Quiz 03 (Set B (Solution))

SIAS, Krea University (AY 2025-26)

Mathematical Methods for Economics (Course Code: **ECON211**) 05 September 2025

Multiple Choice Questions

- 1. (1 point) If $f(x) = x^2$, $g(x) = x^2 + 3$ and $h(x) = (x+3)^2$, then
 - A. the graph of g(x) can be obtained by shifting f(x) downwards by 3 units.
 - B. the graph of h(x) can be obtained by shifting f(x) to the right by 1 unit.
 - C. the graph of h(x) can be obtained by shifting f(x) to the left by 1 unit.
 - D. the graph of g(x) can be obtained by shifting f(x) upwards by 3 units.

Answer: D

Solution: This is very straightforward. g(x) is f(x) shifted up three units and h(x) is f(x) being shifted to the left by three units.

$$f(x) = x^2$$
 $h(x) = (x+3)^2$ $g(x) = x^2 + 3$

- 2. (1 point) Let f(x) = 100. Then,
 - A. $f^{-1}(x)$ does not exist.
 - B. $f^{-1}(x) = 100$
 - C. $f^{-1}(x) = \frac{1}{100}$
 - D. $f^{-1}(x) = \frac{1}{100x}$

Answer: A

Solution: Consider two points in the domain of the function: x = 1 and x = 2.

$$f(1) = 100$$
 and $f(2) = 100$.

What happens when you 'invert' this function? You get:

$$f^{-1}(100) = 1$$
 and $f^{-1}(100) = 2$.

This cannot be a valid function as it is not one-to-one. Therefore, the inverse does not exist.

3. (1 point) Consider the following statements:

Statement (i):

 $\lim_{x\to 2} |x-2|$ does not exist.

Statement (ii):

f(x) = |x - 2| is not differentiable at x = 2.

- A. Both (i) and (ii) are correct.
- B. Statement (i) is correct but statement (ii) is wrong.
- C. Statement (i) is wrong but statement (ii) is correct.

Answer: C

Solution:

$$\begin{split} \text{LHL: } &\lim_{x \to 2^-} |x-2| = 0 \\ \text{RHL: } &\lim_{x \to 2^+} |x-2| = 0 \end{split}$$

LHL = RHL. Therefore, the limit does exist.

LHD:
$$\lim_{x \to 2^{-}} -1 = -1$$
 (since $|x - 2| = 2 - x \quad \forall x < 2$)

RHD:
$$\lim_{x \to 2^+} 1 = 1$$
 (since $|x - 2| = x - 2$ $\forall x > 2$)

LHD \neq RHD. Therefore, f(x) is not differentiable at x=0.

Short Answer Questions-I

4. (1 point) Compute $\frac{dy}{dx}$ if $y = 4x + \frac{2}{\sqrt{x}}$.

Solution:

$$y = 4x + \frac{2}{\sqrt{x}}$$
$$\frac{dy}{dx} = 4 + \frac{d(\frac{2}{\sqrt{x}})}{dx}$$
$$\frac{dy}{dx} = 4 + 2\frac{d(x^{-1/2})}{dx}$$
$$\frac{dy}{dx} = 4 - 2\left(\frac{1}{2}x^{-3/2}\right)$$

Answer: $\frac{dy}{dx}$

$$\frac{dy}{dx} = 4 - x^{-3/2}$$

5. (1 point) Compute the inverse of the following function: $f(x) = \frac{3x-1}{3x+1}$.

Solution:

$$y = f(x)$$

$$\Rightarrow y = \frac{3x - 1}{3x + 1}$$

$$\Rightarrow y(3x + 1) = 3x - 1$$

$$\Rightarrow 3xy + y = 3x - 1$$

$$\Rightarrow 3xy - 3x = -1 - y$$

$$\Rightarrow x(3y - 3) = -1 - y$$

$$\Rightarrow x = \frac{-1 - y}{3y - 3}$$

$$\Rightarrow x = \frac{1 + y}{3 - 3y}$$

$$\Rightarrow x = \frac{1}{3} \left(\frac{1 + y}{1 - y}\right)$$

Answer: $f^{-1}(x) = \frac{1}{3} \left(\frac{1+x}{1-x} \right)$

6. (1 point) Calculate: $\lim_{x\to\infty} \frac{4x^3 - 28x^2 + 20}{5x^3 - 22x^2 + 1009}$

Solution: Divide the whole expression by x^3 .

$$\begin{split} &\lim_{x \to \infty} \frac{4 - \frac{28}{x} + \frac{20}{x^3}}{5 - \frac{22}{x} + \frac{1009}{x^3}} \\ &= \frac{4 - \lim_{x \to \infty} \frac{28}{x} + \lim_{x \to \infty} \frac{20}{x^3}}{5 - \lim_{x \to \infty} \frac{22}{x} + \lim_{x \to \infty} \frac{1009}{x^3}} \\ &= \frac{4}{5} \end{split}$$

Answer:

$$\lim_{x \to \infty} \frac{4x^3 - 28x^2 + 20}{5x^3 - 22x^2 + 1009} = \frac{4}{5}$$

Short Answer Questions-II

7. (2 points) The demand function for Ruinmyshow tickets is given by

$$p = -0.04q + 800$$

(a) (1 point) Compute the marginal revenue.

Solution:

$$TR = (800 - 0.04q) \cdot q$$

$$TR = (800 - 0.04q) \cdot q$$

$$TR = 800q - 0.04q^2$$

$$\Rightarrow MR = 800 - 0.08q$$
 (applying the power rule)

Answer: Marginal revenue = 800 - 0.08q

(b) (1 point) Calculate the approximate revenue from selling the 5001st ticket.

Solution: We know that MR(x) will approximate TR(x+1). Therefore, we need to compute MR(5000).

$$MR(5000) = 800 - 0.08q$$

 $\Rightarrow MR(5000) = 800 - 0.08(5000)$
 $\Rightarrow MR(5000) = 800 - 400$
 $\Rightarrow MR(5000) = 400$

The approximate revenue from selling the 5001st ticket is 400.

- 8. (2 points) There are two parts in this question.
 - (a) (1 point) Calculate a such that the following function is continuous for all x. $f(x) = \begin{cases} ax 2 & \text{if } x \leq 1 \\ 2x^2 + 1 & \text{if } x > 1 \end{cases}$

Solution: Condition for continuity at x = a: LHL = RHL = f(a).

LHL:
$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} ax - 2$$
$$= a - 2$$
RHL:
$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} 2x^{2} + 1$$
$$= 2 + 1$$
$$= 3$$
$$f(1) = a - 2$$
$$\Rightarrow a - 2 = 3$$
$$\Rightarrow a = 5$$

Answer: a = 5.

(b) (1 point) Compute $\frac{dy}{dx}$ if $f(x) = \frac{2-x^2}{2+x^2}$.

Solution: Let $u = 2 - x^2$ and $v = 2 + x^2$.

$$u' = -2x$$
$$v' = 2x$$

We know that, if $f(x) = \frac{u}{v}$, $f'(x) = \frac{vu' - uv'}{v^2}$.

Applying the quotient rule, we get:

$$\frac{dy}{dx} = \frac{(2+x^2)(-2x) - (2-x^2)(2x)}{(2+x^2)^2}$$

$$\Rightarrow \frac{dy}{dx} = \frac{-8x}{(2+x^2)^2}$$

Answer: $\frac{dy}{dx} = \frac{-8x}{(2+x^2)^2}$