Chapter 3 Elementary Matrix Operation and System of Linear Equations

Definition. Elementary Row(Column) Operations Let A be $m \times n$ matrix Any of 3 operations on A is called an elementary row (column) operation

- 1. Interchanging any two rows (column) of A
- 2. Multiplying any row (column) of A by a nonzero scalar
- 3. Adding any scalar multiple of a row (column) of A to another row (column)

Definition. Elementary Matrix An $n \times n$ elementary matrix is a matrix obtained by performing an elementary operation on I_n . The elementary matrix is said to be of type 1,2,3 according to whether the elementary operation performed on I_n is a type 1,2,3 operation, respectively.

Theorem. 3.1 Existence of Elementary Matrix that Act as Elementary Operations Let $A \in M_{n \times n}(F)$ and suppose B is obtained from A by performing an elementary row (column) operation. Then there exists an $m \times m$ ($n \times n$) elementary matrix E such that B = EA (B = AE), where E is obtained from I_m (I_n) by performing the same elementary row (column) operation as that which was performed on A to obtained B. Conversely, if E is an elementary matrix, then EA is the matrix obtained from A by performing the same elementary row (column) operation as that which produces E from I_m (I_n)

Theorem. 3.2 Elementary Matrix are Invertible Elementary matrices are invertible, and the inverse of an elementary matrix is an elementary matrix of the same type

3.1 The Rank of a Matrix and Matrix Inverses

Definition. Rank If $A \in M_{m \times n}(F)$, the rank of A, denoted as rank(A) to be the rank of the linear transformation $L_A : F^n \to F^m$

Definition. Properties for Rank

- 1. $n \times n$ matrix is invertible if and only if its rank is n
- 2. Every matrix A is the matrix representation of linear transformation L_A with respect to appropriate standard ordered bases. So the rank of a L_A is the same as the rank of one of its matrix representations, namely A.

Theorem. 3.3 Equivalence of Rank for Linear Transformation and Matrix Let $T: V \to W$ be a linear transformation between finite-dimensional vector spaces, and let β and γ be ordered bases for V and W, respectively. Then

$$rank(T) = rank([T]^{\gamma}_{\beta})$$

Theorem. 3.4 Rank Preserving Operations Let A be $m \times n$ matrix. If P and Q are invertible $m \times m$ and $n \times n$ matrices, respectively, then

- 1. rank(AQ) = rank(A)
- 2. rank(PA) = rank(A)
- 3. rank(PAQ) = rank(A)

Corollary. Elementary Operation is Rank Preserving Elementary row and column operations on a matrix are rank-preserving

Theorem. 3.5 Rank is Number of Linearly Independent Columns

The rank of any matrix equals the maximum number of its linearly independent columns; that is, the rank of a matrix is the dimension of the subspace generated by the columns

Theorem. 3.6 Existence Matrix Transformation to a Specific Form

Let A be an $m \times n$ matrix of rank r. Then $r \leq m$, $r \leq n$, and, by means of a finite number of elementary row and column operations, A can be transformed into the matrix

$$D = \begin{pmatrix} I_r & O_1 \\ O_2 & O_3 \end{pmatrix}$$

where O_1, O_2, O_3 are zero matrices. Thus $D_{ii} = 1$ for $i \le r$ and $D_{ij} = 0$ otherwise (proof with induction on number of row of A)

Corollary. 1 Elementary Decomposition Let A be $m \times n$ matrix of rank r. Then there exist invertible matrices B and C of sizes $m \times m$ and $n \times n$, respectively, such that D = BAC, where

$$D = \begin{pmatrix} I_r & O_1 \\ O_2 & O_3 \end{pmatrix}$$

is the $m \times n$ matrix in which O_1, O_2, O_3 are zero matrices.

Corollary. 2 Column Space and Rank

- 1. $rank(A^t) = rank(A)$
- 2. The rank of any matrix equals the maximum number of its linearly independent rows; that is, the rank of a matrix is the dimension of the subspace generated by its rows
- 3. The rows and columns of any matrix generate subspaces of the same dimension, numerically equal to the rank of the matrix (use previous 2 corollaries)

Corollary. 3 Every invertible matrix is a product of elementary matrices

Theorem. 3.7 L.T. Composition / Matrix Multiplication Always Reduces Rank Let $T: V \to W$ and $U: W \to Z$ be linear transformations on finite-dimensional vector spaces V, W, and Z, and let A and B be matrices such that the product AB is defined. Then

1. $rank(UT) \le rank(U)$

- 2. $rank(UT) \leq rank(T)$
- 3. $rank(AB) \leq rank(A)$
- 4. $rank(AB) \leq rank(B)$

Definition. Augmented Matrix Let A and B be $m \times n$ and $m \times p$ matrices, respectively. By the augmented matrix (A|B), we mean the $m \times (n+p)$ matrix (A|B), that is the matrix whose first n columns are the columns of A, and whose last p columns are the columns of B

Definition. Computing Matrix Inverse If A is $n \times n$ matrix, and the matrix $(A|I_n)$ is transformed into a matrix of the form $(I_n|B)$ by means of a finite number of elementary row operations, then $B = A^{-1}$. If A is an $n \times n$ matrix that is not invertible, then any attempt to transform $(A|I_n)$ into a matrix of the form $(I_n|B)$ produces a row whose first n entries are zeros.

