Lógica Digital (1001351)

Exemplos de projetos

Prof. Edilson Kato kato@ufscar.br

Prof. Ricardo Menotti menotti@ufscar.br

Prof. Maurício Figueiredo mauricio@ufscar.br

Prof. Roberto Inoue rsinoue@ufscar.br

Departamento de Computação Universidade Federal de São Carlos

Atualizado em: 27 de fevereiro de 2019

- Em uma sala grande com três portas e um interruptor em cada porta, projete um sistema capaz de acender ou apagar as luzes da sala alterando o estado de qualquer uma das chaves;
- ▶ Obtenha uma função $f(x_1, x_2, x_3)$ que solucione este problema.

- Em uma sala grande com três portas e um interruptor em cada porta, projete um sistema capaz de acender ou apagar as luzes da sala alterando o estado de qualquer uma das chaves;
- ▶ Obtenha uma função $f(x_1, x_2, x_3)$ que solucione este problema.

linha	x_1	x_2	x_3	\int
0	0	0	0	0

- Em uma sala grande com três portas e um interruptor em cada porta, projete um sistema capaz de acender ou apagar as luzes da sala alterando o estado de qualquer uma das chaves;
- ▶ Obtenha uma função $f(x_1, x_2, x_3)$ que solucione este problema.

linha	x_1	x_2	x_3	f
0	0	0	0	0
1	0	0	1	1

- Em uma sala grande com três portas e um interruptor em cada porta, projete um sistema capaz de acender ou apagar as luzes da sala alterando o estado de qualquer uma das chaves;
- ▶ Obtenha uma função $f(x_1, x_2, x_3)$ que solucione este problema.

linha	x_1	x_2	x_3	$\int f$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	1

- Em uma sala grande com três portas e um interruptor em cada porta, projete um sistema capaz de acender ou apagar as luzes da sala alterando o estado de qualquer uma das chaves;
- ▶ Obtenha uma função $f(x_1, x_2, x_3)$ que solucione este problema.

linha	x_1	x_2	x_3	$\int f$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	1
3	0	1	1	0

- Em uma sala grande com três portas e um interruptor em cada porta, projete um sistema capaz de acender ou apagar as luzes da sala alterando o estado de qualquer uma das chaves;
- ▶ Obtenha uma função $f(x_1, x_2, x_3)$ que solucione este problema.

linha	x_1	x_2	x_3	$\int f$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	1
3	0	1	1	0
4	1	0	0	1

- Em uma sala grande com três portas e um interruptor em cada porta, projete um sistema capaz de acender ou apagar as luzes da sala alterando o estado de qualquer uma das chaves;
- ▶ Obtenha uma função $f(x_1, x_2, x_3)$ que solucione este problema.

linha	x_1	x_2	x_3	$\int f$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	1
3	0	1	1	0
4	1	0	0	1
5	1	0	1	0

- Em uma sala grande com três portas e um interruptor em cada porta, projete um sistema capaz de acender ou apagar as luzes da sala alterando o estado de qualquer uma das chaves;
- ▶ Obtenha uma função $f(x_1, x_2, x_3)$ que solucione este problema.

linha	x_1	x_2	x_3	f	
0	0	0	0	0	
1	0	0	1	1	
2	0	1	0	1	
3	0	1	1	0	
4	1	0	0	1	
5	1	0	1	0	
6	1	1	0	0	

- Em uma sala grande com três portas e um interruptor em cada porta, projete um sistema capaz de acender ou apagar as luzes da sala alterando o estado de qualquer uma das chaves;
- ▶ Obtenha uma função $f(x_1, x_2, x_3)$ que solucione este problema.

linha	x_1	x_2	x_3	\int
0	0	0	0	0
1	0	0	1	1
2	0	1	0	1
3	0	1	1	0
4	1	0	0	1
5	1	0	1	0
6	1	1	0	0
7	1	1	1	1

- Em uma sala grande com três portas e um interruptor em cada porta, projete um sistema capaz de acender ou apagar as luzes da sala alterando o estado de qualquer uma das chaves;
- ▶ Obtenha uma função $f(x_1, x_2, x_3)$ que solucione este problema.

linha	x_1	x_2	x_3	\int
0	0	0	0	0
1	0	0	1	1
2	0	1	0	1
3	0	1	1	0
4	1	0	0	1
5	1	0	1	0
6	1	1	0	0
7	1	1	1	1

$$f = m_1 + m_2 + m_4 + m_7$$

- Em uma sala grande com três portas e um interruptor em cada porta, projete um sistema capaz de acender ou apagar as luzes da sala alterando o estado de qualquer uma das chaves;
- ▶ Obtenha uma função $f(x_1, x_2, x_3)$ que solucione este problema.

