Série IV

Logique des prédicats du Premier ordre

Exercice 1 Série IV

- ▶ 1. Montrer la validité des formules suivantes
- ► $\forall x \ \alpha(x) \rightarrow \alpha(t)$ (t libre pour x dans α .)
- ▶ $\blacksquare \beta(y) \rightarrow \exists x \beta(x)$ (y libre pour x dans α).
- \blacktriangleright $\forall x (\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \forall x \beta) (\alpha \text{ ne contient pas d'occurrence libre de } x)$
- $\blacktriangleright \quad \blacksquare \quad \forall x \ (\alpha \land \beta) \rightarrow (\forall x \ \alpha) \land (\forall x \ \beta)$
- $\blacksquare \ \forall x \ \forall y P(x,y) \rightarrow P(x,x)$

Exercice 1 Série IV

- ▶ 1. Montrer la validité des formules suivantes
- $\blacksquare \ \forall x P(x) \rightarrow P(y)$
- ▶ Pour montrer $|= \forall x P(x) \rightarrow P(y)$,
- On suppose qu'il existe une interprétation I de domaine D et une valuation v
- ► $I \neq (\forall x P(x) \rightarrow P(y))_v donc$
- $| I | = (\forall x P(x) \rightarrow P(y))_{v}$
- $| I | = (\forall x P(x) \land \exists P(y))_v \text{ donc } I | = (\forall x P(x))_v \text{ et } I | = (\exists P(y))_v$
- ▶ donc $\mathbb{I} = (P(x))_{v[x=d]}$ pour tout $d \in D$ et $\mathbb{I} = (P(y))_{v[y=d1]}$ $d1 \in D$
- ▶ on obtient donc : I(p)(d) pour tout $d \in D$ (1) et non I(p)(d1) (2)
- ▶ I(p)(d) pour tout $d \in D$ (1), pour d=d1, on obtient I(p)(d1), contradiction avec (2)

Exercice 1 Série IV

- ▶ 1. Montrer la validité des formules suivantes
- ▶ $\blacksquare \beta(y) \rightarrow \exists x \beta(x)$ (y libre pour x dans β).
- ▶ Pour montrer $|= β(y) \rightarrow ∃xβ(x)$ (y libre pour x dans β).
- On suppose qu'il existe une interprétation I de domaine D et une valuation v
- ► $I \neq (\beta(y) \rightarrow \exists x \beta(x))_v$ (y libre pour x dans β). donc
- $| I | = | (\beta(y)) \rightarrow \exists x \beta(x) |_{y}$
- ► $I \models (\beta(y) \land \exists x \beta(x))_v \text{ donc } I \models (\beta(y))_v \text{ et } I \models (\forall x \exists \beta(x))_v$
- ▶ donc $I = I(\beta(x))_{v[x=d]}$ pour tout $d \in D$ et $I = (\beta(y))_{v[y=d1]}$ d1 $\in D$
- ▶ on obtient donc : non $I(\beta)(d)$ pour tout $d \in D$ (1) et $I(\beta)(d1)$ (2)
- ▶ non $I(\beta)(d)$ pour tout $d \in D$ (1), pour d=d1,
- \triangleright on obtient non $\mathbb{I}(\beta)(d1)$ contradiction avec (2)
- ► D'où $|=\beta(y) \rightarrow \exists x \beta(x)$

Exercice 3 série IV

- . Montrer que les formules suivantes ne sont pas valides.
- ► $\alpha 1 : \forall x \exists y P(x,y) \rightarrow \exists y P(y,y)$
- $ightharpoonup \alpha3: \forall x(P(x) \rightarrow Q(x)) \rightarrow (P(x) \rightarrow \forall xQ(x))$
- $\qquad \qquad \alpha 4: \ \forall x (P(x) \to P(x)) \to (P(x) \to \forall x P(x)).$

- . Montrer que les formules suivantes ne sont pas valides.
- Il suffit de trouver une interprétation I de domaine D et une valuation v qui ne satisfait pas les formules
- ▶ α 1: $\forall x \exists y P(x,y) \rightarrow \exists y P(y,y)$
- ► I₁: { D= R; I(P) : « ...>.... »} ; I'₁: { D= R; I(P) : « ...<.... »}
- $ightharpoonup \alpha2: \forall y P(y,y) \rightarrow \exists x \forall y P(x,y)$
- I_2 : { D= R; I(P) : « ...= »} I_2 : { D= {2,3,4}; I(P) : «y est multiple de x »}

