Pirouette - Theory

Shruti Gupta Prashant Godhwani

February 2024

1 Syntax

```
Locations
                                                   \mathcal{L}
                                             \in
                                            := L \mid R
Synchronization Labels
                                     d
Binary Operations
                                          ::= + | - | * | / |=|<=|>=|!=|>|<| && ||
Choreography
                                      C ::= () \mid X \mid \ell.e \mid C \leadsto \ell \mid \text{if } C \text{ then } C_1 \text{ else } C_2
                                                   \ell_1[d] \leadsto \ell_2; \ C \mid \mathbf{let} \ X := C_1 \ \mathbf{in} \ C_2 \mid \mathbf{fun} \ X \Rightarrow C \mid C_1 \ C_2
                                                    (C_1,C_2) \mid \text{fst } C \mid \text{snd } C \mid \text{left } C \mid \text{right } C
                                                   match C with left X \Rightarrow C_1; right Y \Rightarrow C_2
                                                   () | num | x | e_1 \ binop \ e_2 | \ \mathbf{let} \ x := e_1 \ in \ e_2 | \ (e_1, e_2) | \ \mathbf{fst} \ e
Local Expressions
                                                   snd e \mid \text{left } e \mid \text{right } e \mid \text{match } e \text{ with left } x \Rightarrow e_1; \text{ right } y \Rightarrow e_2
                                      E
Network Expressions
                                           := X \mid () \mid \mathbf{fun} \ X \Rightarrow E \mid E_1 \ E_2 \mid \mathsf{ret}(e)
                                                   let ret(x) := E_1 in E_2 | send e to \ell; E | receive x from \ell; E
                                                   if E_1 then E_2 else E_3 | choose d for \ell; E
                                                    allow \ell choice L \Rightarrow E_1; R \Rightarrow E_2 \mid (E_1, E_2)
                                                   fst E \mid \text{snd } E \mid \text{left } E \mid \text{right } E
                                                   match E with left X \Rightarrow E_1; right Y \Rightarrow E_2
Choreographic Types
                                           := \mathbf{unit} \mid \ell.t \mid \tau_1 \to \tau_2 \mid \tau_1 \times \tau_2 \mid \tau_1 + \tau_2
                                            := unit | int | bool | string | t_1 \times t_2 \mid t_1 + t_2
Local Types
Network Types
                                      T
                                           := unit |T| \mid T_1 \rightarrow T_2 \mid T_1 \times T_2 \mid T_1 + T_2
```

2 Type System

2.1 Local Language

$$\frac{\text{Loc - UNIT}}{\Gamma \vdash \text{() : unit}} \qquad \frac{x : t \in \Gamma}{\Gamma \vdash x : t} \qquad \frac{\frac{\text{Loc - PAIR}}{\Gamma \vdash e_1 : t_1 \quad \Gamma \vdash e_2 : t_2}}{\Gamma \vdash (e_1, e_2) : t_1 \times t_2} \qquad \frac{\frac{\text{Loc - FST}}{\Gamma \vdash e : t_1 \times t_2}}{\Gamma \vdash \text{fst } e : t_1}$$

$$\begin{array}{ccc} \text{Loc - snd} & \text{Loc - left} \\ \Gamma \vdash e: t_1 \times t_2 \\ \hline \Gamma \vdash \text{snd } e: t_2 & \hline \Gamma \vdash \text{left } e_1: t_1 + t_2 & \hline \Gamma \vdash \text{right } e_2: t_1 + t_2 \end{array}$$

$$\frac{\Gamma}{\Gamma \vdash e: t_1 + t_2} \frac{\Gamma, \, \mathsf{x}: \, t_1 \vdash e_1: t_3}{\Gamma \vdash (\mathsf{match} \; \mathsf{e} \; \mathsf{with} \; \mathsf{left} \; \mathsf{x} \; \Rightarrow e_1 \; \mathsf{; \; right} \; \mathsf{y} \; \Rightarrow e_2): t_3}{\Gamma \vdash (\mathsf{match} \; \mathsf{e} \; \mathsf{with} \; \mathsf{left} \; \mathsf{x} \; \Rightarrow e_1 \; \mathsf{; \; right} \; \mathsf{y} \; \Rightarrow e_2): t_3}$$

