LOGIC DESIGN EET-1021

CHAPTER 04
Lecture 23

Combinational Logic

Overview of previous lecture

- > What is Decoder
- **➤** What is Encoder
- **➤** Limitation of Encoder
- > Priority Encoder

Multiplexers

- A multiplexer is a combinational circuit that selects binary information from one of many input lines and directs it to a single output line. The selection of a particular input line is controlled by a set of selection lines. Normally, there are 2^n input lines and n selection lines whose bit combinations determine which input is selected.
- In general, a 2^n -to-1-line multiplexer is constructed from an n to- 2^n decoder by adding 2^n input lines to it, one to each AND gate. The outputs of the AND gates are applied to a single OR gate.

Two-to-one-line multiplexer

Four-to-one-line multiplexer

Boolean Function Implementation

$$F(x, y, z) = \Sigma(1, 2, 6, 7)$$

x	v	z	F				
	у	~	1				
0	0	0	0	F = z			
0	0	1	1				
0	1	0	1	F = z'			
0	1	1	0				
1	0	O	0	F = 0			
1	O	1	0				
1	1	0	1	F = 1			
1	1	1	1				
(a) Truth table							

As a second example, consider the implementation of the Boolean function

$$F(A, B, C, D) = \Sigma(1, 3, 4, 11, 12, 13, 14, 15)$$

\boldsymbol{A}	\boldsymbol{B}	C	D	F	
0	0	0	0 1	0 1	F = D
0	0	1 1	0 1	0 1	F = D
0	1 1	0	0 1	1 0	F = D'
0	1 1	1 1	0 1	0 0	F = 0
1 1	0	0	0 1	0 0	F = 0
1 1	0	1 1	0 1	0 1	F = D
1 1	1 1	0	0 1	1 1	F = 1
1 1	1 1	1 1	0 1	1 1	F = 1

Implementing a four-input function with a multiplexer

Example

Construct a 16×1 multiplexer with two 8×1 and one 2×1 multiplexers.

Implement a full adder with two 8×1 multiplexers.

Implement the given Boolean function by using 8×1 multiplexer. $F(A,B,C,D) = \sum (0,1,3,4,8,9,15)$

Implement XOR gate by using 2 × 1 Multipler

THANK YOU