NAVIGACE VZDUCHOLODI

ONDREJ KUREŠ, MAREK MIKLOŠ, LADISLAV TRNKA

ABSTRAKT. V tomto textu se pokusíme odpovědět na otázku, kudy má letět vzducholoď ve stacionárním větrném poli, aby do cíle doletěla v nejkratším možném čase. Teoreticky odvozené závěry pak budeme aplikovat na jednoduché rychlostní pole větru, kde trajektorie z různých bodů a časy letu numericky dořešíme.

Obsah

Úvod 5.1. Osa X 6 Variační počet 2 5.2. Osa Y 6 Řešení 3 5.3. Kvadranty 6 3 Jednoduché veterné pole 6 Reference Numerické řešení

1. Úvod

Vzducholoď se pohybuje ve větrném poli \boldsymbol{w} a má za cíl překonat vzdálenost z bodu A do bodu B. V tomto textu se budeme zabývat otázkou jak zvolit její trasu, aby dorazila do cíle v nejkratším možném čase. Točení kormidla vzducholodi budeme charakterizovat jejím směrem letu tedy funkcí $\beta(t)$. Můžeme se ptát, jak točit kormidlem tak, aby vzducholoď dorazila do cíle co nejdříve.

Trajektorii vzducholodi budeme popisovat v kartézských souřadnicích a to v rovině (x, y), zanedbáme popis výšky. Vzducholoď se v bezvětří pohybuje rychlostí V. Pro zjednodušení výpočtů uvažujme konstantní rychlost V, stacionární pole w, cílový bod B jako počátek souřadnic (lze vždy zajistit vhodnou transformací). Dále zanedbáváme zpoždění reakce vzducholodě na stočení kormidla.

Obrázek 1. Nastínění uvažované situace.

Pro okamžitou rychlost vzducholodi platí:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = V \cos \beta(t) + u(x, y),$$

$$\frac{\mathrm{d}y}{\mathrm{d}t} = V \sin \beta(t) + v(x, y),$$
(1.1)

kde $\boldsymbol{x}(t) = \begin{bmatrix} x(t) & y(t) \end{bmatrix}^{\mathsf{T}}$ je hledaná trajektorie, $\beta \in (0, 2\pi)$ je směr letu a $\boldsymbol{w} = \begin{bmatrix} u & v \end{bmatrix}^{\mathsf{T}}$ je dané pole větru. Dále známe:

$$x(t_A) = A, (1.2a)$$

$$\boldsymbol{x}(t_B) = B = \begin{bmatrix} 0 & 0 \end{bmatrix}^\mathsf{T},\tag{1.2b}$$

kde t_A je čas startu vzducholodi a t_B je čas příletu¹.

¹Při příletu vzducholoď nebude mít nulovou rychlost.

2. Variační počet

Náš zájem se proto soustřeďuje na minimalizaci funkcionálu:

$$I(\beta, t_B) =_{\operatorname{def}} \int_{t_A}^{t_B} dt = t_B - t_A, \tag{2.1}$$

při splnění soustavy rovnic (1.1), které kompaktněji přepišme jako:

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = \boldsymbol{f}(\boldsymbol{x}, \beta). \tag{2.2}$$

Chceme tedy minimalizovat cestovní čas a přípustné trajektorie musí splňovat (2.2). Při hledání extremály využijme koncept vázaných extrémů a Lagrangeových multiplikátorů λ . Proto studujme funkcionál:

$$J(\beta, t_B) =_{\text{def}} \int_{t=t_A}^{t_B} \left(1 - \lambda \bullet \left(\frac{\mathrm{d} \boldsymbol{x}}{\mathrm{d} t} - \boldsymbol{f}(\boldsymbol{x}, \beta) \right) \right) \mathrm{d} t, \tag{2.3}$$

kde funkce λ bude upřesněna později. Nyní hledejme Gâteauxovu derivaci $J(\beta, t_B)$:

$$DJ(\beta, t_B)[(\alpha, \tau)] =_{\text{def}} \frac{d}{d\varepsilon} J(\beta_{\text{ext}} + \varepsilon \alpha, t_{B, \text{ext}} + \varepsilon \tau) \Big|_{\varepsilon = 0}$$

$$=_{\text{def}} \left[\frac{d}{d\varepsilon} \int_{t=t_A}^{t_{B, \text{ext}} + \varepsilon \tau} \left(1 - \lambda \bullet \left(\frac{d\boldsymbol{x}_{\varepsilon}}{dt} - \boldsymbol{f}(\boldsymbol{x}_{\varepsilon}, \beta) \right) \right) dt \right] \Big|_{\varepsilon = 0},$$
(2.4)

při variaci:

$$\beta = \beta_{\text{ext}} + \varepsilon \alpha, \tag{2.5a}$$

$$t_B = t_{B,\text{ext}} + \varepsilon \tau,$$
 (2.5b)

kde $\boldsymbol{x}_{\epsilon}$ je korespondující trajektorie k β a t_B . Přičemž stále platí:

$$\boldsymbol{x}_{\epsilon}(t_A) = \boldsymbol{x}_{\text{ext}}(t_A) = A, \tag{2.6a}$$

$$\mathbf{x}_{\epsilon}(t_{B,\text{ext}} + \varepsilon \tau) = \mathbf{x}_{\text{ext}}(t_{B,\text{ext}}) = B = \mathbf{0}.$$
 (2.6b)

Nejdříve upravme (2.4) pomocí integrace per partes na člen $\lambda \bullet \frac{\mathrm{d}x_{\varepsilon}}{\mathrm{d}t}$, některé členy budou dle předchozího nulové a dostáváme:

$$DJ(\beta, t_B)[(\alpha, \tau)] = \left[\frac{\mathrm{d}}{\mathrm{d}\varepsilon} \int_{t=t_A}^{t_{B,\mathrm{ext}}} \left(1 + \frac{\mathrm{d}\lambda}{\mathrm{d}t} \bullet \boldsymbol{x}_{\varepsilon} + \lambda \bullet \boldsymbol{f}(\boldsymbol{x}_{\varepsilon}, \beta)\right) \mathrm{d}t\right]\Big|_{\varepsilon=0} + \left[\frac{\mathrm{d}}{\mathrm{d}\varepsilon} \int_{t=t_{B,\mathrm{ext}}}^{t_{B,\mathrm{ext}}+\varepsilon\tau} \left(1 + \frac{\mathrm{d}\lambda}{\mathrm{d}t} \bullet \boldsymbol{x}_{\varepsilon} + \lambda \bullet \boldsymbol{f}(\boldsymbol{x}_{\varepsilon}, \beta)\right) \mathrm{d}t\right]\Big|_{\varepsilon=0} + \left[1 + \lambda \bullet \boldsymbol{f}(\boldsymbol{x}_{\mathrm{ext}}, \beta_{\mathrm{ext}})\right]\Big|_{t=t_{B,\mathrm{ext}}} \tau. \quad (2.7)$$

Podle (Průša and Tůma, 2021) použijeme geniální trik: $x_{\varepsilon} \approx x_{\text{ext}} + \epsilon y + \cdots$, kde zanedbáme členy vyššího řádu a kde y je funkce času. Tím dále můžeme upravit první člen v poslední rovnosti (2.7):

$$\left[\frac{\mathrm{d}}{\mathrm{d}\varepsilon} \int_{t=t_{A}}^{t_{B,\mathrm{ext}}} \left(1 + \frac{\mathrm{d}\lambda}{\mathrm{d}t} \bullet \boldsymbol{x}_{\varepsilon} + \lambda \bullet \boldsymbol{f}(\boldsymbol{x}_{\varepsilon}, \beta)\right) \mathrm{d}t\right]\Big|_{\varepsilon=0} = \int_{t=t_{A}}^{t_{B,\mathrm{ext}}} \left(\left[\frac{\mathrm{d}\lambda}{\mathrm{d}t} + \frac{\partial \boldsymbol{f}}{\partial \boldsymbol{x}}\Big|_{\boldsymbol{x}=\boldsymbol{x}_{\mathrm{ext}}, \beta=\beta_{\mathrm{ext}}}^{\mathsf{T}} \lambda\right] \bullet \boldsymbol{y} + \lambda \bullet \frac{\partial \boldsymbol{f}}{\partial \beta}\Big|_{\boldsymbol{x}=\boldsymbol{x}_{\mathrm{ext}}, \beta=\beta_{\mathrm{ext}}} \alpha\right) \mathrm{d}t.$$
(2.8)

