§ 4. Частные производные. Полный дифференциал

§ 4.1. Теоретический материал

Определение частных производных

Рассмотрим функцию двух переменных z=f(x;y), определенную и непрерывную в некоторой области D. Считаем, что точки с координатами $(x;y),\,(x+\Delta x;y),\,(x;y+\Delta y),\,(x+\Delta x;y+\Delta y),$ где $\Delta x,\Delta y$ — приращения аргументов, также принадлежат области D.

- \Rightarrow Частными приращениями функции z=f(x;y) по независимым переменным x и y называются разности $\Delta_x z=f(x+\Delta x;y)-f(x;y),$ $\Delta_y z=f(x;y+\Delta y)-f(x;y).$
- \Rightarrow Полным приращением функции z = f(x;y), соответствующим приращениям аргументов Δx и Δy , называется разность $\Delta z = f(x + \Delta x; y + \Delta y) f(x;y)$.

Заметим, что в общем случае $\Delta z \neq \Delta_x z + \Delta_y z$.

 \Rightarrow Частной производной функции z = f(x;y) по переменным x и y называется предел отношения соответствующего частного приращения $\Delta_x z$ или $\Delta_y z$ к приращению данной переменной, при условии, что приращение переменной стремится к нулю:

$$z'_x = \lim_{\Delta x \to 0} \frac{\Delta_x z}{\Delta x}, \quad z'_y = \lim_{\Delta y \to 0} \frac{\Delta_y z}{\Delta y}.$$

Приняты также обозначения: z'_x , $\frac{\partial z}{\partial x}$, $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial x}(x;y)$, $\frac{\partial}{\partial x}z$, $\frac{\partial}{\partial x}f$, $\frac{\partial}{\partial x}f(x;y)$ (аналогично по другой переменной).

Геометрический смысл частной производной

Исходим из рис. 126, на котором изображен график Γ функции $z=f(x;y);\ P_0(x_0;y_0;z_0)$ — точка на графике, $M_0(x_0;y_0)$ — проекция P_0 на плоскость $Oxy,\ z_0=M_0P_0$. Через прямую M_0P_0 проведены две плоскости p_1 и p_2 : p_1 параллельна плоскости $Oxz,\ p_2$ параллельна плоскости Oyz.

Рисунок 126

Сечение Γ с первой плоскостью представляет собой кривую $z=f(x;y_0)=\varphi(x)$ — функцию переменной x, а сечение Γ с p_2 представляет кривую $z=f(x_0;y)=g(y)$ — функцию переменной y. На чертеже изображены также касательные t_1 к $\varphi(x)$ в точке P_0 и t_2 — к g(y) в точке P_0 . Тогда $z_x'(x_0;y_0)=\varphi'(x_0)=k_1=\operatorname{tg}\alpha_1$ — угловой коэффициент t_1 , α_1 — угол наклона t_1 к Ox, $z_y'(x_0;y_0)=g'(y_0)=k_2=\operatorname{tg}\alpha_2$ — угловой коэффициент t_2 , α_2 — угол наклона t_2 к Oy.

Дифференциал функции

Если функция f(x;y) обладает частными производными f'_x и f'_y , непрерывными в точке $M_0(x_0;y_0)$, то теорема Лагранжа (конечных приращений) для функции одной переменной позволяет получить следующее приближенное равенство (при $\Delta x \sim 0$, $\Delta y \sim 0$):

$$\Delta z = f(x_0 + \Delta x; y_0 + \Delta y) - f(x_0; y_0) =$$

$$= f(x_0 + \Delta x; y_0 + \Delta y) - f(x_0; y_0 + \Delta y) + f(x_0; y_0 + \Delta y) - f(x_0; y_0) =$$

$$= f'_x(x_0 + \theta_1 \Delta x; y_0 + \Delta y) \Delta x + f'_y(x_0; y_0 + \theta_2 \Delta y) \Delta y \approx$$

$$\approx f'_x(x_0; y_0) \Delta x + f'_y(x_0; y_0) \Delta y$$

 $(0 < \theta_1 < 1, 0 < \theta_1 < 1$ — некоторые числа, фигурирующие в теореме Лагранжа).

Таким образом, полное приращение функции приближенно равно $f_x'(x_0;y_0)\Delta x + f_y'(x_0;y_0)\Delta y.$

⇒ Это выражение представляет собой главную, линейную часть приращения функции и называется дифференциалом этой функции в данной точке.

Обозначение: $dz=z_x'dx+z_y'dy$ (здесь $dx=\Delta x,\ dy=\Delta y$ — произвольные приращения аргументов). Приняты также обозначения: $d_xz=z_x'dx,\ d_yz=z_y'dy$ — частные дифференциалы функции z. Тогда $dz=d_xz+d_yz$ — полный дифференциал функции z.

Как правило, под дифференциалом функции будем понимать полный дифференциал.

Если полное приращение Δz функции z=f(x,y) в точке $M_0(x_0;y_0)$ можно представить в виде $\Delta z=A\cdot\Delta x+B\cdot\Delta y+$ $+\varepsilon_1\cdot\Delta x+\varepsilon_2\cdot\Delta y$, где A и B не зависят от Δx и Δy , а $(\varepsilon_1;\varepsilon_2)\to(0,0)$ при $(\Delta x;\Delta y)\to(0;0)$, то функция f(x;y) называется дифференцируемой в точке M_0 .

Теорема 11.8. Для того, чтобы функция z = f(x; y) была дифференцируемой в данной точке, достаточно, чтобы она обладала частными производными, непрерывными в этой точке.

Сравнивая Δz и dz, заключаем, что они являются величинами одинакового порядка малости при $\Delta x \to 0$ и $\Delta y \to 0$, т.е. $\Delta z \approx dz$ ($\Delta x \sim 0$, $\Delta y \sim 0$). Это приближенное равенство (тем точнее, чем меньше Δx и Δy), записанное в виде

$$f(x_0+\Delta x;y_0+\Delta y)pprox f(x_0;y_0)+f_x'(x_0;y_0)\Delta x+f_y'(x_0;y_0)\Delta y$$
 называется линеаризацией функции $z=f(x;y)$ в окрестности точки $M_0(x_0;y_0).$

Это соотношение применяется в приближенных вычислениях: дифференцируемую функцию можно заменить линейной функцией в окрестности рассматриваемой точки.

Замечание. Понятие частных производных, дифференциала, линеаризации распространяются на функции трех и более переменных.