

MITx: 6.008.1x Computational Probability and Inference

Helr

Introduction

1. Probability and Inference

Introduction to Probability (Week 1)

Exercises due Sep 21, 2016 at 21:00 UTC

Probability Spaces and Events (Week 1)

Exercises due Sep 21, 2016 at 21:00 UTC

Random Variables (Week 1)

Exercises due Sep 21, 2016 at 21:00 UTC

Iointly Distributed Random Variables (Week 2)

Exercises due Sep 28, 2016 at 21:00 UTC

Conditioning on Events (Week 2)

Exercises due Sep 28, 2016 at 21:00 UTC

Homework 1 (Week 2)

Homework due Sep 28, 2016 at 21:00 UTC

Inference with Bayes' **Theorem for Random** Variables (Week 3)

Exercises due Oct 05, 2016 at 21:00 UTC

Independence Structure (Week 3)

Exercises due Oct 05, 2016 at 21:00 UTC

Homework 2 (Week 3)

Homework due Oct 05, 2016 at 21:00 UTC

Notation Summary (Up Through Week 3)

Mini-project 1: Movie Recommendations (Week 3)

Mini-projects due Oct 12, 2016 at 21:00 UTC

G.

1. Probability and Inference > Inference with Bayes' Theorem for Random Variables (Week 3) > Bayes' Theorem for Random Variables

Bayes' Rule for Random Variables (Also Called Bayes' Theorem for Random Variables

6.008.1x - Bayes' Rule for Random Variables (Also Called Bayes' Theorem for Random \

5:45 / 5:45

Video Download video file **Transcripts** Download SubRip (.srt) file

Download Text (.txt) file

These notes cover roughly the same content as the video:

BAYES' THEOREM FOR RANDOM VARIABLES (COURSE NOTES)

In inference, what we want to reason about is some unknown random variable X, where we get to observe some other random variable $m{Y}$, and we have some model for how $m{X}$ and $m{Y}$ relate. Specifically, suppose that we have some "prior" distribution $m{p_X}$ for $m{X}$; this prior distribution encodes what we believe to be likely or unlikely values that X takes on, before we actually have any observations. We also suppose we have a "likelihood" distribution $p_{Y|X}$.

After observing that Y takes on a specific value y, our "belief" of what X given Y=y is now given by what's called the "posterior" distribution $p_{X|Y}(\cdot \mid y)$. Put another way, we keep track of a probability distribution that tells us how plausible we think different values $oldsymbol{X}$ can take on are. When we observe data $oldsymbol{Y}$ that can help us reason about $oldsymbol{X}$, we

proceed to either upweight or downweight how plausible we think different values $m{X}$ can take on are, making sure that we end up with a probability distribution giving us our updated belief of what \boldsymbol{X} can be.

Thus, once we have observed Y=y, our belief of what X is changes from the prior p_X to the posterior $p_{X|Y}(\cdot \mid y)$.

Bayes' theorem (also called Bayes' rule or Bayes' law) for random variables explicitly tells us how to compute the posterior distribution $p_{X|Y}(\cdot \mid y)$, i.e., how to weight each possible value that random variable X can take on, once we've observed Y=y. Bayes' theorem is the main workhorse of numerous inference algorithms and will show up many times throughout the course.

Bayes' theorem: Suppose that y is a value that random variable Y can take on, and $p_Y(y) > 0$. Then

$$p_{X\mid Y}(x\mid y) = rac{p_X(x)p_{Y\mid X}(y\mid x)}{\sum_{x'}p_X(x')p_{Y\mid X}(y\mid x')}$$

for all values \boldsymbol{x} that random variable \boldsymbol{X} can take on.

Important: Remember that $p_{Y|X}(\cdot \mid x)$ could be undefined but this isn't an issue since this happens precisely when $p_X(x)=0$, and we know that $p_{X,Y}(x,y)=0$ (for every y) whenever $p_X(x) = 0$.

Proof: We have

$$p_{X\mid Y}(x\mid y)\stackrel{(a)}{=}\frac{p_{X,Y}(x,y)}{p_{Y}(y)}\stackrel{(b)}{=}\frac{p_{X}(x)p_{Y\mid X}(y\mid x)}{p_{Y}(y)}\stackrel{(c)}{=}\frac{p_{X}(x)p_{Y\mid X}(y\mid x)}{\sum_{x'}p_{X,Y}(x',y)}\stackrel{(d)}{=}\frac{p_{X}(x)p_{Y\mid X}(y\mid x)}{\sum_{x'}p_{X}(x')p_{Y\mid X}(y\mid x')}$$

where step (a) uses the definition of conditional probability (this step requires $p_Y(y) > 0$), step (b) uses the product rule (recall that for notational convenience we're not separately writing out the case when $p_X(x) = 0$), step (c) uses the formula for marginalization, and step (d) uses the product rule (again, for notational convenience, we're not separately writing out the case when $p_X(x')=0$). \square

© All Rights Reserved

© 2016 edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open EdX logos are registered trademarks or trademarks of edX Inc.

