Table The statistics of operations for breaking cycles in DNS

SCC	$Edge'(C_i,C_j)$	$\omega(C_i,C_j)$	$Cycles_b$	$Cycles_a$	$SCplx(C_i,C_j)$	Bf	$\mathcal{R}(C_i)$	N_m	Na
$SCC_1 = $ {8,11,21,25, 32,48,58}	21→11	10	16	6	0.0410	0.8579	0.1451	1	0
	8 → 21	1	6	5	0.0410	0.0558	0.1018	1	0
	48 → 32	1	5	4	0.0410	0.0355	0.0043	1	0
	32 → 58	1	4	3	0.6077	0.0301	0.0870	2	9
$SCC_2 =$	38→33	2	3	1	0.2707	0.0138	0.0170	1	4
{33,38,52}	52 → 33	1	1	0	0.2707	0.0069	0.0432	1	4

Table The statistics of operations for breaking cycles in ANT

SCC	$Edge'(C_i,C_j)$	$\omega(C_i,C_j)$	$Cycles_b$	$Cycles_a$	$SCplx(C_i,C_j)$	Bf	$\mathcal{R}(C_i)$	N_m	Na
	20→24	214	654	440	0.0851	0.1972	0.0428	1	3
	18 → 24	191	440	249	0.1220	0.1926	0.0052	2	3
	18 → 22	39	249	210	0.0554	0.1315	0.0052	1	1
	20 → 18	70	210	140	0.1359	0.1285	0.0428	1	6
	19 → 18	90	140	50	0.1942	0.0896	0.0424	3	6
$SCC_1 =$	20→23	10	50	40	0.0554	0.0749	0.0428	1	1
{2,4,10,16,	16 → 22	6	40	34	0.0554	0.0535	0.2614	1	1
17,18,19,20,	2→20	10	34	24	0.1575	0.0435	0.0037	1	7
21,22,23,24}	2 → 21	10	24	14	0.1401	0.0428	0.0037	2	6
	16 → 21	5	14	9	0.2072	0.0254	0.2614	5	6
	16 → 20	5	9	4	1.0626	0.0062	0.2614	23	7
	16 → 17	1	4	3	0.0554	0.0103	0.2614	1	1
	2 → 16	2	3	1	0.7089	0.0030	0.0037	1	31
	20→21	1	1	0	0.0026	0.0008	0.0428	1	0

Table The statistics of operations for breaking cycles in BCEL

SCC	$Edge'(C_i,C_j)$	$\omega(C_i,C_j)$	$Cycles_b$	$Cycles_a$	$SCplx(C_i,C_j)$	Bf	$\mathcal{R}(C_i)$	N_m	N_a
	2 → 21	133674	416091	282417	0.0979	0.1512	0.0675	1	1
$SCC_1 =$	20→45	40096	282417	242321	0.0884	0.1512	0.0680	1	0
{2,4,5,6,	4 → 34	33715	242321	208606	0.1218	0.1512	0.0107	1	2
7,8,9,10,	17 → 18	27889	208606	180717	0.0839	0.1512	0.0087	0	2
11,12,13,14,	45 → 26	16300	180717	164417	0.0884	0.1512	0.0116	1	0
15,1617,18,	15→45	13610	164417	150807	0.0884	0.1512	0.0079	1	0
19,20,21,22,	10 → 45	13610	150807	137197	0.0884	0.1512	0.0069	1	0
25,26,27,28,	16 → 45	13593	137197	123604	0.0884	0.1512	0.0087	1	0
29,30,31,32,	13 → 45	13534	123604	110070	0.0884	0.1512	0.0074	1	0
33,34,35,36,	9 → 45	13505	110070	96565	0.0884	0.1512	0.0073	1	0
37,38,39,40,	11→45	13505	96565	83060	0.0884	0.1512	0.0178	1	0
41,43,44,45}	12 → 45	13505	83060	69555	0.0884	0.1512	0.0093	1	0
	14 → 45	13505	69555	56050	0.0884	0.1512	0.0093	1	0

