6 整列集合

学籍番号: 名前

 (X, \leq) を半順序集合とする.

- 1. (X, \leq) が整列集合 $\stackrel{\mathrm{def}}{\Longleftrightarrow}$ 空でない部分集合 $A \subset X$ について最小元 $\min A$ が存在する. 整列集合は全順序集合である.
- 2. $a < b \iff a \le b$ かつ $a \ne b$.
- $3. (X, \leq)$ が整列集合とする. $a \in X$ について a の切片 $X(a) := \{x \in X | x < a\}$ とする.

定理 2. (X, \leq) を整列集合とする.

- 1. $\varphi: (X, \leq) \to (X, \leq)$ が順序を保つ単射ならば、任意の $x \in X$ について $x \leq \varphi(x)$.
- $2. (X, \leq_X), (Y, \leq_Y)$ を整列集合とするとき、次のいずれかただ一つのみが成り立つ.
 - (1). XとYが順序同型
 - (2). X と Y のある切片 $Y\langle b \rangle$ が順序同型.
 - (3). X のある切片 $X\langle a\rangle$ と Y が順序同型.
- 3. (超限帰納法 $)(X, \leq)$ を整列集合とし, $a \in A$ についてある命題 P(a) が与えられているとする. 以下の二つを仮定する.
 - (1). $P(\min X)$ が真.
 - (2). 任意の $x \in X$ について、「全ての $y \in X\langle x \rangle$ について P(y) が真ならば、P(x) も真である」がなりたつ.

このとき任意の $a \in X$ について P(a) は真である.(なお $X = \mathbb{N}$ のときの超限帰納法は数学的帰納法である.)

問題 1. $\mathbb{N}:=\{$ 自然数の集合 $\}=\{0,1,2,\ldots\}$ とし, $(X,\leq_X):=(\mathbb{N},\leq)$ とする. ここで \leq は通常の順序である. 次に $Y=\{1,2\}\times\mathbb{N}$ とし,

$$(x,n) < (y,m) \Longleftrightarrow \lceil x < y \rfloor$$
または $\lceil x = y$ かつ $n < m \rfloor$

とする. そして $(x,n) \leq_Y (y,m)$ を 「(x,n) < (y,m) または (x,n) = (y,m)」として定義する. すると (Y,\leq_Y) は半順序集合になる.

実は (X, \leq_X) , (Y, \leq_Y) はともに整列集合になる. よって上の定理から, 次のいずれかただ一つのみが成り立つ.

主張 (1). XとYが順序同型

主張 (2). X と Y のある切片 $Y\langle b \rangle$ が順序同型.

主張 (3). X のある切片 $X\langle a\rangle$ と Y が順序同型.

上の X,Y については主張 (1), (2), (3) のどれが成り立つか答えよ. また (2) を選んだ場合は 「X と $Y\langle b\rangle$ が順序同型」となる b を求め, (3) を選んだ場合は 「 $X\langle a\rangle$ と Y が順序同型」となる a を求めよ. なお (1) を選んだ場合, 該当する欄は空白にしておいて良い.

解答: 主張 (2) が正しい. さらに a または b は (2) (2) である.

問題 2. 集合と二項関係の組 (X, \leq) について、次の条件 $(a)\sim(d)$ を考える.

条件

- (a). 整列集合である.
- (b). 全順序集合であるが整列集合ではない.
- (c). 半順序集合であるが, 全順序集合ではない.
- (d). 半順序集合ではない.

以下の集合と二項関係の組 (X, \leq) は上の $(a)\sim(d)$ のうちどれを満たすか答えよ.

- (1). (\mathbb{R}, \leq) . \leq は通常の順序とする.
- (2). (\mathbb{Q}, \leq) . \leq は通常の順序とする.
- (3). (\mathbb{N}, \leq) . \leq は通常の順序とする.
- (4). $(\mathbb{R} \times \mathbb{R}, \leq)$. ただし二項関係 $(x, y) \leq (a, b)$ を $x \leq a$ かつ $y \leq b$ とする.
- (5). $(\mathfrak{P}(\mathbb{N}), \leq)$. ただし二項関係 $A \leq B$ を $A \subset B$ とする. $(\mathfrak{P}(\mathbb{N})$ は \mathbb{N} のべキ集合である.)
- (6). $(\mathbb{N}\setminus\{0,1\},\leq_{\mathbb{N}})$. ただし $a\leq_{\mathbb{N}}b$ を「b=na となる 0 でない自然数 n が存在する (a は b を割り切る)」とする.
- (7). $(\mathbb{Z}\setminus\{0,1,-1\},\leq_{\mathbb{Z}})$. ただし $a\leq_{\mathbb{Z}}b$ を「b=na となる 0 でない整数 n が存在する」とする.

(1). 解答.	(b)	~ ジール (N=1、2、、) もい 最小でなく
(2). 解答.	(b /	
(3). 解答.	(q)	
(4). 解答.	(C)	(1,2) と(2,1) のたいがあからん
(5). 解答.	(</th <th> S(1,23 × S(1,33) ?</th>	S(1,23 × S(1,33) ?
(6). 解答.	(<)	2 × 5 : ,
(7). 解答.	(d)	25-2 65-2 52 Ely 2+-2.
		(反对你, 维州)"火)

問題 3. 「整列集合 X はいかなる切片 $X\langle a\rangle$ とも順序同形にならない」の主張の証明が完成するように空欄をうめよ. ただし空欄には後記の語句群から適切な語句・記号を一つ選んで記入すること.

[証明.] (X, \leq) が $(X\langle a \rangle, \leq)$ と順序同型であると仮定する. $f: X \to X\langle a \rangle$ を順序同型とする. すると包含写像 $i: X\langle a \rangle \to X$ は順序を保つので, $i\circ f: X \to X$ は なる. よって a $i\circ f(a)$ となる. しかし $i\circ f(a)\in X\langle a \rangle$ より $i\circ f(a)$ a となり矛盾である.

· 語句群 -

順序を保つ全射 順序を保つ単射 順序同型 ≤ ≥ < > = ≠ ∈ ∉