Statistical Estimation

- ullet distribution estimation problem: estimate probability density p(y) of a random variable from observed values
- parametric distribution estimation: choose from a family of densities $p_x(y)$, indexed by a parameter x

- ullet distribution estimation problem: estimate probability density p(y) of a random variable from observed values
- parametric distribution estimation: choose from a family of densities $p_x(y)$, indexed by a parameter x

Maximum likelihood estimation

If we have prior information about x, such as $x \in C \subseteq \mathbf{R}^n$ add constraints $x \in C$ explicitly, or define $p_x(y) = 0$ for $x \notin C$

maximize
$$l(x) = \log p_x(y)$$

subject to $x \in C$,

If we have prior information about x, such as $x \in C \subseteq \mathbf{R}^n$ add constraints $x \in C$ explicitly, or define $p_x(y) = 0$ for $x \notin C$

maximize
$$l(x) = \log p_x(y)$$

subject to $x \in C$,

a convex optimization problem if $\log p_x(y)$ is concave in x for fixed y

C can be described by a set of linear equality and convex inequality constraints

linear measurement model

$$y_i = a_i^T x + v_i, \quad i = 1, \dots, m$$

- $x \in \mathbf{R}^n$ is vector of unknown parameters
- ullet v_i is IID measurement noise, with density p(z)

linear measurement model

$$y_i = a_i^T x + v_i, \quad i = 1, \dots, m$$

- $x \in \mathbb{R}^n$ is vector of unknown parameters
- ullet v_i is IID measurement noise, with density p(z)
- y_i is measurement: $y \in \mathbf{R}^m$ has density $p_x(y) = \prod_{i=1}^m p(y_i a_i^T x)$

linear measurement model

$$y_i = a_i^T x + v_i, \quad i = 1, \dots, m$$

- $x \in \mathbf{R}^n$ is vector of unknown parameters
- ullet v_i is IID measurement noise, with density p(z)
- y_i is measurement: $y \in \mathbf{R}^m$ has density $p_x(y) = \prod_{i=1}^m p(y_i a_i^T x)$

maximum likelihood estimate:

maximize
$$l(x) = \sum_{i=1}^{m} \log p(y_i - a_i^T x)$$

Examples:

• Gaussian noise $\mathcal{N}(0,\sigma^2)$: $p(z)=(2\pi\sigma^2)^{-1/2}e^{-z^2/(2\sigma^2)}$,

Examples:

• Gaussian noise $\mathcal{N}(0,\sigma^2)$: $p(z)=(2\pi\sigma^2)^{-1/2}e^{-z^2/(2\sigma^2)}$,

$$l(x) = -\frac{m}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^{m}(a_i^T x - y_i)^2$$

ML estimate is LS solution

 \bullet Laplacian noise: $p(z)=(1/(2a))e^{-|z|/a}$,

Examples:

• Gaussian noise $\mathcal{N}(0,\sigma^2)$: $p(z)=(2\pi\sigma^2)^{-1/2}e^{-z^2/(2\sigma^2)}$,

$$l(x) = -\frac{m}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{m} (a_i^T x - y_i)^2$$

ML estimate is LS solution

• Laplacian noise: $p(z) = (1/(2a))e^{-|z|/a}$,

$$l(x) = -m \log(2a) - \frac{1}{a} \sum_{i=1}^{m} |a_i^T x - y_i|$$

ML estimate is ℓ_1 -norm solution

• uniform noise on [-a, a]:

Examples:

• Gaussian noise $\mathcal{N}(0,\sigma^2)$: $p(z)=(2\pi\sigma^2)^{-1/2}e^{-z^2/(2\sigma^2)}$,

$$l(x) = -\frac{m}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^{m}(a_i^T x - y_i)^2$$

ML estimate is LS solution

 \bullet Laplacian noise: $p(z) = (1/(2a))e^{-|z|/a}$,

$$l(x) = -m \log(2a) - \frac{1}{a} \sum_{i=1}^{m} |a_i^T x - y_i|$$

ML estimate is ℓ_1 -norm solution

 $\bullet \text{ uniform noise on } [-a,a] \colon \qquad l(x) = \left\{ \begin{array}{ll} -m \log(2a) & |a_i^T x - y_i| \leq a, \quad i = 1, \dots, m \\ -\infty & \text{otherwise} \end{array} \right.$

