

Equipe 1 - Detecção de Tumores Cerebrais

Alunos: Julio Rodrigues Hugo Santos Thays Costa

Sumário

- Introdução
- Base de Dados
- Conceitos
- Metodologia
- Métricas
- Resultados
- Comparação
- Conclusões

Introdução

Objetivo

Detectar a localização de diferentes tipos de tumores cerebrais em diferentes imagens de tomografias cerebrais

- Problema de Visão Computacional
- Algoritmo de Deteção de Objetos

Base de Dados

- 9900 imagens de scans cerebrais;
- Já dividida entre treino, validação e teste (70%, 20% e 10%);
- 3 classes de tumores:
 - o Glioma;
 - Meningioma;
 - Metastático.
- Cada imagem possui um arquivo .txt correspondente contendo seu ground truth no formato:

Base de Dados

Glioma

Meningioma

Metastático

Saudável

Glioma, Meningioma e Metastático

Base de Dados - Informações Básicas

- Todas as imagens possuem a mesma resolução (139 x 132);
- Utilizam o mesmo canal de cores (RGB);
- Não existem duplicatas;
- Desbalanceamento evidente (detecção e classificação).

Base de Dados - EDA I

 Pouca utilidade para extrair insights;

- Imagens "claras" e "escuras";
- Valores bem distribuídos.

Base de Dados - EDA I

- Distribuição Gaussiana;
- Presença de *outliers*;
- Contraste de imagens;
- Técnicas de PDI.

Base de Dados - EDA I

Base de Dados - EDA II

- Poucas imagens sem tumor;
- 2 ou mais tumores em média;
- Imagens não possuem mais de 1 tumor do mesmo tipo;
- Desbalanceamento para detecção.

Base de Dados - EDA II

Class Distribution

Modelo

- Kaggle: 8 algoritmos;
- Escolhido: Brain Tumor Detection w/Keras YOLO V8;
 - Algoritmo de Detecção;
 - Melhores métricas;
 - YOLO You Only Look Once;
 - Versão 8;
 - Única CNN;
 - Previsão de classes e caixas delimitadoras;

Modelo - Visão Geral

- **1.** A imagem de entrada é passada por uma CNN para extrair características da imagem;
- 2. As características são passadas através de uma série de camadas totalmente conectadas, que preveem a probabilidades de classe e as coordenadas da caixa delimitadora;
- 3. A imagem é dividida em uma grade de células e cada célula é responsável por prever um conjunto de caixas delimitadoras e probabilidades de classe:
- 4. As caixas delimitadoras são então filtradas usando um algoritmo de pós-processamento para remover caixas sobrepostas e escolher a caixa com a maior probabilidade;
- **5.** A saída final é um conjunto de caixas delimitadoras previstas e rótulos de classe para cada objeto na imagem.

https://kili-technology.com/data-labeling/machine-learning/yolo-algorithm-real-time-object-detection-from-a-to-zhttps://arxiv.org/abs/1506.02640

Modelo - Metodologia

- Modelo YOLO v8
 - o Pré-processamento: Escala das imagens, 640 x 640;
 - Backbone: pesos pré-treinados com o dataset COCO;
 - Otimizador: AdamW;
 - Função de custo da classificação: Binary Cross-Entropy;
 - Função de custo da detecção: CloU;
 - 120 épocas;

Algoritmo - Metodologia

- Ajuste dos pesos através das funções de custo:
 - Binary Cross-Entropy: Custo em relação a classificação do objeto
 - Medir a discrepância entre as probabilidades preditas e as probabilidades reais;
 - o Clou: Custo em relação a detecção do objeto
 - Medir a sobreposição entre duas caixas delimitadoras;
 Intersection
 - loU alta, boa sobreposição

B. B.

Union

Intersection over Union

$$ToU = \frac{B_1 \cap B_2}{B_1 \cup B_2} = \frac{\Box}{\Box}$$

Modelo - Métricas

- A cada iteração, o modelo calcula as seguintes medidas:
 - O Box Loss:
 - Função de custo da detecção
 - Erro da sobreposição das caixas delimitadoras
 - Class Loss:
 - Função de custo da classificação
 - Erro da classificação dos dados
 - o Loss:
 - Soma das perdas

Modelo - Métricas

• Métricas realizadas pelo modelo em relação ao conjunto de treinamento e o conjunto de validação:

Conclusões

- Dataset
 - Qualidade das imagens do dataset;
 - Desbalanceamento do dataset;
- Modelo
 - Tempo de execução do modelo;
 - Métricas não mensuradas para o conjunto de teste;
- Próximos passos:
 - Considerar técnicas de PDI;
 - Diminuir o tempo de treinamento;
 - Gerar métricas do conjunto de teste;
 - Avaliar fine-tuning;

Referências Bibliográficas

- "Medical Image DataSet: Brain Tumor Detection." Kaggle,
 https://www.kaggle.com/datasets/pkdarabi/medical-image-dataset-brain-tum
 or-detection?resource=download.

 Acessado em 14/04/2024.
- "YOLO Algorithm: Real-Time Object Detection from A to Z." Kili, https://kili-technology.com/data-labeling/machine-learning/yolo-algorithm-real-time-object-detection-from-a-to-z.
 Acessado em 20/04/2024.

Referências Bibliográficas

 "Detecção de Objetos com YOLO – Uma abordagem moderna." IA Expert Academy,

https://iaexpert.academy/2020/10/13/deteccao-de-objetos-com-yolo-uma-abordagem-moderna.

Acessado em 23/04/2024.

 "Performance Metrics Deep Dive." Ultralytics YOLOv8 Docs, <u>https://docs.ultralytics.com/guides/yolo-performance-metrics/#how-to-calculate-metrics-for-yolov8-model</u>.
 Acessado em 25/04/2024.