1、回顾

之前在利用梯度下降算法中计算θ值的时候,每次迭代更新时,都要计算该点的偏导数值,更新的速度和次数取决于α学习率和迭代次数,大致思路就是通过每次计算当

前导数值,更新参数值,使得下次代价差趋向于变小,这是之前所说的梯度下降法, 既然我们都已经知道代价函数随θ变化规律类似于上图这样,能不能快速找到代价极小 值呢?由此引入了正规方程算法。

2、正规方程算法原理

要找到一个极小值 θ ,令 J 随 θ 的导数等于零,这样的一个 θ 值就会使得 J 值为局部最小值,同理,多元参数变量情况类似。需要求得各个偏导数,使其等于零。以下这张图很好的说明了求任意个数参数的方法,只需找到 X 和 y 矩阵即可。

	1	Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
$\rightarrow x_0$		x_1	x_2	x_3	x_4	y
	1	2104	5	1	45	460
	1	1416	3	2	40	232
	1	1534	3	2	30	315
	1	852	2	_1	36	178
		$X = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$	$2104 5 1$ $416 3 2$ $1534 3 2$ $852 2 1$ $\cancel{M} \times (\cancel{n+1})$ $\cancel{n-1}X^Ty$	2 30 36	$\underline{y} = \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix}$	460 232 315 178 n-domension leater

Andrew Ng

3、比较

梯度下降法	正规方程法		
选择α学习率	无α		
选择迭代次数	一次计算		
需要特征缩放	无需缩放		
特征数量很多时,无较大影响	N 个特征,构成 N 阶矩阵,求逆矩阵 运算量巨大		
适用范围更广	仅适用于特征<1w 的线性回归		

6、暗区

你可能会想到如果矩阵不可逆怎么办,首先考虑消除多余特征,其次,pinv 称为伪逆矩阵算法,在正规方程算法中,几乎都可以算出来 θ ,所以,别过多担心。

5、实战

使用两种方式都可以快速计算得到相应的 θ ,但仍然有差异。