Amazon Sales Report - Predicting Cancellations

Vami Krishna (SM22UBBD154)

Project manager

Masthan reddy (SM22UBBD005)

- Visualization specialist (BI)

Ragam ronith patel(SM22UBBD150),

Sahithi (SM22UBBD048)

- Data analyst

Rajesh naik (SM22UBBD095)

- Project coodinator (PPT)

Rahul konakandla (SM22UBBD165), chandana(SM22UBBD025),

Challa saketh (SM22UBBD175)

- Data collector

Geethvika(SM22UBBD073)

Objective

Problem statement -

Predicting cancellations in advance so that high risk of cancellation can be incorporated in pricing of the product

Research question -

What factors contribute most significantly to order cancellations?

Hypothesis -

Null Hypothesis (H0):-Independent variables (size, category, promotion id's, amount) does not affect the order cancellation rate.

Alternate Hypothesis (H1): At Least one of them effect cancellation rate

Market and industry context

Industry background -

The industry context for predicting order cancellations is crucial, especially if you are dealing with e-commerce, retail, or logistics

Current trends in Business analytics

Predictive modeling

Operational efficiency

Literature review

Key findings -

Order cancellations based on promotion id's , fulfillment, category, size and price

Methodology

Data collection - Source – Kaggle

Data cleaning - Removed blank spaces and missing values and removed unwanted variables

Al model - Logistic regression

Validation technique - Split validation

Used Al studio for prediction, Bl and excel for visualization

Accuracy: 0.8216649694501018

Classification Report:

		precision	recall	f1-score	support
	0	0.82	1.00	0.90	6455
	1	0.00	0.00	0.00	1401
accuracy				0.82	7856
macro	avg	0.41	0.50	0.45	7856
weighted	avg	0.68	0.82	0.74	7856

Visualizations

Visualizations

Correlation Analysis

Regression Analysis:

Challenges and Solutions

Interpretability of Predictions

- **Challenge:** Making the predictions understandable and actionable for merchants who may not have a technical background.
- **Solution:** Develop user-friendly dashboards and visualization tools that present the predictions and associated recommendations clearly.

Integration with Existing Systems

- **Challenge:** Seamlessly integrating predictive analytics into existing e-commerce platforms and workflows.
- •Solution: Ensure compatibility with common e-commerce platforms like Amazon's seller central.

Implementation

Our analysis is useful for merchants who are selling products in e commerce platform amazon as it would help them in pricing the products

Best model and conclusion

• Regression, Correlation Analysis was the best model for prediction because the error rate and standard deviation is low with best accuracy

Future work

- Investigate using deep learning techniques
- Analyze customer behavior
- Cost sensitive learning

Thank

you

