

সুচকীয় ७ लগातिपमीय काश्यात

অনুশীলনী-৯.১

অনুশীলনীটি পড়ে যা জানতে পারবে—

- মূলদ সূচক ও অমূলদ সূচকের ব্যাখ্যা।
- সূচকের বিভিন্ন সূত্রের প্রমাণ ও প্রয়োগ।
- সূচক ও লগারিদমের পারস্পরিক সম্পর্কের ব্যাখ্যা।
- 8. মূল এর ব্যাখ্যা।
- ফুলদ ভগ্নাংশের ব্যাখ্যা।

স্কটিস গণিতবিদ জন নেপিয়ার (John Napier, 1550-1671) জোতির্বিদ্যার প্রতি তাঁর আগ্রহ ছিল যা গণিতে অবদান রাখতে সাহাষ্য করে। বড় বড় সংখ্যার গণনাকে অধিকতর তালো ও সহজ্ঞতর করতে একটি বিশেষ পশ্বতি আবিষ্কার করেন যা বর্তমানে লগারিদম logarithm) নামে পরিচিত।

৯টি অনুশীলনীর প্রশ্ন

৮৪টি বহুনির্বাচনি প্রশ্ন ■ ৪৭টি সাধারণ বহুনির্বাচনি ■ ১৬টি বহুপদী সমাশ্তিস্চক ■ ২১টি অভিনু তথ্যভিত্তিক ১৮টি সুজনশীল প্রশ্ন ■ ৯টি শ্রেণির কাজ ■ ৫টি মাস্টার ট্রেইনার প্রণীত ■ ৪টি প্রশ্নবাংক

অনুশীলনীর প্রশ্ন ও সমাধান

১. প্রমাণ কর যে, $\left(a^{\frac{m}{n}}\right)^p = a^{\frac{mp}{n}}$ মেখালে m, $p \in \mathbb{Z}$ এবং $n \in \mathbb{N}$

기차하다:
$$\left(a^{\frac{m}{n}}\right)^p = \left\{ \left(a^{\frac{1}{n}}\right)^m \right\}^p \quad \left[\cdots a^{\frac{m}{n}} = \left(a^{\frac{1}{n}}\right)^m \right]$$

$$= \left(a^{\frac{1}{n}}\right)^{mp} \quad \left[\cdots (a^m)^n = a^{mn} \right]$$

$$= a^{\frac{mp}{n}} \quad \left[\cdots a^{\frac{m}{n}} = \left(\frac{1}{a}\right)^m \right]$$

$$\therefore \left(a^{\frac{m}{n}}\right)^p = a^{\frac{mp}{n}} \quad (원화현8)$$

২. প্রমাণ কর মে, $\left(a^{\frac{1}{m}}\right)^{\frac{1}{n}} = a^{\frac{1}{mn}}$ মেখালে $m, n \in \mathbb{Z}, m \neq 0, n \neq 0$

সমাধান: ধরি,
$$\left(a^{\frac{1}{m}}\right)^{\frac{1}{n}} = x$$

বা, $a^{\frac{1}{m}} = x^n$ [$\because \sqrt[n]{a^m} = x$ হলে $a^m = x^n$]

বা, $a = \left(x^n\right)^m$

বা, $a = x^{mn}$ [$\because (a^m)^n = a^{mn}$]

 $\therefore x = a^{\frac{1}{mn}}$

অর্থাৎ, $\left(a^{\frac{1}{m}}\right)^{\frac{1}{n}} = a^{\frac{1}{mn}}$ [$\because x = \left(a^{\frac{1}{m}}\right)^{\frac{1}{n}}$] (প্রমাণিত)

৩. প্রমাণ কর মে, $(ab)^n = a^n b^n$, মেখানে $m \in \mathbb{Z}$, $n \in \mathbb{N}$ সমাধান: ধরি, $(ab)^n = x$, $a^n = y$, $b^n = z$ $\therefore x^n = ab$

বা, $x^n = ab$ বা, $x^n = y^n z^n$ [মান বসিয়ে] বা, $x^n = (yz)^n$ [$\because (ab)^n = a^n b^n$] $\therefore x = yz$ অব্দিং, $(ab)^n = a^n b^n$ $\therefore \{(ab)^n\}^m = \left(a^{\frac{1}{n}}b^{\frac{1}{n}}\right)^m$ [উভয় পক্ষের ঘাত m এ উন্নাত করে] বা, $(ab)^n = \begin{cases} \frac{1}{n} \\ (a)^n \end{cases}^m \begin{cases} \frac{1}{n} \\ (b)^n \end{cases}^m$ $\begin{bmatrix} \frac{m}{n} = \left(\frac{1}{a^n}\right)^m \text{ day } \left\{(ab)^n = a^n b^n\right\} \end{bmatrix}$ $\therefore (ab)^n = a^n b^n$ (প্রমাণিক)

8. APPRISON, (4) $(a^{\frac{1}{3}} - b^{\frac{1}{3}})(a^{\frac{2}{3}} + a^{\frac{1}{3}}b^{\frac{1}{3}} + b^{\frac{2}{3}}) = a - b$ $(4) \frac{a^{3} + a^{-3} + 1}{\frac{3}{2} + a^{\frac{3}{2}} + 1} = (a^{\frac{3}{2}} + a^{\frac{-3}{2}} - 1)$ $a^{2} + a^{2} + 1$ PAINTH:

(4) বামপক = $\left(a^{\frac{1}{3}} - b^{\frac{1}{3}}\right) \left(a^{\frac{2}{3}} + a^{\frac{1}{3}}b^{\frac{1}{3}} + b^{\frac{2}{3}}\right)$ $= \left(a^{\frac{1}{3}} - b^{\frac{1}{3}}\right) \left\{ \left(a^{\frac{1}{3}}\right)^2 + a^{\frac{1}{3}}b^{\frac{1}{3}} + \left(b^{\frac{1}{3}}\right)^2 \right\}$ $= \left(a^{\frac{1}{3}}\right)^3 - \left(b^{\frac{1}{3}}\right)^3 \left[\because (x - y)(x^2 + xy + y^2) = x^3 - y^3\right]$ $= a^{\frac{1}{3}} - b^{\frac{3}{3}} \left[\because \left(a^{\frac{1}{3}}\right)^m = a^{\frac{m}{3}}\right]$ $= a^1 - b^1$ = a - b = Windship $\therefore \left(a^{\frac{1}{3}} - b^{\frac{1}{3}}\right) \left(a^{\frac{2}{3}} + a^{\frac{1}{3}}b^{\frac{1}{3}} + b^{\frac{2}{3}}\right) = a - b \text{ (Credice) action}$

(খ) বাফণক =
$$\frac{a^3 + a^{-3} + 1}{a^{\frac{3}{2}} + a^{-\frac{3}{2}} + 1}$$

= $\frac{\left(a^{\frac{3}{2}}\right)^2 + \left(a^{-\frac{3}{2}}\right)^2 + 1}{a^{\frac{3}{2}} + a^{-\frac{3}{2}} + 1}$

= $\frac{\left(a^{\frac{3}{2}}\right)^2 + \left(a^{-\frac{3}{2}}\right)^2 - 2 \cdot a^{\frac{3}{2}} \cdot a^{-\frac{3}{2}} + 1}{a^{\frac{3}{2}} + a^{-\frac{3}{2}} + 1}$

[$\because x^2 + y^2 = (x + y)^2 - 2xy$]

= $\frac{\left(a^{\frac{3}{2}} + a^{-\frac{3}{2}}\right)^2 - 2 \cdot a^n + 1}{a^{\frac{3}{2}} + a^{-\frac{3}{2}} + 1}$

[$\because a^{\frac{3}{2}} \cdot a^{-\frac{3}{2}} = a^{\frac{3}{2}}$

[$\because a^0 = 1$]

= $\frac{\left(a^{\frac{3}{2}} + a^{-\frac{3}{2}}\right)^2 - 1}{a^{\frac{3}{2}} + a^{-\frac{3}{2}} + 1}$

[$\because a^0 = 1$]

= $\frac{\left(a^{\frac{3}{2}} + a^{-\frac{3}{2}}\right)^2 - 1}{a^{\frac{3}{2}} + a^{-\frac{3}{2}} + 1}$

[$\because a^0 = 1$]

= $\frac{\left(a^{\frac{3}{2}} + a^{-\frac{3}{2}}\right)^2 - 1}{a^{\frac{3}{2}} + a^{-\frac{3}{2}} + 1}$

[$\because a^0 = 1$]

= $\frac{\left(a^{\frac{3}{2}} + a^{-\frac{3}{2}}\right)^2 - 1}{a^{\frac{3}{2}} + a^{-\frac{3}{2}} + 1}$

[$\because a^0 = 1$]

= $\frac{\left(a^{\frac{3}{2}} + a^{-\frac{3}{2}} + 1\right)}{a^{\frac{3}{2}} + a^{-\frac{3}{2}} - 1}$ (Graical ecoil)

= $\frac{\left(a^{\frac{3}{2}} + a^{-\frac{3}{2}} + 1\right)}{a^{\frac{3}{2}} + a^{\frac{3}{2}} + 1}$

৫. সরল কর:

$$\left\{ \left(x^{\frac{1}{a}} \right)^{\frac{a^{2}-b^{2}}{a-b}} \right\}^{\frac{a}{a+b}} \\
= \left(x^{\frac{1}{a}} \right)^{\frac{a^{2}-b^{2}}{a-b}} \\
= \left$$

Ans, x

$$\frac{\frac{3}{2} + ab}{ab - b^{3}} - \frac{\sqrt{a}}{\sqrt{a - b}} \\
= \frac{\frac{(a + b)}{b} \times \frac{a - b}{a} - b}{(a + b)} - \frac{\sqrt{a}}{\sqrt{a - b}} \\
= \frac{a(\sqrt{a + b})}{b(a - b^{2})} - \frac{\sqrt{a}}{\sqrt{a - b}} \\
= \frac{a(\sqrt{a + b})}{b\{(\sqrt{a})^{2} - (b)^{2}\}} - \frac{\sqrt{a}}{\sqrt{a - b}}$$

$$= \frac{a(\sqrt{a + b})}{b\{(\sqrt{a})^{2} - (b)^{2}\}} - \frac{\sqrt{a}}{\sqrt{a - b}}$$

$$= \frac{a(\sqrt{a + b})}{b\{(\sqrt{a})^{2} - (b)^{2}\}} - \frac{\sqrt{a}}{\sqrt{a - b}}$$

$$= \frac{a(\sqrt{a + b})}{b(\sqrt{a})^{2} - (b)^{2}} - \frac{\sqrt{a}}{\sqrt{a - b}}$$

