Stochastic Calculus

Assignment IV: Stochastic Integral

Maosen Tang (mt4379)

June 21, 2023

1. Let B_t be a standard Brownian motion starting from zero, ε be a number in [0,1] and $\Pi = \{t_0, t_1, \ldots, t_n\}$ be a partition of [0,t] with $0 = t_0 < t_1 < \ldots < t_n = t$. Consider the approximating sum

$$S_{\varepsilon}^{\Pi} = \sum_{i=0}^{n-1} ((1-\varepsilon)B(t_i) + \varepsilon B(t_{i+1}))(B(t_{i+1}) - B(t_i))$$

for the stochastic integral $\int_0^t B_s dB_s$. Show that

$$\lim_{||\Pi|| \to 0} S_{\varepsilon}^{\Pi} = \frac{1}{2} B_t^2 + \left(\varepsilon - \frac{1}{2}\right) t$$

where the limit is in L^2 . Show that the right-hand side of the above identity is a martingale if and only if $\varepsilon = 0$.

Note that the quadratic variation for Brownian motion is

$$\sum_{i=0}^{n-1} (B(t_{i+1}) - B(t_i))^2 = t, \quad \text{(Lecture 3 Theorem 4)}$$

and that

$$\sum_{i=0}^{n-1} B(t_{i+1})^2 - B(t_i)^2 = B(t_n)^2 - B(t_0)^2 = B(t)^2.$$

Hence, we have

$$\lim_{||\Pi|| \to 0} S_{\varepsilon}^{\Pi} = \lim_{n \to \infty} \sum_{i=0}^{n-1} ((1 - \varepsilon)B(t_i) + \varepsilon B(t_{i+1}))(B(t_{i+1}) - B(t_i))$$

$$= \lim_{||\Pi|| \to 0} \sum_{i=0}^{n-1} (1 - \varepsilon)B(t_i)(B(t_{i+1}) - B(t_i)) + \varepsilon B(t_{i+1})(B(t_{i+1}) - B(t_i))$$

$$= (1 - \varepsilon) \lim_{||\Pi|| \to 0} B(t_i)(B(t_{i+1}) - B(t_i)) + \varepsilon \lim_{||\Pi|| \to 0} B(t_{i+1})(B(t_{i+1}) - B(t_i))$$

$$= (1 - \varepsilon) \lim_{||\Pi|| \to 0} B(t_i)B(t_{i+1}) - B(t_i)^2 + \varepsilon \lim_{||\Pi|| \to 0} B(t_{i+1})^2 - B(t_i)B(t_{i+1})$$

$$= (1 - \varepsilon) \left(-\frac{1}{2} \lim_{||\Pi|| \to 0} \sum_{i=0}^{n-1} (B(t_{i+1}) - B(t_i))^2 + \frac{1}{2} \lim_{||\Pi|| \to 0} \sum_{i=0}^{n-1} (B(t_{i+1})^2 - B(t_i)^2) \right)$$

$$+ \varepsilon \left(\frac{1}{2} \lim_{||\Pi|| \to 0} \sum_{i=0}^{n-1} (B(t_{i+1}) - B(t_i))^2 + \frac{1}{2} \lim_{||\Pi|| \to 0} \sum_{i=0}^{n-1} (B(t_{i+1})^2 - B(t_i)^2) \right)$$

Now substitute in $\sum_{i=0}^{n-1} (B(t_{i+1}) - B(t_i))^2 = t$ and $\sum_{i=0}^{n-1} B(t_{i+1})^2 - B(t_i)^2 = B(t_n)^2 - B(t_0)^2 = B_t^2$.

$$\lim_{||\Pi||\to 0} S_\varepsilon^\Pi = (1-\varepsilon)(-\frac{1}{2}(t-B(t)^2)) + \varepsilon \frac{1}{2}(t+B(t)^2) = \frac{1}{2}B(t)^2 + \varepsilon t - \frac{1}{2}t$$

Now we want to show that the right-hand side of the above identity is a martingale if and only if $\varepsilon = 0$.

 (\Rightarrow) When $\varepsilon=0$, we want to show that the right-hand side of the above identity is a martingale.

We have shown in the previous part that if $\varepsilon = 0$, the right-hand side of the above identity is $\frac{1}{2}B(t)^2 - \frac{1}{2}t$.

