

Estatística descritiva com aplicação em Saúde usando R

Exploração e visualização de Dados

Profa Carolina e Prof Gilberto

Parte 2

Conceitos básicos

Começamos com alguns conceitos básicos, que usaremos durante todo esse curso.

- · População: Todos os elementos ou indivíduos alvo do estudo;
- · Amostra: Parte da população;
- · Parâmetro: característica da população (grandeza);
- · Estimativa: característica da amostra. Usamos a estimativa para aproximar o parâmetro;
- **Variável:** *característica de um elemento da população (idade ou peso).* Geralmente usamos uma letra maiúscula do alfabeto latino para representar uma variável (idade ou peso), e uma letra minúscula do alfabeto latino para representar o valor de uma variável para um elemento da população. Por exemplo, podemos representar a variável "idade" por X e um x=30 é idade de um elemento da amostra.

Classificação de variáveis

Tabela de distribuição de frequência variável qualitativa

A primeira coisa que fazemos é contar!

X	frequência	frequência relativa	porcentagem
B_1	n_1	f_1	$100 \cdot f_1\%$
B_2	n_2	f_2	$100\cdot f_2\%$
÷	÷	÷	÷
B_k	n_k	f_k	$100 \cdot f_k\%$
Total	n	1	100%

Em que n é o tamanho da amostra.

Geralmente não incluímos a coluna de frequência relativa.

(Re)codificação de variáveis

Precisamos usar o dicionário de variáveis para (re)codificar as variáveis.

```
## # A tibble: 4 × 3
## racacor sex esc
## <chr> <chr> <chr> ## 1 Parda M Superior completo
## 2 Preta M Superior completo
## 3 Branca M Superior incompleto
## 4 Branca F <NA>
```


Tabela de distribuição de frequência variável qualitativa

Pacotes: janitor

```
library(janitor)
df_base_processed |>
    tabyl(sex) |>
    arrange(desc(n)) |>
    adorn_totals() |>
    adorn_pct_formatting(digits = 2) |>
    rename(
        "Gênero" = sex,
        "Frequência" = n,
        "Porcentagem" = percent,
        "Porcentagem sem missing" = valid_percent
)
```


Gênero Frequência Porcentagem Porcentagem sem missing ## ## 144 64.00% 67.29% M F 31.11% 32.71% ## 70 ## <NA>11 4.89% Total 225 100.00% 100.00% ##

Tabela de distribuição de frequência variável quantitativa discreta

Pacotes: janitor

```
library(janitor)
df_mtcarros <- read_csv2("data/raw/mtcarros.csv")
df_mtcarros |>
    tabyl(marchas) |>
    arrange(desc(n)) |>
    adorn_totals() |>
    adorn_pct_formatting(digits = 2) |>
    rename(
        "Marchas" = marchas,
        "Frequência" = n,
        "Porcentagem" = percent
)
```


Marchas Frequência Porcentagem ## ## 3 15 46.88% 4 37.50% ## 12 5 5 15.62% ## Total 32 100.00% ##

Tabela de distribuição de frequência variável quantitativa contínua

Primeiro agregamos os valores em intervalos.

- 1. Usamos intervalos usados na área de saúde (outro artigo, por exemplo)
- 2. Regra de Sturge: $\lceil 1 + \log_2(n) \rceil$ (n é o tamanho da amostra)

```
k <- round(1 + log2(nrow(df_base_processed)))
faixas <- seq(
    from = min(df_base_processed$ida, na.rm = TRUE),
    to = max(df_base_processed$ida, na.rm = TRUE),
    length.out = k
)
df_base_processed <- df_base_processed |>
    mutate(faixa_idade = cut(
    ida,
    breaks = faixas,
    include.lowest = T,
    right = F
))
```


Tabela de distribuição de frequência variável quantitativa contínua

```
df_base_processed |>
    tabyl(faixa_idade) |>
    adorn_totals() |>
    adorn_pct_formatting(digits = 2) |>
    rename(
        "Idade por intervalos" = faixa_idade,
        "Frequência Absoluta" = n,
        "Porcentagem" = percent,
        "Porcentagem sem missing" = valid_percent
)
```


