Required MIPS Assembly Instructions Set

Arithmetic Instructions			
Instruction	Example	Meaning	Comments
add	add \$1,\$2,\$3	\$1=\$2+\$3	
subtract	sub \$1,\$2,\$3	\$1=\$2-\$3	
add immediate	addi \$1,\$2,100	\$1=\$2+100	
Multiply (without overflow)	mul \$1,\$2,\$3	\$1=\$2*\$3	Result is only 32 bits!

	Logical Instructions		
Instruction	Example	Meaning	Comments
and	and \$1,\$2,\$3	\$1=\$2&\$3	Bitwise AND
or	or \$1,\$2,\$3	\$1=\$2 \$3	Bitwise OR
xor	xor \$1,\$2,\$3	\$1=\$2^\$3	Bitwise XOR
and immediate	andi \$1,\$2,100	\$1=\$2&100	Bitwise AND with immediate value
or immediate	ori \$1,\$2,100	\$1=\$2 100	Bitwise OR with immediate value
xor immediate	xori \$1,\$2,100	\$1=\$2^100	Bitwise XOR with immediate value
shift left logical	sll \$1,\$2,10	\$1=\$2<<10	Shift left by constant number of bits
shift right logical	srl \$1,\$2,10	\$1=\$2>>10	Shift right by constant number of bits

Data Transfer Instructions			
Instruction	Example	Meaning	Comments
move	move \$1,\$2	\$1=\$2	Pseudo-instruction (provided by MARS Assembler, not processor!) Copy from register to register.
load word	Lw \$1,100(\$2)	\$1=Memory[\$2+100]	
store word	Sw \$1,100(\$2)	Memory[\$2+100]=\$1	
load upper immediate	lui \$1,100	\$1=100x2 ¹⁶	Load constant into upper 16 bits. Lower 16 bits are set to zero.

Conditional Branch Instructions			
Instruction	Example	Meaning	Comments
branch on equal	Beq \$1,\$2,100	if(\$1==\$2) go to PC+4+100	Test if registers are equal
branch on not equal	Bne \$1,\$2,100	if(\$1!=\$2) go to PC+4+100	Test if registers are not equal

Comparison Instructions			
Instruction	Example	Meaning	Comments
set on less than	slt \$1,\$2,\$3	if(\$2<\$3)\$1=1; else \$1=0	Test if less than. If true, set \$1 to 1. Otherwise, set \$1 to 0.
set on less than immediate	Slti \$1,\$2,100	if(\$2<100)\$1=1; else \$1=0	Test if less than. If true, set \$1 to 1. Otherwise, set \$1 to 0.

Unconditional Jump Instructions			
Instruction	Example	Meaning	Comments
jump	j 1000	go to address 1000	Jump to target address
jump register	jr \$ra	go to return address stored in \$ra	procedure return
jump and link	jal 1000	\$ra=PC+4;	Use when making procedure call
		go to procedure call which	This saves the return address in
		starts in address 1000	\$ra