PREDICTIVE MAINTENANCE & DIGITAL TWIN FOR WIND TURBINES

HARSH MEHTA

EDA INSIGHTS

- LOW POWER PRODUCTION FOR CERTAIN WIND DIRECTIONS
- HIGH CORRELATION BETWEEN WIND SPEED AND POWER GENERATED
- POWER PRODUCTION TROUGH OUT THE DAY AND YEAR IS NOT CONSTANT
- NO SEASONALITY IN THE POWER PRODUCTION

ANOMALY DETECTION: USED ISOLATION FOREST TECHNIQUE WITH CONTAMINATION=0.01 AND FOUND THAT THE ABNORMAL READINGS ARE IN THE READINGS WHERE THE DIFFERENCE BETWEEN POWER GENERATED AND EXPECTED POWER IS VERY HIGH.

Anomaly Detection in Power Production

FEATURE ENGINEERING

- We are using random forest regressor to predict failure within 24 hours
- Features like Date/time are removed but we extracted important features like Month and hour from it

Adding features

- Using rolling aggregation and lag function
- Extracting features like hour and month

Split the data

Splitting the data into test and train set with

Removing features

Ensure to remove features
 which can led to data
 leakage

EVALUATION OF THE MODEL

- The accuracy is high because majority of the readings in test set is non-anomaly readings.
- The model can only predict 34% of anomaly correctly.
- This model can be further trained with different sets of features.
- We can also use more sophisticated models to catch the underlying pattern.

Evaluation metrics	score
Accuracy	97%
Recall	66%
Most important feature	Power generated
Recall for non anomaly	100%

DIGITAL TWIN ROADMAP

- PdM receives an enhancement through Digital Twins that simulate wind turbines using actual sensor measurements combined with predictive analysis.
- This can significantly optimize productivity and reduce cost