

"Valuing" Our Players: Market Value Prediction of Football Players using Machine Learning

Group 6
Niharika Patil | Marisa Yang | Madi Zhaksylyk

Agenda

Datasets

				\$
Competitions and Clubs	Players	Games	Appearances	Player Valuations
UEFA clubs and tournaments	Basic information on soccer players of major Europe leagues	Games played in major leagues in Europe	Individual player performance statistics (2014-2022)	Every player's valuation
 Club Id, Competition Id, Dates, etc. League affiliation of club Merged on club_id 	Player Id, Height, DOB, age, etc.Goalkeepers not part of this studyMerged using player_id	 Domestic leagues Champions league and Europa League Merged using club_id 	 Player Id, minutes played, goals scored, red/yellow cards earned Performance metrics aggregated annually per club 	 Played Id, Date of Valuation, Valuation 1 aggregate annual value per club per player Adjusted for inflation, merged with player_id and date

Exploratory Data Analysis

Correlation Matrix

 Participation in the Champions League highly correlates with market value (0.56 and 0.55)

- 0.6

- 0.2

- 0.0

- -0.2

 Games and minutes in the domestic competition (0.36 and 0.34), and goals and assists per 90 minutes (0.23 and 0.21)

 League rank is negatively correlated with the price

Exploratory Data Analysis

Minutes played in the Champions League vs Market Value

- Players in Attacking positions tend to have a higher values.
- Price does not seem to be affected by the duration played.

Fun Fact: NJR had one of the most expensive transfers in football history!

Clustering

KMeans

separated by their distance to each other

Agglomerative Clustering

starts with individual points, iteratively merges the closest clusters

DBSCAN

density-based, clusters of varying shape and size, identifies outliers as noise

Gaussian Mixture

probabilistic version of KMeans, dataset is made up of multiple Gaussians

Data Preparation

PowerTransformer

PCA

Ratio of Variance Explained:

```
[2.53925984e-01 1.33644396e-01 1.20561920e-01 1.19069409e-01 1.11180957e-01 8.02940907e-02 7.49434834e-02 5.90803093e-02 4.22277525e-02 1.79426821e-03 1.53381082e-03 1.19503850e-03 5.33295512e-04 1.21355531e-05 3.07921770e-06 7.02267801e-08
```

The first principal component 25.4% of the variance in the data, the second - 13.3%, the third - 12%, and so on.

KMeans Clustering

Silhouette Visualizer

KMeans Clustering

KMeans Clustering

3D Scatter Plots

Agglomerative Clustering

Dendrogram using Ward Linkage

Calinski-Harabasz Score

Agglomerative Clustering

DBSCAN

	no_of_clusters	silhouette_score	epsilon_values	minimum_points
0	21	0.123754	1.0	12
1	22	0.097304	1.0	14
2	18	0.080026	1.0	16
3	22	0.171897	1.1	12
4	21	0.162880	1.1	14
5	19	0.154562	1.1	16
6	22	0.191877	1.2	12
7	20	0.187766	1.2	14
8	17	0.188554	1.2	16
9	17	0.192461	1.3	12
10	16	0.182712	1.3	14
11	15	0.195867	1.3	16
12	7	0.287239	1.4	12
13	8	0.268507	1.4	14
14	9	0.234230	1.4	16
15	7	0.315194	1.5	12
16	8	0.303749	1.5	14
17	8	0.274046	1.5	16
18	8	0.318147	1.6	12
19	7	0.317981	1.6	14
20	7	0.315938	1.6	16

Gaussian Mixture

AIC/BIC

Silhouette Score

Calinski-Harabasz

Gaussian Mixture

Model Selection: Gaussian Mixture

Boxplots of Features

- There are observable differences across clusters for almost all features
- Goals, assists, minutes played, CL and EL minutes played are the features where clusters have significant differences
- Only clusters 2 and 4 have players who participated in the Champions League

Model Selection: Gaussian Mixture

	goals	assists	yellow_cards	red_cards	minutes_played	games_played	league_rank	adjusted_price	CL_minutes_played	CL_games_played
cluster										
0	1.158506	1.199850	3.603797	0.000000	1303.204222	18.135398	7.806395	3.264632e+06	0.000000	0.000000
1	2.043151	2.252740	4.821233	0.078767	1848.373288	26.180137	6.897945	9.341918e+06	0.000000	0.000000
2	3.088328	3.369085	6.722397	0.271293	2529.246057	35.763407	5.460568	2.089834e+07	313.776025	4.378549
3	1.410488	1.566004	4.428571	1.043400	1547.249548	21.258590	7.285714	3.776795e+06	0.000000	0.000000
4	2.408998	2.852761	4.753579	0.000000	1907.319018	27.693252	4.534765	2.376384e+07	360.126789	5.224949
	EL_min	utes_played	d EL_games_p	layed goal	ls_per_90 assists	_per_90 yellow:	s_per_90 reds	s_per_90 minute	s_per_game height	_in_cm age
cluste	r									
()	0.000000	0.00	00000	0.077073 0	.079369	0.259744 (0.000000	70.919790 180.4	440391 26.560580
•	1	314.615753	3 4.50	03425	0.094093 0	.104958	0.243763 (0.004427	68.738613 181.0	015394 26.260959
2	2	215.034700	3.0	75710	0.106576 0	.119277	0.240007	0.012357	69.306350 181.2	214511 26.971609
3	3	0.00000	0.00	00000	0.079424 0	.088072	0.273078 (0.076955	71.859753 180.6	558228 26.721519
	4	0.000000	0.00	00000	0.109625 0	.129396	0.234401 (0.000000	66.536462 181.0	056765 26.456033

