

Chapter 7: IP Addressing

CCNA Routing and Switching

Introduction to Networks v6.0

Chapter 7 - Sections & Objectives

- 7.1 IPv4 Network Addresses
- Explain the use of IPv4 addresses to provide connectivity in small to medium-sized business networks
 - Convert between binary and decimal numbering systems.
 - Describe the structure of an IPv4 address including the network portion, the host portion, and the subnet mask.
 - Compare the characteristics and uses of the unicast, broadcast and multicast IPv4 addresses.
 - Explain public, private, and reserved IPv4 addresses.
- 7.2 IPv6 Network Addresses
- Configure IPv6 addresses to provide connectivity in small to medium-sized business networks.
 - Explain the need for IPv6 addressing.
 - Describe the representation of an IPv6 address.
 - Compare types of IPv6 network addresses.
 - Configure global unicast addresses.
 - Describe multicast addresses.

Chapter 7 - Sections & Objectives (Cont.)

- 7.3 Connectivity Verification
- Use common testing utilities to verify and test network connectivity.
 - Explain how ICMP is used to test network connectivity.
 - Use ping and traceroute utilities to test network connectivity.

7.1 IPv4 Network Addresses

IPv4 Addresses

- Binary numbering system consists of the numbers 0 and 1 called bits
 - IPv4 addresses are expressed in 32 binary bits divided into 4 8-bit octets

IPv4 Addresses (Cont.)

• IPv4 addresses are commonly expressed in dotted decimal notation

Binary and Decimal Conversion Positional Notation

- The first row identifies the number base or radix. Decimal is 10. Binary is based on 2, therefore radix will be 2
- The 2nd row considers the position of the number starting with 0. These numbers also represent the exponential value that will be used to calculate the positional value (4th row).
- The 3rd row calculates the positional value by taking the radix and raising it by the exponential value of its position. Note: n^0 is always = 1.
- The positional value is listed in the fourth row.

Applying decimal positional notation

	Thousands	Hundreds	Tens	Ones
Positional Value	1000	100	10	1
Decimal Number (1234)	1	2	3	4
Calculate	1 x 1000	2 x 100	3 x 10	4 x 1
Add them up	1000	+ 200	+ 30	+ 4
Result		1,2	234	

Positional Notation (Cont.)

Applying binary positional notation.

Positional Value	128	64	32	16	8	4	2	1
Binary Number (11000000)	1	1	0	0	0	0	0	0
Calculate	1 x 128	1 x 64	0 x 32	0 x 16	0 x 8	0 x 4	0 x 2	0 x 1
Add Them Up	128	+ 64	+ 0	+ 0	+ 0	+ 0	+ 0	+ 0
Result				19	92			

Binary to Decimal Conversion

To convert a binary IPv4 address to decimal enter the 8-bit binary number of each octet under the positional value of row 1 and then calculate to produce the decimal.

Decimal to Binary Conversion

- To convert a decimal IPv4address to binary use the positional chart and check first if the number is greater than the 128 bit. If no a 0 is placed in this position. If yes then a 1 is placed in this position.
- 128 is subtracted from the original number and the remainder is then checked against the next position (64) If it is less than 64 a 0 is placed in this position. If it is greater, a 1 is placed in this position and 64 is subtracted.
- The process repeats until all positional values have been entered.

Decimal to Binary Conversion Examples

CISCO

Network and Host Portions

- An IPv4 address is hierarchical.
 - Composed of a Network portion and Host portion.
- All devices on the same network must have the identical network portion.
- The Subnet Mask helps devices identify the network portion and host portion.

The Subnet Mask

- Three IPv4 addresses must be configured on a host:
 - Unique IPv4 address of the host.
 - Subnet mask identifies the network/host portion of the IPv4 address.
 - Default gateway -IP address of the local router interface.

The Subnet Mask (Cont.)

- The IPv4 address is compared to the subnet mask bit by bit, from left to right.
- A 1 in the subnet mask indicates that the corresponding bit in the IPv4 address is a network bit.

