Paths and Random Walks on Graphs

Based on materials by Lala Adamic and Purnamrita Sarkar

Motivation: Link prediction in social networks

Motivation: Basis for recommendation

purnamrita's Amazon.com™ → Recommended for you (If you're not purnamrita, click here.)

Recommendations Based on Activity

View & edit Your Browsing History

Recommendations by Category

Your Favorites (Edit)

Books

More Categories

Apparel & Accessories

Baby

Beauty

Camera & Photo

Computer & Video

Games

Computers & PC

Hardware

DVD

Electronics

Gourmet Food

Health & Personal Care

Industrial 9. Scientific

These recommendations are based on items you own and more.

view: All | New Releases | Coming Soon

1.

One Thousand Exercises in Probability

by Geoffrey R. Grimmett, David R. Stirzaker Average Customer Review:

In Stock

Publication Date: August 2, 2001

Our Price: \$53.95

Used & new from \$42.74

Add to Wish List

I Own It │ Not interested × ☆☆☆☆☆ Rate it

Recommended because you purchased Probability and Random Processes (edit)

2.

The Elements of Statistical Learning

by T. Hastie, et al.

Average Customer Review:

In Stock

Publication Date: July 30, 2003

Our Price: \$64.76

Used & new from \$55.00

Add to cart Add to Wish List

Motivation: Personalized search

Where Are My Car Keys?

In the front door, where you left them last night.

Why graphs?

- The underlying data is naturally a graph
 - Papers linked by citation
 - Authors linked by co-authorship
 - Bipartite graph of customers and products
 - Web-graph
 - Friendship networks: who knows whom

What are we looking for

- Rank nodes for a particular query
 - Top k matches for "Random Walks" from Citeseer
 - Who are the most likely co-authors of "Manuel Blum".
 - Top k book recommendations for Jen from Amazon
 - Top k websites matching "Sound of Music"
 - Top k friend recommendations for Bob when he joins "Facebook"

History: Graph theory

- Euler's Seven Bridges of Königsberg one of the first problems in graph theory
- Is there a route that crosses each bridge only once and returns to the starting point?

Eulerian paths

- If starting point and end point are the same:
 - only possible if no nodes have an odd degree
 - each path must visit and leave each shore
- If don't need to return to starting point
 - can have 0 or 2 nodes with an odd degree

·Eulerian path: traverse each

edge exactly once

·Hamiltonian path: visit

·each vertex exactly once

Node degree from matrix values

zero entries in the 3rd row

$$\sum_{j=1}^{n} A_{3j}$$

$$\sum_{i=1}^{n} A_{i3}$$

Outdegree =
$$\sum_{j=1}^{n} A_{ij}$$

•example: outdegree for node 3 is 2, which we obtain by summing the number of nonzero entries in the 3^{rd} row n

Definitions

- n x n Adjacency matrix A.
 - A(i,j) = weight on edge from i to j
 - If the graph is undirected A(i,j)=A(j,i), i.e. A is symmetric
- n x n Transition matrix P.
 - P is row stochastic
 - P(i,j) = probability of stepping on node j from node i
 = A(i,j)/∑_iA(i,j)
 i's outdegree
- n x n Laplacian Matrix L.
 - $L(i,j) = \sum_{i} A(i,j) A(i,j)$
 - Symmetric positive semi-definite for undirected graphs
 - Singular

Definitions

Adjacency Matrix

Transition Matrix

Definitions

Graph Laplacian

$$L = D - A$$

$$L = D - A$$
 $D = diag(d)$

Spectral Graph Analysis

Graph Laplacian

$$L = D - A$$

$$L = D - A$$
 $D = diag(d)$

Take the eigendecomposition of $oldsymbol{L}$

Eigenvectors

- Intuitive definition: An eigenvector is a direction for a matrix
- An eigenvector of an $n \times n$ matrix A is a vector such that $Av = \lambda v$, where v is the eigenvector and λ is the corresponding eigenvalue
 - Multiplying vector v by the scalar λ effectively stretches or shrinks the vector
- An n x n matrix should have n linearly independent eigenvectors

Eigenvectors Illustrated

 Consider an elliptical data cloud. The eigenvectors are then the major and minor axes of the ellipse

Spectral Graph Analysis

Eigenvector Q1 is constant

A

В

 \mathbf{C}

 \mathbf{D}

 \mathbf{E}

3	-1	-1	-1	
-1	2	-1		
-1	-1	4	-1	-1
-1		-1	3	-1
		-1	-1	2

q 1	q 2	q 3	q 4	q 5
0.45	-0.27	-0.5	-0.65	0.22
0.45	-0.65	0.5	0.27	0.22
0.45	-0.00	0.00	0.00	-0.89
0.45	0.27	-0.5	0.65	0.22
0.45	0.65	0.5	-0.27	0.22

