Binôme 2 :

Nom du répertoire :

COMPTE RENDU - TP N°2 Coef. de Contre-réaction Echelle Assemblage Date

13/10/2014

DRAGON

Document de référence : Manuel Utilisateur DRAGON-VERSION4

Travaillez dans un dossier « dragon »

1/jdd A - cellule REP 900MW (rep900.d)

Consignes

La commande de lancement de DRAGON est un alias : « ./dragon.sh <jddFile> », où « <jddFile >» spécifie le nom du fichier de jdd à calculer qui doit être impérativement contenu dans un dossier nommé « data » dans le répertoire courant.

Lancer le jdd « rep900.d »

Questions	<u>Réponses</u>
Quel est le Keff obtenu ? Retouvez le laplacien géométrique dans le jdd et indiquez la dimension caractéristique d'un cœur critique constitué d'un réseau de cette cellule.	
Dessinez la géométrie modélisée. Indiquez en particulier sur le schéma : Les dimensions Le nom des milieux Les températures des milieux	
Quelle est la densité du modérateur ?	
 La fraction volumique de modérateur La fraction volumique de combustible 	

COMPTE RENDU - TP N°2

Coef. de Contre-réaction Echelle Assemblage Date

13/10/2014

Nom du répertoire :

Binôme 2:

Cor	signe	S
		_

Effet DOPPLER

Créez deux jdd identiques au jdd A à l'exception de la température du combustible (pastille + gaine):

- plus élevée de 10°C (nommez le rep900.dop_p10.d)
- moins élevée de 10°C (nommez le rep900.dop_m10.d)

<u>Questions</u>	<u>Réponses</u>
Quels sont les Keff obtenus ?	Nom du fichier Keff rep900.dop_p10.d rep900.dop_m10.d
Calculez le coefficient Doppler de la cellule.	

Consignes

Effet MODERATEUR

L'abaque fourni à l'adresse « ~jacquet/physor-smr-cnam/cours2/H2O_Tables/abaques.xlsx» permet de calculer la densité de l'eau légère en fonction de la température pour différentes pressions.

Créez deux jdd identiques au jdd A à l'exception de la température (et donc de la densité) du modérateur, sachant que la pression dans le circuit primaire en fonctionnement est de 155 bars:

- plus élevée de 10°C (nommez le rep900.mod_p10.d)
- moins élevée de 10°C (nommez le rep900.mod_m10.d)

Binôme 2 :

COMPTE RENDU - TP N°2 Coef. de Contre-réaction Echelle Assemblage

Date

13/10/2014

Nom du répertoire :

Questions	<u>Réponses</u>
Placez sur la courbe ci-contre les 3 points de fonctionnement et faites apparaître les valeurs de densité de l'eau.	850 800 FF 750 FF 700 650 650 250 260 270 280 290 300 310 320 330 340 350 T (°C)
Calculez le coefficient Modérateur de la cellule dans les deux unités usuelles : • (Δk/k)/(g/cm³) • pcm/°C	Nom du fichier Keff rep900.mod_p10.d rep900.mod_m10.d

Consignes

Efficacité du BORE

Créez deux jdd identiques au jdd A à l'exception de la concentration en bore, enrichi à 20% en B10, dans le modérateur :

- de 10 ppm (nommez le rep900.bore_p10.d)
- de 100 ppm (nommez le rep900.bore_p100.d)

<u>Questions</u>	<u>Réponses</u>		
Quels sont les Keff obtenus ?			
	Nom du fichier Keff		
	rep900. bore_p10.d		
	rep900. bore_p100.d		

Binôme 1	:	COMPTI		DII TO NOO	Date
		COMPTE RENDU - TP N°2 Coef. de Contre-réaction		- 400	
Binôme 2 :	:				13/10/2014
Nom du répert	oire :	Echel	le Ass	semblage	
Calculez l'efficacit dans la cellule en concentrations.					
<u>Consignes</u>					
température du n des conce d d des temp p	identiqui nodérate entration e 10 ppr e 100 pp ératures lus éleve	es au jdd A à l'except eur, en combinant : ns en bore : n	ion de la	concentration en bore, el	nrichi à 20% en B10, et de la
Questions			Répon	<u>ses</u>	
Quels sont les Kef	ff obtenu	ıs ?		Nom du fichier	14.66
				Nom au fichier	Keff
Calculez le coeffic de la cellule en p concentrations.					
Recherchez la cor maximale admissi intrinsèque de ce	ible vis-à	-vis de la sureté			
<u>Consignes</u>					
	oid final	ultime d'une centrale	•	ond aux conditions norma	ales de température et de

Conf. do Contro-réaction

Coef. de Contre-réaction Echelle Assemblage Date

13/10/2014

Nom du répertoire :

Binôme 2:

Questions		<u>Réponses</u>	
Quel est le Keff ob	otenu ?		
Quel est le besoin en anti-réactivité pour amener le cœur d'une condition de fonctionnement à une condition d'arrêt à froid ultime ? Recherchez la concentration en bore permettant d'avoir une marge			
cellule en conditio	e 1000 pcm dans cette on d'arrêt à froid.		
2/ jdd B - ce	llule SuperPhenix ((spx.d)	
<u>Consignes</u>			
Lancer le jdd « sp	x.d »		
Questions		<u>Réponses</u>	
Quel est le Keff obtenu ? Quelle est la dimension caractéristique d'un cœur critique constitué d'un réseau de cette cellule.			
 Les dimer Le nom de Les tempe 	culier sur le schéma :		
caloporte	n volumique de		

COMPTE RENDU - TP N°2

Coef. de Contre-réaction Echelle Assemblage Date

13/10/2014

Nom du répertoire :

Binôme 2:

Con	cia	<u>nes</u>
CUL	215	<u> 1162</u>

Effet DOPPLER

Créez deux jdd identiques au jdd B à l'exception de la température du combustible (pastille + gaine):

- plus élevée de 10°C (nommez le spx.dop_p10.d)
- moins élevée de 10°C (nommez le spx.dop_m10.d)

Questions	<u>Réponses</u>
Quels sont les Keff obtenus ?	Nom du fichier Keff spx.dop_p10.d spx.dop_m10.d
Calculez le coefficient Doppler de la cellule.	

Consignes

Effet de DILATATION SODIUM

L'abaque fourni à l'adresse « ~jacquet/physor-smr-cnam/cours2/Sodium_Tables/abaques.xlsx» permet de calculer le coefficient de dilatation du sodium liquide en fonction de la température pour différentes pressions.

Créez deux jdd identiques au jdd B à l'exception de la température (et donc de la densité) du caloporteur, sachant que la pression dans le circuit primaire en fonctionnement est de 1 bar:

- Température sodium de 310°C (nommez le spx.nadil_p10.d)
- Température sodium de 290°C (nommez le spx.nadil _m10.d)

Binôme 2:

COMPTE RENDU - TP N°2 Coef. de Contre-réaction Echelle Assemblage Date

13/10/2014

Nom du répertoire :

Questions Réponses

Placez sur la courbe ci-contre les 2 points de fonctionnement et faites apparaître les valeurs de densité de sodium

Quels sont les Keff obtenus? Quels sont les Kinf obtenus?

Nom du fichier	Kinf	Keff
spx.nadil_p10.d		
spx.nadil_m10.d		

A l'aide du Kinf

Calculez le coefficient de dilatation sodium de la cellule dans les deux unités usuelles :

- $(\Delta k/k)/(g/c^3)$
- pcm/°C

Consignes

Effet de VIDANGE SODIUM

Créez un jdd semblable au jdd B en réduisant la densité de sodium aux valeurs suivantes :

- 90% de sa valeur nominale : vidange de 10% (nommez le spx.vid10.d)
- 50% de sa valeur nominale : vidange de 50% (nommez le spx. vid50.d)
- 0% de sa valeur nominale : vidange totale (nommez le spx. vid100.d)

Le \$ est une unité de réactivité très utilisée à l'international. Elle vaut la fraction des neutrons retardés, soit environ 370 pcm pour une cellule SuperPhénix neuve.

Binôme 2 :

COMPTE RENDU - TP N°2 Coef. de Contre-réaction Echelle Assemblage

Date

13/10/2014

Nom du répertoire :

pression, quelle est l'état du cœur?

pourrait arriver?

Dans quelle condition une telle situation

•	,			
Réponses				
Nom du fichier	Kinf	Coef. Vidange		
spx. vid10.d		(4)		
spx. vid50.d				
spx. vid100.d				
Réponses				
	Nom du fichier spx. vid10.d spx. vid50.d spx. vid100.d	Nom du fichier Kinf spx. vid10.d spx. vid50.d spx. vid100.d	Nom du fichier Kinf Coef. Vidange (\$) spx. vid10.d spx. vid50.d spx. vid100.d	