The Battle of Neighborhoods in San Francisco - Restaurants

Jessie Ying Lingshu

1. Introduction/Business Understanding

1.1 Discussion of the Background

San Francisco owes its world class status in part to its vibrant tourism and hospitality sectors. Combined with the city's cultural attractions, natural beauty, state-of-the-art convention facilities and strong business base, the tourism and hospitality sectors make San Francisco a top travel destination, playing a vital role in drawing visitors in record numbers. In 2019, San Francisco hosted 26.2 million visitors, contributing an estimated \$10.2 billion to the local economy.

San Francisco is as famous for its restaurants and food trends as it is for its Golden Gate Bridge and cable cars. As a traveler, it is always difficult to make a choice from among many options since there is also too much information on the internet, furthermore, as everybody's got their own take of where to go and it's all so fragmented that you have to assemble it yourself especially if you're interested in non-touristy recommendations.

By leveraging on Foursquare, the location data provider and data science methodology, this project aims to help visitors making decisions on where to find the appropriate neighborhoods for the food and beverage. Meanwhile it will also help visitors to have a good understanding on the most popular venues in San Francisco and where the according neighborhoods are.

1.2 Description of the Problem

The project is to help visitors making decisions on where to find the appropriate neighborhoods and having a good understanding on the most popular venues in San Francisco in general and where the according neighborhoods are.

Questions are proposed below:

- 1. What are the most popular venue categories in San Francisco?
- 2. What are the most popular restaurants in San Francisco?
- 3. Where are the neighborhoods to those popular categories?
- 4. What are the most visited neighborhoods in San Francisco?

2. Data Description

For this project we need following data:

1. San Francisco Neighborhoods as Zip Codes, this dataset consists of San Francisco Neighborhood names and zip codes.

Datasource: http://www.healthysf.org/bdi/outcomes/zipmap.htm

2. United States Zip Codes, this dataset consists of US zip codes, longitude and latitude.

Datasource: http://docs.gaslamp.media/wp-content/uploads/2013/08/zip codes states.csv

3. Foursquare API Data

By using this Foursquare API we will get all the venues in each neighborhood. We can filter these venues to get such as restaurants, coffee shops or pizza places.

3. Methodology

3.1 Data Preparation

3.1.1 Scraping San Francisco Neighborhoods as ZIP Codes Table from Webpage

The table is scraped by using the BeautifulSoup package. And use pandas to drop the unnecessary column (Population) and format the data frame. It started as below:

```
response = requests.get("http://www.healthysf.org/bdi/outcomes/zipmap.htm")
soup = BeautifulSoup(response.text, "lxml")
table = soup.find all("table")
df = pd.read html(str(table))
df = pd.DataFrame(df[4])
df.head()
                                            1
0 Zip Code
                                 Neighborhood Population (Census 2000)
     94102 Hayes Valley/Tenderloin/North of Market
                                                               28991
     94103
                                South of Market
                                                               23016
     94107
                                    Potrero Hill
                                                               17368
     94108
                                    Chinatown
                                                              13716
```

After the formatting, it updated as below:

```
df.columns = df.iloc[0]
df = df.iloc[1:-1, :-1]
sf_data = df
sf_data.head()
```

	Zip Code	Neighborhood
1	94102	Hayes Valley/Tenderloin/North of Market
2	94103	South of Market
3	94107	Potrero Hill
4	94108	Chinatown
5	94109	Polk/Russian Hill (Nob Hill)

Convert the data type of Zip Code to prepare for the following data frame merge.

```
sf_data.dtypes

0
Zip Code object
Neighborhood object
dtype: object

sf_data[["Zip Code"]] = sf_data[["Zip Code"]].astype("int")
sf_data.dtypes

0
Zip Code int64
Neighborhood object
dtype: object
```

3.1.2 Getting Coordinates of San Francisco Neighborhoods

The next objective is to get the coordinates of San Francisco Neighborhoods. The US zip code dataset shows as below:

df1.head()										
	zip_code	latitude	longitude	city	state	county				
0	501	40.922326	-72.637078	Holtsville	NY	Suffolk				
1	544	40.922326	-72.637078	Holtsville	NY	Suffolk				
2	601	18.165273	-66.722583	Adjuntas	PR	Adjuntas				
3	602	18.393103	-67.180953	Aguada	PR	Aguada				
4	603	18.455913	-67.145780	Aguadilla	PR	Aguadilla				

3.1.3 Merge the Above Two Data Frames

This is to combine two data frames by matching on the attribute zip code, firstly, let's align the zip code names:

Sync the zip code attribute name and merge two dataframes

```
sf_data.rename(columns={'Zip Code':'zipcode'},inplace=True)
sf_data.head()
```

