FICHEROS Y BASES DE DATOS (E44) 3º INGENIERÍA EN INFORMÁTICA

Tema 7.

Modelos de Bases de Datos

- 1.- Introducción.
- 2.- Modelo Jerárquico.
- 3.- Modelo de Red.
- 4.- Modelo Relacional.
- 5.- Otros Modelos.

(Capítulo 3 del Harrington)

INTRODUCCIÓN

Modelos de Datos y Esquemas

- Los Modelos de Datos (MD) son herramientas que permite describir la realidad.
- Los programadores los utilizan para construir Esquemas, que son representaciones de la realidad.
- La calidad de un esquema se relaciona con las propiedades del MD y la experiencia de los programadores.

Representación de los Modelos de Datos

- Los MD tienen asociados una serie de conceptos, que describen un conjunto de datos y operaciones para manipular los datos.
- Dichos conceptos tienen asociados una construcción lingüística y una construcción gráfica.

Clases de Modelos de Datos

- Existen dos tipos de MD:
 - Modelo Conceptual que representa la realidad en un alto nivel de abstracción.
 - Modelo Lógico, o Modelo de Base de Datos, que describen las relaciones lógicas entre los datos y la base de datos.
- El primero genera el Esquema Conceptual y el segundo el Esquema Lógico.

MODELOS DE BASES DE DATOS (MBD)

Características

- Los elementos de un modelo representan Entidades genéricas.
- Los valores concretos se denominan Instancias u Ocurrencias de una entidad.
- Cada SGBD se asocia a un MDB específico, aunque existen excepciones.

Contenidos

- Por lo que respecta a los datos:
 - Datos o Entidades.
 - Propiedades de los Datos.
 - Relaciones de los Datos.
 - Restricciones de los Datos.

Se representa mediante el Lenguaje de Definición de Esquemas (LDE) del SGBD.

- Por lo que se refiere a las operaciones.
 - Operaciones de los Datos
 - Operaciones sobre Relaciones de los Datos.
 - Relaciones entre Operaciones.

Se representa mediante el Lenguaje de Manipulación de Datos (LMD) del SGBD.

MODELOS DE BASES DE DATOS (MBD)

Sistemas Prerrelacionales

- Modelo Jerárquico.

Los datos se relacionan de modo jerárquico, y se representa mediante una estructura en árbol.

- Modelo de Red.

Se entiende como una generalización del modelo jerárquico, en donde los nodos hijo pueden tener varios nodos padre.

Sistemas Relacionales

- Modelo Relacional.

Se utilizan conceptos matemáticos, como las relaciones, para representar los datos y las operaciones sobre estos.

Sistemas Postrrelacionales

- Modelo Orientado a Objetos.

Los datos se representan mediante objetos, que contienen variables y métodos, y su manipulación se realiza mediante mensajes.

- Modelo Semántico.

Tienen como objetivo describir de un modo más preciso la información contenida en la base de datos.

Modelo Deductivo.

Son capaces de deducir hechos a partir de las relaciones base y una serie de axiomas deductivos o reglas de inferencia.

Estructura Jerárquica

- Una Base de Datos Jerárquica se compone de un Conjunto Ordenado de Árboles.
- También se puede definir como el Conjunto Ordenado de instancias de un Tipo de Árbol.
- Un tipo de árbol se compone de un Tipo de Registro Raíz junto con un conjunto ordenado de cero, uno o más Subárboles Dependientes.
- Un subárbol es el árbol de un nivel inferior.
- El orden global de la base de datos se obtiene mediante el recorrido en Preorden del bosque.

Definiciones

- Los tipos de registros representan las Entidades de la base de datos.
- Los arcos del árbol definen la relación existente entre las entidades.
- Los tipos de registros se descomponen en Campos.
- Aparece una dependencia entre los niveles del árbol.
- Dicha dependencia puede llevar asociada la Herencia de campos entre los niveles.
- Esa dependencia también tiene influencia en la integridad de los datos, ya que no puede existir un hijo sin su padre.

Diagramas de Ocurrencias (DO)

- Cada uno de los rectángulos representa la instancia de un tipo de registro.
- Los arcos definen la relación existente entre las instancias de dos niveles contiguos del árbol.
- No se suelen especificar los campos de los registros.
- Cuando la información almacenada en la base de datos es muy grande, se convierte en inmanejable.
- Si no aparece ninguna instancia de alguno de los niveles del árbol, la relación asociada no se puede representar.

