Column-Oriented Databases

Exploiting Vertical Fragmentation to the Extreme

Column-Oriented Databases

- Meant to accelerate read-only workloads
 - Use, to the extreme, of vertical partitioning
 - Do not allow variable record sizes and apply efficient compression techniques
 - Specific query processing techniques assuming the items above
 - In-memory query processing
- Recall the limitations yielded by vertical partitioning when reconstructing the original tuples
 - As such, these DBs are meant for read-only databases
 - Extremely inefficient in front of write-intensive database workloads

Column-Oriented Databases: Types

- Column-oriented DBs are inherently aligned with decisional systems
 - A <u>must</u> for Data Warehousing! ~ Terabytes
 - A <u>must</u> for read-only Big Data Systems ~ Petabytes
- Two main types:
 - Relational Column-Oriented DBs (aka NewSQL)
 - First system: C-Store
 - Industrial examples: MonetDB, HP Vertica, SAP Hana, Oracle in-memory column store, MariaDB ColumnStore, PostgreSQL Zedstore... in general, ANY relational database provides, in one way or another, a columnar engine
 - Column-Oriented NOSQL databases
 - Apache Druid (first OLAP-like NOSQL engine) first non-relational column-oriented DB
 - Hadoop Ecosystem
 - Apache Parquet and Apache Arrow file-formats for HDFS
 - Apache Kudu
 - Google BigQuery (former Dremel)
 - Amazon Redshift (former DynamoDB).

In general, most Cloud Providers provide a column-oriented PaaS

NOTE: Many classify Apache HBase as a column-oriented DB. IT IS NOT. HBase applies a hybrid partitioning strategy with horizontal partiotining as its primary partitioning strategy. Therefore, it cannot apply to its whole the optimizations for query processing

Column-Oriented Databases: Features

- Column-Oriented Specific Features:
 - Data model
 - Pure Vertical Partitioning
 - Tuples are identified by their position (no PK needed to be replicated in each fragment)
 - Multiple sorting of data (if needed, different in each replica)
 - Remove variable size records and work with fix-sized records (dictionaries or bitmaps needed)
 - Column-specific compression techniques
 - Specific query processing
 - Late materialization: apply as many processing operators to the vertical fragments before joining them
 - Block iteration: exploit the fix-sized records to process data per blocks
 - Vectorized query processing: when late materialization and block iteration are combined
 - Specific join algorithms (e.g., invisible join) exploiting the previous items

Data Model: Vertical Partitioning

Most column-oriented DBs create a fragment per column

Table T

Α	В	С
Bravo	Lleida	А
Bravo	BCN	А
null	Girona	А
null	Lleida	E
null	Vic	С
Charlie	Salt	E
Charlie	BCN	Е
Charlie	BCN	А

Data Model: Vertical Partitioning

Most column-oriented DBs create a fragment PER column

Table T (partitioned)

A
Bravo
Bravo
null
null
null
Charlie
Charlie
Charlie

В		
Lleida		
BCN		
Girona		
Lleida		
Vic		
Salt		
BCN		
BCN		

С
А
А
А
E
С
E
E
А

• Relevantly, some DBs allow to define groups of columns

Data Model: Compression

- Each column is not store as a regular file, but as a compressed file
- In these DBs, the compression main objective is not reducing data space but reducing I/Os
 - Yet, data in columnar format is more compressible than data stored in rows
 - High data value locality (less value entropy)
 - Benefits from sorting
- Two main trends
 - Heavy weight compression algorithms (e.g., Lempel-Ziv)
 - In general, not that useful but it might be if there is a (huge) gap between memory bandwidth and CPU performance
 - Lightweight compression (e.g., Run-Length Encoding) may allow the query optimizer work directly on compressed data
 - Improves performance by reducing CPU cost
 - Decompression is needed in front of bitwise AND / OR

Data Model: Lightweight Compression

- Mainly based on dictionaries or bitmaps
- Example of Run-length Encoding (with dictionary)

Data Model: Lightweight Compression

- Mainly based on dictionaries or bitmaps
- Example of Run-length Encoding (with dictionary)

Data Model: Reconstructing Records

- From each table, 3*N vectors are generated (N=#attributes)
- To reconstruct the original tuple, the original vertical fragmentation strategy used the PK
- Alternatively, in column-oriented DBs each record has the same position in all the columns (vectors) created from that table
 - Thus, column-oriented DBs do not join fragments to reconstruct the record
- Relevantly, a certain order might benefit a column and harm another
 - If necessary, in the presence of replicas, each replica might use a different order (the order must be the same for all fragments of a table in a given replica)

Activity: Data Model (I)

- Objective: Understand Run-Length Encoding
- Tasks:
 - 1. (15') Apply the Run-Length Encoding for the table in the next slide (dictionary-based + Ending-Row Index)

For this exercise, do not play with the order of the rows. Use the one given. At the end, identify those columns where a different order might have generated a more compact representation

1. (5') Think tank

Activity: Data Model (I)

BookID	Date	Price	#ItemsBought
1	1/01/2012	19,99	1
99	1/01/2012	9,99	1
301	2/01/2012	19,99	1
44	2/01/2012	9,99	1
56	2/01/2012	9,99	1
1	2/01/2012	19,99	1
77	3/01/2012	9,99	2
8	3/01/2012	19,99	1
78	3/01/2012	9,99	1
10	3/01/2012	19,99	1

