CMIP6 Model Documentation

Institute: CCCR-IITM Model: IITM-ESM

Topic: ocean

Doc. Generated:2020-04-08Doc. Seeded From:Spreadsheet

Specialization Version: 1.0.4

Further Info: https://es-doc.org/cmip6

Note: * indicates a required property

Documentation Contents

1	Key Properties	3
2	Grid	10
3	Timestepping Framework	12
4	Advection	15
5	Lateral Physics	18
6	Vertical Physics	23
7	Uplow Boundaries	28
8	Boundary Forcing	30

1 Key Properties

Ocean key properties

1	.1.1	Top	level	pro	perties

 $Ocean\ key\ properties$

1.1.1.1 Name *

 $Name\ of\ ocean\ model\ code$

 $\mathbf{GFDL\text{-}MOM4p1}$

1.1.1.2 Keywords *

Keywords associated with ocean model code

Enter COMMA SEPARATED list:

1.1.1.3 Overview *

Overview of ocean model.

Type of ocean model.

We use GFDL-MOM4p1 as ocean component (Griffies et al., 2009)

1.1.1.4	Model	Family	*
---------	-------	--------	---

\boxtimes	OGCM
	Slab ocean
П	Mixed laver ocean

1.1.1.5 Basic Approximations *

Other - please specify:

 $Basic\ approximations\ made\ in\ the\ ocean.$

\boxtimes	Primitive equations
	Non-hydrostatic
\boxtimes	Boussinesq
	Other - please specify

1.1.1.6 Prognostic Variables *				
List of pr	ognostic variables in the ocean component.			
\boxtimes	Potential temperature			
Conservative temperature				
\boxtimes	Salinity			
\boxtimes	U-velocity			
\boxtimes	V-velocity			
\boxtimes	W-velocity			
	SSH - Sea Surface Height			
	Other - please specify:			
1.2.1	Seawater Properties			
Physical	properties of seawater in ocean			
1.2.1.1 Eos Type *				
Type of E	COS for sea water			
	Linear			
	Wright, 1997			
	Mc Dougall et al.			
\boxtimes	Jackett et al. 2006			
	TEOS 2010			
	Other - please specify:			
	Eos Functional Temp *			
Temperature used in EOS for sea water				
	Potential temperature			
Ш	Conservative temperature			
1.2.1.3	Eos Functional Salt *			
Salinity used in EOS for sea water				
\boxtimes	Practical salinity Sp			
	Absolute salinity Sa			

1.2.1.4 Eos Functional Depth *	
Depth or pressure used in EOS for sea water ?	
Pressure (dbars)	
Depth (meters)	
1.2.1.5 Ocean Freezing Point *	
$Equation \ used \ to \ compute \ the \ freezing \ point \ (in \ deg \ C) \ of \ seawater, \ as \ a \ function \ of \ salinity \ and \ an \ an \ an \ an \ an \ an \ a$	d pressure
TEOS 2010	
Other - please specify:	
1.2.1.6 Ocean Specific Heat *	
Specific heat in ocean (cpocean) in $J/(kg K)$	
3992.1	
1.2.1.7 Ocean Reference Density * Boussinesq reference density (rhozero) in kg / m3 Enter FLOAT value:	
1.3.1 Bathymetry Properties of bathymetry in ocean	
1.3.1.1 Reference Dates *	
Reference date of bathymetry	
Present day	
21000 years BP	
☐ 6000 years BP	
LGM - Last Glacial Maximum	
Pliocene	
Other - please specify:	
1.3.1.2 Type * Is the bathymetry fixed in time in the ocean?	
True	

1.3.1.3 Ocean Smoothing *

Describe any smoothing or hand editing of bathymetry in ocean

N/A

1.3.1.4 Source *

Describe source of bathymetry in ocean

N/A

1.4.1 Nonoceanic Waters

Non oceanic waters treatement in ocean

1.4.1.1 Isolated Seas

Describe if/how isolated seas is performed

Enter TEXT:

1.4.1.2 River Mouth

Describe if/how river mouth mixing or estuaries specific treatment is performed

Mix over top 40 m

1.5.1 Software Properties

 $Software\ properties\ of\ ocean\ code$

1.5.1.1 Repository

 $Location\ of\ code\ for\ this\ component.$

Enter TEXT:

1.5.1.2 Code Version

 $Code\ version\ identifier.$

Enter TEXT:

1.5.1.3 Code Languages

 $Code\ language(s).$

Enter COMMA SEPARATED list:

1.6.1 Resolution

Resolution in the ocean grid

1.6.1.1 Name *

This is a string usually used by the modelling group to describe the resolution of this grid, e.g. ORCA025, N512L180, T512L70 etc.

