KTH Matematik

Olof Heden

Σ p	G/U	bonus

Efternamn	förnamn	pnr	kodnr

Lösning till kontrollskrivning 4A, 13 maj 2015, 10.15–11.15, i SF1610 Diskret matematik för CINTE, CMETE mfl.

Inga hjälpmedel tillåtna.

Minst 8 poäng ger godkänt.

Godkänd ks n medför godkänd uppgift n vid tentor till (men inte med) nästa ordinarie tenta (högst ett år), $n = 1, \ldots, 5$.

13–15 poäng ger ett ytterligare bonuspoäng till tentamen.

Uppgifterna 3)–5) kräver väl motiverade lösningar för full poäng. Uppgifterna står inte säkert i svårighetsordning.

Spara alltid återlämnade skrivningar till slutet av kursen!

Skriv dina lösningar och svar på samma blad som uppgifterna, använd baksidan om det behövs.

1) (För varje delfråga ger rätt svar $\frac{1}{2}$ p, inget svar 0p, fel svar $-\frac{1}{2}$ p. Totalpoängen på uppgiften rundas av uppåt till närmaste icke-negativa heltal.) **Kryssa för** om påståendena **a**)-**f**) är sanna eller falska (eller avstå)!

		sant	falskt
a)	Koden $C = \{0000000, 11111111\}$ är 3-felsrättande.	X	
b)	Ett RSA-krypto kan ha de publika nycklarna $n=143$ och $e=64$.		X
c)	I ett RSA-krypto med nycklarna n, e, m och d kan $e = d$.	X	
d)	Det finns precis 32 stycken Booleska funktioner i de fem variablerna x,y,z,w och $u.$		X
e)	Till varje element $x \neq 0$ i en Boolesk algebra \mathcal{B} , sådan att $ \mathcal{B} \geq 4$, finns minst två olika element y sådana att $x + y = 1$.	X	
f)	Till varje positivt heltal n finns minst en 1-felsrättande kod med precis n stycken ord.	X	

poäng uppg.1

Namn	poäng uppg.2

2a) (1p) Ett RSA krypto har n=119. Vilka av heltalen i mängden $\{76,77,78,79,80\}$ kan väljas till parametern e.

SVAR: 77, 79.

b) (1p) Den 1-felsrättande koden C har kontrollmatrisen

$$\mathbf{H} = \left[\begin{array}{ccccccc} 0 & 1 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{array} \right]$$

Du tar emot ordet 0001100. Rätta ordet.

SVAR: 0101100

c) (1p) Ge den disjunktiva normalformen (d.n.f.) för den Booleska funktionen $f(x,y,z)=x\bar{y}+\bar{y}z.$

SVAR: $f = x\bar{y}\bar{z} + x\bar{y}z + \bar{x}\bar{y}z$

Namn	poäng uppg.3

3) (3p) Ett RSA-krypto har de publika parametrarna n=77 och e=43. Dekryptera meddelandet 2, dvs, bestäm D(2).

OBS. En komplett lösning med fullständiga motiveringar skall ges.

Lösning. Då $n=7\cdot 11$ så $m=6\cdot 10=60$. Då $d=e^{-1}$ i Z_m får vi med hjälp av Euklides algoritm:

$$60 = 43 + 17$$
 $43 = 2 \cdot 17 + 9$ $17 = 2 \cdot 9 - 1$

och vidare

$$1 = 2 \cdot 9 - 17 = 2(43 - 2 \cdot 17) - 17 = 2 \cdot 43 - 5 \cdot 17 = 2 \cdot 43 - 5(60 - 43) = 7 \cdot 43 - 5 \cdot 60$$
 varur $43 \cdot 7 \equiv 1 \pmod{60}$. Alltså $d = 7$.

Vi kan nu dekryptera meddelande 2:

$$D(2) = 2^7 \pmod{77} = 128 \pmod{77} = 51,$$

vilket är vårt svar.

Namn	poäng uppg.4

4) (3p) Bestäm kontrollmatrisen till en 1-felsrättande linjär kod C av längd 12 med 256 ord och som är sådan att ordet 111100000000 ligger på avstånd minst 2 från varje ord i koden C. (**Obs** delpoäng ges för svar som inte uppfyller alla av specifikationerna ovan.)

OBS. En komplett lösning med fullständiga motiveringar skall ges.

Lösning. Att avståndet är minst två till alla kodord innebär att ordet ifråga inte går att rätta, dvs att summan av de fyra första kolonnerna inte finns med i matrisen. Att antalet ord är $256 = 2^8$ innebär att antalet rader i matrisen är fyra, eftersom antalet kolonner är lika med ordlängden, dvs 12. Vi börjar med de fyra första kolonnerna:

$$\mathbf{H} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

så kolonnen med enbart ettor får inte finnas med i matrisen. Vi fyller nu i resten av kolonnerna som alla vara skall vara olika:

Namn	poäng uppg.5

5) (3p) Låt f vara den Booleska funktionen $f(x, y, z) = x\bar{y} + \bar{x}\bar{y}z$. Bestäm alla Boolesk funktioner g i de tre Booleska variablerna x, y och z sådana att

$$fg = 0$$
 och $f + g = 1$.

OBS. En komplett lösning med fullständiga motiveringar skall ges.

Lösning. Vi skriver upp värdetabellerna till f och g:

	\overline{r}	y	z	$\int f$	g
)	0	0	0	
()	0	1	1	
()	1	0	0	
()	1	1	0	
:	1	0	0	1	
	1	0	1	1	
:	1	1	0	0	
	1	1	1	0	

I en punkt där f=0 måste g=1 för att villkoret f+g=1 skall vara uppfyllt. I en punkt där f=1 måste g=0 för att villkoret fg=0 skall vara uppfyllt. Det finns då bara ett sätt att göra tabellen komplett för g, se nedan

x	y	z	$\int f$	g
0	0	0	0	1
0	0	1	1	0
0	1	0	0	1
0	1	1	0	1
1	0	0	1	0
1	0	1	1	0
1	1	0	0	1
1	1	1	0	1

vilket blir vårt svar.