```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px

df = pd.read_csv('/content/conjunto_de_dados_de_funcionarios.csv')
```

Verificar a existência dos valores duplicados e efetuar a remoção

df[df.duplicated()] #identificar e selecionar linhas duplicadas

	Education	JoiningYear	City	PaymentTier	Age	Gender	EverBenched	ExperienceInCurrentDomain	LeaveOrNot
111	Bachelors	2017	Pune	2	27	Female	No	5	1
130	Bachelors	2017	Bangalore	3	26	Female	No	4	0
138	Bachelors	2017	New Delhi	3	28	Male	No	2	0
160	Bachelors	2014	Bangalore	3	28	Female	No	3	0
167	Bachelors	2014	Bangalore	3	25	Male	No	3	0
4640	Bachelors	2015	Bangalore	3	35	Male	No	0	0
4642	Bachelors	2012	Bangalore	3	36	Female	No	4	0
4646	Bachelors	2013	Bangalore	3	25	Female	No	3	0
4648	Bachelors	2013	Bangalore	3	26	Female	No	4	0
4652	Bachelors	2015	Bangalore	3	33	Male	Yes	4	0

1889 rows × 9 columns

```
df.drop_duplicates(inplace=True) # Removendo Duplicatas
df.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 2764 entries, 0 to 4651
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Education	2764 non-null	object
1	JoiningYear	2764 non-null	int64
2	City	2764 non-null	object
3	PaymentTier	2764 non-null	int64

```
4 Age 2764 non-null int64
5 Gender 2764 non-null object
6 EverBenched 2764 non-null object
7 ExperienceInCurrentDomain 8 LeaveOrNot 2764 non-null int64
dtypes: int64(5), object(4)
memory usage: 215.9+ KB

df.duplicated().sum()
```

Mudar nome de coluna

Realizar uma análise gráfica dos dados para verificar:

Como é o comportamento da distribuição na formação dos funcionários? (Pode-se usar o gráfico de colunas ou de pizza)

```
# Contar a distribuição das formações dos funcionários
formacao_distribuicao = df['Formacao'].value_counts()

# Preparar os dados para o gráfico de pizza
labels = formacao_distribuicao.index
sizes = formacao_distribuicao.values
colors = ['gold', 'lightcoral', 'lightskyblue', 'lightgreen'] # Cores para as fatias
# Criar um gráfico de pizza
plt.pie(sizes, labels=labels, colors=colors, autopct='%1.1f%%', startangle=140)
```

```
plt.axis('equal') # Assegura que o gráfico de pizza seja um círculo.
plt.title("Distribuição da Formação dos Funcionários")
plt.show()
```


Como é a distribuição da localidade dos funcionários? (Pode-se usar o gráfico de colunas ou de pizza)

```
# Contar a distribuição das localidades dos funcionários
localidade_distribuicao = df['City'].value_counts()

# Preparar os dados para o gráfico de colunas
cidades = localidade_distribuicao.index
quantidades = localidade_distribuicao.values

# Criar um gráfico de colunas
plt.figure(figsize=(12, 6))
plt.bar(cidades, quantidades, color='lightblue')
plt.xticks(rotation=45, fontsize=12)
plt.xlabel('Localidade (Cidade)', fontsize=14)
plt.ylabel('Número de Funcionários', fontsize=14)
plt.title('Distribuição da Localidade dos Funcionários', fontsize=16)
plt.show()
```


A idade dos funcionários, tem um comportamento próximo a uma distribuição normal? (Pode-se usar o histograma para verificação)

```
# Contar a distribuição dos gêneros dos funcionários
genero_distribuicao = df['Gender'].value_counts()

# Preparar os dados para o gráfico de colunas
generos = genero_distribuicao.index
quantidades = genero_distribuicao.values

# Criar um gráfico de colunas
plt.figure(figsize=(8, 6))
plt.bar(generos, quantidades, color='lightblue')
plt.xlabel('Gênero', fontsize=14)
plt.ylabel('Número de Funcionários', fontsize=14)
plt.title('Distribuição de Gênero dos Funcionários', fontsize=16)
plt.show()
```


Qual o gênero predominante? (Pode-se usar o gráfico de colunas ou de pizza)

```
# Criar um histograma da idade dos funcionários
plt.figure(figsize=(10, 6))
plt.hist(df['Age'], bins=20, color='lightblue', edgecolor='black')
plt.xlabel('Idade dos Funcionários', fontsize=14)
plt.ylabel('Número de Funcionários', fontsize=14)
plt.title('Distribuição da Idade dos Funcionários', fontsize=16)
plt.grid(True)
plt.show()
```


A quantidade de funcionários afastados dos projetos é relevante? (Pode-se usar o gráfico de colunas ou de pizza)

Distribuição de Funcionários Alocados em Projetos vs. Afastados de Projetos

Agrupar colunas para analisar dados(técnica do Groupby)

