

SCHMITT TRIGGERS DUAL GATE/HEX INVERTER

The SN54LS/74LS13 and SN54LS/74LS14 contain logic gates/inverters which accept standard TTL input signals and provide standard TTL output levels. They are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals. Additionally, they have greater noise margin than conventional inverters.

Each circuit contains a Schmitt trigger followed by a Darlington level shifter and a phase splitter driving a TTL totem pole output. The Schmitt trigger uses positive feedback to effectively speed-up slow input transitions, and provide different input threshold voltages for positive and negative-going transitions. This hysteresis between the positive-going and negative-going input thresholds (typically 800 mV) is determined internally by resistor ratios and is essentially insensitive to temperature and supply voltage variations.

LOGIC AND CONNECTION DIAGRAMS

SN54/74LS13 SN54/74LS14

SCHMITT TRIGGERS DUAL GATE/HEX INVERTER

LOW POWER SCHOTTKY

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Тур	Max	Unit
VCC	Supply Voltage	54 74	4.5 4.75	5.0 5.0	5.5 5.25	V
T _A	Operating Ambient Temperature Range	54 74	-55 0	25 25	125 70	°C
loн	Output Current — High	54, 74			-0.4	mA
lOL	Output Current — Low	54 74			4.0 8.0	mA

SN54/74LS13 • SN54/74LS14

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

			Limits					
Symbol	Parameter		Min	Тур	Max	Unit	Test Conditions	
V _{T+}	Positive-Going Threshold Voltage		1.5		2.0	V	V _{CC} = 5.0 V	
V _T _	Negative-Going Threshold Voltage		0.6		1.1	V	V _{CC} = 5.0 V	
$V_{T+}-V_{T-}$	Hysteresis		0.4	0.8		V	V _{CC} = 5.0 V	
VIK	Input Clamp Diode Voltage			-0.65	-1.5	V	$V_{CC} = MIN, I_{IN} = -18 \text{ mA}$	
VOH	Output HIGH Voltage	54	2.5	3.4		V	V MIN I 400 0A V V	
		74	2.7	3.4		V	$V_{CC} = MIN, I_{OH} = -400 \mu A, V_{IN} = V_{IL}$	
VOL	Output LOW Voltage	54, 74		0.25	0.4	V	V_{CC} = MIN, I_{OL} = 4.0 mA, V_{IN} = 2.0 V	
		74		0.35	0.5	V	V_{CC} = MIN, I_{OL} = 8.0 mA, V_{IN} = 2.0 V	
I _{T+}	Input Current at Positive-Going Threshold			-0.14		mA	V _{CC} = 5.0 V, V _{IN} = V _{T+}	
I _T _	Input Current at Negative-Going Threshold			-0.18		mA	V _{CC} = 5.0 V, V _{IN} = V _T _	
ΊΗ	Input HIGH Current			1.0	20	μΑ	V _{CC} = MAX, V _{IN} = 2.7 V	
					0.1	mA	V _{CC} = MAX, V _{IN} = 7.0 V	
I _{IL}	Input LOW Current				-0.4	mA	V _{CC} = MAX, V _{IN} = 0.4 V	
los	Short Circuit Current (Note 1)		-20		-100	mA	V _{CC} = MAX, V _{OUT} = 0 V	
Icc	Power Supply Current	1.040						
	Total, Output HIGH	LS13		2.9	6.0	mA	V _{CC} = MAX	
		LS14		8.6	16			
	Tatal Cutavit I CM	LS13		4.1	7.0			
	Total, Output LOW	LS14		12	21			

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS $(T_A = 25^{\circ}C)$

		Max			
Symbol	Parameter	LS13	LS14	Unit	Test Conditions
^t PLH	Propagation Delay, Input to Output	22	22	ns	V _{CC} = 5.0 V
^t PHL	Propagation Delay, Input to Output	27	22	ns	C _L = 15 pF

Figure 1. AC Waveforms

SN54/74LS13 • SN54/74LS14

Figure 2. VIN versus VOUT Transfer Function

Figure 3. Threshold Voltage and Hysteresis versus Power Supply Voltage

Figure 4. Threshold Voltage Hysteresis versus Temperature

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.