

(2)

Answer (ii) 3

(Q6) For strings: $N_a(w)$ mod 4=0 $N_b(w)$ mod 5=0

For this > remainders are 0,1,0,3 => n=y

For this > remainders are 0,1,2,3,4 => m=5

... n * m = 20 > minimum number of states

Answer (i) 20

(Q7) Answer(iii) For every NFA there is a DFA and vice versa.

(Q8) L={λ, bbb..., abba, aba, a, aba...}

Answer (11) 3

- (Qq) (j (pq)+ => pq => belongs to mis X
 - (ii) (qp)* => qppq qppp => ::pqe(qp)* x
 - (iii) (p*q*) ⇒ pq ⇒ pq ∈ p*q* x
 - (iv) 9* p* => : p9 & 9* p*

[. Answer(iv)]

(ii)
$$(0+1)^*$$
 $(00(0+1)^*)$ 11 + 11 $(0+1)^*$ 0.0 $(0+1)^*$

(B) is the arow u choice

Answer (ii)

(This question is stullar to the previous one)

0 b 0 916 (C)		NFA :-
$(A) \longrightarrow (B) \longrightarrow (C)$	$(B) \xrightarrow{\alpha_{1} b} (C)$	(A) -

			a	Ь
DFA:	NFA table:-	-> A	Α	B, A
	NFA table:-	\mathcal{B}	C	C
		* C	φ	Ф

DFA: a b

A A A B

A B A A B

A B A A B

A B A A B B C

* A B C A B B C

* A B C A B B C

* A B C A B B C

$$\frac{\text{Q13}}{\text{(b)}} \begin{array}{c} \text{(a)} & \text{a (a+b)}^{*} \text{ a} \\ \text{(b)} & \text{l=d} \text{ a, aaa} \end{array}$$

(b)
$$l = d \ a, aaa \dots y \implies b^* (ab^*ab^*)^*ab^*$$

 $b^* (aa)^*ab^* \times$

(C)
$$L=dab$$
, $abab$, $baba$..., $bbaba$... 3
 $(b+ab)^{+}(a+\lambda) + (a+\lambda)(b+ba)^{+}$

DFA:

>1 digit

(B) Variable name in c;

Grantstart winn number Granty A-2, a-2 and underscore

(C) Number une exponential form

L=d 1.54e-10, 1.54e+10, 1e10 ... 3

Reger > \d*\.?\d* e[+*-]?\d+

(D) A relational expression consisting of 4 operator.

Regex => (expression)[>x>=<=!](expression)

(B)
$$\rightarrow (S) \xrightarrow{\{A-2, \alpha-2, -\}} (Az, \alpha-2, -, 0-9)$$

$$(A-Z,Q-Z,-)$$

$$(C)$$

$$(A-Z,Q-Z,-)$$

$$(C)$$

(0)
$$\frac{(1,2)}{(1,2)}$$
 $\frac{(1,2)}{(1,2)}$ $\frac{(1,2$

- (A) Variable Declaration in a Longhage: -
- int a or int a, b, c...

 List obid's separated by a wma.
- Cfu: D → Type list

 List → id. | List, id

 Type → int | front | doubte | char | thort |

 booreon
- (B) Pause inta, b;

(C) Ib-lise loop generation:if condition then
statement
erse

Starinert

S if wonder then S |

S else S | a statement y

(6)

- S if condn then else SI distaturent &
- (D) (a) $S \rightarrow S1 \mid S2$ $S1 \rightarrow a S1 bb \mid S|b \mid b$ $S2 \rightarrow a S2 bb \mid aS2 \mid a$
- (b) 5→ asbbbls1 51 → abbb

(917) 7 Ambiguous Grammar - A grammor is ambiguous when there exists a string w that belongs to the grammar and mell exists 2 different left most derivations on 2 right most derivations for the Strung (ie two different paise trees) EXIBI Σ= { +, *, 1, -, (), vac, %, constant, ^3 E > E+E| E * E | E | E | E - E | (E) | E°10 E | Eurorant | vaulië ^ E Here w = a + b * c Secondway: - E E * E | | (c) (a) | (b) (c) if wonder men (A) Dangung-else problem: charlestate If wonder then statement G Wammar: else statement S) if worden than S I if worden destatement & S -> A | Estatement } A -) if wonds then S | if wonds then S else S ENE if x=0 then if y=0 then z=1 else w=2 Parse Tree-1 If cond then S = $\frac{1}{1}$ else S | $\frac{1}{1}$ (x==0) (y==0) (z=1) ($\frac{1}{1}$ = 2)

(918) What is a sentence ? What is a sentential form ?

tn:

EX: S -> asblbsalsslA

w = abba

S - as b s and sentential form.

S - ab 6sa form.

4 this is sentence

Sentential form =) is any string derivable from the start symbol. Sentential form E (VUT) *

Sentence =) in a sentential form Consists only of terminals.

- (Q19) what are the afferent parsing techniques?
- Parsing Techniques: -
 - 1 Top down paising
 - (1) Bottom up parsing
 - 3 universal parsing

$$Q = \{ 1, 2, 3, 4, 5, 6, 73 \}$$

 $\Sigma = \{ a, b \}$
 $F = \{ 2, 3, 4, 73 \}$
 $\{ 0 = \{ 1 \} \}$

NFA	tran	silien	table
	a	Ь	

		-	
	a	Ь	and a peach
1	2	5	state 8 = 1 lad state
2	8	3	3100
3	8	4	
4	8	8	
5	6	8	
6	7	8	
7	8	8	
8	\mathcal{S}	8	

Equivalent DFA: -

Method to convert NFA to DFA = subset Construction memod

wortext Free wammar (21)

- Lexical rules are difficult un case of context free grammar.

- Notations are compusate understand.

- Dufficult to contract the recog. nizer.

Regular Expressions

- lexical rules are quite simple in come of Regular Expressions.

- Notations are easy to understand.

- Used to construct efficient rewgnizer.

(22) A: Unaubgi Unaubiguous aranmer.

E -> E + T | E - T | T T -> T * F | T/F | F F 7 M 1 F 1 M M - (E) / Id I NUM w = a+b * c

$$E \mapsto T + T$$

$$\Rightarrow T + T$$

$$\Rightarrow F + T$$

$$\Rightarrow M + T$$

$$\Rightarrow A + T$$

$$\Rightarrow A + M \times D$$

$$\Rightarrow A + D \times C$$

(A) A w mod
$$3 = 0$$
 and w mod $2 = 1$

$$3 = 3$$

$$3 = 0$$

$$2 = 0$$

2	3	Binary	perimal
0	0	0000	0
	1	0001	1
1	2	0010	2
١	0	0011	3
0	1	0100	4
1	2	0 101	8
0	0	0110	6
1	1	0111	7
,	多		

murge

(23)(C) Exactly 3 a's and more man 4 b's

(b)
$$S \rightarrow 15 \mid 105 \mid 0A$$

 $A \rightarrow 0B$
 $B \rightarrow 1C$
 $C \rightarrow 10 \mid \lambda$
 $D \rightarrow 010 \mid 100 \mid \lambda$

(a)
$$00110 = 14$$

(c) (b) $13 \rightarrow 001101$

(c) 00101·13

(RS) (A) (A)
$$(4)$$
 (4) (4) (4) (4) (4) (4) (4) (4) (5) (5) (5) (6) (6) (6) (7)

sentential forms

$$b, c)$$
 $13 = 001101$