

Performance Analysis and Tuning – Part 2

D. John Shakshober (Shak)
Sr Consulting Eng / Director Performance Engineering

Larry Woodman
Senior Consulting Engineer / Kernel VM

Jeremy Eder Principal Software Engineer/ Performance Engineering

Agenda: Performance Analysis Tuning Part II

- Part I
 - RHEL Evolution 5->6->7 out-of-the-box tuned for Clouds "tuned"
 - Auto_NUMA_Balance tuned for NonUniform Memory Access (NUMA)
 - Cgroups / Containers
 - Scalabilty Scheduler tunables
 - Transparent Hugepages, Static Hugepages 4K/2MB/1GB
- Part II
 - Disk and Filesystem IO Throughput-performance
 - Network Performance and Latency-performance
 - System Performance/Tools perf, tuna, systemtap, performance-co-pilot

Disk I/O in RHEL

RHEL "tuned" package

Available profiles:

- balanced
- desktop
- latency-performance
- network-latency
- network-throughput
- throughput-performance
- virtual-guest
- virtual-host

Current active profile: throughput-performance

Tuned: Profile throughput-performance

throughput-performance

```
governor=performance
energy_perf_bias=performance
min_perf_pct=100
readahead=4096
kernel.sched_min_granularity_ns = 10000000
kernel.sched_wakeup_granularity_ns = 15000000
vm.dirty_background_ratio = 10
vm.swappiness=10
```


I/O Tuning – Understanding I/O Elevators

- Deadline new RHEL7 default for all profiles
 - Two queues per device, one for read and one for writes
 - I/Os dispatched based on time spent in queue
- CFQ used for system disks off SATA/SAS controllers
 - Per process queue
 - Each process queue gets fixed time slice (based on process priority)
- NOOP used for high-end SSDs (Fusion IO etc)
 - FIFO
 - Simple I/O Merging
 - Lowest CPU Cost

lozone Performance Effect of TUNED EXT4/XFS/GFS

RHEL7 RC 3.10-111 File System In Cache Performance

RHEL7 3.10-111 File System Out of Cache Performance

SAS Application on Standalone Systems

Picking a RHEL File System

xfs most recommended

- Max file system size 100TB
- Max file size 100TB
- Best performing

ext4 recommended

- Max file system size 16TB
- Max file size16TB

ext3 not recommended

- Max file system size 16TB
- Max file size2TB

Tuning Memory – Flushing Caches

- Drop unused Cache to control pagecache dynamically
 - Frees most pagecache memory
 - ✓ File cache
 - If the DB uses cache, may notice slowdown
- NOTE: Use for benchmark environments.
- Free pagecache
 - •# sync; echo 1 > /proc/sys/vm/drop_caches
- Free slabcache
 - •# sync; echo 2 > /proc/sys/vm/drop_caches
- •Free pagecache and slabcache
 - •# sync; echo 3 > /proc/sys/vm/drop_caches

Virtual Memory Manager (VM) Tunables

- Reclaim Ratios
- •/proc/sys/vm/swappiness
- •/proc/sys/vm/vfs_cache_pressure
- •/proc/sys/vm/min_free_kbytes
- Writeback Parameters
- •/proc/sys/vm/dirty_background_ratio
- •/proc/sys/vm/dirty_ratio
- Readahead parameters
- ·/sys/block/<bdev>/queue/read_ahead_kb

Per file system flush daemon

swappiness

- Controls how aggressively the system reclaims anonymous memory:
- Anonymous memory swapping
- Mapped file pages writing if dirty and freeing
- System V shared memory swapping
- Decreasing: more aggressive reclaiming of pagecache memory
- Increasing: more aggressive swapping of anonymous memory

vfs_cache_pressure

- Controls how aggressively the kernel reclaims memory in slab caches.
- Increasing causes the system to reclaim inode cache and dentry cache.
- Decreasing causes inode cache and dentry cache to grow.

min_free_kbytes

Directly controls the page reclaim watermarks in KB

Defaults are higher when THP is enabled

```
# echo 1024 > /proc/sys/vm/min_free_kbytes
Node 0 DMA free:4420kB min:8kB low:8kB high:12kB
Node 0 DMA32 free:14456kB min:1012kB low:1264kB high:1516kB
echo 2048 > /proc/sys/vm/min_free_kbytes
```

