CORRELATION

Definition: The relationship between two Variables such that a change in one Variable results in a positive or negative change in the other variable and also a greater change in one variable results in corresponding greater and or smaller change in other variable is known as correlation.

Correlated

(deglee of relationship)

The degree to which the two Variables are interrelated is measured by a coefficient which is called the coefficient of correlation.

It summarizes in one figure the DIRECTION and DEGREE OF CORRELATION.

The coefficient of correlation between two Variables x and y is generally denoted by 8.

Properties of coefficient of correlation

-12221

8=-1 Perfect -ive correlation 8=+1 Perfect + ire correlation No correlation (3)

r is a pure no. (does not depends on

units of variable) 8 is Independent of change (4) of origin and changl of scale.

Karl Pearson's Coefficient of Correlation

$$\chi = \frac{\sum (x - \underline{x})^{2} \sqrt{\sum (\lambda - \underline{\lambda})^{2}}}{\sqrt{\sum (x - \underline{x})^{2} \sqrt{\sum (\lambda - \underline{\lambda})^{2}}}}$$

X = mean of X - series V = mean of Y - series

II nd form:-
$$Y = N \leq X Y - \leq X \leq Y$$

$$\sqrt{N \leq X^{2} - (\leq X)^{2}} \sqrt{N \leq Y^{2} - (\leq Y)^{2}}$$

TIL rd form:
$$V = \frac{n \leq u \vee - \leq u \leq \vee}{\sqrt{n \leq v^2 (\leq v)^2}}$$

$$U = \frac{(\leq u)^2 \sqrt{n \leq v^2 (\leq v)^2}}{\sqrt{n \leq v^2 (\leq v)^2}}$$

$$V = \frac{(\leq u)^2 \sqrt{n \leq v^2 (\leq v)^2}}{\sqrt{n \leq v^2 (\leq v)^2}}$$

$$V = \frac{(\leq u)^2 \sqrt{n \leq v^2 (\leq v)^2}}{\sqrt{n \leq v^2 (\leq v)^2}}$$

$$V = \frac{(\leq u)^2 \sqrt{n \leq v^2 (\leq v)^2}}{\sqrt{n \leq v^2 (\leq v)^2}}$$

$$V = \frac{(\leq u)^2 \sqrt{n \leq v^2 (\leq v)^2}}{\sqrt{n \leq v^2 (\leq v)^2}}$$

$$V = \frac{(\leq u)^2 \sqrt{n \leq v^2 (\leq v)^2}}{\sqrt{n \leq v^2 (\leq v)^2}}$$

$$V = \frac{(\leq u)^2 \sqrt{n \leq v^2 (\leq v)^2}}{\sqrt{n \leq v^2 (\leq v)^2}}$$

$$V = \frac{(\leq u)^2 \sqrt{n \leq v^2 (\leq v)^2}}{\sqrt{n \leq v^2 (\leq v)^2}}$$

$$V = \frac{(\leq u)^2 \sqrt{n \leq v^2 (\leq v)^2}}{\sqrt{n \leq v^2 (\leq v)^2}}$$

$$V = \frac{(\leq u)^2 \sqrt{n \leq v^2 (\leq v)^2}}{\sqrt{n \leq v^2 (\leq v)^2}}$$

Q1. Calculate karl Pearson's coefficient of correlation from following data:

* X: 10 6 9 10 12 13 11 9 n=8* Y: 9 4 6 9 11 13 8 4

Solution:

* Solution:

*

				- V
×	14	×2	Y2	XY
_	9	100	81	90
10	4	36	16	24
6	6	81	36	54
9	9	(00	81	
10		144	121	132
12	11	169	169	169
13	13	121	64	88
11	8	81	16	36
9	4	5x2	242	5XY
£x-80	EY=64	= 832	= 584	= 683

we know that

$$\tau = \frac{n \leq x \cdot y - \leq x \leq y}{\sqrt{n \leq x^2 - (\leq x)^2} \sqrt{n \leq y^2 - (\leq y)^2}}$$

High degree tive correlation.