2.2 Network Language

 $\frac{\Gamma \vdash E: T_1 + T_2 \quad \Gamma; \Delta, X: T_1 \vdash E_1: T_3 \quad \Gamma; \Delta, Y: T_2 \vdash E_2: T_3}{\Gamma \vdash (\mathsf{match} \ \mathsf{E} \ \mathsf{with} \ \mathsf{left} \ \mathsf{X} \Rightarrow E_1 \ ; \ \mathsf{right} \ \mathsf{Y} \Rightarrow E_2): T_3}$

2.3 Choreography

3 Operational Semantics

3.1 Local Language

Local values $v := () \mid num \mid v_1 \odot v_2 \mid (v_1, v_2) \mid \mathbf{left} \ v \mid \mathbf{right} \ v$

$$\frac{\text{BINOP 1}}{e_1 \rightarrow_l e_1'} \frac{e_1 \rightarrow_l e_1'}{e_1 \odot e_2 \rightarrow_l e_1' \odot e_2} = \frac{\text{BINOP 2}}{v \odot e_2 \rightarrow_l v \odot e_2'} = \frac{\text{BINOP 3}}{v_1 \odot v_2 \rightarrow_l v_1 \odot v_2 (/ \notin \odot)}$$

$$\frac{\text{LOC - LET 1}}{|\text{let } x := e_1 \text{ in } e_2 \rightarrow_l |\text{let } x := e_1' \text{ in } e_2} = \frac{\text{LOC - LET 2}}{|\text{let } x := v \text{ in } e \rightarrow_l e_l |\text{let } x := v}$$

$$\frac{\text{LOC - PAIR 1}}{(e_1, e_2) \rightarrow_l (e_1', e_2)} = \frac{\text{LOC - PAIR 2}}{(v_1, e_2) \rightarrow_l (v_2 e_2')} = \frac{\text{LOC - FST}}{|\text{fst } e \rightarrow_l e_1' |\text{let } e_2' |\text{let } e_2' |\text{let } e_2'}}{|\text{left } e \rightarrow_l e_1' |\text{left } e_2' |\text{left } e_2'$$

3.2

$$\begin{split} \operatorname{fst}(E_1,E_2) \to E_1 & \operatorname{snd}(E_1,E_2) \to E_2 \\ (\operatorname{match \ inl \ E \ with \ inl \ X} \Rightarrow E_1; \operatorname{inr \ Y} \Rightarrow E_2) \to E_1 \ [X \mapsto E] \\ (\operatorname{match \ inr \ E \ with \ inl \ X} \Rightarrow E_1; \operatorname{inr \ Y} \Rightarrow E_2) \to E_2 \ [Y \mapsto E] \end{split}$$

Choreography

Choreographic Values $V ::= () \mid \ell.v \mid (V_1, V_2) \mid \mathbf{left} \ V \mid \mathbf{right} \ V \mid \mathbf{fun} \ X \Rightarrow C$

$$\begin{array}{c} \operatorname{ASSOC} \\ e \to_1 e' \\ \hline \ell e \to_g \ell . e' \\ \hline \\ \ell e \to_g \ell . e' \\ \hline \end{array} \qquad \begin{array}{c} \operatorname{SEND} 1 \\ \hline C \to_{\ell} Q' \to \ell \\ \hline \\ C \to_{\ell} Q' \to \ell \\ \hline \end{array} \qquad \begin{array}{c} \operatorname{SEND} 2 \\ \hline \\ \ell v \to \ell' \to_g \ell' . v \\ \hline \end{array}$$

4 Theorems

Theorem 1. (*Local Progress*): For every expression $\cdot \vdash e : t$ either $\exists e'. e \rightarrow_l e'$ or e is a value

Proof. We will start with induction on e

Case e = ()

() is a value and we are done

Case e = num

num is a value and we are done

Case $e = e_1 \odot e_2$

IH1 e_1 is either a value or $\exists e_1'. e_1 \rightarrow_l e_1'$

if $e_1 \to_l e_1'$ then $e_1 \odot e_2 \to_l e_1' \tilde{\odot} e_2$ using binop 1 rule

if e_1 is a value v_1 , IH2 e_2 is either a value or $\exists e'_2. e_2 \rightarrow_l e'_2$

if e_2 is a value v_2 , then $v_1 \odot v_2 \rightarrow_l v_1 \tilde{\odot} v_2$, which is a value using the binop 3 rule

if $e_2 \to_l e_2'$ then $v_1 \odot e_2 \to_l v_1 \tilde{\odot} e_2'$ using binop 2 rule

