A 黄耳頓一尺10922132 吳燮銘

part A

(1)

(2)	joint	di-1(°)	Ail (mm)	di Chm)	Θ;
]	Ō	D	358.5	Θι
-	2	-90	50	32.3	DZ
	3	0	300	0	03
	4	Ō	350	6	04
	5	90	0	25]	Ð5

$$T_{0}^{1} = \begin{bmatrix} c_{1} - c_{1} & c_{0} & c_{0} \\ c_{1} - c_{1} & c_{0} & c_{0} \\ c_{0} & c_{0} & c_{1} \end{bmatrix} \qquad T_{1}^{2} = \begin{bmatrix} c_{2} - c_{2} & c_{0} & c_{0} \\ c_{0} & c_{0} & c_{1} \\ c_{0} & c_{0} & c_{1} \end{bmatrix}$$

$$= \begin{bmatrix} c_{1} & c_{1} & c_{2} & c_{3} & c_{4} & c_{5} & c_{5} & c_{4} & c_{5} &$$

$$= \begin{bmatrix} \cos(\theta_1 - \phi)(\theta & \cos(\theta_1 - \phi)SBSV + & \cos(\theta_1 - \phi)SBCV - \\ & \sin(\theta_1 - \phi)(V) & s(\theta_1 - \phi)SBSV + \\ & \cos(\theta_1 - \phi)(V) & cos(\theta_1 - \phi)SBV + \\ & -Sin(\theta_1 - \phi)SV & cos(\theta_1 - \phi)SV & -SIX+LY \end{bmatrix}$$

$$= \begin{bmatrix} \cos(\theta_1 - \phi)(\theta) & \cos(\theta_1 - \phi)SB(V) - & \cos(\theta_1 - \phi)SB(V) - \\ & \cos(\theta_1 - \phi)(V) & cos(\theta_1 - \phi)SB(V) - \\$$

$$- \times S_{1} + Y = 35.3 - - U)$$

$$1et \times = p. (\alpha \quad Y = p. Sa \quad Q = \sqrt{Px^{2} + Py^{2}} \quad \alpha = a \tan 2 (Y, X)$$

$$U = \int_{-\infty}^{\infty} (1 + y) dy = \int_{-\infty}^{\infty} (1 + y)$$

$$\begin{cases} SS = -\sin(\theta_1 - \phi)(\theta_1 - - (2)) \\ LS = -\sin(\theta_1 - \phi)(\theta_1 - - (2)) \\ LS = -\sin(\theta_1 - \phi)(\theta_1 - \phi)$$

(5)

B1= 6.1354

Az= -20.8224

dz = 58. 5446

84= 142.2hnn

25=141.1354

Q1=6.1354

Q2=-32.96118

03= 62.155h

84 = 150.8055

05= 141.135A

D12-12.489 34=150-805

02=-32.961 05=-14n.989

A3= 62-156

part D

(1)

joint	K;-1(°)	Oli-1 (mm)	di (mm)	0:(°)
)	0	O	d 1	θ,
2	兀	a ₁	95	0

(2) g, and dz