Convolutional Neural Network w problemie MNIST

Przygotował Michał Tracewicz

Proces uczenia

https://www.guru99.com/convnet-tensorflow-image-classification.html

Learning Epochs rate Parametry Validation Batch size split

Metoda gradientu prostego

Architektura sieci

```
model.add(tf.keras.layers.Conv2D(filters=15,kernel_size=2,padding='same',activation='relu',
input shape=(28,28,1)))
model.add(tf.keras.layers.MaxPooling2D(pool size=2))
model.add(tf.keras.layers.Dropout(rate=0.2))
model.add(tf.keras.layers.Conv2D(filters=32, kernel size=2,padding='same',activation='relu'))
model.add(tf.keras.layers.MaxPooling2D(pool_size=2))
model.add(tf.keras.layers.Dropout(rate=0.2))
model.add(tf.keras.layers.Conv2D(filters=64, kernel size=2,padding='same',activation='relu'))
model.add(tf.keras.layers.MaxPooling2D(pool_size=2))
model.add(tf.keras.layers.Dropout(rate=0.2))
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(units=512, activation='sigmoid'))
model.add(tf.keras.layers.Dropout(rate=0.2))
model.add(tf.keras.layers.Dense(units=10, activation='softmax'))
```

Warstwa wejściowa (ang. Input)

Obraz 28x28x1 (trzy wymiary)

Tablica zawierająca 784 elementy (jeden wymiar)

Każdy piksel ma wartość z przedziału [0,255]

Przekonwertowane na wartości z przedziału [0.0,1.0]

Rodzaje warstw ukrytych

Convolutional Pooling Dropout Dense

Splotowa (ang. Convolutional)

0	0	0	0	0	0	
0	105	102	100	97	96	
0	103	99	103	101	102	
0	101	98	104	102	100	
0	99	101	106	104	99	
0	104	104	104	100	98	
						9

Image Matrix

$$0*0+0*-1+0*0 +0*-1+105*5+102*-1 +0*0+103*-1+99*0 = 320$$

Output Matrix

Convolution with horizontal and vertical strides = 1

Łącząca (ang. Pooling)

Odrzucająca (ang. Dropout)

(a) Standard Neural Net

(b) After applying dropout.

W pełni połączona (ang. Dense) oraz warstwa wyjściowa (ang.output)

