INTRODUCTION TO NEURAL NETWORKS

Lecture 4. Perceptron

Dr. Jingxin Liu

School of Al and Advanced Computing

Table of Contents

- I. Perceptron
- II. Limitations of Perceptron
- III. Multi-layer Perceptron
- IV. Multi-class Classification

Perceptron – Biological Neuron

- The dendrite receives electrical signals from the axons of other neurons;
- At the synapses between the dendrite and axons, electrical signals are modulated in various amounts;
- An actual neuron fires an output signal through axon only when the total strength of the input signals exceed a certain threshold.

Perceptron – Artificial Neuron

Biological Neuron	Artificial Neuron
Cell Body (Soma)	Node
Dendrites	Input
Synapse	Weights or interconnections
Axon	Output

Perceptron

The perceptron is a mathematical model of a biological neuron.

A Perceptron accepts inputs, moderates them with certain weight values, then applies the activation function (**Step function**) to output the final result.

Perceptron

Mathematically,

$$\hat{y} = f\left(\sum_{j=1}^{n} w_j x_j + w_0\right) = f\left(\sum_{j=0}^{n} w_j x_j\right)$$
 output i'th input activation function

where,

$$f(z) = \begin{cases} 1 & \text{if } z \ge 0 \\ 0 & \text{if } z < 0 \end{cases}$$

The perceptron is an algorithm for *supervised learning* of binary linear classifiers.

Perceptron – Learning Rule

The idea:

For x^i in all training examples:

• If
$$y = 1$$
 and $f(x^i) = 1$ or t : label

• If
$$y = 0$$
 and $f(x^i) = 0$

no need to change anything.

• If
$$y = 1$$
 and $f(x^i) = 0$ or need to make $f(x^i)$ larger

• If
$$y = 0$$
 and $f(x^i) = 1$ need to make $f(x^i)$ smaller learning rate

we need update w, based on

$$\pmb{w} \leftarrow \pmb{w} + \Delta \pmb{w}$$
 , where $\Delta \pmb{w} = \alpha (\underline{y}^i - \hat{y}^i) x^i$

 $egin{pmatrix} 1 & ext{for positive example} \ -1 & ext{for negative example} \end{cases}$

Perceptron – Learning Rule

$$\mathbf{w} \leftarrow \mathbf{w} + \Delta \mathbf{w}$$
 step fund $\Delta \mathbf{w} = \alpha (y^i - \hat{y}^i) x^i$

1 for positive example

-1 for negative example

 $step\ function \leftrightarrow signum\ function$

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha \cdot y^i x^i$$

 $\begin{cases} 1 & \text{for positive example} \\ -1 & \text{for negative example} \end{cases}$

Why x^i ?

Perceptron – Learning Rule

Consequently,

Initialize the weights, w, randomly

Repeat:

For each training example (x^i, y^i)

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha (y^i - \hat{y}^i) x^i$$

Stop if the weights were not updated in this epoch.

Perceptron – Activation Function

A single perceptron with a sigmoid(logistic) activation function is same as a logistic regression model. So we can use Gradient Descent again!

Perceptron – sigmoid in 3D space

top view of the sigmoid function

Perceptron – Logic Gates

The perceptron naturally implements simple logic gates.

Name	NO	TC		ANI)	ı	IAN	D		OR			NOI	₹		XOI	3	X	NO	R
Alg. Expr.		Ā		AB			\overline{AB}			A + B	3		$\overline{A+I}$	3		$A \oplus I$	3		$A \oplus E$	3
Symbol	<u>A</u>	≫ <u>_x</u>	A B		<u> </u>)o—			>			> —	15 4		>-			>>-
Truth Table	0 1	1 0	B 0 0 1	0 1 0 1	0 0 0 1	0 0 1	A 0 1 0 1	1 1 1 0	0 0 1 1	A 0 1 0 1	X 0 1 1	0 0 1 1	0 1 0 1	X 1 0 0 0	B 0 0 1 1	A 0 1 0 1	0 1 1 0	B 0 0 1 1 1	A 0 1 0 1	1 0 0

