U. S. Appln. : 09/368,670 Amendment

analog of a natural substrate of the NS3 protease was inhibitory led us to the peptide analogs of the present invention.

At page 106, lines 1 through 11; replace the paragraph with the following:

The substrate used for the HCV NS3 protease radiometric assay, DDIVPC-SMSYTW [SEQ. ID NO. 2], is cleaved between the cysteine and the serine residues by the enzyme. The sequence DDIVPC-SMSYTW [SEQ. ID NO. 2] corresponds to the NS5A/NS5B natural cleavage site in which the cysteine residue in P2 has been substituted for a proline. The peptide substrate DDIVPC-SMSYTW [SEQ. ID NO. 2] and the tracer biotin-DDIVPC-SMS[¹²⁵I-Y]TW [SEQ. ID NO. 3] were incubated with the recombinant NS3 protease in the absence or in the presence of inhibitors. The separation of substrate from products was performed by adding avidin-coated agarose beads to the assay mixture followed by filtration. The amount of SMS[¹²⁵I-Y]TW [SEQ. ID NO. 4] product found in the filtrate (with or without inhibitor) allowed for the calculation of the percentage of substrate conversion and of the percentage of inhibition.

At page 106, lines 19 through 25; replace the paragraph with the following:

Substrate: DDIVPC-SMSYTW [SEQ. ID NO. 2], 25 μM final concentration (from a 2 mM stock solution in DMSO stored at -20°C to avoid oxidation).

Tracer: reduced mono-iodinated substrate(biotin-DDIVPC-SMS[125I-Y]TW) [SEQ. ID NO. 3] (≈ 1 nM final concentration).

HCV NS3 protease type 1b, 25 nM final concentration (from a stock solution in 50 mM sodium phosphate, pH 7.5, 10% glycerol, 300 mM NaCl. 5 mM DTT, 0.01% NP-40).

At page 107, lines 18 through 32; replace the paragraph with the following:

U. S. Appln. 309/368,670 Amendment

The enzyme was cloned, expressed and prepared according to the protocol described in Example 37. The enzyme was stored at -80°C, thawed on ice and diluted just prior to use in the assay buffer containing the NS4A cofactor peptide.

The substrate used for the NS3 protease/ NS4A cofactor peptide radiometric assay, DDIVPC-SMSYTW [SEQ. ID NO. 2], is cleaved between the cysteine and the serine residues by the enzyme. The sequence DDIVPC-SMSYTW [SEQ. ID NO. 2] corresponds to the NS5A/NS5B natural cleavage site in which the cysteine residue in P2 has been substituted for a proline. The peptide substrate DDIVPC-SMSYTW [SEQ. ID NO. 2] and the tracer biotin-DDIVPC-SMS[125I-Y]TW [SEQ. ID NO. 3] are incubated with the recombinant NS3 protease and the NS4A peptide cofactor KKGSVVIVGRIILSGRK [SEQ. ID NO. 5] (molar ratio enzyme: cofactor 1:100) in the absence or presence of inhibitors. The separation of substrate from products is performed by adding avidin-coated agarose beads to the assay mixture followed by filtration. The amount of SMS[125I-Y]TW [SEQ. ID NO. 4] product found in the filtrate allows for the calculation of the percentage of substrate conversion and of the percentage of inhibition.

At page 108, lines 4 through 14; replace the paragraph with the following:

Assay buffer: 50 mM Tris HCl, pH 7.5, 30% (w/v) glycerol, 1 mg/mL BSA, 1 mM TCEP (TCEP added just prior to use from a 1 M stock solution in water).

Substrate: DDIVPCSMSYTW [SEQ. ID NO. 2], 25 μ M final concentration (from a 2 mM stock solution in DMSO stored at -20°C to avoid oxidation).

Tracer: reduced mono iodinated substrate biotin DDIVPC SMS[¹²⁵I Y]TW [SEQ. ID NO. 3] (~1 nM final concentration).

HCV NS3 protease type 1b, 25 nM final concentration (from a stock solution in 50 mM sodium phosphate, pH 7.5, 10% glycerol, 300 mM NaCl, 5 mM DTT, 0.01% NP-40).

