1 Case Study

```
[231]: import pandas as pd
       import numpy as np
       import matplotlib.pyplot as plt
       import seaborn as sns
       mean_data= pd.read_csv("airbnb_listings.csv",encoding="latin1")
       mean_data.head()
[231]:
           host_id host_name
                                   city state
                                                  zipcode
                                                                  country
                                                                            latitude
           5867023
                     Michael
                              New York
                                               10022-4175
                                                           United States
                                                                           40.756852
       1
           2631556
                      Denise
                              New York
                                           NY
                                                      {\tt NaN}
                                                           United States
                                                                           40.830599
       2
           4601412
                        Miao Brooklyn
                                           NY
                                                    11221
                                                           United States 40.692189
       3
            198425
                        Sara New York
                                           NY
                                                    10011
                                                           United States
                                                                           40.734751
         22590025
                     Charles New York
                                           NY
                                                    10011 United States 40.745282
          longitude property_type
                                                        beds
                                                               bed type
                                                                         square feet
                                          room_type
       0 -73.964754
                        Apartment
                                   Entire home/apt
                                                          1.0
                                                               Real Bed
       1 -73.941014
                        Apartment
                                    Entire home/apt
                                                         3.0 Real Bed
                                                                                 NaN
       2 -73.924120
                        Apartment
                                       Private room ...
                                                         2.0 Real Bed
                                                                                 NaN
       3 -74.002592
                        Apartment
                                  Entire home/apt ...
                                                         1.0 Real Bed
                                                                                 NaN
       4 -73.997836
                        Apartment
                                   Entire home/apt
                                                         2.0 Real Bed
                                                                                 NaN
             price availability_365
                                     number_of_reviews review_scores_rating
          $160.00
                                 322
                                                     62
                                                                         86.0
          $105.00
                                                                         85.0
                                 348
                                                     22
           $58.00
                                 227
                                                     35
                                                                         98.0
       3 $185.00
                                 274
                                                     26
                                                                         96.0
       4 $195.00
                                 365
                                                      1
                                                                        100.0
                                      review_scores_location review_scores_value
          review_scores_cleanliness
       0
                                                         10.0
                                 7.0
                                                                               9.0
       1
                                                         7.0
                                 8.0
                                                                               8.0
       2
                                10.0
                                                         9.0
                                                                              10.0
       3
                                 9.0
                                                         10.0
                                                                               9.0
                                10.0
                                                         10.0
                                                                              10.0
```

```
[5 rows x 23 columns]
```

```
[232]: #convert data type of price column to float and remove $ and , from the price_
        ⇔column
       mean_data['price'] = mean_data['price'].replace({'\$': '', ',': ''},__
        →regex=True).astype(float)
       mean_data['price']
[232]: 0
                160.0
       1
                105.0
       2
                 58.0
       3
                185.0
       4
                195.0
       27387
                130.0
       27388
                139.0
       27389
                 99.0
       27390
                 55.0
       27391
                110.0
      Name: price, Length: 27392, dtype: float64
```

2 1. Define problem statement and perform Exploratory Data Analysis

2.0.1 a. Observations on shape of data and data types of all attributes

```
[233]: #checl shape of the data
       print(mean_data.shape)
       mean_data.info()
      (27392, 23)
      <class 'pandas.core.frame.DataFrame'>
      RangeIndex: 27392 entries, 0 to 27391
      Data columns (total 23 columns):
       #
           Column
                                      Non-Null Count Dtype
                                      27392 non-null int64
       0
           host_id
       1
           host_name
                                      27392 non-null object
       2
                                      27392 non-null object
           city
       3
           state
                                      27390 non-null object
                                      27230 non-null object
       4
           zipcode
           country
                                      27391 non-null object
       6
           latitude
                                      27392 non-null float64
           longitude
                                      27392 non-null float64
       7
           property_type
                                      27386 non-null object
```

```
9
    room_type
                                27392 non-null
                                               object
 10
                               27392 non-null
                                               int64
    accommodates
 11
    bathrooms
                                26929 non-null
                                               float64
 12 bedrooms
                                27252 non-null float64
    beds
                               27294 non-null float64
 13
 14
    bed_type
                                27392 non-null object
                                                float64
    square feet
                                1006 non-null
                                27392 non-null float64
 16
    price
 17
    availability_365
                                27392 non-null int64
    number_of_reviews
                                27392 non-null int64
 18
    review_scores_rating
                                18735 non-null float64
 19
 20
    review_scores_cleanliness
                               18661 non-null float64
 21 review_scores_location
                                18660 non-null float64
 22 review_scores_value
                                18658 non-null float64
dtypes: float64(11), int64(4), object(8)
memory usage: 4.8+ MB
```

2.0.2 b. Check for missing value (if any)

[234]: # check for missing values mean data.isnull().sum()

