Chapitre 13

Fonctions trigonométriques

I. Définitions

1) Enroulement

On considère le repère du plan $(O; \vec{i}, \vec{j})$, $\mathscr C$ le cercle trigonométrique, A le point de coordonnées (1;0) et d la droite orientée munie du repère $(A; \vec{j})$.

Soit x un nombre réel quelconque et N le point de d tel que $\overrightarrow{AN} = x \vec{j}$.

La droite d est « enroulée » sur le cercle trigonométrique ; au point N de d correspond un point M de \mathscr{C} .

Le nombre x est donc une mesure, en radians, de l'angle orienté $(\vec{i}: \overrightarrow{OM})$.

Le cosinus de cet angle est l'abscisse du point M.

Le sinus de cet angle est l'ordonnée du point M.

Ainsi, les deux nombres $\cos x$ et $\sin x$ sont donnés par les points H et K, projetés orthogonaux de M respectivement sur les deux axes $(\mathbf{O}; \vec{i})$ et $(\mathbf{O}; \vec{j})$.

Pour tout x réel:

$$-1 \le \cos x \le 1$$
; $-1 \le \sin x \le 1$ et $\cos^2 x + \sin^2 x = 1$

2) Fonctions

Définitions:

- La fonction $x \mapsto \sin x$ définie sur \mathbb{R} est appelée fonction sinus et notée sin.
- La fonction $x \mapsto \cos x$ définie sur \mathbb{R} est appelée fonction cosinus et notée cos.

II. <u>Dérivabilité</u>

Dérivabilité de la fonction sinus 1)

Propriété:

La fonction sinus est dérivable en 0.

Lemmes:

Montrons que la fonction sinus est continue en x=0.

Pour $0 < x < \frac{\pi}{2}$ on a:

 $\sin x \le x \le \tan x$ soit

$$0 \le \sin x \le x \le \frac{\sin x}{\cos x}$$

soit $0 \le \sin x \le x$.

Par le théorème des gendarmes,

$$\lim_{x\to 0^+}\sin x=0.$$

La fonction sinus étant impaire, on a également :

$$\lim_{x\to 0^-} \sin x = 0$$

D'où $\lim_{x\to 0} \sin x = 0$

De plus $\sin 0 = 0$.

$$\mathcal{A}_{OAM} \leq \mathcal{A}_{secteurOAM} \leq \mathcal{A}_{OAT}$$

Justification:

•
$$\mathcal{A}_{OHM} = \frac{1 \times \sin x}{2}$$

•
$$\mathcal{A}_{\text{secteurOAM}} = \frac{x}{2}$$

•
$$\mathcal{A}_{\text{secteurOAM}} = \frac{x}{2}$$

• $\mathcal{A}_{\text{OAT}} = \frac{1 \times \tan x}{2}$

Ainsi on obtient:

$$\frac{1 \times \sin x}{2} \le \frac{x}{2} \le \frac{1 \times \tan x}{2}$$

2

• Montrons maintenant que la fonction sinus est dérivable en x=0, de nombre dérivé 1.

Pour $0 < x < \frac{\pi}{2}$ on a:

 $\sin x \le x \le \tan x$ soit

$$0 \le \sin x \le x \le \frac{\sin x}{\cos x} \iff 0 < \frac{\cos x}{\sin x} \le \frac{1}{x} \le \frac{1}{\sin x} \iff 0 < \cos x \le \frac{\sin x}{x} \le 1$$

Pour tout
$$x \in \left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$$
, $\cos x = \sqrt{1 - \sin^2 x}$.

Comme
$$\lim_{x\to 0} \sin x = 0$$
, on a donc $\lim_{x\to 0} \cos x = 1$.

Par le théorème des gendarmes, on obtient
$$\lim_{x\to 0^+} \frac{\sin x}{x} = 1$$
.

On en déduit que la fonction sinus est continue en x=0.

La fonction sinus est impaire, on a donc
$$\lim_{x\to 0^-} \frac{\sin x}{x} = 1$$
.

