第四次作业答案

1、相同:均需要提前设定聚类数和终止条件,并都以样本之间的距离作为分类的依据;

不同: K-means 需要提现指定初始的聚类中心,而层次聚类不用。

2,

(1) 各样本距离各初始中心的距离如下:

样本	Center1	Center2	Center3	归属簇	
1	0	5	8.062258	1	
2	5	0	3.162278	2	
3	8.485281	6.082763	7.28011	2	
4	3.605551	4.242641	7.211103	1	
5	7.071068	5	6.708204	2	
6	7.211103	4.123106	5.385165	2	
7	8.062258	3.162278	0	3	
8	2.236068	4.472136	7.615773	1	

第一次聚类结果为:

 $C_1 = \{x_1, x_4, x_8\}, \ C_2 = \{x_2, x_3, x_5, x_6\}, \ C_3 = \{x_7\},$

第一次迭代后的 3 个簇的质心: (3.667,9),(5.75,4.5),(1,2)

- (2)最终的 3 个簇的质心为: (3.667,9),(7,4.333),(1.5,3.5)
- 3、相对于 K 均值与层次聚类,基于密度聚类方法可以处理不同大小和各种 形状的簇,并且不太受噪声和离群点的影响。例如,当簇是圆环形状时如下所示。

利用 DBSCAN 的聚类结果如下:

利用 K 均值的聚类结果如下:

利用层次聚类结果如下:

明显的, DBSCAN 更使用于非簇形状的聚类。

4、会出现缺失族的情况,这个问题同聚类过程中产生空簇是-一个问题。原因在于初化中心选择不当。举例说明:

首先, 假设有如下数据

聚类数设置为 3, 初始中心选择 1, 6, 7, 那么初始分组结果为 {1,2,3,4},{5,6},{7}

基于更新的类中心再聚类,可以发现,第二类中的样本为空,形成空簇。 无法更新,此时只能返回两个簇。

5、

AGNES:

执行过程

在所给的数据集上运行 AGNES 算法,算法的执行过程如表 5.8 所示,设n = 8,用户输入的终止条件为两个簇。初始簇为 $\{1\}$, $\{2\}$, $\{3\}$, $\{4\}$, $\{5\}$, $\{6\}$, $\{7\}$, $\{8\}$ 。(采用最小距离计算)

步骤	最近的簇距离	最近的两个簇	合并后的新簇
1	1	{1},{2}	{1,2},{3},{4},{5},{6},{7},{8}
2	1	{3},{4}	{1,2},{3,4},{5},{6},{7},{8}
3	1	{5},{6}	{1,2},{3,4},{5,6},{7},{8}
4	1	{7},{8}	{1,2},{3,4},{5,6},{7,8}
5	1	{1,2},{3,4}	{1,2,3,4},{5,6},{7,8}
6	1	{5,6},{7,8}	{1,2,3,4},{5,6,7,8}

- (1) 先根据最小距离计算公式,将两两样本点的距离计算出来随机找出距离最小的两个簇,进行合并,最小距离为1,合并1、2点为一个簇。
- (2)对上一次合并后的簇进行簇间计算,找出距离最近的两个簇进行合并, 合并后3、4合并成为一簇。
 - (3) 重复第(2) 步的工作,5、6成为一簇。

- (4) 重复第(2) 步的工作,7、8成为一簇。
- (5) 合并{1,2}, {3,4}成为一簇。
- (6) 合并{5,6}, {7,8}成为一簇,合并后的簇的数目达到终止条件,计算完毕。

DIANA:

执行过程

步骤	具有最大直径的簇	Spliner group	Old party
1	{1,2,3,4,5,6,7,8}	{1}	{2,3,4,5,6,7,8}
2	{1,2,3,4,5,6,7,8}	{1,2}	{3,4,5,6,7,8}
3	{1,2,3,4,5,6,7,8}	{1,2,3}	{4,5,6,7,8}
4	{1,2,3,4,5,6,7,8}	{1,2,3,4}	{5,6,7,8}
5	{1,2,3,4,5,6,7,8}	{1,2,3,4}	{5,6,7,8}终止

在第1步中,根据初始簇计算每个簇之间的距离,对簇中的每个点计算平均相异度(假定使用欧式距离)

平均距离如下:

样本	1	2	3	4	5	6	7	8
平均	2.96	2.526	2.68	2.18	2.18	2.68	2.526	2.96
距离								

挑出平均相异度最大的点 1 放到 Spliner group 中,剩余点放在 Old party 中。

第 2 步,在 Old party 里找出最近的 Spliner group 中的点的距离不大于到 Old party 中最近的点的距离的点,将该点放入 Spliner group 中,改点是 2。

第3步,重复第2步的工作,在Spliner group中放入点3。

第4步,重复第2步的工作,在Spliner group中放入点4。

第 5 步,没有新的 old party 中的点分配给 Spliner group,此时分裂的簇数为 2。达到终止条件。如果没有到终止条件,下一阶段还会从分裂好的簇中选一个 直径最大的簇按刚才的分裂方法继续分裂。