HOJA DE EJERCICIOS 10 Análisis Matemático. (Grupo 130) CURSO 2021-2022.

Problema 1. Sean $U \subseteq \mathbb{R}^n$ un abierto y $F: U \to \mathbb{R}^n$ de clase al menos \mathcal{C}^1 .

a) Para n cualquiera (incluyendo n=3) demuestra que para todo $p\in U$ y cualesquiera $a,b\in\mathbb{R}^n$ se tiene

$$d(F^{\flat})_{p}(a,b) = a^{t} \left[(DF)^{t} - DF \right] b.$$

b) en el caso n=3, demuestra que para $p\in U$ y $b\in\mathbb{R}^3$ se tiene

$$\left[\ DF - (DF)^t \ \right]_p b \ = \ (\mathbf{rot} \ F)_p \times b \ ,$$

y deduce de ello que para todo $p \in U$ y cualesquiera $a, b \in \mathbb{R}^3$ se tiene

$$d(F^{\flat})_p(a,b) = (\mathbf{rot}\,F)_p^{\natural}(a,b) \stackrel{\mathrm{def}}{=} \det \left[(\mathbf{rot}\,F)_p \mid a \mid b \right],$$

es decir que $d(F^{\flat}) = (\mathbf{rot}\,F)^{\natural}$.

Problema 2. Calcula el "pull-back" $f^*\omega$ para cada una de las siguientes formas ω y funciones f:

- a) $f: \mathbb{R}^2_{\mathbf{u}} \to \mathbb{R}^3_{\mathbf{x}}, f(u_1, u_2) = (u_1^2, u_2^2, e^{u_1 u_2}), \ \omega = x_2 dx_1 + (x_1 x_2 x_3) dx_2 dx_3.$
- b) $f: \mathbb{R}^2_{uv} \to \mathbb{R}^3_{xyz}, \ f(u,v) = (u\cos v, u\sin v, e^u), \ \omega = (x^2 y^2) \, dx \wedge dy 3 \, (x^2 + y^2) \, dy \wedge dz.$
- c) $f: \mathbb{R}_t \to \mathbb{R}^3_{xyz}$, $f(t) = (\cos t, \sin t, t)$, $\omega = (x^2 + y^2 + z^2) dx + (x \cos z) dy + (x^2 + y^2 1) dz$.
- d) $f: \mathbb{R}^2_{xy} \to \mathbb{R}^2_{xy}$, f(x,y) = (ax by, bx + ay), a,b constantes, $\omega = xdy ydx$.
- e) $f: \mathbb{R}^2_{r\theta} \to \mathbb{R}^2_{xy}$, $f(r,\theta) = (r\cos\theta, r\sin\theta)$, $\omega = dx \wedge dy$.

Problema 3. En cada caso, dibuja la imagen $\phi(R)$, de la región R que se indica, y calcula $\int_{\phi(R)} \Omega$:

- a) $\phi(u, v) \equiv (\cos u, \sin u, v), R = (0, 2\pi) \times (-1, 1), \Omega = x^3 dz \wedge dx.$
- b) $\phi(u,v) \equiv \left(\cos u \cos v, \cos u \sin v, \sin u\right), R = \left(0, \frac{\pi}{2}\right) \times (0, 2\pi), \Omega = z dx \wedge dy.$

<u>Problema</u> 4. Sea $R \subset \mathbb{R}^2_{uv}$ una región limitada por curvas cerradas disjuntas que son las imágenes de unos caminos $\alpha_1, \ldots, \alpha_k$, el exterior antihorario y los demás horarios.

Sean $U \subseteq \mathbb{R}^n$ un abierto en el que tenemos un campo de vectores $F: U \to \mathbb{R}^n$ y $\varphi(u, v): R \to U$. La versión para estos objetos de la fórmula de Stokes es:

$$\sum_{1 \le j \le k} \int_{\varphi \circ \alpha_j} F \cdot d\mathbf{s} = \int_R \varphi_u^t \left[(DF)^t - DF \right]_{\varphi(u,v)} \varphi_v \, du dv \, .$$

a) Comprueba la fórmula en los siguientes casos, donde n = 4:

$$\varphi(u,v) = (u,u^2,u+v,uv) , R = \{0 \le v \le u \le 1\} , F = (x_1x_3,1,x_3,x_2) ,$$

$$\varphi(u,v) = (v,3u,uv,u+v) , R = \{u^2+v^2 \le 1\} , F = (0,x_1,0,x_3) .$$

b) Vuelve a comprobar los dos casos, usando el lenguaje de la formas diferenciales aplicado a $\omega = F^b$.

Problema 5. Considera la región $R = \{(u, v) : u^2 + v^2 \le 2\}$ y la siguiente aplicación

$$\psi: R \longrightarrow \mathbb{R}^3$$
 , $\psi(u,v) \equiv ((1-u^2-v^2)u, v, u^2+v^2)$.

Elige un camino $\alpha(t)$ que le dé una vuelta antihoraria al borde de R.

a) Para $\omega = ydx - xdy + dz$, comprueba que se cumple la fórmula de Stokes

$$\int_{\psi} d\omega = \int_{\psi \circ \alpha} \omega .$$

b) ¿Es la imagen $\psi(R)$ parte de una subvariedad? (Mírala de perfil, en la dirección del eje y).

<u>Problema</u> 6. Para cada una de las siguientes formas de Pfaff decide si es exacta y, en caso afirmativo, encuentra un **potencial**, es decir una función escalar h tal que $\omega \equiv dh$.

- a) $\omega = (x+y) dx + (y-x) dy$ en \mathbb{R}^2 .
- b) $\omega = y \cos(yz) dx + (x \cos(yz) xyz \sin(yz) + 2yz) dy + (y^2 xy^2 \sin(yz)) dz$ en \mathbb{R}^3 .

Problema 7. Halla una función $f: \mathbb{R} \to \mathbb{R}$ de tal manera que la forma $\omega = x^2 y \, dx + f(x) \, dy$ sea exacta en \mathbb{R}^2 .

<u>Problema</u> 8. Sea $U \subset \mathbb{R}^n$ un abierto *convexo*. Demuestra que toda forma de Pfaff cerrada en U es exacta en U.

Indicación: explica cómo deformar cada camino cerrado en U a uno constante, sin salirse de U.

<u>Problema</u> 9. Sean abiertos $U \subseteq \mathbb{R}^n$ y $U' \subseteq \mathbb{R}^s$. Sean $f: U \to U'$ al menos de clase C^2 y ω una forma diferencial en U'.

- a) Demuestra que si ω es cerrada entonces $f^*\omega$ es también cerrada.
- b) Demuestra que si ω es exacta entonces $f^*\omega$ también es exacta.