Investigación de Operaciones [INF-3144] Capítulo 2: Programación con Restricciones

Dr. Ricardo Soto

[ricardo.soto@ucv.cl]
[http://www.inf.ucv.cl/~rsoto]

Escuela de Ingeniería Informática Pontificia Universidad Católica de Valparaíso

1. Introducción

Es una tecnología que tiene sus raíces en diversas áreas...

Objetivo?

Resolver problemas que se puedan representar en función de **variables** y **restricciones**

2. Ejemplos

Ejemplos Reales

- Detección de errores de precisión en robots (IRCCYN Lab)
 ...+ de 500 variables y restricciones
- Diseño de un sistema de aire acondicionado para aviones (Dassault Aviation)

- Manufacturing Cell Design
- Juan Gutiérrez, Alexis López

- Nurse Rostering
- Renzo Pizarro, Gianni Rivera

- Mario Bros Problem
- Rodrigo Muñoz

- Ms Pacman Problem
- Francisco Lobos, Diego González

- Water Distribution
- Paz Clayton, Ricardo Rojas

- Portfolio Selection
- Camila Allendes, Hans Berendsen

- Open-pit mining
- Boris Almonacid

Ejemplo 1

Resolver la siguiente ecuación, reemplazando las letras por dígitos distintos.

Ejemplo 1

Resolver la siguiente ecuación, reemplazando las letras por dígitos distintos.

Modelo

Variables

$$S,E,N,D,M,O,R,Y \in [0,9]$$

Restricciones

$$S \neq E$$
, $S \neq N$, $S \neq D$... $R \neq Y$

Ejemplo 2 - N-Queens

Ubicar $\bf n$ reinas en un tablero de ajedrez de $\bf n \times \bf n$, de manera tal que no se puedan atacar.

Modelo

Variables

$$Q_1, Q_2, Q_3, Q_4 \in [1, 4]$$

• Restricciones (para $i \in [1,3]$ y $j \in [i+1,4]$)

$$Q_i \neq Q_j$$
 (filas)

$$Q_i + i \neq Q_j + j$$
 (diagonal 1)

$$Q_i - i \neq Q_j - j$$
 (diagonal 2)

Ejercicio 1 - Packing Squares

Ubicar un conjunto de cuadrados dentro una base cuadrada de tal manera que ningún cuadrado se translape con otro.

Variables

$$egin{aligned} x_1, x_2, ..., x_{squares} \in [1, sideSize] \ y_1, y_2, ..., y_{squares} \in [1, sideSize] \end{aligned}$$

Constantes

```
sideSize
squares
size<sub>1</sub>, size<sub>2</sub>, ..., size<sub>squares</sub>
```

• Restricciones (para $i \in [1, squares]$) //inside

```
x_i \leq sideSize - size_i + 1

y_i \leq sideSize - size_i + 1
```

Restricciones (para i ∈ [1, squares] y j ∈ [i + 1, squares])
 //noOverlap

```
x_i + size_i \le x_j \ OR

x_j + size_j \le x_i \ OR

y_i + size_i \le y_j \ OR

y_j + size_j \le y_i
```

A Constraint Satisfaction Problem $\mathcal P$ is defined by a triple $\mathcal P=\langle \mathcal X,\mathcal D,\mathcal C\rangle$ where:

- \mathcal{X} is a *n*-tuple of variables $\mathcal{X} = \langle x_1, x_2, ..., x_n \rangle$,
- \mathcal{D} is a corresponding n-tuple of domains $\mathcal{D} = \langle D_1, D_2, ..., D_n \rangle$ such that $x_i \in D_i$, and D_i is a set of values, for i = 1, ..., n.
- C is a m-tuple of constraints $C = \langle C_1, C_2, ..., C_m \rangle$.

Solving = Modeling + Search

Problemas

- Gran cantidad de instanciaciones que no conducen a una solución
- Las restricciones se evalúan con todas las variables instanciadas

Solución?

 Evaluar las restricciones apenas se instancien las variables involucradas.

Principal Problema

 No se pueden detectar inconsistencias sin instanciar todas las variables involucradas en una restricción.

Solución?

 Eliminar valores temporalmente de los dominios utilizando técnicas de consistencia (arc-consistency).

Se puede mejorar?

 Verificar no sólo la consistencia entre la variable actual y las futuras, sino que también entre las futuras...

Maintaining Arc Consistency (Full Look Ahead)

Optimización

 Basta con extender el algoritmo de búsqueda para considerar la función objetivo

Algoritmo más utilizado para optimización en CP:

6. Heurísticas de selección de variable y valor

Variable

- First-fail (dominio más pequeño)
- Most-constrained variable
- Reduce-first (dominio más grande)
- Round-robin (orden equitativo, por ej. de la 1era a la última)

Valor

- smallest
- median
- maximal

7. Solvers

Diversos Lenguajes para CP

- Basados en programación lógica (Eclipse, SicstusProlog...)
- Basados en programación orientada a objetos (ILOG, Gecode...)
- Modelado de alto nivel (OPL, Zinc...)