Discrete Math (Honor) 2021-Fall Homework-10

Instructor: Xiang YIN

Due: Submit Online Before Final Exam

(Please use A4 paper. Do not use exercise book!)

Problem 1. (10 Points)

Determine whether each of the following statements is true or false.

- 1. For any simple graph $G=\langle V,E\rangle,$ if $\forall v,v'\in V:d(v)+d(v')\geq |V|,$ then G has a Hamilton path. (True / False)
- 2. Any complete graph contains a Hamilton circuit. (True / False)
- 3. For any simple graph $G=\langle V,E\rangle,$ if $\forall v\in V:d(v)\geq \frac{n}{2},$ then G has a Hamilton circuit. (True / False)
- 4. For any undirected graph $G=\langle V,E\rangle,$ we have $\sum_{v\in V}d(v)=2|E|.$ (True / False)
- 5. Connected graph G is a tree if and only if each edge of G is a bridge. (True / False)

Problem 2. (10 Points)

- 1. If G has 7 vertices, where 6 vertices have degree 3 and one vertex has degree 6, then G has edges.
- 2. If G has n vertices and m edges, where the degree of each vertex is either k or k+1, then G contains $n(k+1) \cdot \sum_{i=1}^{n} e^{-k}$ vertices whose degrees are k.
- 3. If undirected graph G has 12 edges, 6 vertices with degree 3, and the degrees of the rest of the vertices are smaller than 3, then G contains at least 2 vertices.

Problem 3. (10 Points)

Determine whether the given pair of graphs is isomorphic. Exhibit an isomorphism or provide a rigorous argument that none exists.

Problem 4. (10 Points)

- 1. Provide a simple graph with at least 4 vertices such that it has an Euler circuit but has no Hamilton circuit.
- 2. Provide a simple graph with at least 5 vertices such that it has a Hamilton circuit but has no Euler circuit.

Problem 5. (10 Points)

Construct the minimum spanning tree of the following graph using both the Kruskal's Algorithm and the Prim's Algorithm (specific which edge is added at each step).

$$v_{1}$$
 v_{2}
 v_{3}
 v_{4}
 v_{5}
 v_{6}
 v_{1}
 v_{1}
 v_{1}
 v_{1}
 v_{2}
 v_{3}
 v_{4}
 v_{5}
 v_{6}
 v_{1}
 v_{2}
 v_{3}
 v_{4}
 v_{5}
 v_{6}
 v_{7}
 v_{9}
 v_{9}

$$E_{T} \leftarrow E_{T} \cup \{e_{2}\}$$

$$\text{pick } e_{3} = (N_{1}, N_{2})$$

$$E_{T} \leftarrow E_{1} \cup \{e_{1}\} \qquad \text{pick } e_{8} = (N_{2}, N_{4})$$

$$\text{pick } e_{4} = (N_{2}, N_{3}) \qquad \text{pick } e_{9} = (N_{4}, N_{5})$$

$$\text{pick } e_{1} = (N_{2}, N_{4}) \qquad \text{E} \leftarrow E_{1} \cup \{e_{9}\}$$

$$\text{pick } e_{1} = (N_{2}, N_{4}) \qquad \text{E}_{7} \leftarrow E_{7} \cup \{e_{9}\}$$

$$\text{pick } e_{1} = (N_{3}, N_{8}) \qquad \text{E}_{7} = \{e_{1}, e_{2} \cdots e_{7}, e_{9}\}$$

$$\text{Pick } e_{1} = (N_{3}, N_{8}) \qquad \text{E}_{7} = \{e_{1}, e_{2} \cdots e_{7}, e_{9}\}$$

$$\begin{cases}
e_{1} = (v_{1}, v_{2}) \\
V_{1} \leftarrow V_{1} V_{1} V_{2} \\
E_{1} \leftarrow \{e_{1}\} \\
e_{2} = (v_{1}, v_{3}) \\
E_{1} \leftarrow E_{1} V_{1} e_{2}
\end{cases}$$

$$\begin{cases}
e_{4} = (v_{3}, v_{1}) \\
e_{4} = (v_{3}, v_{1}) \\
e_{5} = (v_{1}, v_{2})
\end{cases}$$

$$\begin{cases}
e_{6} = (v_{4}, v_{3}) \\
e_{7} = (v_{1}, v_{2})
\end{cases}$$

$$\begin{cases}
e_{8} = (v_{1}, v_{2}) \\
e_{1} = (v_{2}, v_{3})
\end{cases}$$

$$\begin{cases}
e_{7} = (v_{1}, v_{2}) \\
e_{1} = (v_{2}, v_{3})
\end{cases}$$

$$\begin{cases}
e_{7} = (v_{1}, v_{2}) \\
e_{7} = (v_{2}, v_{3})
\end{cases}$$

$$\begin{cases}
e_{7} = (v_{1}, v_{2}) \\
e_{7} = (v_{2}, v_{3})
\end{cases}$$

$$\begin{cases}
e_{7} = (v_{1}, v_{2}) \\
e_{7} = (v_{2}, v_{3})
\end{cases}$$

$$\begin{cases}
e_{7} = (v_{1}, v_{2}) \\
e_{7} = (v_{2}, v_{3})
\end{cases}$$