Improved lower bounds for learning quantum states with single-copy measurements

Angus Lowe & Ashwin Nayak

Possible questions

- What are the expected values of some observables?
- Is $\rho = \sigma$?
- What is ρ ?

Possible questions

- What are the expected values of some observables?
- Is $\rho = \sigma$?
- What is ρ ?

Quantum tomography

Input: Measurement outcome Y from measurement \mathcal{M} on $\rho^{\otimes n}$, $\rho \in D(\mathbb{C}^d)$.

Output: Estimate $\hat{\rho}$ such that $\|\hat{\rho} - \rho\|_1 \le \epsilon$ with high probability.

Quantum tomography

Input: Measurement outcome Y from measurement \mathcal{M} on $\rho^{\otimes n}$, $\rho \in D(\mathbb{C}^d)$.

Output: Estimate $\hat{\rho}$ such that $\|\hat{\rho} - \rho\|_1 \le \epsilon$ with high probability.

Quantum tomography

Input: Measurement outcome Y from measurement \mathcal{M} on $\rho^{\otimes n}$, $\rho \in D(\mathbb{C}^d)$.

Output: Estimate $\hat{\rho}$ such that $\|\hat{\rho} - \rho\|_1 \le \epsilon$ with high probability.

Strategy	Number of Copies	
Nonadaptive, 2- outcome Pauli	$O(d^4/\epsilon^2)$ [Folklore]	
Nonadaptive, random (2-design) basis	$O(d^3/\epsilon^2)$ [Kueng, Rauhut, Terstiege' 14]	

Strategy	Number of Copies	
Nonadaptive, 2- outcome Pauli	$O(d^4/\epsilon^2)$ [Folklore]	
Nonadaptive, random (2-design) basis	$O(d^3/\epsilon^2)$ [Kueng, Rauhut, Terstiege' 14]	

Strategy	Number of Copies	
Nonadaptive, 2- outcome Pauli	$O(d^4/\epsilon^2)$ [Folklore]	
Nonadaptive, random (2-design) basis	$O(d^3/\epsilon^2)$ [Kueng, Rauhut, Terstiege' 14]	

Strategy	Number of Copies	
Nonadaptive, 2- outcome Pauli	$O(d^4/\epsilon^2)$ [Folklore]	
Nonadaptive, random (2-design) basis	$O(d^3/\epsilon^2)$ [Kueng, Rauhut, Terstiege' 14]	

Strategy	Number of Copies	
Nonadaptive, 2- outcome Pauli	$O(d^4/\epsilon^2)$ [Folklore]	
Nonadaptive, random (2-design) basis	$O(d^3/\epsilon^2)$ [Kueng, Rauhut, Terstiege' 14]	

Measurements	Adaptivity?	Number of Copies
2-outcome Pauli	√	$\Omega(d^4/{ m log}(d))$ [Flammia, Gross, Liu, Eisert' 12]
Any	×	$\Omega(d^3/\epsilon^2)$ [Haah+17]

Measurements	Adaptivity?	Number of Copies
2-outcome Pauli	✓	$\Omega(d^4/\log(d))$ [Flammia, Gross, Liu, Eisert' 12]
Any	×	$\Omega(d^3/\epsilon^2)$ [Haah+17]

Measurements	Adaptivity?	Number of Copies
2-outcome Pauli	√	$\Omega(d^4/{ m log}(d))$ [Flammia, Gross, Liu, Eisert' 12]
Any	×	$\Omega(d^3/\epsilon^2)$ [Haah+17]

Measurements	Adaptivity?	Number of Copies
2-outcome Pauli	√	$\Omega(d^4/{ m log}(d))$ [Flammia, Gross, Liu, Eisert' 12]
Any	×	$\Omega(d^3/\epsilon^2)$ [Haah+17]

Measurements Adaptivity?		Number of Copies
2-outcome Pauli	✓	$\Omega(d^4/{ m log}(d))$ [Flammia, Gross, Liu, Eisert' 12]
Any	×	$\Omega(d^3/\epsilon^2)$ [Haah+17]
O(1)-outcomes	×	$\Omega(d^4/\epsilon^2)$ [this work]

