Dynamic Stand Allocation CSOP using Genetic Algorithm

Description. Approach. DEMO

Andrei-Dan Rad

March 24th, 2020

About AirportLabs

R&D company, developing innovative products to make aviation more efficient

Founded in Jan 2015

Fully Product Oriented - extensive software and hardware capabilities

Dedicated Customer Success Team

Currently 7 released products for aviation, more in the pipeline

40 Engineering Staff

- Over 12 years experience in designing, building and operating airport systems
- 15 years experience in software development
- 10 years experience in electronic control systems
- Collaboration with technical universities for research

Stand Allocation (Planning) Problem

General Problem Description

- Stand designed area intended to be used for parking an aircraft
- Aircraft turn-round set of processes from the time an aircraft arrives at its arrival stand until it departs from its departure stand (IBT - OBT)
- Allocate stands to aircrafts during turn-round processes aiming to:
 - avoid conflicts (CSP)
 - maximize the evaluation function (KPIs)
- Resource allocation in planning
- Constraint Satisfaction Optimization Problems (CSOP)
- CSOP = (Turn-rounds, Stand domain, SA Constraints, SA f-function)
- Search space: |stands||turns| intractable with complete methods (NP)

Stand Allocation Variables

Aircraft Turn-rounds

- Identify the turn-rounds based on the triplet (arrival, departure, aircraft)
 - Aircraft: information about the physical aircraft
 - Arrival flight: information about the arrival nature
 - Departure flight: information about the departure nature
- Turns can be split in 3 parts by towing

Stand Allocation Constraints (1)

Node/Unary/Pairing Constraints

- The constraints are creating a compatibility profile for every turn/part.
- The domain of each turn is composed by a set of stands.
- Unary -> could be individually verified one single time
- Node consistency

Constraint Components

- Turn attributes (e.g. aircraft physical sizes, service type, origin, destination, terminal etc.)
- 2. Stand attributes (e.g. max length, max width, gate, MARS, contact/remote, terminal etc.)

E.g. 01M AIRCRAFT WINGSPAN <= 3805 AND AIRCRAFT LENGTH <= 4732

Stand Allocation Constraints (2)

Arc/Relative (to other turns)

- Verified in the context of more than one turn-round and/or more than one stand
 - a. Stand Adjacency constraints
 - i. <u>Size Constraints</u> (e.g. one large code D/E/F on M or two medium (small) code C/B/A on L and R, etc.)
 - ii. <u>Time Constraints</u> (e.g. 45 min departure separation on MARS, Pushback, etc.)
 - b. Capacity (i.e. stand must be available) / <u>Buffer time constraints</u>
 - c. Constraints for preventing cross-flow
 - d. Gate capacity constraints (i.e. gate allocation)
 - e. Safety constraints

Stand Allocation Constraints (3)

Constraint Types

- 1. Hard (Mandatory) constraint (e.g. physical, capacity):
 - a. must be true with no exceptions
 - b. determinantes the validity of the solution
- 2. Soft (Score) constraint:
 - a. true if possible
 - b. prioritise according to its score

Stand Allocation KPIs (1)

Soft Rules Score

- Airline preferences and good allocation practices
- Objective: maximize the soft rules score

Pier Service Level

- Two types of stands
 - Contact stands (the stand is connected to a gate)
 - Remote stands (the passengers need to be coached from/to the gate)
- Pier Service is a calculation (by terminal) of the percentage of passengers served at contact stands
- Usually the most important performance metric
- Objective: max Pier Service Level

Stand Allocation KPIs (2)

Tows

- Def: The process of moving an aircraft from one stand to another
- The basis for doing towing is to increase the PSL
- Tow Off: moving from contact to intermediate remote
- Tow On: moving from intermediate remote to contact
- The tows, like the stands, are allocated automatically
- Objective: minimize no. of tows

Stand Use Efficiency

- Robustness score having large enough and fairly distributed buffer times in order to avoid possible overlays on the same stand or adjacency conflicts
 - Predictions for buffer time
- Fitting score minimise the proportion between stand measures and aircraft physical measures

Genetic Algorithms

Definition

- Metaheuristics stochastic search methods based on populations (not a single point) of potential solutions and mechanics of natural genetics
- Steps:
 - Initialization: create the initial population of genomes
 - Fitness assignment: calculate the fitness of every genome (how good the solutions are)
 - Selection: select genomes for crossover (highest fitness value -> higher probability)
 - Crossover: swap partial genomes of the fittest of the older genomes
 - Mutation: sometimes introduce new genes

