Projeto Computacional 1 - Relatório MS211 - Turma H

Guilherme Rafael Nunes de Oliveira - RA 221050 Luis Filipe Ramos Afonso - RA 240486 Pedro Marcelo Martelini - RA 187123

a) A equação $\frac{1}{x} = 1 + x^3$ tem uma solução positiva. Mostre em um mesmo gráfico as curvas de $y = \frac{1}{x}$ e $y = 1 + x^3$ para confirmar que de fato existe esta solução. Use o método de Newton para encontrá-la com 5 casas decimais. Mostre tabelas e gráficos com os valores das iterações.

O gráfico de $y = \frac{1}{x}$ e $y = 1 + x^3$ foram plotados usando a biblioteca *matplotlib* e *numpy* no python. O resultado obtido foi o seguinte:

Primeiramente, reescrevemos a função como f(x) = 0 e depois a derivamos:

$$f(x_n) = x^3 + 1 - \frac{1}{x}$$

$$f'(x_n) = 3x^2 + \frac{1}{x^2}$$

Agora podemos aplicar o método de Newton com a seguinte relação:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
 (1)

Com um chute inicial de $x_0 = 1$ e $\epsilon = 9 \cdot 10^{-6}$ temos o seguinte resultado:

Iteração	X	f(x)	f'(x)
1	0.750000	0.088542	3.465278
2	0.724449	-0.000150	3.479871
3	0.724492	-0.000000	3.479832

Solução	0.7244919608009
---------	-----------------

b) Alguns computadores (especialmente mais antigos) não resolvem a operação de divisão diretamente. Eles só possuem soma, subtração e multiplicação. Assim, dado um número positivo b, seu recíproco $\frac{1}{b}$ deve ser calculado indiretamente. Note que tal recíproco é o zero real da função

$$f(x) = b - \frac{1}{x}.$$

Aplique o método de Newton para calcular o recíproco de π . Use um "chute" inicial $x_0 = 0.5$ e obtenha o resultado com ao menos 6 casas decimais. Agora use $x_0 = 0.7$ e discuta o que observou. Mostre tabelas e gráficos com os valores das iterações.

Pelo método de Newton podemos encontrar o recíproco de π , ou seja, $\frac{1}{\pi}$ definindo a função:

$$f(x) = \pi - \frac{1}{x}$$

e sua derivada:

$$f'(x) = \frac{1}{x^2}$$

Aplicando a relação já mostrada anteriormente (1) com um chute inicial de $x_0 = 0.5$ e $\epsilon = 9 \cdot 10^{-7}$ temos o seguinte resultado:

Iteração	X	f(x)	f'(x)
1	0.214602	-1.5182	21.713665
2	0.284521	-0.373087	12.352975
3	0.314723	-0.0358031	10.095844
4	0.318269	-0.000398936	9.872111
5	0.318310	-5.06463e-08	9.869605

Solução 0.3183098862

Já com para $x_0 = 0.7$ com $\varepsilon = 9 \cdot 10^{-7}$, obtemos <u>overflow</u> após a iteração de número 10. Esse erro é um erro que ocorre quando um cálculo resulta em um número maior do que o maior número que pode ser representado (pelo menos em Python que está sendo utilizado).

- c) Existem inúmeros exemplos em que o método de Newton produz sequências interessantes de valores. Aplique seu código e discuta o comportamento do método nas situações abaixo. Mostre tabelas e gráficos com os valores das iterações.
- **c.1** O zero real de $f(x) = \sqrt[3]{x}$ é claramente $\xi = 0$. Aplique o método de Newton com um $x_0 \neq 0$ qualquer. Descreva o que ocorre.

Quando aplicamos o método de Newton para a função $f(x) = \sqrt[3]{x}$ com um $x_0 \neq 0$ obtemos o aviso de que deve ser um número real e não complexo. Isso acontece pois $x_1 < 0$ para o dado x_0 , isso faz com que, para as demais iterações, f(x) seja um número complexo (recebe x < 0 na raiz cúbica).

Além disso, $x_0 = 0$ faz com que a função derivada $f'(x) = \frac{1}{3x^{2/3}}$ seja um valor dividido por zero, gerando um resultado indefinido.

c.2 A equação $x^3-5x=0$ tem 3 soluções: 0, $\sqrt{5}\,e-\sqrt{5}$. Aplique o método de Newton com $x_0=1$ e $x_0=-1$ e discuta.