[234]: host id 0 0 host_name 0 city state 2 162 zipcode country 1 0 latitude longitude 0 property_type 6 room_type 0 accommodates 0 bathrooms 463 bedrooms 140 beds 98 bed_type 0 square_feet 26386 price 0 availability_365 0 number_of_reviews 0 review_scores_rating 8657 review_scores_cleanliness 8731 review_scores_location 8732 review_scores_value 8734

dtype: int64

2.0.3 c. Display the statistical summary

[235]: me	ean_da	ata.describe()							
[235]:		host_id	latitude	longi	tude	accommoda	tes	bathrooms	\
	ount	2.739200e+04	27392.000000	27392.00		27392.000		5929.000000	`
	ean	8.518927e+06	40.733070	-73.96		2.892		1.116287	
	td	7.510027e+06	0.048968	0.03		1.755		0.369832	
	in	2.830000e+02	40.509611	-74.23		1.000		0.000000	
	 5%	2.104498e+06	40.699655	-73.98		2.000		1.000000	
	0%	6.119374e+06	40.728024	-73.96		2.000		1.000000	
	5%	1.392422e+07	40.764030	-73.94		4.000		1.000000	
	ax	2.546867e+07	40.907704	-73.72		16.000		8.000000	
		bedrooms	beds	square_	feet	pr	ice \		
co	ount	27252.000000	27294.000000	1006.00	0000	27392.000	000		
me	ean	1.135660	1.531289	720.21	0736	171.256	900		
st	td	0.667599	1.098971	652.79	5558	224.690	732		
mi	in	0.000000	1.000000	0.00	0000	10.000	000		
25	5%	1.000000	1.000000	371.25	0000	85.000	000		
50	0%	1.000000	1.000000	650.00	0000	130.000	000		
75	5%	1.000000	2.000000	913.25	0000	199.000	000		
ma	ax	10.000000	16.000000	12000.00	0000	8000.000	000		
		availability_3	365 number_of	_reviews	revi	ew_scores_	rating	\	
CC	ount	27392.0000	2739	2.000000	18735.000000		000000		
m€	ean	262.9192	210 1	0.130221		92.	218895		
st	td	125.6682		18.665400		8.	336264		
	in	0.000		0.000000			000000		
	5%	177.0000		0.000000			000000		
	0%	333.0000		3.000000			000000		
75	5%	363.0000		1.000000			000000		
ma	ax	365.000	000 22	21.000000		100.	000000		
		review_scores		review_sc	ores_	location	review_	_scores_valu	ıe
CC	ount	:	18661.000000			0.000000		18658.00000	
	ean		9.011093			9.248660		9.12573	
	td		1.163870			0.973474		0.90661	
	in		2.000000		2.000000			2.00000	
	5%		8.000000	9.000000			9.00000		
	0%					10.000000		9.00000	
75	5%		10.000000			0.000000		10.00000	
ma	ax		10.000000		1	0.000000		10.00000	00

 ${f 2.0.4}$ d. Univariate Analysis and Bivariate Analysis of all the attributes Univeriate

```
target_variable=mean_data['price']
[237]: # create a list of numerical and categorical columns
       numerical_data= mean_data.select_dtypes(include=["int","float"]).columns
       categorical_data= mean_data.select_dtypes(include=['object']).columns
       mean data[numerical data]
[237]:
               host id
                          latitude longitude accommodates
                                                             bathrooms
                                                                          bedrooms
               5867023 40.756852 -73.964754
       0
                                                                     1.0
                                                                                1.0
       1
               2631556 40.830599 -73.941014
                                                          10
                                                                     1.0
                                                                                3.0
       2
               4601412 40.692189 -73.924120
                                                           2
                                                                     1.0
                                                                                1.0
                                                           2
                198425 40.734751 -74.002592
                                                                     1.0
                                                                                1.0
              22590025 40.745282 -73.997836
                                                           2
       4
                                                                     1.0
                                                                                1.0
       27387
               1485898 40.742363 -73.981968
                                                           2
                                                                     NaN
                                                                                1.0
       27388
               5944682 40.759642 -73.985343
                                                           2
                                                                     1.0
                                                                                1.0
       27389
               2675644 40.645741 -74.080955
                                                           6
                                                                     1.0
                                                                                2.0
       27390
               322716 40.669931 -73.946820
                                                            3
                                                                     1.0
                                                                                1.0
       27391
               2695451 40.753941 -73.993232
                                                                     1.0
                                                                                1.0
              beds
                    square_feet price availability_365 number_of_reviews
       0
               1.0
                             NaN 160.0
                                                       322
                                                                            62
       1
               3.0
                             NaN
                                 105.0
                                                       348
                                                                            22
       2
               2.0
                             NaN
                                   58.0
                                                       227
                                                                            35
       3
                                                                            26
               1.0
                             NaN
                                  185.0
                                                       274
                             {\tt NaN}
       4
               2.0
                                  195.0
                                                       365
                                                                             1
                              •••
                                                       365
                                                                             3
       27387
               1.0
                             NaN
                                 130.0
       27388
               1.0
                             NaN 139.0
                                                       332
                                                                            47
                                   99.0
                                                       357
       27389
               3.0
                             NaN
                                                                             2
       27390
               1.0
                           350.0
                                   55.0
                                                        93
                                                                             3
       27391
               1.0
                             NaN
                                 110.0
                                                       362
                                                                             4
              review_scores_rating review_scores_cleanliness
       0
                               86.0
                                                             7.0
                               85.0
       1
                                                             8.0
       2
                               98.0
                                                            10.0
                               96.0
       3
                                                            9.0
       4
                              100.0
                                                            10.0
                               98.0
                                                             9.0
       27387
       27388
                               95.0
                                                             9.0
                                                            9.0
       27389
                               90.0
       27390
                              100.0
                                                           10.0
       27391
                               90.0
                                                            9.0
```

