(Note: no guarantee of correctness. Just an undergrad writing their answers down and archiving because notebooks have become unwieldy.)

Q1. Suppose α increases on [a,b], $a \leq x_0 \leq b$, α is continuous at x_0 , $f(x_0) = 1$, and f(x) = 0 if $x \neq x_0$. Prove that $f \in \mathcal{R}(\alpha)$ and that $\int f d\alpha = 0$.

A: IDEA

 x_0 may be covered with an interval of arbitrarily small width, and this segment will have an arbitrarily small weight in the sum due to α 's continuity at x_0 .

PROOF THAT $f \in \mathcal{R}(\alpha)$:

Let $\varepsilon > 0$.

Since α is continuous at x_0 , choose δ such that $|x-x_0| \leq 2\delta$ implies $|\alpha(x)-\alpha(x_0)| \leq \varepsilon$.

Then let $P = [a, x_0 - \delta, x_0 + \delta, b]$. Then

$$U(P, f, \alpha) = \sum_{i=0}^{n} M_i \Delta \alpha_i$$
$$= M_0 \Delta \alpha_0 + M_1 \Delta \alpha_1 + M_2 \Delta \alpha_2$$

Since f(x) = 0 on $[a, x_0 - \delta]$ and $[x_0 + \delta, b]$, $M_0 = 0$ and $M_2 = 0$. Moreover, $M_1 = 1$

$$U(P, f, \alpha) = 0 + 1 \cdot \Delta \alpha_1 + 0\Delta = \alpha_1$$

As for L, the following holds for any partition at all, as any nonempty interval must contain a point that is not x_0

$$L(P, f, \alpha) = 0$$

So

$$U(P, f, \alpha) - L(P, f, \alpha) = \Delta \alpha_1 = \alpha(x + \delta) - \alpha(x - \delta) < \varepsilon$$

Then $f \in \mathcal{R}(\alpha)$.

PROOF THAT $\int f d\alpha = 0$:

Since $L(P, f, \alpha) = 0$ for all P,

$$\underline{\int} f d\alpha = 0$$

Which lets us conclude

$$\int f d\alpha = 0$$

Q2. Suppose $f \ge 0$, f is continuous on [a,b], and $\int_a^b f(x)dx = 0$. Prove that f(x) = 0 for all $x \in [a,b]$. (Compare this with Exercise 1.)

A: IDEA

We show a contradiction that a "bump" of nonzero area must exist if f is not identically zero, hence the integral must be nonzero.

Proof

Choose any arbitrary point q in [a,b]. Suppose f(q) > 0. Let m be a number such that 0 < m < f(q), and use the continuity of f to create an interval [s,t] containing q such that $x \in [s,t]$ implies $f(x) \ge m$.

By additivity of the integral,

$$\int_{a}^{b} f dx = \int_{a}^{s} f dx + \int_{s}^{t} f dx + \int_{t}^{b} f dx$$

Hence

$$\int_{a}^{b} f dx \ge \int_{s}^{t} f dx$$

But $\int_{s}^{t} f dx \ge m(t-s) > 0$, so

$$\int_{a}^{b} f dx > 0$$

A contradiction to the assertion that $\int_a^b f dx = 0$

Q3. Define three functions β_1 , β_2 , β_3 as follows: $\beta_j(x) = 0$ if x < 0, $\beta_j(x) = 1$ if x > 0 for j = 1, 2, 3; and $\beta_1(0) = 0$, $\beta_2(0) = 1$, $\beta_3(0) = \frac{1}{2}$. Let f be a bounded function on [-1, 1].

(a) Prove that $f \in \mathcal{R}(\beta_1)$ if and only if $f(0^+) = f(0)$ and that then

$$\int f d\beta_1 = f(0)$$

- (b) State and prove a similar result for β_2
- (c) Prove that $f \in \mathcal{R}(\beta_3)$ if and only if f is continuous at 0
- (d) If f is continuous at 0 prove that

$$\int f d\beta_1 = \int f d\beta_2 = \int f d\beta_3 = f(0)$$

A: IDEA

With β_i , the only intervals with non-zero weight in any partition will be those which contain 0. Moreover, these segments will have fixed weights due to our definitions of β_i . Then, bounds on the variation of the upper and lower Riemann sums automatically pass through as bounds on f in the segment itself.

Hence we can convert convergence of Riemann sums into convergence of f.

