Análisis de funciones del programa psychropy

Chlewey

2015

Resumen

aaa

Índice

1.	Fór	mulas de psychropy
	1.1.	$Part_press(P,W)$
	1.2.	$\mathtt{Sat_press}(T_{\mathrm{db}})$
	1.3.	$\texttt{Hum_rat}(T_{ ext{db}}, T_{ ext{wb}}, P)$
	1.4.	$\texttt{Hum_rat2}(T_{ ext{db}}, w_{ ext{RH}}, P)$
	1.5.	$\mathtt{Rel_hum}(T_{\mathrm{db}}, T_{\mathrm{wb}}, P)$
	1.6.	$\mathtt{Rel_hum2}(Tdb,W,P)$
	1.7.	$\mathtt{Wet_bulb}(T_{\mathrm{db}}, w_{\mathrm{RH}}, P)$
	1.8.	${ t Enthalpy_Air_H20}(T_{ t db},W)$
	1.9.	$ exttt{T_drybulb_calc}(h, W)$
	1.10.	$\mathtt{Dew_point}(P,W)$
	1.11.	$\texttt{Dry_Air_Density}(P, Tdb, W) \dots $
		$psych(P, x_{type}, x_{val}, y_{type}, y_{val}, z_{type}, u_{type} = "Imp")$
		main()

1. Fórmulas de psychropy

1.1. $Part_press(P, W)$

Parámetros:

P = presión ambiental [kPa]

W = humedad especifica [kg/kg dry air]

Salida:

 $P_{\rm w} = {\rm presi\acute{o}n} \ {\rm parcial \ del \ vapor \ [kPa]}$

Tomado de Ashrae Fundamentals handbook (2005), page 6.9 equation 38

$$P_{\rm w} = \frac{P \cdot W}{0,62198 + W} \tag{1}$$

1.2. Sat_press (T_{db})

Parámetros:

 $T_{\rm db}=$ temperatura de bulbo seco [°C] (válido entre -100°C y 200°C) Salida:

 $P_{\rm ws} = {\rm presi\acute{o}n} \ {\rm parcial \ del \ vapor \ [kPa]}$

Tomado de Ashrae Fundamentals handbook (2005), p 6.2, equation 5 and 6

$$T = T_{\rm db} + 273,15 \tag{2}$$

Si $T_{\rm db} \leq 0$:

$$c_1 = -5674,5359 \tag{3}$$

$$c_2 = 6.3925247 \tag{4}$$

$$c_3 = -0.009677843 \tag{5}$$

$$c_4 = 0,00000062215701 \tag{6}$$

$$c_5 = 2,0747825 \times 10^{-9} \tag{7}$$

$$c_6 = -9,484024 \times 10^{-13} \tag{8}$$

$$c_7 = 4{,}1635019 \tag{9}$$

$$P_{\text{ws}} = \frac{1}{1000} \left(\frac{c_1}{T_K} + c_2 + c_3 T_K + c_4 T_K^2 + c_5 T_K^3 + c_6 T_K^4 + c_7 \ln T_K \right)$$
(10)

Si no:

$$c_8 = -5800,2206 \tag{11}$$

$$c_9 = 1{,}3914993 \tag{12}$$

$$c_{10} = -0.048640239 \tag{13}$$

$$c_{11} = 0,000041764768 \tag{14}$$

$$c_{12} = -0.000000014452093 (15)$$

$$c_{13} = 6,5459673 \tag{16}$$

$$P_{\text{ws}} = \frac{1}{1000} \left(\frac{c_8}{T_K} + c_9 + c_{10}T_K + c_{11}T_K^2 + c_{12}T_K^3 + c_{13}\ln T_K \right)$$
(17)

1.3. $\operatorname{Hum_rat}(T_{\mathbf{db}}, T_{\mathbf{wb}}, P)$

Parámetros:

 $T_{\rm db} = {\rm temperatura\ de\ bulbo\ seco\ [^{\circ}C]}$

 $T_{\rm wb} = \text{temperatura de bulbo humedo [°C]}$

P = presión ambiental [kPa]

Salida:

W = humedad específica [kg/kg dry air]

Tomado de Ashrae Fundamentals handbook (2005).

$$P_{\rm ws} = Sat_press(T_{\rm wb}) \tag{18}$$

$$W_{\rm s} = \frac{0.62198 \cdot P_{\rm ws}}{P - P_{\rm ws}} \tag{19}$$

Si $T_{\rm db} \geq 0$:

$$W = \frac{(2501 - 2,326T_{\rm wb})W_{\rm s} - 1,006(T_{\rm db} - T_{\rm wb})}{2501 + 1,86T_{\rm db} - 4,186T_{\rm wb}}$$
(20)

