Efficient Range Fix Generation using HS-DAG

Yingfei Xiong, 2011

Content

- Review of Range Fixes
- Review of Reiter's theory of diagnosis and HS-DAG algorithm
- Combining the two and the experimental results

Configuration		Item	Conflict	Property	
Object Pool Configuration	v3_0		See Uperhisfied		
ab Buffer Size (KB)	4	Pre_Allocation_s	Size Unsatisfied	Requires Pre_Allocation_Size <= Object_Poo	
ab Object Size (Byte)	512	4		· III	
Object Pool Size	8				
		Property	Value		
ab Pre-Allocation Size	10	Default	10		
☐ Allocation_Time		Flavor	vor data		
▼ Startup		DefaultValue	10		
☐ First Access		Requires	Pre_Allocation	n_Size <= Object_Pool_Size	
☐ Idle		. (II. SERIE		

	12.77			
Object Pool Size ✓ Use Pre-Allocation	8	Property	Value	
Pre-Allocation Size	10	Value	8	
☐ Allocation_Time		Default	8	
✓ Startup		Flavor	data	
First Access		Calculated	Buffer_Size * 1024 / Object_Size	
T Idle				

Object Pool Configuration	w2.0
3 01000-1-15 534	v3_0
Buffer Size (KB)	4
(Byte) Object Size	512
Object Pool Size	8
ab Pre-Allocation Size	10
Allocation_Time	
✓ Startup	
☐ First Access	
☐ Idle	

1	Item	Conflict	Property
-	Pre Allocation Size	Unsatisfied	Requires Pre Allocation Size <= Object Poo
		Rar	nge Fixes

- [Use_Pre_Allocation := false]
 [Pre_Allocation_Size <= 8]
 [Buffer_Size >= 5]
 [Object_Size <= 409.6]</pre>

100
8
10

Property	Value
Value	8
Default	8
Flavor	data
Calculated	Buffer_Size * 1024 / Object_Size

Correctness

- Any value represented by a range fix will satisfy the constraint
- Example
 - Constraint: $a \geq b$
 - Configuration: $\{a \mapsto 1, b \mapsto 10\}$
- Range Fixes
 - -[a: a > 8]
 - $-[a: a \ge 10]$

Strict Minimality

- There is no way to change a subset of variables to fix the inconsistency
- Example
 - Constraint: $a \ge b$
 - Configuration: $\{a \mapsto 1, b \mapsto 10\}$
- Range Fixes
 - $-\left[(a,b):a\geq b\right]$
 - $-[a: a \ge 10]$

Completeness

- A range fix represents the maximal ranges over the variables
- Example
 - Constraint: $a \geq b$
 - Configuration: $\{a \mapsto 1, b \mapsto 10\}$
- Range Fixes
 - -[a: a > 11] X $-[a: a \ge 10]$

Range Fix Generator

- Input:
 - A constraint
 - A configuration violating the constraints
- Output:
 - all correct, minimal, and complete range fixes

Basic Algorithm: Exhaustive Search

Iterate all possible variable combinations

- {}: a >=b /\ a = 1 /\ b = 10 - unsat
- $\{a\}: a >= b \land b=10$
 - sat
 - replacing b by 10: a >= 10
- $\{b\}$: a >= b \land a = 1
 - sat
 - replacing a by 1: b <= 1</p>
- {a,b}: not tried

Improvements of Exhaustive Search

- Apply binary search
 - unsat: remove all ancestors
 - sat: remove all descendants
- Separate Boolean and non-Boolean variables
 - Boolean fixes can be directly generated by converting to DNF

Core problem of generating range fixes

 How to get the minimal sets of variables that must be changed?

(Simplified) Reiter's Theory of Diagnosis

- An abnormal system (COMPONENTS, OBS) is two sets of constraints that are inconsistent (their conjunction is unsatisfiable).
- A diagnosis is a minimal set $\Delta \in COMPONENTS$ such that $(COMPONENTS \Delta) \cup OBS$ is consistent

Relation to Range Fix Generation

- Example
 - Constraint: $a \ge b$
 - Configuration: $\{a \mapsto 1, b \mapsto 10\}$
- Convert to Reiter's system
 - OBS: $\{a \ge b, \ p_a \to a = 1, \ p_b \to b = 1\}$
 - COMPONENT: $\{p_a, p_b\}$
- A diagnosis is a set of variables that must be changed

Core-Guided Diagnosis Generation (HS-DAG)

- Let C be a set of sets. A hitting set for C is a set $H \subseteq \bigcup_{S \in C} S$ such that $H \cap S \neq \emptyset$ for any $S \in C$. A hitting set is minimal iff no proper subset of it is a hitting set.
- Theorem:

 $\Delta \subseteq COMPONENTS$ is a diagnosis for (COMPONENTS, OBS) such that Δ is a minimal hitting set for the collection of unsatisfiable cores of $COMPONENTS \cup OBS$

Core-Guided Diagnosis Generation (HS-DAG)

cores: {{a, b}, {b, c}, {a, c}, {a, b}, {b, d}, {b}}

Core-Guided Diagnosis Generation

cores: {{a, b}, {b, c}, {a, c}, {a, b}, {b, d}, {b}}

Problem 1: Duplicates

Solution: Reusing nodes

 Reuse instead of creating a new node if there exists a node such that the paths are labeled the same

Problem 2: Non-minimal path

Solution: Close Node

 Close a node (not exploring futher) when its path is not minimal

Problem 3: Cores are not minimal

Solution: Pruning

Prune the branch caused by non-minimal cores

Comparison of Algorithms

- Improved Exhaustive Search:
 - number of non-Boolean variables ↑ implies
 - execution time ↑
- HS-DAG:
 - number of cores 1 implies
 - execution time ↑

Experimental Result (for one constraint)

	Min	Max	Avg	Med
Execution Time(ms)	15	33	17.98	17
Number of Fixes	1	4	1.95	2
Max Size of Fixes	1	3	1.32	1
Σ Size of Fixes	2	12	2.34	2

Interaction of Constraints

- Fixes for one constraint should not violate other satisfied constraints
- Let c be the violated constraint, c1, c2,..., cn be the satisfied constraints
- generate fixes for
 - $-c \wedge c1 \wedge c2 \wedge ... \wedge cn$

Experimental Result (Interaction Considered)

	Min	Max	Avg	Med
Execution Time	289	2201	444.10	373
Number of Fixes	1	13	2.0	2
Max Size of Fixes	1	12	2.9	2
Σ Size of Fixes	2	74	5.78	3