Wykrywanie obiektów

Stanisław Wilczyński

Uniwersytet Wrocławski

11 maja 2018

Analiza obrazków - problemy

Rysunek: Różne problemy dla obrazków

Po co nam wykrywanie obiektów?

- Autonomiczne samochody
- Wykrywanie twarzy (Facebook, aparaty)
- Śledzenie obiektów (automatyczny ruch kamery np. za piłką)
- Liczenie ludzi (badanie ruchu w sklepach, demonstracje, festiwale)
- Podobnie liczenie innych obiektów, np. samochodów
- Visual Search Engine

Na zachętę

Filmik promujący YOLO

Zbiory danych

- PASCAL Visual Object Classification (10 000 obrazków, 20 klas, porządne bounding boxy)
- ImageNet (500 000 obrazków, 200 klas, z bounding boxami)
- Common Objects in COntext (120 000 obrazków, 80 kategorii)

Sposoby oceniania detektorów

- Intersection over Union (IoU)
- Precision $(\frac{TP}{TP+FP})$ i recall $(\frac{TP}{TP+FN})$
- TP: dobra klasa, IoU > t
- Average Precision

$$AP = \frac{1}{11} \sum_{r \in \{0.0, ..., 1.0\}} max_{r' \geqslant r} p(r')$$

p(r) — maksymalna precyzja dla zadanego recall

 mean Average Precision (mAP) - średnia z AP po wszystkich klasach

Wczesne metody - okno przesuwne + klasyfikacja

Problemy

- Wielkość okna, obiektów
- Skumulowanie wyników
- Bardzo dużo razy uruchamiany klasyfikator

Pierwsze podejście - OverFeat (2013)

- Okno przesuwne = sploty
- Sieć konwolucyjna do wyciągniecia feature map
- Multiscale classicication (dużo rozmiarów i uśrednienie wyników)

- Do detekcji dodatkowa klasa tło
- Do lokalizacji dodatkowe warstwy aplikowane na FM wyznaczające współrzędne i rozmiary (jednego obiektu)
- Łączenie boxów uśrednianie współrzędnych

Region-based Convolutional Network (R-CNN, 2014)

Motywacja: propozycje regionów

Linear Regression for bounding box offsets

R-CNN

• Selective Search - preprocessing + grupowanie hierarchiczne

- Niezależnie trenowana sieć konwolucyjna do wyciągania feature map
- Małe FM ⇒ szybka klasyfikacja za pomocą SVM
- Regresja liniowa dla BB

Fast R-CNN (2015)

Motywacja: przyspieszenie R-CNN

Rozwiązanie: jedno przejście przez sieć konwolucyjną

Fast R-CNN

- Propozycje regionów z feature mapy
- Każdy propozycja jest wrzucana do FC oddzielnie
- Roi Pooling feature mapy regionów do stałego rozmiaru

Faster R-CNN (2016)

Motywacja: wyrzućmy wąskie gardło - Selective Search

Faster R-CNN

- RPN max k regionów ze współrzędnymi i scorem
- Przesuwne okno do warstwy FC (ale dzieje się równocześnie)

RPN + CNN (mechanizm uwagi)

YOLO (2016)

- Bounding boxes i klasyfikacja naraz jedno przejście przez sieć
- Globalna analiza obrazka

Rysunek: Schemat działania YOLO

Bardziej szczegółowo

- Siatka $S \times S$
- Jedna komórka ⇒ jeden obiekt
- B bounding boxów w każdej komórce
- Box: (x,y,w,h,score)
- Przykład PASCAL VOC: $B=2, C=20, S=7 \Rightarrow$ tensor $7 \times 7 \times 30$

Bounding boxes

Rysunek: Bounding boxes

Architektura sieci

Rysunek: Architektura sieci

Kara

```
box confidence score \equiv P_r(object) \cdot IoU
conditional class probability \equiv P_r(class_i|object)
class confidence score \equiv P_r(class_i) \cdot IoU
= box confidence score \times conditional class probability
```

where

 $P_r(object)$ is the probability the box contains an object.

IoU is the IoU (intersection over union) between the predicted box and the ground truth.

 $P_r(class_i|object)$ is the probability the object belongs to $class_i$ given an object is presence.

