

Algorithmen und Datenstrukturen

- Grundlagen (Komplexität) -

Prof. Dr. Klaus Volbert

Wintersemester 2018/19 Regensburg, 15. Oktober 2018

Beispiel MaxTeilSum

• Eingabe: $a_0, ..., a_{n-1} \in \mathbb{Z}$ (*n* ganze Zahlen)

· Ausgabe: Maximale Teilsumme, d.h.

$$s = \max_{0 \le i \le j \le n-1} \sum_{k=i}^{j} a_k$$

- Anwendungen
 - Erkennung von grafischen Mustern
 - Analyse von Aktienkursen
 (täglich neue Kurse: Ermittlung bester Ein-/Ausstiegszeitpunkt)
- · Beispiel:
 - Eingabe: -13, 25, 34, 12, -3, 7, -87, 28, -77, 11
 - Ausgabe: 75 (ergibt sich aus i = 1, j = 5)

MaxTeilSum4 (Divide-&-Conquer)

```
int MaxTeilsum4 (int a[], int f, int l) { int n = l - f + 1;
      (n == 1)) return a[f];
                                            Divide: Teile a in zwei Teile
     elZe
        int newn = (n \% 2 == 0 ? n / 2 : n / 2 + 1);
Triviallösung
        int MaxBorderSum1=a[f+newn-1], i=f+newn-2, currVa/=MaxBorderSum1;
        while (i>=f) { currVal+=a[i];
                if (currVal>MaxBorderSum1) MaxBorderSum1=currVal;
                i--; }
        int MaxBorderSum2=a[f+newn], i=f+newn+1, currVal=MaxBorderSum2;
        while (i<=1) { currVal+=a[i];</pre>
                if (currVal>MaxBorderSum2) MaxBorderSum2=currVal;
                <u>i++;</u> }
                                    Conquer: Berechne die Teillösungen
        return max (MaxTeilsum4 (a f, f+newn-1),
               max(MaxTeilsum4(a,f+newn,l),MaxBorderSum1+
                                                  MaxBorderSum2)); }}
 Merge: Füge die Einzelergebnisse zusammen
```

• Laufzeit: $T(n) = \Theta(n \log n)$

Beispiel MaxTeilSum4 I

· Folge	MBS1	MBS2	Σ	MT1	MT2	Max
-13 25 34 12 -3 7 -87 28 -77 11	68	7	75	?	?	?
<u>-13 25 34 12 -3</u> 7 -87 28 -77 11	59	12	71	?	?	?
<u>-13 25 34</u> 12 -3 7 -87 28 -77 11	25	34	59	?	?	?
<u>-13 25 34 12 -3 7 -87 28 -77 11</u>	-13	25	12	?	?	?
<u>-13</u> 25 34 12 -3 7 -87 28 -77 11						-13
-13 <u>25</u> 34 12 -3 7 -87 28 -77 11						25
<u>-13 25 34 12 -3 7 -87 28 -77 11</u>	-13	25	12	-13	25	25
-13 25 <u>34</u> 12 -3 7 -87 28 -77 11						34
<u>-13 25 34</u> 12 -3 7 -87 28 -77 11	25	34	59	25	34	59
-13 25 34 <u>12 -3</u> 7 -87 28 -77 11	12	-3	9	?	?	?
-13 25 34 <u>12</u> -3 7 -87 28 -77 11						12

Beispiel MaxTeilSum4 II

· Folge	MBS1	MBS2	Σ	MT1	MT2	Max
-13 25 34 12 <u>-3</u> 7 -87 28 -77 11						-3
-13 25 34 <u>12 -3</u> 7 -87 28 -77 11	12	-3	9	12	-3	12
<u>-13 25 34 12 -3</u> 7 -87 28 -77 11	59	12	71	59	12	71
-13 25 34 12 -3 <u>7 -87 28 -77 11</u>	28	-66	-38	?	?	?
-13 25 34 12 -3 <u>7 -87 28</u> -77 11	-80	28	-52	?	?	?
-13 25 34 12 -3 <u>7 -87</u> 28 -77 11	7	-87	-80	?	?	?
-13 25 34 12 -3 <u>7</u> -87 28 -77 11						7
-13 25 34 12 -3 7 <u>-87</u> 28 -77 11						-87
-13 25 34 12 -3 <u>7 -87</u> 28 -77 11	7	-87	-80	7	-87	7
-13 25 34 12 -3 7 -87 <u>28</u> -77 11						28
-13 25 34 12 -3 <u>7 -87 28</u> -77 11	-80	28	-52	7	28	28

