幾何引理維基

 \mathcal{L} i4+ \mathcal{S}_{\otimes} + 和輝 (?)

February 25, 2021

目錄

前	前言		
0	基本性質與記號		1
	0.1	記號	1
	0.2	一般引理	5
1	内心	内心	
	1.1	爲内切圓	16
	1.2	費爾巴哈雙曲線	20
2	歐拉	線	25
參	参考资料		

前言

曾經證明過的引理不可能忘記,只不過是想不起而已。

這份講義的內容會以作者們有印象的幾何引理爲主,如果讀者有任何想加進來的引理或者哪裡出現了 typo 都可以私訊我們或寄信到 chjh21005@gmail.com 告訴我。

Chapter 0

基本性質與記號

0.1 記號

若 X,Y 爲雨點 (不在無窮遠線 \mathcal{L}_{∞} 上),XY 代表過 X,Y 的直線, \overline{XY} 代表連接 X,Y 的線段 (與 \mathcal{L}_{∞} 沒有交點的那個)。若 K,L 爲雨線, $K\cap L$ 代表 K 與 L 的交點, $\measuredangle(K,L)$ 代表 K 與 L 的有向夾角, $\angle(K,L)$ = $|\measuredangle(K,L)|$ 代表 K 與 L 的無向夾角。對於三點 X,O,Y,我們定義有向角 $\angle XOY = \angle(OX,OY)$,無 向角 $\angle XOY = \angle(OX,OY)$ 。這邊給出一些有向角的性質,

(i) 對於任意兩線 K, L,

$$\angle(K, L) + \angle(L, K) = 0^{\circ}.$$

(ii) 若四線 K, K', L, L' 滿足 K || K', L || L',則

$$\angle(K, K') = \angle(L, L').$$

(iii) 對於任意四線 ℓ_1 , ℓ_2 , ℓ_3 , ℓ_4 ,

$$\angle(\ell_1, \ell_2) + \angle(\ell_3, \ell_4) = \angle(\ell_1, \ell_4) + \angle(\ell_3, \ell_2).$$

(iv) X, Y, Z 三點共線若且唯若存在另一點 O 使得

$$\angle YXO = \angle ZXO$$
.

(v) P, Q, X, Y 四點共圓若且唯若

$$\angle XPY = \angle XQY$$
.

 $\odot(XYZ)$ 爲 $\triangle XYZ$ 的外接圓, $\odot(\overline{XY})$ 是以 \overline{XY} 爲直徑的圓, $\odot(X)$ 則是以 X 爲圓心的圓。給定一圓 Γ 及圓上一點 X,我們通常以 $XP \cap \Gamma$ 或 $\Gamma \cap XP$ 代表 XP 與 Γ 的異於 X 的交點 (若 XP 與 Γ 相切則還是 X)。

有時,若有三線 a, b, c ,我們會以 $\triangle abc$ 代表以 a, b, c 三線圍成的三角形 $\triangle (b \cap c)(c \cap a)(a \cap b)$ 。

我們說 $\triangle X_1Y_1Z_1$ 與 $\triangle X_2Y_2Z_2$ 正 (反/負) 向相似,記爲

$$\triangle X_1 Y_1 Z_1 \stackrel{+}{\sim} (\bar{\sim}) \triangle X_2 Y_2 Z_2,$$

若 $\triangle X_1Y_1Z_1$ 與 $\triangle X_2Y_2Z_2$ 相似且

$$\begin{cases} \angle Y_1 X_1 Z_1 = \pm \angle Y_2 X_2 Z_2, \\ \angle Z_1 Y_1 X_1 = \pm \angle Z_2 Y_2 X_2, \\ \angle X_1 Z_1 Y_1 = \pm \angle X_2 Z_2 Y_2. \end{cases}$$

給定任意圓錐曲線 C

- 對於任意一點 P, 我們定義 $\mathfrak{p}_{\mathcal{C}}(P)$ 爲 P 關於 C 的極線
- 對於任意一線 ℓ , 我們定義 $\mathfrak{p}_{\mathcal{C}}(\ell)$ 爲 ℓ 關於 \mathcal{C} 的極點
- 對於任意 $\triangle ABC$, 我們定義

$$\mathfrak{p}_{\mathcal{C}}(\triangle ABC) = \triangle \mathfrak{p}_{\mathcal{C}}(A)\mathfrak{p}_{\mathcal{C}}(B)\mathfrak{p}_{\mathcal{C}}(C) = \triangle \mathfrak{p}_{\mathcal{C}}(BC)\mathfrak{p}_{\mathcal{C}}(CA)\mathfrak{p}_{\mathcal{C}}(AB).$$

0.1.1 三角形與一點一線

給定 $\triangle ABC$ 與一點 P, 我們有: P 關於 $\triangle ABC$ 的

- 西瓦三角形 $\triangle(AP \cap BC)(BP \cap CA)(CP \cap AB)$
- 反西瓦三角形,使得 P 關於其西瓦三角形爲 $\triangle ABC$ (存在性與唯一性詳 $\mathbb{R}^{[1]}$)
- 佩多 (垂足) 三角形 $\triangle(P\infty_{\perp BC}\cap BC)(P\infty_{\perp CA}\cap CA)(P\infty_{\perp AB}\cap AB)$
- 反佩多三角形 $\triangle(A\infty_{\perp AP})(B\infty_{\perp BP})(C\infty_{\perp CP})$,使得 P 關於其佩多三角形 爲 $\triangle ABC$

• 圓西瓦三角形 $\triangle(AP \cap \bigcirc(ABC))(BP \cap \bigcirc(ABC))(CP \cap \bigcirc(ABC))$

其中,西瓦三角形的定義關於 A, B, C, P 四個點是對稱的,所以也被定義爲一個完全四點形的西瓦三角形。

給定 $\triangle ABC$ 與一線 ℓ , 我們有: ℓ 關於 $\triangle ABC$ 的

- 西瓦三角形 $\triangle(A(BC \cap \ell))(B(CA \cap \ell))(C(AB \cap \ell))$
- 反西瓦三角形,使得 ℓ 關於其西瓦三角形為 $\triangle ABC$ (同樣地存在性與唯一性詳見 $^{[1]}$)

跟點的情形一樣,西瓦三角形的定義也可以延伸至完全四線形 (但一般稱作對角線三角形)。

0.1.2 三角形的特殊點

當我們給定三角形 ABC,在不特別説明的情況下我們默認

- I, G, O, H 分別爲内心、重心、外心及垂心
- *I_x* 爲 *X*-旁心
- △DEF 爲切點三角形,即 I 的佩多三角形
- $\triangle D_x E_x F_x$ 爲 X-切點三角形,即 I_x 的佩多三角形
- $\triangle D'E'F' = \triangle D_aE_bF_c$ 爲旁切點三角形
- $\triangle M_a M_b M_c$ 爲中點三角形
- $\triangle N_a N_b N_c$ 為弧中點三角形,即 I 的圓西瓦三角形
- $\triangle N'_a N'_b N'_c$ 為上弧中點三角形,即 $\triangle N_a N_b N_c$ 關於 O 對稱後的像
- N 爲九點圓圓心
- K 爲共軛重心,即 G 的等角共軛點
- Ge 爲熱爾岡點,即 $\triangle ABC$ 與 $\triangle DEF$ 的透視中心
- Na 爲納格爾點,即 $\triangle ABC$ 與 $\triangle D'E'F'$ 的透視中心

- Fe 爲費爾巴哈點
- Fe_x 爲 X-費爾巴哈點

當然我們有時會重新定義把上面的默認蓋掉。

0.2 一般引理

Lemma 0.2.1. 若兩圓 Ω , ω 相切於 T, \overline{AB} 爲 Ω 上一弦與 ω 相切於 U,則 TU 爲 $\angle ATB$ 的角平分線。

Proof. $\Diamond A', B'$ 分別爲 TA, TB 與 ω 異於 T 的交點,則

$$\angle BAT = \angle (BT, T_T\Omega) = \angle (B'T, T_T\omega) = \angle B'A'T,$$

即 $AB \parallel A'B'$ 。所以

$$\angle ATU = \angle A'TU = \angle A'UA = \angle UA'B' = \angle UTB.$$

Lemma 0.2.2. 若兩個三角形 $\triangle ABC$, $\triangle A'B'C'$ 位似 (即 $BC \parallel B'C'$, $CA \parallel C'A'$, $AB \parallel A'B'$),則 AA', BB', CC' 共點。