linha	x_1	x_2	x_3	$\int f$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	1
3	0	1	1	0
4	1	0	0	1
5	1	0	1	0
6	1	1	0	0
7	1	1	1	1

$$f = m_1 + m_2 + m_4 + m_7$$

$$f = \overline{x}_1 \overline{x}_2 x_3 + \overline{x}_1 x_2 \overline{x}_3 + x_1 \overline{x}_2 \overline{x}_3 + x_1 x_2 x_3$$

- Em uma sala grande com três portas e um interruptor em cada porta, projete um sistema capaz de acender ou apagar as luzes da sala alterando o estado de qualquer uma das chaves;
- ▶ Obtenha uma função $f(x_1, x_2, x_3)$ que solucione este problema.

linha	x_1	x_2	x_3	f	$f = m_1 + m_2 + m_4 + m_7$
0	0	0	0	0	$j=m_1+m_2+m_4+m_7$
1	0	0	1	1	$f = \overline{x}_1 \overline{x}_2 x_3 + \overline{x}_1 x_2 \overline{x}_3 + x_1 \overline{x}_2 \overline{x}_3 + x_1 x_2 x_3$
2	0	1	0	1	$J = w_1w_2w_3 + w_1w_2w_3 + w_1w_2w_3 + w_1w_2w_3$
3	0	1	1	0	$f = M_0 M_3 M_5 M_6$
4	1	0	0	1	$J = IM_0 IM_3 IM_6 IM_6$
5	1	0	1	0	
6	1	1	0	0	
7	1	1	1	$\parallel 1$	

- Em uma sala grande com três portas e um interruptor em cada porta, projete um sistema capaz de acender ou apagar as luzes da sala alterando o estado de qualquer uma das chaves;
- ▶ Obtenha uma função $f(x_1, x_2, x_3)$ que solucione este problema.

linha	x_1	x_2	x_3	f	$f = m_1 + m_2 + m_4 + m_7$
0	0	0	0	0	$J = m_1 + m_2 + m_4 + m_7$
1	0	0	1	1	$f = \overline{x}_1 \overline{x}_2 x_3 + \overline{x}_1 x_2 \overline{x}_3 + x_1 \overline{x}_2 \overline{x}_3 + x_1 x_2 x_3$
2	0	1	0	1	$f = w_1w_2w_3 + w_1w_2w_3 + w_1w_2w_3 + w_1w_2w_3$
3	0	1	1	0	$f = M_0 M_3 M_5 M_6$
4	1	0	0	1	$J = Im_0 Im_3 Im_5 Im_6$
5	1	0	1	0	$f = (x_1 + x_2 + x_3)(x_1 + \overline{x}_2 + \overline{x}_3)$
6	1	1	0	0	$(\overline{x}_1 + x_2 + \overline{x}_3)(\overline{x}_1 + \overline{x}_2 + \overline{x}_3)$ $(\overline{x}_1 + x_2 + \overline{x}_3)(\overline{x}_1 + \overline{x}_2 + \overline{x}_3)$
7	1	1	1	$\parallel 1$	$(x_1 + x_2 + x_3)(x_1 + x_2 + x_3)$

(a) Sum-of-products realization

(b) Product-of-sums realization

Figure 2.32 Implementation of the function in Figure 2.31.

Figure 2.32 Implementation of the function in Figure 2.31.

- Em sistemas de computadores, muitas vezes é necessário escolher dados de várias fontes possíveis;
- Suponha que haja duas fontes de dados, fornecidas como sinais de entrada x₁ e x₂;
- Os valores desses sinais mudam no tempo, talvez em intervalos regulares;
- Queremos projetar um circuito que produza uma saída que tenha o mesmo valor de x₁ ou x₂, dependendo do valor de um sinal de controle de seleção s;
- ▶ Portanto, o circuito deve ter três entradas: x₁, x₂ e s;
- Suponha que a saída do circuito será igual ao valor da entrada x₁, se s = 0, e será o valor da entrada x₂, se s = 1;
- ▶ Obtenha uma função $f(x_1, x_2, s)$ que solucione este problema.

linha	s	x_1	x_2	$\int f$	
0	0	0	0	0	
1	0	0	0 1		
2	0	1	0	1	
3	0	1	1	1	
4	1	0	0	0	
5	1	0	1	1	
6	1	1	0	0	
7	1	1	1	1	

linha	s x_1 x_2		x_2	f
0	0	0	0	0
1	0	0	1	0
2	0	1	0	1
3	0	1	1	1
4	1	0	0	0
5	1	0	1	1
6	1	1	0	0
7	1	1	1	1

$$= f(s, x_1, x_2) = \overline{s}x_1\overline{x}_2 + \overline{s}x_1x_2 + s\overline{x}_1x_2 + sx_1x_2$$

linha	s	x_1	x_2	$\int f$	
0	0	0	0	0	
1	0	0	1	0	
2	0	1	0	1	
3	0	1	1	1	
4	1	0	0	0	
5	1	0	1	1	
6	1	1 0		0	
7	1	1	1	1	

