Hierarchical Multiclass Object Classification

Fereshte Khani Massachusetts Institute of Technology

fereshte@mit.edu

Abstract

Human can use similarity between objects in order to recognize rare objects. They also make many abstract concepts when they see some objects very often. Interestingly, a large part of brain is associated with common classes like faces rather than rare objects like Ostrich. In our work we want to propose a model that has four mentioned characteristics.1. Use more resources for categories that have many examples and less resources for categories that have few examples, 2. Has the ability recognize objects that it has never seen before, but can be made by combining previously seen objects, 3. Objects with few examples can borrow statistical strength from similar objects with many examples, 4. Models that have lot of sharing between model parameters of different classes should be favored.

1. Introduction

We have a hierarchical based abstract concepts for object around us. We make a bigger hierarachical concepts for object that we encounter more often. For example, if you ask a person about furniture they can catagorized it by chair, desk, sofa, table, etc. and then for chair it goes like office chair, armchair, rockchair, or even wheelchair. These sub catagories are related to each other visually. In this work we try to propse a model that make more abstract concepts when there are lots of simillar classes. It also try to share many parameters between them so having lots of example for the common one help recognizing the rare one.

We all make a model for every concept and when encounter a new object we try to check to which concept it matches more. All learning algorithm try to add aditional information to the problem to avoid overfitting. They usually use Occaum-razor to have as simple as possible model. Here we want to want to change this regulization in a way that if a model use previously learned objects it can have more complex shape. By this structure Models that have lot of sharing between model parameters of different classes should be favored.

We make a tree from all classes. In this framework every

Anurag Mukkara Massachusetts Institute of Technology

anurag_m@mit.edu

class is a leaf in the tree (figure 1)

2. Previous work

3. Hierarchical Classification Model

3.1. Learning Independent Classification Models

Consider a classification problem where we observe a dataset D of labelled training examples. Each example belongs belongs to one K classes(eg. 40 object categories). The dataset D has n_k labeled examples for for each class $k \in 1, 2,, K$. We $x_i^{(k)} \in R^D$ be the input feature vector of length D for the i^{th} training example of class k and $y_i^{(k)}$ be the corresponding class label. $y_i^k = 1$ indicates that the i^{th} training example is a positive example for class K and $y_i^k = -1$ indicates that the i^{th} training example is a negative example for class K.

For a binary classification problem we can use a simple logistic regression model. In particular, for each class k, the probability of a positive instance can be modeled as:

$$p(y_i^{(k)} = 1|\beta^{(k)}) = \frac{\exp(\beta^{(k)^T} x_i^{(k)})}{1 + \exp(\beta^{(k)^T} x_i^{(k)})}$$
(1)

where k ranges over the K classes and $\beta^k \in R^D$ is the unknown model parameter of length D for class k. In addition, we place a zero-mean spherical Gaussian prior over each model parameter β^k :

$$p(\beta) = \prod_{k=1}^{K} p(\beta^{(k)}) = \prod_{k=1}^{K} N(0, \frac{1}{\lambda})$$
 (2)

where $N(\mu, \Sigma)$ indicates a Gaussian probability distribution with mean μ and covariance Σ . Here, λ is the prior parameter. With this modeling framework, the log posterior distribution of the unknown parameters can be expresses as

$$\log p(\beta|D) \propto \sum_{k=1}^{K} \left[\sum_{i=1}^{n_k} \log p(y_i^{(k)}|x_i^{(k)}, \beta^{(k)}) + \log p(\beta^{(k)}) \right]$$
(3)

Maximizing the log posterior(or finding the MAP estimate) over the unknown model parameters β is equivalent to minimizing the probabilistic loss function with quadratic regularization terms:

$$E = \sum_{k=1}^{K} \left[\sum_{i=1}^{n_k} Loss(y_i^{(k)}, x_i^{(k)}, \beta^{(k)}) + \frac{\lambda}{2} \|\beta^{(k)})\|^2 \right]$$
(4)

where the probabilistic loss function is given by:

$$Loss(y, x, \beta) = -\sum_{j \in -1, 1} I\{y = j\} \log p(y = j | x, \beta)$$
 (5)

One important property of the loss function is that it is convex and hence can be efficiently optimized using standard convex optimization solvers.

The main drawback of this formulation is that all the K classes are treated as unrelated entities and hence do not share any model parameters. In fact, it is observed that the objective function decomposes into K sub-problems, each of which is a binary classification problem that can be trained independently using the training data for that particular class.

3.2. Learning a Hierarchical Classification Model

In our framework, a hierarchical tree structure is used to model sharing of parameters between visually related classes. Each node in the tree has a model parameter, a vector of length D associated with it. Let $\theta = \{\theta_1, \theta_2,, \theta_n\}$ denote the model parameters of all the nodes in the tree, where n is the number of nodes starting from the root node to the all the leaf nodes. The leaf nodes correspond to the K object categories or classes. The parameters for a particular class, say k, is the sum of the parameters of all the nodes, say $i_1, i_2, ..., i_l$, along the path from the leaf node corresponding to that class up until the root node of the tree:

$$\beta^{(k)} = \theta_{i_1} + \theta_{i_2} + \dots + \theta_{i_l} \tag{6}$$