

Control engineering

PhD. Enrique Aguayo

Third Simulation Project

José Abraham Pérez Martínez A01633926

Lead Compensator

G1 = C1Lead =

17
-----26 s + 9 (s+5)

Continuous-time transfer function. Continuous-time zero/pole/gain model.

Lag Compensator

(G)=
$$\frac{26(5+2)(5+92)}{(5+5)(5+62)}$$
 $(G)=\frac{17}{9}$
 $(S)=\frac{17}{9}$
 $(S)=\frac{17}{9}$

System 2
Lead Compensator

$$G(s) = \frac{-.884 \, s + 442}{65^2 + 17.565 + 676}$$
 $KpG = \frac{446}{676}$ $G = .34$
 $C(s) = \frac{20.625 \cdot (518)}{(5166)}$ $KpC = 2.5$ $fss = .5$
 $(s) = \frac{1}{(446)(676)(66)}$ $Fe = .1$ $Fe = 113.559$


```
C2Lag =

26 (s+8) (s+9.221)
-----(s+66) (s+1)

Continuous-time zero/pole/gain model.
```

Lag Compensator

Maximum input = 26

$$KpG = \frac{446}{676}$$
 $C(5) = \frac{26(5+8)(5+a2)}{(5+66)(5+b2)}$
 $ess = \frac{1}{1+\frac{446}{676} \cdot \frac{208k}{66}} = .05 \quad k = 9.22059$
 $C(s) = \frac{26(5+8)(5+9.22059)}{(5+66)(5+1)}$

System 3
Lead Compensator

$$G(s) = -.204s + 68$$
 $KpG = 68$ $8 propose = 1.1$
 $5^2 + 27s + 162$ $(5) = 2.5556 (519)$
 $1 + \frac{68}{162} \frac{9K}{23}$ $KpC = 1$
 $K = 54.7941$
 $ZpK = ([-9][-23], 54.7941)$

With the following script I obtain the transfer function

```
close all
t=zeros(); %arreglo de tiempo
k=zeros(); % arreglo de la ganancia
[fil,col]=size(Out); % declaro el arreglo para leer la posicion de los valores de la funcion
t=Out(:,1);%Datos del tiempo obtenidos de la tf G mediante simulink
k=Out(:,2);%Datos de la ganancia obtenidos de la tf G mediante simulik
figure;
plot(t,k); %grafica de la tf
%identificar el #orden del sistema
pico=max(k);
final=k(end);
if pico == final
    z = 1;
else
    z = 2;
%implementacion una vez conocido el orden del sistema
if z==1
        Orden=1
        for y=1:fil
            if Out(y,2) > final*0.9933 %Encontrar el valor de 5Tao
                pos=y
                                  %Posicion del arreglo donde esta 5tao
                break
            else
            end
       end
       Tss=Out(pos,1);
       Tao=Tss/5;
      ktf=final;
      G1=tf(ktf,[Tao 1])
      figure;
      plot(t,k);
      hold on
      step(G1)
else
   Orden=2
   for y=1:fil
            if Out(y,2) == pico
                tpa=y;
                break
            else
            end
        end
    tp=Out(tpa,1);
    wd=pi/tp;
    mp=((pico-final)/final);
    delta=-(log(mp))/(sqrt(log(mp)^2 + pi^2));
    wn=wd/sqrt(1-delta^2);
    ks2=final:
    G2=tf((ks2*wn^2),[1 (2*delta*wn) (wn^2)])
    figure;
    plot(t,k);
   hold on
    step(G2)
end
```

Original function

Approximate function

System 4

Lead Compensator

$$G(S) = \frac{14340}{5^2 + 19.145 + 756.5}$$
 $K p G = \frac{14340}{756.5}$
 $K p$

C4Lead =

Lag Coripensator

(IS)
$$26(s+10)(s+a2)$$

Maxmun injul = 2.6

(S+191)(S+b2)

 $KpG = 19340$
 756.5

(S) $26(s+10)(s+a2)$
 $K = .543575$

(S) $26(s+10)(s+a2)$
 $K = .543575$

$${n = 21}$$

Tank 1

Symbolic transfer function

$$\frac{1}{Area1 + \frac{s}{R1}}$$

$$G5_{H1} = \frac{1}{1}$$

Continuous-time transfer function.

Lead Compensator

0.5 s + 46

System 5
• HI (s) / Qir(s)
Lead Compensator

$$G(s) = \frac{1}{.5 \pm 46}$$
 $KpG = \frac{1}{46}$
 $C(s) = \frac{.9569(s + 116)}{s + 111}$ $ess = \frac{1}{1 + \frac{1}{46} \cdot \frac{.116}{111}}$
 $K = 396.755$
 $ZpK = (E-116)[111],396.155)$

```
C5_H1Lead =

396.15 (s+116)

------
(s+111)
```


Lag (ompensato
Maximum input = 10

$$C(s) = 10(s+116)(s+a2)$$

 $C(s+111)(s+b2)$
ess. 1 (1160k(1)
 $C(s) = 10(s+116)(s+142.322)$
 $C(s) = 10(s+116)(s+142.322)$

Tank 2
Symbolic transfer function

$$\frac{Qin1}{\frac{A2s}{R1} + A2A1 + \frac{s^2}{R1R2} + \frac{A1s}{R2}}$$

•
$$H2(s)$$
 / $Qin(s)$
Lead Compensator
 $G(s) = 3.5$
.14285? 123.145+920 ((s)= 1.05(5+90) 8=.9
 $K_{Q}G = \frac{3.5}{920}$
ess= 1
 $I+\frac{3.5}{920} \left(\frac{90K}{105}\right)$
 $Z_{Q}K = ([-90], [-105], [-705], [-705], [-705]$

Lag Compensator

Maximum in put = 10

$$K p G = 3.5$$
 920
 $(S) = 10 (S+90) (S+92)$
 $(S+105) (S+62)$
 $(S) = 10 (S+90) (S+62)$
 $(S) = 10 (S+90) (S+99) (S+62)$
 $(S) = 10 (S+90) (S+99) (S+99) (S+1)$

