Solving Recurrences

1. Techniques

- Divide and Conquer (recursion tree) powerful
- Master Method/Master Theorem to solve "divide"
- Annihilators to solve "Minus": $T(n) = T(n-a) + T(n-b) \dots + f(n)$
- Ultimate tech: Guess and Check!

2. Master Theorem

The Master Theorem. The recurrence T(n) = aT(n/b) + f(n) can be solved as follows.

- If af(n/b)/f(n) < 1, then $T(n) = \Theta(f(n))$.
- If af(n/b)/f(n) > 1, then $T(n) = \Theta(n^{\log_b a})$.
- If af(n/b)/f(n) = 1, then $T(n) = \Theta(f(n) \log_b n)$.
- If none of these three cases apply, you're on your own.
 - It works when f(n) is polynomial
 - We use divide and conquer to prove it's correct

3. Using Divide and Conquer to prove Master Theorem

 $a^L f(1)$

• Draw the recursion tree for T(n) = f(n) + a T(n/b) + f(n), the tree's depth is $\log_b n$

•
$$T(n) = f(n) + a f\left(\frac{n}{b}\right) + a^2 f\left(\frac{n}{b^2}\right) + \cdots + a^i f\left(\frac{n}{b^i}\right) + \cdots + a^H f\left(\frac{n}{b^H}\right)$$

- $H = \log_b n$, because on the last layer $\frac{n}{h^H} = 1$
- We consider this as a geometric series: because f(n) is polynomial, and $f(n) = \Theta(n^k) \to common\ ratio = \Theta\left(\frac{a}{b^k}\right)$
- If $a\frac{f\left(\frac{n}{b}\right)}{f(n)} < 1$, or the common ratio is between 0 and 1; f (n) will be the largest term, so $T(n) = \Theta(f(n))$.
- If $a\frac{f\left(\frac{n}{b}\right)}{f(n)} > 1$, or the common ratio is greater than 1, and the last term becomes the largest. So $T(n) = \Theta(a^{\log_b n})$
- If $a \frac{f(\frac{n}{b})}{f(n)} = 1$, we have a lot of f(n) here, so T(n) = $\Theta(\log_b n \ f(n))$

4. Examples

- a) Merge Sort $T(n) = 2T\left(\frac{n}{2}\right) + n$
 - f(n) is polynomial, we can use Master
 - $a = 2, b = 2 \rightarrow \Theta(n \lg n)$
- b) $T(n) = 4T\left(\frac{n}{2}\right) + n \lg n$
 - f(n) is not polynomial, and $a f\left(\frac{n}{b}\right) = 2n \lg n 2n$
 - We can say $2 \, n \lg n > 2 n \lg n 2 n > c_1 \, n \lg n$, $c_1 > 1$ when n is really large.
 - Thus, we can use the second case in Master $o \Theta ig(4^{\lg n}ig) = \Theta(n^2)$

c)
$$T(n) = T\left(\frac{3n}{4}\right) + T\left(\frac{n}{4}\right) + n$$

- Divide and Conquer
- (Draw the tree) And we can see each complete level sum up to n.
- Shortest branch has depth $\log_4 n$, longest has depth $\log_{\frac{4}{2}} n$.
- $n \log_4 n \le T(n) \le n \log_{\frac{4}{2}} n \to \Theta(?)$
- d) $T(n) = 2T\left(\frac{n}{2}\right) + n/\lg n$
 - f(n) is not polynomial, and $a f\left(\frac{n}{b}\right) = \frac{n}{\lg n 1}$
 - We can't say it's geometric, so let's try Divide and conquer
 - We can see each layer sum up to $\frac{n}{\lg n-i}$ for the i^{th} level
 - $H < \lg n 1 \ (\approx \lg n 2)$
 - So it will sum up to $\Theta(?)$
- e) Hanoi Tower T(n) = 2T(n-1) + 1
 - Divide and Conquer gives us $\Theta(2^n-1)$
 - Talk a little bit about annihilator if there's time
- f) $T(n) = \sqrt{n} \times T(\sqrt{n}) + n$
 - Let's guess! And check the upper bound and lower bound.
 - Check whether $b \times g(n) \le T(n) \le a \times g(n)$
 - Try $\Theta(n^2)$, first let's check if it's okay for upper bound:

Insert $T(n)=O(n^2)$, we have $T(n)\leq \sqrt{n}\times a\times n+n=a\times n\sqrt{n}+n\leq a\times n^2$. When n is large enough, we can find this constant a for sure, so n^2 is good for an upper bound.

Then let's check if it's okay for lower bound:

Insert $T(n) = \Omega(n^2)$, we have $T(n) \geq \sqrt{n} \times b \times n + n = b \times n\sqrt{n} + n \not\geq b \times n^2$. When n is large enough, we can't find this constant b for sure, so n^2 is not good for a lower bound, which means we need something grows more slowly.

• Let's try $\Theta(n)$:

$$T(n) \le \sqrt{n} \times a \times \sqrt{n} + n = (a+1) \times n \le a \times n$$

We can see $\Theta(n)$ grows too slowly so need something faster.

• Maybe $\Theta(n \log n)$? Keep narrowing it down!