Memory Systems Lec09 – Cache Memories and Cache Coherence

Chin-Fu Nien (粘儆夫)

Module 2: System & Software (con't)

Cache Memories

The content of this part is mainly from:

Randal E. Bryant and David R. O'Hallaron, "Computer Systems: A Programmer's Perspective," 3/e.

(本節內容改自Prof. Randal E. Bryant and David R. O'Hallaron 8th Lectures課程講義)

Today

- Cache memory organization and operation
- Performance impact of caches
 - The memory mountain
 - Rearranging loops to improve spatial locality
 - Using blocking to improve temporal locality

Cache Line / Cache Block

 A cache is typically read/write by a unit called "cache line" or "cache block"

- The size for a cache line (cache block) is CPUdependent
 - Typical sizes are 16, 32, 64, and 128 Bytes.
 - Most common case: 64B.

General Cache Concept

Cache Memories

- Cache memories are small, fast SRAM-based memories managed automatically in hardware
 - Hold frequently accessed blocks of main memory
- CPU looks first for data in cache
- Typical system structure:

General Cache Organization (S, E, B)

Cache Read

Locate set

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set Assume: cache block size 8 bytes

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set Assume: cache block size 8 bytes

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set Assume: cache block size 8 bytes

If tag doesn't match: old line is evicted and replaced

Direct-Mapped Cache Simulation

t=1	s=2	b=1
Х	XX	Х

M=16 bytes (4-bit addresses), B=2 bytes/block, S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):

 $[0\underline{0000}_2]$, miss $[0\underline{001}_2]$, hit $[0\underline{111}_2]$, miss $[1\underline{000}_2]$, miss $[0\underline{000}_2]$ miss

	V	Tag	Block
Set 0	1	0	M[0-1]
Set 1			
Set 2			
Set 3	1	0	M[6-7]

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

No match:

- One line in set is selected for eviction and replacement
- Replacement policies: random, least recently used (LRU), ...

2-Way Set Associative Cache Simulation

t=2	s=1	b=1
XX	Х	Х

M=16 byte addresses, B=2 bytes/block, S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

0	$[00\underline{0}0_{2}],$	miss
1	$[00\underline{0}1_{2}],$	hit
7	$[01\underline{1}1_{2}],$	miss
8	$[10\underline{0}0_{2}],$	miss
0	[0000]	hit

	V	Tag	Block
Set 0	1	00	M[0-1]
	1	10	M[8-9]

Set 1	1	01	M[6-7]
Set I	0		

What about writes?

- Multiple copies of data exist:
 - L1, L2, L3, Main Memory, Disk
- What to do on a write-hit?
 - Write-through (write immediately to memory)
 - Write-back (defer write to memory until replacement of line)
 - Need a dirty bit (line different from memory or not)
- What to do on a write-miss?
 - Write-allocate (load into cache, update line in cache)
 - Good if more writes to the location follow
 - No-write-allocate (writes straight to memory, does not load into cache)
- Typical
 - Write-through + No-write-allocate
 - Write-back + Write-allocate

Intel Core i7 Cache Hierarchy

Processor package

L1 i-cache and d-cache: 32 KB, 8-way, Access: 4 cycles

L2 unified cache: 256 KB, 8-way, Access: 10 cycles

L3 unified cache: 8 MB, 16-way, Access: 40-75 cycles

Block size: 64 bytes for all caches.

Cache Performance Metrics

Miss Rate

- Fraction of memory references not found in cache (misses / accesses)
 - = 1 hit rate
- Typical numbers (in percentages):
 - 3-10% for L1
 - can be quite small (e.g., < 1%) for L2, depending on size, etc.

Hit Time

- Time to deliver a line in the cache to the processor
 - includes time to determine whether the line is in the cache
- Typical numbers:
 - 4 clock cycle for L1
 - 10 clock cycles for L2

Miss Penalty

- Additional time required because of a miss
 - typically 50-200 cycles for main memory (Trend: increasing!)

