A Reconfigurable FTL Architecture for NAND Flash Based Applications

Park, C., Cheon, W., Kang, J., Roh, K., Cho, W., and Kim, J. 2008

2023.07.25

Presentation by Kim Boseung, 쥬용지에

kbskbs1102@dankook.ac.kr

Contents

- 1. Introduction
- 2. NAND Flash Structure
- 3. FTL Concepts
- 4. Mapping Scheme
- 5. Flexible Group Mapping
- 6. Analysis
- 7. Experimental Results
- 8. Conclusions

1. Introduction

1. Introduction

1. Introduction

2. NAND Flash Structure

2. NAND Flash Structure

Fig. 3. NAND flash structure.

The **read/write unit** in NAND flash is a "**page**", and **erase unit** is a "**block**".

But it adopts the **Erase Before-Write approach**.

Main Area: The main area is used to store user data.

Spare Area: The spare area is used to store auxiliary **information** and **metadata**:

Bad-block Identification;

Error-Correction Code(ECC).

3. FTL Concepts

3. FTL Concepts

Logical view of the FTL of NAND flash memory.

3. FTL Concepts

Logical view of the FTL of NAND flash memory.

■ Page-mapping scheme

Block-mapping scheme

Block internal waster

Block-level copying

Hybrid-mapping scheme

Latency

(When Log Blocks are full or merging)

Basic idea

Parameter N: Block level spatial locality parameter Indicate the associativity among neighboring blocks number of data blocks in a data block group

Parameter K: Delayed merge parameter

Explain the type of temporal locality within a block maximum number of log blocks

Flexible Group Mapping Scheme

Write request: 1, 1, 14, 15, 2, 2, 3, 3, 24, 25, 26, 27

Write operation (N = 4, K = 2)

1) WRITE: LPN = 3, Num of Pages = 2

2) WRITE: LPN = 11, Num of Pages = 4

3) WRITE: LPN = 17, Num of Pages = 4

LBN	PBN
0	100
1	101
2	102
3	103
4	104
5	105
6	206
7	303

Data	Bloc	k
Mapı	ping	Table

	,	_
	DGN	PBN
	0	300
		400
	1	500
	*	
	2	
	2	

Log Block **Mapping Table**

DGN	LPN	PPN
0	3	1200
	4	1201
	11	1202
	12	1203
	13	1600
	14	1601
	17	2000
	18	2001
	19	2002
1	20	2003
-		

Log Page Mapping **Table**

*DGN = LPN div (N × the number of pages per

Simple Merge operation

LBN

0

1

2

4

6

7

Data Block Mapping Table

PBN

600

601

602

603

104

105

206

303

DGN	PBN
0	
ľ	400
1	500
2	
Log Blo	ock

DGN	PBN
0	400
	400 500
1	
2	
l og Plo	ck
Log Blo Mannin	ck ig Table

LBN: Logical Block Number PBN: Physical Block Number

DGN: Data Block Group Number

Swap Merge operation

Copy Merge operation

LBN: Logical Block Number PBN: Physical Block Number DGN: Data Block Group Number LPN: Logical Page Number PPN: Physical page Number

Workload Analysis

```
R = \langle R_0, R_1, \dots, R_{M-1} \rangle \stackrel{D}{=} \frac{-}{kth}  white requires
W_i = jth \ request \ window \ of \ size \ |W|
     contains R_{j*|W|}, ..., R_{(j+1)*|W|-1} for j = 0,1, ..., N_w - 1
DD. - request density - C. /IMI
DD - request density - C. /IMI
```


Workload Analysis

							,					
	Page 0	Mo	W_1	W_2	W_3	W_1] ~					
1.500.0	Page 1	R1	•	_			_					
LBNO	Page 2	R2					i ŝ	-			÷	
	Page 3	Ra				R16 R17						
	Page 4		R4, R6									
LBN1	Page 5							11///	_ 1			
LDIVI	Page 6		Rs, RT				ı	VV	=4			
	Page 7						1					
	Page 8			Rв								
LBN2	Page 9			Ro				C	_ 1	_	$RD_{0,0} = 1$	
LDIVZ	Page 10				R 14	R 18		$c_{2,3}$			$n D_{0,0} - 1$	
	Page 11											
	Page 12				R 15] \					
LBN3	Page 13			R10	R 12	R19		C	4		DD = 0.2) [
LDIVO	Page 14							623	= 1	-	$RD_{2,3} = 0.2$	'S
	Page 15			R11	R 13			2,0			— , –	

