Сети и потоки. Разрез сети. Лемма о потоке через разрез.

Сеть

Задано множество вершин V, в котором выделены две вершины: s (**вход** или **исток**) и t (**выход** или **сток**).

Определена функция $c:V imes V o \mathbb{R}$, удовлетворяющая для любых вершин $x,y\in V$ соотношениям

- 1. $c(x, y) \geq 0$,
- 2. c(x, s) = 0,
- 3. c(t, y) = 0

Тогда G=(V,s,t,c) - **сеть**, функция с называется **пропускной способностью** сети G.

Множество $A(G) = \{(x,y) : c(x,y) > 0\}$ называется **множеством стрелок** сети G.

Поток

Определение

Пусть G — сеть, а функция $f:V imes V o \mathbb{R}$ удовлетворяет трём условиям:

- (F1) для любых $x,y\in V, f(x,y)\leq c(x,y);$
- (F2) для любых $x,y\in V$, f(x,y)=-f(y,x) ;
- (F3) для любой вершины $v \in V, v
 eq s, t$ выполняется условие: $\sum_{x \in V} f(v,x) = 0.$
- Тогда f поток в сети G.
- Число $|f| = \sum_{x \in V} f(s,x)$ называется величиной потока.
- Поток сети G с максимальной величиной называется **максимальным**.

Вообще-то не очевидно, что максимальный поток существует.

Пояснение

Пример

Пример сети с источником s и стоком t

Первое число означает величину потока, второе — пропускную способность ребра. Отрицательные величины потока не указаны (так как они мгновенно получаются из антисимметричности:

Разрез

Определение

- 1. Пусть G сеть, а множество её вершин V разбито на два непересекающихся множества $S \ni s$ и $T \ni t$. Тогда (S,T) разрез сети G.
- 2. Величина $c(S,T) = \sum_{x \in S, y \in T} c(x,y)$ называется **пропускной способностью**

разреза.

- 3. Любой разрез сети G с минимальной пропускной способностью называется **минимальным**.
- 4. Для любого потока f в сети G величина $f(S,T) = \sum_{x \in S, y \in T} f(x,y)$

называется потоком через разрез (S,T).

Нетрудно понять, что минимальный разрез сети существует. Возможно, таких разрезов несколько.

Лемма 1

Для любого потока f и разреза (S,T) сети G выполняется |f|=f(S,T) .

Доказательство

Ввиду условия (F3):

$$|f| = \sum_{x \in V} f(s,x) = \sum_{x \in V} \sum_{y \in S} f(y,x).$$

В правой части равенства для любых двух вершин $y,z\in S$ присутствуют слагаемые f(y,z) и f(z,y), которые в силу (F2) в сумме дают 0. Поэтому:

$$\sum_{y \in S} \sum_{x \in V} f(y,x) = \sum_{y \in S} \sum_{x \in T} f(y,x), = f(S,T)$$

что и требовалось доказать.

Остаточная сеть и дополняющий путь. Лемма о сумме потоков. Поток вдоль пути

Остаточная сеть. Дополняющий путь

Определение

1. Пусть f — поток в сети G. Рассмотрим сеть G_f с теми же V,s,t и пропускной способностью:

$$c_f(x,y) = egin{cases} 0, & ext{если } y = s ext{ или } x = t, \ c(x,y) - f(x,y), & ext{в остальных случаях.} \end{cases}$$

Назовем G_f остаточной сетью потока f.

2. **Дополняющий путь** потока f — это любой st-путь в остаточной сети G_f .

Лемма 2

Пусть f — поток в сети G, f' — поток в сети G_f . Тогда f+f' — поток в сети G, причём:

$$|f + f'| = |f| + |f'|.$$

Доказательство

Нетрудно проверить для потока f+f' условия (F1),(F2) и (F3). Утверждение про величину потока очевидно.

Поток вдоль пути

Определение Пусть P-st-путь в сети G, а c- минимальная пропускная способность стрелки пути P. Определим поток f_P вдоль пути P:

 $f_p(x,y)=c$ при $xy\in A(P)$, $f_p(x,y)=-c$, при $yx\in A(P)$, $f_p(x,y)=0$ при $xy,yx
ot\in A(P)$

Теорема Форда-Фалкерсона и следствие о минимальном разрезе.

Теорема 1

(L. R. Ford, D. R. Fulkerson, 1956.)

В сети G=(V,s,t,c) задан поток f. Тогда следующие три утверждения равносильны:

- 1. Поток f максимален.
- 2. Существует такой разрез (S,T), что |f|=c(S,T).
- 3. В остаточной сети G_f нет дополняющего пути.