Case $e = let x := e_1 in e_2$

IH e_1 is either a value or $\exists e'_1. e_1 \rightarrow_l e'_1$

if $e_1 \to_l e'_1$ then let $x := e_1$ in $e_2 \to_l$ let $x := e'_1$ in e_2 using loc - let 1 rule if e_1 is a value v, then let x := v in $e_2 \to_l e_2[x \mapsto v]$ using loc - let 2 rule

Case $e = (e_1, e_2)$

IH1 e_1 is either a value or $\exists e'_1. e_1 \rightarrow_l e'_1$

if $e_1 \rightarrow_l e'_1$ then $(e_1,e_2) \rightarrow_l (e'_1,e_2)$ using loc - pair 1 rule

if e_1 is a value v_1 , IH2 e_2 is either a value or $\exists e'_2. e_2 \rightarrow_l e'_2$

if e_2 is a value v_2 , then (v_1, v_2) is a value

if $e_2 \rightarrow_l e_2'$ then $(v_1, e_2) \rightarrow_l (v_1, e_2')$ using loc - pair 2 rule

Case $e = fst e_1$

IH e_1 is either a value or $\exists e'_1. e_1 \rightarrow_l e'_1$

if $e_1 \to_l e'_1$ then fst $e_1 \to_l$ fst e'_1 using loc - fst rule

if e_1 is a value v, this means $v=(v_1,v_2)$ then fst $(v_1,v_2) \to_l v_1$ using loc - pair elim 1 rule

Case $e = snd e_1$

IH e_1 is either a value or $\exists e'_1. e_1 \rightarrow_l e'_1$

if $e_1 \to_l e_1'$ then snd $e_1 \to_l \text{ snd } e_1'$ using loc - snd rule

if e_1 is a value v, this means $v=(v_1,v_2)$ then snd $(v_1,v_2)\to_l v_2$ using loc - pair elim 2 rule

Case $e = left e_1$

IH e_1 is either a value or $\exists e'_1. e_1 \rightarrow_l e'_1$

if $e_1 \to_l e'_1$ then left $e_1 \to_l$ left e'_1 using loc - left rule if e_1 is a value v, then left v is a value

Case $e = right e_1$

IH e_1 is either a value or $\exists e'_1. e_1 \rightarrow_l e'_1$ if $e_1 \rightarrow_l e'_1$ then right $e_1 \rightarrow_l r$ ight e'_1 using loc - right rule if e_1 is a value v, then right v is a value

Case e = match e_1 with left $x \Rightarrow e_2$; right $y \Rightarrow e_3$

IH e_1 is either a value or $\exists e'_1. e_1 \rightarrow_l e'_1$

if $e_1 \to_l e'_1$ then match e_1 with left $x \Rightarrow e_2$; right $y \Rightarrow e_3 \to_l$ match e'_1 with left $x \Rightarrow e_2$; right $y \Rightarrow e_3$ using loc - match rule

if e_1 is a value, then e_1 is either left v or right v

if $e_1 = \text{left } v$ then match (left v) with left $x \Rightarrow e_2$; right $y \Rightarrow e_3 \rightarrow_l e_2[x \mapsto v]$ using loc - sum elim 1 rule

if e_1 = right v then match (right v) with left $x \Rightarrow e_2$; right $y \Rightarrow e_3 \rightarrow_l e_3[y \mapsto v]$ using loc - sum elim 2 rule

Theorem 2. (Local Preservation): If $\Gamma \vdash e : t$ and $e \rightarrow e'$ then $\Gamma \vdash e' : t$ Proof. We will start with induction on $\Gamma \vdash e : t$

Case $\Gamma \vdash e : unit$

 $\Gamma \vdash$ (): unit. () doesn't take a step and we are done

Case x : t

 $\Gamma \vdash x : t. x doesn't take a step and we are done$

Case $\Gamma \vdash e : t_1Xt_2$

This means $e = (e_1, e_2)$

IH If $\Gamma \vdash e_1 : t_1 \text{ and } e_1 \to e'_1 \text{ then } \Gamma \vdash e'_1 : t_1$