360x200

1.6.1.2 Canonical Horizontal Resolution *

Expression quoted for gross comparisons of resolution, eg. 50km or 0.1 degrees etc.

Tripolar grid varing resolution (0.33 degrees between -10 to 10) reduces poleward to 1 degree

1.6.1.3 Range Horizontal Resolution *

Range of horizontal resolution with spatial details, eg. 50(Equator)-100km or 0.1-0.5 degrees etc.

Range of horizontal resolution with spatial details, eg. 50(Equator)-100km or 0.1-0.5 degrees etc.

1.6.1.4 Number Of Horizontal Gridpoints *

Total number of horizontal (XY) points (or degrees of freedom) on computational grid.

72000

1.6.1.5 Number Of Vertical Levels *

Number of vertical levels resolved on computational grid.

50

1.6.1.6 Is Adaptive Grid *

Default is False. Set true if grid resolution changes during execution.

True	\bowtie	False

1.6.1.7 Thickness Level 1 *

 $Thickness\ of\ first\ surface\ ocean\ level\ (in\ meters)$

5

1.7.1 Tuning Applied

Tuning methodology for ocean component

1.7.1.1 Description *

General overview description of tuning: explain and motivate the main targets and metrics retained. Document the relative weight given to climate performance metrics versus process oriented metrics, and on the possible conflicts with parameterization level tuning. In particular describe any struggle with a parameter value that required pushing it to its limits to solve a particular model deficiency.

No tuning applied

1.7.1.2 Global Mean Metrics Used

List set of metrics of the global mean state used in tuning model/component

Enter COMMA SEPARATED list:

1.7.1.3 Regional Metrics Used

List of regional metrics of mean state (e.g THC, AABW, regional means etc) used in tuning model/component

Enter COMMA SEPARATED list:

1.7.1.4 Trend Metrics Used

List observed trend metrics used in tuning model/component

Enter COMMA SEPARATED list:

1.8.1 Conservation

Conservation in the ocean component

1.8.1.1 Description *

Brief description of conservation methodology

N/A

1	Q	1	2	Scheme	*
н.	. n.		. Z	ocheme	

Properties	$conserved \ in \ the \ ocean \ by \ the \ numerical \ schemes$
	Energy
	Enstrophy
	Salt
\boxtimes	Volume of ocean

Other - please specify: 1.8.1.3 Consistency Properties

Momentum

Any additional consistency properties (energy conversion, pressure gradient discretisation, ...)?

Enter COMMA SEPARATED list:

1.8.1.4 Corrected Conserved Prognostic Variables

Set of variables which are conserved by *more* than the numerical scheme alone.

Enter COMMA SEPARATED list:

1.8.1.5 Was Flux	Correction Used
Does conservation invo	olve flux correction ?
Select either TR	UE or FALSE:
True	☐ False

2 Grid

Ocean grid

2.1.1 Top level properties

 $Ocean\ grid$

2.1.1.1 Name

 $Name\ of\ grid\ in\ ocean\ model.$

Enter TEXT:

2.1.1.2 Overview

 $Overview\ of\ grid\ in\ ocean\ model.$

The Horizontal grid in the ocean is tripolar and vertical is $\mathbf{Z}^{\pmb{*}}$ coordinate.