Ainsi
$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

Démonstration:

Pour tout nombre réel
$$h \neq 0$$
, $\frac{\sin h - \sin 0}{h} = \frac{\sin h}{h}$.

Or
$$\lim_{h \to 0} \frac{\sin h}{h} = 1$$
 donc la fonction sinus est dérivable en 0 et $\sin'(0) = 1$.

La fonction sinus est dérivable sur \mathbb{R} et pour tout nombre réel x, $\sin'(x) = \cos(x)$

Démonstration :

a désigne un nombre réel. Étudier la dérivabilité en a de la fonction sinus, c'est étudier la limite en a de la fonction $a \mapsto \frac{\sin(a+h) - \sin a}{h}$.

Or pour tout nombre réel $h \neq 0$,

$$\frac{\sin(a+h) - \sin a}{h} = \frac{\sin a \cos h + \sin h \cos a - \sin a}{h} = \frac{\sin h \cos a - (1 - \cos h) \sin a}{h}.$$

Or $\cos(2x) = 1 - 2\sin^2 x$, donc $1 - \cos(2x) = 2\sin^2 x$ donc avec 2x = h: $1 - \cos h = 2\sin^2 \frac{h}{2}$.

$$\sin(2x) = 2\sin x \cos x \text{ , donc avec } 2x = h : \sin h = 2\sin\frac{h}{2}\cos\frac{h}{2}.$$

D'où
$$\frac{\sin(a+h) - \sin a}{h} = \frac{2\sin\frac{h}{2}\cos\frac{h}{2}\cos a - 2\sin^2\frac{h}{2}\sin a}{h} = \frac{2\sin\frac{h}{2}\left[\cos\frac{h}{2}\cos a - \sin\frac{h}{2}\sin a\right]}{h}$$

soit
$$\frac{\sin(a+h) - \sin a}{h} = \frac{\sin\frac{h}{2}}{\frac{h}{2}}\cos\left(a + \frac{h}{2}\right)$$
.

Or
$$\lim_{h \to 0} \cos\left(a + \frac{h}{2}\right) = \cos a$$
 et $\lim_{h \to 0} \frac{\sin\frac{h}{2}}{\frac{h}{2}} = 1$ donc $\lim_{h \to 0} \frac{\sin(a+h) - \sin a}{h} = \cos a$.

Ainsi la fonction sinus est dérivable sur \mathbb{R} et pour tout nombre réel x, $\sin'(x) = \cos x$.

2) <u>Dérivabilité de la fonction cosinus</u>

Propriété:

La fonction cosinus est dérivable sur \mathbb{R} et pour tout nombre réel x,

$$\cos'(x) = -\sin x$$

Démonstration:

On sait que, pour tout nombre réel x, $\cos x = \sin\left(x + \frac{\pi}{2}\right)$.

La fonction sin est dérivable sur \mathbb{R} , donc la fonction $f: x \mapsto \sin\left(x + \frac{\pi}{2}\right)$ est dérivable sur \mathbb{R} et : pour tout nombre réel x, $f'(x) = 1 \times \sin'\left(x + \frac{\pi}{2}\right) = \cos\left(x + \frac{\pi}{2}\right) = -\sin x$ donc $\cos'(x) = -\sin x$.

3

III. Étude de la fonction sinus

1) Étude sur l'intervalle $[0;\pi]$

Pour tout nombre réel x, $\sin'(x) = \cos x$.

Or
$$\cos(x) \ge 0$$
 sur $\left[0; \frac{\pi}{2}\right]$ et $\cos x \le 0$ sur $\left[\frac{\pi}{2}; \pi\right]$.

Donc, la fonction sinus est croissante sur $\left[0; \frac{\pi}{2}\right]$ et décroissante sur $\left[\frac{\pi}{2}; \pi\right]$.

Tableau de variation sur $[0;\pi]$

x	0		$\frac{\pi}{2}$		π
$\sin'(x)$	1	+	0	_	-1
$\sin(x)$	0	1	1		0

2) Courbe représentative sur $[-\pi;\pi]$

Définition:

Soit f une fonction définie sur un ensemble \mathcal{D} .

