Exercise 30

The idea is to use a language \mathcal{L} that is difficult to compute. Therefore let \mathcal{L} not be in $E = \bigcup_{c=1}^{\infty} \mathsf{TIME}(2^{cn})$. Furthermore let be $\mathcal{L}' = \{1^m : m \in \mathcal{L}\}$. Obviously $\mathcal{L} \in \mathsf{P}_{\mathsf{/poly}}$, but $\mathcal{L}' \notin \mathsf{P}$. If $\mathcal{L}' \in \mathsf{P}$ a TM \mathcal{M} would compute \mathcal{L}' in $O(m^k)$. So \mathcal{M} could decide \mathcal{L} in $O((2^n)^k)$ and thus $\mathcal{L} \in E$.

Show that $\mathcal{L}' \in \mathsf{P}_{\mathsf{/poly}}$. Let \mathcal{M}' be a TM with the advice a(n). a(n) = 1 if and only if $n \in \mathcal{L}$, so for every input length exists exactly one advice. Thus \mathcal{M}' can recognize \mathcal{L}' .

Therefore \mathcal{M}' rejects if the input has not the form 1^m or it has the form but $n \in \mathcal{L}$, otherwise accepts. If \mathcal{L} is decidable \mathcal{L}' is trivially decidable too. Because of the time hierarchy theorem such an \mathcal{L} must exist.

Exercise 31

A language \mathcal{L} is in \mathcal{NC}^d if \mathcal{L} can be decided by a family of circuits $\{C_n\}$, where C_n has poly(n) size and depth $O(\log^d n)$. So \mathcal{NC}^0 has a depth of $\log^0 n = 1$.

- **a**)
- b)
- **c**)

Because of the depth of the graph the languages $\mathcal{L} \in \mathcal{NC}^0$ work on inputs of the form $x = x_1x_2$ or $x = x_1$. In case an input has the form $x = x_1x_2x_3$... there exists a path from x_i to the output node that is longer then 1. All languages that can be constructed by a single \land, \lor or \neg are not infinite, so the union of them is not infinite, so \mathcal{NC}^0 does not contain any infinite language.

|PARITY| obviously is infinite, so PARITY $\notin \mathcal{NC}^0$.