Logical AND

- A logical AND is one of three basic binary operations used in digital logic.
- Used to determine the Network Address
- The Logical AND of two bits yields the following results:

1 AND 1 = 1 0 AND 1 = 0 0 AND 0 = 0 1 AND 0 = 0

The Prefix Length

Comparing the Subnet Mask and Prefix Length

Subnet Mask	32-bit Address	Prefix Length
255 .0.0.0	1111111.00000000.00000000.00000000	/8
255.255 .0.0	1111111.111111111.00000000.00000000	/16
255.255.255 .0	1111111.11111111.11111111.00000000	/24
255.255.255.128	1111111.11111111.11111111.10000000	/25
255.255.255.192	1111111.11111111.11111111.11000000	/26
255.255.255.224	11111111.111111111.11111111.11100000	/27
255.255.255.240	11111111.111111111.111111111.11110000	/28
255.255.255.248	11111111.111111111.111111111.11111000	/29
255.255.252	1111111.111111111.1111111111100	/30

The Prefix Length:

- Shorthand method of expressing the subnet mask.
- Equals the number of bits in the subnet mask set to 1.
- Written in slash notation, / followed by the number of network bits.

Network, Host, and Broadcast Addresses

- Types of Addresses in Network 192.168.10.0/24
 - Network Address host portion is all 0s (.0000000)
 - First Host address host portion is all 0s and ends with a 1 (.0000001)
 - Last Host address host portion is all 1s and ends with a 0 (.11111110)
 - Broadcast Address host portion is all 1s (.1111111)

Lab – Using the Windows Calculator with Network Addresses

Lab – Converting IPv4 Addresses to Binary

Static IPv4 Address Assignment to a Host

- Some devices like printers, servers and network devices require a fixed IP address.
- Hosts in a small network can also be configured with static addresses.

Dynamic IPv4 Address Assignment to a Host

- Most networks use Dynamic Host Configuration Protocol (DHCP) to assign IPv4 addresses dynamically.
- The DHCP server provides an IPv4 address, subnet mask, default gateway, and other configuration information.
- DHCP leases the addresses to hosts for a certain length of time.
- If the host is powered down or taken off the network, the address is returned to the pool for reuse.

IPv4 Communication

Unicast – one to one communication.

Broadcast

one to all.

Multicast – one to a select group.

Unicast Transmission

- Unicast one to one communication.
 - Use the address of the destination device as the destination address.

Broadcast Transmission

Broadcast – one to all

- Message sent to everyone in the LAN (broadcast domain.)
- destination IPv4 address has all ones (1s) in the host portion.

Multicast Transmission

- Multicast– one to a select group.
 - 224.0.0.0 to 239.255.255.255 addresses reserved for multicast.
 - routing protocols use multicast transmission to exchange routing information.

Packet Tracer – Investigate Unicast, Broadcast, and Multicast Traffic

Public and Private IPv4 Addresses

Private Addresses

- Not routable
- Introduced in mid 1990s due to depletion of IPv4 addresses
- Used only in internal networks.
- Must be translated to a public IPv4 to be routable.
- Defined by RFC 1918
- Private Address Blocks
 - 10.0.0.0 /8 or 10.0.0.0 to 10.255.255.255
 - 172.16.0.0 /12 or 172.16.0.0 to 172.31.255.255192.168.0.0 /16
 - 192.168.0.0 to 192.168.255.255

Special User IPv4 Addresses

```
Pinging the Loopback Interface
Microsoft Windows [Version 6.1.7601]
Copyright (c) 2009 Microsoft Corporation. All rights reserved.
C:\Users\NetAcad> ping 127.0.0.1
Pinging 127.0.0.1 with 32 bytes of data:
Reply from 127.0.0.1: bytes=32 time<1ms TTL=128
Ping statistics for 127.0.0.1:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
   Minimum = Oms, Maximum = Oms, Average = Oms
C:\Users\NetAcad> ping 127.1.1.1
Pinging 127.1.1.1 with 32 bytes of data:
Reply from 127.1.1.1: bytes=32 time<1ms TTL=128
Ping statistics for 127.1.1.1:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 0ms, Average = 0ms
```

- Loopback addresses (127.0.0.0 /8 or 127.0.0.1)
 - Used on a host to test if the TCP/IP configuration is operational.
- Link-Local addresses (169.254.0.0 /16 or 169.254.0.1)
 - Commonly known as Automatic Private IP Addressing (APIPA) addresses.
 - Used by Windows client to self configure if no DHCP server available.
- TEST-NET addresses (192.0.2.0/24 or 192.0.2.0 to 192.0.2.255)
 - Used for teaching and learning.

