Übungsblatt 3 zur Linearen Algebra I

Aufgabe 7. Zu den Eigenschaften von Äquivalenzklassen

Es sei \sim eine Äquivalenzrelation auf einer Menge M. Man beweise für Äquivalenzklassen [x] und [x'] in M:

- a) [x] und [x'] sind disjunkt (d.h. $[x] \cap [x'] = \emptyset$) oder gleich (d.h. [x] = [x']).
- b) [x] und [x'] sind genau dann gleich, wenn $x \sim x'$ gilt.

Hilfe zu a): Zu zeigen ist: Im Falle von $[x] \cap [x'] \neq \emptyset$ gilt [x] = [x']

Ergänzende Bemerkung:

Als Folge von a) und b) kommt jedes $x \in M$ in genau einer Äquivalenzklasse vor. M ist somit die Vereinigungsmenge aller existierenden verschiedenen Äquivalenzklassen und wird dadurch in paarweise disjunkte Teilmengen zerlegt. Dies ist wertvoll, wie beispielsweise folgende Überlegung zeigt:

Bestünden alle existierenden Äquivalenzklassen aus gleich vielen verschiedenen Elementen - sagen wir n - und gäbe es k verschiedene Äquivalenklassen, dann bestünde M aus $n \cdot k$ verschiedenen Elementen.

Aufgabe 8. Wichtiges Beispiel für eine Gruppe

M sei eine nichtleere Menge. Die Menge $\gamma(M)$ aller bijektiven Abbildungen von M in sich selbst werde kurz mit G bezeichnet, d.h. $G := \{f: M \to M | f \text{ ist bijektiv}\}.$

- a) Man gebe G für $M=\{x_1,x_2\}$ und $M=\{x_1,x_2,x_3\}$ explizit an. Wie viele verschiedene Elemente hat G, wenn M aus n verschiedenen Elementen besteht?
- b) Auf G werde als Verknüpfung \circ die Hintereinanderausführung der bijektiven Abbildungen definiert. Man erstelle die Verknüpfungstafeln von G für $M=\{x_1,x_2\}$ und $M=\{x_1,x_2,x_3\}$.
- c) Man verifiziere anhand der Verknüpfungstafeln, dass G für diese Beispiele von M mit dieser Verknüpfung \circ eine Gruppe ist.
- d) Man beweise: Für jede nichtleere Menge M ist G mit der Hintereinanderausführung als Verknüpfung eine Gruppe.