ML estimate is any x with $|a_i^T x - y_i| \leq a$

random variable $y \in \{0,1\}$ with distribution

$$p = \mathbf{prob}(y = 1) = \frac{\exp(a^T u + b)}{1 + \exp(a^T u + b)}$$

• a, b are parameters; $u \in \mathbb{R}^n$ are (observable) explanatory variables

random variable $y \in \{0,1\}$ with distribution

$$p = \mathbf{prob}(y = 1) = \frac{\exp(a^T u + b)}{1 + \exp(a^T u + b)}$$

- a, b are parameters; $u \in \mathbb{R}^n$ are (observable) explanatory variables
- ullet estimation problem: estimate $a,\,b$ from m observations (u_i,y_i)

random variable $y \in \{0,1\}$ with distribution

$$p = \mathbf{prob}(y = 1) = \frac{\exp(a^T u + b)}{1 + \exp(a^T u + b)}$$

- a, b are parameters; $u \in \mathbb{R}^n$ are (observable) explanatory variables
- estimation problem: estimate a, b from m observations (u_i, y_i)

log-likelihood function for u_1, \ldots, u_q , the outcome is y = 1, and for u_{q+1}, \ldots, u_m the outcome is y = 0

$$\prod_{i=1}^{q} p_i \prod_{i=q+1}^{m} (1 - p_i),$$

$$l(a, b) = \sum_{i=1}^{q} \log p_i + \sum_{i=q+1}^{m} \log(1 - p_i)$$

$$l(a,b) = \sum_{i=1}^{q} \log \frac{\exp(a^{T}u_{i} + b)}{1 + \exp(a^{T}u_{i} + b)} + \sum_{i=q+1}^{m} \log \frac{1}{1 + \exp(a^{T}u_{i} + b)}$$
$$= \sum_{i=1}^{q} (a^{T}u_{i} + b) - \sum_{i=1}^{m} \log(1 + \exp(a^{T}u_{i} + b)).$$

concave in a, b

example (n = 1, m = 50 measurements)

- circles show 50 points (u_i, y_i)
- solid curve is ML estimate of $p = \exp(au + b)/(1 + \exp(au + b))$

- a Bayesian version of maximum likelihood estimation
- a prior probability density on the underlying parameter x.
- the vector to be estimated and the observation are random variables

Prior density

$$p_x(x)$$

p(x,y)

$$p_{y|x}(x,y) = \frac{p(x,y)}{p_x(x)}$$

- a Bayesian version of maximum likelihood estimation
- a prior probability density on the underlying parameter x.
- the vector to be estimated and the observation are random variables

Prior density

$$p_x(x)$$

$$p_{y|x}(x,y) = \frac{p(x,y)}{p_x(x)}$$

posterior density

$$p_{x|y}(x,y) = \frac{p(x,y)}{p_y(y)} = p_{y|x}(x,y) \frac{p_x(x)}{p_y(y)}$$

$$\hat{x}_{\text{map}} = \operatorname{argmax}_{x} p_{x|y}(x, y) = \operatorname{argmax}_{x} p_{y|x}(x, y) p_{x}(x)$$

$$\hat{x}_{\text{map}} = \operatorname{argmax}_{x}(\log p_{y|x}(x, y) + \log p_{x}(x)).$$

$$\hat{x}_{\text{map}} = \operatorname{argmax}_{x} p_{x|y}(x, y) = \operatorname{argmax}_{x} p_{y|x}(x, y) p_{x}(x)$$

