Семинар 3. Расчет пластинчато-ребристого аппарата

Темы для подготовки к семинарскому занятию

- 1. Методики расчета пластинчато-ребристых теплообменных аппаратов с однофазными и многофазными потоками. Особенности расчета процесса теплообмена.
- 2. Преимущества и недостатки конструкции пластинчато-ребристых теплообменных аппаратов в процессе сборки и эксплуатации.
- 3. Варианты конструктивного исполнения пластинчато-ребристых теплообменных аппаратов в зависимости от взаимного направления потоков, рабочих веществ и их фазового состава, исполнения ребер и т.д.
- 4. Последовательность технологических процессов, реализуемых при изготовлении и сборке пластинчато-ребристых теплообменных аппаратов.

Пластинчато-ребристый ТОА (ПРТОА) — теплообменный аппарат, в котором движение рабочих веществ происходит по каналам, образованными ребрами между разделительными пластинами. Каждый поток рабочего вещества проходит определенное число каналов, ориентированных соответствующим образом и имеющих дистрибьютер на входе и коллектор на выходе. Грамотное размещение каналов позволяет реализовывать эффективный процесс теплообмена между двумя и более потоками.

Особенности конструктивного исполнения ПРТОА

Ниже представлен четырехпоточный ПРТОА, в котором два «теплых» и два «холодных» потока, при этом в одном из «холодных» потоков происходит кипения, а в одном из «горячих» – конденсация.

Обозначения на схеме

Потоки:

- А «теплый» поток (конденсация);
- В «холодный» поток (кипение);
- С «теплый» поток;
- D «холодный» поток.

Элементы:

- 1 -штуцер;
- 2 -коллектор/дистрибьютер;
- 3 распределительное ребро;
- 4 теплообменное ребро;
- 5 разделительная пластина;
- 6 торцевая планка;
- 7 покрывная пластина;

Схема ПРТОА компании «Linde» [1].

Для реализации предварительного охлаждения прямого потока в криогенных циклах используется теплота фазового перехода технологического потока. В этом случае целесообразно использование аппаратов, реализующих кипение в большом объеме с наибольшей эффективностью процесса теплообмена. Для этого один или несколько ПРТОА помещаются в стальной кожух, заполненный кипящим веществом, а конфигурация аппарата называется кожухоблочной.

Материалы, применяемые при изготовлении ПРТОА

Для изготовления всех основных элементов конструкции пластинчато-ребристого аппарата используют алюминиевые сплавы.

АМц **ГОСТ 4784-2019** — детали аппарата, образующие теплообменную поверхность. Легирующие элементы: марганец — обеспечивает контролируемый равномерный рост зерна; медь — повышает механическую прочность.

АМГ5 ГОСТ 4784-2019 — коллекторы, дистрибьютеры и штуцеры. Легирующий элемент: магний — высокая коррозионная стойкость при хорошей свариваемости и обрабатываемости резанием. Повышает прочностные характеристики при термической обработке, может быть подвергнут анодированию.

АМГ2 ГОСТ 4784-2019 — коллекторы, дистрибьютеры и штуцеры. Высокотемпературный аналог сплава АМГ5 для аппаратов с рабочей температурой потоков до плюс 90 градусов Цельсия.

Повышение коррозионной стойкости, светоотражательной способности и термостойкости, а также снижение электропроводности и придание декоративных особенностей элементам конструкции из алюминиевых сплавов применяются различные методы нанесения покрытий [2]: горячий, газотермический, диффузионный, плакирование, осаждение из газовой фазы, гальваническое алюминирование и т.д.

Особенности выполнения паяных соединений

Бесфлюсовая пайка криогенных пластинчато-ребристых аппаратов осуществляется при помощи алюминиевых припоев с присадками кремния, который снижает температуру его плавления. Припой наносится на торцевые планки, покрывные пластины и распределительные ребра с двух сторон методом плакирования.

Пайка элементов теплообменной поверхности — ребер в пакеты осуществляется в вакуумных печах. Максимальные размеры аппарата, который может быть спаян в вакуумной печи [1]: до 8.2 метров в длину, 1.5 метров в ширину и 3.4 метров в высоту.

