1. Исходные данные для самолета Ил-76

 $m_{\rm пуст}=86000$ кг, $m_{\rm топл}=60000$ кг, $m_{\rm поле}=34000$ кг При интегрировании по формулам (1) $m_{\rm K}=120000$ кг, $m_{\rm H}=180000$ кг. Полет будет осуществляется на дальность $L_{\rm Kp}=3000$ м.

2. Исследование характеристик транспортного самолета при выполнении эшелонирования

2.1. Постановка задачи

В работе исследуется задача минимизации километрового расхода топлива в крейсерском полете на заданную дальность путем оптимизации вертикальной траектории и скоростного режима.

2.2. Расчетные формулы

$$q_{\text{\tiny Y}} = P_{\text{\tiny p}} C e, \ q_{\text{\tiny KM}} = \frac{q_{\text{\tiny Y}}}{3.6 V}, \ L_{\text{\tiny KC}} = \int_{m}^{m_{\text{\tiny H}}} \frac{dm}{q_{\text{\tiny KM}}}, \ T_{\text{\tiny KC}} = \int_{m}^{m_{\text{\tiny H}}} \frac{dm}{q_{\text{\tiny Y}}},$$
 (1)

$$P_{\Pi}(M,H) = \frac{mg}{K} \tag{2}$$

$$P_{p}(M,H) = P_{p_{11}} \frac{p_H}{p_{H=11}},\tag{3}$$

$$P_{\mathbf{p}}(M,H) = \bar{P}_0 m g \tilde{P}(H,M), \tag{4}$$

$$Ce = Ce_0\tilde{C}e(H, M)\hat{C}e_{\pi p}(R),$$
 (5)

$$L_{\text{\tiny KC}} = \frac{3.6}{\bar{P}_0 C e_0 g} \int_{m_{\text{\tiny K}}}^{m_{\text{\tiny H}}} \frac{V}{m \tilde{P}(H, M) \tilde{C} e(H, M) \hat{C} e_{\text{\tiny AD}}(\bar{R})} dm, \tag{6}$$

$$T_{\text{KC}} = \frac{1}{g} \int_{m_{\text{K}}}^{m_{\text{H}}} \frac{1}{m\tilde{P}(H, M)\tilde{C}e(H, M)\hat{C}e_{\pi \text{D}}(\bar{R})} dm$$
 (7)

 C_{ya}, C_{xa} из курсовой работы №1 по динамике полета.

2.3. Задачи

По мере уменьшения массы из-за выгорания топлива в крейсерском полете будет уменьшаться P_{π} из формулы (2), что ведет к изменению расхода топлива.

Проведем такие количественные анализы:

- 1. Влияние массы на изменение экономической скорости.
- 2. Оптимальную траекторию с учетом выгорания топлива.
- 3. Найти моменты смены эшелона для перехода на экономически выгодный эшелон.
- 4. Разница в расходах топлива при полете на постоянной высоте и со сменой высоты.

3. Результаты

3.1. Результаты расчета при постоянный высоте и оптимальной скорости полета

Таблица 1 — Полученный параметры

$q_{ ext{km cp}}, \frac{ ext{kf}}{ ext{km}}$	L, M	$m_{ m com.tonj.},$ кг	$t_{ m kp},$ мин
11.364	3000	34091.62	275.00

Рисунок 1 — График зависимости H(L) и V(L)

Рисунок 2 — График зависимости q(L) и m(L)

3.2. Результаты расчета при оптимальном изменении высоты и скорости полета

Таблица 2 — Полученный параметры

$q_{ ext{km cp}}, \frac{ ext{kf}}{ ext{km}}$	L, M	$m_{ m coж. ext{топл.}}, ext{кг}$	$t_{ m kp}$, мин
11.155	3000	33464.02	275.85

Рисунок 3 — График зависимости H(L) и V(L)

Рисунок 4 — График зависимости q(L) и m(L)

3.3. Эшелонированный полет, высота меняется ступенчато с шагом 300 м

Таблица 3 — Полученные параметры

$q_{ ext{km cp}},rac{ ext{kf}}{ ext{km}}$	L, M	$m_{ m coж. ext{топл.}}, ext{кг}$	$t_{ m kp},$ мин
11.168	3000	33504.95	275.15

Рисунок 5 — График зависимости H(L) и V(L)

Рисунок 6 — График зависимости q(L) и q(L)