(a) Proof that $f \in \mathcal{R}(\beta_1)$ implies f(0+) = f(0)

Let $f \in \mathcal{R}(\beta_1)$. Let $\varepsilon > 0$. Choose a partition P such that $0 \in P$, and

$$U(P, f, \beta_1) - L(P, f, \beta_1) < \varepsilon$$

The only nonzero term in either of the sums $U(P, f, \beta_1)$ or $L(P, f, \beta_1)$ comes from the segment containing x = 0 as a left endpoint. Let this segment be $[0, x_i]$. Then

$$U(P, f, \beta_1) = M_i \cdot \Delta x_i = M_i \cdot (\beta(x_i) - \beta(0)) = M_i \cdot 1 = M_i$$

$$L(P, f, \beta_1) = M_i \cdot \Delta x_i = m_i \cdot (\beta(x_i) - \beta(0)) = m_i \cdot 1 = m_i$$

So $U(P, f, \beta_1) - L(P, f, \beta_1) = M_i - m_i < \varepsilon$. This tells us that on $[0, x_i]$, f stays within ε of f(0). Since ε was arbitrary, we conclude that f(0+) = f(0)

Proof that f(0+) = f(0) implies $f \in \mathcal{R}(\beta_1)$

Let f(0+) = f(0). Let $\varepsilon > 0$ Choose δ such that $x \in (0, \delta)$ implies $f(x) \in (f(0) - \varepsilon, f(0) + \varepsilon)$. Let P be the partition $\{a, 0, \delta, b\}$. Then for the same reasons as above,

$$U(P, f, \beta_1) - L(P, f, \beta_1) < \varepsilon$$

So $f \in \mathcal{R}(\beta_1)$.

Proof that $\int f d\beta_1 = 0$

By Theorem 6.7(b), letting $t_i = 0$, we have that

$$\left| f(0) - \int f d\beta_1 \right| < \varepsilon$$

Hence we conclude that

$$\int f d\beta_1 = f(0)$$

(b) Statement

 $f \in \mathcal{R}(\beta_1)$ if and only if f(0-) = f(0), and if it exists,

$$\int f d\beta_1 = f(0)$$

Proof

Extremely similar as before, but with $[x_{i-1}, 0]$ instead of $[0, x_i]$

(c) Proof that $f \in \mathcal{R}(\beta_3)$ implies f is continuous at 0

Let $f \in \mathcal{R}(\beta_3)$. Let $\varepsilon > 0$. Let P be a partition that such that $0 \in P$ and $U(P, f, \beta_3) - L(P, f, \beta_3) < \varepsilon$

Then, consider the intervals $[x_{i-1}, 0]$, $[0, x_i]$. We have that

$$\beta_3(0) - \beta_3(x_{i-1}) = \frac{1}{2}$$

$$\beta_3(x_i) - \beta_3(0) = \frac{1}{2}$$

Then

$$U(P, f, \beta_3) = \frac{M_i + M_{i-1}}{2}$$

$$L(P, f, \beta_3) = \frac{m_i + m_{i-1}}{2}$$

Let $M = \min\{M_i, M_{i-1}\}\$ and $m = \max\{m_i, m_{i-1}\}\$, then

$$U(P, f, \beta_3) \ge M$$

$$L(P, f, \beta_3) \le m$$

Then

$$M-m \le U(P, f, \beta_3) - L(P, f, \beta_3) < \varepsilon$$

Hence f(x) is within ε of f(0) if f(x) is in $[x_{i-1}, x_i]$. Hence f is continuous.

Proof that f continuous at 0 implies $f \in \mathcal{R}(\beta_3)$

Let f be continuous at 0. Let $\varepsilon > 0$. Choose δ such that $|x| \le 2\delta$ implies $|f(x) - f(0)| \le \varepsilon/2$ then take the partition $P = \{a, -\delta, \delta, b\}$. Then

$$U(P, f, \beta_3) - L(P, f, \beta_3) < \varepsilon$$

Hence $f \in \mathcal{R}(\beta_3)$. Also, with a similar argument as in (a),

$$\int f d\beta_3 = f(0)$$

(d) f being continuous at zero is a strong enough condition for all three previous proofs above to apply. Since all of them show equality of the integral with respect to β_i and f(0), the result follows.

