- Module 6 - Model Assessment and Selection II

Outline

- Cross-Validation
 - \triangleright K-fold Cross-Validation
 - Leave-one-out Cross-Validation
- Learning Curves

Generalization

• The <u>central challenge</u> in <u>machine learning</u> is that the algorithm must <u>perform well</u> on <u>new</u>, <u>previously unseen inputs</u> and <u>not just</u> the training data on which the model was trained

A hypothesis h with a low error rate on the training set (observed data) does not mean that it will generalize well to unseen data

[Source: The Elements of Statistical Learning, ISBN: 978-0387848570]

- In general, as the <u>model complexity increases</u>, the <u>bias</u> tends to decrease and the variance tends to increase
- The <u>goal</u> is to choose the <u>model complexity</u> to <u>trade</u> <u>bias</u> off with <u>variance</u> in such a way so as to **minimize** the **prediction error** for unseen data

Model Selection and Assessment (1)

- Recall in machine learning, there are two goals:
 - Model selection: estimating the performance of different models (or different model complexities) in order to choose the best one
 - Model assessment: having chosen a final model, estimating its prediction error on new data
- If the <u>model</u> (and its <u>complexity</u>) to <u>use</u> is already known → only model assessment is needed

Model Selection and Assessment (2)

• If the <u>model</u> (and its <u>complexity</u>) to <u>use</u> is <u>not known</u>

→ need both model selection and model assessment

Assess selected model on test set

Evaluating and Choosing the Best Hypothesis (1)

- We want to $\underline{\text{learn}}$ a $\underline{\text{model}}$ (or $\underline{\text{hypothesis}}$ h), that $\underline{\text{fits}}$ the $\underline{\text{future data}}$ $\underline{\text{best}}$
- Assumptions:
 - future data stationarity:
 - there is a probability distribution over <u>samples</u>
 (i.e., parameters such as <u>mean</u> and <u>variance</u>) that remains <u>stationary</u> (do not change) <u>over time</u>
 - best fit:
 - the **error rate** of a <u>hypothesis</u> is defined as the <u>proportion</u> of <u>mistakes</u> it makes (i.e., the proportion of times that $\hat{y} \neq y$ for a (x,y) sample)

Evaluating and Choosing the Best Hypothesis (2)

- To get an <u>accurate evaluation</u> of a <u>hypothesis</u>, we need to <u>test</u> it on a set of <u>samples</u> that it has <u>not seen</u> yet. The <u>simplest approach</u>, sometimes called **holdout** cross-validation, is one we have already seen
 - (randomly) split the available data into
 - a $\underline{\text{training set}}$ from which the $\underline{\text{learning algorithm}}$ $\underline{\text{produces}}$ h
 - a $\underline{\text{test set}}$ on which the $\underline{\text{accuracy}}$ of h is $\underline{\text{evaluated}}$ (CAUTION: $\underline{\text{NEVER}}$ use $\underline{\text{test set}}$ to $\underline{\text{train your model}}$)
 - However, holdout cross-validation has the disadvantage that it fails to use all the available data
 - if we <u>use half the data</u> for the <u>test set</u>, then we are only training on half the data
 - → may get a poor hypothesis
 - if we reserve only 10% of the data for the test set
 - → may get a poor estimate of the actual accuracy

Cross-Validation (1)

- <u>Dividing</u> a <u>dataset</u> into a <u>fixed training set</u> and a <u>fixed validation set</u> can be <u>problematic</u> when the given dataset is small
 - → results in the validation set being too small
 - → a small validation set is unable to accurately estimate the prediction error
- A <u>widely used method</u> for <u>estimating</u> prediction error is **cross-validation**
 - a <u>procedure</u> that <u>repeats</u> <u>training</u> and <u>validation</u> on <u>different</u> (randomly chosen) <u>subsets</u> of the original training set
 - incurs increased computational cost
 - → K-fold cross-validation
 - → leave-one-out cross-validation (LOOCV)

