

EDUCAÇÃO CONTINUADA

Pós Graduação Lato Sensu

Ciência de Dados e Big Data / Análise Estatística de Dados

Quem sou eu?

- Arthur Pereira de Gouveia e Silva
- Casado, 38 anos, pai de uma linda garota de dois anos de idade
- Torcedor "azul grená" do FC Barcelona
- Tolkien, Batman, Poe, Portnoy, Peart, I. Cavalera, Metal, Python, Rubik, Android, Google, Microsoft, Linux, Star Wars, PSOne, PS2, PS3, PS4...
- Telecom → Automação → Manutenção → Saneamento
 → Gestão → Estatística → Data Mining → Data Science

Como me encontrar

@arthurg

gouveia.arthur@gmail.com

www.linkedin.com/in/arthur-gouveia/

@arthur_gouveia

github.com/arthur-gouveia

E quem são vocês?

- · Já estudaram estatística?
- · Há quanto tempo?
- Gostam?

IEC + PREPES PUC Minas

Programação

1. Introdução

- A importância da Estatística para o cidadão comum
- A importância da Estatística para o Cientista de Dados
- Natureza dos dados
- Amostragem

2. Estatística Descritiva

- Resumo de dados com tabelas de frequências
- Medidas de tendência central
- Medidas de variação
- Medidas de posição
- Correlação
- Representações gráficas

Programação (cont.)

Probabilidade

- Fundamentos
- Regra da Adição
- Regra da multiplicação
- Teorema de Bayes

4. Inferência

- Estimativas e tamanhos de amostras
- Testes de hipóteses
- Inferências com base em duas amostras

IEC - PREPES PUC Minas

Avaliação

Exercícios no <u>www.edmodo.com</u> (disponível também para *mobile*) https://edmo.do/j/kpqrty ou *Join a Group* e use o código a8jntt

Vocês entrarão no grupo AED – Análise Estatística de Dados e deverão completar os *quizzes*. Vocês têm 1h para completar cada *quiz*.

50%

Da nota final

Avaliação

Trabalho individual final de análise de dados

Um exercício simples! Pegue um conjunto de dados e faça uma análise estatística do mesmo.

O que será avaliado:

Técnicas e ferramentas utilizadas

Uso correto dos gráficos

Exatidão dos cálculos

Qualidade da análise

50%

Da nota final

Sugestões de fontes de dados:

https://archive.ics.uci.edu/ml/datasets.html

https://github.com/caesar0301/awesome-public-datasets

http://dados.gov.br/dataset

http://www.portaltransparencia.gov.br/downloads/

Conceitos

- Estatística (ciência): Coleção de métodos para planejar experimentos, obter dados e organizá-los, resumi-los, analisá-los, interpretá-los e deles extrair conclusões
- População: Coleção completa de todos os elementos (valores, pessoas, medidas etc.) a serem estudados
- Amostra: Subcoleção de elementos extraídos de uma população
- Parâmetro: Medida numérica que descreve uma característica de uma população
- Estatística: Medida numérica que descreve uma característica de uma amostra
- Censo: Coleção de dados relativos a todos os elementos de uma população
- Pesquisa: Coleção de dados relativos a uma amostra da população

A importância da Estatística

- Para o cidadão comum:
 - Nos últimos anos motoristas entre 16 e 19 anos causaram 1,5 milhão de acidentes contra apenas 540 mil causados por motoristas de 70 anos ou mais
 - Melhoramos os resultados em 100%
 - 90% dos carros vendidos nos últimos 20 anos ainda estão em circulação
 - Pesquisa auto selecionável
 - Gráficos tendenciosos

A importância da Estatística

- · Para o Cientista de Dados
 - A essa altura do campeonato você ainda tem essa dúvida?!?!?!?

- Começando pelo começo: "It's an absolute myth that you can send an algorithm over raw data and have insights pop up"
 Jeffrey Heer
- Você terá que preparar e analisar dados, consolidar, comparar e apresentar resultados, preparar experimentos e, claro, aplicar e talvez até desenvolver modelos estatísticos.

A importância da Estatística

· Se você ainda tem dúvidas...

Estatística Descritiva:

Apenas coleta, organiza, descreve e analisa os dados. Aqui não são tiradas conclusões

Áreas da estatística

Estatística Inferencial ou Indutiva:

A partir da análise dos dados são tiradas conclusões e realizadas inferências sobre os parâmetros populacionais

Dados!

