

Start with a cost function $J(\beta)$:

Then gradually move to the minimum.

How can we do this?

How can we do this? (without seeing the graph of $J(\beta)$!)

Start with the function $J(\beta)$:

How can we do this? (without seeing the graph of $J(\beta)$!)

Start with the function $J(\beta)$:

$$J(\beta_0, \beta_1) = 1/2 \sum_{i=1}^{m} \left((\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2$$

How can we do this? (without seeing the graph of $J(\beta)$!)

Start with the function
$$J(\beta)$$
:
$$J(\beta_0, \beta_1) = 1/2 \sum_{i=1}^{n} \left((\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2$$

and compute its gradient vector $\nabla J(\beta)$.

How can we do this? (without seeing the graph of $J(\beta)$!)

Start with the function $J(\beta)$:

$$J(\beta_0, \beta_1) = 1/2 \sum_{i=1}^{m} \left((\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2$$

and compute its gradient vector $\nabla J(\beta)$.

The gradient points in the "direction of maximum increase" of J.

$$J(\beta_0, \beta_1) = 1/2 \sum_{i=1}^{m} \left((\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2$$

$$J(\beta_0, \beta_1) = 1/2 \sum_{i=1}^{m} \left((\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2$$

$$w_1 = w_0 - \alpha \nabla 1 / 2 \sum_{i=1}^{m} \left((\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2$$

$$J(\beta_{0}, \beta_{1}) = 1/2 \sum_{i=1}^{m} \left((\beta_{0} + \beta_{1} x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^{2}$$

$$w_{1} = w_{0} - \alpha \left(\frac{\partial}{\partial \beta_{0}}, \dots, \frac{\partial}{\partial \beta_{n}} \right) 1/2 \sum_{i=1}^{m} \left((\beta_{0} + \beta_{1} x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^{2}$$

$$J(\beta_0, \beta_1) = 1/2 \sum_{i=1}^{m} \left((\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2$$

$$w_1 = w_0 - \alpha \nabla 1 / 2 \sum_{i=1}^{m} \left((\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2$$

$$J(\beta_0, \beta_1) = 1/2 \sum_{i=1}^{m} \left((\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2$$

$$w_2 = w_1 - \alpha \nabla 1 / 2 \sum_{i=1}^{m} \left((\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2$$

$$J(\beta_0, \beta_1) = 1/2 \sum_{i=1}^{m} \left((\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2$$

$$w_3 = w_2 - \alpha \nabla 1 / 2 \sum_{i=1}^{m} \left((\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2$$

$$J(\beta_0, \beta_1) = 1/2 \sum_{i=1}^{m} \left((\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2$$

$$w_4 = w_3 - \alpha \nabla 1 / 2 \sum_{i=1}^{m} \left((\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2$$

$$J(\beta_0, \beta_1) = 1/2 \sum_{i=1}^{m} \left((\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2$$

$$J(\beta_0, \beta_1) = 1/2 \sum_{i=1}^{m} \left((\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2$$

$$J(\beta_0, \beta_1) = 1/2 \sum_{i=1}^{m} \left((\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2$$

$$w_1 = w_0 - \alpha \nabla 1 / 2 \left((\beta_0 + \beta_1 x_{obs}^{(0)}) - y_{obs}^{(0)} \right)^2$$

$$J(\beta_0, \beta_1) = 1/2 \sum_{i=1}^{m} \left((\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2$$

$$w_2 = w_1 - \alpha \nabla 1 / 2 \left((\beta_0 + \beta_1 x_{obs}^{(1)}) - y_{obs}^{(1)} \right)^2$$

$$J(\beta_0, \beta_1) = 1/2 \sum_{i=1}^{m} \left((\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2$$

$$w_3 = w_2 - \alpha \nabla 1 / 2 \left((\beta_0 + \beta_1 x_{obs}^{(2)}) - y_{obs}^{(2)} \right)^2$$

$$J(\beta_0, \beta_1) = \sum_{i=1}^{m} \left((\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2$$

$$w_4 = w_3 - \alpha \nabla 1 / 2 \left((\beta_0 + \beta_1 x_{obs}^{(3)}) - y_{obs}^{(3)} \right)^2$$

Faster

Derivative of single point at each step (instead of 100K)

Online Training

Only need to keep single point in memory
No need to store 100K rows, large data no problem

Covers Many Algorithms

Gradient Descent is the bottleneck for linear algorithms Can do Linear Regression, Logistic Regression, SVMs

Some Implementations

Some Implementations

from sklearn.linear_model import SGDRegressor

from sklearn.linear_model import SGDClassifier

from sklearn.linear_model import SGDRegressor

from sklearn.linear_model import SGDRegressor

SGDRegressor(loss='squared_loss')

Sum of squared errors

squared loss ==
Linear Regression

from sklearn.linear_model import SGDRegressor

SGDRegressor(loss='epsilon_insensitive')

Best loss name ever

epsilon insensitive loss == SVM Regression

SGDClassifier(loss='hinge')

SGDClassifier(loss='hinge')

Looks like a hinge.

hinge loss == SVM

SGDClassifier(loss='log')

This one's kind of clear

log loss == Logistic Regression

```
SGDClassifier(alpha=0.0001, penalty='l2', l1_ratio=0.15)
```

Regularization parameters

Penalty values: '11', '12', 'elasticnet'