

Bayesian Inference

Bayes Rule

Point distributions

$$P(A,B) = P(A/B)P(B) = P(B/A)P(A)$$

$$P(B|A) = P(A|B)P(B) / P(A)$$

Bayes Rule

Probability distributions

Frequency

- Flip coin multiple times
- Count number of time coin lands heads out of total flips

Uninformative Beta Prior

Prior Knowledge

- Prior knowledge that coin is nearly fair
 Prior represents expert knowledge
- Rather than estimate single value for parameter, obtain distribution over possible values
- Use Bayes rule to update posterior after observing data given prior.

Informative Beta Prior Distribution

Binomial Likelihood and Beta Prior

Observe 4 heads out of 10 coin flips: Binomial likelihood function

Update Belief based on Experiment Results

$Posterior \propto Prior \times Likelihood$

Source: stata.com

 $p(\theta|y) \propto p(\theta)p(y|\theta)$

Update Belief based on Experiment Result

$$p(\theta|y) = Beta(\alpha, \beta)xBinomial(n, \theta) = Beta(y + \alpha, n - y + \beta)$$

Source: stata.com

Beta distribution is a conjugate prior for binomial likelihood function since posterior distribution belongs to same family as prior distribution

Conjugate Priors

- Closed form representation of posterior
- Posterior and prior have same algebraic form as function of parameter

Beta Distribution

Defined over [0,1].

Conjugate prior for Bernoulli, binomial, geometric distributions.

$$Beta(x|a,b) = \frac{1}{B(a,b)}x^{a-1}(1-x)^{b-1} \qquad B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$$

```
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import beta

x = np.linspace(0, 1, 100)
aa = [0.1, 1., 2., 8.]
bb = [0.1, 1., 3., 4.]
props = ['r-', 'g-', 'b-', 'k-']
for a, b, p in zip(aa, bb, props):
    y = beta.pdf(x, a, b)
    pl.plot(y, p, lw=3, label='a=%.1f, b=%.1f' % (a, b))
plt.legend(loc='upper left')
plt.show()
```


Posterior for Beta(1,1) Prior

$$p(\theta|y) = Beta(\alpha, \beta)xBinomial(n, \theta) = Beta(y + \alpha, n - y + \beta)$$

MYU Effect of Informative Prior Distributions on Posterior Distributions

Effect of Larger Sample Sizes on Posterior Distribution

Posterior Distribution

- Bayesian approach
- Prior information encoded as distribution over possible parameter values
- Use Bayes rule to update posterior based on observations

Maximum A Posteriori (MAP) Estimation

- From distribution to single parameter value
- Choose value which is most probable given observed data and prior belief

$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} P(\theta \mid D)$$

$$= \underset{\theta}{\operatorname{argmax}} P(D|\theta)P(\theta)$$

Markov Chain Monte Carlo (MCMC)

Motivation

- Goal: estimate posterior distribution of parameter θ , which is probability that coin flip results in heads.
- Prior distribution is uninformative Beta distribution with parameters (1,1).
- Use binomial likelihood function to quantify data: 4 heads / 10 coin flips.
- Use MCMC with M-H algorithm to generate sample from posterior distribution of θ. Use sample to estimate mean and confidence intervals of posterior distribution

Proposal Distribution, Trace Plot, Density Plot

Monte Carlo Trace Plot

Markov Chain Monte Carlo Trace Plot

Markov Chain Monte Carlo Trace Plot

Markov Chain Monte Carlo Trace Plot

Markov Chain Monte Carlo

- Proposal distribution is changing with each iteration.
- Trace plot with random walk pattern, variability is not same over all iterations.
- Problem: resulting density plot does not look like proposal distribution, or a posterior distribution.
- Solution: improve sample keeping proposed values of θ more likely under posterior distribution and discarding less likely values.
- Problem: difficult to accept or reject proposed values of θ based on posterior distribution since we don't know functional form of posterior distribution

MCMC with Metropolis Hastings

Metropolis Hastings Algorithm

• Decide which proposed values of θ to accept or reject even when we don't know the functional form of posterior distribution

• Compute ratio:
$$r(\theta_{new}, \theta_{t-1}) = \frac{Posterior(\theta_{new})}{Posterior(\theta_{t-1})}$$

Compute accept probability in [0,1]:

$$\alpha (\theta_{new}, \theta_{t-1}) = min(r(\theta_{new}, \theta_{t-1}), 1)$$

• Draw u~Uniform [0,1]: if $u < \alpha$ then accept new value

Step 1:
$$r(\theta_{\text{new}}, \theta_{\text{t-1}}) = \frac{\text{Posterior}(\theta_{\text{new}})}{\text{Posterior}(\theta_{\text{t-1}})} = \frac{\text{Beta}(1,1,0.380) \times \text{Binomial}(10,4,0.380)}{\text{Beta}(1,1,0.517) \times \text{Binomial}(10,4,0.517)} = 1.307$$

