Table of Contents

MATLAB Code for Binding Model of RBP4, TTR, and Retinol
Inputs for model
Code implementation for all participants
results table
Sensitivity analysis varying TTR and Retinol concentrations
results table for sensitivity analysis
sensitivity analysis figures
define odes
define odes for sensitivity analysis
System of ODEs

MATLAB Code for Binding Model of RBP4, TTR, and Retinol

clear clc

Inputs for model

define rate constants from literature Kds

```
k1 = 10e8; % diffusion (M^-1 s^-1)
k2 = 1.46e-7 * k1; % Kd of 178 nM from Muhilal and Glover 1975, 190 nM
Cogan 1976, 70 nM from Noy 1992 (mean = 146 nM)
k3 = 10e8; % diffusion (M^-1 s^-1)
k4 = 2.82e-7 * k3; % alpha*Kd1 (mean 215 nM from 150 nM from Rostom 1998,
294 nM White and Kelly 2001, 200 nM Malpeli 1996)
k5 = 10e8; % diffusion (M^-1 s^-1)
k6 = 1.2e-6 * k5; % Kd2 1.2 uM from Malpeli 1996
k7 = 10e8; % diffusion (M-1 s-1)
k8 = 3.44e-8; % alpha*Kd2 (observed 35 nM Noy 1992)
% Time span for the simulation
tspan = [0 1]; %[inital:increment:end]
% Constrain solutions to be positive
options = odeset('MaxStep', 0.0001, 'NonNegative', 1:6);
```

Code implementation for all participants

```
% Import measured total concentrations for each participant
% Define the parameters for each participant with a table
opts = spreadsheetImportOptions("NumVariables", 4);
% Specify sheet and range
opts.Sheet = "Sheet1";
opts.DataRange = "A2:D32";
```

```
% Specify column names and types
opts. Variable Names = ["ParticipantID", "ROL total", "RBP4 total",
"TTR total"];
opts.VariableTypes = ["string", "double", "double", "double"];
% Specify variable properties
opts = setvaropts(opts, "ParticipantID", "WhitespaceRule", "preserve");
opts = setvaropts(opts, "ParticipantID", "EmptyFieldRule", "auto");
% Import the data
participants = readtable("C:\Users\isolab\UW\isolab - Aprajita
Yadav\Manuscripts\Z RBP4 TTR VAO Paper\Binding model git\VAOtable.xlsx",
opts, "UseExcel", false);
clear opts
% Create an array for all the final results to go into
ParticipantID = cell(height(participants), 1);
ROLu end = zeros(height(participants), 1);
RBP4u end = zeros(height(participants), 1);
TTRu end = zeros(height(participants), 1);
aRBP4 TTR end = zeros(height(participants), 1);
hRBP4 end = zeros(height(participants), 1);
hRBP4 TTR end = zeros(height(participants), 1);
ROL total end = zeros(height(participants), 1);
RBP4 total end = zeros(height(participants), 1);
TTR total end = zeros(height(participants), 1);
% loop for all participants
for i = 1:height(participants)
    % Extract participant data
    ParticipantID{i} = participants.ParticipantID{i}; % Participant ID
    ROL total = participants.ROL total(i); % Total ROL for the participant
    RBP4 total = participants.RBP4 total(i); % Total RBP4 for the
participant
    TTR total = participants.TTR total(i); % Total TTR for the participant
    % Initial conc (we assume nothing is complexed to start)
    initial hRBP4 = 0;
    initial hRBP4 TTR = 0;
    initial aRBP4 TTR = 0;
    initial ROL u = ROL total - initial hRBP4 - initial hRBP4 TTR;
    initial RBP4 u = RBP4 total - initial hRBP4 - initial hRBP4 TTR -
initial aRBP4 TTR;
    initial TTR u = TTR total - initial hRBP4 TTR - initial aRBP4 TTR;
    initial conditions = [initial ROL u, initial RBP4 u, initial hRBP4,
initial TTR u, initial hRBP4 TTR, initial aRBP4 TTR];
    %solve ode
    [t, y] = ode89(@(t, y) odesystem(t, y, k1, k2, k3, k4, k5, k6, k7, k8),
tspan, initial conditions, options);
    % Convert y-axis to micromolar (µM) from molar (M)
    y um = y * 1e6; % Convert concentration to μM
    %the following outputs the concentrations of all species at the end
    ROLu end(i) = y um(end, 1);
```

```
RBP4u_end(i) = y_um(end, 2);
aRBP4_TTR_end(i) = y_um(end, 3);
TTRu_end(i) = y_um(end, 4);
hRBP4_end(i) = y_um(end, 5);
hRBP4_TTR_end(i) = y_um(end, 6);
ROL_total_end(i) = ROLu_end(i) + hRBP4_end(i) + hRBP4_TTR_end(i);
RBP4_total_end(i) = RBP4u_end(i) + aRBP4_TTR_end(i) + hRBP4_end(i) + hRBP4_TTR_end(i);
TTR_total_end(i) = TTRu_end(i) + aRBP4_TTR_end(i) + hRBP4_TTR_end(i);
end
```

