27) Matching Methods in Practice

Vitor Kamada

April 2019

Reference

Imbens (2015). Matching Methods in Practice. Journal of Human Resources, Vol 50:2, pp. 373-419

Assessing Overlap: Normalized Differences in Average Covariates

$$\Delta_{X,k} = \frac{\bar{X}_{t,k} - \bar{X}_{c,k}}{\sqrt{\frac{(S_{X,t,k}^2 + S_{X,c,k}^2)}{2}}}$$

$$t_{X,k} = rac{ar{X}_{t,k} - ar{X}_{c,k}}{\sqrt{rac{S_{X,t,k}^2}{N_t} + rac{S_{X,c,k}^2}{N_c}}}$$

3/19

Vitor Kamada ECO 7100 Econometrics I April 2019

Summary Statistics for Experimental Lalonde Data

Tuoinaga

Evperimental

	Controls $(N_c = 260)$			$T_t = 185$		
Covariate	Mean	(Standard Deviation)	Mean	(Standard Deviation)	<i>t</i> -stat	nor-dif
Black	0.83	(0.38)	0.84	(0.36)	0.5	0.04
Hispanic	0.11	(0.31)	0.06	(0.24)	-1.9	-0.17
Age	25.05	(7.06)	25.82	(7.16)	1.1	0.11
Married	0.15	(0.36)	0.19	(0.39)	1.0	0.09
No degree	0.83	(0.37)	0.71	(0.46)	-3.1	-0.30
Education	10.09	(1.61)	10.35	(1.97)	1.4	0.14
E'74	2.11	(5.69)	2.10	(4.89)	-0.0	-0.00
U'74	0.75	(0.43)	0.71	(0.46)	-1.0	-0.09
E'75	1.27	(3.10)	1.53	(3.22)	0.9	0.08
U'75	0.68	(0.47)	0.60	(0.49)	-1.8	-0.18

Estimated Parameters of Propensity Score for the Lalonde Experimental Data

Variable	Estimated	(Standard Error)
Intercept	-3.48	(0.10)
Preselected linear terms		
Earn '74	0.03	(0.05)
Unemployed '74	-0.24	(0.39)
Earn '75	0.06	(0.05)
Unemployed '75	-3.48	(1.65)
Additional linear terms		
No degree	7.33	(4.25)
Hispanic	-0.65	(0.39)
Education	0.29	(0.37)
Second-order terms		
No degree × education	-0.67	(0.35)
Earn '74 × no degree	-0.13	(0.06)
Unemployed '75 \times education	0.30	(0.16)

Sample Sizes for Subsamples with the Propensity Score between α and $1-\alpha$ ($\alpha=0.1299$)

$$E[e(X)] = 0.42$$

 $SD[e(X)] = 0.13$

$$Min[e(X)] = 0.03$$
 and $Max[e(X)] = 0.91$

	$ Low \\ e(x) < \alpha $	$ \text{Middle} \\ \alpha \le e(X) \le 1 - \alpha $	$\begin{array}{c} \text{High} \\ 1 - \alpha < e(X) \end{array}$	All
Controls	4	256	0	260
Treated	1	182	2	185
All	5	438	2	445

Propensity Score: Blocking with Regression

$$[0,1]$$
 into J intervals $[b_{j-1},b_j)$

$$\min_{\alpha,\tau,\beta} \sum_{i=1}^{N} B_i(j) [Y_i - \alpha - \tau W_i - \beta' X_i]^2$$

$$au_{block,treat}(Y, W, X) = \sum_{j=1}^{J} \frac{N_{tj}}{N_t} \hat{\tau}_j$$

4□▶ 4□▶ 4 □ ▶ 4 □ ▶ 3 ■ 9 0 0 ○

7/19

Vitor Kamada ECO 7100 Econometrics I April 2019

Simple Matching using Mahalanobis Metric

$$||x, x'|| = (x - x')' \hat{\Omega}_X^{-1} (x - x')$$

$$\hat{Y}_i(0) = \left\{ egin{array}{ll} Y_i^{obs} & \textit{if} & W_i = 0 \\ Y_{m(i)} & \textit{if} & W_i = 1 \end{array}
ight. \quad \hat{Y}_i(1) = \left\{ egin{array}{ll} Y_{m(i)} & \textit{if} & W_i = 0 \\ Y_i^{obs} & \textit{if} & W_i = 1 \end{array}
ight.$$