Aplicando o método de Newton para a equação $x^3 - 5x = 0$ com $x_0 = 1$ e um número máximo de iterações N para o programa fazer, obtemos:

Iteração	X	f(x)	f'(x)
1	-1.000000	4.000000	-2.000000
2	1.000000	-4.000000	-2.000000
3	-1.000000	4.000000	-2.000000
4	1.000000	-4.000000	-2.000000
5	-1.000000	4.000000	-2.000000

Esse comportamento ocorre até o número máximo de iterações N definido no início. Portanto, a função NÃO CONVERGE com $x_0 = 1$ e fica em *loop*.

Para a mesma equação só que com $x_0 = -1$ e um número máximo de iterações N para o programa fazer, obtemos:

Iteração	X	f(x)	f'(x)
1	1.000000	-4.000000	-2.000000
2	-1.000000	4.000000	-2.000000
3	1.000000	-4.000000	-2.000000
4	-1.000000	4.000000	-2.000000
5	1.000000	-4.000000	-2.000000

Para $x_0 = -1$ a função também NÃO CONVERGE e fica em *loop*.

c.3 A função $f(x) = x^3 - 2x + 2$ tem um zero real próximo de -2. O que ocorre se aplicar Newton com $x_0 = 0$? E se tentarmos um x_0 qualquer tal que $-0.1 < x_0 < 0.1$? O que acontece após um certo número de iterações? Por fim, o que acontece se tentar um "chute" bem distante como $x_0 = 5$?

Ao aplicarmos o método de Newton para a função $f(x) = x^3 - 2x + 2$ com $x_0 = 0$, obtermos um resultado bem semelhante ao encontrado no item anterior (c.2).

Iteração	X	f(x)	f'(x)
1	1.000000	1.000000	1.000000
2	0.000000	2.000000	-2.000000
3	1.000000	1.000000	1.000000
4	0.000000	2.000000	-2.000000
5	1.000000	1.000000	1.000000

Ou seja, para um número máximo de iterações N definido, observamos uma repetição dos valores para todas as tentativas. Nesse caso, x_1 recebe valores de 1 e 0 infinitamente como mostrado na tabela acima e NÃO CONVERGE.

Para x_0 qualquer tal que $-0.1 < x_0 < 0.1$ a função também NÃO CONVERGE.

 $x_0 = 0.002$

Iteração	X	f(x)	f'(x)
1	1.000006	1.000006	1.000036
2	0.000036	1.999928	-2.000000
3	1.000000	1.000000	1.000000
4	0.000000	2.000000	-2.000000
5	1.000000	1.000000	1.000000

$$x_0 = -0.005$$

Iteração	X	f(x)	f'(x)
1	1.000000	1.000000	1.000000
2	0.000000	1.999999	-2.000000
3	1.000000	1.000000	1.000000
4	0.000000	2.000000	-2.000000
5	1.000000	1.000000	1.000000

 $x_0 = 0.009$

Iteração	x	f(x)	f'(x)
1	1.000121	1.000121	1.000725
2	0.000724	1.998551	-1.999998
3	1.000001	1.000001	1.000005
4	0.000005	1.999991	-2.000000
5	1.000000	1.000000	1.000000
6	0.000000	2.000000	-2.000000

Por fim, com um "chute" bem distante como $x_0 = 5$, obtemos:

Iteração	x	f(x)	f'(x)
1	3.397260	34.414542	32.624132
2	2.342380	10.167284	14.460237
3	1.639260	3.126457	6.061522
4	1.123473	1.171092	1.786573
5	0.467977	1.166535	-1.342994
6	1.336584	1.714582	3.359372
7	0.826196	0.911569	0.047802
8	-18.243654	-6033.564628	996.492728
9	-12.188853	-1784.497700	443.704448
10	-8.167037	-526.411398	198.101499
11	-5.509756	-154.242428	89.072238
12	-3.778101	-44.372576	40.822134
13	-2.691127	-12.107334	19.726497
14	-2.077367	-2.810049	10.946364
15	-1.820656	-0.393781	7.944370
16	-1.771089	-0.013298	7.410271
17	-1.769295	-0.000017	7.391211
18	-1.769292	-0.000000	7.391186

Nesse caso, observamos que a função CONVERGE com 18 iterações e $\epsilon = 9 \cdot 10^{-7}$ para o método de Newton. A raiz encontrada é, com uma precisão de 6 casas decimais, x = -1.769292, como podemos observar também no gráfico abaixo:

