广告营销uplift分享

Part I 【从黑夜到黎明】

怎样在AB评估场景下,构建一套合理的RTB策略

一、为什么Uplift

1.1、背景&问题

当前DSP基于AB评估的业务 (网约车存量新、沉默用户、流失用户),采用CTCVR预估模型(7日内转化模型)+CPA出价的方式。此方案应对于CAC归因的评估方式是可行的,因为归因评估不需要考虑**反事实**,即被广告干预过(7天末次归因)即为(广告+渠道礼包)影响的转化。

但在应对于AB评估场景下,该出价方式是不合理的,若用户<自然转化率高、且广告预估CTCVR同样高>,则广告干预带来的转化净增量 $\Delta TCVR = CTCVR - NCVR$ (自然转化率)相对较低,但由于CTCVR较高,我们基于CPA出价 $price = CTCVR \cdot bid$ 会较高,而由于点击率高,该广告背后的二价往往也相对较高,这导致我们此次出价的ROI较低, $ROI = \frac{\Delta TCVR}{price_{second}}$ 。

注变量说明:

名称	变量名	变量说明
整体转化率	TCVR	用户7日内整体转化率,包括曝光、点击转化、自然转化等
广告干预转化率	CTCVR	包括曝光转化、点击转化、点击后延迟转化 用户 BOR
自然转化率	NCVR	无广告干预下的转化率 NCVR 发单

二、Uplift出价怎么做

2.1、目标拆解

若我们每日的广告投放预算一定,则我们可将广告投放建模为预算约束下,最大化首单(首呼)增量的形式即: $maximize \sum_i \Delta iorder_i$

$$s.t.\sum_{ij} cost_{ij} <= budget$$

$$cost_{ij} = X_{ij} \cdot price_{ij} \cdot accept_prob_{ij}$$

其中

变量	含义
i	乘客i
j	与乘客i对应的第j个请求
$iorder_i$	乘客i广告投放周期内是否有过发单
$cost_{ij}$	对第ij个请求的开销
X_{ij}	决策变量: 是否对ij请求进行bid
$price_{ij}$	广告二价
$accept_prob_{ij}$	媒体方接受我们广告的概率

可加性假设

因为单次曝光对整体首单的影响比较难建模,我们做出可加性假设,对于每个用户,其首单增量=每次曝光对首单 的增量之和,即

$$\Delta iorder_i = \sum_{j} iorder_{ij}$$

最优出价公式

若供给方平台请求均严格按照二价竞拍,则对于任意一个请求其最终结算金额 $price_{ij}$ 是客观固定的,而其价值 $\Delta iorder_{ij}$ 也是客观的。则我们有对于任意一个请求,其首单ROI与我们的出价无关,为

$$ROI_{ij} = rac{\Delta iorder_{ij} \cdot accept_prob_{ij}}{price_{ij} \cdot accept_prob_{ij}} = rac{\Delta iorder_{ij}}{price_{ij}}$$

则目标中的规划模型,可转化为购买头部ROI的请求(确定一个ROI阈值 ROI_0),使得我们当天的花费等于当天预算。

我们有出价公式

$$price_{ij}^{bid} = \Delta iorder_{ij} \cdot rac{1}{ROI_0}$$

最优性证明

对于orall一个请求ij,我们出价 $price_{ij}^{bid} = \Delta iorder_{ij} \cdot rac{1}{ROI_0}$,考虑两种情况:

- 1. $ROI_{ij}>=ROI_0$,其二价 $price_{ij}=\Delta iorder_{ij}\cdot \frac{1}{ROI_{ij}}<=price_{ij}^{bid}$,若不存在频控的问题,该条广告我们会竞得
- 2. $ROI_{ij} < ROI_0$,其二价 $price_{ij} = \Delta iorder_{ij} \cdot \frac{1}{ROI_{ij}} > price_{ij}^{bid}$,该条广告我们不会竞得