2.1.2 Vertical

Properties of vertical discretisation in ocean

2.1.2.1 Coordinates *

Type of vertical coordinates in ocean				
	Z-coordinate			
\boxtimes	Z*-coordinate			
	S-coordinate			
	Isopycnic - sigma 0 - Density referenced to the surface			
	Isopycnic - sigma 2 - Density referenced to 2000 m $$			
	Isopycnic - sigma 4 - Density referenced to 4000 m $$			
	Isopycnic - other - Other density-based coordinate			
	${\rm Hybrid}~/~{\rm Z+S}$			
	Hybrid / Z+isopycnic			
	Hybrid / other			
	Pressure referenced (P)			
	P*			
	Z**			
	Other - please specify:			

2.1.2.2	Partial Steps *
Using par	rtial steps with Z or Z^* vertical coordinate in ocean ?
	True
2.1.3	Horizontal
Type of	horizontal discretisation scheme in ocean
2.1.3.1	Type *
Horizont	al grid type
	Lat-lon
	Rotated north pole
	Two north poles (ORCA-style)
	Other - please specify:
2.1.3.2	Staggering
Horizont	al grid staggering type
\boxtimes	Arakawa B-grid
	Arakawa C-grid
	Arakawa E-grid
	N/a
	Other - please specify:
2.1.3.3	Scheme *
	al discretisation scheme in ocean
Selec	ct SINGLE option:
	Finite difference
	Finite volumes
	Finite elements
	Unstructured grid
	Other - please specify:

3 Timestepping Framework

Ocean Timestepping Framework

3.1.1 Top level properties

 $Ocean\ Timestepping\ Framework$

3.1.1.1 Name

Commonly used name for the timestepping framework in ocean model.

Enter TEXT:

3.1.1.2 Overview

 $Diurnal\ cycle\ type$

 $Overview\ of\ ocean\ time stepping\ framework\ in\ ocean\ model.$

Includes a diurnal cycle of solar insolation, and the atmosphere and seaice elds passed to the ocean (windstress, freshwater, turbulent and radiative uxes) are updated every two hours.

3.1.1.3 Diurnal Cycle *

	None - No diurnal cycle in ocean				
	Via coupling - Diurnal cycle via coupling frequency				
	Specific treatment - Specific treament				
	Other - please specify:				
	Tracers ies of tracers time stepping in ocean				
3.2.1.1	Scheme *				
Tracers ti	ime stepping scheme				
	$\label{lem:leap-frog} \mbox{Leap-frog scheme with Asselin filter} \ \ \mbox{Leap-frog scheme with Asselin filter}$				
	$\label{lem:leap-frog} Leap-frog scheme with Periodic Euler-Leap-frog scheme w$				
	Predictor-corrector - Predictor-corrector scheme				
	Runge-Kutta 2 - Runge-Kutta 2 scheme				
	AM3-LF - AM3-LF such as used in ROMS				
	Forward-backward - Forward-backward scheme				
	Forward operator - Forward operator scheme				
	Other - please specify:				

Tracers to	ime step (in seconds)
7200	
3.3.1	Baroclinic Dynamics
Baroclin	nic dynamics in ocean
3.3.1.1	Type *
Baroclini	c dynamics type
	Preconditioned conjugate gradient
	Sub cyling - Sub cycling relative to tracers
	Other - please specify:
0010	G.1 *
	Scheme * c dynamics scheme
	Leap-frog + Asselin filter - Leap-frog scheme with Asselin filter
	Leap-frog + Periodic Euler - Leap-frog scheme with Periodic Euler
	Predictor-corrector - Predictor-corrector scheme
	Runge-Kutta 2 - Runge-Kutta 2 scheme
	AM3-LF - AM3-LF such as used in ROMS
	Forward-backward - Forward-backward scheme
	Forward operator - Forward operator scheme
	Other - please specify:
	Time Step
	c time step (in seconds)
Ente	r INTEGER value:
3.4.1	Barotropic
Barotrop	pic time stepping in ocean
Barotro	pic time ocepping in occur

3.2.1.2 Time Step *

3.4.1.1 Splitting *
Time splitting method

None

 \boxtimes

Split explicit
Implicit
Other - please specify:
Time Step c time step (in seconds)

Enter INTEGER value:

3.5.1 Vertical Physics

Vertical physics time stepping in ocean

3.5.1.1 Method *

Details of vertical time stepping in ocean

Enter TEXT:

4 Advection

Ocean advection

4.1.1 Top level properties

 $Ocean\ advection$

4.1.1.1 Name

Commonly used name for the advection in ocean model.

