## Class – XII MATHEMATICS (041) SQP Marking Scheme (2019-20)

TIME: 3 Hrs. Maximum Marks: 80

|    | SECTION A                                                                                                                                                                                                                                                                    |   |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 1  | (c) 9                                                                                                                                                                                                                                                                        | 1 |
| 2  | (a) 3 × p                                                                                                                                                                                                                                                                    | 1 |
| 3  | (b)p=3,q= $\frac{27}{2}$                                                                                                                                                                                                                                                     | 1 |
| 4  | (b)0.25                                                                                                                                                                                                                                                                      | 1 |
| 5  | (c) (2,3)                                                                                                                                                                                                                                                                    | 1 |
| 6  | $(b)\frac{\pi}{3}$                                                                                                                                                                                                                                                           | 1 |
| 7  | (c) $\frac{8}{15}$                                                                                                                                                                                                                                                           | 1 |
| 8  | $(b) \frac{1}{5} \sin^{-1} \left( \frac{5x}{3} \right) + c$                                                                                                                                                                                                                  | 1 |
| 9  | (a) 0                                                                                                                                                                                                                                                                        | 1 |
| 10 | (b) $\vec{r} = \left(-\hat{\imath} + 3\hat{\jmath} + 5\hat{k}\right) + \lambda(2\hat{\imath} + 3\hat{\jmath})$                                                                                                                                                               | 1 |
| 11 | $g\left(\left[-\frac{5}{4}\right]\right) = g(-2) = 2$                                                                                                                                                                                                                        | 1 |
| 12 | 2                                                                                                                                                                                                                                                                            | 1 |
| 13 | y = 2 $-3$                                                                                                                                                                                                                                                                   | 1 |
| 14 | $\left  \frac{-3}{2} \right $                                                                                                                                                                                                                                                | 1 |
|    | OR                                                                                                                                                                                                                                                                           |   |
|    | decreasing at rate of 72 units/sec.                                                                                                                                                                                                                                          |   |
| 15 | 2 units                                                                                                                                                                                                                                                                      | 1 |
|    | OR                                                                                                                                                                                                                                                                           |   |
|    | $\frac{5}{7}(-2\hat{\imath}-3\hat{\jmath}+6\hat{k})$                                                                                                                                                                                                                         |   |
| 16 | $\frac{5}{7}(-2\hat{i} - 3\hat{j} + 6\hat{k})$ Apply $R_1 \to R_1 + R_2$ $= 2(I + m + n)\begin{vmatrix} 1 & 1 & 1 \\ n & I & m \\ 2 & 2 & 2 \end{vmatrix}$ $= 2(I + m + n)\begin{vmatrix} 1 & 1 & 1 \\ n & I & m \\ 1 & 1 & 1 \end{vmatrix}$ ; yes $(I + m + n)$ is a factor |   |
|    | $= 2(I + m + n) \begin{vmatrix} 1 & 1 & 1 \\ n & I & m \\ 1 & 1 & 1 \end{vmatrix}$ ; yes (I + m + n) is a factor                                                                                                                                                             | 1 |
| 17 | $\frac{ 1  1  1 }{\int_{-2}^{2} (x^3 + 1) dx = \int_{-2}^{2} (x^3) dx + \int_{-2}^{2} 1 dx = I_1 + I_2}$                                                                                                                                                                     |   |
|    | $= 0 + [x]_{-2}^2 \qquad \text{(As } I_1 \text{ is odd function)}$                                                                                                                                                                                                           |   |
|    | =2+2<br>= 4                                                                                                                                                                                                                                                                  | 1 |
|    |                                                                                                                                                                                                                                                                              |   |

