

Figure 1: header image

Project - M1 GENIOMHE 2024/25:

Introduction on the species, structural genomics and goal of this project, then discuss potential issues that might arise due to complexity. Proceed by summarizing the desired workflow highlighting the criteria demanded by the instructor to be fulfilled

Exploration of the *Triticum aestivum* sequence

Checking GC content in this region to have an idea about potential gene desnitites. For that we run the script:

python src/GCcontent.py data/region8.fasta

The GC content of the DNA sequence is 48%.

Transcriptome:

The European Nucleotide Archive (ENA) comprises a large collection of sequencing data from raw sequences to assembly to functionally annotated ones. While looking for transcriptome studies for *Triticum aestivum* we find several projects (Total= 22):

AccessionDescription	AccessionDescription
GAEF01000000m aestivum, TSA	GBKH01 000000 m aestivum, TSA
project GAEF01000000 data	project GBKH01000000 data
GAJL010 00000 cum aestivum, TSA	GBKI010 D0000 cum aestivum, TSA
project GAJL01000000 data	project GBKI01000000 data
GBKJ01000000m aestivum, TSA	GBKK01 000000 m aestivum, TSA
project GBKJ01000000 data	project GBKK01000000 data

AccessionDescription	AccessionDescription
GBZP010D9000Triticum aestivum, transcriptome shotgun assembly.	GDTJ010Dd0Dd0m aestivum, TSA project GDTJ01000000 data
GEUX01000000m aestivum, TSA project GEUX010000000 data	GEWU01000000 aestivum, TSA project GEWU01000000 data
GFFI01000000 Triticum aestivum, transcriptome shotgun assembly.	GIJS01000000cum aestivum, TSA project GIJS01000000 data
GILY01000000um aestivum, TSA project GILY01000000 data	GIXT010 DS 000 Triticum aestivum cultivar TcLr19 isolate leaf, transcriptome shotgun assembly.
GJAR010D8000Triticum aestivum cultivar Avocet R, transcriptome shotgun assembly.	GJUY010D8000Triticum aestivum, transcriptome shotgun assembly.
HAAB01000000m aestivum, TSA project HAAB01000000 data	eq:hceco100000000000000000000000000000000000
HCED010000A00Triticum aestivum	IAAK010 08000 Triticum aestivum, transcriptome shotgun assembly.
IAAL010000000 Triticum aestivum, transcriptome shotgun assembly.	IAAM010D8000Triticum aestivum, transcriptome shotgun assembly.

TSA stands for Transcriptome Shotgun Assembly

One of them is published by Xiao et al. (2013) in BMC Genomics [REF1]. They have performed short read RNA-seq using Illumina Hi-Seq tech, and deposited the project's raw reads on the SRA database, project SRX212270. We will use this as trial to explore how we can validate using Whole Transcriptomes before optimizing our choice.

Trial 1: blasting against transcriptome

As a first attempt, due to the high memory requirement (e.g., one of them is 15GB of reads), we have tried performing BLAST on ncbi's server against this whole transcriptome in [REF1] @xiao2013transcriptome, with default parameters (can perform it here by just adding the region8 fasta file). The default search gave no significant results, we will try to relax the parameters (BLOSUM45 and lowering penalties, accepting lower thresholds...)

Trial 2: downloading the WTS data

We will try downloading the reads of [1] to see how to manipulate such a large file. Since it surpasses the threshold to download a file from SRA webserver (which is 5GB), we will download it using sra-toolkit.

While running out of time and memory, we will try doing that using Galaxy.

Trial 3: Analysis

Working on galaxy, first retrieve the SRA accession number from the project, tools > Get data > EBI SRA, copy the accession number and get the fastq in galaxy. After loading them (paired end so 2 fastq) > fastq groomer, to make sure the fastq format fits Galaxy's requirement and make it run. Meanwhile > FastQC to make sure the quality of the transcriptome is good or whether it's better to take another set of reads.

Trial 3: visualization

trying to perform RNA-seq aln and viz using IGV

Resources:

- Whole Genome (all 6n chr) of triticum aestivum on ENSEMBL : https://ftp.ensemblgenomes.ebi.ac.uk/pub/plants/release-60/gff3/triticum aestivum/
- ENA: https://www.ebi.ac.uk/ena/browser/view/Taxon:4565
- SRA: Sequence Read Archive, repository for seq data
- RNAseq reads fetch and viz: youtube video

References

[1] Xiao, J., Jin, X., Jia, X., Wang, H., Cao, A., Zhao, W., . . . & Wang, X. (2013). Transcriptome-based discovery of pathways and genes related to resistance against Fusarium head blight in wheat landrace Wangshuibai. BMC genomics, 14, 1-19.