Lemma 0.2.3. 若 P, Q 為兩點滿足 BPCQ 為平行四邊形,則 $\angle BAP = \angle QAC$ 若且唯若 $\angle ABP = \angle PCA$ 。

Proof 1. 取 A' 使得 $\triangle ABP \stackrel{+}{\cong} \triangle A'QC$,則

$$\angle BAP = \angle QAC \iff \angle QA'C = \angle QAC$$
 $\iff A, A', Q, C \# \mathbb{B}$
 $\iff \angle A'QC = \angle A'AC$
 $\iff \angle ABP = \angle PCA.$

Lemma 0.2.4. 若 D_1 , D_2 位於 BC 上, E_1 , E_2 位於 CA 上, F_1 , F_2 位於 AB 上,满足 E_1 , E_2 , F_1 , F_2 、 F_1 , F_2 , D_1 , D_2 、 D_1 , D_2 , E_1 , E_2 分别共圓,則 D_1 , D_2 , E_1 , E_2 , F_1 , F_2 共圓。

Proof. 令 $\omega_A = \odot(E_1E_2F_1F_2)$, $\omega_B = \odot(F_1F_2D_1D_2)$, $\omega_C = \odot(D_1D_2E_1E_2)$ 。若六點不共圓,則 ω_A , ω_B , ω_C 雨雨相異,而他們之間的根軸爲 $\triangle ABC$ 三邊,但我們知道三根軸共點於根心,矛盾。

Lemma 0.2.5. 給定 $\triangle ABC$ 和一點 P,設 P 關於 CA, AB 的垂足爲 P_B, P_C 。 設 AQ 爲 AP 關於 $\angle BAC$ 的等角線,則 $AQ \perp P_BP_C$ 。

Proof. 設 $AQ \cap P_B P_C = D$,則 A, P_B, P_C, P 四點共圓,故

$$\angle AP_BD = \angle AP_BP_C = \angle APP_C, \ \angle P_CAP = \angle BAP = \angle DAP_B.$$

因此
$$\triangle AP_BD \stackrel{+}{\sim} \triangle APP_C$$
,故 $\angle ADP_B = 90^\circ$,即 $AQ \perp P_BP_C \circ$

Lemma 0.2.6 (等角共軛點). 給定三角形 $\triangle ABC$ 和一點 P,則存在一點 P^* 滿足

$$\angle BAP + \angle CAP^* = \angle CBP + \angle ABP^* = \angle ACP + \angle BCP^* = 0^{\circ}.$$

 $Proof\ 1.$ 考慮 P 的佩多三角形 $\triangle P_A P_B P_C$,注意到 $\triangle ABC$ 和 $\triangle P_A P_B P_C$ 正交,因此 A 關於 $P_B P_C$, B 關於 $P_C P_A$, C 關於 $P_A P_B$ 的垂線共點,因此由 (0.2.5) 知道 所共的點 P^* 滿足

$$\angle BAP + \angle CAP^* = \angle CBP + \angle ABP^* = \angle ACP + \angle BCP^* = 0^{\circ}.$$

 $Proof\ 2.$ 令 $\triangle XYZ$ 爲 P 關於 $\triangle ABC$ 的圓西瓦三角形, $\triangle P_xP_yP_z$ 爲 P 關於 $\triangle XYZ$ 的佩多三角形。我們有

$$\angle P_y P_x P_z = \angle P_y P_x P + \angle P P_x P_z = \angle X Z C + \angle B Y X = \angle B A C.$$

同理有 $\angle P_z P_y P_x = \angle CBA$, $\angle P_x P_z P_y = \angle ACB$,因此 $\triangle P_x P_y P_z \stackrel{+}{\sim} \triangle ABC$ 。取 P^* 使得 $\triangle ABC \cup P^* \stackrel{+}{\sim} \triangle P_x P_y P_z \cup P$,則

$$\angle BAP + \angle CAP^* = \angle BAP + \angle P_z P_z P = \angle BAP + \angle PAB = 0^{\circ}.$$

Proposition 0.2.7. 對於任意完全 n 線形 $\mathcal{N}(\ell_1,\ell_2,...,\ell_n)$ 及一點 P,定義 P_i 爲 P 關於 ℓ_i 的垂足,則 P 存在關於 \mathcal{N} 的等角共軛點若且唯若 $P_1,P_2,...,P_n$ 共 圓 (佩多圓)。此時,若 P^* 爲 P 關於 \mathcal{N} 的等角共軛點,定義 P_i^* 爲 P^* 關於 ℓ_i 的 垂足,則 $P_1,P_2,...,P_n,P_1^*,P_2^*,...,P_n^*$ 共圓且其圓心爲 $\overline{PP^*}$ 中點。

Proof. 令 $A_{ij} = \ell_i \cap \ell_j$ 為 \mathcal{N} 的頂點。

- (⇒) 令 P 爲 P 關於 N 的等角共軛點, P_i^* 爲 P^* 關於 ℓ_i 的垂足,則由 $A_{ij}PP_iP_j \sim A_{ij}P^*P_j^*P_i^*$ 知 P_i , P_j , P_i^* , P_j^* 共圓。因爲 ℓ_i , ℓ_j , ℓ_k 不共點,由 (0.2.4), P_i , P_j , P_k , P_i^* , P_j^* , P_k^* 共圓,故 P_1 , P_2 , ..., P_n , P_1^* , P_2^* , ..., P_n^* 共圓。易知其圓心位於 $\overline{P_iP_i^*}$ 的中垂線上,所以其圓心爲 $\overline{PP^*}$ 中點,這證明了後半部分。
- (\Leftarrow) 令 P_i^* 爲 $\odot(P_1P_2\dots P_n)$ 與 ℓ_i 的另一個交點,由 (\Rightarrow) 及 P 存在關於 $\triangle A_{jk}A_{ki}A_{ij}$ 的等角共軛點知 P_i^* , P_j^* , P_k^* 分別關於 ℓ_i , ℓ_j , ℓ_k 的垂線交於 P 關於 $\triangle A_{jk}A_{ki}A_{ij}$ 的等角共軛點,故 P_1^* , P_2^* , ..., P_n^* 分別關於 ℓ_1 , ℓ_2 , ..., ℓ_n 的垂線交於一點,設其爲 P^* ,則 P^* 爲 P 關於 $\mathcal N$ 的等角共軛點。

Lemma 0.2.8. 給定 $\triangle ABC$ 中的一對等角共軛點 P, P^* ,設 P, P^* 的佩多三角 形分別為 $\triangle P_A P_B P_C, \triangle P_A^* P_B^* P_C^*$,則 $P_A, P_B, P_C, P_A^*, P_B^*, P_C^*$ 六點共圓。

Proof. 注意到 A, P_B, P_C, P 四點共圓, A, P_B^*, P_C^*, P^* 四點共圓, 因此

$$\angle P_C^* P_C P_B = \angle A P_C P_B = \angle A P_B = \angle P_C^* P^* A = \angle P_C^* P_B^* A = \angle P_C^* P_B^* P_B$$

故 P_C^* , P_B^* , P_B , P_C 四點共圓,同理 P_A^* , P_C^* , P_C , P_A 四點共圓, P_B^* , P_A^* , P_A , P_B 四點共圓,但注意到這三圓兩兩根軸爲 AB, BC, CA,由根心的存在性知道 P_A , P_B , P_C , P_A^* , P_B^* , P_C^* 六點共圓。

Lemma 0.2.9. 設 P, P^* 爲 $\triangle ABC$ 的一對等角共軛點對,則存在一圓錐曲線以 P, P^* 爲焦點和 BC, CA, AB 相切。

Proof.