Si no:

$$W = \frac{(2830 - 0.24T_{\rm wb})W_{\rm s} - 1.006(T_{\rm db} - T_{\rm wb})}{2830 + 1.86T_{\rm db} - 2.1T_{\rm wb}}$$
(21)

1.4. $\operatorname{Hum_rat2}(T_{\mathbf{db}}, w_{\mathbf{RH}}, P)$

Parámetros:

 $T_{\rm db} = \text{temperatura de bulbo seco [°C]}$

 $w_{\rm RH} = \text{humedad relativa [fracción o porcentaje]}$

P = presión ambiental [kPa]

Salida:

W = humedad especifica [kg/kg dry air]

Tomado de Ashrae Fundamentals handbook (2005).

$$P_{\rm ws} = {\tt Sat_press}(T_{\rm db})$$
 (22)

$$W = \frac{0.62198 w_{\rm RH} \cdot P_{\rm ws}}{P - w_{\rm RH} \cdot P_{\rm ws}}$$
 (23)

1.5. $Rel_hum(T_{db}, T_{wb}, P)$

Parámetros:

 $T_{\rm db} = \text{temperatura de bulbo seco [°C]}$

 $T_{\rm wb} = {\rm temperatura\ de\ bulbo\ humedo\ [°C]}$

P = presión ambiental [kPa]

Salida:

 $w_{\rm BH} = \text{humedad relativa [fracción o porcentaje]}$

Tomado de Ashrae Fundamentals handbook (2005).

$$W = \operatorname{Hum_rat}(T_{\mathrm{db}}, T_{\mathrm{wb}}, P) \tag{24}$$

$$W = \text{Hum_rat}(T_{\text{db}}, T_{\text{wb}}, P)$$

$$w_{\text{RH}} = \frac{\text{Part_press}(P, W)}{\text{Sat_press}(T_{\text{db}})}$$
(24)

1.6. $Rel_hum2(Tdb, W, P)$

Parámetros:

 $T_{\rm db} = \text{temperatura de bulbo seco [°C]}$

W = humedad especifica [kg/kg dry air]

P = presión ambiental [kPa]

Salida:

 $w_{\rm RH}$ = humedad relativa [fracción o porcentaje] Tomado de Ashrae Fundamentals handbook (2005).

$$P_{\mathbf{w}} = \mathsf{Part_press}(P, W) \tag{26}$$

$$P_{\rm ws} = Sat_press(T_{\rm db}) \tag{27}$$

$$w_{\rm RH} = \frac{P_w}{P_{\rm ws}} \tag{28}$$

1.7. Wet_bulb (T_{db}, w_{RH}, P)

Parámetros:

 $T_{\rm db} = \text{temperatura de bulbo seco [°C]}$

 $w_{\rm RH} = \text{humedad relativa [fracción o porcentaje]}$

P = presión ambiental [kPa]

Salida:

 $T_{\rm wb} = \text{temperatura de bulbo humedo [°C]}$

Se utiliza un método de iteración Newton-Rhapson para una rápida convergencia

$$W_{\text{normal}} = \text{Hum_rat2}(T_{\text{db}}, w_{\text{RH}}, P) \tag{29}$$

$$i = 0 (30)$$

$$T_{\rm wb,0} = T_{\rm db} \tag{31}$$

$$W_{\text{new},0} = \text{Hum_rat}(T_{\text{db}}, T_{\text{wb},0}, P) \tag{32}$$

Grado de presición del 0.001 % usando Newton-Rhapson:

Mientras que $\left| \frac{W_{\text{new},i} - W_{\text{normal}}}{W_{\text{normal}}} \right| > 0,00001$:

$$i = i + 1 \tag{33}$$

$$W_{\text{new},2} = \text{Hum_rat}(T_{\text{db}}, T_{\text{wb},i-1} - 0.001, P)$$
 (34)

$$W' = \frac{W_{\text{new}} - W_{\text{new},2}}{0.001} \tag{35}$$

$$T_{\text{wb},i} = T_{\text{wb},i-1} - \frac{W_{\text{new},i-1} - W_{\text{normal}}}{W'}$$
 (36)

$$W_{\text{new},i} = \text{Hum_rat}(T_{\text{db}}, T_{\text{wb},i}, P) \tag{37}$$

Repite. Al final:

$$T_{\rm wb} = T_{\rm wb,i} \tag{38}$$

1.8. Enthalpy_Air_H20(T_{db} , W)

Parámetros:

 $T_{\rm db} = \text{temperatura de bulbo seco [°C]}$

W = humedad especifica [kg/kg dry air]

Salida:

h = entalpía [kJ/kg (aire seco)]

Tomado de Ashrae Fundamentals handbook (2005), SI P6.9 eqn 32

$$h = 1,006T_{\rm db} + (2501 + 1,86T_{\rm db})W \tag{39}$$

1.9. $T_{drybulb_calc}(h, W)$

Parámetros:

h = entalpía [kJ/kg (aire seco)]

W = humedad espec [kg/kg dry air]

Salida:

 $T_{\rm db} = \text{temperatura de bulbo seco [°C]}$

calculo inverso a la entalpía arriba.

Nota, el estado 0 para imperial es $\sim 0\,^\circ F,\,0\,\%$ de humedad relativa y 1 atm. El estado 0 para SI es $0\,^\circ C,\,0\,\%$ de humedad relativa y 1 atm.

$$T_{\rm db} = \frac{h - 2501W}{1,006 + 1,86W} \tag{40}$$

1.10. Dew_point (P, W)

Parámetros:

P = presión ambiental [kPa]

W = humedad espec(fica [kg/kg dry air])

Salida:

 $T_{\text{dew}} = \text{temperatura de punto de rocío [°C]}$

Tomado de Ashrae Fundamentals handbook (2005), page 6.9 equation 39 y 40 Válido para punts de rocío inferiores a 93°C

$$c_{14} = 6,54 \tag{41}$$

$$c_{15} = 14,526 \tag{42}$$

$$c_{16} = 0.7389 \tag{43}$$

$$c_{17} = 0.09486 \tag{44}$$

$$c_{18} = 0.4569 \tag{45}$$

$$P_{\mathbf{w}} = \mathtt{Part_press}(P, W) \tag{46}$$

$$\alpha = \ln P_{\rm w} \tag{47}$$

$$T_{\rm dp,1} = c_{14} + c_{15}\alpha + c_{16}\alpha^2 + c_{17}\alpha^3 + c_{18}P_{\rm w}^{0,1984}$$
(48)

$$T_{\rm dp,2} = 6.09 + 12.608\alpha + 0.4959\alpha^2 \tag{49}$$

Si
$$T_{dp,1} \geq 0$$
:

$$T_{\text{dew}} = T_{\text{dp},1} \tag{50}$$

Si no:

$$T_{\text{dew}} = T_{\text{dp.2}} \tag{51}$$

1.11. Dry_Air_Density(P, Tdb, W)

Parámetros:

P = presión ambiental [kPa]

 $T_{\rm db} = \text{temperatura de bulbo seco [°C]}$

W = humedad específica [kg/kg dry air]

Salida:

 $\rho_{\rm da} = {\rm densidad\ de\ aire\ seco\ [kg\ aire\ seco/m^3]}$

Tomado de Ashrae Fundamentals handbook (2005), page 6.8 equation 28

$$R_{\rm da} = 287,055 \tag{52}$$

$$T = T_{\rm db} + 273,15 \tag{53}$$

$$\rho_{\rm da} = 1000 \frac{P}{R_{\rm da} T (1 + 1,6078W)} \tag{54}$$

1.12. $psych(P, x_{type}, x_{val}, y_{type}, y_{val}, z_{type}, u_{type} = "Imp")$

Comprueba que x_{type} esté entre " T_{db} ", "W" y "h" (temperatura de bulbo seco, humedad específica o entalpía). De lo contrario retornará un no-valor.

Comprueba que $x_{\rm type}$ sea diferente de $u_{\rm type}$. De lo contrario retornará un no-valor.

En caso de que el sistema $(u_{\rm type})$ sea métrico ("SI") lee los datos sin conversión.

Convierte la presión de pascales a kilopascales.

De acuerdo con x_{type} guarda x_{val} en la variable adecuada T_{db} , W o h.

De acuerdo con $y_{\rm type}$ guarda $y_{\rm val}$ en la variable adecuada $T_{\rm db},\,T_{\rm wb},\,T_{\rm dew},\,w_{\rm RH},\,W$ o h.

En caso contrario (asume sistema imperial), lee los datos convirtiéndolos.

Convierte la presión de psi (libras por pulgada cuadrada) a kilopascales.

Si x_{type} o y_{type} es temperatura, guarda la respectiva variable T_{db} , T_{wb} o T_{dew} convirtiéndo de grados farenheit a celcius.

Si x_{type} o y_{type} es entalpía, convierte de Btu por libra a kilojulios por kilogramo y corre el punto 0 (de 0°F a 0°C).

