

BSM 313 NESNELERİN İNTERNETİ VE UYGULAMALARI

(Internet of Things (IoT) and Applications)

NESNELERİN İNTERNETİ UYGULAMALARINDA SIKLIKLA KULLANILAN KABLOSUZ TEKNOLOJİLER

Kablosuz Algılayıcı Ağlar (WSN)
Z-Wave
ANT/ANT+

Doç. Dr. Cüneyt BAYILMIŞ

IoT Uygulamalarında Kullanılan Kablosuz Teknolojiler

- Kısa Mesafeli Kablosuz Teknolojiler
 - Radyo Frekansı İle Tanımlama (Radio-Frequency Identification, RFID),
 - Yakın Alan İletişimi (Near Field Communications, NFC),
 - Bluetooth Low Energy (BLE),
 - Kızılötesi (Infrared, IRdA)
- Hücresel Olmayan Uzun Mesafeli Kablosuz Teknolojiler
 - ➤ Kablosuz Algılayıcı Ağlar (IEEE 802.15.4 ZigBee),
 - Z-Wave
 - > ANT/ANT+
- ☐ Hücresel Uzun Mesafeli Kablosuz Teknolojiler
 - GSM / GPRS
 - > 3G / 4G (LTE) / 4.5G (LTE Advanced)

WiMAX

Kablosuz Algılayıcı Ağlar

(Wireless Sensor Networks, WSN)

Kablosuz Algılayıcı Ağlar, haberleşme kabiliyetine sahip algılayıcı düğümlerin bir araya gelmesi ile oluşan ağdır.

■ Algılayıcı Düğüm

- Ortamdaki fiziksel büyüklükleri algılayabilen
- Nem
- Sıcaklık
- Işık vb.
- Sınırlı şekilde işlem yapma kabiliyetine sahip olan
- Kısa mesafede kablosuz ortam üzerinden haberleşen
- Küçük boyutlu
- Düşük güçlü
- Düşük maliyetli tüm devredir.

□ Temel Özellikler

- Rasgele yerleştirilebilme
- Kendi kendine organize olabilme
- Ortak çalışma
- Yerel hesaplama yapma

İletişim Kurma

KAA'larda Kullanılan Örnek Algılama Teknolojileri

- Sıcaklık
- Nem
- ivme
- Basınç
- ☐ Işık
- ☐ Gürültü seviyesi
- Mekaniksel gerilme
- ☐ Bir nesnenin mevcudiyetinin ya da eksikliğinin tespiti
- ☐ Bir nesnenin hızı, boyutu, yönü.
- Elektromanyetik alan
- Resim
- Ses
- Toprağın bileşimi

KAA Mimarisi

☐ Uygulamaya bağlı olarak yüzlere, binlere ve hatta yüz binlere varan sayıda düğüm içerebilirler.

KAA Uygulama Alanları

- Askeri Alanlar
 - Hedef tespiti, saldırı tespiti, savaş alanının gözetim altında tutulması,
 - Dost-düşman ayrımı vb.
- Çevresel Alanlar
 - Orman yangını, sel vb. doğal afetlerin tespiti,
 - Bir bölgenin ekolojik olarak izlenmesi,
- ☐ Sağlık ile İlgili Alanlar
 - Hastaların izlenmesi
- Ev Otomasyon Uygulamaları
 - Akıllı binalar,
 - Bina güvenliği,
- ☐ Ticari Uygulamalar
 - Endüstriyel otomasyon,
 - Trafik sinyalizasyonu (zeki yollar),
 - Binaların yapı denetimi,

KAA Türleri

☐ Yeraltı Kablosuz Algılayıcı Ağlar

(Underground Wireless Sensor Networks)

☐ Su altı Kablosuz Algılayıcı Ağlar (Underwater Wireless Sensor Networks)

KAA Türleri

□ Kablosuz Vücut Algılayıcı Ağlar (Wireless Body Sensor Networks)