Enter TEXT:

4.1.1.2 Overview

 $Overview\ of\ ocean\ advection\ in\ ocean\ model.$

We use vertical tracer advection based on PPM scheme

4.2.1 Momentum

 $Properties \ of \ lateral \ momentum \ advection \ scheme \ in \ ocean$

4.2.1.1 Type *

Type of lateral momentum advection scheme in ocean

☐ Flux form

☐ Vector form

4.2.1.2 Scheme Name *

Name of ocean momentum advection scheme

2nd order centered

4.2.1.3 ALE

Using ALE for vertical advection? (if vertical coordinates are sigma)

True

X False

4.3.1 Lateral Tracers

Properties of lateral tracer advection scheme in ocean

4.3.1.1 Order *

 $Order\ of\ lateral\ tracer\ advection\ scheme\ in\ ocean$

 $\mathbf{2}$

4.3.1.2 Flux Limiter *	
Monotonic flux limiter for lateral tracer advection scheme in ocean ?	
☐ False	
4.3.1.3 Effective Order *	
Effective order of limited lateral tracer advection scheme in ocean	
Enter FLOAT value:	
4.3.1.4 Name *	
Descriptive text for lateral tracer advection scheme in ocean (e.g. MUSCL, PPM-H5, PRATHER,	.)
Enter TEXT:	
4.3.1.5 Passive Tracers	
Passive tracers advected	
Select MULTIPLE options:	
☐ Ideal age	
CFC 11	
CFC 12	
\square SF6	
Other - please specify:	
4.3.1.6 Passive Tracers Advection	
Is advection of passive tracers different than active ? if so, describe.	
Passive tracers advected.	
4.4.1 Vertical Tracers	
Properties of vertical tracer advection scheme in ocean	
4.4.1.1 Name *	
Descriptive text for vertical tracer advection scheme in ocean (e.g. MUSCL, PPM-H5, PRATHER,)

16

Piecewise Parabolic method

4.4.1.2 Flux Limite	er *
Monotonic flux limiter fo	or vertical tracer advection scheme in ocean?
Select either TRU	E or FALSE:
True	☐ False

5 Lateral Physics

 $Ocean\ lateral\ physics$

5.	1.	1	Ton)]	lev	\mathbf{el}	pro	per	ties

 $Ocean\ lateral\ physics$

5.1.1.1 Name

 $Commonly\ used\ name\ for\ the\ lateral\ physics\ in\ ocean\ model.$

Enter TEXT:

5.1.1.2 Overview

 $Overview\ of\ ocean\ lateral\ physics\ in\ ocean\ model.$

Other - please specify:

We use GM scheme for Eddy induced velocity and Flow dependant Added diffusivity

5.1.1.3 Scheme *				
Type of t	ransient eddy representation in ocean			
	None - No transient eddies in ocean			
	Eddy active - Full resolution of eddies			
	Eddy admitting - Some eddy activity permitted by resolution			
5.1.2	Operator			
Propert	ies of lateral physics operator for momentum in ocean			
5.1.2.1	Direction *			
Direction	of lateral physics momentum scheme in the ocean			
	Horizontal			
	Isopycnal			
	Isoneutral			
	Geopotential			
\boxtimes	Iso-level			

5.1.2.2	Order *
Order of	lateral physics momentum scheme in the ocean
	Harmonic - Second order
	Bi-harmonic - Fourth order
	Other - please specify:
5.1.2.3	Discretisation *
Discretisa	ction of lateral physics momentum scheme in the ocean
	Second order - Second order
	Higher order - Higher order
	Flux limiter
	Other - please specify:
	Eddy Viscosity Coeff es of eddy viscosity coeff in lateral physics momentum scheme in the ocean
5.1.3.1	Type *
	nysics momentum eddy viscosity coeff type in the ocean
	Constant
	Space varying
\boxtimes	Time + space varying (Smagorinsky)
	Other - please specify:
5.1.3.2	Constant Coefficient
If constan	tt, value of eddy viscosity coeff in lateral physics momentum scheme (in m2/s)
Ente	r INTEGER value:
If space-v	Variable Coefficient arying, describe variations of eddy viscosity coeff in lateral physics momentum scheme
Ente	r TEXT:
5.1.3.4	Coeff Background *
D	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 $Describe\ background\ eddy\ viscosity\ coeff\ in\ lateral\ physics\ momentum\ scheme\ (give\ values\ in\ m2/s)$

Minimal Background Value: Western boundary enhanced background plus weak laplacian