Nyní můžeme přistoupit k vybrání λ takové, aby bylo splněno:

$$\frac{\mathrm{d}\boldsymbol{\lambda}}{\mathrm{d}t} = -\left.\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{x}}\right|_{\boldsymbol{x}=\boldsymbol{x}_{\mathrm{ext}},\beta=\beta_{\mathrm{ext}}}^{\mathsf{T}}\boldsymbol{\lambda}.\tag{2.9}$$

Po dosazení dostáváme výsledný vztah pro Gâteuxovu derivaci:

$$DJ(\beta, t_B)[(\alpha, \tau)] = \int_{t=t_A}^{t_{B,ext}} \lambda \bullet \frac{\partial f}{\partial \beta} \Big|_{\boldsymbol{x} = \boldsymbol{x}_{ext}, \beta = \beta_{ext}} \alpha dt + [1 + \lambda \bullet f(\boldsymbol{x}_{ext}, \beta_{ext})] \Big|_{t=t_{B,ext}} \tau = 0,$$
 (2.10)

což musí platit pro libovolné α a τ . Tímto dostáváme:

$$\lambda \bullet \frac{\partial f}{\partial \beta}(x_{\text{ext}}, \beta_{\text{ext}}) = 0,$$
 (2.11a)

$$[1 + \lambda \bullet f(x_{\text{ext}}, \beta_{\text{ext}})]|_{t=t_{B,\text{ext}}} = 0.$$
(2.11b)

Pokusme se vypočítat časovou derivaci funkce $1 + \lambda \bullet f(x_{\text{ext}}, \beta_{\text{ext}})$, kam dosadíme z rovnic (2.2), (2.11a) a (2.9):

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(1 + \lambda \bullet f(x_{\mathrm{ext}}, \beta_{\mathrm{ext}}) \right) = 0, \tag{2.12}$$

potom funkce $1 + \lambda \bullet f(x_{\text{ext}}, \beta_{\text{ext}})$ se musí rovnat konstantě po celý časový interval letu, ale z rovnice (2.11b) vyplývá, že je rovna nule pro $t \in (t_A, t_B)$. Získáváme systém lineárních algebraických rovnic pro λ :

$$1 + \lambda \bullet f(x_{\text{ext}}, \beta_{\text{ext}}) = 0, \tag{2.13a}$$

$$\lambda \bullet \frac{\partial f}{\partial \beta}(x_{\text{ext}}, \beta_{\text{ext}}) = 0.$$
 (2.13b)

Řešením této soustavy pro naší pravou stranu (1.1) můžeme získat explicitní vzorec pro λ :

$$\begin{bmatrix} \lambda_x \\ \lambda_y \end{bmatrix} = \frac{1}{V + u(x_{\text{ext}}, y_{\text{ext}}) \cos \beta_{\text{ext}} + v(x_{\text{ext}}, y_{\text{ext}}) \sin \beta_{\text{ext}}} \begin{bmatrix} \cos \beta_{\text{ext}} \\ \sin \beta_{\text{ext}} \end{bmatrix}. \tag{2.14}$$

