Lattice Quantum ChromoDynamics

Ed van Bruggen

Four Fundamental Forces

	Relative Strength	Potential	Acts on	Exchange Particle
Strong Nuclear	1	~r	Color	Gluon <i>g</i>
Electromagnetism	1/137	~1/r	Charge	Photon γ
Weak Nuclear	10 ⁻⁶	~e ^{-r}	Fermions	W ⁺ W ⁻ Z ⁰
Gravity	10 ⁻⁴¹	~1/r	Mass	Graviton??

The Standard Model of Particle Physics

FERMIONS (matter particles)

muon

neutrino

electron

neutrino

BOSONS (force carriers)

tau

neutrino

Color Charge

Proton

Pion

Feynman Diagrams

Perturbation Theory

Quantum ChromoDynamics (QCD)

$${\cal L}_{
m QCD} = ar{\psi}_i \left(i (\gamma^\mu D_\mu)_{ij} - m \, \delta_{ij}
ight) \psi_j - rac{1}{4} G^a_{\mu
u} G^{\mu
u}_a$$

 $M_d \sim 6 \text{ MeV}$ $M_p = 938 \text{ MeV}$ (Strong force)

 $M_{\rm u} \sim 3 \, {\rm MeV}$

Path Integral
$$P_{i\to f} \sim \langle x_f(t_f)|x_i(t_i)\rangle = \int \mathcal{D}x(t)e^{iS[x]}$$

$$S[x] \equiv \int_{t}^{t_f} dt L(x, \dot{x}) \equiv \int dt \left[\frac{m \dot{x}(t)^2}{2} - V(x(t)) \right].$$

Lattice QCD

Monte Carlo

$$\frac{1}{Z} < 0|\mathcal{O}|0> = \frac{\int \mathcal{D}U\mathcal{O}[U]e^{-S_{g,QCD}}}{\int \mathcal{D}Ue^{-S_{g,QCD}}} = <<\mathcal{O}>> = \frac{1}{N_{conf}} \sum_{i=1}^{N_{conf}} O_i$$

Energies

$$P_{0\to T} \sim \langle 0|\mathcal{O}(T)\mathcal{O}^{\dagger}(0)|0\rangle = \sum_{n=0}^{\infty} c_n e^{-E_n T} \xrightarrow{T\to\infty} c_0 e^{-mT}$$

More applications

- Decay constants
- Resonances
- Investigate color confinement
- Deep inelastic scattering
- High temperatures
- QCD phase transitions