Let's think about those numbers

- Huge difference between a hit and a miss
 - Could be 100x, if just L1 and main memory
- Would you believe 99% hits is twice as good as 97%?
 - Consider: cache hit time of 1 cycle miss penalty of 100 cycles
 - Average access time:

```
97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles
99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles
```

This is why "miss rate" is used instead of "hit rate"

Writing Cache Friendly Code

- Make the common case go fast
 - Focus on the inner loops of the core functions
- Minimize the misses in the inner loops
 - Repeated references to variables are good (temporal locality)
 - Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified through our understanding of cache memories

Today

- Cache organization and operation
- Performance impact of caches
 - The memory mountain
 - Rearranging loops to improve spatial locality
 - Using blocking to improve temporal locality

The Memory Mountain

- Read throughput (read bandwidth)
 - Number of bytes read from memory per second (MB/s)

- Memory mountain: Measured read throughput as a function of spatial and temporal locality.
 - Compact way to characterize memory system performance.

Memory Mountain Test Function

```
long data[MAXELEMS]; /* Global array to traverse */
/* test - Iterate over first "elems" elements of
      array "data" with stride of "stride", using
      using 4x4 loop unrolling.
int test(int elems, int stride) {
  long i, sx2=stride*2, sx3=stride*3, sx4=stride*4;
  long acc0 = 0, acc1 = 0, acc2 = 0, acc3 = 0;
  long length = elems, limit = length - sx4;
  /* Combine 4 elements at a time */
  for (i = 0; i < limit; i += sx4) {
    acc0 = acc0 + data[i];
    acc1 = acc1 + data[i+stride];
    acc2 = acc2 + data[i+sx2];
    acc3 = acc3 + data[i+sx3];
  /* Finish any remaining elements */
  for (; i < length; i++) {
    acc0 = acc0 + data[i];
  return ((acc0 + acc1) + (acc2 + acc3));
                                              mountain/mountain.c
```

Call test () with many combinations of elems and stride.

For each elems and stride:

- 1. Call test() once to warm up the caches.
- 2. Call test() again and measure the read throughput (MB/s)

The Memory Mountain

Core i7 Haswell

32 KB L1 d-cache

2.1 GHz

Today

- Cache organization and operation
- Performance impact of caches
 - The memory mountain
 - Rearranging loops to improve spatial locality
 - Using blocking to improve temporal locality

Matrix Multiplication Example

• Description:

- Multiply N x N matrices
- Matrix elements are doubles (8 bytes)
- ∘ O(N³) total operations
- N reads per source element
- N values summed per destination
 - but may be able to hold in register

```
/* ijk */
for (i=0; i<n; i++)
for (j=0; j<n; j++) {
   sum = 0.0;
   for (k=0; k<n; k++)
      sum += a[i][k] * b[k][j];
   c[i][j] = sum;
}

matmult/mm.c</pre>
```

Miss Rate Analysis for Matrix Multiply

Assume:

- Block size = 32B (big enough for four doubles)
- Matrix dimension (N) is very large
 - Approximate 1/N as 0.0
- Cache is not even big enough to hold multiple rows

Analysis Method:

Look at access pattern of inner loop

Layout of C Arrays in Memory (review)

- C arrays allocated in row-major order
 - each row in contiguous memory locations
- Stepping through columns in one row:

```
o for (i = 0; i < N; i++)
sum += a[0][i];</pre>
```

- accesses successive elements
- if block size (B) > sizeof(a_{ii}) bytes, exploit spatial locality
 - miss rate = sizeof(a_{ii}) / B
- Stepping through rows in one column:

```
o for (i = 0; i < n; i++)
sum += a[i][0];</pre>
```

- accesses distant elements
- no spatial locality!
 - miss rate = 1 (i.e. 100%)

Matrix Multiplication (ijk)

```
/* ijk */
for (i=0; i<n; i++) {
  for (j=0; j<n; j++) {
    sum = 0.0;
    for (k=0; k<n; k++)
       sum += a[i][k] * b[k][j];
    c[i][j] = sum;
  }
}

matmult/mm.c</pre>
```


Misses per inner loop iteration:

<u>A</u> <u>B</u> <u>C</u> 0.25 1.0 0.0

Matrix Multiplication (jik)

```
/* jik */
for (j=0; j<n; j++) {
  for (i=0; i<n; i++) {
    sum = 0.0;
    for (k=0; k<n; k++)
       sum += a[i][k] * b[k][j];
    c[i][j] = sum
  }
}
</pre>
matmult/mm.c
```

Inner loop:

Misses per inner loop iteration:

<u>A</u> <u>B</u> <u>C</u> 0.25 1.0 0.0

Matrix Multiplication (kij)

```
/* kij */
for (k=0; k<n; k++) {
  for (i=0; i<n; i++) {
    r = a[i][k];
    for (j=0; j<n; j++)
        c[i][j] += r * b[k][j];
  }
}
matmult/mm.c</pre>
```

Inner loop:

Misses per inner loop iteration:

<u>A</u> <u>B</u> <u>C</u> 0.0 0.25 0.25

Matrix Multiplication (ikj)

```
/* ikj */
for (i=0; i<n; i++) {
  for (k=0; k<n; k++) {
    r = a[i][k];
    for (j=0; j<n; j++)
        c[i][j] += r * b[k][j];
  }
}
matmult/mm.c</pre>
```


Inner loop:

Fixed Row-wise Row-wise

Misses per inner loop iteration:

<u>A</u> <u>B</u> <u>C</u> 0.0 0.25 0.25

Matrix Multiplication (jki)

```
/* jki */
for (j=0; j<n; j++) {
  for (k=0; k<n; k++) {
    r = b[k][j];
  for (i=0; i<n; i++)
    c[i][j] += a[i][k] * r;
}

matmult/mm.c</pre>
```


Misses per inner loop iteration:

<u>A</u>	<u>B</u>	<u>C</u>
1.0	0.0	1.0

Matrix Multiplication (kji)

```
/* kji */
for (k=0; k<n; k++) {
  for (j=0; j<n; j++) {
    r = b[k][j];
  for (i=0; i<n; i++)
    c[i][j] += a[i][k] * r;
  }
}
matmult/mm.c</pre>
```


Misses per inner loop iteration:

<u>A</u> <u>B</u> <u>C</u> 1.0 0.0 1.0

Summary of Matrix Multiplication

```
for (i=0; i<n; i++) {
  for (j=0; j<n; j++) {
    sum = 0.0;
  for (k=0; k<n; k++)
    sum += a[i][k] * b[k][j];
  c[i][j] = sum;
}
</pre>
```

```
for (k=0; k<n; k++) {
  for (i=0; i<n; i++) {
    r = a[i][k];
  for (j=0; j<n; j++)
    c[i][j] += r * b[k][j];
}</pre>
```

```
for (j=0; j<n; j++) {
  for (k=0; k<n; k++) {
    r = b[k][j];
    for (i=0; i<n; i++)
      c[i][j] += a[i][k] * r;
}</pre>
```

ijk (& jik):

- 2 loads, 0 stores
- misses/iter = 1.25

kij (& ikj):

- 2 loads, 1 store
- misses/iter = 0.5

jki (& kji):

- 2 loads, 1 store
- misses/iter = 2.0

Core i7 Matrix Multiply Performance

Today

- Cache organization and operation
- Performance impact of caches
 - The memory mountain
 - Rearranging loops to improve spatial locality
 - Using blocking to improve temporal locality

Example: Matrix Multiplication

Cache Miss Analysis

- Assume:
 - Matrix elements are doubles.
 - Cache block = 64 bytes = 8 doubles (8 x 8 bytes)
 - Cache size C << n (much smaller than n)

• First iteration:

 \circ n/8 + n = 9n/8 misses

= *

n

Afterwards in cache: (schematic)

Cache Miss Analysis

- Assume:
 - Matrix elements are doubles
 - Cache block = 8 doubles
 - Cache size C << n (much smaller than n)

- Second iteration:
 - Again:n/8 + n = 9n/8 misses

- Total misses:
 - \circ 9n/8 * n² = (9/8) * n³

n

Blocked Matrix Multiplication

```
c = (double *) calloc(sizeof(double), n*n);
/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
    int i, j, k;
    for (i = 0; i < n; i+=B)
   for (i = 0; i < n; i+=B)
            for (k = 0; k < n; k+=B)
        /* B x B mini matrix multiplications */
                  for (i1 = i; i1 < i+B; i++)
                      for (j1 = j; j1 < j+B; j++)
                          for (k1 = k; k1 < k+B; k++)
                          c[i1*n+i1] += a[i1*n + k1]*b[k1*n + i1];
                                                         matmult/bmm.c
```


Cache Miss Analysis

- Assume:
 - Cache block = 8 doubles
 - Cache size C << n (much smaller than n)
 - ∘ Three blocks fit into cache: 3B² < C

- First (block) iteration:
 - ∘ B²/8 misses for each block
 - 2n/B * B²/8 = nB/4
 (omitting matrix c)