##	Idade por intervalos	Frequência Absoluta	Porcentagem	Porcentagem	sem missing
##	[18, 25.4)	43	19.11%		19.72%
##	[25.4,32.8)	56	24.89%		25.69%
##	[32.8,40.1)	51	22.67%		23.39%
##	[40.1,47.5)	33	14.67%		15.14%
##	[47.5,54.9)	15	6.67%		6.88%
##	[54.9,62.2)	15	6.67%		6.88%
##	[62.2,69.6)	2	0.89%		0.92%
##	[69.6,77]	3	1.33%		1.38%
##	<na></na>	7	3.11%		-
##	Total	225	100.00%		100.00%

Medidas de Resumo

Medidas de posição e dispersão

A ideia é encontrar um ou alguns valores que sintetizem todos os valores.

Medidas de posição (tendência central)

A ideia é encontrar um valor que representa bem todos os valores.

· Média:
$$\overline{x} = \frac{x_1 + \cdots + x_n}{n}$$

· Mediana: valor que divide a sequência ordenada de valores em duas partes iguais.

Medidas de dispersão

A ideia é medir a homogeneidade dos valores.

Variância:
$$s^2=rac{(x_1-\overline{X})^2+\cdots+(x_n-\overline{X})^2}{n-1}$$
;

- · Desvio padrão: $s=\sqrt{s^2}$ (mesma unidade dos dados);
- · coeficiente de variação $cv=rac{s}{\overline{x}}\cdot 100\%$ (adimensional, ou seja, "sem unidade")

Medidas de resumo

Pacote: dplyr

```
df_base_processed |>
    group_by(racacor) |>
    summarise(
        media = mean(imc),
        mediana = median(imc),
        variancia = var(imc),
        dp = sd(imc),
        cv = dp / media,
        frequencia = n()
)
```


A tibble: 5 × 7 ## racacor media mediana variancia dp cv frequencia <dbl> <dbl> <chr> <dbl> <dbl> <dbl> <int> ## ## 1 Branca 27.1 27.1 30.4 5.51 0.204 109 ## 2 Indígena 24.2 24.2 NA NA NA 1 ## 3 Parda 27.4 28.8 21.8 4.67 0.171 60 ## 4 Preta 27.4 28.5 25.5 5.05 0.184 52 3 ## 5 <NA> 25.4 24.8 19.4 4.40 0.173

Quantis

Ideia

q(p) é um valor que satisfaz:

- $\cdot \ 100 \cdot p\%$ das observações é no máximo q(p)
- $\cdot \ 100 \cdot (1-p)\%$ das observações é no mínimo q(p)

Alguns quantis especiais

- · Primeiro quartil: $q_1=q\left(rac{1}{4}
 ight)$
- · Segundo quartil: $q_2=q\left(rac{2}{4}
 ight)$
- · Terceiro quartil: $q_3 = q\left(\frac{3}{4}\right)$

Quantis

```
df_base_processed |>
    group_by(sex) |>
    summarise(
        q1 = quantile(imc, 0.25),
        q2 = quantile(imc, 0.5),
        q3 = quantile(imc, 0.75),
        frequencia = n()
    )

## # A tibble: 3 × 5
```

```
## # A tibble: 3 × 5

## sex q1 q2 q3 frequencia

## <chr> <dbl> <dbl> <dbl> <int>
## 1 F 21.9 29.1 31.1 70

## 2 M 21.6 27.2 31.1 144

## 3 <NA> 24.8 29.1 31.5 11
```


Exportando tabelas

pacote gt

Pacote gt

Vamos usar o pacote gt para customizar a apresentação de uma tabela.

A ideia do pacote gt é melhorar apresentação por camadas.

TITLE **TABLE HEADER** SUBTITLE SPANNER COLUMN LABEL **STUB** COLUMN COLUMN STUBHEAD LABEL COLUMN **HEAD** COLUMN LABEL LABELS LABEL LABEL **ROW GROUP LABEL ROW LABEL** Cell Cell Cell **TABLE** STUB BODY **ROW LABEL** Cell Cell Cell SUMMARY LABEL Summary Cell Summary Cell Summary Cell **FOOTNOTES** TABLE **FOOTER** SOURCE NOTES

The Parts of a gt Table

Para mais detalhes, visite pacote gt.

