Space and Congruence Compression of Proofs

Andreas Fellner

European Master in Computational Logic

Master Thesis Presentation Vienna, 23rd of September 2014

Space and Congruence Compression of ${f Proofs}$

Resolution

Resolution Rule

$$\frac{C \vee x \quad D \vee \neg x}{C \vee D}$$

Resolution

Resolution Rule

$$(x_1 \lor x_2 \lor \neg x_3) \land (x_1 \lor x_2) \land (x_1 \lor x_3) \land (\neg x_1)$$

$$(x_1 \lor x_2 \lor \neg x_3) \land (x_1 \lor x_2) \land (x_1 \lor x_3) \land (\neg x_1)$$

$$\neg x_1$$

$$(x_1 \lor x_2 \lor \neg x_3) \land (x_1 \lor x_2) \land (x_1 \lor x_3) \land (\neg x_1)$$

$$(x_1 \lor x_2 \lor \neg x_3) \land (x_1 \lor x_2) \land (x_1 \lor x_3) \land (\neg x_1)$$

$$(x_1 \lor x_2 \lor \neg x_3) \land (x_1 \lor x_2) \land (x_1 \lor x_3) \land (\neg x_1)$$

$$(x_1 \lor x_2 \lor \neg x_3) \land (x_1 \lor x_2) \land (x_1 \lor x_3) \land (\neg x_1)$$

$$(x_1 \lor x_2 \lor \neg x_3) \land (x_1 \lor x_2) \land (x_1 \lor x_3) \land (\neg x_1)$$

$$(x_1 \lor x_2 \lor \neg x_3) \land (x_1 \lor x_2) \land (x_1 \lor x_3) \land (\neg x_1)$$

$$(x_1 \lor x_2 \lor \neg x_3) \land (x_1 \lor x_2) \land (x_1 \lor x_3) \land (\neg x_1)$$

Length: 7

Best Space: 3

Space and Congruence Compression of Proofs

Proof Compression

- Smaller proofs
- Smaller unsat cores, interpolants
- Easier proof processing
- Easier trusted interaction of deductive systems
- Proof generalization

Synthesizing Multiple Boolean Functions using Interpolation on a Single Proof

• Georg Hofferek, et al, 2013, TU Graz

Method

- Obtain proof of unsatisfiability of a formula in the SMT theory of uninterpreted functions from SMT solver
- Modify proof
- 3 Extract one interpolant from the proof
- Obtain multiple interpolants from the one that represent the desired boolean functions

Synthesizing Multiple Boolean Functions using Interpolation on a Single Proof

• Georg Hofferek, et al, 2013, TU Graz

Method

- Obtain proof of unsatisfiability of a formula in the SMT theory of uninterpreted functions from SMT solver
- Modify proof
- 3 Extract one interpolant from the proof
- Obtain multiple interpolants from the one that represent the desired boolean functions
 - Worst case exponential runtime in proof size

Synthesizing Multiple Boolean Functions using Interpolation on a Single Proof

• Georg Hofferek, et al, 2013, TU Graz

Method

- Obtain proof of unsatisfiability of a formula in the SMT theory of uninterpreted functions from SMT solver
- Modify proof
- 3 Extract one interpolant from the proof
- Obtain multiple interpolants from the one that represent the desired boolean functions
 - Worst case exponential runtime in proof size

Proof Compression using Skeptik

- Input proof: 1,870,407 nodes
- Output proof: 868,760 nodes (53,6% compression)

Space and Congruence Compression of Proofs

Knowledge

- **1** f(a) = a
- a = b
- **3** b = f(b)
- $f(a) \neq f(b)$

Knowledge

- **1** f(a) = a
- a = b
- **3** b = f(b)
- $f(a) \neq f(b)$

Unsatisfiable!

Knowledge

- **1** f(a) = a
- $\mathbf{a} = \mathbf{b}$
- **3** b = f(b)
- $f(a) \neq f(b)$

Unsatisfiable!

Proof

Equality is transitive, therefore from f(a) = a, a = b and b = f(b) follows f(a) = f(b), which contradicts $f(a) \neq f(b)$

Knowledge

- **1** f(a) = a
- $\mathbf{a} = \mathbf{b}$
- **3** b = f(b)
- $f(a) \neq f(b)$

Unsatisfiable!

Proof

Equality is transitive, therefore from f(a) = a, a = b and b = f(b) follows f(a) = f(b), which contradicts $f(a) \neq f(b)$

A different Proof

f(.) is a function, therefore from a = b follows f(a) = f(b), which contradicts $f(a) \neq f(b)$

A proof

A different proof

Ground Terms

- Constants a, b, c, \ldots
- Compound Terms $f(t_1, \ldots, t_n)$

Ground Terms

- Constants a, b, c, \dots
- Compound Terms $f(t_1, \ldots, t_n)$

Congruence Relation R

- Reflexive: $\forall t(t, t) \in R$
- Symmetric: $(s, t) \in R \Rightarrow (t, s) \in R$
- Transitive: $(t_1, t_2) \in R \dots (t_{m-1}, t_m) \in R \Rightarrow (t_1, t_m) \in R$
- Compatible: $\forall i(t_i, s_i) \in R \Rightarrow (f(t_1, \dots, t_n), f(s_1, \dots, s_n)) \in R$