- . Montrer que les formules suivantes ne sont pas valides.
- Il suffit de trouver une interprétation I de domaine D et une valuation v qui ne satisfait pas les formules
- $ightharpoonup \alpha3: \forall x(P(x) \rightarrow Q(x)) \rightarrow (P(x) \rightarrow \forall xQ(x))$
- ▶ I_3 : { D= R; I(P) : «EST PAIR », I(Q): ..EST DIVISIBLE PAR 2...., V(x)=2}
- ► I'_3 : { D= N-{2}; I(P) : «...est premier», I(Q): .. Est impaire, v(x)=3}
- $ightharpoonup \alpha4: \forall x(P(x) \rightarrow P(x)) \rightarrow (P(x) \rightarrow \forall xP(x)).$
- ► I₄: { D= R; I(P) : «.....EST PAIR »; V(x)=2} I'₄: { D= N; I(P) : «.....X EST PREMIER »; V(x)=7}

Indiquer pour chacune des formules suivantes si elle est est satisfiable, valide, ou non satisfiables :

- \triangleright α_2) $\forall x (P(x) \land \exists P(f(x)))$ (N.V)+ n. sat
- \triangleright α_3) $\forall x \forall y (P(x) \land P(f(y)))$ N.V + n.sat
- \triangleright α_4) $\forall x (P(x) \lor P(f(x)))$ N.V+ sat
- \triangleright α_5) $\forall x \forall y (P(x) \lor P(f(y)))$ N.V+ sat
- \triangleright α_6) $\forall x \exists y (P(x) \land P(f(y)))$ N.V non sat

$$\beta_1 = \exists x \exists y (P(x) \land P(y)) \quad (N.V) + (S)$$

$$\beta_2 \blacksquare \exists x(P(x) \lor \exists P(f(x))) \text{ valide}$$

$$\beta_3 = \exists x \exists y (P(x) \lor \exists P(f(y))) \text{ valide}$$

$$\beta_4 = \forall x \exists y (P(x) \land P(y)) \text{ sat}$$

$$\beta_5 = \forall x \exists y (P(x) \land P(y)) \text{ N.V n.sat}$$

- On suppose qu'il existe une interprétation I de domaine D et valuation v
- ► $I = (\forall x \forall y (P(x) \land \exists P(f(y))))_{v} donc$
- ► $I = (P(x) \land \exists P(f(y))_{v[x=d;y=d]})$ pour tout $d \in D$ et pour tout $d \in D$
- ▶ donc $I = (P(x))_{v[x=d]}$ pour tout $d \in D$ (1) et $I = (P(f(y)))_{v[y=d1]}$ pour tout $d1 \in D$ (2)
- ▶ on obtient donc : I(p)(d) pour tout $d \in D$ (1)
- ▶ (2) non I(P)I(f)d1 pour tout $d1 \in D$; on pose I(f)d1 = d2; $d \in D$
- (2) non I(P)d2
- ▶ I(p)(d) pour tout $d \in D$ (1), pour d=d2, on obtient I(p)(d2), contradiction avec (2)
- **D'où** $\forall x \forall y (P(x) \land P(f(y)))$ non satisfiable

- ▶ α_4) $\forall x (P(x) \lor P(f(x)))$ valide ?
- On suppose qu'il existe une interprétation I de domaine D et une valuation v
- ► $I \neq (\forall x (P(x) \lor P(f(x))))_v donc$
- $I = \exists x \exists P(x) \land P(f(x))_{v}$
- ▶ donc $\mathbb{I} = \mathbb{I}(P(x))_{v[x=d]}$ pour au moins $d \in D(1)$ et $\mathbb{I} = (P(f(x)))_{v[x=d]}(2)$
- ▶ on obtient donc :non I(p)(d) pour au moins $d \in D$ (1)
- \triangleright (2) I(P)I(f)d; on pose I(f)d =d2 d \in D;
- (2) I(P)d2
- pas de contradiction entre (1) et (2) d n'est pas forcément égale à d2 ; non valide

