5 (a) The I-V characteristic of a semiconductor diode is shown in Fig. 5.1.

Fig. 5.1

(i)	Fig. 5.1 to zero to 0.8V.	explain the v	ariation of th	ne resistance	e of the diode	e as <i>V</i> incre	ases from
							[3]

(ii) Fig. 5.1 to determine the resistance of the diode for a current of 4.4 mA.

resistance = Ω [2]

(b) A cell of e.m.f. 1.2V and negligible internal resistance is connected in series to a semiconductor diode and a resistor R₁, as shown in Fig. 5.2.

Fig. 5.2

A resistor $\rm R_2$ of resistance 375 Ω is connected across the cell. The diode has the characteristic shown in Fig. 5.1. The current supplied by the cell is 7.6 mA.

Calculate

(i	i)	the	current	in	R _a .
١.	,				٠,

current = A [1]

(ii) the resistance of R_1 ,

 $resistance = \dots \dots \Omega [2]$

(iii) the ratio

 $\frac{\text{power dissipated in the diode}}{\text{power dissipated in R}_2} \,.$

ratio =[2]