Genetic Algorithms

Genetic Process

Genome / Chromosome

```
towDecision(turn_i), \ i \in [1, N], \ where \ N = no. \ of \ turns towDecision(turn_i) = \begin{cases} 1, \ if \ the \ turn \ is \ towed \ (split \ in \ 3 \ parts) \\ 0, \ if \ the \ turn \ is \ not \ towed \ (1 \ part) \end{cases} allocatedStand(part_i), \ i \in [1, M], \ where \ M = no. \ of \ parts no. \ of \ parts = no. \ of \ turns + 3 \cdot no. \ of \ towable \ turns allocatedStand(part_i) \in Domain(part_i) \cup \{null\} \subseteq Stands \cup \{null\} boxType(part_i) = \begin{cases} B, part_i \ is \ equivalent \ to \ a \ complete \ turn \ A, part_i \ is \ an \ arrival \ part \ T, part_i \ is \ an \ idle(tow) \ part \ D, part_i \ is \ a \ departure \ part \end{cases}
```

allocatedStand(part_i) = null iif: towDecision(turn(part_i)) = 0 && boxType(part_i) ≠ B OR towDecision(turn(part_i)) = 1 && boxType(part_i) = B

Towing decision

Turn1	Turn2	Turn3		TurnN
true	false	false	•••	false

Allocated Stand

Part1	Part2	Part3		PartM
NULL	36	04	•••	12

Genome / Chromosome

- The chromosome does encapsulate information about:
 - Towing decisions for each turn: true/false
 - Parking positions for each part: allocated stand
 - Playground: data structures that facilitate and accelerate the creation and reparation of genomes and the verification of the arc constraints:
 - Timeline matrix
 - View of adjacency constraints
 - Fast stand and time area identification using start slot, end slot
 - Occupancy intervals
 - Fast identification of occupied areas

timelineSlots(part _i)=	ArrivalTime-AllocationStartTime granularity	DepartureTime-AllocationStartTime granularity
------------------------------------	---	--

Initialization / Population creation

For all turns (greedy sorting based on ground time, no. of compatible stands, etc.):

Selection

Tournament using 70% of genomes (population:100)

Crossover

- Combining bits of 2 parents (e.g. one-split, n-split)
- Repair (adjust) the chromosome using the matrix playground:
 - Inherited part value represents the first stand option
 - Instead of a random stand (as in the creation methods), we use the stand inherited from one of the parents
 - The resulted stand is final

Mutation

Changing random tow decision or allocated stand values

Evaluation / Fitness function

- Invalid if there are any violations (=0)
- Weighted sum
 - o PSL
 - No. of tows
 - Soft Rules score
 - Stand Use Efficiency
 - Others (e.g. ...)
- Function constraints
 - Overall, per day (e.g. 24h time frame: actual day & next day)
 - PSL > x (e.g. PSL > 95%)
 - No. of tows < y (e.g. No. of tows < 75)

Multi-population (Island)

- Advantages:
 - Converge faster
 - Facilitate multi-objective optimization: island that are using different fitness weights

Approach

- Advantages:
 - Adaptability
 - continuous solution optimization
 - dynamic reuse of old solutions after data update
 - Scalability: unlimited horizontal scalability
 - Multithreaded chromosome formation
 - Multisystem islands

Stand Allocation Logic

Event sequence

- Read Data: turn-round, parts, stands, rules, airport structure, genetic algorithm settings etc.
- Set turn-round allocation attributes: blocked on stand, blocked as tow, towable, etc.
- Get previous best solutions
- Initialize the genetic algorithm
- Repeat until stop condition
 - Create new solutions (initialization or crossover)
 - Evaluate the new solutions (multi-threaded)
 - Select for crossover + add mutations
- Update the turn-rounds in accordance with the best solution (parking positions, tows, etc.)
- Save the best solutions

Results

LGW Instance

- Constraints: Solution adhered to all the mandatory constraints
- Robustness: ~97% of the aircrafts are assigned without being needed other interventions in the 70m freeze time window (3% of aircrafts are affected by late changes)
- PSL constraint > 95%
- No. of tows constraint < 75

Demo

