RECEIVED
CENTRAL FAX CENTER
JUN 2 1 2005

IN THE CLAIMS

Claims 1-20 (canceled)

21. (currently amended) A process for preparing a compound of Formula 1

or salts thereof, wherein

 R^1 is a straight or branched C_{1-12} alkyl optionally substituted with phenyl, or C_{3-8} cycloalkyl radical wherein the phenyl radical is optionally substituted with a halo, nitro, hydroxy, C_{1-4} alkyl, C_{1-4} alkoxy, or COOH;

 R^2 and R^3 are each independently of each other hydrogen or an OH radical where at least one of R^2 and R^3 are -OH;

 R^5 is a pyridyl radical substituted with at least one halogen radical and is optionally further substituted with -H, -OH, -SH, -NH2, -NHC₁₋₆ alkyl, -N(C₁₋₆ alkyl)₂, -NHC₆₋₁₄ aryl, -N(C₆₋₁₄ aryl, -N(C₆₋₁₄ aryl), -NHCOR⁶, -NO₂, -CN, -COOH, -(CO)R⁶, -(CS)R⁶, -F, -Cl, -Br, -I, -O-C₁₋₆ alkyl, -O-C₆₋₁₄ aryl, -O(CO)R⁶, -S-C₁₋₆ alkyl, -S-C₆₋₁₆, aryl, -SOR⁶, or -SO₂R⁶-; and A is a bond, C=O, or a CHOH radical or a pharmaceutically acceptable salt thereof, which method comprises converting a compound of formula (I), wherein R^2 or R^3 or R^2 and R^3 arc O-R⁷, into the compound of formula (I) by removing removal of R^7 , wherein R^7 is a

substituent that is a <u>protecting leaving</u> group selected from the group consisting of heteraryl alkyl, cycloalkyl, arylalkyl, aryl, acyl, alkoxycarbonyl, aryloxycarbonyl, aminocarbonyl, N-substituted aminocarbonyl, silyl and a and sulfonyl group; group wherein acyl, alkoxycarbonyl, aryloxycarbonyl, aminocarbonyl, N-substituted aminocarbonyl, silyl or sulfonyl residues are removed by hydrolysis with a suitable base, and wherein heteroaryl, alkyl, cycloalkyl and aryl groups are removed by an ether cleavage.

- 22. (canceled)
- 23. (canceled)
- 24. (canceled)
- 25. (canceled)
- 26. (previously presented) The method of claim 21, wherein R⁵ is substituted with one or two halogens.
 - 27. (canceled)
 - 28. (currently amended) A process for preparing a compound of Formula 1

$$R^2$$
 R^3
 R^4
 R^4
 R^1
 R^5

25541658.1

or a salt thereof, wherein R1, R5 are independently of each other

- (i) a C_{1-12} alkyl, straight-chain or branched-chain, optionally mono- or polysubstituted by -OH, -SH, -NH2, -NHC₁₋₆ alkyl, -N(C_{1-6} alkyl)₂, -NHC₆₋₁₄ aryl, -N(C_{6-14} aryl)₂, -N(C_{1-6} alkyl)(C_{6-14} aryl), -NHCOR⁶, -NO₂, -CN, -F, -Cl, -Br, -I, -O-C₁₋₆ alkyl, -O-C₆₋₁₄ aryl, -O(CO)R⁶, -S-C₁₋₆ alkyl, -S-C₆₋₁₄ aryl, -SOR⁶, -SO₃H, -SO₂R⁶, -OSO₂C₁₋₆ alkyl, -OSO₂C₆₋₁₄ aryl, -(CS)R⁶, -COOH, -(CO)R⁶, mono-, bi- or tricyclic saturated or mono- or polyunsaturated carbocycles having from 3 to 14 ring members, mono-, bi- or tricyclic saturated or mono- or polyunsaturated heterocycles having from 5 to 15 ring members and from 1 to 6 heteroatoms, which are suitably N, O and S, where the C_{6-4} aryl groups and the included carbocyclic and heterocyclic substituents can optionally be mono- or polysubstituted by R⁴,
- (ii) -C₂₋₁₂ alkenyl, mono- or polyunsaturated, straight-chain or branched-chain, optionally mono- or polysubstituted by -OH, -SH, -NH₂, -NHC₁₋₆ alkyl, -N(C₁₋₆ alkyl)₂, -NHC₆₋₁₄ aryl, -N(C₆₋₁₄ aryl)₂, -N(C₁₋₆ alkyl)(C₆₋₁₄ aryl), -NHCOR⁶, -NO₂, -CN, -F, -Cl, -Br, -I, -O-C₁₋₆ alkyl, -O-C₆₋₁₄ aryl, -O(CO)R⁶, -S-C₁₋₆ alkyl, -S-C₆₋₁₄ aryl, -SOR⁶, -SO3H, -SO₂R⁶, -OSO₂C₁₋₆ alkyl, -OSO₂C₆₋₁₄ aryl, -(CS)R⁶, -COOH, -(CO)R⁶, mono-, bi- or tricyclic saturated or mono- or polyunsaturated carbocycles having from 3 to 14 ring members, mono-, bi- or tricyclic saturated or mono- or polyunsaturated heterocycles having from 5 to 15 ring members and from 1 to 6 heteroatoms, which are suitably N, O and S, where the C₆₋₁₄ aryl groups and the included carbocyclic and heterocyclic substituents for their part can optionally be mono- or polysubstituted by R⁴,
- (iii) mono-, bi- or tricyclic saturated or mono- or polyunsaturated carbocycles having from 3 to 14 ring members,

