

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Análisis Matemático I - PM - LM - LCC - PF - LF - 2021

PRÁCTICA 1 - Números reales

- 1. Sean $a, b, c, d \in \mathbb{R}$. Utilizando los axiomas de cuerpo, demostrar las siguientes propiedades de los números reales.
 - -a- $-a = (-1) \cdot a$
 - -b- El número 0 no tiene recíproco, y $1^{-1} = 1$.

-c-
$$\frac{a}{1} = a$$
; y si $a \neq 0$, $\frac{1}{a} = a^{-1}$.

-d- Si $b \neq 0$ y $d \neq 0$ entonces:

(i)
$$(b \ d)^{-1} = b^{-1}d^{-1}$$
.

$$(11) \ \frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{b \ d}.$$

$$(111) \ \frac{a}{b} \cdot \frac{c}{d} = \frac{a}{b} \frac{c}{d}.$$

(III)
$$\frac{a}{b} \cdot \frac{c}{d} = \frac{a c}{b d}$$

-e- Si
$$a \neq 0$$
 y $b \neq 0$, entonces $\left(\frac{a}{b}\right)^{-1} = \frac{a^{-1}}{b^{-1}}.$

- -f- Si ab = 0, entonces a = 0 o b = 0.
- 2. Sean $a,b,c,d\in\mathbb{R}$. Utilizando los axiomas de orden, demostrar las siguientes propiedades de los números reales.
 - -a- Si a < b, entonces a + c < b + c.
 - -b- Si a < b y c < d entonces a + c < b + d.
 - -c- Si a < b y c > 0, entonces ac < bc.
 - -d- Si a < b y c < 0, entonces ac > bc.
 - -e- Si $a \neq 0$, entonces $a^2 > 0$ (a^2 indica el producto aa).
 - -f- 1>0. Es decir, $1\in\mathbb{R}^+$.
 - -g- Si a < b, entonces -b < -a.
 - -h- Si a < 0 entonces -a > 0.
 - -i- ab > 0 si y solo si a y b son los dos positivos o los dos negativos.
 - -j- a > 0 si y solo si $\frac{1}{a} > 0$.
 - -k- Si 0 < a < b, entonces $0 < \frac{1}{b} < \frac{1}{a}$.
 - -I- Si ab < 0, entonces o bien a es positivo y b negativo o bien a es negativo y b positivo.

3. Resolver cada una de las siguientes inecuaciones o sistema de inecuaciones. Proporcionar el conjunto solución tanto en forma de intervalo como gráficamente.

(a).
$$4x > 8$$

(i)
$$-19 \le 3x - 5 \le -9$$

(b)
$$6y < 18$$

(k)
$$-16 < 3t + 2 < -11$$

(j)
$$-19 \le 3x - 5 \le -9$$

(k) $-16 < 3t + 2 < -11$
(p)
$$\begin{cases} 5x + \frac{1}{4} \ge 0, \\ 2x - 10 < 0, \\ 7x - 14 \le 0. \end{cases}$$

(c).
$$2m \le -6$$

(I).
$$-4 \le \frac{2x-5}{6} \le 5$$

$$\begin{cases} 2x - 10 & < & 0 \\ 7x - 14 & \le & 0 \end{cases}$$

(d).
$$-r < -7$$

$$(1). \quad -4 \le \frac{1}{6} \le 5$$

(q).
$$\frac{5}{x+3} + \frac{3}{x-1} < 0$$

(a).
$$-r \le -r$$

(e). $3r + 1 > 16$

(m).
$$(x-3)\sqrt{x+1} \ge 0$$

(n). $3x < \frac{1+6x}{2} < \frac{9x-8}{3}$

(q).
$$\frac{5}{x+3} + \frac{3}{x-1} < 0$$

(f)
$$2m - 5 \ge 15$$

$$(\tilde{n}) \quad x \leq x + 1 \leq x + 5$$

(r).
$$\frac{4x-3}{3-x} > 0$$

(g).
$$-3(z-6) > 2z-5$$

(h). $-2(y+4) \le 6y+8$

(ii).
$$3x < \frac{2}{2} < \frac{3}{3}$$

(iii). $x \le x + 1 \le x + 5$
(v). $\frac{4x - 3}{3 - x} > 0$
(o). $\begin{cases} 4x - 8 > -6, \\ \frac{x}{2} + 2 > 0. \end{cases}$
(s). $\frac{4 - 9x}{5x + 7} \le 3$

(s).
$$\frac{4-9x}{5x+7} \le 3$$

- (i) -3 < x 5 < 6
- 4. -a- ¿A qué distancia está 7 de 4? ¿Y -3 de -19? ¿Y -24 de 49?
 - -b- Encontrar gráfica y analíticamente los puntos que distan al 3 en menos de 2.
 - -c- Encontrar gráfica y analíticamente los puntos que distan al -1 en menos de 4.
 - -d- Encontrar gráfica y analíticamente los puntos que distan al 0 en más de 1.
- 5. Representar en la recta numérica los siguientes conjuntos. Decidir si cada uno está acotado inferior y/o superiormente. Indicar en cada caso (si es posible) el ínfimo, supremo, mínimo y/o máximo.