Measurements	Adaptivity?	Number of Copies	
2-outcome Pauli	✓	$\Omega(d^4/{ m log}(d))$ [Flammia, Gross, Liu, Eisert' 12]	$ ho$ M_1 P M_2 P M_2
Any	×	$\Omega(d^3/\epsilon^2)$ [Haah+17]	POVMs with $O(1)$ outcomes $O(1)$ outcomes
O(1)-outcomes	×	$\Omega(d^4/\epsilon^2)$ [this work]	

Measurements	Adaptivity?	Number of Copies
2-outcome Pauli	✓	$\Omega(d^4/{ m log}(d))$ [Flammia, Gross, Liu, Eisert' 12]
Any	×	$\Omega(d^3/\epsilon^2)$ [Haah+17]
O(1)-outcomes	×	$\Omega(d^4/\epsilon^2)$ [this work]
poly(d) settings $+O(1)$ -outcomes	✓	$\Omega(d^4/\epsilon^2 \mathrm{log}(d))$ [this work]

Measurements	Adaptivity?	Number of Copies
2-outcome Pauli	✓	$\Omega(d^4/{ m log}(d))$ [Flammia, Gross, Liu, Eisert' 12]
Any	×	$\Omega(d^3/\epsilon^2)$ [Haah+17]
O(1)-outcomes	×	$\Omega(d^4/\epsilon^2)$ [this work]
poly(d) settings $+0(1)$ -outcomes	✓	$\Omega(d^4/\epsilon^2 \mathrm{log}(d))$ [this work]

Measurements	Adaptivity?	Number of Copies
2-outcome Pauli	√	$\Omega(d^4/{ m log}(d))$ [Flammia, Gross, Liu, Eisert' 12]
Any	×	$\Omega(d^3/\epsilon^2)$ [Haah+17]
O(1)-outcomes	×	$\Omega(d^4/\epsilon^2)$ [this work]
$\operatorname{poly}(d)$ settings $+O(1)$ -outcomes	✓	$\Omega(d^4/\epsilon^2 \mathrm{log}(d))$ [this work]
$e^{o(d)}$ settings	✓	$\Omega(d^3/\epsilon^2)$ [this work]

Measurements	Adaptivity?	Number of Copies
2-outcome Pauli	✓	$\Omega(d^4/\log(d))$ [Flammia, Gross, Liu, Eisert' 12]
Any	×	$\Omega(d^3/\epsilon^2)$ [Haah+17]
O(1)-outcomes	×	$\Omega(d^4/\epsilon^2)$ [this work]
$\operatorname{poly}(d)$ settings $+O(1)$ -outcomes	✓	$\Omega(d^4/\epsilon^2 ext{log}(d))$ [this work]
$e^{o(d)}$ settings	✓	$\Omega(d^3/\epsilon^2)$ [this work]

Measurements	Adaptivity?	Number of Copies
2-outcome Pauli	✓	$\Omega(d^4/\log(d))$ [Flammia, Gross, Liu, Eisert' 12]
Any	×	$\Omega(d^3/\epsilon^2)$ [Haah+17]
O(1)-outcomes	×	$\Omega(d^4/\epsilon^2)$ [this work]
$\operatorname{poly}(d)$ settings $+O(1)$ -outcomes	✓	$\Omega(d^4/\epsilon^2 ext{log}(d))$ [this work]
$e^{o(d)}$ settings	✓	$\Omega(d^3/\epsilon^2)$ [this work]

A lower bound for low-depth circuits

 \Rightarrow adaptivity makes no difference without $\sim \exp(2^q)$ distinct measurement settings on a system comprised of q qubits.

A lower bound for low-depth circuits

 \Rightarrow adaptivity makes no difference without $\sim \exp(2^q)$ distinct measurement settings on a system comprised of q qubits.

A lower bound for low-depth circuits

 \Rightarrow adaptivity makes no difference without $\sim \exp(2^q)$ distinct measurement settings on a system comprised of q qubits.

