

SOEN 6011 : SOFTWARE ENGINEERING PROCESSES SUMMER 2021

SUPER CALCULATOR

PROBLEM - 2

 $\begin{array}{c} Requirements \\ {\rm ISO/IEC/IEEE~29148~Standard} \end{array}$

Authors

Rokeya Begum Keya Kyle Taylor Lange Sijie Min Manimaran Palani

https://www.overleaf.com/project/610304de4e6b8d24f7c781b6

PROBLEM 2 - F2: tan(x)

SOEN 6011 - Summer 2021

Rokeya Begum Keya 40183615

Software Engineering Processes

Repository address: https://github.com/Dakatsu/SOEN6011Calculator

Assumption:

The user will give integer (Degree) value of x in tan(x) function. The value of tan(x) function will be calculated in radian.

Requirements:

[1][2]

The current section describes the requirements to implement the function tan(x).

Requirement Id: F2-R1

Overview $x = 0^{\circ}$ in to the tan(x) function

Version 1.0

Description If the user gives an input $x = 0^{\circ}$ for tan(x)

the function may return 0 as output.

Owner Rokeya Begum Keya

Priority High
Type Functional
Difficulty Medium

Verification Method F2_tanZeroCheck_1

Overview $x = (Positive \ Degree)$ in to the tan(x) function.

Version 1.0

If the user gives x = any positive degree for <math>tan(x)

Description the function may return the approximate value of $tan(positive\ degree)$

as output.

Owner Rokeya Begum Keya

Priority High

Type Functional Difficulty Medium

Verification Method F2_tanFortyCheck_2

Requirement Id: F2-R3

Overview $x = 90^{\circ}$ in to the tan(x) function

Version 1.0

Description If the user gives an input $x = 90^{\circ}$ for tan(x)

the function may return "undefined" as output.

Owner Rokeya Begum Keya

Priority High
Type Functional
Difficulty Medium

Verification Method F2_tanNinetyCheck_3

Requirement Id: F2-R4

Overview $x = (Negative \ or \ Positive \ Degree) \ in \ to \ the \ tan(x) \ function$

If the user gives x = any Negative or Positive degree

for which tan(x) value is Negative

Description the function may return the approximate negative value of

tan(Negative or Positive Degree)

as output.

Owner Rokeya Begum Keya

Priority High
Type Functional
Difficulty Medium

Verification Method F2_tanNegativeValueCheck_4

Overview $x = (Negative \ Degree)$ in to the tan(x) function

Version 1.0

If the user gives x = any Negative degree for tan(x)

Description the function may return the approximate value of $tan(Negative\ degree)$

as output.

Owner Rokeya Begum Keya

Priority High
Type Functional
Difficulty Medium

Verification Method F2_tanNegativeNumberCheck_5

Requirement Id: F2-R6

Overview $x = 180^{\circ}$ in to the tan(x) function

Version 1.0

Description If the user gives an input $x = 180^{\circ}$ for tan(x)

the function may return 0 as output.

Owner Rokeya Begum Keya

Priority High
Type Functional
Difficulty Medium

Verification Method F2_tanOneHundredAndEightyCheck_6

Requirement Id: F2-R7

Overview $x = 90^{\circ}$ in to the Rad(x)

Version 1.0

Description If the user gives an input $x = 90^{\circ}$ for Rad(x)

the function may return the approximate value in radian as output.

Owner Rokeya Begum Keya

Priority High
Type Functional
Difficulty Medium

Verification Method F2_getRadCheck_7

Overview $x = 180^{\circ}$ in to the Rad(x)

Version 1.0

Description If the user gives an input $x = 180^{\circ}$ for Rad(x)

the function may return the approximate value (3.14159...) in radian as output.

Owner Rokeya Begum Keya

Priority High
Type Functional
Difficulty Medium

Verification Method F2_getRadOneHundredAndEightyCheck_8

Requirement Id: F2-R9

Overview $x = 0^{\circ}$ in to the sin(x) function

Version 1.0

Description If the user gives an input $x = 0^{\circ}$ for sin(x)

the function may return 0 as output.