Lemma 0.2.10 (等截共軛線). 設直線 ℓ 交 $\triangle ABC$ 三邊於 D, E, F, 並設 D' 爲 D 關於 M_a 的對稱點,類似地在 CA, AB 上定義 E', F', 則 D', E', F' 三點共線 且平行於 $\triangle ABC \cup \ell$ 的牛頓線。

Proof. 設 G 爲 $\triangle ABC$ 的重心。對於任意點 P,考慮以 A 爲中心比例爲 2 的位似變換合成上以 M_A 爲中心比例爲 -1 的位似變換將 P 送至 P^c 。則由孟氏定理知道此變換把 P 送至 P 的反補點,即 $\overline{P^cG}=2\overline{GP}$,故對於三頂點此變換皆相同。設 T_E, T_F 爲 BE, CF 中點,則 T_ET_F 爲 $\triangle ABC \cup \ell$ 的牛頓線,且由上面的

討論容易發現 T_E , T_F 的反補點爲 E', F',故反補變換將 $\triangle ABC \cup \ell$ 的牛頓線送 $\triangle D^c$, E^c , F^c ,因此三點共線且平行牛頓線。

Lemma 0.2.11. 設 X, Y 爲一圓錐曲線 C 上的兩點,X, Y 關於 C 的切線交於 P,則對於任意過 P 並交 C 於 A, B 兩點的直線,皆有

$$(X, Y; A, B)_{\mathcal{C}} = -1.$$

Lemma 0.2.12. 設 C 為三角形 $\triangle ABC$ 的外接圓錐曲線,X 為任意點,且設 AX, BX, CX 交 C 於 X_A , X_B , X_C , P 為 C 上一點,設 PX_A , PX_B , PX_C 交 BC, CA, AB 於 P_A , P_B , P_C , 則 P_A , P_B , P_C , X 共線。

Proof. 設考慮 C 上六點 $BACX_CPX_B$,則由帕斯卡定理 $BA \cap PX_C$, $AC \cap PX_B$, $CX_C \cap BX_C$ 共點,即 P_C , P_B , X 共點,同理可證 P_A 也在此線上,故得證。

Lemma 0.2.13. 設 P,Q 爲 $\triangle ABC$ 的一對等角共軛點,且 AP,AQ 交 $\odot (ABC)$ 於 U,V,AQ 交 BC 於 R,則

$$\frac{AP}{PU} = \frac{QR}{RV}.$$

Proof 1.

$$\frac{AP}{UP} = (A, U; P, \infty) = (R, \infty; Q, V) = \frac{RQ}{RV}.$$

 $Proof\ 2.$ 考慮等角共軛點對 $(P,Q),\ (U,\infty_{AV})$,我們有 $A=PU\cap Q\infty_{AV},\ X:=P\infty_{AV}\cap QU$ 爲等角共軛點對,因此 $P\infty_{AV},\ QU,\ BC$ 共點。故

$$\frac{AP}{PU} = \frac{QX}{XU} = \frac{QR}{RV}.$$

Lemma 0.2.14. 設 X,Y 爲 $\triangle ABC$ 的一對等角共軛點,P 爲外接圓 $\odot(ABC)$ 上任意點。設 $AX\cap(ABC)=X_A$, $PX_A\cap BC=P_A$,則

$$\angle(XP_A, BC) = \angle APY$$

Proof. 設 $AY \cap (ABC) = R$, $AX \cap BC = D$, 做 E 在 X_AP_A 上使得 $DE \parallel XP_A$,注意到

$$\angle P_A X_A D = \angle PRA$$
, $\angle DP_A X_A = \angle RX_A P_A = \angle RX_A P = \angle RAP$,

因此 $\triangle P_A X_A D \sim \triangle ARP \circ$ 由 (0.2.13),

$$\frac{AY}{YR} = \frac{XD}{DX_A} = \frac{P_A E}{EX_A}.$$

因此我們有 $\triangle P_A ED \sim \triangle AYP$, 最後由算角度

$$\angle APY = \angle EDP_A = \angle XP_AD = \angle (XP_A, BC).$$

Lemma 0.2.15. 給定一個以F 爲焦點 ℓ 爲準線的拋物線C,對於準線上任意點P,考慮以P 爲圓心過F 的圓 $\odot(P)$,則C 的包絡線的對 $\odot(P)$ 極點軌跡爲一以F 爲中心過並和 ℓ 相切於P 點的等軸雙曲線。

Lemma 0.2.16 (正交截線). 給定 $\triangle ABC$, 設 P 爲任意點, 考慮 BC, CA, AB 上的三點 D, E, F 滿足

$$AP \perp PD$$
, $BP \perp PE$, $CP \perp PF$

則 D, E, F 三點共線。

Proof 1. 考慮一以 P 爲圓心的圓 $\odot(P)$,則我們想證明 $\mathfrak{p}_{\odot(P)}(D)$, $\mathfrak{p}_{\odot(P)}(E)$, $\mathfrak{p}_{\odot(P)}(F)$ 三點共線,注意到 $\angle(\mathfrak{p}_{\odot(P)}(D),\mathfrak{p}_{\odot(P)}(A)) = \angle DPA = 90^{\circ}$ 故 $\mathfrak{p}_{\odot(P)}(D)$, $\mathfrak{p}_{\odot(P)}(E)$, $\mathfrak{p}_{\odot(P)}(E)$, $\mathfrak{p}_{\odot(P)}(F)$ 爲 $\mathfrak{p}_{\odot(P)}(\triangle ABC)$ 的高,故共點。

Lemma 0.2.17. 三角形 $\triangle ABC$,P 爲任意點,則 $\mathcal{O}_{\triangle ABC}(P)$ 垂直 P 在過 ABCP 等軸雙曲線上的切線。

Proof 1. 考慮一以 P 爲圓心的圓 $\odot(P)$,則由 (0.2.15) 知道 $\mathfrak{p}_{\odot(P)}(A)$, $\mathfrak{p}_{\odot(P)}(B)$, $\mathfrak{p}_{\odot(P)}(C)$ 會切一個以 $T_P\mathcal{H}$ 爲準線的拋物線,故 $\mathfrak{p}_{\odot(P)}(\triangle ABC)$ 的垂心在 T_P 上,但由 (0.2.16) 知道 $\mathfrak{p}_{\odot(P)}(\triangle ABC)$ 的垂心就是 $\mathfrak{p}_{\odot(P)}(\mathcal{O}_{\triangle ABC}(P))$ 故原命題由極線垂直極點連圓心得證。

Proof 2.
$$\blacksquare$$

Lemma 0.2.18. 設 P,Q 爲 $\triangle ABC$ 的一對等角共軛點, $\triangle DEF$ 爲 P 的反西瓦三角形,則 PQ 和過 D,E,F,P 的等軸雙曲線相切。

 $Proof\ 1.$ 考慮一以 P 爲圓心的圓 $\odot(P)$,設 C 是以 P, Q 爲焦點和 BC, CA, AB 相切的圓錐曲線,則 C 的包絡線對 $\odot(P)$ 的極點軌跡爲 $\mathfrak{p}_{\odot(P)}(\triangle ABC)$ 的外接圓,故 $\mathfrak{p}_{\odot(P)}(\triangle ABC)$ 外心在 PQ 連線上,再注意到 $\mathfrak{p}_{\odot(P)}(\triangle DEF)$ 爲 $\mathfrak{p}_{\odot(P)}(\triangle ABC)$ 的中點三角形,故 $\mathfrak{p}_{\odot(P)}(\mathcal{O}_{\triangle DEF}(P))$ 在 PQ 上,故 PQ 和過 DEFP 的等軸雙曲線相切。

Lemma 0.2.19. 給定一拋物線 \mathcal{P} ,其中焦點和準線爲 F, ℓ ,則對於任意關於 \mathcal{P} 的自共軛三角形 $\triangle ABC$, $\mathcal{O}_{\triangle ABC}(P)=\ell$ 。

Proof. 考慮一以 F 爲圓心的圓 $\odot(F)$,則 \mathcal{P} 的包絡線對 $\odot(F)$ 的極點軌跡爲一以 $\mathfrak{p}_{\odot(F)}(\ell)$ 爲圓心的圓 Γ ,注意到配極保交比,所以 $\mathfrak{p}_{\odot(P)}(\triangle ABC)$ 爲 Γ 的自共軛三 角形,因此其垂心爲 $\mathfrak{p}_{\odot(F)}(\ell)$ 故得證。

Lemma 0.2.20. 設 \mathcal{H} 爲一等軸雙曲線,且 P, P' 爲一對對徑點,X 爲 \mathcal{H} 上任意點,則

$$\angle(T_P\mathcal{H}, PX) = \angle XP'P$$

Proof. 注意到 \mathcal{H} 是 PP' 中垂線對 △XPP' 的等角共軛軌跡,故得證。

Chapter 1

内心

Lemma 1.0.1. 我們有

$$\angle BIC = 90^{\circ} + \angle BAI = 90^{\circ} + \angle IAC.$$

Proof. 注意到 AI, BI, CI 分別垂直 EF, FD, DE, 所以

$$\angle BIC = \angle FDE = \angle AFE = 90^{\circ} + \angle BAI = 90^{\circ} + \angle IAC.$$

Lemma 1.0.2 (雞爪圓). 設 N_a 為 \widehat{BC} 孤中點,則 $B,\ I_a,\ C,\ I$ 共圓且圓心為 N_a \circ

Proof. 注意到

$$\angle BIN_a = \angle BIA = \angle BAI + \angle IBA = \angle N_aAC + \angle IBA = \angle N_aBI$$
 故 $\overline{N_aI} = \overline{N_aB}$,同理有 $\overline{N_aI} = \overline{N_aC} = \overline{N_aI_a}$ 。

