Kaggle House Prices

Javier Guzmán Figueira Domínguez 04/03/2018

Inspección de los datos

```
updatePartitions <- function() {
    train.size <- nrow(train)
    full.set.size <- nrow(full.set)

    train <<- full.set[c(1:train.size), ]
    test <<- full.set[c((train.size + 1):full.set.size), ]
}

Las dimensiones del conjunto de entrenamiento son las siguientes:

dim(train)

## [1] 1460 81</pre>
```

dim(test)
[1] 1459 80
dim(full.set)

[1] 2919 81

A continuacin, procedemos a examinar las variables del dataset:

```
str(full.set)
```

```
2919 obs. of 81 variables:
  'data.frame':
                         1 2 3 4 5 6 7 8 9 10 ...
##
   $ Id
   $ MSSubClass
                          60 20 60 70 60 50 20 60 50 190 ...
                   : Factor w/ 5 levels "C (all)", "FV", ...: 4 4 4 4 4 4 4 4 5 4 ...
  $ MSZoning
                          65 80 68 60 84 85 75 NA 51 50 ...
   $ LotFrontage : int
                          8450 9600 11250 9550 14260 14115 10084 10382 6120 7420 ...
##
   $ LotArea
##
   $ Street
                   : Factor w/ 2 levels "Grvl", "Pave": 2 2 2 2 2 2 2 2 2 ...
##
  $ Alley
                   : Factor w/ 2 levels "Grv1", "Pave": NA ...
## $ LotShape
                   : Factor w/ 4 levels "IR1", "IR2", "IR3", ...: 4 4 1 1 1 1 4 1 4 4 ...
   $ LandContour : Factor w/ 4 levels "Bnk", "HLS", "Low", ...: 4 4 4 4 4 4 4 4 4 4 ...
##
##
  $ Utilities
                   : Factor w/ 2 levels "AllPub", "NoSeWa": 1 1 1 1 1 1 1 1 1 1 1 ...
  $ LotConfig
                   : Factor w/ 5 levels "Corner", "CulDSac", ...: 5 3 5 1 3 5 5 1 5 1 ...
##
                   : Factor w/ 3 levels "Gtl", "Mod", "Sev": 1 1 1 1 1 1 1 1 1 1 ...
##
   $ LandSlope
##
   $ Neighborhood : Factor w/ 25 levels "Blmngtn", "Blueste",..: 6 25 6 7 14 12 21 17 18 4 ...
## $ Condition1
                   : Factor w/ 9 levels "Artery", "Feedr", ...: 3 2 3 3 3 3 5 1 1 ...
  $ Condition2
                   : Factor w/ 8 levels "Artery", "Feedr", ...: 3 3 3 3 3 3 3 3 3 1 ...
                   : Factor w/ 5 levels "1Fam", "2fmCon", ...: 1 1 1 1 1 1 1 1 2 ...
##
   $ BldgType
                   : Factor w/ 8 levels "1.5Fin", "1.5Unf", ...: 6 3 6 6 6 1 3 6 1 2 ....
##
   $ HouseStyle
  $ OverallQual : int 7 6 7 7 8 5 8 7 7 5 ...
   $ OverallCond : int
                          5 8 5 5 5 5 5 6 5 6 ...
                          2003 1976 2001 1915 2000 1993 2004 1973 1931 1939 ...
##
   $ YearBuilt
                   : int
   $ YearRemodAdd : int 2003 1976 2002 1970 2000 1995 2005 1973 1950 1950 ...
```

```
## $ RoofStyle
                  : Factor w/ 6 levels "Flat", "Gable", ...: 2 2 2 2 2 2 2 2 2 ...
## $ RoofMatl
                  : Factor w/ 8 levels "ClyTile", "CompShg",..: 2 2 2 2 2 2 2 2 2 2 ...
## $ Exterior1st : Factor w/ 15 levels "AsbShng", "AsphShn",..: 13 9 13 14 13 13 13 7 4 9 ...
## $ Exterior2nd : Factor w/ 16 levels "AsbShng", "AsphShn",..: 14 9 14 16 14 14 14 7 16 9 ...
   $ MasVnrType
                 : Factor w/ 4 levels "BrkCmn", "BrkFace", ...: 2 3 2 3 2 3 4 4 3 3 ...
## $ MasVnrArea : int 196 0 162 0 350 0 186 240 0 0 ...
                  : Factor w/ 4 levels "Ex", "Fa", "Gd", ...: 3 4 3 4 3 4 3 4 4 4 ...
## $ ExterQual
                  : Factor w/ 5 levels "Ex", "Fa", "Gd", ...: 5 5 5 5 5 5 5 5 5 5 5 ...
## $ ExterCond
   $ Foundation
                  : Factor w/ 6 levels "BrkTil", "CBlock", ...: 3 2 3 1 3 6 3 2 1 1 ...
## $ BsmtQual
                  : Factor w/ 4 levels "Ex", "Fa", "Gd", ...: 3 3 3 4 3 3 1 3 4 4 ...
## $ BsmtCond
                  : Factor w/ 4 levels "Fa", "Gd", "Po", ...: 4 4 4 2 4 4 4 4 4 4 ...
## $ BsmtExposure : Factor w/ 4 levels "Av", "Gd", "Mn", ...: 4 2 3 4 1 4 1 3 4 4 ...
   $ BsmtFinType1 : Factor w/ 6 levels "ALQ", "BLQ", "GLQ", ...: 3 1 3 1 3 3 3 1 6 3 ...
## $ BsmtFinSF1
                 : int 706 978 486 216 655 732 1369 859 0 851 ...
## $ BsmtFinType2 : Factor w/ 6 levels "ALQ", "BLQ", "GLQ", ... 6 6 6 6 6 6 6 2 6 6 ...
## $ BsmtFinSF2
                : int 0000003200...
## $ BsmtUnfSF
                  : int 150 284 434 540 490 64 317 216 952 140 ...
## $ TotalBsmtSF : int 856 1262 920 756 1145 796 1686 1107 952 991 ...
                  : Factor w/ 6 levels "Floor", "GasA", ...: 2 2 2 2 2 2 2 2 2 2 ...
## $ Heating
## $ HeatingQC
                  : Factor w/ 5 levels "Ex", "Fa", "Gd", ...: 1 1 1 3 1 1 1 1 3 1 ...
## $ CentralAir : Factor w/ 2 levels "N", "Y": 2 2 2 2 2 2 2 2 2 2 ...
## $ Electrical
                : Factor w/ 5 levels "FuseA", "FuseF", ...: 5 5 5 5 5 5 5 5 2 5 ...
## $ X1stFlrSF
                  : int 856 1262 920 961 1145 796 1694 1107 1022 1077 ...
   $ X2ndFlrSF
                  : int 854 0 866 756 1053 566 0 983 752 0 ...
##
## $ LowQualFinSF : int 0 0 0 0 0 0 0 0 0 ...
## $ GrLivArea
                : int 1710 1262 1786 1717 2198 1362 1694 2090 1774 1077 ...
## $ BsmtFullBath : int 1 0 1 1 1 1 1 1 0 1 ...
## $ BsmtHalfBath : int 0 1 0 0 0 0 0 0 0 ...
## $ FullBath
               : int 2 2 2 1 2 1 2 2 2 1 ...
## $ HalfBath
                : int 1010110100...
## $ BedroomAbvGr : int 3 3 3 3 4 1 3 3 2 2 ...
   $ KitchenAbvGr : int 1 1 1 1 1 1 1 2 2 ...
## $ KitchenQual : Factor w/ 4 levels "Ex", "Fa", "Gd", ...: 3 4 3 3 3 4 3 4 4 4 ...
## $ TotRmsAbvGrd : int 8 6 6 7 9 5 7 7 8 5 ...
## $ Functional
                 : Factor w/ 7 levels "Maj1", "Maj2", ...: 7 7 7 7 7 7 7 3 7 ...
## $ Fireplaces
                : int 0 1 1 1 1 0 1 2 2 2 ...
## $ FireplaceQu : Factor w/ 5 levels "Ex", "Fa", "Gd", ...: NA 5 5 3 5 NA 3 5 5 5 ...
## $ GarageType
                 : Factor w/ 6 levels "2Types", "Attchd", ...: 2 2 2 6 2 2 2 6 2 ...
   $ GarageYrBlt : int 2003 1976 2001 1998 2000 1993 2004 1973 1931 1939 ...
## $ GarageFinish : Factor w/ 3 levels "Fin", "RFn", "Unf": 2 2 2 3 2 3 2 2 3 2 ...
## $ GarageCars
                 : int 2 2 2 3 3 2 2 2 2 1 ...
## $ GarageArea
                : int 548 460 608 642 836 480 636 484 468 205 ...
                 : Factor w/ 5 levels "Ex", "Fa", "Gd", ...: 5 5 5 5 5 5 5 5 2 3 ....
   $ GarageQual
## $ GarageCond : Factor w/ 5 levels "Ex", "Fa", "Gd", ...: 5 5 5 5 5 5 5 5 5 5 ...
                  : Factor w/ 3 levels "N", "P", "Y": 3 3 3 3 3 3 3 3 3 3 ...
## $ PavedDrive
##
   $ WoodDeckSF
                  : int 0 298 0 0 192 40 255 235 90 0 ...
##
   $ OpenPorchSF : int 61 0 42 35 84 30 57 204 0 4 ...
## $ EnclosedPorch: int 0 0 0 272 0 0 0 228 205 0 ...
## $ X3SsnPorch
                : int 0 0 0 0 0 320 0 0 0 0 ...
## $ ScreenPorch : int 0 0 0 0 0 0 0 0 0 ...
## $ PoolArea
                  : int 0000000000...
                  : Factor w/ 3 levels "Ex", "Fa", "Gd": NA ...
## $ PoolQC
                  ## $ Fence
## $ MiscFeature : Factor w/ 4 levels "Gar2", "Othr",..: NA NA NA NA NA 3 NA 3 NA NA ...
```

```
## $ MiscVal : int 0 0 0 0 0 700 0 350 0 0 ...
## $ MoSold : int 2 5 9 2 12 10 8 11 4 1 ...
## $ YrSold : int 2008 2007 2008 2006 2008 2009 2007 2009 2008 2008 ...
## $ SaleType : Factor w/ 9 levels "COD", "Con", "ConLD", ..: 9 9 9 9 9 9 9 9 9 9 9 ...
## $ SaleCondition: Factor w/ 6 levels "Abnorml", "AdjLand", ..: 5 5 5 1 5 5 5 1 5 ...
## $ SalePrice : int 208500 181500 223500 140000 250000 143000 307000 200000 129900 118000 ...
```

Y observamos el inicio:

head(full.set)

##		Id MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley 1	LotShape	
##	1	1 60	RL	65	8450	Pave	<na></na>	Reg	
##	2	2 20	RL	80	9600	Pave	<na></na>	Reg	
##	3	3 60	RL	68	11250	Pave	<na></na>	IR1	
##	4	4 70	RL	60	9550	Pave	<na></na>	IR1	
##	5	5 60	RL	84	14260	Pave	<na></na>	IR1	
##	6	6 50	RL	85	14115	Pave	<na></na>	IR1	
##		LandContour U	tilities L	otConfig La	ndSlope 1	Neighbor	chood C	ondition1	
##	1	Lvl	AllPub	Inside	Gtl	Col	llgCr	Norm	
##	2	Lvl	AllPub	FR2	Gtl	Ve	enker	Feedr	
##	3	Lvl	AllPub	Inside	Gtl	Col	llgCr	Norm	
##	4	Lvl	AllPub	Corner	Gtl	Cra	awfor	Norm	
##	5	Lvl	AllPub	FR2	Gtl	Nol	Ridge	Norm	
##	6	Lvl	AllPub	Inside	Gtl	Mit	chel	Norm	
##		Condition2 Blo	dgType Hou	seStyle Ove	rallQual	Overal	LCond Y	earBuilt	
##	1	Norm	1Fam	2Story	7		5	2003	
##	2	Norm	1Fam	1Story	6		8	1976	
##	3	Norm	1Fam	2Story	7		5	2001	
##	4	Norm	1Fam	2Story	7		5	1915	
##	5	Norm	1Fam	2Story	8		5	2000	
##	6	Norm	1Fam	1.5Fin	5		5	1993	
##		YearRemodAdd l	RoofStyle	RoofMatl Ex	terior1s	t Exter:	ior2nd l	MasVnrType	
##	1	2003	Gable	CompShg	VinylSo	d V:	inylSd	BrkFace	
##	2	1976	Gable	CompShg	MetalSo	d Me	etalSd	None	
##	3	2002	Gable	CompShg	VinylS	d V:	inylSd	BrkFace	
##	4	1970	Gable	CompShg	Wd Sdng	g Wo	d Shng	None	
##	5	2000	Gable	CompShg	VinylSo	d V:	inylSd	BrkFace	
##	6	1995	Gable	CompShg	VinylS	d V:	inylSd	None	
##		MasVnrArea Ext	terQual Ex	terCond Fou	ndation 1	BsmtQua:	L BsmtC	ond BsmtExpo	sure
##	1	196	Gd	TA	PConc	Go	i	TA	No
##	2	0	TA	TA	CBlock	Go	i	TA	Gd
##	3	162	Gd	TA	PConc	Go	i	TA	Mn
##	4	0	TA	TA	BrkTil	T	A	Gd	No
##	5	350	Gd	TA	PConc	Go	i	TA	Av
##	6	0	TA	TA	Wood	Go	i	TA	No
##		BsmtFinType1	BsmtFinSF1	BsmtFinTyp	e2 BsmtF	inSF2 B	mtUnfS	F TotalBsmtS	ŀF
##	1	GLQ	706	U	nf	0	150	0 85	6
##	2	ALQ	978	U	nf	0	284	4 126	52
##	3	GLQ	486	U	nf	0	434	4 92	20
##	4	ALQ	216	U	nf	0	540	0 75	6
##	5	GLQ	655	U	nf	0	490	0 114	.5
##	6	GLQ	732		nf	0	64		
##		Heating Heating	ngQC Centr		rical X1		X2ndFl:	rSF LowQualF	inSF
##	1	GasA	Ex	Y	SBrkr	856	;	854	0

```
## 2
         GasA
                      Ex
                                    Y
                                            SBrkr
                                                         1262
                                                                       0
                                                                                      0
## 3
         GasA
                      Ex
                                    γ
                                            SBrkr
                                                         920
                                                                     866
                                                                                      0
                                            SBrkr
## 4
         GasA
                      Gd
                                    Y
                                                         961
                                                                     756
                                                                                      0
## 5
                                    Y
                                                                                      0
         GasA
                      Ex
                                            SBrkr
                                                         1145
                                                                    1053
## 6
         GasA
                                    Y
                                            SBrkr
                                                          796
                                                                     566
                                                                                      0
##
     GrLivArea BsmtFullBath BsmtHalfBath FullBath HalfBath BedroomAbvGr
## 1
                                                      2
           1710
                                            0
## 2
                             0
                                                      2
                                                                0
           1262
                                            1
## 3
           1786
                             1
                                            0
                                                      2
                                                                1
                                                                               3
## 4
                                            0
                                                                0
                                                                               3
           1717
                             1
                                                      1
## 5
           2198
                             1
                                            0
                                                      2
                                                                1
                                                                               4
                                            0
## 6
           1362
                                                      1
                                                                1
                             1
     KitchenAbvGr KitchenQual TotRmsAbvGrd Functional Fireplaces FireplaceQu
## 1
                  1
                              Gd
                                              8
                                                        Typ
                                                                                  <NA>
## 2
                  1
                              TA
                                              6
                                                                                    TA
                                                        Тур
                                                                       1
## 3
                              Gd
                                              6
                                                        Тур
                                                                                    TA
## 4
                              Gd
                                              7
                                                                                    Gd
                  1
                                                        Тур
                                                                       1
## 5
                              Gd
                                                        Тур
                                                                                    TA
## 6
                              TA
                                              5
                  1
                                                        Тур
                                                                                  <NA>
##
     GarageType GarageYrBlt GarageFinish GarageCars GarageArea GarageQual
                          2003
## 1
          Attchd
                                         RFn
                                                        2
                                                                   548
## 2
          Attchd
                          1976
                                          RFn
                                                                   460
## 3
          Attchd
                          2001
                                          RFn
                                                        2
                                                                   608
                                                                                TA
## 4
          Detchd
                          1998
                                          Unf
                                                        3
                                                                   642
                                                                                TA
## 5
                                          RFn
                                                        3
                                                                   836
          Attchd
                          2000
                                                                                TA
          Attchd
                          1993
                                         Unf
                                                        2
                                                                   480
##
     GarageCond PavedDrive WoodDeckSF OpenPorchSF EnclosedPorch X3SsnPorch
## 1
                            Y
              TA
                                        0
                                                     61
                                                                      0
                            Y
                                                                      0
                                                                                   0
## 2
                                                      0
              TA
                                      298
## 3
                            Y
                                                                      0
                                                                                   0
              TA
                                        0
                                                     42
                            Y
## 4
              TA
                                        0
                                                     35
                                                                    272
                                                                                   0
## 5
              TA
                            Y
                                      192
                                                     84
                                                                      0
                                                                                   0
                            Y
                                                                      0
## 6
              TA
                                       40
                                                     30
                                                                                320
##
     ScreenPorch PoolArea PoolQC Fence MiscFeature MiscVal MoSold YrSold
## 1
                 0
                           0
                               <NA>
                                      <NA>
                                                    <NA>
                                                                0
                                                                             2008
## 2
                0
                           0
                               <NA>
                                      <NA>
                                                    <NA>
                                                                0
                                                                        5
                                                                             2007
## 3
                 0
                               <NA>
                                      <NA>
                                                    <NA>
                                                                0
                                                                        9
                                                                             2008
## 4
                 0
                           0
                               <NA>
                                      <NA>
                                                    <NA>
                                                                0
                                                                        2
                                                                             2006
## 5
                 0
                           0
                               <NA>
                                      <NA>
                                                    <NA>
                                                                0
                                                                       12
                                                                             2008
## 6
                0
                           0
                               <NA> MnPrv
                                                    Shed
                                                              700
                                                                       10
                                                                             2009
     SaleType SaleCondition SalePrice
## 1
            WD
                       Normal
                                   208500
## 2
                       Normal
            WD
                                   181500
## 3
            WD
                       Normal
                                   223500
## 4
            WD
                       Abnorml
                                   140000
## 5
            WD
                       Normal
                                   250000
## 6
                       Normal
                                   143000
   • Análisis de valores perdidos
getLostValuesStats <- function() {</pre>
```

