	<pre>import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Conv2D, Flatten, Dropout, MaxPooling2D from tensorflow.keras.preprocessing.image import ImageDataGenerator import os import numpy as np import matplotlib.pyplot as plt</pre>			
	<pre>#Loading the data _URL = 'https://s3.amazonaws.com/content.udacity-data.com/nd089/Cat_Dog_data.zip' #Unzipping the contents path_to_zip = tf.keras.utils.get_file('Cat_Dog_data.zip', origin=_URL, extract=True) PATH = os.path.join(os.path.dirname(path_to_zip), 'Cat_Dog_data')</pre>			
	Downloading data from https:// 580501504/580495262 [===================================] -	-	
In [2]:	train_dir = os.path.join(PATE test_dir = os.path.join(PATE #Directory with our training train_cats_dir = os.path.join #Directory with our training train_dogs_dir = os.path.join #Directory with our test cattest_cats_dir = os.path.join #Directory with our test dog test_dogs_dir = os.path.join #Directory with our test dog test_dogs_dir = os.path.join	I, 'test') If cat pictures In(train_dir, 'cat') If dog pictures In(train_dir, 'dog') If pictures In(test_dir, 'cat') If pictures		
In [3]:	<pre>num_cats_tr = len(os.listdir num_dogs_tr = len(os.listdir num_cats_test = len(os.listdir num_dogs_test = len(os.listdir total_train = num_cats_tr + total_test = num_cats_test + print('total training cat in print('total training dog in print('total test cat images print('total test dog images print("") print("Total training images print("Total test images:",</pre>	c(train_dogs_dir)) dir(test_cats_dir)) dir(test_dogs_dir)) num_dogs_tr num_dogs_test nages:', num_cats_tr) nages:', num_dogs_tr) s:', num_dogs_test) s:', num_dogs_test)		
	total training cat images: 13 total training dog images: 13 total test cat images: 1250			
	total test dog images: 1250 Total training images: 22500 Total test images: 2500			
In [4]:	<pre>Total test images: 2500 #Variables for convenience batch_size = 128 epochs = 15 IMG_WIDTH=128 IMG_HEIGHT=128 Image_Size=(IMG_WIDTH, IMG_HEIGHT) Image_Channels=3</pre>			
	<pre># Generator for our training data train_image_generator = ImageDataGenerator(rescale=1./255) # Generator for our validation data test_image_generator = ImageDataGenerator(rescale=1./255) train_data_gen = train_image_generator.flow_from_directory(batch_size=batch_size, directory=train_dir, shuffle=val_data_gen = test_image_generator.flow_from_directory(batch_size=batch_size,directory=test_dir,target_size=()] Found 22500 images belonging to 2 classes.</pre>			
In [5]:	<pre>Found 22500 images belonging to 2 classes. Found 2500 images belonging to 2 classes. sample_training_images, _ = next(train_data_gen) # This function will plot images in the form of a grid with 1 row and 5 columns where images are placed in each def plotImages(images_arr): fig, axes = plt.subplots(1, 5, figsize=(20,20)) axes = axes.flatten() for img, ax in zip(images_arr, axes): ax.imshow(img) ax.axis('off') plt.tight_layout() plt.show() plotImages(sample_training_images[:5])</pre>			
In [6]:	<pre>from keras.models import Sequential from keras.layers import Conv2D, MaxPooling2D, \ Dropout, Flatten, Dense, Activation, \ BatchNormalization</pre>			