$$= \frac{a(\sqrt{a + b})}{b(\sqrt{a})^{2} - (b)^{2}} - \frac{\sqrt{a}}{\sqrt{a - b}}$$

$$= \frac{a(\sqrt{a + b})}{b(\sqrt{a})^{2} - (b)^{2}} - \frac{\sqrt{a}}{\sqrt{a - b}}$$

$$= \frac{a(\sqrt{a + b})}{b(\sqrt{a})^{2} - (b)^{2}} - \frac{\sqrt{a}}{\sqrt{a - b}}$$

$$= \frac{a(\sqrt{a + b})}{b(\sqrt{a})^{2} - (b)^{2}} - \frac{\sqrt{a}}{\sqrt{a - b}}$$

$$= \frac{a(\sqrt{a + b})}{b(\sqrt{a})^{2} - (b)^{2}} - \frac{\sqrt{a}}{\sqrt{a - b}}$$

$$= \frac{a(\sqrt{a + b})}{b(\sqrt{a})^{2} - (b)^{2}} - \frac{\sqrt{a}}{\sqrt{a - b}}$$

$$= \frac{a(\sqrt{a + b})}{b(\sqrt{a})^{2} - (b)^{2}} - \frac{\sqrt{a}}{\sqrt{a - b}}$$

$$= \frac{a(\sqrt{a + b})}{b(\sqrt{a})^{2} - (b)^{2}} - \frac{\sqrt{a}}{\sqrt{a - b}}$$

$$= \frac{a(\sqrt{a + b})}{b(\sqrt{a})^{2} - (b)^{2}} - \frac{\sqrt{a}}{\sqrt{a - b}}$$

$$= \frac{a(\sqrt{a + b})}{b(\sqrt{a})^{2} - (b)^{2}} - \frac{\sqrt{a}}{\sqrt{a - b}}$$

$$= \frac{a(\sqrt{a + b})}{b(\sqrt{a})^{2} - (b)^{2}} - \frac{\sqrt{a}}{\sqrt{a - b}}$$

$$= \frac{a(\sqrt{a + b})}{b(\sqrt{a})^{2} - (b)^{2}} - \frac{\sqrt{a}}{\sqrt{a - b}}$$

$$= \frac{a(\sqrt{a + b})}{b(\sqrt{a})^{2} - (b)^{2}} - \frac{\sqrt{a}}{\sqrt{a - b}}$$

$$= \frac{a(\sqrt{a + b})}{b(\sqrt{a})^{2} - (b)^{2}} - \frac{\sqrt{a}}{\sqrt{a - b}}$$

$$= \frac{a(\sqrt{a + b})}{b(\sqrt{a})^{2} - (b)^{2}} - \frac{\sqrt{a}}{\sqrt{a - b}}$$

$$= \frac{a(\sqrt{a + b})}{b(\sqrt{a})^{2} - (b)^{2}} - \frac{\sqrt{a}}{\sqrt{a - b}}$$

$$= \frac{a(\sqrt{a + b})}{b(\sqrt{a})^{2} - (b)^{2}} - \frac{\sqrt{a}}{\sqrt{a - b}}$$

$$= \frac{a(\sqrt{a + b})}{b(\sqrt{a})^{2} - (b)^{2}} - \frac{a(\sqrt{a + b})}{\sqrt{a}} - \frac{a(\sqrt{a + b})}{\sqrt{a}} - \frac{a(\sqrt{a + b})}{\sqrt{a}} - \frac{a(\sqrt{a + b})}{\sqrt{a}}$$

$$= \frac{a(\sqrt{a + b})}{b(\sqrt{a})^{2} - (b)^{2}} - \frac{a(\sqrt{a + b})}{\sqrt{a}} -$$

$$\frac{1}{1} \frac{1}{1} \frac{1}$$

(ম)
$$\frac{1}{1+a^{-m}b^{n}+a^{-m}c^{n}} + \frac{1}{1+b^{-n}c^{n}+b^{-n}a^{m}} + \frac{1}{1+c^{-n}a^{m}+c^{-n}b^{n}}$$
সমাধান:
$$\frac{1}{1+a^{-m}b^{n}+a^{-m}c^{n}} + \frac{1}{1+b^{-n}c^{n}+b^{-n}a^{m}} + \frac{1}{1+c^{-n}a^{m}+c^{-n}b^{n}}$$
থানত রাশ্বির প্রথম অংশ = $\frac{1}{1+a^{-m}b^{n}+a^{-m}c^{n}}$

$$= \frac{a^{m}}{a^{m}(1+a^{-m}b^{n}+a^{-m}c^{n})}$$
[সব ও হরকে a^{m} হারা গুণা করে।
$$= \frac{a^{m}}{a^{m}+a^{-m+m}b^{n}+a^{-m+m}c^{n}}$$

$$= \frac{a^{m}}{a^{m}+a^{-m+m}b^{n}+a^{-m+m}c^{n}}$$

$$= \frac{a^{m}}{a^{m}+b^{n}+c^{n}}$$

$$= \frac{a^{m}}{a^{m}+b^{n}+c^{n}}$$

$$= \frac{a^{m}}{a^{m}+b^{n}+c^{n}}$$

$$= \frac{a^{m}}{a^{m}+b^{n}+c^{n}}$$

$$= \frac{a^{m}}{a^{m}+b^{n}+c^{n}}$$

$$= \frac{a^{m}}{a^{m}+b^{n}+c^{n}}$$

$$= \frac{a^{m}}{a^{m}+b^{n}+c^{n}} + \frac{1}{1+c^{-n}a^{m}+c^{n}b^{n}}$$

$$= \frac{a^{m}}{a^{m}+b^{n}+c^{n}} + \frac{1}{1+c^{-n}a^{m}+c^{n}b^{n}}$$

$$= \frac{a^{m}}{a^{m}+b^{n}+c^{n}} + \frac{b^{n}}{a^{m}+b^{n}+c^{n}} + \frac{c^{n}}{a^{m}+b^{n}+c^{n}}$$

