1

ASSIGNMENT 3: GATE 2009 AG: Agricultural Engineering

EE25BTECH11047 - Ravula Shashank Reddy

1) Inverse of the matrix $\begin{pmatrix} 2 & 3 \\ 2 & 1 \end{pmatrix}$ is				
	\ /		(GATE EE 2025)	
a) $\begin{pmatrix} -0.5 & 0.75 \\ 0.5 & -0.25 \end{pmatrix}$ b) $\begin{pmatrix} -0.25 & 0.5 \\ -0.5 & 0.75 \end{pmatrix}$		c) $\begin{pmatrix} -0.25 & 0.75 \\ 0.5 & -0.5 \end{pmatrix}$ d) $\begin{pmatrix} -0.25 & -0.5 \\ 0.75 & 0.5 \end{pmatrix}$		
2) The probability fun	ction value $f(x)$ at x	= 3 for Poisson distribution with	mean of 2 is (GATE EE 2025)	
a) 0.12	b) 0.18	c) 0.24	d) 0.30	
3)				
	I	$= \int_0^{\pi/2} \frac{\cos x dx}{(1 + \sin x)^2}$		
is			(GATE EE 2025)	
a) -0.5	b) 0	c) 0.5	d) 1	
4) A curve is having the equation				
		$a(1-\cos\theta)$		
. The perimeter of t	the curve between θ =	$= 0 \text{ to } 2\pi \text{ is}$	(GATE EE 2025)	
a) 2 <i>a</i>	b) 4 <i>a</i>	c) 6 <i>a</i>	d) 8 <i>a</i>	
5) $\frac{1}{s^2 - a^2}$ is the Lapla	ace Transform of		(CATE EE 2025)	
			(GATE EE 2025)	
a) $sin(at)$	b) $t \sin(at)$	c) $sinh(at)$	d) $a^{-1} \sinh(at)$	

6)	6) In a diesel engine with variable compression ratio, the initial compression ratio is 16:1. The ratio of specific heats is 1.4. For the same cut-off ratio of 4.0, if the compression ratio is increased by 25%, the air standard thermal efficiency of the engine will be				
	the an standard therman	efficiency of the engine	will be	(GATE EE 2025)	
	a) increased by 1.0%b) increased by 2.8%		c) increased by 3.5% d) increased by 4.0%		
7)) The type of gasifier wh	ich produces nearly tar fr	ee producer gas is	(GATE EE 2025)	
	a) Counter current gasifb) Co-current gasifier	ìer	c) Cross-draught gasifierd) Fluidized bed gasifier		
8)	-	rying load and varying speaximum power tests		(GATE EE 2025)	
9)	c) Varying load and vard) Varying load and ma) The annual cost of a t	ying speed tests			
				(GATE EE 2025)	
	a) Rs. 40,000	b) Rs. 1,51,000	c) Rs. 1,76,000	d) Rs. 2,01,000	
10)	The diameter of an und of 0.75 is	leflected tractor wheel fitte	ed with 13.6 - 28, 12 PR	tyre with an aspect ratio	
				(GATE EE 2025)	
	a) 0.99 m	b) 1.05 m	c) 1.23 m	d) 1.40 m	
11)	Line of sight through th	ne leveling instrument is o	called	(GATE EE 2025)	
	a) Backsight	b) Foresight	c) Line of collimation	d) Sight of collimation	
12)	P and Q respectively. T	the level set up close to p he readings obtained by set I Q respectively. Total error	etting up the level close to	point Q were 1.4 m and	
	a) 0.10	b) 0.55	c) 0.65	d) 0.85	
13)	-	for computing the consum	nptive use of a crop using	g the mean monthly tem-	
	perature and day light h	IOUTS 1S		(GATE EE 2025)	
	a) Thornthwaite	b) Blaney Criddle	c) Hargreaves	d) Lowry Johnson	

