Computer-Aided VLSI System Design Homework 3: Simple Convolution Engine

TA: 林瑩昇 r10943114@ntu.edu.tw Due Tuesday, Nov. 08, 14:00

TA: 羅宇呈 f08943129@ntu.edu.tw

Data Preparation

1. Decompress 1111_hw3.tar with following command

tar -xvf 1111_hw3.tar

Folder	File	Description					
00_TESTBED	testbench_temp.v	Testbench template					
AA TEGTDED	indata*.dat	Input image data					
00_TESTBED/ - PATTERN/ -	opmode*.dat	Pattern of operation mode					
TATTERIV	golden*.dat	Golden data of output					
	core.v	Your design					
01 RTL	rtl_01.f	File list for rtl simulation					
UI_KIL	01_run	NCVerilog command					
	99_clean_up	Command to clean temporary data					
	syn.tcl	Script for synthesis					
02_SYN	core_dc.sdc	Constraint file for synthesis					
	02_run.dc	Command for DC					
	rtl_03.f	File list for gate-level simulation					
03_GATE	03_run	NCVerilog command for gate- level simulation					
	99_clean_up	Command to clean temporary data					
	sram_****x8.v	SRAM design file					
*******	sram_****x8_slow_syn.db	Synthesis model					
sram_****x8	sram_****x8_slow_syn.lib	Timing and power model					
	sram_****x8.pdf	Datasheet for SRAM					
top	report.txt	Design report form					

Introduction

In this homework, you are going to implement a simplified convolution engine with some simple functions. An $8\times8\times32$ feature map will be loaded first, and it will be processed with several functions. If you are not familiar with convolution, refer to [1] for some illustrations.

Block Diagram

Specifications

- 1. Top module name: **core**
- 2. Input/output description:

Signal Name	I/O	Width	Simple Description
i_clk	I	1	Clock signal in the system.
i_rst_n	I	1	Active low asynchronous reset.
i_op_valid	I	1	This signal is high if operation mode is valid
i_op_mode	I	4	Operation mode for processing
o_op_ready	О	1	Set high if ready to get next operation
i_in_valid	I	1	This signal is high if input pixel data is valid
i_in_data	I	8	Input pixel data (unsigned)
o in ready	О	1	Set high if ready to get next input data (only valid for
0_m_ready	O	1	i_op_mode = 4'b0000)
o_out_valid	О	1	Set high with valid output data
o_out_data	О	13	Pixel data or convolution result (unsigned)

- 3. All inputs are synchronized with the **negative** edge clock.
- 4. All outputs should be synchronized at clock **rising** edge.
- 5. You should reset all your outputs when i_rst_n is **low**. Active low asynchronous reset is used and only once.
- 6. Operations are given by i op mode [3:0] when i op valid is high.
- 7. i op valid stays only 1 cycle.
- 8. i in valid and o op ready can't be **high** in the same time.
- 9. i op valid and o op ready can't be high in the same time.
- 10. i in valid and o out valid can't be **high** in the same time.
- 11. i op valid and o out valid can't be **high** in the same time.
- 12. o op ready and o out valid can't be **high** in the same time.
- 13. Set o op ready to high to get next operation (only one cycle).
- 14. o_out_valid should be **high** for valid output results.
- 15. At least one SRAM is implemented in your design.
- 16. Only worst-case library is used for synthesis.
- 17. The synthesis result of data type should **NOT** include any **Latch**.
- 18. The slack for setup-time should be **non-negative**.
- 19. No any timing violation and glitches for the gate level simulation.

Design Description

1. The followings are the operation modes you need to design for this homework:

i_op_mode	Meaning							
4'b0000	Input feature map loading							
4'b0001	Origin right shift							
4'b0010	Origin left shift							
4'b0011	Origin up shift							
4'b0100	Origin down shift							
4'b0101	Reduce the number of channels for convolution							
4'b0110	Increase the number of channels for convolution							
4'b0111	Perform convolution in the display region							
4'b1000	Output the pixels in the display region							

2. Input feature map loading:

- An 8×8×32 feature map is loaded for 2048 cycles in **raster-scan** order.
- The size of each pixel is 8 bits.
- Raise o_op_ready to 1 after loading all pixels.
- If o_in_ready is 0, stop input data until o_in_ready is 1.

channel 31						198	985 1986		1987		198	1989	1990	1991
		,	••			199	93 19	94	4 199		1990	1997	1998	1999
chann	el 1	64	64 65		<u> </u>	67	68	Ī	69		70	71	2006	2007
channel 0	0	1	2	3	4	ļ.	5	1	5	<u>+</u>	7	79	2014	2015
	8	9	10	11	1	2	13	1	4	1	5	87	2022	2023
	16	17	18	19	2	┥	21	1 22		2	3	95	2030	2031
	24	25	26	27	2	8	29	3	30		1	103	2038	2039
	32	33	34	35	3	6	37	3	8	3	9	111	2046	2047
	40	41	42	43	4	4	45	4	6	4	7	119	.••	
	48	49	50	51	5	2	53	5	4	5	5	127	·	
	56	57	58	59	6	0	61	6	2	6	3			

- 3. The first output pixel of the display is **origin**.
 - The default coordinate of the origin is at 0.
 - The size of the display region is $2 \times 2 \times depth$.