Recipe for a lower bound

Recipe for a lower bound

Quantum state discrimination of $\mathcal{H} \leq \mathsf{Tomography}$

Quantum state discrimination of $\mathcal{H} \leq \mathsf{Tomography}$ $Z \sim \mathsf{Unif}(\{1, \dots, |\mathcal{H}|\})$

Quantum state discrimination of $\mathcal{H} \leq \mathsf{Tomography}$

$$Z \sim \text{Unif}(\{1, ..., |\mathcal{H}|\})$$

Quantum state discrimination of $\mathcal{H} \leq \mathsf{Tomography}$

$$Z \sim \text{Unif}(\{1, ..., |\mathcal{H}|\})$$

$$I(Z: Y_1, ..., Y_n) \gtrsim \log(|\mathcal{H}|)$$
 (Fano's inequality)

Quantum state discrimination of $\mathcal{H} \leq \mathsf{Tomography}$

$$Z \sim \text{Unif}(\{1, ..., |\mathcal{H}|\})$$

$$I(Z: Y_1, ..., Y_n) \gtrsim \log(|\mathcal{H}|)$$
 (Fano's inequality)

Choose \mathcal{F} and $\mathcal{H} \subset \mathcal{F}$ so that

$$n\delta \ge I(Z; Y_1, \dots, Y_n) \ge \Omega(d^2)$$

Quantum state discrimination of $\mathcal{H} \leq \mathsf{Tomography}$

$$Z \sim \text{Unif}(\{1, ..., |\mathcal{H}|\})$$

$$I(Z: Y_1, ..., Y_n) \gtrsim \log(|\mathcal{H}|)$$
 (Fano's inequality)

Choose \mathcal{F} and $\mathcal{H} \subset \mathcal{F}$ so that

$$n\delta \ge I(Z: Y_1, \dots, Y_n) \ge \Omega(d^2)$$

$$\rho_U \coloneqq \frac{2\epsilon}{d} U \Pi U^{\dagger} + (1 - \epsilon) \frac{\mathbb{I}}{d} \qquad \mathcal{F} \coloneqq \{ \rho_U : U \in \mathbb{U}(d) \}$$

$$\rho_U := \frac{2\epsilon}{d} U \Pi U^{\dagger} + (1 - \epsilon) \frac{\mathbb{I}}{d} \qquad \mathcal{F} := \{ \rho_U : U \in \mathbb{U}(d) \}$$

Lemma [Haah+17 via Hayden, Leung, Winter' 04]: Let $\epsilon \in (0,1/2)$, $U \in \mathbb{U}(d)$ be a Haar-random unitary operator, and $\zeta \in \mathcal{F}$ be an arbitrary state in the family. It holds that

$$\mathbb{P}(\|\rho_U - \zeta\|_1 \le \epsilon) \le e^{-cd^2}$$

$$\rho_U \coloneqq \frac{2\epsilon}{d} U \Pi U^{\dagger} + (1 - \epsilon) \frac{\mathbb{I}}{d} \qquad \mathcal{F} \coloneqq \{ \rho_U : U \in \mathbb{U}(d) \}$$

Lemma [Haah+17 via Hayden, Leung, Winter' 04]: Let $\epsilon \in (0,1/2)$, $U \in \mathbb{U}(d)$ be a Haar-random unitary operator, and $\zeta \in \mathcal{F}$ be an arbitrary state in the family. It holds that

$$\mathbb{P}(\|\rho_U - \zeta\|_1 \le \epsilon) \le e^{-cd^2}$$

$$\rho_U \coloneqq \frac{2\epsilon}{d} U \Pi U^{\dagger} + (1 - \epsilon) \frac{\mathbb{I}}{d} \qquad \mathcal{F} \coloneqq \{ \rho_U : U \in \mathbb{U}(d) \}$$

Lemma [Haah+17 via Hayden, Leung, Winter' 04]: Let $\epsilon \in (0,1/2)$, $U \in \mathbb{U}(d)$ be a Haar-random unitary operator, and $\zeta \in \mathcal{F}$ be an arbitrary state in the family. It holds that

$$\mathbb{P}(\|\rho_U - \zeta\|_1 \le \epsilon) \le e^{-cd^2}$$

$$\rho_U \coloneqq \frac{2\epsilon}{d} U \Pi U^{\dagger} + (1 - \epsilon) \frac{\mathbb{I}}{d} \qquad \mathcal{F} \coloneqq \{ \rho_U : U \in \mathbb{U}(d) \}$$