Araç Alan Ağları(Vehicular Area Networks)

KAA Türleri

☐ Kablosuz Çoklu Ortam Algılayıcı Ağlar

(Wireless Multimedia Sensor Networks)

KAA Düğüm Yapısı

KAA Düğüm Çeşitleri

Dot 9/01

Küçük uC 8 kB Kod Bellek 512 B Veri Bellek

Basit Radyo 10 kbps ASK

EEPROM (32 KB)

Basit Sensörler

Rene 11/00

Deney amaçlı geliştirildi

- -Sensör boardları
- -Güç boardları

Mica 1/02

Boyutların

gösterimi için

Mica2 12/02 38.4kbps radyo

Spec 6/03 "çip şeklinde düğüm"

Waspmote

MICAz

- **CPU**:
 - 8-bit, 16 MHz, 16 MIPS ATMega128L μC
- ☐ Radyo:
 - Frekans: 2400-2483.5MHz (ISM)
 - ☐ İletim Hızı: 250Kbps
 - Mesafe: 75-100m
- ☐ Bellek:
 - ☐ 128 KB kod bellek (Flash)
 - 4 KB SRAM
 - ☐ 4 KB EEPROM
- Sensörler ve ADC
 - 8-kanal, 10-bit ADC
 - ☐ ışık, ses, sıcaklık, basınç,nem
- ☐ Kullanıcı tarafından ayarlanabilen 3 adet LED
- 2xAA Pil

MicaZ

Waspmote

- CPU:
 - 8-bit, 14 MHz, ATMega1281 μC
- Kablosuz Arayüzler:
 - □ 802.15.4 / ZigBee
 - □ BLE (Bluetooth 4.0)
 - WiFi
 - 6LoWPAN / IPv6 Radyo
 - ☐ GSM /GPRS
 - ☐ RFID/NFC
- ☐ Bellek:
 - ☐ 128 KB kod bellek (Flash)
 - 8 KB SRAM
 - 4 KB EEPROM
 - 2 GB SD Kart
- ☐ Giriş/Çıkış
 - 7 Analog I/O, 8 Dijital I/O, 1 I2C, 1 USB, 1 SPI
 - ☐ Temel Sensörler: ışık, ses, sıcaklık, basınç, nem
- 3.3v- 4.2v

KAA Mantiksal Mimari

KAA Mantıksal Mimari: İşleme (MICAz)

- Görevler:
 - Uygulamaların çalıştırılması
 - Kaynakların Yönetimi
 - Çevre Birimlerin Kontrolü
- Atmel AVR ATMEGA128L
 - ☐ 16 Mhz'de 16 MIPS Çalışabilme
 - RISC Mimari
 - ☐ 133 Komut Çoğu tek saykıllık
 - 8 bit ALU/veri yolu
 - 128 Kb Kod Bellek
 - 4 Kb SRAM Veri Bellek
 - 4 Kb EEPROM
 - ☐ 53 Programlanabilir G/Ç hattı
 - 3 zamanlayıcı, 2 UART, 1 SPI port
 - JTAG hata ayıklama desteği

ATMEGA128

KAA Mantıksal Mimari: Giriş/Çıkış Birimleri (MICAz)

- Görevler:
 - Algılama boardları arasında arabirim
 - Programlama boardları ile arabirim
 - Diğer cihazlarla iletişim
- ☐ G/Ç birimi 51-pin'lik bir genişleme yuvasından oluşur
 - 8 analog hat
 - 8 güç yönetim hattı
 - 3 PWM hatti
 - 2 analog karşılaştırma hattı
 - 4 harici kesme hattı
 - Bir adet I2C-hattı
 - bir SPI hattı
 - Bir seri port
 - Mikrodenetleyici programlama hatları

KAA Mantıksal Mimari: Saklama (MICAz)

