Birla Institute of Technology and Science, Pilani ACADEMIC-GRADUATE STUDIES AND RESEARCH DIVISION First Semester 2023-2024 Course Handout Part II

Date: 1/08/2023

In addition to the Part-I (General Handout) for all courses appended to the timetable, this portion gives further specific details regarding the course.

Course No. : CS G526

Course Title : Advanced Algorithms & Complexity

Instructor-in-Charge: Dr. Apurba Das

1. Scope and Objective:

The objective of this course is to enable each individual student to pursue some of these activities:

- explore advanced topics in algorithmic and complexity theory;
- engage in analysis and design of complex algorithms for real-world problems in current application domains;
- learn and evaluate advanced / novel algorithm design strategies and techniques
- understand sturdy / open problems in algorithmic or complexity theory by analyzing known approaches and their limitations.

The scope of this course includes

- (i) algorithm design strategies such as Randomization and Approximation as well as specific techniques therein.
- (ii) NP-hard problems and approaches to handle them using approximation algorithms
- (iii) Problem/application domains such as online social networks, Internet and the Web, number theory and cryptography, and distributed computing.

2. Text Book:

- T1. "Randomized Algorithms", by "Motwani, Rajiv & P. Raghavan", CUP, 1995.
- T2. "Combinatorial Optim.: Algo. & Complexity", by "Papadimitnou, C.H. & Kenneth Steiglitz", PHI, 1982

3. Reference Books:

- R1. The Design of Approximation of Algorithms. Williamson and Shmoys, Cambridge Press.
- R2. Design and Analysis of Randomized Algorithms. Hromkovic, Springer.
- R3. Approximation Algorithms. Vijay Vazirani. Springer.
- R4. Complexity and Approximation, G. Auseiello, et.al. Springer.
- R5. Algorithm Design. Kleinberg and Tardos. Pearson Education.
- AR. Additional reading assigned by the Instructor

4. Course Plan

No. of	Learning Objectives	Торіс	Reference
1 Lec	Importance of	Introduction & Motivation – Advanced	
1 Lec	randomized algorithms	Algorithms & Complexity	-
	and complexity classes	Algorithms & Complexity	
2 Lecs	Review of probability	Review of Design Techniques, Complexity	
2 2005	theory	Classes and necessary basics in Probability	
3 Lecs	Understanding the	Randomized Algorithms : Las Vegas & Monte	T1 – Ch 1
	classification of	Carlo Techniques,	
	randomized algorithms	•	
3 Lecs	Understanding the	Chebyshev Inequality, Tail Inequalities	T1-Ch3, Ch4
	success rate of the		
	randomized algorithm		
3 Lecs	Understanding how	Data Structures for randomized algorithms -	T1-Ch8
	randomization helps in	Skip Lists and Hash Tables	
	creating some		
	advanced data		
21.000	structures	Dandaminad annah alassithus	T1 – Ch 10
2 Lecs	Understanding how randomization has	Randomized graph algorithms	11 – Cn 10
	helped to obtain		
	algorithms better than		
	deterministic counter		
	parts.		
2 Lecs	Understanding the	Game Theoretic Techniques	T1 – Ch 4
	Minimax theorem and	1	
	its implication in game		
	theory.		
2 Lecs	Understanding role of	Parallel and Distributed Algorithms; PRAM	T1-Ch12
	randomization in	model, Maximal independent sets, Byzantine	
	parallel algorithms.	Agreement	
2 Lecs	Basic Number	Basic Number-Theoretic Algorithms –	T1 - Ch 14
	theoretic algorithms.	Euclid's Algorithm, Computing Euler's	
		phi function and Quadratic Residues.	
2 Lecs	Understanding of	Online Algorithms	T1 - Ch 13
	basics of online		
	algorithms		7.5
4 Lecs	Understanding of	Polynomial time reductions, vertex cover,	R5
	complexity classes	independent set, set cover, 3-satisfiability,	
	and their definitions.	Hamiltonian cycle, 3-dimensional cycle,	
	How to prove a	graphs 3-colorability, subset-sum, P vs.	
	problem is NP-	NP, NP-completeness, Co-NP, PSPACE,	
	Complete?	PSPACE-complete, Reducibility, NP-	
		complete problems .	
7 Lecs	Design techniques	The greedy method, sequential algorithms,	R1 and R4
	for approximation	local search, linear programming, dynamic	
	algorithms	programming,	

3 Lecs	Hardness of	Absolute & relative approximation	R4
	approximation	(additive & mutiplicative), approximation	
		classes, APX, PTAS, FPTAS, limits to	
		approximability: the gap technique	
4 Lecs	Techniques in	NP, PCP, Non approximability results,	R1 & R4
	proving the hardness	reduction from NP-complete problems,	
	of approximation	reductions that preserve approximation,	
		reductions from probabilistically	
		checkable proofs, reduction from unique	
		games	

5. Evaluation Scheme:

Sr.	Component	Duration	Weightage	Date & Time	Remarks
1.	Midterm	90 min	(%) 25%	Will be announced	Closed Book
2.	Lab exams	During Lab Hours	10%	Will be announced in Class	Open Book
3.	Term Project - Literature survey & Problem statement - Problem Scoping and Analysis, Mid- Term Progress & Report - Seminar - Conclusion, Viva and Report	Throughout the Semester	10 %		Open Book
4.	Class Interaction/quiz	During the class	10%	In the class	Open book
5.	Lab Interaction/quiz	During the lab	10%	In the lab	Open book
6.	Compre Exam	3 hrs.	35 %	Will be announced	Closed book

5. Chamber Consultation hours: I will be announcing this in the class.

6. Make-up Policy:

Prior Permission of the Instructor-in-Charge is usually required to take a make-up for a test. The regulations set by AGSRD office for make-ups must be followed. A make-up test shall be granted only in genuine cases on justifiable grounds.

7. Notices: Notice regarding the course will be posted in the google classroom (I will create and will share with the students).

- 8. Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.
- 9. Disclaimer: The dates of quizzes are tentative. Any kind of unfair means in exams and assignments will be strictly dealt.

Instructor-in-charge CS G526.