Diagrama de Bachman (DA)

- Describe gráficamente el esquema lógico de una base de datos jerárquica.
- Los rectángulos representan los tipos de registro.
- Los arcos representan la relación existente entre los tipos de registro.
- Los arcos se etiquetan porque puede existir más de una relación entre dos tipos de registro (no en el modelo jerárquico).
- La flecha simple-doble indica que existe un único padre para cada hijo, pero pueden existir cero o más hijos de un padre.

Ejemplo Básico con DO

Ejemplo de Tipos de Cuentas con DO

Ejemplo Básico con DA

Ejemplo de Tipos de Cuentas con DA

Manipulación de los Datos

- Los lenguajes asociados contiene operadores que manejan datos almacenados en árboles ordenados.
- Deben contener los siguientes operadores:
 - Búsqueda de un árbol.
 - Movimiento en los árboles de un nivel.
 - Movimiento a un subárbol.
 - Movimiento dentro de la estructura jerárquica.
 - Inserción y borrado de registros.

Problemas de las BD Jerárquicas

- Únicamente pueden representar relaciones de 1-a-Muchos.
- Las relaciones Muchos-a-Muchos requieren la redundancia de información.
- Si un registro tipo aparece como "hijo" en más de dos relaciones, se debe de replicar.
- Esto puede producir problemas de Integridad y Consistencia de los Datos.
- Los lenguajes de manipulación asociados son fuertemente navegacionales.
- Hace falta un Lenguaje de Programación Anfitrión en el que se inserten los operadores.

Esquema Físico (IMS de IBM, 1962)

```
DBD NAME = BANCO

SEGM NAME = SUCURSAL, PARENT = 0, BYTES = ...

FIELD NAME = Nombre, BYTES = ..., START = ...

FIELD NAME = Director, ...

FIELD NAME = Calle, ...

SEGM NAME = CLIENTE, PARENT = SUCURSAL, ...

FIELD NAME = Nombre, BYTES = ..., START = ...

FIELD NAME = DNI, ...

...

SEGM NAME = CUENTA, PARENT = CLIENTE, ...

...

SEGM NAME = TRANSACCION, PARENT = CUENTA, ...

...
```

Lenguaje Operacional

"Datos de las cuentas del cliente de la sucursal centro con D.N.I. 01234567"

```
GET UNIQUE Sucursal WHERE Nombre = "Centro"
Cliente WHERE DNI = = "01234567"

GET NEXT WITHIN PARENT Cuenta

mientras no_error
escribir (datos_cuenta)

GET NEXT WITHIN PARENT Cuenta

fin mientras
```

Estructura de Red

- El Modelo de Red se puede entender como una extensión del modelo jerárquico.
- También se presenta mediante un árbol, pero en este caso, cada hijo puede tener varios padres.
- De este modo se reducen, o eliminan, las redundancias.
- Pero desaparece la herencia de los campos.
- La integridad de datos, asociada a los arcos padre-hijo, se mantiene.
- Una Base de Datos de Red se compone de dos conjuntos:
 - El Conjunto de los Registros.
 Un conjunto de instancias múltiples de varios tipos de registros.
 - El Conjunto de las Relaciones.
 Un conjunto de instancias múltiples de varios tipos de relaciones.

Representación de Red

- En el diagrama de ocurrencias, aparecen arcos que conectan los árboles.
- Los diagramas de Bachman se extienden, apareciendo flechas doble-doble que representan las relaciones muchos-a-muchos de las redes complejas.

Tipos de Redes

- Se dice que la Red es Simple si los padres de un hijo son instancias de registros tipo diferentes.
- Se dice que la Red es Compleja si los padres pueden ser instancias del mismo registros tipo.
- En las redes complejas puede desaparecer todo tipo de redundancia, pero perdiendo la herencia.
- En algunos casos, resulta interesante permitir cierto grado de redundancia, para evitar pérdida de información.
- Otra alternativa es convertir una red compleja en una red simple en donde no se pierda la información.