Lemma 1.0.3. 設 $\triangle ABC$ 中 A-旁切圓切 BC 於 D',則 \overline{BC} 中點 M_a 爲 $\overline{DD'}$ 中點。

 $Proof\ 1.\ \diamondsuit\ I_a$ 爲 A-旁心,由 (1.0.2), $\overline{II_a}$ 的中點爲 \widehat{BC} 中點 N_a ,故

$$\frac{DM_a}{M_aD'} = \frac{IN_a}{N_aI_a} = 1.$$

Lemma 1.0.4. 設 $\triangle ABC$ 中 A-旁切圓切 BC 於 D', M_a 爲 \overline{BC} 中點,則 $IM_a \parallel AD'$ 。

Proof. 令 D^* 爲 D 關於 $\odot(I)$ 的對徑點,過 D^* 作平行於 BC 的直線分別交 AB, AC 於 XY,則 $\triangle AXY$ 與 $\triangle ABC$ 位似。因此 A, D^* , D' 共線。由 (1.0.3), IM_a 爲 $\triangle DD'D^*$ 的 D-中位線,故 $IM_a \parallel D^*D' = AD'$ 。

Lemma 1.0.5. 設 $\odot(AEF)$ 和 $\odot(ABC)$ 交於 A, X,則 XD 過 \widehat{BC} 弧中點 N_a 。

Proof 1. 注意到 X 是 △ $ABC \cup EF$ 的密克點,故 △ $XBF \stackrel{+}{\sim} \triangle XCE$,因此

$$\frac{XB}{XC} = \frac{FB}{EC} = \frac{DB}{DC}.$$

故 $\angle BXD = \angle DXC$ 。因爲 A, X 位於 BC 同側且 D 位於 \overline{BC} 内,因此 XD 爲 $\angle BXC$ 的内角平分線且 X, D, N_a 共線。

 $Proof\ 2.$ 設 N_a' 爲 N_a 對外接圓的對徑點,注意到 X 是 $\triangle ABC \cup EF$ 的密克點, 考慮 EF 和 BC 的交點 Y,則我們有 XYFB 共圓,因此由算角度

 $\angle YXN_a' = \angle YXB + \angle BXN_a' = \angle YFB + \angle BAN_a' = \angle EFB + \angle BAN_a' = 0^{\circ}.$

故 X, Y, N'_a 共線,因此

$$(N_a, N'_a; B, C) = -1 = (D, Y; B, C) = X(D, Y; B, C)$$

故 X, D, N_a 共線。

Lemma 1.0.6. 沿用 (1.0.5) 的標號,設 IX 交 EF 於 T,則 $DT \perp EF$ 。

Proof. 注意到 I 是 ⊙(AEF) 上 \widehat{EF} 的弧中點,故

$$\frac{TF}{TE} = \frac{XF}{XE} = \frac{XB}{XC} = \frac{DB}{DC},$$

所以 $\triangle XTD \stackrel{+}{\sim} \triangle XFB$, 因此

$$\angle XN_aA = \angle XBA = \angle XBF = \angle XDT \implies DT \parallel N_aA \perp EF.$$

Lemma 1.0.7. 令 H, I 分別爲 $\triangle ABC$ 的垂心和内心,則 (H,I) 爲 $\triangle DEF$ 的 垂足三角形的一對等角共軛點。

Proof. 考慮 D 對 EF 的垂足 T ,我們只需要證明 $\angle HTD = \angle DTI$ 則其他兩邊也同理,由 (1.0.6),X 是 $\triangle ABC \cup EF \cup DT$ 的密克點,故 $\triangle AEF$, $\triangle ABC$ 的垂心和 T 共線,注意到 $\triangle AEF$ 垂心是 I 對 EF 的對稱點,故 $\angle HTD = \angle DTI$ 。

Lemma 1.0.8 (熱爾岡點). 直線 AD, BE, CF 共於一點 Ge。

Proof 1. 由西瓦定理及

$$\frac{BD}{DC} \cdot \frac{CE}{EA} \cdot \frac{AF}{FB} = \frac{\overline{AF}}{\overline{AE}} \cdot \frac{\overline{BD}}{\overline{BF}} \cdot \frac{\overline{CE}}{\overline{CD}} = 1.$$

 $Proof\ 2.$ 考慮六折線 BDCEAF,由於其與內切圓 $\odot(I)$ 相切,由布里昂雄定理得證。

 $Proof\ 3.$ 由 Sondat 定理, $\triangle DEF$ 與 $\mathfrak{p}_{\odot(I)}(\triangle DEF)$ 透視,而我們顯然有

$$\mathfrak{p}_{\odot(I)}(\triangle DEF) = \triangle ABC.$$

Lemma 1.0.9. 設 EF 與 BC 交於 X,則 (B,C;D,X) = -1。

Proof 1. 由孟氏定理,

$$\frac{BX}{XC} \cdot \frac{CE}{EA} \cdot \frac{AF}{FB} = 1.$$

因此

$$\frac{BD/DC}{BX/XC} = -\frac{BD}{DC} \cdot \frac{CE}{EA} \cdot \frac{AF}{FB} = -1.$$

 $Proof\ 2.$ 由 (1.0.8) 及完全四線形 (CA, AB, BE, CF) 的調和分割性質。

Lemma 1.0.10. 設 ID 交 EF 於 T,則 AT 平分 \overline{BC} 。

 $Proof\ 1.$ 過 T 作平行於 BC 的直線交 CA, AB 於 X, Y, 則 I 關於 XY, YA, AX 的垂足 T, E, F 共線。由西姆松定理, $I\in \odot(AXY)$,由 $\triangle AXY\cup I$ 與 $\triangle ABC\cup N_a$ 位似可得 A, T, M_a 共線。

 $Proof\ 2.$ 過 A 作平行於 BC 的直線交 EF 於 S,則 $ST=\mathfrak{p}_{\odot(I)}(A)$ 。由於 $IT\perp AS$,所以 $\mathfrak{p}_{\odot(I)}(T)=AS$,故

$$A(B, C; T, \infty_{BC}) = (F, E; T, S) = -1,$$

即 AT 平分 BC。
■

Lemma 1.0.11. 設J爲C關於BI的垂足,則J爲C-中位線與EF的交點。

Proof 1. 由

$$\angle(M_a J, AB) = \angle M_a JB + \angle JBA = \angle IBC + \angle CBI = 0,$$

我們知道 J 位於 C-中位線上。注意到 C, E, J, I 共圓, 所以由 (1.0.1),

$$\angle JEC = \angle BIC = 90^{\circ} + \angle IAE = \angle FEC$$

 $Proof\ 2.\ J$ 位於 C-中位線同上面的算角度證明。由於 $\triangle DEF$ 爲熱爾岡點 Ge 關於 $\triangle ABC$ 的西瓦三角形且 Ge 位於費爾巴哈雙曲線 \mathcal{H}_{Fe} 上,因此 $EF=\mathfrak{p}_{\mathcal{H}_{Fe}}(D)$ 。注意到 $D,\ J$ 爲 $\triangle IBC$ 的垂足三角形的兩個頂點且 $I\in\mathcal{H}_{Fe}$,所以 $J\in\mathfrak{p}_{\mathcal{H}_{Fe}}(D)=EF$ 。

Lemma 1.0.12. 設 H_a 爲 A 關於 BC 的垂足, X 爲 AI 與 BC 的交點,則

$$(H_a, X; D, D') = -1.$$

Proof. 注意到

$$(A, AI \cap BC; I, I_a) = -1,$$

將其關於 BC 投影即可得到

$$(H_a, X; D, D') = -1.$$

Lemma 1.0.13. 設 H_A 爲 $\triangle BIC$ 垂心, $ID \cap EF = S$,則

$$(D, S; I, H_A) = -1.$$

 $Proof\ 1.$ 設 $BI \cap EF = J, DI \cap EF = S, BC \cap EF = X$,則 C, J, H' 共線,故

$$J(D, S; I, H_A) = (D, X; B, C) = -1.$$

 $Proof\ 2.$ 由於 $\triangle DEF$ 爲熱爾岡點 Ge 關於 $\triangle ABC$ 的西瓦三角形且 Ge 位於費爾 巴哈雙曲線 \mathcal{H}_{Fe} 上,因此 $EF=\mathfrak{p}_{\mathcal{H}_{Fe}}(D)$,故原命題由調和性質顯然。