Odkud lze odvodit Zermelova navigační rovnice² s použitím rovnice (2.9) a užitím skalárního součinu obou stran rovnice s vektorem $\begin{bmatrix} -\sin \beta_{\rm ext} & \cos \beta_{\rm ext} \end{bmatrix}^{\mathsf{T}}$. Na otázku jak se vyvíjí optimální směr letu vzducholodě $\beta_{\rm ext}$, nám právě odpovídá Zermelova navigační rovnice:

$$\frac{\mathrm{d}\beta_{\mathrm{ext}}}{\mathrm{d}t} = \frac{\partial v}{\partial x}(x_{\mathrm{ext}}, y_{\mathrm{ext}})\sin^2\beta_{\mathrm{ext}} + \left(\frac{\partial u}{\partial x}(x_{\mathrm{ext}}, y_{\mathrm{ext}}) - \frac{\partial v}{\partial y}(x_{\mathrm{ext}}, y_{\mathrm{ext}})\right)\sin\beta_{\mathrm{ext}}\cos\beta_{\mathrm{ext}} - \frac{\partial u}{\partial y}(x_{\mathrm{ext}}, y_{\mathrm{ext}})\cos^2\beta_{\mathrm{ext}}.$$
 (2.15)

Tímto jsme odvodili všechny evoluční rovnice našeho problému.

3. Řešení

Máme zadané rychlostní pole větru \boldsymbol{w} , známe počáteční bod A a koncový bod B letu:

$$\boldsymbol{w} = \begin{bmatrix} u(x,y) \\ v(x,y) \end{bmatrix}, \tag{3.1}$$

$$A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}, \tag{3.2}$$

$$B = \begin{bmatrix} 0 \\ 0 \end{bmatrix}. \tag{3.3}$$

Optimální trajektorii x_{ext} a nejkratší možný čas letu t_B – t_A hledáme řešením diferenciálních rovnic:

$$\frac{\mathrm{d}x_{\mathrm{ext}}}{\mathrm{d}t} = V\cos\beta_{\mathrm{ext}} + u(x_{\mathrm{ext}}, y_{\mathrm{ext}}),\tag{3.4a}$$

$$\frac{\mathrm{d}y_{\mathrm{ext}}}{\mathrm{d}t} = V \sin \beta_{\mathrm{ext}} + v(x_{\mathrm{ext}}, y_{\mathrm{ext}}),\tag{3.4b}$$

$$\frac{\mathrm{d}\beta_{\mathrm{ext}}}{\mathrm{d}t} = \frac{\partial v}{\partial x}(x_{\mathrm{ext}}, y_{\mathrm{ext}}) \sin^2 \beta_{\mathrm{ext}} + \left(\frac{\partial u}{\partial x}(x_{\mathrm{ext}}, y_{\mathrm{ext}}) - \frac{\partial v}{\partial y}(x_{\mathrm{ext}}, y_{\mathrm{ext}})\right) \sin \beta_{\mathrm{ext}} \cos \beta_{\mathrm{ext}} - \frac{\partial u}{\partial y}(x_{\mathrm{ext}}, y_{\mathrm{ext}}) \cos^2 \beta_{\mathrm{ext}}, \tag{3.4c}$$

pro neznámé $\boldsymbol{x}_{\text{ext}}$ = $\begin{bmatrix} x_{\text{ext}} & y_{\text{ext}} \end{bmatrix}^{\mathsf{T}}$ a β_{ext} při splnění podmínek:

$$\boldsymbol{x}_{\text{ext}}(t_A) = A,\tag{3.5}$$

$$\boldsymbol{x}_{\text{ext}}(t_B; \beta_{\text{ext},0}) = \boldsymbol{0}, \tag{3.6}$$

kde $\beta_{\text{ext}}(t_A) = \beta_{\text{ext},0}$ je počáteční natočení vzducholodě. Neboli abychom mohli řešit soustavu diferenciálních rovnic (3.4), potřebujeme navíc kromě znalosti (1.2) ještě přidat další počáteční podmínku $\beta_{\text{ext},0}$, pro kterou platí pouze rovnost (3.6). Jak si ukážeme v další sekci, pro vhodně zadané rychlostní pole větru lze napsat soustavu rovnic mezi $x_{\text{ext}}(t_A)$ a $\beta_{\text{ext},0}$.

