LVMs for Dimensionality Reduction

CS771: Introduction to Machine Learning
Piyush Rai

Plan

- A latent variable model for dimensionality reduction
 - Probabilistic PCA
- Expectation maximization (EM) algorithm for MLE for PPCA

Probabilistic PCA (PPCA)

■ Assume obs $x_n \in \mathbb{R}^D$ as a linear mapping of a latent var $z_n \in \mathbb{R}^K$ + Gaussian noise

$$oldsymbol{x}_n = oldsymbol{\mu} + oldsymbol{W} oldsymbol{z}_n + oldsymbol{\epsilon}_n$$
 Drawn from a zero-mean D -dim Gaussian $oldsymbol{\mathcal{N}}(\mathbf{0}, \sigma^2 I_D)$

- Equivalent to saying $p(x_n|z_n, \mu, W, \sigma^2) = \mathcal{N}(\mu + Wz_n, \sigma^2 I_D)$
- lacktriangle Assume a zero-mean Gaussian prior on $oldsymbol{z}_n$, so $p(oldsymbol{z}_n) = \mathcal{N}(oldsymbol{0}, I_K)$

A "reverse" (generative) way of thinking: first generate a low-dim latent variable \mathbf{z}_n and then map it to generate the high-dim observation \mathbf{x}_n

Need to estimate fewer parameters (DK + D + 1 as opposed to $O(D^2)$

Thus PPCA does a lowrank approximation of the covariance matrix

■ Joint distr. of x_n and z_n is Gaussian (since $p(x_n|z_n)$ and $p(z_n)$ are individually Gaussian) and the marginal distribution of x_n will be Gaussian As $\sigma^2 \rightarrow 0$, the covariance bed

$$p(\mathbf{x}_n|\mathbf{W},\sigma^2) = N(\mathbf{x}_n|\mathbf{\mu},\mathbf{W}\mathbf{W}^{\mathsf{T}} + \sigma^2 I_D)$$

As $\sigma^2 \to 0$, the covariance become approx low-rank (rank K) and only DK + D + 1 params needed, as opposed to $O(D^2)$ for the full covariance

Benefits of Generative Models for Dim-Red

- One benefit: Once model parameters are learned, we can even generate new data, e.g.,
 - Generate a random \mathbf{z}_n from $\mathcal{N}(\mathbf{0}, I_K)$
 - Generate x_n condition on z_n from $\mathcal{N}(\mu + W z_n, \sigma^2 I_D)$

(a) Training data

(b) Random samples

Generated using a more sophisticated generative model, not PPCA (but similar in formulation)

ullet Many other benefits. For example, can do dim-red, even if x_n has part of it as missing.

Learning PPCA using EM

- The ILL is $p(x_n|\mu, W, \sigma^2) = N(x_n|\mu, WW^T + \sigma^2 I_D)$ with z_n integrated out
- Ignoring μ for notational simplicity, ILL is $p(x_n|W,\sigma^2) = N(x_n|0,WW^T + \sigma^2I_D)$
- Can maximize ILL but requires solving eigen-decomposition (PRML: 12.2.1)
- EM will instead maximize expected CLL, with CLL given by

$$\log p(\mathbf{X}, \mathbf{Z}|\mathbf{W}, \sigma^2) = \log \prod_{n=1}^{N} p(\mathbf{x}_n, \mathbf{z}_n|\mathbf{W}, \sigma^2) = \log \prod_{n=1}^{N} p(\mathbf{x}_n|\mathbf{z}_n, \mathbf{W}, \sigma^2) p(\mathbf{z}_n) = \sum_{n=1}^{N} \{\log p(\mathbf{x}_n|\mathbf{z}_n, \mathbf{W}, \sigma^2) + \log p(\mathbf{z}_n)\}$$

