Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación

IIC2115 - Programación como herramienta para la ingeniería

Análisis de datos - Modelos predictivos con Machine Learning

Profesor: Hans Löbel

¿Qué es el análisis de datos (en Python)?

- Desde un punto de vista práctico, consiste principalmente en utilizar herramientas para:
 - Limpiar y transformar los datos
 - Explorar distintas dimensiones de los datos
 - Calcular estadísticas de los datos
 - Visualizar los datos
 - Construir modelos predictivos

¿Qué es el análisis de datos (en Python)?

- Desde un punto de vista práctico, consiste principalmente en utilizar herramientas para:
 - Limpiar y transformar los datos
 - Explorar distintas dimensiones de los datos
 - Calcular estadísticas de los datos
 - Visualizar los datos
 - Construir modelos predictivos
- Para todo esto (y más), está Pandas y scikit-learn

En esta primera parte nos centraremos en scikit-learn

- Implementa gran cantidad de algoritmos predictivos y de procesamiento de datos.
- Permite una fácil integración con Pandas y numpy.

Antes de revisar *scikit-learn*, necesitamos una breve introducción teórica al Aprendizaje de Máquina (Machine Learning)

¿Qué es Machine Learning (ML)?

- ML se centra en el estudio de algoritmos que mejoran su rendimiento en una tarea, a través de la experiencia (mientras más datos mejor).
- Mejoran rendimiento con la experiencia (mientras más datos mejor*).
- Buscan aprendizaje más que modelamiento de datos (representaciones útiles del mundo)

^{*}Mentira, esto no es siempre así

Algoritmos de ML trabajan sobre datos multidimensionales

- Cada dato esta caracterizado por una serie de mediciones = atributos = variables.
- La cantidad de variables define la dimensionalidad del dato.
- El espacio donde viven los datos (variables) se conoce como espacio de características (feature space).

Para entrenar = ajustar = calibrar un modelo, se utiliza un set de entrenamiento

Typhoon number		Response vector			
	Distance from the eye	Wind speed at site	Pressure deficit	Forward speed of the	Storm surge
	of the storm (km)	(m/s)	at site (hPa)	eye of the storm (km/h)	(cm)
5111	96.0	20.7	20.6	27.6	47.4
5114	108.5	15.4	11.0	58.9	24.5
5201	181.2	8.1	1.7	40.1	7.9
5204	245.3	5.7	6.4	29.6	5.5
5209	117.5	23.3	22.0	46.6	61.7
5211	231.4	13.3	11.5	38.1	20.8
5309	293.6	4.0	7.2	35.4	5.6
5508	0.6	8.5	7.0	32.2	8.7
5512	227.6	10.0	10.4	19.3	16.0
5609	257.3	11.5	15.0	44.1	10.8

Cada dato (fila) del set de entrenamiento, puede considerarse como un vector en el espacio de características.

Objetivo último es la generalización

	Typhoon	Input vectors				Response vector
	number	Distance from the eye	Wind speed at site	Pressure deficit	Forward speed of the	Storm surge
	number	of the storm (km)	(m/s)	at site (hPa)	eye of the storm (km/h)	(cm)
Entrenamiento	5111	96.0	20.7	20.6	27.6	47.4
	5114	108.5	15.4	11.0	58.9	24.5
	5201	181.2	8.1	1.7	40.1	7.9
	5204	245.3	5.7	6.4	29.6	5.5
	5209	117.5	23.3	22.0	46.6	61.7
	5211	231.4	13.3	11.5	38.1	20.8
	5309	293.6	4.0	7.2	35.4	5.6
	5508	0.6	8.5	7.0	32.2	8.7
	5512	227.6	10.0	10.4	19.3	16.0
	5609	257.3	11.5	15.0	44.1	10.8
Test	0209	290.6	9.5	12.6	46.9	
	/			13.6		
	0215	245.3	10.6	14.2	77.6	
	0306	227.0	4.4	7.9	20.8	
	0314	279.1	4.4	7.8	29.5	
	0415	266.3	8.7	8.8	32.9	
	0515	165.6	19.2	16.4	45.6	_
	0601	136.5	10.7	12.2	4.6	
	0603	207.9	4.4	8.0	14.1	

Set de test es útil para evaluar la capacidad de generalización del modelo

Otra forma de verlo, con conjuntos disjuntos (no distribuciones de probabilidad)

Existen algoritmos predictivos para todos los gustos

- Existen múltiples algoritmos de aprendizaje supervisado (demasiados en realidad)
- Cuál usar depende de los datos (cantidad y tipo), poder de cómputo disponible, tarea, etc.
- Es importante entender las diferencias para saber cuál utilizar...
- Para este curso, no es necesario comprender toda la matemática subyacente para poder usarlos (gracias a Python y scikit-learn)

En este curso usaremos scikit-learn

- Scikit-learn es el módulo para ML más conocido y utilizado en Python.
- Su principal atractivo es una interfaz limpia, uniforme y simple, que facilita la exploración y permite la integración con otro paquetes, como Pandas.
- Posee además de una completa documentación en línea (https://scikit-learn.org/).

Esquema de datos es similar a Pandas

- Datos son representados por una matriz de features y un vector objetivo.
- Las características de los ejemplos se almacenan en una matriz de *features* (X), de tamaño [n_samples, n_features] (esta matriz puede ser un DataFrame).
- El vector objetivo (y) contiene el valor a predecir para cada ejemplo y tiene tamaño [n_samples, 1] (este vector puede ser una Series).
- Y eso es todo...

