

厦门大学《大学物理 B (下)》课程 期末试卷 (A 卷) 参考答案

(考试时间: 2022年1月)

- 一、选择题: 本题共 10 小题, 每小题 2 分, 共 20 分。请将每题答案写在答题纸的对应位置。 每小题给出的四个选项中只有一个选项正确。错选、多选或未选的得 0 分。
- 1. 两个质点各自做简谐振动,它们的振幅相同、周期相同。第一个质点的振动方程为 $x_1 = A\cos(\omega t + \alpha)$ 。

当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处。则第二个 质点的振动方程为:(

(A)
$$x_2 = A\cos(\omega t + \alpha + \frac{1}{2}\pi)$$
 (B) $x_2 = A\cos(\omega t + \alpha - \frac{1}{2}\pi)$

(B)
$$x_2 = A\cos(\omega t + \alpha - \frac{1}{2}\pi)$$

(C)
$$x_2 = A\cos(\omega t + \alpha - \frac{3}{2}\pi)$$
 (D) $x_2 = A\cos(\omega t + \alpha + \pi)$

(D)
$$x_2 = A\cos(\omega t + \alpha + \pi)$$

- 2. 一质点沿 x 轴做简谐振动,振动方程为 $x = 4 \times 10^{-2} \cos(2\pi t + \frac{\pi}{3})$ (SI)。从 t=0 时刻起,到质点位置在 x=-2cm 处,且向x轴正方向运动的最短时间间隔为(
- (A) $\frac{1}{8}s$ (B) $\frac{1}{6}s$ (C) $\frac{1}{4}s$ (D) $\frac{1}{2}s$

(A)
$$\frac{1}{8}s$$

(B)
$$\frac{1}{6}s$$

(C)
$$\frac{1}{4}$$

- 3. 一简谐波沿x轴正方向传播, t=T/2 时的波形曲线如图所 示。若振动以余弦函数表示,且此题各点振动的初相取-π到 π 之间的值,则(

- (C) 2 点的初相为 $\varphi_2 = \pi$ (D) 3 点的初相为 $\varphi_3 = \pi$
- 4. 频率为 100Hz, 传播速度为 300m/s 的平面简谐波, 波线 上距离小于波长的两点振动的相位差为 $\frac{\pi}{2}$,则此两点相距(

- B. 2.19m
- C. 0.5m
- D. 0.25m
- 5. 物体通过薄透镜成像,物距为p,像距为p',则横向放大率为(

- (A) $\frac{p}{p'}$ (B) $\frac{p'}{p}$ (C) $-\frac{p}{p'}$ (D) $-\frac{p'}{p}$
- 6. 当光线从折射率为 n₁ 的光密媒质射向折射率为 n₂ 的光疏媒质时,发生全反射的临界角为(

- (A) $\arcsin \frac{n_2}{n_1}$ (B) $\arcsin \frac{n_1}{n_2}$ (C) $\arctan \frac{n_2}{n_1}$ (D) $\arctan \frac{n_1}{n_2}$