- \triangleright α_4) $\forall x (P(x) \lor P(f(x)))$ satisfiable?
- ▶ I:{D=N*; I(f): identité; I(p):est impair}
- une interprétation qui falsifie α_4
- ► I: $\{D = N^*; I(p) : \text{est pair}; I(f) : \text{succ}\}$; I: $\{D = \{2,3\}; I(p) : \text{est pair}; I(f) : 2\}$;
- Satisfiable
- ► I:{D={2,4,6}; I(f): identité; I(p):est pair}
- Non valide, I_2 une interprétation qui falsifie α_5
- I₂:{D=N*; I(f): succ; I(p):est pair}
- \triangleright β₄) $\forall x \exists y (P(x) \land P(y))$ sat I:{D={2,4,6}; I(p):est pair}
- Non valide
- $I_2:\{D=\{1,2,4,6\}; I(p):est pair\}$

- β_1) $\exists x \exists y (P(x) \land P(y))$ N.V mais satisfiable;
- La formule est satisfaite par I₁
- $I_1\{D=N; I(p):est pair\};$
- La formule est falsifiée par I₂
- $I_2\{D=\{1\}; I(p):est pair\}$

- Non satisfiable
- On suppose qu'il existe une interprétation I de domaine D et une valuation v
- ► $I = (\forall x \exists y (P(x) \land \exists P(f(y))))_{v} donc$
- ► I $|= (P(x) \land \exists P(f(y))_{v[x=d;y=d\exists]})$ pour tout $d \in D$ et pour au moins $d1 \in D$
- ▶ donc $\mathbb{I} = (P(x))_{v[x=d]}$ pour tout $d \in D(1)$ et $\mathbb{I} = (P(y))_{v[y=d1]}$ pour au moins $d1 \in D(2)$
- ▶ on obtient donc : I(p)(d) pour tout $d \in D$ (1)
- ► (2) non I(P)I(f)(d1) pour tout $d1 \in D$; on pose I(f)d1 = d2;
- ► (2) non I(P)(d2)
- ▶ I(p)(d) pour tout $d \in D(1)$, pour d=d2, on obtient I(p)(d2), contradiction avec (2)
- **D**'où $\forall x \exists y (P(x) \land P(f(y)))$ est non satisfiable

Valide

- On suppose qu'il existe une interprétation I de domaine D et valuation v
- ► I \neq ($\exists x(P(x) \lor \exists P(f(x))))_v$ donc
- $| | = \forall x (\exists P(x) \land P(f(x)))_{v}$
- ► $I = (\exists P(x) \land P(f(x)))_{v[x=d]}$ pour tout $d \in D$
- ▶ donc $\mathbb{I} = \mathbb{I}(P(x))_{v[x=d]}$ (1) et $\mathbb{I} = (P(f(x)))_{v[y=d]}$ pour tout $d \in D$
- on obtient donc: non I(p)(d) et I(p)(d) pour tout $d \in D(1)$
- on pose I(f)d =d2;
- (2) non I(P)d2 ∈ D
- ▶ I(p)(d) pour tout $d \in D(1)$, pour d=d2, on obtient I(p)(d2), contradiction avec (2)
- D'où $β_2$ est valide

Vérifier la validité des propositions suivantes ?

$$ightharpoonup \alpha_1 : P(x) \rightarrow Q(x), P(x) \models Q(x) \text{ valide}$$

$$\triangleright$$
 α_2 : $Q(y) \models \forall x (P(x) \rightarrow Q(y))$ valide

$$\triangleright$$
 α_3 : $P(x) = \exists x P(x)$ valide

$$\triangleright$$
 $\alpha_4: |= P(x) \lor \exists P(y)$ N.V

$$\beta_1 = Q(x) \models \forall x (P(x) \rightarrow Q(x))$$
 N.V

$$\beta_2 \blacksquare \forall x \exists y P(x, y) \models \exists y \forall x P(x, y) N.V$$

$$\beta_3 = \exists x P(x) \models P(x)$$
 non valide

$$\beta_4 = | = \forall x \forall y (P(x) \lor \exists P(y)) \text{ non valide}$$

Vérifier la validité des propositions suivantes ?

