Does Popularity Matter?

Analysis of cosponsorship and election results in the US Senate

Unni Kurumbail, Siyu Nan, Matt Yetto

Quick Intro to Our Highly Efficient Government

- We'll focus on the legislative branch
- Responsible for writing legislation and presenting it to the President for approval
- Senate- Comprised of 100 members; 2 per state, voted into office by citizens
- Typically senators hail from the 2 major political parties

Image source: http://historyfor353.weebly.com/

Why senate?

- Senators can co-sponsor each other's legislation as a show of support →
 Creates an interesting network
- Co-sponsor a lot; 52-83 unique co-sponsors per legislator from 93rd-108th senate (1)
- Filibusters, long-term relationships, and the amendment process force collaboration in the senate (2)
 - O How do these processes affect the network?
- Many bills (10000+) per 2-year term → Lots of data points

- (1) Fowler, James H. "Legislative Cosponsorship Networks in the US House and Senate." Social Networks 28.4 (2006): 454-65. Elsevier. Web.
- (2) Rippere, Paulina S. "Polarization Reconsidered: Bipartisan Cooperation through Bill Cosponsorship." *Polity* 48.2 (2016): 243-78. Web. 9 Oct. 2016.

Fundamental Questions

 What's the connection between the typical number of cosponsorships a senator gains for his/her bill and the senator's election success?

 Do bipartisan cosponsorships (cosponsorships between a member of one party and one of the other) matter in particular?

 Prediction: More central senators are more well connected and therefore are more likely to get elected because of more endorsements and senate activity

Network Centrality Analysis

Methods:

- Collect cosponsorship data for 98th through 110th congresses
- For each congress, construct directed cosponsorship network, whole and bipartisan variants
- Calculate Betweenness Centrality, Closeness Centrality, and Degree Centrality
- Collect vote percentage data from Federal Election Commission Archive
- Plot each centrality against percentage of vote garnered in the senator's election year. Three 2-year terms are combined on each plot
- Run linear regression on each plot

98th, 99th, 100th Congresses

101st, 102nd, 103rd Congress

104th, 105th, 106th Congress

107th, 108th, 109th Congress

Network Centrality Analysis

In (almost) all plots, there is no significant correlation between the centrality measure and vote percentage

Possible explanations without debunking centrality as a vote success marker:

- Noise in data due to structure of dataset
- Strongly red and strongly blue states' voting tendency outway effect from centrality on voting turnout

Methods to Test Problems

To reduce noise:

- Create a threshold for cosponsorship between two senators
- Reconstruct directed network, recalculate centrality measures

To reduce effect of strongly red or strongly blue states:

 Compare centrality measure to binary win/loss rather than continuous vote percentage

Idea of threshold

Data Distribution--Bipartisan(98th congress)

- 65% of the elements are 0.

Cosponsorship number	Percentage
1-2	52%
3-4	25%
>4	23%
>10	3.4%

⇒ Implement a threshold to de-noise

Original

- Closeness centrality: y= -38x+86 (p=0.36, r=-0.18)
- Betweenness centrality: y= -749x+71 (p=0.23, r=-0.23)
- Degree centrality: y= -21x+81 (p=0.18, r=-0.26)

Threshold

- One or two co-sponsorship from one senator to another doesn't give us much information, those may be noise for our centrality measurement.
- 3 as Threshold: Change all elements 1 or 2 in our matrix into 0
- 5 as Threshold: Change all elements 1 to 4 in our matrix into 0
- Calculate Closeness centrality, betweenness centrality and degree centrality with new matrix
- Run regression x: centrality y: election result

3 as Threshold

- Closeness centrality: y= -56.2x+89.42 (p=0.24, r=-0.23)
- Betweenness centrality: y= -130.58x+66.4 (p=0.44, r=-0.15)
- Degree centrality: y= -17.56x+71.1 (p=0.18, r=-0.26)
- All p-value are too high ---- no relation

10	5	2	4	1
11	0	1	1	2
12	7	16	1	2
13	2	0	0	68

10	5	0	4	0
11	0	0	0	0
12	7	16	0	ø
13	0	0	0	68

5 as Threshold

- Closeness centrality: y= -18.8x+70.27 (p=0.53, r=-0.12)
- Betweenness centrality: y= -97.46x+66.22 (p=0.32, r=-0.19)
- Degree centrality: y= -26.64x+69.6(p=0.12,
 r=-0.29)
- All p-value are too high ---- no relation

10	5	2	4	1
11	0	1	1	2
12	7	16	1	2
13	2	0	0	68

10	5	0	0	0	
11	0	0	0	0	
12	7	16	0	0	
13	0	0	0	68	

Data Distribution--Partisan(98th congress)

- 24% of the elements are 0.

Cosponsorship number	Percentage
1-2	46%
3-4	26%
>4	28%
>10	4.7%

⇒ Implement a threshold to de-noise

Original

- Closeness centrality: y= -56x+111 (p=0.07, r=-0.34)
- Betweenness centrality: y= -3876x+74 (p=0.07, r=-0.34)
- Degree centrality: y= -23x+102 (p=0.05, r=-0.37)

3/5 as Threshold

```
3:
```

- Closeness centrality: y = -76x + 113 (p=0.03, r=-0.39)
- Betweenness centrality: y= -423x+68 (p=0.12, r=-0.29)
- Degree centrality: y = -12x + 76 (p=0.06, r=-0.35)

5:

- Closeness centrality: y= -81x+104 (p=0.05, r=-0.37)
- Betweenness centrality: y= -147x+66 (p=0.19, r=-0.25)
- Degree centrality: y = -16x + 72 (p=0.03, r=-0.40)
- ⇒ Is it the case for all 13 congresses we have?