14)	The nature of Hooghou	dt's equation for drain spa	acing is	(GATE EE 2025)
	a) Parabolic	b) Hyperbolic	c) Elliptic	d) Circular
15)	aquifer between 12 m and A horizontal centrifugal	nd 16 m and a confined ac	mations were obtained froquifer between 30 m and 4 ground level can pump was bund surface in m is	40 m below ground level.
	a) 5	b) 12	c) 16	d) 30
16)	If the length, breadth a sphericity of the grain i		ain are 7 mm, 3 mm and	d 2 mm respectively, the (GATE EE 2025)
	a) 0.33	b) 0.50	c) 0.67	d) 0.75
17)			5% on wet basis is to be aporated from the wheat i	
	a) 87	b) 103	c) 116	d) 156
18)	If bulk density of a part of the material is	iculate material is 600 kg	m ⁻³ and true density is 1	
				(GATE EE 2025)
	a) 20%	b) 40%	c) 60%	d) 80%
19)			of 0.03 W m ⁻¹ K ⁻¹ . If ϵ the R-value of the insulation	
	a) 1	b) 2	c) 3	d) 4
20)	of frozen ice cream is 0	$0.3~\mathrm{W}~\mathrm{m}^{-1}~\mathrm{K}^{-1}$. Convection and the specific heat capa	cream block is 10 W m ⁻² lon takes place across a lay acity of ice cream are resp	er of 10 mm of air for 5
	\ D' \ M = 1	1 N N 1 N 1		,
	a) Biot Number	b) Nusselt Number	c) Fourier Number	d) Prandtl Number
21)	speed of 5.0 km h^{-1} . T		kN horizontally on a leveraction wheel and wheel are tractive efficiency is	
	a) 56.7%	b) 62.1%	c) 69.3%	d) 78.5%

22)		of a single bottom disc plant of ploughing is 0.25 m,		
	a) 0.508	b) 0.526	c) 0.546	d) 0.559
23)	cross-section with sides	ator experiences a maximum in the ratio of 3:1. If the partial area of the cultivator s	permissible bending stress	of the material is 8×10^7
	a) 222	b) 300	c) 492	d) 624
24)	mean chaff length is fo	eutter with two cutting kni- und to be 20 mm for a fly the capacity of the chaff c	wheel speed of 500 rpm.	If the density of the dry
	a) 920	b) 1440	c) 2160	d) 2880
25)	the mass density of the belt material is 6000 kg	having 30° groove angle, belt material is 1200 kg N m ⁻² . Coefficient of frictiving pulley is 150°. The	m^{-3} . The maximum strestion between the belt and	s bearing capacity of the the pulley is 0.2 and the
				(GATE EE 2025)
	a) 5.6	b) 10.5	c) 17.7	d) 35.4
26)	is held stationary. Power	of a tractor comprised a per comes into the sun gear of the gear set on the plan rpm is	r which has 34 teeth and	rotates clockwise at 100
	a) 32.7	b) 47.0	c) 54.4	d) 71.4
27)	angle of attack (the ang	rotor is to be designed for gle at which the wind will be rotor is reduced to one-t the rotor will be	strike the blade) 5°. If w	vind velocity in each part
	a) 14	b) 19	c) 24	d) 29
28)	of which have a value gauges, one in tension a	Wheatstone bridge circuit of 120 ohm. The gauge and the other in compression he bridge is 50 mA, the second companion of the s	factor is 2.1. The strain is 1.65×10^{-4} . If the ba	in each of the two strain attery current in the initial

c) 6.3

d) 12.6

a) 0.001

b) 0.002

29)	The high idle speed of an engine is 2240 rpm and the governor regulation is 11.5%. The peak torque of 180 N m occurs at 1450 engine rpm. If lugging ability is 28 Nm, the engine power in kW at governor's maximum position will be			
	governor s maximum po	osition will be		(GATE EE 2025)
	a) 31.8	b) 35.7	c) 37.6	d) 42.2
30)		on system with a seat at s m ⁻¹ . If the spring rate		
				(GATE EE 2025)
	a) 0.13	b) 0.26	c) 0.39	d) 0.52
31)	31) A venturimeter of 75 mm diameter is fitted to a horizontal pipe of 150 mm diameter. Gauge pressure in the venturimeter in case of no flow is 2 m of water. Taking atmospheric pressure as 10 m of water, theoretical flow through the pipeline in litres per second, when the throat point pressure is 2.60 m of water (absolute), is			
				(GATE EE 2025)
	a) 15	b) 30	c) 60	d) 75
32)		earth pressure in kPa at a n of 25° and specific weig		ohesionless sand with an
				(GATE EE 2025)
	a) 39	b) 61	c) 79	d) 129
33)		urrence of rainfall on any of the month of August to	•	ber is 0.15, the probability (GATE EE 2025)
	a) 0.162	b) 0.182	c) 0.192	d) 0.228
34)	A 10 ha watershed received 100 mm uniformly distributed rainfall. Land use pattern consists of 25% residential area with soil group C and curve number 82, good meadow condition in 50% of the area with soil group D and curve number 78. There is also good open space condition in 25% of the area with soil group D and curve number 80. Assuming AMC-II condition, the volume of runoff in m ³ from the watershed will be (GATE EE 2025)			
	a) 4955	b) 5705	c) 5755	d) 6555
35)	35) The peak runoff volume from the catchment between two contour bunds constructed on a 2.5% slope is 972.5 m ³ . The contour bunds have top width of 500 mm, height 600 mm, side slope 2:1, vertical			

