

Preliminary

SH366003 SBS Solution 用户指南

1. 特点

- 灵活可配置 1-2 串锂离子或锂聚合物电池管理和安全保护
- 采用先进高精度 Fusion Gauge 算法计算电池剩余容量
- 采用正端 NMOS 驱动
- 充电或静置状态下实现电芯平衡
- 低功耗模式设计: 休眠和掉电
- 基于电压、电流和温度的可编程保护功能
- 采用 JEITA 充电算法
- 诊断 Lifetime 数据监视器
- 支持 TWI 和 SWI 接口进行通讯
- 支持 SHA-1/SHA-224/SHA-256 认证
- 封装: DFN12L(4*2.5)

2. 引脚配置

图1.引脚配置图

1 V0.05

3. 引脚功能

NO	名称	Ю	功能描述
1	VSS	О	地
2	SRN	I	模拟输入负端/电流采集负端
3	SRP	I	模拟输入正端/电流采集正端
4	TS1	I	温度采样输入端
5	SCL	I/O	I2C 通讯时钟线接口
6	SDA/SWI	I/O	I2C 通讯数据线和SWI通讯接口
7	DSG	0	放电MOSFET控制端
8	PACK	I, P	PACK电压输入端,同时作为唤醒pin脚
9	CHG	0	充电MOSFET控制端
10	PBI	P	电源备份输入引脚
11	VC2	I, P	最高串电芯的电压接入端/电池串电压测量端/供电端
12	VC1	I	最低串电芯的电压接入端

表 1.引脚功能描述

4. 概述

SH366003 是一款集成了电量计和保护功能的单芯片解决方案,符合 SBS 协议,主要用于电池组或在系统设备。SH366003 通过集成的高性能模拟外设测量并保持对锂离子或锂聚合物电池中可用电荷的准确记录。能够监控电池组的容量、充电、电池电压和其他关键参数,并通过串行通信总线传输给系统主机控制器。在集成模拟前端(AFE)的帮助下,SH366003 还支持短路保护和过载保护。其所要求的充电电压和充电电流依据电压、电流、温度、老化寿命等状态变化而变化。此外,它还采用了先进的 Fusion Gauge 算法,通过分析每个周期各阶段的电压、电流、温度等相关参数来计算锂电池剩余容量。

5.功能描述

SH366003 检测各串电芯、电池组和 Pack 的电压、温度和电流。SH366003 同时监测可充电电池的充放电量并估计电池自放电情况。

5.1 参数测量

SH366003 通过检测采样电阻的电压来实现电流检测、电量计算以及每秒更新剩余电量。同时每秒也监测一次 BAT 电压、Pack 电压、电芯电压和温度。此外,通过 Operation Cfg A 中的 Bit8 可配置电池组结构为 1 串或 2 串电芯。

5.2 电量计量

SH366003 采用最新的 Fusion Guage 算法,通过库仑积分与开路电压相结合的方法,综合考虑当前电流、电压、温度与剩余电量,来实现智能电池的电量计量。

SH366003 在充电或放电模式下,每秒通过库仑积分来实时更新电池组的剩余容量。在充电、放电或静置状态下,当某些条件满足时,能够根据测量的电流、电压和温度等相关数据,对电池组的容量进行更新调整。另外 Fusion Gauge 能够补偿电池老化、温度以及放电倍率等因素对 SOC 的影响,使算出的 SOC 值更准确。

RemainCapacity() (RC)表示电池组当前可用剩余电量。SH366003 以 mAh 为 RC 的单位,在充电、放电和静置状态下均可对 RC 进行调整。

FullChargeCapacity()(FCC)表示电池组的实际最大容量。SH366003 以 mAh 为 FCC 的单位,在充电、放电和静置状态下均可对 FCC 进行调整。

5.3 JEITA温度区间

SH366003 符合 JEITA 规范,在不同温度区间下定义不同的充电电压和充电电流。在允许充电的条件下,温度区间分为如下四种:

- JT1 JT2: 低温充电区间 (JT1 < Temperature ≤ JT2)
- JT2 JT3: 标准温度充电区间 (JT2 <Temperature ≤ JT3)
- JT3 JT4: 高温充电区间 (JT3< Temperature ≤ JT4)
- JT5 JT6: 推荐充电温度区间 (JT5< Temperature ≤ JT6)

在 Dataflash 中设置温度区间是应当遵守以下公式:

$JT1 \le JT2 \le JT5 \le JT6 \le JT3 \le JT4$

- JT1: 低温充电区间下限值, 单位 ℃。
- JT2: 低温充电区间上限值和标准温度低充电区间下限值,单位 ℃。
- JT5: 标准温度低充电区间上限值和推荐充电温度下限值,单位 ℃。
- JT6: 推荐充电温度上限值和标准温度高充电区间下限值,单位 $\mathbb C$ 。
- JT3: 标准温度高充电区间上限值和高温充电区间下限值, 单位 ℃。
- JT4: 高温充电区间上限值, 单位 ℃。

SH366003 在 Dataflash 中对以上温度区间定义了相关迟滞(Temp Hys),该迟滞在温度区间切换前生效。由于设定了迟滞功能,某一时刻所处温度区间除了要参考实际温度外还要考虑前一时刻所处状态(充电或放电)以及迟滞阈值大小。某一时刻所处温度区间可由存储于状态寄存器 TempRange()中的一组旗标中对应的旗标表示。

旗标	JEITA 温度区间	充电状态
UT	$Temperature() \leq JT1$	充电暂缓或充电抑制
LT	$JT1 < Temperature() \le JT2$	低温充电
STL	$JT2 < Temperature() \le JT5$	标准温度充电(低)
RT	$JT5 < Temperature() \le JT6$	推荐温度充电
STH	$JT6 < Temperature() \le JT3$	标准温度充电(高)
HT	$JT3 < Temperature() \le JT4$	高温充电或充电抑制
OT	JT4< Temperature()	充电暂缓或充电抑制

表 2.SH366003 的温度区间

图2.JEITA 温度区间切换和对应旗标

图3.JEITA 温度区间定义(温度升高方向)

图4.JEITA 温度区间定义(温度降低方向)

5.4 充电控制

SH366003 能够为智能充电器提供经由充电算法计算所得合适的恒定充电电流ChargingCurrent()和恒定充电电压ChargingVoltage()。SH366003的实际ChargingStatus()都有对应旗标标示,可以通过ChargingStatus()命令读取。

5.4.1 充电状态与温度区间

SH366003通过ChargingVoltage()和ChargingCurrent()指示对每个温度区间配置不同的ChargingCurrent()和ChargingVoltage()。

条件	电压区间
CellMaxVolt < Cell Voltage Threshold 1 or CellMinVolt < Precharge Start Voltage	ChargingStatus()[PV] = 1
Cell Voltage Threshold 1< CellMaxVolt < Cell Voltage Threshold 2	ChargingStatus()[LV] = 1
Cell Voltage Threshold 2< CellMaxVolt < Cell Voltage Threshold 3	ChargingStatus()[MV] = 1
Cell Voltage Threshold 3< CellMaxVolt	ChargingStatus()[HV] = 1

表 3.SH366003 的电芯电压区间

另外,ChargingCurrent()可以根据电芯电压进行不同的设置。电芯电压划分为四个区间依据于三个电压阈值: Cell Voltage Threshold 1、Cell Voltage Threshold 2 和 Cell Voltage Threshold 3。充电过程中,电芯电压升高,ChargingCurrent()随着电芯电压区间的变化而变化。然而,如果电芯电压下降,只有检测到系统处于放电或静置模式时,ChargingCurrent()才会随着电芯电压区间的变化而变化,否则不会改变。同样,为了防止电芯电压区间跳变,定义 Cell Voltage Thresh Hys 用以确保电压区间的变化不受电压轻微波动的影响。

温度区间	电芯电压区间	充电电压	充电电流
UT	-	0	0
	PV		Pre-chg Current
LT	LV	I.T.Cha Valtana	LT Chg Current 1
LI	MV	LT Chg Voltage	LT Chg Current 2
	HV		LT Chg Current 3
	PV		Pre-chg Current
STL/STH	LV	ST Chg Voltage	ST Chg Current 1
SIL/SIH	MV		ST Chg Current 2
	HV		ST Chg Current 3
	PV	RT Chg Voltage	Pre-chg Current
RT	LV		RT Chg Current 1
KI	MV		RT Chg Current 2
	HV		RT Chg Current 3
НТ	PV	HT Chg Voltage	Pre-chg Current
	LV		HT Chg Current 1
	MV		HT Chg Current 2
	HV		HT Chg Current 3
ОТ	-	0	0

表 4.基于温度区间和电压区间的充电电压和充电电流

欠温

当检测到温度在UT区间内(Temperature< JT1)时,SH366003进入该模式。在此模式下,置位ChargingStatus()中的[UT]旗标,将ChargingVoltage()和ChargingCurrent()设置为零。只要温度高于JT1 +Temp Hys, SH366003就会退出此模式并清除[UT]旗标。

低温

当检测到温度在LT区间内(JT1≤Temperature < JT2)时,SH366003进入该模式。在该模式下,置位ChargingStatus()中的[LT]旗标,ChargingVoltage()设置为LT Chg电压,根据电芯电压区间,ChargingCurrent()设置为LT Chg Current 1,LT Chg Current 2,或LT Chg Current 3。只要温度低于JT1或高于JT2+Temp Hys, SH366003就会退出该模式并清除[LT]旗标。

标准温度(低)

当检测到温度在STL区间内(JT2≤Temperature< JT5)时,SH366003进入此模式。在此模式下,置位ChargingStatus()中的[STL]旗标,ChargingVoltage()设置为ST Chg电压,根据电芯电压区间,ChargingCurrent()设置为ST Chg Current 1、ST Chg Current 2、ST Chg Current 3。只要温度低于JT2或高于JT5+Temp Hys, SH366003就会退出此模式并清除[STL]旗标。

推荐温度

当检测到温度在RT区间内(JT5≤Temperature < JT6)时,SH366003进入此模式。在此模式下,置位ChargingStatus()中的[RT]旗标,ChargingVoltage()被设置为RT Chg电压,根据电芯电压区间,ChargingCurrent()被设置为RT Chg Current 1、RT Chg Current 2或RT Chg Current 3。只要温度低于JT5或高于JT6, SH366003就会退出此模式并清除[RT]旗标。

标准温度(高)

当检测到温度在STH区间内(JT6≤Temperature< JT3)时,SH366003进入此模式。在这种模式下,置位ChargingStatus()中的[STH]旗标,ChargingVoltage()被设置为ST Chg电压,根据电芯电压区间,ChargingCurrent()设置为ST Chg Current 1、ST Chg Current 2、ST Chg Current 3。只要温度低于JT6 - Temp Hys或高于JT3, SH366003就会退出该模式并清除[STH]旗标。

高温

当检测到温度在HT区间内(JT3≤Temperature < JT4)时,SH366003进入此模式。在充电状态下,置位ChargingStatus()中的[HT]标志,ChargingVoltage()被设置为HT CHG电压,ChargingCurrent()根据电芯电压区间被设置为HT Chg Current 1、HT Chg Current 2、或HT Chg Current 3。在放电或静置状态下,置位ChargingStatus()中的[CHGIN]旗标,将ChargingVoltage()和ChargingCurrent()设置为0。只要温度低于JT3 - Temp Hys或高于JT4, SH366003就会退出该模式并清除[HT]旗标。

过温

当检测到温度在OT区间内(Temperature > JT4), SH366003进入此模式。在此模式下,置位ChargingStatus()中的[OT]旗标,ChargingVoltage()和ChargingCurrent()被设置为零。只要温度低于JT4- Temp Hys, SH366003就会退出此模式并清除[OT]旗标。

Charging Current Choice Based on Cells Voltage in DSG / Relax Mode

图 5.放电模式或静置模式下,根据电芯电压切换充电电流 I_{XT1}- LT/RT/ST/HT Chg Current1, I_{XT2}- LT/RT/ST/HT Chg Current2, IXT3- LT/RT/ST/HT Chg Current3, Ipre- Pre-chg Current, VPreStart-Pre-chg Start Voltage, VTH1/ VTH2/ VTH3-Cell Voltage Threshold1/2/3, VHYS- Cell Voltage Thresh Hys.

Charging Current Choice Based on Cells Voltage in CHG Mode

图 6.在充电模式下,根据电芯电压切换充电电流 I_{XT1}- LT/RT/ST/HT Chg Current1, I_{XT2}- LT/RT/ST/HT Chg Current2, I_{XT3}- LT/RT/ST/HT Chg Current3, I_{pre}- Pre-chg Current, V_{PreStart}-Pre-chg Start Voltage, VTH1/ VTH2/ VTH3-Cell Voltage Threshold1/2/3, VHYS- Cell Voltage Thresh Hys.

5.4.2 预充电模式

在放电或静置状态下,当 SH366003 检测到所有电芯电压低于 Cell Voltage Threshold 1- Cell Voltage Thresh Hys 或者任意一节电芯电压低于 Precharge Start Voltage, 进入预充电状态。外部充电 MOSFET 可以在预充电模式下使用。

在预充电模式下, ChargingStatus()中的[PV]旗标会置起, ChargingCurrent()将设置为 Pre-chg Current。当所有电芯电压达到或高于 Cell Voltage Threshold 1,SH366003 将会退出预充电模式并清除[PV]旗标。

图 7.预充电模式的进入和退出流程

SH366003 同时支持 0V 充电。当电池组电压低于设备的最低运行电压时,硬件能够自动实现 0V 充电。

5.4.3 充电抑制模式

在放电模式或静置模式([DSG] = 1)下,当 OperationCfgB 中[HT_CHGIN_DIS]=0,Temperature() < JT1 或 Temperature()> JT3 时; 当 OperationCfgB 中[HT_CHGIN_DIS]=1,Temperature()> JT4 时,SH366003 进入充电抑制模式, ChargingCurrent()和 ChargingVoltage()设置为 0,禁止充电。在充电抑制模式中,置位在 ChargingStatus()中的[CHGIN]旗标,如果在 Operation Cfg B 中设置了[CHGIN]位,还将关闭充电 MOSFET。

当 OperationCfgB 中[HT_CHGIN_DIS]=0, Temperature()≥JT1+ Temp Hys 时; 当在 OperationCfgB 中[HT_CHGIN_DIS]=1, Temperature()≤JT3 - Temp Hys 或 Temperature()<JT4 时 SH366003 允许恢复充电。恢复充电后,清除[CHGIN]旗标,同时充电 MOSFET 可以回到禁止充电前的状态。

图 8. 充电抑制模式进入流程

5.4.4 充电暂缓模式

在充电模式下,Temperature()<JT1 或 Temperature()>JT4 时,SH366003 进入充电暂缓模式。在充电暂缓模式下,置位 ChargingStatus()中的[CHGSU]旗标,ChargingCurrent()被设置为 0。如果 Operation Cfg B 寄存器中设置了[CHGSU]位,则关闭充电 MOSFET。

SH366003 允许在 Temperature() 之JT1+ Temp Hys 或 Temperature() 之JT4 - Temp Hys 时恢复充电。恢复充电后,SH366003 清除[CHGSU] 状态旗标,并根据相应的电压状态和温度区间设置 ChargingCurrent(), 充电 MOSFET 恢复到进入充电暂缓前的状态。此外,如果检测到某些保护条件或检测到退出充电模式时,SH366003 也可以通过清除[CHGSU]旗标退出充电暂缓模式。

图 9. 充电暂缓进入流程

5.4.5 有效充电终止

在连续两个CurrentTaperWindow周期内满足以下所有taper条件时,SH366003进入充电终止模式:

- 1) 在充电状态下 (BatteryStatus 中[DSG] = 0),且
- 2) AverageCurrent()<Taper Current, 且
- 3) Max cell voltage1...2 + Taper Voltage ≥ ChargingVoltage() / 电芯串数, 且
- 4) 累计充电电量 ≥MinTaperCapacity.

此外, Taper Current能够根据以下不同的温度区间进行不同配置:

温度区间	Taper 电流
UT/LT	LT Taper Current
STL/STH	ST Taper Current
RT	RT Taper Current
HT/OT	HT Taper Current

表 5.基于温度区间的 Taper 电流

进入有效充电终止状态后, ChargingStatus() 中[VCT]旗标置位, ChargingStatus()中[MCHG]旗标置位。此时若 Operation CfgC [FCSETVCT] = 1, GaugingStatus()中 [FC]旗标置位。若 Operation CfgcC [TCSETVCT] = 1, GaugingStatus()中 [TC]旗标置位。此外,SH366003 在充电终止旗标置位后基于配置不同会有不同动作:

- 当 Operation Cfg B[CHGFET] = 1,充电 MOSFET 关闭, Charging Voltage()和 Charging Current()设置为 0。
- 当 Operation Cfg B[CHGFET] = 0,充电 MOSFET 保持开启, Charging Current()设置为 Mchg Current。

- $\stackrel{\text{def}}{=}$ Operation Cfg B[CSYNC] = 1, Remaining Capacity() = FullCharge Capacity().
- 当 *Operation Cfg C[RSOCL]* = 1, *RelativeStateOfCharge()*和 *RemainingCapacity()*锁定在 99% 直到发生充电终止。只有在进入有效 充电终止后能达到 100%。
- 当 *Operation Cfg C[RSOCL]* = 0, *RelativeStateOfCharge()*和 *RemainingCapacity()*不会锁在 99%。百分数超过 99%时按四舍五入原则显示为 100%。

发生充电终止后,当 RelativeStateOfCharge() 全TC Clear%, [TC]旗标清除,充电 MOSFET 可打开。

5.4.6 充电终止和放电终止旗标

GaugingStatus()中的[TC]和[FC]是充电终止的旗标。同时GaugingStatus()中的[TD]和[FD]是放电终止的旗标。下表汇总了置位和清除这些旗标的条件。

旗标	置位条件	清除条件	
[TC]	OperationCfgC[TCSETVCT] = 1时发生有效充电终止,或	RelativeStateOfCharge()≤TC Clear %	
[TC]	$OperationCfgC[TCSETRSOC] = 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	RelativeStateOjCharge()≤1C Ctear %	
[EC]	OperationCfgC[FCSETVCT] = 1时发生有效充电终止,或	RelativeStateOfCharge()≤FC Clear %	
[FC]	$OperationCfgC[FCSETRSOC] = 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		
[TD]	RelativeStateOfCharge() ≤ TD Set%	RelativeStateOfCharge()≥TD Clear %	
[FD]	RelativeStateOfCharge() ≤ FD Set %	RelativeStateOfCharge()≥FD Clear %	

表 6.放电终止和充电终止

GaugingStatus()和BatteryStatus()中的[FC]和[FD]旗标是一样的。

5.4.7 终止充放电警报

SH366003 允许在以下条件下置位或清除 BatteryStatus()中的[TCA]、[FC]、[TDA、[FD]和[OTA]标志。下面是旗标置位和清除的条件汇总

旗标	置位条件	清除条件	
	SafetyAlert()[COV],[OCC],[OTC] = 1 或		
ITCA 1	PFAlert()[SOV] = 1 或	所有这些条件都不满足 所有这些条件都不满足	
[TCA]	Any PFStatus() = 1 或	所有及宣衆性即不兩定	
	GaugingStatus[TC] = 1且在充电状态		
[FC]	GaugingStatus[FC] = 1	所有这些条件都不满足	
	SafetyAlert()[CUV],[OCD],[OTD] = 1 或		
[TDA]	PFAlert()[SUV] = 1 或	所有这些条件都不满足	
[TDA]	Any PFStatus() = 1 或		
	GaugingStatus[TD] = 1 且在放电状态		
	SafetyStatus()[CUV] = 1 或		
[FD]	PFStatus()[SUV] = 1 或	所有这些条件都不满足	
	GaugingStatus[FD] = 1		
[OTA]	SafetyStatus()[OTC],[OTD] =1	所有这些条件都不满足	

表 7.放电和充电警报

5.4.8 充电失效和放电失效

当检测到下列任一情况时,SH366003 将触发特定安全条件并禁止充电,置位 *OperationStatus()*中[XCHG] = 1,*ChargingVoltage()*=0, *ChargingCurrent()*=0:

- *ManufacturingStatus()*中[FET_EN] = 0 或
- 任一PFStatus()触发 或
- SafetyStatus()中[COV]或[OCC]或[ASCC]或 [CTO]或 [PTO]或 [UTC] 或[WDF]= 1 或
- 当 OperationCfgB[OTFET]=1 时 SafetyStatus()中[OTC] = 1 或
- 当 OperationCfgB[CHGIN] = 1 时 ChargingStatus()中[CHGIN] = 1 或
- 当 OperationCfgB[CHGSUSP] = 1 时 ChargingStatus()中[CHGSU] = 1 或
- OperationStatus()[SLEEPM]= 1 且 OperationCfgB[SLEEPCHG] = 0 或
- OperationStatus()[SDM] = 1 或
- \delightarrow \delightarrow OperationCfgB[CHGFET] = 1 \delightarrow GaugingStatus() \delightarrow [TC] = 1.

同样,当检测到下列任一情况时,SH366003将触发特定安全条件并禁止放电,置位OperationStatus()中[XDSG] = 1,

- ManufacturingStatus()中[FET_EN] = 0 或
- 任一PFStatus()触发 或
- SafetyStatus()中[OCD]或[CUV]或[AOLD]或[ASCD]或 [UTD]或[WDF]=1 或
- 当OperationCfgB[OTFET] = 1时SafetyStatus()中[OTD] = 1 或
- OperationStatus()[SDM] = 1 或
- OperationStatus()[SDV] = $1 \perp$ low voltage time \geq ShutdownTime.

5.4.9 电芯平衡

SH366003 在充电模式和静置模式下支持电芯平衡。该功能在 *OperationCfgA[CB]* = 1 时启用, *OperationCfgA[CB]* = 0 时禁用。静置模式下的电芯平衡需要通过置位 *OperationCfgA[CBR]* = 1 来单独启用。

SH366003 通过平衡容量差异来平衡电芯。电芯平衡算法描述如下:

- 找到电量最低的电芯, 检测它与其他电芯的容量差 dQ。
- 在每个均衡周期内,通过打开 SH366003 集成的旁路 MOSFETs 进行旁路分流从而均衡容量差异。
- 当需要平衡电芯 1 时,根据 Bal Time/mAh Cell1 计算旁路分流时间,time=dQ x Bal Time/mAh Cell1; 当需要平衡电芯 2 时,根据 Bal Time/mAh Cell2 计算旁路分流时间,time=dQ x Bal Time/mAh Cell2。

Bal Time/mAh Cellx 被定义为每个电芯平衡时间的换算因子,单位为 mAh。如果 Bal Time/mAh cell1 或 Bal Time/mAh Cell2 设置为 0,则电池平衡被禁用,所有旁路 MOSFETs 保持关闭状态。

每节电芯所需的 Bal Time/mAh Cellx 计算如下: Bal Time/mAh Cellx = R_{Cx} / (duty_cycle * Rating_Voltage) * 3.6 s/mAh.

其中:

 $R_{Cx} = SH366006$ 内部 MOSFET 旁路电阻(典型值 200)+ 两串输入滤波电阻(R_{VCx})。

在参考原理图中, $R_{VC2} = 105 \Omega$, $R_{VC1} = 100 \Omega$; $R_{C2} = 200 + R_{VC2} = 305$, $R_{C1} = 200 + R_{VC1} = 300$ 。

额定电压(Rating_Voltage) = 3.7V。

占空比(duty_cycle) = 0.78typ。

使用默认值,该公式计算 Bal Time/mAh Cellx 的默认值:

Bal Time/mAh Cell1 = $(200 + R_{VC1}) / (0.78 * 3.7V) * 3.6 s/mAh = 374 s/mAh$;

 $\textit{Bal Time/mAh Cell2} = (200 + R_{VC2}) \, / \, (0.78 * 3.7 V) * 3.6 \, \text{s/mAh} = 380 \, \text{s/mAh} \, .$

5.4.10 Battery Trip Point (BTP)

BTP 功能表示当电池组的剩余荷电状态(RSOC)耗尽到 Dataflash 中设置的某个值时,BTP 输出使用 TS1 引脚.