Exemplo

Vamos customizar e salvar a tabela com as medidas de resumo para a variável imc do conjunto de dados base_.xlsx.

```
tab <- df_base_processed |>
    filter(!is.na(racacor) & !is.na(imc) & racacor != "Indígena") |>
    group_by(racacor) |>
    summarise(
        media = mean(imc),
        mediana = median(imc),
        dp = sd(imc),
        cv = dp * 100 / media,
        q1 = quantile(imc, 1 / 4),
        q3 = quantile(imc, 3 / 4)
)
```


Cabeçalho e subcabeçalho

- tab_header: permite incluir cabeçalho (title) e subcabeçalho (subtitle)
- gtsave: permite salvar tabela em formato html (página web), tex (ETEX) ertf (word)

```
library(gt)
gt_tab <- gt(tab) |>
  tab_header(
    title = md("**IMC**"),
    subtitle = md("**por raça autodeclarada**")
)
gtsave(gt_tab, filename = "output/gt_tab.html")
gtsave(gt_tab, filename = "output/gt_tab.tex")
gtsave(gt_tab, filename = "output/gt_tab.rtf")
```


Incluindo fonte dos dados

- tab_source_note: inclusão de fonte de dados
- · md: formatação de texto usando a sintaxe markdown
- · html: formatação de texto usando sintaxe html

```
gt_tab <- gt_tab |>
  tab_source_note(
    source_note = md("**Fonte:** Elaboração própria.")
)
gt_tab
```


	IMC por raça autodeclarada								
racacor	media	mediana	dp	CV	q1	q3			
Branca	27.05990	27.14681	5.509258	20.35949	21.38976	31.02041			
Parda	27.36131	28.76630	4.669262	17.06520	22.01759	31.27128			
Preta	27.43333	28.49819	5.051074	18.41218	23.40553	31.39357			
Fonte: Ela	Fonte: Elaboração própria.								

Rótulo para grupo de linhas

tab_row_group: permite colocar *rótulo* para um grupo de linhas

```
gt_tab <- gt_tab |>
  tab_row_group(
    label = md("**Pessoas negras**"),
    rows = c(2, 3)
  )
gt_tab
```


	IMC por raça autodeclarada							
racacor	media	mediana	dp	CV	q1	q3		
Pessoas	Pessoas negras							
Parda	27.36131	28.76630	4.669262	17.06520	22.01759	31.27128		
Preta	27.43333	28.49819	5.051074	18.41218	23.40553	31.39357		
Branca	27.05990	27.14681	5.509258	20.35949	21.38976	31.02041		
Fonte: El	Fonte: Elaboração própria.							

Rótulo para grupo de colunas

tab_spanner: permite colocar *rótulo* para grupo de colunas

```
gt_tab <- gt_tab |>
  tab_spanner(
    label = html("<strong>Quantis</strong>"),
    columns = c(q1, mediana, q3)
  )
gt_tab
```


IMC por raça autodeclarada								
Quantis								
racacor	media	dp	CV	q1	mediana	q3		
Pessoas	negras							
Parda	27.36131	4.669262	17.06520	22.01759	28.76630	31.27128		
Preta	27.43333	5.051074	18.41218	23.40553	28.49819	31.39357		
Branca	27.05990	5.509258	20.35949	21.38976	27.14681	31.02041		
Fonte: Ela	Fonte: Elaboração própria.							

Movendo colunas

- · col_move_to_start: move uma ou mais colunas para o início da tabela
- · col_move_to_end: move uma ou mais colunas para o fim da tabela
- · col_move: move uma coluna ou mais colunas depois uma determinada coluna

```
gt_tab <- gt_tab |>
    cols_move_to_start(
        columns = racacor
) |>
    cols_move_to_end(
        columns = c(q1, mediana, q3)
) |>
    cols_move(
        columns = cv,
        after = media
)
gt_tab
```


IMC por raça autodeclarada								
Quantis								
racacor	media	CV	dp	q1	mediana	q3		
Pessoas	negras							
Parda	27.36131	17.06520	4.669262	22.01759	28.76630	31.27128		
Preta	27.43333	18.41218	5.051074	23.40553	28.49819	31.39357		
Branca	27.05990	20.35949	5.509258	21.38976	27.14681	31.02041		
Fonte: El	Fonte: Elaboração própria.							

