Sprawozdanie z zajęć laboratoryjnych z fizyki nr 1 Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła matematycznego

Piotr Kucharski Dominik Zabłotny zespół 3

11 października 2017r.

0.1 Przebieg ćwiczenia

0.1.1 Plan wykonania doświadczenia

Celem laboratorium jest wyznaczenie przyspieszenia ziemskiego za pomocą wahadła matematycznego. Definuje się je jako ciało o masie punktowej zawieszone na cienkiej, nierozciągliwej nici, które wytrącone z równowagi zaczyna się wahać ruchem okresowym w płaszczynie pionowej pod wpływem siły ciężkości.

0.1.2 Przygotowanie

0.1.3 Pomiary

0.1.4 Błędy pomiarowe

0.2 Opracowanie wyników

0.3 Wnioski

Lp.	Liczba okresów k	czas t dla k okresów [s]	okres $T_i = t/k[s]$
1	20	24.8	1.240
2	40	49.82	1.246
3	60	75.14	1.252
4	80	100.11	1.251
5	100	125.07	1.251
6	20	24.83	1.242
7	40	49.89	1.247
8	60	74.92	1.249
9	20	25.2	1.260
10	40	50.23	1.256

Tablica 1: Pomiar okresu drgań przy ustalonej długości wahadła $l=396~[mm]\pm1[mm]$.

Lp.	<i>l</i> [<i>mm</i>]	k	t[s]	T[s]	T^2 [s^2]
1	369	20	24.8	1.240	1.538
2	163	20	16.31	0.816	0.665
3	201	20	18.06	0.903	0.815
4	241	10	10.1	1.010	1.020
5	241	20	19.91	0.996	0.991
6	281	30	31.97	1.066	1.136
7	281	20	21.38	1.069	1.143
8	321	20	22.75	1.138	1.294
9	357	10	12.09	1.209	1.462
10	394	10	12.54	1.254	1.573
11	106	10	6.63	0.663	0.440
12	146	10	7.82	0.782	0.612
13	195	10	8.94	0.894	0.799
14	240	10	9.85	0.985	0.970
15	279	10	10.69	1.069	1.143

Tablica 2: Pomiar zależności okresu drgań od długości wahadła \boldsymbol{l}