

Kapitel 9

Analyse Randomisierter Algorithmen

für Erfüllbarkeitsprobleme

Effiziente Algorithmen, SS 2018

Professor Dr. Petra Mutzel

VO 15/16 am 7./12. Juni 2018

Übersicht

- I. Effiziente Graphalgorithmen
 - 2 Starke Zusammenhangskomponenten
 - 3 Matching-Probleme
 - 4 Maximale Flussprobleme
 - 6 Amortisierte Analyse
 - 6 Minimale Schnitte
- II. Approximationsalgorithmen
 - Rucksackproblem, Bin Packing Problem
 - 8 Traveling Salesman Problem
 - 9 Erfüllbarkeitsprobleme
 - Schnittprobleme

Design-Techniken im Verlauf der Vorlesung

- 1 Die Greedy-Methode: Rucksackproblem (Kap. 7)
- 2 Dynamische Programmierung: Rucksackproblem (FPTAS) (Kap. 7)
- 3 Inkrementelle Algorithmen für Partitionsprobleme: Bin Packing Problem (Kap. 7)
- Spezielle, problemabhängige Verfahren: Traveling Salesman Problem (Kap. 8)
- 5 Zufalls-basierte Verfahren (Kap. 9, Kap. 10)
- 6 LP-basierte Verfahren: MaxSAT (Kap. 9)
- 7 Lokale Suchverfahren: Max Cut (Kap. 10)

9.1 Analyse Randomisierter Algorithmen

Erinnerung Turingmaschine (TM)
randomisierte Turingmaschine

Annahme Algorithmus und Eingabe fest

klar bei deterministischer TM
Rechenweg fest
Rechenzeit = Länge des Rechenweges

Erinnerung bei randomisierter TM

 ${\sf Baum}\ T\ {\sf m\"{o}glicher}\ {\sf Rechenwege}$

Kanten gewichtet mit Wahrscheinlichkeiten

erwartete Rechenzeit $\mathsf{E}\left(T\right) = \sum_{v \in \mathsf{PL}(v)} \mathsf{Tiefe}(v) \cdot \mathsf{Prob}\left(v\right)$

erwartete Rechenzeit $\mathsf{E}\left(T\right) = \sum_{v \; \mathsf{Knoten}} \mathsf{Prob}\left(v\right)$

Petra Mutzel VO 15/16 am 7./12. Juni 2018

Über Zufallsexperimente

in GTI/TIfAI randomisierte TM mit fairen Münzwürfen

hier beinahe beliebige Zufallsexperimente

erforderlich Wahrscheinlichkeitsverteilung approximierbar mit polynomiell wenigen Münzwürfen

klar für genaue Rechenzeit Details wichtig

hier Zufallsexperiment in konstanter Zeit

Petra Mutzel

Ein Miniatur-Beispiel

Sei $p \in]0;1[$ fest.

- 1. Mit Wahrscheinlichkeit p setze z := 0Sonst setze z := 1
- 2. If z = 0 Then Weiter bei 1.

Festlegung ein Durchlauf Zeilen 1–2 ≈ 1 Rechenschritt

Petra Mutzel VO 15/16 am 7./12. Juni 2018

Bestimmung von E(T)

1. Möglichkeit Summation über die Blätter

$$\begin{split} \mathsf{E}\left(T\right) &= \sum_{d=1}^{\infty} d \cdot p^{d-1} \cdot (1-p) = (1-p) \cdot \sum_{d=1}^{\infty} d \cdot p^{d-1} \\ &= (1-p) \cdot \left(\sum_{d=1}^{\infty} \sum_{i=d}^{\infty} p^{i-1}\right) = (1-p) \cdot \left(\sum_{d=1}^{\infty} \sum_{i=d-1}^{\infty} p^{i}\right) \\ &= (1-p) \cdot \left(\sum_{d=1}^{\infty} \left(\sum_{i=0}^{\infty} p^{i} - \sum_{i=0}^{d-2} p^{i}\right)\right) \\ &= (1-p) \cdot \left(\sum_{d=1}^{\infty} \left(\frac{1}{1-p} - \frac{1-p^{d-1}}{1-p}\right)\right) \\ &= \sum_{d=1}^{\infty} p^{d-1} = \sum_{d=0}^{\infty} p^{d} = \frac{1}{1-p} \end{split}$$

