

# COMPUTATIONAL EVALUTIONS OF PROTON INDUCED GAIN IN A PORTABLE FARADAY CUP

Shaun Marshall<sup>1†</sup>, Blake Currier<sup>1</sup>, Andrew Hodgdon<sup>2</sup>

Department of Physics, Worcester Polytechnic Institute, Worcester, MA 01609

<sup>2</sup>RadSim, LLC, Newton, MA 02462

## ABSTRACT

- Current proton beam calibration methods lack precision, esp. for pencilbeam scanning
- Seek feasible (vacuumless, chamberless) solution for 70-250MeV beam energy: Portable Faraday Cup (PFC)



**Fig 1:** Experimental beamline at Heidelberg Institute of Technology

- Kapton insulator to capture backscattered electrons
- PFC radius determined by MCNP6 model



Fig 2: MCNP gain as a function of PFC radius

# METHODOLOGY

## PFC Geometry

- Cu cylinder (10cm x 3 cm)
- Kapton film (59-200  $\mu$ m)
- Ag ground (12  $\mu$ m)
- Kapton outer film (62  $\mu$ m)



Fig 3: Geant4- 100 events at 160 MeV in S59

### Gain Contribution

- Net charge on Cu per p+
- Mirror charge  $\propto$  depth in Kapton  $d_{\%,j}$
- For each charge  $q_j$  per event i, tally net gain

$$g_{ij} = \begin{cases} \pm q_j/e, & \text{if } q_j \rightleftharpoons Cu \\ \pm q_j d_{\%,j}/e, & \text{if } q_j \rightleftharpoons KA(d_{\%,j}) \end{cases}$$

#### **Parameters**

- Energy range: 70 250 MeV
- Beam FWHM: 22.8 − 8.1mm
- Production cutoff:  $5 \mu m$
- Models: S59, S100, S200 (Kapton thicknesses)

# RESULTS



Fig 4: G4, HIT gain [3], all increase with energy. Cu shows positive gain, KA lowers gain with thickness; Ag lowers gain, suppresses this spread. HIT-S59 breaks trend, crosses 1.

|     | S59       | S100      | S200      |
|-----|-----------|-----------|-----------|
| -Ag | 1.1 - 3.0 | 1.4 - 3.7 | 2.0 - 4.4 |
| +Ag | 2.4 - 4.1 | 2.5 - 4.5 | 2.9 - 4.8 |

Table 1: G4 model gain percent error relative to G4 Cu



Fig 5: G4 gain in 100x100 bins at 70, 130, 190, 250 MeV. Bins append charge deposits (red) and subtract removals (blue) (unnormalized).

## CONCLUSIONS



Fig 5: G4, HIT gain % error

- Agreement within 3%
- MCNP insufficient to optimize without p+ secondary electrons
- Future work: characterize multilayer PFC

## REFERENCES

- [1] B. Gottschalk. "A Poor Man's Faraday Cup". Abstracts XIX PTCOG Meeting, Cambridge, MA, 13 (1993).
- [2] E. Cascio and B. Gottschalk. "A Simplified Vaccuumless Faraday Cup for the Experimental Beamline at the Francis H. Burr Proton Therapy Center". *IEEE Radiation Effects Data Workshop*, p.155–161, (2009).
- [3] J. Gordan and L. Magallanes. "Evaluation of Current Measuring Beam Stop". Proprietary Calculuations, (2014).

## †CONTACT INFO

Web www.wpi.edu/~shaun Email shaun@wpi.edu