Searching PAJ Page 1 of 2

PATENT ABSTRACTS OF JAPAN

(11)Publication number : **63-198762**

(43) Date of publication of application: 17.08.1988

(51)Int.Cl. F02M 21/02

F02B 43/10 F02M 21/02

(21)Application number: 62-028914 (71)Applicant: AGENCY OF IND SCIENCE &

TECHNOL

(22)Date of filing: 10.02.1987 (72)Inventor: UCHIYAMA YOSHITADA

HAMA JUN

KAWAGUCHI YASUO

(54) METHOD FOR FEEDING HYDROGEN AND SUCKING AIR FOR INTRA-CYLINDER DIRECT INJECTION TYPE HYDROGEN ENGINE

(57)Abstract:

PURPOSE: To reliably feed hydrogen even if the suction air pressure in a cylinder is made high by controlling an intra-cylinder direct injection type hydrogen engine with supercharger so as to feed hydrogen after the closure of an exhaust valve and to suck air after completion of the hydrogen feed.

CONSTITUTION: An exhaust pipe 3, a suction pipe 4, and a hydrogen gas feed pipe 5 are connected to the head section of a cylinder 2, and an exhaust valve 6, a suction valve 7, and a hydrogen injection valve 8 are provided on the pipes 3W5 respectively. The compressor section of a supercharger using the exhaust gas as a drive source is provided on the suction pipe 4 to supercharge the suction air. The exhaust valve 6 is

closed near the top dead point of a piston 1 when an exhaust stroke is completed, and the hydrogen injection valve 8 is opened immediately after this exhaust valve 6 is closed to inject hydrogen gas into a combustion chamber. Next, after the hydrogen injection valve 8 is closed at the rotation position of the crank angle of about 90°, the suction valve 7 is opened,

Searching PAJ Page 2 of 2

supercharged air is fed to the combustion chamber and mixed with hydrogen then compressed and ignited and exploded by an ignition plug 9.

⑩ 日本国特許庁(JP)

① 特許出願公開

⑩ 公開特許公報(A) 昭63-198762

<pre>⑤Int.Cl.⁴</pre>	識別記号	庁内整理番号	④公開	昭和63年(1988) 8月17	日
F 02 M 21/02 F 02 B 43/10 F 02 M 21/02	3 0 1	G-7604-3G B-7713-3G R-7604-3G	審査請求 有	発明の数 1 (全4頁))

母発明の名称 シリンダ内直接噴射型水素エンジンにおける水素供給及び給気方法

②特 願 昭62-28914

9出 願 昭62(1987)2月10日

⑫発 明 者 内 山 芳 忠 茨城県新治郡桜村並木1丁目2番地 工業技術院機械技術

研究所内

⑫発 明 者 浜 純 茨城県新治郡桜村並木1丁目2番地 工業技術院機械技術

研究所内

⑫発 明 者 川 口 靖 夫 茨城県新治郡桜村並木1丁目2番地 工業技術院機械技術

研究所内

⑪出 願 人 工 業 技 術 院 長 東京都千代田区霞が関1丁目3番1号

⑩指定代理人 工業技術院機械技術研究所長

叨細書

1. 発明の名称

シリンダ内直接噴射型水素エンジンにおける 水素供給及び給気方法

2。特許請求の範囲

給気弁と排気弁および水素噴射弁を有する水 素ガスエンジンの比出力向上のため、過給機を 設けた4サイクルシリング内直接噴射型水素エ ンジンにおいて、

排気弁が閉鎖後のピストンTDC付近から水 素噴射弁を開いて水素ガスがシリンダ内に供給 され、所定の期間だけ水素ガスを供給した後該 水素噴射弁を閉じ、この直後に給気弁を開いて 給気を行ない、該給気をBDC以降のシリンダ 内圧が給気圧力に近似する値になるまで行うと 同時に、前記水素供給量の制御を水素で取射弁の 開弁期間を一定の下に水素ガス圧力を変噴射型 水素エンジンにおける水素供給及び給気方法。

3. 発明の詳細な説明

(産業上の利用分野)

本発明は、比較的低圧の水素ガスを燃料とするシリング内直接噴射型水素エンジンに関し、 更に詳しくほ該 4 サイクル火花点火式のシリング内直接噴射型水素エンジンに過給機を付設したものにおいて、最適な水素の供給時期及び給気の時期を選定した水素供給及び給気方法に関するものである。

(従来の技術)

4 サイクル火花点火エンジンの燃料として水 素ガスを用いることは、従来公知である。(特 公昭 5 8 - 1 2 4 5 8 号公報参照)

上記、公知のシリンダ内直接噴射型水素エンジンを第4図ないし第6図を参照して説明する。第4図は上記公知の水素エンジンの構成を示すもので、ピストン1を備えたシリンダ2の頭部に排気管3、給気管4及び水素がス供給管5を接続し、これらの各管にそれぞれ排気弁6、給気弁7及び水素噴射弁8を設けている。点火プラグ9は所定の時期に火花をとばすことによ

りシリンダ内で水楽を燃焼させるものである。

水素エンジンでは、シリンダ内に吸入される水素量によって出力が定まる。従って、出力の制御は、水素噴射弁の開弁期間を一定の下に水素噴射圧力を可変とし、それに伴なうシリンダ内への水素供給量の増減によって行なっている。この場合に、給気管4からは空気のみをシリングに吸入し、その空気量の制御は行なわない。

第5 図は上記水素エンジンにおける各弁の間 関時期を示すもので、〇は開時期、Cは閉時期 を示している。同図に示すように、給気弁では 吸入行程の終期における下死点(BDC)で閉じ、 また水素噴射弁8は上記下死点で開き、これに よって両弁7、8の囲弁期間には相互に時期的 な重なりがないように設定している。従って、独 空気と水素ガスのシリンダ内への流入は全気量 が水素がス供給の影響を受けるようなことはない。

このため、特殊な水素吸蔵合金を用いて高い 水素ガスの圧力を得られるようにするか、ある いは低圧の水素ガスを加圧ポンプで昇圧しなけ ればならない。

以上説明したように、従来公知のシリンダ内直接噴射型水業エンジンでは、過給機を設けた場合、高コストかつ構造の複雑化の避けられないものであった。

そこで本発明の目的は、シリング内直接慣射型水素エンジンにおいて、過給機を付設してシリング内の給気圧力を高くしても、格別の付属装置を設置することなく水素供給を行なうことのできるようにした給気方法を提供するにある。(問題点を解決するための手段)

本発明の特徴とするところは、以下の点にある。 る。

給気弁と排気弁と過給機と水素噴射弁とを有し、吸入行程にシリング内に水素を直接供給した後前記過給機によってシリング内に加圧給気する過給機付きシリング内直接噴射型水素エン

第6図は、上記水業エンジンの圧縮行程におけるシリング内圧力と水業供給圧力との関係を示すもので、曲線 I はシリング内圧力を、線 I 及び線皿は水素供給圧力を示している。

国図に示しているように水素供給圧力は必要とする出力に応じて、水素噴射弁8が開放している間において、

(シリング内圧力)<(水来供給圧力) の範囲においてシリング内に供給される。 (発明が解決しようとする問題点)

以上に示す公知のシリング内直接順射型水素エンジンでは、過給機を付設した場合、水素噴射が不可能かあるいは困難となる。即ち、水素ガスは水素吸蔵合金から発生させるものとなっており、その圧力は余り高くない。このため、給気の過給を行なうと、シリング内圧力が高くなって

(シリンダ内圧力) < (水素供給圧力)
の関係となる時期が極短期間となるか、あるい
は無くなってしまう。

ジンにおいて、

排気弁の閉鎖後に水薬供給を行ない、水素供給の終了後に給気を行なうようにしたところにある。

(実施例)

以下、本発明の一実施例を第1図ないし第3図を用いて説明する。

第1図は本発明の一実施例になる水素エンジンの構成を示すもので、ピストン1を備えたシリンタ2の頭部に排気管3、給気管4及び水素ガス供給管5を接続し、これらの各管にそれぞれ排気介6、給気介7及び水素噴射介8を設けている。点火栓9は所定の時期に火花をとばすことにより水素を燃焼させるものである。

