Nurse Scheduling Problem for Maximum the Staff Satisfaction

Presenter: Ruo-Yi Lin

National Cheng Kung University

- Introduction
- Proposal
- Related Work

- Introduction
- Proposal
- Related Work

Nurse Scheduling Problem

- The nurse scheduling problem involves organizing a nurse's work schedule in a healthcare facility
- Multi-target Optimization[1]
 - Nurses' skill level, contracts and requirements, rest period, preference ...

Nurse Scheduling Problem

- The nurse scheduling problem involves organizing a nurse's work schedule in a healthcare facility
- Multi-target Optimization[1]
 - Nurses' skill level, contracts and requirements, rest period, preference ...
- 24-hour labor cost shift system[2]
 - Employee shortages
 - Irregular working shifts
 - Job dissatisfaction and might influence patient[3]

The real-world implications of NSP being NP-hard

- Healthcare systems need to create schedules that meet all requirements, but optimally for large sets is **infeasible with brute-force approaches**
- It tend to have **factorial time complexity** in polynomial time

3 people and 3 jobs, 6 possible solutions

	Person A	Person B	Person C
Solution 1	Job 1	Job 2	Job 3
Solution 2	Job 1	Job 3	Job 2
Solution 3	Job 2	Job 1	Job 3
Solution 4	Job 2	Job 3	Job 1
Solution 5	Job 3	Job 1	Job 2
Solution 6	Job 3	Job 2	Job 1

The real-world implications of NSP being NP-hard

- Healthcare systems need to create schedules that meet all requirements, but optimally for large sets is **infeasible with brute-force approaches**
- It tend to have **factorial time complexity** in polynomial time

3 people and 3 jobs, 6 possible solutions

4 people and 4 jobs, 24 possible solutions more people... n! possibilities

	Person A	Person B	Person C
Solution 1	Job 1	Job 2	Job 3
Solution 2	Job 1	Job 3	Job 2
Solution 3	Job 2	Job 1	Job 3
Solution 4	Job 2	Job 3	Job 1
Solution 5	Job 3	Job 1	Job 2
Solution 6	Job 3	Job 2	Job 1

The real-world implications of NSP being NP-hard

- Healthcare systems need to create schedules that meet all requirements, but optimally for large sets is **infeasible with brute-force approaches**
- It tend to have **factorial time complexity** in polynomial time
- Most solutions are used to find approximate solutions[5]
 - Mixed integer programming(MIP) or heuristics learning

3 people and 3 jobs, 6 possible solutions

4 people and 4 jobs, 24 possible solutions more people... n! possibilities

	Person A	Person B	Person C
Solution 1	Job 1	Job 2	Job 3
Solution 2	Job 1	Job 3	Job 2
Solution 3	Job 2	Job 1	Job 3
Solution 4	Job 2	Job 3	Job 1
Solution 5	Job 3	Job 1	Job 2
Solution 6	Job 3	Job 2	Job 1

- Introduction
- Proposal
- Related Work

Related Work

Constraints in the problem[4]

- Hard Constraints
 - All required shifts must be assigned
 - e.g. government policy

Soft Constraints

- Ideally satisfied but can be violated with penalties
- Personal preferences and fairness
- o e.g.
 - Rest periods with maximum and minimum numbers of shifts
 - Maximum number of consecutive working weekends
 - Nurses' requests for day on/off or shift on/off

Goal

Develop an optimized scheduling plan taking into account various soft constraints

Example

• Nurse A: Prefers day shifts and weekends off.

• Nurse B: Prefers night shifts and is okay with weekend work.

• Nurse C: Prefers evening shifts and works part-time

• Nurse D: No preference, flexible across all shifts.