Q4. If f(x) = 0 for all irrational x, f(x) = 1 for all rational x, prove that $f \notin \mathcal{R}$ on [a, b] for any a < b

A: IDEA

Any nonempty interval will contain both irrational and rational numbers, so the "gap" between the lower and upper sums never closes.

Proof

Let P be a partition. Since \mathbb{Q} is dense in \mathbb{R} , for all x_i we can find two rational numbers p and q such that $x_{i-1} . This tells us that <math>M_i = 1$ for all x_i . Furthermore, the number $s = p + (\sqrt{2}/2)(q - p)$ is irrational and between p and q. This tells us that $m_i = 1$ for all x_i . Hence it must be that

$$U(P, f) = 1$$

$$L(P, f) = 0$$

for any partition P. Then f is not Riemann-integrable.

Q5. Suppose f is a bounded real function on [a,b], and $f^2 \in \mathcal{R}$ on [a,b]. Does it follow that $f \in \mathcal{R}$? Does the answer change if we assume that $f^3 \in \mathcal{R}$?

A: IDEA

Because of squaring's non-injectivity, we can construct "terrible" discontinuities which can be undone via squaring. On the other hand, cubing is much nicer (it is a continuous bijection of the real line to itself).

Proof

No. Consider the function

$$f(x) := \begin{cases} 1 & x \text{ rational} \\ -1 & x \text{ irrational} \end{cases}$$

We have that $(f^2)(x) = 1$, so $\int_a^b f^2 dx = (b-a)$. But f itself is not Riemann-integrable, as the exercise above shows. For f^3 , use Theorem 6.11, which tells us that the composition of continuous functions with integrable functions is integrable. Let $\phi = \sqrt[3]{x}$. Then $\phi \circ (f^3) \in \mathcal{R}$ Since $\phi \circ f^3 = f$, $f \in \mathcal{R}$.

Q6. Let P be the Cantor set constructed in Sec. 2.44. Let f be a bounded real function on [0,1] which is continuous at every point outside P. Prove that $f \in \mathcal{R}$ on [0, 1]. Hint: P can be covered by finitely many segments whose total length can be made as small as desired. Proceed as in Theorem 6.10.

A: Each set of the sequence that constructs the Cantor set has 2^n intervals, each of width $1/3^n$. Let E_n be the nth set in the sequence. Cover each interval in E_n with an open interval whose endpoints have a distance of $1.1 \cdot (1/3^n)$. Then, the sum of all lengths of each cover will be $1.1 \cdot (2/3)^n$. This also covers the Cantor set itself, since the Cantor set E is a subset of E_n for all n. Hence, we have made a cover of the Cantor set with arbitrarily small area.

Take the endpoints of each interval and construct a partition, and proceed as in Theorem 6.10. This sequence of partitions eventually.

Q7. Suppose f is a real function on (0,1] and $f \in \mathcal{R}$ on [c,1] for every c>0. Define

$$\int_0^1 f(x)dx = \lim_{c \to 0} \int_c^1 f(x)dx$$

if this limit exists (and is finite).

- (a) If $f \in \mathcal{R}$ on [0, 1], show that this definition of the integral agrees with the old one.
- (b) Construct a function F such that the above limit exists, although it fails to exist with |f| in place of f

A:

(a) Lemma: If $f \in \mathcal{R}$ on [a, b], then

$$\lim_{h \to a} \int_{a}^{h} f(x)dx = 0$$

Proof: Let $|f(x)| \leq M$. Let $\varepsilon > 0$. Choose $\delta = \varepsilon/M$. Then, letting $h \leq \delta$

$$\left| \int_{a}^{h} f(x)dx \right| \le M((a+h) - a) = Mh \le M\delta = \varepsilon$$

Since the ε was arbitrary, the lemma holds. Then, by Theorem 6.12, if $f \in \mathcal{R}$ on [0,1],

$$\int_{0}^{1} f(x)dx = \int_{0}^{c} f(x)dx + \int_{c}^{1} f(x)dx$$

Then, taking limits

$$\lim_{c \to 0} \int_0^1 f(x)dx = \lim_{c \to 0} \int_0^c f(x)dx + \lim_{c \to 0} \int_c^1 f(x)dx$$
$$\int_0^1 f(x)dx = 0 + \lim_{c \to 0} \int_c^1 f(x)dx$$
$$\int_0^1 f(x)dx = \lim_{c \to 0} \int_c^1 f(x)dx$$

Hence showing that the definition agrees.

