Background

Theorem 1. Suppose we are given recurrence relation $T(n) = a \times T(n/b) + f(n)$. Let $c = log_b(a)$. Then

- 1. If $f(n) = O(n^d)$ for d < c then $T(n) = \Theta(n^c)$
- 2. If $f(n) = \Theta(n^c)$ then $T(n) = \Theta(n^c \log(n))$
- 3. If $f(n) = \Omega(n^c)$ then $T(n) = \Theta(f)$

Note that Ω is asymptotic lower bound, O is asymptotic upper bound and Θ is exact bound.

Questions

1. Apply Master Theorem to find the running time of T(n) = 2T(n/2) + O(1).

Solution:

Here $c = log_2(2) = 1$ and d = 0. Since d < c then $T(n) = \Theta(n)$.

2. Apply Master Theorem to find the running time of T(n) = 3T(n/2) + O(1).

Solution:

Here $c = log_2(3) = 1.58$ and d = 0. Since d < c then $T(n) = \Theta(n^{1.58})$.

3. Apply Master Theorem to find the running time of T(n) = 4T(n/2) + O(n).

Solution:

Here $c = log_2(4) = 2$ and d = 1. Since d < c then $T(n) = \Theta(n^2)$.

4. Apply Master Theorem to find the running time of $T(n) = 3T(n/2) + O(n^2)$.

Solution:

Here $c = log_2(3) = 1.58$ and d = 2. We have case three, so $T(n) = O(n^2)$.

5. Apply Master Theorem to find the running time of T(n) = 3T(n/3) + O(n).

Solution:

Here
$$c = log_3(3) = 1$$
 and $d = 1$. We have case two, so $T(n) = O(nlog(n))$.

6. Apply Master Theorem to find the running time of $T(n) = 8T(n/2) + O(n^2)$.

Solution:

Here
$$c = log_8(2) = 3$$
 and $d = 2$. We have case one, so $T(n) = O(n^3)$.

7. Apply Master Theorem to find the running time of $T(n) = 8T(n/2) + O(n^3)$.

Solution:

Here
$$c = log_8(2) = 3$$
 and $d = 3$. We have case two, so $T(n) = O(n^3 log(n))$.

8. Apply Master Theorem to find the running time of $T(n) = 8T(n/2) + O(n^7)$.

Solution:

Here
$$c = log_8(2) = 3$$
 and $d = 7$. We have case three, so $T(n) = O(n^7)$.

9. Apply Master Theorem to find the running time of $T(n) = 5T(n/3) + O(n^{1.5})$.

Solution:

Here
$$c = log_5(3) = 1.46$$
 and $d = 1.5$. We have case three, so $T(n) = O(n^{1.5})$.

10. Apply Master Theorem to find the running time of $T(n) = 5T(n/3) + O(n^{1.4})$.

Solution:

Here
$$c = log_5(3) = 1.46$$
 and $d = 1.4$. We have case one, so $T(n) = O(n^{1.46})$.

11. Apply Master Theorem to find the running time of T(n) = 3T(n/3) + O(n).

Solution:

Here
$$c = log_3(3) = 1$$
 and $d = 1$. We have case two, so $T(n) = O(nlog(n))$.

12. Apply Master Theorem to find the running time of $T(n) = 9T(n/3) + O(n^2)$.

Solution:

Here
$$c = log_3(9) = 2$$
 and $d = 2$. We have case two, so $T(n) = O(n^2 log(n))$.