Lab 8 QUERIES

202012025-28_202018013-14

- Riya Dineshkumar Soni (202012025)
- Kakkan Anurag Kishor (202012026)
- Gandhi Viral Ashok (202012027)
- Sukhadia Rutvi Kumarpal (202012028)
- Shah Siddhant Alkeshbhai (202018013)
- Shah Nihar Shaileshbhai (202018014)

-- SQL Queries and Relational Algebra

SET search_path TO Tourism_Management_System;

--1) Retrieve the packages within a particular price range

Relational Algebra:

σ(amount >=15000 AND amount <= 20000) (package)

SQL Query:

SELECT * FROM package WHERE amount >= 15000 and amount <= 20000;

--2) Show the list of top 5 packages based on the number of users who selected it.

Relational Algebra:

r1 -> $\rho(bfp, packageid \mathcal{F}_{COUNT(bid)}(Booking_for_package))$

r2 -> $\rho(p, package) \bowtie_{p.packageid} = bfp.packageid>(r1)$

result -> $\Pi_{p.packageid, title, duration, no_of_people, amount}(r2)$

SQL Query:

SELECT p.packageid, title, duration, no_of_people, amount FROM package as p
JOIN

(SELECT COUNT(bid), packageid FROM Booking_for_package GROUP BY packageid) as bfp ON (bfp.packageID = p.packageID);

--3) View list of all the tourist spots at a particular location.

Relational Algebra:

```
r1 -> \rho(ts, tourist_spots) \bowtie_{\text{<ts.pincode} = I.pincode>} \rho(I, location) result -> \Pi("Name", season, ratings, CONCAT (ts.address,', ',I.city,', ',I.state, ' - ',ts.pincode) -> Address) (\sigma I.city="kullu"(r1))
```

SQL Query:

```
SELECT ts."Name", ts.season, ts.ratings,

CONCAT (ts.address,', ',l.city,', ',l.state, ' - ',ts.pincode) AS "Address"

FROM tourist_spots AS ts JOIN location AS I ON ts.pincode = l.pincode
where l.city = 'Kullu';
```


--4) View the tourist spots included in "abc" package.

Relational Algebra:

```
r1 -> \rho(I, location) \bowtie_{\text{<l.pincode} = \text{ts.pincode}} \rho(ts, tourist_spots) \bowtie_{\text{<ts.spotid} = \text{pt.spotid}} \rho(pt, package_includes_spots) \bowtie_{\text{<pt.packageid} = \text{p.packageid}} \rho(p, package)
```

result -> $\Pi_{\text{(title, duration, no_of_people, amount, "Name", rating, CONCAT (ts.address,', ',l.city,', ',l.state, ' - ',ts.pincode) -> Address)}$ ($\sigma_{\text{title="Manali Tour"}}$ (r1))

SQL Query:

SELECT p.title, p.duration, p.no_of_people, p.amount, ts."Name", ts.season, ts.ratings, CONCAT (ts.address,', ',l.city,', ',l.state, ' - ',ts.pincode) AS "Address"

FROM tourist spots AS ts

JOIN package_includes_spots pt ON(pt.spotid = ts.spotid)

JOIN package AS p ON (p.packageid = pt.packageid)

JOIN location AS I ON ts.pincode = I.pincode

where p.title = 'Manali Tour';

--5) Retrieve the tourist spot with highest user ratings

Relational Algebra:

```
r1 -> \mathcal{F}_{MAX(ratings)->ratings} (\rho(ts2, tourist\_spots))
r2 -> r1 \bowtie_{< ts2.ratings} = ts1.ratings > \rho(ts1, tourist\_spots) \bowtie_{< ts1.pincode} = I.pincode > \rho(I, location))
result -> \Pi "Name", season, ts2.ratings, address, t1.pincode, city, state(r2)
```

SQL Query:

```
SELECT "Name", season, ts2.ratings,
```

FROM tourist_spots AS ts1

JOIN

(SELECT MAX (ratings) AS ratings FROM tourist spots) AS ts2

ON (ts1.ratings = ts2.ratings)

JOIN Location as I

ON (ts1.pincode = l.pincode);

```
Query Editor Query History
1 set search_path to tourism_maSELECT ts."Name", ts.season, ts.ratings,
2 SELECT "Name", season, ts2.ratings,
 3 CONCAT (ts1.address,', ', l.city,', ',l.state, ' - ',ts1.pincode) AS "Address"
4 FROM tourist_spots AS ts1
5 JOIN
6 (SELECT MAX (ratings) AS ratings FROM tourist_spots) AS ts2
 7 ON (ts1.ratings = ts2.ratings)
8 JOIN Location as l
9 ON (ts1.pincode = l.pincode);
10
11
12
13
Data Output
            Explain Messages
                               Notifications
                         season
                                               ratings
                                                                 Address
                      character varying (10)
 character varying (20)
                                               double precision
  Golden
                         All
                                                             4.9 Golden Tem...
2 Taj
                         All
                                                             4.9 Dharmapuri, ..
```

--6) View all the restaurants that serve "only veg" food.

Relational Algebra:

```
result -> \Pi("Name", phone, foodtype, rating, CONCAT (r.address,', ', l.city, ', ', l.state, ' - ', r.pincode) -> Address) (\sigma foodtype="Veg"(\rho(r, restaurant) \bowtie<r.pincode = l.pincode> \rho(l, location)))
```

SQL Query:

```
SELECT r."Name", r.phone, r.foodType, r.ratings,

CONCAT (r.address,', ', l.city, ', ', l.state, ' - ', r.pincode) AS "Address"

FROM restaurant AS r JOIN location AS I ON r.pincode = l.pincode

where r.foodType = 'VEG';
```

```
set search_path to tourism_management_system;

SELECT r."Name", r.phone, r.foodType, r.ratings,

CONCAT (r.address,', ', l.city, ', ', l.state, ' - ', r.pincode) AS "Address"

FROM restaurant AS r JOIN location AS l ON r.pincode = l.pincode
where r.foodType = 'VEG';

// Property of the part of the pa
```

Dat	a Output Explain Mess	ages Notification	ons		
4	Name character varying (50)	phone numeric (10)	foodtype character varying (20)	ratings double precision	Address text
1	Jahanpanah	9898456721	VEG	4.5	E 23, Shoppi
2	Huber &	9889855455	VEG	2.5	Shreekunj M
3	Cryo Lab	9876543210	VEG	3	Ground Floo
4	Subway	6826589432	VEG	4.5	207/53, Mah
5	Open Hand	9898569825	VEG	3	B1/128-3, D

--7) Retrieve list of all the restaurants at "abc" location.

