Bayesian Neural Networks

ROY team: Ilya Zharikov,

Roman Isachenko,

Artem Bochkarev

Skolkovo Institute of Science and Technology Bayesian Methods course

May 25, 2017

Project goal

Goal

Estimate posterior distributions of the model parameters from data

Problem

Monte Carlo sampling is very slow for high-dimensional data

Probabilistic Programming:

- Uncertainty in predictions;
- Uncertainty in representations;
- Regularizations with priors;
- Transfer learning;
- Hierarchical Neural Networks.

Related work

 Salvatier J, Wiecki T. V., Fonnesbeck C. Probabilistic programming in Python using PyMC3. // PeerJ Computer Science. 2016.

- Blundell C. et al. Weight Uncertainty in Neural Network // Proceedings of The 32nd International Conference on Machine Learning. 2015.
- Wucukelbir A. et al. Automatic Differentiation Variational Inference // arXiv preprint arXiv:1603.00788. – 2017.

Problem Statement

Inference problem

Bayes' theorem states:
$$\mathbb{P}(\theta \mid \mathbf{X}) = \frac{\mathbb{P}(\mathbf{X} \mid \theta)\mathbb{P}(\theta)}{\mathbb{P}(\mathbf{X})}$$

Maximum A Posteriori (MAP) estimation

$$\boldsymbol{\theta}^* = \arg\max_{\boldsymbol{\theta}} \left[\ln \mathbb{P}(\boldsymbol{\theta} \,|\, \mathbf{X}) \right] = \arg\max_{\boldsymbol{\theta}} \left[\ln \mathbb{P}(\mathbf{X} \,|\, \boldsymbol{\theta}) + \ln \mathbb{P}(\boldsymbol{\theta}) \right]$$

Monte Carlo approach:

- Metropolis-Hastings sampling;
- Gibbs sampling;
- No-U-Turn Sampling (NUTS).

Variational Inference

Goal

Approximate posterior distribution $p(X, \theta)$ by function $q(\theta)$ from parametric family.

$$\ln p(\mathbf{X}) = \mathsf{KL}(q||p) + \mathsf{ELBO}(q)$$

$$\updownarrow \qquad \qquad \updownarrow$$

$$\int q(\theta) \ln \frac{q(\theta)}{p(\theta|\mathbf{X})} \mathsf{d}\theta \qquad \int q(\theta) \ln \frac{p(\mathbf{X},\theta)}{q(\theta)} \mathsf{d}\theta$$

Minimization of $KL(q||p) \Leftrightarrow Maximization of ELBO(q)$

Automatic Differentiation Variational Inference (ADVI)

- Automatic transformation of constrained variables $\zeta = T(\theta)$; Example: $\theta \in \mathbb{R}_+ \Rightarrow \zeta = T(\theta) = \log \theta$, then $\zeta \in \mathbb{R}$.
- $ullet q(\zeta) = \mathcal{N}(\mu, \Sigma)$, where Σ is diagonal;

$$oldsymbol{\mu}^*, oldsymbol{\Sigma}^* = rg \max_{oldsymbol{\mu}, oldsymbol{\Sigma}} \mathsf{ELBO}(q)$$

- Stochastic optimization;
- Reparametrization trick to apply automatic differentiation;
- Adaptive step-size.

Deep Learning

Neural Networks

Predict values of parameters by fitting complex model on the huge dataset

Bayesian Neural Networks

Predict the parameters of the weights distributions from the dataset

http://bit.ly/2rMQuDq

Experiments

Goals:

- investigate influence of different priors on the predictions
- visualize uncertainties in predictions
- analyze the model behaviour

Datasets:

Course of work

Priors: Normal, Laplace, Flat, Cauchy **Hyperpriors**:

- fixed values of hyperparameters
- Hierarchical modelling: Half-Normal, Half-Cauchy, Inverse-Gamma

Synthetic data

Prior: Cauchy **Hyperprior:** Inverse-Gamma **Accuracy:** 0.735

Prior: Normal Hyperprior: Inverse-Gamma Accuracy: 0.851

Synthetic data

Fixed hyperparameters

Inverse-Gamma hyperprior

Synthetic data

Laplace prior

Cauchy prior

MNIST

- Accuracy score: 97.7%
- Variance is much higher for misclassified pictures
- Model is not always confident

MNIST

Misclassified pictures with zero expected error rate:

True: 7
Prediction: 0

True: 9 Prediction: 7 True: 5
Prediction: 6

MNIST

Pictures with the lowest confidence

True: 4 Prediction: 0

True: 6 Prediction: 8 True: 1 Prediction: 1

Conclusion

- Posterior distribution helps to make conclusions about uncertainties
- Variational inference allows to approximate posterior distribution for high-dimensional data
- Hierarchical models have more degrees of freedom