Cours MP2I

Alexandre

I. Notes							
IIIAr	ineaux	2					
1.	Remarques	2					
2.	Idéaux	2					
IVIn	duction	3					
1.	Champ Magnétique	3					
	a. Notion de champ	3					
	b. Sources du champ magnétique	3					
2.	Actions du champ magnétique	3					
3.	Lois de l'induction	4					
4.	Circuit fixe dans un champ magnétique uniforme	4					
	a. Phenomène d'auto-induction	4					
V. En	ergie d'un point materiel	6					
1.	Puissance et travail d'un force	6					
VI.M	oment cinétique d'un point matériel	7					
1.	Moment cinétique	7					
2.	Moment d'une force	7					
3.	Théorème du moment cinétique	8					
4.	Cas des forces centrales	8					
	a. Définition	8					

I. Notes

Nullstellensatz : (démo?)

— Idéaux

— Algébriquement clos

— Bézout?

Topologie de Zariski :?????

— Lemme de Zorn (AC)

Dimension :?

Projectif/Affine :?

II. Rappels : relations d'équivalence

Soit E un ensemble et \sim une relation sur E.

Définition 1 (relation d'équivalence)

Une relation d'équivalence \sim vérifie les propriétés suivantes sur E:

- \sim réfléxive : $\forall x \in E, x \sim x$
- ∼ symétrique
- \sim transitive

Définition 2 (classe d'équivalence)

Soit $x \in E$. L'ensemble $\tilde{x} = \{y \in E, x \sim y\}$ est la classe d'équivalence de x.

Définition 3 (partition)

Une partition d'un ensemble E est définie par :

- $-- \biguplus_{i \in I} X_i = X$
- $\forall i \in I, X_i \neq \emptyset$
- $-- \forall i, j \in I, i \neq j \Rightarrow X_i \cap X_j \neq \emptyset$

Lemme 4

Soient $x,y \in E$. On a:

$$x \sim y \iff x = y$$

Démonstration. tkt

Théorème 5 (parition formée par les classes d'équivalence)

L'ensemble des classes d'équivalences sous \sim forme une parition de E.

 $D\acute{e}monstration.$

Définition 6 (ensemble quotient)

TODOf

<application canonique>

III. Anneaux

1. Remarques

Définition 7 (anneau quotient)

Soient A un anneau et I un idéal bilatère (idéal à gauche et à droite) de A. On définit la relation d'équivalence $\mathscr R$ suivante :

$$\forall x, y \in A, x \mathcal{R} y \iff x - y \in I$$

On dit aussi alors que x et y sont congrus modulo $I: x \equiv y \mod I$

On peut munir l'ensemble quotient A/I (càd l'ensemble des classes d'équivalence sur A) des lois induites par I :

A/I est muni d'une structure d'anneau.

2. Idéaux

Définition 8 (idéal d'un anneau)

Soit A un anneau. Un sous-ensemble $I \subseteq A$ est un idéal de A si :

- -(I,+) est un sous groupe de (A,+)
- $\forall a \in A, \forall b \in I, ab = ba \in I$

lien avec les noyeaux de morphismes etc>

Définition 9 (idéal premier)

Soit A un anneau, I un idéal de A, I est premier si et seulement si l'anneau A/I est intègre. Cela revient au même d'imposer :

- $-A \neq I$
- $-\forall a, b \in A, ab \in I \Longrightarrow a \in I \text{ ou } b \in I$

Définition 10 (idéal maximal)

Un idéal I de A est dit maximal si $I \neq A$ et si pour tout idéal J de A tel que $I \subseteq J$ et $J \neq A$, on a J = I. (I est l'élément maximal pour l'inclusion)

Proposition 11

Soit I un idéal de A. On a donc :

I maximal $\iff A/I$ est un corps $\implies A/I$ intègre $\iff I$ premier

IV. Induction

1. Champ Magnétique

a. Notion de champ

Définition 12 (type de champ)

Un champ est une grandeur physique définie ne tout point M de l'espace et qui dépend de sa position et du temps.

- On parle de champ scalaire quand la valeur définie en tout point est un scalaire (température, pression...)
- On parle de champ vectoriel quand la valeur définie en tout point est un vecteur

Définition 13 (caractéristique du champ)

De mannière générale un champ dépend de deux variables. Dans des cas particulié on parle de :

- champ stationnaire quand il ne dépend que de la position. Il a la même valeur à tout instant.
- champ uniforme quand il ne dépend que du temps. Il a la même valeur en tout point.