Node 0 DMA free:4420kB min:20kB low:24kB high:28kB Node 0 DMA32 free:14456kB min:2024kB low:2528kB high:3036kB

dirty_background_ratio, dirty_background_bytes

- •Controls when dirty pagecache memory starts getting written.
- Default is 10%
- Lower
 - •flushing starts earlier
 - •less dirty pagecache and smaller IO streams
- Higher
 - flushing starts later
 - more dirty pagecache and larger IO streams
- dirty_background_bytes over-rides when you want < 1%

dirty_ratio, dirty_bytes

- Absolute limit to percentage of dirty pagecache memory
- Default is 20%
- Lower means clean pagecache and smaller IO streams
- Higher means dirty pagecache and larger IO streams
- dirty_bytes overrides when you want < 1%

dirty_ratio and dirty_background_ratio

100% of pagecache RAM dirty

flushd and write()'ng processes write dirty buffers

dirty_ratio(20% of RAM dirty) – processes start synchronous writes flushd writes dirty buffers in background

dirty_background_ratio(10% of RAM dirty) – wakeup flushd do_nothing

0% of pagecache RAM dirty

Network Performance Tuning

RHEL7 Networks

- IPv4 Routing Cache replaced with Forwarding Information Base
 - Better scalability, determinism and security
- Socket BUSY_POLL (aka low latency sockets)
- 40G NIC support, bottleneck moves back to CPU:-)
- VXLAN Offload (for OpenStack)
- NetworkManager: nmcli and nmtui

Locality of Packets

Tuned: Profile Inheritance

Tuned: Profile Inheritance (throughput)

throughput-performance

governor=performance energy_perf_bias=performance min_perf_pct=100 readahead=4096 kernel.sched_min_granularity_ns = 10000000 kernel.sched_wakeup_granularity_ns = 15000000 vm.dirty_background_ratio = 10 vm.swappiness=10

network-throughput

net.ipv4.tcp_rmem="4096 87380 16777216" net.ipv4.tcp_wmem="4096 16384 16777216" net.ipv4.udp_mem="3145728 4194304 16777216"

Tuned: Profile Inheritance (latency)

latency-performance

```
force_latency=1
governor=performance
energy_perf_bias=performance
min_perf_pct=100
kernel.sched_min_granularity_ns=10000000
vm.dirty_ratio=10
vm.dirty_background_ratio=3
vm.swappiness=10
kernel.sched_migration_cost_ns=5000000
```

network-latency

transparent_hugepages=never net.core.busy_read=50 net.core.busy_poll=50 net.ipv4.tcp_fastopen=3 kernel.numa_balancing=0

Networking performance – System setup

Evaluate the 2 new tuned profiles for networking

- Disable unnecessary services, runlevel 3
 - Follow vendor guidelines for BIOS Tuning
 - Logical cores? Power Management? Turbo?
- In the OS, consider
 - Disabling filesystem journal
 - SSD/Memory Storage
 - Reducing writeback thresholds if your app does disk I/O
 - NIC Offloads favor throughput

Network Tuning: Buffer Bloat

```
grep -v ssh
   SS
                                     Local Address:Port
            Recv-Q Send-Q
State
ESTAB
                                     172.17.1.36:38462
                                    172.17.1.36:58856
ESTAB
                       3723128
                             Kernel Buffer Queue Depth
                               10Gbit TCP_STREAM
  4.50
  4.00
  3.50
  2.50
  2.00
  1.50
  1.00
  0.50
                                 Time (1-sec intervals)
                                  Send-Q Depth
```

Peer Address:Port 172.17.1.34:12865 172.17.1.34:53491

- 10G line-rate
- ~4MB queue depth
- Matching servers

Tuned: Network Throughput Boost

netsniff-ng: ifpps

- Aggregate network stats to one screen
- Can output to .csv

netsniff-ng: ifpps

- Aggregate network stats to one screen
- Can output to .csv

netsniff-ng: ifpps

- Aggregate network stats to one screen
- Can output to .csv

Network Tuning: Low Latency TCP

- set TCP_NODELAY (Nagle)
- Experiment with ethtool offloads
- tcp_low_latency tiny substantive benefit found
- Ensure kernel buffers are "right-sized"
 - Use ss (Recv-Q Send-Q)
 - Don't setsockopt unless you've really tested
- Review old code to see if you're using setsockopt
 - Might be hurting performance

Network Tuning: Low Latency UDP

- Mainly about managing bursts, avoiding drops
 - rmem max/wmem max
 - TX
 - netdev_max_backlog
 - txqueuelen
 - RX
 - netdev_max_backlog
 - ethtool -g
 - ethtool -c
 - netdev_budget
 - Dropwatch tool in RHEL

Full DynTicks (nohz_full)

Full DynTicks Patchset

- Patchset Goal:
 - Stop interrupting userspace tasks
 - Move timekeeping to non-latencysensitive cores

- If nr_running=1, then scheduler/tick can avoid that core
- Default disabled...Opt-in via nohz full cmdline option

Kernel Tick:

- timekeeping (gettimeofday)
- Scheduler load balancing
- Memory statistics (vmstat)

RHEL6 and 7 Tickless

nohz_full

Busy Polling

SO_BUSY_POLL Socket Option

- Socket-layer code polls receive queue of NIC
- Replaces interrupts and NAPI
- Retains full capabilities of kernel network stack

