Notebook Swag

Sam Grayson

April 29, 2015

4.1 Exercise: Write out the powers of 2 mod 7

```
2^{0} \pmod{7} \equiv 1
2^{1} \pmod{7} \equiv 2
2^{2} \pmod{7} \equiv 4
2^{3} \pmod{7} \equiv 1
2^{4} \pmod{7} \equiv 2
2^{5} \pmod{7} \equiv 4
2^{6} \pmod{7} \equiv 1
```

4.2 Theorem: Coprime numbers raised to any power are still coprime.

Let $a, n \in \mathbb{Z}$ where $\gcd(a, n) = 1$. This proof applies for all $j \in \mathbb{N}$. Show $\gcd(a^j, n) = 1$

Proof: I will begin by using the tools developed in Chapter 2, $\operatorname{pf}(a) \cap \operatorname{pf}(n) = \{\}$. $\min(x \# \operatorname{pf}(a), x \# \operatorname{pf}(b)) = 0$. Since $\min(a, b) = a \vee \min(a, b) = b$, $0 = \operatorname{pf}(a) \vee 0 = \operatorname{pf}(b)$. If $0 = \operatorname{pf}(a)$, then $x \# \operatorname{pf}(a) = 0$, furthermore no matter how many a's $x \# \operatorname{pf}(a^j) = 0$ (since $x \# \operatorname{pf}(a) = 0 = j(x \# \operatorname{pf}(a)) = x \# \operatorname{pf}(a^j)$). Thus $\min(x \# \operatorname{pf}(a^j), x \# \operatorname{pf}(b)) = 0$. Otherwise $0 = \operatorname{pf}(b)$, then no matter what $x \# \operatorname{pf}(a^j)$ is, $\min(x \# \operatorname{pf}(a^j), x \# \operatorname{pf}(b)) = 0$. Thus $\operatorname{gcd}(a^j, n) = 1$. This conditional proof shows $\operatorname{gcd}(a, n) = 1 \to \operatorname{gcd}(a^j, n) = 1$.

This proof can also be written using 1.43.

4.3 Theorem: If b is congruent to a coprime of $n \mod n$, then b is a coprime of n.

```
Let b \equiv a \pmod{n} and \gcd(a, n) = 1. Show \gcd(a, b) = 1
```

Proof: Assume for contradiction b = nc for some c. Then $b \equiv a \pmod{n}$ means n | (nc - a). This is problematic because then nj = nc - a, and then n(c - j) = a. Therefore $b \neq nc$. Therefore by definition of greatest common divisor $\gcd(b, n) = 1$. In conclusion $(\gcd(a, n) = 1 \land b \equiv a \pmod{n}) \to \gcd(a, b) = 1$.

4.4 Theorem: All numbers have at least two different exponents that give the same result.

Let $a, n \in \mathbb{N}$. Assume $\neg \exists a^i \not\equiv a^j \pmod{n}$ for contradiction.

Proof: For $i \in \{1, 2, ..., n\}$, $\neg \exists a^i \not\equiv a^j \pmod n$. These n noncongruent integers form a CRS by Theorem 3.17. a^{n+1} must be congruent to something in the CRS by the definition of CRS. Therefore $\exists j (a^{n+1} \equiv a^j \pmod n)$. This can not be the case since it denies the contradictive assumption. Therefore $\exists i, j \in \mathbb{N} (i \neq j \land a^i \equiv a^j \pmod n)$.

4.5 Theorem: The converse of Theorem 1.14 is true if gcd(c, n) = 1.

Let $a, b, c, n \in \mathbb{N}$. Let $ac \equiv bc \pmod{n}$. Show $a \equiv b \pmod{n}$

Proof: The first congruence translates to n|(ac-bc) or n|c(a-b). By Theorem 1.41, n|(a-b) (since $\gcd(a,n)=1$, no factor of c can be divided by n). Therefore $a\equiv b\pmod{n}$. In conclusion $ac\equiv bc \wedge \gcd(c,n)=1 \rightarrow a\equiv b$.

4.6 Theorem: If a number is coprime to the modulo, it has at least one power congruent to one.

Let gcd(a, n) = 1. Show $\exists k \in \mathbb{N} (a^k \equiv 1 \pmod{n})$

Proof: $a^i \equiv a^j \pmod{n}$ WLOG $i \geq j$ by Theorem 4.4. $\frac{a^i}{a^j} \equiv \frac{a^j}{a^j} \pmod{n}$ by Theorem 4.5, or equivalently $a^{i-j} \equiv a^{i-i} \equiv 1 \pmod{n}$. Therefore when k = i - j, $a^k \equiv 1 \pmod{n}$. In conclusion $\gcd(a, n) = 1 \to \exists k \in \mathbb{N}(a^k \equiv 1 \pmod{n})$.

