## Tugas Mata Kuliah Analisa R Correlated Data Analysis



Disusun oleh: Amila Hanifan Muslimah

Prodi Magister Epidemiologi Fakultas Kedokteran Universitas Padjadjaran 2023

## **Tugas**

Dengan menggunakan data stroke pada link berikut

: <a href="http://www.statsci.org/data/oz/stroke.txt">http://www.statsci.org/data/oz/stroke.txt</a> dengan penjelasan data (meta data) dapat dipelajari pada link: <a href="http://www.statsci.org/data/oz/stroke.html">http://www.statsci.org/data/oz/stroke.html</a> , mengakses dan mendownload dataset ke dalam global environment RStudio.

Membuat visualisasi grafik garis dari perkembangan nilai kemampuan motorik (functional ability score) dari setiap subyek menggunakan variable bart

#2.A. Membuat visualisasi grafik garis dari perkembangan nilai kemampuan motorik (functional ability score) dari setiap subyek menggunakan variable bart library(ggplot)



#2.B Membuat visualisasi grafik garis dari perkembangan nilai kemampuan motoric (functional ability score) dari setiap group menggunakan variable bart library(ggplot2)

ggplot(stroke\_long, aes(x = time,y = ability)) +geom\_line(aes(group = Group)) + theme\_classic()+ labs( y="Functional ability score",

x="Time", title="Example Recovery From Stroke")





Membuat grafik nilai rata-rata perkembangan fungsi motorik secara total dan masing-masing yang divisualisasikan pada 1 grafik.

#3. Membuat grafik nilai rata-rata perkembangan fungsi motorik secara total dan masing-masing yang divisualisasikan pada 1 grafik.

```
Average_recovery_score <- stroke_long %>% group_by(Group, time) %>% mutate(Average = mean(ability)) %>% as.data.frame()
```

```
Average_recovery_score %>% mutate(label = if_else(time == max(time), as.character(Group), NA_character_)) %>% ggplot(aes(x = time, y = Average, group = Group, colour = Group)) + geom_line() + labs( y="Functional abiity score", x="Week", title="Average strokes scores for groups for patients")
```



Membuat Matrix Scatter plot dari nilai fungsi motorik antar waktu/pekan

#4. Membuat Matrix Scatter plot dari nilai fungsi motorik antar waktu/pekan.

pairs(~Week1 + Week2 + Week3 + Week4 + Week5 + Week6 + Week7 + Week8, data = stroke\_week)



Menghitung dan membuat tabel silang koefisien korelasi nilai fungsi motorik antar waktu/pekan

cor(stroke\$Bart1, stroke\$Bart2)

cor(stroke\$Bart1, stroke\$Bart3)

cor(stroke\$Bart1, stroke\$Bart4)

cor(stroke\$Bart1, stroke\$Bart5)

cor(stroke\$Bart1, stroke\$Bart6)

cor(stroke\$Bart1, stroke\$Bart7)

cor(stroke\$Bart1, stroke\$Bart8)

cor(stroke\$Bart2, stroke\$Bart3)

cor(stroke\$Bart2, stroke\$Bart4)

cor(stroke\$Bart2, stroke\$Bart5)

cor(stroke\$Bart2, stroke\$Bart6)

cor(stroke\$Bart2, stroke\$Bart7)

cor(stroke\$Bart2, stroke\$Bart8)

cor(stroke\$Bart3, stroke\$Bart4)
cor(stroke\$Bart3, stroke\$Bart5)

cor(stroke@barts, stroke@barts)

cor(stroke\$Bart3, stroke\$Bart6)
cor(stroke\$Bart3, stroke\$Bart7)

cor(stroke\$Bart3, stroke\$Bart8)

coi(shokesbarts, shokesbarts)

cor(stroke\$Bart4, stroke\$Bart5)

cor(stroke\$Bart4, stroke\$Bart6)

cor(stroke\$Bart4, stroke\$Bart7)

cor(stroke\$Bart4, stroke\$Bart8)

cor(stroke\$Bart5, stroke\$Bart6)