Now we know, $(e_1, e_2) \rightarrow (e'_1, e_2)$ and $\Gamma \vdash (e_1, e_2) : t_1 X t_2$

Using IH we can say $\Gamma \vdash (e'_1, e_2) : t_1 X t_2$

Case $\Gamma \vdash$ fst $e: t_1$

This means $e: t_1Xt_2$

IH If $\Gamma \vdash e : t_1Xt_2$ and $e \rightarrow e'$ then $\Gamma \vdash e' : t_1Xt_2$

Now we know, fst $e \to \text{fst } e'$ and $\Gamma \vdash \text{fst } e : t_1$

Using IH we can say $\Gamma \vdash \text{fst } e' : t_1$

Case $\Gamma \vdash \mathbf{snd} \ e : t_2$

This means $e: t_1Xt_2$

IH If $\Gamma \vdash e : t_1Xt_2$ and $e \rightarrow e'$ then $\Gamma \vdash e' : t_1Xt_2$

Now we know, snd $e \to \text{snd } e'$ and $\Gamma \vdash \text{snd } e : t_2$

Using IH we can say $\Gamma \vdash \text{snd } e' : t_2$

Case $\Gamma \vdash$ left $e: t_1 + t_2$ This means $e:t_1$ IH If $\Gamma \vdash e : t_1$ and $e \rightarrow e'$ then $\Gamma \vdash e' : t_1$ Now we know, left $e \to \text{left } e'$ and $\Gamma \vdash \text{left } e: t_1 + t_2$ Using IH we can say $\Gamma \vdash \text{left } e' : t_1 + t_2$ Case $\Gamma \vdash \mathbf{right} \ e : t_1 + t_2$ This means $e:t_2$ IH If $\Gamma \vdash e : t_2$ and $e \rightarrow e'$ then $\Gamma \vdash e' : t_2$ Now we know, right $e \to \text{right } e'$ and $\Gamma \vdash \text{right } e: t_1 + t_2$ Using IH we can say $\Gamma \vdash \text{right } e' : t_1 + t_2$ Case Γ ; $x:t_1,y:t_2\vdash$ match e with left $x\Rightarrow e_2$; right $y\Rightarrow e_3:t_3$ This means $e: t_1 + t_2$ IH If $\Gamma \vdash e : t_1 + t_2$ and $e \rightarrow e'$ then $\Gamma \vdash e' : t_1 + t_2$ Now we know, match e with left $x \Rightarrow e_2$; right $y \Rightarrow e_3 \rightarrow$ match e' with left $x \Rightarrow e_2$; right $y \Rightarrow e_3$ and $\Gamma \vdash$ match e with left $x \Rightarrow e_2$; right $y \Rightarrow e_3 : t_3$ Using IH we can say $\Gamma \vdash$ match e' with left $x \Rightarrow e_2$; right $y \Rightarrow e_3 : t_3$ **Theorem 3.** (*Progress*): For every choreography $\cdot \vdash C : \tau$ either $\exists C' . C \rightarrow_q C'$ or C is a value *Proof.* We will start with induction on C Case C = ()() is a value and we are done Case $C = \ell . e$ we know from local progress that e is either a value or $\exists e'. e \rightarrow_l e'$ So, if e is a value v, $\ell . v$ is a value and we are done If $\exists e'. e \rightarrow_l e'$ then, $\ell.e \rightarrow_q \ell.e'$ using assoc rule Case $C = C_1 \leadsto \ell$ IH C_1 is either a value or $\exists C_1'$. $C_1 \rightarrow_g C_1'$ if $C_1 \to_g C_1'$ then $C_1 \leadsto \ell \to_g C_1' \leadsto \ell$ using the send 1 rule if C_1 is a value, $C_1 = \ell'.v$ and $\ell'.v \rightsquigarrow \ell \rightarrow_q \ell.v$ using send 2 rule Case $C = \ell_1[d] \rightsquigarrow \ell_2; C_1$ we know that, $\ell_1[d] \leadsto \ell_2; C_1 \to_q C_1$ using sync rule Case $C = if C_1$ then C_2 else C_3 IH1 C_1 is either a value or $\exists C_1'$. $C_1 \rightarrow_g C_1'$ if $C_1 \to C_1'$ then if C_1 then C_2 else $C_3 \to_q$ if C_1' then C_2 else C_3 using if 1 rule

if C_1 is a value, then C_1 is either $\ell.true$ or $\ell.false$

if $C_1 = \ell.true$ then if C_1 then C_2 else $C_3 \rightarrow_q C_2$ using if 2 rule

if $C_1 = \ell.false$ then if C_1 then C_2 else $C_3 \rightarrow_g C_3$ using if 3 rule

