République Islamique de Mauritanie Ministère de l'Education Nationale, de la Formation Technique et de la Reforme Direction des Examens et des Concours

BACCALAUREAT 2020

Session Normale
Epreuve: MATHEMATIQUES

Série : Sciences de la Nature Coefficient : 6 Durée : 4h

Exercice 1: (3 points)

On considère les deux suites (u_n) et (v_n) définies pour tout entier naturel non nul n par:

$$u_n = \frac{n}{2n^2 + n}$$
 et $v_n = \left(\frac{1}{3}\right)^n$. Pour tout entier naturel $n \ge 1$ on donne $x_n = \frac{1}{u_n}$ et $y_n = \ln(v_n)$.

Pour chacune des six questions suivantes, une seule des réponses proposées est correcte.

N°	Question	Réponse A	Réponse B	Réponse C	
1	La valeur de x ₅ est	6	11	16	(0.5 pt)
2	La limite de la suite (u _n) est	0	$\frac{1}{2}$	1	(0.5 pt)
3	La suite (v_n) est une suite	Croissante	Décroissante	Non monotone	(0.5 pt)
4	La suite (x _n) est une suite	Arithmétique	Géométrique	Convergente	(0.5 pt)
5	Le terme général de la suite (y_n) est	$y_n = \frac{1}{3} \ln n$	$y_n = -n \ln 3$	$y_n = n \ln 3$	(0.5 pt)
6	La somme $v_1 + v_2 + \cdots + v_n$ est égale à	$\frac{1}{2} \left(1 - \left(\frac{1}{3} \right)^{n+1} \right)$	$\frac{1}{2} \left(1 - \left(\frac{1}{3} \right)^n \right)$	$\frac{1}{2} \left(1 - \left(\frac{1}{3} \right)^{n-1} \right)$	(0.5 pt)

Recopie sur la feuille de réponse et complète le tableau ci-contre en choisissant la bonne réponse. Aucune justification n'est demandée

Question n°	1	2	3	4	5	6
Réponse						

Exercice 2: (6 points)

1° Pour tout complexe z on pose : $P(z) = z^3 - (7+7i)z^2 + (-2+30i)z + 32-16i$

- a) Calculer P(2i) 0.5pt
- b) Déterminer les nombres complexes a et b tels que pour tout z, on a : $P(z) = (z-2i)(z^2 + az + b)$
- c) Résoudre, dans l'ensemble des nombres complexes, l'équation P(z) = 0 0.5pt
- 2° Dans le plan complexe muni d'un repère orthonormé direct $\left(O;\vec{u},\vec{v}\right)$. On considère

les points A, B et C d'affixes respectives : $z_A = 3 + i$, $z_B = 2i$ et $z_C = 4 + 4i$.

- a) Placer les points A, B et C dans le repère $(O; \vec{\mathbf{u}}, \vec{\mathbf{v}})$
- b) Déterminer la nature du triangle ABC 0.5pt
- c) Déterminer l'affixe $z_{\rm D}$ du point D tel que ABDC soit un parallélogramme. Placer D. $\Big|$ 0.5pt
- 3° Pour tout nombre complexe $z \neq 3+i$; on pose: $f(z) = \frac{z-2i}{z-4-4i}$.
- a) Vérifier que $f(z_D) = -i$ et interpréter graphiquement. 0.5pt
- b) Déterminer et construire l'ensemble Γ_1 des points M du plan d'affixe z tels que |f(z)| = 1
- c) Déterminer et construire l'ensemble Γ_2 des points M du plan d'affixe z tels que $|f(z)-1|=\sqrt{2}$
- 4° On pose $z_0 = f(6)$ et pour tout entier naturel n on note $z_n = z_0^n$
- a) Ecrire z_0 sous forme algébrique, puis vérifier que $z_0 = \sqrt{2}e^{i\frac{\pi}{4}}$.

b) Déterminer la plus petite valeur de l'entier naturel n telle que |z_n| ≥ 2020.
c) Vérifier que le point d'affixe z₂₀₂₀ appartient à l'axe des abscisses.
0.25pt
0.25pt

Exercice 3: (4 points)

Soit f la fonction définie sur \mathbb{R} par : $f(x) = x - 2 + e^{-x}$ et soit (C) sa courbe représentative dans un repère orthonormé $(0; \vec{i}, \vec{j})$.

- 1° a) Justifier que $\lim_{x \to +\infty} f(x) = +\infty$ et $\lim_{x \to +\infty} (f(x) (x-2)) = 0$ 0.5 pt
- b) En déduire que la droite (Δ) d'équation y = x 2 est asymptote à la courbe (C) puis étudier leur position relative.
- 2° a) Montre que $f(x) = \frac{xe^x 2e^x + 1}{e^x}$ et que $\frac{f(x)}{x} = 1 \frac{2}{x} + \frac{1}{xe^x}$ 0.5 pt
- b) En déduire que $\lim_{x \to -\infty} f(x) = +\infty$ et que $\lim_{x \to -\infty} \frac{f(x)}{x} = -\infty$. Interpréter graphiquement 0.75 pt
- 3° Justifier que $f'(x) = 1 e^{-x}$ et dresser le tableau de variation de f. 0.5 pt
- 4° a) Montrer que l'équation f(x) = 0 admet deux solutions α et β avec $\beta < \alpha$ puis vérifier que $1, 8 < \alpha < 1, 9$.
- b) Justifier que $f'(\alpha) = \alpha 1$ 0.25 pt
- 5° Construire la courbe (C) et son asymptote (Δ) dans le repère (O; \vec{i} , \vec{j}). 0.25 pt

Exercice 4: (7 points)

Soit f la fonction définie sur $[0,+\infty[$ par : $\begin{cases} f(x) = x - x \ln x & \forall x > 0 \\ f(0) = 0 \end{cases}$

et soit (Γ) sa courbe représentative dans un repère orthonormé (O,\vec{i},\vec{j}) .

- 1°a) Calculer $\lim_{x\to 0^+} f(x)$ et en déduire que f est continue en 0^+ .

 b) Calculer $\lim_{x\to 0^+} \frac{f(x)-f(0)}{x-0}$ et interpréter graphiquement.

 0.75pt
- c) Montrer que $\lim_{x \to +\infty} f(x) = -\infty$ et que $\lim_{x \to +\infty} \frac{f(x)}{x} = -\infty$ puis interpréter graphiquement.
- 2° Calculer f'(x) et dresser le tableau de variation de f. 1 pt
- 3° a) Déterminer les points d'intersection de la courbe (Γ) avec l'axe des abscisses.
- b) Donner une équation de la tangente (T) à (Γ) au point d'abscisse e. 0.5pt
- 4° Soit g la restriction de f sur l'intervalle I = [1,+∞[.
 a) Montrer que g est une bijection de I sur un intervalle J que l'on déterminera.
- b) Montrer que $(g^{-1})'(0) = -1$ où g^{-1} est la réciproque de g. 0.5pt
- c) Construire (T), (Γ) et (Γ') dans le repère ($0,\vec{i},\vec{j}$), (Γ') étant la courbe représentative de g^{-1} .
- d) Discuter graphiquement, suivant les valeurs du paramètre réel m, le nombre de solutions de l'équation $2x x \ln x = m$ 0.25pt
- 5° a) Utiliser une intégration par parties pour calculer l'intégrale $A = \int_{1}^{e} x \ln x dx$.
- b) En déduire l'aire du domaine plan délimité par la courbe (Γ) , l'axe des abscisses et les droites d'équations x=1 et x=e.

Fin

0.5pt