$$f(s, x_1, x_2) = \overline{s}x_1\overline{x}_2 + \overline{s}x_1x_2 + s\overline{x}_1x_2 + sx_1x_2$$
$$\overline{s}x_1(\overline{x}_2 + x_2) + s(\overline{x}_1 + x_1)x_2$$

linha	s	x_1	x_2	$\int f$
0	0	0	0	0
1	0	0	0 1	
2	0	1 0		1
3	0	1	1	1
4	1	0	0	0
5	1	0	1	1
6	1	1	1 0	
7	1	1	1	1

$$f(s, x_1, x_2) = \overline{s}x_1\overline{x}_2 + \overline{s}x_1x_2 + s\overline{x}_1x_2 + sx_1x_2$$

$$\overline{s}x_1(\overline{x}_2 + x_2) + s(\overline{x}_1 + x_1)x_2$$

$$\overline{s}x_1.1 + s.1.x_2$$

linha	s	x_1	x_2	$\int f$
0	0	0	0	0
1	0	0	1	0
2	0	1	0	1
3	0	1	1	1
4	1	0	0	0
5	1	0	1	1
6	1	1 1 0		0
7	1	1	1	1

$$f(s, x_1, x_2) =$$

$$\overline{s}x_1\overline{x}_2 + \overline{s}x_1x_2 + s\overline{x}_1x_2 + sx_1x_2$$

$$\overline{s}x_1(\overline{x}_2 + x_2) + s(\overline{x}_1 + x_1)x_2$$

$$\overline{s}x_1.1 + s.1.x_2$$

$$\overline{s}x_1 + sx_2$$

(b) Circuit

(c) Graphical symbol

s	$f(s, x_1, x_2)$
0	x_1
1	x_2

(d) More compact truth-table representation

Figure 2.33 Implementation of a multiplexer.

(a) Logic circuit and 7-segment display

		s_0							
0	0	0 1 0	1	1	1	1	1	1	0
1	0	1	0	1	1	0	0	0	0
5	1	0	1	1	0	1	1	0	1

Figure 2.34 Display of numbers.

$$a = d = e = \overline{s}_0$$

(a) Logic circuit and 7-segment display

		s_0							
0	0	0 1 0	1	1	1	1	1	1	0
-1	0	1	0	1	1	0	0	0	0
2	1	0	1	1	0	1	1	0	1

Figure 2.34 Display of numbers.

$$a = d = e = \overline{s}_0$$

$$b = 1$$

(a) Logic circuit and 7-segment display

	s_1	s_0	а	b	С	d	e	f	g
0	0	0 1 0	1	1	1	1	1	1	0
1	0	1	0	1	1	0	0	0	0
2	1	0	1	1	0	1	1	0	1

Figure 2.34 Display of numbers.

(a) Logic circuit and 7-segment display

	s_1	s_0	а	b	С	d	e	f	g
0	0	0 1 0	1	1	1	1	1	1	0
-1	0	1	0	1	1	0	0	0	0
2	1	0	1	1	0	1	1	0	1

Figure 2.34 Display of numbers.

$$a = d = e = \overline{s}_0$$
$$b = 1$$

 $c = \overline{s}_1$

(a) Logic circuit and 7-segment display

		s_0							
0	0	0 1 0	1	1	1	1	1	1	0
-1	0	1	0	1	1	0	0	0	0
2	1	0	1	1	0	1	1	0	1

Figure 2.34 Display of numbers.

$$a = d = e = \overline{s}_0$$

$$b = 1$$

$$c = \overline{s}_1$$

$$f = \overline{s}_1 \overline{s}_0$$

(a) Logic circuit and 7-segment display

	s_1	s_0	а	b	С	d	е	f	g
0	0	0 1 0	1	1	1	1	1	1	0
-1	0	1	0	1	1	0	0	0	0
7	1	0	1	1	0	1	1	0	1

Figure 2.34 Display of numbers.

$$a = d = e = \overline{s}_0$$

$$b=1$$

$$c = \overline{s}_1$$

$$f = \overline{s}_1 \overline{s}_0$$

$$g = s_1 \overline{s}_0$$

Bibliografia

▶ Brown, S. & Vranesic, Z. - Fundamentals of Digital Logic with Verilog Design, 3rd Ed., Mc Graw Hill, 2009

Lógica Digital (1001351)

Exemplos de projetos

Prof. Edilson Kato kato@ufscar.br

Prof. Ricardo Menotti menotti@ufscar.br

Prof. Maurício Figueiredo mauricio@ufscar.br

Prof. Roberto Inoue rsinoue@ufscar.br

Departamento de Computação Universidade Federal de São Carlos

Atualizado em: 27 de fevereiro de 2019