SCC	$Edge'(C_i,C_j)$	$\omega(C_i,C_j)$	$Cycles_b$	$Cycles_a$	$SCplx(C_i,C_j)$	Bf	$\mathcal{R}(C_i)$	N_m	N_a
	7 → 45	12888	56050	43162	0.0884	0.1512	0.0079	1	0
	19→45	12772	43162	30390	0.0884	0.1512	0.0484	1	0
	6→45	10735	30390	19655	0.0884	0.1512	0.0728	1	0
	6→36	10735	19655	8920	0.0884	0.1512	0.0728	1	0
	18→45	3904	8920	5016	0.0884	0.1512	0.1184	1	0
	18→36	3904	5016	1112	0.0884	0.1512	0.1184	1	0
	8→18	37	1112	1075	0.1957	0.1512	0.0330	2	2
	6→19	15	1075	1060	0.0979	0.1376	0.0728	1	1
	6 → 14	15	1060	1045	0.0979	0.1376	0.0728	1	1
	6 → 12	15	1045	1030	0.0979	0.1376	0.0728	1	1
	6 → 11	15	1030	1015	0.0979	0.1376	0.0728	1	1
	6 → 9	15	1015	1000	0.0979	0.1376	0.0728	1	1
	6 → 7	15	1000	985	0.0979	0.1376	0.0728	1	1
	6 → 16	15	985	970	0.1218	0.1376	0.0728	1	2
	8 → 6	3	970	967	0.0884	0.1376	0.0330	1	0
	20→6	1	967	966	0.0884	0.1376	0.0680	1	0
	14 → 18	1	966	965	0.1218	0.1376	0.0093	1	2
	19 → 18	1	965	964	0.1218	0.1376	0.0484	1	2
	16 → 18	1	964	963	0.1957	0.1376	0.0087	2	2
	12 → 18	1	963	962	0.1218	0.1376	0.0093	1	2
	11 → 18	1	962	961	0.1817	0.1376	0.0178	2	1
	9→18	1	961	960	0.1218	0.1376	0.0073	1	2
	7 → 18	1	960	959	0.1957	0.1120	0.0079	2	2
	4→32	142	959	817	0.1218	0.1120	0.0107	1	2
	2 → 40	88	817	729	0.1218	0.1120	0.0675	1	2
	2→29	88	729	641	0.0839	0.1120	0.0675	0	2
	33→45	63	641	578	0.0884	0.1120	0.0135	1	0
	2 → 32	82	578	496	0.1218	0.1120	0.0675	1	2
	33→36	63	496	433	0.0884	0.1120	0.0135	1	0
	22 → 45	30	433	403	0.0884	0.1120	0.0014	1	0
	25→45	30	403	373	0.0884	0.1120	0.0055	1	0
	34→45	30	373	343	0.0884	0.1120	0.0232	1	0
	43→45	30	343	313	0.0884	0.1120	0.0092	1	0
	44→45	30	313	283	0.0884	0.1120	0.0075	1	0
	2→38	31	283	252	0.0979	0.1120	0.0675	1	1
	2→37	31	252	221	0.0420	0.1080	0.0675	0	1
	5→36	31	221	190	0.0884	0.1000	0.0022	1	0
	2→36	30	190	160	0.0884	0.0912	0.0675	1	0
	2→39	29	160	131	0.0420	0.0912	0.0675	0	1

SCC	Edge'(Ci,Cj)	$\omega(C_i,C_j)$	$Cycles_b$	Cyclesa	$SCplx(C_i,C_j)$	Bf	$\mathcal{R}(C_i)$	N_m	Na
	2→4	55	131	76	0.3469	0.0800	0.0675	1	8
	35→32	8	76	68	0.1218	0.0800	0.0125	1	2
	21 → 45	4	68	64	0.0884	0.0800	0.0237	1	0
	45 → 40	4	64	60	0.1218	0.0744	0.0116	1	2
	45 → 32	4	60	56	0.1218	0.0744	0.0116	1	2
	45→29	4	56	52	0.1218	0.0712	0.0116	1	2
	30→35	10	52	42	0.1768	0.0688	0.1370	2	0
	30→26	5	42	37	0.1768	0.0688	0.1370	2	0
	45 → 39	2	37	35	0.0979	0.0688	0.0116	1	1
	45 → 31	2	35	33	0.1218	0.0592	0.0116	1	2
	30→39	2	33	31	0.0884	0.0584	0.1370	1	0
	45→4	3	31	28	0.3469	0.0576	0.0116	1	8
	45 → 28	2	28	26	0.1897	0.0400	0.0116	1	4
	45 → 35	10	26	16	0.0884	0.0392	0.0116	1	0
	45 → 30	3	16	13	0.5444	0.0376	0.0116	1	20
	41 → 45	1	13	12	0.0884	0.0296	0.0904	1	0
	2 → 43	1	12	11	0.0979	0.0208	0.0675	1	1
	2→22	1	11	10	0.0979	0.0128	0.0675	1	1
	2 → 34	1	10	9	0.1218	0.0128	0.0675	1	2
	2→25	1	9	8	0.1218	0.0064	0.0675	1	2
	2 → 45	6	8	2	0.0884	0.0032	0.0675	1	0
	2 → 44	1	2	1	0.1537	0.0032	0.0675	1	3
	5 → 45	1	1	0	0.0884	0.0016	0.0022	1	0

