QUESTÃO 03 (0,5 ponto)

"A Razão de Eficiência de um Número"

Inspirado em recursos utilizados na solução de problemas de maratonas de programação.

Enunciado

Na Teoria dos Números, algumas funções descrevem propriedades fundamentais de um inteiro N. Duas delas são:

- 1. Função τ(N) conta o número total de divisores de N.
- 2. Função $\sigma(N)$ calcula a soma de todos os divisores de N.

A Razão de Eficiência de um número N é definida como:

Razão de Eficiência
$$(N) = \frac{\sigma(N)}{\tau(N)}$$

Seu objetivo é calcular a Razão de Eficiência de N e imprimir o resultado com duas casas decimais de precisão.

Entrada \rightarrow Um único inteiro N ($1 \le N \le 105$).

Saída → Um número real: a Razão de Eficiência de N com duas casas decimais.

Observações:

→ Fatoração Prima

- Decomponha N em seus fatores primos: $N=p_1^{a_1}\cdot p_2^{a_2}\cdot \dots \cdot p_r^{a_r}$
- Este é o passo fundamental, pois todas as fórmulas seguintes dependem dessa decomposição.
- Dica: Para N ≤ 105, use Trial Division (tentativa e erro), verificando divisores até N
 - A fatoração prima deve ser feita de forma eficiente, dividindo N pelo fator primo p o máximo de vezes possível

→ Cálculo de τ(N) e σ(N) e da razão

- A partir da fatoração prima, utilize as fórmulas de tau e sigma
- Calcule a razão de eficiência
 - Lembrete: a saíde é um número real (float ou double) para garantir as duas casas decimais.

→ Passo a Passo no Código

- Para fins de aprendizado, o programa deve imprimir os passos principais, incluindo:
 - · Lista de fatores primos e seus expoentes.
 - Cálculo intermediário de τ(N).
 - Cálculo intermediário de σ(N).
 - Resultado final da Razão de Eficiência.

EXTRA: Limites de Eficiência

- Algoritmos mais avançados como Pollard's Rho não são necessários para N≤105.
- O método de **Trial Division** é suficiente e ensina os fundamentos de fatoração.