因此我们按照 $price_{ij}^{bid} = \Delta iorder_{ij} \cdot \frac{1}{ROI_0}$ 进行出价,对于低于 ROI_0 的请求我们都会舍弃,对于高于 ROI_0 的请求我们在无频控的情况下,均可竞得。即在花费一定的情况下,购买头部ROI的请求。

~~~~~~歪楼: CPA出价公式

为什么在采用归因评估的时候, 我们采用CPA出价公式?

在归因评估时, 我们的目标为

 $maximize \sum iorder_{ij}^{Int} = \sum ctcvr_{ij}$

变量名	含义
$iorder^{Int}_{ij}$	归因给广告干预的首单数,采用点击归因则为点击后转化的首单量

对于一个请求来说,首单ROI即为:

$$ROI_{ij} = rac{iorder_{ij}^{Int} \cdot accept_prob_{ij}}{price_{ij} \cdot accept_prob_{ij}} = rac{iorder_{ij}}{price_{ij}} = rac{ctcvr_{ij}}{price_{ij}}$$

重新采用最优性证明即可证得CPA出价为最优出价。

2.2、模块拆解

因此我们线上的Pipeline如下

主要算法模块: uplift model

2.3、uplift model建模方案

1、观测数据建模

由于1. 随机试验数据成本过高、2. 供给方平台的限制,在广告营销场景中较难收集完全的随机实验数据,因此我们需要考虑从观测数据的建模方案。

观测数据建模要求条件:

- 1. Stable Unit Treatment Value Assumption (SUTVA) 样本之间潜在结果相互独立, 且同一个处理水平的潜在结果一致 (consistency), 即 $Y_i=Y_i(T)$
- 2. Ignorability 给定观测变量X, 潜在结果Y(0)与处理变量Y(1)之间条件独立, 即 $Y(0), Y(1) \perp T | X$
- 3. Positivity 对于任意 $X\in\mathcal{X}$, 在数据中观测到任意 $t\in\{0,1\}$ 的概率都不为0

在广告系统中,实验组人群存在重复曝光的可能,因此条件1被违背。

假设2

若我们进一步假设多次曝光的处理效应与单次曝光的处理效应相同,则条件1可满足

Step I、<上线> T-learner

由于当前EVE平台支持的限制,我们在第一步选用XGB作为基模型,考虑CFR的思路对样本进行样本ipw去偏,构建T-learner。

训练步骤:

- 1. 构建倾向性分数模型(广告被曝光的概率)
- 2. 将倾向性分数的预估结果作为实验组(被曝光的广告)样本的加权
- 3. 加权后的样本,构建CTCVR模型
- 4. 对照组样本作为自然转化模型

Step II、<迭代>基于表示学习 | 基于树模型

表示学习(深度): 在系统支持深度模型后,可接入Tar-net、CFR、Dragon-net

树模型: causal forest、grf + doubly robust、causal forest dml

Part II【从黎明到天亮】

因果推断简单介绍 => uplift Model & 补贴的应用 => 我们当前场景下要面临的挑战

一、因果推断

1.1、辛普森悖论

Covid-27 病症严重度 VS Treatment表

Treatment	轻度死亡率	重度死亡率	汇总死亡率
A组(T=0)	15% (1400中有210死亡)	30% (100人中30人死亡)	16%
B组(T=1)	10% (50人中5人死亡)	20% (500人中100人死亡)	19%

P(Y|T=1) > P(Y|T=0)

由于选择性偏差,我们直接对 Y VS T 进行相关性建模,会得到结论

药物治疗对于Covid-27病症会产生负向影响。

这个结论显然是有问题的, 谬误的原因在于

相关性不等于因果性

1.2、因果图&因果推断中的基本概念

一个相对比较全的因果干预图

变量	变量名	变量说明
Treatment	T	是否进行干预(广告、吃药等)
调整变量	X_1	只对结果response产生影响的量(自然转化率等)
混淆变量	X_3	对是否进行干预Treatment和结果reponse同时产生影响的变量
工具变量	X_4	只对treatment产生影响的变量
调节变量	X_2	对treatment的影响程度产生影响的量,用户异质性的来源
中介变量	M	treatment对其产生直接影响,但对结果产生间接影响的量
Response	Y	干预的结果,例如转化率,致死率,痊愈率等 $Y_0=E(Y T=0)\ Y_1=E(Y T=1)$