[236]: # select price column as target variable

	review_scores_location	review_scores_value
0	10.0	9.0
1	7.0	8.0
2	9.0	10.0
3	10.0	9.0
4	10.0	10.0
•••	•••	•••
27387	10.0	9.0
27388	10.0	9.0
27389	9.0	8.0
27390	9.0	10.0
27391	10.0	10.0

[27392 rows x 15 columns]

[238]: <seaborn.axisgrid.PairGrid at 0x2a1bf2ae390>


```
[239]: # create a histplot for numerical columns
i = 1
plt.figure(figsize=(20,30))
for col in numerical_data:
    plt.subplot(5,3,i)
    sns.histplot(mean_data[col], kde=True)
    plt.title(f"Distribution of Price {col}")
    i+=1

plt.show
```

[239]: <function matplotlib.pyplot.show(close=None, block=None)>


```
[240]: # create a boxplot for numerical columns
i = 1
plt.figure(figsize=(20,30))
for col in numerical_data:
    plt.subplot(4,4,i)
    sns.boxplot(x=mean_data[col])
    plt.title(f"Boxplot of {col}")
    i+=1
plt.show()
```


[241]: # create a heatmap for numerical columns
plt.figure(figsize=(15,15))
sns.heatmap(data=mean_data[numerical_data].corr(), annot=True, cmap='coolwarm')
plt.show()

Bivariate

[242]: mean_data[categorical_data].head()

```
[242]:
        host_name
                        city state
                                                       country property_type
                                       zipcode
       0
           Michael
                   New York
                                NY
                                    10022-4175
                                                United States
                                                                   Apartment
                                                United States
       1
            Denise
                    New York
                                NY
                                           NaN
                                                                   Apartment
       2
              Miao Brooklyn
                                NY
                                          11221
                                                United States
                                                                   Apartment
                                                United States
       3
              Sara New York
                                          10011
                                                                   Apartment
                                NY
           Charles New York
       4
                                NY
                                          10011
                                                United States
                                                                   Apartment
                room_type bed_type
         Entire home/apt
       0
                          Real Bed
         Entire home/apt
       1
                          Real Bed
       2
             Private room Real Bed
       3 Entire home/apt Real Bed
       4 Entire home/apt Real Bed
[243]: # Room Type vs Property Type
       plt.figure(figsize=(10, 6))
       sns.countplot(data=mean_data, x='property_type', hue='room_type')
       plt.title('Room Type vs Property Type')
       plt.xlabel('Property Type')
       plt.ylabel('Count')
       plt.xticks(rotation=45)
       plt.legend(title='Room Type')
       plt.show()
```



```
[245]: # Bed Types Provided by Airbnb
sns.countplot(x="bed_type",data=mean_data,palette="Set2",hue="bed_type")
plt.title("Bed Types Provided by Airbnb")
plt.show()
```



```
[246]: #Room Types Provided by Airbnb sns.countplot(x="room_type",data=mean_data,palette="Set2",hue="room_type") plt.title("Room Types Provided by Airbnb") plt.show()
```


[247]: <function matplotlib.pyplot.show(close=None, block=None)>


```
sns.

sharplot(data=melt_data,x="property_type",y="Average",hue="Features",errorbar=None)

plt.xticks(rotation=45)

plt.show
```

[248]: <function matplotlib.pyplot.show(close=None, block=None)>


```
[249]: plt.figure(figsize=(10,5))
sns.scatterplot(data=mean_data,x="availability_365",y="price",hue="room_type")
plt.title("Avaaibility of Rooms vs Price in Relation to Room Type")
plt.show()
```



```
plt.figure(figsize=(20,5))

sns.

_barplot(data=mean_data,x="property_type",y="review_scores_location",hue="room_type",errorba
plt.xticks(rotation=45)
plt.show()
```

property_type

```
[251]: crosstab = pd.crosstab(target_variable, mean_data['state'])
plt.figure(figsize=(10, 20))
crosstab.plot()
plt.show()
```

<Figure size 1000x2000 with 0 Axes>


```
[252]:
      import folium as fl
       # Define data_most_expensive as the subset of mean_data with the highest prices
       data_map = mean_data.nlargest(100, 'price')
       # Sample 50 rows from the most expensive region data
       data_sample = data_map.sample(50, random_state=1)
       # Calculate the average location for centering the map
       average_location = [data_sample['latitude'].mean(), data_sample['longitude'].
        →mean()]
       # Create the map object
       map_sample = fl.Map(location=average_location, zoom_start=14,__
        ⇔control_scale=True)
       # Add markers to the map
       for _, location_info in data_sample.iterrows():
           marker_location = [location_info['latitude'], location_info['longitude']]
           marker_popup = location_info['property_type']
           fl.Marker(location=marker_location, popup=marker_popup).add_to(map_sample)
```



```
map_sample
```

