AED2

Análise de algoritmos

Complexidade computacional

Custo = memória + tempo

- Memória é mais barato que tempo
- Memória pode ser elástica (malloc)
- Outros custos
 - o tráfego de rede
- Sempre o tempo de execução e memória é relacionado ao tamanho da entrada

Tipos de Analises

- Análise empírica
 - Comparação entre programas
 - Avalia o custo de um algoritmo avaliando a execução
 - o Cronometrar o tempo de execução e monitorar quanto de memória é utilizado
 - Vantagens
 - Permite avaliar o programa no computador/linguagem especifico
 - Considera custos que a análise matemática não considera, exemplo custo de alocação
 - Permite comparar linguagens
 - Permite comparar computadores
 - Desvantagens
 - Necessita implementar o código
 - Depende da habilidade do programador
 - Resultado pode variar muito
 - Computador utilizado
 - Processos em paralelo no momento da avaliação
 - Depende da natureza dos dados
 - Dados reais,
 - Dados aleatórios
 - Desempenho médio
 - Dados perversos
 - Sempre força o pior caso do algoritmo
- Análise matemática
 - Estudo das propriedades do algoritmo
 - o Estudar como o algoritmo se comporta a medida que a entrada cresce em volume
 - o Independente de variáveis de máquina
 - Estudo em um computador idealizado (simplificado)
 - Ex.: soma tem um custo maior que a multiplicação, porém para simplificar ignoramos

- Só considera custos dominates do algoritmo
- Para *n* entradas, o custo aumenta em *n*, *n*², *n*!, etc...
- Vejamos o seguinte algoritmo

```
int M = A[0];
for(i = 0; i<n; i++){
  if(A[i] >=M){
    M = A[i];
  }
}
```

- o Ignorando dentro do for, o algoritmo executara 3 + 2n instruções
 - \blacksquare n = tamanho array
- Logo, considerando um laço vazio, podemos criar uma função matemática
- \circ f(n) = 3+2n
- o Considerando agora dentro do if e os seguintes arrays

```
int A1[4] = {1,2,3,4}
int A2[4] = {4,3,2,1}
```

- A1: comando if sempre testa **positivo**
- A2: comando if sempre testa negativo
- o Sempre devemos considerar o MAIOR número de instruções
- No pior caso o algoritmo será
 - f(n) = 3+2n+2n

Comportamento assintótico

- Se um algoritmo é mais rápido para um grande conjunto, ele vai ser mais rápido que o outro pra um pequeno conjunto
- A função f(n) = 4n+3
 - o 3 é uma constante de inicialização, logo desconsideramos

Notação Grande-O

- O pior que o algoritmo pode ser é o Big-O
- Não ultrapassa esse limite
- Normalmente pode ser visto pela quantidade de laços aninhados

• Exemplo com selection sort:

```
int i,j,me,troca;
  for (i = 0; i < (n - 1); i++)
{
    me = i;

    for (j = i+1; j < n; j++)
    {
        if (array[j] < array[me])
            me = j;
    }
    if (i != me)
    {
        troca = array[i];
        array[i] = array[me];
        array[me] = troca;
    }
}</pre>
```

- Primeiro deve se calcular a soma nEx = 1+2+3+...+(n-1)+n
- nEx é o numero de execuções do laço interno (não é simples de calcular)
- Nesse caso é nEx equivalente a uma prograssão aritmética de razão 1
- [n(1+1)]/2
- Alternativa é estimar o limite superior
 - Supomos o pior caso para o algoritmo
 - o Logo o algoritmo original é tão ruim ou melhor do que esse que calcularemos
 - Ocomo calcular isso?
 - Trocar o laço interno (que varia de tamanho dependendo do laço externo) por um laço constante (n)
 - Simplifica a análise
 - Piora o desempenho
 - Algumas execuções do laço são inúteis
 - Sobramos com 2 laços aninhados cada um executando *n* vezes
 - Logo sobramos com uma função de custo f(n) = n²
 - Utilizando a notação big-O o custo no pior caso é O(n²)
 - o Com isso chegamos a função que delimita o limite superior de custo de tempo
 - O custo na prática pode ser melhor que n², mas nunca melhor

Outros tipos de análise

Apesar da Big-O ser útil e recorrente, existem outras análises

- Grande-Omega
 - Limite assintótico inferior

- Melhor caso
- $\Omega(n^2)$ diz que na melhor das hióteses, o custo é n^2
- o Não fica melhor que isso em questão de custo, no máximo igual
- o Como definir:
 - Função f(n) é $\Omega(g(n))$
 - Se existem 2 constantes >0 chamamos de *c* e *m*
 - n>=m
 - Temos f(n) >= c* g(n)
- Para todos os valores de n a direita de m o resultado de f(n) é sempre >= que o valor da notação Grande-Omega x c
- Exemplo:
 - Função com custo $f(n) = 3n^3 + 2n^2 \in \Omega(n^3)$
 - Consideramos c = 1 e n >= 0
 - Logo $3n^3 + 2n^2 >= 1n^3$