- Se a Estatística é a ciência para analisar, interpretar, amassar e torturar os dados...
- · Vamos falar sobre dados

Natureza dos dados

E também de acordo com o nível de mensuração

- Nominal: Os dados não podem ser organizados nem usados em cálculos
 - Marca, tipo, cor, sexo, categoria
- Ordinal: Podemos ordenar mas as diferenças não fazem sentido
 - Nota (conceito), Posição, Tamanho (P, M, G)
- Intervalar: Análogo ao ordinal mas as diferenças fazem sentido apesar de não haver um zero absoluto
 - Ano, Temperatura em °C
- Racional: Possui um zero absoluto significando ausência
 - Peso, Preço, Altura, Quantidade de pessoa, Tempo*

Amostragem

- Coletas de dados que representam a população
- Amostra aleatória
 - Todos os elementos tem a mesma chance de serem escolhidos
- Amostra estratificada
 - Dividimos em grupos com a mesma característica
- · Amostragem sistemática:
 - Escolhemos cada késimo elemento
- Amostra por conglomerados
 - Separamos em áreas e pegamos todos os elementos de algumas

Resumo Cap I

- Estatística: Uma ciência extremamente importante para todos, especialmente para o Cientista de Dados
- Estatística Descritiva vs Estatística Inferencial
- Cuidado com o tipo de dados e o nível de mensuração!
- Existem diversos tipo de amostragem mas a mais comum é a **estratificada**.

Estatística Descritiva

- O que diferencia o bom do excelente
- Pode parecer básico...
- ... e realmente é básico
- Mas isso não é uma coisa ruim!
- Vamos resumir os dados e descrever características importantes:
 - Forma da distribuição
 - Posição ou um valor representativo
 - Variação ou dispersão dos dados

Resumo de dados com Tabelas de Frequências

- · Grandes conjuntos de dados?
- Conveniente organizá-los e resumi-los.

empo		Vivo - Telefônica	1000		
Resposta	Nome Fantasia	Oi Fixo	879		
•	Banco do Brasil	Tim	800		
10	Itaú BMG Consignado	Claro Celular	527		
	GVT	SKY	460		
	Tim	Oi Celular	353		
	Banco Cifra	Samsung	310		
	Vivo - Telefônica	Walmart.com	301		
	Submarino	Caixa Econômica Federal	279		\
-	Banco Santander	Extra.com	258		
	Smiles	GVT	234		/
	Magazineluiza.com				_/
	Smiles				
	SKY			(0, 3]	1555
-	Walmart.com			(3, 6]	1835
	GVT			(6, 9]	3095
:	:			(9, 12]	1951

Cálculo das classes

- Definir K → Quantidade de classes (thumb rule: √n; Geralmente de 5 a 20 classes)
- Calcular h → Amplitude das classes:
 - h = (max min) / (K 1)
- 1^a classe: $Li_1 = min h/2$; $Ls_1 = Li_1 + h$
- 2^a classe: $Li_2 = Ls_1$; $Ls_2 = Li_2 + h$
- 3^a classe: $Li_3 = Ls_2$; $Ls_3 = Li_3 + h$
- E assim por diante...
- Ponto médio da classe: (Li + Ls) / 2

A média

- A mais importante de todas as estatísticas descritivas;
- · O ponto de equilíbrio do conjunto de dados;

 Definição: A média aritmética de um conjunto de valores é o valor obtido somando-se todos eles e dividindo-se o total pelo número de valores.

A média

 μ = Média Populacional

 \overline{X} = Média Amostral

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n} = \frac{X_1 + X_2 + X_3 + \dots + X_n}{n}$$

- · A mais utilizada devido ao fato de:
 - Ser a mais comum;
 - Ser facilmente compreendida;
 - Ser simples de calcular;
 - Ter boas propriedades algébricas.

Propriedades algébricas da média

- A soma dos desvios em relação à média é sempre nula;
- A soma dos quadrados dos desvios em relação a uma constante é mínima se e somente se esta constante é igual à média;
- Somando-se ou subtraindo-se uma constante dos dados, a média fica somada ou subtraída desta constante;
- Multiplicando-se ou dividindo-se os dados por uma constante, a média fica multiplicada ou dividida por esta constante.

A mediana

- A mediana de um conjunto de valores é o valor do meio deste conjunto quando os valores estão ordenados;
- · Divide o conjunto de dados em duas metades;
- Ocupa a posição (n+1)/2 para dados ordenados;
- Se (n+1)/2 não for inteiro, a mediana é a média dos dois dados ao redor da posição (n+1)/2

$$X = \{1, 2, 3, 4, 5\} Md = 3$$

 $Y = \{1, 2, 3, 4\} Md = 2,5$
 $Z = \{3, 5, 2, 7, 4, 1, 6\} Md = 4$

A moda

- O valor mais frequente;
- Distribuições:
 - Amodais
 - Bimodais
 - Multimodais

$$X = \{1, 2, 3, 4, 4, 4, 5, 6, 7, 7, 8\}$$

$$Mo = 4$$

$$Y = \{1, 2, 3, 4, 4, 4, 5, 6, 7, 7, 7, 8\}$$

$$Mo = \{4, 7\}$$

Relação entre as medidas de tendência central

DE TORALE EXCECTO CHIPAMEN IEC - PREPES PLIC Minas

E para uma tabela de frequências?

