Homework 4

- 1. Suppose $\begin{pmatrix} X \\ Y \end{pmatrix} \sim N\left(\begin{pmatrix} \mu_x \\ \mu_y \end{pmatrix}, \begin{pmatrix} \Sigma_{xx} & \Sigma_{xy} \\ \Sigma_{yx} & \Sigma_{yy} \end{pmatrix}\right)$. Find the conditional distribution of X|Y. Hint: use the formula $p(x|y) = \frac{p(x,y)}{p(y)}$.
- 2. Consider i.i.d. observations $X_1, ..., X_n \sim N(\mu, 1)$.
 - (a) Compute $\mathbb{E}(X_1|\bar{X})$. Hint: use the above problem, and find the conditional distribution of X_1 given \bar{X} first.
 - (b) Compute $\mathbb{E}\left(\frac{X_1+X_2}{2}\Big|\bar{X}\right)$.
 - (c) What about $\mathbb{E}\left(\frac{X_1+X_2+X_3}{3}\middle|\bar{X}\right)$?
 - (d) Discuss your finding.
- 3. Consider i.i.d. observations $X_1, ..., X_n \sim N(\mu, \sigma^2)$ with both μ, σ^2 unknown. Construct an α -level test for $H_0: \sigma^2 \leq 1$ vs $H_1: \sigma^2 > 1$ using chi-squared distribution.
- 4. Consider i.i.d. observations $X_1, ..., X_n \sim N(\mu, \sigma^2)$ with μ unknown and σ^2 known. For the problem $H_0: \mu \leq 0$ vs $H_1: \mu > 0$, show that the p-value $p(X) = \Phi\left(-\frac{\sqrt{n}\bar{X}}{\sigma}\right)$ satisfies $\mathbb{P}\left(p(X) \leq \alpha\right) \leq \alpha$ for all $\mu \leq 0$ under the null hypothesis. Is the distribution of p-value uniform under the null?
- 5. Suppose you have m different parameters $\mu_1, ..., \mu_m$, and you construct m (1α) confidence intervals, denoted by $[\hat{\mu}_{j,\text{left}}, \hat{\mu}_{j,\text{right}}]$ for j = 1, ..., m. It is guaranteed that
 each confidence interval has the $(1-\alpha)$ -coverage in the sense that $\mathbb{P}(\mu_j \in [\hat{\mu}_{j,\text{left}}, \hat{\mu}_{j,\text{right}}]) = 1 \alpha$.
 - (a) The number of parameters that are not covered by the confidence intervals is $M = \sum_{j=1}^{m} \mathbb{I}\{\mu_j \notin [\hat{\mu}_{j,\text{left}}, \hat{\mu}_{j,\text{right}}]\}$. What is the expected value of M?
 - (b) You hope all the parameters $\mu_1, ..., \mu_m$ can be covered by the m confidence intervals simultaneously. Mathematically, you want to construct intervals $[\hat{\mu}_{j,\text{left}}, \hat{\mu}_{j,\text{right}}]$ that satisfy

$$\mathbb{P}\left(\mu_j \in [\hat{\mu}_{j,\text{left}}, \hat{\mu}_{j,\text{right}}] \text{ for all } j = 1, ..., m\right) \ge 1 - \alpha.$$

Consider a concrete setting with i.i.d. observations $X_1, ..., X_n \sim N(\mu, I_m)$, where $\mu = (\mu_1, ..., \mu_m)^T \in \mathbb{R}^m$. Apply the idea of Bonferroni correction and construct confidence intervals that satisfy the above requirement.

1