

INDIA NAVAL INTEROPERABILITY WORKSHOP

Aegis Combat System Interoperability - Designing, Building and Testing

Orlando Carvalho

*L*OCKHEED MARTIN *A*

Naval Electronics & Surveillance Systems-Surface Systems
Moorestown, New Jersey

Report Documentation Page

Report Date 30052001	Report Type N/A	Dates Covered (from... to) - -
Title and Subtitle Aegis Combat System Interoperability - Designing, Building and Testing		Contract Number
		Grant Number
		Program Element Number
Author(s) Carvalho, Orlando		Project Number
		Task Number
		Work Unit Number
Performing Organization Name(s) and Address(es) Lockheed Martin		Performing Organization Report Number
Sponsoring/Monitoring Agency Name(s) and Address(es) NDIA (National Defense Industrial Association 2111 Wilson Blvd., Ste. 400 Arlington, VA 22201-3061		Sponsor/Monitor's Acronym(s)
		Sponsor/Monitor's Report Number(s)
Distribution/Availability Statement Approved for public release, distribution unlimited		
Supplementary Notes Proceedings from Armaments for the Navy Interoperability Workshop, 30-31 May 2001 sponsored by NDIA.		
Abstract		
Subject Terms		
Report Classification unclassified	Classification of this page unclassified	
Classification of Abstract unclassified	Limitation of Abstract UU	
Number of Pages 17		

Outline

- **Aegis Combat System Engineering Agent (CSEA)**
View
- **Aegis Baseline 6 III Interoperability Initiatives**
- **Lessons Learned and Shortfalls**
- **Summary**

Aegis CSEA View

Background

- *CEC OPEVAL events led to formation of an Interoperability Task Force Senior System Engineering Council*
- *Tasked to resolve System problems, point solution for CEC OPEVAL*
- *ITF Link/ID/Interoperability team investigated 166 problems and corrected 38 over 17 months*
- *Concurrently PMS 400B asked, How can we improve interoperability during development?*
- *Lockheed Martin developed new test initiative to identify and correct interoperability problems during Baseline 6 Phase III development*

*Interoperability Improvement Required Infrastructure
and Process Changes, i.e. Not “Business As Usual”*

New Test Initiative – What to Do?

- *Develop a system test infrastructure that would stimulate multiple systems during development*
 - *An infrastructure that supported:*
 - *an ability to generate and distribute common dynamic tracks to be processed by multiple systems.*
 - *computer generated scenarios that would replicate operationally based experience.*
 - *Develop a robust test criteria with quantitative performance measurements*
- *Develop test methodologies that facilitate:*
 - *Iterative cross system problem identification*
 - *Coordinated developer investigation*
 - *System wide problem resolution and validation*

*Move Away From Sterile Single Ship Test Environments,
Validating S/W Requirements.... Move towards
Testing The Way The Ship Fights*

New Test Initiative – How To Do It

Multi-Aegis Combat System (MACS)

- *High-fidelity interoperability testing using operationally based scenarios on a distributed network*
 - Distribute tracks via *Distribute Interface Simulator (DIS)*
 - Connect TADILS via Aegis Broadcast Network (*ABN-16*)
 - Connect CEC via secure LAN
- *Supplements*
 - Navy Link Certification
 - Link exercises with Patriot/THAAD,E-2, ACDS
- *Provides*
 - Common sensor environment
 - Multi-aircraft, Multi-TBM
 - Simultaneous AAW and TBM

Built Battle Force Rancocas

Battle Force Rancocas

MACS Interoperability Test Goals

Temp 801 Based Criteria

Level Definition (*Abridged*)

- ***Engagement Support / Coordination:***
Exploitation of integrated track data and connectivity to support and coordinate air/TBM engagements
- ***Track Integration:*** The fusion of local and remote sensor data and track parameters (correlation, decorrelation, mutual tracking)
- ***Information Management:*** The storage and management of local and remote track parameter data (ID, IFF, etc.)
- ***Data Registration:*** The corrective alignment of local and remote track position and kinematic data
- ***Data Exchange:*** The sharing of data at the element and unit level
- ***Developmental Testing:*** Verification of MACS test architecture and procedures