We will check if the process $N(t) = \frac{1}{2}B(t)^2 - \frac{1}{2}t$ is a martingale with respect to \mathcal{F}_t .

- (a) N(t) is \mathcal{F}_t -measurable for each tSince N(t) is a function of the \mathcal{F}_t -measurable process B(t), it is \mathcal{F}_t -measurable for each t.
- (b) $\mathbb{E}|N_t| < \infty$ for all tIt is known that $\mathbb{E}[B(t)^2 = t]$, then since t is a positive finite number, we have

$$\mathbb{E}[\frac{1}{2}B(t)^2 - \frac{1}{2}t] \leq \frac{1}{2}\mathbb{E}[B(t)^2 = t] = \frac{t}{2} \leq \infty$$

(c) $\mathbb{E}[N(t)|\mathcal{F}_s] = N_s$ for all $s \leq t$.

$$\frac{1}{2}\mathbb{E}\left[B(t)^{2} - t \mid \mathcal{F}_{s}\right] = \frac{1}{2}\left[\mathbb{E}\left[B(t)^{2} \mid \mathcal{F}_{s}\right] - t\right]
= \frac{1}{2}\left[\mathbb{E}\left[(B(t) - B(s) + B(s))^{2} \mid \mathcal{F}_{s}\right] - t\right]
= \frac{1}{2}\left[\mathbb{E}\left[(B(t) - B(s))^{2} \mid \mathcal{F}_{s}\right] + 2B(s)\mathbb{E}\left[(B(t) - B(s)) \mid \mathcal{F}_{s}\right] + B(s)^{2} - t\right]
= \frac{1}{2}\left[(t - s) + 0 + B(s)^{2} - t\right]
= \frac{1}{2}B(s)^{2} - \frac{1}{2}
= N(s)$$

(\Leftarrow) When the right-hand side of the above identity is a martingale, we want to show that $\varepsilon=0$. Given that $\frac{1}{2}B_t^2+\left(\varepsilon-\frac{1}{2}\right)t$ is a martingale, we have

$$\mathbb{E}\left[\frac{1}{2}B_t^2 + \left(\varepsilon - \frac{1}{2}\right)t\right] < \infty$$

which implies that $|\varepsilon| < \infty$.

Since it's a martingale, the expectation should not change with time, so for every $s \le t$, we have:

$$\mathbb{E}\left[\frac{1}{2}B_t^2 - \left(\varepsilon - \frac{1}{2}\right)t \mid \mathcal{F}_s\right] = \frac{1}{2}B_s^2 - \left(\varepsilon - \frac{1}{2}\right)s$$

Rewrite the above equation we can derive:

$$\frac{1}{2}\mathbb{E}\left[B_t^2 \mid \mathcal{F}_s\right] - \left(\varepsilon - \frac{1}{2}\right)t = \frac{1}{2}B_s^2 - \left(\varepsilon - \frac{1}{2}\right)s$$

Or equivalently,

$$\mathbb{E}\left[B_t^2 \mid \mathcal{F}_s\right] = 2\left(\frac{1}{2}B_s^2 - \left(\varepsilon - \frac{1}{2}\right)s\right) + 2\left(\varepsilon - \frac{1}{2}\right)t$$

Then simplifying the equation, we get

$$\mathbb{E}\left[B_t^2 \mid \mathcal{F}_s\right] = B_s^2 - (2\varepsilon - 1)(t - s)$$

The right-hand side can be rewritten as $t - s + B_s^2$. So we have:

$$t-s+B_s^2 = \mathbb{E}\left[B_t^2 \mid \mathcal{F}_s\right] = B_s^2 - (2\varepsilon - 1)(t-s)$$

By equating the terms on both sides of the equation, we get

$$2\varepsilon(t-s) = 0$$

This equation holds for every $s \leq t$ only when $\varepsilon = 0$.

Hence, we conclude that $\frac{1}{2}B_t^2 + \left(\varepsilon - \frac{1}{2}\right)t$ is a martingale if and only if $\varepsilon = 0$.

2. Let $\sigma(t)$ be a deterministic function of time, β be a constant and define

$$X(T) = \int_0^T \sigma(t)e^{-\beta t} dB_t.$$

Find the expectation and variance of X(T). What is the distribution of X(T)?

