

Overview of Circuit Analysis

- What is Circuit Analysis?
- Why do we implement Circuit Analysis?
- How do we implement Circuit Analysis?

What is Circuit Analysis?

Circuit Analysis
Circuit Theory

Circuit Design

What is Circuit Analysis?

Why do we implement Circuit Analysis?

- Quantitatively predict or determine the behavior of a circuit:
 - ---- determine all voltages and currents
- Lead to circuit improvements and refinements
- Circuit Analysis is vital for circuit design.

How is circuit behavior determined?

Three Parts of the Lecture

1. Resistive Circuit Analysis

DC + Resistive Element + Topology

2. Dynamic Circuit Analysis

DC + Dynamic/Resistive Element + Topology

3. Sinusoidal Steady-State Analysis

AC + Dynamic/Resistive Element + Topology

How do we implement Circuit Analysis?

- Build equations for a given circuit by using basic laws, theorems, and circuit analysis techniques;
- Solve equations to predict or determine circuit behavior (required currents and voltages).

A Typical Problem you should be able to solve after this course:

Find the voltage V_1 , V_2 and V_3 .

Part 1

Resistive Circuit Analysis

(DC + Resistive Element + Topology)

Part 1: Resistive Circuit Analysis

1. Circuit Variables and Circuit Elements

- 2. Simple Resistive Circuit Analysis
- 3. Techniques of Circuit Analysis
- 4. Operational Amplifier

Chapter 1: Circuit Variables and Circuit Elements

- Circuit Variables
- Circuit Elements
- Power and Energy
- Voltage and Current Sources

1-1 Circuit Variables

- Electric Charge
- Current
- Voltage
- Power
- Energy

Electric Charge (1)

- Bipolar: Positive (proton) and Negative (electron) charge;
- The fundamental unit of charge is Coulomb (C);
- A single electron has a charge of -1.602×10⁻¹⁹ C, and a single proton has a charge of +1.602×10⁻¹⁹ C;

Electric Charge (2)

- Charge in motion ---- Current;
- Separation of charge ---- voltage;
- Charge conservation law:

Electrons (or protons) are neither created nor destroyed.

Current (1)

- Motion of charge creates electric fluid (current);
- The fundamental unit of current is Ampere (A);
- The rate of charge flow is defined as current, and expressed as:

$$i(t) = \frac{dq(t)}{dt}$$

 \bullet *i* : current in A;

• q : charge in C;

• t: time in s.

1.1 The current at the terminals of the element in Fig. 1.2 is

$$i = 0,$$
 $t < 0;$ $i = 20e^{-5000t}A,$ $t \ge 0.$

Calculate the total charge (in microcoulombs) entering the element at its upper terminal.

Solution:

$$Q = \int_{-\infty}^{+\infty} i(t) dt = \int_{0}^{+\infty} 20e^{-5000t} dt$$

$$= \frac{20}{-5000} e^{-5000t} \Big|_{0}^{+\infty}$$

$$= \frac{20}{-5000} (0 - 1) = 4 \times 10^{-3} C$$

$$= 4000 \mu C$$

Current (2)

- Current direction
 - Real direction: Moving direction of positive charges (proton)
 - Reference direction: Arbitrary assigned direction by an arrow

Current (3)

- A current is completely specified by both its magnitude and reference direction.
- Reference direction is a fundamental part of a current!

Current (4)

Incorrect definitions of a current

Current (5)

Two correct equivalent representations for the exact same current

Voltage (1)

- Charge separation creates electric force (voltage);
- The fundamental unit of voltage is Volt (V);
- The energy per unit charge created by the separation is defined as voltage:

$$u = \frac{dw}{dq}$$

 $\bullet u$: voltage in V;

• w : energy in J;

● *q* : charge in C.

Voltage (2)

- Voltage polarity
 - Real polarity: From positive terminal to negative terminal
 - Reference polarity: Arbitrary assigned polarity by a plus-minus sign pair

Voltage (3)

- A voltage is completely specified by both its magnitude and reference polarity.
- The definition of any voltage must include a plus-minus sign pair!

