ODPOWIEDZI I SCHEMAT PUNKTOWANIA – ZESTAW NR 1 POZIOM ROZSZERZONY

Nr zadania	Nr czynności	Etapy rozwiązania zadania	Liczba punktów	Uwagi
	1.1	I metoda rozwiązania ("PITAGORAS"): Sporządzenie rysunku w układzie współrzędnych: np.	1	 Rysunek musi zawierać daną prostą oraz punkty A i B. Inne elementy mogą, ale nie muszą być uwzględnione. Współrzędne punktu C można odczytać z rysunku, ale zdający musi sprawdzić, np. przez wstawienie do równania prostej prawidłowość odczytu. Przyznajemy pełna pulę punktów. W przypadku, gdy zdający poda odczytane współrzędne punktu C i nie dokona sprawdzenia z warunkami zadania otrzymuje punkty tylko w czynnościach 1.1 i 1.5.
	1.2	Wprowadzenie oznaczenia współrzędnych punktu C , np. $C = (22-3y, y)$ lub $C = (x, -\frac{1}{3}x + \frac{22}{3})$.	1	
	1.3	Wykorzystanie twierdzenia Pitagorasa i zapisanie warunku prostopadłości odcinków AC i BC : $ AC ^2 + BC ^2 = AB ^2$, w którym $ AC ^2 = 10y^2 - 168y + 720$, $ BC ^2 = 10y^2 - 92y + 260$, $ AB ^2 = 260$ lub $ AC ^2 = \frac{1}{9}(10x^2 + 64y + 232)$, $ BC ^2 = \frac{1}{9}(10x^2 - 164 + 1108)$.	1	
	1.4	Doprowadzenie do równania kwadratowego z jedną niewiadomą: np. $y^2 - 13y + 36 = 0$ lub $x^2 - 5x - 50 = 0$.	1	
	1.5	Rozwiązanie równania i zapisanie odpowiedzi: $C = (10,4)$ lub $C = (-5,9)$.	1	

1.1	II metoda rozwiązania ("WEKTORY"): Sporządzenie rysunku w układzie współrzędnych.	1	Rysunek musi zawierać daną prostą oraz punkty <i>A</i> i <i>B</i> . Inne elementy mogą, ale nie muszą być uwzględnione.
	Wprowadzenie oznaczeń pomocniczych i wyznaczenie wektorów:		
1.2	np. $C = (22 - 3y, y)$, $\overrightarrow{CA} = [-24 + 3y, 12 - y]$, $\overrightarrow{CB} = [-16 + 3y, -2 - y]$ lub $C = (x, -\frac{1}{3}x + \frac{22}{3})$, $\overrightarrow{CA} = [-2 + x, \frac{1}{3}x + \frac{14}{3}]$, $\overrightarrow{CB} = [6 - x, \frac{1}{3}x - \frac{28}{3}]$.	1	
1.3	Wykorzystanie warunku prostopadłości wektorów \overrightarrow{CA} , \overrightarrow{CB} i zapisanie równania: np. $(-24+3y)(-16+3y)+(12-y)(-2-y)=0$, gdzie y to rzędna punktu C lub $-(2+x)(6-x)+\frac{1}{9}(x+14)(x-28)=0$, gdzie x to odcięta punktu C .	1	
1.4	Doprowadzenie do równania kwadratowego z jedną niewiadomą : np. $y^2 - 13y + 36 = 0$ lub $x^2 - 5x - 50 = 0$.	1	
1.5	Rozwiązanie równania i zapisanie odpowiedzi: $C = (10,4)$ lub $C = (-5,9)$.	1	
1.1	III metoda rozwiązania ("KONSTRUKCJA"): Sporządzenie rysunku w układzie współrzędnych.	1	Rysunek musi zawierać daną prostą oraz punkty <i>A</i> i <i>B</i> . Inne elementy mogą, ale nie muszą być uwzględnione.
1.2	Zapisanie równania okręgu o środku w punkcie $S = (2,5)$, który jest środkiem odcinka AB i promieniu $r = \frac{1}{2} AB = \frac{1}{2}\sqrt{260}$: $(x-2)^2 + (y-5)^2 = \left(\frac{1}{2}\sqrt{260}\right)^2.$	1	
1.3	Zapisanie układu równań: $\begin{cases} x+3y=22\\ \left(x-2\right)^2+\left(y-5\right)^2=\left(\frac{1}{2}\sqrt{260}\right)^2. \end{cases}$	1	
1.4	Doprowadzenie obliczeń do postaci równania kwadratowego, np.: $y^2 - 13y + 36 = 0$ lub $x^2 - 5x - 50 = 0$.	1	

