The law of large numbers

Show that the law of large numbers continues to hold if X, X_1 , ..., X_n , ... represent repeated independent trials of *integer-valued* chance variables with common expectation μ and variance σ^2 .

The law of large numbers

Show that the law of large numbers continues to hold if $X, X_1, ..., X_n, ...$ represent repeated independent trials of *integer-valued* chance variables with common expectation μ and variance σ^2 .

Mass function: $p(k) := P\{X = k\}$ $(k = 0, \pm 1, \pm 2, ...)$

The law of large numbers

Show that the law of large numbers continues to hold if X, X_1 , ..., X_n , ... represent repeated independent trials of *integer-valued* chance variables with common expectation μ and variance σ^2 .

Mass function:
$$p(k) := P\{X = k\}$$
 $(k = 0, \pm 1, \pm 2, ...)$

Expectation:
$$\mu := \mathbf{E}(X) = \sum_{k=-\infty}^{\infty} k \cdot p(k)$$

The law of large numbers

Show that the law of large numbers continues to hold if X, X_1 , ..., X_n , ... represent repeated independent trials of *integer-valued* chance variables with common expectation μ and variance σ^2 .

Mass function:
$$p(k) := P\{X = k\}$$
 $(k = 0, \pm 1, \pm 2, ...)$

Expectation:
$$\mu := \mathbf{E}(X) = \sum_{k=-\infty}^{\infty} k \cdot p(k)$$

Variance:
$$\sigma^2 := \text{Var}(X) = \sum_{k=-\infty}^{\infty} (k - \mu)^2 \cdot p(k)$$

Slogan

The law of large numbers comes into effect any time we have a sum of independent random variables sharing a common distribution with a given expectation and variance.