NS4A Cofactor peptide: KKGSVVIVGRIILSGRK [SEQ. ID NO. 5], 2.5 µM final concentration (from a 2 mM stock solution in DMSO stored at -20°C).

U. S. Appln. 109/368,670 Amendment

At page 109, line 10 through page 110, line 8; replace the paragraph with the following:

The NS2-NS5B-3' non coding region was cloned by RT-PCR into the pCR®3 vector (Invitrogen) using RNA extracted from the serum of an HCV genotype 1b infected individual (provided by Dr. Bernard Willems, Hôpital St-Luc, Montréal, Québec, Canada). The NS3-NS4A DNA region was then subcloned by PCR into the pFastBac™ HTa baculovirus expression vector (Gibco/BRL). The vector sequence includes a region encoding a 28-residue N-terminal sequence which contains a hexahistidine tag. The Bac-to-Bac™ baculovirus expression system (Gibco/BRL) was used to produce the recombinant baculovirus. The full length mature NS3 and NS4A heterodimer protein (His-NS3-NS4AFL) was expressed by infecting 10⁶ Sf21 cells/mL with the recombinant baculovirus at a multiplicity of infection of 0.1-0.2 at 27°C. The infected culture was harvested 48 to 64 h later by centrifugation at 4°C. The cell pellet was homogenized in 50mM NaPO₄, pH 7.5, 40% glycerol (w/v), 2mM β-mercaptoethanol, in presence of a cocktail of protease inhibitors. His-NS3-NS4AFL was then extracted from the cell lysate with 1.5% NP-40, 0.5% Triton X-100, 0.5M NaCl, and a DNase treatment. After ultracentrifugation, the soluble extract was diluted 4-fold and bound on a Pharmacia Hi-Trap Ni-chelating column. The His-NS3-NS4AFL was eluted in a >90% pure form (as judged by SDS-PAGE), using a 50 to 400 mM imidazole gradient. The His-NS3-NS4AFL was stored at -80° C in 50 mM sodium phosphate, pH 7.5, 10% (w/v) glycerol, 0.5 M NaCl, 0.25 M imidazole, 0.1% NP-40. It was thawed on ice and diluted just prior to use. The protease activity of His-NS3-NS4AFL was assayed in 50 mM Tris-HCl, pH 8.0, 0.25 M sodium citrate, 0.01% (w/v) n-dodecyl-β-D-maltoside, 1 mM TCEP. Five (5) μM of the internally quenched substrate anthranilyl-DDIVPAbu[C(O)-O]-AMY(3-NO₂)TW-OH [SEQ. ID NO. 6] in presence of various concentrations of inhibitor were incubated with 1.5 nM of His-NS3-NS4AFL for 45 min at 23°C. The final DMSO concentration did not exceed 5.25%. The reaction was terminated with the addition of 1M MES, pH 5.8. Fluorescence of the N-terminal product was

09/368,670 U. S. Appln. N Amendment

monitored on a Perkin-Elmer LS-50B fluorometer equipped with a 96-well plate reader (excitation wavelength: 325 nm; emission wavelength: 423 nm). A non-linear curve fit using the Hill model was then applied to the % inhibition-concentration data and 50% effective concentration (IC₅₀) was calculated through the use of SAS (Statistical Software System, SAS Institute Inc., Cary, N.C.).

At page 111, lines 12 through 29; replace the paragraph with the following:

The specificity of the compounds was determined against a variety of serine proteases: human leukocyte elastase, porcine pancreatic elastase and bovine pancreatic α -chymotrypsin and one cysteine protease: human liver cathepsin B. In all cases a 96-well plate format protocol using a colorimetric p-nitroaniline (pNA) substrate specific for each enzyme was used. Each assay included a 1 h enzymeinhibitor pre-incubation at 30°C followed by addition of substrate and hydrolysis to ≈30% conversion as measured on a UV Thermomax® microplate reader. Substrate concentrations were kept as low as possible compared to K_M to reduce substrate competition. Compound concentrations varied from 300 to 0.06 µM depending on their potency. The final conditions for each assay were as follows: 50mM Tris-HCl pH 8, 0.5 M Na₂SO₄, 50 mM NaCl, 0.1 mM EDTA, 3% DMSO,