lost.count <- colSums(sapply(select(full.set, -SalePrice),</pre>

lost.count <- subset(lost.count, lost.count > 0)
lost.percentage <- (lost.count/nrow(full.set)) * 100</pre>

is.na))

```
return(data.frame(lost.count, lost.percentage))
}
getLostValuesStats()
                lost.count lost.percentage
## MSZoning
                          4
                                 0.13703323
                       486
## LotFrontage
                                16.64953751
                       2721
## Alley
                                93.21685509
## Utilities
                          2
                                 0.06851662
## Exterior1st
                          1
                                 0.03425831
## Exterior2nd
                         1
                                 0.03425831
## MasVnrType
                         24
                                 0.82219938
                         23
## MasVnrArea
                                 0.78794108
## BsmtQual
                         81
                                 2.77492292
## BsmtCond
                         82
                                 2.80918123
## BsmtExposure
                         82
                                 2.80918123
## BsmtFinType1
                         79
                                 2.70640630
## BsmtFinSF1
                                 0.03425831
                          1
## BsmtFinType2
                         80
                                 2.74066461
## BsmtFinSF2
                          1
                                 0.03425831
## BsmtUnfSF
                          1
                                 0.03425831
## TotalBsmtSF
                          1
                                 0.03425831
## Electrical
                         1
                                 0.03425831
## BsmtFullBath
                          2
                                 0.06851662
## BsmtHalfBath
                          2
                                 0.06851662
## KitchenQual
                          1
                                 0.03425831
## Functional
                          2
                                 0.06851662
## FireplaceQu
                       1420
                                48.64679685
## GarageType
                       157
                                 5.37855430
## GarageYrBlt
                       159
                                 5.44707091
## GarageFinish
                        159
                                 5.44707091
## GarageCars
                          1
                                 0.03425831
## GarageArea
                          1
                                 0.03425831
## GarageQual
                        159
                                 5.44707091
## GarageCond
                       159
                                 5.44707091
## PoolQC
                       2909
                                99.65741692
## Fence
                       2348
                                80.43850634
## MiscFeature
                       2814
                                96.40287770
## SaleType
                          1
                                 0.03425831
lost.values.count <- full.set[, colSums(is.na(select(full.set,</pre>
    -SalePrice))) > 0]
is.lost.value <- as.data.frame(ifelse(is.na(lost.values.count),</pre>
    0, 1))
is.lost.value <- is.lost.value[, order(colSums(is.lost.value))]</pre>
is.lost.value.grid <- expand.grid(list(x = 1:nrow(is.lost.value),
    y = colnames(is.lost.value)))
is.lost.value.grid$m <- as.vector(as.matrix(is.lost.value))</pre>
is.lost.value.grid <- data.frame(x = unlist(is.lost.value.grid$x),
    y = unlist(is.lost.value.grid$y), m = unlist(is.lost.value.grid$m))
```

```
ggplot2::ggplot(is.lost.value.grid) + ggplot2::geom_tile(ggplot2::aes(x = x,
    y = y, fill = factor(m))) + ggplot2::scale_fill_manual(values = c("white",
    "black"), name = "Perdido\n(0=Yes, 1=No)") + ggplot2::theme_light() +
    ggplot2::ylab("") + ggplot2::xlab("") + ggplot2::ggtitle("Valores perdidos en el conjunto total de
```

Valores perdidos en el conjunto total de datos

• Análisis de la distribución de la variable clase

```
par(mfrow = c(2, 2))
hist(train$SalePrice, main = "SalePrice")
hist(log10(train$SalePrice), main = "Log10(SalePrice)")
boxplot(train$SalePrice, main = "SalePrice")
boxplot(log10(train$SalePrice), main = "Log10(SalePrice)")
```



```
par(mfrow = c(1, 1))
```

- Distribución de los valores perdidos en función de la variable Log(SalePrice)
- "'{r} # TODO: DELETE ¿? lost.values.features <- rownames(getLostValuesStats()) factor.features <- names(train)[which(sapply(train, is.factor))] lost.values.features.factor <- dplyr::intersect(factor.features, lost.values.features)

plots <- lapply(lost.values.features.factor, function(feature) { categories <- train[, feature] ggplot(data = train, aes(x = feature, y = log(SalePrice), fill = categories)) + geom_boxplot() }) cowplot::plot_grid(plotlist = plots, ncol = 3) "'

• Examinamos la distribución de las variables continuas con respecto a Log(SalePrice)

Warning: Removed 259 rows containing non-finite values (stat_smooth).

```
## Warning: Removed 259 rows containing missing values (geom_point).
## Warning: Removed 8 rows containing non-finite values (stat_smooth).
## Warning: Removed 8 rows containing missing values (geom_point).
## Warning: Removed 81 rows containing non-finite values (stat_smooth).
## Warning: Removed 81 rows containing missing values (geom_point).
  Log(SalePricbog(SalePricbog(SalePriccop)g(SaleP
                                                                    Log(SalePricbøg(SalePricbøg(SaleP
                                   Log(SalePricbog(SalePricbog(SalePricbog(SaleP
              100
                   200
                           300
                                                500 1000 1500
                                                                                  2000 4000
                                                                             0
            LotFrontage
                                              MasVnrArea
                                                                               BsmtFinSF1
                                       13
12
11
               500 1000 1500
                                            0 50010000502000
                                                                                 2000 4000 6000
          0
                                                                             0
            BsmtFinSF2
                                              BsmtUnfSF
                                                                               TotalBsmtSF
                                       13
12
11
                                                                              1920195019802010
                                          0.0 0.5 1.0 1.5 2.0
                       2
          0
            BsmtFullBath
                                                                               GarageYrBlt
                                             BsmtHalfBath
                                                 500 1000
          0
            GarageCars
                                              GarageArea
```

Tratamiento de los valores perdidos

• GarageYrBlt

Se aprecia que es una propidad que, lógicamente, está muy relacionada con YearBuilt (año de construcción). En general, se puede decir que GarageYrBlt tiende a ser igual a YearBuilt. Por consiguiente, en los valores perdidos de GarageYrBlt, se procede a asígnar el correspondiente valor de YearBuilt.

```
ggplot(data = full.set, aes(x = GarageYrBlt, y = YearBuilt)) +
    geom_point() + geom_smooth(method = "lm")
```

- ## Warning: Removed 159 rows containing non-finite values (stat_smooth).
- ## Warning: Removed 159 rows containing missing values (geom_point).


```
full.set$GarageYrBlt[full.set$GarageYrBlt == 2207] <- 2007
full.set$GarageYrBlt[is.na(full.set$GarageYrBlt)] <- full.set$YearBuilt[is.na(full.set$GarageYrBlt)]
updatePartitions()</pre>
```

• LotFrontage

Por lógica, se puede decir que el área de la propiedad con la longitud de la fachada. Para confirmarlo, comprobamos la correlación entre ellas:

Warning: Removed 486 rows containing non-finite values (stat_smooth).

```
## Warning: Removed 486 rows containing missing values (geom_point).
## Warning: Removed 486 rows containing non-finite values (stat_smooth).
## Warning: Removed 486 rows containing missing values (geom_point).
```


Se puede confirmar que existe una alta correlación directa entre *LotFrontage* con *LotArea*. Dado, que estas dos propiedades están relacionadas, seguramente una de ellas sea desechada en el proceso de selección de variables. Idependientemente de ello, en este paso sustituiremos los valores de *LotFrontage*, por la mediana de los valores existentes.

```
full.set$LotFrontage[is.na(full.set$LotFrontage)] <- mean(full.set$LotFrontage[!is.na(full.set$LotFront
updatePartitions()

cor(full.set$LotFrontage, full.set$LotArea, use = "complete.obs")

## [1] 0.364382

cor(log(full.set$LotFrontage), log(full.set$LotArea), use = "complete.obs")</pre>
```

[1] 0.6894001

Observamos que la correlación continúa siendo similar después de tratar los valores perdidos en LotFrontage.

TODO: Quizás remplazar con la media no sea la mejor opción (cambia bastante la correlación). Si no se encuentra una solución mejor, quizás habría que cargarse directamente la variable.

```
ggplot(data = full.set, aes(x = log(LotArea), y = log(LotFrontage))) +
    geom_point() + geom_smooth(method = "lm")
```


• MasVnrArea

Existe una gran cantidad de entradas con valor 0. Esto seguramente se deba a la carencia de "chapado": ggplot2::qplot(data = train, x = log(MasVnrArea), y = log(SalePrice),

```
ggplot2::qplot(data = train, x = log(MasVnrArea), y = log(SalePrice),
col = MasVnrType)
```

Warning: Removed 8 rows containing missing values (geom_point).

También observamos que en ambas variables los valores perdidos (8) forman parte de los mismos ejemplos:

```
full.set$Id[is.na(full.set$MasVnrArea)]
## [1] 235 530 651 937 974 978 1244 1279 1692 1707 1883 1993 2005 2042
## [15] 2312 2326 2341 2350 2369 2593 2658 2687 2863
full.set$Id[is.na(full.set$MasVnrType)]
## [1] 235 530 651 937 974 978 1244 1279 1692 1707 1883 1993 2005 2042
## [15] 2312 2326 2341 2350 2369 2593 2611 2658 2687 2863
```

TODO: hay una entrada más en el conjunto de test

Por consiguiente, se elimina la caraterística *MasVnrArea*, ya que las entradas con valor 0, por ser del tipo "None", hacen que la información desprendida de la variable esté "deformada".

```
full.set <- dplyr::select(full.set, -MasVnrArea)
updatePartitions()</pre>
```

Ahora se deben tratar los valores perdidos de MasVnrType. Para ello, observamos MasVnrType en relación a SalePrice para entender su distribución.

```
qplot(data = train, x = MasVnrType, y = log10(SalePrice), geom = c("boxplot"),
    fill = MasVnrType)
```


Asignamos a los valores perdidos el tipo "BrkFace", por mayor proximidad de sus medias. Aunque también se les podría asignar el tipo "Stone".

```
full.set$MasVnrType[is.na(full.set$MasVnrType)] <- "BrkFace"

updatePartitions()</pre>
```

Finalmente, observamos la distribución resultante en las categorías de Mas Vnr Type en relación a Sale Price.

```
qplot(data = train, x = train$MasVnrType, y = log10(train$SalePrice),
    geom = c("boxplot"), fill = train$MasVnrType)
```


Variables categóricas

Las siguientes caraterísticas con valores perdidos se corresponden con aquellas que contienen entradas en las que hay una ausencia de la propiedad a la que representan. Por ejemplo, la propiedad PoolQC representa la calidad de la piscina, pero es obvio que en aquellas propiedades en las haya una ausencia de piscina, será inviable representar su calidad. Por consiguiente, se le asignarán el tipo "None" a aquellos valores ausentes (NA). Las caracteríasticas que contienen este tipo de valores perdidos son: PoolQC, MiscFeature, Alley, Fence, FireplaceQu, GarageCond, GarageFinish, GarageQual, GarageType, BsmtCond, BsmtExposure, BsmtFinType1, BsmtFinType2 y BsmtQual.

• Electrical

Esta característica presenta un valor perdido. Dada la mínima influencia que puede tener, se le asigna la categoría mayoritaria.

Corrección de valores perdidos en el conjunto de test

En primer lugar, se examinan los valores perdidos que presenta el conjunto de test y se visualizan de la misma forma que se procedió con el conjunto de entrenamiento.

getLostValuesStats()

```
##
               lost.count lost.percentage
## MSZoning
                               0.13703323
                        2
## Utilities
                               0.06851662
## Exterior1st
                        1
                               0.03425831
                        1
## Exterior2nd
                               0.03425831
## BsmtFinSF1
                        1
                               0.03425831
## BsmtFinSF2
                        1
                               0.03425831
## BsmtUnfSF
                        1
                               0.03425831
## TotalBsmtSF
                        1
                               0.03425831
## BsmtFullBath
                        2
                               0.06851662
                        2
## BsmtHalfBath
                               0.06851662
## KitchenQual
                        1
                               0.03425831
                       2
## Functional
                               0.06851662
## GarageCars
                       1
                               0.03425831
## GarageArea
                               0.03425831
                        1
## SaleType
                        1
                               0.03425831
```

TODO: ¿En las caraterísticas que presenten valores perdidos y ya se haya examinado previamente, se proceden a tratar de la misma forma para realizar un procedimiento consistente?

Así mismo, se procede a tratar las demás variables. Por una parte, se procesan las de tipo numérico, asignando la mediana a los valores faltantes.

En cuanto a las variables de tipo nominal, se les asigna la moda de sus valores.

Antes de continuar, comprobamos que no hay valores perdidos en ninguno de los dos conjuntos.

```
getLostValuesStats()
```

```
## [1] lost.count lost.percentage
## <0 rows> (or 0-length row.names)
```

Transformación de datos

En primer lugar, se procede a eliminar la propiedad Id de los conjuntos de entrenamiento y test.

```
train.transformed <- dplyr::select(train, -Id)
test.transformed <- dplyr::select(test, -Id)</pre>
```

Tratamiento de outliers

```
plot.with.outliers <- ggplot(train.transformed, aes(y = SalePrice,
    x = GrLivArea)) + ggtitle("With Outliers") + geom_point()
plot.with.outliers.log <- ggplot(train.transformed, aes(y = log(SalePrice),
    x = log(GrLivArea))) + ggtitle("With Outliers (Log())") +
    geom_point()
cowplot::plot_grid(plot.with.outliers, plot.with.outliers.log,
    ncol = 2)</pre>
```



```
train.transformed[train.transformed$GrLivArea > 4000, ]$GrLivArea <- mean(train.transformed$GrLivArea)
    as.numeric

ggplot(train.transformed, aes(y = SalePrice, x = GrLivArea)) +
    ggtitle("Without Outliers") + geom_point()</pre>
```


• Feature engenering

```
Creación de una nueva variable: Area total basement e
```

```
full.set.transformed <- dplyr::select(full.set.transformed, -LotFrontage)

full.set.transformed$TotalSF = full.set.transformed$TotalBsmtSF +
    full.set.transformed$X1stFlrSF + full.set.transformed$X2ndFlrSF

full.set.transformed$Age <- full.set.transformed$YrSold - full.set.transformed$YearRemodAdd

full.set.transformed$TotalProch <- full.set.transformed$EnclosedPorch +
    full.set.transformed$ScreenPorch + full.set.transformed$X3SsnPorch</pre>
```

Regularización de las variables continuas

Tal y como se ha mostrado, la variable *SalePrice* contiene una distribución asimétrica. Por consiguiente, para evitar el efecto que los valores extremos puedan causar, se procede a aplicar logaritmos a los valores de la distribución.

Así mismo, se procede a mostrar diagramas de densidad de cada una de las características que contengan datos númericos. De esta forma se podrá observa que transformaciones pueden ser convenientes de hacer a cada variable.

full.set.transformed\$SalePrice <- log(full.set.transformed\$SalePrice)</pre> continuous.features <- c(</pre> "LotArea", ## Lot size in square feet "BsmtFinSF1", ## Type 1 finished square feet "BsmtFinSF2", ## Type 2 finished square feet "BsmtUnfSF", ## Unfinished square feet of basement area "TotalBsmtSF", ## Total square feet of basement area "X1stFlrSF", ## First Floor square feet "X2ndFlrSF", ## Second floor square feet "LowQualFinSF", ## Low quality finished square feet (all floors) "GrLivArea", ## Above grade (ground) living area square feet "GarageArea", ## Size of garage in square feet "WoodDeckSF", ## Wood deck area in square feet "OpenPorchSF", ## Open porch area in square feet "EnclosedPorch", ## Enclosed porch area in square feet "X3SsnPorch", ## Three season porch area in square feet "ScreenPorch", ## Screen porch area in square feet "PoolArea" ## Pool area in square feet plots <- lapply(continuous.features, function(feature) {</pre> if (is.numeric(full.set.transformed[, feature])) { ggplot2::ggplot(data = full.set.transformed, aes(x = full.set.transformed[, feature])) + geom density() + xlab(feature) } }) cowplot::plot_grid(plotlist = plots, ncol = 3)

Let's normalize the continuous values

Center & scale....

