1 Gaussian Discriminant Analysis

We have N iid samples $\{(X_n, Y_n)\}_{n=1}^N$ with values $\{(x_n, y_n)\}_{n=1}^N$, where $x_n \in \mathbb{R}$ is an observable and $y_n \in \{0, 1, 2\}$ is the class to which the sample belongs. We'll denote by N_i the number of samples that belong to class Y = i. We have plotted the samples in the figure to the left. You want to build a classifier such that you can predict the class of new unlabeled samples X = x. You have been told that the conditional probabilities p(x|y) are Gaussian distributions.

- (a) How would you use Maximum Likelihood Estimation (MLE) to estimate the probabilities p(X|Y) and $\pi_i = p(Y = i)$ from the samples?
- (b) How would you use these probabilities to derive the Bayes decision rule? What equations are satisfied by the points in the decision boundary $r^*(x)$? Leave the solution in terms of $Q_0(x)$, $Q_1(x)$, $Q_2(x)$, where

$$e^{Q_i(x)} = \sqrt{(2\pi)}p(X = x|Y = i)p(Y = i) = \frac{\pi_i}{\sigma_i}e^{-\frac{(x-\mu_i)^2}{2\sigma_i^2}}$$

- (c) What do you observe about the region of values of X where the label Y = 0 is assigned? Could you express this region with a set of inequalities?
- (d) You receive a new unlabeled sample X = 0, what class would you assign to it? Is it the class which mean is closest?
- (e) What would have happen if you used Linear Discriminant Analysis and assumed uniform priors?
- (f) Bonus question: Is it possible that there is a certain class y = i for which there is no x such that the Bayes decision rule picks this class i

2 Maximum Likelihood Estimation for reliability testing

Suppose we are reliability testing n units taken randomly from a population of identical appliances. We want to estimate the mean failure time of the population. We assume the failure times come from an exponential distribution with parameter $\lambda > 0$, whose probability density function is $f(t) = \lambda e^{-\lambda t}$ (on the domain $t \ge 0$).

- (a) In an ideal (but impractical) scenario, we run the units until they all fail. The failure time T_1, T_2, \ldots, T_n for units $1, 2, \ldots, n$ are observed to be t_1, t_2, \ldots, t_n .
 - Formulate the likelihood function $\mathcal{L}(\lambda; t_1, \ldots, t_n)$ for our data. Then find the maximum likelihood estimate $\hat{\lambda}$ for the distribution's parameter. (Remember that it's equivalent, and usually easier, to optimize the log-likelihood)
- (b) In a more realistic scenario, we run the units for a fixed time h. The failure time for T_1, T_2, \ldots, T_r are observed to be t_1, t_2, \ldots, t_r , where $0 \le r \le n$. The remaining n r units survive the entire time h without failing. Let's find the maximum likelihood estimate $\hat{\lambda}$ for our model distribution parameters! To do so:
 - (a) What is the probability that a unit will not fail during time *h*?
 - (b) Write the new likelihood function $\mathcal{L}(\lambda; h, n, r, t_1, \dots, t_r)$.
 - (c) Optimize to find the MLE estimate, and give it a physical interpretation.