CS/ECE/ME532 Activity 4

Estimated Time: 15 min for P1, 10 min for P2, 15 min for P3

- a) What is the rank of X?
- b) Find a set of linearly independent columns in X. Is there more than one set? How many sets of linearly independent columns can you find?
- c) A matrix $\boldsymbol{A} = \begin{bmatrix} 1 & 0 & a \\ 1 & 1 & b \\ 0 & 1 & -1 \end{bmatrix}$. Find the relationship between b and a so that rank $\{\boldsymbol{A}\} = 2$. *Hint:* find a,b so that the third column is a weighted sum of the first two columns. Note that there are many choices for a,b that result in rank 2.
- 2) Solution Existence. A system of linear equations is given by $\mathbf{A}\mathbf{x} = \mathbf{b}$ where $\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{bmatrix}$.
 - a) Suppose $\boldsymbol{b} = \begin{bmatrix} 8 \\ 6 \\ -2 \end{bmatrix}$. Does a solution for \boldsymbol{x} exist? If so, find \boldsymbol{x} .
 - b) Suppose $\boldsymbol{b} = \begin{bmatrix} 4 \\ 6 \\ 1 \end{bmatrix}$. Does a solution for \boldsymbol{x} exist? If so, find \boldsymbol{x} .
 - c) Consider the general system of linear equations Ax = b. This equation says that b is a weighted sum of the columns of A. Assume A is full rank. Use the definition of linear independence to find the condition on rank $\{[A \ b]\}$ that guarantees a solution exists.

3) Non Unique Solutions.

a) Consider
$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
 where $\mathbf{A} = \begin{bmatrix} 1 & -2 \\ -1 & 2 \\ -2 & 4 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 2 \\ -2 \\ -4 \end{bmatrix}$ and $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$.

- i) Does this system of equations have a solution? Justify your answer.
- ii) Is the solution unique? Justify your answer.
- iii) Draw the solution(s) in the x_1 - x_2 plane using x_1 as the horizontal axis.
- b) If the system of linear equations Ax = b has more than one solution, then there is at least one non zero vector w for which x + w is also a solution. That is, A(x + w) = b. Use the definition of linear independence to find a condition on rank $\{A\}$ that determines whether there is more than one solution.