Different from ML

$$\hat{x}_{\text{map}} = \operatorname{argmax}_{x}(\log p_{y|x}(x, y) + \log p_{x}(x)).$$

penalizes choices of x that are unlikely

$$y_i = a_i^T x + v_i, \quad i = 1, \dots, m,$$

 $x \in \mathbf{R}^n$ and $y \in \mathbf{R}^m$

 v_i are IID with density p_v on **R**

x has prior density p_x on \mathbf{R}^n

$$y_i = a_i^T x + v_i, \quad i = 1, \dots, m,$$

$$x \in \mathbf{R}^n$$
 and $y \in \mathbf{R}^m$

 v_i are IID with density p_v on **R**

x has prior density p_x on \mathbf{R}^n

$$p(x,y) = p_x(x) \prod_{i=1}^{m} p_v(y_i - a_i^T x)$$

maximize
$$\log p_x(x) + \sum_{i=1}^m \log p_v(y_i - a_i^T x)$$
.

maximize
$$\log p_x(x) + \sum_{i=1}^m \log p_v(y_i - a_i^T x)$$
.

 v_i are uniform on [-a,a].

x is Gaussian with mean \bar{x} and covariance Σ

maximize
$$\log p_x(x) + \sum_{i=1}^m \log p_v(y_i - a_i^T x)$$
.

 v_i are uniform on [-a,a].

x is Gaussian with mean \bar{x} and covariance Σ

minimize
$$(x - \bar{x})^T \Sigma^{-1} (x - \bar{x})$$

subject to $||Ax - y||_{\infty} \le a$,

MAP with perfect linear measurements

m perfect (noise free, deterministic) linear measurements

$$y = Ax$$

MAP estimate

MAP with perfect linear measurements

m perfect (noise free, deterministic) linear measurements

$$y = Ax$$

MAP estimate

maximize
$$\log p_x(x)$$
 subject to $Ax = y$.

MAP with perfect linear measurements

m perfect (noise free, deterministic) linear measurements

$$y = Ax$$

MAP estimate

maximize
$$\log p_x(x)$$
 subject to $Ax = y$.

$$\phi(u) = -\log p(u)$$

extension: least-penalty problem

minimize
$$\phi(x_1) + \cdots + \phi(x_n)$$

subject to $Ax = b$

 $\phi: \mathbf{R} \to \mathbf{R}$ is convex penalty function

a random variable X with values in the finite set $\{\alpha_1, \ldots, \alpha_n\} \subseteq \mathbf{R}$.

$$p \in \mathbf{R}^n$$
, with $\mathbf{prob}(X = \alpha_k) = p_k$.

all possible probability distributions

$$\{p \in \mathbf{R}^n \mid p \succeq 0, \ \mathbf{1}^T p = 1\}$$

a random variable X with values in the finite set $\{\alpha_1, \ldots, \alpha_n\} \subseteq \mathbf{R}$.

$$p \in \mathbf{R}^n$$
, with $\mathbf{prob}(X = \alpha_k) = p_k$.

all possible probability distributions

$$\{p \in \mathbf{R}^n \mid p \succeq 0, \ \mathbf{1}^T p = 1\}$$

Prior information

$$\mathbf{E}X = \alpha,$$

$$\mathbf{E} X^2 = \beta$$

a random variable X with values in the finite set $\{\alpha_1, \ldots, \alpha_n\} \subseteq \mathbf{R}$.

$$p \in \mathbf{R}^n$$
, with $\mathbf{prob}(X = \alpha_k) = p_k$.

all possible probability distributions

$$\{p \in \mathbf{R}^n \mid p \succeq 0, \ \mathbf{1}^T p = 1\}$$

Prior information

 $\mathbf{E} X = \alpha$, $\mathbf{E} X = \sum_{i=1}^{n} \alpha_i p_i = \alpha, \qquad \mathbf{E} X^2 = \sum_{i=1}^{n} \alpha_i^2 p_i = \beta, \qquad \mathbf{E} f(X) = \sum_{i=1}^{n} p_i f(\alpha_i)$

linear equalities

$$\mathbf{E} X^2 = \beta$$

$$\mathbf{E} X^2 = \sum_{i=1}^{n} \alpha_i^2 p_i = \beta$$

$$\mathbf{E} f(X) = \sum_{i=1}^{n} p_i f(\alpha_i)$$

a random variable X with values in the finite set $\{\alpha_1, \ldots, \alpha_n\} \subseteq \mathbf{R}$.

