Introdução à Arquitetura de Computadores Exercícios Complementares às Aulas Teórico-Práticas

Bloco 3 - Circuitos Combinatórios e Sequênciais

1. Considere o seguinte circuito implementado com base em dois multiplexers.

Fig. 1. Circuito com multiplexers.

Determine a forma mínima da equação boolena da função implementada no circuito.

- 2. A partir de um multiplexer 2:1, proponha a implementação de um multiplexer 8:1.
- 3. Implemente a função expressa na seguinte tabela de verdade, usando:
 - a. Um multiplexer 8:1.
 - b. Um multiplexer 4:1 e um not
 - c. Um multiplexer 2:1 e duas outras portas lógicas.

Α	В	С	Υ
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

- 4. Usando um descodificador 3:8 e algumas portas lógicas adicionais implemente a função Y representada na tabela de verdade da questão anterior.
- 5. Considerando as formas de onda da Figura 2 esboce a forma de onda Q da saída de um Flipflop do tipo D.

- 6. Projete e implemente uma máquina de estados capaz de implementar um contador módulo 8. Isto é, com a sequência de contagem 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2...
- 7. Repita a questão anterior, mas considerando que o circuito tem uma entrada adicional U que específica se a contagem é feita de modo ascendente (se U=1) ou descendente (se U=0).

Soluções:

1. A forma mínima da equação:

$$Y = A + BC + \bar{B}\bar{C}$$

2.

3.

4.

6. e 7. A máquina tem 8 oito estados possíveis logo precisará de log2(8)=3 bits de estado. Será preciso arranjar a codificação de cada estado, a tabela de transições, determinar as equações da lógica de estado seguinte e finalmente desenhar o circuito.