UROPS Project Presentation 6

Wang Zexin

Derivation of Black-Scholes PDE

Quantitative Finance National University of Singapore

February 26, 2017

Today's Agenda

- Basics
 - Black-Scholes World
 - Itô's Lemma

- 2 Derivation
 - Delta-hedging Argument
 - Replication of portfolio

Black-Scholes World

We assume that the following two SDE hold:

$$dM_t = rM_tdt$$

$$dS_t = \mu S_t dt + \sigma S_t dW_t$$

Itô's Lemma

We assume that the following equation hold:

As
$$dS_t = \mu S_t dt + \sigma S_t dW_t$$
,

$$dV_t = \left(\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S_t^2 \frac{\partial V}{\partial S}\right) dt + \frac{\partial V}{\partial S} dS_t$$

Delta-hedging Argument

Our first aim is to find
$$\phi_t$$
 for $\Pi_t = V_t - \phi_t S_t$ such that
$$d\Pi_t = dV_t - \phi_t dS_t (\text{Self-financing})$$

$$d\Pi_t = r\Pi_t dt (\text{risk free})$$

From the equations, we can obtain that

$$r\Pi_t dt = dV_t - \phi_t dS_t$$

$$r(V_t - \phi_t S_t) dt = dV_t - \phi_t dS_t$$

$$dV_t = r(V_t - \phi_t S_t) dt + \phi_t dS_t$$

Compare with Itô's Lemma

$$dV_t = r(V_t - \phi_t S_t) dt + \phi_t dS_t$$

By Itô's Lemma,

$$dV_{t} = \left(\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^{2}S_{t}^{2}\frac{\partial V}{\partial S}\right)dt + \frac{\partial V}{\partial S}dS_{t}$$

Hence we obtain two equations:

$$\phi_t = \frac{\partial V}{\partial S}$$

$$r(V_t - \phi_t S_t) = \frac{\partial V}{\partial t} + \frac{1}{2} \sigma^2 S_t^2 \frac{\partial V}{\partial S}$$

Last step of Delta-hedging

$$\begin{split} r(V_t - \frac{\partial V}{\partial S}S_t) &= \frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S_t^2 \frac{\partial V}{\partial S} \\ \frac{\partial V}{\partial t} &+ \frac{1}{2}\sigma^2 S_t^2 \frac{\partial V}{\partial S} + r \frac{\partial V}{\partial S}S_t - rV_t = 0 \\ &\quad \text{At time t, we have} \\ \frac{\partial V}{\partial t} &+ \frac{1}{2}\sigma^2 S^2 \frac{\partial V}{\partial S} + r \frac{\partial V}{\partial S}S - rV = 0 \end{split}$$

First step of replication

Our aim is to find a_t and b_t such that $\Pi_t = a_t S_t + b_t M_t$ can entirely replicate V_t And also, the self-financing condition holds: $d\Pi_t = a_t dS_t + b_t dM_t$ As $dS_t = \mu S_t dt + \sigma S_t dW_t$ and $dM_t = rM_t dt$. $d\Pi_t = a_t(\mu S_t dt + \sigma S_t dW_t) + b_t(rM_t dt)$ $= (a_t \mu S_t + rb_t M_t)dt + (\sigma a_t S_t)dW_t$

Bring in Itô's Lemma

By Itô's Lemma,

$$dV_{t} = \left(\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^{2}S_{t}^{2}\frac{\partial V}{\partial S}\right)dt + \frac{\partial V}{\partial S}dS_{t}$$

$$= \left(\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^{2}S_{t}^{2}\frac{\partial V}{\partial S}\right)dt + \frac{\partial V}{\partial S}(\mu S_{t}dt + \sigma S_{t}dW_{t})$$

$$= \left(\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^{2}S_{t}^{2}\frac{\partial V}{\partial S} + \frac{\partial V}{\partial S}\mu S_{t}\right)dt + \left(\sigma S_{t}\frac{\partial V}{\partial S}\right)dW_{t}$$

Compare with previous equation

As Π_t fully replicates V_t ,

$$d\Pi_t = (a_t \mu S_t + rb_t M_t)dt + (\sigma a_t S_t)dW_t = dV_t$$

Also by Itô's Lemma,

$$dV_t = \left(\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S_t^2 \frac{\partial V}{\partial S} + \frac{\partial V}{\partial S} \mu S_t\right) dt + \left(\sigma S_t \frac{\partial V}{\partial S}\right) dW_t$$

Hence we obtain that,

$$a_t = \frac{\partial V}{\partial S}$$

$$a_t \mu S_t + r b_t M_t = \frac{\partial V}{\partial t} + \frac{1}{2} \sigma^2 S_t^2 \frac{\partial V}{\partial S} + \frac{\partial V}{\partial S} \mu S_t$$

Last step in replication

$$\begin{split} \frac{\partial V}{\partial S} \mu S_t + r b_t M_t &= \frac{\partial V}{\partial t} + \frac{1}{2} \sigma^2 S_t^2 \frac{\partial V}{\partial S} + \frac{\partial V}{\partial S} \mu S_t \\ r b_t M_t &= \frac{\partial V}{\partial t} + \frac{1}{2} \sigma^2 S_t^2 \frac{\partial V}{\partial S} \\ r a_t S_t + r b_t M_t &= \frac{\partial V}{\partial t} + \frac{1}{2} \sigma^2 S_t^2 \frac{\partial V}{\partial S} + r a_t S_t \\ r V_t &= \frac{\partial V}{\partial t} + \frac{1}{2} \sigma^2 S_t^2 \frac{\partial V}{\partial S} + r \frac{\partial V}{\partial S} S_t \\ \frac{\partial V}{\partial t} + \frac{1}{2} \sigma^2 S_t^2 \frac{\partial V}{\partial S} + r \frac{\partial V}{\partial S} S_t - r V_t &= 0 \\ \text{Hence,} \\ \frac{\partial V}{\partial t} + \frac{1}{2} \sigma^2 S^2 \frac{\partial V}{\partial S} + r \frac{\partial V}{\partial S} S - r V &= 0 \end{split}$$

Thank You

E0007424@u.nus.edu