0.01% Tween-20 with;

[100 μM Succ-AAPF-pNA [SEQ. ID NO. 7] and 250 pM α-chymotrypsin], [133 μM Succ-AAA-pNA and 8 nM porcine elastase], [133 μM Succ-AAV-pNA and 8 nM leukocyte elastase]; or

[100 mM NaHPO₄ pH 6, 0.1 mM EDTA, 3% DMSO, 1mM TCEP, 0.01% Tween-20, 30 µM Z-FR-pNA and 5 nM cathepsin B (the stock enzyme was activated in buffer containing 20 mM TCEP before use)].

At pages 114 through 126, replace Tables 1 through 3 with the following amended Tables 1 to 3:

SEQ ID NO.	8	6	10	ı	1	11	12	13	14	15	16	17	18	19	20	21
AAA (%)	113	85.4 ± 1.6	100.3 ± 1.8	113.85 ± 4.9	95.8 ± 0.8	98.8 ± 2.6	85.9 ± 1.1	101.15 ± 1.65	99.2 ± 5	102.95 ± 3.65		109.7 ± 6.9	72.4 ± 2.4	103.65 ± 3.8	59.4 ± 2.85	95.4 ± 1.5
MS (MH ⁺)	703	717	646	703	717	717	289	701	689	729	703	703	717	743	691	719
HLE PPE Other MS (μM) (μM) (мH+)																
НГЕ РРЕ (µM) (µM)																
HLE (µM)																
IС ₅₀ (µМ)	46	59	26	8.5	1.5	16*	85*	31	*08	24*	79	92*	26*	20*	28*	16*
P1	Cys	Cys	Cys	Cys	Cys	Cys	Cys	Cys	Cys	Cys	Cys	Cys	Cys	Cys	Cys	Cys
×	Pro	Pro	Pro	Pro	Pro	Pro	Pro	Pro	Pro	Pro	Pro	Pro	Pro	Pro	Abu	Leu
P3	Val	Val	Val	Val	Val	Val	Val	Val	Val	Val	Val	Val	lle	Chg	Val	Val
P4	Ile	Ile	Ile	Ile	lle	Ile	Ile	lle	Val	Chg	1	Leu	Ile	Ile	Ile	lle
P5	Asp	Asp	Asp	D-Asp	D-Glu	Glu	Val	Tbg	Asp	Asp	Asp	Asp	Asp	Asp	Asp	Asp
9.1	Asp	Clu		Asp	Asp	dsγ	Asp	Asp	Asp	γsb	Asp	Asp	Asp	Asp	Asp	Asp
B	Ac	Ac	DAD	Ac	Ac	Ac	Ac	Ac	Ac	Ac_	Ac	Ac_	Ac	Ac_	Ac	Ac Asp
Tab. 1 Comp.	7		-	•												

SEQ ID	NO.	22	23	24	25	26	27	28	29	30	31	32	ı	33	34	35	1	36
AAA	(%)	9.66	96.8 ± 1	87.0 ± 3.0	N.S.	101	91.0 ± 4.5	107.6	106.3 ± 8.2	94.02 ± 3.19	100.2	107	100.9 ± 3.6	9.0 ± 8.66	107			
MS	(MH+)	753	705	719	229	809	685	669	269	711	683	713	713	269	642			
IC ₅₀ HLE PPE Other	(μΜ) (μΜ) (μΜ+)																	
PPE	(mm)							>300										
HLE	(mM)							>300										
IC ₅₀	(µM)	25*	133*	06	* 92	1.7	315	220	210	210	45	£09*	7.4	270*	123	24	36	39
P1		Cys	Cys	Cys	Cys	Cys	Abu	Nva	AlGly	Acpe	Acca	Nva	Nva	Nva	Nva	Cys	Acca	Acca
M		Phe	Val	Ile	Ala	Hyp(4-Bn)	Pro	Pro	Pro	Pro	Pro	Pip	Pro	Pro	Pro	Glu	Glu	Glu(OBn)
P3		Val	Val	Val	Val	Val	Val	Val	Val	Val	Val	Val	Val	Val	Val	Glu	Glu	Chg Val
P4		-Ile	lle	lle	lle	Ile	lle	!	lle	lle	He	lle	lle	Ile	Ile	Chg	ilu Chg Glu	
P5		Asp	Asp	Asp	Asp	Asp	Asp	:						Thg		Glu		Glu
9.1		Asp	Asp	Asp			Asp									dsv'	dsV	Asp
В		Ac	Ac	Ac	Ac	Ac	Ac	Λc	Ac	Ac	Ac	Ac	Ac	Ac	DAD	Ac	Ac	Ac
Tab. 1	Comp. #	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132	133