optionally mono- or polysubstituted by -OH, -SH, -NH2, -NHC₁₋₆ alkyl, -N(C₁₋₆ alkyl)₂, -NHC₆₋₁₄ aryl, -N(C₆₋₁₄ aryl)₂, -N(C₁₋₆ alkyl)(C₆₋₁₄ aryl), -NHCOR⁶, -NO₂, -CN, -F, -Cl, -B_F, -I, -O-C₁₋₆ alkyl, -O-C₆₋₁₄ aryl, -O(CO)R⁶, -S-C₁₋₆ alkyl, -S-C₆₋₁₄ aryl, -SOR⁶, -SO₂H, -SO₂R⁶, -OSO₂C₁₋₆ alkyl, -OSO₂C₆₋₁₄ aryl, -(CS)R⁶, -COOH, -(CO)R⁶, mono-, bi- or tricyclic saturated or mono- or polyunsaturated carbocycles having from 3 to 14 ring members, mono-, bi- or tricyclic saturated or mono- or polyunsaturated heterocycles having from 5 to 15 ring members and from

1 to 6 heteroatoms, which are suitably N, O and S, where the C_{6-14} aryl groups and the included carbocyclic and heterocyclic substituents can optionally be mono- or polysubstituted by R^4 ,

mono-, bi- or tricyclic saturated or mono- or polyunsaturated heterocycles having (iv) from 5 to 15 ring members and from 1 to 6 heteroatoms, which are suitably N, O and S, optionally mono- or polysubstituted by -OH, -SH, -NH2, -NHC1-6 alkyl, -N(C1-6 alkyl)2, -NHC6-14 aryl, -N(C6-14 aryl)2, -N(C1-6 alkyl)(C6-14 aryl), -NHCOR6, -NO2, -CN, -F, -Cl, -Br, -I, -O-C1-6 alkyl, -O-C₆₋₁₄ aryl, -O(CO) \mathbb{R}^6 , -S-C₁₋₆ alkyl, -S-C₆₋₁₄ aryl, -SO \mathbb{R}^6 , -SO₂ \mathbb{R}^6 , -OSO₂C₁₋₆ alkyl, -OSO₂C₆₋₁₄ aryl, -(CS)R⁶, -COOH, -(CO)R⁶, mono-, bi- or tricyclic saturated or mono- or polyunsaturated carbocycles having from 3 to 14 ring members, mono-, bi- or tricyclic saturated or mono- or polyunsaturated heterocycles having from 5 to 15 ring members and from 1 to 6 heteroatoms, which are suitably N, O and S, where the C₆₋₁₄ aryl groups and the included carbocyclic and heterocyclic substituents for their part can be optionally mono- or polysubstituted by R4, -carbo- or heterocyclic saturated or mono- or polyunsaturated spirocycles. having from 3 to 10 ring members, where heterocyclic systems contains from 1 to 6 heteroatoms, which are suitably N, O and S, optionally mono- or polysubstituted by -OH, -SH, -NH2, -NHC1-6 alkyl, -N(C_{1-6} alkyl)₂, -NHC₆₋₁₄ aryl, -N(C_{6-14} aryl)₂, -N(C_{1-6} alkyl)(C_{6-14} aryl), -NHCOR⁶, -NO₂, -CN, -F, -Cl, -Br, -I, -O-C₁₋₆ alkyl, -O-C₆₋₁₄ aryl, -O(CO) \mathbb{R}^6 , -S-C₁₋₆ alkyl, -S-C₆₋₁₄, aryl, -SOR⁶, -SO3H, -SO₂R⁶, -OSO₂C₁₋₆ alkyl, -OSO₂C₆₋₁₄ aryl, -(CS)R⁶, -COOH, -(CO)R⁶, mono-, bi- or tricyclic saturated or mono- or polyunsaturated carbocycles having from 3 to 14 ring members, mono-, bi- or tricyclic saturated or mono- or polyunsaturated heterocycles having from 5 to 15 ring members and from 1 to 6 heteroatoms, which are suitably N, O and S, where the C₆₋₁₄ aryl groups and the included carbocyclic and heterocyclic substituents can optionally be mono- or polysubstituted by R4.

