Assignment 2 MAT 458

5.5.56: Note that the smallest closed subspace that contains E is by definition $\overline{span(E)}$. We claim that $\overline{span(E)} = E^{\perp \perp}$. If $v \in E^{\perp \perp}$ then for all $u \in E^{\perp}$, $\langle v, u \rangle = 0$. Therefore $v \in span(E)$ and so it belongs to the closure. Now suppose that $v \in span(E)$. Let $\{v_n\}$ be a sequence in span(E) converging to v in the closure. We have that for all $u \in E^{\perp}$, $\langle v_n, u \rangle = 0$. Since the inner product is continuous, we have that $\langle v, u \rangle = 0$. Thus $v \in E^{\perp \perp}$.