xi^2$ eloszlása?
- 5. Legyen ξ 2-paraméterű exponenciális eloszlású. Mi lesz
 - (a) $\eta = \xi^2$

- (b) $\alpha = 2\xi$ eloszlása?
- 6. Legyen ξ standard normális eloszlású, és $\eta=e^{\xi}$ Mi lesz η sűrűségfüggvénye?
- 7. Legyen ξ 2-paraméterű exponenciális eloszlású. Mi lesz $\eta=e^{\xi}$ sűrűségfüggvénye ? Ellenőrizze hogy valóban sűrűségfüggvény-e (1p)!
- 8. Legyen ξ egyenletes eloszlású a $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ intervallumon. Határozzuk meg az $\eta = a\sin(\xi)~(a>0)$ valváltozó eloszlás és sűrűségfv-ét!
- 9. Legyen ξ 1 paraméterű exponenciális eloszlású, és $\eta = ln(\xi)$ Mi lesz η sűrűségfüggvénye?
- 10. Egy m kg-os labdát eldobunk átlagosan 20 m/s sebességgel, 2 m/s szórással (a sebesség eloszlása normális eloszlással modellezhető). Legyen η a labda mozgási energiája. Határozzuk meg η sűrűségfüggvényét!