$\begin{array}{c} {\rm ECE~2200L} \\ {\rm Introduction~to~Microelectronics~Circuits} \\ {\rm Laboratory} \end{array}$

Experiment 3 Applications of the PN Diode

Report

Choi Tim Antony Yung September 23, 2020

Objective

To experiment on some examples of the applications of PN diodes as non-linear circuit elements. Specifically, rectifiers, peak detectors as DC power supplies, and clippers/limiters will be studied.

Result

Circuit 1

Figure 1: Oscilloscope plot demonstrating input and output voltage with $V_{in} = 5V_{pk}$

Figure 2: Oscilloscope plot demonstrating input and output voltage with $V_{in}=1 V_{pk}$

Figure 3: Oscilloscope plot demonstrating input and output voltage with $V_{in}=10\mathrm{V}_{pk}$

Vin_{pk} (V)	$Vout_{pk}$ (V)
1	0.58
5	4.5
10	9.6

Table 1: Peak value of output voltage as input voltage changes

Figure 4: $Vout_{pk}$ vs. Vin_{pk} plot

Circuit 2

Figure 5: Oscilloscope plot demonstrating input and output voltage with $1\,\mu F$ capacitor and $10\,k\Omega$ resistor

Figure 6: Oscilloscope plot demonstrating input and output voltage with $1\,\mu F$ capacitor and $4.7\,k\Omega$ resistor

Figure 7: Oscilloscope plot demonstrating input and output voltage with 100 μF capacitor and 10 $k\Omega$ resistor

f (Hz)	$\frac{1}{f}$ (s)	Vr_{pp} (V)
50	0.02	3.7
100	0.01	2.7
200	0.005	1.7
400	0.0025	1
600	0.001667	0.8
800	0.00125	0.56
1000	0.001	0.44

Table 2: Peak-to-peak value of output voltage as frequency changes

Figure 8: $Vout_{pp}$ vs. $\frac{1}{f}$ plot

Circuit 3

According to 1N4001 datasheet from ON Semiconductor, the average forward voltage drop of 1N4001 is 0.8 V. Therefore, as V_{in} increases pass 5.8 V, V_{out} will be limited by the middle branch of the circuit to 5.8 V. As V_{in} decreases pass -5.8 V, V_{out} will be limited by the right branch of the circuit to -5.8 V.

Figure 9: V_{out} vs V_{in} plot in theory with 1N4001 forward voltage drop as $0.8\,\mathrm{V}$

Figure 10: Oscilloscope plot demonstrating input and output voltage with $V_{in}=2\mathbf{V}_{pk}$

Figure 11: Oscilloscope plot demonstrating input and output voltage with $V_{in} = 5V_{pk}$

Figure 12: Oscilloscope plot demonstrating input and output voltage with $V_{in}=10\mathrm{V}_{pk}$

Figure 13: Oscilloscope plot of V_{out} vs V_{in}

Vin_{pk} (V)	$Vout_{pk}$ (V)
1	0.58
5	4.5
10	9.6

Table 3: Peak value of output voltage as input voltage changes

As can be seen from the Oscilloscope plot similar to the theoretical plot, the circuit behaved as expected.

Conclusion

Various application of diode, specifically half-wave rectifier, peak detector and clipper circuit. As can be seen form the result, the diode have an effect of a small decrease in peak load voltage in a helf-wave rectifier circuit; the configuration of larger resistance and capacitance have an effect of decreasing the magnitude of ripple on the output voltage; and the clipper circuit characteristics is observed.