Math	207	Section	Α.	Quiz	6
IVICUII			7 3 9	Q UIZ	v

Name:

No credit for answers unaccompanied by a clear justification. You must show your work!

Cheating will not be tolerated. If there is any indication that a student may have given or received unauthorized aid on this test, the case will be handed over immediately to the ISU Office of Judicial Affairs.

1. (6 points) Determine whether the set S spans R^2 . If the set does not span R^2 , then give a geometric description of the subspace that it does span.

$$S = \{(3,2), (6,4), (\frac{3}{2},1)\}$$

Show your work here:

Answer here: (fill in the circle next to the correct answer)

- o $\,S$ spans R^2
- \circ S spans a point in \mathbb{R}^2
- \circ S spans a line in \mathbb{R}^2
- \circ S spans a plane in \mathbb{R}^2

2.	(6 points) Consider	the following se	et of vec	tors in A	R^2	
		$S = \{s_1, s_2,$	s_3 = {	(3,2),(1	(1,1),(2,0).	
	Show that S is linear	arly dependent	by writi	$ng s_1 as$	a linear combination	on of s_2 and s_3 .
	Show your work l	here:				
	Answer here:	$s_1 =$	e _o	+	e _o	
		s_1 —	s_2	干	s_3	
3.	(6 points) For the s false. Write your an				er each statement b	pelow is true or
	(a) The set S is a	basis for \mathbb{R}^2				
	(b) The vectors in	S span \mathbb{R}^2				
	(c) The vectors in	S span \mathbb{R}^3				
	n you finish the test, ollowing pledge:	acknowledge t	hat you	underst	and the cheating po	olicy by signing
'On	my honor as a stude	ent I,			, have neither giv	en nor received
ınau	my honor as a stude thorized aid on this	test." (Pi	rint Nam	ie)		
	Signature:				Date:	