# **TBA820M**



# MINIDIP 1.2W AUDIO AMPLIFIER

The TBA820M is a monolithic integrated audio amplifier in a 8 lead dual in-line plastic package. It is intended for use as low frequency class B power amplifier with wide range of supply voltage: 3 to 16V, in portable radios, cassette recorders and players etc. Main features are: minimum working supply voltage of 3V, low quiescent current, low number of external components, good ripple rejection, no cross-over distortion, low power dissipation.

Output power: Po = 2W at 12V/8 $\Omega$ , 1.6W at 9V/4 $\Omega$  and 1.2W at 9V/8 $\Omega$ .



#### ABSOLUTE MAXIMUM RATINGS

| $V_s$            | Supply voltage                               | 16         | V  |
|------------------|----------------------------------------------|------------|----|
| l <sub>o</sub>   | Output peak current                          | 1.5        | Α  |
| $P_{tot}$        | Power dissipation at T <sub>amb</sub> = 50°C | 1          | W  |
| $T_{stg}, T_{j}$ | Storage and junction temperature             | -40 to 150 | °C |

#### TEST AND APPLICATION CIRCUITS

Fig. 1 - Circuit diagram with load connected to the supply voltage



Fig. 2 - Circuit diagram with load connected to ground



 Capacitor C6 must be used when high ripple rejection is requested.

#### CONNECTION DIAGRAM

(top view)



## SCHEMATIC DIAGRAM



## THERMAL DATA

| R <sub>th j-amb</sub> | Thermal resistance junction-ambient | max | 100 | °C/W |
|-----------------------|-------------------------------------|-----|-----|------|
|                       |                                     | L   |     |      |

2/4

# **ELECTRICAL CHARACTERISTICS** (Refer to the test circuits $V_s = 9V$ , $T_{amb} = 25^{\circ}C$ unless otherwise specified)

| Parameter      |                                                   | Test conditions                                                                                    |                                                                                                               | Min.         | Тур.                            | Max. | Unit        |
|----------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------|---------------------------------|------|-------------|
| Vs             | Supply voltage                                    |                                                                                                    |                                                                                                               | 3            |                                 | 16   | V           |
| v <sub>o</sub> | Quiescent output voltage (pin 5)                  |                                                                                                    |                                                                                                               | 4            | 4.5                             | 5    | V           |
| l <sub>d</sub> | Quiescent drain current                           |                                                                                                    |                                                                                                               |              | 4                               | 12   | mA          |
| I <sub>b</sub> | Bias current (pin 3)                              |                                                                                                    |                                                                                                               | 1            | 0.1                             |      | μΑ          |
| Po             | Output power                                      | $d = 10\%$ $R_{f} = 120\Omega$ $V_{s} = 12V$ $V_{s} = 9V$ $V_{s} = 9V$ $V_{s} = 6V$ $V_{s} = 3.5V$ | $f = 1 \text{ kHz}$ $R_{L} = 8\Omega$ $R_{L} = 4\Omega$ $R_{L} = 8\Omega$ $R_{L} = 4\Omega$ $R_{L} = 4\Omega$ | 0.9          | 2<br>1.6<br>1.2<br>0.75<br>0.25 |      | w<br>w<br>w |
| Ri             | Input resistance (pin 3)                          | f = 1 kHz                                                                                          | ·                                                                                                             |              | 5                               |      | MΩ          |
| В              | Frequency response (-3 dB)                        | $R_L = 8\Omega$ $C_5 = 1000 \mu\text{F}$ $R_f = 120\Omega$                                         | C <sub>B</sub> = 680 pF                                                                                       | 25 to 7,000  |                                 | Hz   |             |
|                |                                                   |                                                                                                    | C <sub>B</sub> = 220 pF                                                                                       | 25 to 20,000 |                                 |      |             |
| ď              | Distortion                                        | $P_0 = 500 \text{ mW}$ $R_L = 8\Omega$ $f = 1 \text{ kHz}$                                         | R <sub>f</sub> = 33Ω                                                                                          |              | 8.0                             |      |             |
|                |                                                   |                                                                                                    | R <sub>f</sub> = 120Ω                                                                                         |              | 0.4                             |      | %           |
| G <sub>v</sub> | Voltage gain (open loop)                          | f = 1 kHz                                                                                          | R <sub>L</sub> = 8Ω                                                                                           |              | 75                              |      | dB          |
| G <sub>v</sub> | Voltage gain (closed loop)                        | R <sub>L</sub> = 8Ω                                                                                | R <sub>f</sub> = 33Ω                                                                                          |              | 45                              |      |             |
|                |                                                   | f = 1 kHz                                                                                          | R <sub>f</sub> = 120Ω                                                                                         |              | 34                              |      | dB          |
| eN             | Input noise voltage (*)                           |                                                                                                    | ,                                                                                                             |              | 3                               |      | μ∨          |
| i <sub>N</sub> | Input noise current (*)                           |                                                                                                    | · ·                                                                                                           |              | 0.4                             |      | nΑ          |
| S+N<br>N       | Signal to noise ratio (*)                         | P <sub>o</sub> = 1.2W<br>R <sub>L</sub> = 8Ω<br>G <sub>v</sub> = 34 dB                             | R1= 10KΩ                                                                                                      |              | 80                              |      |             |
|                |                                                   |                                                                                                    | R1= 50 kΩ                                                                                                     |              | 70                              |      | dB          |
| SVR            | Supply voltage rejection (test circuit of fig. 2) | $R_L = 8\Omega$<br>$f_{(ripple)} = 100$<br>$C6 = 47 \mu F$<br>$R_f = 120\Omega$                    |                                                                                                               | 42           |                                 | dB   |             |

<sup>(\*)</sup> B = 22 Hz to 22 KHz

Fig. 3 - Output power vs.



Fig. 4 - Harmonic distortion



Fig. 5 - Power dissipation and efficiency vs. output power



Fig. 6 - Maximum power dissipation (sine wave operation)



Fig. 7 - Suggested value of CB vs. Rf



Fig. 8 - Frequency response



Fig. 9 - Harmonic distortion vs. frequency



Fig. 10 - Supply voltage (Fig. 2 rejection circuit)



Fig. 11 - Quiescent current vs. supply voltage



4/4

SGS-THOMSON