

Chapter 07

아두이노

아날로그 데이터 입출력

아두이노 메가2560으로 마이크로컨트롤러 시작하기

아날로그 데이터 출력

아날로그 데이터 출력

- 아두이노에서 아날로그 데이터 출력은 불가능
- 펄스 폭 변조(PWM) 신호를 통해 아날로그 데이터 출력과 유사한 효과를 얻을 수 있음
 - PWM 신호는 디지털 신호의 일종임
 - PWM 신호 출력 함수가 analogWrite이므로 흔히 아날로그 데이터 출력으로 불림

PWM 신호

아두이노 우노 아날로그 출력핀

■ 아날로그 데이터 출력

- 아두이노 우노에는 PWM 핀이 정해져 있음.
- ~3, ~5, ~6, ~9, ~10, ~11 물결모양은 PWM핀(아날로그 출력핀)

스케치 7-3: RGB LED 밝기 제어

RGB LED

- 공통 핀과 3개의 R, G, B 제어핀으로 구성
- 공통 양극 방식의 경우 제어핀에 GND를 출력하면 켜짐

스케치 7-4 : 조도센서로 밝기 제어 00000 0~1023 void loop() { ✓ int ADC_value = analogRead (A0); // ADC 값 int PWM_value = ADC_value >> 2; // PWM 값 Serial.print(String("ADC value:") + ADC_value); Serial.println(String(", PWM value : ") + PWM_value); COM₁₀ for (int i = 0; i < 4; i++) { 전송 analogWrite(pins LED[i], PWM value); ADC value : 1019, PWM value : 254 ADC value : 1018, PWM value : 254 ADC value : 900, PWM value : 225 ADC value: 765, PWM value: 191 ADC value : 676, PWM value : 169 delay(1000); ADC value: 540, PWM value: 135 ADC value : 397, PWM value : 99 ADC value: 300, PWM value: 75 ADC value: 70, PWM value: 17 ADC value: 12, PWM value: 3 ADC value: 12, PWM value: 3

✔ 자동 스크롤

새 줄

9600 보드 레이트

스피커 출력

■ PWM 신호를 사용하여 단음 재생

- tone 함수에서 음의 주파숮를 지정하여 사용

12

void tone(uint8_t pin, unsigned int frequency, unsigned long duration = 0)

- 매개변수
 - pin : 핀 번호
 - frequency : 출력 주파수 (unsigned int)
 - duration : 출력 지속 시간 밀리초 단위 (unsigned long)
- **반환값** : 없음

void noTone(uint8_t pin)

- 매개변수
 - pin : 핀 번호
- 반환값 : 없음

스피커 출력

■ 부저 Frequency

			<u> </u>	Y			(단위	: Hz) 🗸
옥타브 음계	1	2	3	4	5	6	7	8
C(도)	32.7032	65.4064	130.8128	261.6256	523.2511	1046.502	2093.005	4186.009
C#	34.6478	69.2957	138.5913	277.1826	554.3653	1108.731	2217.461	4434.922
D(레)	36.7081	73.4162	146.8324	293.6648	587.3295	1174.659	2349.318	4698.636
D#	38.8909	77.7817	155.5635	311.1270	622.2540	1244.508	2489.016	4978.032
E(n])	41.2034	82.4069	164.8138	329.6276	659.2551	1318.510	2637.020	5274.041
F(과)	43.6535	87.3071	174.6141	349.2282	698.4565	1396.913	2793.826	5587.652
F#	46.2493	92.4986	184.9972	369.9944	739.9888	1479.978	2959.955	5919.911
G(솔)	48.9994	97.9989	195.9977	391.9954	783.9909	1567.982	3135.963	6271.927
G#	51.9130	103.8262	207.6523	415.3047	830.6094	1661.219	3322.438	6644.875
A(라)	55.0000	110.0000	220.0000	440.0000	880.0000	1760.000	3520.000	7040.000
A#	58.2705	116.5409	233.0819	466.1638	932.3275	1864.655	3729.310	7458.620
B(시)	61.7354	123.4708	246.9417	493.8833	987.7666	1975.533	3951.066	7902.133

부저 연결

부저 실습 코드

```
◎ sketch_may07a | 아두이노 1.8.7
                                                     X
파일 편집 스케치 툴 도움말
                                                            Ø
  sketch_may07a §
int piezo = 3;
int sw = 5;
int numTones = 8;
int tones[] = {261, 294, 330, 349, 392, 440, 494, 523};
void setup() {
  pinMode(piezo, OUTPUT);
  pinMode(sw, INPUT_PULLUP);
void loop() {
  if (digitalRead(sw) == LOW) {
    for (int i = 0; i < numTones; i++) {</pre>
      tone(piezo, tones[i]);
      delay(500);
    noTone(piezo);
```

모터의 종류

■ DC 모터

- 연속 회전 모터
- 정지 시 관성으로 정확한 위치 제어 어려움

서보 모터*

- DC 모터 + 귀환 제어 회로
- 정밀 제어 가능

■ 스텝 모터 🟏

- 분할각 단위로만 회전 가능
- 하나의 펄스가 주어지면 분할각 만큼 회전하고 멈춤

서보 모터

- ▶ 사표준 서보 모터 : 0~180도 사이만 회전
 - 연속 회전 서보 모터는 무한 회전 가능

▶ PWM 신호로 위치 제어

- 50Hz PWM 신호 사용 : 20ms 주기
- 1ms (1/20 = 5% 듀티 사이클) 펄스에서 0도 회전
- 2ms (2/20 = 10% 듀티 사이클) 펄스에서 180도 회전

■ 3개의 연결선

- VCC : 붉은색 **✓**
- GND : 검정색 또는 갈색 ✓
- (위치 설정을 위한) 제어선 : 노란색, 주황색 또는 흰색 🗸
 - PWM 출력이 가능한 핀에 연결하여야 함

서보 모터 제어

서보 모터 제어 라이브러리

Servo 라이브러리

- 표준 라이브러리 중 하나
- 우노의 경우 최대 12개, 메가2560의 경우 최대 48개 서보 모터 제어 가능

■ 사용 방법

- 라이브러리 포함
 - #include <Servo.h>

- 객체 생성
 - Servo myServo;

- 제어핀 연결
 - myServo.attach(servoPin);

0~180

- 각도 지정
 - myServo.write(angle);

서보 모터 연결

서보 모터

```
#include <Servo.h>
Servo servo;
int servoPin = 11;
int angle = 0; // servo position in degrees
void setup()
    servo.attach(servoPin);
void loop()
  // scan from 0 to 180 degrees
  for(angle = 0; angle < 180; angle++)</pre>
    servo.write(angle);
    delay(15);
  // now scan back from 180 to 0 degrees
  for(angle = 180; angle > 0; angle--)
    servo.write(angle);
    delay(15);
```

맺는말

■ 아날로그 데이터 출력

- ATmega2560에는 DAC가 없으므로 아날로그 데이터 출력은 불가능
- 디지털 신호의 일종인 펄스 폭 변조 신호를 통해 아날로그
 데이터와 유사한 효과를 얻을 수 있음
- LED 밝기 제어, 모터 속도 제어 등에 PWM 신호가 사용

Thank you!!

