华东师大二附中 2022 学年 12 月阶段反馈

高二化学

(考试时间: 60 分钟 满分: 100 分)

可能用到的相对原子质量: H-1 C-12 N-14 O-16 Na-23 S-32 Cl-35.5 一、选择题(每小题只有一个正确答案,每小题2分,共40分)

- 1. 下列表示正确的是
 - H. A. 氨气的电子式: H:N:H
- B. 乙炔分子的球棍模型: 0-00-0

- C. 2-丁烯的键线式:
- 2. 下列各组变化中,前者属于物理变化,后者属于化学变化的是
 - A. 煤的干馏,钢铁牛锈
- B. 岩石风化,石油分馏
- C. 海水晒盐, 白磷自燃
- D. 食物腐败,铝的钝化
- 3. 下列有机物中,一定条件下不能与 H₂ 发生反应的是
 - A. 乙醇 B. 乙烯
- C. 苯
- D. 丙酮
- 4. 向下列溶液中滴入 FeCl3 溶液, 颜色无明显变化的是

CH₂OH

C. KSCN 溶液

- D. NaI 溶液
- 5. 下列各有机物的分类或命名不正确的是
 - -CH₃ 对甲苯酚属于芳香化合物

В.

CH₃ 3-甲基戊烷属于烷烃

CH₃CH₂CHOH

- C. 2-甲基-1-丙醇属于一元醇 CH_3 —CH—CH= CH_2
- D. CH₃
 - 3-甲基-1-丁烯属于脂肪烃
- 6. 下列苯的同系物分别与液溴和铁粉发生反应,苯环上的氢原子被取代,所得一溴代物有 三种同分异构体的是

- A. 邻二甲苯
- Β. C_2H_5
- C. 对二甲苯 D. 乙苯

- 7. 质量为 a g 的铜丝在火焰上灼烧至黑色,趁热放入下列物质中,铜丝变红而质量仍为 a g的是

- A. 乙醇 B. 盐酸 C. CO₂ D. KCl 溶液
- 8. 下列物质各 1mol 与足量的银氨溶液反应析出银的质量相等的是

①HCHO ②CH₃CHO ③(CH₃)₂CHCHO ④OHC(CH₂)₃CHO

- A. (1)(2)(3)
- B. 114 C. 11234 D. 34

9. 下列实验方案不能达到实验目的是

	实验目的	实验方案
A	证明溴乙烷发生消去反应有乙烯生成	向试管中加入适量的溴乙烷和 NaOH 的乙醇溶液,加热,将反应产生的气体通入溴的四氯化碳溶液
В	检验卤代烃中卤原子的种类	将溴乙烷与氢氧化钠溶液共热,取冷却后反应液,滴 加硝酸酸化后滴加硝酸银溶液
С	验证乙炔能被酸性高锰酸钾溶液氧化	将电石与饱和食盐水反应生成的气体通入酸性高锰酸 钾溶液,观察溶液是否褪色
D	验证苯和液溴在的FeBr ₃ 催化下发生取代反应	将反应产生的混合气体先通入四氯化碳溶液再通入 AgNO ₃ 溶液,观察是否有淡黄色沉淀生成

- 10. 在实验室中,下列除去括号内杂质的方法正确的是
 - A. 乙烷(乙烯): 通入氢气,在一定条件下反应
 - B. C₂H₂ (CO₂): 通过装有氢氧化钠溶液的洗气瓶
 - C. 二氧化碳 (二氧化硫): 通过装有 BaCl₂ (稀硝酸)溶液的洗气瓶
 - D. 溴苯(溴): 加入 KI 溶液, 分液
- 11. 在给定条件下,下列选项所示的物质间转化均能实现的是