BTP 特性允许主机编写两个关于容量的阈值,这两个阈值在 BTP_INT 引脚上控制 BTP 中断的触发,其原理是通过两个阈值和 RemainingCapacity()值的比较置位或清除 OperationStatus()[BTP_INT]。该功能通过 OperationCfgA[BTP_EN]启用或禁用。

OperationStatus()[BTP_INT]将在如下情况置位:

- Current > 0 且 RemCap > BTPChargeSet().该阈值在复位时被初始化为 Init Charge Set 对应的值
- Current ≤ 0 且 RemCap < BTPDischargeSet().该阈值在复位时被初始化为 Init Discharge Set 对应的值

当 OperationStatus()[BTP_INT]置位时, 如果 OperationCfgA[BTP_EN] 置位, 则 BTP_INT 输出引脚有效 (输出低电平状态).

当接收到 BTPDischargeSet()或 BTPChargeSet()命令时,OperationStatus()[BTP_INT]将被清除,其输出引脚无效 (输出悬空状态)。BTPDischargeSet()或 BTPChargeSet()中都可以写入新的阈值。

在复位操作时,该输出引脚被设置为无效状态。

5.5 一级保护

SH366003 支持多种电池和系统保护功能,这些功能的选用可以通过配置集成 Dataflash 中的参数实现。当保护被触发时,MOSFETs 关断可分为: OperationStatus()[XCHG]=1,充电被禁止; OperationStatus()[XDSG]=1,放电被禁用。一旦保护解除,充电和放电恢复。一级保护包括电压、电流和温度保护。在 $Protection\ Cfg\ A\ \&\ B\ F$,所有保护项均可启用或禁用。当保护和永久失效触发时,BatteryStatus()中的[TCA][TDA][FD][OTA]标志会根据安全保护类型不同而有选择性的置位。

5.5.1 电压保护

电芯欠压保护 (CUV)

SH366003 可以检测电池的欠压,保护电池免受潜在损害,防止进一步放电。

状态	条件	动作
标准	Min cell voltage 12> CUV Threshold	SafetyAlert()[CUV] = 0 BatteryStatus()[TDA] = 0
报警	Min cell voltage 12≤CUV Threshold	SafetyAlert()[CUV] = 1 BatteryStatus()[TDA] = 1
触发	Min cell voltage 12≤CUV Threshold 持续 CUV Time	SafetyAlert()[CUV] = 0 SafetyStatus()[CUV] = 1 BatteryStatus()[TDA] = 0, [FD] = 1 OperationStatus()[SS] = 1, [XDSG] = 1
解除	Condition 1: $SafetyStatus()[CUV] = 1$ 且 Min cell voltage $12 \ge CUV$ Recovery 且 $Operation \ Cfg \ A \ [CUVRC] = 0$ OR Condition 2: $SafetyStatus()[CUV] = 1$ 且 Min cell voltage $12 \ge CUV$ Recovery 且 $Operation \ Cfg \ A \ [CUVRC] = 1$ 且处于充电模式	SafetyStatus()[CUV] = 0 $BatteryStatus()[TDA] = 0, [FD] = 0$ $OperationStatus()[SS] = 0, [XDSG] = 0,$

电芯过压保护 (COV)

SH366003 可以检测电池过电压,保护电池免受潜在的损害。电池过电压阈值将受到 JEITA 温度设置的影响。当 COV 保护在 HT 或 OT 区间触发时,在退出 HT 和 OT 温度区间后 SH366003 将会自动解除该 COV 保护

状态	条件	动作	
标准 ChargingStatus()[UT] or [LT] = 1	Max cell voltage 12 <lt cov="" td="" threshold<=""><td></td></lt>		
标准 ChargingStatus()[STL] or [STH] = 1	Max cell voltage 12 <st cov="" td="" threshold<=""><td>SafetyAlert()[COV] = 0</td></st>	SafetyAlert()[COV] = 0	
标准 ChargingStatus()[RT] = 1	Max cell voltage 12 <rt cov="" td="" threshold<=""><td colspan="2">BatteryStatus()[TCA] = 0</td></rt>	BatteryStatus()[TCA] = 0	
标准 ChargingStatus()[HT] or [OT] = 1	Max cell voltage 12 <ht cov="" td="" threshold<=""><td></td></ht>		
报警 ChargingStatus()[UT] or [LT] = 1	Max cell voltage 12≥ LT COV Threshold		
报警 ChargingStatus()[STL]or [STH] = 1	Max cell voltage 12≥ ST COV Threshold	SafetyAlert()[COV] = 1	
报警 ChargingStatus()[RT] = 1	Max cell voltage 12≥ RT COV Threshold	BatteryStatus()[TCA] = 1	
报警 ChargingStatus()[HT] or [OT] = 1	Max cell voltage 12≥ HT COV Threshold		

状态	条件	动作
解除	$SafetyStatus()[COV] = 1 \perp$	
ChargingStatus()[UT] or [LT] = 1	Max cell voltage 12≤LT COV Recovery	
解除	$SafetyStatus()[COV] = 1 \perp$	G A G 0/GOVI A
ChargingStatus()[STL] or [STH] = 1	Max cell voltage 12≤ST COV Recovery	SafetyStatus()[COV] = 0 BatteryStatus()[TCA] = 0
解除	$SafetyStatus()[COV] = 1 \perp$	OperationStatus()[$XCHG$] = 0
ChargingStatus()[RT] = 1	Max cell voltage 12≤RT COV Recovery	operations at the state of the
解除	$SafetyStatus()[COV] = 1 \perp$	
ChargingStatus()[HT] or [OT] = 1	Max cell voltage 12≤HT COV Recovery	

5.5.2 温度保护

SH366003 根据对电芯温度的测量提供过温和欠温保护,若发生温度保护会产生相应的警报并关闭相应 MOSFET。电芯温度保护进一步分为充电温度保护和放电温度保护。本节将详细介绍 SH366003 具备的每个温度保护功能。

SH366003 默认最多只支持一个外部热敏电阻和一个内部温度传感器,通过传感器可获取相关温度参数。在 *Operation Cfg* C[TS1]&[TSINT]中可配置外部热敏、内部温度传感器的开启与禁止,置 1 为开启,反之禁用。

Operation Cfg A 中的[CTEMP]为用户提供两种不同的电芯温度表示方式选择:两个采集温度的最大值(设置为 0)表示电芯温度,两个采集温度的平均值(设置为 1)表示电芯温度。

Temperature()命令能够返回电芯温度测量值,MAC 和扩展命令 DAStatus2()能够返回内部温度、外部热敏电阻 TS1 温度和电芯温度的测量值。

充电过温保护

SH366003 可以检测电芯在充电模式下的过温保护。

状态	条件	动作
标准	Temperature() <over chg="" td="" temp="" 或处于放电或静置状态<=""><td>SafetyAlert()[OTC] = 0</td></over>	SafetyAlert()[OTC] = 0
初刊出	Temperature() Cover Temp Citg 以足) 从电风时且小心	BatteryStatus()[TCA] = 0
报警	Max cell temperature ≥ Over Temp Chg 且处于充电状态	SafetyAlert()[OTC] = 1
11/2	Max cen temperature 20ver temp Cng 且处于元电状态	BatteryStatus()[TCA] = 1
	Temperature()≥ Over Temp Chg 且处于充电状态并持续 OTC Time	SafetyAlert()[OTC] = 0
		SafetyStatus()[OTC] = 1
触发		BatteryStatus()[TCA] = 0, [OTA] = 1
		$\stackrel{\text{def}}{=} Operation CfgB[OTFET]=1$, OperationStatus()
		[SS] = 1, [XCHG] = 1
	SafetyStatus[OTC] = 1 H.	SafetyStatus()[OTC] = 0
解除		BatteryStatus()[TCA] = 0, [OTA] = 0
	Temperature() \leq OTC Recovery	OperationStatus()[SS] = 0, [XCHG] = 0

放电过温保护

SH366003 可以检测电芯在放电、静置模式下的过温保护。

状态	条件	动作
标准	Temperature() <over dsg="" td="" temp="" 或处于充电状态<=""><td>SafetyAlert()[OTD] = 0</td></over>	SafetyAlert()[OTD] = 0
	The second of th	BatteryStatus()[TDA] = 0
报警	Temperature()≥ Over Temp Chg 且处于放电或静置状态	SafetyAlert()[OTD] = 1 BatteryStatus()[TDA] = 1
		SafetyAlert()[OTD] = 0
	Temperature()≥ Over Temp Dsg 且处于放电或静置状态并持续 OTD Time	SafetyStatus()[OTD] = 1
触发		BatteryStatus()[TDA] = 0, [OTA] = 1
		$ \stackrel{\text{def}}{=} Operation CfgB[OTFET]=1, OperationStatus() $
		[SS] = 1, [XDSG] = 1
	SafetyStatus[OTD] = 1 ∐. Temperature()≤ OTD Recovery	SafetyStatus()[OTD] = 0
解除		BatteryStatus()[TDA] = 0, [OTA] = 0
	Temperature() = 01D Recovery	OperationStatus()[SS] = 0, [XDSG] = 0

充电欠温保护

SH366003 可以检测电芯在充电模式下的欠温保护。

状态	条件	动作
标准	Temperature()>Under Temp Chg 或处于放电或静置状态	SafetyAlert()[UTC] = 0
报警	Temperature()≤Under Temp Chg 且处于充电状态	SafetyAlert()[UTC] = 1
		SafetyAlert()[UTC] = 0
触发	Temperature()≤ Under Temp Chg 且处于充电状态并持续 UTC Time	SafetyStatus()[UTC] = 1
		OperationStatus()[SS] = 1, [XCHG] = 1
解除	SafetyStatus[UTC] = 1 AND	SafetyStatus()[UTC] = 0
用干Pst	Temperature()≥ UTC Recovery	OperationStatus()[SS] = 0, [XCHG] = 0

放电欠温保护

SH366003 可以检测电芯在放电、静置模式下的欠温保护。

状态	条件	动作
标准	Temperature()>Under Temp Dsg 或处于充电状态	SafetyAlert()[UTD] = 0
报警	Temperature()≤ Under Temp Dsg 且处于放电或静置状态	SafetyAlert()[UTD] = 1
触发	Temperature()≤ Under Temp Dsg 且处于放电或静置状态并持续 UTD Time	SafetyAlert()[UTD] = 0 SafetyStatus()[UTD] = 1 OperationStatus()[SS] = 1, [XDSG] = 1
解除	SafetyStatus[UTD] = 1 AND Temperature()≥ UTD Recovery	SafetyStatus()[UTD] = 0 OperationStatus()[SS] = 0, [XDSG] = 0

5.5.3 电流保护

SH366003 提供 2 种电流保护: 充电过流保护、放电过流保护。

充电过流保护

SH366003 可检测充电模式下的过电流保护,可设置不同的电流阈值和延迟时间,以适应不同的充电行为。

状态	条件	动作
标准	Current() < OCC Threshold	SafetyAlert()[OCC] = 0
报警	$Current() \ge OCC\ Threshold$	SafetyAlert()[OCC] = 1 BatteryStatus()[TCA] = 1
触发	Current() ≥ OCC Threshold 持续 OCC Time	SafetyAlert()[OCC] = 0 SafetyStatus()[OCC] = 1 BatteryStatus[TCA] = 0 OperationStatus()[SS] = 1, [XCHG] = 1
解除	SafetyStatus[OCC] = 1 且 Current() ≤ OCC Recovery 持续 OCC Recovery Time	SafetyStatus()[OCC] = 0 OperationStatus()[SS] = 0, [XCHG] = 0

放电过流保护

SH366003 可检测放电模式下的过流保护,可设置不同的电流阈值和延迟时间,以适应不同的放电行为。

状态	条件	动作
标准	Current() > OCD Threshold	SafetyAlert()[OCD] = 0
报警	Current() ≤ OCD Threshold	SafetyAlert()[OCD] = 1 BatteryStatus()[TDA] = 1
触发	Current() ≤ OCD Threshold 持续 OCD Time	SafetyAlert()[OCD] = 0 SafetyStatus()[OCD] = 1 BatteryStatus[TDA] = 0 OperationStatus()[SS] = 1, [XDSG] = 1
解除	SafetyStatus[OCD] = 1 且 Current() ≤ OCD Recovery 持续 OCD Recovery Time	SafetyStatus()[OCD] = 0 OperationStatus()[SS] = 0, [XDSG] = 0

5.5.4 硬件保护

SH366003 提供了三种主要的硬件保护,放电过载保护(AOLD),充电短路保护(SCC)和放电短路保护 1,2 (SCD1,2),具有阈值和延

迟时间可调功能。这些阈值都以 mV 为单位,因此触发保护的实际电流大小由原理图设计中使用的检测电阻大小决定。置位 Operation Cfg C 中的[RSNS]可以将保护电流对应阈值减半。此外,置位 Operation Cfg C[SCDDx2]可以将所有的 SCD1,2 延迟时间翻倍,从而最大限度地满足应用上的需求。

当有硬件保护触发时,SH366003 的 AFE 会立即关闭所有 MOSFETs 并产生一个信号提醒 SH366003 MCU。当 MCU 检测到这个信号后,对应保护的旗标会置位,若是 SCC 保护则只关充电 MOSFET,若是 AOLD 或 SCD1,2 保护则只关放电 MOSFET。

放电过载保护 (AOLD)

SH366003 在放电模式下具有电流和延时可调的硬件过载保护检测功能。

状态	条件	动作
标准	$Current() > -(AOLD\ Threshold[3:0]/R_{SENSE})$	SafetyStatus()[[AOLD] = 0
触发	Current() continuous ≤ -(AOLD Threshold[3:0]/ R _{SENSE})持续 AOLD Threshold [7:4]	SafetyStatus()[AOLD] = 1 OperationStatus()[SS] = 1, [XDSG] = 1
解除	SafetyStatus[AOLD] = 1 持续 AOLD Recovery Time	SafetyStatus()[AOLD] = 0 OperationStatus()[SS] = 0, [XDSG] = 0

充电短路保护 (ASCC)

SH366003 在充电模式下具有电流和延时可调的硬件短路保护检测功能。

状态	条件	动作
标准	$Current() < (ASCC\ Threshold[2:0]/R_{SENSE})$	SafetyStatus()[[ASCC] = 0
触发	Current() continuous ≥ (ASCC Threshold[2:0]R _{SENSE})持续 ASCC Threshold[7:4]	SafetyStatus()[ASCC] = 1 OperationStatus()[SS] = 1, [XCHG] = 1
解除	SafetyStatus[ASCC] = 1 持续 rASCC Recovery Time	SafetyStatus()[ASCC] = 0 OperationStatus()[SS] = 0, [XCHG] = 0

放电短路保护(ASCD)

SH366003 在放电模式下具有电流和延时可调的硬件短路保护检测功能。

状态	条件	动作
标准	Current()>-(ASCD1 Threshold[2:0]/ R _{SENSE})且 Current()>-(ASCD1 Threshold[2:0]/ R _{SENSE})	SafetyStatus()[[ASCD] = 0
触发	Current() continuous ≤ -(ASCD1 Threshold[2:0]R _{SENSE})持续 ASCD1 Threshold[7:4] 或 Current() continuous ≤ - (ASCD2 Threshold[2:0]R _{SENSE})持续 ASCD2 Threshold[7:4]	SafetyStatus()[ASCD] = 1 OperationStatus()[SS] = 1, [XDSG] = 1
解除	SafetyStatus[ASCD] = 1 持续 ASCD Recovery Time	SafetyStatus()[ASCD] = 0 OperationStatus()[SS] = 0, [XDSG] = 0

5.5.5 超时功能

SH366003 预充电时间和充电时间会受到预充电超时和充电超时功能的限制,能够避免电池进入深度过充状态。

预充电超时功能 (PTO)

在预充电模式下,SH366003 可以测量充电时间,如果充电时间超过设定时间则停止充电。

状态	条件	动作
使能	Current() > PTO Charge Threshold \(\frac{1}{2} \) ChargingStatus()[PV] = 1	Start PTO timer SafetyAlert()[PTOS] = 0
暂停或恢复	Current() < PTO Suspend Threshold	Stop PTO timer SafetyAlert()[PTOS] = 1
触发	PTO timer> PTO Time	Stop PTO timer SafetyStatus()[PTO] = 1 OperationStatus()[SS] = 1, [XCHG] = 1
重置	SafetyStatus()[PTO] = 1 且 (放电电量达到 PTO Recovery)	Stop and reset PTO timer SafetyAlert()[PTOS] = 0 SafetyStatus()[PTO] = 0 OperationStatus()[SS] = 0, [XCHG] = 0

充电超时功能 (CTO)

在充电模式下,SH366003 可以测量充电时间,如果充电时间超过设定时间则停止充电。

状态	条件	动作
使能	Current() > CTO Charge Threshold AND (ChargingStatus()[LV] = 1 或 ChargingStatus()[MV] = 1 或 ChargingStatus()[HV] = 1)	Start CTO timer SafetyAlert()[CTOS] = 0
暂停或恢复	Current() < CTO Suspend Threshold	Stop CTO timer SafetyAlert()[CTOS] = 1
触发	CTO timer> CTO Time	Stop CTO timer SafetyStatus()[CTO] = 1 OperationStatus()[SS] = 1, [XCHG] = 1
重置	SafetyStatus()[CTO] = 1 且. (放电量达到 CTO Recovery)	Stop and reset CTO timer SafetyAlert()[CTOS] = 0 SafetyStatus()[CTO] = 0 OperationStatus()[SS] = 0, [XCHG] = 0

5.5.6 AFE 看门狗

如果模拟前端(AFE)没有从 WDF 引脚接收到来自于 SH366003 的 65.536 KHz 频率的时钟信号,它将自动关闭充电 MOSFET 和放电 MOSFET。当 AFE 触发内部中断时,SH366003 读取 AFE 的状态寄存器。如果 [WDF]置位,SafetyStatus()中的[WDF]标志同步置位,且定期(每秒一次)对模拟前端寄存器数值进行读写验证。如果验证失败,MOSFETs 将保持关闭;如果验证通过,则 SafetyStatus()中的[WDF]将被清除,MOSFETs 也将恢复正常开启。

5.6 二级保护

SH366003 提供了二级保护功能,当系统处于危险的条件下,如严重的过压,MOSFETs 故障等,SH366003 会通过永久关闭充电/放电 MOSFETs, 永久性地禁用充放电功能。

5.6.1 二级保护介绍

在最大警报持续时间内如果监测值达到或超过保护阈值,SH366003 可以永久禁止电池组的使用,并通过在 PFStatus()中置位适当的旗标来警示已发生二级保护。所有的第二级保护功能(除 IFC 和 DFF 之外)只有在置位 ManufacturingStatus()中的[PF_EN]后才会启用。而某一种二级保护功能的禁用与启用(除 IFC 和 DFF 之外),可以通过置位 *PF Enable Cfg A* 和 *PF Enable Cfg B* 中对应的 Bit 位使能。

PFStatus()从 0x00 改变时就说明发生 PF, 此时将会依次执行以下操作:

- a. 关闭充放电 MOSFETs
- b. BatteryStatus()中的[TCA], [TDA]置位且 OperationStatus()中的[PF],[XCHG], [XDSG]置位
- c. ChargingCurrent()和 ChargingVoltage()设为 0
- d. Dataflash 不能被写入,但可以读取

5.6.2 二级保护状态

SH366003 检测电流、电压、温度、时钟等工作环境,提供安全欠压保护(SUV)、安全过压保护(SOV)、电芯失衡故障(VIMR & VIMA)、MOSFET 故障 (CFETF & DFETF)、Flash 故障(DFF & IFC)等保护。

安全欠压保护 (SUV)

SH366003 可以检测任一电芯的严重欠压并永久禁止电池组的使用。

状态	条件	动作
标准	Min cell voltage12 > SUV Threshold	PFAlert()[SUV] = 0 BatteryStatus()[TDA] = 0
警报	Min cell voltage12 ≤ SUV Threshold	PFAlert()[SUV] = 1 BatteryStatus()[TDA] = 1
触发	Min cell voltage12 ≤ SUV Threshold 持续 SUV Time	PFAlert ()[SUV] = 0 PFStatus()[SUV] = 1 BatteryStatus()[FD] = 1

注:当其中一个电芯电压低于 *SUV Threshold* 时,若 SH366003 从掉电模式(min cell voltage *<Shutdown voltage* 保持 *Shutdown time* 时间以上)被充电器唤醒,保持充电 MOSFET 关闭,防止充电器将该电芯的电压充的高于 *SUV Threshold*。如果所有电芯电压均高于 *SUV Threshold*,掉电模式复位后将重新打开充电 MOSFET 以避免影响其他功能运行。

安全过压保护 (SOV)

SH366003 可以检测任一电芯的严重过压并永久禁止电池组的使用。

状态	条件	动作
标准	Max cell voltage12< SOV Threshold	PFAlert()[SOV] = 0 BatteryStatus()[TCA] = 0
警报	Max cell voltage12 ≥ SOV Threshold	PFAlert()[SOV] = 1 BatteryStatus()[TCA] = 1
触发	Max cell voltage12 ≤ SOV Threshold 持续 SOV Time	PFAlert ()[SOV] = 0 PFStatus()[SOV] = 1

静置状态下电压失衡保护(VIMR)

SH366003 可以检测静置状态下的严重电芯失衡并永久禁止电池组的使用。

状态	条件	动作
	Max cell voltage <vimr check="" td="" voltage="" 或<=""><td></td></vimr>	
标准	Current() >VIMR Check Current 或	PFAlert()[VIMR] = 0
	Max cell voltage12 – Min cell voltage12 < VIMR Delta Voltage	
	Max cell voltage12≥VIMR Check Voltage 且	
警报	Current() ≤ VIMR Check Current 持续 VIMR Time 且	PFAlert()[VIMR] = 1
	Max cell voltage12 –Min cell voltage12≥VIMR Delta Voltage	
	Max cell voltage12≥VIMR Check Voltage 且	
触发	Current() ≤ VIMR Check Current 持续 VIMR Time 且	PFAlert()[VIMR] = 0
	Max cell voltage12 – Min cell voltage12≥VIMR Delta Voltage 持	PFStatus()[VIMR] = 1
	续 VIMR Delta Time	

充电状态下电压失衡保护(VIMA)

SH366003 可以检测充电状态下的严重电芯失衡并永久禁止电池组的使用。

状态	条件	动作
	Max cell voltage12 <vima check="" td="" voltage="" 或<=""><td></td></vima>	
标准	Current() <vima check="" current="" td="" 或<=""><td>PFAlert()[VIMA] = 0</td></vima>	PFAlert()[VIMA] = 0
	Max cell voltage12 – Min cell voltage12 < VIMA Delta Voltage	
	Max cell voltage12≥VIMA Check Voltage 且	
警报	Current()>VIMA Check Current 且	PFAlert()[VIMA] = 1
	Max cell voltage12 –Min cell voltage12≥VIMA Delta Voltage	
	Max cell voltage12≥VIMA Check Voltage 且.	
触发	Current()> VIMA Check Current 且.	PFAlert()[VIMA] = 0
用	Max cell voltage12 – Min cell voltage12 ≥ VIMA Delta Voltage 持	PFStatus()[VIMA] = 1
	续 VIMA Delta Time	

充电 FET 失效保护(CFETF)

SH366003 可以检测充电 MOSFET 失效并永久禁止电池组的使用。

状态	条件	动作
标准	充电 FET 关闭 且 Current() <cfet currrent<="" fail="" td=""><td>PFAlert()[CFETF] = 0</td></cfet>	PFAlert()[CFETF] = 0
警报	充电 FET 关闭 且 Current()≥ CFET Fail Currrent	PFAlert()[CFETF] = 1
触发	充电 FET 关闭 且 Current()≥ CFET Fail Currrent 持续 CFET Fail Time	PFAlert()[CFETF] = 0 PFStatus()[CFETF] = 1

