Digital Image Processing

Image Compression

Makarand Tapaswi

Center for Visual Information Technology (CVIT), IIIT Hyderabad

Digital Image Processing (CSE/ECE 478)

Lecture-17: Image Compression

Ravi Kiran

Center for Visual Information Technology (CVIT), IIIT Hyderabad

Data Compression

 Data compression aims to <u>reduce</u> the amount of data while <u>preserving</u> as much <u>information</u> as possible.

Image Compression

• Goal: Reduce amount of data required to represent a digital <u>image</u> (c.f. signal).

.. By exploiting redundancies in image data

Compression Ratio

Compression ratio:
$$C_R = \frac{n_1}{n_2}$$

Relevant Data Redundancy

$$R_D = 1 - \frac{1}{C_R}$$

Example:

If
$$C_R = \frac{10}{1}$$
, then $R_D = 1 - \frac{1}{10} = 0.9$

(90% of the data in dataset 1 is redundant)

if
$$n_2 = n_1$$
, then $C_R = 1$, $R_D = 0$

if
$$n_2 \ll n_1$$
, then $C_R \to \infty$, $R_D \to 1$

Motivation

UNIVERSAL

×103

Consider a 2 hour, full HD vi

The storage space reg

Space required per

• Space required for 1.34×10^{12} bytes= 1

 \times 24 bits = 6.22 MB

ts = 186.6 MB

mpression factor = **53.7**

 $30 \times 2 \times 60 \times 60$ bits =

- To put it on a 25 GB blu ray
- To put it in a 1GB mp4 file: required compression factor = 1343

Diversion: bits and bytes, kilo vs kibi

- Previous convention: divide by 1024
- New convention: divide by 1000
- SI unit: kB (kilo = 1000)
- This is what causes a 4TB disk to have 3.7TiB!
- Also, note: B is not the same as b

Types of Redundancy

- (1) Coding Redundancy
- (2) Spatial/Temporal Redundancy
- (3) Psychovisual Redundancy

 Image compression attempts to reduce one or more of these redundancy types.

Types of Redundancy

- (1) Coding Redundancy
- (2) Spatial/Temporal Redundancy
- (3) Psychovisual Redundancy

 Image compression attempts to reduce one or more of these redundancy types.

Coding - Definitions

- Code: a list of symbols (letters, numbers, bits etc.)
- Code word: a sequence of symbols used to represent some information (e.g., gray levels).
- Code word length: number of symbols in a code word.

```
Example: (binary code, symbols: 0,1, length: 3)
```

```
0: 000 4: 100
1: 001 5: 101
2: 010 6: 110
3: 011 7: 111
```

Coding - Definitions (cont'd)

N x M image

r_k: k-th gray level

 $l(r_k)$: # of bits for r_k

 $P(r_k)$: probability of r_k

Average # of bits: $L_{avg} = E(l(r_k)) = \sum_{k=0}^{L-1} l(r_k)P(r_k)$

Total # of bits: NML_{avg}

Discrete r.v. in the range [0,L-1]

FIGURE 8.1 Computer generated $256 \times 256 \times 8$ bit images with (a) coding redundancy, (b) spatial redundancy, and (c) irrelevant information. (Each was designed to demonstrate one principal redundancy but may exhibit others as well.)

Coding Redundancy

• Case 1: $I(r_k) = constant length$

Example:

r_k	$p_r(r_k)$	Code 1	$l_1(r_k)$	
$r_0 = 0$	0.19	000	3	
$r_1 = 1/7$	0.25	001	3	
$r_2 = 2/7$	0.21	010	3	
$r_3 = 3/7$	0.16	011	3	
$r_4 = 4/7$	0.08	100	3	
$r_5 = 5/7$	0.06	101	3	
$r_6 = 6/7$	0.03	110	3	
$r_7 = 1$	0.02	111	3	

Average # of bits: $L_{avg} = E(l(r_k)) = \sum_{k=0}^{L-1} l(r_k)P(r_k)$

Total # of bits: NML_{avg}

Assume an image with L = 8

Assume $l(r_k) = 3$, $L_{avg} = \sum_{k=0}^{7} 3P(r_k) = 3\sum_{k=0}^{7} P(r_k) = 3$ bits

Total number of bits: 3NM

Coding Redundancy (cont'd)

