Corso di Laurea in Ingegneria Informatica "Basi di dati" a.a. 2019-2020

Docente: Gigliola Vaglini Docente laboratorio SQL: Francesco Pistolesi

1

Lezione 3

Significato e implementazione di una interrogazione

- Cosa si intende per interrogazione?
 - Operazione di lettura sul DB che può richiedere l'accesso a più di una tabella
- Cosa è necessario fare per realizzare una interrogazione?

3

Semantica di un linguaggio di programmazione

- Operazionale
 - Si specificano le modalità di generazione del risultato
 - Nel caso di SQL si definisce questa semantica tramite la cosiddetta Algebra relazionale
- Dichiarativa
 - Si specificano le proprietà del risultato,
 - Nel caso di SQL si usa il Calcolo relazionale

Due semantiche?

- Il metodo dichiarativo è l'effettiva semantica del linguaggio, infatti le interrogazioni sono espresse ad alto livello (ricordare il concetto di indipendenza dei dati)
 - Nessun concetto di costo (ma in realtà si può vedere il costo perchè ↓)
- Il metodo operazionale è il modo che usa il DBMS per eseguire un'istruzione SQL

5

II DBMS

- Il DBMS contiene un modulo specifico detto Query processor, all'interno del quale è definito il processo di esecuzione delle interrogazioni
- Una parte del QP si occupa di ottimizzare (il QP è
 detto anche Ottimizzatore) la query prima
 dell'esecuzione (la query è scritta indipendentemente
 dal suo costo, importa solo il risultato).
 L'ottimizzatore sceglie la strategia (di solito fra
 diverse alternative) di esecuzione per ogni istruzione
 SQL.

"Profili" delle relazioni

- Informazioni quantitative:
 - cardinalità di ciascuna relazione
 - dimensioni delle tuple
 - dimensioni dei valori
 - numero di valori distinti degli attributi
 - valore minimo e massimo di ciascun attributo
- Sono memorizzate nel "catalogo" e possono essere aggiornate con comandi del tipo update statistics
- Utilizzate nella fase finale dell'ottimizzazione, per stimare le dimensioni dei risultati intermedi

Ottimizzazione algebrica

- Il termine ottimizzazione è improprio perché il processo utilizza euristiche
- Si basa sulla nozione di equivalenza:
 - Due espressioni sono equivalenti se producono lo stesso risultato qualunque sia l'istanza attuale della base di dati

9

Algebra relazionale

- Algebra = dati + operatori
- · Algebra relazionale:
 - Dati: relazioni
 - Operatori:
 - su relazioni
 - che producono relazioni
 - e possono essere composti

Operatori dell'algebra relazionale

- · Operatori su insiemi
 - unione, intersezione, differenza
- Operatori su relazioni
 - ridenominazione
 - selezione
 - proiezione
 - join (join naturale, prodotto cartesiano, theta-join)

11

Operatori su insiemi

- Le relazioni sono insiemi, quindi si possono applicare gli operatori su insiemi, cioè unione, intersezione, differenza
- I risultati debbono essere ancora relazioni
 - quindi è possibile applicare unione, intersezione, differenza solo a relazioni definite sugli stessi attributi, in modo che il risultato sia una relazione sugli stessi attributi

Unione

 L'unione di due relazioni sullo stesso insieme di attributi X è una relazione su X che contiene le tuple sia dell'una che dell'altra relazione originaria

13

Unione

Laureati triennali

Laureati magistrali

Matricola	Nome	Età
7274	Rossi	32
7432	Neri	24
9824	Verdi	25

Matricola	Nome	Età
9297	Neri	33
7432	Neri	24
9824	Verdi	25

$\textbf{Laureati triennali} \cup \textbf{Laureati magistrali}$

Matricola	Nome	Età
7274	Rossi	32
7432	Neri	24
9824	Verdi	25
9297	Neri	33

Intersezione

 L'intersezione di due relazioni sullo stesso insieme di attributi X è una relazione su X che contiene le tuple appartenenti ad entrambe le relazioni

15

Intersezione

Laureati triennali

Laureati magistrali

Matricola	Nome	Età
7274	Rossi	32
7432	Neri	24
9824	Verdi	25

Matricola	Nome	Età
9297	Neri	33
7432	Neri	24
9824	Verdi	25

Laureati triennali ∩ Laureati magistrali

Matricola	Nome	Età
7432	Neri	24
9824	Verdi	25

Differenza

- La differenza di due relazioni sullo stesso insieme di attributi X,
 -r₁(X)-r₂(X)
- è una relazione su X che contiene le tuple di r_1 che \underline{non} appartengono anche ad r_2 .

17

Differenza

Laureati triennali

Laureati magistrali

Matricola	Nome	Età	Matricola	Nome	Età
7274	Rossi	32	9297	Neri	33
7432	Neri	24	7432	Neri	24
9824	Verdi	25	9824	Verdi	25

Laureati triennali – Laureati magistrali

Matricola	Nome	Età
7274	Rossi	32

È possibile l'unione delle due relazioni seguenti?

Paternità

Padre	Figlio
Adamo	Abele
Adamo	Caino
Abramo	Isacco

Maternità

Madre	Figlio
Eva	Abele
Eva	Set
Sara	Isacco

Paternità ∪ Maternità ??

19

Ridenominazione

- operatore monadico (con un argomento)
- "modifica lo schema" dell'argomento lasciando inalterata l'istanza

$$\rho_{B_{1..}B_{n}\leftarrow A_{1..}A_{n}}$$
 (r)

Paternità

Padre	Figlio
Adamo	Abele
Adamo	Caino
Abramo	Isacco

$\rho_{\text{Genitore} \leftarrow \text{Padre}} \text{ (Paternità)}$

Genitore	Figlio
Adamo	Abele
Adamo	Caino
Abramo	Isacco

21

$\rho_{\text{Genitore} \leftarrow \text{Padre}} \text{ (Paternità)}$

Genitore	Figlio
Adamo	Abele
Adamo	Caino
Abramo	Isacco

 $\rho_{\text{Genitore} \leftarrow \text{Padre}} \text{ (Paternità)}$

 $\rho_{\text{Genitore} \leftarrow \text{Madre}} \text{ (Maternità)}$

 $\rho_{Genitore} \leftarrow {}_{Madre} \; (\textit{Maternità})$

Genitore	Figlio
Eva	Abele
Eva	Set
Sara	Isacco

Genitore	Figlio
Adamo	Abele
Adamo	Caino
Abramo	Isacco
Eva	Abele
Eva	Set
Sara	Isacco

Selezione

- · operatore monadico
- produce un risultato che
 - ha lo stesso schema dell'argomento e
 - contiene il sottoinsieme delle sue tuple che soddisfano una condizione fissata

23

Sintassi e semantica

data una relazione r(X)

$$\sigma_F(r) = r'$$

- F: espressione booleana ottenuta componendo con and , or e not condizioni atomiche del tipo A θ B oppure A θ c, con A e B attributi in X con domini compatibili, θ operatore di confronto (<,>,=..) e c costante compatibile con il dominio di A.
- r' contiene il sottoinsieme delle tuple di r per cui F e' vera

– impiegati che guadagnano più di 50000 euro

Impiegati

Matricola	Cognome	Filiale	Stipendio
7309	Rossi	Roma	55000
5998	Neri	Milano	64000
5698	Neri	Napoli	64000

 $\sigma_{\text{Stipendio} \, > \, 50000} \; \text{(Impiegati)}$

25

– impiegati che guadagnano più di 50000 e lavorano a Milano

Impiegati

Matricola	Cognome	Filiale	Stipendio
5998	Neri	Milano	64000

σ_(Stipendio > 50000) AND (Filiale = 'Milano')</sub>(Implegati)

Selezione con valori nulli

Impiegati

Matricola	Cognome	Filiale	Età
7309	Rossi	Roma	32
5998	Neri	Milano	45
9553	Bruni	Milano	NULL

 $\sigma_{Et\grave{a}>40}$ (Impiegati)

· la condizione è vera solo per valori non nulli

27

per riferirsi ai valori nulli esistono forme apposite di condizioni: IS NULL IS NOT NULL

Impiegati

N # ! I	
Milano	45
Milano	NULL

 $\sigma_{(Et\grave{a} > 40) \ \lor \ (Et\grave{a} \ IS \ NULL)}$ (Impiegati)

Proiezione

- operatore monadico
- produce un risultato che
 - ha parte degli attributi dell'argomento e su tali attributi contiene tutte le possibili tuple di valori esistenti nella relazione argomento

29

Sintassi e semantica

• Sintassi, $Y \subseteq X$

$$\pi_y$$
 (r(X)) = r'

- Semantica
 - -r'è una relazione su Y e contiene l'insieme delle tuple di r ristrette agli attributi in Y

– matricola e cognome di tutti gli impiegati

Matricola	Cognome
7309	Neri
5998	Neri
9553	Rossi
5698	Rossi

 π $_{\text{Matricola, Cognome}}$ (Impiegati)

3

- cognome e filiale di tutti gli impiegati

Cognome	Filiale
Neri	Napoli
Neri	Milano
Rossi	Roma

 π $_{\text{Cognome, Filiale}}$ (Implegati)

Attenzione: perché c'è differenza nella dimensione dei due risultati?

Cardinalità delle proiezioni

- · una proiezione di r
 - contiene al più tante tuple quante ne ha r
 - può contenerne di meno
- se X è una superchiave di r, allora $\pi_X(r)$ contiene esattamente tante tuple quante ne ha r

33

Proiezione e selezione

- Selezione σ
 - decomposizione orizzontale
- Proiezione π
 - decomposizione verticale

Selezione e proiezione

 Combinando selezione e proiezione, possiamo estrarre interessanti informazioni da una relazione

 matricola e cognome degli impiegati che guadagnano più di 50

Matricola	Cognome
7309	Rossi
5998	Neri
5698	Neri
5698	Neri

 $\pi_{\text{Matricola,Cognome}}$ ($\sigma_{\text{Stipendio} \, > \, 50}$ (Implegati))

Attenzione: ordine degli operatori

37

 Combinando selezione e proiezione, non possiamo però correlare informazioni presenti in relazioni diverse

Una prima combinazione

• Il prodotto cartesiano di due relazioni,

R e Q: operatore X

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Reparto	Capo
В	Mori
С	Bruni

R.Impiegato	R.Reparto	Q.Capo	Q.Reparto
Neri	В	Mori	В
Bianchi	В	Mori	В
Neri	В	Mori	C
Bianchi	В	Bruni	С
Rossi	Α	Bruni	С
Rossi	Α	Bruni	В

39

Join

- il join è l'operatore più interessante dell'algebra relazionale
- permette appunto di correlare dati in relazioni diverse

Join naturale

- operatore binario (generalizzabile)
- produce come risultato una relazione tale che
 - Il suo schema ha l'unione degli attributi degli argomenti
 - L'insieme delle tuple è ottenuto componendo una tupla di ognuno degli operandi per valori uguali degli attributi comuni

41

Sintassi e semantica

- R₁(X₁), R₂(X₂)
- $R_1 \rhd \lhd R_2$ è una relazione su $X_1 \cup X_2$ definita come $\{ \ t \mid esistono \ t_1 \in R_1 \ e \ t_2 \in R_2$

con $t[X_1] = t_1 e t[X_2] = t_2$

Join e proiezioni

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Reparto	Capo
В	Mori
С	Bruni

Impiegato	Reparto	Capo
Neri	В	Mori
Bianchi	В	Mori

Impiegato	Reparto
Neri	В
Bianchi	В

Reparto	Capo	
В	Mori	

43

Proiezioni e join

Impiegato	Reparto	Саро
Neri	В	Mori
Bianchi	В	Bruni
Verdi	Α	Bini

Impiegato	Reparto	Reparto	Capo
Neri	В	В	Mori
Bianchi	В	В	Bruni
Verdi	Α	Α	Bini

Impiegato	Reparto	Саро
Neri	В	Mori
Bianchi	В	Bruni
Neri	В	Bruni
Bianchi	В	Mori
Verdi	Α	Bini

In generale

- $R_1(X_1), R_2(X_2)$ $\pi_{X_1}(R_1 \triangleright \triangleleft R_2) \subseteq R_1$
- R(X), $X = X_1 \cup X_2$ $(\pi_{X_1}(R)) \triangleright \triangleleft (\pi_{X_2}(R)) \supseteq R$

45

Relazioni senza attributi comuni

- La definizione di join funziona ugualmente
 - $-R_1(X_1), R_2(X_2)$
 - $-R_1
 ightharpoonup R_2$ è una relazione su $X_1
 ightharpoonup X_2$ definita come

$$\{ \text{ t } | \text{ esistono } t_1 {\in} R_1 \text{e } t_2 {\in} R_2$$

con
$$t[X_1] = t_1 e t[X_2] = t_2$$

Risultato

- La relazione risultato contiene sempre un numero di tuple pari al prodotto delle cardinalità degli operandi (le tuple sono tutte combinabili)
- Equivale al prodotto cartesiano su tuple

47

Impiegati

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Reparti

Codice	Capo
Α	Mori
В	Bruni

Impiegati ⊳⊲ Reparti

Impiegato	Reparto	Codice	Capo
Rossi	Α	Α	Mori
Rossi	Α	В	Bruni
Neri	В	Α	Mori
Neri	В	В	Bruni
Bianchi	В	Α	Mori
Bianchi	В	В	Bruni

 Il prodotto cartesiano, può essere ridotto eseguendo una selezione

$$\sigma_F (R_1 \times R_2)$$

 L' operazione complessiva può venire eseguita tramite un operatore derivato chiamato theta-join e indicato con

$$R_1 \triangleright \triangleleft_F R_2$$

49

Perché "theta-join"

- La condizione F è spesso una congiunzione (AND) di atomi di confronto A_19 A_2 dove 9 è uno degli operatori di confronto (=,>,<,...) e A_1 , A_2 sono attributi di relazioni diverse
- se l'operatore è sempre l'uguaglianza (=) allora si parla di equi-join

Impiegati

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Reparti

Codice	Capo
Α	Mori
В	Bruni

Impiegati $\triangleright \lhd_{\mathsf{Reparto}=Codice}$ Reparti

Impiegato	Reparto	Codice	Capo
Rossi	Α	Α	Mori
Neri	В	В	Bruni
Bianchi	В	В	Bruni

51

Join naturale ed equi-join

Impiegati

Reparti

Impiegato Reparto

Reparto Capo

Impiegati ⊳⊲ Reparti =

 π Impiegato,Reparto,Capo (

 $\rho_{\text{ I.Reparto}} \leftarrow_{\text{Reparto}} \text{ (Impiegati)} \ \triangleright \triangleleft_{\text{I.Reparto}=\text{ Reparto}} \quad \text{Reparti))}$

Prodotto cartesiano e join naturale

$$\pi_{\text{Impiegato,Reparto,Capo}}(\sigma_{\text{I.reparto=reparto}}(\sigma_{\text{I.Reparto}}))$$
 $\rho_{\text{I.Reparto}} \leftarrow \rho_{\text{Reparto}}(\sigma_{\text{I.reparto=reparto}})$
 $\rho_{\text{I.Reparto}} \leftarrow \rho_{\text{Reparto}}(\sigma_{\text{I.reparto=reparto}})$

Il join non è un operatore primitivo

53

	•
Lcamn	
Esemp	ı
-	٠
•	

Impiegati	Matricola	Nome	Età	Stipendio
	7309	Rossi	34	45000
	5998	Bianchi	37	38000
	9553	Neri	42	35000
	5698	Bruni	43	42000
	4076	Mori	45	50000
	8123	Lupi	46	60000

Supervisione

Impiegato	Capo
7309	5698
5998	5698
9553	4076
5698	4076
4076	8123

 Trovare le matricole dei capi degli impiegati che guadagnano più di 40000 euro

```
π<sub>Capo</sub> (Supervisione

▷⊲ <sub>Impiegato=Matricola</sub> (

σ<sub>Stipendio>40000</sub>(Impiegati)))
```

55

 Trovare le matricole dei capi i cui impiegati guadagnano tutti più di 40000 euro

```
\begin{array}{c} \pi_{\text{ Capo}} \left( \text{Supervisione} \right) \text{ -} \\ \pi_{\text{ Capo}} \left( \text{Supervisione} \right. \\ & \triangleright \circlearrowleft_{\text{ Impiegato=Matricola}} \\ \left( \sigma_{\text{ Stipendio} \, \leq \, 40000} \left( \text{Impiegati} \right) \right) \end{array}
```

Esempi

Impiegati	Matricola	Nome	Età	Stipendio
. 3	7309	Rossi	34	45000
	5998	Bianchi	37	38000
	9553	Neri	42	35000
	5698	Bruni	43	42000
	4076	Mori	45	50000
	8123	Lupi	46	60000

Supervisione

Capo
5698
5698
4076
4076
8123

57

 Trovare nome e stipendio dei capi degli impiegati che guadagnano più di 40000 euro

 $\begin{array}{c} \pi_{\text{ Nome,Stipendio}}\text{(}\\ \text{Impiegati} \rhd \vartriangleleft_{\text{Matricola=Capo}}\\ \pi_{\text{ Capo}}\text{(Supervisione} \end{array}$

 $> \lhd_{\text{Impiegato=Matricola}} (\sigma_{\text{Stipendio}>40000}(\text{Impiegati}))))$

 Trovare gli impiegati che guadagnano più del proprio capo, mostrando matricola, nome e stipendio dell'impiegato e del capo

```
\begin{array}{c} \pi_{\text{Matr,Nome,Stip,MatrC,NomeC,StipC}} \\ (\sigma_{\text{Stipendio>StipC}}(\\ \rho_{\text{MatrC,NomeC,StipC,EtàC} \leftarrow \text{Matr,Nome,Stip,Età}}(\text{Impiegati}) \\ \geqslant \circlearrowleft_{\text{MatrC=Capo}} \\ (\text{Supervisione} \geqslant \circlearrowleft_{\text{Impiegato=Matricola}} \text{Impiegati}))) \end{array}
```

59

Equivalenza di espressioni

Equivalenza di espressioni

- Due espressioni sono equivalenti se producono lo stesso risultato qualunque sia l'istanza attuale della base di dati
- L'equivalenza è importante in pratica perché i DBMS cercano di eseguire espressioni equivalenti a quelle date, ma meno "costose"

61

Equivalenze importanti (1)

• Pushing selections down (se A è attributo di R_2)

$$\sigma_{A=10}$$
 (R₁ $\triangleright \triangleleft$ R₂) = R₁ $\triangleright \triangleleft$ $\sigma_{A=10}$ (R₂)

 Riduce in modo significativo la dimensione del risultato intermedio (e quindi il costo dell'operazione)

Equivalenze importanti (2)

• Pushing projections down (siano dati $R_1(X_1)$ e $R_2(X_2)$ con $Y_2 \subseteq X_2$)

$$\pi_{X_1Y_2}(R_1 \rhd \lhd R_2) = R_1 \rhd \lhd \pi_{Y_2}(R_2)$$

 Riduce in modo significativo la dimensione del risultato intermedio

63

Ottimizzazione algebrica

- Il termine ottimizzazione è improprio perché il processo utilizza euristiche e si basa sulla
 - nozione di equivalenza:
 - Due espressioni sono equivalenti se producono lo stesso risultato qualunque sia l'istanza attuale della base di dati
- Euristica fondamentale:
 - selezioni e proiezioni il più presto possibile (per ridurre le dimensioni dei risultati intermedi):
 - "push selections down"
 - · "push projections down"

65

Rappresentazione interna delle interrogazioni

- · Alberi:
 - foglie: dati (relazioni, file)
 - nodi intermedi: operatori (operatori algebrici, poi effettivi operatori di accesso ai dati)

Alberi per la rappresentazione di interrogazioni

• $\sigma_{A=10}$ (R₁ JOIN R₂) • R₁ JOIN $\sigma_{A=10}$ (R₂) $\sigma_{A=10}$ JOIN

67

Procedura euristica dell'ottimizzatore

- 1. Decomporre le selezioni congiuntive in successive selezioni atomiche
- 2. Anticipare il più possibile le selezioni
- 3. In una sequenza di selezioni, anticipare le più selettive
- 4. Combinare prodotti cartesiani e selezioni per formare join
- 5. Anticipare il più possibile le proiezioni (anche introducendone di nuove)

Esempio

R1(ABC), R2(DEF), R3(GHI)
L'interrogazione
select A,E
from R1, R2, R3
where B>100 and H=7 and I>2 and C=D and F=G

 π AE (σ B>100 and H=7 and I>2 and C=D and F=G (R1 X R2 X R3))

69

Esempio, continua

• viene trasformata in (passi 1, 2, 3, 4 dell'euristica)

$$\pi_{AE}$$
($\sigma_{B>100}$ (R1) JOIN_{C=D} R2) JOIN_{F=G} $\sigma_{I>2}$ ($\sigma_{H=7}$ (R3)))

• passo 5

$$\begin{array}{c} \pi_{AE}(\\ \pi_{AEF}((\pi_{AC}(\sigma_{B>100} \ (R1))) \ JOIN_{C=D} \ R2) \\ JOIN_{F=G} \\ \pi_{G}(\sigma_{I>2}(\pi_{G,I}(\sigma_{H=7}(R3))))) \end{array}$$

Semantica di SQL: Calcolo relazionale

71

Calcolo relazionale

- Una famiglia di linguaggi dichiarativi, basati sul calcolo dei predicati del primo ordine
- · Diverse versioni:
 - calcolo relazionale su domini
 - calcolo su ennuple con dichiarazioni di range

Calcolo su domini

{ A1: x1, ..., An: xn | f }

- · Ai sono nomi di attributi
- xi sono nomi di variabili
- La lista di coppie Ai : xi viene detta target list (descrive il risultato)
- · fè una formula
 - Formule atomiche sono R(A1: $\times 1$, ..., An: $\times n$), che è vera sui valori di $\times 1$... $\times n$ che formano una tupla di R, e $\times i$ ϑ $\times j$, che è vera sui valori di $\times i$ e $\times j$ che soddisfano ϑ

73

Calcolo su tuple con dichiarazione di range

$$\{ x1.Z1, ..., xn.Zn \mid xi(R1), ..., xj(Rm) \mid f \}$$

- x1.Z1, ..., xn.Zn è la target list
- xi(R1) ,..., xj(Rm) è la range list (dice il campo di variabilità delle variabili)
- fè una formula, con formule atomiche del tipo xi.Zi 3 xj.Zj, ad esempio

Base di dati per gli esempi

Impiegati(<u>Matricola</u>,Nome, Età, Stipendio)

Supervisione(Capo, Impiegato)

75

Esempio 1a

 Trovare gli impiegati che guadagnano più di 40 milioni

{ Matricola: m, Nome: n, Età: e, Stipendio: s |
Impiegati (Matricola: m, Nome: n, Età: e,
Stipendio: s) \(\sigma \sigma \righta \) 40 }

Esempio 1b

 Trovare gli impiegati che guadagnano più di 40 milioni

```
{ i.* | i(Impiegati) | i.Stipendio > 40 }
```

77

Esempio 2a

 Trovare nome e matricola degli impiegati che guadagnano più di 40 milioni

```
{ Matricola: m, Nome: n | 
Impiegati (Matricola: m, Nome: n, Età: e, 
Stipendio: s) \( \sim s > 40 \) }
```

Esempio 2b

• Trovare nome e matricola degli impiegati che guadagnano più di 40 milioni

```
{ i.(Matricola, Nome) | i(Impiegati) | i.Stipendio > 40 }
```

79

Quantificatori esistenziali e universali

- Nella logica dei predicati esistono anche i quantificatori
- ∃,∀
 - Sono intercambiabili
 - ∃x(f)=¬(∀ x(¬(f)))
 - \forall x(f)=¬(∃ x(¬(f)))

Quantificatori cont.

 Si possono usare anche nel calcolo relazionale, in tutte le interrogazioni, come quelle viste finora

```
{ Matricola: m, Nome: n | 
∃e,s (Impiegati (Matricola: m, Nome: n, Età: e, Stipendio: s) 
∧ s > 40) }
```

- ma anche omettere.
- Per interrogazioni più complesse, che in algebra, ad esempio, richiedono una differenza, sono necessari

81

Quantificatori cont.

• Trovare matricola e nome dei capi i cui impiegati guadagnano tutti più di 40 milioni.

```
{Matricola: c, Nome: n | Impiegati(Matricola: c, Nome: n, Età: e, Stipendio: s)

^
Supervisione(Capo:c, Impiegato:m)
```

Impiegati(Matricola:m', Nome:n', Età:e', Stipendio:s') \land Supervisione(Capo:c, Impiegato:m') \land s' > 40)))}

Quantificatori esistenziali e universali

 Trovare matricola e nome dei capi i cui impiegati guadagnano tutti più di 40 milioni.

```
{Matricola: c, Nome: n |
Impiegati(Matricola: c, Nome: n, Età: e, Stipendio: s)

Supervisione(Capo:c, Impiegato:m) ∧
¬(∃m'(∃n'(∃e'(∃s'.

Impiegati(Matricola: m', Nome: n', Età: e', Stipendio: s')

Supervisione(Capo:c, Impiegato:m') ∧ s' ≤ 40 ))))}
```

83

Quantificatori esistenziali e universali

Calcolo su domini, discussione

- Pregi:
 - dichiaratività
- Difetti:
 - "verbosità": tante variabili!
 - · Le variabili rappresentano singoli valori
 - possibilità di scrivere espressioni senza senso (dipendenti dal dominio)
 - {A:x, B:y | R(A:x) ∧ y=y}
 - nell'algebra tutte le espressioni hanno un senso (indipendenti dal dominio)

85

Calcolo su tuple, discussione

- Nel calcolo su tuple le variabile rappresentano tuple quindi si ha minore verbosità
- Alcune interrogazioni importanti non si possono esprimere, in particolare le unioni:

$$R_1(AB) \cup R_2(AB)$$

- Ogni variabile nel risultato ha un solo range , mentre vorremmo tuple sia della prima relazione che della seconda
 - · Nota: intersezione e differenza sono esprimibili
- Per questa ragione SQL (che è basato su questo calcolo) prevede un operatore esplicito di unione, ma non tutte le versioni prevedono intersezione e differenza

Calcolo e algebra

- Calcolo e algebra sono "equivalenti"
 - per ogni espressione del calcolo relazionale che sia indipendente dal dominio esiste un'espressione dell'algebra relazionale equivalente a essa
 - per ogni espressione dell'algebra relazionale esiste un'espressione del calcolo relazionale equivalente a essa (e di consequenza indipendente dal dominio)

87

Calcolo e algebra: limiti

- l'insieme di interrogazioni esprimibili è significativo
- Ci sono però interrogazioni interessanti non esprimibili, ad es.
 - interrogazioni inerentemente ricorsive, come la chiusura transitiva

Chiusura transitiva

Supervisione(Impiegato, Capo)

 Per ogni impiegato, trovare tutti i superiori (cioè il capo, il capo del capo, e cosi' via)

Impiegato	Capo
Rossi	Lupi
Neri	Bruni
Lupi	Falchi

Impiegato	Superiore
Rossi	Lupi
Neri	Bruni
Lupi	Falchi
Rossi	Falchi

89

Chiusura transitiva

- Nell'esempio, basterebbe il join della relazione con se stessa, previa opportuna ridenominazione
- Ma aggiungiamo una nuova ennupla

Impiegato	Capo
Rossi	Lupi
Neri	Bruni
Lupi	Falchi
Falchi	Leoni

Impiegato	Superiore
Rossi	Lupi
Neri	Bruni
Lupi	Falchi
Rossi	Falchi
Lupi	Leoni
Rossi	Leoni

Chiusura transitiva

- Non esiste la possibilità di esprimere l'interrogazione che calcoli la chiusura transitiva di una relazione qualunque
- In algebra relazionale l'operazione si simulerebbe con un numero di join illimitato

91

Si consideri il seguente schema di base di dati

- Film(<u>CodiceFilm</u>, Titolo, CodiceRegista, Anno)
- Produzione (<u>CasaProduzione</u>, Nazionalità, <u>CodiceFilm</u>, Costo, Incasso1annoSala)
- Artista (<u>CodiceAttor</u>e, Cognome, Nome, Sesso, DataDiNascita, Nazionalità)
- Interpretazione (<u>CodiceFilm, CodiceAttore</u>, Personaggio, SessoPersonaggio)
- Regista (<u>CodiceRegista</u>, Cognome, Nome, Sesso, DataDiNascita, Nazionalità)
- Noleggio (<u>CodiceFilm</u>, Incasso1annoVideo, Incasso1annoDVD)

Formulare in algebra relazionale le seguenti interrogazioni (1)

 nomi e cognomi dei registi che hanno diretto film che hanno incassato il primo anno di uscita meno nelle sale che per il noleggio di DVD

```
\begin{array}{c} \pi_{\mathsf{N},\mathit{C}} \quad \text{(} \ \pi_{\mathsf{N},\mathit{C},\mathit{CF}} \left( \pi_{\mathsf{N},\mathit{C},\mathit{CR}} \ \left( \mathsf{Regista} \right) \, \triangleright \lhd \, \pi_{\mathit{CF},\mathit{CR}} \left( \mathsf{Film} \right) \\ \quad \, \triangleright \lhd \\ \\ \pi_{\mathit{CF}} \left( \sigma_{\mathsf{Inc1sala} < \mathsf{Inc1DVD}} \left( \pi_{\mathsf{Inc1sala},\mathit{CF}} \left( \mathsf{Produzione} \right) \right. \\ \quad \, \triangleright \lhd \, \pi_{\mathsf{Inc1DVD},\mathit{CF}} \left( \mathsf{Noleggio} \right) \left. \right) \\ \text{)} \end{array}
```

93

calcolo dei domini

 {Nome: n, Cognome: c| Regista(CodiceRegista: cr, Cognome:c, Nome:n,...) ∧ Film(CodiceFilm: cf,... CodiceRegista: cr,...) ∧ Produzione(.. CodiceFilm:cf,...Incasso1annoSala:is) ∧ Noleggio(CodiceFilm:cf,... Incasso1annoDVD:idvd) ∧ (is<idvd) }

Formulare in algebra relazionale le sequenti interrogazioni (2)

 i titoli dei film i cui attori sono tutti dello stesso sesso

```
1. π<sub>Titolo</sub> (Film) - π<sub>Titolo</sub> (Film ▷ □ σ<sub>Sesso</sub> (S) (
π<sub>CF,Sesso</sub> (Artista ▷ □ Interpretazione)
▷ □ ρ<sub>S' ← Sesso</sub> (
π<sub>CF,Sesso</sub> (Artista ▷ □ Interpretazione) )))

2. (π<sub>Titolo</sub> (Film) - π<sub>Titolo</sub> (Film ▷ □ (
π<sub>CF</sub> (σ<sub>Sesso='M'</sub> (Artista) ▷ □ Interpretazione)))) ∪
(π<sub>Titolo</sub> (Film) - π<sub>Titolo</sub> (Film ▷ □ (
π<sub>CF</sub> (σ<sub>Sesso='F'</sub> (Artista) ▷ □ Interpretazione)))))
```

95

calcolo dei domini

• {Titolo: t| Film(CodiceFilm: cf, Titolo: t,...) ∧¬∃ ca1,c1,n1,s1,nz1,dn1,ca2,c2,n2,s2,nz2,dn2,p1,p2,sp1,sp2 (Artista (CodiceAttore:ca1, Cognome:c1, Nome:n1, Sesso:s1, DataDiNascita:dn1, Nazionalità:nz1) ∧ (Artista (CodiceAttore:ca2, Cognome:c2, Nome:n2, Sesso:s2, DataDiNascita:dn2, Nazionalità:nz2) ∧ Interpretazione (CodiceFilm:cf, CodiceAttore:ca1, Personaggio:p1, SessoPersonaggio:sp1) ∧ Interpretazione(CodiceFilm:cf, CodiceAttore:ca2, Personaggio:p2, SessoPersonaggio:sp2) ∧ s1≠s2) }

Formulare in algebra relazionale le seguenti interrogazioni (3)

 i titoli di film con solamente attori donna che abbiano incassato in sala più del proprio costo

```
\begin{array}{c} \pi_{\text{ Titolo}}\left(\pi_{\text{ CF, Titolo}}(\text{Film}) \right) \lhd \\ \pi_{\text{ CF}}\left(\sigma_{\text{ Inc1S>Costo}}\left(\text{Produzione}\right)\right) \rhd \lhd \\ \left(\pi_{\text{ CF}}\left(\text{ Film}\right) - \right. \\ \pi_{\text{ CF}}\left(\pi_{\text{ CA, }}\left(\sigma_{\text{ Sesso=`M`}}\left(\pi_{\text{ CA, Sesso}}(\text{Artista})\right)\right) \right. \\ \rhd \lhd \\ \pi_{\text{ CA, CF}}\left(\text{Interpretazione}\right)\right) \end{array}
```

97

Estensioni dell'algebra

Algebra relazionale estesa

- Il modello relazionale può essere facilmente esteso a comprendere gli operatori SQL non direttamente riconducibili agli operatori algebrici introdotti
- Questa estensione non modifica il funzionamento del modello

99

Estensioni (1)

- Join esterno (left, right, full)
- permette di generare valori null per mezzo delle espressioni dell'algebra relazionale per modellare le informazioni mancanti
- Left(= $\triangleright \triangleleft$): solo tuple dell'operando sinistro sono riempite con NULL
- Right($\triangleright \triangleleft$ =): idem per l'operando destro
- Full($= \triangleright \triangleleft =$): per entrambi gli operandi

		Esem	pi		
Impiegati	Matricola	Nome	Età	Stipend	lio
	7309	Rossi	34	45000	
	5998	Bianchi	37	38000	
	9553	Neri	42	35000	
	5698	Bruni	43	42000	
	4076	Mori	45	50000	
	8123	Lupi	46	60000	
Supervisione		Impiega	to	Саро	
•		7309		5698	
		5998		5698	
		9553		4076	
		5698		4076	
		4076		8123	

Uso del join esterno

Trovare la matricola dei capi degli impiegati che guadagnano tutti più di 40000 euro

$$\pi_{Capo}$$
 ($\sigma_{Matricola=Null}$ (

Supervisione = $\triangleright \triangleleft_{Impiegato=Matricola}$
 $\sigma_{Stipendio \leq 40000}$ (Impiegati)))

???

Estensioni (2)

- Proiezione generalizzata
 - $\pi_{F1,F2,F3}(E)$
 - F1,F2, F3 sono espressioni aritmetiche su attributi di E (che è una qualunque espressione dell'algebra) e costanti

103

Conto		
Cliente	Credito	Spese
Andrea	6000	1000
Andrea	4000	500
Maria	10000	2000
Anna	3000	1500
Filippo	3000	1000
Luigi	5000	1800
Franco	5000	2000
Maria	6000	2000
Andrea	10000	5000
Anna	5000	1000

Esempio proiezione

- Si può scrivere ad esempio
 - $-\pi_{Cliente,Credito-Spese}(Conto)$
- ed ottenere il seguente risultato

Cliente	ente Credito
Andrea	
Andrea	drea 3500

Estensioni (3)

- Funzioni aggregate
 - Si possono usare nelle espressioni alcuni nomi di funzioni (operatori) che si applicano a (multi)insiemi e producono un valore come risultato

107

Operatori aggregati

- sum, count, min, max
 - $-sum_{Spese}$ (Conto)
 - $-\operatorname{count}_{\operatorname{Cliente}}\left(\operatorname{Conto}\right)$
 - max_{Credito} (Conto)
 - count-distinct_{Cliente} (Conto)

Raggruppamento

 Si possono raggruppare gli elementi di una relazione usando un'operatore apposito

 $Cliente G_{sum(Credito)}(Conto)$

- Cliente è l'attributo su cui si fa il raggruppamento, sum è la funzione aggregata che si applica all'attributo Credito, Conto è la relazione su cui si applica il tutto.
- Si possono avere più attributi a sinistra e più funzioni a destra di G

109

Un altro operatore derivato: divisione

- In generale, la divisione è utile per interrogazioni di tipo "universale"
- Vogliamo trovare i nomi dei clienti che hanno un conto corrente in tutte le filiali di banca di Pisa.
- Le relazioni sono
 - Branch(bank_name, branch_name, branch_city)
 - Account(branch_name, bank_name, account_number, branch_city)
 - Depositor(account_number, customer_name)

 $\Pi_{CN,BN}$ (depositor $\triangleright \triangleleft$ account) ÷ Π_{BN} ($\sigma_{BC='Pisq'}$ (branch))

Cosa si intende

```
\begin{split} \Pi_{\text{CN,BN}} & (\text{depositor} \, \triangleright \triangleleft \, \text{account}) \div \\ & \Pi_{\text{BN}} (\sigma_{\text{BC='Pisa'}} \, (\text{branch})) \end{split} Equivale a \Pi_{\text{CN}} & (\text{depositor} \, \triangleright \triangleleft \, \text{account}) - \\ \Pi_{\text{CN}} & (\\ & ((\Pi_{\text{CN}} (\text{depositor} \, \triangleright \triangleleft \, \text{account}) \, \triangleright \triangleleft \\ & \Pi_{\text{BN}} (\sigma_{\text{BC='Pisa'}} \, (\text{branch})) \\ & ) - \Pi_{\text{CN,BN}} & (\text{depositor} \, \triangleright \triangleleft \, \text{account}) \\ & ) \end{split}
```

 Π_{CN} (depositor $\triangleright \triangleleft$ account) $\triangleright \triangleleft \Pi_{BN}$ ($\sigma_{BC='Pisa'}$ (branch)) Si combinano tutti i clienti presenti nel data base con le filiali di Pisa;

togliendo da questo insieme le coppie (cliente, filiale) presenti nel data base, cioè

 $\Pi_{CN,BN}$ (depositor $\triangleright \triangleleft$ account)

Restano i clenti che hanno un conto in una filiale a Pisa, ma non in tutte.

Togliendo dai clienti del data base i clienti ottenuti, restano i clienti che hanno un conto in tutte le filiali di Pisa.

112

Definizione

- Siano r(R) e s(S) relazioni con R⊇ S, r÷s
 è una relazione su R-S; una tupla t∈ r÷s
 iff
 - † $\in \Pi_{R-S}$ (r)
 - $\forall t' \in s$, $\exists t'' \in r$ tale che
 - t'[S]= t"[S] e
 - †'[R-S]= †

113

Relazioni derivate

Relazioni derivate

- · Relazioni di base: contenuto autonomo
- · Relazioni derivate:
 - relazioni il cui contenuto è funzione del contenuto di altre relazioni (ed è definito per mezzo di interrogazioni)
 - Due tipi di relazioni derivate:
 - viste materializzate
 - <u>viste virtuali</u> (o viste)

115

Viste materializzate

- relazioni derivate memorizzate nella base di dati
 - vantaggi:
 - · immediatamente disponibili per le interrogazioni
 - svantaggi:
 - ridondanti
 - · appesantiscono gli aggiornamenti
 - Non sempre supportate dai DBMS

Viste virtuali

- · Viste virtuali
 - sono supportate dai DBMS (tutti)
 - una interrogazione su una vista viene eseguita "ricalcolando" la vista (o quasi)

117

Esempio

Afferenza

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В
Verdi	С

Direzione

Reparto	Capo
Α	Mori
В	Bruni
С	Leoni

• una vista

Supervisione =

 $\pi_{\text{Impiegato}, Capo}$ (Afferenza $\triangleright \triangleleft$ Direzione)

Interrogazioni sulle viste

 Sono eseguite sostituendo alla vista la sua definizione:

 $\sigma_{\textit{Capo='Leoni'}}$ (Supervisione) viene eseguita come

 $\sigma_{\text{Capo='Leoni'}}(\pi_{\text{Impiegato, Capo}}(Afferenza))$

119

Viste, motivazioni

- Strumento di programmazione :
 - si può semplificare la scrittura di interrogazioni: espressioni complesse e sottoespressioni ripetute
- L'utilizzo di viste virtuali non influisce sull'efficienza delle interrogazioni

Viste come strumento di programmazione

- · Trovare gli impiegati che hanno lo stesso capo di Rossi
- Senza vista:

```
\pi _{\text{Impiegato},\textit{Capo}} (Afferenza \vartriangleright \lhd Direzione) \vartriangleright \lhd \pi _{\textit{Capo}} ( \sigma _{\text{Impiegato='Rossi'}} (Afferenza \vartriangleright \lhd Direzione))
```

· Con la vista:

```
\pi_{\text{Impiegato}, Capo} (Supervisione) \triangleright \triangleleft
\pi_{\text{Capo}} (
\sigma_{\text{Impiegato='Rossi'}} (Supervisione))
```

121

Con le viste posso evitare di usare l'operatore di ridenominazione, ad esempio, posso scrivere

Capi = Impiegati

Ed usare due istanze della relazione impiegati con nome diverso