Assignment 2

Georgy Andryushchenko B19-DS-01

1 Theoretical question on K-means Clustering

In the context of the given problem, there are 2 cases of two-cluster partitioning possible:

- 1. m points with x=-2 belong to the 1st cluster m points with x=0 and the point with x=a belong to the 2nd cluster
- 2. m points with x=-2 and m points with x=0 belong to the 1st cluster the point with x=a belong to the 2nd cluster

It is stated in the problem that the first case should minimize J. Therefore, J_1 (J for the first case) should be strictly less than J_2 (J for the second case):

$$J_1 < J_2$$

Calculating the means and obtaining the Js, we have:

$$J_1=a^2rac{m^2+m}{(m+1)^2};\ J_2=2m$$

Let us compose the inequality:

$$a^2 rac{m^2 + m}{(m+1)^2} < 2m$$

Transforming the inequality we get:

$$a^2 < 2(m+1)$$

Therefore, the answer is f(m) = 2(m+1).

2 Theoretical question on SVM

- 1. Definition (I)
 - a. Illustration (a)

Assignment 2 1

Yes.

b. Illustration (b)

No. The hyperplane does not pass the origin on the current illustration.

c. Illustration (c)

No. There are vectors that lie within the margin.

2. Definition (II)

a. Illustration (a)

No. The margin is not maximized which implies that $\frac{1}{2}||\theta||^2$ is not minimized.

b. Illustration (b)

Yes.

c. Illustration (c)

No. There are vectors that lie within the margin.

3. Definition (III)

a. Illustration (a)

Yes.

b. Illustration (b)

No. The hyperplane does not pass the origin on the current illustration.

c. Illustration (c)

Yes.

Assignment 2 2