Définition 14

Une ligne de champ d'un champ vectoriel est une ligne qui est tangente au vecteur présent en chacun des points du champ.

b. Sources du champ magnétique

Proposition 15 (champ magnétique d'un fil)

Pour un fil droit rectiligne infini par courue par un courant I, le champ magnétique à une distance r est donné par :

$$\vec{B} = \frac{\mu_0 I}{2\pi r} \vec{U_\theta}$$

Proposition 16

On parle de solénoide pour une bobine de N spires, de longueur L et rayon R telle que L >> R. Dans un solénoide, le champ magnétique intérieur est constant et le champ magnétique extérieur est nul. On a la relation :

$$\vec{B} = \mu_0 n I \vec{U_z}$$
 où $n = \frac{N}{L}$

2. Actions du champ magnétique

Proposition 17 (force de Laplace élémentaire)

Soit un élément de courant, c'est-à-dire un fil conducteur de section S, de longueur dl, parcouru par le courant i et plogné dans \vec{B} . L'ensemble des charges mobiles dans le conducteur est soumis à la force de Laplace élémentaire :

$$d\overrightarrow{F_{Lap}} = id\overrightarrow{l} \wedge \overrightarrow{B}$$

Démonstration. TODO

Proposition 18 (couple magnétique)

Soit un moment magnétique \overrightarrow{M} placé dans le champ magnétique \overrightarrow{B} , alors le couple des actions du champ magnétique sur le moment magnétique est :

$$\overrightarrow{\Gamma} = \overrightarrow{\mathcal{M}} \wedge \overrightarrow{B}$$

Proposition 19 (effet d'orientation)

force de laplace, rails, puissance couple magnétique effet d'orientation, équilibre champ tournant, machine synchrone

3. Lois de l'induction

Définition 20 (flux du champ magnétique)

Soit un contour orienté de vecteur surface \vec{S} et placé dans le champ magnétique \vec{B} homogène. On définit le flux du champ magnétique à travers la surface :

$$\phi = \vec{B} \cdot \vec{S}$$

On exprime ϕ en Wb (Weber) et il est proportionel à B et S.

Proposition 21 (Loi de Lenz-Faraday)

Soit un circuit electrique définissant une surface \overrightarrow{S} et placée dans une zone de champ magnétique \overrightarrow{B} uniforme.

La variation du flux magnétique ϕ engendre un phénomèune d'induction, c'est à dire l'apparition d'un couratn dans le circuit que produirait un générateur fictif de force electromotrice e telle que :

$$e = -\frac{d\phi}{dt}$$

L'induction revient donc à ajouter un générateur dans le circuit éléctrique. Ce générateur est toujours placé en convention générateur.

Cela est lié aux principe de modération : l'effet s'oppose toujours à celui qui lui donne naissance.

Remarque 22

Pour avoir un effect d'induction, il faut que ϕ varie.

4. Circuit fixe dans un champ magnétique uniforme

a. Phenomène d'auto-induction

Soit un solénoide de N spires et de longueur l. Il est parcouru par un champ magnétique \overrightarrow{B} . Soit une spire du solénoide parcourue par le courant i, de vecteur surface \overrightarrow{S} et traversée par le champ magnétique \overrightarrow{B} . On a donc :

$$\phi_1 = \vec{B} \cdot \vec{S}$$

Définition 23 (flux propre)

Le flux propre de la bobine ϕ_p est le flux qui traverse l'ensemble des spires de la bobine. On a :

$$\phi_p = N\phi_1 = NBS$$

Remarque 24

Si en plus, il existe un champ magnétique extérieur $\overrightarrow{B_{ext}}$, on a :

$$\phi_{tot} = \phi_p + \phi_{ext}$$

Définition 25 (coefficient d'auto-inductance)

 ϕ_p est proportionel à i. On définit L l'auto-inductance de la bobine telle que :

$$L = \frac{\phi_p}{i}$$

L s'exprime en Henry (H).

Remarque 26

tion recepteur.

Dans le cas du solénoide, on a : $L = \frac{\mu_0 S N^2}{l}$

Proposition 27 (force electromotrice induite)

D'après la loi de Lenz-Faraday, la force electromotrice d'induction est donc : $e(t) = -L\frac{di}{dt}$. Le generateur induit en convention générateur est donc équivalent à une bobine en conven-

 ${\it TODO}$: Mutuelle inductance

W

V. Energie d'un point materiel

1. Puissance et travail d'un force

Définition 28 (travail d'une force)

C'est l'énergie fournie par cette force lorsque son point d'application se déplace.

Définition 29 (energie d'un système)

Un système possède de l'énergie s'il est capable de fournir un travail. On distingue deux types d'énergie :

- L'énergie cinétique : si un travail peut être fourni par une modification de vitesse
- L'énergie potentielle : si un travail peut être fourni par une modification de position

VI. Moment cinétique d'un point matériel

1. Moment cinétique

On s'interesse tout d'abord à un point matériel M de masse m et animé de la vitesse \vec{v}_R dans un référentiel R.

