Polynomial Regression

Linear Regression Works Best When the Data is Linear

Polynomial Regression

Model Selection

Simple Problem

Complex Solution

Model Selection

Under-fitting & Over-fitting

Impact of training points

Bias Variance Trade-off

Bias Variance Trade-off

https://elitedatascience.com/bias-variance-tradeoff

Regularization / Shrinkage

Ridge / L2

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 = RSS + \lambda \sum_{j=1}^{p} \beta_j^2$$

Lasso / L1

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| = RSS + \lambda \sum_{j=1}^{p} |\beta_j|.$$

SIMPLE MODEL

COMPLEX MODEL

ERROR:

$$3x_1 + 4x_2 + 5$$

ERROR:

$$(2x_1^3 - 2x_1^2x_2 - 4x_2^3 + 3x_1^2 + 6x_1x_2 + 4x_2^2 + 5$$

L1 (Lasso) Regularization

$$2x_1^3 - 2x_1^2x_2 - 3x_1^2 + 4x_2^3 + 4x_2^2 + 5$$

$$|2| + |-2| + |3| + |4| + |4| + |4| = 21$$

L2 (Ridge) Regularization

$$2x_1^3 - 2x_1^2x_2 - 34x_1^2 + 48x_1^2 = 6x_1x_2 + 4x_2^2 + 5$$

$$2^2 + (-2)^2 + (-4)^2 + 3^2 + 6^2 + 4^2 = 85$$

Simple vs Complex Models

Requires LOW ERROR OK if it's COMPLEX

PUNISHMENT on COMPLEXITY should be SMALL

Requires SIMPLICITY OK with ERRORs

PUNISHMENT on COMPLEXITY should be BIG

The λ Parameter

$$2x_1^3 - 2x_1^2x_2 - 4x_2^3 + 3x_1^2 + 6x_1x_2 + 4x_2^2 + 5$$

SAFAGE A

