Exercise - DSS Discrete Signals and Systems Discrete-Time Signals

DSS-ex4-1 10.12.2020 Page 1

Problem 1 Is ideal impulse train sampling a linear operation? Is it a time-invariant operation?

Problem 2 Determine the sampling period T_s for a successful sampling and reconstruction of the signal

$$x(t) = 1 + \cos(2 \operatorname{Hz} \cdot \pi \cdot t) + 2 \cdot \sin(40 \operatorname{Hz} \cdot \pi \cdot t)$$

Problem 3 A time-continuous signal x(t) shall be sampled with one of the given sampling frequencies: 36 kHz, 44 kHz, 64 kHz. Subsequently the original signal shall be reconstructed with one of the given low-pass filters H_1 , H_2 , H_3 .

- a) Select the minimal sampling frequency for a successful reconstruction.
- b) Select one of the given low-pass filters: H_1 , H_2 , H_3

Problem 4 A real sampling system uses impulses of finite width t_0 . Circuit a) is referred as sample-and-hold circuit. Circuit b) is referred as linear-gate circuit.

- a) Determine and plot the spectra of the sampled signals $x_s(t)$.
- b) Is a perfect reconstruction possible?

www.th-owl.de	Exercise - DSS	DSS-ex4-1
	Discrete Signals and Systems	10.12.2020
Prof. Dr. Uwe Meier	Discrete-Time Signals	Page 2

Answers

Problem 1 yes, no

Problem 2 < 25 ms

Problem 3 44 kHz; H_2

Problem 4

a)
$$X_s(f) = \frac{t_0}{T_s} \cdot \sin(\pi \cdot f \cdot t_0) \cdot \sum_{k=-\infty}^{+\infty} X(f - k \cdot f_s)$$

b)
$$X_{s}(f) = \frac{t_{0}}{T_{s}} \cdot \sum_{k=-\infty}^{+\infty} si(\pi \cdot k \cdot f_{s} \cdot t_{0}) \cdot X(f - k \cdot f_{s})$$