ÁLGEBRA LINEAR Prof. Marién Martínez Gonçalves

LISTA DE EXERCÍCIOS 6

- 1. Mostre que A = [(3, 1), (5, 2)] gera \mathbb{R}^2 .
- 2. Mostre que A = [v_1 , v_2 , v_3] gera \mathbb{R}^3 , onde: v_1 = (1, 1, 1), v_2 = (1, 1, 0) e v_3 = (1, 0, 0).
- 3. Determine a equação do plano gerado pelos vetores:

4. Determine se *u* e *v* são LI ou LD:

a)
$$u = (2, -3)$$
, $v = (6, -9)$

b)
$$u = (4, 3, -2)$$
, $v = (2, -6, 7)$ c) $u = (-4, 6, -2)$, $v = (2, -3, 1)$

5. Determine se os vetores em \mathbb{R}^3 são Linearmente Dependentes ou não.

- 6. Determine o valor de x para que o conjunto: $\{(1, 0, -1), (1, 1, 0), (x, 1, -1)\}$ seja L.I.
- 7. Mostre que B = $\{ (1, 1), (0, 1) \}$ é uma base de \mathbb{R}^2 .
- 8. Verifique se são bases para \mathbb{R}^3

- 9. Seja V = \mathbb{R}^3 e o conjunto B = { (0, 1, 1), (1, 1, 0), (1, 2, 1)} $\subset \mathbb{R}^3$.
 - a) Mostrar que B não é base do \mathbb{R}^3 .
 - b) Determinar uma base do \mathbb{R}^3 que possua os dois primeiros vetores de B.
- 10. Seja a base A = $\{(1,0,3), (-1,7,5), (2,-1,6)\}$. Encontre as coordenadas de $\psi = (1,2,3)$ em relação a essa base.
- 11. Seja A $\{(-3, -1), (2, 0)\}$ e $[v]_A = [1 5]^T$.
 - a) encontre as coordenadas de ψ na base canônica.
 - a) encontre as coordenadas de v na base B = { (2,1), (1,5)}.
- 12. Determine o vetor coordenada de v = (6, 2), em relação às seguintes bases:

a)
$$\alpha = \{ (3,0), (0,2) \}$$

b)
$$\beta = \{ (1,0), (0,1) \}$$

c)
$$\gamma = \{ (0, 1), (1, 0) \}$$

13. No espaço vetorial \mathbb{R}^3 , consideremos a seguinte base: B = { (1,0,0), (0,1,0), (1,-1,1)}.

Determinar o vetor coordenada de $v \in \mathbb{R}^3$ em relação à base B se:

a)
$$v = (2, -3, 4)$$

b)
$$v = (3, 5, 6)$$

c)
$$v = (1, -1, 1)$$

14. Seja A $\{(-1, 1, 1), (0, 2, 3), (0, 0, -1)\}$ e $[v]_A = [-2 \ 0 \ 3]^T$. Determine o vetor v.

RESPOSTAS:

1.
$$(k_1 = 2x - 5y)$$
, $k_2 = 3y - x$) **2.** $(k_1 = z, k_2 = y - z, k_3 = x - y)$ **3.** a) $4x + 2y - z = 0$; b) $-x + 5y - 2z = 0$.

4. LD , LI , LD **5.** a) SIM
$$(k_1 = -3k_3, k_2 = -2k_3)$$
 b) SIM $(k_1 = -3a, k_2 = -2a, k_3 = a)$ c) NÃO d) SIM (quatro ou mais vetores no \mathbb{R}^3) **6.** $x \neq 2$ **7.** $(k_1 = x, k_2 = y - x)$ **8.** a) É base b) Não é base

9. b) { (0,1,1), (1,1,0), (x,y,z) tal que x – y + z
$$\neq$$
 0 } **10.** $V_A = (5,0,-2)$ **11. a)** $v = (7,-1)$

b)
$$\psi_B = (4, -1)$$
 12. a) $V_{\alpha} = (2, 1)$ **b)** $V_{\beta} = (6, 2)$ **c)** $V_{\gamma} = (2, 6)$ **13. a)** $V_B = (-2, 1, 4)$

b)
$$V_B = (-3, 11, 6)$$
 c) $V_B = (0, 0, 1)$ **14.** $v = (2, -2, -5)$