BUSY_POLL Socket Option

netperf TCP_RR and UDP_RR Transactions/sec

Power Management

Power Management: P-states and C-states

- P-state: CPU Frequency
 - Governors, Frequency scaling
- C-state: CPU Idle State
 - Idle drivers

Introducing intel_pstate P-state Driver

- New Default Idle Driver in RHEL7: intel_pstate (not a module)
 - CPU governors replaced with sysfs min_perf_pct and max_perf_pct
 - Moves Turbo knob into OS control (yay!)
- Tuned handles most of this for you:
 - Sets min_perf_pct=100 for most profiles
 - Sets x86_energy_perf_policy=performance (same as RHEL6)

Impact of CPU Idle Drives (watts per workload) RHEL7 @ C1

Turbostat shows P/C-states on Intel CPUs

Default

pk	cor	CPU	% c0	GHZ	TSC	% c1	%c3	% c6	%c7
0	Θ	0	0.24	2.93	2.88	5.72	1.32	0.00	92.72
0	1	1	2.54	3.03	2.88	3.13	0.15	0.00	94.18
0	2	2	2.29	3.08	2.88	1.47	0.00	0.00	96.25
0	3	3	1.75	1.75	2.88	1.21	0.47	0.12	96.44

latency-performance

pk	cor	CPU	% c0	GHZ	TSC	% c1	%c3	%c6	%c7
0	0	0	0.00	3.30	2.90	100.00	0.00	0.00	0.00
0	1	1	0.00	3.30	2.90	100.00	0.00	0.00	0.00
0	2	2	0.00	3.30	2.90	100.00	0.00	0.00	0.00
0	3	3	0.00	3.30	2.90	100.00	0.00	0.00	0.00

Frequency Scaling (Turbo) Varying Load

Analysis Tools Performance Co-Pilot

Performance Co-Pilot (PCP)

(Multi) system-level performance monitoring and management

pmchart – graphical metric plotting tool

Can plot myriad performance statistics

pmchart – graphical metric plotting tool

- Can plot myriad performance statistics
- Recording mode allows for replay
 - i.e. on a different system
 - Record in GUI, then# pmafm \$recording.folio

pmchart – graphical metric plotting tool

- Can plot myriad performance statistics
- Recording mode allows for replay
 - i.e. on a different system
 - Record in GUI, then# pmafm \$recording.folio

- Ships with many pre-cooked "views"...for example:
 - ApacheServers: CPU%/Net/Busy/Idle Apache Servers
 - Overview: CPU%/Load/IOPS/Net/Memory

Performance Co-Pilot Demo Script

• Tiny script to exercise 4 food groups...

```
CPU
# stress -t 5 -c 1
DISK
# dd if=/dev/zero of=/root/2GB count=2048 bs=1M oflag=direct
NETWORK
netperf -H rhel7.lab -1 5
  MEMORY
# stress -t 5 --vm 1 -vm-bytes 16G
```


#<		CPU	>	<	D:	isks		> <		ie twork -	> #<
#cpu	sys	inter	ctxsw	KBRea	CPU	KBWrit	Writes	s KBIn	PktIn	KBOut	PktOut #Free
0	0	210	179	0	0	64	18	2	17	0	1 32355M
0	0	202	150	0	0	32	10	1	14	0	1 32355M
4	1	1678	2073	6876	650	108	14	10	50	5	33 32346M
17	0	2348	183	Θ	0	36	10	2	14	0	3 32346M
17	0	2361	216	0	0	32	10	1	17	0	1 32346M
7	1	1760	1629	272	20	88356	282	11	63	6	46 32345M
3	2	1691	2526	40	10	795720	2336	0	11	0	2 32344M
3	2	1875	2856	28	7	924736	2714	2	18	0	3 32344M
2	1	5137	5383	460	40	288836	851	35127	2583	161	2473 32345M
4	3	16997	28627	0	0	56	10	245172	17629	1101	17088 32344M
3	2	15619	28062	0	0	44	12	242954	17508	1087	16871 32345M
6	2	4495	7098	104	3	80	9	51692	3781	240	3675 31804M
17	5	2380	187	0	0	20	5	1	12	0	3 28287M
17	5	2349	188	0	0	52	15	1	13	0	1 24805M
17	5	2356	214	0	0	32	10	2	16	0	1 21284M
17	5	2348	197	0	0	32	10	0	9	0	1 17436M
9	3	1366	225	0	0	32	10	2	20	0	4 24766M
1	0	465	516	8	2	992	169	2	25	1	15 32344M

A												
	#<		-CPU-				ISKS		> <		le twork	> #<
	#cpu	sys	inter	ctxsw	KBRea	CPU	KBWrit	Writes	s KBIn	PktIn	KBOut	PktOut #Free
	0	0	210	179	0	0	64	18	IOPS	17	Θ	1 32355M
	0	0	202	150	0	o		1 0		14	õ	1 32355M
		7										
	4		1678	2073	6876	650		14	10	50	5	33 32346M
	17	0	2348	183	0	0		10	2	14	0	3 32346M
	17	0	2361	216	0	0	32	10	1	17	0	1 32346M
	7	1	1760	1629	272	20	88356	282	11	63	6	46 32345M
	3	2	1691	2526	40	10	795720	2336	0	11	0	2 32344M
	3	2	1875	2856	28		924736	2714	2	18	Θ	3 32344M
	2	1	5137	5383	460	40	288836	851	35127	2583	161	2473 32345M
	4	3	16997	28627	0	0	56	10	245172	17629	1101	17088 32344M
	3	2	15619	28062	0	0	44	12	242954	17508	1087	16871 32345M
	6	2	4495	7098	104	3	80	9	51692	3781	240	3675 31804M
	17	5	2380	187	0	0	20	5	1	12	0	3 28287M
	17	5	2349	188	0	0	52	15	1	13	0	1 24805M
	17	5	2356	214	0	0	32	10	2	16	0	1 21284M
	17	5	2348	197	0	0	32	10	0	9	0	1 17436M
	9	3	1366	225	Θ	0	32	10	2	20	Θ	4 24766M
	1	0	465	516	8	2	992	169	2	25	1	15 32344M

#<		-CPU	>	<	Di	sks		> <	N	e twork-	> #<
#cpu	sys	inter	ctxsw	KBRea	CPU	KBWrit	Writes	s KBIn	PktIn	KBout	PktOut #Free
0	0	210	179	0	0	64	18	IOPS	17	0	1 32355M
0	0	202	150	0	0	32	10	1	14	0	1 32355M
4	1	1678	2073	6876	650	108	1 7	10	50	5	33 32346M
17	0	2348	183	0	0	36	10	2	14	0	3 32346M
17	0	2361	216	0	0	32	10	1	17	0	<u>1 32</u> 346M
7	1	1760	1629	272	20	88356	282	11	63	8	NET 345M
3	2	1691	2526	40	10	795720	2336	0	11	0	
3	2	1875	2856	28	7	924736	2714	2	18	0	3 32344M
2	1	5137	5383	460	40	288836	851	35127	2583	161	2473 32345M
4	3	16997	28627	0	0	56	10	245172	17629	1101	17088 32344M
3	2	15619	28062	0	0	44	12	242954	17508	1087	16871 32345M
6	2	4495	7098	104	3	80	9	51692	3781	240	3675 31804M
17	5	2380	187	0	0	20	5	1	12	0	3 28287M
17	5	2349	188	0	0	52	15	1	13	0	1 24805M
17	5	2356	214	0	0	32	10	2	16	0	1 21284M
17	5	2348	197	0	0	32	10	0	9	0	1 17436M
9	3	1366	225	0	0	32	10	2	20	0	4 24766M
1	0	465	516	8	2	992	169	2	25	1	15 32344M

#<		-CPU	>	<	Di	sks		> <		Network-	> #<
#cpu	sys	inter	ctxsw	KBRea	CPU	KBWrit	Writes	s KBIn	PktIn	KBout	PktOut #Free
0	0	210	179	0	0	64	18	IOPS	17	0	1 32355M
0	0	202	150	0	0	32	10	1	14	0	1 32355M
4	1	1678	2073	6876	650	108	14	10	50	5	33 32346M
17	0	2348	183	0	0	36	10	2	14	0	3 32346M
17	0	2361	216	0	0	32	10	1	17	0	<u>1 32</u> 346M
7	1	1760	1629	272	20	88356	282	11	63	6	NET 345M
3	2	1691	2526	40	10	795720	2336	0	11		
3	2	1875	2856	28	7	924736	2714	2	18	0	3 32344M
2	1	5137	5383	460	40	288836	851	35127	2583	161	2473 32345M
4	3	16997	28627	0	0	56	10	245172	17629	1101	17088 32344M
3	2	15619	28062	0	0	44	12	242954	17508	1087	16871 32345M
6	2	4495	7098	104	3	80	9	51692	3781	240	3675 31804M
17	5	2380	187	0	0	20	5	1	12	0	3 28287M
17	5	2349	188	0	0	52	15	1	1	MEM	1 24805M
17	5	2356	214	0	0	32	10	2	11		1 21284M
17	5	2348	197	0	0	32	10	0	9	0	1 17436M
9	3	1366	225	0	0	32	10	2	20	0	4 24766M
1	0	465	516	8	2	992	169	2	25	1	15 32344M

