CS5285 **Tutorial 3**

What are the advantage and disadvantage of stream cipher vs. block cipher?

Stream Ciphers

- Secret key length: 128 bits, 256 bits, etc.
- Maximum plaintext length: usually can be arbitrarily long.
- **Security:** Given a "long" segment of keystream (e.g. 2⁴⁰ bits), the secret key cannot be derived AND the subsequent segment of the keystream cannot be deducted.

Block Ciphers

- A block cipher takes a block of plaintext and a secret key, produces a block of ciphertext.
- The key is **reused** for different plaintext blocks
- Typical block sizes: 64 bits, 128 bits, 192 bits, 256 bits
- Key sizes: 56 bits (DES), 128/192/256 bits (AES)
- Popular block ciphers: DES, 3DES, AES, Twofish, Serpent

Advantage and disadvantage of stream cipher vs. block cipher?

- Stream Cipher
 - Advantage :
 - Said to be faster than block cipher (generate pseudo-random string, XOR).
 - Keystream function does not need to be reversible...
 - Disadvantage:
 - Keystream cannot be reused, same plaintext/keystream always yields same ciphertext (independent of previous plaintext).
 - Additional integrity check required, otherwise simple to modify bits in message.
- Block Cipher
 - Advantage:
 - If we use the right mode of operation ciphertext depends on prior plaintext even if key remains the same (e.g. in CBC mode just change first block of plaintext)
 - Disadvantage:
 - Needs to be reversible (PT> CT, CT>PT)
 - Needs padding to block size

3DES: Consider 3DES:

$$C = \mathrm{DES}_{K_1}(\mathrm{DES}_{K_2}^{-1}(\mathrm{DES}_{K_1}(M)))$$

where C, M are the ciphertext and plaintext, respectively, and $K = (K_1, K_2)$ is the key. How many keys on average do we have to try in a bruteforce attack?

Bruteforce Attack | Exhaustive Key Search

- An algorithm is secure when the easiest way of attacking it is by bruteforce attack.
 - i.e. check all possible key combinations one by one (could be done in parallel)
 - For a key of n bits, the total number of possible keys (or the entire key space) is 2^n .
 - An average of half the combinations should be tried in order to find the key, i.e. 2^{n-1} .

3DES: Consider 3DES:

$$C = \mathrm{DES}_{K_1}(\mathrm{DES}_{K_2}^{-1}(\mathrm{DES}_{K_1}(M)))$$

where C, M are the ciphertext and plaintext, respectively, and $K = (K_1, K_2)$ is the key. How many keys on average do we have to try in a bruteforce attack?

What is the key space?

Key length 56+56=112 bits, key space is 2^{112}

How much brute force attempts?

Keyspace/2 = $2^{(112-1)}$ = 2^{111}

DESX: Let AESX-192 be a block cipher which is similar to DESX $(DESX(M) = K_3 \oplus DES_{K_2}(M \oplus K_1))$ but the DES ha been replaced by AES and the AES key size is 192 bits. Compute the keyspace of the AESX-192.

AES (Advanced Encryption Standard)

- Replacement of DES
- Block size: 128 bits
- Key length: 16, 24, or 32 bytes (128, 192, or 256 bits) independent of block size
- 10 to 14 rounds (depends on key length)
- Each round has 4 transformations (except the last round)
 - ByteSub
 - ShiftRow
 - MixColumn
 - AddRoundKey

DESX

DESX: three keys

$$C = K_3 \oplus DES(K_2, M \oplus K_1)$$

If we made an AESX

$$C = K_3 \oplus AES(K_2, M \oplus K_1)$$

DESX: Let AESX-192 be a block cipher which is similar to DESX $(DESX(M) = K_3 \oplus DES_{K_2}(M \oplus K_1))$ but the DES ha been replaced by AES and the AES key size is 192 bits. Compute the keyspace of the AESX-192.

- What is total keyspace? First how many keys?
- Three keys K1, K2 + K3, with key space being |K1|+|K2|+|K3|
- Size of K2?
 - K2= AES keys size
 - 192 bits
- Size of K1 and K3?
 - |K1| = |K3| = |M| = ?
 - 128 bits
- Total keyspace = 2⁴⁴⁸ total (key length 448)

Comment on security/efficiency of 2-key 3AES and AES-256

- Keyspace? Brute force search?
 - AES-256 has 256 bit key
 - 3AES has 128+128= 256 bit key
 - Same keyspace! Same complexity for key search.
- Efficiency? How long to compute?
 - AES-256 has 14 rounds
 - How many for 3AES?
 - 3x10=30
 - Which is one has shorter (time) brute force key search?
 - AES-256, less work to search as each attempt shorter

CBC Mode: Consider a block cipher with CBC mode.

CBC Encryption	CBC Decryption
$C_0 = E(K; IV \oplus P_0)$	$P_0 = IV \oplus D(K; C_0)$
$C_1 = E(K; C_0 \oplus P1)$	$P_1 = C_0 \oplus D(K; C_1)$
$C_2 = E(K; C_1 \oplus P2)$	$P_2 = C_1 \oplus D(K; C_2)$

- (a) During *encryption*, if one block of the *plaintext* input is different (two indentical messages, except for 1 bit), how many blocks of the corresponding ciphertext will be effected?
- (b) During *decryption*, if one block of the *ciphertext* input is incorrect (an error occurs during transmission), how many blocks of the corresponding plaintext will be effected?
- (c) What happens if the receiver has an incorrect IV when decrypting blocks of ciphertext in CBC mode?

CBC Mode

Cryptography - Part I 15

CBC Error

- (a) During *encryption*, if one block of the *plaintext* input is different (two indentical messages, except for 1 bit), how many blocks of the corresponding ciphertext will be effected?
 - (a) If one block of the plaintext is modified/updated when encrypting under CBC mode, then the current ciphertext block C_i as well as all subsequent ciphertext blocks C_{i+1} , C_{i+2} , \cdots will be effected, because each ciphertext block depends on the previous ciphertext block, and thus an error in one of the plaintext blocks propagates indefinitely.
 - (b) During decryption, if one block of the ciphertext input is incorrect, how many blocks of the corresponding plaintext will be effected?
 - (b) If one ciphertext block C_i is modified/updated, then the corresponding plaintext block P_i as well as the next plaintext block P_{i+1} will be effected. Subsequent plaintext blocks P_{i+2} , P_{i+3} , \cdots will be unaffected. CBC decryption is in this sense self-synchronising in that it recovers from a modified ciphertext block, although two blocks of plaintext will be modified.
 - (c) What happens if the receiver has an incorrect IV when decrypting blocks of ciphertext in CBC mode?
 - (c) If the IV is incorrect when decrypting blocks of ciphertext, then the first plaintext block P_0 will be updated. Subsequent plaintext blocks P_1, P_2, \cdots will be correct, because they do not depend on the IV or previous plaintext blocks.

The end!

Any questions...