Доказательство

 $2 \implies 1$. Рассмотрим другой поток f'. По <u>Лемме 1</u>:

$$|f'|=f'(S,T)=\sum_{x\in S,y\in T}f'(x,y)\leq \sum_{x\in S,y\in T}c(x,y)=c(S,T)=f,$$

откуда следует максимальность f.

$$1 \implies 3$$

Предположим противное, пусть в остаточной сети G_f есть дополняющий путь P, а f_P — поток вдоль пути P. По <u>Лемме 2</u> тогда $f+f_P$ — поток в G, причём:

$$f + f_P = f + f_P > f,$$

что противоречит максимальности f.

- Пусть S множество всех вершин, достижимых из s в остаточной сети G_f (см. рисунок).
- Так как в G_f нет дополняющего пути, то $t \notin S$. Тогда $(S,T=V\setminus S)$ разрез в сетях G и G_f .
- По построению $A_{G_f}(S,T)=\emptyset$, следовательно:

$$0 = c_f(S,T) = c(S,T) - f(S,T),$$

откуда:

$$c(S,T) = f(S,T) = f$$

(последнее равенство следует из Леммы 1).

Следствие 1

Величина максимального потока в сети G равна пропускной способности минимального разреза сети G.

Доказательство.

- Рассмотрим максимальный поток f и такой разрез (S,T), что f=c(S,T) (такой разрез существует по теореме 1).
- Тогда для любого другого разреза (S',T') мы имеем $c(S',T')\geq f(S',T')=f(S,T)=c(S,T)$ Значит, разрез (S,T) минимален.

Целые сети. Целый максимальный поток в целой сети.

Определение

- Сеть G называется **целой**, если ее пропускная способность c **целочисленная**.
- Поток f называется **целым**, если на любой паре вершин он принимает **целочисленное** значение.

Теорема 2

В целой сети G существует максимальный поток. Среди максимальных потоков целой сети найдется целый.

Доказательство.

- Будем последовательно строить поток. Изначально положим f = 0.
- Пусть в некоторый момент есть целый поток f в целочисленной сети G. Рассмотрим остаточную сеть G_f . Если в G_f нет дополняющего пути P, то по $\underline{\text{Теореме 1}}$ поток f максимальный.
- Если же в G_f есть дополняющий путь P, то рассмотрим поток f_P вдоль пути P в остаточной сети G_f и положим $f:=f+f_P$.
- По <u>Лемме 2</u> мы построили новый целый поток в G, причем его пропускная способность на $|f_P|$ больше, чем у предыдущего.
- Так как с каждым шагом величина потока возрастает на целую величину (хотя бы на 1), процесс обязательно закончится, в результате мы получим целый максимальный поток в сети G.

Реберная теорема Менгера как следствие теоремы Форда-Фалкерсона.

Определение

Пусть G – неориентированный граф без петель, кратные рёбра допускаются. Для $x,y\in V(G)$ обозначим через $\lambda_G(x,y)$ размер минимального множества

рёбер, отделяющего x от y. Назовем $\lambda_G(x,y)$ рёберной связностью вершин x и y

.

Теорема 3

(L. R.Ford, D.R.Fulkerson, 1956.) Пусть $s,t\in V(G)$. Тогда существует $\lambda_G(s,t)$ путей из s в t, не имеющих общих рёбер.

Доказательство.

- Построим сеть \vec{G} на множестве вершин V(G). Входом будет s, выходом будет t.
- Определим пропускные способности: c(x,y) равняется кратности ребра xy в графе G (то есть, 0, если такого ребра нет, и m, если в графе G есть m кратных рёбер xy). Дополнительно определим c(x,s)=c(t,x)=0 для всех $x\in V(G)$.
- Отметим, что при $x,y
 ot\in\{s,t\}$ мы имеем c(x,y)=c(y,x).
- Сеть $ec{G}$ целая. По $\overline{ ext{Teopeme 2}}$ в ней есть целый максимальный поток f. Пусть |f|=k.

Утверждение

Поток f распадается на $k\ st$ -путей без общих рёбер.

Доказательство

- Построим новый орграф G' на тех же вершинах. Если f(x,y)=l>0 для $x,y\in V(G)$, мы проведем в G' ровно l стрелок xy.
- Понятно, что $l \in \mathbb{Z}$ и в графе G есть не менее l ребер, соединяющих x и y.
- Из вершины s выходит ровно k стрелок, а в каждой отличной от s и t вершине v по свойству потока (F3) количества входящих и выходящих

стрелок равны (см. рис.а). Встречных стрелок по свойству (F2) потока нет.

• Выйдем из s и будем каждый раз проходить по стрелке орграфа G', по которой еще не ходили. В некоторый момент мы достигнем t (если в любую другую вершину мы вошли, сможем и выйти, см. рис.b).

