Software Engineering in Embedded Systems

Stephan Heidinger

Seminar: Software Engineering Fachbereich für Informatik und Informationssysteme Universtität Konstanz

19. January 2012

Embedded

Architectur

Timing analysi

Real-time operating system

Embedded Systems - What's that? - I

Definition

"An embedded software system is part of a hard-ware/software system that reacts to events in its environment. The software is 'embedded' in the hardware. Embedded systems are nominaly real-time systems."

Software Engineering, p.561, Edited by Ian Sommerville, Ninth Edition

Embedded

Architectu patterns

Timing analys

Real-time operating systems

Embedded Systems - What's that? - II

- Embedded Systems: ...
 - ...respond to physical world
 - ... respond in real time ("have a deadline")
 - ... often have little resources
 - ...run on special purpose hardware
 - ...run in real-time operating systems

Embedded Systems - What's that? - III

Embedded Systems Desigr

Architectu patterns

Timing analys

Real-time operating system

- Examples for Embedded Systems:
 - airbag
 - cell phone / 'modern' phone
 - burglar alarm
 - (fully automatic) coffee machine
 - danger detection
 - . . .

Architectu patterns

Timing analys

Real-time operating systems

Motivation

- Why embedded systems:
 - Embedded Systems are everywhere!
 - There are probably more Embedded Systems than computers out there!
 - Man, they must be important.
 - There sure is some money in this.
- I did an internship producing an embedded system.

Architectu patterns

Timing analysi

Real-time operating system

Problems

- Problems in Embedded Systems:
 - deadlines
 - environment
 - continuity
 - direct hardware interaction
 - safety & reliability

Embedded Systems Design

- design steps
 - platform selection
 - special purpose hardware
 - stimuli:
 - periodic stimuli
 - aperiodic stimuli
 - timing analysis
 - process design
 - algorithm design
 - data design
 - process scheduling

Example: radiation warning system

Embedded Systems Design

Architectura

Timing analysi

Real-time operating systems

reactorsensor

Example: Stimuli-List of a radiation warning system

Embedded Systems Design

Architectura patterns

Timing analys

Real-time operating systems

Stimulus	Response
single sensor positive	flash yellow light around sensor
both sensors in one	flash red light in area, sound
area positive	acoustic alarm in area
Voltage drop of 10-	switch to backup power; run
20%	power supply test
Voltage drop of more	switch to backup; run power
than 20%	supply test; call technician

Architectu patterns

Timing analys

Real-time operating systems

Embedded system modeling

 Embedded Systems are often built as state machines.

⇒ UML state diagrams

Architectu patterns

Timing analys

Real-time operating system

Programming language

- program has to be...
 - ...fast (i.e. C, Assembler)
 - ... concurrent (i.e. C++, real time Java, ...)
- speed looses importance
- it's up to you in the end . . .

Architectural patterns

Timing analys

Real-time operating systems

Architectural patterns

- Architectural patterns are used to describe a system in an abstract way and help to understand the architecture.
 - Observe and React
 - Environmental Control
 - Process Pipeline

Architectural patterns

Timing analysi

Real-time operating systems

Observe and React

- Observe and React
 - monitor the system with a set of sensors
 - display something
 - primarly used in: Monitoring Systems

Architectural patterns

Timing analys

Real-time operating systems

Environmental Control

- Environmental Control
 - monitor the system and react to any changes
 - Used when there is no requirement for user interaction...
 - ... or no time for the user to interact ...
 - ... no way a user can interact ...
 - ... or there is too much information for users to process.

Architectural patterns

Timing analys

Real-time operating systems

Process Pipeline

- Process Pipeline
 - transform data
 - often huge amounts of data to be converted in real time
 - data aquisition system: storing of data may need to be fast

Architectu patterns

Timing analysis

Real-time operating systems

Timing Analysis - I

- timing analysis
 - Correctness of systems depends not only on result, but also on the time at which the result is produced.
 - How often does each process need to be executed?
 - aperiodic stimuly ⇒ make assumptions

Embedded

Architectu patterns

Timing analysis

Real-time operating system

Timing Analysis - II

- Consider:
 - deadlines
 - frequency
 - execution time

Architectur patterns

Timing analysis

Real-time

Stimulus/Response	Timing requirements
voltage drop	switch to backup: 50ms
sensor reaction	poll twice a second
turn on light	500ms
call technician	5000ms

patterns

Timing analys

Real-time operating systems

Real-time operating systems

- normal operating systems not feasible
- special "real-time operating systems" exist
- RTOS must include:
 - real-time clock
 - interrupt handler
 - process manager: scheduler & resource manager
 - dispatcher

Architectu patterns

Timing analys

Real-time operating systems

30 minutes in short

- What you should (at least) remember:
 - Embedded Systems react to events in real time.
 - Embedded Systems are a set of processes reacting to stimuli
 - State models help understanding the System.
 - Architectural patterns can be used to help in designing the system.
 - Always do timing analysis in (hard) Embedded Systems.

Architect

Timing analysi

Real-time operating systems

Questions?

Questions?