samba 公式推导

March 28, 2018

二维控制方程

运动方程:

$$\frac{d(r,z)}{dt} = (u,v) \tag{1}$$

质量守恒:

$$\frac{dm}{dt} = 0 (2)$$

动量守恒方程:

$$\rho \frac{du}{dt} = \frac{\partial \sigma_{rr}}{\partial r} + \frac{\partial s_{rz}}{\partial z}$$

$$\rho \frac{dv}{dt} = \frac{\partial \sigma_{zz}}{\partial z} + \frac{\partial s_{rz}}{\partial r}$$
(3)

能量守恒方程:

$$\rho \frac{de}{dt} = \sigma_{rr} \frac{\partial u}{\partial r} + \sigma_{zz} \frac{\partial v}{\partial z} + s_{rz} \left(\frac{\partial u}{\partial z} + \frac{\partial v}{\partial r} \right)
= -p \frac{dV}{dt} + s_{rr} \frac{\partial u}{\partial r} + s_{zz} \frac{\partial v}{\partial z} + s_{rz} \left(\frac{\partial u}{\partial z} + \frac{\partial v}{\partial r} \right)$$
(4)

本构方程:

$$\frac{ds_{rr}}{dt} = 2\mu \left(\frac{\partial u}{\partial r} - \frac{1}{3} \nabla \cdot \vec{u} \right) + s_{rz} \left(\frac{\partial u}{\partial z} - \frac{\partial v}{\partial r} \right)
\frac{ds_{zz}}{dt} = 2\mu \left(\frac{\partial v}{\partial z} - \frac{1}{3} \nabla \cdot \vec{u} \right) - s_{rz} \left(\frac{\partial u}{\partial z} - \frac{\partial v}{\partial r} \right)
\frac{ds_{rz}}{dt} = \mu \left(\frac{\partial u}{\partial r} + \frac{\partial v}{\partial z} \right) + \frac{s_{rr} - s_{zz}}{2} \left(\frac{\partial u}{\partial z} - \frac{\partial v}{\partial r} \right)$$
(5)

Von Mises 屈服条件:

$$\frac{3}{2}(s_{rr}^2 + s_{zz}^2 + s_{\theta\theta}^2 + 2s_{xy}^2) \le (Y^0)^2 \tag{6}$$

图 1: 有限体积方法求解动量方程控制单元示意图

离散方法

时间离散: 预估校正方法

对于如下形式方程

$$\frac{\partial U}{\partial t} = F(U) \tag{7}$$

预估步:

$$\frac{U^{n+\frac{1}{2}} - U^n}{\frac{1}{2}\Delta t} = F(U^n)$$
 (8)

校正步:

$$\frac{U^{n+1} - U^n}{\Delta t} = F(U^{n+\frac{1}{2}}) \tag{9}$$

空间离散方法

动量方程离散

1. 有限体积离散

采用如图2所示非结构四边形单元,Wilkins 在 1963 年首先通过有限体积方法得到 Wilkins 格式 [?]。点 i, iii, v, vii 分别为线 O1,O2,O3,O4 的中点,ii, iv, vi, viii 分别为区域 I-IV 的几何中心。

对于动量离散方程3, 在八边形面回路 $\Omega = i \rightarrow ii \rightarrow \cdots \rightarrow vii \rightarrow i$ 上积分:

$$\int_{\Omega} \rho \frac{du}{dt} d\Omega = \int_{\Omega} \frac{\partial \sigma_{rr}}{\partial r} + \frac{\partial s_{rz}}{\partial z} d\Omega$$
 (10)

$$\int_{\Omega} \rho \frac{dv}{dt} d\Omega = \int_{\Omega} \frac{\partial \sigma_{zz}}{\partial z} + \frac{\partial s_{rz}}{\partial r} d\Omega$$
 (11)

以方程10为例, 左侧积分可以近似为

$$\int_{\Omega} \rho \frac{du}{dt} d\Omega = M \frac{du_o}{dt} \tag{12}$$

其中

$$M = \frac{1}{4} (A_I \rho_I + A_{II} \rho_{II} + A_{III} \rho_{III} + A_{IV} \rho_{IV})$$
 (13)

右侧积分根据 Green 公式:

$$\int_{\Omega} \operatorname{grad} f d\Omega = \oint_{\partial \Omega} f \overrightarrow{n} dl \tag{14}$$

有

$$\int_{\Omega} \frac{\partial \sigma_{rr}}{\partial r} + \frac{\partial s_{rz}}{\partial z} d\Omega = -\oint_{\partial \Omega} \sigma_{rr} dz + \oint_{\partial \Omega} s_{rz} dr$$
 (15)

积分

$$\int_{vii}^{i} \sigma_{rr} dz \approx \frac{1}{2} \sigma_{rrI} (z_2 - z_1) \tag{16}$$

同理可得

$$-\oint_{\partial\Omega}\sigma_{rr}dz + \oint_{\partial\Omega}s_{rz}dr = \frac{1}{2}\sum_{i=1}^{4}s_{rzi}(r_{i+1} - r_i) - \sigma_{rri}(z_{i+1} - z_i)$$

$$\tag{17}$$

得到 wilkins 格式:

$$\frac{du_o}{dt} = \frac{1}{2M} \left[\sum_{i=1}^{4} s_{rzi} (r_{i+1} - r_i) - \sigma_{rri} (z_{i+1} - z_i) \right]$$
(18)

2: 有限元离散

该格式同样可以通过有限元方法得出 (Lascaux 1973 年) [?]。 控制体同样取如图 2 ,以 IV 区为例,可以化作有限元的单元积分:

$$\int_{\Omega_I V} \rho \frac{du}{dt} d\Omega = \int_{\Omega_I V} \left(\frac{\partial \sigma_{rr}}{\partial r} + \frac{\partial s_{rz}}{\partial z} \right) d\Omega \tag{19}$$

其中

$$\phi_i = \frac{1}{4} (1 + \xi_i \xi) (1 + \eta_i \eta) \tag{20}$$

为基函数,i = a, b, c, d 其中 $(\xi, \eta) = (-1, -1), (1, -1), (1, 1), (-1, 1)$

$$u = \sum_{i=a}^{d} u_i \phi_i$$

$$r = \sum_{i=a}^{d} r_i \phi_i$$

$$z = \sum_{i=a}^{d} z_i \phi_i$$
(21)

由于求解单元中心加速度,因此 $u = u_c \phi_c = u_O \phi_c$ 在 IV 区, $\phi_c = 1/4(1+\xi)(1+\eta)$,因此公式19左侧可以化为:

$$\int_{\Omega_I V} \rho \frac{du}{dt} d\Omega = \frac{du_O}{dt} \int_{\Omega_I V} \rho \phi_c d\Omega$$

$$= \frac{du_O}{dt} M$$
(22)

其中

$$M = \int_{-1}^{1} \int_{-1}^{1} \rho \phi_c J d\xi d\eta \tag{23}$$

J 为 Jacobi 矩阵

$$J = \left\| \frac{\frac{\partial r}{\partial \xi}}{\frac{\partial z}{\partial \xi}} \frac{\frac{\partial r}{\partial \eta}}{\frac{\partial z}{\partial \eta}} \right\|$$

$$= \frac{\partial r}{\partial \xi} \frac{\partial z}{\partial \eta} - \frac{\partial r}{\partial \eta} \frac{\partial z}{\partial \xi}$$

$$= \frac{1}{16} \sum_{i=a}^{d} r_{i} \xi_{i} (1 + \eta_{i} \eta) \sum_{i=a}^{d} z_{i} \eta_{i} (1 + \xi_{i} \xi)$$

$$- \frac{1}{16} \sum_{i=a}^{d} r_{i} \eta_{i} (1 + \xi_{i} \eta) \sum_{i=a}^{d} z_{i} \xi_{i} (1 + \eta_{i} \eta)$$

$$= \frac{1}{16} [(r_{2} + r_{3} - r_{1} - r_{4}) + \eta(r_{1} + r_{3} - r_{2} - r_{4})]$$

$$[(z_{3} + z_{4} - z_{2} - z_{1}) + \xi(z_{1} + z_{3} - z_{2} - z_{4})]$$

$$- \frac{1}{16} [(z_{2} + z_{3} - z_{1} - z_{4}) + \eta(z_{1} + z_{3} - z_{2} - z_{4})]$$

$$[(r_{3} + r_{4} - r_{2} - r_{1}) + \xi(r_{1} + r_{3} - r_{2} - r_{4})]$$

$$= \frac{1}{8} [(z_{1} - z_{3})(r_{4} - r_{2}) + (z_{2} - z_{4})(r_{1} - r_{3})$$

$$+ (\xi - \eta)(r_{4} - r_{3})(z_{2} - z_{1}) + (\xi - \eta)(r_{1} - r_{2})(z_{4} - z_{3})]$$

$$(24)$$

公式 (22) 可以化为:

$$\frac{du_O}{dt} \int_{-1}^{1} \int_{-1}^{1} \rho \phi_c J d\xi d\eta
= \frac{1}{32} \frac{du_O}{dt} \int_{-1}^{1} \int_{-1}^{1} \rho (1+\xi) (1+\eta) [B + C(\xi - \eta)] d\xi d\eta$$
(25)

其中 $B = (z_1 - z_3)(r_4 - r_2) + (z_2 - z_4)(r_1 - r_3)$, $C = (r_4 - r_3)(z_2 - z_1) + (r_1 - r_2)(z_4 - z_3)$ 公式 (25) 经过积分得到

$$M = \frac{1}{8}\rho_{IV}B$$

$$= \frac{1}{8}\rho_{IV}[(z_1 - z_3)(r_4 - r_2) + (z_2 - z_4)(r_1 - r_3)] = \frac{1}{4}\rho_{IV}A_{IV}$$
(26)

右侧以第一项为例:

$$\begin{split} &\int_{\Omega_{I}V} \frac{\partial \sigma_{rr}}{\partial r} d\Omega \\ &= \int_{-1}^{1} \int_{-1}^{1} \frac{1}{J} \frac{\partial (z, \sigma_{rr})}{\partial (\xi, \eta)} J d\xi d\eta \\ &= \int_{-1}^{1} \int_{-1}^{1} \frac{\partial (z, \sigma_{rr})}{\partial (\xi, \eta)} d\xi d\eta \\ &= \int_{-1}^{1} \int_{-1}^{1} \frac{\partial z}{\partial \xi} \frac{\partial \sigma_{rr}}{\partial \eta} - \frac{\partial z}{\partial \eta} \frac{\partial \sigma_{rr}}{\partial \xi} d\xi d\eta \\ &= \frac{1}{4} \int_{-1}^{1} \int_{-1}^{1} \sum_{i=a}^{d} z_{i} \xi_{i} (1 + \eta_{i} \eta) \frac{\partial \sigma_{rr}}{\partial \eta} - \sum_{i=a}^{d} z_{i} \eta_{i} (1 + \xi_{i} \xi) \frac{\partial \sigma_{rr}}{\partial \xi} d\xi d\eta \end{split}$$

由于 σ_{rr} 求的是中心点,在 IV 区为 $\sigma_{rr}=\phi_c\sigma_{rrc}=\frac{1}{4}(1+\xi)(1+\eta)\sigma_{rrO}$ 上式变为

$$\frac{1}{16}\sigma_{rrO} \int_{-1}^{1} \int_{-1}^{1} \sum_{i=a}^{d} z_{i} \xi_{i} (1 + \eta_{i} \eta) (1 + \xi) - \sum_{i=a}^{d} z_{i} \eta_{i} (1 + \xi_{i} \xi) (1 + \eta) d\xi d\eta$$

$$= \frac{1}{4}\sigma_{rrO} \left(\sum_{i=a}^{d} z_{i} \xi_{i} - \sum_{i=a}^{d} z_{i} \eta_{i} \right)$$

$$= \frac{1}{2}\sigma_{rrO} (z_{b} - z_{d})$$

$$= \frac{1}{2}\sigma_{rrO} (z_{1} - z_{4})$$
(28)

同理 IV 区右侧右侧第二项可以化为:

$$\int_{\Omega_{IV}} \frac{\partial s_{rz}}{\partial z} d\Omega = \frac{1}{2} s_{rzO} (r_4 - r_1)$$
 (29)

图 2: 有限元求解动量方程控制单元示意图

在第 I 区,O 点为第 d 节点,因此 $\phi_d = 1/4(1-\xi)(1+\eta)$ 其他求解过程和 IV 区相同,最后右侧积分变为:

$$\int_{\Omega_{I}} \frac{\partial \sigma_{rr}}{\partial r} + \frac{\partial s_{rz}}{\partial z} d\Omega = \frac{1}{2} s_{rzO} (r_{4} - r_{1})$$

$$= \frac{1}{2} \sigma_{rrO} (z_{a} - z_{c}) + \frac{1}{2} s_{rzO} (z_{c} - z_{a})$$

$$= \frac{1}{2} \sigma_{rrO} (z_{1} - z_{2}) + \frac{1}{2} s_{rzO} (z_{2} - z_{1})$$
(30)

将 I-IV 区左右项加和可得:

$$\frac{du_o}{dt} = \frac{1}{2M} \left[\sum_{i=1}^{4} s_{rzO}(r_{i+1} - r_i) - \sigma_{rrO}(z_{i+1} - z_i) \right]$$
(31)

其中

$$M = \frac{1}{4} (A_I \rho_I + A_{II} \rho_{II} + A_{III} \rho_{III} + A_{IV} \rho_{IV})$$
 (32)

和有限体积方法求得的公式 (18) 相同。

在计算中需要在动量方程中增加沙漏粘性 h 和人工粘性 q, 公式 (18) 变为:

$$M\frac{du}{dt} = \sum_{i=1}^{4} \left(h_i + \frac{1}{2} [s_{rz}(r_{i+1} - r_i) - (\sigma_{rr} - q_i)(z_{i+1} - z_i)] \right)$$
(33)

能量方程离散

能量守恒方程:

$$\rho \frac{de}{dt} = \boldsymbol{\sigma} \cdot \boldsymbol{\varepsilon}
= \sigma_{rr} \frac{\partial u}{\partial r} + \sigma_{zz} \frac{\partial v}{\partial z} + \sigma_{rz} \left(\frac{\partial u}{\partial z} + \frac{\partial v}{\partial r} \right)
= -p \nabla \cdot \overrightarrow{u} + s_{rr} \frac{\partial u}{\partial r} + s_{zz} \frac{\partial v}{\partial z} + s_{rz} \left(\frac{\partial u}{\partial z} + \frac{\partial v}{\partial r} \right)$$
(34)

通过质量守恒方程:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \overrightarrow{u}) = 0 \tag{35}$$

有

$$\frac{\partial \rho}{\partial t} + \overrightarrow{u} \cdot \nabla \rho + \rho \nabla \cdot \overrightarrow{u} = 0 \tag{36}$$

根据全微分关系

$$\frac{d\rho}{dt} + \rho \nabla \cdot \overrightarrow{u} = 0 \tag{37}$$

所以

$$\nabla \cdot \overrightarrow{u} = -\frac{1}{\rho} \frac{d\rho}{dt}$$

$$= -V \frac{d\frac{1}{V}}{dt}$$

$$= \frac{1}{V} \frac{dV}{dt}$$
(38)

所以方程(34)可以化为

$$\rho \frac{de}{dt} = -\frac{p}{V} \frac{dV}{dt} + s_{rr} \frac{\partial u}{\partial r} + s_{zz} \frac{\partial v}{\partial z} + s_{rz} \left(\frac{\partial u}{\partial z} + \frac{\partial v}{\partial r} \right)$$
(39)

既

$$\frac{dE}{dt} = -p\frac{dV}{dt} + Vs_{rr}\frac{\partial u}{\partial r} + Vs_{zz}\frac{\partial v}{\partial z} + Vs_{rz}\left(\frac{\partial u}{\partial z} + V\frac{\partial v}{\partial r}\right)$$
(40)

其中 $\sigma = -pI + s$ 。

采用有限体积方法,在图 3 所示整个单元上进行积分有,其中除速度外其它量均集中在单元中心O,因此有:

$$\int_{\Omega} \frac{dE}{dt} d\Omega = \int_{\Omega} -p \frac{dV}{dt} + V s_{rr} \frac{\partial u}{\partial r} + V s_{zz} \frac{\partial v}{\partial z} + V s_{rz} \left(\frac{\partial u}{\partial z} + \frac{\partial v}{\partial r} \right) d\Omega$$
(41)

既

$$\frac{dE}{dt} = -p\frac{dV}{dt} + \frac{1}{A}Vs_{rr}\int_{\Omega}\frac{\partial u}{\partial r}d\Omega + Vs_{zz}\frac{1}{A}\int_{\Omega}\frac{\partial v}{\partial z}d\Omega + Vs_{rz}\frac{1}{A}\int_{\Omega}\left(\frac{\partial u}{\partial z} + \frac{\partial v}{\partial r}\right)d\Omega$$
(42)

图 3: 能量方程离散控制单元示意图

以其中

$$\frac{1}{A} \int_{\Omega} \frac{\partial u}{\partial r} d\Omega \tag{43}$$

的离散为例:

$$\frac{1}{A} \int_{\Omega} \frac{\partial u}{\partial r} d\Omega = -\frac{1}{A} \oint_{\partial \omega} u dz$$

$$\approx \frac{1}{A} \left(\frac{1}{2} (u_1 + u_2)(z_2 - z_1) + \frac{1}{2} (u_2 + u_3)(z_3 - z_2) \right)$$

$$+ (u_3 + u_4)(z_4 - z_3) + \frac{1}{2} (u_4 + u_1)(u_1 - u_4)$$

$$= -\frac{1}{A} \left((u_1 - u_3)(z_2 - z_4) + (u_2 - u_4)(z_3 - z_1) \right)$$
(44)

并将其记作 \bar{u}_r 。 能量方程空间离散为

$$\frac{dE}{dt} = -p\frac{dV}{dt} + Vs \cdot \varepsilon \tag{45}$$

其中

$$\mathbf{s} \cdot \mathbf{\varepsilon} = s_{rr} \bar{u}_r + s_{zz} \bar{v}_z + s_{rz} (\bar{u}_z + \bar{v}_r) \tag{46}$$

本构方程离散

和能量方程离散类似,以 ds_{rr} 为例

$$\frac{ds_{rr}}{dt} = 2\mu \left(\bar{u}_r^n - \frac{1}{3} (\bar{u}_r^n + \bar{v}_z^n) \right) + s_{rz}^n (\bar{u}_z^n - \bar{v}_r^n) \tag{47}$$

$$(r,z)^{n}, \overrightarrow{u}^{n}, m^{n}, E^{n}, s^{n})$$

$$\Rightarrow h^{n}, \Delta l^{n}, q^{n}, V^{n}, \rho^{n}, e^{n}$$

$$\Rightarrow s^{n} \Rightarrow \sigma^{*} \Rightarrow s^{n+\frac{1}{2}}$$

$$\Rightarrow (r,z)^{n} \Rightarrow (r,z)^{n+\frac{1}{2}} \Rightarrow V^{n+\frac{1}{2}} \Rightarrow \rho^{n+\frac{1}{2}}$$

$$\Rightarrow E^{n} \Rightarrow E^{n+\frac{1}{2}}$$

$$\Rightarrow h^{n+\frac{1}{2}}, \Delta l^{n+\frac{1}{2}}, \overrightarrow{F}^{n+\frac{1}{2}}, m^{n+\frac{1}{2}}$$

$$\Rightarrow s^{n+\frac{1}{2}} \Rightarrow \sigma^{*} \Rightarrow s^{n+1}$$

$$\Rightarrow F^{n+\frac{1}{2}} \Rightarrow \overrightarrow{a}^{n+\frac{1}{2}} \Rightarrow \overrightarrow{u}^{n+1}, \overrightarrow{u}^{n+\frac{1}{2}}, (r,z)^{n+1} \Rightarrow V^{n+1} \Rightarrow \rho^{n+1}$$

$$\Rightarrow E^{n+\frac{1}{2}} \Rightarrow E^{n+1}$$

求解流程

Feahgq: 计算沙漏粘性 h

fe2al: 计算特征长度 Δl

Bukq: 计算人工粘性 q

体积 V: 通过 (r,z) 坐标位置, 计算单元体积

密度 ρ : 通过 $\rho = \frac{m}{V}$ 计算单元密度

比内能 e: 通过 $e = \frac{E}{m}$ 计算

rstres: 更新应力旋转项:

$$\sigma_{rr}^{*} = \sigma_{rr}^{n} + s_{rz}^{n} (u_{z}^{n} - v_{r}^{n}) \frac{\Delta t}{2}$$

$$\sigma_{zz}^{*} = \sigma_{zz}^{n} + s_{rz}^{n} (u_{z}^{n} - v_{r}^{n}) \frac{\Delta t}{2}$$

$$s_{rz}^{*} = s_{rz}^{n} + \frac{s_{zz}^{n} - s_{rr}^{n}}{2} (u_{z}^{n} - v_{r}^{n}) \frac{\Delta t}{2}$$
(48)

fe2d10: 更新偏应力:

$$s_{rr}^{n+\frac{1}{2}} = \sigma_{rr}^* + p^n + 2\mu \left(u_r^n - \frac{1}{3} \nabla(u^n, v^n) \right) \frac{\Delta t}{2}$$

$$s_{zz}^{n+\frac{1}{2}} = \sigma_{zz}^* + p^n + 2\mu \left(v_z^n - \frac{1}{3} \nabla(u^n, v^n) \right) \frac{\Delta t}{2}$$

$$s_{rr}^{n+\frac{1}{2}} = s_{rz}^* + \mu(u_z^n + v_r^n) \frac{\Delta t}{2}$$

$$(s_{rr}^{n+\frac{1}{2}}, s_{zz}^{n+\frac{1}{2}}, s_{rz}^{n+\frac{1}{2}}) = \Upsilon(s_{rr}^{n+\frac{1}{2}}, s_{zz}^{n+\frac{1}{2}}, s_{rz}^{n+\frac{1}{2}}, Y^0)$$

$$(49)$$

更新坐标

$$r^{n+\frac{1}{2}} = r^n + \frac{\Delta t}{2} u^n$$

$$z^{n+\frac{1}{2}} = z^n + \frac{\Delta t}{2} v^n$$
(50)

通过坐标 (r,z) 求解体积 V。

通过 V 求解 ρ :

$$\rho = \frac{m}{V} \tag{51}$$

ieupd_correct:求解半点时刻能量 能量方程空间离散过程 见公式(45),

$$E^{n+\frac{1}{2}} = E^n + \boldsymbol{\sigma}^n : \boldsymbol{\epsilon}^n \frac{\Delta t}{2}$$
 (52)

Eqos: 通过 $p^{n+\frac{1}{2}} = p(\rho^{n+\frac{1}{2}}, e^{n+\frac{1}{2}})$ 更新压力

Arfrc 计算节点力 $F^{n+\frac{1}{2}}$ 体力计算的具体公式见 (33):

$$F^{n+\frac{1}{2}} = \sum_{i=1}^{4} \left(h_i^{n+\frac{1}{2}} + .5\frac{1}{2} \left[s_{rz}^{n+\frac{1}{2}} \left(r_{i+1}^{n+\frac{1}{2}} - r_i^{n+\frac{1}{2}} \right) - \left(\sigma_{rr}^{n+\frac{1}{2}} - q_i^{n+\frac{1}{2}} \right) \left(z_{i+1}^{n+\frac{1}{2}} - z_i^{n+\frac{1}{2}} \right) \right] \right)$$

$$(53)$$

质量可以通过质量守恒定律(2)求得:

$$\frac{dm}{dt} = 0 (54)$$

rstres: 更新应力旋转项:

$$\sigma_{rr}^{*} = \sigma_{rr}^{n} + s_{rz}^{n+\frac{1}{2}} (u_{z}^{n+\frac{1}{2}} - v_{r}^{n+\frac{1}{2}}) \Delta t$$

$$\sigma_{zz}^{*} = \sigma_{zz}^{n} + s_{rz}^{n+\frac{1}{2}} (u_{z}^{n+\frac{1}{2}} - v_{r}^{n+\frac{1}{2}}) \Delta t$$

$$s_{rz}^{*} = s_{rz}^{n} + \frac{s_{zz}^{n+\frac{1}{2}} - s_{rr}^{n+\frac{1}{2}}}{2} (u_{z}^{n+\frac{1}{2}} - v_{r}^{n+\frac{1}{2}}) \Delta t$$
(55)

fe2d10: 更新偏应力:

$$\begin{split} s_{rr}^{n+1} &= \sigma_{rr}^* + p^n + 2\mu \left(u_r^{n+\frac{1}{2}} - \frac{1}{3} \nabla (u^{n+\frac{1}{2}}, v^{n+\frac{1}{2}}) \right) \Delta t \\ s_{zz}^{n+1} &= \sigma_{zz}^* + p^n + 2\mu \left(v_z^{n+\frac{1}{2}} - \frac{1}{3} \nabla (u^{n+\frac{1}{2}}, v^{n+\frac{1}{2}}) \right) \Delta t \\ s_{rr}^{n+1} &= s_{rz}^* + \mu (u_z^{n+\frac{1}{2}} + v_r^{n+\frac{1}{2}}) \Delta t \\ (s_{rr}^{n1}, s_{zz}^{n+1}, s_{rz}^{n+1}) &= \Upsilon (s_{rr}^{n+1}, s_{zz}^{n+1} s_{rz}^{n+1}, Y^0) \end{split}$$
 (56)

更新加速度 $\overrightarrow{a} = \overrightarrow{F}/m$

update_cc:

$$(u,v)^{n+1} = (u,v)^n + \Delta t(a_r, a_z)^{n+\frac{1}{2}}$$

$$(u,v)^{n+\frac{1}{2}} = \frac{(u,v)^n + (u,v)^{n+1}}{2}$$

$$(r,z)^{n+1} = (r,z)^n + \Delta t(u,v)^{n+\frac{1}{2}}$$
(57)

ieupd_correct:求解半点时刻能量 能量方程空间离散过程 见公式(45),

$$E^{n+1} = E^n + \boldsymbol{\sigma}^{n+\frac{1}{2}} : \boldsymbol{\epsilon}^{n+\frac{1}{2}} \Delta t \tag{58}$$

Eqos: 通过 $p^{n+1} = p(\rho^{n+1}, e^{n+1})$ 更新压力