A Generalized Two-watched-literal Scheme in a mixed Boolean and Non-linear Arithmetic Constraint Solver¹

Tino Teige* Christian Herde* Martin Fränzle*
Natalia Kalinnik[†] Andreas Eggers*

* University of Oldenburg, Germany

[†] University of Freiburg, Germany

STCS @ EPIA, Guimarães, Portugal December 7, 2007

¹partly supported by the German Research Council (DFG) as part of the AVACS project (www.avacs.org)

Aim of the talk

$$(\neg b \lor y > \sin(x) \lor a \le -2.76) \land (x = y \cdot z \lor x = 1/y)$$

Adapting the **two-watched literal scheme** from the propositional case to the **mixed Boolean and non-linear arithmetic** framework.

Idea: Accelerating unit propagation by lazy evaluation of clauses

two watched non-false literals as witness for non-unitness

- $(\neg a \lor b \lor c \lor \neg d \lor \neg e \lor \neg f)$
- $\triangleright \neg c, \neg b$
- $(\neg \mathbf{a} \lor \mathbf{b} \lor \mathbf{c} \lor \neg \mathbf{d} \lor \neg \mathbf{e} \lor \neg \mathbf{f})$
- ► e, f, a
- $(\neg a \lor b \lor c \lor \neg d \lor \neg e \lor \neg f)$
- ightharpoonup deducing $\neg d$

- $(\neg \mathbf{a} \lor \mathbf{b} \lor c \lor \neg d \lor \neg e \lor \neg f)$
- $\triangleright \neg c, \neg b$
- $(\neg a \lor b \lor c \lor \neg d \lor \neg e \lor \neg f)$
- ► e, f, a
- $(\neg a \lor b \lor c \lor \neg d \lor \neg e \lor \neg f)$
- ightharpoonup deducing $\neg d$

- $(\neg \mathbf{a} \lor \mathbf{b} \lor c \lor \neg d \lor \neg e \lor \neg f)$
- $\triangleright \neg c, \neg b$
- $(\neg \mathbf{a} \lor \mathbf{b} \lor \mathbf{c} \lor \neg \mathbf{d} \lor \neg \mathbf{e} \lor \neg \mathbf{f})$
- ▶ e, f, a
- $(\neg a \lor b \lor c \lor \neg d \lor \neg e \lor \neg f)$
- ightharpoonup deducing $\neg d$

- $(\neg \mathbf{a} \lor \mathbf{b} \lor c \lor \neg d \lor \neg e \lor \neg f)$
- ¬c, ¬b
- $(\neg a \lor b \lor c \lor \neg d \lor \neg e \lor \neg f)$
- ▶ e, f, a
- $(\neg a \lor b \lor c \lor \neg d \lor \neg e \lor \neg f)$
- ightharpoonup deducing $\neg d$

- $(\neg \mathbf{a} \lor \mathbf{b} \lor c \lor \neg d \lor \neg e \lor \neg f)$
- $ightharpoonup \neg c$, $\neg b$
- $(\neg \mathbf{a} \lor \mathbf{b} \lor \mathbf{c} \lor \neg \mathbf{d} \lor \neg \mathbf{e} \lor \neg \mathbf{f})$
- ▶ e, f, a
- $(\neg a \lor b \lor c \lor \neg d \lor \neg e \lor \neg f)$
- ▶ deducing $\neg d$

- $(\neg \mathbf{a} \lor \mathbf{b} \lor c \lor \neg d \lor \neg e \lor \neg f)$
- $ightharpoonup \neg c$, $\neg b$
- $(\neg \mathbf{a} \lor \mathbf{b} \lor \mathbf{c} \lor \neg \mathbf{d} \lor \neg \mathbf{e} \lor \neg \mathbf{f})$
- ▶ e, f, a
- ▶ deducing $\neg d$

- $(\neg \mathbf{a} \lor \mathbf{b} \lor c \lor \neg d \lor \neg e \lor \neg f)$
- $ightharpoonup \neg c$, $\neg b$
- $(\neg \mathbf{a} \lor \mathbf{b} \lor \mathbf{c} \lor \neg \mathbf{d} \lor \neg \mathbf{e} \lor \neg \mathbf{f})$
- ▶ e, f, a
- $(\neg a \lor b \lor c \lor \neg d \lor \neg e \lor \neg f)$
- ▶ deducing $\neg d$

- $(\neg \mathbf{a} \lor \mathbf{b} \lor c \lor \neg d \lor \neg e \lor \neg f)$
- $ightharpoonup \neg c$, $\neg b$
- $(\neg \mathbf{a} \lor \mathbf{b} \lor \mathbf{c} \lor \neg \mathbf{d} \lor \neg \mathbf{e} \lor \neg \mathbf{f})$
- ▶ e, f, a
- ightharpoonup deducing $\neg d$

