# Informe Simulaciones TP01 - Prueba del GNA del Lenguaje Java

Vileriño, Silvio 6to 1ra Turno Noche CPU: Intel Core 2 Duo E6600

14-06-2010

# Índice

| 0.1. | Introducción |  |  |  | ٠ |  |  |  |  | ٠ |  |  |  |  | 2 |
|------|--------------|--|--|--|---|--|--|--|--|---|--|--|--|--|---|
| 0.2. | Resultados.  |  |  |  |   |  |  |  |  |   |  |  |  |  | 3 |
| 0.3. | Conclusión . |  |  |  |   |  |  |  |  |   |  |  |  |  | 6 |

#### Introducción 0.1.

Esta simulación se desarrolla con el fin de comprobar la calidad del generador de números aleatorios del lenguaje Java, se le realizan varias pruebas, a saber:

ullet Se calcula un promedio  $\bar{X}$  de 1000000 de números generados al azar. El cálculo es:

$$\bar{X} = \frac{\sum_{k=1}^{n} a_k}{n}, n = 1000000$$

• Se calcula la dispersión  $\sigma^2$  entre cada número generado y el promedio mencionado anteriormente. El cálculo es:

$$\sigma^2 = \frac{\sum_{i=1}^n (X_i - \bar{X})^2}{n}, n = 1000000, \bar{X} \longrightarrow \text{promedio}$$

• Se realiza un histograma en donde se registran la cantidad de números generados entre 0,0 exclusive y 1,0 exclusive, en 10 intervalos de 0,1

$$\sum_{i=1}^{n} k_i$$

■ Se calcula  $\bar{f} = \frac{\sum\limits_{i=1}^{n} k_i}{n}$ ,  $k \longrightarrow$  frecuencia registrada por cada intervalo,  $n = 10, \bar{f} \longrightarrow$  frecuencia promedio de los intervalos.

$$\sum_{i=1}^{n} (F_i - \bar{f})^2$$

- $\sum_{i=1}^{n}{(F_i-\bar{f})^2}$  Se calcula la dispersión  $\sigma_{hist}^2=\frac{i=1}{n}, n=100000$  entre los las frecuencias del histograma y la frecuencia promedio por intervalo.
- Se realiza una prueba gráfica en donde se toman 250000 pares ordenados generados al azar y se dibujan en pantalla en un área de  $500 \times 500$ píxeles.

### 0.2. Resultados

Luego de realizar las pruebas sobre el cpu mencionado en la primer página, se obtienen los siguientes resultados:

- Promedio  $\longrightarrow \bar{X} = 0.49991325392788877$
- Dispersión  $\longrightarrow \sigma^2 = 0.08347664421385372$
- Histograma
  - Intervalo (0,0;0,1) = 100518
  - Intervalo [0,1;0,2) = 100034
  - Intervalo [0,2;0,3) = 99517
  - Intervalo [0,3;0,4) = 100096
  - Intervalo [0,4;0,5) = 99871
  - Intervalo [0,5;0,6) = 100284
  - Intervalo [0,6;0,7) = 99843
  - Intervalo [0,7;0,8) = 99589
  - Intervalo [0,8;0,9) = 99860
  - Intervalo [0,9;1,0) = 100388



- Frecuencia Promedio  $\longrightarrow \bar{f} = 100000$

■ Resultado de la prueba gráfica: 250000 puntos al azar en un área de  $500 \times 500$ 



## 0.3. Conclusión

Observando los resultados de los análisis, se puede concluir que el GNA del lenguaje Java es bueno, dado por las siguientes condiciones cumplidas:

- El promedio  $\bar{X} = 0.49991325392788877 \simeq 0.5$
- La Dispersión  $\longrightarrow \sigma^2 = 0.08347664421385372$
- El histograma muestra una planitud en el gráfico que se traduce en valores ≃ entre cada intervalo, es decir, valores bien distribuidos entre 0 y 1.
- $\blacksquare$  La frecuencia promedio  $\bar{f}=100000$
- El test Grafico, que muestra un ruido blanco como una "lluvia" de televisión, indica que los puntos se han esparcido por todo el área de dibujo sin formar figuras ni patrones.