放电 FET 失效保护 (DFETF)

SH366003 可以检测放电 MOSFET 失效并永久禁止电池组的使用。

状态	条件	动作
标准	放电 FET 关闭 且 Current()>DFET Fail Currrent	PFAlert()[DFETF] = 0
警报	放电 FET 关闭 且 Current()≤DFET Fail Currrent	PFAlert()[DFETF] = 1
触发	放电 FET 关闭 且 Current()≤ DFET Fail Currrent 持续 DFET Fail Time	PFAlert()[DFETF] = 0 PFStatus()[DFETF] = 1

程序代码校验和验证失败保护(IFC)

SH366003发生复位时会对程序中的代码执行校验和验证,验证失败时触发程序代码校验和验证失败保护,PFStatus()的[IFC]置位。

DataFlash参数区失效保护(DFF)

SH366003检测到对DataFlash参数区写操作或者擦除操作失败时,触发DataFlash参数区失效保护,PFStatus()的[DFF]置位。

5.6.3 二级保护清除

SH366003 的 PF 在解密模式下可以通过 ManufacturerAccess()发送 PF 数据重置子命令(0x0029)来清除。

发送此子命令后,所有 PF 数据都被清除,系统恢复到以前的状态。

5.6.4 PF 数据记录

当发生 PF 时,PF 数据记录器会记录 PACK 信息,以便于对发生的 PF 类型进行分析。该信息在 Dataflash 更新被禁用之前,会被写入到 Dataflash 中。被记录的信息有:

- SafetyAlert()
- SafetyStatus()
- PFAlert()
- PFStatus()
- OperationStatus()
- ChargingStatus()
- GaugingStatus()
- DAStatus1()中的电压
- Current()
- DAStatus2()中 TSINT, TS1 的温度

5.7 Lifetime 数据收集

为了方便于分析问题,SH366003 集成了实用的 Lifetime 数据收集功能,可以记录电池组使用期间所发生的事件。通过设置 ManufactureStatus[LF_EN] = 1 来启用 Lifetime 数据收集功能。数据被收集在 RAM 中,为避免频繁操作而导致 Dataflash 损耗,只有当有以下条件发生时数据才会被写入 Dataflash 中:

- •每10个小时如果RAM内容不同于Dataflash,更新一次
- •发生 PF 保护时,在保护禁止 Dataflash 更新前
- 复位计数增加时。Lifetime 对应 RAM 数据复位时,只有复位计数被更新到 Dataflash 中
- 预定的关机前
- 低电压关机(low voltage Shutdown)前,且满足电压高于 Flash Update OK Voltage 时

Lifetime Data 在以下条件停止收集数据:

- PF 保护后
- ManufactureStatus 中[LF_EN] = 0 时禁用

Total usage 计时器在启用 Lifetime 数据时才会启动。

- 电压
- 每节电芯的最大电压
- 电流
- 最大充电电流
- 最大放电电流
- 温度
- 最高电芯温度
- 最低电芯温度

5.8 安全模式

在 SH366003 内部有三个级别的安全操作:全访问、解密和加密。

5.8.1 访问权限

在不同的安全模式下, I2C 有不同的访问权限。具体见下表:

安全模式	标准 Data命令	Dataflash
全访问	全部命令	全部数据
解密	部分命令	全部数据
加密	部分命令	禁止操作

5.8.2 全访问或解密模式到加密模式

加密设备命令会指示 SH366003 进入加密模式,同时会置位[SE]标志。

在加密模式下,可通过 SBS 通讯命令访问电池信息,但不能访问 ManufacturerAccess()和 Dataflash 中的部分子命令。一旦进入加密模式,纵使利用密钥回到解密或全访问模式也会存在复位命令等条件使 SH366003 重新回到加密模式。

5.8.3 加密模式到解密模式

一旦下达解密设备命令, SH366003 进入解密模式并清除[SE]旗标。

解密模式下,获得 SBS 通讯命令、Dataflash 数据读取/写入访问权限。

解密是一个分两步的命令,它先将解密密钥的第一个字写入 ManufacturerAccess(),然后再将解密密钥的第二个字写入 ManufacturerAccess()。为使解密命令生效,这两个字必须在 4s 内发送。例: 默认的解封密钥是 0x1234 和 0x5678。要从加密到解密,这两个密码必须发送到 ManufacturerAccess(),前一个是 0x1234,后一个是 0x5678,这两个字必须依序发送,且第二个字要在第一个字发送之后的 4 秒内发送。

复位的命令或 ManufacturerAccess()的加密命令会让 SH366003 回到加密模式。

解密的密钥可以在全访问模式下通过 MACData()的 SecurityKey()命令读取和修改。

5.8.4 解密模式到全访问模式

一旦全访问模式的命令下达,SH366003 会进入全访问模式,清除[FAS]旗标,并允许所有 SBS 命令和 DF 的访问。

从解密模式转变为全访问模式必须先将全访问密钥的第一个字写入 ManufacturerAccess(), 然后再将完全访问密钥的第二个字也写入 ManufacturerAccess()来执行。为使全访问模式的命令生效,这两个字必须在 4s 内发送。

复位的命令或 ManufacturerAccess() 的加密命令会让 SH366003 回到加密模式。

全访问的密钥可以在全访问模式下通过 MACData()的 SecurityKey()命令读取和修改。

SH366003 默认为全访问模式,由 Sinowealth 发售。只有在全访问模式下,SH366003 才能通过命令进入 Boot ROM。

6.I2C命令

6.1标准 Data 命令

为了使系统能够读写电池信息,SH366003 采用一系列 2 字节的标准 I2C 命令和一个 7 位的设备地址 0x55(8 位= 0xAA 写和 0xAB 读)。 如表 9 中的标准命令所示,每个标准命令都有一个相关联的命令代码匹配。每个协议都有特定的方法来访问每个命令代码中的数据。数据 RAM 通过电量计每秒更新和读取一次。

I2C		访问模式		夕 黎	名称 格式		最小值	最大值	默认	单位
命令	SE	US	FA	447	借入	字节	取小阻	取入但	秋风	- 平位
0x00/0x01	R/W	R/W	R/W	ManufacturerAccess	Hex	2	0x0000	0xffff	-	hex
0x02/0x03	R/W	R/W	R/W	AtRate	Signed int	2	-32768	32767	-	mA
0x04/0x05	R	R	R	AtRateTimeToEmpty	Unsigned int	2	0	65535	-	min
0x06/0x07	R	R	R	Temperature	Unsigned int	2	0	65535	-	0.1 K
0x08/0x09	R	R	R	Voltage	Unsigned int	2	0	20000	-	mV
0x0A/0x0B	R	R	R	BatteryStatus	Unsigned int	2	0x0000	0xffff	-	hex
0x0C/0x0D	R	R	R	Current	Signed int	2	-32768	32767	-	mA
0x0E/0x0F	R	R	R	MaxError	Unsigned int	2	0	100	-	%
0x10/0x11	R	R	R	RemainingCapacity	Unsigned int	2	0	65535	1	mAh
0x12/0x13	R	R	R	FullChargeCapacity	Unsigned int	2	0	65535	1	mAh
0x14/0x15	R	R	R	AverageCurrent	Signed int	2	-32768	32767	1	mA
0x16/0x17	R	R	R	Average Time To Empty	Unsigned int	2	0	65535	1	min
0x18/0x19	R	R	R	AverageTimeToFull	Unsigned int	2	0	65535	1	min
0x1A/0x1B	R	R	R	StandbyCurrent	Signed int	2	-32768	32767	ı	mA
0x1C/0x1D	R	R	R	StandbyTimeToEmpty	Unsigned int	2	0	65535	-	min
0x1E/0x1F	R	R	R	MaxLoadCurrent	Signed int	2	-32768	32767	ı	mA
0x20/0x21	R	R	R	MaxLoadTimeToEmpty	Unsigned int	2	0	65535	1	min
0x22/0x23	R	R	R	AveragePower	Signed int	2	-32768	32767	ı	mW
0x24/0x25	R/W	R/W	R/W	BTPDischargeSet	Signed int	2	0	32767	ı	mAh
0x26/0x27	R/W	R/W	R/W	BTPChargeSet	Signed int	2	0	32767	ı	mAh
0x28/0x29	R	R	R	InternalTemperature	Unsigned int	2	0	65535	ı	0.1 K
0x2A/0x2B	R	R	R	CycleCount	Unsigned int	2	0	65535	ı	-
0x2C/0x2D	R	R	R	RelativeStateOfCharge	Unsigned int	1	0	100	ı	%
0x2E/0x2F	R	R	R	State-Of-Health	Unsigned int	1	0	100	-	%
0x30/0x31	R	R	R	ChargingVoltage	Unsigned int	2	0	65535	ı	mV
0x32/0x33	R	R	R	ChargingCurrent	Unsigned int	2	0	65535	-	mA
0x3C/0x3D	R	R	R	DesignCapacity	Unsigned int	2	0	65535	ı	mAh
0x3E/0x3F	R	R	R	AltManufacturerAccess	Unsigned int	-	-	-	-	-
0x40/0x5F	R	R	R	MACData	Block	-	-	-	-	-
0x60	R	R	R	MACDataChecksum	Unsigned char	1	-	-	-	-
0x61	R	R	R	MACDataLength	Unsigned char	1	-	-	-	-
0x62/0x63	R	R	R	FWUpdateStatus	HEX	2	0x000	0xFFFF	-	Hex
0x64/0x65	R	R	R	FUVerison	HEX	2	0x000	0xFFFF	-	Hex

表 8. 标准命令列表

6.1.1 ManufacturerAccess (0x00/01)

这个读取字命令返回控制寄存器的控制位,该控制寄存器是一个 I2C 寄存器。这些控制位的定义如下。

名称	位	描述
RSVD	15	保留
		全访问模式旗标
FAS	14	0 = 全访问模式
		1 = 非全访问模式
		加密模式旗标
SE	13	0=非加密模式
		1=加密模式
RSVD	12-10	保留
		Checksum Valid
CSV	9	0 = 由于低电压或PF条件,Flash写入被禁用
		1 = Flash写入可用
RSVD	8	保留
BTP_INT	7	BTP_INT.设置和清除此位取决于各种条件
DII_IIVI	,	D11_111. 及直径指除处区水灰;有有水门
RSVD	6-4	保留
		LOAD 模式
LDMD	3	0 = 恒定电流
		1 = 恒定功率
		Fusion Gauge 模型更新
FMDIS	2	0 =禁用
		1 = 启用
		QMax更新OK电压
VOK	1	0=不可更新
		1 = 可更新
QMAX	0	QMax 更新 (每次QMax更新后切换)
VMMA	U	Qiviax 文刷 (母人Qiviax文制 /口 切狀)

表 9. 控制寄存器列表

6.1.2 AtRate (0x02/03)

这个读取或写入命令是用于设置 AtRate()值的两个命令调用集的前半部分,AtRate()值用于 AtRateTimeToEmpty()函数的计算。AtRate()单位是 mA。

6.1.3 AtRateTimeToEmpty (0x04/05)

如果电池以 AtRate()值放电,这个读取命令将返回预计的剩余操作时间(以分钟为单位),其区间为 0 到 65534。值 65535 表示 AtRate() = 0。

6.1.4 Temperature (0x06/07)

这个读取命令返回一个无符号整型的温度参数,单位为0.1K。

6.1.5 Voltage (0x08/09)

这个读取命令返回各节电芯电压测量值的总和,单位为 mV。

6.1.6 BatteryStatus (0x0A/0B)

这个读取命令返回基于 SH366003 的电池的状态。

名称	位	描述
OCA	15	过充电警报 0 = 未检出 1 = 检出
TCA		充电终止警报 0 = 未检出 1 = 检出
RSVD	13	保留
ОТА	12	过温警报 0 = 未检出 1 = 检出
TDA	11	放电终止警报 0 = 未检出 1 = 检出
RSVD	10	保留
RCA	9	剩余容量警报 0 = RemainingCapacity()≥RemainingCapacityAlarm() 1 = 在放电或静置状态RemainingCapacity() <remainingcapacityalarm()< td=""></remainingcapacityalarm()<>
RTA	8	剩余时间警报 0 = AverageTimeToEmpty()≥RemainingTimeAlarm() 1 = AverageTimeToEmpty() <remainingtimealarm()< td=""></remainingtimealarm()<>
INIT	7	初始化 0 = 初始化进行中 1 = 初始化完成
DSG	6	放电中 0 = 电池处于充电模式 1 = 电池处于放电或静置模式
FC	5	满充 0 = 电池未满充 1 = <i>GaugingStatus()[FC]</i> = 1时电池满充
FD	4	满放 0 = 电量未放空 1 = 电量放空
EC3,EC2, EC1,EC0	3-0	错误代码 0x0 = 正常 0x1 = 占用 0x2 = 保留 0x3 = 无效命令 0x4 = 拒绝访问 0x5 = 溢出/下溢 0x6 = 语句错误 0x7 = 未知错误

表 10.BatteryStatus 列表

6.1.7 Current (0x0C/0D)

这个读取命令返回由电池提供(或接受)的测量电流,单位为毫安。

6.1.8 MaxError (0x0E/0F)

这个读取命令返回电荷状态计算中的预期误差区间,以%为单位,区间为1到100%。

条件	动作
First use with FG Status = $0x00$	MaxError() = 100%
Fusion GaugeModel only updated	MaxError() = 5%
Qmax only updated	MaxError() = 3%
Fusion Gauge Model and Qmax updated	MaxError() = 1%
Each CycleCount() increment after last valid Qmax update	MaxError() increment by 0.05%

6.1.9 RemainingCapacity (0x10/11)

这个读取命令返回电池中的预测剩余容量。此值单位为 mAh。

6.1.10 FullChargeCapacity (0x12/13)

这个读取命令返回满充时的预测电池容量。此值单位为 mAh。

6.1.11 AverageCurrent (0x14/15)

这个读取命令返回通过电池产生(或吸收)的电流平均值。此值单位为 mA。

6.1.12 AverageTimeToEmpty (0x16/17)

这个读取命令根据平均电流返回预计的电池放空时间(以分钟为单位)。当平均电流为正或零时,该值为65535。

6.1.13 AverageTimeToFull (0x18/19)

这个读取命令以平均电流为基础,以分钟为单位返回电池充满电之前预计的剩余时间。当平均电流为负或为零时,该值为65535。

6.1.14 StandbyCurrent (0x1A/1B)

该只读命令返回通过检测电阻测量出的带符号整型待机电流值。StandbyCurrent()是一个自适应测量值。它的初值等于编程时 Initial Standby 的值,在待机一段时间后,它等于测量的待机电流值。该电流值应高于死区(Deadband)和小于或等于 2 倍初始待机电流。

每个新的 StandbyCurrent()值是通过取最后备用电流的大约 93%权重和测量的平均电流的大约 7%来计算的。

6.1.15 StandbyTimeToEmpty (0x1C/1D)

这个只读命令返回通过待机放电速率测算的无符号整型的电池放空时间(以分钟为单位)。数值为65535时表示电池没有放电。

6.1.16 MaxLoadCurrent (0x1E/1F)

这个只读命令返回一个带符号的整数值,单位为 mA,表示最大负载条件。MaxLoadCurrent()是一个自适应测量值,它的初值等于编程时 Initial Max Load Current 所赋的值。如果测量电流大于 Initial Max Load Current,则 MaxLoadCurrent()将更新为新的电流值。为防止 MaxLoadCurrent()的值一直维持一个异常高的水平,每当电池在 RSOC 放电至小于 Max Load RSOC(50%)后再充满时,MaxLoadCurrent()将减小为 Initial Max Load Current 的值和前一时刻 MaxLoadCurrent()的值的平均值。

6.1.17 MaxLoadTimeToEmpty (0x20/21)

此只读命令返回在最大负载电流放电率下预计电池放空时间的无符号整数值,以分钟为单位。数值为65535表示电池没有放电

6.1.18 AveragePower (0x22/23)

这个读取命令返回无符号整型的平均功率值,在放电时为负,在充电时为正。值为0表示电池没有放电。单位为cW。

6.1.19 BTPDischargeSet (0x24/25)

这个读或写字命令更新放电模式下的下一个 BTP 中断的 BTP 设定阈值,可用于取消当前的 BTP 中断,并清除 OperationStatus()中 [BTP_INT]位。

6.1.20 BTPChargeSet (0x26/27)

这个读或写字命令更新充电模式下的下一个 BTP 中断的 BTP 设定阈值,可用于取消当前的 BTP 中断,并清除 OperationStatus()[BTP INT]位

6.1.21 InternalTemperature (0x28/29)

这个读取命令返回测量的设备内部温度的无符号整数值,单位为0.1 %。

6.1.22 CycleCount (0x2A/2B)

这个读取命令返回电池所经历的循环次数。一个循环计数为累计放电 CC Percentage* DesignCapacity ()。

6.1.23 RelativeStateOfCharge (0x2C/2D)

这个读取命令返回预测的剩余电池容量,表示为FullChargeCapacity()的百分比(%)。

6.1.24 State-Of-Health(SOH) (0x2E/2F)

这个读字命令返回电池的健康状态。SOH = State-of-Health FCC / DesignCapacity()。SOH FCC 应在标准条件下计算(25℃的温度和 0.2C 的标准负载)。

6.1.25 Charging Voltage (0x30/31)

这个读取命令返回推荐给定的充电电压,单位为 mV。

6.1.26 ChargingCurrent (0x32/33)

这个读取命令返回推荐给定的充电电流,单位为 mA。

6.1.27 DesignCapacity (0x3C/3D)

这个读取命令返回用毫安时表示的电池组的理论容量。

6.1.28 AltManufacturerAccess (0x3E/3F)

本指令与 ManufacturerAccess(0x00/0x01)作用相同。通过该指令可以写入有效的 MAC 指令,然后通过 MACData()读取其对应的数据。主机可以根据需要,简化使用 AltManufacturerAccess()至 MACDataLength()中的指令来进行块读取。有关返回数值的描述,请参考第 6.2 章节中介绍。

6.1.29 MACData (0x40/5F)

这是关于 AltManufacturerAccess()命令的数据块。

6.1.30 MACDataChecksum (0x60)

这是 AltManufacturerAccess()和 MACData()数据块中字节的校验和(checksum)。

返回或写入由 AltManufacturerAccess()读写的 MAC 指令和 MACData()读写的有效数据所计算得到的校验和,即 MAC 指令的高低字节之和,逐个加上有效数据,得到和的低字节数值取反。由于 MACDataLength()指令写入的长度决定了校验和的计算,因此写操作时,只有当校验和与长度连续写入时,本次写操作才有效。

6.1.31 MACDataLength (0x61)

这是 AltManufacturerAccess()和 MACData()的长度。

所有 MAC 命令的长度字节将包括 2 字节命令、1 字节校验和、1 字节长度和 1 到 32 字节的数据。这意味着有效块的最小长度值为 5。为了进行正确的写命令验证,校验和必须按顺序写入(字访问触发)。

6.1.32 FWUpdateStatus (0x62/63)

这个读取命令是一个扩展命令,在固件更新过程中返回FU状态。

6.1.33 FUVersion (0x64/65)

这个读取命令是一个扩展命令,它返回十六进制数据格式的 FU 程序版本,默认值是 0x0001。

6.2 AltManufacturerAccess(0x00/01) 利 AltManufacturerAccess(0x3E/3F)

AltManufacturerAccess()提供了在Manufacturer AccessSystem(MAC)中读写数据的方法。MAC命令利用块协议通过AltManufacturerAccess()发送。结果通过块读取在AltManufacturerAccess()上返回。

通过写入寄存器0x00/0x01来设置命令。在有效的字访问中,MAC命令状态被设置,命令0x3E和0x3F用于MAC命令。这些新地址的工作方式与0x00和0x01相同,但主要用于块的写和读。

示例:发送MAC PF子命令,通过AltManufacturerAccess()启用所有PF检查。

- 1. 禁用PF检测后,将PF(0x0024)发送到AltManufacturerAccess()
- a. I2C写入, 开始地址= 0x3E(或0x00)。数据= 2400(数据必须以小端字节发送)。
- 2. 启用PF检测, 且ManufacturerStatus()[PF_EN] = 1。

示例:通过AltManufacturerAccess()读取化学ID (0x0006)。

- 1. 将Chemical ID子命令发送到AltManufacturerAccess()。
- a.I2C写入,开始地址= 0x3E(或0x00)。发送的数据= 0600(数据必须以小端字节发送)。
- 2. 从AltManufacturerAccess()和MACData()读取结果。
- a. I2C读取, 起始地址= 0x3E, 长度= 36字节。响应的前4个字节是06 00 61 56。
- b. 前两个字节"06 00"是 MAC命令(用来验证).
- c. 次两个字节"61 56"是小端字节排序的化学ID。化学 ID 5661,对应就是0x5661。
- d. 36字节块的最后两个字节将是校验和和长度。这里的长度是6(响应的4个字节、校验和1字节、长度1字节)。校验和(16进制)=0xFF-06-00-61-56,即为42。

子命令	名称	访问	格式	在MACData() 上读取Data	加密模式可用	类型	单位
0x0001	DeviceType	R	Block	Yes	Yes	Hex	-
0x0002	FirmwareVersion	R	Block	Yes	Yes	Hex	-
0x0003	HardwareVersion	R	Block	Yes	Yes	Hex	-
0x0004	IFCheckSum	R	Block	Yes	Yes	Hex	_
0x0005	StaticDFChecksum	R	Block	Yes	Yes	Hex	_
0x0006	ChemistryID	R	Block	Yes	Yes	Hex	-
0x0008	StaticChemDFChecksum	R	Block	Yes	Yes	Hex	-
0x0009	AllDFChecksum	R	Block	Yes	Yes	Hex	-
0x0010	Shutdown	W	_	-	Yes	Hex	_
0x0011	SleepCommand	W	_	_	-	Hex	_
0x0011	DeviceReset	W		-	_	Hex	
0x0012 0x001F	CHGFETToggle	W	_	-	-	Hex	
0x0020	DSGFETToggle	W		-		Hex	<u> </u>
0x0020	FETControl	W		_	_	Hex	
0x0022	LifetimeDataCollection	W	_	_	-	Hex	
0x0023	PermanentFailureDetection	W	_	-	_	Hex	_
0x0024	LifetimeDataReset	W	_	-	_	Hex	
0x0029	PFDataReset	W	_	_	_	Hex	_
0x0025	LifetimeDataFlush	W	_	_	_	Hex	_
0x002F	LifetimeDataTest	W	_	_	_	Hex	_
0x0030	SealDevice	W	_	_	_	Hex	_
0x0035	SecurityKeys	R/W	Block	Yes	_	Hex	_
0x0033	AuthenticationKey	R/W	Block	-	_	Hex	_
0x0041	DeviceReset	W	-	_	_	Hex	_
0x0045	FastFlashUpdate	W	_	Yes	Yes	Hex	_
0x0046	AFIWriteChecksum	R	Block	Yes	Yes	Hex	_
0x004A	DeviceName	R	Block	Yes	Yes	Hex	_
0x004B	DeviceChemistry	R	Block	Yes	Yes	Hex	_
0x004C	ManufacturerName	R	Block	Yes	Yes	Hex	-
0x004D	ManufacturerDate	R/W	Block	Yes	Yes	Hex	-
0x004E	SerialNumber	R/W	-	Yes	Yes	Hex	-
0x0050	SafetyAlert	R	Block	Yes	Yes	Hex	-
0x0051	SafetyStatus	R	Block	Yes	Yes	Hex	-
0x0052	PFAlert	R	Block	Yes	Yes	Hex	-
0x0053	PFStatus	R	Block	Yes	Yes	Hex	-
0x0054	OperationStatus	R	Block	Yes	Yes	Hex	-
0x0055	ChargingStatus	R	Block	Yes	Yes	Hex	•
0x0056	GaugingStatus	R	Block	Yes	Yes	Hex	-
0x0057	ManufacturingStatus	R	Block	Yes	Yes	Hex	-
0x0058	AFEData	R	Block	Yes	Yes	Hex	-
0x0060	LiftimeDataBlock1	R	Block	Yes	Yes	Mixed	Mixed
0x0066	LiftimeDataBlock2	R	Block	Yes	Yes	Mixed	Mixed
0x0067	LiftimeDataBlock3	R	Block	Yes	Yes	Mixed	Mixed
0x0070	ManufacturerInfo	R	Block	Yes	Yes	Hex	-
0x0071	DAStatus1	R	Block	Yes	Yes	Mixed	Mixed
0x0072	DAStatus2	R	Block	Yes	Yes	Mixed	Mixed
0x0073	GaugeStatus1	R	Block	Yes	Yes	Mixed	Mixed
0x0074	GaugeStatus2	R	Block	Yes	Yes	Mixed	Mixed
0x0075	GaugeStatus3	R	Block	Yes	Yes	Mixed	Mixed
0x0076	CBStatus	R	Block	Yes	Yes	Mixed	Mixed
0x0077	FCC_SOH	R	Block	Yes	Yes	Mixed	Mixed

