Trabajo Práctico N° 5.2: Aritmética Modular.

Ejercicio 1.

Hallar los resultados de las siguientes operaciones realizadas entre enteros módulo 4 y 5:

(a)
$$\bar{3} + \bar{1}$$
.

$$\overline{3} + \overline{1} = \overline{3+1}$$

$$\overline{3} + \overline{1} = \overline{4}$$
.

$$\overline{3} + \overline{1} = 4 \mod 4$$

$$\bar{3} + \bar{1} = 0.$$

$$\overline{3} + \overline{1} = 4 \mod 5$$

$$\bar{3} + \bar{1} = 4$$
.

(b)
$$\bar{5} + \bar{9}$$
.

$$\overline{5} + \overline{9} = \overline{5 + 9}$$

$$\overline{5} + \overline{9} = \overline{14}$$
.

$$\overline{5} + \overline{9} = 14 \mod 4$$

$$\bar{5} + \bar{9} = 2$$
.

$$\overline{5} + \overline{9} = 14 \mod 5$$

$$\bar{5} + \bar{9} = 4$$
.

(c)
$$\overline{40} * \overline{3}$$
.

$$\overline{40} * \overline{3} = \overline{40 * 3}$$

$$\overline{40} * \overline{3} = \overline{120}$$
.

$$\overline{40} * \overline{3} = 120 \mod 4$$

$$\overline{40} * \overline{3} = 0.$$

$$\overline{40} * \overline{3} = 120 \mod 5$$

$$\overline{40} * \overline{3} = 0.$$

(d)
$$(\bar{3} + \bar{2}) * (\bar{6} * \bar{8})$$
.

$$(\overline{3} + \overline{2}) * (\overline{6} * \overline{8}) = (\overline{3+2}) * (\overline{6*8})$$

$$(\bar{3} + \bar{2}) * (\bar{6} * \bar{8}) = \bar{5} * \bar{48}$$

$$(\overline{3} + \overline{2}) * (\overline{6} * \overline{8}) = \overline{5 * 48}$$

$$(\overline{3} + \overline{2}) * (\overline{6} * \overline{8}) = \overline{240}.$$

$$(\overline{3} + \overline{2}) * (\overline{6} * \overline{8}) = 240 \mod 4$$

 $(\overline{3} + \overline{2}) * (\overline{6} * \overline{8}) = 0.$

$$(\bar{3} + \bar{2}) * (\bar{6} * \bar{8}) = 0$$

$$(\overline{3} + \overline{2}) * (\overline{6} * \overline{8}) = 240 \mod 5$$

 $(\overline{3} + \overline{2}) * (\overline{6} * \overline{8}) = 0.$

$$(\bar{3} + \bar{2}) * (\bar{6} * \bar{8}) = 0$$

Ejercicio 2.

Construir las tablas de sumar y multiplicar de los enteros módulo 2 y 5.

Sea $\mathbb{Z}_2 = \{\overline{0}, \overline{1}\}.$

Tabla de sumar (mod 2):

+	$\overline{0}$	$\overline{1}$
$\overline{0}$	0	1
<u>1</u>	1	0

Tabla de multiplicar (mod 2):

*	$\overline{0}$	$\overline{1}$	
$\overline{0}$	0	0	
$\overline{1}$	0	1	

Sea $\mathbb{Z}_5 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}\}.$

Tabla de sumar (mod 5):

+	0	1	2	3	4
$\overline{0}$	0	1	2	3	4
1	1	2	3	4	0
<u>2</u>	2	3	4	0	1
$\overline{3}$	3	4	0	1	2
4	4	0	1	2	3

Tabla de multiplicar (mod 5):

+	0	<u>1</u>	2	3	4
$\overline{0}$	0	0	0	0	0
1	0	1	2	3	4
<u>2</u>	0	2	4	1	3
3	0	3	1	4	2
$\overline{4}$	0	4	3	2	1

Ejercicio 3.