| 18 | Let $x + \sin x = t$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| '  | So $(1 + \cos x)dx = dt$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1     |
| '  | $I = 3 \int \frac{dt}{t} = 3 \log t  + c = 3 \log (x + \sin x)  + c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
|    | or directly by writing formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
|    | $\int \frac{f'(x)}{f(x)} dx = \log f(x)  + c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
|    | $\int f(x) dx = \log f(x) + c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
|    | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| i  | $\int \cos 4x  dx = \frac{\sin 4x}{\cos 4x} + a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
| 19 | $\int \cos 4x  dx = \frac{\sin 4x}{4} + c$ $ et  (1 + x^2) = t$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
| 19 | $\begin{array}{ll}   \mathbf{SO}   & (1+\lambda) = t \\   \mathbf{SO}   & 2xdx = dt \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
|    | $\Rightarrow I = \frac{1}{2} \int e^t dt = \frac{1}{2} e^t + C = \frac{1}{2} e^{(1+x^2)} + C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1     |
| 1  | 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
| 20 | $\frac{dy}{dx} = e^x e^y$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
|    | •···                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
|    | $\Rightarrow \frac{dy}{e^y} = e^x dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
|    | integrating both sides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
|    | $\Rightarrow -e^{-y} + c = e^{x}$ $\Rightarrow e^{x} + e^{-y} = c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1     |
|    | $\Rightarrow \mathbf{e}^{-} + \mathbf{e}^{-} = \mathbf{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
|    | SECTION B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
| 21 | SECTION B $= \sin^{-1} \left( \frac{\sin x}{\sqrt{2}} + \frac{\cos x}{\sqrt{2}} \right)  \text{if}  -\frac{\pi}{4} < x < \frac{\pi}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| 21 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1     |
| 21 | $= \sin^{-1}\left(\frac{\sin x}{\sqrt{2}} + \frac{\cos x}{\sqrt{2}}\right)  \text{if}  -\frac{\pi}{4} < x < \frac{\pi}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1     |
| 21 | $= \sin^{-1} \left( \frac{\sin x}{\sqrt{2}} + \frac{\cos x}{\sqrt{2}} \right)  \text{if}  -\frac{\pi}{4} < x < \frac{\pi}{4}$ $= \sin^{-1} \left( \sin x \cos \frac{\pi}{4} + \cos x \sin \frac{\pi}{4} \right)  \text{if}  -\frac{\pi}{4} + \frac{\pi}{4} < x + \frac{\pi}{4} < \frac{\pi}{4} + \frac{\pi}{4}$ $= \sin^{-1} \left( \sin \left( x + \frac{\pi}{4} \right) \right) \text{if}  0 < \left( x + \frac{\pi}{4} \right) < \frac{\pi}{2} \text{ i.e. principal values}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1     |
| 21 | $= \sin^{-1} \left( \frac{\sin x}{\sqrt{2}} + \frac{\cos x}{\sqrt{2}} \right)  \text{if}  -\frac{\pi}{4} < x < \frac{\pi}{4}$ $= \sin^{-1} \left( \sin x \cos \frac{\pi}{4} + \cos x \sin \frac{\pi}{4} \right)  \text{if}  -\frac{\pi}{4} + \frac{\pi}{4} < x + \frac{\pi}{4} < \frac{\pi}{4} + \frac{\pi}{4}$ $= \sin^{-1} \left( \sin \left( x + \frac{\pi}{4} \right) \right) \text{if}  0 < \left( x + \frac{\pi}{4} \right) < \frac{\pi}{2} \text{ i.e. principal values}$ $= \left( x + \frac{\pi}{4} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
| 21 | $= \sin^{-1}\left(\frac{\sin x}{\sqrt{2}} + \frac{\cos x}{\sqrt{2}}\right)  \text{if}  -\frac{\pi}{4} < x < \frac{\pi}{4}$ $= \sin^{-1}\left(\sin x \cos \frac{\pi}{4} + \cos x \sin \frac{\pi}{4}\right)  \text{if}  -\frac{\pi}{4} + \frac{\pi}{4} < x + \frac{\pi}{4} < \frac{\pi}{4} + \frac{\pi}{4}$ $= \sin^{-1}\left(\sin\left(x + \frac{\pi}{4}\right)\right) \text{if}  0 < \left(x + \frac{\pi}{4}\right) < \frac{\pi}{2} \text{ i.e. principal values}$ $= \left(x + \frac{\pi}{4}\right)$ OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
| 21 | $= \sin^{-1}\left(\frac{\sin x}{\sqrt{2}} + \frac{\cos x}{\sqrt{2}}\right)  \text{if}  -\frac{\pi}{4} < x < \frac{\pi}{4}$ $= \sin^{-1}\left(\sin x \cos\frac{\pi}{4} + \cos x \sin\frac{\pi}{4}\right)  \text{if}  -\frac{\pi}{4} + \frac{\pi}{4} < x + \frac{\pi}{4} < \frac{\pi}{4} + \frac{\pi}{4}$ $= \sin^{-1}\left(\sin\left(x + \frac{\pi}{4}\right)\right) \text{if}  0 < \left(x + \frac{\pi}{4}\right) < \frac{\pi}{2} \text{ i.e. principal values}$ $= \left(x + \frac{\pi}{4}\right)$ OR Let 2 divides $(a - b)$ and 2 divides $(b - c)$ : where $a, b, c \in Z$                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
| 21 | $= \sin^{-1}\left(\frac{\sin x}{\sqrt{2}} + \frac{\cos x}{\sqrt{2}}\right)  \text{if}  -\frac{\pi}{4} < x < \frac{\pi}{4}$ $= \sin^{-1}\left(\sin x \cos \frac{\pi}{4} + \cos x \sin \frac{\pi}{4}\right)  \text{if}  -\frac{\pi}{4} + \frac{\pi}{4} < x + \frac{\pi}{4} < \frac{\pi}{4} + \frac{\pi}{4}$ $= \sin^{-1}\left(\sin\left(x + \frac{\pi}{4}\right)\right) \text{if}  0 < \left(x + \frac{\pi}{4}\right) < \frac{\pi}{2} \text{ i.e. principal values}$ $= \left(x + \frac{\pi}{4}\right)$ OR  Let 2 divides $(a - b)$ and 2 divides $(b - c)$ : where $a, b, c \in Z$ So 2 divides $[(a - b) + (b - c)]$                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1     |
| 21 | $= \sin^{-1}\left(\frac{\sin x}{\sqrt{2}} + \frac{\cos x}{\sqrt{2}}\right)  \text{if}  -\frac{\pi}{4} < x < \frac{\pi}{4}$ $= \sin^{-1}\left(\sin x \cos \frac{\pi}{4} + \cos x \sin \frac{\pi}{4}\right)  \text{if}  -\frac{\pi}{4} + \frac{\pi}{4} < x + \frac{\pi}{4} < \frac{\pi}{4} + \frac{\pi}{4}$ $= \sin^{-1}\left(\sin\left(x + \frac{\pi}{4}\right)\right) \text{if}  0 < \left(x + \frac{\pi}{4}\right) < \frac{\pi}{2} \text{ i.e. principal values}$ $= \left(x + \frac{\pi}{4}\right)$ OR  Let 2 divides $(a - b)$ and 2 divides $(b - c)$ : where $a, b, c \in Z$ So 2 divides $[(a - b) + (b - c)]$ 2 divides $(a - c)$ : Yes relation R is transitive                                                                                                                                                                                                                                                                                                                                                                                | 1     |
| 21 | $= \sin^{-1}\left(\frac{\sin x}{\sqrt{2}} + \frac{\cos x}{\sqrt{2}}\right)  \text{if}  -\frac{\pi}{4} < x < \frac{\pi}{4}$ $= \sin^{-1}\left(\sin x \cos \frac{\pi}{4} + \cos x \sin \frac{\pi}{4}\right)  \text{if}  -\frac{\pi}{4} + \frac{\pi}{4} < x + \frac{\pi}{4} < \frac{\pi}{4} + \frac{\pi}{4}$ $= \sin^{-1}\left(\sin\left(x + \frac{\pi}{4}\right)\right) \text{if}  0 < \left(x + \frac{\pi}{4}\right) < \frac{\pi}{2} \text{ i.e. principal values}$ $= \left(x + \frac{\pi}{4}\right)$ OR  Let 2 divides $(a - b)$ and 2 divides $(b - c)$ : where $a, b, c \in Z$ So 2 divides $[(a - b) + (b - c)]$ 2 divides $(a - c)$ : Yes relation R is transitive                                                                                                                                                                                                                                                                                                                                                                                | 1     |
|    | $= \sin^{-1}\left(\frac{\sin x}{\sqrt{2}} + \frac{\cos x}{\sqrt{2}}\right)  \text{if}  -\frac{\pi}{4} < x < \frac{\pi}{4}$ $= \sin^{-1}\left(\sin x \cos \frac{\pi}{4} + \cos x \sin \frac{\pi}{4}\right)  \text{if}  -\frac{\pi}{4} + \frac{\pi}{4} < x + \frac{\pi}{4} < \frac{\pi}{4} + \frac{\pi}{4}$ $= \sin^{-1}\left(\sin\left(x + \frac{\pi}{4}\right)\right) \text{if}  0 < \left(x + \frac{\pi}{4}\right) < \frac{\pi}{2} \text{ i.e. principal values}$ $= \left(x + \frac{\pi}{4}\right)$ OR  Let 2 divides $(a - b)$ and 2 divides $(b - c)$ : where $a, b, c \in Z$ So 2 divides $[(a - b) + (b - c)]$ 2 divides $(a - c)$ : Yes relation R is transitive $[0] = \{0, \pm 2, \pm 4, \pm 6, \ldots\}$ $y = ae^{2x} + be^{-x} \ldots (1)$                                                                                                                                                                                                                                                                                                  | 1     |
|    | $= \sin^{-1}\left(\frac{\sin x}{\sqrt{2}} + \frac{\cos x}{\sqrt{2}}\right)  \text{if}  -\frac{\pi}{4} < x < \frac{\pi}{4}$ $= \sin^{-1}\left(\sin x \cos \frac{\pi}{4} + \cos x \sin \frac{\pi}{4}\right)  \text{if}  -\frac{\pi}{4} + \frac{\pi}{4} < x + \frac{\pi}{4} < \frac{\pi}{4} + \frac{\pi}{4}$ $= \sin^{-1}\left(\sin\left(x + \frac{\pi}{4}\right)\right) \text{if}  0 < \left(x + \frac{\pi}{4}\right) < \frac{\pi}{2} \text{ i.e. principal values}$ $= \left(x + \frac{\pi}{4}\right)$ OR  Let 2 divides $(a - b)$ and 2 divides $(b - c)$ : where $a, b, c \in Z$ So 2 divides $[(a - b) + (b - c)]$ 2 divides $(a - c)$ : Yes relation R is transitive $[0] = \{0, \pm 2, \pm 4, \pm 6, \ldots\}$ $y = ae^{2x} + be^{-x} \ldots (1)$ $\frac{dy}{dx} = 2ae^{2x} - be^{-x} \ldots (2)$                                                                                                                                                                                                                                                  | 1 1 1 |
|    | $= \sin^{-1}\left(\frac{\sin x}{\sqrt{2}} + \frac{\cos x}{\sqrt{2}}\right)  \text{if}  -\frac{\pi}{4} < x < \frac{\pi}{4}$ $= \sin^{-1}\left(\sin x \cos \frac{\pi}{4} + \cos x \sin \frac{\pi}{4}\right)  \text{if}  -\frac{\pi}{4} + \frac{\pi}{4} < x + \frac{\pi}{4} < \frac{\pi}{4} + \frac{\pi}{4}$ $= \sin^{-1}\left(\sin\left(x + \frac{\pi}{4}\right)\right) \text{if}  0 < \left(x + \frac{\pi}{4}\right) < \frac{\pi}{2} \text{ i.e. principal values}$ $= \left(x + \frac{\pi}{4}\right)$ OR  Let 2 divides $(a - b)$ and 2 divides $(b - c)$ : where $a, b, c \in Z$ So 2 divides $[(a - b) + (b - c)]$ 2 divides $(a - c)$ : Yes relation R is transitive $[0] = \{0, \pm 2, \pm 4, \pm 6,\}$ $y = ae^{2x} + be^{-x}$                                                                                                                                                                                                                                                                                                                    | 1     |
|    | $= \sin^{-1}\left(\frac{\sin x}{\sqrt{2}} + \frac{\cos x}{\sqrt{2}}\right)  \text{if}  -\frac{\pi}{4} < x < \frac{\pi}{4}$ $= \sin^{-1}\left(\sin x \cos \frac{\pi}{4} + \cos x \sin \frac{\pi}{4}\right)  \text{if}  -\frac{\pi}{4} + \frac{\pi}{4} < x + \frac{\pi}{4} < \frac{\pi}{4} + \frac{\pi}{4}$ $= \sin^{-1}\left(\sin\left(x + \frac{\pi}{4}\right)\right) \text{if}  0 < \left(x + \frac{\pi}{4}\right) < \frac{\pi}{2} \text{ i.e. principal values}$ $= \left(x + \frac{\pi}{4}\right)$ OR  Let 2 divides $(a - b)$ and 2 divides $(b - c)$ : where $a, b, c \in Z$ So 2 divides $[(a - b) + (b - c)]$ 2 divides $(a - c)$ : Yes relation R is transitive $[0] = \{0, \pm 2, \pm 4, \pm 6,\}$ $y = ae^{2x} + be^{-x}$                                                                                                                                                                                                                                                                                                                    | 1 1 1 |
|    | $= \sin^{-1}\left(\frac{\sin x}{\sqrt{2}} + \frac{\cos x}{\sqrt{2}}\right)  \text{if}  -\frac{\pi}{4} < x < \frac{\pi}{4}$ $= \sin^{-1}\left(\sin x \cos \frac{\pi}{4} + \cos x \sin \frac{\pi}{4}\right)  \text{if}  -\frac{\pi}{4} + \frac{\pi}{4} < x + \frac{\pi}{4} < \frac{\pi}{4} + \frac{\pi}{4}$ $= \sin^{-1}\left(\sin\left(x + \frac{\pi}{4}\right)\right) \text{if}  0 < \left(x + \frac{\pi}{4}\right) < \frac{\pi}{2} \text{ i.e. principal values}$ $= \left(x + \frac{\pi}{4}\right)$ OR  Let 2 divides $(a - b)$ and 2 divides $(b - c)$ : where $a, b, c \in \mathbb{Z}$ So 2 divides $[(a - b) + (b - c)]$ 2 divides $(a - c)$ : Yes relation R is transitive $[0] = \{0, \pm 2, \pm 4, \pm 6,\}$ $y = ae^{2x} + be^{-x}$                                                                                                                                                                                                                                                                                                           | 1 1 1 |
|    | $= \sin^{-1}\left(\frac{\sin x}{\sqrt{2}} + \frac{\cos x}{\sqrt{2}}\right)  \text{if}  -\frac{\pi}{4} < x < \frac{\pi}{4}$ $= \sin^{-1}\left(\sin x \cos \frac{\pi}{4} + \cos x \sin \frac{\pi}{4}\right)  \text{if}  -\frac{\pi}{4} + \frac{\pi}{4} < x + \frac{\pi}{4} < \frac{\pi}{4} + \frac{\pi}{4}$ $= \sin^{-1}\left(\sin\left(x + \frac{\pi}{4}\right)\right) \text{if}  0 < \left(x + \frac{\pi}{4}\right) < \frac{\pi}{2} \text{ i.e. principal values}$ $= \left(x + \frac{\pi}{4}\right)$ OR  Let 2 divides $(a - b)$ and 2 divides $(b - c)$ : where $a, b, c \in Z$ So 2 divides $[(a - b) + (b - c)]$ 2 divides $(a - c)$ : Yes relation R is transitive $[0] = \{0, \pm 2, \pm 4, \pm 6,\}$ $y = ae^{2x} + be^{-x}$                                                                                                                                                                                                                                                                                                                    | 1 1 1 |
|    | $= \sin^{-1}\left(\frac{\sin x}{\sqrt{2}} + \frac{\cos x}{\sqrt{2}}\right)  \text{if}  -\frac{\pi}{4} < x < \frac{\pi}{4}$ $= \sin^{-1}\left(\sin x \cos \frac{\pi}{4} + \cos x \sin \frac{\pi}{4}\right)  \text{if}  -\frac{\pi}{4} + \frac{\pi}{4} < x + \frac{\pi}{4} < \frac{\pi}{4} + \frac{\pi}{4}$ $= \sin^{-1}\left(\sin\left(x + \frac{\pi}{4}\right)\right) \text{if}  0 < \left(x + \frac{\pi}{4}\right) < \frac{\pi}{2} \text{ i.e. principal values}$ $= \left(x + \frac{\pi}{4}\right) \qquad \qquad \mathbf{OR}$ Let 2 divides $(a - b)$ and 2 divides $(b - c)$ : where $a, b, c \in \mathbb{Z}$ So 2 divides $[(a - b) + (b - c)]$ 2 divides $(a - c)$ : Yes relation $\mathbb{R}$ is transitive $[0] = \{0, \pm 2, \pm 4, \pm 6, \ldots\}$ $y = ae^{2x} + be^{-x} \qquad (1)$ $\frac{dy}{dx} = 2ae^{2x} - be^{-x} \qquad (2)$ $\frac{d^2y}{dx^2} = 4ae^{2x} + be^{-x} \qquad (3)$ putting values on LHS $= \frac{d^2y}{dx^2} - \frac{dy}{dx} - 2y$ $= (4ae^{2x} + be^{-x}) - (2ae^{2x} - be^{-x}) - 2(ae^{2x} + be^{-x})$            | 1 1 1 |
|    | $= \sin^{-1}\left(\frac{\sin x}{\sqrt{2}} + \frac{\cos x}{\sqrt{2}}\right)  \text{if}  -\frac{\pi}{4} < x < \frac{\pi}{4}$ $= \sin^{-1}\left(\sin x \cos \frac{\pi}{4} + \cos x \sin \frac{\pi}{4}\right)  \text{if}  -\frac{\pi}{4} + \frac{\pi}{4} < x + \frac{\pi}{4} < \frac{\pi}{4} + \frac{\pi}{4}$ $= \sin^{-1}\left(\sin\left(x + \frac{\pi}{4}\right)\right) \text{if}  0 < \left(x + \frac{\pi}{4}\right) < \frac{\pi}{2} \text{ i.e. principal values}$ $= \left(x + \frac{\pi}{4}\right) \qquad \qquad \mathbf{OR}$ Let 2 divides $(a - b)$ and 2 divides $(b - c)$ : where $a, b, c \in \mathbb{Z}$ So 2 divides $[(a - b) + (b - c)]$ 2 divides $(a - c)$ : Yes relation R is transitive $[0] = \{0, \pm 2, \pm 4, \pm 6, \ldots\}$ $y = ae^{2x} + be^{-x} \qquad (2)$ $\frac{d^{2}y}{dx} = 2ae^{2x} - be^{-x} \qquad (3)$ putting values on LHS $= \frac{d^{2}y}{dx^{2}} - \frac{dy}{dx} - 2y$ $= (4ae^{2x} + be^{-x}) - (2ae^{2x} - be^{-x}) - 2(ae^{2x} + be^{-x})$ $= 4ae^{2x} + be^{-x} - 2ae^{2x} + be^{-x} - 2ae^{2x} - 2be^{-x}$ | 1 1 1 |

