Algorithms for Longest Common Extensions

Jesper Kristensen

DTU Informatics
Technical University of Denmark

August 31, 2011

Contents

Introduction

The DIRECTCOMP algorithm
The LCE Problem

Existing Results

The $\operatorname{SuffixNcA}$ and LcpRmQ Algorithms Practical results

The FINGERPRINT_k Algorithm

Data Structure

Query

Preprocessing

Practical Results

Cache Optimization

Summary

Input

- \triangleright s = abbababba
- (i,j) = (4,6)

The DIRECTCOMP algorithm

Input

- ightharpoonup s = abbababba
- (i,j) = (4,6)

The DIRECTCOMP algorithm

Input

- ightharpoonup s = abbababba
- (i,j) = (4,6)

The DIRECTCOMP algorithm

1 match

Input

- ightharpoonup s = abbababba
- (i,j) = (4,6)

The DIRECTCOMP algorithm

1 match

Input

- ightharpoonup s = abbababba
- (i,j) = (4,6)

The DIRECTCOMP algorithm

2 matches

Input

- ightharpoonup s = abbababba
- (i,j) = (4,6)

The DIRECTCOMP algorithm

2 matches

Input

- ightharpoonup s = abbababba
- (i,j) = (4,6)

The DIRECTCOMP algorithm

2 matches

Result

$$LCE_s(4,6) = 2$$

The LCE Problem

LCE value $LCE_s(i,j)$ is the length of the longest common prefix of the two suffixes of s starting at index i and jLCE problem Efficiently query multiple LCE values on a static string s and varying pairs (i,j)

Existing Algorithm: DIRECTCOMP

```
Preprocessing None Space O(1) + |s| Query O(LCE(i,j)) = O(n) Average query O(1)
```

For a string length n and alphabet size σ , the average LCE value over all n^{σ} strings and n^2 query pairs is O(1).

References

L. Ilie, G. Navarro, and L. Tinta. The longest common extension problem revisited and applications to approximate string searching. *J. Disc. Alg.*, 8(4):418-428, 2010.

Existing Algorithms: SUFFIXNCA and LCPRMQ

Two algorithms with best known bounds:

```
Preprocessing O(sort(n, \sigma))

Space O(n)

Query O(1)

Average query O(1)
```

References

J. Fischer, and V. Heun. Theoretical and Practical Improvements on the RMQ-Problem, with Applications to LCA and LCE. In *Proc. 17th CPM*, pages 36-48, 2006.

D. Harel, R. E. Tarjan. Fast Algorithms for Finding Nearest Common Ancestors. *SIAM J. Comput.*, 13(2):338-355, 1984.

Existing Algorithms: Practical Results

Query times of DIRECTCOMP and LCPRMQ by string length

The FINGERPRINT_k Algorithm: Data Structure

- For a string s[1..n], the t-length fingerprints $F_t[1..n]$ are natural numbers, such that $F_t[i] = F_t[j]$ if and only if s[i..i+t-1] = s[j..j+t-1].
- ▶ k levels, $1 \le k \le \lceil \log n \rceil$
- ▶ For each level, $\ell = 0..k 1$:
 - $t_{\ell} = \Theta(n^{\ell/k}), t_0 = 1$
 - $\blacktriangleright H_{\ell} = F_{t_{\ell}}$

Space $O(k \cdot n)$

The FINGERPRINT_k Algorithm: Query

- 1. As long as $H_{\ell}[i+v] = H_{\ell}[j+v]$, increment v by t_{ℓ} , increment ℓ by one, and repeat this step unless and $\ell=k-1$.
- 2. As long as $H_{\ell}[i+v] = H_{\ell}[j+v]$, increment v by t_{ℓ} and repeat this step.
- 3. Stop and return v when $\ell=0$, otherwise decrement ℓ by one and go to step two.

$$LCE(3,12)=9$$

Query
$$O(k \cdot n^{1/k})$$

Average query $O(1)$

The FINGERPRINT_k Algorithm: Preprocessing

- ▶ For each level ℓ
 - ▶ For each t_{ℓ} -length substring in lexicographically sorted order
 - ▶ If the current substring $s[SA[i]...SA[i] + t_{\ell} 1]$ is equal to the previous substring, give it the same fingerprint as the previous substring, otherwise give it a new unused fingerprint. The two substrings are equal when $LCE[i] \ge t_{\ell}$.