$$= \frac{a^{m}}{a^{m}+b^{n}+c^{n}} = 1$$
Ans. 1

(a) by $\sqrt{\frac{x^{\frac{N}{2}}}{x^{\frac{N}{2}}}} \times c_{n} \sqrt{\frac{x^{\frac{N}{2}}}{x^{\frac{N}{2}}}}} \times \sqrt{\frac{x^{\frac{N}{2}}}{x^{\frac{N}{2}}}} \times \sqrt{\frac{x^{\frac{N}{2}}}{x^{\frac{N}{2}}}}}$

$$= \left(\frac{x^{\frac{N}{2}}-c^{\frac{N}{2}}}{x^{\frac{N}{2}}}\right)^{\frac{1}{m}} \times \left(\frac{x^{\frac{N}{2}}-c^{\frac{N}{2}}}{x^{\frac{N}{2}}}\right)^{\frac{1}{m}} \times \left(\frac{x^{\frac{N}{2}}-c^{\frac{N}{2}}}{x^{\frac{N}{2}}}\right)^{\frac{1}{m}}$$

$$= \frac{a^{\frac{N}{2}-c^{\frac{N}{2}}}}{x^{\frac{N}{2}}} \times \sqrt{\frac{x^{\frac{N}{2}}}{x^{\frac{N}{2}}}} \times \sqrt{\frac{x^{\frac{N}{2}}}{x^{\frac{N}{2}}}}$$

$$= \frac{a^{\frac{N}{2}-c^{\frac{N}{2}}}}{x^{\frac{N}{2}}} \times \sqrt{\frac{x^{\frac{N}{2}}}{x^{\frac{N}{2}}}} \times \sqrt{\frac{x^{\frac{N}{2}}}{x^{\frac{N}{2}}}}$$

$$= \frac{a^{\frac{N}{2}-c^{\frac{N}{2}}}}{x^{\frac{N}{2}}} \times \sqrt{\frac{x^{\frac{N}{2}}}{x^{\frac{N}{2}}}} \times \sqrt{\frac{x^{\frac{N}{2}}}{x^{\frac{N}{2}}}}$$

$$= \frac{a^{\frac{N}{2}-c^{\frac{N}{2}}}}{x^{\frac{N}{2}}} \times \sqrt{\frac{x^{\frac{N}{2}}}{x^{\frac{N}{2}}}} \times \sqrt{\frac{x^{\frac{N}{2}}}{x^{\frac{N}{2}}}} \times \sqrt{\frac{x^{\frac{N}{2}}}{x^{\frac{N}{2}}}}}$$

$$= \frac{a^{\frac{N}{2}-c^{\frac{N}{2}}}}{x^{\frac{N}{2}}} \times \sqrt{\frac{x^{\frac{N}{2}}}}{x^{\frac{N}{2}}} \times \sqrt{\frac{x^{\frac{N}{2}}}{x^{\frac{N}{2}}}}} \times \sqrt{\frac{x^{\frac{N}{2}}}{x^{\frac{N}{2}}}}}$$

$$= \frac{a^{\frac{N}{2}-c^{\frac{N}{2}}}}{x^{\frac{N}{2}}} \times \sqrt{\frac{x^{\frac{N}{2}}}{x^{\frac{N}{2}}}} \times \sqrt{\frac{x^{\frac{N}{2}}}{x^{\frac{N}{2}}}}} \times \sqrt{\frac{x^{\frac{N}{2}}}{x^{\frac{N}{2}}}} \times \sqrt{\frac{x^{\frac{N}{2}}}}{x^{\frac{N}{2}}}} \times \sqrt{\frac{x^{\frac{N}{2}}}{x$$

