Лабораторная работа №2

Цель работы:

Получение навыков настройки тактовых частот микроконтроллера.

Программное обеспечение:

STM32CubeIDE.

Общие сведения:

Общая схема тактирования микроконтроллера:

Figure 14. Clock tree Peripheral LSI RC LES OS C /2 HSI PLLCLK . SYSCLK PLLR . 16 MHz HSI RC .2.4.8.16 if (APB1 presc = 1) x1 PLLCLK /P APB2 - /Q ,2,4,8,16 PLLSAIQ DIV - /Q - I / R PLLR /P DIV /Q - (R PLLI2SP USB2.0 PHY MSv36043V2

Работа с библиотеками

Вся периферия микроконтроллера и все регистры определены в библиотеках аналогично тому, как требовалось сделать это в первой работе.

Микроконтроллер имеет по несколько однообразных периферийных устройств, например 8 USART, 11 таймеров, 3 SPI и тд. Каждое устройство имеет свой номер (исключение составляет GPIO, они нумеруются буквами). Таким образом, работа с тем или иным периферийным устройством микроконтроллера, всегда необходимо указывать его сокращенное название и номер!

Для обращения к регистрам периферии вначале пишется имя периферии, затем указывается имя регистра! Например — «USART1—> DR» - обращение к регистру данных периферии USART1. Имена всех регистров совпадают с наименованиями в документации, например Управляющей регистр 1(Control Register 1) любого таймера будет иметь имя CR1, таким образом обращение к нему будет иметь вид: «TIMx—> CR1». Работа с регистрами описана в предыдущей работе.

		87	TIM4->PSC = A
		. 88	TIM4->ARR = 1
Officet	Dogistor	89	TIM4->CCER =
Offset	Register	90	
	TIMx_PSC	91	
0x28	_	92	
	Reset value	93	TIM4->CCMR1 =
0x2C	TIMx_ARR	94	12111 / COMM2
	Reset value	95	
0x30	Reserved	96	
UXSU	Reserved	97	TIM4->CCMR2 =
0x34	TIMx_CCR1	98	
UX34	Reset value	99	
	. tooot raido	.00	
0x38	TIMx_CCR2	.01	TIM4->CCR1 =
	Reset value	.02	TIM4->CCR2 =
		Τ	

Описание регистров в документации и работа с ними в программе.

Кроме того, разнообразные режимы работы/настройки периферии так же определены в библиотеках. Например: $\langle ADC1-\rangle CR1 = ADC_CR1_SCAN; \rangle$ - ADC_CR1_SCAN — включение сканирующего режима АЦП в управляющем регистре 1. Все определения формируются следующим образом — Переферия_Регистр_Бит. Каждое такое определение содержит в себе несколько дополнительных определений, которые также могут быть использованы в программе. Включение определенного режима работы означает запись $\langle 1 \rangle$ (или нескольких $\langle 1 \rangle$) в определенную область регистра. Например:

17.4.1 TIMx control register 1 (TIMx CR1)

Address offset: 0x00 Reset value: 0x0000

15	. 14	13	. 12	11	10	. 9	8	7	6	5	4	3	2	1	0
Res.	Res.	Res.	Res.	Res.	Res.	CKD	[1:0]	ARPE	CN	ИS	DIR	ОРМ	URS	UDIS	CEN
						rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bit 4 DIR: Direction

0: Counter used as upcounter

1: Counter used as downcounter

Из документации мы видим, что для включения режима счета вниз таймера необходимо записать «1» в четвертый бит Управляющего регистра 1. Самое простое действие, для выполнений этой операции является сдвиг «1» на требуемое число бит, в

данном случае, на 4. В итоге получаем такую запись: « $1 \ll 4$ », которую можно использовать для настройки таймера. По такому принципы сделаны все определения настроек регистров в библиотеке. Для каждой настройки имеется определение отвечающее за положение данной настройки в регистре, с кодовым словом « $_Pos$ » в конце; маску содержащую « $_1$ » во всех битах настройки, с кодовым словом « $_Msk$ » в конце; и конечную строку для включения требуемой настройки. Возвращаясь к предыдущему примеру:

```
#define TIM_CR1_DIR_Pos (4U)
#define TIM_CR1_DIR_Msk (0x1UL << TIM_CR1_DIR_Pos)
#define TIM_CR1_DIR TIM_CR1_DIR_Msk</pre>
```

«TIM_CR1_DIR» - Включение режима счета вниз для таймера;

«TIM_CR1_DIR_Msk» - Маска данного режима;

«TIM_CR1_DIR_Pos» - Положение данного режима в регистре;

Если для включения определенного режима работы периферии требуется несколько бит, то определения будут сделаны аналогичным образом, плюс определение записи единицы в каждую часть данного режима. Например, выбор канала DMA:

9.5.5 DMA stream x configuration register (DMA_SxCR) (x = 0..7)

This register is used to configure the concerned stream.