La fonction f est **impaire** si, pour tout nombre réel x de \mathcal{D} , le nombre (-x) appartient à \mathcal{D} et : f(-x) = -f(x)

Interprétation graphique :

Dans un repère orthogonal, la courbe représentative d'une fonction impaire est symétrique par rapport à l'origine.

On sait que pour tout nombre réel x, $\sin(-x) = -\sin(x)$. La fonction sinus est **impaire**.

La courbe représentative $\mathscr C$ de la fonction sinus est **symétrique par rapport à l'origine** O du repère.

Démonstration:

Pour tout nombre réel x, on note $M(x; \sin x)$ et $M'(-x; \sin(-x))$ deux points de \mathscr{C} .

Or:

$$\frac{x+(-x)}{2} = 0$$
 et $\frac{\sin x + \sin(-x)}{2} = \frac{\sin x - \sin x}{2} = 0$

Donc, le milieu de [MM'] est l'origine O du repère et M' est le symétrique de M par rapport à O.

3) Courbe représentative de la fonction sinus

Définition:

Soit f une fonction définie sur un intervalle \mathcal{D} .

La fonction f est **périodique de période** T s'il existe un nombre réel strictement positif T tel que, pour tout nombre réel x de \mathcal{D} , le nombre x+T appartient à \mathcal{D} et :

$$f(x+T)=f(x)$$

Interprétation graphique:

Dans un repère $(\vec{O}; \vec{i}, \vec{j})$, la courbe représentative d'une fonction périodique de période T est invariante par translation de vecteur $T\vec{i}$.

Remarque:

 $\overline{\text{Si T est une période de } f}$ et n un entier naturel n $\overline{\text{T}}$ est également une période de f.

On sait que, pour tout nombre réel x, $\sin(x+2\pi)=\sin(x)$.

La fonction sinus est périodique de période 2π .

On en déduit alors que $\sin(x+k2\pi)=\sin x$ pour tout $k \in \mathbb{Z}$.

Dans un repère $(0; \vec{i}, \vec{j})$, la courbe représentative \mathscr{C} de la fonction sinus est **invariante par toute** translation de vecteur $k \, 2\pi \, \vec{i}$ où $k \in \mathbb{Z}$.

Démonstration:

Pour tout x de \mathbb{R} et tout k de \mathbb{Z} , on note $M(x; \sin x)$ et $M'(x+2k\pi, \sin(x+2k\pi))$ deux points de \mathscr{C} .

Alors $\overline{\text{MM}}' \begin{pmatrix} k \times 2\pi \\ 0 \end{pmatrix}$, donc $\overline{\text{MM}}' = k \, 2\pi \, \vec{i}$ et M' est l'image de M par la translation de vecteur $k \, 2\pi \, \vec{i}$.

La courbe de la fonction sinus est appelée une sinusoïde.

IV. Étude de la fonction cosinus

1) Étude sur l'intervalle $[0;\pi]$

Pour tout nombre réel x, $\cos'(x) = -\sin x$. Or $\sin(x) \ge 0$ sur $[0; \pi]$ donc $\cos'(x) \le 0$ sur $[0; \pi]$. Donc, la fonction cosinus est décroissante sur $[0; \pi]$.

Tableau de variation sur $[0;\pi]$

x	0		$\frac{\pi}{2}$		π
$\cos'(x)$	0	_	-1	_	0
$\cos(x)$	1		0		-1

2) Courbe représentative sur $[-\pi;\pi]$

Définition:

Soit f une fonction définie sur un ensemble \mathcal{D} .

La fonction f est **paire** si, pour tout nombre réel x de \mathcal{D} , le nombre (-x) appartient à \mathcal{D} et : f(-x) = f(x)

Interprétation graphique:

Dans un repère orthogonal, la courbe représentative d'une fonction paire est symétrique par rapport à l'axe des ordonnées.