Lemma 1.0.14. 標號沿用 (1.0.13),則 $\mathfrak{p}_{\odot(I)}(H_A)$ 爲 A-中位線。

Proof. 注意到 $S \in EF = \mathfrak{p}_{\odot(I)}(A)$,因此 $A \in \mathfrak{p}_{\odot(I)}(S)$ 且 $\mathfrak{p}_{\odot(I)}(S) \perp IS \perp BC$,故 $\mathfrak{p}_{\odot(I)}(S)$ 過 A 且平行 BC,因此由配極保交比

$$(BC, \mathfrak{p}_{\odot(I)}(S); \mathcal{L}_{\infty}, \mathfrak{p}_{\odot(I)}(H_A)) = (D, S; I, H_A) = -1.$$

故 $\mathfrak{p}_{\mathcal{O}(I)}(H_A)$ 爲 A-中位線。

Lemma 1.0.15. 設 \overline{EF} 中點爲 M, H_A 爲 $\triangle BIC$ 垂心,則 Ge, M, H_A 共線。

Proof. 標號沿用 (1.0.13),考慮 AD 和 EF 的交點 U,則

$$M(D, U; A, Ge) = -1 = M(D, S; I, H_A).$$

故 M, Ge, H_A 共線。

Lemma 1.0.16. 三角形 DEF 的歐拉線是 OI。

Proof. 注意到 $\triangle DEF$ 與 $\triangle I_aI_bI_c$ 位似, $\triangle I_aI_bI_c$ 的歐拉線是 OI,且 I 在 $\triangle DEF$ 的歐拉線上,因此他們的歐拉線重合,故 $\triangle DEF$ 的歐拉線是 OI。

Lemma 1.0.17. 設 $\triangle ABC$ 的費爾巴哈雙曲線爲 \mathcal{H}_{Fe} ,則 OI 和 \mathcal{H}_{Fe} 相切。

Proof. 注意到 \mathcal{H}_{Fe} 是 OI 的等角共軛軌跡,且 $I \in \mathcal{H}_{Fe}$,若 OI 和 \mathcal{H}_{Fe} 有第二個 交點 X,則 X 的等角共軛點也會在費爾巴哈雙曲線上但這就和它是二次曲線矛盾,因此只有一個交點。

Lemma 1.0.18. 設 BI, CI 分別與 CA, AB 交於 Y, Z, YZ 與 $\odot(ABC)$ 交於 P, Q 兩點,則 I, I_b , I_c , P, Q 共圓。

Proof. 由 Y 位於 $\odot(ACPQ)$ 及 $\odot(ACII_b)$ 的根軸上知 I, I_b, P, Q 共圓。同理有 I, I_c, P, Q 共圓。

Lemma 1.0.19. 我們有 I 關於 $\triangle ABC$ 的三線性極線 $\mathfrak{t}(I)$ 垂直 OI,類似地,有 I_x 關於 $\triangle ABC$ 的三線性極線 $\mathfrak{t}(I_x)$ 垂直 OI_x ,意即,若 BI, CI 分別與 CA, AB 交於 Y, Z,則 $OI_a \perp YZ$ 。

Author: $\mathcal{L}i4 + \mathcal{S}_{\otimes} +$ 和輝 (?)

 $Proof\ 1.$ 我們證明 $OI_a \perp YZ$, 其餘情況類似。由 (1.0.2),

$$YI \cdot YI_b = YC \cdot YA, \quad ZI \cdot ZI_c = ZA \cdot ZB,$$

因此 YZ 爲 $\odot(ABC)$ 與 $\odot(II_bI_c)$ 根軸,故垂直 O 與 $\triangle II_bI_c$ 的外心 O' 的連線。注意到 I_a , O 分別爲 $\triangle II_bI_c$ 的垂心及九點圓圓心 (由 (2.0.10)),由 (2.0.7),O', I_a , O 共線,故 $OI_a \perp YZ$ 。

 $Proof\ 2.$ 注意到 OI 與費爾巴哈雙曲線 \mathcal{H}_{Fe} 相切,故 I 的正交截線垂直 OI,且注意到 I 關於 $\triangle ABC$ 的三線性極線,正交截線,及 I 關於 $\bigcirc (DEF)$ 的極線共點,故 I 關於 $\triangle ABC$ 的三線性極線及正交截線平行,因此 I 的三線性極線垂直 OI。

Lemma 1.0.20. 設 D 關於 EF 的對稱點爲 D',則 AD', BC, OI 共點。

1.1 偽内切圓

Lemma 1.1.1 (偽內切圓). 設圓 ω_A 分別與 CA, AB 相切於 E_A , F_A , 且與 $\odot(ABC)$ 內切,稱 ω_A 爲 $\triangle ABC$ 的 A-偽內切圓。則 I, E_A , F_A 共線,意即, $I \in \mathfrak{p}_{\omega_A}(A)$ 。

 $Proof\ 1.$ 令 T_A 爲 ω_A 與 $\odot(ABC)$ 的切點。由 (0.2.1) 可得 T_AE_A 爲 $\angle CT_AA$ 的 角平分線,由 E_A 位於 \overline{CA} 内及 T_A , N_b 位於 CA 異側可得 T_A , E_A , N_b 共線。由 $\angle CT_AN_b = \angle CAN_b = \angle N_bCE_A$,我們知道 $\triangle N_bE_AC$ $\sim \triangle N_bCT_A$ 。令 $I'=BN_b\cap E_AF_A$,則

$$\angle T_A F_A I' = \angle T_A F_A E_A = \angle T_A E_A C = \angle T_A C N_b = \angle T_A B I',$$

因此 B, T_A, I', F_A 共圓。由

$$\angle T_A I' N_b = \angle T_A F_A B = \angle T_A E_A F_A = \angle N_b E_A I'$$

我們可得 $\triangle N_b E_A I' \sim \triangle N_b I' T_A$,故

$$N_b I'^2 = N_b E_A \cdot N_b T_A = N_b C^2.$$

所以由 (1.0.2) 及 I, I' 在 BN_b 上位於 N_b 同側可得 I' = I。

Proof 2. 考慮關於 A 的反演命題, 我們只要證明:

若 A-旁切圓分別與 CA, AB 相切於 E_a , F_a , 則 A, I_a , E_a , F_a 共圓。 而這顯然是對的。

 $Proof\ 3.$ 同 $Proof\ 1.$,我們有 T_A , E_A , N_b 共線,同理有 T_A , F_A , N_c 共線。考慮 六折線 $ABN_bT_AN_cC$,由於其頂點皆位於 $\odot(ABC)$ 上,所以由帕斯卡定理, E_A , F_A , $I=BN_b\cap CN_c$ 共線。

Lemma 1.1.2. 設圓 ω 與 CA 相切於 \overline{CA} 内,且與 $\odot(ABC)$ 内切。設 P 爲 CA 上一點使得 BP 與 ω 相切,則 $I \in \mathfrak{p}_{\omega}(A)$ 。

 $Proof\ 1.$ 證明類似於 (1.1.1) 的 $Proof\ 1.$ 。令 T 爲 ω 與 $\odot(ABC)$ 的切點,E,F 分別 爲 ω 與 CP,PB 的切點。由 (0.2.1) 可得 TE 爲 $\angle CTA$ 的角平分線,由 E 位於 \overline{CA} 内及 T,N_b 位於 CA 異側可得 T,E,N_b 共線。由 $\angle CTN_b = \angle CAN_b = \angle N_bCE$,我們知道 $\triangle N_bEC$ \sim $\triangle N_bCT$ 。令 $I'=BN_b\cap EF$,則

$$\angle TFI' = \angle TFE = \angle TEC = \angle TCN_b = \angle TBI',$$

因此 B, T, I', F 共圓。由

$$\angle TI'N_b = \angle TFB = \angle TEF = \angle N_bEI'$$

我們可得 $\triangle N_b E I' \sim \triangle N_b I' T$,故

$$N_b I'^2 = N_b E \cdot N_b T = N_b C^2.$$

所以由 (1.0.2) 及 I, I' 在 BN_b 上位於 N_b 同側可得 I' = I。

Proof 2.
$$\blacksquare$$

Lemma 1.1.3. 標號同 (1.1.1),令 T_A 爲 ω_A 與 $\odot(ABC)$ 的切點,則 B, T_A , I, F_A 及 C, T_A , I, E_A 分別共圓。

Proof. 由 (1.1.1) 的 Proof 1. 可以直接看出。如果在假設 (1.1.1) 是對的情況下, 我們有 I, E_A , F_A 共線。由於 BI 與 T_AE_A 交於 N_b ,