cor(stroke\$Bart5, stroke\$Bart7)

cor(stroke\$Bart5, stroke\$Bart8)

cor(stroke\$Bart6, stroke\$Bart7)

cor(stroke\$Bart6, stroke\$Bart8)

cor(stroke\$Bart7, stroke\$Bart8)

|        | Week |      |      |      |      |      |      |
|--------|------|------|------|------|------|------|------|
|        | 1    | 2    | 3    | 4    | 5    | 6    | 7    |
| Week 2 | 0.93 |      |      |      |      |      |      |
| Week 3 | 0.88 | 0.92 |      |      |      |      |      |
| Week 4 | 0.83 | 0.88 | 0.95 |      |      |      |      |
| Week 5 | 0.79 | 0.85 | 0.91 | 0.92 |      |      |      |
| Week 6 | 0.71 | 0.79 | 0.85 | 0.88 | 0.97 |      |      |
| Week 7 | 0.62 | 0.70 | 0.77 | 0.83 | 0.92 | 0.95 |      |
| Week 8 | 0.55 | 0.64 | 0.70 | 0.77 | 0.88 | 0.93 | 0.98 |

Menghitung intercept dan slope, beserta standar errornya masing-masing, dari hubungan fungsi motorik dengan waktu/pekan setiap subyek, serta mempresentasikan hasilnya dalam bentuk tabel

```
\label{eq:ml_state} \begin{split} &ml <- lmList(log(ability) \sim I(time) \mid Subject, stroke\_long) \\ &intercepts <- sapply(ml,coef)[1,] \\ &slopes <- sapply(ml,coef)[2,] \\ &intercepts \\ &slopes \end{split}
```

library(lme4) model <- (lmList(ability ~ time | Subject, data = stroke\_gabungan)) summary(model)\$coef

| Subject | Intercept | (std. error) | Slope | (std. error) |
|---------|-----------|--------------|-------|--------------|
| 1       | 3.68      | (3.987336)   | 3.1   | (0.7896103)  |
| 2       | 4.17      | (3.987336)   | 2.7   | (0.7896103)  |
| 3       | 3.4       | (3.987336)   | 2.2   | (0.7896103)  |
| 4       | 3.2       | (3.987336)   | 3.3   | (0.7896103)  |
| 5       | 3.8       | (3.987336)   | 1.5   | (0.7896103)  |
| 6       | 2.7       | (3.987336)   | 1.4   | (0.7896103)  |
| 7       | 3.5       | (3.987336)   | 1.1   | (0.7896103)  |
| 8       | 3.6       | (3.987336)   | 1.6   | (0.7896103)  |
| 9       | 2.9       | (3.987336)   | 4.7   | (0.7896103)  |
| 10      | 3.5       | (3.987336)   | 2.5   | (0.7896103)  |
| 11      | 3.5       | (3.987336)   | 9.3   | (0.7896103)  |
| 12      | 3.8       | (3.987336)   | 3.6   | (0.7896103)  |
| 13      | 3.8       | (3.987336)   | 3.6   | (0.7896103)  |
| 14      | 3.2       | (3.987336)   | 1.8   | (0.7896103)  |
| 15      | 3.2       | (3.987336)   | 3.2   | (0.7896103)  |
| 16      | 2.7       | (3.987336)   | 8.4   | (0.7896103)  |
| 17      | 3.8       | (3.987336)   | 5.1   | (0.7896103)  |
| 18      | 2.9       | (3.987336)   | 2.2   | (0.7896103)  |
| 19      | 3.9       | (3.987336)   | 3.5   | (0.7896103)  |
| 20      | 3.2       | (3.987336)   | 1.2   | (0.7896103)  |
| 21      | 4.6       |              | 2.5   |              |
| 22      | 2.9       | (3.987336)   | 8.8   | (0.7896103)  |
| 23      | 3.4       | (3.987336)   | 1.5   | (0.7896103)  |
| 24      | 3.4       | (3.987336)   | 1.5   | (0.7896103)  |