論文 鳥瞰表示による駐車支援システム*

Overhead View Parking Support System

Hirohiko YANAGAWA

This overhead view parking support system uses image-processing software to display the view around a vehicle, as seen from above, on the navigation screen. This overhead view includes the vehicle itself. The system allows the driver to park safely and easily. Blind spots are overcome and the driver is able to see their entire surroundings. This parking support system with an overhead view has already been installed and evaluated as an actual system. This paper discusses the system in more detail.

Key words: Parking support system, Image-processing, Overhead view

1. まえがき

バックカメラを中心に車載カメラの搭載率が高まっ ており、ナビゲーションディスプレイにカメラからの 画像を表示して、ドライバの死角を補助するシステム が一般的になりつつある.

一方, 高速で安価なCPUの開発が進むことで, 画像 処理可能な能力を保有するCPUがナビゲーションシス テムに搭載されるようになってきた。この高速なCPU を利用することでバックカメラにて撮像した車両後方 の映像を画像処理しドライバにとって最もわかりやす い表示を行うというアプローチが可能となってきた。

ナビゲーションシステムに画像処理ソフトウェアを 搭載し、自車両も含めた上から見た映像(鳥瞰表示) を画像合成しディスプレイに表示する. 本システムに より鳥瞰表示による死角を消し去った全周囲画像をド ライバに提供することが可能となり、安全かつ容易な 駐車が可能となる. また, 実際に車両に搭載し評価する ことで鳥瞰表示による駐車支援システムの優位性と実現 性を確認した. 本論文ではその詳細について述べる.

2. 従来の後方表示システムと問題点

従来の後方表示システムは, 車両後方上部に取り付 けられたカメラの映像を車室内のナビゲーションディ スプレイに表示するものが一般的である. 使用するカ メラは撮像エリアを拡大することで死角を減らすため に広角レンズが使用される. しかしながら広角レンズ を利用しても, 車両後方上部に取り付けられたカメラ では車両全体を写すことができずバンパの一部を写す ことが限界である。そのためドライバは表示された映 像より自車両幅を認識し表示された障害物と自車両の 位置関係を把握することは難しい、また、広角レンズ を使用すると撮像画像に歪みが発生しドライバに認識 しづらい映像となる問題点もある.

3. システムコンセプト

ドライバに対して安全かつ簡単な駐車を支援するこ とが可能な鳥瞰表示システムを開発する. 自分の車両 も含めて、上から見た映像をナビゲーションディスプ レイ上に表示することで、ドライバに障害物と自車両 の位置関係を容易に把握させ, 安全かつ簡単な駐車を 支援する.

本機能は従来の後方表示システムで得られたカメラ 映像をナビゲーションシステムのCPUを利用して透視 変換(座標変換)することで上から見た画像を作り上 げ,作成した画像を時間的連続画像合成することによ って、カメラの視野外も含めた全周囲画像をドライバ に提供する.

4. 鳥瞰変換の原理

ドライバに対して表示するナビゲーションディスプ レイ面の座標系をFig. 1の方程式に従い、地表面座標 系に変換することで車両上より見た鳥瞰画像を得る.

Fig. 1に変換方程式を, Fig. 2に鳥瞰変換結果を示 す. 本画像は, 画角120° のカメラを用い車両後方 4.8m, 幅6.4mの範囲を鳥瞰変換によって表示した例 である. 車両の駐車スペースが正確な長方形に表示さ れていることが確認できる.

^{*「11}th World Congress on ITS in Nagoya (2004)」TP16 Parking 3140を和訳して転載

Ground level coordinates
$$(x, y, z)$$
 Display coordinates (Xm, Ym)

Camera level coordinates (x^m, y^m, z^m)

$$\begin{bmatrix} x^m \\ y^m \\ z^m \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos t & -\sin t \\ 0 & \sin t & \cos t \end{bmatrix} \begin{bmatrix} x \\ y \\ z - H \end{bmatrix}$$

$$\begin{bmatrix} x^m \\ y^m \end{bmatrix} = \begin{bmatrix} x^m \\ y^m \end{bmatrix} \begin{bmatrix} x^m$$