-Удалим из G' стрелки пройденного пути, теперь из s выходит k-1 стрелка. Повторим эти действия еще k-1 раз. В результате будет выделено k непересекающихся по рёбрам st-путей в графе G (не обязательно простых).

- Вернемся к доказательству Теоремы 3. По $\underline{\text{Теореме 1}}$ для максимального потока f существует такой разрез (S,T) нашей сети, что c(S,T)=f=k.
- Тогда из S в T выходит ровно k рёбер графа G (так как для $x\in S$ и $y\in T$ пропускная способность c(x,y) равна количеству рёбер между x и y). Эти k рёбер отделяют S от T, а стало быть, и s от t в графе G. Значит, $k\geq \lambda_G(s,t)$.

Определение

Граф называется **рёберно** k**-связным**, если он остается связным после удаления любого множества, состоящего из менее чем k рёбер.

Следствие

В рёберно k-связном графе G для любых двух вершин s,t существует k путей из s в t, не имеющих общих рёбер.

Доказательство.

Достаточно применить Теорему 3 к паре вершин s и t.

Максимальный поток в произвольной сети. Алгоритм кратчайшего пути

Теорема 4

(Е.А.Диниц, 1970). В произвольной сети G существует максимальный поток.

Доказательство

- План доказательства такой же, как и в <u>Теореме 2</u>: мы будем постепенно увеличивать максимальный поток, добавляя к нему поток вдоль дополняющего пути. Однако, на этот раз нам нельзя произвольно выбирать дополняющий путь.
- Пусть в некоторый момент построен поток f в сети G. Рассмотрим остаточную сеть G_f . Если в G_f нет дополняющего пути P, то по $\underline{\text{Теореме 1}}$ поток f максимальный. Пусть в G_f есть дополняющие пути.
- Мы выберем самый короткий дополняющий путь P в G_f , рассмотрим поток f_P вдоль пути P и положим $f':=f+f_P$. Почему же этот процесс когда-нибудь закончится?

Утверждение

Пусть Q – простой st-путь в остаточной сети $G_{f'}$, которого нет в остаточной сети G_f . Тогда Q длиннее, чем P.

Доказательство.

- Пусть $s=x_0x_1\dots x_k$ = t это путь P. Понятно, что путь P простой, а значит, все его вершины различны.
- Сначала поймем, какие же стрелки могут входить в $A(G_{f'})\setminus A(G_f)$. Такая стрелка yz имеет $c_f(y,z)=0$, но $0< c_{f'}(y,z)=c_f(y,z)-f_p(y,z)$. Значит, $zy\in A(P)$, то есть, $z=x_i$ и $y=x_{i+1}$ для некоторого i. По условию, путь Q содержит хотя бы одну такую стрелку.

- **Трансверсаль** пути P это путь между двумя его вершинами, внутренние вершины которого не принадлежат P.
- Назовём x_ix_j -трансверсаль L пути P правильной, если i < j и неправильной в противном случае.
- Стрелку $x_i x_{i+1}$, мы будем считать правильной трансверсалью пути P, а стрелку $x_{i+1} x_i$ неправильной.

- Путь Q разбивается на трансверсали пути P пусть это $L_1,...,L_m$. Как показано выше, среди них есть хотя бы одна обратная стрелка пути P а это неправильная трансверсаль.
- Пусть L правильная x_ix_j -трансверсаль пути P. Тогда все стрелки трансверсали L лежат в $A(G_f)$. Если L короче, чем x_iPx_j , то мы могли бы заменить этот участок пути P на трансверсаль L и найти в G_f более короткий путь, чем P, противоречие с выбором пути P.
- Таким образом, каждая правильная трансверсаль пути P не короче участка пути P между ее концами. Заменим каждую правильную трансверсаль на соответствующий участок между ее концами. в результате получится st -маршрут Q', который не длиннее st-пути Q.
- Поскольку и P, и Q' ведут из s в t, маршрут Q' содержит все рёбра пути P. Так как Q (а стало быть, и Q') содержит хотя бы одну неправильную трансверсаль пути P, маршрут Q' (а следовательно, и путь Q) строго длиннее чем P.

• Вернемся к доказательству Теоремы 4

- После каждого шага алгоритма построения потока взамен одного из кратчайших путей из s в t в остаточной сети могут появиться лишь строго более длинные пути.
- Значит, в результате каждого шага либо увеличивается длина кратчайшего st-пути, либо эта длина сохраняется, но уменьшается количество кратчайших st-путей.
- Отметим, что кратчайший путь всегда простой, а длина простого пути из s в t ограничена количеством вершин сети. Значит, процесс построения закончится, и в результате получится остаточная сеть без дополняющих путей. По $\underline{\text{Теореме 1}}$ это означает, что будет построен максимальный поток