- $(\neg \mathbf{a} \lor \mathbf{b} \lor c \lor \neg d \lor \neg e \lor \neg f)$
- $ightharpoonup \neg c$, $\neg b$
- $(\neg \mathbf{a} \lor \mathbf{b} \lor \mathbf{c} \lor \neg \mathbf{d} \lor \neg \mathbf{e} \lor \neg \mathbf{f})$
- ▶ e, f, a
- $(\neg a \lor b \lor c \lor \neg \mathbf{d} \lor \neg e \lor \neg f)$
- ightharpoonup deducing $\neg d$

- $(\neg \mathbf{a} \lor \mathbf{b} \lor c \lor \neg d \lor \neg e \lor \neg f)$
- $ightharpoonup \neg c$, $\neg b$
- $(\neg \mathbf{a} \lor \mathbf{b} \lor \mathbf{c} \lor \neg \mathbf{d} \lor \neg \mathbf{e} \lor \neg \mathbf{f})$
- ▶ e, f, a
- $(\neg a \lor b \lor c \lor \neg \mathbf{d} \lor \neg e \lor \neg f)$
- ▶ deducing ¬d

iSAT algorithm [Fränzle et al 06/07]

tackles conjunction of disjunctions of (arithmetic) atoms over the reals, integers, Booleans, e.g.

$$(\neg b \lor y > \sin(x) \lor a \le -2.76) \land (x = y \cdot z \lor x = 1/y)$$

Note: For each mixed Boolean arithmetic formula there is an equi-satisfiable linearly-sized formula in such CNF!

- generalization of DPLL:
 - manipulating interval valuations
 - branching (splitting intervals)
 - propagation (unit + interval propagation)
 - conflict-driven clause learning
 - non-chronological backtracking

iSAT algorithm [Fränzle et al 06/07]

tackles conjunction of disjunctions of (arithmetic) atoms over the reals, integers, Booleans, e.g.

$$(\neg b \lor y > \sin(x) \lor a \le -2.76) \land (x = y \cdot z \lor x = 1/y)$$

Note: For each mixed Boolean arithmetic formula there is an equi-satisfiable linearly-sized formula in such CNF!

- generalization of DPLL:
 - manipulating interval valuations
 - branching (splitting intervals)
 - propagation (unit + interval propagation)
 - conflict-driven clause learning
 - non-chronological backtracking

HySAT tool

- iSAT as core algorithm (moreover, bounded model checker for reachability analysis of hybrid systems, http://hysat.informatik.uni-oldenburg.de/)
- ▶ reads **arbitrary** Boolean combination of **arbitrary** non-linear constraints, e.g. $(x > y \implies y^2 \ge \sin(x))$
- rewrites into CNF (by Tseitin-like transformation)

$$(x > y \implies y^2 \ge \sin(x)) \rightsquigarrow (x \le y \lor h \ge \sin(x)) \land (h = y^2)$$

Two-watched atom scheme

▶ 2 atoms watched in each clause

$$(\underline{x \le \sin(y)} \lor \underline{y > x^2} \lor y \le -3.1 \lor \neg b)$$

- visit clause whenever new interval for a variable could change truth value of one watch, e.g.
 - $\rightarrow x > 0$ then visit clause
 - ▶ $b = \text{true } (b \ge 1)$ do not visit clause
- if a watched atom evaluates to false (i.e. each possible combination of values do not satisfy atom) then search for a replacement

Two-watched atom scheme

2 atoms watched in each clause

$$(\underline{x \le \sin(y)} \lor \underline{y > x^2} \lor y \le -3.1 \lor \neg b)$$

- visit clause whenever new interval for a variable could change truth value of one watch, e.g.
 - \rightarrow x > 0 then visit clause
 - $b = \text{true} (b \ge 1)$ do not visit clause
- if a watched atom evaluates to false (i.e. each possible combination of values do not satisfy atom) then search for a replacement

Two-watched atom scheme

2 atoms watched in each clause

$$(\underline{x \le \sin(y)} \lor \underline{y > x^2} \lor y \le -3.1 \lor \neg b)$$

- visit clause whenever new interval for a variable could change truth value of one watch, e.g.
 - \rightarrow x > 0 then visit clause
 - ▶ $b = \text{true } (b \ge 1)$ do not visit clause
- if a watched atom evaluates to false (i.e. each possible combination of values do not satisfy atom) then search for a replacement