Legacy Classful Addressing

Class B Specifics	
Address Block	128.0.0.0 - 191.255.0.0
Default Subnet Mask	/16 (255.255.0.0)
Maximum Number of Networks	16,384
Number of Host per Network	65,534
High order bit	10xxxxxx

Class C Specifics	
Address Block	192.0.0.0 - 223.255.255.0
Default Subnet Mask	/24 (255.255.255.0)
Maximum Number of Networks	2,097,152
Number of Host per Network	254
High order bit	110xxxxx

- In 1981, Internet IPv4 addresses were assigned using classful addressing (RFC 790)
- Network addresses were based on 3 classes:
 - Class A (0.0.0.0/8 to 127.0.0.0/8) Designed to support extremely large networks with more than 16 million host addresses.
 - Class B (128.0.0.0 /16 191.255.0.0 /16) –
 Designed to support the needs of moderate to large size networks up to approximately 65,000 host addresses.
 - Class C (192.0.0.0 /24 223.255.255.0 /24) –
 Designed to support small networks with a maximum of 254 hosts.

Classless Addressing

- Classful Addressing wasted addresses and exhausted the availability of IPv4 addresses.
- Classless Addressing Introduced in the 1990s
 - Classless Inter-Domain Routing (CIDR, pronounced "cider")
 - Allowed service providers to allocate IPv4 addresses on any address bit boundary (prefix length) instead of only by a class A, B, or C.

Assignment of IP Addresses

- The following organizations manage and maintain IPv4 and IPv6 addresses for the various regions.
 - American Registry for Internet Numbers (ARIN)- North America.
 - Réseaux IP Europeans (RIPE) Europe, the Middle East, and Central Asia
 - Asia Pacific Network Information Centre (APNIC) - Asia and Pacific regions
 - African Network Information Centre (AfriNIC) Africa
 - Regional Latin-American and Caribbean IP Address Registry (LACNIC) - Latin America and some Caribbean islands

Lab – Identifying IPv4 Addresses

7.2 IPv6 Network Addresses

IPv4 Issues

The Need for IPv6

IPv6 versus IPv4:

- Has a larger 128-bit address space
- 340 undecillion addresses
- Solves limitations with IPv4
- Adds enhancement like address autoconfiguration.

Why IPv6 is needed:

- Rapidly increasing Internet population
- Depletion of IPv4
- Issues with NAT
- Internet of Things

IPv4 Issues

IPv4 and IPv6 Coexistence

Migration from IPv4 to IPv6 Techniques

Dual stack - Devices run both IPv4 and IPv6 protocol stacks simultaneously.

Tunneling - The IPv6 packet is encapsulated inside an IPv4 packet.

Translation - Network Address Translation 64 (NAT64) allows IPv6-enabled devices to communicate with IPv4 devices.

IPv6 Addressing

IPv6 Address Representation

- IPv6 Addresses:
 - 128 bits in length
 - Every 4 bits is represented by a single hexadecimal digit
 - Hextet unofficial term referring to a segment of 16 bits or four hexadecimal values.

IPv6 Address Representation (Cont.)

Preferred format for IPv6 representation

200	1	:	0DB8	:	0000	:	1111	:	0000	:	0000	:	0000	:	0200
200	1	:	0DB8	:	0000	:	00A3	:	ABCD	:	0000	:	0000	:	1234
200	1	:	0DB8	:	000A	:	0001	:	0000	:	0000	:	0000	:	0100
200	1	:	0DB8	:	AAAA	:	0001	:	0000	:	0000	:	0000	:	0200
FE8	0	:	0000	:	0000	:	0000	:	0123	:	4567	:	89AB	:	CDEF
FE8	0	:	0000	:	0000	:	0000	:	0000	:	0000	:	0000	:	0001
FF0	2	:	0000	:	0000	:	0000	:	0000	:	0000	:	0000	:	0001
FF0	2	:	0000	:	0000	:	0000	:	0000	:	0001	:	FF00	:	0200
000	0	:	0000	:	0000	:	0000	:	0000	:	0000	:	0000	:	0001
000	0	:	0000	:	0000	:	0000	:	0000	:	0000	:	0000	:	0000

Rule 1 – Omit Leading 0s

- In order to reduce or compress IPv6
 - First rule is to omit leading zeros in any hextet.