$$\hat{X}_i(0) = \left\{ \begin{array}{ccc} X_i & \text{if} & W_i = 0 \\ X_{m(i)} & \text{if} & W_i = 1 \end{array} \right. \quad \hat{X}_i(1) = \left\{ \begin{array}{ccc} X_{m(i)} & \text{if} & W_i = 0 \\ X_i & \text{if} & W_i = 1 \end{array} \right.$$

$$\hat{ au}_{sm} = \frac{1}{N} \sum_{i=1}^{N} [\hat{Y}_i(1) - \hat{Y}_i(0)]$$

Vitor Kamada ECO 7100 Econometrics I April 2019 8/19

Bias-Adjusted Matching Estimator [Abadie and Imbens (2006, 2010)]

$$\hat{Y}_{i}(0) = \alpha_{c} + \beta_{c}\hat{X}_{i}(0) + \epsilon_{ci}$$

$$\hat{Y}_{i}(1) = \alpha_{t} + \beta_{t}\hat{X}_{i}(1) + \epsilon_{ti}$$

$$\hat{Y}_{i}^{adj}(0) = \begin{cases} Y_{i}^{obs} & \text{if } W_{i} = 0\\ \hat{Y}_{i}(0) + \hat{\beta}_{c}(X_{i}X_{l(i)}) & \text{if } W_{i} = 1 \end{cases}$$

$$\hat{Y}_{i}^{adj}(1) = \begin{cases} \hat{Y}_{i}(1) + \hat{\beta}_{t}(X_{i}X_{l(i)}) & \text{if } W_{i} = 0\\ Y_{i}^{obs} & \text{if } W_{i} = 1 \end{cases}$$

$$\hat{ au}_{adj} = rac{1}{N}\sum_{i=1}^{N}\left[\hat{Y}_{i}^{adj}(1) - \hat{Y}_{i}^{adj}(0)\right]$$

Assessing Unconfoundedness: Estimates of Average Treatment Effects for Pseudo Outcomes

	В	locking	Matching		
Pseudo Outcome	Estimated	(Standard Error)	Estimated	(Standard Error)	
Earn '75 (Earn '74 + Earn'75)/2	0.22 0.03	(0.22) (0.36)	0.03 -0.08	(0.27) (0.41)	

Subclasses for the Experimental Lalonde data

	<i>p</i> -s	p-score		Number of	Average p-score		D:00	
Subclasss	Minimum	Maximum	Number of Controls	Treated	Controls	Treated	Average Difference in p-score	t-stat
1	0.07	0.38	152	67	0.32	0.33	0.01	0.8
2	0.38	0.49	52	42	0.42	0.42	0.01	1.0
3	0.49	0.85	52	73	0.56	0.58	0.02	1.4

$$E[e(x)|W=1]=0.45$$

$$E[e(x)|W=0]=0.39$$

Vitor Kamada ECO 7100 Econometrics I April 2019 11 / 19

Experimental Lalonde Data: Estimates of Average Treatment Effects

	Full Sample		Trimmed Sample		
Covariate	1 Block	Match	1 Block	2 Blocks	3 Blocks
Number	1.79	2.21	1.69	1.49	1.48
Few	(0.67) 1.74	(0.82) 2.15	(0.66) 1.60	(0.68) 1.54	(0.68) 1.52
A 11	(0.67)	(0.82)	(0.66)	(0.66)	(0.68)
All	1.67 (0.64)	2.11 (0.82)	1.56 (0.65)	1.56 (0.64)	1.46 (0.65)

Summary Statistics for Nonexperimental Lalonde Data - Current Population Survey (CPS)

CDS Controls

	$(N_c = 15,992)$		Traine	es $(N_t = 185)$		
Covariate	Mean	(Standard Deviation)	Mean	(Standard Deviation)	<i>t</i> -stat	nor-dif
Black	0.07	(0.26)	0.84	(0.36)	28.6	2.43
Hispanic	0.07	(0.26)	0.06	(0.24)	-0.7	-0.05
Age	33.23	(11.05)	25.82	(7.16)	-13.9	-0.80
Married	0.71	(0.45)	0.19	(0.39)	-18.0	-1.23
No degree	0.30	(0.46)	0.71	(0.46)	12.2	0.90
Education	12.03	(2.87)	10.35	(2.01)	-11.2	-0.68
E'74	14.02	(9.57)	2.10	(4.89)	-32.5	-1.57
U'74	0.12	(0.32)	0.71	(0.46)	17.5	1.49
E'75	13.65	(9.27)	1.53	(3.22)	-48.9	-1.75
U'75	0.11	(0.31)	0.60	(0.49)	13.6	1.19

