

KT0626M 常见问题解答

KT0626M和KT0606M相比有哪些不同和改进?	2
KT0626M芯片上电后需要做什么?	2
KT0626M如何选择晶体?	3
KT0626M支持的频率范围是多少?	4
如何选择VCO片外电感?	4
如何设定KT0626M的发射频率?	4
KT0626M的频率分辨率是多少?	4
KT0626M的预加重时间常数是多少?如何修改接收机电路与之匹配?	4
KT0626M如何调整压扩时间常数?	5
KT0626M如何打开PA和配置发射功率?	5
KT0626M如何进入待机状态并避免开关机噪声?	6
KT0626M如何调整麦克风灵敏度?	6
KT0626M如何开启静音功能?	6
KT0626M如何使用设置导频信号?	6
KT0626M的SCL和SDA两个引脚是否需要上拉电阻?	6
MCU的I2C接口如何设置?	6
PCB版图必须注意什么?	7
KT0626M如何实现电池电压指示功能?	7
如何使用KT0626M的辅助信道功能?	7
KT0626M如何将电池电压信息发送出去?	8
KT0626M的参考设计是什么样的?	9
	KT0626M

2014/12/08, Rev 1.1

1 KT0626M 和 KT0606M 相比有哪些不同和改进?

KT0626M 与 KT0606M 的引脚、外围电路可以完全兼容。性能方面有一些改善:

- a. KT0626M 降低了射频上的干扰杂波;
- b. KT0626M 无快速开关机的问题,简化了外围电路。
- c. KT0626M 提高了抗干扰性能

软件方面有一些调整和简化,主要变化有:

- a. 修改了 KT_WirelessMicTx_Init 函数;
- b. 修改了 KT WirelessMicTx Calc ChanReg 函数;
- c. 修改了 KT WirelessMicTx Tune 函数,降低了频率设置函数的复杂度;
- d. 修改了 KT WirelessMicTx Set XTAL 函数;
- e. 修改了 KT_WirelessMicTx_PowerDownProcedure 函数。

2 KT0626M 芯片上电后需要做什么?

上电后先调用参考代码 KT_WirelessMicTxdrv.c 中的 KT_WirelessMicTx_PreInit (), 当返回值为 1 后再调用 KT_WirelessMicTx_Init (), 如果返回值为 1 说明启动正常可以继续操作。 请按照图 1 所示调用参考代码中的函数:

图 1: KT0626M 上电流程图

KT0626M 如何选择晶体?

KT0626M 支持同时使用 24MHz 和 24.576MHz 的晶体,将 24MHz 的晶体接到 XI 和 XO1 上, 24.576MHz 的晶体接到 XI 和 XO2 上,并按照表格 1 进行将参考代码中 KT_WirelessMicTxdrv.h 文 件中的#define XTAL_DUAL 的编译选项打开,将#define XTAL_24M_ONLY 和#define XTAL 24P576M ONLY 编译选项关闭。根据所用的晶体,调整 XI、XO1 和 XO2 引脚与地之间的 电容(一般是33pF),可以微调晶体的震荡频率。

2014/12/08, Rev 1.1

如果只使用 24MHz 晶体,需将晶体接到 XI 和 XO1 上,XO2 悬空既可。并按照表格 1 进行将参考代码中 KT_WirelessMicTxdrv.h 文件中的#define XTAL_24M_ONLY 的编译选项打开,将##define XTAL_DUA 和#define XTAL_24P576M_ONLY 编译选项关闭。根据所用的晶体,调整 XI 和 XO1 引脚与地之间的电容(一般是 33pF),可以微调晶体的震荡频率。

如果只使用 24.576MHz 晶体,需将晶体接到 XI 和 XO1 上,XO2 悬空既可。并按照表格 1 进行 将参考代码中 KT_WirelessMicTxdrv.h 文件中的#define XTAL_24P576M_ONLY 的编译选项打开,将 ##define XTAL_DUA 和#define XTAL_24M_ONLY 编译选项关闭。根据所用的晶体,调整 XI 和 XO1 引脚与地之间的电容(一般是 33pF),可以微调晶体的震荡频率。

WH I ST THEK				
	#define XTAL_DUAL	#define XTAL_24M_ONLY	#define XTAL_24P576M_ONLY	
同时使用 24MHz 和 24.576MHz 晶体	0	Х	X	
只使用 24MHz 晶体	X	0	X	
只使用 24.576MHz 晶体	X	X	0	

表格 1: 时钟配置表

4 KT0626M 支持的频率范围是多少?

KT0626M 具有支持 UHF 470MHz²960MHz 频率范围的能力,对于不同波段的设计需要配合不同的 VCO 电感。当片外的 VCO 电感确定后,通过参考代码中 KT_WirelessMicTx_Tune(freq)函数可以配置的频率范围是 50MHz。具体配置发射频率的方法见问题 5。

5 如何选择 VCO 片外电感?