Voltage (4)

Incorrect definitions of a voltage

Voltage (5)

Two correct equivalent representations for the exact same voltage

1-2 Circuit Elements

- Ideal Basic Circuit Element
- Resistor (Ohm's Law)
- Passive Sign Convention
- Voltage and Current Source
- op amp, Capacitor, Inductor
- Diode, Transistor, Transformer

Ideal Basic Circuit Element

- Only has two terminals
- Described mathematically in terms of voltage and/or current
- Can not be further reduced or subdivided into other elements
- Resistor, Voltage/Current source,Capacitor, Inductor

Ideal Basic Circuit Element

Ideal:

Can not be realizable physically

Basic:

Can not be further reduced or subdivided into other elements

Ideal Basic Circuit Element: Resistor, Voltage/Current source,

Capacitor, Inductor

Ideal Circuit Element

■ The dimension of element is 1/10th (or smaller) of the operation wavelength.

$$\lambda = \frac{C}{f}$$
C=3×108m/s

f(Hz)	50	25k	500M	30G
λ (m)	6×10 ⁶	12k	0.6	0.01

Ideal Basic Circuit Elements

Inductor

$$L_1 = 10 \mu H$$

Resistor

■ Resistor is an ideal basic circuit element.

Passive Sign Convention

- Theoretically, the assignments of the reference direction for voltage and current are entirely arbitrary.
- But we must write all subsequent equations to agree with the chosen references.

- The REAL direction for the current is:
 - 4A flowing from terminal A to B
- The REAL polarity for the voltage is:

Terminal A is 8V positive with respective to B

By using Reference polarity for voltage and Reference direction for current, we have FOUR choices to represent this case :

If the element is a resistor, how to find the value of the resistance for each case?

If the element is a resistor, how to find the value of the resistance for each case?

Passive Sign Convention (PSC)

Whenever the reference direction for the current in an element is in the direction of the reference voltage drop across the element, use a positive sign in any expression that relates the voltage and the current. Otherwise use a negative sign.

Passive Sign Convention

The reference direction for the current is assigned in the direction of the reference voltage drop across the element.

Passive Sign Convention

- Current enters the positive terminal;
- Current leaves the negative terminal.

Passive Sign Convention

无语符号约定 +-5-周向

- Passive sign convention is used only for the convenience of circuit analysis.
- We apply the passive sign convention in all the lectures that follow.

欧姆 Ohm's Law

Ohm's Law with PSC

Ohm's Law w/o PSC

Power and Energy of Resistors

1

Ohm's Law with PSC

VCR of Resistor (Ohm's law):

$$u = Ri$$

Ohm's Law w/o PSC

Ohm's law (w/o PSC):

$$u = -Ri$$

1-3 Power and Energy

- Power
- Energy
- Passive and Active Element

Resistance and Conductance

In Ohm's law, R is measured in ohm (Ω):

$$u = Ri$$

$$R = u/i$$

R can also be characterized by conductance;

Conductance is measured in Siemens (S);

$$i = Gu$$

$$G = \frac{1}{R}$$

Power

Power is defined as the time rate of expending or absorbing energy, and expressed as:

$$p=rac{dw}{dt}$$
 Passive sign convention $=\left(rac{dw}{dq}
ight)\left(rac{dq}{dt}
ight)=vi$

Power

If the passive sign convention is not applied, the power is expressed as:

$$p = -vi$$

4

Example:

$$p = vi$$

$$= 8 \times 4$$

$$= 32W$$

$$p = -vi$$

$$= -(-8) \times 4$$

$$= 32W$$

Power

- If *p* is **positive**, power is absorbed by the element; or, power is being delivered to the element;
- If *p* is **negative**, the element supplies power; or, power is being extracted from the element.

Examples:

$$p = (2V)(3A)$$
$$= 6W$$

- Power of 6W is absorbed by A;
- Or, power of 6W is being delivered to A.

Examples:

$$p = (4V)(-5A)$$
$$= -20W$$

- Power of 20W is supplied by B;
- Or, power of 20W is being extracted from B.

Examples:

$$p = -(3V)(6A)$$
$$= -18W$$

- Power of 18W is supplied by C;
- Or, power of 18W is being extracted from C.

Energy

Inversely, energy can be calculated as:

$$w = \int_{-\infty}^{t} p(\tau) d\tau$$

1.8. The voltage and current at the terminals of the circuit element in Fig. 1.2 are zero for t < 0. For $t \ge 0$ they are

$$v = e^{-500t} - e^{-1500t} \text{ V},$$
 $i = 30 - 40e^{-500t} + 10e^{-1500t} \text{ mA}.$

- (a) Find the power at t = 1 ms.
- (b) How much energy is delivered to the circuit element between 0 and 1 ms?
- (c) Find the total energy delivered to the element.

