

Unit 2: Boundary value problems

Course > and PDEs

> 6. The Wave Equation > 5. Initial conditions

5. Initial conditionsSolving for initial conditions in the wave equation

To specify a unique solution, we need two initial conditions: not only the initial position u(x,0) but also the initial velocity $\frac{\partial u}{\partial t}(x,0)$ at each position of the string. (That **two** initial conditions are needed is related to the fact that the PDE is **second** -order in the t variable.)

For a plucked string, it is reasonable to assume that the initial velocity is 0, so one initial condition is $\frac{\partial u}{\partial t}(x,0)=0$. What condition does this impose on the a_n and b_n ? Well, for the general solution above,

so the initial condition says that $b_n=0$ for every n; in other words,

$$u\left(x,t
ight) =\sum_{n\geq 1}a_{n}\cos \left(nt
ight) \sin \left(nx
ight) .$$

If we also knew the initial position $u\left(x,0\right)$, we could solve for the a_n by extending to an odd, period 2π function of x and using the Fourier coefficient formula.

Wave equation mathlet

The first few coefficients are the amplitudes of the "harmonics" in the Wave Equation Mathlet.

$$u\left(x,0
ight) = egin{cases} rac{2a}{\pi}x & 0 < x < \pi/2 \ rac{2a}{\pi}(\pi-x) & \pi/2 < x < \pi \end{cases},$$

where a is a small positive number.

The general solution takes the form

$$u\left(x,t
ight) =\sum_{n\geq 1}a_{n}\cos \left(nt
ight) \sin \left(nx
ight) .$$

To solve for the Fourier coefficients a_n , which of the following periodic extensions of $u\left(x,0\right)$ must you use?

Solution:

The general solution is a sine series in x, therefore it must be odd. That eliminates the first two choices.

The next point is that it must satisfy the initial condition on $0 < x < \pi$, which is given by a triangle of height a that peaks at $\pi/2$. Therefore the odd extension of this function is a 2π periodic function that is given by the graph in the third option.

The fourth option is the odd periodic sawtooth wave of period π , which does not match the initial condition given.

Submit

You have used 1 of 2 attempts

• Answers are displayed within the problem

5. Initial conditions

Topic: Unit 2: Boundary value problems and PDEs / 5. Initial conditions

Hide Discussion

Add a Post

Show all posts 🗸	by recent activity 🗸
There are no posts in this topic yet.	
×	

© All Rights Reserved

Solve for the initial condition

1/1 point (graded)

Suppose a guitar string of length π is plucked. The initial velocity is zero, and the initial position is given by the function