部分项目内容展示

• DSC IP Simulation & Integration:

enc dec structure

Structure

使用 smic .11 mc 工具产生 memory 替换 ip 环境 memory

			可节行	首的dsc enc/	dec memory.	基于SMICO11 SP Ram			,	in.
				0 0						
Module	Whole Module Syn Area	Original Mem Size in Design	跑不满	无法产生	Num	Actually Used Size	Actual Total Area	Ideal Size	Ideal Area	Ideal预计节省比例
enc	8050000	1024x16	✓		16	1024x16	965712	512x16	621984	35. 59%
		512x128	/		4	512x128	1067040	256x128	767520	28.07%
		128x48		1	16	256x48	1172928	128x48	= 1	155
		128x6		1	16	256x6	220416	128x6		-
dec	6900000	128x48		1	8	256x48	586464	128x48		
		64x512	1	1	4	256x512	3070080	32x512	-	

优化 memory 选择与使用以节省面积

```
dsc 中有 128×128 的单端口 ram.
我们的 memory · compiler:。
单口 ram:深度最低 256, 位宽最高 64bit。
双口 ram:深度最低 128, 位宽最高 64bit。
可以两个 ram 一组来实现 128bit 位宽。
如果使用单口 ram:。
一个 256×64 单端口 ram 面积为 1170×82=95940, 8 个 95940×8=767520。
如果使用双口 ram:。
一个 128×64 双端口 ram 面积为 630×185=116550, 8 个 116550×8=932400。
```


• 2D Scaler:

Example of 2D Scaler for 1920x1080 scale down to 1900x800

TCON Project:

1856 TCON 项目 FPGA 上屏测试图

LVDS SPEC

We are pursuing the best!

General

lvds_rx to mini-lvds_tx:

lvds_rx接收lvds信号(vesa/jeida 1ch/2ch RGB666/RGB888/RGB101010),通过将每个通道的lvds串行数据缓存,得到对应的7bit 序列,通过RGB信号在lvds通道上的不同映射标准,解出对应的R、G、B、HS、VS、DE信号,RGB信号可以进行一些处理再发送给mini-lvds tx。mini-lvds_tx在收到数据后,只将rgb信号对应映射标准,通过mini_lvds通道发送。hs、vs、de单独发

System Structure

lvds rx structure

• BT656 Decoder:

DESGIN DETAILS DECODE_CORE We are pursuing the best! Testing image 将DECODE_CORE输出的YUV信号输入ycbcr2rgb模块转成RGB数据,将转换后的数据送入dump_pm模块。生成的.ppm格式colorbar彩条图如下:

解码测试图

Project Structure

Others