Petra Mutzel VO 15/16 am 7./12. Juni 2018

Bestimmung von E(T)

2. Möglichkeit Summation über die Knoten

$$\begin{split} \mathsf{E}\left(T\right) &= \sum_{d=1}^{\infty} ((1-p) \cdot p^{d-1} + p^d) = \sum_{d=1}^{\infty} (p^{d-1} - p^d + p^d) \\ &= \sum_{d=0}^{\infty} p^d = \frac{1}{1-p} \end{split}$$

klar war sowieso: Rechenzeit = #Versuche bis Ereignis "1-p"

somit Wartezeit geometrisch verteilt, Parameter 1-p

also
$$\mathsf{E}\left(T\right) = \frac{1}{1-p}$$

MERKE: Laufzeit E(T) ermittelbar, auch wenn Algorithmus theoretisch unendlich lange laufen kann

2. Beispiel: Zufällige Wahl einer Teilmenge

Beobachtung 1 ist enthalten mit Wahrscheinlichkeit 1/49 + (48/49)(1/48) + (48/49)(47/48)(1/47) + ... = 6/49

1. (seltsame) Idee $\,$ wenn feststeht, ob 1 enthalten $\,$ falls 1 enthalten 2 mit W'keit 5/48 enthalten $\,$ sonst $\,$ 2 mit W'keit $\,$ 6/48 enthalten

Algorithmus 1 (seltsam)

- 1. n := 49; k := 6; i := 1
- 2. Repeat
- 3. Mit W'keit k/n: gib i aus und setze k := k-1
- 4. i := i + 1; n := n 1
- 5. Until k = 0

Korrektheit: gibt immer 6 Zahlen aus

Festlegung T = Rechenzeit = i - 1 am Ende des Algorithmus

$$\mathsf{klar} \quad \mathsf{E}\left(T\right) = \sum_{t=0}^{\infty} t \cdot \mathsf{Prob}\left(T = t\right)$$

Beobachtung gibt Zahlen sortiert aus: die größte als letztes Festlegung $M={
m gr\"{o}}$ ßte ausgegebene Zahl

Petra Mutzel VO 15/16 am 7./12. Juni 2018

- n := 49: k := 6: i := 1
- 2. Repeat
- 3. Mit W'keit k/n: gib i aus und setze k := k-1
- i := i + 1: n := n 1
- Until k=05.

Festlegung T = Rechenzeit = i - 1 am Ende des Algorithmus Festlegung M = gr"oßte ausgegebene Zahl

$$\begin{split} \mathsf{E}\left(T\right) &= \sum_{m=6}^{49} m \cdot \mathsf{Prob}\left(M=m\right) = \sum_{m=6}^{49} m \cdot \frac{\binom{m-1}{5}\binom{1}{1}}{\binom{49}{6}} \\ &= \frac{300}{7} \approx 42{,}857 \end{split}$$

Petra Mutzel VO 15/16 am 7./12. Juni 2018

Kritische Rückschau

klar Problem und Algorithmus verallgemeinerbar auf beliebige $n \in \mathbb{N}$ und $k \in \{1, 2, \dots, n\}$

dann $\mathsf{E}\left(T\right)$ für Algorithmus 1 vielleicht zu groß für sehr große n