	<pre>model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Dropout(0.25)) model.add(Conv2D(128,(3,3),activation='relu')) model.add(BatchNormalization()) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Dropout(0.25)) model.add(Dropout(0.25)) model.add(Dense(512,activation='relu')) model.add(BatchNormalization()) model.add(Dropout(0.5)) model.add(Dropout(0.5)) model.add(Dense(2,activation='softmax')) model.compile(optimizer='adam',loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics= model.summary() Model: "sequential"</pre>			
	Layer (type)		Param #	
	control (Control)	(None, 126, 126, 32)	896	
	<pre>conv2d (Conv2D) batch_normalization (BatchN ormalization) max_pooling2d (MaxPooling2D) dropout (Dropout)</pre>	(None, 63, 63, 32)	0	
	<pre>batch_normalization (BatchN ormalization) max_pooling2d (MaxPooling2D</pre>	(None, 63, 63, 32) (None, 63, 63, 32) (None, 61, 61, 64) (None, 61, 61, 64)		
	<pre>batch_normalization (BatchN ormalization) max_pooling2d (MaxPooling2D) dropout (Dropout) conv2d_1 (Conv2D) batch_normalization_1 (BatchNormalization) max_pooling2d_1 (MaxPooling2D) dropout_1 (Dropout) conv2d_2 (Conv2D) batch_normalization_2 (BatchNormalization)</pre>	(None, 63, 63, 32) (None, 63, 63, 32) (None, 61, 61, 64) (None, 61, 61, 64) (None, 30, 30, 64) (None, 30, 30, 64) (None, 28, 28, 128) (None, 28, 28, 128)	0 0 18496 256 0 0 73856 512	
	<pre>batch_normalization (BatchN ormalization) max_pooling2d (MaxPooling2D) dropout (Dropout) conv2d_1 (Conv2D) batch_normalization_1 (BatchNormalization) max_pooling2d_1 (MaxPooling2D) dropout_1 (Dropout) conv2d_2 (Conv2D) batch_normalization_2 (BatchNormalization) max_pooling2d_2 (MaxPooling2D)</pre>	(None, 63, 63, 32) (None, 63, 63, 32) (None, 61, 61, 64) (None, 61, 61, 64) (None, 30, 30, 64) (None, 30, 30, 64) (None, 28, 28, 128) (None, 28, 28, 128)	0 0 18496 256 0 0 73856	
	<pre>batch_normalization (BatchN ormalization) max_pooling2d (MaxPooling2D) dropout (Dropout) conv2d_1 (Conv2D) batch_normalization_1 (BatchNormalization) max_pooling2d_1 (MaxPooling2D) dropout_1 (Dropout) conv2d_2 (Conv2D) batch_normalization_2 (BatchNormalization) max_pooling2d_2 (MaxPooling2D)</pre>	(None, 63, 63, 32) (None, 63, 63, 32) (None, 61, 61, 64) (None, 61, 61, 64) (None, 30, 30, 64) (None, 28, 28, 128) (None, 28, 28, 128) (None, 14, 14, 128)	0 0 18496 256 0 0 73856 512	
	<pre>batch_normalization (BatchN ormalization) max_pooling2d (MaxPooling2D) dropout (Dropout) conv2d_1 (Conv2D) batch_normalization_1 (BatchNormalization) max_pooling2d_1 (MaxPooling 2D) dropout_1 (Dropout) conv2d_2 (Conv2D) batch_normalization_2 (BatchNormalization) max_pooling2d_2 (MaxPooling 2D) dropout_2 (Dropout) flatten (Flatten) dense (Dense) batch_normalization_3 (BatchNormalization)</pre>	(None, 63, 63, 32) (None, 63, 63, 32) (None, 61, 61, 64) (None, 61, 61, 64) (None, 30, 30, 64) (None, 28, 28, 128) (None, 28, 28, 128) (None, 14, 14, 128) (None, 14, 14, 128) (None, 25088) (None, 512) (None, 512)	0 0 18496 256 0 0 73856 512 0 0 12845568 2048	
