COMPO: Structural Biases for Compositional Generalisation

Maximin Coavoux

maximin.coavoux@univ-grenoble-alpes.fr

Challenge datasets for compositional generalization

- ullet COGS (Kim et al 2020) \longrightarrow SLOG (Li et al 2023): artificial semantic parsing datasets constructed to assess the **compositional generalization** abilities of NLP models
- Systematic shifts / gaps between train and test

(a) Lexical generalization: object \rightarrow subject (COGS)

Emma saw the dog

- Clasical format:
 - *dog(x3); see.agent(x1, Emma)
 AND see.theme(x1, x3)
- Variable free format:
 - see(agent=Emma, theme=*dog)

Challenge datasets for compositional generalization

- COGS:
 - Lexical generalization 80 % of the corpus
 - Structural generalization : 20 %
 - ► seq2seq models at around 80 % accuracy (100 on lexical, ~0 on stuctural)
- SLOG: focus on structural generalization
 - larger coverage of syntactic structures
 - center embedding, wh-questions, relative clauses
 - larger coverage of generalization types :
 - ★ generalization to shorter or deeper recursion
 - ★ distribution of semantic roles

Challenge datasets for compositional generalization

- COGS:
 - Lexical generalization 80 % of the corpus
 - Structural generalization : 20 %
 - ▶ seq2seq models at around 80 % accuracy (100 on lexical, ~0 on stuctural)
- SLOG: focus on structural generalization
 - larger coverage of syntactic structures
 - center embedding, wh-questions, relative clauses
 - larger coverage of generalization types :
 - ★ generalization to shorter or deeper recursion
 - * distribution of semantic roles
- A limitation of COGS / SLOG from COMPO's perspective:
 - The type of generalization expected in COGS model some form of language competence (extremely deep recursion) that might not be appropriate if we take into account speakers' memory limitations
 - ▶ Gabriel enlarged a donut that the teacher that a spokesman that the lawyer that a bird that a girl that a boy that a squirrel that Emma ate helped rolled packed drew floated tolerated cleaned .

COGS and syntax: Yao and Keller (2022)

- Structural generalization is hard for seq2seq models
 - ▶ BART / T5 fail on structural generalisation
 - even when given gold syntactic trees as input
- What happens if you simplify the task?
 - replace Logical Form by gold syntactic tree
 - \star (S (NP (Det The) (N baby) [.....] (VP (V screamed)))
 - replace Logical Form by sequence of POS
 - ★ Det N P Det N P Det N V
 - ► BART / T5 still fail (a bit less miserably)
- In contrast, Berkeley Neural parser is 84-99 % (depending of types of syntactic generalization)

COGS and syntax: Yao and Keller (2022)

	Model Class	Model	Obj to	o Subj PP	STRUCT CP recursion	PP recursion	all 18	LEX other types	Overall
		BART		0	0	12		91	79
		BART+syn		0	5	8		93	80
semantics	seq2seq	T5		0	0	9		97	83
		Kim and Linzen 2020		0	0	0		73	63
		Akyürek and Andreas 2021		0	0	1		96	82
		Zheng and Lapata 2022		0	12	39		99	89
		Conklin et al. 2021		0	0	0		88	75
		Csordás et al. 2021		0	0	0		95	81
		Qiu et al. 2021 *		100	100	100		100	100
	structure-aware	Liu et al. 2021		93	100	99		99	99
		Weißenhorn et al. 2022		78	100	99		100	98
syntax	seq2seq	BART		0	9	22		99	87
		T5		5	7	9		99	86
	structure-aware	Neural Berkeley Parser		84	95	98		100	99
POS tags	seq2seq	BART		0	6	19		98	85
		T5		0	4	4		98	85
	structure-aware	most frequent POS		92	98	100		92	93

COGS and syntax : Lessons Learned

Strong mismatch between the task and the tool

If the only tool you have is a hammer GPT, it is tempting to treat everything as if it were a nail a generation problem.

- Seq2seq models (in their current form) are not appropriate for structured prediction
 - ▶ Yao & Keller hypothesis: they have access to syntactic information but can't make anything out of it
 - ▶ Recall that the early seq2seq parser (Vinyals et al 2014) needed 11M sentences to compare to sota parsers trained on PTB
- On-the-shelf parsers are much better at structural generalisation
 - ▶ Weissenhorn & al 2022: concept prediction + graph parsing
 - ▶ Liu et al 2021: syntactic module (unlaballed structure) + semantic module (that predicts the nature of semantic links)

COGS and ReCOGS (Wu, Manning, Potts, 2023)

- Some of the difficulty of COGS is due to the format
- The variable-free format is not semantically equivalent to the initial COGS format
 - need(agent=zebra,xcomp=walk(agent=zebra))
 - ► A zebra needs to walk
 - A zebra needs a zebra to walk

COGS and ReCOGS (Wu, Manning, Potts, 2023)

Variant	Logical Form (LF)
COGS	zebra(x_1) AND need.agent(x_2,x_1) AND need.xcomp(x_2,x_4) AND walk.agent(x_4,x_1)
ReCOGS	<pre>zebra(47); need(13) AND agent(13,47) AND xcomp(13,48) AND walk(48) AND agent(48,47)</pre>

- remove redundant and useless information (need., x _)
- use arbitrary integers for each token (instead of position-based)
- data augmentation:
 - form new examples by concatenating existing exampes
 - word order manipulation (prepose objects + add filler words)
- harmonize treatment of definite and indefinite nouns
- harmonize treatment of proper nouns and common nouns

Motivations:

- COGS / SLOG Semantic representations are anchored
 direct connection between concept / predicate nodes and tokens
- COGS / SLOG graph representations can be transformed to trees without loss of information
- parsers are supposedly better at structural generalisations than seq2seq models

- A mouse was given a cake on the table by Liam .
- give(recipient=mouse, theme=cake(nmod.on=*table), agent=Liam)

- use semantic role labels instead of syntactic functions
- borrow Universal Dependencies labels for function words

- The penguin dreamed that Emma wanted to paint .
- dream(agent=*penguin, ccomp=want(agent=Emma, xcomp=paint(agent=Emma)))
- Recover the missing arc (paint, agent, emma) by finding the agent of the control verb
 - agent of paint is the agent of paints xcomp parent

Work in progress:

- - evaluation:
 - ★ transform the full SLOG corpus to conllu
 - ★ transform back to SLOG format
 - * eval with exact match
 - ★ 100% reconstruction accuracy on dev and test
 - * still some bugs on edge cases for train and gen
- - preliminary experiments this week: exact match = 37%
 - comparisons:
 - ★ Vanilla transformer: 27%
 - **★** T5: 40.6%
 - ★ LLAMA: 40.1%
 - ★ AM-Parser (semantic parser): 70.8%

Invariant language modelling

Invariant Language Modeling, EMNLP 2022 Maxime Peyrard, Sarvjeet Ghotra, Martin Josifoski, Vidhan Agarwal, Barun Patra, Dean Carignan, Emre Kiciman, Saurabh Tiwary, Robert West

- statistical machine learning relies on observed correlations that may be spurious or causal
 - ▶ Underlying assumptions: train and test sets are drawn from the same distribution (IID) and feature the same correlations
 - ▶ if there is a distribution shift between train and test settings: poor generalizations

- statistical machine learning relies on observed correlations that may be spurious or causal
 - Underlying assumptions: train and test sets are drawn from the same distribution (IID) and feature the same correlations
 - ▶ if there is a distribution shift between train and test settings: poor generalizations

- statistical machine learning relies on observed correlations that may be **spurious** or **causal**
 - ▶ Underlying assumptions: train and test sets are drawn from the same distribution (IID) and feature the same correlations
 - if there is a distribution shift between train and test settings: poor generalizations

Causal machine learning:

- Assumes the data was generated from a causality network
- Leverages the knowledge of the causal graph (or tries to discover it)

- statistical machine learning relies on observed correlations that may be spurious or causal
 - Underlying assumptions: train and test sets are drawn from the same distribution (IID) and feature the same correlations
 - ▶ if there is a distribution shift between train and test settings: poor generalizations

Causal machine learning:

- Assumes the data was generated from a causality network
- Leverages the knowledge of the causal graph (or tries to discover it)
- Motivation 1: Interretability ML: understanding the causal relations in the data leads to explainable decisions
- Motivation 2: Robustness to distribution shift

Invariant language modelling (Peyrard et al 2022)

- Assume a collection of datasets (textual corpora), called **environments**
 - each of them has a different distribution (topic, lexical distribution, formality degree, amount of preprocessing / cleaning)
 - ... and its own biases

Invariant language modelling (Peyrard et al 2022)

- Assume a collection of datasets (textual corpora), called **environments**
 - each of them has a different distribution (topic, lexical distribution, formality degree, amount of preprocessing / cleaning)
 - ... and its own biases
- Goal: Invariant feature learning: the language model should learn features that are stable across environments (\approx causal) and avoid learning those that are idiosyncratic to some environments (likely to be spurious correlations
- Proposal: a training method for language modelling based on Invariant Risk Minimization
- Evaluation on several artificial experimental settings:
 - robustness to noisy training data
 - gender bias mitigaation
 - out-of-domain classification

Environment examples

Noise robustness

- Artificial setting with 2 versions of wikipedia (2 **environments**):
 - text-only: the text of articles is extracted through a classical pipeline
 - full wikipedia html pages
- A typical masked language model will learn to predict html markup syntax
- An invariant language model should ignore html markup because it is absent from the 2nd environment and thus not a feature that is stable across environment

Environment examples

Noise robustness

- Artificial setting with 2 versions of wikipedia (2 **environments**):
 - text-only: the text of articles is extracted through a classical pipeline
 - full wikipedia html pages
- A typical masked language model will learn to predict html markup syntax
- An invariant language model should ignore html markup because it is absent from the 2nd environment and thus not a feature that is stable across environment

Gender bias

- 2 environments
 - X% wikitext (dataset with strong known gender bias)
 - 100 X% wikitext with all gendered terms changed
- \bullet typical masked language should be unbiased as regards gender iff X = 50%
- invariant language model should be unbiased whatever the value of X

Method: Invariant risk minimization

- Start from a pretrained language models (BERT, distillBERT, Roberta)
- Initialize n language modelling heads parameters w_e , one for each environment e.
 - ▶ modelling head = linear + layer norm + linear

Method: Invariant risk minimization

- Start from a pretrained language models (BERT, distillBERT, Roberta)
- Initialize n language modelling heads parameters w_e , one for each environment e.
 - ► modelling head = linear + layer norm + linear
- Prediction:

$$\hat{y} = \operatorname{softmax} \left(\frac{1}{n} \sum_{e=1}^{n} w_e \circ \phi(x_i) \right)$$

- average the outputs of each head before softmaxing
- $\phi(x_i)$ is the BERT representation for token x

Method: Invariant risk minimization

- Start from a pretrained language models (BERT, distillBERT, Roberta)
- Initialize n language modelling heads parameters w_e, one for each environment e.
 - ▶ modelling head = linear + layer norm + linear
- Prediction:

$$\hat{y} = \operatorname{softmax} \left(\frac{1}{n} \sum_{e=1}^{n} w_e \circ \phi(x_i) \right)$$

- average the outputs of each head before softmaxing
- $\phi(x_i)$ is the BERT representation for token x
- Training:
 - sample a training example uniformly from any environment e
 - for an example from environment e:
 - ★ compute the (masked LM) loss as above
 - ★ but update only w_e

Results

- baselines:
 - eLM: classical loss, trained on union of environments
 - mtLM: multitask, one head per environment, classical mt training
 - ensLM: ensemble, same as iLM but update every LM head at each training step
- Noise robustness: iLM < mtLM < ensLM < eLM, eval on perplexity (on clean wikipedia test set)
- gender bias:
 - measure bias: 1 entropy of output layer when predicting a gendered term [he, she]
- domain adaptation (see paper)

Discussion

- Invariant risk minimization: injecting inductive bias into model through environment design
 - requires a theory / an hypothesis of what are causal / spurious correlations in a dataset
- Outstanding questions:
 - Can Invariant Risk Minimization help a language model learn structure (unsupervisedly)?
 - ► Can Invariant Risk Minimization help make the type of structural generalizations COGS/SLOG need?

Discussion: syntactic constraints as invariants

- classical data: verb number agreement in English
 - ▶ the **keys are**/*is on the table
 - ▶ the **keys** to the cabinet **are**/*is on the table
 - ► Alex's **keys are**/*is on the table
 - ▶ the **keys** on the table by the windows **are**/*is big

Discussion: syntactic constraints as invariants

- classical data: verb number agreement in English
 - ▶ the keys are/*is on the table
 - ▶ the **keys** to the cabinet **are**/*is on the table
 - ► Alex's **keys are**/*is on the table
 - the keys on the table by the windows are/*is big
- Given a toy datasets, we can make several generalization:
 - ▶ Structural generalization: verb agrees with its subject
 - ★ invariant: syntactic constraints
 - ▶ Linear generalization: verb agrees with last preceding noun
 - ★ spurious correlation, but a heuristics that works very frequently!!
- Linzen et al 2016, Gulordava et al 2018: LSTM language models learn subject-verb agreement almost as well as speakers
- Can they learn subject-agreement with less data when trained with Invariant Risk Minimization?