FAR3d Construction Routines

BLOCKJ (TX, ITX, IEGN, IVAR, ITH, IR, IZT, COEFF)

This adds a term into equation IEGN as follows:

COEFF * TX (1) DIR DIR DIZT & IVAR

Here the FAR3d coordinates are $(r, \theta, 5)$ corresponding to the vadial, poloidal, toroidal directions in Booger coordinates CDEFF = a Scalar number

TX = a 2D (tokamak) or 3D (stellarator)
set of Fourier amplitudes

ITX = +1 or -1 depending on the type of $TX \rightarrow i.e.$, is it represented by

a sam cos (mo-nz) series or

a sin (mo-nz) series

IVAR = variable # of f (see below)

ITH, IR, IZT = order of 0, r, and \$5 derivatives acting on f (typically tlese all are £2)

Other versions:

BLOCK p is for the case where

TX only depends on radius (ITX not needed)

B2LX, B2LX p are the versions of BLOCK

and BLOCK p that are used in

subroutine LINCAECK

Variable and Equation numbering

The number of equations is determined by noeqn, Below the variable and equation numbers are given for the simplest case noeqn = 7. If EP FLR terms are included or a second fast ion species is added, the noeqn is increased.

Variable	IVAR#	ITYPE (cos or sin)
1	4	+/
2	ϕ	-1
3 .	P	+
4	\mathcal{U}_3	-1
5	Neast	+1
6	VII,fast	-1
7	V11, Herna	d -1
	11) 6. 100	

Equation .	IEGN#	
4 (omn's law)	1	
Uz (vorticity)	2	
p (tremal press.)	3	
Uz in terms of o	4	
n-fast	5	
VII, fast	6	
VII, ther mal	7	
,		

OM(TX, ITX, IEGN, ITH, IR, IZT, COEFF)

This adds a term into equation IEQN:

COEFF * TX (2 - 1 2) DIR 10 ITH DEET f

Such terms result from gradients

parallel to the magnetic field:

B. Dacting Bon a variable

The arguments are defined in
a similar way as for the BLOCK

routines.

As with BLOCKS there are variations on on:

ond for TX that only depend on r onc, once for use in subroutine (incheck Derivative Routines

a = known quantity that you want derivation

OBYDZT (d, a, Itype, c1, c2)

·d= c2*d + c1 28

Itype is the type of a

DBY DTH (d, a, Itype, C1, C2, K)

 $d = c2*d + c1 \frac{1}{r} \frac{\partial a}{\partial \theta}$

normally k=0, check subroutive for actions if K+0

GRDPAR (d, a, 1+ype, c1, cz)

 $d = c1 * d + c2(\frac{2}{25} - \frac{1}{9}) = 00$

DBYDR (d, a, c1, cz, k)

d= C1*d + C2 2r

normal case k=0, other options for k \$0

DBYPR\$ (d, a, c1, c2, k)

similar to DBYDR, but a = a(r)

 $\Rightarrow a = a(r, \theta)$

DBYDR20 -> 2nd derivative

DBYDZTEQ, DBYDREQ, DBYDTHEQ and GRPAREQ are similar to the routines on page 4, but apply to equilibrium variables.

Convolution Routines
MULT (F, G, GTYPE, H, HTYPE, C1, C2)

 $F = \sum \left\{ \mathbf{e} F_{c}(r) \cos \left(m_{i}\theta + n_{i}^{2} \right) + F_{s}(r) \sin \left(m_{i}\theta + n_{i}^{2} \right) \right\}$ $= G \times H$

where $G = \sum_{\ell} \{G_{c_{\ell}}(r) \cos(m_{\ell}\theta + n_{\ell}s)\}$ + $G_{s_{\ell}}(r) \sin(m_{\ell}\theta + n_{\ell}s)\}$ $H = \sum_{\ell} \{H_{c_{\ell}}(r) \cos(m_{\ell}\theta + n_{\ell}s)\}$

+ Hse(r) sm (mg + 1/25)

GTYPE, HTYPE = ±1 are the types of variables G and H. These basically control whether the cos terms are stored first (+1) or the sin terms (-1)

e.g. in an up-down symmetric to kanak

DB/20 15 -1

R 15 +1

Z 15 -1

MULT has different forms: MULTEQ, MULTB, etc. for equilibrium and banded variables