

Application Descriptions

HVAC ObIS

Fan Actuator Stepwise - Position Driven

Summary

This object is used to control a fan in one or more speed steps depending on the continuous actuating values. This ObIS allows e.g. in combination with the other ObIS for HVAC to control a fan coil unit with one or two heat exchangers.

Version 01.00.01 is a KNX Approved Standard.

This document is part of the KNX Specifications v2.1.

7

19

9

Document updates

Version	Date	Modifications
1.0	2002.04.04	Editorially restyled, based on "04-02_ObIS_FAS_PD.doc"
1.0	2009.06.16	Editorial update in view of inclusion in the KNX Specifications v2.0.
01.00.01	2013.10.29	Editorial updates for the publication of KNX Specifications 2.1.

References

None.

Filename: 07_19_09 ObIS FAS-PD v01.00.01 AS.docx

Version: 01.00.01

Status: Approved Standard

Savedate: 2013.10.29

Number of pages: 17

Contents

1	Application	on Model(s)	4
2	ObIS Fun	ction Model(s)	5
_		Function Model "Fan Actuator Stepwise-Position Driven"	
	2.1.1	Aims and objectives	
	2.1.2	Functional specification	
	2.1.3	Constraints	
	2.1.4	Functional Block	
	2.1.5	Priority of the Inputs	7
	2.1.6	Properties	
3	Datapoint	Type(s)	16
		point Type "Fan Actuator Status"	
		point Type "8-bit unsigned integer with special function for zero"	
		point Type "Boolean"	

1 Application Model(s)

Figure 1 - Application of the ObIS "Fan Actuator Stepwise-Position Driven" for Individual Room Temperature Control with a Fan Coil Unit

2 ObIS Function Model(s)

2.1 ObIS Function Model "Fan Actuator Stepwise-Position Driven"

2.1.1 Aims and objectives

This object is used to control a fan in one or more speed steps depending on the continuous actuating values. This ObIS allows e.g. in combination with the other ObIS for HVAC (see Figure 1) to control a fan coil unit with one or two heat exchangers.

2.1.2 Functional specification

This ObIS controls the fan speed in one or more speed steps depending on the continuous actuating values. The fan speed steps may be the same as well for heating mode as for cooling mode (if no parameters for cooling mode are defined). The fan speed steps may be different for heating and for cooling mode if separate parameters are defined.

The actual fan speed step also depends on the optional inputs "Manual Override Enable" and "Manual Override Fan Speed" and on the input "Forced Fan Speed Step Enable" and the parameter "Forced Fan Speed Step". The priority of these inputs is defined in clause 2.1.5 "Priority of the Inputs" below. The FAS status information is an optional output.

2.1.3 Constraints

No constraints are defined for the ObIS Fan Actuator Stepwise – Position Driven.

2.1.4 Functional Block

Input(c)		Ean Actuator Sta	nwico	Ī	Output(a)
<u>Input(s)</u>		Fan Actuator Ste Position Driv			Output(s)
Continuous Actuating Value	5.001	04)/	F00	5.010	F 0
Continuous Actuating Value	5.001	CAV	FSS	See 3.1	Fan Speed Step Fan Actuator Stepwise
Cooling		CAVC	FASS		Status
_	See 3.3				
Manual Override Enable	F 001	MOE			
Manual Override Fan Speed	5.001	MOFS			
manual overhale i all opera	See 3.3				
Forced Fan Speed Step Enable		FFSSE			
Parameter(s)	5 040				
Number of Fan Speed Steps	5.010	NOFSS			
Number of Fair Speed Steps	5.001	10133			
CAV for FSS $0 \rightarrow 1$		CAVFSS01			
CAV for FSS 1 \rightarrow 2	5.001	CAVFSS12			
CAV 101 F35 1 → 2	5.001	CAVESSIZ			
CAV for FSS (n-1) \rightarrow n		CAVFSSn1n			
001/45=500====(=4)	5.001	OA)/E00:4			
CAV for FSS n \rightarrow (n-1)	5.001	CAVFSSnn1			
CAV for FSS 2 \rightarrow 1		CAVFSS21			
	5.001				
CAV for FSS 1 \rightarrow 0	5.001	CAVFSS10			
Cooling CAV for FSS $0 \rightarrow 1$	5.001	CCAVFSS01			
	5.001				
Cooling CAV for FSS $1 \rightarrow 2$		CCAVFSS12			
Cooling CAV for FSS (n-1) \rightarrow n	5.001	CCAVFSSn1n			
Cooling CAV IOI 1 CO (II-1)	5.001	OCAVI GOITIII			
Cooling CAV for FSS $n \rightarrow (n-1)$		CCAVFSSnn1			
015041/4500.0	5.001	0041/50004			
Cooling CAV for FSS $2 \rightarrow 1$	5.001	CCAVFSS21			
Cooling CAV for FSS 1->0		CCAVFSS10			
	5.010				
Forced Fan Speed Step	C 2.0	FFSS			
Transmit Cycle Time Fan Speed Step	See 3.2	TCTFSS			
Transmit FASS	See 3.3	101533			
On Change Enable		TFASSE			
On Onango Enable	See 3.2	,			
Transmit Cycle Time FASS		TCTFASS			

2.1.5 Priority of the Inputs

The Fan Speed Step is controlled by the Inputs "Manual Override Enable" and "Forced Fan Speed Step Enable". The priority of these inputs is shown in the table below:

Table 1 – Priority rules for the ObIS FAS-PD

Manual Override Enable MOE	le Forced Fan Speed Step Enable FFSSE Fan Speed Step	
0	0	Fan Speed Step FSS
0	1	Forced Fan Speed Step FFSS
1	0	Manual Override Fan Speed MOFS
1	1	Manual Override Fan Speed MOFS

2.1.6 Properties

ID	Name	Abbr.	Description	Datapoint Type	M/O
1	PID_OBJECT_TYPE		, ,	KNX_PropD ataType	М

Input(s)

ID	Name	Abbr.	Description	Datapoint Type	M/O
<tbd></tbd>	PID_VALUE_ACTUATING CONTINUOUS	CAV	Continuous Actuating Value	5.001	М
<tbd></tbd>	PID_VALUE_ACTUATING CONTINUOUS_COOLING	CAVC	Continuous Actuating Value Cooling	5.001	0
<tbd></tbd>	PID_OVERRIDE_MANUAL_ENABL E	MOE	Manual Override Enable	See 3.3	0
<tbd></tbd>	PID_OVERRIDE_MANUAL_SPEED _FAN	MOFS	Manual Override Fan Speed	5.001	0
<tbd></tbd>	PID_FAN_SPEED_STEP_FORCED _ENABLE	FFSSE	Forced Fan Speed Step Enable	See 3.3	0

Output(s)

ID	Name	Abbr.	Description	Datapoint Type	M/O
<tbd></tbd>	PID_SPEED_STEP_FAN	FSS	Fan Speed Step	5.010	0
<tbd></tbd>	PID_STATUS_FAN_ACTUATOR STEPWISE	FASS	Fan Actuator Stepwise Status	See 3.1	0

Parameter(s)

Parame	I				
ID	Name	Abbr.	Description	Datapoint Type	M/O
<tbd></tbd>	PID_NUMBER_OF_FAN_SPEED STEPS	NOFSS	Number of Fan Speed Steps	EIS 14	М
<tbd></tbd>	PID_ACTUATING_VALUE_ CONTINUOUS_FSS_0_TO_1	CAVFSS01	Continuous Actuating Value for FSS 0 to 1	5.001	М
<tbd></tbd>	PID_ACTUATING_VALUE_ CONTINUOUS_FSS_1_TO_2	CAVFSS12	Continuous Actuating Value for FSS 1 to 2	5.001	0
<tbd></tbd>	PID_ACTUATING_VALUE_ CONTINUOUS_FSS_N-1_TO_N	CAVFSSn1n	Continuous Actuating Value for FSS (n-1) to n	5.001	0
<tbd></tbd>	PID_ACTUATING_VALUE_ CONTINUOUS_FSS_N_TO_N-1	CAVFSSnn1	Continuous Actuating Value for FSS n to n-1	5.001	0
<tbd></tbd>	PID_ACTUATING_VALUE_ CONTINUOUS_FSS_2_TO_1	CAVFSS21	Continuous Actuating Value for FSS 2 to 1	5.001	0
<tbd></tbd>	PID_ACTUATING_VALUE_ CONTINUOUS_FSS_1_TO_0	CAVFSS10	Continuous Actuating Value for FSS 1 to 0		М
<tbd></tbd>	PID_ACTUATING_VALUE_CONTINUOUS_COOLING_FSS_0_TO_1	CCAVFSS01	Continuous Actuating Value Cooling for FSS 0 to 1		0
<tbd></tbd>	PID_ACTUATING_VALUE_CONTINUOUS_COOLING_FSS_1_TO_2	CCAVFSS12	Continuous Actuating Value Cooling for FSS 1 to 2	5.001	0
<tbd></tbd>	PID_ACTUATING_VALUE_CONTINUOUS_COOLING_FSS_N-1_TO_N	CCAVFSSn1 n	Continuous Actuating Value Cooling for FSS (n-1) to n	5.001	0
<tbd></tbd>	PID_ACTUATING_VALUE_CONTINUOUS_COOLING_FSS_N_TO_N-1	CCAVFSSnn 1	Continuous Actuating Value Cooling for FSS n to n-1	5.001	0
<tbd></tbd>	PID_ACTUATING_VALUE_CONTINUOUS_COOLING_FSS_2_TO_1	CCAVFSS21	Continuous Actuating Value Cooling for FSS 2 to 1	5.001	0
<tbd></tbd>	PID_ACTUATING_VALUE_CONTINUOUS_COOLING_FSS_1_TO_0	CCAVFSS10	Continuous Actuating Value Cooling for FSS 1 to 0	5.001	0
<tbd></tbd>	PID_FAN_SPEED_STEP_FORCED	FFSS	Forced Fan Speed Step	5.010	0
<tbd></tbd>	PID_TRANSMIT_CYCLE_TIME SPEED_STEP_FAN	TCTFSS	Transmit Cycle Time Fan Speed Step	See 3.2	0
<tbd></tbd>	PID_ENABLE_TRANSMIT_FASS_ ON_CHANGE	TFASSE	Transmit FASS on Change Enable	See 3.3	0
<tbd></tbd>	PID_TRANSMIT_CYCLE_TIME FASS	TCTFASS	Transmit Cycle Time FASS	See 3.2	0

2.1.6.1 Property PID_VALUE_ACTUATING_CONTINUOUS

CAV

Unit: %
Range: 0..100
Default Value: -

Communication Object/Parameter: C
Input/Output: I

R/W Rate >> 10/day

Description: Fan Coil Units may be supplied by two pipes or three/four pipes.

Fan Coil Units with two pipes:

This is the positioning command used for calculating the fan speed steps based on the parameters CAVFSS01 .. CAVFSSn1n and CAVFSSn11 ..

CAVFSS10.

Fan Coil Units with three/four pipes:

This is the positioning command for the heating valve, used for calculating the fan speed steps based on the parameters CAVFSS01 .. CAVFSSn1n and

CAVFSSnn1 .. CAVFSS10.

2.1.6.2 Property PID_VALUE_ACTUATING_CONTINUOUS_COOLING CAVC

Unit: %
Range: 0 ... 100

Default Value: Communication Object/Parameter: C
Input/Output: I

R/W Rate $\gg 10/day$

Description: This is the positioning command for the cooling valve (see ObIS TPIC). It is

used for calculating the fan speed steps either based on the parameters CAVFSS01 .. CAVFSSn1n and CAVFSSnn1 .. CAVFSS10 or (in case of

different speeds for the cooling mode) based on the parameters CCAVFSS01 .. CCAVFSSn1n and CCAVFSSn1n .. CCAVFSS10.

This communication object CAVC is only available in Fan Coil Units with

three/four pipes.

2.1.6.3 Property PID_OVERRIDE_MANUAL_ENABLE

MOE

Unit Range: 0,1
Default Value: 0
Communication Object/Parameter: C
Input/Output: I
R/W Rate < 1/day

Description: This object serves to switch over the fan from automatic mode (0) to manual

mode (1).

In manual mode the input object Manual Override Fan Speed MOFS is used

for calculating the fan speed step.

2.1.6.4 Property PID_OVERRIDE_MANUAL_SPEED_FAN

MOFS

Unit Range: 0 ... n
Default Value: Communication Object/Parameter: C
Input/Output: I
R/W Rate < 1/day

Description: The input Manual Override Fan Speed MOFS is used for manual control of

the Fan Speed Step FSS.

2.1.6.5 Property PID_FAN_SPEED_STEP_FORCED_ENABLE

FFSSE

Unit Range: 0,1
Default Value: 0
Communication Object/Parameter: C
Input/Output: I
R/W Rate < 1/day

Description: This input Forced Fan Speed Step Enable FFSSE is used to switch the Fan

Speed Step to the predefined speed step. This speed step is defined as

parameter FFSS (see 2.1.6.21)

2.1.6.6 Property PID_SPEED_STEP_FAN

FSS

Description: This is the actual fan speed step.

2.1.6.7 Property PID_STATUS_FAN_ACTUATOR_STEPWISE

FASS

Unit: Range: Default Value: Communication Object/Parameter: C
Input/Output: O

R/W Rate $\gg 10/\text{day}$

Description: This object contains several information about the fan actuator status (see

3.1).

2.1.6.8 Property PID_NUMBER_OF_FAN_SPEED_STEPS

NOFSS

Unit: -

Range: min: 1 .. 255

Description: This parameter defines the number of the fan speed steps.

2.1.6.9 Property PID_ACTUATING_VALUE_CONTINUOUS_FSS_0_TO_1

CAVFSS01

Unit: 9

Range: min 0 ... 30

Default Value: Communication Object/Parameter: P
Input/Output: R/W
R/W Rate << 1/day

Description: This parameter defines the continuous actuating value up from which the

fan speed is switched to step 1. This parameter is used for both heating and

cooling if no separate parameters for cooling (CCAVFSS01 ... CCAVFSSn1n) are available or in case of a two pipes fan coil unit.

2.1.6.10 Property PID_ACTUATING_VALUE_CONTINUOUS_FSS_1_TO_2

CAVFSS12

Unit: %

Range: min 0 ... 60

Default Value: Communication Object/Parameter: P
Input/Output: R/W
R/W Rate << 1/day

Description: This parameter defines the continuous actuating value up from which the

fan speed is switched to step 2. This parameter is used for both heating and

cooling if no separate parameters for cooling (CCAVFSS01 ... CCAVFSSn1n) are available or in case of a two pipes fan coil unit.

2.1.6.11 Property PID_ACTUATING_VALUE_CONTINUOUS_FSS_N-1_TO_N

CAVFSSn1n

Unit: %

Range: min 0 ... 100

Default Value:

Communication Object/Parameter:

Input/Output:

R/W

R/W Rate

- P

R/W

R/W

Description: This parameter defines the continuous actuating value up from which the

fan speed is switched to step n. This parameter is used for both heating and

cooling if no separate parameters for cooling (CCAVFSS01 ...

CCAVFSSn1n) are available or in case of a two pipes fan coil unit.

2.1.6.12 Property PID_ACTUATING_VALUE_CONTINUOUS_FSS_N_TO_N-1

CAVFSSnn1

Unit: 9

Range: min 0 ... 100

Default Value: Communication Object/Parameter: P
Input/Output: R/W
R/W Rate << 1/day

Description: This parameter defines the continuous actuating value up from which the

fan speed is switched down from step n to step n-1. This parameter is used

for both heating and cooling if no separate parameters for cooling

(CCAVFSS01 ... CCAVFSSn1n) are available or in case of a two pipes

fan coil unit.

2.1.6.13 Property PID_ACTUATING_VALUE_CONTINUOUS_FSS_2_TO_1

CAVFSS21

Unit: %

Range: min 0 ... 60

Default Value: Communication Object/Parameter: P
Input/Output: R/W
R/W Rate << 1/day

Description: This parameter defines the continuous actuating value up from which the

fan speed is switched down from step 2 to step 1. This parameter is used

for both heating and cooling if no separate parameters for cooling (CCAVFSS01 ... CCAVFSSn1n) are available or in case of a two pipes

fan coil unit.

2.1.6.14 Property PID_ACTUATING_VALUE_CONTINUOUS_FSS_1_TO_0

CAVFSS10

Unit: %

Range: min 0 ... 30

Default Value:

Communication Object/Parameter:

Input/Output:

R/W

R/W Rate

- P

R/W

- A/W

- A/W

- A/W

- A/W

Description: This parameter defines the continuous actuating value up from which the

fan speed is switched down from step 1 to step 0 (off) . This parameter is used for both heating and cooling if no separate parameters for cooling (CCAVFSS01 ... CCAVFSSn1n) are available or in case of a two pipes

fan coil unit.

2.1.6.15 Property PID_ACTUATING_VALUE_CONTINUOUS_COOLING_FSS_0_TO_1 CCAVFSS01

Unit: %

Range: min 0 ... 30

Default Value: Communication Object/Parameter: P
Input/Output: R/W
R/W Rate << 1/day

Description: This parameter defines the continuous actuating value for cooling up from

which the fan speed is switched to step 1. This parameter is only used in case of a three/ four pipes fan coil unit and if different steps for cooling are

necessary.

2.1.6.16 Property PID_ACTUATING_VALUE_CONTINUOUS_COOLING_FSS_1_TO_2 CCAVFSS12

Unit: %

Range: min 0 ... 60

Default Value:

Communication Object/Parameter:

Input/Output:

R/W

R/W Rate

- P

R/W

- A/W

- A/W

Description: This parameter defines the continuous actuating value for cooling up from

which the fan speed is switched to step 2. This parameter is only used in case of a three/ four pipes fan coil unit and if different steps for cooling are

necessary.

2.1.6.17 Property PID_ACTUATING_VALUE_CONTINUOUS_COOLING_FSS_N-1_TO_N

CCAVFSSn1n

Unit: %

Range: min 0 ... 100

Default Value:

Communication Object/Parameter:

Input/Output:

R/W

R/W Rate

- P

R/W

- R/W

- A/W

Description: This parameter defines the continuous actuating value for cooling up from

which the fan speed is switched to step n. This parameter is only used in case of a three/ four pipes fan coil unit and if different steps for cooling are

necessary.

2.1.6.18 Property PID_ACTUATING_VALUE_CONTINUOUS_COOLING_FSS_N_TO_ N-1

CCAVFSSnn1

Unit: %

Range: min 0 ... 100

Default Value:

Communication Object/Parameter:

Input/Output:

R/W

R/W Rate

- P

R/W

- R/W

Description: This parameter defines the continuous actuating value up from which the

fan speed is switched down from step n to step n-1. This parameter is only used in case of a three/four pipes fan coil unit and if different steps for

cooling are necessary.

2.1.6.19 Property PID_ACTUATING_VALUE_CONTINUOUS_COOLING_FSS_2_TO_1 CCAVFSS21

Unit: %

Range: min 0 ... 60

Default Value: Communication Object/Parameter: P
Input/Output: R/W
R/W Rate << 1/day

Description: This parameter defines the continuous actuating value up from which the

fan speed is switched down from step 2 to step 1. This parameter is only used in case of a three/four pipes fan coil unit and if different steps for

cooling are necessary.

2.1.6.20 Property PID_ACTUATING_VALUE_CONTINUOUS_COOLING_FSS_1_TO_0 CCAVFSS10

Unit: %

Range: min 0 ... 30

Default Value: Communication Object/Parameter: P
Input/Output: R/W
R/W Rate << 1/day

Description: This parameter defines the continuous actuating value up from which the

fan speed is switched down from step 1 to step 0 (off). This parameter is only used in case of a three/four pipes fan coil unit and if different steps

for cooling are necessary.

2.1.6.21 Property PID_FAN_SPEED_STEP_FORCED

FFSS

Unit Range: 0 ... n
Default Value: Communication Object/Parameter: P
Input/Output: R/W
R/W Rate << 1/day

Description: This parameter is used as Fan Speed Step FSS if the Forced Fan Speed

Step Enable FFSSE object is set.

2.1.6.22 PID_TRANSMIT_CYCLE_TIME_SPEED_STEP_FAN

TCTFSS

Unit: minutes
Range: min 0, 15..60

Default Value: 0
Communication Object/Parameter: P
Input/Output: R/W
R/W Rate << 1/day

Description: The Fan Speed Step FSS will be transmitted cyclically after the given

cycle time. It will not be transmitted cyclically if the cycle time is set to

"0".

2.1.6.23 PID_ENABLE_TRANSMIT_FASS_ON_CHANGE

TFASSE

Unit: Range: 0,1
Default Value: 1
Communication Object/Parameter: P
Input/Output: R/W
R/W Rate << 1/day

Description: This parameter defines whether the Fan Actuator Stepwise Status FASS

will be transmitted on change (1) or not (0).

2.1.6.24 PID_TRANSMIT_CYCLE_TIME_FASS

TCTFASS

Unit: minutes
Range: min 0, 15..60

Default Value: 0
Communication Object/Parameter: P
Input/Output: R/W
R/W Rate << 1/day

Description: The status object Fan Actuator Stepwise Status FASS will be transmitted

cyclically after the given cycle time. It will not be transmitted cyclically if

the cycle time is set to "0".

3 Datapoint Type(s)

3.1 Datapoint Type "Fan Actuator Status"

Format:	1 oc	tet
	EEEE C	DCBA
Encoding:	See belov	N
Range:	AD= {0,	1}
<u>Unit:</u>	-	
Datapoint '	Types	
Code:	Symbol:	Encoding:
<tbd></tbd>	<tbd></tbd>	A: 0 = automatic; 1 = manual/forced (1) B: 0 = heating; 1 cooling C: 0 = CAV = 0 1 = CAV > 0 (0 = heating valve closed) D: 0 = CAVC = 0 1 = CAVHC > 0 (0 = cooling valve closed) E: reserved; shall be 0.

(1) B = 1 if MOE or FFSSE = 1

3.2 Datapoint Type "8-bit unsigned integer with special function for zero"

Format:	1 octet				
	VVVVVV	/			
Encoding:	See below				
Range:	V = [02	55] binary er	ncoded		
<u>Unit:</u>	See below				
Datapoint '	Types				
Code:	Symbol:	Encoding:	Range:	<u>Unit</u> :	
<tbd></tbd>	<tbd></tbd>	"time"	1255	1 min	
			0 = corresponding function disabled		

3.3 Datapoint Type "Boolean"

	31		
Format:	1 bit		
	V		
Encoding:	See below		
Range:	$V = \{0,1\}$		
<u>Unit:</u>	-		
Datapoin	t Types		
Code:	Symbol:	Encoding: V = 0	V = 1
1.003	MOE (Manual Override Enable)	disable	enable
1.003	HCM (Heating/ Cooling Mode)	cooling	heating
1.003	TFASSE (Transmit On Change Enable)	disable	enable
1.003	FFSSE (Forced Fan Speed Step Enable)	disable	enable