LAPORAN RESMI

Minggu-13 RISET OPERASI

Nama: Made Rahano Satryani Widhi

Kelas : 3 D4 Teknik Informatika A

NRP : 2110191028

POLITEKNIK ELEKTRONIKA NEGERI SURABAYA

<u>AHP</u>

Model				
	A	В	С	D
A	1	0,25	4	0,166667
В	4	1	4	0,25
С	0,25	0,25	1	0,2
D	6	4	5	1

Model				
	A	В	С	D
A	1	0,25	4	0,166667
В	4	1	4	0,25
С	0,25	0,25	1	0,2
D	6	4	5	1
Sigma	11,25	5,5	14	1,616667

Model					
	A	В	С	D	eigen value
A	0,089	0,045	0,286	0,103	0,105
В	0,356	0,182	0,286	0,155	0,196
С	0,022	0,045	0,071	0,124	0,053
D	0,533	0,727	0,357	0,619	0,447

Keandalan				
	A	В	С	D
A	1,000	2,000	5,000	1,000
В	0,500	1,000	3,000	2,000
С	0,200	0,333	1,000	0,250
D	1,000	0,500	4,000	1,000

Keandalan				
	A	В	С	D
A	1,000	2,000	5,000	1,000
В	0,500	1,000	3,000	2,000
С	0,200	0,333	1,000	0,250
D	1,000	0,500	4,000	1,000
Sigma	2,7	3,833333	13	4,25

Keandalan					
	A	В	С	D	eigen value
A	0,370	0,522	0,385	0,235	0,302

В	0,185	0,261	0,231	0,471	0,229
С	0,074	0,087	0,077	0,059	0,059
D	0,370	0,130	0,308	0,235	0,209

BBM	
	mil/galon
A	34,000
В	27,000
С	24,000
D	28,000

BBM		
	mil/galon	
A	34,000	0,300885
В	27,000	0,238938
С	24,000	0,212389
D	28,000	0,247788
Sigma	113,000	

Bobot Kriteria			
Model		Keandalan	BBM
Model	1,000	0,500	3,000
Keandalan	2,000	1,000	4,000
BBM	0,333	0,250	1,000

Bobot Krite	ria		
	Model	Keandalan	BBM
Model	1,000	0,500	3,000
Keandalan	2,000	1,000	4,000
BBM	0,333	0,250	1,000
Sigma	3,333	1,750	8,000

Bobot Kriteria				
	Model	Keandalan	BBM	eigen
				value
Model	0,300	0,286	0,375	0,3202381
Keandalan	0,600	0,571	0,500	0,5571429
BBM	0,100	0,143	0,125	0,122619

Hi	Hirarki Matriks Keputusan		
	Model	Keandalan	BBM
	0,320	0,557	0,123
A	0,105	0,302	0,301
В	0,196	0,229	0,239
С	0,053	0,059	0,212
D	0,447	0,209	0,248

0,105	0,302	0,301	X	0,320 =	0,238837
0,196	0,229	0,239		0,557	0,21967
0,053	0,059	0,212		0,123	0,075899
0,447	0,209	0,248			0,289957

Hasil = 0,289957

TOPSIS

Model				
	A	В	С	D
A	1	0,25	4	0,166667
В	4	1	4	0,25
С	0,25	0,25	1	0,2
D	6	4	5	1

Model				
	A	В	C	D
A	1	0,25	4	0,166667
В	4	1	4	0,25
С	0,25	0,25	1	0,2
D	6	4	5	1
Sigma	11,25	5,5	14	1,616667

Model					
	A	В	С	D	eigen value
A	0,089	0,045	0,286	0,103	0,105
В	0,356	0,182	0,286	0,155	0,196
С	0,022	0,045	0,071	0,124	0,053
D	0,533	0,727	0,357	0,619	0,447

Keandalan				
	A	В	С	D
A	1,000	2,000	5,000	1,000
В	0,500	1,000	3,000	2,000
С	0,200	0,333	1,000	0,250
D	1,000	0,500	4,000	1,000

Keandalan				
	A	В	С	D
A	1,000	2,000	5,000	1,000
В	0,500	1,000	3,000	2,000
С	0,200	0,333	1,000	0,250
D	1,000	0,500	4,000	1,000
Sigma	2,7	3,833333	13	4,25

Keandalan					
	A	В	С	D	eigen value
A	0,370	0,522	0,385	0,235	0,302
В	0,185	0,261	0,231	0,471	0,229
С	0,074	0,087	0,077	0,059	0,059
D	0,370	0,130	0,308	0,235	0,209

BBM	
	mil/galon
A	34,000
В	27,000
С	24,000
D	28,000

BBM		
	mil/galon	
A	34,000	0,300885
В	27,000	0,238938
С	24,000	0,212389
D	28,000	0,247788
Sigma	113,000	

Bobot Kriteria			
	Model	Keandalan	BBM
Model	1,000	0,500	3,000
Keandalan	2,000	1,000	4,000
BBM	0,333	0,250	1,000

Bobot Kriteria			
	Model	Keandalan	BBM
Model	1,000	0,500	3,000
Keandalan	2,000	1,000	4,000
BBM	0,333	0,250	1,000
Sigma	3,333	1,750	8,000

Bobot Kriteria					
	Model	Keandalan	BBM	eigen	bobot
				value	
Model	0,300	0,286	0,375	0,320238	32%
Keandalan	0,600	0,571	0,500	0,557143	56%
BBM	0,100	0,143	0,125	0,122619	12%

Eigen value max

3,023412698

Matriks Keputusan			
	Model	Keandalan	BBM
Α	0,105	0,302	0,301
В	0,196	0,229	0,239
С	0,053	0,059	0,212
D	0,447	0,209	0,248

	Model	Keandalan	BBM
A	0,105	0,302	0,301
В	0,196	0,229	0,239
С	0,053	0,059	0,212
D	0,447	0,209	0,248
distance	0,501987	0,437279	0,504114

Matriks keputusan ternormalisasi			
	Model	Keandalan	BBM
A	0,208	0,692	0,597
В	0,390	0,525	0,474
С	0,105	0,136	0,421
D	0,891	0,477	0,492
bobot	0,320238	0,557143	0,122619

Ma	Matriks keputusan ternormalisasi		
ter	bobot		
	Model Keandalan BBM		
A	0,067	0,385	0,073
В	0,125	0,292	0,058
C 0,034 0,076 0,052			
D	0,285	0,266	0,060

Solusi Ideal Positif	
	A+
Y1 : Model	0,285
Y2:	0,385
Keandalan	
Y3 : BBM	0,073

Solusi Ideal		
Negatif		
	A-	
Y1 : Model	0,034	
Y2:	0,076	
Keandalan		
Y3 : BBM	0,052	

Distance Positif		
D1+	0,218578	
D2+	0,186132	
D3+	0,399699	
D4+	0,120012	

Distance Negatif		
D1-	0,31219	
D2-	0,235259	
D3-	0	
D4-	0,315768	

Kedekatan setiap alternatif terhadap solusi ideal

V1	0,588185
V2	0,558292
V3	0
V4	0,724605

Solusi = 0,7246