interval 1.0 m and length 250 m. If the crest of the overflow weir is at a height of 300 mm from the ground and time available for the excess water to flow through the weir is 20 minutes, discharge in m³ per minute through the weir is

(GATE EE 2025)

	a) 15.0	b) 20.0	c) 25.0	d) 48.6
36)	The pipe of 10 m length	t with a pipe spillway is of the has to carry a peak dist at for the square entrance the pipe in m is	scharge of 1 m ³ s ⁻¹ at a	n available head of 4 m.
	required character of the	e pipe in in is		(GATE EE 2025)
	a) 0.50	b) 0.60	c) 0.75	d) 1.00
37)		acted on a land with S per S D , then the number of S	1	
	a) $\frac{S}{LD}$	b) $\frac{LD}{S}$	c) $\frac{100S}{LD}$	d) $\frac{10^4 S}{LD}$
38)	in a sandy loam soil fo	t trapezoidal drainage char r a catchment of 600 ha. ne drainage channel with a	Taking a drainage coeffic	_
	a) 427	b) 450	c) 497	d) 527
39)		al pump discharges water s directly connected to and d will be	<u> </u>	
	a) 41.92	b) 44.67	c) 51.16	d) 54.65
40)	mm respectively. The sp	d stroke length of a single beed of the piston is 50 s bectively. If the efficiency is kW by the pump is	trokes per minute. The su	action and delivery heads
	a) 0.55	b) 0.65	c) 0.94	d) 1.12
41)	Bulk density of paddy in kg		nt on wet basis is 650 kg	${ m m}^{-3}.$ The dry solid bulk (GATE EE 2025)
	a) 468	b) 508	c) 832	d) 904
42)	-	saturation and percentage vely, the relative humidity		kg water vapour (kg dry (GATE EE 2025)
	a) 57.4%	b) 60.0%	c) 62.7%	d) 74.5%
43)	5°C in one hour in a ch	having specific heat capa illing plant using a refrigo consumption assuming 10	erant whose coefficient of	

c) 79 hp

d) 105 hp

b) 105 kW

a) 79 kW

(GATE EE 2025)

44)	4) In a tray drying experiment of mango pulp, the constant rate of drying was found to be 6.18×10^{-5} kg water m ⁻² s ⁻¹ . The humidity ratio and saturation humidity ratio of the air were 0.02 kg water vapour (kg dry air) ⁻¹ and 0.075 kg water vapour (kg dry air) ⁻¹ respectively at 1 atm pressure and 65°C temperature. Assuming the distance of travel for water vapour in drying air to be 10 mm, the mass diffusivity of water in m ² s ⁻¹ is			
	mass diffusivity of war	er in in 8 is		(GATE EE 2025)
	a) 10^{-4}	b) 10 ⁻⁵	c) 10^{-6}	d) 10^{-7}
45)	in a countercurrent rege overall heat transfer co	enerator. The specific heat	capacity of the fruit juic	low rate of hot fruit juice the is 3.9 kJ kg ⁻¹ K ⁻¹ . The he area of the regenerator
		-		(GATE EE 2025)
	a) 0.547	b) 0.734	c) 0.837	d) 0.943
46)	having bulk density of	800 kg m ⁻³ . The angle of pressure intensity is 0.4. The	friction between wheat	mpletely filled with wheat and wall is 24°. The ratio ty of wheat in kPa on the
	om wan at 2 m depth i	5		(GATE EE 2025)
	a) 2.85	b) 5.28	c) 8.25	d) 8.52
47)		e diameter of 20 μ m and sinear velocity of 20 m s ⁻¹		kg m ⁻³ enter a cyclone of of the cyclone is (GATE EE 2025)
	a) 136	b) 163	c) 316	d) 613
48)	Henderson equation for		is valid for this case whe	tive humidity of 20%. If are the values of constants tent of the seeds will be (GATE EE 2025)
	a) 5.6%	b) 10.2%	c) 13.4%	d) 20.5%
49)	49) The theoretical volumetric flow rate of a horizontal screw conveyor is 1500 m ³ h ⁻¹ . The conveyor screw diameter is 1.2 m and the shaft diameter is 0.6 m. The rotational speed of the screw conveyor is 50 rpm. The pitch of the screw in mm is			
	a) 150	b) 340	c) 590	d) 950
50)		,	,	,
30)		tional speed of the balls is	_	er of 40 mm for grinding d. The operating speed of

