Finite-state model checking for linear temporal logic

Stanislav Moiseev

May 2018

Syntax of linear temporal logic

Definition.

Given a set Props of atomic propositions.

Linear temporal logic formulae are defined according to the following grammar:

$$\varphi ::= \top \ | \ a \ | \ \neg \varphi \ | \ (\varphi_1 \land \varphi_2) \ | \ \mathit{Next} \, \varphi \ | \ (\varphi_1 \, \mathit{Until} \, \varphi_2)$$

where $a \in Props$.

2

Automata-based LTL model checking

Input

- Finite transition system TS.
- LTL formula φ (both over one set of atomic propositions *Props*).

Output

- "Yes" if $TS \models \varphi$.
- "No" plus a counterexample, otherwise.

Automata-based LTL model checking Algorithm

- 0. Reduce regains in formula: $\varphi \mapsto simpl(\varphi)$.
- 1. Construct a generalized nondeterministic Büchi automaton $A_{\neg \omega}$ such that

$$L(A_{\neg \varphi}) = L(\neg \varphi).$$

- 2. Transform GNBA $A_{\neg \varphi}$ into an equivalent nondeterministic Büchi automaton $A'_{\neg \varphi}$.
- 3. Construct the product transition system $TS \otimes A'_{\neg \varphi}$.
- 4. Check whether there exists a path π in $TS \otimes A'_{\neg \varphi}$ satisfying the accepting condition of $A'_{\neg \varphi}$. If it exists then return "No" plus a prefix of π ; otherwise, return "Yes".

Reduction of negations

Definition.

- Given an LTL formula φ .
- ightharpoonup is the formula obtained from φ by a reduction of all sequences of \neg 's in all subformulae, e.g.

$$simpl(\neg\neg(A \land \neg\neg\neg B)) = (A \land \neg B).$$

Later on we assume that the formula is simplified.

5

Generalized nondeterministic Büchi automaton

Definition.

A generalized NBA is a tuple $G = \langle Q, \Sigma, \delta, Q_0, F \rangle$ where

- Q is a finite set of states.
- $ightharpoonup \Sigma$ is a finite alphabet.
- ▶ $Q_0 \subseteq Q$ is the set of initial states.
- $\delta: Q \times \Sigma \to 2^Q$ is the transition function.
- ▶ $F \subseteq 2^Q$ is a (possible empty) set of acceptance sets.

The language of GNBA

Definition.

A *run* of a GNBA *G* for an ω -word $\langle a_1, a_2, \ldots \rangle \in \Sigma^{\omega}$ is a (finite or infinite) sequence of states $\pi = \langle q_0, q_1, \ldots \rangle$ such that

- $ightharpoonup q_0 \in Q_0.$
- ▶ $q_k \in \delta(q_{k-1}, a_k)$ for all $k \in \{1, 2, ...\}$.

Definition.

The accepted language L(G) is the set of all ω -words in Σ^{ω} that have (at least one) infinite run π such that for all $F_0 \in F$

$$F_0 \cap Lim(\pi) \neq \emptyset$$

where $\mathit{Lim}(\pi)$ is the set of all states $q \in Q$ that occur infinitely many times in π .

The language of GNBA: comments

- ▶ If $F = \emptyset$ then L(G) consists of all ω -words that have an infinite run.
 - I.e. if $F = \emptyset$ then G is equivalent to a GNBA with the set of accepting sets being $\{Q\}$.
- If $F = \{F_0\}$ is a singleton set then GNBA G is a NBA.

GNBA for LTL formula

Given an LTL formula φ over a set of atomic propositions Props.