Perceptron – NOT

X ₁	Output
0	1
1	0

$$output = \begin{cases} 1 \\ 0 \end{cases}$$

$$w = [0.5, -1]$$

$$if \ 0.5 - x_1 \ge 0$$

$$otherwise$$

Perceptron - AND

X ₁	X ₂	Output
0	0	0
0	1	0
1	0	0
1	1	1

$$\Rightarrow f(x_1, x_2) \qquad output = \begin{cases} 1 & if -1.5 + x_1 + x_2 \ge 0 \\ 0 & otherwise \end{cases}$$

$$w$$
=[-1.5, 1, 1]

Perceptron - OR

X ₁	X ₂	Output
0	0	0
0	1	1
1	0	1
1	1	1

$$\Rightarrow f(x_1, x_2) \qquad output = \begin{cases} 1 & if -0.5 + x_1 + x_2 \ge 0 \\ 0 & otherwise \end{cases}$$

$$w$$
=[-0.5, 1, 1]

Perceptron - xor

X ₁	X ₂	Output
0	0	0
0	1	1
1	0	1
1	1	0

The XOR operator is not linearly separable and cannot be achieved by a single perceptron. ---- Limitation of Perceptron

Multi-layer Perceptron(MLP) - implementing XOR by MLP

X ₁	X ₂	Output
0	0	0
0	1	1
1	0	1
1	1	0

x1	x2	h1 sign(x ₁ + x ₂ - 0.5)	h2 sign(x ₁ + x ₂ - 1.5)	Final output sign(hu1 – hu2–0.5)
0	0	- 1	- 1	- 1
0	1	+ 1	- 1	+ 1
1	0	+ 1	- 1	+ 1
I	1	+ 1	+ 1	- 1

Multi-layer Perceptron(MLP)

An MLP consists of **at least three** layers of nodes: an input layer, a hidden layer and an output layer. Except for the input nodes, each node is a neuron that uses a nonlinear activation function.

Multi-class Network - Review of Binary Classification

$$h(x) = sigmoid(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n)$$

$$\mathcal{L} = -y \cdot \log(h(x)) - (1 - y)\log(1 - h(x))$$

Cross-entropy loss function

$$\min \mathcal{J}(\theta) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}$$
 Using Gradient Descent

Multi-class Network

We can transform the multi-class classification to several binary classification.

If we have *K* classes, set target of the correct class is **1**, all other targets are **0**

It is possible to have a multi-class net with sigmoids

Using multiple sigmoids for multiple classes means that the outputs of the network are not constrained to sum to one

Multi-class Network

We can do better...

To interpret the outputs of the net as classification probabilities, require

$$\sum_{k} \underline{P(C_k|x)} = 1$$
 index of class output of each neuron

Solution – use an output activation function with a sum-to-one constraint: **Softmax**

Multi-class Network - Notations

Notations:

K: number of classes

 C_k : k' th class

 y^i : the target label for the i'th training example.

It is often more convenient to represent the target label as one-hot vector or *one-of-K* encoding

$$y^i = [0, ..., 0, 1, 0, ..., 0]$$
K dimensions

If y^i is belong to C_k class, the '1' should be at the k'th dim.

Multi-class Network - Notations

Notations:

The weighted sum for the *k*'th neuron:
$$z_k = \sum_{j=0}^{\infty} w_{kj} x_j$$

Multi-class Network - Softmax

Softmax function:

a mathematical function that converts a vector of numbers into a vector of probabilities, where the probabilities of each value are proportional to the relative scale of each value in the vector.

$$softmax(z_1, ..., z_K)_k = \frac{e^{z_k}}{\sum_p^K e^{z_p}}$$

$$\sigma(\mathbf{z})_k = \frac{\exp(z_k)}{\sum_p^K \exp(z_p)}$$
vector

Properties:

- Outputs are positive and sum to 1 (so they can be interpreted as probabilities)
- Exercise: how does the case of K=2 relate to the sigmoid (logistic) function?

Multi-class Network - Softmax

