Coding Theory: Problems 2

1. In $\mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$, calculate

(a)
$$2^{20} + 3^{33}$$
 (b) $2^{20}3^{33}$ (c) $2^{20} - 3^{33}$ (d) $2^{20} \div 3^{33}$.

- 2. Show that every square integer is either 0 or 1 mod 4. Hence prove that $x^2 + y^2 = 1839$ has no integer solutions.
- 3. Construct a table of multiplicative inverses for \mathbb{Z}_7 and \mathbb{Z}_{13} .
- 4. Find the missing digit x in the ISBN 0679x60806.
- 5. Let C be the 10-ary analogue of the ISBN code, that is,

$$C = \{x \in \mathbb{Z}_{10}^9 \mid \sum_{i=1}^9 ix_i = 0\}.$$

What is the minimum distance d(C) of this code? Give a counterexample which demonstrates that C cannot detect transposition errors like the ISBN code can.

- 6. According to Galois' Theorem, there *does* exist a field of order 4, F_4 , although \mathbb{Z}_4 is *not* a field. Let 0, 1 denote the additive and multiplicative identity elements in F_4 , and denote the other two elements a, b. Deduce the addition and multiplication tables for F_4 . What is the characteristic of F_4 ?
- 7. Does there exists a finite field of order 254? What about 256?
- 8. Let F be a finite field of characteristic 2. Show that every element is a square, that is, for all $a \in F$ there exists $b \in F$ such that $a = b^2 = b \times b$.
- 9. Let E_n be the set of all even weight vectors in F_2^n . (Recall the weight of a vector is the number of non-zero entries it has.) Show that E_n is a subspace of F_2^n . What is dim E_n ? What is $|E_n|$? Write down a basis for E_n .
- 10. Let C be a subspace of F_3^4 having $\{(0,1,2,1),(1,0,2,2),(1,2,0,1)\}$ as a spanning set. Find a basis for C. What is dim C?