MAT 128A - Assignment 3

Karry Wong

October 11, 2018

Problem 1

Show that when the *n*-point periodic trapezoidal rule is used to evaluate the integral $\int_{-\pi}^{\pi} exp(ikt) dt$, the result is

$$\begin{cases} (-1)^{|k|}2\pi & \text{if } k=m\cdot n \text{ for some nonzero integer } m\\ 2\pi & \text{if } k=0\\ 0 & \text{otherwise} \end{cases}$$

Ans: The desired statment can be shown by applying the n-point periodic trapezoidal rule directly (Clearly the function $f(x) = e^{ikt}$ is 2π -periodic.). As shown in class,

$$T(k) := \frac{2\pi}{n} \left(f(x_0) + f(x_1) + \dots + f(x_{n-1}) \right) \quad \text{where } x_j = -\pi + \frac{2\pi}{n} j$$

$$= \frac{2\pi}{n} \left(e^{-ik\pi} + e^{ik(-\pi + \frac{2\pi}{n})} + \dots + e^{ik(-\pi + \frac{2\pi}{n}(n-1))} \right)$$

$$= \frac{2\pi}{n} e^{-ik\pi} \left(1 + e^{i\frac{2\pi}{n}k} + e^{i\frac{2\pi}{n}k \cdot 2} + \dots + e^{i\frac{2\pi}{n}k \cdot (n-1)} \right)$$

$$= \frac{2\pi}{n} e^{-ik\pi} (1 + r + r^2 + \dots + r^{n-1}) \quad \text{where } r = e^{i\frac{2\pi}{n}k}$$

It is tempting to apply the summation formula for geometric series in the last step above right away, BUT let us take a closer look at this sum and consider two special cases:

(i) For
$$k = 0$$
, $r = e^0 = 1$, so $T(0) = \frac{2\pi}{n}(1)\underbrace{(1 + 1 + \dots + 1)}_{n / 1/2} = 2\pi$.

(ii) For
$$k = m \cdot n$$
, $r = e^{i\frac{2\pi}{n}(m \cdot n)} = e^{i(2\pi m)} = 1$ and $e^{-ik\pi} = (-1)^{|k|}$, so

$$T(k) = \frac{2\pi}{n} (-1)^{|k|} \underbrace{(1+1+\dots+1)}_{n \ '1's} = (-1)^{|k|} 2\pi$$

For any other k, applying the summation formula for geometric series, we have

$$T(k) = \frac{2\pi}{n}e^{-ik\pi}\frac{1-r^n}{1-r} = \frac{2\pi}{n}e^{-ik\pi}\frac{1-e^{i2\pi k}}{1-e^{i\frac{2\pi}{n}k}} = \frac{2\pi}{n}e^{-ik\pi}\frac{1-1}{1-e^{i\frac{2\pi}{n}k}} = 0$$

The above calculations explains why the *n*-point periodic trapezoidal rule is exact for functions e^{ikt} , $k=-n+1,\cdots,n-1$

Problem 2

Suppose that f is a continuously differentiable 2π -periodic function. Show that if f is even — meaning that f(-x) = f(x) for all $0 < x \le \pi$ — then f can be represented via a convergent series of the form

$$f(x) = \sum_{n=0}^{\infty} b_n cos(nx)$$

Ans: Assume that $f(x) = \sum_{n=-\infty}^{\infty} a_n e^{inx}$, f(-x) = f(x) implies that $a_{-n} = a_n$ for all integer n (WHY?). Then

$$f(x) = \sum_{n=-\infty}^{\infty} a_n e^{inx} = a_0 + \sum_{n=1}^{\infty} a_n \left(e^{inx} + e^{-inx} \right) \stackrel{(*)}{=} a_0 + 2 \sum_{n=1}^{\infty} a_n \cos(nx)$$

(*) uses the observation $e^{-inx} + e^{inx} = 2\cos(nx)$. Finally we set $b_n = \begin{cases} a_0 & \text{for } n = 0 \\ 2a_n & \text{for } n \neq 0 \end{cases}$, then we have the desired statement, $f(x) = \sum_{n=0}^{\infty} b_n \cos(nx)$.

As mentioned in the lecture, the Fourier series of a continuously differentiable (i.e. C^1), 2π periodic function converges uniformly and absolutely to f on $[-\pi, \pi]$. So we don't need to
prove the convergence of the above series.

Remark 1. Please look at HW 2 Question 6, the Fourier Series of f(x) = |x| (which is an even function) can be represented by a series of cos(nx).

Bonus: The series above containing only cos(nx) functions is called the "Fourier cosine series". With a bit of extra efforts, one can show that $b_0 = \frac{1}{\pi} \int_0^{\pi} f(x) dx$ and $b_n = \frac{2}{\pi} \int_0^{\pi} f(x) cos(nx) dx$ for $n = 1, 2, 3, \cdots$

Problem 3

Suppose that f is a continuously differentiable 2π -periodic function. Show that if f is odd — meaning that f(-x) = -f(x) for all $0 < x \le \pi$ — then f can be represented via a convergent series of the form

$$f(x) = \sum_{n=1}^{\infty} c_n \sin(nx)$$

Ans: Similar to the last problem, assume that $f(x) = \sum_{n=-\infty}^{\infty} a_n e^{inx}$, f(-x) = -f(x) implies that $a_{-n} = -a_n$ for all integer n (WHY?).

Notice that for n = 0, $a_0 = -a_0 \implies a_0 = 0$. Therefore

$$f(x) = \sum_{n = -\infty}^{\infty} a_n e^{inx} = \underbrace{a_0}_{-0} + \sum_{n = 1}^{\infty} a_n \left(e^{inx} - e^{-inx} \right) \stackrel{(*)}{=} 2i \sum_{n = 1}^{\infty} a_n sin(nx)$$

(*) uses the observation $e^{-inx} - e^{inx} = 2i\sin(nx)$. Finally we set $c_n = 2ia_n$ for $n \neq 0$, then we have the desired statement, $f(x) = \sum_{n=1}^{\infty} c_n \sin(nx)$.

Remark 2. Please look at HW 2 Question 5, the Fourier Series of f(x) = x (which is an odd function) can be represented by a series of sin(nx).

Bonus: The series above containing only sin(nx) functions is called the "Fourier sine series". With a bit of extra efforts, one can show that $c_n = \frac{2}{\pi} \int_0^{\pi} f(x) sin(nx) dx$ for $n = 1, 2, 3, \cdots$

Problem 4

Suppose that $f(x) = cos(2x) + cos(4x) + \cdots + cos(20x)$. What is the exact value of $\int_{-\pi}^{\pi} f(x) dx$?

i.e. How long is the periodic trapezoidal rule of minimum length which evaluates the above integral exactly? That is, what is the least positive integer n such that

$$\int_{-\pi}^{\pi} f(x) dx = \frac{2\pi}{n} \sum_{j=0}^{n-1} f(-\pi + \frac{2\pi}{n}j) ?$$

Here we assume that exact arithmetic is used to perform the calculations so that we need not worry about roundoff error.

Ans: The key idea is the statement shown in class that

The n-point periodic trapezoidal rule is exact for the functions e^{-ikt} , where

$$k = -n + 1, -n + 2, \dots, -1, 0, 1, \dots n - 1$$

Using $e^{-inx} + e^{inx} = 2cos(nx)$, rewrite

$$f(x) = \frac{1}{2} \left[\left(e^{-i2x} + e^{i2x} \right) + \left(e^{-i4x} + e^{i4x} \right) + \dots + \left(\left(e^{-i20x} + e^{i20x} \right) \right) \right]$$

So we want $20 = k = n - 1 \implies n = 21$. Clearly using more than 21 points will make the integral evaluation exact.

Therefore, the answer is 21 points on $[-\pi, \pi]$.

Problem 5

Let $f(x) = \sum_{n=1}^{\infty} a_n e^{inx}$ with $|a_n| \leq \frac{1}{n^2}$.

Show that the error incurred when the periodic trapezoidal rule of length N is used to evaluate the integral

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \, dx$$

is bounded above by $\frac{\pi^2}{6} \frac{1}{N^2}$. Again here we assume that exact arithmetic is used to perform the calculations so that we need not worry about roundoff error.

(Hint: look at the solutions from the previous homework assignment to find the value of $\sum_{n=1}^{\infty} \frac{1}{n^2}$).

Ans: The key idea here is use the following corollary shown in class:

Corollary 1. Given $g(x) = \sum_{n=-\infty}^{\infty} a_n e^{inx}$, then $\int_{-\pi}^{\pi} g(x) dx = 2\pi a_0$, where the approximation of the integral obtained via the m-point periodic trapezoidal rule is

$$2\pi a_0 + 2\pi \sum_{k=1}^{\infty} (-1)^{km} (a_{km} + a_{-km})$$

Observe that for the given function in our problem, $a_n = 0$ for all integer $n \leq 0$. Therefore the integral $\frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx = 0$. Therefore, in order to calculate error:

Error
$$= \left| \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx - \frac{1}{2\pi} \left[2\pi a_0 + 2\pi \sum_{k=1}^{\infty} (-1)^{kN} (a_{kN} + a_{-kN}) \right] \right|$$

 $= \left| \sum_{k=1}^{\infty} (-1)^{kN} a_{kN} \right| \le \sum_{k=1}^{\infty} |a_{kN}| \le \sum_{k=1}^{\infty} \frac{1}{k^2 N^2} = \frac{\pi^2}{6} \cdot \frac{1}{N^2}$

Remark 3. One should ask right at the beginning whether the given function $f(x) = \sum_{n=1}^{\infty} a_n e^{inx}$ is well-defined, i.e. does this series of function converge? The answer is NO for arbitrary a_n .

But thanks to the condition $|a_n| \leq \frac{1}{n^2}$, we can invoke the "Weierstrass M-test" which states that for a sequence of functions $\{f_n\}_{n\in\mathbb{N}}$, $f_n\colon A\to\mathbb{C}$, and suppose for every $n\in\mathbb{N}$, there exists constants $M_n>0$ such that $|f_n(x)|< M_n$ for all $x\in A$ and $\sum_{n\in\mathbb{N}}M_n<\infty$. Then $\sum_{n=1}^{\infty}f_n(x)$ converges uniformly. In our case, $M_n=\frac{1}{n^2}$. Therefore, f(x) is well-defined in our case.

Problem 6

Let $f(x) = \sum_{n=0}^{\infty} a_n e^{inx}$ with $|a_n| \leqslant \frac{1}{2^n}$.

Show that the error incurred when the periodic trapezoidal rule of length N is used to evaluate the integral

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \, dx$$

is bounded above by $\frac{1}{2^{N}-1}$. Again here we assume that exact arithmetic is used to perform the calculations so that we need not worry about roundoff error.

Ans: Similar to the above problem, here we have $a_n = 0$ for n < 0 and $\frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx = 2\pi a_0$. We apply the same corollary to calculate the error:

Error =
$$\left| a_0 - \frac{1}{2\pi} \left[2\pi a_0 + 2\pi \sum_{k=1}^{\infty} (-1)^{kN} (a_{kN} + a_{-kN}) \right] \right|$$

= $\left| \sum_{k=1}^{\infty} (-1)^{kN} a_{kN} \right| \le \sum_{k=1}^{\infty} |a_{kN}| \le \sum_{k=1}^{\infty} \frac{1}{2^{kN}} \stackrel{(*)}{=} \frac{1}{2^{N} - 1}$

(*) holds since $\sum_{k=1}^{\infty} \frac{1}{2^{kN}} = \frac{1}{2^N} \left(1 + \frac{1}{2^N} + \frac{1}{2^{2N}} + \cdots \right) = \frac{1}{2^N} \frac{1}{1 - \frac{1}{2^N}} = \frac{1}{2^{N-1}}$.

Problem 7

Find the Fourier series for the function

$$f(t) = \frac{2}{e^{it} - 2}$$

by using the identity $\frac{1}{1-z} = \sum_{j=0}^{\infty} z^j$, which holds for all z with |z| < 1.

Ans: Rearranging the given function

$$f(t) = -\frac{1}{1 - \frac{e^{it}}{2}} \stackrel{(*)}{=} -\sum_{k=0}^{\infty} \left(\frac{e^{it}}{2}\right)^k = \sum_{k=0}^{\infty} \left(-\frac{1}{2^k}\right) e^{ikt}$$

This is an example for **exponential decay** of Fourier coefficients due to the fact that the function $g(z) = \frac{2}{z-2}$ is analytic in a strip over the real-axis on the complex plane.