Machine learning

Linear regression

Exercise VI

פיתוח: ד"ר יהונתן שלר משה פרידמן תודות לד"ר יונתן רובין שעזר בהכנת המצגת קרדיט גם ל- Andrew Ng

וקטורים ופעולות על וקטורים

מעגל היחידה

- r=1 מעגל היחדה מעגל עם רדיוס
 - y-הריטל על ציר ה-sin θ
- על נקודה במעגל יחידה, כאשר y- שווה לערך ה-y- של נקודה במעגל יחידה, כאשר הזווית בין ציר ה-x- לרדיוס הוא θ
 - x-היטל על ציר ה-cos θ
- שר כאשר במעגל אידה, כאשר באר אידה בא אידה, באשר בא אידה אידה בא אידה בין איר בין איר אידה אידה אידה אידה בין איר ה- \mathbf{x}
 - $\sin^2(\theta) + \cos^2(\theta) = 1 לפי פיתגורס *$

וקטור (פרספקטיבה גאומטרית)

 $\vec{x}, \vec{y} \in \mathbb{R}^n$ נסמן - (vector) וקטור

 $\|\vec{x}\|$ מוגדר מבחינה אומטרית ע"י הנורמה א כל וקטור ל \vec{x} מוגדר מבחינה א מציר ה-x מציר ה-

שאלה 1 (סקר) - וקטור ואורך של וקטור

$\vec{x}, \vec{y} \in \mathbb{R}^n$ נסמן - (vector) וקטור

x, הסבר אלגברי (והקשר להסבר הגאומטרי) – ב- \mathbb{R}^2 ערכי y של הנקודה, זהים לוקטור שתחילתו בראשית הצרים y ואורכו כאורך הקו הישר בין הראשית לנקודה. הזוית הנוצרת בין ציר ה-x, לישר שבין הראשית לנקודה זו.

תרגיל (סקר) – חשבו את אורך הוקטור שבתמונה, מבחינת יצוגו הגאומטרי במישור.

תשובות אפשרויות:

14.7 ג. 3.6 ג 2.5 ב. 4. א

-תשובה – נשתמש בערכי x,y וניצור משולש ההיטלים על ציר ה בערכי y-גיר ה-y-גיר ה-

$$\sqrt{2^2+3^2}=\sqrt{13}pprox 3.6$$
 - לפי משפט פיתגורס * \star

שאלה 2 - נורמה של וקטור (פרספקטיבה אלגברית)

 $\|\vec{x}\|$ נורמה של וקטור - הכללה של מושג ה"אורך" (magnitude) בורמה של וקטור - הכללה ב

p=2 נורמה סטנדרטית (אוקלדית) - נציב

$$L_{2} = \|\vec{x}\|_{2} = \left(\sum_{i=1}^{n} |x_{i}|^{2}\right)^{\frac{1}{2}} = \sqrt{x_{1} \cdot x_{1} + x_{2} \cdot x_{2} + \dots + x_{n} \cdot x_{n}} = \sqrt{x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2}} = \sqrt{\vec{x}^{T} \cdot \vec{x}} = \sqrt{\langle \vec{x}, \vec{x} \rangle}$$

שימו לב - חישוב נורמה סטנדרטית, זהה לחישוב המוצג פה של אורך הווקטור.

 $\overrightarrow{OA} = (2,3)$

תרגיל - מה ערך הנורמה (הסטנדרטית) של הוקטור שבתמונה?

תשובה – $\sqrt{(2,3)^T \cdot (2,3)} = \sqrt{2 \cdot 2 + 3 \cdot 3}$ $=\sqrt{13} \approx 3.6$

כפל בסקלר

$$\vec{x}, \vec{y} \in \mathbb{R}^n$$
 נסמן - (vector) וקטור

$$\vec{x} = (x_1, x_2, \dots, x_n) \quad *$$

כפל (של וקטור) בסקלר –

$$\vec{x} \cdot \lambda = \lambda \cdot \vec{x} = (\lambda \cdot x_1, \lambda \cdot x_2, \dots, \lambda \cdot x_n)$$

- מבחינה גאומטרית, הזווית לא משתנה, רק
 "אורך" (הנורמה) הוקטור גדל/קטן (בהתאם לערך של λ)
 - כפל של וקטור בסקלר שלילי, הופך גם את כיוונו, ב-180°.

שאלה 3 (סקר) מכפלה סקלרית (פרספקטיבה גאומטרית)

 \vec{x} , \vec{y} בין הוקטורים θ

 $\vec{x} \cdot \vec{y}$ מכפלה סקלרית (dot product) של וקטורים מכפלה סקלרית

$$ec{x} \cdot ec{y} = \|ec{x}\| \cdot \|ec{y}\| \cdot \cos heta$$
 מבחינה גאומטרית - מבחינה

$$\cos heta = rac{ec{x} \cdot ec{y}}{\|ec{x}\| \cdot \|ec{y}\|}$$
 שימו לב שמכאן נובע $*$

מסקנות נוספות

$$\cos 0 = 1$$
אם "פיוון ש-1, $\|\vec{x}\|\cdot\|\vec{y}\| = 0$ המכפלה הסקלרית המכפלה $\theta = 0^\circ$ אם $*$

$$\cos 90 = 0$$
אם $\theta = 90$, המכפלה הסקלרית $\theta = 90$ אם $\theta = 90$

$$\cos 180 = -1$$
, ביוון ש-1- $|\vec{x}|| \cdot ||\vec{y}|| =$ המכפלה הסקלרית אם $\theta = 180^\circ$ אם $\theta = 180^\circ$

$$||\vec{x} \cdot \vec{y}|| = 3$$
 כמה שווה $||\vec{x}|| = 5$ כמה שווה $||\vec{x}|| = 5$