ATE	ATE	Average treatment effect $ATE=Y_1-Y_0$,因果推断中最关注的结果变量,在我们场景中为广告干预带来的增量,在上述例子中,ATE表述的是药物治疗对致死率的改善量

回到我们刚刚的辛普森悖论问题,导致我们得到错误结论的来源是病症严重度,其属于混淆变量X3,其影响了治疗率(Treatment)的同时,影响了致死率(Response Y)。

1.3、针对选择性偏差进行纠偏

由 $ATE=Y_1-Y_0$ 可知,若我们可对response Y进行无偏估计,那自然可以对ATE进行无偏估计

· 交量	变量名	变量说明
指示变量	R	实验组中 $R=1\ if\ T=1$ 对照组中 $R=1\ if\ T=0$
倾向性分数	Pr(T X)	每个用户基于其特征,被干预的概率

A. Outcome regression estimator

建模型 $Y_i = m(X_i, \beta)$

loss函数:
$$\sum_{i=1}^N R_i(Y_i - m(X_i, eta))^2$$

则
$$Y = N^{-1} \cdot \sum_{i=1}^N m(X_i, eta)$$

B. Inverse propensity score weighted estimator

建模倾向性分数模型

$$\pi(X_i, \gamma) = P(R = 1|X)$$

$$\log Y = N^{-1} \sum_{i=1}^N rac{R_i Y_i}{\pi(X_i,\gamma)}$$

C. Doubly Robust

$$Y=N^{-1}\sum_{i=1}^N\{rac{R_iY_i}{\pi(X_i,\gamma)}-rac{R_i-\pi(X_i,\gamma)}{\pi(X_i,\gamma)}m(X_i,eta)\}$$

该表达式有良好的特性: 回归模型m&倾向性分数π只要有一个是无偏估计就使得结果无偏, 证明如下

$$\begin{split} E\bigg\{\frac{RY}{\pi(X,\gamma^*)} - \frac{R - \pi(X,\gamma^*)}{\pi(X,\gamma^*)} m(X,\beta^*)\bigg\} \\ &= E\bigg[Y + \bigg\{\frac{R - \pi(X,\gamma^*)}{\pi(X,\gamma^*)}\bigg\} \left\{Y - m(X,\beta^*)\right\}\bigg] \\ &= \mu + E\left[\bigg\{\frac{R - \pi(X,\gamma^*)}{\pi(X,\gamma^*)}\bigg\} \left\{Y - m(X,\beta^*)\right\}\right] \end{split}$$

无偏性

我们由损失函数得到的参数统计量的期望为真值、但不需保证收敛。

相合性

在一次实验中取样个数n一直增大的情况下,只要n越来越大,最终估计出来的参数会趋近于真实的参数,期望可以有偏,但需要收敛到真值。

D. Double Machine Learning

本质问题

$$Y = T \cdot \theta + g_0(X) + U$$
 $E[U|X,T] = 0$ $T = \pi(X) + V$ $E[V|X] = 0$

我们需要预估 θ 即为ATE (平均处理效应)。拆成两步进行估计

- 1. 数据分成两个部分,在其中一个部分上估计g模型 8π 模型
- 2. 利用估计到的g, π , 在另一部分数据上用线性回归得到想要的估计量

若直接回归 $Y=T\cdot\theta+g_0(X)$,由于加入正则项等,收敛速率会更慢,甚至会导致预估非相合估计,即收敛不到期望真值。

二、Uplift模型

与传统因果推断中专注于ATE的估计不同,Uplift模型专注于CATE(ite有些片面)估计(Conditional ATE)

2.1 Meta-learners

模型	建模思路	问题&改进点
Slearner	直接建模 $Y=f(X,T)$ 则 $ au(X)=Y(X,1)-Y(X,0)$	低维T特征容易淹没在高维X特征中,受选择性偏差的影响很 大
Tlearner	建模两个模型 $Y_1=f_1(X)$, $Y_0=f_0(X)$ 则 $ au(X)=f_1(X)-f_0(X)$	若实验组数据&对照组数据分布差别较大,拆成两个模型之后仍旧无法估计 相比treatment来说,response的噪声可能更大。
Xlearner	$egin{aligned} \mu_0 &= \mathbb{E}[Y(0) X=x] \ \mu_1 &= \mathbb{E}[Y(1) X=x] \ ilde{D}_i^1 &:= Y_i^1 - \hat{\mu_0}(X_i^1) \ ilde{D}_i^0 &:= \hat{\mu_1}(X_i^0) - Y_i^0 \ ilde{ au}(x) &= g(x)\hat{ au_0}(x) + (1-g(x))\hat{ au_1}(x) \end{aligned}$	改进点: 在实验组数据量较少,预估偏差方向与对照组模型不一致,导致利用T-learner时, $ au$ 计算结果偏差较大

