Package 'Microbialdiversity'

December 5, 2024

Title What the Package Does (One Line, Title Case)

Version 0.0.0.9000

Description What the package does (one paragraph).
License MIT + file LICENSE
Encoding UTF-8
Roxygen list(markdown = TRUE)
RoxygenNote 7.3.2
Depends R (>= 2.10)
LazyData true
Suggests knitr, rmarkdown, testthat (>= 3.0.0), devtools
Config/testthat/edition 3
VignetteBuilder knitr
Imports ecolTest
NeedsCompilation no
Author First Last [aut, cre] (YOUR-ORCID-ID)
Maintainer First Last <first.last@example.com></first.last@example.com>
R topics documented:
calculate_inverse_simpson
calculate_observed_otus
calculate_shannon
calculate_simpson
compare_inverse_simpson_multiple
compare_inverse_simpson_two
compare_observed_otus_multiple
compare_observed_otus_two
compare_shannon_two
compare_simpson_multiple
compare_simpson_two
Microbialdiversity
microbiome_data
shannon_diversity
simpson_diversity

calculate_inverse_simpson

Calculate Inverse Simpson Diversity Index

Description

This function calculates the Inverse Simpson diversity index for a vector of species counts or proportions. The Inverse Simpson index ranges from 1 (low diversity) to the number of species (high diversity).

Usage

```
calculate_inverse_simpson(abundances)
```

Arguments

abundances A numeric vector of species counts or proportions.

Value

The Inverse Simpson diversity index.

Author(s)

Akinsuyi Oluwamayowa Samuel

Examples

```
# Example with equal abundances
calculate_inverse_simpson(c(1, 1, 1, 1)) # Should return 4
# Example with unequal abundances
calculate_inverse_simpson(c(10, 20, 30, 40)) # Should return ~3.57
```

calculate_observed_otus

Calculate Observed OTUs

Description

This function calculates the number of observed OTUs (Operational Taxonomic Units) or ASVs (Amplicon Sequence Variants) in a sample by counting non-zero abundances.

Usage

```
calculate_observed_otus(abundances)
```

Arguments

abundances A numeric vector of species counts or proportions.

calculate_shannon 3

Value

The number of observed OTUs/ASVs (species richness).

Author(s)

Akinsuyi Oluwamayowa Samuel

Examples

```
# Example with some zero abundances calculate_observed_otus(c(1, 0, 3, 0, 5)) # Should return 3
```

calculate_shannon

Calculate Shannon Diversity Index

Description

This function calculates the Shannon diversity index for a vector of species counts or proportions.

Usage

```
calculate_shannon(abundances)
```

Arguments

abundances

A numeric vector of species counts or proportions.

Value

The Shannon diversity index.

Author(s)

Akinsuyi Oluwamayowa Samuel

```
# Example with equal abundances
calculate_shannon(c(1, 1, 1, 1)) # Should return ~1.386
# Example with unequal abundances
calculate_shannon(c(10, 20, 30, 40)) # Should return ~1.279
```

calculate_simpson

Calculate Simpson Diversity Index This function calculates the Simpson diversity index (1-D) for a vector of species counts or proportions. The Simpson index ranges from 0 (low diversity) to 1 (high diversity).

Description

Calculate Simpson Diversity Index This function calculates the Simpson diversity index (1-D) for a vector of species counts or proportions. The Simpson index ranges from 0 (low diversity) to 1 (high diversity).

Usage

```
calculate_simpson(abundances)
```

Arguments

abundances

A numeric vector of species counts or proportions.

Value

The Simpson diversity index (1-D).

Author(s)

Akinsuyi Oluwamayowa Samuel

Examples

```
# Example with equal abundances
calculate_simpson(c(1, 1, 1, 1)) # Should return 0.75
# Example with unequal abundances
calculate_simpson(c(10, 20, 30, 40)) # Should return ~0.72
```

```
compare_inverse_simpson_multiple
```

Compare Inverse Simpson Diversity Between Multiple Groups

Description

Compare Inverse Simpson Diversity Between Multiple Groups

Usage

```
compare_inverse_simpson_multiple(abundance_matrix)
```

Arguments

```
abundance_matrix
```

Matrix where rows are species and columns are samples

Value

Matrix of p-values for pairwise comparisons

Author(s)

Akinsuyi Oluwamayowa Samuel

Examples

```
communities <- matrix(c(10,20,30,40, 40,30,20,10, 25,25,25,25), nrow=4, ncol=3) compare_inverse_simpson_multiple(communities)
```

```
compare_inverse_simpson_two
```

Compare Inverse Simpson Diversity Between Two Groups

Description

Compare Inverse Simpson Diversity Between Two Groups

Usage

```
compare_inverse_simpson_two(x, y)
```

Arguments

- x Numeric vector of abundances for first community
- y Numeric vector of abundances for second community

Value

List containing test statistics and p-value

Author(s)

