GRAFOS PLANARES.

Profesores del curso:

Ronald Mass ¹

Ángel Ramírez 1

¹Universidad Nacional de Ingeniería, Lima, Perú

29 de julio de 2020

Tabla de contenidos

- Grafos planares
- Ciclos en grafos planares

Definición 1 (Arco)

Es un subconjunto lpha del plano de la forma

$$\alpha = \gamma([0,1]) = \{\gamma(x) \, / \, x \in [0,1]\},\$$

donde $\gamma:[0,1]\to\mathbb{R}^2$ es una función continua inyectiva definida en el intervalo cerrado [0,1] sobr el plano. Los puntos $\gamma(0)$ y $\gamma(1)$ son llamados extremos del arco α .

Dibujo de un grafo

Definición 2

Por dibujo de un grafo G = (V, E) se debe entender lo siguiente: a todo vértice $v \in V(G)$ le corresponde un punto b(v) del plano, y a toda arista $e = \{v, v'\} \in E(G)$ le corresponde un arco $\alpha(e)$ en el plano con extremos b(v) y b(v'). Asumimos que el mapeo b es inyectivo (es decir, a diferentes vértices le corresponden distintos puntos en el plano), y ningún punto de la forma b(v) está sobre cualquier arco $\alpha(e)$ a menos que sea un extremo del arco. Un grafo junto con algún dibujo es llamado grafo topológico.

Un dibujo de un grafo G en el cual dos arcos cualesquiera correspondientes a arcos distintos o no tienen intersección o sólo comparten un extremo es llamado **dibujo planar**. Un grafo G es **planar** si tiene al menos un **dibujo planar**.

Caras de un grafo planar

Definición 3 (Conjunto conexo)

Decimos que un conjunto $A \subset \mathbb{R}^2$ es **conexo** si para cualquier par de puntos $x, y \in A$ existe un arco $\alpha \subset A$ con extremos $x \in Y$).

Sea G=(V,E) un grafo topológico planar, es decir, un grafo planar junto con dibujo en el plano. Considere el conjunto de todos los puntos en el plano que no están en los arcos del dibujo. Este conjunto consiste de un número finito de regiones conexas. Estas regiones son llamadas caras del grafo topológico planar. La región que se extiende hasta el infinito, tal como F_1 en la Figura 1, es llamada cara exterior (o cara ilimitada) del dibujo y todas las otras caras son llamadas caras internas (o caras limitadas.)

Figura 1: Caras de un grafo planar

Dibujos sobre otras superficies

Un grafo puede ser también dibujado sobre otras superficies además del plano. A continuación se muestran algunas otras superficies.

Superficie esférica

Superficie del toro

Superficie de la cinta de Mobius

Esfera con dos asas

Esfera con tres asas

Botella de Klein

Observaciones

- Los grafos pueden ser clasificados según la superficie donde puedan ser graficados.
- Los grafos K_5 y $K_{3,3}$ no son planares.
- K_5 puede ser dibujado en el toro.

$K_{3,3}$ y K_5 no son planares.

K_5 sobre el Toro

K₅ sobre el Toro

$K_{3,3}$ sobre la banda de Mobius

Proposición 1

Cualquier grafo puede ser dibujado sin intersección de aristas sobre una esfera con suficiente número de asas.

Idea de la demostración:

Dibujamos el grafo G=(V,E) sobre la esfera, posiblemente con aristas intersectándose. Sean e_1,e_2,\ldots,e_n las aristas que se intersectan con otra arista. Para cada arista e_i , añadimos una asa que sirve como puente para que la arista evite las otras aristas, de modo que las asas son disjuntas y así las aristas dibujadas sobre las asas no se intersectan más.

Desde que tenemos un número finito de aristas, es fácil determinar tales asas.

La idea de la demostración anterior motiva la siguiente definición.

Definición 4 (Género de un grafo planar)

El menor número de asas que deben ser añadidas a la esfera de modo que el grafo G pueda ser dibujado sobre la superficie resultante sin intersección de aristas es llamado género del grafo G.

Tabla de contenidos

- Grafos planares
- 2 Ciclos en grafos planares

Teorema de curva de Jordan

Definición 5

Una curva de Jordan es una curva cerrada sin autointersecciones. Más formalmente, una curva de Jordan es definida como un arco cuyos extremos coinciden, es decir, una imagen continua del intervalo [0,1] bajo una función f inyectiva excepto en la igualdad f(0) = f(1).

Teorema 1

Cualquier curva de Jordan k divide al plano en exactamente dos regiones conexas, la parte interior y exterior de k, y k es la frontera de ambas regiones. (Ambas partes serán llamadas las regiones de k).

Proposición 2

K₅ es no planar.

Demostración:

Procedamos por contradicción. Sean b_1, b_2, b_3, b_4, b_5 los puntos correspondientes a los vértices de K_5 en algún dibujo planar. Los arcos que conectan a los puntos b_i y b_j serán denotados por $\alpha(i,j)$. Desde que b_1, b_2 y b_3 son vértices de un ciclo en el grafo K_5 , los arcos $\alpha_{1,2}, \alpha_{2,3}$ y $\alpha_{3,1}$ forman una curva de Jordan k. De aquí, los puntos b_4 y b_5 o ambos están dentro o ambos están afuera de k, de otra forma, el arco $\alpha(4,5)$ intersectaría a la curva k. Supongamos primero que b_4 está en el interior de k, como en la Figura 2.

Representación gráfica. Ejemplo 2

Figura 2: b_4 en el interior de la curva de Jordan

Entonces, b_5 está dentro de la curva formada por los arcos:

$$\alpha(1,4), \alpha(2,4)$$
 y $\alpha(1,2)$, o $\alpha(2,3), \alpha(3,4)$ y $\alpha(2,4)$, o $\alpha(1,3), \alpha(3,4)$ y $\alpha(1,4)$.

Sin embargo, en el primer caso, el arco $\alpha(3,5)$ intersecta a la curva de Jordan formada por los arcos

$$\alpha(1,4), \alpha(2,4)$$
 y $\alpha(1,2)$.

Similarmente en los dos casos restantes.

Si los puntos b_4 y b_5 están en el exterior de k, se procede de forma análoga.

Caras y ciclos en grafos 2-conexos

Si e_1, e_2, \ldots, e_n son las aristas de un ciclo en un grafo topológico planar G, entonces los arcos $\alpha(e_1), \ldots, \alpha(e_n)$ forman una curva de Jordan. Por el teorema de la curva de Jordan, se tiene que cada cara de G está en el interior o en el exterior de esta curva. Por brevedad, llamaremos a esta curva de Jordan **un ciclo** de G (así, un ciclo de G puede ahora significar o un ciclo en el sentido de grafo, es decir, un subgrafo de G, o la curva de Jordan correspondiente al ciclo de G en algún dibujo de G).

Proposición 3

Sea G un grafo planar 2-vértice conexo. Entonces toda cara en cualquier dibujo de G es una región de algún ciclo de G.

Teorema 2

Un grafo G es planar si y solamente si no tiene subgrafos isomórficos a una subdivisión de $K_{3,3}$ o a una subdivisión de K_{5} .