Classe	Fa
[0; 4[2
[4; 8[4
[8; 12[6
[12; 16[6
[16; 20[3
[20; 24[1

Média: Média ponderada Moda: As classes modais

Categoria	Fa
Azul	81
Amarelo	72
Preto	64
Verde	46
Cinza	93

TEC + PREPES PUC Minas Calcule as estatísticas abaixo Α В 56 33 56 42 57 48 52 58 61 57 63 67 63 67 $X_A = ?$ $Md_A = ?$ $X_B = ?$ 67 77 67 82 $Md_B = ?$ $Mo_A = ?$ 67 $Mo_B = ?$ 90

_

IEC + PREPES PUC Minas

18

#podearnaldo #comofaz

Se os dados são diferentes, como as estatísticas são iguais?

Pode sim!

As medidas de posição não contam toda a história!

TEC + PREPES PUC Minas

A amplitude

- A distância entre os extremos
- · A diferença entre o maior e o menor valores

$$R = X_{max} - X_{min}$$

 $X = \{1, 3, 5, 2, 5, 8, 2, 8, 5, 7\}$ $R_x = 7$ $Y = \{10, 21, 32, 14, 24\}$ $R_y = 12$

O desvio padrão

- O quanto os dados se afastam de sua média;
- É um valor mínimo de desvio;
- Se somarmos ou subtrairmos uma constante aos dados, o desvio não muda
- Se multiplicarmos ou dividirmos os dados por uma constante, o desvio fica multiplicado ou dividido pela constante;

$$S = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n-1}}$$

Nota de rodapé: A variância é o desvio padrão ao quadrado e seu símbolo é s2

As separatrizes

- Quartis: Dividem os dados em quatro partes iguais
- · Decis: Dividem os dados em dez partes iguais
- · Percentis: Dividem os dados em cem partes iguais

Score z

- A média de QI é 100
- Quão comum é um QI de 104?
- E um QI de 160?
- Isso nos sugere que a distância em relação à média é um indicativo de quão raro é um valor.
- Mas uma diferença de 4 no QI é quase irrelevante, diferentemente de uma diferença de 4 em uma nota de prova numa escala de 0 a 10!
- Precisamos ter uma medida de distância independente da escala.

IEC - PREPES PUC Minas

Score z

$$z = \frac{x - \bar{x}}{s}$$

- É a resposta que esperamos!
- O score z padroniza os dados deixando-os independentes da escala;
- Indica a posição do dado comparando sua distância em relação à média e termos do número de desvios padrão;
- Alguns modelos de Machine Learning pedem dados na mesma escala. O score z pode ser a solução!

 José servia à marinha e se encontrou com a esposa em um dia de folga.

 O período médio de gestação é de 268 dias com desvio padrão de 10 dias...

IEC + PREPES PUC Minas

Score z para detectar eventos raros

- Em uma **distribuição normal** valores elevados são raros para o *score* z.
- Por valores elevados entenda ±2 ou ±3. Quanto maior, mais raro.

Correlação

- Até aqui vimos como descrever uma única variável;
- Ou um conjunto de variáveis, tratando cada uma individualmente;
- Mas e se quisermos analisar duas variáveis em conjunto?
- E se quisermos saber o quanto uma variável depende de outra? O quanto elas variam juntas?

Coeficiente de correlação

- No gráfico anterior vimos uma correlação de 97%.
 Como chegar a esse valor?
- · Existem três formas de calcular esse coeficiente

$$r_{XY} = \frac{\sum x_i y_i}{nS_X S_Y}$$

$$r_{XY} = \frac{n\sum X_i Y_i - (\sum X_i)(\sum Y_i)}{\sqrt{\left[n\sum X_I^2 - (\sum X_i)^2\right] \cdot \left[n\sum Y_i^2 - (\sum Y_i)^2\right]}}$$

Coeficiente de correlação

corcoef(x, y) # from numpy import corcoef
pearsonr(x, y) # from scipy.stats import pearsonr

cor(x, y)

=CORREL(x, y)

IEC + PREPES PUC Minas

Características de r_{XY}

- Uma grandeza adimensional
- Varia entre -1 e +1
- Quando seu valor absoluto é igual a 1 dizemos que há uma correlação perfeita
- Quando seu valor é igual a zero dizemos que não há correlação linear
- De modo geral quando o valor absoluto é maior que 0,8 dizemos que há uma correlação forte e quando é menor que 0,5 dizemos que há uma correlação fraca.
- O valor de r² demonstra o quanto da variância de Y pode ser explicado pela variância de X.