Akinsuyi Oluwamayowa Samuel

```
sample1 <- c(10, 20, 30, 40)
sample2 <- c(40, 30, 20, 10)
compare_inverse_simpson_two(sample1, sample2)</pre>
```

```
compare_observed_otus_multiple
```

Compare Observed OTUs Between Multiple Groups

Description

Compare Observed OTUs Between Multiple Groups

Usage

```
compare_observed_otus_multiple(abundance_matrix)
```

Arguments

 $abundance_matrix$

Matrix where rows are species and columns are samples

Value

Matrix of p-values for pairwise comparisons

Author(s)

Akinsuyi Oluwamayowa Samuel

Examples

```
communities <- matrix(c(10,20,0,40, 40,30,20,0, 25,0,25,25), nrow=4, ncol=3) compare_observed_otus_multiple(communities)
```

```
compare_observed_otus_two
```

Compare Observed OTUs Between Two Groups

Description

Compare Observed OTUs Between Two Groups

Usage

```
compare_observed_otus_two(x, y)
```

Arguments

- x Numeric vector of abundances for first community
- y Numeric vector of abundances for second community

Value

List containing test statistics and p-value

Author(s)

Akinsuyi Oluwamayowa Samuel

Examples

```
sample1 <- c(10, 20, 30, 0, 40)
sample2 <- c(40, 0, 30, 20, 10)
compare_observed_otus_two(sample1, sample2)</pre>
```

compare_shannon_multiple

Compare Shannon Diversity Between Multiple Groups

Description

Compare Shannon Diversity Between Multiple Groups

Usage

```
compare_shannon_multiple(abundance_matrix, shannon_base = exp(1))
```

Arguments

```
abundance_matrix
```

Matrix where rows are species and columns are samples

shannon_base Base for logarithm calculation (default: exp(1))

Value

Matrix of p-values for pairwise comparisons

Author(s)

Akinsuyi Oluwamayowa Samuel

```
communities <- matrix(c(10,20,30,40, 40,30,20,10, 25,25,25,25), nrow=4, ncol=3) compare_shannon_multiple(communities)
```

Description

Compare Shannon Diversity Between Two Groups

Usage

```
compare\_shannon\_two(x, y, shannon\_base = exp(1))
```

Arguments

Numeric vector of abundances for first community
 Numeric vector of abundances for second community
 shannon_base
 Base for logarithm calculation (default: exp(1))

Value

List containing test statistics and p-value

Author(s)

Akinsuyi Oluwamayowa Samuel

Examples

```
sample1 <- c(10, 20, 30, 40)
sample2 <- c(40, 30, 20, 10)
compare_shannon_two(sample1, sample2)</pre>
```

```
compare_simpson_multiple
```

Compare Simpson Diversity Between Multiple Groups

Description

Compare Simpson Diversity Between Multiple Groups

Usage

```
compare_simpson_multiple(abundance_matrix)
```

Arguments

```
abundance_matrix
```

Matrix where rows are species and columns are samples

Value

Matrix of p-values for pairwise comparisons

compare_simpson_two 9

Author(s)

Akinsuyi Oluwamayowa Samuel

Examples

```
communities <- matrix(c(10,20,30,40, 40,30,20,10, 25,25,25,25), nrow=4, ncol=3) compare_simpson_multiple(communities)
```

compare_simpson_two

Compare Simpson Diversity Between Two Groups

Description

Compare Simpson Diversity Between Two Groups

Usage

```
compare\_simpson\_two(x, y)
```

Arguments

x Numeric vector of abundances for first community

y Numeric vector of abundances for second community

Value

List containing test statistics and p-value

Author(s)

Akinsuyi Oluwamayowa Samuel

Examples

```
sample1 <- c(10, 20, 30, 40)
sample2 <- c(40, 30, 20, 10)
compare_simpson_two(sample1, sample2)</pre>
```

 ${\tt Microbial diversity}$

Microbialdiversity: A package for calculating microbial diversity indices

Description

Microbialdiversity: A package for calculating microbial diversity indices

10 microbiome_data

microbiome_data

Example Microbiome Dataset

Description

A small example dataset containing microbial abundance data with associated metadata and taxonomy information. The dataset includes 5 taxa across 10 samples, with samples divided between Control and Treatment conditions.

Usage

```
data(microbiome_data)
```

Format

A list containing three elements:

abundances A matrix with 5 taxa (rows) and 10 samples (columns)

metadata A data frame with 10 rows and 2 columns:

- sample_id: Sample identifier (Sample_1 to Sample_10)
- condition: Factor with levels Control and Treatment

taxonomy A data frame with 5 rows and 2 columns:

- taxa_id: Taxa identifier (Taxa_1 to Taxa_5)
- genus: Genus classification

Source

Generated example dataset for demonstration purposes

shannon_diversity 11

shannon_diversity Shannon Diversity Functions

Description

Shannon Diversity Functions

simpson_diversity Simpson Diversity Functions

Description

Simpson Diversity Functions