Lecture 7: Big Data Processing - HDFS, MapReduce, and Spark

Characteristics of Big Data

6 V's of Big Data

V	Meaning	Explanation / Example
Volume	Amount/size/quantity/(how much) of data	Massive amounts of data — e.g., Facebook generates terabytes of user data daily.
Variety	Different types/formats/(What kind) of data	Structured (tables), semi-structured (JSON, XML), and unstructured (videos, images, text).
Velocity	Speed/(how fast data moving) of data generation and processing	Real-time streaming from IoT devices, financial trades, social media feeds, etc.
Value	Usefulness/worth/(is data useful) of data for decision-making	Data must provide insights, trends, or patterns that help businesses or organizations.
Variability	Inconsistency or unpredictability in data flows (How data changes?)	Data meaning changes over time — e.g., trending topics on Twitter vary hour by hour.
Veracity	Accuracy/quality/reliability/(How trustworthy) of data	Data can be noisy, incomplete, or misleading — requires cleaning and validation.

Hadoop MapReduce Function? [MeSSiR]

1. Map Phase

- Takes input data and processes it into intermediate (key, value) pairs.
- Each mapper works independently and in parallel on a chunk of data.

2. Shuffle and Sort Phase

- Groups and sorts the intermediate data by key.
- Ensures all values of the same key are sent to the same reducer.

3. Reduce Phase

- Takes grouped (key, list of values) and produces final output.
- Often used to aggregate, summarize, or transform data.

X Basic Flow Diagram

```
Input Data \rightarrow Map \rightarrow Shuffle & Sort \rightarrow Reduce \rightarrow Output
```

Hadoop MapReduce pseudo-code:

Example-1: Word Count

Word Count Detailed Example:

- Goal: Count occurrences of each word in a document corpus.
- Map: For each word in a line, emit (word, 1).
- Shuffle & Sort: Group all (word, 1) pairs by word.
- Reduce: Sum counts for each word.

```
map(document):
    for word in document.split():
        emit(word, 1)
reduce(word, counts):
    emit(word, sum(counts))
```

Example-2: Average Calculation

Average Calculation Example:

- Goal: Compute average value of numbers in a dataset.
- Map: Emit ("key", (number, 1))
- Reduce: Sum numbers and counts, then calculate average.

```
map(record):
    emit("key", (record.value, 1))
reduce("key", list_of_values):
    total,count = 0, 0
    for value, c in list_of_values:
        total += value
        count += c
    emit("key", total / count)
```

Example-3: Compute average word length in a corpus. [No need for exam]

MapReduce math

understanding using numeric solution

flow chart

Numerical Example

We will be using MovieLens Data.

USER_ID	MOVIE_ID	RATING	TIMESTAMP
196	242	3	881250949
186	302	3	891717742
196	377	1	878887116
244		_	

	51	2	880606923
166	346	1	886397596
186	474	4	884182806
186	265	2	881171488

Solution

Step 1: First we have to map the values, it is happen in 1st phase of Map Reduce model.

196:242 ; 186:302 ; 196:377 ; 244:51 ; 166:346 ; 186:274 ; 186:265

Step 2: After Mapping we have to shuffle and sort the values.

166:346 ; 186:302,274,265 ; 196:242,377 ; 244:51

Step 3: After completion of step1 and step2 we have to reduce each key's values.

Now, put all values together

MapReduce MATH 1

```
Bargladesh
   apple
          box
                   cat dog
                   box cat
map:
   apple: 1 box:1
                   Bogladerh! 1
                  cat: 1 dog: 1
  Cat: 1 dog: 1
                   100x:1 cd:1
  apple: 1 out:
Shulle & Sort:
 apple: [1,17
  ю о х : [, ]]
  cat:[1,1,1,1]
  dog: [1,1]
  Borglodesh: [1]
 Reducen
  apple: 2
   Banglodeth: 1
```

MapReduce MATH 2

```
Map Reduce
  10 20 30
  90 50 60
Map:
 10:1, 20:1, 30:1
 10:1, 20:1, 30:1
 90:1; 50:1, 60:1
 90:1,50:1, 60:1
Shuffle & wort:
 10:[1,1]
 20: [1,1]
 30:[1,1]
 90: [1,1]
 50:[1,1]
 60 : [1,1]
Reducer.
 16:2
 26:2
```

Hadoop MapReduce vs Apache Spark

30:2

90:2

50:2

Feature	Hadoop MapReduce	Apache Spark
Processing	Disk-based after each phase	In-memory (RAM) with optional disk spill
Iterative Tasks	Slow due to repeated disk I/	Fast using RDD/DataFrame caching
Programming	Low-level Java API	High-level APIs in Python, Scala, Java, R
Speed	Good for simple, one-pass batch jobs	Up to 100x faster for complex or iterative workloads
Use Case Fit	Ideal for large-scale ETL and linear batch jobs	Ideal for interactive, iterative jobs (e.g., machine learning, graph processing)

Summary:

- Hadoop MapReduce is disk-heavy, reliable, and best for sequential batch jobs.
- Apache Spark is memory-centric, faster, and better suited for real-time, iterative, and ML tasks.

