A Design Study Approach to Classical Control

Randal W. Beard Timothy W. McLain Brigham Young University

Updated: December 28, 2020

Homework E.11

The objective of this problem is to implement a state feedback controller for the ball and beam problem. Start with the simulation files developed in Homework E.10.

- (a) Using the values for ω_{n_z} and ζ_z from Homework E.8, choose the desired locations of the four closed-loop poles so that their natural frequency is greater than ω_{n_z} and damping ratio is greater than ζ_z .
- (b) Add the state space matrices A, B, C, D derived in Homework E.6 to your param file.
- (c) Verify that the state space system is controllable by checking that rank($\mathcal{C}_{A,B}$) = n.
- (d) Find the feedback gain K such that the eigenvalues of (A BK) are equal to the desired closed loop poles. Find the reference gain k_r so that the DC-gain from z_r to z is equal to one.
- (e) Implement the state feedback scheme in simulation and tune the closed-loop poles to vary the response of the system. Notice the effect of pole locations on the speed of response and the control effort required.

Solution

From HW E.6, the state space equations for the ballbeam system are given by

$$\dot{x} = \begin{pmatrix} 0 & 0 & 1.0000 & 0 \\ 0 & 0 & 0 & 1.0000 \\ 0 & -9.8000 & 0 & 0 \\ -18.1923 & 0 & 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 0 \\ 0 \\ 2.6519 \end{pmatrix} u$$

$$y = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} x.$$

The reference output is z and therefore

$$y_r = \begin{pmatrix} 1 & 0 & 0 & 0 \end{pmatrix} x.$$

Step 1. The controllability matrix is

$$C_{A,B} = [B, AB, A^2B, A^3B] = \begin{pmatrix} 0 & 0 & 0 & -25.9890 \\ 0 & 2.6519 & 0 & 0 \\ 0 & 0 & -25.9890 & 0 \\ 2.6519 & 0 & 0 & 0 \end{pmatrix}.$$

The determinant is $\det(\mathcal{C}_{A,B}) = -4750 \neq 0$, therefore the system is controllable.

Step 2. The open loop characteristic polynomial is

$$\Delta_{ol}(s) = \det(sI - A) = s^4 - 178.2842$$

which implies that

$$\mathbf{a}_A = (0, 0, 0, -178.2842)$$

 $\mathcal{A}_A = I.$

Step 3. When $\omega_{\theta}=2.2,\ \zeta_{\theta}=0.707,\ \omega_{z}=0.22,\ \zeta_{z}=0.707,$ the desired closed loop polynomial is

$$\Delta_{cl}^{d}(s) = (s^{2} + 2\zeta_{\theta}\omega_{n_{\theta}}s + \omega_{n_{\theta}}^{2})(s^{2} + 2\zeta_{z}\omega_{n_{z}}s + \omega_{n_{z}}^{2})$$
$$= s^{4} + 3.4219s^{3} + 5.8561s^{2} + 1.6562s + 0.2343$$

which implies that

$$\alpha = (3.4219, 5.8561, 1.6562, 0.2343).$$

Step 4. The gains are therefore given as

$$K = (\boldsymbol{\alpha} - \mathbf{a}_A) \mathcal{A}_A^{-1} \mathcal{C}_{A,B}^{-1}$$

= (2.2082, -6.8690, 1.2903, -0.0637)

The feedforward reference gain is given by

$$k_r = \frac{-1}{C_{out}(A - BK)^{-1}B}$$

= -0.0090,

where $C_{out} = (0 \ 1 \ 0 \ 0)$.

Alternatively, we could have used the following Python script

```
1 # ballbeam Parameter File
2 import numpy as np
3 import control as cnt
4 import sys
5 sys.path.append('...')
                       # add parent directory
6 import ballbeamParam as P
  State Space
  12 # tuning parameters
                  # rise time for position
13 \text{ tr}_z = 1.2
14 tr_theta = 0.25
                  # rise time for angle
        = 0.707 # damping ratio position
15 zeta_z
16 zeta_th = 0.707 # damping ratio angle
18 # State Space Equations
19 \# xdot = A*x + B*u
20 \# y = C * x
A = \text{np.array}([[0.0, 0.0, 1.0, 0.0],
                [0.0, 0.0, 0.0, 1.0],
                [0.0, -P.g, 0.0, 0.0],
               [-P.m1*P.g/((P.m2*P.length**2)/3.0+
^{24}
            P.m1*(P.length/2.0)**2), 0.0, 0.0, 0.0]])
B = np.array([[0.0],
               [0.0],
```

```
[0.0],
                 [P.length / (P.m2 * P.length ** 2 / 3.0 + \
30
                 P.m1 * P.length ** 2 / 4.0)]])
31
33 C = np.array([[1.0, 0.0, 0.0, 0.0],
                 [0.0, 1.0, 0.0, 0.0]]
34
35
36 # gain calculation
37 wn_th = 2.2/tr_theta # natural frequency for angle
wn_z = 2.2/tr_z # natural frequency for position
des_char_poly = np.convolve([1, 2*zeta_z*wn_z, wn_z**2],
                               [1, 2*zeta th*wn th, wn th**2])
41 des_poles = np.roots(des_char_poly)
42
43 # Compute the gains if the system is controllable
44 if np.linalg.matrix_rank(cnt.ctrb(A, B)) != 4:
      print("The system is not controllable")
46 else:
      K = cnt.acker(A, B, des_poles)
      Cr = np.array([[1.0, 0.0, 0.0, 0.0]])
      kr = -1.0/(Cr @ np.linalg.inv(A - B @ K) @ B)
51 print('K: ', K)
52 print('kr: ', kr)
```

The Python code for the controller is given by

```
import numpy as np
2 import ballbeamParam as P
3 import ballbeamParamHW11 as P11
5 class ballbeamController:
      def __init__(self):
6
          self.K = P11.K # state feedback gain
           self.kr = P11.kr # Input gain
           self.limit = P.Fmax # Maximum force
           self.Ts = P.Ts # sample rate of controller
10
       def update(self, z_r, x):
12
           z = x.item(0)
13
           # Construct the state
14
15
           x_{tilde} = x - np.array([[P.ze], [0], [0], [0]])
16
           zr\_tilde = z\_r - P.ze
17
```

```
18
           # equilibrium force
           F_e = P.m1*P.g*(P.ze/P.length) + P.m2*P.g/2.0
           # Compute the state feedback controller
20
           F_tilde = -self.K @ x_tilde + self.kr * zr_tilde
22
           F_unsat = F_e + F_tilde
           F = self.saturate(F_unsat)
23
           return F
^{24}
25
       def saturate(self,u):
26
           if abs(u) > self.limit:
27
               u = self.limit*np.sign(u)
28
           return u
29
```