Si $x_{\rm type}$ o $y_{\rm type}$ es humedad relativa or específica, guarda la respectiva variable $w_{\rm RH}$ o W sin cambios.

Si $T_{\rm db}$ no existe ($x_{\rm type}$ y $y_{\rm type}$ son entropía y humedad específica), calcula $T_{\rm db} = T_{\rm drybulb_calc}(h, W)$.

Si z_{type} es " w_{RH} " o " T_{wb} ", calcula w_{RH} :

Si T_{wb} fue dado: $w_{\text{RH}} = \text{Rel_hum}(T_{\text{db}}, T_{\text{wb}}, P)$.

Si no, pero T_{dew} fue dado: $w_{\text{RH}} = \text{Sat_press}(T_{\text{dew}}) \div \text{Sat_press}(T_{\text{db}})$.

Si no, pero W fue dado: $w_{RH} = Part_press(P, W) \div Sat_press(T_{db})$.

Si no, pero h fue dado:

$$W = -\frac{1,006T_{\rm db} - h}{2501 + 1,86T_{\rm db}} \tag{55}$$

$$w_{\rm RH} = \text{Part_press}(P, W) \div \text{Sat_press}(T_{\rm db})$$
 (56)

En caso de otro $z_{\rm type}$, se busca entonces W:

Si z_{type} no es "W":

Si
$$y_{\mathrm{type}}$$
 es " T_{wb} ": $W = \mathtt{Hum_rat}(T_{\mathrm{db}}, T_{\mathrm{wb}}, P)$

Si
$$y_{\mathrm{type}}$$
 es " T_{dew} ": $W = 0.621945 \frac{\mathtt{Sat_press}(T_{\mathrm{dew}})}{P-\mathtt{Sat_press}(T_{\mathrm{dew}})}$

Si
$$y_{\text{type}}$$
 es " w_{RH} ": $W = \text{Hum_rat2}(T_{\text{db}}, w_{\text{RH}}, P)$

Si
$$y_{\text{type}}$$
 es " h ": $W = -\frac{1,006T_{\text{db}} - h}{2501 + 1,86T_{\text{db}}}$

Si no, indica que la combinación de variables es incorrecta.

En este punto se tienen: P, $T_{\rm db}$ y W.

Si z_{type} es " T_{db} ": la respuesta es T_{db} .

Si z_{type} es " T_{wb} ": la respuesta es Wet_bulb $(T_{\text{db}}, w_{\text{RH}}, P)$.

Si z_{type} es " T_{dew} ": la respuesta es $\text{Dew_point}(P, W)$.

Si z_{type} es " w_{RH} ": la respuesta es w_{RH} .

Si z_{type} es "W": la respuesta es W.

Si z_{type} es " P_{w} ": la respuesta es $1000 \cdot \text{Part_press}(P, W)$.

Si z_{type} es "DSat" (grado de saturación): la respuesta es $W \div \text{Hum_rat2}(T_{\text{db}}, 1, P)$.

Si z_{type} es "h": la respuesta es Enthalpy_Air_H2O(T_{db} , W).

Si z_{type} es "s" (entropía): la respuesta es inducir un error.

Si z_{type} es "SV" (volumen específico): la respuesta es $1 \div \text{Dry_Air_Density}(P, T_{\text{db}}, W)$.

Si z_{type} es "MAD" (densidad): la respuesta es (1+W)Dry_Air_Density (P, T_{db}, W) .

Finalmente, si y_{type} es "Imp" (sistema imperial):

Si z_{type} es temparatura, convierte el valor de salida de °C a °F.

Si z_{type} es presión (" P_{w} "), convierte la salida de pascales a psi.

Si z_{type} es entalpía, convierte de kJ/kg a btu por libra y corre el 0.

si z_{type} es volúmen específico, convierte de m³/kg a pies cúbicos por libra.

si z_{type} es densidad, convierte kg/m³ a libras por pie cubico.

1.13. main()

Pide el valor de la presión atmosférica P.

Pide el tipo de la primera variable x_{type} .

Pide el valor de la primera variable x_{val} .

Pide el tipo de la segunda variable y_{type} .

Pide el valor de la segunda variable y_{val} .

Pide el tipo de salida z_{type} .

Pide el sistema de medidas "SI" o "Imp": u_{type} .

Llama a psych $(P, x_{\text{type}}, x_{\text{val}}, y_{\text{type}}, y_{\text{val}}, z_{\text{type}}, u_{\text{type}})$.

Imprime el resultado.