Convenient for computing inverse of linear transformation by computing inverse of matrix representation of the transformation

3.3 Systems of Linear Equations – Theoretical Aspects

Definition. System of Linear Equations

1. The system of equations S where a_{ij} and b_i are scalars in field F and x_1, x_2, \dots, x_n are n variables taking values in F, is called the system of m linear equations in n unknowns over field F

$$Ax = b A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

2. A **solution** to the system is an n-tuple

$$x = \begin{pmatrix} s_1 \\ s_2 \\ \vdots \\ s_n \end{pmatrix} \in F^n$$

The set of all solutions to S is called **solution** set of the system. System is **consistent** if its solution set is nonempyty, otherwise **inconsistent**

Definition. Homogenous/Nonhomogeneous System A system Ax = b of m linear equations in n unknowns is said to be homogeneous if b = 0. Otherwise the system is said to be nonhomogeneous

Theorem. 3.8 Solution Set to a Homogeneous System Is a Nullspace

Let Ax = 0 be a homogeneous system of m linear equations in n unknowns over a field F (A is $m \times n$). Let K denote the set of all solutions to Ax = 0. Then $K = N(L_A)$. Hence K is a subspace of F^n of dimension $n - rank(L_A) = n - rank(A)$

Corollary. If m < n, then the system Ax = 0 has a nonzero solution

Remark. Solving homogeneous system of equations

For computing solution to a system of equations Ax = 0. Use $rank(K = N(L_A)) = n - rank(A)$ to compute the dimension of subspace consisting of solutions. Then describe solution set K as span of linearly independent basis to describe

Theorem. 3.9 Express Solutions to Nonhomogeneous Systems as Solutions to the Corresponding Homogeneous System

Let K be the solution set of a system of linear equations Ax = b, and let K_H be the solution set of the corresponding homogeneous system Ax = 0. Then for any solution s to Ax = b

$$K = \{s\} + K_H = \{s + k : k \in K_H\}$$

Theorem. 3.10 Square Invertible Matrix as a Condition for Exactly One Solution

Let Ax = b be a system of n linear equations in n unknowns. If A is invertible, then the system has exactly one solution, namely, $A^{-1}b$. Conversely, if the system has exactly one solution, then A is invertible (invertibility from $K_H = \{0\}$)

Remark. Idea is if we can find one solution to a given system and a basis for solution set of corresponding homogeneous system then we have all solution to a given system

Theorem. 3.11 Necessary and Sufficient Condition for a Consistent System Let Ax = b be a system of linear equations. Then the system is consistent if and only if rank(A) = rank(A|b) proof

3.4 Systems of Linear Equations – Computational Aspects

Definition. Equivalent System of Equations Two systems of linear equations are called equivalent if they have the same solution set

Theorem. 3.13 Left Multiply an Invertible Matrix Yields an Equivalent System Let Ax = b be a system of m linear equations in n unknowns, and let C be an invertible $m \times m$ matrix. Then the system (CA)x = Cb is equivalent to Ax = b

Corollary. Elementary Operation Yields Equivalent System Let Ax = b be a system of m linear equations in n unknowns. If (A'|b'|) is obtained from (A|b|) by a finite number of elementary row operations, then the system A'x = b' is equivalent to the original system.

Definition. Reduced Row Echelon Form A matrix is in reduced row echelon form if the following three conditions are satisfied

- 1. Any row containing a nonzero entry precedes any row in which all the entries are zero (if any)
- 2. The first nonzero entry in each row is the only nonzero entry in its column
- 3. The first nonzero entry in each row is 1 and it occurs in a column to the right of the first nonzero entry in the preceding row

Definition. Gaussian Elimination A method for reducing an augmented matrix to reduced row echelon form

- 1. Forward Pass The augmented matrix is transformed into an upper triangular matrix in which the first nonzero entry of each row is 1, and it occurs in a column to the right of the first nonzero entry of each preceding row
- 2. Backward Pass/Substitution The upper triangular matrix transformed into reduced row echelon form by making the first nonzero entry of each row the only nonzero entry of its column

Theorem. 3.14 Gaussian Elimination Guarantees Gaussian Elimination transforms any matrix into its reduced row echelon form

Definition. Methods for Solving a System

- 1. Transform (A|b) into reduced row echelon form (A'|b')
- 2. If a row is obtained in which the only nonzero entry lies in the last column, then system is inconsistent. Otherwise discard any zero rows and write the corresponding system of equations
- 3. Solve the system in reduced row echelon form to yield a solution

$$s = s_0 + t_1 u_1 + t_2 u_2 + \dots + t_{n-r} u_{n-r}$$

where r is number of nonzero rows in A'. s is a general solution to Ax = b

Theorem. 3.15 General Solution Let Ax = b be a system of r nonzero equations in n unknowns. Suppose rank(A) = rank(A|b) and that (A|b) is in reduced row echelon form. Then

- 1. rank(A) = r
- 2. If general solution in form $s = s_0 + t_1 u_1 + t_2 u_2 + \cdots + t_{n-r} u_{n-r}$, then $\{u_1, u_2, \cdots, u_{n-r}\}$ is a basis for the solution set of corresponding homogeneous system, and s_0 is a solution to the original system

Theorem. 3.16 Property of Reduced Row Echelon Form

Let A be $m \times n$ matrix of rank r, where r > 0, and let B be the reduced row echelon form of A. Then

- 1. The number of nonzero rows in B is r
- 2. For each $i=1,2,\cdots,r$, there is a column b_{j_i} of B such that $b_{j_i}=e_i$
- 3. The columns of A numbered j_1, j_2, \dots, j_r are linearly independent
 - (a) can be used to find linearly independent subset (basis) of a generating set
 - (b) can be used to extend a linearly independent subset to a basis
- 4. For each $k = 1, 2, \dots, n$, if column k of B is $d_1e_1 + d_2e_2 + \dots + d_re_r$, then column k of A is $d_1a_{j1} + d_2a_{j2} + \dots + d_ra_{j_r}$