Cambiado las variable categóricas por numéricas # TODO: Buscar explicación

```
for (i in 1:ncol(full.set.transformed)) {
    if (is.factor(full.set.transformed[, i])) {
        levels(full.set.transformed[, i]) <- c(1:length(levels(full.set.transformed[, i])))
        full.set.transformed[, i] <- as.numeric(full.set.transformed[, i])
    }
}</pre>
```

• Spliting into train and test

```
train.processed <- full.set.transformed[1:nrow(train.transformed),
    ]
test.processed <- full.set.transformed[(nrow(train.transformed) +
    1):nrow(full.set.transformed), ]
test.processed <- dplyr::select(test.processed, -SalePrice)</pre>
```

• lm

```
exploratory.lm = lm(SalePrice ~ ., data = train.processed)
```

```
par(mfrow = c(2, 2))
plot(exploratory.lm)
## Warning: not plotting observations with leverage one:
##
     945
## Warning: not plotting observations with leverage one:
##
     945
                                                    Standardized residuals
                                                                        Normal Q-Q
                 Residuals vs Fitted
     0.5
Residuals
                                                         2
                                                         0
     -0.5
                                                         -19
         10.5 11.0
                      11.5
                            12.0
                                                                                         2
                                                                                              3
                                   12.5
                                         13.0
                                                                -3
                                                                      -2
                      Fitted values
                                                                      Theoretical Quantiles
(Standardized residuals)
                                                    Standardized residuals
                   Scale-Location
                                                                   Residuals vs Leverage
     3.0
     1.5
                                                                      o
Co®k's distance
                                                         -10
     0.0
               11.0 11.5 12.0 12.5 13.0
                                                                       0.2
         10.5
                                                              0.0
                                                                               0.4
                                                                                        0.6
                      Fitted values
                                                                           Leverage
par(mfrow = c(1, 1))
importance <- caret::varImp(exploratory.lm)</pre>
importance.sort <- sort(importance$Overall, decreasing = TRUE,</pre>
    index.return = TRUE)
data.frame(Feature = rownames(importance)[importance.sort$ix],
    Overall = importance[importance.sort$ix, ])[1:15, ]
##
             Feature
                         Overall
## 1
           GrLivArea 12.731488
## 2
         OverallQual 12.235935
## 3
         OverallCond 11.489647
## 4
             LotArea 8.350168
## 5
      SaleCondition
                       6.885938
## 6
          Functional 6.117128
           YearBuilt 5.694831
## 7
```

8

GarageCars 5.470990

```
## 9 PoolQC 5.435886

## 10 PoolArea 4.572355

## 11 KitchenAbvGr 4.515456

## 12 BsmtFinSF1 4.364160

## 13 KitchenQual 3.949574

## 14 Fireplaces 3.809485

## 15 X2ndFlrSF 3.751977
```

Entrenamiento

Iter

1

2

3

##

##

##

• Entrenamiento "parcial"

TrainDeviance

0.1501

0.1370

0.1272

```
train.processed.partition.index <- createDataPartition(train.processed$SalePrice,
    p = 0.7, list = FALSE)
train.processed.partition.train <- train.processed[train.processed.partition.index,
    ]
train.processed.partition.validation <- train.processed[-train.processed.partition.index,
    ]</pre>
```

StepSize

0.1000

0.1000

0.1000

Improve

0.0133

0.0120

0.0092

		**		0.2000	
##	4	0.1176	nan	0.1000	0.0092
##	5	0.1097	nan	0.1000	0.0071
##	6	0.1033	nan	0.1000	0.0068
##	7	0.0973	nan	0.1000	0.0065
##	8	0.0920	nan	0.1000	0.0057
##	9	0.0869	nan	0.1000	0.0049
##	10	0.0817	nan	0.1000	0.0047
##	20	0.0520	nan	0.1000	0.0015
##	40	0.0306	nan	0.1000	0.0005
##	60	0.0233	nan	0.1000	0.0001
##	80	0.0200	nan	0.1000	0.0001
##	100	0.0181	nan	0.1000	0.0000
##	120	0.0169	nan	0.1000	-0.0000
##	140	0.0161	nan	0.1000	-0.0000
##	150	0.0158	nan	0.1000	-0.0001
##					
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	1	0.1457	ValidDeviance nan	0.1000	0.0175
##	1 2	0.1457 0.1307		0.1000 0.1000	0.0175 0.0138
## ## ## ##	1 2 3	0.1457 0.1307 0.1177	nan	0.1000 0.1000 0.1000	0.0175 0.0138 0.0132
## ## ##	1 2 3 4	0.1457 0.1307 0.1177 0.1066	nan nan	0.1000 0.1000 0.1000 0.1000	0.0175 0.0138 0.0132 0.0105
## ## ## ## ##	1 2 3 4 5	0.1457 0.1307 0.1177 0.1066 0.0970	nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000	0.0175 0.0138 0.0132 0.0105 0.0092
## ## ## ## ##	1 2 3 4 5 6	0.1457 0.1307 0.1177 0.1066 0.0970 0.0878	nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0175 0.0138 0.0132 0.0105 0.0092 0.0083
## ## ## ## ##	1 2 3 4 5 6 7	0.1457 0.1307 0.1177 0.1066 0.0970 0.0878 0.0806	nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0175 0.0138 0.0132 0.0105 0.0092 0.0083 0.0070
## ## ## ## ## ##	1 2 3 4 5 6 7 8	0.1457 0.1307 0.1177 0.1066 0.0970 0.0878 0.0806 0.0738	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0175 0.0138 0.0132 0.0105 0.0092 0.0083 0.0070 0.0064
## ## ## ## ## ##	1 2 3 4 5 6 7 8	0.1457 0.1307 0.1177 0.1066 0.0970 0.0878 0.0806 0.0738 0.0682	nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0175 0.0138 0.0132 0.0105 0.0092 0.0083 0.0070 0.0064 0.0046
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9	0.1457 0.1307 0.1177 0.1066 0.0970 0.0878 0.0806 0.0738 0.0682 0.0631	nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0175 0.0138 0.0132 0.0105 0.0092 0.0083 0.0070 0.0064 0.0046
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20	0.1457 0.1307 0.1177 0.1066 0.0970 0.0878 0.0806 0.0738 0.0682 0.0631 0.0351	nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0175 0.0138 0.0132 0.0105 0.0092 0.0083 0.0070 0.0064 0.0046 0.0043
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40	0.1457 0.1307 0.1177 0.1066 0.0970 0.0878 0.0806 0.0738 0.0682 0.0631 0.0351 0.0208	nan nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0175 0.0138 0.0132 0.0105 0.0092 0.0083 0.0070 0.0064 0.0046 0.0043 0.0015
## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60	0.1457 0.1307 0.1177 0.1066 0.0970 0.0878 0.0806 0.0738 0.0682 0.0631 0.0351 0.0208 0.0167	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0175 0.0138 0.0132 0.0105 0.0092 0.0083 0.0070 0.0064 0.0046 0.0043 0.0015 0.0001
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40	0.1457 0.1307 0.1177 0.1066 0.0970 0.0878 0.0806 0.0738 0.0682 0.0631 0.0351 0.0208	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0175 0.0138 0.0132 0.0105 0.0092 0.0083 0.0070 0.0064 0.0046 0.0043 0.0015

ValidDeviance

nan

nan

nan

##	100	0.0132	non	0.1000	-0.0001
	120	0.0132	nan	0.1000	-0.0001
##			nan		
##	140	0.0117	nan	0.1000	-0.0001
##	150	0.0115	nan	0.1000	0.0000
##	- .			a. a.	_
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.1431	nan	0.1000	0.0218
##	2	0.1265	nan	0.1000	0.0162
##	3	0.1120	nan	0.1000	0.0140
##	4	0.1003	nan	0.1000	0.0114
##	5	0.0896	nan	0.1000	0.0096
##	6	0.0810	nan	0.1000	0.0087
##	7	0.0731	nan	0.1000	0.0073
##	8	0.0668	nan	0.1000	0.0060
##	9	0.0613	nan	0.1000	0.0054
##	10	0.0568	nan	0.1000	0.0037
##	20	0.0297	nan	0.1000	0.0013
##	40	0.0172	nan	0.1000	0.0001
##	60	0.0136	nan	0.1000	0.0000
##	80	0.0118	nan	0.1000	-0.0000
##	100	0.0107	nan	0.1000	-0.0001
##	120	0.0100	nan	0.1000	-0.0001
##	140	0.0094	nan	0.1000	-0.0001
##	150	0.0091	nan	0.1000	-0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.1492	nan	0.1000	0.0135
##	2	0.1365	nan	0.1000	0.0121
##	3	0.1255	nan	0.1000	0.0094
##	4	0.1161	nan	0.1000	0.0087
##	5	0.1087	nan	0.1000	0.0080
##	6	0.1024	nan	0.1000	0.0057
##	7	0.0958	nan	0.1000	0.0057
##	8	0.0901	nan	0.1000	0.0058
##	9	0.0847	nan	0.1000	0.0052
##	10	0.0800	nan	0.1000	0.0043
##	20	0.0507	nan	0.1000	0.0016
##	40	0.0299	nan	0.1000	0.0005
##	60	0.0224	nan	0.1000	0.0001
##	80	0.0192	nan	0.1000	0.0001
##	100	0.0172	nan	0.1000	0.0000
##	120	0.0160	nan	0.1000	-0.0000
##	140	0.0151	nan	0.1000	-0.0000
##	150	0.0148	nan	0.1000	-0.0001
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.1455	nan	0.1000	0.0168
##	2	0.1302	nan	0.1000	0.0151
##	3	0.1173	nan	0.1000	0.0128
##	4	0.1066	nan	0.1000	0.0098
##	5	0.0970	nan	0.1000	0.0091
##	6	0.0879	nan	0.1000	0.0077
##	7	0.0799	nan	0.1000	0.0075
##	8	0.0733	nan	0.1000	0.0066

##					
	9	0.0676	nan	0.1000	0.0049
##	10	0.0633	nan	0.1000	0.0041
##	20	0.0358	nan	0.1000	0.0014
##	40	0.0208	nan	0.1000	0.0002
##	60	0.0165	nan	0.1000	-0.0000
##	80	0.0145	nan	0.1000	0.0000
##	100	0.0133	nan	0.1000	-0.0000
##	120	0.0124	nan	0.1000	-0.0001
##	140	0.0117	nan	0.1000	-0.0001
##	150	0.0114	nan	0.1000	-0.0000
##	100	0.0114	nan	0.1000	0.0000
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.1421	nan	0.1000	0.0210
##	2	0.1251		0.1000	0.0154
##	3		nan		
		0.1110	nan	0.1000	0.0133
##	4	0.0992	nan	0.1000	0.0123
##	5	0.0891	nan	0.1000	0.0097
##	6	0.0802	nan	0.1000	0.0087
##	7	0.0731	nan	0.1000	0.0067
##	8	0.0660	nan	0.1000	0.0066
##	9	0.0601	nan	0.1000	0.0049
##	10	0.0552	nan	0.1000	0.0048
##	20	0.0292	nan	0.1000	0.0014
##	40	0.0169	nan	0.1000	0.0000
##	60	0.0132	nan	0.1000	0.0000
##	80	0.0117	nan	0.1000	0.0000
##	100	0.0106	nan	0.1000	-0.0000
##	120	0.0098	nan	0.1000	-0.0001
##	140	0.0092	nan	0.1000	-0.0000
##	150	0.0089	nan	0.1000	-0.0000
##		0.000		0.1000	0.000
	.		ValidDeviance	StepSize	Improve
##	lter	TrainDeviance			
##	Iter 1	TrainDeviance		_	_
##	1	0.1432	nan	0.1000	0.0133
## ##	1 2	0.1432 0.1316	nan nan	0.1000 0.1000	0.0133 0.0118
## ## ##	1 2 3	0.1432 0.1316 0.1208	nan nan nan	0.1000 0.1000 0.1000	0.0133 0.0118 0.0101
## ## ## ##	1 2 3 4	0.1432 0.1316 0.1208 0.1123	nan nan nan nan	0.1000 0.1000 0.1000 0.1000	0.0133 0.0118 0.0101 0.0087
## ## ## ##	1 2 3 4 5	0.1432 0.1316 0.1208 0.1123 0.1042	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000	0.0133 0.0118 0.0101 0.0087 0.0080
## ## ## ## ##	1 2 3 4 5 6	0.1432 0.1316 0.1208 0.1123 0.1042 0.0973	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0133 0.0118 0.0101 0.0087 0.0080 0.0061
## ## ## ## ##	1 2 3 4 5 6 7	0.1432 0.1316 0.1208 0.1123 0.1042 0.0973 0.0913	nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0133 0.0118 0.0101 0.0087 0.0080 0.0061 0.0054
## ## ## ## ## ##	1 2 3 4 5 6 7	0.1432 0.1316 0.1208 0.1123 0.1042 0.0973 0.0913	nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0133 0.0118 0.0101 0.0087 0.0080 0.0061 0.0054 0.0053
## ## ## ## ## ##	1 2 3 4 5 6 7 8	0.1432 0.1316 0.1208 0.1123 0.1042 0.0973 0.0913 0.0861 0.0810	nan nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0133 0.0118 0.0101 0.0087 0.0080 0.0061 0.0054 0.0053 0.0045
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9	0.1432 0.1316 0.1208 0.1123 0.1042 0.0973 0.0913 0.0861 0.0810	nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0133 0.0118 0.0101 0.0087 0.0080 0.0061 0.0054 0.0053 0.0045 0.0037
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20	0.1432 0.1316 0.1208 0.1123 0.1042 0.0973 0.0913 0.0861 0.0810 0.0770	nan nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0133 0.0118 0.0101 0.0087 0.0080 0.0061 0.0054 0.0053 0.0045 0.0037 0.0017
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40	0.1432 0.1316 0.1208 0.1123 0.1042 0.0973 0.0913 0.0861 0.0810 0.0770 0.0481 0.0281	nan nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0133 0.0118 0.0101 0.0087 0.0080 0.0061 0.0054 0.0053 0.0045 0.0037 0.0017
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60	0.1432 0.1316 0.1208 0.1123 0.1042 0.0973 0.0913 0.0861 0.0810 0.0770 0.0481 0.0281 0.0215	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0133 0.0118 0.0101 0.0087 0.0080 0.0061 0.0054 0.0053 0.0045 0.0037 0.0017 0.0004 0.0001
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40	0.1432 0.1316 0.1208 0.1123 0.1042 0.0973 0.0913 0.0861 0.0810 0.0770 0.0481 0.0281	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0133 0.0118 0.0101 0.0087 0.0080 0.0061 0.0054 0.0053 0.0045 0.0037 0.0017
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60	0.1432 0.1316 0.1208 0.1123 0.1042 0.0973 0.0913 0.0861 0.0810 0.0770 0.0481 0.0281 0.0215	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0133 0.0118 0.0101 0.0087 0.0080 0.0061 0.0054 0.0053 0.0045 0.0037 0.0017 0.0004 0.0001
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60 80	0.1432 0.1316 0.1208 0.1123 0.1042 0.0973 0.0913 0.0861 0.0810 0.0770 0.0481 0.0281 0.0215 0.0186	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0133 0.0118 0.0101 0.0087 0.0080 0.0061 0.0054 0.0053 0.0045 0.0037 0.0017 0.0004 0.0001
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	0.1432 0.1316 0.1208 0.1123 0.1042 0.0973 0.0913 0.0861 0.0870 0.0470 0.0481 0.0281 0.0215 0.0186 0.0170	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0133 0.0118 0.0101 0.0087 0.0080 0.0061 0.0053 0.0045 0.0037 0.0017 0.0001 0.0001 0.0000
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	0.1432 0.1316 0.1208 0.1123 0.1042 0.0973 0.0913 0.0861 0.0810 0.0770 0.0481 0.0281 0.0215 0.0186 0.0170 0.0159	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0133 0.0118 0.0101 0.0087 0.0080 0.0061 0.0053 0.0045 0.0037 0.0017 0.0004 0.0001 0.0000 -0.0000
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	0.1432 0.1316 0.1208 0.1123 0.1042 0.0973 0.0913 0.0861 0.0770 0.0481 0.0281 0.0215 0.0170 0.0170 0.0159 0.0151	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0133 0.0118 0.0101 0.0087 0.0080 0.0061 0.0054 0.0053 0.0045 0.0037 0.0017 0.0004 0.0001 0.0000 -0.0000 -0.0000
## ###################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	0.1432 0.1316 0.1208 0.1123 0.1042 0.0973 0.0913 0.0861 0.0770 0.0481 0.0281 0.0215 0.0170 0.0170 0.0159 0.0151	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0133 0.0118 0.0101 0.0087 0.0080 0.0061 0.0054 0.0053 0.0045 0.0037 0.0017 0.0004 0.0001 0.0000 -0.0000 -0.0000
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	0.1432 0.1316 0.1208 0.1123 0.1042 0.0973 0.0913 0.0861 0.0870 0.0481 0.0281 0.0215 0.0186 0.0170 0.0159 0.0151	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0133 0.0118 0.0101 0.0087 0.0080 0.0061 0.0054 0.0053 0.0045 0.0037 0.0017 0.0004 0.0001 0.0000 -0.0000 -0.0000 0.0000
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	0.1432 0.1316 0.1208 0.1123 0.1042 0.0973 0.0913 0.0861 0.0810 0.0770 0.0481 0.0281 0.0215 0.0186 0.0170 0.0159 0.0151 0.0148	nan	0.1000 0.1000	0.0133 0.0118 0.0101 0.0087 0.0080 0.0061 0.0054 0.0053 0.0045 0.0037 0.0017 0.0004 0.0001 0.0000 -0.0000 -0.0000 Improve