[252]: <folium.folium.Map at 0x2a1b239c9d0>

3 2. Data Preprocessing

A. check duplicate values

```
[253]: duplicate=mean_data.duplicated()
  duplicate.sum()
  duplicate.shape
  mean_data.nunique()
```

```
[253]: host_id
                                      22342
      host_name
                                       7381
                                        185
       city
                                          4
       state
                                        185
       zipcode
       country
                                          1
       latitude
                                      27373
       longitude
                                      27357
                                         18
       property_type
      room_type
                                          3
       accommodates
                                         16
       bathrooms
                                         15
      bedrooms
                                         11
       beds
                                         15
       bed_type
                                          5
                                        182
       square_feet
                                        452
      price
       availability_365
                                        366
       number_of_reviews
                                        171
       review_scores_rating
                                         56
       review_scores_cleanliness
                                          9
       review_scores_location
                                          8
       review_scores_value
                                          9
       dtype: int64
```

b. Feature Engineering

```
[255]: mean_data['price_per_accommodation'] = mean_data.apply(
```

```
lambda row: row['price'] / row['accommodates'] if row['accommodates'] >__
        ⇔0 else None, axis=1)
[256]: new_data = mean_data.drop(['square_feet', 'state', 'host_id', __
        → 'host_name', 'country', 'review_scores_rating', 'number_of_reviews', 'number_of_reviews', 'review
        ⇒axis=1)
       new_data.head()
[256]:
              city
                       zipcode
                                 latitude longitude property_type
                                                                            room_type
       0 New York
                    10022-4175 40.756852 -73.964754
                                                          Apartment
                                                                     Entire home/apt
       1 New York
                                40.830599 -73.941014
                                                          Apartment
                                                                      Entire home/apt
                           NaN
       2 Brooklyn
                         11221 40.692189 -73.924120
                                                                        Private room
                                                          Apartment
       3 New York
                         10011
                                40.734751 -74.002592
                                                          Apartment
                                                                     Entire home/apt
       4 New York
                         10011 40.745282 -73.997836
                                                                      Entire home/apt
                                                          Apartment
          accommodates bathrooms bedrooms beds bed_type price
                                                                     availability_365
       0
                              1.0
                                                    Real Bed 160.0
                     2
                                         1.0
                                               1.0
                                                                                   322
       1
                    10
                              1.0
                                         3.0
                                               3.0
                                                    Real Bed 105.0
                                                                                   348
       2
                     2
                              1.0
                                         1.0
                                               2.0 Real Bed
                                                               58.0
                                                                                   227
                     2
                                                                                   274
       3
                              1.0
                                         1.0
                                               1.0
                                                    Real Bed 185.0
       4
                     2
                              1.0
                                         1.0
                                               2.0 Real Bed 195.0
                                                                                   365
         location_group
                         price_per_accommodation
                    3_2
       0
                                             80.0
                    4_2
                                             10.5
       1
                                             29.0
       2
                    2_3
       3
                                             92.5
                    2_2
                                             97.5
       4
                    2_2
      c. Missing value treatment
[257]: # Identify Missing Values
       missing_values_data = new_data.isnull().sum()
       print( missing_values_data[missing_values_data > 0])
      zipcode
                        162
      property_type
                          6
      bathrooms
                        463
      bedrooms
                        140
      beds
                        98
      dtype: int64
[258]: #the percentage of missing values
       missing_percentage = round((missing_values_data / len(new_data)) * 100,2)
       missing_data_summary = pd.DataFrame({
        'Missing Values': missing_values_data[missing_values_data > 0],
        'Percentage (%)': missing_percentage[missing_values_data > 0]
```

```
}).sort_values(by='Percentage (%)', ascending=False)
       missing_data_summary
[258]:
                      Missing Values Percentage (%)
       bathrooms
                                 463
                                                 1.69
       zipcode
                                  162
                                                 0.59
       bedrooms
                                  140
                                                 0.51
       beds
                                  98
                                                 0.36
                                                 0.02
       property_type
                                   6
[259]: from sklearn.impute import SimpleImputer
       numerical_cols = new_data.select_dtypes(include=[np.number]).columns.tolist()
       categorical_cols = new_data.select_dtypes(include=['object']).columns.tolist()
       # Impute numerical columns
       num_imputer = SimpleImputer(strategy='mean')
       new_data[numerical_cols] = pd.DataFrame(
           num_imputer.fit_transform(new_data[numerical_cols]),
           columns=numerical cols,
           {\tt index=new\_data.index}
       )
       # Impute categorical columns
       cat_imputer = SimpleImputer(strategy='most_frequent')
       new_data[categorical_cols] = pd.DataFrame(
           cat_imputer.fit_transform(new_data[categorical_cols]),
           columns=categorical_cols,
           index=new_data.index
       )
       # Verify missing values
       print("Missing values after treatment:")
       print(new_data.isnull().sum())
      Missing values after treatment:
      city
```

```
0
zipcode
latitude
                              0
longitude
                              0
                              0
property_type
room_type
                              0
                              0
accommodates
                              0
bathrooms
                              0
bedrooms
beds
                              0
bed_type
                              0
```

```
availability_365
                                 0
      location_group
                                 0
      price_per_accommodation
                                 0
      dtype: int64
[260]: new_data.head()
[260]:
                       zipcode
                                 latitude longitude property_type
                                                                           room_type
              city
         New York 10022-4175 40.756852 -73.964754
                                                         Apartment
                                                                    Entire home/apt
                         11211 40.830599 -73.941014
       1 New York
                                                         Apartment
                                                                    Entire home/apt
       2 Brooklyn
                         11221 40.692189 -73.924120
                                                         Apartment
                                                                       Private room
       3 New York
                         10011 40.734751 -74.002592
                                                         Apartment
                                                                    Entire home/apt
       4 New York
                         10011 40.745282 -73.997836
                                                         Apartment
                                                                    Entire home/apt
         accommodates bathrooms
                                   bedrooms
                                             beds
                                                   bed_type
                                                             price
                                                                    availability_365
       0
                   2.0
                              1.0
                                        1.0
                                              1.0
                                                   Real Bed
                                                             160.0
                                                                                322.0
                  10.0
                              1.0
                                        3.0
                                              3.0 Real Bed
                                                             105.0
                                                                                348.0
       1
                   2.0
       2
                              1.0
                                        1.0
                                              2.0
                                                   Real Bed
                                                              58.0
                                                                                227.0
       3
                   2.0
                              1.0
                                        1.0
                                              1.0
                                                   Real Bed 185.0
                                                                                274.0
                   2.0
                                                                                365.0
                              1.0
                                        1.0
                                              2.0
                                                   Real Bed 195.0
         location_group price_per_accommodation
                    3 2
                                            0.08
       0
       1
                    4_2
                                            10.5
       2
                                            29.0
                    2 3
       3
                    2_2
                                            92.5
                                            97.5
                    2_2
```