		Odpowiedzi i schemat punktowania – pozion	n rozszerzon	<u>y</u>				
	1.5	Rozwiązanie równania i zapisanie odpowiedzi:						
	1.5	C = (10,4) lub $C = (-5,9)$.	1					
		Ogólnie, rozwiązanie powinno mieć postać:						
	1.1	Sporządzenie rysunku w układzie współrzędnych.	1					
	1.2	Przedstawienie metody pozwalającej wyznaczyć punkt C.	1	W metodzie II i III przestawione zostały				
	1.3	Zapisanie warunków algebraicznych wynikających z obranej metody rozwiązania.	1	czynności 1.2 i 1.3 i zapisane w kolejności takiej, jaka będzie miała miejsce w trakcie rozwiązania tą metodą.				
	1.4	Doprowadzenie do równania kwadratowego z jedną niewiadomą.	1					
	1.5	Wyznaczenie współrzędnych punktów C.	1					
	2.1	Zapisanie wzoru funkcji g w postaci $g(x) = \frac{a}{x+3} + 2$ dla $x \ne -3$. Wyznaczenie współczynnika a z równania $g(-4) = 6$: $a = -4$.	1	Przyznajemy punkt również wtedy, gdy zdający nie zapisze dziedziny funkcji g.				
	2.2	Wyznaczenie współczynnika a z równania $g(-4) = 6$: $a = -4$.	1					
2	2.3	Doprowadzenie nierówności $\frac{-4}{x+3} + 2 < 4$ do postaci $\frac{-2x-10}{x+3} < 0$.	1					
		Wyznaczenie zbioru rozwiązań nierówności $g(x)<4$:						
	2.4	$x \in (-\infty, -5) \cup (-3, \infty)$.	1					
3	3.1	Zapisanie podstawy logarytmu: $p = 2$.	1					
	3.2	Obliczenie wartości funkcji f dla argumentu $x = 0.125$: $f(0.125) = -3$.	1					
	3.3	Narysowanie wykresu funkcji $y = f(x-4)$.	1					
		Narysowanie wykresu funkcji g		W tej czynności oceniamy poprawność				
				wykonania przekształcenia $y = f(x) $. Punkt				
	3.4	$y = \lfloor \log_{\frac{1}{2}}(x-4) \rfloor$	1	przyznajemy trównież wtedy, gdy zdający niepoprawnie wykona przesunięcie, ale poprawnie wykona przekształcenie $y = f(x) $. Jeśli zdający od razu narysuje wykres funkcji g,				
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		to przyznajemy punkt w czynnościach 3.3 i 3.4.				

		Dadonio misisso zaravvogo funkcii et u 5	1 10232612011	
	3.5	Podanie miejsca zerowego funkcji g : $x = 5$.	1	Czynność 3.5 oceniamy konsekwentnie do
				uzyskanej przez zdającego funkcji g.
		$\frac{a}{}$		
	4.1	Wyrażenie funkcji $\operatorname{tg} \alpha$ w zależności od a i H : $\operatorname{tg} \alpha = \frac{\frac{a}{2}}{H} = \frac{a}{2H}$.	1	
		Wyrazeme ramoji tga w zareznoseroa a i i i tga H $2H$		
	4.2	Wyrażenie funkcji $\cos \alpha$ w zależności od a i h : $\cos \alpha = \frac{h}{a}$.	1	
		α	-	
		Wykorzystanie wyznaczonych zależności i doprowadzenie podanego		
		w treści zadania związku $a^2 = H \cdot h$ do zależności z jedną zmienną α :		
	4.2	a	1	
	4.3	$\frac{1}{2}$ - tag stad $H = a$ h - $\cos a$ stad h - $a\cos a$:	1	
		np. $\frac{\frac{\alpha}{2}}{H} = \operatorname{tg}\alpha \operatorname{stad} H = \frac{a}{2\operatorname{tg}\alpha}, \frac{h}{a} = \cos\alpha \operatorname{stad} h = a\cos\alpha;$		
		po podstawieniu otrzymujemy $2 \operatorname{tg} \alpha = \cos \alpha$.		
		Doprowadzenie zależności do postaci równania, w którym jest tylko		
	4.4		1	
	4.4	jedna funkcja trygonometryczna, np.: $2\sin\alpha = 1 - \sin^2\alpha$ dla $\alpha \in \left(0, \frac{\pi}{2}\right)$.	1	
		(2)		
4	4.5	Rozwiązanie równania, np. dokonanie podstawienia $t = \sin \alpha$		
4		i rozwiązanie równania kwadratowego $t^2 + 2t - 1 = 0$:	1	
		$t = -1 - \sqrt{2}$ oraz $t = -1 + \sqrt{2}$.		
				Jeśli zdający nie wskaże właściwego rozwiązania
	4.6	Odrzucenie ujemnego pierwiastka i podanie odpowiedzi: $\sin \alpha = \sqrt{2} - 1$.	1	spełniającego warunki zadania, to nie otrzymuje
				punktu za tę czynność.
		II sposób rozwiązania (czynności 4.3 i 4.4)		
		Zapisanie wyrażenia $a^2 = H \cdot h$ w postaci proporcji		
	4.3	1	1	
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
		$\frac{a}{H} = \frac{h}{a} \iff 2 \cdot \frac{\frac{1}{2}a}{H} = \frac{h}{a}.$		
		Wykorzystanie funkcji trygonometrycznych do zapisania proporcji		
		1		
		$\frac{1}{2}a$ h		
	4.4	w postaci równania jednej zmiennej: $2 \cdot \frac{1}{2} \frac{a}{H} = 2 \cdot \lg \alpha$, $\frac{h}{a} = \cos \alpha$ stąd	1	
		_== ""		
		$\frac{a}{H} = \frac{h}{a}$, $2 \cdot \text{tg}\alpha = \cos \alpha$, $\sin^2 \alpha + 2\sin \alpha - 1 = 0$ dla $\alpha \in \left(0, \frac{\pi}{2}\right)$.		
		11 u (2)		

