Name & Surname : Sinan KARACA Date : 23 / 07 / 2021

Student ID: 8743013

INTRODUCTION

The purpose of the experiment is to run the 7 segment display with fpga board wit VHDL and Verilog codes. The instruction of lab notes says the 7 segment is common anode, so in the design, leds on 7 segments are high when regarding output is 0, off when regarding output is 1.

WORKING PRINCIPLE

HALF ADDER

The design is implemented from K map of each output from the truth table of 7 segment display, also it is proven with the multisim program. Truth table is Show down below,

[0:2] [NP	HEX[6:0]
3220	Entite Out
000000000000000000000000000000000000000	00000000000000000000000000000000000000
11 11	100000

Karnough maps of each outputs shown below,

HEX[6	J	
32 32 32 32	10 10 10 10 0 10 0 0 11 0 0 0 0 11 0 0	Hex[6] = 3.2.1.0 + 3.2.1.0 + 3.2.1.0

Derived logic circuit shown down below, the circuit created with multisim. Before implementing VHDL and Verilog Codes, the design approved with multisim program.

LOGIC CIRCUIT OF DIAGRAM (MULTISIM)

VHDL MAIN PROGRAM

```
-- Project Name : 7 Segment Display

-- File : skaraca_lab7

-- Creator : Sinan KARACA

-- Student number: 8743013
-- Date : 22.07.2021
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity skaraca_Lab6 is
   port(
      INP
             : in STD_LOGIC_VECTOR(3 downto 0);
              : out STD_LOGIC_VECTOR(6 downto 0));
      HEX
   end skaraca_Lab6;
architecture Behavioral of skaraca Lab6 is
--Component initialization
component OutputComponent is
               : in STD_LOGIC_VECTOR(3 downto 0);
      Input
      Output : out STD_LOGIC_VECTOR(6 downto 0));
   end component OutputComponent;
begin
--Component declerations
   H1: OutputComponent port map (INP, HEX);
end Behavioral;
```

VHDL COMPONENT PROGRAM

```
-- Project Name : OutputComponent

-- File : skaraca_lab4

-- Creator : Sinan KARACA

-- Student number: 8743013
-- Date : 14.07.2021
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity OutputComponent is
 port(
      : in STD_LOGIC_VECTOR(3 downto 0);
  Input
      : out STD_LOGIC_VECTOR(6 downto 0));
  Output
 end OutputComponent;
architecture Behavioral of OutputComponent is
begin
 end Behavioral;
```

endmodule.

VERILOG MAIN CODE

VERILOG COMPONENT CODE

PIN ASSIGNMENT

SIMALATION WAVEFORM

Simulation waveform shows the all combinations of 4 bit inputs. 16 different input are shown up below, it is ascended to 0 to F.

CONCLUSION

Design of 7 segment display control through vhdl and verilog has been experienced in this lab. There are others methods which are more easier and understandable to create, but I choose to gather the design from K-Maps of output signals. To learn more about and make practise about K-Maps. Also, the result of the K-Maps are implemented to multisim platform to prove, if the K-Maps result works fine.