## Problem Collection for Introduction to Mathematical Reasoning

By Dana C. Ernst and Nándor Sieben Northern Arizona University

**Problem 1.** Three strangers meet at a taxi stand and decide to share a cab to cut down the cost. Each has a different destination but all are heading in more-or-less the same direction. Bob is traveling 10 miles, Sally is traveling 20 miles, and Mike is traveling 30 miles. If the taxi costs \$2 per mile, how much should each contribute to the total fare? What do you think is the most common answer to this question?

**Problem 2.** Christine wants to take yoga classes to increase her strength and flexibility. In her neighborhood, there are two yoga studios: Namaste Yoga and Yoga Spirit. At Namaste Yoga, a student's first class costs \$12, and additional classes cost \$10 each. At Yoga Spirit, a student's first class costs \$24, and additional classes cost \$8 each. Because Christine wants to save money, she is interested in comparing the costs of the two studios. For what number of yoga classes do the two studios cost the same amount?

**Problem 3.** Imagine a hallway with 1000 doors numbered consecutively 1 through 1000. Suppose all of the doors are closed to start with. Then some dude with nothing better to do walks down the hallway and opens all of the doors. Because the dude is still bored, he decides to close every other door starting with door number 2. Then he walks down the hall and changes (i.e., if open, he closes it; if closed, he opens it) every third door starting with door 3. Then he walks down the hall and changes every fourth door starting with door 4. He continues this way, making a total of 1000 passes down the hallway, so that on the 1000th pass, he changes door 1000. At the end of this process, which doors are open and which doors are closed?

**Problem 4.** The Sunny Day Juice Stand sells freshly squeezed lemonade and orange juice at the farmers' market. The juices are ladled out of large glass jars, each holding exactly the same amount of juice. Linda and Julie set up their stand early one Saturday morning. The first customer of the day ordered orange juice and Linda carefully ladled out 8 ounces into a paper cup. As she was about to hand the cup to the customer, he changed his mind and asked for lemonade instead. Accidentally, Linda dumped the cup of orange juice into the jar of lemonade. She quickly mixed up the juices, ladled out a cup of the mixture (mostly lemonade) and turned to hand it to the customer. "I've decided I don't want anything to drink right now," he said, and frazzled, Linda dumped the cupful of juice mixture into the orange juice jar. Linda's assistant, Julie, watched all of this with amusement. As the man walked away, she wondered aloud, "Now is there more orange juice in the lemonade or more lemonade in the orange juice?"

**Problem 5.** Imagine you have 25 pebbles, each occupying one square on a 5 by 5 chess board. Tackle each of the following variations of a puzzle.

- (a) Variation 1: Suppose that each pebble must move to an adjacent square by only moving up, down, left, or right. If this is possible, describe a solution. If this is impossible, explain why.
- (b) Variation 2: Suppose that all but one pebble (your choice which one) must move to an adjacent square by only moving up, down, left, or right. If this is possible, describe a solution. If this is impossible, explain why.
- (c) Variation 3: Consider Variation 1 again, but this time also allow diagonal moves to adjacent squares. If this is possible, describe a solution. If this is impossible, explain why.

**Problem 6.** Consider an  $n \times n$  chess board and variation 1 of the pebble puzzle from above. For what values of n is the puzzle solvable? For what values of n is the puzzle unsolvable? Justify your answers by either providing a method for a solution or an explanation for why a solution is not possible.

**Problem 7.** Consider an  $n \times n$  chess board and variation 2 of the pebble puzzle from above. For what values of n is the puzzle solvable? For what values of n is the puzzle unsolvable? Justify your answers by either providing a method for a solution or an explanation for why a solution is not possible.

**Problem 8.** Imagine a  $5 \times 5$  grid of squares, where each square is occupied by a kangaroo. If each kangaroo can hop only one square to the left, right, up, or down and a square can hold more than one kangaroo, what is the maximum number of unoccupied squares after the kangaroos are done hopping? What about a larger grid?

Problem 9. What four-digit number reverses its digits when multiplied by 4?

**Problem 10.** A rectangular puzzle that says "850 pieces" actually consists of 851 pieces. Each piece is identical to one of the 5 samples shown in the diagram. How many pieces of type (*E*) are there in the puzzle?



**Problem 11.** Describe where on Earth from which you can travel one mile south, then one mile east, and then one mile north and arrive at your original location. There is more than one such location. Find them all.

**Problem 12.** You are in a big city where all the streets go in one of two perpendicular directions. You take your car from its parking place and drive on a tour of the city such that you do not pass through the same intersection twice and return back to where you started. If you made 100 left turns, how many right turns did you make?