2.2 Causal Tree

模型	建模思路
causal tree	相对于回归树或分类树,其分裂标准为计算节点内ATE,若分裂后ATE相比分裂前更大,则进行分裂
causal forest	1. Honest Tree:对节点内样本随机分成两部分,一部分用于分裂一部分用于估计CATE,另一部分用于作为分裂不纯度 2. 将causal tree集成为causal forest
Grf generalized random forest	相对于causal forest,在计算节点内ATE时加入了,doubly robust,dml等方法, 并可自定义分裂标准
连续因果森林	由计算CATE改为计算CAPE(conditional average partial effect) 因为在C补场景下,可以自定义折扣级别,假设增量与折扣系数成正相关,进行建 模

2.3、基于深度学习

模型	建模思路

Algorithm 1 Balancing counterfactual regression

1: Input: $X, T, Y^F; \mathcal{H}, \mathcal{N}; \alpha, \gamma, \lambda$

2:
$$\Phi^*, g^* = \underset{\Phi \in \mathcal{N}, g \in \mathcal{H}}{\operatorname{arg \, min}} B_{\mathcal{H}, \alpha, \gamma}(\Phi, g)$$
 (2)

3: $h^* = \arg\min_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n (h(\Phi, t_i) - y_i^F)^2 + \lambda ||h||_{\mathcal{H}}$

4: Output: h^*, Φ^*

$$B_{\mathcal{H},\alpha,\gamma}(\Phi,h) = \frac{1}{n} \sum_{i=1}^{n} |h(\Phi(x_i), t_i) - y_i^F| +$$
 (2)

$$\alpha \operatorname{disc}_{\mathcal{H}}(\hat{P}_{\Phi}^{F}, \hat{P}_{\Phi}^{CF}) + \frac{\gamma}{n} \sum_{i=1}^{n} |h(\Phi(x_{i}), 1 - t_{i}) - y_{j(i)}^{F}|,$$

损失函数分3部分:

- 1. 事实数据误差
- 2. 事实模型&反事实模型对应的特征分布是近似的
- 3. 与反事实数据最近事实数据对应的loss

TAR-NET

BNN

$$\begin{split} \min_{\substack{h,\Phi\\\|\Phi\|=1}} & \frac{1}{n} \sum_{i=1}^n w_i \cdot L\left(h(\Phi(x_i), t_i)\,, y_i\right) + \lambda \cdot \Re(h) \\ & + \alpha \cdot \mathrm{IPM_G}\left(\{\Phi(x_i)\}_{i:t_i=0}, \{\Phi(x_i)\}_{i:t_i=1}\right), \\ \text{with} & w_i = \frac{t_i}{2u} + \frac{1-t_i}{2(1-u)}, \quad \text{where} \quad u = \frac{1}{n} \sum_{i=1}^n t_i, \\ \text{and} & \Re \text{ is a model complexity term.} \end{split}$$

损失函数包括两部分:

- 1. 加权事实数据误差
- 2. 实验组&对照组分布的差异

$$\mathcal{L} = \mathcal{L}_f + \alpha \mathcal{L}_d + \gamma \mathcal{L}_s + \lambda (||\Theta_{rep}^{-bias}||_2 + ||\Theta_c^{-bias}||_2 + ||\Theta_t^{-bias}||_2)$$

1.
$$\mathcal{L}_s(\mathcal{P},\mathcal{Q}) = -\sum_{i,j} \mathcal{P}_{i,j} \log rac{\mathcal{Q}_{i,j}}{\mathcal{P}_{i,j}}$$
