

An Open Mathematical Knowledge Sharing Community Brought to you by Zaiku Group and Homomorphic Labs.

Lecture 1 — Friday, May 24.

Bambordé Baldé

Important mathematical jargons:

- (a) **Axiom:** A fundamental statement that is accepted without proof and serves as a starting point for deducing other truths within a mathematical system.
- (b) **Definition:** A precise explanation of the meaning of a mathematical term or concept, used to ensure clarity and consistency proofs.
- (c) Theorem: A significant mathematical statement that has been rigorously proven based on axioms, definitions, and previously established theorems and propositions. Theorems are central results in mathematics.
- (d) Corollary: A statement that follows readily from a previously proven theorem, requiring minimal additional proof.
- (e) Lemma: A preliminary or auxiliary proposition used to help prove a larger theorem. Lemmas are proven statements that are typically less significant on their own but essential for the proof of more important results.
- (f) Proposition: A statement that is proposed for consideration and is proven to be true based on logical reasoning and previously established principles. Propositions are generally less significant than theorems.
- (g) Conjecture: An educated hypothesis based on observed patterns or intuition, which has not yet been proven or disproven.

Definition 1.0

A set is a collection of **distinct** objects called elements of the set.

► Comment 1:

- (a) Let $X = \{a, b, c, d\}$ and $Y = \{a, b, c, d, a\}$. If you give Y to mathematicians they will assume you mean X!
- (b) If X is a set and α is an element of X, we write $\alpha \in X$ or else we write $\alpha \notin X$ to indicate that α is not an element of X. So for example, if $X = \{2, 10, 1, 6\}$ then $6 \in X$ but $11 \notin X$.
- (c) **Russell's Paradox**: Let S be the set of all sets which are not elements of themselves or more formally $S = \{A \mid A \notin A\}$. Does $S \in S$?
- (d) Popular version: Consider the barber who shaves all people who don't shave themselves. Who shaves the barber?

Definition 1.1

The empty set denoted \emptyset is a set with no elements.

► Comment 2:

- (a) The 'ZFC' axiomatic system guarantees the existence \emptyset .
- (b) It can be proved that ∅ is unique i.e. there is only one empty set!
- (c) The empty set is ubiquitious in modern mathematics built on set theory.

The Notion of a Subse

Definition 1.2

Let X be a non-empty set. We say a set A is a subset of X and write $A \subseteq X$ if (only if) whenever an element $\alpha \in A$ then $\alpha \in X$.

► Comment 3:

- (a) It is clear by the definition that $X \subseteq X$ right?
- (b) Is it true that the empty set \emptyset is a subset of X?
- (c) If Y is not a subset of X, we write $Y \subseteq X$ to indicated that.

Proposition 1.0

Let X, Y, and Z be sets. If $X \subseteq Y$ and $Y \subseteq Z$ then $X \subseteq Z$.

Definition 1.3

Let X and Y be sets. We say X = Y if and only if $X \subseteq Y$ and $Y \subseteq X$ hold.

► Comment 4:

- (a) We write $X \neq Y$ if the two sets are not equal as per the definition above.
- (b) Let $X = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5, \alpha_6\}$ and $Y = \{\alpha_6, \alpha_1, \alpha_3, \alpha_4, \alpha_2, \alpha_5\}$. Is X = Y?

Definition 1.4

If A is a subset of X, then we say A is a proper subset of X if $A \neq X$.

Abstract Mathematics Bootcamp 2024 (quantumformalism.com)

The Intersection of Sets

Definition 1.5

Let X and Y be sets. The *intersection* of X with Y is defined as $X \cap Y = \{\alpha \mid \alpha \in X \text{ and } \alpha \in Y\}.$

Proposition 1.1

Let X, Y and Z be sets. Then the following properties hold:

- (1) $X \cap \emptyset = \emptyset$.
- (2) $X \cap X = X$
- (3) $X \cap Y = Y \cap X$ (commutativity).
- (4) $(X \cap Y) \cap Z = X \cap (Y \cap Z)$ (associativity).

Definition 1.6

The Union of Sets

Definition 1.7

Let X and Y be sets. The *union* of X with Y is defined as $X \cup Y = \{\alpha \mid \alpha \in X \text{ or } \alpha \in Y\}.$

▶ Comment 5: $X \cup Y$ may also contain elements that are in both sets!

Proposition 1.2

Let X, Y and Z be sets. Then the following properties hold:

- (1) $X \cup \emptyset = X$ and $X \cup X = X$.
- (2) $X \cup Y = Y \cup X$ (commutativity).
- (3) $(X \cup Y) \cup Z = X \cup (Y \cup Z)$ (associativity).

Complements

Definition 1.8

Let X and Y be sets. The *relative* complement of Y in X is definited as $X-Y=\{\alpha\in X\mid \alpha\notin Y\}$ i.e. the set of all elements of X that are not in Y. The relative complement is also known as the difference between X and Y!

▶ Comment 6: An alternative notation often used to denote X - Y is $X \setminus Y$.

Definition 1.9

Let A be a subset of X. The absolute complement of A in X is $A^c = \{\alpha \in X \mid \alpha \notin A\}$ i.e. the set of all elements of X that are not in A.

Homework exercises (1)

Exercise 1.0

Let X, Y and Z be sets. Which of the identities below are true?

- $(1) \ X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z).$
- $(2) X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z).$
- $(3) X \cup (Y \cap Z) = (X \cap Y) \cap (X \cup Z).$
- $(4) X \cup (Y \cap Z) = (X \cap Y) \cup (X \cup Z).$
- $(5) X \cup (Y \cap Z) = (X \cap Y) \cup (X \cap Z).$

Exercise 1.1

Let A be a subset of X. Which of the identities below are true?

- (1) $A \cap A^c = A$.
- $(2) A \cap A^c = \emptyset.$
- (3) $A \cup A^c = \emptyset$.
- (4) $A \cap A^c = X$.
- (5) $X \cup (Y \cap Z) = (X \cap Y) \cup (X \cap Z)$.
- (6) $X^c = \emptyset$.
- (7) $(A^c)^c = A$.
- (8) $\emptyset^c = X$.

Exercise 1.2

Let A and B be subsets of X. Which of the identities below are true?

- (1) $(A \cup B)^c = A^c \cup B^c$.
- $(2) (A \cup B)^c = A^c \cap B^c.$
- $(3) (A \cap B)^c = A^c \cap B^c.$
- $(4) (A \cap B)^c = A^c \cup B^c.$

Thank you for listening!