Variable Compleja

Ing. José Miguel Barboza Retana Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica Verano 2019-2020

Conjuntos

Conjuntos

• Un conjunto \emph{c} es una colección de elementos \emph{c}_i denotada generalmente como:

$$C = \{c_1, c_2, c_3, \dots\}$$

• La pertenencia del elemento c_i al conjunto C se indica con la notación $c_i \in C$

Subconjuntos

$$A \subset B \iff \forall a_i \in A \Rightarrow a_i \in B$$

Igualdad de conjuntos

$$A = B \iff \forall a_i \in A \implies a_i \in B \land \forall b_i \in B \implies b_i \in A$$

Conjunto vacío

- El conjunto vacío Ø = {} es siempre un subconjunto de cualquier otro conjunto, y
- Un conjunto siempre es subconjunto de sí mismo.

Unión de conjuntos

$$\bigcup_{i} c_{i} = \{c | c \in C_{1} \ \lor \ c \in C_{2} \ \lor \ c \in C_{3} \ \lor \ ...\}$$

Intersección de conjuntos

$$\bigcap_{i} c_{i} = \{c | c \in C_{1} \land c \in C_{2} \land c \in C_{3} \land \ldots\}$$

Diferencia de conjuntos

$$A \setminus B = \{c \mid c \in A \land c \notin B\}$$

Conjuntos

Los Números Naturales

Números Naturales: características

- Cardinalidad
- Ordinalidad

Los Números Enteros

Números enteros

- El conjunto de los números enteros Z contiene:
 - A los números naturales N, unión con el conjunto de los números enteros negativos (inversos aditivos de los números naturales positivos)

Números enteros: Resta

- Se puede definir ahora la operación resta:
 - Cerrada pero no conmutativa
 - Igual a la suma del primer elemento con el inverso aditivo del segundo (a b = a + (-b))

Los Números Racionales

Números racionales

- Un número racional es un par ordenado (a, b) con a, b ∈
 Z.
- Dos números racionales (a,b) y (c,d) se dicen equivalentes si se cumple $a \times d = b \times c$.
- $(a,b) \le (c,d)$ si y solo si $a \times d \le b \times c$, con $b,d \ge 0$.

Números racionales: suma y producto

 La suma y multiplicación de los números racionales se definen a partir del producto y multiplicación de los números enteros como:

$$(a,b) + (c,d) = (a \times d + b \times c, b \times d)$$

$$(a,b) \times (c,d) = (a \times c, b \times d)$$

Recta infinita

• Los números racionales no pueden representar todos los puntos de una recta ideal infinita, como, por ejemplo, aquellos que $a \times a = p$, con p un número entero primo.

Los Números Irracionales

Números irracionales I

 Conjunto de todos los números en una recta infinita que no son racionales

$$\mathbb{R} = \mathbb{Q} \cup \mathbb{I}$$

Los Números Reales

Números Reales: ordinalidad

$$x \ge y \Rightarrow x + z \ge y + z$$

$$x \ge 0 \land y \ge 0 \Rightarrow x \times y \ge 0$$

Números Complejos

Números Complejos

 Formalmente los números complejos se definen como pares ordenados de números reales (a, b) que junto con las operaciones:

$$(a,b) + (c,d) = (a+c,b+d)$$
$$(a,b) \times (c,d) = (a \times c - b \times d, b \times c + a \times d)$$

Los números complejos

Como cuerpo, se deben cumplir los siguientes axiomas para los números complejos s, w, z

- $z + w \in \mathbb{C}, z \times w \in \mathbb{C}$ (ley de clausura)
- z + w = w + z (ley conmutativa de la adición)
- z + (w + s) = (z + w) + s (ley asociativa de la adición)
- z + (0,0) = (0,0) + z = z (elemento neutro de la suma es (0,0))
- $z \times w = w \times z$ (ley conmutativa de la multiplicación)
- $z \times (w \times s) = (z \times w) \times s$ (ley asociativa de la multiplicación)
- $(1,0) \times z = z \times (1,0) = z$ (elemento neutro de la multiplicación (1,0))
- $z \times (w + s) = z \times w + z \times s$ (ley distributiva)
- Para todo $z \in \mathbb{C}$ existe un solo elemento $w \in \mathbb{C}$ tal que z + w = (0,0) (existencia de elemento inverso único con respecto a la suma)
- Para todo $z \in \mathbb{C} \setminus (0,0)$ existe un solo elemento $w \in \mathbb{C}$ tal que $z \times w = w \times z = (1,0)$ (existencia de elemento inverso único con respecto a la multiplicación)

