CS131 Homework #7 (20 pts)

- 1) (6 pts) Find solution of the recurrence relations together with the initial conditions. Show your work, circle or put in bold each intermediate and final answer.
 - a. $a_n = 2a_{n-1} + 2n^2$ for $n \ge 2$, $a_1 = 4$
 - b. $a_n = -5a_{n-1} 6a_{n-2} + 42 \cdot 4^n$ for $n \ge 3$, $a_1 = 56$, $a_2 = 278$.
 - c. f(n)=2f(n/3)+4 for any $n=3^k$ (k-integer, $k\ge 1$); f(1)=1.
 - d. Derive O() estimate of f(n), true for any n>1, where f(1)=1 and f(n) is increasing function of n, satisfying recurrence relation 1c for any $n=3^k$ (k-integer, $k\ge 1$).
- 2) (9 pts) Give big-O estimate for f(n) satisfying the following recursive relation:
 - a. f(n)=f(n/b)+C, b is an integer >1
 - b. f(n)=f(n/b)+Cn, b is an integer >1
 - c. f(n)=2f(n/2)+C
 - d. f(n)=3f(n/3)+C
 - e. f(n)=4f(n/2)+C
 - f. f(n)=2f(n/2)+Cn
 - g. $f(n)=2f(n/2)+Cn^2$
 - h. $f(n)=7f(n/2)+Cn^2$
 - i. $f(n)=2f(n/2)+C\sqrt{n}$
- 3) (5 pts) Which of the recurrence relations in 2) describe the number of operations performed by
 - a. binary search
 - b. merge sort
 - c. recursive min-max algorithm
 - d. fast matrix multiplication
 - e. the closest pair problem