Esquema de datos es similar a Pandas

Interfaz para usar modelos

- La interfaz de scikit-learn se basa en los siguientes conceptos principales:
 - Consistente: todos los modelos comparten una interfaz con unas pocas funciones.
 - Sucinta: solo usa clases propias para los algoritmos. Para todo el resto utiliza formatos estándares (datos en DataFrame por ejemplo).
 - Útil: los parámetros por defecto son útiles para estimar adecuadamente los modelos.
- En resumen, requiere muy poco esfuerzo utilizarla y obtener resultados rápidamente.

Interfaz para usar modelos

- En general, un caso de uso típico en Scikit-learn es como el siguiente:
 - 1. Elegir el modelo adecuado, importando la clase correspondiente desde *sklearn*.
 - 2. Obtener o generar matriz X y vector y.
 - 3. Entrenar el modelo llamando al fit(X, y).
 - 4. Aplicar el modelo al set de test, usando el método predict().
- Al igual que para los datos, se requiere muy poco esfuerzo para obtener resultados rápidamente.

Veamos (por fin) algunos modelos

K-NN es la simpleza hecha algoritmo

- k-NN es el algoritmo más intuitivo y simple en ML.
- La inferencia sobre un nuevo ejemplo se basa directamente en la información de ejemplos similares conocidos.
- Se encuentra en el módulo sklearn.neighbors
- Para instanciarlo, utilizamos el siguiente comando:

model = neighbors.KNeighborsClassifier()

Regresión lineal y logística

- Permiten estimar una función (reg. lineal) o clasificar (reg. logística) en base a una combinación lineal de las características.
- Ampliamente usadas en la práctica debido a su sencillez e interpretabilidad.
- Se encuentran en el módulo sklearn.linear_model
- Para instanciarlas, utilizamos los siguientes comandos:

```
model = linear_model.LinearRegression()
model = linear_model.LogisticRegression()
```


Support Vector Machine (SVM)

- Permite construir clasificadores que maximizan la distancia entre las clases.
- Excelente rendimiento y muy rápido de entrenar.
- Se encuentra en el módulo sklearn.svm
- Para instanciarlo, utilizamos el siguiente comando:

```
model = svm.SVC()
```


Árboles de Decisión

- Técnica simple que funciona con cualquier tipo de dato.
- Construye una estructura de árbol en base a tests sobre las características.
- Rendimiento regular, pero altamente interpretable.
- Se encuentra en el módulo sklearn.tree
- Para instanciarlo, utilizamos el siguiente comando:

model = tree.DecisionTreeClassifier()

Ensambles

- Técnicas que combinan múltiples clasificadores (generalmente árboles) para generar una predicción.
- Menor interpretabilidad que un árbol, pero obtienen rendimiento muy altos.
- Se encuentran en el módulo sklearn.ensemble
- Para instanciarlos, utilizamos los siguientes comandos:

```
model = ensemble.RandomForestClassifier()
```

model = ensemble.GradientBoostingClassifier()

Red Neuronal

- Técnica altamente general y compleja para estimar funciones de todo tipo.
- Procesan los datos a través de varias capas, lo que les permite aprender cualquier cosa.
- En la actualidad, si se tienen muchos datos, son las que mejor funcionan.
- Se encuentran en el módulo sklearn.neural_network
- Para instanciarla, utilizamos el siguiente comando:

```
model = neural_network.MLPClassifier()
```


¿Cómo elegimos el mejor modelo para cada tarea?

- El primer paso consiste en analizar y explorar los datos.
- En base a esto, se eligen algunos modelos candidatos y se evalúa su rendimiento.
- Scikit-Learn entrega una gran cantidad de métricas de rendimiento para distintos tipos de problema.
- Se encuentran en el módulo sklearn.metrics
- En la práctica, las más usadas son *accuracy*, *precision*, *recall*, error cuadrático medio y matriz de confusión.

A pesar de ser clave, el set de entrenamiento no lo es todo

- En general, los algoritmos de aprendizaje viven y mueren por el set de entrenamiento.
- Lamentablemente, tener un buen set de entrenamiento, no asegura tener buena generalización.
- Poder de representación del algoritmo de aprendizaje pasa a ser el tema central.
- A continuación revisaremos el sobreentrenamiento, uno problemas más comunes al usar técnicas de ML.

Subentrenamiento (o subajuste, o underfitting)

Sobreentrenamiento (o sobrebajuste, u overfitting)

Complejidad correcta del modelo

Cómo podemos controlar esto

- Un mecanismo típico es utilizar un set de validación para evaluar el rendimiento.
- El set de validación es una pequeña parte del set de entrenamiento, que no se usa para entrenar inicialmente.

Otra forma de verlo, con conjuntos disjuntos (no distribuciones de probabilidad)

Cómo podemos controlar esto

- Un mecanismo típico es utilizar un set de validación para evaluar el rendimiento.
- El set de validación es una pequeña parte del set de entrenamiento, que no se usa para entrenar inicialmente.
- Se entrenan distintos modelos en el nuevo set de entrenamiento y se evalúan en el de validación.
- El set con mejor rendimiento en validación es el elegido, y se usa para entrenar el modelo con todos los datos (entrenamiento + validación).

Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación

IIC2115 - Programación como herramienta para la ingeniería

Análisis de datos - Modelos predictivos con Machine Learning

Profesor: Hans Löbel