```
#Como agrupar colunas para analisar dados(técnica do Groupby)
cols =['Formacao','PaymentTier']
filtro_cols=df.filter(items=cols_)
filtro_cols
           Formacao PaymentTier
           Bachelors
                               3
           Bachelors
           Bachelors
       3
                               3
             Masters
             Masters
                               3
      4645
             Masters
      4647
           Bachelors
                               3
     4649
             Masters
      4650
             Masters
                               3
     4651 Bachelors
     2764 rows × 2 columns
nivel=filtro_cols.groupby(['Formacao'])
nivel.agg({'PaymentTier':['mean', 'median', 'std', 'count']})
                PaymentTier
                          median std
                mean
                                           count
      Formacao
     Bachelors 2.677321
                             3.0 0.609059
                                            1971
               2.492936
                                             637
       Masters
                             3.0 0.648193
        PHD
                2.698718
                             3.0 0.626510
                                             156
plt.figure(figsize=(12,6))
nivel.boxplot(subplots=False, rot=45, fontsize=12);
```

<ipython-input-18-f0670601079e>:2: FutureWarning: In a future version of pandas, a length 1 tuple will be returned when iterating over a groupby with a grouper equal to a list of length 1. Don't s
nivel.boxplot(subplots=False, rot=45, fontsize=12);

df_1

A	ge 22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	4
JoiningYe	ar																			
2012	3.000	3.000000	2.941176	2.857143	2.722222	2.500000	2.810811	2.761905	2.666667	2.642857	2.666667	2.916667	2.833333	2.428571	2.812500	3.000000	2.625000	3.000000	3.000000	2.87500
2013	2.800	2.714286	2.310345	2.612903	2.629630	2.600000	2.612245	2.550000	2.685714	2.933333	2.666667	2.666667	2.545455	2.888889	2.733333	2.750000	2.454545	2.461538	2.846154	2.66666
2014	2.600	2.625000	2.882353	2.545455	2.541667	2.615385	2.629630	2.741935	2.818182	2.714286	2.866667	2.736842	2.714286	2.923077	2.684211	2.529412	2.944444	2.681818	2.692308	3.00000
2015	2.625	2.571429	2.280000	2.384615	2.551724	2.441176	2.652174	2.593750	2.629630	2.800000	2.608696	2.533333	2.500000	2.500000	2.428571	2.647059	2.636364	2.583333	2.619048	2.50000
2016	2.800	3.000000	2.800000	2.500000	2.529412	2.730769	2.743590	2.840000	2.761905	2.857143	2.750000	2.764706	2.846154	2.800000	2.750000	2.722222	2.692308	2.800000	3.000000	3.00000
2017	2.000	2.272727	2.418605	2.357143	2.295455	2.454545	2.500000	2.459459	2.340909	2.466667	2.611111	2.548387	2.531250	2.548387	2.407407	2.500000	2.571429	2.285714	2.470588	2.61538
2018	NaN	3.000000	2.800000	2.857143	2.750000	2.842105	2.870968	2.928571	2.812500	2.875000	3.000000	3.000000	2.818182	2.909091	2.727273	2.888889	3.000000	2.750000	3.000000	3.00000

Análise Exploratória dos Dados - Análise Univariada

Separando os grupos LeaveOrNot

```
#NÃO SAÍRAM DA EMPRESA
df_0 = df.loc[df.LeaveOrNot == 0]

#SAÍRAM DA EMPRESA
df_1 = df.loc[df.LeaveOrNot == 1]
```

```
# CRIANDO FUNÇÃO PROBABILIDADE DE OCORRER UM EVENTO
def probab (A, E):
    resultado = (A / E)*100
    print('{:.2f}'.format(resultado))

# CRIANDO FUNÇÃO PROBABILIDADE DE NÃO OCORRER UM EVENTO
def probab_not (A, E):
    resultado = (1- (A / E))*100
    print('{:.2f}'.format(resultado))

