Wafer Defect Classifier

By Christopher Shaffer

What is a wafer?

A wafer is a thin slice of semiconductor (e.g., Silicon) which can contain microchips ("chips"/"dies")

Motivation

- Semiconductor applications
 - Consumer electronics
 - Solar cells
 - Automotive/Industrial
- 2021 Forecast of semiconductor sales \$450 billion
- High Volume Manufacturing requires quality control
- Semiconductor inspection companies:
 - KLA-Tencor
 - Applied Materials
 - Hitachi

Dataset & Goal

- ~800,000 real wafer maps from with various failure patterns
 - Electrical testing shows pass/fail map of all chips on wafer
 - Geometric patterns correspond to failure mechanisms
- 8 pattern classes

 Goal: Train a model to recognize failure patterns

Wafer maps of 2 failure patterns

Source: Public MIR-WM811K Corpus

http://mirlab.org/dataset/public/

https://www.kaggle.com/qingyi/wm811k-wafer-map

Data Cleaning

- Only 25,000 failed & labeled
 - Dropped all others
- Dropped extraneous columns
 - Die size, wafer index
- Categorically encoded labels
- Resized to uniform image size
- Pixel values to binary grayscale
- Formatted images for tensorflow

Image Classes and Dimensions

- Various aspect ratios and sizes
 - Roughly 10x10 to 100x100 pixels
- Resized all images uniform size
 - 24x24
 - 32x32
 - 48x48*

^{*}Best performing and slowest

EDA

- Significant class imbalances
- Mismatch of class distributions between training and test set
 - Using train/test labels included in dataset
- Edge-Loc is plurality class for test data
 - 34% of test data

Class distribution (training)

Class	Percentage
Center	19.6
Donut	2.3
Edge-Loc	13.7
Edge-Ring	48.5
Loc	9.2
Random	3.5
Scratch	2.8
Near-full	0.3

CNN Model

- Input dimensions: 48x48x1
- Dropout and pooling layers to prevent overfitting
- Final activation of softmax for multiclass classification

Final Results

Performance

	5-fold CV (avg)	Test Set
Recall	0.81	0.56
Precision	0.95	0.72
Accuracy	0.89	0.66*

^{*}Compared to baseline of 0.34

Best Hyperparameters

Optimizer	Adam
Learning Rate	0.0003
# of Epochs	6
Batch Size	32
Image Size	(48,48)
Kernel Size	(5,5)

Appendix 1: SMOTE Oversampling

- Synthetic Minority Oversampling TEchnique
- Synthesizes new samples of minority classes using k-NNs
- All class counts set to ~8,000, plurality class count
- Results:

Without SMOTE

Test recall: **0.46**

With SMOTE

Test recall: 0.22

Alternate approaches include:

- Variable class weights
- Augmented training data generators

Appendix 2: Testing Methodology

- Loss function Categorical cross entropy
 - For multi-class classification
- Metric Recall (aggregate over all classes)

Procedure

- **k-fold Cross-Validation**, k = 5
 - Only using training data
 - Hyperparameter tuning
- Training model over all training data
- Finally, evaluation over test set