

FIG. 1A

Cell Sheet Constructs

1 /47

Temperature responsive polymer
Poly (N-isopropylacrylamide) (PIPAAm)

Exemplary Dimensions:

$1.11 \pm 0.05\text{cm}^2$ in area
 $50.2 \pm 6.0\mu\text{m}$ thick

FIG. 1B

Temperature responsive culture dish

3 /47

FIG.2

FIG. 3

Experimental Protocol

FIG.4 Regenerative therapy for cardiac
muscle by cell transplantation

FIG.5 Problems with tissue transplantation

Cardiac muscle graft with scaffold

Alignment and cell-to-cell adhesion of transplanted cells within scaffold

Changes in scaffold in organism: elicitation of inflammation

Acceptance of scaffold by recipient's heart

Development of high biocompatible cardiac muscle graft without scaffold

FIG.6 Implantation of cardiomyocyte sheet into infarcted heart

Implantation into rat infarct model

Cardiomyocyte sheet

In vivo
Implantation of GFP rat newborn cardiomyocyte sheet

In vitro
Implantation of GFP rat newborn cardiomyocyte sheet

FIG. 7

Tissue
2 weeks after implantation

FIG.8

Evaluation of Cardiac function - 1

Control

Implantation of prosthetic tissue

10 /47

FIG.9

Evaluation of cardiac function - 2

Base line Ejection Fraction Fractional Shortening

Implanted cardiomyocyte sheet

FIG.10

Electrophysiological Evaluation

Electrophysiological Evaluation

ECG 1:ECG (Surface)
 ECG 2: Normal heart (anterior wall)
 Ligation model (injured)
 Prosthetic tissue implanted
 (prosthetic tissue injured)

FIG.11

14 /47

Methods: Myoblast Sheet Construction**FIG. 13**

FIG.14

Experimental Protocol

FIG. 15**Myoblast sheet: 4W post implantation**

16 / 47

x10

x200

HE staining

Implanted myoblasts

17 /47

FIG.16 Myoblast sheet Implantation procedure

After myoblast sheet implantation

Lewis rat ligation model

18 /47

FIG. 17 HistologyMasson's Trichrome staining

19 /47

FIG. 18
CKA

M-mode analysis

20 /47

FIG. 19

#P< 0.05 for control; *P< 0.05 to for injection needle group

21 /47

FIG.21

Myoblast sheet:
Desmin Staining

Myoblast prosthetic
tissue group (GFP)

Control group (GFP)

Myoblast prosthetic
tissue group (GFP)

x100

22 /47

Factor VIII staining

Myoblast injection

Myoblast prosthetic tissue

x40

x40

Control

23 /47

FIG.22A

FIG.22B

FIG.22C

24 /47

FIG.22D

FIG.22E

FIG.22F

25 /47

FIG.23A

FIG.23B

FIG.23C

26 / 47

FIG.24A

FIG.24B

FIG.24C

27 /47

FIG.25A**FIG.25B****FIG.25C**

28 /47

FIG.26A

FIG.26B

FIG.26C

29 /47

FIG.27A

FIG.27B

FIG.27C

30 /47

FIG.28

FIG.29

Masson's Trichrome staining x400

HE staining x400

MHC fast x400

MHC slow x400

FIG.30A

Tissue (Masson's Trichrome staining)

33 /47

FIG.30B

FIG.30C

FIG.30D

36 /47

FIG.31
Survival rate of implanted cell

FIG.32 Electrical properties of myoblast sheet

MED system

Cardiomyocyte sheet

Myoblast sheet

FIG.33A Myoblast sheet implantation to dilated cardiomyopathic hamster

39 /47

FIG.33B

Left ventricular end-systolic diameter
Left ventricular end-diastolic diameter

40 /47

FIG.33C

Control group

Myoblast sheet implantation group

FIG.34 Myoblast sheet implantation into pig infarction model

Collection of thigh muscle

Isolation of myoblasts

Pig infarction model

Implantation of myoblast sheet
Implantation of myoblasts

42 /47

Evaluation of cardiac function (systolic function) of pig infarction model by CKI method

FIG.35

Before operation After operation

Implantation
site

Evaluation of cardiac function (diastolic function) of pig infarction model by CKI method

FIG.36

Before operation After operation

44 /47

FIG.37

Without ascorbic acid

FIG.38

With ascorbic acid

FIG.39

45 /47

FIG.40

46 /47

FIG.41

$$\text{Rigidity } H = \frac{F}{A} = \frac{F}{k_1 h_p^2}$$

$$\text{Young's modulus } E = \left[\frac{dF}{dh} \right]_{F_{max}} \frac{1 - \nu^2}{2 \cdot k_2 \cdot h_{pmax}}$$

$$\text{Contact depth } h_p = h_r + 0.25(h_{max} - h_r)$$

F : Load A : Contact projection area h_p : Contact depth area $k_1 k_2$: Shape coefficient F_{max} : Maximum load h_{max} : Max. displacement h_r : Point at which tangential line cross weight 0 dF/dh : Gradient of tangential line of the removal of load curve ν : Poisson's ratio

47 /47

FIG.42

