Лекция 20. Схемы из функциональных элементов (СФЭ). Сложность схемы для умножения *п*-разрядных двоичных чисел по методу Карацубы.

Лектор — Селезнева Светлана Николаевна selezn@cs.msu.ru

Факультет ВМК МГУ имени М.В. Ломоносова

Лекции на сайте https://mk.cs.msu.ru

Арифметические операции

Рассмотрим, с какой сложностью можно построить схему для *умножения п*-разрядных чисел.

Числа в двоичной системе счисления

Пусть $n \in \mathbb{N}$.

Если $(x_1,\ldots,x_n)\in E_2^n$, где $E_2=\{0,1\}$, то положим

$$(x_1,\ldots,x_n)_2 = \sum_{i=1}^n x_i \cdot 2^{n-i}.$$

Т. е. $(x_1, \ldots, x_n)_2$ обозначает число, которое в двоичной системе счисления записывается как $x_1x_2\ldots x_n$.

Отметим, что

$$0 \leqslant (x_1, \ldots, x_n)_2 \leqslant 2^n - 1.$$

Числа в двоичной системе счисления

Заметим, что

$$0 \le (x_1, \ldots, x_n)_2 < 2^n, 0 \le (y_1, \ldots, y_n)_2 < 2^n,$$

поэтому

$$0 \leq (x_1,\ldots,x_n)_2 \cdot (y_1,\ldots,y_n)_2 < 2^{2n}.$$

<u>Умножит</u>ель

Умножителем M_n порядка $n, n \geqslant 1$, называется такая СФЭ с 2n входами $x_1, \ldots, x_n, y_1, \ldots, y_n$ и 2n выходами z_1, \ldots, z_{2n} , что

$$(z_1,\ldots,z_{2n})_2=(x_1,\ldots,x_n)_2\cdot(y_1,\ldots,y_n)_2.$$

Т. е. умножитель M_n на своих выходах вычисляет произведение двух n-разрядных чисел, которые подаются на его входы.

Умножитель M_n также называется n-разрядным умножителем.

Пример. Построим одноразрядный умножитель $M_1(x, y; z)$.

Пример. Построим одноразрядный умножитель $M_1(x, y; z)$.

Найдем функцию z(x, y):

X	У	Z
0	0	0
0	1	0
1	0	0
1	1	1

Умножитель M_1

Пример. Построим одноразрядный умножитель $M_1(x, y; z)$.

Найдем функцию z(x, y):

X	У	Z
0	0	0
0	1	0
1	0	0
1	1	1

Поэтому

$$z = x \cdot y$$
.

Умножитель M_1

Пример. Построим одноразрядный умножитель $M_1(x, y; z)$.

Найдем функцию z(x, y):

X	у	Z
0	0	0
0	1	0
1	0	0
1	1	1

Поэтому

$$z = x \cdot y$$
.

Значит, в базисе B_0 можно построить умножитель M_1 со сложностью 1.

С какой сложностью можно построить умножитель M_n , $n\geqslant 1$?

C какой сложностью можно построить умножитель M_n , $n\geqslant 1$?

Можно применить алгоритм умножения n-разрядных чисел «в столбик».

При этом надо вычислить произведения вида $x_i \cdot y_j$ для всех $i, j = 1, \ldots, n$.

А затем еще n-1 раз сложить 2n-разрядные числа.

Поэтому сложность построенного таким образом n-разрядного умножителя окажется равной $O(n^2)$.

Мы покажем, что можно построить n-разрядный умножитель с меньшей по порядку сложностью.

Сначала рассмотрим несколько вспомогательных лемм.

Умножение n-разрядного числа на разряд

Пусть M_n' обозначает СФЭ с n+1 входами x_1,\ldots,x_n,y и n выходами z_1,\ldots,z_n , которая вычисляет умножение n-разрядного числа $(x_1,\ldots,x_n)_2$ на разряд y, т.е.

$$(z_1,\ldots,z_n)_2=(x_1,\ldots,x_n)_2\cdot y.$$

Умножение *п*-разрядного числа на разряд

Лемма 20.1. В базисе $B_0 = \{x \cdot y, x \vee y, \bar{x}\}$ можно построить схему M'_n со сложностью n.

Доказательство. Действительно, достаточно заметить, что $z_i = x_i \cdot y$ для всех $i = 1, \ldots, n$.

Умножение *п*-разрядного числа на степень двойки

Пусть $M''_{n,m}$ обозначает СФЭ с n входами x_1, \ldots, x_n и n+m выходами z_1, \ldots, z_{n+m} , которая вычисляет умножение n-разрядного числа $(x_1, \ldots, x_n)_2$ на число 2^m , т. е.

$$(z_1,\ldots,z_{n+m})_2=(x_1,\ldots,x_n)_2\cdot 2^m.$$

Умножение *п*-разрядного числа на степень двойки

Лемма 20.2. В базисе $B_0 = \{x \cdot y, x \vee y, \bar{x}\}$ можно построить схему $M''_{n,m}$ с константной сложностью.

