2. Addition of angular momenta

Jean-François Roch and Sylvain Schwartz – 28 janvier 2019

1 Uncertainty relations associated to the angular momentum

Exercise 2.1 Consider a system of angular momentum j in the eigenstate $|j,m\rangle$ of the operators \hat{J}^2 and \hat{J}_z .

- (a) Find the average values $\langle \hat{\vec{J}} \rangle$, $\langle \hat{J}_x^2 \rangle$, $\langle \hat{J}_y^2 \rangle$ and $\langle \hat{J}_z^2 \rangle$.
- (b) Find the dispersions ΔJ_x , ΔJ_y et ΔJ_z .
- (c) Show that ΔJ_x et ΔJ_y are linked by a Heisenberg-like inequality.

2 Two spins 1/2: brute force analysis

Exercise 2.2 We consider two spins 1/2 for which we define the total spin as $\hat{\vec{S}} = \hat{\vec{S}}_1 + \hat{\vec{S}}_2$. The product base of the total Hilbert space $\mathcal{E} = \mathcal{E}_{\text{spin }1} \otimes \mathcal{E}_{\text{spin }2}$ is $\{|\uparrow\uparrow\rangle, |\uparrow\downarrow\rangle, |\downarrow\uparrow\rangle, |\downarrow\downarrow\rangle\}$.

(a) Show that in this base the operators \hat{S}^2 and \hat{S}_z are given by the following matrices:

- (b) Determine the eigenvalues of \hat{S}^2 and the associated eigenvectors.
- (c) What is the action of \hat{S}_z on these states? Conclude.

3 Two coupled spins in a magnetic field

Exercise 2.3 We consider two spins 1/2, α and β , in a magnetic field \vec{B} along the z-axis, i.e. $\vec{B} = (0, 0, B)$. The magnetic moments of the two spins are coupled to each other so that the total Hamiltonian reads

$$\hat{H} = g\mu_{\rm B}\vec{B} \cdot \left(\hat{\vec{S}}_{\alpha} + \hat{\vec{S}}_{\beta}\right) + J\hat{\vec{S}}_{\alpha} \cdot \hat{\vec{S}}_{\beta}. \tag{2}$$

- (a) Write this Hamiltonian in the product base $\{|\uparrow\uparrow\rangle, |\uparrow\downarrow\rangle, |\downarrow\uparrow\rangle, |\downarrow\downarrow\rangle\}$.
- (b) Using the relation $2\hat{\vec{S}}_{\alpha} \cdot \hat{\vec{S}}_{\beta} = \hat{S}^2 \hat{S}_{\alpha}^2 \hat{S}_{\beta}^2$, show that

$$[\hat{H}, \hat{S}^2] = 0$$
 and $[\hat{H}, \hat{S}^2] = 0$. (3)

(c) Write the Hamiltonian in the base of states that is defined by the values of the total angular momentum. What are the eigenvalues?