Chapter Fifteen

Colored Tree

Red Black Trees

Colored Nodes Definition

- Binary search tree.
- Each node is colored red or black.
- Root and all external nodes are black.
- No root-to-external-node path has two consecutive red nodes.
- All root-to-external-node paths have the same number of black nodes

Red Black Trees

Colored Edges Definition

- Binary search tree.
- Child pointers are colored red or black.
- Pointer to an external node is black.
- No root to external node path has two consecutive red pointers.
- Every root to external node path has the same number of black pointers.

Example Red-Black Tree

• The height of a red black tree that has n (internal) nodes is between $log_2(n+1)$ and $2log_2(n+1)$.

• Start with a red black tree whose height is h; collapse all red nodes into their parent black nodes to get a tree whose node-degrees are between 2 and 4, height is >= h/2, and all external nodes are at the same level.

- Let h'>= h/2 be the height of the collapsed tree.
- In worst-case, all internal nodes of collapsed tree have degree 2.
- Number of internal nodes in collapsed tree $>= 2^{h'}-1$.
- So, $n >= 2^{h'}-1$
- So, $h \le 2 \log_2 (n + 1)$

- At most 1 rotation and O(log n) color flips per insert/delete.
- Priority search trees.
 - Two keys per element.
 - Search tree on one key, priority queue on other.
 - Color flip doesn't disturb priority queue property.
 - Rotation disturbs priority queue property.
 - $O(\log n)$ fix time per rotation => $O(\log^2 n)$ overall time.

- O(1) amortized complexity to restructure following an insert/delete.
- C++ STL implementation
- java.util.TreeMap => red black tree

Insert

- New pair is placed in a new node, which is inserted into the red-black tree.
- New node color options.
 - Black node => one root-to-external-node path has an extra black node (black pointer).
 - Hard to remedy.
 - Red node => one root-to-external-node path may have two consecutive red nodes (pointers).
 - May be remedied by color flips and/or a rotation.

Classification Of 2 Red Nodes/Pointers

- XYz
 - \blacksquare X => relationship between gp and pp.
 - pp left child of $gp \Rightarrow X = L$.
 - Y => relationship between pp and p.
 - p right child of pp => Y = R.
 - z = b (black) if d = null or a black node.
 - z = r (red) if d is a red node.

XYr

Color flip.

- Move p, pp, and gp up two levels.
- Continue rebalancing if necessary.

LLb

• Rotate.

- Done!
- Same as LL rotation of AVL tree.

LRb

• Rotate.

- Done!
- Same as LR rotation of AVL tree.
- RRb and RLb are symmetric.

Delete

- Delete as for unbalanced binary search tree.
- If red node deleted, no rebalancing needed.
- If black node deleted, a subtree becomes one black pointer (node) deficient.

Delete A Black Leaf

• Delete 8.

Delete A Black Leaf

• y is root of deficient subtree.

• py is parent of y.

Delete A Black Degree 1 Node

- Delete 45.
- y is root of deficient subtree.

Delete A Black Degree 2 Node

• Not possible, degree 2 nodes are never deleted.

• If y is a red node, make it black.

Now, no subtree is deficient. Done!

- y is a black root (there is no py).
- Entire tree is deficient. Done!

• y is black but not the root (there is a py).

- Xcn
 - y is right child of py => X = R.
 - Pointer to v is black \Rightarrow c = b.
 - v has 1 red child \Rightarrow n = 1.

Rb0 (case 1)

- Color change.
- Now, py is root of deficient subtree.
- Continue!

Rb0 (case 2)

- Color change.
- Deficiency eliminated.
- Done!

Rb1 (case 1)

- LL rotation.
- Deficiency eliminated.
- Done!

- LR rotation.
- Deficiency eliminated.
- Done!

Rr(n)

• n = # of red children of v's right child w.

Rr(0)

- LL rotation.
- Done!

Done!

Red-Black Trees—Again

- rank(x) = # black pointers on path from x to an external node.
- Same as #black nodes (excluding x) from x to an external node.
- rank(external node) = 0.

An Example

Properties Of rank(x)

- rank(x) = 0 for x an external node.
- rank(x) = 1 for x parent of external node.
- p(x) exists \Rightarrow rank $(x) \le rank(p(x)) \le rank(x) + 1$.
- g(x) exists => rank(x) < rank(g(x)).

Red-Black Tree

A binary search tree is a red-black tree iff integer ranks can be assigned to its nodes so as to satisfy the stated 4 properties of rank.

(* Below not covered in this year *) Relationship Between rank() And Color

- (p(x),x) is a red pointer iff rank(x) = rank(p(x)).
- (p(x),x) is a black pointer iff rank(x) = rank(p(x)) 1.
- Red node iff pointer from parent is red.
- Root is black.
- Other nodes are black iff pointer from parent is black.
- Given rank(root) and node/pointer colors, remaining ranks may be computed on way down.

rank(root)

- Height <= 2 * rank(root).
- No external nodes at levels 1, 2, ..., rank(root).
 - So, $\# nodes >= \sum_{1 \le i \le rank(root)} 2^{i-1} = 2^{rank(root)} 1$.
 - So, rank(root) $\leq \log_2(n+1)$.
- So, height(root) $\leq 2\log_2(n+1)$.