pmatop mode

```
7 08:15:04 2014
                                                  0:00:05 elapsed
ATOP - Mon Apr
PRC
                4.16s
                                  16.75s
                                                         332
                                                                #tslpi
                                                                             37
                                                                                   #tslpu
                                                                                                      #zombie
                                             #proc
                                                                                                                    Θ
       sys
                          user
                                      21%
                                                                idle
                                                                            73%
                                                                                   wait
                                                                                                0%
CPU
                    5%
                                             irq
                                                          Θ%
       sys
                          user
                                                                idle
                    0%
                                       6%
                                             irq
                                                          Θ%
                                                                             Θ%
                                                                                   cpu01
                                                                                                0%
                                                                                                      curf
                                                                                                              2.9MHz
cpu
       sys
                          user
                                                                idle
                                       1%
                                             irq
                                                          Θ%
                                                                             0%
                                                                                   cpu03
                                                                                                0%
                                                                                                      curf
                                                                                                              2.9MHz
                    5%
       sys
                          user
cpu
                                                                idle
                                       6%
                    Θ%
                                                          Θ%
                                                                             0%
                                                                                   cpu09
                                                                                                Θ%
                                                                                                      curf
                                                                                                              2.9MHz
                                             irq
       sys
                          user
cpu
\mathsf{CPL}
                 3.99
                                                       1.13
                                                                             423
                                                                                    intr
                                                                                                2e6
                          avg5
                                    2.54
       avg1
                                             avg15
                                                                CSW
MEM
              131816M
                          free 128926M
                                                                buff
                                                                          188M
                                                                                   slab
                                                                                             468M
                                                                                                                  17M
       tot
                                             cache
                                                       630M
                                                                                                      #shmem
                          free
                                                                            62G
SWP
       tot
                    4G
                                       4G
                                                                                   vmlim
                                                                                               70G
                                                                VMCOM
                                             stall
PAG
                          steal
                                                                swin
       scan
                     Θ
                                        Θ
                                                                                   swout
                                                                                                 Θ
                                                           Θ
                                                                write
                                                                                   MBr/s
                                                                                                                0.32
\mathsf{L}\mathsf{VM}
       οt
                                             read
                                                           Θ
                                                                                                      MBw/s
                                                                write
LVM
                                                                                   MBr/s
                                                                                                      MBw/s
                                                                                                                0.48
       οt
                                             read
                                                                write
                                                                                   MBr/s
                                                                                                      MBw/s
DSK
       sda
                                       Θ%
                          busy
                                             read
       sdb
                                                                write
DSK
                                                                                   MBr/s
                                                                                                      MBw/s
                                       0%
                                                                                                                0.48
                          busy
                                             read
                                                                write
                                                                                   MBr/s
                                                                                                      MBw/s
DSK
       sdc
                                       0%
                          busy
                                             read
                                                                write
DSK
       sdd
                                       0%
                                                                                   MBr/s
                                                                                                      MBw/s
                                                                                                                0.32
                          busy
                                             read
                                                                write
DSK
       sde
                          busy
                                       0%
                                                                                   MBr/s
                                                                                                      MBw/s
                                             read
                                                                                                                    (\cdot)
                                                                                                    tcpao
\mathsf{NET}
                                   1e6M
                                                     1e6M
                                                              udpi
                                                                          ΘМ
                                                                                 udpo
                                                                                             \Theta M
                                                                                                                \Theta M
       transport
                          tcpi
                                            tcpo
                                                     1e6M
                                                                                         1e6M
\mathsf{NET}
                                   1e6M
                                                              ipfrw
                                                                          \ThetaM
                                                                                 deliv
       network
                          ipi
                                            ipo
                                                                                                  icmpi
                                                                                                                Θ
NET
       sfc1
                                   1e6M
                                                     1e6M
                                                                                                                \Theta M
                          pcki
                                            pcko
                                                              si
                                                                       Kbps
                                                                                 so
                                                                                        1 Kpbs
                                                                                                   erri
\mathsf{NET}
                                      10M
                                                         10M
                                                                          Kbps
                                                                                           0 Kpbs
       10
                          pcki
                                             pcko
                                                                                                                   ΘМ
                                                                si
                                                                                                      erri
                                                                                   so
                                                                si
\mathsf{NET}
                          pcki
                                      12M
                                             pcko
                                                         12M
                                                                          Kbps
                                                                                             Kpbs
                                                                                                                   \Theta M
       em1
                                                                                                      erri
                                                                                   so
                                             RUID
  PID SYSCPU USRCPU VGROW
                                    RGROW
                                                      THR ST EXC S
                                                                      CPU
                                                                             CMD
                                                                          98% udp_tcp_sock_pr
28683
        4.15s
                 16.58s
                                 ΘK
                                           7M
                                               root
29276
        0.00s
                 0.16s
                               \Theta K
                                                                          0% pmatop
                                          \Theta K
                                              root
29208
                                                                          0% pmdaproc
        0.02s
                 0.00s
                               ΘK
                                         _{\Theta K}
                                              root
28531
        0.01s
                                                                          0% ssh
                 0.00s
                               ΘK
                                         ΘK
                                              root
```