Analizar si las siguientes son estructuras de grupo:

(a) $(\mathbb{Z}_4, +)$ enteros módulo 4 con la suma modular.

 $\mathbb{Z}_4 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}\}.$

Cerradura: Para cada a, $b \in \mathbb{Z}_4$, $(a + b) \mod 4 \in \mathbb{Z}_4$.

Asociatividad: La operación + en \mathbb{Z}_4 es asociativa porque se cumple que, para cada a, b, $c \in \mathbb{Z}_4$, $[(a+b)+c] \mod 4 = [a+(b+c)] \mod 4$.

Elemento neutro: Existe un elemento $e \in \mathbb{Z}_4$ tal que, para todo $a \in \mathbb{Z}_4$, se cumple que $(a + e) \mod 4 = (e + a) \mod 4 = a \mod 4$. En particular, 0 es el elemento neutro $e \in \mathbb{Z}_4$, ya que $(a + 0) \mod 4 = (0 + a) \mod 4 = a \mod 4 = a \mod 4 = a \mod 4$.

Inversos: Un elemento $a \in \mathbb{Z}_4$ tiene inverso si existe $a' \in \mathbb{Z}_4$ tal que (a + a') mod 4 = (a' + a) mod 4 = e. En particular, el inverso de 0 es $0 \in \mathbb{Z}_4$, el inverso de 1 es $3 \in \mathbb{Z}_4$, el inverso de 2 es $0 \in \mathbb{Z}_4$ y el inverso de $0 \in \mathbb{Z}_4$ y el

Por lo tanto, $(\mathbb{Z}_4, +)$ es un grupo, ya que satisface cerradura, asociatividad, elemento neutro e inversos.

(b) (\mathbb{Z}_4 , *) enteros módulo 4 con el producto modular.

 $\mathbb{Z}_4 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}\}.$

<u>Cerradura:</u> Para cada a, $b \in \mathbb{Z}_4$, (a * b) mod $4 \in \mathbb{Z}_4$.

Asociatividad: La operación * en \mathbb{Z}_4 es asociativa porque se cumple que, para cada a, b, $c \in \mathbb{Z}_4$, $[(a * b) * c] \mod 4 = [a * (b * c)] \mod 4$.

Elemento neutro: Existe un elemento $e \in \mathbb{Z}_4$ tal que, para todo $a \in \mathbb{Z}_4$, se cumple que (a * e) mod 4= (e * a) mod 4= a mod 4. En particular, 1 es el elemento neutro $\in \mathbb{Z}_4$, ya que (a * 1) mod 4= (1 * a) mod 4= a mod 4 \Leftrightarrow a mod 4= a mod 4= a mod 4.

Inversos: Un elemento $a \in \mathbb{Z}_4 \setminus \{0\}$ tiene inverso si existe $a' \in \mathbb{Z}_4$ tal que $(a * a') \mod 4 = (a' * a) \mod 4 = e$. En particular, esto sólo se cumple para 1 (cuyo inverso es $1 \in \mathbb{Z}_4$) y 3 (cuyo inverso es $3 \in \mathbb{Z}_4$), por lo que no existe inverso para todo $a \in \mathbb{Z}_4 \setminus \{0\}$.

Por lo tanto, $(\mathbb{Z}_3, *)$ no es un grupo, ya que satisface cerradura, asociatividad y elemento neutro, pero no satisface inversos.

(c) $(\mathbb{Z}_3, *)$ enteros módulo 3 con el producto modular.

 $\mathbb{Z}_3 = \{\overline{0}, \overline{1}, \overline{2}\}.$

<u>Cerradura:</u> Para cada a, $b \in \mathbb{Z}_3$, $(a * b) \mod 3 \in \mathbb{Z}_3$.