表 11. ManufacturerAccess 子命令

子命令	名称	访问	格式	在MACData() 上读取Data	加密模式可用	类型	单位
0x0078	GaugeCapacityInfo	R	Block	Yes	Yes	Mixed	Mixed
0x0079	FusionModelInfo	R	Block	Yes	Yes	Mixed	Mixed
0x007C	OverChargeInfo	R	Block	Yes	Yes	Mixed	Mixed

表 11. ManufacturerAccess 子命令 (续)

6.2.1 AltManufactureAccess() 0x0001 DeviceType

可以检查 SH366003 的 IC 零件号。设备类型在随后读取 MACData()时返回。

6.2.2 AltManufactureAccess() 0x0002 FirmwareVersion

可以检查 SH366003 的固件版本。固件版本在随后读取 MACData()时返回。

6.2.3 AltManufactureAccess() 0x0003 HardwareVersion

可以检查 SH366003 的硬件版本。硬件版本在随后读取 MACData()时返回。

6.2.4 AltManufactureAccess() 0x0004 IFChecksum

SH366003 可以返回命令 Flash 校验和。Flash 校验和在后续读取 MACData()时返回。

6.2.5 AltManufactureAccess() 0x0005 StaticDFChecksum

SH366003 可以返回静态 Dataflash 校验和,校验和是由所有静态 Dataflash 参数计算得出的。当对 MACData()进行后续读取时,经过 250ms 的等待后返回静态 Dataflash 校验和。如果计算得校验和与 Dataflash 存储的校验和不匹配,则将 MSB 置 1。

6.2.6 AltManufactureAccess() 0x0006 ChemicalID

这个命令返回电量计算法中使用的 OCV 表的化学 ID。化学 ID 在随后读取 MACData()时返回。

6.2.7 AltManufactureAccess() 0x0008 Static Chem DF Checksum

SH366003 可以返回所有电芯相关参数计算出的静态化学 Dataflash 校验和。在等待 250ms 后,在 MACData()上进行后续读取时,静态化学 Dataflash 校验和返回。如果计算的校验和与 Dataflash 中存储的校验和不匹配,则 MSB 设置为 1。

6.2.8 AltManufactureAccess() 0x0009 All DF Checksum

6.2.9 AltManufactureAccess() 0x0010 ShutdownCommand

将此命令发送到 AltManufactureAccess()将指示 SH366003 验证并进入掉电模式。

6.2.10 AltManufactureAccess() 0x0011 SleepCommand

将此命令发送到 AltManufactureAccess()将指示 SH366003 验证并进入休眠模式。

6.2.11 AltManufactureAccess() 0x0012 Device Reset

将此命令发送到 AltManufactureAccess()将重置 SH366003。与命令 0x0041 操作相同

6.2.12 AltManufactureAccess() 0x001F CHGFETToggle

此命令手动打开或关闭充电 MOSFET。如果 ManufacturingStatus()[CHG_T] = 0,发送此命令将打开充电 MOSFET 和 ManufacturingStatus()[CHG_T] = 1,反之亦然。该命令仅在 ManufacturingStatus()[FET_EN] = 0 时启用,表示固件对 MOSFET 控制不激活,允许手动控制。复位将清除 ManufacturingStatus()[CHG_T]并关闭充电 MOSFET。

6.2.13 AltManufactureAccess() 0x0020 DSGFETToggle

此命令手动打开或关闭放电 MOSFET。如果 ManufacturingStatus()[DSG_T] = 0,发送此命令将打开放电 MOSFET 和 ManufacturingStatus()[DSG_T] = 1,反之亦然。该命令仅在 ManufacturingStatus()[FET_EN] = 0 时启用,表示固件对 MOSFET 控制不激活,允许手动控制。复位将清除 ManufacturingStatus()[DSG_T]和关闭放电 MOSFET。

6.2.14 AltManufactureAccess() 0x0022 FETControl

此命令的禁用或启用主要用于控制充电和放电 MOSFETs 的开通与关断。初始设置是从 Init Mfg Status[FET_EN]加载的。如果 ManufacturingStatus()[FET_EN] = 0,发送此命令允许固件控制所有 FETs 且使 ManufacturingStatus()[FET_EN] = 1,反之亦然。

在解密模式下,当接收到命令时,会将 ManufacturingStatus()[FET_EN]状态复制到 Init Mfg status [FET_EN]。在重置之前,SH366003 保持其最新的 MOSFET 控制状态。

6.2.15 AltManufactureAccess() 0x0023 LifetimeDataCollection

此命令禁用或启用 Lifetime 数据收集功能。初始设置是从 Init Mfg Status[LF_EN]加载。如果 ManufacturingStatus()[LF_EN] = 0,发送此命令将启动 Lifetime 数据收集且使 ManufacturingStatus()[LF_EN] = 1,反之亦然。

在解密模式下,在接收到此命令时,会将 ManufacturingStatus()[LF_EN]标志复制到初始化 Mfg Status[LF_EN]。SH366003 在重置之前保持其最新 Lifetime 数据收集设置。

6.2.16 AltManufactureAccess() 0x0024 PermanentFailureDetection

此命令禁用或启用 PF 检测。初始设置是从 Init Mfg Status[PF_EN]加载的。如果 ManufacturingStatus()[PF_EN] = 0,发送此命令将启用 PF 检测且使 ManufacturingStatus()[PF_EN] = 1,反之亦然。

在解密模式下,当收到此命令时,会将 ManufacturingStatus()[PF_EN]标志复制到初始化 Mfg Status[PF_EN]。在重置之前,SH366003 保持在它的 PF 检测启用或禁用设置上。

6.2.17 AltManufactureAccess() 0x0028 LifetimeDataReset

将此命令发送到 AltManufactureAccess()将重置 Dataflash 中的 Lifetime 数据。

6.2.18 AltManufactureAccess() 0x0029 PermanentFail DataReset

将此命令发送到 AltManufactureAccess()将重置数据 Dataflash 中的 PF 数据。

6.2.19 AltManufactureAccess() 0x002E Lifetime Dataflash

将此命令发送到 AltManufactureAccess()可以将 RAMLifetime 数据刷新到 Dataflash,以帮助简化测试。

6.2.20 AltManufactureAccess() 0x002F Lifetime Data Test

为了便于评估测试,这个命令启用了一个 Lifetime 加速模式,其中实时的每 1 秒在 FW 时间中计算为 2 小时。当 Lifetime 加速模式 被启用时, Manufacturing Status()[LT_TEST] = 1。

如果在[LT_TEST] = 1 时再次发送该命令,发送 MAC LifetimeDataReset()命令,发送 MAC SealDevice()命令,或者重置设备,那么加速模式将被禁用。

6.2.21 AltManufactureAccess() 0x0030 SealDevice

将此命令发送到 AltManufactureAccess()将指示 SH366003 进入加密模式。当加密 SH366003 时,OperationStatus() 中[FAS] = 1 和[SE] = 1 并禁用部分 SBS 命令和对 Dataflash 的访问

6.2.22 AltManufactureAccess() 0x0035 SecurityKeys

这是一个读/写命令,用于更改解密和完全访问密钥。要读取密钥,将 SecurityKeys()命令发送到 AltManufacturerAccess() 0x00 或 0x3E, 然后从 AltManufacturerAccess()进行读取。

要更改密钥,写入操作必须通过 AltManufacturerAccess() 0x3E 发送 SecurityKeys()地址以及修改密钥。每个参数项必须以小端方式发送。

例:

将解密密钥修改为 0x0123, 0x4567 并将全访问密钥修改为 0x89AB, 0xCDEF:

写数据块:通过 AltManufacturerAccess()开始地址 0x3E 的命令,数据块(十六进制)= [35 00 23 01 67 45 AB 89 EF CD]。

起始地址 0x60,数据块(十六进制)=[0A 0C](校验和后跟长度)

校验和(checksum) = $0x0A = \sim (0x35 + 0x00 + 0x23 + 0x01 + 0x67 + 0x45 + 0xAB + 0x89 + 0xEF + 0xCD$)。校验和是命令的 MSB 和 LSB 的 8 位和加上缓冲区中的有效字节数据。最后的和是结果的按位取反。

6.2.23 AltManufactureAccess() 0x0037 AuthenticationKey

此命令可以更新身份验证密钥并写入 SH366003 中。要更新身份验证密钥, SH366003 必须处于全访问模式。

按照以下步骤更新新的认证密钥:

将 AuthenticationKey()发送到 AltManufactureAccess(), OperationStatus[AUTH] = 1;

然后将 128 位认证密钥发送给 MACData()。

没有对身份验证密钥的直接读访问。SH366003 将新的认证密钥写入 SH366003 后,SH366003 将生成全零质询并提供相应的响应进行验证。

等待时间 250mS, OperationStatus[AUTH] = 0,之后在更新新认证密钥后读取 MACData()响应。

6.2.24 AltManufactureAccess() 0x0041 DeviceReset

这个命令会重置 SH366003。

6.2.25 AltManufactureAccess() 0x0045 Fast Flash Update

这个命令会立即指示 SH366003 更新 Dataflash 参数。

6.2.26 AltManufactureAccess() 0x0046 AFI Write Checksum

SH366003 可以返回 AFI 写入校验和,用于检查 AFI 参数写入是否正常。AFI 的写入校验和将在 MACData()的后续读取中返回,

6.2.27 AltManufactureAccess() 0x0050 SafetyAlert

这个命令返回 AltManufactureAccess()或 MACData()上的 SafetyAlert()标志。

名称	位	描述
RSVD	31-30	保留
		放电欠温报警旗标
UTD	27	0 = 正常
		1 = SH366003满足放电欠温报警条件
		充电欠温报警旗标
UTC	26	0 = 正常
		1 = SH366003满足充电欠温报警条件
RSVD	25-22	保留
		充电超时暂停旗标
CTOS	21	0 = 正常
D GI I D	20	1 = SH366003 满足充电超时暂停条件
RSVD	20	保留
DTOG	10	预充电超时暂停旗标 0 = 正常
PTOS	19	0 = 止吊 1 = SH366003 满足预充电超时暂停条件
RSVD	18-14	(F)
KSVD	10-14	放电过温报警旗标
OTD	13	0 = 正常
OID		1 = SH366003满足放电过温报警条件
		充电过温报警旗标
OTC	12	0 = 正常
	1-	1 = SH366003满足充电过温报警条件
RSVD	11-5	保留
		放电过流报警旗标
OCD	4	0 = 正常
		1 = SH366003 满足放电过流报警条件
RSVD	3	保留
		充电过流报警旗标
OCC	2	0 = 正常
		1 = SH366003 满足充电过流报警条件
		电芯过压报警旗标
COV	1	0 = 正常
		1 = SH366003 满足电芯过压报警条件
		电芯欠压报警旗标
CUV	0	0 = 正常
		1 = SH366003 满足电芯欠压报警条件

表 12. SafetyAlert 列表

6.2.28 AltManufactureAccess() 0x0051 SafetyStatus

这个命令返回 AltManufactureAccess()或 MACData()上的 SafetyStatus()标志。

名称	位	描述
RSVD	15-14	保留
		放电过温旗标
OTD	13	0 = 正常
		1 = SH366003满足放电过温条件
		充电过温旗标
OTC	12	0 = 正常
		1 = SH366003满足充电过温条件
RSVD	11	保留
		AFE放电短路旗标
ASCD	10	0 = 正常
		1 = SH366003满足放电短路条件
RSVD	9	保留
		AFE充电短路旗标
ASCC	8	0 = 正常
		1 = SH366003满足充电短路条件
RSVD	7	保留
		AFE 过载旗标
AOLD	6	0 = 正常
		1 = SH366003 满足AFE 放电过载条件
RSVD	5	保留
		放电过流旗标
OCD	4	0 = 正常
		1 = SH366003满足放电过流条件
RSVD	3	保留
		充电过流旗标
OCC	2	0 = 正常
		1 = SH366003满足充电过流条件
		电芯过压旗标
COV	1	0 = 正常
		1 = SH366003满足电芯过压条件
		电芯欠压旗标
CUV	0	0 = 正常
		1 = SH366003满足电芯欠压条件

表.13 SafetyStatus 列表

名称	位	描述
RSVD	31-28	保留
UTD	27	放电欠温旗标 0 = 正常 1 = SH366003满足放电欠温条件
UTC	26	充电欠温旗标 0 = 正常 1 = SH366003满足充电欠温条件
RSVD	25-21	保留
СТО	20	充电超时旗标 0 = 正常 1 = SH366003满足充电超时条件
RSVD	19	保留
РТО	18	预充电超时旗标 0 = 正常 1 = SH366003满足预充电超时条件
WDF	17	AFE WDT 旗标 0 = 正常 1 = SH366003 满足 AFE watchdog超时条件
RSVD	16	保留

表.13 SafetyStatus 列表(续)

6.2.29 AltManufactureAccess() 0x0052 PFAlert

这个命令返回 AltManufactureAccess()或 MACData()上的 PFAlert()标志。

名称	位	描述
RSVD	31-18	保留
DFETF	17	放电FET失效报警旗标 0 = 正常 1 = SH366003检测到放电FET失效报警
CFETF	16	充电FET失效报警旗标 0 = 正常 1 = SH366003检测到充电FET失效报警
RSVD	15-13	保留
VIMA	12	工作状态电压失衡时警报旗标 0 = 正常 1 = SH366003 检测到VIMA报警
VIMR	11	静置状态电压失衡时警报旗标 0 = 正常 1 = SH366003 检测到VIMR报警
RSVD	10-2	保留
SOV	1	安全过压报警旗标 0 = 正常 1 = SH366003检测到安全过压报警
SUV	0	安全欠压报警旗标 0 = 正常 1 = SH366003检测到安全欠压报警

表.14 PFAlert 列表

6.2.30 AltManufactureAccess() 0x0053 PFStatus

这个命令返回 AltManufactureAccess()或 MACData()上的 PFStatus()标志。

名称	位	描述
RSVD	31-27	保留
DFF	26	Dataflash 故障PF旗标 0 = 正常 1 = SH366003检测到 Dataflash 故障PF
RSVD	25	保留
IFC	24	命令 Flash Checksum 失效旗标 0 = 正常 1 = SH366003 检测到命令 Flash Checksum 失效
RSVD	23-18	保留
DFETF	17	放电FETPF旗标 0 = 正常 1 = SH366003检测到放电FET永久失效
CFETF	16	充电FETPF旗标 0 = 正常 1 = SH366003检测到充电FET永久失效
RSVD	15-13	保留
VIMA	12	工作状态电压失衡失效 0 = 正常 1 = SH366003检测到VIMA失效
VIMR	11	静置状态电压失衡失效 0 = 正常 1 = SH366003检测到VIMR失效
RSVD	10-2	保留
SOV	1	安全过压PF旗标 0 = 正常 1 = SH366003检测到安全过压永久失效
SUV	0	安全欠压PF旗标 0 = 正常 1 = SH366003检测到安全欠压永久失效

表.15 PFStatus 列表

6.2.31 AltManufactureAccess() 0x0054 OperationStatus

这个命令返回 AltManufactureAccess()或 MACData()上的 OperationStatus()标志。

名称	位	描述
RSVD	31-29	保留
СВ	28	电芯平衡旗标 0=正常 1=正在进行电芯平衡
RSVD	27-24	保留
SLEEPM	23	休眠模式 0 = 未激活 1 = 激活
RSVD	22-17	保留
SDM	16	命令关机进行旗标 0=未激活 1=激活
SLEEP	15	休眠模式条件满足 0 = 未激活 1 = 激活
XDSG	14	放电失效旗标 0=正常 1=放电失效
XCHG	13	充电失效旗标 0=正常 1=充电失效
PF	12	PF旗标 0 = 正常 1 = SH366003满足PF条件
SS	11	安全状态旗标. 任何1级保护发生时置位 0 = 正常 1 = SH366003满足安全状态置位条件
SDV	10	低电芯电压关机进行旗标 0=未激活 1=激活
FAS	9	全访问模式旗标 0=全访问模式 1=非全访问模式
SE	8	加密模式旗标 0 = 非加密模式 1 = 加密模式
BTP_INT	7	BTP_INT输出 0 = 未激活 1 = 激活
RSVD	6-3	保留
CHG	2	充电FET控制 0 = 关 充电MOSFET 1 = 开 充电MOSFET
DSG	1	放电FET控制 0=关 DSG FET 1=开 DSG FET
RSVD	0	保留

表 16. OperationStatus 列表

6.2.32 AltManufactureAccess() 0x0055 ChargingStatus

这个命令在 AltManufactureAccess()或 MACData()上返回 ChargingStatus()标志。

名称	位	描述
RSVD	23-16	保留
VCT	15	有效充电终止 0=未激活 1=激活
MCHG	14	维持充电旗标 0=维持不充电存在 1=维持充电存在
CHGSU	13	充电暂缓旗标 0 = 正常 1 = 充电暂缓发生
CHGIN	12	充电抑制旗标 0=标准 1=不能充电
HV	11	高压区域旗标 0=未活激 1=激活
MV	10	中压区域旗标 0 = 未活激 1 = 激活
LV	9	低压区域旗标 0=未活激 1=激活
PV	8	预充电电压区域旗标 0=未活激 1=激活
RSVD	7	保留
ОТ	6	过温区域旗标 0 = 未活激 1 = 激活
HT	5	高温区域旗标 0=未活激 1=激活
STH	4	标准温度(高)区域旗标 0=未活激 1=激活
RT	3	推荐温度区域旗标 0=未活激 1=激活
STL	2	标准温度(低)区域旗标 0=未活激 1=激活
LT	1	低温区域旗标 0=未活激 1=激活
UT	0	欠温区域旗标 0 = 未活激 1 = 激活

表 17. Charging Status 列表

6.2.33 AltManufactureAccess() 0x0056GaugingStatus

这个命令返回 AltManufactureAccess()或 MACData()上的 GaugingStatus()标志。

名称	位	描述
RSVD	23-21	保留
OCVFR	20	平区开路电压 0 = 正常 1 = SH366003检测到了平区开路电压
LDMD	19	Load模式 0 = 恒定电流 1 = 恒定功率
FMU	18	Fusion Gauge 模型更新 (在每一个Fusion Guage模型更新后切换)
QMAX	17	QMax 更新 (每个 QMax 更新后切换)
RSVD	16-12	保留
VOK	11	QMax 更新OK 电压 0 = 不可更新 1 = 可更新 Fusion Gauge模型更新
FMDIS	10	0 = 禁用 1 = 启用
RSVD	9	保留
REST	8	Rest flag 充分静置状态旗标 0 = 当前不处于充分静置状态,不可以进行OCV采集 1 = 当前处于充分静置状态,可以进行OCV采集
CF	7	条件旗标 0 = MaxError() < Max Error Limit 1 = MaxError() > Max Error Limit
DSG	6	放电/静置模式 0 = 充电模式 1 = 放电/静置模式
EDV	5	放电终止电压 0=未达到放电终止电压或非放电模式 1=放电模式下达到放电终止电压
BAL_EN	4	电芯平衡 0 = 不允许电芯平衡 1 = 使能后电芯平衡可用
TC	3	充电终止 0 = 正常 1 = SH366003检测到充电终止
TD	2	放电终止 0 = 正常 1 = SH366003检测到放电终止
FC	1	满充 0 = 正常 1 = SH366003检测到满充
FD	0	满放 0 = 正常 1 = SH366003检测到满放

表 18. GaugingStatus 列表

6.2.34 AltManufactureAccess() 0x0057 ManufacturingStatus

这个命令返回 AltManufactureAccess()或 MACData()上的 ManufacturingStatus()标志。

名称	位	描述
RSVD	15	保留
LF_TEST	14	Lifetime加速模式 0 = 禁用 1 = 启用
RSVD	13-7	保留
PF_EN	6	PF 0 = 禁用 1 = 启用
LF_EN	5	Lifetime 数据收集 0 = 禁用 1 = 启用
FET_EN	4	所有FET控制 0 = 禁用 1 = 启用
RSVD	3	保留
DSG_T	2	放电FET手动控制测试 $0 = $ 无效 $1 = $ 有效
CHG_T	1	充电FET手动控制测试 $0 = $ 无效 $1 = $ 有效
RSVD	0	保留

表 19. ManufacturingStatus 列表

6.2.35 AltManufactureAccess() 0x0058 AFE Data

这个命令返回 AltManufactureAccess()或 MACData()上的 AFE 数据,它是 13 个字节,格式如下:

AABBCCDDEEFFGGHHIIJJKKLLMM.

值	描述
AA	模拟前端状态寄存器值
BB	模拟前端控制输出寄存器值
CC	模拟前端功能控制寄存器值
DD	模拟前端放电过载阈值
EE	模拟前端充电短路阈值
FF	模拟前端放电短路阈值1
GG	模拟前端放电短路阈值2
НН	模拟前端电流检测控制寄存器值
II	模拟前端充电FET控制寄存器值
JJ	模拟前端VADC通道配置寄存器值
KK	模拟前端VADC控制寄存器值
LL	模拟前端CADC控制寄存器值
MM	SCI通讯错误计数器值

表 20. AFEData 列表

6.2.36 AltManufactureAccess() 0x0060 LiftimeDataBlock1

这个命令返回 AltManufactureAccess()或 MACData()上的第一个 Lifetime 数据块,它是 14 个字节,格式如下:

aaAAbbBBccCCddDDeeEEffFFGGHH.

值	描述	单元
AAaa	Cell1 最高电压	mV
BBbb	Cell2 最高电压	mV
CCcc	Cell1 最低电压	mV
DDdd	Cell2 最低电压	mV
EEee	最大充电电流	mA
FFff	最大放电电流	mA
GG	最高电芯温度	°C
НН	最低电芯温度	°C

表 21. Lifetime Block 1 列表

$6.2.37\ Alt Manufacture Access ()\ 0x0060\ Lift ime Data Block 2$

这个命令返回 AltManufactureAccess()或 MACData()上的第二个 Lifetime 数据块,它是 32 个字节,格式如下:

aa A Abb B B c c C C d d D D e e E Eff F F g g G G h h H H i i I i j j J k k K K l l L L m m M m n N n o O O p p P P.

值	描述	単元
AAaa	发生 COV 事件的次数	-
BBbb	最近一次发生 COV 事件的 CycleCount	-
CCcc	发生 CUV 事件的次数	-
DDdd	最近一次发生 CUV 事件的 CycleCount	-
EEee	发生 OCD 事件的次数	-
FFff	最近一次发生 OCD 事件的 CycleCount	-
GGgg	发生 OCC 事件的次数	-
HHhh	最近一次发生 OCC 事件的 CycleCount	-
IIii	发生 AOLD 事件的次数	-
JJjj	最近一次发生 AOLD 事件的 CycleCount	-
KKkk	发生 ASCD 事件的次数	-
LLll	最近一次发生 ASCD 事件的 CycleCount	-
MMmm	发生 ASCC 事件的次数	-
NNnn	最近一次发生 ASCC 事件的 CycleCount	-
0000	发生 OTC 事件的次数	-
PPpp	最近一次发生 OTC 事件的 CycleCount	-

表 22. Lifetime Block 2 列表

6.2.38 AltManufactureAccess() 0x0067 LiftimeDataBlock3

这个命令返回 AltManufactureAccess()或 MACData()上的第三个 Lifetime 数据块, 它是 26 个字节, 格式如下:

aa A Abb B B cc CC dd D Dee EEff F F gg G G hh H Hii II jj JJkk KKLLMMnn NN.