##	3	0.1120	nan	0.1000	0.0117
##	4	0.1017	nan	0.1000	0.0103
##	5	0.0921	nan	0.1000	0.0091
##	6	0.0841	nan	0.1000	0.0076
##	7	0.0777	nan	0.1000	0.0064
##	8	0.0710	nan	0.1000	0.0068
##	9	0.0652	nan	0.1000	0.0058
##	10	0.0597	nan	0.1000	0.0049
##	20	0.0339	nan	0.1000	0.0014
##	40	0.0196	nan	0.1000	0.0003
##	60	0.0156	nan	0.1000	0.0000
##	80	0.0137	nan	0.1000	0.0000
##	100	0.0127	nan	0.1000	-0.0001
##	120	0.0121	nan	0.1000	-0.0000
##	140	0.0114	nan	0.1000	-0.0000
##	150	0.0111	nan	0.1000	-0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.1377	nan	0.1000	0.0183
##	2	0.1219	nan	0.1000	0.0153
##	3	0.1077	nan	0.1000	0.0138
##	4	0.0952	nan	0.1000	0.0118
##	5	0.0852	nan	0.1000	0.0094
##	6	0.0768	nan	0.1000	0.0083
##	7	0.0696	nan	0.1000	0.0066
##	8	0.0634	nan	0.1000	0.0060
##	9	0.0578	nan	0.1000	0.0053
##	10	0.0530	nan	0.1000	0.0046
##	20	0.0279	nan	0.1000	0.0011
##	40	0.0160	nan	0.1000	0.0001
##	60	0.0127	nan	0.1000	0.0000
##	80	0.0112	nan	0.1000	-0.0000
##	100	0.0101	nan	0.1000	-0.0001
##	120	0.0093	nan	0.1000	-0.0000
##	140	0.0087	nan	0.1000	-0.0001
##	150	0.0084	nan	0.1000	-0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.1478	nan	0.1000	0.0142
##	2	0.1351	nan	0.1000	0.0117
##	3	0.1250	nan	0.1000	0.0098
##	4	0.1162	nan	0.1000	0.0083
##	5	0.1081	nan	0.1000	0.0084
##	6	0.1004	nan	0.1000	0.0074
##	7	0.0940	nan	0.1000	0.0059
##	8	0.0880	nan	0.1000	0.0055
##	9	0.0830	nan	0.1000	0.0045
##	10	0.0784	nan	0.1000	0.0043
##	20	0.0486	nan	0.1000	0.0017
##	40	0.0289	nan	0.1000	0.0017
##	60	0.0222	nan	0.1000	0.0004
##	80	0.0191	nan	0.1000	-0.0001
##	100	0.0174	nan	0.1000	0.0000
##	120	0.0162	nan	0.1000	-0.0000
ππ	120	0.0102	nan	0.1000	0.0000

##	140	0.0153	nan	0.1000	-0.0000
##	150	0.0153	nan nan	0.1000	-0.0000
##	130	0.0130	liali	0.1000	0.0001
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.1454	nan	0.1000	0.0179
##	2	0.1301	nan	0.1000	0.0173
##	3	0.1168	nan	0.1000	0.0135
##	4	0.1055	nan	0.1000	0.0133
##	5	0.1000	nan	0.1000	0.0112
##	6	0.0873	nan	0.1000	0.0167
##	7	0.0797	nan	0.1000	0.0074
##	8	0.0730	nan	0.1000	0.0056
##	9	0.0680	nan	0.1000	0.0043
##	10	0.0627	nan	0.1000	0.0049
##	20	0.0355	nan	0.1000	0.0014
##	40	0.0203	nan	0.1000	0.0002
##	60	0.0161	nan	0.1000	-0.0000
##	80	0.0141	nan	0.1000	0.0001
##	100	0.0129	nan	0.1000	-0.0000
##	120	0.0121	nan	0.1000	-0.0000
##	140	0.0114	nan	0.1000	-0.0000
##	150	0.0112	nan	0.1000	-0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.1413	nan	0.1000	0.0194
##	2	0.1238	nan	0.1000	0.0163
##	3	0.1091	nan	0.1000	0.0138
##	4	0.0974	nan	0.1000	0.0117
##	5	0.0869	nan	0.1000	0.0086
##	6	0.0780	nan	0.1000	0.0084
##	7	0.0707	nan	0.1000	0.0062
##	8	0.0641	nan	0.1000	0.0063
##	9	0.0588	nan	0.1000	0.0045
##	10	0.0535	nan	0.1000	0.0050
##	20	0.0285	nan	0.1000	0.0008
##	40	0.0165	nan	0.1000	0.0002
##	60	0.0133	nan	0.1000	-0.0000
##	80	0.0116	nan	0.1000	-0.0001
##	100	0.0104	nan	0.1000	-0.0001
##	120	0.0097	nan	0.1000	-0.0001
##	140	0.0091	nan	0.1000	-0.0000
##	150	0.0088	nan	0.1000	-0.0000
##	_				_
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.1528	nan	0.1000	0.0139
##	2	0.1399	nan	0.1000	0.0127
##	3	0.1293	nan	0.1000	0.0102
##	4	0.1200	nan	0.1000	0.0093
##	5	0.1122	nan	0.1000	0.0079
##	6 7	0.1048	nan	0.1000	0.0072
## ##	8	0.0980 0.0923	nan	0.1000 0.1000	0.0053 0.0055
##	9	0.0923	nan	0.1000	0.0055
##	10	0.0822	nan	0.1000	0.0061
##	10	0.0022	nan	0.1000	0.0043

##	20	0.0521	nan	0.1000	0.0014
##	40	0.0300	nan	0.1000	0.0004
##	60	0.0223	nan	0.1000	0.0001
##	80	0.0188	nan	0.1000	-0.0000
##	100	0.0168	nan	0.1000	0.0000
##	120	0.0155	nan	0.1000	0.0000
##	140	0.0146	nan	0.1000	-0.0000
##	150	0.0142	nan	0.1000	0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	0.1483	nan	0.1000	0.0161
##	2	0.1331	nan	0.1000	0.0161
##	3	0.1202	nan	0.1000	0.0135
##	4	0.1082	nan	0.1000	0.0111
##	5	0.0973	nan	0.1000	0.0106
##	6	0.0893	nan	0.1000	0.0072
##	7	0.0815	nan	0.1000	0.0073
##	8	0.0755	nan	0.1000	0.0061
##	9	0.0691	nan	0.1000	0.0064
##	10	0.0636	nan	0.1000	0.0051
##	20	0.0351	nan	0.1000	0.0014
##	40	0.0203	nan	0.1000	0.0002
##	60	0.0158	nan	0.1000	0.0000
##	80	0.0137	nan	0.1000	0.0000
##	100	0.0125	nan	0.1000	0.0000
	120	0.0116	nan	0.1000	-0.0001
##	120			0.1000	
## ##	140	0.0109	nan	0.1000	0.0000
##	140	0.0109	nan	0.1000	0.0000
## ##	140	0.0109	nan	0.1000 0.1000 StepSize	0.0000 -0.0000 Improve
## ## ##	140 150 Iter 1	0.0109 0.0106 TrainDeviance 0.1442	nan nan	0.1000 0.1000 StepSize 0.1000	0.0000 -0.0000 Improve 0.0199
## ## ## ##	140 150 Iter 1 2	0.0109 0.0106 TrainDeviance	nan nan ValidDeviance	0.1000 0.1000 StepSize	0.0000 -0.0000 Improve 0.0199 0.0166
## ## ## ##	140 150 Iter 1	0.0109 0.0106 TrainDeviance 0.1442	nan nan ValidDeviance nan	0.1000 0.1000 StepSize 0.1000	0.0000 -0.0000 Improve 0.0199
## ## ## ## ##	140 150 Iter 1 2	0.0109 0.0106 TrainDeviance 0.1442 0.1263 0.1117 0.1001	nan nan ValidDeviance nan nan	0.1000 0.1000 StepSize 0.1000 0.1000	0.0000 -0.0000 Improve 0.0199 0.0166
## ## ## ## ##	140 150 Iter 1 2 3 4 5	0.0109 0.0106 TrainDeviance 0.1442 0.1263 0.1117 0.1001 0.0900	nan nan ValidDeviance nan nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000	0.0000 -0.0000 Improve 0.0199 0.0166 0.0145 0.0115
## ## ## ## ## ##	140 150 Iter 1 2 3 4 5 6	0.0109 0.0106 TrainDeviance 0.1442 0.1263 0.1117 0.1001 0.0900 0.0810	nan nan ValidDeviance nan nan nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000	0.0000 -0.0000 Improve 0.0199 0.0166 0.0145 0.0115 0.0105
## ## ## ## ## ##	140 150 Iter 1 2 3 4 5	0.0109 0.0106 TrainDeviance 0.1442 0.1263 0.1117 0.1001 0.0900	nan nan ValidDeviance nan nan nan nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0000 -0.0000 Improve 0.0199 0.0166 0.0145 0.0115
## ## ## ## ## ##	140 150 Iter 1 2 3 4 5 6 7	0.0109 0.0106 TrainDeviance 0.1442 0.1263 0.1117 0.1001 0.0900 0.0810 0.0733 0.0663	nan nan ValidDeviance nan nan nan nan nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0000 -0.0000 Improve 0.0199 0.0166 0.0145 0.0115 0.0105 0.0081 0.0066 0.0064
## ## ## ## ## ## ## ## ## ## ## ## ##	140 150 Iter 1 2 3 4 5 6 7 8	0.0109 0.0106 TrainDeviance 0.1442 0.1263 0.1117 0.1001 0.0900 0.0810 0.0733 0.0663 0.0603	nan nan ValidDeviance nan nan nan nan nan nan nan nan nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0000 -0.0000 Improve 0.0199 0.0166 0.0145 0.0115 0.0105 0.0081 0.0066 0.0064 0.0052
## ## ## ## ## ## ## ##	140 150 Iter 1 2 3 4 5 6 7 8 9	0.0109 0.0106 TrainDeviance 0.1442 0.1263 0.1117 0.1001 0.0900 0.0810 0.0733 0.0663 0.0603 0.0551	nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0000 -0.0000 Improve 0.0199 0.0166 0.0145 0.0115 0.0105 0.0081 0.0066 0.0064 0.0052 0.0049
## ## ## ## ## ## ## ## ## ## ## ## ##	140 150 Iter 1 2 3 4 5 6 7 8	0.0109 0.0106 TrainDeviance 0.1442 0.1263 0.1117 0.1001 0.0900 0.0810 0.0733 0.0663 0.0603	nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0000 -0.0000 Improve 0.0199 0.0166 0.0145 0.0115 0.0005 0.0081 0.0066 0.0064 0.0052 0.0049 0.0011
## ## ## ## ## ## ## ##	140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40	0.0109 0.0106 TrainDeviance 0.1442 0.1263 0.1117 0.1001 0.0900 0.0810 0.0733 0.0663 0.0663 0.0551 0.0285 0.0163	Nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0000 -0.0000 Improve 0.0199 0.0166 0.0145 0.0105 0.0081 0.0066 0.0064 0.0052 0.0049 0.0011 0.0003
######################################	140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60	0.0109 0.0106 TrainDeviance 0.1442 0.1263 0.1117 0.1001 0.0900 0.0810 0.0733 0.0663 0.0663 0.0551 0.0285 0.0163 0.0126	Nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0000 -0.0000 Improve 0.0199 0.0166 0.0145 0.0115 0.0105 0.0081 0.0066 0.0064 0.0052 0.0049 0.0011 0.0003 -0.0001
## # # # # # # # # # # # # # # # # # #	140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80	0.0109 0.0106 TrainDeviance 0.1442 0.1263 0.1117 0.1001 0.0900 0.0810 0.0733 0.0663 0.0603 0.0551 0.0285 0.0163 0.0126 0.0110	nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0000 -0.0000 Improve 0.0199 0.0166 0.0145 0.0115 0.0105 0.0081 0.0066 0.0064 0.0052 0.0049 0.0011 0.0003 -0.0001 -0.0001
######################################	140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	0.0109 0.0106 TrainDeviance 0.1442 0.1263 0.1117 0.1001 0.0900 0.0810 0.0733 0.0663 0.0663 0.0551 0.0285 0.0163 0.0126 0.0110	nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0000 -0.0000 Improve 0.0199 0.0166 0.0145 0.0115 0.0105 0.0081 0.0064 0.0052 0.0049 0.0011 0.0003 -0.0001 -0.0001
######################################	140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	0.0109 0.0106 TrainDeviance 0.1442 0.1263 0.1117 0.1001 0.0900 0.0810 0.0733 0.0663 0.0663 0.0603 0.0551 0.0285 0.0163 0.0126 0.0110 0.0100	Nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0000 -0.0000 Improve 0.0199 0.0166 0.0145 0.0115 0.0105 0.0081 0.0066 0.0064 0.0052 0.0049 0.0011 0.0003 -0.0001 -0.0001
#########################	140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	0.0109 0.0106 TrainDeviance 0.1442 0.1263 0.1117 0.1001 0.0900 0.0810 0.0733 0.0663 0.0603 0.0551 0.0285 0.0163 0.0126 0.0110 0.0100 0.0091 0.0085	Nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0000 -0.0000 Improve 0.0199 0.0166 0.0145 0.0115 0.0005 0.0081 0.0066 0.0064 0.0052 0.0049 0.0011 0.0003 -0.0001 -0.0000 -0.0000
#########################	140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	0.0109 0.0106 TrainDeviance 0.1442 0.1263 0.1117 0.1001 0.0900 0.0810 0.0733 0.0663 0.0663 0.0603 0.0551 0.0285 0.0163 0.0126 0.0110 0.0100	Nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0000 -0.0000 Improve 0.0199 0.0166 0.0145 0.0115 0.0105 0.0081 0.0066 0.0064 0.0052 0.0049 0.0011 0.0003 -0.0001 -0.0000 -0.0000
#########################	140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	0.0109 0.0106 TrainDeviance 0.1442 0.1263 0.1117 0.1001 0.0900 0.0810 0.0733 0.0663 0.0663 0.0551 0.0285 0.0163 0.0126 0.0110 0.0100 0.0091 0.0085 0.0083	Nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0000 -0.0000 Improve 0.0199 0.0166 0.0145 0.0115 0.0005 0.0081 0.0066 0.0064 0.0052 0.0049 0.0011 0.0003 -0.0001 -0.0000 -0.0000
#########################	140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	0.0109 0.0106 TrainDeviance 0.1442 0.1263 0.1117 0.1001 0.0900 0.0810 0.0733 0.0663 0.0603 0.0551 0.0285 0.0163 0.0126 0.0110 0.0100 0.0091 0.0085 0.0083	Nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0000 -0.0000 Improve 0.0199 0.0166 0.0145 0.0115 0.0105 0.0081 0.0066 0.0064 0.0052 0.0049 0.0011 0.0003 -0.0001 -0.0000 -0.0000 -0.0000 Improve
##########################	140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1	0.0109 0.0106 TrainDeviance 0.1442 0.1263 0.1117 0.1001 0.0900 0.0810 0.0733 0.0663 0.0603 0.0551 0.0285 0.0163 0.0126 0.0110 0.0100 0.091 0.0091 0.0085 0.0083	Nan	0.1000 0.1000	0.0000 -0.0000 Improve 0.0199 0.0166 0.0145 0.0115 0.0105 0.0081 0.0066 0.0064 0.0052 0.0049 0.0011 0.0003 -0.0001 -0.0000 -0.0000 -0.0000 Improve 0.0134
##########################	140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1 2	0.0109 0.0106 TrainDeviance 0.1442 0.1263 0.1117 0.1001 0.0900 0.0810 0.0733 0.0663 0.0603 0.0551 0.0285 0.0163 0.0126 0.0110 0.0100 0.091 0.0091 0.0085 0.0083 TrainDeviance 0.1497 0.1372	Nan	0.1000 0.1000	0.0000 -0.0000 Improve 0.0199 0.0166 0.0145 0.0115 0.0081 0.0066 0.0064 0.0052 0.0049 0.0011 0.0003 -0.0001 -0.0000 -0.0000 -0.0000 Improve 0.0134 0.0126
##########################	140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1	0.0109 0.0106 TrainDeviance 0.1442 0.1263 0.1117 0.1001 0.0900 0.0810 0.0733 0.0663 0.0603 0.0551 0.0285 0.0163 0.0126 0.0110 0.0100 0.091 0.0091 0.0085 0.0083	Nan	0.1000 0.1000	0.0000 -0.0000 Improve 0.0199 0.0166 0.0145 0.0115 0.0105 0.0081 0.0066 0.0064 0.0052 0.0049 0.0011 0.0003 -0.0001 -0.0000 -0.0000 -0.0000 Improve 0.0134

##	5	0.1101	nan	0.1000	0.0070
##	6	0.1027	nan	0.1000	0.0066
##	7	0.0959	nan	0.1000	0.0063
##	8	0.0900	nan	0.1000	0.0060
##	9	0.0852	nan	0.1000	0.0042
##	10	0.0811	nan	0.1000	0.0042
##	20	0.0512	nan	0.1000	0.0017
##	40	0.0297	nan	0.1000	0.0003
##	60	0.0224	nan	0.1000	0.0002
##	80	0.0188	nan	0.1000	-0.0001
##	100	0.0169	nan	0.1000	-0.0000
##	120	0.0158	nan	0.1000	0.0000
##	140	0.0149	nan	0.1000	0.0000
##	150	0.0146	nan	0.1000	0.0000
##	100	0.0110	nan	0.1000	0.0000
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.1459	nan	0.1000	0.0148
##	2	0.1308	nan	0.1000	0.0140
##	3	0.1300	nan	0.1000	0.0137
##	4	0.1052	nan	0.1000	0.0107
##	5	0.1032		0.1000	0.0107
##	6	0.0880	nan	0.1000	0.0034
	7		nan		
##		0.0806 0.0741	nan	0.1000	0.0077
##	8		nan	0.1000	0.0059
##	9	0.0684	nan	0.1000	0.0057
##	10	0.0635	nan	0.1000	0.0046
##	20	0.0359	nan	0.1000	0.0017
##	40	0.0200	nan	0.1000	0.0003
##	60	0.0155	nan	0.1000	0.0000
##	80	0.0133	nan	0.1000	0.0000
##	100	0.0121	nan	0.1000	-0.0001
##	120	0.0112	nan	0.1000	0.0000
##	140	0.0105	nan	0.1000	-0.0000
##	150	0.0102	nan	0.1000	-0.0001
##	- .			a. a.	_
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.1440	nan	0.1000	0.0210
##	2	0.1266	nan	0.1000	0.0181
##	3	0.1119	nan	0.1000	0.0133
##	4	0.0996	nan	0.1000	0.0114
##	5	0.0891	nan	0.1000	0.0109
##	6	0.0802	nan	0.1000	0.0084
##	7	0.0723	nan	0.1000	0.0075
##	8	0.0663	nan	0.1000	0.0061
##	9	0.0604	nan	0.1000	0.0051
##	10	0.0551	nan	0.1000	0.0047
##	20	0.0289	nan	0.1000	0.0014
##	40	0.0161	nan	0.1000	0.0002
##	60	0.0127	nan	0.1000	-0.0001
##	80	0.0111	nan	0.1000	-0.0000
##	100	0.0101	nan	0.1000	-0.0001
##	120	0.0092	nan	0.1000	-0.0000
##	140	0.0087	nan	0.1000	-0.0001
##	150	0.0084	nan	0.1000	-0.0000

