

The claimed invention is:

1. A stabilized amido acid composition comprising an effective stabilizing amount of an antioxidant and an amido acid of formula I or II:

wherein R¹ is selected from C₁-C₂₂ alkyl, C₂-C₂₂ alkenyl, C₂-C₂₂ alkynyl, C₃-C₂₂ cycloalkyl, and C₆-C₁₄ aryl;

R² and R⁵ are each independently selected from hydrogen, C₁-C₂₂ alkyl, C₂-C₂₂ alkenyl, C₂-C₂₂ alkynyl, C₃-C₂₂ cycloalkyl, C₆-C₁₄ aryl, and where in formula II, R² and R⁵ can together with the nitrogen carrying them form a C₃-C₁₀ heterocycle;

R³ and R⁴ are each independently selected from hydrogen, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₂-C₁₀ alkynyl, C₃-C₁₀ cycloalkyl, C₆-C₁₀ aryl and where R³ and R⁴ can together with the carbon carrying them form a C₃-C₁₀ cycloalkyl; and

n is an integer from 0 to 20.

2. The composition of claim 1,

wherein R¹ is selected from C₅-C₁₅ alkyl, C₅-C₁₅ alkenyl, C₅-C₁₅ alkynyl, C₅-C₁₅ cycloalkyl, and C₆-C₁₄ aryl;

R² and R⁵ are each independently selected from hydrogen, C₅-C₁₅ alkyl, C₅-C₁₅ alkenyl, C₅-C₁₅ alkynyl, C₅-C₁₅ cycloalkyl, C₆-C₁₄ aryl, and where in formula II, R² and R⁵ together with the nitrogen carrying them can form a C₃-C₁₀ heterocycle;

R³ and R⁴ are each independently selected from hydrogen, C₁-C₅ alkyl, C₂-C₅ alkenyl, C₂-C₅ alkynyl, C₃-C₆ cycloalkyl, C₆-C₁₀ aryl and where R³ and R⁴ can together with the carbon carrying them form a C₃-C₆ cycloalkyl; and

n is an integer from 0 to 10.

3. The composition of claim 1,

wherein R¹ is a C₅-C₁₅ alkyl;

R² and R⁵ are each hydrogen or C₅-C₁₅ alkyl;

R³ and R⁴ are each hydrogen; and

n is an integer from 2 to 10.

4. The composition of claim 1, wherein the antioxidant is a phenolic antioxidant or mixture of phenolic antioxidants.

5. The composition of claim 1, wherein the antioxidant is selected from 1,3,5-trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, tetrakis(methylene (3,5-di-tert-butyl-4-hydroxyhydrocinnamate)) methane, and butylated hydroxytoluene (BHT).

6. The composition of claim 1, wherein the stabilized amido acid composition does not exhibit visible discoloration after heating it for about 72 hours at 100°C.

7. The composition of claim 1, wherein the stabilizing effective amount of antioxidant ranges from about 0.001 to about 2% by weight.
8. The composition of claim 1, wherein the stabilized amido acid composition is a liquid, a liquid melt, or a solution.
9. A process for preparing a stabilized amido acid composition comprising admixing a stabilizing effective amount of an antioxidant and an amido acid of formula I or formula II:

wherein R¹ is selected from C₁-C₂₂ alkyl, C₂-C₂₂ alkenyl, C₂-C₂₂ alkynyl, C₃-C₂₂ cycloalkyl, and C₆-C₁₄ aryl;

R² and R⁵ are each independently selected from hydrogen, C₁-C₂₂ alkyl, C₂-C₂₂ alkenyl, C₂-C₂₂ alkynyl, C₃-C₂₂ cycloalkyl, C₆-C₁₄ aryl, and where in formula II, R² and R⁵ can together with the nitrogen carrying them form a C₃-C₁₀ heterocycle;

R³ and R⁴ are each independently selected from hydrogen, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₂-C₁₀ alkynyl, C₃-C₁₀ cycloalkyl, C₆-C₁₀ aryl and where R³ and R⁴ together with the carbon carrying them form a C₃-C₁₀ cycloalkyl; and

n is an integer from 0 to 20.

10. The process of claim 9, wherein the amido acid is in a liquid state, a molten state, or in solution when admixed with the antioxidant.

11. The process of claim 9, wherein the antioxidant is selected from 1,3,5-trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, tetrakis(methylene (3,5-di-tert-butyl-4-hydroxyhydrocinnamate)) methane, and butylated hydroxytoluene (BHT).

12. The process of claim 9, wherein the effective stabilizing amount of the antioxidant ranges from about 0.001 to about 2% by weight.

13. A process for preparing an amido phenyl ester salt comprising reacting in a reaction vessel the following:

- (i) an antioxidant-stabilized amido acid; and
- (ii) a phenyl alcohol salt, under conditions sufficient to form an amido phenyl ester salt, wherein the antioxidant-stabilized amido acid is of a formula I or II

where R^1 is selected from C_1-C_{22} alkyl, C_2-C_{22} alkenyl, C_2-C_{22} alkynyl, C_3-C_{22} cycloalkyl, and C_6-C_{14} aryl;

R^2 and R^5 are each independently selected from hydrogen, C_1-C_{22} alkyl, C_2-C_{22} alkenyl, C_2-C_{22} alkynyl, C_3-C_{22} cycloalkyl, C_6-C_{14} aryl, and where in formula II, R^2 and R^5 can together with the nitrogen carrying them form a C_3-C_{10} heterocycle;

R^3 and R^4 are each independently selected from hydrogen, C_1-C_{10} alkyl, C_2-C_{10} alkenyl, C_2-C_{10} alkynyl, C_3-C_{10} cycloalkyl, C_6-C_{10} aryl and where R^3 and R^4 can together with the carbon carrying them form a C_3-C_{10} cycloalkyl; and

n is an integer from 0 to 20; and

wherein the amido phenyl ester salt is of formula (III) or (IV):

where Y is selected from SO_3M^+ , CO_2M^+ , SO_4M^+ , and $\text{N}^+(\text{R}^6)_3\text{X}$;

M is selected from hydrogen, ammonium and alkali metal atom;

R^6 in each instance is a C_1-C_4 alkyl group; and,

X is a halide, hydroxide, methylsulfate, or acetate ion.

14. The process of claim 13, wherein the antioxidant-stabilized amido acid composition is in a liquid state, or a liquid melt state.

15. The process of claim 13, wherein the amido acid composition contains an antioxidant selected from 1,3,5-trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, tetrakis(methylene (3,5-di-tert-butyl- 4-hydroxyhydrocinnamate)) methane and butylated hydroxytoluene (BHT).

16. The process of claim 13, wherein the stabilizing effective amount of antioxidant ranges from about 0.001 to about 2% by weight.