תשובות אפשרויות:

12.5.7 ג. 10. ב. 15. א.

$$\vec{x} \cdot \vec{y} = \|\vec{x}\| \cdot \|\vec{y}\| \cdot \cos \theta = 5 \cdot 3 \cdot 0.5 = 7.5$$
 משובה:

שאלה 4 - מכפלה סקלרית (פרספקטיבה אלגברית)

 $\vec{x}, \vec{y} \in \mathbb{R}^n$ נסמן - (vector) וקטור

 $\vec{x} \cdot \vec{y}$ נסמן של וקטורים (dot product) מכפלה סקלרית

$$\langle \vec{x}, \vec{y} \rangle = \sum_{i=1}^n x_i \cdot y_i = x_1 \cdot y_1 + x_2 \cdot y_2 + \dots + x_n \cdot y_n$$
 מבחינה אלגברית

$$\langle \vec{x}, \vec{y} \rangle = \vec{x}^T \cdot \vec{y} = \sum_{i=1}^n x_i \cdot y_i$$
 בצורה מטריציונית - $*$

תרגיל – נתון $\overrightarrow{w}^T \cdot \overrightarrow{x}$ ומה ניתן להסיק $\overrightarrow{w} = (3,0,-4), \overrightarrow{x} = (4,-7,3)$ ומה ניתן להסיק גאומטרית?

<u>משובה</u>: 0=3·4+0·-7+-4·3

cos 90 = 0-מסקנה: מבחינה גאומטרית, הוקטורים ניצבים, כיוון ש 🎄

שאלה 5 - חיבור וקטורי

 $\vec{x} + \vec{y}$ נסמן – נסמן חיבור של וקטורים

$$=(x_1+y_1,x_2+y_2,...,x_n+y_n)$$
 מבחינה אלגברית

 \vec{u} תרגיל – חשבו את הווקטור המתקבל, מחיבור הווקטורים \vec{v} + \vec{v}

$$\vec{u} + \vec{v} = (2,3) + (5,1) = (7,4) - \pi$$
תשובה

$$ec{z}-ec{u}=ec{z}+-ec{u}=ec{v}$$
 נסמן ל $ec{z}=ec{u}+ec{v}$ מתקיים ל $ec{z}=ec{u}+ec{v}$

משוואה של קו ישר (משוואה לינארית)

שאלה 6 (סקר) - משוואה לינארית

ב- לא לינארית

שאלות:

?. איזו משוואה מהמשוואות הבאות הינה משוואה לינארית?

$$2x_1^3 + x_2 + 2$$
.

תשובות אפשריות:

 $x_1 + 5x_2 . X$

ב- לינארית ב- לינארית
$$2$$

$$\lambda$$
 א – לינארית

 $\Delta - 4$ לינארית ב- לא לינארית 4

תשובה נכונה:

ג. א. לינארית. ב. לא לינארית (פולינומיאלית)

שאלה 7 (סקר) - משוואות קו ישר

איך יראו המשוואות $w_0 + w_0 + w_0 + w_0 + w_0$ עם הפרמטרים שמופיעים בתחתית? $w_0 + w_0 + w_0 + w_0$. מקביל לציר ה- $w_0 + w_0 + w_0 + w_0$. מקביל לציר ה- $w_0 + w_0 + w_0 + w_0 + w_0$. מקביל לציר ה- $w_0 + w_0 + w_0 + w_0 + w_0 + w_0$. מקביל לציר ה- $w_0 + w_0 + w_0 + w_0 + w_0 + w_0 + w_0$. מקביל לציר ה- $w_0 + w_0 +$

תשובות אפשרויות:

y- ישר ii - ii - מקביל לציר ה- y- ישר ii - ישר ii - ישר ii - א. ישר ii - ישר iii - ישר ii - ישר ii - ישר ii - ישר iii - ישר iii - ישר ii - ישר ii - ישר

מוטיבציה – גובה המשכורת

בעית רגרסיה

רגרסיה (regression) - בעיית למידת מכונה אנחנו רוצים לחזות מספר רציף (במקרה זה מחיר הדירה)

- (supervised learning) שייכת ללמידה מונחת *
- בעיית סיווג, אשר גם שייכת לבעיות למידה מונחת (ושאותה למדנו בשיעורים הקודמים), חוזה קטגוריה ולא ערך

רגרסיה לינארית

ברגרסיה לינארית נחזה את הקשר בין המאפיינים לבין הערך אותו נרצה לחזות, כקשר לינארי.

מוטיבציה – שכר

שיערוך מודל רגרסיה (regression model evaluation)

שיערוך מודל רגרסיה

$$SAE = \sum_{I=1}^{n} |y_i - \hat{y}_i| : \underline{SAE}$$
 $MAE = \frac{1}{n} \sum_{I=1}^{n} |y_i - \hat{y}_i| : \underline{MAE}$
 $SSE = \sum_{I=1}^{n} (y_i - \hat{y}_i)^2 : \underline{SSE}$
 $MSE = \frac{1}{n} \sum_{I=1}^{n} (y_i - \hat{y}_i)^2 : \underline{MSE}$
 $RMSE = \sqrt{\frac{1}{n} \sum_{I=1}^{n} (y_i - \hat{y}_i)^2} : \underline{RMSE}$
 $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$ כלומר \bar{y} : \bar{y}
 $SST = \sum_{I=1}^{n} (y_i - \bar{y})^2 = : (Sum of Squared Total) SST$
 $R^2 = 1 - \frac{SSE}{SST} = 1 - \frac{MSE}{\sigma^2} : R-SQARE$

