Mise à Niveau en Mathématiques (ESIR1)

Laurent Albera

INSERM UMR 642, Laboratoire Traitement du Signal et de l'Image, F-35042 Rennes, France Université de Rennes 1, LTSI, Campus de Beaulieu, F-35042 Rennes, France

VIII - Introduction au calcul matriciel

Les matrices, une longue histoire...

- ► Théorie des déterminants développées en 1693 par Leibniz pour faciliter la résolution des équations linéaires;
- ► Théorie approfondie par Cramer donnant naissance à la méthode de Cramer en 1750;
- ▶ Proposition de la méthode d'élimination de Gauss-Jordan au début du XIX-ième siècle;
- ▶ Définition du terme "matrice" comme "an oblong arrangement of terms" (un arrangement rectangulaire de nombres) de James Sylvester au milieu du XIX-ième siècle;
- ► Première définition abstraite d'une matrice publiée dans "memoir on the theory of matrices" par Arthur Cayley quelques années plus tard;

VIII - Introduction au calcul matriciel

Systèmes linéaires et matrices... Cayley et Sylvester s'intéressaient à la résolution de systèmes d'équations linéaires tels que:

$$\begin{cases} 2x + 5y = 7 \\ 3x - 2y = 4 \end{cases}$$

Ils proposèrent le concept de matrice comme un moyen simple d'écrire les systèmes d'équations :

$$\left(\begin{array}{cc} 2 & 5 \\ 3 & -2 \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} 7 \\ 4 \end{array}\right)$$

Par la suite, l'usage des matrices s'est étendu d'abord à d'autres branches des mathématiques puis à d'autres disciplines comme la mécanique quantique, la recherche opérationnelle, les sciences économiques et plus récemment l'ingénierie biomédicale.

VIII.1 - Définition d'une matrice

Qu'est qu'une matrice? Une matrice est un tableau à deux entrées de nombres rangés par lignes et par colonnes. Le nombre se trouvant à l'intersection de la m-ième ligne et de la n-ième colonne d'une matrice A se note $A_{m,n}$. C'est la (m,n)-ième composante de A:

$$\mathbf{A} = (A_{m,n}) = \begin{pmatrix} A_{1,1} & A_{1,2} & \cdots & A_{1,n} & \cdots & A_{1,N} \\ A_{2,1} & A_{2,2} & \cdots & A_{2,n} & \cdots & a_{2,N} \\ \vdots & \vdots & \ddots & \vdots & & \vdots \\ A_{m,1} & A_{m,2} & \cdots & A_{m,n} & \cdots & a_{m,N} \\ \vdots & \vdots & & \vdots & \ddots & \vdots \\ A_{M,1} & A_{M,2} & \cdots & A_{M,j} & \cdots & A_{M,N} \end{pmatrix}$$

Si la matrice \boldsymbol{A} possède M lignes, N colonnes et ses MN composantes à valeurs dans \mathbb{R} (respectivement dans \mathbb{C}), on note alors $\boldsymbol{A} \in \mathbb{R}^{M \times N}$ (respectivement $\boldsymbol{A} \in \mathbb{C}^{M \times N}$).

VIII.2 - Opérations élémentaires

Taille d'une matrice? Si une matrice de taille $(M \times N)$ a autant de lignes que de colones (i.e. N = M), cette matrice est dite carrée. Dans le cas contraire (i.e. $N \neq M$), la matrice est dite rectangulaire.

L'algèbre des matrices carrées : l'ensemble des matrices carrées $\mathbb{R}^{N\times N}$ est un anneau. Cet anneau n'est pas commutatif $(\exists \ A \ \text{et} \ B \ \text{tels} \ \text{que} \ A \ B \neq B \ A)$ et ce n'est pas un corps car une matrice n'a pas toujours d'inverse.

Transposée d'une matrice : on note A^{T} la transposée de A définie par $A^{\mathsf{T}} = B = (B_{m,n})$ où $B_{m,n} = A_{n,m}$.

Transposée hermitienne : la transposée hermitienne de A, notée A^{H} , est définie par $A^{\mathsf{H}} = B = (B_{m,n})$ où $B_{m,n} = A_{n,m}^*$.

VIII.2 - Opérations élémentaires

Addition : la somme A + B est définie si les deux matrices A et B sont de même taille. On a alors $A + B = (A_{m,n} + B_{m,n})$.

Exercice: soit A la matrice de taille (3×3) définie par $A_{m,n} = 4n - m$. Calculer $B = A + A^{\mathsf{T}}$. Que remarque-t-on? Cette particularité définit le sous-ensemble des matrices $sym\acute{e}triques$. Proposer une définition du sous-ensemble des matrices hermitiennes?

Multiplication : le produit AB est défini si le nombre de colonnes de la matrice A est égal au nombre de lignes de B. Notons P ce nombre. Les composantes de la matrice C = AB sont alors définies par $C_{m,n} = \sum_{p=1}^{P} A_{m,p} B_{p,n}$.

