Глава 1: Теория устойчивости

1. Основные определения

Маятник длинной l в поле тяжести g, отклоненный от положения устойчивости на угол φ :

$$\begin{cases} l\ddot{\varphi} + g\sin\varphi = 0\\ \varphi(0) = 0\\ \dot{\varphi}(0) = 0 \end{cases} \Rightarrow \varphi^*(t) = 0$$

$$\begin{cases} l\ddot{\varphi} + g\sin\varphi = 0 \\ \varphi(0) = 0 \\ \dot{\varphi}(0) = 0 \end{cases} \Rightarrow \varphi^*(t) = 0$$

$$\begin{cases} l\ddot{\varphi} + g\sin\varphi = 0 \\ \varphi(0) = \varphi_0 \\ \dot{\varphi}(0) = \omega_0 \end{cases} \Rightarrow \varphi(t, \varphi_0, \omega_0) \text{ - решение}$$

Частный случай:

$$\begin{cases} l\ddot{\varphi} + g\sin\varphi = 0\\ \varphi(0) = \pi \\ \dot{\varphi}(0) = 0 \end{cases} \Rightarrow \varphi^{**}(t) = \pi$$

$$\begin{cases} l\ddot{\varphi}+g\sin\varphi=0\\ \varphi(0)=\pi\\ \dot{\varphi}(0)=0 \end{cases} \Rightarrow \varphi^{**}(t)=\pi$$

$$\begin{cases} l\ddot{\varphi}+g\sin\varphi=0\\ \varphi(0)=\pi+\varphi_0\\ \dot{\varphi}(0)=\omega_0 \end{cases} \Rightarrow \varphi(t,\pi+\varphi_0,\omega_0) \text{ - решение}$$

Непрерывная зависимость от начальных данных - есть на конечном отрезке времени.

Устойчивость - непрерывная зависимость от начальных данных при t до 0 до $+\infty$

$$\frac{d}{dt}\vec{y} = \vec{f}(t, \vec{y})$$

$$\vec{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}, \ \vec{f} = \begin{pmatrix} f_1 \\ \vdots \\ f_n \end{pmatrix}, \ f_j : \mathbb{D} \to \mathbb{R}, \ \mathbb{D} \subset \mathbb{R}^{n+1} \text{ - непустое открытое}$$

$$\forall j = 1, \dots, n, \ f_j \in C(\mathbb{D}), \ \forall i, j = 1, \dots, n \ \exists \frac{\partial f_i}{\partial y_j} \in C(\mathbb{D})$$

$$\begin{cases} \frac{d}{dt}\vec{y} = \vec{f}(t, \vec{y}) \\ \vec{y}(t_0) = \vec{y}_0^* \end{cases} \Rightarrow \text{ решение } \vec{y}^*(t)$$

$$\begin{cases} \frac{d}{dt} \vec{y} = \vec{f}(t, \vec{y}) \\ \vec{y}(t_0) = \vec{y}_0 \end{cases} \Rightarrow \text{ решение } \vec{y}(t)$$

Определение 1. Решение $\vec{y}^*(t)$ называется устойчивым по Ляпунову, если: 1) $\vec{y}^*(t)$ определена от t_0 до $+\infty$!

2) $\exists \Delta > 0 \ \forall \vec{y_0} : \|\vec{y_0} - \vec{y_0}^*\| < \Delta \Rightarrow \vec{y}(t)$ тоже определенно от t_0 до $+\infty$!

3) $\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall \vec{y_0} : \|\vec{y_0} - \vec{y_0}^*\| < \delta \Rightarrow \|\vec{y}(t) - \vec{y}^*(t)\| < \varepsilon \ \forall t \geq t_0$

№1: Является ли устойчивое по Ляпунову решение задачи Коши:

$$\begin{cases} y' = 1 \\ y(0) = 0 \end{cases}$$

$$t_0 = 0, \ y_0^* = 0, \ y^*(t) = t$$

1) $y^*(t)=t$ определено от 0 до $+\infty$ (+)

2)
$$\begin{cases} y' = 1 \\ y(0) = 0 \end{cases} \Rightarrow y(t) = t + y_0 (+)$$

3) Надо доказать:

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \forall y_0 : |y_0| < \delta \Rightarrow \underbrace{|y(t) - y^*(t)|}_{|y_0|} < \varepsilon \ \forall t \ge 0$$

Ответ: $y^*(t) = t$ устойчиво по Ляпунову

Определение 2. Решение $\vec{y}^*(t)$ называется асимптотическим устойчивым, если:

- 1) $\vec{y}^*(t)$ ycmoйчиво по Ляпунову 2) $\exists \rho > 0 \ \forall \vec{y}_0 : \|\vec{y}_0 \vec{y}_0^*\| < \rho \Rightarrow \lim_{t \to \infty} \|\vec{y}(t) \vec{y}^*(t)\| = 0$

№2: Является ли устойчивое по Ляпунову асимптотическим устойчивым решение задачи Коши:

$$\begin{cases} y' = -y \\ y(0) = 0 \end{cases}$$

$$t_0 = 0, \ y_0^* = 0, \ y^*(t) = 0$$

1) $y_{.}^{*}(t)=0$ определено на от 0 до $+\infty$ (+)

2)
$$\begin{cases} y' = -y \\ y(0) = y_0 \end{cases}$$
 $\Rightarrow y(t) = e^{-t}y_0$ - определено на от 0 до $+\infty$

3)
$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall y_0 : |y_0| < \delta \Rightarrow \underbrace{|y(t)|}_{|y_0e^{-t}|} < \varepsilon \ \forall t \ge t_0$$

Возьмем $\delta = \varepsilon$

Если $|y_0|<\delta=\varepsilon\Rightarrow |y(t)|=|y_0e^{-t}|=|y_0|\,e^{-t}<\varepsilon\Rightarrow$ нулевое решение $y^*(t)=0$ устойчиво по Ляпунову

4) $\lim_{t \to \infty} |y(t) - y^*(t)| = \lim_{t \to \infty} |y_0 e^{-t}| - 0$

 ρ - любое $\Rightarrow y^*(t) = 0$ асимптотическим устойчиво.

Определение 3. Решение $\vec{y}^*(t)$ называется неустойчивым, если оно не является устойчивым по Ляпунову, то есть если не выполняется хотя бы один пункт в определении устойчивости по Ляпунову.

Не выполняется пункт 1: $y^*(t)$ не определено от 0 до $+\infty$ Не выполняется пункт 2:

 $\forall \Delta > 0 \; \exists \vec{y_0} : \|\vec{y_0} - \vec{y_0}^*\| < \Delta, \; \vec{y}(t)$ не определено от t_0 до $+\infty$ Не выполняется пункт 3:

 $\exists \varepsilon > 0 \ \forall \delta > 0 \ \exists \vec{y_0} : \|\vec{y_0} - \vec{y_0}^*\| < \delta, \ \exists \hat{t} \ge t_0 : \|\vec{y}(\hat{t}) - \vec{y}^*(\hat{t})\| \ge \varepsilon$ No.:

$$\begin{cases} y' = 1 + y^2 \\ y(0) = 0 \end{cases} \Rightarrow y^*(t) = \operatorname{tg}(t)$$

Не выполняется первый пункт $\Rightarrow y^*(t) = \operatorname{tg}(t)$ - неустойчиво. №4:

$$\begin{cases} y' = y^2 \\ y(0) = 0 \end{cases} \Rightarrow y^*(t) = 0$$

1) (+)

2)
$$\begin{cases} y' = y^2 \\ y(0) = y_0 \end{cases} \Rightarrow y(t) = \frac{1}{\frac{1}{y_0} - t}$$

y(t) при $y_0>0$ не определено от 0 до $+\infty\Rightarrow 2)$ не выполняется $\Rightarrow y^*(t)=0$ - неустойчиво N^0_5 :

$$\begin{cases} y' = y \\ y(0) = 0 \end{cases} \Rightarrow y^*(t) = 0$$

1) $y^*(t)=0$ определено от 0 до $+\infty$ (+)

2)

$$\begin{cases} y' = y \\ y(0) = y_0 \end{cases} \Rightarrow y(t) = y_0 e^t$$

y(t) определено от 0 до $+\infty$ (+)

3)

$$\exists \varepsilon = 10 \ \forall \delta > 0 : \exists y_0 = \frac{\delta}{2} : |y_0| < \delta$$
$$\exists \hat{t} : |y(\hat{t})| \ge \varepsilon = 10$$
$$\left| y_0 e^{\hat{t}} \right| = \frac{\delta}{2} e^{\hat{t}}$$
$$\frac{\delta}{2} e^{\hat{t}} \ge 10 \Rightarrow \hat{t} = \ln\left(\frac{20}{\delta}\right)$$

Нулевое решение $y^*(t) = 0$ неустойчиво.