7. 如图所示,两个直径有微小差别	的彼此平行的滚柱之间的距	圏为 L ,夹	.1
在两块平晶的中间,形成空气劈尖,	当单色光垂直入射时,产生	三等厚干涉条	2
纹,如果滚柱之间的距离 L 变小,则]在 L 范围内干涉条纹的(
(A) 数目减少,间距变大 (B) 数目不变,间距变小	 	$-L \longrightarrow $
(C) 数目增加,间距变小 (D) 数目减少,间距不变		
8. 在夫琅禾费单缝衍射实验中, 对	寸于给定的入射单色光 ,当缜	宽度变大时,除中央亮	纹的中心位置不变
外,关于各级衍射条纹对应的衍射角	1将()		
(A) 对应的衍射角不变 (B) 对应的	的衍射角变大.		
(C) 对应的衍射角变小 (D) 不确定	Ē		
9. 为了使双缝干涉实验中条纹间距至	变大,可采用的方法是()	
(A) 使观察屏靠近双缝 (B) 使	双缝间距变小		
(C) 使缝的宽度稍微变小 (D) 改	用波长较小的单色光源		
10. 一束光强为 Io 的自然光垂直穿过	过两个偏振片,且此两偏振片	片的偏振化方向成 45°角	,则穿过两个偏振
片后的光强 I 为 ()			
片后的光强 I 为((C) $I_0/2$	(D) $\sqrt{2}I_0/2$	
_	(C) $I_0/2$	(D) $\sqrt{2}I_0/2$	
_	·	•	纸的对应位置。
(A) $I_0 / 4\sqrt{2}$ (B) $I_0 / 4$	·	•	纸的对应位置。
$(A) I_0 / 4\sqrt{2}$ (B) $I_0 / 4$ 二、填空题: 本大题共 10 题,4	每题 2 分,共 20 分。请 [;]	将每题答案写在答题: ************************************	
$(A) I_0 / 4\sqrt{2}$ (B) $I_0 / 4$ 二、填空题: 本大题共 10 题, 4 错填、不填均无分。	每题 2 分,共 20 分。请 [;]	将每题答案写在答题: ************************************	
 (A) I₀ / 4√2 (B) I₀ / 4 二、填空题: 本大题共 10 题, 4 错填、不填均无分。 1. 在两个相同的弹簧下各悬一物位 	每题 2 分,共 20 分。请 》 本,两物体的质量比 m ₁ :m ₂	将每题答案写在答题 : ₂=4:1,则二者作简谐抗	表动的周期之比 为
 (A) I₀ / 4√2 (B) I₀ / 4 二、填空题: 本大题共 10 题, 4 错填、不填均无分。 1. 在两个相同的弹簧下各悬一物位T₁:T₂=。 	每题 2 分,共 20 分。请 》 本,两物体的质量比 m ₁ :m ₂	将每题答案写在答题 : ₂=4:1,则二者作简谐抗	表动的周期之比 为
 (A) I₀ / 4√2 (B) I₀ / 4 二、填空题: 本大题共 10 题, 4 错填、不填均无分。 1. 在两个相同的弹簧下各悬一物位 T₁:T₂=。 2. 质量为 m 物体和一个轻弹簧组成 	每题 2 分,共 20 分。请次本,两物体的质量比 m _i :mg	将每题答案写在答题 : ₂=4:1,则二者作简谐振 为 <i>T</i> 。当它作振幅为 <i>A</i>	表动的周期之比为 自由简谐振动时,
(A) I ₀ / 4√2 (B) I ₀ / 4 二、填空题: 本大题共 10 题, 4 错填、不填均无分。 1. 在两个相同的弹簧下各悬一物位 T ₁ :T ₂ =。 2. 质量为 m 物体和一个轻弹簧组成 其振动能量 E=。	每题 2 分,共 20 分。请次本,两物体的质量比 m _i :mg	将每题答案写在答题 : ₂=4:1,则二者作简谐振 为 <i>T</i> 。当它作振幅为 <i>A</i>	表动的周期之比为 自由简谐振动时,
(A) $I_0/4\sqrt{2}$ (B) $I_0/4$ 二、填空题: 本大题共 10 题,在错填、不填均无分。 1. 在两个相同的弹簧下各悬一物位 $T_1:T_2=$ 。 2. 质量为 m 物体和一个轻弹簧组成 其振动能量 $E=$ 。 3. A、B 是简谐波波线上的两点。已	每题 2 分,共 20 分。请次本,两物体的质量比 m ₁ :m ₂ 弹簧振子,其固有振动周期	烙每题答案写在答题 : ₂ =4:1,则二者作简谐抗 为 <i>T</i> 。当它作振幅为 <i>A</i> 落后 π/3,A、B 两点相距	表动的周期之比为自由简谐振动时, 自由简谐振动时, 拒 0.5m,则该波的