שאלה 8 (סקר)

$$MAE = \frac{1}{n} \sum_{l=1}^{n} |y_i - \hat{y}_i| : \underline{MAE}$$
 $SAE = \sum_{l=1}^{n} |y_i - \hat{y}_i| : \underline{SAE}$

$$SAE = \sum_{i=1}^{n} |y_i - \hat{y}_i| : SAE$$

$$RMSE = \sqrt{\frac{1}{n}\sum_{l=1}^{n}(y_{l}-\hat{y}_{l})^{2}} : \underline{RMSE}$$
 $MSE = \frac{1}{n}\sum_{l=1}^{n}(y_{l}-\hat{y}_{l})^{2} : \underline{MSE}$ $SSE = \sum_{l=1}^{n}(y_{l}-\hat{y}_{l})^{2} : \underline{SSE}$

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 : \underline{MSE}$$

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 : \underline{SSE}$$

$$SST = \sum_{l=1}^{n} (y_l - \bar{y})^2 = :$$
(Sum of Squared Total) SST $\bar{y} = \frac{1}{n} \sum_{l=1}^{n} y_l$ כלומר כים המונחים, כלומר : \bar{y}

$$ar{y} = rac{1}{n} \sum_{i=1}^n y_i$$
 ממוצע הערכים המונחים, כלומר: $ar{y}$

$$R^2 = 1 - \frac{SSE}{SST} = 1 - \frac{MSE}{\sigma^2}$$
 :R-SQARE

לאיזו מהפונקציות הלינאריות הבאות הטעות המינימלית?

Demo

שאלה 9א – שיערוך מודל רגרסיה

Height (X)	Weight (Y)	Predicted (Ŷ)	Error (Y-Ŷ)	Absolute-Error (Y-Ŷ)
43	41	43.6	-2.6	2.6
44	45	44.4	0.6	0.6
45	49	45.2	3.8	3.8
46	47	46	1	1
47	44	46.8	-2.8	2.8
Regression line = y=9.2+0.8x				

$$SAE = \sum_{i=1}^{n} |y_i - \hat{y}_i| : \underline{SAE}$$

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i| : \underline{MAE}$$

<u>תרגיל</u> –

נתונים 2 משתנים – גובה ומשקל. רוצים לשערך את המשקל כתלות בגובה, ומצאו קו רגרסיה לינארי: \$\hat{9}.2+0.8\$x_1

:MAE -השבו את ה- SAE וה-

פתרון

- Y קודם נשערך את •
- כעת נחשב את הטעות המוחלטת
- SAE = 10.8 נסכום ונקבל
 - נחלק בכמות הדו' ונקבל

$$MAE = \frac{1}{5} \cdot 10.8 = 2.16$$

שאלה 9ב – שיערוך מודל רגרסיה

Height (X)	Weight (Y)	Predicted (Ŷ)	Error (Y-Ŷ)	squared error (Y-Ŷ)²
43	41	43.6	-2.6	6.76
44	45	44.4	0.6	0.36
45	49	45.2	3.8	14.44
46	47	46	1	1
47	44	46.8	-2.8	7.84
Regression	line = $y=9.2+0.8$	x		

<u>תרגיל</u> –

נתונים 2 משתנים – גובה ומשקל. רוצים לשערך את המשקל כתלות בגובה, ומצאו קו רגרסיה (הנ"ל)

השבו את ה- SSE, ה-MSE וה-RMSE:

פתרון:

- Y נשתמש בשערוך הקודם של $(\hat{Y}-\hat{Y})$ ובחישוב הטעות $(\hat{Y}-\hat{Y})$
 - כעת נחשב את הטעותהריבועית
 - נסכום ונקבל SSE=30.4
 - נחלק בכמות הדו' ונקבל

$$\underline{MSE} = \frac{1}{5} \cdot 30.4 = 6.08$$

$$\underline{RMSE} \approx 2.46$$

$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 : \underline{SSE}$

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 : \underline{MSE}$$

$$RMSE = \sqrt{\frac{1}{n}\sum_{i=1}^{n}(y_i - \hat{y}_i)^2} : \underline{RMSE}$$

שאלה 9ג – שיערוך מודל רגרסיה

Height (X)	Weight (Y)	Y-Ÿ	squared dist from avg (Y-\bar{Y})2
43	41	-4.2	17.64
44	45	-0.2	0.04
45	49	3.8	14.44
46	47	1.8	3.24
47	44	-1.2	1.44
Regression	line = $y=9.2+0.8$	3x	

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 : \underline{SSE}$$

$$ar{y} = rac{1}{n} \sum_{i=1}^n y_i$$
 ממוצע הערכים המונחים, כלומר: $ar{y}$

$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2 = :(Sum of Squared Total) SST$$

$$R^2 = 1 - \frac{SSE}{SST} = 1 - \frac{MSE}{\sigma^2}$$
 : R-Squared

<u>תרגיל</u> –

נתונים 2 משתנים – גובה ומשקל. רוצים לשערך את המשקל כתלות בגובה, ומצאו קו רגרסיה (הנ"ל)

:R-Squared -חשבו את ה

פתרון:

- נשתמש בחישוב הקודם של SSE: קיבלנו SSE=30.4
 - $ar{y}$ נחשב את הממוצע

 $\bar{y} = 45.2$

- יונחשב את המרחקים הריבועיים $(Y-\bar{Y})^2$ מהממוצע
 - נחשב את SST (סכום המרחקים SST=36.8 (חריבועיים הנ"ל):
- R-Squared נחשב את יחשב $R^2 = 1 \frac{SSE}{SST} = 1 \frac{30.4}{36.8} \approx 0.174$

(linear regression) רגרסיה לינארית

רגרסיה לינארית

ברגרסיה לינארית – הקשר בין וקטור המאפיינים, לערך אותו רוצים לחזות הוא פונקציה לינארית

מקרה פשוט (כמו בדוגמה): יש רק מאפיין אחד בווקטור המאפיינים

סכום הציונים	שכר יומי בש"ח
2104	460
1416	232
1534	315
852	178
	•••

רגרסיה לינארית

המודל הלינארי:

$$\hat{y} = f\left(x; \vec{w}\right) = w_0 + w_1 x$$

(Cost Function) פונקצית מחיר

המודל הלינארי:

פונקצית המחיר – מוגדרת ע"י ממוצע הטעות הריבועית

$$J\left(\vec{w}
ight) = rac{1}{n} \sum_{i=1}^{n} \left(w_0 + w_1 x_i - y_i
ight)^2$$
 $MSE = rac{1}{n} \sum_{I=1}^{n} (\hat{y}_i - y_i)^2$ הטעות:

$$\hat{y} = f\left(x; \mathbf{\vec{w}}\right) = \mathbf{w_0} + \mathbf{w_1}x$$

 $\min \left[J\left(\overrightarrow{\boldsymbol{w}} \right) \right]$

מטרה: למצוא היפותזה עם טעות מינימלית ע"י שימוש בפו' ו

שאלה 11א - פונקצית מחיר

המודל הלינארי:

$$J\left(\mathbf{\vec{w}}\right) = \frac{1}{n} \sum_{i=1}^{n} \left(\mathbf{w_0} + \mathbf{w_1}x_i - y_i\right)^2$$

 $\hat{y} = f\left(x; \mathbf{\vec{w}}\right) = \mathbf{w_0} + \mathbf{w_1}x$

 (w_1) נניח משוואת ישר שיוצאת מראשית הצירים (ישנו רק הפרמטר).

 $\hat{y}=x$ - חשבו מה תהיה הטעות עבור המשוואה •

$$\frac{1}{3} \cdot \left((1-1)^2 + (2-2)^2 + (3-3)^2 \right) = 0 = \frac{1}{3}$$
תשובה: הטעות

שאלה 11ב - פונקצית מחיר

פונקצית המחיר:

המודל הלינארי:

$$\hat{y} = f\left(x; \vec{w}\right) = w_0 + w_1 x$$

.(w_1 משוואת ישר שיוצאת מראשית הצירים (ישנו רק הפרמטר $\widehat{y}=0.5x$ - חשבו מה תהיה הטעות עבור המשוואה - $\widehat{y}=0.5x$

$$\frac{1}{3} \cdot \left((0.5 - 1)^2 + (1 - 2)^2 + (1.5 - 3)^2 \right) \approx 1.166 =$$
תשובה: הטעות

שאלה 11ג - פונקצית מחיר

המודל הלינארי:

$$J\left(\mathbf{\vec{w}}\right) = \frac{1}{n} \sum_{i=1}^{n} \left(\mathbf{w_0} + \mathbf{w_1}x_i - y_i\right)^2$$

 $\hat{y} = f\left(x; \mathbf{\vec{w}}\right) = \mathbf{w_0} + \mathbf{w_1}x$

 (w_1) נניח משוואת ישר שיוצאת מראשית הצירים (ישנו רק הפרמטר).

 $\hat{y}=0$ מה חשבו מה תהיה הטעות עבור המשוואה - •

$$\frac{1}{3} \cdot \left((0-1)^2 + (0-2)^2 + (0-3)^2 \right) \approx 4.66 =$$
תשובה: הטעות

פונקצית מחיר

פונקצית המחיר:

 w_1

המודל הלינארי:

$$\hat{y} = f\left(x; \vec{w}\right) = w_0 + w_1 x$$

כמו איזו פונקציה נראית פונקצית המחיר?

w_0, w_1 פונקצית מחיר עבור 2 פרמטרים

w_0, w_1 שאלה 12א - פונקצית מחיר עבור 2 פרמטרים

- ישר הרגרסיה, מאפיין אחד

פונקציה של x, עבור w_0, w_1 מסוימים -

 $J(w_0,w_1)$

- פונקצית המחיר (מדמה גרף תלת מימדי)

 w_0,w_1 פונקצית המחיר - פונקציה של -

 $?h_1(x) = 360 + 0 \cdot x$ שאלה: איפה בגרף נמצאת הטעות של ההיפותזה

 $w_0=360,\,w_1=0$ תשובה: נסמן את נקודת המפגש של

w_0, w_1 שאלה 12ב - פונקצית מחיר עבור 2 פרמטרים

- ישר הרגרסיה, מאפיין אחד
- פונקציה של x, עבור w_0, w_1 מסוימים -

- פונקצית המחיר (מדמה גרף תלת מימדי)
- w_0, w_1 פונקציה של פונקציה פונקצית המחיר

 $?h_{2}\left(\mathbf{x}\right) =220+0.12\cdot \mathbf{x}$ איפה בגרף נמצאת הטעות של ההיפותזה

 $w_0=220$, $w_1=0.12$ תשובה: נסמן את נקודת המפגש של

w_0, w_1 שאלה 12ג - פונקצית מחיר עבור 2 פרמטרים

- ישר הרגרסיה, מאפיין אחד
- סוימים w_0, w_1 עבור x שסוימים -

$J(w_0, w_1)$

- פונקצית המחיר (מדמה גרף תלת מימדי)
- w_0, w_1 פונקציה של פונקציה פונקצית המחיר

איך ניתן לראות איך ניתן או או $h_{1}\left(\mathbf{x}\right)$ או היפותזה טעות קטנה יותר, קטנה או או או $h_{1}\left(\mathbf{x}\right)$

תשובה: $h_2\left(\mathbf{x}\right)$, מבחינה גרפית, היא קרובה יותר למעגל הפנימי, שם נמצא המינימום.