4.13 Theorem: Let $S = \{a, 2a, 3a, \dots, pa\}$ where gcd(a, p) = 1. S is a complete residue system modulo p.

Proof: Let $R = \{1, 2, 3, ..., p\}$. R is the canonical complete residue system modulo p. Therefore all elements of R are pairwise incongruent $\forall i, j (i \neq j \rightarrow i \not\equiv j \pmod{p})$. The contrapositive of theorem 4.5 states that $i \not\equiv j \pmod{n}$ implies $ai \not\equiv aj \pmod{n}$. Therefore the elements of R are also pairwise incongruent. By Theorem 3.17, any set of p pairwise incongruent integers form a complete residue system modulo p.

4.14 Theorem: Let $p \in \mathbb{P}$ and $a \nmid p$. $a \cdot 2a \cdot 3a \cdot \cdots \cdot (p-1)a \equiv 1 \cdot 2 \cdot 3 \cdot \cdots \cdot (p-1) \pmod{p}$.

Let
$$R = \{a, 2a, 3a, \dots, (p-1)a, pa\}$$
 and $S = \{1, 2, 3, \dots, p-1, p\}$.

Proof: R consitutes a complete residue system by Theorem 3.14. S is the canonical complete residue system. Therefore every element of R is congruent to exactly one thing in S and everything in S is congruent to exactly one thing in R. Therefore there is a one-to-one mapping of congruent elements from S to R. $p|pa \land p|p$, therefore $pa \equiv 0 \equiv p \pmod{p}$. Therefore there is a one-to-one mapping of congruent elements from $R \setminus \{pa\}$ to $S \setminus \{p\}$. For each element pair r_i and s_i in $R \setminus \{pa\}$ and $S \setminus \{p\}$, we can multiply the left-hand side of the equation $1 \equiv 1 \pmod{p}$ by r_i and the right-hand side by s_i . In the end, we will get all of the elements of $R \setminus \{pa\}$ multiplied together are equivalent to all of the elements of $S \setminus \{p\}$. $a \cdot 2a \cdot 3a \cdot \cdots \cdot (p-1)a \equiv 1 \cdot 2 \cdot 3 \cdot \cdots \cdot (p-1) \pmod{p}$.

4.15 Theorem: In a prime modulo, an integer not divisible by the modulo raised to the (p-1)-th power is congruent to one.

Let $p \in \mathbb{P}$ and $a \in \mathbb{Z} \land p \nmid a$. $a^{p-1} \equiv 1 \pmod{p}$.

Proof: $a \cdot 2a \cdot 3a \cdot \cdots \cdot (p-1)a \equiv 1 \cdot 2 \cdot 3 \cdot \cdots \cdot (p-1) \pmod{n}$ by Theorem 4.13. Then $1 \cdot 2 \cdot 3 \cdot \cdots \cdot (p-1) \cdot a^{p-1} \equiv 1 \cdot 2 \cdot 3 \cdot \cdots \cdot (p-1) \pmod{p}$. Since $p \in \mathbb{P}$, $\forall i < p(\gcd(i, p) = 1)$, we can repeatedly apply Theorem 4.14. Therefore $a^{p-1} \equiv 1 \pmod{n}$.

4.16 Theorem: In a prime modulo, an integer raised to the power of the modulo is congruent to itself.

Let $p \in \mathbb{P}$ and $a \in \mathbb{Z}$. $a^p \equiv a \pmod{p}$

Proof: Let $p \in \mathbb{P}$ and $a \in \mathbb{Z}$. $a^{p-1} \equiv 1 \pmod{p}$ by Theorem 4.15. If $p \nmid a$, then $a^{p-1} \equiv 1 \pmod{p}$, therefore $a^p \equiv a \pmod{p}$ by Theorem 1.14. On the other hand, if p|a, then $a \equiv 0 \equiv a^p \pmod{p}$. Therefore $a^p \equiv a \pmod{p}$ in both cases.

4.17 Note: 4.15 and 4.16 are equivalent.

Proof that 4.15 implies 4.16: See proof of 4.16 (which relies on 4.15).

Proof that 4.16 implies 4.15: Let $p \in \mathbb{P}$ and $a \in \mathbb{Z} \land p \nmid a$. $a^p \equiv a \pmod{p}$ by Theorem 4.16. Since $p \in \mathbb{P}$ and $p \nmid a$, $\gcd(a, p) = 1$. This lets us apply Theorem 4.5 to the equation $a^{p-1}a \equiv 1a \pmod{p}$, yielding $a^{p-1} \equiv 1 \pmod{p}$.

4.18 In a prime modulo, one less than the modulo divides the order of an integer coprime to that modulo.

Let $p \in \mathbb{P}$ and $a \in \mathbb{Z} \wedge p \nmid a$. $\operatorname{ord}_p(a)|(p-1)$

Proof: $a^{p-1} \equiv 1 \pmod{p}$ by Theorem 4.15. $(p-1)|\operatorname{ord}_p(a)$ by Theorem 4.10.