Séries e Equações Diferenciais Ordinárias

Wagner Dantas Garcia

08 de Outubro de 2020

1 Sequencia

• O que é uma Sequência?

Pode-se pensar numa sequência como uma lista de números escritos em uma ordem definida:

$$\{a_1, a_2, a_3, a_4, ..., a_n\}$$
 (1)

Observe que, para cada inteiro positivo n existe um número correspondente a n e, dessa forma, uma sequência pode ser definida como uma função cujo domínio é o conjunto dos inteiros positivos. Mas, geralmente, escrevemos a n em vez da notação de função f (n) para o valor da função no número n.

Algumas sequências podem ser definidas dando uma fórmula para o n-ésimo termo.

$$Ex1.: \{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, ..., \frac{N}{N+1}\}$$
 (2)

• Qual o limite de uma Sequência no Infinito?

Se pudermos tornar os termos a_n tão próximos de L quanto quisermos ao fazer n suficientemente grande. Se $\lim_{n\to\infty} = a_n$ existir, dizemos que a sequência **converge** (ou é convergente). Caso contrário, dizemos que a sequência **diverge** (ou é divergente).

Uma sequência a_n tem limite L e escrevemos $\lim_{n\to\infty} = a_n$ se, para cada $\varepsilon > 0$ existir um inteiro correspondente N tal que se n > N então $|a_n - l| < \varepsilon$.

$$\lim_{n \to \infty} \frac{n}{n+1} = \lim_{n \to \infty} \frac{1}{1 + \frac{1}{n}} = \frac{\lim_{n \to \infty} 1}{\lim_{n \to \infty} 1 + \lim_{n \to \infty} \frac{1}{n}} = \frac{1}{1+0} = 1$$
 (3)

Sequencias Geométrica

A sequência r^n é convergente se $-1 < r \le 1$ e divergente para todos os outros valores de r.

$$\lim_{n \to \infty} r^n \tag{4}$$

Sequencias monótona

Uma sequência a_n é chamada **crescente** se $a_n < a_n + 1$ para todo $n \ge 1$ isso é, $a_1 < a_2 < a_3 < \dots$ É chamado **decrescente** se $a_n > a_n + 1$ para todo $n \ge 1$. Uma sequência é **monótona** se for crescente ou decrescente.

Uma sequência a_n é **limitada superiormente** se existir um número M tal que $a_n < M$ para todo $n \ge 1$. Ela é **limitada inferiormente** se existir um número m tal que $m < a_n$ para todo $n \ge 1$. Se ela for limitada superior e inferiormente, então a_n é uma sequência limitada.

Teorema da Sequência Monótona: Toda sequência monótona limitada é convergente.