Language Modeling

CMSC 473/673 Spring 2017 Bryan Wilkinson

Discussion of Kilgarriff Paper

- Does anyone disagree with Kilgarriff?
- What are the alternatives?
 - UkWaC and WaCkypedia
 - UMBC WebBase

Language Modeling

- A Language Model is a collection of probabilities of some unit of language
 - Word and character level models are the most common.
- Why do we need to know the probability of language?
 - Which spelling is more likely?
 - O Which verb is more likely?
- What is the probability of language?
 - Of a word?
 - Of a sentence?

Counting Words

- Before we can calculate probability, we need to count things.
 - Seems like a simple task but,
- What is a word?
 - Still an open question, but mostly agreed upon
 - o Is a lot one word or two?
 - How about post office?
- English is easy to count
 - What about a language with more complex morphology (We will talk more about this later)
 - o <u>lyewičhamačheča</u> (Lakota "I resemble you" or "you resemble me")
- Other minor decisions
 - Does capitalization matter?
 - How about plurals? Or other endings?

Probability of a Word

Counting is the hard part

$$P(w) = \frac{C(w)}{N}$$

In Class Activity

Markov Assumption

- The future doesn't depend on the past
 - But the future does depend on the past, so we will just limit the amount of past we look at
- In NLP this means when calculating the probability of a word given a context, we often just look at the preceding one or two words. (or none!)
- In terms of probability this looks like
 - P(homework | the dog ate my) \approx P(homework)
 - P(homework | the dog ate my) \approx P(homework | my)
 - P(homework | the dog ate my) \approx P(homework | ate my)
- We call these small chunks of words N-grams
 - Unigram = homework
 - Bigram = my homework
 - Trigram = ate my homework
- What are all the bigrams and trigrams in the sentence "the dog ate my homework"

Probability of an N-Gram

- Calculating probability of an N-Gram is almost as easy as a word
- Technically we are estimating using Maximum Likelihood Estimation

$$P(w|w_{n-1}) = \frac{C(w_{n-1}w_n)}{\sum_{w} C(w_{n-1}w)}$$
$$P(w|w_{n-1}) = \frac{C(w_{n-1}w_n)}{C(w_{n-1})}$$

To calculate the probability of a sentence, we use the chain rule

$$P(w_1w_2w_3...w_n) = P(w_1)P(w_2|w_1)P(w_3|w_1,w_2)...P(w_n|w_1,w_2,w_3...w_{n-1})$$

P(Today is the second day of class) = P(Today | <start>) * P(is | Today <start>) * P(the | is Today <start>) * P(second | the is Today <start>) * P(day | second the is Today <start>) * P(of | day second the is Today <start>) * P(class | of day second the is Today <start>) * P(<end> | class of day second the is Today <start>)

To calculate the probability of a sentence, we use the chain rule

$$P(w_1w_2w_3...w_n) = P(w_1)P(w_2|w_1)P(w_3|w_2)...P(w_n|w_{n-1})$$

P(Today is the second day of class) ≈ P(Today | <start>) * P(is | Today) *
 P(the | is) * P(second | the) * P(day | second) * P(of | day) * P(class | of)
 * P(<end> | class)

- The following counts are from Google Books N-Gram Corpus v2
 - o Via corpus.byu.edu

C(<start>,Today)</start>	
C(Today, is)	49215
C(is, the)	101249451
C(the, second)	17216997
C(second, day)	396983
C(day, of)	5639617
C(of, class)	672495
C(class, <end>)</end>	2703083

C(<start>)</start>	
C(Today)	3251311
C(is)	1368855691
C(the)	7726878625
C(second)	42738935
C(day)	78211120
C(of)	5035745089
C(class)	27260152
C(<end>)</end>	7805955213

P(Today <start>)</start>	
P(is Today)	
P(the is)	
P(second the)	
P(day second)	
P(of day)	
P(class of)	
P(<end> class)</end>	

- What additional data would we need to calculate the probability of :
 - Today is the eighth day of class?
 - Today is the 57th day of class?
 - Today is the somethingth day of class?

Evaluating Language Models

- LMs give us probabilities of a sentence
 - How do we know if they are working well
 - What is the "correct" probability of a given sentence
- We could evaluate them using some task that has LMs as part of it
 - Test a machine translation, speech recognition, etc system and see which LM does better
 - Can conflates any errors
- So we try to evaluate LMs as a standalone system
 - This is hard
 - We do this using perplexity, a measure from information theory.

Perplexity

- Wikipedia (and probably statistics books) define perplexity as 2 raised to the entropy of the distribution
 - Technically correct, but not very intuitive (to me at least)
- Jurafsky gives the definition as the probability an LM gives to a test set, normalized by the number of words in that test set.
 - The idea is that words and sequences of words that actually exist in text should have a relatively high probability

 The assumption is that perplexity should correlate to performance on the end task

- o Often is the case!
- But not always!

$$\sqrt{\frac{1}{\sum_{i=1}^{N} \frac{1}{P(w_i|w_1...w_{i-1})}}}$$

Perplexity Examples

 This data comes from a system I am working on that has a perplexity of about 3

Input	Output
Who are you ?	Who are you ?
This caused problem like the formation and growth of slums which most of the time is not safe due to their unhealthy environment.	This caused problem like the both and growth of of which most of the time not not be to their
Tokyo is often referred to as a city, but is officially known and governed as a "metropolitan prefecture".	New is often referred to as a city , but is officially known and workforce as a " the prefecture " .
The Tokyo metropolitan government administers the 23 Special Wards of Tokyo	The financially of government classified the 00 Special Wards of New

Character Level Language Models

- What are they useful for?
 - Language ID
 - Spell Check
- They are smaller
 - Just need to count letters and a few other symbols
- Becoming more popular with Neural Networks
 - The Unreasonable Effectiveness of Recurrent Neural Networks
- Do they represent actual linguistic units?

Character LM Example

- Let's say we want to build a simple language ID system
- Bigram model over 2GB of wackypeadia produces the following counts

Character LM Example

- Let's say we want to build a simple language ID system
- Bigram model over 2GB of French UN text produces the following counts

Character LM Example

- Let's say we want to build a simple language ID system
- Bigram model over 2GB of Spanish UN text produces the following counts

Character LM Experiment

- Let's try the following sentences and see the results
 - Today is the second day of class
 - La universidad tienen 50 años.
 - Marius se sentit fier de cet inconnu.
 - Melissa Villaseñor is on SNL
- What happens when we put in a language we don't have a model for
 - What can this tell us?

Reminder

• HW 0 "Due" Tuesday