# PROBABILIDADE DO FUNCIONÁRIO SAIR DA EMPRESA
p_sair = probab (len(df_1), len(df))
    39.36

# PROBABILIDADE DO FUNCIONÁRIO NÃO SAIR DA EMPRESA
probab_not (len(df_1), len(df))
    60.64
```

Variavel Education

```
#CONTAR QUANTOS VALORES ESTÃO DISPONÍVEIS NA COLUNA 'Formação'
df['Formacao'].value_counts()
     Bachelors 1971
    Masters
                  637
    PHD
                  156
    Name: Formacao, dtype: int64
#SEPARAR EM GRUPOS DE FORMAÇÃO
bachelors = df.loc[df.Formacao == 'Bachelors']
masters = df.loc[df.Formacao == 'Masters']
PHD = df.loc[df.Formacao == 'PHD']
#PROBABILIDADE FUNCIONARIO SER BACHAREL
p bachelors = probab (len(bachelors), len(df))
     71.31
#PROBABILIDADE FUNCIONARIO SER MESTRE
p_masters = probab (len(masters), len(df))
     23.05
#PROBABILIDADE FUNCIONARIO SER PHD
p_PHD = probab (len(PHD), len(df))
     5.64
```

```
#SEPARAR EM GRUPOS DE FORMAÇÃO QUE SAÍRAM DA EMPRESA
bachelors 1 = df 1.loc[df.Formacao == 'Bachelors']
masters_1 = df_1.loc[df.Formacao == 'Masters']
PHD 1 = df 1.loc[df.Formacao == 'PHD']
#CRIANDO UMA FUNÇÃO PARA PROBABILIDADE CONDICIONAL
def probab cond (AB, B):
 resultado = (AB / B)*100
 print('{:.2f}'.format(resultado))
bachelors_1["Formacao"].value_counts()
#PROBABILIDADE FUNCIONARIO SER BACHAREL E SAIR DA EMPRESA
probab_cond(len(bachelors_1),len(df_1))
     67.92
masters_1["Formacao"].value_counts()
#PROBABILIDADE FUNCIONARIO SER MESTRE E SAIR DA EMPRESA
probab_cond(len(masters_1),len(df_1))
     28.40
```

primeira conclusão: a probabilidade de saída de bacharéis (67.92) supera a saída de mestres e PHDs (28.40 + 3.68)

Realizar a separação dos outros grupos que podem ser considerados como categóricos e analisar cada uma das probabilidades

Variavel Cidade

```
#CONTAR QUANTOS VALORES ESTÃO DISPONÍVEIS NA COLUNA Cidade
df["City"].value_counts()
#SEPARAR EM GRUPOS DE Cidade
pune = df.loc[df.City == 'Pune']
newDelhi = df.loc[df.City == 'New Delhi']
bangalore = df.loc[df.City == 'Bangalore']
#PROBABILIDADE DO FUNCIONARIO SER DE PUNE
p_pune = probab (len(pune), len(df))
#PROBABILIDADE DO FUNCIONARIO SER DE NEW DELHI
p_newDelhi = probab (len(newDelhi), len(df))
#PROBABILIDADE DO FUNCIONARIO SER DE BANGALORE
p_bangalore= probab (len(bangalore), len(df))
    28.98
    28.65
```

```
42.37
```

```
#SEPARAR EM GRUPOS DE CIDADE QUE SAÍRAM DA EMPRESA
pune 1 = df 1.loc[df.City == 'Pune']
newDelhi 1 = df 1.loc[df.City == 'New Delhi']
bangalore_1 = df_1.loc[df.City == 'Bangalore']
pune_1["City"].value_counts()
#PROBABILIDADE DO FUNCIONARIO SER PUNE E SAIR DA EMPRESA
probab cond(len(pune 1),len(df 1))
    37.50
bangalore 1["City"].value counts()
#PROBABILIDADE DO FUNCIONARIO SER DE BANGALORE E SAIR DA EMPRESA
probab_cond(len(bangalore_1),len(df_1))
    37.68
newDelhi_1["City"].value_counts()
#PROBABILIDADE DO FUNCIONARIO SER DE NEW DELHI E SAIR DA EMPRESA
probab_cond(len(newDelhi_1),len(df_1))
    24.82
```

A probabilidade de um funcionario que mora em New Delhi sair é menor que funcionarios das cidades de Bangalore e Pune. Curioso notar que Funcionarios de Pune e Bangalore tem praticamente as mesmas chances de sair, mesmo Bangalore tendo bem mais funcioarios que Pune.