4. Jednoduché veterné pole

Najjednoduchší prípad veterného poľa, by sme mohli uvažovať bezvetrie. V takom prípade bude pole charakterizované funkciami: u(x,y) = 0, v(x,y) = 0. Potom:

$$\frac{\mathrm{d}\beta_{\mathrm{ext}}}{\mathrm{d}t} = 0,\tag{4.1}$$

z toho:

$$\beta_{\text{ext}} = \beta_{\text{ext},0},\tag{4.2}$$

čo znamená, že vzducholoď bude natočená priamo na cieľ.

Uvažujme teraz prípad lineárnej závislosti veterného poľa na polohe. V tomto prípade bude pole charakterizované funkciami:

$$u = -\frac{V}{h}y,\tag{4.3}$$

$$v = 0. (4.4)$$

Pre tento špeciálny prípad veterného poľa sa systém diferenciálnych rovíc zjednoduší na:

$$\frac{\mathrm{d}x_{\mathrm{ext}}}{\mathrm{d}t} = V\cos\beta_{\mathrm{ext}} - \frac{V}{h}y,\tag{4.5a}$$

$$\frac{\mathrm{d}y_{\mathrm{ext}}}{\mathrm{d}t} = V \sin \beta_{\mathrm{ext}},\tag{4.5b}$$

$$\frac{\mathrm{d}\beta_{\mathrm{ext}}}{\mathrm{d}t} = \frac{V}{h}\cos^2\beta_{\mathrm{ext}}.\tag{4.5c}$$

 $^{^2{\}rm Ernst}$ Zermelo - přednáška v Praze 1931

Obrázek 2. Rychlostní pole větru.

Poslednú rovnicu vieme vyriešiť separáciou premenných:

$$\tan \beta_{\text{ext}} - \tan \beta_{\text{ext},B} = \frac{V}{h} (t - t_B), \tag{4.6}$$

kde sme použili značenie $\beta_{\text{ext},B} =_{\text{def}} \beta_{\text{ext}}|_{t=t_{B,\text{ext}}}$. Nakoľko je funkcia β_{ext} rastúca funkcia času, môžeme zmeniť premenné a prepísať rovnicu 4.5b ako $\frac{\text{d}y_{\text{ext}}}{\text{d}\beta_{\text{ext}}} \frac{\text{d}\beta_{\text{ext}}}{\text{d}t} = V \sin \beta_{\text{ext}}$, z čoho dostávame:

$$\frac{\mathrm{d}y_{\mathrm{ext}}}{\mathrm{d}\beta_{\mathrm{ext}}} = h \frac{\sin \beta_{\mathrm{ext}}}{\cos^2 \beta_{\mathrm{ext}}}.\tag{4.7}$$

Z toho jednoducho:

$$y_{\text{ext}}(\beta_{\text{ext}}) = h\left(\frac{1}{\cos\beta_{\text{ext}}} - \frac{1}{\cos\beta_{\text{ext},B}}\right).$$
 (4.8)

Potrebujeme $y_{\text{ext}}(\beta_{\text{ext},B})$ = 0. Nakoniec môžeme uskutočniť rovnakú zmenu premenných v 4.5a, čo dáva:

$$\frac{\mathrm{d}x_{\mathrm{ext}}}{\mathrm{d}\beta_{\mathrm{ext}}} = h \left(\frac{1}{\cos\beta_{\mathrm{ext}}} - \frac{1}{\cos^{3}\beta_{\mathrm{ext}}} + \frac{1}{\cos^{2}\beta_{\mathrm{ext}}\cos\beta_{\mathrm{ext},B}} \right). \tag{4.9}$$