Lemma [Haah+17 via Hayden, Leung, Winter' 04]: Let $\epsilon \in (0,1/2)$, $U \in \mathbb{U}(d)$ be a Haar-random unitary operator, and $\zeta \in \mathcal{F}$ be an arbitrary state in the family. It holds that

$$\mathbb{P}(\|\rho_U - \zeta\|_1 \le \epsilon) \le e^{-cd^2}$$

$$\rho_U \coloneqq \frac{2\epsilon}{d} U \Pi U^{\dagger} + (1 - \epsilon) \frac{\mathbb{I}}{d} \qquad \mathcal{F} \coloneqq \{ \rho_U : U \in \mathbb{U}(d) \}$$

Lemma [Haah+17 via Hayden, Leung, Winter' 04]: Let $\epsilon \in (0,1/2)$, $U \in \mathbb{U}(d)$ be a Haar-random unitary operator, and $\zeta \in \mathcal{F}$ be an arbitrary state in the family. It holds that

$$\mathbb{P}(\|\rho_U - \zeta\|_1 \le \epsilon) \le e^{-cd^2}$$

for some universal constant c.

There is a large packing \mathcal{H} , $|\mathcal{H}| \sim e^{\Omega(d^2)}$

$$\rho_U \coloneqq \frac{2\epsilon}{d} U \Pi U^{\dagger} + (1 - \epsilon) \frac{\mathbb{I}}{d} \qquad \mathcal{F} \coloneqq \{ \rho_U : U \in \mathbb{U}(d) \}$$

Lemma [Haah+17 via Hayden, Leung, Winter' 04]: Let $\epsilon \in (0,1/2)$, $U \in \mathbb{U}(d)$ be a Haar-random unitary operator, and $\zeta \in \mathcal{F}$ be an arbitrary state in the family. It holds that

$$\mathbb{P}(\|\rho_U - \zeta\|_1 \le \epsilon) \le e^{-cd^2}$$

for some universal constant c.

There is a large packing \mathcal{H} , $|\mathcal{H}| \sim e^{\Omega(d^2)}$

$$\Rightarrow I(Z: Y_1, ..., Y_n) \ge \Omega(d^2)$$

$$\rho_U \coloneqq \frac{2\epsilon}{d} U \Pi U^{\dagger} + (1 - \epsilon) \frac{\mathbb{I}}{d}$$

$$p_V(y) := \mathbb{P}(Y = y | U = V) = \text{Tr}(E_y \rho_V)$$
$$w(y) := \mathbb{E}_{V \sim Haar} \mathbb{P}(Y = y | U = V) = \text{Tr}(E_y)/d$$

$$\rho_U \coloneqq \frac{2\epsilon}{d} U \Pi U^{\dagger} + (1 - \epsilon) \frac{\mathbb{I}}{d} \longrightarrow$$

$$p_V(y) := \mathbb{P}(Y = y | U = V) = \text{Tr}(E_y \rho_V)$$
$$w(y) := \mathbb{E}_{V \sim Haar} \mathbb{P}(Y = y | U = V) = \text{Tr}(E_y)/d$$

Proposition: It holds that

$$I(U:Y) \leq \mathbb{E}_{V \sim Haar} \chi^{2}(p_{V} \parallel w)$$

$$\chi^{2}(p \parallel q) \coloneqq \sum_{x} q(x) \left(\frac{p(x)}{q(x)} - 1\right)^{2}.$$

$$\rho_U \coloneqq \frac{2\epsilon}{d} U \Pi U^{\dagger} + (1 - \epsilon) \frac{\mathbb{I}}{d} \longrightarrow$$

$$\rho_U$$
 \mathcal{M} $\{E_1, \dots, E_L\}$

$$p_V(y) := \mathbb{P}(Y = y | U = V) = \text{Tr}(E_y \rho_V)$$
$$w(y) := \mathbb{E}_{V \sim Haar} \mathbb{P}(Y = y | U = V) = \text{Tr}(E_y)/d$$

