# Introduction to Machine Learning

TTT4185 Machine Learning for Signal Processing

Giampiero Salvi

Department of Electronic Systems NTNU

HT2021

Introduction to Machine Learning

# Examples of applications

Google self driving



Voice assitants



IBM congestion fees



DeepMind AlphaGo



autonomous ships



smart buildings



## Machine Learning Objectives

- automatic discovery of regularities in data through computer algorithms
  - similar to statistics
- use knowledge acquired to take actions

## Example: Written digit recognition



MNIST (figure from Bishop)

## Example: Written digit recognition

#### Data:

- $28 \times 28$  grayscale pixels [0, 255]
- pre-processing: centering and normalization
- fixed length representation (784 dim)

#### Task

 from pixels classify one of 10 discrete digits





















# Formalization (Supervised Classification)

#### Training data:

- set of observations  $\{\mathbf{x}_1, \dots, \mathbf{x}_N\}, \mathbf{x}_i \in \mathbb{R}^D$
- set of target values  $\{t_1, \ldots, t_N\}, t_i \in \{c_1, \ldots, c_K\}$

#### Goal

- find a function  $y: \mathbb{R}^D \to \{c_1, \dots, c_K\}$  such that
- ullet  $y(\mathbf{x})$  gives correct answer for any unseen observation  $\mathbf{x}$





















## Key aspects

- Training data is incomplete
- Evaluation must be performed on unseen observations (test set)
- We need to ensure generalization
- ullet data generation o measurements o feature extraction





















### Feature Extraction

- disregard irrelevant information
- reduce the dimensionality (complexity)

















## Classification vs Regression

#### Input $\mathbf{x}_i$ can be:

- discrete,
- continuous  $(\mathbb{R})$ ,
- D dimensional  $(\mathbb{R}^D)$

#### Classification:

• discrete targets:  $t_i \in \{c_1, \ldots, c_K\}$ 

### Regression:

- continuous targets  $t_i \in \mathbb{R}$
- can also be multi-dimensional





















## Supervised vs Unsupervised Learning

### Unsupervised Learning

- ullet we don't know the value of  $t_i$
- data collection is cheap, but annotations are expensive
- find regularities in data

#### **Applications**

- Clustering: group data points according to distance metric
- Density estimation: find parametric model of complex distributions













## Reinforcement Learning

- agent
- environment
- actions
- states
- reward

#### Differences from Supervised Learning

- reward not as detailed as targets
- reward can be delayed
- need to find responsibility of each actions to the reward

# Other forms of Learning (Judea Pearl)

| Levels |              | Activities      |  |
|--------|--------------|-----------------|--|
| 1)     | Associations | Seeing, hearing |  |

# Other forms of Learning (Judea Pearl)

|    | Levels         | Activities      |  |
|----|----------------|-----------------|--|
| 1) | Associations   | Seeing, hearing |  |
| 2) | Intervention   | Doing           |  |
| 3) | Counterfactual | Imagining       |  |
|    |                | Retrospecting   |  |

### In this course

- Supervised
  - Classification
  - Regression
- Unsupervised
  - Clustering
  - Density estimation
- Combined Supervised/Unsupervised
  - Example: Hidden Markov Models

# Example: polynomial fitting

### Data generation:

- $t = \sin(2\pi x) + \text{noise}$
- underlying regularity (sin)
- uncertainty (noise)

### Model: polynomial

$$y(x,\omega) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M$$
$$= \sum_{j=0}^{M} w_j x^j$$



- $\bullet$  non-linear in x
- ullet linear in w

## Example: polynomial fitting

#### Principled methods

- backed up by a general theory
- in ML: probability theory

#### Heuristic methods

based on common sense



# Order of the polynomial (from Bishop)



# Model parameters (from Bishop)

|               | M = 0 | M = 1 | M = 6  | M = 9       |
|---------------|-------|-------|--------|-------------|
| $w_0^{\star}$ | 0.19  | 0.82  | 0.31   | 0.35        |
| $w_1^{\star}$ |       | -1.27 | 7.99   | 232.37      |
| $w_2^{\star}$ |       |       | -25.43 | -5321.83    |
| $w_3^{\star}$ |       |       | 17.37  | 48568.31    |
| $w_4^{\star}$ |       |       |        | -231639.30  |
| $w_5^{\star}$ |       |       |        | 640042.26   |
| $w_6^{\star}$ |       |       |        | -1061800.52 |
| $w_7^{\star}$ |       |       |        | 1042400.18  |
| $w_8^{\star}$ |       |       |        | -557682.99  |
| $w_9^{\star}$ |       |       |        | 125201.43   |

# Overfitting: Training and Test set (from Bishop)

Root Mean Square Error

$$E_{\rm RMS} = \sqrt{\frac{2E(w)}{N}}$$



# Increasing training set size

 $\# \ parameters = 10$ 





## Increasing training set size

#### Problems:

- annotating data is expensive
- # parameters not equal to complexity
- we would like complexity of model to correspond to complexity of underlying phenomenon

## Model Selection

Choose the right complexity

## Regularization

- Methods to reduce overfitting
- Heuristics: force model parameters to have small values
- Principled methods: use a priori information

# Ridge Regression

# parameters = # data points





# Ridge Regression

|               | $\ln \lambda = -\infty$ | $\ln \lambda = -18$ | $\ln \lambda = 0$ |
|---------------|-------------------------|---------------------|-------------------|
| $w_0^{\star}$ | 0.35                    | 0.35                | 0.13              |
| $w_1^{\star}$ | 232.37                  | 4.74                | -0.05             |
| $w_2^{\star}$ | -5321.83                | -0.77               | -0.06             |
| $w_3^{\star}$ | 48568.31                | -31.97              | -0.05             |
| $w_4^{\star}$ | -231639.30              | -3.89               | -0.03             |
| $w_5^{\star}$ | 640042.26               | 55.28               | -0.02             |
| $w_6^{\star}$ | -1061800.52             | 41.32               | -0.01             |
| $w_7^{\star}$ | 1042400.18              | -45.95              | -0.00             |
| $w_8^{\star}$ | -557682.99              | -91.53              | 0.00              |
| $w_9^{\star}$ | 125201.43               | 72.68               | 0.01              |

# Ridge Regression

