Additional Tables

Table 1: ARL, SDRL and percentile run lengths using different distributions for the EHWMA scheme.

ϕ_1	ϕ_{2}	\mathbf{L}_{EH}	Distribution	ARL	SDRL	P5	P25	P50	P75	P95
			N(0,1)	199.5	154.8	13.0	81.0	167.0	281.0	496.0
			t(10)	154.8	117.1	11.0	66.8	132.5	217.0	378.0
			t(100)	198.3	156.2	13.0	81.0	165.0	279.0	498.1
	0.05	2.453	t(1000)	201.9	160.4	14.0	81.0	165.0	284.0	507.1
	0.00	4.400	GAM(1,1)	124.5	95.7	5.0	55.0	104.0	172.0	309.1
			GAM(10,1)	183.2	146.0	11.0	75.0	150.0	256.0	464.0
			LogNorm(0,1)	116.4	91.3	6.0	50.0	94.0	161.0	298.0
0.1			X2(30)	185.3	147.4	12.0	77.0	153.0	260.0	463.1
0.1			N(0,1)	198.8	162.3	16.0	77.0	157.0	280.0	521.1
			t(10)	161.8	124.8	12.0	69.0	131.0	226.0	403.0
			t(100)	196.1	159.6	14.0	79.0	159.0	269.0	505.0
	0.09	2.599	t(1000)	201.4	159.4	15.0	81.0	166.0	285.0	505.0
	0.00	2.000	GAM(1,1)	112.9	83.8	7.0	54.0	96.0	154.3	279.0
			GAM(10,1)	173.3	139.5	13.0	71.0	141.0	241.0	440.0
			LogNorm(0,1)	106.4	80.3	6.0	49.0	89.0	147.0	261.0
			X2(30)	179.1	140.2	15.0	74.0	147.0	252.0	446.1
			N(0,1)	201.6	197.8	12.0	59.8	140.0	283.0	592.0
			t(10)	101.7	100.2	7.0	31.0	71.0	139.0	299.0
			t(100)	185.0	183.6	11.0	56.0	128.0	252.0	545.1
	0.05	2.809	t(1000)	204.4	201.5	12.0	61.0	143.0	284.3	612.1
	0.00	2.000	GAM(1,1)	53.3	50.3	4.0	18.0	38.0	74.0	152.0
			GAM(10,1)	121.0	117.9	8.0	37.0	85.0	167.0	358.0
			LogNorm(0,1)	54.5	53.2	4.0	17.0	38.0	75.0	161.0
0.5			X2(30)	135.5	129.5	8.0	42.0	97.0	187.0	394.1
0.0			N(0,1)	213.8	208.9	11.0	62.0	151.0	300.0	630.2
			t(10)	119.9	116.2	8.0	36.0	84.0	167.0	350.1
			t(100)	193.1	191.3	11.0	57.0	135.0	267.0	582.0
	0.25	2.804	t(1000)	207.4	207.5	12.0	61.0	144.0	287.0	617.1
	0.20	2.001	GAM(1,1)	62.9	61.6	4.0	19.0	44.0	87.0	187.0
			GAM(10,1)	142.8	143.7	8.0	42.0	98.0	196.0	423.1
			LogNorm(0,1)	62.7	60.4	4.0	19.0	44.0	86.3	186.0
			X2(30)	156.4	154.9	8.0	47.0	111.0	214.0	466.0

Table 2: ARL, SDRL and percentile run lengths using different distributions for MEHWMA scheme.

ϕ_1	ϕ_2	Distribution ARL	N(0,12) 20	t(10) 14	t(100) 19	t(1000)	$\mathbf{p} = \mathbf{z}$ GAM(1,1) 10		$LogNorm(0,1) \mid 82$		\mathbf{h}_{MEH}			t(100) 19	t(1000) 20	GAM $(1,1)$ 83	$\operatorname{GAM}(10,1) = 15$	_	X2(30) 166	\mathbf{h}_{MEH}	N(0,12) 19	t(10) 13	t(100) 19	_	GAM(1,1) 72	GAM(10,1) 151	(0,1)	X2(30) 16	\mathbf{h}_{MEH}
										8 142									6 131									2 127	
			15	7	12	15	က	6	က	11		13	9	15	14	П	10	П	10		13	7	13	12	П	∞	\vdash	9	
	0.05	P25	81	63	22	28	47	20	36	72	9.14	81	59	28	92	38	29	27	89	13.29	62	99	71	81	33	64	18	29	23.3
		P50	166	121	160	164	88	139	69	146		165	115	160	160	72	130	54	138		155	113	152	158	99	128	41	136	
		P75	289	200	275	285	140	238	114	251		293	193	281	283	116	218	06	230		279	187	269	285	101	213	99	230	
0.1			1							453		518	336	508	521	198	399	154	420		515	325	492	556	167	368	113	404	
1		ARL	199	149	195	202	86	166	83	177		202	146	194	200	98	163	99	174		202	139	200	208	28	163	20	168	
		sdr	165	114	158	167	71	131	62	144		169	115	160	166	62	126	20	139		176	106	167	176	59	131	38	132	
										13						က										6			
	0.09	P25	92	64	28	79	47	69	38	71	9.44	22	61	92	92	40	29	30	71	3.62	22	61	72	82	34	99	20	89	23.8
		P50	160	124	157	160	98	138	20	142		156	121	156	160	75	136	59	143		155	121	159	161	69	132	45	137	
		P75	278	207	275	282	132	232	114	246		283	202	270	279	119	226	93	242		286	192	283	285	113	232	72	238	
		P95	524	365	499	528	235	415	205	451		538	369	511	519	200	411	159	438		533	349	529	555	190	417	124	424	

