计算机网络实验

实验3:基于UDP服务设计可靠传输协议并编程实现

实验3-4

姓名: 蒋浩南 学号: 2012948

一、实验要求

设计思路:

- 二、停等机制与滑动窗口机制性能对比
 - (一) 固定延时为0, 变量为丢包率
 - (二) 固定丢包率为0,变量为延时
 - (三)分析
- 三、滑动窗口机制中不同窗口大小对性能的影响
 - (一) 固定延时为0, 变量为丢包率
 - (二) 固定丢包率为0, 变量为延时
 - (三)分析
- 四、有拥塞控制和无拥塞 控制的性能比较
 - (一) 固定延时为0, 变量为丢包率
 - (二) 固定丢包率为0, 变量为延时
 - (三) 分析

一、实验要求

- 基于给定的实验测试环境,通过改变延迟时间和丢包率,完成下面3组性能对比实验:
- (1) 停等机制与滑动窗口机制性能对比;
- (2) 滑动窗口机制中不同窗口大小对性能的影响;
- (3) 有拥塞控制和无拥塞 控制的性能比较。

设计思路:

- 分别在延时和吞吐率一个固定,以另一个为变量,在不同情况下,测试比较total time 和吞吐率。
- 重复实验,取平均值。
- 比较分析。

二、停等机制与滑动窗口机制性能对比

固定滑动窗口为4。

(一) 固定延时为0,变量为丢包率

• 単位 (s)

机制\丢包率 (%)	0	5	8	10
停等	0.554	9.144	13.899	15.97
滑动窗口	0.479	10.658	18.397	24.525

• 单位 (Mbps)

机制\丟包率(%)	0	5	8	10
停等	26.821	1.62498	1.06906	0.930421
滑动窗口	31.0205	1.39415	0.807676	0.605864

(二) 固定丟包率为0,变量为延时

● 単位 (s)

机制\时延(ms)	0	5	10	20
停等	0.554	7.094	7.559	10.361
滑动窗口	0.479	7.542	8.125	9.311

• 单位 (Mbps)

机制\时延(ms)	0	5	10	20
停等	26.821	2.09456	1.96571	1.43411
滑动窗口	31.0205	1.97014	1.82878	1.59584

(三)分析

- 1. 总体来说滑动窗口比停等的性能更好,但不是太显著。
- 2. 滑动窗口对丢包率更为敏感,由于其丢包会导致一系列包的重传,消耗较大。
- 3. 停等对延时的更为敏感,延时的增大造成停等时间的增大。
- 4. 延时对滑动窗口的影响也表现在等待确认ack的时间增大。

三、滑动窗口机制中不同窗口大小对性能的影响

(一) 固定延时为0,变量为丢包率

• 单位 (s)

窗口大小\丟包率 (%)	0	5	8	10
4	0.479	10.658	18.397	24.525
8	1.047	13.05	36.084	70.818

● 単位 (Mbps)

窗口大小\丢包率(%)	0	5	8	10
4	31.0205	1.39415	0.807676	0.605864
8	14.1918	1.13861	0.411784	0.209817

(二) 固定丟包率为0,变量为延时

单位 (s)

窗口大小\时延(ms)	0	5	10	20
4	0.479	7.542	8.125	9.311
8	1.047	6.526	7.567	10.977

单位 (Mbps)

窗口大小\时延(ms)	0	5	10	20
4	31.0205	1.97014	1.82878	1.59584
8	14.1918	2.27687	1.96363	1.35363

(三)分析

- 窗口越大,一般重传时的报文更多,所以丢包率对较大的窗口影响较大。延时的影响也较大。
- 窗口越大,能发送的数据也更多,在网络条件好的情况下,性能较好。
- 而较小的窗口,虽然丢包率和延时的影响较小。但能发送的数据也少。
- 总体而言,在一定范围内,性能相似。

四、有拥塞控制和无拥塞 控制的性能比较

(一) 固定延时为0, 变量为丢包率

• 单位 (s)

拥塞控制\丢包率(%)	0	5	8	10
无拥塞控制	1.047	13.05	36.084	70.818
有拥塞控制	1.15	6.737	12.074	16.633

• 单位 (Mbps)

拥塞控制\丟包率 (%)	0	5	8	10
无拥塞控制	14.1918	1.13861	0.411784	0.209817
有拥塞控制	12.9207	2.20555	1.23065	0.893334

(二) 固定丢包率为0,变量为延时

• 单位 (s)

拥塞控制\时延(ms)	0	5	10	20
无拥塞控制	1.047	6.526	7.567	10.977
有拥塞控制	1.15	8.071	8.785	8.794

拥塞控制\时延(ms)	0	5	10	20
无拥塞控制	14.1918	2.27687	1.96363	1.35363
有拥塞控制	12.9207	1.84101	1.69139	1.68965

(三)分析

- 在网络状况较好的情况下,无拥塞控制的性能较好。
 由于有拥塞控制在超时或者重复ACK的情况下会进入慢启动或者快速回复状态,使得窗口减小,然后重新增加。在该情况下差于一直保持窗口大小的无拥塞控制情况。
- 在网络状况较差的情况下,有拥塞控制的性能较好。该情况下,无拥塞控制的重传和延时的代价可能较大,却无法改变。

而有拥塞控制,根据当前网络状况,不断改变窗口大小,最后使得窗口大小在合适的范围内波动,动态调整重传和延时代价。