Calcul Numeric Test Laborator – Calculatoare și Tehnologia Informației, Anul I

INSTRUCŢIUNI:

- 1. Toate problemele sunt obligatorii.
- 2. Comentați și explicați toate rezolvările trimise. Codurile necomentate/neexplicate nu se punctează.
- 3. TIMP DE LUCRU: 2 ore
- 4. Rezolvările problemelor corespunzătoare acestui test vor fi trimise prin email:
 - ca fişier .txt, cu denumirea Nume_Prenume_Grupa_Test.txt
 - la adresa alexandru.ghita@unibuc.ro;
 - vor avea următoarea linie de subiect:
 Test Laborator CN Nume şi prenume student, Grupa 16X
- 5. Termenul limită de trimitere prin email a rezolvărilor problemelor: 8 iunie 2021, orele 20:30.

Algorithm 1: Interpolare Lagrange (Metoda Neville)

Input: $\mathbf{X} \in \mathbb{R}^{n+1}$, $\mathbf{Y} \in \mathbb{R}^{n+1}$, $\mathbf{z} \in \mathbb{R}$

Result: $\mathbf{t} \in \mathbb{R}$

Pasul 1: Construiește matricea $Q = (q_{ij})_{i,j=\overline{1,n+1}} \in \mathcal{M}_{n+1}(\mathbb{R})$:

- \bullet Se iniţializează prima coloană a matricei Q cu Y;
- Pentru $i = \overline{2, n+1}$ și $j = \overline{2, i}$ calculează termenii matricei Q:

$$q_{ij} \leftarrow \frac{q_{i,j-1}(z - x_{i-j+1}) - q_{i-1,j-1}(z - x_i)}{x_i - x_{i-j+1}};$$

Pasul 2: $t \leftarrow q_{n+1,n+1}$

Pasul 3: OUTPUT(t) STOP.

Factorizarea QR:

Fie $A \in \mathbb{R}^{n \times n}$. Numim descompunere QR a matricei A, descompunerea de forma A = QR, unde $Q \in \mathbb{R}^{n \times n}$ este o matrice ortogonală, i.e. $Q^TQ = QQ^T = I$, iar $R \in \mathbb{R}^{n \times n}$ este o matrice superior triunghiulară.

Dacă $A \in \mathbb{R}^{n \times n}$ este o matrice inversabilă, atunci există şi este unică descompunerea QR a matricei A cu $Q \in \mathbb{R}^{n \times n}$ o matrice ortogonală şi $R \in \mathbb{R}^{n \times n}$ o matrice superior triunghiulară având componentele pe diagonala principală $r_{kk} > 0, k = \overline{1, n}$.

Sistemul Ax = b devine QRx = b. Cum Q este ortogonală $(Q^TQ = I)$, înmulțind relația QRx = b cu Q^T obținem $Rx = Q^Tb$. Cum R este superior triunghiulară sistemul $Rx = Q^Tb$ se rezolvă conform metodei substituției descendente.

Algorithm 2: Metoda de descompunere QR

Input: $\mathbf{A} \in \mathbb{R}^{n \times n}$

Result: $\mathbf{Q} \in \mathbb{R}^{n \times n}$, $\mathbf{R} \in \mathbb{R}^{n \times n}$

Pasul 1: Determină prima coloană a matricei Q și prima linie a matricei R:

$$\bullet \ r_{11} \longleftarrow \sqrt{\sum_{i=1}^{n} a_{i1}^2};$$

$$\bullet \ q_{i1} \longleftarrow \frac{a_{i1}}{r_{11}}, \quad \forall \ i = \overline{1, n};$$

•
$$r_{1j} \longleftarrow \sum_{s=1}^{n} q_{s1} a_{sj}, \quad \forall \ j = \overline{2, n};$$

Pasul 2: Pentru $k = \overline{2, n}$ completează coloana k a matricei Q și linia k a matricei R:

$$\bullet \ r_{kk} \longleftarrow \sqrt{\sum_{i=1}^{n} a_{ik}^2 - \sum_{s=1}^{k-1} r_{sk}^2};$$

•
$$q_{ik} \leftarrow \frac{1}{r_{kk}} \left(a_{ik} - \sum_{s=1}^{k-1} q_{is} r_{sk} \right), \quad \forall \ i = \overline{1, n};$$

•
$$r_{kj} \longleftarrow \sum_{s=1}^{n} q_{sk} a_{sj}, \quad \forall \ j = \overline{k+1, n};$$

Pasul 3: $OUTPUT(\mathbf{Q}, \mathbf{R})$ STOP.

$\overline{\mathbf{E}}\mathbf{x}$. 1

- (a) Rezolvați numeric ecuația $x^2 13 = 0$. Folosind comentarii se va argumenta aplicabilitatea metodei alese.
- (b) Să se ilustreze grafic funcția și punctul/punctele de intersecție cu axa OX. Graficul va include minim notarea axelor OX și OY și legenda.

Ex. 2

Presupunem că avem datele cunoscute \mathbf{X} (date de client) în punctele obținute din discretizarea intervalului [-1,1] în 23 puncte echidistante. Valorile corespunzătoare punctelor rezultate \mathbf{Y} sunt obținute prin evaluarea funcției $f(x) = e^{2x}$ în acele puncte.

- (a) Implementează în **python** metoda Neville de interpolare Lagrange cu numele **interp_neville** care determină, conform metodei Neville, polinomul Lagrange $P_n(x)$. Pentru implementare, urmărește algoritmul de mai sus;
- (b) Clientul dorește aproximarea valorilor funcției în toate punctele din discretizarea cu 75 de puncte echidistante a domeniului. Pentru aproximarea valorilor lipsă, folosește datele oferite de client și metoda Neville de interpolare Lagrange. Într-o figură, afișează datele clientului, graficul funcției exacte cât și graficul aproximării obținute;
- (c) Într-o figură nouă, generează graficul erorii de interpolare $e_t = |P_n(x) f(x)|$.

Ex. 3

- (a) Implementează in **python** factorizarea QR cu numele **fact_qr_new**. Pentru implementare, urmărește algoritmul de mai sus. În implementarea metodei **fact_qr_new**, verifică dacă:
 - (i) Matricea A este pătratică;
 - (ii) Matricea A este inversabilă.
- (b) Pentru implementare, verifică rezolvarea sistemului $A \cdot \underline{x} = \underline{b}$, unde:

$$A = \begin{bmatrix} 0 & -6 & -6 & -10 \\ 7 & -2 & -9 & -4 \\ -6 & -10 & 9 & 1 \\ 7 & 6 & -10 & -5 \end{bmatrix}, \quad \underline{b} = \begin{bmatrix} -158 \\ -72 \\ -19 \\ -39 \end{bmatrix}. \tag{1}$$

Help: Ține cont că rezolvarea sistemului $A \cdot \underline{x} = \underline{b}$ atunci când A = QR folosind algoritmul de mai sus se reduce la a rezolva sistemul $R \cdot \underline{x} = Q^T \cdot \underline{b}$.