Partiel - octobre 2019 - Aix-Montperrin

Durée: 2h – documents interdits

Exercice 1. On fixe un ensemble $\mathcal P$ de symboles propositionnels. Définissez précisément les notions suivantes :

1) Valuation.

- 3) Formule valide.
- 2) Modèle d'une formule φ .
- 4) $\varphi \models \psi$, où φ et ψ sont des formules.

Solution № Voir le cours.

Exercice 2. On se propose de modéliser dans le calcul propositionnel des mots de longueur fixée n > 0 sur un alphabet A. Pour cela on considère l'ensemble de variables propositionnelles $\mathcal{P} = \{p_{i,\alpha}, 1 \le i \le n, \alpha \in A\}$ dont la signification attendue est la suivante :

 $p_{i,a}$ est vraie si le mot contient la lettre a en position i.

Avec cette convention, chaque mot $w \in A^n$ peut être représenté par une valuation v_w qui envoie une variable $p_{i,\alpha}$ sur vrai ssi $w_i = \alpha$. Par exemple, pour n = 3 et $A = \{a, b\}$, les mots u = bba et w = aba sont représentés, respectivement, par les valuations

1) Si une valuation v représente un mot de A^n , alors pour tout $i \le n$, il existe un unique $\alpha \in A$ tel que $v(p_{i,\alpha}) = 1$. Exprimez cette contrainte par une formule propositionnelle.

On fixe désormais $A = \{a, b, c\}$ et on considère une valuation v satisfaisant la contrainte de la question précédente. Pour chacune des conditions qui suivent, décrivez la formule propositionnelle supplémentaire que v doit satisfaire pour représenter le mot w.

2) w contient le symbole a.

$$\bigvee_{i=1}^{n} p_{i,a}$$
.

3) w contient tous les symboles de A.

$$\bigwedge_{a\in A}\bigvee_{i=1}^n p_{i,a}$$

4) w contient le facteur abc.

$$\bigvee_{1\leq i\leq n-2} \left(p_{i,a} \wedge p_{i+1,b} \wedge p_{i+2,c}\right)$$

5) w est un palindrome.

6) Si la lettre a apparaît dans w, alors b apparaît quelque part à droite de a.

Exercice 3. Donnez une forme clausale de la formule suivante, en essayant de simplifier la formule au maximum:

$$\varphi = (p_A \land \neg p_B \land \neg p_C) \lor (p_B \land \neg p_A \land \neg p_C) \lor (p_C \land \neg p_A \land \neg p_B).$$

🔊 Voici la forme clausale obtenue par distribution et élimination des clauses contenant des littéraux opposés (donc du type $p \lor \neg p$):

$$\varphi \equiv (p_A \lor p_B \lor p_C) \land (p_A \lor \neg p_C \lor \neg p_B) \land (\neg p_B \lor \neg p_A \lor p_C) \land (\neg p_B \lor \neg p_A) \land (\neg p_B \lor \neg p_C \lor \neg p_A) \land (\neg p_B \lor \neg p_C) \land (\neg p_C \lor p_B \lor \neg p_A) \land (\neg p_C \lor \neg p_A) \land (\neg p_C \lor \neg p_A) \land (\neg p_C \lor \neg p_B)$$

Après simplification par subsumption, on obtient :

$$(p_A \vee p_B \vee p_C) \wedge (\neg p_B \vee \neg p_C) \wedge (\neg p_A \vee \neg p_C) \wedge (\neg p_A \vee \neg p_B).$$

Exercice 4. Utiliser l'algorithme DPLL pour trouver un modèle (on ne les demande donc pas tous!) de l'ensemble de clauses suivant :

$$\{a \lor b, \neg b \lor c, \neg c \lor d, a \lor \neg d \lor e, a \lor \neg c \lor f, e \lor \neg f, g \lor h, \neg a \lor \neg h, \neg a \lor \neg g\}.$$

$$\frac{a \lor b, \neg b \lor c, \neg c \lor d, a \lor \neg d \lor e, a \lor \neg c \lor f, e \lor \neg f, g \lor h, \neg a \lor \neg h, \neg a \lor \neg g}{a \lor b, \neg b \lor c, \neg c \lor d, a \lor \neg c \lor f, g \lor h, \neg a \lor \neg h, \neg a \lor \neg g} \quad d \leftarrow \top \text{ (litteral pur)}$$

$$\frac{a \lor b, \neg b \lor c, a \lor \neg c \lor f, g \lor h, \neg a \lor \neg h, \neg a \lor \neg g}{a \lor b, \neg b \lor c, g \lor h, \neg a \lor \neg h, \neg a \lor \neg g} \quad f \leftarrow \top \text{ (litteral pur)}$$

$$\frac{a \lor b, \neg b \lor c, g \lor h, \neg a \lor \neg h, \neg a \lor \neg g}{a \lor b, g \lor h, \neg a \lor \neg h, \neg a \lor \neg g} \quad b \leftarrow \top \text{ (litteral pur)}$$

$$\frac{g \lor h}{\varnothing} \quad g \leftarrow \top \text{ (litteral pur)}$$

On trouve les deux modèles suivants :

Exercice 5. Prouvez par résolution que $\{p \lor q \lor r, p \to q, q \to r, r \to p\} \models p$.

riangleq Il faut vérifier qu'on peut générer \perp à partir de l'ensemble $\{p \lor q \lor r, q \lor \neg p, \neg q \lor r, \neg r \lor p, \neg p\}$. Voici une preuve possible.

$$\begin{array}{c|cccc} \hline p \lor q \lor r & \neg q \lor r \\ \hline \hline p \lor r & \neg r \lor p \\ \hline \hline p & & \neg p \\ \hline \bot & & \end{array}$$

Exercice 6. Prouvez le séquent : $(r \land s) \rightarrow t \vdash r \rightarrow (s \rightarrow t)$.

$$\frac{r, s \vdash r, t}{\underbrace{r, s \vdash r \land s, t}_{r, s \vdash r \land s, t}} \underbrace{D_{\land}}_{t, r, s \vdash t} \underbrace{Ax}_{G_{\rightarrow}}$$

$$\frac{r, s \vdash r \land s, t}{\underbrace{(r \land s) \to t, r, s \vdash t}_{(r \land s) \to t, r \vdash s \to t}} \underbrace{D_{\rightarrow}}_{G_{\rightarrow}}$$

$$\frac{(r \land s) \to t, r \vdash s \to t}{(r \land s) \to t \vdash r \to (s \to t)} \underbrace{D_{\rightarrow}}_{D_{\rightarrow}}$$