

# ГЕНЕРАТИВНЫЕ МОДЕЛИ

ЛЕКТОР: РОМАН ИСАЧЕНКО

СЕМИНАРИСТ: МАТВЕЙ МОРОЗОВ

ДОМАШКИ: ГРИГОРИЙ КСЕНОФОНТОВ





# ГЕНЕРАТИВНЫЕ МОДЕЛИ





https://www.midjourney.com/explore







# О ПРЕПОДАВАТЕЛЕ И КУРСЕ



### РОМАН ИСАЧЕНКО

лектор

Кандидат физико-математических наук, преподаватель МФТИ

🖶 Занимаюсь компьютерным зрением в Yandex



#### **МАТВЕЙ МОРОЗОВ**

семинарист

🕞 Выпускник МФТИ (2020)

🖆 Senior CV Engineer в Gradient&Persona



### ГРИГОРИЙ КСЕНОФОНТОВ

ассистент

Выпускник МФТИ (2023), аспирант SkolTech

#### **КОРОТКО О КУРСЕ**

Курс посвящен современным методам построения генеративных порождающих моделей.

Рассматриваются следующие классы генеративных моделей:

- авторегрессионные модели,
- модели скрытых переменных,
- состязательные модели,
- диффузионные модели.

Особое внимание уделяется свойствам различных классов генеративных моделей, их взаимосвязям, теоретическим предпосылкам и методам оценивания качества.

Целью курса является знакомство слушателя с широко применяемыми продвинутыми методами глубокого обучения.

Курс сопровождается практическими заданиями, позволяющими на практике понять принципы устройства рассматриваемых моделей.

🗖 telegram: @gregkseno



# УСТРОЙСТВО КУРСА

#### СТРУКТУРА КУРСА



14 лекций



14 семинаров



6 домашних заданий



экзамен

#### КАК ФОРМИРУЕТСЯ ОЦЕНКА?

91911

6 дз по 15 баллов: **90 БАЛЛОВ** 





устный экзамен: 30 БАЛЛОВ





максимум за курс: **120 БАЛЛА** Финальная оценка выставляется по формуле:

min(floor(#баллов/10), 10)

### ТЕМЫ ЛЕКЦИЙ

| Nº | Тема лекции                                                                                                                                                                                       |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | Logistics. Generative models overview and motivation. Problem statement. Divergence minimization framework. Autoregressive models (PixelCNN).                                                     |
| 2  | Normalizing Flow (NF). Linear NF. Gaussian autoregressive NF. Coupling layer (RealNVP).                                                                                                           |
| 3  | Forward and reverse KL divergence for NF. Latent Variable Models (LVM). Variational lower bound (ELBO). Variational EM-algorithm. Amortized inference.                                            |
| 4  | ELBO gradients, reparametrization trick. Variational Autoencoder (VAE) and link with NF. Discrete VAE latent representations: started.                                                            |
| 5  | Vector quantization: discrete VAE latent representations. ELBO surgery. Learnable VAE prior.                                                                                                      |
| 6  | Likelihood-free learning. GAN optimality theorem. Wasserstein distance. Wasserstein GAN (WGAN).                                                                                                   |
| 7  | Evaluation of likelihood-free models. FID. Precision-Recall. CLIP Score and Human evaluation. Langevin dynamic. Score matching. Denoising score matching: started.                                |
| 8  | Denoising score matching: recap. Noise conditioned score network (NCSN). Forward gaussian diffusion process. Denoising score matching for diffusion. Reverse gaussian diffusion process: started. |
| 9  | Gaussian diffusion model as VAE. ELBO derivation. Reparametrization of gaussian diffusion model. Denoising diffusion probabilistic model (DDPM): overview.                                        |
| 10 | DDPM as score-based generative model. Guidance: classifier guidance, classifier-free guidance. Continuous-in-time NF.                                                                             |
| 11 | Continuity equation for NF log-likelihood. SDE basics. Probability flow ODE. Reverse SDE.                                                                                                         |
| 12 | Diffusion and Score matching SDEs. Score-based generative models through SDEs. Flow matching.                                                                                                     |
| 13 | Conditional flow matching. Conical Gaussian paths. Linear Interpolation. Link with Score-Based models.                                                                                            |
| 14 | (presumably) Autoregressive diffusion.                                                                                                                                                            |



#### ЧТО НУЖНО ЗНАТЬ?

- Теория вероятностей + Статистика
- Глубокое обучение
- Python + pytorch

#### помним, что..

- Курс математически нагружен.
- Курс постоянно развивается.
- Любой фидбек, особенно негативный, приветствуется!

#### ССЫЛКИ

**repo**: <a href="https://github.com/r-isachenko/2025-DGM-MIPT-YSDA-course">https://github.com/r-isachenko/2025-DGM-MIPT-YSDA-course</a>

## По любым вопросам – пишите:

#### РОМАН ИСАЧЕНКО



**⊘** telegram: **@roman\_isachenko**