BBM 205 Discrete Mathematics Hacettepe University http://web.cs.hacettepe.edu.tr/~bbm205

Lecture 10b: Expectation and Important
Distributions
Lecturer: Lale Özkahva

Resources:
Kenneth Rosen, "Discrete Mathematics and App."
http://www.eecs70.org/

Random Variables: Definitions

Definition

A random variable, X, for a random experiment with sample space Ω is a function $X : \Omega \to \Re$.

Thus, $X(\cdot)$ assigns a real number $X(\omega)$ to each $\omega \in \Omega$.

Definitions

(a) For $a \in \Re$, one defines

$$X^{-1}(a) := \{ \omega \in \Omega \mid X(\omega) = a \}.$$

(b) For $A \subset \mathfrak{R}$, one defines

$$X^{-1}(A) := \{ \omega \in \Omega \mid X(\omega) \in A \}.$$

(c) The probability that X = a is defined as

$$Pr[X = a] = Pr[X^{-1}(a)].$$

(d) The probability that $X \in A$ is defined as

$$Pr[X \in A] = Pr[X^{-1}(A)].$$

(e) The distribution of a random variable X, is

$$\{(a, Pr[X = a]) : a \in \mathscr{A}\},$$

where \mathscr{A} is the *range* of X. That is, $\mathscr{A} = \{X(\omega), \omega \in \Omega\}$.

Expectation - Definition

Definition: The **expected value** (or mean, or expectation) of a random variable X is

$$E[X] = \sum_{a} a \times Pr[X = a].$$

Theorem:

$$E[X] = \sum_{\omega} X(\omega) \times Pr[\omega].$$

An Example

Flip a fair coin three times.

$$\Omega = \{\textit{HHH}, \textit{HHT}, \textit{HTH}, \textit{THH}, \textit{HTT}, \textit{THT}, \textit{TTH}, \textit{TTT}\}.$$

X = number of H's: $\{3,2,2,2,1,1,1,0\}$.

Thus,

$$\sum_{\omega} X(\omega) Pr[\omega] = \{3+2+2+2+1+1+1+0\} \times \frac{1}{8}.$$

Also,

$$\sum_{a} a \times Pr[X = a] = 3 \times \frac{1}{8} + 2 \times \frac{3}{8} + 1 \times \frac{3}{8} + 0 \times \frac{1}{8}.$$

Win or Lose.

Expected winnings for heads/tails games, with 3 flips? Recall the definition of the random variable X: {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT} \rightarrow {3,1,1,-1,1,-1,-3}.

$$E[X] = 3 \times \frac{1}{8} + 1 \times \frac{3}{8} - 1 \times \frac{3}{8} - 3 \times \frac{1}{8} = 0.$$

Can you ever win 0?

Apparently: expected value is not a common value, by any means.

The expected value of X is not the value that you expect! It is the average value per experiment, if you perform the experiment many times:

$$\frac{X_1+\cdots+X_n}{n}$$
, when $n\gg 1$.

The fact that this average converges to E[X] is a theorem: the Law of Large Numbers. (See later.)

Law of Large Numbers

An Illustration: Rolling Dice

Indicators

Definition

Let A be an event. The random variable X defined by

$$X(\omega) = \begin{cases} 1, & \text{if } \omega \in A \\ 0, & \text{if } \omega \notin A \end{cases}$$

is called the indicator of the event A.

Note that Pr[X = 1] = Pr[A] and Pr[X = 0] = 1 - Pr[A]. Hence,

$$E[X] = 1 \times Pr[X = 1] + 0 \times Pr[X = 0] = Pr[A].$$

This random variable $X(\omega)$ is sometimes written as

$$1\{\omega \in A\}$$
 or $1_A(\omega)$.

Thus, we will write $X = 1_A$.

Linearity of Expectation

Theorem: Expectation is linear

$$E[a_1X_1 + \cdots + a_nX_n] = a_1E[X_1] + \cdots + a_nE[X_n].$$

Proof:

$$E[a_1X_1 + \dots + a_nX_n]$$

$$= \sum_{\omega} (a_1X_1 + \dots + a_nX_n)(\omega)Pr[\omega]$$

$$= \sum_{\omega} (a_1X_1(\omega) + \dots + a_nX_n(\omega))Pr[\omega]$$

$$= a_1\sum_{\omega} X_1(\omega)Pr[\omega] + \dots + a_n\sum_{\omega} X_n(\omega)Pr[\omega]$$

$$= a_1E[X_1] + \dots + a_nE[X_n].$$

Note: If we had defined $Y = a_1 X_1 + \cdots + a_n X_n$ has had tried to compute $E[Y] = \sum_y y Pr[Y = y]$, we would have been in trouble!

Using Linearity - 1: Pips (dots) on dice

Roll a die n times.

 X_m = number of pips on roll m.

$$X = X_1 + \cdots + X_n$$
 = total number of pips in n rolls.

$$E[X] = E[X_1 + \dots + X_n]$$

= $E[X_1] + \dots + E[X_n]$, by linearity
= $nE[X_1]$, because the X_m have the same distribution

Now,

$$E[X_1] = 1 \times \frac{1}{6} + \dots + 6 \times \frac{1}{6} = \frac{6 \times 7}{2} \times \frac{1}{6} = \frac{7}{2}.$$

Hence,

$$E[X] = \frac{7n}{2}$$
.

Note: Computing $\sum_{X} xPr[X = x]$ directly is not easy!

Using Linearity - 2: Random assignments Example

Hand out assignments at random to *n* students.

X = number of students that get their own assignment back.

$$X = X_1 + \cdots + X_n$$
 where

 $X_m = 1$ {student m gets his/her own assignment back}.

One has

$$E[X] = E[X_1 + \cdots + X_n]$$

= $E[X_1] + \cdots + E[X_n]$, by linearity
= $nE[X_1]$, because all the X_m have the same distribution
= $nPr[X_1 = 1]$, because X_1 is an indicator
= $n(1/n)$, because student 1 is equally likely
to get any one of the n assignments
= 1.

Note that linearity holds even though the X_m are not independent.

Note: What is Pr[X = m]? Tricky

Using Linearity - 3: Binomial Distribution.

Flip n coins with heads probability p. X - number of heads

Binomial Distibution: Pr[X = i], for each i.

$$Pr[X=i] = \binom{n}{i} p^{i} (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times Pr[X = i] = \sum_{i} i \times \binom{n}{i} p^{i} (1 - p)^{n - i}.$$

Uh oh. ... Or... a better approach: Let

$$X_i = \begin{cases} 1 & \text{if } i \text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

$$E[X_i] = 1 \times Pr["heads"] + 0 \times Pr["tails"] = p.$$

Moreover
$$X = X_1 + \cdots X_n$$
 and

$$E[X] = E[X_1] + E[X_2] + \cdots + E[X_n] = n \times E[X_i] = np.$$

Calculating E[g(X)]

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

Method 1: We calculate the distribution of *Y*:

$$Pr[Y = y] = Pr[X \in g^{-1}(y)]$$
 where $g^{-1}(x) = \{x \in \Re : g(x) = y\}.$

This is typically rather tedious!

Method 2: We use the following result.

Theorem:

$$E[g(X)] = \sum_{x} g(x) Pr[X = x].$$

Proof:

$$E[g(X)] = \sum_{\omega} g(X(\omega))Pr[\omega] = \sum_{x} \sum_{\omega \in X^{-1}(x)} g(X(\omega))Pr[\omega]$$

$$= \sum_{x} \sum_{\omega \in X^{-1}(x)} g(x)Pr[\omega] = \sum_{x} g(x) \sum_{\omega \in X^{-1}(x)} Pr[\omega]$$

$$= \sum_{x} g(x)Pr[X = x].$$

An Example

Let X be uniform in $\{-2, -1, 0, 1, 2, 3\}$.

Let also $g(X) = X^2$. Then (method 2)

$$E[g(X)] = \sum_{x=-2}^{3} x^{2} \frac{1}{6}$$

$$= \{4+1+0+1+4+9\} \frac{1}{6} = \frac{19}{6}.$$

Method 1 - We find the distribution of $Y = X^2$:

$$Y = \begin{cases} 4, & \text{w.p. } \frac{2}{6} \\ 1, & \text{w.p. } \frac{2}{6} \\ 0, & \text{w.p. } \frac{1}{6} \\ 9, & \text{w.p. } \frac{1}{6} \end{cases}$$

Thus,

Thus,
$$E[Y] = 4\frac{2}{6} + 1\frac{2}{6} + 0\frac{1}{6} + 9\frac{1}{6} = \frac{19}{6}.$$

Center of Mass

The expected value has a *center of mass* interpretation:

Monotonicity

Definition

Let X, Y be two random variables on Ω . We write $X \leq Y$ if $X(\omega) \leq Y(\omega)$ for all $\omega \in \Omega$, and similarly for $X \geq Y$ and $X \geq a$ for some constant a.

Facts

- (a) If $X \ge 0$, then $E[X] \ge 0$.
- (b) If $X \leq Y$, then $E[X] \leq E[Y]$.

Proof

(a) If $X \ge 0$, every value a of X is nonnegative. Hence,

$$E[X] = \sum_{a} a Pr[X = a] \ge 0.$$

(b)
$$X \leq Y \Rightarrow Y - X \geq 0 \Rightarrow E[Y] - E[X] = E[Y - X] \geq 0$$
.

Example:

$$B = \bigcup_m A_m \Rightarrow 1_B(\omega) \le \sum_m 1_{A_m}(\omega) \Rightarrow Pr[\bigcup_m A_m] \le \sum_m Pr[A_m].$$

Summary

Random Variables

- ▶ A random variable X is a function $X : \Omega \to \Re$.
- ► $Pr[X = a] := Pr[X^{-1}(a)] = Pr[\{\omega \mid X(\omega) = a\}].$
- ▶ $Pr[X \in A] := Pr[X^{-1}(A)].$
- ▶ The distribution of X is the list of possible values and their probability: $\{(a, Pr[X = a]), a \in \mathcal{A}\}.$
- $\blacktriangleright E[X] := \sum_a aPr[X = a].$
- Expectation is Linear.

Indicator Random Variable

Definition

Let A be an event. The random variable X defined by

$$X(\omega) = \begin{cases} 1, & \text{if } \omega \in A \\ 0, & \text{if } \omega \notin A \end{cases}$$

is called the indicator of the event A.

Note that Pr[X = 1] = Pr[A] and Pr[X = 0] = 1 - Pr[A]. Hence,

$$E[X] = 1 \times Pr[X = 1] + 0 \times Pr[X = 0] = Pr[A].$$

This random variable $X(\omega)$ is sometimes written as

$$1\{\omega \in A\}$$
 or $1_A(\omega)$.

Thus, we will write $X = 1_A$.

Uniform Distribution

Roll a six-sided balanced die. Let X be the number of pips (dots). Then X is equally likely to take any of the values $\{1,2,\ldots,6\}$. We say that X is *uniformly distributed* in $\{1,2,\ldots,6\}$.

More generally, we say that X is uniformly distributed in $\{1,2,\ldots,n\}$ if Pr[X=m]=1/n for $m=1,2,\ldots,n$. In that case,

$$E[X] = \sum_{m=1}^{n} mPr[X = m] = \sum_{m=1}^{n} m \times \frac{1}{n} = \frac{1}{n} \frac{n(n+1)}{2} = \frac{n+1}{2}.$$

Geometric Distribution

Let's flip a coin with Pr[H] = p until we get H.

For instance:

$$\omega_1 = H$$
, or $\omega_2 = T H$, or $\omega_3 = T T H$, or $\omega_n = T T T T \cdots T H$.

Note that $\Omega = \{\omega_n, n = 1, 2, \ldots\}.$

Let X be the number of flips until the first H. Then, $X(\omega_n) = n$. Also,

$$Pr[X = n] = (1-p)^{n-1}p, \ n \ge 1.$$

Geometric Distribution

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

Geometric Distribution

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

Note that

$$\sum_{n=1}^{\infty} Pr[X_n] = \sum_{n=1}^{\infty} (1-p)^{n-1} p = p \sum_{n=1}^{\infty} (1-p)^{n-1} = p \sum_{n=0}^{\infty} (1-p)^n.$$

Now, if |a| < 1, then $S := \sum_{n=0}^{\infty} a^n = \frac{1}{1-a}$. Indeed,

$$S = 1 + a + a^{2} + a^{3} + \cdots$$

$$aS = a + a^{2} + a^{3} + a^{4} + \cdots$$

$$(1 - a)S = 1 + a - a + a^{2} - a^{2} + \cdots = 1.$$

Hence,

$$\sum_{n=1}^{\infty} Pr[X_n] = p \, \frac{1}{1 - (1 - p)} = 1.$$

Geometric Distribution: Expectation

$$X =_D G(p)$$
, i.e., $Pr[X = n] = (1 - p)^{n-1}p, n \ge 1$.

One has

$$E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1-p)^{n-1}p.$$

Thus,

$$E[X] = p+2(1-p)p+3(1-p)^2p+4(1-p)^3p+\cdots$$

$$(1-p)E[X] = (1-p)p+2(1-p)^2p+3(1-p)^3p+\cdots$$

$$pE[X] = p+(1-p)p+(1-p)^2p+(1-p)^3p+\cdots$$
by subtracting the previous two identities
$$= \sum_{n=0}^{\infty} Pr[X=n] = 1.$$

Hence,

$$E[X] = \frac{1}{p}$$
.

Coupon Collectors Problem.

Experiment: Get coupons at random from *n* until collect all *n* coupons.

Outcomes: $\{123145...,56765...\}$

Random Variable: *X* - length of outcome.

E[X]=?

Time to collect coupons

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

 $Pr["get second coupon"]"got milk first coupon"] = \frac{n-1}{n}$

$$E[X_2]$$
? Geometric!!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{2}} = \frac{n}{n-1}$.

 $Pr[\text{"getting } i\text{th coupon}|\text{"got } i-1\text{rst coupons"}] = \frac{n-(i-1)}{n} = \frac{n-i+1}{n}$ $E[X_i] = \frac{1}{n} = \frac{n}{n-i+1}, i=1,2,\ldots,n.$

$$E[X] = E[X_1] + \dots + E[X_n] = \frac{n}{n} + \frac{n}{n-1} + \frac{n}{n-2} + \dots + \frac{n}{1}$$
$$= n(1 + \frac{1}{2} + \dots + \frac{1}{n}) =: nH(n) \approx n(\ln n + \gamma)$$

Review: Harmonic sum

$$H(n) = 1 + \frac{1}{2} + \dots + \frac{1}{n} \approx \int_{1}^{n} \frac{1}{x} dx = \ln(n).$$

.

A good approximation is

 $H(n) \approx \ln(n) + \gamma$ where $\gamma \approx 0.58$ (Euler-Mascheroni constant).

Geometric Distribution: Memoryless

Let *X* be G(p). Then, for $n \ge 0$,

$$Pr[X > n] = Pr[$$
 first n flips are $T] = (1 - p)^n$.

Theorem

$$Pr[X > n + m | X > n] = Pr[X > m], m, n \ge 0.$$

Proof:

$$Pr[X > n + m | X > n] = \frac{Pr[X > n + m \text{ and } X > n]}{Pr[X > n]}$$

$$= \frac{Pr[X > n + m]}{Pr[X > n]}$$

$$= \frac{(1 - p)^{n + m}}{(1 - p)^n} = (1 - p)^m$$

$$= Pr[X > m].$$

Geometric Distribution: Memoryless - Interpretation

$$Pr[X > n + m | X > n] = Pr[X > m], m, n \ge 0.$$

$$Pr[X > n + m | X > n] = Pr[A|B] = Pr[A] = Pr[X > m].$$

The coin is memoryless, therefore, so is X.

Geometric Distribution: Yet another look

Theorem: For a r.v. X that takes the values $\{0,1,2,\ldots\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \ge i].$$

[See later for a proof.]

If X = G(p), then $Pr[X \ge i] = Pr[X > i - 1] = (1 - p)^{i-1}$. Hence,

$$E[X] = \sum_{i=1}^{\infty} (1-p)^{i-1} = \sum_{i=0}^{\infty} (1-p)^i = \frac{1}{1-(1-p)} = \frac{1}{p}.$$

Expected Value of Integer RV

Theorem: For a r.v. X that takes values in $\{0, 1, 2, ...\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \ge i].$$

Proof: One has

$$E[X] = \sum_{i=1}^{\infty} i \times Pr[X = i]$$

$$= \sum_{i=1}^{\infty} i \{ Pr[X \ge i] - Pr[X \ge i + 1] \}$$

$$= \sum_{i=1}^{\infty} \{ i \times Pr[X \ge i] - i \times Pr[X \ge i + 1] \}$$

$$= \sum_{i=1}^{\infty} \{ i \times Pr[X \ge i] - (i - 1) \times Pr[X \ge i] \}$$

$$= \sum_{i=1}^{\infty} Pr[X \ge i].$$

Poisson

Experiment: flip a coin n times. The coin is such that $Pr[H] = \lambda/n$.

Random Variable: X - number of heads. Thus, $X = B(n, \lambda/n)$.

Poisson Distribution is distribution of *X* "for large *n*."

Poisson

Experiment: flip a coin n times. The coin is such that $Pr[H] = \lambda/n$.

Random Variable: X - number of heads. Thus, $X = B(n, \lambda/n)$. **Poisson Distribution** is distribution of X "for large n."

We expect $X \ll n$. For $m \ll n$ one has

$$Pr[X = m] = \binom{n}{m} p^m (1-p)^{n-m}, \text{ with } p = \lambda/n$$

$$= \frac{n(n-1)\cdots(n-m+1)}{m!} \left(\frac{\lambda}{n}\right)^m \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$= \frac{n(n-1)\cdots(n-m+1)}{n^m} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$\approx^{(1)} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m} \approx \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^n \approx^{(2)} \frac{\lambda^m}{m!} e^{-\lambda}.$$

For (1) we used $m \ll n$; for (2) we used $(1 - a/n) \approx e^{-a/n}$ for $a/n \ll 1$.

Poisson Distribution: Definition and Mean

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Fact: $E[X] = \lambda$.

Proof:

$$E[X] = \sum_{m=1}^{\infty} m \times \frac{\lambda^m}{m!} e^{-\lambda} = e^{-\lambda} \sum_{m=1}^{\infty} \frac{\lambda^m}{(m-1)!}$$
$$= e^{-\lambda} \sum_{m=0}^{\infty} \frac{\lambda^{m+1}}{m!} = e^{-\lambda} \lambda \sum_{m=0}^{\infty} \frac{\lambda^m}{m!}$$
$$= e^{-\lambda} \lambda e^{\lambda} = \lambda.$$

Summary.

Distributions

- ► $U[1,...,n]: Pr[X = m] = \frac{1}{n}, m = 1,...,n;$ $E[X] = \frac{n+1}{2};$
- ▶ $B(n,p): Pr[X = m] = \binom{n}{m} p^m (1-p)^{n-m}, m = 0,...,n;$ E[X] = np;
- $G(p): Pr[X = n] = (1-p)^{n-1}p, n = 1, 2, ...;$ $E[X] = \frac{1}{p};$
- $P(\lambda): Pr[X = n] = \frac{\lambda^n}{n!} e^{-\lambda}, n \ge 0;$ $E[X] = \lambda.$