值	描述	单元
AAaa	发生 OTD 事件的次数	-
BBbb	最近一次发生 OTD 事件的 CycleCount	-
CCcc	发生 UTC 事件的次数	-
DDdd	最近一次发生 UTC 事件的 CycleCount	-
EEee	发生 UTD 事件的次数	-
FFff	最近一次发生 UTD 事件的 CycleCount	-
GGgg	发生 PTO 事件的次数	-
HHhh	最近一次发生 PTO 事件的 CycleCount	-
IIii	发生 CTO 事件的次数	-
JJjj	最近一次发生 CTO 事件的 CycleCount	-
KKkk	掉电的发生次数	-
LL	部分重置的发生次数	-
MM	完全重置的发生次数	-
NNnn	看门狗重置的发生次数	-

表 23. Lifetime Block 3 列表

6.2.39 AltManufactureAccess() 0x0070 ManufacturerInfo

这个命令返回制造商信息,这些信息存储在关于 AltManufactureAccess()或 MACData()的 Manuf. Info 中。

${\bf 6.2.40\,AltManufacture Access}()\,\, {\bf 0x0071\,\, DAS} tatus {\bf 1}$

该命令返回 AltManufactureAccess()或 MACData()上的电芯电压、Pack 电压、BAT 电压、电芯电流、电芯功率、功率和平均功率。数据以以下格式进行传输:

$aa AAbbBBccCCddDDeeEEffFFggGGhhHHiiIIjjJJkkKKllLL\ mmMMnnNNooOOppPP.$

值	描述	单位
AAaa	Cell1 电压	mV
BBbb	Cell2 电压	mV
CCcc	保留	-
DDdd	保留	-
EEee	BAT 电压. VC2 对 VSS 的电压	mV
FFff	Pack 电压	mV
GGgg	Cell1 电流	mA
HHhh	Cell2 电流	mA
IIii	保留	-
JJjj	保留	-
KKkk	Cell1 功率	cW
LLll	Cell2 功率	cW
MMmm	保留	-
NNnn	保留	-
0000	功率. 由 Voltage() × Current()计算得出	cW
PPpp	平均功率. 由 Voltage() ×AverageCurrent()计算得出	cW

表 24. DA Status 1 列表

6.2.41 AltManufactureAccess() 0x0072 DAStatus2

这个命令返回 AltManufactureAccess()或 MACData()上的内部温度、TS1 温度。数据以以下格式进行传输:

aaAAbbBBccCCddDDeeEEffFFggGG

值	描述	单位
AAaa	内部温度	0.1 K
BBbb	TS1 温度	0.1 K
CCcc	保留	-
DDdd	保留	-
EEee	保留	-
FFff	电芯温度	0.1 K
GGgg	保留	-

表 25. DA Status 2 列表

6.2.42 AltManufactureAccess() 0x0073 GaugeStatus1

该命令返回 32 字节的 Fusion Gauge rootfinding 信息,用于 AltManufactureAccess()或 MACData()上相关参数的算法分析,格式如下: aaAAbbBBccCCddDDeeEEffFFggGGhhHHiiIIjjJJkkKKllLLmmMMnnNNooOOppPP.

值	描述	单位
AAaa	GaugeUpdateIndex Fusion Gauge 算法 Rootfinding 仿真计算点	hex
BBbb	GaugeLodeSelect. Fusion Gauge 算法负荷电流配置	hex
CCcc	GaugeUpdateStatus. Fusion Gauge 算法 Rootfinding 仿真计算状态	hex
DDdd	RootfindingLoad. Fusion Gauge 算法 Rootfinding 仿真计算所用的负荷电流	mA
EEee	CellModelRatio[0]. Fusion Gauge 算法 Rootfinding 仿真计算所用的 Cell1 模型比例因子	hex
FFff	CellModelRatio[1]. Fusion Gauge 算法 Rootfinding 仿真计算所用的 Cell2 模型比例因子	hex
GGgg	CellModelRatioFull[0]. Fusion Gauge 算法 Rootfinding 仿真计算所用的 Cell1 全模型比例因子	hex
HHhh	CellModelRatioFull[1]. Fusion Gauge 算法 Rootfinding 仿真计算所用的 Cell1 全模型比例因子	hex
IIii	CellModelRatioEmpty[0]. Cell 1 empty model ratio for Fusion Gauge rootfinding simulation	hex
JJjj	CellModelRatioEmpty[1]. Cell 2 empty model ratio for Fusion Gauge rootfinding simulation	hex
KKkk	CellSOCEOC[0]. 电芯 1 充电结束时的电荷化学状态	hex
LLll	CellSOCEOC[1]. 电芯 2 充电结束时的电荷化学状态	hex
MMmm	CellSOCEOD[0]. 电芯 1 放电结束时的电荷化学状态	hex
NNnn	CellSOCEOD[1. 电芯 2 放电结束时的电荷化学状态	hex
0000	TrueQstart	mAh
PPpp	TrueEstart	cWh

表 26. Gauge Status 1 列表

6.2.43 AltManufactureAccess() 0x0074 GaugeStatus2

该命令返回 Fusion Gauge 的每秒处理信息,该信息为 32 字节,用于 ManufacturerBlockAccess()或 ManufacturerData()上相关参数的 算法分析,格式如下:

aa AAbbBBccCCddDDeeEEffFFggGGhhHHiiIIjjJJkkKKllLLmmMMnnNNooOOppPP.

值	描述	单位
AAaa	Fusion Gauge Status	hex
BBbb	HighRunTime. Fusion Gauge 运行时间,以小时为单位	hour
CCcc	RunTime. Fusion Gauge 运行时间,以秒为单位	Sec
DDdd	OCVFMTimer. OCV 以及 Fusion Model 更新所用的定时器	Sec
EEee	FastConvTimer. 放电状态下快速收敛算法所用的定时器	Sec

表27. Gauge Status 2列表

值	描述	单位
FFff	PassedCharge	mAh
GGgg	PassedEnergy	cWh
HHhh	Qstart	mAh
IIii	Estart	cWh
JJjj	CellSOC0[0]. 电芯 1 在 SOC 为 0 时的化学电荷状态	-
LLII	CellSOC0[1]. 电芯 2 在 SOC 为 0 时的化学电荷状态	-
KKkk	CellSOCCAL0[0]. 电芯 1 在 SOC 为 0 时的化学电荷状态计算值	-
MMmm	CellSOCCAL0[1]. 电芯 2 在 SOC 为 0 时的化学电荷状态计算值	-
NNnn	Charging Voltage backup value	mV
0000	Charging Current backup value	mA
PPpp	Taper Current backup value	mA

表27. Gauge Status 2 列表(续)

6.2.44 AltManufactureAccess() 0x0075 GaugeStatus3

该命令返回 32 字节的 Fusion Guage 模型信息,用于 AltManufactureAccess()或 MACData()上相关参数的算法分析,格式如下: aaAAbbBBCCDDeeEEffFFggGGhhHHiiIIjjJJkkKKllLLmmMMnnNNooOOppPPQQRR.

值	描述	单位
AAaa	Qmax 0. 电芯 1 的 Qmax 值	mAh
BBbb	Qmax 1. 电芯 2 的 Qmax 值	mAh
CC	FGStatus. Fusion Gauge 的更新状态	
DD	FilterFlag. 剩余容量计算的滤波标志	
EEee	FilterTime. 剩余容量计算的滤波时间	-
FFff	CellVoltEOC[0]. Cell1 充电结束时的电压	-
GGgg	CellVoltEOC[1]. Cell2 充电结束时的电压	Sec
HHhh	CURatEOC.充电结束时的电流	-
IIii	AVILR. 上次运行的平均电流	mV
JJjj	AVPLR. 上次运行的平均功率	mV
KKkk	LastRC.存于硬件寄存器上次剩余容量计算的值	mV
LLll	RCOffset. 存于硬件寄存器剩余容量计算的偏移值	mV
MMmm	InvalidPassedCharge	mA
NNnn	Qmax PassedCharge	mA
0000	LastCellSOC0[0]. 电芯 1 在 SOC 为 0 时的化学电荷状态	-
PPpp	LastCellSOC0[1]. 电芯 2 在 SOC 为 0 时的化学电荷状态	-
QQ	CellModelFlag[0]. 电芯 1 的 Fusion Gauge 模型标志	-
RR	CellModelFlag[1]. 电芯 2 的 Fusion Gauge 模型标志	-

表 28. Gauge Status 3 列表

6.2.45 AltManufactureAccess() 0x0076 CBStatus

这个命令返回 AltManufactureAccess()或 MACData()上的电芯平衡状态参数。格式如下:

aaAAbbBBccCCddDDeeEE

值	描述	单位
AAaa	Cell1BalanceTime	Sec
BBbb	Cell2BalanceTime	Sec
CCcc	Cell1BalanceSOC	-
DDdd	Cell2BalanceSOC	-
EEee	CellBalanceCapacity	mAh

表 29. CB Status 列表

6.2.46 AltManufactureAccess() 0x0077 State Of Health

这个命令返回 AltManufactureAccess()或 MACData()上的 State Of Health 容量参数。数据格式如下:

aaAAbbBB

值	描述	单位
AAaa	State-of-Health FCC	mAh
BBbb	State-of-Health FCE	cWh

表 30. State-Of-Health 列表

6.2.47 AltManufactureAccess() 0x0078 GaugeCapacityInfo

这个命令返回在 ManufacturerBlockAccess()或 ManufacturerData()上所有的 gauge 容量信息(32 字节),格式如下 aaAAbbBBccCCddDDeeEEffFFggGGhhHHiiIIjjJJkkKKllLLmmMMnnNNooOOppPP.

值	描述	单位
AAaa	True RC. Fusion Gauge 算法 Rootfinding 仿真计算获得的 Rootfinding 滤波后的真实剩余容量.	mAh
BBbb	True FCC. Fusion Gauge 算法 Rootfinding 仿真计算获得的 Rootfinding 滤波后的真实满充容量.	mAh
CCcc	True RE. Fusion Gauge 算法 Rootfinding 仿真计算获得的 Rootfinding 滤波后的真实剩余电能.	cWh
DDdd	True FCE. Fusion Gauge 算法 Rootfinding 仿真计算获得的 Rootfinding 滤波后的真实满充电能.	cWh
EEee	EquivalentRC. 等效剩余容量	mAh
FFff	EquivalentFCC. 等效满充容量	mAh
GGgg	EquivalentRE. 等效剩余电能.	cWh
HHhh	Equivalent FCE. 等效满充电能.	cWh
IIii	Raw RC. Fusion Gauge 算法 Rootfinding 仿真计算获得的未经滤波的原始剩余容量.	mAh
JJjj	Raw FCC. Fusion Gauge 算法 Rootfinding 仿真计算获得的未经滤波的原始满充容量.	mAh
KKkk	Raw RE. Fusion Gauge 算法 Rootfinding 仿真计算获得的未经滤波的原始剩余电能.	cWh
LLII	Raw FCE. Fusion Gauge 算法 Rootfinding 仿真计算获得的未经滤波的原始满充电能.	cWh
MMmm	State-of-Health FCC	mAh
NNnn	State-of-Health FCE	cWh
0000	保留	-
PPpp	保留	-

表 31. Gauge Capacity Info 列表

6.2.48 AltManufactureAccess() 0x0079 FusionModeInfo

这个命令返回 32 字节在 ManufacturerBlockAccess()或 ManufacturerData()上的 Fusion Model 信息,格式如下:

aa AAbbBBCCDDee EEffFFggGGhhHHIIJJkkKKllLLmmMMnnNNooOOppPPqqQQrrRR.

值	描述	单位
AAaa	QmaxStatus. Qmax 更新状态.	hex
BBbb	FG_Model_Status. Fusion Gauge 模型更新状态	hex
CC	FG_Run_State. Fusion Gauge 模型运行状态.	-
DD	保留	-
EEee	CycleCount_Model. 记录每一次 Fusion Model 更新对应的 CycleCount	-
FFff	CycleCount_Relax. 记录每一次进入 well-relax 对应的 CycleCount.	-
GGgg	CycleCount_Qmax. 记录每一次 Qmax 更新对应的 CycleCount	-
HHhh	CycleCount_Toggle.	-
II	CellModelFlag[0]. 电芯 1 的 Fusion Gauge 模型标志	-
JJ	CellModelFlag[1]. 电芯 2 的 Fusion Gauge 模型标志	-
KKkk	Tout. Fusion Gauge 算法 Rootfinding 仿真计算所用的环境温度	0.1 K
LLll	Told. Fusion Gauge 算法 Rootfinding 仿真计算所用的前次温度	0.1 K
MMmm	ThermalT. Fusion Gauge 算法 Rootfinding 仿真计算所用的热敏温度	0.1 K
NNnn	保留	-
OO00	保留	-
PPpp	保留	-
QQqq	保留	-
RRrr	保留	-

表 32. Fusion Model Info 列表

6.2.49 AltManufactureAccess() 0x007C OverChargeInfo

这个命令返回 AltManufactureAccess()或 MACData()上的 Over Charge Capcity 和 Over Charge Energy 参数。数据格式如下:

aaAAbbBB

值	描述	单位
AAaa	Over Charge Capcity.	hex
BBbb	Over Charge Energy.	hex

表 33. Over Charge Info 列表

7. Data Flash

本部分为 Dataflash 操作命令,包括读/写 Dataflash、参数配置。

7.1 访问Data Flash

当电池组电压高于 Flash Update OK Voltage 或充电电压高于 Charger Present 时,可以更新 Dataflash,但当 PFStatus()有旗标置位时 无法修改该参数。

不同的安全模式下, Dataflash 的访问权限有所不同。

安全模式	DATA FLASH 访问
全访问	R/W
解密	R/W
加密	N/A

表 33. Dataflash 访问

7.2 一级保护参数

SH366003支持电压、电流、温度等一系列一级保护。

7.2.1 电压参数

LT COV Threshold:低温区间电芯过电压触发阈值

LT COV Recovery:低温区间电芯过电压恢复阈值

ST COV Threshold: 标准温度区间电芯过电压触发阈值

ST COV Recovery:标准温度区间电芯过电压恢复阈值

RT COV Threshold: 推荐温度区间电芯过电压触发阈值

RT COV Recovery: 推荐温度区间电芯过电压恢复阈值

HT COV Threshold:高温区间电芯过电压触发阈值

HT COV Recovery: 高温区间电芯过电压恢复阈值

COV Time: 电芯过压保护时间阈值

CUV Threshold:欠压保护阈值

CUV Time:欠压保护时间阈值

CUV Recovery:欠压恢复阈值

7.2.2 电流参数

OCC Threshold:充电过流保护阈值

OCC Time: 充电过流保护时间

OCC Recovery:充电过流保护恢复阈值

OCC RecoveryTime: 充电过流保护恢复时间阈值

OCD Threshold: 放电过流保护阈值 OCD Time:放电过流保护时间阈值

OCD Recovery: 放电过流保护恢复阈值

OCD RecoveryTime: 放电过流保护恢复时间阈值

AOLD Threshold: AFE放电过载保护配置 配置 AFE 放电过载保护的阈值和延时

名称	位		描述							
		放电过载保护延时								
		Setting	Threshold	Setting	Threshold	Setting	Threshold	Setting	Threshold	
	7-4	0x00	1mS	0x04	9mS	0x08	17mS	0x0C	25mS	
	/-4	0x01	3mS	0x05	11mS	0x09	19mS	0x0D	27mS	
		0x02	5mS	0x06	13mS	0x0A	21mS	0x0E	29mS	
		0x03	7mS	0x07	15mS	0x0B	23mS	0x0F	31mS	
				放电过载位	保护阈值(Ope	erationCfgC[1	RSNSJ = 0)			
		Setting	Threshold	Setting	Threshold	Setting	Threshold	Setting	Threshold	
AOLD 阈值		0x00	-7.5mV	0x04	-17.5mV	0x08	-27.5mV	0x0C	-37.5mV	
NOLD MIL		0x01	-10.0mV	0x05	-20.0mV	0x09	-30.0mV	0x0D	-40.0mV	
		0x02	-12.5mV	0x06	-22.5mV	0x0A	-32.5mV	0x0E	-42.5mV	
	3-0	0x03	-15.0mV	0x07	-25.0mV	0x0B	-35.0mV	0x0F	-45.0mV	
	3-0	放电过载保护阈值(OperationCfgC[RSNS] = 1)								
		Setting	Threshold	Setting	Threshold	Setting	Threshold	Setting	Threshold	
		0x00	-15mV	0x04	-35mV	0x08	-55mV	0x0C	-75mV	
		0x01	-20mV	0x05	-40mV	0x09	-60mV	0x0D	-80mV	
		0x02	-25mV	0x06	-45mV	0x0A	-65mV	0x0E	-85mV	
		0x03	-30mV	0x07	-50mV	0x0B	-70mV	0x0F	-90mV	

表 34. AFE 过载保护寄存器

AOLD RecoveryTime: AFE放电过载保护恢复时间

ASCC Threshold: AFE充电短路配置 配置 AFE 充电短路阈值和延时

名称	位		描述							
			充电短路延时							
		Setting	Threshold	Setting	Threshold	Setting	Threshold	Setting	Threshold	
	7-4	0x00	0uS	0x04	244uS	0x08	488uS	0x0C	732uS	
	, -	0x01	61uS	0x05	305uS	0x09	549uS	0x0D	793uS	
		0x02	122uS	0x06	366uS	0x0A	610uS	0x0E	854uS	
		0x03	183uS	0x07	427uS	0x0B	671uS	0x0F	915uS	
ASCC 阈值	2-0	充电短路阈值(OperationCfgC[RSNS] = 0)								
ASCC 购阻		Setting	Threshold	Setting	Threshold	Setting	Threshold	Setting	Threshold	
		0x00	20mV	0x02	40mV	0x04	60mV	0x06	80mV	
		0x01	30mV	0x03	50mV	0x05	70mV	0x07	90mV	
				充电短距	路阈值(Opera	tionCfgC[RS	NSJ = 1)			
		Setting	Threshold	Setting	Threshold	Setting	Threshold	Setting	Threshold	
		0x00	40mV	0x02	80mV	0x04	120mV	0x06	160mV	
		0x01	60mV	0x03	100mV	0x05	140mV	0x07	180mV	

表 35. AFE 充电短路寄存器

ASCC RecoveryTime: AFE充电短路恢复时间

ASCD Threshold1:AFE放电短路1配置

配置 AFE 放电短路 1 阈值和延时

名称	位		描述						
		放电短路1延时(OperationCfgC[SCDDx2] = 0)							
		Setting	Threshold	Setting	Threshold	Setting	Threshold	Setting	Threshold
		0x00	0uS	0x04	244uS	0x08	488uS	0x0C	732uS
		0x01	61uS	0x05	305uS	0x09	549uS	0x0D	793uS
		0x02	122uS	0x06	366uS	0x0A	610uS	0x0E	854uS
	7-4	0x03	183uS	0x07	427uS	0x0B	671uS	0x0F	915uS
	/-4			放电短路	1延时(Operat	ionCfgC[SCI	DDx2J = 1		
		Setting	Threshold	Setting	Threshold	Setting	Threshold	Setting	Threshold
		0x00	0uS	0x04	488uS	0x08	976uS	0x0C	1464uS
ASCD 阈值		0x01	122uS	0x05	610uS	0x09	1098uS	0x0D	1586uS
ASCD 网但		0x02	244uS	0x06	732uS	0x0A	1220uS	0x0E	1708uS
		0x03	366uS	0x07	854uS	0x0B	1342uS	0x0F	1830uS
		放电短路1阈值(OperationCfgC[RSNS] = 0)							
		Setting	Threshold	Setting	Threshold	Setting	Threshold	Setting	Threshold
		0x00	-20mV	0x02	-40mV	0x04	-60mV	0x06	-80mV
	2.0	0x01	-30mV	0x03	-50mV	0x05	-70mV	0x07	-90mV
	2-0			放电短路	各1阈值(Opera	ationCfgC[RS	SNSJ = 1)		
		Setting	Threshold	Setting	Threshold	Setting	Threshold	Setting	Threshold
		0x00	-40mV	0x02	-80mV	0x04	-120mV	0x06	-160mV
		0x01	-60mV	0x03	-100mV	0x05	-140mV	0x07	-180mV

表 36.放电短路寄存器

ASCD Threshold2:AFE放电短路2配置

配置 AFE 放电短路 2 阈值和延时

名称	位				描	述				
		放电短路2延时(OperationCfgC[SCDDx2] = 0)								
		Setting	Threshold	Setting	Threshold	Setting	Threshold	Setting	Threshold	
		0x00	0uS	0x04	122uS	0x08	244uS	0x0C	366uS	
		0x01	31uS	0x05	153uS	0x09	275uS	0x0D	396uS	
		0x02	61uS	0x06	183uS	0x0A	305uS	0x0E	427uS	
	7-4	0x03	92uS	0x07	214uS	0x0B	335uS	0x0F	458uS	
	/-4	放电短路2延时(OperationCfgC[SCDDx2] = 1)								
		Setting	Threshold	Setting	Threshold	Setting	Threshold	Setting	Threshold	
		0x00	0uS	0x04	244uS	0x08	488uS	0x0C	732uS	
ACCD 阅估		0x01	61uS	0x05	305uS	0x09	549uS	0x0D	793uS	
ASCD 阈值		0x02	122uS	0x06	366uS	0x0A	610uS	0x0E	854uS	
		0x03	183uS	0x07	427uS	0x0B	671uS	0x0F	915uS	
		放电短路2阈值(OperationCfgC[RSNS] = 0)								
		Setting	Threshold	Setting	Threshold	Setting	Threshold	Setting	Threshold	
		0x00	-20mV	0x02	-40mV	0x04	-60mV	0x06	-80mV	
	2.0	0x01	-30mV	0x03	-50mV	0x05	-70mV	0x07	-90mV	
	2-0			放电短距	B2阈值(Opera	ationCfgC[RS	SNSJ = 1)			
		Setting	Threshold	Setting	Threshold	Setting	Threshold	Setting	Threshold	
		0x00	-40mV	0x02	-80mV	0x04	-120mV	0x06	-160mV	
		0x01	-60mV	0x03	-100mV	0x05	-140mV	0x07	-180mV	

表 37. AFE 放电短路 2 寄存器

ASCD RecoveryTime: AFE放电短路恢复时间阈值

7.2.3 温度参数

OTC Threshold:充电过温触发阈值

OTC Time: 充电过温延时

OTC Recovery: 充电过温恢复阈值 OTD Threshold: 放电过温触发阈值

OTD Time: 放电过温延时

OTD Recovery: 放电过温恢复阈值 UTC Threshold: 充电欠温触发阈值

UTC Time: 充电欠温延时

UTC Recovery:充电欠温恢复阈值 UTD Threshold: 放电欠温触发阈值

UTD Time: 放电欠温延时

UTD Recovery: 放电欠温恢复阈值

7.2.4 超时参数

PTO Charge Threshold:预充电超时电流阈值

PTO Suspend Threshold:预充电超时暂缓电流阈值

PTO Time: 预充电超时延时阈值

PTO Recovery: 预充电超时保护恢复阈值 CTO Charge Threshold: 充电超时电流阈值

CTO Suspend Threshold: 充电超时暂缓电流阈值

CTO Time: 充电超时延时阈值

CTO Recovery: 充电超时保护恢复阈值

7.3 二级保护参数

SH366003 支持电压、电流、温度、MOSFET 故障等一系列二级保护。

7.3.1 电压参数

SUV Threshold:安全欠压阈值 SUV Time:安全欠压时间阈值 SOV Threshold:安全过压阈值 SOV Time:安全过压时间阈值

VIMR Check Voltage: 静置模式电压平衡检查电压阈值 VIMR Check Current:静置模式电压平衡检查电流阈值 VIMR Delta Voltage:静置模式电压平衡触发电压差阈值 VIMR Delta Time: 静置模式电压平衡触发电压差延时