$$p \in \mathbf{R}^n$$
, with $\mathbf{prob}(X = \alpha_k) = p_k$.

all possible probability distributions

$$\{p \in \mathbf{R}^n \mid p \succeq 0, \ \mathbf{1}^T p = 1\}$$

Prior information

 $\mathbf{E} X = \alpha$, $\mathbf{E} X = \sum_{i=1}^{n} \alpha_i p_i = \alpha, \qquad \mathbf{E} X^2 = \sum_{i=1}^{n} \alpha_i^2 p_i = \beta, \qquad \mathbf{E} f(X) = \sum_{i=1}^{n} p_i f(\alpha_i)$

linear equalities

$$\mathbf{E} X^2 = \beta$$

$$\mathbf{E} X^2 = \sum_{i=1}^{n} \alpha_i^2 p_i = \beta$$

$$\mathbf{E} f(X) = \sum_{i=1}^{n} p_i f(\alpha_i)$$

Prior information

$$prob(X \ge 0) \le 0.3.$$
 $\sum p_i \le 0.3,$

$$\sum_{\alpha_i > 0} p_i \le 0.3,$$

$$\operatorname{\mathbf{prob}}(X \in C) = c^T p, \qquad c_i = \left\{ \begin{array}{ll} 1 & \alpha_i \in C \\ 0 & \alpha_i \notin C. \end{array} \right.$$

Prior information

$$prob(X \ge 0) \le 0.3.$$

$$prob(X \ge 0) \le 0.3.$$
 $\sum_{\alpha_i \ge 0} p_i \le 0.3,$

$$\operatorname{\mathbf{prob}}(X \in C) = c^T p, \qquad c_i = \left\{ \begin{array}{ll} 1 & \alpha_i \in C \\ 0 & \alpha_i \notin C. \end{array} \right.$$

Some types of prior information can be expressed in terms of nonlinear convex inequalities. Such as a min for entropy

$$-\sum_{i=1}^{n} p_i \log p_i,$$

Concave function

a set of linear equalities and convex inequalities.

express the prior information about the distribution pass

Goal: min $\mathbf{E} f(X)$

minimize $\sum_{i=1}^{n} f(\alpha_i) p_i$ subject to $p \in \mathcal{P}$.

Nonparametric distribution estimation

Goal: min $\mathbf{E} f(X)$

minimize $\sum_{i=1}^{n} f(\alpha_i) p_i$ subject to $p \in \mathcal{P}$.

Maximum entropy

minimize $\sum_{i=1}^{n} p_i \log p_i$ subject to $p \in \mathcal{P}$.

Nonparametric distribution estimation

Goal: min $\mathbf{E} f(X)$

minimize $\sum_{i=1}^{n} f(\alpha_i) p_i$ subject to $p \in \mathcal{P}$.

Maximum entropy

minimize $\sum_{i=1}^{n} p_i \log p_i$ subject to $p \in \mathcal{P}$.

Maximum likelihood estimation

 $k_1 + \cdots + k_n = N$

observe N independent samples x_1, \ldots, x_N k_i denote the number of these samples with value α_i

maximize $l(p) = \sum_{i=1}^{n} k_i \log p_i$ subject to $p \in \mathcal{P}$,

Optimal detector design and hypothesis testing

Suppose X is a random variable with values in $\{1, \ldots, n\}$, with a distribution that

depends on a parameter $\theta \in \{1, \ldots, m\}$.

Hypotheses

a matrix
$$P \in \mathbf{R}^{n \times m}$$

$$p_{kj} = \mathbf{prob}(X = k \mid \theta = j)$$

hypothesis testing

estimating θ , based on an observed sample of X

- one of the hypotheses corresponds to some normal situation
- others correspond to some abnormal event.

