PSALTer results panel $\mathcal{S} == \iiint (\mathcal{A}^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} + f^{\alpha\beta} \ \tau (\Delta + \mathcal{K})_{\alpha\beta} \frac{2}{3}r_{1}\left(3\,\partial_{\beta}\mathcal{R}_{i\ \theta}^{\ \theta}\,\partial^{i}\mathcal{R}_{\alpha}^{\alpha\beta}-3\,\partial_{i}\mathcal{R}_{\beta\ \theta}^{\ \theta}\,\partial^{i}\mathcal{R}_{\alpha}^{\alpha\beta}-3\,\partial_{\alpha}\mathcal{R}_{\alpha}^{\alpha\beta i}\,\partial_{\theta}\mathcal{R}_{\beta\ i}^{\ \theta}+6\,\partial^{i}\mathcal{R}_{\alpha}^{\alpha\beta}\,\partial_{\theta}\mathcal{R}_{\beta\ i}^{\ \theta}+3\,\partial_{\alpha}\mathcal{R}_{\alpha}^{\alpha\beta i}\,\partial_{\theta}\mathcal{R}_{i\ \beta}^{\ \theta}-6\,\partial^{i}\mathcal{R}_{\alpha}^{\alpha\beta}\,\partial_{\theta}\mathcal{R}_{i\ \beta}^{\ \theta}+$ $2\,\partial_{\beta}\mathcal{R}_{\alpha i \theta}\,\partial^{\theta}\mathcal{R}^{\alpha \beta i}\,-\,\partial_{\beta}\mathcal{R}_{\alpha \theta i}\,\partial^{\theta}\mathcal{R}^{\alpha \beta i}\,+\,4\,\partial_{\beta}\mathcal{R}_{i \theta \alpha}\,\partial^{\theta}\mathcal{R}^{\alpha \beta i}\,+\,\partial_{i}\mathcal{R}_{\alpha \beta \theta}\,\partial^{\theta}\mathcal{R}^{\alpha \beta i}\,-\,\partial_{\theta}\mathcal{R}_{\alpha \beta i}\,\partial^{\theta}\mathcal{R}^{\alpha \beta i}\,-\,\partial_{\theta}\mathcal{R}_{\alpha i \beta}\,\partial^{\theta}\mathcal{R}^{\alpha \beta i})\,+\,\partial_{\alpha}\mathcal{R}_{\alpha \beta i}\,\partial^{\alpha}\mathcal{R}^{\alpha \beta i}\,\partial^{\alpha}\mathcal{R}^{\alpha \beta i}\,-\,\partial_{\alpha}\mathcal{R}_{\alpha \beta i}\,\partial^{\alpha}\mathcal{R}^{\alpha \beta i}\,\partial^{\alpha}\mathcal{R}$ $\frac{1}{2}t_{1}\left(2\,\,\mathcal{R}^{\alpha_{i}}_{\phantom{\alpha_{i}}}\,\,\mathcal{R}^{\,\,\theta}_{,\phantom{\beta_{i}}\theta}-4\,\,\mathcal{R}^{\,\,\theta}_{\alpha\,\,\theta}\,\,\partial_{i}f^{\alpha_{i}}+4\,\,\mathcal{R}^{\,\,\theta}_{,\phantom{\beta_{i}}\theta}\,\,\partial^{i}f^{\alpha}_{\phantom{\alpha_{i}}\alpha}-2\,\partial_{i}f^{\theta}_{\phantom{\theta_{i}}\theta}\,\partial^{i}f^{\alpha}_{\phantom{\alpha_{i}}\alpha}-2\,\partial_{i}f^{\alpha_{i}}\,\partial_{\theta}f^{\alpha_{i}}_{\phantom{\alpha_{i}}\theta}+4\,\partial^{i}f^{\alpha}_{\phantom{\alpha_{i}}\alpha}\partial_{\theta}f^{\,\,\theta}_{\phantom{\beta_{i}}\theta}-2\,\partial_{\alpha}f_{\phantom{\beta_{i}}\theta}\,\partial^{\theta}f^{\alpha_{i}}-2\,\partial_{\alpha}f^{\alpha_{i}}\partial_{\theta}f^{\alpha_{i}}+2\,\partial_{\alpha}f^{\alpha_{i}}\partial_{\theta}f^{\alpha_{i}}\partial_{\theta}f^{\alpha_{i}}\partial_{\theta}f^{\alpha_{i}}-2\,\partial_{\alpha}f^{\alpha_{i}}\partial_{\theta}f^{\alpha_{$ $\partial_{\alpha}f_{_{\theta_{I}}}\partial^{\theta}f^{\alpha_{I}}+\partial_{_{I}}f_{_{\alpha\theta}}\partial^{\theta}f^{\alpha_{I}}+\partial_{\theta}f_{_{\alpha_{I}}}\partial^{\theta}f^{\alpha_{I}}+\partial_{\theta}f_{_{I\alpha}}\partial^{\theta}f^{\alpha_{I}}+2\,\mathcal{R}_{_{\alpha\theta_{I}}}\,(\,\mathcal{R}^{\alpha_{I}\theta}+2\,\partial^{\theta}f^{\alpha_{I}})))[t,\,x,\,y,\,z]\,dz\,dy\,dx\,dt$ **Wave operator**