Owner Rokeya Begum Keya

Priority High
Type Functional
Difficulty Medium

Verification Method F2_getSinZeroCheck_9

Requirement Id: F2-R10

Overview $x = (Positive\ Degree)$ in to the sin(x) function.

Version 1.0

If the user gives x = any positive degree for <math>sin(x)

Description the function may return the approximate value of $sin(positive\ degree)$

as output.

Owner Rokeya Begum Keya

Priority High

Type Functional Difficulty Medium

Verification Method F2_getSinFortyCheck_10

Overview $x = 0^{\circ}$ in to the cos(x) function

Version 1.0

Description If the user gives an input $x = 0^{\circ}$ for cos(x)

the function may return 1 as output.

Owner Rokeya Begum Keya

Priority High
Type Functional
Difficulty Medium

Verification Method F2_getCosZeroCheck_11

Requirement Id: F2-R12

Overview $x = (Positive\ Degree)$ in to the cos(x) function.

Version 1.0

If the user gives x = any positive degree for <math>cos(x)

Description the function may return the approximate value of $cos(positive\ degree)$

as output.

Owner Rokeya Begum Keya

Priority High

Type Functional Difficulty Medium

Verification Method F2_getCosFortyCheck_12

Requirement Id: F2-R13

Overview Availability

Version 1.0

Description The system may provide the calculation to the user within four seconds.

Owner Rokeya Begum Keya

Priority High

Type Non-Functional

Difficulty Medium

PROBLEM 2 - F3: Hyperbolic Sine, sinh(x)

SOEN 6011 - Summer 2021 Kyle Taylor Lange Software Engineering Processes 27627696

Repository address: https://github.com/Dakatsu/SOEN6011Calculator

0.1 Function Requirements

Requirements and Assumptions

The current section describes the requirements and assumptions to implement the function sinh(x).

Explicit Assumptions: For a value to be *accurate*, it shall be correct up to a specific number of decimal places. This value will be based on balancing accuracy with computation speed. Above a certain absolute input value, the function may return $\pm infinity$ due to the exponential nature of the function going beyond the range of a double floating point.

Requirement ID: F3-R1

Overview Input x into sinh(x) function.

Version

Description If the sinh(x) function as given in Problem 1 receives an

integer or decimal input x, the system shall return an accurate value.

Owner Kyle Taylor Lange

Priority High

Type Functional Difficulty High

Verification Method

Requirement ID: F3-R2

Overview Availability

Version 1

Description The system may provide the calculation in F3-R1

to the user within three seconds.

Owner Kyle Taylor Lange

Priority High

Type Performance
Difficulty Medium

Verification Method

PROBLEM 2 - F5

SOEN 6011 - Summer 2021 Sijie Min Software Engineering Processes 40152234

 $Repository\ address: https://github.com/Dakatsu/SOEN6011Calculator$

Requirements and Assumptions

The user will give value of a,b and x .a,b can be both integer and decimal, x is integer

Requirement Id: F5-R1

Overview Sets a,b, then input x into $y = ab^x$

Version 1.0

Description If a is set to 0, the output result is 0. If the x input is 0, the return result is equal to a

Owner Sijie Min
Priority High
Type Functional
Difficulty Medium
Verification Method F5test

Requirement Id: F5-R2

Overview Sets a,b, then input x into $y = ab^x$

Version 1.0

Description x can be entered as a positive number or a negative number.

Owner Sijie Min
Priority High
Type Functional
Difficulty Medium
Verification Method F5test
Requirement Id: F5-R3

Overview Availability

Version 1.0

Description Avoid calculating x times of multiplications, but reduce the number of multiplications

to approximately \sqrt{x} times to increase the running speed.