0

d. Outlier Treatment

price

```
[261]: from scipy.stats import zscore
    def remove_outliers(df, col):
        z_scores = zscore(df[col])
        abs_z_scores = np.abs(z_scores)
        return df[abs_z_scores < 3]

# Apply outlier treatment to numerical columns (excluding target)
for col in numerical_cols:
    if col != 'price': # Keep 'price' outliers for pricing analysis
        original_count = new_data.shape[0]
        data = remove_outliers(new_data, col)
        new_count = data.shape[0]
        print(f"{col}: Removed {original_count - new_count} outliers.")</pre>
```

latitude: Removed 139 outliers. longitude: Removed 582 outliers. accommodates: Removed 340 outliers.

bathrooms: Removed 483 outliers. bedrooms: Removed 256 outliers. beds: Removed 515 outliers. availability_365: Removed 0 outliers. price_per_accommodation: Removed 204 outliers. e. Encoding categorical columns [262]: cat_new_data= new_data.select_dtypes(include=["object"]).columns from sklearn.preprocessing import LabelEncoder label_encoded_data = new_data[cat_new_data].copy() label_encoders = {} for column in label_encoded_data.columns: le = LabelEncoder() label_encoded_data[column] = le.fit_transform(label_encoded_data[column]. \Rightarrow astype(str)) + 1 label encoders[column] = le label_encoded_data.head() [262]: city zipcode property_type room_type bed_type location_group 105 23 1 1 105 108 1 1 5 17 2 33 118 1 2 5 12 3 105 13 1 1 5 11 105 4 13 5 11 [263]: num new data= new data.select dtypes(include=["int", "float"]).columns balanced_data = pd.concat([label_encoded_data,new_data[num_new_data]],axis=1) balanced_data.to_csv('balanced.csv',index=False) balanced_data.head() [263]: city zipcode property_type room_type bed_type location_group \ 0 105 23 1 14 105 108 5 1 1 1 17 5 2 33 118 1 2 12 3 105 5 13 1 1 11 105 13 1 1 5 11 latitude longitude accommodates bathrooms bedrooms beds price \

1.0

1.0

1.0

1.0

1.0

1.0

3.0

1.0

1.0

1.0

1.0 160.0

3.0 105.0

1.0 185.0

2.0 195.0

58.0

2.0

2.0

10.0

2.0

2.0

2.0

0 40.756852 -73.964754

1 40.830599 -73.941014

2 40.692189 -73.924120

3 40.734751 -74.002592

4 40.745282 -73.997836

```
10.5
       1
       2
                     227.0
                                                29.0
       3
                     274.0
                                                92.5
                     365.0
                                                97.5
      f. Scaling
[264]: from sklearn.preprocessing import StandardScaler
       dt=pd.read csv('balanced.csv')
       dt.head()
[264]:
          city zipcode property_type
                                        room_type bed_type location_group \
           105
                     23
                                     1
                                                 1
           105
                    108
                                     1
                                                 1
                                                           5
       1
                                                                           17
                                                 2
       2
            33
                    118
                                     1
                                                           5
                                                                           12
       3
           105
                     13
                                      1
                                                 1
                                                           5
                                                                           11
       4
                                                 1
           105
                     13
                                      1
                                                           5
                                                                           11
           latitude longitude accommodates bathrooms
                                                         bedrooms
                                                                    beds price
       0 40.756852 -73.964754
                                          2.0
                                                     1.0
                                                               1.0
                                                                     1.0
                                                                          160.0
       1 40.830599 -73.941014
                                         10.0
                                                     1.0
                                                               3.0
                                                                     3.0 105.0
       2 40.692189 -73.924120
                                          2.0
                                                     1.0
                                                               1.0
                                                                     2.0
                                                                           58.0
       3 40.734751 -74.002592
                                          2.0
                                                     1.0
                                                               1.0
                                                                     1.0 185.0
       4 40.745282 -73.997836
                                          2.0
                                                     1.0
                                                               1.0
                                                                     2.0 195.0
          availability_365 price_per_accommodation
       0
                     322.0
                                                80.0
       1
                     348.0
                                                10.5
       2
                     227.0
                                                29.0
       3
                     274.0
                                                92.5
       4
                     365.0
                                                97.5
[265]: scaler_std=StandardScaler()
       scaled data=dt.drop('price',axis=1)
       scaled_data[scaled_data.columns]=scaler_std.fit_transform(scaled_data)
       scaled data['price'] = dt['price']
       scaled_data
[265]:
                         zipcode property_type room_type bed_type location_group
                  city
              0.703824 -0.784637
                                      -0.301575 -0.805791
                                                              0.18498
                                                                              0.957679
       0
       1
              0.703824 0.923042
                                      -0.301575
                                                -0.805791
                                                              0.18498
                                                                              2.411473
       2
             -1.290235 1.123946
                                      -0.301575
                                                   0.996907
                                                              0.18498
                                                                             -0.011517
       3
              0.703824 -0.985540
                                      -0.301575
                                                -0.805791
                                                              0.18498
                                                                             -0.496115
       4
              0.703824 -0.985540
                                      -0.301575 -0.805791
                                                              0.18498
                                                                             -0.496115
```