Riešenie v tvare:

$$x_{\rm ext}(\beta_{\rm ext}) = \frac{1}{2}h(-\arctan\sin\beta_{\rm ext,B} + \arctan\sin\beta_{\rm ext} - \sec\beta_{\rm ext,B} \tan\beta_{\rm ext,B} + 2\sec\beta_{\rm ext,B} \tan\beta_{\rm ext} - \sec\beta_{\rm ext} \tan\beta_{\rm ext}), \quad (4.10)$$

potrebujeme aby platilo $x_{\text{ext}}(\beta_{\text{ext},end}) = 0$. Teraz môžeme použiť rovnice 4.10 a 4.8. Počiatočné podmienky musia vyhovovať 1.2a, teda dostávame systém rovníc:

$$\boldsymbol{x}(t_A) = \begin{bmatrix} \frac{1}{2}h\left(-\arctan \sin \beta_{\text{ext},B} + \arctan \sin \beta_{\text{ext}} - \frac{1}{\cos \beta_{\text{ext},B}} \tan \beta_{\text{ext},B} + \frac{2}{\cos \beta_{\text{ext},B}} \tan \beta_{\text{ext}} - \frac{1}{\cos \beta_{\text{ext}}} \tan \beta_{\text{ext}}\right) \\ h\left(\frac{1}{\cos \beta_{\text{ext}}} - \frac{1}{\cos \beta_{\text{ext},B}}\right) \end{bmatrix}. \tag{4.11}$$

Nakoľko poznáme $x(t_A)$, dostávame teda z 4.11 sústavu dvoch nelineárnych algebraických rovníc pre dve neznáme $\beta_{\text{ext},end}$ a β_{ext} . Akonáhle nájdeme tieto dve hodnoty, môžeme z rovnice 4.6 vyjadriť konečný čas.

Konečne môžeme konštatovať, že pre výpočet úlohy navigácie lode, potrebujeme pre dané V, h a $x(t_A) = \begin{bmatrix} x(t_A) & y(t_A) \end{bmatrix}^{\mathsf{T}}$, vyriešiť systém nelineárnych algebraických rovníc:

$$\begin{bmatrix} x(t_A) \\ y(t_A) \end{bmatrix} = \begin{bmatrix} \frac{1}{2}h(-\arctan\sin\beta_{\text{ext},B} + \arctan\sin\beta_{\text{ext}} - \frac{1}{\cos\beta_{\text{ext},B}} \tan\beta_{\text{ext},B} + \frac{2}{\cos\beta_{\text{ext},B}} \tan\beta_{\text{ext}} - \frac{1}{\cos\beta_{\text{ext}}} \tan\beta_{\text{ext}}) \\ h\left(\frac{1}{\cos\beta_{\text{ext}}} - \frac{1}{\cos\beta_{\text{ext},B}}\right) \end{aligned}$$
(4.12)

a dostaneme hodnoty β_{ext} a $\beta_{\text{ext},B}$. Z rovnice

$$\tan \beta_{\text{ext},A} - \tan \beta_{\text{ext},B} = \frac{V}{h} (t_A - t_B), \tag{4.13}$$

nájdeme konečný čas t_B . Optimálna trajektória je daná ako riešenie systému diferenciálnych rovníc prvého stupňa:

$$\frac{dx_{\text{ext}}}{dt} = V \cos \beta_{\text{ext}} - \frac{V}{h} y_{\text{ext}},$$

$$\frac{dy_{\text{ext}}}{dt} = V \sin \beta_{\text{ext}},$$

$$\frac{d\beta_{\text{ext}}}{dt} = \frac{V}{h} \cos^2 \beta_{\text{ext}},$$
(4.14a)
$$\frac{d\beta_{\text{ext}}}{dt} = \frac{V}{h} \cos^2 \beta_{\text{ext}},$$
(4.14b)

$$\frac{\mathrm{d}y_{\mathrm{ext}}}{\mathrm{d}t} = V \sin \beta_{\mathrm{ext}},\tag{4.14b}$$

$$\frac{\mathrm{d}\beta_{\mathrm{ext}}}{\mathrm{d}t} = \frac{V}{h}\cos^2\beta_{\mathrm{ext}},\tag{4.14c}$$

ktoré sa riešia v časovom intervale $t \in (t_A, t_B)$, s ohľadom na počiatočné podmienky:

$$x_{\text{ext}}|_{t=t_A} = x_A, \tag{4.15a}$$

$$y_{\text{ext}}|_{t=t_A} = y_A, \tag{4.15b}$$

$$\beta_{\text{ext}}|_{t=t_A} = \beta_{\text{ext},A}. \tag{4.15c}$$

Problém 4.12 až 4.15 sa dá vyriešiť numerickými metódami.

