他のスライドでは ω は" $2\pi f$ " っとしたが, ここでは, その定義を示す.

ωは角速度であり1秒間に 回転する角度を表す. 単位はラジアン毎秒[rad/s]を 用いる.

円の半径 r に等しい弧の中心に対する角度をラディアンと呼び、r と弧の長さが等しい場合は 1ラディアンとなる. \Rightarrow 57.3 [degree] =180/ π (π は円周率)

角速度 ω [rad/s] でt秒間 θ [rad] 回転した場合の関係式は,

$$\theta = \omega t \Rightarrow \omega = \frac{\theta}{t}$$

動径ベクトルの終点がt秒間に進む距離をlとすると,

$$l = r\theta$$

これを時間 t で割ると終点の速さ v[m/s]が求まる.

$$v = \frac{l}{t} = \frac{r\theta}{t} = r\omega$$

1周の長さは $2\pi r$ であり、これを直線上に伸ばして $2\pi r$ 進むのに必要な時間をTとすると、

(ただし、vは等速であること)

したがってvは

$$v = \frac{2\pi r}{r} \Rightarrow = r\omega$$

ωは

$$\omega = \frac{2\pi}{T}$$

Tは等速円運動においては周期を表す. 通常1秒間における周期の数を回転数と言いfで表す. 単位にはHzを用いる.

$$f = \frac{1}{T} \qquad [Hz]$$

故に,これまでの検討より,

$$\omega = 2\pi f$$
 [rad/s]

ここで弧度法[rad]と度数法[degree] の数値的対応を示す.

弧度法 [rad]	度数法 [degree]
π	180
2π	360

例えば,弧度法の θ [rad]を度数法のx[degree]に変換するには比例関係式より求める.

$$\pi : 180 = \theta : x$$

$$x = \frac{180}{\pi} \theta \qquad [degree]$$

一般にExcel等の三角関数の値は radian による表現である. これを 度数法に直すには, 上の関係式を 用いるか, DEGREES()関数を用いる.