

Monitoring In Motion

Challenges in Monitoring Kubernetes & Containers

Ilan Rabinovitch
Director, Community
Datadog

Cloud Native SF Meetup Feb 25, 2016

About Me

Ilan Rabinovitch
Datadog

ilan@datadoghq.com @irabinovitch

- Long time Datadog user.
- Prior to Datadog built automation and monitoring tooling at Ooyala and Edmunds.com
- SCALE and TXLF Co-Founder

Agenda

- Monitoring 101 Crash Course
- Challenges in Monitoring Dynamic Infrastructure
- Demo Time
- Questions?

Monitoring Everything

Honest Status Page @honest_update · 18 Sep 2015

We have no idea what's wrong so we're just gonna undo whatever we did last and whoever did it is the incident manager.

0.0

Honest Status Page @honest_update · 20 Sep 2015

If there ain't an alert for it, it ain't broke!

000

Honest Status Page @honest_update · 10 Mar 2015

Two words: unbounded queues.

4

九 61

8

0.0

@honest_update on Twitter

Quick Overview of Datadog

- Monitoring for modern applications.
- Time series storage of metrics and events.
- Trending, alerting and anomaly detection.
- Hundreds of integrations out of the box.

Monitoring 101: Categorization

More at: http://goo.gl/t1Rgcg

Monitoring 101: Focus on symptoms

More at: http://goo.gl/t1Rgcg

Recurse until you find root cause.

More at: http://goo.gl/t1Rgcg

Container Monitoring Challenges

https://www.datadoghq.com/docker-adoption/

Operational Complexity

- •Average containers per host: N (N=4, 10/2015)
- N-times as many "hosts" to manage
- Affects everything

Operational Complexity: Scale

100

instances

400

containers

Operational Complexity: Scale

160 metrics per host

640 metrics per host

Assuming 4 containers per host

Operational Complexity: Scale

100 instances

64,000 metrics

Assuming 4 containers per host

Between containers, cluster managers and virtual machines we've lost track of where our code even is. #inception

Host Centric vs Service Centric

Host Centric vs Service Centric

Query Based Monitoring

"What's the average throughput of my application per version?"

"Alert me when one of my pods from a replication controller is not behaving like the others?"

"Show me rate of HTTP 500 responses from nginx"

- "... in region us-east1 across all datacenters"
- "... running my app version 2...."

Query Based Monitoring

- Use **tags**, labels, etc on your hosts and metrics.
- Pull in existing labels from your infrastructure (Region, Docker Images, K8S Tags..)

By using tags, auto-adapt!

Where is my application running?

What's the total throughput of App X?

What's its response time per tag? (pod, version, DC)

What's the distribution of 5xx from Nginx per pod?

Auto Discovery

Some Pictures

Dashboards and Metrics

Alerts

Sharing

Demo time