Detection

Deterministic and randomized detectors

A (deterministic) estimator or detector is a function ϕ from $\{1,...,n\}$ (the set of possible observed values) into {1,..., m}

$$\hat{\theta} = \psi(k)$$

1. maximum likelihood detector

$$\hat{\theta} = \psi_{\text{ml}}(k) = \operatorname*{argmax}_{j} p_{kj}$$

estimate of θ , given an observed value of X, is random $\longrightarrow randomized detector$

a random variable $\hat{\theta} \in \{1, \dots, m\}$, with a distribution that depends on the observed value of X

$$T \in \mathbf{R}^{m \times n}$$

$$t_{ik} = \mathbf{prob}(\hat{\theta} = i \mid X = k)$$

designing the matrix T

the columns t_k of T must satisfy

$$t_k \succeq 0$$
,

$$t_k \succ 0, \qquad \mathbf{1}^T t_k = 1$$

Detection probability matrix

Detection probability matrix

$$D = TP$$
 $D_{ij} = (TP)_{ij} = \mathbf{prob}(\hat{\theta} = i \mid \theta = j)$

- ✓ characterizes the performance of the randomized detector
- √ diagonal and off-diagonal entry
- ✓ Perfect detector

Detection probabilities

$$P_i^{\mathrm{d}} = D_{ii} = \mathbf{prob}(\hat{\theta} = i \mid \theta = i).$$

Error probabilities

$$\rightarrow P_i^e = 1 - D_{ii} = \mathbf{prob}(\hat{\theta} \neq i \mid \theta = i)$$

$$P_i^{\rm e} = \sum_{j \neq i} D_{ji}.$$

Optimal detector design

Limits on errors and detection probabilities

$$P_i^{\mathrm{d}} = D_{jj} \ge L_j$$
,

$$D_{ij} \leq U_{ij},$$

1. Minimax detector design

minimax detector minimizes the worst-case (largest) probability of error over all m hypotheses.

minimize
$$\max_{j} P_{j}^{e}$$

subject to $t_{k} \succeq 0$, $\mathbf{1}^{T} t_{k} = 1$, $k = 1, \dots, n$,

can be reformulated as an LP.

Optimal detector design

2. Bayes detector design

In Bayes detector design, we have a prior distribution for the hypotheses

$$q_i = \mathbf{prob}(\theta = i)$$

The probability of error for the detector is then given by $q^T P^e$

minimize
$$q^T P^e$$

subject to $t_k \succeq 0$, $\mathbf{1}^T t_k = 1$, $k = 1, \dots, n$.

an LP

Binary hypothesis testing

Detection problem

given observation of a random variable $X \in \{1, \dots, n\}$, choose between:

- hypothesis 1: X was generated by distribution $p = (p_1, \ldots, p_n)$
- hypothesis 2: X was generated by distribution $q=(q_1,\ldots,q_n)$

randomized detector

- a nonnegative matrix $T \in \mathbf{R}^{2 \times n}$
- if we observe X=k, we choose hypothesis 1 with probability t_{1k} , hypothesis 2 with probability t_{2k}
- ullet if all elements of T are 0 or 1, it is called a deterministic detector

Binary hypothesis testing

detection probability matrix:

$$D = TP$$

$$D_{ij} = (TP)_{ij} = \mathbf{prob}(\hat{\theta} = i \mid \theta = j)$$

$$D = \begin{bmatrix} Tp & Tq \end{bmatrix} = \begin{bmatrix} 1 - P_{fp} & P_{fn} \\ P_{fp} & 1 - P_{fn} \end{bmatrix}$$

- $P_{\rm fp}$ is probability of selecting hypothesis 2 if X is generated by distribution 1 (false positive)
- P_{fn} is probability of selecting hypothesis 1 if X is generated by distribution 2 (false negative)

multicriterion formulation of detector design

variable $T \in \mathbf{R}^{2 \times n}$

minimize (w.r.t.
$$\mathbf{R}_{+}^{2}$$
) $(P_{\mathrm{fp}}, P_{\mathrm{fn}}) = ((Tp)_{2}, (Tq)_{1})$ subject to $t_{1k} + t_{2k} = 1, \quad k = 1, \ldots, n$ $t_{ik} \geq 0, \quad i = 1, 2, \quad k = 1, \ldots, n$

