

Team Details

- a. Team name: Spartans
- b. Team leader name: Prajwal M Biradar
- c. Problem Statement: Revolutionizing Voting with Faster and Secure Automated Verification

solution

We propose an Electronic Voter Verification Model (EVVM) to replace manual voter verification in Indian elections using QR code and fingerprint authentication.

- Pre-uploaded Data: Govt uploads voter & candidate data (Aadhaar, Voter ID, fingerprint, symbols) before elections.
- ➤ QR Code Slip: Voters receive an electoral slip with a QR code containing their Voter ID.
- Verification Flow:
 - QR code is scanned at the booth.
 - Fingerprint is authenticated via sensor.
 - If matched → Ballot unit is activated.
 - Voter marked as "Voted" (no re-voting).
- Live Analytics: Real-time vote count sent to Google Data Studio every minute.
- ➤ If anything, goes wrong the officer has authority give manual authentication

Electronic Voter Verification Model

Powered by

Opportunities

What Makes It Different?

- ✓ Most current systems rely on manual voter verification by officers.
- ✓ Existing electronic systems lack biometric checks and real-time tracking.
- ✓ Our model uses QR + fingerprint verification + live analytics for end-to-end automation.
- ✓ Works offline with preloaded secure data—no network dependency during voting.

How It Solves the Problem?

- ✓ Eliminates manual errors & fake voting
- ✓ Ensures only authenticated citizens can vote
- ✓ Increases the speed of voting process by eliminating manual method
- ✓ Provides real-time data for transparency & monitoring

USP – Why EVVM Stands Out

- ✓ Biometric + QR-based double-layered verification
- ✓ Real-time vote count tracking via Google Data Studio
- ✓ Offline-ready architecture with full local data control
- ✓ Fully working Arduino-based prototype

Electronic Voter Verification Model (EVVM) System Features

EVVM Process Overview

EVVM Process Flowchart

Made with

Napkin

Made with

Napkin

Powered by

Architecture diagram:

Core Technologies for EVVM

Arduino UNO / Mega

Central microcontroller for hardware control.

Google Sheets API

Collects and visualizes real-time voter data.

OLED / LCD Display

Voter feedback interface for messages and status.

Fingerprint Sensor

Biometric authentication for voter verification.

C / C++

Programming languages for Arduino firmware.

QR Code Scanner

Scans QR codes on electoral slips.

Python / Node.js

Backend for data syncing and monitoring.

EEPROM / SD Card

Local storage for encrypted voter data.

AES Encryption

Secures voter data during storage and transmission.

Estimated implementation cost:

Component	Estimated Cost (INR)
Arduino Mega / Uno	₹600 – ₹900
Fingerprint Sensor Module (R305)	₹1,500 – ₹2,000
QR Code Scanner Module	₹700 – ₹1,200
OLED / LCD Display	₹200 – ₹400
Buzzer, LEDs, Push Buttons	₹100
SD Card Module or EEPROM	₹150 – ₹300
Wires, Connectors, PCB (Misc Hardware)	₹200 – ₹300
Power Supply / Battery Backup	₹300 – ₹500
Enclosure Box (for rugged use)	₹300 – ₹600
Software Tools (Arduino IDE, Python etc)	Free (Open Source)
Google Data Studio Integration	Free Tier (for Prototype)
Total Estimated Cost (per unit)	₹4,000 – ₹6,300

In each booth, 3–4 officers are appointed at ₹1000 per day. Our system replaces 2–3 of them, saving ₹2000 daily per booth. In just 3 years, the savings equal the device cost (~₹6000), making the next 7 years a cost-free advantage.(if we assume min 10 years the device works properly)

Snapshots of the MVP

Future Development:

- ❖ Biometric Encryption & Tamper-Proof Logs to enhance data security and prevent manipulation.
- Centralized Cloud Sync post-voting to update voter status and results securely in real time.
- Offline to Online Transition Mode: Works offline during polling and syncs automatically when internet is available.
- ❖ Mobile App for Officers to monitor booth stats, voter turnout, and system health live.
- ❖ Integration with Blockchain for transparent vote audit trails in future upgrades.
- ❖ Al-based Anomaly Detection to flag suspicious voting patterns or duplicate attempts.
- Scalable Hardware Design allowing updates or modules to be added (e.g., face recognition, camera, GPS).

Provide links to your:

- 1. GitHub Public Repository: https://github.com/ningaraj44/spartans_EVVM.git
- 2. Demo Video Link (3 Minutes): https://drive.google.com/drive/folders/1 G5NPJXMU2nwlO1aNxhQ9g3ooKCyc 5y3?usp=drive_link
- 1. MVP Link: https://drive.google.com/drive/folders/15FsHU3rw-PF2QtF-3m-yy6lSROfFCBSO?usp=drive_link

Solution Challenge

