KNOWLEDGE REPRESENTATION AND REASONING: CONSTRAINT SATISFACTION AND LOCAL SEARCH

Chapters 4.1, 6.4

Constraint Satisfaction Problems

- \diamondsuit Binary constraint network $\gamma = \langle V, D, C \rangle$
 - V a finite set of variables v_1, \ldots, v_n
 - D a set of [finite] sets D_{v_1}, \ldots, D_{v_n}
 - C a set of binary relations $\{C_{u,v} \mid u,v \in V, u \neq v\}$ $C_{u,v} \subseteq D_u \times D_v$

Outline of the lecture

- Recall [optimal] constraint solving
- Local Search in general
- Large Neighbourhood Search in particular
- Constraint modelling
- Summary

Recall

- CSP may be solved for satisfiability (any solution will do)
- May instead require optimality (best solution)
- Objective function (i.e. cost) measures badness of solutions
- ♦ FD solvers commonly use Depth-First Branch and Bound (DFBB)
 - Use a lower bound L on the objective and an upper bound B
 - Backtrack whenever $L \geq B$
 - Revise B whenever a solution is found
- DFBB fits well with backtracking CSP solution methods
- Gives a sequence of monotonically improving solutions

There is a problem

- Absolute optimality is often too hard to compute
- Need methods that scale up better and yield (probably) good solutions
- Enter Local Search (actually a generic name for many search techniques)
- Widely used in industrial applications

Local Search

- ♦ The general idea: search in the space of total assignments
- ♦ An alternative to backtracking: not so rigidly defined
 - Usually involves randomness at some point
- ♦ Example (for satisfiability):
 - Start with a random assignment of values to all variables (Of course, this doesn't satisfy all constraints)
 - Repeatedly:
 - Choose a variable (random choice is good)
 - Revise its value to minimise its constraint violations Stop when all constraints are satisfied
- ♦ Optimisation version might remember the best assignment so far, and stop when the objective function hasn't improved for a while.

Iterative improvement algorithms

- Local search of this kind iteratively improves total assignments
- General idea: keep a single "current" state, try to improve it
 - perform local moves in the neighbourhood of the current state
 - no guarantee of completeness (may fail to find any solution)
 - no guarantee of optimality
 - no possibility of showing unsatisfiability
- However, method scales up better than complete search in many domains
- Small memory requirements, suitable for online as well as offline search

Example: Travelling Salesperson Problem

Start with any complete tour, perform pairwise exchanges to reduce tour duration

Variants of this approach get within 1% of optimal very quickly with thousands of cities

Example: *n*-queens

Put n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal

Move a queen in its column to reduce number of conflicts

Variants of this approach almost always solve n-queens problems almost instantaneously for very large n, e.g., n = 1 million

Hill-climbing (or gradient ascent/descent)

Moves to the best neighbour

Climbing a mountain in the fog without a map: just go up!

Hill-climbing contd.

Useful to consider state space landscape

Random-restart hill climbing overcomes local maxima—trivially complete

Random sideways moves Sescape from shoulders Sloop on flat maxima

8 queens: simple HC has 14% success rate, HC + sideway moves 94%

3 million queens: HC + random restart + sideway moves needs < 1 mn

Simulated annealing

Idea: escape local maxima by allowing some "bad" moves but gradually decrease their badness and frequency

```
function SIMULATED-ANNEALING (problem, schedule) returns a solution state
inputs: problem, a problem
           schedule, a mapping from time to "temperature"
local variables: current, a node
                     neighbour, a node
                      T_{\rm e} a "temperature" controlling prob. of downward steps
current \leftarrow \text{Make-Node}(\text{Initial-State}[problem])
for t \leftarrow 1 to \infty do
      T \leftarrow schedule[t]
     if T = 0 then return current
     neighbour \leftarrow a randomly selected successor of current
     \Delta E \leftarrow \text{Value}[neighbour] - \text{Value}[current]
     if \Delta E > 0 then current \leftarrow neighbour
     else current \leftarrow neighbour only with probability e^{\Delta E/T}
```

Population-based methods

- \diamondsuit Local beam search: maintain a population of k states; add some neighbours at each step; delete the worst ones to keep the population stable
 - As usual, many variants exist
- ♦ Genetic (evolutionary) algorithms: define "crossover" between pairs of states in the population (compare genetics); offspring have some features of each parent; cull according to a "fitness" measure
 - Much research over several decades
 - Again, many variations on the general method

Population-based search and simulated annealing will not be covered in this course: $\mathsf{COMP4660}\ /\ \mathsf{COMP8420}$ covers evolutionary algorithms in some detail

A hybrid: Large Neighbourhood Search

- \diamondsuit Search in the space of solutions rather than states
- ♦ Given a current solution:
 - Destroy part of it by forgetting the values of some variables See the problem of assigning values to those variables as a CSP Solve [optimally] using a complete search method such as DFBB
- ♦ Alternates destroy and repair phases
 - Repair phase searches a neighbourhood of the current solution
 - Neighbourhood size remains tolerable, even if the problem is huge
- ♦ The old solution is still in the neighbourhood, so there is always a next solution available, given enough search
- May search for the optimal solution in the neighbourhood, or for an improvement on the previous solution, or just for any solution in the neighbourhood.

- \Diamond Energy-aware scheduling of meetings in a large building or buildings
- ♦ Each meeting has:
 - a set of participants
 - a set of allowable locations (rooms)
 - a set of allowable times
 - a duration (30 minutes, 1 hour, 2 hours, ...)
- ♦ Constraints:
 - All classes are scheduled exactly once
 - All particular constraints on meetings are met
 - No two meetings in the same room at the same time
 - No conflict of meetings for participants
- \Diamond Objective function: energy consumption (separately calculated)
- \diamondsuit With 200 meetings in 20 rooms, too hard for DFBB

♦ Initial schedule generated by the MIP solver

 $\diamondsuit\,$ Schedule for rooms R0 and R1 destroyed and re-optimised

♦ Schedule for rooms R0 and R3 destroyed and re-optimised

♦ Schedule for rooms R0 and R2 destroyed and re-optimised

- \Diamond MIP (complete) solver found fairly good solutions in 2 hours
- \diamondsuit LNS using the same solver found better ones in 15 minutes

LNS: Notes

- The initial solution must come from somewhere.
- Performance is sensitive to the choice of what to destroy
- ♦ We may choose to abstract from the current solution
 - use only some decision variables, for a partial description
 - designed so the rest can be recovered by easy search
 - destroy part of the abstract solution
 - gives the complete search freedom to optimise minor aspects
- Local optima are still a problem, as with all local search
 - random restart is commonly used to escape
- \Diamond There is always a tradeoff between neighbourhood size and speed
 - Large neighbourhoods increase the chance of improvement
 - but they may create hard problems for the complete search

Summary

- ♦ Local search explores the space of total assignments
- ♦ Usually step to a neighbour, looking for improvement
 - but sometimes jump further, or even re-start entirely
- ♦ No guarantees (incomplete, sub-optimal, ...)
 But in many cases scales up better than systematic search
- \Diamond Many varieties
 - hill-climbing, random walks, simulated annealing, population methods
- ♦ Large neighbourhood search the best of both worlds (?)
 - DFBB or similar to solve small problems quickly and completely
 - local search for scaling up
 - tradeoff between the two is fundamental
 - requires experiment to tune parameters and define neighbourhoods