Доказательство. Действительно, достаточно заметить, что $z_i = x_i$ для всех $i = 1, \ldots, n$, а

$$z_{n+1} = \ldots = z_{n+m} = 0.$$

Поэтому сложность схемы можно оценить сложностью вычисления константы 0, а эта сложность — константна.

Лемма 20.3. В базисе $B_0 = \{x \cdot y, x \vee y, \bar{x}\}$ для каждого $n \geqslant 1$ и любого умножителя M_n можно построить такой умножитель M_{n+1} , что

$$L(M_{n+1}) \leqslant L(M_n) + C_1 n,$$

где $C_1>0$ — некоторое действительное число, не зависящее от n.

Доказательство. Пусть $n \geqslant 1$. Рассмотрим произвольный умножитель M_n .

Покажем, как построить такой умножитель M_{n+1} , что

$$L(M_{n+1}) \leqslant L(M_n) + C_1 n,$$

где $C_1>0$ — некоторое действительное число, не зависящее от n.

Доказательство. Пусть на входы умножителя M_{n+1} подаются числа:

$$x = (x_0, x_1, \dots, x_n)_2, y = (y_0, y_1, \dots, y_n)_2.$$

Введем обозначения:

$$x' = (x_1, \ldots, x_n)_2, \quad y' = (y_1, \ldots, y_n)_2.$$

Тогда:

$$x = (x_0, x_1, \dots, x_n)_2 = x_0 \cdot 2^n + (x_1, \dots, x_n)_2 = x_0 \cdot 2^n + x',$$

$$y = (y_0, y_1, \dots, y_n)_2 = y_0 \cdot 2^n + (y_1, \dots, y_n)_2 = y_0 \cdot 2^n + y'.$$

Доказательство. Получаем:

$$x \cdot y = (x_0 \cdot 2^n + x')(y_0 \cdot 2^n + y') = = x_0 \cdot y_0 \cdot 2^{2n} + (x_0 \cdot y' + x' \cdot y_0) \cdot 2^n + x' \cdot y'.$$

Значит, для умножения (n+1)-разрядных чисел можно умножить n-разрядные числа и выполнить дополнительные вычисления.

При этом сложность этих дополнительных вычислений не превосходит $C_1 \cdot n$, где $C_1 > 0$ — действительное число, не зависящее от n (по леммам 20.1, 20.2 и по теореме о сложности сумматора).

Лемма 20.3 содержательно утверждает следующее:

умножать (n+1)-разрядные числа можно со сложностью, которая на линейное слагаемое отличается от сложности умножения n-разрядных чисел.

Лемма 20.4 (основная). В базисе $B_0 = \{x \cdot y, x \vee y, \bar{x}\}$ для каждого $n \geqslant 1$ и любого умножителя M_n можно построить такой умножитель M_{2n} , что

$$L(M_{2n}) \leqslant 3L(M_n) + C_2 n,$$

где $C_2 > 0$ — некоторое действительное число, не зависящее от n.

Доказательство. Пусть $n \geqslant 1$. Рассмотрим произвольный умножитель M_n .

Покажем, как построить такой умножитель M_{2n} , что

$$L(M_{2n}) \leqslant 3L(M_n) + C_2 n,$$

где $C_2 > 0$ — некоторое действительное число, не зависящее от n.

Доказательство. Пусть на входы умножителя M_{2n} подаются числа:

$$x = (x_1, \ldots, x_n, x_{n+1}, \ldots, x_{2n})_2, \quad y = (y_1, \ldots, y_n, y_{n+1}, \ldots, y_{2n})_2.$$

Введем обозначения:

$$x' = (x_1, ..., x_n)_2, \quad x'' = (x_{n+1}, ..., x_{2n})_2,$$

 $y' = (y_1, ..., y_n)_2, \quad y'' = (y_{n+1}, ..., y_{2n})_2.$

Тогда:

$$x = x' \cdot 2^n + x'',$$

$$y = y' \cdot 2^n + y''.$$

Доказательство. Получаем:

$$x \cdot y = (x' \cdot 2^n + x'')(y' \cdot 2^n + y'') =$$

= $x' \cdot y' \cdot 2^{2n} + (x' \cdot y'' + x'' \cdot y') \cdot 2^n + x'' \cdot y''.$

Доказательство. Получаем:

$$x \cdot y = (x' \cdot 2^n + x'')(y' \cdot 2^n + y'') =$$

= $x' \cdot y' \cdot 2^{2n} + (x' \cdot y'' + x'' \cdot y') \cdot 2^n + x'' \cdot y''.$

Рассмотрим тождество:

$$x' \cdot y'' + x'' \cdot y' = (x' + x'') \cdot (y' + y'') - x' \cdot y' - x'' \cdot y''.$$