Mas e daí se r é grande?

- Se r_{XY} for significativo podemos criar um modelo de regressão linear para prever Y conhecendo o valor de X
- Se as duas variáveis forem fortemente correlacionadas talvez não seja necessário utilizar ambas em um modelo de Machine Learning

Representações Gráficas

- Uma imagem vale mais do que mil dados!
- · Cuidados básicos com os gráficos:
 - Escala: Cuidado para não "forjar" escalas a fim de esconder ou evidenciar diferenças
 - 3D: Evite a todo custo gráficos 3D pois eles podem dificultar a análise

Duvida que é importante?

Quer que eu prove?

Boxplot

- Obtemos o máximo desempenho de um boxplot ao compará-lo com outros.
- A que conclusões chegamos analisando os boxplots acima?

Resumo Cap II

- Estatística Descritiva: Se quiser se concentrar em um só item, concentre nisso!
- Agrupe os dados em tabelas de frequência
- Resuma os dados com suas medidas de posição, centralização e dispersão
- O score z pode e vai te ajudar bastante. Use para "normalizar" os dados e para verificar se trata-se de um valor extremo
- Correlação é o quanto duas variáveis variam juntas.
- Correlação não significa causalidade (repita 500 vezes)

Resumo Cap II

- Sempre faça o(s) gráfico(s) de seus dados. Os gráfico mostram relações ocultas nos números "frios"
- · Para dados contínuos use histogramas
- Para dados contínuos no tempo use gráficos de linhas
- Para dados discretos use gráficos de colunas
- Cuidado com as "pizzas". Muitos estatísticos não veem esse gráfico com bons olhos
- Diagramas de dispersão são uma boa para mostrar a relação entre duas variáveis
- Boxplot são big bad fu**ing modafocas. Use sem moderação (mas cuidado para quem você vai mostrar!)

Aspectos Gerais

- Vimos que uma importante área da Estatística é a Inferência
- A Inferência Estatística nos permite, através de uma amostra, inferir os parâmetros da população
- Para tanto nos baseamos em hipóteses e, através da amostra, estimamos a probabilidade de a hipótese estar correta

Aspectos Gerais

- Uma empresa afirma que contrata de forma não tendenciosa tanto homens quanto mulheres
- Analisando os registros é possível observar que as últimas 100 contratações foram apenas de homens
- "Se sob determinada hipótese (tal como a contratação não tendenciosa) a probabilidade de uma determinada amostra (como 100 homens contratados) é excepcionalmente pequena, concluímos que a hipótese provavelmente não é correta" (TRIOLA, 1999)

Definições

- Experimento: Qualquer processo que permite ao pesquisador fazer observações
- Evento: Uma coleção de resultados de um experimento
- Evento simples: É um evento que não comporta qualquer decomposição
- Espaço amostral: O conjunto de todos os eventos simples possíveis
- Probabilidade da ocorrência do evento A: P(A)

 $0 \le P(A) \le 1$

Exemplo

- Experimento: Arremesso de um dado
- Evento: Obtenção do resultado 4
- Evento simples: Por n\u00e3o permitir decomposi\u00e7\u00e3o, a obten\u00e7\u00e3o do resultado 4 \u00e9 um evento simples
- Espaço amostral: 1, 2, 3, 4, 5, 6

Outro Exemplo

- Experimento: Arremesso de dois dados
- Evento: Obtenção do resultado 9
- Evento simples: A obtenção do resultado 9 não é mais um evento simples pois pode ser decomposta em 5-4 e 3-6
- Espaço amostral: 1-1, 1-2, 1-3, ..., 6-4, 6-5, 6-6

Mais exemplos

Na tabela abaixo f significa sexo feminino e m sexo masculino

Experimento	Exemplo de evento	Espaço amostral
Um nascimento	1 do sexo feminino (Evento Simples)	{f, m}
Três nascimentos	2 do sexo feminino e 1 sexo masculino (ffm, fmf, mff são eventos simples)	{fff, ffm, fmf, fmm, mff, mfm, mmf, mmm}

 Podemos pensar incorretamente que o evento ffm não é um evento simples pois pode ser decomposto em f, f e m. Porém f ou m não fazem parte do espaço amostral do experimento *Três nascimentos*.