|    |                                                                                                                                                                                                                           | 1                            |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| 23 | $x^2 = 2y \dots (1)$                                                                                                                                                                                                      |                              |
|    | $\Rightarrow 2x \frac{dx}{dt} = 2 \frac{dy}{dt}$ (given $\frac{dy}{dt} = \frac{dx}{dt}$ )                                                                                                                                 | 1                            |
|    | $\Rightarrow 2x \frac{dx}{dt} = 2 \frac{dx}{dt}$                                                                                                                                                                          |                              |
|    | $\begin{array}{ll} & \text{dt} & \text{dt} \\ \Rightarrow x = 1 \end{array}$                                                                                                                                              |                              |
|    | from (1) $y = \frac{1}{2}$                                                                                                                                                                                                |                              |
|    | so point is $\left(1, \frac{1}{2}\right)$                                                                                                                                                                                 | 1                            |
| 24 | $= (\vec{a} - \vec{b}) \cdot \{ (\vec{b} - \vec{c}) \times (\vec{c} - \vec{a}) \}$                                                                                                                                        |                              |
| 24 |                                                                                                                                                                                                                           |                              |
|    | $= (\vec{a} - \vec{b}) \cdot \{\vec{b} \times \vec{c} - \vec{b} \times \vec{a} - \vec{c} \times \vec{c} + \vec{c} \times \vec{a}\}$                                                                                       |                              |
|    | $= (\vec{a} - \vec{b}) \cdot \{\vec{b} \times \vec{c} - \vec{b} \times \vec{a} + \vec{c} \times \vec{a}\} \qquad \dots (\vec{c} \times \vec{c} = 0)$                                                                      | 1                            |
|    | $= (\vec{a} - \vec{b}) \cdot \{\vec{b} \times \vec{c} + \vec{a} \times \vec{b} + \vec{c} \times \vec{a}\}$                                                                                                                |                              |
|    | $= \vec{a}. (\vec{b} \times \vec{c}) + \vec{a}. (\vec{a} \times \vec{b}) + \vec{a}. (\vec{c} \times \vec{a}) - \vec{b}. (\vec{b} \times \vec{c}) - \vec{b}. (\vec{a} \times \vec{b}) - \vec{b}. (\vec{c} \times \vec{a})$ |                              |
|    | $= \vec{a} \cdot (\vec{b} \times \vec{c}) + 0 + 0 - 0 - 0 - \vec{b} \cdot (\vec{c} \times \vec{a})$                                                                                                                       |                              |
|    | $= \vec{a} \cdot (\vec{b} \times \vec{c}) - \vec{b} \cdot (\vec{c} \times \vec{a})$                                                                                                                                       | 1                            |
|    | =0                                                                                                                                                                                                                        |                              |
|    | (STP remains same if vectors ਕੋ, b , c are changed in cyclic order)                                                                                                                                                       |                              |
|    | OR                                                                                                                                                                                                                        |                              |
|    | $\langle \cdot, \cdot \rangle \rightarrow \langle \cdot, \cdot \rangle \rightarrow \langle \cdot, \cdot \rangle$                                                                                                          |                              |
|    | $(\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{a} + \vec{b} + \vec{c}) = 0$                                                                                                                                                   | 1                            |
|    | $\Rightarrow \vec{a}.\vec{a} + \vec{a}.\vec{b} + \vec{a}.\vec{c} + \vec{b}.\vec{a} + \vec{b}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a} + \vec{c}.\vec{b} + \vec{c}.\vec{c} = 0.$                                        |                              |
|    | $  \Rightarrow  \vec{a} ^2 +  \vec{b} ^2 +  \vec{c} ^2 + 2(\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a}) = 0$                                                                                                      |                              |
|    | $\Rightarrow 3^2 + 5^2 + 7^2 + 2(\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a}) = 0$                                                                                                                                | $\left  \frac{1}{2} \right $ |
|    | $\Rightarrow 2(\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a}) = -(9 + 25 + 49)$                                                                                                                                     | 2                            |
|    | $\Rightarrow (\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a}) = -\frac{83}{3}$                                                                                                                                       | 1                            |
|    |                                                                                                                                                                                                                           | $\frac{1}{2}$                |
|    |                                                                                                                                                                                                                           |                              |
| 25 | Vector in the direction of first line $\vec{b} = (\widehat{3}_1 + \widehat{4}_1 + 5\widehat{k})$                                                                                                                          |                              |
|    | Vector in the direction of second line $\vec{d} = (4\hat{\imath} - 3\hat{\jmath} + 5\hat{k})$                                                                                                                             |                              |
|    | Angle $\theta$ between two lines is given by $\cos \theta = \frac{\vec{b} \cdot \vec{d}}{ \vec{b}   \vec{d} }$                                                                                                            |                              |
|    |                                                                                                                                                                                                                           |                              |
|    | $\cos \theta = \frac{(\widehat{3}_1 + \widehat{4}_1 + 5\widehat{k}).(4\widehat{1} - 3\widehat{1} + 5\widehat{k})}{ (\widehat{3}_1 + \widehat{4}_1 + 5\widehat{k})  (4\widehat{1} - 3\widehat{1} + 5\widehat{k}) }$        | 1                            |
|    |                                                                                                                                                                                                                           |                              |
|    | $\Rightarrow \cos \theta = \frac{12 - 12 + 25}{\sqrt{9 + 16 + 25}\sqrt{9 + 16 + 25}}$                                                                                                                                     |                              |
|    | $\sqrt{9+16+25}\sqrt{9+16+25}$                                                                                                                                                                                            |                              |
|    | $\Rightarrow \cos \theta = \frac{25}{\sqrt{50}\sqrt{50}}$                                                                                                                                                                 | 1                            |
|    | $-\sqrt{50}\sqrt{50}$                                                                                                                                                                                                     | $\frac{1}{2}$                |
|    | $\Rightarrow \cos \theta = \frac{1}{2}$                                                                                                                                                                                   |                              |
|    | _                                                                                                                                                                                                                         | 1                            |
|    | $\Rightarrow \theta = \frac{\pi}{3}$                                                                                                                                                                                      | $\frac{1}{2}$                |
|    | 3                                                                                                                                                                                                                         | -                            |
|    | D(A) 80 4 D(D) 90 9                                                                                                                                                                                                       |                              |
| 26 | $P(A) = \frac{80}{100} = \frac{4}{5}, \qquad P(B) = \frac{90}{100} = \frac{9}{10}$                                                                                                                                        |                              |
|    | P(Agree)=P(Both speaking truth or both telling lie)<br>= $P(AB \ or \ \overline{AB})$                                                                                                                                     | 1                            |
|    | -r (AD UI AD )                                                                                                                                                                                                            |                              |