Cluster Characteristics

Important

1460 players. score around 2 goals and give 2 assists in a season on average. important players in their teams, but may miss a few rounds. Their teams are usually not from top-3 leagues, but participate in the Europa League.

Key

317 players. Prefer attacking style. As compared to other clusters,, score more goals and give more assists, but also get yellow and red cards. Participate in most of the games, often play in the Champions League or the Europa League.

Enforcer

553 players. Sometimes score goals and give assists (but not very often). May miss some games during the season. Get yellow and red cards too often. Their teams do not usually qualify to European international tournaments and play in medium-level leagues.

Top

978 players. Score more goals and gives more assists than other clusters, get around 5 yellow cards but never get red cards. Pla 28 games on average in higher-level leagues. They participate in the Champions League but not in the Europa League.

Mid-Tier

8006 players. Most likely 'unremarkable'. Do not score a lot of goals or give assists, participate in some of the games, but not in most of them. Their teams play in lower-level leagues and do not usually participate in international club competitions.

Classification of Players' Playing Positions

Attackers, Midfielders, Defenders

Methodology

Class Imbalance

- There is a clear difference in the number of instances for each class. This could be due to difference in the number of players in each category
- However, there is no significant domination of one class over the other
- Include class balancing methods in the pipeline for each model during parameter tuning

Results

Model	Accuracy	Precision		Recall			F1			
KNN	68.0%	75%	68%	49%	82%	82%	28%	78%	75%	36%
Logistic Regression	70.1%	78%	69%	53%	83%	86%	28%	80%	77%	37%
Decision Tree	66.2%	74%	67%	47%	80%	79%	28%	77%	72%	35%
Random Forest	71.79%	79%	70%	51%	84%	87%	28%	81%	78%	37%

Findings

- The classification model in general perform decently
- They perform especially well for the 'attackers' but poorly for 'midfielders'
- Balancing classes doesn't seem to fix the issue
- 4. This could be due to the fact the there are minimal performance indicators that quantify the performance of a midfielder

Prediction of player's market value

Age: 18

Height: 5 ft 8 in

Position: Midfielder

Current team: Barcelona

Goals: 3

Games_played: 13

How much does he worth?

Methodology

Models

Random Forest Regressor

Polynomial Regression Model

Ridge

Lasso

Feature Selection

Features selected by SFS:

- 'goals'
- 'assists'
- 'games_played'
- 'league_rank'
- 'CL_minutes_played'
- 'CL_games_played'
- 'EL_minutes_played'
- 'minutes_per_game'
- 'age'
- 'Midfield'

Targeted variable:

'adjusted_price'

Results

	Polynomial Regression Model (degree=3)	Random Forest Regressor	XGBoost	Ridge	Lasso	
Training MSE	49111194845065.695	39702721998524.586	21345341079028.234	79337967276423.03	79337078419326.61	
Testing MSE	52749101598593.016	51278113964524.7	50691270912746.78	77114038180465.47	77118708271844.56	
Training R-squared	0.6717	0.7346	0.8573	0.4696	0.4696	
Testing R-squared	0.6484	0.6582	0.6621	0.4860	0.4859	

Key Findings & Takeaways

- There are 5 identifiable clusters of midfielders, basically distinguished by number of goals & assists, participation in the international tournaments. The clustering logic also fits the market value differences
- Most of the classifiers perform well, but decision tree performs the best with 72% accuracy. All the classifiers seem to have trouble classifying the minority class 'Midfielders', which was improved by using class balancing techniques. This might be due to lack of quantitative performance metrics for that class, and including this data into the data would result in more precise and accurate classifications.
- The selected features in prediction model demonstrated ideal R-squared value of approximately 65%. While features including goals, assist, time played are straightforward, adding additional performance metrics can potentially help even more precise prediction

Future Work

• Include more performance metrics (successful tackles, key passes, pass accuracy, distance covered, clearances, blocks, clean sheets, etc.)

Q & A

Thank You!

Resources

- 1. https://www.flaticon.com/free-icon/crown 2385865
- 2. https://www.flaticon.com/free-icon/slider_983738?term=parameter&page=1&position=9&origin=search&related_id=983738
- 3. Slides.go, https://slidesgo.com/faqs