Beispiel MaxTeilSum4 III

•	Folge	<u>)</u>									MBS1	MBS2	\sum	MT1	MT2	Max
	-13	25	34	12	-3	7	-87	28	<u>-77</u>	11	-77	11	-66	?	?	?
	-13	25	34	12	-3	7	-87	28	<u>-77</u>	11						-77
	-13	25	34	12	-3	7	-87	28	-77	<u>11</u>						11
	-13	25	34	12	-3	7	-87	28	<u>-77</u>	11	-77	11	-66	-77	11	11
	-13	25	34	12	-3	<u>7</u>	-87	28	-77	11	28	-66	-38	28	11	28
	<u>-13</u>	25	34	12	-3	7	-87	28	-77	11	68	7	75	71	28	75

· ...und jetzt mit:

- Eingabe: -5, 13, -32, 7, -3, 17, 23, 12, -35, 19

- Ausgabe: ?

Entwurfsprinzip: Divide & Conquer

Schema: Teilen und Herrschen

- Teilprobleme müssen unabhängig voneinander lösbar sein
- Gesamtlösung muss aus Teillösungen entstehen können (Vereinigung)
- Teilung bis zum Erreichen des Trivialproblems (oft rekursiv)
- Beispiele
 - Quicksort, Schnelle Fouriertransformation (FFT)

Anmerkungen

- Korrektheitsbeweise häufig mit vollständiger Induktion
 - Identifikation einer Bedingung, die nach allen Schleifendurchläufen gilt (Schleifeninvariante, Analyse: vor, während, nach)
 - Bedingung für das Verlassen der Schleife zusammen mit der Schleifeninvariante liefern das gewünschte Ergebnis
- Komplexitätsabschätzung durch Aufstellen von
 - Komplexitätsgleichungen (T(n) = ...)
 - Rekursionsgleichungen mit Rekursionsbasis (T(n) = ..., T(a) = b)
- Lösen von Rekursionsgleichungen durch
 - Substitutionsmethode (Lösung raten, Korrektheit beweisen)
 - Iterationsmethode (sukzessives Einsetzen liefert Abschätzung)
 - Master-Methode (jetzt)

Master-Methode

· Rekursionsgleichungen haben oft die Form

$$- T(1) = 1, T(n) = aT\left(\frac{n}{b}\right) + f(n) \qquad \text{mit } a \ge 1, b > 1, f: IN_0 \to IN_0$$

- · Das Master-Theorem gibt an, wie man solche Gleichungen lösen kann:
 - 1. Fall: Falls $f(n) = O(n^{\log_b a \varepsilon})$ für ein $\varepsilon > 0$, dann: $T(n) = \Theta(n^{\log_b a})$ Anmerkung: f(n) wächst schwächer als $aT(\frac{n}{b})$
 - 2. Fall: Falls $f(n) = \Theta(n^{\log_b a})$, dann: $T(n) = \Theta(n^{\log_b a} \log n)$ Anmerkung: f(n) und $aT(\frac{n}{b})$ wachsen gleich, dazu kommt: log-Faktor
 - 3. Fall: Falls $f(n) = \Omega(n^{\log_b a + \varepsilon})$ für ein $\varepsilon > 0$ und falls $af\left(\frac{n}{b}\right) \le cf(n)$ für ein c < 1 und alle $n \ge n_0$, dann: $T(n) = \Theta(f(n))$ Anmerkung: f wächst stärker als $aT\left(\frac{n}{b}\right)$
- Bemerkungen:
 - Aussagen gelten auch für ... $T\left(\left[\frac{n}{b}\right]\right)$... und ... $T\left(\left[\frac{n}{b}\right]\right)$...
 - Beweise können in Cormen, Leiserson, Rivest, Stein: Introduction to Algorithms, 3rd Ed., MIT Press, 2009 nachgelesen werden (Kapitel 4)