Tab.2 Comp	В	P6	P6 P5	P4	B	R ₁₃	Ы	IС ₅₀ (µМ)	HLE (µM)	HLE PPE Other (μM) (μM)	er MS (MH+)	h	AAA SEQ ID (%) NO.	SEQ ID NO.
201	Ac	Asp	Asp	Ile	Val	O-Bn	Nva	7.2			80	805	107	37
202	Ac	Asp		Ile	Val	O-Bn	Nva	0.93			789	68	103	•
203	Ac	Asp		Ile	Val	O-Bn	Nva	9.0	>300	>300 >300 >300*	0* 819	†	€.3±	
											*		1.7	
204	Ac	Asp		Ile	Val	o-tolyl-methoxy	Nva	9.4*			81	819	95	38
205	Ac	Asp		Ile	Val	m-tolyl-methoxy	Nva	6.7*			819		28.2	39
206	Ac	Asp		Ile	Val	p-tolyl-methoxy	Nva	6.4*			81	819	101.9	40
207	Ac	Asp		Ile	Val	1-NpCH2O	Nva	0.39			855		112	41
208	Ac	Asp		Ile	Val	2-NpCH2O	Nva	0.71			855	55	104	42
209	Ac	Asp		Ile	Val	4-tert-butyl-	Nva	2.6			861	51	114	43
						phenyl)-methoxy								
210	Ac	Asp		Chg	Val	O-Bn	Cys	0.033	>300	>300 >300		849	101.7	ı
													± 5.4	
211	Ac	Asp		Chg	Val	O-Bn	Nva	0.12			84	845 9	93.4 ±	1
													7	

SEQ ID NO.	1		1	1	7	45	1	46	ı			ı
1			<u> </u>		_							
AAA (%)	99.4 ±	101.8	104.1		100.6	94.6 ±	111.2	95.7	1	! :	N.S.	N.S.
MS (MH ⁺)	803	698	895	879	789	818	910	740	269	683	869	737
PPE Other (μM) (μM)			>300									
PPE (µM)	>300	i				:		i			<u> </u>	
HLE PPE Other (µM) (µM)	>300		>300 >300					- ·				
IC ₅₀ (μM)	0.21	0.036	0.028	0.014	09	8	0.49	2.3	31	22	50	51
E	Acca	Nva	Nva	Acca	Nva	Nva	Nva	Nva	Nva	Nva	Nva	Nva
R ₁₃	O-Bn	2-NpCH2O	2-NpCH2O	1-NpCH ₂ O	Bn	Ph(CH ₂) ₃	O-Bn	1-NpCH2O	1-NpCH ₂ O	1-NpCH ₂ O	1-NpCH2O	1-NpCH ₂ O
P3	Val	Val	Val	Val	Val	Val	Val	Val	Val	Val	Val	Val
	IIe		Chg	Chg	Ile	Ile	Ile	Ile	N(Me)II	Ile II	Ile	Ile
P5	D.	D- Glu	D- Glu	D- Glu	Asp	Asp	D-Clu	Asp	1	+	:	
P6 P5			Asp D- Glu								: 	
B			Ac							DAD	DAE	
Tab.2 Comp	212	213	214	215	216	217	218	219		221	222	223