Definições de probabilidade

 Triola afirma que existem duas definições comuns para a probabilidade de ocorrência do evento A

Realize ou observe um experimento um grande número de vezes e conte a frequência com que o evento *A* acontece efetivamente

$$P(A) = \frac{\text{Número de ocorrências de A}}{\text{Número de repetições do experimento}}$$

Abordagem de frequência

Suponha que um experimento tenha n eventos simples diferentes, cada um com a mesma chance de ocorrer. Se o evento A pode ocorrer em s dentre as n maneiras, então:

$$P(A) = \frac{\text{Número de maneiras como A pode ocorrer}}{\text{Número de eventos simples diferentes}} = \frac{s}{n}$$

Abordagem clássica

Definições de probabilidade

- Um erro comum é assumirmos que os eventos têm a mesma chance se não conseguimos saber ou identificar a chance real.
- A probabilidade de bater o carro em uma viagem é de 50%?
- A probabilidade de ser aprovado na disciplina é 33,33%?

IEC + PREPES PUC Minas

Exemplo

- Qual a probabilidade de você ser assassinado este ano?
 - Em 2010 aconteceram 152 homicídios e a população permanente da cidade naquele ano era de 600.747 pessoas
 - Podemos então usar a abordagem pela frequência para calcular que a probabilidade de uma pessoa ser assassinada em Uberlândia é de 152 / 600747 = 0,025 %
 - Não podemos usar a abordagem clássica pois os eventos não são equiprováveis (assassinado/não assassinado)

Fontes

http://www.datapedia.info/public/cidade/6093/mg/uberlandia#homicidios http://www.datapedia.info/public/cidade/6093/mg/uberlandia#pop

IEC + PREPES PUC Minas

Exemplo

- Qual a probabilidade de termos um presidente da república nascido no Acre?
 - O espaço amostral possui dois eventos simples: o presidente é acreano / o presidente não é acreano
 - Pela abordagem de frequência a probabilidade é zero pois esse evento nunca aconteceu
 - Não podemos usar a abordagem clássica pois os eventos do espaço amostral não são equiprováveis
 - Nos resta, então, fazer uma estimativa grosseira. A população do Acre é 0,4% da população brasileira; considerando o quanto o Acre é um estado remoto, uma estimativa de 0,01% é aceitável.

Eventos complementares

- Definição: O complemento do evento A, denotado por Ā, consiste em todos os resultados nos quais o evento A não ocorre
- $P(A) + P(\bar{A}) = 1$
- $P(A) = 1 P(\bar{A})$
- $P(\bar{A}) = 1 P(A)$

A regra da adição

- Regra da adição: Uma forma de obter P(A ou B)
- P(A ou B) é a probabilidade de que aconteça o evento A ou o evento B ou ambos eventos em um mesmo experimento
- Imagine uma série de testes com o "detector de mentiras"

Real

	Mentiu	Não mentiu
Mentiu	42 (Verdadeiro Positivo)	15 (Falso Positivo)
Não mentiu	9 (Falso Negativo)	32 (Verdadeiro Negativo)

A regra da adição

- Calcule P(Falso Positivo)
- Calcule P(Teste Positivo ou Sujeito Mentiu)

Real

		Mentiu	Não mentiu	
Teste	Mentiu	42 (Verdadeiro Positivo)	15 (Falso Positivo)	
Ě	Não mentiu	9 (Falso Negativo)	32 (Verdadeiro Negativo)	

- Várias formas de calcular Teste Positivo ou Sujeito Mentiu: 15 + 42 + 9 ou 57 + 51 - 42 ou 57 + 9
- A palavra ou indica adição mas tome cuidado para não somar a mesma coisa duas vezes!

A regra da adição

- Formalmente: P(A ou B) = P(A) + P(B) P(A e B)
- Não use a fórmula cegamente. Entenda o conceito de P(A ou B)
- Para encontrar P(A ou B) some a quantidade de formas que o evento A pode ocorrer com a quantidade formas que o evento B pode ocorrer tomando cuidado para não somar a mesma coisa duas vezes. P(A ou B) é a divisão dessa soma com o número total de eventos no espaço amostral.

- Regra da multiplicação: Uma forma de obter P(A e B)
- P(A e B) é a probabilidade de que o evento A aconteça em uma prova do experimento e o evento B aconteça na prova seguinte.
- Imagine as seguintes questões em uma prova:

Verdadeiro ou Falso:

O fumo é uma das principais causas do câncer.