• Case 2:
$$I(r_k)$$
 = variable length

Table 6.1	Variable-Length Coding Example			variable length	
r_k	$p_r(r_k)$	Code 1	$l_1(r_k)$	Code 2	$l_2(r_k)$
$r_0 = 0$	0.19	000	3	11	2
$r_1 = 1/7$	0.25	001	3	01	2 .
$r_2 = 2/7$	0.21	010	3	10	2
$r_3 = 3/7$	0.16	011	3	001	3
$r_4 = 4/7$	0.08	100	3	0001	4
$r_5 = 5/7$	0.06	101	3	00001	5
$r_6 = 6/7$	0.03	110	3	000001	6
$r_7 = 1$	0.02	111	3	000000	6

$$C_R = \frac{n_1}{n_2}$$

$$L_{avg} = \sum_{k=0}^{7} l(r_k)P(r_k) = 2.7 \text{ bits}$$

Total number of bits: 2.7NM

$$C_R = \frac{3}{2.7} = 1.11 \text{ (about 10\%)}$$

$$R_D = 1 - \frac{1}{1.11} = 0.099$$

Types of Redundancy

- (1) Coding Redundancy
- (2) Spatial/Temporal Redundancy
- (3) Psychovisual Redundancy

 Image compression attempts to reduce one or more of these redundancy types.

Spatial Redundancy

Spatial redundancy

- Interpixel redundancy exists → pixel values are correlated
- i.e., a pixel value can be reasonably predicted by its neighbors

auto-correlation

$$f(x) \circ g(x) = \int_{-\infty}^{\infty} f(x)g(x+a)da$$

auto-correlation: f(x)=g(x)

Interpixel redundancy (cont'd)

 To reduce interpixel redundancy, some kind of transformation must be applied on the data (e.g., thresholding, DFT, DWT)

Example:

Spatial and temporal redundancy

frame t frame t+1

Spatial and temporal redundancy

Types of Redundancy

- (1) Coding Redundancy
- (2) Spatial/Temporal Redundancy
- (3) Psychovisual Redundancy

 Image compression attempts to reduce one or more of these redundancy types.

Irrelevant information or perceptual redundancy

 Not all visual information is perceived by eye/brain, so throw away those that are not

Psychovisual redundancy (cont'd)

Example: quantization

256 gray levels

16 gray levels

C=8/4=2:1

16 gray levels + random noise

add a small pseudo-random number to each pixel prior to quantization

Information theory

- Basic Premise: Generation of information can be treated as a probabilistic process defined over symbols.
- Symbol carrier of information
- Consider a symbol with an occurrence probability p.
- The amount of information contained in the symbol is defined as:

$$I = \log_2 \frac{1}{p}$$
 bits or $I = -\log_2 p$

Information theory: Entropy

- Consider a source that contains L possible symbols {s,i=0,1,2,...,L-1}
- With corresponding occurrence probabilities defined as $\{p_i, i=0,1,2,...,L-1\}$

Entropy

$$H = -\sum_{i=0}^{L-1} p_i \log_2 p_i$$

r_k	$p_r(r_k)$	Code 1	$l_1(r_k)$	Code 2	$l_2(r_k)$
$r_{87} = 87$	0.25	01010111	8	01	2
$r_{128} = 128$	0.47	10000000	8	1	1
$r_{186} = 186$	0.25	11000100	8	000	3
$r_{255} = 255$	0.03	11111111	8	001	3
r_k for $k \neq 87, 128, 186, 255$	0	_	8	_	0

$$log(0.47) = -1.09$$

 $log(0.03) = -5.06$

Slight Detour: Cross-entropy

$$p(x) \quad q(x)$$

$$x_1$$

$$x_2$$

$$x_3$$

$$x_4$$

$$x_4$$

Cross-Entropy: $H_p(q)$

Average Length of message from q(x) using code for p(x).

$$H = -\sum_{i=0}^{L-1} p_i \log_2 p$$

Information theory: Shannon's theorem

- Shannon's lossless source coding theorem: For a discrete, memoryless, stationary information source, the minimum bit rate required to encode a symbol on average is equal to the entropy of the source.
- In other words: we can't do better than the entropy

Let's understand with an example

r_k	$p_r(r_k)$	Code 1	$l_1(r_k)$	Code 2	$l_2(r_k)$
$r_{87} = 87$	0.25	01010111	8	01	2
$r_{128} = 128$	0.47	10000000	8	1	1
$r_{186} = 186$	0.25	11000100	8	000	3
$r_{255} = 255$	0.03	11111111	8	001	3
r_k for $k \neq 87, 128, 186, 255$	0	_	8	_	0

Types of Redundancy

- (1) Coding Redundancy
- (2) Spatial/Temporal Redundancy
- (3) Psychovisual Redundancy

 Image compression attempts to reduce one or more of these redundancy types.

Image Compression

• Goal: Reduce amount of data required to represent a digital <u>image</u> (c.f. signal).

.. By exploiting redundancies in image data

Image Compression Model

Mapper: transforms data to account for interpixel redundancies.