Regression on 6 years (3 terms)

- Unfortunately adding the threshold doesn't work on the 6-year time frame.
- Implemented both 3 and 5 co-sponsors as thresholds; **only 3 regressions (out of 48) have a significant p-value,** the same plots as those that had a significant p value before threshold.

- In fact, only 98th congress has multiple significant p values in regression.
 Other than that, 110th congress has a significant p value in degree centrality. All the rest have p-value > 0.1 for all three measurements' regression.
- ⇒ Threshold idea doesn't work. Data distribution is similar through all time but there's no specific threshold that works for all datasets as a denoiser.

Win/Loss Analysis

Win/Loss Analysis

- Do centrality measures correlate with winning/losing the election?
 - o In other words, do more connected senators end up winning more elections?
- First step: Do bipartisan cosponsorships correlate with election results?

Win/Loss Analysis: Wilcoxon Sum of Ranks

Bipartisan cosponsorships:

Cosponsorships to the other party only

number of losers: 44

number of winners: 312

closeness centrality p value: 0.1714

betweenness centrality p_value: 0.8078

degree centrality p_value: 0.1946

in degree centrality p_value: 0.2683

out degree centrality p_value: 0.3809

Two groups: election winners and election losers

Win/Loss Analysis

- Do centrality measures correlate with winning/losing the election?
 - o In other words, do more connected senators end up winning more elections?
- First step: Do bipartisan cosponsorships correlate with election results?
 - No correlation
- What about overall cosponsorships?

Win/Loss Analysis: Wilcoxon Sum of Ranks

Bipartisan cosponsorships:

Overall Cosponsorships

(Cosponsorships to the other party only)

(ignoring party)

number of losers: 44

number of winners: 312

closeness centrality p_value: 0.1714

betweenness centrality p_value: 0.8078

degree centrality p_value: 0.1946

in degree centrality p_value: 0.2683

out degree centrality p_value: 0.3809

number of losers: 44

number of winners: 312

closeness centrality p value: 0.0885

betweenness centrality p_value: 0.8812

degree centrality p_value: 0.0214

in degree centrality p_value: 0.0248

out degree centrality p_value: 0.0885

Two groups: election winners and election losers

Win/Loss Analysis

- Do centrality measures correlate with winning/losing the election?
 - o In other words, do more connected senators end up winning more elections?
- First step: Do bipartisan cosponsorships correlate with election results?
 - No correlation
- What about overall cosponsorships?
 - Significant relationship between degree centrality and whether a senator wins or loses
- Is the effect of degree centrality on election results because of a senator's party?

Win/Loss Analysis: Wilcoxon Sum of Ranks

Bipartisan Cosponsorships

Overall Cosponsorships

number of democrats: 652

number of republicans: 660

closeness centrality p_value: 0.00000014

betweenness centrality p_value: 0.1842

degree centrality p_value: 0.7221

in degree centrality p_value: 0.00000018

out degree centrality p_value: 0.00000001

number of democrats: 652

number of republicans: 660

closeness centrality p_value: 0.0048

betweenness centrality p_value: 0.4078

degree centrality p_value: 0.5474

in degree centrality p_value: 0.0000

out degree centrality p_value: 0.0048

Two groups: Democrats and Republicans

Win/Loss Analysis

- Do centrality measures correlate with winning/losing the election?
 - o In other words, do more connected senators end up winning more elections?
- First step: Do bipartisan cosponsorships correlate with election results?
 - No correlation
- What about overall cosponsorships?
 - Significant relationship between degree/closeness centrality and whether a senator wins or loses
- Is the effect of degree centrality on election results mediated by a senator's party?
 - Maybe. Use multiple linear regression to explore this

Win/Loss Analysis: OLS Multiple Regression

Win/loss in election significantly dependent on party and degree centrality independently

Variable	Value	Std Error	P-Value
Party	0.1171	0.034	0.001
Degree Centrality	-0.1346	0.062	0.030
const	1.0385	0.102	0.000

Win/Loss Analysis: OLS Multiple Regression

Win/loss in election significantly dependent on party and in-degree centrality independently

Variable	Value	Std Error	P-Value
Party	0.1236	0.035	0.000
In-Degree Centrality	-0.3224	0.138	0.020
const	1.0769	0.111	0.000

Conclusions/Future Study

- Overall connection between centrality and election success is weak: tough to find direct correlation between data and election success (lots of noise)
- In-degree centrality *negatively* correlated with success in elections
 - Surprising: more cosponsors on one's bills associated with poorer election results
 - Perhaps people who actively seek cosponsors are trying harder because they are not doing as well in the polls?
- In-degree centrality correlation with election success is not due to party affiliation (some other mechanism at play)
- Future studies: Analyze late-term vs. early-term senators to see differences in centrality measures