Algebra-Coalgebra Duality: applications in automata theory

Alexandra Silva

Radboud Universiteit Nijmegen and CWI

Wollic 2015

The global message

- Two views on many problems: Algebra and coalgebra.
- The combination is essential!
- Coalgebra is semantics but also algorithms.

Specify and reason about systems.

Specify

and reason

about systems.

state-machines e.g. DFA, LTS, PA

Specify

and reason

about systems.

Syntax RE, CCS, ...

b"a(b"a)"

a.b.0 + a.c.0

a. (1/2.0 @1/2.0) + ···

state-machines e.g. DFA, LTS, PA

Specify

and

about **systems**.

Syntax RE, CCS, ...

b"a(b"a)"

$$a.b.0 + a.c.0$$

$$a.(1/2.0 \oplus 1/2.0) + \cdots$$

Axiomatization KA....

state-machines e.g. DFA, LTS, PA

Specify	and	reason	about	systems.
Syntax RE, CCS,		Axiomatization KA,		state-machines e.g. DFA, LTS, PA
b*a(b*a)*		1 + a a*= a*		- C - C - C - C - C - C - C - C - C - C
a.b.0+a.c.0		P+0 = P		
a.(½·0 ⊕½·0)+…		p.P ⊕ p'.P = (p+p').P		

Can we do all of this uniformly in a single framework?

$$(S, t: S \rightarrow 2 \times S^A)$$

$$(S, t: S \rightarrow \mathcal{P}S^A)$$

$$(S, t: S \to \mathcal{PD}_{\omega}(S)^A)$$

$$(S, t: S \to 2 \times S^A)$$

$$(S, t: S \rightarrow \mathcal{P}S^A)$$

$$(S, t: S \to \mathcal{PD}_{\omega}(S)^A)$$

$$(\mathcal{S}, t: \mathcal{S} \to \mathcal{D}_{\omega}(\mathcal{S}) + (\mathcal{A} \times \mathcal{S}) + 1)$$

$$(S, t: S \to 2 \times S^A)$$

$$(S, t: S \to \mathcal{P}S^A)$$

$$(S, t: S \to \mathcal{PD}_{\omega}(S)^A)$$

$$(S, t: S \to \mathcal{D}_{\omega}(S) + (A \times S) + 1)$$

$$(S, t: S \to \mathcal{P}(\mathcal{D}_{\omega}(\mathcal{P}S)^{A}))$$

 $(S, t: S \rightarrow TS)$

$$(S, t: S \rightarrow TS)$$

The functor *T* determines:

1. notion of observational equivalence (coalg. bisimulation) E.g. $T = 2 \times (-)^A$: language equivalence

$$(S, t: S \rightarrow TS)$$

The functor *T* determines:

- 1. notion of observational equivalence (coalg. bisimulation) E.g. $T = 2 \times (-)^A$: language equivalence
- 2. behaviour (final coalgebra) E.g. $T = 2 \times (-)^A$: languages over $A - 2^{A^*}$

$$(S, t: S \rightarrow TS)$$

The functor **7** determines:

- 1. notion of observational equivalence (coalg. bisimulation) E.g. $T = 2 \times (-)^A$: language equivalence
- 2. behaviour (final coalgebra) E.g. $T = 2 \times (-)^A$: languages over $A - 2^{A^*}$
- set of expressions describing finite systems
- 4. axioms to prove bisimulation equivalence of expressions
- 1 + 2 are classic coalgebra; 3 + 4 are recent work.

Brzozowski's algorithm (co)algebraically

Motivation

- duality between reachability and observability (Arbib and Manes 1975): beautiful, not very well-known.
- combined use of algebra and coalgebra.
- our understanding of automata is still very limited;
 cf. recent research: universal automata, àtomata, weighted automata (Brzozowski, Ésik, Sakarovitch, . . .)