Address offset: 0x10 + 0x18 * stream number

Reset value: 0x0000 0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
I	Res.	Res.	Res.	Res.	(CHSEL[2:	:0]	MBURS	T [1:0]	PBUF	RST[1:0]	Res.	СТ	DBM	PL[1:0]
I					rw	rw	rw	rw	rw	rw	rw		rw	rw	rw	rw

Bits 27:25 CHSEL[2:0]: channel selection

These bits are set and cleared by software.

000: channel 0 selected

001: channel 1 selected

010: channel 2 selected

011: channel 3 selected

100: channel 4 selected

101: channel 5 selected

110: channel 6 selected

110: channel 6 selected 111: channel 7 selected

Для выбора канала DMA требуется 3 бита, соответственно определение в библиотеке будет выглядеть следующим образом:

```
#define DMA_SxCR_CHSEL_Pos (25U)
#define DMA_SxCR_CHSEL_Msk (0x7UL << DMA_SxCR_CHSEL_Pos)
#define DMA_SxCR_CHSEL DMA_SxCR_CHSEL_Msk
#define DMA_SxCR_CHSEL_0 0x0200000U
#define DMA_SxCR_CHSEL_1 0x0400000U
#define DMA_SxCR_CHSEL_2 0x0800000U
#define DMA_SxCR_CHSEL_2 0x0800000U
#define DMA_SxCR_CHSEL_2 0x0800000U
#define DMA_SxCR_CHSEL_Pos» - Положение данного режима в регистре;
#define DMA_SxCR_CHSEL_Msk» - Маска данного режима (Содержит «1» во всех 3х битах
```

- режима); «DMA_SxCR_CHSEL_0» Запись «1» в нулевой бит данного режима;
- «DMA_SxCR_CHSEL_1» Запись «1» в первый бит данного режима;
- «DMA_SxCR_CHSEL_2» Запись «1» в второй бит данного режима;

Порядок выполнения работы.

1. Запустите STM32CubeIDE, в качестве workspace выберете папку для лабораторной работы. Создайте новый проект «Start new STM32 project», в поле выбора микроконтроллера выберете STM32F446RE. Нажмите Next, задайте имя проекта, выберете язык — C, типы выходного файла — Executable, тип проекта — Empty; нажмите «Finish». Обратите внимание, в пути и названии проекта не должно быть русских букв!

2. Откройте основной файл программы — «Src/main.c». Удалите весь код, кроме функции «main».

- 3. Скопируйте папку с библиотеками в workspace, папку выбранную на 1 шаге работы. Откройте настройки проекта «Project->Properties», перейдите в «C/C++ General->Path and Symbols». Добавьте в проект 2 библиотеки во вкладке «Includes»:
 - ..\CMSIS\Include;
 - ..\CMSIS\Device\ST\STM32F4xx\Include.

Для использования библиотек, подключите библиотеку «stm32f446xx.h».

4. Используя информацию из лекции, документацию на микроконтроллер и схему стенда, выполнить задание в соответствии с вариантом.

Задание:

- 1. Рассчитать и определить (define) учитывая все ограничения:
 - значения делителей AHB1, APB1, APB2, APB1_timers, APB2_timers;
 - значения коэффициентов PLL;
 - значение частоты HCLK на основе значений коэффициентов PLL;
 - значения частот всех шин, на основе значений делителей;
 - частоту системного таймера;
 - значение делителя системного таймера.
- 2. Настроить задержку для памяти.
- 3. Настроить частоту работы микроконтроллера в соответствии с вариантом, используя определенные заранее значения коэффициентов.
 - 4. Запустить системный таймер с требуемой частотой работы.
 - 5. В прерывании системного таймера изменять светодиода с частотой 1 Гц.

Содержание отчета:

- Титульный лист.
- Цель работы.
- Листинг разработанной программы.
- Вывод.

Варианты:

		1
№	Частота СРИ,	Частота
варианта	МГц	прерывания от
		системного
		таймера, кГЦ
1	100	5
2	110	10
3	120	20
4	130	9
5	140	15
6	150	8
7	160	17
8	170	7
9	180	25
10	105	6