Unmixing hyperspectral images using Markov random fields

Olivier Eches, Nicolas Dobigeon and Jean-Yves Tourneret

Université de Toulouse - IRIT/INP-ENSEEIHT Toulouse, FRANCE http://www.enseeiht.fr/~eches

MaxEnt 2010, Chamonix, France

Hyperspectral imagery

What is an hyperspectral image?

- Same scene observed in different spectral bands
- 3-Dimension image: length, width and wavelength

Example of hyperspectral cube (Big Island, Hawaii, USA)

Hyperspectral imagery

Single pixel

Pixel represented by a vector of hundreds of measurements

Applications

- ullet mineral exploration
- agriculture: soil quality, crop forecasting, forest monitoring
- environment: pollution detection, climatic change detection
- military: target detection (minefields, vehicles,...), cartography

3/3

Unmixing: crucial step in hyperspectral images analysis

Spectral mixing

Measured pixel: mixture of pure spectra (endmembers) characterized by their corresponding fractions (abundances).

Common assumption: Linear mixing model

If the pure materials are spatially disjoint in the pixel, the measured spectrum is the linear combination of the corresponding pure spectra.

Figure: Linear observation model

Standard mixing model

Linear mixing model (LMM)

For a given pixel p:

$$oldsymbol{y}_p = \sum_{r=1}^R oldsymbol{m}_r a_{r,p} + oldsymbol{n}_p,$$

- $\mathbf{y}_p = [y_{1,p}, \dots, y_{L,p}]^T$ the observed pixel p in L bands,
- R number of pure materials or *endmembers*,
- $\mathbf{m}_r = [m_{r,1}, \dots, m_{r,L}]^T$ the spectrum of the rth endmember,
- $a_{r,p}$ fraction or abundance of the rth endmember in the pth pixel,
- $n_p = [n_{1,p}, \dots, n_{L,p}]^T$ the additive noise in the pth observed pixel (assumed white Gaussian),

Constraints on the abundance vectors
$$\boldsymbol{a}_p = \left[a_{1,p}, \dots, a_{R,p}\right]^T$$

$$\begin{cases} a_{r,p} \ge 0, \ \forall r = 1, \dots, R \\ \sum_{r=1}^{R} a_{r,p} = 1. \end{cases}$$
 (1)

$$oldsymbol{y}_p = \sum_{r=1}^R oldsymbol{m}_r a_{r,p} + oldsymbol{n}_p$$

Wavelength (um)

- $\begin{array}{c} \bullet \ L = 825 \\ (0.4 \mu \mathrm{m} \rightarrow 2.5 \mu \mathrm{m}), \end{array}$
- R = 3:
 - green grass (solid line),
 - galvanized steel metal (dashed line),
 - bare red brick (dotted line),
- $a_p = [0.4, 0.2, 0.4]^T$,
- SNR $\approx 20 \text{dB}$.

Spectral unmixing problem

Estimation of $\{\boldsymbol{m}_1,\ldots,\boldsymbol{m}_R\}$ and $\boldsymbol{\alpha}_p$.

2.5

Spectral unmixing

Unmixing steps

- Endmember extraction step: estimation of R and m_1, \ldots, m_R (Vertex Component Analysis, N-FINDR, Pixel Purity Index,...)
- ② Inversion step: estimation of the corresponding abundances $a_p = [a_{1,p}, \dots, a_{R,p}]^T$ (LS, ML and Bayesian approaches)

Most inversion strategies ignore the possible interactions between the pixels.

Spectral unmixing

Unmixing steps

- Endmember extraction step: estimation of R and m_1, \ldots, m_R (Vertex Component Analysis, N-FINDR, Pixel Purity Index,...)
- ② Inversion step: estimation of the corresponding abundances $a_p = [a_{1,p}, \dots, a_{R,p}]^T$ (LS, ML and Bayesian approaches)

Most inversion strategies ignore the possible interactions between the pixels.

Problem addressed in this work

Estimation of a_p under positivity and additivity constraints.