Afterwards in cache (schematic)

n/B blocks

Cache Miss Analysis

- Assume:
 - Cache block = 8 doubles
 - Cache size C << n (much smaller than n)
 - ∘ Three blocks **■** fit into cache: 3B² < C

- Second (block) iteration:
 - Same as first iteration
 - \circ 2n/B * B²/8 = nB/4

- Total misses:
 - \circ nB/4 * (n/B)² = n³/(4B)

n/B blocks

Blocking Summary

- No blocking: (9/8) * n³
- Blocking: 1/(4B) * n³
- Suggest largest possible block size B, but limit 3B² <
 C!

- Reason for dramatic difference:
 - Matrix multiplication has inherent temporal locality:
 - Input data: 3n², computation 2n³
 - Every array elements used O(n) times!
 - But program has to be written properly

Cache Summary

Cache memories can have significant performance impact

- You can write your programs to exploit this!
 - Focus on the inner loops, where bulk of computations and memory accesses occur.
 - Try to maximize spatial locality by reading data objects with sequentially with stride 1.
 - Try to maximize temporal locality by using a data object as often as possible once it's read from memory.

Parallel Programming and Cache Coherence

The content of this part is mainly from:

Randal E. Bryant and David R. O'Hallaron, "Computer Systems: A Programmer's Perspective," 3/e.

(本節內容改自Prof. Randal E. Bryant and David R. O'Hallaron 26th Lectures課程講義) (原課程名稱為Thread-Level Parallelism)

Typical Multicore Processor

Multiple processors operating with coherent view of memory

Out-of-Order Processor Structure

- Instruction control dynamically converts program into stream of operations
- Operations mapped onto functional units to execute in parallel

Hyperthreading Implementation

- Replicate enough instruction control to process K instruction streams
- K copies of all registers
- Share functional units

Benchmark Machine

- Get data about machine from /proc/cpuinfo
- Shark Machines
 - Intel Xeon E5520 @ 2.27 GHz
 - ∘ Nehalem, ca. 2010
 - 8 Cores
 - Each can do 2x hyperthreading

Example 1: Parallel Summation

- Sum numbers *0, ..., n-1*
 - ∘ Should add up to ((n-1)*n)/2
- Partition values 1, ..., n-1 into t ranges
 - ∘ *_n/t_*/values in each range
 - Each of t threads processes 1 range
 - For simplicity, assume *n* is a multiple of *t*
- Let's consider different ways that multiple threads might work on their assigned ranges in parallel

First attempt: psum-mutex

 Simplest approach: Threads sum into a global variable protected by a semaphore mutex.

```
void *sum mutex(void *vargp); /* Thread routine */
/* Global shared variables */
long gsum = 0; /* Global sum */
long nelems_per_thread; /* Number of elements to sum */
int main (int argc, char **argv)
   long i, nelems, log_nelems, nthreads, myid[MAXTHREADS];
   pthread t tid[MAXTHREADS];
    /* Get input arguments */
   nthreads = atoi(arqv[1]);
   log nelems = atoi(argv[2]);
   nelems = (1L << log nelems);</pre>
   nelems per thread = nelems / nthreads;
   sem init(&mutex, 0, 1);
```

psum-mutex (cont)

 Simplest approach: Threads sum into a global variable protected by a semaphore mutex.

```
/* Create peer threads and wait for them to finish */
for (i = 0; i < nthreads; i++) {</pre>
    mvid[i] = i;
    Pthread create(&tid[i], NULL, sum mutex, &myid[i]);
for (i = 0; i < nthreads; i++)
Pthread join(tid[i], NULL);
/* Check final answer */
if (gsum != (nelems * (nelems-1))/2)
    printf("Error: result=%ld\n", qsum);
return 0;
                                                   psum-mutex.c
```

psum-mutex Thread Routine

 Simplest approach: Threads sum into a global variable protected by a semaphore mutex.

```
/* Thread routine for psum-mutex.c */
void *sum mutex(void *vargp)
                                 /* Extract thread ID */
    long myid = *((long *)varqp);
    long start = myid * nelems per thread; /* Start element index */
    long end = start + nelems per thread; /* End element index */
    long i;
    for (i = start; i < end; i++) {</pre>
        P(&mutex);
        qsum += i;
       V(&mutex);
    return NULL;
                                                           psum-mutex.c
```

psum-mutex Performance

• Shark machine with 8 cores, n=2³¹

Threads (Cores)	1 (1)	2 (2)	4 (4)	8 (8)	16 (8)
psum-mutex (secs)	51	456	790	536	681

