

SISTEM WAKTU DISKRIT [1/2]

FEH3A3 - PENGOLAHAN SINYAL WAKTU DISKRIT

Tim:

Fiky Y. Suratman

R. Yunendah Nur Fu'adah

Cahyantari Ekaputri

Sub Pokok Bahasan

- Deskripsi Input & Output Sistem
- Diagram Blok Representasi Sistem Digital
- Klasifikasi Sistem: Statik vs Dinamik
- Klasifikasi Sistem: Time Variant vs Time Invariant
- Klasifikasi Sistem: Linier vs Non Linier
- Klasifikasi Sistem: Kausal vs Non Kausal
- Klasifikasi Sistem: Stabil vs Tidak Stabil
- Interkoneksi Sistem

Deskripsi Input & Output Sistem

Definisi:

Ekspresi matematis atau suatu aturan yang mendefinisikan atau mendeskripsikan hubungan antara sinyal input/masukan dan sinyal output/keluaran

Notasi:

 $x(n) \xrightarrow{\mathcal{T}} y(n)$

x(n): sinyal eksitasi/input/masukan

y(n) : sinyal respon/output/keluatan

 \mathcal{T} : sistem, dianggap black box

Deskripsi Input & Output Sistem

Representasi Diagram:

Penjumlahan

Berfungsi untuk menambahkan 2 buah sinyal ($x_1(n)$ dan $x_2(n)$) menjadi sinyal y(n).

Sistem tidak menggunakan memori.

Perkalian dengan konstanta

Berfungsi sebagai faktor skala untuk input x(n).

Sistem tidak menggunakan memori.

$$x(n)$$
 a $y(n) = ax(n)$

Perkalian antar sinyal

Berfungsi untuk mengalikan 2 buah sinyal ($x_1(n)$ dan $x_2(n)$) menjadi sinyal y(n).

Sistem tidak menggunakan memori.

Unit Delay

Berfungsi untuk menunda sinyal yang melewatinya dengan satu waktu/sampel.

Sistem menggunakan memori untuk menyimpan sinyal pada waktu n-1.

Unit Advance Element

Berfungsi untuk memindahkan sinyal input lebih cepat satu waktu/sampel. Sistem bersifat nonreal-time dan membutuhkan memori.

☐ Sistem Statik vs Dinamik

- ✓ Sistem Statik/Memoryless
 - Output sistem pada saat n hanya bergantung pada input sistem pada saat yang sama.
- ✓ Sistem Dinamik/Memory
 - Output sistem pada saat n sepenuhnya bergantung pada input sistem dalam interval n-N sampai n (N>0).

☐ Sistem Statik vs Dinamik

Anggap output sistem pada saat n bergantung pada input sistem dalam interval n-N sampai n ($N \ge 0$).

- Jika N = 0, maka sistem statik.
- Jika 0 < N < ∞, maka sistem bersifat membutuhkan memori berhingga.
- Jika $N = \infty$, maka sistem memiliki memori tak hingga.

☐ Sistem *Time Variant* vs *Time Invariant*

- ✓ Sistem *Time Variant*
 - Sistem yang bergantung waktu (hubungan input dan outpunya berubah sesuai waktu).
- ✓ Sistem Time Invariant

 Sistem yang tidak bergantung waktu (hubungan input dan outpunya tidak berubah saat diujikan pada waktu yang berbeda).

☐ Sistem Time Variant vs Time Invariant

Anggap suatu sistem \mathcal{T} dieksitasi oleh sinyal input x(n) dan menghasilkan respon sinyal output y(n).

$$y(n) = \mathcal{T}[x(n)]$$

- Apabila sinyal input diberi delay sebesar k menjadi x(n-k) dan diaplikasikan lagi ke sistem.
- Jika output sistem sama seperti output yang terdelay sebesar k atau y(n-k) maka sistem bersifat *Time Invariant*.

$$y(n-k) = \mathcal{T}[x(n-k)]$$

☐ Sistem Linier vs Non Linier

- ✓ Sistem Linier
 - Sistem yang bersifat linier dengan memenuhi prinsip superposisi.
 - Prinsip superposisi dapat dibagi menjadi 2 sifat:
 - 1. Sifat Homogenity
 - 2. Sifat Additivity
- ✓ Sistem Non Linier

 Sistem yang tidak memenuhi salah satu atau kedua sifat pada prinsip superposisi.

☐ Sistem *Time Variant* vs *Time Invariant*

Prinsip Superposisi

$$T[a_1x_1(n) + a_2x_2(n)] = a_1T[x_1(n)] + a_2T[x_2(n)]$$

= $a_1y_1(n) + a_2y_2(n)$

Sistem Time Variant vs Time Invariant

Sifat Homogenity

$$y_1(n) = T[x_1(n)]$$

 $x_2(n) = a_1x_1(n)$

$$y_2(n) = \mathcal{T}[x_2(n)] = \mathcal{T}[a_1x_1(n)]$$

= $a_1\mathcal{T}[x_1(n)] = a_1y_1(n)$

Sistem Time Variant vs Time Invariant

Sifat Additivity

$$y_1(n) = \mathcal{T}[x_1(n)]$$

 $y_2(n) = \mathcal{T}[x_2(n)]$
 $x_3(n) = x_1(n) + x_2(n)$

$$y_3(n) = \mathcal{T}[x_3(n)] = \mathcal{T}[x_1(n) + x_2(n)]$$

= $\mathcal{T}[x_1(n)] + \mathcal{T}[x_2(n)]$
= $y_1(n) + y_1(n)$

Sistem Kausal vs Non Kausal

✓ Sistem Kausal

• Sistem yang sinyal outputnya untuk setiap sampel n hanya bergantung pada input pada sampel n atau sampel sebelumnya $(n-1, \operatorname{dst})$ dan tidak bergantung pada sampel sesudahnya $(n+1, \operatorname{dst})$.

$$y(n) = F[x(n), x(n-1), x(n-2), ...]$$

✓ Sistem Non Kausal

 Sistem yang tidak memenuhi syarat sistem kausal dan bersifat nonreal-time.

Sistem Stabil vs Tidak Stabil

- ✓ Sistem Stabil
 - Sistem yang apabila diberikan sinyal input terbatas maka sinyal outputnya pun terbatas.
 - Disebut dengan sistem BIBO (Bounded Input Bounded Output).
- ✓ Sistem Non Kausal

 Sistem yang apabila diberikan sinyal input terbatas maka sinyal outputnya tak terbatas.

Interkoneksi Sistem

■ Sistem Cascade

Dua sistem atau lebih yang disusun secara seri

$$y(n) = \mathcal{T}_c[x(n)] = \mathcal{T}_2[\mathcal{T}_1[x(n)]]$$

Interkoneksi Sistem

Sistem Parallel

Dua sistem atau lebih yang disusun secara paralel

$$y(n) = \mathcal{T}_p[x(n)] = (\mathcal{T}_1 + \mathcal{T}_2)[x(n)]$$