Binary hypothesis testing

scalarization (with weight $\lambda > 0$)

minimize
$$(Tp)_2 + \lambda (Tq)_1$$

subject to $t_{1k} + t_{2k} = 1$, $t_{ik} \ge 0$, $i = 1, 2$, $k = 1, \ldots, n$

an LP with a simple analytical solution

$$(t_{1k}, t_{2k}) = \begin{cases} (1,0) & p_k \ge \lambda q_k \\ (0,1) & p_k < \lambda q_k \end{cases}$$

likelihood ratio threshold test

Example

$$P = \begin{bmatrix} 0.70 & 0.10 \\ 0.20 & 0.10 \\ 0.05 & 0.70 \\ 0.05 & 0.10 \end{bmatrix}$$

$$T^{(1)} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix},$$

$$T^{(2)} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix},$$

$$T^{(3)} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix},$$

$$T^{(4)} = \begin{bmatrix} 1 & 2/3 & 0 & 0 \\ 0 & 1/3 & 1 & 1 \end{bmatrix},$$

either a false positive or false negative probability that exceeds 1/6,

Experiment design

m linear measurements $y_i = a_i^T x + w_i$, i = 1, ..., m of unknown $x \in \mathbf{R}^n$

- measurement errors w_i are IID $\mathcal{N}(0,1)$
- ML (least-squares) estimate is

$$x^* = (A^T A)^{-1} A^T b$$

$$\hat{x} = \left(\sum_{i=1}^{m} a_i a_i^T\right)^{-1} \sum_{i=1}^{m} y_i a_i$$

• error $e = \hat{x} - x$ has zero mean and covariance

$$E = \mathbf{E} e e^T = \left(\sum_{i=1}^m a_i a_i^T\right)^{-1}$$

experiment design: choose $a_i \in \{v_1, \dots, v_p\}$ (a set of possible test vectors) to make E 'small'

Experiment design

Let m_j denote the number of experiments for which a_i is chosen to have the value v_j , so we have

$$m_1+\cdots+m_p=m.$$

$$E = \left(\sum_{i=1}^{m} a_{i} a_{i}^{T}\right)^{-1} = \left(\sum_{j=1}^{p} m_{j} v_{j} v_{j}^{T}\right)^{-1}$$

error covariance
depends only on the
numbers of each type of
experiment chosen

minimize subject to

$$E = \left(\sum_{j=1}^{p} m_j v_j v_j^T\right)^{-1}$$

$$m_i \ge 0, \quad m_1 + \dots + m_p = m$$

$$m_i \in \mathbf{Z},$$

• variables are m_k

a vector optimization problem

Experiment design

relaxing, the constraint that the m_i are integers.

subject to

assume
$$m \gg p$$
, use $\lambda_k = m_k/m$

each λ_i is an integer multiple of 1/m. By ignoring this last constraint, we arrive at the problem

$$E = \frac{1}{m} \left(\sum_{i=1}^{p} \lambda_i v_i v_i^T \right)^{-1}$$
$$\lambda \in \mathbf{R}^p \quad \lambda \succeq 0, \, \mathbf{1}^T \lambda = 1$$

 $\lambda \in \mathbf{I}$ $\lambda \succeq 0, \mathbf{I} \lambda = 1$

minimize

$$E = (1/m) \left(\sum_{i=1}^{p} \lambda_i v_i v_i^T \right)^{-1}$$
$$\lambda \succeq 0, \quad \mathbf{1}^T \lambda = 1,$$

$$m_i = \mathbf{round}(m\lambda_i), \quad i = 1, \dots, p.$$

$$\tilde{\lambda}_i = (1/m) \mathbf{round}(m\lambda_i), \quad i = 1, \dots, p.$$

$$|\lambda_i - \tilde{\lambda}_i| \le 1/(2m)$$

for m large, we have $\lambda \approx \tilde{\lambda}$

ullet common scalarizations: minimize $\log \det E$, $\operatorname{tr} E$, $\lambda_{\max}(E)$, . . .

relaxed experiment design problem