Neighborhoo	zipcode	
Hayes Valley/Tenderloin/North of Marke	94102	1
South of Marke	94103	2
Potrero Hi	94107	3
Chinatow	94108	4
Polk/Russian Hill (Nob Hil	94109	5

```
df1.rename(columns={'zip_code':'zipcode'},inplace=True)
df1.head()
```

	zipcode	latitude	longitude	city	state	county
0	501	40.922326	-72.637078	Holtsville	NY	Suffolk
1	544	40.922326	-72.637078	Holtsville	NY	Suffolk
2	601	18.165273	-66.722583	Adjuntas	PR	Adjuntas
3	602	18.393103	-67.180953	Aguada	PR	Aguada
4	603	18.455913	-67.145780	Aguadilla	PR	Aguadilla

Then we can merge the two data frames successfully:

df2 = pd.merge(sf_data, df1, on='zipcode')
df2

zipco	ode	Neighborhood	latitude	longitude	city	state	county
0 94	102 Ha	yes Valley/Tenderloin/North of Market	37.779278	-122.416582	San Francisco	CA	San Francisco
1 94	103	South of Market	37.775678	-122.412131	San Francisco	CA	San Francisco
2 94	107	Potrero Hill	37.769029	-122.393681	San Francisco	CA	San Francisco
3 94	108	Chinatown	37.791028	-122.408782	San Francisco	CA	San Francisco
4 94	109	Polk/Russian Hill (Nob Hill)	37.795219	-122.420782	San Francisco	CA	San Francisco

3.2 San Francisco Geographic Details Visualization

Python Folium Library is implemented to visualize the San Francisco Geographic Details with provided longitude and latitude of neighborhoods.

3.3 Exploratory Data Analysis:

Exploratory data analysis is used here to uncover hidden properties of data and provide useful insights to the San Francisco visitors.

3.3.1 Using Foursquare Location Data

Let's make use of Foursquare API to explore San Francisco neighborhoods with the merged data frame.

	Neighborhood	Neighborhood Latitude	Neighborhood Longitude	Venue	Venue Latitude	Venue Longitude	Venue Category
0	Hayes Valley/Tenderloin/North of Market	37.779278	-122.416582	Asian Art Museum	37.780178	-122.416505	Art Museum
1	Hayes Valley/Tenderloin/North of Market	37.779278	-122.416582	Orpheum Theatre	37.779315	-122.414790	Theater
2	Hayes Valley/Tenderloin/North of Market	37.779278	-122.416582	Philz Coffee	37.781266	-122.416901	Coffee Shop
3	Hayes Valley/Tenderloin/North of Market	37.779278	-122.416582	Ananda Fuara	37.777693	-122.416353	Vegetarian / Vegan Restaurant
4	Hayes Valley/Tenderloin/North of Market	37.779278	-122.416582	The Strand	37.779888	-122.413138	Theater

By exploring further, the top 10 most visited venue categories plot shows below:

Let's analyze each neighborhood to know about the top 5 venues of each one. So, we proceed as follows:

 Create a data-frame with pandas one hot encoding for the venue categories. And use pandas groupby on neighborhood column and calculate the mean of the frequency of occurrence of each venue category.

	Neighborhood	African Restaurant	American Restaurant	Asian Restaurant	Burmese Restaurant	Cantonese Restaurant	Caribbean Restaurant	Chinese Restaurant	Dim Sum Restaurant	Dumpling Restaurant
0	Castro/Noe Valley	0.000000	0.166667	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
1	Chinatown	0.000000	0.142857	0.000000	0.000000	0.095238	0.000000	0.047619	0.047619	0.000000
2	Haight-Ashbury	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
3	Hayes Valley/Tenderloin/North of Market	0.000000	0.153846	0.076923	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
4	Ingelside- Excelsior/Crocker- Amazon	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.142857	0.000000	0.000000

