

Defense Special Weapons Agency Alexandria, VA 22310-3398

DSWA-TR-96-77-V2

Dynamic Failure of Materials Volume 2-Compilation of Russian Spall Data

Tarabay H. Antoun Lynn Seaman Donald R. Curran SRI International 333 Ravenswood Avenue Menlo Park, CA 94025-3434

November 1998

Technical Report

CONTRACT No. DNA 001-93-C-0104

Approved for public release; distribution is unlimited.

DTIC QUALITY INSPECTED 4

19990510 002

DESTRUCTION NOTICE:

Destroy this report when it is no longer needed. Do not return to sender.

PLEASE NOTIFY THE DEFENSE SPECIAL WEAPONS AGENCY, ATTN: CSTI, 6801TELEGRAPH ROAD, ALEXANDRIA, VA 22310-3398, IF YOUR ADDRESS IS INCORRECT, IF YOU WISH IT DELETED FROM THE DISTRIBUTION LIST, OR IF THE ADDRESSEE IS NO LONGER EMPLOYED BY YOUR ORGANIZATION.

CUT HERE AND RETURN

DISTRIBUTION LIST UPDATE

This mailer is provided to enable DNA to maintain current distribution lists for reports. (We would appreciate your providing the requested information.)

 □ Add the individual listed to your distribution list. □ Delete the cited organization/individual. □ Change of address. 	NOTE: Please return the mailing label from the document so that any additions, changes, corrections or deletions can be made easily. For distribution cancellation or more information call DNA/IMAS (703) 325-1036.
_ Change of address.	
NAME:	
ORGANIZATION:	
OLD ADDRESS	CURRENT ADDRESS
	•
TELEPHONE NUMBER: ()	
DNA PUBLICATION NUMBER/TITLE	CHANGES/DELETIONS/ADDITIONS, etc.) (Attach Sheet if more Space is Required)
DNA OR OTHER GOVERNMENT CONTRACT NUME	BER:
CERTIFICATION OF NEED-TO-KNOW BY GOVERNI	MENT SPONSOR (if other than DNA):
SPONSORING ORGANIZATION:	
CONTRACTING OFFICER OR REPRESENTATIVE:	
SIGNATURE:	

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE		YPE AND DATES COVERED
	981101	Technical	930520 - 960920
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS
Dynamic Failure of Materials,			C-DNA 001-93-C-0104
Volume 2-Compilation of Russian Sp	pall Data	1	PE-63216C and 63214C
			PR-SB, AJ
6. AUTHOR(S)			TA-AE, AF
Tarabay H. Antoun, Lynn Seaman, ar	nd Donald R. Curran		WU-DH00002 and DH00012
		·	
7. PERFORMING ORGANIZATION NAME(S	S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION
SRI International			REPORT NUMBER
333 Ravenswood Avenue			PYU-4727
Menlo Park, CA 94025-3434			
	MANE(O) AND ADDDESS(50)		10. SPONSORING/MONITORING
9. SPONSORING/MONITORING AGENCY	NAME(S) AND ADDRESS(ES)		AGENCY REPORT NUMBER
Defense Special Weapons Agency		Ī	ACEROT REFORM ROMOER
6801 Telegraph Road			DSWA-TR-96-77-V2
Alexandria, VA 22310-3398			D5WA-1R-90-77-V2
WEL/Bishop		İ	
11. SUPPLEMENTARY NOTES	•		
This work was sponsored by the Ball	istic Missile Defense Office (BMDO), 1	managed and	executed by the Defense Special
Weapons Agency under RDT&E RM	IC Codes B7668D SB AE 00002 7010A	A AJ 25904D,	B7668D AJ AE 00002 7010A
and B7666D AJ AF 00012 7010A 25			
12a. DISTRIBUTION/AVAILABILITY STATE	EMENT	ľ	12b. DISTRIBUTION CODE
Approved for public release: distri	ibution unlimited.		
13. ABSTRACT (Maximum 200 words)			
	in the Fermion Control Union (FCII) and	in the West b	ove developed inneventive
Over the past three decades, scientist	in the Former Soviet Union (FSU) and	in the west n	Nave developed ilmovative
experimental techniques, measureme	ent diagnostics, and constitutive models	of the Span P	Tocess. Extensive interature
has been built up over the years in W	Vestern publications. However, much o	t the FSU wor	rk was not available in
English and was largely inaccessible	to Western readers. Improved commu	nication between	een Western and FSU scientists
since the end of the Cold War now a	llows the parallel FSU and Western wo	rk to be collec	cted, compared, cross-
	sights and ideas for future directions. The		
	Western readers and to create a handy		
experimental techniques, measureme	ent diagnostics, interpretation methods,	constitutive m	nodeling approaches, and
numerical computation approaches a	and results. We hope this work will be u	seful to inves	tigators and engineers dealing
with fast load and fracture as well as	to investigators working in the field of	physics of str	rength.
14 SUBJECT TERMS			15. NUMBER OF PAGES

OF REPORT UNCLASSIFIED NSN 7540-280-5500

Spall Fracture

Spall Experiment

Dynamic Fracture

17. SECURITY CLASSIFICATION

Spall Data

Nucleation and Growth

Dynamic Fracture Data

OF THIS PAGE

18. SECURITY CLASSIFICATION

UNCLASSIFIED

Standar d Form 298 ((rev. 2-89) Precribed by ANSI Sta. 239-18 298-102

162

20. LIMITATION OF ABSTRACT

SAR

16. PRICE CODE

Shock Wave Loading

Numerical Simulation

Constitutive Modeling

OF ABSTRACT

19. SECURITY CLASSIFICATION

UNCLASSIFIED

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE					
CLASSIFIED BY:					
N/A since Unclassified.					
1W/1 Shice Cheldssified.					
DECLASSIFY ON:			 		
N/A since Unclassified.		•			
	•				
			•		
				•	
	<i>y</i>				
					. !

PREFACE

This project was supported by the Defense Special Weapons Agency (DSWA) and conducted jointly in the High Energy Density Research Center (HEDRC) and in the Institute of Chemical Physics, both of the Russian Academy of Sciences, and in the Poulter Laboratory of SRI International. CDR Kenneth W. Hunter was the DSWA technical monitor.

Special thanks are due to our Russian colleagues at the Institute of Chemical Physics, G. I. Kanel, S. V. Razorenov, and A. V. Utkin, for their very significant contributions to this joint effort. Their work was supported under a separate DSWA contract DNA 001-93-C-0104 under the supervision of Dr. Michael Frankel of DSWA.

This Volume 2 is a compilation of Russian spall data. Volume 1 describes experiments and analyses performed in the United States and the Former Soviet Union.

The initiation of this joint U.S./Russian effort would not have been possible without the active support of Charles W. Martin (then at BMDO and now at ARES Corporation) and Jeffrey Lawrence (then at DSWA and now at Sandia National Laboratory). Thanks are also due to Dr. Michael Frankel of DSWA for solving a number of unglamorous but important administrative problems that arose during the effort.

The Russian portion of the work was performed under the general supervision of academician V. E. Fortov, Director of the High Energy Density Research Center. The SRI portion of the work was performed under the general supervision of Dr. James D. Colton, Laboratory Director, and was based largely on the contributions of two of the present authors, Donald Curran and Lynn Seaman, and on the contributions of T. Barbee, D. Shockey, D. Erlich, R. Crewdson, and many other past SRI researchers to whom the authors express their sincere gratitude. The authors also express their appreciation to Terri Lopez for clerical support and for expert assistance in preparing the manuscript, to Kitta Reeds for editing the manuscript, and to Lee Gerrans for assisting with the illustrations.

CONVERSION TABLE

Conversion factors for U.S. Customary to metric (SI) units of measurement

MULTIPLY —	→ BY		► TO GET
TO GET	– BY		DIVIDE
angstrom	1.000 000	X E -10	meters (m)
atmosphere (normal)	1.013 25	XE+2	kilo pascal (kPa)
bar	1.000 000	X E +2	kilo pascal (kPa)
barn	1.000 000	X E -28	meter ² (m ²)
British thermal unit (thermochemical)	1.054 350	X E +3	joule (J)
calorie (thermochemical)	4.184 000	21 L 13	joule (J)
cal (thermochemical)/cm ²	4.184 000	X E -2	mega joule/m ² (MJ/m ²)
curie	3.700 000	X E +1	*giga becquerel (GBq)
degree (angle)	1.745 329	X E -2	
degree Fahrenheit	$T_K = (T \circ F +$	A E -2 450 67\/1 0	radian (rad)
electron volt	1 602 10		degree kelvin (K)
	1.602 19		joule (J)
erg	1.000 000	X E -7	joule (J)
erg/second	1.000 000	X E -7	watt (W)
foot	3.048 000	X E -1	meter (m)
foot-pound-force	1.355 818		joule (J)
gallon (U.S. liquid)	3.785 412	X E -3	$meter^3 (m^3)$
inch	2.540 000	X E -2	meter (m)
jerk	1.000 000	X E +9	joule (J)
joule/kilogram (J/kg) (radiation dose	1.000 000		Gray (Gy)
absorbed)			
kilotons	4.183		terajoules
kip (1000 lbf)	4.448 222	X E +3	newton (N)
kip/inch ² (ksi)	6.894 757	X E +3	kilo pascal (kPa)
ktap			newton-second/m ²
	1.000 000	X E +2	$(N-s/m^2)$
micron	1.000 000	X E -6	meter (m)
mil	2.540 000	X E -5	meter (m)
mile (international)	1.609 344	X E +3	meter (m)
ounce	2.834 952	X E -2	kilogram (kg)
pound-force (lbs avoirdupois)	4.448 222		newton (N)
pound-force inch	1.129 848	X E -1	newton/meter (N·m)
pound-force/inch	1.751 268	X E +2	newton-meter (N/m)
pound-force/foot ²	4.788 026	X E -2	kilo pascal (kPa)
pound-force/inch ² (psi)	6.894 757		kilo pascal (kPa)
pound-mass (lbm avoirdupois)	4.535 924	X E -1	kilogram (kg)
pound-mass-foot ² (moment of inertia)			kilogram-meter ²
r and some continued in the care	4.214 011	X E -2	(kg·m ²)
pound-mass-foot ³	4.214 011	A L -2	kilogram/meter ³
pound mass root	1.601 846	X E +1	
rad (radiation dose absorbed)	1.001 040	X E +1 X E -2	(kg/m ³)
roentgen	1.000 000	A E -2	**Gray (Gy)
Toomgon	2 570 760	VE 4	coulomb/kilogram
shake	2.579 760	X E -4	(C/kg)
1	1.000 000	X E -8	second (s)
slug	1.459 390	X E +1	kilogram (kg)
torr (mm Hg, 0° C)	1.333 22	X E -1	kilo pascal (kPa)

^{*}The becquerel (Bq) is the SI unit of radioactivity; 1 Bq = 1 event/s.

**The Gray (Gy) is the SI unit of absorbed radiation.

TABLE OF CONTENTS

Sect	ion		Page
	PREFA CONV	ACEERSION TABLE	iii iv
1	REFE	RENCES	1
App	endices		
Α	WES7	TERN EQUIVALENTS OF FSU METAL ALLOYS	A-1
В	EXPE	ERIMENTAL FSU SPALL DATA	B-1
	B.1	ALUMINUM AD1	B-3
	B.2	ALUMINUM D16	B-5
	B.3	ALUMINUM AMg6M	B-9
	B.4	STEEL 3	B-16
	B.5	STEEL 35X3HM ¹	B-18
	B.6	STEEL 45.	B-26
	B.7	STEEL EP-836	B-28
	B.8	STAINLESS STEEL (KH18N10T)	B-31
	B.9	STEEL XVG ¹	B-36
	B.10	HIGH PURITY TITANIUM	B-42
	B.11	TITANIUM VT5-1	B-49
	B.12	TITANIUM VT6	B-52
	B.13	TITANIUM VT8	B-57
	B.14	COPPER M2	B-60
	B.15	COPPER SINGLE CRYSTAL	B-66
	B.16	NICKEL NP-2	B-72
	B.17	MOLYBDENUM POLYCRYSTAL	B-74
	B.18	MOLYBDENUM SINGLE CRYSTAL <100>	B-77
	B.19	MOLYBDENUM SINGLE CRYSTAL <100> DEFORMED	B-82
	B.20	MOLYBDENUM SINGLE CRYSTAL <110>	B-85
	B-21	MOLYBDENUM SINGLE CRYSTAL <111>	B-92
	B.22	NIOBIUM SINGLE CRYSTAL <100>	B-97
	B.23	NIOBIUM SINGLE CRYSTAL <100> DEFORMED	B-100
	B.24	MAGNESIUM	B-105

TABLE OF CONTENTS (Continued)

Appendix		Page
B.25	ARMCO IRON	B-108
B.26	LEAD	B-113
B.27	TIN	B-116
B.28	EPOXY	B-118
B.29	PMMA	B-119
B.30	RUBBER	B-126
B.31	PROPELLANT SIMULANT (FILLED RUBBER)	B-131
B.32	ALUMINA	B-136
B.33	QUARTZ (X-CUT)	B-143
B.34	TITANIUM CARBIDE (WITH NICKEL BINDER)	B-145

SECTION 1

REFERENCES

- Gluzman, V. D., G. I. Kanel, V. F. Loskutov, V. E. Fortov, and I. E. Khorev, "Resistance to Deformation and Fracture of Steel 35X3HM Under Conditions of Shock Loading," Translated from *Problemy Prochnosti* No. 8, 52-57 (1985).
- Kalmykov, Yu. B., G. I. Kanel, I. P. Parkhomenko, A. V. Utkin, and V. E. Fortov, "Behavior of Rubber in Shock Waves and Rarefaction Waves," J. Appl. Mech. Tech. Phys. 31(1), 116-120(1990).
- Kanel, G. I., "Resistance of Metals to Spalling Fracture," *Combustion, Explosion, and Shock Waves* **18**(3), 329-335 (1982).
- Kanel, G. I., and E. N. Petrova, in *Detonation*, 136-142, Chernogolovka, Russia (1981).
- Kanel, G. I., and A. N. Pityulin, "Shock-Wave Deformation of Titanium Carbide-Based Ceramics," *Combustion, Explosion, and Shock Waves* 16(4), 436-438 (1985).
- Kanel, G. I., and S. V. Razorenov, "Shock Wave Loading of Metals: The Motion of the Free Surface of Sample [in Russian]," preprint, Institute of Chemical Physics, USSR Academy of Sciences, Chernogolovka, 46 (1989).
- Kanel, G. I., S. V. Razorenov, and V. E. Fortov, "The Failure Waves and Spallations in Homogeneous Brittle Materials," Proceedings of the APS 1991 Topical Conference on Shock Compression of Condensed Matter, Williamsburg, VA, June 17-20, 1991, edited by S. C. Schmidt, R. D. Dick, J. W. Forbes, and D. G. Tasker, Elsevier Science Publishers, The Netherlands, 451-454 (1992).
- Kanel, G. I., S. V. Razorenov, and V. E. Fortov, "Cleavage Strength of Metals Over a Wide Range of Shock-Load Amplitudes," Sov. Phys. Dokl. 32(5), 413-414 (1987).
- Kanel, G. I., S. V. Razorenov, and V. E. Fortov, "Fracture in Titanium Caused by Shock Waves of Various Intensity," Sov. Phys. Tech. Phys. 31(3), 354-355 (1986).
- Kanel, G. I., S. V. Razorenov, and V. E. Fortov, "Kinetics of Spallation Rupture in the Aluminum Alloy AMg6M," J. Appl. Mech. Tech. Phys. 25(5), 707-711(1984).
- Kanel, G. I., S. V. Razorenov, and V. E. Fortov, "Cleavage Strength of Metals Over a Wide Range of Loading Durations," Sov. Phys. Dokl. 29(3), 241-242 (1984b).
- Kanel, G. I., S. V. Rasorenov, A. V. Utkin, K. Baumung, H. U. Karow, and V. Licht, "Spallation Near the Ultimate Strength of Solids," Proceedings of the Joint International Association for Research and Advancement of High Pressure Science and Technology and American Physical Society Topical Group on Shock Compression of Condensed Matter, Colorado Springs, CO, June 28 July 2, 1993, edited by S. C. Shmidt, J. W. Shaner, G. A. Samara and M. Ross, AIP press, New York, NY, 1043-1046 (1994).
- Kanel, G. I., S. V. Razorenov, A. V. Utkin, D. Grady, "The Spall Strength of Metals at Elevated Temperatures," in: *Shock Compression of Condensed Matter 1995*, edited by S. C. Schmidt and W. C. Tao, AIP Press, Woodbury, NY, 503-506 (1996).

