

Objetivos:

- Adquirir conhecimentos em dispositivos de lógica programável;
- Estudo da lógica de seleção (simulação de barramento).

Barramento:

Um barramento é um caminho de comunicação que conecta dois ou mais dispositivos.

Outra definição é que o barramento é um conjunto de "fios" que liga a CPU aos demais dispositivos.

Barramento:

Barramento de Dados:

- Carrega dados;
- Largura é uma das chaves do desempenho (8, 16, 32 bits).

Barramento de Endereço:

- Identifica origem ou destino dos dados;
- Largura determina capacidade máxima de memória.

Barramento de Controle:

- Informações de tempo e controle;
- Sinais de leitura/escrita de memória, requisições de interrupção.

Para o circuito abaixo existem 3 barramentos essenciais para memorizar dados no led, a ideia simplificada mostra um barramento de endereço "A" (adress) de 4 bits, um barramendo de dados "D" (data) de 1 bit e por final um barramento de controle "Mem Write". Para o caso mencionado, qual o endereço do "led"?

Resp: $A = 1101 (A3 \sim A0)$

Organização Básica de Computadores - LAB

A transparência atual é uma representação do circuito anterior para o software Quartus.

Organização Básica de Computadores - LAB

Tabela dos pinos de entrada (chaves on/off)

Signal Name	FPGA Pin No.	Description	I/O Standard
SW[0]	PIN_V28	Slide Switch[0]	2.5V
SW[1]	PIN_U30	Slide Switch[1]	2.5V
SW[2]	PIN_V21	Slide Switch[2]	2.5V
SW[3]	PIN_C2	Slide Switch[3]	2.5V
SW[4]	PIN_AB30	Slide Switch[4]	2.5V
SW[5]	PIN_U21	Slide Switch[5]	2.5V
SW[6]	PIN_T28	Slide Switch[6]	2.5V
SW[7]	PIN_R30	Slide Switch[7]	2.5V
SW[8]	PIN_P30	Slide Switch[8]	2.5V
SW[9]	PIN_R29	Slide Switch[9]	2.5V
SW[10]	PIN_R26	Slide Switch[10]	2.5V
SW[11]	PIN_N26	Slide Switch[11]	2.5V
SW[12]	PIN_M26	Slide Switch[12]	2.5V
SW[13]	PIN_N25	Slide Switch[13]	2.5V
SW[14]	PIN_J26	Slide Switch[14]	2.5V
SW[15]	PIN_K25	Slide Switch[15]	2.5V
SW[16]	PIN_C30	Slide Switch[16]	2.5V
SW[17]	PIN_H25	Slide Switch[17]	2.5V

Tabela dos pinos de saída (Leds)

Signal Name	FPGA Pin No.	Description	I/O Standard
LEDR[0]	PIN_T23	LED Red[0]	2.5V
LEDR[1]	PIN_T24	LED Red[1]	2.5V
LEDR[2]	PIN_V27	LED Red[2]	2.5V
LEDR[3]	PIN_W25	LED Red[3]	2.5V
LEDR[4]	PIN_T21	LED Red[4]	2.5V
LEDR[5]	PIN_T26	LED Red[5]	2.5V
LEDR[6]	PIN_R25	LED Red[6]	2.5V
LEDR[7]	PIN_T27	LED Red[7]	2.5V
LEDR[8]	PIN_P25	LED Red[8]	2.5V
LEDR[9]	PIN_R24	LED Red[9]	2.5V

Crie um simulador de forma de onda, conforme indicado abaixo:

Defina a faixa de exibição de 0 até 1000 ns

No simulador defina uma forma de onda, conforme EXEMPLO abaixo, desde que algumas condições possam armazenar 0 ou 1:

- Após a geração do gráfico conectar o KIT da INTEL ao computador e carregar o programa (circuito elaborado) para dentro do FPGA.
- Fazer as devidas configurações dos pinos das entradas e saídas do kit e fazer o teste prático.
- Demonstrar ao professor o funcionamento.

Relatório 4

- Introdução
- Construção do circuito simulador de barramento no programa Quartus
 - Definição do circuito no software
- Procedimento experimental executado
- Demonstração com forma de onda na execução do circuito
 - Para modelo de simulação funcional
 - Para modelo de simulação Timing
- Análise as formas de onda nos dois casos acima descritos
- Conclusão