 (A) I₀ / 4√2 (B) I₀ / 4 二、填空题: 本大题共 10 题, 4 错填、不填均无分。 1. 在两个相同的弹簧下各悬一物位 T₁:T₂=。 2. 质量为 m 物体和一个轻弹簧组成 其振动能量 E=。 3. A、B 是简谐波波线上的两点。已波长 λ=m。 	每题 2 分,共 20 分。请 本,两物体的质量比 m ₁ :m ₂ 弹簧振子,其固有振动周期 是知 B 点振动的相位比 A 点系	将每题答案写在答题: $_{2}$ =4:1,则二者作简谐抗为 T 。当它作振幅为 A 客后 $\pi/3$, A 、 B 两点相距 $A\cos(\omega t + \frac{1}{2}\pi)$, S_1 距	表动的周期之比为自由简谐振动时, 自由简谐振动时, 拒 0.5m,则该波的
 (A) I₀ / 4√2 (B) I₀ / 4 二、填空题: 本大题共 10 题, 4 错填、不填均无分。 1. 在两个相同的弹簧下各悬一物位 T₁:T₂=。 2. 质量为 m 物体和一个轻弹簧组成其振动能量 E=。 3. A、B 是简谐波波线上的两点。已波长 λ=m。 4. 两相干波源 S₁ 和 S₂ 的振动方程分 	每题 2 分,共 20 分。请求本,两物体的质量比 $m_1:m_2$ 弹簧振子,其固有振动周期 2 知 3 点振动的相位比 3 点源 3 的两个振动的相位差为 3 的两个振动的相位差为	将毎题答案写在答题: $_{2}$ =4:1,则二者作简谐抗为 T 。当它作振幅为 A 客后 $\pi/3$,A、B 两点相距 $A\cos(\omega t + \frac{1}{2}\pi)$, S_1 距	最动的周期之比为 自由简谐振动时, 至 0.5m,则该波的 P 点 3 个波长,S
(A) $I_0/4\sqrt{2}$ (B) $I_0/4$ 二、填空题: 本大题共 10 题,在错填、不填均无分。 1. 在两个相同的弹簧下各悬一物位 $T_1:T_2=$ 。 2. 质量为 m 物体和一个轻弹簧组成 其振动能量 $E=$ 。 3. A、B 是简谐波波线上的两点。已波长 $\lambda=$ m。 4. 两相干波源 S_1 和 S_2 的振动方程分 距 P 点 $\frac{21}{4}$ 个波长。两波在 P 点引起	每题 2 分,共 20 分。请 本,两物体的质量比 m ₁ :m ₂ 弹簧振子,其固有振动周期 上知 B 点振动的相位比 A 点系 分别为 y ₁ = A cos ωt 和 y ₂ = 1 的两个振动的相位差为 7 400 nm,传播速度为 2.00×16	将毎题答案写在答题: $_{2}$ =4:1,则二者作简谐抗为 T 。当它作振幅为 A 落后 $\pi/3$, A 、 B 两点相距 $A\cos(\omega t + \frac{1}{2}\pi)$, S_1 距 $\frac{1}{2}$ 08 m/s,则这束光在真空 $\frac{1}{2}$ 00 $\frac{1}{2}$ 0 $\frac{1}$	最动的周期之比为自由简谐振动时, 自由简谐振动时, 拒 0.5m,则该波的 P 点 3 个波长, <i>S</i> 2
(A) $I_0/4\sqrt{2}$ (B) $I_0/4$ 二、填空题: 本大题共 10 题,在错填、不填均无分。 1. 在两个相同的弹簧下各悬一物位 $T_1:T_2=$ 。 2. 质量为 m 物体和一个轻弹簧组成 其振动能量 $E=$ 。 3. A、B 是简谐波波线上的两点。已波长 $\lambda=$ m。 4. 两相干波源 S_1 和 S_2 的振动方程分 距 P 点 $\frac{21}{4}$ 个波长。两波在 P 点引起 5. 一束光在某种透明介质中的波长为	毎题 2 分,共 20 分。请 本,两物体的质量比 m ₁ :m ₂	将毎题答案写在答题: $_{2}$ =4:1,则二者作简谐抗 为 T 。当它作振幅为 A 落后 $\pi/3$, A 、 B 两点相距 $A\cos(\omega t + \frac{1}{2}\pi)$, S_{1} 距 0^{8} m/s,则这束光在真空中则该物体的像距为	表动的周期之比为自由简谐振动时, 自由简谐振动时, 更 0.5m,则该波的 P 点 3 个波长, <i>S</i> 中的波长为nm cm。