- Kanel, G. I., S. V. Razorenov, A. V. Utkin, and V. E. Fortov, "Spall Strength of Molybdenum Single Crystals," *J. Appl. Phys.* **74**(12), 7162-7165 (1993).
- Kanel, G. I., S. V. Razorenov, and T. N. Yalovets, "Dynamic Strength of Ruby," Chemical *Physics* (USSR) 12(2), 175-177 (1993b).
- Kanel, G. I., and V. V. Shcherban, "Plastic Deformation and Cleavage Rupture of Armco Iron in a Shock Wave," *Combustion, Explosion, and Shock Waves* **16**(4), 439-446 (1980).
- Kanel, G. I., Z. G. Tolstikova, and A. V. Utkin, "Effect of Filler-Particle Size on the Cleavage Strength of Elastomers," *Applied Mechanics and Technical Physics* **35**(3), 399-403 (1993c).
- Parhomenko, I. P., and A. V. Utkin, In: *Matter Under Extreme Conditions*, Moscow, IVTAN, 126-130 (1990).
- Razorenov, S. V., and G. I. Kanel, "The Strength of Copper Single Crystals and the Factors Governing Metal Fracture in Uniaxial Dynamic Stretching," *The Physics of Metals and Metallography* **74**(5), 526-530 (1992).
- Razorenov, S. V., and G. I. Kanel, In *Chem. Phys. of Comb. and Expl. Proc.*, Chernogolovka, 46-49 (1986).
- Razorenov, S. V., G. I. Kanel, V. G. Anufriev, and V. F. Loskutov, "Deformation and Failure of Structural Steels in Pulsed Loading," Translated from *Problemy Prochnosti* No. 3, 42-48 (1992).
- Razorenov, S. V., A. V. Utkin, G. I. Kanel, A. S. Yarunochev, V. E. Fortov, K. Baumung, and H. U. Karow, "Response of High-Purity Titanium to High-Pressure Impulsive Loading," High Pressure Research (1995).

APPENDIX A WESTERN EQUIVALENTS OF FSU METAL ALLOYS

	FCU Alles	II C. Alloy	
Material	FSU Alloy Designation	U.S. Alloy Designation	Composition
			Composition
Aluminum	AD1	1100	
	AMg6M	2017	
	D16	2024	
Magnesium	Ma1	MTA	
Titanium	VT5-1	Ti-5Al-2.5Sn	
		(Alpha phase)	
	VT6	Ti-6Al-4V	
		(Alpha plus beta)	
	VT8	Ti-7Al-4Mo	
		(Alpha plus beta)	
Steel	3		C 0.14%-0.22%
			Mn 0.3%-0.5%
	(Low carbon)		Si <0.07%
			P <0.045%
			S <0.055%
	45		C 0.42%-0.5%
	l		Mn 0.5%-0.8%
	(Structural		Si 0.17%-0.37%
	carbon steel)		P 0.04%
		· ·	S 0.04%
			Cr 0.25% Ni 0.25%
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		C 0.9%-1.05%
	XVG ¹		Mn 0.8%-1.1%
	(Donad to al		Si 0.15%-0.35%
	(Doped tool		Cr 0.9%-1.2%
	steel)		W 1.2%-1.6%
	Kh18N10T		C <0.12%
	KIIIONIUI		Mn 1.0%-2.0%
	(High-doped		Si <0.08%
	stainless steel of		P 0.035%
	the austenite		S 0.02%
	class)		Cr 17%-19%
		1	Ni 9%-11%
		1	Ti 0.5%-0.7%
	35X3HM ^{2,3}	-	-
	EP836 ⁴	-	_

¹The designation XVG is in Russian letters. The equivalent designation in English letters is KhVG.

²The designation 35X3HM is in Russian letters. The equivalent designation in English letters is 35Kh3NM.

³The composition of 35Kh3NM steel was not available in the public domain at the time of publication.

⁴The composition of EP836 steel was not available in the public domain at the time of publication.

APPENDIX B

EXPERIMENTAL FSU SPALL DATA

This Appendix contains a compilation of spall experiments performed by Genady Kanel and his co-workers at the Russian Academy of Sciences. It provides a comprehensive, self-contained summary for each of the experiments reported. The information provided includes (1) a description of the material investigated including its density and elastic properties, (2) a schematic of the experiment, (3) the dimensions and conditions of the material investigated, (4) the technique used to perform the measurement and the associated experimental error, and (5) the experimental results, which in all cases take the form of a particle velocity history recorded at the free surface of the sample or at the interface between the sample and a softer material. Table B-1 summarizes the materials included in this compendium and points to the location where data for these materials can be found within this Appendix. The Appendix is organized into 34 sections corresponding to a variety of materials, alloys, and single crystals shock-loaded in different orientations.

Table B-1. Summary of the materials included in this compendium of spall data and the location of the data within Appendix B.

	Location	of Data
<u>Material</u>	Section	Page
Aluminum AD1	B.1	B-3
Aluminum D16	B.2	B-6
Aluminum AMg6M	B.3	B-11
Steel 3	B.4	B-19
Steel 35X3HM	B.5	B-22
Steel 45	B.6	B-31
Steel EP-836	B.7	B-34
Steel Kh18N10T (stainless)	B.8	B-38
Steel XVG	B.9	B-44
Titanium	B.10	B-51
Titanium VT5-1	B.11	B-59
Titanium VT6	B.12	B-63
Titanium VT8	B.13	B-69
Copper M2	B.14	B-73
Copper single crystal	B.15	B-80
Nickel	B.16	B-87
Molybdenum	B.17	B-90
Molybdenum single crystal <100>,	B.18	B-94
Molybdenum single crystal deformed <100>	B.19	B-100
Molybdenum single crystal <110>	B.20	B-104
Molybdenum single crystal <111>	B.21	B-112
Niobium single crystal <100>	B.22	B-118
Niobium, deformed single crystal <100>	B.23	B-122
Magnesium	B.24	B-128
Armco iron	B.25	B-132
Lead	B.26	B-138
Tin	B.27	B-142
Epoxy	B.28	B-145
PMMA	B.29	B-147
Rubber	B.30	B-155
Propellant simulant (filled rubber)	B.31	B-161
Alumina	B.32	B-167
Quartz, x-cut	B.33	B-175
Titanium carbide (with nickel binder)	B.34	B-178

B.1 ALUMINUM AD1.

Aluminum AD1		
Density	2.71 g/cm ³ 5.25 mm/μs	
Bulk sound velocity	5.25 mm/μs	
Longitudinal sound velocity	6.4 mm/μs	

Experiment	Summary
Loading condition	1-D strain
Loading method	Explosively
	launched flyer plate
Impact velocity	450±20 m/s
Flyer plate: - material	Aluminum
- thickness	2 mm
Target: - material	AD1 aluminum (rod)
- thickness	14.9 mm
Measurement technique	Capacitor gage
Electrode diameter	20 mm
Measurement accuracy	±4%
Spall strength	0.87±0.05 GPa
Spall thickness ¹	1.59 mm

Reference: K	(anel (1982)	

Determined based on the period of oscillation in the measured free-surface velocity history.

Aluminum	AD1
Density	2.71 g/cm ³
Bulk sound velocity	2.71 g/cm ³ 5.25 mm/μs
Longitudinal sound velocity	6.4 mm/μs

Experiment	Summary
Loading condition Loading method	1-D strain Explosively launched flyer plate
Impact velocity	4000±150 m/s
Flyer plate: - material - thickness	Aluminum 2 mm
Target: - material - thickness	AD1 aluminum (rod) 10 mm
Measurement technique	VISAR
Measurement accuracy	±5 m/s
Spall strength Spall thickness ¹	0.87±0.1 GPa 0.68 mm

Reference:	Kanel	(1982)	

Determined based on the period of oscillation in the measured free-surface velocity history.

B.2 ALUMINUM D16.

Aluminum D16	
Density	2.78 g/cm ³
Bulk sound velocity	5.34 mm/μs
Longitudinal sound velocity 6.4 mm/µs	

E	(periment	Summary
Loading condition Loading method		1-D strain In-contact explosives
Buffer:	materialthickness	Copper 10 mm
Target:	materialthickness	D16 aluminum (rod) 10 mm
Measurement technique Electrode diameter		Capacitor gage 20 mm
Measurement accuracy		±4%
Spall strength Spall thickness ¹		0.6±0.05 GPa 4±0.5 mm

Reference:	Kanal	(1082)
i telefelle.	Name	(1302)

Determined based on the period of oscillation in the measured free-surface velocity history.

Aluminum D16		
Density	2.78 g/cm ³	
Bulk sound velocity	2.78 g/cm ³ 5.34 mm/μs	
Longitudinal sound velocity	6.4 mm/μs	

Experiment	Summary
Loading condition Loading method	1-D strain Explosively
	launched flyer plate
Impact velocity	450±20 m/s
Flyer plate: - material	Aluminum
- thickness	2 mm
Target: - material	D16 aluminum (rod)
- thickness	15 mm
Measurement technique	Capacitor gage
Electrode diameter	20 mm
Measurement accuracy	±4%
Spall strength	0.78±0.05 GPa
Spall thickness ¹	1.85 mm (±10%)

Reference:	Kanel	(1982))		

Determined based on the period of oscillation in the measured free-surface velocity history.

Aluminum D16	
Density Rulk sound velocity	2.78 g/cm ³
Density 2.78 g/cm ³ Bulk sound velocity 5.25 mm/μs Longitudinal sound velocity 6.4 mm/μs	

Еx	periment	Summary
Loading co	ondition	1-D strain
Loading m	ethod	Explosively
		launched flyer plate
Impact vel	ocity	450±20 m/s
Flyer plate	: - material	Aluminum
	 thickness 	2 mm
	- diameter	60 mm (plane section)
Target:	- material	D16 aluminum (rod)
	 thickness 	10 mm
Measurement technique		Capacitor gage
Electrode diameter		20 mm
Measurement accuracy		±4%
Spall strength		0.72±0.05 GPa
Spall thick	mess ¹	1.73 mm (±10%)

Reference: Kanel (1982)

Determined based on the period of oscillation in the measured free-surface velocity history.

Aluminum	D16
Density	2.78 g/cm ³
Bulk sound velocity	2.78 g/cm ³ 5.25 mm/μs
Longitudinal sound velocity	6.4 mm/μs

Experiment	Summary
Loading condition	1-D strain
Loading method	Explosively
	launched flyer plate
Impact velocity	700±20 m/s
Flyer plate: - material	Aluminum
- thickness	2 mm
- diameter	60 mm (plane section)
Target: - material	D16 aluminum (rod)
<u>- thickness</u>	10 mm
Measurement technique	Capacitor gage
Electrode diameter	20 mm
Measurement accuracy	±4%
Spall strength	0.66±0.05 GPa
Spall thickness ¹	1.54 mm (±10%)

ı			
	Reference:	Kanel (1982)	

Determined based on the period of oscillation in the measured free-surface velocity history.

B.3 ALUMINUM AMg6M.

Aluminum (A	Mg6M)
Density Bulk sound velocity Longitudinal sound velocity	2.61 g/cm ³
Bulk sound velocity	5.25 mm/μs
Longitudinal sound velocity	6.40 mm/μs

Experiment	Summary
Loading condition	1-D strain
Loading method	In-contact explosives
Target: - material	AMg6M aluminum
	(sheet)
- thickness	10.0 mm
Measurement technique	Capacitor gage
Electrode diameter	5 mm
Measurement accuracy	±4%
Spall strength	0.57±0.1 GPa
Spall thickness ¹	4.7 mm (±10%)

Reference: Kanel et al. (1984)

Determined based on the period of oscillation in the measured free-surface velocity history.

Aluminum (A	Mg6M)
Density	2.61 g/cm ³ 5.25 mm/μs
Bulk sound velocity	5.25 mm/μs
Longitudinal sound velocity	6.40 mm/μs

Experiment Summary	
Loading condition	1-D strain
Loading method	Explosively launched
	flyer plate
Impact velocity	660±20 m/s
Flyer plate: - material	Aluminum
- thickness	0.4 mm
Target: - material	AMg6M aluminum
	(sheet)
- thickness	9.6 mm
Measurement	Capacitor gage
technique	20 mm
Electrode diameter	
Measurement accuracy	±4%
Spall strength	0.83±0.08 GPa
Spall thickness ¹	0.61 mm (±10%)

Reference: Kanel et al. (1984)

Determined based on the period of oscillation in the measured free-surface velocity history.

Aluminum (A	Mg6M)
Density Bulk sound velocity Longitudinal sound velocity	2.61 g/cm ³
Bulk sound velocity	5.25 mm/μs
Longitudinal sound velocity	6.40 mm/μs

Experiment	Summary
Loading condition	1-D strain
Loading method	Explosively launched
	flyer plate
Impact velocity	660±20 m/s
Flyer plate: - material	Aluminum
- thickness	0.19 mm
Target: - material	AMg6M aluminum
_	(sheet)
- thickness	4.4 mm
Measurement	Capacitor gage
technique	20 mm
Electrode diameter	
Measurement accuracy	±4%
Spall strength	1.15±0.05 GPa
Spall thickness ¹	0.34 mm (±10%)

Reference: Kanel et al. (1984)

Determined based on the period of oscillation in the measured free-surface velocity history.

Aluminum (A	Mg6M)
Density	2.61 g/cm ³
Bulk sound velocity	2.61 g/cm ³ 5.25 mm/μs
Longitudinal sound velocity	6.40 mm/μs

Experiment Summary	
Loading condition Loading method	1-D strain Explosively launched
Impact velocity	flyer plate 660±20 m/s
Flyer plate: - material - thickness	Aluminum 0.19 mm
Target: - material	AMg6M aluminum (sheet)
- thickness	1.8 mm
Measurement technique Electrode diameter	Capacitor gage 20 mm
Measurement accuracy	±4%
Spall strength Spall thickness ¹	1.2±0.12 GPa 0.18 mm (±10%)

Reference: Kanel et al. (1984)

Determined based on the period of oscillation in the measured free-surface velocity history.

Aluminum (AMg6M)		
Density Bulk sound velocity Longitudinal sound velocity	2.61 g/cm ³	
Bulk sound velocity	5.25 mm/μs	
Longitudinal sound velocity	6.40 mm/µs	

Experiment Summary	
Loading condition	1-D strain
Loading method	Explosively launched
	flyer plate
Impact velocity	1900±70 m/s
Flyer plate: - material	Aluminum
- thickness	2.0 mm
Target: - material	AMg6M aluminum
_	(sheet)
- thickness	7.0 mm
Measurement technique	VISAR
Measurement accuracy	±5 m/s
Spall strength	0.93±0.04 Gpa
Spall thickness ¹	1.23 mm (±10%)

Reference: Razorenov and Kanel (1986)

Determined based on the period of oscillation in the measured free-surface velocity history.

Aluminum (A	Mg6M)
Density	2.61 g/cm ³
Bulk sound velocity	5.25 mm/us
Longitudinal sound velocity	6.40 mm/μs

Experiment Summary			
Loading condition	1-D strain		
Loading method	Explosively launched		
	flyer plate		
Impact velocity	3000±100 m/s		
Flyer plate: - material	Aluminum		
- thickness	2.0 mm		
Base plate: - material	Copper		
- thickness	4 mm		
Target: - material	AMg6M aluminum		
	(sheet)		
- thickness	10.0 mm		
Measurement	VISAR		
technique			
Measurement accuracy	±5 m/s		
Spall strength	0.93±0.04 GPa		
Spall thickness ¹	0.54 mm (±10%)		

Reference: Razorenov and Kanel (1986)

Determined based on the period of oscillation in the measured free-surface velocity history.