##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.1484	nan	0.1000	0.0137
##	2	0.1360	nan	0.1000	0.0113
##	3	0.1251	nan	0.1000	0.0101
##	4	0.1164	nan	0.1000	0.0087
##	5	0.1085	nan	0.1000	0.0078
##	6	0.1005	nan	0.1000	0.0072
##	7	0.0942	nan	0.1000	0.0063
##	8	0.0885	nan	0.1000	0.0055
##	9	0.0835	nan	0.1000	0.0047
##	10	0.0788	nan	0.1000	0.0044
##	20	0.0501	nan	0.1000	0.0017
##	40	0.0303	nan	0.1000	0.0002
##	60	0.0229	nan	0.1000	0.0000
##	80	0.0194	nan	0.1000	0.0000
##	100	0.0174	nan	0.1000	-0.0001
##	120	0.0159	nan	0.1000	0.0000
##	140	0.0149	nan	0.1000	-0.0000
##	150	0.0146	nan	0.1000	-0.0001
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	0.1441	nan	0.1000	0.0160
##	2	0.1282	nan	0.1000	0.0155
##	3	0.1156	nan	0.1000	0.0128
##	4	0.1046	nan	0.1000	0.0109
##	5	0.0945	nan	0.1000	0.0101
##	6	0.0859	nan	0.1000	0.0088
##	7	0.0792	nan	0.1000	0.0058
##	8	0.0722	nan	0.1000	0.0066
##	9	0.0671	nan	0.1000	0.0041
##	10	0.0620	nan	0.1000	0.0046
##	20	0.0351	nan	0.1000	0.0015
##	40	0.0208	nan	0.1000	0.0002
##	60	0.0162	nan	0.1000	0.0001
##	80	0.0141	nan	0.1000	0.0001
##	100	0.0127	nan	0.1000	-0.0000
##	120	0.0118	nan	0.1000	-0.0001
##	140	0.0113	nan	0.1000	0.0000
##	150	0.0109	nan	0.1000	-0.0000
##	T+	Ti-Di	ValidDaniana	C+ C:	T
## ##	Iter 1	TrainDeviance 0.1424	ValidDeviance	StepSize	Improve
##	2	0.1249	nan	0.1000 0.1000	0.0192 0.0162
##	3	0.1106	nan nan	0.1000	0.0102
##	4	0.0987	nan	0.1000	0.0143
##	5	0.0883	nan	0.1000	0.00116
##	6	0.0794	nan	0.1000	0.0033
##	7	0.0734	nan	0.1000	0.0069
##	8	0.0656	nan	0.1000	0.0066
##	9	0.0602	nan	0.1000	0.0055
##	10	0.0552	nan	0.1000	0.0047
##	20	0.0295	nan	0.1000	0.0014
##	40	0.0166	nan	0.1000	0.0002
			_		

```
0.1000
                                                     0.0000
##
       60
                 0.0132
                                    nan
##
       80
                 0.0115
                                            0.1000
                                                    -0.0001
                                    nan
                 0.0105
##
      100
                                    nan
                                            0.1000
                                                     -0.0001
##
      120
                 0.0096
                                            0.1000
                                                     -0.0000
                                    nan
##
      140
                 0.0091
                                    nan
                                            0.1000
                                                     -0.0000
##
      150
                 0.0087
                                            0.1000
                                                     -0.0000
                                    nan
```

Warning in (function (x, y, offset = NULL, misc = NULL, distribution =
"bernoulli", : variable 8: Utilities has no variation.

			a. a.	_
lter	TrainDeviance	ValidDeviance	StepSize	Improve
1	0.1449	nan	0.1000	0.0136
2	0.1331	nan	0.1000	0.0114
3	0.1235	nan	0.1000	0.0102
4	0.1151	nan	0.1000	0.0087
5	0.1071	nan	0.1000	0.0081
6	0.1003	nan	0.1000	0.0063
7	0.0937	nan	0.1000	0.0064
8	0.0881	nan	0.1000	0.0051
9	0.0833	nan	0.1000	0.0048
10	0.0783	nan	0.1000	0.0044
20	0.0503	nan	0.1000	0.0014
40	0.0295	nan	0.1000	0.0002
60	0.0228	nan	0.1000	0.0002
80	0.0195	nan	0.1000	0.0001
100	0.0177	nan	0.1000	-0.0000
120	0.0164	nan	0.1000	0.0000
140	0.0155	nan	0.1000	-0.0000
150	0.0152	nan	0.1000	-0.0000
	2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	1 0.1449 2 0.1331 3 0.1235 4 0.1151 5 0.1071 6 0.1003 7 0.0937 8 0.0881 9 0.0833 10 0.0783 20 0.0503 40 0.0295 60 0.0228 80 0.0195 100 0.0177 120 0.0164 140 0.0155	1 0.1449 nan 2 0.1331 nan 3 0.1235 nan 4 0.1151 nan 5 0.1071 nan 6 0.1003 nan 7 0.0937 nan 8 0.0881 nan 9 0.0833 nan 10 0.0783 nan 20 0.0503 nan 40 0.0295 nan 60 0.0228 nan 80 0.0195 nan 100 0.0177 nan 120 0.0164 nan 140 0.0155 nan	1 0.1449 nan 0.1000 2 0.1331 nan 0.1000 3 0.1235 nan 0.1000 4 0.1151 nan 0.1000 5 0.1071 nan 0.1000 6 0.1003 nan 0.1000 7 0.0937 nan 0.1000 8 0.0881 nan 0.1000 9 0.0833 nan 0.1000 10 0.0783 nan 0.1000 20 0.0503 nan 0.1000 40 0.0295 nan 0.1000 60 0.0228 nan 0.1000 80 0.0195 nan 0.1000 100 0.0177 nan 0.1000 120 0.0164 nan 0.1000 140 0.0155 nan 0.1000

Warning in (function (x, y, offset = NULL, misc = NULL, distribution =
"bernoulli", : variable 8: Utilities has no variation.

##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	0.1400	nan	0.1000	0.0185
##	2	0.1246	nan	0.1000	0.0141
##	3	0.1123	nan	0.1000	0.0122
##	4	0.1012	nan	0.1000	0.0106
##	5	0.0926	nan	0.1000	0.0079
##	6	0.0849	nan	0.1000	0.0077
##	7	0.0775	nan	0.1000	0.0063
##	8	0.0712	nan	0.1000	0.0058
##	9	0.0660	nan	0.1000	0.0048
##	10	0.0614	nan	0.1000	0.0047
##	20	0.0352	nan	0.1000	0.0016
##	40	0.0207	nan	0.1000	0.0001
##	60	0.0165	nan	0.1000	0.0001
##	80	0.0143	nan	0.1000	-0.0000
##	100	0.0131	nan	0.1000	-0.0000
##	120	0.0125	nan	0.1000	-0.0001
##	140	0.0119	nan	0.1000	-0.0000
##	150	0.0116	nan	0.1000	-0.0001

Warning in (function (x, y, offset = NULL, misc = NULL, distribution =
"bernoulli", : variable 8: Utilities has no variation.

Iter TrainDeviance ValidDeviance StepSize Improve

##	1	0.1390	nan	0.1000	0.0174
##	2	0.1218	nan	0.1000	0.0176
##	3	0.1074	nan	0.1000	0.0130
##	4	0.0957	nan	0.1000	0.0113
##	5	0.0862	nan	0.1000	0.0095
##	6	0.0772	nan	0.1000	0.0084
##	7	0.0704	nan	0.1000	0.0069
##	8	0.0640	nan	0.1000	0.0056
##	9	0.0586	nan	0.1000	0.0051
##	10	0.0539	nan	0.1000	0.0043
##	20	0.0283	nan	0.1000	0.0010
##	40	0.0167	nan	0.1000	0.0001
##	60	0.0131	nan	0.1000	0.0001
##	80	0.0113	nan	0.1000	0.0000
##	100	0.0104	nan	0.1000	-0.0001
##	120	0.0096	nan	0.1000	-0.0000
##	140	0.0090	nan	0.1000	-0.0000
##	150	0.0087	nan	0.1000	-0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.1488	nan	0.1000	0.0137
##	2	0.1368	nan	0.1000	0.0120
##	3	0.1270	nan	0.1000	0.0097
##	4	0.1182	nan	0.1000	0.0088
##	5	0.1104	nan	0.1000	0.0077
##	6	0.1032	nan	0.1000	0.0071
##	7	0.0971	nan	0.1000	0.0061
##	8	0.0913	nan	0.1000	0.0058
##	9	0.0859	nan	0.1000	0.0048
##	10	0.0817	nan	0.1000	0.0042
##	20	0.0521	nan	0.1000	0.0012
##	40	0.0303	nan	0.1000	0.0006
##	60	0.0234	nan	0.1000	0.0002
##	80	0.0200	nan	0.1000	0.0001
##	100	0.0181	nan	0.1000	-0.0000
##	120	0.0166	nan	0.1000	-0.0000
##	140	0.0157	nan	0.1000	0.0000
##	150	0.0153	nan	0.1000	-0.0000
##	100	0.0100	nan	0.1000	0.0000
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.1447	nan	0.1000	0.0176
##	2	0.1288	nan	0.1000	0.0176
##	3	0.1164		0.1000	0.0130
##	4	0.1057	nan nan	0.1000	0.0122
##	5	0.0965		0.1000	0.0102
##	6	0.0873	nan	0.1000	0.0083
##	7	0.0790	nan	0.1000	0.0003
##	8	0.0790	nan	0.1000	0.0079
##	9	0.0721	nan	0.1000	0.0068
			nan		
##	10	0.0620	nan	0.1000	0.0044
##	20	0.0353	nan	0.1000	0.0013
##	40	0.0206	nan	0.1000	0.0002
##	60	0.0164	nan	0.1000	0.0000
##	80	0.0144	nan	0.1000	-0.0000

##	100	0.0133	nan	0.1000	-0.0001
##	120	0.0124	nan	0.1000	-0.0001
##	140	0.0116	nan	0.1000	-0.0000
##	150	0.0113	nan	0.1000	0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.1422	nan	0.1000	0.0193
##	2	0.1259	nan	0.1000	0.0169
##	3	0.1109	nan	0.1000	0.0132
##	4	0.0984	nan	0.1000	0.0123
##	5	0.0879	nan	0.1000	0.0102
##	6	0.0802	nan	0.1000	0.0075
##	7	0.0002		0.1000	0.0070
##	8	0.0661	nan	0.1000	0.0068
			nan		
##	9	0.0606	nan	0.1000	0.0051
##	10	0.0555	nan	0.1000	0.0048
##	20	0.0305	nan	0.1000	0.0013
##	40	0.0177	nan	0.1000	0.0001
##	60	0.0139	nan	0.1000	-0.0000
##	80	0.0122	nan	0.1000	-0.0001
##	100	0.0108	nan	0.1000	-0.0000
##	120	0.0099	nan	0.1000	-0.0001
##	140	0.0091	nan	0.1000	-0.0001
##	150	0.0088	nan	0.1000	-0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	0.1476	nan	0.1000	0.0133
##	2	0.1354	nan	0.1000	0.0125
##	3	0.1255	nan	0.1000	0.0099
##	4	0.1172	nan	0.1000	0.0084
##	5	0.1083	nan	0.1000	0.0079
##	6	0.1015	nan	0.1000	0.0069
##	7	0.0956	nan	0.1000	0.0056
##	8	0.0904	nan	0.1000	0.0050
##	9	0.0853	nan	0.1000	0.0051
##	10	0.0805	nan	0.1000	0.0044
##	20	0.0515	nan	0.1000	0.0015
##	40	0.0306	nan	0.1000	0.0002
##	60	0.0234	nan	0.1000	0.0002
##	80	0.0201	nan	0.1000	0.0001
##	100	0.0181	nan	0.1000	0.0000
##	120	0.0170	nan	0.1000	-0.0000
##	140	0.0160	nan	0.1000	-0.0000
##	150	0.0158	nan	0.1000	0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.1438	nan	0.1000	0.0175
##	2	0.1280	nan	0.1000	0.0147
##	3	0.1158	nan	0.1000	0.0119
##	4	0.1054	nan	0.1000	0.0098
##	5	0.0965	nan	0.1000	0.0093
##	6	0.0879	nan	0.1000	0.0081
##	7	0.0813	nan	0.1000	0.0076
##	8	0.0756	nan	0.1000	0.0063

##	9	0.0697	nan	0.1000	0.0059		
##	10	0.0643	nan	0.1000	0.0049		
##	20	0.0364	nan	0.1000	0.0014		
##	40	0.0213	nan	0.1000	0.0002		
##	60	0.0168	nan	0.1000	0.0000		
##	80	0.0146	nan	0.1000	-0.0000		
##	100	0.0133	nan	0.1000	-0.0000		
##	120	0.0124	nan	0.1000	-0.0000		
##	140	0.0121	nan	0.1000	-0.0001		
##	150	0.0114	nan	0.1000	-0.0000		
##	100	0.0111	nan	0.1000	0.0000		
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve		
##	1	0.1417	nan	0.1000	0.0191		
##	2	0.1253	nan	0.1000	0.0131		
##	3	0.1101	nan	0.1000	0.0152		
##	4	0.0984	nan	0.1000	0.0102		
##	5	0.0888	nan	0.1000	0.0095		
##	6	0.0800	nan	0.1000	0.0033		
##	7	0.0727	nan	0.1000	0.0030		
##	8	0.0659	nan	0.1000	0.0063		
##	9	0.0603	nan	0.1000	0.0045		
##	10	0.0556	nan	0.1000	0.0045		
##	20	0.0298		0.1000	0.0043		
##	40	0.0298	nan	0.1000	0.0012		
##	60	0.0172	nan	0.1000	0.0001		
##	80	0.0139	nan nan	0.1000	-0.0001		
##	100	0.0124		0.1000	-0.0001		
##	120	0.0113	nan nan	0.1000	-0.0001		
##	140	0.0099		0.1000	-0.0001		
##	150	0.0099	nan	0.1000	-0.0000		
##	130	0.0090	nan	0.1000	0.0000		
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improvo		
##	1	0.1413		0.1000	Improve 0.0222		
##	2	0.1244	nan	0.1000	0.0222		
##	3	0.1244	nan	0.1000	0.0102		
##	4	0.1093	nan nan	0.1000	0.0140		
##	5	0.0873	nan	0.1000	0.00113		
##	6	0.0787		0.1000	0.0031		
##	7	0.0713	nan nan	0.1000	0.0070		
##	8	0.0650	nan	0.1000	0.0078		
##	9	0.0595	nan	0.1000	0.0055		
##	10	0.0549	nan	0.1000	0.0033		
##	20	0.0293	nan	0.1000	0.0043		
##	40	0.0171	nan	0.1000	0.0001		
##	60	0.0171	nan	0.1000	-0.0000		
##	80	0.0133	nan	0.1000	-0.0000		
##	100	0.0118	nan	0.1000	-0.0001		
##	120	0.0108	nan	0.1000	-0.0001		
##	140	0.0094	nan	0.1000	-0.0001		
##	150	0.0094	nan	0.1000	-0.0000		
model.partial # 0.1320744 # 0.1305035 # 1266631 # 1285614							

Stochastic Gradient Boosting

##

```
## 1024 samples
    80 predictor
##
##
## No pre-processing
## Resampling: Cross-Validated (10 fold, repeated 1 times)
## Summary of sample sizes: 922, 923, 921, 920, 920, 922, ...
## Resampling results across tuning parameters:
##
##
    interaction.depth n.trees
                               RMSE
                                           Rsquared
                                                     MAE
##
    1
                        50
                                0.1682590 0.8444157
                                                     0.11670376
##
    1
                       100
                                0.1485041 0.8692648 0.10203270
##
                       150
                                0.1417860 0.8797562
                                                     0.09726639
    1
##
    2
                        50
                                2
                                ##
                       100
##
    2
                       150
                                0.1352014 0.8898472
                                                     0.09223647
##
    3
                        50
                                0.1427230 0.8794867
                                                     0.09913112
##
    3
                       100
                                0.1352764 0.8909551
                                                     0.09232436
##
    3
                       150
                                0.1340584 0.8929384 0.09098677
##
## Tuning parameter 'shrinkage' was held constant at a value of 0.1
##
## Tuning parameter 'n.minobsinnode' was held constant at a value of 10
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were n.trees = 150,
## interaction.depth = 3, shrinkage = 0.1 and n.minobsinnode = 10.
  • Validación del modelo
predictAndEvaluate <- function(model, validation.set) {</pre>
   validation.prediction <- stats::predict(model, dplyr::select(validation.set,</pre>
       -SalePrice))
   print(ggplot2::qplot(x = validation.prediction, y = validation.set$SalePrice,
       geom = c("point", "smooth"), method = "lm", xlab = "Predicted",
       ylab = "Real"))
   rmse(validation.set$SalePrice, validation.prediction)
}
predictAndEvaluate(model.partial, train.processed.partition.validation) # 0.1299482 # 0.1483049 # 0.14
```


[1] 0.1279009

##

##

1

2

Trying to improve model ...