Brzozowski algorithm (by example)

- initial state: x final states: y and z
- $L(x) = \{a, b\}^* a$

Brzozowski algorithm (by example)

- initial state: x final states: y and z
- $\bullet L(x) = \{a,b\}^* a$
- X is reachable but not minimal: $L(y) = \varepsilon + \{a, b\}^* a = L(z)$

- transitions are reversed
- initial states ⇔ final states

- transitions are reversed
- initial states ⇔ final states
- rev(X) is non-deterministic

• new state space: $2^X = \{V \mid V \subseteq \{x, y, z\}\}$

- new state space: $2^X = \{ V \mid V \subseteq \{x, y, z\} \}$
- initial state: $\{y, z\}$ final states: all V with $x \in V$
- $V \xrightarrow{a} W$ $W = \{w \mid v \xrightarrow{a} w, v \in V\}$

The automaton det(rev(X)) . . .

The automaton det(rev(X)) . . .

• . . . accepts the reverse of the language accepted by X:

$$L(det(rev(X))) = a\{a,b\}^* = reverse(L(X))$$

The automaton det(rev(X)) . . .

• . . . accepts the reverse of the language accepted by X:

$$L(det(rev(X))) = a\{a,b\}^* = reverse(L(X))$$

. . . and is observable!

Today's Theorem

If: a deterministic automaton X is reachable and accepts L(X)

Today's Theorem

If: a deterministic automaton X is reachable and accepts L(X)

then: det(rev(X)) is minimal and

$$L(det(rev(X))) = reverse(L(X))$$

Taking the reachable part of det(rev(X))

Taking the reachable part of det(rev(X))

reach(det(rev(X)))

Taking the reachable part of det(rev(X))

• reach(det(rev(X))) is reachable (by construction)

• . . . gives us reach(det(rev(reach(det(rev(X))))))

- . . . gives us reach(det(rev(reach(det(rev(X))))))
- which is (reachable and) minimal and accepts {a, b}* a.

• X is reachable and accepts $\{a, b\}^* a$

- X is reachable and accepts {a, b}* a
- reach(det(rev(reach(det(rev(X)))))) also accepts {a, b}* a

- X is reachable and accepts {a, b}* a
- reach(det(rev(reach(det(rev(X)))))) also accepts {a, b}* a
- . . . and is minimal!!

Goal of the day

- Correctness of Brzozowski's algorithm (co)algebraically
- Generalizations to other types of automata

(Co)algebra

Examples of algebras

Examples of algebras

Examples of coalgebras

$$\begin{array}{ccc}
X \\
t \\
\downarrow \\
\mathcal{P}(A \times X)
\end{array}$$
 $x \xrightarrow{a} y \leftrightarrow \langle a, y \rangle \in t(x)$

Examples of coalgebras

$$\begin{array}{c}
X \\
t \\
\downarrow \\
\mathcal{P}(A \times X)
\end{array}$$

$$X \longrightarrow y \quad \leftrightarrow \langle a, y \rangle \in t(x)$$

$$\langle Left, label, Right \rangle \downarrow \\
X \times A \times X$$

Examples of coalgebras

head
$$((b_0, b_1, b_2, \ldots)) = b_0$$

tail $((b_0, b_1, b_2, \ldots)) = (b_1, b_2, b_3 \ldots)$

Homomorphisms

$$F(X) \xrightarrow{F(H)} F(Y)$$

$$\downarrow g$$

$$X \xrightarrow{h} Y$$

Homomorphisms

$$F(X) \xrightarrow{F(h)} F(Y)$$

$$f \downarrow \qquad \qquad \downarrow g$$

$$X \xrightarrow{h} Y$$

Initiality, finality

$$F(A) \xrightarrow{F(h)} F(X)$$

$$\alpha \downarrow \qquad \qquad \downarrow f$$

$$A \xrightarrow{A \xrightarrow{-} \exists ! h} \xrightarrow{h} X$$

$$X - -\frac{\exists ! \underline{h}}{f} \to Z$$

$$\downarrow \beta$$

$$F(X) - \underline{-}(\underline{h}) \to F(Z)$$

Initiality, finality

initial algebras ↔ induction

Initiality, finality

$$F(A) \xrightarrow{F(h)} F(X)$$

$$\alpha \downarrow \qquad \qquad \downarrow f$$

$$A \xrightarrow{A - -\frac{1}{\exists ! h} - \rightarrow X}$$

- initial algebras ↔ induction
- final coalgebras ↔ coinduction

Automata, (co)algebraically

Automata are complicated structures:part of them is algebra - part of them is coalgebra

Automata, (co)algebraically

Automata are complicated structures:part of them is algebra - part of them is coalgebra

▶ (. . . in two different ways . . .)

