Machine Learning

ITAM

Menu

- Instance based learning
 - K-nearest neighbors

- Well, really all methods use instances to learn
- The difference is that methods in this category store
 a subset of the training data rather than deriving an
 explicit representation of the objetive function
 - Linear function, decision tree, neural net,...

- This techniques memorize some examples and postpone generalization to the last moment. At predition time
 - They are known as lazy methods is CS since they leave the heavy computation until the last moment
- One advantage is that they can locally approximate an objective function
 - Useful when the global target can be properly approximated with a set of local approximations

- Algunas características
 - Son técnicas de aprendizaje supervisado i.e., los ejemplos con los que se entrena tiene asociado un valor de la función de evaluación
 - Estas técnicas funcionan bien tanto para problemas de regresión como de clasificación
 - Desventajas
 - Costo computacional en línea
 - Desempeño degradado si las instancias tienen muchos atributos irrelevantes (más sobre esto después)

k-Nearest Neighbors

- We will see one algorithm from this family k-nearest neighbors
 - Basic version
 - Distance weighed version

k-Nearest Neighbors Basic version

- Each instance is considered as a point in n-dimensional space \mathfrak{R}^n , where n is the number of attributes in each instance
- The objective function can be discrete or continuous (classification or regression)
- In discrete case, to classify instance x_q the algorithm selects its k nearest instances (which it saved during training) and assigns the most common class amongst them
 - $x_q = <1,0,0,1,1>$
 - Suppose the k=3 nearest neighbors are:
 - (<1,1,0,1,1>,Gato)
 - (<1,0,0,0,1>,Perro)
 - (<0,0,0,1,1>,Gato)
 - The classification for $x_q < 1,0,0,1,1 > will be Gato$

Example Classify x_q , with k=3

k-Nearest Neighbors Basic version

- In the continuos case, the average of the objective function values of x_q ´s k nearest instances are computed. For example, given
 - $x_q = <1,0,0,1,1>$
 - Assume the k=3 nearest neighbors are:
 - (<1,1,0,1,1>,1)
 - (<1,0,0,0,1>,2)
 - (<0,0,0,1,1>,1)
 - The output for <1,0,0,1,1> will be 4/3=1.3

Example x_q with k=3

k-Nearest Neighbors Basic version

- How close instances are is computed using some distance metric; for example Eulidean distance
 - The Euclidean distance between x_q and x_j is: distance(x_q, x_j)=Sqrt($\sum_{r=1,n} (a_r(x_q) - a_r(x_j))^2$)
 - -where $a_r(x_q)$ is the value of attribute r of instance x_q . The sum is over all n attributes

k-Nearest Neighbors Algorithm

Training:

- Store every instance (x, f(x))
- (some implementations might choose representatives)

Test:

- Given x_q as input
- Compute the distance between x_q and every stored instance
- Classification:
 - Let x_1 ... x_k be the k nearest neighbors to x_q
 - $V^{(x_q)}$ <--- Most common from $\{f(x_1), f(x_2)... f(x_k)\}$
- Regression:
 - $V^{(x_q) < -1/k} \sum_{i=1,k} f(x_i)$
 - The average value of the k nearest neighbors
 - Some implementations might use de median....

k-Nearest Neighbors Classification example

Data

Calif. Mate	Calif. Bio	Estudiante	dist. a Xq
8	8	Bueno	1
9	8	Bueno	1.41421356
7	9	Bueno	2.23606798
9	5	Malo	2.23606798
6	7	Malo	2
7	7	Malo	1

Classification x_q=(Calif.Mate=8,Calif.Bio=7)

3-mas cercano		
		Bueno
7	7	Malo
9	8	Bueno

x_q is classified as Bueno

k-Nearest Neighbors Regression

Datos

Calif. Mate	Calif. Bio	Estudiante	dist. a Xq
8	8	2	1
9	8	2	1.41421356
7	9	2	2.23606798
9	5	1	2.23606798
6	7	1	2
7	7	1	1

Clasificación

3-mas cercanos		Estudiante	
8	8		2
7	7		1
9	8		2

$$x_q$$
 tests as $5/3=1.6$

- One extension of the algorithm is to weigh the contributions of each neighbor by how close they are to x_q
 - The further away from x_q the less its influence
 - One possibility is to use the inverse squared distance to make the influence fall off quickly

k-Nearest Neighbors Weighed version

- We just need to modify the las line of the algorithm
- Classification
 - $f(x_q)<---$ Most common element of $\{w_1f(x_1), w_2f(x_2),..., w_kf(x_k)\}$ where $w_i=1/$ distancia $(x_q,x_i)^2$. Note that to determine the most common element all the w_i associated with the same $f(x_i)$ must be added
- Regression
 - $f(x_q) < -1/r \sum_{i=1,k} W_i f(x_i)$ where $r = \sum_{i=1,k} W_i$
- Note: If the distance between x_q y x_i is cero x_q is assigned the value of $f(x_i)$

k-Nearest Neighbors

Example

Data

Calif. Mate	Calif. Bio	Estudiante	dist. a Xq	
8	8	Bueno	2.01246118	
9	8	Bueno	1.80277564	
7	9	Bueno	3.38378486	
9	5	Malo	1.20415946	
6	7	Malo	3.00832179	
7	7	Malo	2.06155281	

Clasification x_q=(Calif.Mate=8.9, Calif.Bio=6.2)

3-mas cercano)S	dist. A Xq	wi	
8	8	2.012	0.24702679	bueno
9	8	1.802	0.30795725	bueno
9	5	1.204	0.68983786	malo

=	0.54(bueno)
	0.68(malo)

x_q es clasificado como malo

k-Nearest Neighbors

- Some characteristics
 - Robust to noisy data (with a large k)
 - Needs a lot of data
 - Slow to predict
 - Uses all attributes
 - This in contrast to decision trees
 - Problem: the curse of dimensionality

k-Nearest Neighbors Example of the curse

Data

Distancia	c3 de lluvia	Temp	Calif. Mate	Calif. Bio	Estudiante	dist. a Xq
500	50	25	8	8	Bueno	600.087494
1000	150	23	9	8	Bueno	148.667414
300	60	21	7	9	Bueno	800.255584
600	50	25	9	5	Malo	500.108988
300	100	23	6	7	Malo	802.249338
1500	40	21	7	7	Malo	400.00625

• Classification $x_q = (1100, 40, 23, 8, 7)$

3-mas cercano	os				
1000	150	23	9	8	Bueno
1500	40	21	7	7	Malo
600	50	25	9	5	Malo

 x_q is classified as Malo due to the new, irrelevant attributes (used to be classified as Bueno)

There is also a problem of scale. What to do?

k-Nearest Neighbors Curse of dimensionality

- Some possible solutions
 - Choose relevant attributes
 - "Subset selection"
 - "Principal components": Find a linear combination of the attributes
 - Information Gain: Similar to what we did for the tree
 - "Correlation Based Feature Selection": Determine correlation among attributes and between attributes and dependent variable s
 - Factor analysis,....many more

Exercise

- Generate a data set with many circles distributed in a plane. The points inside the circles belong to category "in" and the point outside to category "out"
- Compare with an SVM or Neural net (choose one)
 - Please not all of you SVM