Assinale a alternativa correta:

O coeficiente de correlação de Pearson tem esse nome em homenagem a:

- a) Karl Marx
- b) Carl Friedrich Gauss
- c) Karl Pearson
- d) Carly Simons
- e) Mario Triola

A regra da multiplicação

- Qual a probabilidade de uma pessoa acertar as duas questões "chutando"?
- Espaço amostral:
 - {V-a; V-b; V-c, V-d, V-e; F-a; F-b; F-c; F-d; F-e}
- Como um "chute" envolve a escolha aleatória das respostas, todos os resultados são equiprováveis.
- V-c é a resposta certa. Então a probabilidade de acertar é:

$$P(\text{Ambas corretas}) = P(\text{V e c}) = \frac{1}{10} = 0.1$$

- A probabilidade de V na primeira questão é ½
 - Espaço amostral da primeira questão: {V, F}
- A probabilidade de c na segunda questão é 1/5
 - Espaço amostral da segunda questão: {a, b, c, d, e}
- Os resultados P(Vec) = 1/10, P(V) = 1/2 e P(c) = 1/5 sugerem que $P(Vec) = P(V) \cdot P(c)$
- Vejamos outro exemplo antes de afirmar tal generalização.

A regra da multiplicação

- Na extração de duas cartas de um baralho bem embaralhado determine a probabilidade de que a primeira carta seja um Ás e a segunda carta seja um Rei
- Admita que a primeira carta não seja reposta antes da extração da segunda carta

• Como existem quatro ases entre as 52 cartas temos:

$$P(ás) = \frac{4}{52}$$

 Assumindo que conseguimos um ás na primeira extração, temos:

$$P(rei) = \frac{4}{51}$$

 A probabilidade de obter um ás na primeira extração e um rei na segunda é, portanto:

$$P(\text{ás e rei}) = \frac{4}{52} \cdot \frac{4}{51} = 0,00603$$

Esse exemplo ilustra um princípio muito importante:
 P(B) deve levar em conta o fato do evento A já ter ocorrido.

A regra da multiplicação

- Notação: P(B|A) representa a probabilidade de ocorrência de Bquando se sabe que o evento A já ocorreu. Pode se ler B|A como "B dado A"
- Definição: Dois eventos A e B são independentes se a ocorrência de um deles não afeta a probabilidade de ocorrência do outro. Se a ocorrência de um afeta a probabilidade e outros eventos, estes são ditos dependentes.
- · No exemplo anterior temos:

$$P(ás) = \frac{4}{52} e P(rei|ás) = \frac{4}{51}$$

Regra Formal da Multiplicação:

$$P(A e B) = P(A) \cdot P(B)$$
 se $A e B$ são independentes $P(A e B) = P(A) \cdot P(B|A)$ se $A e B$ são dependentes

 Regra Intuitiva da Multiplicação: Para determinar a probabilidade de o evento A ocorrer seguido do evento B devemos multiplicar a probabilidade de A pela probabilidade de B não esquecendo de considerar que a probabilidade de B deve levar em conta a ocorrência de A.

Teorema de Bayes

- Thomas Bayes foi um matemático e pároco inglês e seu trabalho é tido como um novo paradigma da estatística
- Este trabalho, entretando, foi publicado após sua morte
- Assim como Fla x Flu, Barça x Real Madrid, Petralhas x Coxinhas, Biscoito x Bolacha temos atualmente Frequentistas x Bayesianos.

Teorema de Bayes

 O teorema de Bayes descreve a probabilidade de um evento, baseado em um conhecimento a priori que pode estar relacionado ao evento. O teorema mostra como alterar as probabilidade a priori tendo em vista novas evidências para obter probabilidades a posteriori.

Teorema de Bayes

- Imagine duas latas de biscoito. Lata1 tem 30 biscoitos de Baunilha e 10 de Chocolate. Lata2 tem 20 de cada sabor
- Você fecha os olhos e pega um biscoito de Baunilha.
 Qual a probabilidade de que ele tenha vindo da Lata1?
- Queremos saber P(L1|B)
- $P(B|L1) = \frac{3}{4} \text{ mas } P(B|L1) \text{ é diferente de } P(L1|B)$

•
$$P(L1|B) = \frac{P(B|L1) \cdot P(L1)}{P(B)} = \frac{\frac{3}{4} \cdot \frac{1}{2}}{\frac{5}{8}} = \frac{3}{5} = 60\%$$

Teorema de Bayes

- Imagine um paciente contando seus sintomas para um médico.
- Probabilidade de estar com a doença X é P(X=1) = 0,6
- Médico solicita exame
- P(R = 1 | X = 1) = 0.95
- P(R = 1 | X = 0) = 0.10
- Resultado do exame: R = 1

•
$$P(X = 1|R = 1) = \frac{P(R=1|X=1) \cdot P(X=1)}{P(R=1|X=1) \cdot P(X=1) + P(R=1|X=0) \cdot P(X=0)}$$

•
$$P(X = 1|R = 1) = \frac{0.95 \cdot 0.6}{0.95 \cdot 0.6 + 0.1 \cdot 0.4} = 0.9344$$

O problema de Monty Hall

- A priori, a probabilidade do carro estar em qualquer porta é de 1/3
- Mas quando Monty Hall abre uma porta, as probabilidades mudam?
- Se mudam, mudam para quanto?

