Лабораторная работа №1

Модель колебаний пружинного маятника

Постановка задачи:

Определить характеристики гармонических колебаний пружинного маятника (амплитуду, период и частоту смещения его скорости и его ускорения), если груз имеет массу m, а коэффициент пружины равен k.

Шарик, массой 0,1 кг колеблется на столе около положения равновесия в течении 10 секунд, коэффициент упругости пружины k=0,2, значение первоначального отклонения шарика xh=0,2 м.

1. Аналитическое исследование модели колебаний: Формулы:

$$x(t) = x_0 \cos(t \sqrt{\frac{k}{m}})$$

$$v(t) = x_0 \frac{k}{m} \cos(t \sqrt{\frac{k}{m}} + \frac{\pi}{2})$$

$$a(t) = x_0 \frac{k}{m} \cos(t \sqrt{\frac{k}{m}} + \pi)$$

Графики x(t), v(t), a(t) в одной координатной плоскости:

2. Исследование на основе математической модели колебаний: Формулы:

$$t_{i} = t_{i-1} + dt$$

$$x_{i} = x_{i-1} + v_{i-1}dt + a_{i-1} \frac{(dt)^{2}}{2}$$

$$v_{i} = v_{i+1} + a_{i+1}dt$$

$$a_i = -k \frac{x_{i-1}}{m}$$

, где начальные условия

$$t_0 = 0$$
, $x_0 = x_h$, $v_0 = 0$, $v = v_0 + adt$, $a_1 = a_0$

Графики x(t), v(t), a(t) в одной координатной плоскости:

3. Исследование модели затухающих колебаний: Формулы:

$$t_{i} = t_{i-1} + dt$$

$$x_{i} = x_{i-1} + v_{i-1}dt + a_{i-1} \frac{(dt)^{2}}{2}$$

$$v_{i} = v_{i+1} + a_{i+1}dt$$

$$a_{i} = -\frac{kx_{i-1}}{m} - \frac{k_{1}v_{i-1}}{m}$$

Графики x(t), v(t), a(t) в одной координатной плоскости:

	0,2			Затухающие колебания
	0,1			0,3
a0	-0,4			
đt	0,1			0,2
t	x(t)	v(t)	a(t)	0,1
0	0,2	0	-0,4	
0,1	0,198	-0,04	-0,4	6 8 10
0,2	0,192	-0,08	-0,356	-0,1
0,3	0,18222	-0,1156	-0,304	
0,4	0,16914	-0,146	-0,24884	-0,2
0,5	0,1532958	-0,170884	-0,19228	
0,6	0,135246	-0,190112	-0,1357076	-0,3
0,7	0,115556262	-0,20368276	-0,08038	
0,8	0,094786086	-0,21172076	-0,027429764	-0,4
0,9	0,073476861	-0,214463736	0,022148588	
1	0,05214123	-0,212248878	0,067510014	-0,5
1,1	0,031253893	-0,205497876	0,107966417	x(t)a(t)
1,2	0,011243937	-0,194701235	0,142990091	
1 2	0.007511236	0.180/02225	0.17221336	