Computação Visual

Prof. Mário Menezes

Filtros Lineares

Filtros de borramento

- Mais borramento implica e alargar a base e encurtar (estreitar) mais ainda a altura do pico.
- Com o que isto se parece?
- Filtros quadrados não são os melhores filtros de borramento mas são os mais fáceis de se implementar.

1/25	1/25	1/25	1/25	1/25
1/25	1/25	1/25	1/25	1/25
1/25	1/25	1/25	1/25	1/25
1/25	1/25	1/25	1/25	1/25
1/25	1/25	1/25	1/25	1/25

2D box filter (size=5x5)

Representação no domínio da frequência

Um sinal linear é uma combinação linear de ondas seno e coseno:

$$c(t) = \sum_{i=1}^{\infty} a_i \, Cos(f_i + p_i)$$

 Um sinal pode ser representado por coeficientes destas ondas seno ou coseno.

Tempo/Frequência ou Primal/Dual

- Menor energia a altas frequências
- Amplitude é mais importante
- Informação de fase é melhor estudada no domínio do tempo.

Dualidade

Dualidade

Domínio Espacial

Domínio da Frequência

Alargamento em um domínio significa estreitamento no outro e vice-versa.

Dualidade

- Convolução de duas funções no domínio temporal/espacial é uma multiplicação no domínio da frequência
- Vice versa

Convolução

- (a) Filtros passa baixa b[t] e seus respectivos componentes de frequências, com as freq. de corte
- (b) Uma função geral x[t] e sua resposta em frequência.
- (c) A convolução entre x e b na esquerda indica uma multiplicação entre X[f] e B[f] na direita.

Quando esta multiplicação acontece, as frequências bloqueadas são mostradas pelas respectivas cores. A extensão da remoção das altas frequências depende da largura dos filtros.

Filtro Passa tudo

$$x[t] * \partial[t] = x[t]$$

Filtro Passa Baixa

Filtro Passa Baixa

• Filtro quadrado é conhecido como filtro passa baixa

Filtro quadrado

• Efeito de se aumentar o tamanho do filtro quadrado

Pirâmide de imagens (filtro passa baixa)

Quadrada não é a única forma para filtros

- Guassiana é uma forma melhor
- Qualquer coisa mais suave é melhor

Questão (problema) de amostragem

- Conforme uma imagem passa por um filtro passa-baixa, seu conteúdo de frequências diminui, isto é, algumas frequências altas deixaram de estar presentes na imagem.
- Assim, de acordo com a fórmula de Nyquist de amostragem (a frequência mínima de amostragem de uma imagem é o dobro da sua frequência mais alta), o número mínimo de amostras necessárias para amostrar adequadamente a imagem filtrada com um passa baixa é menor.
- Uma imagem filtrada com passa baixa pode ser de um tamanho menor do que a imagem original

Pirâmide Gaussiana

- Esta propriedade é utilizada para construir uma pirâmide de imagens progressivamente filtradas com passa baixa, chamada de Pirâmide Gaussiana.
- A imagem original é reamostrada para o tamanho 2ⁿ x 2ⁿ. Esta é a forma de nível 0.
- Então, blocos 2x2 desta imagem passam pelo passa baixa para criar um único pixel da imagem no próximo nível, resultando em uma imagem 2ⁿ⁻¹ x 2ⁿ⁻¹.
- O processo continua, criando n níveis da pirâmide com o último nível sendo um único pixel, isto é, uma imagem $2^{n-n} \times 2^{n-n} = 1 \times 1$.

Pirâmide Gaussiana

Subamostragem

- Imagens em uma pirâmide Gaussiana não são necessariamente de tamanho menor
 - A redução no tamanho somente define o requisito mínimo de amostragem em cada nível.
- Uma imagem com tamanho maior do que 2ⁿ⁻ⁱ x 2ⁿ⁻ⁱ para o nível i proverá uma maior densidade de amostragem do que o mínimo requerido.
- Podemos criar uma pirâmide filtrando a imagem e reamostrando, mantendo o mesmo tamanho original

Subamostragem simples

Filtro passa-baixa e subamostragem

Aliasing no domínio espacial

- Ocorre devido à subamostragegm no domínio da imagem digital
- Os principais problemas do aliasing espacial são:
 - A inserção de artefatos como jaggies (serrilhados) nas linhas de uma sequência de pixels.
 - Saliências falsas
 - Aparecimento de padrões de frequência ausentes na imagem original

Artefatos de aliasing

Filtro Passa Alta

• Subtraímos a imagem filtrada (I * l) com passa-baixa da imagem original (I)

$$I_h = I - I \star l$$

$$= I \star \delta - I \star l$$

$$= I \star (\delta - l)$$

- Na segunda linha acima, consideramos a imagem como sendo uma versão dela mesma com um filtro passa tudo (δ).
- Assim, a imagem filtrada com passa alta I_h pode ser expressa como a convolução da imagem original com um filtro único dado por (δl)
- Ou seja, um filtro passa alta pode ser criado pela subtração de qualquer filtro passa baixa da função delta (δ)

Filtro Passa Alta

Filtro Passa Alta

Imagem Original

Filtragem passa baixa

Filtragem passa alta

Imagens de banda limitada (Pirâmide Laplaciana)

Cada imagem é formada pela diferença entre níveis da pirâmide gaussiana.

Somente uma banda (faixa) de frequências está presente na imagem filtrada

Imagens de banda limitada (passa-banda)

Separabilidade dos Filtros 2D

Visualizando filtros 2D e suas contra-partidas 1D

Separabilidade dos Filtros 2D

Separabilidade

• Filtro 2D h(p x q) é separável se h pode ser separado em dois filtros 1D a e b tal que:

$$h[i][j] = a[i] \times b[j]$$

 A convolução da imagem com h tem o mesmo resultado que a convolução de suas linhas com a e suas colunas com b.

Vantagem

- Filtros separáveis podem ser implementados mais eficientemente
- Convolução com h
 - Número de multiplicações = 2pqN
- Convolução com a e b
 - Número de multiplicações = 2(p + q)N
 - muito menor, i.e., mais eficiente