2. Output each neighborhood along with the top 5 most common venues.

	Neighborhood	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue
0	Castro/Noe Valley	Thai Restaurant	Seafood Restaurant	Szechuan Restaurant	Japanese Restaurant	American Restaurant
1	Chinatown	American Restaurant	Italian Restaurant	Sushi Restaurant	Cantonese Restaurant	Vietnamese Restaurant
2	Haight-Ashbury	Vegetarian / Vegan Restaurant	Vietnamese Restaurant	Filipino Restaurant	Jewish Restaurant	Japanese Restaurant
3 H	layes Valley/Tenderloin/North of Market	American Restaurant	Vegetarian / Vegan Restaurant	Vietnamese Restaurant	Southern / Soul Food Restaurant	Malay Restaurant
4	Ingelside-Excelsior/Crocker-Amazon	Vietnamese Restaurant	Mexican Restaurant	Chinese Restaurant	Latin American Restaurant	Thai Restaurant
5	Inner Mission/Bernal Heights	Mexican Restaurant	New American Restaurant	American Restaurant	Indian Restaurant	Chinese Restaurant
6	Inner Richmond	Chinese Restaurant	Sushi Restaurant	Korean Restaurant	Japanese Restaurant	Fast Food Restaurant
7	Lake Merced	Mexican Restaurant	Vietnamese Restaurant	Filipino Restaurant	Japanese Restaurant	Japanese Curry Restaurant
8	Marina	Italian Restaurant	French Restaurant	Mexican Restaurant	American Restaurant	Vegetarian / Vegan Restaurant
9	North Beach/Chinatown	Italian Restaurant	Chinese Restaurant	Sushi Restaurant	Mexican Restaurant	Latin American Restaurant
10	Outer Richmond	Japanese Restaurant	Chinese Restaurant	New American Restaurant	Ramen Restaurant	Vietnamese Restaurant

I will use prescriptive analytics (Kmeans Clustering) to help visitors to decide a location to go for a restaurant.

Finally, we try to cluster these 20 districts based on the venue categories and use K-Means clustering. So, our expectation would be based on the similarities of venue categories, these districts will be clustered. I have used the code below:

Cluster Neighborhoods

sf merged

```
# set number of clusters
kclusters = 5

sf_grouped_clustering = sf_grouped.drop('Neighborhood', 1)

# run k-means clustering
kmeans = KMeans(n_clusters=kclusters, random_state=0).fit(sf_grouped_clustering)

# check cluster labels generated for each row in the dataframe
kmeans.labels_[0:10]

array([0, 0, 3, 0, 0, 0, 0, 2, 0, 0], dtype=int32)

neighborhoods_venues_sorted.insert(0, 'Cluster Labels', kmeans.labels_)
sf_merged = df2
```

sf_merged = sf_merged.join(neighborhoods_venues_sorted.set_index('Neighborhood'), on='Neighborhood')

4. Results

We can represent these 5 clusters in a leaflet map using Folium library as below:

Let's explore more on the insights based Foursquare San Francisco Neighborhood Data:

5. Discussion

A glimpse of the neighborhoods in San Francisco has shown and there are some interesting insights uncovered which might be useful to visitors. Let's summarize our findings:

- The top visited neighborhoods are:
 - 1. Western Addition/Japantown
 - 2. South of Market
 - 3. Marina
 - 4. North Beach/Chinatown
 - 5. Chinatown
- It is very interesting to observe that the most popular restaurants in Chinatown are Italian Restaurants, followed by Mexican restaurants.
- Chinese Restaurants, Italian Restaurants and Sushi Restaurants are the most popular restaurants in San Francisco.
- The most popular venue categories are coffee shop, pizza place and café.
- If you want to explore popular coffee shops, you can go to the below neighborhoods:
 - 1. North Beach/Chinatown
 - 2. South of Market
 - 3. Hayes Valley/Tenderloin/North of Market
 - 4. Polk/Russian Hill (Nob Hill)
 - 5. Chinatown

- If you want to explore popular pizza places, you can go to the below neighborhoods:
 - 1. North Beach/Chinatown
 - 2. Inner Richmond
 - 3. Western Addition/Japantown
 - 4. Inner Mission/Bernal Heights
 - 5. Outer Richmond
- If you want to explore popular cafes, you can go to the below neighborhoods:
 - 1. North Beach/Chinatown
 - 2. Outer Richmond
 - 3. Hayes Valley/Tenderloin/North of Market
 - 4. South of Market
 - 5. Chinatown
- North Beach/Chinatown is the right neighborhood for you to explore coffee shops, pizza places and cafes.

6. Conclusion

In this analysis, other factors like range of prices of restaurants, restaurants review are ignored, since some data is not available and it would be difficult to farm it for a small exploratory study like this. Hence, this analysis only provide visitors references on the overview of restaurants and other popular places of San Francisco.

In a fast-moving world, there are many real-life problems or scenarios where data can be used to find solutions to those problems. Like seen in the example above, data was used to cluster neighborhoods in San Francisco based on the most common food venues (restaurants, venue categories). The results can help visitors to decide about the neighborhood that fit their needs.

I have made use of some frequently used python libraries to scrap web-data, use Foursquare API to explore the neighborhood of San Francisco and saw the results of segmentation of districts using Folium leaflet map.

This project has shown me a practical example to solve a real-life situation by using Data Science tools and methodologies. The mapping with Folium is a very powerful technique to consolidate information and make the analysis and decision better with confidence.