Conversión Compleja-Simple

- Permite reducir el problema de la pérdida de información asociado a las redes complejas.
- La idea es convertir una relación muchos-amuchos en dos relaciones uno-a-muchos, mediante la inserción de un nuevo tipo de registro.
- Este registro se denomina Registro Intersección si contiene algún tipo de información, que se denomina Datos de la Intersección.
- En otro caso, se denomina Registro de Enlace.

Ejemplo de Red Simple con DO

Ejemplo de Red Compleja con DO

Ejemplo de Red Compleja* con DO

Ejemplo de Red Simple con DA

Ejemplo de Red Compleja con DA

Ejemplo de Red Compleja* con DA

Ejemplo Conversión Compleja-Simple con DA

Ciclos y Lazos

- Existen dos tipos de relaciones específicas, los Ciclos y los Lazos.
- En un ciclo, diferentes tipos de registro se relacionan de modo circular.
- Los lazos representan la relación de un tipo de registro consigo mismo.
- Pueden aparecer ciclos en redes complejas y en redes simples.
- En redes complejas, se puede aplicar a los ciclos la conversión compleja-simple.
- Los lazos sólo puede manejarse en redes complejas.

Ejemplo de Ciclos y Lazos con DA

Manipulación de los Datos

- Los lenguajes asociados contiene operadores que manejan datos almacenados en conjuntos de registros y relaciones.
- Deben contener los siguientes operadores:
 - Búsqueda de un registro específico.
 - Movimiento del padre al primer hijo de una relación.
 - Movimiento de un hijo al siguiente en una relación.
 - Movimiento del hijo al padre de una relación.
 - Creación, borrado y modificación de un registro.
 - Inserción y eliminación de un hijo en una relación.
 - Cambio de relación de un hijo.

Problemas Asociados

- Los lenguajes de manipulación asociados son fuertemente navegacionales.
- Hace falta un lenguaje de programación Anfitrión en el que se inserten los operadores.
- Especialmente complicada en redes complejas.

Ejemplo de Esquema Físico (CODASYL, 1971)

SCHEMA NAME = BANCO

RECORD NAME IS Sucursal KEY código_suc IS nombre Nombre TYPE IS ... Director TYPE IS ...

RECORD NAME IS Cliente KEY código_cli IS DNI Nombre TYPE IS ... DNI TYPE IS ...

• • •

SET NAME IS Clie_Suc OWNER IS Sucursal MEMBER IS Cliente

Ejemplo de Lenguaje Operacional

"Datos de los clientes de la sucursal Centro"

sucursal.nombre := "Centro"

FIND ANY sucursal USING nombre

FIND FIRST cliente WITHIN Clie_Suc

mientras no_error

GET cliente; escribir (cliente)

FIND NEXT cliente WITHIN Clie_Suc

fin mientras

MODELO RELACIONAL

Estructura Relacional

- Definido por E.F. Codd en 1970, se fundamenta en conceptos matemáticos.
- La estructura de datos básicos es la Relación, denominada normalmente como Tabla.
- Una base de datos relacional se compone de una colección de relaciones.
- Cuando una tabla contiene datos se dice que es una instancia de la relación.
- Cada relación se asocia a una entidad, y se compone de una serie de atributos.
- Las filas de la tabla definen las instancias de la entidad, y son las Tuplas de la Relación.
- No se permiten tuplas duplicadas en una tabla, aunque los SGDB no suelen controlarlo.
- Las columnas de la tabla son las ocurrencias de los atributos de la entidad.
- Con cada atributo se asocia un Dominio que define el posible rango de valores.
- Dicho dominio define una Restricción de los atributos.
- La manipulación de los datos se realizan mediante Lenguajes de Especificación.
- De tal modo que el usuario indica que datos desea, sin especificar como obtenerlos.

