## Forma integrada da equação de Michaelis-Menten

Existem situações experimentais em que a estimativa das velocidades iniciais é pouco fiável, sendo necessário recorrer à forma integrada da equação de Michaelis-Menten para poder extrair parâmetros cinéticos de uma curva de progressão de produto.

$$\begin{cases} v = \frac{d[P]}{dt} \\ [A] = [A]_0 - [P] \implies \frac{d[P]}{dt} = \frac{V_{\text{max}}([A]_0 - [P])}{K_{\text{m}} + ([A]_0 - [P])} \\ v = \frac{V_{\text{max}}[A]}{K_{\text{m}} + [A]} \end{cases}$$

Esta equação pode ser integrada por separação das variáveis:

$$\int \frac{K_{\rm m} + [A]_0 - [P]}{[A]_0 - [P]} d[P] = \int V_{\rm max} dt$$

$$-K_{\rm m} \ln([A]_0 - [P]) + [P] = V_{\rm max} t + \alpha$$

Usando a condição inicial [P]=0 quando t=0, fica  $\alpha$ =- $K_{\rm m}$ , e rearranjando vem:

$$V_{\text{max}}t = [P] + K_{\text{m}} \ln \left( \frac{[A]_{0}}{[A]_{0} - [P]} \right)$$

A forma integrada da equação de Michaelis-Menten é muitas vezes escrita:

$$V_{\text{max}}^{\text{app}}t = [P] + K_{\text{m}}^{\text{app}} \ln \left( \frac{[A]_0}{[A]_0 - [P]} \right)$$

O uso das grandezas aparentes realça o facto de que esta equação é muito mais geral do que o caso a partir do qual foi deduzida.

 $V_{\max}$ (app) e  $K_{\min}$ (app) podem diferir muito de  $K_{\min}$  e  $V_{\max}$ , podendo até ser negativos!

No entanto, a seguinte relação é sempre válida:

$$v_0 = \frac{V_{\text{max}}^{\text{app}}[A]_0}{K_{\text{m}}^{\text{app}} + [A]_0}$$

e permite estimar  $v_0$  se os valores de  $V_{\text{max}}(\text{app})$  e  $K_{\text{m}}(\text{app})$  forem conhecidos.

A equação integrada,

$$V_{\text{max}}^{\text{app}}t = [P] + K_{\text{m}}^{\text{app}} \ln \left( \frac{[A]_0}{[A]_0 - [P]} \right)$$

pode ser rearranjada para a seguinte forma:

$$\frac{t}{\ln([A]_{0}/([A]_{0}-[P]))} = \frac{1}{V_{\text{max}}^{\text{app}}} \left\{ \frac{[P]}{\ln([A]_{0}/([A]_{0}-[P]))} \right\} + \frac{K_{\text{m}}^{\text{app}}}{V_{\text{max}}^{\text{app}}}$$

Portanto um gráfico de  $\frac{t}{\ln\left([A]_0/([A]_0-[P])\right)}$  em função de  $\frac{[P]}{\ln\left([A]_0/([A]_0-[P])\right)}$ 

produz uma recta de declive  $1/V_{\rm max}^{\rm app}$  e ordenada na origem  $K_{\rm m}^{\rm app}/V_{\rm max}^{\rm app}$ 



A eficiência catalítica  $k_A = k_{cat}/K_m$  também se designa por *constante de especificidade*. A razão torna-se clara se considerarmos uma situação de *competição* entre dois substratos A e A', pelo centro activo de um mesmo enzima E:

$$E + A \xrightarrow{k_1 \atop k_{-1}} EA \xrightarrow{k_2} E + P$$

$$E + A' \xrightarrow{k_1'} EA' \xrightarrow{k_2'} E + P'$$

A partir deste esquema podem deduzir-se o seguinte par de equações de velocidade:

$$v = \frac{d[P]}{dt} = \frac{k_2[E]_0[A]}{K_m(1+[A']/K_m')+[A]}$$

$$v' = \frac{d[P']}{dt} = \frac{k_2'[E]_0[A']}{K_m'(1+[A]/K_m)+[A']}$$

Cada um dos substratos se comporta como um *inibidor competitivo* relativamente ao outro, sendo a constante de inibição igual ao  $K_m$  do substrato em competição.