		Odpowiedzi i schemat punktowania – pozion	i 10232e1201iy	
		Sporządzenie rysunku dla $n = 4$.		
5	5.1	$\frac{y}{1}$ \frac{y}	1	
	5.2	$\boxed{4} (\boxed{4}) + \boxed{4} (\boxed{4}) + \boxed{4} (\boxed{4}) + \boxed{4} (\boxed{4}) - \boxed{32}$	1	
	5.3	Obliczenie sumy pół wszystkich <i>n</i> prostokątów w postaci: $\frac{1}{n} \cdot \left(\frac{1}{n}\right)^2 + \frac{1}{n} \cdot \left(\frac{2}{n}\right)^2 + \dots + \frac{1}{n} \cdot \left(\frac{n}{n}\right)^2 = \frac{1^2 + 2^2 + \dots + n^2}{n^3}.$	1	Wystarczy, że zdający poprawnie zapisze lewą stronę podanej postaci.
	5.4	Wykorzystanie podanej tożsamości i przekształcenie sumy do postaci: $S_n = \frac{n(n+1)(2n+1)}{6n^3} \text{ lub } S_n = \frac{(n+1)(2n+1)}{6n^2}.$	1	
	6.1	Zapisanie wielomianu w postaci: $W(x) = x^4 - 2x^3 + x^2 + x^2 - 6x + 9$.	1	
	6.2	Zapisanie wielomianu w postaci sumy dwóch składników nieujemnych: np. $W(x) = x^2(x-1)^2 + (x-3)^2$ lub $W(x) = (x^2 - x)^2 + (x-3)^2$.	1	
6	6.3	Uzasadnienie, że oba składniki są nieujemne i nie mogą być jednocześnie równe 0, więc wielomian $W(x)$ nie ma pierwiastków rzeczywistych.	1	
	6.1	II metoda rozwiązania: Obliczenie pochodnej wielomianu $W(x)$ i jej miejsca zerowego: $W'(x) = 2(2x-3)(x^2+1), x = \frac{3}{2}.$	1	

