Homework 3.

1 Let $\{e, f\}$ be an orthonormal basis in E^2 . Consider the following ordered pairs:

- b) $\{ \mathbf{f}, -\mathbf{e} \}$
- c) $\{\frac{\sqrt{2}}{2}\mathbf{e} + \frac{\sqrt{2}}{2}\mathbf{f}, -\frac{\sqrt{2}}{2}\mathbf{e} + \frac{\sqrt{2}}{2}\mathbf{f}\},$
- d) $\{\frac{\sqrt{3}}{2}\mathbf{e} + \frac{1}{2}\mathbf{f}, \frac{1}{2}\mathbf{e} \frac{\sqrt{3}}{2}\mathbf{f}\}.$

Show that all these ordered pairs are orthonormal bases in \mathbf{E}^2 .

Find amongst them the bases which have the same orientation as the orientation of the basis $\{e, f\}$.

Find amongst them the bases which have the orientation opposite to the orientation of the basis $\{e, f\}$.

2 Let $\{e, f\}$ be a basis in two-dimensional linear space V. Consider an ordered pair $\{a, b\}$ such that

$$\mathbf{a} = \mathbf{f}, \ \mathbf{b} = \gamma \mathbf{e} + \mu \mathbf{f},$$

where γ , μ are arbitrary real numbers.

Find values γ, μ such that an ordered pair $\{a, b\}$ is a basis and this basis has the same orientation as the basis $\{e, f\}$.

3 Let $\{e_x, e_y, e_z\}$ be an orthonormal basis in E^3 and let $\{a, b, c\}$ be an arbitrary basis in E^3 . Show that the basis $\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$ either has the same orientation as the basis $\{\mathbf{e}_x, \mathbf{e}_y, \mathbf{e}_z\}$, or the same orientation as the basis $\{\mathbf{e}_y, \mathbf{e}_x, \mathbf{e}_z\}$.

4 Let $\{\mathbf{e}_x, \mathbf{e}_y, \mathbf{e}_z\}$ be an orthonormal basis in \mathbf{E}^3 . Consider the following ordered triples:

- a) $\{e_x, e_x + 2e_y, 5e_z\},\$
- b) $\{ \mathbf{e}_y, \mathbf{e}_x, 5\mathbf{e}_z \},\$
- c) $\{\mathbf{e}_{y}, \mathbf{e}_{x}, 5\mathbf{e}_{z}\},\$ d) $\{\frac{\sqrt{3}}{2}\mathbf{e}_{x} + \frac{1}{2}\mathbf{e}_{y}, -\frac{1}{2}\mathbf{e}_{x} + \frac{\sqrt{3}}{2}\mathbf{e}_{y}, \mathbf{e}_{z}\},\$ e) $\{\mathbf{e}_{y}, \mathbf{e}_{x}, \mathbf{e}_{z}\},\$ f) $\{\mathbf{e}_{y}, \mathbf{e}_{x}, -\mathbf{e}_{z}\}.$

Show that all ordered triples a),b),c),d),e),f) are bases.

Show that the bases a), c), d) and f) have the same orientation as the basis $\{e_x, e_y, e_z\}$, and the bases b) and e) have the orientation opposite to the orientation of the basis $\{\mathbf{e}_x, \mathbf{e}_y, \mathbf{e}_z\}$.

Show that bases d), e) and f) are orthonormal bases and bases a), b) and c) are not orthonormal bases.

5 Let $\{e, f, g\}$ be a basis in vector space V. Show that ordered triples $\{f, e+2f, 3g\}$ and $\{e, f, 2f+3g\}$ are bases and these bases have opposite orientations.

6 Let $\{e, f, g\}$ be an orthonormal basis in Euclidean space E^3 . Consider a linear operator P in E^3 such that

$$\mathbf{e}' = P(\mathbf{e}) = \mathbf{e}, \quad \mathbf{f}' = P(\mathbf{f}) = \frac{\sqrt{2}}{2}\mathbf{f} + \frac{\sqrt{2}}{2}\mathbf{g}, \quad \mathbf{g}' = P(\mathbf{g}) = -\frac{\sqrt{2}}{2}\mathbf{f} + \frac{\sqrt{2}}{2}\mathbf{g}.$$

Write down the transition matrix from the basis $\{e, f, g\}$ to the ordered triple $\{e', f', g'\}$.

Show that P is an orthogonal operator.

Show that orthogonal operator P preserves the orientation of \mathbf{E}^3 .

Find an axis of the rotation and the angle of the rotation.

7 Consider a linear operator P_1 in \mathbf{E}^3 such that it transforms the orthonormal basis $\{\mathbf{e}, \mathbf{f}, \mathbf{g}\}$ into the orthonormal basis $\{\mathbf{f}, \mathbf{e}, \mathbf{g}\}$. Consider also a linear operator P_2 such that it is the reflection operator with respect to the plane spanned by vectors \mathbf{e} and \mathbf{f} .

Is the operator P_1 a rotation or reflection operator?

Do operators P_1 , P_2 preserve orientation?

Show that operator $P = P_2 \circ P_1$ is a rotation operator.

Find an angle and the axis of this rotation.