Método de separación de variables

1.1 Separación de variables

Separamos los problemas en regiones donde vale $\nabla^2 \phi = 0$ entonces las fronteras tendrán la $\rho(\mathbf{x}')$ en general en forma de σ, λ .

Para coordenadas cartesianas intentaremos resolver $\nabla^2\phi=0,$ es decir

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} = 0$$

pidiendo

$$\phi(x, y, z) = X(x)Y(y)Z(z)$$

de manera que

$$\frac{1}{X}\frac{d^2X}{dx^2} + \frac{1}{Y}\frac{d^2Y}{du^2} + \frac{1}{Z}\frac{d^2Z}{dz^2} = 0 \qquad -\alpha^2 - \beta^2 + \gamma^2 = 0 \qquad \Rightarrow \gamma^2 = \alpha^2 + \beta^2$$

cada término es una constante. La solución general es

$$\phi(x,y,z) = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} A_{m,n} \mathrm{e}^{\pm i \alpha_m x} \mathrm{e}^{\pm i \beta_n y} \mathrm{e}^{\pm i \sqrt{\alpha_m^2 + \beta_n^2} z}$$

donde habrá que adaptar según las condiciones de contorno. Se da que $A_{m,n}$ es una constante general y hay condiciones periódicas en x,y

$$A e^{\pm i \alpha x} = A_{\alpha} \cos(\alpha x) + B_{\alpha} \sin(\alpha x)$$

corresponde a condiciones de potencial periódicas, cuando necesito dos ceros por ejemplo (ver ilustración lateral –que falta–)

$$A\mathrm{e}^{\pm\gamma z} = A_{\gamma}\cosh(\gamma z) + B_{\gamma}\sinh(\gamma z)$$

corresponde a atravesar densidades de carga.

Para coordenadas esféricas es

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r^2\frac{\partial\phi}{\partial r}\right) + \frac{1}{r^2\sin(\theta)}\frac{\partial}{\partial\theta}\left(\sin(\theta)\frac{\partial\phi}{\partial\theta}\right) + \frac{1}{r^2\sin(\theta)}\frac{\partial^2\phi}{\partial\varphi^2} = 0$$

proponiéndose la separación

$$\phi(r,\theta,\varphi) = R(r)\Theta(\theta)Q(\varphi)$$

siendo

$$Y(\theta, \varphi) = \Theta(\theta)Q(\varphi)$$

un armónico esférico. Tenemos un oscilador armónico en φ ,

$$Q = e^{\pm i \alpha \varphi}$$

si usamos $0 \le \varphi \le 2\pi$ de modo que $\alpha \in \mathbb{Z}$ y entonces $\alpha = m$, con simetría azimutal es m = 0 (rotación en φ),

$$Q = G\varphi + H$$
 G, H $ctes.$

Para las otras funciones será

$$R(r) = A_{\ell} r^{\ell} + B_{\ell} R^{-\ell - 1}$$

$$\Theta(\theta) = C_\ell P_\ell^m(\cos(\theta)) + D_\ell Q_\ell^m(\cos(\theta))$$

siendo P_ℓ^m polinomio de Legendre, que verifica la fórmula de Rodrigues

$$P_{\ell}(x) = \frac{1}{2^{\ell}\ell!} \frac{d^{\ell}}{dx^{\ell}} [x^2 - 1]^{\ell}$$

con $P_\ell(\cos(\theta))$ polinomio de Legendre de primera especie, y $Q_\ell(\cos(\theta))$ de segunda especie. Los $\{P_\ell\}$ son un conjunto completo y ortogonal en $-1 \le x \le 1$ o bien en $0 \le \theta \le \pi$.

