컴퓨터과학 개론

컴퓨터와 데이터 (2)

컴퓨터과 이관용교수

- 1 데이터와정보
- 2 진법
- 3 정수표현
- 4 실수표현
- 5 문자표현

01

데이더와 정보

데이터와 정보의 관계

$$I = P(D)$$

데이터의 표현 형태

- ☑ 데이터의 유형과는 무관하게 일관된 표현 방식 사용
 - 문자, 정수, 실수, 이미지, 비디오, 오디오 등 → "비트 패턴"
 - 메모리에 저장된 데이터 유형에 맞는 해석과 처리가 필요
 - → 입출력장치나 프로그램의 책임/역할

데이터의 표현 단위

■ 出트 binary digit

■ HOIE byte

- **B** (2¹⁰≈10³), **MB** (2²⁰≈10⁶), **GB** (2³⁰≈10⁹), **TB** (2⁴⁰≈10¹²), **PB** (2⁵⁰≈10¹⁵), **EB** (2⁶⁰≈10¹⁸), **ZB** (2⁷⁰≈10²¹), **YB** (2⁸⁰≈10²⁴)
- 워드 word
 - 컴퓨터 연산의 기본 단위가 되는 정보의 양 → 보통 32비트, 64비트

02

진법

☑ 수를 세는 방법 또는 단위

• r진법 → $\frac{1}{2}$ 0, $\frac{1}{2}$ 1, ···, $\frac{1}{2}$ 1)까지의 숫자만을 사용하는 진법 → r진수

2진법	0, 1	1010 ₂ 1001 _b
8진법	0, 1,, 7	720 ₈ 257 _o
10진법	0, 1, 2,, 9	99 ₁₀ 123 _d
16진법	0, 1, ···, 9, A, B, C, D, E, F	2CF ₁₆ FF30 _h

☑ 진법의 각 숫자는 위치에 따라 서로 다른 가중치(자릿값) 를 가짐

■ r진법의 자릿값 $\rightarrow r^x$ (x는 숫자의 위치를 나타내는 정수)

123 (일이삼) 일백이십삼 (= 1×10² + 2×10¹ + 3×10º)

2진수를 10진수로 변환

■ 10진수 = ∑ (각 비트값 × 해당 비트 위치의 가중치)

$$\cdots$$
 24 23 22 21 20 2-1 2-2 2-3 2-4 \cdots 16 8 4 2 1 $\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{8}$ $\frac{1}{16}$ \cdots

8/16진수를 10진수로 변환

■ 10진수 = ∑ (각 숫자값 × 해당 위치의 가중치)

$$\cdots$$
 8⁴ 8³ 8² 8¹ 8⁰ 8⁻¹ 8⁻² 8⁻³ 8⁻⁴ \cdots \cdots 16⁴ 16³ 16² 16¹ 16⁰ 16⁻¹ 16⁻² 16⁻³ 16⁻⁴ \cdots

$$3456_{8} = 3\times8^{3} + 4\times8^{2} + 5\times8^{1} + 6\times8^{0}$$
$$= 1838$$

$$AE7_{16} = A \times 16^{2} + E \times 16^{1} + 7 \times 16^{0}$$
$$= 10 \times 16^{2} + 14 \times 16^{1} + 7 \times 16^{0}$$
$$= 2791$$

10진수를 r진수로 변환 (r = 2, 8, 16)

정수 부분과 소수 구분을 구분하여 각각의 방법으로 처리한 후,각 결과를 단순히 연결해서 나열


```
입력값 = 10진수(정수 부분); i = 0;
몫 = 입력값 / r; 나머지 = 입력값 mod r;
결과(i) = 나머지;
while (몫 ≠ 0)
 입력값 = 몫; i = i+1;
 몫 = 입력값 / r;
 나머지 = 입력값 mod r;
 결과(i) = 나머지
end
출력[결과(i), 결과(i-1), ···, 결과(0)];
```

2진수

8진수

$$60_{10} = 74_8$$

16진수

$$60_{10} = 3C_{16}$$

$$60_{10} = 111100_2$$

```
입력값 = 10진수(소수 부분);
i = 0;
while (입력값 ≠ 0)
  임시변수 = 입력값 × r;
  결과(i) = 임시변수의 정수 부분;
  i = i+1;
  입력값 = 임시변수의 소수 부분;
end
출력[<mark>0.</mark>결과(0), 결과(1), ···, 결과(i)];
```

2진수

소수 부분이 0이면 멈춤

8진수

16진수

$$0.6875_{10} = 0.1011_2 = 0.54_8 = 0.B_{16}$$

r진수 간이 변환 (r = 2, 8, 16)

