LÓGICA EI Mestrado Integrado em Engenharia Informática Universidade do Minho

Departamento de Matemática

2020/2021

2.2 Semântica do Cálculo de Predicados

Observação: As fórmulas do Cálculo de Predicados são construídas a partir das fórmulas atómicas (símbolos de relação "aplicados" a termos) e, por esta razão, as fórmulas atómicas desempenham papel semelhante ao das variáveis proposicionais no Cálculo Proposicional.

Contudo, ao passo que no Cálculo Proposicional podemos atribuir "diretamente" um valor lógico a uma variável proposicional, a atribuição de valores lógicos às fórmulas atómicas é um processo mais complexo.

Para atribuirmos valores lógicos a fórmulas atómicas será necessário fixar previamente a *interpretação dos termos*.

Tal requer indicação do *universo de objetos* (*domínio de discurso*) pretendido para a denotação dos termos (por exemplo, números naturais, conjuntos, etc.), bem como a interpretação pretendida quer para os símbolos de função do tipo de linguagem em questão (por exemplo, para indicar que tomando \mathbb{N}_0 por universo, o símbolo de função binário + denotará a *operação* de adição) quer para as variáveis de primeira ordem.

Para a *interpretação das fórmulas atómicas*, será ainda necessário fixar a interpretação dos símbolos de relação como *relações* entre objetos do domínio de discurso.

A indicação do domínio de discurso pretendido e das interpretações a dar aos diversos símbolos será efetuada através de uma *estrutura para o tipo de linguagem*.

A interpretação de variáveis de primeira ordem será feita no contexto do domínio de discurso da estrutura, através de uma *atribuição na estrutura*.

Um par (*estrutura*, *atribuição*) permitirá fixar o valor lógico de qualquer fórmula e, portanto, pode ser pensado como uma *valoração*, uma vez que estes pares desempenharão papel idêntico ao das valorações do Cálculo Proposicional.

Definição: Seja L um tipo de linguagem. Uma *estrutura de tipo* L, que abreviadamente designaremos por L-*estrutura*, é um par $(D, \overline{\ })$ tal que:

- a) D é um conjunto não vazio, chamado o domínio da estrutura;
- b) é uma função, chamada a função interpretação da estrutura, e é tal que:
 - a cada constante c de L faz corresponder um elemento de D, notado por c̄;
 - a cada símbolo de função f de L, de aridade n ≥ 1, faz corresponder uma função de tipo Dⁿ → D, notada por f̄;
 - a cada símbolo de relação R de L, de aridade n, faz corresponder uma relação n-ária em D (i.e. um subconjunto de Dⁿ), notada por R.

Para cada símbolo de função ou relação s de L, \overline{s} é chamada a interpretação de s na estrutura.

Notação:

Habitualmente, usaremos a letra E (possivelmente indexada) para denotar estruturas.

Dada uma estrutura E, a notação dom(E) denotará o domínio de E.

Exemplo:

- a) Seja $E_{Arit} = (\mathbb{N}_0, \overline{})$, onde:
 - $\overline{0}$ é o número *zero*:
 - \overline{s} é a função *sucessor* em \mathbb{N}_0 , *i.e.*, $\overline{s}: \mathbb{N}_0 \longrightarrow \mathbb{N}_0$; $n \mapsto n+1$
 - $\overline{+}$ é a função *adição* em \mathbb{N}_0 , *i.e.*, $\overline{+}: \mathbb{N}_0 \times \mathbb{N}_0 \longrightarrow \mathbb{N}_0$; $(m,n) \mapsto m+n$
 - $\overline{\times}$ é a função *multiplicação* em \mathbb{N}_0 , *i.e.*, $\overline{\times}: \mathbb{N}_0 \times \mathbb{N}_0 \longrightarrow \mathbb{N}_0$

$$(m,n) \mapsto m \times n$$

- \equiv é a relação de *igualdade* em \mathbb{N}_0 , *i.e.*,
 - $\equiv = \{(m, n) \in \mathbb{N}_0 \times \mathbb{N}_0 : m = n\};$
- $\overline{<}$ é a relação *menor do que* em \mathbb{N}_0 , *i.e.*, \leq = { $(m, n) \in \mathbb{N}_0 \times \mathbb{N}_0 : m < n$ }.

Então, E_{Arit} é uma estrutura de tipo L_{Arit} .

Designaremos esta estrutura por estrutura standard para o tipo de linguagem L_{Arit} .

Exemplo (cont.):

- **b)** O par $E_0 = (\{a, b\}, ^-)$, onde:
 - $\overline{0} = a$;
 - \overline{s} é a função $\{a,b\}$ \longrightarrow $\{a,b\}$;
 - \mp é a função $\{a,b\} \times \{a,b\} \longrightarrow \{a,b\}$; $(x,y) \mapsto b$
 - $\bullet \ \overline{\times} \ \text{\'e a funç\~ao} \ \ \{a,b\} \times \{a,b\} \longrightarrow \left\{ \begin{array}{ll} \{a,b\} & ; \\ (x,y) & \mapsto \end{array} \right. \left. \left\{ \begin{array}{ll} a & \text{se } x=y \\ b & \text{se } x \neq y \end{array} \right. \right.$
 - $\bullet \equiv = \{(a,a),(b,b)\};$
 - $\bullet \ \overline{<} = \{(a,b)\},\$

é também uma L_{Arit}-estrutura.

Existem $2 \times 4 \times 16 \times 16 \times 16 \times 16$ L_{Arit} -estruturas cujo domínio é $\{a,b\}$. (Porquê?)

Definição: Seja E uma L-estrutura. Uma função $a: \mathcal{V} \longrightarrow dom(E)$ (do conjunto \mathcal{V} das variáveis de primeira ordem para o domínio de E) diz-se uma atribuição em E.

Exemplo: As funções $a_0: \mathcal{V} \longrightarrow \mathbb{N}_0$ e $a^{ind}: \mathcal{V} \longrightarrow \mathbb{N}_0$ são $x \mapsto 0$ $x_i \mapsto i$ atribuições em E_{Arit} .

Definição: Sejam $E = (D, \overline{\ })$ uma L-estrutura, a uma atribuição em E e t um L-termo.

O valor de t em E para a é o elemento de D, notado por $t[a]_E$ ou por t[a] (quando é claro qual a estrutura que deve ser considerada), definido, por recursão estrutural em L-termos, do seguinte modo:

- **a)** x[a] = a(x), para todo $x \in \mathcal{V}$;
- **b)** $c[a] = \overline{c}$, para todo $c \in C$;
- **c)** $f(t_1,...,t_n)[a] = \overline{f}(t_1[a],...,t_n[a])$, para todo $f \in \mathcal{F}$ de aridade $n \ge 1$ e para todo $t_1,...,t_n \in \mathcal{T}_I$.

Exemplo: Seja t o L_{Arit} -termo $s(0) \times (x_0 + x_2)$.

1 O valor de t para a atribuição a^{ind} , na L_{Arit} -estrutura E_{Arit} , é

$$(s(0) \times (x_0 + x_2))[a^{ind}]$$
= $s(0)[a^{ind}] \times (x_0 + x_2)[a^{ind}]$
= $(0[a^{ind}] + 1) \times (x_0[a^{ind}] + x_2[a^{ind}])$
= $(0 + 1) \times (0 + 2)$
= 2 .

2 Já para a atribuição a₀ (do exemplo anterior), o valor de t é 0 (porquê?).

Exemplo (cont.):

3 Consideremos agora a L_{Arit} -estrutura E_0 do Slide 9 e a seguinte atribuição nesta estrutura:

$$a': \mathcal{V} \longrightarrow \{a, b\}$$

 $x \mapsto b$

O valor de t em E_0 para a' é:

$$\begin{array}{rcl}
& (s(0) \times (x_0 + x_2))[a'] \\
&= \overline{\times}(s(0)[a'], (x_0 + x_2)[a']) \\
&= \overline{\times}(\overline{s}(0[a']), \overline{+}(x_0[a'], x_2[a'])) \\
&= \overline{\times}(\overline{s}(a), \overline{+}(b, b)) \\
&= \overline{\times}(a, b) \\
&= b.
\end{array}$$

Proposição: Sejam a_1 e a_2 duas atribuições numa L-estrutura $E = (D, \overline{})$ e seja t um L-termo.

Se $a_1(x) = a_2(x)$, para todo $x \in VAR(t)$, então $t[a_1] = t[a_2]$.

Dem.: Por indução estrutural em *t*. A prova está organizada por casos, consoante *a forma* de *t*.

a) Caso t seja uma variável. Então, $t \in VAR(t)$. Logo, por hipótese, $a_1(t) = a_2(t)$ (*). Assim,

$$t[a_1] \stackrel{\text{(1)}}{=} a_1(t) \stackrel{\text{(*)}}{=} a_2(t) \stackrel{\text{(1)}}{=} t[a_2].$$

Justificações

(1) Definição de valor de um termo para uma atribuição.

b) Caso *t* seja uma constante. Então,

$$t[a_1] \stackrel{\text{(1)}}{=} \bar{t} \stackrel{\text{(1)}}{=} t[a_2].$$

Justificações

(1) Definição de valor de um termo para uma atribuição.

c) Caso $t = f(t_1, ..., t_n)$, com $f \in \mathcal{F}$ de aridade $n \ge 1$ e $t_1, ..., t_n \in \mathcal{T}_L$. Então,

$$t[a_1] = f(t_1, ..., t_n)[a_1]$$

$$\stackrel{(1)}{=} \overline{f}(t_1[a_1], ..., t_n[a_1])$$

$$\stackrel{(2)}{=} \overline{f}(t_1[a_2], ..., t_n[a_2])$$

$$\stackrel{(1)}{=} f(t_1, ..., t_n)[a_2]$$

$$= t[a_2].$$

Justificações

- (1) Definição de valor de um termo para uma atribuição.
- (2) Para $1 \le i \le n$, como $VAR(t_i) \subseteq VAR(t)$, da hipótese segue-se que: $a_1(x) = a_2(x)$, para todo $x \in VAR(t_i)$. Logo, por H.I., para todo $1 \le i \le n$, $t_i[a_1] = t_i[a_2]$.

Notação : Sejam *a* uma atribuição numa *L*-estrutura $E, d \in dom(E)$ e x uma variável.

Escrevemos $a \begin{pmatrix} x \\ d \end{pmatrix}$ para a atribuição $a': \mathcal{V} \longrightarrow dom(E)$ em Edefinida por:

para todo
$$y \in \mathcal{V}, \quad a'(y) = \left\{ egin{array}{ll} d & ext{se} & y = x \\ a(y) & ext{se} & y \neq x \end{array}
ight. .$$

Exemplo: $a^{ind} \begin{pmatrix} x_0 \\ 1 \end{pmatrix}$ denota a atribuição em L_{Arit} definida por:

$$a^{ind}\Big(egin{array}{c} x_0 \ 1 \end{array}\Big)(x_i)=\left\{egin{array}{cc} 1 & ext{se } i=0 \ & & ext{, para todo } i\in\mathbb{N}_0. \ i & ext{se } i
eq 0 \end{array}
ight.$$

Exemplo: Verifique que

$$(x_0+0)[a^{ind}\binom{x_0}{1}]=1=(x_0+0)[s(0)/x_0][a^{ind}].$$

De facto, esta igualdade é um caso particular da proposição seguinte, que fornece uma alternativa para o cálculo do valor de um termo que resulta de uma substituição.

Proposição: Seja a uma atribuição numa L-estrutura. Seja x uma variável e sejam t_0 e t_1 L-termos . Então,

$$t_0[t_1/x][a] = t_0[a\begin{pmatrix} x \\ t_1[a] \end{pmatrix}].$$

Dem.: Por indução estrutural em t_0 .

Definição: Sejam $E=(D,\overline{\ })$ uma L-estrutura, a uma atribuição em E e φ uma L-fórmula.

O *valor lógico* de φ em E para a é o elemento do conjunto dos valores lógicos $\{0,1\}$, notado por $\varphi[a]_E$ ou por $\varphi[a]$ (quando é claro qual a estrutura que deve ser considerada), definido, por recursão em L-fórmulas, do seguinte modo:

- **a)** \perp [*a*] = 0;
- **b)** $R(t_1,...,t_n)[a]=1$ sse $(t_1[a],...,t_n[a])\in \overline{R}$, para todo o símbolo de relação R de aridade n e para todo $t_1,...,t_n\in \mathcal{T}_L$;
- **c)** $(\neg \varphi_1)[a] = f_{\neg}(\varphi_1[a])$, para todo $\varphi_1 \in \mathcal{F}_L$;
- **d)** $(\varphi_1 \wedge \varphi_2)[a] = f_{\wedge}(\varphi_1[a], \varphi_2[a]),$ para todo $\varphi_1, \varphi_2 \in \mathcal{F}_L$;
- **e)** $(\varphi_1 \vee \varphi_2)[a] = f_{\vee}(\varphi_1[a], \varphi_2[a]),$ para todo $\varphi_1, \varphi_2 \in \mathcal{F}_L$;
- **f)** $(\varphi_1 \to \varphi_2)[a] = f_{\to}(\varphi_1[a], \varphi_2[a]),$ para todo $\varphi_1, \varphi_2 \in \mathcal{F}_L$;
- **g)** $(\varphi_1 \leftrightarrow \varphi_2)[a] = f_{\leftrightarrow}(\varphi_1[a], \varphi_2[a])$, para todo $\varphi_1, \varphi_2 \in \mathcal{F}_L$;

Definição (cont.):

- h) $(\exists x \varphi_1)[a] = 1$ sse para algum $d \in D$, $\varphi_1[a\begin{pmatrix} x \\ d \end{pmatrix}] = 1$, para todo $x \in \mathcal{V}, \varphi_1 \in \mathcal{F}_L$;
- i) $(\forall x \varphi_1)[a] = 1$ sse para todo $d \in D$, $\varphi_1[a \begin{pmatrix} x \\ d \end{pmatrix}] = 1$, para todo $x \in \mathcal{V}, \varphi_1 \in \mathcal{F}_L$.

Proposição: Para quaisquer *L*-estrutura *E*, atribuição *a* em *E*, *L*-fórmula φ e variável x,

- **a)** $(\exists x \varphi)[a] = 0$ sse para todo $d \in dom(E)$, $\varphi[a\begin{pmatrix} x \\ d \end{pmatrix}] = 0$;
- **b)** $(\forall x \varphi)[a] = 0$ sse para algum $d \in dom(E)$, $\varphi[a\begin{pmatrix} x \\ d \end{pmatrix}] = 0$;
- **c)** $(\exists x \varphi)[a] = m \acute{a} x imo \{ \varphi[a \begin{pmatrix} x \\ d \end{pmatrix}] : d \in D \};$
- **d)** $(\forall x\varphi)[a] = m\text{inimo}\{\varphi[a\begin{pmatrix} x \\ d \end{pmatrix}]: d \in D\}.$

Dem.: Imediata, tendo em atenção a definição de valor lógico e as propriedades de *máximo* e de *mínimo*.

Exemplo: Consideremos a estrutura L_{Arit} e as atribuições a^{ind} e a_0 em E_{Arit} , definidas no Slide 11.

- 1 Para a L_{Arit} -fórmula $\varphi_0 = s(0) < x_2$, tem-se:
 - i) $\varphi_0[a^{ind}] = 1$, dado que $s(0)[a^{ind}] = 1$, $x_2[a^{ind}] = 2$ e $(1,2) \in \mathbb{Z}$ (pois 1 é menor que 2);
 - ii) $\varphi_0[a_0] = 0$, dado que $s(0)[a_0] = 1$, $s_2[a_0] = 0$ e $(1,0) \notin \mathbb{R}$ (pois 1 não é menor que 0);

Exemplo (cont.):

- 2 Para a L_{Arit} -fórmula $\varphi_1 = \exists x_2(s(0) < x_2)$ tem-se:
 - i) $\varphi_1[a^{ind}] = 1$, pois existe $n \in \mathbb{N}_0$ t.q. $s(0) < x_2[a^{ind} {x_2 \choose n}] = 1$ (como $s(0)[a^{ind} {x_2 \choose n}] = 1$, basta tomar n > 1);
 - ii) $\varphi_1[a_0] = 1$, pois existe $n \in \mathbb{N}_0$ t.q. $s(0) < x_2[a_0 \binom{x_2}{n}] = 1$ (também neste caso se tem $s(0)[a_0 \binom{x_2}{n}] = 1$, pelo que, basta tomar n > 1);

Exemplo (cont.):

- Para a L_{Arit} -fórmula $\varphi_2 = \exists x_2 \neg (s(0) < x_2)$ tem-se também o valor lógico 1, quer para a^{ind} quer para a_0 (porquê?);
- Já para a L_{Arit} -fórmula $\varphi_3 = \forall x_2(s(0) < x_2)$ tem-se valor lógico 0 para ambas as atribuições (de facto, a afirmação "para todo $n \in \mathbb{N}_0$, 1 < n" é falsa).

Exemplo: Consideremos agora a L_{Arit} -estrutura E_0 do Slide 9 e as atribuições a' e a'' em E_0 t.q., para todo $i \in \mathbb{N}_0$, $a'(x_i) = b$ e $a''(x_i) = a$ sse i é par.

- 1 Para a L_{Arit} -fórmula $\varphi_0 = s(0) < x_2$ (considerada no exemplo anterior), tem-se:
 - i) $\varphi_0[a'] = 1$, dado que $s(0)[a'] = a, x_2[a'] = b$ e $(a, b) \in \overline{<}$;
 - ii) $\varphi_0[a''] = 0$, dado que $s(0)[a''] = a, x_2[a'] = a$ e $(a, a) \notin \overline{<}$.
- 2 Para a L_{Arit} -fórmula $\varphi_1 = \exists x_2(s(0) < x_2)$ o valor lógico é 1 para ambas as atribuições (porquê?).
- 3 Verifique que as fórmulas $\varphi_2 = \exists x_2 \neg (s(0) < x_2)$ e $\varphi_3 = \forall x_2 (s(0) < x_2)$ (do exemplo anterior) recebem valores lógicos 1 e 0, respetivamente, para ambas as atribuições.

Definição: Sejam E uma L-estrutura, a uma atribuição em E e φ uma L-fórmula.

Dizemos que E satisfaz φ para a, escrevendo $E \models \varphi[a]$, quando $\varphi[a]_E = 1$.

Escrevemos $E \not\models \varphi[a]$ quando E não satisfaz φ para a, ou seja, quando $\varphi[a]_E = 0$.

Proposição: Sejam *E* uma *L*-estrutura e *a* uma atribuição em *E*. Então:

- **a)** $E \models \exists x \varphi[a]$ sse existe $d \in dom(E)$ t.q. $E \models \varphi[a\begin{pmatrix} x \\ d \end{pmatrix}]$;
- **b)** $E \models \forall x \varphi[a]$ sse $E \models \varphi[a\begin{pmatrix} x \\ d \end{pmatrix}]$, para todo $d \in dom(E)$;
- c) $E \not\models \exists x \varphi[a]$ sse $E \not\models \varphi[a \begin{pmatrix} x \\ d \end{pmatrix}]$, para todo $d \in dom(E)$;
- **d)** $E \not\models \forall x \varphi[a]$ sse existe $d \in dom(E)$ t.q. $E \not\models \varphi[a\begin{pmatrix} x \\ d \end{pmatrix}]$.

Dem.: Consequência imediata da definição de satisfação e da proposição anterior (Slide 24). Por exemplo:

$$E \not\models \exists x \varphi[a]$$
sse $\exists x \varphi[a]_E = 0$ (def. de $\not\models$)
sse $\varphi[a\begin{pmatrix} x \\ d \end{pmatrix}]_E = 0$, para todo $d \in dom(E)$ (prop. anterior)
sse $E \not\models \varphi[a\begin{pmatrix} x \\ d \end{pmatrix}]$, para todo $d \in dom(E)$ (def. de $\not\models$).

Proposição: Sejam a_1 e a_2 atribuições numa L-estrutura E e seja φ uma L-fórmula.

Se $a_1(x) = a_2(x)$, para todo $x \in LIV(\varphi)$, então $E \models \varphi[a_1]$ sse $E \models \varphi[a_2]$.

Dem.: Por indução estrutural em φ .

Corolário: Sejam φ uma L-sentença e E uma L-estrutura.

Se para alguma atribuição a em E, $E \models \varphi[a]$, então para toda a atribuição a em E, $E \models \varphi[a]$.

Dem.: Exercício.

Proposição: Sejam $E = (D, \overline{})$ uma L-estrutura e a uma atribuição em E. Sejam x uma variável, t um L – termo e φ uma L-fórmula tais que x está livre para t em φ . Então,

$$E \models \varphi[t/x][a]$$
 sse $E \models \varphi[a\begin{pmatrix} x \\ t[a] \end{pmatrix}].$

Dem.: Por indução estrutural em φ .

Definição: Dizemos que uma L-fórmula φ é *válida* numa L-estrutura E ou que E valida φ (notação: $E \models \varphi$) quando, para toda a atribuição a em E, $E \models \varphi[a]$.

Utilizamos a notação $E \not\models \varphi$ quando φ não é válida em E, *i.e.*, quando existe uma atribuição a em E tal que $E \not\models \varphi[a]$.

Exemplo: Consideremos a estrutura E_{Arit} .

- 1 A fórmula $x_0 = x_0$ é válida em E_{Arit} ; de facto, para qualquer atribuição a em E_{Arit} , tem-se $E_{Arit} \models x_0 = x_0[a]$, uma vez que $x_0[a] = a(x_0)$ e $(a(x_0), a(x_0)) \in \equiv (a(x_0))$ e $a(x_0)$ são naturais iguais).
- 2 A fórmula $x_0 = x_1$ não é válida em E_{Arit} ; por exemplo, para a atribuição a^{ind} tem-se $x_0[a^{ind}] = 0$, $x_1[a^{ind}] = 1$ e $(0,1) \notin \mathbb{R}$, pelo que $E_{Arit} \not\models x_0 = x_1[a^{ind}]$.
- 3 A fórmula $\neg(x_0 = x_1)$ não é válida em E_{Arit} ; por exemplo, para a atribuição a_0 que atribui 0 a todas as variáveis tem-se $x_0[a_0] = 0$, $x_1[a_0] = 0$ e $(0,0) \in \Xi$, pelo que $E_{Arit} \models x_0 = x_1[a_0]$ e, consequentemente, $E_{Arit} \not\models \neg(x_0 = x_1)[a_0]$.

Exemplo (cont.):

- 4 A fórmula $x_0 = x_1 \lor \neg(x_0 = x_1)$ é válida em E_{Arit} (para qualquer atribuição a em E_{Arit} , a afirmação " $(a(x_0), a(x_1)) \in \equiv$ ou $(a(x_0), a(x_1)) \notin \equiv$ " é verdadeira).
- 5 A fórmula $\exists x_0 \neg (x_0 = x_1)$ é válida em E_{Arit} (para toda a atribuição a em E_{Arit} a afirmação "existe $n \in \mathbb{N}_0$, $n \neq a(x_1)$ " é verdadeira (tome-se, por exemplo, $n = a(x_1) + 1$)) e a fórmula $\forall x_1 \exists x_0 \neg (x_0 = x_1)$ é também válida em E_{Arit} (porquê?).

Proposição: Sejam E uma L-estrutura e φ uma L-sentença. Então, $E \models \varphi$ sse para alguma atribuição a em E, $E \models \varphi[a]$.

Dem.: Se $E \models \varphi$, é imediato que $E \models \varphi[a]$ para alguma atribuição a, pois $E \models \varphi$ significa que $E \models \varphi[a]$ para toda a atribuição a.

Admitamos agora que $E \models \varphi[a]$ para alguma atribuição a. Tomemos uma atribuição a' arbitrária em E.

(Queremos provar que $E \models \varphi[a']$.)

Como φ é uma L-sentença e portanto $LIV(\varphi) = \emptyset$, tem-se trivialmente que a(x) = a'(x) para todo $x \in LIV(\varphi)$.

Assim, atendendo à proposição do Slide 31 e a que $E \models \varphi[a]$, conclui-se $E \models \varphi[a']$.

Definição: Uma *L*-fórmula φ é *(universalmente) válida* (notação: $\models \varphi$) quando é válida em toda a *L*-estrutura.

Utilizamos a notação $\not\models \varphi$ quando φ *não é (universalmente) válida*, *i.e.*, quando existe uma *L*-estrutura *E* tal que $E \not\models \varphi$.

Observação: Uma L-fórmula φ não é universalmente válida quando existe alguma L-estrutura que não valida φ , ou seja, quando existe alguma L-estrutra E e alguma atribuição E em E t.q. $E \not\models \varphi[a]$.

Exemplo:

- **1** A L_{Arit} -fórmula $x_0 = x_1$ não é universalmente válida. Como vimos no exemplo anterior, esta fórmula não é válida na estrutura E_{Arit} .
- 2 No exemplo anterior, vimos que a fórmula $x_0 = x_0$ é válida na estrutura E_{Arit} .

No entanto, esta fórmula não é válida em todas as L_{Arit} -estruturas.

Por exemplo, se considerarmos uma L_{Arit} -estrutura $E_1 = (\{a,b\}, \overline{\ })$ em que \equiv seja a relação $\{(a,a)\}$, E_1 não valida $x_0 = x_0$, pois considerando uma atribuição a' em E_1 t.q. $a'(x_0) = b$ teremos $E_1 \not\models x_0 = x_0[a']$, uma vez que o par $(x_0[a'], x_0[a'])$, que é igual ao par (b,b), não pertence à relação \equiv .

3 A L_{Arit} -fórmula $\forall x_0(x_0 = x_1 \lor \neg(x_0 = x_1))$ é universalmente válida.

De facto, dadas uma qualquer L_{Arit} -estrutura $E = (D, \overline{})$ e uma qualquer atribuição a em E, tem-se:

$$E \models \forall x_0(x_0 = x_1 \lor \neg(x_0 = x_1))[a]$$
sse
$$E \models (x_0 = x_1 \lor \neg(x_0 = x_1))[a\binom{x_0}{d}], \text{ para todo } d \in D$$
sse
$$E \models x_0 = x_1[a\binom{x_0}{d}] \text{ou} E \models \neg(x_0 = x_1)[a\binom{x_0}{d}], \text{ para todo } d \in D$$
sse
$$(d, a(x_1)) \in \exists \text{ ou } E \not\models x_0 = x_1[a\binom{x_0}{d}], \text{ para todo } d \in D$$
sse
$$(d, a(x_1)) \in \exists \text{ ou } (d, a(x_1)) \not\in \exists, \text{ para todo } d \in D$$

e a última afirmação é verdadeira.

Definição: Uma *L*-fórmula φ é *logicamente equivalente* a uma *L*-fórmula ψ (notação: $\varphi \Leftrightarrow \psi$) quando $\models \varphi \leftrightarrow \psi$, *i.e.*, quando para para toda a *L*-estrutura *E* e para toda a atribuição *a* em *E*, $E \models \varphi[a]$ sse $E \models \psi[a]$.

Observação:

As propriedades enunciadas para e equivalência lógica no contexto do Cálculo Proposicional mantêm-se válidas no Cálculo de Predicados.

Por exemplo, \Leftrightarrow é uma relação de equivalência em \mathcal{F}_L .

Proposição: Sejam $x, y \in \mathcal{V}$ e $\varphi, \psi \in \mathcal{F}_L$.

a)
$$\neg \forall x \varphi \Leftrightarrow \exists x \neg \varphi$$

b)
$$\neg \exists x \varphi \Leftrightarrow \forall x \neg \varphi$$

c)
$$\forall x \varphi \Leftrightarrow \neg \exists x \neg \varphi$$

d)
$$\exists x \varphi \Leftrightarrow \neg \forall x \neg \varphi$$

e)
$$\forall x(\varphi \land \psi) \Leftrightarrow \forall x\varphi \land \forall x\psi$$
 f) $\exists x(\varphi \lor \psi) \Leftrightarrow \exists x\varphi \lor \exists x\psi$

g)
$$\models (\forall x \varphi \lor \forall x \psi) \to \forall x (\varphi \lor \psi),$$

mas não necessariamente $\models \forall x (\varphi \lor \psi) \to (\forall x \varphi \lor \forall x \psi)$

h)
$$\models \exists x (\varphi \land \psi) \rightarrow (\exists x \varphi \land \exists x \psi),$$

mas não necessariamente $\models (\exists x \varphi \land \exists x \psi) \rightarrow \exists x (\varphi \land \psi)$

i)
$$\forall x \forall y \varphi \Leftrightarrow \forall y \forall x \varphi$$

$$\mathbf{j}) \exists \mathbf{x} \exists \mathbf{y} \varphi \Leftrightarrow \exists \mathbf{y} \exists \mathbf{x} \varphi$$

k)
$$\models \exists x \forall y \varphi \rightarrow \forall y \exists x \varphi$$
, mas não necessariamente $\models \forall x \exists y \varphi \rightarrow \exists y \forall x \varphi$

- I) $Qx\varphi \Leftrightarrow \varphi$ se $x \notin LIV(\varphi)$, para todo $Q \in \{\exists, \forall\}$
- **m)** $Qx\varphi \Leftrightarrow Qy\varphi[y/x]$ se $y \notin LIV(\varphi)$ e x é livre para y em φ para todo $Q \in \{\exists, \forall\}$.
- n) $Qx(\varphi \Box \psi) \Leftrightarrow (Qx\varphi) \Box \psi$ e $Qx(\psi \Box \varphi) \Leftrightarrow \psi \Box (Qx\varphi)$, se $x \notin LIV(\psi)$, para todo $\Box \in \{\land, \lor\}$ e para todo $Q \in \{\exists, \forall\}$

Dem.:

c) Sejam L uma linguagem, E uma L-estrutura e a uma atribuição em E. (Queremos demonstrar que: $E \models \forall x \varphi[a]$ sse $E \models \neg \exists x \neg \varphi[a]$.)

$$E \models \forall x \varphi[a]$$
sse $E \models \varphi[a\begin{pmatrix} x \\ d \end{pmatrix}]$, para todo $d \in dom(E)$ (1)
sse $E \not\models \neg \varphi[a\begin{pmatrix} x \\ d \end{pmatrix}]$, para todo $d \in dom(E)$ (2)
sse $E \not\models \exists x \neg \varphi[a]$ (3)
sse $E \models \neg \exists x \neg \varphi[a]$ (4)

Justificações

- (1) Por (b) da prop. Slide 30
- (2) Para todo $\psi \in \mathcal{F}_L$, $E \models \psi[a]$ sse $E \not\models \neg \psi[a]$ (Exercício).
- (3) Por (c) da prop. Slide 30
- (4) Para todo $\psi \in \mathcal{F}_L$, $E \not\models \psi[a]$ sse $E \models \neg \psi[a]$ (Exercício).

k) Mostremos que $\models \forall x \exists y \varphi \rightarrow \exists y \forall x \varphi$ não é necessariamente válida.

Seja L uma linguagem contendo um símbolo R de relação, binário. Seja E uma L-estrutura de domínio $\{a,b\}$, onde a interpretação de R é o conjunto $\{(a,b),(b,a)\}$.

Então, $E \models \forall x_0 \exists x_1 R(x_0, x_1)$, mas $E \not\models \exists x_1 \forall x_0 R(x_0, x_1)$ (Porquê?). Logo, $E \not\models \forall x_0 \exists x_1 R(x_0, x_1) \rightarrow \exists x_1 \forall x_0 R(x_0, x_1)$.

Demonstração das restantes afirmações: exercício.

Definição: Sejam E uma L-estrutura, a uma atribuição em E e Γ um conjunto de L-fórmulas.

Dizemos que E satisfaz Γ para a ou que o par (E, a) satisfaz Γ , escrevendo $E \models \Gamma[a]$, quando para todo $\varphi \in \Gamma$, $E \models \varphi[a]$.

Caso contrário, dizemos que E não satisfaz Γ para a ou que o par (E, a) não satisfaz Γ , escrevendo $E \not\models \Gamma[a]$.

Exemplo: O par (E_{Arit}, a^{ind}) satisfaz o conjunto de L_{Arit} -fórmulas

$$\{\forall x_0(x_0 \times x_1 = x_0), \forall x_1(x_1 \times s(x_0) = x_1)\},\$$

mas não satisfaz o conjunto de L_{Arit} -fórmulas

$$\{\forall x_0(x_0 \times x_1 = x_0), \forall x_1(x_1 \times s(x_2) = x_1)\}.$$

Definição: Um conjunto de L-fórmulas Γ diz-se satisfazível ou (semanticamente) consistente quando para alguma L-estrutura E e para alguma atribuição a em E, (E,a) satisfaz Γ .

Caso contrário, Γ diz-se *insatisfazível* ou *(semanticamente) inconsistente.*

Exemplo:

- a) O conjunto de L_{Arit} -fórmulas
 - $\{\forall x_0(x_0 \times x_1 = x_0), \forall x_1(x_1 \times s(x_0) = x_1)\}$ é satisfazível (por exemplo, (E_{Arit}, a^{ind}) satisfá-lo).
 - O conjunto de L_{Arit}-fórmulas
 - $\{\forall x_0(x_0 \times x_1 = x_0), \forall x_1(x_1 \times s(x_2) = x_1)\}$ também é satisfazível (exercício).
- **b)** O conjunto de L_{Arit} -fórmulas
 - $\{\forall x_0(x_0 = x_0), \neg (0 = 0)\}$ é insatisfazível (exercício).

Definição: Sejam E uma L-estrutura e Γ um conjunto de L-fórmulas.

Dizemos que E é um *modelo* de Γ ou que E *valida* Γ , escrevendo $E \models \Gamma$, quando para toda a atribuição $E \models \Gamma$, quando para toda a atribuição $E \models \Gamma$ ($E \models \Gamma$).

Caso contrário, dizemos que E não é modelo de Γ ou que E não valida Γ , escrevendo $E \not\models \Gamma$.

 $\forall x_0 \neg (0 = s(x_0));$

Exemplo: E_{Arit} é um modelo do conjunto formado pelas seguintes L_{Arit} -sentenças:

$$orall x_0 orall x_1 ((s(x_0) = s(x_1))
ightarrow (x_0 = x_1)); \ orall x_0
eg (s(x_0) < 0); \ orall x_0 orall x_1 ((x_0 = s(x_1))
ightarrow ((x_0 < x_1) \lor (x_0 = x_1)))); \ orall x_0 (x_0 + 0 = x_0); \ orall x_0 orall x_1 (s(x_0) + x_1 = s(x_0 + x_1)); \ orall x_0 (x_0 imes 0 = 0); \ orall x_0 orall x_1 (s(x_0) imes x_1 = (x_0 imes x_1) + x_1).$$

A axiomática de Peano para a Aritmética é constituída por estas fórmulas, juntamente com um princípio de indução para \mathbb{N}_0 .

Proposição: Seja Γ um conjunto de L-sentenças.

Uma L-estrutura E é um modelo de Γ sse para alguma atribuição a em E, (E, a) satisfaz Γ.

Γ é satisfazível sse existem modelos de Γ.

Dem.: Exercício.

Definição: Uma *L*-fórmula φ diz-se uma *consequência* (semântica) de um conjunto de *L*-fórmulas Γ (notação: $\Gamma \models \varphi$) quando para toda a *L*-estrutura *E* e para toda a atribuição *a* em *E*, se $E \models \Gamma[a]$, então $E \models \varphi[a]$.

Observação: Na denotação de relações de consequência semântica, usaremos simplificações semalhantes às utilizadas no contexto do Cálculo Proposicional.

Por exemplo, dadas L-fórmulas φ e ψ e dado um conjunto de L-fórmulas Γ , a notação Γ , $\varphi \models \psi$ abrevia $\Gamma \cup \{\varphi\} \models \psi$.

Exemplo: No contexto do tipo de linguagem L_{Arit} ,

$$\forall x_0 \neg (x_0 = s(x_0)) \models \neg (0 = s(0)).$$

De facto, dada uma L_{Arit} -estrutura $E = (D, \overline{\ })$ e dada uma atribuição a em E tais que (E, a) satisfaz $\{\forall x_0 \neg (x_0 = s(x_0))\}$, temos que, para todo o $d \in D$, $(d, \overline{s}(d)) \notin \Xi$.

Assim, como $\overline{0} \in D$, em particular, temos que $(\overline{0}, \overline{s}(\overline{0})) \not\in \Xi$.

Consequentemente, $E \models \neg (0 = s(0))[a]$.

Proposição: Sejam Γ um conjunto de *L*-sentenças e φ uma *L*-sentença. Então, Γ $\models \varphi$ sse todos os modelos de Γ validam φ .

Dem.: Exercício.

Notação : Adiante, usaremos a notação $LIV(\Gamma)$, com Γ um conjunto de L-fórmulas, para representar o conjunto $\bigcup_{\varphi \in \Gamma} LIV(\varphi)$.

Proposição: Sejam φ e ψ *L*-fórmulas, seja Γ um conjunto de *L*-fórmulas, seja x uma variável e seja t um *L*-termo.

- a) Se $\Gamma \models \forall x \varphi$ e x está livre para t em φ , então $\Gamma \models \varphi[t/x]$.
- **b)** Se $\Gamma \models \varphi$ e $x \notin LIV(\Gamma)$, então $\Gamma \models \forall x \varphi$.
- c) Se $\Gamma \models \varphi[t/x]$ e x está live para t em φ , então $\Gamma \models \exists x \varphi$.
- **d)** Se $\Gamma \models \exists x \varphi$ e $\Gamma, \varphi \models \psi$, e $x \notin LIV(\Gamma \cup \{\psi\})$, então $\Gamma \models \psi$.

Demonstração:

- a) Suponhamos que (E, a) satisfaz Γ .
 - (Queremos demonstrar que: $E \models \varphi[t/x][a]$.)
 - Então, pela hipótese, $E \models \forall x \varphi[a]$.

Assim, por definição de satisfação,

$$E \models \varphi[a\begin{pmatrix} x \\ d \end{pmatrix}]$$
, para todo $d \in dom(E)$.

Daqui, em particular, $E \models \varphi[a\left(\begin{array}{c} x \\ t[a] \end{array}\right)]$, pois $t[a] \in dom(E)$. Logo, como por hipótese x está livre para t em φ , aplicando a proposição do Slide 33, $E \models \varphi[t/x][a]$.

Demonstração: (cont.)

- **b)** Suponhamos que (E, a) satisfaz Γ .
 - (Queremos demonstrar que: $E \models \forall x \varphi[a]$.)

Por hipótese, $x \notin LIV(\Gamma)$.

Logo, para todo $\psi \in \Gamma$, $x \notin LIV(\psi)$ e, para todo $d \in dom(E)$, as atribuições a e $a \begin{pmatrix} x \\ d \end{pmatrix}$ atribuem os mesmos valores a todas as variáveis livres de ψ .

Assim, para todo $\psi \in \Gamma$, segue da proposição do Slide 31 que

$$E \models \psi[a]$$
 sse $E \models \psi[a\begin{pmatrix} x \\ d \end{pmatrix}]$, para todo $d \in dom(E)$.

Consequentemente, uma vez que (E, a) satisfaz Γ ,

para todo $d \in dom(E)$, $(E, a\begin{pmatrix} x \\ d \end{pmatrix})$ também satisfaz Γ.

Como por hipótese $\Gamma \models \varphi$, segue que

$$E \models \varphi[a\begin{pmatrix} x \\ d \end{pmatrix}]$$
, para todo $d \in dom(E)$,

o que permite concluir $E \models \forall x \varphi[a]$.

c) e d): exercício.