A deterministic automaton

A deterministic automaton

where

$$1 = \{0\} \qquad 2 = \{0, 1\} \qquad X^A = \{g \mid g : A \to X\}$$

$$x \longrightarrow y \leftrightarrow t(x)(a) = y$$

 $i(0) \in X$ is the initial state

$$(x)$$
 is final (or accepting) \leftrightarrow $f(x) = 1$

Automata: algebra or coalgebra?

▶ initial state: algebraic – final states: coalgebraic

Automata: algebra or coalgebra?

▶ initial state: algebraic – final states: coalgebraic

transition function: both algebraic and coalgebraic

$$\begin{array}{c}
X \xrightarrow{t} X^{A} \\
X \longrightarrow (A \longrightarrow X) \\
\hline
X \times A \xrightarrow{t} X
\end{array}$$

Automata: algebra and coalgebra!

Automata: algebra and coalgebra!

To take home: this picture!! . . .

Automata: algebra and coalgebra!

To take home: this picture!! . . . which we'll explain next . . .

The "automaton" of languages

$$\begin{array}{ccc}
& & & & & & \\
& & & & \\
& & & & \\
\downarrow^{\alpha} & & & \\
& & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& &$$

The "automaton" of languages

$$\begin{array}{ccc}
2 & & & & & \\
 & & \uparrow \epsilon? & & \\
2^{A^*} & & & & \\
\downarrow \beta & & & \\
(2^{A^*})^A & & & & \\
\beta(L)(a) = L_a = \{w \in A^* \mid a \cdot w \in L\}
\end{array}$$

We say "automaton": it does not have an initial state.

The automaton of languages

- transitions: $L \xrightarrow{a} L_a$ where $L_a = \{ w \in A^* \mid a \cdot w \in L \}$
- for instance:

The automaton of languages

- transitions: $L \xrightarrow{a} L_a$ where $L_a = \{ w \in A^* \mid a \cdot w \in L \}$
- for instance:

The automaton of languages

- transitions: $L \xrightarrow{a} L_a$ where $L_a = \{ w \in A^* \mid a \cdot w \in L \}$
- for instance:

• note: every state L accepts . . .

The automaton of languages

- transitions: $L \xrightarrow{a} L_a$ where $L_a = \{ w \in A^* \mid a \cdot w \in L \}$
- for instance:

• note: every state *L* accepts the language *L* !!

The automaton of languages is . . . final

The automaton of languages is . . . final

where: x_w is the state reached after inputting the word w,

and: $o^A(g) = o \circ g$, all $g \in X^A$.

Back to today's picture

Back to today's picture

On the right: final coalgebra

Back to today's picture

On the right: final coalgebra

On the left: initial algebra . . .

The "automaton" of words

The automaton of words is . . . initial

$$i \in X = \text{ initial state}$$

$$(\text{to be precise: } i(0))$$

$$A^* - - - - - + X$$

$$\alpha \qquad \qquad \downarrow t \qquad \qquad = the state \text{ reached from } i$$

$$(A^*)^A - - - - + X^A$$

$$after inputting w$$

- Proof: easy exercise.
- Proof: formally, because A^* is an initial $1 + A \times (-)$ -algebra!

Duality

Reachability and observability are dual:

Arbib and Manes, 1975.

(here observable = minimal)

$$r(w) = \text{state reached}$$

on input w

$$o(x)$$
 = language accepted by x

• We call *X* reachable if *r* is surjective.

- We call X reachable if r is surjective.
- We call *X* observable (= minimal) if *o* is injective.