KT0626M 的 VCO 需要一个片外电感配合芯片工作。电感可以选用射频多层电感或者直接在 PCB 上画一圈铜箔接在 INDP 和 INDN 两个引脚两端。一般频率超过 800MHz,所需片外电感小于 1nH,推 荐使用 PCB 铜箔做电感。

片外电感的感值取决于产品使用的波段,一般在 0.5nH~10nH 之间。电感值是否合适可以通过调用参考代码中 KT_WirelessMicTx_Tune(freq)函数将发射频率调整到波段的中央,然后调用 KT_WirelessMicTx_Band_Cali_Res()函数获得芯片测得的电感值,这个结果的范围是 0 到 63,当接近 32 时,说明片外电感值选取的比较合适。

6 如何设定 KT0626M 的发射频率?

使用参考代码的 KT_WirelessMicTx_Tune (freq) 函数设置 KT0626M 的发射频率,其中 freq 的单位是 KHz。例如发射频率为 770MHz 时,freq=770000。

7 KT0626M 的频率分辨率是多少?

KT0626M 支持 1KHz 的频率分辨率。可以通过函数 KT_WirelessMicTx_Tune(freq)设置精度到 1KHz 的发射频率。

8 KT0626M 的预加重时间常数是多少?如何修改接收机电路与之匹配?

KT0626M 内置预加重网络的时间常数是 75us, KT0616M 使用的是时间常数为 75us 的去加重网络。

R1'*C1'=R2'*C2'=75us, R1'+R2'=R1+R2, 即可保证与原电路增益相同,同时与预加重曲线匹配。

9 KT0626M 如何调整压扩时间常数?

无线麦克风接收机的压扩时间常数通常由接在压扩芯片 C_{RECT} 引脚的电容决定,例如 NE571 和 NE575 的时间常数为: $\tau_R = \tau_A = 10K \times C_{RECT}$ 。为了达到最好的音频效果,应相应修改 KT0626M 的压扩时间常数使之与接收机相同。使用参考代码中函数 KT_WirelessMicTx_Comp_TC(cComp_TC) 可以调整 KT0626M 内置压扩器的时间常数。

cComp_TC 代表的时间常数分别为:

cComp_TC	压扩时间常数(ms)
0	6
1	12
2	24
3	48
4	93
5	199
6	398
7	796

10 KT0626M 如何打开 PA 和配置发射功率?

KT0626M 上电后默认不自动打开 PA,需要首先使用函数 KT_WirelessMicTx_PAGAIN()配置 PA 输出功率,然后使用函数 KT_WirelessMicTx_PASW(PA_0N)打开 PA。PA 打开前应先配置发射频率,避免出现不必要的噪声。

2014/12/08, Rev 1.1

11 KT0626M 如何进入待机状态并避免开关机噪声?

使用参考代码中函数 KT_WirelessMicTx_Standby(), 芯片进入待机状态。待机状态下,芯片工作电流小于 10uA。使用函数 KT_WirelessMicTx_WakeUp(),芯片退出待机状态,进入工作状态,这时需要重新配置发射频率和 PA 开关,芯片才能正常发射。使用上述两个函数开关机均不会产生额外噪声。

12 KT0626M 如何调整麦克风灵敏度?

麦克风灵敏度是指麦克风预防大器的放大倍数,它可以通过使用参考代码中 KT_WirelessMicTx_Mic_Sens(cMicSens)函数修改,cMicSens 常数可以从 0~15 中选择,0 表示增益 最低(0dB),15 表示增益最高(46dB)。

13 KT0626M 如何开启静音功能?

通过调用参考代码里的 KT_WirelessMicTx_MuteSel(AUDIO_MUTE)函数可以启动静音功能;通过调用参考代码里的 KT WirelessMicTx MuteSel(AUDIO UNMUTE)函数可以退出静音功能。