Main contributions

- Exploiting spatial correlations in a new Bayesian inversion procedure
- Using Markov random fields (MRFs) to model spatial interactions
- Spatial correlations \Rightarrow image classification/segmentation

Outline

- 1 Introducing spatial structures
- Mierarchical Bayesian model
 - Likelihood
 - Prior distributions
 - Joint posterior distribution
- Simulations
 - Synthetic data
 - Real data
- 4 Conclusions

Outline

- 1 Introducing spatial structures
- 2 Hierarchical Bayesian model
 - Likelihood
 - Prior distributions
 - Joint posterior distribution
- 3 Simulations
 - Synthetic data
 - Real data
- Conclusions

Defining homogeneous regions

- Image of P pixels divided into K regions or *classes*.
- In each region, the pixels approximately share the same composition.
- Introducing hidden variable: label vector $\boldsymbol{z} = [z_1, \dots, z_P]^T$, where

$$z_p = k \Leftrightarrow p \in \mathcal{I}_k, \ k = \{1, \dots, K\}.$$

- $\forall p \in \mathcal{I}_1: z_p = 1, E[\boldsymbol{a}_p] = \boldsymbol{\mu}_1, Covar(\boldsymbol{a}_p) = \boldsymbol{\Gamma}_1,$
- $\forall p \in \mathcal{I}_2$: $z_p = 2$, $\mathrm{E}\left[\boldsymbol{a}_p\right] = \boldsymbol{\mu}_2$, $\mathrm{Covar}(\boldsymbol{a}_p) = \boldsymbol{\Gamma}_2$,
- $\forall p \in \mathcal{I}_3: z_p = 3, E[\boldsymbol{a}_p] = \boldsymbol{\mu_3}, Covar(\boldsymbol{a}_p) = \boldsymbol{\Gamma}_3.$

Example

Figure: Scatter-plot of dual-band data of an image partitioned in 3 classes.

Defining homogeneous regions

- Image of P pixels divided into K regions or *classes*.
- In each region, the pixels approximately share the same composition.
- Introducing hidden variable: label vector $\boldsymbol{z} = [z_1, \dots, z_P]^T$, where

$$z_p = k \Leftrightarrow p \in \mathcal{I}_k, \ k = \{1, \dots, K\}.$$

- $\forall p \in \mathcal{I}_1: z_p = 1, E[\boldsymbol{a}_p] = \boldsymbol{\mu}_1, Covar(\boldsymbol{a}_p) = \boldsymbol{\Gamma}_1,$
- $\forall p \in \mathcal{I}_2$: $z_p = 2$, $\mathrm{E}\left[\boldsymbol{a}_p\right] = \boldsymbol{\mu}_2$, $\mathrm{Covar}(\boldsymbol{a}_p) = \boldsymbol{\Gamma}_2$,
- $\forall p \in \mathcal{I}_3$: $z_p = 3$, $\mathrm{E}\left[\boldsymbol{a}_p\right] = \boldsymbol{\mu_3}$, $\mathrm{Covar}(\boldsymbol{a}_p) = \boldsymbol{\Gamma}_3$.

Abundance reparametrization

Introducing *logistic* coefficients^a $t_p = [t_{1,p} \dots, t_{R,p}]^T$ where:

$$a_{r,p} = \frac{\exp(t_{r,p})}{\sum_{r=1}^{R} \exp(t_{r,p})}.$$
 (2)

- \Rightarrow Ensure positivity and sum-to-one constraints.
- \Rightarrow Each class k fully characterized by:

$$E[t_p|z_p = k] = \psi_k,$$

$$Covar[t_p|z_p = k] = \Sigma_k.$$

 $^a[{\rm A.~Gelman}~et~al.,~J.~Amer.~Math.~Soc.,~1996]$

Outline

- Introducing spatial structures
- Mierarchical Bayesian model
 - Likelihood
 - Prior distributions
 - Joint posterior distribution
- Simulations
 - Synthetic data
 - Real data
- 4 Conclusions

Unknown parameter vector

Unknown parameter vector

$$\mathbf{\Theta} = \{ \boldsymbol{T}, \boldsymbol{z}, s \}$$

with

- $T = [t_1, \dots, t_P]$ logistic coefficient matrix
- $z = [z_1, \dots, z_P]^T$ label vector
- $\mathbf{s} = \left[s_1^2, \dots, s_P^2\right]^T$ noise variance vector