Anmerkung wenn Zufallsexperimente teuer weniger Zufallsexperimente wünschenswert

hier Algorithmus 2 für n=49 und k=6 zum Vergleich

Algorithmus 2 deutlich besser

- 1. Für $i \in \{1, 2, \dots, 49\}$ setze a[i] := 0.
- 2. Für $k \in \{1, 2, \dots, 6\}$
- 3. Repeat
- 4. Wähle $z \in \{1, 2, \dots, 49\}$ uniform zufällig.
- 5. Until a[z] = 0
- 6. a[z] := 1
- 7. Für $i \in \{1, 2, \dots, 49\}$
- 8. If a[i] = 1 Then Ausgabe i

Beobachtung Laufzeit $\Omega(n)$

Festlegung Z = # Zufalls experimente

Beobachtung für k im E-Wert $\frac{49}{49-(k-1)}$ Zufallsexp.

$$\mathsf{E}(Z) = \sum_{k=1}^{6} \frac{49}{49 - (k-1)} = 1 + \frac{49}{48} + \frac{49}{47} + \frac{49}{46} + \frac{49}{45} + \frac{49}{44} \approx 6,33$$

Algorithmus 3 elegant und gut

- $1. \qquad \mathsf{F\"{u}r} \; i \in \{1,2,\ldots,49\} \; \mathsf{setze} \; a[i] := i.$
- 2. Für $k \in \{1, 2, \dots, 6\}$
- 3. Wähle $z \in \{k, k+1, \dots, 49\}$ gemäß Gleichverteilung zufällig.
- 4. Vertausche a[k] und a[z].
- 5. Für $k \in \{1, 2, \dots, 6\}$
- 6. Ausgabe a[i]

Beobachtung Rechenzeit $\Theta(n)$

Rechenzeit Anzahl Zufallsexperimente = k

9.2 Approximationsalgorithmen für MAX-k-SAT

```
SAT Eingabe m Klauseln c_1, c_2, \ldots, c_m über n Variablen x_1, x_2, \ldots, x_n Klausel: Disjunktion über Literale (z. B. c_j = x_3 \vee \overline{x_5} \vee \overline{x_7} \vee x_9) zulässige Lösungen Belegungen b \in \{0,1\}^n der n Variablen Bewertung Anzahl durch b erfüllter Klauseln
```

klar

- SAT $\in \mathcal{NPO}$
- zugehöriges Entscheidungsproblem NP-vollständig

MAXSAT und MAX-k-SAT

Festlegung Optimierungsvariante von SAT heißt MAXSAT

Festlegung Klausel, in der keine Variable mehrfach vorkommt,

heißt reduziert

Festlegung MAXSAT-Instanz mit ausschließlich reduzierten Klauseln

heißt reduziert

ab jetzt nur noch reduzierte Instanzen

Festlegung Anzahl Literale einer Klausel heißt Länge

Festlegung MAXSAT-Instanz, in der alle Klauseln Länge = k haben,

heißt MAX-k-SAT-Instanz

MAX-k-SAT approximieren

Fakten

- k-SAT NP-vollständig für $k \in \mathbb{N} \setminus \{1, 2\}$
- 2-SAT ∈ P
- MAX-k-SAT NP-schwierig für $k \in \mathbb{N} \setminus \{1\}$
- MAX-2-SAT NP-schwierig

Algorithmus 9.1

- 1. Für $i \in \{1, 2, \dots, n\}$
- 2. Mit W'keit 1/2 setze b[i] := 0 sonst setze b[i] := 1.
- 3. Ausgabe b

Theorem 9.2

Algorithmus 9.1 hat Laufzeit $\Theta(n)$ und erfüllt im Durchschnitt $\left(1-2^{-k}\right)\cdot m$ aller Klauseln einer reduzierten MAX-k-SAT-Instanz mit m Klauseln.