Los $\{Q_\ell^m(\cos(\theta))\}$ tienen problemas en $\theta=0, \theta=\pi$ (eje z) de manera que si está el eje z no podemos usar Q_ℓ^m ; en estos problemas sólo podemos usar $P_\ell^m(\cos(\theta))$.

$$\phi(r,\theta,\phi) = \sum_{\ell=0}^{\infty} \sum_{m=-\infty}^{\infty} \left[A_{\ell} r^{\ell} + B_{\ell} r^{-\ell-1} \right] \left[C_{\ell} P_{\ell}^{m} + D_{\ell} Q_{\ell}^{m} \right] \left[E_{m} \cos(m\phi) + F_{m} \sin(m\phi) \right]$$

y en el caso particular m=0

$$\phi(r,\theta,\phi) = \sum_{\ell=0}^{\infty} \sum_{m=-\infty}^{\infty} \left[A_\ell r^\ell + B_\ell r^{-\ell-1} \right] \left[C_\ell P_\ell^m + D_\ell Q_\ell^m \right] \left[G_0 \phi + H_0 \right]$$

Las constantes $A_\ell, B_\ell, C_\ell, D_\ell, E_m, F_m$ se ajustan con el $\phi(r \to \infty)$, $\phi(r \to 0)$, $\phi(z=1)$ y $\phi(z=-1)$.

Lo que permite esquivar el problema del punto singular en $x \equiv \cos(\theta) = 1$ es

$$\beta^2 = \ell(\ell+1) \qquad -\ell < m < \ell \qquad \alpha^2 = m^2$$

Recordemos las sumas de series

$$\frac{1}{1-z} = \sum_{\ell=0}^{\infty} z^{\ell} \qquad \frac{1}{1+z} = \sum_{\ell=0}^{\infty} (-1)^{\ell} z^{\ell} \qquad |z| < 1,$$

el polinomio asociado de Legendre

$$P_{\ell}^{m}(x) =)\frac{(-1)^{m}}{2^{\ell}\ell!}[1-x^{2}]^{m/2}\frac{d^{\ell+m}}{dx^{\ell+m}}[x^{2}-1]^{\ell}$$

que cumple

$$P_{\ell}(1) = 1$$
 $P_{\ell}(-1) = (-1)^{\ell}$ $\forall \ell$

con

$$\int_{1}^{1} [P_{\ell}(x)]^{2} dx = \frac{2}{2\ell + 1}$$

siendo la ortogonalidad

$$\int_0^{\pi} P_{\ell'}^m(\cos(\theta)) P_{\ell}^m(\cos(\theta)) \sin(\theta) d\theta = \delta_{\ell\ell'}$$

$$\int_{1}^{+1} P_{\ell'}^{m}(x) P_{\ell}^{m}(x) dx = \frac{2}{2\ell+1} \frac{(\ell+m)!}{(\ell-m)!} \, \delta_{\ell\ell'}$$

En esféricas las constantes de separación están asociadas

$$R(r) \operatorname{con} \ell \qquad \Theta(\theta) \operatorname{con} \ell, m \qquad Q(\phi) \operatorname{con} m$$

1.2 Detalles sobre solución de problemas de potencial

Si el potencial es par en una coordenada, entonces uso funciones pares (cosenos). La continuidad del potencial

$$\phi_I(x=0) = \phi_{II}(x=0) =$$

y salto en el campo

$$\left.\frac{\partial \phi_I}{\partial x} - \frac{\partial \phi_{II}}{\partial x}\right|_{x=0} = -4\pi\sigma|_{x=0}$$

Figura 2.1

Si tengo condiciones periódicas en la coordenada irán senos y cosenos trigonométricos, entonces se discretizan m,n y tengo $\sum_n \sum_m$ una serie de Fourier. Si tengo condiciones no periódicas en la coordenada irán seno, coseno hi-

Si tengo condiciones no periódicas en la coordenada irán seno, coseno hiperbólicos entonces tengo $\int dk$ integral de Fourier.

En general tomo

$$\alpha^2 + \beta^2 = \gamma^2$$

pudiéndose discretizar los k'sluego. Se considera $\alpha^2 \equiv k_{\hat{e}_1}^2$ y así siguiendo con las otras dos.

Sobre la ecuación de salto en el campo aplicamos ortogonalidad y despejamos coeficientes en función de σ .