	6.2	Uzasadnienie, że w punkcie $x = \frac{3}{2}$ wielomian $W(x)$ osiąga lokalne minimum.	1	
		Obliczenie wartości wielomianu $W(x)$ dla $x = \frac{3}{2}$ albo jej oszacowanie		
	6.3	z dołu przez liczbę dodatnią i uzasadnienie, że wielomian $W(x)$ nie ma pierwiastków rzeczywistych: $W\left(\frac{3}{2}\right) = \frac{45}{16}$.	1	
	7.1	Zapisanie równania $f(x) = 1$ w postaci: $-\cos^2 x + \cos x = 0$.	1	
	7.2	Zapisanie równań: $\cos x = 0$ lub $\cos x = 1$.	1	
	7.3	Zapisanie rozwiązań równania $f(x)=1$ należących do przedziału $\langle 0, 2\pi \rangle$: $x = 0 \lor x = \frac{\pi}{2} \lor x = \frac{3\pi}{2} \lor x = 2\pi$.	1	
7	7.4	Przedstawienie metody rozwiązania zadania, np. wprowadzenie pomocniczej niewiadomej $t = \cos x$ i $t \in \langle -1,1 \rangle$ i zapisanie funkcji $f(t) = -t^2 + t + 1$ dla $t \in \langle -1,1 \rangle$.	1	Punkt otrzymuje też zdający, który pominął dziedzinę funkcji <i>f</i> .
	7.5	Obliczenie pierwszej współrzędnej wierzchołka paraboli, będącej wykresem trójmianu kwadratowego $f(t) = -t^2 + t + 1$: $t_w = \frac{1}{2}$.	1	Wystarczy, że zdający zapisze trójmian w postaci kanonicznej: $f(t) = -\left(t - \frac{1}{2}\right)^2 + \frac{5}{4}$.
	7.6	Uwzględnienie faktu, że $\frac{1}{2} \in \langle -1,1 \rangle$ i współczynnik przy t^2 jest ujemny,	1	Zdający nie musi analizować znaku współczynnika przy t^2 , o ile oblicza $f(-1)$,
		i obliczenie największej wartości funkcji f : $f_{\text{max}}\left(\frac{1}{2}\right) = \frac{5}{4}$		$f(1)$, $f(\frac{1}{2})$ i wybiera największą z nich.

		Y 4. 1		
8	8.1	I metoda rozwiązania: Sporządzenie rysunku P A C B	1	Zdający może pominąć uzasadnienie, że punkt P leży na wysokości DO .
	8.2	Obliczenie długości krawędzi bocznej ostrosłupa: $a = 1$.	1	
	8.3	Obliczenie objętości ostrosłupa $ABCD$, np. poprzez stwierdzenie, że dany ostrosłup to "naroże" sześcianu o krawędzi długości 1: $V_{ABCD} = \frac{1}{6}$.	1	
	8.4	Zapisanie równania z niewiadomą H – szukaną odległością: $3 \cdot \frac{1}{3} \cdot \frac{1}{2} \cdot H + \frac{1}{3} \cdot \frac{\left(\sqrt{2}\right)^2 \cdot \sqrt{3}}{4} \cdot H = \frac{1}{6}.$	1	Wystarczy że zdający zapisze, że objętość ostrosłupa jest sumą objętości czterech ostrosłupów, których podstawami są ściany danego ostrosłupa, a wysokością szukana odległość.
	8.5	Obliczenie szukanej odległości: $H = \frac{3 - \sqrt{3}}{6}$.	1	

		П metoda rozwiązania:	,,02520,2011	
		Sporządzenie rysunku:		
	8.1	P_1 jest rzutem punktu P na wysokość ściany bocznej DC_1 .	1	
8	8.2	Obliczenie długości DC_1 : $ DC_1 = \frac{1}{2} AB = \frac{\sqrt{2}}{2}$.	1	
	8.3	Wyznaczenie $ DO $ z trójkąta $ DOC_1 $: np. $ DO ^2 = DC_1 ^2 - OC_1 ^2$, gdzie $ OC_1 = \frac{1}{3} \cdot \frac{\sqrt{2} \cdot \sqrt{3}}{2} = \frac{\sqrt{6}}{6}$, stąd $ DO = \frac{\sqrt{3}}{3}$.	1	
	8.4	Zapisanie równania z niewiadomą H , np. z podobieństwa trójkątów $\Delta PP_1D \sim \Delta DOC_1$ wynika proporcja $\frac{ PP_1 }{ DP } = \frac{ OC_1 }{ DC_1 }$ i $ PP_1 = H$, $\frac{H}{\frac{\sqrt{3}}{3} - H} = \frac{\frac{\sqrt{6}}{6}}{\frac{\sqrt{2}}{2}}.$	1	
	8.5	Obliczenie szukanej odległości: $H = \frac{3 - \sqrt{3}}{6}$.	1	
9	9.1	Obliczenie liczby wszystkich zdarzeń elementarnych: $ \Omega = 8!$.	1	
	9.2	Obliczenie liczby zdarzeń elementarnych sprzyjających zdarzeniu A , że jako pierwsze pójdą kobiety i żona będzie szła bezpośrednio przed mężem: $ A = 3! \cdot 3! = 36$.	1	Wystarczy zapis $ A = 3! \cdot 3!$ lub $ A = 36$.

