四川师范大学

2013年攻读硕士学位研究生

入学考试试题

专业代码: <u>077503</u> 专业名称: <u>计算机应用技术</u> 考试科目代码: <u>601</u> 考试科目名称: <u>高等数学</u>
(本试卷共 <u>3</u> 大题 <u>20</u> 小题,满分 <u>150</u> 分) 说明:(1)试题和答卷分离,所有答题内容须写在答题纸上,写在试题或草稿纸上的内容无效; (2)答题时,可不抄题,但须写明所答试题序号; (3)答题时,严禁使用红色笔或铅笔答题。
一. 填空题(本题共6小题,每题4分,满分24分)
1、若函数 $f(x) = \begin{cases} \frac{tgx}{x}, x > 0 \\ A, x \le 0 \end{cases}$ 在点 $x = 0$ 处连续,则 $A = $ 。
2、设 $f(x)$ 在点 $x = 0$ 可导且 $f(0) = 0$,则 $\lim_{x \to 0} \frac{f(x)}{x} =$
3、设 $\int f(x)dx = e^{x} + C$,则 $f(x) = $
4、微分方程 $\frac{dy}{dx} = \frac{y(1-x)}{x}$ 的通解为。
5 、若 $\sum_{n=1}^{n} a_n$ 收敛, $s_n = a_1 + a_2 + \dots + a_n$,则 $\lim_{n \to \infty} (s_{n+1} + s_{n-1} - 2s_n) = $
$6, \lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{xy+4}-2} = \underline{\hspace{1cm}}.$
二. 选择题(本题共6小题,每题4分,满分24分)
7、设 $f(x) \in C[a,b]$, 且 $f(a)f(b) < 0$,则存在 $\xi \in (a,b)$ 必有。
$A f(\xi) = 0$ $B f'(\xi) = 0$ $C f(b) - f(a) = f'(\xi)(b - a)$ $D f''(\xi) = 0$
8、若 $f(x)$ 在 (a,b) 上二次可导,且 $f'(x) > 0$, $f''(x) < 0$,则 $f(x)$ 在 (a,b) 上是。
A 单调增加且是向上凹的 B 单调增加且是向下凹的 C 单调减少且是向上凹的 D 单调减少且是向下凹的

9、 当 $x \to a$ 时, $\beta(x)$ 为无穷小,并且存在数 k , 使 $\lim_{x \to a} \frac{\beta(x)}{[\alpha(x)]^k} = c \ (c \neq 0)$, 就说 $\beta(x)$ 对于 $\alpha(x)$ 是 k 阶无穷小,则 $\alpha(x)$ 是_____ A 无穷小 B 无穷大 C 有界 D 非零 10、设 L 是圆周 $x^2 + y^2 = 1$ 的顺时针方向,则 $\int_{L} (x+2y)dx + (y^2-2x)dy =$ _______ $C = 2\pi$ $D = 4\pi$ A = 011、如果级数 $\sum_{n=0}^{\infty} u_n$ 收敛,则下列级数中收敛的是____。 A $\sum_{n=1}^{\infty} (u_n + 0.001)$ B $\sum_{n=1}^{\infty} \frac{u_n}{2}$ C $\sum_{n=1}^{\infty} (u_n + 1000)$ D $\sum_{n=1}^{\infty} \frac{100}{u_n}$ 12 设空间区域 Ω : $x^2 + y^2 + z^2 \le a^2$, 在球面坐标系下积分∭ $(x^2 + y^2 + z^2)dxdydz$ 化为_____ $B \qquad \int_0^{2\pi} d\theta \int_0^{\pi} \sin\varphi d\varphi \int_0^{\alpha} r^4 dr$ $A \int_{0}^{2\pi} d\theta \int_{0}^{\pi} \sin \varphi d\varphi \int_{0}^{\alpha} r^{2} dr$ $C \qquad \int_0^{2\pi} d\theta \int_0^{\pi} \sin\varphi d\varphi \int_0^a \alpha^2 r^2 dr \qquad \qquad D \qquad \int_0^{2\pi} d\theta \int_0^{\pi} \sin\varphi d\varphi \int_0^a r^3 dr$ 三. 解答题(本题共8小题,满分102分) 13、求下列极限: 计算 $\lim_{x\to 0} \frac{tg \, x - \sin x}{\sin^3 x}$ 。 (10分) $14、求 \int_{\pi}^{\pi} \sqrt{1 + \cos(2x)} dx .$ (10分) 15、求由 $y = 1 + xe^y$ 所确定的隐函数y = y(x)的导数 $\frac{dy}{dx}$ 。 (10 分) 16、 $\log z = f(2x, \frac{x}{v})$,求 z_{xx} ", z_{yy} ",其中f具有二阶连续偏导数。 (16分) 17、设 f(x) 在 [0,a] 上连续,在 (0,a) 内可导,且 f(a)=0,证明: $\exists \xi \in (0,a)$, (14分) 使 $f(\xi) + \xi f'(\xi) = 0$ 。 18、已知 $\int_{0}^{y} e^{t^{2}} dt = \int_{0}^{x^{2}} \cos t dt + \sin y^{2}$, 求 y'。 (10分) 19、已知曲线积分 $\int_{t} [e^{x} + 2f(x)]ydx - f(x)dy$ 与路径无关且 f(0) = 0 , 求 f(x) , 并由此计算从 A(1,1) 到 B(2,3) 的曲线积分的值。 (18分) 20、 将函数 $f(x) = \frac{1}{x^2 + 3x + 2}$ 展开成 (x + 4) 的幂级数, 并求其收敛区间。 (14分)