Asociatividad: La operación * en \mathbb{Z}_3 es asociativa porque se cumple que, para cada a, b, $c \in \mathbb{Z}_3$, $[(a * b) * c] \mod 3 = [a * (b * c)] \mod 3$.

Elemento neutro: Existe un elemento $e \in \mathbb{Z}_3$ tal que, para todo $a \in \mathbb{Z}_3$, se cumple que (a * e) mod 3= (e * a) mod 3= a mod 3. En particular, 1 es el elemento neutro $\in \mathbb{Z}_3$, ya que (a * 1) mod 3= (1 * a) mod 3= a mod 3 \Leftrightarrow a mod 3= a mod 3.

Inversos: Un elemento $a \in \mathbb{Z}_3 \setminus \{0\}$ tiene inverso si existe $a' \in \mathbb{Z}_3$ tal que (a * a') mod 3 = (a' * a) mod 3 = e. En particular, 1 es el inverso de 1 y 2 es el inverso de 2, por lo que existe inverso para todo $a \in \mathbb{Z}_3 \setminus \{0\}$.

Por lo tanto, $(\mathbb{Z}_3, *)$ es un grupo, ya que satisface cerradura, asociatividad, elemento neutro e inversos.

Ejercicio 4.

Sean $A_1 = \{\overline{0}, \overline{5}\}$ y $A_2 = \{\overline{0}, \overline{2}, \overline{4}, \overline{6}, \overline{8}\}$ subconjuntos de \mathbb{Z}_{10} .

(a) Probar que A_1 y A_2 son subgrupos de \mathbb{Z}_{10} .

$$A_1 \subset \mathbb{Z}_{10}$$
.

Cerradura: Para cada a, $b \in A_1$, $(a + b) \mod 10 \in A_1$.

Asociatividad: La operación + en A_1 es asociativa porque se hereda del grupo original $(\mathbb{Z}_{10}, +)$.

Elemento neutro: El elemento neutro de + en \mathbb{Z}_{10} también existe en A_1 . En particular, $0 \in A_1$.

Inversos: Un elemento $a \in A_1$ tiene inverso si existe $a' \in A_1$ tal que (a + a') mod 10 = (a' + a) mod 10 = e. En particular, el inverso de 0 es $0 \in A_1$ y el inverso de 5 es $5 \in A_1$, por lo que existe inverso para todo $a \in A_1$.

Por lo tanto, queda demostrado que $(A_1, +)$ es un subgrupo del grupo $(\mathbb{Z}_{10}, +)$, ya que satisface cerradura, elemento neutro e inversos.

$$A_2 \subset \mathbb{Z}_{10}$$
.

Cerradura: Para cada a, $b \in A_2$, $(a + b) \mod 10 \in A_2$.

Asociatividad: La operación + en A_2 es asociativa porque se hereda del grupo original $(\mathbb{Z}_{10}, +)$.

Elemento neutro: El elemento neutro de + en \mathbb{Z}_{10} también existe en A_2 . En particular, $0 \in A_2$.

<u>Inversos:</u> Un elemento $a \in A_2$ tiene inverso si existe $a' \in A_2$ tal que (a + a') mod 10 = (a' + a) mod 10 = e. En particular, el inverso de 0 es $0 \in A_2$, el inverso de 2 es $8 \in A_2$, el inverso de 4 es $6 \in A_2$, el inverso de 6 es $6 \in A_2$, el inverso de 6 es $6 \in A_2$, por lo que existe inverso para todo $6 \in A_2$.

Por lo tanto, queda demostrado que $(A_2, +)$ es un subgrupo del grupo $(\mathbb{Z}_{10}, +)$, ya que satisface cerradura, elemento neutro e inversos.

