HEP NTUA Weekly Report

30/9/2020

G. Bakas

Summary

- Analysis:
 - Switched to Tune CP5 nominal MC's for 2016
 - Start investigating ttbar Systematic Uncertainties
 - Investigate on how to combine the measurements between the three years
 - Combine them in the fiducial level and extract the cross section?
 - Extract the cross sections individually and combine the measurements in the unfolded level?
 - Top Angular Distributions: chi, $|\cos\theta^*|$ leading and subleading
 - Responses, Signal Extraction → Unfolding
 - Results!
 - AN 2020/156

Signal Selection

Variables	Selected Cut
pT (both leading jets)	> 400 GeV
Njets	> 1
N leptons	= 0
eta (both leading jets)	< 2.4
mJJ	> 1000 GeV
jetMassSoftDrop (only for fit)	(50,300) GeV
Top Tagger	> 0.2, 0, 0.1
B tagging (2 btagged jets)	> Medium WP
Signal Trigger	

Control Region Selection

Variables	Selected Cut
pT (both leading jets)	> 400 GeV
Njets	> 1
N leptons	= 0
eta (both leading jets)	< 2.4
mJJ	> 1000 GeV
jetMassSoftDrop (only for fit)	(50,300) GeV
Top Tagger	> 0.2, 0, 0.1
B tagging (0 btagged jets)	< Medium WP
Control Trigger	

Mass Fit in Extended SR (SR_A)

(2016)

Tune CUE

- Both SR and Control Region use the Medium btag WP.
- Intuition is to remove the ttbar and subdominant bkg contribution from the data Control Region $QCD_0(m^t) = D_0(m^t) T_0(m^t) Sub_0(m^t)$

A RooPlot of "mTop"

Floating Parameter	FinalValue +/-	Error
kMassResol	9.2251e-01 +/-	2.73e-02
kMassScale	9.9891e-01 +/-	
kQCD_2b	6.9753e-02 +/-	5.26e-02
nFitBkg_2b	2.4472e+02 +/-	1.47e+02
nFitQCD_2b	2.9890e+03 +/-	1.74e+02
nFitSig2b	5.2763e+03 +/-	1.67e+02

 $t\bar{t}$ Signal strength: r = 0.686668 ± 0.0263103

A RooPlot of "mTop"

Floating Parameter	FinalValue +/-	Error
kMassResol kMassScale kQCD_2b nFitBkg_2b nFitQCD_2b	9.3798e-01 +/- 9.9751e-01 +/- 2.3668e-01 +/- 2.5758e+02 +/- 2.9242e+03 +/-	1.99e-03 5.05e-01 1.47e+02 1.76e+02
nFitSig2b	5.3282e+03 +/-	1.67e+02

 $t\bar{t}$ Signal strength: r = 0.641241 ± 0.0238714 (new)

Fiducial Differential Cross Section

Fiducial Differential Cross Section Comparison

Fiducial Differential Cross Section Comparison

Parton Differential Cross Section

Parton Differential Cross Section Comparison

Parton Differential Cross Section Comparison

Tag And Probe Calculations

(2016) Tune CUE

eff data: 0.781 ± 0.038

eff ttbar: 0.772 ± 0.014

Efficiency per Pt region

eff data pT[400-600]: 0.761 ± 0.042 eff ttbar pT[400-600]: 0.778 ± 0.016

eff data pT[600-800]: 0.851 ± 0.100 eff ttbar pT[600-800]: 0.748 ± 0.031

eff data pT[800-Inf]: 0.886 ± 0.160 eff ttbar pT[800-Inf]: 0.775 ± 0.063

(2016) Tune CP5

eff data: 0.781 ± 0.038 eff ttbar: 0.813 ± 0.01

Efficiency per Pt region eff data pT[400-600]: 0.761 ± 0.042 eff ttbar pT[400-600]: 0.812 ± 0.011

eff data pT[600-800]: 0.851 ± 0.100 eff ttbar pT[600-800]: 0.820 ± 0.023

eff data pT[800-Inf]: 0.886 ± 0.160 eff ttbar pT[800-Inf]: 0.806 ± 0.053

Top Angular Distributions

- We employ the dijet angular variable χ from the rapidities of the two leading jets
- Why χ?
 - The distributions associated with the final states produced via QCD interactions are relatively flat in comparison with the distributions of the BSM models or new particles, which typically peak at low values of x
- We can measure the variable χ in two ways
 - 1. By measuring the difference of the rapidities of the two leading jets such as the corresponding rapidity in the ZMF is:

$$y^* = \frac{1}{2}(y_1 - y_2)$$

X is defined as $\chi = e^{|y^*|} = e^{|y_1 - y_2|}$ (1) and can be measured by creating the TLorentzVector, boost it to the ZMF and find the rapidity difference of the two leading jets

