Example 5 (Worksheet) — Cracking a Shift Cipher by Frequency

Problem. We intercepted the ciphertext ZNK KGXRE HOXJ MKZY ZNK CUXS produced by a shift cipher. What was the original plaintext?

Why this works

In English text, some letters appear more often (E, T, A, O, I, N). A shift cipher preserves relative frequencies, just moves them around the alphabet. If a letter occurs most often in the ciphertext, it likely corresponds to one of the most common plaintext letters. Hypothesize a mapping, compute the shift k, and test by decrypting.

Step 1 — Count letter frequencies

Ignore spaces/punctuation and count:

K S	Z	X	N	G	R	Е	Н	О	J	М	Y	С	U
4 1	3	3	2	1	1	1	1	1	1	1	1	1	1

The most frequent letter is K.

Step 2 — Form a hypothesis

In normal English, E is often the most frequent letter. Hypothesize that E (which is 4 with A=0) was shifted to K (which is 10). Then the encryption used

$$k \equiv 10 - 4 \equiv 6 \pmod{26}.$$

So decryption should be $p \equiv c - 6 \pmod{26}$.

Step 3 — Test by decrypting

Try a few letters to check the hypothesis:

$$Z(25) \mapsto 25 - 6 = 19 \Rightarrow T$$
, $N(13) \mapsto 7 \Rightarrow H$, $K(10) \mapsto 4 \Rightarrow E$.

The first three letters become THE, which is promising. Decrypt the whole string with k=6.

Step 4 — Conclusion

Full decryption yields:

THE EARLY BIRD GETS THE WORM

Because this makes excellent English, our hypothesis k = 6 is accepted.

Tips, tricks, and pitfalls

- **A=0** convention: E=4, K=10. Off-by-one mistakes derail the shift quickly.
- Test, then trust. A frequency guess is just a hypothesis; always decrypt a chunk to confirm.
- One-letter words in ciphertext often map to A or I; common bigrams like TH, HE, TO are great anchors.
- Decrypt rule: $p \equiv c k \pmod{26}$. Negative values? Add 26.

Practice — Your Turn

Problem A (easier). Decrypt the ciphertext URYYB JBEYQ given it was made with a shift k = 13.

Hint: subtract 13 from each letter mod 26.

Problem B (similar). The ciphertext below was made with an *unknown* shift:

ZHOFRPH WR FODVV

Find k and the plaintext.

 ${\it Hints:}\ {\it the\ block\ WR\ might\ be\ TO},\ {\it or\ FODVV\ looks\ like\ CLASS}.$

Problem C (harder). The ciphertext was produced by a shift cipher with $unknown \ k$:

YMJ VZNHP GWTBS KTC OZRUX TAJW YMJ QFED ITL

Determine k using a smart guess (look for a repeated common word), then decrypt t	the whole
message.	

Reflection. Briefly explain why frequency analysis defeats a shift cipher but not a one-time pad.