(b) Mostrar que todo elemento de \mathbb{Z}_{10} puede escribirse como suma de elementos de A_1 y A_2 (es decir, para todo x de \mathbb{Z}_{10} , $x = x_1 + x_2$ con $x_1 \in A_1$ y $x_2 \in A_2$).

$$\mathbb{Z}_{10} = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}, \overline{8}, \overline{9}\}.$$

Juan Menduiña

Si $x_1 = \overline{0}$, entonces, $x = x_2$. Como A_2 contiene $\overline{0}$, $\overline{2}$, $\overline{4}$, $\overline{6}$, $\overline{8}$, los valores posibles de x_2 cubren los elementos pares de \mathbb{Z}_{10} ($\overline{0}$, $\overline{2}$, $\overline{4}$, $\overline{6}$, $\overline{8}$).

Si $x_1 = \overline{5}$, entonces, $x = (\overline{5} + x_2) \mod 10$. Esto genera: $\overline{5} + \overline{0} = \overline{5}$; $\overline{5} + \overline{2} = \overline{7}$; $\overline{5} + \overline{4} = \overline{9}$; $\overline{5} + \overline{6} = \overline{1}$; $\overline{5} + \overline{8} = \overline{3}$. Los valores posibles de x_2 cubren los elementos impares de \mathbb{Z}_{10} ($\overline{1}$, $\overline{3}$, $\overline{5}$, $\overline{7}$, $\overline{9}$).

Por lo tanto, todo elemento de \mathbb{Z}_{10} puede escribirse como la suma de elementos de A_1 y A_2 .

Ejercicio 5.

Mostrar que $\overline{3}$ es un generador del grupo cíclico (\mathbb{Z}_8 , +). ¿Cuál es el orden del subgrupo cíclico generado por $\overline{2}$?

$$\mathbb{Z}_8 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}\}.$$

Un elemento $g \in \mathbb{Z}_8$ es un generador si y sólo si los múltiplos de g (es decir, g, 2g, ... módulo 8) generan todos los elementos de \mathbb{Z}_8 .

$$g = \overline{3}$$
: $\overline{1} * \overline{3} = \overline{3}$; $\overline{2} * \overline{3} = \overline{6}$; $\overline{3} * \overline{3} = \overline{1}$; $\overline{4} * \overline{3} = \overline{4}$; $\overline{5} * \overline{3} = \overline{7}$; $\overline{6} * \overline{3} = \overline{2}$; $\overline{7} * \overline{3} = \overline{5}$; $\overline{8} * \overline{3} = \overline{0}$.

Por lo tanto, $\overline{3}$ es un generador del grupo cíclico (\mathbb{Z}_8 , +).

El orden de un elemento en un grupo cíclico es el menor n tal que $ng=\overline{0}$, donde g es el elemento que se está considerando.

$$g = \overline{2}$$
: $\overline{1} * \overline{2} = \overline{6}$; $\overline{2} * \overline{2} = \overline{4}$; $\overline{3} * \overline{2} = \overline{2}$; $\overline{4} * \overline{2} = \overline{0}$.

Por lo tanto, el orden del subgrupo cíclico generado por $\bar{2}$ es 4.

Ejercicio 6.

Encontrar los generadores del grupo cíclico (\mathbb{Z}_6 , +).

$$\mathbb{Z}_6 {=} \, \{ \overline{0}, \, \overline{1}, \, \overline{2}, \, \overline{3}, \, \overline{4}, \, \overline{5} \}.$$

Un elemento $g \in \mathbb{Z}_6$ es un generador si y sólo si los múltiplos de g (es decir, g, 2g, ... módulo 6) generan todos los elementos de \mathbb{Z}_6 .