Atualização dos rótulos das colunas

cols_label: permite atualizar os rótulos de colunas

```
gt_tab <- gt_tab |>
    cols_label(
        racacor = md("_Raça_"),
        media = html("<em>Média</em>"),
        cv = md("_Coeficiente de variação_"),
        dp = html("<em>Desvio padrão</em>"),
        q1 = md("_Primeiro quartil_"),
        mediana = html("<em>Segundo quartil</em>"),
        q3 = md("_Terceiro quartil_")
    )
    gt_tab
```


IMC por raça autodeclarada

				Quantis				
Raça	Média	Coeficiente de variação	Desvio padrão	Primeiro quartil	Segundo quartil	Terceiro quartil		
Pessoas negras								
Parda	27.36131	17.06520	4.669262	22.01759	28.76630	31.27128		
Preta	27.43333	18.41218	5.051074	23.40553	28.49819	31.39357		
Branca	27.05990	20.35949	5.509258	21.38976	27.14681	31.02041		
Fonte: E	Fonte: Elaboração própria.							

Formatação de valores nas colunas

fmt_number: formatação de valores numéricos em uma tabela

```
gt_tab <- gt_tab |>
    fmt_number(
        columns = c(media, mediana, dp, q1, q3),
        decimals = 2,
        dec_mark = ",",
        sep mark = "."
    ) |>
    fmt_number(
        columns = cv,
        decimals = 2,
        dec_mark = ",",
        sep_mark = ".",
        pattern = "\{x\}\%"
gt_tab
```


IMC por raça autodeclarada

				Quantis			
Raça	Média	Coeficiente de variação	Desvio padrão	Primeiro quartil	Segundo quartil	Terceiro quartil	
Pessoas negras							
Parda	27,36	17,07%	4,67	22,02	28,77	31,27	
Preta	27,43	18,41%	5,05	23,41	28,50	31,39	
Branca	27,06	20,36%	5,51	21,39	27,15	31,02	
Fonte: Elaboração própria.							

Gráficos

ggplot2

Gráficos no R

- Pacote: ggplot2
- · Permite gráficos personalizados com uma sintaxe simples e rápida, e iterativa por camadas
- Começamos com um camada com os dados ggplot(dados), e vamos adicionando as camadas de anotações, e sumários estatísticos
- · Usa a gramática de gráficos proposta por Leland Wilkinson: Grammar of Graphics
- · Ideia desta gramática: delinear os atributos estéticos das figuras geométricas (incluindo transformações nos dados e mudança no sistema de coordenadas)
- Para mais detalhes, você pode consultar ggplot2: elegant graphics for data analysis e documentação do ggplot2

Estrutura básica ggplot2

Você pode usar diversos temas e extensões que a comunidade cria e criou para melhorar a aparência e facilitar a construção de ggplot2.

· Lista com extensões do ggplot: extensões do ggplots

Indicação de extensões:

- Temas adicionais para o pacote ggplot2: ggthemes
- Gráfico de matriz de correlação: ggcorrplot
- · Gráfico quantil-quantil: qqplotr

Gráfico de Barras no ggplot2

- função: geom_bar(). Para porcentagem: geom_bar($x = \langle variável no eixo x \rangle$, y = ..prop.. * 100).
- Argumentos adicionais:
 - fill: mudar a cor do preenchimento das figuras geométricas
 - color: mudar a cor da figura geométrica

Rótulos dos eixos

- · Mudar os rótulos: labs(x = <rótulo do eixo x>, y = <rótulo do eixo y>, title = <legenda do gráfico>)
- Trocar o eixo-x pelo eixo-y: coord_flip()

Salvar gráficos

• ggsave(): salvar gráficos nos formatos pdf, png e jpeg


```
library(ggplot2)
library(ggthemes)
ggplot(df_base_processed) +
    geom_bar(aes(x = sex), fill = "blue", color = "red") +
    labs(x = "Gênero", y = "Frequência absoluta") +
    theme_gdocs()
ggsave("figures/barras.jpeg")
ggsave("figures/barras.png")
ggsave("figures/barras.pdf")
```


Histograma

Para variávieis quantitativas contínuas usamos histograma.

