Contents

1	Alia	asing	1
	1.1	Definitions	1
	1.2	Aliasing Context	1
	1.3	Constructing an Aliasing Context	3
2	Framing		5
	2.1	Definitions	5
	2.2	Deciding Framing	6
		2.2.1 Notes	6

1 Aliasing

1.1 Definitions

An **object variable** is one of the following:

- a class instance variable i.e. a variable v such that v:C for some class C.
- a class instance field reference i.e. a field reference e.f where e.f:C for some class C.

Let \mathcal{O} be a set of object variables. An $O \subset \mathcal{O}$ aliases if and only if each $o \in O$ refers to the same memory in the heap as each other, written propositionally as

$$\forall o, o' \in O : o = o' \iff \mathsf{aliases}(O)$$

An $O \subset \mathcal{O}$ non-aliases if and only if each $o \in O$ refers to separate memory in the heap as each other, written propositionally as

$$\forall o, \tilde{o} : o \neq \tilde{o} \iff \mathsf{non-aliases}(O)$$

1.2 Aliasing Context

Let ϕ be a formula. The **aliasing context** \mathcal{A} of ϕ is a tree of set of aliasing proposition about aliasing of object variables that appear in ϕ . \mathcal{A} needs to be a tree because the conditional sub-formulas that may appear in ϕ allow for branching aliasing contexts not expressible flatly at the top level. Each node in the tree corresponds to a set of aliasing propositions,

and each branch refers to a branch of a unique conditional in ϕ . The parts of the tree are labeled in such a way that modularly allows a specified sub-formula of ϕ to be matched to the unique aliasing sub-context that corresponds to it.

For example, consider the following formula:

```
\phi := (o_1 = o_2) *
(	ext{if } (b_1)
	ext{then } (
(o_1 \neq o_3) *
(	ext{if } (b_2)
	ext{then } (o_1 = o_4)
	ext{else } (b_3)))
	ext{else } (o_1 = o_3)) *
(o_1 = o_4)
```

 ϕ has a formula-structure represented by the tree in figure 1.2. The formula-structure tree for ϕ corresponds node-for-node and edge-for-edge to the aliasing context tree in figure 1.2. where a node inherits all the aliasing assertions of its parents. So for example, the aliasing

Figure 1: Formula structure tree for ϕ .

context for the sub-formula $(o_1 = o_4)$ of ϕ is:

$$\mathcal{A}_{\phi}(o_1 = o_4) := \{ \text{aliased } \{o_1, o_2, o_4\}, \sim \text{aliased } \{o_1, o_3\}, \sim \text{aliased } \{o_2, o_3\}, \sim \text{aliased } \{o_3, o_4\} \}$$

More generally, for ϕ a formula and ϕ' a sub-formula of ϕ , write $\mathcal{A}_{\phi}(\phi')$ as the **total** aliasing context of ϕ' which including aliasing propositions inherited from its ancestors in

Figure 2: $\mathcal{A}(\phi)$, the aliasing context tree for ϕ .

the aliasing context tree of ϕ . Usually $\mathcal{A}_{\phi}(\phi')$ is abbreviated to $\mathcal{A}(\phi')$ when the top level formula ϕ is implicit.

An aliasing context A may entail a proposition P about aliasing. This judgement is written

$$A \vdash P$$
.

For a set of object variables O, such propositions to consider come in two forms

$$P ::= aliases(O) \mid \sim aliases(O)$$
.

Since \mathcal{A} is efficiently represented as a set of propositions about sets, it may be the case that $P \notin \mathcal{A}$ yet still $A \vdash P$. So, the general aliasing judgments are decided in the following ways for each case:

1.3 Constructing an Aliasing Context

An aliasing context of a formula ϕ is a tree, where nodes represent local aliasing contexts and branches represent the branches of conditional sub-formulas nested in ϕ . So, an alias context is defined structurally as

$$\mathcal{A} ::= \mathsf{Leaf}(S) \mid \mathsf{Branch}(S, \{A_{\alpha}\})$$

where S is a set of propositions about aliasing and the A_{α} are the nesting alliasing contexts that correspond to the then and else branches of conditionals directly nested in ϕ . For the purposes of look-up, these branches are labelled as necessary.

Given a root formula ϕ_{root} , the alias context of ϕ_{root} is written $\mathcal{A}(\phi_{\text{root}})$. With the root invariant, the following recursive algorithm constructs $\mathcal{A}(\phi)$ for any sub-formula of ϕ_{root} (including $\mathcal{A}(\phi_{\text{root}})$).

 $A(\phi) \ := \ \operatorname{match} \, \phi \, \operatorname{with} \,$

2 Framing

2.1 Definitions

For framing, a formula is considered inside a **permission context**, a set of permissions, where a **permission** π is to do one of the following:

- to reference e.f, written accessed(e.f).
- to assume $\alpha_C(\bar{e})$, written assumed $(\alpha_C(\bar{e}))$. This allows the a single unrolling of $\alpha_C(\bar{e})$.

