CPSC 121: Models of Computation

Unit 2 Conditionals and Logical Equivalences

Based on slides by Patrice Belleville and Steve Wolfman

Unit 2 - Conditionals

Unit 2 - Conditionals

Quiz 2 feedback

■ Most frequent mistakes:

Open-ended question?

Unit 2 - Conditionals

Pre-Class Learning Outcomes

- By the start of this class you should be able to
 - Translate back and forth between simple natural language statements and propositional logic, now with conditionals and biconditionals.
 - Evaluate the truth of propositional logical statements that include conditionals and biconditionals using truth tables
 - Given a propositional logic statement and an equivalence rule, apply the rule to create an equivalent statement.

In-Class Learning Goals

By the end of this unit, you should be able to:

- Explore alternate forms of propositional logic statements by application of equivalence rules, especially in order to simplify complex statements or massage statements into a desired form.
- Evaluate propositional logic as a "model of computation" for combinational circuits and identify at least one explicit shortfall (e.g., referencing gate delays, wire length, instabilities, shared sub-circuits, etc.)..

Where We Are in The Big Stories

Theory

How do we model computational systems?

Now:

- practicing a second technique for formally establishing the truth of a statement (logical equivalence proofs).
- (the first technique was truth tables.)

Hardware

How do we build devices to compute?

Now:

- learning to modify circuit designs using our logical model
- gaining more practice designing circuits
- identifying a flaw in our model for circuits.

5

The Meaning of \rightarrow

- The meaning of **if p then q** in propositional logic is not quite the same as in normal language.
 - Consider:

if it's at least 20°C tomorrow, then I will come to UBC in shorts and T-shirt

- Suppose it's -2°C and snowing. Based on the above proposition, will I come to UBC in shorts and T-shirt?
 - A. Yes
 - B. No
 - C. Maybe

Unit 2 - Conditionals

6

The Meaning of \rightarrow

Consider the propositionp: If you fail the final exam, then you will fail the course

- You need to distinguish between
 - > The truth value of p (whether or not I lied).
 - The truth value of the conclusion (whether or not you failed the course).

Unit 2 - Conditionals

The Meaning of \rightarrow

Consider again:

p: If you fail the final exam, then you will fail the course

- If you fail the final exam, will you pass the course?
 - A. Yes
 - B. No
 - C. Maybe
- If you pass the final exam, will you pass the course?
 - A. Yes
 - B. No
 - C. Maybe

Unit 2 - Conditionals

Examples of Equivalence Proofs

- Prove that
 - $\rightarrow \neg p \rightarrow \neg q \equiv q \rightarrow p$
 - $\triangleright \sim p \land q \equiv (\sim p \lor q) \land \sim (\sim q \lor p)$
- We will do these on the board .

Unit 2 - Conditionals

How Good Propositional Logic Is?

- Propositional Logic is not a perfect model of how gates work.
- To understand why, we will look at a multiplexer
 - > A circuit that chooses between two or more values.
 - > In its simplest form, it takes 3 inputs
 - o An input **a**, an input **b**, and a control input **select**.
 - o It outputs a if select is false, and b if select is true.

Unit 2 - Conditionals

Truthy MUX

What is the intended output if both a and b are T?

- A. T
- B. F
- C. Unknown... but could be answered given a value for c.
- D. Unknown... and might still be unknown even given a value for c.

7

Glitch in MUX Design

■ Suppose the circuit is in steady-state with a, b, c all T

■ Assume the gate delay is 10ns

Unit 2 - Conditionals

4.0

Trace

- How long will it take before output reflects any changes in a, b, c and is stable?
 - > 5ns
 - > 10ns
 - > 20ns
 - > 30ns
 - > 40ns

Unit 2 - Conditionals

- > It may never be stable
- None of the above.

Trace – 5 ns Suppose that at time 0 we switch c to F. At time 5ns: T T T Output C Unit 2 - Conditionals

More MUX Glitches

- Cause of the problem: information from c travels two paths with different delays. Output can be incorrect until the longer path "catches up".
- Which one(s) of the following operation may cause an instability?
 - A. Changing a only
 - B. Changing b only
 - C. Changing c, when at least one of a, b is F
 - D. Both (a) and (b)
 - E. None of (a), (b) and (c)

25

Unit 2 - Conditionals

■ Here is a multiplexer that avoid the instability:

A Correct Design for MUX

- Exercise: Prove that it's logically equivalent to the original MUX
 - ➤ Hint: write (a ^ b) as (a ^ b ^ (c v ~c))

Unit 2 - Conditionals

26

Exercises

- Consider the code:
 - > if target = value then
 - o if lean-left-mode = true then
 - · call the go-left() routine
 - o else
 - · call the go-right() routine
 - > else if target < value then
 - o call the go-left() routine
 - > else
 - o call the go-right routine

Let gl mean "the go-left() routine is called". Complete the following:

> gl ↔

Unit 2 - Conditionals

27

Exercises

- Consider the sentence: "Two strings s1 and s2 are equal if either both strings are null or neither s1 nor s2 is null and both strings have the same sequence of characters".
 - Let
 - o n1: the string s1 is null
 - o n2: the string s2 is null
 - o eq: s1 and s2 are equal
 - os: the two strings have the same sequence of characters.
 - Is the given sentence logically equivalent to eq ↔ (n1 ^ n2) v s ?

Unit 2 - Conditionals

Exercises

Prove:

$$(a \land \sim b) \lor (\sim a \land b) \equiv (a \lor b) \land \sim (a \land b)$$

Unit 2 - Conditionals

29

What is coming up?

- The third online quiz is due
 - > Assigned reading for the quiz:
 - o Epp, 4th edition: 2.5
 - o Epp, 3rd edition: 1.5
 - o Rosen, any edition: not much
 - http://en.wikipedia.org/wiki/Binary_numeral_system
 - o Also read:
 - http://www.ugrad.cs.ubc.ca/~cs121/2009W1/Handouts /signed-binary-decimal-conversions.html
- Assignment #1 is due Friday, Jan 24 at 5:00pm.

Unit 2 - Conditionals