Case C = let $X := C_1$ in C_2

IH C_1 is either a value or $\exists C_1'$. $C_1 \rightarrow_g C_1'$

if $C_1 \to_g C_1'$ then let $X := C_1$ in $C_2 \to_g$ let $X := C_1'$ in C_2 using let 1 rule if C_1 is a value V, then let X := V in $C_2 \to_g C_2[X \mapsto V]$ using let 2 rule

Case C = fun $X \Rightarrow C_1$

fun $X \Rightarrow C_1$ is a value and we are done

Case $C = C_1C_2$

IH1 C_1 is either a value or $\exists C_1'$. $C_1 \rightarrow_g C_1'$

if $C_1 \to_q C_1'$ then $C_1C_2 \to_q C_1'C_2$ using app 1 rule

if C_1 is a value, fun $X \Rightarrow C'$, IH2 C_2 is either a value or $\exists C'_2$. $C_2 \rightarrow_g C'_2$

if C_2 is a value V, then (fun $X \Rightarrow C'$) $V \rightarrow_q C'[X \mapsto V]$ using app 3 rule

if $C_2 \to_q C_2'$ then (fun $X \Rightarrow C'$) $C_2 \to_q$ (fun $X \Rightarrow C'$) C_2' using app 2 rule

Case $C = (C_1, C_2)$

IH1 C_1 is either a value or $\exists C'_1. C_1 \rightarrow_q C'_1$

if $C_1 \to_g C_1'$ then $(C_1, C_2) \to_g (C_1', C_2)$ using pair 1 rule

if C_1 is a value V_1 , IH2 C_2 is either a value or $\exists C_2'$. $C_2 \rightarrow_g C_2'$

if C_2 is a value V_2 , then (V_1, V_2) is a value

if $C_2 \to_g C_2'$ then $(V_1, C_2) \to (V_1, C_2')$ using pair 2 rule

Case $C = fst C_1$

IH C_1 is either a value or $\exists C'_1. C_1 \rightarrow_q C'_1$

if $C_1 \to_g C_1'$ then fst $C_1 \to_g$ fst C_1' using fst rule

if C_1 is a value V, this means $V = (V_1, V_2)$ then fst $(V_1, V_2) \rightarrow_g V_1$ using pair elim 1 rule

Case $C = \text{snd } C_1$

IH C_1 is either a value or $\exists C'_1. C_1 \rightarrow_q C'_1$

if $C_1 \to_q C_1'$ then snd $C_1 \to_q$ snd C_1' using snd rule

if C_1 is a value V, this means $V = (V_1, V_2)$ then snd $(V_1, V_2) \rightarrow_g V_2$ using pair elim 2 rule