|      | $p(A)p(B) = p(\overline{A})p(\overline{B})$                                                                                                  |                |
|------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|      | $= P(A)P(B)orP(\bar{A})P(\bar{B})$                                                                                                           |                |
|      | $= \left(\frac{4}{5}\right) \left(\frac{9}{10}\right) + \left(\frac{1}{5}\right) \left(\frac{1}{10}\right)$                                  |                |
|      | $=\frac{36+1}{50} = \frac{37}{50}$ $=\frac{74}{100} = 74\%$                                                                                  |                |
|      | 50 50 74 7404                                                                                                                                | 1              |
|      | $=\frac{100}{100} = 74\%$                                                                                                                    | '              |
|      |                                                                                                                                              |                |
|      |                                                                                                                                              |                |
|      | SECTION C                                                                                                                                    |                |
| 1 07 | 2v±2                                                                                                                                         |                |
| 27   | Let $y = f(x) = \frac{2x+3}{x-3}$ (1)                                                                                                        | 1              |
|      | Let $x_1, x_2 \in A = R - \{3\}$                                                                                                             | $\frac{1}{2}$  |
|      | $\operatorname{Let} f(x_1) = f(x_2)$                                                                                                         | 2              |
|      | $\Rightarrow \frac{2x_1 + 3}{x_1 - 3} = \frac{2x_2 + 3}{x_2 - 3}$                                                                            |                |
|      | $\vec{x}_1 - \vec{3} - \vec{x}_2 - \vec{3}$                                                                                                  |                |
|      | $\Rightarrow (2x_1 + 3)(x_2 - 3) = (2x_2 + 3)(x_1 - 3)$                                                                                      |                |
|      | $\Rightarrow (2x_1x_2 - 6x_1 + 3x_2 - 9) = (2x_1x_2 - 6x_2 + 3x_1 - 9)$                                                                      |                |
|      | $\Rightarrow -6x_1 + 3x_2 = -6x_2 + 3x_1$                                                                                                    |                |
|      | $\Rightarrow 9x_1 = 9x_2$                                                                                                                    |                |
|      | $\Rightarrow x_1 = x_2$ Now $f(x) \to x$                                                                                                     |                |
|      | Now $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$                                                                                                  | 1              |
|      | so $f(x)$ is one-one<br>For onto                                                                                                             |                |
| ı    |                                                                                                                                              |                |
|      | $y = \frac{2x + 3}{x - 3}$                                                                                                                   |                |
| 1    | $\Rightarrow xy - 3y = 2x + 3$                                                                                                               |                |
|      | $\Rightarrow xy - 2x = 3y + 3$                                                                                                               |                |
|      | $\Rightarrow x(y-2) = 3(y+1)$                                                                                                                |                |
|      | $\Rightarrow x = \frac{3(y+1)}{(y-2)}$ (2)                                                                                                   |                |
|      |                                                                                                                                              |                |
| ı    | equation (2) is defined for all real values of y except 2<br>i.e $y \in R - \{2\}$ which is same as given set $B = R - \{2\}$                | 1              |
|      | (co-domain=range)                                                                                                                            | $1\frac{1}{2}$ |
|      | Also $y = f(x)$                                                                                                                              |                |
|      |                                                                                                                                              |                |
|      | $f(x) = f\left(\frac{3(y+1)}{(y-2)}\right)$                                                                                                  |                |
|      | (y = 27)                                                                                                                                     |                |
|      | $2\left[\frac{1}{(y-2)}\right] + 3 \left(\operatorname{since} f(x)\right) - 2x + 3$                                                          |                |
|      | $= \frac{2\left[\frac{3(y+1)}{(y-2)}\right] + 3}{\frac{3(y+1)}{(y-2)} - 3} \left(\text{since } f(x) = \frac{2x+3}{x-3}\right)$               |                |
|      | (y-2)                                                                                                                                        |                |
|      | $\frac{2(3y+3)+3(y-2)}{3y+3-3y+6} = \frac{9y}{9} = y$                                                                                        |                |
|      |                                                                                                                                              |                |
|      | Thus for every $y \in B$ , there exists $x \in A$ such that $f(x) = y$ . Thus function is onto.                                              |                |
| ıl   | Since $f(x)$ is one-one and onto so $f(x)$ is invertible.                                                                                    | 1              |
| '    |                                                                                                                                              |                |
|      | Inverse is given by $x = f^{-1}(y) = \frac{3(y+1)}{(y-2)}$                                                                                   |                |
| 28   | $\sqrt{1-x^2} + \sqrt{1-y^2} = a(x-y)$                                                                                                       |                |
|      | Let $x = \sin A$ , $y = \sin B$                                                                                                              | 1              |
|      | $\sqrt{1-\sin^2 A} + \sqrt{1-\sin^2 B} = a(\sin A - \sin B)$                                                                                 | $\overline{2}$ |
|      | $\cos A + \cos B = a(\sin A - \sin B)$                                                                                                       |                |
|      |                                                                                                                                              | 1              |
|      | $\Rightarrow 2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right) = 2a\cos\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right)$ | 1              |
|      | $\Rightarrow \cos\left(\frac{A-B}{2}\right) = a\sin\left(\frac{A-B}{2}\right)$                                                               |                |
|      | $\rightarrow \cos\left(\frac{1}{2}\right) = a\sin\left(\frac{1}{2}\right)$                                                                   |                |
| L    | I                                                                                                                                            |                |