Ground Terms

- Constants a, b, c, \dots
- Compound Terms $f(t_1, \ldots, t_n)$

Congruence Relation R

- Reflexive: $\forall t(t, t) \in R$
- Symmetric: $(s, t) \in R \Rightarrow (t, s) \in R$
- Transitive: $(t_1, t_2) \in R \dots (t_{m-1}, t_m) \in R \Rightarrow (t_1, t_m) \in R$
- Compatible: $\forall i(t_i, s_i) \in R \Rightarrow (f(t_1, \dots, t_n), f(s_1, \dots, s_n)) \in R$

Congruence Closure E^* of set of equations E

- Smallest Congruence Relation containing E
- Computable in $O(n \log(n))$
- E is explanation for $(s, t) \in E^*$

Knowledge

- f(a) = a
- a = b
- **3** b = f(b)

Knowledge

- f(a) = a
- $\mathbf{a} = \mathbf{b}$
- **3** b = f(b)
- $f(a) \neq f(b)$

Explanation for f(a) = f(b)

$$\{ f(a) = a, a = b, b = f(b) \}$$

Knowledge

- f(a) = a
- $\mathbf{a} = \mathbf{b}$
- **3** b = f(b)
- $f(a) \neq f(b)$

Explanation for f(a) = f(b)

$$\{ a = b, b = f(b) \}$$

Knowledge

- f(a) = a
- $\mathbf{a} = \mathbf{b}$
- **3** b = f(b)
- $f(a) \neq f(b)$

Explanation for f(a) = f(b)

$$\{a=b$$

Knowledge

- f(a) = a
- $\mathbf{a} = \mathbf{b}$
- **3** b = f(b)
- **4** $f(a) \neq f(b)$

Explanation for
$$f(a) = f(b)$$

$$\{a = b\}$$

Short explanation → short (sub)proof

Short Explanation Decision Problem

Given a set of input equations E, a target equation s = t and $k \in \mathbb{N}$, does there exist an explanation $E' \subseteq E$ of s = t with $|E'| \le k$?

Short Explanation Decision Problem

Given a set of input equations E, a target equation s = t and $k \in \mathbb{N}$, does there exist an explanation $E' \subseteq E$ of s = t with $|E'| \le k$?

NP-complete

NP-completeness proof sketch

From a propositional logic formula Φ obtain ...

- a set of equations E_{Φ}
- a target equation $s_{\Phi} = t_{\Phi}$
- $k_{\Phi} \in \mathbb{N}$

such that ...

 Φ is satisfiable if and only if there is an explanation $E'\subseteq E_{\Phi}$ of $s_{\Phi}=t_{\Phi}$ with $|E'|\leq k_{\Phi}$

Formula

$$(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2)$$

Formula

$$(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2)$$

Formula

$$(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2)$$

$$t_{1}(\top_{1})$$
 $t_{1}(\hat{x}_{1})$
 $f_{1}(\perp_{1})$
 $t_{1}(\top_{2})$
 $\hat{c}_{1} - t_{1}(\hat{x}_{2})$
 $f_{1}(\perp_{2})$
 $f_{1}(\hat{x}_{3})$
 $f_{1}(\perp_{3})$

Formula

$$(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2)$$

Formula

$$(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2)$$

Formula

$$(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2)$$

Formula

$$(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2)$$

Formula

$$(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2)$$

Formula

$$(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2)$$

Small subset corresponding to satisfying assignment

$$\hat{c}_1 - t_1(\hat{x}_1) \quad t_1(\top_1) - \hat{c}_2 - f_2(\hat{x}_2) \quad f_2(\bot_2) - \hat{c}_3 - f_3(\hat{x}_2) \quad f_3(\bot_2) - \hat{c}_4$$

$$\hat{x}_1 - \top_1$$

$$\perp_2 - - \hat{x}_2$$

$$\hat{x}_1 - T_1$$
 $\perp_2 - \hat{x}_2$ $\hat{x}_3 - T_3$

Space and Congruence Compression of Proofs

Is it possible to remove parts of the proof from memory during proof processing?

Which parts?

- Not in memory
- In memory

- Not in memory
- In memory

- Not in memory
- In memory

- Not in memory
- In memory

- Not in memory
- In memory

- Not in memory
- In memory

- Not in memory
- In memory

- Not in memory
- In memory

- Not in memory
- In memory

- Not in memory
- In memory

- Not in memory
- In memory

- Not in memory
- In memory

- Not in memory
- In memory

- Not in memory
- In memory

Maximum number of nodes in memory: 5

Not in memory

In memory

Good traversal orders are essential!

Space Measure

Space measure of a proof and a traversal order

Maximal amount of nodes that have to be kept in memory at once while processing the proof following the traversal order

Construct Traversal Orders

Construct Optimal Order

- NP-complete
- Optimal strategy in some pebbling game

Construct Good Order

- Top-Down
- Bottom-Up
- Heuristic choices

Experiments, Unsung Heroes & Conclusion

Experimental Results

Congruence Compression

- 2% average effective compression in proof length
- 28% compression in explanation length

Space Compression

- Bottom-Up outperforms Top-Down
- Average space measure is 44.1 times smaller than proof length

Unsung Heroes

- Explanation producing congruence closure algorithm
 - Using immutable data structures
 - Modified version of Dijkstra's shortest path algorithm
- Proof producing algorithm
- Resolution calculus extended with equality
- SAT translation of optimal traversal order
- Correct- & soundness proofs
- Implementation of all presented methods

Conclusion

- Proofs can be compressed in length and space
- Finding the shortest explanation is NP-complete
- Proof production is tricky
- Construct traversal orders Bottom-Up

Thank you for your attention!