Advanced Programming Techniques

Aurel Vlaicu University Arad

Practical Session #2

Exercise 1. 1. Algorithm A needs $10n^3$ operations to solve a problem. Algorithm B solves the same problem in $1000n^2$ operations. Which algorithm is faster (and for which n)?

2. Algorithm A needs $32n \log_2 n$ operations to solve a problem. Algorithm B solves it in $3n^2$ operations. Which algorithm is faster?

Exercise 2. Consider an algorithm whose execution time for N = 1000, 2000, 3000 and 4000 is respectively 5s, 20s, 45s, 80s. Estimate the execution time for N = 5000.

Exercise 3. Let f(n) = n. If possible find a function g(n) such that:

- $f(n) \in O(g(n))$ and $f(n) \notin \Omega(g(n))$.
- $f(n) \notin O(g(n))$ and $f(n) \in \Omega(g(n))$.
- $f(n) \in O(g(n))$ and $f(n) \in \Omega(g(n))$.
- $f(n) \notin O(g(n))$ and $f(n) \notin \Omega(g(n))$.

Exercise 4. (a) Show that the execution time for an algorithm is $\Theta(g(n))$ if and only if the worst case is O(g(n)) and the best case is $\Omega(g(n))$.

- (b) Show that $5n^2 3n + 4$ is $\Theta(n^2)$
- (c) Show that 2^{n+1} is $\Theta(2^n)$
- (d) Discuss why the phrase "The execution time of algorithm A is at least $O(n^2)$ " does not make sense.

Exercise 5. Class the following by the order of complexity:

$$\begin{array}{lll} n \log n & 4/n & \sqrt{n} & 2^{2^n} \\ \log \log n & 8n^3 & 8^{\ln n} & n/(2+n) \\ \log n^7 & 5^{\ln \log_2 n} & (\log_2 n)^3 & \frac{n}{\log_2 (2+n)} \end{array}$$

Exercise 6. Consider A an array of n values sorted in increasing order. We want to search if a value b is present in the array.

- (a) Write a pseudo-code for a brute force algorithm searching for b. Analyse the complexity in the best and worst cases.
- (b) Propose a dichotomic algorithm for finding b. Analyse its complexity in the best and worst cases.

Exercise 7. Project Euler (https://projecteuler.net/ contains a collection of computer science problem demanding efficient implementations. The 4th problem is the following:

A palindrome reads the same from right to left or from left to right. The largest palindrome which can be written as the product of two numbers of two digits is $9009 = 91 \times 99$. Find the largest palindrome which is the product of two numbers of three digits.

Propose an algorithm to solve the problem and indicate its complexity. Is the algorithm optimal?

Exercise 8. Consider a $N \times N$ matrix of booleans (0 or 1). Propose an algorithm for finding the largest continuous sub-matrix containing only values of 1.

For example the matrix (2D array)

1	0	1	1	1	0	0	0	
0	0	0	1	0	1	0	0	
0	0	1	1	1	0	0	0	
0	0	1	1	1	0	1	0	
0	0	1	1	1	1	1	1	
0	1	0	1	1	1	1	0	
0	1	0	1	1	1	1	0	
0	0	0	1	1	1	1	0	

contains a 4×4 sub-matrix containing only ones.