	<pre>batch_normalization (BatchN ormalization) max_pooling2d (MaxPooling2D) dropout (Dropout) conv2d_1 (Conv2D) batch_normalization_1 (BatchNormalization) max_pooling2d_1 (MaxPooling2D) dropout_1 (Dropout) conv2d_2 (Conv2D) batch_normalization_2 (BatchNormalization) max_pooling2d_2 (MaxPooling2D) dropout_2 (Dropout) flatten (Flatten) dense (Dense) batch_normalization_3 (Batch_normalization_3)</pre>	(None, 63, 63, 32) (None, 63, 63, 32) (None, 61, 61, 64) (None, 61, 61, 64) (None, 30, 30, 64) (None, 28, 28, 128) (None, 28, 28, 128) (None, 14, 14, 128) (None, 14, 14, 128) (None, 25088) (None, 512)	0 0 18496 256 0 0 73856 512 0 0 0 12845568	
	batch_normalization (BatchN ormalization) max_pooling2d (MaxPooling2D) dropout (Dropout) conv2d_1 (Conv2D) batch_normalization_1 (BatchNormalization) max_pooling2d_1 (MaxPooling2D) dropout_1 (Dropout) conv2d_2 (Conv2D) batch_normalization_2 (BatchNormalization) max_pooling2d_2 (MaxPooling2D) dropout_2 (Dropout) flatten (Flatten) dense (Dense) batch_normalization_3 (BatchNormalization) dropout_3 (Dropout) dense_1 (Dense)	(None, 63, 63, 32) (None, 63, 63, 32) (None, 61, 61, 64) (None, 61, 61, 64) (None, 30, 30, 64) (None, 28, 28, 128) (None, 28, 28, 128) (None, 14, 14, 128) (None, 14, 14, 128) (None, 25088) (None, 512) (None, 512) (None, 512) (None, 512)	0 0 18496 256 0 0 73856 512 0 0 0 12845568 2048 0 1026	
In [7]:	batch_normalization (BatchN ormalization) max_pooling2d (MaxPooling2D) dropout (Dropout) conv2d_1 (Conv2D) batch_normalization_1 (BatchNormalization) max_pooling2d_1 (MaxPooling2D) dropout_1 (Dropout) conv2d_2 (Conv2D) batch_normalization_2 (BatchNormalization) max_pooling2d_2 (MaxPooling2D) dropout_2 (Dropout) flatten (Flatten) dense (Dense) batch_normalization_3 (BatchNormalization) dropout_3 (Dropout) dropout_3 (Dropout) dense_1 (Dense) ===================================	(None, 63, 63, 32) (None, 63, 63, 32) (None, 61, 61, 64) (None, 61, 61, 64) (None, 30, 30, 64) (None, 28, 28, 128) (None, 28, 28, 128) (None, 14, 14, 128) (None, 14, 14, 128) (None, 512) (None, 512) (None, 512) (None, 512)	0 0 18496 256 0 0 73856 512 0 0 0 12845568 2048 0 1026	
In [7]:	batch_normalization (BatchN ormalization) max_pooling2d (MaxPooling2D) dropout (Dropout) conv2d_1 (Conv2D) batch_normalization_1 (BatchNormalization) max_pooling2d_1 (MaxPooling 2D) dropout_1 (Dropout) conv2d_2 (Conv2D) batch_normalization_2 (BatchNormalization) max_pooling2d_2 (MaxPooling 2D) dropout_2 (Dropout) flatten (Flatten) dense (Dense) batch_normalization_3 (BatchNormalization) dropout_3 (Dropout) dense_1 (Dense)	(None, 63, 63, 32) (None, 63, 63, 32) (None, 61, 61, 64) (None, 61, 61, 64) (None, 30, 30, 64) (None, 28, 28, 128) (None, 28, 28, 128) (None, 14, 14, 128) (None, 14, 14, 128) (None, 512)	0 18496 256 0 0 73856 512 0 0 0 12845568 2048 0 1026	d or softmax ac
