HOOFDSTUK 3: CELLULAIRE INFORMATIE

Informatiestroom

Centrale dogmatheorie (F. Crick): DNA —_{transcriptie} → RNA —_{translatie} → proteïnen

- **replicatie**: DNA houdt zichzelf in stand via verdubbeling
- **transcriptie**: afschrijven van DNA naar RNA (verandering in nucleïnezuur, zelfde taal)
- translatie: een vertaling, de proteïnesynthese
- soms alternatieve methode: sommige RNA-virussen: reverse transcriptie (RNA→DNA)
- eukaryoten zijn monocistronisch (DNA codeert voor slechts 1 eiwit ↔ polycistronisch)

Transcriptie

messenger RNA of mRNA brengt informatie van DNA over naar cytoplasma

- informatie in DNA beter beschermd
- gereguleerde genexpressie is mogelijk
- mRNA is niet erg stabiel: hoge turnover laat de cel toe snel te reageren

ook andere RNA types zijn mogelijk: tRNA, rRNA, snRNA, ... → tabel 21.2 p. 2

Transcriptie in prokaryoten

Transcriptie-eenheid: complementaire basesequentie gevormd tijdens transcriptie

- \rightarrow o.i.v. **RNA-polymerase**: enzym bestaande uit 2 α-subunits, 1 β-subunits, 1 β'-subunit en een σ-subunit of **sigma factor**
 - o zonder σ -factor: **kernenzym**, in staat om RNA synthese uit te voeren
 - o met σ-factor: **holoenzym**, zal synthese ook nog op juiste plaats initiëren
 - herkent de startplaats, laat dan het polymerase los

4 stappen van transcriptie

Stap 1: Binding

- **promotor**: DNA-regio met bindings- en startsignalen
 - o **constitutief**: promotor waarop RNA-polymerase in alle omstandigheden kan binden
 - gereguleerd: promotor enkel gebruikt in aan-/ afwezigheid van bep. proteïnen/signalen
 - o **sterkte van promotor**: bepaald door exacte sequentie in en rond -35 en -10 boxen
- consensus-sequentie: promotorsequentie met geconserveerde gebieden die weinig verandering tolereren. Deze bestaat uit:
 - o **een startpunt**: hier vat transcriptie aan (positie +1)
 - o -10, Pribnow of TATA box: 5'-TATAAT-3'
 - 10 basen stroomopwaarts waar DNA-duplex zal openen (nog geen transcriptie)
 - \circ **-35 sequentie**: 5'-TTGACA-3': wordt herkend door σ-factor: RNA-polymerase bindt

RNA-polymerase bindt als holo-enzym ($\alpha\alpha\beta\beta'\sigma$)

Stap 2: Initiatie

- Initiatie begint als RNA aan promotor is gebonden en DNA lokaal ontwonden is (DNA helicase)
- Asymmetrie van de promotor bepaalt de richting van de transcriptie
- **nucleoside trifosfaten NTP's** worden ingebouwd aan startpunt
 - o **katalyse** van 3'-hydroxylgroep van NTP 1 en 5'-fosfaatgroep van NTP 2
- polymerase beweegt van 3' naar 5' en de RNA streng groeit dus van 5' naar 3'

Stap 3: Elongatie

- Initiatie eindigt als σ-factor loslaat na 9 nucleotiden → we gaan verder met **kernenzym** ($\alpha\alpha\beta\beta$ ')
- RNA-polymerase bindt nog 30-tal bp: ontwindt DNA-helix eerst, herstelt deze na synthese
- er ontstaat een korte DNA-RNA-helix uit 10 bp

Stap 4: Terminatie

- bij tegenkomen van een terminatiesignaal, twee types
 - o **rho-afhankelijke**: er is een rho-eiwit noodzakelijk om te stoppen
 - o rho-onafhankelijke:
 - GC-rijke DNA-sequentie in vorm van **palindroom** gevolgd door 6 A-basen
 - door palindroom: vorming hairpin die RNA-polymerase vertraagt
 - → in combinatie met zwakkere bindingen van AU-bp komt RNA pol los