0.1539

0.1428

```
ensembleTrain <- function(train.set) {</pre>
    set.seed(SEED)
    trControl <- trainControl(method = "cv", number = 7, savePredictions = "final",</pre>
        index = createResample(train.set$0verallQual, 7), allowParallel = TRUE)
    modelList <- caretEnsemble::caretList(SalePrice ~ ., data = train.set,</pre>
        trControl = trControl, metric = "RMSE", tuneList = list(gbm = caretModelSpec(method = "gbm",
            tuneGrid = expand.grid(n.trees = 700, interaction.depth = 5,
                shrinkage = 0.05, n.minobsinnode = 10)), xgbTree = caretModelSpec(method = "xgbTree",
            tuneGrid = expand.grid(nrounds = 2500, max_depth = 6,
                min_child_weight = 1.41, eta = 0.01, gamma = 0.0468,
                subsample = 0.769, colsample_bytree = 0.283))))
    greedy ensemble <- caretEnsemble(modelList, metric = "RMSE",</pre>
        trControl = trainControl(number = 25))
    return(greedy_ensemble)
}
## Iter
          TrainDeviance
                          ValidDeviance
                                           StepSize
                                                       Improve
```

nan

nan

0.0500

0.0500

0.0122

0.0104

##	3	0.1332	nan	0.0500	0.0090
##	4	0.1245	nan	0.0500	0.0084
##	5	0.1160	nan	0.0500	0.0073
##	6	0.1082	nan	0.0500	0.0072
##	7	0.1015	nan	0.0500	0.0070
##	8	0.0948	nan	0.0500	0.0064
##	9	0.0888	nan	0.0500	0.0056
##	10	0.0833	nan	0.0500	0.0054
##	20	0.0479	nan	0.0500	0.0022
##	40	0.0226	nan	0.0500	0.0006
##	60	0.0150	nan	0.0500	0.0002
##	80	0.0117	nan	0.0500	0.0000
##	100	0.0100	nan	0.0500	0.0001
##	120	0.0087	nan	0.0500	-0.0000
##	140	0.0077	nan	0.0500	0.0000
##	160	0.0070	nan	0.0500	-0.0000
##	180	0.0065	nan	0.0500	-0.0000
##	200	0.0059	nan	0.0500	-0.0000
##	220	0.0055	nan	0.0500	-0.0000
##	240	0.0052	nan	0.0500	-0.0000
##	260	0.0048	nan	0.0500	-0.0000
##	280	0.0045	nan	0.0500	-0.0000
##	300	0.0042	nan	0.0500	-0.0000
##	320	0.0040	nan	0.0500	-0.0000
##	340	0.0037	nan	0.0500	-0.0000
##	360	0.0035	nan	0.0500	-0.0000
##	380	0.0033	nan	0.0500	-0.0000
##	400	0.0032	nan	0.0500	-0.0000
##	420	0.0030	nan	0.0500	-0.0000
##	440	0.0028	nan	0.0500	-0.0000
##	460	0.0027	nan	0.0500	-0.0000
##	480	0.0025	nan	0.0500	-0.0000
##	500	0.0024	nan	0.0500	-0.0000
##	520	0.0023	nan	0.0500	-0.0000
##	540	0.0022	nan	0.0500	-0.0000
##	560	0.0021	nan	0.0500	-0.0000
##	580	0.0020	nan	0.0500	-0.0000
##	600	0.0019	nan	0.0500	-0.0000
##	620	0.0018	nan	0.0500	-0.0000
##	640	0.0017	nan	0.0500	-0.0000
##	660	0.0016	nan	0.0500	-0.0000
##	680	0.0016	nan	0.0500	-0.0000
##	700	0.0015	nan	0.0500	-0.0000
##					_
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.1423	nan	0.0500	0.0109
##	2	0.1320	nan	0.0500	0.0100
##	3	0.1229	nan	0.0500	0.0082
##	4	0.1142	nan	0.0500	0.0088
##	5	0.1068	nan	0.0500	0.0075
##	6	0.1001	nan	0.0500	0.0067
##	7	0.0936	nan	0.0500	0.0062
##	8	0.0877	nan	0.0500	0.0055
##	9	0.0824	nan	0.0500	0.0053

##	10	0.0776	nan	0.0500	0.0047
##	20	0.0458	nan	0.0500	0.0018
##	40	0.0221	nan	0.0500	0.0005
##	60	0.0147	nan	0.0500	0.0001
##	80	0.0114	nan	0.0500	0.0001
##	100	0.0096	nan	0.0500	0.0000
##	120	0.0084	nan	0.0500	0.0000
##	140	0.0074	nan	0.0500	-0.0000
##	160	0.0068	nan	0.0500	0.0000
##	180	0.0062	nan	0.0500	-0.0000
##	200	0.0058	nan	0.0500	-0.0000
##	220	0.0053	nan	0.0500	-0.0000
##	240	0.0049	nan	0.0500	-0.0000
##	260	0.0046	nan	0.0500	-0.0000
##	280	0.0043	nan	0.0500	-0.0000
##	300	0.0040	nan	0.0500	-0.0000
##	320	0.0037	nan	0.0500	-0.0000
##	340	0.0035	nan	0.0500	0.0000
##	360	0.0033	nan	0.0500	-0.0000
##	380	0.0031	nan	0.0500	0.0000
##	400	0.0029	nan	0.0500	-0.0000
##	420	0.0027	nan	0.0500	-0.0000
##	440	0.0025	nan	0.0500	-0.0000
##	460	0.0024	nan	0.0500	0.0000
##	480	0.0023	nan	0.0500	-0.0000
##	500	0.0022	nan	0.0500	-0.0000
##	520	0.0020	nan	0.0500	-0.0000
##	540	0.0019	nan	0.0500	-0.0000
##	560	0.0018	nan	0.0500	-0.0000
##	580	0.0017	nan	0.0500	-0.0000
##	600	0.0017	nan	0.0500	-0.0000
##	620	0.0016	nan	0.0500	-0.0000
##	640	0.0015	nan	0.0500	-0.0000
##	660	0.0014	nan	0.0500	-0.0000
##	680	0.0013	nan	0.0500	-0.0000
##	700	0.0013	nan	0.0500	-0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.1505	nan	0.0500	0.0128
##	2	0.1399	nan	0.0500	0.0100
##	3	0.1305	nan	0.0500	0.0087
##	4	0.1218	nan	0.0500	0.0092
##	5	0.1136	nan	0.0500	0.0078
##	6	0.1060	nan	0.0500	0.0075
##	7	0.0986	nan	0.0500	0.0070
##	8	0.0924	nan	0.0500	0.0059
##	9	0.0867	nan	0.0500	0.0059
##	10	0.0815	nan	0.0500	0.0053
##	20	0.0475	nan	0.0500	0.0024
##	40	0.0216	nan	0.0500	0.0006
##	60	0.0138	nan	0.0500	0.0002
##	80	0.0105	nan	0.0500	0.0000
##	100	0.0088	nan	0.0500	0.0000
##	120	0.0076	nan	0.0500	0.0000
	120	0.00.0	11411	5.0000	5.0000

```
##
      140
                   0.0067
                                                 0.0500
                                                            0.0000
                                        nan
##
      160
                   0.0060
                                                 0.0500
                                                           -0.0000
                                        nan
##
      180
                   0.0055
                                        nan
                                                 0.0500
                                                            0.0000
##
      200
                   0.0050
                                                 0.0500
                                                           -0.0000
                                        nan
##
      220
                   0.0046
                                        nan
                                                 0.0500
                                                           -0.0000
##
      240
                   0.0043
                                                 0.0500
                                                           -0.0000
                                        nan
##
                                                            0.0000
      260
                   0.0040
                                                 0.0500
                                        nan
##
      280
                   0.0037
                                        nan
                                                 0.0500
                                                            0.0000
##
      300
                   0.0034
                                                 0.0500
                                                           -0.0000
                                        nan
##
      320
                   0.0032
                                        nan
                                                 0.0500
                                                           -0.0000
##
      340
                   0.0030
                                                 0.0500
                                                           -0.0000
                                        nan
##
      360
                   0.0028
                                        nan
                                                 0.0500
                                                           -0.0000
##
      380
                   0.0026
                                                 0.0500
                                                           -0.0000
                                        nan
##
      400
                   0.0025
                                        nan
                                                 0.0500
                                                           -0.0000
##
      420
                   0.0023
                                                 0.0500
                                                           -0.0000
                                        nan
##
      440
                   0.0022
                                                 0.0500
                                                           -0.0000
                                        nan
##
      460
                   0.0021
                                                 0.0500
                                                           -0.0000
                                        nan
##
      480
                   0.0020
                                                 0.0500
                                                           -0.0000
                                        nan
      500
##
                   0.0019
                                                 0.0500
                                                           -0.0000
                                        nan
##
      520
                   0.0018
                                        nan
                                                 0.0500
                                                           -0.0000
##
      540
                   0.0017
                                                 0.0500
                                                           -0.0000
                                        nan
##
                   0.0016
                                                 0.0500
                                                           -0.0000
      560
                                        nan
##
      580
                   0.0015
                                                 0.0500
                                                           -0.0000
                                        nan
##
      600
                                                           -0.0000
                   0.0015
                                                 0.0500
                                        nan
##
      620
                   0.0014
                                        nan
                                                 0.0500
                                                           -0.0000
##
      640
                   0.0013
                                        nan
                                                 0.0500
                                                           -0.0000
##
      660
                                                 0.0500
                                                           -0.0000
                   0.0013
                                        nan
##
      680
                   0.0012
                                                 0.0500
                                                           -0.0000
                                        nan
##
      700
                   0.0012
                                                 0.0500
                                                           -0.0000
                                        nan
```

Warning in (function (x, y, offset = NULL, misc = NULL, distribution = ## "bernoulli", : variable 8: Utilities has no variation.

##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	${\tt Improve}$
##	1	0.1487	nan	0.0500	0.0108
##	2	0.1379	nan	0.0500	0.0105
##	3	0.1280	nan	0.0500	0.0097
##	4	0.1192	nan	0.0500	0.0081
##	5	0.1113	nan	0.0500	0.0080
##	6	0.1039	nan	0.0500	0.0071
##	7	0.0972	nan	0.0500	0.0061
##	8	0.0908	nan	0.0500	0.0060
##	9	0.0852	nan	0.0500	0.0054
##	10	0.0800	nan	0.0500	0.0049
##	20	0.0462	nan	0.0500	0.0020
##	40	0.0210	nan	0.0500	0.0004
##	60	0.0135	nan	0.0500	0.0002
##	80	0.0103	nan	0.0500	0.0001
##	100	0.0086	nan	0.0500	0.0000
##	120	0.0075	nan	0.0500	-0.0000
##	140	0.0067	nan	0.0500	-0.0000
##	160	0.0060	nan	0.0500	0.0000
##	180	0.0055	nan	0.0500	-0.0000
##	200	0.0050	nan	0.0500	-0.0000
##	220	0.0046	nan	0.0500	-0.0000

```
##
      240
                  0.0043
                                                0.0500
                                                         -0.0000
                                       nan
##
      260
                  0.0040
                                                0.0500
                                                         -0.0000
                                       nan
##
      280
                  0.0037
                                       nan
                                                0.0500
                                                         -0.0000
##
      300
                  0.0035
                                                0.0500
                                                         -0.0000
                                       nan
                                                         -0.0000
##
      320
                  0.0032
                                       nan
                                                0.0500
##
      340
                  0.0031
                                                0.0500
                                                         -0.0000
                                       nan
                  0.0028
##
      360
                                                0.0500
                                                         -0.0000
                                       nan
##
      380
                  0.0027
                                       nan
                                                0.0500
                                                         -0.0000
##
      400
                  0.0025
                                       nan
                                                0.0500
                                                          0.0000
##
      420
                  0.0023
                                       nan
                                                0.0500
                                                         -0.0000
##
      440
                  0.0022
                                                0.0500
                                                         -0.0000
                                       nan
##
      460
                                                         -0.0000
                  0.0021
                                       nan
                                                0.0500
##
      480
                  0.0020
                                                0.0500
                                                         -0.0000
                                       nan
##
      500
                                                0.0500
                  0.0019
                                       nan
                                                         -0.0000
##
      520
                  0.0018
                                                0.0500
                                                         -0.0000
                                       nan
##
      540
                  0.0017
                                                0.0500
                                                         -0.0000
                                       nan
##
      560
                  0.0016
                                                0.0500
                                                         -0.0000
                                       nan
##
      580
                  0.0015
                                                0.0500
                                                         -0.0000
                                       nan
##
      600
                                                0.0500
                                                         -0.0000
                  0.0014
                                       nan
##
      620
                  0.0013
                                       nan
                                                0.0500
                                                         -0.0000
##
      640
                  0.0013
                                       nan
                                                0.0500
                                                         -0.0000
##
      660
                  0.0012
                                                0.0500
                                                         -0.0000
                                       nan
##
      680
                                                         -0.0000
                  0.0012
                                                0.0500
                                       nan
##
      700
                  0.0011
                                               0.0500
                                                         -0.0000
                                       nan
```

Warning in (function (x, y, offset = NULL, misc = NULL, distribution =
"bernoulli", : variable 8: Utilities has no variation.

##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.1507	nan	0.0500	0.0122
##	2	0.1406	nan	0.0500	0.0101
##	3	0.1311	nan	0.0500	0.0097
##	4	0.1227	nan	0.0500	0.0086
##	5	0.1136	nan	0.0500	0.0076
##	6	0.1062	nan	0.0500	0.0073
##	7	0.0992	nan	0.0500	0.0065
##	8	0.0926	nan	0.0500	0.0062
##	9	0.0868	nan	0.0500	0.0055
##	10	0.0811	nan	0.0500	0.0057
##	20	0.0453	nan	0.0500	0.0019
##	40	0.0207	nan	0.0500	0.0005
##	60	0.0133	nan	0.0500	0.0002
##	80	0.0102	nan	0.0500	0.0000
##	100	0.0084	nan	0.0500	0.0001
##	120	0.0074	nan	0.0500	-0.0000
##	140	0.0065	nan	0.0500	-0.0000
##	160	0.0060	nan	0.0500	-0.0000
##	180	0.0055	nan	0.0500	-0.0000
##	200	0.0051	nan	0.0500	-0.0000
##	220	0.0047	nan	0.0500	-0.0000
##	240	0.0044	nan	0.0500	0.0000
##	260	0.0042	nan	0.0500	-0.0000
##	280	0.0039	nan	0.0500	-0.0000
##	300	0.0037	nan	0.0500	-0.0000
##	320	0.0035	nan	0.0500	-0.0000

##	340	0.0033	nan	0.0500	-0.0000
##	360	0.0031	nan	0.0500	-0.0000
##	380	0.0029	nan	0.0500	-0.0000
##	400	0.0028	nan	0.0500	-0.0000
##	420	0.0026	nan	0.0500	-0.0000
##	440	0.0025	nan	0.0500	-0.0000
##	460	0.0023	nan	0.0500	-0.0000
##	480	0.0022	nan	0.0500	-0.0000
##	500	0.0021	nan	0.0500	-0.0000
##	520	0.0020	nan	0.0500	-0.0000
##	540	0.0019	nan	0.0500	-0.0000
##	560	0.0018	nan	0.0500	-0.0000
##	580	0.0018	nan	0.0500	-0.0000
##	600	0.0017	nan	0.0500	-0.0000
##	620	0.0016	nan	0.0500	-0.0000
##	640	0.0015	nan	0.0500	-0.0000
##	660	0.0015	nan	0.0500	-0.0000
##	680	0.0014	nan	0.0500	-0.0000
##	700	0.0013	nan	0.0500	-0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	0.1501	nan	0.0500	0.0109
##	2	0.1396	nan	0.0500	0.0113
##	3	0.1299	nan	0.0500	0.0095
##	4	0.1214	nan	0.0500	0.0080
##	5	0.1132	nan	0.0500	0.0080
##	6	0.1057	nan	0.0500	0.0070
##	7	0.0987	nan	0.0500	0.0071
##	8	0.0922	nan	0.0500	0.0058
##	9	0.0862	nan	0.0500	0.0054
##	10	0.0812	nan	0.0500	0.0052
##	20	0.0471	nan	0.0500	0.0021
##	40	0.0226	nan	0.0500	0.0004
##	60	0.0150	nan	0.0500	0.0001
##	80	0.0117	nan	0.0500	0.0000
##	100	0.0098	nan	0.0500	0.0000
##	120	0.0087	nan	0.0500	0.0000
##	140	0.0078	nan	0.0500	-0.0000
##	160	0.0070	nan	0.0500	0.0000
##	180	0.0065	nan	0.0500	-0.0000
##	200	0.0060	nan	0.0500	-0.0000
##	220	0.0056	nan	0.0500	-0.0000
##	240	0.0052	nan	0.0500	-0.0000
##	260	0.0048	nan	0.0500	-0.0000
##	280	0.0045	nan	0.0500	-0.0000
##	300	0.0042	nan	0.0500	-0.0000
##	320	0.0040	nan	0.0500	-0.0000
##	340	0.0038	nan	0.0500	-0.0000
##	360	0.0036	nan	0.0500	-0.0000
##	380	0.0034	nan	0.0500	-0.0000
##	400	0.0032	nan	0.0500	-0.0000
##	420	0.0030	nan	0.0500	-0.0000
##	440	0.0028	nan	0.0500	-0.0000
##	460	0.0027	nan	0.0500	-0.0000

```
##
      480
                  0.0025
                                               0.0500
                                                         -0.0000
                                      nan
##
      500
                  0.0024
                                               0.0500
                                                         0.0000
                                      nan
      520
                  0.0023
                                                         -0.0000
##
                                      nan
                                               0.0500
##
      540
                  0.0022
                                               0.0500
                                                         -0.0000
                                      nan
##
      560
                  0.0021
                                      nan
                                               0.0500
                                                         -0.0000
##
      580
                  0.0020
                                               0.0500
                                                         -0.0000
                                      nan
##
      600
                  0.0019
                                               0.0500
                                                         -0.0000
                                      nan
##
      620
                                                         -0.0000
                  0.0018
                                      nan
                                               0.0500
##
      640
                  0.0017
                                      nan
                                               0.0500
                                                         -0.0000
##
      660
                                                         -0.0000
                  0.0016
                                      {\tt nan}
                                               0.0500
##
      680
                  0.0016
                                      nan
                                               0.0500
                                                         -0.0000
      700
                                                         -0.0000
##
                  0.0015
                                               0.0500
                                      nan
```

Warning in (function (x, y, offset = NULL, misc = NULL, distribution = ## "bernoulli", : variable 8: Utilities has no variation.