In [7]:	batch_normalization (BatchN ormalization) max_pooling2d (MaxPooling2D) dropout (Dropout) conv2d_1 (Conv2D) batch_normalization_1 (BatchNormalization) max_pooling2d_1 (MaxPooling2D) dropout_1 (Dropout) conv2d_2 (Conv2D) batch_normalization_2 (BatchNormalization) max_pooling2d_2 (MaxPooling2D) dropout_2 (Dropout) flatten (Flatten) dense (Dense) batch_normalization_3 (BatchNormalization) dropout_3 (Dropout) dense_1 (Dense)	(None, 63, 63, 32) (None, 63, 63, 32) (None, 61, 61, 64) (None, 61, 61, 64) (None, 30, 30, 64) (None, 28, 28, 128) (None, 28, 28, 128) (None, 14, 14, 128) (None, 14, 14, 128) (None, 512) (None, 512) (None, 512) (None, 512) (None, 2) **Comparison of the present logits. Was this gas, **kwargs) **Emperison of the present logits. Was this gas, **kwargs) **Emperison of the present logits. Was this gas, **kwargs) **Emperison of the present logits. Was this gas, **kwargs) **Emperison of the present logits. Was this gas, **kwargs) **Emperison of the present logits. Was this gas, **kwargs) **Emperison of the present logits. Was this gas, **kwargs) **Emperison of the present logits. Was this gas, **kwargs) **Emperison of the present logits. Was this gas, **kwargs) **Emperison of the present logits. Was this gas, **kwargs)	0 18496 256 0 0 73856 512 0 0 12845568 2048 0 1026	d or softmax ac
In [7]:	batch_normalization (BatchN ormalization) max_pooling2d (MaxPooling2D) dropout (Dropout) conv2d_1 (Conv2D) batch_normalization_1 (BatchNormalization) max_pooling2d_1 (MaxPooling 2D) dropout_1 (Dropout) conv2d_2 (Conv2D) batch_normalization_2 (BatchNormalization) max_pooling2d_2 (MaxPooling 2D) dropout_2 (Dropout) flatten (Flatten) dense (Dense) batch_normalization_3 (BatchNormalization) dropout_3 (Dropout) dense_1 (Dense)	(None, 63, 63, 32) (None, 63, 63, 32) (None, 61, 61, 64) (None, 61, 61, 64) (None, 30, 30, 64) (None, 28, 28, 128) (None, 28, 28, 128) (None, 14, 14, 128) (None, 14, 14, 128) (None, 512) (None, 512) (None, 512) (None, 512) (None, 512) (None, 2) **t-packages/tensorflow/pytherom_logits=True`, but the expresent logits. Was this gs, **kwargs) **expresent logits. Was this gs, **kwargs)	0 18496 256 0 0 73856 512 0 0 0 12845568 2048 0 1026 on/util/dispatch.py:1082: UserWarning: "`sp`output` argument was produced by a sigmoid intended?" tep - loss: 0.7447 - accuracy: 0.6791 - vai	d or softmax ac 1_loss: 5.3228 1_loss: 2.2112
In [7]:	batch_normalization (BatchN ormalization) max_pooling2d (MaxPooling2D) dropout (Dropout) conv2d_1 (Conv2D) batch_normalization_1 (BatchNormalization) max_pooling2d_1 (MaxPooling 2D) dropout_1 (Dropout) conv2d_2 (Conv2D) batch_normalization_2 (BatchNormalization) max_pooling2d_2 (MaxPooling 2D) dropout_2 (Dropout) flatten (Flatten) dense (Dense) batch_normalization_3 (BatchNormalization) dropout_3 (Dropout) dense_1 (Dense) ===================================	(None, 63, 63, 32) (None, 63, 63, 32) (None, 61, 61, 64) (None, 61, 61, 64) (None, 30, 30, 64) (None, 28, 28, 128) (None, 28, 28, 128) (None, 14, 14, 128) (None, 14, 14, 128) (None, 512) (None, 512) (None, 512) (None, 512) (None, 512) (None, 512) (None, 2)	0 18496 256 0 0 73856 512 0 0 0 12845568 2048 0 1026 ====================================	d or softmax ac 1_loss: 5.3228 1_loss: 2.2112 1_loss: 1.0481 1_loss: 0.6308