```
df.rename(columns={'Niveis salariais': 'PaymentTier'}, inplace=True)
#Variável Nivel Salarial
#CONTAR QUANTOS VALORES ESTÃO DISPONÍVEIS NA COLUNA NivelSalarial
df["PaymentTier"].value_counts()
#SEPARAR EM GRUPOS DE Nivel Salarial
um = df.loc[df.PaymentTier == 1]
dois = df.loc[df.PaymentTier == 2]
tres= df.loc[df.PaymentTier == 3]
#PROBABILIDADE DE NIVEL SALARIAL DO FUNCIONARIO SER 1
p_um = probab (len(um ), len(df))
#PROBABILIDADEDE NIVEL SALARIAL DO FUNCIONARIO SER 2
p_dois = probab (len(dois), len(df))
#PROBABILIDADEDE NIVEL SALARIAL DO FUNCIONARIO SER 3
p_tres= probab (len(tres), len(df))
     7.89
     20.62
```

71.49

```
#SEPARAR EM GRUPOS DE NIVEL DE PAGAMENTO QUE SAÍRAM DA EMPRESA
um 1 = df 1.loc[df.PaymentTier == 1]
dois_1 = df_1.loc[df.PaymentTier == 2]
tres_1 = df_1.loc[df.PaymentTier == 3]
df_1.rename(columns={'Niveis salariais': 'PaymentTier'}, inplace=True)
     <ipython-input-85-1bae4e764c23>:1: SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame
     See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy">https://pandas.pydata.org/pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy</a>
       df 1.rename(columns={'PaymentTier': 'NivelSalarial'}, inplace=True)
um_1["PaymentTier"].value_counts()
#PROBABILIDADE FUNCIONARIO TER NIVEL SALARIAL 1 E SAIR DA EMPRESA
probab_cond(len(um_1),len(df_1))
     7.08
dois 1["PaymentTier"].value counts()
#PROBABILIDADE FUNCIONARIO TER NIVEL SALARIAL 2 E SAIR DA EMPRESA
probab_cond(len(dois_1),len(df_1))
     31.53
tres_1["PaymentTier"].value_counts()
#PROBABILIDADE FUNCIONARIO TER NIVEL SALARIAL 3 E SAIR DA EMPRESA
probab_cond(len(tres_1),len(df_1))
     61.40
```

Funcionarios com nivel salarial 3 tem muito mais chances de sair da empresa que funcionarios com nivel salarial 1 e 2. Com os funcionarios de nivel salarial 1 tendo menos probilidade de sair.

Separação e Analise de da Probablilidade da coluna Genero

```
#CONTAR QUANTOS VALORES ESTÃO DISPONÍVEIS NA COLUNA Genero
df["Gender"].value_counts()

#SEPARAR EM GRUPOS DE Genero
male = df.loc[df.Gender == 'Male']
female = df.loc[df.Gender == 'Female']

#PROBABILIDADE DO FUNCIONARIO DE FUNCIONARIO SER HOMEM
p male = probab (len(male), len(df))
```

```
#PROBABILIDADE DO FUNCIONARIO SER MULHER
p_female = probab (len(female), len(df))

55.32
    44.68

#SEPARAR EM GRUPOS DE GENERO QUE SAÍRAM DA EMPRESA
male_1 = df_1.loc[df.Gender == 'Male']
female_1 = df_1.loc[df.Gender == 'Female']

male_1["Gender"].value_counts()
#PROBABILIDADE FUNCIONARIO SER HOMEM E SAIR DA EMPRESA
probab_cond(len(male_1),len(df_1))

43.57

female_1["Gender"].value_counts()
#PROBABILIDADE FUNCIONARIO SER MULHER E SAIR DA EMPRESA
probab_cond(len(female_1),len(df_1))

56.43
```

A probabidade de uma mulher sair da empresa é maior que a de um homem.

Separação e Analise de da Probablilidade da coluna EverBenched

```
df.rename(columns={'Sem Projeto': 'EverBenched'}, inplace=True)

#CONTAR QUANTOS VALORES ESTÃO DISPONÍVEIS NA COLUNA EverBenched
df["EverBenched"].value_counts()

#SEPARAR EM GRUPOS DE QUE JA FICARAM SEM PROJETO OU NÃO
sim = df.loc[df.EverBenched == 1]
nao = df.loc[df.EverBenched == 0]

#PROBABILIDADE DO FUNCIONARIO TER FICADO SEM PROJETO
p_sim = probab (len(sim), len(df))

##PROBABILIDADE DO FUNCIONARIO NÃO TER FICADO SEM PROJETO
p_nao = probab (len(nao), len(df))

0.00
0.00

#SEPARAR EM GRUPOS QUE FICARAM SEM PROJETO QUE SAÍRAM DA EMPRESA
sim_1 = df_1.loc[df.EverBenched == 1]
nao_1 = df_1.loc[df.EverBenched == 0]
```