2. By measuring the scattering angle θ^* (angle between top quark and z-axis in the Zero Momentum Frame) We define as $y^* = \frac{1}{2} \ln(\frac{1 + |cos\theta^*|}{1 - |cos\theta^*|})$ and from (1) we can find that:

$$\chi = \frac{1 + |\cos\theta^*|}{1 - |\cos\theta^*|}$$

Response Matrices

NTUA G. BAKAS 14

chiParton

Response Matrices

Response Reco-Parton cosTheta_0 2016 NominalMC

Response Reco-Parton cosTheta_0 2017 NominalMC

Response Reco-Parton cosTheta_0 2018 NominalMC

Signal Extraction

$$S(x_{reco}) = D(x_{reco}) - C_{bkg}^{yield} N_{QCD}^{fit} C_{QCD}^{shape} (x_{reco}) Q(x_{reco}) - B(x_{reco})$$

$$S(x_{reco}) = D(x_{reco}) - C_{bkg}^{yield} N_{QCD}^{fit} C_{QCD}^{shape} (x_{reco}) Q(x_{reco}) - B(x_{reco})$$

$$C(x_{reco}) = D(x_{reco}) - C_{bkg}^{yield} N_{QCD}^{fit} C_{QCD}^{shape} (x_{reco}) Q(x_{reco}) - B(x_{reco})$$

$$C(x_{reco}) = D(x_{reco}) - C_{bkg}^{yield} N_{QCD}^{fit} C_{QCD}^{shape} (x_{reco}) Q(x_{reco}) - B(x_{reco})$$

$$C(x_{reco}) = D(x_{reco}) - C_{bkg}^{yield} N_{QCD}^{fit} C_{QCD}^{shape} (x_{reco}) Q(x_{reco}) - B(x_{reco})$$

$$C(x_{reco}) = D(x_{reco}) - C_{bkg}^{yield} N_{QCD}^{fit} C_{QCD}^{shape} (x_{reco}) Q(x_{reco}) - B(x_{reco})$$

$$C(x_{reco}) = D(x_{reco}) - C_{bkg}^{yield} N_{QCD}^{fit} C_{QCD}^{shape} (x_{reco}) Q(x_{reco}) - B(x_{reco})$$

$$C(x_{reco}) = D(x_{reco}) - C_{bkg}^{yield} N_{QCD}^{fit} C_{QCD}^{shape} (x_{reco}) Q(x_{reco}) - B(x_{reco})$$

$$C(x_{reco}) = D(x_{reco}) - C_{bkg}^{yield} N_{QCD}^{fit} C_{QCD}^{shape} (x_{reco}) Q(x_{reco}) - B(x_{reco})$$

$$C(x_{reco}) = D(x_{reco}) - C_{bkg}^{yield} N_{QCD}^{shape} C_{QCD}^{shape} (x_{reco}) Q(x_{reco}) - B(x_{reco})$$

$$C(x_{reco}) = D(x_{reco}) - C_{bkg}^{yield} N_{QCD}^{shape} C_{QCD}^{shape} (x_{reco}) Q(x_{reco}) - B(x_{reco})$$

$$C(x_{reco}) = D(x_{reco}) - C_{bkg}^{yield} N_{QCD}^{shape} C_{QCD}^{shape} (x_{reco}) Q(x_{reco}) - B(x_{reco})$$

$$C(x_{reco}) = D(x_{reco}) - C_{bkg}^{yield} N_{QCD}^{shape} C_{QCD}^{shape} (x_{reco}) Q(x_{reco})$$

$$C(x_{reco}) = D(x_{reco}) - C_{bkg}^{yield} N_{QCD}^{shape} C_{QCD}^{shape} (x_{reco})$$

- Where x_{reco} is the respected variable of interest (ttbar mass, pt, rapidity, leading and subleading jetPt and |jetY|)
- We deploy a fit in the Signal Region (2btag) to extract the N_{QCD}^{fit}

$$D(m^t)^{(i)} = N_{tt}^{(i)} T^{(i)}(m^t, k_{MassScale}, k_{MassResolution}) + N_{bkg}^{(i)} B(m^t) (1 + k_1 x) + N_{sub}^{(i)} O^{(i)}(m^t)$$

Our data CR is contaminated from ttbar and subdominant bkgs which has to be dealt with.

