실험계획과 분석

심송용(한림대학교 데이터과학스쿨)

http://jupiter.hallym.ac.kr

다중비교(multiple comparisons)

- ➡ 분산분석표에서 얻은 결론: 적어도 하나는 다르다.
- **➡** $H_0: \mu_i \mu_i = 0$ 의 검정에서 얻은 결론: 두 처리간의 차이 여부
- ➡ 실제로는 *a*개의 처리를 비교하므로 어느 처리와 어느 처리는 같은지, 또는 다른지를 판단하여야 함.
- 한꺼번에 a개의 처리를 비교하는 것을 다중비교라고 함.
- 일부 사회과학자들은 이를 사후검정(post-hoc test)라고도 부름. 분산분석표에서 귀무가 설을 기각하였을 때(사후) 어느 처리들이 차이가 나는지 또는 나지 않는지 판단한다는 의미.
- 다중비교를 위한 통계적 방법은 아주 많으며, 이는 역으로 어느 한두 가지 방법이 최선이 아니라는 뜻이기도 함.
- 몇가지 자주 사용하는 방법은
 - Bonferroni 검정

- Scheffé 검정
- Tukey 검정
- Dunnette 검정
- 최소유의차 검정(Least Significant Difference test, LSD) 등이 있으며 이들의 검정결과는 다를 수 있음.

LSD 검정

$$LSD(i,j) = t_{df(MSE);\alpha/2} \sqrt{MSE(\frac{1}{n_i} + \frac{1}{n_j})}$$

를 얻어서

- $|\overline{y}_{i.} \overline{y}_{j.}| \leq LSD(i,j)$ 이면 i번째 처리와 j번째 처리는 차이가 나지 않고
- $|\bar{y}_{i.} \bar{y}_{j.}| > LSD(i,j)$ 이면 i번째 처리와 j번째 처리는 차이가 난다고 판단 하는 방법

보기:

도넛을 튀길 때 생성되는 트랜스 지방의 양이 네 가지 기름의 종류(fat1, fat2, fat3, fat4)에 따라 다른지 알아보기 위해 다음과 같은 자료를 얻었다. 실험에 사용된 fat1, fat2는 식물성, fat3, fat4는 동물성 기름이라고 한다.(교재의 표 4.5) 자료는 다음과 같다.

		자료	평균	분산
식물성	fat1	164, 172, 168, 177, 156, 195	172	178.0
	fat2	178, 191, 197, 182, 185, 177	185	60.4
동물성	ltat3	175, 193, 178, 171, 163, 176	176	97.6
	fat4	155, 166, 149, 164, 170, 168	162	67.6

 $n_1=\cdots=n_4=6,~N=24,~a=4$ 이므로 SSE의 자유도 df(MSE)=N-a=24-4=20 이 며 $t_{20:0.025}=2.085963$ 이다. 또한 분산분석표에서 MSE를 얻을 수 있으나 여기서는

$$MSE = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2 + \dots + (n_4 - 1)S_4^2}{N - a} = \frac{5(178 + 60.4 + 97.6 + 67.6)}{20} = 100.9$$

로 얻을 수 있다. $n_1 = \cdots = n_4 = 6$ 이므로 따라서 LSD(i,j)는 모두 같은 값

$$LSD(i,j) = t_{df(MSE);\alpha/2} \sqrt{MSE(\frac{1}{n_i} + \frac{1}{n_j})} = 2.086 \sqrt{100.9(\frac{1}{6} + \frac{1}{6})} = 12.097$$

이 된다. 이를 사용하여

$$\begin{split} |\overline{y}_1 - \overline{y}_2| &= 13.0 > 12.097 & |\overline{y}_1 - \overline{y}_3| = 4.0 < 12.097 \\ |\overline{y}_1 - \overline{y}_4| &= 10.0 < 12.097 & |\overline{y}_2 - \overline{y}_3| = 9.0 < 12.097 \\ |\overline{y}_2 - \overline{y}_4| &= 23.0 > 12.097 & |\overline{y}_3 - \overline{y}_4| = 14.0 > 12.097 \end{split}$$

를 얻는다. 일반적으로 a개의 수준이면 a(a-1)/2개의 비교가 필요하므로 다중비교에서는 이들을 나열하기 보다는 처리별 평균의 크기로 정리한 후 이들을 비교하는 방식으로 결과를 만들어 주기도 한다.

SAS를 이용한 LSD 검정. (m.comparisonsl.sas)

```
data fatdata:
input oil transfat@@;
cards;
1 164 1 172 1 168 1 177 1 156 1 195   2 178 2 191 2 197 2 182 2 185 2 177
3 175 3 193 3 178 3 171 3 163 3 176   4 155 4 166 4 149 4 164 4 170 4 168
;
proc glm data = fatdata;
class oil;
model transfat = oil;
means oil/lsd cldiff;
run;
```

MEANS 문에서 lsd 지정,

- cldiff를 사용하면 모든 가능한 비교(수치계산),
- lines(기본값)를 사용하면 선을 그려줌.
- alpha에 다른 값을 설정하면 5%가 아닌 유의수준에 대한 결과 얻음(기본값 0.05)

결과는 다음과 같다.

Alpha	0,05
Error Degrees of Freedom	20
Error Mean Square	100,9
Critical Value of t	2,08596
Least Significant Difference	12,097

oil Comparison	Difference Between Means	95% Confidence Limits	
2 - 3	9,000	-3.097	21,09
2 - 1	13,000	0,903	25,09
2 - 4	23,000	10,903	35,09
3 - 2	-9,000	-21,097	3,09
3 - 1	4.000	-8.097	16,09
3 - 4	14,000	1,903	26,09
1 - 2	-13,000	-25,097	-0,90
1 - 3	-4,000	-16,097	8,09
1 - 4	10,000	-2.097	22.09
4 - 2	-23,000	-35,097	-10,90
4 - 3	-14,000	-26,097	-1,90
4 - 1	-10,000	-22,097	2,09