RSA

- By Rivest, Shamir & Adleman of MIT in 1977
- Best known & widely used public-key scheme
- Uses large integers (e.g., 1024 bits)
- Security due to cost of factoring large numbers, and difficulty of computing discrete logarithm.

Background

- Totient function $\phi(n)$
 - Number of positive integers less than n and relatively prime to n
 - Relatively prime means with no factors in common with n
- Example: $\phi(10) = 4$
 - -1, 3, 7, 9 are relatively prime to 10
- If n=pq, $\phi(n) = (p-1)(q-1)$
- Euler's Theorem: $a^{g(n)} \mod n = 1$ where gcd(a,n)=1
 - Example: n=10, a=3.

RSA Key Setup

- Each user generates a public/private key pair by:
- Selecting two large primes at random p, q
- Computing their system modulus n=p*q $\phi(n) = (p-1)(q-1)$
- Selecting at random the encryption key e where $1 \le \emptyset$ (n), $gcd(\emptyset, \phi(n)) = 1$
- Solve following equation to find decryption key d $e*d=1 \mod \phi$ (n) and $0 \le d \le n$
- Publish their public encryption key: PU={e,n}
- Keep secret private decryption key: PR={d,n} p and q are kept secrete.

RSA Use

- To encrypt a message M, the sender:
 - obtains public key of recipient PU={e,n}
 - computes: $C = M^e \mod n$, where $0 \le M \le n$
- To decrypt the ciphertext C the owner:
 - uses their private key $PR = \{d, n\}$
 - computes: $M = C^d \mod n$
- Note that the message M must be smaller than the modulus n (block if needed)

Why RSA Works

RSA we have:

```
- n=p.q

- \varnothing (n) = (p-1) (q-1)

- carefully chose e & d to be inverses mod \varnothing (n)

e*d=1 mod \varphi (n) and 0 \le d \le n

- hence e*d=1+k*\varnothing (n) for some k
```

• Hence:

```
Cd mod n = (M^e)^d \mod n

= M^{1+k \cdot \emptyset(n)} \mod n
= M^* (M^{\emptyset(n)})^k \mod n
= M^* (1)^k \mod n \text{ (Euler's Theorem, Fermat's little Theorem)}
= M \mod n
```

RSA Example - Key Setup

- 1. Select primes: p=17 & q=11, and keep secret.
- 2. Compute $n = pq = 17 \times 11 = 187$
- 3. Compute $\emptyset(n) = (p-1)(q-1) = 16 \times 10 = 160$
- 4. Select e: gcd(e, 160) = 1; choose e=7
- 5. Determine d: $d*e=1 \mod 160$ and d < 160Value is d=23 since 23x7=161=1x160+1
- 6. Publish public key $PU = \{7, 187\}$
- 7. Keep secret private key PR={23, 187}

RSA Example - En/Decryption

- sample RSA encryption/decryption is:
- given message M = 88
- encryption:

```
C = 88^7 \mod 187 = 11
```

• decryption:

```
M = 11^{23} \mod 187 = 88
```

Basic Algorithms in RSA

- 1. Encryption and Decryption Exponentiation
- 2. Key Setup
 How to find d given e?

"Efficient" powering to compute a^n

```
\begin{aligned} &\operatorname{power}(a,n) \\ &\operatorname{set}\ r \leftarrow 1 \\ &\operatorname{if}\ n = 0, \operatorname{return}\ r \\ &\operatorname{while}\ n > 1 \ \operatorname{do} \\ &\operatorname{if}\ n \ \operatorname{is}\ \operatorname{odd}, \operatorname{set}\ r \leftarrow r * a, n \leftarrow n-1 \\ &\operatorname{set}\ n \leftarrow n/2, a \leftarrow a * a \end{aligned}
```

Loop invariant: power(a, n)r is constant.

- An efficient way to find the GCD(A,B)
- Uses theorem that:(A>B)
 - $GCD(A,B) = GCD(B, A \mod B)$
- Euclidean Algorithm to compute GCD(A,B) is:

```
Euclid(A,B)
if (R=0) then return B;
else return Euclid(B, A mod B);
```

$$GCD(16, 12)=GCD(12, 4)=4$$

Q	A	В	R

Q	Α	В	R
2	33	12	9
		Ш	

Euclidean Algorithm Exercise

• gcd(309,171)

Extended Euclidean Algorithm

• Extended Euclidean (a,b)

- This function calculates not only GCD but also x & y:
- ax + by = gcd(a, b), where x and y will have opposite signs.
- Follow sequence of divisions for GCD but assume at each step i, can find x &y:

$$r = ax + by$$

- In the end find GCD value and also x & y
- If GCD(a,b)=1, y and b are inverses mod a

Find Private Key in RSA

How to calculate d s.t. $e*d=1 \mod \phi$ (n) using Extended Euclidean algorithm?

Given $\phi(n)$ and e (public key) in the RSA, we run Extended Euclidean($\phi(n)$, e)

Since $\phi(n)$ and e are co-prime, this function will return x and y s.t., $\phi(n)$ x + e y = gcd($\phi(n)$, e) =1

On both sides, mod $\phi(n)$, we get 0+ e y mod $\phi(n)=1$ Then y is the inverse of e mod $\phi(n)$.

We set d = y as the private key.

Extended Euclidean Algorithm Example

(get multiplicative inverse modulo n)

Multiplicative Inverse using EEA

Q	Α	В	R	T ₁	T ₂	Т

Extended Euclidean Algorithm Example (get multiplicative inverse modulo n)

Multiplicative Inverse using EEA

O	Α	В	R	T ₁	T ₂	Т

Points to Ponder

$$T_1 = 0 \text{ and } T_2 = 1$$

$$T = T_1 - T_2 \times Q$$

 T_2 is the M.I.

Q	Α	В	R	T ₁	T ₂	Т
1	5	3	2			
					Ē	

Q	A	В	R	T ₁	T ₂	Т
1	5	3	2	0	1	-1

$$T_1 = 0$$
 and $T_2 = 1$
 $T = T_1 - T_2 \times Q$
 $T = 0 - 1 \times 1$
 $T = 0 - 1$
 $T = -1$

Q	Α	В	R	T ₁	T ₂	Т
1	5	3	2	0	1	-1
	3	2		1	-1	

Q	Α	В	R	T ₁	T ₂	Т
1	5	3	2	0	1	-1
1	3	2	1	1	-1	2

$$T = T_1 - T_2 \times Q$$
 $T = 1 - (-1) \times 1$
 $T = 1 - (-1)$
 $T = 2$

Q	Α	В	R	T ₁	T ₂	Т
1	5	3	2	0	1	-1
1	3	2	1	1	-1	2
2	2	1	0	-1	2 💆	-5

Q	A	В	R	T ₁	T ₂	T
1	5	3	2	0	1	-1
1	3	2	1	1	-1	2
2	2	1	0	-1	2 *	-5

Extended Euclidean Algorithm Implementation

```
// C function for extended Euclidean Algorithm
int gcdExtended(int a, int b, int *x, int *y)
    // Base Case
    if (a == 0)
       *x = 0;
       *v = 1;
       return b;
    int x1, y1; // To store results of recursive call
    int gcd = gcdExtended(b%a, a, &x1, &y1);
    // Update x and y using results of recursive
    // call
    *x = y1 - (b/a) * x1;
    *v = x1;
    return gcd;
// Driver Program
int main()
   int x, y;
    int a = 35, b = 15;
    int g = gcdExtended(a, b, &x, &y);
   printf("qcd(%d, %d) = %d", a, b, g);
    return 0;
```

RSA Example – Find d

- 1. Select primes: p=17 & q=11, and keep secret.
- 2. Compute $n = pq = 17 \times 11 = 187$
- 3. Compute $\emptyset(n) = (p-1)(q-1) = 16 \times 10 = 160$
- 4. Select e: gcd(e, 160) = 1; choose e=7
- 5. Determine d: $d*e=1 \mod 160$ and d < 160