**Problem 13.** You are in a big city grid where all the streets go in one of two perpendicular directions and every city block is the same size. Imagine you take your bicycle on a tour of the city, where your tour starts at an intersection, you may retrace part of your path, you may visit the same intersection more than once, and you finish your tour where you started. What can you say about the number of city blocks that you traveled? Note that if you travel along the same city block twice (possibly in opposite directions), this would contribute two to your count. Can you conclude anything about the number of distinct city blocks that you traveled? Justify your answers.

**Problem 14.** Find the rational number with smallest denominator between 1/3 and 3/8.

**Problem 15.** Suppose there are two bags of candy containing 8 pieces and 6 pieces, respectively. You and your friend are going to play a game and the winner gets to eat all of the candy. Here are the rules for the game:

- 1. You and your friend will alternate removing pieces of candy from the bags. Let's assume that you go first.
- 2. On each turn, the designated player selects a bag that still has candy in it and then removes at least one piece of candy. The designated player can only remove candy from a single bag and he/she must remove at least one piece.
- 3. The winner is the one that removes all the candy from the last remaining bag.

Does one of you have a guaranteed winning strategy? If so, describe that strategy. Can you generalize to handle any number of pieces of candy in either of the two bags?

**Problem 16.** I have 10 sticks in my bag. The length of each stick is an integer. No matter which 3 sticks I try to use, I cannot make a triangle out of those sticks. What is the minimum length of the longest stick?

**Problem 17.** Tile the following grids with dominoes. If a tiling is not possible, explain why.



**Problem 18.** Rufus and Dufus are identical twins. They are each independently given the same 4-digit number. Rufus takes the number and converts it from decimal (base 10) to base 4, and writes down the 6-digit result. Dufus simply writes the first and last digits of the number followed by the number in its entirety. Rufus is shocked to discover that Dufus has written down exactly the same number has him. What was the original number? In other words, if the original number was *xyzw*, which number *xyzw*, when converted from decimal to base 4 becomes *xwxyzw*?

**Problem 19.** Find all tetrominoes (polyomino with 4 cells). Note that two tetrominoes are considered the same if we can obtain one from the other by rotation or flipping it over. The next problem gives you a hint as to how many there are.

**Problem 20.** Tile the following grids using every tetromino exactly once. The X in (c) denotes an absence of an available square in the grid. If a tiling is not possible, explain why.



**Problem 21.** How many factors of 10 are there in 50! (i.e., 50 factorial)?

**Problem 22.** Consider the  $10 \times 10$  grid of squares below. Show that you can color the squares of the grid with 3 colors so that every consecutive row of 3 squares and every consecutive column of 3 squares uses all 3 colors.



**Problem 23.** Tile each of the grids below with trominoes that consist of 3 squares in a line. If a tiling is not possible, explain why.



**Problem 24.** Pennies and Paperclips is a two-player game played on a  $4 \times 4$  checkerboard as shown below.



One player, "Penny", gets two pennies as her pieces. The other player, "Clip", gets a pile of paperclips as his pieces. Penny places her two pennies on any two different squares on the board. Once the pennies are placed, Clip attempts to cover the remainder of the board with paperclips - with each paperclip being required to cover two vertically or horizontally adjacent squares. Paperclips are not allowed to overlap. If the remainder of the board can be covered with paperclips then Clip is declared the winner. If the remainder of the board cannot be covered with paperclips then Penny is the winner.

- (a) Does either player have a winning strategy? If so, describe the winning strategies.
- (b) State and prove a conjecture that determines precisely every situation in which Penny wins based on the placement of the pennies.
- (c) State and prove a conjecture that determines precisely every situation in which Clip wins based on the placement of the pennies.
- (d) Are there any situations in which neither player wins, or have you characterized all possible outcomes? Explain.

**Problem 25.** Consider the game Pennies and Paperclips described in the previous problem, but instead of playing on a  $4 \times 4$  checkerboard, let's play on the following board.



State and prove a conjecture that determines precisely every situation in which Clip wins based on the placement of the pennies.

**Problem 26.** We call a game board for the Pennies and Paperclips game **fair**, if for each player there is at least one scenario in which they can win.

- (a) Is the board from Problem 24 fair?
- (b) Is the board from Problem 25 fair?
- (c) Are there game boards that are not fair? That is, are there game boards on which one player can never win? If so, provide such a board and explain why it must be unfair. If not, explain why no such board exists.
- (d) Can you create a fair board in which your conjecture from Problem 24(c) does not always hold?

**Problem 27.** There is a plate of 40 cookies. You and your friend are going to take turns taking either 1 or 2 cookies from the plate. However, it is a faux pas to take the last cookie, so you want to make sure that you do not take the last cookie. How can you guarantee that you will never be the one taking the last cookie? What about *n* cookies?