Konstrukcja Układów Optycznych

Projekt Rzutnika Multimedialnego

Schemat blokowy procesu projektowania układów optycznych

□ Specyfikacja Optyczna

- Wybór modelu startowego projektu
- Ustawienie optycznych parametrów:
 - wymiar slajdu 24x36 mm,
 - baza ekranu 1500 mm,
 - odległość do ekranu,
 - natężenie oświetlenia 1000 lx,
 - współczynnik transmisji układu optycznego 0.7,
 - lampa halogenowa 150 W.

Wybór rozwiązania

Wariant #1: Klasyczny układ projektora analogowego

Wariant #2: Model projektora cyfrowego

Variant #3: Model projektora cyfrowego wg schematu klasycznego (problem z kontrastem)

Obliczenia wstępne

Model cienko elementowy wybranego rozwiązania

Niezmiennik L-H

Niezmiennik L-H	3,60288
-----------------	---------

Nr. pow	0	1	2	3	4	5
f		27,6431	93,93285372	1,00E+20	81,98,721	
d	27,6431		10	83,93285372	3500	
Н	0	24,17349	24,17348571	21,6	0	-900,72
Alfa	-0,874485	0	0,257348571	0,257348571	0,257349	
V			0	1	1	
L				0	0	
Υ	-4,12		-1,668	0	14	0
Beta		-0,149043	-0,1668	-0,1668	0,004	
Q			0,893540975	1	-41,7	
Т			-1,191428571	0	3583,933	

liczba elem.

Niezmiennik L-H	3,60288
-----------------	---------

	inter lens					
	distance		liczba elem.	5		
Nr. pow	0	1	2	3	4	5
f		27,6431	93,93285372	1,00E+20	81,96721	
d	27,6431	15	10	83,93285372	3500	
Н	0	24,17349	24,17348571	21,6	0	-900,72
Alfa	-0,874485	0	0,257348571	0,257348571	0,257349	
V			0	1	1	
L			-	0	0	
Υ	-4,12	-3,90364	-1,668	0	14	0
Beta	-0,007827	-0,149043	-0,1668	-0,1668	0,004	
Q		0,052515	0,893540975	1	-41,7	
T		-472,5535	-1,191428571	0	3583,933	

Niezmiennik L-H	3,60288
-----------------	---------

Projektowanie obiektywu

□ Projektowanie obiektywu

- Wybór startowego projektu
- Ustawienie warunków pracy dla projektu startowego
- Vinietowanie
- Dyskusja aberacyjna
- Optymalny defocusing
- Kryteria do oceny jakości układu optycznego
- Spot Diagram
- MTF

Numerical Aperture = 0.17

Field Angle =
$$Tan^{-1} \frac{\sqrt{12^2 + 18^2}}{83.93} = 14.45^\circ$$

Definicja systemu (working condition):

EFL = 81.97 m = -41.7X Numerical Aperture = 0.17 Field Angle = 14.45 deg

It implies:

F# = 2.94 such a large aperture must be specially considered (spherical and coma aberrations must be corrected)

Field Angle = 14.45 deg, such an angle requires correction of field curvature aberrations (design type: anasitigmat must be used)

Wybieramy obiektyw typu Tessar

Parametry systemu:

Numerical Aperture = 0.17 Field Angle = 14.45 deg

'OSLO → Lens → Lens Database'

DESIGN INPUT: TESSAR USP2724992/

BREN...

Ustawienie warunków pracy układu

Rescale lens 'Scale Lens -> Scale to new focal length'

f '= 81.97 A = 0.17 y = 21.63

Po przeskalowaniu sprawdź EFL

EFL = 81.97 m = -41.7X Numerical Aperture = 0.17 Field Angle = 14.45 deg

Specify working condition 'Surface Data -> Paraxial Setup Editor'

Image height = 21.63 m = - 41.7X NA = 0.17 object. dist =3500 mm

Aberracje są wyznaczane w kierunku mniejszego powiększenia!

Winietowanie

Set Lens Drawing Conditions to see if for all of field angles all of the rays are transferred.

Set rows 2 and 3 to observe vignietting

Winietowanie musi być skorygowane dla obu kątów pola

Ustawienie winietowania

W oknie GW 1 naciśnij przycisk i wybierz opcję meni

'Lens Drawing'

Naciśnij przycisk

Okno do graficznej analizy vinietowania

Slider \	Window		_ _ ×
Frac. Y Obj.	0.000000	1	▶ Step 0.01 🚊
Frac. X Obj.	0.000000	1	▶ Step 0.01 🚊
Min. Pupil	-1.000000	1	▶ Step 0.005 🚓
Max. Pupil	1.000000		▶ Step 0.01 ÷

Frac Y (X) Obj. – actual tangential (sagital) field of view (normalized to max angle),