- · O histograma é um gráfico de barras contíguas em que a área de cada barra é igual à frequência relativa.
- · Cada faixa de valor $[l_{i-1},l_i), i=1,\ldots,n,$ será representada por um barra com área $f_i, i=1,\ldots,n.$
- · Como cada barra terá área igual a f_i e base $\Delta_i=l_i-l_{i-1}$, e a altura de cada barra será $rac{f_i}{l_i-l_{i-1}}$.
- · $\frac{f_i}{l_i-l_{i-1}}$ é denominada de densidade de frequência.
- · Podemos fornecer:
 - bins: número de intervalos
 - binwidth: tamanho dos intervalos
 - breaks: limites dos intervalos

Histograma

Denside de frequência

Histograma

 ${f medida\ de\ dispers\~ao}$: distância entre q_1 e q_3 pequena indica homogeneidade

Diferença de quartis: $dq=q_3-q_1$

Assimetria


```
ggplot(df_base_processed) +
  geom_boxplot(aes(x = "", y = imc)) +
  labs(x = "", y = "IMC", title = "Boxplot") +
  theme_gdocs()
```


Gráficos lado a lado com patchwork

- patchwork permite colocar gráficos lado a lado com os operadores binários + (ao lado) e \ (embaixo)
- Mais detalhes em documentação patchwork

```
g1 <- ggplot(df_base_processed) +
  geom_boxplot(aes(x = "", y = pes)) +
  labs(x = "", y = "Peso (kg)", title = "Boxplot") +
  theme_gdocs()
g2 <- ggplot(df_base_processed) +
  geom_boxplot(aes(x = "", y = alt)) +
  labs(x = "", y = "Altura (cm)", title = "Boxplot") +
  theme_gdocs()
g1 + g2</pre>
```


Gráficos

Duas variáveis

Gráfico de dispersão

Ideia: estudar a associação entre duas variáveis quantitativas

Gráfico de dispersão

```
ggplot(df_base_processed) +
  geom_point(aes(pes, imc)) +
  labs(
    x = "Peso (kg)",
    y = "IMC",
    title = "Gráfico de dispersão"
  ) +
  theme_gdocs()
```


Ideia

Sejam X e Y duas variáveis qualitativas com seguintes valores possíveis

- $X: A_1, \ldots, A_r$
- $\cdot Y.B_1,\ldots,B_s$

Desejamos estudar a associação entre X e Y.

Associação entre X e Y

Suponha que A_i tenha porcentagem $f_i \cdot 100\%$. Então, X e Y são:

- · **não associados** se ao conhecermos o valor de Y para um elemento da população, *continuamos* com a porcentagem $100 \cdot f_i\%$ deste elemento ter valor de X igual a A_i
- · associados se ao conhecermos o valor de Y para um elemento da população, alteramos a porcentagem $100 \cdot f_i\%$ deste elemento ter valor de X igual a A_i


```
df_filtrada <- df_base_processed |>
    filter(racacor != "Indígena" & !is.na(racacor) & !is.na(esc))

ggplot(df_filtrada) +
    geom_bar(aes(x = racacor, fill = esc), position = "fill") +
    labs(x = "Raça", y = "Porcentagem") +
    scale_y_continuous(labels = scales::percent)+
    scale_fill_manual(name = "Escolaridade", values = c("blue", "orange", "magenta", "brown")) +
    theme_gdocs()
```


Podemos agrupar as barras por grupos para analisar a associação entre duas variáveis qualitativas.

```
df_filtrada <- df_base_processed |>
    filter(racacor != "Indígena" & !is.na(racacor) & !is.na(esc))

ggplot(df_filtrada) +
    geom_bar(aes(x = racacor, fill = esc), position = "dodge") +
    labs(x = "Raça", y = "Porcentagem") +
    scale_y_continuous(labels = scales::percent)+
    scale_fill_manual(name = "Escolaridade", values = c("blue", "orange", "magenta", "brown")) +
    theme_gdocs()
```


Podemos comparar medianas de diferentes grupos usando o diagrama de caixa.

```
df_filtrada <- df_base_processed |>
  filter(racacor != "Indígena" & !is.na(racacor) & !is.na(imc))
ggplot(df_filtrada) +
  geom_boxplot(aes(x = racacor, y = imc)) +
  labs(x = "Raça", y = "IMC") +
  theme_gdocs()
```


