Building IaaS infrastructures on the AWS Cloud

Saul Pierotti

June 17, 2020

Abstract

The abstract text goes here.

1 General Description of the Infrastructure

The demostrative infrastructure described in this project consists of an HTCondor cluster of three nodes. One node is configured as Master Node, while 2 nodes are configured as Worker Nodes. The infrastructure can be easily expanded by replicating the Worker Node instances. The Master Node was not used also as a Worker Node since the performance benefits and cost savings would be marginal. This was done also to avoid overloading the Master Node, on which the entire cluster depends. A shared storage space directly attached to the Master Node but available to all the Worker Nodes was also implemented using the distributed file system NFS.

2 Initialization of the instances on the AWS Cloud

Worker Nodes and the Master Node were both built on the same base instance configuration. The t2.medium instance type was used with a 50 Gb SSD as root storage. The operating system choosen is Ubuntu Server 18.04.4 LTS. The Master Node and the Worker Nodes were all instatiated in the same availability zone (us-east-la), so that they would be able to communicate through private IPv4 adresses. The security group for the instances was configured as follows:

All the TCP ports were opened to the other members of the same security group since HTCondor deamons use a dynamically assigned port. The TCP ports were also needed for the setup of a shared NFS volume. ICMP ports were opened for accepting incoming ping requests for testing purposes. TCP port 22 was opened for allowing remote control of the machines via ssh.

3 Configuration of the Master Node

The PS1 prompt of the Master Node was changed so to make the node easily identifiable from the command line.

```
ubuntu@bdp1-master-node:~$ echo $PS1
\[\e]0;\u@\h: \w\a\]${debian_chroot:+($debian_chroot)}\[\033[01;32m\
]\u@bdp1-master-node\[\033[00m\]:\[\033[01;34m\]\w\[\033[00m\]\$
```

HTCondor was then installed with the following commands:

```
sudo su
wget -q0 - https://research.cs.wisc.edu/htcondor/ubuntu/HTCondor-Release.gpg.key | apt-key add - #
    import the gpg key of HTCondor
echo "deb http://research.cs.wisc.edu/htcondor/ubuntu/8.8/bionic bionic contrib" >> /etc/apt/sources.
    list # add the repository
echo "deb-src http://research.cs.wisc.edu/htcondor/ubuntu/8.8/bionic bionic contrib" >> /etc/apt/
    sources.list
apt update
apt install htcondor
systemctl start condor # start and enable the condor service
systemctl enable condor
```

The correct proceeding of the installation and the start of the condor service where checked with the following commands:

```
de:~$ sudo systemctl status condor
 condor.service - Condor Distributed High-Throughput-Computing
  Loaded: loaded (/lib/systemd/system/condor.service; enabled; vendor preset: enabled)
  Active: active (running) since Tue 2020-06-16 10:31:25 UTC; 1min 16s ago
Main PID: 15225 (condor_master)
  Status: "All daemons are responding"
  CGroup: /system.slice/condor.service
           —15225 /usr/sbin/condor_master -f
            -15266 condor_procd -A /var/run/condor/procd_pipe -L /var/log/condor/ProcLog -R 1000000 -S 60 -C 111
           L_15268 condor_shared_port -f
Jun 16 10:31:25 ip-172-31-8-109 systemd[1]: Started Condor Distributed High-Throughput-Computing.
ubuntu@bdp1-master-node:~$ ps ax | grep condor
15225 ?
                                             master -f
                   0:00 condor_procd -A /var/run/co
0:00 condor_shared_port -f
                                                          dor/procd_pipe -L /var/log/<mark>condor</mark>/ProcLog -R 1000000 -S 60 -C 111
15266 ?
15268 ?
                      0:00 grep --color=auto
15286 pts/0
```

The following lines where appended at the end of the main HTCondor configuration file, located at /etc/condor_config:

```
# Master Node IP
CONDOR_HOST = <Master_Node_private_IP>
# Master Node config
DAEMON_LIST = COLLECTOR, MASTER, NEGOTIATOR, STARTD, SCHEDD
```

Finally, the condor service was restarted with the following command:

```
sudo systemctl restart condor
```

The NFS server was then implemented in the Master Node. A new 100 Gb standard magnetic volume was created from the AWS interface and attached to the Master Node. From the server, a primary partition was initialized on the volume using fdisk and an Ext4 file system was created onto it using mkfs.ext4. The file /etc/fstab of the Master Node was modified so that the machine would mount the volume automatically at boot under the newly created directory /data. The following line was appended to /etc/fstab:

The following commands were then issued, so to install the appropriate packages:

```
sudo apt install nfs-kernel-server
```

The following line was appended to the NFS configuration file /etc/exports:

```
/data 172.31.0.0/16(rw,sync,no_wdelay)
```

Finally, the owner and group of the shared folder was changed to nobody:nogroup and the permission of the folder were edited so to grant unlimited access to it:

```
sudo chown nobody:nogroup /data
sudo chmod 777 /data
```

The /data folder was so made available to all the Worker Nodes on the address range 172.31.0.0/16. This configuration does not pose a security risk since the the Master Node and Worker Nodes machines belong to a Virtual Private Cloud (VPC), and so only machines instatiated on it will be able to access the volume. Moreover, this configuration grants immediately access to the volume to newly instantiated Worker Nodes. A mock file was created on the /data folder so to be able to recognize it when mounted.

```
touch /data/this_is_a_shared_NFS_volume
```

4 Configuration of the Worker Nodes

A virtual machine identical to the one used for the Master Node was instantiated. The PS1 prompt of this first Worker Node was changed so to make the node easily identifiable from the command line.

```
ubuntu@bpd1-worker-node:~$ echo $PS1
\[\e]0;\u@\h: \w\a\]${debian_chroot:+($debian_chroot)}\[\033[01;32m\]\u@bpd1-worker-node\[\033[00m\]:\[\
033[01;34m\]\w\[\033[00m\]\$
```

HTCondor was installed in this system with the same procedure used for the Master Node. Only the /etc/condor_config file was configured differently, by appending the following lines to it:

```
# Master Node IP
CONDOR_HOST = <Master_Node_private_IP>

# Worker Node config
HOSTALLOW_READ = *
HOSTALLOW_WRITE = *
HOSTALLOW_ADMINISTRATOR = *
```

On the Worker Node access to the shared NFS volume was then set up. The following command was issued to install the required packages:

```
sudo apt install nfs-common
```

A new directory was then created at /data using the mkdir command. The /etc/fstab file was edited by appending the following line, so that the shared volume would be automatically mounted at boot under the directory /data:

```
<Master_Node_private_IP>:/data /data nfs defaults 0 0
```

It was then verified that the shared volume was accessible from the Worker Node.

```
ubuntu@bpd1-worker-node:~$ ll /data
total 24
drwxrwxrwx 3 nobody nogroup 4096 Jun 17 07:16  /
drwxr-xr-x 24 root root 4096 Jun 17 06:46 ../
drwx----- 2 root root 16384 Jun 16 17:38 lost+found/
-rw-rw-r-- 1 ubuntu ubuntu 0 Jun 17 07:16 this_is_a_shared_NFS_volume
```

An image of the virtual machine was taken through the AWS interface. In this way, the Worker Nodes would be easily replicable when more computational power is needed by instaciating new virtual machines from the image, without the need for manual configuration.

5 Submission of a test job to the HTCondor cluster

For demostrating the use of the newly created cluster, a new Worker Node was instanciated from the Worker Node image, so that the cluster would contain the Master Node and 2 Worker Nodes.