נגזרת ונקודות קיצון

מושגים – נגזרת של פונקציה

- נגזרת הנגזרת של פונקציה ממשיתמתארת את קצב ההשתנות של הפונקציה
- מבחינה גאומטרית הנגזרת של פונקציה בנקודה שווה לשיפוע המשיק באותה נקודה, כלומר, לכיוון של העקומה שהפונקציה מתארת.

f'>0 מה משמעות ערכי נגזרת

שאלה: מה המשמעות של ?f '(x)>0

תשובה: המשמעות שכיוון הפונקציה בעליה מנקודות שמתקרבות ל-x מלמטה עד ל-x וכן מ-x לנקודות קרובות לאחר x

גרדיאנט

The gradient of the function $f(x,y) = -(\cos^2 x + \cos^2 y)^2$

גראדיאנט (gradiant) – גרדאינט של
 פונקציה וקטורית, הוא הוקטור של הנגזרות
 החלקיות.

* grad $f(a) = \overrightarrow{\nabla} f(a)$ ליוון וקטור מצביע אל הכיוון בו השינוי בשדה הסקלרי מקסימלי (חיובי). גודל וקטור הגרדיאנט כשיעור השינוי המקסימלי

פונקציה קמורה – רב מימדית

A graph of the bivariate convex function $x^2 + xy + y^2$

תרגיל – מהם הניגזרות y ולפי x ולפי?

תשובה –

$$\frac{\partial f}{\partial x} = 2x + y$$

$$\frac{\partial f}{\partial y} = 2y + x$$

Gradient Descent אלגוריתם (מורד הגרדיאנט)

מבוא ל- Gradient Descent

שאלה: אנחנו נמצאים במקום הררי ורוצים להגיע לתחתית, כיצד נדע לאיזה כיוון ללכת?

תשובה - נניח שיש נחל, הנובע בין ההרים, אשר מגיע לבסוף לים, נעקוב אחרי כיוון הנחל, ומובטח לנו שנגיע לתחתית.

הבעיה שלנו - אנחנו רוצים למצוא את המינימום של הפונקציה, אך אין לנו איך לחשב זאת

> הפתרון – נוכל לפתור את הבעיה, כבעיית אופטימיזציה, ע"י שימוש בגרדיאנט.

- הגדיאנט, נותן קירוב לפונקציה
 - דומה לכיוון ע"י הנגזרת

אינטואיציה - Gradient Descent

$$x^{(0)} \to x^{(1)} \to x^{(2)} \to \dots \to x^{(T)}$$

נרצה בכל שלב לעדכן את ערכי המשתנים, כדי להתקרב עוד ועוד למינימום

$$x^{(t+1)} = x^{(t)} - \alpha f'\left(x^{(t)}\right)$$

במקרה של פרמטר יחיד, בכל שלב באלגוריתם, נשתמש בנגזרת, כדי להתקרב למינימום

– (learning rate) קבוע הלמידה קובע את קצב ההתכנסות

אינטואיציה - Gradient Descent

$$x^{(0)} \to x^{(1)} \to x^{(2)} \to \dots \to x^{(T)}$$

$$x^{(t+1)} = x^{(t)} - \alpha f'\left(x^{(t)}\right)$$

קבוע למידה קטן יגרור התכנסות איטית

אינטואיציה - Gradient Descent

$$x^{(0)} \to x^{(1)} \to x^{(2)} \to \dots \to x^{(T)}$$

$$x^{(t+1)} = x^{(t)} - \alpha f'\left(x^{(t)}\right)$$

קבוע למידה גדול יגרור ש-J אולי לא יקטן בכל סבב, ואולי אף יתבדר

- Gradient Descent

מתווה האלגוריתם:

- (w_0,w_1) אתחל ערכים התחלתיים לפרמטרים למשל עבור *
- * מעדכנים את הפרמטרים עד להתכנסות (בתקווה הגעה למינימום):

$$w_0^{t+1} := w_0^t - \alpha \cdot \frac{\partial f}{\partial w_0^t} \quad *$$

$$w_1^{t+1} := w_1^t - \alpha \cdot \frac{\partial f}{\partial w_1^t} \quad *$$

תרגיל -

- $g(w_0, w_1) = w_0 + w_1$ נתונה הפונקציה
- α =0.01 נתונים הערכים ההתחלתיים הבאים: 6:6 אים ההתחלתיים הבאים: $w_0^0=2$, $w_1^0=6$ כלומר את ערכי הפרמטרים לאחר סבב אחד) w_0^1 , w_1^1 אחר סבב אחד) *

$$\frac{\partial f}{\partial w_0^0}=1$$
, $\frac{\partial f}{\partial w_1^0}=1$ ראשית יש לחשב את הנגזרות החלקיות – ראשית יש לחשב את הנגזרות

$$w_0^1 \coloneqq 2 - 0.01 \cdot 1 = 1.99 \quad *$$

$$w_1^1 \coloneqq 6 - 0.01 \cdot 1 = 5.99 \quad *$$

- (linear regression) רגרסיה לינארית Gradient Descent בעזרת אלגוריתם (מורד הגרדיאנט) - הרעיון