Likelihood

Likelihood

The LMM model and the Gaussian property of the noise vector yield

$$f\left(\boldsymbol{y}_{p} | \boldsymbol{t}_{p}, s_{p}^{2}\right) = \left(\frac{1}{2\pi s_{p}^{2}}\right)^{\frac{L}{2}} \exp\left[-\frac{\|\boldsymbol{y}_{p} - \boldsymbol{M}\boldsymbol{a}_{p}(\boldsymbol{t}_{p})\|^{2}}{2s_{p}^{2}}\right], \tag{3}$$

where

- $\|x\| = \sqrt{x^T x}$ is the standard ℓ^2 norm,
- $a_p(t_p)$ explicitly mention dependance of the abundance vector a_p over the logistic coefficient vector t_n .

Assuming independence between the different noise vector n_n

$$\Rightarrow f(Y|T,s) = \prod_{p=1}^{P} f(y_p|t_p, s_p^2).$$
 (4)

Label prior

Which prior for the labels?

• Independent prior distributions:

$$f\left(oldsymbol{z}
ight) = \prod_{p=1}^{P} f\left(z_{p}
ight)$$

 \Rightarrow no correlations between the pixels!

Label prior

Which prior for the labels?

• Independent prior distributions:

$$f\left(\boldsymbol{z}\right) = \prod_{p=1}^{P} f\left(z_{p}\right)$$

 \Rightarrow no correlations between the pixels!

Markov Random fields...

Potts-Markov random field

$$f(z) = \frac{1}{G(\beta)} \exp \left[\beta \sum_{p=1}^{P} \sum_{p' \in \mathcal{V}(p)} \delta(z_p - z_{p'}) \right]$$

- V(p) the 1-order neighborhood (4 pixels),
- $G(\beta)$ normalizing constant (or partition function),
- β : granularity coefficient (known in this study),
- $\delta(x) = \begin{cases} 1, & \text{if } x = 0, \\ 0, & \text{otherwise.} \end{cases}$

Naturally introduces spatial correlations between labels of neighboring pixels

Influence of β on the label prior

Generation of synthetic images with K=3 using Potts-Markov random fields with different values of β and 1-order neighborhood structure.

Figure: From left to right: $\beta = 0.8, 1.4, 2.$

- small values of β : many small regions,
- large values of β : few large regions,

Logistic coefficient prior distribution

Logistic coefficient prior distribution

For each class k $(k = 1, ..., K), p \in \mathcal{I}_k$

$$t_p|z_p = k, \psi_k, \Sigma_k \sim \mathcal{N}(\psi_k, \Sigma_k),$$

 \Rightarrow Two hyperparameters (fixed or estimated) that characterize the kth class: ψ_k and Σ_k .

For the whole set of pixels, the distribution for $T = [t_1, \dots, t_P]$ is:

$$f\left(T|\Psi,\Sigma\right) = \prod_{k=1}^{K} \prod_{p \in \mathcal{I}_k} f\left(t_p|z_p = k, \psi_k, \Sigma_k\right)$$

with
$$\Psi = [\psi_1, \dots, \psi_K]$$
 and $\Sigma = {\Sigma_1, \dots, \Sigma_K}$.

Noise variance and hyperparameter prior distributions

Noise variance prior

$$s_p^2 | \delta \sim \mathcal{E}(\delta),$$

where δ is an adjustable hyperparameter.

$$f(s|\delta) = \prod_{p=1}^{P} f(s_p^2|\delta)$$
 (5)

Hyperparameter priors (hierarchical model)

Let $\Omega = \{\delta, \Psi, \Sigma\}$ the hyperparameter vector:

$$f(\Omega) = f(\delta) \prod_{k=1}^{K} f(\psi_k) f(\Sigma_k)$$

with

- $\Psi = [\psi_1, \dots, \psi_K]$ (means of the logistic coefficient vectors)
- $\Sigma = \{\Sigma_1, \dots, \Sigma_K\}$ (covariance matrices of the logistic coefficient vectors).

Joint posterior distribution of $\boldsymbol{\Theta}$ and $\boldsymbol{\Omega}$

Joint posterior of parameter $\boldsymbol{\Theta}$ and hyperparameter Ω vectors:

$$f(\mathbf{\Theta}, \Omega | \mathbf{Y}) \propto f(\mathbf{Y} | \mathbf{\Theta}) f(\mathbf{\Theta} | \Omega) f(\Omega).$$
 (6)

Straightforward computations lead to:

$$f(\boldsymbol{\Theta}, \Omega | \boldsymbol{Y}) \propto \prod_{p=1}^{P} \left(\frac{1}{s_{p}^{2}}\right)^{\frac{L}{2}} \exp\left[-\frac{\|\boldsymbol{y}_{p} - \boldsymbol{M}\boldsymbol{a}_{p}(\boldsymbol{t}_{p})\|^{2}}{2s_{p}^{2}}\right]$$

$$\times \prod_{r,k} \frac{1}{\sigma_{r,k}^{n_{k}+1}} \exp\left[-\left(\frac{\psi_{r,k}^{2}}{2v^{2}} + \frac{2\gamma + \sum_{p \in \mathcal{I}_{k}} (t_{r,p} - \psi_{r,k})^{2}}{2\sigma_{r,k}^{2}}\right)\right]$$

$$\times \delta^{P-1} \prod_{p=1}^{P} \left(\frac{1}{w_{p}^{2}}\right)^{2} \exp\left(-\frac{\delta}{w_{p}^{2}}\right) \left(\frac{1}{v^{2}}\right)^{\frac{RK}{2}+1}$$

$$\times \exp\left[\sum_{p=1}^{P} \sum_{p' \in \mathcal{V}(p)} \beta \delta(z_{p} - z_{p'})\right]$$

$$(7)$$

where $n_k = \operatorname{card}(\mathcal{I}_k)$ (combinatorial problem).

Computing estimates of Θ

Joint posterior distribution too complex to obtain Bayesian estimates of Θ

- Simulation of samples $\Theta^{(t)}$ asymptotically distributed according to $f(\Theta, \Omega|Y)$ using MCMC methods
- MMSE and MAP estimators

$$\hat{\mathbf{\Theta}}_{\text{MMSE}} \approx \frac{1}{N_{\text{MC}} - N_{\text{bi}}} \sum_{t=1}^{N_{\text{MC}} - N_{\text{bi}}} \mathbf{\Theta}^{(t)}, \tag{8}$$

$$\hat{\boldsymbol{\Theta}}_{\text{MAP}} \approx \arg \max_{\boldsymbol{\Theta}^{(t)}} f(\boldsymbol{\Theta}^{(t)}|\boldsymbol{Y}).$$
 (9)

Outline

- Introducing spatial structures
- 2 Hierarchical Bayesian model
 - Likelihood
 - Prior distributions
 - Joint posterior distribution
- 3 Simulations
 - Synthetic data
 - Real data
- 4 Conclusions

Simulation parameters

• 25×25 synthetic image composed of K = 3 classes

- 25×25 synthetic image composed of K = 3 classes
- label map generated using a Potts-Markov random field with $\beta = 1.1$

Figure: Synthetic label map

- 25×25 synthetic image composed of K = 3 classes
- label map generated using a Potts-Markov random field with $\beta = 1.1$
- Each pixel mixed with R=3 endmembers whose spectra are: construction concrete, green grass, micaceous loam (L=413 bands)

Figure: Endmember spectra

- 25×25 synthetic image composed of K = 3 classes
- label map generated using a Potts-Markov random field with $\beta = 1.1$
- Each pixel mixed with R=3 endmembers whose spectra are: construction concrete, green grass, micaceous loam (L=413 bands)
- Noise level SNR $\simeq 15 dB$

- 25×25 synthetic image composed of K = 3 classes
- label map generated using a Potts-Markov random field with $\beta = 1.1$
- Each pixel mixed with R=3 endmembers whose spectra are: construction concrete, green grass, micaceous loam (L = 413 bands)
- Noise level SNR $\sim 15 dB$
- Abundances maps generated from truncated Gaussian distributions (with different means and covariance matrices in each class)

Figure: Synthetic abundances map

Simulation results: label map

• Marginal MAP label estimates

Figure: Left: original labels. Right: estimated labels.

Simulation results: abundance maps

• MMSE logistic coefficient estimates (conditionally to the MAP label estimates)

Figure: Top: Actual abundances. Bottom: estimated abundances.

