Lecture #2 Algorithm Analysis (2)

Algorithm
JBNU
Jinhong Jung

In This Lecture

■ Asymptotic Notations

Understand Big-Omega and Big-Theta notations

☐ Simplifying Rules

Quickly figure out asymptotic notations

□ Other Discussions

- Analysis with control statements
- Analysis with multiple parameters
- Complexity category

Outline

☐ Big-Omega Notation

☐ Big-Theta Notation

☐ Simplifying Rules

■ Other Discussions

Asymptotic Notations

- ☐ Simple way to represent the limiting behaviors of an arbitrary complexity function
 - Big-O notation
 - Big-Omega notation
 - Big-Theta notation

Big-O Notation (Recall)

- $\Box T(n) = O(f(n))$ for [best | average | worst] case.
 - O(f(n)) = Set of functions $\leq cf(n)$ for all $n \geq n_0$
 - When the input size is large enough, it always executes in less than or equal to cf(n) steps for the case.
 - T(n) grows asymptotically no faster than f(n) as upper bound.

Big-Omega Notation (1)

\square Definition of $\Omega(f(n))$

■ Set of functions $\geq cf(n)$ for large input size n

Big-Omega Notation (2)

- \square Interpretation of $T(n) = \Omega(f(n))$
 - The time complexity T(n) of the algorithm is in $\Omega(f(n))$ for [best | average | worst] case.
 - When the input size is large enough, it always requires more than or equal to cf(n) steps for the case.
 - T(n) grows asymptotically faster than f(n) as lower bound.

Big-Omega Examples (1)

- \square Claim) $T(n) = 5n^2 = \Omega(n^2)$
 - Let c=4 and $n_0=1$; then, $5n^2 \ge 4n^2$ for all $n\ge n_0=1$.

- \Box Claim) $T(n) = 5n + 3 = \Omega(n)$
 - Let c = 1; then, $5n + 3 \ge n \Leftrightarrow 4n \ge -3$ for all n.
 - Any $n_0 > 0$ can be good, e.g., $n_0 = 1$.

 \square If a polynomial has the term of largest degree $\geq n^r$, then it is $\Omega(n^r)$.

Big-Omega Examples (2)

- □ Claim) $T(n) = 5n^3 + 3 = \Omega(n^2)$
 - Let c = 1; then, $5n^3 + 3 \ge n^2$ for all $n \ge n_0 = 1$.

- Big-Omega also results in loose lower bound as above.
 - $T(n) = 5n^3 + 3 = {\cdots, \Omega(n), \Omega(n^2), \Omega(n^3)}$
- Like Big-O, estimate Big-Omega notation as tight as possible!

Big-O v.s. Big-Omega

☐ Difference between Big-O and Big-Omega

- Big-O tells us asymptotic upper bound
 - \circ The algorithm of T(n) does not compute beyond the upper bound
- Big-Omega tells us asymptotic lower bound
 - \circ The algorithm of T(n) computes beyond the lower bound

Can we can get more precise bound?

Outline

☐ Big-Omega Notation

☐ Big-Theta Notation

☐ Simplifying Rules

☐ Other Discussions

Big-Theta Notation (1)

 \square Definition of $\Theta(f(n))$

$$\Theta\big(f(n)\big) = O\big(f(n)\big) \cap \Omega\big(f(n)\big)$$

■ Set of $c_1 f(n) \le \text{functions} \le c_2 f(n)$ for all $n \ge n_0$

Big-Theta Notation (2)

- \square Interpretation of $T(n) = \Theta(f(n))$
 - The time complexity T(n) of the algorithm is in $\Theta(f(n))$ for [best | average | worst] case.
 - When the input size is large enough, its complexity is proportional to cf(n) for the case.
 - T(n) grows asymptotically as fast as f(n) as exact bound.

Big-Theta Examples

$$\Box$$
 Claim) $T(n) = 5n^2 = \Theta(n^2)$

Proof)

- $5n^2 = O(n^2)$ and $5n^2 = \Omega(n^2)$
- Thus, $T(n) = 5n^2 = \Theta(n^2)$ by its definition

□ Claim) $T(n) = 5n + 3 = \Theta(n)$

Proof)

- 5n + 3 = O(n) and $5n + 3 = \Omega(n)$
- Thus, $T(n) = 5n + 3 = \Theta(n)$ by its definition

Discussion

☐ Try to obtain Big-Theta for worst case

 Big-Theta provides asymptotic exact bound so that we can expect precise asymptotic behavior of an algorithm

 Compare algorithms in terms of Big-Theta notation for worst case

- If Big-O and Big-Omega are not the same or it is not easy to estimate Big-Omega, then
 - Compare algorithms in terms of Big-O notation for worst case

Outline

☐ Big-Omega Notation

☐ Big-Theta Notation

☐ Simplifying Rules

☐ Other Discussions

Simplifying Rules (1)

☐ Rule 1

- Polynomial: $T(n) = c_p n^p + c_{p-1} n^{p-1} + \cdots + c_1 n + c_0$
 - If T(n)'s largest term is $\leq n^r$, then $T(n) = O(n^r)$.
 - If T(n)'s largest term is $\geq n^r$, then $T(n) = \Omega(n^r)$.
- Implying if T(n)'s largest term is n^r , then $T(n) = \Theta(n^r)$.
 - e.g., $T(n) = 12n^4 + n^3 + 2n^2 = \Theta(n^4)$

☐ Rule 2

- If $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$, then $f(n) \in O(h(n))$.
 - e.g., $n \in O(n^2)$ and $n^2 \in O(n^3) \Rightarrow n \in O(n^3)$
- Rules 2-5 also hold for Ω and Θ

Simplifying Rules (2)

☐ Rule 3

- If $f(n) \in O(kg(n))$ for constant k > 0, then $f(n) \in O(g(n))$.
 - e.g. $n^3 + 2n^2 \in O(kn^3) \Rightarrow n^3 + 2n^2 \in O(n^3)$

☐ Rule 4

- If $f_1(n) \in O(g_1(n))$ and $f_2(n) \in O(g_2(n))$, then $f_1(n) + f_2(n) = (f_1 + f_2)(n) \in O(\max(g_1(n), g_2(n)))$.
 - Used when two parts of a program run in sequence

$$f_1(n) \in O(n)$$

$$f_2(n) \in O(n^2)$$

$$(f_1 + f_2)(n) \in O(\max(n, n^2))$$

= $O(n^2)$

Simplifying Rules (3)

☐ Rule 5

- If $f_1(n) \in O(g_1(n))$ and $f_2(n) \in O(g_2(n))$, then $f_1(n) \times f_2(n) \in O(g_1(n) \times g_2(n))$.
 - Used to analyze for-loops

```
for(i = 1; i <= n; i++)

for(j = 1; j <= n; j++)

do something in O(1)

f_2(n) \in O(n)

f_1(n) \times f_2(n) \in O(n \times n) = O(n^2)
```

Simplifying Rules (4)

☐ Rule 5

- If $f_1(n) \in O(g_1(n))$ and $f_2(n) \in O(g_2(n))$, then $f_1(n) \times f_2(n) \in O(g_1(n) \times g_2(n))$.
 - But, it can be overestimated for some complicated cases
 - In this case, we should directly count the number of operations

```
for(i = 1; i <= n; i*=2)

for(j = 1; j <= i; j++)

do something in O(1)

f_2(n) \in O(i) \in O(n)

f_1(n) \times f_2(n) \in O(n \log n)
```

Assume
$$n = 2^K$$

Then,
$$T(n) = 1 + 2 + 2^2 + \dots + 2^K$$
$$= \frac{2^{K+1} - 1}{2 - 1}$$

 $=2n-1\in O(n)$

Analysis Examples (1)

☐ Sequential search problem

- Input: an array of size n, having keys & a querying key
- Output: the index for the querying key in the array

```
def sequential_search(array, n, key):
    for i in range(0, n):
        if array[i] == key:
            return i
        throw "out-of-key"
```

- Best case: $T(n) = 1 = O(1) = \Omega(1) = \Theta(1)$
- Worst case: $T(n) = n = O(n) = \Omega(n) = \Theta(n)$
- Average case: $T(n) = \frac{n+1}{2} = O(n) = \Omega(n) = \Theta(n)$

Analysis Examples (2)

☐ Example 1

```
T(n) = \Theta(n)
sum = 0;
for(i = 1; i <= n; i++)
sum += n;
```

☐ Example 2

```
■ T(n) = Θ(n²)

sum = 0;

for(i = 1; i <= n; i++)

for(j = 1; j <= n; j++)

sum += 1;

for(k = 1; k <= n; k++)

A[k] = k;
```

Analysis Examples (3)

☐ Example 3

```
■ T(n) = \Theta(n^2)

sum = 0;

for(i = 1; i <= n; i++)

for(j = 1; j <= i; j++)

sum += 1;
```

\blacksquare Example 4 (assume $n = 2^K$)

```
■ T(n) = Θ(n log n)

sum = 0;

for(i = 1; i <= n; i *= 2)

for(j = 1; j <= n; j++)

sum += 1;
```

Outline

☐ Big-Omega Notation

☐ Big-Theta Notation

☐ Simplifying Rules

□ Other Discussions

Other Control Statements

□ while loop

Analyze like a for loop.

☐ if statement

■ Take greater complexity of then/else clauses.

□ switch statement

Take complexity of the most expensive case.

☐ Subroutine (function) call

Take complexity of the subroutine.

Multiple Parameters

☐ When the input size consists of multiple parameters

- e.g., 2D-array ($n \times m$ matrix), its size parameters are n and m.
- Describe the complexity with respect to n and m.

```
\circ e.g., T(n,m) and S(n,m)
```

■ Example

- Time complexity: $T(n,m) = \Theta(n \times m)$
- Space complexity: $S(n,m) = \Theta(n \times m)$

```
sum = 0;
for(i = 1; i <= n; i++)
    for(j = 1; j <= m; j++)
        sum += A[i][j];</pre>
```

Complexity Category

☐ Complexities that frequently appear are categorized as follows:

Base Func.	Name	Scalability			
1	Contant	Good	O(n!)	O(2^n)	Horrible Bad Fair Good Excellent O(n^2)
log n	Logarithmic	1			
\overline{n}	Linear				
$n \log n$	Log-linear	suo			O(n log n)
n^2	Quadratic	Operations			
n^3	Cubic				
n^p	Polynomial				O(n)
$\overline{2^n}$	Exponential	↓	<u>//</u>		O(log n), O(1)
n!	Factorial	Poor			Elements

What You Need To Know

■ Asymptotic Notations

• Prove claims using the definitions of 0, Ω , and Θ .

☐ Simplifying Rules

Quickly analyze complexities using the simplifying rules

■ Other Discussions

- Analysis with control statements and multiple parameters
- Understand which complexities are good for scalability

In Next Lecture

- ☐ Concept of recursion
 - What is recursion?
 - Why do we need recursion?

☐ How to design and analyze recursion

- Divide and conqure
- Mathematical induction
- Recursive complexity

Thank You