In [7]:	batch_normalization (BatchN ormalization) max_pooling2d (MaxPooling2D) dropout (Dropout) conv2d_1 (Conv2D) batch_normalization_1 (BatchNormalization) max_pooling2d_1 (MaxPooling 2D) dropout_1 (Dropout) conv2d_2 (Conv2D) batch_normalization_2 (BatchNormalization) max_pooling2d_2 (MaxPooling 2D) dropout_2 (Dropout) flatten (Flatten) dense (Dense) batch_normalization_3 (BatchNormalization) dropout_3 (Dropout) dense_1 (Dense)	(None, 63, 63, 32) (None, 63, 63, 32) (None, 61, 61, 64) (None, 61, 61, 64) (None, 30, 30, 64) (None, 28, 28, 128) (None, 28, 28, 128) (None, 14, 14, 128) (None, 14, 14, 128) (None, 512) (None, 512) (None, 512) (None, 512) (None, 512) (None, 512) ===================================	0 18496 256 0 0 73856 512 0 0 12845568 2048 0 1026 on/util/dispatch.py:1082: UserWarning: "`sp'output` argument was produced by a sigmoid intended?" tep - loss: 0.7447 - accuracy: 0.6791 - vaitep - loss: 0.4967 - accuracy: 0.7630 - vaitep - loss: 0.4067 - accuracy: 0.8140 - vaitep - loss: 0.4067 - accuracy:	d or softmax ac 1_loss: 5.3228 1_loss: 2.2112 1_loss: 1.0481 1_loss: 0.6308 1_loss: 0.3881
In [7]:	batch_normalization (BatchN ormalization) max_pooling2d (MaxPooling2D) dropout (Dropout) conv2d_1 (Conv2D) batch_normalization_1 (BatchNormalization) max_pooling2d_1 (MaxPooling 2D) dropout_1 (Dropout) conv2d_2 (Conv2D) batch_normalization_2 (BatchNormalization) max_pooling2d_2 (MaxPooling 2D) dropout_2 (Dropout) flatten (Flatten) dense (Dense) batch_normalization_3 (BatchNormalization) dropout_3 (Dropout) dense_1 (Dense)	(None, 63, 63, 32) (None, 63, 63, 32) (None, 61, 61, 64) (None, 30, 30, 64) (None, 30, 30, 64) (None, 28, 28, 128) (None, 28, 28, 128) (None, 14, 14, 128) (None, 14, 14, 128) (None, 512) (None, 512) (None, 512) (None, 512) (None, 512) (None, 512) ===================================	0 18496 256 0 0 73856 512 0 0 12845568 2048 0 1026	d or softmax ac l_loss: 5.3228 l_loss: 2.2112 l_loss: 1.0481 l_loss: 0.6308 l_loss: 0.3881 l_loss: 0.6942
In [7]:	batch_normalization (BatchN ormalization) max_pooling2d (MaxPooling2D) dropout (Dropout) conv2d_1 (Conv2D) batch_normalization_1 (BatchNormalization) max_pooling2d_1 (MaxPooling 2D) dropout_1 (Dropout) conv2d_2 (Conv2D) batch_normalization_2 (BatchNormalization) max_pooling2d_2 (MaxPooling 2D) dropout_2 (Dropout) flatten (Flatten) dense (Dense) batch_normalization_3 (BatchNormalization) dropout_3 (Dropout) dense_1 (Dense)	(None, 63, 63, 32) (None, 63, 63, 32) (None, 61, 61, 64) (None, 30, 30, 64) (None, 28, 28, 128) (None, 28, 28, 128) (None, 14, 14, 128) (None, 14, 14, 128) (None, 512) (None, 512) (None, 512) (None, 512) (None, 2) **Tagen, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	0 18496 256 0 0 73856 512 0 0 0 12845568 2048 0 1026 on/util/dispatch.py:1082: UserWarning: "`sp`output` argument was produced by a sigmoid intended?" tep - loss: 0.7447 - accuracy: 0.6791 - valtep - loss: 0.4967 - accuracy: 0.7630 - valtep - loss: 0.4067 - accuracy: 0.8140 - valtep - loss: 0.3631 - accuracy: 0.8597 - valtep - loss: 0.3246 - accuracy: 0.8799 - valtep - loss: 0.3246 - accuracy: 0.8799 - valtep - loss: 0.2825 - accuracy: 0.8799	d or softmax ac l_loss: 5.3228 l_loss: 2.2112 l_loss: 1.0481 l_loss: 0.6308 l_loss: 0.3881 l_loss: 0.3881 l_loss: 0.3698
