Lab 6

Kristina Arevalo

Wed Apr 07 2021

Contents

Problem 1	2
Problem 1a	2
Problem 1b	2
Problem 2	2
Problem 3	3
Bonus Question 1	4
Bonus Question 2	5

Problem 1

Section 12.3.3 from your textbook refers to: The problem with replications of a meaningless experiment: 'alpha and the captain's age.' The issue here is that if you run an ineffectual experiment enough times you can always find a significant result by chance. The textbook mentions that if you repeat an experiment 20 times, you are guaranteed to find a significant result with .64 probability, and the probability is .92 if you repeat the experiment 50 times.

Problem 1a

Make use of the rbinom() function to show you can reproduce both probabilities. (1 point)

```
P1a <- replicate(10000, sum(rbinom(20,1,.05)))

length(P1a[P1a >0])/10000
```

[1] 0.6367

```
P1a2 <- replicate(10000, sum(rbinom(50,1,.05)))

length(P1a2[P1a2 >0])/10000
```

[1] 0.9236

Problem 1b

If the ineffectual experiment was conducted 20 times, and there were four groups, and the experimenter would accept a significant result from any of the orthogonal linear contrasts, what would be the probability of finding a significant result here? (1 point)

```
P1b <- replicate(10000, sum(rbinom(20,3,.05)))
length(P1b[P1b > 0])/10000
```

[1] 0.9533

Problem 2

The next two questions draw a connection to a technique we have not yet discussed called p-curve analysis (Simonsohn et al., 2014; Wallis, 1942). P-curve analysis is sometimes used for purposes of meta-analyses to determine whether there is "good" evidence for an effect in the literature.

Consider that a researcher publishes a study showing a significant effect, p < .05; but, in reality the researcher makes a type I error, and the manipulation did not cause any difference. If many other researchers replicated the study, what kind of p-values would they find? Use R to create a sampling distribution of p-values that would be expected in this situation. What shape does this distribution have? (2 points)

```
p_values <- replicate(10000, t.test(rnorm(20,0,1), rnorm(20,0,1), var.equal=TRUE)$p.value)
hist(p_values)
```

Histogram of p_values

The shape of the distribution is flat, there is an equal chance for any p-value to occur.

Problem 3

Now assume that the published result reflects a true effect. Specifically, let's imagine the study had two groups (between-subjects), with 20 subjects in each group. Assume that scores for subjects are all sampled from a normal distribution, and that group A has larger mean than group B by .5 standard deviations (e.g., Cohen's d=.5). If many other researchers replicated the study, what kind of p-values would they find? Use R to create a sampling distribution of p-values that would be expected in this situation. What shape does this distribution have? (2 points)

p3_values <- replicate(10000, t.test(rnorm(20,.5,1), rnorm(20,0,1),var.equal=TRUE)\$p.value) hist(p3 values)

The shape of this distribution is skewed right

Bonus Question 1

Same as #3, except that we now assume the design has four groups (between-subjects). Assume that group A has a mean that is .5 standard deviations larger than groups B, C, and D. Use R to create a sampling distribution of p-values that would be expected for the linear contrast evaluating the research hypothesis that A > B = C = D. (1 point)

```
bonus_pvalues <- c()

for(i in 1:1000){

    IV <- factor(rep(1:4,each=20))

    DV <- c(rnorm(20,.5,1), rnorm(20,0,1), rnorm(20,0,1))

bonus_data <- tibble(IV,DV)

c1 <- c(3,-1,-1,-1)

contrasts(bonus_data$IV) <- c1

bonus_aov <- aov(DV~IV,bonus_data)

save_results <- summary.aov(bonus_aov, split = list(IV=list("c1" = 1)))

bonus_pvalues[i] <- save_results[[1]]$`Pr(>F)`[2]
```

```
hist(bonus_pvalues)
```

Histogram of bonus_pvalues

Bonus Question 2

Consider a one-factor between subjects ANOVA with four groups. Run two simulations of the null-hypothesis, one for the omnibus test, and one for the specific linear contrast mentioned above A > B = C = D. Is the probability of rejecting a type I error (for rejecting the null with alpha < .05) the same for the omnibus test versus a specific contrast? (1 point)

```
omnibus_pvalues <- c()
contrast_pvalues <- c()

for(i in 1:1000){
    IV <- factor(rep(1:4,each=20))
    DV<- c(rnorm(20,0,1), rnorm(20,0,1), rnorm(20,0,1))

    bonus_data <- tibble(IV,DV)

    c1 <- c(3,-1,-1,-1)

    contrasts(bonus_data$IV) <- c1
```

```
bonus_aov <- aov(DV~IV,bonus_data)
save_results <- summary.aov(bonus_aov, split = list(IV=list("c1" = 1)))

omnibus_pvalues[i] <- save_results[[1]]$`Pr(>F)`[1]
contrast_pvalues[i] <- save_results[[1]]$`Pr(>F)`[2]
}

length(omnibus_pvalues[omnibus_pvalues < .05])/1000
```

[1] 0.053

```
length(contrast_pvalues[contrast_pvalues < .05])/1000
```

[1] 0.06

I'm not too sure if the probability of rejecting a type I error is the same for the omnibus or a contrast, the omnibus p-value is .041 and the contrast p value is .057 so I would think that its not the same? (not sure though because in the video you said they are the same)