Laborbericht Elektrotechnik TGE11/2

Titel: Gleichrichterschaltung

Bearbeiter: Dominik Eisele

Mitarbeiterin: Theresa Klein

Datum Versuchsdurchführung: 30.06.2015

Datum Abgabe: 13.07.2014

Ich erkläre an Eides statt, den vorliegenden Laborbericht selbst angefertigt zu haben. Alle fremden Quellen wurden in diesem Laborbericht benannt.

Aichwald, 12. Juli 2015 Dominik Eisele

1 Einführung

Bei dem Versuch "Einpuls-Einweggleichrichterschaltung" wird die Funktionsweiße einer Einpuls-Einweggleichrichterschaltung untersucht. Die entstandene Gleichspannung wird anschließend Oszilloskopiert.

1.1 Grundlagen

Eine Gleichrichterdiode besitzt eine Sperr- und eine Durchlassrichtung, das heißt dass der Stomfluss in eine Richtung fast ungehindert möglich ist, vertauscht man die Polarität isoliert die Diode fast vollständig.

1.2 Benötigten Formeln

Bei einer inusförmigen Wechselspannung:

$$u_{\text{eff}} = \frac{\hat{u}}{\sqrt{2}}$$

Bei einer sinusförmigen, pulsierenden Gleichspanung, die ausschließlich die positiven Halbwellen besitzt:

Da bei einer, mit einer Diode, gleichgerichteten Spannung nur die Hälfte der Halbwellen, des ursprünglichen Sinus vorhanden sind, muss man die Formel für das Berechnen des Effektivwerts durch $\sqrt{2}$ teilen.

$$u_{\text{eff}} = \frac{\frac{u}{\sqrt{2}}}{\sqrt{2}}$$

 $u_{\text{eff}} = \frac{\hat{u}}{2}$ Daraus erschließt sich die Formel $u_{\text{eff}} = \frac{\hat{u}}{2}$ für den Effektivwert einer sinusförmigen, pulsierenden Gleichspanung, die ausschließlich positiven Halbwellen besitzt.

2 Material und Methoden

2.1 Material

Für den Versuch verwendete Materialien:

- 1× Gleichrichterdiode
- Metra HIT 26S
- Metra HIT 20S
- Bauteilplatte 1/6
- Transformator WSS 080 N6-06
- Potentiometer $470 \Omega \text{ N.6}$
- Leitungen
- Brücken

2.2 Aufbau

An den Ausgängen eines Transformators wird eine Gleichrichterdiode und ein Widerstand angeschlossen. Zusätzich werden zwei Spannungs- und ein Strommmessgerät angeschlossen. Dieser Aufbau ist in Abbildung 1 abgebildet.

Abbildung 1: Skizze der Einpuls-Einweggleichrichterschaltung

2.3 Durchführung 3 MESSWERTE

2.3 Durchführung

Nachdem die Schaltung aufgebaut wurde wurde die Sannungen $U_{\rm ges}$ gemessen. Aufgrund dieser Messwerte wurde der benötigte Widerstand R berechnet. Nachdem der Widerstand R eingebaut wurde, wurde die Spannung $U_{\rm d}$ gemessen.

Die Spannung $U_{\rm d}$ wurde zusätzlich mit einem Oszilloskop untersucht, das enstandene Schaubild ist dem Laborbericht beigefügt.

3 Messwerte

$$U_{\rm ges_{\rm eff}} = 21\,{\rm V}$$

$$\hat{U}_{\rm ges} = 29\,{\rm V}$$

$$\hat{U}_{\rm d}=28\,{\rm V}$$

$$U_{\rm d_{eff}} = 14 \, \rm V$$

$$I_{\rm d}=0.5\,{\rm A}$$

4 Auswertung

4.1 Einpuls-Einweggleichrichterschaltung

Die sinusförmige Wechselspannung (rot) besitzt ein ein Spitzenwert von $\hat{U}=29\,\mathrm{V}$. Der dazugehörige Effektievwert (blau) liegt bei $U_{\mathrm{eff}}=21\,\mathrm{V}$. Dieser gemessene Wert lässt sich durch die Formel $u_{\mathrm{eff}}=\frac{\hat{u}}{\sqrt{2}}$ auch berechnen : $u_{\mathrm{eff}}=\frac{29\,\mathrm{V}}{\sqrt{2}}=20,5\,\mathrm{V}\approx21\,\mathrm{V}$.

rende Gleichpannung (grün) besitzt ein ein Spitzenwert von $\hat{U}=28\,\mathrm{V}$. Der dazugehörige Effektievwert (blau) liegt bei $U_{\mathrm{eff}}=14\,\mathrm{V}$. Dieser gemessene Wert lässt sich durch die Formel $u_{\mathrm{eff}}=\frac{\hat{u}}{2}$ auch berechnen : $u_{\mathrm{eff}}=\frac{28\,\mathrm{V}}{2}=14\,\mathrm{V}$.

Der auftretende Verlust am Spitzenwert von $\hat{U}_{\rm ges} - \hat{U}_{\rm d} = 29\,{\rm V} - 28\,{\rm V} = 1\,{\rm V}$ lässt sich durch die Schleusenspannung $U_{\rm S}$ einer Diode erklären. Erst ab 0,6 V bis 0,7 V nimmt der Stomfluss stark zu, ein nennenswerter Strom fließt allerdings schon ab etwa 0,4 V.

4.2 Zweipuls-Brücken-Gleichrichterschaltung

Da eine mit einer Einpuls-Einweggleichrichterschaltung entstandene Brummspannung unpraktikabel ist, da, die Schaltung, ein schlechten Wirkungsgrad besitzt und die Spannung lange Zeit bei 0 V ist, benutzt man eine Zweipuls-Brücken-Gleichrichterschaltung. Bei dieser Schaltung werden vier Dioden benötigt, die wie in Abbildung 2 zu sehen ist aufgebaut werden. MIt dieser Schaltung werden die negativen Halbwellen nicht abgeschnitten, sondern ins positive übertragen. Da die negativen Halbwellen, im Vergleich zur Einpuls-Einweggleichrichterschaltung, erhalten bleiben, ist der Wirkungsgrad deutlich besser und es gibt keine 0 V Phasen.

Abbildung 2: Skizze der Zweipuls-Brücken-Gleichrichterschaltung

Bei der Spannung U_{ges} (rot) und der Effektivspannung $U_{ges_{eff}}$ (blau) gibt es bei der Zweipuls-Brücken-Gleichrichterschaltung keinen Unterschied zur Einpuls-Einweggleichrichterschaltung. Der Unterschied zwischen den beiden Schaltungen ist erst bei den Spannungen U_{d} (grün) und $U_{d_{eff}}$ (gelb) sichtbar. Hier ist nun, bei der ursprünglichen 0 V Phase, eine zweite, positive, sinusförmige Halbwelle.

Seite 7 von 7