Department of Computer Science

EE-213 - Computer Organization and Assembly Language

FALL 2020

Instructor Name: Samin Iftikhar TA Name (if any):

Khizar Hussain

l176304@lhr.nu.edu.pk

Office Location/Number: Exam Hall
Office Hours: Mon/Wed: 11.30-12.30

Course Information

Program: BS Credit Hours: 3 Type:

Core/Elective

Pre-requisites (if any): DLD

Class Meeting Time: Mon, Wed 1230-1350(3E)

Class Venue: Online (for now)

Course Description/Objectives/Goals:

Course Learning Outcomes (CLOs):

- Understanding of basic concepts of computer organization with emphasis on the lower level abstraction of a computer system including machine-level representation of data, instruction set architecture, addressing modes, memory models, and assembly language programming.
- 2. Interfacing and Communication with hardware. Includes understanding of I/O fundamentals, Interrupts and their structures, Buses, external storage and physical organization
- 3. Illustrate the computer organization concepts by Assembly Language programming
- 4. Introduction to Intel IA-32 Architecture.
- 5. Familiarization with Assembly Language directives, macros, operators, and program structures.
- 6. Understanding of interrelationship between hardware and software
- 7. Comparison between different processors families
- 8. Introduction to computer architecture, and pipelining

Course Textbook

- Assembly Language Programming Lecture Notes by Bilal Hashmi (BH).
- Assembly Language for x86 Processors Seventh Edition Kip R. Irvine (KI)
- Computer Organization and Architecture Designing for Performance Tenth Edition by William Stallings (WS)

Tentative Lecture Plan

Tentative Lecture Flam		
Topics to be covered	#Lectures	
Introduction to Computer Organization and Assembly language	0.5	
Computer functions and Interconnection	0.5	
Intro to intel architecture (registers, bus and memory) Getting started in assembly language	2	
Data Transfer and Addressing Modes	2	
Instruction set with examples and integer arithmetic	5	
Procedures and stack	4	
Display memory and string processing	5	
Interrupts	4	
Computer Architecture and Pipelining	5	

(Tentative) Grading Criteria

Quizzes
 Midterms
 Final
 Assignments

Grading Scheme: Absolute

Absolute Grading Scheme:

Total Marks (%)	Grade
≥ 90	A+
86-89	A
82-85	A-
78-81	B+
74-77	В
70-73	B-
66-69	C+
62-65	C
58-61	C-
54-57	D+
50-53	D
≤49	F

Course Policies

- 1. Quizzes may be un-announced.
- 2. No makeup for missed quiz or assignment.
- 3. 80% attendance
- 4. 50% passing marks

Academic Integrity

- Plagiarism and Cheating against academic integrity. Both parties involved in such cases will face strict penalty (negative marking, F grade, DC)
- CODE/ ASSIGNMENT SHARING is strictly prohibited.
- Keep in mind that by sharing your code/assignment you are not helping anyone rather hindering the learning process or the other person.
- No excuse will be entertained if your work is stolen or lost. To avoid such incidents
 - Keep back up of your code on safe online storage, such as Google Drive, Drop box or One drive.
 - Do not leave your work on university lab computer, transfer your work to online storage and delete from the university lab computer (empty recycle bin as well)

Course Policies

- Announcements related to different aspects of this course (e.g. lectures, quizzes, exams, etc.) may be posted on SLATE (http://slate.nu.edu.pk/portal) and google classroom. Students are expected to view the announcements section of SLATE and google classroom regularly.
- 2. All students are expected to attend all lectures from beginning to end. Partial or full absence from a lecture without a valid reason may hamper chances for securing good grades. University's attendance requirements must be met in order to appear in the final exam.
- 3. Quizzes may be announced or unannounced. A quiz will usually be about 5 15 minutes long and it may be given anytime during the lecture. Students missing a quiz will NOT be given a make-up quiz.

- 4. Students can contest their grades on quizzes and assignments ONLY within a week of the release of grades. Exams will be available for review according to university policies.
- 5. Students are expected to demonstrate the highest degree of moral and ethical conduct. Any student caught cheating, copying, plagiarizing, or using any other unfair means will be strictly dealt-with in accordance with university policies.