				1	1984	19	85 19	986	198	37	198	8 198	9	1990	1991		
			••			19	93 19	94	199	95	199	6 199	7	1998	1999		
	64					65 6		67	68	3	69	<u> </u>	70	71	L	2006	2007
Origin ←	0	1	2	3	1	4	5	ا	6	7	,	79	L	2014	2015		
Oligini 4	8	9	10	11	+	l2	13	╁	4	, 15		87	L	2022	2023		
	16	17	18	19	+	20	21	╁	2	23	一「	95	L	2030	2031		
	24	25	26	27	+	28	29	╁	0	3	╌	103	L	2038	2039		
	32	33	34	35	+	36	37	╁	8	3	⊣	111	L	2046	2047		
	40	41	42	43	+	14	45	╁	6	4	⊣	119	1	۸•			
	48	49	50	51	+	52	53	╁	4	5	┩	127	1	••			
	56	57	58	59	+	50	61	╁	2	6	⊣						
					L`	-		Ľ	_		_						

4. Origin shifting:

- EX. Origin right shift (i_op_mode = 4'b0001).

- If output of display exceeds the boundary, retain the same origin point.

5. Channel depth:

- 3 depths are considered in this design: 32, 16, and 8
- The display size will change according to different depth

Depth	Display size
32	2 x 2 x 32
16	2 x 2 x 16
8	2 x 2 x 8

6. Scale-down:

- Scale down the depth of the channel to next level
 - Ex. For channel depth, $32 \rightarrow 16 \rightarrow 8$
- If the depth is 8, retain the same depth

7. Scale-up:

- Scale up the depth of the channel to next level
 - **Ex.** For image size, $8 \rightarrow 16 \rightarrow 32$
- If the depth is 32, retain the same depth

8. Convolution:

- For this operation, you have to perform convolution in the display region.
- The size of the kernel is $3\times3\times$ depth. The weights in each channel are identical.
- The accumulation results should be rounded (四捨五入) to integer.
- The feature map needs to be zero-padded for convolution.
- The values of original pixels will not be changed.
- After the convolution, you have to output the four accumulation results in raster-scan order.

- The number of channels that are accumulated during convolution is determined by depth. For example, accumulate 8 channels if the depth is 8.

9. Display:

- For this operation, you have to output the pixels in the display region.
- Set o out data [12:8] to 0 and o out data [7:0] to the pixel data.
- When i_op_mode = 4'b1000, the pixels are displayed in **raster-scan** order. (For example: $0 \rightarrow 1 \rightarrow 8 \rightarrow 9 \rightarrow 64 \rightarrow 65 \rightarrow ... \rightarrow 1992 \rightarrow 1993$)

channel 31					84	198	198	86 19	987	198	1989	1990	1991
	•	19	92	199	3 199	94 19	95	199	6 1997	1998	1999		
channel 1			65	66	1	67	68	69	,	70	71	2006	2007
channel 0	0	1	2	3	4		5	6	Ī	7	79	2014	2015
	8	9	10	11	1	2	13	14	1	.5	87	2022	2023
	16	17	18	19	20	+	21	22	╁	23	95	2030	2031
	24	25	26		2	┿	29	30	┢	1	103	2038	2039
	32	33	34	35	3	+	\vdash		₩	39	111	2046	2047
	40	++		43	4	+	45	46	+		119	••	
	48	49	50	51	5	╅	53	54	₩	55	127	•	
	56	57	58	59	6	╅	61	62	+	3			

- The size of display region changes according to depth.

Sample Waveform

1. Load Image Data (i_op_mode = 0)

2. Other operations

Submission

- 1. Create a folder named studentID_hw3, and put all below files into the folder
 - core.v
 - core_syn.v
 - core_syn.sdf
 - core_syn.ddc
 - core_syn.area
 - core_syn.timing
 - report.txt
 - syn.tcl
 - rtl 01.f
 - rtl_03.f

- all other design files included in your design (optional)

Note: Use **lower case** for the letter in your student ID. (Ex. r06943027 hw3)

2. Compress the folder studentID_hw3 in a tar file named studentID_hw3_vk.tar (k is the number of version, k = 1, 2, ...)

```
tar -cvf studentID_hw3_vk.tar studentID_hw3
```

TA will only check the last version of your homework.

Note: Use **lower case** for the letter in your student ID. (Ex. r06943027_hw3_v1)

3. Submit to NTU COOL

Grading Policy

- 1. TA will run your code with following format of commands.
 - a. RTL simulation (under **01** RTL)

```
ncverilog -f rtl_01.f +notimingchecks +access+r +define+tb0
```

b. Gate-level simulation (under **03 GATE**)

2. Correctness of simulation: 70% (follow our spec)

		• ,	
Pattern	Description	RTL simulation	Gate-level simulation
tb0	Load + shift + display	5%	5%
tb1	Load + shift + scale + display	5%	5%
tb2	Load + shift + convolution	10%	10%
tb3	All operations (no display)	10%	10%
hidden	10 hidden patterns	х	10%

- 3. Performance: 30% (correct for all patterns)
 - Area * Time (μm² * ns)
 - (Lower number is better performance)
 - The latency of loading input feature map will be subtracted with 2048 cycles.
- 4. Delay submission
 - In one day: (original score)*0.7
 - In two days: (original score)*0.4
 - More than two days: 0 point for this homework
- 5. Lose **3 point** for any wrong naming rule or format for submission.
 - Don't compress all homework folder and upload to NTU COOL

Designware

1. Document

```
evince
/home/raid7_4/raid1_1/linux/synopsys/synthesis/cur/dw/doc/datasheets/*.pdf
```

2. Include designware IP in your **rtl_01.f** for RTL simulation Example:

```
// DesignWare
// -----
/home/raid7_4/raid1_1/linux/synopsys/synthesis/cur/dw/sim_ver/DW_norm.v
```

3. Change your RTL simulation command

```
ncverilog -f rtl_01.f -incdir
/home/raid7_4/raid1_1/linux/synopsys/synthesis/cur/dw/sim_ver/
+notimingchecks +access+r +define+tb0
```

Reference

[1] Illustrations for convolution: https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1