FAETER-RIO

Professor Wagner Zanco

Lista de exercícios de Álgebra Linear

Simulação para a prova AV2

- 1. Expresse o vetor $u = (-1,4,-4,6) \in \mathbb{R}^4$ como combinação linear dos vetores $v_1 = (3,-3,1,0), v_2 = (0,1,-1,2)$ e $v_3 = (1,-1,0,0)$.
- 2. Determine os subespaços gerados do \mathbb{R}^3 , gerados pelos seguintes conjuntos:
 - a) $A = \{(2, -1, 1)\}$
 - b) $A = \{(-1,3,2), (2,2,1)\}$
 - c) $A = \{(1,0,1), (0,11), (1,0,0)\}$
- 3. Seja o conjunto $A = \{w_1, w_2\}$, sendo $w_1 = (-1, 3, -1) e w_2 = (1, -2, 4)$. Determine:
 - a) Subespaço S gerado pelo conjunto A.
 - b) O valor de k para que o vetor w = (5, k, 1, 1) pertença a S.
- 4. Verifique se o conjunto $V = \{(x, y, z) \in \mathbb{R}^3 | 2x z = 0\}$ é um espaço vetorial.
- 5. Verifique se o conjunto S é um subespaço vetorial de \mathbb{R}^3 .

$$S=\{x_1,0,x_3,\};x\in\mathbb{R}$$

6. Qual o span gerado por A_1 , A_2 e A_3 , ou seja, $span\{A_1, A_2, A_3\}$?

$$A_1 = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} \quad A_2 = \begin{bmatrix} 0 \\ 3 \\ 0 \end{bmatrix} A_3 = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$$

7. Determine se $Y = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$ pertence ao subespaço gerado pelos subconjuntos

$$A_1 = (-1,3,2) e A_2 = (2,-2,1)$$

- 8. qual a condição necessária para que um conjunto de vetores seja base de um subespaço vetorial?
- 9. Verifique se o conjunto V, formado pelos vetores $v_1 = (1,0)$ e $v_2 = (2,1)$, é base de \mathbb{R}^2 .
- 10. Encontre o vetor LD do conjunto $V = \{v_1, v_2, v_3, v_4\}$, formado pelos vetores $v_1 = (1,0,0), v_2 = (3,2,0), v_3 = (0,0,1)$ e $v_4 = (4,2,0)$.
- 11. Verifique se o conjunto $Y = [V_1, V_2, V_3]$ é LI, sendo $V_1 = (1,2,3)$, $V_2 = (1,0,2)$ e $V_3 = (0,2,1)$. Caso V seja LD, identifique o vetor LD e verifique se os vetores restantes são LI.

- 12. Encontre o subespaço vetorial gerado pelo conjunto $V = [V_1, V_2]$, sendo $V_1 = (1,2,3)$, $V_2 = (1,0,3)$ e deduza a equação do plano que cobre o subespaço vetorial. Antes, porém, verifique se V_1 e V_2 são LI.
- 13. Seja o conjunto $V = \{(x, y, z) \in \mathbb{R}^3 | y 2z = 2x\}$. Prove que V é um subespaço vetorial e encontre uma base de V.
- 14. Considere, em \mathbb{R}^3 , o conjunto F = (x, y, z | -6x 2z = 0). Indique uma base para F.
- 15. Qual a forma geométrica do subespaço gerado por:
 - a) Um único vetor?
 - b) Dois vetores colineares?
 - c) Dois vetores coplanares?
 - d) Três vetores coplanares?
 - e) Três vetores não coplanares?
- 16. Defina a expressão do subespaço gerado e o plano π , $span\{A_1, A_2\}$, sendo $A_1 = \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}$ e

$$A_2 = \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}$$

- 17. Determinar o subespaço G(A) para $A = \{v_1, v_2\}$, sendo $v_1 = (1, -2), v_2 = (-3, 6) \in \mathbb{R}^2$, e diga o que representa geometricamente esse subespaço.
- 18. Qual o subespaço vetorial S, $span\{A_1, A_2\}$, sendo $A_1 = \begin{bmatrix} -1 \\ 3 \\ -1 \end{bmatrix}$ e $A_2 = \begin{bmatrix} 1 \\ 2 \\ -2 \end{bmatrix}$?
- 19. O que é Dimensão de um subespaço vetorial?
- 20. Dado o conjunto V, formado pelos vetores $v_1 = (1,0)$, $v_2 = (0,1)$ e $v_3 = (1,2)$, verifique se V é base de \mathbb{R}^2 . Se não for, exclua o vetor redundante e encontre uma base de \mathbb{R}^2 nos vetores do conjunto V. Determine, também, a dimensão do subespaço gerado pelo conjunto V.
- 21. Seja o conjunto $V = \{(x, y, z) \in \mathbb{R}^3 | x + y 2z = 0\}$. Prove que V é um subespaço vetorial e encontre uma base de V.
- 22. Qual a dimensão do subespaço gerado pelo conjunto $V = \{(x, y, z) \in \mathbb{R}^3 | x y + 3z = 0\}$?
- 23. Verifique se o conjunto $V = \{(x, y, z) \in \mathbb{R}^3 | 2x y + z = 0\}$ é um espaço vetorial.
- 24. Verifique se o conjunto $V = \{(x, y, z) \in \mathbb{R}^3 | y > 0\}$ é um espaço vetorial.
- 25. Seja $M_{3x1} = \begin{vmatrix} x \\ y \\ z \end{vmatrix}$; $x, y, z \in \mathbb{R}$. Mostrar que o conjunto M_{3x1} é um espaço vetorial real.