STARKS in an Eggshell

October 2019

Daniel Benarroch

Anaïs Querol

ZKProof.org

Introduction to proofs

Survey on STARKs

Available libraries

Experiments

Philosophical "which came first" doses

Philosophical "which came first" doses

CRYPTOGRAPHIC BEASTS

S uccinct V on-interactive Rguments of

Knowledge

CRYPTOGRAPHIC BEASTS and how to tame them

S calable

Transparent

Д

Rguments of

Knowledge

Ben-Sasson, Bentov, Horesh, Riabzev https://eprint.iacr.org/2018/046.pdf

 $C^{T}(x, w) = y$ that's the truth

cannot do it

Interactive

Proofs

 $C^{T}(x, w) = y$ that's the truth

challenge_i

 answer_{i}

•

let's check

Interactive

Non – Interactive

Oracle Proofs

proof

Scalable Transparent IOP of Knowledge

How to create a STARK?

EGC

problem constraints

compiler interpolate

proof

problem

constraints

optimize (not in genSTARK)

compiler

interpolate

proof

claim on computation

claim on polynomials

claim on low-degreeness

AIR the skilled step

initial value

final value

initial value

transition function P(X)

$$P(i) = P(i-1) + ... = a_i$$

constraint polynomial Q(X)

$$Q(i) = P(i) - a_i = 0$$

final value

Execution domain

$$G =$$

initial value

transition function P(X)

$$P(g^{i}) = P(g^{i-1}) + ... = a_{i}$$

constraint polynomial Q(X)

$$Q(g^{i}) = P(g^{i}) - a_{i} = 0$$

final value

ALI more polynomials

Algebraic Linking I O P

Boundary constraints

$$B(X) = \frac{P(X)-I(X)}{Z'(X)}$$

Boundary constraints

$$B(X) = \frac{P(X)-I(X)}{Z'(X)}$$

Boundary constraints

$$B(X) = \frac{P(X)-I(X)}{Z'(X)}$$

Boundary constraints

$$B(X) = \frac{P(X)-I(X)}{Z'(X)}$$

$$Z'(X) = (X - 1) \cdot (X - g^{7})$$

$$1 \quad g^{2} \quad g^{3} \quad g^{4} \quad g^{5} \quad g^{6} \quad g^{7}$$

Execution trace

$$D(X) = \frac{Q(X)}{Z(X)}$$

Execution trace

$$D(X) = \frac{Q(X)}{Z(X)}$$

$$= \prod_{i=0}^{7} (X - gi) \quad 1 \quad g \quad g^2 \quad g^3 \quad g^4 \quad g^5 \quad g^6 \quad g^7$$

LDE the bottleneck

Execution domain

Evaluation domain

Extended group

FRI their new technique

Merkle trees

 $P_a(\mathbf{Y}^i), \dots, P_Z(\mathbf{Y}^i)$

 $S_{\alpha}(\gamma^{i}), ..., S_{\omega}(\gamma^{i})$

E leaves

Witness

P(x), secrets

E leaves

polynomials

E evaluations

Merkle trees

E evaluations

Motivation

need $T(\mu-1)+1$ points > T

FFT-ish

$$F(X) = F_{even}(X^2) + X \cdot F_{odd}(X^2)$$

E/4
4

yo **Y**E-1

Fast

Reed Solomon **IOP Proximity**

qedit

Commit phase

Query phase

Query phase

Query phase

linear combination

/ GuildOfWeavers / genSTARK

/elibensasson/libSTARK

/matter-labs/h000r

genSTARK example

Pedersen commitments

genSTARK example

Pedersen commitments

genSTARK example

Pedersen commitments

genSTARK example

Pedersen commitments

genSTARK example

Pedersen commitments

genSTARK example

Pedersen commitments

O(w Te log (Te+|F|))

 $\lambda / \log (e T/d)$

O(w Te log (Te+|F|))

 $O(q log^2 e T)$

 $\lambda / \log (e T/d)$

O(w Te log (Te+|F|))

 $O(q log^2 e T)$

 $O(q log^2 e T)$

 $\lambda / \log (e T/d)$

O(w Te log (Te+|F|))

 $O(q log^2 e T)$

 $O(q log^2 e T)$

O(eT)

 $\lambda / \log (e T/d)$

Membership

- 32 commitments
- 256 bit field size
- 256 bit exponent
- 15 s prover
- 2 s verifier
- 700 KB proof
- 600 KB trees
- 200 MB RAM

Bulk

- 1024 commitments
- 32 bit field size
- 256 bit exponent
- 200 s prover
- 1 ms verifier
- 2 MB proof
- 500 KB trees
- 3GBRAM

genSTARK <u>be</u>nchmark

Tradeoff

STARK vs SNARK an eggs to apples comparison

SNARK

- Rust librustzcash
- Optimized library
- JubJub elliptic curve
- Trusted setup
- Constant proof size

So, should we put our coins here?

So, should we put our coins here?

Never put all eggs in one basket!

So, should we put our coins here?

any Other
Inquiry Left
(OIL)?

Never put all eggs in one basket!

Number of steps

Number of steps

Field size

Element size

32 Pedersen

80 queries

