

PROYECTO INTEGRADOR

1ºDAW

Jamón asiático

María Qingxuan Garrido

Abel Gonzalez Plaza

Rosa Xiu Qiong Hu

Alejandro Raboso

Índice

Resumen	2
1. Introducción	3
2. Objetivos	4
3. Tecnologías utilizadas	5
4. Desarrollo e implementación	7
5. Metodología	13
6. Resultados y conclusiones	16
7. Trabajos futuros	17
Anexos	18
Anexo I – Listado de requisitos de la aplicación	18
Anexo II – Guía de uso de la aplicación	19
Anexo III	19
Anexo IV Historia del proyecto	19

Resumen

Palabras clave: Java, GitHub, Eclipse, programación, entornos de desarrollo, bases de datos, vistas, aplicación, polideportivo, actividades, diagramas, clases, proyecto integrador, documento.

1. Introducción

Nuestro proyecto integrador, titulado como Jamón Asiático, ha sido desarrollado por los estudiantes de 1º de DAW como parte del módulo de programación, bases de datos y entornos de desarrollo.

Se trata de un proyecto que combina diversas áreas de desarrollo, como la programación orientada a objetos, la gestión de bases de datos, el diseño de interfaces y la organización del trabajo del equipo mediante metodologías ágiles.

La idea principal del proyecto es desarrollar una aplicación funcional que permita gestionar de forma más sencilla y eficiente las actividades del polideportivo. Está aplicación está dirigida tanto a los alumnos como a los monitores quienes podrán utilizarla para inscribirse, organizar o consultar actividades según el espacio y el horario.

Durante el desarrollo se ha buscado un entorno de trabajo real, aplicando herramientas y tecnologías como Eclipse, github, mysql, trello, draw.io, discord etc.

Uno de los ejes fundamentales del proyecto ha sido el modelo-vista-controlador, en la cual ha permitido una mejor organización del código, facilitando su mantenimiento y escalabilidad.

Además, a lo largo del desarrollo se ha seguido una metodología scrum, dividiendo las tareas en sprints y haciendo revisiones frecuentes del progreso. Esta forma de organización nos ha permitido adaptarnos rápidamente.

Con este proyecto hemos aprendido mucho poniendo en práctica los conocimientos adquiridos a lo largo del curso.

2. Objetivos

El objetivo principal de este proyecto, es crear una aplicación para los alumnos del polideportivo de la UEM. Para ello necesitaremos:

- Crear el proyecto de Github permitiendo que todos tengan el proyecto en su repositorio local.
- Dividir el proyecto en carpetas para mantener una estructura.
- Realizar el análisis y el diseño de cualquier aplicación empleando técnicas UML para poder ver así la estructura del software y su funcionalidad de una manera ágil.
- Documentar las aplicaciones que utilizaremos.
- Gestionar las diferentes versiones de un software y el trabajo colaborativo.
- Realizar pruebas de testeo sobre los programas para comprobar que tenemos bien lo que vayamos realizando.
- Seguir metodologías ágiles para el desarrollo y planificación de programas.

PROGRAMACIÓN

- Planificar la aplicación.
- Realizar el diseño de clases necesarias para seguir el patrón MVC, así podremos ver mejor dónde está el fallo.
- Implementar cada una de las clases para lograr su objetivo: clases de interfaz gráfica pertenecientes a la vista, clases que representen el modelo y clases encargadas de la lógica de la aplicación pertenecientes al control.
- Desarrollar una aplicación que gestione información almacenada en bases de datos relacionales identificando y utilizando mecanismos de conexión.

BASES DE DATOS

- Generar el modelo entidad/relación.
- Crear bases de datos definiendo su estructura y las características de sus elementos según el modelo relacional.
- Diseñar modelos lógicos normalizados interpretando diagramas entidad/relación.
- Realizar el diseño físico de bases de datos utilizando asistentes, herramientas gráficas y el lenguaje de definición de datos.
- Consultar y modificar la información almacenada utilizando asistentes, herramientas gráficas y el lenguaje de manipulación de datos.

3. Tecnologías utilizadas

Enlace al repositorio de Github:

https://github.com/MariaQGarrido/Proyecto Integradoe 1DAW.git

Enlace al Trello:

https://trello.com/invite/b/67dd4873089fda2a0bb3dfce/ATTIcb7f7e452c8cf0191e2c5bd836 da28361330B718/proyecto-integrador

- Aplicaciones utilizadas

Java: lenguaje usado para desarrollar la aplicación y su funcionalidad.

