Desarrollo del TP1: Métodos de Búsqueda

Mauro Baquero-Suárez 1 Dario Alejandro Peñaloza 1 Lucas Miguel Biolley 1 Mariano Pérez Mosquera 1

¹Instituto Tecnológico de Buenos Aires (ITBA)

Introducción

El objetivo de este TP es implementar y evaluar diferentes métodos de búsqueda para la solución de diferentes problemas que requieren agentes inteligentes.

Eiemplo tablero inicial:

5	7	3
8	2	
1	6	4

Tablero solución:

TableTo solucioi		
1	2	3
8		4
7	6	5

Definición (Estructura de Estado (SS))

En este ambiente discreto y determinístico, definiríamos SS de manera generalizada dentro del dominio $D \subset \mathbb{Z}_+$ tal que,

$$x_i(k) = \{r_i(k), c_i(k)\} \in \mathbb{Z}_+^{\{n^2 - 1 \times 2\}}$$

corresponde al conjunto de posiciones de cada i ésima ficha para $i = \{0, 1, ..., n^2 - 1\}$. Las posiciones estarán establecidas como el No. de filas $1 \le r_i(k) \le n$ y el No. de columnas $1 \le c_i(k) \le n$ de la matriz que se forma con estas variables en el instante k.

3/11

■ Para el caso del 8-Puzzle: n = 3.

Definición (Función Sucesora)

Sea U(k) la función sucesora, correspondiente al conjunto de posibles movimientos de $x_0(k)$ hacia:

$$U(k+1) = \begin{cases} u_1(k+1) = \overbrace{(r_0(k)-1, c_0(k))}^{x_0(k) \ para \ Arriba} \\ u_1(k+1) = \overbrace{(r_0(k)+1, c_0(k))}^{x_0(k) \ para \ Abajo} \\ v_2(k+1) = \overbrace{(r_0(k)+1, c_0(k))}^{x_0(k) \ para \ Izquierda} \\ v_3(k+1) = \overbrace{(r_0(k), c_0(k)-1)}^{x_0(k) \ para \ Derecha} \\ v_4(k+1) = \overbrace{(r_0(k), c_0(k)+1)}^{x_0(k) \ para \ Derecha} \\ v_4(k+1) = \overbrace{(r_0(k), c_0(k)+1)}^{x_0(k) \ para \ Derecha} \\ \end{cases}$$

permutando la posición del $x_j(k)$ que coincide con el cambio aplicado a $x_0(k)$.

Teniendo en cuenta U(k+1), se pueden definir heurísticas que permitan seleccionar el movimiento sucesor $u_m(k+1)$ más viable para llegar a la solución del estado objetivo $x_i^* = (r_i^*, c_i^*)$. Entonces, definimos la primera heurística:

Definición (Heurística de la Norma Euclideana (HNE))

Sea ${}^m x_i(k+1)$ el resultado de aplicar $u_m(k+1)$ para cada $m = \{1, 2, 3, 4\}$, entonces de define HNE como:

$$h_1(k+1) := \underset{m}{\operatorname{arg\,min}} \sum_{i=0}^{n^2-1} \sqrt{\left[mr_i(k+1) - r_i^*\right]^2 + \left[mc_i(k+1) - c_i^*\right]^2},$$

y la selección del nuevo $x_i(k+1)$ sería:

$$x_i(k+1) = {^m}x_i(k+1) | h_1(k+1) > 0$$
.

y la segunda heurística:

Definición (Heurística Matricial (HM))

Sea ${}^m x_i(k+1)$ el resultado de aplicar $u_m(k+1)$ para cada $m = \{1,2,3,4\}$ y ${}^m M(k+1) := i_{r,c}^+$ la matriz formada por las fichas i del tablero, en sus posiciones $r_i(k+1)$ y $c_i(k+1)$. Entonces definimos HM como:

$$h_2(k+1) := \underset{m}{\operatorname{arg\,min}} \left| \det \left\{ {}^m M(k+1) \right\} - \det \left\{ M^* \right\} \right|,$$

donde $\det\{\cdot\}$ es el determinante de la matriz y $M^* := i_{r,c}^*$ es la matriz objetivo formada por la fichas en las posiciones deseadas r_i^* y c_i^* . Luego, la selección del nuevo $x_i(k+1)$ sería:

$$x_i(k+1) = {^m}x_i(k+1) | h_2(k+1) > 0$$
.

- Es un método de búsqueda informado que puede tomar los datos que se tienen del tablero.
- No requiere estimar costo en las acciones. En este caso el costo para cada movimiento de x_0 es el mismo, sea para arriba, abajo, derecha ó izquierda.
- Se requiere evaluación de repetición de estados.
- Es eficiente para este caso, especialmente para n = 3.

Heurística escogida: Distancia Manhattam

- Es un cálculo que se ejecuta muy rápido.
- Es admisible.
- Es sencillo de implementar.

Estructura de Estado (SS)

Definición (Estructura de Estado (SS))

La SS de este problema se definirá como la posición de los tres elementos principales (personaje, caja y objetivo) de modo que:

$$x_i(k) = \{r_i(k), c_i(k)\}\$$
para $i = \{1, 2, 3\}$,

donde i representa a cada uno de los tres elementos, y sus posiciones estarán establecidas como el No. de filas $1 \le r_i(k) \le n$ y el No. de columnas $1 \le c_i(k) \le n$ de la matriz de dimensión $n \times n$, correspondiente al mapa en el instante k.

Conclusiones

- **...**
- **=** ...

Final de la presentación

Gracias...!