Beweis von Theorem 9.2

Laufzeit $\sqrt{}$

Definiere ZV
$$X_i = \begin{cases} 1 & b \text{ erfüllt } c_i \\ 0 & \text{sonst} \end{cases}$$

klar
$$X = \sum_{i=1}^{m} X_i$$

$$\begin{split} \mathsf{E}\left(X\right) &= \mathsf{E}\left(\sum_{i=1}^{m} X_i\right) = \sum_{i=1}^{m} \mathsf{E}\left(X_i\right) = \sum_{i=1}^{m} \mathsf{Prob}\left(X_i = 1\right) \\ &= \sum_{i=1}^{m} \mathsf{Prob}\left(b \; \mathsf{erfüllt} \; c_i\right) \end{split}$$

Erfüllen einer MAX-k-SAT-Klausel

Wir haben
$$X = \# \text{durch } b \text{ erfüllte Klauseln}$$

$$\mathsf{E}\left(X\right) = \sum_{i=1}^m \mathsf{Prob}\left(b \text{ erfüllt } c_i\right)$$

Betrachte MAX-k-SAT-Klausel c_i klar c_i hat Länge k

Beobachtung c_i enthält k verschiedene Variablen weil c_i reduziert

Betrachte alle 2^k Teilbelegungen für c_i Beobachtung genau 1 Belegung erfüllt c_i nicht also $\operatorname{Prob}\left(b \text{ erfüllt } c_i\right) = \frac{2^k-1}{2^k} = 1 - \frac{1}{2^k}$ also $\operatorname{E}\left(X\right) = \left(1-2^{-k}\right) \cdot m$

Vom randomisierten Algorithmus zur Approximation

Erinnerung c-Approximation

liefert deterministisch in Polynomialzeit

Lösung mit Güte $\leq c$

Können wir aus Algorithmus 9.1 c-Approximation machen?

Begriff systematische Überführung randomisiert → deterministisch heißt Derandomisierung

Derandomisierung von Algorithmus 9.1

Erinnerung
$$b$$
 wird von links nach rechts belegt also $p_i := \operatorname{Prob} (b[i] = 1)$ immer $\in \{0, 1/2, 1\}$
$$p_i = 1/2 \text{ wenn } b[i] \text{ noch nicht gesetzt}$$
 Definition $I_i^+ := \{j \in \{1, \dots, n\} \mid x_j \text{ kommt in } c_i \text{ vor}\}$
$$I_i^- := \{j \in \{1, \dots, n\} \mid \overline{x_j} \text{ kommt in } c_i \text{ vor}\}$$
 damit $C_i(p_1, \dots, p_n) := \operatorname{E}(X_i) = 1 - \prod_{j \in I_i^+} (1 - p_j) \cdot \prod_{j \in I_i^-} p_j$ Erinnerung $\operatorname{ZV} X_i = \begin{cases} 1 & b \text{ erfüllt } c_i \\ 0 & \text{sonst} \end{cases}$ Beobachtung gilt auch nach Festlegung von $p_j \in \{0, 1\}$ Definition $C(p_1, \dots, p_n) := \operatorname{E}(X) = \sum_{i=1}^m C_i(p_1, \dots, p_n)$ klar C, C_i ist für jede einzelne p_j lineare Funktion in p_j

Petra Mutzel

Schrittweise "Optimierung" von C

Beobachtung Extrema an Rändern des Definitionsbereichs

Algorithmus 9.3

- 1. Für $i \in \{1, 2, ..., n\}$ setze $p_i := 1/2$.
- 2. Für $i \in \{1, 2, ..., n\}$
- 3. If $C(p_1, \ldots, p_{i-1}, 0, p_{i+1}, \ldots, p_n)$ > $C(p_1, \ldots, p_{i-1}, 1, p_{i+1}, \ldots, p_n)$
- 4. Then $p_i := 0$ Else $p_i := 1$.
- 5. Für $i \in \{1, 2, \dots, n\}$ setze $b[i] := p_i$
- 6. Ausgabe b

Über Algorithmus 9.3

Theorem 9.4

Algorithmus 9.3 berechnet zu einer reduzierten MAX-k-SAT-Instanz mit m Klauseln über n Variablen in Zeit $\Theta(n\cdot m)$ eine Belegung, die mindestens $\left(1-2^{-k}\right)\cdot m$ Klauseln erfüllt.

