

Sistemas Digitais (SD)

Sistemas de Numeração e Códigos

Aula Anterior

Na aula anterior:

- ▶ Motivação:
 - O que é um Sistema Digital?
 - Onde estão os Circuitos Digitais?
 - Perspectiva histórica:
 - Dos primórdios da história até aos computadores de hoje
 - De que é feito um computador?
- ▶ Sistemas Digitais:
 - Programa da cadeira
 - Organização
 - Corpo docente
 - Planeamento
 - Método de Avaliação
 - Aulas Teóricas, Problemas e de Laboratório
 - Bibliografia

Planeamento

SEMANA	TEÓRICA 1	TEÓRICA 2	PROBLEMAS/LABORATÓRIO
17/Fev a 21/Fev	Introdução	Sistemas de Numeração	
24/Fev a 28/Fev	CARNAVAL	Álgebra de Boole	P0
02/Mar a 06/Mar	Elementos de Tecnologia	Funções Lógicas	VHDL
9/Mar a 13/Mar	Minimização de Funções	Minimização de Funções	LO
16/Mar a 20/Mar	Def. Circuito Combinatório; Análise Temporal	Circuitos Combinatórios	P1
23/Mar a 27/Mar	Circuitos Combinatórios	Circuitos Combinatórios	L1
30/Mar a 03/Abr	Circuitos Sequenciais: Latches	Circuitos Sequenciais: Flip-Flops	P2
06/Abr a 10/Abr	FÉRIAS DA PÁSCOA	FÉRIAS DA PÁSCOA	FÉRIAS DA PÁSCOA
13/Abr a 17/Abr	Caracterização Temporal	Registos	L2
20/Abr a 24/Abr	Contadores	Circuitos Sequenciais Síncronos	P3
27/Abr a 01/Mai	Síntese de Circuitos Sequenciais Síncronos	Síntese de Circuitos Sequenciais Síncronos	L3
04/Mai a 08/Mai	Exercícios Tes	Memórias ite 1	P4
11/Mai a 15/Mai	Máq. Estado Microprogramadas: Circuito de Dados e Circuito de Controlo	Máq. Estado Microprogramadas: Microprograma	L4
18/Mai a 22/Mai	Circuitos de Controlo, Transferência e Processamento de Dados de um Processador	Lógica Programável	P5
25/Mai a 29/Mai	P6	P6	L5

Sumário

Tema da aula de hoje:

- ▶ Sistemas de numeração
 - Base 10
 - Base 2
 - Base 8 e 16
- Operações aritméticas básicas
- Mudança de sistema de numeração
- Códigos

Bibliografia:

- M. Mano, C. Kime: Capítulo 1
- G. Arroz, J. Monteiro, A. Oliveira: Capítulo 1

Definição de um Sistema de Numeração Posicional

Um sistema de numeração é composto por:

- **▶ Base -** *b* e.g. Base = 16
- ► Alfabeto Ordenado conjunto de *b* símbolos distintos (dígitos) e.g. [0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F]
- Número representado por uma sequência de dígitos e.g. N(b) <> ... d₂ d₁ d₀, d₁ d₂ ...
- Valor do Dígito função do símbolo e da posição na sequência (peso).
 e.g. v₂ = d₂ b²

Exemplos:

S.N.: Decimal Binário Octal Hexadecimal 28886_{10} 10101110_2 5270_8 A $32C_{16}$

Sistemas de numeração

Exemplos com várias bases

Base	0	1	2	3	4	5	6	7	8	9
10	10	11	12	13	14	15	16	17	18	19
Base	0	1	2	3	10	11	12	13	20	21
4	22	23	30	31	32	33	100	101	102	103
Base	0	1	2	10	11	12	20	21	22	100
3	101	102	110	111	112	120	121	122	200	201
Base	0	1	10	11	100	101	110	111	1000	1001
2	1010	1011	1100	1101	1110	1111	10000	10001	10010	10011
Base	0	1	2	3	4	5	6	7	8	9
16	А	В	С	D	Е	F	10	11	12	13

Determinação do Equivalente Decimal

► Equivalente Decimal - Representação no sistema decimal de um número na base b.

$$N_{(10)} = \sum_{i=0}^{+\infty} d_i b^i = \dots + d_2 b^2 + d_1 b^1 + d_0 b^0 + d_{-1} b^{-1} + \dots$$

Exemplos:

► S.N.: Binário Decimal

$$10101110_2 \longrightarrow (2^7 + 0 + 2^5 + 0 + 2^3 + 2^2 + 2^1 + 0)_{10} \longrightarrow 174_{10}$$

► S.N.: Hexadecimal Decimal

$$A32C_{16} \longrightarrow (10x16^3 + 3x16^2 + 2x16^1 + 12x16^0)_{10} \longrightarrow 41772_{10}$$

Operações Aritméticas Básicas

Algoritmos em tudo semelhantes ao do sistema decimal, excepto na base utilizada.