Números Complejos: componentes

- Sea el número complejo z = (a, b)
 - Al número real a se le denomina componente real
 - Al número real b componente imaginaria de z
 - Los operadores $Re\{\cdot\}$ e $Im\{\cdot\}$ se definen tal que:

$$a = Re\{z\}$$

$$b = Im\{z\}$$

Observe que ambos operadores retornan números reales

Números Complejos: igualdad

 Se dice que dos números complejos son iguales si y solo si tantos sus componentes reales como imaginarias son iguales, es decir:

$$(a,b) = (c,d) \Leftrightarrow a = c \land b = d$$

Números Complejos: ordinalidad

Los números complejos no son ordenados

No es posible indicar si un número complejo es mayor o menor que otro

Plano complejo

Plano complejo o Diagrama de Argand

• Representación de z = a + jb y $z^* = a - jb$

Diagrama de Argand: ejemplo

 Grafique en un diagrama de Argand los conjuntos de números complejos que cumplen las siguientes condiciones:

$$|z| = 2$$

$$Re\{z\} = 2$$

$$-Im\{z\} = 1$$

Diagrama de Argand: ejemplo

Solución:

- El conjunto de todos los números complejos z que tienen magnitud 2 está conformado por un círculo de radio 2, centrado en el origen.
- Todos los números complejos que tienen un ángulo igual a $\pi/3$ conforman un rayo que parte del origen con dicho ángulo con respecto al eje central.
- Todos los números complejos sobre una línea vertical que pasa por z=2 cumplen $Re\{2\}=2$. Por último, todos los puntos sobre una línea horizontal que pasa por z=j cumplen $Im\{z\}=1$.

Diagrama de Argand

Ejemplo

Ejemplo: números complejos

(1)

• Sean $z, w \in \mathbb{C}$. Se sabe que |z| = 2, $\angle w = \pi/4$ y z + w = 1 - j. Encuentre gráficamente z y w.

Respuesta:

- z = -j2
- w = 1 + j

Circuitos en CA: solución gráfica

- El circuito que se muestra se utiliza para calcular el valor de R_L , la cual modela la resistencia de bobinado de una bobina real.
- Con un voltímetro digital se determina que la tensión RMS en la fuente es $V_S = 10 V$, la tensión RMS en la resistencia de medición R_m es $V_{Rm} = 3 V$ y la tensión RMS en la bobina real (la región demarcada) es $V_L = 8,544 V$.
- Determine gráficamente cúal es el valor de L y de R_L si se sabe que la fuente utiliza una frecuencia de $\frac{1}{2\pi}kHz$, y $R_m=100~\Omega$.

Circuitos en CA: solución gráfica

Solución:

Circuitos en CA: solución gráfica

Resultados:

La tensión en el inductor real descomponerse entonces en las tensiones sobre R_L y L, donde la tensión V_{R_L} está en fase con la corriente y por tanto con la tensión en R_m , y la tensión en el inductor L debe estar a $+90^o$ con respecto a las tensiones en las resistencias.

$$I_m = \frac{3V}{100\Omega} = 30 \ mA$$

•
$$V_{R_L} = 3V$$

$$R_L = \frac{3V}{30mA} = 100 \Omega$$

•
$$|jwL| = \left|\frac{V_L}{I_L}\right|$$

•
$$L = \frac{8V}{2\pi f 30mA} = \frac{4}{15} H$$

Circuitos en CA: solución gráfica (T.M.)

- El circuito que se muestra se utiliza para calcular el valor de $R_{\mathcal{C}}$, la cual modela las pérdidas del dieléctrico del condensador.
- Con un voltímetro digital se determina que la tensión RMS en la fuente es $V_S = 1 V$, la tensión RMS en la resistencia de medición R_m es $V_{Rm} = 0.3 V$ y la tensión RMS en el condensador real (la región demarcada) es $V_C = 0.8 V$.
- Determine gráficamente cuál es el valor de C y de R_C si se sabe que la fuente utiliza una frecuencia de 100Hz, y $R_m = 1 M\Omega$.

Circuitos en CA: solución gráfica

Resultados:

$$R_C = 4,74 M\Omega$$

$$C = 493,46 pF$$

PD: Los resultados son siguiendo cálculos numéricos, no gráficos.

Identidad de Euler

Identidad de Euler

• Para un ángulo de valor real ϕ se cumple:

$$e^{j\phi} = \cos\phi + j\sin\phi$$

• Un número complejo $z=a+jb=r\times(\cos\phi+j\sin\phi)$ se puede representar como $z=r\times e^{j\phi}$, o simplemente la notación del producto $z=re^{j\phi}$.

Formas adicionales de la Identidad de Euler

$$\cos \phi = \frac{e^{j\phi} + e^{-j\phi}}{2}$$

$$\sin \phi = \frac{e^{j\phi} - e^{-j\phi}}{j2}$$

Operaciones con números complejos

Notaciones para números complejos

Forma cartesiana:

$$z = a + jb$$

Forma polar:

$$z = r \angle \theta = re^{j\theta} = rexp(j\theta)$$

Redundancia de forma polar:

$$z = re^{j\theta} = re^{j(\theta + 2k\pi)}$$

Conjugación compleja

• Si $z = x + jy = re^{j\theta} \in \mathbb{C}$ entonces $z^* = \bar{z} = x - jy = re^{-j\theta}$

• Para un polinomio con $a_i \in \mathbb{R}$

$$P_n(z) = a_0 z^n + a_1 z^{n-1} + a_2 z^{n-2} + \dots + a_{n-1} z + a_n$$
$$= a_0 (z - z_1)(z - z_2) \dots (z - z_n)$$