Since the Itô integral is a martingale by Lecture 4, Theorem 2, one has $\mathbb{E}[X(T)] = 0$.

Given that:

$$\mathbb{E}[I_t^2(f)] = \mathbb{E}\left[\int_0^t f^2(s,\omega) \, ds\right]$$

Then, we write the variance of X(T) as follows:

$$\operatorname{Var}[X(T)] = \mathbb{E}[X(T)^{2}] - \mathbb{E}[X(T)]^{2}$$

$$= \mathbb{E}[X(T)^{2}]$$

$$= \mathbb{E}\left[\left(\int_{0}^{T} \sigma(t)e^{-\beta t}dB_{t}\right)^{2}\right]$$

$$= \mathbb{E}\left[\int_{0}^{T} \sigma(t)^{2}e^{-2\beta t}dt\right]$$

$$= \int_{0}^{T} \mathbb{E}\left[\sigma(t)^{2}e^{-2\beta t}\right]dt$$

since $\sigma(t)$ is deterministic and not a random variable, it's not affected by the expectation operation, therefore, we can conclude that:

$$\int_0^T \mathbb{E}\left[\sigma(t)^2 e^{-2\beta t}\right] dt = \int_0^T \sigma(t)^2 e^{-2\beta t} dt$$

Therefore, we can finally write that:

$$\operatorname{Var}[X(T)] = \int_0^T \sigma(t)^2 e^{-2\beta t} dt$$

Lecture 4, Equation 16 state that:

$$I(t) = \int_0^t f(s, \omega) dB_s = \sum_i e_i \Delta B_i$$

where e_i are elementary differentials, and ΔB_i are increments of the Brownian motion.

With this in mind, we can interpret an Itô integral as a linear combination of normal variables, due to the fact that each increment ΔB_i follows a Gaussian distribution by definition.

It is a well-established theorem in statistics that a linear combination of normally distributed random variables retains a normal distribution. Consequently, this imparts a normal distribution on the Itô integral X(T). Formally, we have:

$$X(T) \sim N\left(0, \int_0^T \sigma(t)^2 e^{-2\beta t} dt\right)$$

3. Prove directly from the definition of the Itô integral that

$$\int_0^T t \, dB_t = TB_T - \int_0^T B_t \, dt.$$

Hint: Note that

$$\sum_{i} \Delta(s_i B_i) = \sum_{i} s_i \Delta B_i + \sum_{i} B_{i+1} \Delta s_i.$$

Let's start with a given partition $0 = t_0 < t_1 < \dots < t_n = T$ of [0, T]. We express the integral as a limit of Riemann sums. The integral can be written as

$$\int_0^T t \, dB_t \approx \sum_{i=0}^{n-1} t_i (B_{t_{i+1}} - B_{t_i}),$$

If we take finer and finer grid by taking $\lim_{|\Pi|\to 0}$, we will have:

$$\int_0^T t \, dB_t = \lim_{\|\Pi\| \to 0} \sum_{i=0}^{n-1} t_i (B_{t_{i+1}} - B_{t_i}),$$

Note that the hint said that

$$\sum_{i} \Delta(t_i B_i) = \sum_{i} t_i \Delta B_i + \sum_{i} B_{i+1} \Delta t_i = \sum_{i} t_i (B_{t_{i+1}} - B_{t_i}) + \sum_{i} B_{i+1} (t_{i+1} - t_i)$$

Also, we note that

$$\lim_{\|\Pi\| \to 0} \sum_{i=0}^{n-1} B_{i+1}(t_{i+1} - t_i) = \int_0^T B_t \, dt$$

by the definition of the Riemann integral.

Lastly, we were left to dealt with $\sum_{i} \Delta(t_i B_i)$ as $\lim_{||\Pi|| \to 0}$, since

$$\lim_{\|\Pi\| \to 0} \sum_{i} \Delta(t_i B_i) = \int_0^T 1, dt B_t = t B_t \mid_0^t = T B_T$$

Substitute this back to our equation, and we will obtain that

$$\int_0^T t \, dB_t = TB_T - \int_0^T B_t \, dt.$$

Which completes the proof.