R², R³ are hydrogen or -OH, where at least one of the two substituents must be -OH;

R⁴ is -H, -OH, -SH, -NH₂, -NHC₁₋₆ alkyl, -N(C₁₋₆ alkyl)₂, -NHC₆₋₁₄ aryl, -N(C₆₋₁₄ aryl)₂, -N(C₁₋₆ alkyl)(C₆₋₁₄ aryl), -NHCOR⁶, -NO₂, -CN, -COOH, -(CO)R⁶, -(CS)R⁶, -F, -Cl, -Br, -I, -O-C₁₋₆ alkyl, -O-C₆₋₁₄ aryl, -O(CO)R⁶, -S-C₁₋₆ alkyl, -S-C₆₋₁₄, aryl, -SOR⁶, -SO₂R⁶.

R⁶ is -H, -NH₂, -NHC₁₋₆ alkyl, -N(C₁₋₆ alkyl)₂, -NHC₆₋₁₄ aryl, -N(C₆₋₁₄, aryl)₂, -N(C₁₋₆ alkyl)(C₆₋₁₄ aryl) -O-C₁₋₆ alkyl, -O-C₆₋₁₄ aryl, -S-C₁₋₆ alkyl, -S-C₆₋₁₄ aryl, -C₁₋₁₂ alkyl, straight-chain or branched-chain, -C₂₋₁₂ alkenyl, mono- or polyunsaturated, straight-chain or branched-chain, -mono-, bi- or tricyclic saturated or mono- or polyunsaturated carbocycles having from 3 to 14 ring members, -mono-, bi- or tricyclic saturated or mono- or polyunsaturated heterocycles having from 5 to 15 ring members and from 1 to 6 heteroatoms, which are suitably N, O and S;

A is either a bond, or $-CH2)_{m^-}$, $-(CH2)_{m^-}(CH=CH)_{n^-}(CH2)_{p^-}$, $-(CHOZ)_{m^-}$, $-(C=O)_{-}$, $-(C=S)_{-}$, $-(C=N-Z)_{-}$, $-O_{-}$, $-S_{-}$, $-NZ_{-}$, where m and p are cardinal numbers from 0 to 3 and n is a cardinal number from 0 to 2,

- Z is H, or a C₁₋₁₂ alkyl, straight-chain or branched-chain, C₂₋₁₂ alkenyl, mono- or polyunsaturated, straight-chain or branched-chain, mono-, bi- or tricyclic saturated or mono- or polyunsaturated carbocycles having from 3 to 14 ring members, mono-, bi- or tricyclic saturated or mono- or polyunsaturated heterocycles having from 5 to 15 ring members and from 1 to 6 heteroatoms, which are suitably N, O and S;
- B is either carbon or sulfur, or -(S=O)-;
- D is oxygen, sulfur, CH2 or N-Z, where D can only be S or CH2 if B is carbon;
- E is a bond, or $(CH2)_m$ -, -O-, -S-, -(N-Z)-, where m and Z have the same meanings as above; wherein

R⁵ is pyridyl which may be optionally mono or polyunsubstituted with -H, -OH, -SH, -NH₂, -NHC₁₋₆ alkyl, -N(C₁₋₆ alkyl)₂, -NHC₆₋₁₄ aryl, -N(C₆₋₁₄ aryl)₂, -N(C₁₋₆ alkyl)(C₆₋₁₄ aryl), -NHCOR⁶, -NO₂, -CN, -COOH, -(CO)R⁶, -(CS)R⁶, -F, -Cl, -Br, -I, -O-C₁₋₆ alkyl, -O-C₆₋₁₄ aryl, -O(CO)R⁶, -S-C₁₋₆ alkyl, -S-C₆₋₁₄, aryl, -SOR⁶, or -SO₂R⁶, which method comprises converting a

25541658.1

compound of formula 1 to another compound of formula 1 wherein R^2 or R^3 , or R^2 and R^3 is $-0-R^7$ by removing the R^7 wherein R^7 is a leaving group.

- 29. (previously presented) The process of claim 28, wherein said leaving group is selected from the group consisting of alkyl, cycloalkyl, arylalkyl, aryl, heteroaryl, acyl, alkoxycarbonyl, aryloxycarbonyl, aminocarbonyl, N-substituted aminocarbonyl, silyl, sulfonyl and a complexing agent.
- 30. (previously presented) The process of claim 29, wherein said complexing agent is a compound of boric acid or phosphoric acid, or a compound containing a covalently bonded metal.
- 31. (previously presented) The process of claim 30, wherein said metal is zinc, aluminum, or copper.
- 32. (previously presented) The method of claim 28, wherein R⁵ is substituted with one or two halogens.
- 33. (new) The method of claim 21, wherein R¹ is an optionally substituted C₁-C₂alkyl.
- 34. (new) The method of claim 26, wherein R^1 is an optionally substituted C_1 - C_2 alkyl.
- 35. (new) The method of claim 28, wherein R^1 is an optionally substituted C_1 - C_2 alkyl.
- 36. (new) The method of claim 29, wherein R^1 is an optionally substituted C_{1} - C_{2} alkyl.