Week 5

???

5.1 ???

1/30: • Review of copper-catalyzed ATRP ligand effects.

- They're trying to prevent termination by lowering the radical concentration.
- Essentially, the ligand plays an important role in the rate of activation.
- Copper-catalyzed ATRP: Effect of initiator.
 - Initiator activity increase is related to the stabilization of the generated radical, so $3^{\circ} > 2^{\circ} > 1^{\circ}$...
- Copper-catalyzed ATRP: ppm Cu.
 - Residual copper could have adverse effects if you're looking to make a medical product that will go into a person or a polymer to go into a piece of technology.
 - We typically need 0.1-1 mol\% of copper relative to the monomer, so the product will contain a lot of it.
 - Thus, if we want to filter it out beyond just precipitating our polymer, we can throw in chelating agents or do fancier things, but that all adds cost and time to the process.
 - Termination does occur.
 - The rate of reaction depends on the ratio of [Cu⁺]/[Cu²⁺] and not the absolute catalyst concentration.
 - So theoretically, we can go to much smaller catalyst loadings, as long as we keep that ratio high.
 - However, this is difficult to do because we need to regenerate Cu⁺ using something other than radicals.
- Copper-catalyzed AGET and ARGET ATRP.
 - AGET (Activators Generated by Electron Transfer) ATRP: Stoichiometric amounts of reducing agent added to the reaction mixture containing alkyl halides...
 - Wrapping copper wire around your stir bar will usually do the trick.
 - Essentially, we're just adding in a reducing agent.
 - ARGET (Activators ReGenerated by Electron Transfer) ATRP: Similar to AGET, but we use an excess of reducing agent which allows the use of much lower amounts of copper.
 - We can also use electrochemistry of photochemistry to reduce down.
 - These methods are much more commonplace now than traditional ATRP, especially if we're working toward biomedical devices.

Week 5 (???) CHEM 39100

- Reversible Addition-Fragmentation Chain Transfer (RAFT).
 - You use a standard free radical termination, but instead of having reversible termination, you
 have a reversible chain transfer process.
- Discovery of RAFT polymerization (1998).
 - RAFT polymerization controls chain growth through reversible chain transfer.
 - It can be achieved by the introduction of a small percent of a chain transfer agent into a conventional free-radical polymerization.
 - We most commonly use dithioester derivatives.
 - The R group...
- Steps in RAFT polymerization.
 - We use a standard initiator (e.g., AIBN).
 - We then have a step of pre-equilibrium or initialization.
 - \blacksquare Here, a polymer can add into the dithioester and kick out R · to begin a new polymerization.
 - Re-initialization: The growing of the new polymer from $R \cdot .$
 - Main equilibrium: Chain transfer back and forth through dormant chains bonded to dithioesters.
 - Various R groups for the chain transfer agent.
- RAFT: Snap shot of polymer chains.
 - A few dead chains, mostly dormant chains, and a few propagating chains.
 - Allows you to get a nice spike in molecular weight. Note that you might get a little tail on the low end due to dead chains.
 - All you have to do in the lab is throw in a bit of your RAFT pixie dust.
- RAFT equilibria.
 - The efficiency of a RAFT agent can be defined by C_{tr} . More active RAFT agents have larger C_{tr} . (C_{tr} should be at least 10; many are > 100.)
 - We have that $C_{tr} = k_{tr}/k_p$ where

$$k_{tr} = k_{add}\phi = k_{add} \frac{k_{\beta}}{k_{-add} + \dots}$$

- Kinetics and livingness.
 - We won't go in depth into how to derive this stuff.
 - The rate of polymerization is...
 - We can define the **livingness** (how much is dormant or growing vs. dead).

$$L = \frac{[CTA]_0}{[CTA]_0 + 2f[I]_0(1 - e^{-k_d t})(1 - f_c/2)}$$

- The number of chains produced in a radical-radical termination events
- $-f_c = 1$ means 100% termination by combination, whereas $f_c = 0$ means 100% termination by disproportionation.
- Monomers with high propagatino rates (such as acrylamides) and initaotors with high efficiency or high decomositio rate lead to fast polymerization rate while keeping low initiator concentration.
- An optimal RAFT system requires a high rate of radical generation (considering k_d , for instance, by using thermal initiator at T > their ten-hour half-life) and/or solvent induced acceleration.

Week 5 (???) CHEM 39100

- A large polymerization rate permits shorter polymerization time or lower amounts...
- Reactivity of the monomers and their propagating radicals.
 - Monomers can be classified into two general groups.
 - More "activated" monomers (MAMs).
 - Conjugated double bond (e.g., styrene, methyl methacrylate, acrylamide, acrylonitrile, ...).
 - Reactive monomer.
 - Less reactive propagating chains.
 - This means that poly(MAM) is a relatively good homolytic leaving groups, and as such, the more active RAFT agents provide good control. Less active RAFT agents have lower C_{tr} and provide poor control.
 - Less "activated" monomers (LAMs).
 - Saturated carbon or oxygen/nitrogen.
 - **...**
- Relationship of RAFT agent and monomer.
 - Optimal control in RAFT polymerization requires choosing an appropriate RAFT agent for the monomer(s) to be polymerized.
- Z group impacts the reactivity of the RAFT agents.
 - How reactive is C=S to attack?
 - The reactivity can be qualitatively understood in terms of the importance of zwitterionic canonical forms. The lone pair delocalization with the C=S reduces its double bond character and stabilizes the RAFT agent relative to the radical intermediate.
 - The reactivity of the RAFT agent can be increased if the electron density of the lone pair is reduced by delocalization everywhere.
- Relationship of RAFT agent and monomer; the role of the Z group.
 - Z modifies the rate of addition of propagating radicals (k_{add}) ; it can be altered by 5 orders of magnitude.
 - Z alters the stability of the radical intermediate; the rate of fragmentation k_{-add} .
 - Z should not cause any side reactions.
 - For xanthides...
 - If Z is strongly electron withdrawing, then the C=S an react directly with the monomer (e.g., a hetero Diels-Alder) or nucleophilic attack.
 - Guidelines for selection of the Z group of RAFT agents (ZC(=S)SR) for various polymerizations.
 - **...**
- Relationship of RAFT agent and monomer; the role of the R group. picture
 - For an effective RAFT agent, R \cdot should be...
 - A really good leaving group with respect to the propagating radical $[P \cdot]$ $(\phi > 0.5)$;
 - Be able to reinitiate the polymerization efficiently $(k_{iR} > k_p)$, otherwise retardation occurs. Related to the stability of R · .
 - Guidelines for selection of the R group of RAFT agents.
 - See Figure ??
 - A dashed line indicates only partial control (control of molar mass but poor control over dispersity or substantial retardation in the case of VAc, NVC, NVP).

Week 5 (???) CHEM 39100

- Radical stability is important in determining the fragmentation rates.
- Steric factors play a role.
- Polymerization of 1,1-disubstituted monomers (e.g., methyl methacrylate, methacrylamides) which result in a tertiary $P_n \cdot ...$
- However, polymerization of monomers with high k_p are best controlled with primary and secondary R groups. Tertiary radicals are inefficient at reinstating polymerizations since $k_{i,R}$ is often lower than k_p .
- Just because someone gets it to work for styrene doesn't mean it'll work for everything.
- RAFT CTA choice is everything.
 - A table that summarizes choices.
- Synthetic potential of RAFT.
 - You can do chemistry on your RAFT chain ends.
 - Example: You can react a diene with the C=S bond in a hetero Diels-Alder reaction.
- Targeting molecular weights with RAFT.
 - Your number average molecular weight is

 $\frac{\text{Total monomer concentration}}{\text{Total initiated-unit concentration}} \times \text{Conversion} \times \text{Monomer molar mass} + \text{CTA molar mass}$

- Thus, ...
- Key points.
 - Understand what a living polymerization is.
 - What does that mean for the resulting polymerization?
 - Standard living (ionic) and controlled living (reversible step).
 - Know and understand RAFT, ATRP, and NMP; know how to decide which one you will use.
- Midterm.
 - Know common monomers, know common polymers, know how they can be initiated.
 - Know how to draw reaction mechanisms.
 - There's at least one question that might require a calculator.
 - Implication: There's a kinetic question coming.
 - For the grad level course, papers are 20% of the exam! Don't ignore them!!
 - The kinetics from today's lecture won't be there.
 - Focus on intro, cationic, anionic, and free radical classes.

5.2 ???

2/1: • I was at ??