5.1.3.5	Coeff Backs	cat	ter *
Is there be	ackscatter in ede	dy vi	scosity coeff in lateral physics momentum scheme?
	True	\boxtimes	False
5.2.1	Tracers		
Properti	es of lateral p	hysi	ics for tracers in ocean
5.2.1.1	Mesoscale C	Clos	ure *
Is there a	mesoscale closu	ıre ir	n the lateral physics tracers scheme?
	True		False
5.2.1.2	Submesosca	le l	Mixing *
Is there a	$submesoscale\ m$	iixin	$g\ parameterisation\ (i.e\ Fox\mbox{-}Kemper)\ in\ the\ lateral\ physics\ tracers\ scheme\ ?$
	True		False
5.2.2	Operator		
Properti	es of lateral p	hysi	ics operator for tracers in ocean
5.2.2.1	Direction *		
Direction	of lateral physic	cs tro	acers scheme in the ocean
	Horizontal		
	Isopycnal		
\boxtimes	Isoneutral		
	Geopotential		
	Iso-level		
	Other - please	spec	rify:
5.2.2.2	Order *		
Order of l	lateral physics to	racer	rs scheme in the ocean
	Harmonic - See	cond	order
	Bi-harmonic -	Four	th order
	Other - please	snec	ifv.

5.2.2.3	Discretisation *
Discretisa	tion of lateral physics tracers scheme in the ocean
	Second order - Second order
	Higher order - Higher order
	Flux limiter
	Other - please specify:
5.2.3 E	Eddy Diffusity Coeff
Propertie	es of eddy diffusity coeff in lateral physics tracers scheme in the ocean
5.2.3.1	Гуре *
Lateral ph	ysics tracers eddy diffusity coeff type in the ocean
\boxtimes	Constant
	Space varying
	Time + space varying (Smagorinsky)
	Other - please specify:
5.2.3.2	Constant Coefficient
If constan	t, value of eddy diffusity coeff in lateral physics tracers scheme (in m2/s)
600	
5.2.3.3	Variable Coefficient
If space-ve	arying, describe variations of eddy diffusity coeff in lateral physics tracers scheme
Enter	TEXT:
5.2.3.4	Coeff Background *
Describe b	ackground eddy diffusity coeff in lateral physics tracers scheme (give values in m2/s)
600	
5.2.3.5	Coeff Backscatter *
Is there bo	ackscatter in eddy diffusity coeff in lateral physics tracers scheme?
	True

5.2.4 Eddy Induced Velocity

 $Properties \ of \ eddy \ induced \ velocity \ (EIV) \ in \ lateral \ physics \ tracers \ scheme \ in \ the \ ocean$

5.2.4.1 Type *
Type of EIV in lateral physics tracers in the ocean
GM - Gent and McWilliams
Other - please specify:
5.2.4.2 Constant Val
If EIV scheme for tracers is constant, specify coefficient value (M2/s)
Enter INTEGER value:
5.2.4.3 Flux Type *
Type of EIV flux (advective or skew)
Skew flux
5.2.4.4 Added Diffusivity *
${\it Type~of~EIV~added~diffusivity~(constant,~flow~dependent~or~none)}$
Enter TEXT:

6 Vertical Physics

Ocean Vertical Physics

6.	1.	.1	Top	level	pro	perties

 $Ocean\ Vertical\ Physics$

6.1.1.1 Name

Commonly used name for the vertical physics in ocean model.

Enter TEXT:

6.1.1.2 Overview

Overview of ocean vertical physics in ocean model.

We use Enhanced vertical diffusion convection scheme

6.1.2 Details

Properties of vertical physics in ocean

6.1.2.1 Langmuir Cells Mixing *

Is there Langmuir cells mixing in upper ocean ?