ParticipantID = cellstr(ParticipantID);

results table

Remove Percent sign to display and write results table to .csv

```
results_table = table(ParticipantID, ROLu_end, RBP4u_end, TTRu_end,
aRBP4_TTR_end, hRBP4_end, hRBP4_TTR_end, ...
    ROL_total_end, RBP4_total_end, TTR_total_end, ...
    'VariableNames', {'ParticipantID', 'ROL_u (μM)', 'RBP4_u (μM)', 'TTR_u
(μM)', 'RBP4:TTR (μM)', 'ROL:RBP4 (μM)', ...
    'ROL:RBP4:TTR (μM)', 'ROL_total (μM)', 'RBP4_total (μM)', 'TTR_total
(μM)'});
% disp(results_table);
% filename='RBP4_TTR_Retinol_Binding.csv';
% writetable(results_table, filename);
```

Sensitivity analysis varying TTR and Retinol concentrations

hold RBP4 constant at 2 µM

```
% ROL and TTR concentrations
TTR list = [2.5e-6:.25e-6:7.5e-6];
ROL list = [1e-6:0.05e-6:2e-6];
% empty array for results
ROLu end s = zeros(length(TTR list), 1);
RBP4u end s = zeros(length(TTR list), 1);
TTRu end s = zeros(length(TTR list), 1);
aRBP4 TTR end s = zeros(length(TTR list), 1);
hRBP4 end s = zeros(length(TTR list), 1);
hRBP4 TTR end s = zeros(length(TTR list), 1);
ROL total end s = zeros(length(TTR list), 1);
RBP4 total end s = zeros(length(TTR list), 1);
TTR total end s = zeros(length(TTR list), 1);
Per ROLu end s = zeros(length(TTR list), 1);
Per complex end s = zeros(length(TTR list), 1);
Per holo end s = zeros(length(TTR list), 1);
Per RBP4u end s = zeros(length(TTR list), 1);
Per hRBP4 end s = zeros(length(TTR list), 1);
```

```
Per aRBP4TTR end s = zeros(length(TTR list), 1);
Per hRBP4 TTR end s = zeros(length(TTR list), 1);
for i = 1:length(TTR list);
        TTR total s = TTR list(i);
for j = 1:length(ROL list);
         RBP4 total s = 2e-6;
        ROL total s= ROL list(j);
% Initial conc (we assume nothing is complexed to start)
 initial hRBP4 s = 0;
  initial hRBP4 TTR s = 0;
 initial aRBP4 TTR s = 0;
  initial ROL u s = ROL total s - initial hRBP4 s - initial hRBP4 TTR s;
  initial RBP4 u s = RBP4 total s - initial hRBP4 s - initial hRBP4 TTR s -
initial aRBP4 TTR s;
  initial TTR u s = TTR total s - initial hRBP4 TTR s - initial aRBP4 TTR s;
 initial conditions s = [initial ROL u s, initial RBP4 u s, initial hRBP4 s,
initial TTR u s, initial hRBP4 TTR s, initial aRBP4 TTR s];
  % solve odes
 [t, y] = ode89(@(t, y) odesystem s(t, y, k1, k2, k3, k4, k5, k6, k7, k8),
tspan, initial conditions s, options);
  % Convert y-axis to micromolar (\mu M) from molar (M)
   y um = y * 1e6; % Convert concentration to µM
  % the following outputs the concentrations of all species at the end
       ROLu end s(j, i) = y um(end, 1);
       RBP4u end s(j, i) = y_um(end, 2);
        aRBP4 TTR end s(j, i) = y um(end, 3);
        TTRu end s(j, i) = y um(end, 4);
        hRBP4 end s(j, i) = y um(end, 5);
       hRBP4 TTR end s(j, i) = y um(end, 6);
  % total concentrations
       ROL total end s(j, i) = ROLu end s(j, i) + hRBP4 end s(j, i) +
hRBP4 TTR end s(j, i);
        RBP4 total end s(j, i) = RBP4u end s(j, i) + aRBP4 TTR end s(j, i) +
hRBP4 end s(j, i) + hRBP4 TTR end s(j, i);
        TTR total end s(j, i) = TTRu \text{ end } s(j, i) + aRBP4 TTR \text{ end } s(j, i) +
hRBP4 TTR end s(j, i);
    % calculate percentages
    Per ROLu end s(j, i) = (ROLu end s(j, i) / ROL total end s(j, i))*100;
    Per complex end s(j, i) = (hRBP4 TTR end s(j, i)/ROL total end s(j, i)/ROL total)
i))*100;
   Per holo end s(j, i) = (hRBP4 \text{ end } s(j, i)/ROL \text{ total end } s(j, i))*100;
    Per RBP4u end s(j, i) = (RBP4u end s(j,i) / RBP4 total end s(j,i))*100;
    Per hRBP4 end s(j, i) = (hRBP4 end s(j,i) / RBP4 total end s(j,i))*100;
    Per aRBP4TTR end s(j, i) = (aRBP4 TTR end s(j, i) /
RBP4 total end s(j,i))*100;
    Per hRBP4 TTR end s(j, i) = (hRBP4 TTR end s(j, i)/RBP4 total end 
i))*100;
```

