Санкт-Петербургский политехнический университет Петра Великого Институт физики, нанотехнологий и телекоммуникаций Высшая инженерно-физическая школа

Определение структуры комплексов пропанола с молекулой воды и энергии образующейся водородной связи

Отчет по лабораторной работе №5, вариант 16

Работу

выполнил:

В. Х. Салманов

Группа:

3430302/60201

Преподаватель:

И. М. Соколов

Санкт-Петербург 2020

Содержание

1.	Цель работы	3
2.	Постановка задач	4
3.	Теоретическая информация 3.1. Водородная связь	5
4.	Результаты	6
5.	Выводы	7
6.	Контроль результатов	8
7.	Приложенные файлы	9

1. Цель работы

Определить возможные структуры комплексов пропанола с молекулой воды и энергии образующейся при этом водородной связи.

2. Постановка задач

Предположить возможные комплексы молекул пропанола с водой, провести оптимизацию методом RHF/STO-3G и привести следующие результаты:

- число действительно различных комплексов с водородной связью;
- для каждого комплекса энергию водородной связи;
- наиболее энергетически выгодный комплекс и соответствующее значение водородной связи.

Рисунок 2.1. Один из предложенных комплексов пропанола с молекулой воды.

3. Теоретическая информация

3.1. Водородная связь

Водородная связь — форма ассоциации между электроотрицательным атомом и атомом водорода H, связанным ковалентно с другим электроотрицательным атомом. В качестве электроотрицательных атомов могут выступать N, O или F. Энергия водородной связи, как правило, по абсолютной величине находится в пределах (0.003 - 0.022) Хартри.

Рисунок 3.1. Водородная связь между молекулами воды (чёрные пунктирные линии).

4. Результаты

Было предложено 5 различных комплексов. После проведения оптимизации были получены два стабильных различных комплекса. Информация о данных комплексах приведена в таблице ниже:

Таблица 4.1 **Составляющие энергии комплексов**

№ комплекса	Описание комплекса	Полная энергия комплекса, Хартии	Полная энергия невзаимодействующего комплекса, Хартри	Энергия водородной связи, Хартии
1	Водородная связь между О2 и Н1	-265.688	-265.678	0.01
2	Водородная связь между О1 и Н3	-265.687	-265.678	0.009

Более стабильным оказался первый комплекс.

Рисунок 4.1. Комплекс №1.

Рисунок 4.2. Комплекс №2.

5. Выводы

Полученное значение энергии водородной связи для двух соединений находится в допустимом пределе: (0.003 - 0.022) Хартри. Оба комплекса являются стабильными и в растворе могут быть присутствовать оба комплекса.

6. Контроль результатов

- у каждого рассматриваемого комплекса в выходном файле содержится "EQUILIBRIUM GEOMETRY LOCATED";
- из пяти предложенных конформеров были обнаружены тождественные: энергия совпадает до 4 знака после запятой, геометрии тождественны;
- значения энергий водородной связи находятся в допустимых пределах.

7. Приложенные файлы

- complex_origin.xyz исходная структура невзаимодействующего комплекса;
- файлы в папке input файлы на вход GAMESS;
- файлы в папке output выходные файлы GAMESS.