R yield

R_{yield} transfer factor 2016 cosTheta_0

R_{yield} transfer factor 2016 cosTheta_0(Closure Test)

R yield

R_{yield} transfer factor 2017 cosTheta_0

R_{yield} transfer factor 2017 cosTheta_0(Closure Test)

R yield

R_{yield} transfer factor 2018 cosTheta_0

R_{yield} transfer factor 2018 cosTheta_0(Closure Test)

Fiducial Measurement

Fiducial Measurement

Fiducial Measurement

Parton Measurement

Parton Measurement

Parton Measurement

BACKUP

Signal Extraction

$$S(x_{reco}) = D(x_{reco}) - C_{bkg}^{yield} N_{QCD}^{fit} C_{QCD}^{shape}(x_{reco}) Q(x_{reco}) - B(x_{reco})$$

$$S(x_{reco}) = D(x_{reco}) - C_{bkg}^{yield} N_{QCD}^{fit} C_{QCD}^{shape}(x_{reco}) Q(x_{reco}) - B(x_{reco})$$

$$C(x_{reco}) = D(x_{reco}) - C_{bkg}^{yield} N_{QCD}^{fit} C_{QCD}^{shape}(x_{reco}) Q(x_{reco}) - B(x_{reco})$$

$$C(x_{reco}) = D(x_{reco}) - C_{bkg}^{yield} N_{QCD}^{fit} C_{QCD}^{shape}(x_{reco}) Q(x_{reco}) - B(x_{reco})$$

$$C(x_{reco}) = D(x_{reco}) - C_{bkg}^{yield} N_{QCD}^{fit} C_{QCD}^{shape}(x_{reco}) Q(x_{reco}) - B(x_{reco})$$

$$C(x_{reco}) = D(x_{reco}) - C_{bkg}^{yield} N_{QCD}^{fit} C_{QCD}^{shape}(x_{reco}) Q(x_{reco}) - B(x_{reco})$$

$$C(x_{reco}) = D(x_{reco}) - C_{bkg}^{yield} N_{QCD}^{fit} C_{QCD}^{shape}(x_{reco}) Q(x_{reco}) - B(x_{reco})$$

$$C(x_{reco}) = D(x_{reco}) - C_{bkg}^{yield} N_{QCD}^{fit} C_{QCD}^{shape}(x_{reco}) Q(x_{reco}) - B(x_{reco})$$

$$C(x_{reco}) = D(x_{reco}) - C_{bkg}^{yield} N_{QCD}^{fit} C_{QCD}^{shape}(x_{reco}) Q(x_{reco}) - B(x_{reco})$$

$$C(x_{reco}) = D(x_{reco}) - C_{bkg}^{yield} N_{QCD}^{shape} C_{QCD}^{shape}(x_{reco}) Q(x_{reco}) - B(x_{reco})$$

$$C(x_{reco}) = D(x_{reco}) - C_{bkg}^{yield} N_{QCD}^{shape} C_{QCD}^{shape}(x_{reco}) Q(x_{reco}) - B(x_{reco})$$

$$C(x_{reco}) = D(x_{reco}) - C_{bkg}^{yield} N_{QCD}^{shape} C_{QCD}^{shape}(x_{reco}) Q(x_{reco}) - B(x_{reco})$$

$$C(x_{reco}) = D(x_{reco}) - C_{bkg}^{yield} N_{QCD}^{shape} C_{QCD}^{shape}(x_{reco}) Q(x_{reco})$$

$$C(x_{reco}) = D(x_{reco}) - C_{bkg}^{yield} N_{QCD}^{shape} C_{QCD}^{shape} C_{QCD$$

- Where x_{reco} is the respected variable of interest (ttbar mass, pt, rapidity, leading and subleading jetPt and |jetY|)
- We deploy a fit in the Signal Region (2btag) to extract the N_{QCD}^{fit}

$$D(m^t)^{(i)} = N_{tt}^{(i)} T^{(i)}(m^t, k_{MassScale}, k_{MassResolution}) + N_{bkg}^{(i)} B(m^t) (1 + k_1 x) + N_{sub}^{(i)} O^{(i)}(m^t)$$

Our data CR is contaminated from ttbar and subdominant bkgs which has to be dealt with.