Day	Morning Shift (7 AM – 3 PM)	Evening Shift (3 PM – 11 PM)	Night Shift (11 PM – 7 AM)
Mon	Nurse A, Nurse D	Nurse C, Nurse D	Nurse B, Nurse D
Tue	Nurse A, Nurse D	Nurse C, Nurse D	Nurse B, Nurse D
Wed	Nurse A, Nurse D	Nurse C, Nurse D	Nurse B, Nurse D
Thu	Nurse A, Nurse D	Nurse C, Nurse D	Nurse B, Nurse D
Fri	Nurse A, Nurse D	Nurse C, Nurse D	Nurse B, Nurse D
Sat	Nurse D (filling gap)	Nurse C, Nurse D	Nurse B, Nurse D
Sun	Day Off for Nurse A	Nurse D	Nurse B, Nurse D

Considering teamwork to increase scheduling satisfaction

- Reduce communication costs
- Higher division of labor coordination
- Reduce the incidence of errors

Considering **teamwork** to increase scheduling satisfaction

- Reduce communication costs
- Higher division of labor coordination
- Reduce the incidence of errors

Factors affecting collaboration

- Past collaboration experience
- Performance

	Alice	Bob	Charlie	Diana	Eva
Alice	_	0.8	0.9	0.7	0.5
Bob	0.8	_	0.6	0.9	0.7
Charlie	0.9	0.6	_	0.8	0.6
Diana	0.7	0.9	0.8	_	0.4
Eva	0.5	0.7	0.6	0.4	_

	Alice	Bob	Charlie	Diana	Eva
Alice	_	0.8	0.9	0.7	0.5
Bob	0.8	_	0.6	0.9	0.7
Charlie	0.9	0.6	_	0.8	0.6
Diana	0.7	0.9	0.8	_	0.4
Eva	0.5	0.7	0.6	0.4	_

	Alice	Bob	Charlie	Diana	Eva
Alice	_	0.8	0.9	0.7	0.5
Bob	0.8	_	0.6	0.9	0.7
Charlie	0.9	0.6	_	0.8	0.6
Diana	0.7	0.9	0.8	_	0.4
Eva	0.5	0.7	0.6	0.4	

Challenge

- 1. Dynamically adjust nurse scheduling to deal with uncertainty
- 2. Intelligently assign nurses based on their skills and professional backgrounds
- 3. Integrating nurses' quality of work and feedback on patient health outcomes

- Introduction
- Proposal
- Related Work

Related Work

Optimal Nurse Satisfaction

- [6] Nurse Scheduling Problem via PyQUBO to maximum the number of rest day off
- [7] A mathematical formula was proposed to quantify nurses' satisfaction
 - Weighted Constraint Satisfaction Problem(WCSP)

Dynamic nurse scheduling

• [8] Dealing with various sudden absences of a nurse

^[6] Lin, Matthew M. et al. "Nurse Scheduling Problem via PyQUBO." (2023).

^[7] Said, A.B., & Mouhoub, M. (2022). A Constraint Satisfaction Problem (CSP) Approach for the Nurse Scheduling Problem. _2022 IEEE Symposium Series on Computational Intelligence (SSCI)_, 790-795.

^[8] Nagayoshi, Masato and Hisashi Tamaki. "A dynamic nurse scheduling using reinforcement learning: Dealing with various sudden absences of a nurse." _Proceedings of International Conference on Artificial Life and Robotics (2023): n. pag.

Reference

- [1] Hamid, M., Tavakkoli-Moghaddam, R., Golpaygani, F., & Vahedi-Nouri, B. (2020). A multi-objective model for a nurse scheduling problem by emphasizing human factors. _Proceedings of the institution of mechanical engineers, Part H: journal of engineering in medicine_, _234_(2), 179-199.
- [2] Thomas, J. (2024). Optimizing Nurse Scheduling: A Supply Chain Approach for Healthcare Institutions. _arXiv preprint arXiv:2407.11195 .
- [3] Abdalkareem, Z. A., Amir, A., Al-Betar, M. A., Ekhan, P., & Hammouri, A. I. (2021). Healthcare scheduling in optimization context: a review. Health and Technology, 11, 445-469.
- [4] Ceschia, Sara, et al. "Second International Nurse Rostering Competition (INRC-II)---Problem Description and Rules---." _arXiv preprint arXiv:1501.04177_ (2015).
- [5] Ceschia, Sara, et al. "Solving a real-world nurse rostering problem by simulated annealing." _Operations Research for Health Care_ 36 (2023): 100379.