10 YEARS and counting SAN FRANCISCO | APRIL 14-17, 2014

Tuna

Network Tuning: IRQ affinity

- Use irqbalance for the common case
- New irqbalance automates NUMA affinity for IRQs

• Move 'p1p1*' IRQs to Socket 1:

```
# tuna -q p1p1* -S1 -m -x
# tuna -Q | grep p1p1
```

Manual IRQ pinning for the last X percent/determinism

- Run tuning experiments in realtime
- Save settings to a conf file (then load with tuna cli)

	lonitoring Profile management Profile editing													
	Socke	t 0		Socke	et 1—			IRQ	Affinity		Events	Users		
Ш	Filter	CPU	Usage	Filter	CPU	Usage		0	0-15		65	timer		
	✓	0	0	✓	1	0		8	1,3,5,7,9,11,13,	15	1	rtc0		
Ш	✓	2	0	✓	3	0		9	1,3,5,7,9,11,13,	15	2	acpi		
Ш	✓	4	0	✓	5	0	:	10	1,3,5,7,9,11,13,	15	247	ipmi_si		
Ш	✓	6	0	✓	7	0		22	10		37	ehci_hc	d:usb2	
Ш	✓	8	0	✓	9	0	•	23	4		136	ehci_hc	d:usbl	
Ш	✓	10	16	✓	11	0		104	10		0	PCIe PM	IE	
Ш	<	12	0		13	0		105	12		0	PCIe PM	IE	
Ш	<	14	0	✓	15	0		106	14		0	PCIe PM	IE	
'			_		,			707	^		^	501.51	_	
	PID	Poli	icy l	Priority	Af	ffinity			VolCtxtSwitch	Nor	VolCtxtS	witch	CGroup	Command Line
$\ -$	1	ОТН	HER (0	0-	-15			2416	190	7		1:name=systemd:/,2:	/usr/lib/systemd/systemd
	2	OTH	HER (0	0-	15			422	0			1:name=systemd:/,2:	kthreadd
	3	ОТН	HER (0	0				8300	0			1:name=systemd:/,2:	ksoftirqd/0
	5	ОТН	HER (0	0				7	0			1:name=systemd:/,2:	kworker/0:0H
	6	ОТН	HER (0	0-	-15			14232	299			1:name=systemd:/,2:	kworker/u64:0
	8	FIFC) !	99	0				227	0			1:name=systemd:/,2:	migration/0

Monitoring Profile management Pr	ofile editing						
Current active tuna profile: examp	ole.conf 🔻						
Save Snapshot	Save & Apply permanently	nestore changes	e	// Apply changes			
Kernel scheduler				VM			
kernel.core_pattern	core			1			
kernel.sched_latency_ns		24000000		vm.dirty_expire_centisecs			
kernel.sched_min_granularity_ns	1000000			vm.dirty_ratio			
kernel.sched_nr_migrate	32			vm.dirty_writeback_centisec:			
kernel.sched_rt_period_us	1000000	1000000					
kernel.sched_rt_runtime_us		950000					
kernel.sched_tunable_scaling				vm.memory_failure_early_kil			
kernel.sched_wakeup_granularity_		4000000					
Network IPv4				Network IPv6			
ipv4. conf. all. forwarding			1	ipv6.conf.all.forwarding			
				ipv6.conf.default.forwarding			
ipv4.conf.all.rp_filter)			ipv6. conf. docker0. forwarding			
ipv4.tcp_congestion_control	ubic			ipv6.conf.em1.forwarding			
				ipv6.conf.em2.forwarding			

Network Tuning: IRQ affinity

- Use irqbalance for the common case
- New irqbalance automates NUMA affinity for IRQs
- Flow-Steering Technologies

• Move 'p1p1*' IRQs to Socket 1:

```
# tuna -q p1p1* -S1 -m -x
```

tuna -Q | grep p1p1

Manual IRQ pinning for the last X percent/determinism

Tuna – for IRQs

• Move 'p1p1*' IRQs to Socket 1:

```
# tuna -q p1p1* -S0 -m -x
  # tuna -Q | grep p1p1
   78 p1p1-0
   79 p1p1-1
   80 p1p1-2
   81 p1p1-3
   82 p1p1-4
```


Core

lacksquare	c + c
(-)	

Tuna – for processes

```
# tuna -t netserver -P
                     thread
                                  ctxt_switches
  pid SCHED_ rtpri affinity voluntary nonvoluntary
                                                                  cmd
                       0xfff
13488
       OTHER
                                                            netserver
 # tuna -c2 -t netserver -m
 # tuna -t netserver -P
                     thread
                                  ctxt_switches
  pid SCHED_ rtpri affinity voluntary nonvoluntary
                                                                  cmd
13488
       OTHER
                                                            netserver
```