Solution:

P 1.8 [a]
$$p = vi = 30e^{-500t} - 30e^{-1500t} - 40e^{-1000t} + 50e^{-2000t} - 10e^{-3000t}$$

 $p(1 \text{ ms}) = 3.1 \text{ mW}$
[b] $w(t) = \int_0^t (30e^{-500x} - 30e^{-1500x} - 40e^{-1000x} + 50e^{-2000x} - 10e^{-3000x}) dx$
 $= 21.67 - 60e^{-500t} + 20e^{-1500t} + 40e^{-1000t} - 25e^{-2000t} + 3.33e^{-3000t} \mu \text{J}$
 $w(1 \text{ ms}) = 1.24\mu \text{J}$
[c] $w_{\text{total}} = 21.67\mu \text{J}$

Solution:

(c) p=vi

总能量就是对p从0到+∞做积分

$$E = \int_{0}^{+\infty} p \, dt = \int_{0}^{+\infty} 1000(e^{-500t} - e^{-1500t})(30 - 40e^{-500t} + 10e^{-1500t})dt$$

$$= 1000 \int_{0}^{+\infty} (30e^{-500t} - 40e^{-100t} + 10e^{-2000t} - 30e^{-1500t} + 40e^{-2000t} - 10e^{-3000t})dt$$

$$= 1000 \times \left(-\frac{30}{500}e^{-500t} + \frac{40}{1000}e^{-1000t} + \frac{30}{1500}e^{-1500t} - \frac{50}{2000}e^{-2000t} + \frac{10}{3000}e^{-3000t} \right) \Big|_{0}^{+\infty}$$

$$= 1000 \times \left(\frac{3}{50} - \frac{1}{25} - \frac{1}{50} + \frac{1}{40} - \frac{1}{300} \right)$$

$$= 1000 \times \frac{13}{600}$$

$$\approx 21.67$$

Passive and Active Element

Energy:

$$w = \int_{-\infty}^{t} p(\tau)d\tau = \int_{-\infty}^{t} u(\tau)i(\tau)d\tau$$

Passive: $w \ge 0$

Active: w < 0

Power of a Resistor

$$p = vi = (iR)i = i^2R$$

$$= vi = v\left(\frac{v}{R}\right) = \frac{v^2}{R}$$

Power of a Resistor

$$p = -vi = -(-iR)i = i^{2}R$$
$$= -vi = -v\left(-\frac{v}{R}\right) = \frac{v^{2}}{R}$$

Power of a Resistor

$$p = i^2 R = \frac{v^2}{R} \ge 0$$

A resistor always absorbs power from the circuit.

Energy of a Resistor

$$w(t) = \int_{-\infty}^{t} p(\tau) d\tau$$

$$= \int_{-\infty}^{t} i^2 R d\tau = \int_{-\infty}^{t} \frac{v^2}{R} d\tau \ge 0$$

Resistor is a passive element.

1-4 Voltage and Current Source

- Independent source
 - IVS
 - ICS
- Dependent source (Controlled source)
 - CCCS
 - VCCS
 - CCVS
 - VCVS

Independent Voltage Source

An ideal Independent Voltage Source (IVS) is a circuit element that maintains a prescribed voltage across its terminals regardless of the current flowing in those terminals.

Independent Voltage Source

Symbol

- Reference polarity
- Magnitude

Independent Current Source

An ideal Independent Current Source (ICS) is a circuit element that maintains a prescribed current through its terminals regardless of the voltage across those terminals.

Independent Current Source

Symbol

- Reference direction
- Magnitude

Dependent (Controlled) Sources

Dependent source is determined by a voltage (or current) existing at some other location in the circuit.

CCCS

- Current-Controlled Current Source (CCCS)
- K is a constant factor

VCCS

- Voltage-Controlled Current Source (VCCS)
- \blacksquare g is a constant factor

VCVS

- Voltage-Controlled Voltage Source (VCVS)
- K is a constant factor

CCVS

- Current-Controlled Voltage Source (CCVS)
- r is a constant factor

Dependent (Controlled) Sources

K, g, r are all const.
factors.

Question 1:

What are the units of the factors of *K*, *g*, and *r* of those controlled sources in last page?

- K is a dimensionless scaling factor;
- g is a factor with unit of A/V;
- r is a factor with unit of V/A.

Question 2:

How to calculate the power of a voltage or current source?

Solution

■ 电阻R1与电阻R2并联,根据电阻并联计算公式:

$$R' = \frac{R1 \cdot R2}{R1 + R2} = \frac{6 \times 6}{6 + 6} = 3\Omega$$

则电压源发出功率为:

$$P=UI=\frac{U^2}{R3+R'}=\frac{144}{6}=24W_{\circ}$$

Summary of Chapter 1

- Basic conceptions of charge, current, voltage, power, and energy
- Reference polarity for voltage and reference direction for current
- Ideal basic circuit element
- Passive sign convention (PSC)
- Power and energy calculation
- IVS, ICS, CCCS, VCCS, CCVS, VCVS