以上までの構成は、従来公知の水素エンジンと同様であるが、本発明では過給機10が付設され、シリンダ2内に吸入される給気の圧力が高いものとなっている。

第2図は上記水楽エンジンにおける各弁の開 閉時期を示すもので、〇は開時期、Cは閉時期 を示している。

同図に示すように、排気弁らは排気行程の終 了時であるピストンのTDC付近で閉じる。排 気弁らが閉じると、その直後に水素噴射弁8が 関く。水素噴射弁8と排気弁6とのオーバーラップは異常燃焼や排気の水素ガス供給管5への逆 流の原因となるので、両弁のオーバーラップは 原則として採用しないが、前記異常燃焼等が生 じない程度であれば、多少のオーバーラップを 採用してもよい。

水素エンジンの出力はシリング内に吸入される水素量によって定まる。この発明では水素がスの供給圧力を可変とし、水素噴射弁8の開発のである。そして水素供給圧力は、例えばアクセルベグルの踏み込み量あるいは踏み込み時間によって種々に変更されるものである。尚、計算及び実験結果から、介開をTDCとすると、開発期間はクランク角で90・は必要である。そして、水素噴射弁8が閉じると、給気弁7が

以上説明したように、本発明によると、排気行程の終了と同時に水素供給が始まり、所定期間だけ水素供給がなされて後、給気行程が始まる。水素供給型によって出力が定まるので、水素供給圧力の制御はアクセルペダル(図示しない)によって図のPi、P2の範囲で行なわれる。所定量の水素供給が終了すると、水素噴射弁のが関じられて給気弁でが関かれるが、給気は過給されているので、ピストンがBDC以降も給気されるものとなって、シリング内圧力が過給圧となるまでの適宜の時期に給気

以上に説明した本発明のエンジンは、空気過 刺率を大きくしているものであるから、給気の 量の精密な制御を必要としない。

(発明の効果)

以上のように構成され、作用する本発明の効果は以下のとおりである。

シリング内直接噴射式の水素エンジンにおいて、低圧の水素を使用した上で、過給を行なう

聞く。ここで、水素噴射弁 8 と給気介 7 とのオーバーラップは原則として採用しないが、給気の水素 ガス供給管 5 への逆流がない程度、あるいは水素噴射量の制御を困難としない範囲であればオーバーラップを採用し、体積効率を向上させるようにしてもよい。

給気弁7の給気期間は、以下に示すように、 シリンダ内の圧力が過給圧に近似する程度とな るまで行なわれる。

第3図は、上記水素エンジンの給気行程と圧縮行程におけるシリンダ内圧力と過給圧との関係を示すもので、曲線「はシリンダ内圧力を線」は過給圧を示している。

岡図に示しているように過給圧は常に一定に 保たりており、

(シリンダ内圧力)<(過給圧)

の関係が成立する期間だけ給気するようになっている。給気弁ではシリンダ内圧力と過給圧とが同圧となるK点よりも以前に閉じるものとなっている。

ことが可能となる。

又、吸気行程の始めに水素噴射弁を開閉制御 するものとなっているので、水素供給量の制御 が容易になされるものとなる。

まず水素が吸入され、その後に空気が給気されるので、水素と空気の混合比が可燃範囲となった時には、既にシリンダ内が冷却されている状態となるので、過早消火、逆火が防止されものとなる。

4. 図面の簡単な説明

第1図は本発明の一実施例を示すシリング内 直接噴射型の水素エンジンを示す断面図、第2 図は本発明の水素供給方法を示す線図、第3図 は本発明の給気介閉鎖時期をシリング内圧力と 過給圧との関係で定める線図である。又、第4 図は従来公知シリング内噴射式の水素エンシン を示す断面図、第5図は第4図に示すエンシン の水素供給方法を示す線図、第6図は第4図に 示すエンジンの水素噴射弁閉鎖時期をシリング 内圧力と水素供給圧力との関係で定める線図で ある。

1:ピストン2:シリンダ3:排気管4:給気管5:水素ガス供給管6:排気弁7:給気弁8:水素噴射弁9:点火プラグ

10:過給機

指定代理人 工業技術院機械技術研究所及