Aluminum (AMg6M)		
Density Bulk sound velocity Longitudinal sound velocity	2.61 g/cm ³	
Bulk sound velocity	5.25 mm/μs	
Longitudinal sound velocity	6.40 mm/μs	

Experiment Summary				
Loading condition	1-D strain			
Loading method	Explosively launched			
	flyer plate			
Impact velocity	5300±150 m/s			
Flyer plate: - material	Aluminum			
- thickness	2.0 mm			
Base plate: - material	Copper			
- thickness	4 mm			
Target: - material	AMg6M aluminum			
	(sheet)			
- thickness	4.5 mm			
Measurement	VISAR			
technique				
Measurement accuracy	±5 m/s			
Spall strength	0.93±0.04 GPa			
Spall thickness ¹	0.35 mm (±10%)			

Reference: Razorenov and Kanel (1986)

Determined based on the period of oscillation in the measured free-surface velocity history.

B.4 STEEL 3.

Steel 3	
Density	7.85 g/cm ³
Bulk sound velocity	7.85 g/cm ³ 4.65 mm/μs
Longitudinal sound velocity	5.97 mm/μs

Experiment	Summary
Loading condition	1-D strain
Loading method	Explosively
	launched flyer plate
Impact velocity	660±20 m/s
Flyer plate: - material	Aluminum
- thickness	2.0 mm
Target: - material	Steel 3 (rod)
- thickness	10.0 mm
Measurement technique	VISAR
Measurement accuracy	±5 m/s
Spall strength	2.9±0.1 GPa
Spall thickness ¹	1.16 mm (±10%)

Reference:	Kanel et al. (19	987)

Determined based on the period of oscillation in the measured free-surface velocity history.

7.85 g/cm ³ 4.65 mm/μs 5.97 mm/μs

Experiment	Summary
Loading condition	1-D strain
Loading method	Explosively
_	launched flyer plate
Impact velocity	5300±150 m/s
Flyer plate: - material	Aluminum
- thickness	2.0 mm
Target: - material	Steel 3 (rod)
- thickness	5.0 mm
Measurement technique	VISAR
Measurement accuracy	±5 m/s
Spall strength	2.9±0.1 GPa
Spall thickness ¹	0.31 mm (±10%)

Reference:	Kanel e	et al.	(1987))	

Determined based on the period of oscillation in Determined based on the period of oscillation in the measured free-surface velocity history.

Note: The precursor in the figure is caused by an air shock wave ahead of the flyer plate.

B.5 STEEL 35X3HM¹.

35X3HM Steel		
Density	7.76 g/cm ³	
Bulk sound velocity	4.65 mm/μs	
Longitudinal sound velocity	5.89 mm/μs	

Experiment	t Summary
Loading condition Loading method	1-D strain Explosively launched flyer plate
Impact velocity	450±20 m/s
Flyer plate: - material - thickness	Aluminum 2.00 mm
Target: - material - thickness	35X3HM steel ¹ 10.1 mm
Measurement technique Electrode diameter	Capacitor gage 20 mm
Measurement accuracy	±4%
Spall strength	No spall

¹ Rod - Batch I - loaded in the rolling direction.

 $^{^{1}}$ The designation 35X3HM is in Russian letters. The equivalent designation in English letters is 35Kh3NM.

35X3HM Steel		
Density	7.76 g/cm ³	
Bulk sound velocity	4.65 mm/μs	
Longitudinal sound velocity	5.89 mm/μs	

Summary
1-D strain Explosively launched flyer plate
700±20 m/s
Aluminum 2.00 mm
35X3HM steel ¹ 10.4 mm
Capacitor gage 20 mm
±4%
4.4±0.2 GPa 1.6 mm (±10%)

Rod - Batch I - loaded in the rolling direction.
 determined based on the period of oscillation in the measured velocity history.

35X3HM Steel		
Density	7.76 g/cm ³	
Bulk sound velocity	7.76 g/cm ³ 4.65 mm/µs	
Longitudinal sound velocity	5.89 mm/μs	

Experiment	Summary
Loading condition	1-D strain
Loading method	In-contact explosives
Target: - material	35X3HM steel ¹
- thickness	15.2 mm
Measurement technique	Capacitor gage
Electrode diameter	20 mm
Measurement accuracy	±4%
Spall strength	4.0±0.2 GPa
Spall thickness ²	9.9 mm (±10%)

``I		(
-illizman at	21 1	1005
JIUZIIIAII EL	aı. ı	13001
	aluzman et	aluzman et al.

- ¹ Rod Batch I loaded in the rolling direction.
- Determined based on the period of oscillation in the measured free-surface velocity history.

35X3HM Steel		
Density	7.76 g/cm ³	
Bulk sound velocity	4.65 mm/μs	
Density Bulk sound velocity Longitudinal sound velocity	5.89 mm/μs	

Experiment Summary		
Loading condition Loading method	1-D strain Explosively launched flyer plate	
Impact velocity	700±20 m/s	
Flyer plate: - material	Aluminum	
- thickness	2.00 mm	
Target: - material	35X3HM Steel ¹	
- thickness	9.8 mm	
Measurement technique	Capacitor gage	
Electrode diameter	20 mm	
Measurement accuracy	±4%	
Spall strength	3.85±0.1 GPa	
Spall thickness ²	1.5 mm (±10%)	

- ¹ Rod Batch I loaded in the lateral direction.
- Determined based on the period of oscillation in the measured free-surface velocity history.

35X3HM Steel		
Density	7.76 g/cm ³	
Bulk sound velocity	4.65 mm/us	
Longitudinal sound velocity	5.89 mm/μs	

Experiment	Summary
Loading condition	1-D strain
Loading method	In-contact explosives
Target: - material	35X3HM steel1
- thickness	15.0 mm
Measurement technique	Capacitor gage
Electrode diameter	20 mm
Measurement accuracy	±4%
Spall strength	3.4±0.2 GPa
Spall thickness ²	9.4 mm (±10%)

- ¹ Rod Batch I loaded in the lateral direction.
- Determined based on the period of oscillation in the measured free-surface velocity history.

35X3HM Steel		
Density	7.76 g/cm ³	
Bulk sound velocity	4.65 mm/us	
Longitudinal sound velocity	5.89 mm/μs	

Experiment Summary		
Loading condition Loading method	1-D strain Explosively launched flyer plate	
Impact velocity	660±20 m/s	
Flyer plate: - material - thickness	Aluminum 2.00 mm	
Target: - material - thickness	35X3HM steel ¹ 11.5 mm	
Measurement technique	VISAR	
Measurement accuracy	±5 m/s	
Spall strength	No spall	

riolotorios. riazotoriot stan (1002)	Reference:	Razorenov et al.	(1992)
--------------------------------------	------------	------------------	--------

¹ Rod - Batch II.

35X3HM Steel		
Density	7.76 g/cm ³ 4.65 mm/μs	
Bulk sound velocity	4.65 mm/μs	
Longitudinal sound velocity	5.89 mm/μs	

Experiment	Summary
Loading condition	1-D strain
Loading method	Explosively
	launched flyer plate
Impact velocity	720±20 m/s
Flyer plate: - material	Aluminum
- thickness	2.00 mm
Target: - material	35X3HM steel ¹
- thickness	10.0 mm
Measurement technique	VISAR
Measurement accuracy	±5 m/s
Spall strength	5.06±0.05 GPa
Spall thickness	1.63 mm (±10%)

Reference: Razorenov et al. (1992)

Determined based on the period of oscillation in the measured free-surface velocity history.

¹ Rod - Batch II.

35X3HM Steel	
Density Bulk sound velocity	7.76 g/cm ³ 4.65 mm/µs
Longitudinal sound velocity	5.89 mm/μs

Experiment	Summary
Loading condition	1-D strain
Loading method	In-contact explosive
Target: - material	35X3HM steel1
- thickness	11.5 mm
Measurement technique	VISAR
Measurement accuracy	±5 m/s
Spall strength	No spali

¹ Rod - Batch II.

B.6 STEEL 45.

Steel 45	
Density	7.78 g/cm ³
Bulk sound velocity	4.65 mm/us
Longitudinal sound velocity	5.98 mm/μs

Experiment	Summary
Loading condition	1-D strain
Loading method	Explosively
	launched flyer plate
Impact velocity	700±20 m/s
Flyer plate: - material	Aluminum
- thickness	2 mm
Target: - material	Steel 45 (rod)
- thickness	11.1 mm
Measurement technique	VISAR
Measurement accuracy	±5 m/s
Spall strength	4.25±0.1 GPa
Spall thickness ¹	1.81 mm (±10%)

Determined based on the period of oscillation in the measured free-surface velocity history.

Steel 45	
Density Bulk sound velocity Longitudinal sound velocity	7.78 g/cm ³
Bulk sound velocity	4.65 mm/μs
Longitudinal sound velocity	5.98 mm/μs

Experiment	Summary
Loading condition	1-D strain
Loading method	In-contact explosives
Target: - material	Steel 45 (rod)
- thickness	11.1 mm
Measurement technique	VISAR
Measurement accuracy	±5 m/s
Spall strength	No spall

B.7 STEEL EP-836.

Steel EP-8	3 3 6
Density Bulk sound velocity Longitudinal sound velocity	8.43 g/cm ³
Bulk sound velocity	4.65 mm/μs
Longitudinal sound velocity	5.62 mm/μs

Experiment	Summary
Loading condition	1-D strain
Loading method	Explosively
	launched flyer plate
Impact velocity	720±20 m/s
Flyer plate: - material	Aluminum
- thickness	0.2 mm
Target: - material	Steel EP-836 (rod)
- thickness	3.75 mm
Measurement technique	VISAR
Measurement accuracy	±5 m/s
Spall strength	No spall

Steel EP-836	
Density Bulk sound velocity Longitudinal sound velocity	8.43 g/cm ³
Longitudinal sound velocity	4.65 mm/μs 5.62 mm/μs

Experiment	Summary
Loading condition	1-D strain
Loading method	Explosively
	launched flyer plate
Impact velocity	720±20 m/s
Flyer plate: - material	Aluminum
- thickness	0.4 mm
Target: - material	Steel EP-836 (rod)
- thickness	1.95 mm
Measurement technique	VISAR
Measurement accuracy	±5 m/s
Spall strength	5.94±0.1 GPa
Spall thickness ¹	0.29 mm (±10%)

Determined based on the period of oscillation in the measured free-surface velocity history.

Steel EP-	336
Density	8.43 g/cm ³
Bulk sound velocity	8.43 g/cm ³ 4.65 mm/μs
Longitudinal sound velocity	5.62 mm/μs

Experiment	Summary
Loading condition	1-D strain
Loading method	Explosively
	launched flyer plate
Impact velocity	720±20 m/s
Flyer plate: - material	Aluminum
- thickness	2.0 mm
Target: - material	Steel EP-836 (rod)
- thickness	5.42 mm
Measurement technique	VISAR
Measurement accuracy	±5 m/s
Spall strength	6.19±0.1 GPa
Spall thickness ¹	1.496 mm (±10%)

Determined based on the period of oscillation in the measured free-surface velocity history.

B.8 STAINLESS STEEL (KH18N10T).

Stainless Steel	(Kh18N10T)
Density	7.90 g/cm ³
Bulk sound velocity	7.90 g/cm ³ 4.65 mm/µs
Longitudinal sound velocity	5.74 mm/μs

Experiment	Summary
Loading condition	1-D strain
Loading method	In-contact explosives
Target: - material	Kh18N10T steel (rod)
- thickness	15 mm
Measurement technique	Capacitor gage
Electrode diameter	20 mm
Measurement accuracy	±4%
Spall strength	1.73±0.11 GPa
Spall thickness ¹	6.9 mm (±10%)

Determined based on the period of oscillation in the measured free-surface velocity history.

Stainless Steel	(Kh18N10T)
Density	7.90 g/cm ³
Bulk sound velocity	7.90 g/cm ³ 4.65 mm/μs
Longitudinal sound velocity	5.74 mm/μs

Experiment	Summary
Loading condition	1-D strain
Loading method	Explosively
	launched flyer plate
Impact velocity	600±10 m/s
Flyer plate: - material	Aluminum
- thickness	5 mm
Target: - material	Kh18N10T steel(rod)
- thickness	10 mm
Measurement technique	Capacitor gage
Electrode diameter	20 mm
Measurement accuracy	±4%
Spall strength	1.75±0.11 GPa

Reference: Kanel (1980)

Stainless Steel	(Kh18N10T)
Density	7.90 g/cm ³
Bulk sound velocity	7.90 g/cm ³ 4.65 mm/µs
Longitudinal sound velocity	5.74 mm/μs

Experiment	Summary
Loading condition Loading method	1-D strain Explosively launched flyer plate
Impact velocity	700±30 m/s
Flyer plate: - material	Aluminum
- thickness	2 mm
Target: - material	Kh18N10T steel (rod)
- thickness	10 mm
Measurement technique	Capacitor gage
Electrode diameter	20 mm
Measurement accuracy	±4%
Spall strength	1.93±0.09 GPa
Spall thickness ¹	1.61 mm (±10%)

Reference: Kanel (1980)

Determined based on the period of oscillation in the measured free-surface velocity history.

Stainless Steel	(Kh18N10T)
Density	7.90 g/cm ³
Bulk sound velocity	7.90 g/cm ³ 4.65 mm/μs
Longitudinal sound velocity	5.74 mm/µs

Experiment	Summary
Loading condition	1-D strain
Loading method	Explosively
	launched flyer plate
Impact velocity	445±15 m/s
Flyer plate: - material	Aluminum
- thickness	2 mm
Target: - material	Kh18N10T steel (rod)
- thickness	10 mm
Measurement technique	Capacitor gage
Electrode diameter	20 mm
Measurement accuracy	±4%
Spall strength	1.93±0.13 GPa
Spall thickness ¹	1.78 mm (±10%)

Reference: Kanel (1980)

Determined based on the period of oscillation in the measured free-surface velocity history.

Stainless Steel	(Kh18N10T)
Density	7.90 g/cm ³ 4.65 mm/μs
Bulk sound velocity	4.65 mm/μs
Longitudinal sound velocity	5.74 mm/μs

Experiment	Summary
Loading condition	1-D strain
Loading method	Explosively
	launched flyer plate
Impact velocity	700±30 m/s
Flyer plate: - material	Aluminum
- thickness	0.4 mm
Target: - material	Kh18N10T stee (rod)
- thickness	4 mm
Measurement technique	Capacitor gage
Electrode diameter	5 mm
Measurement accuracy	±4%
Spall strength	2.28±0.1 GPa
Spall thickness	0.65 mm (±10%)

Reference: Kanel and Razorenov (1989)

B.9 STEEL XVG1.

Steel X V	G
Density	7.95 g/cm ³
Bulk sound velocity	7.95 g/cm ³ 4.65 mm/μs
Longitudinal sound velocity	5.85 mm/μs

Experiment	Summary
Loading condition	1-D strain
Loading method	Explosively
	launched flyer plate
Impact velocity	600±20 m/s
Flyer plate: - material	Aluminum
- thickness	5 mm
Target: - material	Steel XVG
	(rod-as received)
- thickness	10.0 mm
Measurement technique	Capacitor gage
Electrode diameter	20 mm
Measurement accuracy	±4%

 $^{^{1}}$ The designation XVG is in Russian letters. The equivalent designation in English letters is KhVG.

