комплексні числа, і використовуючи основну властивість рівнянь чотириполюсника в формі "А"

$$A_{11}A_{22} - A_{12}A_{21} = 1$$
,

отримуємо дійсну одиницю, що є перевіркою правильності визначення коефіцієнтів.

Коефіцієнтом передачі чотириполюсника за напругою є відношення вихідної напруги U_2 до вхідної напруги U_1 , а коефіцієнтом передачі чотириполюсника за струмом є відношення вихідного струму I_2 до вхідного струму I_1 . Ці коефіцієнти можна отримати експериментально, вимірявши значення напруг на виході і вході, а також значення вихідного і вхідного струмів.

$$K_{U} = U_{2} / U_{1}$$
; $K_{I} = I_{2} / I_{1}$.

Крім того, використовуючи значення опору навантаження і обчислені значення коефіцієнтів чотириполюсника, можна розрахувати значення коефіцієнтів передачі за формулами.

$$K_{ll} = \underline{Z}_H / (\underline{A}_{11}\underline{Z}_H + \underline{A}_{12}), K_l = 1/ (\underline{A}_{21}\underline{Z}_H + \underline{A}_{22}).$$

Побудова кругової діаграми струму I_1 чотириполюсника.

Круговою діаграмою струму чотириполюсника називають геометричне місце кінців вектора вхідного струму при зміні опору навантаження від нуля до нескінченності. При цьому напруга на вході чотириполюсника і кут між вихідною напругою і струмом мають бути незмінними.

Для побудови кругової діаграми струму необхідно виконати три досліди: дослід неробочого ходу, дослід короткого замикання, дослід зворотного короткого замикання.

Побудова кругової діаграми здійснюється за таким порядком.

1. На комплексній площині відкладаємо в масштабі вектор вхідної напруги $\underline{\mathbf{U}}_1$ (рис.29).

- 2. Відкладаємо вектор струму $\underline{\mathbf{I}}_{1X}$, отриманий з досліду неробочого ходу, позначаємо кінець вектора точкою B.
- 3. Відкладаємо вектор струму $\underline{\mathbf{I}}_{1K}$, отриманий з досліду короткого замикання, позначаємо кінець вектора точкою C.
- 4. З'єднуємо кінці векторів прямою BC, яка є хордою майбутнього кола.
- 5. Від напряму BC, який будемо вважати новим початком відліку, з точки C під кутом $\Theta = \phi_H \phi_{2K}$, будуємо пряму CK. У нашій побудові будемо вважати, що чотириполюєник навантажений на активний резистор, тому ϕ_H дорівнює нулю, а кут ϕ_{2K} має, наприклад, позитивний знак, отже кут Θ менше нуля $(\Theta$ -кут тета).
- 6. Через середину відрізка BC і в точці C по відношенню до отриманої прямої CK відновлюємо перпендикуляри до їх перетину. Точка перетину 0 є центром кола.
- 7. Радіусом OB або OC проводимо дугу, яка і є геометричним місцем кінця вхідного струму I_1 .
- 8. Відрізок OA відповідає у вибраному масштабі вектору робочого вхідного струму $\underline{\mathbf{I}}_1$.
- 9. Для побудови навантажувальної прямої з точки C відносно прямої BC проводимо пряму під кутом $(-\Theta)$, яка і є навантажувальною прямою $Z_{\rm H}$. З'єднаємо точку B з робочою точкою A прямою BA і продовжимо її до перетину з навантажувальною прямою $Z_{\rm H}$, отримаємо точку D. Відрізок CD в масштабі є величною активного опору, на яке навантажений чотириполюсник.
- 10. Кругова діаграма вхідного струму побудована. Тепер за отриманою діаграмою можна визначати значення вхідного струму і для інших значень навантаження. Наприклад, відрізок CD' відповідає значенню навантаження $Z_{\rm H}$, відрізок CD' відповідає значенню навантаження $Z_{\rm H}$ з'єднавши точки D' і D'' з точкою B, отримуємо на дузі кола точки A' та A'', а з'єднавши точки A' і A'' з точкою D', отримуємо в масштабі вектори вхідних струмів $\mathbf{I}_{\rm I}$, $\mathbf{I}_{\rm I}$, для навантажень $Z_{\rm H}$, і $Z_{\rm H}$ відповідно; крім того, за допомогою транспортира можна виміряти і відповідні початкові фазі цих струмів.
 - 11. За круговою діаграмою можна у відповідних масштабах

45