O problema de Monty Hall

- · Vamos assumir que o participante escolhe a porta 1
- A1 = O carro está na primeira porta
- A2 = O carro está na segunda porta
- A3 = O carro está na terceira porta
- C = Monty Hall abre a terceira porta
- P(C|A1) = 0.5
- P(C|A2) = 1.0
- P(C|A3) = 0
- P(C) = 0.5

IEC - PREPES PUC Minas

O problema de Monty Hall

- P(C|A1) = 0.5
- P(C|A2) = 1.0
- P(C|A3) = 0
- P(C) = 0.5
- $P(A1|C) = \frac{P(C|A1) \cdot P(A1)}{P(C)} = \frac{\frac{1}{2} \cdot \frac{1}{3}}{\frac{1}{2}} = \frac{1}{2}$
- $P(A2|C) = \frac{P(C|A2) \cdot P(A2)}{P(C)} = \frac{1 \cdot \frac{1}{3}}{\frac{1}{2}} = \frac{2}{3}$
- $P(A3|C) = \frac{P(C|A3) \cdot P(A3)}{P(C)} = \frac{0 \cdot \frac{1}{3}}{\frac{1}{2}} = 0$

Resumo Cap III

- Probabilidades variam de zero a um
- A adição está relacionada ao OU
- A multiplicação está relacionada ao E
- Cuidado com os eventos dependentes ao usar a regra da multiplicação
- O teorema de Bayes é uma grande (r)evolução na estatística. Mais do que a formulação do teorema, o modo de pensar!

4. Inferência

Estatística inferencial

- · Duas principais aplicações:
- · Estimar um parâmetro populacional
- Formular conclusões sobre a população
- Para inferir dados da população não preciso avalia-la inteiramente
- Preciso apenas coletar uma boa amostra

"Dados coletados de forma imprecisa ou descuidada podem ser totalmente destituídos de valor, mesmo que a amostra seja suficientemente grande"

Mario Triola

Estimativa pontual x intervalar

Em média o pão de um Big Mac tem 380 sementes de gergelim

 Um p\u00e3o de Big Mac tem entre 350 e 410 sementes de gergelim

Fonte: http://www.ocregister.com/2008/10/03/fresh-buns-how-does-mcdonalds-get-them/

Intervalo de Confiança

- Estimativa intervalar → Intervalo de confiança
- Não é a probabilidade de o valor estar no intervalo!!!
- Se fizermos um grande número de intervalos nestas condições, aproximadamente (1-α)% deles conterão o verdadeiro valor da média (que permanece desconhecido).

Nível de confiança

 Uma medida do nosso grau de certeza de que o intervalo encontrado contém o parâmetro populacional; o número de intervalos que contém o parâmetro populacional se coletássemos 100 amostras

 Utiliza-se o α para descrever uma probabilidade correspondente a uma área; geralmente dividida igualmente nas duas caudas da distribuição normal (bicaudal).

 α Nível de Confiança
 $Z_{\alpha/2}$

 10%
 90%
 1,645

 5%
 95%
 1,96

 1%
 99%
 2,575

Agora que sabemos calcular um intervalo para a média...

• Que tal compararmos duas médias?

Aluno	Nota pré	Nota pós
1	8,5	9,0
2	8,5	9,0
3	7,0	8,5
4	9,0	9,5
5	9,5	10,0
6	8,0	9,5
7	8,0	8,5
8	8,5	8,5
Média (8,37	9,06

Teste de hipóteses

A nota média antes do treinamento é 8,37 e após o treinamento é 9,06. A nota aumentou?

Claro que aumentou!

Na Estatística o "diferente" pode ser igual. Precisamos testar essa hipótese.

Fundamentos do Teste de hipóteses

- Uma boa analogia para um teste de hipóteses é a de um julgamento;
- Toda pessoa é inocente até que se prove o contrário;
- Existe a possibilidade de condenarmos um inocente;
- Existe a possibilidade de inocentarmos um culpado;

Dizer que o treinamento é "culpado" pela diferença nas médias quando na verdade não é.

Dizer que o treinamento não é "culpado" pela diferença nas médias quando na verdade ele é.

