Improving interim decisions for singlearm trials by adjusting for baseline covariates and short-term endpoints

Eline Anslot

Joint work with Kelly Van Lancker

Table of content

- 1. Single-arm trials combined with multi-stage designs
- 2. Proposed method
- 3. Simulations
- 4. Discussion

Single-arm trials with multi-stage designs

Commonly used designs:

- Group sequential designs
- Simon's two-stage designs

Continued/Paused

Interim analysis of two-stage designs

Continued/Paused

Interim analysis: based on the longterm endpoint ⇒ Unadjusted analysis

Simon's two-stage design:

$$\sum_{i=1}^{n_{long}} y_i \leq r_1$$

Group sequential designs:

$$Z = \frac{\frac{1}{n_{long}} \sum_{i=1}^{n_{long}} y_i - p_0}{SE(\frac{1}{n_{long}} \sum_{i=1}^{n_{long}} y_i)}$$

with z compared to cut-off to stop a trial for futility or efficacy based on e.g., Pocock (1977), O'Brien and Fleming (1979) or Lan and DeMets (1983) α - or β - error spending functions

Can we use more information?

Unadjusted analysis

Reset

Adjusted analysis

Improve decision by short-term endpoint

Calendar time

More precise interim estimator

- Recruitment with a pause:
 Possible as in Kunz et al. (2017) and Zocholl et al. (2023)
- Continuous recruitment:
 - ⇒ Focus of the talk

Continued/Paused

Table of content

- 1. Single-arm trials combined with multi-stage designs
- 2. Proposed method
- 3. Simulations
- 4. Discussion

Proposed method

Step 1: Model fitting in cohort 1:

$$h[E(Y|X,S)] = \beta_0 + \beta_1 X + \beta_2 S$$

h(.): canonical link function

Step 2: Predicting in cohort 1 and 2:

$$\hat{\mathbf{Y}} = \mathbf{h}^{-1} [\hat{\mathbf{\beta}_0} + \hat{\mathbf{\beta}_1} \mathbf{X} + \hat{\mathbf{\beta}_2} \mathbf{S}]$$

Proposed method

Step 3: Model fitting in cohort 1 and 2:

$$h[E(\hat{Y}|X)] = \gamma_0 + \gamma_1 X$$

Step 4: Predicting in cohort 1, 2 and 3:

$$\hat{\mathbf{Y}}' = \mathbf{h}^{-1} [\gamma_0 + \gamma_1 X]$$

Step 5: Averaging

$$\hat{p}_{int} = \frac{1}{n_{baseline}} \sum_{i=1}^{n_{baseline}} \hat{Y}_{i}$$

Proposed method - Decision at interim

Decision at interim:

$$Z_{int} = \frac{\hat{p}_{int} - p_0}{SE(\hat{p}_{int})}$$

In Group Sequential Design:

 $z_{\rm int}$ compared to cut-off to stop a trial for futility or efficacy based on e.g.,

Pocock (1977), O'Brien and Fleming (1979) or Lan and DeMets (1983) $\alpha-$ or $\beta-$ error spending functions

In Simon's Two-Stage:

$$\begin{split} Z_{int} &\leq \, \phi^{-1} [P \, E \, T(p_0)] \\ \text{with } P \, E \, T(p_0) &= \, B(r_1; n_{long}, p_0) \end{split}$$

Proposed method

Decision at interim:

- Adjusting for multiple short-term endpoints and baseline covariates
- Asymptotically unbiased even with misspecified models
 - Under random recruitment
- Asymptotically efficient when models are correct

Table of content

- 1. Single-arm trials combined with multi-stage designs
- 2. Proposed method
- 3. Simulations
- 4. Discussion

Simulation settings

 $\alpha = 0.05$, power = 0.80

Design: two different optimal two-stage designs to generate e.g., n_{long} and r_1

Design	$\mathbf{p_0}$	$\mathbf{p}_{\mathbf{A}}$	$n_{ m final}$	$n_{ m long}$	$\mathbf{r_1}$	$\overline{\mathbf{PET}(\mathbf{p_0})}$
1	.25	.35	149	56	15	.6853
2	.25	.30	$\bf 522$	223	57	.6112

Setting 1:

Design	${f Adjus}$	${f tment}$	$\mathbf{n_{in}}$	terim	Proportion	Degree of
	Baseline covariate(s)	Short-term endpoint	n_{long}	n_{short}	$n_{ m short}$	Predictivity
				15	0.20	
	7	1	56	25	0.30	Low to High
1	/			58	0.50	
				86	0.60	
				58	0.20	
2	1	1	000	99	0.30	Low to High
	/		223	228	0.50	
				299	0.60	

Simulation settings

 $\alpha = 0.05$, power = 0.80

Design: two different optimal two-stage designs to generate e.g., n_{long} and r_1

Design	$\mathbf{p_0}$	$\mathbf{p}_{\mathbf{A}}$	$n_{ m final}$	$n_{ m long}$	$\mathbf{r_1}$	$\mathbf{PET}(\mathbf{p_0})$
1	.25	.35	149	56	15	.6853

Setting 2:

NAME OF STREET	Adjustment		$n_{ m interim}$			Degree of	Models	
Design	Baseline covariate(s)	Short-term endpoint	rt-term Predictivity	9	Correct	Misspecified		
1	3	1	56	29	29	Low, Moderate, High	1	X

Setting 1 - Under the null hypothesis

Setting 1 - Under the alternative hypothesis

Proportion $n_{short} \rightarrow 0.2 \rightarrow 0.3 \rightarrow 0.5 \rightarrow 0.6$ Design 1 Design 2 n_{final} = 149, n_{long} = 56, p_A = .35 and p_0 = .25 n_{final} = 522 and n_{long} = 223, p_A = .30 and p_0 = .25 Proposed Proposed 0.25 0.20 $\mathsf{PET}(\mathsf{H}_\mathsf{A})$ 0.15 0.10 0.05 0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 0.00 1.00 Proposed Proposed 1.00 0.95 -Dower 0.85 0.80 0.75 -0.75 0.25 0.50 1.00 0.00 0.25 0.50 0.75 0.00 Correlation short- and long-term endpoints Correlation short- and long-term endpoints

Setting 2 - Model mispecification

Models	Degree of predictivity	power
	Not predictive	79.7%
Correct	Moderately predictive	82.4%
	Highly predictive	84.6%
	Not predictive	79.6%
Main	Moderately predictive	82.4%
	Highly predictive	84.7%
	Not predictive	79.9%
$ X_1 $	Moderately predictive	80.2%
	Highly predictive	80.8%

Table of content

- 1. Single-arm trials combined with multi-stage designs
- 2. Proposed method
- 3. Simulations
- 4. Discussion

Discussion

Additional gain of the proposed method, depends on:

- Proportion of additional participants in the pipeline
 - But ideally not everybody should be recruited at interim
- Predictivity of baseline covariates and short-term endpoint
- Model misspecification
 - Extension: data-adaptive methods to help build the models (see e.g., Van Lancker et al., 2024)

Discussion

- Calculate sample size as if no power gain occured
- Type I error rate inflated in small sample
 - Estimator's variance leans on asymptotic theory
 - Decision at interim relies on approximation of standard normal distribution
 - Alternatives: exact logistic regression, Firth correction, and Bayesian logistic regression

Thank you for your attention

Questions?