Rule 2 – Omit All 0 Segments

Rule 2 – Omit All 0 Segments

 A double colon (::) can replace any single, contiguous string of one or more 16-bit segments (hextets) consisting

of all 0s.

Rule 2 – Omit All 0 Segments (Cont.)

Rule 2 – Omit All 0 Segments

 A double colon (::) can replace any single, contiguous string of one or more 16-bit segments (hextets) consisting

of all 0s.

Preferred	FF02:00	00:00	00:00	000:0	000:0	000:00	000:00	0 0 1
No leading 0s	FF02:	0:	0:	0:	0:	0:	0:	1
Compressed	FF02::1							

Preferred	0 0 0	0:	0 0 0	0 :	000	0 :	0 0	00:	000	0:0	0 0 0	: 0 0	0 0	: 0 0 0	0
No leading 0s		0:		0:		0 :		0 :		0:	C	:	0	:	0
Compressed	::														

IPv6 Address Types

- Three types of IPv6 addresses:
 - Unicast- Single source IPv6 address.
 - Multicast An IPv6 multicast address is used to send a single IPv6 packet to multiple destinations.
 - Anycast An IPv6 anycast address is any IPv6 unicast address that can be assigned to multiple devices.

IPv6 Prefix Length

- The IPv6 prefix length is used to indicate the network portion of an IPv6 address:
 - The prefix length can range from 0 to 128.
 - Typical IPv6 prefix length for most LANs is /64

IPv6 Unicast Addresses

- Global Unicast These are globally unique, Internet routable addresses.
- Link-local used to communicate with other devices on the same local link. Confined to a single link.
- Unique Local used for local addressing within a site or between a limited number of sites.

IPv6 Link-Local Unicast Addresses

- IPv6 link-local addresses:
 - Enable a device to communicate with other IPv6-enabled devices on the same link only.
 - Are created even if the device has not been assigned a global unicast IPv6 address.
 - Are in the FE80::/10 range.

Note: Typically, it is the link-local address of the router that is used as the default gateway for other devices on the link.

Structure of an IPv6 Global Unicast Address

- Currently, only global unicast addresses with the first three bits of 001 or 2000::/3 are being assigned
- A global unicast address has three parts:
 - Global routing prefix network, portion of the address that is assigned by the provider. Typically /48.
 - Subnet ID Used to subnet within an organization.
 - Interface ID equivalent to the host portion of an IPv4 address.

Static Configuration of a Global Unicast Address


```
R1(config) # interface gigabitethernet 0/0
R1(config-if) # ipv6 address 2001:db8:acad:1::1/64
R1(config-if) # no shutdown
R1(config-if) # exit
R1(config) # interface gigabitethernet 0/1
R1(config-if) # ipv6 address 2001:db8:acad:2::1/64
R1(config-if) # no shutdown
R1(config-if) # exit
R1(config-if) # exit
R1(config-if) # ipv6 address 2001:db8:acad:3::1/64
R1(config-if) # ipv6 address 2001:db8:acad:3::1/64
R1(config-if) # clock rate 56000
R1(config-if) # no shutdown
```

- Router Configuration:
 - Similar commands to IPv4, replace IPv4 with IPv6
- Command to configure andIPv6 global unicast on an interface is ipv6 address ipv6address/prefix-length

Static Configuration of a Global Unicast Address (Cont.)

- Host Configuration:
 - Manually configuring the IPv6 address on a host is similar to configuring an IPv4 address
 - Default gateway address can be configured to match the link-local or global unicast address of the Gigabit Ethernet interface.
 - Dynamic assignment of IPv6 addresses:
 - Stateless Address Autoconfiguration (SLAAC)
 - Stateful DHCPv6

Dynamic Configuration - SLAAC

- Stateless Address Autoconfiguration (SLAAC):
 - A device can obtain its prefix, prefix length, default gateway address, and other information from an IPv6 router.
 - Uses the local router's ICMPv6 Router Advertisement (RA) messages
- ICMPv6 RA messages sent every 200 seconds to all IPv6-enabled devices on the network.