Join(S,m,B)

- Input
 - Dictionary S of pairs with small keys.
 - Dictionary B of pairs with big keys.
 - An additional pair m.
 - All keys in S are smaller than m.key.
 - All keys in B are bigger than m.key.
- Output
 - A dictionary that contains all pairs in S and B plus the pair m.
 - Dictionaries S and B may be destroyed.

Join Binary Search Trees

• **O**(1) time.

Join Red-black Trees

 When rank(S) = rank(B), use binary search tree method.

• rank(root) = rank(S) + 1 = rank(B) + 1.

rank(S) > rank(B)

Follow right child pointers from root of S to first node x whose rank equals rank(B).

rank(S) > rank(B)

• If there are now 2 consecutive red pointers/nodes, perform bottom-up rebalancing beginning at m.

- Follow left child pointers from root of B to first node x whose rank equals rank(B).
- Similar to case when rank(S) > rank(B).

Split(k)

- Inverse of join.
- Obtain
 - S ... dictionary of pairs with key < k.
 - B ... dictionary of pairs with key > k.
 - $m \dots pair with key = k (if present).$

- Previous strategy does not split a red-black tree into two red-black trees.
- Must do a search for m followed by a traceback to the root.
- During the traceback use the join operation to construct S and B.

$$B = g$$

$$B = g$$

$$S = join(e, E, S)$$

$$B = g$$

$$S = join(e, E, S)$$

$$\mathbf{B} = \mathrm{join}(\mathbf{B}, D, d)$$

$$B = g$$

$$S = join(e, E, S)$$

$$\mathbf{B} = \mathrm{join}(\mathbf{B}, D, d)$$

$$S = join(c, C, S)$$

$$\mathbf{B} = \mathbf{g}$$

$$\mathbf{S} = \text{join}(\mathbf{e}, \mathbf{E}, \mathbf{S})$$

$$B = join(B, D, d)$$

$$S = join(c, C, S)$$

$$\mathbf{B} = \text{join}(\mathbf{B}, \mathbf{B}, \mathbf{b})$$

$$B = g$$

$$\mathbf{S} = \text{join}(e, E, \mathbf{S})$$

$$\mathbf{B} = \mathrm{join}(\mathbf{B}, D, d)$$

$$S = join(c, C, S)$$

$$B = join(B, B, b)$$

$$S = join(a, A, S)$$

Complexity Of Split

- O(log n)
- See text.

(** Splay Trees not covered in class**)

- Binary search trees.
- Search, insert, delete, and split have amortized complexity $O(\log n)$ & actual complexity O(n).
- Actual and amortized complexity of join is O(1).
- Priority queue and double-ended priority queue versions outperform heaps, deaps, etc. over a sequence of operations.
- Two varieties.
 - Bottom up.
 - Top down.

Bottom-Up Splay Trees

- Search, insert, delete, and join are done as in an unbalanced binary search tree.
- Search, insert, and delete are followed by a splay operation that begins at a splay node.
- When the splay operation completes, the splay node has become the tree root.
- Join requires no splay (or, a null splay is done).
- For the split operation, the splay is done in the middle (rather than end) of the operation.

Splay Node – search(k)

- If there is a pair whose key is k, the node containing this pair is the splay node.
- Otherwise, the parent of the external node where the search terminates is the splay node.

Splay Node – insert(newPair)

- If there is already a pair whose key is newPair.key, the node containing this pair is the splay node.
- Otherwise, the newly inserted node is the splay node.

Splay Node – delete(k)

- If there is a pair whose key is k, the parent of the node that is physically deleted from the tree is the splay node.
- Otherwise, the parent of the external node where the search terminates is the splay node.

Splay Node – split(k)

- Use the unbalanced binary search tree insert algorithm to insert a new pair whose key is k.
- The splay node is as for the splay tree insert algorithm.
- Following the splay, the left subtree of the root is S, and the right subtree is B.

• m is set to null if it is the newly inserted pair.

Splay

- Let q be the splay node.
- q is moved up the tree using a series of splay steps.
- In a splay step, the node q moves up the tree by 0, 1, or 2 levels.
- Every splay step, except possibly the last one, moves q two levels up.

Splay Step

If q = null or q is the root, do nothing (splay is over).

• If q is at level 2, do a one-level move and terminate the splay operation.

• q right child of p is symmetric.

Splay Step

• If q is at a level > 2, do a two-level move and continue the splay operation.

• q right child of right child of gp is symmetric.

2-Level Move (case 2)

• q left child of right child of gp is symmetric.

Per Operation Actual Complexity

• Start with an empty splay tree and insert pairs with keys 1, 2, 3, ..., in this order.

Per Operation Actual Complexity

• Start with an empty splay tree and insert pairs with keys 1, 2, 3, ..., in this order.

Per Operation Actual Complexity

- Worst-case height = n.
- Actual complexity of search, insert, delete, and split is O(n).