VIMR Current Time: 静置模式电压平衡电流检查时长 VIMA Check Voltage: 工作模式电压平衡检查电压阈值 VIMA Check Current:工作模式电压平衡检查电流阈值 VIMA Delta Voltage:工作模式电压平衡触发电压差阈值 VIMA Delta Time: 工作模式电压平衡触发电压差延时

7.3.2 FET 验证参数

CFET Fail Current: 充电MOSFET失效电流阈值

CFET Fail Time:充电MOSFET失效延时

DFET Fail Current:放电MOSFET失效电流阈值

DFET Fail Time:放电MOSFET失效延时

7.3.3 AFE 验证参数

AFE Fail Limit: AFE 失效计数器阈值

7.4 充电控制参数

SH366003 的充电控制主要由 JEITA 区间、充电暂缓控制、充电抑制控制、预充电控制、低温充电控制、标准温度(低)充电控制、推荐温度充电控制、标准温度(高)充电控制、高温充电控制、终止充电控制、平衡充电控制等组成。

7.4.1 充电 Cfg 参数

JT1:低温充电区间下限

JT2: 低温充电上限和标准温度(低)充电下限

JT5:标准温度(低)充电上限和推荐温度充电下限

JT6:推荐温度充电上限和标准温度(高)充电下限

JT3:标准温度(高)充电上限和高温充电区间下限

JT4:高温充电区间上限

Temp Hys:温度迟滞

LT Chg Voltage:低温 Charging Voltage()设定值

LT Chg Current1:低温 ChargingCurrent()设定值 1

LT Chg Current2: 低温 Charging Current()设定值 2

LT Chg Current3:低温 Charging Current()设定值 3

ST Chg Voltage: 标准温度 Charging Voltage() 设定值

ST Chg Current1:标准温度 Charging Current()设定值 1

ST Chg Current2:标准温度 Charging Current()设定值 2

ST Chg Current3:标准温度 Charging Current()设定值 3

RT Chg Voltage:推荐温度 Charging Voltage()设定值

RT Chg Current1:推荐温度 Charging Current()设定值 1

RT Chg Current2:推荐温度 Charging Current()设定值 2

RT Chg Current3:推荐温度 Charging Current()设定值 3

HT Chg Voltage:高温 Charging Voltage()设定值

HT Chg Current1: 高温 Charging Current()设定值 1

HT Chg Current2: 高温 Charging Current()设定值 2

HT Chg Current3: 高温 Charging Current()设定值 3

Pre Chg Current: 预充电 Charging Current()设定值

M Chg Current:涓流充电 Charging Current() 设定值

Pre Chg Start Voltage: 预充电开始电压阈值

Cell Voltage Threshold1:电芯电压区间阈值 1

Cell Voltage Threshold2:电芯电压区间阈值 2

Cell Voltage Threshold3:电芯电压区间阈值 3

Cell Voltage Thresh Hys:电芯电压区间阈值迟滞

7.4.2 充电终止 Cfg 参数

LT Taper Current:低温区间有效充电终止电流阈值

ST Taper Current:标准温度区间有效充电终止电流阈值

RT Taper Current:推荐温度区间有效充电终止电流阈值

HT Taper Current:高温区间有效充电终止电流阈值

Taper Voltage:有效充电终止电压阈值

Min Taper Capacity: 有效充电终止最小充电电量

Current Taper Window:有效充电终止检查时长

7.4.3 电芯平衡 Cfg 参数

Bal Time/mAh Cell1:电芯1平衡偏差阈值

Bal Time/mAh Cell2: 电芯2平衡偏差阈值

MinStartBalanceDelta: 电芯平衡时间再计算电压变化量阈值

RelaxBalanceInterval:电芯平衡时间再计算间隔时间

MinRSOCforBalancing:电芯平衡在静置模式启动RSOC阈值

7.5 SBS 配置参数

SBS配置包括标准数据和SBS子配置

7.5.1 数据参数

Init Mfg Status:最初的manufacturing状态

ManufacturingStatus()的默认值存储在这个变量中,并在SH366003初始化时复制到SBS

Init Discharge Set:最初的BTP设定放电容量阈值

BTPDischargeSet()的默认值存储在这个变量中,并在SH366003初始化时复制到SBS。

Init Charge Set:初始BTP设置充电容量阈值

BTPChargeSet()的默认值存储在这个变量中,并在SH366003初始化时复制到SBS。

Design Capacity:设计容量值

DesignCapacity()的默认值存储在此变量中,并在SH366003初始化时复制到SBS。

Design Energy:设计能量值 Design Voltage:设计电压值

CC Percentage:单次循环计数百分比阈值

Cycle count()计算单个周期内CCPercentage* DesginCapacity()值的累计放电量。

Cycle Count:循环计数值

CycleCount()的默认值存储在这个变量中,并在SH366003初始化时复制到SBS。SBS值发生更改时,也会更新此值。

Manufacture Date: manufacturer 日期

ManufacturerDate()的默认值存储在这个变量中,并在SH366003初始化时复制到SBS。

Serial Number:序列号

SerialNumber()的默认值存储在这个变量中,并在SH366003初始化时复制到SBS。

Device Chemistry: 设备化学构成

该函数的作用是:返回一个字符串,该字符串存储在这个值中。最大文本长度为4个字符。

Manuf Name: manufacturer 名称

该函数的作用是:返回一个字符串,该字符串存储在这个值中。最大文本长度为20个字符。

Device Name: 设备名字

函数的作用是:返回一个存储在该值中的字符串。最大文本长度为20个字符。

7.5.2 子配置参数

FC Set %: 满充旗标置位容量阈值

如果Operation cfgc [FCSETRSOC] = 1, RelativeStateOfCharge()达到或超过该值,则置位GaugingStatus()中的[FC]标志。

FC Clear %: 满充旗标清除容量阈值

如果RelativeStateOfCharge()下降到这个值以下,那么GaugingStatus()中的[FC]标志被清除。

TC Set %: 充电终止旗标置位容量阈值

如果操作cfgc [TCSETRSOC] = 1, RelativeStateOfCharge()达到或超过该值,则置位GaugingStatus()中的[TC]标志。

TC Clear %: 充电终止旗标清除容量阈值

如果RelativeStateOfCharge()下降到这个值以下,那么GaugingStatus()中的[TC]标志被清除。

FD Set %: 满放旗标置位容量阈值

如果RelativeStateOfCharge()达到或低于该值,则置位GaugingStatus()中的[FD]标志。

FD Clear %:满放旗标清除容量阈值

如果RelativeStateOfCharge()上升到这个值以上,那么GaugingStatus()中的[FD]标志被清除。

TD Set %:放电终止旗标置位容量阈值

如果RelativeStateOfCharge()达到或低于该值,则置位GaugingStatus()中的[TD]标志。

TD Clear %: 放电终止旗标清除容量阈值

如果RelativeStateOfCharge()上升到这个值以上,那么GaugingStatus()中的[TD]标志被清除。

7.6 Lifetimes参数

7.6.1 Lifetime 数据参数

Cell1 Max Voltage: 最大报告电芯电压 1
Cell2 Max Voltage: 最大报告电芯电压 2
Cell1 Min Voltage:最小报告电芯电压 1
Cell2 Min Voltage:最小报告电芯电压 2
Max Charge Current:最大报告放电电流
Max Discharge Current: 最小报告放电电流
Max Cell Temperature: 最大报告电芯温度
Min Cell Temperature: 最小报告电芯温度

No Of SSDF Events: 发生SafetyStatus()[SSDF]事件的次数

Last SSDF Event: 最近一次发生 SafetyStatus()[SSDF] 事件的CycleCount

No Of COV Events: 发生SafetyStatus()[COV]事件的次数

Last COV Event: 最近一次发生 SafetyStatus()[COV] 事件的CycleCount

No Of CUV Events: 发生SafetyStatus()[CUV]事件的次数

Last CUV Event: 最近一次发生 SafetyStatus()[CUV] 事件的CycleCount

No Of OCD Events: 发生SafetyStatus()[OCD]事件的次数

Last OCD Event: 最近一次发生 SafetyStatus()[OCD] 事件的CycleCount

No Of OCC Events: 发生SafetyStatus()[OCC]事件的次数

Last OCC Event: 最近一次发生 SafetyStatus()[OCC] 事件的CycleCount

No Of AOLD Events: 发生SafetyStatus()[AOLD]事件的次数

Last AOLD Event: 最近一次发生 SafetyStatus()[AOLD] 事件的CycleCount

No Of ASCD Events: 发生SafetyStatus()[ASCD]事件的次数

Last ASCD Event: 最近一次发生 SafetyStatus()[ASCD] 事件的CycleCount

No Of ASCC Events: 发生SafetyStatus()[ASCC]事件的次数

Last ASCC Event: 最近一次发生 SafetyStatus()[ASCC] 事件的CycleCount

No Of OTC Events: 发生SafetyStatus()[OTC]事件的次数

Last OTC Event: 最近一次发生 SafetyStatus()[OTC] 事件的CycleCount

No Of OTD Events: 发生SafetyStatus()[OTD]事件的次数

Last OTD Event: 最近一次发生 SafetyStatus()[OTD] 事件的CycleCount

No Of UTC Events: 发生SafetyStatus()[UTC]事件的次数

Last UTC Event: 最近一次发生 SafetyStatus()[UTC] 事件的CycleCount

No Of UTD Events: 发生SafetyStatus()[UTD]事件的次数

Last UTD Event: 最近一次发生 SafetyStatus()[UTD] 事件的CycleCount

No Of PTO Events: 发生SafetyStatus()[PTO]事件的次数

Last PTO Event:最近一次发生 SafetyStatus()[PTO] 事件的CycleCount

No Of CTO Events: 发生SafetyStatus()[CTO]事件的次数

Last CTO Event: 最近一次发生 SafetyStatus()[CTO] 事件的CycleCount

No Of 掉电s: 发生掉电事件的次数

7.7 系统数据参数

7.7.1 制造商信息参数

Manuf. Info: Manufacturer 信息模块

ManufacturerInfo()函数的作用是:返回这个变量中存储的字符串。最大文本长度为32个字符。

7.7.2 校验和参数

Static DF Checksum: 静态DF校验和。使用MACStaticDFChecksum()(置0MSB)来初始化该值

Static Chem DF Checksum: 静态化学DF校验和。使用MACStaticDFChecksum()(MSB置0)来初始化该值

All DF Checksum; 所以DF校验和。使用MACStaticDFChecksum()(置0MSB)来初始化该值

Static Safety DF Checksum: 静态安全DF校验和。使用MACStaticDFChecksum()(MSB置0)来初始化该值

7.8 配置参数

基于不同的应用场合可配置的参数如下:

7.8.1 寄存器参数

Operation Cfg A:操作配置寄存器A

Operation Cfg B:操作配置寄存器B

Operation Cfg C:操作配置寄存器C

这些寄存器启用、禁用或配置SH366003的各种特性。

名称	位	描述					
RSVD	15-11	保留					
IN_SYSTEM_SLEEP	10	在系统休眠模式 0 - 未使能 1 - 使能					
RSVD	9	H H					
CC0	8	配置SH366003电池包电芯串数 0-1串 1-2串					
RSVD	7	保留					
СТЕМР	6	定义SBS temperature()命令显示哪个温度传感器的输出 0 - 温度最大值 1 - 温度平均值					
SLEEP	5	使能 SH366003 进入休眠模式 0 - 未使能(默认) 1 - 使能					
RSVD	4	保留					
BTP_EN	3	使能 BTP 功能 0 - 未使能(默认) 1 - 使能.					
CUVRC	2	需要充电来恢复CUV保护 0 - 未使能(默认) 1 - 使能					
CBR	1	在静置时允许电芯平衡 0 - 未使能 (默认) 1 - 使能					
СВ	0	电芯平衡功能 0 - 未使能(默认) 1 - 使能					

表 38.操作配置寄存器 A

名称	位	描述				
RSVD	15-13	保留				
		使能快速SMBus模式				
NCSMB	12	0 - 正常(默认)				
		1 - 快速 SMBUS(提到400kHz)				
		使能: 休眠下开启充电FET				
SLEEPCHG	11	0 - 休眠时关闭充电 FET (默认)				
		1 – 休眠时开启充电 FET				
		当检测到有效的充电终止时,允许SH366003写入剩余容量= FullChargeCapacity。				
CSYNC	10	0-在有效的一次充电终止时,剩余容量不受影响				
		1 - 在有效的一次充电终止时,剩余容量被写入等于满充容量。(默认)				
RSVD	9-8	保留				
		使能 SH366003在充电暂缓模式关闭充电FET (和预充电 FET)				
CHGSU	7	0 - 在充电暂缓模式下没有FET改变。(默认)				
		1 - 在充电暂缓模式下充电 FET 和预充电 FET (如果用到) 关闭				
	启用或禁用FET对过温状况的反应。					
OTFET	6	0 - 当检测到过温状态时,没有FET动作。				
		1 - 当设置[OTC]标志时,充电FET关闭。当设置[OTD]标志时,放电FET关闭。				
		对有效的充电终止反应启用或禁用充电FET。				
CHGFET	5	0 - 充电终止保持充电FET开启				
		1 - 充电终止关闭充电FET				
		使能 SH366003在充电抑制模式关闭充电FET				
CHGIN	4	0 - 在充电抑制模式下没有FET改变。(默认)				
	1 - 在充电抑制模式下充电 FET 关闭					
RSVD	3-0	保留				

表 39.操作配置寄存器 B

名称	位	描述
		使能有效充电终止是置位FC旗标
FCSETVCT	15	0 - 未使能
		1 - 使能(默认)
		使能通过RSOC阈值置位FC旗标
FCSETRSOC	14	0 - 未使能(默认)
		1 - 使能
		使能有效充电终止是置位TC旗标
TCSETVCT	13	0 - 未使能
		1 - 使能(默认)
		使能通过RSOC阈值置位TC旗标
TCSETRSOC	12	0 - 未使能(默认)
		1 - 使能
RSVD	11-10	保留
		使能TS1传感器
TS1	9	0 - 未使能 TS1
		1 - 使能 TS1
		使能内部传感器
TSInt	8	0 - 未使能内部传感器
		1 - 使能内部传感器
RSVD	7	保留
		电流校准模式
CAILM	6	0- 单电流校准,需要在放电模式下校准电流
		1- 双电流校准,需要在充放电模式下各校准电流
2222	_	SCD延时加倍
SCDDx2	5	0-标准SCD 延时(默认)
		1-2倍标准SCD 延时 (# # T. P.
A CLUD	4	使能基于时间的关机功能
ASHIP	4	0 - 未使能(默认)
		1 - 使能
		配置SHA认证
SHA1:0	3-2	0, 0 - SHA1(默认) 1, 0 - SHA224
		1, 0 - SHA224 1, 1 - SHA256
		AOCD, SCC, SCD1, SCD2阈值
RSNS	1	AOCD, SCC, SCD1, SCD2國恒 0-标准 AFE保护阈值 / 2(默认)
CAICA	1	1-标准 AFE保护阈值 / 2(默认)
		配置充电终止时的充电显示。
RSOCL	0	配直尤电终止时的尤电驱办。 0- RelativeStateOfCharge()不锁定, RSOC=RC/FCC.
KSOCL	U	0- RelativeStateOfCharge()
		1- KelauveStateOjCnarge() 锁定住 99% 个文成 100% 且封兀电给正及生

表 40.操作配置寄存器 C

Protection Cfg A (Offset 6): 保护配置寄存器A

所有的保护项可以在这保护配置寄存器中启用或禁用。

名称	位	描述
RSVD	15-14	保留
OTD	13	放电过温 0 - 未使能(默认) 1 - 使能
OTC	12	充电过温 0 - 未使能(默认) 1 - 使能
RSVD	11-5	保留
OCD	4	放电过流 0 - 未使能(默认) 1 - 使能
RSVD	3	保留
OCC	2	充电过流 0 - 未使能(默认) 1 - 使能
COV	1	电芯过压 0 - 未使能(默认) 1 - 使能
CUV	0	电芯欠压 0 - 未使能(默认) 1 - 使能

表 41.保护配置寄存器 A

Protection Cfg B (Offset 8): 保护配置寄存器 B

所有的保护项可以在这保护配置寄存器中启用或禁用。

名称	位	描述
RSVD	15~12	保留
SSDF	13	静态安全DF校验和检测失败,关闭FET 0 - 未使能(默认) 1 - 使能
UTD	11	放电欠温 0 - 未使能(默认) 1 - 使能
UTC	10	充电欠温 0 - 未使能(默认) 1 - 使能
RSVD	9-5	保留
СТО	4	充电超时 0 - 未使能(默认) 1 - 使能
RSVD	3	保留
РТО	2	预充电超时 0 - 未使能(默认) 1 - 使能
RSVD	1-0	保留

表 42.保护配置寄存器 B

PF Enable Cfg A (Offset 10): PF 使能配置寄存器A

所有的PF能在这个PF使能配置寄存器中启用或禁用

名称	位	描述						
RSVD	15-13	保留						
VIMA	12	作状态电压失衡PF 未使能(默认) 使能						
VIMR	11	静置状态电压失衡PF 0 - 未使能(默认) 1 - 使能						
RSVD	10-2	保留						
SOV	1	安全过压PF旗标) - 未使能(默认) - 使能						
SUV	0	安全欠压PF旗标 0 - 未使能(默认) 1 - 使能						

表 43. PF 使能配置寄存器 A

PF Enable Cfg B (Offset 12): PF 使能配置寄存器B

所有的PF能在这个PF使能配置寄存器中启用或禁用

名称	位	描述
RSVD	15~6	保留
AFEC	5	AFE 通讯PF 0 - 未使能(默认) 1 - 使能
RSVD	4-2	保留
DFETF	1	放电FET失效PF 0 - 未使能(默认) 1 - 使能
CFETF	0	充电FET失效PF 0 - 未使能(默认) 1 - 使能

表 44. PF 使能配置寄存器 B

7.9 电源参数

7.9.1 电源参数

Flash Update OK Voltage:Dataflash更新允许最小PACK电压

如果电池组电压低于此阈值,将不启用flash更新。即使如此,如果检测到充电器,Dataflash更新将启用。

Shutdown Voltage:基于电压关机的电压阈值 Shutdown Time: 基于电压关机的延时触发时间

FET off Time: 进入关闭模式之前关闭MOSFET的延时。这个值不能大于Delay Time

Delay Time: 关闭MOSFETs后进入关闭模式的延时 **Auto Ship Time:** 休眠状态下基于时间关机的时间阈值

Auto Ship RSOC: 休眠状态下基于时间关机的RSOC阈值

Charger Present: 充电器当前电压阈值

当AFE的电池组引脚的电压超过这个阈值时,SH366003检测充电器。如果检测到充电器,它将屏蔽Flash Update OK电压功能并启用Dataflash更新。

Sleep Current: 进入休眠模式的电流阈值

Sleep Wait Time: 进入休眠模式的总线低电平或没有通讯的时间

Voltage Time:进入休眠模式的电压采样周期 Current Time:进入休眠模式的电流采样周期

Wake Current Reg:唤醒电流寄存器

唤醒电流寄存器可以配置电流阈值,通过基于下列寄存器的检测电压,可从休眠模式中唤醒 SH366003。

名称	位	描述
RSVD	7-3	保留
IWAKE	2	启用或禁用电流唤醒
RSNS1: RSNS0	1-0	唤醒电流阈值 0,0 - 0.6mV 0,1 - 1.2mV 1, 0 - 2.5mV 1, 1 - 0.3mV

表 45. 唤醒电流电寄存器

Term Voltage: 电池放电的终止电压

其值为单节电池终止电压*电池单元数。当电池电压下降到这个值时,RemainingCapcity()被设置为零。

7.10 Fusion Gauging参数

不同的应用场景应配置不同的 Fusion Gauging 参数。

7.10.1 配置参数

Load Slect:该数据表示电量计计算的电流 (Load Mode=0,恒流模式)或功率 (Load Mode=1,恒功率模式)的类型。当Load Select=3,Load Mode=0时,表示电量计计算的是恒流模式下的AverageCurrent()。

电量计量计算的电流或功率可以根据负载选择值从下面的列表中选择。

Setting	恒定电流模式	恒定功率模式
0	Average I Last Run	Average P Last Run
1	Present average discharge current	Present average discharge power
2	Current()	$Current() \times Voltage()$
3	AverageCurrent()	$AverageCurrent() \times AverageVoltage()$

Load Mode: SH366003: 如果Load Mode=0, 进入恒定电流模式(CC),如果Load Mode=1.进入恒定功率模式(CP)。

User Rate-mA:这是一个CC模式下的参数,单位为mA。该参数用于CC模式下充电开始时的电量计计算。默认值=0.5 C。

User Rate-mW: 这是一个CP模式下的参数,单位为mW。该参数用于CP模式下充电开始时的电量计计算。默认值= 0.5 C。

Reserve Cap-mAh: CC模式下的保留容量配置寄存器

Reserve Cap-mAh决定了在达到RemainingCapacity()之后,在Terminate Voltage到达之前,实际剩余容量存在多少。此寄存器仅在Load Mode设置为0时使用。

正常设置:此寄存器的默认值为0,即禁用此功能。这是该寄存器典型的设置。这个寄存器有特定应用场景,主要用于在达到既定的剩余容量后允许通过定时进行控制掉电。

Reserve Cap-mWh: CP模式下保留容量配置寄存器。

Reserve Cap-mWh决定了在达到RemainingCapacity()之后,在Terminate Voltage到达之前,实际剩余容量存在多少。此寄存器仅在Load Mode设置为1时使用。

正常设置:此寄存器的默认值为0,即禁用此功能。这是该寄存器典型的设置。这个寄存器有特定应用场景,主要用于在达到既定的剩余容量后允许通过定时进行控制掉电。

7.10.2 电流阈值参数

Dsg Current Threshold:有效放电电流阈值

当Current()≤负的Dsg Current Threshold时, SH366003从静置模式或充电模式进入放电模式

Chg Current Threshold: 有效充电电流阈值

当Current()≥Chg Current Threshold时,SH366003进入有效充电模式

Quit Current:静态电流阈值

Dsg Relax Time: 静置模式放电时间延时 Chg Relax Time: 静置模式充电时间延时

当Current()低于Quit Current一段时间后,SH366003从充电模式进入静置模式。如果Current()大于负的Quit Current持续Dsg Relax Time,则SH366003也从放电模式进入静置模式。

7.10.3 状态参数

Qmaxcell0: 电芯1的最大化学容量 Qmaxcell1: 电芯2的最大化学容量

SH366003估计Qcell 0...1复位后的初始电池组容量。

FG Status: 1字节的数据表示Fusion Guage算法在每个运行周期中的状态。

Bit 0=1: 在几个CHG-Relax-DSG循环之后, Fusion Gauge算法至少进行了一个循环

Bit 1=1: Qmax第一次更新完成

Bit 2. 3: 保留.

Bit 4-7: 如果电芯1-2对应的模型参数已经更新,则设置相应的位。

更多细节请参考MaxError()部分

7.10.4 更新状态参数

Qmax Cycle Count: Qmax更新时CycleCount()的记录值 Cell1 Voltage at EOC: Cell1电压在充电结束时的记录值 Cell2 Voltage at EOC: Cell2电压在充电结束时的记录值

Current at EOC: 电流在充电结束时的记录值 Avg I Last Run: 最后一个放电循环的平均电流值

Avg I Last Run: 最后一个放电循环的平均功率值 Max I Last Run: 最后一个放电循环的最大电流值 Max P Last Run: 最后一个放电循环的最大功率值

Design Cell Model: 设计的电池电量模型阈值

TRise: 热模型的因子

TTimeConstant: 热模型的因子

7.10.5 电量计模型参数

FM Cell Term Voltage:用于电量计模型更新容量的最小电芯电压.