- $(\underline{x \le \sin(y)} \lor \underline{y > x^2} \lor y \le -3.1 \lor \neg b),$ $x \in (-3, 8], \ y \in [-4, 53), \ b \in \mathbb{B} = \{0, 1\}$
- b > 1: no visit
- x > 6.2: $x \le \sin(y)$ false, since $x \le \sin(y) \le 1$
- $(x \le \sin(y) \lor \underline{y} > x^2 \lor \underline{y} \le -3.1 \lor \neg b),$

$$x \in (6.2, 8], y \in [-4, 53), b \in \{1\}$$

- \triangleright y < 47: visit clause, no watch violated
- ▶ $y \ge -2$: $y \le -3.1$ false
- $(x \le \sin(y) \lor y > x^2 \lor y \le -3.1 \lor \neg b)$
- ► clause becomes **unit** propagating $y > x^2$, which deduces, e.g., $y > x^2 > 6.2^2 = 38.44$

- ▶ $(\underline{x \le \sin(y)} \lor \underline{y > x^2} \lor y \le -3.1 \lor \neg b),$ $x \in (-3, 8], \ y \in [-4, 53), \ b \in \mathbb{B} = \{0, 1\}$
- b > 1: no visit
- x > 6.2: $x \le \sin(y)$ false, since $x \le \sin(y) \le 1$
- $(x \le \sin(y) \lor \underline{y > x^2} \lor \underline{y \le -3.1} \lor \neg b),$

$$x \in (6.2, 8], y \in [-4, 53), b \in \{1\}$$

- \triangleright y < 47: visit clause, no watch violated
- ▶ $y \ge -2$: $y \le -3.1$ false
- $(x \le \sin(y) \lor y > x^2 \lor y \le -3.1 \lor \neg b)$
- ► clause becomes **unit** propagating $y > x^2$, which deduces, e.g., $y > x^2 > 6.2^2 = 38.44$

- ▶ $(\underline{x \le \sin(y)} \lor \underline{y > x^2} \lor y \le -3.1 \lor \neg b),$ $x \in (-3, 8], \ y \in [-4, 53), \ b \in \mathbb{B} = \{0, 1\}$
- b > 1: no visit
- x > 6.2: $x \le \sin(y)$ false, since $x \le \sin(y) \le 1$
- $(x \le \sin(y) \lor \underline{y > x^2} \lor \underline{y \le -3.1} \lor \neg b),$

$$x \in (6.2, 8], y \in [-4, 53), b \in \{1\}$$

- y < 47: visit clause, no watch violated</p>
- ▶ $y \ge -2$: $y \le -3.1$ false
- $(x \le \sin(y) \lor y > x^2 \lor y \le -3.1 \lor \neg b)$
- ► clause becomes **unit** propagating $y > x^2$, which deduces, e.g., $y > x^2 > 6.2^2 = 38.44$

- ▶ $(\underline{x \le \sin(y)} \lor \underline{y > x^2} \lor y \le -3.1 \lor \neg b),$ $x \in (-3, 8], \ y \in [-4, 53), \ b \in \mathbb{B} = \{0, 1\}$
- b > 1: no visit
- x > 6.2: $x \le \sin(y)$ false, since $x \le \sin(y) \le 1$
- $(x \le \sin(y) \lor \underline{y > x^2} \lor \underline{y \le -3.1} \lor \neg b),$

$$x \in (6.2, 8], y \in [-4, 53), b \in \{1\}$$

- ightharpoonup y < 47: visit clause, no watch violated
- ▶ $y \ge -2$: $y \le -3.1$ false
- $(x \le \sin(y) \lor y > x^2 \lor y \le -3.1 \lor \neg b)$
- ► clause becomes **unit** propagating $y > x^2$, which deduces, e.g., $y > x^2 > 6.2^2 = 38.44$

- ► $(\underline{x \le \sin(y)} \lor \underline{y > x^2} \lor y \le -3.1 \lor \neg b),$ $x \in (-3, 8], \ y \in [-4, 53), \ b \in \mathbb{B} = \{0, 1\}$
- b > 1: no visit
- x > 6.2: $x \le \sin(y)$ false, since $x \le \sin(y) \le 1$
- ► $(x \le \sin(y) \lor \underline{y > x^2} \lor \underline{y \le -3.1} \lor \neg b),$ $x \in (6.2, 8], y \in [-4, 53), b \in \{1\}$
- ▶ y < 47: visit clause, no watch violated
- ▶ $y \ge -2$: $y \le -3.1$ false
- $(x \le \sin(y) \lor y > x^2 \lor y \le -3.1 \lor \neg b)$
- ► clause becomes **unit** propagating $y > x^2$, which deduces, e.g., $y > x^2 > 6.2^2 = 38.44$

Clause evaluation: Possible cases

# false watches	1 new watch	2 new watches	action
0		_	nothing
1	yes	_	set new watch
	no	_	propagate other watch
2	_	yes	set new watches
	yes	no	propagate new watch
	no	_	conflict analysis

Updating watch lists

Problem: Avoid performing a time-consuming list search.

