

Frequentists and Bayesian methods to incorporate recruitment rate stochasticity at the design stage of a clinical trial

Pilar Pastor

Supervision by Malgorzata Roos

Why recruitment rates?

- Timely recruitment vital to the success of a clinical trial
- Inadequate number of subjects → lack of power
- Recruitment period too long → competing treatments
- Recruitment of patients varies at each stage
- Accrual = Cumulative Recruitment
- Carter (2004)

Target Population

Target Population

Eligibility

Enrollment

Randomization

Statistical Analysis

Patient Leakage

Uncertainty

- Aleatory: randomness inherent and unpredictable
- Epistemic: arises from limited knowledge about parameters

Figure: Visualization of two types of uncertainty (Yang and Li, 2023)

Models for Counts

Methods	Counts	Expectation	Variance	Aleatory	Epistemic
Expectation	$C(t) = \lambda t$	λt	0	No	No
Poisson	$C(t) \sim \text{Po}(\lambda t)$	λt	λt	Yes	No
Negative Binomial	$C(t) \sim Po(\Lambda t); \Lambda \sim G(\alpha, \beta)$	$\frac{\alpha}{\beta}$	$\frac{\alpha(\beta+1)}{\beta^2}$	Yes	Yes

Table: Moments, aleatory and epistemic uncertainty in accrual shown by different models for counts.

- Time t = 550 days
- Recruitment Rate $\lambda = \frac{Counts}{Time} = 0.591$ (Piantadosi, 2024)

- Time t = 550 days
- Recruitment Rate $\lambda = \frac{Counts}{Time} = 0.591$
- Models for Counts:
 - Expectation: $EC(t) = \lambda t = 0.591 \cdot 550 = 325$
 - Poisson: $C(t) \sim Po(\lambda t)$
 - Negative Binomial: $C(t) \sim Po(\Lambda t)$; $\Lambda \sim G(\alpha, \beta)$

- Time t = 550 days
- Recruitment Rate $\lambda = \frac{Counts}{Time} = 0.591$
- Models for Counts:
 - **Expectation**: $EC(t) = \lambda t = 0.591 \cdot 550 = 325$
 - − Poisson: $C(t) \sim Po(\lambda t)$
 - Negative Binomial: $C(t) \sim Po(\Lambda t)$; $\Lambda \sim G(\alpha, \beta)$

Accrual at time point t

- Expectation:
$$EC(t) = \underbrace{EC + ... + C}_{t \text{ times}} = tEC = \lambda t$$

- **Poisson**:
$$\underbrace{\operatorname{Po}(\lambda) + \ldots + \operatorname{Po}(\lambda)}_{t \text{ times}} = \operatorname{Po}(\lambda t)$$

Accrual of 1 study

Master Thesis Biostatistics

Accrual of 1 study

Accrual of 2 studies

Master Thesis Biostatistics

Accrual of 2 studies

Accrual of 100 studies

Poisson's theoretical PMF

Poisson's theoretical CDF

Cummulative Distribution Function

Poisson's uncertainty bands

- Time t = 550 days
- Recruitment Rate $\lambda = \frac{Counts}{Time} = 0.591$
- Models for Counts:
 - Expectation: $EC(t) = \lambda t = 0.591 \cdot 550 = 325$
 - Poisson: $C(t) \sim Po(\lambda t)$
 - Negative Binomial: $C(t) \sim Po(\Lambda t)$; $\Lambda \sim G(\alpha, \beta)$
 - $-\alpha = 325$
 - $-\beta = 1.5 \cdot 365$
 - $E\Lambda = \frac{\alpha}{\beta} = 0.591 = \lambda$

Negative binomial derived from Poisson-Gamma model (t=1)

Let
$$C|\Lambda \sim Po(\Lambda)$$
 and $\Lambda \sim G(\alpha, \beta)$

$$\begin{split} \rho(c) &= \int_0^\infty \rho(c|\lambda) \rho(\lambda) d\lambda \\ &= \int_0^\infty \frac{\lambda^c \exp(-\lambda)}{c!} \left[\lambda^{\alpha - 1} \exp(-\beta \lambda) \frac{\beta^\alpha}{\Gamma(\alpha)} \right] d\lambda \\ &= \frac{\beta^\alpha}{c! \Gamma(\alpha)} \int_0^\infty \lambda^{\alpha + c - 1} \exp(-\lambda) \exp(-\lambda \beta) d\lambda \\ &= \frac{\beta^\alpha \Gamma(\alpha + c)}{c! \Gamma(\alpha)(\beta + 1)^{\alpha + c}} \underbrace{\int_0^\infty \frac{(\beta + 1)^{\alpha + c}}{\Gamma(\alpha + c)} \lambda^{\alpha + c - 1} \exp(-(\beta + 1)\lambda) d\lambda}_{=1} \\ &= \beta^\alpha \binom{\alpha + c - 1}{\alpha - 1} \left(\frac{1}{\beta + 1} \right)^{\alpha + c} \\ &= \binom{\alpha + c - 1}{\alpha - 1} \left(\frac{1}{\beta + 1} \right)^c \left(\frac{\beta}{\beta + 1} \right)^\alpha, \ C|\Lambda \sim \text{NBin} \left(\alpha, \frac{\beta}{\beta + 1} \right) \end{split}$$

March 5, 2025 Recruitment rate stochasticity at the design stage of a clinical trial

Expectation and Variance

Using the expressions of iterated expectation and variance (Held and Bové, 2014)

$$\mathbf{E} \mathbf{C} = \mathbf{E}_{\Lambda} [\mathbf{E}_{\mathbf{C}}(\mathbf{C}|\Lambda)] = \mathbf{E}_{\Lambda}[\Lambda] = \alpha/\beta$$

$$\begin{aligned} \operatorname{Var}(\boldsymbol{C}) &= \operatorname{Var}_{\Lambda}[\operatorname{E}_{\boldsymbol{C}}(\boldsymbol{C}|\Lambda)] + \operatorname{E}_{\Lambda}[\operatorname{Var}_{\boldsymbol{C}}(\boldsymbol{C}|\Lambda)] \\ &= \operatorname{Var}_{\Lambda}[\Lambda] + \operatorname{E}_{\Lambda}[\Lambda] \\ &= \alpha/\beta^{2} + \alpha/\beta = \frac{\alpha(\beta+1)}{\beta^{2}} \end{aligned}$$

March 5, 2025 Recruitment rate stochasticity at the design stage of a clinical trial

Comparison between Poisson and Negative Binomial

Probability Mass Function

Counts

Comparison between Poisson and Negative Binomial

Cummulative Distribution Function

Counts

Summary

- Theoretical models for counts
- Extended Carter's simulation to exact distributions
- Unified notation
- Visualization of study accrual and uncertainty bands

Next steps

- Application to simulation on Carter (2004)
- Models for time
 - Theoretical
 - Application on Carter (2004)
- Shiny App
- Predictions using theoretical models developed on Daniore Nittas dataset of rates (cite?)

References

- Carter, R. E. (2004). Application of stochastic processes to participant recruitment in clinical trials. *Controlled clinical trials*. 25(5):429-436.
- Held, L. and Bové, D. S. (2014). Applied statistical inference. Springer, Berlin Heidelberg, doi, 10(978-3):16.
- Piantadosi, S. (2024). Clinical trials: a methodologic perspective. John Wiley & Sons.
- Yang, C.-I. and Li, Y.-P. (2023). Explainable uncertainty quantifications for deep learning-based molecular property prediction. Journal of Cheminformatics, 15(1):13.