

Controlled injection rates

k=3

Compute controlled injection rates

- ► for N = 128 samples of $\mathbf{K} \sim p(\mathbf{K})$ and $\mathbf{x}_3 \sim p(\mathbf{x}_3 | \bar{\mathbf{y}}_3^0)$
- ▶ by finding injectivities, q_3 , that maximize the total CO_2 injected volume while **not** exceeding the fracture pressure via

$$\max_{q_3} \Delta t$$
 subject to $\mathbf{x}_4['p'] < \mathbf{p}_{\max}$
 $\mathbf{x}_4 = \mathcal{M}_3(\mathbf{x}_3, \mathbf{K}; q_3)$

- use Gaussian kernel density estimation
- approximate the probability density function of the controlled injection rates

Injection rate under uncertainty

Integrate the KDE to obtain cumulative distribution function

Assumption: non-fracture/fracture follows Bernoulli distribution ("toss a coin")

For injection rate q_3 :

► MLE of fracture probability $\hat{p}(q_3) = \text{CDF}(q_3)$

confidence interval =
$$\hat{p} \pm Z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-\hat{p})}{N}}$$

► for 95% ($\alpha = 0.05$) confidence interval, $Z_{\frac{\alpha}{2}} = 1.96$