MODELO RELACIONAL

Ejemplo de Relaciones

CLIENTE

Num_Clie	Nombre	Dirección	Teléfono	DNI
0093	Julio Gil	Oltra, 23-1	123456	00112233
0095	Ana García	Cuenca, 16-8	456789	11223344
0103	Pedro Ruíz	Barraca, 101-8	789123	22334455
0239	Luisa Medina	Reina, 3-3	456123	33445566

CTA_CLIE

Num_Clie	Num_Cta	
0093	N2489	
0093	S1209	
0093	L3099	
0095	N3939	
0103	N557	
0239	N4499	
0239	S1219	
0095	N2489	

TRANSACCION

Num_Cta	Num_Trans	Cantidad
S1209	156	+100000
L3099	023	+250850
N5577	309	-10000
N5577	310	-80000
1219	003	+189
	·	
	·	

MODELO RELACIONAL

Ejemplo de Esquema Relacional

CLIENTE (NUM_CLIE, NOMBRE, DIREC, TELEF, DNI)

CUENTA (NUM_CTA, SALDO, TIPO)

CTA_CLIE (NUM_CLIE, NUM_CTA)

TRANSACCION (NUM_CTA, NUM_TRANS, CANT)

. . .

Lenguaje de Especificación

"Obtener el saldo y el tipo de cuentas del cliente con número 0095"

SELECT CUENT.NUM_CT, CUENTA.SALDO, CUENTA.TIPO FROM CUENTA, CTA_CLIE

WHERE CTA_CLIE.NUM_CLIE = "0095"

AND CT_CLIE.NUM_CTA = CUENTA.NUM_CTA;

OTROS MODELOS DE BASES DE DATOS

Modelos Clásicos

- Los sistemas de Bases de Datos salieron como una alternativa a los sistemas de ficheros, con el objetivo de manejar grandes cantidades de información.
- Los modelos clásicos presentan una serie de características comunes.
- <u>Uniformidad</u>. Una gran cantidad de datos se estructuran de modo similar.
- <u>Orientación en Registros</u>. Los datos básicos se almacenan en registros de longitud fija.
- <u>Datos Pequeños</u>. Los registros son cortos, normalmente de pocos cientos de bytes.
- <u>Campos Atómicos</u>. Los campos de los registros son cortos, de longitud fija y no poseen ningún tipo de estructura interna.
- <u>Transacciones Cortas</u>. En las transacciones no existe interacción con el usuario y además su duración es de alguna fracción de segundo.
- <u>Esquema Casi Estático</u>. No suelen realizarse cambios en los esquemas, y si aparecen son de poca importancia.

OTROS MODELOS DE BASES DE DATOS

Nuevas Aplicaciones

- Cuando se definieron los modelos clásicos no se consideraron ciertas aplicaciones.
- Existen una serie de factores que han abierto el campo de aplicaciones:
 - Abaratamiento del hardware.
 - Aumento de la capacidad de proceso.
 - Mejora del entendimiento de la gestión de la base de datos posibilitan.
- Estas aplicaciones son:
 - Diseño Asistido por Computador (CAD).
 Almacena datos pertenecientes a un diseño de ingeniería.
 - <u>Ingen. de Software Asistido por Computador</u> (<u>CASE</u>). Contiene los datos requeridos para ayudar a los que desarrollan software.
 - <u>Bases de Datos Multimedia</u>. Contiene datos de tipo diverso, como dato de audio y video.
 - Sistema de Información de Oficina (OIS).
 Incluye herramientas para creación y recuperación de documentos, también mantiene calendarios con citas, etc.
 - <u>Sistemas Expertos de Bases de Datos</u>. Junto con los datos, almacena reglas explícitas que representan restricciones de integridad, disparadores y otros conocimientos sobre la empresa a modelar.

OTROS MODELOS DE BASES DE DATOS

Requisitos

- Todas estas aplicaciones requieren nuevos modelos de datos, lenguajes de consulta y modelos de transacciones.
- Los requisitos básicos son:
 - Objetos Complejos. Son objetos que se componen de otros objetos más simples, aunque se manejan como otro objeto.
 Se relacionan con las Bases de Datos Orientadas a Objetos y a las Bases de datos Relacionales Anidadas.
 - <u>Datos de Comportamiento</u>. Una misma operación puede actuar de modo diferente sobre distintos objetos, según como se define el Método asociado.
 - <u>Metaconocimiento</u>. Existen reglas concretas asociadas a la aplicación, que no pueden representarse en los modelos clásicos. Se asocian con las Bases de Datos Lógicas.
 - <u>Transacciones de Larga Duración</u>. Las aplicaciones CAD y CASE son interactivas, lo que produce problemas por el acceso concurrente de usuarios.
 - Se deben introducir las Transacciones Anidadas y las Ejecuciones no Serializables Correctas.