т, т	ОНН	Н, м											
		7000	7500	8000	8500	9000	9500	10000	10500	11000	11500	12000	12500
100.0	M	0.464	0.478	0.489	0.5	0.506	0.522	0.538	0.552	0.559	0.585	0.6	0.6
	q_{km}	9.262	8.974	8.38	8.114	7.881	7.666	7.46	7.225	6.619	6.578	6.54	6.545
	V	144.91	148.282	150.663	152.992	153.747	157.486	161.148	164.137	164.991	172.616	177.042	177.042
110.0	M	0.487	0.5	0.5	0.516	0.532	0.549	0.562	0.583	0.581	0.6	0.6	0.6
	q_{km}	9.733	9.438	8.862	8.61	8.371	8.143	7.929	7.674	7.182	7.161	7.178	7.251
	V	152.093	155.106	154.053	157.888	161.647	165.632	168.337	173.355	171.484	177.042	177.042	177.042
120.0	M	0.5	0.511	0.524	0.54	0.554	0.573	0.571	0.591	0.6	0.6	0.602	0.635
	q_{km}	10.176	9.903	9.348	9.084	8.834	8.598	8.401	8.236	7.784	7.812	7.897	8.011
	V	156.153	158.519	161.447	165.231	168.332	172.873	171.033	175.734	177.092	177.042	177.632	187.369
130.0	M	0.518	0.536	0.547	0.563	0.56	0.578	0.596	0.6	0.6	0.6	0.602	-
	q_{km}	10.626	10.344	9.807	9.533	9.293	9.127	8.983	8.825	8.452	8.549	8.709	-
	V	161.774	166.274	168.534	172.269	170.155	174.381	178.521	178.41	177.092	177.042	177.632	-
140.0	M	0.541	0.556	0.552	0.565	0.582	0.6	0.6	0.6	0.6	0.605	-	-
	q_{km}	11.041	10.753	10.259	10.049	9.863	9.7	9.576	9.472	9.36	9.534	-	-
	V	168.957	172.478	170.074	172.881	176.84	181.018	179.719	178.41	177.092	178.517	=	=
150.0	M	0.537	0.55	0.569	0.586	0.6	0.6	0.6	0.6	0.606	-	-	-
	q_{km}	11.487	11.265	10.818	10.61	10.427	10.292	10.226	10.276	10.379	-	-	-
	V	167.708	170.617	175.312	179.307	182.309	181.018	179.719	178.41	178.863	-	-	-
160.0	M	0.55	0.568	0.588	0.6	0.6	0.6	0.6	0.619	Ξ	Ξ	Ξ	Ξ
	q_{km}	12.029	11.82	11.369	11.165	11.016	10.949	11.026	11.138	Ξ	Ξ	Ξ	Ξ
	V	171.768	176.201	181.166	183.59	182.309	181.018	179.719	184.06	=	=	=	=
170.0	M	0.564	0.587	0.6	0.6	0.6	0.6	0.619	-	=	=	-	=
	q_{km}	12.58	12.365	11.917	11.75	11.678	11.741	11.881	-	=	=	-	=
	V	176.14	182.095	184.863	183.59	182.309	181.018	185.41	-	-	-	-	-
180.0	M	0.582	0.6	0.6	0.6	0.6	0.615	-	-	=	=	-	=
	q_{km}	13.122	12.902	12.495	12.413	12.459	12.587	-	-	=	=	-	=
	V	181.762	186.127	184.863	183.59	182.309	185.544	=	=	=	=	=	=
190.0	M	0.589	0.6	0.6	0.6	0.61	=	-	-	-	-	-	-
	q_{km}	13.663	13.48	13.159	13.181	13.294	=	=	=	=	=	-	=
	V	183.948	186.127	184.863	183.59	185.347	=	=	=	=	=	-	=

Таблица 4 — $q_{km}\left[\frac{\mathrm{K}\Gamma}{\mathrm{K}\mathrm{M}}\right],V\left[\frac{\mathrm{M}}{\mathrm{c}}\right]$

3.4. Анализ результатов

Таблица 5 — Результаты расчетов

Режим	$m_{ m coж. ext{топл.}},$ км	T	$q_{ ext{km}_{ ext{cp}}},rac{ ext{kf}}{ ext{km}}$
Полет на $H=8500\mathrm{M}$	34091.62	4 ч. 35 мин.	11.364
Полет по оптимальной траек-	33464.02	4 ч. 36 мин.	11.155
тории			
Полет эшелонированный полет	33504.95	4 ч. 35 мин.	11.168
$\Delta H = 300\mathrm{M}$			

Результаты расчетов по нахождению $q_{{\scriptscriptstyle {\rm KM}}_{min}}$ минимального километрового расхода топлива сведены в таблицу 4

- 1. Исходя из расчетов по мере уменьшения массы скорость уменьшается, а высота для поддержания $q_{{\scriptscriptstyle \mathrm{KM}}_{min}}$ увеличивается.
- 2. Оптимальная траектория набора представлена на рисунке 3.
- 3. Моменты смены эшелона выбрали, если между оптимальной высотой и текущей будет разница в 300 м., тогда производим набор высоты на $\Delta H = H_{\text{опт}} H_{\text{кp}} = 300 \text{ м}.$

4. Вывод

В данном разделе была получена траектория эшелонированного полета для обеспечения минимального расхода топлива. Такая траектория с исходными данными самолета прототипа дает разницу в 0.12 % по сравнению с оптимальной траекторией в количестве израсходованного топлива. Что дает разницу в количестве потерянного топлива на 10 полетов равной в 409.3 кг. К

сравнению при полете на одной высоте разница составляет 1.87 %, что дает потерю топлива на 10 полетов 6276 кг.

Отсюда следует, что нужно как можно чаще менять эшелоны на экономически выгодные для экономии топлива.