HACKATHON

by Aveiro Tech City

Inteligência Artificial na Gestão de Tráfego

HACKATHON by Aveiro Tech City

I<u>ntrodu</u>ção

• Desenvolvemos um modelo de Inteligência Artificial, usando Reinforcement Learning, que otimiza o tráfego nas 3 interseções semaforizadas no centro da cidade de Aveiro.

Reduzir as emissões de CO₂

Melhorar os transportes públicos

Reduzir os tempos de viagem

P25 - Escola da Glória

P30 - Dr. Mário Sacramento I

Enquadramento

Problema Atual em Aveiro: Elevado tráfego que leva à redução da qualidade do ar, insatisfação na utilização dos transportes públicos (fraca pontualidade) e aumento dos tempos médios de viagem.

Inteligência Artificial: Avanços recentes permitem otimizar de forma adaptativa problemas muito complexos.

emissões modelo Tradicional são até 309% superiores.

O tempo de espera dos transportes públicos no modelo Tradicional é até 731% superior.

tempo de espera dos restantes veículos no modelo Tradicional é até 755% superior.

HACKATHON

by Aveiro Tech City

F<u>acilida</u>de de Adoção

- Infraestrutura: Não são necessários elevados investimentos adicionais para uma eficiente integração com a infraestrutura existente.
- Dados: Criação de um micro serviço destinado a recolher os dados necessários, fornecidos pela Aveiro Tech City Lab, para a execução do nosso modelo.

Radares, Câmaras e Informação dos Veículos

Carros
Tempos de Espera
Autocarros

HACKATHON

by Aveiro Tech City

Modelo Desenvolvido

Reinforcement Learning: Agente responsável por uma interseção semaforizada, que prioriza os transportes públicos e promove a redução do tempo de espera dos restantes veículos.

Multi Agent Reinforcement Learning: Vários agentes que cooperam entre si de forma a otimizar a gestão global do tráfego rodoviário.

HACKATHON Simulação

by Aveiro Tech City

Funcionamento do Modelo

- Treino do Modelo: Em diferentes cenários de tráfego: baixo, médio, alto e em situações extremas.
- Avaliação: Comparação entre um modelo baseado em tempos fixos, modelo gapbased (utilizado na Alemanha) e o modelo proposto baseado em orquestração global com Inteligência Artificial.

Comparação com Modelo Tradicional

Tráfego Métrica	Baixo 🚗	Médio ឝ ឝ៝	Elevado 🗚
Tempo de Espera (%)	755%	418%	195%
Transportes Públicos (%)	717%	731%	352%
Emissões de CO ₂ (%)	309%	213% / 6%	115%

- As emissões de CO₂ no modelo tradicional são mais de 200% superiores do que as emissões do modelo proposto.
- As emissões de CO₂ no modelo *gap-based* utilizado na Alemanha são mais de 6% superiores do que as emissões do modelo proposto.

Redução das emissões de CO₂

Obrigado! Equipa SmartTLS