Définition 30 (quantité de mouvement)

La quantité de mouvement du point M est :

$$\vec{p}_R = m \cdot \vec{v}_R$$

Définition 31 (moment cinétique par rapport à un point)

Le moment cinétique du point M par rapport au point O est :

$$\vec{L_O}(M) = \vec{OM} \wedge \vec{p}$$

 $\vec{L_O}(M)$ s'exprime en $kg \cdot m^2 \cdot s^{-1}$ et est orthogonal à \vec{OM} et \vec{v}

Remarque 32

On peut faire un changement d'origine d'un point O vers un point O':

$$\vec{L_{O'}}(M) = \vec{O'O} \wedge m\vec{v} + \vec{L_O}(M)$$

Définition 33 (moment cinétique par rapport à un axe)

Soit un axe Δ dirigé par un vecteur unitaire \vec{u} .

On définit le moment cinétique $L_{\Delta}(M)$ du point M par rapport à l'axe Δ par :

$$L_{\Delta}(M) = \vec{L_O}(M) \cdot \vec{u}$$

2. Moment d'une force

Définition 34 (moment d'une force par rapport à un point)

Le moment de la force \vec{F} qui s'exerce au point M par rapport au point O est donnée par la relation :

$$\vec{M}_O(\vec{F}) = \vec{OM} \wedge \vec{F}$$

 $\vec{M}_O(\vec{F})$ s'exprime en $N \cdot m$.

Cela traduit la capacité de la force \vec{F} à faire tourner le point M autour du point O. C'est toujours possible sauf si \vec{F} est colinéaire à $O\vec{M}$

Remarque 35

On peut faire un changement d'origine d'un point O vers un point O':

$$\vec{M}_{O'}(\vec{F}) = \vec{O'}O \wedge \vec{F} + \vec{M}_O(\vec{F})$$

Définition 36 (moment d'une force par rapport à un axe)

Soit un axe Δ dirigé par un vecteur unitaire \vec{u} .

On définit le moment d'une force $M_{\Delta}(\vec{F})$ du point M par rapport à l'axe Δ par :

$$M_{\Delta}(\vec{F}) = \vec{M}_O(\vec{F}) \cdot \vec{u}$$

 $\vec{M}_O(\vec{F})$ s'exprime en $N \cdot m$.

Cela traduit la capacité de la force \vec{F} à faire tourner le point M autour de l'axe Δ . C'est toujours possible sauf si \vec{F} et \vec{OM} sont coplanaire.

Remarque 37

 $M_{\Delta}(\vec{F})$ est indépendant du choix du point sur l'axe Δ .

Notion de bras de levier

TODO

3. Théorème du moment cinétique

Théorème 38 (théorème du moment cinétique vectoriel)

Soit O un point fixe du reférentiel R galiléen.

Soit M un point materiel du masse m, animé de la vitesse \vec{v} et soumis a un ensemble de forces $\sum_i \vec{f_i}$. On a :

$$\frac{d\vec{L_O}(M)}{dt} = \sum_i \vec{M_O}(\vec{F_i})$$

Démonstration 39

On démontre le théorème du moment cinétique vectoriel :

$$\frac{d\vec{L_O}(M)}{dt} = \frac{d\vec{OM}}{dt} \wedge m\vec{v} + \vec{OM} \wedge \frac{d(m\vec{v})}{dt}$$

$$\frac{d\vec{L_O}(M)}{dt} = \vec{OM} \wedge m\vec{a}$$

$$\frac{d\vec{L_O}(M)}{dt} = \vec{OM} \wedge \sum_i \vec{f_i}$$

$$\frac{d\vec{L_O}(M)}{dt} = \sum_i (\vec{OM} \wedge \vec{f_i})$$

$$\frac{d\vec{L_O}(M)}{dt} = \sum_i \vec{M_O}(\vec{F_i})$$

Théorème 40 (théorème du moment cinétique scalaire)

On projete le théorème du moment cinétique sur un axe dirigé par le vecteur unitaire \vec{u} :

$$\frac{dL_{\Delta}(M)}{dt} = \sum_{i} M_{\Delta}(\vec{F}_{i})$$

Exemple 41

On peut appliquer le théorème du moment cinétique sur un pendule simple ou sur une bille dans une cuvette.

4. Cas des forces centrales

a. Définition

Définition 42 (force centrale)

Une force \vec{F} est dite centrale si sa droite support passe en permanance par le point fixe O.

Conséquence 43

Le moment de la force \vec{F} est donc nul :

$$\vec{M}_O = \vec{OM} \wedge \vec{F} = \vec{0}$$

 \vec{F} ne fait pas trourner le point M autour de O

Conséquence 44 (conséquence sur le TMC)

Soit un point M soumis à un ensemble de forces centrales de resultante \vec{F} . On a :

$$\frac{d\vec{L_O}(M)}{dt} = \vec{M_O}(\vec{F}) = \vec{0}$$

 $\mathrm{Donc}:$

$$\vec{L_O}(M) = \vec{const}$$

TODO

VII. N	Mouvement	dans	un	champ	newtonien
--------	-----------	------	----	-------	-----------