# The study of cold streams in galaxy formation

Galaxy-IGM Workshop on August 16th, 2021

Ryo Teraguchi (M2, Osaka University)

Collaborators: Kentaro Nagamine & Ikkoh Shimizu (Shikoku Gakuin University)

#### Gas accretion onto galaxies

- Accreting gas onto galaxies is an essential part of cosmic baryon cycle.
- Two modes of accretion (Keres et al. 2005)
  - Hot-mode: shock-heated to  $T \sim 10^6 K$ . Ambient accretion.
  - Cold-mode: stay cold  $T \sim 10^4 \, K$  without the virial shock. Filamentary accretion.



Tumlinson et al. (2017)



Keres et al. (2005)

#### Cold streams

- Accrete onto galaxies along the cosmic filaments
- Fuel star formation on the galaxies
- The criteria of the virial shock and cold streams, depending on halo mass and redshift. (Dekel & Birnboim 2006)



Diagram: Dekel & Birnboim (2006) Temperature plot: Nakamura-san's master thesis



Danovich et al. (2015)

#### Motivation

- To understand the properties of cold streams in galaxy formation at z > 2.
  - Cold streams are efficiently feeding gas into galaxies which is the key ingredient for star formation.

#### Method

Cosmological zoom-in simulations

#### Simulation details

- Cosmological hydrodynamical simulation code: **GADGET3-Osaka** (Aoyama et al. 2017; Shimizu et al. 2019)
- Algorithm for making initial condition: MUSIC (Hahn & Abel 2011)
- Cosmological parameter from WMAP 7/9 results (Komatsu et al. 2011; Hinshaw et al. 2013)
  - $\Omega_m = 0.272$ ,  $\Omega_{\Lambda} = 0.728$ ,  $\Omega_b = 0.0455$ ,  $H_0 = 70.2$  [km s<sup>-1</sup> Mpc<sup>-1</sup>]
- Box size:  $(60 \ h^{-1} cMpc)^3$ , Zoom-in region:  $\sim (4 \ h^{-1} cMpc)^3$
- Zoom-in region and initial random numbers from AGORA project (Kim et al. 2014)
- Effective numbers of particle:  $N_p = 4096^3$  (Level 12)
  - DM particle:  $1.98 \times 10^5~M_{\odot}$ , gas particle:  $3.97 \times 10^4~M_{\odot}$
- Halos are identified by **SUBFIND** (Springel et al. 2001)



#### About the selected halo

- Located at the node of the cosmic filaments.
- Halo mass:  $M_h = 4 \times 10^{11} \, M_{\odot}$  at z = 2.0
- Set temperature threshold to capture cold streams. (Strawn et al. 2021)
  - Cold gas:  $10^{3.8} < T < 10^{4.5} K$
  - Hot gas:  $10^{4.5} < T < 10^{6.5} K$







#### Distributions of density, temperature and metallicity

Cold, dense and metal-poor gas is fed into the central galaxy.



## Axis of spin parameter

- Spin parameter of disk axis
  - $\lambda_z = \frac{xv_y yv_x}{\sqrt{2GM}}$
- The fluctuation of cold gas is the largest.





# Clump and smooth components of cold gas

Spin parameter of cold gas looks strongly affected by clump

• Threshold:  $\rho = 10^{-25} \, [\text{g cm}^{-3}]$ 





# Spin parameter of clump and smooth gas



Spin parameter of cold gas fluctuates due to gas clumps.

# Tracking cold flow gas

- using SPH particle ID tracking
- Extract cold gas outside  $R_{vir}$  and track the particles until  $z\sim2$ .
- Accreting to the center and then outflowing.
- Cold gas evolves to hot gas or  $T < 10^{3.8} K$ .





## Cooling and compression time scale

Shock stability criterion

• 
$$\alpha = \frac{t_{cool}}{t_{comp}} > 1$$
,  $t_{cool} \simeq \frac{3}{2} \frac{nk_BT}{n_H^2 \Lambda(T,Z)}$   $t_{comp} \simeq \frac{28}{5} t_{\rm ff}$ 

- Cooling function (Sutherland & Dopita 1993; Koyama & Inutsuka 2002)
- Cold mode accretion is dominant if  $\alpha < 1$ .
- The shock condition is satisfied by a few parts of gas of  $T > 10^{5.7}$



## Summary

- Run zoom-in cosmological hydrodynamical simulation.
- Cold, dense and metal-poor gas accretes onto galaxy with filamentary structures and fuel star formation while heated.
- The ratio of cooling time scale to compression time scale represents the criterion of the shock stability.

#### Future plan

- Explore the relation between star formation and disc rotation, and the cold streams.
- Run zoom-in runs of  $M_h=10^{10}$ ,  $10^{12}~M_{\odot}$ .
- Examine halo mass dependency, resolution effects and environmental effects.