• Si $z_i \in \mathbb{C} \setminus \mathbb{R}$ entonces $P_n(z_i^*) = P_n(z_i) = 0$

Valor absoluto o magnitud

• Para $z = x + jy = re^{j\theta}$ el módulo, magnitud o valor absoluto es:

$$|z| = \sqrt{x^2 + y^2} = r$$

Se cumple siempre:

$$|z|^2 = r^2 = z \times z^*$$

Propiedades del valor absoluto

$$\bullet |z_1 \times z_2| = |z_1| \times |z_2|$$

$$|z_1 + z_2| \le |z_1| + |z_2|$$

$$|z_1 - z_2| \ge |z_1| - |z_2|$$

Suma y Resta

• Para $z_1 = x_1 + jy_1$ y $z_2 = x_2 + jy_2$ se cumple:

$$z_1 + z_2 = (x_1 + x_2) + j(y_1 + y_2)$$

$$z_1 - z_2 = (x_1 - x_2) + j(y_1 - y_2)$$

$$z_1^* + z_2^* = (x_1 - jy_1) + (x_2 - jy_2) = (x_1 + x_2) - j(y_1 + y_2) = (z_1 + z_2)^*$$

$$\sum_{i=1}^{n} z_i^* = \sum_{i=1}^{n} (x_i - jy_i) = \sum_{i=1}^{n} x_i - j \sum_{i=1}^{n} y_i = \left(\sum_{i=1}^{n} z_i\right)^*$$

Suma y resta de pares conjugados

$$z_1 + z_1^* = 2Re\{z_1\}$$

$$z_1 - z_1^* = j2Im\{z_1\}$$

Multiplicación y División

• Para $z_1 = x_1 + jy_1 = r_1e^{j\theta_1}$ y $z_2 = x_2 + jy_2 = r_2e^{j\theta_2}$ se cumple:

$$z_1 z_2 = (x_1 + jy_1)(x_2 + jy_2) = (x_1 x_2 - y_1 y_2) + j(x_1 y_2 + x_2 y_1)$$
$$= r_1 r_2 e^{j(\theta_1 + \theta_2)}$$

$$\frac{z_1}{z_2} = \frac{z_1 z_2^*}{z_2 z_2^*} = \frac{x_1 x_2 + y_1 y_2}{x_2^2 + y_2^2} + j \frac{x_2 y_1 - x_1 y_2}{x_2^2 + y_2^2} = \frac{r_1}{r_2} e^{j(\theta_1 - \theta_2)}$$

Conjugación de productos

$$z_1^* \times z_2^* = (r_1 e^{-j\theta_1})(r_2 e^{-j\theta_2}) = r_1 r_2 e^{-j(\theta_1 + \theta_2)} = (z_1 \times z_2)^*$$

$$\prod_{i=1}^{n} z_i^* = \prod_{i=1}^{n} (r_i e^{-j\theta_i}) = \left(\prod_{i=1}^{n} r_i\right) e^{-j\sum_{i=1}^{n} \theta_i} = \left(\prod_{i=1}^{n} z_i\right)^*$$

Producto y división de pares conjugados

$$z_1 \times z_1^* = r_1^2$$

$$\frac{z_1}{z_1^*} = e^{j2\theta_1}$$

Potenciación

• Para colección de n números $z_i = x_i + jy_i = r_i e^{j\theta_i}$

$$\prod_{i=1}^{n} z_i = \left(\prod_{i=1}^{n} r_i\right) e^{j\sum_{i=1}^{n} \theta_i}$$

• Si todos los elementos z_i son iguales a $z = x + jy = re^{j\theta}$ se obtiene el teorema de Moivre:

$$w = z^{1/n} = (re^{j\theta})^{1/n} = (re^{j(\theta+2k\pi)})^{1/n} = r^{1/n}e^{j\frac{\theta+2k\pi}{n}}$$

 \Rightarrow cualquier número complejo z tiene n n-ésimas raíces

Raíces enteras de números complejos

Ejemplo de las cuatro raíces cuartas de re^{j60^o}

Exponenciación

$$e^{z} = e^{(x+jy)}$$

$$= e^{x}e^{jy}$$

$$= e^{x}\cos(y) + je^{x}\sin(y)$$

$$\cos(z) = \frac{e^{jz} + e^{-jz}}{2} = \cos(x)\cosh(y) - j\operatorname{sen}(x)\operatorname{senh}(y)$$

$$\operatorname{sen}(z) = \frac{e^{jz} - e^{-jz}}{2j} = \operatorname{sen}(x)\operatorname{cosh}(y) + j\operatorname{cos}(x)\operatorname{senh}(y)$$

Logaritmo

$$In z = In \left[re^{j(\theta + 2k\pi)} \right] = In r + In \left(e^{j(\theta + 2k\pi)} \right) = In r + j(\theta + 2k\pi)$$

- \Rightarrow z \in C tiene un infinito número de logaritmos.
- \Rightarrow Con k=0 se obtiene el valor principal $Ln z = In|z| + j \angle z$

Álgebras de Clifford:

- Cuaterniones
- Octoniones
- Sedeniones

•

Otros Conjuntos