- $ightharpoonup \alpha_1 : P(x) \rightarrow Q(x), P(x) \models Q(x) \text{ valide}$
- On suppose qu'il existe une interprétation I de domaine D/
- $I = (P(x) \to Q(x))v$ (1) et I = (P(x))v (2) et $I = (\neg Q(x))v$ (3)
- ► (1): $I = (P(x) \rightarrow Q(x))v[x=d]$

- Valide
- On suppose qu'il existe une interprétation I et une fonction de valuation v
- ► $I = (Q(y))_{y}$ (1) et $I \neq (\forall x (P(x) \rightarrow Q(y)))_{y}$ (2)
- $(1): \equiv I(Q)(d); d \in D$
- $(2) \equiv I = (\exists x P(x) \land \neg Q(y))_{v}$
- ► (2) \equiv I |= (P(x) $\land \exists$ Q(y))_{v[x=d1,y=d]} pour au moins d1 \in D
- ▶ (2) \equiv I |= (P(x))_{v[x=d1]} pour au moins d1 \in D et I |= (\uparrow Q(y))_{v[y=d]}
- contradiction (3) avec (1)
- ► D'où $Q(y) \models \forall x (P(x) \rightarrow Q(y))$

- Non valide; soit I₁
- $I_1\{D:\{2,4,6,8\}; I(p): \text{est pair } \text{ } \text{; } I(Q): \text{est premier } \text{ } \text{; } v(x)=2\}$
- ▶ β_2 $\forall x \exists y P(x, y) \models \exists y \forall x P(x, y) \text{ non valide } \text{; Soit } I_2$
- I₂: {D:ℝ; I(p): «>.... »}
- $\beta_3 = \exists x P(x) \models P(x) \text{ non valide; soit } I_3$
- I_3 : {D:N; I(p): »est pair », v(x)=3}
- $I_4: \{D:N; I(p): \text{ } \text{....est pair } \text{ } \text{, } v(x)=3; v(y)=4\}$

- \triangleright α_3 : $P(x) = \exists x P(x)$ valide
- On suppose qu'il existe une interprétation I et une fonction de valuation v
- ► $\mathbb{I} = P(x)_v$ (1) et $\mathbb{I} \neq (\exists x P(x))_v$ (2)donc
- (1): $I = P(x)_{v[x=d]}$
- $| | = (\forall x \mid P(x))_{v} (2)_{z}$
- ▶ donc $I = \exists (P(x))_{v[x=d1]}$ pour tout $d1 \in D(2)$
- ▶ on obtient donc : I(p)(d) ; $d \in D$ (1)
- ► (2) non I(P)d1 pour tout $d1 \in D$;
- (2): pour d1=d, on obtient non I(p)(d), contradiction avec (1)
- ▶ D'où $P(x) = \exists x P(x)$ valide

- ▶ 6. Vérifier la validité des formules suivantes :
- $P(x, y) \rightarrow P(y, x), P(x, y) \rightarrow (P(y, z) \rightarrow P(x, z)) = P(x, x) N.V$
- $(\forall x P(x)) \land Q(x) \rightarrow \forall x (P(x) \land Q(x))$ N.V
- $(\forall x P(x) \to Q(y)) \to \forall x (P(x) \to Q(y)) \qquad N.V$
- $\forall x (P(x) \rightarrow Q(y)) \rightarrow (\forall x P(x) \rightarrow Q(y)) \quad N.V$
- ► I{D={personne1,personne2,personne3}; I(P):est frère de}
- $(\forall x P(x)) \land Q(x) \rightarrow \forall x (P(x) \land Q(x));$
- ► I:{D={2,4,6,8}; I(P):...est pair, I(Q):...est divisible par 4; v(x)=4}

- ▶ 6. Vérifier la validité des formules suivantes :
- $(\forall x P(x) \to Q(y)) \to \forall x (P(x) \to Q(y)) \quad N. V$
- $\forall x (P(x) \rightarrow Q(y)) \rightarrow (\forall x P(x) \rightarrow Q(y)) \quad N.V$
- ► I{D={personne1,personne2,personne3}; I(P):est frère de}
- $(\forall x P(x)) \land Q(x) \rightarrow \forall x (P(x) \land Q(x));$
- $I: \{D=\{2,4,6,8\}; I(P):...est pair, I(Q):...est divisible par 4; v(x)=4\}$

