

Our focus for today is on learning the
behaviour of $f = k \propto$ [tlementlevel]
The Element used for a cademic purposes is
10 frame elements.
$\frac{1}{2} \rightarrow 42, f_2$
U ₁ , f ₁
Variation of stooin within the element?
Constant
Thus, number of gauss points used?
\rightarrow 1
Now, this helps us in simplifying the. Task at hand
because at the element level if u derive then
$\begin{bmatrix} J_1 \\ J_2 \end{bmatrix} = \begin{bmatrix} K - K \\ -K \end{bmatrix} \begin{bmatrix} U_1 \\ U_2 \end{bmatrix}$
1shana b - #FA

Since Strain is constant $e = \frac{U_2 - U_1}{L}$ or $e = \frac{\Delta U}{L}$ What will be the displacements at to Say if & = $1e^{-3} = \Delta u$: $\Delta u = 1mm$ $\Delta u = -1mm$ Suppose Say fr = 1000N, then fr = -1000N. So finding displacement at only one node is enough so that means Le choose 1/2 al input and the output as for

$$\frac{\partial f_{i}^{n}}{\partial u^{n}} = \frac{\partial f_{s}^{n}}{\partial A_{s}^{n}} \cdot \frac{\partial A_{s}^{n}}{\partial z_{s}^{n}} \cdot \frac{\sum_{j=1}^{N} \frac{\partial z_{s}^{n}}{\partial A_{i}^{n}} \cdot \frac{\partial A_{i}^{n}}{\partial z_{i}^{n}}} \cdot \frac{\partial A_{s}^{n}}{\partial z_{s}^{n}} \cdot \frac{\sum_{j=1}^{N} \frac{\partial A_{p}^{n}}{\partial z_{j}^{n}} \cdot \frac{\partial z_{p}^{n}}{\partial u^{n}}} \cdot \frac{\partial A_{s}^{n}}{\partial z_{s}^{n}} \cdot \frac{\sum_{j=1}^{N} \frac{\partial A_{p}^{n}}{\partial z_{j}^{n}} \cdot \frac{\partial z_{p}^{n}}{\partial u^{n}}}{\sum_{j=1}^{N} \frac{\partial A_{p}^{n}}{\partial z_{j}^{n}} \cdot \frac{\partial z_{p}^{n}}{\partial u^{n}}} \cdot \frac{\partial A_{s}^{n}}{\partial z_{s}^{n}} \cdot \frac{\partial A_{s}^{n}}{\partial z_{s}^{n}} \cdot \frac{\partial A_{p}^{n}}{\partial z_{s}^{$$