 $\angle T_A F_A I = \angle (T_A N_b, CA) = \angle N_b T_A C + \angle T_A CA = \angle ABN_b + \angle T_A BA = \angle T_A BI,$

即
$$B, T_A, I, F_A$$
 共圓。同理有 C, T_A, I, E_A 共圓。

Lemma 1.1.4. 標號同 (1.1.3), 我們有

$$(A, T_A; N_b, N_c) = -1.$$

Proof. 由 (0.2.11),

$$(T_A, AT_A \cap \omega_A; E_A, F_A) = -1.$$

由於 ω_A 與 $\odot(ABC)$ 相切於 T_A ,因此關於 T_A 位似即可得

$$(T_A, A; N_b, N_c) = (T_A, AT_A \cap \omega_A; E_A, F_A),$$

因此

$$(A, T_A; N_b, N_c) = -1.$$

Lemma 1.1.5. 標號同 (1.1.3),令 N_a' 爲 \widehat{BAC} 中點,則 I, N_a', T_A 共線。

Proof 1. 由 (1.1.3) 及 $AI \perp E_A F_A$,

$$\angle IT_AB = \angle IF_AB = \angle IAB + 90^\circ = \angle N'_aAB = \angle N'_aT_AB,$$

所以 I, N'_a, T_A 共線。

Proof 2. 由 (1.1.4),

$$(A, T_A; N_b, N_c) = -1.$$

考慮以I爲中心,反演幂爲 $\mathcal{P}(\odot(ABC),I)$ 的反演變換,則

$$-1 = (A, T_A; N_b, N_c) = (N_a, T_A I \cap \odot(ABC); B, C),$$

因此 $T_A I \cap \odot(ABC) = N'_a$ 。

Lemma 1.1.6. 標號同 (1.1.3),類似定義 T_B , T_C ,則 AT_A , BT_B , CT_C 共點於 $\odot(ABC)$ 與 $\odot(I)$ 的外位似中心 X_{56} 。

Proof. 由 Monge 定理,我們有 AT_A 過 $\odot(ABC), \odot(I)$ 的外位似中心 X_{56} 。同理, BT_B, CT_C 也過 X_{56} 。

Lemma 1.1.7. 内切圓 $\odot(I)$ 和外接圓 $\odot(O)$ 的外、内位似中心分別爲 Na, Ge 關於 $\triangle ABC$ 的等角共軛點。

Proof. 我們只證明外位似中心的情況,內位似中心的證明類似,標號同 (1.1.1)。由 (1.1.6), AT_A 過 $\odot(ABC)$, $\odot(DEF)$ 的外位似中心,且透過對 A 反演可以得到 ANa, AT_A 爲等角線。對於 B, C 我們有同樣的結論。

Lemma 1.1.8. 標號同 (1.1.3),若 P 爲 $\odot(ABC)$ 上任一點,Q 爲 AP 與 BC 的交點,則 $T_A \in \odot(APQ)$ 。

Proof. 由 Reim 定理及 DQ = BC,這等價於證明 T_AD 與過 A 平行於 BC 的直線交於 $\odot(ABC)$ 。將此命題關於 BC 中垂線對稱,我們需要證明 A, D', U_A 共線,其中 $U_A \in \odot(ABC)$ 满足 $T_AU_A \parallel BC$ 。由 (1.1.7) 我們知道 AT_A , AD' = ANa 是關於 $\angle BAC$ 的等角線,因此 A, D', U_A 共線。

Lemma 1.1.9. 標號同 (1.1.3),令 X 爲 (1.0.5) 中的 X,我們有 E_AF_A ,BC, N_aT_A 共於一點 S。

Proof. 考慮四圓 $\odot(ABC)$, $\odot(IT_AN_a)$, $\odot(BIC)$, $\odot(AXI)$ 。由 (1.1.5), $\odot(IT_AN_a)$ 與 $\odot(BIC)$, $\odot(AXI)$ 相切於 I,故此四圓有共同的根心。而上述四線皆爲其中某 兩圓的根軸,因此共點。

Lemma 1.1.10. $\stackrel{.}{ ext{Z}}$ $\stackrel{.}{ ext{P}}$ $\stackrel{.}{ ext{BC}}$ 上任一點, $J_b,\,J_c$ 分別為 $\triangle CAP,\,\triangle ABP$ 的內心,則 $P,\,T_A,\,J_b,\,J_c$ 共圓。

Proof. 我們證明 $\triangle T_A N_b J_b \stackrel{+}{\sim} \triangle T_A N_c J_c$ 。注意到

$$\angle T_A N_b J_b = \angle T_A N_b P = \angle T_A N_c P = \angle T_A N_c J_c$$

由 (1.1.4) 及 (1.0.2),

$$\frac{\overline{T_A N_b}}{\overline{T_A N_c}} = \frac{\overline{A N_b}}{\overline{A N_c}} = \frac{\overline{J_b N_b}}{\overline{J_c N_c}},$$

所以 $\triangle T_A N_b J_b \stackrel{+}{\sim} \triangle T_A N_c J_c \circ$

Lemma 1.1.11. 設 D 爲 $\triangle ABC$ 的内切圓與 BC 的切點。若 P 爲 \overline{BC} 内一點, J_b, J_c 分別爲 $\triangle CAP, \triangle ABP$ 的内心,則 P, D, J_b, J_c 共圓。

Proof 1.
$$\blacksquare$$

Proof 2. 此爲 (1.1.10) 的旁心命題關於 A 的反演命題。

Lemma 1.1.12. 標號同 (1.1.3),令 I' 爲 I 關於 T_A 的對稱點,則 AN_a' , BC, I_aI' 共點。

Proof. 由於 N'_a , I, I' 共線且 $I' \in \odot(BI_aCI)$,

$$\angle N_a' A I_a = 90^\circ = \angle N_a' I' I_a,$$

即 A, I', I_a, N'_a 共圓。而此三線爲三圓 $\odot(ABC), \odot(BI_aCI), \odot(AI'I_aN'_a)$ 雨雨之間的根軸。

Lemma 1.1.13. 標號同 (1.1.3),令 A^+ 爲 AT_A 與 E_AF_A 的交點, A^- 爲 IT_A 與 BC 的交點,則 $A^+A^- \parallel AI$ 。

Proof. 注意到 I 關於 $\triangle N_a'BC$ 的等角共軛點 I^* 爲 I 關於 \overline{BC} 的中垂線的對稱點,所以由 (0.2.13) 可得

$$\frac{IA^-}{A^-T_A} = \frac{N_aI^*}{I^*U} = \frac{N_aI}{IT_A},$$

其中 $U \leq N_a I^*$ 與 $\odot(ABC)$ 異於 N_a 的交點。故

$$\frac{AA^+}{A^+T_A} = \frac{N_aI}{IT_A} = \frac{IA^-}{A^-T_A},$$

 $\mathbb{P} A^+A^- \parallel AI \circ$

1.2 費爾巴哈雙曲線

Lemma 1.2.1 (費爾巴哈). 九點圓 $\odot(N)$ 與內切圓 $\odot(I)$ 及三個旁切圓 $\odot(I_a)$, $\odot(I_b)$, $\odot(I_c)$ 相切。分別記 Fe, Fe_a , Fe_b , Fe_c 爲他們之間的切點。

 $Proof\ 1.$ 我們證明 $\odot(N)$ 與 $\odot(I)$ 相切。令 $X=AI\cap BC$,Y 爲 D 關於 AI 的對稱點,則 Y 位於 $\odot(I)$ 上。定義 Fe 爲 YM_a 與 $\odot(I)$ 異於 Y 的交點,以下證明 $\odot(N)$ 與 $\odot(I)$ 相切於 Fe。由 (1.0.12),

$$M_a H_a \cdot M_a X = M_a D^2 = M_a Y \cdot M_a F e,$$

所以 H_a, X, Y, Fe 共圓。令 E_A 爲 \overline{AH} 中點,則

$$\angle H_a Fe M_a = \angle H_a Fe Y = \angle H_a XY = 2 \cdot \angle DXA$$

$$= 2 \cdot \angle H_a AI = \angle HAO = \angle H_a E_A M_a.$$

 $\operatorname{PP} Fe \in \odot(H_a M_a E_A) = \odot(N) \circ \operatorname{FR}$

$$\angle(T_{Fe}\odot(N), T_{Fe}\odot(I)) = \angle(T_{Fe}\odot(N), FeM_a) + \angle(FeY, T_{Fe}\odot(I))$$

$$= \angle FeH_aM_a + \angle XYFe = 0^\circ. \qquad (H_a, X, Y, Fe 共園)$$

故 $\odot(N)$ 與 $\odot(I)$ 相切於 Fe。

 $Proof\ 2$. 我們知道 I 的佩多圓與九點圓在 (A,B,C,I) 的龐色列點的夾角爲

$$90^{\circ} + \angle(BC, AP) + \angle(CA, BP) + \angle(AB, CP) = 0^{\circ}.$$

因此兩圓相切。

Lemma 1.2.2. 費爾巴哈雙曲線 $\mathcal{H}_{Fe}=(ABCIH)$ 爲 OI 關於 $\triangle ABC$ 的等角共軛軌跡。

 $\mathbf{Lemma~1.2.3.}$ 費爾巴哈雙曲線 \mathcal{H}_{Fe} 的中心是費爾巴哈點 Fe。

Proof.