Algorithmus 9.3 ist eine $\left(1+\frac{1}{2^k-1}\right)$ -Approximation für MAX-k-SAT.

Beweis der Laufzeit

- Zeilen 1, 5, 6 Zeit $\Theta(n)$
- Preprocessing $C = m \cdot (1 2^{-k})$, $C_j = 1 2^{-k}$ Zeit $\Theta(m)$
- Preprocessing je Klausel Inzidenzvektor über Variablen

Zeit $\Theta(m \cdot n)$

• Zeile 3 i-Schleife über $\{1,\ldots,n\}$ Schleife über Klauseln mit Preprocessing Test und Anpassung in Zeit $\Theta(1)$ gesamt Zeit $\Theta(n\cdot m)$

Approximationsgüte von Algorithmus 9.3

initial
$$C = m \cdot (1 - 2^{-k}) \checkmark$$

darum Maximum von C wird von $p_i \in \{0,1\}$ erreicht

klar p_i passend gesetzt

also C kann nicht kleiner werden

also
$$b \in \{0,1\}^n \text{ und } C \ge m \cdot (1-2^{-k})$$

Zur Approximationsgüte Haben OPT $\leq m$, deswegen

Güte =
$$\frac{OPT}{C} \le \frac{m}{m \cdot (1-2^{-k})} = \frac{1}{1-2^{-k}} = \frac{2^k}{2^k-1} = 1 + \frac{1}{2^k-1}$$

Petra Mutzel VO 15/16 am 7./12. Juni 2018

9.3 Randomisiertes Runden mittels ILP

Einschub: Ganzzahlige lineare Programmierung (ILP):

siehe Extra-Folien zur Linearen Programmierung (ppt.pdf)

Eingabe lineare Zielfunktion über x_1, x_2, \ldots, x_n m lineare Ungleichungen über x_1, x_2, \ldots, x_n Koeffizienten $\in \mathbb{Z}$

zulässige Lösungen Belegungen $\in \mathbb{Z}^n$ alle linearen Ungleichungen gleichzeitig erfüllt

Bewertung Zielfunktion, maximieren

klar ganzzahlige lineare Optimierung $\in \mathcal{NPO}$

Behauptung MAXSAT als ganzzahliges lineares Programm formulierbar

MAXSAT als ganzzahliges lineares Programm

```
Variable
           für MAXSAT-Variable x_i ILP-Variable y_i
           für Klausel c_i ILP-Variable z_i
           Idee z_i entspricht ZV X_i
```

 $\max \sum_{j=1}^{m} z_j$ Zielfunktion

Nebenbedingungen
$$y_i \le 1, y_i \ge 0$$
 für alle i

$$\begin{aligned} &g_i \leq 1, \ g_i \geq 0 \ \text{für alle } i \\ &z_j \leq 1, \ z_j \geq 0 \ \text{für alle } j \\ &\sum_{i \in I_j^+} y_i + \sum_{i \in I_j^-} (1-y_i) \geq z_j \ \text{für alle } j \\ &y_i \in Z, \ z_j \in Z \ \text{für alle } i,j \end{aligned}$$

Beobachtung

polynomielle Reduktion direkte Entsprechung von Belegungen $x_i \leftrightarrow y_i$ direkte Entsprechung Zielfunktion ↔ #erfüllte Klauseln

klar

ILP NP-schwierig Wo ist denn da der Sinn? VO 15/16 am 7./12. Juni 2018

Ein anderes Problem: Lineare Programmierung (LP)

```
Eingabe lineare Zielfunktion über x_1, x_2, \ldots, x_n m lineare Ungleichungen über x_1, x_2, \ldots, x_n Koeffizienten \in \mathbb{Z}
```

```
zulässige Lösungen Belegungen \in \mathbb{R}^n alle linearen Ungleichungen gleichzeitig erfüllt
```