	a) 18	b) 22	c) 26	d) 30	
	the ground. The ultimat respectively. The friction	aper is to be used for har e tensile strength and diam a coefficient of knife edge ear is 17°. The crop stem	meter of the crop stem ar for wheat crop is 0.346 a	2 e 35 N mm ⁻² and 3 mm and the maximum oblique	
51)		N that would cause bendi	ing failure of the crop ste	m is (GATE EE 2025)	
	a) 1.55	b) 3.09	c) 4.64	d) 6.19	
52)	The maximum clip angl	le in degrees between the	knife and the counter she	ear is (GATE EE 2025)	
	a) 2	b) 17	c) 19	d) 36	
	the aquifer. The hydraul	n aquifer through a well of the aquifer the base of the aquifer.	uifer is 19 m d ⁻¹ . During	recharge, the water level	
53)		d with a thickness of 20 m	n, the theoretical recharge	rate in litre per second is (GATE EE 2025)	
	a) 18.2	b) 25.2	c) 28.8	d) 30.5	
54)	54) If the aquifer is unconfined, the theoretical recharge rate in litre per second is (GATE EE 2025)				
	a) 10.5	b) 17.7	c) 26.8	d) 30.5	
55)	Apple is to be stored at 30°C in modified atmosphere package of laminated films made of 150 μm thick polyethylene and 100 μm thick nylon. The partial pressures of oxygen outside and inside of the package are 0.21 atm and 0.01 atm respectively. The permeability values of polyethylene and nylon in m³ solute (STP) m⁻² s⁻¹ atm⁻¹ per m thickness are 4.17 ×10⁻¹² and 1.52 ×10⁻¹⁴ respectively. 55) Ratio of resistance to permeation between Nylon and Polyethylene films is				
33)	Katio of resistance to po	ermeation between hylon	and rorycurylene mins is	(GATE EE 2025)	
	a) 138	b) 183	c) 381	d) 813	
56)	The molar flux of oxygo	en across the laminate in	kg mole m ⁻² s ⁻¹ at stead	y state will be (GATE EE 2025)	
	a) 1.35×10^{-12}	b) 2.47×10^{-12}	c) 3.59×10^{-12}	d) 5.41×10^{-12}	
	Δ tractor drawn vertical	l rotor planter is operated	in the field at a forward	speed of 5 km h ⁻¹ The	

A tractor drawn vertical rotor planter is operated in the field at a forward speed of 5 km h⁻¹. The effective diameter of the ground wheel of the planter is 0.5 m and the transmission ratio between the ground wheel and the rotor shaft is 1:1.

57) If the skid of the ground wheel of the planter is 10%, the speed of rotor in rpm will be (GATE EE 2025)					
a) 20	b) 39	c) 4	46 d)	58	
58) If th	e number of cells on the ve	ertical rotor is 20, the p	plant to plant distance in	a row in mm will be (GATE EE 2025)	
a) 8'	b) 128	c)	157 d)	174	
dept wate in th	A check basin of size 15 m × 12 m is to be irrigated using a stream of 26 litre per second. The depth of crop root zone is 1.3 m and the apparent specific gravity of the root zone soil is 1.6. The water holding capacity of the soil is 16%. Irrigation is to be applied when the soil moisture content in the crop root zone attains 12%. Deep percolation loss is neglected.				
				(GATE EE 2025)	
a) 43	b) 63.2	2 c) '	73.2 d)	83.2	
60) The	60) The duration of irrigation in minutes to replenish up to field capacity is (GATE EE 2025)				
a) 4.	8 b) 9.6	c) 1	16.6 d)	24.6	