Training versus Testing

Starfly starfly3119@gmail.com

Beihang University — February 16, 2020

Introduction

In this lecture, we want to modify M in the Hoeffding's Non-equation. In the first section, we find that learning is split to two central questions; in the second section, we find that for four inputs, we only have 14 different kinds of lines; in the third section, we have at most $m_H(N)$ through the eye of N inputs; in the fourth section, we give the definition of break point and we want to find that when $m_H(N)$ becomes 'non-exponential'

1 Recap and Preview

1.1 Recap

for batch & supervised binary classification,
$$g \approx f \iff E_{\text{out}}(g) \approx 0$$

$$\text{lecture 3} \qquad \text{lecture 1}$$

$$\text{achieved through } \underbrace{E_{\text{out}}(g) \approx E_{\text{in}}(g)}_{\text{lecture 4}} \quad \text{and} \quad \underbrace{E_{\text{in}}(g) \approx 0}_{\text{lecture 2}}$$

Learning split to two central questions:

- can we make sure that $E_{out}(g)$ is close enough to $E_{in}(g)$
- can we make $E_{in}(g)$ small enough?

1.2 Trade-off on M

Question 1

What role does |H| play for the two questions?

- 1 can we make sure that $E_{out}(g)$ is close enough to $E_{in}(g)$?
- 2 can we make $E_{in}(g)$ small enough?

small M

- Yes!,
 P[BAD] ≤ 2 ⋅ M ⋅ exp(...)
- No!, too few choices

large M

- Yes!, many choices

Using the right M (or H) is important, $M = \infty$ doomed?

1.3 Preview

Known

$$\mathbb{P}\left[\left|E_{\mathsf{in}}(g) - E_{\mathsf{out}}(g)\right| > \epsilon\right] \leq 2 \cdot \textcolor{red}{M} \cdot \exp\left(-2\epsilon^2 N\right)$$

Todo

establish a finite quantity that replaces M

$$\mathbb{P}\left[\left|E_{\mathsf{in}}(g) - E_{\mathsf{out}}(g)\right| > \epsilon\right] \stackrel{?}{\leq} 2 \cdot m_{\mathcal{H}} \cdot \exp\left(-2\epsilon^2 N\right)$$

- justify the feasibility of learning for infinite M
- study $m_{\mathcal{H}}$ to understand its trade-off for 'right' \mathcal{H} , just like M

mysterious PLA to be fully resolved after 3 more lectures :-)

2 Effective Number of Lines

2.1 Where Did M Come From?

$$\mathbb{P}\left[\left|E_{\mathsf{in}}(g) - E_{\mathsf{out}}(g)\right| > \epsilon\right] \leq 2 \cdot \textcolor{red}{\mathsf{M}} \cdot \exp\left(-2\epsilon^2 N\right)$$

- $\mathcal{B}AD$ events \mathcal{B}_m : $|E_{in}(h_m) E_{out}(h_m)| > \epsilon$
- to give ${\mathcal A}$ freedom of choice: bound ${\mathbb P}[{\mathcal B}_1 \text{ or } {\mathcal B}_2 \text{ or } \dots {\mathcal B}_M]$
- worst case: all B_m non-overlapping

$$\mathbb{P}[\mathcal{B}_1 \text{ or } \mathcal{B}_2 \text{ or } \dots \mathcal{B}_M] \leq \mathbb{P}[\mathcal{B}_1] + \mathbb{P}[\mathcal{B}_2] + \dots + \mathbb{P}[\mathcal{B}_M]$$
 union bound

Where did uniform bound fail to consider for $M = \infty$?

union bound
$$\mathbb{P}[\mathcal{B}_1] + \mathbb{P}[\mathcal{B}_2] + \ldots + \mathbb{P}[\mathcal{B}_M]$$

• $\mathcal{B}AD$ events \mathcal{B}_m : $|E_{\rm in}(h_m) - E_{\rm out}(h_m)| > \epsilon$ overlapping for similar hypotheses $h_1 \approx h_2$

- why? 1 $E_{\text{out}}(h_1) \approx E_{\text{out}}(h_2)$ 2 for most \mathcal{D} , $E_{\text{in}}(h_1) = E_{\text{in}}(h_2)$
- union bound over-estimating

To account for overlap, can we group similar hypotheses by kind?

2.2 How Many Lines Are There?

$$\mathcal{H} = \left\{ \text{all lines in } \mathbb{R}^2 \right\}$$

- how many lines? ∞
- how many kinds of lines if viewed from one input vector x₁?

2 kinds: h_1 -like(\mathbf{x}_1) = \circ or h_2 -like(\mathbf{x}_1) = \times

$$\mathcal{H} = \left\{ \text{all lines in } \mathbb{R}^2 \right\}$$

how many kinds of lines if viewed from two inputs x₁, x₂?

one input: 2; two inputs: 4; three inputs?

