23. आवर्धन (magnifying) किसे कहते हैं? इसका मात्रक लिखें? गोलीय दर्पण के सूत्र पर आधारित आवर्धन का सूत्र स्थापित करें?

उत्तर – प्रतिबिम्ब की ऊँचाई एवं वस्तु की ऊँचाई के अनुपात को आवर्धन कहा जाता है। इसे m से सूचित किया जाता है।

माना कि किसी दर्पण में वस्तु की ऊँचाई h, एवं प्रतिबिम्ब की ऊँचाई

$$\frac{h_2}{m} = \frac{h_2}{h_1}$$

 $m = \frac{y \cdot h_2}{a \cdot k_1} = \frac{h_2}{h_1}$

इसका कोई मात्रक नहीं होता। चित्र में माना कि MN एक अवतर्ल दर्पण है। C तथा F के बीच वस्तु AB अवस्थित है जिसका प्रतिबिम्ब A'B' पर बनता है।

△ APB तथा △ A/PB/ समस्प है।

$$\frac{A'B'}{AB} = \frac{PB'}{PB}$$

$$\frac{-h_2}{h_1} = \frac{-V}{-u}$$

$$\frac{-h_2}{h_1} = \frac{+V}{-u}$$

$$\frac{h_2}{h_2} = -\frac{V}{-u}$$

वर्पण सूत्र से,

$$\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$$

दोनों तरफ v से गुणा करने पर,

$$\frac{\vee}{u} + \frac{\vee}{v} = \frac{\vee}{f}$$

$$1 + \frac{\vee}{u} = \frac{\vee}{f}$$

$$\left(1 - \frac{\vee}{f}\right) = -\frac{\vee}{u}$$

$$m = \left(1 - \frac{\vee}{f}\right)$$

24. अनुबद्ध फोक्स (Conugate focus) से आप क्या समझते हैं? उत्तर – दर्पण के सामने के वे दो बिंदु जिनमें किसी एक पर वस्तु रखने से किसी दूसरे पर प्रतिबिम्ब बने। उसे अनुबद्ध फोकस कहते हैं।

25. अवतल तथा उत्तल दर्पण के दो-दो उपयोग बतावें? उत्तर-अवतल दर्पण के उपयोग-(i) दाढ़ी बनाने में (ii) सोलर कुकर में। (iii) डाक्टरों के द्वारा आँख, कान एवं गले के परीक्षण में (iv) सर्च लाइट में।

उत्तल दर्पण के उपयोग - (i) मोटरगाड़ी में साइड मिरर के रूप में। (ii) सडक पर प्रकाश बिखेरने के लिए बल्ब के पीछे परावर्तक सतह के रूप में।

26. उत्तल दर्पण का उपयोग साइड मिरर के रूप में क्यों किया जाता है? उत्तर – उत्तल दर्पण का उपयोग साइड मिरर के रूप में करने कई कारण हो सकते हैं- (i) उत्तल दर्पण में सीधा प्रतिबिम्ब बनता है। (ii) इसका दृष्टि क्षेत्र बहुत बड़ा होता है। जिससे बहुत दूर से आनेवाले वाहन का स्पष्ट एवं सीधा प्रतिबिम्ब पहले ही देखा जा सकता है तथा दुर्घटना से बचा जा सकता है।

27. आपको तीन दर्पण दिए गये हैं - उत्तल, अवतल तथा समतल। बिना दर्पण को छुए आप उन्हें कैसे पहचानेंगे?

उत्तर - बिना स्पर्श किये उत्तल, अवतल तथा समतल दर्पण को पहचानने के लिए एक पुस्तक के छपे पृष्ठ को दर्पण के सामने लाते हैं। वस्तु को दूर हटाते हुए दर्पण में बने प्रतिबिम्ब का अवलोकन करते हैं-

- (i) यदि दर्पण में बना प्रतिबिम्ब हमेशा सीधा तथा आकर में वस्तु के बराबर होता है तो दर्पण समतल होता है।
- (ii) यदि वस्तु को दर्पण से धीरे-धीरे दूर जाने पर सीधा तथा बड़ा प्रतिबिम्ब बनता है, तो दर्पण अवतल होता है।
- (iii) यदि दर्पण के सामने की वस्तु की किसी भी स्थिति के लिए प्रतिबिम्ब हमेशा सीधा तथा। छोटा बनाता है तो दर्पण उत्तल होता है।

28. अवतल तथा उत्तल दर्पण में अंतर स्पष्ट करें? उत्तर - अवतल तथा उत्तल दर्पण में निम्नलिखित अंतर है-

	अवतल	दर्पण	उत्तल दर्पण
1010 Miles	अवतल दर्पण की होती है।	भीतरी सतह चमकीली	उत्तल दर्पण की बाहरी सतह चमकीली होती है।

अवतल दर्पण	उत्तल दर्पण
 अवतल दर्पण का फोकस वास्तविक होता है।	उत्तल दर्पण का फोकस काल्पनिक होता है।
अवतल दर्पण में वास्तविक एवं काल्पनिक दोनों प्रकार के प्रतिबिम्ब का निर्माण करता है।	
इसे अभिसारी दर्पण कहते हैं।	इसे अपसारी दर्पण कहते हैं।

29. अवतल दर्पण का उपयोग दाढ़ी बनाने में क्यों किया जाता हैं? उत्तर – जब वस्तु को अवतल दर्पण के नाभिक तथा धुव के पास रखा जाता है तो उसका आभासी सीधा तथा विशालित प्रतिबिम्ब बनता है। इसी सिद्धान्त पर दाढ़ी बनाने के लिए अवतल दर्पण का उपयोग किया जाता है।

30. अवतल दर्पण का उपयोग सोलर कुकर में क्यों किया जाता है? उत्तर – अवतल दर्पण का उपयोग सोलर बनाने में किया जाता है, क्योंकि सूर्य से आनेवाली प्रकाश की सामानान्तर किरणों को और उन किरणों के साथ आनेवाली प्रकाश की समांतर किरणों को तथा उन किरणों के साथ आनेवाली ऊष्मीय विकिरण को फोकस पर अभिसारित कर देती है। फलस्वरूप ताप बढ़ जाती है और खाना पकाने में सुविधा होती है। ठीक इसी तरह धूप में कागज के टुकड़े को जलाना हो तो कागज के टुकड़े को फोकस पर रखना होगा।

31. गोलीय विपथन से आप क्या समझते हैं?

उत्तर – बड़े द्वारक के दर्पण में मुख्य अक्ष के सामानान्तर आती हुई किरणें एक बिंदु पर संमृत नहीं होती अथवा एक बिंदु पर अपमृत होती नजर नहीं आती। बल्कि एक – दूसरे को एक सनह पर काटती है। इस सनह को कास्टिक सनह कहते हैं। इस दोष को गोलीय विपथन कहा जाता है। छोटे द्वारक के दर्पण में यह दोष नहीं

