

Functions and mappings

- Using algebra to describe a mapping
- Completing a mapping diagram

Keywords

You should know

explanation 1

1 Copy and complete each function machine. Use the rules given.

$$\mathbf{a} \quad x \to x + 5$$

b
$$x \rightarrow 3x$$

$$y = x - 4$$

$$\mathbf{d} \quad y = \frac{x}{2}$$

2 Copy and complete these function machines and their rules.

a

rule: $x \rightarrow \underline{\hspace{1cm}}$

b

rule: *y* = _____

c

$$\begin{array}{c} 8 \\ 12 \\ 20 \end{array} \longrightarrow \begin{array}{c} 2 \\ 3 \\ \end{array}$$

rule: $x \rightarrow \underline{\hspace{1cm}}$

d

rule: *y* = _____

- **3** Copy and complete these function machines.
- *4 Which of these rules matches each function machine in question 3? Use the order of operations to explain how you know.

$$x \to 3x - 4 \qquad x \to 3(x - 4) \qquad x \to x - 4 \times 3$$

explanation 2

- **5** In these questions, mappings are given using algebra.
 - i Copy and complete each function machine.
 - ii Copy and complete each table.
 - iii Copy and complete each mapping diagram.
 - $\mathbf{a} \quad x \to x + 3$

ii	Input	Output
	0	3
	1	4
	2	5
	3	
	4	
	5	
		•

b
$$x \rightarrow x - 2$$

ii	Input	Output
	1	-1
	2	
	3	
	4	
	5	
	6	4

- **6** In these questions, mappings are given using algebra.
 - i Copy and complete each function machine.
 - ii Copy and complete each table.
 - iii Copy and complete each mapping diagram.
 - $\mathbf{a} \quad x \to 2x$

i	<i>x</i> -		→ y
---	------------	--	------------

ii Input Output

0

1

2

3

6

4

h $x \rightarrow x - 3$

i <i>x</i> →		→ y
---------------------	--	------------

iii	_3 _1	-2	-1	0	1	2	3	4
								X
			/					<u>y</u>
	_3	$-\dot{2}$	_i	Ó	i	2	3	4

 $\mathbf{c} \quad x \to \frac{x}{2}$

i	χ	→ <i>y</i>
		,

explanation 3

- *7 For each mapping, copy and complete the function machine, table and mapping diagram.
 - a $x \rightarrow 2x 1$

ii	Input	Output
	1	
	2	3
	3	5
	4	

b $x \rightarrow 2(x-1)$

i	<i>x</i> →		→		→ y
---	-------------------	--	----------	--	------------

ii	Input	Output
	1	
	2	2
	3	4
	4	

 $\mathbf{c} \quad x \to 2x - 3$

i	<i>x</i> -		-		→ y
---	------------	--	---	--	------------

ii	Input	Output
	1	-1
	2	1
	3	
	4	

 $\mathbf{d} \quad x \to 2(x-3)$

ii	Input	Output
	1	-4
	2	-2
	3	
	4	