(a).
$$|x| = 4$$
.

(e).
$$|x+2| \ge 1$$
.

(h).
$$\frac{3}{|3x+1|} \le 2$$
.

(b).
$$|x-1| < 1$$
.

(f)
$$|x-3| < 7$$

(c)
$$|x+1| > 1$$
.
(d) $|x-4| < 1$.

(g)
$$|x^2 - 3x - 2| \le 2$$
.

(i).
$$\frac{|5x-5|}{|x+1|} \le 0.$$

6. Dados los siguientes conjuntos.

$$\mathsf{A} = \{1, 2, 3, 4, 5\}$$

$$\mathsf{A} \, = \, \big\{ 1, 2, 3, 4, 5 \big\} \qquad \qquad \mathsf{D} \, = \, \big\{ x \in \mathbb{R} \, / \, x = 2k, \; k \in \mathbb{N} \big\}$$

$$\mathsf{G} = \left\{ x \in \mathbb{R} \, / \, x = 1 - \frac{1}{k}, \ k \in \mathbb{N} \right\}$$

$$\mathsf{B} = \, \{x \in \mathbb{R} \, / \, -3 \leq x \leq 6\} \qquad \mathsf{E} = \, \mathbb{Z} - \mathbb{N}$$

$$E = \mathbb{Z} - \mathbb{N}$$

$$H = \mathbb{R} - \mathbb{Z}$$

$$C = [2, 8)$$

$$F = \{0\}$$

$$I = \emptyset$$

- -a- Decidir si cada uno de los conjuntos está acotado, acotado superiormente o acotado inferior-
- En los casos en que los conjuntos están acotados superior y/o inferiormente, determinar el supremo y/o ínfimo;
- Establecer si los supremos e ínfimos obtenidos en el ítem anterior son máximos y mínimos, respectivamente, del conjunto considerado.
- 7. Sea A un conjunto no vacío de números reales. Probar que A está acotado si y sólo si existe un número real positivo L tal que |x| < L para todo $x \in A$.

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Análisis Matemático I - PM - LM - LCC - PF - LF - 2021

- 8. Demostrar que si α y β son dos números reales tales que ambos son mínimo del mismo conjunto A, entonces $\alpha = \beta$.
- 9. Sea A un conjunto no vacío de números reales. Se define el conjunto siguiente

$$-A = \{x \in \mathbb{R} : -x \in A\}.$$

- -a- Siendo A_1 , A_2 y A_3 los conjuntos encontrados en los ejercicios 5(a), 5(b) y 5(c), hallar los conjuntos $-A_1$, $-A_2$ y $-A_3$.
- -b- Mostrar que -A es un conjunto no vacío y que -(-A) = A.
- -c- Hallar las condiciones bajo las cuales se tiene que -A=A.
- -d- Mostrar que si A es un conjunto acotado superiormente (inferiormente) entonces -A es un conjunto acotado inferiormente (superiormente).
- -e- Mostrar que si A posee supremo entonces -A posee ínfimo y se verifica que $\inf(-A) = -\sup(A)$, y análogamente, si A posee ínfimo entonces -A posee supremo y se verifica que $\sup(-A) = -\inf(A)$.
- -f- Utilizar los resultados de los ítems anteriores para mostrar que todo conjunto no vacío de números reales acotado inferiormente posee ínfimo.
- 10. Si A es un conjunto no vacío de números reales y c es un número real, se define el conjunto

$$cA = \{cx : x \in A\}.$$

- -a- Si $A=\{x\in\mathbb{R}:x\geq 2\}$ y B=[-1,2), determinar 2A y -3B. Analizar las cotas superiores e inferiores de estos conjuntos.
- -b- Conjeturar las relaciones entre $\sup(A)$, $\inf(A)$, $\sup(c|A)$ e $\inf(c|A)$.
- 11. Si A y B son dos conjuntos no vacíos de números reales tales que

$$a \in A \land b \in B \Rightarrow a \leq b$$
.

- -a- Demostrar que el conjunto A es acotado superiormente y el conjunto B es acotado inferiormente.
- -b- ¿Existe alguna relación entre el $\sup(A)$ y el $\inf(B)$? Hacer una conjetura sobre tal relación.
- -c- Demostrar lo conjeturado en el ítem anterior.
- 12. Probar que:
 - -a- si $|x|<rac{1}{n}$, $\forall n\in\mathbb{N}$ entonces x=0.
 - -b- si $|x| < \varepsilon$, $\forall \varepsilon > 0$ entonces x = 0.