Parallel Training of Robust Neural Networks

Rajat Mittal, John Wang, Neehal Tumma, Sayak Maity

Background - CNNs

- susceptible to adversarial attacks
- exposing the model to adversaries during training can make it robust
- necessary for safety critical applications

How do we generate adversaries?

- We find adversaries using the gradient of the adversarial objective with respect to the input
- Iteratively apply gradient "ascent" to the pixels of an image to increase model's error on the example

Prediction: Egyptian cat Probability: 66.0086

Fast Gradient Sign Method

 $x^{adv} = x - \varepsilon.sign(\nabla_x J(x, y_{target})))$ where

x — Clean Input Image

 x^{adv} — Adversarial Image

J — Loss Function

 y_{true} — Target Label

 ε — Tunable Parameter

Goals & Objectives

- Implement various parallelization strategies with OpenMP and MPI
- Demonstrate a proof-of-concept for parallel adversary generation
- Examine weak and strong scaling of our algorithm

Sequential Baseline

Adversarial Training

Loop through epochs

Loop through mini-batches

Generate adversaries (Bottleneck)

Calculate loss and backprop gradients on adversaries

Gradient Computation

Repeat 15 times:

$$\frac{\partial L}{\partial I_v} = \frac{\partial L}{\partial x_L} \cdot \frac{\partial x_L}{\partial x_{L-1}} \dots \frac{\partial x_2}{\partial x_1} \cdot \frac{\partial x_1}{\partial I_v}$$
$$I_v^{t+1} = I_v^t + \alpha \cdot \frac{\partial L}{\partial I_v}$$

Roofline Analysis for Parallel Code

- We tested this on the Broadwell node with the Intel Xeon E5-2683v4 processor (32 cores)
- The compute kernels that dominate are the backwards pass and the convolutional layer
- For input size of neural networks of MNIST (28 x 28), have that both are approximately memory bound.

Parallelizing Weight Updates and Adversary Generation

- Simultaneously perform adversary generation and weight updates on MPI processes
- Every k epochs, weight training process sends new weights to adversary generating processes

Parallelizing Weight Updates and Adversary Generation

- Simultaneously perform adversary generation and weight updates on MPI processes
- Every k epochs, weight training process sends new weights to adversary generating processes

Splitting the Dataset

- Static minibatch assignment

Communicating Adversaries

Fairness imposed through loop

```
int batch_available = 0;
while (count < kMaxProbes) {
   prev_source = (prev_source + 1) % (size - 1);
    int source = prev_source + 1;
   MPI_Iprobe(source, 101, MPI_COMM_WORLD, &batch_available, MPI_STATUS_IGNORE);
   IT (batcn_available) {
        MPI_Iprobe(source, 100, MPI_COMM_WORLD, &batch_available, NSI_STATUS_IGNORE);
        if (batch_available) {
           MPI_Recv(adversaries.data_ptr(), adversaries.numel(), MPI_FLO.
                source, 100, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
           MPI_Recv(targets.data_ptr(), targets.numel(), MPI_LONG,
                source, 101, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
            return true;
    count++;
```


Weight Training Process

Cannot use MPI_Waitsome since 2 pieces of data are being sent!

Sending Model Weights

Tradeoff: Do we want better adversaries or lower communication overhead?

```
torch::Tensor copied_input = input.clone();
for (int i = 0; i < steps; ++i) {
    auto grad = get_input_grad(model, copied_input, copied_input += step_sz * grad;
    copied_input = torch::clamp(copied_input, vmin, vmax),
    if (requests && i % kCheckReceiveInterval == 0) {
        requests = check_receive_finished(model, requests);
    }
}</pre>
```

Sending Model Weights

Tradeoff: Do we want better adversaries or lower communication overhead?


```
torch::Tensor copied_input = input.clone();
for (int i = 0; i < steps; ++i) {
    auto grad = get_input_grad(model, copied_input, copied_input += step_sz * grad;
    copied_input = torch::clamp(copied_input, vmin, vmax),
    if (requests && i % kCheckReceiveInterval == 0) {
        requests = check_receive_finished(model, requests);
    }
}</pre>
```

Ignoring Old Sends

Tradeoff: We want the latest copies of the weights, so we have to "receive and ignore" all previous models sent.

```
MPI_Request* check_receive_finished(
   Net &model,
    MPI_Request* requests
    int received;
    MPI_Testall(model.parameters().size(), requests, &received, MPI_STAT/
                                                                                NORE);
    if (received == 0) {
        return requests;
    int message_available;
    do {
       MPI_Iprobe(0, model.parameters().size()-1, MPI_COMM_WORLD, &message_available, MPI_STATUS_IGNORE);
        if (message_available) {
            receive_model_weights(model, true);
    } while (message_available);
    return receive_model_weights(model, false);
```

Attempt to use OpenMP: Backpropagation for Adversary Generation is Inefficient

$$\frac{\partial L}{\partial W_L} = \frac{\partial L}{\partial x_L} \cdot \frac{\partial x_L}{\partial W_L}$$

$$\frac{\partial L}{\partial W_{L-1}} = \frac{\partial L}{\partial x_L} \cdot \frac{\partial x_L}{\partial x_{L-1}} \cdot \frac{\partial x_{L-1}}{\partial W_{L-1}}$$

$$\frac{\partial L}{\partial W_1} = \frac{\partial L}{\partial x_L} \cdot \frac{\partial x_L}{\partial x_{L-1}} \dots \frac{\partial x_2}{\partial x_1} \cdot \frac{\partial x_1}{\partial W_1}$$

$$\frac{\partial L}{\partial I_v} = \frac{\partial L}{\partial x_L} \cdot \frac{\partial x_L}{\partial x_{L-1}} \dots \frac{\partial x_2}{\partial x_1} \cdot \frac{\partial x_1}{\partial I_v}$$

- Backpropagation avoids redundant computations of intermediate terms in the chain rule
- For adversary generation, we only require the product of a single chain of derivatives

Manual Computation of Gradient

Gradient Computation

 $loss * l2 * l1_relu * conv2_relu * conv1_relu$

 conv2_relu and conv1_relu operations are expensive since we need to compute a doubly blocked Toeplitz, likely not what PyTorch utilizes

Parallel Algorithms for Tensor Multiplication

 One way to parallelize matrix multiplication is to use multithreading for each individual tensor multiplication (intra-op parallelism).

 We wish to explore instead using multithreading on disjoint tensor multiplications (inter-op parallelism.

Why it didn't work

- Sequential for backprop is inherently better, due to compression when matrix multiplying
 - For instance, multiplying 1 x 50, 50 x 8000, 8000 x 1440, 1440 x 768.
 - Sequential compresses each matrix size to 1 x P matrices
 - However, bottleneck occurs for parallel algorithm when multiplying 8000 x 1440, 1440 x 768
- We see results for homogenous matrix sizes

Sequential Baseline Strong Scaling Analysis

We fix our problem size at 32 adversary steps so our serial fraction is 1/32

Sequential Baseline Weak Scaling Analysis

 We vary the problem size as a function of the number of adversary steps (which is also equal to the number of processes)

Takeaways & Future Work

- We were able to implement parallel adversary generation with little to no performance loss in the ML model
- We gained insight into the functionality of PyTorch under the hood and understood why it was so difficult to outperform it when using OpenMP
- Learning how the different methods of parallelization work helped us understand the performance results we got when developing the program
- Long-term goal is to create an open-source library that anyone can use for adversarial training