Максимальное расчетное давление — 130 бар, рабочая температура потоков — от минус 269 до плюс 90 градусов Цельсия.

Изготовители и марки алюминиево-кремниевого припоя: Chemet Aluminium 13 (Германия), Castolin AluFlam 190 (Швейцария); алюминиевомедного припоя: 34A (ТУ 1-92-46-76, Россия).

Плакирование — процесс создания покрытия, при котором осуществляется одностороннее и двухстороннее нанесение на поверхность металлических листов, плит, проволоки, труб тонкого слоя другого расплавленного металла или сплава механическим способом.

Задание для обсуждения на семинаре

Укажите сферы применения пластинчато-ребристых теплообменных аппаратов и их функциональное назначение в составе энергетических установок. Обоснуйте целесообразность выбора этого типа теплообменных аппаратов.

Задание для обсуждения на семинаре

Рассмотрите последовательность технологических процессов изготовления пластинчато-ребристых теплообменных аппаратов. Назовите требования, устанавливаемые к оборудованию и квалификации рабочего персонала, для выполнения указанных технологических операций. Укажите контрольные мероприятия, выполняемые после каждой операции, а также необходимые для их выполнения контрольные и измерительные приборы.

Конфигурация теплообменной поверхности

В пластинчато-ребристых теплообменных аппаратах для организации каналов, вдоль которых перемещаются потоки рабочих веществ, используются ребра с различными конструктивными особенностями.

Благодаря развитой поверхности теплообмена удается обеспечить показатели [1, 3]:

- компактность от 600 до 3000 м²/м³;
- удельная масса от 2 до 4 кг/ M^2 .

На рисунке представлены некоторые возможные конфигурации ребер: \mathbf{a} — гладкие непрерывные; $\mathbf{б}$ — гладкие прерывистые; \mathbf{g} , \mathbf{r} — волнистые непрерывные; \mathbf{g} — волнистые чешуйчатые непрерывные; \mathbf{e} — волнистые перфорированные непрерывные. Рекомендации по выбору конструкции ребер в зависимости от фазового состава рабочих потоков приведено в [4].

Геометрические параметры пластинчато-ребристых поверхностей, применяемых в аппаратах криогенных установок, а также коэффициенты для расчетных зависимостей процесса теплообмена и гидравлических сопротивлений представлены ниже [3].

Если в процессе расчета значение критерия Рейнольдса не попадает в указанные в таблице диапазоны для конкретного типа ребра, следует изменить заданную скорость потока. Размеры в таблице геометрических параметров указаны в мм, если не указано другое.

Ребра	l/t	Толщина ребер $\delta_{ m p}$	Расстояние между прорезями Δ	Эквивалентный диаметр $d_{\scriptscriptstyle 9}$		Компактность по ${\rm cbo}$ сободному ${\rm o}$ объему ${\rm m}^2/{\rm m}^3$		Степень стеснения у
			Рас	(1)	$\mathcal{S}_{\text{cB.p}}$	$S_{{\scriptscriptstyle \mathrm{CB.\Pi}}}$	$S_{\scriptscriptstyle{ ext{CB}}}$	
Гладкие непрерывные	-	0.15	-	4.64	520	342	862	0.196
	6/4	0.15	1.5	4.64	520	342	862	0.196
	12/4	0.25	2.0	5.69	534	169	702	0.153
Пропутрующих	12/2	0.25	2.0	3.05	1143	169	1312	0.209
Прерывистые	4/2	0.15	1.0	2.50	1081	519	1600	0.285
	6/2	0.25	1.0	2.68	1143	342	1485	0.282
	6/2.3	0.20	1.0	3.08	952	342	1297	0.244
Чешуйчатые	7/4	0.15	5.0	4.22	604	342	946	0.175

Ребра	l/t	Процесс теплообмена		Гидравлическое сопротивление			
		Re	A	n	Re	В	m
		500-2000	0.21	0.48	700-2000	32.7	-1.03
Непрерывные	6/4	2000-6500	0.0089	0.905	2000-3000	0.065	-0.21
		6500-25000	0.027	0.78			
	6/4	700-2000	0.088	1.067	600-2000	0.73	-0.32
	0/4	2000-13000	0.076	0.77	2000-17000	0.12	-0.085
	12/4	1800-6000	0.10	0.74	1800-6000	0.21	-0.15
	12/4	6000-22000	0.23	0.65	6000-30000	0.12	-0.08
	12/2	700-2500	0.0031	1.15	700-2500	0.37	-0.21
	12/2	2500-7500	0.19	0.64	2500-10000	0.23	-0.15
Прерывистые	4/2	700-4500	0.0022	1.16	400-900	89.6	-1.0
	4/2				900-6500	0.24	-0.13
	6/2	800-2000	0.002	1.19	600-1200	5.95	-0.62
	0/2	2000-5500	0.0113	0.962	1200-6500	0.22	-0.15
		160-1600	0.0043	1.098	200-950	22.5	-0.93
	6/2.3	1600-4500	0.0512	0.76	950-3000	1.18	-0.49
					3000-5000	0.2	-0.27
Чешуйчатые	7/4	2400-10500	0.19	0.63	2600-14500	0.23	-0.14

Методика расчета

Расчет пластинчато-ребристого теплообменного аппарата проводится по методике, описанной в [3]. Выбор типа и размера ребер осуществляется на основе анализа конструктивных, технологических и эксплуатационных показателей. Автоматизированный расчет ПРТОА, выполненный в MathCAD, доступен в [5].

Критерий оптимального выбора типа теплообменной поверхности и скоростей течения — отклонение длин пакетов каналов по всем потокам не более чем на 5%.

Исходные данные

Параметр		Прямой поток	Обратный поток
Рабочее вещество	-	Аргон	Аргон
Давление на входе, р	бар	$p_1 = 4.00$	$p_3 = 0.88$
Температура на входе, Т	K	$T_1 = 310.0$	$T_3 = 110.0$
Температура на выходе, p	K	$T_2 = 123.5$	$T_4 = 300.0$
Возможное падение давления, Δp	кПа	$\Delta p_{\mathrm{np}} = 20$	$\Delta p_{ m ofp} = 10$
Расход, G	кг/с	$G_{\rm np} = 1.08$	$G_{\text{ofp}} = 1.08$
Тип ребер	-	Прерывистые 4/2	Прерывистые 12/2

Параметры ребер

Параметр		Прямой поток	Обратный поток
Ширина ребра, t	MM	2	2
Длина ребра, l	MM	4	12
Толщина ребра, δ_{p}	MM	0.15	0.25
Расстояние между прорезями, Δ	MM	1	2
Эквивалентный диаметр, $d_{\mathfrak{g}}$	MM	2.50	3.05
Компактность $S_{{ m CB.p}}$ — ребер $S_{{ m CB.n}}$ — пластин $S_{{ m CB}}$ — суммарная	M^2/M^3	1081 519 1600	1143 169 1312
Степень стеснения, у	-	0.285	0.209
Процесс теплообмена	-	700-4500 0.0022 1.16	2500-7500 0.19 0.64
Гидравлические сопротивления <i>Re B m</i>	-	900-6500 0.24 -0.13	700-2500 0.23 -0.15

Схема выбранных в качестве теплообменной поверхности непрерывных ребер в комбинации 4/2 (прямой поток) и 12/2 (обратный поток) представлены ниже. Обозначения, указанные на схеме, применяются в расчете.

В таблицах ниже выделены строки, в которых значения параметров задаются на этапе выполнения расчета из собственного опыта, рекомендаций в литературе или по указанию преподавателя.

Перерасчет эквивалентных диаметров, компактностей и других параметров теплообменной поверхности выполняется в случае использования ребер без справочных данных или пластин с толщиной, отличной от 1 мм.

Характеристика теплообменной поверхности

Параметр	Прямой поток	Обратный поток
Компактность поверхностей ребер, ${\rm M}^2/{\rm M}^3$ ${\rm S_{cB.p}} = \frac{2}{t-\delta_{\rm p}}$	$S_{\text{CB.p.}\pi p} = 1081$	S _{CB.p.oбp} = 1143
Компактность поверхностей пластин, ${\rm M}^2/{\rm M}^3$ ${\rm S_{\rm cb.fi}} = \frac{2}{l-\delta_{\rm p}}$	S _{св.п.пр} = 519.5	S _{св.п.обр} = 170.2
Компактность по свободному объему, м ² /м ³	S _{CB.Пр} = 1600.5	$S_{cb.ofp} = 1313.2$

$S_{cB} = S_{cB.p} + S_{cB.p}$		
Эквивалентный диаметр, мм	_	
$d_9 = \frac{4 \cdot A}{P} = \frac{4}{S_{CB}}$	$d_{\text{э.пр}} = 2.50$	$d_{\text{э.обр}} = 3.05$
	<u> </u>	

Обозначения:

А – площадь свободного поперечного сечения канала;

Р – суммарный смачиваемый периметр всех ребер в поперечном сечении.

	1 1 1	
Коэффициент оребрения $K_{\rm p} = \frac{{\rm S}_{{\rm \tiny CB},p}}{{\rm S}_{{\rm \tiny CB}}}$	$K_{\rm p.np} = 0.675$	$K_{\text{p.o6p}} = 0.870$
Толщина пластин, мм $\delta_{\rm пл}$	$\delta_{ ext{пл.пр}}=1$	$\delta_{ ext{пл.обр}} = 1$
Материал пластин	АМц	АМц
Теплопроводность материала пластин, $\frac{B_T}{M \cdot K}$	$\lambda_{\text{пл.пр}} = 126$	$\lambda_{\text{пл.обр}} = 126$
$\gamma = \frac{\left(\delta_{\rm p} + \delta_{\rm пл}\right) \cdot t + (l - \delta_{\rm пл}) \cdot \delta_{\rm p}}{(l + \delta_{\rm пл}) \cdot t}$	$\gamma_{\pi \mathrm{p}} = 0.275$	$\gamma_{ m o6p}=0.202$
Удельная площадь свободного сечения, мм $\psi = (l + \delta) \cdot (1 - \gamma)$	$\psi_{\pi p} = 3.625$	$\psi_{\text{oбp}} = 10.375$
Отношение поверхностей теплообмена, - $\frac{F_{\rm пp}}{F_{\rm обр}} = \frac{l_{\rm np} + t_{\rm np} + 2 \cdot \delta_{\rm p.np}}{l_{\rm обp} + t_{\rm обp} + 2 \cdot \delta_{\rm p.oбp}}$	$\frac{F_{\rm np}}{F_{\rm o6p}} = \frac{0.00}{0.02}$	$\frac{06}{15} = 0.434$

Обозначения:

 $l_{
m np}$, $t_{
m np}$, $\delta_{
m p.np}$ – длина, ширина и толщина для ребер прямого потока;

 $l_{ ext{oбp}}$, $t_{ ext{oбp}}$, $\delta_{ ext{p.oбp}}$ – длина, ширина и толщина для ребер обратного потока.

Тепловые характеристики потоков и параметры ребер

Параметр	Прямой поток	Обратный поток
Температурный напор на «горячей» стороне аппарата, K $\Delta T_1 = T_1 - T_4$	$\Delta T_1 = 310$	- 300 = 10
Температурный напор на «холодной» стороне аппарата, K $\Delta T_2 = T_2 - T_3$	$\Delta T_2 = 123.5$	- 110 = 13.5

Среднелогарифмическая разность температур, K $\Delta T_{\rm cp} = \frac{\Delta T_2 - \Delta T_1}{\ln\left(\frac{\Delta T_2}{\Delta T_1}\right)}$	$\Delta T_{\rm cp} = \frac{13.5 - 10}{\ln\left(\frac{13.5}{10}\right)} = 11.7$	
Средняя температура потока, K $T_m = \frac{T_{\scriptscriptstyle \mathrm{BX}} + T_{\scriptscriptstyle \mathrm{BMX}}}{2}$	$T_{\rm np} = 216.8$	$T_{ m o6p}=205$
Плотность рабочего вещества при средней температуре и давлении, $\frac{\kappa \Gamma}{M^3}$	$ ho_{\mathrm{np}} = 8.95$	$ ho_{ m o6p}=2.07$
Динамическая вязкость рабочего вещества при средней температуре и давлении, 10^6 Па · с	$\mu_{\rm np} = 17.27$	$\mu_{ m o6p} = 16.35$
Коэффициент теплопроводности рабочего вещества при средней температуре и давлении, $10^3 \frac{\text{Вт}}{\text{м-}K}$	$\lambda_{ m np}=13.61$	$\lambda_{ m o6p}=12.82$
Теплоемкость изобарная рабочего вещества при средней температуре и давлении, $\frac{\kappa \mathcal{D}^{\mathcal{H}}}{\kappa \Gamma \cdot K}$	$C_{p.\pi p} = 0.531$	$C_{p.\text{oбp}} = 0.523$
Тепловая нагрузка на аппарат, кВт $Q = G \cdot (h_{\text{\tiny BX}} - h_{\text{\tiny Bbix}})$	$Q_{\rm np} = 107.24$	$Q_{ m o6p} = 107.25$
Скорость обратного потока, м/с	-	$V_{\text{ofp}} = 6$
Скорость прямого потока, м/с $V_{\rm np} = \frac{\rho_{\rm o6p}}{\rho_{\rm np}} \cdot \frac{\psi_{\rm o6p}}{\psi_{\rm np}} \cdot \frac{G_{\rm o6p} \cdot V_{\rm o6p}}{G_{\rm np}}$	$V_{\rm np} = 3.97$	-
Критерий Рейнольдса $Re = \frac{V \cdot \rho \cdot d_{\scriptscriptstyle 9}}{\mu}$	$Re_{\pi p} = 5138$	$Re_{\text{o6p}} = 2310$
Критерий Прандтля $Pr = \frac{\mu \cdot C_p}{\lambda}$	$Pr_{\rm np} = 0.674$	$Pr_{\text{обп}} = 0.667$
Критерий Нуссельта $Nu = A \cdot Re^n \cdot Pr^{rac{1}{3}}$	$Nu_{\rm np} = 38.887$	$Nu_{\text{ofp}} = 23.604$

Обозначения

A, n – параметры теплообменной поверхности при соответствующих числах Re.

Примечание:

При приближении числа Рейнольдса к пограничным значениям целесообразно выбирать коэффициенты процесса теплообмена из области больших значений. Поэтому для обратного потока, коэффициенты A и n взяты из области $Re \in 2500...7500$ при расчетном значении 2310.

	1	T	
Коэффициенте теплоотдачи, $\frac{\text{Вт}}{\text{м}^2 \cdot \text{K}}$ $\alpha = \frac{Nu \cdot \lambda}{d_3}$	$\alpha_{\rm np} = 211.8$	$\alpha_{\rm o6p} = 99.3$	
Попомоти побио 1/м			
Параметр ребра, $1/м$ $m = \sqrt{\frac{2 \cdot \alpha}{\lambda_{\pi\pi} \cdot \delta_{p}}}$	$m_{\rm np} = 149.7$	$m_{ m o 6p} = 79.4$	
КПД ребра			
$\eta_{\text{pe6}} = \left(1 + \frac{\left(m \cdot \frac{l}{2}\right)^2}{3}\right)^{-1}$	$\eta_{ m pe6.\pi p}=0.971$	$\eta_{ m pe6.o6p}=0.930$	
КПД оребренной поверхности			
$\eta_{ ext{op}} = 1 - rac{S_{ ext{cB.p}}}{S_{ ext{cB}}} \cdot \left(1 - \eta_{ ext{pe6}} ight)$	$\eta_{ m op.\pi p} = 0.980$	$\eta_{ m op.o6p}=0.939$	
Коэффициент теп	поперелачи. — Вт		
	** **	√ - 1	
$k_{\mathrm{T}} = \left(\frac{1}{\alpha_{\mathrm{np}} \cdot \eta_{\mathrm{op,np}}} + \frac{\delta_{\mathrm{n},\mathrm{np}} \cdot S_{\mathrm{cB,np}}}{\lambda_{\mathrm{a},\mathrm{n}} \cdot S_{\mathrm{cB,n,np}}} + \frac{\delta_{\mathrm{n},\mathrm{np}} \cdot S_{\mathrm{cB,n,np}}}{\alpha_{\mathrm{np}} \cdot S_{\mathrm{cB,n,np}}} + \frac{\delta_{\mathrm{n},\mathrm{np}} \cdot S_{\mathrm{cB,n,np}}}{\alpha_{\mathrm{np}} \cdot S_{\mathrm{cB,n,np}}} + \frac{\delta_{\mathrm{np},\mathrm{np}} \cdot S_{\mathrm{cB,n,np}}}{\alpha_{\mathrm{np}} \cdot S_{\mathrm{np},\mathrm{np}}} + \frac{\delta_{\mathrm{np},\mathrm{np}} \cdot S_{\mathrm{np},\mathrm{np}}}{\alpha_{\mathrm{np}} \cdot S_{\mathrm{np},\mathrm{np}}} + \frac{\delta_{\mathrm{np},\mathrm{np}} \cdot S_{\mathrm{np},\mathrm{np}}}{\alpha_{np$	$rac{S_{ ext{cb.o6p}}}{S_{ ext{cp.tp}}} \cdot \eta_{ ext{op.o6p}}$	$\left(\frac{F_{\text{o6p}}}{F_{\text{np}}}\right) = 95$	
Коэффициент теплопередачи по	СВ.Пр	пр	
обратному потоку, $\frac{B_{\mathrm{T}}}{M^2 \cdot K}$ $k_{\mathrm{T.o6p}} = \frac{k_{\mathrm{T}}}{\overline{F_{\mathrm{o6p}}}}$	-	$k_{\text{т.обр}} = 41.3$	
Площадь теплообменной поверхности, м 2 $F = \frac{1.1 \cdot Q}{k \cdot \Delta T_{\mathrm{cp}}}$	$F_{\text{пр}} = 106.3$ $npu \ k_{\text{\tiny T}}$	$F_{\text{oбp}} = 244.8$ $npu \ k_{\text{T.ofp}}$	
Площадь канала во фронтальном сечении, м² $F_{\rm \phi p} = \frac{G}{\rho \cdot V \cdot (1-\gamma)}$	$F_{\text{фр.пр}} = 0.042$	$F_{\rm { \phi p.o6p}} = 0.109$	
Общая площадь фронтального сечения, м 2 $F_{\rm \phi p} = F_{\rm \phi p. np} + F_{\rm \phi p. o6p}$	0.151		
Сторона квадратного сечения, м $H = \sqrt{F_{\rm \varphi p}}$	0.388		
Длина теплообменной поверхности во фронтальном сечении, м	$L_{\rm np} = 2.189$	$L_{\rm oбp} = 2.145$	

	<u> </u>
$L = \frac{F \cdot V \cdot \rho}{S_{_{\mathrm{CB}}} \cdot G}$	
Относительное отклонение длин теплообменной поверхности	1.97%
$arDelta_L = rac{L_{ m np} - L_{ m ofp}}{L_{ m np}}$	тип теплообменной поверхности и скорости потоков заданы корректно
Усредненная по потокам длина теплообменной поверхности во фронтальном сечении, м $L_{\rm пp} = L_{\rm oбp} = \frac{L_{\rm np} + L_{\rm oбp}}{2}$	L = 2.167
Число слоев теплообменных поверхностей $z = \frac{H}{\left(l_{\rm np} + l_{\rm o6p} + 2 \cdot \delta_{\rm пл. np}\right)}$	$z = 21.57 \rightarrow 22$
Высота сечения во фронтальной плоскости, м $H = z \cdot \left(l_{\rm np} + l_{\rm oбp} + 2 \cdot \delta_{\rm пл. np}\right)$	H = 0.396
Ширина сечения во фронтальной плоскости, м $B = \frac{F_{\rm \varphi p}}{H}$	B = 0.381

Гидравлические характеристики потоков и патрубков

Параметр	Прямой поток	Обратный поток
Фактор трения	$f_{\text{тр.пр}} = 0.079$	$f_{\text{тр.обр}} = 0.073$
$f_{\mathrm{Tp}} = B \cdot Re^{m}$	npu B = 0.24, m = -0.13	npu B = 0.37, m = -0.21
Гидравлическое сопротивление, кПа $\Delta p = 4 \cdot f_{\rm Tp} \cdot \frac{\rho \cdot V^2}{2} \cdot \frac{L}{d_{\scriptscriptstyle 3}}$	$\Delta p_{\mathrm{np}} = 19.3$ < 20 кПа	$\Delta p_{ m o6p} = 7.7$ $< 10 \kappa \Pi a$

Гидравлическое сопротивление, Па на входе в аппарат (внезапное сужение):

$$\Delta p_1 = (1 - \gamma_{\pi p}^2 + K_{c.\pi p}) = 100.3$$

$$\Delta p_3 = (1 - \gamma_{\text{ofp}}^2 + K_{\text{c.ofp}}) = 55.4$$

на выходе из аппарата (внезапное расширение):

$$\Delta p_2 = (1 - \gamma_{\pi p}^2 - K_{p,\pi p}) \cdot \frac{\rho_{\pi p} \cdot V_{\pi p}^2}{2} = 28.5$$

$$\Delta p_4 = (1 - \gamma_{o6p}^2 - K_{p.o6p}) \cdot \frac{\rho_{o6p} \cdot V_{o6p}^2}{2} = 13.0$$

при повороте потока на 90°:

$$\Delta p_{\text{\tiny HOB}} = 2 \cdot \left(\sin^2 \left(\frac{\pi}{2} \right) + 2 \cdot \sin^4 \left(\frac{\pi}{2} \right) \right) \cdot \frac{\rho_{\text{\tiny HD}} \cdot V_{\text{\tiny Hp}}^2}{2} = 422.6$$

Обозначения:

 $K_{\rm c.mp} = 0.5$ – коэфф. местного сопротивления при сужении для прямого потока;

 $K_{
m c.o6p} = 0.53 - \kappa o

agraphi \phi$. местного сопротивления при сужении для обратного потока;

 $K_{
m p.np} = 0.52$ — коэ $\phi \phi$. местного сопротивления при расширении для прямого потока;

 $K_{\text{р.обр}} = 0.61 - \kappa$ оэ ϕ ϕ . местного сопротивления при расширении для обратного потока;

Общее гидравлическое сопротивление, кПа

 $\Delta p_{\Sigma} = \Delta p + \Delta p_{\text{bx}} + \Delta p_{\text{nob}} + \Delta p_{\text{bbix}}$

 $\Delta p_{\Sigma,\pi p} = 19.86$ < 20 кПа

 $\Delta p_{\Sigma.oбp} = 8.19$ < 10 κΠa

Геометрические характеристики аппарата

Параметр	Прямой поток	Обратный поток
Объем аппарата, м ³	$V_{\rm TOA} = 0.327$	
$V_{\text{TOA}} = L_{\text{np}} \cdot H \cdot B$		
Объем одного слоя, м ³		
$V_{\rm c,r} = rac{V_{ m TOA}}{z}$	$V_{\rm c.r.} = 0.015$	
Ориентировочные площади входного/выходного патрубков, м ²	$S_{ m narp} = rac{G}{V \cdot ho}$	
Ориентировочные диаметры входного/выходного патрубков, м	$d_{ ext{narp}} = \sqrt{rac{4 \cdot S_{ ext{narp}}}{\pi}}$	
Ориентировочная скорость рабочего	$w = \frac{G}{\rho \cdot S_{\text{narp}}}$	
вещества во входных/выходных патрубках, м		

Заметки к методике расчета аппарата

Задание для обсуждения на семинаре

Для элементов конструкции пластинчато-ребристого теплообменного аппарата сделайте необходимые подписи: материал, назначение, особенности и т.д. Рассмотрите технические требования, назначенные на сборку аппарата, и проведите технологический анализ, включающий обоснование необходимости выполнения требований и вероятные последствия в случае их невыполнения.

- 1. Пример чертежа пластинчато-ребристого теплообменного аппарата с указанием необходимых габаритных, монтажных и присоединительных размеров; разрезов и сечений; данных о сварных соединениях и последовательностью укладки ребер представлен в [6].
- 2. Дополнительная информация: приведенная ниже структура аппарата не является сборочным чертежом и представлена для демонстрации элементов конструкции по месту. Сборочный чертеж демонстрируется преподавателем и представлен в [6].

Схема пластинчато-ребристого аппарата

Задание для обсуждения на семинаре

Запишите конструктивные, технологические, эксплуатационные преимущества и недостатки ПРТОА. Проведите анализ технологичности изготовления и сборки аппарата в условиях мелкосерийного, среднесерийного и крупного производства.

Вопросы для самоконтроля

- 1. Возможно ли в ПРТОА реализовать эффективный теплообмен между тремя и более потоками в условиях фазового перехода? Какие конструктивные особенности должен иметь такой аппарат?
- 2. Какие значения может принимать компактность ПРТОА? Чем объясняется широкий диапазон возможных значений компактности?
- 3. Почему сборка ПРТОА осуществляется бесфлюсовой пайкой? Каким образом исключается образование оксидной пленки в месте расплавления припоя?
- 4. Какие критерии оптимального выбора типа теплообменной поверхности могут быть приняты в тепловом и гидравлическом расчете ПРТОА?
- 5. Какие материалы применяются для изготовления ПРТОА? Почему элементы, образующие теплообменную поверхность, и другие детали аппарата изготавливаются из разных материалов?
- 6. Каким образом можно объяснить выбор того или иного типа ребер для набора теплообменной поверхности ПРТОА?
- 7. Какие факторы ограничивают максимальный размер ПРТОА?

Литература и материалы к семинару

- 1. Загрузить материалы по ПРТОА компании «Linde» URL: ionium.ru/l/d-pdf-prtoa-linde
- 2. Ильин В.А., Панарин А.В. Алюминиевые покрытия и способы их получения //Авиационные материалы и технологии. 2014. №4 (33).
- 3. Архаров А.М. и др. Криогенные системы: Учебник для студентов вузов по специальностям «Техника и физика низких температур» и «Холодильная, криогенная техника и кондиционирование»: в 2 т. Т.2 Основы проектирования аппаратов, установок и систем / А.М. Архаров, И.А. Архаров, В.П. Беляков и др.; Под общ. ред. А.М. Архарова и А.И. Смородина. 2-е изд., перераб. и доп. М.: Машиностроение, 1999. 720 с.: ил.
- 4. Смородин А.И. Пластинчато-ребристые теплообменники для охлаждения однофазных потоков: Методические указания к выполнению домашних заданий. Курсовых и дипломных проектов по курсу «Машины и аппараты криогенных установок» / Под ред. А.М. Архарова. М.: МГТУ им. Н.Э. Баумана, 2007. 32 с.: ил.
- 5. Загрузить пример расчета ПРТОА в MathCAD URL: ionium.ru/l/d-mcd-prtoa
- 6. Загрузить пример сборочного чертежа ПРТОА URL: ionium.ru/l/d-drawing-prtoa
- 7. Смородин А.И. Пластинчато-ребристые конденсаторы-испарители: Методические указания к выполнению домашних заданий, курсовых и дипломных проектов по курсу «Машины и аппараты криогенных установок» / Под ред. А.М. Архарова. М.: МГТУ им. Н.Э. Баумана, 2007. 34 с.: ил.
- 8. Шевич Ю.А., Пуртов С.Н. Проектный расчет пластинчато-ребристы теплообменников с противоточно-прямоточным и перекрестноточным движением потоков: Учеб. Пособие. М.: Изд-во МГТУ им. Н.Э. Баумана, 2003. 44 с.: ил.