

Semana 02 - code sessions (intro)

Visualizacion y limpieza de datos

Carlos Daboín

May, 2022

La vez pasada

- R y Rstudio.
- Principios de programacion en R: Objetos, funciones, asignaciones (<-).
- Mil maneras de tener datos desordenados, una de tenerlos ordenados (tidy).
- Dplry: el abrelatas del analisis de datos (%>%, filter(), mutate(), group_by(), summarise()).
- Quedamos en que iba a instalar R y Rstudio. Lo vamos a necesitar.

Hoy

- Nos entretendremos con ggplot2 y sus virtudes
- Pondremos manos a la obra

Una imagen vale mas que mil palabras

¿Que tienen en común estas figuras?

¿Que tienen en común estas figuras?

¿Que tienen en común estas figuras?

Sorpresa!

gplot2() and the grammar of graphics

- 1. Tu gráfica esta vinculada a los datos mediante coordenadas (aesthetic mappings)
- 2. Una vez que esaas coordenadas estan definidas puedes presentar tus graficos en distintas formas (geoms), tales como puntos, lineas, barras, etc
- 3. Puedes agregar tantas capas como gustes a una grafica

```
Complete the template below to build a graph.

ggplot (data = <DATA>) +

<GEOM_FUNCTION> (mapping = aes(<MAPPINGS>),

stat = <STAT>, position = <POSITION>) +

<COORDINATE_FUNCTION> +

<SCALE_FUNCTION> +

<THEME_FUNCTION>
```


mapeo de coordenadas vs. y aplicacion de geoms

mapeo de atributos vs. hard-coded values

Hablemos de la evolucion del ingreso por habitante y la esperanza de vida

World development indicators (World Bank)

country_name	country_code	year	gdp_pc	gdp	life_exp	population	continent_name
Afghanistan	AFG	1960	59.77323	537777811	32.446	8996967	Asia
Afghanistan	AFG	1961	59.86090	548888896	32.962	9169406	Asia
Afghanistan	AFG	1962	58.45801	546666678	33.471	9351442	Asia
Afghanistan	AFG	1963	78.70643	751111191	33.971	9543200	Asia
Afghanistan	AFG	1964	82.09531	800000044	34.463	9744772	Asia
Afghanistan	AFG	1965	101.10833	1006666638	34.948	9956318	Asia

Distribución del ingreso por habitante

Distribución del ingreso por habitante, por continente

```
# Por continente
 ggplot(data= gapminder_07, aes(x=gdpPercap)).
  # Geom de distribucion de densidades, especi
 geom_density(aes(fill=continent), alpha=0.4)
 # Geom de lineas verticales
 geom_vline(aes(xintercept = mean(gdpPercap),
  # Geom de lineas verticales por contienente.
 geom_vline(data= group_by(gapminder_07,conting)
               summarise(gdpPercap=mean(gdpPerc
             aes(xintercept = gdpPercap,color=c
             show.legend = F)+
 scale_x_log10()+
  labs(title="Distribución por continente",
       fill="Muestra",
       linetype="Stats",
       x="Ingreso por habitante")
```


Distribución de la esperanza de vida en el mundo

Distribución de la esperanza de vida, por continente

```
gapminder_07 %>%
 ggplot(aes(x=lifeExp))+
  # Geom de distribucion de densidades, especi
 geom_density(aes(fill=continent), alpha=0.4)
 # Geom de lineas verticales
 geom_vline(aes(xintercept = mean(lifeExp),line)
  # Geom de lineas verticales por contienente
  # Insertamos datos agregados a nivel contine
  # lineas
 geom vline(data= gapminder 07 %>%
               group_by(continent) %>%
               summarise(lifeExp=mean(lifeExp))
             aes(xintercept = lifeExp,color=cor
             show.legend = F) +
 scale x log10()+
  labs(title="Distribución por continente",
       fill="Muestra",
       linetype="Stats",
       x="Esperanza de vida")
```


Hay una manera más practica de ver distribuciones a nivel de grupos

Pongámosle una capa de pimienta

```
gapminder_07 %>%
    ggplot(aes(y=lifeExp,x=continent))+
    # Anademos un poco de pimienta con geom_jitte
geom_jitter(aes(color=continent),show.legend
# Geom de distribucion por cuartiles (boxplor
geom_boxplot(aes(fill=continent), alpha=0.4)
# Geom de lineas verticales
geom_hline(aes(yintercept = mean(lifeExp),lin
labs(title="Distribución por continente",
    fill="Muestra",
    linetype="Stats",
    x=NULL,
    y="Esperanza de vida")
```


Relación entre dos variables continuas

Define la data, las coordenadas, y la forma

Relación entre dos variables continuas

Añade otras formas y haz cambios en el formato

Relación entre dos variables continuas

Cambiemos la escala de gpd per capita ¿Qué ganámos con logs?

Manos a la obra: Repliquemos estos graficos en Rstudio

Usaremos los datos del World Bank para replicar las figuras que acaban de ver

Manos a la obra: Repliquemos estos graficos en Rstudio

Pero tendremos que limpar los datos originales

Country Name	Series Name	Series Code	1960 [YR1960]
Afghanistan	GDP per capita (current US\$)	NY.GDP.PCAP.CD	59.77323370321
Afghanistan	GDP (current US\$)	NY.GDP.MKTP.CD	537777811.1111
Afghanistan	Life expectancy at birth, total (years)	SP.DYN.LE00.IN	32.446
Afghanistan	Population, total	SP.POP.TOTL	8996967

Manos a la obra: Repliquemos estos graficos en Rstudio

Pero tendremos que limpar los datos originales

Abran R studio

Abran el archivo "...."

Abran las librerias dplry, ggplot2.

Pero tambien abran la librerias tidyr, janitor y stringr

• En el proceso vamos a aprender sobre **pivots**, **joins** y un par de cosas mas.

Para finalizar: Materiales complementarios

Fuente recomendadas para seguir aprendiendo (new):

- Rstudio education: Ofrecen las mejores guias para aprender R a cualquier nivel.
- Rstudio tutorials: Tutoriales interactivos gratuitos.
- Rstudio cheatsheets: Necesitas despejar algunas dudas rápido? Revisa estas chuletas, son lo mejor.

Fuente recomendadas para seguir aprendiendo (old):

- R for Economists video series (by Nick Hungtington-Klein)
- R for Data Sicence (Wickham & Grolemund, 2017)
- Statistical Inference via Data Science (Ismay & Kim, 2022)
- Top 50 ggplot2 Visualizations The Master List (by Selva Prabhakaran).
- Video: The best stats you'll ever see (by Hans Rosling)
- Video: Statistics without the agonizing pain (by John Rauser)

Próxima semana

A partir de aquí nos sentaremos a replicar resultados de estudios sin pararnos tanto en el proceso de limpieza y transformación de datos.

Practiquen lo siguiente (noten que ahí les deje links a los tutoriales):

- Limpieza y transformación de datos (dplry, tidyr, janitor, stringr, readr).
- Visualización de datos (ggplot2).
- Tipos de objetos en R (vectores, matrices, data.frames, tiblies, lists).
- Iteraciones (for loops, lapply functions, the purr package).

Fin de primer taller

Gracias