Table The statistics of operations for breaking cycles in Jmeter

SCC	$Edge'(C_i,C_j)$	$\omega(C_i,C_j)$	$Cycles_b$	$Cycles_a$	$SCplx(C_i,C_j)$	Bf	$\mathcal{R}(C_i)$	N_m	N_a
	109→76	40	101	61	0.0202	0.1727	0.0709	1	0
	109→100	14	61	47	0.0202	0.1936	0.0709	1	0
	109→102	1	47	46	0.0202	0.1970	0.0709	1	0
$SCC_1 = \{ 239, 108, 78, $	73 → 102	2	46	44	0.0202	0.1525	0.0371	1	0
76, 109, 73, 40, 101,	109→65	6	44	38	0.0404	0.1924	0.0709	2	0
102, 99, 72, 100, 65,	234 → 65	30	38	8	0.0404	0.2141	0.0270	2	0
234, 53, 61}	76 → 78	3	8	5	0.0202	0.2297	0.0067	1	0
	102→101	1	5	4	0.0202	0.1551	0.0032	1	0
	65→100	3	4	1	0.0404	0.1867	4.21E-5	2	0
	72 → 100	1	1	0	0.0202	0.6164	0.0004	1	0
$SCC_2 = \{169, 167\}$	167→169	1	1	0	0.0606	0.9005	0.0234	3	0
$SCC_3 = \{165, 164, 161\}$	161→164	1	1	0	0.0404	0.6066	0.0210	2	0
$SCC_4 = \{184, 185\}$	184 → 185	1	1	0	0.0202	0.7562	0.0030	1	0
$SCC_5 = \{250, 247\}$	247 → 250	1	1	0	0.0404	0.7982	0.0012	2	0

Table The statistics of operations for breaking cycles in Xml-security

SCC	$Edge'(C_i,C_j)$	$\omega(C_i,C_j)$	$Cycles_b$	$Cycles_a$	$SCplx(C_i,C_j)$	Bf	$\mathcal{R}(C_i)$	N_m	N_a
	1→68	701	976	275	0.0337	0.0936	0.0021	1	0
	34 → 64	20	275	255	0.0337	0.0561	0.0747	1	0
	34 → 36	20	255	235	0.0337	0.0604	0.0747	1	0
$SCC_1 = \{213, 212, 173,$	210 → 196	25	235	210	0.0337	0.0630	0.0637	1	0
201, 89, 88, 86, 85, 84,	210→200	20	210	190	0.0337	0.0687	0.0637	1	0
82, 81, 77, 76, 171, 167,	210→33	20	190	170	0.0337	0.0688	0.0637	1	0
168, 172, 75, 74, 73, 80,	210 → 36	20	170	150	0.0337	0.0760	0.0637	1	0
78, 72, 207, 71, 68, 67,	210→66	20	150	130	0.0337	0.0840	0.0637	1	0
8, 7, 2, 5, 196, 198, 195,	192 → 65	34	130	96	0.0337	0.0738	0.0267	1	0
194, 65, 192, 161, 64,	200→1	87	96	9	0.1010	0.0782	0.0074	3	0
36, 35, 34, 200, 66, 33,	192 → 210	3	9	6	0.0337	0.1668	0.0267	1	0
210, 3, 1}	198→210	3	6	3	0.0337	0.1949	0.0070	1	0
	210 → 194	1	3	2	0.0673	0.1778	0.0637	2	0
	35→210	1	2	1	0.0673	0.1668	0.0002	2	0
	195→210	1	1	0	0.2694	0.1356	0.0064	8	0
$SCC_2 = \{152, 155\}$	152→155	1	1	0	0.5051	0.7432	0.0246	15	0