| (A D)                                                                                                                                                       |                                  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--|
| $\Rightarrow \cot\left(\frac{A-B}{2}\right) = a$                                                                                                            |                                  |  |
| $\Rightarrow \frac{A-B}{2}$                                                                                                                                 | $= \cot^{-1} a$                  |  |
| $\Rightarrow A - B = 2 \cot^{-1} a$                                                                                                                         | l'                               |  |
| $\Rightarrow \sin^{-1} x - \sin^{-1} y = 2 \cot^{-1} a$ differentiating w.r.t. x                                                                            | 1                                |  |
| $\Rightarrow \frac{1}{\sqrt{1-x^2}} - \frac{1}{\sqrt{1-y^2}} \frac{dy}{dx} = 0$                                                                             | l'                               |  |
| $\int \sqrt{1-x^2} \sqrt{1-y^2}  dx$                                                                                                                        | 1                                |  |
| $dy \sqrt{1-y^2}$                                                                                                                                           | $\left  \frac{1}{2} \right $     |  |
| $\Rightarrow \frac{dy}{dx} = \frac{\sqrt{1 - y^2}}{\sqrt{1 - x^2}}$                                                                                         |                                  |  |
| Ol                                                                                                                                                          | 2                                |  |
| $x = a(\cos 2\theta + 2\theta \sin 2\theta)$                                                                                                                |                                  |  |
| $\Rightarrow \frac{dx}{d\theta} = a(-2\sin 2\theta + 2\sin 2\theta)$                                                                                        | $\theta + 4\theta\cos 2\theta$ ) |  |
| $\Rightarrow \frac{dx}{d\theta} = a(4\theta\cos 2\theta)(1)$                                                                                                | , i                              |  |
| $y = a(\sin 2\theta - 2\theta \cos 2\theta)$                                                                                                                |                                  |  |
| $\Rightarrow \frac{dy}{d\theta} = a(2\cos 2\theta + 4\theta \sin 2\theta)$                                                                                  | $\theta = 2\cos 2\theta$         |  |
| 40                                                                                                                                                          |                                  |  |
| $\Rightarrow \frac{dy}{d\theta} = a(4\theta \sin 2\theta)(2)$ using (1)and (2)                                                                              | )                                |  |
|                                                                                                                                                             |                                  |  |
| $\Rightarrow \frac{dy}{dx} = \frac{a(4\theta \sin 2\theta)}{a(4\theta \cos 2\theta)}$                                                                       | $\left  \frac{1}{2} \right $     |  |
| $\Rightarrow \frac{dy}{dx} = \frac{\sin 2\theta}{\cos 2\theta} = \tan 2\theta$                                                                              |                                  |  |
| Differentiating again with res                                                                                                                              | pect to x, we get                |  |
| $\Rightarrow \frac{d^2y}{dx^2} = 2 \sec^2 2\theta \cdot \frac{d\theta}{dx}$                                                                                 | 1                                |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                       | $\left \frac{1}{2}\right $       |  |
| $\Rightarrow \frac{d^2y}{dx^2} = 2 \sec^2 2\theta \cdot \frac{1}{a(4\theta\cos 2\theta)}$                                                                   | $\overline{\Theta)}$             |  |
| $\left. \frac{d^2 y}{dx^2} \right _{\theta = \frac{\pi}{8}} = 2 \sec^2 \frac{\pi}{4} \cdot \frac{1}{a \left( 4 \frac{\pi}{8} \cos^2 \frac{\pi}{4} \right)}$ |                                  |  |
| $dx^2 \Big _{\theta = \frac{\pi}{8}} \qquad 4 a \left(4 \frac{\pi}{8} \cos \theta\right)$                                                                   | $\left(\frac{5}{4}\right)$       |  |
| $=\frac{8\sqrt{2}}{\pi a}$                                                                                                                                  | 1                                |  |
|                                                                                                                                                             |                                  |  |
| $x \frac{3}{dx} - y = \sqrt{x^2 + y^2}$                                                                                                                     |                                  |  |
| $\Rightarrow x \frac{dy}{dx} = y + \sqrt{x^2 + y^2}$                                                                                                        |                                  |  |
| dx -                                                                                                                                                        |                                  |  |
| $\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y + \sqrt{x^2 + y^2}}{x} \dots$                                                                        | (1)                              |  |
| let y                                                                                                                                                       | = VX                             |  |
| differentiating with w.r.t. x                                                                                                                               |                                  |  |
| $\Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx}$                                                                                                           |                                  |  |
| put in (1)                                                                                                                                                  |                                  |  |