■ Using $p(\mathbf{x}_n|\mathbf{z}_n,\mathbf{W},\sigma^2) = \frac{1}{(2\pi\sigma^2)^{D/2}} \exp\left[-\frac{(\mathbf{x}_n-\mathbf{W}\mathbf{z}_n)^\top(\mathbf{x}_n-\mathbf{W}\mathbf{z}_n)}{2\sigma^2}\right], p(\mathbf{z}_n) \propto \exp\left[-\frac{\mathbf{z}_n^\top\mathbf{z}_n}{2}\right]$ and simplifying

$$CLL = -\sum_{n=1}^{N} \left\{ \frac{D}{2} \log \sigma^2 + \frac{1}{2\sigma^2} ||\mathbf{x}_n||^2 - \frac{1}{\sigma^2} \mathbf{z}_n^\top \mathbf{W}^\top \mathbf{x}_n + \frac{1}{2\sigma^2} tr(\mathbf{z}_n \mathbf{z}_n^\top \mathbf{W}^\top \mathbf{W}) + \frac{1}{2} tr(\mathbf{z}_n \mathbf{z}_n^\top) \right\}$$

lacktriangle Expected CLL will need $\mathbb{E}[oldsymbol{z}_n]$ and $\mathbb{E}[oldsymbol{z}_noldsymbol{z}_n^{\mathsf{T}}]$ where the expectations are w.r.t. the conditional posterior of $oldsymbol{z}_n$

Learning PPCA using EM

Using $p(\mathbf{x}_n|\mathbf{z}_n)$ and $p(\mathbf{z}_n)$ and Gaussian reverse conditional property

Ignoring the μ parameter

- The EM algo for PPCA alternates between the steps
 - Compute conditional posterior of \mathbf{z}_n given parameters $\Theta = (\mathbf{W}, \sigma^2)$

$$p(\mathbf{z}_n|\mathbf{x}_n, \mathbf{W}, \sigma^2) = \mathcal{N}(\mathbf{M}^{-1}\mathbf{W}^{\top}\mathbf{x}_n, \sigma^2\mathbf{M}^{-1})$$
 (where $\mathbf{M} = \mathbf{W}^{\top}\mathbf{W} + \sigma^2\mathbf{I}_K$)

■ Maximize the expected CLL $\mathbb{E}[\log p(X, Z|W, \sigma^2)]$ w.r.t. Θ

$$-\sum_{n=1}^{N} \left\{ \frac{D}{2} \log \sigma^2 + \frac{1}{2\sigma^2} ||\boldsymbol{x}_n||^2 - \frac{1}{\sigma^2} \mathbb{E}[\boldsymbol{z}_n]^\top \mathbf{W}^\top \boldsymbol{x}_n + \frac{1}{2\sigma^2} \operatorname{tr}(\mathbb{E}[\boldsymbol{z}_n \boldsymbol{z}_n^\top] \mathbf{W}^\top \mathbf{W}) + \frac{1}{2} \operatorname{tr}(\mathbb{E}[\boldsymbol{z}_n \boldsymbol{z}_n^\top]) \right\}$$

■ Taking derivative of expected CLL w.r.t. W and setting to zero gives

$$\mathbf{W} = \left[\sum_{n=1}^{N} \mathbf{x}_{n} \mathbb{E}[\mathbf{z}_{n}]^{\top}\right] \left[\sum_{n=1}^{N} \mathbb{E}[\mathbf{z}_{n} \mathbf{z}_{n}^{\top}]\right]^{-1}$$

Can likewise estimate σ^2 as well

lacktriangle Required expectations can be found from the conditional posterior of $oldsymbol{z}_n$

$$p(\mathbf{z}_{n}|\mathbf{x}_{n}, \mathbf{W}) = \mathcal{N}(\mathbf{M}^{-1}\mathbf{W}^{\top}\mathbf{x}_{n}, \sigma^{2}\mathbf{M}^{-1}) \quad \text{where } \mathbf{M} = \mathbf{W}^{\top}\mathbf{W} + \sigma^{2}\mathbf{I}_{K}$$

$$\mathbb{E}[\mathbf{z}_{n}] = \mathbf{M}^{-1}\mathbf{W}^{\top}\mathbf{x}_{n}$$

$$\mathbb{E}[\mathbf{z}_{n}\mathbf{z}_{n}^{\top}] = \mathbb{E}[\mathbf{z}_{n}]\mathbb{E}[\mathbf{z}_{n}]^{\top} + \operatorname{cov}(\mathbf{z}_{n}) = \mathbb{E}[\mathbf{z}_{n}]\mathbb{E}[\mathbf{z}_{n}]^{\top} + \sigma^{2}\mathbf{M}^{-1}$$