VIII.2 - Opérations élémentaires

Exercice: calculer les produits AB et BA où :

$$m{A} = \left(egin{array}{ccc} 1 & -1 & 1 \ -3 & 2 & -1 \ -2 & 1 & 0 \end{array}
ight) \quad ext{ et } \quad m{B} = \left(egin{array}{ccc} 1 & 2 & 3 \ 2 & 4 & 6 \ 1 & 2 & 3 \end{array}
ight)$$

On dit qu'une matrice A est diagonale si et seulement A est carrée et $A_{m,n} = 0$ pour tout couple (m,n) tel que $n \neq m$.

On appelle **matrice identité** de taille $(N \times N)$ la matrice diagonale I_N telle que $I_{n,n} = 1$ pour tout n de $\{1, \ldots, N\}$. Soit A une matrice quelconque de taille $(M \times N)$, on a $A I_M = I_N A = A$.

VIII.3 - Déterminant d'une matrice

Une **permutation** σ de N est une application bijective de $\{1, \ldots, N\}$ dans lui-même. On note S_N l'ensemble des permutations de N, de cardinal N!.

Exemple:
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 5 & 1 & 4 \end{pmatrix}$$

On appelle **nombre d'inversions** d'une permutation σ le nombre $\varepsilon(\sigma)$ de paires $(\sigma(i), \sigma(j))$ telles que i < j et $\sigma(i) > \sigma(j)$.

Exercice : déterminer le nombre d'inversions de la permutation σ définie par $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 2 & 5 & 4 \end{pmatrix}$.

VIII.3 - Déterminant d'une matrice

On appelle **signe** d'une permutation σ le nombre $signe(\sigma)$ défini par $signe(\sigma) = (-1)^{\varepsilon(\sigma)}$.

Le **déterminant** d'une matrice carrée \boldsymbol{A} de taille $(N \times N)$ est la somme des produits élémentaires signés de \boldsymbol{A} associés aux permutations de \mathcal{S}_N :

$$\det(\mathbf{A}) = \sum_{\sigma \in \mathcal{S}_N} \operatorname{signe}(\sigma) A_{\sigma(1),1} A_{\sigma(2),2} \dots A_{\sigma(n),n} \dots A_{\sigma(N),N}$$

<u>Exercice</u>: retrouver les règles permettant de calculer le déterminant des matrices de taille (2×2) et (3×3) . Pour les matrices de taille (3×3) , il s'agit de la règle de Sarrus.

VIII.4 - Inverse d'une matrice

Le **mineur** $M_{m,n}$ associée à la composante $A_{m,n}$ d'une matrice \mathbf{A} de taille $(N \times N)$ est le déterminant de la sous-matrice de taille $(N-1\times N-1)$ obtenue en supprimant la ligne m et la colonne n de \mathbf{A} .

Le **cofacteur** $C_{m,n}$ associée à la composante $A_{m,n}$ de \boldsymbol{A} est défini par $C_{m,n} = (-1)^{m+n} M_{m,n}$.

Théorème : pour toute matrice \boldsymbol{A} de taille $(N \times N)$, on a $\det(\boldsymbol{A}) = \sum_{m=1}^{N} A_{m,n} C_{m,n} = \sum_{n=1}^{N} A_{m,n} C_{m,n}$.

Théorème: pour toute matrice \boldsymbol{A} de taille $(N \times N)$, on a $\boldsymbol{A} \boldsymbol{C}^{\mathsf{T}} = \boldsymbol{C}^{\mathsf{T}} \boldsymbol{A} = \det(\boldsymbol{A}) \boldsymbol{I}_N$ où \boldsymbol{C} est la matrice des cofacteurs de \boldsymbol{A} .

Exemple : la matrice A définie ci-dessous est-elle diagonalisable dans \mathbb{R} ? Le cas échéant, calculer la décomposition associée.

$$\mathbf{A} = \left(\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array}\right)$$

La première étape consiste à calculer le polynôme caractéristique, P_{A} , de A afin de voir s'il est scindé sur \mathbb{R} :

$$P_{\mathbf{A}}(\lambda) = \det(\mathbf{A} - \lambda \mathbf{I}_2) = \lambda^2 - 5\lambda - 2$$

Le discriminant de P_A vaut $\Delta = 33$. Comme $\Delta > 0$, le polynôme P_A est scindé sur \mathbb{R} et les deux valeurs propres de A sont égales à $\lambda_1 = (5 - \sqrt{33})/2$ et $\lambda_2 = (5 + \sqrt{33})/2$.