$$I(U:Y) \leq \mathbb{E}_{V \sim Haar} \chi^{2}(p_{V} \parallel w)$$

$$\chi^{2}(p \parallel q) \coloneqq \sum_{x} q(x) \left(\frac{p(x)}{q(x)} - 1\right)^{2}.$$

$$\mathbb{E}_{V \sim Haar} \chi^2(p_V \parallel w) \approx \mathbb{E}_{y \sim w} \left[\frac{\epsilon^2 \text{Tr}(E_y^2)}{d^3 w(y)^2} \right]$$

$$\rho_U \coloneqq \frac{2\epsilon}{d} U \Pi U^{\dagger} + (1 - \epsilon) \frac{\mathbb{I}}{d} \longrightarrow$$

$$\rho_U$$
 \mathcal{M} $\{E_1, \dots, E_L\}$

$$p_V(y) := \mathbb{P}(Y = y | U = V) = \text{Tr}(E_y \rho_V)$$

 $w(y) := \mathbb{E}_{V \sim Haar} \mathbb{P}(Y = y | U = V) = \text{Tr}(E_y)/d$

Proposition: It holds that

$$I(U:Y) \leq \mathbb{E}_{V \sim Haar} \chi^2(p_V \parallel w)$$

$$\mathbb{E}_{V \sim Haar} \chi^{2}(p_{V} \parallel w) \approx \mathbb{E}_{y \sim w} \left[\frac{\epsilon^{2} \text{Tr}(E_{y}^{2})}{d^{3} w(y)^{2}} \right] \leq \min \left\{ \frac{\epsilon^{2}}{d}, \sum_{y} \frac{\epsilon^{2}}{d^{2}} \right\}$$

$$\chi^2(p \parallel q) \coloneqq \sum_x q(x) \left(\frac{p(x)}{q(x)} - 1\right)^2.$$

$$\rho_U \coloneqq \frac{2\epsilon}{d} U \Pi U^{\dagger} + (1 - \epsilon) \frac{\mathbb{I}}{d} \longrightarrow$$

$$\rho_U \qquad \qquad \overbrace{\mathcal{M}} \qquad \qquad Y$$

$$p_V(y) := \mathbb{P}(Y = y | U = V) = \text{Tr}(E_y \rho_V)$$

$$w(y) := \mathbb{E}_{V \sim Haar} \mathbb{P}(Y = y | U = V) = \text{Tr}(E_y)/d$$

Proposition: It holds that

$$I(U:Y) \leq \mathbb{E}_{V \sim Haar} \chi^{2}(p_{V} \parallel w)$$

$$\mathbb{E}_{V \sim Haar} \chi^{2}(p_{V} \parallel w) \approx \mathbb{E}_{y \sim w} \left[\frac{\epsilon^{2} \text{Tr}(E_{y}^{2})}{d^{3} w(y)^{2}} \right] \leq \min \left\{ \frac{\epsilon^{2}}{d}, \sum_{y} \frac{\epsilon^{2}}{d^{2}} \right\}$$

$$Tr(E_{y}^{2}) \leq Tr(E_{y})^{2}$$

$$\chi^2(p \parallel q) \coloneqq \sum_x q(x) \left(\frac{p(x)}{q(x)} - 1\right)^2.$$

$$Tr(E_y^2) \le Tr(E_y)$$

Summary of nonadaptive lower bounds

$$\Omega(d^2) \leq I(Z:Y) \leq I(U:Y') \leq \sum_{i=1}^n I(U:Y_i') \leq \begin{cases} \frac{n\epsilon^2}{d}, & \text{Arbitrary POVMs} \\ \frac{n\epsilon^2}{d^2}, & \text{Measurements with O(1) outcomes} \end{cases}$$