Table 3: ARL, SDRL and percentile run lengths using different distributions for MEHWMA scheme (continued).

		P95	299	271	515	561	127	331	117	376		557	242	202	549	26	287	32	339		591	221	192	553	82	526	20	329	
										180									158									146	
										91									62							63			
	.25											51	24	49	53	10	28	6	33	4.6	57	23	52	59	6	26	9	30	4.97
	0								က		1			10						1						9			2
		sdr	187	91	174	181	42	113	38	125		187	79	170	183	32	96	28	114		191	73	162	189	24	28	17	105	
ಬ		ARL	187	94	175	188	44	113	40	129		184	82	170	182	33	26	28	114		195	22	165	191	26	68	18	105	
0.5		P95	558	230	475	539	102	253	100	300		546	193	472	536	75	224	29	264		538	163	474	520	56	203	42	250	
		P75	252	109	224	243	49	123	48	139		250	06	217	250	37	103	32	124		253	62	232	252	27	95	22	116	
		P50	123	55	114	125	26	62	25	72		126	47	109	123	20	55	17	63		130	41	117	123	15	50	12	09	
	0.05	P25	52	24	48	53	12	28	11	31	0.37	54	20	48	53	10	25	∞	28	14.6	26	19	50	55	7	20	9	28	4.95
										7									ಬ		_					ಬ		2	2
		SDRL	185	92	161	177	33	85	33	101		183	64	156	177	24	73	22	88		176	52	158	179	19	65	14	81	
		ARL	183	78	163	179	36	88	35	102		183	99	158	179	27	92	23	06		183	99	164	180	20	69	16	85	
ϕ_1	ϕ_2	ıtion	N(0,I2)	t(10)	t(100)	t(1000)	GAM(1,1)	GAM(10,1)	$\overline{}$	X2(30)	\mathbf{h}_{MEH}	N(0,I2)	t(10)	t(100)	t(1000)	GAM(1,1)	GAM(10,1)	LogNorm(0,1)	X2(30)	\mathbf{h}_{MEH}	N(0,I2)	t(10)	t(100)	t(1000)	GAM(1,1)	GAM(10,1)	LogNorm(0,1)	X2(30)	\mathbf{h}_{MEH}
						C	$\mathbf{b} = \mathbf{z}$								7	p=4								10	b=10				