La seconde étape consiste à étudier les sous-espaces propres $\mathcal{E}_1 = \ker(\boldsymbol{A} - \lambda_1 \, \boldsymbol{I}_2)$ et $\mathcal{E}_2 = \ker(\boldsymbol{A} - \lambda_1 \, \boldsymbol{I}_2)$ associés respectivement aux valeurs propres λ_1 et λ_2 . Autrement dit, est-il possible de déterminer un vecteur colonne $\boldsymbol{v}^{(1)}$ appartenant au noyau \mathcal{E}_1 de la matrice $\boldsymbol{A} - \lambda_1 \, \boldsymbol{I}_2$ et un vecteur colonne $\boldsymbol{v}^{(2)}$ appartenant au noyau \mathcal{E}_2 de la matrice $\boldsymbol{A} - \lambda_2 \, \boldsymbol{I}_2$? Le cas échéant, la matrice \boldsymbol{A} sera dite diagonalisable dans \mathbb{R} et la diagonalisation de \boldsymbol{A} sera donnée par $\boldsymbol{A} = \boldsymbol{P} \, \boldsymbol{D} \, \boldsymbol{P}^{-1}$ où :

$$\begin{array}{lcl} \boldsymbol{P} & = & \left(\begin{array}{cc} \boldsymbol{v}^{(1)} & \boldsymbol{v}^{(2)} \end{array} \right) \\ \boldsymbol{P} & = & \left(\begin{array}{cc} \left(\begin{array}{c} v_1^{(1)} \\ v_2^{(1)} \end{array} \right) & \left(\begin{array}{c} v_1^{(2)} \\ v_2^{(2)} \end{array} \right) \end{array} \right) = \left(\begin{array}{cc} v_1^{(1)} & v_1^{(2)} \\ v_1^{(1)} & v_2^{(2)} \end{array} \right) \end{array}$$

et:

$$\boldsymbol{D} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$$

Tout d'abord, le vecteur colonne $v^{(1)}$ appartient à \mathcal{E}_1 ssi $(\mathbf{A} - \lambda_1 \mathbf{I}_2)v^{(1)} = \mathbf{0}$, i.e. ssi :

$$\left(\left(\begin{array}{ccc} 1 & 2 \\ 3 & 4 \end{array} \right) - \left(\begin{array}{ccc} \frac{5 - \sqrt{33}}{2} & 0 \\ 0 & \frac{5 - \sqrt{33}}{2} \end{array} \right) \right) \left(\begin{array}{c} v_1^{(1)} \\ v_2^{(1)} \end{array} \right) = \left(\begin{array}{c} 0 \\ 0 \end{array} \right)$$

 \Leftrightarrow

$$\begin{pmatrix}
\frac{-3+\sqrt{33}}{2} & 2\\
3 & \frac{3+\sqrt{33}}{2}
\end{pmatrix}
\begin{pmatrix}
v_1^{(1)}\\
v_2^{(1)}
\end{pmatrix} = \begin{pmatrix}
0\\
0
\end{pmatrix}$$

 \Leftrightarrow

$$\begin{pmatrix} -3+\sqrt{33} & 4 \\ 6 & 3+\sqrt{33} \end{pmatrix} \begin{pmatrix} v_1^{(1)} \\ v_2^{(1)} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

C'est-à-dire:

$$\begin{cases} (-3 + \sqrt{33})v_1^{(1)} + 4v_2^{(1)} = 0\\ 6v_1^{(1)} + (3 + \sqrt{33})v_2^{(1)} = 0 \end{cases}$$

En multipliant la seconde équation par $(-3 + \sqrt{33})/6$, on a :

$$\begin{cases} (-3 + \sqrt{33})v_1^{(1)} + 4v_2^{(1)} = 0\\ (-3 + \sqrt{33})v_1^{(1)} + 4v_2^{(1)} = 0 \end{cases}$$

En d'autres mots, les deux équations du système sont informationnellement identiques. Par conséquent, il existe une infinité de vecteurs $\boldsymbol{v}^{(1)}$ solutions de l'équation $(\boldsymbol{A}-\lambda_1\,\boldsymbol{I}_2)\boldsymbol{v}^{(1)}=\boldsymbol{0}$. Pour en obtenir une il suffit de fixer à une valeur non nulle l'une des deux composantes de $\boldsymbol{v}^{(1)}$ et de déterminer l'autre à partir d'une des deux équations du système.

Par exemple, prenons $v_1^{(1)} = (3 + \sqrt{33})/6$, nous obtenons alors grâce à la première équation du système $v_2^{(1)} = -1$. Le vecteur colonne $\mathbf{v}^{(2)}$ appartenant à \mathcal{E}_2 s'obtient de la même manière en résolvant l'équation $(\mathbf{A} - \lambda_2 \mathbf{I}_2)\mathbf{v}^{(2)} = \mathbf{0}$. Par le biais du calcul des matrices \mathbf{P} et \mathbf{D} nous avons ainsi diagonaliser la matrice \mathbf{A} .