Exercise 1

(a) For pointwise convergence we choose an $x \in M$ and we say $f_n \to f$ if the sequence $f_n(x)$ converges to f(x). For uniform convergence we say $f_n \to f$ if given $\epsilon > 0$ there is an N such that for all $n \geq N$, $x \in M$, $|f_n(x) - f(x)| < \epsilon$

Exercise 2

Given $\epsilon > 0$, since f_n converges uniformly to f, there exists N such that $d(f(m), f_N(m)) < \epsilon/3$ for all $m \in M$. For any point $x \in M$ since f_N is continuous we can choose r > 0 such that for all $y \in B_r(x)$, $d(f_N(x), f_N(y)) < \epsilon/3$. From the triangle inequality this yields

$$d(f(x), f(y)) \le d(f(x), f_N(x)) + d(f_N(x), f_N(y)) + d(f_N(y), f(y)) \le \epsilon$$

For any $y \in B_r(x)$. Thus f is continuous

Exercise 3

(a) Given $\epsilon > 0$, since f_n converges uniformly to f, there exists N such that $d(f(m), f_N(m)) < \epsilon/3$ for all $m \in M$. Since f_N is continuous at x_0 we can choose r > 0 such that for all $y \in B_r(x_0)$, $d(f_N(x_0), f_N(y)) < \epsilon/3$. From the triangle inequality this yields

$$d(f(x_0), f(y)) \le d(f(x_0), f_N(x_0)) + d(f_N(x_0), f_N(y)) + d(f_N(y), f(y)) \le \epsilon$$

For any $y \in B_r(x_0)$. Thus f is continuous at x

(b) Piecewise continuity is not necessarily true. Consider the function $f:[0,1] \to \mathbb{R}$ with $f(x) = \frac{1}{n}$ for $x \in [1/(n+1), 1/n)$ for all $n \in \mathbb{N}$ and f(0) = 0. f is not piecewise continuous since it is discontinuous at all 1/n. f is however the uniform limit of the piecewise continuous functions

$$f_n = \chi_{[1/n,1]} \cdot f$$

Exercise 4

(a) This follows from the same argument for continuity:

Given $\epsilon > 0$, since f_n converges uniformly to f, there exists N such that $d(f(m), f_N(m)) < \epsilon/3$ for all $m \in M$. For any point $x \in M$ since f_N is uniformly continuous we can choose r > 0 such that for all $x \in \mathbb{R}$ and $y \in B_r(x)$, $d(f_N(x), f_N(y)) < \epsilon/3$. From the triangle inequality this yields

$$d(f(x), f(y)) \le d(f(x), f_N(x)) + d(f_N(x), f_N(y)) + d(f_N(y), f(y)) \le \epsilon$$

For any $y \in B_r(x)$. Thus f is uniformly continuous

Exercise Additional Problem 1

(a) Consider any convergent sequence

$$f_n \in C_0(\mathbb{R}), f_n \to f$$

For any $\epsilon > 0$ there exists N such that $|f(x) - f_N(x)| < \epsilon/2$ for all $x \in \mathbb{R}$. Since $f_n \in C_0(\mathbb{R})$, there exists R > 0 such that $|x| > R \Rightarrow |f_N(x)| < \epsilon$. From the triangle inequality this yields

$$|f(x)| \le |f(x) - f_N(x)| + |f_N(x)| < \epsilon$$

For all |x| > R. Thus $f \in C_0(\mathbb{R})$

- (b) Given $\epsilon > 0$ let R > 0 be chosen such that $|f(x)| < \epsilon/2$ for all |x| > R. [-R, R] is compact and thus f is uniformly continuous on [-R, R]: $\exists \delta_0$ such that $\forall x, y \in [-R, R]$, $|x y| \le \delta_0 \Rightarrow |f(x) f(y)| < \epsilon$. We have that for all $x, y \notin [-R, R]$, $|f(x) f(y)| \le |f(x)| + |f(y)| < \epsilon$. The final case is if $x \in [-R, R]$, $y \notin [-R, R]$. In order for $|x y| < \delta_0$ it must be the case that $x, y \in [-R \delta_0, -R + \delta_0] \cup [R \delta_0, R + \delta_0]$. This is a compact set, and thus there is a δ_1 such that $|x y| \le \delta_1 \Rightarrow |f(x) f(y)| < \epsilon$. Thus by setting $\delta = \min(\delta_0, \delta_1)$, we have uniform continuity: $\forall x, y \in \mathbb{R}, |x y| \le \delta \Rightarrow |f(x) f(y)| < \epsilon$
- (c) We have $f(x) = \sin(x^2)$ is not uniformly continuous The reason for this is because for any $\delta > 0$ we can choose $x, x + \delta$ to get $|f(x) - f(x + \delta)|$ arbitrarily large. By the mean value theorem there exists $x' \in [x, x + \delta]$ where

$$f(x) - f(x + \delta) = \delta f'(x') = \delta x' \sin(x'^2)$$

Which is unbounded for choice of x such that x^2 is close to $\pi + n\pi$

Exercise Additional Problem 2

For convergence we have for |x| < |R|

$$\left| \frac{f^{(k)}(0)}{k!} x^k \right| \le \left| \frac{Ck!}{R^k k!} x^k \right| = C \left| \frac{x}{R} \right|^k$$

Thus we have the series bounded by the power series

$$\left| \sum_{k=0}^{N} \left| \frac{f^{(k)}(0)}{k!} x^{k} \right| \leq \sum_{k=0}^{N} C \left| \frac{x}{R} \right|^{k} \right|$$

Since $\left|\frac{x}{R}\right| < 1$ the power series converges, thus the taylor series converges.

We can show that the series converges to f(x) using the Taylor error bound established in Math 424 (Chapter 3 of Pugh):

Letting $R_r(x) = f(x) - P_r(x)$ (where $P_r(x)$ denotes the rth order taylor series centered at zero) we have for some $\theta \in (0, x)$

$$R_r(x) = \frac{f^{(r+1)}(\theta)}{(r+1)!} x^{r+1}$$

Thus since $|f^{(r+1)}(\theta)| \le \frac{C(r+1)!}{R^{r+1}}$, and |x| < R

$$|R_r(x)| < C\left(\frac{x}{R}\right)^{r+1} \to 0$$

Thus

$$\lim_{r \to \infty} P_r(x) - f(x) = 0 \Rightarrow \lim_{r \to \infty} P_r(x) = f(x)$$