বিকল সমাধান:
$$\frac{1}{\sqrt{\frac{x^{\frac{1}{2}}}{x^{\frac{1}{2}}}}} \times \frac{\sqrt{\frac{x^{\frac{1}{2}}}{x^{\frac{1}{2}}}}}{\sqrt{\frac{x^{\frac{1}{2}}}{x^{\frac{1}{2}}}}} \times \frac{\sqrt{\frac{x^{\frac{1}{2}}}{x^{\frac{1}{2}}}}}{\sqrt{\frac{x^{\frac{1}{2}}}{x^{\frac{1}{2}}}}} \times \frac{\sqrt{\frac{x^{\frac{1}{2}}}{x^{\frac{1}{2}}}}}{\sqrt{x^{\frac{1}{2}}}} \times \frac{\sqrt{x^{\frac{1}{2}}}}{\sqrt{x^{\frac{1}{2}}}}} \times \frac{\sqrt{x^{\frac{1}{2}}}}{\sqrt{x^{\frac{1}{2}}}} \times \frac{\sqrt{x^{\frac{1}{2}}}}{\sqrt{x^{\frac{1}{2}}}}} \times \frac{x^{\frac{1}{2}}}{\sqrt{x^{\frac{1}{2}}}}} \times \frac{\sqrt{x^{\frac{1}{2}}}}{\sqrt{x^{\frac{1}{2}}}} \times \frac{x^{\frac{1}{2}}}{\sqrt{x^{\frac{1}{2}}}}} \times \frac{x^{\frac{1}{2}}}{\sqrt{x^{\frac{1}{2}}}}} \times \frac{x^{\frac{1}{2}}}}{\sqrt{x^{\frac{1}{2}}}} \times \frac{x^{\frac{1}{2}}}{\sqrt{x^{\frac{1}{2}}}}} \times \frac{x^{\frac{1}{2}}}}{\sqrt{x^{\frac{1}{2}}}}} \times \frac{x^{\frac{1}{2}}}{\sqrt{x^{\frac{1}{2}}}}} \times \frac{x^{\frac{1}{2}}}}{\sqrt{x^{\frac{1}{2}}}}} \times \frac{x^{\frac{1}{2}}}{\sqrt{x^{\frac{1}{2}}}}} \times \frac{x^{\frac{1}{2}}}{\sqrt{x^{\frac{1}{2}}}}} \times \frac{x^{\frac{1}{2}}}}{\sqrt{x^{\frac{1}{2}}}}} \times \frac{x^{\frac{1}{2}}}}{\sqrt{x^{\frac{1}{2}}}}} \times \frac{x^{\frac{1}{2}}}}{\sqrt{x^{\frac{1}{2}}}}} \times \frac{x^{\frac{1}{2}}}}{\sqrt{x^{\frac{1}{2}}}}} \times \frac{x^{\frac{1}{2}}}}{\sqrt{x^{\frac{1}{2}}}}} \times \frac{x^{\frac{1}{2}}}}{\sqrt{x^{\frac{1}{$$

৬. দেখাও যে,

(क) बिन
$$x = a^{q+r}b^p$$
, $y = a^{r+p}b^q$, $z = a^{p+q}b^r$ दक्ष, खरव
 x^{q-r} , y^{r-p} , $z^{p-q} = 1$

সমাধান:

কৈ) সেওয়া আছে,
$$x = a^{q+r}b^p$$
, $y = a^{r+p}b^q$, $z = a^{p+q}b^r$
 $\exists x = x^{q-r}$, y^{r-p} , z^{p-q}
 $= (a^{q+r}b^p)^{q-r}(a^{r+p}b^q)^{r-p}(a^{p+q}b^r)^{p-q}$ [মান বসিয়ে]

 $= a^{(q+r)(q-r)}b^{p(q-r)}a^{(r+p)(r-p)}b^{q(r-p)}a^{(p+q)(p-q)}b^{r(p-q)}$
 $= a^{q^2-r^2}b^{pq-rp}a^{r^2-p^2}b^{qr-pq}a^{p^3-q^2}b^{rp-qr}$
 $= a^{q^2-r^2+r^2-p^2+p^2-q^2}b^{pq-rp+qr-pq+rp-qr}$
 $= a^{q^2-r^2+r^2-p^2+p^2-q^2}b^{pq-rp+qr-pq+rp-qr}$
 $= a^0.b^0$
 $= 1.1$ [: $a^0 = 1$]

 $= 1 = b$

বা,
$$(b^q)^r = a$$
 [:: $b^q = c$]

$$[: b^q = c]$$

$$[\because (\mathbf{a}^{\mathsf{r}})^{\mathsf{s}} = \mathbf{a}^{\mathsf{r}\mathsf{s}}]$$

$$[:: a_b = b]$$
$$[:: a_b = b]$$

(গ) দেওয়া আছে,
$$a^x = p$$
, $a^y = q$ এবং $a^2 = \left(p^y q^x\right)^y$ এখানে, $\left(p^y q^x\right)^2 = a^2$

বা, $\left\{\left(a^x\right)^y \left(a^y\right)^x\right\}^2 = a^2$ [: $p = a^x$, $q = a^y$]

বা, $\left(a^{xy}a^{xy}\right)^z = a^2$ [: a^r) a^r a^r

9. (4) यमि $x\sqrt[3]{a} + y\sqrt[3]{b} + z\sqrt[3]{c} = 0$ धावर $a^2 = bc$ दश, ज्रद লেশাও বে, $ax^3 + by^3 + cz^3 = 3axyz$

সমাধান: দেওয়া আছে,

$$x \sqrt[3]{a} + y \sqrt[3]{b} + z \sqrt[3]{c} = 0$$
 এবং $a^2 = bc$

এখানে,
$$x\sqrt{a} + y\sqrt[3]{b} + z\sqrt[3]{c} = 0$$

বা,
$$x \sqrt{a} = -(y \sqrt{b} + z \sqrt{c})$$

বা,
$$(x\sqrt[3]{a})^3 = \left\{-\left(y\sqrt[3]{b} + z\sqrt[3]{c}\right)^3$$
 [উভয় পক্ষকে ঘন করে]

$$\boxed{41, \ x^3 \left(a^{\frac{1}{3}}\right)^3 = -y^3 \left(b^{\frac{1}{3}}\right)^3 - z^3 \left(c^{\frac{1}{3}}\right)^3 - 3y \sqrt[3]{b} \ z \sqrt[3]{c} \left(y \sqrt[3]{b} + z \sqrt[3]{c}\right)}$$

$$\left[: \times \sqrt[3]{a} = -\left(y \sqrt[3]{b} + z \sqrt[3]{c} \right) \right]$$

