MA2201/TMA4150

Vår 2015

Norges teknisk—naturvitenskapelige universitet

Institutt for matematiske fag

Løsningsforslag — Øving 4

Seksjon 10

1, 3 og 6 | Se henholdsvis eksempel 10.3, 10.4 og 10.7.

Indeks av en undergruppe betegner hvor mange restklasser undergruppen har. Fra diskusjonen under definisjon 10.13 ser vi at indeksen beregnes ved $(G:H) = \frac{|G|}{|H|}$. Vi regner så ut:

$$|G| = |S_5| = 5!$$

 $|H| = |\langle (1, 2, 5, 4)(2, 3)\rangle| = |\langle (1, 2, 3, 5, 4)\rangle| = 5$
 $(G: H) = \frac{|G|}{|H|} = \frac{5!}{5} = 4! = 24$

La G være en gruppe. Anta at $H \leq G$ er slik at $g^{-1}hg \in H$ for alle $g \in G, h \in H$. Fikser én $g \in G$.

La $gh \in gH$. Da vil $gh = gh(g^{-1}g) = (ghg^{-1})g$. Siden $ghg^{-1} \in H$, så følger det at $gh \in Hg$, og dermed $gH \subseteq Hg$.

Symmetrisk kan vi vise at $Hg \subseteq gH$, og dermed har vi at gH = Hg for alle $g \in G$.

En slik undergruppe ${\cal H}$ kalles en $normal\ undergruppe.$ Mer om disse kommer i kapittel 14.

 $\fbox{37}$ Vi antar altså at G er en gruppe med identitet ι slik at

- $|G| \ge 2$
- Om H er en undergruppe av G, så er H = G eller $H = \{\iota\}$.

Det første vi legger merke til er at siden $|G| \ge 2$, så finnes det en $g \in G$ slik at $g \ne \iota$. $\langle g \rangle$ er en undergruppe av G, og siden $g \ne \iota$ må vi ha at $G = \langle g \rangle$; følgelig er G syklisk.

Fra teorem 6.10 vet vi da at $G \cong \mathbb{Z}$ dersom $|G| = \infty$, eller $G \cong \mathbb{Z}_n$ hvor $|G| = n < \infty$.

Siden $\mathbb Z$ har ekte, ikke-trivielle undergrupper, må $G \neq \mathbb Z$; altså har G endelig orden.

Anta at |G| er et sammensatt tall, det vil si at |G| = pr, der $p \neq 1 \neq r$. Da vil $G \cong Z_{pr}$, men i sistnevte gruppe vil $\langle p \rangle$ være en undergruppe av r elementer, og dermed en ekte og ikke-triviell undergruppe. Følgelig må |G| være et primtall.

Seksjon 11

3 og 6 Se eksempel 11.10

Anta at G er en abelsk gruppe med orden mn, der $\gcd(m,n)=1$. Vi vet skrive G som et produkt av sykliske grupper \mathbb{Z}_{p^x} hvis orden er en primtallspotens. Videre kan vi sortere gruppene i den direkte summen slik at de som stammer fra primtallsfaktorer i m kommer først og de som stammer fra primtallsfaktorer i n kommer sist (husk at m og n ikke har noen felles primtallsfaktorer!). Dermed ser vi at $G \cong G_m \times G_n$, der G_m er en abelsk gruppe av orden m og G_n er en abelsk gruppe av orden n.

Vi vet at det opp til isomorfi er r muligheter for G_m og s muligheter for G_n . Dermed er det rs muligheter for G opp til isomorfi.

Vi har $G = (\mathbb{C}^*, \cdot)$, og skal finne torsjonsgruppa $T = \{g \in \mathbb{C}^* | \exists a \in \mathbb{N}^* \text{ slik at } g^a = 1\}$. Et vilkårlig komplekst tall kan som kjent skrives som $g = re^{\theta i}$, der $r, \theta \in \mathbb{R}$ og $r \geq 0$. Dersom vi vil at $g^a = 1$ for et positivt heltall a, må vi altså ha at $g^a = r^a e^{a\theta i} = e^{2n\pi i} = 1$, der $n \in \mathbb{Z}$. Vi ser at $r^a = 1$, og siden $r \geq 0$ må da r = 1. Videre må vi ha at $a\theta = 2n\pi$, altså er $\theta = \frac{2n\pi}{a} = q\pi$, der $q \in \mathbb{Q}$. Dermed kan vi skrive at $T = \{e^{q\pi i} | q \in \mathbb{Q}\}$.

Eksamensoppgaver

Vår 2010, oppgave 2 Vi vet at en undergruppe $H \leq G$ må ha en orden som deler |G|. Siden |G| har orden pq har vi følgende alternativer for den ekte undergruppen |H|

|H|=1: I dette tilfellet er H den trivielle undergruppa, og dermed syklisk.

|H| = p: La $h \in H$ være slik at $h \neq e$ (identitetselementet). Ordenen til h må dele |H|, og siden ordenen til h ikke er en, må da $H = \langle h \rangle$; følgelig er H syklisk.

|H| = q: Som |H| = p.

Sommer 2010, oppgave 2 a) σ har orden fire og er en odde permutasjon.

- **b)** $|H| \in \{1, 2, 3, 4, 6, 8, 12, 24\}.$
- c) $\gamma = (1,3)(2,4)$, $\sigma\gamma = (2,3)$, $\gamma\sigma = (1,4)$. Hint til siste del av oppgaven: Om du kan finne 13 distinkte elementer i H, så må $H = S_4$.
- **d)** Hint: la $\phi(1) = (1, 2, 3, 4)$

Ekstraoppgaver

- $oxed{1}$ a) Her kommer aksiomene for en gruppe til nytte igjen. Husk å sjekke at G er lukket under binæroperasjonen!
 - **b)** Anta først at n er et primtall. Da er $|G| = |\mathbb{Z}_n^*| = n 1$; følgelig er $G = \mathbb{Z}_n^*$, og dermed er \mathbb{Z}_n^* en gruppe.

Anta nå istedet at \mathbb{Z}_n^* er en gruppe, og la $a \in \mathbb{Z}_n^*$. Da har a en invers b slik at $a \cdot_n b = 1$, det vil si at $ab \equiv 1 \mod n$. Følgelig er $\gcd(a,n) = 1$. Vi har nå vist at n er relativt prim til alle positive heltall strengt mindre enn n; dermed er n et primtall.