Min (Max) – actual down (upper) effective aperture diameter (normalized to max aperture)

Frac Y Obj	Frac × Obj Rays	Min Pupil	Max Pupil	offset	FΥ	FΧ	W∨n	Cfg		۸ مد. ما د ا ما ما	_ £	:
0.000000	0.000000 3	-1.000000	1.000000	0.000000	•	0 [1	0	←	Actual field	OT	view
0.700000	0.000000 3	-1.000000	1.000000	0.000000	•	0 [1	0				
1.000000	0.000000 3	-1.000000	1.000000	0.000000	◉	0 [1	0				

Analiza winietowania dla 0.7 pola widzenia

Wiązka promieni nie jest w pełni przetransmitowana przez układ – konieczna analiza winietowania

Frac Y Obj	Frac X Obj Rays	Min Pupil	Max Pupil	offset	FΥ	FΧ	W∨n	Cfg				
	0.000000 3											
0.700000	0.000000 3	-1.000000	1.000000	0.000000	◉	0 [1	0 .	←	Actual fie	∍ld oʻ	f view
1.000000	0.000000 3	-1.000000	1.000000	0.000000	•	\circ	1	0				

Analiza winietowania dla 0.7 pola widzenia

Przy użyciu slajderów pełna wiązka promieni jest transmitowana przez układ, weźmy również pod uwagę średnice montażowe Możemy teraz ustawić parametry winietowania Mamy do czynienia z winietowaniem nie symetrycznym

Frac Y Obj	Frac $ imes$ Obj Rays	Min Pupil	Max Pupil	offset	FY F	k Wvn Cfg	
0.000000	0.000000 3	-1.000000	1.000000	0.000000) [1 [0]	
0.700000	0.000000 3	-0.910000	0.750000	0.000000) 1 0	Α
1.000000	0.000000 3	-1.000000	1.000000	0.000000) 1 0	

Actual field of view

Analiza winietowania dla 1.0 pola widzenia

Mamy do czynienia z winietowaniem niesymetrycznym

Total vignitting coefficients for fields:

$$0.7 - 0.83$$
 $1.0 - 0.745$

W celu użycia wyznaczonych współczynników przy analizie aberracyjnej musimy ustawić je w oknie 'Surface Data - > Field Points Set Data Editor'

Efekt ustawienia winietowania

11.8

Automatyczne ustawienie winietowania

Funkcja 'Vig'

Funkcja wyznacza współczynniki vinietowania i wyświetla wyniki. Domyślnie, wyiniki są przekopiowane do <u>field points set</u> i do <u>Lens Drawing Conditions</u>.

Uwaga: Checked apertures are taken into account

We will set 'Checked' setting to aperture radiuses: first and the last one

Runing 'vig' command

Step 1: write 'vig' and press ✓

Step 2: press 'Yes' for copying results to 'Field Points' set and press ✓

Step 3 : press 'Yes' for copying results to 'Lens Drawing Conditions' set and press ✓

Step 4: Accept default value 5.0 for 'Enter maximum pupil position to test'

RUN COMMAND 'vig':

```
>> vig
```

<< Copy vignetting data to field point set?

>> y

<< Copy new field point data to drawing fans?

>> y

<< Enter maximium pupil postion to test?</p>

>> 5.0

SETS PARAMETARS:

***VIGNETTING FACTORS**

FPT	CF	G FBY		FBX	FY1	FY2	FXMAX
1	0		-	-0.999539	0.	999539	0.999539
2	0	0.700000		-0.931	181	0.724541	0.980700
3	0	1.000000		-0.901	139	0.585673	0.961303

Results copied to 'Field Point Set'

'Field Point Set' copied to 'Drawing Operating Conditions

Otrzymany układ

Dyskusja aberracji

'Standard Tools -> Ray Intercept curve Analysis'

Poprzeczne (Lateral) aberracje

1 field: appears field curvature aberration (transverse aberration plot tilt), asymmetrical geometrical vignetting enlarges

0.7 field: appears field curvature aberration (transverse aberration plot tilt), asymmetrical geometrical vignetting

On axis: spherical aberrations
5-th order type
Lateral color (chromatic aberrations)
present

Longitudinal spherical aberrations (5-th order type)

Longitudinal color (defined for blue - F and red - C wavelengths)

Field aberrations:

Astigmatism and field curvature present and must be corrected, considerable Sagittal Field curvature

Field aberrations

Distortion expressed in % from image size ~0.25 % for full field of view

Lateral color aberration ~ 0.015 mm for full field of view

≻Optymalne przeogniskowanie

Ocena jakości powinna zostać wykonana dla płaszczyzny przeogniskowania

Użyj funkcję OSLO: <u>'Evaluate -> Autofocus -> Minimum on-axis spot size</u> (polychromatic) <u>'</u>