Test Process

ACIS Scenario Used for Data Registration Testing

Scenario	Permutation	Section	Recommended script name
1: Baseline AAW	1. Single threat (bandit A)	A2.1.1.1	6P3_INT_BASE_AAW1
1. Baseline AAW	2. Single threat (bandit B)	A2.1.3.1	6P3_INT_BASE_AAW2
1. Baseline AAW	3. Dual threat (bandit A & B)	A2.1.3.2	6P3_INT_BASE_AAW3
2. Baseline AAW mode swap	1. Single threat (bandit A)	A2.2.1.1	6P3_INT_BASE2_AAW1
2. Baseline AAW mode swap	2. Single threat (bandit B)	A2.2.3.1	6P
2. Baseline AAW mode swap	3. Dual threat (bandit A & B)	A2.2.3.2	6P
3. Dual-Axis AAW threat	N/A	A2.3	6P
4. Modified Dual-Axis AAW threat	1. Single ASCM salvos	A2.4	6P
4. Modified Dual-Axis AAW threat	2. Two ASCM salvos	A2.4	6P
4. Modified Dual-Axis AAW threat	3. Three ASCM salvos	A2.4	6P
4. Modified Dual-Axis AAW threat	4. Four ASCM salvos	A2.4	6P
5. Baseline HVA AAW	1. Two ASCM salvos	A2.5	6P
5. Baseline HVA AAW	2. Four ASCM salvos	A2.5	6P
5. Baseline HVA AAW	3. Six ASCM salvos	A2.5	6P

Data Registration Testing:

An Example

- MACS test matrix identifies 11 priority link specific data registration test goals and pass / fail criteria for:
 - Relative Gridlock
 - IU Registration
 - Sensor Registration
 - Developed ACSIS DIS scenario to inject sensor error that requires compensation using data registration
- Initial results
 - Failed on visual inspection: Tracks jumped wildly while conducting relative gridlock throughout scenario
 - Data analysis identified C2PR N-1-3033, SGS/AC Sensor Registration application and C&D program problems
 - All fixes verified
 - Basic Relative Gridlock, IU Registration, and Sensor Registration functionality passed

Success Story, But Required Five Month Iterative Process

Aegis-Aegis Mutual Track

Relative Gridlock Test Result:

- No comparable OPSPEC 516 standard
- Used CNO 801 Standard
- Ave Delta Range < MACS Criteria = PASS

Delta Range

Pass / Fail

Delta Between Local
Remote Track Position

Time

Sensor and IU Registration Results

Sensor and IU Registration Limitations

- Plot for CAP aircraft engaged in a Furball
- Ave Delta Range > MACS Criteria = Fail
- Likely reflects Link 16 update rate limitations
- Despite limitations, overall link data registration performance assessed to be nominal

MACS Lessons Learned

A

- *Developmental testing should be conducted in small doses with limited objectives*
- *Test configuration very challenging*
 - *Most resource intensive test configuration we employ*
 - *Developmental testing demands large test time investment per test objective*
- *Test architecture needed thorough testing and debugging*
- *Testing generates heavy data analysis demands*
- *D/S essential for TBMD interoperability testing*

*Finding and Fixing Interoperability Problems
is an Iterative Time Consuming Process*

Summary

- *Lockheed Martin NE&SS-Surface Systems initiated MACS testing in response to PMS 400B direction to “improve interoperability”*
- *Infrastructure developed and testing in progress*
- *Experienced growing pains*
- *Testing has exposed problems that otherwise would be difficult to find or collect data on*
- *The use of DIS architecture has proven a necessity for TBMD interoperability testing*
- *Test shortfalls that affect ability to find and quickly resolve problems*
 - *Architecture / equipment*
 - *Analysis tools*
 - *Availability / participation of all elements developers*

Interoperability is Not a Goal, It's a Process