 $0^{+} \tau^{\parallel} + \frac{i \sqrt{2} k}{(1+2 k^{2})^{2} t_{1}} - \frac{2 k^{2}}{(1+2 k^{2})^{2} t_{1}} = 0$

 $0.^{+}\tau^{\perp}$ †

⁰ σ †	0	0	0	$-\frac{1}{t}$	$^{1^{+}}\sigma^{\parallel}{}_{\alpha\beta}$	$\overset{1^+}{\cdot}\sigma^{\scriptscriptstyle\perp}{}_{lphaeta}$	$1.^+ \tau^{\parallel}_{\alpha\beta}$	$^{1}\sigma^{\parallel}{}_{lpha}$	$^{1}\sigma_{\alpha}^{\perp}$	$1^{-}\tau^{\parallel}_{\alpha}$	$1^{-}\tau^{\perp}{}_{\alpha}$			
				$^{1^{+}}\sigma^{\parallel}$ † $^{\alpha\beta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$-\frac{i\sqrt{2} k}{t + k^2 t}$	0	0	0	0			
				$1.^+\sigma^{\perp}$ † $^{\alpha\beta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{1}{(1+k^2)^2t.}$	$\frac{ik}{(1+k^2)^2t.}$	0	0	0	0			
				$1.^+ \tau^{\parallel} \uparrow^{\alpha\beta}$	$\frac{i \sqrt{2} k}{t + k^2 t}$	$-\frac{ik}{(1+k^2)^2t.}$	$\frac{k^2}{(1+k^2)^2 t.}_{1}$	0	0	0	0			
				$\frac{1}{2}\sigma^{\parallel} \uparrow^{\alpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1+2k^2t_1}$	0	$\frac{2ik}{t_1+2k^2t_1}$			
				$\frac{1}{2}\sigma^{\perp}\uparrow^{\alpha}$	0	0	0	$\frac{\sqrt{2}}{t_1+2k^2t_1}$	$\frac{2 k^2 r_1 + t_1}{(t_1 + 2 k^2 t_1)^2}$	0	$\frac{i \sqrt{2} k (2 k^2 r_1 + t_1)}{(t_1 + 2 k^2 t_1)^2}$			
				$1^{-}\tau^{\parallel} + \alpha$	0	0	0	0	0	0	0			
				$\frac{1}{2}\tau^{\perp} + \alpha$	0	0	0	$-\frac{2ik}{t+2k^2t}$	$-\frac{i\sqrt{2}k(2k^2r.+t.)}{(t.+2k^2t.)^2}$	0	$\frac{2 k^2 (2 k^2 r.+t.)}{(t.+2 k^2 t.)^2}$	$^{2^{+}}\sigma^{\parallel}{}_{\alpha\beta}$	2 ⁺ τ αβ	$2^{-}\sigma^{\parallel}_{\alpha\beta\chi}$
				•							$^{2^{+}}\sigma^{\parallel}$ † $^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t.}$	$-\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t}$	0
											$^{2^{+}}\tau^{\parallel}\uparrow^{lphaeta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t.}$	$\frac{4 k^2}{(1+2 k^2)^2 t}$	0
											$2^{-}\sigma^{\parallel} \uparrow^{\alpha\beta\chi}$	0	0	$\frac{2}{2 k^2 r_1 + t_1}$
Source constraints														
Spin-	parity form	ı C	Covari	iant form									Multi	plicities
0.+ τ_ =	= 0	ĉ	$\partial_{\beta}\partial_{\alpha}\tau$ ($\Delta + \mathcal{K})^{lphaeta}$:	== 0								1	

Spin-parity form	Covariant form	Multiplicities
$0^+_{\cdot} \tau^{\perp} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == 0$	1
$-2 i k^{0^{+}} \sigma^{\parallel} + {}^{0^{+}} \tau^{\parallel} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha}_{\alpha}^{\beta}$	1
$\frac{2ik 1 \sigma^{\perp}^{\alpha} + 1 \tau^{\perp}^{\alpha} == 0}{$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3
1. _τ ^α == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3
$\overline{i k 1^+_{\cdot} \sigma^{\perp}^{\alpha\beta} + 1^+_{\cdot} \tau^{\parallel}^{\alpha\beta}} == 0$	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}+\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha}+\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta}+2\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta}==$	3
	$\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	
$-2 i k^{2} + \sigma^{\alpha\beta} + 2 + \tau^{\alpha\beta} = 0$	$-i\left(4\partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\delta}+2\partial_{\delta}\partial^{\delta}\partial^{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi}_{\ \chi}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}-$	5
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\alpha\chi}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\chi\alpha}+$	
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+4ik^{\chi}\partial_{\epsilon}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\sigma^{\delta}_{\delta}{}^{\epsilon}-$	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\delta \beta \epsilon} - 6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\delta \alpha \epsilon} + 6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \beta \delta} + 6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \alpha \delta} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau (\Delta + \mathcal{K})^{\chi\delta} - 2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau (\Delta + \mathcal{K})^{\chi}_{\chi} - 4 i \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta}_{\delta}^{\epsilon}) == 0$	
Total expected gauge g	jenerators:	16
Massive spectro	um	

Pole residue:

	Square mass:	$-\frac{1}{2r} > 0$							
	Spin:	2							
	Parity:	Odd							
Massless spectrum									

(No particles)

Unitarity conditions

 $r_1 < 0 \&\& t_1 > 0$