Top-Down Splay Trees

- On the way down the tree, split the tree into the binary search trees **S** (small elements) and **B** (big elements).
 - Similar to split operation in an unbalanced binary search tree.
 - However, a rotation is done whenever an LL or RR move is made.
 - Move down 2 levels at a time, except (possibly) in the end when a one level move is made.
- When the splay node is reached, **S**, **B**, and the subtree rooted at the splay node are combined into a single binary search tree.

Two-Level Moves

- Let m be the splay node.
- RL move from A to C.
- RR move from C to E.
- L move from E to m.

RL Move

S

B

RL Move

RR Move

RR Move

Rotation performed.

Outcome is different from split.

L Move

L Move

Wrap Up

Wrap Up

Wrap Up

Bottom Up vs Top Down

• Top down splay trees are faster than bottom up splay trees.

Bottom-Up Splay Trees-Analysis

- Actual and amortized complexity of join is O(1).
- Amortized complexity of search, insert, delete, and split is O(log n).
- Actual complexity of each splay tree operation is the same as that of the associated splay.
- Sufficient to show that the amortized complexity of the splay operation is $O(\log n)$.

Potential Function

- size(x) = #nodes in subtree whose root is x.
- $rank(x) = floor(log_2 size(x))$.
- $P(i) = \sum_{x \text{ is a tree node}} rank(x)$.
 - P(i) is potential after i'th operation.
 - size(x) and rank(x) are computed after i'th operation.
 - P(0) = 0.
- When join and split operations are done, number of splay trees > 1 at times.
 - P(i) is obtained by summing over all nodes in all trees.

Example

• size(x) is in red.

• rank(x) is in blue.

• Potential = 5.

Example

- $rank(root) = floor(log_2 n)$.
- When you insert, potential may increase by $floor(log_2 n)+1$.

Splay Step Amortized Cost

- If q = null or q is the root, do nothing (splay is over).
- $\Delta P = 0$.
- amortized cost = actual cost + ΔP = 0.

Splay Step Amortized Cost

• If q is at level 2, do a one-level move and terminate the splay operation.

- r(x) = rank of x before splay step.
- r'(x) = rank of x after splay step.

Splay Step Amortized Cost

- $\Delta P = r'(p) + r'(q) r(p) r(q)$ <= r'(q) - r(q).
- amortized cost = actual cost + ΔP $\leq 1 + r'(q) - r(q)$.

2-Level Move (case 1)

•
$$\Delta P = r'(gp) + r'(p) + r'(q) - r(gp) - r(p) - r(q)$$

2-Level Move (case 1)

•
$$r'(q) = r(gp)$$

$$r'(p) \le r'(q)$$

$$r'(gp) \le r'(q)$$

$$\bullet$$
 r (q) \leq r(p)

2-Level Moye (case 1)

- $\Delta P = r'(gp) + r'(p) + r'(q) r(gp) r(p) r(q)$
- r'(q) = r(gp)
- $r'(gp) \leq r'(q)$
- $r'(p) \le r'(q)$
- $r(q) \le r(p)$.
- $\Delta P \le r'(q) + r'(q) r(q) r(q)$ = 2(r'(q) - r(q))

2-Level Move (case 1)

A more careful analysis reveals that

$$\Delta P \leq 3(r'(q) - r(q)) - 1$$
 (see text for proof)

2-Level Move (case 1)

• amortized cost = actual cost + ΔP <= 1 + 3(r'(q) - r(q)) - 1= 3(r'(q) - r(q))

2-Level Move (case 2)

• Similar to Case 1.

Splay Operation

- When q!= null and q is not the root, zero or more 2-level splay steps followed by zero or one 1-level splay step.
- Let r''(q) be rank of q just after last 2-level splay step.
- Let r'''(q) be rank of q just after 1-level splay step.

Splay Operation

- Amortized cost of all 2-level splay steps is <= 3(r''(q) r(q))
- Amortized cost of splay operation

$$= 1 + r'''(q) - r''(q) + 3(r''(q) - r(q))$$

$$= 1 + 3(r'''(q) - r''(q)) + 3(r''(q) - r(q))$$

$$= 1 + 3(r'''(q) - r(q))$$

$$= 3(floor(log_2n) - r(q)) + 1$$

Actual Cost Of Operation Sequence

- Actual cost of an n operation sequence
 = O(actual cost of the associated n splays).
- actual_cost_splay(i) = amortized_cost_splay(i) ΔP $\leq 3(floor(log_2i) - r(q)) + 1 + P'(i) - P(i)$
- P'(i) = potential just before i'th splay.
- P(i) = potential just after i'th splay.
- $P'(i) \le P(i-1) + floor(log_2 i)$

Actual Cost Of Operation Sequence

- actual_cost_splay(i) = amortized_cost_splay(i) ΔP $<= 3(floor(log_2i) - r(q)) + 1 + P'(i) - P(i)$ $<= 3 * floor(log_2i) + 1 + P'(i) - P(i)$ $<= 4 * floor(log_2i) + 1 + P(i-1) - P(i)$
- P(0) = 0 and P(n) >= 0.
- Σ_i actual_cost_splay(i) <= $4n * floor(log_2n) + n + P(0) - P(n)$ <= $5n * floor(log_2n)$ = O(n log n)