Stochastic Adaptive Control

Exercise part 19

Niels Kjølstad Poulsen

20. april 2016

The purpose of this exercise is to get acquainted with system identification in connection to

- Multivariable discrete time models
- State space discrete time models
- Continuous time models

The application is the coupled tank apparatus from excercise 1.

Excercise 1

We consider the problem of controlling the levels in a two coupled tank system (see figure 1). The control signal (U_t) is the in-flow to the first tank and the objective is to control the level (y_t) in the second tank. The two tank are connected through a pipe. The set point, ie. the desired value of the level in the second tank, is denoted as w_t .

The state of the system is chosen to be

$$X_1 = H_2$$
 ie. the level in the second tank $X_2 = H_1 - H_2$ ie. the difference in levels

then the dynamics of the system can be described as

$$C(\dot{X}_1 + \dot{X}_2) = U - q_l \tag{1}$$

$$C\dot{X}_1 = q_l - q_o \tag{2}$$

where C denotes the area of the cross section of the tank (the two tank have the same cross section). The flows, q_l and q_o , are assumed to obey the Bernoulli equation, ie.

$$q_l = \sigma_l a_l \sqrt{2gX_2} \tag{3}$$

$$q_o = \sigma_o a_o \sqrt{2gX_1} \tag{4}$$

Figur 1. The coupled tanks system

Note it assumed that the tank system is operated in its normal mode where $X_1 \ge 0$ and $X_2 \ge 0$. The constants of the system are

$$C = 153.938 \ cm^2$$
 $g = 981 \ cm/s^2$ $a_l = 0.5 \ cm$ $a_o = 0.8 \ cm$ $\sigma_l = 0.44$ $\sigma_o = 0.31$

(These parameters are available in the matlab file tank_par.m).

In offset.m the steady state values of the state vector and the control signal X_0 and U_0 which results in an output, corresponding to a desired value w_0 . (Don't let you be confused by the fact, that X_0 is the steady state vector, whereas X_1 and X_2 are the elements in the state vector X.)

In the following we will use this point (related to $w_0 = 19 \text{ cm}$) as our operation point.

The state equations, (1) and (7), can be written as

$$\begin{bmatrix} \dot{X}_1 \\ \dot{X}_2 \end{bmatrix} = \begin{bmatrix} -a_1 & a_2 \\ a_1 & -2a_2 \end{bmatrix} \begin{bmatrix} \sqrt{X}_1 \\ \sqrt{X}_2 \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{C} \end{bmatrix} U$$
 (5)

where

$$a_1 = \sigma_0 a_0 \frac{\sqrt{2g}}{C}$$
 $a_2 = \sigma_l a_l \frac{\sqrt{2g}}{C}$

Now, let x denote the deviation in X from X_0 and let u denote the deviation in U from U_0 . Then the linearized description of the tank system is given by

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = A \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + Bu \tag{6}$$

where

$$A = \begin{bmatrix} -a_1 & a_2 \\ a_1 & -2a_2 \end{bmatrix} \begin{bmatrix} \frac{1}{2\sqrt{X_{10}}} & 0 \\ 0 & \frac{1}{2\sqrt{X_{20}}} \end{bmatrix} \qquad B = \begin{bmatrix} 0 \\ \frac{1}{C} \end{bmatrix}$$

In the following we will use a sampling period equal $T_s = 5$ sec.

In the distributed version of the work bench, the set point (wt) change after a short period from w_0 to $w_0 + 5$ cm.

Furthermore, the measurements (or the measured outputs) are

(continuous time) grey box model.

$$y_t^m = \begin{bmatrix} h_1 \\ h_2 \end{bmatrix}_t = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}_t + e_t = C_m x_t + e_t$$
 (7)

where $e_t \in N_{iid}(0, R_2)$. Notice the difference between the measurements and the output.

Question 1.1 Perform a deterministic experiment and del.	d estimate the parameters in a MARX mo- $\hfill\Box$
Question 1.2 Perform a stochastic experiment and es	stimate the parameters in a MARX model $\hfill \Box$
Question 1.3 Perform a stochastic experiment and es MARX model.	timate the parameters in a continuous time \Box
Question 1.4 Estimate the parameters in a linear sta	te space model.
Question 1.5 Assume X_0 and U_0 are known Estim	ate the parameters a_1 and a_2 in a linear