Exemplo:

$$110_2 + 1111110_2 + 110_2$$

Operações Aritméticas Básicas

► Algoritmos em tudo semelhantes ao do sistema decimal, excepto na base utilizada.

Exemplos:

S.N.: Binário

0110 + 1101 10011

S.N.: Hexadecimal

CONVERSÃO DE BASES (b₁≠10 para b₂=10)

► A conversão de um número numa base diferente de 10 para a base decimal reduz-se a representar esse número como um polinómio e de seguida determinar o equivalente decimal:

$$N_{(10)} = \sum_{-\infty}^{+\infty} d_i b^i = \dots + d_2 b^2 + d_1 b^1 + d_0 b^0 + d_{-1} b^{-1} + \dots$$

Exemplos:

$$10101110_{2} \longrightarrow (2^{7}+0+2^{5}+0+2^{3}+2^{2}+2^{1}+0)_{10} \longrightarrow 174_{10}$$

$$A32C_{16} \longrightarrow (10x16^{3}+3x16^{2}+2x16^{1}+12x16^{0})_{10} \longrightarrow 41772_{10}$$

CONVERSÃO DE BASES ($b_1=10$ para $b_2 \neq 10$)

- ► A conversão de um número na base 10 para uma base diferente realiza-se em duas fases:
 - 1. A parte inteira é convertida segundo o método das divisões sucessivas.
 - 2. A parte fraccionária é convertida segundo o método das <u>multiplicações</u> <u>sucessivas</u>.

CONVERSÃO DE BASES ($b_1=10$ para $b_2 \neq 10$)

Exemplo (parte inteira):

S.N.: Decimal

20,35₍₁₀₎

Binário

10100,...(2)

Hexadecimal

14,...(16)

O número a converter e os quocientes sucessivos são divididos pela base.

A sequência de restos constitui o resultado da conversão.

1º resto = dígito menos significativo

CONVERSÃO DE BASES ($b_1=10$ para $b_2 \neq 10$)

Exemplo (parte fraccionária):

Binário

10100,...₍₂₎

Hexadecimal

14,...(16)

CONVERSÃO DE BASES $(b_t = 2^t para b = 2)$

- ► Atendendo às propriedades das potências, facilmente se infere que:
 - Na conversão da base 2^t para a base 2, transforma-se cada dígito da base 2^t em t bits da base 2.
 - 2. Na conversão da base 2 para a base 2^t, transforma-se cada t bits da base 2 num dígito da base 2^t.

Exemplos:

Entende-se por **código binário** uma correspondência entre palavras escritas num qualquer sistema de numeração e palavras constituídas por caracteres binários.

Exemplo: $12_{(10)} <> 1100_{(2)}$

CÓDIGO BINÁRIO NATURAL (CBN)

Código ponderado, gerado pelo sistema de numeração de base 2, em que os pesos das colunas são sucessivamente 2ⁿ⁻¹, 2ⁿ⁻², ..., 2¹, 2⁰.

CÓDIGO BINÁRIO REFLECTIDO (CBR) ou CÓDIGO DE GRAY

- ► Código <u>não ponderado</u>, obtido do CBN por troca de símbolos do alfabeto binário;
- Apresenta como característica fundamental o facto de dois símbolos que representam números consecutivos terem apenas um bit diferente.

CÓDIGO BINÁRIO REFLECTIDO (CBR) ou CÓDIGO DE GRAY

► Motivação:

- Muitos dispositivos indicam a sua posição através da abertura e fecho de interruptores.
- Se a posição desses interruptores for codificada em código binário natural, as seguintes duas posições serão adjacentes: 011 → 100
- Na prática, é muito difícil garantir que os interruptores comutem exactamente ao mesmo tempo. Neste exemplo, em particular, os 3 interruptores trocam de estado. Como consequência, durante o intervalo de tempo em que eles estão a trocar de estado poderão surgir estados transitórios. Exemplo:

$$011 - 001 - 101 - 100$$
.

 Quando os interruptores aparentam estar na posição 001, o observador não sabe se este é o estado definitivo (001) ou apenas uma transição entre outros dois estados, dando assim origem a <u>leituras incorrectas</u>.

▶ Solução:

Código de Gray: 2 símbolos que representam números consecutivos diferem apenas 1 bit.