Case $C = left C_1$

IH C_1 is either a value or $\exists C'_1. C_1 \rightarrow_q C'_1$

if $C_1 \to_g C_1'$ then left $C_1 \to_g$ left C_1' using left rule

if C_1 is a value V, then left V is a value

Case $C = right C_1$

IH C_1 is either a value or $\exists C'_1. C_1 \rightarrow_g C'_1$

if $C_1 \to_g C_1'$ then right $C_1 \to_g$ right C_1' using right rule

if C_1 is a value V, then right V is a value

```
Case C = match C_1 with left X \Rightarrow C_2; right Y \Rightarrow C_3
IH C_1 is either a value or \exists C_1'. C_1 \rightarrow_q C_1'
if C_1 \to_g C_1' then match C_1 with left X \Rightarrow C_2; right Y \Rightarrow C_3 \to_g match C_1' with
left X \Rightarrow C_2; right Y \Rightarrow C_3 using match rule
if C_1 is a value, then C_1 is either left V or right V
if C_1 = \text{left } V then match (left V) with left X \Rightarrow C_2; right Y \Rightarrow C_3 \rightarrow_g
C_2[X \mapsto V] using sum elim 1 rule
if C_1 = right V then match (right V) with left X \Rightarrow C_2; right Y \Rightarrow C_3 \rightarrow_q
C_3[Y \mapsto V] using sum elim 2 rule
Theorem 4. (Preservation): If \Gamma : \Delta \vdash C : \tau and C \to C' then \Gamma : \Delta \vdash C' : \tau
Proof. We will start with induction on \Gamma; \Delta \vdash C : \tau
Case \Gamma; \Delta \vdash C : unit
\Gamma; \Delta \vdash (): unit. () doesn't take a step and we are done
Case \Gamma; \Delta \vdash X : \tau
\Gamma; \Delta \vdash X : \tau. X doesn't take a step and we are done
Case \Gamma; \Delta \vdash C : \ell . t
This means C = \ell . e
Using local preservation we can say that, if \Gamma \vdash e : t and e \rightarrow e' then \Gamma \vdash e' : t
Now we know, \ell.e \to \ell.e' and \Gamma; \Delta; \Delta \vdash C : \ell.t
Using local preservation, \Gamma; \Delta \vdash C' : \ell . t where C' = \ell . e'
Case \Gamma; \Delta \vdash C : \tau_1 \times \tau_2
This means C = (C_1, C_2)
IH If \Gamma; \Delta \vdash C_1 : \tau_1 and C_1 \to C'_1 then \Gamma; \Delta \vdash C'_1 : \tau_1
Now we know, (C_1, C_2) \rightarrow (C'_1, C_2) and \Gamma; \Delta \vdash (C_1, C_2) : \tau_1 \times \tau_2
Using IH we can say \Gamma; \Delta \vdash (C'_1, C_2) : \tau_1 \times \tau_2
Case \Gamma; \Delta \vdash fst C : \tau_1
This means C: \tau_1 \times \tau_2
IH If \Gamma; \Delta \vdash C : \tau_1 \times \tau_2 and C \to c' then \Gamma; \Delta \vdash C' : \tau_1 \times \tau_2
Now we know, fst C \to \text{fst } C' and \Gamma; \Delta \vdash \text{fst } C : \tau_1
Using IH we can say \Gamma; \Delta \vdash fst C' : \tau_1
Case \Gamma; \Delta \vdash snd C : \tau_2
This means C: \tau_1 \times \tau_2
IH If \Gamma; \Delta \vdash C : \tau_1 \times \tau_2 and C \to C' then \Gamma; \Delta \vdash C' : \tau_1 \times \tau_2
Now we know, snd C \to \text{snd } C' and \Gamma; \Delta \vdash \text{snd } C : \tau_2
Using IH we can say \Gamma; \Delta \vdash snd C': \tau_2
```

Case Γ ; $\Delta \vdash$ left $C : \tau_1 + \tau_2$

This means $C: \tau_1$

IH If $\Gamma; \Delta \vdash C : \tau_1$ and $C \to C'$ then $\Gamma; \Delta \vdash C' : \tau_1$ Now we know, left $C \to \text{left } C'$ and $\Gamma; \Delta \vdash \text{left } C : \tau_1 + \tau_2$ Using IH we can say $\Gamma; \Delta \vdash \text{left } C' : \tau_1 + \tau_2$

Case Γ ; $\Delta \vdash \mathbf{right} \ C : \tau_1 + \tau_2$

This means $C: \tau_2$

IH If $\Gamma; \Delta \vdash C : \tau_2 \text{ and } C \to C' \text{ then } \Gamma; \Delta \vdash C' : \tau_2$

Now we know, right $C \to \text{right } C'$ and $\Gamma; \Delta \vdash \text{right } C : \tau_1 + \tau_2$

Using IH we can say Γ ; $\Delta \vdash \text{right } C' : \tau_1 + \tau_2$

Case Γ ; $\Delta \vdash$ match C with left $X \Rightarrow C_2$; right $Y \Rightarrow C_3 : \tau_3$

This means $C: \tau_1 + \tau_2$

IH If Γ ; $\Delta \vdash C : \tau_1 + \tau_2$ and $C \to C'$ then Γ ; $\Delta \vdash C' : \tau_1 + \tau_2$

Now we know, match C with left $X \Rightarrow C_2$; right $Y \Rightarrow C_3 \to \text{match } C'$ with left $X \Rightarrow C_2$; right $Y \Rightarrow C_3$ and $\Gamma; \Delta \vdash \text{match } C$ with left $X \Rightarrow C_2$; right $Y \Rightarrow C_3 \Rightarrow C_4$; right

