1

Assignment 3

Prabhath Chellingi - CS20BTECH11038

Download all python codes from

https://github.com/PRABHATH-cs20-11038/ AI1103/tree/main/Assignment 3/codes

and latex-tikz codes from

https://github.com/PRABHATH-cs20-11038/ AI1103/tree/main/Assignment_3

1 Problem

(GATE(MA)2011-49Q)) Let X and Y be two continuous random variables with the joint probability density function

$$f(x,y) = \begin{cases} 2, & 0 < x + y < 1, x > 0, y > 0, \\ 0, & elsewhere. \end{cases}$$
 (1.0.1)

$$E(X \mid Y = \frac{1}{2})$$
 is

- (A) 1/4
- (B) 1/2
- (C) 1
- (D) 2

2 Solution

The PDF of X and Y is,

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$$
 (2.0.1)

$$f_X(x) = \int_0^{1-x} 2dy \tag{2.0.2}$$

$$f_X(x) = 2 - 2x \tag{2.0.3}$$

$$f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx \qquad (2.0.4)$$

$$f_Y(y) = \int_0^{1-y} 2dx \tag{2.0.5}$$

$$f_Y(y) = 2 - 2y \tag{2.0.6}$$

$$f_Y\left(\frac{1}{2}\right) = 1\tag{2.0.7}$$

by using Bayes theorem,

$$f_{X|Y}\left(x \mid \frac{1}{2}\right) = \frac{f_{X,Y}\left(x, \frac{1}{2}\right)}{f_Y\left(\frac{1}{2}\right)}$$
 (2.0.8)

$$f_{X|Y}\left(x \mid \frac{1}{2}\right) = \begin{cases} 2, & 0 < x < \frac{1}{2}, \\ 0, & elsewhere. \end{cases}$$
 (2.0.9)

Fig. 4. Plot of of probability function

It is in the form of Bernoulli distribution, the expectation value is given by,

$$E\left(X \mid Y = \frac{1}{2}\right) = \sum_{x}^{\infty} x f_{X|Y}\left(x \mid \frac{1}{2}\right)$$
 (2.0.10)

$$E\left(X \mid Y = \frac{1}{2}\right) = \int_{-\infty}^{0} x(0)dx + \int_{0}^{\frac{1}{2}} x(2)dx + \int_{0}^{-\infty} x(0)dx$$
(2.0.11)

$$E\left(X \mid Y = \frac{1}{2}\right) = \int_{0}^{\frac{1}{2}} 2xdx$$
 (2.0.12)

$$E\left(X \mid Y = \frac{1}{2}\right) = \frac{1}{4}$$
 (2.0.13)

Option (A) is correct.

Expected Value-

simulated: 0.25008392175344957,

actual: 0.25