Lecture 3: The Maximum Subarray Problem

Version of Feb 2, 2019

Divide-and-Conquer

Divide-and-conquer.

- Break up problem into several parts.
- Solve each part recursively.
- Combine solutions to sub-problems into overall solution.

Most common pattern.

- Break up problem of size n into two equal parts of size $\frac{1}{2}n$.
- Solve two parts recursively.
- Combine two solutions into overall solution.

Techniques needed.

- Algorithm uses recursion.
- Analysis uses recurrences.

Previous Example Seen

Merge Sort

The Maximum Subarray Problem

Input: Profit history of a company. Money earned/lost each year.

Year	1	2	3	4	5	6	7	8	9
Profit (M\$)	3	2	1	-7	5	2	-1	3	-1

Problem: Find the span of years in which the company earned the most

Answer: Year 5-8, 9 M\$

Formal definition:

Input: An array of numbers A[1 ... n], both positive and negative

Output: Find the maximum V(i,j), where $V(i,j) = \sum_{k=i}^{j} A[k]$

A brute-force algorithm

Idea: Calculate the value of V(i,j) for each pair $i \leq j$ and return the maximum value.

```
V_{max} \leftarrow A[1]

for i \leftarrow 1 to n do

// calculate V(i,j)

V \leftarrow 0

for k \leftarrow i to j do

V \leftarrow V + A[k]

if V > V_{max} then V_{max} \leftarrow V

return V_{max}
```

Running time: $\Theta(n^3)$

Intuition: Calculating value of $\Theta(n^2)$ arrays, each one, on average, $\Theta(n/2)$ long.

A data-reuse algorithm

Idea:

- Don't need to calculate each V(i,j) from scratch.
- Exploit the fact: V(i,j) = V(i,j-1) + A[j]

```
V_{max} \leftarrow A[1]

for i \leftarrow 1 to n do

V \leftarrow 0

for j \leftarrow i to n do

// calculate V(i,j)

V \leftarrow V + A[j]

if V > V_{max} then V_{max} \leftarrow V;

return V_{max}
```

Running time: $\Theta(n^2)$

Intuition: Fix starting point i. Calculating V(i,j) from V(i,j-1) requires only $\Theta(1)$ time. $\Rightarrow \Theta(n^2)$ in total.

A divide-and-conquer algorithm

•	•		•			•			
Year	1	2	3	4	5	6	7	8	9
Profit (M\$)	3	2	1	-7	5	2	-1	3	-1
	•	•	•						

Idea:

- Cut the array into two halves
- All subarrays can be classified into three cases:
 - Case 1: entirely in the first half
 - Case 2: entirely in the second half
 - Case 3: crosses the cut
- Largest of three cases is final solution
- The optimal solutions for case 1 and 2 can be found recursively.
- Only need to consider case 3.
- Compare with merge sort:

If we can solve case 3 in linear (O(n)) time,

=> whole algorithm will run in $\Theta(n \log n)$ time.

$$T(n) = 2T(n/2) + n \Rightarrow T(n) = \Theta(n \log n)$$

Solving case 3

Year	1	2	3	4	5	6	7	8	9
Profit (M\$)	3	2	1	-7	5	2	-1	3	-1

Idea:

- To solve problem in subarray A[p..r]; Let $q = \lfloor (p+r)/2 \rfloor$
- Any case 3 subarray must have $p \le q < r$
- Such a subarray can be divided into two parts A[i...q] and A[q+1...j], for some i and j
- Just need to maximize each of them separately

To maximize A[i..q] and A[q+1,j]:

- Let i=i', j=j' be the indices that maximize the values A[i..q] and A[q+1,j]:
- i', j' can be found by using separate linear scans to left and right of q

 $\Rightarrow A[i'..j']$ has largest value of all subarrays that cross q

The complete divide-and-conquer algorithm

```
MaxSubarray(A, p, r):
 if p = r then return A[p]
 q \leftarrow |(p+r)/2|
M_1 \leftarrow \texttt{MaxSubarray}(A, p, q)
                                          % MAX Left Half
M_2 \leftarrow \text{MaxSubarray}(A, q + 1, r)
                                          % MAX Right Half
L_m \leftarrow -\infty, R_m \leftarrow -\infty
 V \leftarrow 0
for i \leftarrow q downto p
                                           % MAX Left
       V \leftarrow V + A[i]
                                           % starting at q
       if V > L_m then L_m \leftarrow V
 V \leftarrow 0
for i \leftarrow q + 1 to r
                                           % MAX Right
       V \leftarrow V + A[i]
                                          % starting at q
       if V > R_m then R_m \leftarrow V
return \max\{M_1, M_2, L_m + R_m\}
First call: MaxSubarray(A, 1, n)
```

Analysis:

Recurrence:

$$T(n) = 2T(n/2) + n$$

A linear-time algorithm?

Year	1	2	3	4	5	6	7	8	9
Profit (M\$)	-3	2	1	-4	5	2	-1	3	-1
X[i]	-3	-1	0	-4	1	3	2	5	4

Observations:

•
$$V(i,j) = \sum_{k=i}^{j} A[k] = X[j] - X[i-1]$$

- For fixed j, finding largest V(i,j) is same as knowing the index $i, i \le j$ for which X[i-1] is smallest
- Finding this for each j, lets us find overall largest V(i,j)

A linear-time $(\Theta(n))$ algorithm?

Year	1	2	3	4	5	6	7	8	9
Profit (M\$)	-3	2	1	-4	5	2	-1	3	-1
X[i]	-3	-1	0	-4	1	3	2	5	4

Algorithm:

- For each j, needs to know $i \le j$ that minimizes X[i-1] (i.e., maximizes X[j] X[i-1])
 - (Then maximize over all j)
- Algorithm increases j by +1 each step
- Keeps track of smallest X[i] so far
 - Could be old smallest one, or it could be current X[j]

Clever Algorithm

The linear-time algorithm

Just Showing Off

$V_{max} \leftarrow -\infty, X_{min} = 0$ $X \leftarrow 0, V \leftarrow 0$ for $i \leftarrow 1$ to n do $V \leftarrow V + A[i]$ if $V > V_{max}$ then $V_{max} \leftarrow V$ $X \leftarrow X + A[i]$ if $X < X_{min}$ then $X_{min} \leftarrow X$

 $V \leftarrow 0$

Even "simpler":

$$V_{max} \leftarrow -\infty, V \leftarrow 0$$
for $i \leftarrow 1$ to n do
$$V \leftarrow V + A[i]$$
if $V > V_{max}$ then $V_{max} \leftarrow V$
if $V < 0$ then $V \leftarrow 0$

Observation:

- $X < X_{min}$ iff V < 0- Because $V = X - X_{min}$
- No need to actually store X!

At any time i

return V_{max}

- X_{min} keeps track of smallest X[i] seen so far.
- $V = X[i] X_{min}$
- X stores X[i]

Maximum Sub-Array Algorithm Design

- - Directly from problem definition
- - Simple reuse of information
 - Trivial observation
- \square $\Theta(n \log n)$ Algorithm
 - Application of algorithm design principles
 - Divide-and-conquer
 - Expected of you after taking this class
- $\Theta(n)$ Algorithm
 - \square In beginning, people thought that $\Theta(n \log n)$ was best possible
 - Required ah-ha moment through re-visualization of problem
 - More art than science (although knowing the science led to the art)