Reversing the automaton

- ▶ Reachability ↔ observability
- Being precise about homomorphisms is crucial.
- Forms the basis for proof Brzozowski's algorithm.

where
$$2^V=\{S\mid S\subseteq V\}$$
 and, for all $S\subseteq W$,
$$2^g(S)=\ g^{-1}(S)\quad (=\ \{v\in V\mid \ g(v)\in S\}\,)$$

where
$$2^V=\{S\mid S\subseteq V\}$$
 and, for all $S\subseteq W$,
$$2^g(S)=\ g^{-1}(S)\quad (=\ \{v\in V\mid \ g(v)\in S\}\,)$$

This construction is contravariant!!

where
$$2^V=\{S\mid S\subseteq V\}$$
 and, for all $S\subseteq W$,
$$2^g(S)=\ g^{-1}(S)\quad (=\ \{v\in V\mid \ g(v)\in S\}\,)$$

- This construction is contravariant!!
- Note: if g is surjective, then 2^g is injective.

$$\begin{array}{c|cccc}
X & X \times A & 2^{X \times A} & \uparrow \\
t \downarrow & \downarrow & 2^{(-)} & \uparrow & \uparrow \\
X^A & X & 2^X & 2^X
\end{array}$$

$$\begin{array}{c|ccccc}
X & X \times A & 2^{X \times A} & 2^{X} \\
t \downarrow & \downarrow & 2^{(-)} & \uparrow & \uparrow & \downarrow 2^{t} \\
X^{A} & X & 2^{X} & 2^{X} & 2^{X}
\end{array}$$

Initial and final are exchanged . . .

- Initial and final are exchanged . . .
- transitions are reversed . . .

- Initial and final are exchanged . . .
- transitions are reversed . . .
- and the result is again deterministic!

Our previous example

Our previous example

Our previous example

Note that X has been reversed and determinized:

$$2^X = det(rev(X))$$

Proving today's Theorem

If: a deterministic automaton X is reachable and accepts L(X)

Proving today's Theorem

If: a deterministic automaton X is reachable and accepts L(X)

then:
$$2^X$$
 (= $det(rev(X))$) is minimal/observable and $L(2^X) = reverse(L(X))$

• X becomes 2X

- X becomes 2X
- initial automaton A* becomes (almost) final automaton 2A*

- X becomes 2X
- initial automaton A* becomes (almost) final automaton 2^{A*}
- r is surjective \Rightarrow 2^r is injective

• If r is surjective then (2^r) and hence (2^r) is injective.

- If r is surjective then (2^r and hence) $rev \circ 2^r$ is injective.
- That is, 2^X is observable (= minimal).

If: X is reachable, i.e., r is surjective

If: X is reachable, i.e., r is surjective
 then: rev ∘ 2^r is injective, i.e., 2^X is observable = minimal.

- If: X is reachable, i.e., r is surjective
 then: rev ∘ 2^r is injective, i.e., 2^X is observable = minimal.
- And: $rev(2^r(f)) = rev(o(i))$, i.e., $L(2^X) = reverse(L(X))$

Corollary: Brzozowski's algorithm

► X becomes 2^X , accepting reverse(L(X))

Corollary: Brzozowski's algorithm

- ▶ X becomes 2^X , accepting reverse(L(X))
- ▶ take reachable part: $Y = reachable(2^X)$

Corollary: Brzozowski's algorithm

- ▶ X becomes 2^X , accepting reverse(L(X))
- ▶ take reachable part: $Y = reachable(2^X)$
- Y becomes 2^Y, which is minimal and accepts

$$reverse(reverse(L(X))) = L(X)$$

Generalizations

• A Brzozowski minimization algorithm for Moore automata.

$$B^X = \{ \varphi \mid \varphi \colon X \to B \}$$
 $B^f(\varphi) = \varphi \circ f$

4 D > 4 B > 4 E > 4 E > E *) 4 (*

Further generalizations

- Moore automata generalization: uniform algorithm for decorated traces and must testing (joint work with Bonchi, Caltais and Pous);
- Further generalizations to non-deterministic and weighted automata.

Conclusions

- Abstract analysis can bring new perspectives/results.
- Combination algebra-coalgebra is fruitful.
- ► (Co)algebra is not only semantics but also algorithms!

Conclusions

- Abstract analysis can bring new perspectives/results.
- Combination algebra-coalgebra is fruitful.
- (Co)algebra is not only semantics but also algorithms!

Thanks!