基本变换公式

序号	变换类型	变换公式			
1	CFS	$X(n\omega_0) = \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} x(t)e^{-jn\omega_0 t} dt$ $x(t) = \sum_{n=-\infty}^{\infty} X(n\omega_0)e^{jn\omega_0 t}$			
2	CFT	$X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$, $x(t) = \frac{1}{2\pi}\int_{-\infty}^{\infty} X(\omega)e^{j\omega t}d\omega$ 一般周期信号傅里叶变换: $X(\omega) = 2\pi\sum_{n=-\infty}^{\infty} X(n\omega_0)\delta(\omega-n\omega_0)$			
3	DFS	$X(k\Omega_0) = \frac{1}{N} \sum_{n=0}^{N-1} x(n)e^{-jk\Omega_0 n}$ $x(n) = \sum_{n=0}^{N-1} X(k\Omega_0)e^{jk\Omega_0 n}$			
4	DTFT	$X(\Omega) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\Omega n}$ $x(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\Omega)e^{j\Omega n} d\Omega$			
5	DFT	$X(k) = \sum_{n=0}^{N-1} x(n)e^{-j\frac{2\pi}{N}nk}$ $x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k)e^{j\frac{2\pi}{N}nk}$			

连续信号傅里叶变换相关性质

序号	性质	公式				
1	对偶性	$X(t) \Leftrightarrow 2\pi x(-w)$				
2	尺度变换	$x(at) \Leftrightarrow \frac{1}{ a } X\left(\frac{w}{a}\right) (a \neq 0)$				
3	时移	$x(t \pm t_0 0) \Leftrightarrow e^{\pm jwt_0}X(w)$				
4	频移	$x(t)e^{\pm jw_0t} \Leftrightarrow X(w \mp w_0)$				
5	微分	$\frac{d^n x(t)}{dt^n} \Leftrightarrow (jw)^n X(w)$ $X(w) = \frac{1}{(jw)^n} X_{(n)}(w) + \pi [x(+\infty) + x(-\infty)] \delta(w) (含有直流分量)$				
6	积分	$\int_{-\infty}^{t} x(\tau)d\tau \Leftrightarrow \frac{1}{jw}X(w) + \pi X(0)\delta(w)$				
7	帕斯瓦尔公式	$\int_{-\infty}^{\infty} x(t) ^2 dt \Leftrightarrow \frac{1}{2\pi} \int_{-\infty}^{\infty} X(w) ^2 dw$				

Z变换相关性质

序号	性质	公式
1	时移(单边 Z 变换)	左移:

		$\mathcal{Z}[x(n+m)u(n)] = z^m \left[X(z) - \sum_{k=0}^{m-1} x(k)z^{-k} \right]$
		右移:
		$Z[x(n-m)u(n)] = z^{-m} \left[X(z) + \sum_{k=-m}^{-1} x(k)z^{-k} \right]$
2	Z域尺度变换	$a^n x(n) \Leftrightarrow X(a^{-1}z)$
3	Z域微分	$nx(n) \Leftrightarrow -z \frac{dX(z)}{dz}$
4	时间翻转	$x(-n) \Leftrightarrow X(z^{-1})$
5	累加	$\sum_{k=-\infty}^{n} x(k) \Leftrightarrow \frac{1}{1-z^{-1}} X(z)$
6	初值定理	$\chi(0) = \lim_{z \to \infty} X(z)$
7	终值定理	$\lim_{n\to\infty} x(n) = \lim_{z\to 1} \left[(z-1)X(z) \right]$

常用序列变换对

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
序	傅里叶变换		Z变换					
号	x(t)	$X(\omega)$	x(n)	X(z)	ROC			
1	$\delta(t)$	1	$\delta(n)$	1	$0 \le z \le \infty$			
2					u(n):			
	1	$2\pi\delta(\omega)$	u(n)	$\frac{z}{z-1}$	$1 < z \le \infty$ $-u(-n-1):$			
					$0 \le z < 1$			
3	u(t)	$\pi\delta(\omega) + \frac{1}{j\omega}$	$a^nu(n)$	$\frac{z}{z-a}$	$ a < z \le \infty$			
4	g(t)	_ ωτ	$\frac{(n+1)(n+2)\cdots(n+m)}{m!}$	Z^{m+1}	$ a < z \le \infty$			
	$= \begin{cases} 1, t < \tau/2 \\ 0, t > \tau/2 \end{cases}$	$\tau Sa(\frac{\omega\tau}{2})$	$a^n u(n)$	$\overline{(z-a)^{m+1}}$				
5	$Sa(\omega_c t)$	$\frac{\pi}{\omega_c} g(\omega), g(\omega)$ $= \begin{cases} 1, \omega < \omega_c \\ 0, \omega > \omega_c \end{cases}$	$na^nu(n)$	$\frac{az}{(z-a)^2}$	$ a < z \le \infty$			
6	$e^{j\omega_0t}$	$2\pi\delta(\omega \\ -\omega_0)$	$\sin\left(n\Omega_0\right)u(n)$	$\frac{z\sin\Omega_0}{z^2 - 2z\cos\Omega_0 + 1}$	$1 < z \le \infty$			
7	$e^{-at}u(t)$	$\frac{1}{j\omega + a}$	$\cos(n\Omega_0)u(n)$	$\frac{z(z-\cos\Omega_0)}{z^2-2z\cos\Omega_0+1}$	$1 < z \le \infty$			