বা,
$$ax^3 + by^3 + cz^3 = 3xyz(a^2)^{\frac{1}{3}}(a)^{\frac{1}{3}}$$
 [$a^2 = bc$]

$$\overline{41}$$
, $ax^3 + by^3 + cz^3 = 3xyz a^{\frac{2}{3} + \frac{1}{3}}$

∴
$$ax^3 + by^3 + cz^3 = 3axyz$$
 (CPUICAL ECAL)

(4) रिम
$$x = (a + b)^{\frac{1}{3}} + (a - b)^{\frac{1}{3}}$$
 ध्वर $a^2 - b^2 = c^3$ रुप्त, फरव
रम्भांश्व (य, $x^3 - 3cx - 2a = 0$

সমাধান: দেওয়া আছে,

x =
$$(a + b)^{\frac{1}{3}}$$
 + $(a - b)^{\frac{1}{3}}$ এবং $a^2 - b^2 = c^3$

এখানে,
$$x = (a + b)^{\frac{1}{3}} + (a - b)^{\frac{1}{3}}$$

বা,
$$x^3 = \left\{ (a+b)^{\frac{1}{3}} + (a-b)^{\frac{1}{3}} \right\}^3$$
 [উভয় পক্ষকে ঘন করে]
বা, $x^3 = \left\{ (a+b)^{\frac{1}{3}} \right\}^3 + \left\{ (a-b)^{\frac{1}{3}} \right\}^3 + 3.(a+b)^{\frac{1}{3}} (a-b)^{\frac{1}{3}}$

বা,
$$x^3 = \left[(a+b)^3 \right] + \left[(a-b)^3 \right] + 3.(a+b)^3 (a-b)^3$$

$$\begin{cases} \frac{1}{3} & \frac{1}{3} \\ (a+b)^3 + (a-b)^3 \end{cases} [\because (x+y)^3 = x^3 + y^3 + 3xy (x+y)]$$

বা,
$$x^3 = a + b + a - b + 3 (a^2 - b^2)^{\frac{1}{3}}$$
. x

$$\left[\because \left(\mathbf{a} + \mathbf{b} \right)^{\frac{1}{3}} + \left(\mathbf{a} - \mathbf{b} \right)^{\frac{1}{3}} = \mathbf{x} \right]$$

বা,
$$x^3 = 2a + 3.(c^3)^{\frac{1}{3}} \cdot x$$
 [∴ $a^2 - b^2 = c^3$]

বা,
$$x^3 = 2a + 3cx$$

..
$$x^3 - 3cx - 2a = 0$$
 (CANICAL REAL)

(1) यमि $a = 2^{\frac{1}{3}} + 2^{-\frac{1}{3}}$ হয়, তবে দেখাও যে, $2a^3 - 6a = 5$

সমাধান: দেওয়া আছে, $a = 2^{\frac{1}{3}} + 2^{-\frac{1}{3}}$

বা,
$$a^3 = \left(2^{\frac{1}{3}} + 2^{-\frac{1}{3}}\right)^3$$
 [উভয় পৃক্ষকে ঘন করে]

$$\mathbf{A1. \ a^3} = 2^1 + 2^{-1} + 3 \cdot 2^0 \cdot \mathbf{a}$$

$$\left[\because 2^{\frac{1}{3}} \cdot 2^{\frac{-1}{3}} = 2^{\frac{1}{3} - \frac{1}{3}} = 2^{0} \text{ AR} 2^{\frac{1}{3}} + 2^{-\frac{1}{3}} = a \right]$$

বা,
$$a^3 = 2 + \frac{1}{2} + 3a$$

বা,
$$a^3 = \frac{4+1+6a}{2}$$

বা,
$$2a^3 = 4 + 1 + 6a$$

(च) दिन $a^2 + 2 = 3^{\frac{2}{3}} + 3^{-\frac{2}{3}}$ धवर $a \ge 0$ दश, छद दिन्धी छ द्य,

সমাধান: দেওয়া আছে,

$$a^2 + 2 = 3^{\frac{2}{3}} + 3^{-\frac{2}{3}}$$

বা,
$$a^2 = \left(3^{\frac{1}{3}}\right)^2 + \left(3^{-\frac{1}{3}}\right)^2 - 2$$

$$\boxed{ 41, \ a^2 = \left(3^{\frac{1}{3}}\right)^2 + \left(3^{-\frac{1}{3}}\right)^2 - 2 \cdot 3^{\frac{1}{3}} \cdot 3^{-\frac{1}{3}} \qquad \left[\because 3^{\frac{1}{3}}, 3^{-\frac{1}{3}} = 3^0 = 1 \right] }$$

$$\overline{41}, \ a^2 = \left(3^{\frac{1}{3}} - 3^{-\frac{1}{3}}\right)^2$$

 $41, a = 3^{\frac{1}{3}} - 3^{-\frac{1}{3}}$

ষ্টিভয় পক্ষে বর্গমূল এবং ∵ a ≥ 0 (यद्ध्यू धनाञ्चक मान निरःश्र)

বা,
$$a^3 = \left(3^{\frac{1}{3}} - 3^{-\frac{1}{3}}\right)^3$$
 [উভয় পক্ষকে ঘন করে]

TI,
$$a^3 = \left(3^{\frac{1}{3}}\right)^3 - \left(3^{-\frac{1}{3}}\right)^3 - 3 \cdot 3^{\frac{1}{3}} \cdot 3^{-\frac{1}{3}} \left(3^{\frac{1}{3}} - 3^{-\frac{1}{3}}\right)$$