O verdadeiro significado da constante  $k_A$  emerge se considerarmos o quociente v/v':

$$\frac{v}{v'} = \frac{\frac{k_2[E]_0[A]}{K_m(1+[A']/K_m')+[A]}}{\frac{k_2'[E]_0[A']}{K_m'(1+[A]/K_m)+[A']}} = \frac{\frac{(k_2/K_m)[E]_0[A]}{1+[A']/K_m'+[A]/K_m}}{\frac{(k_2'/K_m')[E]_0[A']}{(k_2'/K_m')[E]_0[A']}} = \frac{\frac{(k_2/K_m)[E]_0[A]}{(k_2'/K_m')[E]_0[A']}}{(k_2'/K_m')[E]_0[A']}$$

Tendo em conta que  $k_A = k_2 / K_m$  e  $k_A' = k_2' / K_m'$ :

$$\frac{v}{v'} = \frac{(k_2 / K_{\rm m})[E]_0[A]}{(k_2' / K_{\rm m}')[E]_0[A']} = \frac{k_{\rm A}[A]}{k_{\rm A}'[A']} \quad \text{e quando [A]=[A']} \quad \frac{v}{v'} = \frac{k_{\rm A}}{k_{\rm A}'}$$

Numa mistura *equimolar* de substratos competindo para o *mesmo centro activo* de um enzima E, a razão entre as velocidades de catálise de dois substratos é igual à razão entre as constantes de especificidade do enzima para cada substrato.

#### Parâmetros cinéticos para diferentes substratos da fumarase:

| Substrate      | k <sub>cat</sub> (s <sup>-1</sup> ) | K <sub>m</sub> (mM) | "K <sub>i</sub> "(mM) | $k_{\rm cat}/K_{\rm m}({\rm s}^{-1}{\rm mM}^{-1})$ |
|----------------|-------------------------------------|---------------------|-----------------------|----------------------------------------------------|
| Fluorofumarato | 2700                                | 0.027               | -                     | 100000                                             |
| Fumarato       | 800                                 | 0.005               | -                     | 160000                                             |
| Clorofumarato  | 20                                  | 0.11                | 0.10                  | 180                                                |
| Bromofumarato  | 2.8                                 | 0.11                | 0.15                  | 25                                                 |
| Iodofumarato   | 0.043                               | 0.12                | 0.10                  | 0.36                                               |
| Mesaconato     | 0.023                               | 0.51                | 0.49                  | 0.047                                              |
| L-tartarato    | 0.93                                | 1.3                 | 1.0                   | 0.72                                               |

Exemplo: numa mistura equimolar dos substratos fumarato e fluorofumarato o enzima fumarase catalisa a decomposição do fumarato 60% mais rápido:

$$\frac{v}{v'} = \frac{k_A}{k_A'} = \frac{160000}{100000} = 1.60$$

O fumarato é o substrato mais **específico** 

#### Teste de competição de substratos

Quando se verifica a transformação de dois substratos na presença de um extracto enzimático, podem verificar-se duas situações:

- a) O dois substratos competem para o centro activo de um mesmo enzima
- b) Os dois substratos são catalizados por enzimas distintos presentes no extracto

Para distinguir entre estas duas situações podemos recorrer a um *teste de competição*.

A soma das velocidades v e v' para dois substratos em competição é:

$$v_{\text{tot}} = v + v' = \frac{(V_{\text{max}} / K_{\text{m}})[A] + (V_{\text{max}}' / K_{\text{m}}')[A']}{1 + [A'] / K_{\text{m}}' + [A] / K_{\text{m}}}$$

Determinando experimentalmente duas concentrações de referência  $[A]=[A]_0$  e  $[A']=[A]_0$ ' tais que:

$$\frac{V_{\text{max}}[A]_0}{K_{\text{m}} + [A]_0} = \frac{V_{\text{max}}[A']_0}{K_{\text{m}} + [A']_0} = v_0$$

Estas são assim concentrações de [A] e [A'] que conduzem a uma mesma velocidade de catálise observada para cada substrato.

#### Teste de competição de substratos

Preparando uma série de soluções contendo uma mistura dos dois substratos tais que as suas concentrações são interpoladas entre zero e  $[A]_0$  e  $[A']_0$ :

$$\begin{bmatrix}
 A \end{bmatrix} = (1 - r)[A]_0 \\
 [A'] = r[A']_0
 \end{bmatrix}
 \qquad r \in [0, 1]$$

Exemplo com 5 soluções:



Para cada uma destas soluções,  $v_{\rm tot}$  será a soma das velocidades observadas para a catálise de A e A' .

#### Teste de competição de substratos

A expressão de  $v_{\text{tot}}$  assume a seguinte forma:

$$v_{\text{tot}} = \frac{(V_{\text{max}} / K_{\text{m}})(1 - r)[A]_{0} + (V'_{\text{max}} / K'_{\text{m}})r[A']_{0}}{1 + (1 - r)[A]_{0} / K_{\text{m}} + r[A']_{0} / K'_{\text{m}}}$$

$$= \frac{v_{0}[(1 - r)(1 + [A]_{0} / K_{\text{m}}) + r(1 + [A']_{0} / K'_{\text{m}})]}{(1 - r)(1 + [A]_{0} / K_{\text{m}}) + r(1 + [A']_{0} / K'_{\text{m}})} = v_{0}$$

**Conclusão**: se os dois substratos competirem para o mesmo centro activo, a velocidade total observada *será a mesma* em todas as misturas ( $v_o$ ).

