Tutorial 11

1. Apply the rules of Boolean algebra, verify the following.

i)
$$y \wedge (x \vee (x' \wedge (y \vee y'))) = y$$

ii)
$$((x \wedge y') \wedge (z \vee (x \wedge y')))' = x' \vee y$$

2. Simplify the following Boolean functions.

i)
$$f(x, y) = (x \land y') \lor (x' \land y) \lor (x \land y)$$

ii)
$$f(x, y, z) = (x' \wedge y' \wedge z') \vee (x \wedge y' \wedge z') \vee (x' \wedge y \wedge z') \vee (x \wedge y \wedge z')$$

iii)
$$f(x, y, z) = (x \land y) \lor [x \land (y \land z)']$$

3. Find the principal disjunctive normal form of the Boolean function f with the truth table given below.

0				
i)	х	у	Z	f(x, y, z)
	0	0	0	1
	0	0	1	1
	0	1	0	0
	0	1	1	0
	1	0	0	1
	1	0	1	0
	1	1	0	1
	1	1	1	0

ii)	Х	у	Z	f(x, y, z)
	0	0	0	1
	0	0	1	1
	0	1	0	1
	0	1	1	1
	1	0	0	0
	1	0	1	0
	1	1	0	0
	1	1	1	1

iv)

iii)	х	у	Z	W	f(x, y, z, w)
	0	0	0	0	0
	0	0	0	1	1
	0	0	1	0	1
	0	0	1	1	0
	0	1	0	0	0
	0	1	0	1	0
	0	1	1	0	0
	0	1	1	1	0
	1	0	0	0	0
	1	0	0	1	0
	1	0	1	0	0
	1	0	1	1	1
	1	1	0	0	0
	1	1	0	1	1
	1	1	1	0	0
	1	1	1	1	0

х	у	Z	W	f(x, y, z, w)
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

4. In the following questions, Karnaugh maps of functions are given, write the simplified Boolean expression for these functions.

i)
$$\begin{array}{c|cccc} & y' & y \\ \hline x' & 1 & 0 \\ \hline x & 0 & 1 \end{array}$$

	_	У	y'
ii)	x	1	1
	<i>x</i> '	1	0

iv)	,	y'	y'	у	у	
	x'	1	1	0	1	
	x	0	1	0	1	
		z,	z.		<i>z</i> ,	_

v)		y'	y'	у	у
	x'	1	1	1	1
	x	0	0	1	0
	L	z'	z	Z	z'

vi)		y'	y'	у	у
	x'	0	1	0	1
	x	1	1	0	1
		7,	7	7	7'

vii)		w'	w	w	w'	,
	x'	0	0	1	1	y'
	<i>x</i> '	0	0	1	1	у
	x	1	0	0	1	у
	x	0	1	1	0	y,
	L	7,	7,	7	7	_

	w'	w	w	w'	_
х'	1	1	0	1	y'
<i>x</i> '	1	1	0	1	у
х	0	0	0	0	у
х	1	0	0	1	y'
	z'	z'	z	z	J

- 5. Simplify the expressions in Question 3 by constructing the Karnaugh map.
- 6. Draw a Karnaugh map for the Boolean expression whose principal disjunctive normal forms are as follow. Hence find a simplified version of the expression.

viii)

i)
$$f(x, y, z) = (x' \land y' \land z) \lor (x' \land y \land z) \lor (x \land y \land z') \lor (x \land y \land z)$$

ii)
$$f(x, y, z, w) = (x \wedge y \wedge z \wedge w) \vee (x \wedge y \wedge z \wedge w') \vee (x' \wedge y \wedge z \wedge w) \\ \vee (x' \wedge y \wedge z \wedge w') \vee (x \wedge y' \wedge z' \wedge w') \vee (x' \wedge y' \wedge z' \wedge w')$$

7. Find the principal disjunctive normal form of the Boolean function f(x, y, z) with the following truth table and then draw a Karnaugh map to find a simplified version of f(x, y, z).

х	у	Z	f(x, y, z)
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

8. Construct a truth table for the Boolean expression $(x \land (y' \lor z)) \lor (x' \land (y \lor z'))$ and hence determine its principal disjunctive normal form. Draw a Karnaugh map and hence find a simplified version of f(x, y, z).