 $g=\overline{0}$: La suma de $\overline{0}$ consigo mismo siempre da 0.

$$g = \overline{1}$$
: $\overline{1} * \overline{1} = \overline{1}$; $\overline{2} * \overline{1} = \overline{2}$; $\overline{3} * \overline{1} = \overline{3}$; $\overline{4} * \overline{1} = \overline{4}$; $\overline{5} * \overline{1} = \overline{5}$; $\overline{6} * \overline{1} = \overline{0}$.

$$g=\overline{2}:\overline{1}*\overline{2}=\overline{2};\overline{2}*\overline{2}=\overline{4};\overline{3}*\overline{2}=\overline{0}.$$

$$g = \bar{3}: \bar{1} * \bar{3} = \bar{3}; \bar{2} * \bar{3} = \bar{0}.$$

$$g=\overline{4}:\overline{1}*\overline{4}=\overline{4};\overline{2}*\overline{4}=\overline{2};\overline{3}*\overline{4}=\overline{0}.$$

$$g = \overline{5}: \overline{1} * \overline{5} = \overline{5}; \overline{2} * \overline{5} = \overline{4}; \overline{3} * \overline{5} = \overline{3}; \overline{4} * \overline{5} = \overline{2}; \overline{5} * \overline{5} = \overline{1}; \overline{6} * \overline{5} = \overline{0}.$$

Por lo tanto, los generadores del grupo cíclico (\mathbb{Z}_6 , +) son 1 y 5.

Ejercicio 7.

Si se reparte en partes iguales m caramelos entre 3 personas me sobran 2, mientras que, si se reparten entre 7, me sobran 4. Sabiendo que m está entre 30 y 70. ¿Cuántos caramelos se tienen para repartir? (Usar aritmética modular).

```
m \equiv_3 2
m=3k+2, con k \in \mathbb{Z}.
m \equiv_7 4.
3k + 2 \equiv_7 4
3k \equiv_7 4 - 2
3k \equiv_7 2
5 * 3k \equiv_7 5 * 2
15k \equiv_{7} 10
15k mod 7= 10
15 \mod 7 * k \mod 7 = 3
1 * k \mod 7 = 3
k \mod 7 = 3
k=7n+3, con n \in \mathbb{Z}.
m=3(7n+3)+2
m = 21n + 9 + 2
m = 21n + 11.
Con n=1:
m = 21 * 1 + 11
m = 21 + 11
m = 32.
Con n=2:
m = 21 * 2 + 11
m = 42 + 11
m = 53.
```

Por lo tanto, se tienen para repartir 32 o 53 caramelos.

Ejercicio 8.

Averiguar qué día de la semana cayó 05/11/1968, fecha de natalicio de Ricardo Fort.

Se utilizará el algoritmo de Zeller, que es una fórmula para calcular el día de la semana de cualquier fecha:

$$h=(q+\left\lfloor\frac{13(m+1)}{5}\right\rfloor+K+\left\lfloor\frac{K}{4}\right\rfloor+\left\lfloor\frac{J}{4}\right\rfloor-2J) \bmod 7$$
, donde:

h: día de la semana (0: sábado, 1: domingo, 2: lunes, 3: martes, 4: miércoles, 5: jueves, 6: viernes),

q: día del mes,

m: mes (los meses de enero y febrero se consideran como los meses 13 y 14 del año anterior),

K: últimos dos dígitos del año,

J: primeros dos dígitos del año.

h=
$$(5 + \left\lfloor \frac{13(11+1)}{5} \right\rfloor + 68 + \left\lfloor \frac{68}{4} \right\rfloor + \left\lfloor \frac{19}{4} \right\rfloor - 2 * 19) \mod 7$$

h= $(5 + \left\lfloor \frac{13*12}{5} \right\rfloor + 68 + 17 + 4 - 38) \mod 7$
h= $(5 + \left\lfloor \frac{156}{5} \right\rfloor + 68 + 17 + 4 - 38) \mod 7$
h= $(5 + 31 + 68 + 17 + 4 - 38) \mod 7$
h= $87 \mod 7$
h= 3 .

Por lo tanto, el día de la semana que cayó 05/11/1968 fue martes.

Ejercicio 9.

Mostrar que \mathbb{Z}_m para m natural y las operaciones de suma y producto tiene estructura de anillo.

$$\mathbb{Z}_m = \{\overline{0}, \overline{1}, \overline{2}, \dots, \overline{m-1}\}.$$

La terna ordenada (\mathbb{Z}_m , +, *) tiene estructura de anillo si (\mathbb{Z}_m , +) es un grupo conmutativo y si el producto es cerrado, asociativo y se satisface distributividad del producto respecto de la suma.

Cerradura de la suma: Para cada a, $b \in \mathbb{Z}_m$, $(a + b) \mod m \in \mathbb{Z}_m$.

Asociatividad de la suma: La operación + en \mathbb{Z}_m es asociativa porque se cumple que, para cada a, b, $c \in \mathbb{Z}_m$, $[(a + b) + c] \mod m = [a + (b + c)] \mod m$.

Elemento neutro de la suma: Existe un elemento $e \in \mathbb{Z}_m$ tal que, para todo $a \in \mathbb{Z}_m$, se cumple que (a + e) mod m = (e + a) mod m = a mod m. En particular, 0 es el elemento neutro $e \in \mathbb{Z}_m$, ya que $e \in \mathbb{Z}_m$, ya que $e \in \mathbb{Z}_m$ mod $e \in$

Inversos aditivos: Un elemento $a \in \mathbb{Z}_m$ tiene inverso si existe $a' \in \mathbb{Z}_m$ tal que (a + a') mod m = (a' + a) mod m = e. En particular, para todo $a \in \mathbb{Z}_m$, su inverso es $a' = (m - a) \in \mathbb{Z}_m$, por lo que existe inverso para todo $a \in \mathbb{Z}_m$.

<u>Conmutatividad de la suma:</u> La operación + en \mathbb{Z}_m es conmutativa porque se cumple que, para cada a, $b \in \mathbb{Z}_m$, $(a + b) \mod m = (b + a) \mod m$.

Por lo tanto, $(\mathbb{Z}_m, +)$ es un grupo conmutativo, ya que satisface cerradura, asociatividad, elemento neutro, inversos y conmutatividad.

<u>Cerradura del producto:</u> Para cada a, $b \in \mathbb{Z}_m$, (a * b) mod $m \in \mathbb{Z}_m$.

Asociatividad del producto: La operación * en \mathbb{Z}_m es asociativa porque se cumple que, para cada a, b, $c \in \mathbb{Z}_m$, $[(a * b) * c] \mod m = [a * (b * c)] \mod m$.

<u>Distributividad del producto respecto de la suma:</u> La operación * en \mathbb{Z}_m es distributiva respecto de la operación + porque se cumple que, para cada a, b, $c \in \mathbb{Z}_m$, [a * (b + c)] mod m = (a * b + a * c) mod m y [(a + b) * c] mod m = (a * c + b * c) mod m.

Por lo tanto, queda demostrado que $(\mathbb{Z}_m, +, *)$ tiene estructura de anillo.

Ejercicio 10.

Dar todos los elementos invertibles de \mathbb{Z}_6 .

$$\mathbb{Z}_6 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}.$$

Un elemento $a \in \mathbb{Z}_6$ es invertible si existe $b \in \mathbb{Z}_6$ tal que $(a * b) \mod 6 = 1$. Un elemento $a \in \mathbb{Z}_6$ es invertible si y sólo si mcd (a, m) = 1 (es coprimo con m).

```
a=0: mcd(0, 6)=6.
```

a=1: mcd(1, 6)=1.

a= 2: mcd (2, 6)= 2.

a= 3: mcd (3, 6)= 3.

a=4: mcd (4, 6)=2.

a=5: mcd (5, 6)=1.

En particular, los inversos de $\overline{1}$ y $\overline{5}$ son $\overline{1}$ y $\overline{5}$, respectivamente.

Por lo tanto, todos los elementos invertibles de \mathbb{Z}_6 son $\{\overline{1}, \overline{5}\}$.

Ejercicio 11.

Sea m un entero impar, probar que $m^2 \equiv_4 1$.

Si m es un entero impar, entonces:

$$m=2k+1$$
, con $k \in \mathbb{Z}$.

Elevando al cuadrado ambos lados de la ecuación anterior, se tiene:

$$m^2 = (2k + 1)^2$$

 $m^2 = 4k^2 + 4k + 1$
 $m^2 = 4(k^2 + k) + 1$.

Tomando la congruencia módulo 4, se tiene:

```
m^2 \mod 4 = [4 (k^2 + k) + 1] \mod 4

m^2 \mod 4 = [4 (k^2 + k)] \mod 4 + 1 \mod 4

m^2 \mod 4 = 4 \mod 4 * (k^2 + k) \mod 4 + 1

m^2 \mod 4 = 0 * (k^2 + k) \mod 4 + 1

m^2 \mod 4 = 0 + 1

m^2 \mod 4 = 1

m^2 \equiv_4 1.
```

Por lo tanto, queda demostrado que, dado un número impar m, $m^2 \equiv_4 1$.

Ejercicio 12.

Si \bar{a} es invertible, entonces, no es divisor de cero.

Si \bar{a} es invertible, entonces, existe $\bar{b} \in \mathbb{Z}_m$ tal que:

$$\bar{a} * \bar{b} = \bar{1}$$
.

Ahora, se supone, por contradicción, que \bar{a} también es divisor de 0. Entonces, existe $\bar{c} \neq 0 \in \mathbb{Z}_m$ tal que:

$$\bar{a} * \bar{c} = \bar{0}$$
.

Pre-multiplicando a ambos lados de la ecuación anterior por el inverso de \bar{a} (\bar{b}), se tiene:

$$\bar{b} * (\bar{a} * \bar{c}) = \bar{b} * \bar{0}.$$

Usando la propiedad asociativa, se tiene:

$$(\overline{b} * \overline{a}) * \overline{c} = \overline{0}$$
$$(\overline{a} * \overline{b}) * \overline{c} = \overline{0}.$$

Usando que \bar{b} es el inverso de \bar{a} , se tiene:

$$\overline{1} * \overline{c} = \overline{0}$$

 $\overline{c} = \overline{0}$.

Lo cual contradice la suposición de que $\bar{c} \neq 0$.

Por lo tanto, queda demostrado que, si \bar{a} es invertible, entonces, no es divisor de cero.

Ejercicio 13.

Probar que (t, m)= 1 si y sólo si t es invertible módulo m.

Si mcd (t, m)= 1, entonces, por el teorema de Bézout, existe enteros x e y tales que tx + my= 1. Tomando la congruencia módulo m, se tiene:

```
tx + my \equiv_{m} 1
(tx + my) \mod m = 1
tx \mod m + my \mod m = 1
tx \mod m + m \mod m * y \mod m = 1
tx \mod m + 0 * y \mod m = 1
tx \mod m + 0 = 1
tx \mod m = 1
tx \equiv_{m} 1.
```

Por lo tanto, t es invertible módulo m.

Si t es invertible módulo m, entonces, existe $\mathbf{t}' \in \mathbb{Z}_m$ tal que $\mathbf{tt}' \equiv_m 1$, lo que implica que $\mathbf{tt}' = \mathbf{mk} + 1$, para algún $\mathbf{k} \in \mathbb{Z}$. La ecuación \mathbf{tt}' - $\mathbf{mk} = 1$ es una combinación lineal de t y m que da como resultado 1. Por lo tanto, por el teorema de Bézout, mcd $(\mathbf{t}, \mathbf{m}) = 1$.

Por lo tanto, queda demostrado que (t, m) si y sólo si t es invertible módulo m.

Ejercicio 14.