	ϕ_1		0.1			0.25			0.5			0.0	
	ϕ_2	0.01	0.05	0.09	0.05	0.1	0.2	0.05	0.1	0.25	0.05	0.1	0.25
	ı	2.516	2.540	2.600	2.772	2.763	2.762	2.804	2.803	2.794	2.804	2.809	2.801
	00.00	155.9	158.5	163.9	184.2	188.2	191.1	198.1	198.7	197.6	200.2	196.9	200.4
	0.25	42.2	44.0	46.2	59.7	61.7	74.1	100.6	102.1	110.7	146.6	146.5	153.4
	0.50	14.8	15.3	16.0	18.9	20.1	23.7	36.2	38.1	45.2	80.2	79.5	83.7
	0.75	7.3	7.7	8.0	8.6	9.3	11.0	16.0	16.2	19.7	40.7	41.9	44.3
	1.00	4.5	4.6	4.8	5.0	5.2	0.9	8.0	8.3	10.1	22.7	22.3	24.8
	1.25	3.0	3.1	3.2	3.2	3.3	3.8	4.6	4.9	5.6	12.8	13.0	13.9
$_{ m Shifts}$	1.50	2.1	2.2	2.3	2.3	2.3	2.6	3.0	3.1	3.7	6.7	7.9	8.4
	1.75	1.7	1.7	1.8	1.7	1.8	1.9	2.1	2.2	2.4	5.0	5.0	5.4
	2.00	1.4	1.4	1.5	1.4	1.4	1.5	1.5	1.6	1.7	3.3	3.4	3.6
	2.25	1.3	1.3	1.3	1.2	1.2	1.2	1.2	1.2	1.3	2.3	2.3	2.5
	2.50	1.1	1.1	1.1	1.0	1.0	1.1	6.0	1.0	1.0	1.6	1.6	1.8
	2.75	1.0	1.0	1.0	6.0	6.0	0.0	8.0	8.0	8.0	1.2	1.3	1.3
	3.00	6.0	6.0	6.0	8.0	8.0	8.0	0.7	0.7	0.7	6.0	1.0	1.0
-	ESDRL0,1	17.20	17.89	18.73	23.04	24.07	28.67	40.20	41.17	46.43	72.54	72.56	76.55
	ESDRL1,2	2.06	2.12	2.21	2.13	2.20	2.46	2.81	2.93	3.38	7.23	7.30	7.84
	ESDRL2,3	1.05	1.06	1.09	0.96	96.0	1.00	0.89	0.90	0.94	1.52	1.54	1.63
	${f ESDRL0,2}$	9.63	10.00	10.47	12.58	13.13	15.57	21.51	22.05	24.90	39.88	39.93	42.19
	ESDRL1,3	1.56	1.59	1.65	1.54	1.58	1.73	1.85	1.92	2.16	4.37	4.42	4.74
	${f ESDRL0,3}$	6.77	7.02	7.34	8.71	80.6	10.71	14.63	15.00	16.92	27.09	27.13	28.67

Table 4: SDRL and expected SDRL results for the EHWMA scheme

	ϕ_1		0.1			0.25			0.5			6.0	
	ϕ_2	0.01	0.05	0.09	0.05	0.1	0.2			0.25		0.1	0.25
	Г	2.516	2.54	2.6	2.772	2.763	2.762	2.804	2.803	2.794		2.809	2.801
	0.00	170	166	161	149	145	144		1	140		142	138
	0.25	46	48	51	54	55	61			80		103	106
	0.50	18	19	20	21	21	23			34		58	57
	0.75	10	10	11	11	11	12			16		30	31
	1.00	9	7	7	7	7	∞			6		16	18
	1.25	5	5	ಬ	5	2	5			9	10	10	10
$_{ m Shifts}$	1.50	4	4	4	4	4	4			4		9	9
	1.75	3	ဘ	3	3	3	3			ဘ		4	4
	2.00	3	ဘ	3	3	3	3			2		ဘ	3
	2.25	3	က	3	2	2	2			2		2	2
	2.50	2	2	2	2	2	2			2		2	2
	2.75	П	П	1	2	2	2			2		2	2
	3.00	1				П						1	
	EMRL0,1	20	21	22	23	24	56	31	31	35	20	52	53
	EMRL1,2	4	4	4	4	4	4	4	4	4	9	9	9
	EMRL2,3	2	2	2	2	2	2	2	2	2	2	2	2
	EMRL0,2	12	12	13	14	14	15	17	17	19	28	59	29
	EMRL1,3	က	က	က	ဘ	ဘ	က	က	သ	က	4	4	4
	EMRL0,3	6	6	6	10	10	11	12	12	13	19	20	20

