FLAME: Taming Backdoors in Federated Learning

Thien Duc Nguyen¹, Phillip Rieger¹, Huili Chen², Hossein Yalame¹, Helen Mollering¹, Hossein Fereidooni¹, Samuel Marchal³, Markus Miettinen¹, Azalia Mirhoseini⁴, Shaza Zeitouni¹, Farinaz Koushanfar², Ahmad-Reza Sadeghi¹, and Thomas Schneider¹

¹Technical University of Darmstadt, Germany; ²University of California San Diego, USA; ³Aalto University and F-Secure, Finland; ⁴Google, USA

The 31st USENIX Security Symposium, 2022

Big Picture

- Poisoning attacks on Federated Learning
 - Deteriorate model performance or inject backdoors
 - Existing defenses are not effective

- Our solution: FLAME
 - Eliminates poisoned updates effectively
 - Maintains model performance
 - Preserves privacy of clients' data (based on Secure Two-Party Computation)

Federated Learning: Basics

Federated Learning Applications

[Jallepalli et al. BigDataService 2021]

Financial Crime Detection

[McMahan et al. Google Al 2017]

[Nguyen et. al ICDCS 2019]

[Sheller et al. Intel Al 2018]

[Fereidooni et. al NDSS 2022]

[Yang et al. BIGDATA 2019]

Security & Privacy of Federated Learning

Poisoning Attacks on Federated Learning

Poisoning Attacks on Federated Learning

Untargeted Poisoning

Renders the ML model useless (Denial-of-Service)

Targeted Poisoning (Backdoor)

Injecting malicious functionality using predefined (triggered) inputs

Examples of Backdoor Attacks: Adversary Chosen Label

Word prediction

Select end words, e.g.,

"buy a CPU from AMD"

[Bagdasaryan et al. AISTATS 2020]

Image classification

Change labels, e.g.,

 Speed limit signs from 30kph to 80kph

[Shen et al. ACSAC 2016]

IoT malware detection

Inject malicious traffic, e.g., use compromised IoT devices

[Nguyen et al. DISS@NDSS 2020]

Existing Defenses Against Backdoor Attacks

FLAME Overview

Backdoor Characteristics

FLAME: Dynamic Model Filtering

Benign models at round t

Malicious models at round t

FLAME: Adaptive Model Clipping

Global mode from training round t-1

Benign models at round t

Malicious models at round t S_t : Clipping bound

$$(e_{1},...,e_{n}) \leftarrow Euclidean_Distance(G_{t-1},(W_{1},...,W_{n}))$$

$$S_{t} \leftarrow Median(e_{1},...,e_{n})$$

$$w_{j} \leftarrow G_{t-1} + (W_{j} - G_{t-1}) * Min\left(1,\frac{S_{t}}{e_{j}}\right) \forall \in \{b_{1},...,b_{L}\}$$

 L_2 -norms (Euclidean distances) of model updates depending on the training rounds and datasets

FLAME: Adaptive Noising - Theoretical Background

Global mode from training round t-1

Benign models at round t

Malicious models at round t S_t : Clipping bound, σ_t : Noise level

$$G_t \leftarrow \sum_{j \in \{b_1, \dots, b_L\}} \frac{W_j}{L}$$

$$G_t \leftarrow G_t + N(O, \sigma_t^2) \text{ where } \sigma_t^2 \leftarrow \frac{S_t \cdot \sqrt{2 \ln(\frac{1.25}{\delta})}}{\varepsilon}$$

• Differential Privacy negative impact of individual (backdoor) samples e.g., [Du et at. ICLR 2020]:

$$Pr[M(D_1) \in \mathcal{O}] \le e^{\epsilon} \cdot Pr[M(D_2) \in \mathcal{O}] + \delta$$

- We prove that backdoor resilience from centralized learning can be transformed to federated learning
- Determine σ_t dynamically based on S_t
- Clipping and filtering reduce necessary noise, i.e., minimize the effect on the model performance