Image Compression Model (cont'd)

•

 Quantizer: quantizes the data to account for psychovisual redundancies.

Image Compression Model (cont'd)

ullet

 Symbol encoder: encodes the data to account for coding redundancies.

Image Compression Models (cont'd)

- The decoder applies the inverse steps.
- Note that quantization is irreversible in general.

Lossless Compression

$$e(x, y) = \hat{f}(x, y) - f(x, y) = 0$$

Taxonomy of Lossless Methods

Huffman Coding (addresses coding redundancy)

- A variable-length coding technique.
- Source symbols are encoded one at a time!
 - There is a one-to-one correspondence between source symbols and code words.
- Optimal code minimizes code word length per source symbol.

Huffman Coding (cont'd)

- Forward Pass
 - 1. Sort probabilities per symbol
 - 2. Combine the lowest two probabilities
 - 3. Repeat *Step2* until only two probabilities remain.

Origin	nal source		Source re	eduction	
Symbol	Probability	1	2	3	4
a_2	0.4	0.4	0.4	0.4	- 0.6
a_6	0.3	0.3	0.3	0.3	0.4
a_1	0.1	0.1	▶ 0.2 →	0.3	0.7
a_4	0.1	0.1	0.1		
a_3	0.06	- 0.1			
a_5	0.04				

Backward Pass

Assign code symbols going backwards

Huffman Coding (cont'd)

• L_{avg} assuming Huffman coding:

$$L_{avg} = E(l(a_k)) = \sum_{k=1}^{6} l(a_k)P(a_k) =$$

$$3x0.1 + 1x0.4 + 5x0.06 + 4x0.1 + 5x0.04 + 2x0.3 = 2.2$$
 bits/symbol

6 symbols, we need a 3-bit code

•
$$(a_1: 000, a_2: 001, a_3: 010, a_4: 011, a_5: 100, a_6: 101)$$

$$L_{avg} = \sum_{k=1}^{6} l(a_k)P(a_k) = \sum_{k=1}^{6} 3P(a_k) = 3 \sum_{k=1}^{6} P(a_k) = 3 \text{ bits/symbol}$$

Huffman Coding/Decoding

- Coding/Decoding can be implemented using a look-up table.
- Decoding can be done unambiguously.

Ori	iginal sou	rce.
Sym.	Prob.	Code
a.	0.4	1
a_2 a_6	0.3	00
a_1	0.1	011
	0.1	0100
a _a	0.06	01010
a_4 a_3 a_5	0.04	01011

Arithmetic (or Range) Coding (addresses coding redundancy)

- The main weakness of Huffman coding is that it encodes source symbols one at a time.
- Arithmetic coding encodes sequences of source symbols together.
 - There is no one-to-one correspondence between source symbols and code words.
- Slower than Huffman coding but can achieve better compression.

Arithmetic Coding (cont'd)

 A sequence of source symbols is assigned to a sub-interval in [0,1) which can be represented by an arithmetic code, e.g.:

• Start with the interval [0, 1); a sub-interval is chosen to represent the message which becomes smaller and smaller as the number of symbols in the message increases.

Arithmetic Coding (cont'd)

Encode message: $\alpha_1 \alpha_2 \alpha_3 \alpha_3 \alpha_4$

Probability
0.2
0.2
0.4
0.2

1) Start with interval [0, 1)

0

2) Subdivide [0, 1) based on the probabilities of α_i

0				\vdash
	а	a	a	a
	_	2	w	4

Initial Subinterva	al
[0.0, 0.2) [0.2, 0.4) [0.4, 0.8) [0.8, 1.0)	

3) Update interval by processing source symbols

https://youtu.be/fZccqY-D2wU

Example

Source Symbol	Probability	Initial Subinterval
a_1	0.2	[0.0, 0.2)
a_2	0.2	[0.2, 0.4)
a_3	0.4	[0.4, 0.8)
a_4	0.2	[0.8, 1.0)

Encode

 $\alpha_1 \alpha_2 \alpha_3 \alpha_3 \alpha_4$

[0.06752, 0.0688)

or

0.068

(must be inside sub-interval)

Example (cont'd)

- The message $\alpha_1 \alpha_2 \alpha_3 \alpha_4$ is encoded using 3 decimal digits or 3/5 = 0.6 decimal digits per source symbol.
- The entropy of this message is: $H = -\sum_{k=0}^{3} P(r_k) log(P(r_k))$

$$-(3 \times 0.2\log_{10}(0.2)+0.4\log_{10}(0.4))=0.5786$$
 digits/symbol

Note: finite precision arithmetic might cause problems due to truncations!

Arithmetic Decoding

Reference

• Ch 8, G&W textbook