AAA SEQ ID (%) NO.	1		1 '	ı	47	· · · · ·	1	_	48	1	1 1	l t		
AAA (%)	N.S.								! i	:	· -			
MS (MH+)	737	929	635	613.4	818	675.4			929.2		1	720	(M+Na)	598
HLE PPE Other (μM) (μM)														
			009<	009<						ļ 		!		
IC ₅₀ (µM)	56	45	3	35	3.3	2.6	1.4		0.14	41	12	4.0		5.5
- I	Nva	Nva	Acca		Nva	Acca	Acca		Acca	Acca	Acca	Nva		Acca
R ₁₃	1-NpCH ₂ O	1-NpCH ₂ O	1-NpCH20	O-Bn	Val Ph(CH ₂) ₃	1-NpCH ₂ O	1-NpCH ₂ O		(3I-Ph) CH ₂ O	O-Bn	1-NpCH ₂ O	1-NpCH ₂ O		1-NpCH ₂ O
P3	Val	Val	Val	Val	Val	Chg	Chg		Val	Chg	Chg	Val		Val
P4	. Ile	_	Chg	Chg	Ile :	Chg	Chg		ile ii	Chg	Chg	Gly thioxo-	lle	lle :
P6 P5	:		:		Asp	.			Clu	. 1		Glý		
	ł				Asp				Asp	1	ļ	: 1		. !
Tab.2 B Comp		AC	Ac	Ac	230 Ac	Āc	232 AcOCH ₂ -	C(O)	Āc	Ac	Boc	Ac		237 DAE
Tab.2 Comp	224	225	227	228	230	231	232	•	233	234	235 Boc	236 Ac		237

AAA SEQ ID (%) NO.		1	I	•	1	1	1			•	1	119±1 49
MS MH ⁺)	(M+Na)										:	803.6
her IM) (I		-			:	-				-	<u> </u>	
PE Ot ιΜ) (μ			: 	<u>: </u>			! !	• · · · ·				
HLE PPE Other MS (μM) (μM) (мH+)	ļ	5		-	· · · · · · · · · · · · · · · · · · ·							
IC ₅₀ H (μM)		195	-	<u> </u>	<u> </u>			!		<u></u>		
IC (m)	<u> </u> -	27	27	42	18	36	35	10	· ——— —	5.0	33	10
Ы		Acca	Acca	Асса	Acca	Acca	Acca	Acca		Acca -	Acca	Nva
R ₁₃		(4Br-Ph)O	(2Br-Ph)O	(3Br-Ph)O	Z S	(4Br-Ph)S	0	· · · · · · · · · · · · · · · · · · ·	Z Z	0—\z	OMe	Ph(CH ₂) ₂
133		Val	Val	·Val	Val	Val	Val	Val		·Val	Val	Val
		: Chg	Chg	Chg	Chg	Chg	Chg	Chg		Chg	Chg	Tle
P5		.					.			.		Asp Asp Ile
. P6	•	. !	ļ	1		. 1	.	. 1			1	Asp
	į	ī					i	i		i	; 1	:
į		Ac	Āc	Äc	Ac	Ac	Ac	Ac		Ac	Ac	Ac
Tab.2 Comp		238	239	240 Ac	241	242 Ac	243	244 'Ac		245 Ac	246 Ac	247

SEQ ID NO.	1	1	1	 t	. 1	1	!	1
AAA SEQ ID (%) NO.				 	91±1	· 		
MS (MH ⁺)			:		651.4	:		
Other (µM)	 		<u> </u>		9			
HLE PPE Other (µM) (µM) (µM)	· · · · · · · · · · · · · · · · · · ·			·+·	- 			
IC ₅₀ (μM)	3.6	9.7	5.5	13	20	28	5.1	4.5
P1	Acca	Acca	Acca	Acca	Nva	Acca	Acca	Acca
						но(о)он	.MeC(O)	
R ₁₃	Z	0(1		ZZZ	1-NpCH2O		ZI	NON NO
	GH 02	(4I-Ph)O	z	O(0)0				
133	Chg	Val	Val	Val	Val	Val	Val	Val
. P4	Chg	Chg	Chg	Chg	Chg	Chg	Chg	Chg
P5	<u> </u>	;	: :_	. 1	.	<u> </u>	<u> </u>	
P6 P5 P4	.	. 1	<u>.</u> 1	. !	}	ļ	1	
B		ı	ı	1			•	!
Tab.2 Comp	248 Ac	249 Ac	250 Ac	251 Ac	252 Ac	253 Ac	254 Ac	255 Ac
Tak	24	24	25	. 25	. 25	. 25	. 25	23