4	
为	0

- 8. 在单缝的夫琅禾费衍射实验中,屏上第三级暗纹对应于单缝处波面可划分为 个半波带。
- 9. 波长为 550nm 的单色平行光,垂直照射到宽度为 0.5mm 的单缝上,在缝后放一焦距 f=50cm 的凸透镜, 在屏上第一级明条纹中心到中央明条纹中心的距离为mm。
- 10. 在如图的洛埃镜干涉装置中,若光源 s 离屏的距离为 D, s 离平 面镜的垂直距离为 a(a 很小)。设入射光波长为λ,则相邻条纹中心 间的距离为。

三、计算题:本题 12 分。请在答题纸上按题序作答,并标明题号。

如图所示,地面固定一劲度系数为k=2000N/m的弹簧,弹簧顶端固定一平板。在平板上放一质量为m=10.0kg 的物体,平板在竖直方向上下振动,如果运动过程中,物体始终没有离开平板。(弹簧和平板的质量忽略不 计,重力加速度 g=10m/s²。)

(1) 设 m 加速度 a=0 处为坐标原点。弹簧自然伸长时,m 的坐标为 x_0 ,则有:

若物体m在x处时,根据牛顿第二定律有:

$$-mg + k(x_0 + x) = -ma = -m\frac{d^2x}{dt^2}$$

$$\frac{d^2x}{dt^2} + \frac{k}{m}x = 0 \qquad3$$

$$\frac{d^2x}{dt^2} + 200x = 0$$

所以物体m做简谐运动。

(2) 物体振动的频率为:

$$v = \frac{\omega}{2\pi} = \frac{1}{2\pi} \sqrt{\frac{k}{m}} = \frac{5\sqrt{2}}{\pi} \text{Hz} \approx 2.25 \text{Hz}$$

(3) 增大振幅使物体将于最高处跳离平板, 跳离时有:

$$-mg = ma = -mA\omega^2$$

$$A = \frac{g}{m^2} = \frac{mg}{k} = 0.05$$
m4 $\frac{1}{2}$

四、计算题:本题 12 分。请在答题纸上按题序作答,并标明题号。

设入射波的波动表达式为 $y_1 = A\cos\left[2\pi\left(\frac{t}{T} + \frac{x}{\lambda}\right) + \varphi\right]$,在 x=0 处发生反射,反射点为一固定端。

- (1) 写出反射波的波动表达式;
- (2) 写出驻波的表达式;
- (3) 说明哪些点是波腹?哪些点是波节?

(1)

在 x=0 处反射点为固定端,存在半波损失

.....1 分

或
$$y_2 = A\cos\left[2\pi\left(\frac{t}{T} - \frac{x}{\lambda}\right) + \varphi - \pi\right]$$

(2) 入射波与反射波叠加后形成驻波,驻波的表达式为

(3) 波腹位置: $\left|\sin\left(\frac{2\pi x}{\lambda}\right)\right|=1$,则

波节位置:
$$\sin\left(\frac{2\pi x}{\lambda}\right) = 0$$
,则

$$x = k\frac{\lambda}{2} \qquad (k = 0, 1, 2, \cdots)$$

五、计算题:本题 12 分。请在答题纸上按题序作答,并标明题号。

已知单缝宽度 b=0.1mm ,缝后透镜焦距 f=0.50m ,用 $\lambda_1=400nm$ 和 $\lambda_2=760nm$ 的单色平行光分别垂直照射,则

- (1) 求这两种光的第一级明纹离屏中心的距离以及这两条明纹之间的距离;
- (2) 若用每厘米刻有 4000 条狭缝的光栅代替这个单缝,透镜焦距不变,则这两条单色光的第一级明纹分别离屏中心的多远?这两条明纹之间的距离又是多少?
- (3) 若光栅缝宽 $b = 10^{-6}m$,问最多能看到波长为 400nm 光的几级明纹?解:
- (1) 单缝衍射明纹条件: $b \sin \varphi = (2k+1)\frac{\lambda}{2}$

$$\therefore x_{11} = \frac{3}{2} \cdot \frac{\lambda_1 f}{b} = \frac{3}{2} \cdot \frac{400 \times 10^{-9} \times 0.5}{0.1 \times 10^{-3}} = 3.0mm$$

