Un matemático y un psicólogo de paseo por Hanoi

Erik Amézquita ¹ erik.amezquita@cimat.mx

¹DEMAT, UGto

21 de noviembre de 2017

E. Amézquita Torres de Hanoi 21/11/17 1 / 50

El Problema de la Torre de Hanoi Clásico

Édouard Lucas (1842-1891) alias *N. Claus de Siam* [1889] anagrama de Lucas d'Amiens.

E. Amézquita Torres de Hanoi 21/11/17 2 / 50

E. Amézquita Torres de Hanoi 21/11/17 3 / 50

E. Amézquita Torres de Hanoi 21/11/17 4 / 50

No vale

E. Amézquita Torres de Hanoi 21/11/17 5 / 50

Resolviendo para n = 4

E. Amézquita Torres de Hanoi 21/11/17 6 / 50

Mover el naranja

E. Amézquita Torres de Hanoi 21/11/17 7 / 50

Ahora sí se puede

E. Amézquita Torres de Hanoi 21/11/17 8 / 50

Ahora sí se puede

E. Amézquita Torres de Hanoi 21/11/17 9 / 50

Listo

E. Amézquita Torres de Hanoi 21/11/17 10 / 50

Mover el naranja en n = 3

E. Amézquita Torres de Hanoi 21/11/17 11 / 50

Mover el naranja en n = 3

E. Amézquita Torres de Hanoi 21/11/17 12 / 50

Mover el naranja en n = 3

E. Amézquita Torres de Hanoi 21/11/17 13 / 50

Listo

E. Amézquita Torres de Hanoi 21/11/17 14 / 50

Resolvemos entonces para n = 2

E. Amézquita Torres de Hanoi 21/11/17 15 / 50

E. Amézquita Torres de Hanoi 21/11/17 16 / 50

E. Amézquita Torres de Hanoi 21/11/17 17 / 50

Terminamos nuevamente

E. Amézquita Torres de Hanoi 21/11/17 18 / 50

iPrimero se resuelve para n = 1!

E. Amézquita Torres de Hanoi 21/11/17 19 / 50

Recursión y patrones

M(n): no. de movimientos para resolver la torre de n discos.

$$M(1) = 1$$

$$M(2) \le M(1) + 1 + M(1) = 2M(1) + 1 = 3$$

 $M(3) \le M(2) + 1 + M(2) = 2M(2) + 1 = 7$
 $M(4) \le M(3) + 1 + M(3) = 2M(3) + 1 = 15$
 $M(5) \le M(4) + 1 + M(4) = 2M(4) + 1 = 31$

E. Amézquita Torres de Hanoi 21/11/17 20 / 50

Inducción matemática

M(n): no. de movimientos para resolver la torre de n discos.

$$M(1) = 1$$

$$M(n+1) \le M(n) + 1 + M(n) = 2M(n) + 1$$

Resolvemos la relación de recurrencia

$$M(n+1) \le 2^{n+1}-1$$

¿Es ésta la mejor manera de resolver el problema?

E. Amézguita Torres de Hanoi 21/11/17 21 / 50

El disco naranja es difícil de mover

E. Amézquita Torres de Hanoi 21/11/17 22 / 50

Uno de dos escenarios posibles

E. Amézquita Torres de Hanoi 21/11/17 23 / 50

El otro

E. Amézquita Torres de Hanoi 21/11/17 24 / 50

Inducción matemática (nuevamente)

- Sabemos que M(1) = 1. Supongamos que para n discos $M(n) \ge 2^n 1$.
- Para mover el último disco de 0 a i, hay que efectuar al menos 2ⁿ – 1 movimientos previos.
- Después de mover el último disco de j a 2, hay que hacer al menos 2ⁿ – 1 movimientos más.
- En total hay que hacer al menos $(2^n-1)+1+(2^n-1)=2^{n+1}-1$ movimientos.
- Es decir $M(n+1) \ge 2^{n+1} 1$.

¿Y los monjes?

- $M(64) = 2^{64} 1 \approx 1.8 \times 10^{19}$ movimientos.
- 1 movimiento por segundo: 570,000 millones de años ≈ 38 veces la edad del universo.
- 10⁹ movimientos por segundo: 570 años.

Caminos mín y máx entre configuraciones

E. Amézquita Torres de Hanoi 21/11/17 27 / 50

Grafos n = 1

E. Amézquita Torres de Hanoi 21/11/17 28 / 50

Grafos n = 2

E. Amézquita Torres de Hanoi 21/11/17 29 / 50

Grafos n = 2: mínimo = $2^n - 1$

E. Amézquita Torres de Hanoi 21/11/17 30 / 50

Grafos n = 2: máximo = 3^n

E. Amézquita Torres de Hanoi 21/11/17 31 / 50

Grafos n = 3, mín

E. Amézquita Torres de Hanoi 21/11/17 32 / 50

Grafos n = 3, máx

E. Amézquita Torres de Hanoi 21/11/17 33 / 50

n = 4

E. Amézquita Torres de Hanoi 21/11/17 34 / 50

El camino óptimo no siempre es obvio ni único

E. Amézquita Torres de Hanoi 21/11/17 35 / 50

Probabilidad y combinatoria al rescate

Theorem

Para n muy grande, dadas dos configuraciones al azar, el disco más grande se mueve

- 0 veces en $\frac{1}{3}$ de las ocasiones (34%),
- exactamente una vez en $\frac{13}{21}$ de las ocasiones (62%),
- exactamente dos veces en $\frac{1}{21}$ de las ocasiones (4%),

E. Amézquita Torres de Hanoi 21/11/17 36 / 5

si se sigue el camino óptimo.

Otra más

Theorem

Para n muy grande, dadas dos configuraciones al azar, el camino óptimo es $\frac{466}{885} \approx 0.53$ veces la longitud máxima. De manera más general, para n discos, el camino óptimo entre dos configuraciones es en promedio

$$\frac{466}{885} \cdot 2^{n} - \frac{1}{3} - \frac{3}{5} \left(\frac{1}{3}\right)^{n} + \left(\frac{12}{59} + \frac{18}{1003}\sqrt{17}\right) \Theta_{+}^{n} + \left(\frac{12}{59} - \frac{18}{1003}\sqrt{17}\right) \Theta_{-}^{n}$$

donde

$$\Theta_{\pm} = \frac{5 \pm \sqrt{17}}{18}$$

E. Amézquita Torres de Hanoi 21/11/17 37 / 50

Grafos n = 3, mín

iEn Hanoi hay fractales!

Los fractales son figuras autosimilares: se puede hacer zoom de manera eterna.

El triángulo de Sierpiński

Wacław Sierpiński (1882-1969) lo presentó en 1915. iÁrea 0 pero perímetro infinito!

Una curva muy particular

Sierpiński también la vio como una curva cantoriana y jordaniana tal que cada punto es de ramificación.

- Un sólo trozo delimitado muy delgado.
- Se puede dibujar sin levantar el lápiz del papel.
- La curva se corta a si misma en todo momento.

Hanoi salva el día

Andreas M. Hinz resuelve en 1990 el problema de la distancia promedio entre dos puntos elegidos al azar en el triángulo de Sierpiński:

Si el lado inicial mide 1, la distancia promedio es $\frac{466}{885}$

(b) A.M. Hinz en el Congreso Europeo de Matemáticas, 2012.

(a) Wacław Sierpiński (1927) Matemáticas

E. Amézquita Torres de Hanoi 21/11/17 42 / 50

¿Y dónde quedaron los psicólogos?

- El problema de las Torres de Hanoi ha sido usado desde inicios del siglo XX para el diagnóstico de habilidades cognitivas, planeación y aprendizaje.
- Se han propuesto variantes: Las Torres de Londres, de Oxford, de Toronto, etc.
- Diferencias de reglas, número de discos y número de palos.
- Tarea: ir de un estado regular a otro estado regular.
- ¿Camino óptimo? ¿Todos los caminos posibles?

Variantes de las Torres

Figura: ¿Cuál es más difícil? ¿En qué sentido? ¿Y con más palos?

Los grafos salvan el día

Figura: Grafos de configuraciones de Oxford, Hanoi y Londres para 2 discos.

E. Amézquita Torres de Hanoi 21/11/17 45 / 50

Algo más exótico

Figura: Grafos de configuraciones de Londres para 3 discos.

E. Amézquita Torres de Hanoi 21/11/17 46 / 50

Se puede cuantificar la dificultad de tareas

G	G	G	d	Δ	μ	diam G
O_{3}^{2} O_{3}^{3} O_{3}^{4}	12 60 360	18 108 720	3.0 3.6 4.0	4 6 6	2.14 3.7 5.6	4 7 10
H ₃ ³ H ₃ ⁴ H ₃	9 27 81	12 39 120		3	4.0	3 7 15
L ₃ ² L ₃ ³	10 36	14 54			2.0 4.3	4 8

Cuadro: Con tres palos

E. Amézquita Torres de Hanoi 21/11/17 47 / 50

Con cuatro palos

G	G	G	d	Δ	μ	diam G
O_4^2	20	48	4.8	6	2.0	4
O_4^3	120	360	6.0	9	3.3	6
O_{4}^{2} O_{4}^{3} O_{4}^{4}	840	2880	6.9	12	4.8	9
H_{Λ}^{2}	16	36	4.5	5	1.9	3
H_{Λ}^{3}	64	168	5.2	6	3.1	5
H ₄ ³ H ₄ ⁴ H ₄ ⁴	256	720	5.6	6	4.7	9
L_{4}^{4}	480	1464	6.1	9	4.7	9
L ₄ ⁴ L ₄ ⁵	2640	8280	6.3	9	6.8	12

Cuadro: ¿Y cuántas tareas son equivalentes?

E. Amézquita Torres de Hanoi 21/11/17 48 / 50

Conclusiones

- La Torre de Hanoi clásica presenta inducción matemática y recursión.
- Grafos y combinatoria permiten entender mejor sus configuraciones regulares.
- Conecta después con el triángulo de Sierpiński, un fractal fabuloso.
- Sus fundamentos matemáticos caracterizan la dificultad de éste y sus variantes en experimentos psicológicos.

Referencias

- Graham, R.L., Knuth, D.E., Patashnik, O. *Concrete Mathematics* Addison-Wesley 1989. Cap 1.
- Hinz, A. M. "The Tower of Hanoi". L'Enseignement Mathematique 35 (1989) pp.289-321.
- Hinz, A. M. et. al., "A mathematical model and a computer tool for the Tower of Hanoi and Tower of London puzzles". *Information Sciences* 179 (2009), pp.2934-2947.
- Stewart I. "Four Encounters with Sierpiński's Gasket". *The Mathematical Intelligencer* 17 (1995), pp.52-64.

E. Amézquita Torres de Hanoi 21/11/17 50 / 50