Tuna – for core/socket isolation

```
# tuna -S1 -i
# grep Cpus_allowed_list /proc/`pgrep rsyslogd`/status
Cpus_allowed_list: 0-15
```


Tuna – for core/socket isolation

```
# tuna -S1 -i
# grep Cpus_allowed_list /proc/`pgrep rsyslogd`/status
Cpus_allowed_list: 0-15
# tuna -S1 -i (tuna sets affinity of 'init' task as well)
# grep Cpus_allowed_list /proc/`pgrep rsyslogd`/status
Cpus_allowed_list: 0,1,2,3,4,5,6,7
```


Analysis Tools perf

perf

Userspace tool to read CPU counters and kernel tracepoints

perf list

List counters/tracepoints available on your system

```
# perf list
List of pre-defined events (to be used in -e):
                                                        [Hardware event]
  cpu-cycles OR cycles
  instructions
                                                        [Hardware event]
                                                        [Hardware event]
  cache-references
                                                        [Hardware event]
  cache-misses
  branch-instructions OR branches
                                                        [Hardware event]
  branch-misses
                                                        [Hardware event]
  cpu-clock
                                                        [Software event]
  task-clock
                                                        [Software event]
  page-faults OR faults
                                                        [Software event]
  context-switches OR cs
                                                        [Software event]
  cpu-migrations OR migrations
                                                        [Software event]
  minor-faults
                                                        [Software event]
  major-faults
                                                        [Software event]
```


perf list

grep for something interesting, maybe to see what numabalance is doing?

perf top

System-wide 'top' view of busy functions

```
Samples: 10K of event 'cycles', Event count (approx.): 5973713325
34.35%
               httpd
                                           [k] avtab search node
                      [kernel.kallsyms]
                      [kernel.kallsyms]
12.70%
               httpd
                                           [k] spin lock
                                           [k] tg load down
               httpd
                      [kernel.kallsyms]
 8.61%
                                           [k] spin lock irq
               httpd
                      [kernel.kallsyms]
 7.42%
 5.79%
               init
                      [kernel.kallsyms]
                                           [k] intel idle
               httpd
                                           [k] spin lock irqsave
                      [kernel.kallsyms]
 3.92%
                                           [k] sidtab search core
               httpd
                      [kernel.kallsyms]
 1.75%
               httpd
 1.74%
                      [kernel.kallsyms]
                                           [k] load balance fair
 1.18%
                                           [k] tg nop
               httpd
                      [kernel.kallsyms]
                init
                      [kernel.kallsyms]
                                                spin lock
  1.13%
```


Record system-wide (-a)

- Record system-wide (-a)
- A single command

- Record system-wide (-a)
- A single command
- An existing process (-p)

- Record system-wide (-a)
- A single command
- An existing process (-p)
- Add call-chain recording (-g)

- Record system-wide (-a)
- A single command
- An existing process (-p)
- Add call-chain recording (-g)
- Only specific events (-e)

- Record system-wide (-a)
- A single command
- An existing process (-p)
- Add call-chain recording (-g)
- Only specific events (-e)

```
# perf record -g dd if=/dev/zero of=1G bs=1M count=10 oflag=direct
10+0 records in
10+0 records out
10485760 bytes (10 MB) copied, 0.0830041 s, 126 MB/s
[ perf record: Woken up 1 times to write data ]
[ perf record: Captured and wrote 0.016 MB perf.data (~715 samples) ]
```


perf report

```
Overhead
          Command
                        Shared Object
                    [kernel.kallsyms] [k] <u>    clear user</u>
  43.53%
                da
                                                  /dev/zero
                    ___clear_user
                    --99.75%-- read_zero.part.5
                               read_zero
                               vfs_read
                               sys_read
                               system_call_fastpath
                               ___GI____libc__read
                    --0.25%-- [...]
                    [kernel.kallsyms] [k] do_blockdev_direct_IO
   5.37%
                dd
                    do_blockdev_direct_IO
                      _blockdev__direct__IO
                    xfs_vm_direct_IO
                    generic_file_direct_write
                    xfs_file_dio_aio_write
                    xfs_file_aio_write
                    do_sync_write
```

perf report

```
Overhead
                        Shared Object
          Command
                    [kernel.kallsyms] [k] __clear_user
  43.53%
               dа
                                                 /dev/zero
                      _clear_user
                    --99.75%-- read_zero.part.5
                              read_zero
                              vfs_read
                              sys_read
                              system_call_fastpath
                               ___GI____libc__read
                    --0.25%-- [...]
                                                 oflag=direct
                    [kernel.kallsyms] [k] do [lockdev_direct_IO
   5.37%
               aа
                    do_blockdev_direct_IO
                      _blockdev__direct__IO
                    xfs_vm_direct_IO
                    generic_file_direct_write
                    xfs_file_dio_aio_write
                    xfs_file_aio_write
                    do_sync_write
```