Data Model: Create Vertical Partitioning

- Creating a fragment per column, in general, is suboptimal. Thus, most advanced DBs allow the user to define partitions (each, potentially, as a set of columns)
- In these cases, finding the optimal vertical partitioning is a problem that must take into account the query workload
 - Identify correlations in the query workload and group those columns with high *affinity* (i.e., frequently queried together)
 - For m non-key attributes the search space is B(m), i.e., the *mth* Bell number, which counts the possible partitions of a set of m elements
 - For large numbers, $B(m) \approx m^m$
- Two main approaches to compute the optimal partitioning
 - Grouping
 - Attribute affinity matrix
 - Clustering algorithms
 - ..
 - Splitting
- [RECAP] Partitioning must guarantee
 - Completeness
 - Disjointness
 - Reconstruction

Data Model: Create Vertical Partitioning

- Creating a fragment per column, in general, is suboptimal. Thus, most advanced DBs allow the user to define partitions (each, potentially, as a set of columns)
- In these cases, finding the optimal vertical partitioning is a problem that must take into account the query workload
 - Identify correlations in the query workload and group those columns with high *affinity* (i.e., frequently queried together)
 - For m non-key attributes the search space is B(m), i.e., the *mth* Bell number, which counts the possible partitions of a set of m elements
 - For large numbers, $B(m) \approx m^m$
- Two main approaches to compute the optimal partitioning
 - Grouping
 - Attribute affinity matrix
 - Clustering algorithms
 - ..
 - Splitting
- [RECAP] Partitioning must guarantee
 - Completeness
 - Disjointness ((for the sake of performance, some DBMS might sacrifice it)
 - Reconstruction

Example

Schema:

```
Compres(<u>llibreId<sup>FK</sup></u>, <u>date</u>, preu, numUnitats)
Llibre(llibreId, autor, any, editorial, ISBN)
```

Queries:

```
SELECT llibreId, SUM(numUnitats) FROM compres c, llibre l
WHERE c.llibreId = 1.llibreId AND editorial = 'RBA'
GROUP BY llibreId

SELECT editorial, AVG(preu) FROM compres c, llibres l
WHERE c.llibreId = 1.llibreId
GROUP BY editorial

SELECT AVG(numUnitats) FROM compres c
WHERE date BETWEEN '01/01/xxxx' AND '31/12/XXXX'
GROUP BY llibreID

SELECT autor, any, COUNT(*) FROM llibre l
GROUP BY autor, any
```


- Algorithm:
 - 1. For each relation, generate the **attribute usage matrix**

Compres

	llibreId	date	preu	numUnitats
Q1	1	0	0	1
Q2	1	0	1	0
Q3	1	1	0	1
Q4	0	0	0	0

Now, create the attribute usage matrix for *Llibre*

- Algorithm:
 - 2. For each relation, generate the attribute affinity matrix
 - Consider Q1 frequency is 50%, Q2 10%, Q3 30%, Q4 10%
 - For a pair of attributes A_i, A_i, compute its affinity by adding up all the frequencies in which they appear together

	llibreId	date	preu	numUnitats		llibreId	date	preu	numUnitats
Q1	1	0	0	1	llibreId	90	30	10	80
Q2	1	0	1	0	date	30	30	0	30
Q3	1	1	0	1	preu	10	0	10	0
Q4	0	0	0	0	numUnitats	80	30	0	80

Step 1 Output: Query-Attribute Usage Matrix

Step 2 Output: Query-Attribute Affinity Matrix

Now, create the attribute affinity matrix for *Llibre*

- Algorithm:
 - 3. For each matrix, reorganize the attribute orders to form clusters where the attributes in each cluster show high affinity to one another

	llibreId	numUnitats	preu	date
llibreId	90	80	10	30
numUnitats	80	80	0	30
preu	10	0	10	0
date	30	30	0	30

Now, do the same for *Llibres*

- Output:
 - P1: LlibreID, numUnitats
 - P2: Preu
 - P3: Date
- Assess the result: compute the effective read ratio
 - For each query, for each partition it must read, compute the following ratio:

$$\#Atr(Q_j, P_i)/\#Atr(P_i)$$

Where $\#Atr(Q_j, P_i)$ means the number of attributes Q_j must read from P_i and $\#Atr(P_i)$ is the total number of attributes in P_i

• Example: RR (Q_1, P_1) : 2/2 = 1

Data Processing: Late Materialization

• Tuple reconstruction can be done at the beginning or at the end of the query

- Advantages of reconstructing the tuple at the end:
 - Some tuples do not need to be constructed (because of selections and projections)
 - Some columns remain compressed more time
 - Cache performance is improved (kept at column level)
 - Helps block iteration for values of fixed length columns

Data Processing: Block Iteration

- Blocks of values of the same column are passed to the next operation in a single function call
- Values inside the block can be:
 - Iterated as in an array (fixed-width)
 - Remain compressed together
 - Not necessarily using multiples of 8 bits
 - Counting or even identifying the tuples for which the predicate is true
 - Exploits parallelism / pipelining

1	1
4	0
7	2

Ending Dictionary Row positions Index

Summary

- Advantages of column-oriented databases
 - Bring into memory only relevant data
 - Provide fewer and simpler internal functions
 - Easier to recognize all execution strategies
 - Simpler tuning required by users
- Pioneers: Daniel Abadi & Michael Stonebraker (M.I.T.)
 - C-Store (blueprint)
 - MonetDB (academic edition, open-source)
 - http://www.monetdb.org/Home
 - Vertica (commercial version, bought by HP)
 - http://www.vertica.com/