Data-structure & two-level watch scheme

Two-level watch scheme I

New upper bound x < 3.5: $x = y \cdot z$ becomes false.

Two-level watch scheme II

Visit clauses in WL for $x = y \cdot z$, look for new watches.

Two-level watch scheme III

WL for $x = y \cdot z$ updated, but **not** for its variables x, y, z.

Two-level watch scheme IV

Update WLs for variables lazily when new bounds processed.

Two-level watch scheme V

 $x = y \cdot z$ unwatched, set flag for y to false, update WLs for y.

Empirical results

Figure: Performance impact of the two-watched-atom scheme: runtime in seconds (left) and number of clause evaluations (right)

Future and ongoing work

- 1. Efficiency: accelerating iSAT
 - ▶ (variable-selection and interval-splitting) decision heuristics
 - numerical methods (interval Newton, linear programming)
 - parallelization (divide-and-conquer, different BMC instances)
 - low-level code optimizations for improving cache behavior
- 2. Extension: handling broader classes of constraints
 - constraints containing ordinary differential equations
 - existential & stochastic quantification of discrete variables
 - generation of Craig interpolants

Thank you!

iSAT algorithm

```
iSAT() {
        while (true) {
3
            while (true) {
4
                 result = deduce();
                                              // Deducing.
5
                 if (result == CONFLICT) {
6
                     // Learning & Backjumping.
                     resolved = analyze_conflict();
8
                     if (!resolved) {
                         return "UNSATISFIABLE";
10
11
12
                 else if (result == SOLUTION) {
13
                     return "SATISFIABLE":
14
15
                 else {
16
                     break;
17
18
            if (!decide_next_branch()) { // Branching.
19
20
                return "UNKNOWN";
21
22
23
```

HySAT tool

- old version just supports watching of simple bounds, not of arithmetic atoms
- ► E.g., $(x > y \implies y^2 \ge \sin(x))$:

$$x > y$$
 \Rightarrow $(h_1 > 0) \land (h_1 = x - y)$
 $y^2 \ge \sin(x)$ \Rightarrow $(h_4 \ge 0) \land (h_2 = y^2) \land$
 $(h_3 = \sin(x)) \land (h_4 = h_2 - h_3)$

Rewritten formula: $(h_1 \le 0 \lor h_4 \ge 0) \land (h_1 = x - y) \land \dots$

- two types of clauses:
 - 1. **disjunctive** clauses contain **simple** bounds only
 - 2. arithmetic atoms occur only in single clauses

Motivation of watching arithmetic atoms I

$$(x > y \implies y^2 \ge \sin(x)) \rightsquigarrow (x \le y \lor h \ge \sin(x)) \land (h = y^2)$$

- homogeneous representation of clauses
- saving auxiliary variables
- learned clauses not restricted to just simple bounds
- (potentially) saving expensive interval computations

Motivation of watching arithmetic atoms II

direct handling of partial functions/operators

$$(x/y > 2.3 \lor ...)$$
 and $(h > 2.3 \lor ...) \land (h = x/y)$

are **not** satisfiability-equivalent since we **exclude** y = 0 for which potentially a solution exists

Motivation of watching arithmetic atoms III

(generalized) polarity optimization by Tseitin-transformation

given:
$$(x \cdot y \cdot z \ge -0.7)$$

old: $(h' \ge -0.7)$ \land $(h' = x \cdot h)$
 \land $(h = y \cdot z)$
new: $(x \cdot h \ge -0.7)$ \land $(x < 0 \lor h \le y \cdot z)$
 \land $(x \ge 0 \lor h \ge y \cdot z)$

$$x \cdot y \cdot z \ge x \cdot h \ge -0.7$$
,
 $x \cdot y \cdot z \ge x \cdot h$ iff
$$\begin{cases} y \cdot z \ge h & ; x \ge 0 \\ y \cdot z \le h & \text{otherwise} \end{cases}$$

- positive effect on deciding satisfiability
- facilitating improved watching and less interval computations

Empirical results I

- Comparison: two-watching enabled vs. disabled (simulates old version in a certain sense) under same syntactic formulae
- Why not against old version? HySAT has a strong preprocessing. Syntactic representation (with sharing common subexpressions) of a formula potentially strongly influence solving (result, runtime)!

$$(x>y) \land (x vs. $(h>0) \land (h<0) \land (h=x-y)$$$

Alternative comparisons with old HySAT

- either on the same syntactic formulae but then no watching of arithmetic atoms
- or on different syntactic formulae but then empirical results strongly depend on concrete representation.

I.e., both alternatives are **not** informative of the impact of watching arithmetic atoms.

Empirical results II

Why random benchmarks? Scalable in number of variables and clauses, and size of clauses. Concerning 2-watching, structure of a formula is not as important as for heuristics like decision strategies or learning.