5. Numerické řešení

Jak jsme už naznačili, naše jednoduché větrné pole se dá vyřešit numericky³. Rozhodli jsme se pracovat s následujícími hodnotami⁴:

```
V = 10;
h1 = 1;
h2 = 10;
h3 = 0.1;
x1 = "in. condition X";
x2 = "in.
          condition Y"
```

VÝPIS KÓDU 1. Hodnoty

Pro rychlost vzducholodě V jsme si brali jen jednu hodnotu. Při našich výpočtech se ukázalo, že různé hodnoty V nemají vliv na trajektorii, takže ani na startovní úhel $\beta_{ext,A}$. Ovlivněna je jen doba letu.

Nazveme x-ovou část vektoru (4.12) X1 a y-ovou část stejného vektoru X2. Za $x(t_A)$ dáme x1 a za $y(t_A)$ dáme x2. Získáme dvě rovnice: X1 = x1 a X2 = x2. V těchto rovnicích se nachází hodnota h, za kterou postupně dosazujeme hodnoty "h1 - h3". Pojďme vyřešit tuto soustavu nelineárních algebraických rovnic.

Pro numerické řešení použijeme metodu FindRoot.

```
res = FindRoot[{X1 == x1, X2 == x2}, {{B1, "0-2\pi"}, {B2, "0-2\pi"}}]
```

Výpis kódu 2. Metoda řešení

Metoda FindRoot byla jediná, která v našich výpočtech fungovala. Bohužel je v tomto případě ne až tak praktická, kvůli dlouhému hledání nejvhodnějších parametrů B1 a B2.

Řešení (4.12) můžeme pak použijeme k výpočtu času, za který se dostane vzducholoď z bodu A do bodu B.

```
\beta_{ext,A} = B1 /.res;
\beta_{ext,B} = B2 /.res;
time = -(h/V)(Tan[\beta_{ext,A}] - Tan[\beta_{ext,B}])
```

VÝPIS KÓDU 3. Výpočet času

Nakonec si vykreslíme trajektorie.

```
rce = \{x'[t] == V*Cos[\beta[t]] - (V/"h1-h3")y[t];
y'[t] == V*Sin[\beta[t]];
\beta'[t] == (V/"h1-h3")(Cos[\beta[t]])^2};
sol = NDSolve[Join[rce, {x[0] == x1, y[0] == x2, \beta[0] == \beta_{ext,A}], {x, y, \beta}, {t, 0, 3600}];
ParametricPlot[Table[\{x[t], y[t]\} /. sol], \{t, 0, time\}, AxesLabel -> \{x, y\}, PlotRange -> All
```

VÝPIS KÓDU 4. Vykreslení trajektorie

 $^{^3}$ Veškeré výpočty jsou provedeny v programu Wolfram Mathematica, verze 12.2.

⁴Naše hodnoty mají následující jednotky: V a "h1 - h3" - km h⁻¹, x1 a x2 - km.

5.1. Osa X. Začneme s případem - start z osy x.

Startujeme tak, že vplujeme do větrného pole z bezvětří a pomalu/rychle se necháme unášet k našemu cíli. Tento případ je nejintuitivnější. Zhruba si dokážeme představit trajektorii, podél které se vzducholoď pohybuje.

Pro lepší představu se můžeme podívat na obrázky (3), (4) a (5), kde vykreslujeme trajektorie pro různé hodnoty h. Pro porovnání těchto trajektorií se můžeme kouknout na obrázek (6). V tabulce (7a) máme délku doby letu v hodinách a v tabulce (7b) máme startovní úhel v radiánech.