Optymalne przeogniskowanie: -0.2844 mm

Aberrations at optimal defocusing plane

Compare aberrations with paraxial focus

<u>'Standard Tools -> Ray Intercept...'</u> Obj Height -906 mm **ASTIGMATISM** LONGITUDINAL CHROMATIC $0.1 \, \mathrm{mm}$ $S \times T + (mm)$ SPHERICAL ABER, (mm) FOCAL SHIFT (mm) ∤а.б 0.5 Obj Height -634 mm 0.1 mm -0.50.5 -0.5 0.5 DISTORTION (%) 5,01 r 0.5 **AXIS** $0.1 \, \text{mm}$ -0.5 LATERAL COLOR (mm) r 0.01 UNITS: mm -0.01 FIELD: -906mm OSLO TESSAR USP2724992/ BREN... IMAGE NA: 0.17 EFL: 82mm 23 kwi 09 RAY TRACE ANALYSIS WAVELGTH: +:0.588 Δ:0.486 Φ:0.656 μm 01:38 PM

Aberration at paraxial focus

Kryteria oceny jakości

Expected resolution:

Aberrational spot size (screen)

For visual observation from 3.5 m and human eye angular resolution 1' of arc (0.0003 rad) aberrated spot can not exceed

$$3500 \cdot 0.0003 = 1.05 \, \text{mm}$$

At image plane (film slide plane) aberration spot can not exceed

$$1.05 \cdot 0.02387 = 0.024 \text{ mm}$$

where 0.02387 is a transverse magnification

The spot size corresponds to (40 l/mm)

40 I/mm will be used as a criteria for design evaluation

Spot Diagram and MTF evaluation

We get spot of effective size around 0.05 mm, it is to high and should be corrected. Spot size on screen is 2 mm what corresponds to angle aberration 2' of arc and can be acceptable especially that is fulfill in whole field of view.

The MTF plot shows that the lens do not transmit the frequencies above 20 l/mm with acceptable contrast (must be corrected)

'Standard Tools -> Spot Diagram Analysis'

Expected resolution:

Aberrational spot size (screen) 3500·0.0003=1.05 mm

Aberrational spot size (slide) 1.05·0.02387=0.024 (40 l/mm)

Expected resolution:

Aberrational spot size (screen) 3500·0.0003=1.05 mm

Aberrational spot size (slide) 1.05·0.02387=0.024 (40 l/mm)

MTF before defocusing

MTF after defocusing

Optimization using

'Generate Error Function -> OSLO Spot Size/Wavefront'

Optimization using

EFL requirement

Expected resolution:

Aberrational spot size (screen) 3500·0.0003=1.05 mm

Aberrational spot size (slide) 1.05·0.02387=0.024 (40 l/mm)

Obtained MTF

Projekt kondensora

□ Design of a condensor lens

- Choosing thin element starting design
- Inserting and specifying Aspheric lens in OSLO
- Evaluation of chosen Aspheric lens
- Adding 2-nd lens to the condenser design
- Setting of working conditions of a starting design
- Vignieting analysis
- Evaluation of the condenser design

Choosing starting design

First element requires at least 3 spherical lenses or one aspheric one (due to the working conditions, especially high numerical aperture)

Inserting and specifying Aspheric lens in OSLO

From ThorLabs catalog we find aspheric lans No. AL 4532 f=32, NA = 0.612

Large-Diameter Aspheric Lenses - Page 4 of 5

AL4532 f = 32.0mm and 0.612 NA

Specifications

- Effective Focal Length: 32.0mm
- Numerical Aperture: 0.612
- Diameter: 45.0mm
- Scratch-Dig: 60-40
- Design Wavelength: 780nm
- Clear Aperture (Collimation): 41.00mm

- Clear Aperture (Focusing): 37.30mm
- Aspheric Lens Material: S-LAH64
- Refractive Index (@ Design λ): 1.788
- **Abbe** #: V_d=47.3

Aspheric Coefficients

	R	k	A ₂	A_4	A ₆	A ₈	A ₁₀
AL4532	23.88	-1.678413	-8.294534E-4	9.229323E-06	-3.656184E-09	1.102823E-12	-6.146323E-16

Edge Thickness: 3.12mm Working Distance: 24.12mm

The closest matching lens from catalog

Aspheric Lens Equation

Lens Design Formula

- · Positive radius indicates the center of curvature is to the right
- · Negative radius indicates the center of curvature is to the left

$$z = \frac{Y^{2}}{R\left(1 + \sqrt{1 - (1 + k)Y^{2}/R^{2}}\right)} + A_{2}Y^{2} + A_{4}Y^{4} + A_{6}Y^{6} + A_{8}Y^{8} + A_{10}Y^{10} + A_{12}Y^{12}$$