(b) Let $n = 1, 2, \ldots$ Consider the function (with infinitely many cases)

$$f(x) = \left\{ (-1)^{n+1} n + 1 \text{ if } \frac{1}{n+1} \le x < \frac{1}{n} \right\}$$

Then the graph of f consists of boxes of width (1/n)-(1/(n+1)) and height n+1. The area of each box is then 1/n. Then as the lower bound of the integral approaches 0, the integral approximates the alternating sum $S=1-1/2+1/3-1/4+\cdots$, which converges to $\ln 2$. However, in the case of |f|, the integral approximates the sum $S=1+1/2+1/3+1/4+\cdots$, which diverges.

5

Q8. Suppose $f \in \mathcal{R}$ on [a,b] for every b > a where a is fixed. Define

$$\int_{a}^{\infty} f(x)dx = \lim_{b \to \infty} \int_{a}^{b} f(x)dx$$

if this limit exists (and is finite). In that case, we say that the integral on the left *converges*. If it also converges after f has been replaced by |f|, it is said to converge *absolutely*. Assume that $f(x) \ge 0$ and that f decreases monotonically on $[1, \infty)$. Prove that

$$\int_{1}^{\infty} f(x)dx$$

converges if and only if

$$\sum_{n=1}^{\infty} f(n)$$

converges. (This is the so-called "integral test" for convergence of series.)

A: Suppose $\int_1^\infty f(x)dx$ converges. Then if we show that, for any positive integer b,

$$\sum_{n=1}^{b} f(n) \le \int_{1}^{b} f(x) dx$$

we can prove convergence of the sum, as the partial sums form a monotonic sequence (f is non-negative). Let P be the partition consisting of the points $0, 1, 2, \ldots, b-1, b$. Then, since f is monotonically decreasing,

$$\inf_{x \in [n-1,n]} f(x) = f(n)$$

Hence

$$\sum_{n=1}^{b} f(n) = L(P, f) \le \int_{1}^{b} f(x)dx$$

which was the inequality we wanted. Then the sum converges.

Suppose $\int_1^\infty f(x)dx$ converges. Then we make a similar argument, with U(P,f) bounding $\int_1^b f(x)dx$ from above. Take the same partition of [a,b], then

$$\sup_{x \in [n, n+1]} f(x) = f(n)$$

Hence

$$U(P, f) = \sum_{n=0}^{b-1} f(n)$$

Which proves that the integral converges.

Q9. Show that integration by parts can sometimes be applied to the "improper" integrals defined in Exercises 7 and 8. (State appropriate hypotheses, formulate a theorem, and prove it.) For instance show that

$$\int_0^\infty \frac{\cos x}{1+x} dx = \int_0^\infty \frac{\sin x}{(1+x)^2}$$

Q10. Let p and q be positive real numbers such that

$$\frac{1}{q} + \frac{1}{q} = 1$$

Prove the following statements.

(a) If $u \geq 0$ and $v \geq 0$, then

$$uv \le \frac{u^p}{p} + \frac{v^q}{q}$$

Equality holds if and only if $u^p = v^q$.

(b) If $f \in \mathcal{R}(\alpha)$, $g \in \mathcal{R}(\alpha)$, $f \geq 0$, $g \geq 0$, and

$$\int_{a}^{b} f^{p} d\alpha = 1 = \int_{a}^{b} g^{q} d\alpha$$

then

$$\int_{a}^{b} fg \, d\alpha \leq 1$$

(c) If f and g are complex functions in $\mathcal{R}(\alpha)$, then

$$\left| \int_a^b fg \, d\alpha \right| \le \left\{ \int_a^b |f|^p \, d\alpha \right\}^{\frac{1}{p}} \left\{ \int_a^b |g|^q \, d\alpha \right\}^{\frac{1}{q}}$$

This is $H\"{o}lder$'s inequality. When p=q=2 it is usually called the Schwarz inequality. (Note that Theorem 1.35 is a very special case of this.)

(d) Show that Hölder's inequality is also true for the "improper" integrals described in Exercises 7 and 8.

A:

(a) Let, for $x \ge 0$ and $y \ge 0$,

$$f(x) := x^{p-1}$$

$$g(y) := y^{q-1}$$

Then f and g are both strictly increasing functions. Furthermore, since (p-1)(q-1)=1, they are inverses to one another.