- Após o ponto m o custo de f(n) é sempre **maior** que o custo de c*g(n)
- Grande-O
 - o Pior caso
 - Função f(n) é O(g(n))
 - Se existem 2 constantes >0 chamamos de c e m
 - *n>=m*
 - Temos $f(n) \leftarrow c^* g(n)$
 - Para todos os valores de n a direita de m o resultado de f(n) é sempre \leftarrow que o valor da notação Grande-O x c
 - Exemplo:
 - Função com custo $f(n) = 3n^3 + 2n^2 \text{ é } O(n^3)$
 - Consideramos c = 6 e n > = 0
 - Logo $3n^3 + 2n^2 <= 6n^3$

- Após o ponto m o custo de f(n) é sempre **menor** que o custo de c*g(n)
- Regra da Soma
 - Importante quando temos algoritmos em sequência
 - Nesse caso a complexidade de execussão é dada pela complexidade do **maior** deles
 - $O(f(n)) + O(g(n)) = O(\max(f(n), g(n)))$
 - Exemplo:
 - Primeiro será executado o algoritmo O(n) e depois o algoritmo O(n²)
 - Logo a complexidade de tudo é O(n²)
- Grande-Theta
 - o Limite assintótico firme ou estreito
 - o Analisa o limite inferior e superior ao mesmo tempo
 - \circ $\theta(n^2)$ diz assintóticamente que o custo do algoritmo original é n^2
 - o É como se tivessem 2 constantes, uma restringindo abaixo, e outra restringindo acima
 - Função f(n) é $\partial(g(n))$
 - Se existem 3 constantes >0 chamamos de c1, c2 e m
 - Para n>=m
 - Temos c1 * g(n) <= f(n) <= c2* g(n)
 - Para todos os valores de n a direita de m o resultado de f(n) é sempre = ao valor da notação Grande- $\theta \times c1$ e $\times c2$
 - Exemplo:
 - Função com custo $f(n) = 1/2n^2 3n \in \partial(n^2)$
 - Consideramos c1 = 1/14, c2 = 1/2 e n > = 7
 - Logo $1/14n^2 <= 1/2n^2 3n <= 1/2n^2$

- Após o ponto m o custo de f(n) é sempre **menor** que o custo de c2 * g(n) e **maior** que o custo de c1 * g(n)
- Pequeno-o
 - o Parecida com a Grande-O
 - Enquanto no Grande-O a relação é <=
 - Já na pequeno-o a relação é <
 - o O custo real sempre será MENOR que o pequeno-o e nunca igual
- Pequeno-omega
 - o Parecida com a Grande-Omega
 - o Enquanto no Grande-Omega a relação é >=
 - Já na pequeno-omega a relação é >
 - o O custo real sempre será MAIOR que o pequeno-o e nunca igual

Classes de problemas

- 0(1)
 - o Ordem constante
 - o Não depende do tamanho da entrada de dados
- 0(log(n))
 - Ordem logarítmica
 - Resolve um problema transformando ele em problemas menores
 - Exemplo:
 - Realizar uma busca binária em um vetor de tamanho *n*
- 0(n)
 - Ordem linear
 - o Uma operação é realizada para cada um dos elementos da entrada
 - o Exemplo:
 - Printar um vetor de tamanho *n*
- 0(nlog(n))
 - Ordem log linear

- o Trabalha com particionamento de dados
- Transforma o problema em partes menores dele mesmo e resolve de forma idependende, depois une tudo
- Exemplo:
 - QuickSort
- $O(n^2)$
 - Ordem quadratica
 - o Dados são processados em pares
 - o Normalmente tem presença de aninhamento de laços
 - Exemplo:
 - Printar uma matriz de tamanho n por n
- $O(n^3)$
 - Ordem cúbica
 - Normalmente tem presença de aninhamento de 3 laços
 - Exemplo:
 - Printar uma matriz de tamanho n por n por n
- 0(2ⁿ)
 - Ordem exponencial
 - Solução de força bruta
 - Não é útil do ponto de vista prático
 - Muito lento
 - o Exemplo:
 - Quebrar senha de sistema, é necessário testar todas as combinações
- 0(n!)
 - Ordem fatorial
 - Solução de força bruta
 - Não é útil do ponto de vista prático
 - Muito lento
 - o Comportamento **muito** pior que a exponencial

Consideremos um computador que executa 1000000 operações por segundo vamos criar uma tabela que mostra o tempo de execução do algoritmo com base no tamanho de entrada

f(n)	n = 10	n = 20	n = 30	n = 50	n = 100
n	1x10^-5	2x10^-5	4x10^-5	5x10^-5	6x10^-5
	segundos	segundos	segundos	segundos	segundos
nlog(n)	3.3x10^-5	8.6x10^-5	2.1x10^-4	2.8x10^-4	2.5x10^-4
	segundos	segundos	segundos	segundos	segundos
n²	1x10^-4	4x10^-4	1.6x10^-3	2.5x10^-3	3.6x10^-3
	segundos	segundos	segundos	segundos	segundos
n³	1x10^-3 segundos	8x10^-3 segundos	6.4x10^-2 segundos	0.13 segundos	0.22 segundos
2^n	0.001 segundos	1 segundos	2.8 dias	35.7 anos	365.6 séculos

f(n)	n = 10	n = 20	n = 30	n = 50	n = 100
3^n	0.0E0 segundos	os 58 minutos	3855.2 séculos	2.3x10^8	1.3x10^13
311	0.059 segundos			séculos	séculos

O problema da análise assintótica é que em entradas pequenas as simplificações são problemáticas

- Considerando as funções $f(n) = (10^100)n e g(n) = 10n*logn$
 - Big-O da primeira é *O(n)* e da segunda é *O(nLogn)*
 - o A primeira seria considerada mais performática de forma assintótica
- Ao analisár a constante multiplicativa de n em f(n) descobrimos o número 10^100
 - Logo 10n*Logn > f(10^100)n apenas para n>2^(10^99)
 - para qualquer valor abaixo desse $n \, 10n * Logn < f(10^100)n$
 - Ou seja, na prática 10n*Logn é mais performático

Relações de recorrência

Relembrando conceito de função recursiva

- Função que chama a sí mesmo durante a execução
- Exemplo: fatorial(n)
 - o Matemáticamente é definido por 0! = 1; N! = N(N-1)
 - o Implementação em C:

```
int fat(int n){
   if(n==0)
    return 1;
   else
    return n*fat(n-1);
}
```

Recorrência ou Relação de recorrência

- Expressão que descreve a função em termos de entradas menores da função
- Muitos algoritmos são baseados em recorrência
- Importante para solução de problemas combinatórios
- É uma função recursiva

Relação de recorrência do fatorial

```
T(n) = T(n-1) + n
```

Complexidade da recorrência

- Não utiliza laços de repetição
- Erroneamente imaginamos que a função possuíria complexidade **O(1)**
- Para saber a complexidade tem que resolver a relação de recorrência
- Encontrar a fórmula fechada que da o valor da função em termos de n

- Considere o relação T(n) = T(n-1) + 2n + 3
 - Para *n* em {2,3,4,...}
 - o Existem inumeras funções T que satisfazem a recorrência
 - Depende do caso base: T(1)
 - Considerando T(1) = 1

_	n	1	2	3	4	5
	T(n)	1	8	17	28	41

Considerando T(1) = 1

n	1	2	3	4	5
T(n)	5	12	21	32	45

- **Problema**: muitas soluções possíveis
 - Para cada valor i e n em $\{2,3,4,...\}$ existe **uma** função T que tem caso base T(1) = i e satisfaz a recorrência
- Solução: expandir a relação até encontrar o comportamento no caso geral e assim encontrar a fórmula fechada

Expandindo a relação de recorrência

- Considerando a seguinte relação T(n) = T(n-1) + 3
 - Representa um algoritmo que possui 3 operações e 1 chamada recursiva
- Resolução
 - Substituir o termo T(n-1) sobre T(n), teremos:
 - T(n-1) = T(n-2) + 3
 - Substituir o termo T(n-2) sobre T(n-1), teremos:
 - T(n-2) = T(n-3) + 3
 - Juntar as 3 expressões
 - T(n) = T(n-1) + 3
 - T(n) = (T(n-2) + 3) + 3
 - T(n) = ((T(n-3) + 3) + 3) + 3
 - Simplificando tudo (somente para claridade)
 - T(n) = T(n-1) + 3
 - T(n) = T(n-2) + 3*2
 - T(n) = T(n-3) + 3*3
 - A cada passo se soma 3 e o valor de n é diminuído em 1
 - Podemos resumir a expansão com a equação
 - \circ T(n) = T(n-k) + 3*k
 - o O processo de expansão acaba no caso base T(1), logo quando: n-k=1, ou seja quando k=n-1
 - Substituindo k na equação T(n) = T(n-k) + 3*k por n-1
 - T(n) = T(1) + 3*(n-1)
 - T(n) = T(1) + 3n-3
 - .

Analisando a complexidade Big-O dessa recursão

• Complexidade da recorrência T(n) = T(n-1) + 3

- $\bullet \quad T(n) = T(n-k) + 3k$
- T(n) = T(1) + 3(n-1)
- T(n) = T(1) + 3n-3
 - o T(1) é o caso base, que é o retorno e o custo é constante: O(1)
 - Substituindo *T(1)* por *O(1)*
- T(n) = 3n-3 + O(1)
- Ou seja, a complexidade é linear O(n)