Feuille d'exercices 1

Rappels, distance et topologie sur \mathbb{R} .

Exercice 1.1 – Centre et rayon des intervalles Soient b, c deux réels tels que b < c. Déterminer un réel a et un réel r>0 tels que b;c coïncide avec l'intervalle ouvert de centre a de rayon r.

Commencer par un dessin! Cela permettra de deviner quel a et quel r choisir. Puis argumenter...

Exercice 1.2 – Opérations et intervalles.

- 1. Déterminer l'intervalle $I = \{x \in \mathbb{R}, \text{ tel que } \exists s \in [0,1], \exists t \in [-1,1] \text{ avec } x = s+t\}$. Même question en remplaçant [-1;1] par]-1;1[. Deviner les bornes. Puis démontrer soigneusement votre affirmation.
- **2.** Déterminer l'intervalle $J = \{x \in \mathbb{R}, \text{ tel que } \exists s \in [-2, -1], \exists t \in [-4, -3] \text{ avec } x = st\}$. Même question en remplaçant [-2; -1] par]-2; 1[. Même indication.

Exercice 1.3 – Unions d'intervalles.

Soient I et J deux intervalles de \mathbb{R} . On suppose que $I \cap J \neq \emptyset$. Démontrer que $I \cup J$ est un intervalle. Utiliser la caractérisation des intervalles par les sous-intervalles fermés!

Exercice 1.4 – Réels et décimaux. Soit $\underline{c} = (c_n)_{n \geq 1}$ une suite quelconque de *chiffres*, c'est à dire que pour tout $n \ge 1$ on a $c_n \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$. Pour tout $k \ge 1$ posons $d_k = \frac{c_1}{10} + \frac{c_2}{100} + \dots + \frac{c_k}{10^k}$. Soit $E(\underline{c}) = \{d_1, d_2, \dots, d_n, \dots\}$: c'est l'ensemble des valeurs de la suite $(d_k)_{k \ge 1}$. On pose $S(\underline{c}) = \sup(E(\underline{c}))$.

- **1.** Si tous les chiffres c_n valent 0, que vaut $S(\underline{c})$? Si tous les chiffres c_n valent 9, que vaut $S(\underline{c})$? Pour comprendre les notations introduites choisissez votre suite de chiffre $(c_n)_{n\geq 1}$ préférée (non constante) et déterminez les quantités définies par l'énoncé!
- **2.** Montrer que $S(\underline{c})$ est dans [0,1] et est la limite de la suite $(d_n)_{n>1}$.
- 3. Réciproquement, pour tout nombre $x \in [0,1]$, montrer qu'il existe au moins une suite de chiffres $(c_n)_{n\geq 1}$ telle que $S(\underline{c}) = x$. Revoyez et utilisez l'écriture décimale des réels! Donner un exemple de réel $x \in [0,1]$ tel qu'il existe deux suites différentes $\underline{c},\underline{c'}$ pour lesquelles on a $S(\underline{c}) = S(\underline{c'}) = x$. Ainsi l'écriture décimale n'est pas unique.

Exercice 1.5 – Diamètres. Vérifier que les parties suivantes sont bornées puis calculer leur diamètre :

$$A = [0, 1]$$
; $B =]-2, 3[$; $C = \{4, 5, 6\}$; $D = \{x \in]0, 1[$, $x \text{ est rationnel}\}$.

Quand ce n'est pas immédiat, commencez par deviner les diamètres. Puis démontrer soigneusement votre affirmation.

Exercice 1.6 – Parties bornées de \mathbb{R} .

- 1. Soit $E \subset \mathbb{R}$ une partie bornée. Montrer que si $F \subset E$ alors F est bornée.
- 2. Montrer qu'une intersection quelconque de parties bornées est bornée.
- 3. Montrer qu'une union de deux parties bornées est bornée.

Utilisez la caractérisation de "borné" qui vous convient le mieux.

Exercice 1.7 – Ouverts? fermés? Revoir et utiliser correctement les définitions de voisinage, d'ouvert, de fermé.

- 1. Montrer que [0; 1] n'est pas ouvert et que]1; 2[n'est pas fermé. Montrer que [-1; 0[n'est ni ouvert ni fermé.
- 2. Soit C l'ensemble des réels x tels que au moins l'un des chiffres du développement décimal de x est 5.
 - a. Démontrer que C n'est pas ouvert. Considérer certains réels qui n'ont qu'un seul 5 dans leur développement décimal.
- **b.** Soit $O = \{x \in C, x \text{ n'est pas décimal}\}$. Démontrer que O est ouvert. Remarque : pour $x \in C$ on a : C voisinage $de x \iff x \in O!$

Exercice 1.8 – Topologie et borne supérieure.

Soit $E \subset \mathbb{R}$ une partie non vide et majorée. Soit $M = \sup(E)$.

- 1. Montrer que si E est ouvert alors $M \not\in E$. Raisonner par l'absurde, en utilisant que M est un majorant.
- 2. Montrer que si E est fermé alors $M \in E$. Raisonner par l'absurde, en utilisant que M est le plus petit des majorants.
- 3. Reformuler les résultats obtenus en termes de majorants.

Exercice 1.9 – Description des ouverts de \mathbb{R} . Soit $O \subset \mathbb{R}$ un ouvert.

- **1.** Soit $x_0 \in O$ fixé. On considère $R^+(x_0) = \{r > 0, [x_0, x_0 + r[\subset O] \in R^-(x_0) = \{r > 0, [x_0 r; x_0] \subset O\}$.
 - **a.** Montrer que $R^+(x_0) \cap R^-(x_0) \neq \emptyset$.
- **b.** Montrer que : ou bien $R^+(x_0) =]0; +\infty[$, ou bien il existe un réel $r^+ > 0$ tel que $R^+(x_0) =]0; r^+]$. On pourra vérifier d'abord que $R^+(x_0)$ est un intervalle.
 - c. Montrer qu'il existe un et un seul intervalle ouvert $O(x_0)$ tel que
 - (1) $O(x_0)$ est voisinage de x_0 ;
 - (2) $O(x_0)$ est contenu dans O;
 - (3) Pour tout intervalle ouvert U tel que $\{x_0\} \subset U \subset O$ on a $U \subset O(x_0)$.

Faire un dessin! On pourra définir $O^+(x_0) = [x_0; +\infty[$ si $R^+(x_0) =]0; +\infty[$, et $O^+(x_0) = [x_0; x_0 + r^+[$ si $R^+(x_0) =]0; r^+]$, puis définir de même $O^-(x_0)$.

2. Montrer qu'il existe une famille dénombrable d'intervalles ouverts deux à deux disjoints dont la réunion est O (on pourra considérer la famille formée de tous les intervalles ouverts O(r), où r est un nombre rationnel contenu dans O).

Exercice 1.10 – Exemples de suite de Cauchy de $\mathbb R$

- 1. Pour tout entier naturel n on pose $x_n = \frac{\cos(0)}{10^0} + \frac{\cos(1)}{10^1} + \frac{\cos(2)}{10^2} + \dots + \frac{\cos(n)}{10^n}$. Montrer que $(x_n)_n$ est de Cauchy. On pourra majorer $|x_p x_q|$ par la somme des termes d'une suite géométrique.
- 2. Soit $f:[0;+\infty[$ une fonction dérivable telle que f'(x) est décroissante et $\lim_{x\to\infty} xf'(x)=0$. Montrer que la suite $(f(n))_n$ est de Cauchy. Penser au théorème des accroissements finis.

Exercice 1.11 – Comment transformer une suite bornée en suite convergente!

Soit $(x_n)_{n\geq 0}$ une suite numérique réelle bornée. Pour tout entier $n\geq 0$ on pose $s_n:=\sup\{x_k,k\geq n\}$.

1. Exemples : pour chacune des suites $(x_n)_{n\geq 0}$ ci-dessous expliciter la suite $(s_n)_{n\geq 0}$ associée :

$$x_n = \frac{1}{2^n}$$
; $x_n = (-1)^n$; $x_n = -\frac{1}{2^n}$; $x_n = \frac{1}{1 + (n-4)^2}$; $x_n = \frac{(-1)^n}{2^n}$.

Pour deviner la réponse il peut être utile de représenter sur un graphique les premiers points (n, x_n) .

On revient à l'étude générale.

- **2.** Montrer que la suite $(s_n)_{n>0}$ est décroissante et minorée. Si $\emptyset \neq A \subset B \subset \mathbb{R}$ et B majorée alors $\sup(A) \leq \sup(B)$.
- 3. Montrer alors qu'il existe un réel L avec la propriété suivante : pour tout $\varepsilon > 0$ l'ensemble $I(\varepsilon)$ des $k \in \mathbb{N}$ tels que $x_k \in]L \varepsilon; L + \varepsilon[$ est infini, et de plus l'ensemble $J(\varepsilon)$ des $\ell \in \mathbb{N}$ tels que $x_\ell \in]L + \varepsilon; +\infty[$ est fini. Comme $(s_n)_{n\geq 0}$ est décroissante et minorée...
- **4.** Montrer que si la suite $(x_n)_{n\geq 0}$ tend vers un réel ℓ alors on a aussi $\lim_{n\to\infty} s_n = \ell$.
- **5.** Dans cette dernière question on suppose que la suite $(x_n)_{n\geq 0}$ est de Cauchy.
 - **a.** Vérifier que la suite $(x_n)_{n\geq 0}$ est bornée. Pour $p,q\geq N_1$ on a $|x_p-x_q|\leq 1...$
- **b.** Montrer que $d(x_n, s_n) \to 0$ puis que la suite $(x_n)_{n \ge 0}$ est convergente. Pour majorer $d(x_n, s_n)$, on pourra utiliser $d(x_n, x_m)$, $d(x_m, L)$ et $d(L, s_n)$.

Exercice 1.12 – Soit $I \subset \mathbb{R}$ l'ensemble de tous les nombres irrationnels. Montrer que I est dense dans \mathbb{R} . On rappelle que $\sqrt{2}$ n'est pas rationnel. On pourra alors considérer des nombres de la forme $r + \frac{\sqrt{2}}{10^n}$ avec $r \in \mathbb{Q}$ et $n \in \mathbb{N}$.

Exercice 1.13 - Fonction Lipschitzienne.

Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par $f(x) = \frac{x}{1+x^2}$. Démontrer que f est 1-Lipschitzienne sur \mathbb{R} . TAF!

Exercice 1.14 – Fonction continue mais pas Lipschitzienne.

Soit $f:[0;1] \to \mathbb{R}$ définie par $f(x) = \sqrt{x}$. Montrer que f est continue sur [0;1]. Montrer que f Lipschitzienne sur $[\varepsilon;1]$ pour tout $\varepsilon \in [0;1[$. Montrer que f n'est pas Lipschitzienne sur [0;1]. Taux d'accroissement en [0;1].

Exercice 1.15 – La meilleure constante de Lipschitz. Variations sur le TAF.

Soit $f:[a;b]\to\mathbb{R}$ une fonction continue, dérivable, et telle que $\sup_{x\in[a;b]}|f'(x)|=1$.

- **1.** Montrer que f est 1-Lipschitzienne sur [a; b].
- **2.** Montrer que f n'est pas 0,99-Lipschitzienne sur [a;b].

Exercice 1.16 – Opérations sur les fonctions Lipschitziennes. Soient $f : \mathbb{R} \to \mathbb{R}$ et $g : \mathbb{R} \to \mathbb{R}$ deux fonctions. On suppose que f est K-Lipschitzienne et que g est L-Lipschitzienne.

- 1. Montrer que f + g est Lipschitzienne : avec quel constante de Lipschitz?
- **2.** Montrer que $f \circ g$ est Lipschitzienne : avec quel constante de Lipschitz?
- **3.** Donner un exemple où K = L = 1 mais $f \times g$ n'est pas Lipschitzienne sur \mathbb{R} . Montrer cependant que pour tout $M \ge 0$ la fonction produit $f \times g$ est Lipschitzienne sur [-M; M], et en donner une constante de Lipschitz.

Exercice 1.17 – Fonction Lipschitzienne sur une partie dense. Soit $f : [0;1] \to \mathbb{R}$ une fonction continue. On suppose qu'il existe une constante K > 0 telle que f vérifie la propriété suivante :

pour deux rationnels quelconques $r, s \in [0, 1]$ on a $|f(r) - f(s)| \le K|r - s|$.

Montrer qu'alors f est K-Lipschitzienne sur [0;1]. \mathbb{Q} est dense dans \mathbb{R} .

Exercice 1.18 - Une seule exponentielle continue!

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue telle que pour x, y quelconques on a f(x+y) = f(x)f(y).

- 1. Montrer que $f(0)^2 = f(0)$. Si f(0) = 0 déterminer la fonction f. Dans la suite on suppose $f(0) \neq 0$.
- **2.** Soit $n \in \mathbb{N}$ un entier naturel > 0 et soit $x \in \mathbb{R}$ un réel. Montrer que $f(nx) = [f(x)]^n$, que f(x) > 0, puis que $f(\frac{x}{n}) = \sqrt[n]{f(x)}$. Exprimer aussi f(-x) en fonction de f(x). Enfin pour tout rationnel $r = \frac{p}{q}$ avec $p \in \mathbb{Z}$ et $q \in \mathbb{N}^*$ montrer que $f(rx) = [f(x)]^r$.
- **3.** Montrer qu'il existe un réel K tel que pour tout $x \in \mathbb{R}$ on a $f(x) = \exp(Kx)$ (on pourra poser $K = \ln(f(1))$ et considérer la fonction $g(x) = \frac{f(x)}{\exp(Kx)}$).

Exercice 1.19 – Parties définies par des inégalités continues.

Parmi les parties suivantes déterminer celles qui sont ouvertes et celles qui sont fermées :

$$\{x \in \mathbb{R}, -2 < x^3 + x + 1 < 1 \text{ ou } 2\cos(x) > -1\}\ , \ \{x \in \mathbb{R}, \sin(x) \le \frac{1}{3} \text{ et } \sqrt{1 + x^2} \ge 2\}\ ,$$

$$\{x \in \mathbb{R}, 2 \le e^x \le 3 \text{ ou } \frac{1-x^2}{1+x^2} \ge \frac{1}{2}\}\$$
, $\{x \in \mathbb{R}, 2 < x^2 \ln(2+x^2) < 3 \text{ et } -2 < \sqrt[3]{x} < 1\}$.