DL: Повышение качества обучения

План

- Способы повышения качества обучения
- Байесовская оптимизация

Архитектурные решения

Local Contrast Norm.

I F

Fully Connected Layer Max Pooling

Архитектурные решения

- Input
- Convolution
- Pooling
- Nonlinear
- Normalization
- Loss

Нелинейность

$$relu = max(0, x)$$

$$\sigma = \frac{1}{1 + e^{-x}}$$

$$f = max(0.1x, x)$$

Loss

$$L_2 = \sum (y - t)^2$$

$$H = \sum t \log y$$

$$H(t,y) = H(t) + D_{KL}(t,y)$$

$$D_{KL}(t,y) = \sum t_i \log \frac{y_i}{t_i}$$

$$H(t) = \sum t_i \log t_i$$

Аугментация

Регуляризация

$$L_1 = \sum (y - t)^2 + \lambda \sum |w_i|$$

$$L_2 = \sum (y - t)^2 + \lambda \sum w_i^2$$

Dropout

Оптимизация гиперпараметров

Поиск по сетке

Случайный поиск

Байесовская оптимизация

Поиск по сетке

Случайный поиск

Байесовская оптимизация

acquisition function surrogate function

Acquisition function (функция выбора)

Expected Improvement Probability Improvement UCB

- • x_{best} as the location of the lowest posterior mean.
- ${}^{ullet}\mu_{\mathcal{Q}}(x_{\mathrm{best}})$ as the lowest value of the posterior mean. Then the expected improvement

$$EI(x,Q) = E_Q[max(0,\mu_Q(x_{best}) - f(x))]$$

f(x) - суррогатная модель (GP модель)