Let ϕ be a formula. ϕ may **require** a permission π . For example, the formula e.f = 1 requires $\mathsf{accessed}(e.f)$, because it references e.f. The set of all permissions that ϕ requires is called the **requirements** of ϕ . ϕ may also **grant** a permission π . For example, the formula $\mathsf{acc}(e.f)$ grants the permission $\mathsf{accessed}(e.f)$.

Altogether, ϕ is **framed** by a set of permissions Π if all permissions required by ϕ are either in Π or granted by ϕ . The proposition that Π frames ϕ is written

$$\Pi \vDash_I \phi$$

Of course, ϕ may grant some of the permissions it requires but not all. The set of permissions that ϕ requires but does not grant is called the **footprint** of ϕ . The footprint of ϕ is written

 $\lfloor \phi \rfloor$

Finally, a ϕ is called **self-framing** if and only if for any set of permissions Π , $\Pi \vDash_I \phi$. The proposition that ϕ is self-framing is written

$$\vdash_{\mathsf{frm}I} \phi$$

Note that $\vdash_{\mathsf{frm}I} \phi \iff \varnothing \vDash_I \phi$, in other words ϕ is self-framing if and only if it grants all the permissions it requires.

2.2 Deciding Framing

Deciding $\Pi \vDash_I \phi$ must take into account the requirements, granteds, and aliases contained in Π and the sub-formulas of ϕ . The following recursive algorithm decides $\Pi \vDash_I \phi_{root}$, where \mathcal{A} is implicitly assumed to be the top-level aliasing context (where the top-level in this context is the level that ϕ_{root} exists at in the program).

```
\Pi \vDash_I \phi \iff
                                     match \phi with
                                                                                                            T
                                                                                                          Т
                                                                                                   \mapsto \quad \Pi \vDash_I e_1, e_2
                                     e_1 \oplus e_2
                                                                                                   \mapsto \quad \Pi \vDash_I e_1, e_2
                                     e_1 \odot e_2
                                                                                                   \mapsto (\Pi \vDash_I e) \land (\Pi \vdash \mathsf{accessed}_{\phi}(e.f))
                                     e.f
                                     acc(e.f)
                                                                                                   \mapsto (\Pi \vDash_I e) \land \sim (\Pi \vdash \mathsf{accessed}_{\phi}(e.f))
                                                                                                   \mapsto (\Pi \vDash_I \phi_1) \land (\Pi \cup \mathsf{granted}(\phi_1) \vDash_I \phi_2)
                                     \phi_1 * \phi_2
                                     \phi_1 \wedge \phi_2
                                                                                                   \mapsto \Pi \vDash_I \phi_1, \phi_2
                                     \alpha_C(e_1,\ldots,e_k)
                                                                                                   \mapsto \Pi \vDash_I e_1, \ldots, e_2
                                     if e then \phi_1 else \phi_2
                                                                                                   \mapsto \Pi \vDash_I e, \phi_1, \phi_2
                                                                                                   \mapsto (\Pi \vdash \mathsf{assumed}_{\phi}(\alpha_C(\overline{e}))) \land (\Pi \vdash_I \phi')
                                     unfolding \alpha_C(\overline{e}) in \phi'
granted(\phi)
                                     match \phi with
                                                                                                   \mapsto
                                                                                                            Ø
                                     acc(e.f)
                                                                                                   \mapsto {accessed(e.f)}
                                     \phi_1 * \phi_2
                                                                                                   \mapsto granted(\phi_1) \cup granted(\phi_2)
                                     \phi_1 \wedge \phi_2
                                                                                                           \operatorname{granted}(\phi_1) \cup^{\wedge} \operatorname{granted}(\phi_2)
                                                                                                   \mapsto \{\mathsf{assumed}(\alpha_C(e_1,\ldots,e_k))\}
                                     \alpha_C(e_1,\ldots,e_k)
                                     if e then \phi_1 else \phi_2
                                                                                                   \mapsto granted(\phi_1) \cap granted(\phi_2)
                                     unfolding \alpha_C(e_1,\ldots,e_k) in \phi' \mapsto \operatorname{granted}(\phi')
aliases<sub>\phi</sub>(o)
                                     \{o' \mid \mathcal{A}(\phi) \vdash \text{aliased } \{o, o'\}\}\
```

Where $\mathsf{accessed}_{\phi}$ and $\mathsf{assumed}_{\phi}$ indicate the respective propositions considered within the total alias context (including inherited aliasing contexts). More explicitly,

```
\Pi \vdash \mathsf{accessed}_{\phi}(o.f) \iff \exists o' \in O : (\mathcal{A}(\phi) \vdash \mathsf{aliased} \left\{o, o'\right\}) \land (\mathsf{accessed}(o'.f) \in \Pi) \Pi \vdash \mathsf{assumed}_{\phi}(\alpha_{C}(e_{1}, \dots, e_{k})) \iff (\forall i : e_{i} = e'_{i} \lor \exists (o, o') = (e_{i}, e'_{i}) : \mathcal{A}(\phi) \vdash \mathsf{aliased} \left\{o, o'\right\}) \land (\mathsf{assumed}(\alpha_{C}(e'_{1}, \dots, e'_{k})) \in \Pi)
```

2.2.1 Notes

• TODO: explain how non-object-variable expressions cannot alias to anything (thus the e.f case in granted and required)