80.0

availability_365 price_per_accommodation

322.0

348.0

0

```
27387
      0.703824 -0.905179
                               -0.301575 -0.805791
                                                      0.18498
                                                                     -0.496115
27388 0.703824 -0.844908
                               -0.301575
                                                      0.18498
                                                                      0.957679
                                           0.996907
27389
      1.673158 -0.161836
                                2.990737
                                         -0.805791
                                                      0.18498
                                                                     -2.434507
27390 -1.290235 0.963223
                               -0.301575
                                          -0.805791
                                                       0.18498
                                                                     -0.496115
27391 0.703824 -0.864998
                               -0.301575
                                           2.799605
                                                       0.18498
                                                                      0.957679
       latitude longitude
                            accommodates bathrooms bedrooms
                                                                    beds \
0
       0.485675 -0.013597
                               -0.508676
                                          -0.31713 -0.203730 -0.484318
1
       1.991744
                  0.661566
                                4.049458
                                           -0.31713 2.799819 1.338864
2
      -0.834870
                  1.142040
                               -0.508676
                                           -0.31713 -0.203730
                                                                0.427273
3
       0.034330 - 1.089716
                               -0.508676
                                            -0.31713 -0.203730 -0.484318
4
       0.249385
                -0.954450
                               -0.508676
                                           -0.31713 -0.203730 0.427273
                               -0.508676
27387
      0.189784
                -0.503145
                                            0.00000 -0.203730 -0.484318
27388 0.542663
                -0.599135
                               -0.508676
                                           -0.31713 -0.203730 -0.484318
27389 -1.783446
                -3.318345
                                1.770391
                                           -0.31713 1.298044 1.338864
27390 -1.289425
                                0.061091
                                           -0.31713 -0.203730 -0.484318
                  0.496461
27391 0.426233 -0.823502
                               -1.078442
                                           -0.31713 -0.203730 -0.484318
                         price_per_accommodation
       availability_365
                                                  price
               0.470142
0
                                        0.239937
                                                  160.0
1
                                                  105.0
               0.677039
                                       -0.800377
2
              -0.285831
                                       -0.523459
                                                    58.0
3
               0.088177
                                        0.427044
                                                  185.0
4
                                        0.501887
                                                  195.0
               0.812319
27387
               0.812319
                                        0.015409
                                                  130.0
                                                  139.0
27388
               0.549718
                                        0.082767
                                       -0.710565
27389
               0.748658
                                                    99.0
                                                    55.0
27390
              -1.352150
                                       -0.683123
27391
               0.788446
                                        0.688993
                                                  110.0
```

[27392 rows x 15 columns]

4 3. Model building with hyperparameter tuning

a. Linear Regression using Regularization

Linear Regression

```
[266]: from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import Ridge, Lasso
from sklearn.metrics import mean_squared_error, r2_score

y=scaled_data['price']
X=scaled_data.drop('price',axis=1)
```

```
[267]: lr = LinearRegression()
    lr.fit(X_train, y_train)
    train_pred_lr = lr.predict(X_train)
    test_pred_lr = lr.predict(X_test)

lr_train_mse = mean_squared_error(y_train, train_pred_lr)
    lr_train_r2 = r2_score(y_train, train_pred_lr)

lr_test_mse = mean_squared_error(y_test, test_pred_lr)

lr_test_r2 = r2_score(y_test, test_pred_lr)

print("LinerRegression Training MSE:", lr_train_mse)
    print("LinerRegression Test MSE:", lr_test_mse)
    print("\nLinerRegression Training R^2:", round((\lambda rtain_r2)*100,2))
    print("LinerRegression Test R^2:",round((\lambda rtest_r2)*100,2))
```

LinerRegression Training MSE: 17499.083986446334 LinerRegression Test MSE: 11551.184053107245