GitHub: usada para guardar el código, trabajar en equipo para mejor coordinación y llenar el control de versiones.

MySQL: es un sistema de base de datos donde se almacena toda la información de la aplicación.

- Herramientas utilizadas

Wireframe: herramienta para diseñar la estructura de la app antes de programarla, antes de hacer las vistas.

Draw.io: herramienta para hacer diagramas como el modelo entidad-relación y flujos de trabajo.

Trello: herramienta para organizar tareas, repartir el trabajo y hacer seguimiento del proyecto.

Whatsapp: herramienta para comunicar de forma más rápida y resolver dudas del día a día.

Discord: herramientas para reuniones por voz, compartir pantalla y coordinar el trabajo en grupo.

Documento Word: herramienta de redacción de la documentación y los informes del proyecto.

Google Meet: reuniones virtuales con el equipo o el profesor para la coordinación.

4. Desarrollo e implementación

BASES DE DATOS

Para poder desarrollar esta aplicación necesitaremos una base de datos. Primero creamos el modelo Entidad/Relación para diseñar y estructurar la información y visualizar y relacionar los datos de nuestra app.

Modelo entidad-relación:

En una sala se pueden realizar entre 1 o N actividades, las actividades se pueden realizar en distintas horas y días. Por ende, el día y la hora en que se va a celebrar la actividad es clave primaria.

Una vez aclarado el modelo Entidad/Relación, estableceremos las relaciones entre las entidades mediante claves primarias y foráneas, para facilitar el acceso a la información a través de MySQL.

Modelo relacional:

USUARIOS(ID Usuario, Matrícula, Ciclo)

PK: ID

INSCRITO_EN(ID_USUARIO*,ID_Act*)

PK: ID_Usuario, ID_ACT

FK: ID_Usuario->(Usuarios), ID_Act->(Actividades)

ACTIVIDADES(ID_Act,ID_Monitor*, Nom, Desc, NumMaxIns)

PK:ID_Act

FK: ID_Monitor->(USUARIOS)

SALAS(ID, Tipo_S, Cap, Código_S)

PK:ID

OCURRE EN(ID_Act*, ID_Salas*, Dia, Hora)

PK:Dia, Hora, ID_Act, ID_Salas

FK: ID_Act->(Actividad), ID_Salas->(Salas)

Se hace la normalización para evitar duplicaciones y actualizar y modificar los datos sin que afecte a otras tablas.

Normalización:

USUARIOS:

ID Usuario	Ciclo	Matrícula
111	DAW	2299456
222	DAM	2288433

INSCRITO_EN:

ID_Usuario	ID_Act
111	456
222	123

ACTIVIDADES:

ID Act	Descrip	NumMaxIns	Nom	ID_Monitor*	
456	xxxxxx	10	Pañuelo	558	
123	xxxxxx	11	Fútbol	932	

OCURRE_EN:

ID_Act*	ID_Salas*	<u>Dia</u>	<u>Hora</u>
456	001	12/05/2025	10:00
123	002	25/04/2025	13:00

SALAS:

ID_Salas	Tipo_S	Capacidad
001	Polideportivo	+10
002	Campo de fútbol	+20

ENTORNOS DE DESARROLLO

Diagramas de casos de uso

En este diagrama de caso de uso damos por hecho que el usuario ya tiene una cuenta en la aplicación. El usuario puede ser o bien un instructor o un alumno. El instructor, puede tanto crear las actividades como destruirlas y al crearlas se le asigna una sala a la actividad. El alumno por otra parte puede unirse o salir de una actividad.

Diseño del logo:

El logotipo fue diseñado para representar el ámbito deportivo del polideportivo, aunque el diseño fue realizado originalmente por un miembro que ya no forma parte del grupo y no se dispone de la justificación completa de las ideas. Hemos elegido los colores naranja y amarillo porque son losque mejor se adaptan a las instalaciones y el ambito del polideportivo. Y la figura representa la energía del deporte y de las actividades.

Diagrama de clases:

El siguiente diagrama representa las clases principales de nuestro proyecto: Usuario, Actividad, Sala, InscritoEn y OcurreEn.