Cross-Validation (2)

- $\underline{\textit{K-fold cross-validation}}$ allows us to $\underline{\textit{make more}}$ out of the $\underline{\textit{data}}$ and still get an accurate estimate
 - the $\underline{\text{idea}}$ is that each $\underline{\text{sample}}$ serves $\underline{\text{double-duty}}$: as $\underline{\text{training set}}$ and $\underline{\text{validation set}}$

- Typical values for K are K=5 and K=10
 - enough to give an <u>estimate</u> that is <u>statistically</u> likely to be accurate
 - but at a cost of K times longer computation time
- The extreme is K=N, where N is the number of samples in the training set, known as leave-one-out cross-validation

Cross-Validation (3)

• K-fold cross-validation:

- sub-divide the training set into K non-overlapping subsets of equal size (e.g., K=5)
- perform K trials of learning on trial k,
 - all subsets except the k-th subset is used as the $\frac{\texttt{training set}}{\texttt{to train the model}}$
 - the $\underline{k-\text{th subset}}$ is used as the $\underline{\text{validation set}}$ to $\underline{\text{evaluate}}$ the trained model
- the cross-validation estimate of prediction error of the given model is the average of the cross-validation estimates across K trials
 - lacktriangledown it is <u>expected</u> that the <u>average cross-validation estimate</u> of the K <u>trials</u> should be a <u>better estimate</u> than that from a single trial

Cross-Validation (4)

- Specifically, for a p-th <u>degree polynomial</u> regression
 - divide the training set into K equal subsets
 - for each k = 1, 2, ..., K
 - train the model with complexity p on the K-1 subsets (training set) with k-th subset removed, to obtain the least squares estimate, $\hat{\beta}^{-k}$
 - evaluate the trained model using $\hat{\beta}^{-k}$ on the k-th subset (validation set) to obtain cross-validation estimate, Err_{CV}^k (which can be mean absolute error (MAE), root mean squared error (RMS), etc.)
 - compute the average cross-validation estimate, $\mathit{Err}_{\mathit{CV}}$, across k

$$Err_{CV} = \frac{1}{K} \sum_{k=1}^{K} Err_{CV}^{k}$$

Cross-Validation (5)

- To select and assess the final model complexity p (for p-th degree polynomial regression model)
 - Final model selection:
 - repeat the K-fold cross-validation for different values of p
 - ullet select the <u>value</u> of p that gives the <u>smallest</u> $\mathit{Err}_{\mathit{CV}}$
 - Final model assessment:
 - $\underline{\text{train final model}}$ with $\underline{\text{selected complexity}}$ p on $\underline{\text{all}}$ of the training set (training set + validation set)
 - evaluate trained model on the test set to obtain the
 final prediction error

Learning Curves (1)

• The learning curve for a $\underline{\text{model}}$ is a $\underline{\text{plot}}$ showing the $\underline{\text{training error}}$ and the $\underline{\text{cross-validation estimate of prediction}}$ $\underline{\text{error}}$ as a $\underline{\text{function of}}$ the $\underline{\text{number of samples}}$ N in the $\underline{\text{training set}}$

- The <u>learning curve</u> plot is a useful <u>tool</u> to <u>diagnose</u>
 <u>bias and variance</u> and can help <u>determine</u> whether a <u>model</u> is
 underfitting (low complexity) or overfitting (high complexity)
- More importantly, a <u>learning curve</u> can also provide <u>insight</u> as to whether <u>more samples</u> need to be <u>collected</u>

Learning Curves (2)

 $gap = cross_validation\ estimate\ - training\ error$

- Ideally, a model with low bias and low variance is desired
 - for high complexity models (low bias), the <u>cross-validation</u> estimate could converge towards the <u>training error</u> (low variance) if <u>more training samples</u> were <u>added</u> (i.e., increase N)