Eigenvalue $\lambda_1 = 0$

1	2	3	4	5
0.00	0	0	0	0
0	1.59	0	0	0
0	0	3.00	0	0
0	0	0	4.41	0
0	0	0	0	5.00

Spectral Graph Analysis

Random Walks

0	1	0
0	0	1
1/2	1/2	0

Adjacency matrix A

Transition matrix P

Probability Distributions

• $\phi_i^{(t)}$ = probability that the surfer is at node *i* at time *t*

•
$$\phi_i^{(t+1)} = \sum_j \phi_i^{(t)} \times \Pr(j \to i)$$

•
$$\phi_i^{(t+1)} = \phi_i^{(t)} \times P$$

$$= \phi_i^{(t-1)} \times P \times P$$

$$= \phi_i^{(t-2)} \times P \times P \times P$$
...

$$=\phi_i^{(0)}\times P^t$$

What happens when the surfer walks for a long time?

Stationary Distribution

When the surfer keeps walking for a long time

• When the distribution does not change anymore $\downarrow 0$

-i.e.
$$\phi^{(t+1)} = \phi^{(t)}$$

• For "well-behaved" graphs this does not depend on the start distribution!!

 The stationary distribution at a node is related to the amount of time a random walker spends visiting that node.

- The stationary distribution at a node is related to the amount of time a random walker spends visiting that node.
- * Remember that we can write the probability distribution as $\phi^{(t+1)} = \phi^{(t)} \times P$

- The stationary distribution at a node is related to the amount of time a random walker spends visiting that node.
- * Remember that we can write the probability distribution as $\phi^{(t+1)} = \phi^{(t)} \times P$
- For the stationary distribution $\phi^{(\infty)}$ we have

$$\phi^{(\infty)} = \phi^{(\infty)} \times P$$

- The stationary distribution at a node is related to the amount of time a random walker spends visiting that node.
- * Remember that we can write the probability distribution as $\phi^{(t+1)} = \phi^{(t)} \times P$
- For the stationary distribution $\phi^{(\infty)}$ we have

$$\phi^{(\infty)} = \phi^{(\infty)} \times P$$

Whoa! that's just the left eigenvector of the transition matrix!

Power Method

(Horn & Johnson, 1985)

- P has a unique left eigenvector $\phi^{(\infty)}$
 - Called the Perron vector

Power method to compute $\phi^{(\infty)}$

```
1: set \phi^{(0)} to be a normalized nonnegative random vector
```

- 2: set i = 0
- 3: **loop** until $\phi^{(0)}, \phi^{(1)}, \dots, \phi^{(i-1)}, \phi^{(i)}$ converges
- 4: set $\phi^{(i+1)} = P\phi^{(i)}$
- 5: normalize $\phi^{(i+1)}$
- 6: i++
- 7: end loop
- 8: return $\phi^{(i)}$

Interesting Questions

- Does a stationary distribution always exist? Is it unique?
 - Yes, if the graph is "well-behaved".

Well-behaved graphs

 Irreducible: There is a path from every node to every other node.

Irreducible

Not irreducible

Well-behaved graphs

Aperiodic: The GCD of all cycle lengths is 1. The GCD is also called period.

Periodicity is 3

Aperiodic

Implications of the Perron Frobenius Theorem

- If a Markov chain is irreducible and aperiodic then the largest eigenvalue of the transition matrix will be equal to 1 and all the other eigenvalues will be strictly less than 1.
 - Let the eigenvalues of P be $\{\sigma_i \mid i=0:n-1\}$ in non-increasing order of σ_i .
 - $-\sigma_0 = 1 > \sigma_1 > \sigma_2 > = \dots > = \sigma_n$

Implications of the Perron Frobenius Theorem

- If a Markov chain is irreducible and aperiodic then the largest eigenvalue of the transition matrix will be equal to 1 and all the other eigenvalues will be strictly less than 1.
 - Let the eigenvalues of P be $\{\sigma_i \mid i=0:n-1\}$ in non-increasing order of σ_i .

$$-\sigma_0 = 1 > \sigma_1 > \sigma_2 > = \dots > = \sigma_n$$

 These results imply that for a well-behaved graph there exists an unique stationary distribution.

Google's PageRank

- PageRank is a "vote" by all other webpages about the importance of a page
- A link to a page counts as a vote of support
- PageRank uses a random surfer model
 - Occasionally, the surfer gets bored and jumps to a random other page

 "The 25,000,000,000 Eigenvector: the Linear Algebra Behind Google"

Random Walk on Web Graph

Probability transition matrix given by

$$P_{u,v} = \frac{A_{u,v}}{d_u^{out}} = \frac{A_{u,v}}{\sum_{v=1}^n A_{u,v}} \qquad P = D^{-1}A$$

 Use a teleporting random walk (Page et al., 1998) to ensure that the graph is strongly connected and aperiodic:

$$P_{teleport} = \eta P + (1 - \eta) \frac{\mathbf{1}\mathbf{1}^T - I}{|V|}$$

PageRank

