Medidas de dispersão ou variação

Amplitude: Diferença entre as entradas máximas e mínimas.

Valor	4	38	3	45	4	41	44	41	37	42
es	1		9		7					

Amplitude = 47 - 37 = 10

Desvio Populacional

Diferença entre o valor e a média do conjunto de dados populacional.

Valores	Desvio (x - μ)
41	-0,5
38	-3,5
39	-2,5
45	3,5
47	5,5
41	-0,5
44	2,5
41	-0,5
37	-4,5
42	0,5
$\Sigma x = 415$	$\Sigma (x-\mu) = 0$

Variância Populacional

$$\sigma^2 = \sum i i i$$

$$\sigma^2 = \frac{88,5}{10} = 8,85$$

Desvio padrão Populacional

$$\sigma = \sqrt{\sigma^2}$$

$$\sigma = \sqrt{8,85} = 2,97$$

Valore s	Desvio (x - μ)	(x - μ) ²
41	-0,5	0,25
38	-3,5	12,25
39	-2,5	6,25
45	3,5	12,25
47	5,5	30,25
41	-0,5	0,25
44	2,5	6,25
41	-0,5	0,25
37	-4,5	20,25
42	0,5	0,25
Σ x = 415	$\Sigma (x-\mu) = 0$	$\Sigma = 88,5$

Variância Amostral

$$S^2 = \sum i i i$$

$$S^2 = \frac{88,5}{9} = 9,83$$

Desvio padrão Amostral

$$S = \sqrt{S^2}$$

$$\sigma = \sqrt{9,83} = 3,14$$

Graus de liberdade (n-1) para cor populacional.

Valore s	Desvio (x - μ)	(x - μ) ²
41	-0,5	0,25
38	-3,5	12,25
39	-2,5	6,25
45	3,5	12,25
47	5,5	30,25
41	-0,5	0,25
44	2,5	6,25
41	-0,5	0,25
37	-4,5	20,25
42	0,5	0,25
Σ x = 415	$\Sigma (x-\mu) = 0$	$\Sigma = 88,5$

Regra Empírica - para distribuições simétricas

Teorema de Chebychev

Aplicado em qualquer distribuição

$$m = 1 - \frac{1}{k^2}$$

m = percentual dos dados.

K = número de desvios padrões (> 1).

$$= 0.75$$

$$= 0.89$$

$$= 0.94$$

Desvio padrão para dados agrupados

$$S = \sqrt{\sum i i i i}$$

$$S = \sqrt{\frac{145,40}{49}}$$

$$S = 1,72$$

x	f	xf
0	10	0
1	19	19
2	7	14
3	7	21
4	2	8
5	1	5
6	4	24
	$\Sigma = 50$	$\Sigma = 91$

$x - \overline{x}$	$(x-\overline{x})^2$	$(x-\overline{x})^2f$
-1,8	3,24	32,40
-0,8	0,64	12,16
0,2	0,04	0,28
1,2	1,44	10,08
2,2	4,84	9,68
3,2	10,24	10,24
4,2	17,64	70,56
		S = 145,40

$$\overline{x} = \frac{\sum xf}{n} = \frac{91}{50} \approx 1.8$$

Medidas de posição

Fractis: Divisão do conjunto de dados em partes iguais (Quartis, percentis, Mediana...).

Quartis: Divide o conjunto de dados em 4 partes iguais.

Amplitude Interquartil (IQR):

$$IQR = Q_3 - Q_1$$

Gráfico BoxPlot ou Caixa e Bigodes