A.
$$CH_2=CH_2 \xrightarrow{H_2O} CH_3CH_2OH \xrightarrow{O_2/Cu} CH_3COOH$$

C.
$$CO_2$$
, H_2O \xrightarrow{R} $\xrightarrow{R$

- D. $CH_3CHO \xrightarrow{H_2, N_i} CH_3CH_2OH \xrightarrow{NaBr} CH_3CH_2Br$
- 12. 下列说法不正确的是
 - A. 邻二甲苯只有一种结构说明苯环中不存在碳碳双键
 - B. 重油经过减压分馏获得沥青可用于铺设马路
 - C. 聚丙烯含有不饱和键,易被 KMnO4氧化
 - D. 汽油、煤油、柴油和润滑油都是碳氢化合物
- 13. 科研人员使用催化剂镓化钴($GoGa_3$)实现了 H_2 还原肉桂醛生成肉桂醇,该反应为吸热反应,反应机理如图所示。下列说法不正确的是

- A. 还原过程中发生了极性键的断裂
- B. 肉桂醛的稳定性小于肉桂醇的稳定性
- C. 苯丙醛和肉桂醇互为同分异构体
- D. GoGa3 实现了选择性还原肉桂醛中的醛基

- A. r 中所有原子可能共面
- B. p环上的一氯取代产物共有2种
- C. p、q、r均能使溴的四氯化碳溶液褪色
- D. 物质的量相等的 p、q 完全燃烧耗氧量相同
- 15. 1-丙醇在铜作催化剂并加热的条件下,可被氧化为 M。下列物质与 M 互为同分异构体的是
 - A. CH₃OCH₂CH₃

B. CH₃CH(OH)CH₃

C. CH₃COCH₃

D. CH₃CH₂CHO

16. 标准状况下,将 1mol 某饱和醇平均分为两份,一份与 O_2 气充分燃烧产生 33.6L 的 CO_2 气体,另一份与足量的 Na 反应,收集到气体 5.6L 的气体。这种醇分子能发生催化氧

化但产物不是醛,则该醇为

A. CH₃CH(OH)CH₃

B. CH₂(OH)CH(OH)CH₃

C. CH₃CH₂CH₂OH

D. CH₃CH₂OH

- 17. 有机物分子中基团之间存在相互影响。下列说法不正确的是
 - A. 苯酚有酸性而乙醇没有,表明苯环对羟基有影响
 - B. 苯乙烯能使溴水褪色而乙苯不能,表明苯环对侧链有影响
 - C. 甲苯能使酸性 KMnO₄溶液褪色而甲烷不能,表明苯环对侧链有影响
 - D. 甲苯硝化生成三硝基甲苯而苯通常只生成硝基苯,表明侧链对苯环有影响
- 18. 有一种有机物的键线式酷似牛,被称为牛式二烯炔醇(如图)。下列有关该化合物的说法不正确的是

- A. 该分子中含有三种官能团
- B. 该物质能与金属钠反应产生氢气
- C. 该分子中甲基上的一氯代物有6种
- D. 1mol 该物质最多可与6molBr₂发生加成反应
- 19. 有机物 a、b、c 的结构如图。下列说法正确的是

A. a 的一氯代物有 3 种

B. b 中含有的官能团是苯环和碳碳三键

- D. a、b、c 互为同分异构体
- 20. 一种利用有机胺(TBA)参与联合生产碳酸氢钠和二氯乙烷的工艺流程如图所示。下列 说法错误的是

- A. TBA 替代了侯德榜制碱法中的氨气
- B. 胺再生过程的反应为4CuCl+O,+4TBA·HCl=4CuCl,+4TBA+2H,O
- C. 整个工艺原子利用率为100%,符合绿色化学的要求
- D. 氯化过程每生成 $1 \text{mol } C_2 H_4 Cl_2$, 总反应中消耗0.25 mol O,

二、综合分析题(本大题含4小题,共60分)

(一) (本题共 16 分)

分析下列有机化合物,完成填空。

- 22. ①的空间结构为______, ③中键角为______, ④的系统命名为_____。
- 23. 以⑧为原料制备 2, 4, 6-三硝基甲苯(TNT)的化学方程式

24. 写出⑤的含有苯环的所有同分异构体:

(二) (本题共 16 分)

有机物 M(分子式: C₆H₄S₄)是隐形飞机上吸波材料的主要成分。某化学兴趣小组为验 证其组成元素,并探究其分子结构进行了下列实验:

将少量样品放入燃烧管 A 中, 通入足量 O2, 用电炉加热使其充分燃烧, 并将燃烧产物依次 通入余下装置。(夹持仪器的装置已略去)

- 25. 写出 A 中样品燃烧的化学方程式: _____
- 26. 装置 B 的目的是验证有机物中含氢元素,则 B 中盛装的试剂为____
- 27. D 中盛放的试剂是_____(填序号)。
 - a. NaOH 溶液 b. 品红溶液 c. 酸性 KMnO₄溶液 d.饱和石灰水

- 28. 能证明有机物含碳元素的现象是。
- 29. 装置I、II不能互换的理由是。
- 30. 燃烧管中放入 CuO 的作用是
- 31. 指出装置 F 的错误 。
- 32. 探究有机物 M 的分子结构高度对称, 氢原子的环境都相同。将 2.04 g 该有机物加入溴的 CCl₄ 溶液, 充分振荡后溶液褪色, 并消耗了 0.03 mol Br₂。有机物 M 的结构简式为

(三) (本题共14分)

一硝基甲苯是一种重要的工业原料,某实验小组用如图所示装置制备一硝基甲苯(包括 对硝基甲苯和邻硝基甲苯),反应原理如下:

$$2 \xrightarrow[50\text{C}]{\text{Righting}} (对硝基甲苯)+ \xrightarrow[NO_2]{\text{CH}_3} (邻硝基甲苯)$$

实验步骤:①浓硫酸与浓硝酸按体积比 1:3 配制混合溶液(即混酸)共 40mL;②在三颈烧瓶中加入 13g 甲苯(易挥发),按下图所示装置装好药品和其他仪器;③向三颈烧瓶中加入混酸;④控制温度约为 50°C,反应大约 10min 至三颈烧瓶底部有大量淡黄色油状液体出现;⑤分离出一硝基甲苯,经提纯最终得到对硝基甲苯和邻硝基甲苯共 15g。

相关物质的性质如下:

有机物	密度/g/cm ³	沸点/℃	溶解性
甲苯	0.866	110.6	不溶于水
对硝基甲苯	1.286	237.7	不溶于水,易溶于液态烃
邻硝基甲苯	1.162	222	不溶于水,易溶于液态烃

33. 实验前需要在三颈烧瓶中加入少许______, 目的是: _____。实验

过程中常采用的控温方法是。 34. 仪器 B 的名称为 , 若实验后在三颈烧瓶中收集到的产物较少, 可能的原因是 35. 分离产物的方案如下: ① 操作I的名称为______, ,操作VI的名称为_____。 ② 操作III中加入 5%NaOH 溶液的目的是 ,操作V中加入无水 CaCl₂ 的目的是_____。 (四) (本题共 14 分) 已知苯酚(OH)化学式为 C₆H₅OH,在空气中久置会被氧化成粉红色,是生产某 些树脂、杀菌剂、防腐剂以及药物(如阿司匹林)的重要原料。香料 M 的一种合成流程如 下: C₆H₆ CH₃Cl B 光照 C ② R_1 COOH $\xrightarrow{RC1}$ → R_1 COOR 请回答下列问题: 37. A→B 的反应类型是____。R 分子中最多有_____个原子共平面。设计 R→X 和 Y→Z 步骤的目的是 _____。 38. 写出 C 和 Z 反应生成 M 的化学方程式: 。 39. 已知苯环上有烃基时,新引入取代基主要取代邻位、对位氢原子。参照上述合成流程, 的合成路线:

选)。(合成路线常用的表达方式为: A