

第5章 方程求根 Zeros and Roots

苏 芮 srhello@zju.edu.cn 开物苑4-202

上节课知识回顾

1. 最小二乘法

- 与插值法的区别? 适用范围?
- 为什么用最小二乘(2范数)?
- 如何构建法方程组? (基本思路是什么?)
- 最小二乘直线拟合? 最小二乘指数拟合? 非线性最小二乘 指数拟合?
- QR分解法

2. 大作业选题讲解

鼓励结合国防军工选题,要和课程有相关性,要初步符合科研论文格式(绪论、研究内容、研究方法、实验验证,结果分析等,参考机械工程学报或本科毕设模板)

水下滑翔机

水下滑翔机

水下滑翔机几何特征与水动力特性

水下滑翔机关键几何特征的参数化表达

机身细长比: $f = \frac{l_c}{d}$,

机翼长宽比: $AR = \frac{b^2}{S}$,

机翼翼展比: $\kappa = \frac{b}{d}$

机翼厚度比: $\tilde{t} = \frac{t}{\overline{c}}$

机翼相对位置: $\overline{l}_w = l_w / l_c$ 尾翼相对位置:

$$\overline{l}_v = l_v / l_c$$
 尾翼相对面积: $S_v = S_v / S_f$

浮力肺能力: $V = (1 + \bar{\eta})V_{NB}, \ \bar{\eta} = V/V_{NB} - 1$

水下滑翔机运动性能分析

- ◆ 纵剖面锯齿形稳态运动
 - 纵剖面锯齿形稳态运动受力分析

速度方向受力平衡:

$$C_D \left(\frac{1}{2} \rho V^2 S\right) = \tilde{W} \sin \vartheta$$

$$V = \sqrt{\frac{2\tilde{W}\sin\mathcal{G}}{\rho SC_D}}$$

$$V_{x} = V \cos \theta$$

$$\sin \theta = \frac{C_{D}}{\sqrt{C_{D}^{2} + C_{L}^{2}}} \qquad \cos \theta = \frac{C_{L}}{\sqrt{C_{D}^{2} + C_{L}^{2}}}$$

$$V_{z} = V \sin \theta$$

水下滑翔机运动性能分析

• 两种特殊的滑翔状态

最大水平速度滑翔状态:

$$V_{x} = \sqrt{\frac{2\tilde{W}}{\rho S}} \frac{C_{L}}{[C_{L}^{2} + C_{D}^{2}]^{3/4}}$$

$$\max\left(\frac{C_{L}}{[C_{L}^{2} + C_{D}^{2}]^{3/4}}\right)$$

$$C_{D_{\max V_{x}}} = \frac{\sqrt{2}}{4K_{d}} \sqrt{-(1+\sigma) + \sqrt{(1+\sigma)^{2} + 8\sigma^{2}}}$$

$$C_{D_{\max V_{x}}} = C_{D_{0}} + \frac{1}{8K_{d}} \left[-(1+\sigma) + \sqrt{(1+\sigma)^{2} + 8\sigma^{2}}\right]$$

$$\tan \theta_{\max V_x} = \frac{C_{D_{\max V_x}}}{C_{L_{\max V_x}}}, \ \theta_{\text{md}} \rightarrow \arctan(1/\sqrt{2}) \approx 35.5^{\circ}$$

最小阻力滑翔状态:最小滑翔角状态,产生最大的水平航行范围

$$\tan \theta = \frac{C_{D}}{C_{L}} = \frac{C_{D_{0}} + K_{d}C_{L}^{2}}{C_{L}}$$

$$\max \left(\frac{C_{D_{0}} + K_{d}C_{L}^{2}}{C_{L}}\right) \qquad \qquad C_{D_{\text{md}}} = 2C_{D_{0}} , C_{L_{\text{md}}} = \sqrt{\frac{C_{D_{0}}}{K_{d}}}$$

$$\tan \theta_{\rm md} = \frac{C_{D_{\rm md}}}{C_{L_{\rm md}}}, \ \theta_{\rm md} \rightarrow \arctan\left(2\sqrt{C_{D_0}K_d}\right) = 7^{\circ}$$

水下滑翔机运动性能分析

- ◆ 水下滑翔机几何特征对纵剖面内运动性能的影响
 - 对浮力肺能力的影响:

$$\bar{\eta}_{\text{md}} = \frac{1}{\Psi_{\text{md}} - 1} , \quad \Psi_{\text{md}} = \frac{1}{\text{Re}_{l_{\text{md}}}^2} \frac{\pi}{2} \frac{g l_c^3}{v^2} \frac{AR}{\kappa^2} \frac{1}{\sqrt{C_{D_{\text{md}}}^2 + C_{L_{\text{md}}}^2}}$$

$$C_{D_{
m md}} = 2C_{D_0}$$
 , $C_{L_{
m md}} = \sqrt{\frac{C_{D_0}}{K_d}}$ $AR = 6.5$, $\kappa = 6$, $f = 7$, $\tilde{t} = 0.12$

