

PYMOL

Master of Science in Data Science

Alexander Monzon

PDB

Videos

https://pdb101.rcsb.org/learn/videos

Biological assemblies

https://pdb101.rcsb.org/learn/guide-to-understanding-pdb-data/biological-assemblies

Methods for Determining Atomic Structures

https://pdb101.rcsb.org/learn/quide-to-understanding-pdb-data/methods-for-determining-structure

Resolution

https://pdb101.rcsb.org/learn/guide-to-understanding-pdb-data/resolution

Primary Sequences and the PDB Format

https://pdb101.rcsb.org/learn/guide-to-understanding-pdb-data/primary-sequences-and-the-pdb-format

Install Pymol

Wiki home

https://pymolwiki.org/index.php/Main Page

Linux install

https://pymolwiki.org/index.php/Linux_Install

Windows install

https://pymolwiki.org/index.php/Windows_Install

Tutorial

Annemarie Honegger - Intro/Intermediate/Advanced

pymol_AHonegger_1.pdf
pymol_AHonegger_2.pdf
pymol_AHonegger_3.pdf

Short but useful pymol_cheatsheet.pdf

From De Lano pymol_delano.pdf

Win/Linux: 2 windows

Control window

Pull-down menus Command line Control Buttons Feedback window

Viewing Window

Display area
Object menu
Mouse hints
Movie controls
Command Line

DEMO, play along

DIPARTIMENTO MATEMATICA

Command Line

Movie Controls

Selection

Selecting a particular type of **secondary structure** elements:

```
select ss s (will select all beta folded sheets)
select ss h (will select all alpha helices)
select ss '' (will select all connecting regions)
```

Selecting a particular protein chain:

select chain A

Selecting amino acids:

select resn ARG select resn ARG+PHE select resi 25+30

Tricky commands

https://pymolwiki.org/index.php/Selection_Algebra

fetch 1ctq

Select the ligand, exclude water from hetero atoms sele ligand, het and not name o

Select atoms within 3.0 Angstroms from the ligand sele nb, all within 3.0 of ligand

Sele atoms around the ligand sele nb2, ligand around 3.0

Extend the selection to entire residues involved in the "nb2" selection sele nb3, byres nb2

Exercise 1:

PDB code: 2HHB, haemoglobin

Consider the following elements: heme groups, chains corresponding to the alpha or beta subunits and the phosphate groups.

- Heme and phosphate groups in sphere representation.
- Protein in cartoon representation, alpha subunit colored in red and beta in blue.
- Render with the ray command.

Exercise 2:

Note: a duplication of the element must be generated to represent it on the surface

- Hide the phosphate groups.
- Represent the heme groups in sticks and change the coloration.
- The surface must be in gray color and with transparency (set transparency, 0.5, element) and the representation of the molecule is in cartoon gray color.