Using IH we can say, Γ ; $\Delta \vdash$ match C' with left $X \Rightarrow C_2$; right $Y \Rightarrow C_3 : \tau_3$

5 Glossary

 ℓ involved in $\tau = \ell \in locs(\tau)$

 $\ell \in locs(\tau) = \text{ getLoc}$ is a function that recursively traverses over τ to construct $locs(\tau)$

$$locs(\tau) = \left\{ \begin{array}{ll} \phi & \text{if } \tau = \mathbf{unit} \\ \{\ell\} & \text{if } \tau = \ell.e \\ \text{getLoc } \tau_1 \cup \text{getLoc } \tau_2 & \text{if } \tau = \tau_1 \rightarrow \tau_2 \text{ or } \tau_1 + \tau_2 \text{ or } \tau_1 \times \tau_2 \end{array} \right.$$

6 Endpoint Projection

$$\llbracket \mathbf{fst} \ C \rrbracket_{\ell} = \left\{ \begin{array}{ll} \mathbf{fst} \ \llbracket C \rrbracket_{\ell} & \text{if } C : \tau_1 \times \tau_2 \text{ and } \ell \text{ is involved in } C, \tau_1 \text{ and } \tau_2 \\ \llbracket C \rrbracket_{\ell} & \text{if } C : \tau_1 \times \tau_2 \text{ and } \ell \text{ is involved in } C \\ \mathbf{()} & \text{otherwise} \end{array} \right.$$

$$[\![\mathbf{snd}C]\!]_\ell = \left\{ \begin{array}{ll} \mathbf{snd} \ [\![C]\!]_\ell & \text{if } C: \tau_1 \times \tau_2 \text{ and } \ell \text{ is involved in } C, \tau_1 \text{ and } \tau_2 \\ [\![C]\!]_\ell & \text{if } C: \tau_1 \times \tau_2 \text{ and } \ell \text{ is involved in } C \\ () & \text{otherwise} \end{array} \right.$$

$$\llbracket \mathbf{inl} \ C \rrbracket_{\ell} = \left\{ \begin{array}{ll} \mathbf{inl} \ \llbracket C \rrbracket_{\ell} & \text{if } C : \tau_1 \text{ and } \ell \text{ is involved in } C \text{ and } \tau_1 \\ \llbracket C \rrbracket_{\ell} & \text{if } C : \tau_1 \text{ and } \ell \text{ is involved in } C \text{ but not in } \tau_1 \\ \mathbf{()} & \text{if } C : \tau_1 \text{ and } \ell \text{ is not involved in } C \text{ and } \tau_1 \end{array} \right.$$

$$\llbracket \mathbf{inr} \ C \rrbracket_{\ell} = \left\{ \begin{array}{ll} \mathbf{inr} \ \llbracket C \rrbracket_{\ell} & \text{if } C : \tau_2 \text{ and } \ell \text{ is involved in } C \text{ and } \tau_2 \\ \ \llbracket C \rrbracket_{\ell} & \text{if } C : \tau_2 \text{ and } \ell \text{ is involved in } C \text{ but not in } \tau_2 \\ \text{()} & \text{if } C : \tau_2 \text{ and } \ell \text{ is not involved in } C \text{ and } \tau_2 \end{array} \right.$$

[match C in inl $\mathbf{X} \Rightarrow C_1$; inr $\mathbf{Y} \Rightarrow C_2$]_{ℓ}

$$= \left\{egin{array}{ll} \mathbf{match} \ \llbracket C
rbracket_{\ell} \ \end{bmatrix}_{\ell} \ \mathbf{ininl} \ \mathbf{X} \ \Rightarrow \llbracket C
rbracket_{\ell}
bracket_{\ell}; \ \mathbf{inr} \ \mathbf{Y} \ \Rightarrow \llbracket C
rbracket_{\ell}
bracket_{\ell} \ \\ \llbracket C
rbracket_{\ell} \ \rrbracket_{\ell} \sqcup \llbracket C
rbracket_{\ell}
bracket_{\ell} \ \\ \llbracket C
rbracket_{\ell}
bracket_{\ell} \sqcup \llbracket C
rbracket_{\ell}
bracket_{\ell} \ \\ \llbracket C
rbracket_{\ell}
bracket_{\ell} \sqcup \llbracket C
rbracket_{\ell}
bracket_{\ell} \ \\ \llbracket C
rbracket_{\ell}
bracket_{\ell} \sqcup \llbracket C
rbracket_{\ell}
bracket_{\ell} \ \\ \llbracket C
rbracket_{\ell} \sqcup \llbracket C
rbracket_{\ell} \rrbracket_{\ell} \ \\ \blacksquare \end{array}
ight.$$