Nasty surprise:

- Single thread is very slow
- Gets slower as we use more cores

Next Attempt: psum-array

- Peer thread i sums into global array element psum [i]
- Main waits for theads to finish, then sums elements of psum
- Eliminates need for mutex synchronization

psum-array Performance

• Orders of magnitude faster than psum-mutex

Next Attempt: psum-local

 Reduce memory references by having peer thread is sum into a local variable (register)

```
/* Thread routine for psum-local.c */
void *sum local(void *vargp)
                                  /* Extract thread ID */
    long myid = *((long *)vargp);
    long start = myid * nelems per thread; /* Start element index */
    long end = start + nelems per thread; /* End element index */
    long i, sum = 0;
    for (i = start; i < end; i++) {</pre>
        sum += i;
    psum[myid] = sum;
    return NULL;
                                                            psum-local.c
```

psum-local Performance

• Significantly faster than psum-array

Characterizing Parallel Program Performance

- p processor cores, T_k is the running time using k cores
- Def. Speedup: $S_p = T_1 / T_p$ S_p is relative speedup if T_1 is running time of parallel version of the code running on 1 core.
 - \circ S_p is absolute speedup if T_1 is running time of sequential version of code running on 1 core.
 - Absolute speedup is a much truer measure of the benefits of parallelism.
- Def. Efficiency: $E_p = S_p / p = T_1 / (pT_p)$
 - Reported as a percentage in the range (0, 100].
 - Measures the overhead due to parallelization

Performance of psum-local

Threads (t)	1	2	4	8	16
Cores (p)	1	2	4	8	8
Running time (T_p)	1.98	1.14	0.60	0.32	0.33
Speedup (S_p)	1	1.74	3.30	6.19	6.00
Efficiency (E_p)	100%	87%	82%	77%	75%

- Efficiencies OK, not great
- Our example is easily parallelizable
- Real codes are often much harder to parallelize
 - e.g., parallel quicksort later in this lecture

Amdahl's Law

- Gene Amdahl (Nov. 16, 1922 Nov. 10, 2015)
- Captures the difficulty of using parallelism to speed things up.
- Overall problem
 - T Total sequential time required
 - p Fraction of total that can be sped up $(0 \le p \le 1)$
 - k Speedup factor
- Resulting Performance
 - \circ T_k = pT/k + (1-p)T
 - Portion which can be sped up runs k times faster
 - Portion which cannot be sped up stays the same
 - Least possible running time:
 - $k = \infty$
 - $T_{\infty} = (1-p)T$

Amdahl's Law Example

- Overall problem
 - T = 10 Total time required
 - p = 0.9 Fraction of total which can be sped up
 - \circ k = 9 Speedup factor
- Resulting Performance
 - \circ T₉ = 0.9 * 10/9 + 0.1 * 10 = 1.0 + 1.0 = 2.0
 - Least possible running time:
 - $T_{\infty} = 0.1 * 10.0 = 1.0$

A More Substantial Example: Sort

- Sort set of N random numbers
- Multiple possible algorithms
 - Use parallel version of quicksort
- Sequential quicksort of set of values X
 - Choose "pivot" p from X
 - Rearrange X into
 - L: Values ≤ p
 - R: Values ≥ p
 - Recursively sort L to get L'
 - Recursively sort R to get R'
 - ∘ Return L':p:R'

Sequential Quicksort Visualized

Sequential Quicksort Visualized

Sequential Quicksort Code

```
void qsort serial(data t *base, size t nele) {
  if (nele <= 1)
    return;
  if (nele == 2) {
    if (base[0] > base[1])
      swap(base, base+1);
    return;
  /* Partition returns index of pivot */
  size t m = partition(base, nele);
  if (m > 1)
   qsort serial (base, m);
  if (nele-1 > m+1)
    qsort serial(base+m+1, nele-m-1);
```

- Sort nele elements starting at base
 - Recursively sort L or R if has more than one element