end end

results table for sensitivity analysis

```
results_table_s = table(ROLu_end_s, RBP4u_end_s, TTRu_end_s, ...

aRBP4_TTR_end_s, hRBP4_end_s, hRBP4_TTR_end_s, ROL_total_end_s, ...

RBP4_total_end_s, TTR_total_end_s, Per_ROLu_end_s, Per_complex_end_s, ...

Per_holo_end_s, Per_RBP4u_end_s, Per_hRBP4_end_s, Per_aRBP4TTR_end_s, ...

Per_hRBP4_TTR_end_s, 'VariableNames', {'ROL (\(\mu\mathbb{M}\)', 'RBP4 (\(\mu\mathbb{M}\)', ...

'TTR (\(\mu\mathbb{M}\)', 'RBP4:TTR (\(\mu\mathbb{M}\)', 'ROL:RBP4 (\(\mu\mathbb{M}\)', 'ROL:RBP4:TTR (\(\mu\mathbb{M}\)', ...

'ROL_total (\(\mu\mathbb{M}\)', 'RBP4_total (\(\mu\mathbb{M}\)', 'TTR_total (\(\mu\mathbb{M}\)', ...

'Percent Retinol unbound', 'Percent ROL:RBP4:TTR', 'Percent ROL:RBP4', ...

'Percent apo-RBP4', 'Percent holoRBP4', 'Percent RBP4:TTR', ...

'Percent complex RBP4'});

%disp(results table); %remove percent sign to display results table
```

sensitivity analysis figures

```
screen size = get(0, 'ScreenSize');
fig width = screen size(3) /5;
fig height = screen size(4) / 3;
% figure 3
figure3 = figure('Position', [0, screen size(4)/4, fig width, fig height]);
axes3 = axes('Parent', figure3);
hold(axes3, 'on');
% Create mesh
mesh(ROL total end s,TTR total end s,RBP4u end s, 'Parent',axes3);
mesh(ROL total end s,TTR total end s,hRBP4 end s, 'Parent',axes3);
mesh(ROL total end s,TTR total end s,aRBP4 TTR end s, 'Parent',axes3);
mesh(ROL_total_end_s,TTR_total end s,hRBP4 TTR end s, 'Parent',axes3);
% Axis labels
zlabel(axes3, {'RBP4 species (µM)'});
ylabel(axes3, {'TTR Tetramer (μM)'});
xlabel(axes3, {'Retinol (\mu M)'});
% Viewing angle
view(axes3, [-52.5 12.4]);
grid(axes3, 'on');
set(axes3,'XTick',[1 1.25 1.5 1.75 2],'YTick',[2 4 6 8],'YTickLabel',...
    {'2','4','6','8'},'ZTick', [0 0.5 1 1.5 2]);
axes3.XTickLabelRotation = 0;
% Create textboxes
annotation(figure3, 'textbox', [0.15 0.32 0.19 0.06], 'String',
{'RBP4:TTR'},'LineStyle','none');
annotation(figure3, 'textbox', [0.15 0.26 0.14 0.06], 'String',
{'RBP4'},'LineStyle','none');
annotation(figure3, 'textbox', [0.64 0.33 0.26 0.06], 'String',
```

```
{'ROL:RBP4'},'LineStyle','none');
annotation(figure3,'textbox',[0.15 0.77 0.64 0.06],'String',
{'ROL:RBP4:TTR'},'LineStyle','none');
hold(axes3, 'off')
% figure 2
figure2 = figure('Position', [fig width, screen size(4)/4, fig width,
fig height]); % Position on the right side
axes2 = axes('Parent', figure2);
hold(axes2, 'on');
% Create mesh
mesh(ROL total end s,TTR total end s,RBP4u end s, 'Parent', axes2);
mesh(ROL total end s,TTR total end s,hRBP4 end s, 'Parent', axes2);
mesh(ROL total end s,TTR total end s,aRBP4 TTR end s, 'Parent', axes2);
% Create axis labels
zlabel(axes2, {'RBP4 species (µM)'});
ylabel(axes2, {'TTR Tetramer (µM)'});
xlabel(axes2, {'Retinol (µM)'});
% Viewing angle
view(axes2, [-52.5 12.4]);
grid(axes2, 'on');
set(axes2,'XTick',[1 1.25 1.5 1.75 2], 'YTick',[2 4 6 8],'YTickLabel',...
    {'2','4','6','8'},'ZTick',[0 0.25 0.5 0.75 1]);
axes2.XTickLabelRotation = 0;
% Create textboxes
annotation(figure2, 'textbox', [0.15 0.71 0.25 0.08], 'String',
{'RBP4:TTR'},'LineStyle','none');
annotation(figure2, 'textbox', [0.15 0.31 0.19 0.08], 'String',
{'RBP4'},'LineStyle','none');
annotation(figure2, 'textbox', [0.69 0.46 0.26 0.08], 'String',
{'ROL:RBP4'},'LineStyle','none');
hold(axes2, 'off')
```

