Werkgroep 2 MTO-D

Chris HJ Hartgerink February 2-5, 2016

Huishoudelijk

- 1. Vandaag: Opgaven 1, 2, 6, 10
- 2. Slides beschikbaar op bitly.com/2016mto-d
- 3. Antwoorden van de opgaven worden beschikbaar aan einde vd week
- 4. Voor restriction of range kun je demo bekijken: link.

Meetschalen

- -Makkelijk te onthouden met NOIR
- 1. Nominaal = categorieen
- 2. Ordinaal = geordende categorieen
- 3. Interval = continue schaal met alleen absolute interpretatie
- 4. Ratio = continue schaal met absolute + relatieve interpretatie (vereist als minimale waarde 0)

Meetschalen voorbeelden

- · Met voorbeelden makkelijker te onthouden
- 1. Nominaal = bv geslacht
- 2. Ordinaal = bv leeftijdcategorie
- 3. Interval = bv Celsius
- 4. Ratio = bv Kelvin, lengte

Tabel 1

Χ у

- . Gemiddelde $ar{x} = rac{\sum\limits_{i=1}^n x_i}{n}$
- Lees als: het gemiddelde van x staat gelijk aan de som van elke individuele score van de steekproef n, gedeeld door de grootte van de steekproef
- Variantie $s_x^2=rac{\sum\limits_{i=1}^n(x_i-ar{x})^2}{n-1}$
- Lees als: de variantie van x staat gelijk aan de som van het verschil tussen elke individuele score en het gemiddelde, wat vervolgens gekwadrateerd is en gedeeld door de steekproefgrootte minus 1.

- · Gemiddelde $ar{x} = rac{\sum\limits_{i=1}^n x_i}{n}$
- · Variantie $s_x^2=rac{\sum\limits_{i=1}^n(x_i-ar{x})^2}{n-1}$
- · Zie hier dus al dat als we een transformatie plaats laten vinden die de scores vermenigvuldigt, dit een ander effect op \bar{x} heeft dan op s_x^2 !
- · Dat is: het gemiddelde vermenigvuldig je met bijvoorbeeld ${\bf 5}$, maar bij s_x^2 heeft dit een kwadratisch effect, i.e., ${\bf 5}^2$

Zo hebben we ook nog de

- · Covariantie $s_{xy} = \sum\limits_{i=1}^{n} rac{(x_i ar{x}) imes (y_i ar{y})}{n-1}$
- Dit is hetzelfde als de variantie, maar dan over twee variabelen.
- Oftewel, een variantie van 1 variabele is de covariantie van een variabele met zichzelf

Voor geinteresseerden

$$s_{xx} = \sum\limits_{i=1}^{n} rac{(x_i - ar{x}) imes (x_i - ar{x})}{n-1}$$
 wat reduceert tot

$$s_x^2 = rac{\sum\limits_{i=1}^{n} (x_i - ar{x})^2}{n-1}$$

- $\cdot \bar{x} = 4$
- $s_x^2 = 2.222$
- $s_x = 1.491$
- \cdot $ar{y}=$ 4
- $s_y^2 = 6.667$
- · $s_y = 2.582$
- · $s_{xy} = 2.222$

Lineaire transformaties

Optellen

Wanneer we een variabele transformeren met een constante, veranderen we **alleen** gemiddelde!

$$v=x+5$$
 leidt tot $ar{v}=$ 9 en $s_v^2=$ 2.222

Oorspronkelijk
$$ar{x}=$$
 4 en $s_x^2=$ 2.222

Lineaire transformaties

Vermenigvuldigen

Wanneer we een variabele vermenigvuldigen veranderen we zowel gemiddelde als variantiestructuur!

$$v=5 imes x$$
 resulteert in $ar{v}=$ 25 en $s_v^2=$ 55.556

Oorspronkelijk
$$ar{x}=$$
 4 en $s_x^2=$ 2.222

Lineaire transformaties

MAAR! Correlatie verandert niet

13/18

13 of 18 02/02/2016 01:31 PM

Transformatieregels

Wanneer variabele v voortkomt uit een transformatie van x, weten we:

$$\bar{v} = a \times \bar{x} + b$$

$$s_v^2 = a^2 imes s_x^2$$

 $s_{vy} = a imes s_{xy}$ (wanneer we ook y vermenigvuldigen met iets, bv w, dan doen we $a imes w imes s_{xy}$)

$$r_{vy}=r_{xy}$$

$$\phi=rac{(ad-bc)}{\sqrt{(a+b)(c+d)(a+c)(b+d)}}$$

	X=0	X=1	Total
Y=0	A	В	12
Y=1	С	D	28
Total	36	4	40

Minimumwaarde: laagste waarde mogelijk (i.e., grootste negatieve relatie!)

	X=0	X=1	Total	
Y=0	8	4	12	
Y=1	28	0	28	
Total	36	4	40	
$\overline{\phi} =$	$= \frac{(8 \times 0 - 4 \times 28)}{\sqrt{(8+4)(28+0)(8+28)(4+0)}} -0.509$			

Maximumwaarde: hoogste waarde mogelijk (i.e., grootste positieve relatie!)

	X=0	X=1	Total
Y=0	12	0	12
Y=1	24	4	28
Total	36	4	40
$\overline{\phi} =$	$\frac{(12{\times}0{-}24{\times}4)}{\sqrt{(12{+}0)(24{+}4)(12{+}24)(}}$	$\overline{0+4)}$ 0.	.218

Doordat we met twee dichotome variabelen zitten, waarvan de marginalen vaststaan (rij en kolomtotalen), kan de correlatie maar beperkt varieren (variant op restriction of range!).

$$0.218 < \phi < -0.509$$

Slecht voor schaal -> meer antwoordopties wordt dit minder probleem.