PATENT ABSTRACTS OF JAPAN

(11)Publication number:

04-229481

(43)Date of publication of application: 18.08.1992

(51)Int.CI.

G11B 33/14 B32B 15/06

F16J 15/10

(21)Application number: 02-414675

(71)Applicant :

SHIN ETSU CHEM CO LTD

(22)Date of filing:

27.12.1990

(72)Inventor:

OSAWA YASUHISA SONEGAWA SHIGEHISA

INO MIKIO

(54) PACKING ASSEMBLY FOR HARD DISK DEVICE

(57)Abstract:

PURPOSE: To prevent functional trouble by integrating a fluororubber moided body obtd. by cross-linking, molding and heating a fluororubber compsn. with a metal worked body by adhesion with an adhesive. CONSTITUTION: Fluororubber used as starting material in a fluororubber compsn. 1 is an elastic copolymer having a high polymn, degree. The compsn. 1 is blended with an acid accepting agent such as calcium oxide or barium stearate as required. When an amine type cross-linking agent is used, it is necessary to add a large amt, of the acid accepting agent, A rubber molded body 1 obtd. by cross-linking and molding the compsn. is heated and integrated with a metal worked body 3 by adhesion. By this method, a packing assembly for a hard disk device free from bloom is obtd. without generating gas. Since this assembly does not deposit or scatter a low mol.wt. substance and has superior sealing property, functional trouble is not caused.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

BEST AVAILABLE COPY

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

FΙ

(11)特許出願公開番号

特開平4-229481

(43)公開日 平成4年(1992)8月18日

/ E1	\T-4	CIB	
(51) Int	.Cl.	

識別記号

庁内整理番号

技術表示箇所

G11B 33/14

M 7177-5D 7148-4F

B 3 2 B 15/06

F 1 6 J 15/10

Y 7233-3J

審査請求 未請求 請求項の数5(全 5 頁)

191	`	ш	100	

(22)出願日

特顯平2-414675

平成2年(1990)12月27日

(71) 出願人 000002060

信越化学工業株式会社

東京都千代田区大手町2丁目6番1号

(72) 発明者 大沢 康久

群馬県安中市磯部2丁目13番1号 信越化 学工業株式会社シリコーン電子材料技術研

究所内

(72)発明者 曽根川 滋久

群馬県安中市磯部2丁目13番1号 信越化 学工業株式会社シリコーン電子材料技術研

究所内

(74)代理人 弁理士 山本 亮— (外1名)

最終頁に続く

(54) 【発明の名称】 ハードデイスク装置用パツキン組立体

(57) 【要約】

(修正有)

【目的】本願発明は、機能障害の原因となる異物や低分 子量物の発生を抑え、ゴム成形物と削性体とが結合し一 体化されたハードディスク装置用バッキン組立体を提供 する。

【構成】フッ素ゴムの組成物から架橋成形及び加熱処理 して得られたフッ素ゴム成形物と、金属加工物とが、接 着剤を介して接着一体化されたことを特徴とするハード ディスク装置用パッキン組立体。

1

整理番号P021321

【特許請求の範囲】

【請求項1】フッ素ゴムの組成物から架橋成形及び加熱処理して得られたフッ素ゴム成形物と、金属加工物とが、接着剤を介して接着一体化されたことを特徴とするハードディスク装置用パッキン組立体。

【請求項2】前記の接着剤が加熱硬化型のエポキシ樹脂である請求項1に配載のハードディスク装置用パッキン 組立体。

【請求項3】前配の架橋がポリオールまたは有機過酸化 10 物により行われたものである請求項1に記載のハードディスク装置用パッキン組立体。

【請求項4】前記の金属加工物がその表面を保護処理されたものである請求項1に記載のハードディスク装置用パッキン組立体。

【請求項5】前記の架橋成形を行なうにあたり、金型のパーティング面において成形物の金属加工物との接着面が成形されるようにし、前記の接着に際しては、接着面からはみ出した接着剤により成形物のパーティング部に残存するパリを被模固定するようにした請求項1に記載のハードディスク装置用パッキン組立体。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は機能障害の原因となる異物や低分子量物の発生を抑えたハードディスク装置用パッキン組立体に関するものである。

[0002]

【従来の技術】ハードディスク用パッキンはその機能向上に伴い、ガス発生、しみ出し、ゴミ・ホコリ等の異物発生源となり問題とされている。すなわち、シリコーン 30 ゴム、ポリエチレンスポンジ、NBRスポンジ、ネオブレンゴム、ウレタンスポンジ、ポリエステルスポンジをパッキンとして用いるのが一般的であった。しかしながらこの従来方式では、アクセスタイムの高速化、ハードディスク装置の小型化、記憶容量の高密度化が進むに従い、ゴムパリ、ホコリ等ごく微量の異物の脱落、アウトガスの発生により機能障害を起すため問題となっている。

【0003】また、ハードディスク部品装着の自動化や合理化が進むに伴い、パッキン等のゴム弾性体は金属や樹脂等の剛性体と一体化することが要求されている。これにはプライマー等を用いてゴム組成物と金属や樹脂を加硫接着すれば一体成形品を得ることができるが、その際、ゴムパリの完全除去が困難であり、異物の脱落の原因となる危険性が大きく実用化は難しい。

[0004]

【発明が解決しようとする課題】したがって、本発明は 低分子量物の析出とか飛散がなく、異物の脱落がなく、 ゴム成形物と剛性体とが結合し一体化されたハードディ スク装置用パッキン組立体を提供するためになされたも のである。

[0005]

【課題を解決するための手段】本発明者らは前記の課題 を解決するため鋭意検討の結果、架橋成形されたフッ素 ゴム弾性体を加熱処理し、これを接着剤を用いて金属加 工物に接着一体化すればよいことを見出した。

2

【0006】すなわち、本発明は、架橋成形及び加熱処理して得られたフッ素ゴム成形物と、金属加工物とが、接着剤を介して接着一体化されたことを特徴とするハードディスク装置用パッキン組立体、に関するものである。

【0007】以下に本発明について詳しく説明する。本発明に原料として使用するフッ素ゴムは高度にフッ素化された弾性状共重合体で、具体的にはピニリデンフルオライドとヘキサフルオルプロペン、ベンタフルオルプロペン、トリフルオルエチレン、トリフルオルクロルエチレン、テトラフルオルエチレン、ピニルフルオライド、パーフルオル(メチルピニルエーテル)、パーフルオル(プロピルピニルエーテル)などの1種または2種以上との弾性状共重合体が例示される。これらのうち好適に使用されるものとしてはピニリデンフルオライドーへキサフルオルプロペン二元弾性共重合体、ピニリデンフルオライドーテトラフルオルエチレンーへキサフルオルプロペン三元弾性共重合体などが挙げられる。

【0008】つぎに、本発明で架橋成形に使用するフッ素ゴム組成物には必要に応じて受酸剤を配合すればよく、これには例えば酸化マグネシウム、酸化カルシウム、水酸化カルシウム、ステアリン酸パリウム、鉛の酸化物などが挙げられる。この受酸剤は加硫などにより発生する酸性物質を捕捉し固定するために使用されるもので、使用量はフッ素ゴム100 重量部に対して、通常0~5 重量部であればよく、好ましくは3 重量部以下である。

【0009】つぎに、架橋剤としてはポリオール系や過酸化物系のものが好ましく、ポリオール系としては、例えばピスフェノールAF、ピスフェノールA、ハイドロキノン、レゾルシン、1,7-ジヒドロキシナフタレン、2,6-ジヒドロキシアントラセン、カテコール、2,2-ピス(4-ヒドロキシフェニル)ブタン、ピスフェノールBなどが挙げられ、過酸化物系としては、例えばジベンゾイルパーオキシド、ジクミルパーオキシド、ジーt-プチルパーオキシド、t-プチルパーオキシアセテート、t-ブチルパーオキシベンゾエート、2,5-ジメチル-2,5-ジーt-プチルパーオキシベキサンなどが挙げられる。

【0010】アミン系架橋剤を用いる場合は、受酸剤を 多量に添加する必要があり、フッ素ゴム成形物から受酸 剤が析出するおそれがあるのでこの架橋剤は好ましくな い。

ゴム成形物と剛性体とが結合し一体化されたハードディ 【0011】なお、通常のフッ素ゴム配合において添加 スク装置用パッキン組立体を提供するためになされたも 50 されるカルナパワックスなどの加工助剤、低分子量フッ

素オイルなどの可塑剤は本発明の目的が達成されなくな るので使用しない。

【0012】以上に説明した原料は均一に混合して組成 物とするが、この混合は公知の装置を用いて公知の方法 により行なうことができる。

【0013】得られた組成物は公知の架橋条件で任意の 形状のフッ素ゴム成形物に架橋成形することができる。 したがって、パッキンとしての機能を有する任意の形状 のものを得ることができる。

【0014】なお、金属加工物と接着する面の形状の一 例としては、この面を長手方向の平面とすることが挙げ られ、後記実施例1のように、成形時のパーティング面 がこの平面となるようにすれば好都合である。すなわ ち、前配のフッ素ゴム組成物を架構成形するにあたり、 金型のパーティング面で成形物の金属加工物との接着面 が成形されるようにすれば、成形物のパーティング部に 微量に残存したパリを、接着の際に接着剤を接着面から 多少はみ出させて被覆固定することができ、パリの脱落 を防止できるので好都合である。もちろん、接着面の形 状は上記に限定されるものではなく、曲面や凹凸面であ 20 ってもよい。

【0015】つぎに、架橋成形して得たゴム成形物は加 熱処理されるが、処理温度が 150℃未満では揮発物が残 る可能性があり、270 ℃を超えるとフッ素ゴムポリマー の分解が始まるので、 150~270 ℃で加熱処理すればよ い。処理時間は2時間から48時間とすればよい。この処 理時間の間、処理装置内部の排気を充分に行なって揮発 物を除去する。好ましい処理条件は 180~250 ℃、24時 間で、装置としてアウトガスを循環しない乾燥機を用い て充分排気を行ないながら加熱処理すれば好結果が得ら

【0016】加熱処理されたゴム成形物は金属加工物と 接着してパッキン組立体とする。この金属加工物の材 質、形状はハードディスク装置用としての要求を満たす ものであれば特に制限はないが、その表面にメッキ、ア ルマイト、スパッタ、強装等の処理を行なえば金属材が 保護され信頼性が向上する。

【0017】つぎに、ゴム成形物と金属加工物とを接着 するための接着剤は、後配のはく離強度を示せば特に限 定されないが、熱硬化型エポキシ系接着剤が好ましい。 これには例えば主剤としてピスフェノールA型エポキシ 脂、硬化剤としてジシアンジアミド、反応促進剤とし てイミダゾール化合物及び液ダレ防止のための炭酸カル シウム等の微細無機粉末からなるものが挙げられ、この 他に粘度調節用に反応性希釈剤、接着剤の塗りムラ及び はみ出し確認用に顔料等を添加してもよい。

【0018】接着剤の塗布方法としては、スクリーン印 刷、パーコート、ハケ強り、スプレー塗布、ロボットに よる自動塗布等のうちから、塗布物の形状により、作業 塗布面も、同様にゴム弾性体倒あるいは金属加工物側に 制限されるものではない。

【0019】つぎに、接着方法であるが、接着剤の塗布 後、所定の場所に圧着する際、0.01~15kg/cm3 の圧力 を均一に加えることが好ましい。この圧力下で接着剤の 接着面からの適度のはみ出しがみられる。0.01kg/cm² 未満でははみ出しが不充分であり、15kg/cm² を超える とゴム成形物の変形が起こって形状が維持できないよう になる。接着剤の適度のはみ出しは、前配のとおり脱落 することもあるパリを被憂固定することができるので、 好ましいものである。

【0020】所定の場所に圧着するには固定治具を用 い、上記圧力下で固定したまま、接着剤の完全硬化条件 で保持するのが望ましいが、作業を効率的に行うにあた り、固定加圧して接着剤のはみ出しを確認した後、固定 治具より取り出し、熱風乾燥機にて完全硬化させること もできる。

【0021】フッ素ゴム成形物と金属加工物との接着強 度はフッ素ゴム成形物の材料破壊となるのが望ましい が、パッキンとしての性質上、180 度はく解強度で1kg /cm以上あればよい。この強度は以上に説明した本発明 の技術範囲内、特に熱硬化型エポキシ樹脂接着剤の使用 により容易に達成することができる。

[0022]

【発明の効果】本発明によれば、ガス発生やブルームの ない、ゴムバリが被覆固定され、ゴム成形物と剛性体と が強く結合し一体化されたハードディスク装置用パッキ ン組立体が得られ、このものは低分子量物の折出とか飛 **散がなく、異物の脱落がなく、シール性が優れているの** で機能障害を起すことがない。このように優れた特長を 有するパッキン組立体が得られるので本発明の効果は極 めて大きい。

[0023]

30

【実施例】つぎに、本発明の実施例を挙げる。実施例1 ポリオール架構型フッ素ゴムであるフローレルFC30 09 (住友スリーエム (株) 製商品名) 100 重量部に、 カーボンブラックとしてサーマックスMT(N-99 0) (Huber (株) 製商品名) 3 重量部、MgOと してキョーワマグ150 (協和化学工業 (株) 製商品 名) 3 重量部及びCa(OH)2 3 重量部を添加混練した。

【0024】ついで、得られた混練物を用い、図1に示 すような断面形状を有するフッ素ゴム成形物を、その接 着面がパーティング面で成形されるようにした金型にて 165 ℃、10分の条件で成形した。成形物のパリを除去し た後、230 ℃で24時間、充分排気を行いながら熱処理し た。

【0025】上記で得られた熱処理後の成形物は80℃湿 度90%の条件下で7週間放置してもプルームは認められ ず、また、耐圧ガラス瓶中に密閉して 150℃に加熱し、 性が良く信頼性の高い方法を選択すればよい。接着剤の 50 その直後に、発生したガス成分をガスクロマトグラフィ

5

ーにて分析したところ、発生ガスは何も認められなかっ た。

【0026】また、金属加工物は材質がアルミニウムの板をプレス成形したものを用い、接着面にエポキシ接着剤としてEP108(セメダイン(株)製商品名)を60メッシュー50μm乳剤厚のスクリーン版を用いて均一に除布した。

【0027】つぎに、前配の熱処理したフッ素ゴム成形物とエポキシ接着剤を強布した金属加工物を固定治具にセットして1kg/cm³に加圧し、そのまま加圧しながら150℃で1時間加熱し、治具より取り出したところ、接着剤は完全に硬化し、接着部分の周囲に15mmの均一なはみ出しがみられ(図2参照)、このはみ出し部によりパーティング部に少し残っていたゴムバリが完全に被覆され固定された図3に示すようなバッキン組立体を得た。

【0028】実施例2

実施例1と同様のフッ素ゴム成形物及び金属加工物を用い、エポキシ接着剤としてX-70-131A(信越化学工業(株)製商品名)を同様に塗布し、これらを固定 20治具に取り付けて1kg/cm²、140℃の加圧加熱下に10分間保持してから固定治具より取り出したところ、接着剤のはみ出しが認められた。実施例1と同様、良好なパッキン組立体を得た。

【0029】実施例3

フッ素ゴムとしてダイエルG801 (ダイキン (株) 製商品名)を用い、その100 重量部にパーオキサイドとしてパーヘキサ2.5B (日本油脂(株)製商品名)1.5 重量部、トリアリルイソシアヌレートとしてタイク (日本化成(株)製商品名)4重量部、カーボンプラックと30してサーマックスMT(前出)5重量部を添加し混練した。

【0030】上記の混練物を用い、165℃、15分の加硫 条件で実施例1と同様にして成形を行い、以後実施例1 と同様に処理しフッ素ゴム成形物を得た。この成形物に ついて前記のブルームとガス発生試験を行ない、その結 果が良好であることを確認した。

【0031】金属加工物としては鉄に化学ニッケルメッキを施したものを用い、前記フッ素ゴム成形物の接着面にエポキシ接着剤としてX-70-131A(信越化学 40工業(株)製商品名)をハケにて塗布した。

【0032】つぎに、前記のエポキシ接着剤を塗布したフッ素ゴム成形物と金属加工物を固定治具にセットして、1kg/cm²、140℃の加圧加熱下に30分間保持してから固定治具より取り出したところ接着剤は完全に硬化していた。また、接着剤のはみ出しは場所により 0.5~2 mmとばらつき、スクリーン印刷を行なったときに比べ不

均一であったが、パーティング部に残ったゴムパリが硬化した接着剤により完全に被覆され固定されたパッキン 銀立体を得た。

【0033】比較例1

フローレルドC3009(前出)100 重量部に加工助剤としてカルナパワックス2重量部、カーボンプラック3重量部、MgO及びCa(OH)。各6重量部を添加混練し、得られた混練物を実施例1と同様に成形してフッ素ゴム成形物とした。この成形物を80℃、温度90%の条件下で7週間放置したところ目視で確認できるブルームが発生し、ハードディスク装置用弾性体には適さないものであった。

【0034】比較例2

実施例1で用いたフッ素ゴム成形物と金属加工物を用い、エポキシ接着剤として2液常温硬化型のセメダイン EP007(セメダイン(株)製商品名)を用いて金属加工物に60メッシュ、乳剤厚50μmのスクリーン印刷版により均一に堕布した。ついでフッ素ゴム成形物とエポキシ接着剤を堕布した金属加工物とを固定治具にセットし、48時間常温に放置し、接着剤の完全硬化を確認したが、180度はく離強度が、実施例ではいずれもフッ素ゴム成形物の材料破壊となったのに対し、0.1kg/cmと小さく、ハードディスク装置用パッキン組立体としては実用化困難であった。

【0035】比較例3

実施例1で用いたフッ素ゴム成形物、金属加工物及びエポキシ接着剤を用い、固定治具にセットした時の固定圧力を30kg/cm² とした以外は実施例1と全く同じ条件で接着を行なったところ、押し圧過大によりフッ素ゴム成形物の変形が発生すると共に、均一な接着剤のはみ出しが得られず、フッ素ゴム成形物が変形した状態で接着固定されてしまい、パッキンとしてのシール性を損なうものとなった。

【図面の簡単な説明】

【図1】本発明の一実施例におけるフッ素ゴム成形物の 長手方向に垂直な断面の形状を示す図である。

【図2】本発明の一実施例におけるフッ素ゴム成形物と 金属加工物の接着状態を、フッ素ゴム成形物の長手方向 に垂直な断面において示す図である。

[0 【図3】本発明の一実施例におけるハードディスク装置 用パッキン組立体の平面図である。

【符号の説明】

- 1 フッ素ゴム成形物
- 2 フッ素ゴム成形物のパーティングライン
- 3 金属加工物
- 4 接着剤のはみ出し部

[図1]

[図2]

[図3]

フロントページの続き

(72)発明者 飯野 幹夫

群馬県安中市磯部2丁目13番1号 信越化 学工業株式会社シリコーン電子材料技術研 究所内