Table The statistics of operations for breaking cycles in Joda-time

SCC	Edge'(Ci,Cj)	$\omega(C_i,C_j)$	Cycles _b	Cyclesa	$SCplx(C_i,C_j)$	Bf	$\mathcal{R}(C_i)$	N_m	N_a
	8 → 13	3278	5514	2236	0.0112	0.0987	0.0341	1	0
	7 → 15	1616	2236	620	0.0112	0.1060	0.0285	1	0
	131→13	358	620	262	0.0112	0.1131	0.0258	1	0
	8→128	90	262	172	0.0112	0.1041	0.0341	1	0
	129→127	53	172	119	0.0112	0.0818	0.0191	1	0
	128→19	68	119	51	0.0224	0.0834	0.0214	2	0
	128→2	25	51	26	0.0224	0.0901	0.0214	2	0
	8→153	1	26	25	0.0112	0.0772	0.0341	1	0
$SCC_1 = \{39, 45, 51,$	8 → 7	1	25	24	0.0112	0.0851	0.0341	1	0
35, 44, 20, 49, 15,	8→150	1	24	23	0.0112	0.0949	0.0341	1	0
147, 148, 156, 153,	8→156	4	23	19	0.0224	0.0770	0.0341	2	0
150, 149, 36, 127,	131→7	0	19	18	0.0112	0.0788	0.0258	1	0
129, 136, 131, 128,	43→14	4	18	15	0.0112	0.0821	0.0022	1	0
43, 41, 47, 19, 14,	2 → 35	3	15	12	0.0112	0.0837	0.0019	1	0
13, 8, 7, 2}	2 → 39	3	12	9	0.0112	0.1094	0.0019	1	0
	41 → 43	3	9	6	0.0224	0.0787	0.0017	2	0
	44→20	1	6	5	0.0112	0.1001	0.0017	1	0
	44 → 15	1	5	4	0.0112	0.1217	0.0017	1	0
	36→8	1	4	3	0.0112	0.1186	0.0017	1	0
	8 → 149	1	3	2	0.0337	0.1251	0.0341	3	0
	41 → 127	1	2	1	0.0224	0.1549	0.0017	2	0
	49 → 20	1	1	0	0.0449	0.2722	0.0018	4	0
	144→143	2	6	4	0.0786	0.2544	0.1573	7	0
SCC = (142, 144)	46 → 21	1	4	3	0.0112	0.2062	0.0017	1	0
$SCC_2 = \{143, 144, 127, 46, 52, 21\}$	21 → 143	1	3	2	0.0112	0.2681	0.0017	1	0
137, 46, 52, 21}	143 → 21	1	2	1	0.0224	0.2292	0.0019	2	0
	52 → 21	1	1	0	0.0224	0.5739	0.0017	2	0
	9→37	2	5	3	0.0112	0.1718	0.0026	1	0
$SCC_3 = \{37, 34, 9\}$	9 → 34	2	3	1	0.0112	0.2503	0.0026	1	0
	34 → 37	1	1	0	0.0112	0.3750	0.0024	1	0
$SCC_4 = \{119, 110\}$	110→119	1	1	0	0.2023	0.5390	0.0042	1	2
	56 → 75	1	9	8	0.0112	0.1028	0.0293	1	0
	56 → 72	1	8	7	0.0112	0.1158	0.0293	1	0
	56 → 71	1	7	6	0.0112	0.1317	0.0293	1	0
$SCC_5 = \{75, 61,$	56 → 65	1	6	5	0.0112	0.1537	0.0293	1	0
74, 72, 71, 65, 64,	56 → 64	1	5	4	0.0112	0.1820	0.0293	1	0
63, 58, 57, 56}	56→63	1	4	3	0.0112	0.2231	0.0293	1	0
	56→58	1	3	2	0.0112	0.2901	0.0293	1	0
	56 → 57	1	2	1	0.0112	0.4114	0.0293	1	0
	56 → 74	1	1	0	0.0112	0.7053	0.0293	1	0
$SCC_6 = \{123, 113\}$	113→123	1	1	0	0.0112	0.5081	0.0019	1	0