$$x_{12} = \frac{3}{2} \cdot \frac{\lambda_2 f}{b} = \frac{3}{2} \cdot \frac{760 \times 10^{-9} \times 0.5}{0.1 \times 10^{-3}} = 5.7 mm$$

$$\Delta x_1 = x_{12} - x_{11} = 2.7 mm$$

(2)
$$d = \frac{10^{-2}}{4000} = 2.5 \times 10^{-6} m = 2.5 \mu m$$

$$\varphi_{11} = \sin^{-1} \frac{\lambda_1}{d} = \sin^{-1} (\frac{400 \times 10^{-9}}{2.5 \times 10^{-6}}) = \sin^{-1} (0.160) = 9.2^{0}$$

$$\varphi_{12} = \sin^{-1}\frac{\lambda_2}{d} = \sin^{-1}(\frac{760 \times 10^{-9}}{2.5 \times 10^{-6}}) = \sin^{-1}(0.304) = 17.7^{0}$$

$$x_{12} = ftg\varphi_{12} = 16.0cm$$

$$\Delta x_1 = x_{12} - x_{11} \approx 8.0cm$$

(3) :
$$d \sin 90^0 = k_m \lambda \implies$$

六、计算题:本题 12 分。请在答题纸上按题序作答,并标明题号。

波长为 500nm 的单色光垂直照射到由两块光学平玻璃构成的空气劈尖上,在观察反射光的干涉现象中,距劈尖棱边 l=1.56cm 的 A 处是从棱边算起的第四条暗条纹中心。

- (1) 求此空气劈尖的劈尖角 θ 。
- (2) 改用 600 nm 的单色光垂直照射到此劈尖上仍观察反射光的干涉条纹,A 处是明条纹,还是暗条纹?解:

因是空气薄膜,有 $n_1 > n_2 < n_3$, 且 $n_2 = 1$,

因第一条暗纹对应 k=0, 故第 4 条暗纹对应 k=3,

(1) 空气劈尖角

(2)
$$\boxtimes$$
 $\frac{\delta}{\lambda'} = \frac{(2e + \frac{\lambda'}{2})}{\lambda'} = \frac{3\lambda}{\lambda'} + \frac{1}{2} = 3$

七、计算题: 本题 12 分。请在答题纸上按题序作答,并标明题号。

如图所示,真空中有一含有空腔的玻璃球,空腔也是一球体,且内外球面同心,半径分别为 R_1 =10cm 和 R_2 =5cm。玻璃的折射率为 n=1.5,空腔内为真空。主光轴上距离球心左侧 20cm 处有一小物体。若只考虑傍轴光线和光的折射,试求:

(1) 像在球心左侧还是右侧,以及到球心的距离;

(2) 像的性质(正立还是倒立?放大还是缩小?实像还是虚像?)。

解:

(1) 傍轴光线从左到右穿过4个球面,发生了4次折射成像,根据物像公式有:

第一次折射:

$$\frac{1}{p_1} + \frac{n}{p_1'} = \frac{n-1}{R_1}$$

$$\frac{1}{20-10} + \frac{1.5}{p_1'} = \frac{1.5-1}{10}$$

$$p_1' = -30cm$$

第二次折射:

第三次折射:

第四次折射:

B(下)期末 7/9

(2) 小物体的横向放大率为

$$\begin{split} & m = m_1 \times m_2 \times m_3 \times m_4 \\ &= \left(-\frac{p_1'}{np_1} \right) \times \left(-\frac{np_2'}{p_2} \right) \times \left(-\frac{p_3'}{np_3} \right) \times \left(-\frac{np_4'}{p_4} \right) \\ &= \frac{3}{7} \end{split}$$

B 类 A 卷 (参考答案)

一、选择题

题号	1	2	3	4	5	6	7	8	9	10
答案	В	D	D	C	D	A	В	C	В	В

二、填空题

- 1. 2:1
- 2. $2\pi^2 mA^2/T^2$
- 3. 3
- 4. 0 (或 4π 或 $2k\pi$)
- 5. 600
- 6. -30
- 7. 34°
- 8. 6
- 9. 0.825
- 10. $\Delta x = D\lambda/(2a)$