Variable Definitions

Z	SAG as a function of Y
R	Radius of curvature
k	Conic constant
A ₂	2 nd order aspheric coefficient
A ₄	4 th order aspheric coefficient
A ₆	6 th order aspheric coefficient
A ₈	8 th order aspheric coefficient
A ₁₀	10 th order aspheric coefficient
A ₁₂	12 th order aspheric coefficient

Open New Lens with 2 surfaces

Insert lens parameters: surface radius, thickness, clear radius and glass type (from OHARA catalog S-LAH64)

Difference between catalog and obtained EFL is due to use different wavelengths, we use 0.587 um instead 0.78 um

Specify conic constant
At surface of radius 23.88 and column 'SPECIAL' press right button, chose 'Polynomial Asphere (A) -> Conic / Toric '

Aspheric Coefficie							Coefficients
	R	k	A ₂	A ₄	A ₆	A ₈	A ₁₀
AL4532	23.88	-1.678413	-8.294534E-4	9.229323E-06	-3.656184E-09	1.102823E-12	-6.146323E-16

Specify Aspheric coefficients
At surface of radius 23.88 and column 'SPECIAL' press right button, chose 'Polynomial Asphere (A) -> Standard Asphere'

Aspheric Coefficients

	R	k	A ₂	A ₄	A ₆	A ₈	A ₁₀
AL4532	23.88	-1.678413	-8.294534E-4	9.229323E-06	-3.656184E-09	1.102823E-12	-6.146323E-16

> Evaluation of chosen Aspheric lens

Setting lens working conditions for infinite conjugation

In window 'Surface Data->Paraxial Setup Editor' we set entrance beam radius 21.63, gauss image height 4.12 and magnification 0 (object at infinity)

For condenser lens usually we apply criterion: spot diagram size can not exceed 3 to 10 % of image size, for our case an image (lamp diagonal) is 8,24 mm, the spot size is to be smaller then 0.8 mm

Open 'Spot Diagram' Window toolbar, and run 'Spot Diagram vs. All field points'

Recalculate window to 'scale' 0.8

Conclusion:

Obtained spot diagram size on-axis satisfy our criterion, off-axis most of the energy is contained within required circle

Adding 2-nd lens to the condenser design

Insert catalog lens from Melles-Griot OSLO catalog, part number MG01LPX167 (EFL 95.3), then using right bottom menu command 'Reverse' obtain following

The lenses must be directed with convexities (typical condenser setup for small magnification) according to aberration correction

Add new surface specifying position of aperture stop (slide position)

Obtained data

Setting of working conditions of a starting design

We set: numerical aperture and magnification

- numerical aperture is obtained from specification of aspheric lens:

$$NA = 0.71$$

- magnification is a ratio of condenser afocal system

Magnification =
$$\frac{f_1}{f_2} = \frac{30.3}{95.3} = -0.318$$

Fig. Obtained condenser lens design

Conclusion: Severe vignieting, necessary correction

Vignieting analysis

From window 'Lens Drawing' toolbar choose

Complete vignieting analysis for both 0.7 and 1 field angle

Fig. Vignieting Setting for field angle 1

Fig. Vignieting Setting for field angle 0.7

Obtained values are introduced into the <u>field points set</u> (Advanced) and to the <u>Lens Drawing Conditions</u>.

Frac Y Obj	Frac × Obj	Rays	Min Pupil	Max Pupil	offset
0.000000	0.000000	3	-1.000000	1.000000	0.000000
0.700000	0.000000	3	-1.000000	0.880000	0.000000
1.000000	0.000000	3	-1.000000	0.820000	0.000000

Fig. Setting 'Lens Drawing Conditions'

Fig. Setting 'Field Point Set'

Effect of vignietting correction on ray transfer for considered 3 angles of field of view

Evaluation of the condenser design

Run spot diagram analysis and recalculate for 'Scale' 0.8

Fig. Spot diagram condenser analysis

Our design meets our demands

Individual projects

Projectors:

Project 1: slide projector Distance to the screen – 5 m Slide size – 40 x 40mm Screen base: 2 m

Project 2: movie projector Cine film – 16 mm Distance to the screen – 15 m Screen base: 4 m

Project 3: movie projector

Cine film – 35 mm

Distance to the screen – 15 m

Screen base: 6 m

Project 4: back projection projector Distance to the screen – 1 m Slide size – 24 x 36 mm Screen base (monitor size 25 inch)

Project 5: micro film projector Cine film – 16 mm Distance to the screen – 1,5 m Screen base (format A3)

Project 6: overhead projector Distance to the screen – 5 m Slide size – 24x36 Screen base: 4 m

Project 7: Multimedia projector Distance to screen: 4m Slide size – 8,64x15,36 Screen base: 1,5m