8.1 Let A, B, and C be formulas., and to show a formal proof for each of the following logical theorems of CPC:

(d)
$$\vdash$$
L (\neg C \rightarrow \neg B) \rightarrow (B \rightarrow C)

Proof without deduction theorem

1.
$$(\neg C \Rightarrow \neg B) \Rightarrow (B \Rightarrow C)$$
 Axiom (A3)

Using the deduction theorem

1.
$$((\neg C) \rightarrow (\neg B)) \rightarrow (B \rightarrow C)$$
 AS3 $\{(\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A), C = A, B = B\}$

2.
$$((\neg C) \rightarrow (\neg B))$$
 premise

3.
$$B \rightarrow C$$
 follow from 1 and 2 by MP

6.
$$\{((\neg C) \rightarrow (\neg B)), B\}$$
 | -L C deduction theorem

7.
$$\{(\neg C) \rightarrow (\neg B)\}$$
 $I - L(B \rightarrow C)$ deduction theorem

8.
$$I-L((\neg C) \rightarrow (\neg B)) \rightarrow (B \rightarrow C)$$
 deduction theorem

8.2 Let A, B, and C be formulas. Using MP and derived rules, the deduction theorem, and axiom/theorem schemata of CPC, to show a formal proof (different from your answer in problem 8.1) for each of the following logical theorems of CPC.

(d)
$$\vdash_{HB} (A \rightarrow B) \rightarrow ((C \lor A) \rightarrow (C \lor B))$$

Lemma: $[A \rightarrow (B \rightarrow C), B] \vdash A \rightarrow C$

1.
$$A \rightarrow (B \rightarrow C)$$
 premise

6.
$$[A \rightarrow (B \rightarrow C), B, A] \vdash C$$
 deduction theorem

7.
$$[A \rightarrow (B \rightarrow C), B] \vdash A \rightarrow C$$
 deduction theorem

Proof without deduction theorem

1.
$$(C \rightarrow (C \lor B)) \rightarrow ((A \rightarrow (C \lor B)) \rightarrow ((C \lor A) \rightarrow (C \lor B))$$

$$[AS((A \rightarrow C) \rightarrow ((B \rightarrow C) \rightarrow (A \lor B) \rightarrow C)), C=A,(C \lor B)=C,A=B]$$

2.
$$C \rightarrow (C \lor B)$$

$$[AS(A\rightarrow (A \lor B))]$$

3.
$$((A \rightarrow (C \lor B)) \rightarrow ((C \lor A) \rightarrow (C \lor B))$$

4.
$$(A \rightarrow B) \rightarrow (((B \rightarrow (C \lor B)) \rightarrow ((A \rightarrow (C \lor B))))$$

$$[AS((A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C))), A=A, B=B, (C \lor B)=C]$$

5.
$$B \rightarrow (C \lor B)$$

 $[AS(A\rightarrow(A \lor B))]$

6.
$$(A \rightarrow B) \rightarrow (A \rightarrow (C \lor B))$$

[4, 5, Lemma]

7.
$$(A \rightarrow B) \rightarrow ((C \lor A) \rightarrow (C \lor B))$$

[3, 6, MP]

Using the deduction theorem

$$\vdash$$
HB (A \rightarrow B) \rightarrow ((C \lor A) \rightarrow (C \lor B))

1.
$$(A \rightarrow B) \rightarrow ((B \rightarrow (C \lor B)) \rightarrow (A \rightarrow (C \lor B)))$$

$$[AS (A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C)), A=A,B=B, (C \lor B)=C]$$

[premise]

3.
$$(B \rightarrow (C \lor B)) \rightarrow (A \rightarrow (C \lor B))$$

[1, 2, MP]

 $[AS(B\rightarrow(A \lor B)), C=A, B=B]$

[3, 4, MP]

6.
$$(C \rightarrow (C \lor B)) \rightarrow ((A \rightarrow (C \lor B)) \rightarrow ((C \lor A) \rightarrow (C \lor B)))$$

$$[AS (A \rightarrow C) \rightarrow ((B \rightarrow C) \rightarrow ((A \lor B) \rightarrow C)), C = A, A = B, (C \lor B) = C]$$

7.
$$C \rightarrow (C \lor B)$$

[AS A
$$\rightarrow$$
(A \vee B), C=A,B=B]

8.
$$(A \rightarrow (C \lor B)) \rightarrow ((C \lor A) \rightarrow (C \lor B))$$
 [7, 6, MP]

9.
$$(C \lor A) \rightarrow (C \lor B)$$

[5, 8, MP]

[deduction theorem]

11.
$$\{(A \rightarrow B)\}$$
 $\vdash_{HB} (C \lor A) \rightarrow (C \lor B)$

[deduction theorem]

12.
$$\vdash_{HB} (A \rightarrow B) \rightarrow ((C \lor A) \rightarrow (C \lor B))$$
 [deduction theorem]