Isomorphisms of Multigraphs in Terms of Isomorphisms of Colored Simple Graphs

Jason Cantarella, Harrison Chapman, Eric Lybrand, Hollis Neel and Malik Henry,* Matt Mastin,† and Eric Rawdon(?)†

Keywords:

Definition 1. A multigraph G is a triple G = (V, E, f) where V is a finite set of *vertices*, E is a finite set of *edges*, and f is a map from E to the power set of V, $\mathcal{P}(V)$, so that f(e) is a subset of size either 1 or 2. The vertices in f(e) are called the **endpoints** of e. Edges with |f(e)| = 1 are called **loops**.

An **isomorphism** from a graph G_1 to a graph G_2 is a pair of bijections (ϕ_V, ϕ_E) with $\phi_V : V_1 \to V_2$ and $\phi_E : E_1 \to E_2$ such that $(\phi_V \circ f_1)(e) = (f_2 \circ \phi_E)(e)$ (as sets) for all $e \in E_1$.

A coloring on the vertices of a graph is a map, C_V , from V to a set of colors X. An isomorphism (ϕ_V, ϕ_E) from a vertex colored graph G_1 to a vertex colored graph G_2 respects the vertex coloring if, and only if, $C_{V_1}(v) = (C_{V_2} \circ \phi_V)(v)$ for all $v \in V_1$.

A coloring on the edges of a graph is a map, C_E , from E to a set of colors X. An isomorphism (ϕ_V, ϕ_E) from an edge colored graph G_1 to an edge colored graph G_2 respects the edge coloring if, and only if, $C_{E_1}(e) = (C_{E_2} \circ \phi_E)(e)$ for all $e \in E_1$.

Definition 2. Given a multigraph G=(V,E,f) we define an associated graph $\bar{G}=(\bar{V},\bar{E},\bar{f})$ by the following construction.

- The vertices of \bar{G} are the vertices of G, in other words, $\bar{V}=V$.
- The edges of \bar{G} come from collapsing non-loop edges that have the same endpoints. We do this by defining the edges of \bar{G} to be a set of preimages of f. In particular, set

$$\bar{E} = \{ f^{-1}(f(v)) : |f(v)| = 2 \}.$$

• $\bar{f}(\bar{e}) = f(e)$ where e is any element of \bar{e} . Note that this is well-defined as all edges in the set \bar{e} have the same endpoints by construction.

We also define a coloring on the vertices and edges of \bar{G} as follows.

^{*}University of Georgia, Mathematics Department, Athens GA

[†]Wake Forest University, Mathematics Department, Athens GA

- $C_{\bar{V}}(\bar{v}) = \text{the number of edges } e \in E \text{ such that } f(e) = \{v\}.$
- $C_{\bar{E}}(\bar{e}) = |\bar{e}|$.

Lemma 3. Given any graph G the associated graph \bar{G} is simple.

Proof. An edge in G is a loop precisely when |f(v)| = 1 which is excluded in the definition of \bar{G} . Similarly, duplicate edges are not allowed in \bar{E} because it is defined to be the *set* of pre-images. Thus, \bar{G} has no loops or multiedges and is therefore simple.

Since $\bar{G}=(\bar{V},\bar{E},\bar{f})$ is always simple it can be described by only its set of vertices \bar{V} and a collection of two element subsets of \bar{V} giving the edges. In this case, a bijection $\bar{\phi}_V:\bar{V}_1\to\bar{V}_2$ induces a map on the edge sets by $\bar{\phi}_E(\bar{e})=\{\bar{\phi}_V(\bar{v}),\bar{\phi}_V(\bar{w})\}$ where \bar{v} and \bar{w} are the endpoints of \bar{e} . Thus, an isomorphism between simple graphs can be described by only a bijection on the vertex sets.

The following theorem says that there is a map from the set of isomorphisms $\bar{G}_1 \to \bar{G}_2$ to the power set of the isomorphisms $G_1 \to G_2$ whose image is a partition.

Theorem 4. Let G_1 and G_2 be multigraphs and \bar{G}_1 and \bar{G}_2 the associated colored graphs given in Definition 2. Then, given an isomorphism $\bar{\phi}$ from \bar{G}_1 to \bar{G}_2 that respects the vertex and edge coloring, we can construct a set of isomorphisms from G_1 to G_2 , denoted $\Phi(\bar{\phi})$. In addition, $\Phi(\bar{\phi}_1)$ and $\Phi(\bar{\phi}_2)$ are disjoint if, and only if, $\bar{\phi}_1$ and $\bar{\phi}_2$ are distinct isomorphisms. Moreover, if (ϕ_V, ϕ_E) is an isomorphism from G_1 to G_2 , then there exists an isomorphism $\bar{\phi}$ from \bar{G}_1 to \bar{G}_2 such that $(\phi_V, \phi_E) \in \Phi(\bar{\phi})$.

Proof. IDEA: $\phi_V^i = \bar{\phi}$ for all i and the ϕ_E^i come from all choices of bijections between the *sets* labeling the edges of \bar{G}_1 and \bar{G}_2 and the different bijections on the loops at each vertex.

We will first describe the construction and then prove that it satisfies the properties in the theorem.

First note that $\bar{\phi}$ is a bijection from $\bar{V}_1 \to \bar{V}_2$, but by definition $\bar{V}_1 = V_1$ and $\bar{V}_2 = V_2$. So, $\bar{\phi}$ is a bijection from $V_1 \to V_2$.

Since $\bar{\phi}$ respects the edge coloring on \bar{G} we know that $|\bar{e}|=|\bar{\phi}_{\bar{E}}(\bar{e})|$. Let $\Phi_{\bar{e}}$ be the set of bijections from $\bar{e}\to\bar{\phi}_{\bar{E}}(\bar{e})$ and let $\Phi_{\bar{E}}:=\times_{\bar{e}\in\bar{E}}\Phi_{\bar{e}}$.

Let Φ_v be the set of bijections from the set of loops at v to the set of loops at $\bar{\phi}(v)$ and let $\Phi_L := \times_{v \in V} \Phi_v$.

We can now define $\Phi(\bar{\phi})$ as follows.

$$\Phi(\bar{\phi}) := \{\bar{\phi}\} \times (\Phi_{\bar{E}} \times \Phi_L)$$

Consider an element $(\phi_V, (\phi_E, \phi_L))$ in $\Phi(\bar{\phi})$. We claim this gives an isomorphism from $G_1 \to G_2$. By construction ϕ_E is an (ordered) collection of maps from $E_1 \to E_2$ since $|\bar{e}|$ and $|\bar{\phi}_{\bar{E}}(\bar{e})|$ are subsets of edges in E_1 and E_2 respectively. Similarly, ϕ_L is an ordered collection of maps $E_1 \to E_2$. We must argue that together these maps give a bijection from $E_1 \to E_2$. The edge labels of \bar{G} form a partition of the non-loop edges in G and the collections of loops at each vertex of G form a partition of the loops in G. Thus, ϕ_E gives a bijection from the non-loop edges in E_1 to the non-loop edges in E_2 and ϕ_L gives a bijection from the loops in E_1 to the loops in E_2 . Thus (ϕ_E, ϕ_L) gives a bijection from $E_1 \to E_2$.

It remains to show that $(\phi_V, (\phi_E, \phi_L))$ is an isomorphism from $G_1 \to G_2$. Let $e \in E_1$.