Planning Competition for Logistics Robots In Simulation

Scenario and Challenges

Tim Niemueller

Knowledge-Based Systems Group, RWTH Aachen University

Erez Karpas

Technion - Israel Institute of Technology

Tiago Vaquero, Eric Timmons, and Brian C. Williams Massachusetts Institute of Technology

Planning Perspective

- Focus on plan generation
- Robotics not as testbed
- Execution gets less attention

Robotics Perspective

- Focus often on various topics
- Integration for evaluation
- Planning labor-intensive

Planning Perspective

Robotics Perspective

- Focus on plan generation
- Robotics not as testbed
- Execution gets less attention

- Focus often on various topics
- Integration for evaluation
- Planning labor-intensive

Goals

- 1. Foster closer cooperation among communities
- 2. Develop grounded expertise with robotic scenarios, platforms, decision architectures, system integration and evaluation

RoboCup Logistics League

RoboCup Logistics League

Game Basics

- Task: In-factory production logistics
- Goal: variant production
- Two teams playing on common field
- Each team has 3 robots
- Multi-robot coordination task

Two Game Phases

- Exploration: detect and report machines
- Production: produce and deliver by using processing stations spread across field

RoboCup Logistics League

Playing Field

- Team colors: cyan and magenta
- Exclusive machines spread across field
- Mirrored at middle axis

RoboCup Logistics League – Machines

Common

- Based on Festo MPS
- Marker to identify machine
- Signal light to indicate state
- Each team has exclusive set
- Similar handling for all types

Machine Types (per team)

- 1× Base Station (BS): retrieve bases
- 2× Ring Station (RS): mount colored rings
- 2× Cap Station (CS): buffer/mount caps
- 1× Delivery Station (DS): final delivery

Semi-autonomous Referee Box

Tasks

- Determines randomized orders and machine failures
 - Posts orders dynamically
 - Scoring and evaluation
- Instructs MPS stations

Planning and Benchmarking

- Accountable environment agency
- Same controller in simulation
- Records extensive data
- Limited uncertainty
- ⇒ Repeatable benchmarks

Logs game information and all communication

RoboCup Logistics League - Production

Product Composition

- Products of four complexities (number of rings)
- Base (3 colors) + 0–3 rings (4 colors) + cap (2 colors)
- Order of ring colors is important
- Some ring colors require additional material
- Actual product variants randomized by referee box
- Orders have lead time of a few minutes

Order Elements (posted dynamically by refbox)

- Product to deliver (and number thereof)
- Time window in which to deliver

Planning and Execution Competition (PExC)

RoboCup Logistics League (RCLL)

- In-factory manufacturing logistics in Smart Factory
- Maintain and optimize material flow in production
- Competition under the RoboCup umbrella

RCLL as a Planning Competition and Benchmark

- Cooperative and competitive aspects, partially observable, non-deterministic, dynamic
- Typical: local, distributed, incremental strategy
- Desired: planning for global optimization
- Challenges: coordination, execution, robustness

Planning and Execution Competition (PExC)

RoboCup Logistics League (RCLL)

- In-factory manufacturing logistics in Smart Factory
- Maintain and optimize material flow in production
- Competition under the RoboCup umbrella

RCLL as a Planning Competition and Benchmark

- Cooperative and competitive aspects, partially observable, non-deterministic, dynamic
- Typical: local, distributed, incremental strategy
- Desired: planning for global optimization
- Challenges: coordination, execution, robustness

Medium complex benchmark domain focusing on efficient *planning/scheduling* and **execution integration**

RoboCup Logistics League - Simulation

- Readily integrated 3D simulation with environment agency
- In competition in Kubernetes cloud setup

System Integration

Fawkes Robot Software Framework

- Functional software components
- Lua-based Behavior Engine for skill execution
- Path planning and locomotion

ROS

- Full integration with simulation
- Encapsulates communication with referee box
- Visualization tool

Pre-defined (extensible) Actions

- Basic set of actions required
- Extensible by custom actions

Planning System Architecture

Logistics Robots Competition

Challenge

Integrated planning and execution in a medium complex simulated robotics industry-inspired scenario

Focus

- Multi-robot Task Planning and Coordination
- Planning and Execution Integration

Timeline

February: Call for Participation

May: Qualifiers

June: Competition at ICAPS

Results 2017

Results 2017

Hands-on Production Example