🔪 1. Processing

Hadoop MapReduce:

- Processes data in stages, writing intermediate results to disk after every Map or Reduce phase.
- This ensures fault tolerance, but causes slower performance due to heavy disk I/O.

Apache Spark:

- Processes data in memory, meaning intermediate data is stored in RAM, not disk (unless necessary).
- This significantly **improves speed** for multi-stage or iterative computations.

🔄 2. Iterative Tasks

Hadoop MapReduce:

- Each job must read from and write to disk every time, even if the same data is reused.
- This makes it **inefficient** for iterative algorithms like machine learning or graph processing.

Apache Spark:

- Supports in-memory caching of datasets using RDDs (Resilient Distributed Datasets) or DataFrames.
- This makes it ideal for reusing data across multiple operations, resulting in faster performance.

3. Programming

√ Hadoop MapReduce:

- Mostly uses low-level Java APIs.
- More boilerplate code is needed for writing and reading data, managing mappers/reducers, etc.

Apache Spark:

- Offers high-level APIs in Scala, Python (PySpark), Java, and R.
- Provides simple functions for map, filter, join, groupBy, etc., making development faster and easier.

👉 4. Speed

Hadoop MapReduce:

- Decent for simple batch jobs that need to scan large datasets once (e.g., logs processing).
- Slower for complex logic due to reliance on disk.

Apache Spark:

- Up to 100x faster than MapReduce for complex, multi-step jobs.
- Especially efficient for ML, streaming, and graph algorithms.

o 5. Use Case Fit

√ Hadoop MapReduce:

 Best for large, one-pass data processing tasks like ETL (Extract, Transform, Load), indexing, and archiving. • Good when memory is limited, and reliability is key.

$\sqrt{}$

Apache Spark:

- Ideal for interactive data analysis, real-time processing, and machine learning workflows.
- Frequently used in modern data platforms due to its flexibility and speed.

In Short:

If your job is	Choose
Heavy, one-time processing on huge datasets	Hadoop MapReduce
Fast, repeated access to the same dataset	Apache Spark
Real-time or interactive	Apache Spark
Memory-constrained, disk-safe batch jobs	Hadoop MapReduce

Apache Spark – Key Characteristics

Characteristic	Explanation
Lazy Evaluation	Builds a Directed Acyclic Graph (DAG) of execution for better optimization.
In-Memory Computation	Stores intermediate results in RAM for faster performance than disk-based systems (like MapReduce).
Speed	Up to 100x faster than Hadoop MapReduce for complex or iterative tasks.
Distributed Processing	Automatically distributes data and tasks across multiple nodes in a cluster.
Ease of Use	Supports high-level APIs in Scala, Python (PySpark), Java, R , and SQL.
Fault Tolerance	Uses RDD lineage to recover lost data without needing full data replication.

Characteristic	Explanation	
Unified Engine	Handles batch processing, streaming, machine learning, and graph processing.	
Rich Libraries	Includes Spark SQL, Spark MLlib, Spark Streaming, GraphX, etc.	
Scalability	Scales from a laptop to thousands of nodes — suitable for both small and big data.	
Integration Support	Integrates with Hadoop (HDFS), Hive, HBase, Cassandra, Kafka, S3, etc.	

Summary

Apache Spark is:

- Fast (in-memory & parallel)
- Flexible (multiple languages & workloads)
- **Unified** (one engine for many tasks)
- Scalable (from GBs to petabytes)
- Extensible (via libraries and external data sources)

DAG

DAGA
Dinacted Acyclic Graph of transformation.

O'chapter whices

O'chapter Evaluation

O'Chapter Evaluation

(D'Lavey Evaluation

(D'Lavey Evaluation

(D'Lavey Evaluation

(D'Lavey Evaluation

(D'Lavey Evaluation)

What is RDD in Apache Spark?

RDD stands for **Resilient Distributed Dataset**

Key Features of RDD

Feature	Description
Lazy Evaluation	Transformations are only executed when an action is called
Resilient	Fault-tolerant — automatically recovers lost data using lineage (history)
Distributed	Data is automatically partitioned across nodes in a cluster
Immutable	Once created, you cannot modify an RDD — every transformation creates a new RDD
In-Memory	Stored in RAM by default (fast), but can spill to disk if needed

RDD Operations

- Transformations (return new RDDs)
- Actions (trigger execution)