14 KT0626M 如何使用设置导频信号?

KT_WirelessMicTxdrv.h 文件中有#define KT_RX 和#define OTHER_RX 两个预编译选项,当使用 KT0616M 作为接收机时需要打开#define KT_RX 并不关闭#define OTHER_RX 预编译选项。使用其他 厂商的接收机方案时则相反。

通过调用参考代码里的 KT_WirelessMicTx_Pilot (PILOT_ENABLE)函数可以启动发射导频信号:

通过调用参考代码里的 KT_WirelessMicTx_Pilot (PILOT_DISABLE)函数可以取消发射导频信号。

通过调用参考代码里的 KT_WirelessMicTx_Set_Pilot_Freq() 函数可以设置导频信号的频率。需要注意的是如果使用 KT0616M 作为接收机是不能设置导频频率的,导频频率为固定值。

使用参考代码中 KT_WirelessMicTx_Pilot_Fdev(cPilot_Fdev)函数可以调整导频的发射频偏。 参数 cPilot Fdev 与发射频偏的关系为:

cPilot_Fdev	频偏(KHz)
0	2.5
1	5
2	7. 5
3	10

15 KT0626M 的 SCL 和 SDA 两个引脚是否需要上拉电阻?

当 I2C 时钟工作在 200KHz 以下时,不需要在 SDA、SCL 两个引脚上接上拉电阻; 当 I2C 时钟工作在 200KHz-400KHz 时,需要在 SDA、SCL 两个引脚上接 10Kohm 上拉电阻。

16 MCU的 I2C 接口如何设置?

I2C 模式下应将 MCU 的 SDA, SCL 设置为漏极开路或集电极开路。当读取 ACK 信号和 Data 时 MCU 还需要将 SDA 配置为输入引脚。

2014/12/08, Rev 1.1

17 PCB 版图必须注意什么?

- 1) 电源的去藕电容应该尽量靠近芯片的电源输入脚,并保证流入芯片的电流都先经过电容滤波。
- 2) 不要将 RF 走线、数字走线、模拟走线平行放置,避免它们之间信号耦合,减少干扰。
- 3) 不要将 RF 输出线打断,或是穿过两层走线。
- 4) RF 输出端在差分信号转化为单端信号前,应尽量保证 RF 的差分输出走线互相靠近并且保持对称。
- 5) RF输出端的走线要尽量的短,最好将 RF output 安排在 PCB 的板边处。
- 6) RF 输出脚及走线周围需要使用铺地将其包裹起来,避免受到其他信号的干扰,但是注意不要将地线与 RF 信号靠的太近,避免过大的分布电容衰减 RF 信号。
- 7) I2C 接口走线不要横穿芯片,尽量不跨层。如有可能,在 I2C 走线的背面并排保持地线或地平面,直至主控芯片的地平面,以此降低 I2C 接口对芯片的干扰。
- 8) 确保 AVSS 可以很好的共地。

18 KT0626M 如何实现电池电压指示功能?

KT0626M 集成了电池电压测量用 ADC, ADC 从 GPIO1 引脚检测电池电压,量化范围是 0~1.2V,如果电池电压高于这个范围,需要在片外对电池电压适当作电阻分压后送入 GPIO1。

使用参考代码中函数 KT_WirelessMicTx_BatteryMeter_SW(BATTERY_METER_ENABLE)可以 开启电池电压 ADC。之后可以通过函数 KT_WirelessMicTx_BatteryMeter_Read()读取 ADC 的量化 结果,函数返回值 C_{BAT} 的范围是 0~2047,表示 GPIO1 引脚的电压为:

$$V_{GPIO1} = \frac{C_{BAT}}{2048} \times 1.2V$$

19 如何使用 KT0626M 的辅助信道功能?