LEMMA

Let f be a strictly increasing, invertible function on [a,b] that is also $\mathcal{R}(\alpha)$ on [a,b]. Then

$$(b-a)(f(b)-f(a)) = \int_{a}^{b} f dx + \int_{f(a)}^{f(b)} f^{-1} dx - (b-a)(f(a)) - (f(b)-f(a))(a)$$

Proof

Let P be any partition at all of [a, b]. Construct a corresponding partition P' of [f(a), f(b)] made of points $y_i := f(x_i)$. This is a valid partition as f is increasing, and the endpoints map correctly. Now consider the facts

$$b - a = \sum_{i=1}^{n} \Delta x_i$$

$$f(b) - f(a) = \sum_{i=1}^{n} \Delta y_i$$

Hence

$$(b-a)(f(b)-f(a)) = \sum_{1 \le i,j \le n} \Delta x_i \Delta y_j$$

Let m_i denote the inf of f in $[x_{i-1}, x_i]$, and let m'_i denote the inf of f^{-1} on $[y_{i-1}, y_i]$. Define M_i and M'_i similarly. By the monotonicity of f, we know that

$$m_{i} = y_{i-1} = f(x_{i-1})$$

$$m'_{i} = x_{i-1} = f^{-1}(y_{i-1})$$

$$M_{i} = y_{i} = f(x_{i})$$

$$M'_{i} = x_{i} = f^{-1}(y_{i})$$

We also know that

$$x_i - a = \sum_{j=1}^i \Delta x_j$$

$$y_i - f(a) = \sum_{j=1}^{i} \Delta y_j$$

Hence U(P, f) may be written as

$$U(P,f) = \sum_{i=1}^{n} M_i \Delta x_i = \sum_{i=1}^{n} y_i \Delta x_i = \sum_{i=1}^{n} \left[\sum_{j=1}^{i} \Delta y_j + f(a) \right] \Delta x_i$$

Simplifying the sums

$$U(P, f) = \left[\sum_{1 \le j \le i \le n} \Delta x_i \Delta y_j\right] + (b - a)(f(a))$$

Similarly,

$$U(P', f^{-1}) = \left[\sum_{1 \le i \le j \le n} \Delta x_i \Delta y_j\right] + (f(b) - f(a))(a)$$

Consider the term $\Delta x_i \Delta y_k$. Either j < i, in which case it is part of the sum of U(P, f) but not of $U(P', f^{-1})$, or i > j in which case it is part of the sum of $U(P', f^{-1})$ but not of U(P, f). Or i = j, in which case it is part of both. Hence, by inclusion-exclusion,

$$U(P,f) + U(P',f^{-1}) = \left[\sum_{1 \le i,j \le n} \Delta x_i \Delta y_j - \sum_{k=1}^n \Delta x_k \Delta y_k \right] + (b-a) \cdot f(a) + (f(b) - f(a)) \cdot a$$

But since $\Delta y_k = y_k - y_{k-1} = M_k - m_k$,

$$\sum_{k=1}^{n} \Delta x_k \Delta y_k = U(P, f) - L(P, f)$$

And in the same way, with $\Delta x_k = x_k - x_{k-1} = M'_i - m'i$

$$\sum_{k=1}^{n} \Delta x_k \Delta y_k = U(P', f^{-1}) - L(P', f^{-1})$$

Hence choose a partition P such that

$$U(P, f) - L(P, f) < \varepsilon$$

We automatically get a partition such that

$$U(P', f) - L(P', f) \le \varepsilon$$

and we show that

$$U(P,f) + U(P',f^{-1}) = [(b-a)(f(b)-f(a)) - \varepsilon] + (b-a) \cdot f(a) + (f(b)-f(a)) \cdot a$$

Similarly.

$$L(P,f) + L(P',f^{-1}) = [(b-a)(f(b)-f(a)) + \varepsilon] + (b-a) \cdot f(a) + (f(b)-f(a)) \cdot a$$

Then we have the inequalities

$$U(P,f) + U(P',f^{-1}) \le (b-a)(f(b)-f(a)) + (b-a) \cdot f(a) + (f(b)-f(a)) \cdot a$$

$$L(P,f) + L(P',f^{-1}) \ge (b-a)(f(b)-f(a)) + (b-a) \cdot f(a) + (f(b)-f(a)) \cdot a$$

Hence

$$\int_a^b f dx + \int_{f(a)}^{f(b)} f^{-1} dx = (b-a)(f(b)-f(a)) + (b-a) \cdot f(a) + (f(b)-f(a)) \cdot a$$

Which is the result we wanted.