Example Request Distribution Table

Workload Analysis

N: Associativity parameter,

Determines how many LBNs are to be assigned to one log block group

N is high -> a large number of LBNs, N is low -> a small number of LBNS

Workload Analysis

		W_3	W_2	W_1	W_3	W_2
	Page 0	Ro				
LBNG	Page 1	R1				
LBNO	Page 2	R2				
	Page 3	Ra				R16 R17
	Page 4		R4, R6			
LBN1	Page 5					
LDINI	Page 6		Rs, RT			
	Page 7					
LBN2	Page 8			Rε		
	Page 9			Rρ		
LDIVZ	Page 10				R 14	R 18
	Page 11					
	Page 12				R 15	
LBN3	Page 13			R 10	R 12	R 19
LDN3	Page 14					
	Page 15			R11	R13	

Request Distribution Table

$$N_j = \left[\min \left(\frac{1}{RD_{i,j}} \right) \right]$$

	W_0	W_1	W_2	W_0	W_2
LBNO	1,00	0,00	0,00	0,00	0,50
LBN1	0,00	1,00	0,00	0,00	0,00
LBN2	0,00	0,00	0,50	0,25	0,25
LBN3	0.00	0.00	0.50	0.75	0.25
Ν.	1	1	2	4	4

Fstimating *N*: Estimating *N*:

Workload Analysis

K: Delayed merge parameter

$$K_{i,0} = 0$$

$$K_{i,j} = K_{i,j-1} + d_{i,j}$$
 for $j > 0$

Workload Analysis

		W_0	W_1	W_1	W_0	W_4
	Page 0	Ro				
LENIO	Page 1	R1				
LBNO	Page 2	R2				
	Page 3	Rз				R16 R17
	Page 4		R4, R6			
LDM1	Page 5					
LBN1	Page 6		Rs, RT			
	Page 7					
	Page 8			Rθ		
LBN2	Page 9			Rο		
LDIVZ	Page 10				R 14	R 18
	Page 11					
	Page 12				R 15	
LBN3	Page 13			R 10	R 12	R 19
LDNS	Page 14					
	Page 15			R11	R18	

Request Distribution Table

	W_0	W_0	W_0	W_0	W_0	K
LBN0	0	0	0	0	1	1
LBN1	0	1	1	1	1	1
LBN2	0	0	0	0	1	1
LBN3	0	0	0	1	2	2

Estimating K_i

Performance Analysis

```
A_{K} = \text{detailed data block according } A_{K}
= \sum_{k=1}^{K} \sum_{k=1}^{K}
```


Performance Analysis

$$L(AG_k) \le K$$

a is associated with the undate frequency for the input nattorn

Performance Analysis

c is associated with the associativity of the input pattern

```
When associativity is strong \rightarrow \varepsilon ao to 1 When associativity is strong \rightarrow \varepsilon ao to 1 When associativity is strong \rightarrow \varepsilon ao to 1 When associativity is strong \rightarrow \varepsilon ao to 1 When associativity is strong
```

Performance Analysis

When the size of W_j is reasonably large: $\left|SA(W_j)\right|=C$

$$\sum_{AG_k \in SAG(W_j)} \cdots \sum_{|G| \in SAG(W_j)} |SAG(W_j)| = \frac{|SA(W_j)|}{N^{\varepsilon}}, \quad |SA(W_j)| = C$$

$$AG_k \in \widehat{SAG}(W_j)$$

Memory Requirement Analysis

$$c_{\infty} = \pm hc$$
 number of valid pages in the log

 $c_{\infty} = \pm hc$ number of logs

$$c_{\infty} = \pm hc$$
 number of logs

Trace distribution

Internet/MS Office use case

Trace distribution

MP3 download use case

: Sequential access

: Random access

 ∂ is close to 0

 ε is close to 0

$$C \times \frac{K^{\partial}}{N^{\varepsilon}} > LB$$

Distribution of N's and K's for PC applications.

Distribution of N and K values for the MP3 application

Performance variation with the change of N and K

PC application

MP3 download

8. Conclusions

8. Conclusions

Conclusions

Introduced a reconfigurable FTL architecture to efficiently handle diverse NAND flash applications

The associativity between data blocks was parameterized using:

- N: the number of data blocks in a data block group
- K: the maximum number of log blocks in a log block group

The proposed analysis method can efficiently find the optimal **N** and **K**

A Reconfigurable FTL Architecture for NAND Flash Based Applications

Park, C., Cheon, W., Kang, J., Roh, K., Cho, W., and Kim, J. 2008

Thank you! Q & A ?

2023.07.25

Presentation by Kim Boseung, 쥬용지에

kbskbs1102@dankook.ac.kr

