(see Felsenstein, J. (1973). Maximum likelihood and minimum-steps methods for estimating evolutionary trees from data on discrete characters. *Systematic Biology*, *22*(3), 240-249.)

Rooted tree T=(V,E) with root $r\in V$. A leaf of T is a node with no children and we call the set of all leaves L(T). Consider a discrete, finite alphabet Σ and let $d\coloneqq |\Sigma|$.

Let \mathcal{D} be a data matrix $\in \mathbb{N}^{|L(T)| \times d}$ that encodes the symbol that has been observed at each leaf.

An evolutionary tree is a tuple (T, θ) with a rooted tree T = (V, E) where each node $V_i \in V$ is a random variable with values in Σ and parameters $\theta = (\tau, Q, \pi)$. For each $e \in E$ τ_e is the evolutionary time along the tree edge, $Q \in \mathbb{R}^{d \times d}$ is a rate matrix and π is the equilibrium distribution at the root (also see: <u>probabilistic model of evolution</u>). Let T_{θ} be a tree parameterized by θ .

Goal: Estimate $P(\mathcal{D}|T,\theta)$.

Let $\mathcal{D}_{|u}$ for any $u \in V \setminus L(T)$ denote the data restricted to leaves below u.

Algorithm (dynamic programming)

Input: T_{σ} , \mathcal{D}

Output: $\alpha(u,v) = P(\mathcal{D}_{|u}|V_u = v,T)$ for all $u \in V \setminus L(T)$

The $\alpha(u, v)$ are computed dynamically starting with leaf edges. This dependings on the $P_{a,b}$ of a substitution model (see: <u>probabilistic model</u> of evolution).

Then we have $P(\mathcal{D}|T) = \Sigma_v \alpha(r,v) * \pi_v$

Example

T

 \mathcal{D}

	Α	В	С	D
1	1	0	0	0
2	0	1	0	0
3	0	0	0	0
4	0	0	1	1

d=4

Let $\tau = 1$ for all edges.

Model: Jukes-Cantor

$$P_{i,i}^ au = rac{1}{4} + rac{3}{4} ext{exp}(-rac{4}{3} au)$$

$$P_{i,j}^{ au} = rac{1}{4} - rac{1}{4} \exp(-rac{4}{3} au)$$

Compute P(D|T) = P(A = 1, B = 2, C = D = 4|T) with the following steps:

1.
$$P(A=1|E)=P^{ au_{E,A}}D_{,A}pprox(rac{7}{16},rac{3}{16},rac{3}{16},rac{3}{16})$$

2.
$$P(B=2|E)=P^{ au_{E,B}}D_{,B}pprox (rac{3}{16},rac{7}{16},rac{3}{16},rac{3}{16})^T$$

3.
$$P(C=4|F)=P^{ au_{F,C}}D_{;C}pprox (rac{3}{16},rac{3}{16},rac{3}{16},rac{7}{16})^T$$

4.
$$P(D=4|F)=P^{ au_{F,D}}D_{;D}pprox (rac{3}{16},rac{3}{16},rac{3}{16},rac{7}{16})^T$$

- 5. $P(A=1,B=2|E)=P(A|E)P(B|E)pprox (rac{21}{256},rac{21}{256},rac{9}{256},rac{9}{256})^T$
- 6. $P(A=1,B=2|F)=P^{ au_{E,D}}P(A=1,B=2|E)pprox (0.064,0.064,0.053,0.053)^T$
- 7. $P(A=1,B=2,C=4,D=4|F)=P(A=1,B=2|F)P(C=4|F)=P(D=4|F)\approx (0.002,0.002,0.0018,0.01)^T$ Symbol 4 is more likely at the root than 1,2,3, since we observed it 2 times at C and D and require 2 substitutions for A and B, whereas for any other symbol, we require at least 3 mutations.