On sait que pour tout nombre réel x, $\cos(-x) = \cos(x)$. La fonction cosinus est **paire**.

Propriété:

La courbe représentative Γ de la fonction cosinus est symétrique par rapport à l'axe des ordonnées du repère.

Démonstration:

Pour tout nombre réel x, on note M et M' les points de Γ d'abscisses respectives x et -x.

L'ordonnée de M est $\cos x$ et l'ordonnée de M' est $\cos(-x) = \cos x$.

Donc M et M' sont symétriques par rapport à l'axe des ordonnées.

3) Courbe représentative de la fonction cosinus

On sait que, pour tout nombre réel x, $\cos(x+2\pi)=\cos(x)$. La fonction cosinus est **périodique de période** 2π . On en déduit alors que $\cos(x+k2\pi)=\cos x$ pour tout $k \in \mathbb{Z}$.

Propriété:

Dans un repère $(O; \vec{i}, \vec{j})$, la courbe représentative \mathscr{C} de la fonction cosinus est **invariante par** toute translation de vecteur $k \, 2\pi \, \vec{i}$ où $k \in \mathbb{Z}$.

Remarques:

- Pour tout $x \in \mathbb{R}$, $\sin\left(x + \frac{\pi}{2}\right) = \cos(x)$ donc la courbe représentative \mathscr{C} de la fonction sinus est l'image de la courbe représentative Γ de la fonction cosinus par la translation de vecteur $\frac{\pi}{2}\vec{i}$.
- La courbe de la fonction cosinus est aussi appelée une sinusoïde.

Annexe 1 : Équation différentielle

La mécanique, la dynamique, l'électricité, la biologie, la démographie, les probabilités ... fourmillent de situations dont l'étude conduit à une **équation différentielle**, que l'on peut présenter sommairement comme une relation entre une fonction et ses dérivées successives, et qui est réalisée sur un intervalle.

Dans une équation différentielle, l'inconnue est la fonction.

Exemple:

En physique, le mouvement d'un oscillateur libre non amorti (élastique, électrique, ...) est régi par une équation différentielle du **second ordre**, du type :

$$v'' = w^2 v$$
 où w est la pulsation de l'oscillateur.

C'est le cas du ressort, du pendule (si on néglige l'amortissement), d'un circuit (L, C), ou des systèmes entretenus : mouvement des marées, montres, trampolines ,...

Une **fonction** solution sur un intervalle I de l'équation différentielle $y''=-w^2y$ est une fonction f, dérivable deux fois sur I telle que $f''(x)=-w^2f(x)$ pour tout x de I. (Sans précision, on considère que $I=\mathbb{R}$).

Résoudre l'équation différentielle $y'' = -w^2y$, c'est trouver toutes les solutions.

Équation $y''+w^2y=0$

• Les fonctions $x \mapsto A \cos wx + B \sin wx$ (A,B réels) sont solutions Si $y(x) = \cos wx$, on a:

$$y'(x) = -w \sin wx$$
 et $y''(x) = -w^2 \cos wx = -w^2 y(x)$

ce qui montre que $x \mapsto \cos wx$ est solution de $y'' + w^2 y = 0$.

La vérification est analogue pour $x \mapsto \sin wx$.

Or on remarque que la combinaison linéaire de deux fonctions vérifiant $y''+w^2y=0$ est encore solution de $y''+w^2y=0$. Donc $x \mapsto A\cos wx + B\sin wx$ vérifie $y''+w^2y=0$.

• Toute solution y telle que y(0)=y'(0)=0 est la fonction nulle

Si y vérifie $y''+w^2y=0$, la fonction $z=w^2y^2+y'^2$ est dérivable sur $\mathbb R$ et $z'=2\,w^2\,y'\,y+2\,y'\,y''$, soit $z'=2\,y'(\,y''+w^2\,y)=0$, donc z est une fonction constante sur $\mathbb R$

Si y(0)=0 et y'(0)=0, on a z(0)=0, donc z est la fonction nulle.