Option 1 (SLAAC Only) – "I'm everything you need (Prefix, Prefix-length, Default Gateway)"

Option 2 (SLAAC and DHCPv6) – "Here is my information but you need to get other information such as DNS addresses from a DHCPv6 server."

Option 3 (DHCPv6 Only) – "I can't help you. Ask a DHCPv6 server for all your information."

Dynamic Configuration – DHCPv6

- The RA Option 1: SLAAC only (this is the default)
- RA Option 2: SLAAC and Stateless DHCPv6:
 - Uses SLAAC for IPv6 global unicast address and default gateway.
 - Uses a stateless DHCPv6 server for other information.
- RA Option 3: Stateful DHCPv6
 - Uses the Routers link-local address for the default gateway.
 - Uses DHCPv6 for all other information.

EUI-64 Process and Randomly Generated

- When the RA message is SLAAC or SLAAC with stateless DHCPv6, the client must generate its own Interface ID
 - The Interface ID can be created using the EUI-64 process or a randomly generated 64bit number
- An EUI-64 Interface ID is represented in binary and is made up of three parts:
 - 24-bit OUI from the client MAC address, but the 7th bit (the Universally/Locally (U/L) bit) is reversed.
 - The inserted 16-bit value FFFE (in hexadecimal).
 - 24-bit Device Identifier from the client MAC address.

EUI-64 Process and Randomly Generated (Cont.)

- Randomly Generated Interface IDs
 - Windows uses a randomly generated Interface ID

```
PCB> ipconfig
Windows IP Configuration
                                           From RA
                                                         Random 64-bit
Ethernet adapter Local Area Connection:
                                           Message
                                                            number
   Connection-specific DNS Suffix :
   IPv6 Address. . . . . . . . . . . . . . . . . 2001:db8:acad:1:50a5:8a35:a5bb:66e1
   Link-local IPv6 Address . . . . : fe80::50a5:8a35:a5bb:66e1
   Default Gateway . . . . . : fe80::1
```


Dynamic Link-Local Addresses

- Link-local address can be established dynamically or configured manually.
- Cisco IOS routers use EUI-64 to generate the Interface ID for all link-local address on IPv6 interfaces.

Drawback to using the dynamically assigned link-local address is the long interface ID, therefore

they are often configured statically.

```
R1# show interface gigabitethernet 0/0
GigabitEthernet0/0 is up, line protocol is up
  Hardware is CN Gigabit Ethernet, address is fc99.4775.c3e0
(bia fc99.4775.c3e0)
<Output Omitted>
R1# show ipv6 interface brief
GigabitEthernet0/0
                        [up/up]
    FE80::FE99:47FF:FE75:C3E0
    2001:DB8:ACAD:1::1
GigabitEthernet0/1
                        [up/up]
    FE80::FE99:47FF:FE75:C3E1
                                          Link-local Addresses Using EUI-64
    2001:DB8:ACAD:2::1
Serial0/0/0
                        [up/up]
    FE80::FE99:47FF:FE75:C3E0
    2001:DB8:ACAD:3::1
Serial0/0/1
                        [administratively down/down]
    unassigned
R1#
```

Static Link-Local Addresses

 Manual Configuration of the link-local address allows the creation of a simple, easy to remember address.

```
Router (config-if) #
ipv6 address link-local-address link-local
R1(config) # interface gigabitethernet 0/0
R1(config-if) # ipv6 address fe80::1 ?
  link-local Use link-local address
R1(config-if) # ipv6 address fe80::1 link-local
R1(config-if)# exit
R1(config) # interface gigabitethernet 0/1
R1(config-if) # ipv6 address fe80::1 link-local
R1(config-if)# exit
R1(config) # interface serial 0/0/0
R1(config-if) # ipv6 address fe80::1 link-local
R1(config-if)#
```