Consider the quantities u^{p-1} and v^{q-1} . If they are not equal, then there are two possibilities:

$$u^{p-1} > v$$
 and $u > v^{q-1}$

$$u^{p-1} < v$$
 and $u < v^{q-1}$

Suppose, without loss of generality, that $u^{p-1} \geq v$

Then

$$uv = (u - v^{q-1} + v^{q-1})v = v^{q-1} \cdot v + (u - v^{q-1})v$$

By the lemma,

$$v^{q-1} \cdot v = \int_0^{v^{q-1}} x^{p-1} dx + \int_0^v y^{q-1} dy$$

SO

$$uv = \int_0^{v^{q-1}} x^{p-1} dx + \int_0^v y^{q-1} dy + (u - v^{q-1})v$$

By the monotonicity of x^{p-1} , the inf of x^{p-1} on $[v^{q-1}, u]$ is $v^{(q-1)(p-1)} = v$, so

$$(u - v^{q-1})v \le \int_{v^{q-1}}^{u} x^{p-1} dx$$

Then

$$uv \le \int_0^{v^{q-1}} x^{p-1} dx + \int_0^v y^{q-1} dy + \int_{v^{q-1}}^u x^{p-1} dx$$

Combining the integrals with the common integrand x^{p-1} .

$$uv \le \int_0^u x^{p-1} + \int_0^v y^{q-1} dy$$

Finally, evaluating the integrals,

$$uv \leq \frac{u^p}{p} + \frac{y^q}{q}$$

(b) By the previous part, we have that

$$fg \le \frac{f^p}{p} + \frac{g^q}{q}$$

Then

$$\int_{a}^{b} fg \, d\alpha \le \int_{a}^{b} \left[\frac{f^{p}}{p} + \frac{g^{q}}{q} \right] dx$$

Using properties of the integral,

$$\int_a^b fg \, d\alpha \le \frac{1}{p} \int_a^b f^p \, dx + \frac{1}{q} \int_a^b g^q \, dx$$

Since the integrals on the right hand side equal 1

$$\int_{a}^{b} fg \, d\alpha \le \frac{1}{p} + \frac{1}{q} = 1$$

(c) Let f and g be any $\mathcal{R}(\alpha)$ functions at all. Then |f| and |g| are also $\mathcal{R}(\alpha)$. Then the integrals.

$$\int_{a}^{b} |f|^{p} d\alpha$$

$$\int_{a}^{b} |g|^{q} d\alpha$$

exist and are finite. Suppose they are both positive. Define

$$P := \int_{a}^{b} |f|^{p} d\alpha$$

$$Q := \int_{a}^{b} |g|^{q} d\alpha$$

Then define the functions

$$h := \frac{|f|}{P^{\frac{1}{p}}}$$

$$k := \frac{|g|}{Q^{\frac{1}{q}}}$$

We also have that \overline{f} and \overline{g} are nonnegative, hence the inequality in (b) applies, and

$$\int_{a}^{b} hk \, d\alpha \le 1$$

Then

$$\begin{split} &\int_a^b \frac{|f||g|}{P^{\frac{1}{p}}Q^{\frac{1}{q}}} \, d\alpha \leq 1 \\ &\frac{1}{P^{\frac{1}{p}}Q^{\frac{1}{q}}} \int_a^b |f||g| d\alpha \leq 1 \end{split}$$

$$\int_a^b |f||g|d\alpha \leq P^{\frac{1}{p}}Q^{\frac{1}{q}}$$

Since we know that

$$\left| \int_a^b fg \; d\alpha \right| \leq \int_a^b |fg| \; d\alpha \leq \int_a^b |f| |g| \; d\alpha$$

and that

$$P^{\frac{1}{p}}Q^{\frac{1}{q}} = \left\{ \int_{a}^{b} |f|^{p} d\alpha \right\}^{\frac{1}{p}} \left\{ \int_{a}^{b} |g|^{q} d\alpha \right\}^{\frac{1}{q}}$$

we conclude that

$$\left| \int_a^b fg d\alpha \right| \leq \left\{ \int_a^b |f|^p \; d\alpha \right\}^{\frac{1}{p}} \left\{ \int_a^b |g|^q \; d\alpha \right\}^{\frac{1}{q}}$$

(d)