La relation $w^2y^2+y'^2=0$ avec $w\neq 0$, implique alors y=y'=0, donc y est la **fonction nulle**.

• Résolution de $y''+w^2y=0$

Si y vérifie $y''+w^2y=0$, la fonction z:

$$x \mapsto y(x) - y(0)\cos wx - \frac{y'(0)}{w}\sin wx$$

vérifie aussi $y''+w^2y=0$, d'après la remarque initiale.

De plus, on vérifie que z(0)=0 et z'(0)=0, donc d'après la remarque précédente, z est la fonction nulle.

Il en résulte qu'il existe deux constantes A et B (A = y(0), $B = \frac{y'(0)}{w}$) telles que :

$$y(x) = A \cos wx + B \sin wx$$

Les fonctions solutions de l'équation différentielle $y''+w^2y=0$ ($w\neq 0$) sont les fonctions:

$$x \mapsto A \cos wx + B \sin wx$$

A, B réels quelconques.

Il existe une unique solution de cette équation satisfaisant aux conditions initiales :

$$y(x_0) = y_0$$
 et $y'(x_0) = y'_0$

 $(x_0, y_0 \text{ et } y'_0 \text{ réels donnés}).$

Interprétation graphique :

Annexe 2 : Courbe paramétrée

On considère l'ensemble (Γ) des points M(t) dont les coordonnées (x(t);y(t)) sont définies, pour tout réel t de l'intervalle $[-\pi;\pi]$ par :

$$\begin{cases} x(t) = 5\cos(t) \\ y(t) = 3\sin(t) \end{cases}$$

Étude de la courbe

• Pour tout réel t de l'intervalle $[-\pi;\pi]$:

$$\begin{cases} x(-t) = 5\cos(t) \\ y(-t) = -3\sin(t) \end{cases}$$

Donc M(-t) est l'image du point M(t) de (Γ) par la symétrie d'axe (Ox). On peut donc ramener l'intervalle d'étude à $[0;\pi]$.

• Pour tout réel t de l'intervalle $[-\pi; \pi]$:

$$\begin{cases} x(\pi-t) = -5\cos(t) \\ y(\pi-t) = 3\sin(t) \end{cases}$$

Donc $M(\pi-t)$ est l'image du point M(t) de (Γ) par la symétrie d'axe (Oy). On peut donc ramener l'intervalle d'étude à $\left[0;\frac{\pi}{2}\right]$

• Pour tout réel t de l'intervalle $[-\pi;\pi]$: $\begin{cases} x'(t) = -5\sin(t) \\ y'(t) = 3\cos(t) \end{cases}$

On construit le tableau de variations suivant :

t	0		$\frac{\pi}{2}$
x'(t)	0	-	
x(t)	5		0
y'(t)		+	0
y(t)	0	*	3

Construction de (Γ)

• On place les points de (Γ) correspondant aux paramètres $0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}$ et $\frac{\pi}{2}$.

$$M(0)=(5;0) ; M\left(\frac{\pi}{6}\right) = \left(\frac{5\sqrt{3}}{2};\frac{3}{2}\right) ; M\left(\frac{\pi}{4}\right) = \left(\frac{5\sqrt{2}}{2};\frac{3\sqrt{2}}{2}\right) ;$$

$$M\left(\frac{\pi}{3}\right) = \left(\frac{5}{2};\frac{3\sqrt{3}}{2}\right) ; M\left(\frac{\pi}{2}\right) = (0;3)$$

- On observe que la tangente au point M(0) est parallèle à l'axe des ordonnées : x'(0)=0.
- On observe que la tangente au point $M\left(\frac{\pi}{2}\right)$ est parallèle à l'axe des abscisses : $y'\left(\frac{\pi}{2}\right)=0$.
- On construit la partie de (Γ) obtenue lorsque t décrit l'intervalle $\left[0;\frac{\pi}{2}\right]$.
- On conclut en traçant le symétrique par rapport à (O y) puis le symétrique par rapport à (O x).