Fig. 1 Equation of overhead view

Fig. 2 Conversion of overhead view image

5. 時間的連続画像合成の原理

カメラの視野外も含めた全周囲画像は、車両の動きを正確に取得し、車両の動きに合わせて画像合成することで作成される。車両の動きの把握方法として以下の方法を適用する。

- (1) 車両の動きをモデル化することで車両の移動パラメータを限定する.
- (2) 必要な移動パラメータは、車両センサおよび画 像処理より抽出する

a. 車両センサ:車速センサ, ステアリングセ

ンサ、ジャイロスコープ

b. 画像処理: パターンマッチングによる動き ベクトル抽出 Fig. 3に時間的連続画像合成により作成した合成画像を示す。本画像は画角120°のカメラを用い縦列駐車を実施したときの表示例である。リアルタイム画像と、合成画像を区別するために合成画像エリアは赤みを増して描画している。

Fig. 4に車両全周囲画像の作成過程を示す.本画像は画角160°のカメラを用いることで死角のない車両全周囲画像を作成した例である.下方のオリジナルカメラ映像と見比べると分かるが、自車両と、駐車スペースの位置関係が一目瞭然である.広角カメラを利用したオリジナルカメラ映像には、ゆがみが発生しドライバは認識することが難しくなっている.

Here is the area made by image composting using time continuity.

This surrounding image is synthesized from the image taken with the camera previously using the motion parameter in the vehicle.

Separate line between synthesized parts and real image.

This portion is where the overhead view is displayed by converting the image taken by the camera.

Fig. 3 Overhead view image

Fig. 4 Process stage of image compositing

6. クリアランスソナー情報の重畳

透視変換は2次元の平面座標系による座標変換を行うため3次元物体(障害物)がカメラ映像内にある場合には歪みが発生する. 画像の歪みによりドライバが正確な障害物の位置を把握することが難しくなる問題がある. そこで、3次元物体(障害物)の検出に関してはソナーを使用しディスプレイに表示している鳥瞰画像上に重畳表示することでドライバが障害物と自車両の位置関係を容易に把握することをサポートする(Fig. 5).

7. 結果

本開発システムをナビゲーションシステムに搭載し 実車にて評価を実施した.

- (1) ナビゲーションシステムの構成図をFig. 6に示す. 本システムにて10フレーム/秒の画像更新が実現可能であることを確認した.
- (2) **Table 1**に処理フレーム数とその評価を一覧で記述する.システム的には10フレーム/秒が最も優れる.
- (3) **Table 2**に本システムで測定した1フレーム当り の処理時間の一覧を記述する.

Fig. 5 Overlay of clearance sonar information

Fig. 6 Configuration of the navigation system

Table1 Evaluation result in number of frame execution

No.	Number of frame execution (frame/s)	Result	Remarks
1.	5	Poor	This execution speed isn't practical.
2.	7	good	This execution speed is at least necessary for practical use.
3.	10	V. good	This execution speed is the minimum necessary for practical use.
4.	15	V. good	There are no difference in the result of "10 frame/s" and this execution speed.

Table2 Time of processing a frame (Maximum time)

No.	Processing	Processing time (ms)
1.	Image capture	9.5
2.	Overhead view conversion	6.5
3.	Image compositing using time continuity	42.5
4.	Overlay of clearance sonar information	2.0
5.	Screen display	5.7
	TOTAL	66.2

8. むすび

自分の車両も含めて、上から見た映像をナビゲーションディスプレイ上に表示することで、駐車スペースと自車両の位置関係の把握が容易となった。また、障害物に対してもソナーの検出結果を重畳表示することにより自車両との位置関係の把握が容易となった。本

清水 宏昭

鳥瞰表示システムによりドライバの車両操作負荷が低減され、従来の後方表示システムに対してより安全に 駐車可能である評価を得た.

以上を踏まえ,使用方法が容易で,更に安価であり, 安全に寄与できる本駐車システムには,実際に市場が あり,将来的にも明るい見通しがあると考えている.

<著 者>

(しみず ひろあき)ITS開発部車両周辺を監視するシステムの開発に従事

柳川 博彦 (やながわ ひろひこ) ITS開発部 車両周辺を監視するシステムの 開発に従事