Steel X V	G
Density	7.95 g/cm ³
Bulk sound velocity	7.95 g/cm ³ 4.65 mm/μs
Longitudinal sound velocity	5.85 mm/µs

Experiment	Summary
Loading condition	1-D strain
Loading method	Explosively
	launched flyer plate
Impact velocity	600±20 m/s
Flyer plate: - material	Aluminum
- thickness	5 mm
Target: - material	Steel XVG
	(rod-as received)
- thickness	15.0 mm
Measurement technique	Capacitor gage
Electrode diameter	20 mm
Measurement accuracy	±4%

Steel X V	G
Density	7.95 g/cm ³
Bulk sound velocity	7.95 g/cm ³ 4.65 mm/μs
Longitudinal sound velocity	5.85 mm/μs

Experiment	Summary
Loading condition	1-D strain
Loading method	Explosively
	launched flyer plate
Impact velocity	600±20 m/s
Flyer plate: - material	Aluminum
- thickness	5 mm
Target: - material	Steel XVG
	(rod-as received)
thickness	5.0 mm
Measurement technique	Capacitor gage
Electrode diameter	20 mm
Measurement accuracy	±4%

Steel X V	G
Density	7.95 g/cm ³ 4.65 mm/µs
Bulk sound velocity	4.65 mm/μs
Longitudinal sound velocity	5.85 mm/μs

Experiment	Summary
Loading condition	1-D strain
Loading method	Explosively
	launched flyer plate
Impact velocity	600±20 m/s
Flyer plate: - material	Aluminum
- thickness	5 mm
Target: - material	Steel XVG
	(rod-quenched)
- thickness	20.0 mm
Measurement technique	Capacitor gage
Electrode diameter	20 mm
Measurement accuracy	±4%

Steel X V	G
Density	7.95 g/cm ³
Bulk sound velocity	7.95 g/cm ³ 4.65 mm/µs
Longitudinal sound velocity	5.85 mm/µs

Experiment	Summary
Loading condition	1-D strain
Loading method	Explosively
	launched flyer plate
Impact velocity	600±20 m/s
Flyer plate: - material	Aluminum
- thickness	5 mm
Target: - material	Steel XVG
	(rod-quenched)
- thickness	15.0 mm
Measurement technique	Capacitor gage
Electrode diameter	20 mm
Measurement accuracy	±4%

Steel X V	G
Density	7.95 g/cm ³ 4.65 mm/μs
Bulk sound velocity	4.65 mm/μs
Longitudinal sound velocity	5.85 mm/μs

Experiment	Summary
Loading condition	1-D strain
Loading method	Explosively
	launched flyer plate
Impact velocity	600±20 m/s
Flyer plate: - material	Aluminum
- thickness	5 mm
Target: - material	Steel XVG
	(rod-quenched)
- thickness	10.0 mm
Measurement technique	Capacitor gage
Electrode diameter	20 mm
Measurement accuracy	±4%

B.10 HIGH PURITY TITANIUM.

High Purity T	itanium
Density	4.5 g/cm ³
Bulk sound velocity	4.5 g/cm ³ 5.11 mm/μs
Longitudinal sound velocity	6.15 mm/μs

Experiment Summary		
Loading condition	1-D strain	
Loading method	Explosively launched	
	flyer plate	
Impact velocity	660±20 m/s	
Flyer plate: - material	Aluminum	
- thickness	0.4 mm	
Baseplate: - material	Aluminum	
- thickness	0.78 mm	
Target: - material	Titanium of high purity	
- thickness	2.06 mm	
Measurement technique	VISAR	
Measurement accuracy	±5 m/s	
Spall strength	3.2±0.2 GPa	

Razorenov et al. (1995)

High Purity Ti	tanium
Density	4.5 g/cm ³
Bulk sound velocity	4.5 g/cm ³ 5.11 mm/μs
Longitudinal sound velocity	6.15 mm/μs

Experiment Summary		
Loading condition Loading method	1-D strain Explosively launched	
20009	flyer plate	
Impact velocity	1250±50 m/s	
Flyer plate: - material	Aluminum	
- thickness	0.4 mm	
Baseplate: - material	Aluminum	
- thickness	0.77 mm	
Target: - material	Titanium of high purity	
- thickness	2.29 mm	
Measurement technique	VISAR	
Measurement accuracy	±5 m/s	
Spall strength	3.34±0.2 GPa	
Spall thickness ¹	0.37 mm (±10%)	

Razoren	ov et al.	(1995)

Determined based on the period of oscillation in the measured velocity history.

High Purity Ti	tanium
Density	4.5 g/cm ³
Bulk sound velocity	4.5 g/cm ³ 5.11 mm/μs
Longitudinal sound velocity	6.15 mm/µs

Experiment Summary		
Loading condition Loading method	1-D strain Explosively launched flyer plate	
Impact velocity	660±20 m/s	
Flyer plate: - material - thickness	Aluminum 2.0 mm	
Baseplate: - material - thickness	Aluminum 2.0 mm	
Target: - material - thickness	Titanium of high purity 4.4 mm	
Measurement technique	VISAR	
Measurement accuracy	±5 m/s	
Spall strength Spall thickness ¹	2.81±0.1 GPa 1.54 mm (±10%)	

Razorenov	et	al.	(1995)	

Determined based on the period of oscillation in the measured velocity history.

High Purity Ti	tanium
Density	4.5 g/cm ³
Bulk sound velocity	4.5 g/cm ³ 5.11 mm/μs
Longitudinal sound velocity	6.15 mm/μs

Experiment	Summary
Loading condition Loading method	1-D strain Explosively launched flyer plate
Impact velocity	1900±70 m/s
Flyer plate: - material - thickness	Aluminum 2.0 mm
Baseplate: - material - thickness	Aluminum 2.0 mm
Target: - material - thickness	Titanium of high purity 4.3 mm
Measurement technique	VISAR
Measurement accuracy	±5 m/s
Spall strength Spall thickness ¹	3.47±0.1 GPa 1.43 mm (±10%)

Razorenov	et al. ((1995)
-----------	----------	--------

Determined based on the period of oscillation in the measured velocity history.

High Purity Ti	tanium
Density	4.5 g/cm ³
Bulk sound velocity	4.5 g/cm ³ 5.11 mm/μs
Longitudinal sound velocity	6.15 mm/μs

Experiment Summary	
Loading condition	1-D strain
Loading method	Ion beam
Beam energy density	0.2 TW/cm ²
Beam spot size	8 mm
Target: - material	Titanium of high purity
- thickness	0.78 mm
Measurement technique	ORVIS
Measurement accuracy	±20 m/s
Spall strength	6.33±0.1 GPa
Spall thickness	0.149 mm (±10%)

Razorenov et al. (1995)

High Purity T	itanium
Density	4.5 g/cm ³
Bulk sound velocity	5.11 mm/μs
Density Bulk sound velocity Longitudinal sound velocity	6.15 mm/μs

Experiment Summary	
Loading condition	1-D strain
Loading method	lon beam
Beam energy density	0.2 TW/cm ²
Beam spot size	8 mm
Target: - material	Titanium of high purity
- thickness	0.483 mm
Measurement technique	ORVIS
Measurement accuracy	±20 m/s
Spall strength	6.28±0.1 GPa
Spall thickness ¹	0.054 mm (±10%)

Razorenov et al. (1995)

Determined based on the period of oscillation in the measured velocity history.

High Purity Ti	tanium
Density	4.5 g/cm ³
Bulk sound velocity	4.5 g/cm ³ 5.11 mm/μs
Longitudinal sound velocity	6.15 mm/μs

Experiment Summary	
Loading condition	1-D strain
Loading method	Ion beam-launched
	flyer plate
Beam energy density	0.2 TW/cm ²
Beam spot size	8 mm
Impact velocity	4100±150 m/s
Flyer plate: - material	Aluminum
- thickness	0.05 mm
Target: - material	Titanium of high purity
- thickness	0.78 mm
Measurement technique	ORVIS
Measurement accuracy	±20 m/s
Spall strength	6.33±0.1 GPa
Spall thickness ¹	0.041 mm (±10%)

Razorenov et al.	(4 OOF)
Hazorenov er al	(1995)
	(.000)

Determined based on the period of oscillation in the measured velocity history.

B.11 TITANIUM VT5-1.

Titanium VT5-1	
Density	4.45 g/cm ³
Bulk sound velocity	5.11 mm/μs
Longitudinal sound velocity	6.15 mm/μs

Experiment	Summary
Loading condition	1-D strain
Loading method	Explosively
	launched flyer plate
Impact velocity	660±20 m/s
Flyer plate: - material	Aluminum
- thickness	2 mm
Target: - material	Titanium VT5-1 (sheet)
- thickness	4 mm
Measurement technique	VISAR
Measurement accuracy	±5 m/s

Reference: Kanel et al. (1986)

Titanium V	T 5 - 1
Density	4.45 g/cm ³
Bulk sound velocity	4.45 g/cm ³ 5.11 mm/μs
Longitudinal sound velocity	6.15 mm/μs

Experiment	Summary
Loading condition	1-D strain
Loading method	Explosively launched flyer plate
Impact velocity	1900±100 m/s
Flyer plate: - material	Aluminum
- thickness	2 mm
Target: - material	Titanium VT5-1 (sheet)
- thickness	4 mm
Measurement technique	VISAR
Measurement accuracy	±5 m/s

Reference: Kanel et al. (1986)

Titanium VT5-1	
Density	4.45 g/cm ³
Bulk sound velocity	5.11 mm/μs
Longitudinal sound velocity	6.15 mm/μs

Experiment	Summary
Loading condition	1-D strain
Loading method	Explosively
	launched flyer plate
Impact velocity	5300±100 m/s
Flyer plate: - material	Aluminum
- thickness	2 mm
Target: - material	Titanium VT5-1 (sheet)
- thickness	4 mm
Measurement technique	VISAR
Measurement accuracy	±5 m/s

Reference: Kanel et al. (1986)

B.12 TITANIUM VT6.

Titanium VT6	
Density	4.43 g/cm ³
Bulk sound velocity	4.43 g/cm ³ 5.11 mm/μs
Longitudinal sound velocity	6.15 mm/μs

Experiment	Summary
Loading condition	1-D strain
Loading method	Explosively
	launched flyer plate
Impact velocity	450±20 m/s
Flyer plate: - material	Aluminum
- thickness	2 mm
Target: - material	Titanium VT6 (sheet)
- thickness	9.8 mm
Measurement technique	Capacitor gage
Electrode diameter	20 mm
Measurement accuracy	±4%
Spall strength	No Spall observed

Titanium VT6	
Density	4.43 g/cm ³
Bulk sound velocity	4.43 g/cm ³ 5.11 mm/μs
Longitudinal sound velocity	6.15 mm/µs

Experiment	Summary
Loading condition	1-D strain
Loading method	Explosively
	launched flyer plate
Impact velocity	675±20 m/s
Flyer plate: - material	Aluminum
- thickness	2 mm
Target: - material	Titanium VT6 (sheet)
- thickness	11.7 mm
Measurement technique	Capacitor gage
Electrode diameter	20 mm
Measurement accuracy	±4%
Spall strength	3.5±0.2 GPa
Spall thickness ¹	1.75 mm (±10%)

Determined based on the period of oscillation in the measured free-surface velocity history.

Titanium VT6	
Density	4.43 g/cm ³
Bulk sound velocity	5.11 mm/μs
Longitudinal sound velocity	6.15 mm/µs

Experiment	Summary
Loading condition Loading method	1-D strain Explosively
accaming mounts	launched flyer plate
Impact velocity	700±20 m/s
Flyer plate: - material	Aluminum
- thickness	2 mm
Target: - material	Titanium VT6 (sheet)
- thickness	9.8 mm
Measurement technique	Capacitor gage
Electrode diameter	20 mm
Measurement accuracy	±4%
Spall strength	3.87±0.17 GPa
Spall thickness ¹	1.66 mm (±10%)

Determined based on the period of oscillation in the measured free-surface velocity history.

Titanium VT6	
Density Bulk sound velocity	4.43 g/cm ³ 5.11 mm/μs
Longitudinal sound velocity	6.15 mm/μs

Experiment	Summary
Loading condition	1-D strain
Loading method	In-contact explosives
Target: - material - thickness	Titanium VT6 (sheet) 18.4 mm
Measurement technique	Capacitor gage
Electrode diameter	20 mm
Measurement accuracy	±4%
Spall strength	3.43±0.2 GPa
Spall thickness ¹	9.8 mm (±10%)

Determined based on the period of oscillation in the measured free-surface velocity history.

Titanium VT6	
Density	4.43 g/cm ³
Bulk sound velocity	4.43 g/cm ³ 5.11 mm/μs
Longitudinal sound velocity	6.15 mm/µs

Experiment	Summary
Loading condition	1-D strain
Loading method	Explosively
	launched flyer plate
Impact velocity	600±20 m/s
Flyer plate: - material	Aluminum
- thickness	5 mm
Target: - material	Titanium VT6 (sheet)
- thickness	9.0 mm
Measurement technique	Capacitor gage
Electrode diameter	20 mm
Measurement accuracy	±4%

B.13 TITANIUM VT8.

Titanium VT8	
Density Bulk sound velocity Longitudinal sound velocity	4.45 g/cm ³
Bulk sound velocity	5.11 mm/μs
Longitudinal sound velocity	6.15 mm/μs

Experiment	Summary
Loading condition	1-D strain
Loading method	Explosively
	launched flyer plate
Impact velocity	660±20 m/s
Flyer plate: - material	Aluminum
- thickness	2 mm
Target: - material	Titanium VT8 (rod)
- thickness	10 mm
Measurement technique	VISAR
Measurement accuracy	±5 m/s
Spall strength	4.65±0.3 GPa
Spall thickness ¹	1.6 mm (±10%)

Reference:	Kanel et al.	(1987)	

Determined based on the period of oscillation in the measured free-surface velocity history.

Titanium VT8				
Density	4.45 g/cm ³			
Bulk sound velocity	4.45 g/cm ³ 5.11 mm/μs			
Longitudinal sound velocity	6.15 mm/μs			

Experiment Summary		
Loading condition	1-D strain	
Loading method	Explosively	
	launched flyer plate	
Impact velocity	1900±70 m/s	
Flyer plate: - material	Aluminum	
- thickness	2 mm	
Target: - material	Titanium VT8 (rod)	
- thickness	10 mm	
Measurement technique	VISAR	
Measurement accuracy	±5 m/s	
Spall strength	4.63±0.3 GPa	
Spall thickness ¹	1.15 mm (±10%)	

Reference: Kanel et al. (1987)

Determined based on the period of oscillation in the measured free-surface velocity history.

Titanium VT8		
Density Bulk sound velocity Longitudinal sound velocity	4.45 g/cm ³	
Bulk sound velocity	5.11 mm/μs	
Longitudinal sound velocity	6.15 mm/μs	

Experiment	Summary	
Loading condition	1-D strain	
Loading method	Explosively	
_	launched flyer plate	
Impact velocity	5300±150 m/s	
Flyer plate: - material	Aluminum	
- thickness	2 mm	
Target: - material	Titanium VT8 (rod)	
- thickness	10 mm	
Measurement technique	VISAR	
Measurement accuracy	±5 m/s	
Spall strength	4.63±0.3 GPa	
Spall thickness ¹	0.52 mm (±10%)	

Reference: Kanel et al. (1987)

Determined based on the period of oscillation in the measured free-surface velocity history.

B.14 COPPER M2.

Copper M2			
Density	8.93 g/cm ³ 3.96 mm/μs		
Bulk sound velocity	3.96 mm/μs		
Longitudinal sound velocity	4.6 mm/μs		

Experiment	Summary	
Loading condition	1-D strain	
Loading method	In-contact explosives	
Target: - material - thickness	Copper M2 (rod) 12.0 mm	
Measurement technique	Capacitor gage	
Electrode diameter	20 mm	
Measurement accuracy	±4%	
Spall strength	0.8±0.1 GPa	
Spall thickness ¹	6.0 mm (±10%)	

Reference: Razorenov and Kanel (1992)

Determined based on the period of oscillation in the measured free-surface velocity history.

Copper M2	
Density	8.93 g/cm ³ 3.96 mm/μs
Bulk sound velocity	3.96 mm/µs
Longitudinal sound velocity	4.6 mm/μs

Experiment Summary	
Loading condition	1-D strain
Loading method	Explosively launched
	flyer plate
Impact velocity	450±20 m/s
Flyer plate: - material	Aluminum
- thickness	2.0 mm
Target: - material	Copper M2 (rod)
- thickness	15 mm
Measurement technique	Capacitor gage
Electrode diameter	20 mm
Measurement accuracy	±4%
Spall strength	1.1±0.1 GPa
Spall thickness ¹	1.24 mm (±10%)

Determined based on the period of oscillation in the measured free-surface velocity history.

Copper M2	
Density	8.93 g/cm ³
Bulk sound velocity	8.93 g/cm ³ 3.96 mm/μs
Longitudinal sound velocity	4.6 mm/μs

Experiment Summary	
Loading condition Loading method	1-D strain Explosively launched flyer plate
Impact velocity	450±20 m/s
Flyer plate: - material	Aluminum
- thickness	2.0 mm
Target: - material	Copper M2 (rod)
- thickness	12 mm
Measurement technique	Capacitor gage
Electrode diameter	20 mm
Measurement accuracy	±4%
Spall strength	1.12±0.1 GPa
Spall thickness ¹	1.15 mm (±10%)

Determined based on the period of oscillation in the measured free-surface velocity history.

Copper M2	
Density	8.93 g/cm ³
Bulk sound velocity	3.96 mm/µs
Longitudinal sound velocity	4.6 mm/µs

Experiment Summary	
Loading condition Loading method	1-D strain Explosively launched flyer plate
Impact velocity	660±20 m/s
Flyer plate: - material	Aluminum
- thickness	0.2 mm
Target: - material	Copper M2 (rod)
- thickness	3.9 mm
Measurement technique	Capacitor gage
Electrode diameter	5 mm
Measurement accuracy	±4%
Spall strength	1.64±0.1 GPa
Spall thickness ¹	0.18 mm (±10%)

Determined based on the period of oscillation in the measured free-surface velocity history.

Copper M2	
Density	8.93 g/cm ³
Bulk sound velocity	8.93 g/cm ³ 3.96 mm/μs
Longitudinal sound velocity	4.6 mm/μs

Ехр	eriment	Summary
Loading co		1-D strain
Loading me	ethod	Explosively
		launched flyer plate
Impact velo	city	660±20 m/s
Flyer plate:	- material	Aluminum
	 thickness 	0.2 mm
Target:	- material	Copper M2 (rod)
	 thickness 	3.9 mm
Measureme	ent technique	VISAR
Measureme	ent accuracy	±5 m/s
Spall streng		1.5±0.1 GPa
Spall thickn	iess ¹	0.18 mm(±10%)

Determined based on the period of oscillation in the measured free-surface velocity history.

Copper M2	
8.93 g/cm ³	
8.93 g/cm ³ 3.96 mm/μs 4.6 mm/μs	

Experiment	Summary
Loading condition Loading method	1-D strain Explosively launched flyer plate
Impact velocity	660±20 m/s
Flyer plate: - material - thickness	Aluminum 0.4 mm
Target: - material - thickness	Copper M2 (rod) 2.7 mm
Measurement technique	VISAR
Measurement accuracy	±5 m/s
Spall strength Spall thickness ¹	1.35±0.1 GPa 0.23 mm (±10%)

Determined based on the period of oscillation in the measured free-surface velocity history.

B.15 COPPER SINGLE CRYSTAL.

Copper Single	Crystal
Density	8.93 g/cm ³ 3.96 mm/μs
Bulk sound velocity	3.96 mm/μs
Longitudinal sound velocity	4.6 mm/μs

Experiment Summary	
Loading condition Loading method	1-D strain Explosively launched flyer plate
Impact velocity	660±20 m/s
Flyer plate: - material - thickness	Aluminum 0.2 mm
Target: - material - thickness	Copper single crystal ¹ 0.7 mm
Measurement technique	VISAR
Measurement accuracy	±5 m/s
Spall strength Spall thickness ²	4.5±0.1 GPa 0.14 mm (±10%)

Determined based on the period of oscillation in the measured free-surface velocity history.

¹ Loaded in direction <111>

Copper Single	Crystal
Density Bulk sound velocity Longitudinal sound velocity	8.93 g/cm ³
Bulk sound velocity	3.96 mm/μs
Longitudinal sound velocity	4.6 mm/μs

Experiment Summary	
Loading condition Loading method	1-D strain Explosively launched flyer plate
Impact velocity	660±20 m/s
Flyer plate: - material - thickness	Aluminum 0.4 mm
Target: - material - thickness	Copper single crystal ¹ 1.9 mm
Measurement technique	VISAR
Measurement accuracy	±5 m/s
Spall strength Spall thickness ²	3.45±0.2 GPa 0.33 mm (±10%)

- 1 Loaded in direction <111>
- Determined based on the period of oscillation in the measured free-surface velocity history.

Copper Single	Crystal
Density Bulk sound velocity Longitudinal sound velocity	8.93 g/cm ³
Bulk sound velocity	3.96 mm/μs
Longitudinal sound velocity	4.6 mm/μs

Experiment Summary	
Loading condition Loading method	1-D strain Explosively launched flyer plate
Impact velocity	660±20 m/s
Flyer plate: - material - thickness	Aluminum 0.4 mm
Target: - material - thickness	Copper single crystal ¹ 1.95 mm
Measurement technique	VISAR
Measurement accuracy	±5 m/s
Spall strength Spall thickness ²	3.75±0.2 GPa 0.25 mm (±10%)

Determined based on the period of oscillation in the measured free-surface velocity history.

¹ Loaded in direction <111>

Copper Single	Crystal
Density	8.93 g/cm ³
Bulk sound velocity	3.96 mm/μs
Longitudinal sound velocity	4.6 mm/μs

Experiment Summary	
Loading condition Loading method	1-D strain Explosively launched
	flyer plate
Impact velocity	660±20 m/s
Flyer plate: - material	Aluminum
- thickness	0.2 mm
Target: - material	Copper single crystal ¹
- thickness	4.35 mm
Measurement technique	VISAR
Measurement accuracy	±5 m/s
Spall strength	No spall
Peak tensile stress	2.5±0.1 GPa

¹ Loaded in direction <111>

Copper Single	Crystal
Density	8.93 g/cm ³
Bulk sound velocity	8.93 g/cm ³ 3.96 mm/μs
Longitudinal sound velocity	4.6 mm/μs

Experiment Summary	
Loading condition Loading method	1-D strain Explosively launched flyer plate
Impact velocity	660±20 m/s
Flyer plate: - material - thickness	Aluminum 0.4 mm
Target: - material - thickness	Copper single crystal ¹ 4.3 mm
Measurement technique	VISAR
Measurement accuracy	±5 m/s
Spall strength Spall thickness ²	4.5±0.1 GPa 0.33 mm (±10%)

Determined based on the period of oscillation in the measured free-surface velocity history.

¹ Loaded in direction <100>

Copper Single	Crystal
Bulk sound velocity	8.93 g/cm ³ 3.96 mm/μs
Longitudinal sound velocity	4.6 mm/μs

Experiment Summary	
Loading condition Loading method	1-D strain Explosively launched flyer plate
Impact velocity	660±20 m/s
Flyer plate: - material - thickness	Aluminum 0.4 mm
Target: - material - thickness	Copper single crystal ¹ 4.5 mm
Measurement technique	VISAR
Measurement accuracy	±5 m/s
Spall strength Spall thickness ²	3.95±0.1 GPa 0.3 mm (±10%)

- Annealed for 2 hours at 900°C.
 Loaded in direction <100>.
- Determined based on the period of oscillation in the measured free-surface velocity history.

B.16 NICKEL NP-2.

Nickel NP-2	
Density	8.86 g/cm ³
Bulk sound velocity	4.57 mm/us
Longitudinal sound velocity	5.63 mm/μs

Experiment	Summary
Loading condition	1-D strain
Loading method	Explosively
	launched flyer plate
Impact velocity	445±15 m/s
Flyer plate: - material	Aluminum
- thickness	2 mm
Target: - material	Nickel NP-2 (rod)
- thickness	9.5 mm
Measurement technique	Capacitor gage
Electrode diameter	20 mm
Measurement accuracy	±4%
Spall strength	1.49±0.08 GPa
Spall thickness ¹	1.46 mm (±10%)

Reference:	Kanel	(1980)	

Determined based on the period of oscillation in the measured free-surface velocity history.

Nickel		
Density	8.86 g/cm ³	
Bulk sound velocity	4.57 mm/us	
Longitudinal sound velocity	5.63 mm/μs	

Experiment Summary		
Loading condition	1-D strain	
Loading method	ion beam	
Beam energy density	0.2 TW/cm ²	
Beam spot size	8 mm	
Target: - material	Nickel (sheet)	
- thickness	0.4mm	
Measurement technique ¹	ORVIS	
Measurement accuracy	±20 m/s	
Spall strength	6.3±0.3 GPa	
Spall thickness ²	0.08 mm (±10%)	

¹ measurement through water window.

Determined based on the period of oscillation in the measured free-surface velocity history.

B.17 MOLYBDENUM POLYCRYSTAL.

Molybdenum Polycrystal (Sintered Rod)		
Density	10.21 g/cm ³	
Bulk sound velocity	10.21 g/cm ³ 5.14 mm/μs	
Longitudinal sound velocity	6.44 mm/μs	

Experiment Summary		
Loading condition	1-D strain	
Loading method	Explosively launched	
	flyer plate	
Impact velocity	660±20 m/s	
Flyer plate: - material	Aluminum	
- thickness	2.0 mm	
Baseplate: - material	Aluminum	
- thickness	4.9 mm	
Target: - material	Molybdenum polycrystal	
- thickness	5.9 mm	
Measurement technique	VISAR	
Measurement accuracy	±5 m/s	
Spall strength	1.32±0.05 GPa	
Spall thickness ¹	1.13 mm (±10%)	

Reference:	Kanel et al. (199	3)

Determined based on the period of oscillation in the measured velocity history.

Molybdenum Polycrystal (Sintered Rod)		
Density	10.21 g/cm ³ 5.14 mm/μs	
Bulk sound velocity	5.14 mm/μs	
Longitudinal sound velocity	6.44 mm/µs	

Experiment	Summary
Loading condition Loading method	1-D strain Explosively launched flyer plate
Impact velocity	660±20 m/s
Flyer plate: - material - thickness	Aluminum 0.4 mm
Baseplate: - material - thickness	Aluminum 2.0 mm
Target: - material - thickness	Molybdenum polycrystal 2.07 mm
Measurement technique	VISAR
Measurement accuracy	±5 m/s
Spall strength Spall thickness ¹	2.4±0.05 GPa 0.4 mm (±10%)

Determined based on the period of oscillation in the measured velocity history.

Molybdenum Polycrystal (Sintered Rod)		
Density	10.21 g/cm ³	
Bulk sound velocity	10.21 g/cm ³ 5.14 mm/μs	
Longitudinal sound velocity	6.44 mm/μs	

Experiment	Summary
Loading condition	1-D strain
Loading method	Explosively launched flyer plate
Impact velocity	660±20 m/s
Flyer plate: - material	Aluminum
- thickness	0.4 mm
Baseplate: - material	Aluminum
- thickness	2.0 mm
Target: - material	Molybdenum polycrystal
<u>- thickness</u>	0.75 mm
Measurement technique	VISAR
Measurement accuracy	±5 m/s
Spall strength	1.8±0.05 GPa
Spall thickness ¹	0.26 mm (±10%)

Reference:	Kanel et al. (1993)	

Determined based on the period of oscillation in the measured velocity history.

B.18 MOLYBDENUM SINGLE CRYSTAL, <100>.

Molybdenum	<100>
Density Bulk sound velocity Longitudinal sound velocity	10.21 g/cm ³
Bulk sound velocity	5.14 mm/μs
Longitudinal sound velocity	6.44 mm/μs

Experiment Summary	
Loading condition Loading method	1-D strain Explosively launched
Impact velocity	flyer plate 660±20 m/s
Flyer plate: - material - thickness	Aluminum 2.0 mm
Baseplate: - material - thickness	Aluminum 4.0 mm
Target: - material - thickness	Molybdenum ¹ 3.88 mm
Measurement technique	VISAR
Measurement accuracy	±5 m/s
Spall strength Spall thickness ²	3.3±0.2 GPa 1.05 mm (±10%)

² Determined based on the period of oscillation in the measured velocity history.

¹ Single crystal loaded in the <100> direction.

Molybdenum	< 100>
Density	10.21 g/cm ³
Density Bulk sound velocity Longitudinal sound velocity	5.14 mm/μs
Longitudinal sound velocity	6.44 mm/µs

Experiment Summary	
Loading condition Loading method	1-D strain Explosively launched flyer plate
Impact velocity	5300±150 m/s
Flyer plate: - material - thickness	Aluminum 2.0 mm
Baseplate: - material - thickness	Aluminum 5.0 mm
Target: - material - thickness	Molybdenum ¹ 4.6 mm
Measurement technique	VISAR
Measurement accuracy	±5 m/s
Spall strength Spall thickness ²	4.85±0.2 GPa 1.3 mm (±10%)

Reference:	Kanel et al.	(1993)

¹ Single crystal loaded in the <100> direction.

Determined based on the period of oscillation in the measured velocity history.

Molybdenum	<100>
Density Bulk sound velocity Longitudinal sound velocity	10.21 g/cm ³
Bulk sound velocity	5.14 mm/μs
Longitudinal sound velocity	6.44 mm/μs

Experiment Summary	
Loading condition Loading method	1-D strain Explosively launched flyer plate
Impact velocity	660±20 m/s
Flyer plate: - material - thickness	Aluminum 0.4 mm
Baseplate: - material - thickness	Aluminum 2.0 mm
Target: - material - thickness	Molybdenum ¹ 1.4 mm
Measurement technique	VISAR
Measurement accuracy	±5 m/s
Spall strength Spall thickness ²	5.6±0.05 GPa 0.43 mm (±10%)

² Determined based on the period of oscillation in the measured velocity history.

¹ Single crystal loaded in the <100> direction.

Molybdenum	<100>
Density	10.21 g/cm ³
Bulk sound velocity	10.21 g/cm ³ 5.14 mm/μs
Longitudinal sound velocity	6.44 mm/μs

Experiment Summary	
Loading condition Loading method	1-D strain Explosively launched flyer plate
Impact velocity	1250±50 m/s
Flyer plate: - material - thickness	Aluminum 0.4 mm
Baseplate: - material - thickness	Aluminum 2.0 mm
Target: - material - thickness	Molybdenum ¹ 1.38 mm
Measurement technique	VISAR
Measurement accuracy	±5 m/s
Spall strength Spall thickness ²	5.4±0.2 GPa 0.29 mm (±10%)

- ¹ Single crystal loaded in the <100> direction.
- ² Determined based on the period of oscillation in the measured velocity history.

Molybdenum	<100>
Density	10.21 g/cm ³ 5.14 mm/μs
Bulk sound velocity	5.14 mm/μs
Longitudinal sound velocity	6.44 mm/μs

Experiment	Summary
Loading condition	1-D strain
Loading method	lon beam
Beam energy density	0.2 TW/cm ²
Beam spot size	8 mm
Target: - material	Molybdenum ¹
- thickness	0.32 mm
Measurement technique	ORVIS
Measurement accuracy	±20 m/s
Spall strength	13.5±0.1 GPa
Spall thickness ²	0.07 mm (±10%)

- ¹ Single crystal loaded in the <100> direction.
- ² Determined based on the period of oscillation in the measured velocity history.

B.19 MOLYBDENUM SINGLE CRYSTAL, <100> DEFORMED.

Molybdenum <100>	
Density	10.21 g/cm ³
Bulk sound velocity	10.21 g/cm ³ 5.14 mm/μs
Longitudinal sound velocity	6.44 mm/µs

Experiment	Summary
Loading condition	1-D strain
Loading method	ion beam-launched flyer plate
Beam energy density	0.2 TW/cm ²
Beam spot size	8 mm
Impact velocity	4100±150 m/s
Flyer plate: - material	Aluminum
- thickness	0.05 mm
Target: - material	Molybdenum ¹
- thickness	0.275 mm
Measurement technique	ORVIS
Measurement accuracy	±20 m/s
Spall strength	11.5±0.2 GPa
Spall thickness ²	0.022 mm (±10)

Reference:	Kanel et al.	(1993)

- Deformed (90% to 95%) single crystal loaded in the <100> direction.
- ² Determined based on the period of oscillation in the measured velocity history.

Molybdenum	< 100>
Density	10.21 g/cm ³
Bulk sound velocity	10.21 g/cm ³ 5.14 mm/μs
Longitudinal sound velocity	6.44 mm/μs

Experiment	Summary
Loading condition	1-D strain
Loading method	Ion beam-launched flyer plate
Beam energy density	0.2 TW/cm ²
Beam spot size	8 mm
Impact velocity	4100±150 m/s
Flyer plate: - material	Aluminum
- thickness	0.05 mm
Target: - material	Molybdenum ¹
- thickness	0.1 mm
Measurement technique	ORVIS
Measurement accuracy	±20 m/s
Spall strength	13.4±0.2 GPa
Spall thickness ²	0.01 mm (±10)

² Determined based on the period of oscillation in the measured velocity history.

Deformed (90% to 95%) single crystal loaded in the <100> direction.

Molybdenum	<100>
Density	10.21 g/cm ³ 5.14 mm/μs
Bulk sound velocity	5.14 mm/μs
Longitudinal sound velocity	6.44 mm/μs

Experiment	Summary
Loading condition	1-D strain
Loading method	Ion beam-launched
	flyer plate
Beam energy density	0.2 TW/cm ²
Beam spot size	8 mm
Impact velocity	3500±150 m/s
Flyer plate: - material	Aluminum
- thickness	0.01 mm
Target: - material	Molybdenum ¹
- thickness	0.275 mm
Measurement technique	ORVIS
Measurement accuracy	±20 m/s
Spall strength	16.5±0.2 GPa
Spall thickness ²	0.009 mm (±10)

- Deformed (90% to 95%) single crystal loaded in the <100> direction.
- ² Determined based on the period of oscillation in the measured velocity history.

B.20 MOLYBDENUM SINGLE CRYSTAL, <110>.

Molybdenum	<110>
Density	10.21 g/cm ³ 5.14 mm/μs
Bulk sound velocity	5.14 mm/μs
Longitudinal sound velocity	6.44 mm/μs

Experiment	Summary
Loading condition Loading method	1-D strain Explosively launched flyer plate
Impact velocity	660±20 m/s
Flyer plate: - material - thickness	Aluminum 0.4 mm
Baseplate: - material - thickness	Aluminum 2.0 mm
Target: - material - thickness	Molybdenum ¹ 1.37 mm
Measurement technique	VISAR
Measurement accuracy	±5 m/s
Spall strength Spall thickness ²	3.2±0.2 GPa 1.8 mm (±10%)

¹ Single crystal loaded in the <110> direction.

² Determined based on the period of oscillation in the measured velocity history.

Molybdenum	<110>
Density	10.21 a/cm ³
Bulk sound velocity	10.21 g/cm ³ 5.14 mm/μs
Longitudinal sound velocity	6.44 mm/µs

Experiment	Summary
Loading condition Loading method	1-D strain Explosively launched flyer plate
Impact velocity	660±20 m/s
Flyer plate: - material - thickness	Aluminum 0.4 mm
Baseplate: - material - thickness	Aluminum 1.45 mm
Target: - material - thickness	Molybdenum ¹ 1.45 mm
Measurement technique	VISAR
Measurement accuracy	±5 m/s
Spall strength	No spall

Reference:	Kanel et al.	(1993)	

¹ Single crystal loaded in the <110> direction.

Molybdenum <110>		
Density	10.21 g/cm ³	
Density Bulk sound velocity Longitudinal sound velocity	5.14 mm/μs 6.44 mm/μs	
Longitudinal sound velocity	6.44 mm/μs	

Experiment	Summary
Loading condition	1-D strain
Loading method	Explosively launched flyer plate
Impact velocity	1250±70 m/s
Flyer plate: - material	Aluminum
- thickness	0.4 mm ~
Baseplate: - material	Aluminum
- thickness	1.96 mm
Target: - material	Molybdenum ¹
- thickness	1.47 mm
Measurement technique	VISAR
Measurement accuracy	±5 m/s
Spall strength	4.6±0.1 GPa
Spall thickness ²	0.29 mm (±10%)

Reference: Kanel et al. (1993)

¹ Single crystal loaded in the <110> direction.

Determined based on the period of oscillation in the measured velocity history.

Molybdenum	<110>
Density	10.21 g/cm ³
Bulk sound velocity	10.21 g/cm ³ 5.14 mm/μs
Longitudinal sound velocity	6.44 mm/μs

Experiment Summary		
Loading condition	1-D strain	
Loading method	lon beam	
Beam energy density	0.2 TW/cm ²	
Beam spot size	8 mm	
Target: - material	Molybdenum ¹	
- thickness	0.9 mm	
Measurement technique	ORVIS	
Measurement accuracy	±20 m/s	
Spall strength	8.0±0.1 GPa	
Spall thickness ²	0.19 mm (±10%)	

- ¹ Single crystal loaded in the <110> direction.
- ² Determined based on the period of oscillation in the measured velocity history.

Molybdenum <110>	
Density Bulk sound velocity Longitudinal sound velocity	10.21 g/cm ³
Bulk sound velocity	5.14 mm/μs
Longitudinal sound velocity	6.44 mm/μs

Experiment	Summary
Loading condition	1-D strain
Loading method	ion beam-launched flyer plate
Beam energy density	0.2 TW/cm ²
Beam spot size	8 mm
Impact velocity	4100±150 m/s
Flyer plate: - material	Aluminum
- thickness	0.05 mm
Target: - material	Molybdenum ¹
- thickness	0.416 mm
Measurement technique	ORVIS
Measurement accuracy	±20 m/s
Spall strength	13.93±0.1 GPa
Spall thickness ²	0.048 mm (±10%)

² Determined based on the period of oscillation in the measured velocity history.

¹ Single crystal loaded in the <110> direction.

Molybdenum	<110>
Density	10.21 g/cm ³
Density Bulk sound velocity Longitudinal sound velocity	5.14 mm/μs
Longitudinal sound velocity	6.44 mm/μs

Experiment	Summary
Loading condition	1-D strain
Loading method	lon beam-launched
	flyer plate
Beam energy density	0.2 TW/cm ²
Beam spot size	8 mm
Impact velocity	4100±150 m/s
Flyer plate: - material	Aluminum
- thickness	0.05 mm
Target: - material	Molybdenum ¹
- thickness	0.286 mm
Measurement technique	ORVIS
Measurement accuracy	±20 m/s
Spall strength	11.82±0.1 GPa
Spall thickness ²	0.027 mm (±10%)

Reference:	Kanel et al.	(1993)	

- ¹ Single crystal loaded in the <110> direction.
- ² Determined based on the period of oscillation in the measured velocity history.

Molybdenum <110>	
Density	10.21 g/cm ³
Bulk sound velocity	5.14 mm/μs
Longitudinal sound velocity	6.44 mm/μs

Experiment Summary		
Loading condition	1-D strain	
Loading method	lon beam	
Beam energy density	0.2 TW/cm ²	
Beam spot size	8 mm	
Target: - material	Molybdenum ¹	
- thickness	0.37 mm	
Measurement technique	ORVIS	
Measurement accuracy	±20 m/s	
Spall strength	Non observed	

¹ Single crystal loaded in the <110> direction.

B.21 MOLYBDENUM SINGLE CRYSTAL, <111>.

Molybdenum <111>	
Density	10.21 g/cm ³
Bulk sound velocity	10.21 g/cm ³ 5.14 mm/μs
Longitudinal sound velocity	6.44 mm/μs

Experiment	Summary
Loading condition	1-D strain
Loading method	Explosively launched flyer plate
Impact velocity	660±20 m/s
Flyer plate: - material	Aluminum
- thickness	2.0 mm
Baseplate: - material	Aluminum
- thickness	4.7 mm
Target: - material	Molybdenum ¹
- thickness	3.91 mm
Measurement technique	VISAR
Measurement accuracy	±5 m/s
Spall strength	4.2±0.1 GPa
Spall thickness ²	1.1 mm (±10%)

² Determined based on the period of oscillation in the measured velocity history.

¹ Single crystal loaded in the <111> direction.

Molybdenum <111>	
Density	10.21 g/cm ³
Bulk sound velocity	5.14 mm/μs
Longitudinal sound velocity	6.44 mm/μs

Experiment	Summary
Loading condition Loading method	1-D strain Explosively launched flyer plate
Impact velocity	1900±70 m/s
Flyer plate: - material - thickness	Aluminum 2.0 mm
Baseplate: - material - thickness	Aluminum 4.7 mm
Target: - material - thickness	Molybdenum ¹ 3.7 mm
Measurement technique	VISAR
Measurement accuracy	±5 m/s
Spall strength Spall thickness ²	3.5±0.1 GPa 0.6 mm (±10%)

Reference:	Kanel et al.	(1993)	

¹ Single crystal loaded in the <111> direction.

² Determined based on the period of oscillation in the measured velocity history.

Molybdenum	<111>
Density	10.21 g/cm ³
Bulk sound velocity	10.21 g/cm ³ 5.14 mm/μs
Longitudinal sound velocity	6.44 mm/μs

Experiment Summary		
Loading condition Loading method	1-D strain Explosively launched flyer plate	
Impact velocity	660±20 m/s	
Flyer plate: - material - thickness	Aluminum 0.4 mm	
Baseplate: - material - thickness	Aluminum 2.0 mm	
Target: - material - thickness	Molybdenum ¹ 1.25 mm	
Measurement technique	VISAR	
Measurement accuracy	±5 m/s	
Spall strength Spall thickness ²	3.7±0.2 GPa 0.7 mm (±10%)	

Reference:	Kanel et al.	(1993)	

¹ Single crystal loaded in the <111> direction.

Determined based on the period of oscillation in the measured velocity history.

Molybdenum	<111>
Density Bulk sound velocity Longitudinal sound velocity	10.21 g/cm ³
Bulk sound velocity	5.14 mm/μs
Longitudinal sound velocity	6.44 mm/μs

Experiment	Summary
Loading condition Loading method	1-D strain Explosively launched
	flyer plate
Impact velocity	1250±50 m/s
Flyer plate: - material	Aluminum
- thickness	0.4 mm
Baseplate: - material	Aluminum
- thickness	2.0 mm
Target: - material	Molybdenum ¹
- thickness	1.34 mm
Measurement technique	VISAR
Measurement accuracy	±5 m/s
Spall strength	6.3±0.2 GPa
Spall thickness ²	0.27 mm (±10%)

Reference:	Kanel et al.	(1993)

¹ Single crystal loaded in the <111> direction.

² Determined based on the period of oscillation in the measured velocity history.

Molybdenum	<111>
Density	10.21 g/cm ³
Bulk sound velocity	10.21 g/cm ³ 5.14 mm/μs
Longitudinal sound velocity	6.44 mm/μs

Experiment	Summary
Loading condition	1-D strain
Loading method	Ion beam
Beam energy density	0.2 TW/cm ²
Beam spot size	8 mm
Target: - material	Molybdenum ¹
- thickness	0.66 mm
Measurement technique	ORVIS
	(with water window)
Measurement accuracy	±20 m/s
Spall strength	Non observed

¹ Single crystal loaded in the <111> direction.

B.22 NIOBIUM SINGLE CRYSTAL, <100>.

Niobium <100>	
Density	8.59 g/cm ³ 4.44 mm/μs
Bulk sound velocity	4.44 mm/μs
Longitudinal sound velocity	5.03 mm/μs

Experiment	Summary
Loading condition	1-D strain
Loading method	Ion beam
Beam energy density	0.2 TW/cm ²
Beam spot size	8 mm
Target: - material	Niobium ¹
- thickness	0.53 mm
Measurement technique	ORVIS
Measurement accuracy	±20 m/s
Spall strength	7.41±0.2 GPa
Spall thickness ²	0.07 mm (±10%)

- ¹ Single crystal loaded in the <100> direction.
- Determined based on the period of oscillation in the measured velocity history.

Niobium <100>	
Density	8.59 g/cm ³
Bulk sound velocity	8.59 g/cm ³ 4.44 mm/μs
Longitudinal sound velocity	5.03 mm/μs

Experiment Summary	
Loading condition	1-D strain
Loading method	lon beam
Beam energy density	0.2 TW/cm ²
Beam spot size	8 mm
Target: - material	Niobium ¹
- thickness	0.455 mm
Measurement technique	ORVIS
Measurement accuracy	±20 m/s
Spall strength	6.86±0.2 GPa
Spall thickness ²	0.042 mm (±10%)

- ¹ Single crystal loaded in the <100> direction.
- ² Determined based on the period of oscillation in the measured velocity history.

Niobium <100>	
Density	8.59 g/cm ³ 4.44 mm/μs
Bulk sound velocity	4.44 mm/μs
Longitudinal sound velocity	5.03 mm/μs

Experiment	Summary
Loading condition	1-D strain
Loading method	Ion beam-launched
	flyer plate
Beam energy density	0.2 TW/cm ²
Beam spot size	8 mm
Impact velocity	4100±150 m/s
Flyer plate: - material	Aluminum
- thickness	0.05 mm
Target: - material	Niobium ¹
- thickness	0.49 mm
Measurement technique	ORVIS
Measurement accuracy	±20 m/s
Spall strength	8.66±0.2 GPa
Spall thickness ²	0.029 mm (±10%)

- ¹ Single crystal loaded in the <100> direction.
- ² Determined based on the period of oscillation in the measured velocity history.

B.23 NIOBIUM SINGLE CRYSTAL, <100>, DEFORMED.

Niobium <100>	
Density	8.59 g/cm ³
Bulk sound velocity	8.59 g/cm ³ 4.44 mm/μs
Longitudinal sound velocity	5.03 mm/μs

Experiment	Summary
Loading condition	1-D strain
Loading method	lon beam
Beam energy density	0.2 TW/cm ²
Beam spot size	8 mm
Target: - material	Niobium ¹
- thickness	0.4 mm
Measurement technique	ORVIS
Measurement accuracy	±20 m/s
Spall strength	11.0±0.2 GPa
Spall thickness ²	0.07 mm (±10%)

- Deformed (85% to 90%) single crystal loaded in the <100> direction.
- ² Determined based on the period of oscillation in the measured velocity history.

Niobium <100>	
Density	8.59 g/cm ³
Bulk sound velocity	8.59 g/cm ³ 4.44 mm/μs
Longitudinal sound velocity	5.03 mm/μs

Experiment	Summary
Loading condition	1-D strain
Loading method	Ion beam-launched
	flyer plate
Beam energy density	0.2 TW/cm ²
Beam spot size	8 mm
Impact velocity	4100±150 m/s
Flyer plate: - material	Aluminum
- thickness	0.05 mm
Target: - material	Niobium ¹
- thickness	0.44 mm
Measurement technique	ORVIS
Measurement accuracy	±20 m/s
Spall strength	11.15±0.2 GPa
Spall thickness ²	0.029 mm (±10%)

- Deformed (85% to 90%) single crystal loaded in the <100> direction.
- ² Determined based on the period of oscillation in the measured velocity history.

Niobium <100>	
Density	8.59 g/cm ³
Bulk sound velocity	8.59 g/cm ³ 4.44 mm/μs
Longitudinal sound velocity	5.03 mm/μs

Experiment	Summary
Loading condition	1-D strain
Loading method	Ion beam-launched
	flyer plate
Beam energy density	0.2 TW/cm ²
Beam spot size	8 mm
Impact velocity	4100±150 m/s
Flyer plate: - material	Aluminum
- thickness	0.05 mm
Target: - material	Niobium ¹
- thickness	0.09 mm
Measurement technique	ORVIS
Measurement accuracy	±20 m/s
Spall strength	6.45±0.2 GPa
Spall thickness ²	0.014 mm (±10%)

Reference:	

- Deformed (85% to 90%) single crystal loaded in the <100> direction.
- ² Determined based on the period of oscillation in the measured velocity history.

Niobium <100>		
Density	8.59 g/cm ³	
Bulk sound velocity	4.44 mm/µs	
Density Bulk sound velocity Longitudinal sound velocity	5.03 mm/μs	

Experiment	Summary
Loading condition	1-D strain
Loading method	Ion beam-launched flyer plate
Beam energy density	0.2 TW/cm ²
Beam spot size	8 mm
Impact velocity	4100±150 m/s
Flyer plate: - material	Aluminum
- thickness	0.05 mm
Target: - material	Niobium ¹
- thickness	0.068 mm
Measurement technique	ORVIS
Measurement accuracy	±20 m/s
Spall strength	10.1±0.2 GPa
Spall thickness ²	0.023 mm (±10%)

Reference:		

- Deformed (85% to 90%) single crystal loaded in the <100> direction.
- ² Determined based on the period of oscillation in the measured velocity history.

Niobium <1	00>
Density Bulk sound velocity	8.59 g/cm ³ 4.44 mm/μs
Longitudinal sound velocity	5.03 mm/μs

Experiment	Summary
Loading condition Loading method	1-D strain Ion beam
Beam energy density	0.2 TW/cm ²
Beam spot size	8 mm
Target: - material - thickness	Niobium ¹ 0.41 mm
Measurement technique ²	ORVIS
Measurement accuracy	±20 m/s
Spall strength Spall thickness ³	10.1±0.2 GPa 0.07 mm (±10%)

- Deformed (85% to 90%) single crystal loaded in the <100> direction.
- ² Measurement performed through water window.
- ³ Determined based on the period of oscillation in the measured velocity history.

B.24 MAGNESIUM.

Magnesium Ma1		
Density	1.75 g/cm ³	
Bulk sound velocity	4.5 mm/μs	
Longitudinal sound velocity	5.61 mm/μs	

Experiment	Summary
Loading condition Loading method	1-D strain Explosively launched flyer plate
Impact velocity	660±20 m/s
Flyer plate: - material - thickness	Aluminum 0.2 mm
Target: - material - thickness	Magnesium 1 (sheet) 4.9 mm
Measurement technique Electrode diameter	Capacitor gage 10 mm
Measurement accuracy	±4%
Spall strength	No spall

Magnesium	Ma1
Density	1.75 g/cm ³
Bulk sound velocity	4.5 mm/µs
Longitudinal sound velocity	5.61 mm/μs

Experiment	Summary
Loading condition	1-D strain
Loading method	Explosively launched
	flyer plate
Impact velocity	660±20 m/s
Flyer plate: - material	Aluminum
- thickness	0.4 mm
Target: - material	Magnesium 1 (sheet)
- thickness	4.9 mm
Measurement technique	Capacitor gage
Electrode diameter	10 mm
Measurement accuracy	±4%
Spall strength	0.8±0.05 GPa
Spall thickness ¹	0.62 mm (±10%)

Determined based on the period of oscillation in the measured free surface velocity history.

Magnesium	Ma1
Density Bulk sound velocity Longitudinal sound velocity	1.75 g/cm ³
Bulk sound velocity	4.5 mm/μs
Longitudinal sound velocity	5.61 mm/μs

Experiment	Summary
Loading condition Loading method	1-D strain Explosively launched flyer plate
Impact velocity	660±20 m/s
Flyer plate: - material	Aluminum
- thickness	0.2 mm
Target: - material	Magnesium 1 (sheet)
- thickness	2.0 mm
Measurement technique	Capacitor gage
Electrode diameter	5 mm
Measurement accuracy	±4%
Spall strength	0.88±0.05 GPa
Spall thickness ¹	0.3 mm (±10%)

Determined based on the period of oscillation in the measured free surface velocity history.

B.25 ARMCO IRON.

Armco Iron	
Density	7.80 g/cm ³
Bulk sound velocity	7.80 g/cm ³ 4.65 mm/μs
Longitudinal sound velocity	5.97 mm/μs

Experiment	Summary
Loading condition Loading method	1-D strain In-contact explosives
Target: - material	Armco iron (rod)
- thickness	20 mm
Measurement technique	Capacitor gage
Electrode diameter	20 mm
Measurement accuracy	±4%
Spall strength	1.31±0.09 GPa
Spall thickness ¹	4.2 mm (±10%)

Determined based on the period of oscillation in the measured free-surface velocity history.

Armco Iron	
Density	7.80 g/cm ³
Bulk sound velocity	7.80 g/cm ³ 4.65 mm/μs
Longitudinal sound velocity	5.97 mm/μs

Experiment	Summary
Loading condition Loading method	1-D strain In-contact explosives
Target: - material	Armco iron (rod)
- thickness	12 mm
Measurement technique	Capacitor gage
Electrode diameter	20 mm
Measurement accuracy	±4%
Spall strength	1.41±0.09 GPa
Spall thickness ¹	3.9 mm (±10%)

Determined based on the period of oscillation in the measured free-surface velocity history.

Armco Iron	
Density	7.80 g/cm ³
Bulk sound velocity	7.80 g/cm ³ 4.65 mm/μs
Longitudinal sound velocity	5.97 mm/μs

Experiment Summary	
Loading condition Loading method	1-D strain Explosively launched flyer plate
Impact velocity	590±20 m/s
Flyer plate: - material	Aluminum
- thickness	5 mm
Target: - material	Armco iron (rod)
- thickness	10 mm
Measurement technique	Capacitor gage
Electrode diameter	20 mm
Measurement accuracy	±4%
Spall strength	1.31±0.07 GPa
Spall thickness ¹	3.5 mm (±10%)

Determined based on the period of oscillation in the measured free-surface velocity history.

Armco Iron	
Density	7.80 g/cm ³
Bulk sound velocity	7.80 g/cm ³ 4.65 mm/μs
Longitudinal sound velocity	5.97 mm/μs

Experiment Summary	
Loading condition Loading method	1-D strain Explosively launched flyer plate
Impact velocity	590±20 m/s
Flyer plate: - material - thickness	Aluminum 2 mm
Target: - material - thickness	Armco iron (rod) 10 mm
Measurement technique Electrode diameter	Capacitor gage 20 mm
Measurement accuracy	±4%
Spall strength Spall thickness ¹	1.54±0.09 GPa 1.1 mm (±10%)

Determined based on the period of oscillation in the measured free-surface velocity history.

Armco Iron	
Density	7.80 g/cm ³ 4.65 mm/μs
Bulk sound velocity	4.65 mm/μs
Longitudinal sound velocity	5.97 mm/μs

Experiment Summary	
Loading condition Loading method	1-D strain Explosively launched flyer plate
Impact velocity	590±20 m/s
Flyer plate: - material	Aluminum
- thickness	2 mm
Target: - material	Armco iron (rod)
- thickness	20 mm
Measurement technique	Capacitor gage
Electrode diameter	20 mm
Measurement accuracy	±4%
Spall strength	1.49±0.09 GPa
Spall thickness ¹	1.2 mm (±10%)

Determined based on the period of oscillation in the measured free-surface velocity history.

B.26 LEAD.

Lead	
Density	11.35 g/cm ³ 2.03 mm/μs
Bulk sound velocity	2.03 mm/μs
Longitudinal sound velocity	2.25 mm/μs

Experiment	Summary
Loading condition	1-D strain
Loading method	Explosively launched
	flyer plate
Impact velocity	700±20 m/s
Flyer plate: - material	Aluminum
- thickness	2.0 mm
Baseplate: - material	Aluminum
- thickness	4.53 mm
Target: - material	Lead (pressed)
- thickness	3.75 mm
Measurement technique	VISAR
Measurement accuracy	±5 m/s
Spall strength	0.5 Gpa (±6%)

Lead	
Density	11.35 g/cm ³
Bulk sound velocity	11.35 g/cm ³ 2.03 mm/μs
Longitudinal sound velocity	2.25 mm/μs

Experiment Summary	
Loading condition Loading method	1-D strain Explosively launched flyer plate
Impact velocity	2000±70 m/s
Flyer plate: - material - thickness	Aluminum 1.9 mm
Baseplate: - material - thickness	Aluminum 4 mm
Target: - material - thickness	Lead (pressed) 3.75 mm
Measurement technique	VISAR
Measurement accuracy	±5 m/s
Spall strength	0.5 GPa (±6%)

Lead	
Density	11.35 g/cm ³ 2.03 mm/μs
Bulk sound velocity	2.03 mm/μs
Longitudinal sound velocity	2.25 mm/μs

Experiment Summary	
Loading condition	1-D strain
Loading method	Explosively launched flyer plate
Impact velocity	1900±70 m/s
Flyer plate: - material	Aluminum
- thickness	2.0 mm
Baseplate: - material	Aluminum
- thickness	4.1 mm
Target: - material	Lead (pressed)
- thickness	4.0 mm
Measurement technique	VISAR
Measurement accuracy	±5 m/s
Spall strength	0.35 GPa (±6%)

B.27 TIN.

Tin	
Density	7.29 g/cm ³
Bulk sound velocity	2.61 mm/µs
Longitudinal sound velocity	3.43 mm/µs

Experiment	Summary
Loading condition	1-D strain
Loading method	Explosively launched
	flyer plate
Impact velocity	660±20 m/s
Flyer plate: - material	Aluminum
- thickness	2.0 mm
Baseplate: - material	Aluminum
- thickness	4 mm
Target: - material	Tin
- thickness	4.0 mm
Measurement technique	VISAR
Measurement accuracy	±5 m/s
Spall strength	0.7±0.05 Gpa
Spall thickness ¹	0.44 mm (±10%)

Reference: Kanel et al. (1996)	

Determined based on the period of oscillation in the measured free-surface velocity history.

Tin	
Density	7.29 g/cm ³
Bulk sound velocity	2.61 mm/µs
Longitudinal sound velocity	3.43 mm/µs

Experiment Summary	
Loading condition Loading method	1-D strain Explosively launched flyer plate
Impact velocity	2000±70 m/s
Flyer plate: - material - thickness	Aluminum 1.8 mm
Baseplate: - material - thickness	Aluminum 4.95 mm
Target: - material - thickness	Tin 5.0 mm
Measurement technique	VISAR
Measurement accuracy	±5 m/s
Spall strength	0.22±0.02 GPa

B.28 EPOXY.

Epoxy EDT-10	
Density	1.2 g/cm ³
Density Longitudinal sound velocity	2.62 mm/μs

Experiment	Summary
Loading condition Loading method	1-D strain Explosively launched flyer plate
Impact velocity	850±30 m/s
Flyer plate: - material - thickness	PMMA 1.4 mm
Target: - material - thickness	Epoxy - 10 4.5 mm
Measurement technique	VISAR
Measurement accuracy	±5 m/s
Spall strength Spall thickness ¹	0.3±0.05 GPa 0.9 mm (±10%)

Determined based on the period of oscillation in the measured free-surface velocity history.

B.29 PMMA.

PMMA	
Density	1.186 g/cm ³
Bulk sound velocity	2.65 mm/μs
Longitudinal sound velocity	2.72 mm/μs

Experiment Summary	
Loading condition	1-D strain
Loading method	Explosively launched
	flyer plate
Impact velocity	850±30 m/s
Flyer plate: - material	PMMA
- thickness	1.33 mm
Target: - material	PMMA
- thickness	11.5 mm
Measurement technique	VISAR
_	(with hexan window)
Measurement accuracy	±5 m/s
Spall strength	0.17±0.01 GPa
Spall thickness ¹	2.8 mm (±10%)

Determined based on the period of oscillation in the measured velocity history.

PMMA	
Density	1.186 g/cm ³
Bulk sound velocity	2.65 mm/µs
Longitudinal sound velocity	2.72 mm/μs

Experiment Summary	
Loading condition	1-D strain
Loading method	Explosively launched
	flyer plate
Impact velocity	660±20 m/s
Flyer plate: - material	Aluminum
- thickness	2.00 mm
Target: - material	PMMA
- thickness	8.32 mm
Measurement technique	VISAR
Measurement accuracy	±5 m/s
Spall strength	0.21±0.01 GPa
Spall thickness ¹	0.46 mm (±10%)

Determined based on the period of oscillation in the measured velocity history.

PMMA	
Density	1.186 g/cm ³
Bulk sound velocity	2.65 mm/us
Longitudinal sound velocity	2.72 mm/μs

Experiment Summary	
Loading condition Loading method	1-D strain Explosively launched flyer plate
Impact velocity	850±30 m/s
Flyer plate: - material - thickness	PMMA 1.36 mm
Target: - material - thickness	PMMA 11.68 mm
Measurement technique	VISAR
Measurement accuracy	±5 m/s
Spall strength Spall thickness ¹	0.17±0.01 GPa 0.86 mm (±10%)

Determined based on the period of oscillation in the measured velocity history.

PMMA	
Density	1.186 g/cm ³
Bulk sound velocity	2.65 mm/us
Longitudinal sound velocity	2.72 mm/μs

Experiment	Summary
Loading condition Loading method	1-D strain Explosively launched flyer plate
Impact velocity	850±30 m/s
Flyer plate: - material - thickness	PMMA 2.16 mm
Target: - material - thickness	PMMA 8.30 mm
Measurement technique	VISAR
Measurement accuracy	±5 m/s
Spall strength Spall thickness	0.18±0.02 GPa Not determined

PMMA	
Density	1.186 g/cm ³
Bulk sound velocity	1.186 g/cm ³ 2.65 mm/μs
Longitudinal sound velocity	2.72 mm/μs

Experiment	Summary
Loading condition	1-D strain
Loading method	Explosively launched
, ,	flyer plate
Impact velocity	1900±70 m/s
Flyer plate: - material	Aluminum
- thickness	2.00 mm
Target: - material	PMMA
- thickness	8.2 mm
Measurement technique	VISAR
· ·	(hexan window)
Measurement accuracy	±5 m/s
Spall strength	Not determined

PMMA	
Density Bulk sound velocity	1.186 g/cm ³ 2.65 mm/μs
Longitudinal sound velocity	2.72 mm/μs

Experiment	Summary
Loading condition	1-D strain
Loading method	In-contact explosives
Target: - material	PMMA
- thickness	18.21 mm
Measurement technique	VISAR
Measurement accuracy	±5 m/s
Spall strength	0.17±0.01 GPa
Spall thickness ¹	2.85 mm (±10%)

Determined based on the period of oscillation in the measured free surface velocity history.

PMMA	
Density	1.186 g/cm ³ 2.65 mm/μs
Bulk sound velocity	2.65 mm/μs
Longitudinal sound velocity	2.72 mm/µs

Experiment	Summary
Loading condition	1-D strain
Loading method	Explosively launched
	flyer plate
Impact velocity	1900±70 m/s
Flyer plate: - material	Aluminum
- thickness	2.00 mm
Target: - material	PMMA
- thickness	8.28 mm
Measurement technique	VISAR
Measurement accuracy	±5 m/s
Spall strength	0.21±0.015 GPa

B.30 RUBBER.

White Rubb	e r (Grade 7889)
Density	1.34 g/cm ³ 1.50 mm/μs
Bulk sound velocity	1.50 mm/μs

Experiment	Summary
Loading condition	1-D strain
Loading method	Explosively launched
	flyer plate
Impact velocity	380±20 m/s
Flyer plate: - material	PMMA
- thickness	1.5 mm
Baseplate: - material	Copper
- thickness	5.0 mm
Target: - material	White rubber
- thickness	10.4 mm
Measurement technique	VISAR
Measurement accuracy	±5 m/s
Spall strength	0.016 GPa
Spall thickness	None observed at
	100X magnification

White	Rubber	(Grade 7889)
Density		1.34 g/cm ³
Bulk sound v	elocity '	1.50 mm/μs

Experiment	Summary
Loading condition Loading method	1-D strain Explosively launched flyer plate
Impact velocity	380±20 m/s
Flyer plate: - material - thickness	PMMA 1.5 mm
Target: - material - thickness	White rubber 9.95 mm
Measurement technique	VISAR
Measurement accuracy	±5 m/s
Spall strength Spall thickness	0.022 GPa None observed at 100X magnification

White Rubbe	r (Grade 7889)
Density	1.34 g/cm ³
Bulk sound velocity	1.34 g/cm ³ 1.50 mm/μs

Experimen	t Summary
Loading condition	1-D strain
Loading method	Explosively launched
	flyer plate
Impact velocity	850±30 m/s
Flyer plate: - material	PMMA
	2.3 mm
Baseplate: - material	PMMA
- thickness	1.9 mm
Target: - material	Filled rubber
- thickness	10.0 mm
Measurement technique	e VISAR
Measurement accuracy	±5 m/s
Spall strength	0.027 GPa
Spall thickness	None observed at
	100X magnification

White Rubbe	r (Grade 7889)
Density	1.34 g/cm ³
Bulk sound velocity	1.50 mm/μs

Experiment	Summary
Loading condition	1-D strain
Loading method	Explosively launched
	flyer plate
Impact velocity	850±30 m/s
Flyer plate: - material	PMMA
- thickness	2.40 mm
Baseplate: - material	PMMA
- thickness	2.02 mm
Target: - material	Filled rubber
- thickness	9.68 mm
Measurement technique	VISAR
	(with hexan window)
Measurement accuracy	±5 m/s
Spall strength	Not determined

White	Rubber	(Grade 7889)
Density	1	.34 g/cm ³
Bulk sound ve	locity 1	.34 g/cm ³ .50 mm/µs

Experiment	Summary
Loading condition	1-D strain
Loading method	Explosively launched flyer plate
Impact velocity	850±30 m/s
Flyer plate: - material	PMMA
- thickness	2.15 mm
Baseplate: - material	PMMA
- thickness	2.25 mm
Target: - material	Filled rubber
- thickness	10.68 mm
Measurement technique	VISAR
	(with ethanol window)
Measurement accuracy	±5 m/s
Spall strength	Not determined

B.31 PROPELLANT SIMULANT (FILLED RUBBER).

Filled Rubber (Propellant Simulant)		
Density	1.60 g/cm ³	
Bulk sound velocity	1.85 mm/μs	
Type of rubber	Butadienenitride	
Filler content	75% by mass	
•	(61.6% KCI)	
Filler particle size	160-200 μm	

Experiment	Summary
Loading condition Loading method	1-D strain Explosively launched
Impact velocity	flyer plate 380±20 m/s
Flyer plate: - material	PMMA
- thickness	1.6 mm
Baseplate: - material - thickness	Copper 5.03 mm
Target: - material - thickness	Filled rubber 4.5 mm
Measurement technique	VISAR (with water window)
Measurement accuracy	±5 m/s
Spall strength Spall thickness	0.01 GPa (±6%) None observed

Filled Rubber (Propellant Simulant)		
Density	1.60 g/cm ³	
Bulk sound velocity	1.85 mm/μs	
Type of rubber	Butadienenitride	
Filler content	75% by mass	
	(61.6% KCI)	
Filler particle size	20-50 μm	

Experiment Summary	
Loading condition	1-D strain
Loading method	Explosively launched flyer plate
Impact velocity	380±20 m/s
Flyer plate: - material	PMMA
thickness	1.7 mm
Baseplate: - material	Copper
- thickness	5.0 mm
Target: - material	Filled rubber
- thickness	4.8 mm
Measurement technique	VISAR
Measurement accuracy	±5 m/s
Spall strength	0.025 GPa (±6%)
Spall thickness	None observed

Filled Rubber (Propellant Simulant)		
Density	1.60 g/cm ³	
Bulk sound velocity	1.85 mm/μs	
Type of rubber	Butadienenitride	
Filler content	75% by mass	
1	(61.6% KCI)	
Filler particle size	160-200 μm	

Experiment	Summary
Loading condition	1-D strain
Loading method	Explosively launched flyer plate
Impact velocity	380±20 m/s
Flyer plate: - material	PMMA
- thickness	1.72 mm
Baseplate: - material	Copper
- thickness	5.0 mm
Target: - material	Filled rubber
 thickness 	4.63 mm
Measurement technique	VISAR
Measurement accuracy	±5 m/s
Spall strength	0.015 GPa (±6%)
Spall thickness	None observed

Reference: Kanel et al. (1993c)

Filled Rubber (Propellant Simulant)		
Density	1.60 g/cm ³	
Bulk sound velocity	1.85 mm/µs	
Type of rubber	Butadienenitride	
Filler content	75% by mass	
	(61.6% KCI)	
Filler particle size	20-50 μm	

Experiment	Summary
Loading condition	1-D strain
Loading method	Explosively launched flyer plate
Impact velocity	850±30 m/s
Flyer plate: - material	PMMA
- thickness	1.4 mm
Baseplate: - material	Copper
- thickness	5.0 mm
Target: - material	Filled rubber
- thickness	5.0 mm
Measurement technique	VISAR
Measurement accuracy	±5 m/s
Spall strength	0.024 GPa (±6%)
Spall thickness	None observed

Reference: Kanel et al. (1993c)

Filled Rubber (Propellant Simulant)			
Density	1.60 g/cm ³		
Bulk sound velocity	1.85 mm/µs		
Type of rubber	Butadienenitride		
Filler content	75% by mass		
	(61.6% KCI)		
Filler particle size	20-50 μm		

Experiment	Summary
Loading condition	1-D strain
Loading method	Explosively launched
	flyer plate
Impact velocity	850±30 m/s
Flyer plate: - material	PMMA
- thickness	1.4 mm
Baseplate: - material	PMMA
- thickness	1.2 mm
Target: - material	Filled rubber
- thickness	5.0 mm
Measurement technique	VISAR
Measurement accuracy	±5 m/s
Spall strength	0.030 GPa (±6%)
Spall thickness	None observed

Reference: Kanel et al. (1993c)

B.32 ALUMINA.

Alumina (Ruby)			
Density	3.99 g/cm ³		
Bulk sound velocity	3.99 g/cm ³ 8.0 mm/µs		
Longitudinal sound velocity	11.2 mm/μs		

Experiment	Summary
Loading condition	1-D strain
Loading method	Explosively launched flyer plate
Impact velocity	660±20 m/s
Flyer plate: - material	Aluminum
- thickness	0.2 mm
Baseplate: - material	Aluminum
- thickness	3 mm
Target: - material	Alumina (ruby)1
- thickness	1.93 mm
Measurement technique	VISAR
Measurement accuracy	±5 m/s
Spall strength	No spall
Peak stress	6.0 GPa
Peak tensile stress	5.9 GPa

Reference:		

¹ Loaded perpendicular to {1100}.

Alumina (R	u b y)
Density Bulk sound velocity Longitudinal sound velocity	3.99 g/cm ³ 8.0 mm/µs

Experiment	Summary
Loading condition	1-D strain
Loading method	Explosively launched flyer plate
Impact velocity	660±20 m/s
Flyer plate: - material	Aluminum
- thickness	0.4 mm ⁻
Baseplate: - material	Aluminum
- thickness	2 mm
Target: - material	Alumina (ruby) ¹
- thickness	4.98 mm
Measurement technique	VISAR
·	(with water window)
Measurement accuracy	±5 m/s
Spall strength	No spall
Peak stress	6.2 GPa
Peak tensile stress	5.5 GPa

Reference: Kanel et al. (1993b)

¹ Loaded perpendicular to {1100}.

Alumina (Ruby)		
Density	3.99 g/cm ³	
Bulk sound velocity	8.0 mm/µs	
Longitudinal sound velocity	11.2 mm/μs	

Experiment	Summary
Loading condition	1-D strain
Loading method	Explosively launched
	flyer plate
Impact velocity	660±20 m/s
Flyer plate: - material	Aluminum
- thickness	0.4 mm ⁻
Baseplate: - material	Aluminum
- thickness	1.98 mm
Target: - material	Alumina (ruby)1
- thickness	3.63 mm
Measurement technique	VISAR
	(with water window)
Measurement accuracy	±5 m/s
Spall strength	No spall
Peak stress	6.3 GPa
Peak tensile stress	5.6 GPa

Reference: Kanel et al. (1993b)

¹ Loaded perpendicular to {1120}.

Alumina (Ruby)	
Density	3.99 g/cm ³
Bulk sound velocity	8.0 mm/us
Longitudinal sound velocity	11.2 mm/μs

Experiment	Summary
Loading condition	1-D strain
Loading method	Explosively
	launched flyer plate
Impact velocity	1250±50 m/s
Flyer plate: - material	Aluminum
- thickness	0.4 mm
Baseplate: - material	Aluminum
- thickness	4.37 mm
Target: - material	Alumina (ruby)1
- thickness	2.21 mm
Measurement technique	VISAR
	(with water window)
Measurement accuracy	±5 m/s
Peak stress	13.4 GPa
Spall strength	10.0±0.1 GPa

¹ Loaded perpendicular to {1120}.

Alumina (Ruby)	
Density	3.99 g/cm ³
Bulk sound velocity	8.0 mm/us
Longitudinal sound velocity	11.2 mm/μs

Experiment	Summary
Loading condition	1-D strain
Loading method	Explosively
	launched flyer plate
Impact velocity	1250±50 m/s
Flyer plate: - material	Aluminum
- thickness	0.4 mm "
Baseplate: - material	Aluminum
- thickness	2.0 mm
Target: - material	Alumina (ruby)1
- thickness	3.65 mm
Measurement technique	VISAR
	(with water window)
Measurement accuracy	±5 m/s
Peak stress	15.0 GPa
Spall strength	8.6±0.1 GPa

Reference: Kanel et al. (1993b)

¹ Loaded perpendicular to {1120}.

Alumina (z-cut S	apphire)
Density	3.99 g/cm ³
Bulk sound velocity	8.0 mm/μs
Longitudinal sound velocity	11.2 mm/μs

Experiment	Summary
Loading condition	1-D strain
Loading method	Ion beam
Beam energy density	0.2 TW/cm ²
Beam spot size	5 mm
Target: - material	z-cut Sapphire
- thickness	2.3 mm ⁻
Measurement technique	ORVIS
Measurement accuracy	±20 m/s
Spall strength	No spall
Peak stress	22.5 GPa
Peak tensile stress	20.5 GPa

Reference: Kanel et al. (1994)

Alumina (z-cut S	apphire)
Density	3.99 g/cm ³
Bulk sound velocity	8.0 mm/us
Longitudinal sound velocity	11.2 mm/μs

Experiment	Summary
Loading condition	1-D strain
Loading method	Ion beam
Beam energy density	0.2 TW/cm ²
Beam spot size	5 mm
Target: - material	z-cut Sapphire
- thickness	2.3 mm
Measurement technique	ORVIS
Measurement accuracy	±20 m/s
Peak stress	24.0 GPa
Spall strength	12.8 Gpa (±6%)

Reference: Kanel et al. (1994)

B.33 QUARTZ (X-CUT).

x-cut Quartz	
Density Bulk sound velocity Longitudinal sound velocity	2.65 g/cm ³
Bulk sound velocity	3.69 mm/μs
Longitudinal sound velocity	5.57 mm/μs

Experiment	Summary
Loading condition	1-D strain
Loading method	Explosively
	launched flyer plate
Impact velocity	660±20 m/s
Flyer plate: - material	Aluminum
- thickness	0.2 mm
Baseplate: - material	Aluminum
- thickness	2.9 mm
Target: - material	x-cut quartz
- thickness	1.98 mm
Measurement technique	VISAR
Measurement accuracy	±5 m/s
Spall strength	No spall

Reference: Kanel et al. (1992)

x-cut Qua	rtz
Density	2.65 g/cm ³
Bulk sound velocity	2.65 g/cm ³ 3.69 mm/μs
Longitudinal sound velocity	5.57 mm/μs

Experiment	Summary
Loading condition	1-D strain
Loading method	Explosively
	launched flyer plate
Impact velocity	660±20 m/s
Flyer plate: - material	Aluminum
- thickness	0.4 mm "
Baseplate: - material	Aluminum
- thickness	2.0 mm
Target: - material	x-cut quartz
- thickness	1.98 mm
Measurement technique	VISAR
Measurement accuracy	±5 m/s
Spall strength	4.0±0.03 GPa

Reference: Kanel et al. (1992)

B.34 TITANIUM CARBIDE (WITH NICKEL BINDER).

Titanium Carbide With Nickel Binder		
Density	5.28 g/cm ³	
Bulk sound velocity	7.0 mm/us	
Longitudinal sound velocity	9.15 mm/μs	
Porosity	0.5% - 1.0%	

Experiment	Summary
Loading condition Loading method	1-D strain In-contact explosives
Target: - material - thickness	TiC ceramic ¹ 10.3 mm
Measurement technique Electrode diameter	Capacitor gage 20 mm
Measurement accuracy	±4%
Spall strength	0.35±0.05 GPa

Reference: Kanel and Pityulin (1985)

Titanium carbide (84.5% by weight) with nickel binder.

Titanium Carbide With Nickel Binder		
Density	5.28 g/cm ³	
Bulk sound velocity	5.28 g/cm ³ 7.0 mm/μs 9.15 mm/μs	
Longitudinal sound velocity	9.15 mm/μs	
Porosity	0.5% - 1.0%	

Experiment	Summary
Loading condition Loading method	1-D strain Explosively launched flyer plate
Impact velocity	450±20 m/s
Flyer plate: - material - thickness	Aluminum 2.00 mm
Target: - material - thickness	TiC ceramic ¹ 10.0 mm
Measurement technique Electrode diameter	Capacitor gage 20 mm
Measurement accuracy	±4%
Spall strength Spall thickness	0.5±0.05 GPa Not determined

Reference: Kanel and Pityulin (1985)

Titanium carbide (84.5% by weight) with nickel binder.

Titanium Carbide With Nickel Binder		
Density Bulk sound velocity Longitudinal sound velocity Porosity	5.28 g/cm ³	
Bulk sound velocity	7.0 mm/μs	
Longitudinal sound velocity	9.15 mm/μs	
Porosity	0.5% - 1.0%	

Experiment	Summary
Loading condition Loading method	1-D strain Explosively launched flyer plate
Impact velocity	1050±50 m/s
Flyer plate: - material - thickness	Aluminum 7.00 mm *
Target: - material - thickness	TiC ceramic ¹ 11.9 mm
Measurement technique Electrode diameter	Capacitor gage 20 mm
Measurement accuracy	±4%
Spall strength	No spall

Reference:	1/ 1	D:1	(4005)
HATATANCA.	Kanel and	\mathbf{P} itt/Hillin /	!1 UX51
i icicicioc.	ranci and	i ityumi i	(1000)

¹ Titanium carbide (84.5% by weight) with nickel binder.

Titanium Carbide With Nickel Binder		
Density	5.28 g/cm ³	
Bulk sound velocity	5.28 g/cm ³ 7.0 mm/µs	
Longitudinal sound velocity	9.15 mm/μs	
Porosity	0.5% - 1.0%	

Experiment Summary		
Loading condition Loading method	1-D strain Explosively launched flyer plate	
Impact velocity	1500±50 m/s	
Flyer plate: - material - thickness Target: - material	Aluminum 4.00 mm ⁴ TiC ceramic ¹	
- thickness	10.0 mm	
Measurement technique Electrode diameter	Capacitor gage 20 mm	
Measurement accuracy	4%	
Spall strength	No spall	

Reference: Kanel and Pityulin (1985)

Titanium carbide (84.5% by weight) with nickel binder.

Titanium Carbide With Nickel Binder		
Density	5.28 g/cm ³ 7.0 mm/μs 9.15 mm/μs	
Bulk sound velocity	7.0 mm/μs	
Longitudinal sound velocity	9.15 mm/μs	
Porosity	0.5% - 1.0%	

Experiment Summary				
Loading condition	1-D strain			
Loading method	Explosively launched			
	flyer plate			
Impact velocity	1500±50 m/s			
Flyer plate: - material	Aluminum			
- thickness	4.0 mm ⁻			
Target: - material	TiC ceramic ¹			
- thickness	12.0 mm			
Measurement technique	Capacitor gage			
Electrode diameter	20 mm			
Measurement accuracy	±4%			
Spall strength	No spall			

5 /	17 1		D:: ::	44000
Reference:	Kanel	and	Pitvillin	(1985)
110101011001		۵	, ity a	(.000)

¹ Titanium carbide (84.5% by weight) with nickel binder

DISTRIBUTION LIST DSWA-TR-96-77-V2

DEPARTMENT OF DEFENSE

BALLISTIC MISSILE DEFENSE ORG

ATTN: DOUG SCHAEFER

DEFENSE TECHNICAL INFORMATION CENTER

2 CY ATTN: DTC/OCP

DEFENSE THREAT REDUCTION AGENCY

2 CY ATTN: SWI

DEPARTMENT OF THE ARMY

US ARMY SPACE & MISSILE DEFENSE CMS

ATTN: LIBRARY

US ARMY THAAD PROJECT OFFICE

3 CY ATTN; CSSD-TC-W, R BECKER

DEPARTMENT OF THE NAVY

NAVAL SURFARE WARFARE CENTER

ATTN: CODE G24, CHARLES R ELLINGTON

DEPARTMENT OF THE AIR FORCE

WRIGHT LABORATORY

ATTN: RON HUNT

DEPARTMENT OF ENERGY

LAWRENCE LIVERMORE NATIONAL LAB

ATTN: L-84, G POMYKAL

LOS ALAMOS NATIONAL LABORATORY

ATTN: DOD PROG OFC, J V REPPA

SANDIA NATIONAL LABORATORIES

ATTN: ERIC REECE

DEPARTMENT OF DEFENSE CONTRACTORS

ARES CORP

ATTN: CHUCK MARTIN

BATTELLE MEMORIAL INSTITUTE

ATTN: C ALEANDER

ITT INDUSTRIES

ATTN: DASIAC

ATTN: DASIAC/DARE

ITT SYSTEMS CORP

ATTN: VERN SMITH

ITT SYSTEMS CORP

ATTN: DENNIS JONES

JAYCOR

ATTN: DR CYRUS P KNOOWLES

LOGICON RDA

ATTN: DAVID GAKENHEIMER

LOGICON RDA

ATTN: ED TOTON

MAXWELL TECHNOLOGIES INC

ATTN: DR G GURTMAN

SRI INTERNATIONAL

2 CY ATTN: D CURRAN

ATTN: J COLTON

2 CY ATTN: L SEAMAN

2 CY ATTN: T ANTOUN

W J SCHAFER ASSOCIAES, INC.

ATTN: J CHERNAULT