https://de.wikihow.com/Windlast-berechnen#:~:text=Die%
20allgemeine%20Formel%20f%
C3%BCr%20Windlast,mit%
20bekannter%20Fl%C3%A4che%
20zu%20berechnen.

Windkraft auf Solar Davits

Allgemeine Formeln

F=A*P*Cd P=0,00256*v²

F.....Windlast

A.....Fläche Solarpanel [ft²] P.....Winddruck [P/Sf]

Cd....Luftwiderstandsbeiwert [-]

Angabe:

 $A = 10.979 \ ft^2$

 $v = 20.741 \ mph$

Windgeschwindigkeit durchschnitt 18 Knoten

Cd = 1.4

Berechnung:

 $P = 0.00256 \cdot 20.741^2 = 1.101$

 $F := 10.979 \cdot 1.101 \cdot 1.4 = 16.923 \ lbs$

16,923 lbs = 7,676 kg

7,676 kg wirken auf das Solarpaneel bei frontaler Anströmung des Windes im durchschnitt in der Adria bei 18 Knoten Wind. https://de.wikipedia.org/wiki/ Winddruck

Windkraft auf Solarpaneel Davits:

Angabe:

$$A_{Ges.} = 1.02 \; \boldsymbol{m}^2$$

$$A_{Ges.} = 1.02 \, \, \boldsymbol{m}^2$$
 $v = 9.271 \, \, \frac{\boldsymbol{m}}{\boldsymbol{s}}$

$$c_u = 9.271 \frac{\boldsymbol{m}}{\boldsymbol{s}}$$

$$\rho \coloneqq 1.204 \frac{\mathbf{kg}}{\mathbf{m}^3}$$
 bei 20°C

$$c \coloneqq 7 \frac{\boldsymbol{m}}{\boldsymbol{s}}$$

Berechnung:

$$c_p \coloneqq 1 - \left(\frac{c}{c_u}\right)^2 = 0.43$$

$$W_D \coloneqq c_p \cdot \frac{\rho}{2} \cdot v^2 = 22.245 \ \frac{N}{m^2}$$

$$w \coloneqq A_{Ges.} \cdot W_D = 22.69 \ N$$

cp.....Druckbeiwert [-] WD.....Winddruck [N/m²] w.....Windlast [N] ρDichte [kg/m³] cu/v.....Anströmgeschwindigkeit c.....angenommene geschw. nach kontakt

Bei Durchschnittsgeschwindigkeit in der Adria 18kn -> 9,271m/s

2,313 kg wirken auf das Solarpaneel bei frontaler Anströmung des Windes im durchschnitt in der Adria bei 18 Knoten Wind.