- $\forall x P(x) \to Q(y) \to \forall x (P(x) \to Q(y))$
- $\models |= \forall x P(x) \rightarrow Q(y)) \rightarrow \forall x (P(x) \rightarrow Q(y))$
- $\models |\exists \exists (\forall x P(x) \to Q(y)) \to \forall x (P(x) \to Q(y)))|$
- \models $\mid = (\forall x P(x) \rightarrow Q(y)) \land \exists \forall x (P(x) \rightarrow Q(y)))$
- $|= (\forall x P(x) \rightarrow Q(y)) \text{ (1) et } |= \exists \forall x (P(x) \rightarrow Q(y))) (2)$
- $(1): Si \models (\forall x P(x) alors \models Q(y))$
- ► (1): Si =P(x)v[x=d] pour tout $d \in D$ alors I(Q)(d1) avec $d1 \in D$
- \triangleright (2): $|=\exists x P(x) \text{ et } |=\exists Q(y) v[y=d1]$
- \blacktriangleright (2): I(P)(d2) pour au moins d2 \in D et non I(Q)(d1)

- $\forall x P(x) \to Q(y)) \to \forall x (P(x) \to Q(y))$
- (2): I(P)(d2) pour au moins $d2 \in D$ et non I(Q)(d1)
- ▶ Pas de contradiction donc la formule n'est pas valide
- On cherche I qui falsifie I
- $I\{D=N, I(P): ...est pair, I(Q): ...est impair, v(y)=2\}$
- $\forall x (P(x) \to Q(y)) \to (\forall x P(x) \to Q(y)) \quad N.V$
- ► $I\{D=N, I(P): ...\text{est divisible par } 1, I(Q): ...\text{est impair}, v(y)=2\}$
- ► $I\{D=N, I(P): ...\text{est pair}, I(Q): ...\text{est impair}, v(y)=2\}$

- **D**onner un modèle de l'ensemble de formules Γ tel que :
- $\qquad \Gamma : \{ P(x, y) \rightarrow P(y, x), P(x, y) \rightarrow (P(y, z) \rightarrow P(x, z)) \}$
- ► I:{D=N; I(P): "...=..."}

- **9.** On considère les ensembles
- $\Gamma : \{ \exists x P(x,y) , \exists y P(x,y) \} \text{ et } \Gamma ' : \{ \forall x \exists y P(x,y) , \exists y \forall x P(x,y) \}.$
- Donner un modèle de Γ et de Γ ;
- ► I:{D={1,2,3,4,5}; I(P): "...<=..."}
- **▶** I:{D=N; I(P): "...est multiple de..."}
- Vérifier la validité de la proposition suivante : $\exists x P(x,y) \models \exists y P(x,y)$.
- $I:\{D=\{1,2,4\}; I(P): "...<..." v(y)=2, v(x)=4\}$
- ► I:{D={1,2}; I(P): "...<..." v(y)=2, v(x)=2}

- ▶ 10. Donner un modèle de l'ensemble Γ : { $\forall x P(x,y)$, $\forall y P(x,y)$ }.
- ► I:{D={1}; I(P):"...=..."}

11. Vérifier la validité des propositions suivantes :

- \models |= $\forall x P(x,y) \rightarrow \forall y P(x,y)$ valide? Non valide
- $I: \{D=N, I(p)"...>=...", v(y)=0, v(x)=0\}$
- ► I: $\{D=N^*, I(p)^*...\text{est multiple de...}^*, v(y)=1, v(x)=5\}$
- $\forall x P(x,y) \mid = \forall y P(x,y)$. Valide? Non valide
- $I: \{D=N, I(p)"...>=...", v(y)=0, v(x)=0\}$
- ► I: $\{D=N^*, I(p)^*...\text{est multiple de...}^*, v(y)=1, v(x)=5\}$

11. Vérifier la validité des propositions suivantes :

 $\forall x P(x), P(x) \rightarrow Q(y) = Q(y)$ valide