MSBD 5004 Mathematical Methods for Data Analysis Homework 3

Due date: October 31, Thursday

1. Determine whether each of the following scalar-valued functions of *n*-vectors is linear. If it is a linear function, give its inner product representation, i.e., an *n*-vector **a** for which $f(\mathbf{x}) = \mathbf{a}^T \mathbf{x}$ for all \mathbf{x} . If it is not linear, give specific \mathbf{x} , \mathbf{y} , α and β such that

$$f(\alpha x + \beta y) \neq \alpha f(x) + \beta f(y).$$

- (a) The spread of values of the vector, defined as $f(x) = \max_k x_k \min_k x_k$.
- (b) The difference of the last element and the first, $f(\mathbf{x}) = x_n x_1$.
- 2. Consider the regression model $y = x^T a + b$, where y is the predicted response, x is an 8-vector of features, a is an 8-vector of coefficients, and b is the offset term. Determine with reasoning whether each of the following statements is true or false.
 - (a) If $a_3 > 0$ and $x_3 > 0$, then $y \ge 0$.
 - (b) If $a_2 = 0$ then the prediction y does not depend on the second feature x_2 .
 - (c) If $a_6 = -0.8$, then increasing x_6 (keeping all other x is the same) will decrease y.
- 3. In linear regression models, we consider two data points (\boldsymbol{x}_1, y_1) and (\boldsymbol{x}_2, y_2) with $\boldsymbol{x}_1, \boldsymbol{x}_2 \in \mathbb{R}^2$ and $y_1, y_2 \in \mathbb{R}$. For simplicity, we set the bias term b = 0. Let $\boldsymbol{X} \in \mathbb{R}^{2 \times 2}$ have rows \boldsymbol{x}_1^T and \boldsymbol{x}_2^T , and let $\boldsymbol{y} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \in \mathbb{R}^2$. Assume the columns of \boldsymbol{X} , denoted by $\boldsymbol{x}^{(1)}$ and $\boldsymbol{x}^{(2)}$, are linearly dependent such that $\boldsymbol{x}^{(1)} = 2\boldsymbol{x}^{(2)}$
 - (a) Consider the least squares estimation:

$$\min_{\boldsymbol{\beta} \in \mathbb{R}^2} \|\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}\|_2^2. \tag{1}$$

What problem does the linear dependency among the columns of X cause when estimating β using least squares?

(b) Now consider the ridge regression, which incorporates a regularization term:

$$\min_{\boldsymbol{\beta} \in \mathbb{R}^2} \|\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}\|_2^2 + \lambda \|\boldsymbol{\beta}\|_2^2, \tag{2}$$

where $\lambda > 0$ is a regularization parameter. Derive the solution $\hat{\beta}$ of (2). What is the ratio between $\hat{\beta}_1$ and $\hat{\beta}_2$?

(c) Discuss how varying the value of λ affects the solution and its ability to mitigate issues arising from linear dependency of columns of X.

4. Let $\{(\boldsymbol{x}_i,y_i)\}_{i=1}^N$ be given with $\boldsymbol{x}_i \in \mathbb{R}^n$ and $y_i \in \mathbb{R}$. Consider the soft-SVM:

$$\min_{\boldsymbol{a} \in \mathbb{R}^n, b \in \mathbb{R}} \sum_{i=1}^N h\left(y_i(\langle \boldsymbol{a}, \boldsymbol{x}_i \rangle + b) - 1\right) + \lambda \|\boldsymbol{a}\|_2^2,$$

where $\lambda \in \mathbb{R}$ is a regularization parameter and $h(t) = \max\{0, -t\}$ is the hinge loss function. Prove that solving the above soft-SVM is equivalent to solving the following problem:

$$\min_{\boldsymbol{a} \in \mathbb{R}^n, b \in \mathbb{R}, \boldsymbol{\xi} \in \mathbb{R}^N} \sum_{i=1}^N \xi_i + \lambda \|\boldsymbol{a}\|_2^2,$$
s.t. $y_i(\langle \boldsymbol{a}, \boldsymbol{x}_i \rangle + b) \ge 1 - \xi_i$ and $\xi_i \ge 0, i = 1, 2, \dots, N$

5. Let V be a Hilbert space. Let S_1 and S_2 be two hyperplanes in V defined by

$$S_1 = \{ \boldsymbol{x} \in V \mid \langle \boldsymbol{a}_1, \boldsymbol{x} \rangle = b_1 \}, \quad S_2 = \{ \boldsymbol{x} \in V \mid \langle \boldsymbol{a}_2, \boldsymbol{x} \rangle = b_2 \}.$$

Assume $S_1 \cap S_2$ is non-empty. Let $\boldsymbol{y} \in V$ be given. We consider the projection of \boldsymbol{y} onto $S_1 \cap S_2$, i.e., the solution of

$$\min_{\boldsymbol{x} \in S_1 \cap S_2} \|\boldsymbol{x} - \boldsymbol{y}\|. \tag{3}$$

- (a) Prove that $S_1 \cap S_2$ is a plane, i.e., if $x, z \in S_1 \cap S_2$, then $(1+t)z tx \in S_1 \cap S_2$ for any $t \in \mathbb{R}$.
- (b) Prove that z is a solution of (3) if and only if $z \in S_1 \cap S_2$ and

$$\langle \boldsymbol{z} - \boldsymbol{y}, \boldsymbol{z} - \boldsymbol{x} \rangle = 0, \quad \forall \boldsymbol{x} \in S_1 \cap S_2.$$
 (4)

- (c) Find an explicit solution of (3).
- (d) Prove the solution found in part (c) is unique.