데이터과학

L08: Latent Factor Model

Kookmin University

추천시스템

내가 이 드라마를 본다면, **별점을 몇점을 줄까**? **내 예상별점**이 높은 드라마를 추천해줘..!

박하명 님의 취향저격 베스트 콘텐츠

NETFLIX

별점 예측 방법

- Collaborative Filtering
 - Item-Item Collaborative Filtering
 - User-User Collaborative Filtering
- Latent Factor Model

Factor Model

• 사용자와 아이템을 요소(Factor)들로 나타낼 수 있다고 보는 모델

Latent Factor Model

• 사용자와 아이템을 **잠재적인 요소(Factor)**들로 나타낼 수 있다고 보는 모델

사용자와 영화를 같은 차원의 공간에 매핑한다.
 = 각각의 사용자와 영화를 같은 차원의 벡터로 표현한다.

	A	В	C	D	E	F	G	H		J	K	
a Hig		4		5			5			3		1
b SKY∄≙	3	1	2			4			4	5		
E =012		5	3	4		3		2	1		4	2
10 pre 5		2			4			5		4	2	
OH원 클라쓰	5	2					2	4	3	4		
f		4			2			3		3		1

• 각각의 사용자와 영화를 같은 차원의 벡터로 표현한다.

		rix Q ^T	0.4	0.1	0.4	0.1	0.4	0.1	0.4	0.2	0.4	0.1	0.4	0.1
		ır Matrix	0.3	0.3	0.5	0.6	0.3	0.6	0.1	0.2	0.3	0.4	0.3	0.2
Item Mat	trix F	User	0.3	0.7	0.3	0.7	0.3	0.7	0.3	0.7	0.3	0.3	0.3	0.7
0.3 0).4	0.4		4		5			5	?		3		1
0.4 0).4	0.1	3	1	2			4			4	5		
0.4 0).2	8.0		5	3	4		3		2	1		4	2
0.7 0).5	0.9		2			4			5		4	2	
0.1 0).1	0.6	5	2					2	4	3	4		
0.1 0).3	0.1		4			2			3		3		1

• 사용자와 영화가 벡터로 표현됐다면, 평점을 예측할 수 있다.

rix Q ^T	0.4	0.1	0.4	0.1	0.4	0.1	0.4	0.2	0.4	0.1	0.4	0.1
er Matrix	0.3	0.3	0.5	0.6	0.3	0.6	0.1	0.2	0.3	0.4	0.3	0.2
Item Matrix P	0.3	0.7	0.3	0.7	0.3	0.7	0.3	0.7	0.3	0.3	0.3	0.7
0.3 0.4 0.4		4		5			5	4.2		3		1
0.4 0.4 0.1	3	1	2			4			4	5		
0.4 0.2 0.8		5	3	4		3		2	1		4	2
0.7 0.5 0.9		2			4			5		4	2	
0.1 0.1 0.6	5	2					2	4	3	4		
0.1 0.3 0.1		4			2			3		3		1

- 사용자 매트릭스와 아이템 매트릭스를 어떻게 구할 수 있을까?
 - ⇒ 예측 결과가 실제 값과 비슷해지도록 최적화!

	Α	В	C	D	E	F	G	H		J	K	L
a 🔏 . 터널		4		5			5			3		1
b SKY7H≙	3	1	2			4			4	5		
E FOI		5	3	4		3		2	1		4	2
公 で 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 3 2 3		2			4			5		4	2	
OH원클라쓰	5	2					2	4	3	4		
f X = 1		4			2			3		3		1

$$rg\min_{P,Q}\sum_{(i,x)\in R}(r_{xi}-p_i\cdot q_x)^2$$

가설, 비용, 업데이트

• 가설함수:

$$H(i,x) = p_i \cdot q_x$$

• 비용:

$$cost(P,Q) = \sum_{(i,x) \in R} (r_{xi} - H(i,x))^2$$

• 업데이트:

$$P = P - lpha rac{\partial cost(P,Q)}{\partial P}$$
 $Q = Q - lpha rac{\partial cost(P,Q)}{\partial Q}$

가설, 비용, 업데이트

• 비용:

$$cost(P,Q) = \sum_{(i,x) \in R} (r_{xi} - H(i,x))^2$$

$$\propto rac{1}{|R|} \sum_{(i,x) \in R} (r_{xi} - H(i,x))^2 = MSE$$

Training, Test

- 잘 학습되었는지를 검증하려면?
 - 학습 데이터와 검증 데이터를 분리

	A	В	C	D	E	F	G	H		J	K	
a Hig		4		5			5			3		1
b SKY∄≙	3	1	2			4			4	5		
E012		5	3	4		3		2	1		4	2
10 25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		2			4			5		4	2	
OIII원 클라쓰	5	2					2	4	3	4		
f		4			2			3		3		1

Training Set

Test Set

Overfitting

- 실제로 학습해보면, 학습이 잘 되는가 싶은데…
 - 학습이 진행될수록 MSE 값이 점점 증가한다...? → Overfitting 발생

Regularization

$$cost(P,Q) = \sum_{(i,x) \in R} (r_{xi} - H(i,x))^2$$

$$cost(P,Q) = \sum_{(i,x) \in R} (r_{xi} - H(i,x))^2 + \lambda_1 \sum_i ||p_i||_2^2 + \lambda_2 \sum_x ||q_x||_2^2$$

Global Baseline Estimate (다시보기)

이미 **높은 평점을 받은 드라마**에는 나도 높은 평점을 주지 않을까? **원준이는 깐깐**한 편인데, 평균보다 조금 낮게 평점을 주지 않을까?

- 원준이가 드라마 "**이두나!**"를 보고 매길 평점 예측하기
 - 문제점: 원준이는 "**이두나!**"와 비슷한 드라마를 본 적이 없다...!
- 평점 가늠해보기 (Global Baseline Estimate)
 - 평균 드라마 평점: 3.7점
 - "**이두나!**" 의 평점 평균: 4.2점 (평균보다 **0.5**점 높음)
 - 원준이가 매긴 평점 평균: 3.5점 (평균보다 **0.2**점 낮음)
 - 기본 점수 (Global baseline) 예측: 3.7 + 0.5 0.2 = 4.0점

Latent Factor Model + Bias

$$H(i,x) = \mu + bi_i + bu_x + p_i \cdot q_x$$

Overall mean rating

Bias for movie *i*

Bias for user x

User-Movie interaction

$$cost(P,Q) = \sum_{(x,i) \in R} \left(r_{xi} - H(i,x)
ight)^2$$

$$+\left(\lambda_{1}\sum_{i}||p_{i}||_{2}^{2}+\lambda_{2}\sum_{x}||q_{x}||_{2}^{2}+\lambda_{3}||bi||_{2}^{2}+\lambda_{4}||bu||_{2}^{2}
ight)$$

Questions?