CÓDIGO BINÁRIO REFLECTIDO (CBR) ou CÓDIGO DE GRAY

Aplicação: encoder de posição

Código Binário Natural (CBN)

Código Binário Reflectido (CBR)

Os códigos de duas posições adjacentes diferem apenas num bit

CÓDIGO BINÁRIO REFLECTIDO (CBR) ou CÓDIGO DE GRAY

Construção:

Código de Gray

а	b	С	d	е	decimal
0	0	00	00	000	0
1	1	01	01	001	1
	1	11	11	011	2
	0	10	10	010	3
			10	1 10	4
			11	1 11	5
			01	1 01	6
			00	100	7

- a- Código gray 1 bit
- b- Reflexão do código
- c- Adicionar 0's e 1's =
 código gray 2 bits
- d- Reflexão do código anterior
- e- Adicionar os 0's e 1's código gray 3 bits

Nota: as colunas b e d não fazem parte do código de gray

Códigos Decimais-Binários

Entende-se por **código decimal-binário** um código que estabelece a correspondência directa entre caracteres da palavra constituída por símbolos da base 10 e a sua codificação binária.

CÓDIGO BCD ("Binary-Coded Decimal")

▶ O código BCD corresponde ao CBN com N=4.

Exemplo: 12₍₁₀₎ <> 0001 0010 _(BCD)

Nota: Nas operações aritméticas deve ser introduzido um factor de correcção, $6_{(10)}$ <> $0110_{(BCD)}$, sempre que o resultado seja superior ou igual a 10.

BCD

Códigos Decimais-Binários

Exemplo: operação de soma

 (1_{10})

A operação de soma em BCD é semelhante à soma binário. A diferença em consiste no seguinte:

Sempre que o resultado da soma originar um dígito não válido em decimal (valor >9), devese somar 6 ao resultado.

Códigos Alfanuméricos

- CÓDIGO ASCII (American Standard Code for Information InterChange):
 - ► Exemplo de código alfanumérico que permite codificar informação numérica, alfabética e também caracteres de controlo.

Representação numérica: 46₁₆

Exemplo: "Margarida" equivale à sequência de números

$$4D_{16}$$
, 61_{16} , 72_{16} , 67_{16} , 61_{16} , 72_{16} , 69_{16} , 64_{16} , 61_{16}

Representação Digital da Informação

Representação Digital da Informação

- ▶ É habitual organizar os bits em unidades de maior capacidade
 - Exemplos:
 - o tabela ASCII com 127 símbolos → 7 bits
 - Tabela ISO-8859-1 com 256 símbolos (inclui acentos) → 8 bits
 - Representação RGB da cor de um pixel → 24 bits
- ► Em geral, a informação é processada, transferida e armazenada em unidades de 8-bits: *byte* (ou octeto)
- Em algumas aplicações (ex: codificação BCD), é usual utilizar unidades de 4-bits: *nibble*

Como é natural, 2 nibbles = 1 byte

Representação Digital da Informação

Representação Digital da Informação

Quando se consideram grandes quantidades de informação, é usual utilizar múltiplos da unidade:

Múltiplo	Potência	Relação com o múltiplo inferior	Representação na base 10	Denominação
1	20		1	
1K	2 ¹⁰	= 2 ¹⁰	1024	Quilo
1M	2 ²⁰	$= 2^{10} \text{ K}$	1 048 576	Mega
1G	2 ³⁰	$= 2^{10} M$	1 073 741 824	Giga
1T	2 ⁴⁰	$= 2^{10} G$	1 099 511 627 776	Tera

Exemplo: um ficheiro ocupa 2,37MB

2,37MBytes = $2,37 \times 2^{20} = 2,37 \times 1024 \times 1024 =$ **2 485 125 bytes**

Representação Digital da Informação

Conceito de palavra (word)

- Unidade mínima processada ou armazenada num dado sistema.
 - Exemplos:

Intel 4004	4 bits	Intel 486	32 bits
Intel 8080	8 bits	Intel Pentium	32 bits
Motorola 6800	8 bits	ARM Cortex A-9	32 bits
Intel 8086	16 bits	Intel Core 2 i7	64 bits
Motorola 68000	16 bits	Cell (STI)	128 bits

▶ Ao contrário do conceito de byte e nibble, o conceito de palavra não está ligado a uma dimensão fixa. O número de bits de uma palavra depende do contexto que se está a considerar.

PRÓXIMA AULA

Próxima Aula

Tema da Próxima Aula:

- ▶ Álgebra de Boole
 - Operações básicas
 - Propriedades
 - Portas Lógicas
- ▶ Leis de Morgan
 - Simplificação algébrica

Agradecimentos

Algumas páginas desta apresentação resultam da compilação de várias contribuições produzidas por:

- Nuno Roma
- Guilherme Arroz
- Horácio Neto
- Nuno Horta
- Pedro Tomás