Owner Sijie Min
Priority High
Type Functional
Difficulty High
Verification Method F5test
Requirement Id: F5-R4

Overview Availability

Version 2.0

Description Ensure the accuracy of decimal operations to the power of decimals

 $\begin{array}{ll} \textbf{Owner} & \text{Sijie Min} \\ \textbf{Priority} & \text{High} \end{array}$

Type Functional Difficulty High Verification Method F5test

Bibliography

 $\left[1\right]$ Mike Spivey. "The fuzz Manual" Manual and software copyright. J. M. Spivey 1988, 1992, 2000

PROBLEM 2 - F7: x^y

SOEN 6011 - Summer 2021

Manimaran Palani 40167543

Software Engineering Processes

Repository address: https://github.com/Dakatsu/SOEN6011Calculator

Requirements and Assumptions

[1][2]

The current section describes the requirements and assumptions to implement the function x^y .

Explicit Assumption : The transcendental function x^y will be accurate and accepts input which comprises of rational and irrational numbers.

Requirement Id: F7-R1

Overview X(0) to the power of Y(0)

Version 1.0

DescriptionIf the user gives an input for X as Zero and input for Y as Zero.

The function may return the 1 as output.

Owner Manimaran Palani

Priority High
Type Functional
Difficulty Medium
Verification Method F7_TestCase_1

Requirement Id: F7-R2

Overview X(0) to the power of Y(Real Number)

Version 1.0

DescriptionIf the user gives an input for X as zero and input for Y as

any Real Number. The function may return zero as output.

Owner Manimaran Palani

Priority High
Type Functional
Difficulty Medium
Verification Method F7_TestCase_2

Overview X(Positive Number) to the power of Y(0)

Version 1.0

Description

If the user gives an input for X of any positive number and

input for Y as Zero. The function may return 1 as the output.

Owner Manimaran Palani

Priority High

Type Functional
Difficulty Medium
Verification Method F7_TestCase_3

Requirement Id: F7-R4

Overview X(Negative Number) to the power of Y (0)

Version 1.0

Description

If the user gives an input for X of any negative number and

input for Y as Zero. The function may return 1 as the output.

Owner Manimaran Palani

Priority High

Type Functional Difficulty Medium

Verification Method F7_TestCase_4

Requirement Id: F7-R5

Overview X(Positive Number) to the power of Y(1)

Version 1.0

Description

If the user gives an input for X as any positive number and input

for Y as 1. The function may return X as the output.

Owner Manimaran Palani

Priority High
Type Functional
Difficulty Medium

Verification Method F7_TestCase_5

Requirement Id: F7-R6

Overview X(Positive Number) to the power of Y(Positive Number)

Version 1.0

If the user gives an input for X as any positive number and input

Description for Y as positive number. The function may return positive

number as the output.

Owner Manimaran Palani

Priority High
Type Functional
Difficulty Medium

Verification Method F7_TestCase_6

Requirement Id: F7-R7

Overview X(Negative Number) to the power of Y(Positive Even Number)

Version 1.0

If the user gives an input for X as any Negative number and input

Description for Y as positive Even number. The function may return positive

number as the output.

Owner Manimaran Palani

Priority High
Type Functional
Difficulty Medium

Verification Method F7_TestCase_6

Overview X(Negative Number) to the power of Y(Positive Odd Number)

Version 1.0

If the user gives an input for X as any negative number and input

Description for Y as positive odd number. The function may return negative

number as the output.

Owner Manimaran Palani

Priority High
Type Functional
Difficulty Medium

Verification Method F7_TestCase_6

Requirement Id: F7-R9

Overview Availability

Version 1.0

Description

The system may provide the response with output to the user

within finite time.

Owner Manimaran Palani

Priority High

Type Non-Functional

Difficulty Medium

Bibliography

- [1] ReqView: Nykamp DQ: Requirements Specification Templates https://www.reqview.com/doc/iso-iec-ieee-29148-templates
- [2] 29148-2018-ISO/IEC/IEEE International Standard-Systems and software engineering-Life cycle processes-Requirements engineering,

https://standards.ieee.org/standard/29148-2018.html