Beispiele zur Master-Methode I

- $T(n) = 2T(\frac{n}{2}) + n$ (Rekursionsgleichung MaxTeilSum4)
 - a = 2, b = 2, f(n) = n, es gilt $\log_b a = \log_2 2 = 1$
 - D.h. $f(n) = \Theta(n^{\log_b a}) = \Theta(n)$ und nach Fall 2:

$$T(n) = \Theta(n \log n)$$

- $T(n) = 9T\left(\frac{n}{3}\right) + n$
 - a = 9, b = 3, f(n) = n, es gilt $\log_b a = \log_3 9 = 2$
 - D.h. $f(n) = O(n^{\log_b a \varepsilon})$ für ein $\varepsilon > 0$ und nach Fall 1:

$$T(n) = \Theta(n^2)$$

Beispiele zur Master-Methode II

- $T(n) = 2T\left(\frac{n}{2}\right) + n\log n$
 - $a = 2, b = 2, f(n) = n \log n$, es gilt $\log_b a = \log_2 2 = 1$
 - Zusätzlich gilt: $f(n) = \Omega(n^{\log_b a + \varepsilon})$ für ein $\varepsilon > 0$, da $n \log n \ge c n^{1+\varepsilon}$
 - Was zunächst für Fall 3 spricht, aber gilt $af\left(\frac{n}{b}\right) \le cf(n)$ für ein c < 1?
 - Aus $2\frac{n}{2}\log\frac{n}{2} \le cn\log n$ folgt $1-\frac{1}{\log n} \le c$. D.h. aber c<1 existiert nicht
 - Daher ist Fall 3 nicht anwendbar (alle anderen Fälle auch nicht)

- Beobachtung:
 - Zwischen Fall 2 und Fall 3 existiert eine Lücke
 - Man kann erweitern:

Wenn
$$f(n) = \Theta(n^{\log_b a} (\log n)^k)$$
 für $k \ge 0$, dann $T(n) = \Theta(n^{\log_b a} (\log n)^{k+1})$

Beispiele zur Master-Methode III

Lösen Sie folgende Rekursionsgleichungen mit der Master-Methode:

$$1. \quad T(n) = 8T\left(\frac{n}{3}\right) + n^2$$

$$2. \quad T(n) = 9T\left(\frac{n}{3}\right) + n^2$$

$$3. \quad T(n) = 10T\left(\frac{n}{3}\right) + n^2$$

Beispiele zur Master-Methode III

Lösen Sie folgende Rekursionsgleichungen mit der Master-Methode:

1.
$$T(n) = 8T\left(\frac{n}{3}\right) + n^2$$

 $-a = 8, \ b = 3, \ f(n) = n^2 = \Omega(n^{\log_3 8 + \varepsilon}) \text{ für } \varepsilon > 0 \text{ (also evtl. Fall 3)}$
 $-\text{Prüfe: } 8 \cdot f\left(\frac{n}{3}\right) = 8 \cdot \frac{n^2}{9} \le \frac{8}{9} \cdot n^2 = c \cdot f(n) \text{ mit } c = \frac{8}{9} < 1 \text{ für alle } n \ge n_0 = 1$
 $-\text{ Also nach Fall 3:} \qquad T(n) = \Theta(f(n)) = \Theta(n^2)$
2. $T(n) = 9T\left(\frac{n}{3}\right) + n^2$
 $-a = 9, \ b = 3, \ f(n) = n^2 = \Theta(n^{\log_3 9}) = \Theta(n^{\log_3 3^2}) = \Theta(n^2)$
 $-\text{ Also nach Fall 2:} \qquad T(n) = \Theta(n^{\log_3 3^2} \cdot \log(n)) = \Theta(n^2 \cdot \log(n))$
3. $T(n) = 10T\left(\frac{n}{3}\right) + n^2$
 $-a = 10, \ b = 3, \ f(n) = n^2 = O(n^{\log_3 10 - \varepsilon}) \text{ für } \varepsilon > 0$
 $-\text{ Also nach Fall 1:} \qquad T(n) = \Theta(n^{\log_3 10}) = \Theta(n^{2,0959})$

Überblick

- Einführung und Organisation
- Grundlagen
 - Begriffe
 - · Algorithmus, Datentyp, Datenstruktur, Datenstruktur Stapel
 - Korrektheit und Komplexität
 - · Totale Korrektheit, Iterationen, Rekursionen
 - · RAM, Church'sche These, O-Notation (O, Ω , Θ)
 - Rekursionsgleichungen
 - · Iterationsmethode, Substitutionsmethode, Master-Methode
 - Entwurfsmethode Divide & Conquer
- Sortieralgorithmen