|    | $\Rightarrow v + x \frac{dv}{dx} = \frac{vx + \sqrt{x^2 + v^2 x^2}}{x}$                                                   |                              |
|----|---------------------------------------------------------------------------------------------------------------------------|------------------------------|
|    |                                                                                                                           | 1                            |
|    | $\Rightarrow v + x \frac{dv}{dx} = \frac{x(v + \sqrt{1 + v^2})}{x}$                                                       |                              |
|    | $\Rightarrow x \frac{dv}{dx} = v + \sqrt{1 + v^2} - v$                                                                    |                              |
|    | $\Rightarrow x \frac{dv}{dx} = \sqrt{1 + v^2}$                                                                            |                              |
|    | $\Rightarrow \frac{dx}{\sqrt{1+v^2}} = \frac{dx}{x}$                                                                      |                              |
|    |                                                                                                                           |                              |
|    | integrating both sides $ \int dv \int dx $                                                                                | 1                            |
|    | $\Rightarrow \int \frac{dv}{\sqrt{1+v^2}} = \int \frac{dx}{x}$                                                            | $1\frac{1}{2}$               |
|    | $\Rightarrow \log\left(v + \sqrt{1 + v^2}\right) = \log x + \log c$                                                       |                              |
|    | $\Rightarrow \log\left(v + \sqrt{1 + v^2}\right) = \log cx$                                                               |                              |
|    | $\Rightarrow \left(v + \sqrt{1 + v^2}\right) = cx$                                                                        |                              |
|    | $\Rightarrow \left(\frac{y}{x} + \sqrt{1 + \left(\frac{y}{x}\right)^2}\right) = cx$                                       | $\frac{1}{2}$                |
|    | $\left(\frac{1}{x} + \sqrt{1 + \left(\frac{1}{x}\right)}\right) = Cx$                                                     | 2                            |
|    | $\Rightarrow y + \sqrt{x^2 + y^2} = cx^2$                                                                                 |                              |
| 30 | Consider $I=\int_1^3  x^2-2x  dx$                                                                                         | 1                            |
|    | $ x^2 - 2x  = \begin{cases} -(x^2 - 2x) & \text{when } 1 \le x < 2\\ (x^2 - 2x) & \text{when } 2 \le x \le 3 \end{cases}$ |                              |
|    | $I = \int_{1}^{2}  x^{2} - 2x  dx + \int_{2}^{3}  x^{2} - 2x  dx$                                                         |                              |
|    | $ = \int_{1}^{2} -(x^{2} - 2x) dx + \int_{2}^{3} (x^{2} - 2x) dx $                                                        | 1                            |
|    | $ \left  1 = -\left[ \frac{x^3}{3} - x^2 \right]_1^2 + \left[ \frac{x^3}{3} - x^2 \right]_2^3 $                           | 1                            |
|    | $I = -\left(-\frac{4}{2} + \frac{2}{2}\right) + \left(\frac{4}{2}\right)$                                                 |                              |
|    | $I = \frac{6}{2} = 2$                                                                                                     | 1                            |
| 31 | Let X denotes the smaller of the two numbers obtained                                                                     |                              |
|    | So X can take values 1,2,3,4,5,6 P(X=1 is smaller number)                                                                 | $\left  \frac{1}{2} \right $ |
|    | $P(X=1) = \frac{6}{7C_2} = \frac{6}{21} = \frac{2}{7}$                                                                    |                              |
|    | (Total cases when two numbers can be selected from first 7 numbers                                                        |                              |
|    | $\operatorname{are} 7_{C_2})$                                                                                             |                              |
|    | $P(X=2) = \frac{5}{7c_2} = \frac{5}{21}$                                                                                  |                              |
|    | $P(X=3) = \frac{4}{7_{C_2}} = \frac{4}{21}$                                                                               |                              |
|    | $P(X=4) = \frac{3}{7c_2} = \frac{3}{21} = \frac{1}{7}$                                                                    |                              |
|    | $P(X=5) = \frac{2}{7C_2} = \frac{2}{21}$                                                                                  |                              |
|    | $P(X=6) = \frac{1}{7c_2} = \frac{1}{21}$                                                                                  | 2                            |
|    | $\begin{bmatrix} x_i & 1 & 2 & 3 & 4 & 5 & 6 \end{bmatrix}$                                                               |                              |
|    |                                                                                                                           |                              |