Full EM algo for PPCA

- Specify K, initialize \mathbf{W} and σ^2 randomly. Also center the data $(\mathbf{x}_n = \mathbf{x}_n \frac{1}{N} \sum_{n=1}^N \mathbf{x}_n)$
- E step: For each n, compute $p(z_n|x_n)$ using current W and σ^2 . Compute exp. for the M step

$$p(\mathbf{z}_{n}|\mathbf{x}_{n},\mathbf{W}) = \mathcal{N}(\mathbf{M}^{-1}\mathbf{W}^{\top}\mathbf{x}_{n},\sigma^{2}\mathbf{M}^{-1}) \quad \text{where } \mathbf{M} = \mathbf{W}^{\top}\mathbf{W} + \sigma^{2}\mathbf{I}_{K}$$

$$\mathbb{E}[\mathbf{z}_{n}] = \mathbf{M}^{-1}\mathbf{W}^{\top}\mathbf{x}_{n}$$

$$\mathbb{E}[\mathbf{z}_{n}\mathbf{z}_{n}^{\top}] = \operatorname{cov}(\mathbf{z}_{n}) + \mathbb{E}[\mathbf{z}_{n}]\mathbb{E}[\mathbf{z}_{n}]^{\top} = \mathbb{E}[\mathbf{z}_{n}]\mathbb{E}[\mathbf{z}_{n}]^{\top} + \sigma^{2}\mathbf{M}^{-1}$$

• M step: Re-estimate W and σ^2

$$\mathbf{W}_{new} = \left[\sum_{n=1}^{N} \mathbf{x}_{n} \mathbb{E}[\mathbf{z}_{n}]^{\top}\right] \left[\sum_{n=1}^{N} \mathbb{E}[\mathbf{z}_{n} \mathbf{z}_{n}^{\top}]\right]^{-1}$$

$$\sigma_{new}^{2} = \frac{1}{ND} \sum_{n=1}^{N} \left\{ ||\mathbf{x}_{n}||^{2} - 2\mathbb{E}[\mathbf{z}_{n}]^{\top} \mathbf{W}_{new}^{\top} \mathbf{x}_{n} + \operatorname{tr}\left(\mathbb{E}[\mathbf{z}_{n} \mathbf{z}_{n}^{\top}] \mathbf{W}_{new}^{\top} \mathbf{W}_{new}\right) \right\}$$

- Set $\mathbf{W} = \mathbf{W}_{new}$ and $\sigma^2 = \sigma_{new}^2$. If not converged (monitor $p(\mathbf{X}|\Theta)$), go back to E step
- Note: For $\sigma^2 = 0$, this EM algorithm can also be used to efficiently solve standard PCA (note that this EM algorithm doesn't require any eigen-decomposition)

Other Generative Models for Dim-Red

■ Factor Analysis is similar to PPCA except that the noise covariance of a diagonal matrix instead of $\sigma^2 I$

- Can use a mixture of probabilistic PCA for nonlinear dimensionality reduction
 - Data assumed to come from a mixture of low-rank Gaussians
 - Each low-rank Gaussian is a PPCA model
 - Basically does clustering + dimensionality reduction in each cluster

lacktriangle Variational auto-encoders (VAE): z_n to x_n mapping is defined by deep neural net

Will look at VAE and GAN briefly when talking about deep learning

- Generative adversarial networks (GAN) are models that can only generate
 - lacktriangle Some variants of GANs (e.g., bi-directional GAN) can also be used to learn z_n from x_n

Coming up next

Deep neural networks

