Índices: Árvore B

Árvore B

 Árvore de busca em que cada nodo (ou página) contém mais de 1 elemento

Ordem da árvore B

- Número mínimo de elementos que cada página (exceto raiz) pode ter (Cormen, 2001; Bayer e McCreight, 1972)
- Número de filhos que cada página pode ter (Knuth, 1978)

Regras da árvore B

- Cada página deve ter pelo menos 50% de ocupação (considerar ordem da árvore), exceto a raiz
- O número de filhos (exceto folha) deve ser o número de chaves + 1
- Todas as folhas estão no mesmo nível (o crescimento é para cima)

Estrutura da página em uma árvore B

Árvore B

Estrutura da página (tamanho fixo)

Ν	P ₀	C_0D_0	P ₁	C_1D_1	P ₂	C_2D_2	P ₃	C_3D_3	•••	P _{n-1}	$C_{n-1}D_{n-1}$	P _n	

- Em que:
 - N número de elementos presentes na página
 - C_i chave do registro (geralmente um código)
 - D_i dados (ex.: endereço do registro no arquivo)
 - P_i ponteiro para o i-ésimo filho

Árvore B

N	Po	C_0D_0	P_1	C_1D_1	P ₂	C_2D_2	P ₃	C ₃ D ₃		P _{n-1}	$C_{n-1}D_{n-1}$	P _n
---	----	----------	-------	----------	----------------	----------	----------------	-------------------------------	--	------------------	------------------	----------------

-	Ponteiro para raiz													
0	296													
8	2	104	8	D_0	200	15	D_1	392			-1			-1
104	4	-1	1	D_0	-1	3	D_1	-1	4	D ₂	-1	7	D_3	-1
200	4	-1	10	D_0	-1	12	D_1	-1	13	D ₂	-1	14	D_3	-1
296	1	8	29	D_0	488			-1			-1			-1
392	3	-1	18	D_0	-1	20	D_1	-1	25	D ₂	-1			-1
488	3	584	37	D_0	680	45	D_1	776	60	D ₂	872			-1
584	2	-1	30	D_0	-1	35	D_1	-1			-1			-1
680	4	-1	40	D_0	-1	41	D_1	-1	42	D ₂	-1	43	D_3	-1
776	2	-1	51	D_0	-1	52	D_1	-1			-1			-1
872	3	-1	70	D_0	-1	77	D ₁	-1	83	D ₂	-1			-1

Busca em uma árvore B

Busca em árvore B

Exemplo – localizar chave 18

- Inserção
 - Se o elemento couber na página, basta inclui-lo de forma ordenada
 - Se não couber, a página deve ser dividida em duas e o elemento do meio deve ser promovido

 Caso 1: se o elemento ESTIVER em uma folha e a folha mantiver 50% de ocupação, basta removê-lo

 Caso 1: se o elemento ESTIVER em uma folha e a folha mantiver 50% de ocupação, basta removê-lo

 Caso 2: se o elemento NÃO ESTIVER em uma folha, trocá-lo pelo seu antecessor

 Caso 2: se o elemento NÃO ESTIVER em uma folha, trocá-lo pelo seu antecessor

 Caso 3: se a folha ficar com menos de 50% de ocupação, mas a página irmã puder ceder uma chave

 Caso 4: se a folha ficar com menos de 50% de ocupação e as páginas irmãs não puderem ceder uma chave

 Caso 4: se a folha ficar com menos de 50% de ocupação e as páginas irmãs não puderem ceder uma chave

 Caso 4: se a folha ficar com menos de 50% de ocupação e as páginas irmãs não puderem ceder uma chave

Árvore B+

Árvore B+

- Todas as chaves são armazenadas nas folhas
- Cada folha aponta para a próxima folha (para permitir a leitura sequencial)
- As folhas podem possuir uma estrutura diferente das páginas não folhas, por serem as únicas páginas a carregarem dados

Árvore B+

Operações na árvore B+

Inclusão na árvore B+

- Mesmas regras da árvore B
- Se ocorrer divisão de página, a chave deve ser mantida na folha e copiada para cima

Remoção na árvore B+

- Mesmas regras da árvore B, inclusive de redistribuição e fusão
- As chaves removidas das folhas não precisam ser removidas das outras páginas.

Busca na árvore B+

 Mesmas regras da árvore B, mas as chaves devem ser localizadas apenas nas folhas

Chave 10 não é encontrada na árvore