Bewertung Zielfunktion, maximieren

```
Fakt lineare Programmierung \in P
```

Definition: kanonische LP-Relaxierung: LP, das man erhält, wenn man in einem $\{0/1\}$ -ILP alle Binärvariablen durch Variable im Bereich [0,1] ersetzt.

```
 \text{L\"osung} \quad \text{statt} \in \{0,1\}^n \text{ nun} \in [0;1]^n
```

Beobachtung Lösungsraum größer, weniger Einschränkungen heißt Relaxierung

Randomisiertes Runden

Was nützt uns die Lösung des relaxierten Problems?

Idee Belegungen geben Hinweise

Wert für y_i nahe 0 \leadsto vermutlich besser $x_i = 0$ setzen Wert für y_i nahe 1 \leadsto vermutlich besser $x_i = 1$ setzen

Algorithmus 9.5

- 1. Formuliere zur MAX-k-SAT-Instanz das lineare Programm.
- 2. Berechne optimale Lösung $\hat{y}_1, \hat{y}_2, \dots, \hat{y}_n, \hat{z}_1, \hat{z}_2, \dots, \hat{z}_m$ dazu.
- 3. Für $i \in \{1, 2, \dots, n\}$
- 4. Mit W'keit \hat{y}_i setze b[i] := 1 sonst setze b[i] := 0.
- 5. Ausgabe b

Über randomisiertes Runden

Theorem 9.6

- Algorithmus 9.5 berechnet zu einer reduzierten MAX-k-SAT-Instanz mit m-Klauseln über n Variablen in Polynomialzeit eine Belegung, die im Erwartungswert mindestens $\left(1-(1-1/k)^k\right)\cdot \mathsf{OPT}$ Klauseln erfüllt, wenn OPT die maximal gleichzeitig erfüllbare Anzahl der Klauseln angibt.
- Algorithmus 9.5 berechnet zu einer MAXSAT-Instanz mit m-Klauseln über n Variablen in Polynomialzeit eine Belegung, die im Erwartungswert mindestens $\left(1-e^{-1}\right)\cdot$ OPT Klauseln erfüllt, wenn OPT die maximal gleichzeitig erfüllbare Anzahl der Klauseln angibt.
- Jede einzelne Klausel c_j mit k Literalen wird mit Wahrscheinlichkeit mindestens $\left(1-\left(1-\frac{1}{k}\right)^k\right)\cdot\hat{z}_j$ erfüllt.

Zwei Hilfsaussagen (ohne Beweis)

Lemma 9.7

$$\forall a_1, a_2, \dots, a_k \in \mathbb{R}_0^+ \colon \prod_{i=1}^k a_i \le \left(\frac{\sum_{i=1}^k a_i}{k}\right)^k$$

Lemma 9.8

$$\forall x \in [0,1] \colon \forall k \in \mathbb{N} \colon 1 - \left(1 - \frac{x}{k}\right)^k \ge \left(1 - \left(1 - \frac{1}{k}\right)^k\right) \cdot x$$

Petra Mutzel VO 15/16 am 7./12. Juni 2018

Beweis von Theorem 9.6

Betrachte Klausel c_i

O. B. d. A.
$$c_i = x_1 \vee x_2 \vee \cdots \vee x_k$$

Beobachtung Prob $(c_j \text{ nicht erfüllt}) = \prod^k (1 - \hat{y}_i)$

also
$$\operatorname{\mathsf{Prob}}\left(c_{j} \ \operatorname{\mathsf{erfüllt}}\right) = 1 - \prod\limits_{i=1}^{k}\left(1 - \hat{y}_{i}\right)$$

aus LP
$$\sum_{i=1}^{k} \hat{y}_i \geq \hat{z}_j$$

also
$$\sum_{i=1}^{k} (1 - \hat{y}_i) \le k - \hat{z}_j$$

mit Lemma 9.7
$$\prod_{i=1}^k (1-\hat{y}_i) \leq \left(\frac{\sum\limits_{i=1}^k (1-\hat{y}_i)}{k}\right)^k \leq \left(\frac{k-\hat{z}_j}{k}\right)^k = \left(1-\frac{\hat{z}_j}{k}\right)^k$$