In [7]:	batch_normalization (BatchN ormalization) max_pooling2d (MaxPooling2D) dropout (Dropout) conv2d_1 (Conv2D) batch_normalization_1 (BatchNormalization) max_pooling2d_1 (MaxPooling2D) dropout_1 (Dropout) conv2d_2 (Conv2D) batch_normalization_2 (BatchNormalization) max_pooling2d_2 (MaxPooling2D) dropout_2 (Dropout) flatten (Flatten) dense (Dense) batch_normalization_3 (BatchNormalization) dropout_3 (Dropout) dense_1 (Dense)	(None, 63, 63, 32) (None, 63, 63, 32) (None, 61, 61, 64) (None, 61, 61, 64) (None, 30, 30, 64) (None, 28, 28, 128) (None, 28, 28, 128) (None, 14, 14, 128) (None, 14, 14, 128) (None, 512) (None, 512) (None, 512) (None, 512) (None, 2) **Table of the present logits. Was this gas, **kwargs) **Table of the present logits. Was this gas, **the present logits.	0 18496 256 0 0 73856 512 0 0 0 12845568 2048 0 1026 on/util/dispatch.py:1082: UserWarning: "'sg'output' argument was produced by a signoid intended?" tep - loss: 0.7447 - accuracy: 0.6791 - vaitep - loss: 0.4967 - accuracy: 0.7630 - vaitep - loss: 0.3246 - accuracy: 0.8367 - vaitep - loss: 0.3246 - accuracy: 0.8799 - vaitep - loss: 0.2825 - accuracy: 0.8799 - vaitep - loss: 0.2825 - accuracy: 0.8799 - vaitep - loss: 0.2868 - vaitep - loss: 0.2464 - accuracy: 0.8968 - vaitep - loss: 0	d or softmax ac l_loss: 5.3228 l_loss: 2.2112 l_loss: 1.0481 l_loss: 0.6308 l_loss: 0.3881 l_loss: 0.3698 l_loss: 0.3698 l_loss: 0.5182
	batch_normalization (BatchN ormalization) max_pooling2d (MaxPooling2D) dropout (Dropout) conv2d_1 (Conv2D) batch_normalization_1 (BatchNormalization) max_pooling2d_1 (MaxPooling 2D) dropout_1 (Dropout) conv2d_2 (Conv2D) batch_normalization_2 (BatchNormalization) max_pooling2d_2 (MaxPooling 2D) dropout_2 (Dropout) flatten (Flatten) dense (Dense) batch_normalization_3 (BatchNormalization) dropout_3 (Dropout) dense_1 (Dense) ===================================	(None, 63, 63, 32) (None, 63, 63, 32) (None, 61, 61, 64) (None, 61, 61, 64) (None, 30, 30, 64) (None, 28, 28, 128) (None, 28, 28, 128) (None, 14, 14, 128) (None, 14, 14, 128) (None, 512) (None, 512) (None, 512) (None, 512) (None, 512) (None, 512) ===================================	0 18496 256 0 0 73856 512 0 0 0 12845568 2048 0 1026	d or softmax ac l_loss: 5.3228 l_loss: 2.2112 l_loss: 1.0481 l_loss: 0.6308 l_loss: 0.3881 l_loss: 0.36942 l_loss: 0.3698 l_loss: 0.5182 l_loss: 0.6353
<pre>In [7]:</pre> <pre>Out[8]:</pre>	batch_normalization (BatchN ormalization) max_pooling2d (MaxPooling2D) dropout (Dropout) conv2d_1 (Conv2D) batch_normalization_1 (BatchNormalization) max_pooling2d_1 (MaxPooling 2D) dropout_1 (Dropout) conv2d_2 (Conv2D) batch_normalization_2 (BatchNormalization) max_pooling2d_2 (MaxPooling 2D) dropout_2 (Dropout) flatten (Flatten) dense (Dense) batch_normalization_3 (BatchNormalization) dropout_3 (Dropout) dense_1 (Dense)	(None, 63, 63, 32) (None, 63, 63, 32) (None, 61, 61, 64) (None, 30, 30, 64) (None, 28, 28, 128) (None, 28, 28, 128) (None, 14, 14, 128) (None, 14, 14, 128) (None, 512) (None, 512) (None, 512) (None, 512) (None, 512) (None, 512) (None, 2) ***ta_gen, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	0 18496 256 0 0 73856 512 0 0 0 12845568 2048 0 1026	d or softmax ac l_loss: 5.3228 l_loss: 2.2112 l_loss: 1.0481 l_loss: 0.6308 l_loss: 0.3881 l_loss: 0.36942 l_loss: 0.3698 l_loss: 0.5182 l_loss: 0.6353