LinerRegression Training R^2 : 66.47 LinerRegression Test R^2 : 73.52

Ridge Regression

```
ridge = Ridge()
ridge.fit(X_train, y_train)
y_train_pred_ridge = ridge.predict(X_train)
y_test_pred_ridge = ridge.predict(X_test)

# Training metrics
train_mse_ridge = mean_squared_error(y_train, y_train_pred_ridge)
train_r2_ridge = r2_score(y_train, y_train_pred_ridge)

# Test metrics
test_mse_ridge = mean_squared_error(y_test, y_test_pred_ridge)
test_r2_ridge = r2_score(y_test, y_test_pred_ridge)

print("Ridge Regression Training MSE:", train_mse_ridge)
print("Ridge Regression Test MSE:", test_mse_ridge)
print("\nRidge Regression Training R2:", round((train_r2_ridge)*100,2))
print("Ridge Regression Test R2:",round((test_r2_ridge)*100,2))
```

Ridge Regression Training MSE: 17499.084150225695 Ridge Regression Test MSE: 11551.362638584276

```
Ridge Regression Training R^2: 66.47 Ridge Regression Test R^2: 73.52
```

Lasso Regression

```
[269]: lasso = Lasso()
      lasso.fit(X_train, y_train)
      train_pred_lasso = lasso.predict(X_train)
      test_lasso_preds = lasso.predict(X_test)
      # Training metrics
      train_mse_lasso = mean_squared_error(y_train, train_pred_lasso)
      train_r2_lasso = r2_score(y_train, train_pred_lasso)
      # Test metrics
      test_mse_lasso = mean_squared_error(y_test, test_lasso_preds)
      test_r2_lasso = r2_score(y_test, test_lasso_preds)
      print("Ridge Regression Training MSE:", train_mse_lasso)
      print("Ridge Regression Test MSE:", test_mse_lasso)
      print("\nRidge Regression Training R2:", round((train_r2_lasso)*100,2))
      print("Ridge Regression Test R2:",round((test_r2_lasso)*100,2))
      Ridge Regression Training MSE: 17515.758300116646
      Ridge Regression Test MSE: 11503.002362579202
      Ridge Regression Training R2: 66.44
      Ridge Regression Test R2: 73.63
      b. RandomForest
[270]: from sklearn.ensemble import RandomForestRegressor
      from sklearn.metrics import mean_squared_error
      from sklearn.metrics import
       →accuracy_score,confusion_matrix,classification_report
      →random state=0)
[271]: # Random Forest Regressor
      rf_regressor = RandomForestRegressor(n_estimators=100, random_state=42)
      rf_regressor.fit(X_train, y_train)
      # Predictions
      train_pred_rf = rf_regressor.predict(X_train)
      y_pred = rf_regressor.predict(X_test)
      rf_train_mse = mean_squared_error(y_train, train_pred_rf)
      rf_test_mse = mean_squared_error(y_test, y_pred)
```

```
rf_test_r2=r2_score(y_test,y_pred)
       rf_train_r2 = r2_score(y_train, train_pred_rf)
       print("RandomForestRegressor Training MSE:", rf_train_mse)
       print("RandomForestRegressor Test MSE:", rf_test_mse)
       print("\nRandomForestRegressor Training R2:", round((rf_train_r2)*100,2))
       print("RandomForestRegressor Test R2:",round((rf_test_r2)*100,2))
      RandomForestRegressor Training MSE: 454.4614311687127
      RandomForestRegressor Test MSE: 1353.3323437853624
      RandomForestRegressor Training R2: 99.13
      RandomForestRegressor Test R2: 96.9
      c. XGBoost
[272]: from sklearn.model_selection import GridSearchCV
       from xgboost import XGBRegressor
       from sklearn.preprocessing import StandardScaler
       from sklearn.pipeline import Pipeline
       from sklearn.metrics import mean_squared_error, r2_score
[273]: pipeline = Pipeline([
           ('scaler', StandardScaler()),
           ('model', XGBRegressor(objective='reg:squarederror', random_state=1))
       ])
       param_grid = {
           'model_n_estimators': [100, 200, 300],
           'model__max_depth': [3, 5, 7],
           'model__learning_rate': [0.01, 0.1, 0.2],
           'model__subsample': [0.8, 1.0],
           'model__colsample_bytree': [0.8, 1.0]
       }
       grid_search = GridSearchCV(pipeline, param_grid, cv=5, scoring='r2', n_jobs=-1)
       grid_search.fit(X_train, y_train)
       best_params = grid_search.best_params_
       best_score = grid_search.best_score_
       # Predictions
       y_train_pred = grid_search.best_estimator_.predict(X_train)
       y_test_pred = grid_search.best_estimator_.predict(X_test)
       # Calculate R2 scores
```

```
r2_train_score = r2_score(y_train, y_train_pred)
r2_test_score = r2_score(y_test, y_test_pred)

# Calculate MSE
mse_train = mean_squared_error(y_train, y_train_pred)
mse_test = mean_squared_error(y_test, y_test_pred)

print(f'Best Parameters: {best_params}')
print(f'Best Cross-Validation R2 Score: {best_score}')
print(f'/nTrain R2 Score: {round(r2_train_score * 100, 2)}')
print(f'Test R2 Score: {round(r2_test_score * 100, 2)}')
print(f'/nTrain MSE: {mse_train}')
print(f'Test MSE: {mse_test}')

Best Parameters: {'model__colsample_bytree': 1.0, 'model__learning_rate': 0.1, 'model__max_depth': 3, 'model__n_estimators': 100, 'model__subsample': 1.0}
Best Cross-Validation R2 Score: 0.9127564055025706
```