KT0626M 支持突发和持续两种模式的辅助信道数据传输。

对于突发模式,将要发送的数据写到 BURST_DATA<15:0>寄存器中,此数据数据只发送一次,不管接收机是否接到数据都不会重复发送。为防止丢失数据,对于突发模式建议接收机使用中断方式。

突发模式举例:

将 KT0626M 地址为 0x02 的寄存器 BURST_DATA<15:0>中写入数据 0x1234。则 KT0616M 的 BURST_DATA<15:0>的寄存器的值将改变为 0x1234 了。

对于持续模式数据将反复发送。接收机既可以使用中断模式也可以使用查询模式。KT0626M 循环发送 AUX_ADDRA<7:0>、AUX_ADDRB<7:0>、AUX_ADDRC<7:0>、AUX_ADDRD<7:0>四个寄存器中指定的寄存器地址中存储的数据。其中 0x10-0x17 可以写入任何数据,再将 AUX_ADDRx<7:0>指定为0x10-0x17中的寄存器就可以实现厂商的ID 识别。

持续模式举例:

将 KT0626M 地址为 0x10 的寄存器中写入 0x1234, 地址为 0x13 的寄存器中写入 0x4567, 地址为 0x17 的寄存器中写入 0x6789,再将寄存器地址 0x10、0x13、0x17 分别写到 AUX_ADDRA<7:0>,AUX_ADDRC<7:0>和 AUX_ADDRD<7:0>中,另外将寄存器地址 0x07 写到 AUX_ADDRB<7:0>中。则地址为 0x10、0x07、0x13、0x17 的寄存器中的数据将通过辅助信道功能发送到 KT0616M 对应的 AUX_DATAA<15:0>、AUX_DATAB<15:0>、AUX_DATAC<15:0>和 AUX_DATAD<15:0>寄存器中。其中 KT0626M 地址为 0x07 的寄存器是电池电压量化的寄存器,这样接收机就可以收到发射机实时的电压值了。

20 KT0626M 如何将电池电压信息发送出去?

KT0626M 可以通过辅助信道将发射机的电压发送到使用 KT0616M 的接收机上。此功能是在辅助信道的功能基础上实现的,使用方法可以参见第 18 部分中的描述。

21 KT0626M 的参考设计是什么样的?

图 4: 典型应用电路

元件名	描述	数值	推荐供应商
C1,C5, C8, C11	电源去藕电容	0.1uF	
C2,C4,C20	晶体负载电容	33pF	
C6	去藕电容	0.1uF	
C7	去藕电容	1uF	
C12	交流接地电容	47pF	
C3,C9,C10,C21	去藕电容	10uF	
C13, C16	交流耦合电容	150pF	
C15	交流耦合电容	100pF	
C14, C17	LC 巴伦电容	与使用波段相关	
C18,C19	电源去耦电容	4.7uF	
D1	肖特基二极管		
E1	天线		
FB1, FB2, FB3, FB4, FB5	磁珠	331@100MHz	
L1	VCO 电感	与使用波段相关	村田 LQG 系列
L2,L3	扼流电感	68nH	村田 LQG 系列
L4,L5	LC 巴伦电感	与使用波段相关	村田 LQG 系列

2014/12/08, Rev 1.1

L6	电感	2.2uH	
R1, R2	电阻	2.2Kohm	
R3	电阻	680ohm	
R4, R5	电阻	与电池电压相关	
R6	电阻	1.02Mohm 1%	
R7	电阻	604Kohm 1%	
R8	电阻	10Kohm	
U1	无线麦克风发射芯片	KT0626M	
U2	DCDC 电源	HX3002	
Y1	晶体	24MHz	
Y2	晶体	24.576MHz	

与频段相关元件值:

频段	L1	L4, L5	C14	C17
550~650MHz	4.3nH	15nH	1pF	1pF
650~700MHz	2.7nH	12nH	0.5pF	0.5pF
700~736MHz	2.7nH	12nH	0.5pF	0.5pF
736~750MHz	2nH	12nH	0.5pF	0.5pF
750~850MHz	1.5nH	9.1nH	0.3pF	DNS

版本信息:

V1.0 正式发布。

V1.1 添加水印。

2014/12/08, Rev 1.1

联系方式:

昆腾微电子股份有限公司

北京市海淀区北坞村路 23 号北坞创新园 4 号楼

邮编: 100195

电话: +86-10-8889 1955 传真: +86-10-8889 1977 电子邮件: <u>sales@ktmicro.com</u> 网站: <u>http://www.ktmicro.com.cn</u>

KT Micro, Inc. (US Office)

999 Corporate Drive, Suite 170 Ladera Ranch, CA 92694

USA

Tel: 949-713-4000 Fax: 949-713-4004

Email: sales@ktmicro.com