Detalle: el salto en el campo se hace siguiendo la normal, como se ilustra abajo

Figura 2.2

$$E_{I}^{\hat{n}}-E_{II}^{\hat{n}}=4\pi\sigma \qquad \qquad -\frac{\partial\phi_{I}}{\partial x}+\frac{\partial\phi_{II}}{\partial x}=4\pi\sigma$$

Para $k_{\hat{e}_1}^2$ en el caso discreto

$$\sum_{m=0}^{\infty}\cos(k_me_1)+\sin(k_me_1)$$

pero en el continuo

$$\int_{-\infty}^{\infty} e^{ike_1} dk$$

usamos $exp(ike_1)$ para que la integral converja en lugar de $(\cos(ke_1) + \sin(ke_1))$.

1.3 Expansiones ortonormales

$$\int_{-b}^{b} U_{n}^{*} U_{m} d\xi = \delta_{mn} \qquad U_{i} \ mathrmortonormales$$

entonces en (a, b) se da que la serie

$$f(\xi) = \sum_{n=0}^{\infty} a_n U_n(\xi)$$

converge, donde

$$a_n = \int_a^b U_n^* f(\xi) d\xi.$$

La clausura es

$$\sum_{n=1}^{\infty} U_n^*(\mathbf{x}') U_n(\mathbf{x}) = \delta(\mathbf{x} - \mathbf{x}')$$

Es útil el desarrollo

$$\frac{1}{|\mathbf{r}-\mathbf{r'}|} = \frac{1}{\sqrt{r^2 + r'^2 - 2rr'\cos(\gamma)}} = \sum_{\ell=0}^{\infty} \frac{r_<^\ell}{r_>^\ell} P_\ell(\cos(\gamma))$$

en polinomios de Legendre para el ángulo entre vectores en coordenadas esféricas. En coordenadas esféricas, donde $\gamma=\gamma(\theta,\phi)$ es el ángulo entre vectores, que surge del teorema del coseno.

Figura 3.3

1.3.1 Prolongación analítica

Consiste en *prolongar* una solución restringida por ejemplo en el eje polar a todo el resto del espacio pegándole los polinomios de Legendre. Lo ponemos en serie (pasamos un cálculo de F3 a una serie)

$$\phi(r,\phi/2) = \frac{Q}{\sqrt{r^2+a^2}} = \sum_{\ell=0}^{\infty} Q \frac{a^\ell}{r^{\ell+1}} P_\ell(0) \qquad r > a$$

$$\phi(r,\phi/2) = \frac{Q}{\sqrt{r^2+a^2}} = \sum_{\ell=0}^{\infty} Q \frac{r^\ell}{a^{\ell+1}} P_\ell(0) \qquad r < a$$

y $P_\ell(0)$ tiene términos pares solamente (los impares son nulos).

Entonces

$$\phi(r, \phi/2) = \frac{Q}{a} \sum_{n=0}^{\infty} \frac{r^{2n}}{a^{2n}} P_{2n}(0)$$

con

$$P_{2n}(0) = (-1)^n \frac{(2n-1)!}{2^n n!}$$

por lo tanto para todo el espacio será

$$\phi(r,\phi/2) = \frac{Q}{a} \sum_{n=0}^{\infty} \left(\frac{r}{a}\right)^{2n} P_{2n}(0) P_{2n}(\sin(\theta)) \qquad r < a$$

El hecho de que sólo vivan ℓ pares viene porque ϕ es par pues hay simetría de reflexión en el plano xy, lo que sucede de $(0, \pi/2)$ es igual a lo que sucede de $(\pi/2, \pi)$.

Los problemas con simetría de revolución en torno a \hat{z} pueden ser resueltos con el método de prolongación analítica. La idea central es que si dos soluciones

Figura 3.4

del potencial coinciden en un conjunto de puntos (como ser el eje azimutal) entonces deben ser la misma solución.

1.3.2 Comentario multipolos

Estos dos problemas son equivalentes, pero multipolarmente tienen desarrollos diferentes. El problema es que el metal a tierra tendrá carga hasta el infinito y entonces no podemos tener un radio de convergencia.

1.4 Armónicos esféricos

Figura 3.5

Figura 3.6

Figura 4.7