Cerințe și activități - 4

Sarcina 1: Testează-ți înțelegerea

și utilizat în mod ol	nedicament numit stricnină, extras din semințele unui copac originar din India pișnuit ca otravă pentru șobolani, blochează efectele glicinei. Este stricnina un gonist al receptorului glicinei?
	e este o sinapsă excitatorie de pe soma mai eficientă în evocarea potențialelo nul postsinaptic decât o sinapsă excitatorie de pe vârful unei dendrite?

Sarcina 2: Construiește puzzle-ul

Sarcina 2a: Acceseaza <u>acest link</u> și construiește puzzle-ul transmisiei sinaptice. Sarcina 2b: Când puzzle-ul este complet, aranjează următorii pași ai transmisiei sinaptice în ordinea corectă și indică-i ulterior în imaginea transmisiei sinaptice, prin săgeți.

- Ca²⁺ permite andocarea veziculelor și eliberarea neurotransmițătorilor.
- Membrana veziculară este preluată de la membrana plasmatică.
- Neurotransmițătorii sunt sintetizați și depozitați în vezicule.
- Se generează un potențial postsinaptic excitator (sau inhibitor).
- Neurotransmițătorul este eliminat prin absorbție glială (sau prin degradare enzimatică).
- Canalele de Ca²⁺ deschise la tensiune se deschid, permitand afluxul de Ca²⁺.
- Potențialul de acțiune ajunge la terminalul presinaptic.
- Neurotransmițătorul se leagă de receptori, determinând deschiderea (sau închiderea) canalelor.

Sarcina 3: Draw me a Brain Ep. 4

Desenează și tu (link către desenul editabil aici):