##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	0.1516	nan	0.0500	0.0110
##	2	0.1411	nan	0.0500	0.0103
##	3	0.1316	nan	0.0500	0.0087
##	4	0.1231	nan	0.0500	0.0087
##	5	0.1154	nan	0.0500	0.0078
##	6	0.1078	nan	0.0500	0.0074
##	7	0.1009	nan	0.0500	0.0064
##	8	0.0944	nan	0.0500	0.0061
##	9	0.0886	nan	0.0500	0.0054
##	10	0.0833	nan	0.0500	0.0052
##	20	0.0483	nan	0.0500	0.0023
##	40	0.0228	nan	0.0500	0.0005
##	60	0.0148	nan	0.0500	0.0001
##	80	0.0115	nan	0.0500	0.0000
##	100	0.0095	nan	0.0500	0.0000
##	120	0.0083	nan	0.0500	0.0000
##	140	0.0074	nan	0.0500	0.0000
##	160	0.0067	nan	0.0500	0.0000
##	180	0.0061	nan	0.0500	-0.0000
##	200	0.0056	nan	0.0500	-0.0000
##	220	0.0052	nan	0.0500	-0.0000
##	240	0.0048	nan	0.0500	-0.0000
##	260	0.0045	nan	0.0500	-0.0000
##	280	0.0042	nan	0.0500	0.0000
##	300	0.0039	nan	0.0500	-0.0000
##	320	0.0037	nan	0.0500	-0.0000
##	340	0.0035	nan	0.0500	0.0000
##	360	0.0033	nan	0.0500	-0.0000
##	380	0.0031	nan	0.0500	-0.0000
##	400	0.0029	nan	0.0500	-0.0000
##	420	0.0028	nan	0.0500	-0.0000
##	440	0.0026	nan	0.0500	-0.0000
##	460	0.0025	nan	0.0500	-0.0000
##	480	0.0023	nan	0.0500	-0.0000
##	500	0.0022	nan	0.0500	-0.0000
##	520	0.0021	nan	0.0500	-0.0000
##	540	0.0020	nan	0.0500	-0.0000
##	560	0.0019	nan	0.0500	-0.0000

##	580	0.0018	nan	0.0500	-0.0000
##	600	0.0017	nan	0.0500	-0.0000
##	620	0.0016	nan	0.0500	-0.0000
##	640	0.0016	nan	0.0500	-0.0000
##	660	0.0015	nan	0.0500	-0.0000
##	680	0.0014	nan	0.0500	-0.0000
##	700	0.0013	nan	0.0500	-0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	0.1506	nan	0.0500	0.0110
##	2	0.1407	nan	0.0500	0.0097
##	3	0.1308	nan	0.0500	0.0092
##	4	0.1222	nan	0.0500	0.0085
##	5	0.1144	nan	0.0500	0.0075
##	6	0.1071	nan	0.0500	0.0066
##	7	0.1002	nan	0.0500	0.0064
##	8	0.0939	nan	0.0500	0.0062
##	9	0.0885	nan	0.0500	0.0049
##	10	0.0831	nan	0.0500	0.0047
##	20	0.0482	nan	0.0500	0.0021
##	40	0.0239	nan	0.0500	0.0005
##	60	0.0168	nan	0.0500	0.0002
##	80	0.0136	nan	0.0500	0.0000
##	100	0.0119	nan	0.0500	-0.0000
##	120	0.0106	nan	0.0500	0.0000
##	140	0.0098	nan	0.0500	-0.0000
##	160	0.0091	nan	0.0500	-0.0000
##	180	0.0086	nan	0.0500	-0.0000
##	200	0.0081	nan	0.0500	-0.0000
##	220	0.0077	nan	0.0500	-0.0000
##	240	0.0073	nan	0.0500	-0.0000
##	260	0.0070	nan	0.0500	-0.0000
##	280	0.0066	nan	0.0500	-0.0000
##	300	0.0064	nan	0.0500	-0.0000
##	320	0.0061	nan	0.0500	-0.0000
##	340	0.0058	nan	0.0500	-0.0000
##	360	0.0056	nan	0.0500	-0.0000
##	380	0.0054	nan	0.0500	-0.0000
##	400	0.0052	nan	0.0500	-0.0000
##	420	0.0050	nan	0.0500	-0.0000
##	440	0.0048	nan	0.0500	-0.0000
##	460	0.0046	nan	0.0500	-0.0000
##	480	0.0044	nan	0.0500	-0.0000
##	500	0.0043	nan	0.0500	-0.0000
##	520	0.0041	nan	0.0500	-0.0000
##	540	0.0039	nan	0.0500	-0.0000
##	560	0.0038	nan	0.0500	-0.0000
##	580	0.0037	nan	0.0500	-0.0000
##	600	0.0035	nan	0.0500	-0.0000
##	620	0.0034	nan	0.0500	-0.0000
##	640	0.0033	nan	0.0500	-0.0000
##	660	0.0032	nan	0.0500	-0.0000
##	680	0.0031	nan	0.0500	-0.0000
##	700	0.0029	nan	0.0500	-0.0000

model.ensemble # 0.130408 # 0.1307172

```
## A glm ensemble of 2 base models: gbm, xgbTree
##
## Ensemble results:
## Generalized Linear Model
##
## 2641 samples
      2 predictor
##
##
## No pre-processing
## Resampling: Bootstrapped (25 reps)
## Summary of sample sizes: 2641, 2641, 2641, 2641, 2641, 2641, ...
## Resampling results:
##
                Rsquared
##
     RMSE
                           MAE
##
     0.1267544 0.8998718 0.08639417
predictAndEvaluate(model.ensemble, train.processed.partition.validation) # 0.1217003 # 0.1296369
```

Warning: Ignoring unknown parameters: method

[1] 0.1181355

Full train

##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.1541	nan	0.0500	0.0128
##	2	0.1435	nan	0.0500	0.0105
##	3	0.1337	nan	0.0500	0.0096
##	4	0.1248	nan	0.0500	0.0083
##	5	0.1167	nan	0.0500	0.0080
##	6	0.1093	nan	0.0500	0.0067
##	7	0.1023	nan	0.0500	0.0068
##	8	0.0958	nan	0.0500	0.0061
##	9	0.0899	nan	0.0500	0.0059
##	10	0.0843	nan	0.0500	0.0055
##	20	0.0477	nan	0.0500	0.0024
##	40	0.0225	nan	0.0500	0.0006
##	60	0.0149	nan	0.0500	0.0002
##	80	0.0117	nan	0.0500	0.0001
##	100	0.0099	nan	0.0500	0.0000
##	120	0.0087	nan	0.0500	-0.0000
##	140	0.0080	nan	0.0500	-0.0000
##	160	0.0074	nan	0.0500	-0.0000
##	180	0.0069	nan	0.0500	-0.0000
##	200	0.0065	nan	0.0500	-0.0000
##	220	0.0061	nan	0.0500	0.0000
##	240	0.0056	nan	0.0500	0.0000
##	260	0.0053	nan	0.0500	-0.0000
##	280	0.0050	nan	0.0500	-0.0000
##	300	0.0047	nan	0.0500	-0.0000
##	320	0.0045	nan	0.0500	-0.0000
##	340	0.0043	nan	0.0500	-0.0000
##	360	0.0041	nan	0.0500	-0.0000
##	380	0.0039	nan	0.0500	-0.0000
##	400	0.0037	nan	0.0500	-0.0000
##	420	0.0036	nan	0.0500	-0.0000
##	440	0.0034	nan	0.0500	-0.0000
##	460	0.0033	nan	0.0500	-0.0000
##	480	0.0031	nan	0.0500	-0.0000
##	500	0.0030	nan	0.0500	-0.0000
##	520	0.0029	nan	0.0500	-0.0000
##	540	0.0028	nan	0.0500	-0.0000
##	560	0.0026	nan	0.0500	-0.0000
##	580	0.0025	nan	0.0500	-0.0000
##	600	0.0024	nan	0.0500	-0.0000
##	620	0.0023	nan	0.0500	-0.0000
##	640	0.0022	nan	0.0500	-0.0000
##	660	0.0022	nan	0.0500	-0.0000
##	680	0.0021	nan	0.0500	0.0000
##	700	0.0020	nan	0.0500	-0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.1487	nan	0.0500	0.0113
##	2	0.1382	nan	0.0500	0.0102
##	3	0.1287	nan	0.0500	0.0100
##	4	0.1201	nan	0.0500	0.0081

##	5	0.1124	nan	0.0500	0.0077
##	6	0.1052	nan	0.0500	0.0069
##	7	0.0984	nan	0.0500	0.0066
##	8	0.0924	nan	0.0500	0.0055
##	9	0.0868	nan	0.0500	0.0052
##	10	0.0815	nan	0.0500	0.0047
##	20	0.0478	nan	0.0500	0.0022
##	40	0.0229	nan	0.0500	0.0005
##	60	0.0151	nan	0.0500	0.0002
##	80	0.0119	nan	0.0500	0.0001
##	100	0.0101	nan	0.0500	0.0000
##	120	0.0091	nan	0.0500	-0.0000
##	140	0.0083	nan	0.0500	0.0000
##	160	0.0077	nan	0.0500	0.0000
##	180	0.0071	nan	0.0500	-0.0000
##	200	0.0066	nan	0.0500	-0.0000
##	220	0.0062	nan	0.0500	-0.0000
##	240	0.0058	nan	0.0500	-0.0000
##	260	0.0055	nan	0.0500	-0.0000
##	280	0.0052	nan	0.0500	-0.0000
##	300	0.0049	nan	0.0500	-0.0000
##	320	0.0047	nan	0.0500	-0.0000
##	340	0.0044	nan	0.0500	-0.0000
##	360	0.0042	nan	0.0500	-0.0000
##	380	0.0040	nan	0.0500	-0.0000
##	400	0.0038	nan	0.0500	-0.0000
##	420	0.0036	nan	0.0500	0.0000
##	440	0.0034	nan	0.0500	-0.0000
##	460	0.0033	nan	0.0500	-0.0000
##	480 500	0.0032 0.0030	nan	0.0500 0.0500	-0.0000 -0.0000
##	520	0.0030	nan nan	0.0500	-0.0000
##	540	0.0028	nan	0.0500	-0.0000
##	560	0.0027	nan	0.0500	-0.0000
##	580	0.0026	nan	0.0500	-0.0000
##	600	0.0025	nan	0.0500	-0.0000
##	620	0.0024	nan	0.0500	-0.0000
##	640	0.0023	nan	0.0500	-0.0000
##	660	0.0022	nan	0.0500	-0.0000
##	680	0.0021	nan	0.0500	-0.0000
##	700	0.0020	nan	0.0500	-0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.1574	nan	0.0500	0.0121
##	2	0.1463	nan	0.0500	0.0111
##	3	0.1359	nan	0.0500	0.0095
##	4	0.1268	nan	0.0500	0.0090
##	5	0.1184	nan	0.0500	0.0080
##	6	0.1102	nan	0.0500	0.0069
##	7	0.1029	nan	0.0500	0.0074
##	8	0.0966	nan	0.0500	0.0059
##	9	0.0903	nan	0.0500	0.0059
##	10	0.0852	nan	0.0500	0.0049
##	20	0.0492	nan	0.0500	0.0023

##	40	0.0241	nan	0.0500	0.0005
##	60	0.0161	nan	0.0500	0.0002
##	80	0.0128	nan	0.0500	0.0001
##	100	0.0109	nan	0.0500	-0.0000
##	120	0.0097	nan	0.0500	0.0000
##	140	0.0089	nan	0.0500	0.0000
##	160	0.0081	nan	0.0500	0.0000
##	180	0.0075	nan	0.0500	0.0000
##	200	0.0070	nan	0.0500	-0.0000
##	220	0.0066	nan	0.0500	0.0000
##	240	0.0062	nan	0.0500	-0.0000
##	260	0.0059	nan	0.0500	-0.0000
##	280	0.0056	nan	0.0500	-0.0000
##	300	0.0053	nan	0.0500	-0.0000
##	320	0.0050	nan	0.0500	-0.0000
##	340	0.0047	nan	0.0500	-0.0000
##	360	0.0045	nan	0.0500	-0.0000
##	380	0.0043	nan	0.0500	-0.0000
##	400	0.0041	nan	0.0500	-0.0000
##	420	0.0039	nan	0.0500	-0.0000
##	440	0.0038	nan	0.0500	-0.0000
##	460	0.0036	nan	0.0500	-0.0000
##	480	0.0035	nan	0.0500	-0.0000
##	500	0.0033	nan	0.0500	-0.0000
##	520	0.0032	nan	0.0500	-0.0000
##	540	0.0031	nan	0.0500	-0.0000
##	560	0.0030	nan	0.0500	-0.0000
##	580	0.0029	nan	0.0500	-0.0000
##	600	0.0027	nan	0.0500	-0.0000
##	620	0.0026	nan	0.0500	-0.0000
##	640	0.0025	nan	0.0500	-0.0000
##	660	0.0025	nan	0.0500	-0.0000
##	680	0.0024	nan	0.0500	-0.0000
##	700	0.0023	nan	0.0500	-0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	0.1627	nan	0.0500	0.0119
##	2	0.1514	nan	0.0500	0.0112
##	3	0.1412	nan	0.0500	0.0101
##	4	0.1319	nan	0.0500	0.0092
##	5	0.1234	nan	0.0500	0.0081
##	6	0.1157	nan	0.0500	0.0071
##	7	0.1083	nan	0.0500	0.0071
##	8	0.1015	nan	0.0500	0.0069
##	9	0.0954	nan	0.0500	0.0060
##	10	0.0897	nan	0.0500	0.0055
##	20	0.0517	nan	0.0500	0.0023
##	40	0.0247	nan	0.0500	0.0007
##	60	0.0163	nan	0.0500	0.0002
##	80	0.0126	nan	0.0500	0.0001
##	100	0.0106	nan	0.0500	-0.0000
##	100	0 0002	nan	0 0500	0 0000
	120	0.0093	nan	0.0500	0.0000
## ##	140 160	0.0093 0.0084 0.0076	nan	0.0500 0.0500 0.0500	0.0000

##	180	0.0070	nan	0.0500	-0.0000
##	200	0.0064	nan	0.0500	-0.0000
##	220	0.0060	nan	0.0500	-0.0000
##	240	0.0056	nan	0.0500	-0.0000
##	260	0.0053	nan	0.0500	-0.0000
##	280	0.0050	nan	0.0500	-0.0000
##	300	0.0047	nan	0.0500	-0.0000
##	320	0.0045	nan	0.0500	-0.0000
##	340	0.0042	nan	0.0500	-0.0000
##	360	0.0040	nan	0.0500	0.0000
##	380	0.0038	nan	0.0500	-0.0000
##	400	0.0037	nan	0.0500	0.0000
##	420	0.0035	nan	0.0500	-0.0000
##	440	0.0033	nan	0.0500	-0.0000
##	460	0.0032	nan	0.0500	-0.0000
##	480	0.0031	nan	0.0500	-0.0000
##	500	0.0029	nan	0.0500	-0.0000
##	520	0.0028	nan	0.0500	-0.0000
##	540	0.0027	nan	0.0500	-0.0000
##	560	0.0026	nan	0.0500	-0.0000
##	580	0.0025	nan	0.0500	-0.0000
##	600	0.0024	nan	0.0500	-0.0000
##	620	0.0023	nan	0.0500	-0.0000
##	640	0.0022	nan	0.0500	-0.0000
##	660	0.0021	nan	0.0500	-0.0000
##	680	0.0021	nan	0.0500	-0.0000
##	700	0.0020	nan	0.0500	-0.0000

Warning in (function (x, y, offset = NULL, misc = NULL, distribution = ## "bernoulli", : variable 8: Utilities has no variation.

