Práctica 4

Mediciones realizadas en:

Intel(R) Core(TM) i78550U RAM 16,0 GB

A) Razonar si alguno de los devoradores comporta la solución óptima desde el punto de vista de la empresa, que le interesa maximizar el número de "pufosos".

El devorador que maximiza el número de pufosos es el devorador2 ya que al ser inicialmente el valor mayor, y todos ordenados siempre vas a conseguir el máximo valor posible.

B) Razonar si alguno de los devoradores comporta la solución óptima desde el punto de vista del jugador, que le interesa minimizar el número de "pufosos".

El devorador que minimiza el número de pufosos es el devorador3 ya que al ser inicialmente el valor menor, y todos ordenados, siempre vas a conseguir el mínimo valor posible.

C) Razonar la complejidad temporal teórica de los tres devoradores, según la implementación hecha por cada alumno, en función del tamaño del problema n.

Devorador 1: O(n)

Devorador 2: O(nlogn)

Devorador 3: O(nlogn)

Los devoradores 2 y 3 son de esa complejidad debido al Quicksort, que tiene esa complejidad. Al hacer la suma de todo el método O(n) que es el bucle while + O(nlogn) del Quicksort, queda el máximo, ósea, O(nlogn)

D) Razonar si los tiempos obtenidos en la tabla, sintonizan o no, con las complejidades puestas en el apartado anterior.

TIEMPOS

nVeces (DEV1)	n	t(DEV1)	t(DEV2)	t(DEV3)	nVeces (DEV2)	nVeces (DEV3)
nVeces = 1000000	100	0,000171	0,00217	0,00135		nVeces = 100000
	200	0,00036	0,0036	0,00255		
	400	0,000608	0,00795	0,0054		
	800	0,001164	0,01743	0,01124		
	1600	0,002423	0,03731	0,02808		
	3200	0,004863	0,07424	0,05491		
	6400	0,00955	0,17363	0,12195		
	12800	0,019603	0,35207	0,24114		
	25600	0,038152	0,82206	0,51257		
	51200	0,076614	1,67348	1,07199		
	102400	0,150329	3,0483	2,0119	nVeces = 10000	nVeces = 10000
nVeces = 100000	204800	0,29681	7,5076	4,1511		
	409600	0,60407	16,6256	10,7586		
	819200	1,27176	23,931	27,904	nVeces = 1000	nVeces = 1000
nVeces = 10000	1638400	2,6665	46,342	63,445		
	3276800	5,3941	83,436	110,086		
	6553600	10,7396	150,394	252,44		nVeces = 100
nVeces = 1000	13107200	22,339	259,54	508,56	nVeces = 100	
	26214400	44,255	530,09	1112,03		
	52428800	89,495	1535,35	2741		nVeces = 10
	Complejidad:	O(n)	O(nlogn)	O(nlogn)		

Sí se corresponden con las complejidades del apartado C, se puede observar en las gráficas.