Si p es primo, entonces, \mathbb{Z}_p es un cuerpo.

$$\mathbb{Z}_p = \{\overline{0}, \overline{1}, \overline{2}, \dots, \overline{p-1}\}.$$

La terna ordenada (\mathbb{Z}_p , +, *) tiene estructura de cuerpo si (\mathbb{Z}_p , +) es un grupo commutativo, si el producto es cerrado, asociativo, tiene un elemento neutro y es conmutativo y si todo elemento no nulo tiene un inverso multiplicativo.

<u>Cerradura de la suma:</u> Para cada a, $b \in \mathbb{Z}_p$, $(a + b) \mod p \in \mathbb{Z}_p$.

Asociatividad de la suma: La operación + en \mathbb{Z}_p es asociativa porque se cumple que, para cada a, b, $c \in \mathbb{Z}_p$, $[(a + b) + c] \mod p = [a + (b + c)] \mod p$.

Elemento neutro de la suma: Existe un elemento $e \in \mathbb{Z}_p$ tal que, para todo $a \in \mathbb{Z}_p$, se cumple que $(a + e) \mod p = (e + a) \mod p = a \mod p$. En particular, 0 es el elemento neutro $e \in \mathbb{Z}_p$, ya que $e \in \mathbb{Z}_p$, ya que $e \in \mathbb{Z}_p$ a mod $e \in \mathbb{Z}_p$ mod $e \in \mathbb{Z}_p$.

<u>Inversos aditivos:</u> Un elemento $a \in \mathbb{Z}_p$ tiene inverso si existe $a' \in \mathbb{Z}_p$ tal que (a + a') mod p = (a' + a) mod p = e. En particular, para todo $a \in \mathbb{Z}_p$, su inverso es $a' = (p - a) \in \mathbb{Z}_p$, por lo que existe inverso para todo $a \in \mathbb{Z}_p$.

<u>Conmutatividad de la suma:</u> La operación + en \mathbb{Z}_p es conmutativa porque se cumple que, para cada a, $b \in \mathbb{Z}_p$, $(a + b) \mod p = (b + a) \mod p$.

Por lo tanto, $(\mathbb{Z}_p, +)$ es un grupo conmutativo, ya que satisface cerradura, asociatividad, elemento neutro, inversos y conmutatividad.

<u>Cerradura del producto:</u> Para cada a, $b \in \mathbb{Z}_p$, (a * b) mod $p \in \mathbb{Z}_p$.

Asociatividad del producto: La operación * en \mathbb{Z}_p es asociativa porque se cumple que, para cada a, b, $c \in \mathbb{Z}_p$, $[(a * b) * c] \mod p = [a * (b * c)] \mod p$.

Elemento neutro del producto: Existe un elemento $e \in \mathbb{Z}_p$ tal que, para todo $a \in \mathbb{Z}_p$, se cumple que $(a * e) \mod p = (e * a) \mod p = a \mod p$. En particular, 1 es el elemento neutro $e \in \mathbb{Z}_p$, ya que $e \in \mathbb{Z}_p$, ya que $e \in \mathbb{Z}_p$, ya que $e \in \mathbb{Z}_p$ mod $e \in \mathbb{Z}_p$.

<u>Conmutatividad del producto:</u> La operación * en \mathbb{Z}_p es conmutativa porque se cumple que, para cada a, $b \in \mathbb{Z}_p$, $(a * b) \mod p = (b * a) \mod p$.

Inversos multiplicativos: Como p es primo, para todo $a \in \mathbb{Z}_p \setminus \{0\}$, mcd (a, p)=1. Por el teorema de Bézout, existen enteros x e y tales que ax + py=1. Tomando la congruencia módulo p, se tiene que $ax + py \equiv_p 1 \iff ax \equiv_p 1$, lo que implica que x es el inverso multiplicativo de a módulo p. Por lo tanto, todo elemento no nulo de \mathbb{Z}_p tiene un inverso multiplicativo.

Por lo tanto, queda demostrado que, si p es primo, entonces, $(\mathbb{Z}_p,+,*)$ es un cuerpo.