∴ $(a - b)^3 = a^3 - b^3 - 3ab (a - b)$]
TI, $a^3 = 3 - 3^{-1} - 3 \cdot 3^0 \cdot a$

$$\left[\because 3^{\frac{1}{3}} . 3^{-\frac{1}{3}} = 3^{\frac{1}{3} - \frac{1}{3}} = 3^{0}$$
 এবং $3^{\frac{1}{3}} - 3^{-\frac{1}{3}} = a \right]$

$$41$$
, $a^3 = 3 - \frac{1}{3} - 3a$

$$41$$
, $a^3 + 3a = \frac{8}{3}$

: 3a³ + 9a = 8 (जनांदना रूटना)

[বি. দ্র. পাঠ্য বইয়ের প্রশ্নে 3^3 এর স্থলে $3^{\frac{5}{3}}$ হবে!

(8) যদি $a^2 = b^3$ হয়, ভবে দেখাও যে, $\left(\frac{a}{b}\right)^{\frac{3}{2}} + \left(\frac{b}{a}\right)^{\frac{2}{3}} = a^{\frac{1}{2}} + b^{-\frac{1}{3}}$

সমাধান: এখানে, $a^2 = b^3$: $a = b^{\overline{2}}$ আবার, $a^2 = b^3$ বা, $b^3 = a^2$

এখন, বামপক্ষ =
$$\left(\frac{a}{b}\right)^{\frac{3}{2}} + \left(\frac{b}{a}\right)^{\frac{2}{3}}$$

$$= \frac{a^{\frac{3}{2}}}{b^{\frac{3}{2}}} + \frac{b^{\frac{2}{3}}}{a^{\frac{2}{3}}}$$

$$= \frac{a^{\frac{3}{2}}}{a} + \frac{b^{\frac{2}{3}}}{b} \quad \left[\because a = b^{\frac{3}{2}}, b = a^{\frac{2}{3}}\right]$$

$$= a^{\frac{3}{2}-1} + b^{\frac{2}{3}-1}$$

$$= a^{\frac{1}{2}} + b^{\frac{1}{3}}$$

$$= a^{\frac{1}{2}} + b$$

$$= ভানপক$$

$$\therefore \left(\frac{a}{b}\right)^{\frac{3}{2}} + \left(\frac{b}{a}\right)^{\frac{2}{3}} = a^{\frac{1}{2}} + b^{-\frac{1}{3}}$$
 (CANTENT SUM)

সমাধান: এখানে,

$$b = 1 + 3^{\frac{2}{3}} + 3^{\frac{1}{3}}$$

$$5 = 1 + 3^{\frac{2}{3}} + 3^{\frac{1}{3}}$$

$$6 = 1 + 3^{\frac{2}{3}} + 3^{\frac{1}{3}}$$

বা,
$$(b-1)^3 = \left(3^{\frac{2}{3}} + 3^{\frac{1}{3}}\right)^3$$
 [উভয় পক্ষকে ঘন করে]

বা,
$$b^3 - 3b^2 + 3b - 1 = 3^2 + 3 + 3 \cdot 3^{\frac{2}{3} + \frac{1}{3}} \cdot (b - 1)$$

$$\left[\because 3^{\frac{2}{3}} + 3^{\frac{1}{3}} = b - 1 \right]$$

$$41, \quad b^3 - 3b^2 + 3b - 1 = 9 + 3 + 3 \cdot 3^1(b - 1)$$

$$41, \quad b^3 - 3b^2 + 3b - 1 = 12 + 9b - 9$$

বা,
$$b^3 - 3b^2 + 3b - 1 = 12 + 9b - 9$$

বা, $b^3 - 3b^2 + 3b - 1 - 12 - 9b + 9 = 0$

:.
$$b^3 - 3b^2 - 6b - 4 = 0$$
 (CANICAL ECOI)

(ছ) যদি a + b + c = 0 হয়, তবে দেখাও যে,

$$\frac{1}{x^{b} + x^{-c} + 1} + \frac{1}{x^{c} + x^{-a} + 1} + \frac{1}{x^{a} + x^{-b} + 1} = 1$$
সমাধান:

$$\begin{aligned} & \forall \mathbf{x} | \mathbf{x} | \mathbf{x} = \frac{1}{x^b + x^{-c} + 1} + \frac{1}{x^c + x^{-a} + 1} + \frac{1}{x^a + x^{-b} + 1} \\ & = \frac{1}{x^b + \frac{1}{x^c} + 1} + \frac{1}{x^c + x^{-b} + 1} + \frac{1}{x^a + x^{-b} + 1} \\ & = \frac{1}{x^b + \frac{1}{x^c} + 1} + \frac{1}{x^c + x^{b+c}} + \frac{1}{x^a + \frac{1}{x^b} + 1} \\ & = \frac{x^c}{1 + x^c + x^{b+c}} + \frac{1}{1 + x^c + x^{b+c}} + \frac{x^b}{x^{a+b} + x^b + 1} \\ & = \frac{x^c}{1 + x^c + x^{b+c}} + \frac{1}{1 + x^c + x^{b+c}} + \frac{x^b}{x^{-c} + x^b + 1} \\ & = \frac{x^c}{1 + x^c + x^{b+c}} + \frac{1}{1 + x^c + x^{b+c}} + \frac{x^b}{\frac{1}{x^c} + x^b + 1} \\ & = \frac{x^c}{1 + x^c + x^{b+c}} + \frac{1}{1 + x^c + x^{b+c}} + \frac{x^b \cdot x^c}{1 + x^c + x^{b+c}} \\ & = \frac{x^c + 1 + x^{b+c}}{1 + x^c + x^{b+c}} + \frac{1}{1 + x^c + x^{b+c}} = 1 \\ & \therefore \frac{1}{x^b + x^{-c} + 1} + \frac{1}{x^c + x^{-a} + 1} + \frac{1}{x^a + x^{-b} + 1} = 1 \end{aligned}$$