03

정수 표현

정수 표현 방법

부호 없는 정수

부호 있는 정수

■ n = 8 비트인 경우

정수 표현 방법의 비교

이기교취	ㅂ충어느궈스	부호있는정수				
이진표현	부호없는정수	부호화-크기	1의 보수	2의 보수		
0 0000000	0	+ ()	+ ()	+ ()		
0 0000001	1	+ 1	+ 1	+ 1		
0 0000010	2	+2	+2	+ 2		
0 0000011	3	+ 3	+ 3	+ 3		
•••	•••	•••	•••	•••		
0 1111100	124	+ 124	+ 124	+ 124		
01111101	125	+ 125	+ 125	+ 125		
01111110	126	+ 126	+ 126	+ 126		
01111111	127	+ 127	+ 127	+ 127		
10000000	128	-0	-127	-128		
10000001	129	-1	-126	-127		
10000010	130	-2	-125	-126		
10000011	131	-3	-124	-125		
•••	•••	•••	•••	•••		
1 1111100	252	-124	-3	-4		
1 1111101	253	-125	-2	-3		
1 1111110	254	-126	-1	-2		
11111111	255	-127	-0	-1		

2의 보수 방식의 응용

☑ 뺄셈: 24 - 17

2의 보수 방식의 응용

■ 이진수 10001101은 십진수로 얼마인가?

■ 8비트, 2의 보수 방식

04

실수 표현

실수 표현

☑ 과학적 표기법을 활용한 부동소수점 방식으로 표현

실수 표현

초과표기법

■ 부동소수점 방식의 지수 부분의 표현만을 위한 정수 표현 방법

■ 매직 넘버 \rightarrow 지수 부분이 m 비트로 구성 \rightarrow 2^{m-1} 또는 $2^{m-1}-1$

$$2^{8-1} = 2^7 = 128$$
 (' \pm a_128')

$$2^{8-1}-1=2^{7}-1=\frac{127}{2}$$

초과표기법

정규화

☑ 가수를 표현할 때 표준화된 형식이 필요

```
-1010,00110011×2<sup>3</sup>
-10,1000110011×2<sup>5</sup>
-101000110,011×2<sup>-2</sup>
-0,0101000110011×2<sup>8</sup>
-1,01000110011×2<sup>6</sup>
```

```
0.0000011011 \times 2^{0} \longrightarrow 1.1011 \times 2^{-6}
10111010.0101 \times 2^{0} \longrightarrow 1.01110100101 \times 2^{7}
```

실수 표현이 예

60.6875

 $(4바이트 \rightarrow m = 8, n = 23), 초과_127$

1.111001011×2⁵

초과표기법(5+127=132=10000100₂)

8비트

23비트

IEEE 부동소수점 방식의 표준 형식

□ 단정도 single precision → 4바이트

<u> 초과_127</u>

부호	지수	가수
1비트	8비트	23비트

■ 배정도 double precision → 8법이트

초과_1023

부호	지수	가수
1비트	11비트	52비트

05

문자 표현

문자 표현

- ☑ 키보드에서 입력되는 문자는 내부적으로 2진수로 표현되어 처리
- 각 문자마다 유일한 값으로써 코드를 할당할 수 있는 약속된 문자 체계가 필요
 - 종류 → ASCII, 유니코드, ···

ASCII

American Standard Code for Information Interchange

- 미국표준협회(ANSI)
- 7비트 코드 → 128개(2⁷)의 서로 다른 문자 표현

ASCII

48 0110000	0	49	1	 	57	9
65 1000001	Α	66	В	 	90	Z
97 1100001	а	98	b	 	122	Z

유니코드

■ 세계의 모든 문자를 컴퓨터에서 일관되게 표현하고 다룰 수 있도록 설계된 표준

- 1990. 애플, IBM, MS 등 컨소시엄으로 설립한 유니코드가 첫 버전 발표
- 1995년 국제 표준으로 제정 → 공식 명칭: ISO/IEC 10646
- 사용 중인 플랫폼, 프로그램, 언어에 무관
- 16비트 코드 체계 → 65,536개(2¹⁶)의 서로 다른 문자 표현

기타 코드 체계

- EBCDIC Extended Binary Coded Decimal Interchange Code
 - IBM 개발, 8비트 코드 → 실제 사용되는 문자 코드는 128개
 - · IBM 메인프레임에서만 사용
- BCD Binary Coded Decimal
 - 4비트로 구성된 10개의 코드로 10진수를 표현하는 방식 → '8421 코드'

32 | **6** | **7** |

1. 데이터와정보

- 정보=P(데이터), 비트 패턴
- 데이터 표현 단위 → 비트, 바이트, KB, MB, GB, TB, PB, EB, ZB, YB, 워드

2. 진법

변환 → 2/8/16진수 ↔ 10진수, 8진수 ↔ 2진수 ↔ 16진수

3. 정수 표현

- 부호없는정수
- 부호있는정수 → 양수는동일, 음수 표현(부호화-크기, 1의 보수, 2의 보수)

4. 실수표현

• (-1)^S × M×2^E, 초과표기법, 정규화

5. 문자표현

• ASCII, 유니코드

다음시간인내

자료구조 (1)

04강. 자료구조 (2)

05 강 알고리즘 (1)