Доказательство. Получаем:

$$x \cdot y = (x' \cdot 2^n + x'')(y' \cdot 2^n + y'') =$$

= $x' \cdot y' \cdot 2^{2n} + (x' \cdot y'' + x'' \cdot y') \cdot 2^n + x'' \cdot y''.$

Рассмотрим тождество:

$$x' \cdot y'' + x'' \cdot y' = (x' + x'') \cdot (y' + y'') - x' \cdot y' - x'' \cdot y''.$$

Значит,

$$x \cdot y = x' \cdot y' \cdot 2^{2n} + + ((x' + x'') \cdot (y' + y'') - x' \cdot y' - x'' \cdot y'') \cdot 2^{n} + + x'' \cdot y''.$$

Доказательство. Итак,

$$x \cdot y = x' \cdot y' \cdot 2^{2n} + + ((x' + x'') \cdot (y' + y'') - x' \cdot y' - x'' \cdot y'') \cdot 2^{n} + + x'' \cdot y''.$$

Значит, с учетом леммы 20.3, для умножения 2n-разрядных чисел можно трижды умножить n-разрядные числа и выполнить дополнительные вычисления.

При этом сложность этих дополнительных вычислений не превосходит $C_2 \cdot n$, где $C_2 > 0$ — действительное число, не зависящее от n (по леммам 20.2, 20.3 и по теоремам о сложности сумматора и вычитателя).

Лемма 20.4 содержательно утверждает следующее:

умножать 2n-разрядные числа можно со сложностью, которая на линейное слагаемое отличается от утроенной сложности умножения n-разрядных чисел.

Теорема 20.1 (Карацубы). В базисе $B_0 = \{x \cdot y, x \vee y, \bar{x}\}$ можно построить умножитель M_n со сложностью $O(n^{\log_2 3})$.

Доказательство. 1. Сначала рассмотрим случай $n=2^k$, где $k\in\mathbb{N}$.

Применяя лемму 20.4, получаем:

$$\begin{array}{lll} L(M_{2^k}) & \leqslant & 3L(M_{2^{k-1}}) + C_2 \cdot 2^{k-1} \leqslant \\ & \leqslant & 3(3L(M_{2^{k-2}}) + C_2 \cdot 2^{k-2}) + C_2 \cdot 2^{k-1} = \\ & = & 3^2L(M_{2^{k-2}}) + C_2 \cdot (3 \cdot 2^{k-2} + 2^{k-1}) \leqslant \ldots \leqslant \\ & \leqslant & 3^kL(M_{2^0}) + C_2 \cdot \left(3^{k-1} + \ldots + 3 \cdot 2^{k-2} + 2^{k-1}\right). \end{array}$$

Заметим, что $L(M_1) = 1$. Кроме того,

$$3^{k-1} + \ldots + 3 \cdot 2^{k-2} + 2^{k-1} = 3^{k-1} \cdot \left(1 + \ldots + \left(\frac{2}{3}\right)^{k-1}\right) \leqslant \\ \leqslant 3^{k-1} \cdot \frac{1}{1 - \frac{2}{3}} = 3^k.$$

Доказательство. Поэтому:

$$L(M_{2^k}) \leqslant 3^k + C_2 \cdot 3^k \leqslant C_3 \cdot 3^k,$$

где $C_3 = C_2 + 1 > 0$ — некоторое действительное число.

Ho $n=2^k$, значит,

$$L(M_n) \leqslant C_3 \cdot 3^k = C_3 \cdot 2^{k \log_2 3} = C_3 \cdot n^{\log_2 3} = O(n^{\log_2 3}).$$

Доказательство. 2. Теперь рассмотрим случай $2^{k-1} < n < 2^k$, где $k \in \mathbb{N}$.

Добавим к n-разрядным числам нули слева, чтобы получились 2^k -разрядные числа. Тогда:

$$\begin{array}{lll} L(M_n) & \leqslant & L(M_{2^k}) \leqslant C_3 \cdot 2^{k \log_2 3} = \\ & = & (C_3 \cdot 2^{\log_2 3}) \cdot 2^{(k-1) \log_2 3} \leqslant C \cdot n^{\log_2 3}, \end{array}$$

где $C = C_3 \cdot 2^{\log_2 3} > 0$ — некоторое действительное число.

Значит,

$$L(M_n) \leqslant C \cdot n^{\log_2 3} = O(n^{\log_2 3}).$$

Сложность умножения *п*-разрядных чисел

Известен алгоритм Шенхаге-Штрассена, который n-разрядные числа позволяет умножать со сложностью $O(n \cdot \log n \cdot \log \log n)$.

Задачи для самостоятельного решения

1. Оцените сверху константы C_1 , C_2 , C_3 и C из лемм 20.3, 20.4 и теоремы 20.1.

Литература к лекции

- 1. Алексеев В.Б. Лекции по дискретной математике. М.: Инфра-М, 2012. С. 66–70.
- 2. Гаврилов Г. П., Сапоженко А. А. Задачи и упражнения по дискретной математике. М.: Физматлит, 2004. Гл. Х 1.1.