Evaluation

ATTACK	Dataset	No De	efense	FLAME		
ATTACK		ВА	MA	ВА	MA	
Constrain-and-Scale [Bagdasaryan et al. AISTATS 2020]	Reddit CIFAR-10 IoT-Traffic	100.0 81.9 100.0	22.6 89.8 100.0	0.0 0.0 0.0	22.3 91.9 99.8	
Distributed Backdoor Attack [Xie et al. ICLR 2020]	CIFAR-10	93.8	57.4	3.2	76.2	
Edge-Case [Wang et al. NeurIPS 2020]	CIFAR-10	42.8	84.3	4.0	79.3	
Projected Gradient Decent [Wang et al. NeurIPS 2020]	CIFAR-10	56.1	68.8	0.5	65.1	
Untargeted Poisoning [Fang et al. USENIXSec 2020]	CIFAR-10	-	46.7	-	91.3	

BA: Backdoor Accuracy, MA: Main Task Accuracy

FLAME vs. Existing Defenses

Defenses	Reddit		CIFAR-10		IoT-Traffic	
Defenses	ВА	MA	ВА	MA	ВА	MA
Benign Setting No defense	100.0	22.7 22.6	- 81.9	92.2 89.8	100.0	100.0 100.0
Krum [Blanchard et al. NIPS 2017]	100.0	9.6	100.0	56.7	100.0	84.0
FoolsGold [Fung et al. RAID 2020]	0.0	22.5	100.0	52.3	100.0	99.2
Auror [Shen et al. ACSAC 2016]	100.0	22.5	100.0	26.1	100.0	96.6
AFA [Muñoz-González et al. arXiv 2019]	100.0	22.4	0.0	91.7	100.0	87.4
DP [Sun et al. NeurIPS 2019]	14.0	18.9	0.0	78.9	14.8	82.3
Median [Yin et al ICML 2018]	0.0	22.0	0.0	50.1	0.0	87.7
FLAME	0.0	22.3	0.0	91.9	0.0	99.8

BA: Backdoor Accuracy, MA: Main Task Accuracy

FLAME vs. Naïve Combination

Comparison between FLAME and a combination of existing defenses against constrain-and-scale attack [Bagdasaryan et al. AISTATS 2020] on the CIFAR-10 dataset

Private FLAME: Privacy Preserving Aggregation

Using secure Multi-party Computation

Private FLAME: Motivation

- Privacy attack: A curious aggregator can learn information from the training data by inference attacks
 - E.g., [Pyrgelis et al. NDSS 2018, Shokri et al. S&P 2017]
- Existing defenses prohibit access to the model updates to investigate backdoors
 - E.g., [Bonawitz et al. CCS 2017, Kairouz et al. PMLR 2021]
- Our goal: Introduce private FLAME such that FLAME algorithms are computed under encryption

Private FALME: Solution

Private FLAME: Evaluation

 The runtime of Private FALME is significantly higher than standard FLAME

 However, such runtime overhead would be acceptable to maintain privacy

 Private FLAME provides similar results w.r.t accuracy in comparison to standard FLAME

#client	Reddit		CIF	AR-10	IoT-Traffic		
	S	Р	S	Р	S	Р	
10	2.35	519.92	0.32	134.93	0.07	108.16	
50	62.55	5895.70	2.62	766.12	0.69	269.35	
100	252.13	22081.65	8.56	2568.23	2.11	876.96	

Runtime in sec. of standard FALME (S) compared to private FALME (P) using secure two-party computation

	Reddit		CIFA	R-10	IoT-Traffic		
	S	Р	S	Р	S	Р	
ВА	0.0	0.0	0.0	0.0	0.0	0.0	
MA	22.3	22.2	91.9	91.7	99.8	99.7	
TPR	22.2	20.4	23.8	40.8	59.5	51.0	
TNR	100.0	100.0	86.2	100.0	100.0	100.0	

Effectiveness of standard FALME (S) in comparison to private FALME (P) using secure two-party computation

BA: Backdoor Accuracy, MA: Main Task Accuracy
TPR: True Positive Rate, TNR: True Negative Rate

Conclusion & Future Work

- FLAME, a novel backdoor defense for FL:
 - Mitigates state-of-the-art backdoor attacks effectively
 - Negligible impact on the benign performance of the models
 - Preserves privacy of clients' data

- Working on privacy-preserving poisoning defenses
 - Improving computational efficiency