		$\sigma_{1^{+}lphaeta}^{\sharp1}$	$\sigma_{1^{+}lphaeta}^{\#2}$	$ au_{1}^{\#1}{}_{lphaeta}$	$\sigma_{1}^{\#1}{}_{lpha}$	$\sigma_{1}^{#2}{}_{\alpha}$	$ au_{1}^{\#1}$ α	$ au_{1-\alpha}^{\#2}$
($\sigma_{1}^{\#1} \dagger^{\alpha\beta}$	0	$\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+k^2)}$	$\frac{2 i \sqrt{2} k}{(\alpha_0 - 4 \beta_1) (1 + k^2)}$	0	0	0	0
($\sigma_{1}^{\#2} \dagger^{\alpha\beta}$	$\frac{2\sqrt{2}}{(\alpha_0 - 4\beta_1)(1 + k^2)}$	$-\frac{2}{(\alpha_0-4\beta_1)(1+k^2)^2}$	$-\frac{2 i k}{(\alpha_0 - 4 \beta_1) (1 + k^2)^2}$	0	0	0	0
	$\tau_{1}^{\#1} \dagger^{\alpha\beta}$	$-\frac{2i\sqrt{2}k}{(\alpha_0-4\beta_1)(1+k^2)}$	$\frac{2ik}{(\alpha_0-4\beta_1)(1+k^2)^2}$	$-\frac{2k^2}{(\alpha_0\!-\!4\beta_1)(1\!+\!k^2)^2}$	0	0	0	0
	$\sigma_1^{\sharp 1} \dagger^{\alpha}$	0	0	0	0	$-\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+2k^2)}$	0	$-\frac{4 i k}{(\alpha_0 - 4 \beta_1) (1 + 2 k^2)}$
	$\sigma_{1}^{#2} \dagger^{\alpha}$	0	0	0	$-\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+2k^2)}$	$-\frac{2}{(\alpha_0-4\beta_1)(1+2k^2)^2}$	0	$-\frac{2 i \sqrt{2} k}{(\alpha_0 - 4 \beta_1) (1 + 2 k^2)^2}$
	$\tau_1^{\#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
	$\tau_{1}^{#2} + \alpha$	0	0	0	$\frac{4ik}{(\alpha_0-4\beta_1)(1+2k^2)}$	$\frac{2 i \sqrt{2} k}{(\alpha_0 - 4 \beta_1) (1 + 2 k^2)^2}$	0	$-\frac{4 k^2}{(\alpha_0 - 4 \beta_1) (1 + 2 k^2)^2}$

Lagrangian density

Eagrangian density
$-\frac{1}{2} \alpha_0 \omega_{\alpha \chi \beta} \omega^{\alpha \beta \chi} - \frac{1}{2} \alpha_0 \omega^{\alpha \beta}_{\alpha} \omega_{\beta \chi}^{\chi} + 2 \beta_1 \omega^{\alpha \beta}_{\alpha} \omega_{\beta \chi}^{\chi} -$
$2 \beta_1 \omega_{\alpha}^{\chi\delta} \omega_{\chi\delta}^{\alpha} - 2 \beta_1 \omega_{\alpha\chi}^{\chi} \partial_{\beta} f^{\alpha\beta} - 2 \beta_1 \omega_{\alpha\delta}^{\delta} \partial_{\beta} f^{\alpha\beta} -$
$\alpha_0 f^{\alpha\beta} \partial_{\beta} \omega_{\alpha}^{\chi} + \alpha_0 \partial_{\beta} \omega^{\alpha\beta}_{\alpha} + 2 \beta_1 \omega_{\beta}^{\chi} \partial^{\beta} f^{\alpha}_{\alpha} + 2 \beta_1 \omega_{\beta}^{\delta} \partial^{\beta} f^{\alpha}_{\alpha} -$
$2\beta_1 \partial_{\beta} f_{\chi}^{\chi} \partial^{\beta} f_{\alpha}^{\alpha} + \alpha_0 f^{\alpha\beta} \partial_{\chi} \omega_{\alpha\beta}^{\chi} - \alpha_0 f_{\alpha}^{\alpha} \partial_{\chi} \omega_{\beta}^{\beta\chi} +$
$4 \beta_1 \omega_{\alpha\chi\beta} \partial^{\chi} f^{\alpha\beta} + \beta_1 \partial_{\chi} f_{\beta}^{\ \delta} \partial^{\chi} f_{\delta}^{\ \beta} + \beta_1 \partial_{\chi} f_{\beta}^{\ \delta} \partial^{\chi} f_{\delta}^{\ \beta} +$
$4 \beta_1 \partial^{\beta} f^{\alpha}_{\alpha} \partial_{\delta} f^{\delta}_{\beta} - 2 \beta_1 \partial_{\beta} f^{\beta}_{\chi} \partial_{\delta} f^{\chi \delta} + \frac{2}{3} \alpha_6 \partial_{\beta} \omega^{\alpha \beta}_{\alpha} \partial_{\delta} \omega^{\chi \delta}_{\chi} -$
$\underline{\beta_1 \partial^X f_{\zeta}^{\beta} \partial^\zeta f_{\beta \chi} - \beta_1 \partial^X f_{\zeta}^{\beta} \partial^\zeta f_{\chi \beta} + \beta_1 \partial^X f_{\delta \zeta} \partial^\zeta f_{\chi}^{\delta} - \beta_1 \partial^X f_{\zeta \delta} \partial^\zeta f_{\chi}^{\delta}}$
Added source term: $f^{\alpha\beta} \tau + \omega^{\alpha\beta\chi} \sigma$

