Fractal Renormalization of the Fine-Structure Constant in the T0-Theory

Verification of Calculations with Error Analysis

Based on the Derivation by Johann Pascher

Anonymous Reviewer

Based on the Work of Johann Pascher, 2025

September 2025

Abstract

This document verifies the calculations of the fine-structure constant $\alpha \approx 1/137.036$ in the T0-Theory, based on the geometric constant $\xi = \frac{4}{3} \times 10^{-4}$, the characteristic energy $E_0 = 7.398 \,\mathrm{MeV}$, and the fractal dimension $D_f = 2.94$. Three methods are analyzed: the elementary derivation, the direct geometric calculation (Path 1), and the fractal renormalization (Path 2). Each calculation is accompanied by a note on whether it is correct or contains errors, with a detailed analysis of the issues.

Contents

1	Intr	roduction: The Significance of α in T0-Theory	4
	1.1	The Fine-Structure Constant as a Fundamental Enigma	4
	1.2	The Revolutionary Approach of T0-Theory	4
2	The	Fractal Dimension $D_x = 2.94$ - Fundamental Basis	4
2		e Fractal Dimension $D_f = 2.94$ - Fundamental Basis Geometric Origin of the Fractal Dimension	-

	2.2	Role of the Fractal Dimension in Quantum Field Theory	6	
		2.2.1 Why Exactly $D_f = 2.94$?	6	
3	Two	Equivalent Paths to the Fine-Structure Constant	6	
	3.1	Path 1: Direct Geometric Calculation from ξ and D_f	6	
		3.1.1 Effective Cutoffs from ξ -Geometry	6	
		3.1.2 Direct Calculation of α^{-1}	7	
	3.2	Path 2: Via Characteristic Energy E_0 and Fractal Renormalization	7	
		3.2.1 Characteristic Energy from Particle Masses	7	
		3.2.2 Fractal Renormalization	7	
	3.3	Equivalence of Both Paths	8	
4	Leg	citimacy of UV/IR Cutoffs in T0 Renormalization	8	
5	The	e Fractal Damping Factor	8	
	5.1	Role of the Fractal Dimension	8	
	5.2	Why Exactly $D_f - 2$? The Mathematical Justification	9	
		5.2.1 Dimensional Analysis of the Fundamental Loop Integral	9	
		5.2.2 Special Cases and Their Physical Significance	9	
	5.3	Numerical Calculation of the Damping Factor	10	
6	Connection to the Casimir Effect			
	6.1	Fractal Vacuum Energy and Casimir Force	10	
	6.2	Experimental Implications of the Fractal Casimir Effect	11	
7	Ren	normalized Coupling and Higher Orders	11	
	7.1	First Order: Direct Renormalization	11	
	7.2	Higher Orders: Geometric Series Summation	11	
8	Physical Interpretation and Experimental Confirmation			
	8.1	The Significance of α as a Ratio of Measurable Quantities	12	
		8.1.1 Atomic Length Scales	12	
		8.1.2 Velocity Ratios	12	
		8.1.3 Energy Ratios	12	
	8.2	Experimental Determinations of α	12	
	8.3	The Revolutionary Significance of the T0-Derivation	13	

9	The	Deeper Meaning: Why Exactly 137?	13
	9.1	The Number 137 in Mathematics	13
	9.2	The Geometric Necessity	13
	9.3	Connection to Information Theory	14
10	Deta	ailed Calculations of the Fine-Structure Constant	14
	10.1	Numerical Verification of T0-Predictions	14
		10.1.1 Basic Constants of T0-Theory	14
	10.2	Path 1: Detailed Direct Geometric Calculation	14
		10.2.1 UV/IR Cutoff Ratio	14
		10.2.2 Logarithmic Terms and Approximation	14
		10.2.3 Step-by-Step Calculation of α^{-1}	15
	10.3	Path 2: Detailed Fractal Renormalization	15
		10.3.1 Fractal Correction	15
		10.3.2 Fractal Damping Factor	15
		10.3.3 Numerical Evaluation of the Fractal Correction	16
		10.3.4 Final Result Path 2	16
	10.4	Comparison with Experimental Values	16
	10.5	Numerical Consistency Check	16
		10.5.1 Equivalence of Both Calculation Paths	16
		10.5.2 Accuracy Analysis	17
11	Sum	mary and Outlook	17
	11.1	Main Results	17
	11.2	Conclusion: Between Elegance and Scientific Honesty	17
		11.2.1 Two Paths, Different Scientific Standards	17
12	Cor	rection of the Fine-Structure Constant Calculation	17
	12.1	The Essential Point:	18
		12.1.1 How to calculate correctly:	18
		12.1.2 Why one MUST NOT cancel to $\xi^{11/2}$:	18
		12.1.3 The crucial point:	18
		12.1.4 Critical Evaluation of Methodological Approaches	18
		12.1.5 The Danger of the $\xi^{11/2}$ Fallacy	18
		12.1.6 Scientific-Theoretical Classification	19