April 2019

Estimated Parameters of Propensity Score for the Lalonde Nonexperimental (CPS) Data

Variable	Estimated	(Standard Error)
Intercept	-16.20	(0.69)
Preselected linear terms		
Earn '74	0.41	(0.11)
Unemployed '74	0.42	(0.41)
Earn '75	-0.33	(0.06)
Unemployed '75	-2.44	(0.77)
Additional linear terms		
Black	4.00	(0.26)
Married	-1.84	(0.30)
No degree	1.60	(0.22)
Hispanic	1.61	(0.41)
Age	0.73	(0.09)
Second-order terms		
$Age \times age$	-0.007	(0.002)
Unemployed '74 × unemployed '75	3.41	(0.85)
Earn '74 × age	-0.013	(0.004)
Earn '75 × married	0.15	(0.06)
Unemployed '74 × earn '75	0.22	(0.09)

Normalized Differences Before and After Matching for Nonexperimental Lalonde Data

	Full Sample	Matched Sample	Ratio of
	nor-dif	nor-dif	nor-dif
Black	2.43	0.00	0.00
Hispanic	-0.05	0.00	-0.00
Age	-0.80	-0.15	0.19
Married	-1.23	-0.28	0.22
No degree	0.90	0.25	0.28
Education	-0.68	-0.18	0.26
E'74	-1.57	-0.03	0.02
U'74	1.49	0.02	0.02
E'75	-1.75	-0.07	0.04
U'75	1.19	0.02	0.02

Vitor Kamada ECO 7100 Econometrics I April 2019 15 / 19

Estimated Parameters of Propensity Score for the Matched Lalonde Nonexperimental (CPS) Data

Variable	Estimated	(Standard Error)
Intercept	-0.15	(0.11)
Preselected linear terms		
Earn '74	0.03	(0.04)
Unemployed '74	-0.00	(0.42)
Earn '75	-0.06	(0.05)
Unemployed '75	0.26	(0.36)
Additional linear terms		
Married	-0.52	(0.55)
No degree	0.26	(0.26)
Second-order terms		
Unemployed '75 × married	-1.24	(0.55)
Married × no degree	1.10	(0.55)

 Vitor Kamada
 ECO 7100 Econometrics I
 April 2019
 16 / 19

Assessing Unconfoundedness for the Nonexperimental Lalonde Data: Estimates of Average Treatment Effects for Pseudo Outcomes

	Blocking		Matching		
Pseudo Outcome	Estimated	(Standard Error)	Estimated	(Standard Error)	
Earn '75 (Earn '74 + earn '75)/2	-1.22 -6.13	(0.25) (0.49)	-1.24 -6.37	(0.30) (0.67)	

Subclasses for the nonexperimental Lalonde data

	p-s	p-score		N. 1 C	Average p-score		D:00	
Subclass	Minimum	Maximum	Number of Controls	Number of Treated	Controls	Treated	Difference in Average <i>p</i> -score	t-stat
1	0.00	0.37	31	7	0.20	0.25	0.05	1.75
2	0.37	0.43	5	7	0.39	0.40	0.00	0.39
3	0.43	0.46	26	22	0.44	0.44	0.00	0.18
4	0.46	0.53	36	36	0.50	0.50	0.00	0.51
5	0.53	1.00	87	113	0.57	0.58	0.01	1.14

$$E[e(x)|W=1]=0.53$$

$$E[e(x)|W=0]=0.47$$

Vitor Kamada ECO 7100 Econometrics I April 2019 18 / 19

Nonexperimental Lalonde Data: Estimates of Average Treatment Effects

Covariate	Full Sample		Trimmed Sample			
	1 Block	Match	1 Block	2 Blocks	4 Blocks	Match
Number	-8.50 (0.58)	1.72 (0.90)	1.72 (0.74)	1.81 (0.75)	1.79 (0.76)	1.98 (0.85)
Few	0.69	1.73	1.81	1.80	2.10	1.98
All	(0.59) 1.07 (0.55)	(0.90) 1.81 (0.90)	(0.73) 1.97 (0.66)	(0.73) 1.90 (0.67)	(0.75) 1.93 (0.70)	(0.85) 2.06 (0.85)