结论: 对于给定的最小阻力速度,要获得越小的浮力肺能力,增大机翼的长宽比,减小机翼的翼展比,并增大机身的细长比。

方程求根

代数方程的求根问题是一个古老的数学问题。理论上,n 次代数 方程在复数域内一定有n个根(考虑重数)。早在16世纪就找到了三 次、四次方程的求根公式,但直到19世纪才证明大于等于5次的一 般代数方程式不能用代数公式求解,而对于超越方程就复杂的多. 如果有解,其解可能是一个或几个,也可能是无穷多个。一般也不 存在根的解析表达式。因此需要研究数值方法求得满足一定精度要 求的根的近似解。

方程求根

方程数值求解基本方法:

(1)找到有根区间(Find the area for the root)

(2)不断接近准确值(Approach)

$$x^2 - 2 = 0$$

$$\sqrt{2}$$

$$1\frac{1}{2}$$
, $1\frac{1}{4}$, $1\frac{3}{8}$, $1\frac{5}{16}$, $1\frac{13}{32}$, $1\frac{27}{64}$,

$$[a,b], [a_1,b_1], [a_2,b_2], \dots, [a_k,b_k]$$

$$|x^* - x_k| \le \frac{b_k - a_k}{2} = \frac{b - a}{2^{k+1}}$$

$$\frac{b-a}{2^{k+1}} \leq \varepsilon$$

若取[a_k , b_k]的中点 $x_k = \frac{a_k + b_k}{2}$ 作为所求根的近似值 $\{x_k\}: x_0, x_1, x_2, \dots, x_k, \dots$

所谓二分法,是使用对分区间的方法,保留有根区间,舍去无根区间,并且如此不断 地对分下去,以逐步逼近方程根的方程求解方法


```
k = 0;
while abs(b-a) > eps*abs(b)
   x = (a + b)/2;
   if sign(f(x)) == sign(f(b))
      b = x;
   else
      a = x;
   end
  k = k + 1;
end
```


例1 用二分法求方程 $f(x) = \sin x - \frac{x^2}{4} = 0$ 的

非零实根的近似值, 使误差不超过 10~2.

$$x^* \in [1.5, 2].$$

k	a _k	b_k	\mathcal{I}_{k}	$f(x_k)$
0	1.5	2	1.75	0.218361
1	1.75	2	1.875	0.0751795
2	1.875	2	1.9375	- 0.00496228
3	1.875	1.9375	1.90265	0.0404208
4	1.90625	1.9375	1.921875	0.156014
5	1.921875	1.9375	1.9296875	0.00536340

二分法应用

荷兰的克里查罗(V.V.Kritchallo)的 分形作品《霜》(Rime)

分形理论

分形理论是当今世界十分风靡和活跃的新理论、新学科。分形的概念 是美籍数学家曼德布罗特(B.B.Mandelbort)首先提出的。1967年他 在美国权威的《科学》杂志上发表了题为《英国的海岸线有多长?》的 著名论文。

自相似原则和迭代生成原则是分形理论的重要原则。它表征分形在通常的几何变换下具有不变性,即标度无关性。由自相似性是从不同尺度的对称出发,也就意味着递归。分形形体中的自相似性可以是完全相同,也可以是统计意义上的相似。标准的自相似分形是数学上的抽象,迭代生成无限精细的结构,如科契(Koch)雪花曲线、谢尔宾斯基(Sierpinski)地毯曲线等。这种有规分形只是少数,绝大部分分形是统计意义上的无规分形。

一种谢宾斯基三角构造方法

背景

● 谢宾斯基三角 (Sierpiński triangle) 是一种分形集合,具有自相似的特性。整体形状像一个正三角形,并且每条边被二等分,使得三角形被细分成更小的等边三角形。

构造方法之一: 混沌游戏 (Chaos game)

首先固定一个最外圈的大三角形,方便起见我们将三个顶点取为: $P_1(0,0)$,

 $P_2(1,0)$, $P_3\left(\frac{1}{2},\frac{\sqrt{3}}{2}\right)$ 初始点 v_0 取为三角形内 (或边上) 任意一点,比如 (0,0)。

之后利用递推式

 $v_{n+1} = 1/2 * (v_n + P_{r_n})$, r_n 是从[1,2,3]等概率随机取的数。

为什么Chaos Game可以构造出谢宾斯基三角?如图可以看出,比如起始点在中心,经过一步步的迭代,每次都会进入到更小的三角形的中心,而永远无法落到三角形的边上。经过足够多的迭代后,这些落点就将空白三角形的"轮廓"勾勒了出来。

代码实现

根据以上信息,容易推得:

1. 选择P1
$$x_{n+1} = \frac{1}{2} * x_n$$
 , $y_{n+1} = \frac{1}{2} * y_n$

2. 选择P2
$$x_{n+1} = \frac{1}{2} * (x_n + 1)$$
 , $y_{n+1} = \frac{1}{2} * y_n$

3. 选择P3
$$x_{n+1} = \frac{1}{2} * (x_n + \frac{1}{2})$$
 , $y_{n+1} = \frac{1}{2} * (y_n + \frac{\sqrt{3}}{2})$

$$P_1(0,0)$$

$$P_2(1,0)$$

$$P_3\left(\frac{1}{2},\frac{\sqrt{3}}{2}\right)$$

可以将以上三个式子写成:

$$v_{n+1} = Av_n + b$$
, $v_n = \begin{bmatrix} x_n \\ y_n \end{bmatrix}$

$$A = \begin{bmatrix} 1/2 & 0 \\ 0 & 1/2 \end{bmatrix}$$

等概率选取b1,b2,b3作为b即可。

$$b1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \ b2 = \begin{bmatrix} 1/2 \\ 0 \end{bmatrix}, \ b3 = \begin{bmatrix} 1/4 \\ \sqrt{3}/4 \end{bmatrix}$$

```
p = [1/3 2/3 1.00];
A = [.5 \ 0; 0 \ .5];
b1 = [0; 0];
b2 = [.5; 0];
b3 = [.25; sqrt(3)/4];
x = [0; 0];
xs = zeros(2,n);
xs(:,1) = x;
for j = 2:n
  r = rand;
  if r < p(1)
   x = A*x + b1;
  elseif r < p(2)
    x = A*x + b2;
  else
   x = A*x + b3;
  end
```

最后,实际上最外圈的三角形并不一定是等边三角形,可以通过改变b的值来形成不同形状的三角形,也可以改变缩放的比例,即改变A。还可以拓展成四边形、五边形等。

分形网络制造

图1 分形网络协同制造的目标结构树

求解非线性方程 f(x)=0

是否可以将它转换成线性方程进行求解?如何转化?

把函数 f(x)在 x, 处泰勒展开

$$f(x_k) + f'(x_k)(x - x_k) = 0$$

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$
 $(k = 0, 1, 2, \cdots)$

几何特征


```
k = 0;
while abs(x - xprev) > eps*abs(x)
    xprev = x;
    x = x - f(x)/fprime(x)
    k = k + 1;
end
```


应用示例

例4 用牛顿迭代法求方程 $x - \cos x = 0$ 的实根,要求准确到 $|x_{k+1} - x_k| < 10^{-5}$.

在
$$[0,\frac{\pi}{2}]$$
上 当 $x_0=1$

$$x_0 \in [0, \frac{\pi}{2}]$$
 $\coprod f(x_0)f''(x_0) > 0$

$$x_{k+1} = x_k - \frac{x_k - \cos x_k}{1 + \sin x_k}$$
 $(k = 0, 1, 2, \dots)$

表 2-3

k	x_k
0	1
1	0.750364
2	0.739113
3	0.739086
4	0.739085

推论: 求平方根的牛顿迭代法 \sqrt{M}

$$f(x) = x^2 - M$$

$$x_{n+1} = x_n - \frac{x_n^2 - M}{2x_n}$$
 $x_{n+1} = \frac{x_n + \frac{M}{x_n}}{2}$

推论: 求平方根的牛顿迭代法 \sqrt{M}

$$x_{n+1} = \frac{x_n + \frac{M}{x_n}}{2}$$

$$\sqrt{2} \qquad x_0 = 1$$

- 1.500000000000000
- 1.41666666666667
- 1.41421568627451
- 1.41421356237469
- 1.41421356237309
- 1.41421356237309

求: √5

$$p_{k} = \frac{p_{k-1} + \frac{A}{p_{k-1}}}{2} \qquad p_{0} = 2$$

$$p_1 = \frac{2+5/2}{2} = 2.25$$

$$p_2 = \frac{2.25+5/2.25}{2} = 2.236111111$$

$$p_3 = \frac{2.236111111}{2} = 2.236067978$$

$$P_4 = \frac{2.36067978 + 5/2.236067978}{2} = 2.236067978$$

收敛性判断?

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$
 $(k = 0, 1, 2, \dots)$

$$x_{k+1} = g(x_k)$$

 $x_0 x^*$

 x_1

牛顿迭代法的收敛性判断

$$\left|g'(x_k)\right| < 1$$

定理 3 对于方程 f(x)=0, 若存在区间(a,b), 使

- (1)在(a,b)内存在方程的单根 x^* ;
- (2)f'(x)在(a,b)内连续.

则牛顿迭代法在 x * 附近具有局部收敛性.

牛顿法

定理3证明

$$g(x) = x - \frac{f(x)}{f'(x)}$$
 $g'(x) = \frac{f(x)f''(x)}{[f'(x)]^2}$

f (x)在(a,b)内连续 g (x)在(a,b)内连续

对于任意给定的正数 ε ,必存在 δ ,使得g'(x)在 x^* 邻域($x^* - \delta$, $x^* + \delta$)内 $g'(x) - g'(x^*)$ $< \varepsilon$,取 $\varepsilon = 1$,得 $g'(x) - g'(x^*)$ < 1,即g'(x) < 1

上节课知识回顾

- 1. 方程求根
- 与方程组求根的区别?
- 如何用数值法进行方程求根? (1. 确定有根区间; 2. 不断逼近真实解)
- 二分法的基本思路?
- 牛顿迭代法的基本思路?为什么比二分法收敛的快?如何判断 牛顿迭代法是否会收敛?

牛顿法

误差估计?

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

$$0 = f(x^*) = f(x_n) + f'(x_n)(x^* - x_n) + \frac{1}{2}f''(\xi) (x^* - x_n)^2$$

$$x_n - x^* = \frac{f(x_n)}{f'(x_n)} + \frac{\frac{1}{2}f''(\xi)(x^* - x_n)^2}{f'(x_n)}$$

$$e_{n+1} = x_{n+1} - x^* = x_n - \frac{f(x_n)}{f'(x_n)} - x^* = x_n - x^* - \frac{f(x_n)}{f'(x_n)} = \frac{f(x_n)}{f'(x_n)} + \frac{\frac{1}{2}f''(\xi)(x^* - x_n)^2}{f'(x_n)} - \frac{f(x_n)}{f'(x_n)}$$

$$e_{n+1} = \frac{1}{2} \frac{f''(\xi)}{f'(x_n)} e_n^2$$

牛顿法

牛顿法解方程之混沌情况

牛顿法解复方程专题:对复方程f(z) = 0, f(z) 为复多项式函数,设函数 g(z) = z - f(z) / f'(z),其中 f'(z) 为函数f(z) 的导函数。则函 g(Z) 就是复多项式方程求解的牛顿迭代公式。对于选定的起始点,g(z) 迭代大多都会收敛于多项式f(z) = 0的某个根,但也可能存在许多点,使 g(z) 迭代根本就不收敛,甚至可能出现混沌的状态。

程序中的函数为 $f(z) = z^n - 1$, n>= 2, 也就是求解方程 $z^n = 1$ 的根。

(a) n=1

(b) n=240

(c) n=480

(d) n-240

 $(_{\rm B})$

(b)

(c)

牛顿法

牛顿迭代法收敛性

定理4 对方程 f(x) = 0, 若存在区间[a, b], 使

- (1)f''(x)在[a,b]上连续;
- (2) f(a) f(b) < 0;
- (3)对任意 $x \in [a, b]$ 都有 $f'(x) \neq 0$;
- (4)f"(x)在[a,b]上保号.

则当初值 $x_0 \in [a, b]$ 且 $f(x_0)f''(x_0) > 0$ 时,牛顿迭代过程(2.8)产生的迭代序列 $\{x_k\}$ 收敛于方程 f(x) = 0 在[a, b]上的唯一实根 x^* .

$$x_0 \in [a, b] \not \subseteq f(x_0) f''(x_0) > 0$$

牛顿法

一个特殊例子

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

$$x_{n+1} - a = -(x_n - a)$$

$$f(x) = sign(x - a)\sqrt{|x - a|}$$

割线法

$$s_n = \frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}},$$

$$x_{n+1} = x_n - \frac{f(x_n)}{s_n}.$$

割线法

1.41421356237310


```
\sqrt{2}
```

```
while abs(b-a) > eps*abs(b)
   c = a;
   a = b;
   b = b + (b - c)/(f(c)/f(b)-1);
  k = k + 1;
end
1.333333333333333
1.40000000000000
1.41463414634146
1.41421143847487
1.41421356205732
1.41421356237310
```

割线法

误差估计

$$e_{n+1} = \frac{1}{2} \frac{f''(\xi)f'(\xi_n)f'(\xi_{n-1})}{f'(\xi)^3} e_n e_{n-1}$$

$$e_{n+1} = O(e_n e_{n-1}).$$

$$L_{2}(x) = y_{0} \frac{(x - x_{1})(x - x_{2})}{(x_{0} - x_{1})(x_{0} - x_{2})}$$

$$+ y_{1} \frac{(x - x_{0})(x - x_{2})}{(x_{1} - x_{0})(x_{1} - x_{2})}$$

$$+ y_{2} \frac{(x - x_{0})(x - x_{1})}{(x_{2} - x_{0})(x_{2} - x_{1})}$$

抛物线插值

$$a = P(f(a)), b = P(f(b)), c = P(f(c))$$

逆二次插值


```
k = 0;
while abs(c-b) > eps*abs(c)

x = polyinterp([f(a),f(b),f(c)],[a,b,c],0)
a = b;
b = c;
c = x;
k = k + 1;
end
```

这个"纯粹"的IQI算法的问题是,多项式插值数据点的横坐标,这里是f(a)、f(b)和f(c),互不相同。但这里无法保证。例如,通过求解 $f(x)=x^2-2=0$ 计算 $\sqrt{2}$,并从a=-2、b=0、c=2 开始,则一开始就出现f(a)=f(c)的情况,第一步就无法执行。如果开始时的参数接近这种奇异的情况,例如从a=-2.001、b=0、c=1.999开始,则得到的下一步迭代解近似于x=500。

Zeroin算法

核心:将二分法的可靠性和割线法及IQI算法的收敛速度结合起来

- Start with a and b so that f(a) and f(b) have opposite signs.
- Use a secant step to give c between a and b.
- Repeat the following steps until $|b-a| < \epsilon |b|$ or f(b) = 0.
- Arrange a, b, and c so that
 - -f(a) and f(b) have opposite signs,
 - $-|f(b)| \le |f(a)|,$
 - -c is the previous value of b.
- If $c \neq a$, consider an IQI step.
- If c = a, consider a secant step.
- If the IQI or secant step is in the interval [a, b], take it.
- If the step is not in the interval, use bisection.

fzerotx, feval


```
bessj0 = inline('besselj(0,x)');
for n = 1:10
  z(n) = fzerotx(bessj0,[(n-1) n]*pi);
end
x = 0:pi/50:10*pi
y = besselj(0,x); plot(z,zeros(1,10),'o',x,y,'-')
line([0 10*pi],[0 0],'color','black')
axis([0 10*pi -0.5 1.0])
                                                       15
                                                            20
                                                                  25
```

Figure 4.2. Zeros of $J_0(x)$.

fzerogui

fzerogui(@(x)besselj(0,x),[0,3.83])

Figure 4.3. Initially, choose secant or bisection.

Figure 4.5. Secant and bisection points nearly coincide.

Figure 4.4. Choose IQI or bisection.

Figure 4.6. Nearing convergence.

寻找函数为某个值的解和反向插值

- (1) 给定一个函数 F(x) 和值 $^{\eta}$, 求 ξ 使得 $F(\xi) = \eta$:
- (2) 给定对未知函数 F(x) 采样得到的一些数据点 (x_k, y_k) ,以及一个值 $^{\eta}$,求 $^{\xi}$ 使得 $F(\xi) = \eta$;

(1)
$$f(x) = F(x) - \eta$$

$$f(\xi) = 0$$
$$F(\xi) = \eta$$

(2) 采用某种插值, $f(x) = P(x) - \eta$ 对于有些情况, 可以采用反向插值

最优化 和 fmintx

Min fun(x)
Sub. To [C.E.]
[B.E.]

最优化 和 fmintx

Figure 4.7. Golden section search.

$$\frac{\rho}{1-\rho} = \frac{1-\rho}{1},$$

$$\rho^2 - 3\rho + 1 = 0.$$

$$\rho = 2 - \phi = (3 - \sqrt{5})/2 \approx 0.382.$$

最优化 和 fmintx

$$f'(x) = 0$$

$$h(x) = \frac{1}{(x - 0.3)^2 + 0.01} + \frac{1}{(x - 0.9)^2 + 0.04}.$$

step	X	f(x)
init:	0.1458980337	-25.2748253202
<pre>gold:</pre>	0.8541019662	-20.9035150009
<pre>gold:</pre>	-0.2917960675	2.5391843579
para:	0.4492755129	-29.0885282699
para:	0.4333426114	-33.8762343193
para:	0.3033578448	-96.4127439649
<pre>gold:</pre>	0.2432135488	-71.7375588319
para:	0.3170404333	-93.8108500149
para:	0.2985083078	-96.4666018623
para:	0.3003583547	-96.5014055840
para:	0.3003763623	-96.5014085540
para:	0.3003756221	-96.5014085603

Figure 4.8. Finding the minimum of -humps(x).

试值法

$$c_n = b_n - \frac{f(b_n)(b_n - a_n)}{f(b_n) - f(a_n)}$$

横向收敛区:

纵坐标的封闭性通常通过 $|f(p_n) < \varepsilon|$ 来检查。

图 2.11(a) 定位函数 f(x) = 0 的解的横向收敛区

纵向收敛区:

图 2.11(b) 定位函数 f(x) = 0 的解的纵向收敛区

收敛区域:

图 2.12(a) 由 $|x-p| < \delta$ 和 $|y| < \epsilon$ 定义的矩形区域

图 2.12(b) 由 $|x-p| < \delta$ 或 $|y| < \epsilon$ 定义的无边界区域

Program 2.2 (Bisection Methods)

```
function[c,err,yc] = bisect(f,a,b,delta)
% Input - f is the function input as a string 'f'
         - a and b are the left and right end poir
         - delta is the tolerance
% Output- c is the zero
         - vc = f(c)
         - err is the error estimate for c
ya = feval(f,a);
yb = feval(f.b);
if ya * yb > 0, break, end
\max 1 = 1 + \text{round}((\log(b - a) - \log(\text{delta}))/\log(2));
for k = 1 \cdot max1
    c = (a + b)/2:
   yc = feval(f,c):
    if vc = 0
        a = C:
        b = c:
```

```
elseif yb \rightarrow yc > 0
         b = c:
         \Delta p = \Delta G
    else
          a = c:
         ya = yc;
    end
    if b-a < delta, break, end
end
c = (a + b)/2;
err = abs(b - a):
yc = feval(f,c):
```

Program 2.3 False Position or Regular False Method

```
function [c,err,yc] = regula(f,a,b,deltak,epsilon,max1)
% Input - f is the function input as a string 'f'
        - a and b are the left and right end points
        - delta is the tolerance for the zero
        - epsilon is the tolerance for the value of f at the zero
        - max1 is the maximum number of iterations
% Output- c is the zero
        - yc = f(c)
        - err is the error estimate for c
ya = feval(f,a):
yb = feval(f,b);
if ya * yb > 0
    disp('Note: f(a) * f(b) > 0'),
    break.
end
for k = 1 \cdot max1
    dx = yb * (b - a)/(yb - ya):
   c = b - dx:
    ac = c - a;
   yc = feval(f,c);
   if yc == 0,break;
    elseif vb * vc > 0
        b = C:
       yb = yc;
    else
```

```
a = c;
ya = yc;
end
dx = min(abs(dx),ac);
if abs(dx) < delta,break,end
if abs(yc) < epsilon,break,end
end
c;
err = abs(b-a))/2;
yc = feval(f,c);</pre>
```

Program2.5 (Newton-Raphson Iteration)

```
f(x) = 0 p_k = p_{k-1} - \frac{f(p_{k-1})}{f'(p_{k-1})}
function [po,err,k,y] = newton(f,df,p0,delta,epsilon,max1)
% Input - f is the object function input as a string'f'
          - df is the derivative of f input as a string 'df'
          - p0 is the initial approximation to a zero of f

    delta is the tolerance for p0

          - epsilon is the tolerance for the function values y
         - maxl is the maximum number of iterations
% Cutput - p0 is the Newton - Raphson approximation to the zero
          - err is the error estimate for p0
         - k is the number of iterations
          - y is the function value f(p0)
for k = 1: max1
  p1 = p0 - feval(f,p0)/feval(df,p0);
  err = abs(p1 - p0);
  relerr = 2 * err/(abs(p1) + delta);
  p0 = p1:
  y = feval(f,p0)
  if (err < delta) | (relerr < delta) | (abs(y) < epsilon), break, end
```

end

Aitken's Process and Steffensen's (and Muller's Methods (Optional)

Atiken' s Process

$$\frac{p-p_{n+1}}{p-p_n} \approx A \quad \text{和} \qquad \frac{p-p_{n+2}}{p-p_{n+1}} \approx A \,, \qquad \text{其中 } n \text{ 足够大}$$

定理 2.8(Aitken 加速) 设序列 $\{p_n\}_{n=0}^{\infty}$ 线性收敛到极限 p,而且对所有 $n \ge 0$,有 $p - p_n \ne 0$ 。如果存在实数 A,且|A| < 1,满足:

$$\lim_{n \to \infty} \frac{p - p_{n+1}}{p - p_n} = A \tag{3}$$

则定义为:

$$q_n = p_n - \frac{(\Delta p_n)^2}{\Delta^2 p_n} = p_n - \frac{(p_{n+1} - p_n)^2}{p_{n+2} - 2p_{n+1} + p_n}$$
(4)

的序列 $\{q_n\}_{n=0}^{\infty}$ 收敛到p,且比 $\{p_n\}_{n=0}^{\infty}$ 快,而且:

$$\lim_{n \to \infty} \left| \frac{p - q_n}{p - p_n} \right| = 0 \tag{5}$$

证明:下面将证明如果得到式(4),并把对式(5)的证明作为练习。由于式(3)中的项是逼近一个极限,可写成:

$$\frac{p-p_{n+1}}{p-p_n} \approx A \quad \text{n} \qquad \frac{p-p_{n+2}}{p-p_{n+1}} \approx A \,, \qquad \text{\sharp p n $\rlap{$L$}$ \emptyset} \tag{6}$$

则根据式(6)中的关系式可得到:

$$(p - p_{n+1})^2 \approx (p - p_{n+2})(p - p_n) \tag{7}$$

当展开式(7)的两边并消除 p^2 ,可得到:

$$p \approx \frac{p_{n+2} - p_n - p_{n+1}^2}{p_{n+2} - 2p_{n+1} + p_n} = q_n, \quad n = 0, 1, \dots$$
 (8)

例 2.2 设有收敛迭代

$$p_0 = 0.5, p_{k+1} = e^{-pk}, k = 0.1, \cdots$$

前十项的计算结果如下所示:

$$p_1 = e^{-0.500000} = 0.606531$$

$$p_2 = e^{-0.606531} = 0.545239$$

$$p_3 = e^{-0.545239} = 0.579703$$

$$\vdots \qquad \vdots$$

$$p_9 = e^{-0.566409} = 0.567560$$

$$p_{10} = e^{-0.567560} = 0.566907$$

这个序列是收敛的,且进一步计算可发现:

$$\lim_{n\to\infty} p_n = 0.567143\cdots$$

这样,可找到函数 $\gamma = e^{-x}$ 的固定点近似值。

列 2.18 证明例 2.2 中的序列 $\{p_n\}$ 是线性收敛。同时证明由 Aitken's Δ^2 过程得到的序列 $\{q_n\}$ 收敛得更快。

使用函数 $g(x)=e^{-x}$,从 $p_0=0.5$ 开始,通过固定点迭代可得到序列 $\{p_n\}$ 。收敛后的极限为 p_n 和 q_n 的值如表 2.10 和表 2.11 所示。例如, q_1 的值的计算过程如下:

$$q_1 = p_1 - \frac{(p_2 - p_1)^2}{p_3 - 2p_2 + p_1}$$
$$= 0.606530660 - \frac{(-0.061291448)^2}{0.095755331} = 0.567298989$$

表 2.10 线性收敛序列{p_n}

n	ρ_{η}	$E_n = p_n - p$	$A_n = \frac{E_n}{E_{n-1}}$
1	0.606530660	0.039387369	- 0.586616609
2	0.545239212	- 0.021904079	- 0.556119357
3	0.579703095	0.012559805	- 0.573400269
4	0.560064628	- 0.007078663	- 0.563596551
5	0.571172149	0.004028859	- 0.569155345
6	0.564862947		-0.566002341

表 2.11 用 Aitken 过程得到的序列 $\{q_n\}$

		
n	q_n	$q_n - p$
1	0.567298989	0.000155699
2	0.567193142	0.000049852
3	0.567159364	0.000016074
4	0.567148453	0.000005163
5	0.567144952	0.000001662
6	0.567143825	0.000000534

尽管表 2.11 中的序列 $\{q_n\}$ 为线性收敛,根据定理 2.8,它比 $\{p_n\}$ 收敛得快。而通常 Aitken 方法改进后收敛速度更快。把固定点迭代和 Aitken 过程结合起来的方法称为 Steffensen 加速。

Muller's Method

图 2.17 采用 Muller 法的初始近似值 p_0, p_1 和 p_2 ,以及差分 h_0 和 h_1

$$t = x - p_2 \tag{9}$$

使用差分为:

$$h_0 = p_0 - p_2 \not \exists 1 \ h_1 = p_1 - p_2 \tag{10}$$

设包含变量 t 的二次多项式为:

$$y = at^2 + bt + c \tag{11}$$

根据每一点可得到一个包含 $a \setminus b$ 和 c 的方程:

当
$$t = h_0$$
:
$$ah_0^2 + bh_0 + c = f_0$$
当 $t = h_1$:
$$ah_1^2 + bh_1 + c = f_1$$
(12)

 $rac{1}{2}t = 0$: $ao^2 + b0 + c = f_2$

从式(12)中的第三个方程,可看到:

$$c = f_2 \tag{13}$$

将式(13)代人式(12)中的前两个方程,并利用定义 $e_0 = f_0 - c$ 和 $e_1 = f_1 - c$,可得到线性方程组:

$$ah_0^2 + bh_0 = f_0 - c = e_0.$$

$$ah_1^2 + bh_1 = f_1 - c = e_1.$$
(14)

求解线性方程组可得:

$$a = \frac{e_0 h_1 - e_1 h_0}{h_1 h_0^2 - h_0 h_1^2}$$

$$b = \frac{e_1 h_0^2 - e_0 h_1^2}{h_1 h_0^2 - h_0 h_1^2}$$
(15)

下列二次式用来求解式(11)的根 $t = z_1, z_2$

$$Z = \frac{-2c}{b \pm \sqrt{b^2 - 4ac}} \tag{16}$$

式(16)等价于求二次根的标准公式,而且由于 $c = f_2$,所以它的情况更好。

为了确保方法的稳定性,需要选择式(16)中绝对值最小的根。如果 b>0,使用带正号的根;如果 b<0,使用带负号的根。则 p_3 如图 2.17 所示,表示为:

$$p_3 = p_2 + z (17)$$

为了更新迭代,需要从 $\{p_0, p_1, p_2\}$ 中选择最靠近 p_3 的两点为新的 p_0 和 p_1 (即放弃离 p_3 最远的一点)。然后使用新的 p_2 替代 p_3 。尽管在 Muller 法中有许多辅助计算,但它每个迭代只需要计算一个函数。

直接用Matlab解非线性方程


```
MATLAB 命令输入格式:
                      solve('eqn1', 'eqn2', \cdots, 'eqnN')
    妲
           solve('eqn1', 'eqn2', \cdots, 'eqnN', 'var1', 'var2', \cdots, 'varN')
其中 eqni 表示第i 个方程, vari 表示第i 个变量, i=1, 2, \dots, N.
    1. 一般方程
    例如,求解方程 x^2 + bx + c = 0.
输入:
    solve('x^2 + b * x + c')
输出:
    [-1/2 * b + 1/2 * (b^2 - 4 * c)^(1/2)]
    [-1/2 * b - 1/2 * (b^2 - 4 * c)^(1/2)]
```

2. 多项式方程

除了用上面求解一般方程的方法外,还可以直接用求解多项式方程的MATLAB函数 roots(p),其中 p 是多项式的系数按降幂排列所形成的 n + 1 维列向量,它能够给出全部根(包含重根).

例如,求解多项式方程 $x^9 + x^8 + 1 = 0$.

输入:

$$p = [1,1,0,0,0,0,0,0,0,1];$$

roots(p)

输出:

- -1.2131
- -0.9017 + 0.5753i
- -0.9017 0.5753i
- -0.2694 + 0.9406i
- -0.2694 0.9406i
- 0.4168 + 0.8419i
- 0.4168 0.8419i
- 0.8608 + 0.3344i
- 0.8608 0.3344i

注意:也可以用 solve('x'9+1')求解,有何区别?

思考题

- 1、如何改进二分法,使其收敛速度加快?
- 2、怎样修正牛顿迭代法可以提高其收敛速度?
- 3、为什么埃特肯加速法能提高线性迭代序列的收敛速度?
- 4、有无其他可行的解非线性方程的方法?

范例:波音公司飞机最佳定价策略

全球最大的飞机制造商——波音公司自 1955 年推出波音 707 开始,成功地开发了一系列的喷气式客机.问题:讨论该公司对一种新型客机最优定价策略的数学模型.

定价策略涉及到诸多因素,这里考虑以下主要因素:

价格、竞争对手的行为、出售客机的数量、波音公司的客机制造量、制造成本、波音公司的市场占有率等等因素.

价格记为 p,根据实际情况,对于民航飞机制造商,能够与波音公司抗衡的竞争对手只有一个,因此他们可以在价格上达成一致,具体假设如下:

- 1) 型号:为了研究方便,假设只有一种型号飞机;
- 2) 销售量:其销售量只受飞机价格 p 的影响.预测以此价格出售,该型号飞机全球销售量为 N.N 应该受到诸多因素的影响,假设其中价格是最主要的因素.根据市场历史的销售规律和需求曲线,假设该公司销售部门预测得到

$$N = N(p) = -78p^2 + 655p + 125.$$

- 3)市场占有率:既然在价格上达成一致,即价格的变化是同步的,因此,不同定价不会影响波音公司的市场占有率,因此场占有率是常数,记为 h.
- 4)制造数量:假设制造量等于销售量,记为 x. 既然可以预测该型号飞机 全球销售量,结合波音公司的市场占有率,可以得到

$$x = h \times N(p).$$

5)制造成本:根据波音产品分析部门的估计,制造成本为

$$C(x) = 50 + 1.5x + 8x^{\frac{3}{4}}.$$

6)利润:假设利润等于销售收入去掉成本,并且公司的最优策略原则为利润 R(p)最大.利润函数为

$$R(p) = px - C(x).$$

感谢聆听,欢迎讨论!