

Ingeniería Electrónica

Cátedra: Teoría de los circuitos I Profesor: Ing. Gastón Araguás

Curso: 3R2

<u>Fecha: 6 de Septiembre</u> Alumno:

Legajo:

Teoría de los Circuitos I

Segundo parcial teórico-práctico

- 1. (20) Del circuito de la figura, con $q_0 = 30 \,\mu\,C$, se pide:
 - a. Circuito equivalente de Laplace.
 - b. Ecuación diferencial en términos de la tensión de salida $v_o(t)$

2. (30) El teorema de Norton establece que cualquier circuito lineal activo puede sustituirse en dos de sus terminales cualesquiera A-B por una fuente de corriente I_n con una impedancia en paralelo Z_n . El valor de la fuente de corriente de Norton es el valor de la corriente de cortocircuito de los bornes A-B, y la impedancia Z_n es la impedancia vista desde los bornes A-B. Hallar el equivalente de Norton del siguiente circuito.

- 3. (25) Se conecta el siguiente sistema a la red de distribución domiciliaria. Se desea saber:
 - a. Cuan lejos se está de la frecuencia de resonancia?.
 - b. Cual es el $\cos \varphi$ del circuito?.

4. (25) Realizar el diagrama fasorial de tensión – corriente del circuito anterior.