Summary of nonadaptive lower bounds

Summary of nonadaptive lower bounds

$$I(Z:Y_1,\ldots,Y_n) \leq \sum_{i=1}^n I(Z:Y_i)$$

$$I(Z:Y_1,...,Y_n) \leq \sum_{i=1}^n I(Z:Y_i)$$

$$I(Z:Y_1,...,Y_n) \leq \sum_{i=1}^n I(Z:Y_i)$$

Use **chain rule** for mutual information instead:

$$I(Z: Y_1, ..., Y_n) = I(Z: Y_1) + I(Z: Y_2|Y_1) + ... + I(Z: Y_n|Y_{n-1}, ..., Y_1)$$

$$I(Z:Y_1,...,Y_n) \leq \sum_{i=1}^n I(Z:Y_i)$$

Use **chain rule** for mutual information instead:

$$\begin{split} I(Z;Y_1,\ldots,Y_n) &= I(Z;Y_1) + I(Z;Y_2|Y_1) + \cdots + I(Z;Y_n|Y_{n-1},\ldots,Y_1) \\ &\leq \mathbb{E}_Z \, \chi^2 \big(p_{Y_1|Z} || p_{Y_1} \big) + \mathbb{E}_{Y_1} \mathbb{E}_{Z|Y_1} \chi^2 \big(p_{Y_2|Y_1,Z} || p_{Y_2|Y_1} \big) + \cdots \end{split}$$

$$I(Z:Y_1,\ldots,Y_n) \leq \sum_{i=1}^n I(Z:Y_i)$$

Use **chain rule** for mutual information instead:

$$\begin{split} I(Z;Y_1,\dots,Y_n) &= I(Z;Y_1) + I(Z;Y_2|Y_1) + \dots + I(Z;Y_n|Y_{n-1},\dots,Y_1) \\ &\leq \mathbb{E}_Z \, \chi^2 \Big(p_{Y_1|Z} \| p_{Y_1} \Big) + \mathbb{E}_{Y_1} \mathbb{E}_{Z|Y_1} \chi^2 \Big(p_{Y_2|Y_1,Z} || p_{Y_2|Y_1} \Big) + \dots \end{split}$$

Can we pick $\{\rho_z\}_z$ such that χ^2 -divergence terms are small?

Lemma (χ^2 -concentration): For a fixed measurement \mathcal{M} , let p_U be the distribution over outcomes from measuring ρ_U and $w \coloneqq \mathbb{E}_{U \sim Haar} \; p_U$. It holds that

$$\mathbb{P}_{U \sim Haar}\left(\chi^2(p_U \parallel w) \geq O\left(\frac{\epsilon^2}{d}\right)\right) \leq e^{-\Omega(d)}.$$

Lemma (χ^2 -concentration): For a fixed measurement \mathcal{M} , let p_U be the distribution over outcomes from measuring ρ_U and $w \coloneqq \mathbb{E}_{U \sim Haar} \; p_U$. It holds that

"Informative measurement statistics"

$$\mathbb{P}_{U \sim Haar}\left(\chi^2(p_U \parallel w) \geq O\left(\frac{\epsilon^2}{d}\right)\right) \leq e^{-\Omega(d)}.$$

Lower bound for adaptive tomography with limited settings

$$\begin{split} I(Z;Y_1,\ldots,Y_n) &= I(Z;Y_1) + I(Z;Y_2|Y_1) + \cdots + I(Z;Y_n|Y_{n-1},\ldots,Y_1) \\ &\leq n\left(\frac{\epsilon^2}{d} + \frac{\epsilon^2\log(m)}{d^2}\right) \end{split}$$

Theorem: Any procedure for quantum tomography using single-copy (possibly adaptive) measurements chosen from a fixed set of m possible measurements requires

$$n = \Omega\left(\frac{d^3}{\epsilon^2 \left(1 + \frac{\log(m)}{d}\right)}\right)$$

copies of ρ .

Open problems

- Unconditional, non-trivial bounds for adaptive tomography?
- Rank-dependent bounds with finite measurement settings?
- Testing (e.g., quantum state certification) using single-copy measurements and finite measurement settings?
- Using these techniques, can we get "circuit lower bounds" for optimal, entangled quantum tomography?
 - Related conjecture: optimal, entangled tomography can be implemented using depth $poly(n, d, log 1/\epsilon)$ [Haah+17].