|    | $p_i$                                                                                                                                             | 6<br>21                                                                                          | <u>5</u><br>21                                                                          | 4<br>21                                                            | 3 21                   | 2<br>21          | 1<br>21    |    | 1              |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------|------------------|------------|----|----------------|
|    | $p_i x_i$                                                                                                                                         | 6 21                                                                                             | 10<br>21                                                                                | 12<br>21                                                           | 12<br>21               | 10<br>21         | 6 21       |    | 1/2            |
|    |                                                                                                                                                   |                                                                                                  |                                                                                         |                                                                    |                        | 21               | 21         |    |                |
|    | Mean = $\sum p_i x_i = \frac{6}{21} + \frac{10}{21} + \frac{12}{21} + \frac{12}{21} + \frac{10}{21} + \frac{6}{21} = \frac{56}{21} = \frac{8}{3}$ |                                                                                                  |                                                                                         |                                                                    |                        |                  |            |    | 1              |
|    |                                                                                                                                                   |                                                                                                  |                                                                                         |                                                                    |                        |                  |            |    |                |
|    |                                                                                                                                                   |                                                                                                  |                                                                                         | OR                                                                 |                        |                  |            |    |                |
|    | Let $E_1 = e$<br>$E_1 = event$                                                                                                                    |                                                                                                  | _                                                                                       |                                                                    |                        | ws 75%           | times He   | ad |                |
|    | $E_3$ =event                                                                                                                                      | of selecting                                                                                     | ng a unbia                                                                              | ased coin                                                          |                        | W3 7 3 70        | 111103 110 | uu |                |
|    | A = event t                                                                                                                                       |                                                                                                  |                                                                                         |                                                                    |                        | 1                |            |    | 1              |
|    | - (4, )                                                                                                                                           |                                                                                                  |                                                                                         |                                                                    | $P(E_3) = \frac{1}{2}$ | J                |            |    | $\frac{1}{2}$  |
|    | $P \left( \frac{A}{E_1} \right)$                                                                                                                  | = P(coin  :                                                                                      | showing h                                                                               | nead given<br>= 1                                                  | that it is t           | wo heade         | d coin)    |    | 2              |
|    | P(A/                                                                                                                                              | $(F_{-}) = P(c)$                                                                                 | oin showi                                                                               | •                                                                  | iven that i            | t is a biase     | ed coin)   |    |                |
|    | ( / /                                                                                                                                             | L2)                                                                                              |                                                                                         | $=\frac{75}{100}=$                                                 | _                      |                  |            |    |                |
|    | $_{p}(A)$                                                                                                                                         | = P(cc)                                                                                          |                                                                                         | 100                                                                | -                      | is unhias        | ed coin)   |    | 1              |
|    | $P(A/E_3) = P(\text{coin showing head given that it is unbiased coin})$                                                                           |                                                                                                  |                                                                                         |                                                                    |                        |                  |            |    |                |
|    | $=\frac{1}{2}$ By Bayes theorem                                                                                                                   |                                                                                                  |                                                                                         |                                                                    |                        |                  |            |    |                |
|    | P(gettingtwo headedcoin when it is known that it shows Head)                                                                                      |                                                                                                  |                                                                                         |                                                                    |                        |                  |            |    |                |
|    | $P(E_1)P(A/E_1)$                                                                                                                                  |                                                                                                  |                                                                                         |                                                                    |                        |                  |            |    |                |
|    | $P(E_1/A) = \frac{P(E_1)P(A/E_1)}{P(E_1)P(A/E_1) + P(E_2)P(A/E_2) + P(E_1)P(A/E_2)}$                                                              |                                                                                                  |                                                                                         |                                                                    |                        |                  |            |    |                |
|    |                                                                                                                                                   | 1,,,1                                                                                            | 1,,,1                                                                                   | 1                                                                  | _                      |                  |            |    | 1<br>1-        |
|    | $= \frac{1}{\frac{1}{3} \times 1}$                                                                                                                | $\frac{\frac{1}{3} \times 1}{\frac{1}{3} \times \frac{3}{4} + \frac{1}{3} \times \frac{1}{2}} =$ | $\frac{\frac{3}{3} \times 1}{\frac{1}{3} \left(1 + \frac{3}{4} + \frac{1}{2}\right)} =$ | $\frac{\frac{3}{3}}{\frac{1}{3} \times \frac{9}{4}} = \frac{4}{9}$ |                        |                  |            |    | $1\frac{1}{2}$ |
|    | Required p                                                                                                                                        | orobability                                                                                      | = <del>4</del>                                                                          |                                                                    |                        |                  |            |    |                |
| 32 | Let tailor A                                                                                                                                      | works for                                                                                        | 7                                                                                       | and tailor                                                         | B works fo             | or <i>y</i> days |            |    | 1              |
|    | Objective f                                                                                                                                       |                                                                                                  | cost Z =                                                                                | = 150 <i>x</i> + 3                                                 | 200v (in               | ₹)               |            |    | 2              |
|    | Subject to                                                                                                                                        | constraint                                                                                       | s                                                                                       |                                                                    |                        | ,                |            |    |                |
|    | $\begin{vmatrix} 6x + 10y \ge \\ 4x + 4y \ge \end{vmatrix}$                                                                                       |                                                                                                  | -                                                                                       |                                                                    |                        |                  |            |    | . 1            |
|    | <i>x</i> ≥                                                                                                                                        | $0, y \ge 0$                                                                                     | •                                                                                       |                                                                    | al 4le = :- ··         | - الشيد مر       | a d a      |    | $1\frac{1}{2}$ |
|    | consider e<br>feasible re                                                                                                                         | -                                                                                                | o araw th                                                                               | e grapn a                                                          | ana thên w             | ve WIII SNA      | aue        |    |                |
|    |                                                                                                                                                   |                                                                                                  |                                                                                         | 3x + 5<br>x + y                                                    | y = 30                 |                  |            |    |                |
|    |                                                                                                                                                   |                                                                                                  |                                                                                         | x + )                                                              | · – o                  |                  |            |    |                |



| Apply $C_2 \to y C_2$ and $C_3 \to z C_3$ $= \frac{(x+y+z)^2}{yz} \begin{vmatrix} 2yz & -2yz & -2yz \\ y^2 & (yz+yx-y^2) & 0 \\ z^2 & 0 & (zx+zy-z^2) \end{vmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| $\begin{vmatrix} yz & yz & y & y \\ z^2 & 0 & (zx + zy - z^2) \end{vmatrix}$ Apply $C_2 \rightarrow C_2 + C_1$ and $C_3 \rightarrow C_3 + C_1$ $= \frac{(x+y+z)^2}{yz} \begin{vmatrix} 2yz & 0 & 0 \\ y^2 & (yz+yx) & y^2 \\ z^2 & z^2 & (zx+zy) \end{vmatrix}$ expanding along $R_1$                                                                                                                                                                                                                                                                                                                                    | 1 |
| $= \left(\frac{(x+y+z)^2}{yz}\right) 2yz[(yz+yx)(zx+zy) - y^2z^2]$ $= 2(x+y+z)^2[xyz^2 + x^2yz + xy^2z + y^2z^2 - y^2z^2]$ $= 2xyz(x+y+z)^2(x+y+z)$ $= 2xyz(x+y+z)^3$ OR                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 |
| ** A = $\begin{bmatrix} 2 & 3 & 4 \\ 1 & -1 & 0 \\ 0 & 1 & 2 \end{bmatrix}$<br> A  = 2(-2) - 3(2 - 0) + 4(1 - 0) = -6 \neq 0<br>$\therefore$ A <sup>-1</sup> exists                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 |
| Cofactors $A_{11} = -2 \qquad A_{12} = -2 \qquad A_{13} = 1$ $A_{21} - 2 \qquad A_{22} = 4 \qquad A_{23} = -2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
| $A_{31} = 4$ $A_{32} = 4$ $A_{33} = -5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 |
| $Adj A = \begin{bmatrix} -2 & -2 & 1 \\ -2 & 4 & -2 \\ 4 & 4 & -5 \end{bmatrix}'$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
| $Adj A = \begin{bmatrix} -2 & -2 & 4 \\ -2 & 4 & 4 \\ 1 & -2 & -5 \end{bmatrix}$ $A^{-1} = \frac{Adj A}{ A } = \frac{1}{-6} \begin{bmatrix} -2 & -2 & 4 \\ -2 & 4 & 4 \\ 1 & -2 & -5 \end{bmatrix}$ System of equations can be written as $AX = B$ Where $A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & -1 & 0 \\ 0 & 1 & 2 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ Z \end{bmatrix}, B = \begin{bmatrix} 17 \\ 3 \\ 7 \end{bmatrix}$ Now $AX = B$ $\Rightarrow X = A^{-1}B$ $\Rightarrow X = \frac{1}{-6} \begin{bmatrix} -2 & -2 & 4 \\ -2 & 4 & 4 \\ 1 & -2 & -5 \end{bmatrix} \begin{bmatrix} 17 \\ 3 \\ 7 \end{bmatrix}$ | 1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |

| 24 | $\Rightarrow X = \frac{1}{-6} \begin{bmatrix} -34 - 6 + 28 \\ -34 + 12 + 28 \\ 17 - 6 - 35 \end{bmatrix}$ $\Rightarrow X = \frac{1}{-6} \begin{bmatrix} -12 \\ 6 \\ -24 \end{bmatrix}$ $\Rightarrow X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ 4 \end{bmatrix}$ $\Rightarrow x = 2,  y = -1,  z = 4$ | 1 1 2              |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 34 | $x^{2} + y^{2} = 1$ (1)<br>x + y = 1(2)<br>solving (1) and(2)<br>$x^{2} + (1 - x)^{2} = 1$<br>$x^{2} + x^{2} - 2x + 1 = 1$<br>$2x^{2} - 2x = 0$<br>2x(x - 1) = 0                                                                                                                                                                     | 1                  |
|    | x = 0 or $x = 1$                                                                                                                                                                                                                                                                                                                     | 1                  |
|    | Required area = shaded area ACBDA<br>=area(OACBO) - area(OADBO)<br>= $\int_0^1 (y_{circle} - y_{line}) dx$<br>$\int_0^1 \sqrt{1 - x^2} dx - \int_0^1 (1 - x) dx$                                                                                                                                                                     | 1 $1\frac{1}{2}$   |
|    | $= \left[ \frac{x\sqrt{1-x^2}}{2} + \frac{1}{2}\sin^{-1}x \right]_0^1 - \left[ x - \frac{x^2}{2} \right]_0^1$ $\left[ \left( 0 + \frac{1}{2} \cdot \frac{\pi}{2} \right) - 0 \right] - \left[ \left( 1 - \frac{1}{2} \right) \right]$ $\left( \frac{\pi}{4} - \frac{1}{2} \right) \text{ square units}$                              | 1 <del>1</del> 2   |
| 35 | Let $r$ be the radius and $h$ be the height of half cylinder Volume = $\frac{1}{2}\pi r^2 h = V$ (constant)(1)                                                                                                                                                                                                                       | $\frac{1}{2}(fig)$ |



| maximum or minimum.                                                                                                   |                                                      |   |
|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---|
| $Z = A^2 = r^2 h^2 \dots (2)$                                                                                         |                                                      |   |
| Now In triangle OLB $BL^2 = OB^2 - C$                                                                                 | $OL^2$                                               |   |
| In ΔOBD                                                                                                               |                                                      |   |
| $Z = A^2 = r^2 h^2$ $r^2 = R^2 - (h - R)^2 \Rightarrow$                                                               |                                                      |   |
| •                                                                                                                     | in (2)                                               |   |
| $Z = h^2(2hR - h^2)$<br>$\Rightarrow Z = (2h^3R - h^4)$                                                               |                                                      |   |
| $\Rightarrow Z = (2h R - h)$ $\Rightarrow \frac{dZ}{dh} = 6h^2R - 4h^3 \dots (3)$                                     |                                                      |   |
| un un                                                                                                                 |                                                      | 1 |
| For maxima/minima $\frac{dZ}{dh} = 0$                                                                                 |                                                      | 2 |
| $\Rightarrow 6h^2R - 4h^3 = 0$                                                                                        |                                                      |   |
| $\Rightarrow 6R = 4h(h \neq 0)$                                                                                       |                                                      | 1 |
| 3.8                                                                                                                   |                                                      | - |
| $\Rightarrow h = \frac{3R}{2}$                                                                                        |                                                      |   |
| differentiating (3) w.r.t. h                                                                                          |                                                      |   |
| $\Rightarrow \frac{d^2Z}{dh^2} = 12hR - 12h^2$                                                                        |                                                      | 1 |
| uit a -                                                                                                               |                                                      |   |
| $\Rightarrow \frac{d^2 Z}{dh^2}\Big _{h=\frac{3R}{2}} = 12\left(\frac{3R}{2}\right)R - 12\left(\frac{3R}{2}\right)^2$ |                                                      |   |
| $= 18R^2 - 27R^2 = -ve$                                                                                               |                                                      |   |
| so Z= $A^2$ is maximum when $h = \frac{3R}{2}$                                                                        |                                                      |   |
| $\Rightarrow$ A is maximum when $h = \frac{3R}{2}$                                                                    |                                                      | 1 |
| when $h = \frac{3R}{2}$ , $r^2 = 2hR - h^2 = 2R.\frac{3R}{2}$                                                         | $-\left(\frac{3R}{2}\right)^2$                       |   |
| $r^2 = \frac{3R}{2}$                                                                                                  | 22                                                   |   |
| $r = \frac{\sqrt{3}R}{2}$                                                                                             |                                                      |   |
| 20                                                                                                                    | π                                                    |   |
| $\tan \theta = \frac{h}{r} = \frac{\frac{3R}{2}}{\frac{\sqrt{3}R}}$                                                   | $=\sqrt{3}\theta=\frac{3}{3}$                        | 1 |
| 2                                                                                                                     |                                                      | 1 |
| Triangle ABC is equilateral triangle                                                                                  |                                                      |   |
| 36 Let $P(x, y, z)$ be any point on the plane                                                                         | e in which $A(2,1,2)$ and $B(4,-2,1)$ lie.           |   |
| $\vec{AP}$ and $\vec{AB}$ lie on required plane.                                                                      |                                                      |   |
| Also required plane is perpendicular to                                                                               | o given plane $\vec{r}$ . $(\hat{i} - 2\hat{k}) = 5$ | 1 |
| ∴normal to given plane $\overrightarrow{n_1} = (\hat{1} - 2\hat{k})$ I                                                |                                                      |   |
| $\Rightarrow \overrightarrow{AP}, \overrightarrow{AB}$ and $\overrightarrow{n_1}$ are coplanar.                       |                                                      |   |
| Where $\vec{AP} = (x - 2)\hat{i} + (y - 1)\hat{j} + (z - 1)\hat{j}$                                                   | 2)k                                                  | 1 |
| $\overrightarrow{AB} = 2\hat{i} - 3\hat{j} - \hat{k}$                                                                 |                                                      | • |
| $\Rightarrow$ Scaler triple product $[\overrightarrow{AP} \ \overrightarrow{AB} \ \overrightarrow{n_1}]$              | = 0                                                  |   |
|                                                                                                                       |                                                      | 1 |
|                                                                                                                       |                                                      |   |

$$\Rightarrow \begin{vmatrix} x-2 & y-1 & z-2 \\ 2 & -3 & -1 \\ 1 & 0 & -2 \end{vmatrix} = 0$$

$$\Rightarrow (x-2)(6-0) - (y-1)(-4+1) + (z-2)(0+3) = 0$$

$$\Rightarrow 6x - 12 + 3y - 3 + 3z - 6 = 0$$

$$\Rightarrow 2x + y + z = 7 ................(1)$$
Line passing through points  $L(3,4,1)$  and  $M(5,1,6)$  is
$$\Rightarrow \frac{x-3}{2} = \frac{y-4}{-3} = \frac{z-1}{5} = \lambda ....................(2)$$

$$\Rightarrow \text{General point on the line is } Q(2\lambda + 3, -3\lambda + 4,5\lambda + 1)$$
As line (2) crosses plane (1) so point Q should satisfy equation(1)
$$\therefore 2(2\lambda + 3) + (-3\lambda + 4) + (5\lambda + 1) = 7$$

$$4\lambda + 6 - 3\lambda + 4 + 5\lambda + 1 = 7$$

$$6\lambda = -4$$

$$\lambda = -\frac{2}{3}$$

$$Q(-\frac{4}{3} + 3, 2 + 4, -\frac{10}{3} + 1) = Q(\frac{5}{3}, 6, -\frac{7}{3})$$