perf diff

Compare 2 perf recordings

```
# perf diff
 Event 'cycles'
  Baseline
              Delta
                                 Shared Object
                                                           Symbol
    12.88%
            -12.27%
                                                            lookup mnt
                      [kernel.kallsyms]
                                                      [k]
                                                          0x0000000000064968
    11.97%
            -11.17%
                      systemd
                      libdbus-1.so.3.7.4
                                                          0x0000000000029258
     4.32%
             +6.43%
     4.06%
             +4.72%
                      dbus-daemon
                                                          0x0000000000014a6e
     3.79%
             -3.79%
                                                          0x0000000000088d6a
                      libglib-2.0.so.0.3600.3
                      [kernel.kallsyms]
                                                      [k] seq list start
     3.72%
             +0.25%
```


perf probe (dynamic tracepoints)

Insert a tracepoint on any function...

Try 'perf probe -F' to list possibilities

```
# perf probe -a account user time
# perf record -e probe:account user time -aR sleep 1
[ perf record: Woken up 1 times to write data ]
[ perf record: Captured and wrote 0.098 MB perf.data (~4301 samples) ]
                                                        My Probe Point
# perf report > out ; cat out
# Samples: 1 of event 'probe:account user time'
# Event count (approx.): 1
 Overhead Command
                        Shared Object
                                                       Symbol
                    [kernel.kallsyms] [k] account user time
   100.00%
             sleep
```


RHEL7 Performance Tuning Summary

- Use "Tuned", "NumaD" and "Tuna" in RHEL6 and RHEL7
 - Power savings mode (performance), locked (latency)
 - Transparent Hugepages for anon memory (monitor it)
 - numabalance Multi-instance, consider "NumaD"
 - Virtualization virtio drivers, consider SR-IOV
- Manually Tune
 - NUMA via numactl, monitor numastat -c pid
 - Huge Pages static hugepages for pinned shared-memory
 - Managing VM, dirty ratio and swappiness tuning
 - Use cgroups for further resource management control

Upcoming Performance Talks

- Performance tuning: Red Hat Enterprise Linux for databases
 - Sanjay Rao, Wednesday April 16, 2:30pm
- Automatic NUMA balancing for bare-metal workloads & KVM virtualization
 - Rik van Riel, Wednesday April 16, 3:40pm

- Red Hat Storage Server Performance
 - Ben England, Thursday April 17, 11:00am

Helpful Utilities

Supportability

- redhat-support-tool
- SOS
- kdump
- perf
- psmisc
- strace
- sysstat
- systemtap
- trace-cmd
- util-linux-ng

NUMA

- hwloc
- Intel PCM
- numactl
- numad
- numatop (01.org)

Power/Tuning

- cpupowerutils (R6)
- kernel-tools (R7)
- powertop
- tuna
- tuned

Networking

- dropwatch
- ethtool
- netsniff-ng (EPEL6)
- tcpdump
- wireshark/tshark

<u>Storage</u>

- blktrace
- iotop
- iostat

Helpful Links

- Official Red Hat Documentation
- Red Hat Low Latency Performance Tuning Guide
- Optimizing RHEL Performance by Tuning IRQ Affinity
- nohz_full
- Performance Co-Pilot
- Perf
- How do I create my own tuned profile on RHEL7?
- Busy Polling Whitepaper
- •Blog: http://www.breakage.org/ or @jeremyeder

10 YEARS and counting SAN FRANCISCO | APRIL 14-17, 2014

Q&A

Tuned: Profile virtual-host

throughput-performance

```
governor=performance
energy_perf_bias=performance
min_perf_pct=100
transparent_hugepages=always
readahead=4096
sched_min_granularity_ns = 10000000
sched_wakeup_granularity_ns = 15000000
vm.dirty_ratio = 40
vm.dirty_background_ratio = 10
vm.swappiness=10
```

virtual-host

vm.dirty_background_ratio = 5 sched_migration_cost_ns = 5000000

virtual-guest

vm.dirty_ratio = 30
vm.swappiness = 30

RHEL RHS Tuning w/ RHEV/RHEL OSP (tuned)

- gluster volume set <*volume*> group virt
- XFS mkfs -n size=8192, mount inode64, noatime
- RHS server: tuned-adm profile rhs-virtualization
 - Increase in readahead, lower dirty ratio's
- KVM host: tuned-adm profile virtual-host
 - Better response time shrink guest block device queue
 - •/sys/block/vda/queue/nr_request (16 or 8)
 - Best sequential read throughput, raise VM read-ahead
 - •/sys/block/vda/queue/read_ahead_kb (4096/8192)

lozone Performance Comparison RHS2.1/XFS w/ RHEV

RHS Fuse vs libgfapi integration (RHEL6.5 and RHEL7)