(Cost Function) פונקצית מחיר

פונקצית המחיר – מוגדרת ע"י ממוצע הטעות הריבועית

$$J\left(\mathbf{\vec{w}}\right) = \frac{1}{n} \sum_{i=1}^{n} \left(\mathbf{w_0} + \mathbf{w_1}x_i - y_i\right)^2$$

$$\hat{y} = f\left(x; \mathbf{\vec{w}}\right) = \mathbf{w_0} + \mathbf{w_1}x$$

Linear Regression via Gradient Descent

$$J\left(\frac{\vec{v}}{n}\right) = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{w_0}{n} + \frac{w_1}{w_1}x_i - y_i\right)^2$$
 פונקצית המחיר:

$$rac{\partial J}{\partial w_0} = rac{2}{n} \sum_{i=1}^n \left(w_0 + w_1 x_i - y_i
ight) \cdot 1$$
הנגזרות $rac{\partial J}{\partial w_1} = rac{2}{n} \sum_{i=1}^n \left(w_0 + w_1 x_i - y_i
ight) \cdot x_i$

$$w_{0} = w_{0} - \alpha \cdot \frac{\partial J}{\partial w_{0}} = w_{0} - \alpha \cdot \frac{2}{n} \cdot \sum_{i=1}^{n} \left[\left(w_{0} + w_{1} \cdot x_{i,1} - y_{i} \right) \cdot 1 \right]$$

$$w_{1} = w_{1} - \alpha \cdot \frac{\partial J}{\partial w_{1}} = w_{1} - \alpha \cdot \frac{2}{n} \cdot \sum_{i=1}^{n} \left[\left(w_{0} + w_{1} \cdot x_{i,1} - y_{i} \right) \cdot x_{i,1} \right]$$

 $H_W(x)$

- ישר הרגרסיה, מאפיין אחד

מסוימים w_0, w_1 עבור x, של -

 $J(w_0,w_1)$

- פונקצית המחיר (מדמה גרף תלת מימדי)

 w_0, w_1 פונקציה של - פונקציה - פונקציה -

תרגיל – בתחילת האיטרציה (הסבב) הרביעית ב
 $h(\mathbf{x}) = \mathbf{x}$ המשקולות המתאימות למשוואה הבאה: $\alpha = 0.0000001$ train-set -, ועבור ה-, ועבור ה-, ועבור ה-

Gradient חשבו הבאה בעזרת לאיטרציה הבאה בעזרת w_0, w_1 את Descent עבטר הרגרסיה הלינארית חשבו סבב נוסף

סכום הציונים	שכר יומי בש"ח
2104	460
1534	315
852	178

Train set

$$H_W(x)$$

- ישר הרגרסיה, מאפיין אחד

מסוימים w_0, w_1 עבור x, של -

$$J(w_0,w_1)$$

- פונקצית המחיר (מדמה גרף תלת מימדי)

 w_0, w_1 פונקציה של - פונקציה - פונקצית המחיר -

סכום הציונים	שכר יומי בש"ח
2104	460
1534	315
852	178

Train set

$$H_W(x)$$

- ישר הרגרסיה, מאפיין אחד

מסוימים w_0, w_1 עבור x, של -

J(v	$(0, W_1)$
-----	------------

- פונקצית המחיר (מדמה גרף תלת מימדי)

 w_0, w_1 פונקציה של - פונקציה - פונקצית המחיר -

סכום הציונים	שכר יומי בש"ח
2104	460
1534	315
852	178

Train set

$$m{w_1} = w_1 - lpha \cdot rac{\partial J}{\partial w_1}$$
 : המשך פתרון:
$$= -0.1 - 0.00000001 \cdot rac{2}{3} \cdot [(900 - 0.1 \cdot 2104 - 460) \cdot 2104 + (900 - 0.1 \cdot 1534 - 315) \cdot 1534 + (900 - 0.1 \cdot 852 - 178) \cdot 852]]$$

$$= -0.1 - 0.00000001 \cdot rac{2}{3} \cdot 2,212,864.8 \approx -0.147$$

 $H_W(x)$

- ישר הרגרסיה, מאפיין אחד

מסוימים w_0, w_1 עבור x, של -

$J(w_0,w_1)$

- פונקצית המחיר (מדמה גרף תלת מימדי)
 - w_0, w_1 פונקציה של פונקציה פונקצית המחיר

סכום הציונים	שכר יומי בש"ח
2104	460
1534	315
852	178

Train set

פתרון לאחר איטרציה אחת:

$$w_0 = 899.99$$

 $w_1 = -0.147$
 $H_W(x) = 899.99 - 0.047x$

$H_W(x)$

- ישר הרגרסיה, מאפיין אחד
- מסוימים w_0, w_1 עבור x של -

סכום הציונים	שכר יומי בש"ח
2104	460
1534	315
852	178

Train set

$J(w_0,w_1)$

- פונקצית המחיר (מדמה גרף תלת מימדי)
 - w_0, w_1 פונקציה של פונקציה פונקצית המחיר -

... לאחר כמה סבבים

(סקר) שאלת 14

שר בו נתון ש- gradient descent, במהלך שלב האימון ברגרסיה לינארית בעזרת אלגוריתם $w0=4,\,w1=2$ האיטרציה השלישית התקבלו הערכים: $\alpha=0.5$