Lemma 1.2.4. 直線 OI 與 \mathcal{H}_{Fe} 相切。

Lemma 1.2.5. 給定任意 $t \in \mathbb{R} \cup \{\infty\}$,考慮以 I 爲中心且位似比爲 t 的位似變換將 $\triangle DEF$ 送至 $\triangle D_t E_t F_t$,則 AD_t , BE_t , CF_t 共於一點 P_t ,且 P_t 在 $\triangle ABC$ 的費爾巴哈雙曲線 \mathcal{H}_{Fe} 上。

Proof. 由 (1.1.7),Na 關於 $\triangle ABC$ 的等角共軛點在 OI 上,故 $Na \in \mathcal{H}_{Fe}$,且由 (1.0.3) 知道 BNa, CNa 分別過 E, F 在 $\bigcirc(DEF)$ 上的對徑點,因此

$$B(E_t, Na; I, H) = t = C(F_t, Na; I, H) \implies BE_t \cap CF_t \in \mathcal{H}_{Fe}.$$

同理可證 AD_t , BE_t , CF_t 共點在 $\triangle ABC$ 的費爾巴哈雙曲線上。

Lemma 1.2.6. 標號沿用 (1.2.5), P_{-2} 是 I 在費爾巴哈雙曲線上的對徑點 X_{80} 。

Proof. 由 G 的 -2 倍位似知 OI 平行 HNa,又因爲 OI 是 I 在費爾巴哈雙曲線上的切線,由 (0.2.11) 知 $(I, X_{80}; H, Na)_{\mathcal{H}_{Fe}} = -1$ 。又 $I = P_0, H = P_{\infty}, Na = P_{-1}$,故 $X_{80} = P_{-2}$ 。

Lemma 1.2.7. $(A, B; C, I)_{\mathcal{H}_{Fe}} = (D, E, F, Fe)_{\odot(I)} \circ$

Proof. 令 D' 爲 D 在内切圓上的對鏡點,由 (1.2.6) 知 AX_{80} 過 I 對 D' 的對稱點。對 I 位似 1/2 倍得 AX_{80} 和 D'Fe 平行,故和 DFe 垂直。而 Fe 在内切圓上的切線當然垂直 IFe,故

$$(A, B; C, I)_{\mathcal{H}_{Fe}} = X_{80}(A, B; C, I) = Fe(D, E; F, Fe) = (D, E, F, Fe)_{\odot(I)}.$$

Lemma 1.2.8. 費爾巴哈點 $Fe \neq \triangle DEF$ 的歐拉反射點 X_{110} 。一個三角形的歐拉反射點指的是垂直其歐拉線方向的無窮遠點的等角共軛點。

 $Proof\ 1.$ 令過 F 垂直 OI 的線和內切圓對 $\angle DFE$ 的等角線和內切圓的另一個交點爲 F'。由 (1.2.7) 知

$$(D, E; F, Fe)_{\odot(I)} = (A, B; C, I)_{\mathcal{H}_{Fe}}$$

$$= I(A, B; C, I)$$

$$= \mathcal{L}_{\infty}(EF, DF; DE, \bot OI) \qquad (轉 90^{\circ})$$

$$= F(E, D; \infty_{DE}, \infty_{\bot OI})$$

$$= F(D, E; \infty_{BC}, F') \qquad (對 \angle DFE$$
 取等角線)
$$= (D, E; F, F')_{\odot(I)}.$$

因此 Fe = F'。

 $Proof\ 2.$ 將命題對 (DEF) 配極,則由 $(0.2.15)\mathfrak{p}_{\odot(DEF)}(\mathcal{H}_{Fe})$ 的軌跡切以 Fe 爲焦點 OI 爲準線的拋物線,特別的 $\Delta\mathfrak{p}_{\odot(DEF)}(A)\mathfrak{p}_{\odot(DEF)}(B)\mathfrak{p}_{\odot(DEF)}(C) = \Delta DEF$ 故 Fe 對 ΔDEF 的斯坦那線爲 OI。

Lemma 1.2.9. 費爾巴哈點對 $\triangle ABC$ 的正交截線是 OI。

Proof. 將命題對 (DEF) 配極,由 (0.2.19) 我們只須證明 ABC 爲 $\mathfrak{p}_{\odot(DEF)}(\mathcal{H}_{Fe})$ 的自共軛三角形,但注意到 DEF 爲 \mathcal{H}_{Fe} 的自共軛三角形,故得證。

Lemma 1.2.10. 直線 IH 是 Fe 關於 $\triangle DEF$ 的正交截線。

 $Proof\ 1.$ 令 D' 爲 D 在内切圓上的對鏡點,只需證 D'Fe, IH, EF 共點。

$$(A, B; C, I)_{\mathcal{H}_{Fe}} = (HA, HB; HC, HI)$$

= $(ID, IE; IF, IH)$
= $(ID \cap EF, E; F, IH \cap EF)$.

另一方面

$$(D, E; F, Fe)_{\odot(I)} = D'(D, E; F, Fe)$$
$$= (D'D \cap EF, E; F, D'Fe \cap EF).$$

由 (1.2.7) 即知 D'Fe 和 IH 交在 EF 上。

 $Proof\ 2.$ 同 $Proof\ 1.$,我們證明 $D'Fe,\ IH,\ EF$ 共點。注意到上述交點即爲 D 對 EF 的垂線對費爾巴哈的極點。

 $Proof\ 3.$ 注意到 H,I 是 DEF 的垂足三角形的等角共軛點對,因此由 (0.2.18) 我們知道 IH 和 $\triangle DEF$ 的 \mathcal{H}_J 相切,故由 (2.0.15) 得證。

Lemma 1.2.11. $\triangle DEF$ 的垂心 $T=:X_{65}$ 是 IH 對費爾巴哈雙曲線 \mathcal{H}_{Fe} 的極點。特別地,T 在 OI 上。

Lemma 1.2.12. 標號沿用 (1.2.5)。令T爲 $\triangle DEF$ 垂心,則對所有 $t \in \mathbb{R} \cup \{\infty\}$, T, P_t, P_{-t} 共線。特別地,T, Ge, Na 共線。

Proof. 令 $TP_t \cap \mathcal{H}_{Fe} = P_s$,則由 (0.2.11) 知

$$-1 = (I, H; P_t, P_s)_{\mathcal{H}_{Fe}}$$

$$= (P_0, P_\infty, P_t, P_s)_{\mathcal{H}_{Fe}}$$

$$= (P_0, P_\infty, P_t, P_s)$$

$$= (0, \infty, t, s).$$

因此 s = -t \circ

Chapter 2

歐拉線

Lemma 2.0.1. 設 H 爲 $\triangle ABC$ 的垂心,則

$$\angle BHC = 180^{\circ} - \angle BAC.$$

Proof. 由於 BH, CH 分別於 CA, AB 垂直,所以

$$\angle BHC = \angle CAB = 180^{\circ} - \angle BAC.$$

Lemma 2.0.2. 設O爲 $\triangle ABC$ 的外心,則

- (i) $\angle BAC = 90^{\circ} \angle CBO$,
- (ii) $\angle BOC = 2 \cdot BAC$.

Proof.