Cell Term Voltage: 用于放电终止检查的最小电芯电压

Pack Term Delta Volt: 最小Pack电压增量 +终止电压 (用于电量计模型更新容量)

Over Chg Max RSOC: 退出RSOC保持100%功能的RSOC阈值 Over Chg Max Time: 退出RSOC保持100%功能的时间阈值.

7.10.6 待机参数

Init Standby Current: 备用电流初始值

StandbyCurrent()的默认值存储在这个变量中,并在SH366003初始化时复制到SBS。

7.10.7 最大负载参数

Init Max Load Current: 满载电流初始值

MaxLoadCurrent()的默认值存储在这个变量中,并在SH366003初始化时复制到SBS。

Max Load RSOC: 满载电流初始值

7.11 PF 状态参数

该类中的数据在PF事件发生时保存。

7.11.1 PF Data 参数

PF SafetyAlert A: PF事件发生时的安全警报(低字节) PF SafetyAlert B: PF事件发生时的安全警报(高字节) PF SafetyStatus A: PF事件发生时的安全状态(低字节) PF SafetyStatus B: PF事件发生时的安全状态(高字节)

PF PFAlert A: 事件发生时的PF警报(低字节) PF PFAlert B: 事件发生时的PF警报(高字节) PF PFStatus A:事件发生时的PF状态(低字节) PF PFStatus B: 事件发生时的PF状态(高字节)

PF OperationStatus A: 事件发生时的操作状态(低字节) PF OperationStatus B: PF事件发生时的操作状态(高字节)

PF TempRange: PF事件发生时的温度区间

PF ChargingStatus B: PF事件发生时的充电状态

PF GaugingStatus A:PF事件发生时的电量计状态A

PF GaugingStatus B: PF事件发生时的电量计状态B

PF Cell1 Voltage:PF事件发生时的电芯1电压 PF Cell2 Voltage:PF事件发生时的电芯2电压

PF BAT Voltage: PF事件发生时的电池电压 PF Pack Voltage: PF事件发生时的Pack电压

PF Current: PF事件发生时的电流

PF Int Temperature:PF事件发生时的内部温度

PF TS2 Temperature:PF事件发生时的外部TS1温度

PF AFEStatus: PF事件发生时的AFE状态寄存器数值

PF AFEOutputCtl:PF事件发生时的AFE输出控制寄存器数值

PF AFEFunctionCtl:PF事件发生时的AFE功能控制寄存器数值

PF AFE OLD:PF事件发生时的AFE放电过载配置数值

PF AFE SCC:PF事件发生时的AFE充电 短路配置数值

PF AFE SCD1:PF事件发生时的AFE放电短路1配置数值

PF AFE SCD2:PF事件发生时的AFE放电短路2配置数值

7.12 校准参数

下面列出的各种参数应该根据不同的应用程序进行不同的配置。

7.12.1 数据参数

CC Gain: 电量计的电流比例因子

该寄存器用于电流和电量反估计。不推荐手动修改。

CC Offset: 电量计偏移量

该寄存器用于包电流估计和电量计估计。不推荐手动修改。

Board Offset: PCB 独立电量计偏移量

该寄存器用于包电流估计和电量计估计。不推荐手动修改。

Cell1 Voltage Gain: 电芯 1 电压采集

该寄存器用于电芯1的电压估计。不推荐手动修改。

Cell2 Voltage Gain: 电芯 2 电压采集

该寄存器用于电芯2的电压估计。不推荐手动修改。

BAT Voltage Gain:BAT 电压采集

该寄存器用于电芯3的电压估计。不推荐手动修改。

PACK Voltage Gain:Pack 电压采

该寄存器用于 PACK 电压估计。不推荐手动修改。

Int Temp Offset: 内部温度补偿

该寄存器是温度传感器内部温度传感器的偏移补偿。不推荐手动修改。

Ext1 Temp Offset: TS1 温度补偿

该寄存器是外部温度传感器1的温度传感器偏移补偿。不推荐手动修改。

7.12.2 电流参数

Deadband: 电流检测阈值

当电流值没有超过这个阈值,SBS返回电流值0mA。

CC Deadband Reg: 电量计阈值

在CC Deadband Reg中已编程:电流不超过阈值时,电量计数器停止。在这个寄存器中,只有3、5、7和9这些值可以有效设置。

名称	位	描述
RSVD	7-2	保留
CTS1:CTS0		CC Deadband 电流阈值 0, 0 – 3mA 0, 1 – 5mA 1, 0 – 7mA 1, 1 – 9mA

NA	va	83.46	h	数据类	H	H 1 11.		V 10
类型	子类	偏移	名称	型	最小值	最大值	默认值	单位
1st protection	Voltage	0x4000	LT COV Threshold	U2	0	32767	4390	mV
1st protection	Voltage	0x4002	LT COV Recovery	U2	0	32767	4200	mV
1st protection	Voltage	0x4004	ST COV Threshold	U2	0	32767	4390	mV
1st protection	Voltage	0x4006	ST COV Recovery	U2	0	32767	4200	mV
1st protection	Voltage	0x4008	RT COV Threshold	U2	0	32767	4390	mV
1st protection	Voltage	0x400A	RT COV Recovery	U2	0	32767	4200	mV
1st protection	Voltage	0x400C	HT COV Threshold	U2	0	32767	4390	mV
1st protection	Voltage	0x400E	HT COV Recovery	U2	0	32767	4200	mV
1st protection	Voltage	0x4010	COV Time	U1	0	255	2	S
1st protection	Voltage	0x4011	CUV Threshold	U2	0	32767	2850	mV
1st protection	Voltage	0x4013	CUV Time	U1	0	255	2	S
1st protection	Voltage	0x4014	CUV Recovery	U2	0	32767	3000	mV
1st protection	Current	0x4016	OCC Threshold	I2	-32768	32767	3500	mA
1st protection	Current	0x4018	OCC Time	U1	0	255	4	S
1st protection	Current	0x4019	OCC Recovery	I2	-32768	32767	-200	mA
1st protection	Current	0x401B	OCC Recovery Time	U1	0	255	5	S
1st protection	Current	0x401C	OCD Threshold	I2	-32768	32767	-6000	mA
1st protection	Current	0x401E	OCD Time	U1	0	255	6	S
1st protection	Current	0x401F	OCD Recovery	I2	-32768	32767	200	mA
1st protection	Current	0x4021	OCD Recovery Time	U1	0	255	5	S
1st protection	Current	0x4022	AOLD Threshold	H1	0x00	0xFF	0x07	hex
1st protection	Current	0x4023	AOLD Recovery Time	U1	0	255	5	S
1st protection	Current	0x4024	ASCC Threshold	H1	0x00	0xff	0xf2	hex
1st protection	Current	0x4025	SCC Recovery Time	U1	0	255	5	S
1st protection	Current	0x4026	ASCD Threshold1	H1	0x00	0xff	0xf2	hex
1st protection	Current	0x4027	ASCD Threshold2	H1	0x00	0xff	0xf2	hex
1st protection	Current	0x4028	SCD Recovery Time	U1	0	255	5	S
1st protection	Temperature	0x4029	OTC Threshold	U2	2381	3931	3331	0.1 K
1st protection	Temperature	0x402B	OTC Time	U1	0	255	2	S
1st protection	Temperature	0x402C	OTC Recovery	U2	2381	3931	3231	0.1 K
1st protection	Temperature	0x402E	OTD Threshold	U2	2381	3931	3451	0.1 K
1st protection	Temperature	0x4030	OTD Time	U1	0	255	2	S
1st protection	Temperature	0x4031	OTD Recovery	U2	2381	3931	3331	0.1 K
1st protection	Temperature	0x4033	UTC Threshold	U2	2381	3931	2731	0.1 K
1st protection	Temperature	0x4035	UTC Time	U1	0	255	2	S
1st protection	Temperature	0x4036	UTC Recovery	U2	2381	3931	2781	0.1 K
1st protection	Temperature	0x4038	UTD Threshold	U2	2381	3931	2731	0.1 K
1st protection	Temperature	0x403A	UTD Time	U1	0	255	2	S
1st protection	Temperature	0x403B	UTD Recovery	U2	2381	3931	2781	0.1 K
1st protection	Time Out	0x403D	PTO Charge Threshold	I2	-32768	32767	2000	mA
1st protection	Time Out	0x403F	PTO Suspend Threshold	I2	-32768	32767	1800	mA
1st protection	Time Out	0x4041	PTO Time	U2	0	65535	1800	S
1st protection	Time Out	0x4043	PTO Recovery	U2	0	32767	2	mAh
1st protection	Time Out	0x4045	CTO Charge Threshold	I2	-32768	32767	2500	mA
1st protection	Time Out	0x4047	CTO Suspend Threshold	I2	-32768	32767	2000	mA
1st protection	Time Out	0x4049	CTO Time	U2	0	65535	54000	S
1st protection	Time Out	0x404B	CTO Recovery	U2	0	32767	2	mAh
2st protection	Voltage	0x404D	SUV Threshold	U2	0	32767	1500	mV
2st protection	Voltage	0x404F	SUV Time	U1	0	255	5	S
2st protection	Voltage	0x4050	SOV Threshold	U2	0	32767	4500	mV

表46. Dataflash 配置

类型	子类	偏移	名称	数据 类型	最小值	最大值	默认值	单位
2st protection	Voltage	0x4052	SOV Time	U1	0	255	5	S
2st protection	Voltage	0x4053	VIMR Check Voltage	U2	0	5000	3500	mV
2st protection	Voltage	0x4055	VIMR Check Current	I2	0	32767	10	mA
2st protection	Voltage	0x4057	VIMR Delta Voltage	U2	0	5000	500	mV
2st protection	Voltage	0x4059	VIMR Delta Time	U1	0	255	5	S
2st protection	Voltage	0x405A	VIMR Current Time	U2	0	65535	1800	S
2st protection	Voltage	0x405C	VIMA Check Voltage	U2	0	5000	3500	mV
2st protection	Voltage	0x405E	VIMA Check Current	I2	0	32767	20	mA
2st protection	Voltage	0x4060	VIMA Delta Voltage	U2	0	5000	500	mV
2st protection	Voltage	0x4062	VIMA Delta Time	U1	0	255	5	S
2st protection	FET Verification	0x4063	CFET Fail Current	I2	-32767	32767	50	mA
2st protection	FET Verification	0x4065	CFET Fail Time	U1	0	255	5	S
2st protection	FET Verification	0x4066	DFET Fail Current	I2	-32767	32767	-50	mA
2st protection	FET Verification	0x4068	DFET Fail Time	U1	0	255	5	S
2st protection	AFE Verification	0x4069	AFE Fail Limit	U1	0	255	10	-
Charge Control	Charge Cfg	0x406A	JT1	U2	2381	3931	2731	0.1 K
Charge Control	Charge Cfg	0x406C	JT2	U2	2381	3931	2781	0.1 K
Charge Control	Charge Cfg	0x406E	JT5	U2	2381	3931	2831	0.1 K
Charge Control	Charge Cfg	0x4070	JT6	U2	2381	3931	2931	0.1 K
Charge Control	Charge Cfg	0x4072	JT3	U2	2381	3931	3181	0.1 K
Charge Control	Charge Cfg	0x4074	JT4	U2	2381	3931	3231	0.1 K
Charge Control	Charge Cfg	0x4076	Temp Hys	U2	0	150	10	0.1 K
Charge Control	Charge Cfg	0x4078	LT Chg Voltage	U2	0	32767	4350	mV
Charge Control	Charge Cfg	0x407A	LT Chg Current1	U2	0	32767	256	mA
Charge Control	Charge Cfg	0x407C	LT Chg Current2	U2	0	32767	2320	mA
Charge Control	Charge Cfg	0x407E	LT Chg Current3	U2	0	32767	1450	mA
Charge Control	Charge Cfg	0x4080	ST Chg Voltage	U2	0	32767	4350	mV
Charge Control	Charge Cfg	0x4082	ST Chg Current1	U2	0	32767	256	mA
Charge Control	Charge Cfg	0x4084	ST Chg Current2	U2	0	32767	2320	mA
Charge Control	Charge Cfg	0x4086	ST Chg Current3	U2	0	32767	1450	mA
Charge Control	Charge Cfg	0x4088	RT Chg Voltage	U2	0	32767	4350	mV
Charge Control	Charge Cfg	0x408A	RT Chg Current1	U2	0	32767	256	mA
Charge Control	Charge Cfg	0x408C	RT Chg Current2	U2	0	32767	2320	mA
Charge Control	Charge Cfg	0x408E	RT Chg Current3	U2	0	32767	1450	mA
Charge Control	Charge Cfg	0x4090	HT Chg Voltage	U2	0	32767	4350	mV
Charge Control	Charge Cfg	0x4092	HT Chg Current1	U2	0	32767	256	mA
Charge Control	Charge Cfg	0x4094	HT Chg Current2	U2	0	32767	2320	mA
Charge Control	Charge Cfg	0x4096	HT Chg Current3	U2	0	32767	1450	mA
Charge Control	Charge Cfg	0x4098	Pre Chg Current	U2	0	32767	391	mA
Charge Control	Charge Cfg	0x409A	M Chg Current	U2	0	32767	195	mV
Charge Control	Charge Cfg	0x409C	Pre Chg Start Voltage	U2	0	32767	3100	mV
Charge Control	Charge Cfg	0x409E	Cell Voltage Threshold1	U2	0	32767	3000	mV
Charge Control	Charge Cfg	0x40A0	Cell Voltage Threshold2	U2	0	32767	3900	mV
Charge Control	Charge Cfg	0x40A2	Cell Voltage Threshold3	U2	0	32767	4150	mV
Charge Control	Charge Cfg	0x40A4	Cell Voltage Thresh Hys	U2	0	32767	0	mV
Charge Control	Termination Cfg	0x40A6	LT Taper Current	I2	0	32767	250	mA
Charge Control	Termination Cfg	0x40A8	ST Taper Current	I2	0	32767	250	mA
Charge Control	Termination Cfg	0x40AA	RT Taper Current	I2	0	32767	250	mA
Charge Control	Termination Cfg	0x40AC	HT Taper Current	I2	0	32767	250	mA
Charge Control	Termination Cfg	0x40AE	Taper Voltage	U2	0	32767	300	mV
Charge Control	Termination Cfg	0x40B0	Min Taper Capacity	U2	0	32767	900	mAs

表46. Dataflash 配置(续)

类型	子类	偏移	名称	数据 类型	最小值	最大值	默认值	单位
Charge Control	Termination Cfg	0x40B2	Current Taper Window	U1	0	255	40	S
Charge Control	Charge Cfg	0x40B3	Bal Time/mAh Cell1	U2	0	65535	680	s/mAh
Charge Control	Charge Cfg	0x40B5	Bal Time/mAh Cell2	U2	0	65535	700	s/mAh
Charge Control	Charge Cfg	0x40B7	Min Start Balance Delta	U1	0	255	3	mV
Charge Control	Charge Cfg	0x40B8	Relax Balance Interval	U4	0	429496 7295	18000	S
Charge Control	Charge Cfg	0x40BC	Min RSOC for Balancing	U1	0	100	80	%
SBS Configuration	Data	0x40BD	Init Mfg Status	H2	0x0000	0xffff	0x0000	hex
SBS Configuration	Data	0x40BF	Init Discharge Set	U2	0	32767	175	mAh
SBS Configuration	Data	0x40C1	Init Charge Set	U2	0	32767	150	mAh
SBS Configuration	Data	0x40C3	Design Capacity	U2	0	32767	2950	mAh
SBS Configuration	Data	0x40C5	Design Energy	U2	0	32767	3318	cWh
SBS Configuration	Data	0x40C7	Design Voltage	U2	0	32767	11250	mV
SBS Configuration	Data	0x40C9	CC Precentage	U1	0	100	90	%
SBS Configuration	Data	0x40CA	Cycle Count	U2	0	65535	0	num
SBS Configuration	Data	0x40CC	ManufactureDate	H2	0x0000	0xffff	0x0001	-
SBS Configuration	Data	0x40CE	Serial Number	U2	0	65535	0	date
SBS Configuration	Data	0x40D0	Device Chemistry	S5	-	-	LION	-
SBS Configuration	Data	0x40D5	Manuf Name	S21	-	-	Sinowealth	-
SBS Configuration	Data	0x40EA	Device Name	S21	-	-	SH366003	-
SBS Configuration	Configuration	0x40FF	FC Set %	U1	0	100	100	%
SBS Configuration	Configuration	0x4100	FC Clear %	U1	0	100	95	%
SBS Configuration	Configuration	0x4101	TC Set %	U1	0	100	100	%
SBS Configuration	Configuration	0x4102	TC Clear %	U1	0	100	95	%
SBS Configuration	Configuration	0x4103	FD Set %	U1	0	100	0	%
SBS Configuration	Configuration	0x4104	FD Clear %	U1	0	100	1	%
SBS Configuration	Configuration	0x4105	TD Set %	U1	0	100	0	%
SBS Configuration	Configuration	0x4106	TD Clear %	U1	0	100	1	%
System Data	Manufacturer Info	0x4259	Manufacturer Info A Length	U1	1	32	32	-
System Data	Manufacturer Info	0x425A	Manufacturer Info Block A01	H1	0x00	0xFF	30	hex
System Data	Manufacturer Info	0x425B	Manufacturer Info Block A02	H1	0x00	0xFF	31	hex
System Data	Manufacturer Info	0x425C	Manufacturer Info Block A03	H1	0x00	0xFF	32	hex
System Data	Manufacturer Info	0x425D	Manufacturer Info Block A04	H1	0x00	0xFF	33	hex
System Data	Manufacturer Info	0x425E	Manufacturer Info Block A05	H1	0x00	0xFF	34	hex
System Data	Manufacturer Info	0x425F	Manufacturer Info Block A06	H1	0x00	0xFF	35	hex
System Data	Manufacturer Info	0x4260	Manufacturer Info Block A07	H1	0x00	0xFF	36	hex
System Data	Manufacturer Info	0x4261	Manufacturer Info Block A08	H1	0x00	0xFF	37	hex
System Data	Manufacturer Info	0x4262	Manufacturer Info Block A09	H1	0x00	0xFF	38	hex
System Data	Manufacturer Info	0x4263	Manufacturer Info Block A10	H1	0x00	0xFF	39	hex
System Data	Manufacturer Info	0x4264	Manufacturer Info Block A11	H1	0x00	0xFF	41	hex
System Data	Manufacturer Info	0x4265	Manufacturer Info Block A12	H1	0x00	0xFF	42	hex
System Data	Manufacturer Info	0x4266	Manufacturer Info Block A13	H1	0x00	0xFF	43	hex
System Data	Manufacturer Info	0x4267	Manufacturer Info Block A14	H1	0x00	0xFF	44	hex
System Data	Manufacturer Info	0x4268	Manufacturer Info Block A15	H1	0x00	0xFF	45	hex
System Data	Manufacturer Info	0x4269	Manufacturer Info Block A16	H1	0x00	0xFF	46	hex
System Data	Manufacturer Info	0x426A	Manufacturer Info Block A17	H1	0x00	0xFF	46	hex
System Data	Manufacturer Info	0x426B	Manufacturer Info Block A18	H1	0x00	0xFF	45	hex
System Data	Manufacturer Info	0x426C	Manufacturer Info Block A19	H1	0x00	0xFF	44	hex
System Data	Manufacturer Info	0x426D	Manufacturer Info Block A20	H1	0x00	0xFF	43	hex
System Data	Manufacturer Info	0x426E	Manufacturer Info Block A21	H1	0x00	0xFF	42	hex
System Data	Manufacturer Info	0x426F	Manufacturer Info Block A22	H1	0x00	0xFF	41	hex

表46. Dataflash 配置 (续)

类型	子类	偏移	名称	数据 类型	最小值	最大值	默认值	单位
System Data	Manufacturer Info	0x4270	Manufacturer Info Block A23	H1	0x00	0xFF	39	hex
System Data	Manufacturer Info	0x4271	Manufacturer Info Block A24	H1	0x00	0xFF	38	hex
System Data	Manufacturer Info	0x4272	Manufacturer Info Block A25	H1	0x00	0xFF	37	hex
System Data	Manufacturer Info	0x4273	Manufacturer Info Block A26	H1	0x00	0xFF	36	hex
System Data	Manufacturer Info	0x4274	Manufacturer Info Block A27	H1	0x00	0xFF	35	hex
System Data	Manufacturer Info	0x4275	Manufacturer Info Block A28	H1	0x00	0xFF	34	hex
System Data	Manufacturer Info	0x4276	Manufacturer Info Block A29	H1	0x00	0xFF	33	hex
System Data	Manufacturer Info	0x4277	Manufacturer Info Block A30	H1	0x00	0xFF	32	hex
System Data	Manufacturer Info	0x4278	Manufacturer Info Block A31	H1	0x00	0xFF	31	hex
System Data	Manufacturer Info	0x4279	Manufacturer Info Block A32	H1	0x00	0xFF	30	hex
System Data	Integrity	0x427A	Static DF Checksum	H2	0x0000	0xffff	0x70A2	hex
System Data	Integrity	0x427C	Static Chem DF Checksum	H2	0x0000	0xffff	0x5DE2	hex
System Data	Integrity	0x427E	All DF Checksum	H2	0x0000	0xffff	0x0000	hex
Lifetimes	Lifetime Data	0x4282	Cell1 Max Voltage	U2	0	32767	0	mV
Lifetimes	Lifetime Data	0x4284	Cell2 Max Voltage	U2	0	32767	0	mV
Lifetimes	Lifetime Data	0x4286	Cell1 Min Voltage	U2	0	32767	32767	mV
Lifetimes	Lifetime Data	0x4288	Cell2 Min Voltage	U2	0	32767	32767	mV
Lifetimes	Lifetime Data	0x4286	Max Charge Current	I2	0	32767	0	mA
Lifetimes	Lifetime Data	0x4288	Max Discharge Current	I2	-32768	0	0	mA
Lifetimes	Lifetime Data	0x428A	Max CellTemperature	I1	-128	127	-128	°C
Lifetimes	Lifetime Data	0x428B	Min CellTemperature	I1	-128	127	127	°C
Lifetimes	Lifetime Data	0x4294	No Of COV Events	U2	0	65535	0	-
Lifetimes	Lifetime Data	0x4296	Last COV Events	U2	0	65535	0	-
Lifetimes	Lifetime Data	0x4298	No Of CUV Events	U2	0	65535	0	-
Lifetimes	Lifetime Data	0x429A	Last CUV Events	U2	0	65535	0	-
Lifetimes	Lifetime Data	0x429C	No Of OCD Events	U2	0	65535	0	-
Lifetimes	Lifetime Data	0x429E	Last OCD Events	U2	0	65535	0	-
Lifetimes	Lifetime Data	0x42A0	No Of OCC Events	U2	0	65535	0	-
Lifetimes	Lifetime Data	0x42A2	Last OCC Events	U2	0	65535	0	-
Lifetimes	Lifetime Data	0x42A4	No Of AOLD Events	U2	0	65535	0	-
Lifetimes	Lifetime Data	0x42A6	Last AOLD Events	U2	0	65535	0	-
Lifetimes	Lifetime Data	0x42A8	No Of ASCD Events	U2	0	65535	0	-
Lifetimes	Lifetime Data	0x42AA	Last ASCD Events	U2	0	65535	0	-
Lifetimes	Lifetime Data	0x42AC	No Of ASCC Events	U2	0	65535	0	-
Lifetimes	Lifetime Data	0x42AE	Last ASCC Events	U2	0	65535	0	-
Lifetimes	Lifetime Data	0x42B0	No Of OTC Events	U2	0	65535	0	-
Lifetimes	Lifetime Data	0x42B2	Last OTC Events	U2	0	65535	0	-
Lifetimes	Lifetime Data	0x42B4	No Of OTD Events	U2	0	65535	0	-
Lifetimes	Lifetime Data	0x42B6	Last OTD Events	U2	0	65535	0	-
Lifetimes	Lifetime Data	0x42B8	No Of UTC Events	U2	0	65535	0	-
Lifetimes	Lifetime Data	0x42BA	Last UTC Events	U2	0	65535	0	-
Lifetimes	Lifetime Data	0x42BC	No Of UTD Events	U2	0	65535	0	-
Lifetimes	Lifetime Data	0x42BE	Last UTD Events	U2	0	65535	0	-
Lifetimes	Lifetime Data	0x42C0	No Of PTO Events	U2	0	65535	0	-
Lifetimes	Lifetime Data	0x42C2	Last PTO Events	U2	0	65535	0	-
Lifetimes	Lifetime Data	0x42C4	No Of CTO Events	U2	0	65535	0	-
Lifetimes	Lifetime Data	0x42C6	Last CTO Events	U2	0	65535	0	-
Lifetimes	Lifetime Data	0x42C8	No Of Shutdown Events	U2	0	65535	0	_