Уi	Χi	מספר הדוגמה (i)
7	1	1
3	0	2
13	4	3
-4	-4	4

נתון ה- training set הבא:

מה מהתשובות שלהלן מתקיים, לגבי עדכון הפרמטרים :(- $lpha^*(2/n)$ -באיטרציה הרביעית (הכפילו את תוצאת הגדיאנט ב-

תשובות אפשרויות:

- w0 א. דוגמה מספר 2 לא תשפיע על עדכון
- ב. דוגמה מספר 1 תתרום לכך שערכו של $\,\mathrm{w}1$ ירד ב1.
- 0 יעלה ב0 יעלה ב0 יעלה ב0 יעלה ב0 יעלה ב0
- 1 יעלה ב1 יעלה ב1 יעלה ב1 ד. דוגמה מספר 3 יעלה ב1

(סקר) שאלת 14

שר בו נתון ש- gradient descent, במהלך שלב האימון ברגרסיה לינארית בעזרת אלגוריתם $w0=4,\,w1=2$ האיטרציה השלישית התקבלו הערכים: $\alpha=0.5$

Уi	Χi	מספר .	
		הדוגמה (i)	
7	1	1	
3	0	2	
13	4	3	
-4	-4	4	

:נתון ה- training set הבא

מה מהתשובות שלהלן מתקיים, לגבי עדכון הפרמטרים :(-α*(2/n) באיטרציה הרביעית (הכפילו את תוצאת הגדיאנט ב-

תשובות אפשרויות:

- w0 א. דוגמה מספר 2 לא תשפיע על עדכון
- ב. דוגמה מספר 1 תתרום לכך שערכו של w1 ירד ב1.
- 0 יעלה ב0 יעלה ב0 יעלה ב0 יעלה ב0 יעלה ב0
- ד. דוגמה מספר 3 תתרום לכך שערכו של w1 יעלה ב1.

:w1 התרומה של דוגמה 3 לעדכון ערכו של

$$-\alpha^*(2/n)^*(\hat{y}-y)^*x1_{(3)} = -\alpha^*(2/n)^*(w0+w1^*x1_{(3)}-y1_{(3)})^*x1_{(3)} = -0.5^*(2/4)^*(4+2^*4-13)^*4 = -(1/4)^*(-1)^*4 = 1$$

ולכן, דוגמה מספר 3 תתרום לכך שערכו של w1 יעלה ב

(סקר) שאלת 14

שר בו נתון ש- gradient descent, במהלך שלב האימון ברגרסיה לינארית בעזרת אלגוריתם $w0=4,\,w1=2$ השלישית התקבלו הערכים: $\alpha=0.5$

Уi	Xi	מספר
		הדוגמה (i)
7	1	1
3	0	2
13	4	3
-4	-4	4

:נתון ה- training set הבא

מה מהתשובות שלהלן מתקיים, לגבי עדכון הפרמטרים :(- $lpha^*(2/n)$ -באיטרציה הרביעית (הכפילו את תוצאת הגדיאנט ב-

תשובות אפשרויות:

- w0 א. דוגמה מספר 2 לא תשפיע על עדכון
- ב. דוגמה מספר 1 תתרום לכך שערכו של w1 ירד ב1.
- 0 יעלה ב0 יעלה ב0 יעלה ב0 יעלה ב0 יעלה ב0
- ד. דוגמה מספר 3 תתרום לכך שערכו של w1 יעלה ב1.

:w1 לעדכון ערכו של דוגמה 1 לעדכון ארכו של

$$\alpha^*(2/n)^*(\hat{y}-y)^*x1_{(1)} = \alpha^*(2/n)^*(w0+w1^*x1_{(1)}-x1_{(1)})^*x1_{(1)} = -0.5^*(2/4)^*(4+2^*1-7)^*4 = -(1/4)^*(-1)^*4 = 1$$

דוגמה מספר 1 תתרום לכך שערכו של w1 יעלה ב תשובה ב' לא נכונה רגרסיה לינארית (linear regression) ריבוי משתנים (multivariate) - מוטיבציה

multivariate linear regression

במקרה זה, לכל וקטור באימון יש יותר ממאפיין אחד (למשל: גודל הדירה, קומה, כיווני-אוויר, וכו')

Price (\$K) (y)	Size (meter²) (x4)	Number of bedrooms (x3)	Number of floors (x2)	Age of home (years) (x1)
460	2104	5	1	45
232	1416	3	2	40
315	1534	3	2	30
178	852	2	1	36

$$H_W(x) = \overrightarrow{w}^T \cdot \overrightarrow{x} = w_0 \cdot x_0 + w_1 \cdot x_1 + w_2 \cdot x_2 + \dots + w_d \cdot x_d$$

המודל הלינארי -עבור רגרסיה מרובת משתנים:

$$\hat{y}_i = \mathbf{\vec{w}} \cdot \vec{x}_i$$

קומבינציה לינארית של המאפיינים 61

(Cost Function) פונקצית מחיר

$$\hat{y}_i = ec{w} \cdot ec{x}_i$$
 במודל הלינארי:

$$J\left(ec{oldsymbol{v}}
ight)=rac{1}{n}\sum_{i=1}^n\left(\hat{y}_i-y_i
ight)^2=rac{1}{n}\sum_{i=1}^n\left(ec{oldsymbol{v}}\cdotec{x}_i-y_i
ight)^2$$
 פונקצית המחיר ($n\geq 1$)