In [8]:	batch_normalization (BatchN ormalization) max_pooling2d (MaxPooling2D) dropout (Dropout) conv2d_1 (Conv2D) batch_normalization_1 (BatchNormalization) max_pooling2d_1 (MaxPooling 2D) dropout_1 (Dropout) conv2d_2 (Conv2D) batch_normalization_2 (BatchNormalization) max_pooling2d_2 (MaxPooling 2D) dropout_2 (Dropout) flatten (Flatten) dense (Dense) batch_normalization_3 (BatchNormalization) dropout_3 (Dropout) dense_1 (Dense)	(None, 63, 63, 32) (None, 63, 63, 32) (None, 61, 61, 64) (None, 30, 30, 64) (None, 28, 28, 128) (None, 28, 28, 128) (None, 14, 14, 128) (None, 14, 14, 128) (None, 512) (None, 512) (None, 512) (None, 512) (None, 512) (None, 2)	0 18496 256 0 0 73856 512 0 0 0 12845568 2048 0 1026	d or softmax ac l_loss: 5.3228 l_loss: 2.2112 l_loss: 1.0481 l_loss: 0.6308 l_loss: 0.3881 l_loss: 0.36942 l_loss: 0.3698 l_loss: 0.5182 l_loss: 0.6353
<pre>In [8]: Out[8]:</pre>	batch_normalization (BatchNormalization) max_pooling2d (MaxPooling2D) dropout (Dropout) conv2d_1 (Conv2D) batch_normalization_1 (BatchNormalization) max_pooling2d_1 (MaxPooling2D) dropout_1 (Dropout) conv2d_2 (Conv2D) batch_normalization_2 (BatchNormalization) max_pooling2d_2 (MaxPooling2D) dropout_2 (Dropout) flatten (Flatten) dense (Dense) batch_normalization_3 (BatchNormalization) dropout_3 (Dropout) dense_1 (Dense)	(None, 63, 63, 32) (None, 63, 63, 32) (None, 61, 61, 64) (None, 30, 30, 64) (None, 30, 30, 64) (None, 28, 28, 128) (None, 14, 14, 128) (None, 14, 14, 128) (None, 512) (None, 512) (None, 512) (None, 512) (None, 512) (None, 2) **Table All All All All All All All All All A	0 18496 256 0 0 73856 512 0 0 0 12845568 2048 0 1026	d or softmax ac 1_loss: 5.3228 1_loss: 2.2112 1_loss: 1.0481 1_loss: 0.6308 1_loss: 0.3881 1_loss: 0.36942 1_loss: 0.3698 1_loss: 0.5182 1_loss: 0.6353
<pre>In [8]: Out[8]: In [10]:</pre>	batch_normalization (BatchN ormalization) max_pooling2d (MaxPooling2D) dropout (Dropout) conv2d_1 (Conv2D) batch_normalization_1 (BatchNormalization) max_pooling2d_1 (MaxPooling 2D) dropout_1 (Dropout) conv2d_2 (Conv2D) batch_normalization_2 (BatchNormalization) max_pooling2d_2 (MaxPooling 2D) dropout_2 (Dropout) flatten (Flatten) dense (Dense) batch_normalization_3 (BatchNormalization) dropout_3 (Dropout) dense (Dense) batch_normalization_3 (BatchNormalization) dropout_3 (Dropout) dense_1 (Dense)	(None, 63, 63, 32) (None, 63, 63, 32) (None, 61, 61, 64) (None, 30, 30, 64) (None, 30, 30, 64) (None, 28, 28, 128) (None, 28, 28, 128) (None, 14, 14, 128) (None, 14, 14, 128) (None, 512) ===================================	0 0 18496 256 0 0 0 73856 512 0 0 0 12845568 2048 0 1026	d or softmax ac l_loss: 5.3228 l_loss: 2.2112 l_loss: 1.0481 l_loss: 0.6308 l_loss: 0.3881 l_loss: 0.6942 l_loss: 0.3698 l_loss: 0.5182 l_loss: 0.6353 l_loss: 0.3779 erator` is depr