Lecture10_Recurrent Neural Networks

one-to-one	one-to-many	many-to-one	many-to-many	many-to-many
(vanilla neural network) CNN	image captioning — 사진(fixed size data) 으로부터 문장 (sequence of word) 만들어냄	Sentiment classification: seq of words → sentiment	Machine Translation: seq of words → seq of words	frame-level video classification — 매 프레임에서 classification

→ RNN은 이러한 가변 길이를 가지는 데이터에 강함

Sequential Processing of Non-Sequence Data

Classify images by taking a series of "glimpses"

Ba, Mnih, and Kavukcuoglu, "Multiple Object Recognition with Visual Attention", ICLR 2015.
Gregor et al, "DRAW: A Recurrent Neural Network For Image Generation", ICML 2015

하지만 이렇게 입출력은 고정이지만, sequential processing이 필요한 경우에도 유용하다. 예) 이미지(고정 길이 입력)에서 숫자 분류를 할 때, feed forward pass 한 번이 아니라, 이미지의 여러 부분을 조금씩 살펴본다.

이전 hidden state에서의 output과 현재 step의 input vector(x_t)가 입력으로 들어옴. hidden state는 입력값 마다 매번 update됨(hidden state를 담당하는 가중치가 따로 있음)

⇒ 같은 function과 parameter들이 매 스텝마다 업데이트됨!

Vanilla Recurrent Neural Network

RNN — Computational Graph: Many to Many

*. h0은 일반적으로 0으로 초기화

계속해서 똑같은 가중치 W를 re-use. (h와 x는 달라지지만 W는 같음)

backpropagation시에, 각 스텝에서의 W에 대한 그레디언트를 모두 계산해서 더해줌.

RNN의 출력값 h_t가 또 다른 네트워크의 입력으로 들어가서 y_t(예를들어 매 스텝의 class score)를 만들어 냄 \rightarrow 만일 각 시퀀스마다 ground truth가 있다면 각 스텝마다 개별적으로 y_t 에대한 loss(e.g. softmax loss)가 계산 가능 함 \Rightarrow 최종 loss: 그러한 loss들의 합

RNN — Computational Graph: Many to One

RNN: Computational Graph: Many to One

- e.g. 감성분석
- final hidden state가 전체 sequence에서 모든 context에대한 요약임
 - → final state에대한 결과값만 나옴

RNN — Computational Graph:One to Many

RNN: Computational Graph: One to Many

- fixed input과 가변 출력을 가지는 경우
- *. 대부분 고정길의 입력으로 initial hidden state를 초기화함

Sequence to Sequence: Many-to-one + one-to-many

: encoder-decoder 구조

encoder가 가변 입력을 받아 정보를 요약한 한개의 vector로 출력하고, 이를 다시 디코더의 입력으로 넣어 가변 출력을 내놓음.

예) 프랑스어 문장 → 문장이 요약된 single vector(context vector) → 프랑스어 문장

Example: Character-level Language Model Sampling

Vocabulary: [h,e,l,o]

At test-time sample characters one at a time, feed back to model

- -모든 timestep에서 다음에 올 단어를 예측하고 오차를 크로스 엔트로피를 통해 구한다.
- -RNN은 매우 느리고(순착적으로 진행해야하기때문) 많은 메모리를 사용하는 단점이 있음
- → 이를 해결하기 위해 Truncated Backpropagation through time을 사용함.(CNN의 미니배 치 같은 것)

Image Captioning

Recurrent Neural Network

Convolutional Neural Network

CNN과 RNN을 결합한 기술. CNN으로 사진을 넣으면 RNN에서 단어 seq가 출력으로 나온다.

: 이미지와함께 <start> 시그널을 함께 넣어주고, 소프트맥스 직전 FC 레이어에서 이미지가 요약된 벡터를 RNN으로 보내준다. 그리고 RNN의 hidden state를 하나씩 거쳐 captioning된 단어를 하나씩 출력하다 <END> 토큰을 만나면 멈춘다.

with attention개념도 있는데, 이 부분은 나중에 좀 더 자세히 정리..

LSTM

RNN의 GVP 해결 위해 등장

Vanilla RNN

LSTM

$$h_t = \tanh\left(W\begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}\right)$$

$$\begin{pmatrix}
i \\
f \\
o \\
g
\end{pmatrix} = \begin{pmatrix}
\sigma \\
\sigma \\
\sigma \\
\tanh
\end{pmatrix} W \begin{pmatrix}
h_{t-1} \\
x_t
\end{pmatrix}$$

$$c_t = f \odot c_{t-1} + i \odot g$$

$$h_t = o \odot \tanh(c_t)$$

Cell remembers values over arbitary time intervals (Memory): cell은 임의의 시간동안
 값을 기억하여 memory 역할을 한다.

short term 메모리는 hidden state에 있음.

LSTM은 이에 cell이 long-term memory 역할을 함. (Ct가 memory가 되어 time step마다 전달됨)

• gate들로 logn term이 short term에 얼마나 반영될지 등을 조절함

ong Short Term Memory (LSTM)

vector from

Hochreiter et al., 1997]

- f: Forget gate, Whether to erase cell
- i: Input gate, whether to write to cell
- g: Gate gate (?), How much to write to cell
- o: Output gate, How much to reveal cell

$$\begin{pmatrix}
i \\
f \\
o \\
g
\end{pmatrix} = \begin{pmatrix}
\sigma \\
\sigma \\
tanh
\end{pmatrix} W \begin{pmatrix}
h_{t-1} \\
x_t
\end{pmatrix}$$

$$c_t = f \odot c_{t-1} + i \odot g$$

$$h_t = o \odot \tanh(c_t)$$

• Forget gate f_t : whether to erase cell. cell에 저장되어있는 기억을 잊을것인지를 결정한다.

즉, 1이면 Ct-1이 반영되어 정보를 보존하는 것이고, 0이면 Ct-1이 반영되지 않는다.

- Input gate i_t : whether to write cell.input을 쓸 것인지를 결정한다.
- Output gate o_t : how much to reveal cell. 현재 cell이 hidden state에 반영이 될 것인지 를 결정한다.
- 과거 state인 Ct-1를 업데이트해서 새로운 cell state인 Ct를 만든다. 우선 이전 state에 ft를 곱해 잊어버리기로 했던 것을 잊어버리고, it * Ct hat을 더해준다.
- 그리고 output을 낸다. sigmoid layer에 input을 태운 ot로 어떤 부분을 아웃풋으로 내보낼지 정한다. 이를 cell state를 tanh layer에 태운 값과 곱해주면 원하는 부분만 output으로 내보낼 수 있는 것이다.

LSTM gradient flow

Long Short Term Memory (LSTM): Gradient Flow [Hochreiter et al., 1997]

Backpropagation from c_t to c_{t-1} only elementwise multiplication by f, no matrix multiply by W

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}$$
$$c_t = f \odot c_{t-1} + i \odot g$$
$$h_t = o \odot \tanh(c_t)$$

LSTM은 RNN의 gradient vanishing problem을 해결하는가?

— LSTM의 cell state를 보면, i_t 와 o_t 는 덧셈이 되기때문에 소수값에 영향을 받지않고 그대로 더해진다. 이에 $0\sim1$ 소수값을 가지는 f_t 가 곱해져 GVP가 일어날 수 있지만 훈련으로 f를 1에 가깝게 만들 수 있다.

— 만일 f가 1에 가깝다면 GVP가 줄어들 수 있다. 이는 곧 f의 의미에 의해 이전 state의 cell을 거의 반영한다는 뜻으므로 긴문장에서도 앞에 있는 단어를 잊지 않을 수 있는 것이다.