Multivariate Gradient Descent Algorithm - for linear regression:

Repeat until done:

We want w_0 to be partialy derived as the rest of \vec{w} , so if j=0, $x_{i,0}=1$

$$w_j = w_j - \alpha \cdot \frac{\partial J}{\partial w_j} = w_j - \alpha \cdot \frac{2}{n} \cdot \sum_{i=1}^n \left[(\vec{w} \cdot \vec{x}_i - y_i) \cdot \vec{x}_{i,j} \right]$$

(simultaneously update w_j for j=0,...,d)

שאלה 15 - Gradient Descent

Multivariate Gradient Descent Algorithm - for linear regression:

Repeat until done: $w_j = w_j - \alpha \cdot \frac{\partial J}{\partial w_i} = w_j - \alpha \cdot \frac{2}{n} \cdot \sum_{i=1}^n \left[(\vec{w} \cdot \vec{x}_i - y_i) \cdot x_{i,j} \right]$

Train set

new w vals

Size			
(meter ²)	Number of	Age of home	Price (\$K)
	bedrooms	(years)	
2104	5	45	460
1416	3	40	232
852	2	36	178

Predicted (Ŷ)	(Ŷ-Y)xi,0	(Ŷ-Y)xi,1	(Ŷ-Y)xi,2	(Ŷ-Y)xi,3	
0	-460	-967840	-2300	-20700	
0	-232	-328512	-696	-9280	
0	-178	-151656	-356	-6408	
Sum	-870	-1448008	-3352	-36388	
α *2*1/n*Sum	-58	-96533.9	-223.4667	-2425.86667	

96533.87

58

 $\frac{\pi - \kappa_i - 1}{\alpha - 1}$ נתונים $\alpha = 0$, לכל $m_j = 0$, לכל $m_j = 0$ ונתון ה-train set

Gradient בצעו סבב אחד של Descent

תשובה:

נחשב את ערכי הנגזרות החלקיות ונכפיל ב- α נחשב את ערכי וקטור המשקולות נחשב את ערכי וקטור המשקולות (\overrightarrow{w})

 \overrightarrow{w} המעדוכן האם ערכי \overrightarrow{w} המעדוכן נראים סבירים? מדוע זה קרה?

2425.866667

223.46667

דגשים - Gradient Descent

את העדכון של w_j בכל שלב, יש לבצע במקביל * למשל עבור מקרה של מאפיין אחד בוקטור המאפיינים:

Correct: Simultaneous update

$$temp0 := w_0 - \alpha \frac{\partial J}{\partial w_0} J(w_0, w_1)$$

$$temp1 := w_1 - \alpha \frac{\partial J}{\partial w_1} J(w_0, w_1)$$

$$w_0 := temp_0$$

$$w_1 := temp_1$$

Incorrect

$$temp0 := w_0 - \alpha \frac{\partial J}{\partial w_0} J(w_0, w_1)$$

$$w_0 := temp_0$$

$$temp1 := w_1 - \alpha \frac{\partial J}{\partial w_1} J(w_0, w_1)$$

$$w_1 := temp_1$$

דגשים - Gradient Descent

- $x_0^{(i)}$ כדי להקל בתהליך, מומלץ להוסיף עוד עמודה עבור $x_0^{(i)}$ כדי להקל בתהליך, מומלץ להוסיף עוד עמודה עבור לאשון train set במטריצת הוקטורים של ה-train set, כך ולקבוע $x_0^{(i)}=1$ עבור כל תא ראשון בוקטור (נקרא לו contant_val)
 - scaling כאשר יש יותר ממאפיין אחד, צריך לבצע צעד מקדים של *
 - [-1,1] או של סילום בטווח t-score של scaling ∗ נשתמש ב- ∗
- שימו לב שאי ביצוע הסילום גרם לחישובי ערכים גבוהים מאוד בתרגילים, ועלול היה לא להתכנס ומאוד משפיע על רגרסיה לינארית
- כאשר רוצים לשערך מודל רגרסיה, צריך להשתמש במטריקות שונות מאשר במודל סיווג
 - RMSE -ב נשתמש למשל ב-

דגשים - Gradient Descent

- − תנאי עצירה
- ϵ ישל הפסיק את האלגוריתם כאשר השינוי ב-J (פו' המחיר) קטן מ \approx ($\epsilon < 10^{-3}$
 - − קביעת ערכים ראשוניים ♦
 - יכול להשפיע על התוצאות *
 - $\theta_j = 0$ ניתן להציב *
 - 10^{-3} , $3 \cdot 10^{-3}$, 10^{-2} , $3 \cdot 10^{-2}$ א לגבי α , ניתן לקבוע ערכים של (Andrew Ng)

רגרסיה לינארית – יתרונות וחסרונות

יתרונות:

- קל למימוש, להבנה והסבר
- ניתן להסיק על חשיבות המאפיינים
- קטן train-set עובד די טוב גם עם -
 - זמן אימון מהיר
 - סיבוכיות מקום נמוכה
- רוב החסרונות ברות טיפול (למשל טיפול ב-overfitting רוב החסרונות ברות טיפול (regularization

חסרונות:

- לא מתאים כשאין קשר לינארי ומתקשה שההיפותזה מורכבת
 - נטיה ל-overfitting במיוחד בריבוי מאפיינים
 - מתקשה לטפל במאפיינים לא רלוונטים וברעש
 - (scaling) אילום ללא סילום -
 - צריך לוודא חוסר תלות בין המאפיינים
 - הטעות צריכה להתפלג נורמלית