

İnternet Örnekleri

İnternet Örnekleri

 Bu çalışmamda kullanmış olduğum Esp-32 geliştirme kartının çalışmamda yararlı olacağını düşündüm.

Çalışmamda Kullanmış Olduğum Malzemeler

- ESP-32 CAM (kameralı geliştirme kartı)
- Raspberry Pi 4 (Görüntü işleme işlemlerini yapacağım anakart)
- 4 Tekerlekli Şase
- L298N Motor Sürücüsü
- Powerbank (5 V çıkışlı 2100 mAh)
- Motorlara harici güç sağlamak için şarjlı batarya
- Gerekli bağlantıları sağlamak için jumper kablo ve breadboard

ESP - 32

• Görüntü işleme için kullandığım geliştirme kartı

Raspberry PI 4

• Bir mikrobilgisayar, Esp-32'den gelen görüntüleri işlemek için ve aynı zamanda üzerindeki kontrol edilebilir pinler sayesinde motorlara yön verebiliyorum.

Donanım Geliştirme

 Bu bölümde aracın mekanik kısımlarının bir araya getirildiği ve araca gerekli olan gücün sağlanacağı kaynakların seçimini paylaştım.

Proje Geliştirme Süreçleri Şaseyi Toplama

(9V Şarjlı Batarya Versiyonu)

(Esp32-Cam ve RPİ4 ilk versiyon)

Localhost

1- Eklemiş Olduğum Lipo pil yeterli gelmiyordu.

2- Şase bu şekliyle düz durmuyordu, lastikler eğiliyordu.

3- Aracın üzeri çok kalabalık

gözüküyordu.

11.1 V Şarjlı El Yapımı Pil

Yazılım ve Görüntü İşleme

Bu kısımda ise aracın otonom ilerlemesinin karar mekanizmasını göstermeye çalıştım.

Çalışma Prensibi

Çalışma Prensibi

 Aracın önüne yerleştirilen kamera ile yapılacak görüntü işleme modeli ile aracı kendi kendine gidebilir hale getireceğim.