Preprocessing $O(k \cdot n + sort(n, \sigma))$

The FINGERPRINT_k Algorithm

```
1 \le k \le \lceil \log n \rceil
Preprocessing O(k \cdot n + sort(n, \sigma))
        Space O(k \cdot n)
        Query O(k \cdot n^{1/k})
                O(1)
Average query
                 k = 1
                                 k = 2
                                                  k = \lceil \log n \rceil
                                 O(sort(n, \sigma)) O(n \log n)
Preprocessing
                O(sort(n, \sigma))
                O(n)
                                  O(n)
                                              O(n \log n)
        Space
                                  O(\sqrt{n}) O(\log n)
        Query O(n)
                 O(1)
                                  O(1)
                                                  O(1)
Average query
```

Practical Results

Query times of DIRECTCOMP, FINGERPRINT₂, FINGERPRINT₃, FINGERPRINT_{$\lceil \log n \rceil$} and LCPRMQ by string length

Practical Results

Query times of DIRECTCOMP, FINGERPRINT₂, FINGERPRINT₃, FINGERPRINT $_{[\log n]}$ and LCPRMQ by string length

Cache Optimization of FINGERPRINT_k

- Original:
 - ▶ Data structure: $H_{\ell}[i] = F_{t_{\ell}}[i]$
 - ► Size: $|H_{\ell}| = n$ ► I/O: $O(k \cdot n^{1/k})$
- ► Cache optimized:
 - ▶ Data structure:

$$H_{\ell}[((i-1) \mod t_{\ell}) \cdot \lceil n/t_{\ell} \rceil + \lfloor (i-1)/t_{\ell} \rfloor + 1] = F_{t_{\ell}}[i]$$

- Size: $|H_{\ell}| = n + t_{\ell}$
- $I/O: O(k \cdot (\frac{n^{1/k}}{B} + 1))$
 - ▶ Best when k is small $\implies n^{1/k}$ is large.

Cache Optimization, Practical Results

Is I/O optimization good in practice?

- Pro: better cache efficiency
 - ▶ Best for small k, no change for $k = \lceil \log n \rceil$
- Con: Calculating memory addresses is more complicated
 - $\qquad \qquad \bullet \ \, \left((i-1) \ \, \mathsf{mod} \ \, t_\ell \right) \cdot \left\lceil n/t_\ell \right\rceil + \left\lfloor (i-1)/t_\ell \right\rfloor + 1 \, \, \mathsf{vs.} \, \, i$

Cache Optimization, Practical Results

Query times of FINGERPRINT₂ without cache optimization and with cache optimization using shift operations vs. multiplication, division and modulo

Cache Optimization, Practical Results

Query times of FINGERPRINT₃ without cache optimization and with cache optimization using shift operations vs. multiplication, division and modulo

Summary

	Direct-	LcpRmq /	
	Comp	SuffixNca	$FINGERPRINT_k$
Preprocessing	O(1)	$O(\mathit{sort}(n,\sigma))$	$O(k \cdot n + sort(n, \sigma))$
Space	O(1)	O(n)	$O(k \cdot n)$
Query	O(n)	O(1)	$O(k \cdot n^{1/k})$
Average query	O(1)	O(1)	O(1)
Query I/O	$O\left(\frac{n}{B}\right)$	O(1)	$O\Big(k\cdot \Big(rac{n^{1/k}}{B}+1\Big)\Big)$

- ▶ In practice, the FINGERPRINT_k algorithm is...
 - \blacktriangleright ...almost as good as DIRECTCOMP and significantly better than LCPRMQ in average case
 - ...significantly better than DIRECTCOMP but worse than LCPRMQ in worst case
- ▶ Cache optimization of $FINGERPRINT_k$ improves query times at k = 2 and worsens query times at $k \ge 3$