Table 5: MRL and expected MRL results for the EHWMA scheme

					$\phi_1 = 0.1$								φ	$\phi_1{=}0.25$			
		p=2			p=3			p=4			p=2			p=3			b=
ϕ_2	0.01	0.05	0.00		0.05		0.01	0.05	0.09	0.05	0.1	0.2		0.1	0.2	0.05	0.
\mathbf{h}_{MEH}	6	9.15	9.44	11.09	11.32		13.1	13.29	13.62	10.34	10.37	10.38		12.7	12.62	14.6	14.
00.00		168.0	165.6		166.1		167.3	171.0	167.4	186.4	185.8	191.5		194.7	193.8	181.5	206
0.25		51.0	52.3		53.0		54.2	6.09	58.5	73.5	9.92	86.7		88.3	94.1	7.68	86.8
0.50		16.9	18.5		18.3		19.8	20.6	21.6	22.5	25.2	30.7		27.6	35.0	28.7	31.1
0.75		8.9	9.1		9.3		9.6	10.3	10.7	10.1	10.9	13.3		12.7	14.8	12.5	13.5
1.00		5.1	5.5		5.5		5.8	6.1	6.4	5.8	6.2	7.3		8.9	8.2	7.3	7.4
1.25		3.5	3.7		3.9		3.8	4.0	4.1	3.7	4.0	4.6		4.5	5.4	4.3	4.6
Shifts 1.50		2.5	2.6		2.6		2.9	2.9	3.1	2.7	2.7	2.9		2.9	3.4	3.0	3.1
1.75		1.9	2.0		2.0		2.1	2.1	2.2	1.9	2.0	2.3		2.1	2.5	2.1	2.3
2.00	1.6	1.5	1.6	1.6	1.6	1.7	1.7	1.7	1.7	1.5	1.6	1.7	1.7	1.6	1.8	1.7	1.7
2.25		1.4	1.4		1.4		1.4	1.5	1.5	1.2	1.2	1.4		1.4	1.4	1.4	1.4
2.50		1.2	1.2		1.2		1.3	1.3	1.3	1.1	1.1	1.2		1.1	1.3	1.2	1.2
2.75		1.1	1.1		1.1		1.2	1.2	1.2	1.0	1.0	1.0		1.0	1.1	1.0	1.1
3.00		1.0	1.0		1.1		1.1	1.1	1.1	6.0	6.0	6.0		6.0	6.0	6.0	1.0
ESDRL0,1	19.5	20.5	21.4		21.5		22.4	24.5	24.3	28.0	29.7	34.5		33.8	38.0	34.5	34
ESDRL1,2	2.4	2.4	2.5		2.5		2.6	2.7	2.8	2.4	2.6	2.9		2.8	3.3	2.8	2.
ESDRL2,3	1.2	1.2	1.2		1.2		1.2	1.3	1.3	1.0	1.0	1.1		1.1	1.2	1.1	1.
ESDRL0,2	10.9	11.4	11.9		12.0		12.5	13.6	13.5	15.2	16.1	18.7		18.3	20.6	18.7	18
ESDRL1,3	1.8	1.8	1.8		1.9		1.9	2.0	2.0	1.7	1.8	2.0		2.0	2.2	2.0	2.
ESDRL0,3	7.7	8.0	8.3		8.4		8.7	9.5	9.4	10.5	11.1	12.8		12.6	14.2	12.8	12

Table 6: SDRL and expected SDRL results for the MEHWMA scheme

					$\phi_1 = 0.1$	_							P	1 =0.25			
		p=2			p=3			p=4			p=2			p=3			p=4
ϕ_2	0.01	0.05	0.00	0.01	0.05	0.09	0.01	0.05	0.00	0.05	0.1		0.05	0.1	0.2	0.05	0.1
\mathbf{h}_{MEH}	6	9.15	9.44	11.09	11.32	2 11.73	_	53	62		10.37	10.38	12.7	12.7	12.62	14.6	.6 14.62
00.00	166	167	164	160		153					147		151	147	145	145	145
0.25	53	56	59	57		99					71		72	75	2.2	78	75
0.50	22	24	24	24		28					27		29	30	33	31	30
0.75	12	13	13	13	14	15					14		15	16	17	16	17
1.00	∞	∞	∞	6		6				∞	6		10	10	11	10	10
1.25	9	9	9	9	9	2					9		9	2	2	7	7
$ m Shifts \ 1.50$	4	4	2	5	2	5	2	ಒ	9	4	ಒ		5	5	,0	5	5
1.75	4	4	4	4	4	4			4		4		4	4	#	4	4
2.00	က	3	33	3	3	3			4		3		3	3	~	ဘ	3
2.25	3	3	33	3	3	3			3		3		3	3	~	က	3
2.50	3	3	33	3	3	3			3		2		3	3	~	က	3
2.75	2	2	2	2	2	3			3		2		2	2	~ 1	2	2
3.00	-	1	П	1	2	2			2		2		2	2	~1	2	2
EMRL0,1	24	25	26	26	28	30	28	30	31	27	30	32	32	33	35	34	33
$\mathbf{EMRL1,2}$	4	4	ಬ	5	5	5	5	ಬ	ಬ	4	2	5	2	5	ಬ	ಬ	5
EMRL2,3	2	2	2	2	3	က	က	က	က	2	2	2	က	က	က	က	3
$\mathbf{EMRL0,2}$	14	15	15	15	16	17	17	18	18	16	17	18	18	19	20	19	19
EMRL1,3	က	3	က	3	4	4	4	4	4	3	33	က	4	4	4	4	4
EMRL0,3	10	11	11	11	12	12	12	13	13	11	12	13	13	13	14	14	13

Table 7: MRL and expected MRL results for the MEHWMA scheme