##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	0.1549	nan	0.0500	0.0106
##	2	0.1438	nan	0.0500	0.0103
##	3	0.1341	nan	0.0500	0.0094
##	4	0.1251	nan	0.0500	0.0091
##	5	0.1169	nan	0.0500	0.0081
##	6	0.1098	nan	0.0500	0.0073
##	7	0.1032	nan	0.0500	0.0067
##	8	0.0967	nan	0.0500	0.0066
##	9	0.0907	nan	0.0500	0.0060
##	10	0.0853	nan	0.0500	0.0053
##	20	0.0495	nan	0.0500	0.0023
##	40	0.0243	nan	0.0500	0.0006
##	60	0.0165	nan	0.0500	0.0002
##	80	0.0130	nan	0.0500	0.0001
##	100	0.0111	nan	0.0500	0.0000
##	120	0.0098	nan	0.0500	0.0000
##	140	0.0088	nan	0.0500	0.0000
##	160	0.0080	nan	0.0500	0.0000
##	180	0.0074	nan	0.0500	-0.0000
##	200	0.0068	nan	0.0500	-0.0000
##	220	0.0064	nan	0.0500	-0.0000
##	240	0.0060	nan	0.0500	-0.0000
##	260	0.0056	nan	0.0500	-0.0000

##	280	0.0053	nan	0.0500	-0.0000
##	300	0.0050	nan	0.0500	-0.0000
##	320	0.0047	nan	0.0500	-0.0000
##	340	0.0044	nan	0.0500	-0.0000
##	360	0.0042	nan	0.0500	-0.0000
##	380	0.0040	nan	0.0500	-0.0000
##	400	0.0038	nan	0.0500	0.0000
##	420	0.0037	nan	0.0500	-0.0000
##	440	0.0035	nan	0.0500	-0.0000
##	460	0.0033	nan	0.0500	-0.0000
##	480	0.0032	nan	0.0500	-0.0000
##	500	0.0031	nan	0.0500	-0.0000
##	520	0.0030	nan	0.0500	-0.0000
##	540	0.0029	nan	0.0500	-0.0000
##	560	0.0028	nan	0.0500	0.0000
##	580	0.0027	nan	0.0500	-0.0000
##	600	0.0026	nan	0.0500	-0.0000
##	620	0.0025	nan	0.0500	-0.0000
##	640	0.0024	nan	0.0500	-0.0000
##	660	0.0023	nan	0.0500	-0.0000
##	680	0.0022	nan	0.0500	-0.0000
##	700	0.0021	nan	0.0500	-0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.1427	nan	0.0500	0.0109
##	2	0.1325	nan	0.0500	0.0098
##	3	0.1233	202	0 0500	0 0004
	U	0.1233	nan	0.0500	0.0094
##	4	0.1253	nan	0.0500	0.0094
## ##					
	4	0.1152	nan	0.0500	0.0077
##	4 5	0.1152 0.1075	nan nan	0.0500 0.0500	0.0077 0.0073
## ##	4 5 6	0.1152 0.1075 0.1005	nan nan nan	0.0500 0.0500 0.0500	0.0077 0.0073 0.0074
## ## ##	4 5 6 7	0.1152 0.1075 0.1005 0.0942	nan nan nan nan	0.0500 0.0500 0.0500 0.0500	0.0077 0.0073 0.0074 0.0062
## ## ## ##	4 5 6 7 8	0.1152 0.1075 0.1005 0.0942 0.0882	nan nan nan nan	0.0500 0.0500 0.0500 0.0500 0.0500	0.0077 0.0073 0.0074 0.0062 0.0051
## ## ## ##	4 5 6 7 8 9	0.1152 0.1075 0.1005 0.0942 0.0882 0.0825	nan nan nan nan nan	0.0500 0.0500 0.0500 0.0500 0.0500	0.0077 0.0073 0.0074 0.0062 0.0051 0.0053
## ## ## ## ##	4 5 6 7 8 9	0.1152 0.1075 0.1005 0.0942 0.0882 0.0825 0.0774	nan nan nan nan nan nan	0.0500 0.0500 0.0500 0.0500 0.0500 0.0500	0.0077 0.0073 0.0074 0.0062 0.0051 0.0053 0.0049
## ## ## ## ##	4 5 6 7 8 9 10 20	0.1152 0.1075 0.1005 0.0942 0.0882 0.0825 0.0774 0.0448	nan nan nan nan nan nan	0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500	0.0077 0.0073 0.0074 0.0062 0.0051 0.0053 0.0049 0.0021
## ## ## ## ## ##	4 5 6 7 8 9 10 20 40	0.1152 0.1075 0.1005 0.0942 0.0882 0.0825 0.0774 0.0448	nan nan nan nan nan nan nan nan	0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500	0.0077 0.0073 0.0074 0.0062 0.0051 0.0053 0.0049 0.0021 0.0005
## ## ## ## ## ##	4 5 6 7 8 9 10 20 40 60	0.1152 0.1075 0.1005 0.0942 0.0882 0.0825 0.0774 0.0448 0.0210 0.0137	nan nan nan nan nan nan nan nan nan	0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500	0.0077 0.0073 0.0074 0.0062 0.0051 0.0053 0.0049 0.0021 0.0005 0.0002
## ## ## ## ## ##	4 5 6 7 8 9 10 20 40 60 80	0.1152 0.1075 0.1005 0.0942 0.0882 0.0825 0.0774 0.0448 0.0210 0.0137	nan	0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500	0.0077 0.0073 0.0074 0.0062 0.0051 0.0053 0.0049 0.0021 0.0005 0.0002 0.0001
## ## ## ## ## ## ##	4 5 6 7 8 9 10 20 40 60 80 100	0.1152 0.1075 0.1005 0.0942 0.0882 0.0825 0.0774 0.0448 0.0210 0.0137 0.0106 0.0090	nan	0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500	0.0077 0.0073 0.0074 0.0062 0.0051 0.0053 0.0049 0.0021 0.0005 0.0002 0.0001
## ## ## ## ## ## ##	4 5 6 7 8 9 10 20 40 60 80 100	0.1152 0.1075 0.1005 0.0942 0.0882 0.0825 0.0774 0.0448 0.0210 0.0137 0.0106 0.0090 0.0079	nan	0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500	0.0077 0.0073 0.0074 0.0062 0.0051 0.0053 0.0049 0.0021 0.0005 0.0002 0.0001 0.0000
## ## ## ## ## ## ##	4 5 6 7 8 9 10 20 40 60 80 100 120 140	0.1152 0.1075 0.1005 0.0942 0.0882 0.0825 0.0774 0.0448 0.0210 0.0137 0.0106 0.0090 0.0079	nan	0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500	0.0077 0.0073 0.0074 0.0062 0.0051 0.0053 0.0049 0.0021 0.0005 0.0002 0.0001 0.0000 0.0000
## ## ## ## ## ## ## ##	4 5 6 7 8 9 10 20 40 60 80 100 120 140 160	0.1152 0.1075 0.1005 0.0942 0.0882 0.0825 0.0774 0.0448 0.0210 0.0137 0.0106 0.0090 0.0079 0.0072	nan	0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500	0.0077 0.0073 0.0074 0.0062 0.0051 0.0053 0.0049 0.0021 0.0005 0.0002 0.0001 0.0000 0.0000 0.0000
## ## ## ## ## ## ## ## ## ## ## ## ##	4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180	0.1152 0.1075 0.1005 0.0942 0.0882 0.0825 0.0774 0.0448 0.0210 0.0137 0.0106 0.0090 0.0079 0.0072 0.0066 0.0061	nan	0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500	0.0077 0.0073 0.0074 0.0062 0.0051 0.0053 0.0049 0.0021 0.0005 0.0002 0.0001 0.0000 0.0000 0.0000
######################################	4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180 200	0.1152 0.1075 0.1005 0.0942 0.0882 0.0825 0.0774 0.0448 0.0210 0.0137 0.0106 0.0090 0.0079 0.0072 0.0066 0.0061 0.0057	nan	0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500	0.0077 0.0073 0.0074 0.0062 0.0051 0.0053 0.0049 0.0021 0.0005 0.0002 0.0001 0.0000 0.0000 0.0000 -0.0000 -0.0000
## ## ## ## ## ## ## ## ## ##	4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180 200 220	0.1152 0.1075 0.1005 0.0942 0.0882 0.0825 0.0774 0.0448 0.0210 0.0137 0.0106 0.0090 0.0079 0.0072 0.0066 0.0061 0.0057	nan	0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500	0.0077 0.0073 0.0074 0.0062 0.0051 0.0053 0.0049 0.0021 0.0005 0.0002 0.0001 0.0000 0.0000 0.0000 -0.0000 -0.0000 0.0000
## ## ## ## ## ## ## ## ## ##	4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180 200 220 240	0.1152 0.1075 0.1005 0.0942 0.0882 0.0825 0.0774 0.0448 0.0210 0.0137 0.0106 0.0090 0.0079 0.0072 0.0066 0.0061 0.0057 0.0053	nan	0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500	0.0077 0.0073 0.0074 0.0062 0.0051 0.0053 0.0049 0.0021 0.0005 0.0002 0.0001 0.0000 0.0000 -0.0000 -0.0000 0.0000 0.0000
######################################	4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180 200 220 240 260	0.1152 0.1075 0.1005 0.0942 0.0882 0.0825 0.0774 0.0448 0.0210 0.0137 0.0106 0.0090 0.0079 0.0072 0.0066 0.0061 0.0057 0.0053 0.0050 0.0048	nan	0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500	0.0077 0.0073 0.0074 0.0062 0.0051 0.0053 0.0049 0.0021 0.0005 0.0002 0.0001 0.0000 0.0000 -0.0000 -0.0000 0.0000 -0.0000 -0.0000
#########################	4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180 220 240 260 280	0.1152 0.1075 0.1005 0.0942 0.0882 0.0825 0.0774 0.0448 0.0210 0.0137 0.0106 0.0090 0.0079 0.0072 0.0066 0.0061 0.0057 0.0053 0.0050 0.0048 0.0045	nan	0.0500 0.0500	0.0077 0.0073 0.0074 0.0062 0.0051 0.0053 0.0049 0.0021 0.0005 0.0002 0.0001 0.0000 0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000
#########################	4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 200 220 240 260 280 300	0.1152 0.1075 0.1005 0.0942 0.0882 0.0825 0.0774 0.0448 0.0210 0.0137 0.0106 0.0090 0.0079 0.0072 0.0066 0.0061 0.0057 0.0053 0.0050 0.0048 0.0045 0.0043 0.0041 0.0039	nan	0.0500 0.0500	0.0077 0.0073 0.0074 0.0062 0.0051 0.0053 0.0049 0.0021 0.0005 0.0002 0.0001 0.0000 0.0000 0.0000 -0.0000 0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000
########################	4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 200 220 240 260 280 300 320	0.1152 0.1075 0.1005 0.0942 0.0882 0.0825 0.0774 0.0448 0.0210 0.0137 0.0106 0.0090 0.0079 0.0072 0.0066 0.0061 0.0057 0.0053 0.0050 0.0048 0.0043 0.0043	nan	0.0500 0.0500	0.0077 0.0073 0.0074 0.0062 0.0051 0.0053 0.0049 0.0021 0.0005 0.0002 0.0001 0.0000 0.0000 0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000
##########################	4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 200 220 240 260 280 300 320 340	0.1152 0.1075 0.1005 0.0942 0.0882 0.0825 0.0774 0.0448 0.0210 0.0137 0.0106 0.0090 0.0079 0.0072 0.0066 0.0061 0.0057 0.0053 0.0050 0.0048 0.0045 0.0043 0.0041 0.0039	nan	0.0500 0.0500	0.0077 0.0073 0.0074 0.0062 0.0051 0.0053 0.0049 0.0021 0.0005 0.0002 0.0001 0.0000 0.0000 0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000

##	420	0.0033	nan	0.0500	-0.0000
##	440	0.0031	nan	0.0500	-0.0000
##	460	0.0030	nan	0.0500	-0.0000
##	480	0.0029	nan	0.0500	-0.0000
##	500	0.0028	nan	0.0500	-0.0000
##	520	0.0026	nan	0.0500	-0.0000
##	540	0.0025	nan	0.0500	-0.0000
##	560	0.0024	nan	0.0500	-0.0000
##	580	0.0023	nan	0.0500	-0.0000
##	600	0.0022	nan	0.0500	-0.0000
##	620	0.0022	nan	0.0500	-0.0000
##	640	0.0021	nan	0.0500	-0.0000
##	660	0.0020	nan	0.0500	-0.0000
##	680	0.0019	nan	0.0500	0.0000
##	700	0.0019	nan	0.0500	-0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	0.1564	nan	0.0500	0.0119
##	2	0.1460	nan	0.0500	0.0107
##	3	0.1359	nan	0.0500	0.0107
##	4	0.1268	nan	0.0500	0.0091
##	5	0.1187	nan	0.0500	0.0077
##	6	0.1118	nan	0.0500	0.0069
##	7	0.1048	nan	0.0500	0.0063
##	8	0.0987	nan	0.0500	0.0061
##	9	0.0927	nan	0.0500	0.0061
##	10	0.0874	nan	0.0500	0.0051
##	20	0.0507	nan	0.0500	0.0027
##	40	0.0247	nan	0.0500	0.0005
##	60	0.0167	nan	0.0500	0.0002
##	80	0.0131	nan	0.0500	0.0001
##	100	0.0112	nan	0.0500	0.0000
##	120	0.0099	nan	0.0500	-0.0000
##	140	0.0089	nan	0.0500	0.0000
##	160	0.0081	nan	0.0500	-0.0000
##	180	0.0076	nan	0.0500	-0.0000
##	200	0.0070	nan	0.0500	-0.0000
##	220	0.0066	nan	0.0500	0.0000
##	240	0.0062	nan	0.0500	-0.0000
##	260	0.0058	nan	0.0500	0.0000
##	280	0.0055	nan	0.0500	-0.0000
##	300	0.0051	nan	0.0500	-0.0000
##	320	0.0049	nan	0.0500	-0.0000
##	340	0.0046	nan	0.0500	-0.0000
##	360	0.0044	nan	0.0500	-0.0000
##	380	0.0042	nan	0.0500	-0.0000
##	400	0.0039	nan	0.0500	-0.0000
##	420	0.0038	nan	0.0500	-0.0000
##	440	0.0036	nan	0.0500	0.0000
##	460	0.0034	nan	0.0500	-0.0000
##	480	0.0033	nan	0.0500	-0.0000
##	500	0.0031	nan	0.0500	-0.0000
##	520	0.0030	nan	0.0500	0.0000
##	540	0.0029	nan	0.0500	-0.0000

##	560	0.0028	nan	0.0500	-0.0000
##	580	0.0027	nan	0.0500	-0.0000
##	600	0.0026	nan	0.0500	-0.0000
##	620	0.0025	nan	0.0500	-0.0000
##	640	0.0024	nan	0.0500	-0.0000
##	660	0.0023	nan	0.0500	-0.0000
##	680	0.0022	nan	0.0500	-0.0000
##	700	0.0021	nan	0.0500	-0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	0.1480	nan	0.0500	0.0115
##	2	0.1377	nan	0.0500	0.0096
##	3	0.1286	nan	0.0500	0.0087
##	4	0.1205	nan	0.0500	0.0085
##	5	0.1134	nan	0.0500	0.0066
##	6	0.1059	nan	0.0500	0.0069
##	7	0.0991	nan	0.0500	0.0070
##	8	0.0933	nan	0.0500	0.0057
##	9	0.0880	nan	0.0500	0.0050
##	10	0.0832	nan	0.0500	0.0047
##	20	0.0498	nan	0.0500	0.0020
##	40	0.0258	nan	0.0500	0.0005
##	60	0.0183	nan	0.0500	0.0001
##	80	0.0149	nan	0.0500	0.0001
##	100	0.0130	nan	0.0500	0.0000
##	120	0.0118	nan	0.0500	-0.0000
##	140	0.0109	nan	0.0500	-0.0000
##	160	0.0102	nan	0.0500	-0.0000
##	180	0.0096	nan	0.0500	-0.0000
##	200	0.0092	nan	0.0500	-0.0000
##	220	0.0088	nan	0.0500	-0.0000
##	240	0.0083	nan	0.0500	-0.0000
##	260	0.0080	nan	0.0500	-0.0000
##	280	0.0077	nan	0.0500	-0.0000
##	300	0.0075	nan	0.0500	-0.0000
##	320	0.0072	nan	0.0500	-0.0000
##	340	0.0069	nan	0.0500	-0.0000
##	360	0.0067	nan	0.0500	-0.0000
##	380	0.0065	nan	0.0500	-0.0000
##	400	0.0062	nan	0.0500	-0.0000
##	420	0.0060	nan	0.0500	-0.0000
##	440	0.0058	nan	0.0500	-0.0000
##	460	0.0056	nan	0.0500	-0.0000
##	480	0.0054	nan	0.0500	-0.0000
##	500	0.0053	nan	0.0500	-0.0000
##	520	0.0051	nan	0.0500	-0.0000
##	540 560	0.0050	nan	0.0500	-0.0000
##	560 580	0.0048	nan	0.0500	-0.0000
##	580 600	0.0047	nan	0.0500	-0.0000
##	600	0.0045	nan	0.0500	-0.0000
## ##	620 640	0.0044 0.0043	nan	0.0500 0.0500	-0.0000 -0.0000
##	660	0.0043	nan	0.0500	-0.0000
##	680	0.0042	nan	0.0500	-0.0000
##	000	0.0040	nan	0.0500	0.0000

```
##
     700
               0.0039
                                        0.0500
                                                -0.0000
model.full # 0.1261884 # 0.1345461 # 0.1254348
## A glm ensemble of 2 base models: gbm, xgbTree
##
## Ensemble results:
## Generalized Linear Model
##
## 3736 samples
     2 predictor
##
##
## No pre-processing
## Resampling: Bootstrapped (25 reps)
## Summary of sample sizes: 3736, 3736, 3736, 3736, 3736, ...
## Resampling results:
##
##
    RMSE
              Rsquared
                        MAE
    ##
```

Prediction and submit

```
predictions <- predict(model.full, newdata = test.processed)
prediction.table <- data.frame(Id = test$Id, SalePrice = exp(predictions))
write.csv(prediction.table, "prediction.csv", row.names = FALSE) # Kaggle: 0.12246</pre>
```