Select either	TRUE or	FALSE:
True		False

6.1.3 Tracers

Properties of boundary layer (BL) mixing on tracers in the ocean

6.1.3.1 Type *

type of boundary layer mixing for tracers in ocea					
	Constant value				
	Turbulent closure - TKE				
\boxtimes	Turbulent closure - KPP				
	Turbulent closure - Mellor-Yamada				
	Turbulent closure - Bulk Mixed Layer				
	Richardson number dependent - PP				
	Richardson number dependent - KT				

Imbeded as isopycnic vertical coordinate

Oth	er - please specify:
	Sure Order mixing of tracers, specific order of closure (0, 1, 2.5, 3) OAT value:
•	Stant mixing of tracers, specific coefficient (m2/s) FEGER value:
6.1.3.4 Back Background BI	${f kground}$ * Language mixing of tracers coefficient, (schema and value in m2/s - may by none)
6.1.4 Mor	mentum boundary layer (BL) mixing on momentum in the ocean
6.1.4.1 Typ	e *
Type of bounda	ery layer mixing for momentum in ocean
Con	stant value
☐ Turl	bulent closure - TKE
M Turk	bulent closure - KPP
☐ Turl	bulent closure - Mellor-Yamada
☐ Turl	bulent closure - Bulk Mixed Layer
Rich	nardson number dependent - PP
Rich	nardson number dependent - KT
☐ Imb	eded as isopycnic vertical coordinate
Oth	er - please specify:
•	Sure Order mixing of momentum, specific order of closure (0, 1, 2.5, 3) OAT value:

6.1.4.3 Constant				
If constant BL mixing of momentum, specific coefficient (m2/s)				
Enter INTEGER value:				
6.1.4.4 Background *				
Background BL mixing of momentum coefficient, (schema and value in m2/s - may by none)				
N/A				
6.1.5 Details				
Properties of interior mixing in the ocean				
6.1.5.1 Convection Type *				
Type of vertical convection in ocean				
Non-penetrative convective adjustment				
Enhanced vertical diffusion				
☐ Included in turbulence closure				
Other - please specify:				
6.1.5.2 Tide Induced Mixing *				
Describe how tide induced mixing is modelled (barotropic, baroclinic, none)				
Barotropic and baroclinic tides				
6.1.5.3 Double Diffusion *				
Is there double diffusion				
True				
6.1.5.4 Shear Mixing *				
Is interior shear mixing explicitly parameterised?				
☐ True ☐ False				

6.1.6 Tracers

Properties of interior mixing on tracers in the ocean

0.1.0.1	Type
Type of i	nterior mixing for tracers in ocean
Selec	et SINGLE option:
	Constant value
	Turbulent closure / TKE
	Turbulent closure - Mellor-Yamada
	Richardson number dependent - PP
	Richardson number dependent - KT
	Imbeded as isopycnic vertical coordinate
	Other - please specify:
6.1.6.2	Constant
If constan	nt interior mixing of tracers, specific coefficient $(m2/s)$
5	
6.1.6.3	Profile *
Is the bac	ckground interior mixing using a vertical profile for tracers (i.e is NOT constant) ?
	True A False
0101	D 1 1*
	Background * nd interior mixing of tracers coefficient, (schema and value in m2/s - may by none)
N/A	
6.1.7	Momentum
Properto	ies of interior mixing on momentum in the ocean
6.1.7.1	Type *
Type of i	nterior mixing for momentum in ocean
	Constant value
	Turbulent closure / TKE
	Turbulent closure - Mellor-Yamada
	Richardson number dependent - PP
	Richardson number dependent - KT
	Richardson number dependent - KT Imbeded as isopycnic vertical coordinate

6.1.7.2 Constant

If constant interior mixing of momentum, specific coefficient (m2/s) $\,$

0

6.1.7.3 Profile *

Is the background interior mixing using a vertical profile for momentum (i.e is NOT constant) ?

N/A

6.1.7.4 Background *

Background interior mixing of momentum coefficient, (schema and value in m2/s - may by none)

Enter TEXT:

Uplow Boundaries Ocean upper / lower boundaries

7.1.1 Top level properties

Ocean upper / lower boundaries

7.1.1.1 Name

 $Commonly\ used\ name\ for\ the\ uplow\ boundaries\ in\ ocean\ model.$

7.1.1.2 Overview

Overview of ocean upper / lower boundaries in ocean model.