Relational Algebra:

```
result -> \Pi_{\text{("Name", phone, foodtype, rating, CONCAT (r.address,', ', l.city, ', ', l.state, ' - ', r.pincode)} -> Address) (\sigma_{\text{city="Ahmedabad"}} (\rho(r, restaurant) \bowtie_{\text{(r.pincode)}} \rho(l, location)))
```

SQL Query:

```
SELECT r."Name", r.phone, r.foodType, r.ratings,

CONCAT (r.address,', ', l.city, ', ', l.state, ' - ', r.pincode) AS "Address"

FROM restaurant AS r JOIN location AS I ON r.pincode = l.pincode

where l.city = 'Ahmedabad';
```

Query Editor Query History

```
set search_path to tourism_management_system;

SELECT r."Name", r.phone, r.foodType, r.ratings,

CONCAT (r.address,', ', l.city, ', ', l.state, ' - ', r.pincode) AS "Address"

FROM restaurant AS r JOIN location AS l ON r.pincode = l.pincode
where l.city = 'Ahmedabad';

6
7
8
9
```

Dat	a Output Explain Mess	sages Notification	ons		
4	Name character varying (50)	phone numeric (10)	foodtype character varying (20)	ratings double precision	Address text
1	Huber &	9889855455	VEG	2.5	Shreekunj M
2	Cryo Lab	9876543210	VEG	3	Ground Floo

--8) View all the restaurants that have "Chinese" cuisine included in their menu.

Relational Algebra:

```
r1 -> \rho(I, location) \bowtie_{<\text{I.pincode} = r.pincode>} \rho(r, restaurant) \bowtie_{<\text{r.rid} = rc.rid>} \rho(rc, restaurant_cuisines) result -> \Pi("Name", phone, foodtype, ratings, cuisines, CONCAT (r.address,', ', I.city, ', ', I.state, ' - ', r.pincode) -> Address) (\sigma cuisines="Chinese"(r1))
```

SQL Query:

```
SELECT r."Name", r.phone, r.foodType, r.ratings, rc.cuisines,

CONCAT (r.address,', ', l.city, ', ', l.state, ' - ', r.pincode) AS "Address"

FROM restaurant AS r JOIN location AS I ON r.pincode = l.pincode

JOIN restaurant cuisines AS rc ON r.rid = rc.rid WHERE rc.cuisines = 'Chinese';
```

```
Query Editor Query History
1 set search_path to tourism_management_system;
2 SELECT r."Name", r.phone, r.foodType, r.ratings, rc.cuisines,
3 CONCAT (r.address,', ', l.city, ', ', l.state, ' - ', r.pincode) AS "Address"
 4 FROM restaurant AS r JOIN location AS l ON r.pincode = l.pincode
    JOIN restaurant_cuisines AS rc ON r.rid = rc.rid WHERE rc.cuisines = 'Chinese';
6
7
8
Data Output Explain Messages Notifications
                       phone
   Name
                                       foodtype character varying (20)
                                                                 ratings
                                                                                   cuisines
                                                                                                          Address
 numeric (10)
                                                                                   character varying (20)
                                                                 double precision
                                                                                                          text
                                                                                4.5 Chinese
  Jahanpanah
                               9898456721 VFG
                                                                                                          E 23, Shoppi...
                               9889855455 VEG
                                                                                                          Shreekunj M.
                               7954215885 NON-VEG
                                                                                                          17/33. Maha..
3 Tandoor
                                                                                 4 Chinese
   Three Dots
                               7878252364 NON-VEG
                                                                                3.5 Chinese
                                                                                                          840/1,100 F...
5 ECHOES
                               9465853246 BOTH
                                                                                                          44, 4th B Cr...
                                                                                 3 Chinese
```

--9) Retrieve all the hotels that are situated at location "xyz".

Relational Algebra:

result -> Π ("Name", phone, foodtype, ratings, cuisines, CONCAT (h.address,', ', l.city,', ', l.state,' - ', h.pincode) -> Address) (σ city="Ahmedabad" (ρ (h, hotel) \bowtie <h.pincode = l.pincode> ρ (l, location)))

SQL Query:

SELECT h. "Name", h.phone, h.foodType, h.ratings,

CONCAT (h.address,', ', l.city,', ', l.state,' - ', h.pincode) AS "Address"

FROM hotel AS h JOIN location AS I ON h.pincode = l.pincode WHERE l.city = 'Ahmedabad';

--10) Retrieve list of hotels that are providing "xyz" services.

Relational Algebra:

r1 -> $\rho(I, location) \bowtie_{\langle I, pincode = h, pincode \rangle} \rho(h, hoteI) \bowtie_{\langle h, hotelid = hs, hotelid \rangle} \rho(hs, hoteI_services)$

result -> Π ("Name", phone, foodtype, ratings, services, CONCAT (h.address,', ', l.city,', ', l.state,' - ', h.pincode) -> Address) (σ services="Gym"(r1))

SQL Query:

SELECT h. "Name", h.phone, h.foodType, h.ratings, hs.services,

CONCAT (h.address,', ', l.city,', ', l.state,' - ', h.pincode) AS "Address"

FROM hotel AS h

JOIN location AS I ON h.pincode = l.pincode

JOIN hotel services AS hs ON h.hotelid = hs.hotelid

where hs.services = 'Gym';

--11) Retrieve the hotel with highest user ratings

Relational Algebra:

r1 -> $\mathcal{F}_{MAX(ratings)}$ (hotel)

r2 -> $\rho(h, hotel) \bowtie_{\langle h.pincode = l.pincode \rangle} \rho(l, location)$

result -> Π ("Name", phone, foodtype, ratings, services, CONCAT (h.address,', ', l.city,', ', l.state,' - ', h.pincode) -> Address) (σ ratings IN (r1)="Gym"(r2))

SQL Query:

SELECT h. "Name", h.phone, h.foodType, h.ratings,

CONCAT (h.address,', ', l.city,', ', l.state,' - ', h.pincode) AS "Address"

FROM hotel AS h JOIN location AS I ON h.pincode = l.pincode

where h.ratings IN (SELECT max(ratings) from hotel);

--12) Retrieve list of hotels sorted according to their user ratings.

Relational Algebra:

```
r1-> \rho(h, hotel) \bowtie_{\langle h.pincode = I.pincode \rangle} \rho(I, location)
result -> \Pi_{(\text{"Name"}, phone, foodtype, ratings, services, CONCAT (h.address,', ', I.city,', ', I.state,' - ', h.pincode) -> Address) (<math>\sigma ORDER BY h.ratings (r1))
```

SQL Query:

```
SELECT h."Name", h.phone, h.foodType, h.ratings,

CONCAT (h.address,', ', l.city,', ', l.state,' - ', h.pincode) AS "Address"

FROM hotel AS h JOIN location AS I ON h.pincode = l.pincode

ORDER BY h.ratings DESC;
```

- 1 set search_path to tourism_management_system;
- 2 SELECT h."Name", h.phone, h.foodType, h.ratings,
 3 CONCAT (h.address,', ', l.city,', ', l.state,' ', h.pincode) AS "Address"
 4 FROM hotel AS h JOIN location AS l ON h.pincode = l.pincode
- 5 ORDER BY h.ratings DESC;

Data Output Explain Messages Notifications

4	Name character varying (50)	phone numeric (10)	foodtype character varying (20)	ratings double precision	Address text
1	Hyatt	8794561251	BOTH	4.8	Opp Ahmed
2	ITC Grand	8978152345	BOTH	4.6	287, Dr, Dr B
3	Jaisalkot - A	9116010801	VEG	4.6	Kuldhara Tu
4	ITC Mughal, A	5624021700	ВОТН	4.5	Itc Mughal,
5	Central Hotel	9894517223	вотн	4.5	Ashirwad En
6	Ahmedabad	9878456512	ВОТН	4.5	Vastrapur,Ah
7	Statue of Unity	9797949494	VEG	4.5	Sardar Saro
8	The Imperial	7894556218	VEG	4.4	Dr Yagnik Rd
9	The Metropole	7889451575	ВОТН	4.2	Near R.T.O
10	Cosset-Comfort	7859485625	ВОТН	4.2	Mumbai Pun
11	Meritas	9689521111	BOTH	4.2	Plot No. 13
12	Hotel	8989456512	NON-VEG	4.1	6, VS Marg,
13	Ahdoos	7889464612	VEG	4.1	Residency r
14	The Fern	2876225200	VEG	4.1	Talala Road,
15	Astoria Hotel	9726549956	вотн	4	J. Tata Road
16	Billberry Hotel	9865476521	NON-VEG	4	Ghat No. 17,
17	Ramada by	1835025555	вотн	3.9	117 Hall Baz
18	Hotel	9878451532	VEG	3.8	No.74-A, Ka
19	The White	6868626585	VEG	3.5	181/1, Oppo
20	Hotel Thomas	9855004767	VEG	3.5	Simsa Villag
21	Anmol Hotel	9898565844	VEG	3.5	8180 Street
22	Aurick Hotel	6658498756	NON-VEG	3	15th Cross,
23	BB Palace-A	8655855687	VEG	3	2638-2642
24	Punjab Sindh	7858495615	вотн	3	Main Market
25	Chouki Dhani	9465813587	VEG	3	Near All Indi
26	Hotel Sai	7889456124	VEG	2.9	Chandpur In

--13) View list of hotel rooms starting from the Lowest Price to Highest Price.

Relational Algebra:

r1 -> $\rho(h, hotel) \bowtie_{\langle h.hotelid = r.hotelid \rangle} \rho(r, room)$

 $\label{eq:result} \textit{result ->} \Pi_{\text{(h. "Name"->Hotel_Name,r.room->Room_Number,r.Type->Room_Type,r.beds->No_of_beds,r.capacity,-capacity,-r.rate->price,r.status->Current_Status)} \\ (\sigma \ \mathsf{ORDER} \ \mathsf{BY}_{r.rate,h."name",r.room_no} \ (\texttt{r1}))$

SQL Query:

SELECT h."Name" As "Hotel_Name", r.room_no AS "Room_Number", r."Type" AS "Room_Type",

r.beds AS "No_of_Beds", r.capacity AS "Capacity", r.rate AS "Price", r.status As "Current Status"

FROM hotel AS h JOIN room AS r ON h.hotelid = r.hotelid

ORDER BY r.rate,h."Name", r.room_no;

Data Output Explain Messages Notifications

set search_path to tourism_management_system;

SELECT h."Name" As "Hotel_Name", r.room_no AS "Room_Number", r."Type" AS "Room_Type",

r.beds AS "No_of_Beds", r.capacity AS "Capacity", r.rate AS "Price", r.status As "Current_Status"

FROM hotel AS h JOIN room AS r ON h.hotelid = r.hotelid

ORDER BY r.rate,h."Name", r.room_no;

4	Hotel_Name character varying (50)	Room_Number numeric (3)	Room_Type character varying (6)	No_of_Beds integer □	Capacity integer □	Price double precision	Current_Status character varying (15)
1	Ahdoos	2	HEATER	1	2	1500	AVAILABLE
2	Ahmedabad	2	AC	1	2	1500	AVAILABLE
3	Astoria Hotel	2	AC	1	2	1500	AVAILABLE
4	Aurick Hotel	5	NONAC	1	2	1500	AVAILABLE
5	BB Palace-A	2	AC	1	2	1500	AVAILABLE
6	Billberry Hotel	5	NONAC	1	2	1500	AVAILABLE
7	Central Hotel	5	NONAC	1	2	1500	AVAILABLE
8	Chouki Dhani	2	AC	1	2	1500	AVAILABLE
9	Cosset-Comfort	2	AC	1	2	1500	AVAILABLE
10	Hotel Sai	2	AC	1	2	1500	AVAILABLE
11	Hotel Thomas	10	NONAC	1	2	1500	AVAILABLE
12	Hotel	5	NONAC	1	2	1500	AVAILABLE
13	Hotel	5	NONAC	1	2	1500	AVAILABLE
14	ITC Grand	5	NONAC	1	2	1500	AVAILABLE
15	ITC Mughal, A	5	NONAC	1	2	1500	AVAILABLE

--14) Retrieve list of hotel rooms that have "Cable TV" facility at a particular location.

Relational Algebra:

r1 -> $\rho(h, hotel) \bowtie_{\langle h, pincode=l, pincode\rangle} \rho(l, location) \bowtie_{\langle h, hotelid=r, hotelid\rangle} \rho(r, room)$

 \bowtie < h.hotelid=rf.hotelid and r.room_no=rf.roomno > ρ (rf, room_facilities)

 $Result -> \Pi_{\text{(h. "Name" -> Hotel_Name, r. room-> Room_Number, r. Type-> Room_Type, r. beds-> No_of_beds, r. capacity, -> capacity,$

r.rate->price,r.status->Current_Status,rf.facility,l.city) (σ (rf.facility='Cable TV' and l.city = 'Amritsar')

ORDER BY_{r.rate,h."name",r.room_no} (r1))

SQL Query:

SELECT h."Name" As "Hotel_Name",r.room_no AS "Room_Number", r."Type" AS "Room_Type",

r.beds AS "No_of_Beds", r.capacity AS "Capacity", r.rate AS "Price", r.status As "Current_Status", rf.facility, l.city

FROM hotel AS h JOIN location AS I ON h.pincode = l.pincode

JOIN room AS r ON h.hotelid = r.hotelid

JOIN room facilities AS rf ON (h.hotelid=rf.hotelid and r.room no=rf.roomno)

WHERE rf.facility='Cable TV' and I.city = 'Amritsar'

ORDER BY h. "Name", r.room no;

--15) Retrieve all the packages associated with a particular guide. (admin)

Relational Algebra:

```
r1 -> \rho(g, guide) \bowtie_{\langle g.guideid} = pg.guideid\rangle} \rho(pg, guideid) \bowtie_{\langle pg.packageid} = p.packageid\rangle} \rho(p, package)
```

 $\begin{aligned} \text{result} & -> \Pi_{\text{(CONCAT (g.fname, '', g.lname)}} & -> \text{Guide_Name, p.title}} & -> \text{package_name, p.duration} & -> \text{Duration(in days), p.no_of_people} \\ & -> \text{No_of_people, p.amount}} & -> \text{Amount)} & \sigma_{\text{g.fname}} & -> \text{Sachin' and g.lname} & -> \text{Package_name, p.duration} & -> \text{Duration(in days), p.no_of_people} \\ & -> \text{No_of_people, p.amount}} & -> \text{Constant} & -> \text{Constan$

SQL Query:

```
SELECT CONCAT (g.fname,' ', g.lname) AS "Guide_Name",
p.title AS "Package_Name", p.duration as "Duration (In Days)",
p.no_of_people AS "No_Of_People", p.amount AS "Amount"

FROM guide AS g JOIN package_includes_guides AS pg ON (g.guideid=pg.guideid)

JOIN package AS p ON (pg.packageid=p.packageid)
```

WHERE g.fname='Sachin' and g.lname='Bhide';

Query Editor Query History 1 set search_path to tourism_management_system; SELECT CONCAT (g.fname,' ', g.lname) AS "Guide_Name", p.title AS "Package_Name", p.duration as "Duration (In Days)", 4 p.no_of_people AS "No_Of_People", p.amount AS "Amount" 5 FROM guide AS g JOIN package_includes_guides AS pg ON (g.guideid=pg.guideid) JOIN package AS p ON (pg.packageid=p.packageid) WHERE g.fname='Sachin' and g.lname='Bhide'; 7 8 9 10 11 12 13 14 Data Output Explain Messages Notifications Guide_Name Duration (In Days) No_Of_People Package_Name Amount character varying (15) text double precision integer integer 1 Sachin Bhide 64000 Manali Tour

--16) Retrieve the list of all package associated with a particular hotel.

Relational Algebra:

r1 -> $\rho(h, hotel) \bowtie_{h.hotelid} = ph.hotelid> \rho(ph, package_includes_hotels) \bowtie_{pg.packageid} = p.packageid> \rho(p, package)$

result -> Π (h."Name" -> Hotel_Name, p.title -> package_name, p.duration -> Duration(in days), p.no_of_people -> No_of_people, p.amount -> Amount)(σ h."Name"='Hotel Thomas Villa' (r1))

SQL Query:

SELECT h. "Name" AS "Hotel_Name",

p.title AS "Package_Name", p.duration as "Duration (In Days)",

p.no of people AS "No Of People", p.amount AS "Amount"

FROM hotel AS h JOIN package includes hotels AS ph ON (h.hotelid=ph.hotelid)

JOIN package AS p ON (ph.packageid=p.packageid)

WHERE h. "Name"='Hotel Thomas Villa';

--17) Retrieve all the packages which include "xyz" spots.

Relational Algebra:

```
r1 -> \rho(t, tourist_spots) \bowtie_{\text{<t.spotid}} = ps.spotid> \rho(ps, package_includes_spots) \bowtie_{\text{<ps.packageid}} = p.packageid> \rho(p, package)
```

```
 result -> \Pi_{(t."Name" -> Spot\_Name, p.title -> package\_name, p.duration -> Duration(in days), p.no_of\_people -> No_of\_people, p.amount -> Amount) ($\sigma_t."Name" -| Manali' ($r1$))
```

SQL Query:

```
SELECT t. "Name" AS "Spot_Name",
```

p.title AS "Package Name", p.duration as "Duration (In Days)",

p.no of people AS "No Of People", p.amount AS "Amount"

FROM tourist spots AS t JOIN package includes spots AS ps ON (t.spotid=ps.spotid)

JOIN package AS p ON (ps.packageid=p.packageid)

WHERE t."Name"='Manali';

--18) Best tourist place to visit in "xyz" season.

Relational Algebra:

```
r1 -> \rho(ts, tourist_spots) \bowtie<ts.pincode = I.pincode> \rho(I, location) result -> \Pi(t."Name" -> Spot_Name, ts.season -> Season, ts.ratings -> Ratings, CONCAT (ts.address,', ',l.city,', ',l.state, ' - ',ts.pincode) -> Address)) (\sigma ts.season "='Winter' (r1))
```

SQL Query:

```
SELECT ts."Name" AS "Spot_Name", ts.season AS "Season", ts.ratings AS "Ratings",
```

CONCAT (ts.address,', ',l.city,', ',l.state, ' - ',ts.pincode) AS "Address"

FROM tourist_spots AS ts JOIN "location" AS I

Data Output Explain Messages Notifications

ON ts.pincode=I.pincode

WHERE ts.season='Winter';

Query Editor Query History

```
set search_path to tourism_management_system;
SELECT ts."Name" AS "Spot_Name", ts.season AS "Season", ts.ratings AS "Ratings",
CONCAT (ts.address,', ',l.city,', ',l.state, ' - ',ts.pincode) AS "Address"
FROM tourist_spots AS ts JOIN "location" AS l
ON ts.pincode=l.pincode
WHERE ts.season='Winter';
WHERE ts.season='Winter';
```

_	Spot_Name character varying (20) □	Season character varying (10)	Ratings double precision □	Address text
1	Manali	Winter	4.7	Rotang Pass
2	Srinagar	Winter	4.7	Srinagar,J &
3	Dashashwamedh	Winter	4.6	Dashashwa
4	Somnath	Winter	4.3	Somnath M

--19) Name and address of hotels which provides rooms between specific price range.

Relational Algebra:

r1 -> $\rho(h, hotel) \bowtie_{\langle h. pincode=l. pincode\rangle} \rho(l, location) \bowtie_{\langle h. hotelid=r. hotelid\rangle} \rho(r, room)$

LEFT \bowtie < h.hotelid=rf.hotelid and r.room_no=rf.roomno > ρ (rf, room_facilities)

 $Result -> \Pi_{\text{(h. "Name" -> Hotel_Name, r. room-> Room_Number, r. Type-> Room_Type, r. beds-> No_of_beds, r. capacity-> capacity, r. type-> Room_Type, r. beds-> No_of_beds, r. capacity-> capacity, r. type-> Room_Type, r. beds-> No_of_beds, r. capacity-> capacity, r. type-> Room_Type, r. beds-> No_of_beds, r. capacity-> capacity, r. type-> Room_Type, r. beds-> No_of_beds, r. capacity-> capacity, r. type-> Room_Type, r. beds-> No_of_beds, r. capacity-> capacity, r. type-> Room_Type, r. beds-> No_of_beds, r. capacity-> capacity, r. type-> Room_Type, r. beds-> No_of_beds, r. capacity-> capacity, r. type-> Room_Type, r. beds-> No_of_beds, r. capacity-> capacity, r. type-> Room_Type, r. type-> Room_Type-> Room_$

r.rate->price,r.status->Current_Status,rf.facility, CONCAT (h.address,',', l.city,',', l.state,'-', h.pincode) -> Address)

 $(\sigma_{(r.rate\ BETWEEN\ 1500\ and\ 2000)}\ ORDER\ BY_{r.rate,h."name",r.room_no}\ (r1))$

SQL Query:

SELECT h."Name" As "Hotel_Name", r.room_no AS "Room_Number", r."Type" AS "Room_Type",

r.beds AS "No_of_Beds", r.capacity AS "Capacity", r.rate AS "Price", r.status As "Current Status",

rf.facility, CONCAT(h.address,', ', l.city,', ', l.state,' - ', h.pincode) AS "Address"

FROM hotel AS h JOIN location AS I ON h.pincode = l.pincode

JOIN room AS r ON h.hotelid = r.hotelid

LEFT JOIN room facilities AS rf ON (h.hotelid=rf.hotelid and r.room no=rf.roomno)

WHERE r.rate between 1500 and 2000

ORDER BY r.rate, h."Name", r.room_no;

--20) Retrieve list of all the guides which are not associated with any active packages.

Relational Algebra:

r1-> $\Pi_{(pg.guideid)}$ ($\sigma_{(p.isActive='TRUE')}$ ($\rho(pg, package_include_guide) \bowtie_{pg.package.id=p.packageid>} \rho(p,package)))$

r2 -> $\rho(g,guide) \bowtie_{\langle g.pincode=l.pincode\rangle} \rho(I, location)$

result-> Π (CONCAT(g.fname,' ','g.lname)->Guide_Name,g.email,g.phone,g.age,g.gender,(g.address,',',l.city,',',l.state,'-',g.pincode)->Address) (σ (g.guideid NOT IN (r1)) (r2))

SQL Query:

SELECT CONCAT (g.fname, ' ', g.lname) AS "Guide Name", g.email, g.phone, g.age, g.gender,

CONCAT (g.address,', ',l.city,', ',l,state,' - ',g.pincode) AS "Address"

FROM guide AS g JOIN "location" AS I ON (g.pincode=l.pincode)

WHERE g.guideid NOT IN

(SELECT guideid from package_includes_guides AS pg

JOIN (Select * from package where isActive='TRUE') AS p ON (pg.packageid=p.packageid));

Query Editor Query History 1 set search_path to tourism_management_system; 2 SELECT CONCAT (g.fname,' ', g.lname) AS "Guide_Name", g.email, g.phone, g.age, g.gender, CONCAT (g.address,', ',l.city,', ',l,state,' - ',g.pincode) AS "Address" FROM guide AS g JOIN "location" AS l ON (g.pincode=l.pincode) WHERE g.guideid NOT IN (SELECT guideid from package_includes_guides AS pg 7 JOIN (Select * from package where isActive='TRUE') AS p ON (pg.packageid=p.packageid)); 8 9 10 Data Output Explain Messages Notifications Guide_Name email phone gender Address character varying (20) numeric (10) character (1) 6645789155 Gill Medical ... 1 Param Singh psingh@gmail.com 28 M 40 M Dargah Hom... 2 Pooran Singh theps4@gmail.com 9977884455 3 Shanker Desai shivd88@gmail.com 7984561534 56 M Shree Muniv.. 9988451601 4 Karan Thakker kt14@gmail.com 30 M Abhay Ghat, .. 5 Akshar Patel akpatel45@gmail.com 7845561255 26 M Aarogya Van... gg0007@gmail.com 6 Ganesh Gaitonde 9988990007 35 M ... pragati ...

--21) Which hotel have availability of room right now?

Relational Algebra:

```
r1 -> \rho(\text{hl, hotel}) \bowtie_{\text{hl.hotelid} = r.hotelid} > \rho(r, \text{hotelid} \mathcal{F}_{\text{COUNT(room\_no)} -> \text{rooms}} (room))
result -> \Pi_{\text{(hl."Name",rooms, hl.ratings, hl.address)}}(\sigma_{\text{rooms} > 0 \text{ AND hl.isActive=true}}(r1))
```

SQL Query:

SELECT hl. "Name", rooms ,hl.ratings, hl.address

FROM hotel as hI JOIN

(SELECT hotelid, COUNT (room_no) AS rooms FROM room GROUP BY hotelid) as r ON (r.hotelid = hl.hotelid) WHERE rooms > 0 AND hl.isactive = true;

```
set search_path to tourism_management_system;

SELECT hl."Name", rooms ,hl.ratings, hl.address

FROM hotel as hl JOIN

(SELECT hotelid, COUNT (room_no) AS rooms FROM room GROUP BY hotelid) as r

ON (r.hotelid = hl.hotelid) WHERE rooms > 0 AND hl.isactive = true;
```

Data	Data Output Explain Messages Notifications					
4	Name character varying (50) □	rooms bigint	ratings double precision	address character varying (100)		
1	Ramada by	10	3.9	117 Hall Bazaar, Punjab		
2	Hotel Thomas	10	3.5	Simsa Village, Manali, Himach		
3	Ahdoos	5	4.1	Residency road, Regal Chowk,		
4	Billberry Hotel	5	4	Ghat No. 17, Nehru Park, Dal L		
5	Hotel	5	3.8	No.74-A, Kamla Nehru Rd, opp		
6	Hotel Sai	5	2.9	Chandpur Industrial State Nea		
7	The White	5	3.5	181/1, Opposite CDRI Campu		
8	Hotel	5	4.1	6, VS Marg, Narpatkhera, Lalb		
9	Punjab Sindh	5	3	Main Market, near Kedarnath		
10	Anmol Hotel	5	3.5	8180 Street No6,Arakashan		
11	BB Palace-A	5	3	2638-2642 Gurudwara Road,A		
12	ITC Mughal, A	5	4.5	Itc Mughal, Fatehabad Rd, Taj		
13	Jaisalkot - A	5	4.6	Kuldhara Turn, Off, Jaisalmer		
14	Chouki Dhani	5	3	Near All India Radio Tower, Ja		

--22) Number of rooms available at a particular hotel right now.

Relational Algebra:

```
r1 -> \rho(h, hotel) \bowtie_{\langle h, hotelid = r, hotelid \rangle} \rho(r, \mathcal{F}_{COUNT(*)}(room))
result -> \sigma_{h."Name"} = 'Ahdoos Hotel' AND r.status = 'AVAILABLE'}(r1)
```

SQL Query:

SELECT COUNT (*) FROM room as r

JOIN

hotel AS h ON (r.hotelid = h.hotelid)

WHERE h. "Name" = 'Ahdoos Hotel' AND r.status = 'AVAILABLE';

--23) Retrieve all the previous bookings of user. (both)

Relational Algebra:

r1 -> ρ (b, booking) LEFT $\bowtie_{\text{cb.bid}} = \text{bfc.bid} > \rho$ (bfc, $\text{bid} \mathcal{F}_{\text{COUNT(fname)}} -> \text{no_of_co_passengers}$ (booking_copassenger)) FULL OUTER $\bowtie_{\text{cb.bid}} = \text{bfp.bid} > \rho$ (bfp, booking_for_package) FULL OUTER $\bowtie_{\text{cb.packageid}} = \text{p.packageid} > \rho$ (p, package) FULL OUTER $\bowtie_{\text{cb.bid}} = \text{bfh.bid} > \rho$ (bfh, booking_for_hotel) FULL OUTER $\bowtie_{\text{cb.hotelid}} = \text{h.hotelid} > \rho$ (h, hotel) FULL OUTER $\bowtie_{\text{ch.hotelid}} = \text{h.hotelid} > \rho$ (hp, hotel) FULL OUTER $\bowtie_{\text{cpih.hotelid}} > \rho$ (hp, hotel) $\bowtie_{\text{cb.userid}} > \rho$ (u,"User")

 $result -> \Pi_{\text{(b.booking_date, bfc.no_of_co_passengers, b.tripstart_date, b.tripend_date, b.amount, p.title -> package_name, } \\ \text{hp."Name" -> package_hotel, pih.RoomNo -> package_roomno, h."Name" -> hotel_name, bfh.roomno)} \\ \left(\sigma \text{ CONCAT (u.fname,' ',u.lname)} \right) \\ = \text{'Viral Gandhi'} \\ \left(r1\right) \\ \text{(r1)}$

SQL Query:

SELECT b.booking_date, bfc.no_of_co_passengers, b.tripstart_date, b.tripend_date, b.amount, p.title AS package_name, hp."Name" as package_hotel, pih.RoomNo package_roomno,h."Name" AS hotel_name, bfh.roomno FROM booking as b

LEFT JOIN

(SELECT COUNT(c.fname) AS no_of_co_passengers, c.bid FROM booking_copassenger c GROUP BY c.bid) AS bfc ON (bfc.bid = b.bid)

FULL OUTER JOIN booking_for_package AS bfp ON (bfp.bid = b.bid)

FULL OUTER JOIN package AS p ON (bfp.packageid = p.packageid)

FULL OUTER JOIN booking for hotel AS bfh ON (bfh.bid = b.bid)

FULL OUTER JOIN hotel AS h ON (bfh.hotelid = h.hotelid)

FULL OUTER JOIN Package_Includes_Hotels AS pih ON (pih.packageid = p.packageid)

FULL OUTER JOIN hotel AS hp ON (hp.hotelid = pih.hotelid)

JOIN "User" AS u ON (b.userid = u.userid)

WHERE CONCAT (u.fname, ' ', u.lname) = 'Viral Gandhi';

--24) Retrieve the bookings between particular date of "xyz" user. (admin)

Relational Algebra:

r1 -> ρ (b, booking) LEFT $\bowtie_{\text{<b.bid}} = \text{bfc.bid} > \rho$ (bfc, $\text{bid} \mathcal{F}_{\text{COUNT(fname)}} -> \text{no_of_co_passengers}$ (booking_copassenger)) FULL OUTER $\bowtie_{\text{<b.bid}} = \text{bfp.bid} > \rho$ (bfp, booking_for_package) FULL OUTER $\bowtie_{\text{<b.bid}} = \text{bfh.bid} > \rho$ (bfh, booking_for_hotel) FULL OUTER $\bowtie_{\text{<b.bid}} = \text{bfh.bid} > \rho$ (bfh, booking_for_hotel) FULL OUTER $\bowtie_{\text{<b.bid}} = \text{bfh.bid} > \rho$ (bfh, booking_for_hotel) FULL OUTER $\bowtie_{\text{<b.bid}} = \text{b.hotelid} > \rho$ (h, hotel) FULL OUTER $\bowtie_{\text{<h.hotelid}} = \text{b.hotelid} > \rho$ (pih, package_includes_hotels) FULL OUTER $\bowtie_{\text{<pih.hotelid}} > \rho$ (hp, hotel) $\bowtie_{\text{<b.buserid}} > \rho$ (u,"User")

 $result -> \Pi_{\text{(b.booking_date, bfc.no_of_co_passengers, b.tripstart_date, b.tripend_date, b.amount, p.title -> package_name, } \\ \text{hp."Name" -> package_hotel, pih.RoomNo -> package_roomno, h."Name" -> hotel_name, bfh.roomno)} \\ \left(\sigma \text{ CONCAT (u.fname,' ',u.lname)} \right) \\ = \text{'Viral Gandhi' and b.booking_date} \\ < \text{'2020-11-14' AND b.booking_date} >= \text{'2020-11-09'} \\ \left(r1\right)\right)$

SQL Query:

SELECT CONCAT(u.fname,' ',u.lname), b.booking_date, bfc.no_copassengers, b.tripstart_date, b.tripend_date,

b.amount, p.title AS package_name,hp."Name" as package_hotel, pih.RoomNo package_roomno, h."Name" AS hotel_name, bfh.roomno

FROM booking as b

LEFT JOIN

(SELECT COUNT(c.fname) AS no_copassengers, c.bid FROM booking_copassenger c GROUP BY c.bid) AS bfc ON (bfc.bid = b.bid)

FULL OUTER JOIN booking_for_package AS bfp ON (bfp.bid = b.bid)

FULL OUTER JOIN package AS p ON (bfp.packageid = p.packageid)

FULL OUTER JOIN booking for hotel AS bfh ON (bfh.bid = b.bid)

FULL OUTER JOIN hotel AS h ON (bfh.hotelid = h.hotelid)

FULL OUTER JOIN Package Includes Hotels AS pih ON (pih.packageid = p.packageid)

FULL OUTER JOIN hotel AS hp ON (hp.hotelid = pih.hotelid)

JOIN "User" AS u ON (b.userid = u.userid)

WHERE CONCAT(u.fname, ' ', u.lname) = 'Viral Gandhi'

AND b.booking_date < '2020-11-14' AND b.booking_date >= '2020-11-09';

--25) Retrieve all the bookings between particular date. (admin)

Relational Algebra:

r1 -> $\rho(b, booking)$ LEFT $\bowtie_{<b.bid} = bfc.bid> \rho(bfc, bid \mathcal{F}_{COUNT(fname)} -> no_of_co_passengers)$ (booking_copassenger)) FULL OUTER $\bowtie_{<b.bid} = bfp.bid> \rho(bfp, booking_for_package)$ FULL OUTER $\bowtie_{<b.bid} = bfp.bid> \rho(bfp, booking_for_package)$ FULL OUTER $\bowtie_{<b.bid} = bfh.bid> \rho(bfh, booking_for_hotel)$ FULL OUTER $\bowtie_{<b.hotelid} = bfh.hotelid> \rho(h, hotel)$ FULL OUTER $\bowtie_{<h.hotelid} = bfh.hotelid> \rho(h, hotel)$ FULL OUTER $\bowtie_{<h.hotelid} = bfh.hotelid> \rho(hp, hotel)$ $\bowtie_{<h.hotelid} = bfh.hotelid> \rho(hp, hotel)$ $\bowtie_{<b.userid} = bfh.hotelid> \rho(hp, hotel)$ $\bowtie_{<h.userid} = bfh.hotelid> \rho(hp, hotel)$ $\bowtie_{<h.userid} = bfh.hotelid> \rho(hp, hotel)$

 $result -> \Pi(b.booking_date, bfc.no_of_co_passengers, b.tripstart_date, b.tripend_date, b.amount, p.title -> package_name, \\ hp."Name" -> package_hotel, pih.RoomNo -> package_roomno, h."Name" -> hotel_name, bfh.roomno) (<math>\sigma_b.booking_date < '2020-11-14' AND b.booking_date >= '2020-11-09' (r1))$

SQL Query:

SELECT CONCAT(u.fname,' ',u.lname), b.booking_date, bfc.no_copassengers, b.tripstart_date, b.tripend_date,

b.amount, p.title AS package_name,hp."Name" as package_hotel, pih.RoomNo package_roomno, h."Name" AS hotel_name, bfh.roomno

FROM booking as b

LEFT JOIN

(SELECT COUNT(c.fname) AS no_copassengers, c.bid FROM booking_copassenger c GROUP BY c.bid) AS bfc ON (bfc.bid = b.bid)

FULL OUTER JOIN booking_for_package AS bfp ON (bfp.bid = b.bid)

FULL OUTER JOIN package AS p ON (bfp.packageid = p.packageid)

FULL OUTER JOIN booking_for_hotel AS bfh ON (bfh.bid = b.bid)

FULL OUTER JOIN hotel AS h ON (bfh.hotelid = h.hotelid)

FULL OUTER JOIN Package_Includes_Hotels AS pih ON (pih.packageid = p.packageid)

FULL OUTER JOIN hotel AS hp ON (hp.hotelid = pih.hotelid)

JOIN "User" AS u ON (b.userid = u.userid)

WHERE b.booking_date < '2020-11-14' AND b.booking_date >= '2020-11-09';

26) Retrieve all the details of user of "xyz" hotel room. (admin)

Relational Algebra:

```
r1 -> \rho(r,room) \bowtie_{r.hotelid} = h.hotelid > \rho(h,hotel)
r2-> (\sigma_{h."Name"} = 'Hotel Thomas' and r.room_no = 5 (r1))
r3-> \rho(bfh,booking\_for\_hotel) \bowtie_{r2.hotelid} = bfh.hotelid > (r2)
r4-> \rho(b,booking) \bowtie_{r3.bid} = b.bid > (r3)
r5-> \rho(u,User) \bowtie_{u.userid} = r4.userid > (r4)
result-> \Pi_{(CONCAT(u.fname, '', u.lname)->user\_name, u.phone, u.email, u.age, b.booking\_date)} (r5)
```

SQL Query:

```
SELECT CONCAT(u.fname, '', u.lname) AS user_name, u.phone, u.email, u.age, b.booking_date FROM "User" as u
```

JOIN booking AS b ON (u.userid = b.userid)

JOIN booking_for_hotel AS bfh ON (b.bid = bfh.bid)

JOIN hotel AS h ON (bfh.hotelid = h.hotelid)

JOIN room AS r ON (r.hotelid = h.hotelid) WHERE h. "Name" = 'Hotel Kashi'

AND r.room no = 5;

27) Retrieve all the user booking details of "xyz" hotel. (admin)

Relational Algebra:

```
r1-> \rho(bfh, booking\_for\_hotel) \bowtie_{bfh.hotelid} = h.hotelid > \rho(h,hotel)
r2-> \sigma_{h."Name"} = 'Hotel Kashi'(r1)
r3-> \rho(b,booking) \bowtie_{b.bid} = r2.bid> (r2)
r4-> \rho(u,user) \bowtie_{u.userid} = r3.userid> (r3)
\Pi_{(CONCAT(u.fname, '', u.lname)} = vser\_name, b.booking\_date, bfh.roomno)(r4)
```

SQL Query:

SELECT CONCAT(u.fname, ' ', u.lname) AS user_name, b.booking_date, bfh.roomno FROM "User" as u

JOIN booking AS b ON (u.userid = b.userid)

JOIN booking_for_hotel AS bfh ON (b.bid = bfh.bid)

JOIN hotel AS h ON (bfh.hotelid = h.hotelid)

WHERE h. "Name" = 'Hotel Kashi';

28) Give details of co-passenger with "xyz" user with dates. (admin)

Relational Algebra:

```
r1->\rho(bc, booking_copassenger) \bowtie< bc.userid = c.uid AND bc.fname = c.fname AND bc.lname = c.lname>\rho(c,copassanger)  
r2-> \sigma concat(u.fname, '', u.lname) = 'Viral Gandhi'(r1)  
r3-> \rho(b,booking) \bowtie<br/>b.bid=r2.bid>(r2)  
r4->\rho(u,user) \bowtie<u.userid=r3.userid>(r3)  
\Pi( concat(u.fname, '', u.lname) AS user_name, b.booking_date,  
concat(c.fname, '', c.lname) as copassenger, c.phone, c.gender, c.age)(r4)
```

SQL Query:

SELECT CONCAT(u.fname, '', u.lname) AS user name, b.booking date,

CONCAT(c.fname, '', c.lname) as copassenger, c.phone, c.gender, c.age

FROM "User" as u

JOIN booking AS b ON (u.userid = b.userid)

JOIN booking copassenger AS bc ON (bc.bid = b.bid)

JOIN copassenger AS c ON (bc.userid = c.uid AND bc.fname = c.fname AND bc.lname = c.lname)

WHERE CONCAT(u.fname, ' ', u.lname) = 'Viral Gandhi';