৮. (ক) যদি a^x = b, b^y = c এবং c^x = 1 হয়, তবে xyz = কত? **সমাধান:** দেওয়া আছে,

यनि $x^a = y^b = z^c$ अवर xyz = 1 स्त्र, एत्व ab + bc + ca = क्छ?সমাধান: ধরি, $x^a = y^b = z^c = k$

$$\therefore x^a = k$$

$$\therefore x = k^a$$

$$\therefore x = k^a$$
অনুরূপভাবে, $y = k^b$ এবং $z = k^c$
এখন, $xyz = 1$
বা, $k^a \cdot k^b \cdot k^c = 1$ [$\because x = k^a$, $y = k^b$ এবং $z = k^c$]
বা, $k^a \cdot k^b \cdot k^c = 1$

বা,
$$k = bc + ca + nb$$

বা, $k = abc = k^{\circ}$

বা, $\frac{ab + bc + ca}{abc} = 0$

বা, $ab + bc + ca = 0 \times abc$

∴ $ab + bc + ca = 0$ (Ans.)

(গ) যদি $9^{1} = (27)^{y}$ হয়, তাহলে $\frac{x}{y}$ এর মান কড়া

সমাধান: দেওয়া আছে, $9^x = (27)^y$ বা, $(3^2)^x = (3^3)^y$ বা, $3^{2x} = 3^{3y}$ বা, 2x = 3y $\therefore \frac{x}{y} = \frac{3}{2}$ (Ans.)

১. সমাধান কর:

 $\therefore a = \frac{-4 \pm \sqrt{16 - 48}}{2} = \frac{-4 \pm \sqrt{-32}}{2}$

∴ $a^2 + 4a + 12 \neq 0$ काরণ a এর কোনো বাস্তবমান উপরিউক্ত সমীকরণুকে সিন্ধ করে না ।
∴ নির্দেয় সমাধান, x = 0

বা, $3^{y} = 3$

ৰা, 3^y = 3¹

 $\therefore y = 1$

```
(iii) নং এ y = । বসিয়ে পাই,
      5^{x} + 5.3^{1-1} = 10
     বা, 5^x + 5.1 = 10 [... 3^0 = 1]
     বা, 5* = 10 - 5
     বা, 5* = 5
     বা, 5* = 51
      .: x = 1
      ∴ নির্ণের সমাধান, (x, y) = (1,1)
(4) 4^{3y-2} = 16^{x+y}
     3^{x+2y} = 9^{2x+1}
     শ্বাধান: 4^{3y-2} = 16^{x+y}.....(i) 3^{x+2y} = 9^{2x+1}.....(ii)
     (i) নং থেকে পাই,
     4^{3y-2} = (4^2)^{x+y}
     4^{3y-2}=4^{2x+2y}
     বা, 3y-2=2x+2y
      \therefore 2x - y + 2 = 0 ......(iii)
      (ii) নং থেকে পাই,
      3^{x+2y} = (3^2)^{2x+1}
     3^{x+2y} = 3^{4x+2}
     4x + 2y = 4x + 2
      \therefore 3x - 2y + 2 = 0 \dots (iv)
      (iii) नः क 3 दाता এवर (iv) नः क 2 दाता गूप करत विरहाश
     করে পাই,
        6x - 3y + 6 = 0
        6x - 4y + 4 = 0
      ∴ y = – 2
     y এর মান (iv) নং এ বসিয়ে পাই,
      3x + 4 + 2 = 0
      বা, 3x + 6 = 0
     বা, 3x = -6
      \therefore x = -2
      ∴ নির্ণের সমাধান, (x, y).= (- 2, - 2)
     [বি: দ্র: পাঠ্যবইয়ের উত্তর ভূল আছে]
(\P) 2^{2x+1}. 2^{3y+1} = 8
      21+2, 2y+2 = 16
      সমাধান:
      2^{2x+1}.2^{3y+1} = 8 ....(i)
      2^{x+2} \cdot 2^{y+2} = 16 \cdot \dots (ii)
      (i) নং থেকে পাই,
      2^{2x+1} \cdot 2^{3y+1} = 8
      বা, 2<sup>2x+1+3y+1</sup> = 2<sup>3</sup>
    বা, 2<sup>2x + 3y + 2</sup> = 2<sup>3</sup>
      41, 2x + 3y + 2 = 3
      \therefore 2x + 3y - 1 = 0 ......(iii)
      (ii) নং থেকে পাই,
      2^{x+2}. 2^{y+2} = 16
      41, 2^{x+2+y+2} = 2^4
      বা, x + y + 4 = 4
      \P1, x + y = 0
      \therefore x = -y \dots (iv)
      (iv) नः त्थंदक x अत्र मान (iii) नः अ विज्ञारा शाँदे,
      -2y + 3y - 1 = 0
      \therefore y = 1
       (iv) নং y = 1 বসিয়ে পাই,
      ... নিৰ্দেয় সমাধান, (x, y) = (- 1, 1)
```