if $C: \tau_1 + \tau_2$ and ℓ is involved in both τ_1 and τ_2 if $C: \tau_1 + \tau_2$ and ℓ is involved in τ_1 or τ_2 or C if $C: \tau_1 + \tau_2$ and ℓ is not involved in C, τ_1 and τ_2

7 Type Projection

$$[\![\mathbf{unit}]\!]_\ell = \ \mathbf{unit}$$

$$\llbracket \ell_1.t
rbracket_{\ell_2} = \left\{ egin{array}{ll} t & ext{if $\ell_1 = \ell_2$} \\ ext{unit} & ext{otherwise} \end{array}
ight.$$

$$\llbracket \tau_1 \to \tau_2 \rrbracket_\ell = \left\{ \begin{array}{ll} \llbracket \tau_1 \rrbracket_\ell \to \llbracket \tau_2 \rrbracket_\ell & \text{if ℓ is involved in τ_1 or τ_2 or both} \\ \mathbf{unit} & \text{otherwise} \end{array} \right.$$

$$\llbracket \tau_1 + \tau_2 \rrbracket_\ell = \left\{ \begin{array}{ll} \llbracket \tau_1 \rrbracket_\ell + \llbracket \tau_2 \rrbracket_\ell & \text{if ℓ is involved in τ_1 or τ_2 or both} \\ \mathbf{unit} & \text{otherwise} \end{array} \right.$$

$$\llbracket \tau_1 \times \tau_2 \rrbracket_\ell = \left\{ \begin{array}{ll} \llbracket \tau_1 \rrbracket_\ell \times \llbracket \tau_2 \rrbracket_\ell & \text{if ℓ is involved in τ_1 and τ_2} \\ \llbracket \tau_1 \rrbracket_\ell & \text{if ℓ is involved in τ_1 but not τ_2} \\ \llbracket \tau_2 \rrbracket_\ell & \text{if ℓ is involved in τ_2 but not τ_1} \\ \mathbf{unit} & \text{otherwise} \end{array} \right.$$

8 Lemmas

```
Lemma 1 : If \ell is not involved in \tau then [\![\tau]\!]_{\ell} = \text{unit}
Proof: By Induction on \tau
Case \tau = \text{unit}:
   From type projection we know, [\![\mathbf{unit}]\!]_\ell = \mathsf{unit}
Case \tau = \ell.t:
   Here we know that, \ell_1 \neq \ell as \ell is not involved in \tau
   so using type projection for [\![\ell_1.t]\!]_\ell
   we can say, [\![\ell_1.t]\!]_\ell = \mathbf{unit}
Case \tau = [\![\tau_1 \to \tau_2]\!]_{\ell}:
   By IH, \ell is not involved in 	au_1 and \ell is not involved in 	au_2
   so using type projection for [\![\tau_1 \to \tau_2]\!]_\ell
   we can say, [\![\tau_1 \to \tau_2]\!]_\ell = \mathbf{unit}
Case \tau = [\![\tau_1 + \tau_2]\!]_{\ell}:
   By IH, \ell is not involved in 	au_1 and \ell is not involved in 	au_2
   so using type projection for [\![\tau_1+\tau_2]\!]_\ell
   we can say, \llbracket \tau_1 + \tau_2 \rrbracket_\ell = \mathbf{unit}
Case \tau = [\![\tau_1 \times \tau_2]\!]_{\ell}:
   By IH, \ell is not involved in \tau_1 and \ell is not involved in \tau_2
   so using type projection for [\![\tau_1 	imes 	au_2]\!]_\ell
   we can say, [\![ 	au_1 * 	au_2 ]\!]_\ell = \mathbf{unit}
Lemma 2 : If \ell \notin locs(C) then [\![C]\!]_{\ell} = ()
Lemma 3 : If \vdash C : \tau, then \vdash \llbracket C \rrbracket_{\ell} : \llbracket \tau \rrbracket_{\ell}
```