

Selective Encryption of H.264/AVC Based on Block Weight Model

Mengdie Huang, Postgraduate Media Security and Smart Interaction Lab Communication University of China, Beijing

CONTENT Consist of four parts

H.264/AVC Bitstream Structure

H.264/AVC Coding Process

Network Abstraction Layer

$$P_{(x,i)} = \frac{S_{(x,i)}}{16}$$

e.g. If current block is block i, the proportion is calculated as

$$P_{(A,i)} = \frac{S_{(A,i)}}{16} = \frac{3 \times 3}{16} = 56.25\%$$

$$P_{(D,i)} = \frac{S_{(D,i)}}{16} = \frac{1 \times 1}{16} = 6.25\%$$

The BW of Block x is defined as

$$W_b(x) = \begin{cases} 1 + \sum_{i=1}^{n} P_{(x,i)} W_b(i), & n \neq 0 \\ 1, & n = 0 \end{cases}$$

4X4 pixels Block x

$W_b(x,1)$	$W_b(x,2)$	$W_b(x,3)$	$W_b(x,4)$
$W_b(x,5)$	$W_b(x,6)$	$W_b(x,7)$	$W_b(x,8)$
$W_b(x,9)$	$W_b(x, 10)$	$W_b(x, 11)$	$W_b(x, 12)$
$W_b(x, 13)$	$W_b(x, 14)$	$W_b(x, 15)$	$W_b(x, 16)$

16X16 pixels MB x

The BW of Block x is defined as

$$W_b(x) = \begin{cases} 1 + \sum_{i=1}^n P_{(x,i)} W_b(i), & n \neq 0 \\ 1, & n = 0 \end{cases}$$

The MB Weight (MBW) of MB x is defined as

$$W_{mb}(x) = \frac{\sum_{i=1}^{16} W_b(x, i)}{16}$$

Proposed Selective Encryption (SE) Method

Proposed Selective Encryption (SE) Method

Proposed Selective Encryption (SE) Method

Experiment

- CIF benchmark videos
- Mobile, Stefan, Coastguard,
 Basketball Pass, Foreman
- JM18.6
- Parameter settingGOP period 50 frames

Experient Result

Original Video

Proposed Method

IDR Frame: α =0.5

Last Frame: α =0.5

Other Frames: α =0.05

Experient Result

Original Video

Encrypted P/B Frames

Proposed Method

IDR Frame: α =0.5

Last Frame: α =0.5

Other Frames: α =0.05

Experient Result

- Adjust parameter α
- Encrypted MB ratio is defined as

$$EMBR = \frac{Enc\ MB\ number}{sum\ MB\ number}$$

Comparison with Prior SE Methods

Sequence	Sher	Shen SE		Proposed SE	
	EMBR (%)	EDR (%)	EMBR (%)	EDR (%)	
Mobile	54.0	5.30	5.97	6.07	
Stefan	33.0	5.15	6.03	7.03	
Foreman	42.7	8.86	6.10	9.94	

Sequence	Khlif SE		Proposed SE	
	Mobile	Foreman	Mobile	Foreman
Original PSNR	29.84	35.92	35.264	37.603
Encrypted PSNR	8.99	10.67	12.003	12.109
EDR (%)	49.640	49.175	6.07	9.94
PSNR Difference	20.850	25.250	23.261	25.584

Conclusion

A novel SE method for H.264/AVC video bitstream

- ✓ Non-information leakage
- Network friendliness
- ✓ No effect on compressed efficiency
- ✓ Support custom security level
- ✓ Resist brute force attack and sketch attack