Abschätzung für Klausel c_j

Wir haben
$$\text{Prob}\left(c_j \text{ erfüllt}\right) = 1 - \prod_{i=1}^{\kappa} \left(1 - \hat{y}_i\right)$$

$$\prod_{i=1}^{k} (1 - \hat{y}_i) \leq \left(1 - \frac{\hat{z}_j}{k}\right)^k$$

Prob
$$(c_j \text{ erfüllt}) = 1 - \prod_{i=1}^k (1 - \hat{y}_i) \ge 1 - \left(1 - \frac{\hat{z}_j}{k}\right)^k$$

$$\ge \left(1 - \left(1 - \frac{1}{k}\right)^k\right) \cdot \hat{z}_j \text{ (mit Lemma 9.8)}$$

Fakt
$$1 - \left(1 - \frac{1}{k}\right)^k \ge 1 - e^{-1}$$

Petra Mutzel

Abschätzung für alle Klauseln

Wir haben
$$\operatorname{Prob}\left(c_{j} \operatorname{erfüllt}\right) \geq \left(1 - \left(1 - \frac{1}{k}\right)^{k}\right) \cdot \hat{z}_{j}$$

$$1 - \left(1 - \frac{1}{k}\right)^{k} \geq 1 - e^{-1}$$

$$\begin{split} \mathsf{E} \left(\# \mathsf{erf\"{u}llte} \; \mathsf{Klauseln} \right) &= \sum_{j=1}^m \mathsf{Prob} \left(c_j \; \mathsf{erf\"{u}llt} \right) \\ &\geq \sum_{j=1}^m \left(1 - \left(1 - \frac{1}{k} \right)^k \right) \cdot \hat{z}_j \\ &\geq \sum_{j=1}^m \left(1 - e^{-1} \right) \cdot \hat{z}_j = \left(1 - e^{-1} \right) \cdot \sum_{j=1}^m \hat{z}_j \end{split}$$

Petra Mutzel VO 15/16 am 7./12. Juni 2018

MAX-k-SAT und MAXSAT

Wir haben
$$\mathsf{E}\left(\#\text{erfüllte Klauseln}\right)$$

$$\geq \left(1 - \left(1 - \frac{1}{k}\right)^k\right) \cdot \sum_{j=1}^m \hat{z}_j$$

$$\geq \left(1 - e^{-1}\right) \cdot \sum_{j=1}^m \hat{z}_j$$

Erinnerung LP ist Relaxierung

deshalb
$$\sum\limits_{j=1}^{m}\hat{z}_{j}\geq\mathsf{OPT}$$

 $\mathsf{E}\left(\#\mathsf{erf\"{u}llte}\;\mathsf{Klauseln}\right) \geq \left(1-e^{-1}\right)\cdot\mathsf{OPT}$ also

9.4 Kombination beider Algorithmen

Zwei randomisierte Algorithmen für MAX-k-SAT im Erwartungswert

Algorithmus 9.1 erfüllt
$$\geq \left(1-2^{-k}\right)\cdot \mathsf{OPT}$$
 Klauseln
$$\hat{=} \; \mathsf{G\"{u}te} \; \left(1+\frac{1}{2^k-1}\right)$$

Algorithmus 9.5 erfüllt
$$\geq \left(1-(1-1/k)^k\right)\cdot \mathsf{OPT}$$
 Klauseln $\hat{=}$ Güte $\left(1+\frac{(1-1/k)^k}{1-(1-1/k)^k}\right)$

Welcher Algorithmus ist besser?

Eine naheliegende Idee

Algorithmus 9.9

- 1. Berechne Belegung a_1 mit Algorithmus 9.1.
- 2. Berechne Belegung a_2 mit Algorithmus 9.5.
- 3. Gib die Belegung aus, die mehr Klauseln erfüllt.

Nützt das etwas?

Sei
$$A_1 = \# ext{erf.}$$
 Klauseln durch a_1 $A_2 = \# ext{erf.}$ Klauseln durch a_2

klar Algorithmus 9.9 erfüllt $\max\{A_1,A_2\}$ Klauseln

Ziel $E(\max\{A_1, A_2\})$ abschätzen

$\mathsf{E}\left(\max\{A_1,A_2\}\right)$ abschätzen

Beobachtung $\max\{A_1, A_2\} \ge \frac{A_1 + A_2}{2}$

Betrachte Klausel c_i mit Länge l_i

Erinnerung Prob $(a_1 \text{ erfüllt } c_j) = 1 - 2^{-l_j}$

Erinnerung Prob $(a_2 \text{ erfüllt } c_j) \geq 1 - (1 - 1/l_j)^{l_j}$

also
$$\mathsf{E}(A_1) \ge \sum_{j=1}^m \left(1 - 2^{-l_j}\right) \ge \sum_{j=1}^m \left(1 - 2^{-l_j}\right) \cdot \hat{z}_j$$
 $\mathsf{E}(A_2) \ge \sum_{j=1}^m \left(1 - (1 - 1/l_j)^{l_j}\right) \cdot \hat{z}_j$

zusammen
$$\begin{array}{l} \mathsf{E}\left(\frac{A_1+A_2}{2}\right) \\ = \frac{1}{2} \cdot \left(\mathsf{E}\left(A_1\right) + \mathsf{E}\left(A_2\right)\right) \\ \geq \frac{1}{2} \cdot \left(\sum_{j=1}^m \left(\left(1-2^{-l_j}\right) + \left(1-(1-1/l_j)\right)^{l_j}\right) \cdot \hat{z}_j \right) \end{array}$$

Ergebnis für MAXSAT

Wir haben
$$\mathsf{E}\left(\frac{A_1+A_2}{2}\right) = \frac{1}{2} \cdot \left(\mathsf{E}\left(A_1\right) + \mathsf{E}\left(A_2\right)\right) \\ \geq \frac{1}{2} \cdot \left(\sum_{j=1}^m \left(\left(1-2^{-l_j}\right) + \left(1-\left(1-1/l_j\right)^{l_j}\right)\right) \cdot \hat{z}_j\right) \\ \frac{1-2^{-l_j}}{2} \\ \frac{\left(1-2^{-l_j}\right) + \left(1-\left(1-1/l_j\right)^{l_j}\right)}{2} \\ 1-\left(1-1/l_j\right)^{l_j} \\ \frac{l_j}{1-2^{-l_j}} \frac{1-\left(1-1/l_j\right)^{l_j}}{1-\left(1-1/l_j\right)^{l_j}} \frac{\left(\left(1-2^{-l_j}\right) + \left(1-\left(1-1/l_j\right)^{l_j}\right)\right)/2}{1-\left(1-1/l_j\right)^{l_j}} \\ \frac{1}{2} \frac{1$$

Zusammenfassung

Theorem 9.10

Algorithmus 9.9 berechnet zu einer MAXSAT-Instanz, in der höchstens OPT Klauseln gleichzeitig erfüllt werden können, in Polynomialzeit eine Belegung, in der im Erwartungswert mindestens $(3/4)\cdot \text{OPT}$ Klauseln gleichzeitig erfüllt sind.

Fakt Es gibt kein PTAS, wenn $P \neq NP$.