PM2.5

Features:17

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

AMB_TE	CH4	CO	NMHC	NO	NO2	NOx	03	PM10	RAINFAI	RH	SO2	THC	WD_HR	WIND_D	WIND_SI	WS_HR
19.5	1.9	0.4175	0.089167	1.054167	10.78333	11.97917	42.95833	54.04167	0	71.29167	2.383333	1.9875	62.04167	62.16667	2.770833	2.320833
18.70833	1.9625	0.60375	0.173333	5.420833	20.225	25.64583	26.17083	89.375	0.016667	83.66667	2.495833	2.120833	76.25	87.70833	1.529167	1.1125
19.16667	2.079167	0.721667	0.27375	14.7375	29.58333	44.41667	4.904167	55.29167	0.816667	90.41667	2.408333	2.354167	94.91667	84.375	1.15	0.758333
20.20833	2.154167	0.996667	0.360417	23.4	22.975	46.41667	9.4375	42.75	0.008333	88.54167	2.9125	2.504167	188.5417	186.7083	0.883333	0.491667
20.375	2.033333	0.654583	0.324583	15.87391	24.69565	40.52174	7.291667	55.08696	0.008333	87.33333	3.433333	2.345833	119.9167	133.5417	1.3375	0.895833
18.25	1.9	0.375417	0.16125	1.779167	17.14167	19.02083	24.61667	26.20833	1.825	86.45833	2.258333	2.075	62.04167	60.66667	2.633333	1.8375
18	1.881818	0.41875	0.135455	2.426087	12.31304	14.68696	38.75	47.5	0	75.04167	2.583333	1.990909	61.33333	62.08333	3.675	2.920833
16.875	1.891667	0.44875	0.12375	1.3125	14.025	15.44583	36.70833	51.20833	0.083333	77.375	2.420833	1.9875	65.04167	67.5	2.85	2.325
17.33333	1.9125	0.557917	0.144583	3.441667	17.87083	21.26667	32.91667	49.16667	0	71.54167	3.554167	2.045833	63.66667	61.91667	2.8375	2.204167
18.375	1.954167	0.542917	0.189583	5.879167	17.65	23.67083	21.25417	45.625	0	81.45833	2.654167	2.145833	94.125	85.79167	1.425	1.029167
16.875	1.845833	0.415833	0.1325	3.841667	19.50417	23.35833	27.7375	19.625	2.3	89.41667	1.666667	1.991667	68	75.375	1.904167	1.329167
16.29167	1.854545	0.382174	0.099545	2.104348	10.78261	12.90435	34	32.82609	0.066667	80.125	1.326087	1.945455	64.08333	64.875	3.629167	2.766667
14.25	1.9	0.477917	0.117917	1.129167	11.39167	12.31667	33.79167	27.125	0	82.33333	1.1625	1.983333	64.54167	64.45833	3.525	2.641667
14.66667	1.941667	0.64375	0.17375	3.016667	17.6125	20.625	31	61.33333	0	75.58333	3.420833	2.116667	66.875	66.79167	2.895833	2.266667
15.625	1.958333	0.653333	0.213333	4.929167	26.125	31.08333	19.45	70.29167	0.083333	83.75	3.1625	2.183333	68.83333	69.25	1.725	1.408333
18.66667	1.929167	0.515	0.146667	3.020833	17.99167	20.85	26.72083	33.25	0.016667	77	2.466667	2.075	74.91667	80.58333	2.116667	1.683333
16.875	1.945833	0.51375	0.148333	7.004167	16.49167	23.54167	22.95417	26.45833	2.025	89.83333	1.795833	2.095833	114.8083	126.5833	1.5625	0.925
14.83333	1.913043	0.542917	0.13913	2.816667	13.4625	16.33333	36.58333	51.3913	0.008696	70.33333	2.083333	2.03913	71.375	71.625	3.3625	2.741667
14.58333	1.895833	0.5875	0.149167	3.3	15.51667	18.74583	36.58333		0.033333	74.58333		2.05	71.20833	71.58333		3.0625
15.5	1.883333	0.511667	0.18	4.416667	19.25	23.5875	26.81667	26.75	0	78	3.0625	2.075	82.58333	83.91667	2.7875	2.266667
15.54167	1.858333	0.374583	0.15375	5.254167	16.1	21.29583	22.7875	18.45833	0.666667	88.95833	1.9125	2.033333	77.79167	74.41667	2.075	1.495833
15.25	1.841667	0.329167	0.135417	4.941667	15.8375			14.20833	1.341667		2.083333	1.9875	61.70833	61.625		2.254167
10.0375	1.866667	0.420417	0.082917		10.62083		32.29167	34.95833	0.9	84.5	2.1375	1.9375	64.79167	67.20833		3.716667
4.970833	1.804167	0.3225	0.08375	2,00,120,	8.495833	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		40.16667				110 00000		76.79167	01100000	2.920833
7.833333	1.841667		0.030000	D.33 1001		14.43333	00.00000	10.010		61.33333					3.795833	
13.87017	1 047826	n 50	0.266057	12 38606	23.82600	36 13043	22 23013	35 73013	Λ	64.25	3 117301	2 217301	111 0167	108.4583	1.445833	0.001667

Target:

#Date	PM2.5
2016/1/1	27.70833
2016/1/2	46.08333
2016/1/3	38.47826
2016/1/4	23.52174
2016/1/5	31.47826
2016/1/6	6.916667
2016/1/7	21.625
2016/1/8	25.5
2016/1/9	22.29167
2016/1/10	21.16667
2016/1/11	6.375
2016/1/12	11.13043
2016/1/13	11.75
2016/1/14	34.95833
2016/1/15	43.29167
2016/1/16	14.91667
2016/1/17	10.16667
2016/1/18	24.65217
2016/1/19	44
2016/1/20	10.58333
2016/1/21	5.666667
2016/1/22	2.958333
2016/1/23	17.625
2016/1/24	12.75

PM2.5(M=1)

Hypothesis:
$$h_{\theta}(x) = \theta_0 x_0 + \theta_1 x_1 + \dots + \theta_{17} x_{17}$$

Cost function:
$$J(\theta_0, \theta_1, ..., \theta_{16}, \theta_{17}) = \frac{1}{2N} \sum_{i=1}^{N} (h_{\theta}(x^i) - T^i)^2$$

Gradient descent: repeat before convergence{

$$\theta_n = \theta_n - \alpha \frac{\partial J(\theta_0, \theta_1, \dots, \theta_{17})}{\partial \theta_n}$$

PM2.5(M=1)

Pseudocode:

Read the data
Split into training set and testing set

Initialize theta Update theta by gradient descent

Get the hypothesis function

Use the training target to test the model

Use the testing target to test the model

PM2.5(M=1)hypothesis function

 x_i^j : the ith feature in the jth data

$$h_{\theta}(x) = [\theta_{0} \quad \theta_{1} \quad \dots \quad \theta_{16} \quad \theta_{17}]_{1X18} \cdot \begin{bmatrix} x_{0}^{1} & x_{0}^{2} & \dots & x_{0}^{N-1} & x_{0}^{N} \\ x_{1}^{1} & x_{1}^{2} & \dots & x_{1}^{N-1} & x_{1}^{N} \\ \dots & \dots & \dots & \dots & \dots \\ x_{16}^{1} & x_{17}^{2} & \dots & x_{17}^{N-1} & x_{17}^{N} \end{bmatrix}_{18XN}$$
Just to put the constant of the hypothesis function into the matrix
$$= [y^{1} \quad y^{2} \quad \dots \quad y^{N-1} \quad y^{N}]_{1XN}$$

Transpose from the original data

 $x_0^i = 1$

```
#hypothesis function(M=1):
def hypothesis(theta,X):
    return np.matmul(theta,np.transpose(X))
```

```
#gradient descent
def gradient descent(theta,X,T,learning rate,iteration):
    N=len(X)
    cost_function=[]
    for i in range(iteration):
         cost_function.append(np.sum((hypothesis(theta,X)-T)**2)/len(X)/2)
         theta grad=(1/N)*np.matmul((hypothesis(theta,X)-T),(X))
         theta-=learning rate*theta grad
         if i %1000000==0:
              print("it is the %d time of iterations, rmse is %.10lf and cost function is %.10lf" %(i,rmse(hypothesis(theta,X),T),np.sum((hypothesis(theta,X)-T)**2)/len(X)/2))
    return theta, cost_function
                                                                                                                               To monitor whether it overflow or gradient explode
Theta_grad: = \begin{bmatrix} \frac{\partial J}{\partial \theta_0} & \frac{\partial J}{\partial \theta_1} & \dots & \frac{\partial J}{\partial \theta_{16}} & \frac{\partial J}{\partial \theta_{17}} \end{bmatrix}_{1X18}
```

$$\begin{split} & \left[\frac{\partial \theta_0}{\partial \theta_1} \quad \partial \theta_1 \quad \partial \theta_{16} \quad \partial \theta_{17} \right]_{1X18} \\ & = \frac{1}{N} \Bigg[\sum_{i=1}^{N} \left(h_{\theta}(x^i) - T^i \right) \cdot x_0^i \quad \sum_{i=1}^{N} \left(h_{\theta}(x^i) - T^i \right) \cdot x_1^i \quad \dots \quad \sum_{i=1}^{N} \left(h_{\theta}(x^i) - T^i \right) \cdot x_{16}^i \quad \sum_{i=1}^{N} \left(h_{\theta}(x^i) - T^i \right) \cdot x_{17}^i \Bigg]_{1X18} \\ & = \frac{1}{N} \left([y^1 \quad y^2 \quad \dots \quad y^{N-1} \quad y^N]_{1XN} - [T^1 \quad T^2 \quad \dots \quad T^{N-1} \quad T^N]_{1XN} \right) \cdot \begin{bmatrix} x_0^1 \quad x_0^2 \quad \dots \quad x_0^{N-1} \quad x_0^N \\ x_1^1 \quad x_1^2 \quad \dots \quad x_1^{N-1} \quad x_1^N \\ \dots \quad \dots \quad \dots \quad \dots \quad \dots \\ x_{16}^1 \quad x_{16}^2 \quad \dots \quad x_{16}^{N-1} \quad x_{16}^N \\ x_1^1, \quad x_1^2, \quad \dots \quad x_{17}^{N-1} \quad x_{17}^N \end{bmatrix}_{18XN} \end{split}$$

Hypothesis: $h_{\theta}(x) = \theta_0 x_0 + \theta_1 x_1 + \dots + \theta_{17} x_{17}$

Cost function:
$$J(\theta_0, \theta_1, ..., \theta_{16}, \theta_{17}) = \frac{1}{2N} \sum_{i=1}^{N} (h_{\theta}(x^i) - T^i)^2$$

Gradient descent:
$$\theta_n = \theta_n - \alpha \frac{\partial J(\theta_0, \theta_1, \dots, \theta_{17})}{\partial \theta_n}$$


```
Initial state:
Running for the method of gradient descent
before iteration, rmse is 20.38007928 and cost function is 207.67381581
it is the 50000 time of iterations, rmse is 4.19507851 and cost function is 8.79934186
it is the 100000 time of iterations, rmse is 4.18962794 and cost function is 8.77649112
it is the 200000 time of iterations, rmse is 4.18349911 and cost function is 8.75083239
it is the 250000 time of iterations, rmse is 4.18081514 and cost function is 8.73960763
it is the 300000 time of iterations, rmse is 4.17823396 and cost function is 8.72881952
it is the 350000 time of iterations, rmse is 4.17573201 and cost function is 8.71836891
it is the 400000 time of iterations, rmse is 4.17329904 and cost function is 8.70821242
it is the 450000 time of iterations, rmse is 4.17092925 and cost function is 8.69832540
it is the 500000 time of iterations, rmse is 4.16861854 and cost function is 8.68869028
Final state:
0.20173709 0.03665635 0.04426917 0.46077071 -0.43757445 0.04076274
  0.1783273 -0.61653299 0.04520647 -0.0308441 -0.55604122 -0.61305675]]
```

the runtime of this program:94.919

PM2.5(M=2)

Hypothesis:
$$h_{\theta}(x) = \theta_{0}x_{0} + \theta_{1}x_{1} + \dots + \theta_{17}x_{17} + \theta_{18}x_{1}x_{1} + \theta_{19}x_{2}x_{1} + \theta_{20}x_{2}x_{2} + \theta_{21}x_{3}x_{1} + \theta_{22}x_{3}x_{2} + \theta_{23}x_{3}x_{3} + \dots + \theta_{154}x_{17}x_{1} + \theta_{155}x_{17}x_{2} + \dots + \theta_{169}x_{17}x_{16} + \theta_{170}x_{17}x_{17}$$

$$\Rightarrow h_{\theta}(x) = \sum_{i=0}^{17} \theta_{i}x_{i} + \sum_{j=1}^{i} \theta_{n}x_{i}x_{j}, n \ in \ range(18,171)$$

Cost function:
$$J(\theta_0, \theta_1, \dots, \theta_{169}, \theta_{170}) = \frac{1}{2N} \sum_{i=1}^{N} (h_{\theta}(x^i) - T^i)^2$$

Gradient descent: repeat before convergence{

$$\theta_n = \theta_n - \alpha \frac{\partial J(\theta_0, \theta_1, \dots, \theta_{170})}{\partial \theta_n}$$

PM2.5(M=2)hypothesis function-1

#append the dataX to match the theta (171 features)

```
k = 18
                                                                                                                           for i in range(1,18):
                                                                                                                                for j in range(1,i+1):
                                                                                                                                     if k in range(18,171):
                                                                                                                                          dataX=np.insert(dataX,k,values=dataX[:,i]*dataX[:,j],axis=1)
Append the data (or features) by multiplied two features:
                                                                              11 12 13 14 15 16 17 18 19 20 21 22......
                                                  NOx
                                                                       RAINFAIRH
                                                                                              THC
                      0.4175 | 0.089167 | 1.054167 | 10.78333 | 11.97917 | 42.95833 | 54.04167
                                                                             0 71.29167 2.383333
                                                                                               1.9875 62.04167 62.16667 2.770833
                                                                   89.375 | 0.016667 | 83.66667 | 2.495833 | 2.120833
               1.9125 0.557917 0.144583 3.441667 17.87083 21.26667
                                                                                                                     2.8375 2.204167
                                                              34 32.82609 0.066667
                                                                                80.125 1.326087 1.945455 64.08333
                                                              31 61.33333
       14.66667 1.941667 0.64375 0.17375 3.016667
                                                                                                                                                                                              16
                                                     20.85 26.72083
                                                                   33.25 0.016667
                                                                                                                      3.3625 2.741667
                                                                                                                      2.7875 2.26666
                                                          22.7875 18.45833 0.666667 88.95833
                                                                                                                      2.075 1.49583
        10.0375 | 1.866667 | 0.420417 | 0.082917 | 2.216667 | 10.62083 | 12.74583 | 32.29167 | 34.95833
                                                                                   84.5
       4.970833 1.804167
                        0.59 | 0.266957 | 12.38696 | 23.82609 | 36.13043 | 22.23913 | 35.73913
```

PM2.5(M=2)hypothesis function-2

$$h_{\theta}(x) = \sum_{i=0}^{17} \theta_i x_i + \sum_{i=1}^{17} \sum_{j=1}^{i} \theta_n x_i x_j, n \text{ in } range(18,171)$$

$$\Rightarrow h_{\theta}(x) = \sum_{i=0}^{17} \theta_{i} x_{i} + \sum_{i=18}^{170} \theta_{i} x_{i} = \sum_{i=0}^{170} \theta_{i} x_{i} = [\theta_{0} \quad \theta_{1} \quad \dots \quad \theta_{169} \quad \theta_{170}]_{1X171} \cdot \begin{bmatrix} x_{0}^{1} & x_{0}^{2} & \dots & x_{0}^{N-1} & x_{0}^{N} \\ x_{1}^{1} & x_{1}^{2} & \dots & x_{1}^{N-1} & x_{1}^{N} \\ \dots & \dots & \dots & \dots & \dots \\ x_{169}^{1} & x_{169}^{2} & \dots & x_{16}^{N-1} & x_{16}^{N} \\ x_{170}^{1} & x_{170}^{2} & \dots & x_{17}^{N-1} & x_{17}^{N} \end{bmatrix}_{171XN}$$

$$= [y^{1} \quad y^{2} \quad \dots \quad y^{N-1} \quad y^{N}]_{1XN}$$

#hypothesis function

def hypothesis(theta,X):

return np.matmul(theta,np.transpose(X))

Transpose from the original data

The only different from M=1


```
0. 0. 0.]]
Running for the method of gradient descent
before iteration, rmse is 20.38007928 and cost function is 207.67381581
it is the 50000 time of iterations, rmse is 4.33017489 and cost function is 9.37520729
it is the 100000 time of iterations, rmse is 4.23512725 and cost function is 8.96815143
it is the 150000 time of iterations, rmse is 4.18308970 and cost function is 8.74911972
it is the 200000 time of iterations, rmse is 4.14394358 and cost function is 8.58613421
it is the 250000 time of iterations, rmse is 4.11307577 and cost function is 8.45869613
it is the 300000 time of iterations, rmse is 4.08823256 and cost function is 8.35682272
it is the 350000 time of iterations, rmse is 4.06792635 and cost function is 8.27401240
it is the 400000 time of iterations, rmse is 4.05110602 and cost function is 8.20573000
it is the 450000 time of iterations, rmse is 4.03700462 and cost function is 8.14870315
it is the 500000 time of iterations, rmse is 4.02505046 and cost function is 8.10051562
theta= [[ 3.81475298e-07 -1.03285482e-05 1.23219546e-06 1.08599507e-06
 -6.00616535e-08 -3.28727706e-06 1.33134700e-05 1.00897387e-05
  1.09410803e-05 5.62357983e-05 -1.91411170e-06 1.26081006e-05
  2.10191156e-06 1.15970575e-06 1.49248725e-05 1.64558839e-05
 -3.08150362e-06 -2.92588007e-06 -3.95426205e-04 -6.11877112e-06
  3.28267530e-06 1.55847756e-05 2.22778570e-06 7.82057121e-07
 -3.09086997e-06 -6.23096463e-08 4.33920144e-08 -6.24818540e-08
 -8.16075321e-05 -4.71861944e-06 2.00501426e-08 -1.70548248e-06
 -2.68511335e-05 1.16288877e-04 3.16528684e-05 1.61066794e-05
 -2.03336485e-06 -5.90145830e-05 2.00467098e-04 3.52278506e-05
  2.70664322e-05 1.61737844e-05 -3.71694775e-06 -8.52718606e-05
  1.42939351e-04 5.97615244e-05 -3.60221410e-04 3.51612157e-05
  3.45259215e-05 -9.74694783e-07 -1.93099678e-04 3.31863025e-04
  1.41762944e-04 8.88140918e-04 3.62469849e-04 1.29838720e-04
  6.77436610e-05 1.49052362e-06 -7.08678013e-05 1.15560148e-03
  1.09366648e-03 1.63925875e-03 4.43395520e-04 -4.84262691e-05
  -3.39880038e-06 -4.47610045e-07 -2.04853056e-07 -3.12567227e-06
 -2.35884940e-05 -2.67310283e-05 -4.99023443e-05 -2.75345111e-05
  -3.09027500e-06 -1.07453766e-03 6.08787619e-05 7.47708719e-05
  -6.65825223e-06 -2.20580411e-04 7.73140650e-04 5.56067318e-04
  -2.51652415e-04 4.13790133e-03 -1.53615053e-04 1.55225523e-04
  2.27881584e-05 5.05304463e-06 2.94306862e-06 -8.87576550e-08
  -8.95101686e-06 3.84055888e-05 2.95920168e-05 1.04270281e-04
  2.67040629e-04 -3.51727031e-06 8.17560342e-05 1.83198226e-05
  -9.41994323e-06 3.19959854e-06 2.27021339e-06 -1.27916606e-07
  -6.44698218e-06 2.94628991e-05 2.31640571e-05 3.38441492e-05
  1.32210645e-04 -3.61779646e-06 5.35109538e-05 4.92502477e-06
  3.04908348e-06 1.52636439e-04 9.45617470e-05 7.90546121e-05
 -2.50733454e-05 -6.61332115e-04 6.65151831e-04 1.29755626e-05
 -1.95424703e-05 -6.12995223e-05 -2.40092650e-04 -2.99354169e-04
  2.93795715e-04 6.84521454e-05 1.93844728e-04 1.94977917e-04
  9.69089774e-05 7.91213612e-05 -2.56222366e-05 -6.68780771e-04
  6.97721309e-04 3.62865666e-05 1.29974001e-04 1.53046722e-04
 -2.42420536e-04 -2.92869224e-04 3.10737146e-04 7.02358734e-05
  -3.93630970e-06 -8.71830657e-05 -1.74877935e-04 -4.28816046e-06
  2.18214109e-06 -2.60738762e-07 -1.56717962e-05 -3.69716221e-06
 -1.92923586e-05 -7.55288438e-05 3.24024171e-05 -5.24338245e-06
 -2.35548173e-04 -3.81733528e-06 -4.58048397e-06 -6.95835865e-04
 -6.85221499e-04 -2.00771693e-05 -1.59103206e-04 -4.27067625e-06
  1.58699026e-06 -2.29589522e-07 -1.37191754e-05 -7.34732318e-06
 -2.09810760e-05 -6.55885176e-05 1.12041406e-06 -3.98911877e-06
 -2.12190928e-04 -4.40771331e-06 -4.52918112e-06 -7.22369123e-04
 -7.14440851e-04 -1.70938756e-05 -1.47161815e-05]]
the runtime of this program:114.446
```