- Görevler:
 - Algılama değerlerini saklar
 - Ağdan gelen bilgileri yedeklerini geçici olarak saklar
- Atmel AVR ATMEGA128L
 - 4 Mb (512 kB) bellek
 - □ 2.5V 3.6V veya 2.7V 3.6V Besleme
 - Serial Peripheral Interface (SPI) Uyumlu
 - 20 MHz Maksimum Saat sinyali
 - Two 264-byte SRAM Veri tamponu
 - Programlama sırasında veri alımını izin verir
 - Düşük güç tüketimi
 - Okuma sırasında 4 mA
 - Askıda iken 2 μΑ

KAA Mantıksal Mimari: Güç Yönetimi (MICAz)

- **☐** Görevler:
 - Sistem besleme gerilimini düzenler
- Maxim1678 DC-DC çevirici sabit 3.0V besleme sağlar

- ☐ Piller 3.2V ile 2.0V arasında gerilim üretir
- ☐ Alkaline pillerin %50' sinden fazlasında gerilim 1.2 V'un altına düşmektedir.
- ☐ Çevirici 0.8V'a kadar olan giriş gerilimini alır ve 3.0V'a yükseltir.
- ☐ Radyo iletişimi için sabit 3V besleme gerekmektedir.
- LM 4041 (voltage referans)
 - Pil voltajını ayarlar

*PIN 3 MUST BE LEFT FLOATING OR CONNECTED TO PIN 2.

KAA Mantıksal Mimari: Algılama (MICAz)

- Görevler:
 - Ortamdaki fiziksel büyüklükleri algılamak
 - Algılanan büyüklükleri mikro denetleyicinin anlayacağı forma çevirme
- Sensör Türleri
 - Sicaklik, nem, basinç
 - Ses,ışık
- Sensör-uC arabirimi
 - 51 Pin Konnektör
- ADC
 - 8-kanal, 10-bit ADC

KAA Mantıksal Mimari: RF İletişimi (MICAz)

Görevler:

- ☐ Kablosuz olarak veri gönderme ve alma
- Diğer düğümlerle bağlantı
- Düğümün Fiziksel katmanıdır.

- ☐ İşlemciye verileri paket paket gönderir
- Modulasyon, demodülasyon
- Protokol işleme
- Senkronizasyon
- Kodlama, kod çözme
- ☐ Hata tespiti ve düzeltme
- Otomatik ACK
- ☐ 128-bit AES şifreleme

	MICA z CC2420
Radyo Frekansı [MHz]	2400 - 2483.5
Max Veri Hızı (kbps)	250
RX Gücü (mA)	19,7
TX Gücü (mA)	17,4
Düşük güç modu (µA)	1
Modülasyon	DSSS-O-QPSK
Alıcı hassasiyeti	-94 dBm
Kapsama alanı	75 m - 100 m
Çoklu kanal desteği	Var

KAA Yönetim/Uygulama Yazılımları

- Gerçek uygulamalarda yönetimsel araçlara ihtiyaç duyulmaktadır.
 - Düğümlerin durumlarının gözlemlenmesi
 - Çevresel etkiler neticesiyle düğümler bozulabilir.
 - Ağın topolojisi değişebilir
- Bilgilerin görselleştirilmesi
 - Düğümlerin algıladığı değerlerin anlaşılabilir forma çevrilmesi
- Ağın yeniden programlanması
- Bir sensör yönetim protokolünün görevleri
 - Belirli düğümlerin açılıp- kapanması
 - Düğümlerinin hareketlerinin yönetilmesi
 - Ağın ayarları ve durumu hakkında sorgulamanın yapılması, ağın yeniden yapılandırılması
 - Kimlik denetiminin gerçekleştirilmesi, anahtar paylaşımı
 - Düğümler arasında zaman senkronizasyonunun gerçekleştirilmesi
 - Verilen kurallara göre verilerin toplanması düğümlerin kümelenmesi

KAA Yönetim/Uygulama Yazılımları

Kablosuz Algılayıcı Ağların Kısıtlamaları

☐ Üretim maliyeti:

Binlerce düğüm kullanılabileceğinden ucuz olmalı.