HLE PPE Other MS AAA SEQ ID (μM)		>300					631 (M+Na)	771 (M+Na)
IC ₅₀ H (µM) (µ	11	2.2	16	28	0.18	28	40	17
PI	Acca	Acca	Acca	Лсса	Cys	Cys	Acca	Acca
R ₁₃	Z-z // z // o	ō z o	Z S	Mee	O-Bn	O-Bn	1-NpCH ₂ O	1-NpCH2O
P3	Val	Val	Val	Val	Val	Val	Val	Val
P4	Chg	Chg	Chg	Chg	Ile	Chg	Ile	Ile
P6 P5		1	1	:	Asp D-Glu lle	. 1		; 1
9d	· }	!	. !		Asp	:	.	
Tab.2 B Comp	256 Ac	257 Ac	258 Ac	259 Ac	260 Ac	261 Ac	262 Ac	263 HOOC Me

AAA SEQ ID (%) NO.		1 1 1	! !	1	ı			· · · · · · · · · · · · · · · · · · ·	
i		· i			!				
MS (MH+)	811	811	721.4	721.4	665.1	835.5 (M-H)	745 (M-H)	!	
Other (µM)	; 		: - 						
HLE PPE Other MS (μM) (μM) (μM+)				; 	- - - -	· · · · · · · · · · · · · · · · · · ·	·		-
IC ₅₀ Н (µМ)	6.4	10	2.6	12	24	5.5	2.0	3.8	27
P1	Acca 6	Acca 1	Acca	Acca 1	Acca	Acca	Леса	Acca	Acca
!	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		i :				
$ m R_{13}$	1-NpCH ₂ O	1-NpCH ₂ O	1-NpCH20	CH ₂ O	(3Br-Ph)CH ₂ O	1-NpCH ₂ O	CH ₂ O	1-NpCH ₂ O	(3,5-Br ₂ -Ph)CH ₂ O
	1-Np(1-Np	1-Np(Val 1-NpCH ₂ O	_(3Br-J	dN-L	Val 1-NpCH ₂ O	,	
P3	Val	Val	Val	Val	Val	Val	Val	Val	Val
P4	Jle -	Ile	Ile	i all	Chg	Chg	Chg	Chg	Chg
P5		· : }		<u> </u>	.	. 1	.		
P6	1	1	1	1	: 1	. 1	1		11
· ·	3	8	18	8		3 (OBP CO	:
61 0	Bno	Broco	H0007		Ac		HOOL		Ac
Tab.2 Comp	264	265	266	267	268	269	270	271	272

AAA SEQ ID (%) NO.	50	1	1 · · · · ·	
MS //		-	· 	
HLE PPE Other (μM) (μM)	+			
HLE (µM)				
IC ₅₀ (μM)	17.5	7.6	6.2	
Ы	Nva	Cys	Acca	
R ₁₃	H			CH ₂ OH
P3	/al F	Val F	/al	
			·>	
P4			; -	
P5 P4			; -	
P6 P5 P4	Asp Asp Ile		Chg V	
B P6 P5			; -	

Table 3

P6

P5

P4

P3

P2

P1 R_{1a} R_{1a} R

TAB 3 Cpd#				P4		W	P1			MS (MH+)		SEQ ID NO.
301	Ac	Asp	Asp	Ile	Val	² z _z N "Me	Nva	98*		713	99.8	51
302	Ac	Asp	Asp	lle	Val	Me 1717 N	Nva	89*		713	102	52
303	Ac	Asp	Asp	Ile	Val		Nva	44*		753	104.4	53
304	Ac		• • • • • • • • • • • • • • • • • • •	Chg	Val	Bn-O	Acc	1.1			•	

Please insert the attached paper Sequence Listing after the Abstract on page 185.

IN THE CLAIMS:

Please amend the claims as follows: