Optimization

Lusine Poghosyan

YSU

November 13, 2020

The Rate Convergence of Numerical Sequence

Definition

A sequence x_n exhibits **linear** convergence to a limit x if there is a constant C in the interval (0, 1) and an integer N such that

$$|x_{n+1}-x| \leq C|x_n-x|, \quad \forall n \geq N.$$

Example

$$x_n=\frac{1}{2^n}.$$

Definition

A sequence x_n exhibits **superlinear** convergence to a limit x if there is a sequence β_n , which converges to 0, and an integer N such that

$$|x_{n+1}-x| \leq \beta_n |x_n-x|, \quad \forall n \geq N.$$

Example

$$x_n=\frac{n}{2^{n^2}}+1.$$

Definition

We will say that $\alpha \geq 1$ is the rate of convergence of sequence x_n if α is the largest number for which there exist a constant C>0 (if $\alpha=1$ then 0< C<1) and an integer N such that

$$|x_{n+1}-x|\leq C|x_n-x|^{\alpha},\quad \forall n\geq N.$$

Example

Find the limit and the rate of convergence to that limit for the following sequences:

- a. $x_n = \frac{1}{2^{2^n}}$;
- b. $x_n = \frac{1}{4^{3^n} + n}$;

Numerical Methods for Unconstrained Optimization

One Dimensional Search Methods

Here we consider the minimization of univariate function $f : [a, b] \to \mathbb{R}$.

In an iterative algorithm we start with an initial candidate solution x_0 and generate sequence of points x_1, x_2, \ldots Each x_{k+1} iteration depends on previous points x_0, x_1, \ldots, x_k . The algorithm may also use the values of f or f' or even f'' at some points:

- Golden section method (uses only f);
- Fibonacci method (uses only f);
- Bisection method (uses only f');
- Newton's method (uses f' and f");
- Secant method (uses only f');.

Definition

The function $f:[a,b] \to \mathbb{R}$ is called a unimodal function on interval [a,b], if f has only one local minimizer on [a,b].

Proposition

If $f:[a,b]\to\mathbb{R}$ is continuous and unimodal on [a,b], then f is strictly decreasing up to the minimum point x^* and increasing thereafter.

Let's assume that f is not strictly decreasing on $[a, x_2]$, that is, there exist $a \le x_1 < x_2 \le x^*$ such that $f(x_1) \le f(x_2)$. As $f \in \mathbb{C}[a, x_2]$, then it attains its minimum and let the minimizer be x^{**} . We can assume that x^{**} is different from x_2 . x^{**} is a local minimizer of f and it contradicts the unimodality of f.

Example

Check if the function f is unimodal on the given interval, if

- **a.** $f(x) = \sin(x), x \in [\pi/2, 2\pi];$
- **b.** $f(x) = \sin(x), x \in [0, 2\pi];$
- **c.** $f(x) = \frac{x^5}{5} x^3, x \in [-5, 2].$

Golden Section Search

Assume $f:[a,b]\to\mathbb{R}$ is unimodal and continuous on interval [a,b]. Let x^* be the minimum point of f over [a,b].

Let's denote

$$[a_0, b_0] = [a, b].$$

 $A = a_0 + \gamma(b_0 - a_0),$
 $B = b_0 - \gamma(b_0 - a_0),$

where $\gamma \in (0, \frac{1}{2})$.

We define the new interval in the following way

$$[a_1, b_1] = \begin{cases} [a_0, B], & \text{if } f(A) < f(B), \\ [A, b_0], & \text{if } f(A) \ge f(B). \end{cases}$$

$$x^* \in [a_1, b_1]$$

$$b_1 - a_1 = (1 - \gamma)(b_0 - a_0).$$

The first approximation will be

$$x_1=\frac{a_1+b_1}{2}.$$

n-th step

$$[a_n, b_n] = \begin{cases} [a_{n-1}, B], & \text{if } f(A) < f(B), \\ [A, b_{n-1}], & \text{if } f(A) \ge f(B). \end{cases}$$

$$x^* \in [a_n, b_n]$$

$$b_n - a_n = (1 - \gamma)(b_{n-1} - a_{n-1})$$

The *n*-th approximation will be

$$x_n=\frac{a_n+b_n}{2}.$$

Theorem

If f is a unimodal and continuous function on [a,b] and $\gamma \in (0,\frac{1}{2})$, then the golden section search approximation x_n converges to x^* and we have

$$|x_n - x^*| \le 0.5(1 - \gamma)^n (b - a).$$