1 Introduction

The T0-Theory derives the fine-structure constant $\alpha \approx 1/137.036$ from geometric principles. This document verifies the calculations and highlights errors in the formulas for Path 1 and Path 2. The elementary derivation is identified as the most robust method.

2 Fundamental Constants of the T0-Theory

The fundamental parameters are:

$$\xi = \frac{4}{3} \times 10^{-4} \approx 1.333 \times 10^{-4},\tag{1}$$

$$E_0 = 7.398 \,\mathrm{MeV},$$
 (2)

$$D_f = 2.94, \quad D_f^{-1} = \frac{1}{2.94} \approx 0.340136.$$
 (3)

3 Elementary Derivation: $\alpha = \xi \cdot \frac{E_0^2}{(1 \, \text{MeV})^2}$

3.1 Calculation

The simplest derivation is:

$$\alpha = \xi \cdot \frac{E_0^2}{(1 \,\mathrm{MeV})^2}.\tag{4}$$

With $\xi = 1.333 \times 10^{-4}$, $E_0 = 7.398$ MeV:

$$E_0^2 = (7.398)^2 \approx 54.7296 \,\text{MeV}^2,$$
 (5)

$$\frac{E_0^2}{(1\,\text{MeV})^2} = 54.7296,\tag{6}$$

$$\alpha = 1.333 \times 10^{-4} \times 54.7296 \approx 0.007297,$$
 (7)

$$\alpha^{-1} \approx \frac{1}{0.007297} \approx 137.0.$$
 (8)

3.2 Error Analysis

Correctness

The calculation is **correct** and yields $\alpha^{-1} \approx 137.0$, which deviates by only 0.026% from the experimental value $\alpha^{-1} \approx 137.036$. The formula is dimensionally consistent and uses only two measurable parameters (ξ, E_0) . The error of simplifying to $\alpha \propto \xi^{11/2}$ is avoided, as E_0 is an independent parameter.

4 Path 1: Direct Geometric Calculation

4.1 Calculation

The formula is:

$$\alpha^{-1} = 3\pi \times \frac{3}{4} \times 10^4 \times \ln(10^4) \times D_f^{-1} = 137.036, \tag{9}$$

with $\ln(10^4) \approx 9.210$, $D_f^{-1} \approx 0.340136$.

Step-by-step:

$$3\pi \approx 9.4248,\tag{10}$$

$$3\pi \times \frac{3}{4} = 9.4248 \times 0.75 \approx 7.0686,\tag{11}$$

$$7.0686 \times 10^4 = 70686, \tag{12}$$

$$70686 \times 9.2104 \approx 651019.3,\tag{13}$$

$$\alpha^{-1} \approx 651019.3 \times 0.340136 \approx 221291.7.$$
 (14)

4.2 Error Analysis

Error

The calculation is **incorrect**. The computed value $\alpha^{-1} \approx 221291.7$ is far from 137.036. The factor 10^4 appears to be erroneous. Testing with 10^{-4} yields:

$$7.0686\times 10^{-4}\times 9.2104\times 0.340136\approx 0.02214,$$

$$\alpha^{-1}\approx\frac{1}{0.02214}\approx45.17,$$

which is also incorrect. The formula or coefficients (e.g., 10^4) are likely misdefined.