We use Non-linear split-explicit free surface scheme in Ocean

7.2.1 Free Surface

Properties of free surface in ocean

7.2.1.1 Scheme	*
----------------	---

Free surface scheme in ocean			
	Linear implicit		
	Linear filtered		
	Linear semi-explicit		
	Non-linear implicit		
	Non-linear filtered		
	Non-linear semi-explicit		
	Fully explicit		
	Other - please specify:		
7.2.1.2 Embeded Seaice *			
Is the sec	e-ice embeded in the ocean model (instead of levitating)?		
\boxtimes	True False		

7.3.1 Bottom Boundary Layer

 $Properties \ of \ bottom \ boundary \ layer \ in \ ocean$

7.	3	1	.1	Ov	erview	*

 $Overview\ of\ bottom\ boundary\ layer\ in\ ocean$

We use Diffusive boundary layer in the model with a mixing coefficient of $100 m^{**} 2/s$

7.3.1.2	Type	Of Bbl	*
---------	------	--------	---

Type of bottom boundary layer in ocean				
\boxtimes	Diffusive			
	Acvective			
	Other - please specify:			
7.3.1.3 Lateral Mixing Coef				
If bottom BL is diffusive, specify value of lateral mixing coefficient (in m2/s)				

7.3.1.4 Sill Overflow *

 $Describe\ any\ specific\ treatment\ of\ sill\ overflows$

Enter TEXT:

100

8 Boundary Forcing

Ocean boundary forcing

8.1.1 Top level properties

Ocean boundary forcing

8.1.1.1 Name

Commonly used name for the boundary forcing in ocean model.

Enter TEXT:

8.1.1.2 Overview

Overview of ocean boundary forcing in ocean model.

We transmit the surface pressure forcing to ocean via sea-ice

8.1.1.3 Surface Pressure *

 $Describe\ how\ surface\ pressure\ is\ transmitted\ to\ ocean\ (via\ sea\mbox{-}ice,\ nothing\ specific,...)$

Via seaice

8.1.1.4 Momentum Flux Correction

Describe any type of ocean surface momentum flux correction and, if applicable, how it is applied and where.

No

8.1.1.5 Tracers Flux Correction

Describe any type of ocean surface tracers flux correction and, if applicable, how it is applied and where.

No

8.1.1.6 Wave Effects *

Describe if/how wave effects are modelled at ocean surface.

N/A

8.1.1.7 River Runoff Budget *

Describe how river runoff from land surface is routed to ocean and any global adjustment done.

N/A

8.1.1.8 Geothermal Heating *

 $Describe\ if/how\ geothermal\ heating\ is\ present\ at\ ocean\ bottom.$

N/A

8.1.2 Bottom Friction

Properties of momentum bottom friction in ocean

8.1.2.1	Type *
Type of m	nomentum bottom friction in ocean
	Linear
\boxtimes	Non-linear
	Non-linear (drag function of speed of tides)
	Constant drag coefficient
	None
	Other - please specify:
	Lateral Friction tes of momentum lateral friction in ocean
8.1.3.1	Type *
Type of m	nomentum lateral friction in ocean
	None
	Free-slip
\boxtimes	No-slip
	Other - please specify:
8.1.4 \$	Sunlight Penetration
Properti	es of sunlight penetration scheme in ocean
8.1.4.1	Scheme *
Type of s	unlight penetration scheme in ocean
	1 extinction depth
	2 extinction depth
	3 extinction depth
	Other - please specify:
	Ocean Colour *
is the oce	an sunlight penetration scheme ocean colour dependent?
\square	True

8.1.4.3 Extinction Depth Description

Describe extinctions depths for sunlight penetration scheme (if applicable).

Sweeneyetal.(2005) compile a seasonal climatology of chlorophyll based on measurements from the NASA SeaWIFS satellite. The model uses visible light absorption based on the optical models of MorelandAntoine(1994).

8.1.4.4 Extinction Depths

List extinctions depths for sunlight penetration scheme (if applicable).

Enter COMMA SEPARATED list:

8.1.5 Fresh Water Forcing

Properties of surface fresh water forcing in ocean

Troperties of surface fresh water forething the occur	
8.1.5.1	From Atmopshere st
Type of surface fresh water forcing from atmos in ocean	
\boxtimes	Freshwater flux
	Virtual salt flux
	Other - please specify:
8.1.5.2 From Sea Ice *	
Type of surface fresh water forcing from sea-ice in ocean	
\boxtimes	Freshwater flux
	Virtual salt flux
	Real salt flux
	Other - please specify:
8.1.5.3 Forced Mode Restoring *	
6.1.3.3 .	roiced mode itestoring

 ${\it Type~of~surface~salinity~restoring~in~forced~mode~(OMIP)}$

Enter TEXT: