

Modelo estatístico para tratamento de *missing* e *outliers*

Séries temporais de energia eólica

Juiz de Fora, 13 de julho de 2021

Contextualização

Evolução da capacidade instalada por fontes

Fonte: ONS - PEN 2019

Fonte: ONS – PEN 2019

Base de dados e tratamentos iniciais

Base de dados utilizada

Identificação de falhas de medição

- ✓ Perfil de geração pode ser usado para correção do vento e vice-versa
- ✓ Identificação de *outiliers*
- ✓ Algumas falhas podem ser identificáveis
- ✓ Varias fontes de dados pode ser usada

Identificação de falhas de medição

Filtros iniciais dos dados

 3° Passo 0MW < Ger $< 1.1 \cdot P_{inst}$ MW 0m/s < Ven < 30m/s

Pmin

4º Passo
Eliminar dados congelados (Ao longo dos dias e das horas)

5º Passo Eliminar dados dos dias com menos de 2,5 horas válidos

Modelo de preenchimento de dados faltantes

Identificação de *outliers*

Classificar as curvas de geração e/ou vento e identificar os padrões característicos

- Objetivo: classificar, identificar padrões e estimar variâncias
- Metodologia K-means
 - ✓ Alta capacidade de processamento em problemas de grandes dimensões
 - ✓ Algoritmo *machine learning* não supervisionado
 - Realizam inferências sem necessidades de resultados conhecidos
 - ✓ Atribui dados a um cluster de modo que a soma da distância quadrada seja mínima

Identificação de outliers

Associar curva a ser filtrada à classe correspondente

de Fora

Identificação de outliers

Identificação dos dados aberrantes e transformação em faltantes

✓ Erro da regressão

$$Erro_{reta_i} = Dado_{filtrar_i} - Classe_{escolhida_i}$$

\checkmark Com base na estatística R^2

$$R^{2} = 1 - \sum_{i=1}^{n} \frac{\left(Dado_{filtrar_{i}} - Dad\widehat{o_{estimado_{i}}}\right)^{2}}{\sum_{i=1}^{n} \left(Dado_{filtrar_{i}} - \overline{Dado_{filtrar}}\right)^{2}}$$

Estima-se limite inferior e superior

$$Lim = \pm desvio_{padr\~ao}(Erro_{reta}) \cdot Qte_{desvio}$$

Modelo de correção de dados faltantes – filtro de Kalman

Modelo de nível e tendência local

$$Y_t = \mu_t + \nu_t \qquad \qquad \nu_t \sim N(0, V_t)$$

$$\mu_t = \mu_{t-1} + \beta_t + \omega_{1t} \quad \omega_{1t} \sim N(0, W_{1t})$$

$$\beta_t = \beta_{t-1} + \omega_{2t} \qquad \omega_{2t} \sim N(0, W_{2t})$$

Priori em t:

$$\theta_t | D_{t-1} \sim N[a_t, R_t]$$

$$a_t = G_t m_{t-1}$$

$$R_t = G_t C_{t-1} G'_t + W_t$$

Previsão 1-passo à frente:

 $|\theta_t||D_t \sim N[m_t, C_t]$ $m_t = a_t + A_t e_t$ $A_t = R_t F_t Q_t^{-1}$ $e_t = Y_t - f_t$ $C_t = R_t - A_t A'_t Q_t$

Posteriori em t:

$$Y_t | D_{t-1} \sim N[f_t, Q_t]$$

$$f_t = F'_t a_t$$

$$Q_t = F'_t R_t F_t + V_t$$

Estimação inconsistente quando não há inovação

Modelo de correção de dados faltantes

Previsão 1-passo à frente:

$$\theta_t \mid D_t \sim N[m_t, C_t], \quad onde:$$
 $m_t = a_t + A_t e_t$
 $A_t = R_t F_t Q_t^{-1}$
 $e_t = Y_t - f_t$
 $C_t = R_t - A_t A_t' Q_t$

A cada iteração calcula-se:

$$Prob = N[Dado_{filtrar}; media = media_{padrao}; \sigma^2 = \sigma_{padrao}^2]$$

Caso o dado Y_1 não for outlier

$$e_{\rm t} = Y_{\rm t}^{medido} - f_{\rm t}$$

Se o dado Y_1 for um *outilier*

$$e_t = VN \left[Prob_{t-1}; media = media_{tpadrao}; \sigma^2 = \sigma_{tpadrao}^2 \right] - f_t$$

Resultados do modelo proposto

Apresentação e Discussão dos Resultados

Processo de classificação

- ✓ Necessário realizar um prétratamento antes da clusterização
- Distorção dos centroides por outliers
- ✓ K-means gerou clusters consistentes

Apresentação e Discussão dos Resultados

Processo de preenchimento de dados faltantes

✓ Aplicação do filtro de suavização *loess*

- ✓ Preenchimento robusto em falhas curtas
- ✓ Em falhas longas, pode ter descolamentos em relação a geração verdadeiro

Considerações finais

Considerações finais

- Metodologia proposta:
 - ✓ Atendeu de forma eficaz o objetivo
 - ✓ Diferentes graus de severidade em termos de falhas de medição
 - ✓ Identificação/substituição de falsos *outliers*
 - ✓ Baixa complexidade e alta velocidade de processamento.
- Como desdobramentos futuros:
 - ✓ Aplicação em dados da fonte solar fotovoltaica
 - ✓ Extrapolação do modelo para casos multivariados.
 - ✓ Adição grandezas meteorológicas, como velocidade e direção do vento, temperatura, irradiância, etc.