Test R2 Score: 90.2 /nTrain MSE: 2192.74988

/nTrain R2 Score: 95.8

/nTrain MSE: 2192.7498810631755 Test MSE: 4277.011548598878

5 4. Evaluation

5.0.1 a. Comparison on the performance of each model using training, validation and test data

Result Table

```
[274]: X_train, X_temp, y_train, y_temp = train_test_split(X, y, test_size=0.3,u_srandom_state=0)
X_val, X_test, y_val, y_test = train_test_split(X_temp, y_temp, test_size=0.5,u_srandom_state=0)

#linear regression validation MSE and R2
val_pred_lr = lr.predict(X_val)
lr_val_mse = mean_squared_error(y_val, val_pred_lr)
lr_val_r2 = r2_score(y_val, val_pred_lr)

# ridge validation MSE and R2
val_pred_ridge = ridge.predict(X_val)
ridge_val_mse = mean_squared_error(y_val, val_pred_ridge)
ridge_val_r2 = r2_score(y_val, val_pred_ridge)

#lasso validation MSE and R2
val_pred_lasso = lasso.predict(X_val)
```

```
lasso_val_mse = mean_squared_error(y_val, val_pred_lasso)
lasso_val_r2 = r2_score(y_val, val_pred_lasso)

#redom forest validation MSE and R2
val_pred_rf = rf_regressor.predict(X_val)
rf_val_mse = mean_squared_error(y_val, val_pred_rf)
rf_val_r2 = r2_score(y_val, val_pred_rf)

#xgboost validation MSE and R2
val_pred_xgb = xgb_regressor.predict(X_val)
xgb_val_mse = mean_squared_error(y_val,val_pred_xgb)
xgb_val_r2 = r2_score(y_val, val_pred_xgb)

# Tabulate the results
```

```
[275]: # Tabulate the results
       meanse = pd.DataFrame({
           'Model': ['Linear Regression', 'Ridge Regression', 'Lasso Regression', u
        ⇔'Random Forest', 'XGBoost'],
           '|': ['|', '|', '|', '|', '|'],
           'Training MSE': [lr_train_mse, train_mse_ridge, train_mse_lasso, __
        →rf_train_mse, mse_train],
           'Validation MSE': [lr_val_mse, ridge_val_mse, lasso_val_mse, rf_val_mse,_
        →xgb val mse],
           'Test MSE': [lr_test_mse, test_mse_ridge, test_mse_lasso, rf_test_mse,_
        →mse_test],
           '||': ['||', '||', '||', '||', '||'],
           'Training R2': [round((lr_train_r2)*100, 2), round((train_r2_ridge)*100,
        →2), round((train_r2_lasso)*100, 2), round((rf_train_r2)*100, 2), ⊔
        →round((r2_train_score)*100, 2)],
           'Validation R2': [round((lr_val_r2)*100, 2), round((ridge_val_r2)*100, 2),
        Ground((lasso_val_r2)*100, 2), round((rf_val_r2)*100, 2), ___
        \rightarrowround((xgb_val_r2)*100, 2)],
           'Test R2': [round((lr_test_r2)*100, 2), round((test_r2_ridge)*100, 2),
        Ground((test_r2_lasso)*100, 2), round((rf_test_r2)*100, 2), □
        →round((r2_test_score)*100, 2)]
       })
       meanse.index = meanse.index + 1
       meanse
```

```
[275]:
               Model | Training MSE Validation MSE
                                              Test MSE || \
    1 Linear Regression | 17499.083986
                                 14908.295121
                                           11551.184053
    2
      Ridge Regression | 17499.084150
                                 14908.181243
                                           11551.362639
      3
         Random Forest |
                       454.461431
                                  1328.336719
                                           1353.332344
```

		.749881	0101.121200	4277.011549	11
raining R2	Validation R2	Test R2			
66.47	67.90	73.52			
66.47	67.90	73.52			
66.44	68.04	73.63			
99.13	97.14	96.90			
95.80	91.84	90.20			
	66.47 66.47 66.44 99.13	66.47 67.90 66.47 67.90 66.44 68.04 99.13 97.14	66.4767.9073.5266.4468.0473.6399.1397.1496.90	66.47 67.90 73.52 66.47 67.90 73.52 66.44 68.04 73.63 99.13 97.14 96.90	66.47 67.90 73.52 66.47 67.90 73.52 66.44 68.04 73.63 99.13 97.14 96.90

b. COMMENTS ON INSIGHTS AND RECOMMENDATION-

insights

- 1. Regularization methods (Ridge, Lasso) reduce overfitting but don't improve performance much compared to Linear Regression.
- 2. Random Forest and XGBoost perform significantly better because they capture non-linear patterns in the data
- 3. XGBoost performs the best on the test set, showing it is highly effective for this dataset.

Recommendations

- 1. Best Modek Use XGBoost for the best predictions. Fine-tune it for even better results.
- 2. Simple Model: If you need an easy-to-interpret model go with Ridge Regression
- 3. Improve Data: Work on handling outiers and improving feature encoding for better results.
- 4. Business Tip: High-priced Fsting s like vilas, need special attention to madmize revenue