5 Path 2: Fractal Renormalization

5.1 Calculation

The formula is:

$$\alpha^{-1} = 1 + \Delta_{\text{frac}},\tag{15}$$

$$\Delta_{\text{frac}} = \frac{3}{4\pi} \times \xi^{-2} \times D_{\text{frac}}^{-1},\tag{16}$$

$$D_{\text{frac}} = \left(\frac{\lambda_C^{(\mu)}}{\ell_P}\right)^{D_f - 2},\tag{17}$$

with $D_f = 2.94$, $\xi = \frac{4}{3} \times 10^{-4}$, and $\alpha^{-1} = 137.0$.

1. **Fractal Damping Factor**:

$$\lambda_C^{(\mu)} \approx \frac{1.973 \times 10^{-13}}{105.66} \approx 1.867 \times 10^{-15} \,\mathrm{m},$$
 (18)

$$\ell_P \approx 1.616 \times 10^{-35} \,\mathrm{m},\tag{19}$$

$$\frac{\lambda_C^{(\mu)}}{\ell_P} \approx 1.155 \times 10^{20},$$
 (20)

$$D_{\text{frac}} = (1.155 \times 10^{20})^{0.94} \approx 6.93 \times 10^{18},$$
 (21)

$$D_{\text{frac}}^{-1} \approx \frac{1}{6.93 \times 10^{18}} \approx 1.443 \times 10^{-19}.$$
 (22)

2. **Fractal Correction**:

$$\xi^{-2} = (7500)^2 = 5.625 \times 10^7, \tag{23}$$

$$\frac{3}{4\pi} \approx 0.23873,$$
 (24)

$$\Delta_{\text{frac}} \approx 0.23873 \times 5.625 \times 10^7 \times 1.443 \times 10^{-19} \approx 1.938 \times 10^{-12},$$
 (25)

$$\alpha^{-1} \approx 1 + 1.938 \times 10^{-12} \approx 1. \tag{26}$$

5.2 Error Analysis

Error

The calculation is **incorrect**. The fractal correction yields $\Delta_{\rm frac} \approx 1.938 \times 10^{-12}$, not 136 as stated in the original document. Thus, $\alpha^{-1} \approx 1$, far from 137.0. The error likely lies in the definition of $\Delta_{\rm frac}$ or the values used for $D_{\rm frac}$. Even using $D_{\rm frac} = 6.7 \times 10^{18}$ (as in the original) does not yield the correct result.

6 Avoiding the Fallacy of $\alpha \propto \xi^{11/2}$

6.1 Calculation

An incorrect simplification would be:

$$\xi = 1.333 \times 10^{-4},\tag{27}$$

$$\xi^{11/2} = (1.333 \times 10^{-4})^{5.5} \approx 2.34 \times 10^{-21},$$
 (28)

$$\alpha^{-1} \sim \frac{1}{2.34 \times 10^{-21}} \approx 10^{21}.$$
 (29)

6.2 Error Analysis

Error

This simplification is **incorrect**. It ignores the physical significance of $E_0 = 7.398 \,\text{MeV}$ as a measurable parameter (geometric mean of electron and muon masses). The correct formula $\alpha = \xi \cdot \frac{E_0^2}{(1 \,\text{MeV})^2}$ respects dimensions and yields the correct result.

7 Summary

Summary

- 1. **Elementary Derivation**: $\alpha = \xi \cdot \frac{E_0^2}{(1\,\text{MeV})^2}$ is correct and yields $\alpha^{-1} \approx 137.0$, with only 0.026% deviation from the experimental value.
- 2. Path 1: The direct geometric calculation is incorrect, yielding $\alpha^{-1} \approx 221291.7$. The factor 10^4 is likely erroneous.
- 3. **Path 2**: The fractal renormalization is incorrect, as $\Delta_{\rm frac} \approx 10^{-12}$ instead of 136, leading to $\alpha^{-1} \approx 1$.
- 4. Fallacy of $\xi^{11/2}$: This simplification is dimensionally incorrect and leads to absurd results ($\alpha^{-1} \sim 10^{21}$).
- 5. The elementary derivation is the most robust method, being transparent, dimensionally correct, and close to the experimental value.