(i) 令 A^* 爲 A 關於 ⊙(ABC) 的對徑點。我們有

$$\angle BAC = \angle BA^*C = 90^\circ - \angle CBA^* = 90^\circ - \angle CBA.$$

(ii) 由於 $\triangle COA$, $\triangle AOB$ 為等腰三角形,所以

$$\angle BOC = \angle OBA + \angle BAC + \angle ACO$$

$$= \angle BAO + \angle BAC + \angle OAC = 2 \cdot \angle BAC.$$

Lemma 2.0.3. 設 H_A 爲 H 關於 BC 的對稱點,則 $H_A \in \odot(ABC)$ 。

Proof. 由 (2.0.1),

$$\angle BH_AC = -\angle BHC = \angle BAC,$$

即 A, B, C, H_A 共圓。

Lemma 2.0.4. 設 M_a 爲 \overline{BC} 中點, A^* 爲 A 關於 $\odot(ABC)$ 的對徑點,則 M_a 爲 $\overline{HA^*}$ 中點。

Proof. 注意到

$$BH \perp CA \perp A^*C \implies BH \parallel A^*C$$

 $CH \perp AB \perp A^*B \implies CH \parallel A^*B$,

所以 BA^*CH 爲平行四邊形,因此 M_a 爲 $\overline{HA^*}$ 中點。

Lemma 2.0.5. 設 M_a 為 \overline{BC} 中點,則

$$AH = 2 \cdot OM$$
.

Proof. 令 A^* 爲 A 關於 $\odot(ABC)$ 的對徑點。由 (2.0.4), M_a 爲 $\overline{HA^*}$ 中點,故 OM 爲 $\triangle AHA^*$ 的 A^* -中位線。

Lemma 2.0.6. 重心 G, 外心 O, 垂心 H 三點共線且

$$\frac{HG}{GO} = 2.$$

Proof. 令 M_b , M_c 分別為 \overline{CA} , \overline{AB} 中點,注意到 $\triangle BHC$ 與 $\triangle M_bOM_c$ 位似,所以 BM_b , CM_c , HO 共點,即 G, O, H 共線。由 (2.0.5),我們知道位似比為 -2,所以

$$\frac{HG}{GO} = 2.$$

Lemma 2.0.7. $\Diamond \triangle M_a M_b M_c$, $\triangle H_a H_b H_c$ 分別為 $\triangle ABC$ 的中點三角形及垂足三角形, E_A , E_B , E_C 分別為 \overline{AH} , \overline{BH} , \overline{CH} 的中點。則 M_a , M_b , M_c , H_a , H_b , H_c , E_A , E_B , E_C 共圓且圓心 N 為 \overline{OH} 中點。

Proof. 由 (2.0.4) 及 (2.0.3), H 關於 M_a , M_b , M_c , H_a , H_b , H_c , E_A , E_B , E_C 的對稱

點 A^* , B^* , C^* , H_A , H_B , H_C , A, B, C 皆位於 $\odot(ABC)$ 上,所以這九點共圓且圓 $\sim N$ 爲 \overline{OH} 中點。

Lemma 2.0.8. 設 O 關於 BC 的對稱點爲 O_A' ,則 N 爲 $\overline{AO_A'}$ 中點。

Proof. 由 (2.0.5), $\overrightarrow{AH} = \overrightarrow{OO'_A}$,所以結合 (2.0.7) 可得 $\overline{AO'_A}$ 中點爲 \overline{OH} 中點 N \circ

Lemma 2.0.9. 九點圓 ⊙(N) 也是 △BHC, △CHA, △AHB 的九點圓。

Proof. 九點圓爲垂足三角形的外接圓,而 $\triangle ABC$, $\triangle BHC$, $\triangle CHA$, $\triangle AHB$ 有著同樣的垂足三角形。

Lemma 2.0.10. 外接圓 $\odot(O)$ 爲 $\triangle I_x I_y I_z$ 的九點圓。

Proof. 注意到 $\triangle ABC$ 爲 $\triangle I_xI_yI_z$ 的垂足三角形。

Lemma 2.0.11. 設 O_A , O_B , O_C 分別為 $\triangle BOC$, $\triangle COA$, $\triangle AOB$ 的外心,則 AO_A , BO_B , CO_C 共點於九點圓圓心 N 關於 $\triangle ABC$ 的等角共軛點 $Ko =: X_{54}$ 。

Lemma 2.0.12. 令 B', C' 分別爲 B, C 關於 CA, AB 的對稱點,則 $AKo \perp B'C'$ 。

 $Proof\ 1.$ 設 A^* 爲 A 關於 $\odot(ABC)$ 的對徑點,B, C 關於外接圓的切線交於 D,則我們只須證明 XD 垂直 B'C',注意到

$$\frac{B'C}{CD} = \frac{XO}{OD} = \frac{C'B}{BD}, \quad \angle B'CD = \angle XOD = \angle C'BD.$$

故 $D \in \Delta B'XC' \stackrel{+}{\sim} \Delta COB$ 的旋似中心。

 $Proof\ 2.$

Lemma 2.0.13. 九點圓圓心 N 關於 $\triangle ABC$ 的正交截線 $\mathcal{O}_{\triangle ABC}(N)$ 垂直 OKo。

 $Proof\ 1.$ 取點 U 在 BC 上使得 $AN \perp NU$ 。設 O 關於 BC 的對稱點爲 O'_A ,A 關於 BC 的對稱點爲 A',則 A, A, A, A' 共圓且由 (2.0.8) 知道其外接圓圓心爲 A'0.

考慮 $\odot(AOO_A)$, $\odot(ABC)$ 異於 A 的交點 X,則對 A 反演可以知道 X 的反演點 是 BC 和 A'O 的交點,故 AX 過 Ko,因此 Ko 在兩圓的根軸上。可以類似地證明 Ko 對 $\odot(AOO'_A)$, $\odot(BOO'_B)$, $\odot(COO'_C)$ 圓幂相等,故三個圓共軸於 OKo,而三圓圓心連線即爲 N 的正交截線。

Lemma 2.0.14. 四個三角形 $\triangle ABC$, $\triangle BIC$, $\triangle CIA$, $\triangle AIB$ 的歐拉線交於一點 X_{21} °

 $Proof\ 1.\ \diamondsuit\ \mathcal{E},\ \mathcal{E}_A\ 分別爲\ \triangle ABC,\ \triangle BIC\ 的歐拉線,X = \mathcal{E}\cap\mathcal{E}_A\ °$

Claim. 若 R, r 分別爲 $\odot(ABC), \odot(I)$ 的半徑長,則

$$t(X):=\frac{XO}{XH}=-\frac{R}{2R+2r}.$$

Proof of Claim. 我就懶

由於這個值關於 A, B, C 是對稱的,我們可得四個歐拉線共於一點。

 $Proof\ 2.$ 考慮 $\triangle ABC$ 的弧中點三角形 $\triangle N_a N_b N_c$,A 爲 $\triangle IN_b N_c$ 的外心。考慮 BC 中點 M_A 和 IM_A 中點 V, $\triangle IBC$ 的重心 G_A ,則

$$N_a(V, M_A; G_A, I) = -1.$$

故 N_aG_A 過 $\triangle N_aN_bN_c$ 的 X_{54} ,所以 $\triangle BIC$, $\triangle CIA$, $\triangle AIB$ 歐拉線共點在 $\triangle N_aN_bN_c$ 的 OKo 上。注意到我們有 (2.0.13),且 N 的正交截線垂直 N 在 過 A, B, C, N 的等軸雙曲線上的切線,再由等共軛變換知道 N 在 (ABCNH) 上的切線就是歐拉線。因此 OKo 即爲 $\triangle N_aN_bN_c$ 的歐拉線。

Lemma 2.0.15. 歐拉反射點 X_{110} 的正交截線和 $\triangle ABC$ 的 \mathcal{H}_{J} 相切。

Proof. 考慮歐拉線 \mathcal{E} 上無窮遠點的等角共軛點 X_{74} 和 $\triangle ABC$ 的 \mathcal{H}_J 中心 X_{125} 以及 O 在 $\triangle ABC$ 的 \mathcal{H}_J 上的對徑點 O',則

$$\angle(\mathcal{O}_{\triangle ABC}(X_{110}), \mathcal{E}) = \angle(\mathcal{O}_{\triangle ABC}(X_{110}), BC) + \angle(BC, \mathcal{E})$$

$$= \angle AX_{110}H + \angle(BC, \mathcal{E})$$

$$= \angle AX_{110}H + \angle X_{74}X_{110}A$$

$$= \angle X_{74}X_{110}H = \angle X_{74}OX_{125}$$

$$= \angle X_{74}OO' = \angle OO'H.$$
(0.2.14)

Author: $\mathcal{L}i4 + \mathcal{S}_{\otimes} +$ 和輝 (?)

故由等軸雙曲線算角知道 $\mathcal{O}_{\triangle ABC}(X_{110})$ 切 \mathcal{H}_{J} 。

参考資料

[1] **Li4**. 圓錐曲線

https://Lii4.github.io/Conic.pdf