		Supomed2i i senemai punitio wanta posioni		
	9.3	Obliczenie prawdopodobieństwa zdarzenia A: $P(A) = \frac{3! \cdot 3!}{8!} = \frac{1}{1120}$.	1	
	9.4	Porównanie otrzymanego prawdopodobieństwa z 0,001, np.: $P(A) = \frac{1}{1120} < \frac{1}{1000} \text{ lub } P(A) \approx 0,0009 < 0,001.$	1	
10	10.1	Zapisanie układu pozwalającego wyznaczyć równanie prostej przechodzącej przez punkty $(x_n, 0)$, $(-1, 1)$, $(0, y_n)$: $\begin{cases} 1 = -a + b \\ 0 = a(-1-n) + b \end{cases}$	1	
	10.2	Wyznaczenie z układu niewiadomej <i>b</i> : np. $b = 1 + \frac{1}{n}$.	1	
	10.3	Zapisanie wzoru szukanego ciągu: $y_n = 1 + \frac{1}{n}$ albo $y_n = \frac{n+1}{n}$.	1	
	10.1	II metoda rozwiązania: Zapisanie współczynnika kierunkowego prostej X_nP (przechodzącej przez punkty $(x_n,0)$ i P): $a = \frac{1}{-1 - (-1 - n)} = \frac{1}{n}$.	1	
	10.2	Zapisanie równania prostej $X_n P$: $y = \frac{1}{n}(x+1)+1$.	1	
	10.3	Zapisanie wzoru szukanego ciągu: $y_n = 1 + \frac{1}{n}$ albo $y_n = \frac{n+1}{n}$.	1	
	10.1	III metoda rozwiązania: Wprowadzenie oznaczeń: $A = (x_n, 0)$, $P = (-1, 1)$, $C = (0, y_n)$. Wyznaczenie współrzędnych wektorów $\overrightarrow{AP} = [n, 1]$, $\overrightarrow{PC} = [1, y_n - 1]$.	1	
	10.2	Zapisanie warunku równoległości wektorów: $\overrightarrow{AP} \parallel \overrightarrow{PC} \iff d(\overrightarrow{AP}, \overrightarrow{PC}) = 0 \text{ stąd } n(y_n - 1) - 1 = 0.$	1	
	10.3	Zapisanie wzoru szukanego ciągu: $y_n = 1 + \frac{1}{n}$ albo $y_n = \frac{n+1}{n}$.	1	

		Оаромівагі і ѕспетаі рипкіожаніа – рогіон		
		IV metoda rozwiązania: Wprowadzenie oznaczeń: $A = (x_n, 0)$, $P = (-1, 1)$, $C = (0, y_n)$.		
	10.1	Wykorzystanie zależności: $ AP + PC = AC $,	1	
		$\sqrt{(-1-x_n)^2+(1-0)^2}+\sqrt{(0+1)^2+(y_n-1)^2}=\sqrt{(0-x_n)^2+(y_n-0)^2}.$		
	10.2	Podstawienie $x_n = -1 - n$ i doprowadzenie wyrażenia do postaci:	1	
		$\left(n\cdot y_n - n - 1\right)^2 = 0.$		
	10.3	n n	1	
	11.1	Przyjęcie oznaczeń, wykorzystanie definicji lub własności ciągu geometrycznego i zapisanie zależności między długościami boków trójkąta prostokątnego, np.: a, b, c – długości boków trójkąta prostokątnego i $a < b < c$, $b = a \cdot q$, $c = a \cdot q^2$ lub $b^2 = ac$.	1	
	11.2	Wykorzystanie twierdzenie Pitagorasa i zapisanie równania, w którym występują najwyżej dwie niewiadome, np.: $a^2 + (aq)^2 = (aq^2)^2$ lub $a^2 + ac = c^2$.	1	
11	11.3	Zapisanie równania, np.: $q^4 - q^2 - 1 = 0$ lub $\left(\frac{c}{a}\right)^2 - \frac{c}{a} - 1 = 0$.	1	
	11.4	Wykonanie podstawienia $t = q^2$ lub $t = \frac{c}{a}$ i rozwiązanie równania $t^2 - t - 1 = 0$: $t = \frac{1 - \sqrt{5}}{2} \lor t = \frac{1 + \sqrt{5}}{2}$.	1	
	11.5	Obliczenie ilorazu ciągu: $q = \sqrt{\frac{1+\sqrt{5}}{2}}$.	1	