	A vessel and its contents of total heat capacity 120 J K ⁻¹ were heated using a methane burner. Calculate the maximum theoretical temperature rise when 0.10 g of methane was completely burned. The standard enthalpy of combustion of methane is -890 kJ mol ⁻¹ .					
					(4) (Total 4 marks)	
Vhen	•	$_{5}H_{11}OH$, is complete	ely burned in oxygen	, the products are o	carbon dioxide	
	an equation to rej		that occurs during th	e measurement of	the enthalpy	
Č		·			(Total 1 mark)	
The ta	able below include	es some values of st	andard enthalpies of	formation $(\Delta H_{\mathbf{f}}^{\mathbf{\Theta}})$.		
	Substance	H ₂ O(1)	LiOH(s)	Li(s)		
ΔI	H f /kJ mol ⁻¹	-286	-487	0		
Γhe st	tandard enthalpy o	of solution of lithiur	n hydroxide is given	below.		
	$LiOH(s) \rightarrow Li^{+}(a)$	aq) + OH¯(aq)	$\Delta H^{\bullet} = 21 \text{ kJ mol}$	-1		
(a)	State why the sta	ndard enthalpy of fo	ormation of lithium is	s quoted as zero.		
					(1)	
(b)			eaction which represon the enthalpy change			
(b)	hydroxide from it of formation.	ts elements, in whic		e is equal to its star	of lithium ndard enthalpy	
(b)	hydroxide from it of formation.	ts elements, in whic	h the enthalpy change	e is equal to its star	of lithium ndard enthalpy(2)	

	(d)	Use the data given above to calcula lithium with water.	ate a value	e for the	enthalpy	change	for the i	eaction of	
						•••••			
						•••••			
						•••••			(3)
								(Total 8 r	narks)
4. ((a)	Explain the meaning of the terms n	ıean bond	! enthalp	y and <i>sta</i>	ındard e	nthalpy (of formation.	
		Mean bond enthalpy							
		Standard enthalpy of formation							
			•••••						
			•••••	•••••		•••••	•••••		
			••••••	•••••	•••••	••••••	•••••		(5)
	(b)	b) Some mean bond enthalpies are given below.							
		Bond	N–H	N-N	N≡N	Н–О	O–O		
		Mean bond enthalpy/kJ mol ⁻¹	388	163	944	463	146		
		Use these data to calculate the enth between hydrazine, N ₂ H ₄ , and hydrazine				ing gas-	phase re	action	
		H N-N H + 2 H-O-	-О—Н		$N \equiv N$	+ 4 H -	-0-	Н	
				•••••		•••••			
						•••••			

(c) Some standard enthalpies of formation are given below.

	$N_2H_4(g)$	$H_2O_2(g)$	H ₂ O(g)
$\Delta H_{\rm f}^{\rm e}/{\rm kJ~mol}^{-1}$	+75	-133	-242

These data can be used to calculate the enthalpy change for the reaction in part (b).

$$N_2H_4(g) + 2H_2O_2(g) \rightarrow N_2(g) + 4H_2O(g)$$

	(i)	State the value of ΔH_f^{θ} for $N_2(g)$.	
	(ii)	Use the $\Delta H_{\rm f}^{ \rm e}$ values from the table to calculate the enthalpy change for this reaction.	
			(4)
(d)	Expl	ain why the value obtained in part (b) is different from that obtained in part (c)(ii).	
			(1)
		(Total 13 ma	irks)

- **5.** Methanol, CH₃OH, is a convenient liquid fuel.
 - (a) An experiment was conducted to determine the enthalpy of combustion of liquid methanol. The energy obtained from burning 2.12 g of methanol was used to heat 150 g of water. The temperature of the water rose from 298 K to 362 K. (The specific heat capacity of water is $4.18 \text{ J K}^{-1} \text{ g}^{-1}$)
 - (i) Define the term *standard enthalpy of combustion*.
 - (ii) Use the data above to calculate a value for the enthalpy of combustion of one mole of liquid methanol.

(b) Methanol can be synthesised from methane and steam by a process that occurs in two stages.

Stage 1
$$CH_4(g) + H_2O(g) \Longrightarrow 3H_2(g) + CO(g)$$
 is $\Delta H^{\oplus} = +206 \text{ kJ mol}^{-1}$
Stage 2 $CO(g) + 2H_2(g) \Longrightarrow CH_3OH(g)$ $\Delta H^{\oplus} = -91 \text{ kJ mol}^{-1}$

The standard enthalpies of combustion of carbon monoxide and of hydrogen are -283 kJ mol⁻¹ and -286 kJ mol⁻¹, respectively. Use these data and the enthalpy change for *Stage 2* to calculate a value for the standard enthalpy of combustion of gaseous methanol.

(3) (Total 10 marks)