

RTOS GPADC 开发指南

版本号: 1.0

发布日期: 2021.4.27

版本历史

版本号	日期	制/修订人	内容描述
1.0	2020.7.16	AWA1637	1. 初版
1.0	2021.4.27	AWA1637	1. 添加 D1s 的说明

目 录

1	前言	1
	1.1 文档简介	1
	1.2 目标读者	1
	1.3 适用范围	1
2	模块介绍	2
	2.1 模块功能介绍	2
	2.2 相关术语介绍	3
	2.3 模块配置介绍	3
	2.4 模块源码结构	4
3	模块接口说明	5
	3.1 接口列表	5
	3.2 接口使用说明	5
	3.2.1 GPADC 初始化接口	5
	3.2.2 GPADC 通道配置接口	5
	3.2.3 GPADC 通道取消配置接口	6
	3.2.4 GPADC 注册回调接口	6
	3.2.5 GPADC 去初始化接口	6
4	模块使用范例	7
5	FAQ	8

前言

1.1 文档简介

介绍 RTOS 中 GPADC 驱动的接口及使用方法,为 GPADC 使用者提供参考。

1.2 目标读者

GPADC 驱动层/应用层开发/使用/维护人员。

1.3 适用范围

DC 驱动层/应用层开发/使用/维护人员。							
表 1-1: 适用产品列表							
产品名称	内核版本	驱动文件					
V459	Melis	hal_gpadc.c					
D1s	Melis	hal_gpadc.c					
R328	FreeRTOS	hal_gpadc.c					

2 模块介绍

2.1 模块功能介绍

GPADC 是 12bit 采集精度的模数转换模块,支持 4 路通道,模拟输入范围 $0\sim1.8v$,最高采样率 1MHZ,并且支持数据比较,自校验功能,同时工作于可配置的四种工作模式:

- (1) Single mode: 在指定的通道完成一次转换并将数据放在响应数据寄存器中;
- (2) Single-cycle mode: 在指定的通道完成一个周期转换并将数据放在响应数据寄存器中;
- (3) Continuous mode: 在指定的通道持续转换并将数据放在响应数据寄存器中;
- (4) Burst mode: 边采样边转换并将数据放入 32 字节的 FIFO, 支持中断控制。

图 2-2: GPADC 典型电路

部分 GPADC 接口也开始慢慢用于 KEY 模块按键的读取,一般包括 VOL+、VOL-、HOME、 MENU、ENTER 等等,GPADC0 用于 KEY 的电路如上图。AVCC-AP 为 1.8V 的供电,不同 的按键按下,LRADC0 口的电压不同,CPU 通过对这个电压的采样来确定具体是那一个按键按 下。如上图,VOL+、VOL-、MENU、ENTER、HOME/UBOOT对应的电压分别为 0.21V、 0.41V, 0.59V, 0.75V, 0.88V_o

2.2 相关术语介绍

_{吐图,VOL+、VOL-、} /、0.59V、0.75V、0.8 相关术语介绍	MER
术语	解释说明
Sunxi GPADC	指 Allwinner 的一系列 SOC 硬件平台 高精度模数转换

2.3 模块配置

图 2-3: GPADC menuconfig

版权所有 © 珠海全志科技股份有限公司。保留一切权利

2.4 模块源码结构

GPADC 模块源码结构如下所示:

rtos-hal/

- |--hal/source/gpadc/hal_gpadc.c //hal层接口代码
- |--include/hal/sunxi_hal_gpadc.h //头文件

模块接口说明

3.1 接口列表

GPADC 提供的接口列表如下:

```
int hal_gpadc_init(void);
hal_gpadc_status_t hal_gpadc_deinit(void);
hal_gpadc_status_t hal_gpadc_channel_init(hal_gpadc_channel_t channal);
hal_gpadc_status_t hal_gpadc_channel_exit(hal_gpadc_channel_t channal);
hal_gpadc_status_t hal_gpadc_register_callback(hal_gpadc_channel_t channal,
                                  LWINER
       gpadc_callback_t user_callback);
```

3.2 接口使用说明

3.2.1 GPADC 初始化接口

- 原型: int hal gpadc init(void)
- 功能: GPADC 模块初始化,主要初始化时钟,中断以及采样率配置等
- 参数: 无
- 返回值:
 - 0 代表成功
 - 负数代表失败

3.2.2 GPADC 通道配置接口

- 原型: hal gpadc status t hal gpadc channel init(hal gpadc channel t channal)
- 功能:选择并配置 GPADC 某个通道
- 参数:
 - channel: 通道号
- 返回值:
 - 0 代表成功
 - 负数代表失败

3.2.3 GPADC 通道取消配置接口

• 原型: hal_gpadc_status_t hal_gpadc_channel_exit(hal_gpadc_channel_t channal)

• 功能: 取消 GPADC 某个通道配置

• 参数:

• channel: 通道号

• 返回值:

0 代表成功

• 负数代表失败

3.2.4 GPADC 注册回调接口

- 原型: hal_gpadc_status_t hal_gpadc_register_callback(hal_gpadc_channel_t channal, gpadc callback t user callback) 初肥. 问应用层提供注册回调接口的功能
 参数: channel: 通道号, user_callback: 应用层回调接口
 返回值:
 0代表成功
 负数代表失败

3.2.5 GPADC 去初始化接口

- 原型: hal_gpadc_status_t hal_gpadc_deinit(void)
- 功能: GPADC 模块去初始化
- 参数: 无
- 返回值:
 - 0 代表成功
 - 负数代表失败

4

模块使用范例

可参考驱动 APIs 测试代码(hal/test/gpadc/)。

5 FAQ

无

著作权声明

版权所有 © 2021 珠海全志科技股份有限公司。保留一切权利。

本文档及内容受著作权法保护,其著作权由珠海全志科技股份有限公司("全志")拥有并保留 一切权利。

本文档是全志的原创作品和版权财产,未经全志书面许可,任何单位和个人不得擅自摘抄、复制、修改、发表或传播本文档内容的部分或全部,且不得以任何形式传播。

商标声明

举)均为珠海全志科技股份有限公司的商标或者注册商标。在本文档描述的产品中出现的其它商标,产品名称,和服务名称,均由其各自所有人拥有。

免责声明

您购买的产品、服务或特性应受您与珠海全志科技股份有限公司("全志")之间签署的商业合同和条款的约束。本文档中描述的全部或部分产品、服务或特性可能不在您所购买或使用的范围内。使用前请认真阅读合同条款和相关说明,并严格遵循本文档的使用说明。您将自行承担任何不当使用行为(包括但不限于如超压,超频,超温使用)造成的不利后果,全志概不负责。

本文档作为使用指导仅供参考。由于产品版本升级或其他原因,本文档内容有可能修改,如有变更,恕不另行通知。全志尽全力在本文档中提供准确的信息,但并不确保内容完全没有错误,因使用本文档而发生损害(包括但不限于间接的、偶然的、特殊的损失)或发生侵犯第三方权利事件,全志概不负责。本文档中的所有陈述、信息和建议并不构成任何明示或暗示的保证或承诺。

本文档未以明示或暗示或其他方式授予全志的任何专利或知识产权。在您实施方案或使用产品的过程中,可能需要获得第三方的权利许可。请您自行向第三方权利人获取相关的许可。全志不承担也不代为支付任何关于获取第三方许可的许可费或版税(专利税)。全志不对您所使用的第三方许可技术做出任何保证、赔偿或承担其他义务。