Step 2: Acceptance probability
$$\alpha(\theta_{\text{new}}, \theta_{\text{t-1}}) = \min\{r(\theta_{\text{new}}, \theta_{\text{t-1}}), 1\} = \min\{1.307, 1\} = 1.000$$

$$Step 1: \quad r(\theta_{new} \,,\, \theta_{t\text{-}1}) \ = \ \frac{Posterior(\theta_{new})}{Posterior(\theta_{t\text{-}1} \,)} \ = \ \frac{Beta(1,1,0.286) \, x \, Binomial(10,4,\, 0.286)}{Beta(1,1,0.380) \, x \, Binomial(10,4,\, 0.380)} \ = \ 0.747$$

Step 2: Acceptance probability
$$\alpha(\theta_{\text{new}}, \theta_{\text{t-1}}) = \min\{r(\theta_{\text{new}}, \theta_{\text{t-1}}), 1\} = \min\{0.747, 1\} = 0.747$$

Step 3: Draw $u \sim Uniform(0,1) = 0.094$

Step 4: If
$$u < \alpha(\theta_{\text{new}} \,,\, \theta_{\text{t-1}})$$
 \rightarrow If $0.094 < 0.747$ Then $\theta_t = \theta_{\text{new}} = 0.286$ Otherwise $\theta_t = \theta_{\text{t-1}} = 0.380$

Step 1:
$$r(\theta_{new}, \theta_{t-1}) = \frac{Posterior(\theta_{new})}{Posterior(\theta_{t-1})} = \frac{Beta(1,1,0.088) \times Binomial(10,4,0.088)}{Beta(1,1,0.286) \times Binomial(10,4,0.286)} = 0.039$$

Step 2: Acceptance probability
$$\alpha(\theta_{new}, \theta_{t-1}) = \min\{r(\theta_{new}, \theta_{t-1}), 1\} = \min\{0.039, 1\} = 0.039$$

Step 3: Draw
$$u \sim Uniform(0,1) = 0.247$$

Step 4: If
$$u < \alpha(\theta_{\text{new}} , \theta_{\text{t-1}}) \rightarrow \text{If } 0.247 < 0.039$$
 Then $\theta_t = \theta_{\text{new}} = 0.088$ Otherwise $\theta_t = \theta_{\text{t-1}} = 0.286$


```
Step 1: r(\theta_{new}, \theta_{t-1}) = \frac{Posterior(\theta_{new})}{Posterior(\theta_{t-1})} = \frac{Beta(1,1,0.306) \times Binomial(10,4,0.306)}{Beta(1,1,0.429) \times Binomial(10,4,0.429)} = 0.834

Step 2: Acceptance probability \alpha(\theta_{new}, \theta_{t-1}) = min\{r(\theta_{new}, \theta_{t-1}), 1\} = min\{0.834, 1\} = 0.834

Step 3: Draw u ~ Uniform(0,1) = 0.617

Step 4: If u < \alpha(\theta_{new}, \theta_{t-1}) \rightarrow If 0.617 < 0.834

Then \theta_t = \theta_{new} = 0.306
Otherwise \theta_t = \theta_{t-1} = 0.429
```


- Proposal distribution changes with most iterations
- Trace plot does not exhibit random walk pattern observed using MCMC
- Density is useful distribution
- Use sample to estimate mean or median of posterior distribution, 95% credible interval, probability that θ falls within arbitrary interval

Sample Posterior Distribution with MCMC-MH

Variational Bayes

Optimization

Approximate posterior

KL Divergence

KL divergence (asymmetric)

$$KL(q(z)||p(z|x)) = \int q(z) \log \frac{q(z)}{p(z|x)} dz = \int q(z) \log \frac{q(z)p(x)}{p(z,x)} dz = \log p(x) - \int q(z) \log \frac{p(z,x)}{q(z)} dz$$
$$p(z,x) = p(z|x)p(x) \qquad \log \frac{1}{x} = -\log x$$

Evidence Lower Bound (ELBO)

KL is non-negative

$$KL(q(z)||p(z|x)) = \log p(x) - \int q(z) \log \frac{p(z,x)}{q(z)} dz$$

$$\log p(x) \ge \int q(z) \log \frac{p(z,x)}{q(z)} dz$$

evidence lower bound (ELBO)