

Curso de Tecnologia em Sistemas de Computação Disciplina Fundamentos de Algoritmos para Computação Professoras: Susana Makler e Sulamita Klein AP2 - Primeiro Semestre de 2014

Nome -Assinatura -

Observações:

- 1. Prova sem consulta e sem uso de máquina de calcular. Se necessário deixe o resultado indicado, como um produto ou quociente ou potência de números inteiros ou fatoriais.
- 2. Resultado sem indicação de como foi obtido, não será considerado.
- 3. Use caneta para preencher o seu nome e assinar nas folhas de questões e nas folhas de respostas.
- 4. Você pode usar lápis para responder as questões.
- 5. Ao final da prova devolva as folhas de questões e as de respostas.
- 6. Todas as respostas devem ser transcritas nas folhas de respostas. As respostas nas folhas de questões não serão corrigidas.

Questões:

1. (1.0) Use (justificando) o Teorema das Linhas para calcular a seguinte soma:

$$C_{50}^0 + C_{50}^1 + C_{50}^2 + \dots + C_{50}^{48}$$

Resposta: O Teorema das Linhas nos diz que: $C_n^0 + C_n^1 + \ldots + C_n^n = 2^n$.

Daí, temos que: $C_{50}^0 + C_{50}^1 + C_{50}^2 + \dots + C_{50}^{48} + C_{50}^{49} + C_{50}^{50} = 2^{50}$.

Assim, $C_{50}^0 + C_{50}^1 + C_{50}^2 + \dots + C_{50}^{48} = 2^{50} - C_{50}^{49} - C_{50}^{50}$

Como $C_{50}^{49} = \frac{50!}{49!1!} = 50$ e $C_{50}^{50} = \frac{50!}{50!0!} = 1$ temos que:

$$C_{50}^0 + C_{50}^1 + C_{50}^2 + \dots + C_{50}^{48} = 2^{50} - 51$$

.

2. (1.5) Calcule o coeficiente de x^{21} no desenvolvimento do binômio de Newton de:

$$(\frac{2}{x^4} - 5x^3)^{28}$$

Justifique a resposta.

Resposta: A fórmula para o termo geral do desenvolvimento do Binômio de Newton de $(a+b)^n$ é dada por: $T_{k+1}=C_n^k\ a^{n-k}\ b^k$, para $k=0,1,\cdots,n$. Neste caso temos $n=28,\ a=\frac{2}{x^4}=2x^{-4}$ e $b=-5x^3$.

$$T_{k+1} = C_{28}^{k} (2x^{-4})^{28-k} (-5x^{3})^{k}$$

$$= C_{28}^{k} (2)^{28-k} x^{-112+4k} (-1)^{k} (5)^{k} x^{3k}$$

$$= C_{28}^{k} (2)^{28-k} (-1)^{k} (5)^{k} x^{-112+7k}$$

Como queremos o coeficiente de x^{21} , temos:

$$-112 + 7k = 21$$

Logo, k = 19.

Portanto, $T_{20}=-\frac{28!}{9!19!}2^95^{19}x^{21}$ e, consequentemente, o coeficiente de x^{21} é $-\frac{28!}{9!19!}2^95^{19}$.

3. (1.5) Encontre a fórmula fechada da seguinte relação de recorrência, usando substitução regressiva:

$$a_n = a_{n-1} + n$$
 n natural, $n \ge 1$
 $a_0 = 1$

Descreva o processo utilizado para chegar à fórmula.

Resposta: Vamos utilizar substituição regressiva para determinar a fórmula fechada da relação de recorrência.

$$a_{n} = \underbrace{a_{n-1} + n}_{a_{n-2} + (n-1) + n}$$

$$= \underbrace{a_{n-3} + (n-2)}_{a_{n-2}} + (n-1) + n$$

$$\vdots$$

$$= a_{n-i} + (n - (i+1)) + (n - (i+2)) + \dots + n$$

Quando n - i = 0, temos i = n. Daí,

$$a_n = a_0 + (n - (n+1)) + (n - (n+2)) + \dots + n$$

$$= 1 + \underbrace{[1 + 2 + \dots + n]}_{\text{soma da P.A. de } n \text{ termos}}$$

$$= 1 + \underbrace{(n+1)n}_{2}$$

4. (1.0) Seja G um grafo com dois componentes conexos G_1 e G_2 , onde G_1 é uma árvore com 15 vértices e G_2 é um grafo completo com 6 vértices. Calcule quantas arestas tem o grafo G. Justifique.

Resposta: Uma árvore com n vértices tem m = n - 1 arestas. Assim, $m_1 = 15 - 1 = 14$ arestas, onde m_1 denota as arestas de G_1 .

Em um grafo completo com 6 vértices, todo vértice tem grau 5. Daí, pelo Teorema do Aperto de Mãos, temos: $\sum_{v \in V} d(v) = 2m$. Por conseguinte, se m_2 denota a quantidade de arestas em G_2 temos: $\sum_{v \in V(G_2)} d(v) = 2m_2$. Como $\sum_{v \in V(G_2)} d(v) = 5 \times 6 = 30$, temos que $m_2 = 15$.

Por definição, não temos quaisquer arestas entre dois componentes conexos. Portanto, G tem $m=m_1+m_2=29$ arestas, onde m é o número de arestas de G.

5. (5.0) Considere o grafo G abaixo e responda:

(a) G é planar? Justifique.

Resposta: Não. Observe que o conjunto de vértices $\{a,b,d,e,f\}$ induz um K_5 . O teorema de Kuratowski garante que um grafo é planar se e somente se não possui subdivisão de K_5 ou de $K_{3,3}$. Sendo assim, o grafo em questão não é planar.

(b) G é Hamiltoniano? Justifique.

Resposta: Não. Observe que, partindo de um vértice no conjunto $\{g,h,i,j,k,l\}$, quando passamos por a e percorremos os vértices do conjunto $\{b,c,f,d,e\}$, para voltarmos ao vértice inicial obrigatoriamente passaremos por a de novo. Logo, não é possível ter um ciclo passando por todos os vétices de G.

(c) G é Euleriano? Justifique.

Resposta: Não. O teorema de Euler caracteriza os grafos Eulerianos da seguinte forma: Um grafo G é Euleriano se e somente se todo vértice de G tem grau par. Como no grafo em questão temos vértices de grau ímpar, como por exemplo g, ele não é Euleriano.

(d) Determine o diâmetro de G.

Resposta: O diâmetro de um grafo G, denotado por diam(G) é a maior excentricidade de G.

A excentricidade de um vértice v, denotada por e(v), é a maior distância de v a um outro vértice do grafo.

A distância entre dois vértices v, w, denotada por d(v, w), é o comprimento do menor caminho entre v, w.

Como
$$e(a) = e(i) = 2$$
 e $e(b) = e(c) = e(d) = e(e) = e(f) = e(g) = e(h) = e(j) = e(k) = 3$, temos que diam $(G) = 3$.

(e) Determine o centro de G.

Resposta: O centro de G, C(G), é um conjunto de vértices composto pelos vértices de menor excentricidade.

De acordo com as excentricidades calculadas no item (d), temos que $C(G) = \{a, i\}$.