define odes

```
function dydt = odesystem(t, y, k1, k2, k3, k4, k5, k6, k7, k8)
ROL_u = y(1);
RBP4_u = y(2);
aRBP4_TTR = y(3);
TTR_u = y(4);
hRBP4 = y(5);
hRBP4_TTR = y(6);

% Differential equations
dROL_u = k2 * hRBP4 - k1 * ROL_u * RBP4_u +k8*hRBP4_TTR -
k7*ROL_u*aRBP4_TTR;
```

define odes for sensitivity analysis

```
function dydt = odesystem s(t, y, k1, k2, k3, k4, k5, k6, k7, k8)
    ROL u s = y(1);
    RBP4 u s = y(2);
    aRBP4 TTR s = y(3);
   TTR_u_s = y(4);
   hRBP4 s = y(5);
   hRBP4 TTR s = y(6);
    % Differential equations
    dROL u s = k2 * hRBP4 s - k1 * ROL u s * RBP4 u s +k8*hRBP4 TTR s -
k7*ROL u s*aRBP4 TTR s;
    dRBP4 u s = k2 * hRBP4 s + k6 * aRBP4 TTR s - k1 * ROL u s * RBP4 u s -
k5 * RBP4 u s * TTR u s;
    daRBP4 TTR s = k5 * RBP4 u s * TTR u s - k6 * aRBP4 TTR s - k7 *
aRBP4 TTR s * ROL u s + k8 * hRBP4 TTR s;
    dTTR u s = k6 * aRBP4 TTR s + k4 * hRBP4 TTR s - k5 * RBP4 u s * TTR u s
- k3 * hRBP4 s * TTR u s;
   dhRBP4_s = k1 * ROL_u_s * RBP4_u_s + k4 * hRBP4_TTR_s - k2 * hRBP4_s -
k3 * hRBP4 s * TTR u s;
    dhRBP4 TTR s = k3 * hRBP4 s * TTR u s - k4 * hRBP4 TTR s - k8*
hRBP4 TTR s + k7* aRBP4 TTR s * ROL u s;
    % Results as vector
    dydt = [dROL u s; dRBP4 u s; daRBP4 TTR s; dTTR u s; dhRBP4 s;
dhRBP4 TTR s];
    end
```