表46. Dataflash 配置 (续)

类型	子类	偏移	名称	数据 类型	最小值	最大值	默认值	单位
Configuration	Registers	0x4107	Operation Cfg A	H2	0x0000	0xffff	0x0E31	hex
Configuration	Registers	0x4109	Operation Cfg B	H2	0x0000	0xffff	0x04F0	hex
Configuration	Registers	0x410B	Operation Cfg C	H2	0x0000	0xffff	0x0001	hex
Configuration	Registers	0x410D	Protection Cfg A	H2	0x0000	0xffff	0x0000	hex
Configuration	Registers	0x410F	Protection Cfg B	H2	0x0000	0xffff	0x0000	hex
Configuration	Registers	0x4111	PF Enable Cfg A	H2	0x0000	0xffff	0x0000	hex
Configuration	Registers	0x4113	PF Enable Cfg B	H2	0x0000	0xffff	0x0000	hex
Power	Power	0x4115	Flash Update OK Voltage	U2	2800	32767	7000	mV
Power	Power	0x4117	Shutdown Voltage	U2	0	32767	6500	mV
Power	Power	0x4119	Shutdown Time	U1	0	255	10	S
Power	Power	0x411A	FET off Time	U1	0	255	10	S
Power	Power	0x411B	Delay Time	U1	0	255	10	S
Power	Power	0x411C	Auto Ship Time	U2	0	65535	1440	Hrs
Power	Power	0x411E	Auto Ship RSOC	U1	0	100	20	%
Power	Power	0x411F	Charger Present	U2	0	32767	7000	mV
Power	Power	0x4121	Sleep Current	I2	0	32767	10	mA
Power	Power	0x4123	Sleep Wait Time	U1	0	255	5	S
Power	Power	0x4124	Voltage Time	U1	0	255	8	S
Power	Power	0x4125	Current Time	U1	0	255	20	S
Power	Power	0x4126	Wake Current Reg	H1	0x00	0xff	0x02	hex
Power	Power	0x4127	Term Voltage	U2	0	32767	9000	mV
Fusion Gauging	Configuration	0x443E	Load Select	U1	0	255	3	-
Fusion Gauging	Configuration	0x443F	Load Mode	U1	0	255	1	-
Fusion Gauging	Configuration	0x4440	UserRate-mA	U2	0	9000	2000	mA
Fusion Gauging	Configuration	0x4442	UserRate-mW	U2	0	32767	0	cW
Fusion Gauging	Configuration	0x4444	Reserve Cap-mAh	U2	0	9000	50	mAh
Fusion Gauging	Configuration	0x4446	Reserve Cap-mWh	U2	0	32000	56	cWh
Fusion Gauging	Current Thresholds	0x4448	Dsg Current Threshold	I2	-32768	32767	50	mA
Fusion Gauging	Current Thresholds	0x444A	Chg Current Threshold	I2	-32768	32767	50	mA
Fusion Gauging	Current Thresholds	0x444C	Quit Current	I2	-32768	32767	40	mA
Fusion Gauging	Current Thresholds	0x444E	Dsg Relax Time	U1	0	255	5	S
Fusion Gauging	Current Thresholds	0x444F	Chg Relax Time	U1	0	255	2	S
Fusion Gauging	Standby	0x4450	Init Standby Current	I2	-32768	0	-10	mA
Fusion Gauging	Max Load	0x4452	Init Max Load Current	I2	-32768	0	-500	mA
Fusion Gauging	Max Load	0x4454	Max Load RSOC	U1	0	100	50	%
Fusion Gauging	State	0x423E	QmaxCell0	U2	0	32767	2950	mAh
Fusion Gauging	State	0x4240	QmaxCell1	U2	0	32767	2950	mAh
Fusion Gauging	State	0x4242	FG Status	H1	0	0xff	0	hex
Fusion Gauging	Update States	0x4243	Qmax Cycle Count	U2	0	65536	0	-
Fusion Gauging	Update States	0x4245	Cell1 Voltage at EOC	U2	0	32767	4350	mV
Fusion Gauging	Update States	0x4247	Cell1 Voltage at EOC	U2	0	32767	4350	mV
Fusion Gauging	Update States	0x4249	Current at EOC	I2	-32768	32767	250	mA
Fusion Gauging	Update States	0x424B	Avg I Last Run	I2	-32768	32767	-816	mA
Fusion Gauging	Update States	0x424D	Avg P Last Run	I2	-32768	32767	-906	cW
Fusion Gauging	Update States	0x424F	Max I Last Run	I2	-32768	32767	-816	mA
Fusion Gauging	Update States	0x4251	Max P Last Run	I2	-32768	32767	-906	cW
Fusion Gauging	Update States	0x4253	Design Cell Model	I2	-32768	32767	0	-
Fusion Gauging	Update States	0x4255	TRise	U2	0	65536	100	-
Fusion Gauging	Update States	0x4257	TTimeConstant	U2	0	65536	50	-
Fusion Gauging	FG Model	0x47B8	FM Cell Term Voltage	U2	0	32767	2995	mV
Fusion Gauging	FG Model	0x47BA	Cell Term Voltage	U2	0	32767	3000	mV

表46. Dataflash配置(续)

类型	子类	偏移	名称	数据 类型	最小值	最大值	默认值	单位
Fusion Gauging	FG Model	0x47BC	Pack Term Delta Volt	U1	0	255	0	mV
Fusion Gauging	FG Model	0x47BD	Over Chg Max RSOC	U1	0	100	95	%
Fusion Gauging	FG Model	0x47BE	Over Chg Max Time	U2	0	65536	300	S
PF Status	PF Event Data	0x4455	PF SafetyAlert A	H2	0	0xffff	0	hex
PF Status	PF Event Data	0x4457	PF SafetyAlert B	H2	0	0xffff	0	hex
PF Status	PF Event Data	0x4459	PF SafetyStatus A	H2	0	0xffff	0	hex
PF Status	PF Event Data	0x445B	PF SafetyStatus B	H2	0	0xffff	0	hex
PF Status	PF Event Data	0x445D	PF PFAlert A	H2	0	0xffff	0	hex
PF Status	PF Event Data	0x445F	PF PFAlert B	H2	0	0xffff	0	hex
PF Status	PF Event Data	0x4461	PF PFStatus A	H2	0	0xffff	0	hex
PF Status	PF Event Data	0x4463	PF PFStatus B	H2	0	0xffff	0	hex
PF Status	PF Event Data	0x4465	PF OperationStatus A	H2	0	0xffff	0	hex
PF Status	PF Event Data	0x4467	PF OperationStatus B	H2	0	0xffff	0	hex
PF Status	PF Event Data	0x4469	PF TempRange	H2	0	0xffff	0	hex
PF Status	PF Event Data	0x446B	PF ChargingStatus	H2	0	0xffff	0	hex
PF Status	PF Event Data	0x446D	PF GaugingStatus A	H1	0	0xff	0	hex
PF Status	PF Event Data	0x446E	PF GaugingStatus B	H2	0	0xffff	0	hex
PF Status	PF Event Data	0x4470	PF Cell1 Voltage	U2	0	32767	0	mV
PF Status	PF Event Data	0x4472	PF Cell2 Voltage	U2	0	32767	0	mV
PF Status	PF Event Data	0x4474	PF BAT Voltage	U2	0	32767	0	mV
PF Status	PF Event Data	0x4476	PF Pack Voltage	U2	0	32767	0	mV
PF Status	PF Event Data	0x4478	PF Current	I2	-32768	32767	0	mA
PF Status	PF Event Data	0x447A	PF Int Temperature	U2	0	32767	0	0.1 K
PF Status	PF Event Data	0x447C	PF TS1 Temperature	U2	0	32767	0	0.1 K
PF Status	PF Event Data	0x447E	PF AFEStatus	H1	0	0xff	0	hex
PF Status	PF Event Data	0x447F	PF AFEOutputCtl	H1	0	0xff	0	hex
PF Status	PF Event Data	0x4480	PF AFEFunctionCtl	H1	0	0xff	0	hex
PF Status	PF Event Data	0x4481	PF AFE OLD	H1	0	0xff	0	hex
PF Status	PF Event Data	0x4482	PF AFE SCC	H1	0	0xff	0	hex
PF Status	PF Event Data	0x4483	PF AFE SCD1	H1	0	0xff	0	hex
PF Status	PF Event Data	0x4484	PF AFE SCD2	H1	0	0xff	0	hex
Calibrate	Data	0x47CC	CC Gain	F4	0.1	4	3.168335	-
Calibrate	Data	0x47D0	CC Offset	I2	-32768	32767	0	-
Calibrate	Data	0x47D2	Board Offset	I2	-32768	32767	0	-
Calibrate	Data	0x47D4	Cell1 Voltage Gain	U2	0	65535	16558	-
Calibrate	Data	0x47D6	Cell2 Voltage Gain	U2	0	65535	16543	-
Calibrate	Data	0x47D8	BAT Voltage Gain	U2	0	65535	16558	-
Calibrate	Data	0x47DA	Pack Voltage Gain	U2	0	65535	16543	-
Calibrate	Data	0x47DC	Int Temp Offset	I1	-128	127	0	0.1℃
Calibrate	Data	0x47DD	Ext1 Temp Offset	I1	-128	127	0	0.1℃
Calibrate	Current	0x47DE	Deadband	U1	0	255	5	mA
Calibrate	Current	0x47DF	CC Deadband Reg	H1	0	0x03	0x01	-

表46. Dataflash 配置 (续)

8. 低功耗模式

根据工作状态,SH366003包括两种不同的低功耗模式,休眠模式和掉电模式。

8.1 休眠模式

8.1.1 设备休眠

当满足休眠条件时,设备进入休眠模式,并定期唤醒,以减少功耗。如果满足任何退出休眠条件,设备将返回到正常模式。 在休眠模式,SH366003 周期性地测量电压,温度和电流和更新剩余容量(RemCap)。

休眠CHG	低功耗状态	进入休眠模式的条件	退出条件
0	关闭充电MOSFET 打开放电 MOSFET	1. Operation Cfg A 中[Sleep]置位 2. (Current() ≤ Sleep Current) 3. Voltage Time > 0 4. SafetyAlert()中没有旗标(PTOS, CTOS除外)置位 5. SafetyStatus()中没有[AOLD], [ASCC], [ASCD] 置位	
1	充放电MOSFET均开启	6.PFAlert() 中没有旗标置位 7. PFStatus()中没有旗标置位 8. OperationStatus[SDM] = 0 9. 在Operation Cfg A[IN_SYSTEM_SLEEP] = 0 时I2C总线拉低并持续Sleep Wait Time或在Operation Cfg A[IN_SYSTEM_SLEEP] = 1时连续休眠 Wait Time内没有通讯或收到ManufacturerAccess的 休眠 命令	任一条件不符合

表47. 休眠模式列表

8.1.2 在系统休眠模式

针对在休眠情景下串行通信线路通常保持高电平的嵌入式电池包系统,SH366003 提供了在系统休眠模式,该模式可配置 Operation Cfg A [IN_SYSTEM_SLEEP] = 1 使能。使能该模式可更改休眠模式的退出条件,即仅 I2C 通讯线连接时不会触发唤醒,而是需要接收一个有效的 I2C 命令时才触发唤醒。所有其他的休眠模式进入和退出标准条件不变(见表 47)。

8.2 掉电模式

8.2.1 基于电压进入掉电模式

为最大限度地减少功耗避免电池耗尽,SH366003设定一个可配电压阈值,当最小电芯电压小于该阈值时SH366003进入掉电模式。

状态	条件	动作
使能	Min cell voltage <shutdown td="" voltage<=""><td>OperationStatus[SDV] = 1</td></shutdown>	OperationStatus[SDV] = 1
触发	Min cell voltage< Shutdown Voltage 并持续 Shutdown Time	关闭放电 MOSFET
关闭	Voltage at Pack pin $<$ Charger Present \perp Current() \le 0	SH366003 进入掉电模式
退出	Voltage at Pack pin > V _{STARTUP} 或在非掉电模式下 Min cell voltage > Shutdown Voltage	OperationStatus[SDV] = 0 SH366003 恢复为正常模式

8.2.2 基于命令进入掉电模式

当 SH366003 收到 ManufacturerAccess()或 MACData()的掉电命令(0x0010)时,置位 OperationStatus() 中的[SDM];等待 FET Off Time 后关闭所有的 MOSFETs;之后如果 PackVoltage < Charger Present, 在等待 Delay Time 延时之后,SH366003 进入掉电模式使功耗降至最

低。如果 SH366003 处于加密模式,则该功能需要由 ManufacturerAccess()在 5 秒内连续发送两次命令。如果 SH366003 在两次接收关机命令之间或两次关机命令接收时间总计超过 5 秒,则取消掉电时序。当 pack 引脚电压> $V_{STARTUP}$ 时,SH366003 返回到正常模式,清除[SDM]旗标。

8.2.3 基于时间进入掉电模式

SH366003 可以配置在休眠模式下停留一段预设的时间间隔后进入掉电模式,该时间间隔对应配置参数为 *Auto Ship Time*。置位 *Operation Cfg C*[ASHIP] = 1 将启用该功能。当定时器达到 Auto Ship Time 且 RSOC \leq Auto Ship RSOC 时,基于定时的掉电功能会有效触发掉电命令并启动相关时序。在定时期间,任何休眠退出状态都会重新启动定时器。当 Pack 引脚电压> $V_{STARTUP}$ 时,SH366003 返回到正常模式。

9. 电气特性

9.1 绝对极限参数

		最小值	最大值	单位
电源电压区间, VCC	VC2、PBI	-0.3	30	V
	VC1、PACK	-0.3	30	V
	TS、SCL、SDA	-0.3	6	V
输入电压区间, VIN	VC2-VC1、VC1-VSS	-0.3	8.5	V
	SRN-SRP	-0.3	±1.8	V
输出电压区间	CHG、DSG	-0.3	32	V
工作温度区间		-40	85	°C
储存温度区间		-55	125	$^{\circ}\mathrm{C}$

9.2 DC特征参数

参数	特征值	最小值	典型值	最大值	单位	备注	
	主电源						
V_{VC2}/V_{VPACK}	工作电压	2.1		28	V		
V _{STARTUP}	启动电压			1.51	V		
V _{SWITCHOVER} -	VC2 到 PACK切换电压	2.0	2.1	2.2	V	V _{VC2} < V _{SWITCHOVER} -	
V _{SWITCHOVER+}	PACK 到 VC2切换电压	3.0	3.1	3.2	V	$V_{VC2} > V_{SWITCHOVER-} + V_{HYS}$	
V_{HYS}	切换电压迟滞		1000		mV	$V_{SWITCHOVER+} - V_{SWITCHOVER-}$	
I_{OP}	工作电流		250		uA		
I _{休眠}	休眠电流		108		uA	CHG ON, DSG ON	
1休眠	水岭电池		95		uA	CHG OFF,DSG ON	
$\mathbf{I}_{ eq \mathbf{e}}$	掉电电流		0.1		uA		
	电流	检测					
V_{CH}	电流检测阈值 (包含正负电流)	0.15	-	3.6	mV	TA = 25°C	
		0.15	0.3	0.45	mV	WAKEN=1, RSNS1:RSNS0=00B, TA = 25°C	
V	电流检测阈值精度	0.3	0.6	0.9	mV	WAKEN=1, RSNS1:RSNS0=01B TA = 25°C	
$ m V_{CH_ACR}$	巴 <u>机</u> 型	0.6	1.2	1.8	mV	WAKEN=1, RSNS1:RSNS0 =10B TA = 25°C	
		1.2	2.5	3.6	mV	WAKEN=1, RSNS1:RSNS0=11B, TA = 25°C	
V_{CH_TCO}	电流检测阈值热漂移	-	0.5	0.8	%/°C		
t_{WAKE}	电流检测唤醒时间	-	2	5	ms		

9.3 AC特征参数

参数	Characteristic	最小值	典型值	最大值	单位	备注
		主	电源		•	
f_{RC}	RC工作频率		4.194	±2%	MHz	
		I2C Stand	dard Mode	e		
f_{SMB}	I2C通讯频率	10		200	kHz	
t_{BUF}	停止和建立间的空闲时间	4.7			μs	
t_{LOW}	时钟低电平时间	4.7			μs	
t _{HIGH}	时钟高电平时间	4.0		50	μs	
t _{HD: DAT}	数据保持时间	300			ns	
t _{SU: DAT}	数据建立时间	250			ns	
t _{HD: STA}	起始保持时间	4.0			μs	
t _{SU: STA}	起始建立时间	4.7			μs	
t _{SU: STO}	停止建立时间	4.0			μs	
t_R	时钟/数据上升时间	-	-	1000	ns	$(V_{ILMAX} - 0.15V)$ to $(V_{IHMIN} + 0.15V)$
$t_{\rm F}$	时钟/数据下降时间			300	ns	$0.9V_{DD}$ to $(V_{ILMAX} - 0.15)$
t _{FREE}	时钟低电平释放时间		200		μs	
t _{TIMEOUT}	时钟/数据低电平超时时间	25		5000	ms	
		I2C Fa	st Mode			
f_{SMB}	I2C通讯频率	10		400	kHz	
$t_{ m BUF}$	停止和建立间的空闲时间	1.3			μs	
t_{LOW}	时钟低电平时间	1.3			μs	
t _{HIGH}	时钟高电平时间	0.6		50	μs	
t _{HD: DAT}	数据保持时间	0			ns	
	数据建立时间	150			ns	
t _{SU: DAT}	起始保持时间	0.6				
t _{HD: STA}	起始建立时间	0.6			μs	
t _{SU: STA}		0.6			μs	
t _{SU: STO}	停止建立时间			1000	μs	(A)
t _R	时钟/数据上升时间	-	-	1000	ns	$(V_{ILMAX} - 0.15V)$ to $(V_{IHMIN} + 0.15V)$
$t_{\rm F}$	时钟/数据下降时间			300	ns	$0.9V_{DD}$ to $(V_{ILMAX} - 0.15)$
t _{FREE}	时钟低电平释放时间		200		μs	
t _{TIMEOUT}	时钟/数据低电平超时时间	25		5000	ms	
			PIO			
V _{IL}	SCL,SDA, TS1	-0.3		0.6	V	
V _{IH}	SCL,SDA, TS1	0		0.4		I -7m A V -155V
V_{OL1}	SDA,SCL,TS1		DC	0.4	·	I_{OL} =7mA, V_{REG} =1.55V
D	ADC 输入电阻	A	8		ΜΩ	ADC Input Resistor
R _{AIN}	VC1-VSS或VC2-VC1输入电压	-0.2	٥	5	V	ADC Input Resistor
	VC2-VSS或 VC2-VC1 拥入电压 VC2-VSS或 PACK-VSS 输入电压	-0.2		20	V	
V_{in}	TS1 (NTC)	-0.2		1.55	V	1
	TS1	-0.2		5	V	
SRP-SRN	不同的输入电压	-0.06		0.06		SRP-SRN, SRN=AGND
		MO	SFET		1	
R_{BAL}	内部平衡电阻		200	300	Ω	$V_{VC2}-V_{VC1}>3V$, $V_{VC1}-V_{SS}>3V$
V _{DSGON}	放电 MOSFET开启电压	8.75	9.5	10.25	V	$V_{DSGON} = V_{DSG} - V_{PACK}$, 4.07 $V \le V_{PACK} < 18V$, VGS Resistor = 10M

SH366003 SBS Solution 用户指南

V _{CHGON}	充电MOSFET开启电压	8.75	9.5	10.25	V	$V_{CHGON} = V_{CHG} - V_{VC2}$, 4.07 $V \le V_{VC2} \le 18V$, VGS Resist = 10M
V_{DSGOFF}	放电 MOSFET关闭电压	-0.4	-	0.4	V	$V_{DSGOFF} = V_{DSG} - V_{PACK},$ $V_{PACK} = 14V$
V_{CHGOFF}	充电MOSFET关闭电压	-0.4	-	0.4	V	$V_{\text{CHGOFF}} = V_{\text{CHG}} - V_{\text{VC2}},$ $V_{\text{VC2}} = 14V$
t_R	CHG上升时间 (0% ->35% V _{CHG(ON)TYP})	-	200	500	μs	$C_L = 4700 \text{pF}$, VGS Resistor = 10M, $R_{CHG} = 5.1 \text{K}$
t_R	DSG上升时间 (0% ->35% V _{DSG(ON)TYP})	-	200	500		$C_L = 4700 \text{pF}$, VGS Resistor = 10M, $R_{DSG} = 5.1 \text{K}$
$t_{\rm F}$	CHG下降时间 (V _{CHG(ON)TYP} -> 0.5V)	-	40	200	μs	$C_L = 4700 pF$, V_{CHG} : V_{CHGON} $V_{BAT} + 1V$
t_{F}	DSG下降时间 (V _{DSG(ON)TYP} -> 0.5V)	-	40	200		$C_L = 4700 pF$, V_{DSG} : V_{DSGON} $V_{PACK} + 1V$

图10. I2C通讯示意图

10. 参考电路

77 V1.03

SH366003 1-串电芯典型参考电路

11. 订单信息

产品编号	封装	封装数量
SH366003R4/012R4Y	DFN12L	6000

12.产品结构信息

13. 标签信息

6003: SH366003

001: 00001

XXXXXXXX: Lot Number

14. 封装信息 (DFN12L)

DFN12L (4 X 2.5)(P0.40 T 0.75) 轮廓尺寸

单位: mm

SIDE VIEW

型号	毫米尺寸				
 4	MIN	MAX			
A	0.700	0.800			
A1	0.000	0.050			
A2	0.203	BTYP			
D	2.400	2.600			
E	3.900	4.100			
D1	2.500)TYP			
E1	2.000)TYP			
b	0.200TYP				
e	0.400TYP				
L1	0.400TYP				

15. 卷带信息 (DFN12L)

DFN12L (4*2.5)

单位: mm

Carrier Tape Dimensions

Reel Dimensions

*所有尺寸均为标称尺寸

A	2.8	为适应组件宽度而设计的尺寸
В	4.3	为适应组件长度而设计的尺寸
K	1.2	为适应组件厚度而设计的尺寸
Н	12	载带的总宽度
P	8	连续腔中心之间的间距
W	12.4	卷宽度
D	330	卷直径

16. 产品历史版本

SH366003 用户指南修订			
版本	内容	日期	
1.03	更新子指令0x007C 更新Flash Update OK Volatge参数范围	2022/01/05	
1.02	更正Manufacture Date和Serial Number参数地址 更正Operation Cfg C Register中 SHA功能配置	2021/12/09	
1.01	更正BTPDischargeSet、BTPChargeSet参数命名.	2021/11/23	
1.00	原版	2021/11/05	