Verifying IPv6 Address Configuration

- The commands to verify IPv6 configuration are similar to IPv4
 - show ipv6 interface brief
 - show ipv6 route
- The ping command for IPv6 is identical to the command used with IPv4, except that an IPv6 address is used.

```
R1# show ipv6 interface brief
GigabitEthernet0/0
                        [up/up]
    FE80::FE99:47FF:FE75:C3E0
    2001:DB8:ACAD:1::1
GigabitEthernet0/1
                        [up/up]
    FE80::FE99:47FF:FE75:C3E1
    2001:DB8:ACAD:2::1
Serial0/0/0
                        [up/up]
    FE80::FE99:47FF:FE75:C3E0
    2001:DB8:ACAD:3::1
Serial0/0/1
                        [administratively down/down]
    unassigned
R1#
```

```
R1# show ipv6 route
IPv6 Routing Table - default - 7 entries
Codes: C - Connected, L - Local, S - Static, U - Per-user Static
    2001:DB8:ACAD:1::/64 [0/0]
     via GigabitEthernet0/0, directly connected
    2001:DB8:ACAD:1::1/128 [0/0]
     via GigabitEthernet0/0, receive
   2001:DB8:ACAD:2::/64 [0/0]
     via GigabitEthernet0/1, directly connected
    2001:DB8:ACAD:2::1/128 [0/0]
     via GigabitEthernet0/1, receive
    2001:DB8:ACAD:3::/64 [0/0]
     via Serial0/0/0, directly connected
    2001:DB8:ACAD:3::1/128 [0/0]
     via Serial0/0/0, receive
   FF00::/8 [0/0]
     via NullO, receive
R1#
```

```
R1# ping 2001:db8:acad:1::10
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 2001:DB8:ACAD:1::10, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5)
R1#
```

Packet Tracer – Configuring IPv6 Addressing

Assigned IPv6 Multicast Addresses

- There are two types of IPv6 multicast addresses:
 - Assigned multicast reserved multicast addresses for predefined groups of devices
 - Solicited node multicast
- Two common IPv6 assigned multicast groups:
 - FF02::1 All-nodes multicast group This is a multicast group that all IPv6-enabled devices join. Similar to a broadcast in IPv4
 - FF02::2 All-routers multicast group This is a multicast group that all IPv6 routers join.

Solicited-Node IPv6 Multicast Addresses

- Solicited-node multicast address:
 - Mapped to .a special Ethernet multicast address
 - Allows Ethernet NIC to filter frame on destination MAC.

Lab – Identifying IPv6 Addresses

Lab – Configuring IPv6 Addresses on Network Devices

7.3 Connectivity Verification

ICMP

ICMPv4 and ICMPv6

- ICMPv4 is the messaging protocol for IPv4. ICMPv6 provides the same services for IPv6
- ICMP messages common to both include:
 - Host confirmation
 - Destination or Service Unreachable
 - Time exceeded
 - Route redirection

ICMP

ICMPv6 Router Solicitation and Router Advertisement Messages

- ICMPv6 includes four new protocols as part of the Neighbor Discovery Protocol (ND or NDP)
 - Router Solicitation (RS) message
 - Router Advertisement (RA) message
- RA messages used to provide addressing information to hosts
 - Neighbor Solicitation (NS) message
 - Neighbor Advertisement (NA) message
- Neighbor Solicitation and Neighbor Advertisement messages are used for Address resolution and Duplicate Address Detection (DAD).

Ping - Testing the Local Stack

 Ping the local loopback address of 127.0.0.1 for IPv4 or ::1 for IPv6 to verify that IP is properly installed on the host.

Ping – Testing Connectivity to the Local LAN

 Use ping to test the ability of a host to communicate on the local network.

Ping – Testing Connectivity to a Remote Host

 Use ping to test the ability of a host to communicate across an internetwork.

Traceroute – Testing the Path

- Traceroute (tracert) is a utility that generates a list of hops that were successfully reached along the path.
 - Round Trip Time (RTT) Time it takes the packet to reach the remote host and for the response from the host to return.
 - Asterisk (*) is used to indicate a lost packet.

Packet Tracer – Verifying IPv4 and IPv6 Addressing

Packet Tracer – Pinging and Tracing to Test the Path

Lab – Testing Network Connectivity with Ping and Traceroute

Lab – Mapping the Internet

Packet Tracer – Troubleshooting IPv4 and IPv6 Addressing

7.4 Chapter Summary

Conclusion

Packet Tracer – Skills Integration Challenge

Conclusion

Chapter 7: IP Addressing

- Explain the use of IPv4 addresses to provide connectivity in small to medium-sized business networks
- Configure IPv6 addresses to provide connectivity in small to medium-sized business networks.
- Use common testing utilities to verify and test network connectivity.