TEC + PREPES PUC Minas

Vocabulário

- H₀: Hipótese Nula Suposição de que não há diferença. É assumida como verdade até que tenhamos evidências suficientes para rejeitá-la.
- H_a: Hipótese Alternativa Suposição de que há diferença. Se assumirmos que esta hipótese é correta rejeitamos H₀.
- Risco (α): O máximo risco que o pesquisador considera aceitável para rejeitar H₀. É um valor sempre maior que zero, geralmente 5% ou 10%
- **Diferença Significativa:** Termo usado para descrever uma situação onde a diferença é muito grande para atribuí-la ao acaso.
- **p-value:** É o risco calculado que corremos de errar ao afirmar que há diferença estatística entre os dois grupos de dados quando na verdade não há.

Voltando ao problema das notas...

- Questão prática: O treinamento ministrado provocou o aumento das notas?
- Questão estatística: A diferença entre as notas antes do treinamento (8,37) e após o treinamento (9,06) é grande o suficiente para afirmarmos que se trata de populações distintas ou essas diferenças se devem ao acaso, a variações naturais do dia a dia?

IEC + PREPES PUC Minas

No nosso mundo

In [1]: from scipy.stats import ttest_ind, ttest_rel

Out[1]: help(ttest_ind)

Help on function ttest_ind in module scipy.stats.stats:

ttest_ind(a, b, axis=0, equal_var=True, nan_policy='propagate')
 Calculates the T-test for the means of *two independent* samples of
scores.

This is a two-sided test for the null hypothesis that 2 independent samples $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left($

have identical average (expected) values. This test assumes that the $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left($

populations have identical variances by default.

Voltando às notas...

Aluno	Nota pré	Nota pós
1	8,5	9,0
2	8,5	9,0
3	7,0	8,5
4	9,0	9,5
5	9,5	10,0
6	8,0	9,5
7	8,0	8,5
8	8,5	8,5
Média (8,37	9,06

Voltando às notas...

from scipy.stats import ttest_ind, ttest_rel

nota_pré = [8.5, 8.5, 7, 9, 9.5, 8, 8, 8.5]

nota_pós = [9, 9, 8.5, 9.5, 10, 9.5, 8.5, 8.5]

print(np.mean(nota_pré))

8.375

print(np.mean(nota_pós))

9.0625

ttest_rel(nota_pré, nota_pós)

Ttest_relResult(statistic=-3.6666666666666665, pvalue=0.0079994338096036916)

71

E para dados categóricos?

What flavor of ice cream would you pick?			
	Chocolate	Vanilla	Neither
Children	40	22	15
Teens	12	16	45
Adults	55	54	10
Total	107	92	70

Será que a preferência pelo sabor de sorvete **depende** da faixa etária?

Teste Chi-Quadrado

- Um teste de independência
- H₀: As duas variáveis são independentes
- H_a: As duas variáveis são dependentes
- Compara a frequência observada com a "frequência esperada"

What flavor of ice cream would you pick?			
	Chocolate	Vanilla	Neither
Children	40	22	15
Teens	12	16	45
Adults	55	54	10
Total	107	92	70

Teste Chi-Quadrado

What flavor of ice cream would you pick?			
	Chocolate	Vanilla	Neither
Children	40	22	15
Teens	12	16	45
Adults	55	54	10
Total	107	92	70

Ufa! Resumão Capítulo IV

- Inferência = Estimar parâmetros populacionais
- Estimativa intervalar x Estimativa pontual
- Estimativa intervalar pressupõe intervalo e nível de confiança
- Intervalo de confiança ≈ Margem de erro
- Nível de confiança é o percentual de intervalos que conteria o valor correto do parâmetro populacional e não a probabilidade de o intervalo conter o valor do parâmetro
- Em um teste de hipóteses há a possibilidade de acusarmos um inocente (Erro tipo I) e de inocentarmos um culpado (Erro tipo II)
- A hipótese nula (H₀) é sempre a de igualdade
- O p-value é o risco que corro ao afirmar que há diferença. Se p-value é menor que α rejeito ${\rm H}_0$

Concluindo

- Estude estatística. É muito importante para o profissional e para a pessoa.
- Aprofunde-se especialmente na estatística descritiva especialmente na utilização dos gráficos e tabelas de frequência.
- Quando estiver mais confortável desenvolva habilidades nos intervalos de confiança.
- Finalmente fique craque nos testes de hipóteses e definição de tamanhos de amostra!
- Preocupe-se com os conceitos, nem tanto com as fórmulas.
- Utilize Python, R ou outros softwares estatísticos. O computador está aí para isso...
- · Me procure se precisar!

Referências

- Introdução à Estatística Mário F. Triola
- Introdução ao controle estatístico da qualidade Douglas C. Montgomery
- Teorema de Bayes e inferência Bayesiana
 - http://greenteapress.com/wp/think-bayes/
 - http://www.ufjf.br/joaquim_neto/files/2009/09/IB-Slides-v1.1.pdf
- Estatística Básica Bussab e Morettin