Parton & Particle levels

Parton

Observable	Requirement
$p_T^{t,ar{t}}$	> 400 GeV
$ \eta^{t,ar{t}} $	< 2.4
$m_{tar{t}}$	> 1000 GeV

Particle level Top Candidates

Observable	Requirement
N_{jets}	>1
$p_T^{jet1,2}$	> 400 GeV
$ \eta^{jet1,2} $	< 2.4
$m_{SD}^{jet1,2}$	(120, 220) GeV
m_{jj}	> 1000 GeV

$$\frac{d\sigma_i^{\mathrm{unf}}}{dx} = \frac{1}{\mathcal{L} \cdot \Delta x_i} \cdot \frac{1}{f_{2,i}} \cdot \sum_j \left(R_{ij}^{-1} \cdot f_{1,j} \cdot S_j \right)$$
 efficiency of the reco+true selection reco+true selection

Unfolding: simple response matrix inversion w/o regularisation

Tag And Probe

- Top Tagger Scale Factors
 - Validation method to ensure that no SF's are needed
 - From data we subtract QCD and Subdominant bkgs (MC) so that the data sample is pure

```
efficiency = \frac{\# (1 \, jet \, pass \, baseline + Tight \, TopTagger \, Cut \, AND \, 1 \, jet \, pass \, SR)}{\# (1 \, jet \, pass \, baseline + Tight \, TopTagger \, Cut \, AND \, 1 \, jet \, pass \, only \, baseline)}
```

- Randomization: Randomly select leading/subleading jet to use as tag or probe to avoid pT bias
- Divide the phase space into pT regions based on the topTagger categories: [400-600] GeV, [600-800] GeV,
 [800-Inf] GeV

Year	Type of File	DAS
2016	TT Mtt 700-1000	/TT Mtt-700to1000 TuneCUETP8M2T4 13TeV-powheg-pythia8/RunlISummer16MiniAODv3-PUMoriond17 94X mcRun2 asymptotic v3-v2/MINIAODSIM
2010	TT Mtt 1000-Inf	/TT_Mtt-1000toInf_TuneCUETP8M2T4_13TeV-powheg-pythia8/RunlISummer16MiniAODv3-PUMoriond17_94X_mcRun2_asymptotic_v3-v2/MINIAODSIM
	TT Nominal	/TT_TuneCUETP8M2T4_13TeV-powheg-pythia8/RunIISummer16MiniAODv3-PUMoriond17_94X_mcRun2_asymptotic_v3-v1/MINIAODSIM
	TT Mtt 700-1000	
	TT Mtt 1000-Inf	-
2017	TT Nominal Hadronic	/TTToHadronic TuneCP5 13TeV-powheg-pythia8/RunlIFall17MiniAODv2-PU2017 12Apr2018 94X mc2017 realistic v14-v1/MINIAODSIM
2017	TT Nominal Semilepton	/TTToSemiLeptonic_TuneCP5_13TeV-powheg-pythia8/RunlIFall17MiniAODv2-PU2017_12Apr2018_94X_mc2017_realistic_v14-v2/MINIAODSIM
	TT Nominal Dilepton	TTTo2L2Nu_TuneCP5_13TeV-powheg-pythia8/RunIIFall17MiniAODv2-PU2017_12Apr2018_94X_mc2017_realistic_v14-v2/MINIAODSIM
	TT Mtt 700-1000	
	TT Mtt 1000-Inf	
2010	TT Nominal Hadronic	/TTToHadronic_TuneCP5_13TeV-powheg-pythia8/RunllAutumn18MiniAOD-102X_upgrade2018_realistic_v15-v1/MINIAODSIM
2018	TT Nominal Semilepton	/TTToSemiLeptonic TuneCP5 13TeV-powheg-pythia8/RunllAutumn18MiniAOD-102X upgrade2018 realistic v15-v1/MINIAODSIM
	TT Nominal Dilepton	/TTTo2L2Nu_TuneCP5_13TeV-powheg-pythia8/RunlIAutumn18MiniAOD-102X_upgrade2018_realistic_v15-v1/MINIAODSIM

Overview: Discriminator, Efficiency and Acceptance

The discriminator is a BDT trained individually for 2016, 2017 and 2018

Category training: split the sample in categories based on Pt

- Bins:
 - [400, 600] GeV
 - [600, 800] GeV
 - [800, 1200] GeV
 - [1200, inf) GeV
- BDT, used variables:
 - Leading and Sub-leading subjet mass
 - N-Subjetiness variables (tau1, tau2, tau3)
 - fraction of the jetPt over the total pt sum of the event.
 - Energy correlation functions (ecfB1N2,ecfB1N3, ecfB2N2, ecfB2N3)
- BDT Output consistency for the 3 years
- Calculation of Efficiency and acceptance for each year
 - We choose the WP's for each year so that the leading jet p_T efficiency is similar for all years

2016

2017

2018

Fit Params Results Comparison

TagAndProbe Efficiency Plots

Tight TopTagger + Probe

