

# DISTRIBUCIÓN T2 HOTELLING



# Definición

Si " $\alpha$ " puede ser escrito como md<sup>t</sup>M-¹d donde "d" y "M" están independientemente distribuidos como N<sub>p</sub>(0,I) y W<sub>p</sub>(I,m) respectivamente, entonces, diremos que " $\alpha$ " tiene una distribución T² Hotelling con parámetro "p" y "m".

$$\alpha \sim T^2$$
 (p, m)



### Teorema 3.5.1

Si X y M están independientemente distribuidos como  $N_p(\mu,\Sigma)$  y  $W_p(\Sigma,m)$  respectivamente, entonces,

$$m(\overline{x} - \mu)'M^{-1}(\overline{x} - \mu) \sim T^2(p,m)$$

$$\Rightarrow$$
) Hipótesis  $\mathbf{X}_{(nxp)} \sim N_p(\mu, \Sigma)$ 

$$\mathbf{M} \sim W_p(\Sigma, m)$$

**X** y **M** son independientes

Tesis 
$$m(\bar{x} - \mu)' M^{-1}(\bar{x} - \mu) \sim T^2(p,m)$$



#### Prueba.-

Haciendo 
$$\mathbf{d}=n^{1/2}\Sigma^{-1/2}(\overline{\mathbf{x}}-\mu)$$
 ya que  $\overline{\mathbf{x}}\sim N_p(\mu,n^{-1}\Sigma)$  
$$\Rightarrow (\overline{\mathbf{x}}-\mu)\sim N_p(0,n^{-1}\Sigma)$$
 
$$\Rightarrow \mathbf{d}\sim N_p(0,\mathbf{l})$$
 (i)

Además,  $nS = X'HX \sim W_p(\Sigma, n-1)$ 

Por teorema 3.4.1: 
$$n\Sigma^{-1/2}S\Sigma^{-1/2} \sim W_p(I,n-1)$$
 (ii)

Posterior a probar la independencia entre (i) y (ii) determinamos  $\alpha$ :

$$\Rightarrow \alpha = (n-1)d'(n\Sigma^{-1/2}S\Sigma^{-1/2})^{-1}d \sim T^{2}(p, n-1)$$

$$\Rightarrow$$
  $(n-1)(x - \mu)'S^{-1}(x - \mu) \sim T^{2}(p, n-1)$ 



# Corolario 3.5.5.1

Si x y S son la media muestral y matriz de covarianzas de una muestra de tamaño "n" a partir de una  $Np(\mu,\Sigma)$  y Su=(n/n-1)S, entonces,

$$(n-1)(\overline{x} - \mu)'S^{-1}(\overline{x} - \mu) = n(\overline{x} - \mu))'S_u^{-1}(\overline{x} - \mu) \sim T^2(p, n-1)$$

#### ⇒) Prueba.-

Haciendo 
$$\mathbf{d}$$
= $n^{1/2}\Sigma^{-1/2}(\overline{x} - \mu)$  ya que  $\overline{x} \sim N_p(\mu, n^{-1}\Sigma)$  
$$\Rightarrow (\overline{x} - \mu) \sim N_p(0, n^{-1}\Sigma)$$
 
$$\Rightarrow \mathbf{d} \sim N_p(0, I)$$

Además,  $nS = X'HX \sim W_p(\Sigma, n-1)$ 

Por teorema 3.4.1: 
$$n\Sigma^{-1/2}\mathbf{S}\Sigma^{-1/2} \sim W_{\mathbf{p}}(\mathbf{I}, \mathbf{n}-1) \implies \alpha = (\mathbf{n}-1)\mathbf{d}'(\mathbf{n}\Sigma^{-1/2}\mathbf{S}\Sigma^{-1/2})^{-1}\mathbf{d} \sim \mathsf{T}^2(\mathbf{p}, \mathbf{n}-1)$$
  $\implies (\mathbf{n}-1)(\mathbf{x}-\mathbf{\mu})'\mathbf{S}^{-1}(\mathbf{x}-\mathbf{\mu}) \sim \mathsf{T}^2(\mathbf{p}, \mathbf{n}-1)$ 



#### Teorema 3.5.2

$$T^2(p,m) = \frac{mp}{(m-p+1)}$$
  $F_{(p, m-p+1)}$ 

#### ⇒) Prueba.-

Si 
$$\alpha \sim T^2(p,m)$$
  $\Rightarrow$   $\alpha = md'M^{-1}d$  donde  $d \sim N_p(0,l)$  y  $M \sim W_p(l,m)$   
Luego,  $\alpha = \frac{md'M^{-1}d}{d'd}$   $d'd$  (1)

Pero sabemos por hipótesis que: f(M/d) = f(M) ya que M y <u>d</u> son independientes.

$$\Rightarrow f(M) = \frac{md'M^{-1}d}{d'd} \sim \chi^{2}_{(m-p+1)} , \text{ además, } d'd \sim \chi^{2}_{(p)} \qquad \text{en (1)}$$

$$\Rightarrow \alpha = \frac{d'd}{d'd / md'M^{-1}d} = m \chi^{2}_{(m-p+1)} / \chi^{2}_{(m-p+1)} = \frac{mp}{m-p-1} \frac{\chi^{2}_{(p)} / p}{\chi^{2}_{(m-p+1)} / m-p+1}$$



# Estadística T<sup>2</sup> Hotelling para dos Muestras

Distancia de Mahalanobis



## Teorema 3.6.1

Si  $X_1$  y  $X_2$  son matrices de datos independientes, y si la  $n_i$  filas de  $X_i$  son iid  $N_p(\mu_i, \Sigma_i)$  i=1,2, entonces, cuando  $\mu_1 = \mu_2$  y  $\Sigma_1 = \Sigma_2$ 

$$\frac{n_1 n_2}{n} D^2 \sim T^2(p,n-2)$$

$$D^{2}=(x_{1}-x_{2})'S_{u}^{-1}(x_{1}-x_{2})$$

$$S_{u}=\frac{n_{1}S_{1}+n_{2}S_{2}}{n-2}$$



Gracias!!!