KL散度

希望representation之前用x计算出倾向性得分相近的两个个体,representation之后, representation之间的距离还是相近

$$\mathcal{L}_s(\mathcal{P}, \mathcal{Q}) = -\sum_{i,j} \mathcal{P}_{i,j} \log rac{\mathcal{Q}_{i,j}}{\mathcal{P}_{i,j}},$$

where \mathcal{P} denotes the joint probability of \mathbf{x}_i and $\mathbf{x}_j:\mathcal{P}_{i,j} =$ $\frac{\exp(S(\mathbf{x}_i, \mathbf{x}_j))}{\sum_{k \neq l} \exp(S(\mathbf{x}_k, \mathbf{x}_l))} \text{ with } S(\cdot, \cdot) \text{ being the similarity function;}$ And \mathcal{Q} denotes the joint probability of \mathbf{R}_i and \mathbf{R}_j , which is calculated as: $\mathcal{Q}_{i,j} = \frac{\exp\left(-\|\mathbf{R}_i - \mathbf{R}_j\|^2\right)}{\sum_{k \neq l} \exp\left(-\|\mathbf{R}_k - \mathbf{R}_l\|^2\right)}.$

calculated as:
$$Q_{i,j} = \frac{\exp\left(-\|\mathbf{R}_i - \mathbf{R}_j\|^2\right)}{\sum_{k \neq l} \exp(-\|\mathbf{R}_k - \mathbf{R}_l\|^2)}$$
.

$$S(\mathbf{x}_i, \mathbf{x}_j) = 0.75 \left| \frac{f_{prop}(\mathbf{x}_i) + f_{prop}(\mathbf{x}_j)}{2} - 0.5 \right| -0.5 \left| f_{prop}(\mathbf{x}_i) - f_{prop}(\mathbf{x}_j) \right| + 0.5$$

2.4、营销补贴场景的应用

补贴类型	应用方式
离线补贴	 uplift建模、花费建模 弹性 = uplift / 花费 选取高弹性用户营销补贴
在线补贴	 uplift建模、花费建模 弹性 = uplift / 花费 差分背包求解离线补贴折扣 输出线上等价折扣模型

ACE

三、我们的挑战

3.1、模型部分

问题点	说明
实验组特征& 对照组特征维 度差异	实验组会包括媒体信息,上下文信息等特征;而对照组中这些特征无法取到,即使特征存在于unbid表中,多account_id情况下也不容易匹配。 1. 这些信息均与首单增量相关,如何将这些特征应用到uplift建模中。 2. 即使可以对实验组增量进行预估,如何借鉴QINI score的思路对预估结果进行评估
uv=>pv建模	当前用户会存在多次曝光的问题,因此难以度量每次曝光带来的增量。我们现在的做法是针对实验组、对照组均通过UV粒度建模,而UV粒度建模相对于PV粒度会丢失部分信息。
观测数据纠偏	因为我们的分流周期较长,因此空白组用户长期未被广告干预,其特征与实验组的差距会 越来越大。一种合理的方法是采用观测数据建模减弱相关特征的重要性。
向深度 &causal tree 推进	当前Meta learner的思路较为原始,但复杂模型对数据的要求较高,怎样向更有力的建模 方式过渡。

3.2、出价部分

问题	说明
券补	当前出价公式为仅考虑渠道花费的最优出价,如何综合考量券补。
预估 偏差	当前出价公式未考虑增量预估偏差,特别是在不同增量范围内偏差不同时,采用当前出价公式,会 对整体成本有较大影响。
防作弊	当前出价公式最优性证明是基于ADX二价结算的,如何在考虑ADX作弊情况下,进行最优出价

3.3、自动化出价

问题点	说明
两个自动化 出价方向	纯黑盒 <端到端建模> *CEM DDPG 白盒建模 媒体流量预估 & 规划 & 出价回归模型
纳什均衡	当前出价均是基于业务线最低成本的考量,而非从DSP角度出发,若不同业务线预算有差异,则会出现内卷严重问题,流量流向低效用业务线。

因果推断技术交流群

DCIRG - 滴滴因果推断研究小组<u>https://cooper.didichuxing.com/team-file/56040</u>