Lecture 7: Balanced Binary Search Trees - AVL Trees CSCI 700 - Algorithms I

Andrew Rosenberg

Last Time

Heap

Today

■ Balanced Binary Search Trees - AVL Trees

Review Binary Search Trees

■ Define Binary Search Trees

Binary Search Tree - Best Case Times

- All BST operations are O(d), where d is the tree depth.
- Minimum d: $d \le |\log n|$ for a binary tree with n nodes.
 - What is the best case tree?
 - What is the worst case tree?
- Best case running time of BST operations is $O(\log n)$.

Binary Search Tree - Worst Case Times

- Worst case running time is O(n).
- What happens when you insert elements in order (ascending or descending)?
 - Insert: 1, 3, 4, 5, 7, 10, 12 into an empty BST
- Lack of "balannce".
- Unbalanced degenerate tree. Requires linear time access, as an unsorted array.

Approaches to Balancing Trees

- If we can balance a tree in $O(\log n)$ time for each operation, we can establish strict $O(\log n)$ bounds on worst-case runtimes.
- Possible Approaches
 - Do nothing.
 - No overhead. Relies on the randomness of data to keep depth to approximately log n, but may end up with some deep nodes.
 - Strict balancing
 - Guarantee that the tree is always balanced perfectly.
 - Moderately good balance
 - Allow some (bound) imbalance in exchange for keeping balancing overhead low.
 - Adjust on access
 - Self-adjusting

Balancing Binary Search Trees

- There are many approaches to keep BSTs balanced.
 - Today: Adelson-Velskii and Landis (AVL) trees. Height balancing
 - Next time: Red-black trees and 2-3 trees. Other self adjusting trees.

Perfect Balance

- Perfect balance requires a complete tree after every operation.
 - Complete Trees are full with the exception of the lower right part of the tree. I.e., at all depths $1 \le d \le D$ contains 2^{d-1} nodes, and all leaves at depth D are as far left as possible.
 - Heaps are Complete Trees.
- Maintaining this is expensive O(n).

AVL Trees – Good but not Perfect balance

- AVL trees are heigh-balanced binary search tres
- Balance factor, BALANCEFACTOR(T), of a node, T: height(T.left) - height(T.right)
- AVL trees calculate a balance factor for every node.
- For each node, the height of the left and right sub trees can differ by no more than 1. I.e. $|BALANCEFACTOR(T)| \le 1$
- Store the height of each node.

Height of an AVL tree

- \blacksquare N(h) = minimum number of nodes in an AVL tree of height h.
- Bases: N(0) = 1, N(1) = 2
- Induction: N(h) = N(h-1) + N(h-2) + 1.
- Solution $N(h) \ge \phi^h$ (where $\phi \approx 1.62$) (cf. Fibonacci)

Height of an AVL Tree

- $N(h) \ge \phi^h$ (where $\phi \approx 1.62$)
- So we have n nodes in an AVL tree of height h.
- $n \geq N(h)$
- $n \ge \phi^h$ therefore $\log_{\phi} n \ge h$
- $h \le 1.44 \log n$
- Therefore operations take $O(h) = O(1.44 \log n) = O(\log n)$

Node Heights

height of node = $\frac{h}{h}$ balance factor = $\frac{h}{h}$ empty height = -1

Node Heights after Insert

Insert and Rotation

- Insert can cause the balance factor of a node to become 2 or -2
- Only nodes on the path from the insertion point to the root might have changed
- After Insert, traverse up the tree to the root, updating heights
- If a new balance factor is 2 or -2, adjust the tree by rotation around the node

Rotation in an AVL Tree

Insertions in AVL Trees

- There are 4 cases that will give rise to rebalancing. (Let *T* be the node that needs rebalancing.)
 - 1 Insertion into the left subtree of the left child of T
 - 2 Insertion into the right subtree of the right child of T
 - ${f 3}$ Insertion into the right subtree of the left child of T
 - 4 Insertion into the left subtree of the right child of T
- These lead to four rotation algorithms.

AVL property has been restored!

right rotation complete

Implementation

```
balance (1,0,-1)
key
right
```

- No need to store the height. Just the balance factor.
- I.e. the difference in height.
- Must be maintained even if rotations are not performed

Single Rotation

ROTATEFROMRIGHT(T)

```
p \leftarrow T.right

T.right \leftarrow p.left

p.left \leftarrow T

T \leftarrow p
```

 \blacksquare Also need to modify the heights or balance factors of T and p.

Double Rotation

■ Double Rotation can be implemented in 2 lines.

DoubleRotateFromRight(T)

?????

?????

Insertion in AVL Trees

- Insert at the leaf.
- Note: Only nodes in the path from the insertion point to the root node might have changed in height.
- After Insert() traverse up the tree to the root, updating heights (or balance factors).
- If a new balance factor is 2 or -2, adjust by rotation around the node.

Insertion

■ Recall INSERT algorithm.

```
\begin{split} & \textbf{INSERT}(\mathsf{T}, \mathsf{x}) \\ & \textbf{if } \mathsf{T} = \mathsf{null then} \\ & \mathsf{T} = \mathsf{new Tree}(\mathsf{x}) \\ & \textbf{else} \\ & \textbf{if } x \leq T.data \textbf{then} \\ & \mathsf{INSERT}(\mathsf{T}.\mathsf{left}, \, \mathsf{x}) \\ & \textbf{else} \\ & \mathsf{INSERT}(\mathsf{T}.\mathsf{right}, \, \mathsf{x}) \end{split}
```

end if end if

Insertion in AVL Trees

Insert(T,x)

```
if T = null then
   T = \text{new Tree}(x)
else
   if x \leq T.data then
      INSERT(T.left, x)
      if height(T.left) - height(T.right) = 2 then
         if T.left.data \ge x then
             ROTATEFROMLEFT(T)
         else
             DoubleRotateFromLeft(T)
         end if
      end if
   else
      INSERT(T.right, x)
      Similar code as above
   end if
end if
T.height = max(height(T.left), height(T.right) + 1
```


AVL Tree Deletion

- Delete is more complex than insertion.
- Imbalances can propagate upwards.
- Multiple (though no more than log n) rotations may be needed.)

Pros and Cons of AVL Trees

- Arguments for AVL Trees
 - 1 Find is guaranteed to be $O(\log n)$ for all AVL trees.
 - 2 Insert and Delete are also $O(\log n)$
 - 3 Height balancing adds only a constant factor to the speed of Insert and Delete
- Arguments against AVL Trees
 - 1 While asymptotically faster, rebalancing takes time.
 - 2 Can be difficult to program and debug.
 - 3 Additional space is required for balancing.
 - 4 There are other more commonly used balanced trees optimized for disk accesses. We'll see at least one of them tomorrow.

Double Rotation Solution

■ Double Rotation can be implemented in 2 lines.

DoubleRotateFromRight(T)

ROTATEFROMLEFT(T.right)
ROTATEFROMRIGHT(T)

- HW-5 is up on the website.
- Next time
 - More Balanced Binary Search Trees.
 - Red-Black Trees
 - 2-3 Trees (B-Trees)
- For Next Class
 - Read 13.1, 13.2, 13.3, 13.4