An equivalent GNBA is $G = \langle Q, 2^{Props}, \delta, Q_0, F \rangle$ where

- Q is the set of all elementary sets of formulae $B \subseteq closure(\varphi)$.
- $Q_0 = \{ B \in Q \mid \varphi \in B \}.$
- $\mathbf{F} = \{ \mathbf{F}_{\varphi_1 \, \mathit{Until} \, \varphi_2} \mid (\varphi_1 \, \mathit{Until} \, \varphi_2) \in \mathit{closure}(\varphi) \} \, \mathrm{where} \,$

$$\mathit{F}_{\varphi_{1} \, \mathit{Until} \, \varphi_{2}} = \{\mathit{B} \in \mathit{Q} \mid (\varphi_{1} \, \mathit{Until} \, \varphi_{2}) \not \in \mathit{B} \, \lor \, \varphi_{2} \in \mathit{B}\}.$$

GNBA for LTL formula

The transition relation $\delta: Q \times 2^{Props} \to 2^Q$ is defined as follows:

- ▶ If $A \neq B \cap Props$, then $\delta(B, A) = \emptyset$.
- ▶ If $A = B \cap Props$, then $\delta(B, A)$ is the set of all elementary sets B' of formulae satisfying:
 - 1. for every $Next \psi \in closure(\psi)$:

Next
$$\psi \in B \iff \psi \in B'$$
.

2. for every $(\varphi_1 \operatorname{Until} \varphi_2) \in \operatorname{closure}(\varphi)$:

$$\begin{split} &((\varphi_1 \operatorname{Until} \varphi_2) \in \operatorname{B}) \Longleftrightarrow \\ &\iff (\varphi_2 \in \operatorname{B} \ \lor \ (\varphi_1 \in \operatorname{B} \ \land \ (\varphi \operatorname{Until} \varphi_2) \in \operatorname{B}')). \end{split}$$

Closure of φ

Definition.

▶ The set $closure(\varphi)$ is the set of all subformulae of $simpl \varphi$ and their negations:

$$\label{eq:closure} \begin{aligned} \textit{closure}(\varphi) = & \bigcup & \{\psi, \ \textit{neg} \ \psi\}. \\ \psi \text{ is a subformula} & \text{of } \textit{simpl} \ \varphi \end{aligned}$$

neg is defined as follows:

$$neg(\neg \eta) = \eta$$

$$neg(\eta) = \neg \eta$$

where η does not start with \neg .

Elementary sets of formulae

Definition.

 $\mathsf{B} \subseteq \mathit{closure}(\varphi)$ is elementary if

- 1. *B* is consistent with respect to propositional logic.
- 2. *B* is is locally consistent with respect to the *Until* operator.
- 3. B is maximal.

Elementary sets of formulae

Definition.

 $\mathsf{B} \subseteq \mathit{closure}(\varphi)$ is consistent with respect to propositional logic if

1. For all $(\varphi_1 \land \varphi_2) \in closure(\varphi)$:

$$((\varphi_1 \land \varphi_2) \in B) \Longleftrightarrow (\varphi_1 \in B \land \varphi_2 \in B).$$

- 2. $(\psi \in B) \Longrightarrow (\text{neg } \psi \not\in B)$.
- 3. $(\top \in closure(\varphi)) \Longrightarrow (\top \in B)$.

Elementary sets of formulae

Definition.

 $\mathsf{B} \subseteq \mathsf{closure}(\varphi)$ is locally consistent with respect to the Until operator if for all $(\varphi_1 \, \mathsf{Until} \, \varphi_2) \in \mathsf{closure}(\varphi)$:

- 1. $(\varphi_2 \in B) \Longrightarrow ((\varphi_1 \, \textit{Until} \, \varphi_2) \in B)$.
- 2. $((\varphi_1 \operatorname{Until} \varphi_2) \in B \land \varphi_2 \notin B) \Longrightarrow (\varphi_1 \in B)$.

Definition.

 $\mathsf{B} \subseteq \mathit{closure}(\varphi)$ is maximal if for all $\psi \in \mathit{closure}(\varphi)$:

$$(\psi \not\in B) \Longrightarrow (\text{neg } \psi \in B).$$