Las relaciones entre las siguientes clases funcionan de la siguiente manera:

- Usuario-Actividad: Tienen una relación de asociación (1-1) ya que un usuario le pertenece una actividad, ya sea monitor o persona que hace la actividad.
- Usuario-InscritoEn-Actividad: Estas tres clases tienen una relación de dependencia,
 pues el usuario con in de usuario necesita inscribirse para poder hacer la actividad.
- Actividad-OcurreEn-Salas: También tiene una relación de dependencia. Pues necesitas tanto el código de la sala como el código de la actividad para poder hacer una actividad en un sitio.

5. Metodología

Para el desarrollo de este proyecto se ha utilizado la metodología ágil Scrum, ya que nos permite trabajar de forma más organizada, flexible y adaptativa. Esta metodología se basa en ciclos de trabajo cortos llamados sprints, en los que podemos planificar, desarrollar y revisar el avance del proyecto.

Además se ha utilizado el diagrama de Gantt para visualizar y organizar las tareas a lo largo del tiempo, esto nos ayuda a tener el control más claro sobre la planificación general y seguimiento del progreso de cada parte del proyecto.

				TIEMPO DE DURACIÓN								
ACTIVIDADES		MARZO				ABRIL			MAYO			
	1	2	3	4	1	2	3	4	1	2	3	4
Documento												
Proyecto GitHub - Trello												
Diagrama E/R												
Análisis Sistema												
Creación vista de monitor												
Bases de datos												
Wireframe y vistas												
logo												
Diagrama de clases												
Creación de clases (PR)												
JavaDoc												
Refinamiento programa												
Pruebas Junit												
Integración de BD y PR												
Manual GitHub												
Presentación												

6. Resultados y conclusiones

7. Trabajos futuros

Anexos

Anexo I – Listado de requisitos de la aplicación

Análisis y diseño de los requisitos hardware y software.

Eclipse es un entorno de desarrollo integrado (IDE) de código abierto utilizado para programar en diversos lenguajes

- Requisitos de hardware y software requerido:
 - Sistema operativo: windows 7 o superior
 - Procesador: intel desde 1.2 GHz o equivalente familia AMD
 - Memoria de 4 GB de RAM como mínimo, se recomienda 8 GB
 - Almacenamiento al menos 2 GB de espacio libre

Sistema operativo compatible

- Windows 10/11 de 64 bits
- macOS de 64 bits
- Linux

Recomendable utilizar una versión de Eclipse del 2024. Versiones más antiguas no procesan caracteres como la 'Ñ'. Para ello se recomienda también:

• Versión de Java del Sistema 5.0 o superior.

SQL se requiere un mínimo de 6GB de espacio disponible en disco, y se recomienda la instalación en equipos con los formatos de NTFS o ReFS. Se admite el sistema de archivos FAT32, pero no se recomienda porque es menos seguro.

- 512 MB de RAM como mínimo mínimo. Se recomienda más.
- Instalador de MySQL.
- Procesador recomendado 2.0 GHz

Sistema operativo compatible

- Windows 10/11 de 64 bits
- macOS
- Linux

Acciones de GitHub:

- Para correr una acción de GitHub en Windows: Un microprocesador de 4 núcleos y 16
 GB de RAM.
- Para hasta 740 procesos: 8 núcleos de procesamiento y 64 GB de RAM.

Sistema operativo compatible

- Windows 8.1 o posterior
- macOS
- Linux

Anexo II – Guía de uso de la aplicación

Incluirse en este anexo capturas de la aplicación, a modo de manual de usuario, incluyendo tanto el acceso de usuario, como de admin.

Anexo III — Historial del proyecto

Sprint 1: Durante el primer Sprint, no hemos tenido ningún problema significativo.

Sprint 2: Durante el segundo Sprint, hemos tenido una falta de comunicación dentro del equipo, lo que ha generado bloqueos a la hora de completar ciertas tareas. Esto se debió principalmente a la ausencia de un miembro del grupo, ya que habíamos dividido el trabajo en cuatro partes. Aun así, conseguimos finalizar el trabajo a tiempo.

Sprint 3: Durante el tercer sprint, no hemos tenido ningún problema significativo, las tareas planificadas se han desarrollado con normalidad y dentro de los plazos establecidos.