# Radioactivity

### 1 Rutherford Scattering

### 1.1 The plum pudding model



The plum pudding model was the initial model of the atom, stating a sphere of positive charge with electrons embedded into it.

#### 1.2 Rutherford's experiment



Rutherford's experiment involved firing a beam of alpha particles at gold foil and measuring the paths of particles from the foil.

- Gold was used as it was expected to have a large nucleus
- The screen fluoresces when collided with
- This showed the atom was mostly empty space with a positive nucleus

#### 1.2.1 Results



| Observation             | Explanation             |  |  |
|-------------------------|-------------------------|--|--|
| Most electrons pass all | Atoms are mostly        |  |  |
| the way through         | empty space             |  |  |
| Some are deflected      | The atom has a positive |  |  |
|                         | centre                  |  |  |
| Some are deflected by   | The positive charge is  |  |  |
| I .                     |                         |  |  |
| significant angles      | condensed in a small    |  |  |

# 1.3 Estimating the size of the nucleus

#### 1.3.1 Closest approach method



KE=EPE

$$8.0 \times 10^{-13} = \frac{1}{4\pi\epsilon_0} \times \frac{Q_{Au}}{r} \times Q_{\alpha}$$
$$r = 4.55 \times 10^{-14}$$

#### 1.3.2 Estimate from scattering data

- $\bullet$  About  $\frac{1}{10,000}$  deflected through more than  $90^\circ$
- Foil had n layers of atoms



 $n = 10^4$  layers

$$\frac{\frac{1}{4}\pi d^2}{\frac{1}{4}\pi D^2} = \frac{d^2}{D^2} = \frac{1}{10,000n}$$

$$\frac{d^2}{D^2} = \frac{1}{10,000 \times 1 \times 10^4}$$
 
$$d = \frac{D}{10,000}$$

### 2 Radioactive materials

### 2.1 Sources of background radiation by most common

- 1. Air (e.g. radon gas)
- 2. Medical
- 3. Ground and buildings
- 4. Food and drink
- 5. Cosmic rays
- 6. Nuclear weapons
- 7. Air travel
- 8. Nuclear power

#### 2.2 Geiger Müller tube



When a particle of ionising radiation enters the tube, the particle ionises the gas atoms along its track. The negative ions are attracted to the rod and the positive ions to the wall. These ions cause further ionisation, creating enough ions for a current to flow. A pulse of charge passes round the circuit through resistor R, causing the voltage pulse across R which is recorded as a single count by the pulse counter

The dead time of the tube, the time taken to regain its non conducting state after an ionising particle enters it, is typically of the order of 0.2ms.

# 3 Radioactive decay

|                                | Alpha                | Beta                           | Gamma                     |
|--------------------------------|----------------------|--------------------------------|---------------------------|
| Nature                         | 2 Protons+2 Neutrons | High speed electron or         | High energy photon        |
|                                |                      | positron                       |                           |
| Range                          | Up to 10cm           | Up to 1m                       | Infinite                  |
| Deflection in a magnetic field | Deflected            | Opposite direction to $\alpha$ | Not deflected             |
|                                |                      | particles and more easily      |                           |
|                                |                      | deflected                      |                           |
| Absorption                     | Paper                | Aluminium                      | Lead                      |
| Ionisation                     | $10^4$ ions per mm   | 100 ions per mm                | Very weak ionising effect |
| Energy of each particle        | Constant for a given | Varies up to a maximum         | Constant for a given      |
|                                | source               | for a given source             | source                    |

#### 3.1 $\alpha$ Decay

$$^{238}_{92}U \rightarrow ^{4}_{2} \alpha + ^{234}_{90}Th$$

#### 3.2 $\beta^-$ Decay

Neutron to proton and  $\beta^-$  particle

$$^{14}_{6}C \rightarrow^{0}_{-1} \beta +^{14}_{7} N$$

### 3.3 $\beta^+$ Decay

Proton to neutron and  $\beta^+$ 

#### 3.4 Electron Capture

 $Proton{+}Electron{\rightarrow} Neutron$ 

#### 3.5 Gamma Emission

No change to the structure of the nucleus.

Often follows alpha or beta emission. Daughter nucleus can be in an excited state. It emits gamma radiation as it returns to its ground state.

#### 3.6 NZ Plot



#### 3.7 Half life

The half life of a radioactive substance is the time taken for half the atoms in the sample to decay.

The rate of decay  $\propto$  The number of nuclei left

$$-\frac{\Delta N}{\Delta t} \propto N$$

The LHS of this equation is called the activity and has units Bq

$$-\frac{\Delta N}{\Delta t} = \lambda N$$

The solution to this equation

$$N = N_0 e^{-\lambda t}$$

This can also be written as:

$$\frac{N}{N_0} = e^{-\lambda t}$$

#### 3.7.1 Linking the formula to half life

After a time, t= $T_{\frac{1}{2}}$  the fraction remaining is 0.5.

$$0.5 = e^{-\lambda t}$$

$$ln(2) = \lambda t$$

$$t = \frac{\ln(2)}{\lambda}$$

 $\lambda t$  is a "Pure Number". As long as the same units are used for both, you can use any unit of time.

 $\lambda$  is the fraction of nuclei decaying per unit time or the probability of an individual nucleus decaying per second. As N is proportional to Activity, Mass and Count Rate N can be replaced with any of these in the formula.