Simulation results: abundance means

Table: Actual and estimated abundance mean and variance for each class.

		Real values	Estimated values
Class 1	$\boldsymbol{\mu}_1 = \mathrm{E}[\boldsymbol{a}_p \mathcal{I}_1]$	$[0.6, 0.3, 0.1]^T$	$[0.58, 0.29, 0.13]^T$
	$Var[a_p \mathcal{I}_1] \ (\times 10^{-3})$	$[5, 5, 5]^T$	$[4.5, 4.3, 5.5]^T$
Class 2	$\boldsymbol{\mu}_2 = \mathrm{E}[\boldsymbol{a}_p \mathcal{I}_2]$	$[0.3, 0.5, 0.2]^T$	$[0.29, 0.49, 0.2]^T$
	$Var[a_p \mathcal{I}_2] \ (\times 10^{-3})$	$[5, 5, 5]^T$	$[4.5, 4.7, 5.3]^T$
Class 3	$\mu_3 = \mathrm{E}[\boldsymbol{a}_p \mathcal{I}_3]$	$[0.3, 0.2, 0.5]^T$	$[0.31, 0.19, 0.49]^T$
	$Var[a_p \mathcal{I}_3] \ (\times 10^{-3})$	$[5, 5, 5]^T$	$[7, 4.2, 11.7]^T$

Example of results with the 2nd class

Figure: Histograms of the abundance means μ_2

Simulation parameters

• Real hyperspectral image of 50×50 pixels extracted from a larger image acquired in 1997 by AVIRIS (Moffett Field, CA, USA) data set reduced from 224 to 189 bands (water absorption bands removed)

Real data

- N-FINDR used to extract the R=3 endmember spectra associated to water, soil and vegetation.
- K=4 classes have been considered

Real hyperspectral data: Moffett field acquired by AVIRIS in 1997 (left) and the region of interest shown in true colors (right). 30 / 37

Real data

Abundance maps

Comparison with other results

Results from FCLS algorithm a .

^a[D. C. Heinz, C.-I Chang, IEEE Trans. on Geosci. and Remote Sensing, 2001]

Real data

Label map

Figure: $\beta = 1.1$.

Outline

- Introducing spatial structures
- 2 Hierarchical Bayesian model
 - Likelihood
 - Prior distributions
 - Joint posterior distribution
- Simulations
 - Synthetic data
 - Real data
- 4 Conclusions

Conclusions

"Spatial" unmixing algorithm

- Exploitation of spatial correlations using MRFs within a Bayesian framework
- Hidden labels introduced to identify several classes defined by homogeneous composition of macroscopic materials
- Appropriate reparametrization for the abundance vector

Results

- Good estimation of abundance coefficients
- Classification map obtained thanks to the estimates of the underlying labels
- Price to pay: high computational cost

Perspectives

- Estimation of the granularity coefficient β ,
- Other models for spatial correlations (discriminative random fields...)
- Replace MCMC methods by other computational methods: variational methods, (constrained?) Hamiltonian MCMC,...

Unmixing hyperspectral images using Markov random fields

Olivier Eches, Nicolas Dobigeon and Jean-Yves Tourneret

Université de Toulouse - IRIT/INP-ENSEEIHT Toulouse, FRANCE http://www.enseeiht.fr/~eches

MaxEnt 2010, Chamonix, France

Simulation results: comparisons

Synthetic data: comparisons with other algorithms

$$MSE_r^2 = \frac{1}{P} \sum_{p=1}^{P} (\hat{a}_{r,p} - a_{r,p})^2$$

Table: MSEs for abundance coefficients.

	$FCLS^a$	Bayesian independent ^b	Spatial
MSE_1^2	0.0019	0.0016	0.001
MSE_2^2	4.3×10^{-4}	4.1×10^{-4}	3.1×10^{-4}
MSE_3^2	0.0014	0.0013	8.6×10^{-4}

^b[N. Dobigeon et al., IEEE Trans. on Signal Proc., 2008]

^a[D. C. Heinz, C.-I Chang, IEEE Trans. on Geosci. and Remote Sensing, 2001]

Real data

Label map

Figure: $\beta = 1.1$.

Figure: $\beta = 2$.