1. Sa sa determine curentii din retea prezentata mai jos si sa se verifice rezultatele cu balanta de putere din circuit. Se cunosc: $e(t) = 220 \sqrt{2} \sin \omega t$,

$$R_1 = R_3 = \omega L_1 = 10\Omega$$
, $\frac{1}{\omega C_2} = \frac{1}{\omega C_3} = 10\Omega$, $\omega L_3 = 20\Omega$

2. Sa sa determine curentii din retea prezentata mai jos si sa se verifice rezultatele cu balanta de putere din circuit. Se cunosc: $e(t) = 100 \, \sqrt{2} \, \sin 100 \pi t \,, \qquad R_1 = 18 \Omega, \qquad R_2 = 2 \Omega, \quad L_1 = \frac{60}{\pi} \, \text{mH}, \quad C_2 = \frac{5}{\pi} \, \text{mF},$ $j(t) = 10 \, \sin (100 \pi t - \frac{\pi}{4}) \,.$

2. Sa sa determine curentii din retea prezentata mai jos si sa se verifice rezultatele cu balanta de putere din circuit. Se cunosc: $e(t) = 20 \sin(500t + \frac{\pi}{4})$, $R_1 = 10\Omega$, $R_2 = 20\Omega$, $L_2 = 60$ mH, $C_1 = \frac{200}{3} \mu F$, $C_2 = 200 \mu F$, $j(t) = \sqrt{2} \sin(500t + \frac{\pi}{2})$.

3. Sa sa determine curentii din retea prezentata mai jos si sa se verifice rezultatele cu balanta de putere din circuit. Se cunosc: $e(t) = 600 \sqrt{2} \sin 100t$, $R_1 = 200\Omega$, $R_2 = 100\Omega$ $L_1 = 3H$, $L_3 = 2H$, M = 1H, $C_2 = \frac{1}{20} mF$.

4. Sa sa determine curentii din retea prezentata mai jos si sa se verifice rezultatele cu balanta de putere din circuit. Se cunosc: $R_1=R_2=2\Omega$, $\omega L_1=2\Omega$, $\omega L_2=4\Omega$, $\omega L_{12}=2\Omega$, $\frac{1}{\omega C_1}=7\Omega$, $\underline{E}=3-4j$

5. Sa sa determine curentii din retea prezentata mai jos si sa se verifice rezultatele cu balanta de putere din circuit. Se cunosc: $e(t) = 20\sqrt{2}\sin(1000t + \frac{3\pi}{4})$, $L_1=2mH$, $L_2=3mH$, M=1mH, $R_1=1\Omega$, $C_3=1mF$.

6. Sa sa determine curentii din retea prezentata mai jos si sa se verifice rezultatele cu balanta de putere din circuit. Se cunosc: $e_1(t) = 16\sin(\omega t + \frac{\pi}{4})$, $e_2(t) = 4\sqrt{2}\sin(\omega t - \pi)$, $R=1\Omega$, $L=M=\frac{10}{\pi}mH$, $C=\frac{10}{\pi}mF$, f=50Hz.

7. Sa sa determine curentii din retea prezentata mai jos si sa se verifice rezultatele cu balanta de putere din circuit. Se cunosc: $e(t) = 16\sin(\omega t + \frac{\pi}{4})$, $j(t) = 4\sqrt{2}\sin(\omega t + \frac{\pi}{2})$, $R=1\Omega$, $L=M=\frac{10}{\pi}mH$, $C=\frac{10}{\pi}mF$, f=50Hz.