For three points, we have fewer than 8 (when degenerate)

2.3 Effective Number of Lines

maximum kinds of lines with respect to N inputs $\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_N$ \iff effective number of lines

- must be ≤ 2^N (why?)
- finite 'grouping' of infinitely-many lines $\in \mathcal{H}$
- · wish:

$$\mathbb{P}\left[\left|E_{\mathsf{in}}(g) - E_{\mathsf{out}}(g)\right| > \epsilon\right] \\ \leq 2 \cdot \frac{\mathsf{effective}(N)}{\mathsf{exp}\left(-2\epsilon^2 N\right)}$$

I	nes	in 2D	
	N effective(N		
	1	2	
	2	4	
	3	8	
	4	$14 < 2^N$	

if 1 effective(N) can replace M and 2 effective(N) $\ll 2^N$ learning possible with infinite lines :-)

3 Effective Number of Hypotheses

3.1 Dichotomies: Mini-hypotheses

$$\mathcal{H} = \{\text{hypothesis } h \colon \mathcal{X} \to \{\times, \circ\}\}$$

call

$$h(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N) = (h(\mathbf{x}_1), h(\mathbf{x}_2), \dots, h(\mathbf{x}_N)) \in \{\times, \circ\}^N$$

a **dichotomy**: hypothesis 'limited' to the eyes of $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N$

H(x₁, x₂,...,x_N):
 all dichotomies 'implemented' by H on x₁, x₂,...,x_N

	hypotheses ${\cal H}$	dichotomies $\mathcal{H}(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N)$	
e.g.	all lines in \mathbb{R}^2	{0000,000×,00××,}	
size	possibly infinite	upper bounded by 2 ^N	

 $|\mathcal{H}(\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_N)|$: candidate for **replacing** M

3.2 Growth Function

- |\(\mathcal{H}(\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_N)\)|: depend on inputs
 (\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_N)\)
- growth function: remove dependence by taking max of all possible (x₁, x₂,...,x_N)

$$m_{\mathcal{H}}(N) = \max_{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N \in \mathcal{X}} |\mathcal{H}(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N)|$$

finite, upper-bounded by 2^N

how to 'calculate' the growth function?

lines in 2D | N | $m_{\mathcal{H}}(N)$ | 1 | 2 | 2 | 4 | 3 | $\max(\dots, 6, 8)$ | = 8 | 4 | 14 < 2^N

3.2.1 Easy examples

Growth Function for Positive Rays

- ullet $\mathcal{X}=\mathbb{R}$ (one dimensional)
- \mathcal{H} contains h, where each h(x) = sign(x a) for threshold a
- · 'positive half' of 1D perceptrons

one dichotomy for $a \in \text{each spot } (x_n, x_{n+1})$:

$$m_{\mathcal{H}}(N) = N + 1$$

Growth Function for Positive Intervals

- $\mathcal{X} = \mathbb{R}$ (one dimensional)
- \mathcal{H} contains h, where each h(x) = +1 iff $x \in [\ell, r)$, -1 otherwise

one dichotomy for each 'interval kind'

$$m_{\mathcal{H}}(N) = \underbrace{\begin{pmatrix} N+1 \\ 2 \end{pmatrix}}_{\text{interval ends in } N+1 \text{ spots}} + \underbrace{1}_{\text{all } \times}_{\text{all } \times}$$

$$= \frac{1}{2}N^2 + \frac{1}{2}N + 1$$

$$(\frac{1}{2}N^2 + \frac{1}{2}N + 1) \ll 2^N$$
 when N large!

X ₁	X2	X3	X4
0	×2	×	×
0	0	×	×
0	0	0	×
0	0	0	0
×	0	×	×
×	0	0	×
×	0	0	0
×	×	0	×
X	×	0	0
×	×	×	0
×	×	×	×

- one possible set of N inputs:
 x₁, x₂,..., x_N on a big circle
- every dichotomy can be implemented by H using a convex region slightly extended from contour of positive inputs

$$m_{\mathcal{H}}(N) = 2^N$$

• call those N inputs 'shattered' by H

 $m_{\mathcal{H}}(N) = 2^N \iff$ exists N inputs that can be shattered

4 Break point

4.1 The Four Growth Functions

- positive rays:
- positive intervals:
- convex sets:
- 2D perceptrons:

$$m_{\mathcal{H}}(N) = N + 1$$

 $m_{\mathcal{H}}(N) = \frac{1}{2}N^2 + \frac{1}{2}N + 1$

 $m_{\mathcal{H}}(N)=2^N$

 $m_{\mathcal{H}}(N) < 2^N$ in some cases

what if $m_{\mathcal{H}}(N)$ replaces M?

$$\mathbb{P}\left[\left|E_{\mathsf{in}}(g) - E_{\mathsf{out}}(g)\right| > \epsilon\right] \stackrel{?}{\leq} 2 \cdot m_{\mathcal{H}}(N) \cdot \exp\left(-2\epsilon^2 N\right)$$

polynomial: good; exponential: bad

for 2D or general perceptrons, $m_{\mathcal{H}}(N)$ polynomial?

4.2 Break Point of H

what do we know about 2D perceptrons now?

three inputs: 'exists' shatter, four inputs, 'for all' no shatter

if no k inputs can be shattered by \mathcal{H} , call k a break point for \mathcal{H}

- $m_{\mathcal{H}}(k) < 2^k$
- k + 1, k + 2, k + 3, ... also break points!
- will study minimum break point k

2D perceptrons: break point at 4

The Four Break Points

positive intervals:

positive rays:

 $m_{\mathcal{H}}(N) = N + 1 = O(N)$

break point at 2

 $m_{\mathcal{H}}(N) = \frac{1}{2}N^2 + \frac{1}{2}N + 1 = \frac{O(N^2)}{1}$

break point at 3

convex sets: no break point $m_{\mathcal{H}}(N) = 2^N$

2D perceptrons:

 $m_{\mathcal{H}}(N) < 2^N$ in some cases

break point at 4

conjecture:

- no break point: $m_{\mathcal{H}}(N) = 2^N$ (sure!)
- break point k: $m_{\mathcal{H}}(N) = O(N^{k-1})$

Reference