Monocistronisch: transcriptie-eenheid omvat één enkel gen (bij eukaryoten, wel leader en trailer)

- → toch langer dan nodig voor eiwitsynthese, het bevat nog:
 - o leader of 5'-UTR (untranslated region): vooraf aan coderende streng
 - o trailer of 3'UTR: die achteraan de coderende streng gelegen is

Polycistronisch: transcriptie-eenheid omvat meerdere genen (bij prokaryoten)

→ sequenties tussen de genen, namelijk **spacers**

Transcriptie in eukaryoten

Grote verschillen in initiatie tussen prokaryoten en eukaryoten

- 1. Eukaryoten bezitten **grotere en meer complexe RNA-polymerasen** (RNA pol I, II, III)
- 2. RNA-polymerasen kunnen zelf GEEN transcriptie starten
 - a. afhankelijk van andere proteïnen die geen deel uitmaken van RNA-pol
 - → **transcriptiefactoren** TF, meer bepaald TIF: transcriptie-initiatiefactor
 - → voor elk RNA pol verschillend: RNA pol II: TFIIA, TFIIB, RNA pol III: TFIIIA, ...
- 3. er zijn **drie verschillende types promotoren** (corresponderend met de polymerasen)
 - a. bestaat uit RNA-polymerasebindingsplaats + specifieke regulatorische sequenties
- 4. mature RNA's worden bereikt door processing (bewerking)
 - a. eerst chemische modificatie voor transfer naar cytoplasma

Transcriptieproces in eukaryoten d.m.v. RNA polymerase II

De **basispromotor** voor RNA pol II bestaat uit 4 types DNA-sequenties:

- 1. een **kort initiator (Inr)** rond het startpunt (vaak een A)
- 2. de **TATA-box** gevolgd door 2-3 A's; ± 25 nucleotiden upstream (-25)
- 3. een **TFIIB recognition element (BRE)** upstream van TATA-box
- 4. een downstream promotor element (DPE): ± 30 nucleotiden downstream

de **basispromotor** is in staat om een basaal niveau van transcriptie te onderhouden

→ toch nood aan additionele sequenties zoals CAAT-box en GC-box

de **additionele sequenties** zijn beperkt in hun locatie t.o.v. de TATA-box

- **proximal control elements**: binnen 200 nucleotiden van startpunt
- enhancers en silencers: kunnen wel vanop grotere afstand en zelfs downstream de transcriptie resp. activeren of tegenwerken
 - → komen via een **lusvorm** dicht bij de promotor
- deletie of mutatie van deze sequentie veroorzaakt een deficiëntie in transcriptie-initiatie

Regulatory transcription factors (pink) Mediator complexes (purple) Basal transcription complex (blue) Promoter-complex element TRANSCRIPTION RNA polymerase II

Proces

- 1. Binding van **transcriptiefactor TFIID** op TATA-box (enkel zo kan RNA pol II op TATA binden)
 - a. kan dit door **TBP** of TATA-box-bindend proteïne, een proteïne dat deel uitmaakt van 13 **TBP-associated factors TAF's** op TFIID
- 2. Vorming van het **pre-initiatie complex**: RNA pol II vormt complex met TFIIF en TFIIH
 - a. **TFIIF**: bevat **kinase** om RNA pol II te fosforyleren = RNA pol II ontkoppelen van TF's
 - b. TFIIH: bevat helicase om DNA te ontwinden
- 3. Initiatie kan nu beginnen: na de initiatie schrijdt RNA pol II verder om compl. streng te maken
 - a. nood aan speciale proteïnen voor ontmanteling en herassemblage van nucleosomen
 - b. deze fase noemt de elongatie
- 4. **Terminatie**: terminatiesignaal is eigen aan het type polymerase
 - a. **RNA pol I**: 18-nucleotide consensus sequentie
 - b. RNA pol II: terminatie gebeurt 10-35 nucleotiden downstream van AAUAAA seq.
 - i. transcriptie gaat soms nog lang verder na klieving
 - c. RNA pol III: korte reeks U's

RNA processing (nt = nucleotide)

RNA-processing: het geheel van modificaties nodig om finale RNA-product te maken

- chemische modificatie van het primair transcript
- het omvat de verwijdering van primair transcript, additie of modificatie van nucleotiden en de associatie met specifieke proteïnen

Het primair transcript pre-rRNA

Ribosomaal RNA: meest abundante (70-80%) en meest stabiele RNA: in ribosomen 4 types RNA:

- kleine subunit: 18S rRNA (met S de sedimentatiecoëfficiënt)
- grote subunit: 28S, 5.8S en 5S rRNA

→ pre-rRNA: primair transcript die 3 zwaarste rRNA's bevat: 18S, 28S en 5.8S

- wordt in één transcriptie in de nucleolus gecodeerd, gescheiden door spacers
- **garantie** dat de 3 rRNA's in gelijke hoeveelheden worden aangemaakt
- snoRNA's of small nucleolar RNA's: splitsing van spacers en methylatie van 2'-hydroxyl
 - o bindt complementaire **doelwitregio's** van pre-rRNA

- deze **RNA-processing** hangt samen met **assemblage** van rRNA met proteïnen in ribosomen

→ dit vereist **incorporatie** van **5S rRNA** uit andere transcriptie-eenheid

Het primair transcript pre-tRNA

Transfer RNA: 70-90 nucleotiden die via interne baseparing een klaverblad vormen met hairpins

- → pre-tRNA: het precursor molecule waarin tRNA wordt vervaardigd
 - **RNA-**processing:
 - o 5'-leader sequentie wordt verwijderd
 - o 3'-uiteinde worden 2 terminale nucleotiden vervangen door 5'-CCA-3'
 - o **chemische modificatie** (15% van nt): methylatie van basen en suikers
 - creatie ongewone base (bv. ribothymine)

mRNA kent capping, poly-adenylatie en splicing

Bacterieel mRNA: aanmaak in vorm die meteen klaar is

- → soms al geassocieerd met ribosomen voor het afgewerkt is
- → in eukaryote cellen is dit onmogelijk
 - nood aan extensieve processing van pre-mRNA's om spatio-temporele kloof te overbruggen
 - conversie vereist: verwijderen van nt, additie van 5'-cap en 3' poly-A-staart

Eindstandige modificaties

5'-cap: een 7-methyl guanosine → **stabiliteit**, **bescherming** tegen nucleasen en rol als herkenningsplaats voor juiste **positionering** in het ribosoom

poly-A-staart: 50-250 adenosines toegevoegd, 10-35 downstream van 5'-AAUAAA-3' sequentie → **stabiliteit** (hoe langer, hoe stabieler), **bescherming** tegen nuclease en herkenning van proteïnen betrokken bij **mRNA export**

RNA-splicing

introns: sequenties in primair transcript die niet teruggevonden worden in functioneel RNA

exons: de tot expressie komende regio's

Verwijdering van introns

- spliceosomen: herkennen specifieke dinucleotide sequenties
 → 5'-zijde GU, 3'-zijde AG
- bestaan uit snRNA-proteine complexen of snRNP'ssmall nuclear ribonucleoproteins
 - o U1, U2, U4, U5 en U6 complementair aan splice plaatsen
 - U1-RNA gaat basenparen met 5'-uiteinde van intron
 - U2-RNA bindt op interne vertakkingsplaats, bindt dan met U5 en U4/U6-RNA-complex
 - zo wordt mature spliceosoom gevormd
- vorming van lassostructuur: 5' splice site geknipt en het vrije uiteinde wordt verbonden met adenine van vertakkingsplaats
- vrijstelling van het intron
 - o op 3'-site wordt geknipt: vrijstelling → aanval door nucleasen
 - o exons verbonden door **exon-junctie complex**

Self-splicing introns

- teruggevonden in chloroplast en mitochondriale genen van planten en bacteriën
- **ribozymen** (RNA met eig. van enzym) knippen **lineaire** of **lasso** fragmenten
- aanwijzing dat RNA <u>eerste replicerende</u> RNA's en <u>eerste enzymen</u> waren (nog vóór het eiwit)

Nut van splicing

- alternatieve splicing: pre-mRNA op verschillende manieren te splitsen
 - → uit beperkt genoom toch aanzienlijke biologische complexiteit (25K genen→100K proteins)
- mogelijkheid tot **moleculaire evolutie**: nieuwe combinatie exons tijdens recombinatie
 - → **exon shuffling**: recombinatie tussen exons van verschillende genen

RNA Editing

- enkele tot honderden nucleotiden ingevoegd, verwijderd of chemisch gemodificeerd
- kan zelfs leiden tot nieuwe start- of stopcodons of veranderingen in leesraam
 - → voorzichtig zijn met voorspelling van RNA of polypeptiden o.b.v. genomisch DNA

RNA Metabolisme

- hoge turnover: halfwaardetijd mRNA in bacteriën enkele minuten, in eukaryoten enkele uren
 - o door korte levensduur grootste deel van transcriptionele activiteit
 - o veroorzaakt snelle genregulatie
- mRNA intermediairen om genetische boodschap te versterken
 - o bvb. zijdeworm: slechts 2 fibroïne genen maar 10⁴ mRNA kopijen

Translatie

Genetische code

Genetische code: regels die de minder voor de hand liggende vertaling van mRNA tot aminozuren vertellen (van DNA → RNA is makkelijk te begrijpen door base-complementariteit)

Het codewoord is een triplet van nucleotiden

Frameshift mutaties in T4 bacteriofaag (Crick en Brenner)

- basepaar inserties (+) en deleties (-) veroorzaakt vnl. verlies, maar sommige konden een terug een wildtype virus genereren
- bij insertie of deletie van nucleotiden was het gen meestal niet meer functioneel
 - → er was een verschuiving van het leesraam
- een insertie of deletie van **3 basenparen** kon het gen **functioneel houden**
- bewijs dat code uit een **codon** bestaat (een triplet), **niet-overlappend** en **colineair** is
 - o **niet-overlappend**: elk nucleotide maakt deel uit van één triplet
 - o colineair: volgorde nucleotiden correleert met volgorde van aminozuren

Kenmerken van de genetische code

- bestaat uit **drieletterwoorden** of **codons**
- **ondubbelzinnig**: één triplet komt overeen met één aminozuur
- **gedegenereerd**: meeste aminozuren worden door meer dan 1 codon gecodeerd
 - o vormt een **buffer** tegen mutaties: verschillende codons voor 1 aminozuur zijn gelijkend
- niet-overlappend en geen interne punctuatie
 - o elk nucleotide maakt deel uit van slechts één triplet (uitzondering zijn bepaalde virussen)
 - o code wordt systematisch per 3 afgelezen zonder controle van de betekenis
- AUG is het startcodon. UAA, UAG en UGA zijn de stopcodons
- nagenoeg bijna universeel
 - o bvb. voor enzym glutathion peroxidase codeert stopcodon UGA voor selenocysteïne

! eiwit wordt geproduceerd vanaf start- tot stopcodon in hetzelfde ORF

= open reading frame of open leesraam

! universaliteit impliceert dat DNA/RNA van het ene in het andere organisme kan gebracht worden

- → **expressiesignalen** zijn in elk organisme verschillend: die moeten wel aangepast worden
- → **preferentieel codongebruik** binnen de verschillende klassen van organismen
 - o bv. UUG zal meer voor leucine coderen bij planten dan bij bacteriën (deze gebruiken CUG)

Het Translatie-apparaat

Het translatie-apparaat bestaat uit vijf componenten

- 1. **ribosomen**: staan in voor het synthese proces
- 2. **tRNA-moleculen**: voeren juiste aminozuren aan en aligneren in juiste volgorde
- 3. aminoacyl tRNA synthetasen: hechten aminozuren aan de juiste tRNA
- 4. mRNA molecule: codeert voor de juiste aminozuursequentie
- 5. **proteïne factoren:** faciliteren de verschillende stappen (initiatie, elongatie, terminatie)

Ribosoom voert de synthese uit

- moleculaire **machines** waarin verschillende **factoren samenkomen** om eiwit te synthetiseren
- opgebouwd uit grote 60S subunit en kleine 40S subunit
- mRNA-bindend domein, 3 tRNA-bindende domeinen [A (aminoacyl), P (peptidyl) en E (exit)]

tRNA's voeren de aminozuren aan

- adaptor moleculen: elk tRNA bindt 1 specifiek aminozuur en herkent 1 of meerdere codons
- aminoacyl-tRNA: wanneer tRNA molecule veresterd (geladen) is met (geactiveerd) aminozuur
 → superscript: tRNA^{Ala}
- anti-codon: in één van de lussen van RNA, herkent het codon door complementariteit
- wobble: flexibiliteit op 1 van drie nucleotide posities → non-Watson-Crick baseparing
 redundante tRNA: verschillende tRNA's herkennen eenzelfde codon via eenzelfde anticodon
 → hebben dus een volledig identieke functie

iso-accepting tRNA: tRNA's met verschillende anti-codons kunnen eenzelfde aminozuur dragen

N.B.: dit zorgt <u>niet</u> voor insertie van verkeerde aminozuren, omdat verschillende codons voor eenzelfde aminozuur kunnen coderen

Aminoacyl-tRNA synthetasen koppelen de juiste aminozuren

- zeer diverse enzymen die één bepaald az activeren via ATP en het tRNA met ovk. az binden
- **3 bindingsplaatsen**: één voor ATP, één voor het specifiek aminozuur en één voor het tRNA
- onjuiste aminozuren kunnen niet opgeladen worden
 - o indien te groot gaat dit gewoonweg niet
 - o indien toch verkeerd → hydrolyse van binding (voldoende E om peptidebinding te breken)

mRNA draagt de boodschap

- **export** van mRNA uit de kern m.b.v. **mRNA-bindende eiwitten** met **NES**, Nucleair ExportSignaal
- naast coderende regio ook onvertaalde regio's, zoals 5'cap en poly-A-staart

Translatieproces

Translatie is het geordend en stapsgewijze proces in deze volgorde

- 1. synthese van amino-terminaal uiteinde of N-terminus
- 2. toevoegen aminozuren
- 3. carboxyl-terminale uiteinde (C-terminus)

Kenmerken van het translatie proces:

- vertaling mRNA 5' → 3'
- initiatiefase: binding mRNA aan ribosoom
- elongatiefase: polypeptideketen wordt verlengd
- **terminatiefase**: mRNA en proteïne komen los
- Eukaryoten ≈ prokaryoten → E. coli wordt uitgelegd, verschillen worden daarna geduid

Initiatie van translatie in E. coli

- 1. vasthechting van **3 initiatiefactoren** (IF1, IF2 en IF3)
 - a. IF1 stabiliseert 30S subunit
 - b. IF3 voorkomt premature associatie met 50S subunit
- 2. mRNA bindt op 30S subunit op RBS of ribosoom-bindingsplaats
 - a. ligt enkele tot tiental nt opwaarts
 - = de **Shine Dalgarno sequentie**: 5'-AGGAGGU-3'
 - → complementair aan deel van 16S-rRNA: tijdelijke baseparing
- 3. migratie naar het startcodon AUG waar initiatiecomplex gevormd is
 - a. **initiatiecomplex**
 - i. initiator-tRNA (tRNA_i): in Eubacteria N-formylmethionine
 - ii. I3 vrijgelaten
 - iii. bevat dus mRNA, tRNAi, IF2-GTP, mRNA en 30S subunit
- 4. nu kan 50S op initiatiecomplex binden, gaat gepaard met
 - a. hydrolyse van IF2-gebonden GTP
 - b. loskomen van IF1 en IF2

Elongatie van translatie in E. coli

- 1. binden van tRNA op aminoacyl of A-plaats
- 2. elongatiefactor EF-Tu herkent alle tRNA's en voert GTP aan voor binding van tRNA op A-site
- 3. **elongatiefactor EF-Ts** reactiveert EF-Tu na elk gebruik door uitwisseling van GDP voor GTP
- 4. **vorming peptidebinding** door het enzym peptidyltransferase
 - a. binding tussen carboxylgroep van polypeptideketen en aminogroep van volgend aminozuur
- 5. **tRNA-deacylase** breekt de binding tussen het aminozuur en tRNA
- 6. **translocatie**: men schuift 3 nucleotiden op
 - → peptidvl tRNA verschuift van A- naar P-site en lege tRNA verschuift van P- naar E-site
 - → vereist elongatiefactor EF-G alsook hydrolyse van GTP

Terminatie van translatie in E. coli

- 1. herkenning van het **stopcodon** door **release factoren** (RF1, RF2, RF3)
 - a. knippen de polypeptideketen los van het laatste tRNA
 - b. vereist hydrolyse van GTP
- 2. ribosoom laat polypeptide en mRNA los en dissocieert in de twee subunits

Translatie in eukaryoten: de verschillen

- translatie en transcriptie verlopen volledig gescheiden bij eukaryoten
 - → in prokaryoten is de translatie al bezig terwijl RNA pol nog bezig is
- eukaryoten hebben monocistronische RNA's, prokaryoten polycistronische RNA's
- bij eukaryoten: geen RBS of ribosoom-bindingsplaats
 - → 5'-cap bindt op kleine subunit en scant van daaruit ineens verder
- methionine op tRNA_i is niet geformyleerd
- bij terminatie op stopcodon is er slechts één releasefactor
- hebben beide wel **polysomen**: meerdere ribosomen die met translatie van 1 mRNA bezig zijn

Post-translationele processing

Een proteïne is pas functioneel als het de correcte drie-dimensionele opvouwing heeft

- moleculaire **chaperonnes**: binden tijdens translatie al en vermijden interacties met andere p.
- methionine wordt vaak nog afgesplitst
- inactieve precursoren worden pas actief na klieving: volledige stukken az w. verwijderd
- **proteolyse**: methylatie, fosforylatie, acetylatie en glycosylatie
- **multimerisatie** van verschillende polypeptideketens ter vorming van multi-subunit proteins

Proteinesortering

Bestemmingen van de eiwitten: 3 grote categorieën

- 1. het cytosol
- 2. het **endomembraansysteem** (ER, Golgi, lysosoom, secretievesikels, nucleair/plasmamembraan)
- 3. andere organellen (mitochondriën, chloroplasten, peroxisomen en kern)

cotranslationeel transport: hechting van ribosoom op RER, proteïnes naar endomembraansysteem **post-translationeel import**: cytoplasmatische afwerking, import in doelcompartiment

Co-translationeel transport

- 1. intern signaalpeptide stuurt ribosoom naar RER
 - → wordt herkend door **SRP**: **signal recognition particle**
 - → blokkeert translatie in ribosoom en herkent SRP-recept.
 - → SRP-receptor is onderdeel van het **translocon** translocon staat in voor proteïnetransport
 - → SRP-receptor-binding hecht ribosoom aan translocon,
- 2. GTP aan SRP en SRP-receptor heft translatieblokkade op en opent porieproteïne (kanaal)
- 3. hydrolyse van GTP → ontkoppeling SRP & signaalpeptidase → klieving signaalpeptide
- 4. finale product belandt in ER lumen, translocon kanaal sluit en ribosoom subunits ontkoppelen

Proteïne opvouwing en kwaliteitscontrole in het ER

Polypeptiden vouwen zich op in hun finale vorm (soms vorming van multi-subunit proteins)

- chaperonnes: vb. BiP, voorkomt aggregatie met hydrofobe zones van andere proteïnen vb. disulfide isomerase: katalyseert disulfide bruggen in Cys residu's

Kwaliteitscontrole: proteïnen die niet goed opgevouwen worden, activeren:

- unfolded protein response UPR: blockt de translatie
- **ER-associated degradation ERAD**: vervoert slechte p. naar cytosol → afbraak proteasomen

Stop- en start-transfer signalen mediëren insertie van integrale proteïnen

Glycoproteïnen komen door glycosylatie in ER en Golgi in endomembraansysteem terecht

- → standaard pathway: exocytose; maar ook specifieke retentiesignalen: lokalisatie in lysosoom
- → integrale transmembraanproteïnen
 - Geval 1: synthese start normaal maar elongatie gebeurt in ER tot stop-transfer is gemaakt
 - → translatie gaat dan voort in cytoplasma: N-terminus in ER-lumen, C-terminus in cytosol

Geval 2: er is een interne start-transfer sequentie

- herkenning door SRP en insertie in het membraan

Post-translationeel import

Deze proteïnen zijn niet bestemd voor organellen uit endomembraansysteem

- worden gesynthetiseerd op de vrije ribosomen

Proteïne-import in mitochondriën en plastiden

bezitten wel hun eigen genoom, maar 95% van de eiwitten in mitochondriën en plastiden is van nucleaire afkomst

transit sequentie: signaal voor opname in de organellen

→ bevindt zich in de N-terminus

Gespecialiseerde transportcomplexen in binnenste/buitenste membraan

TOM: translocase of outer mitochondrial membrane

TIM: translocase of inner mitochondrial membrane

TOC: translocase of outer chloroplast membrane **TIC:** translocase of inner chloroplast membrane

Functie van chaperonnes (bv. Hsp70)

- polypeptiden voor mitochondriën/chlorplasten worden hierdoor ontwonen
- blijven in ontwonden toestand tot ze buitenste transporter bereieken
- verwijdering van Hsp70 vereist ATP hydrolyse
 - → dit in combinatie met elektrochemische gradiënt veroorzaakt een trekkracht voor de translocatie van de molecule in de matrix

Mitochondriën en chloroplasten hebben verschillende compartimenten

→ er zijn verschillende signaalsequenties nodig om de proteïne in het juiste compartiment te krijgen.

TAKE-HOME MESSAGES

- DNA wordt in de kern **selectief afgeschreven** tot RNA via transcriptie
- Messenger RNA (mRNA) wordt in het cytoplasma door ribosomen **vertaald in proteïnen**. Naast mRNA, bestaan niet-coderende RNA moleculen met de functionele of structurele zoals ribosomaal RNA (rRNA), transfer RNA (tRNA) en aantal kleinere RNA's
- De beperkte stabiliteit van mRNA laat snelle genregulatie toe
- De genetische code is **ondubbelzinnig**, **niet-overlappend**, **colineair**, **gedegenereerd** en **universeel** (al bestaat wel preferentieel codon gebruik)
- Het translatie apparaat bestaat uit
 - ribosomen die instaan voor het synthese proces
 - tRNA moleculen die de AZ aanvoeren
 - aminoacyl tRNA synthetasen, die de amino-zuren aan de juiste tRNA moleculen hechten
 - mRNA moleculen die de juiste aminozuursequentie coderen binnen een open leesraam
 - additionele proteïne factoren
- Een proteïne wordt na productie opgevouwen met behulp van chaperones, gemodificeerd door afsplitsing en chemische wijziging van aminozuren, en eventueel gekoppeld met andere polypeptidenketens tot een multimeer
- Proteïnen worden in de cel gesorteerd op basis van een signaalsequentie
- Proteïnen die bestemd zijn voor het endomembraansysteem of de extracellulaire omgeving zullen via co-translationele translocatie in het ER gebracht worden