Donanımsal sınırlamalar:

Ucuzluk, sınırlı kaynaklara sebep olmakta; 8 bit, 16 Mhz uC, kısa mesafe iletişim

☐ Güç tüketimi:

Çoğunlukla değiştirilemeyen 2XAA pil

☐ Çevresel koşullar:

Zor doğa koşullarında çalışabilme; yüksek sıcaklık, basınç v.b.

■ Hata toleransı:

KAA'lar yapısı gereği hatalara yatkındır; kaybolma, bozulma v.b

☐ İletim ortamı:

Kısıtlı radyo ve zor doğa şartları

□ Ölçeklenebilirlik:

Sık yerleşim ve geniş ölçeği destekleme

Z-Wave

- ☐ ITU-T tarafından G.9959 tavsiye dökümanı ile onaylanmış bir protokoldür.
- Ev ve ofis ortamlarında elektrik/elektronik cihazlar ile haberleşmek için geliştirilmiş akıllı bina sistemlerinde yaygın olarak tercih edilen kablosuz haberleşme teknolojisidir.
- ☐ Z-Wave teknolojisinin en önemli özelliği, ağdaki tüm düğümlerin yönlendirme (routing) yeteneğine sahip olmasıdır. Böylelikle kapsama alanı ya da kablosuz iletişim problemi ortadan kaldırılmış olmaktadır.
- Mesh topoloji ve tüm düğümlerin yönlendirme yeteneği sayesinde tüm Z-Wave cihazlar birbirleri ile iletişim kurabilmekte ve bir cihazda yaşanan problem ağın tümünü etkilememektedir.
- □ 35 milyon üzerinde Z-Wave ürünü kullanılmaktadır. Z-Wave teknolojisine dayalı cihaz üreten firmalar arasında LG, Bosch, Zyxel, Honeywell vb. firmalar örnek olarak verilebilir.

Z-Wave

- ☐ Z-Wave Teknolojisinin Teknik Özellikleri
 - 868 / 908 / 2400 MHz frekans bandı,
 - CSMA/CA ortam erişim yöntemi,
 - 40 Kbit/s veri iletim hızı,
 - 232 düğüm ile ölçeklenebilirlik,
 - 128 bit AES şifreleme,
 - 30m kapalı, 100m açık kapsama alanı,
 - Mesh topoloji,
 - Fullduplex (çift yönlü) veri iletişimi,
 - Z-Wave cihazların bağımsız ya da grup olarak çalışma desteği

ANT/ANT+

- ☐ ANT, sensör ağlar, sağlık, spor gibi benzer uygulamalar için geliştirilmiş, ultra düşük güç tüketimine sahip, düşü veri iletim hızlı, kısa mesafeli bir kablosuz teknolojidir.
- □ ANT, Dynastream firması tarafından geliştirilmiş, bisiklet ve spor ekipmanları üreticisi olan Garmin firması tarafından satın alınmıştır.
- Tescilli bir teknoloji olmasından dolayı çok yaygınlaşmamıştır.
- □ ANT+ teknolojisinin yakın gelecekte akıllı telefonlarda yaygınlaşması beklenmektedir. Örnek: Samsung S7, S6, S5, Sony Xperia XZ, Z5
- ANT düğümleri/cihazları master ve slave olarak çalışabilir.
- □ Teknik Özellikleri
 - > 2.4 GHz ISM band,
 - TDMA ortam erişim yöntemi,
 - 232 düğüm ile ölçeklenebilirlik,
 - 1-30 m kapsama alanı,
 - > 40 Kbit/s

Kaynaklar

- □ Doç.Dr. Murat ÇAKIROĞLU Ders Slaytları
- http://www.z-wave.com/
- □ https://www.youtube.com/watch?v=e_Nmj9KtM34
- □ https://www.thisisant.com/consumer/ant-101/what-is-ant/

