Nomenclature

	NOMENCLATURE
	Symbols
\overline{a}	complex number.
\widehat{a}	measurement variable.
$\widetilde{\widetilde{a}}$	primitive element.
*	modified admittance matrix.
	Sub-indexes
i h	denotes buses i and k .
i, k	
j	denotes measurement j .
7	Super-indexes
sh	shunt admittance.
p, q	phase wire, phase and neutral wire.
a, b, c, n	phases a, b, c and neutral wire.
r, i	real and imaginary part.
T	transpose matrix.
_	Scalar Variables
θ	angle with respect to the PMU ref. (rad, deg)
d_{ik}	distance between buses i and k (feet)
df	degrees of freedom
Δz	residual vector z_j - $h_j(\boldsymbol{x})$
ϵ	convergence criteria
J	WLS state estimation objective function
ν	iteration index
μ	uniformly distributed random variable
σ_j^2	variance of measurement j
n_b, n_t	number of monitored and total buses.
NEV	Neutral to Earth Voltage v_k^n (V)
n_l	noise level in percent (%)
m	dimension of measurement vectors.
pV	probability-value.
u	dimension of state of the system vector x .
	Vector or Matrix Variables
${f A}$	linear matrix of H
\mathbf{B}	system susceptance matrix (s)
$\boldsymbol{d_k},\boldsymbol{e_k}$	vectors with non-linear elements of H
f	branch current vector (A)
\mathbf{G}	system conductance matrix (s)
\mathbb{G}	Gain matrix
h(x)	calculated measurement vector
\mathbf{H}	Jacobian matrix of $h(x)$
i	injected current vector (A)
r	grounding resistances vector (Ω)
$oldsymbol{v}$	voltage vector (V)
\mathbf{w}	matrix of weightings
$\mathbf{O}, \boldsymbol{o}$	matrix and vector of null values
$oldsymbol{x}$	state of the system vector
\mathbf{Y}	System admittance matrix (s)
$\widetilde{\widetilde{\mathbf{Y}}}_{\mathbf{i}\mathbf{k}}$	primitive series admittance matrix at $i - k$ (s)
$\widehat{oldsymbol{z}}^{ ext{ik}}$	measurement vector
	no-noise measurement vector
z_0	no-noise measurement vector