5.2. Osa Y. Koukneme se na start z osy y.

Tento případ začíná být už zajímavější. Pro velká h a malá y je trajektorie podobná trajektorii, která začíná z osy x. Na obrázku (8a) lze pozorovat, že čím je y dále od počátku, tak se trajektorie protahuje. Toto samé platí, když hodnotu h snižujeme, což lze pozorovat na obrázku (8b). V tabulkách (8c) a (8d) máme časy a startovní úhly pro různé pozice. Když porovnáme časy, které jsem získali při studování startů z osy x a osy y, můžeme si všimnout, že jsme zpravidla rychleji v cíli, když startujeme z osy x.

5.3. **Kvadranty.** Zamíříme k obecnějšímu případu - start z kvadrantů.

Vybrali jsme jen tři různé počáteční podmínky ze dvou kvadrantů (1. a 2.). Proč jen ze dvou kvadrantů? Jak jsme mohli vypozorovat ze startů z os x a y, tak trajektorie jsou středově souměrná podle počátku (po-

Obrázek 3. Trajektorie, start osa x, h = 1

Obrázek 4. Trajektorie, start osa x, h = 10

Obrázek 5. Trajektorie, start osa x, h = 0.1

Obrázek 6. Trajektorie, start osa x

kud je i jejich počáteční startovní bod středově souměrný podle počátku)⁵, takže není nutné studovat chování v 3. a 4. kvadrantu.

Na obrázku (9a) můžeme pozorovat, jak se mění tvary trajektorií v závislosti na počátečních podmínkách. Na obrázku (9b) lze vidět, že když zvětšíme h, tak trajektorie budou mít tendenci mířit přímo do cíle. V tabulkách (9d) a (9e) uvádíme zase dobu letu a startovní úhel.

Start	[X,Y]	h = 1	h = 10	h = 0.1
3	0	0.2469546	0.2988911	0.1042143
5	0	0.3572301	0.494992	0.1369385
-5	0	0.3572301	0.494992	0.1369385

(A) Doba letu v hodinách

Start	[X,Y]	h = 1	h = 10	h = 0.1
3	0	2.251524	2.993245	1.760403
5	0	2.08118	2.898972	1.715822
-5	0	5.222773	6.040565	4.857415

(B) Startovní úhel $\beta_{\rm ext}(t_A)$ v radiánech

Obrázek 7. Osa x

REFERENCE

Průša, V. and K. Tůma. How to navigate zeppelin. 2021.

 $^{^5\}mathrm{Tato}$ vlastnost plyne ze symetrie větrného pole - je také středově souměrné podle počátku.

			y
-20 -15	-10	-5	-1.0 X
	(B) $h = 0.1$		F

Start	[X Y]	h = 1	h = 10	h = 0.1
0	2	0.3344854	0.2010075	0.4798031
0	5	1.122496	0.5163739	1.205635
0	-5	1.122496	0.5163739	1.205635

(c) Doba letu v hodinách

Start	[X Y]	h = 1	h = 10	h = 0.1
0	2	5.042334	4.811555	4.741792
0	5	4.834308	4.94928	4.724114
0	-5	1.692715	1.807687	1.582521

(D) Startovní úhel $\beta_{\rm ext}(t_A)$ v radiánech

Obrázek 8. Osa \boldsymbol{y}

(C) Trajektorie, startů v kvadrantech

Start	[X,Y]	h = 1	h = 10	h = 0.1
5	4	0.598308	0.5561394	0.9459117
5	3	0.3033075	0.5157925	0.6976717
-5	4	1.039785	0.7548947	0.9813792

	D)	Doba	letu	v	hodinách
1	υ.	Doba	icuu	v	noumacn

Start	[X,Y]	h = 1	h = 10	h = 0.1
5	4	4.902939	3.801725	4.727247
5	3	4.528105	3.583146	4.73243
-5	4	4.849607	5.481327	4.726865

(E) Startovní úhel $\beta_{\rm ext}(t_A)$ v radiánech

Obrázek 9. Kvadranty