

VLSI Testing 積體電路測試

Sequential ATPG

Professor James Chien-Mo Li 李建模
Lab. of Dependable Systems
Graduate Institute of Electronics Engineering
National Taiwan University

^{*} Some picture are courtesy of Prof. Jiun-Lang Huang, NTU

Course Roadmap (EDA Topics)

Logic Sim. Fault Collapsing Fault Simulation Testability Comb. ATPG Diagnosis Seq. ATPG Delay Test

Motivating Problem

- You already know ATPG for combinational circuits
- But manager asks you to generate a test for sequential circuits
 - No scan allowed in flip-flops (FF)

Why Am I Learning This?

- Sequential ATPG
 - Generate test patterns for sequential circuits
 - Without DFT or scan

"If life is a test, one should wish it to be short."

(Bernardin de Saint-Pierre)

Test Generation

Fault Models	Combinational Circuits (or Sequential ckt. with scan)	Sequential Circuits
No fault model	PET	Checking experiment
Single Stuck-at Fault Model	D PODEM FAN	Extended D 9-valued
Delay Fault Model	Path Delay Transition Delay Fault	Launch on Capture Launch on Shift

Sequential ATPG

- Introduction
- Time-frame expansion methods
- Simulation-based methods * (not in exam)
- Issues of Sequential ATPG * (not in exam)
- Conclusions

Huffman Model for Sequential Ckt. [Huffman 53]

- $x_i = primary inputs (PI)$
- $z_i = primary outputs (PO)$
- $y_i = FF$ (or latch) next states
- $Y_i = FF$ (or latch) current states

(WWW Fig 3.3)
Can be either
Moore or Mealy

Sequential ATPG Assumptions

- NO SCAN ALLOWED!
 - Control only PI
 - FF not controllable
 - Observe only PO
 - FF not observable
- Faults in CL only
 - NO fault in FF/latches

Challenges of Sequential ATPG

- 1. FF/latches states uncontrollable and unobservable
 - FF/latch unknown initial states
- 2. Long run time
 - Comb. ATPG complexity (for a given fault)
 - O(2^{number_of_PI})
 - Seq. ATPG complexity (for a given fault)
 - O(2^{number_of_Pl} x 9^{number_of_FF})

*9-vlued logic will be covered soon

- 3. Large memory space required
 - Time frame expansion
- 4. Low fault coverage
 - Much worse than Comb. ATPG

Seq. ATPG is More Difficult Than Comb. ATPG

Quiz

Q: For a sequential circuit with 100 flip-flops, what is worst case sequential ATPG complexity?

A: 9¹⁰⁰

B: 2¹⁰⁰

C: 100²

Sequential ATPG

- Introduction
- Time-frame expansion methods
 - The extended D-algorithm [Kubo 68]
 - 9-valued D algorithm [Muth 76]
 - EBT [Marlett 78], BACK [Cheng 88] *
 - Summary
- Simulation-based methods*
- Issues of Sequential ATPG*
- Conclusions

Time Frame Expansion

- IDEA: Replicate circuits and connect time frames by wires

 - Replace clock cycles by space
- Becomes combinational ATPG problem
 - NOTE: Target fault appears in every time frame

Extended D-Algorithm [Kubo 68]

- 1. Select a target fault f
- 2. Create a copy of the combinational logic, set it to time frame 0
- 3. Generate a test for f for time frame 0 using D-algorithm
- 4. If the fault effect is propagated to the FF's, continue fault effect propagation in the next time frame
- 5. If there are values required in the FF outputs, continue the *justification* in the *previous* time frame

Example (1)

- STEP 2: create Time frame 0
- STEP 3: generate a test

$$\bullet$$
 a₀=1; y₁=0; Y₁=D'

Still Need Propagation

Example (2)

STEP4: Fault effect propagation to time frame 1

$$\bullet$$
 $a_1=1$

Still Need Activation

Example (3)

- STEP 5: Fault activation back to time frame -1
 - ◆ a₋₁=0

Test Generated = 0, 1, 1

Quiz

Q: Generate a test for stuck-at zero fault in sequential circuit.

ANS

- No way to propagate
 - This fault is untestable by sequential ATPG
- Endless timeframe expansion ...
 - Memory explosion!

Summary

- Sequential ATPG
 - Time and space consuming
 - Low fault coverage
- Time-frame expansion methods extended D-algorithm
 - Replicate circuits into many time frames
 - Propagate forward, the then activated backward
 - create new time frame if needed

FFT

- In comb. ATPG, first fault activation, then propagation
- In seq. ATPG, first propagation, then activation
 - why?