 $P_r(class_i)$ is the probability the object belongs to $class_i$

W karze uwzględniamy:

- kara za klasyfikację
- kara za lokalizację
- kara za score boxów

YOLO - generalizacja

YOLO - generalizacja

Problemy

- Małe obiekty blisko siebie
- Mniejszy mAP niż dla innych metod

YOLOv2 (2016)

- Batch normalization, zwiększenie rozdzielczości
- Ustalone rozmiary boxów na początku standardowe kształty
- Anchor boxy wyznaczane k-means z dystansem bazującym na loU

- Przeniesienie prawdopodobieństw klas do boxów: tensor $(S, S, B \times (5 + C)), B = 5, S = 13$
- Fine grained features wykrywanie mniejszych obiektów za pomocą FM w większej rozdzielczości
- MultiScale Training co 10 batchów zmieniają rozdzielczości obrazka (można bo same warswy splotowe)
- Zmiana sieci wcześniej trenowanej sieci splotowej

YOLO9000 I

- Połączenie zbiorów danych detekcji i klasyfikacji
- Detekcję i klasyfikację trenujemy oddzielnie
- Problemy: łączenie nazw klas, rozłączne klasy bo softmax

YOLO9000 II

- Błędy klasyfikacji zarówno dla liścia jak i przodków wyciąga wspólne cechy
- Trenowane na COCO + 9000 klas z ImageNet
- Testowane na ImageNet do detekcji (tylko 44/200 wspólnych klas z COCO)

Inne metody

- Single Shot Detector (2016)
- Neural Architecture Search Net (NASNet, 2017)
- Mask Region-based Convolutional Network (Mask R-CNN, 2017) - również segmentacja obrazka
- RetinaNet (2018)

Porównanie działania różnych metod detekcji

Model	PASCAL VOC 2007	PASCAL VOC 2010	PASCAL VOC 2012	COCO 2015 (IoU=0.5)	COCO 2015 (IoU=0.75)	2015 (Official Metric)	COCO 2016 (IoU=0.5)	COCO 2016 (IoU=0.75)	2016 (Official Metric)	Real Time Speed
R-CNN	x	62.4%	x	x	x	x	x	x	x	No
Fast R- CNN	70.0%	68.8%	68.4%	×	x	x	×	x	x	No
Faster R-CNN	78.8%	x	75.9%	×	x	x	×	x	x	No
R-FCN	82.0%	x	x	53.2%	x	31.5%	x	x	x	No
YOLO	63.7%	x	57.9%	×	x	x	x	x	x	Yes
SSD	83.2%	x	82.2%	48.5%	30.3%	31.5%	x	x	x	No
YOLOv2	78.6%	x	x	44.0%	19.2%	21.6%	x	x	x	Yes
NASNet	x	x	x	43.1%	x	x	x	x	x	No
Mask R- CNN	x	x	x	x	×	×	62.3%	43.3%	39.8%	No

Rysunek: Porównanie mAP

YOLOv3 (2018)

- \bullet Zwiększenie S, B, zmiana sieci splotowej
- Zmiana kary za BB, wiele klas do jednego obiektu
- Feature Pyramid Network (FPN)

Bibliografia I

Ross B. Girshick.

Fast R-CNN.

In 2015 IEEE International Conference on Computer Vision, ICCV 2015, Santiago, Chile, December 7-13, 2015, pages 1440–1448, 2015.

Ross B. Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik.

Region-based convolutional networks for accurate object detection and segmentation.

IEEE Trans. Pattern Anal. Mach. Intell., 38(1):142–158, 2016.

Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali Farhadi.

You only look once: Unified, real-time object detection.

CoRR, abs/1506.02640, 2015.

Joseph Redmon and Ali Farhadi.

YOLO9000: better, faster, stronger.

CoRR, abs/1612.08242, 2016.

Bibliografia II

Joseph Redmon and Ali Farhadi.

Yolov3: An incremental improvement.

CoRR, abs/1804.02767, 2018.

Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun.

Faster R-CNN: towards real-time object detection with region proposal networks.

IEEE Trans. Pattern Anal. Mach. Intell., 39(6):1137-1149, 2017.

Pierre Sermanet, David Eigen, Xiang Zhang, Michaël Mathieu, Rob Fergus, and Yann LeCun.

Overfeat: Integrated recognition, localization and detection using convolutional networks.

CoRR, abs/1312.6229, 2013.