(I) when Ranks are given

a Calculate Rank Correlation from

	RV	data: D=Rx-R,	2
2	1	1	4
4	2	2	4
3	45	-1	0
7	6		1
6	 		150°=12

Charles Edward Spearman - 1904

$$R = 1 - \frac{65D^2}{n^3 n}$$

$$R = 1 - \frac{6 \times 12}{7^3 - 7}$$

$$R = 1 - \frac{72}{343 - 7}$$

$$R = 1 - \frac{72}{336} = 1 - 0.214$$
 $R = 0.786$

(I) when Ranks are given

2. Calculate Rank Correlation from

Rank by	wing da	Rank by	DAG PRI- RO	Dar	PB=RB-R	D13C	Da = Ra-Rc	DAC
JudgeA	JudgeB	Judge C		7.13		9-	-5	35
1	3	6	-2	4/	-3	1-	2	16
6	5	4	3	g -	- (16-	- 4	4
5	8	90	-3	36	-4	36-	2	4
10	4	8 -	6	16/	6	64-	0	
2	7		1-4	164 V	8	11		1
5	10	7	- 8	4	- a	81	-1	1
11	7	3	2	640	1 - 2	11)	4
9	1	10	8	11/	1		1	1
9		5		11/		4'		
7	6	I	1-1		7	1		423
8	9	7	-	2DAB		EDBC		2Dac
-	1			= 200		= 210	1	1=60
		1		1-	1		1	

(I) when Ranks are given

[n=10]

(i) Rank Correlation

$$R_{AB} = 1 - 6 \le D_{AB}^{2}$$

$$= 1 - 6 \times 200$$

$$= 1 - 6 \times 200$$

$$= 16^{3} - 10$$

$$=1-\frac{1200}{990}$$

$$=1-\frac{120}{99}$$

$$= 1 - 1.212$$
 $= 1 - 1.212$
 $= 0.212$

DAB 1	DB = RB-R	D13C	Da = Ra-Rc	DAC
4-	-3	9-	-524 -4	744
36/	-4	36-	2 2	540
647	8 -1	81-	0	1
647	-9	1-	2	4
111	1 5	41	1	1
EDAB = 200		€ DBC		20AC = 60

(I) when Ranks are given

[n=10]

(ii) Rank Correlation

$$R_{BC} = 1 - 6 \times D_{BC}^{2}$$

$$= 1 - 6 \times 214$$

$$= 1 - 6 \times 214$$

$$= 1 - 1284$$

$$= 1 - 1.296$$

		-		
	_	-0.	296	1
121	-			-

		-
112 0	0.212	(1)
INALS		

DAB 1	PBERB-R	D13C	Da = Ra-Rc	DAC
4-9	-3	9-1-1	-5 -4 -4	164
36/	-4	36-	2	40-
647	-1 -9	81-	-1	4
1/	1 2	41	Ī	1
EDAB = 200		€ Disc = <10	4	20ac = 60

(I) when Ranks are given

[n=10]

(ii) Rank Correlation

$$R_{AC} = 1 - 6 \times D_{AC}^{3}$$
 $R_{AC} = 1 - 6 \times 60$
 $10^{3} - 10$

$$= 1 - \frac{360}{990}$$

$$R_{AC} = 1 - 0.36 = 0.64 - 3$$

Tr	2120	-	-0	. 2	96	-(2)
	150		_	-	_	

		1
112 -	0.212	1-(1)
INAB	-	

DAB	PBERB-R	D13C	Da = RA-RC	DAC
4-	-3	9-	-5 2 -4	16
36	-4	36-	2 2	440
647	8 -1	64'	0	1
641	-9	1	-1 2	4
11	2	41	1	
2 DAB		ED'SC		EDAC -
= 500		= <10	1	1=60

(II) when Ranks are not given

n=8

Q Calculate Spearman's Rank correlation coefficient from

D (x)	lowing d Price of	ata:	Ry	D=Rx-Ry	D2
tea (in 125)	(offee (Y)	52	54	-2	ololo
88	139	1	167	000	0 1
70	110	4	3	1 1	0
80	142	8	8	0	至り~6
(59)					

$R = 1 - \frac{6 \leq D^2}{n^3 n}$
$R = 1 - 6 \times 6$ $8^{\frac{1}{8}}$
$R = 1 - \frac{36}{512 - 8}$
$R = 1 - \frac{36}{504}$
R=1-0.071
R=0.9296

(III) when Ranks are not given and Repeated

a Calculate Spearman's Rank correlation coefficient from

Lhe to	Rx 1	Ry	D=Rx-Ry	DL
× 62 58 68 45 60 68 48 50 70	×4659615086			m)+1(rn3-rn)+

In X-series, 75 repeated 2 times, m=2 In X-series, 64 repeated 3 times, m=3

$$\frac{2+3}{2} = \frac{5}{2} = 2.5$$

$$\frac{5+6+7}{3} = \frac{18}{3} = 6$$

Spearman's Rank Correlation method 3×3×3-3 (III) when Ranks are not given and Repeated In X-series, 75 repeated a Calculate Spearman's Rank 2 times, m=2 In X- ries, 64 repeated correlation coefficient from the following data: 3 times, m=3 In Y-se rice, 64 repeated 2 times, m=2 D=Rx-Ry R=1-6[72+0.5+2+05] 0 4