System of ODEs

```
figure1=figure('Color','w', 'Position', [100, 100, 1066, 700]);
axis off
hold on
```

```
y start = 0.8;
dy = 0.1;
fs = 14;
% Define each equation
eqns = {
    \label{eq:continuity} $$ \frac{d\mathrm{ROL}}{dt} = k \ 2 \ \mathrm{ROL:RBP4} - k \ 1 \ \cdot
\mathrm{ROL} \cdot \mathrm{RBP4} + k 8 \cdot \mathrm{ROL:RBP4:TTR} - k 7
\cdot \mathrm{ROL} \cdot \mathrm{RBP4:TTR}$$'
    '$$\frac{d\mathrm{RBP4}}{dt} = k 2 \cdot \mathrm{ROL:RBP4} + k 6 \cdot
\mathrm{RBP4:TTR} - k 1 \cdot \mathrm{ROL} \cdot \mathrm{RBP4} - k 5 \cdot
\mathrm{RBP4} \cdot \mathrm{TTR}$$'
    '$$\frac{d\mathrm{RBP4:TTR}}{dt} = k 5 \cdot \mathrm{RBP4} \cdot
\mathrm{TTR} - k 6 \cdot \mathrm{RBP4:TTR} - k 7 \cdot \mathrm{RBP4:TTR}
\cdot \mathrm{ROL} + k 8 \cdot \mathrm{ROL:RBP4:TTR}$$'
    \$ \frac{d \text{TTR}}{dt} = k 6 \cdot mathrm{RBP4:TTR} + k 4 \cdot dot
\mathrm{ROL:RBP4:TTR} - k 5 \cdot \mathrm{RBP4} \cdot \mathrm{TTR} - k 3
\cdot \mathrm{ROL:RBP4} \cdot \mathrm{TTR}$$'
    '$$\frac{d\mathrm{ROL:RBP4}}{dt} = k 1 \cdot \mathrm{ROL} \cdot
\mathrm{RBP4} + k 4 \cdot \mathrm{ROL:RBP4:TTR} - k 2 \cdot
\mathrm{ROL:RBP4} - k 3 \cdot \mathrm{ROL:RBP4} \cdot \mathrm{TTR}$$'
    '$$\frac{d\mathrm{ROL:RBP4:TTR}}{dt} = k 3 \cdot \mathrm{ROL:RBP4}
\cdot \mathrm{TTR} - k 4 \cdot \mathrm{ROL:RBP4:TTR} - k 8 \cdot
\mathrm{ROL:RBP4:TTR} + k 7 \cdot \mathrm{RBP4:TTR} \cdot \mathrm{ROL}$$'
    };
% Loop through and add each equation
for i = 1:length(eqns)
    text(0.01, y start - (i-1)*dy, eqns{i}, 'Interpreter', 'latex',
'FontSize', fs)
end
% Add a title at the top
text(0.01, 0.9, '\textbf{Differential Equations for Retinol, RBP4, TTR
Binding Model}', 'Interpreter', 'latex', 'FontSize', fs+1)
hold off
set(gca, 'Position', [0 0 1 1])
```

9

Differential Equations for Retinol, RBP4, TTR Binding Model

$$\frac{d \text{ROL}}{dt} = k_2 \cdot \text{ROL} : \text{RBP4} - k_1 \cdot \text{ROL} \cdot \text{RBP4} + k_8 \cdot \text{ROL} : \text{RBP4} : \text{TTR} - k_7 \cdot \text{ROL} \cdot \text{RBP4} : \text{TTR}$$

$$\frac{d \text{RBP4}}{dt} = k_2 \cdot \text{ROL}: \text{RBP4} + k_6 \cdot \text{RBP4}: \text{TTR} - k_1 \cdot \text{ROL} \cdot \text{RBP4} - k_5 \cdot \text{RBP4} \cdot \text{TTR}$$

$$\frac{d \text{RBP4}: \text{TTR}}{dt} = k_5 \cdot \text{RBP4} \cdot \text{TTR} - k_6 \cdot \text{RBP4}: \text{TTR} - k_7 \cdot \text{RBP4}: \text{TTR} \cdot \text{ROL} + k_8 \cdot \text{ROL}: \text{RBP4}: \text{TTR}$$

$$\frac{d\text{TTR}}{dt} = k_6 \cdot \text{RBP4} : \text{TTR} + k_4 \cdot \text{ROL} : \text{RBP4} : \text{TTR} - k_5 \cdot \text{RBP4} \cdot \text{TTR} - k_3 \cdot \text{ROL} : \text{RBP4} \cdot \text{TTR}$$

$$\frac{d \text{ROL}: \text{RBP4}}{dt} = k_1 \cdot \text{ROL} \cdot \text{RBP4} + k_4 \cdot \text{ROL}: \text{RBP4}: \text{TTR} - k_2 \cdot \text{ROL}: \text{RBP4} - k_3 \cdot \text{ROL}: \text{RBP4} \cdot \text{TTR}$$

$$\frac{d \text{ROL}: \text{RBP4}: \text{TTR}}{dt} = k_3 \cdot \text{ROL}: \text{RBP4} \cdot \text{TTR} - k_4 \cdot \text{ROL}: \text{RBP4}: \text{TTR} - k_8 \cdot \text{ROL}: \text{RBP4}: \text{TTR} + k_7 \cdot \text{RBP4}: \text{TTR} \cdot \text{ROL}$$

Published with MATLAB® R2024a