$\omega_{2}^{*1} + \alpha \beta \chi$	$f_{2+}^{#1} \dagger^{\alpha\beta}$	$\omega_{2^{+}}^{*1} \dagger^{\alpha\beta}$	
0	$-\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$		$\omega_{2^{+}lphaeta}^{*1}$
0	$2 \beta_1 k^2$	$\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	$f_{2}^{\#1}_{lpha eta}$
$-\frac{\alpha_0}{4}+\beta_1$	0	0	$\omega_{2^{-}}^{\#1}{}_{lphaeta\chi}$

0	0	0	0	$\frac{(\alpha_0 - 4\beta_1)k}{2\sqrt{2}}$	$\frac{\alpha_0 - 4\beta_1}{2\sqrt{2}}$	$(\alpha_0$ - 4 $\beta_1)$	$\omega_{1^+ lpha eta}^{\# 1}$
0	0	0	0	0	0	$\frac{\alpha_0 - 4\beta_1}{2\sqrt{2}}$	$\omega_{1}^{\#2}{}_{lphaeta}$
0	0	0	0	0	0	$\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	$f_{1^{+}lphaeta}^{\#1}$
$\frac{1}{2}\bar{l}(\alpha_0-4\beta_1)k$	0	$-\frac{\alpha_0-4\beta_1}{2\sqrt{2}}$	$\frac{1}{4}\left(\alpha_0-4\beta_1\right)$	0	0	0	$\omega_{1^-lpha}^{*1}$
0	0	0	$-\frac{\alpha_0-4\beta_1}{2\sqrt{2}}$	0	0	0	$\omega_{1^-\alpha}^{\#2}$ f
0	0	0	0	0	0	0	$f_{1}^{\#1}\alpha$
0	0	0	$-\frac{1}{2}\bar{l}(\alpha_0-4\beta_1)k$	0	0	0	$f_{1^-\alpha}^{\#2}$

	$\sigma_{0^+}^{\#1}$	$ au_0^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\sharp 1}$
$\sigma_{0}^{\#1}$ †	$\frac{8 \beta_1}{\alpha_0^2 - 4 \alpha_0 \beta_1 + 8 \alpha_6 \beta_1 k^2}$	$-\frac{i\sqrt{2} (\alpha_0-4\beta_1)}{\alpha_0 (\alpha_0-4\beta_1)k+8\alpha_6\beta_1 k^3}$	0	0
$ au_{0}^{\#1}$ †	$\frac{i\sqrt{2}(\alpha_0-4\beta_1)}{\alpha_0(\alpha_0-4\beta_1)k+8\alpha_6\beta_1k^3}$	$-\frac{\alpha_0 - 4 \beta_1 + 2 \alpha_6 k^2}{k^2 (\alpha_0^2 - 4 \alpha_0 \beta_1 + 8 \alpha_6 \beta_1 k^2)}$	0	0
$\tau_{0^{+}}^{\#2}$ †	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	$\frac{2}{\alpha_0$ -4 β_1

	$\sigma_{2^{+}lphaeta}^{\#1}$	$\tau_{2}^{\#1}{}_{\alpha\beta}$	$\sigma_{2-\alpha\beta\chi}^{\#1}$			
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$-\frac{16\beta_1}{\alpha_0^2-4\alpha_0\beta_1}$	$\frac{2i\sqrt{2}}{\alpha_0 k}$	0			
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	$-\frac{2 i \sqrt{2}}{\alpha_0 k}$	$\frac{2}{\alpha_0 k^2}$	0			
$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{1}{-\frac{\alpha_0}{4} + \beta_1}$			
Source c	onstraints					
SO(3) irreps #						
$\tau_{o+}^{\#2} == 0$		1				

 $\tau_{1}^{\#2\alpha} + 2ik \sigma_{1}^{\#2\alpha} == 0$ 3

 $\frac{1}{\tau_{1+}^{\#1}{}^{\alpha\beta} + i k \sigma_{1+}^{\#2}{}^{\alpha\beta}} = 0 \ 3$

10

 $\tau_1^{\#_1\alpha} == 0$

Total #:

Unitarity conditions	
$\alpha_0 > 0 \&\& \alpha_6 > 0 \&\& \beta_1 < 0 \mid \beta_1 > \frac{\alpha_0}{4}$	