Parallel Quicksort

- Parallel quicksort of set of values X
 - ∘ If N ≤ Nthresh, do sequential quicksort
 - Else
 - Choose "pivot" p from X
 - Rearrange X into
 - L: Values ≤ p
 - R: Values ≥ p
 - Recursively spawn separate threads
 - Sort L to get L'
 - Sort R to get R'
 - Return L' : p : R'

Parallel Quicksort Visualized

Thread Structure: Sorting Tasks

Task Threads

- Task: Sort subrange of data
 - Specify as:
 - base: Starting address
 - nele: Number of elements in subrange
- Run as separate thread

Small Sort Task Operation

Sort subrange using serial quicksort

Large Sort Task Operation

Top-Level Function (Simplified)

```
void tqsort(data_t *base, size_t nele) {
    init_task(nele);
    global_base = base;
    global_end = global_base + nele - 1;
    task_queue_ptr tq = new_task_queue();
    tqsort_helper(base, nele, tq);
    join_tasks(tq);
    free_task_queue(tq);
}
```

- Sets up data structures
- Calls recursive sort routine
- Keeps joining threads until none left
- Frees data structures

Recursive sort routine (Simplified)

- Small partition: Sort serially
- Large partition: Spawn new sort task

Sort task thread (Simplified)

```
/* Thread routine for many-threaded quicksort */
static void *sort thread(void *varqp) {
    sort task t *t = (sort task t *) vargp;
    data t *base = t->base;
    size t nele = t->nele;
    task queue ptr tq = t->tq;
    free (varqp);
    size t m = partition(base, nele);
    if (m > 1)
        tqsort helper(base, m, tq);
    if (nele-1 > m+1)
        tqsort helper(base+m+1, nele-m-1, tq);
    return NULL;
```

- Get task parameters
- Perform partitioning step
- Call recursive sort routine on each partition

Parallel Quicksort Performance

- Serial fraction: Fraction of input at which do serial sort
- Sort 2²⁷ (134,217,728) random values
- Best speedup = 6.84X

Parallel Quicksort Performance

- Good performance over wide range of fraction values
 - F too small: Not enough parallelism
 - F too large: Thread overhead + run out of thread memory

Amdahl's Law & Parallel Quicksort

Sequential bottleneck

- Top-level partition: No speedup
- Second level: ≤ 2X speedup
- ∘ k^{th} level: $\leq 2^{k-1}X$ speedup

Implications

- Good performance for small-scale parallelism
- Would need to parallelize partitioning step to get largescale parallelism
 - Parallel Sorting by Regular Sampling
 - H. Shi & J. Schaeffer, J. Parallel & Distributed Computing, 1992

Parallelizing Partitioning Step

Experience with Parallel Partitioning

- Could not obtain speedup
- Speculate: Too much data copying
 - Could not do everything within source array
 - Set up temporary space for reassembling partition

Lessons Learned

- Must have parallelization strategy
 - Partition into K independent parts
 - Divide-and-conquer
- Inner loops must be synchronization free
 - Synchronization operations very expensive
- Beware of Amdahl's Law
 - Serial code can become bottleneck
- You can do it!
 - Achieving modest levels of parallelism is not difficult
 - Set up experimental framework and test multiple strategies

Memory Consistency

Thread consistency constraints
Wa → Rb
Wb → Ra

- What are the possible values printed?
 - Depends on memory consistency model
 - Abstract model of how hardware handles concurrent accesses
- Sequential consistency
 - Overall effect consistent with each individual thread
 - Otherwise, arbitrary interleaving

Sequential Consistency Example

- Impossible outputs
 - 100, 1 and 1, 100
 - Would require reaching both Ra and Rb before Wa and Wb

Non-Coherent Cache Scenario

 Write-back caches, without coordination between them

print 1

print 100

Snoopy Caches

Tag each cache block with state

Invalid Cannot use value

Shared Readable copy

Exclusive Writeable copy

Snoopy Caches

Tag each cache block with state

Invalid Cannot use value

Shared Readable copy

Exclusive Writeable copy

print 2

print 200

- When cache sees request for one of its E-tagged blocks
 - Supply value from cache
 - Set tag to S

MESI Protocol for Snoopy Caches

Modified: The local processor has modified the cache line. This also implies it is the only copy in any cache.

Exclusive: The cache line is not modified but known to not be loaded into any other processor's cache.

Shared: The cache line is not modified and might exist in another processor's cache.

Invalid: The cache line is invalid, i.e., unused.

Figure 3.18: MESI Protocol Transitions