Final Exam. 2007 December 11th, 14h – 18h.

Handwritten lecture notes are allowed as well as the course typescript. You may compose in either English or French.

Exercise (Square roots mod p)

Given p an odd prime and $a \in (\mathbb{F}_p^*)^2$, we wish to compute a square root of a. Let $t \in \mathbb{F}_p$ be given such that $t^2 - a$ is not a square in \mathbb{F}_p , and let $X \in \mathbb{F}_{p^2}$ a square root of $t^2 - a$.

- 1) Prove that such a t exists.
- **2)** Prove that $(t+X)^{p+1} = (t-X)(t+X) = a$.
- 3) Noting that p + 1 is even, write a formal algorithm computing a square root of a, given t, a and p.
- **4)** Bound the complexity of your algorithm, neglecting the time needed to find t. **Note.** The following argument, introducing the Jacobi sum $J(\chi, \chi)$, where χ is the Legendre symbol, shows that the number of suitable t in \mathbb{F}_p is (p-1)/2:

$$\#\left\{t \in \mathbb{F}_p \colon t^2 - a \in (\mathbb{F}_p)^2\right\} = \frac{1}{2} \#\left\{t \colon t^2 - a = 0\right\} + \frac{1}{2} \sum_t (1 + \chi(t^2 - a))$$
$$= 1 + p/2 + \chi(-1)J(\chi, \chi)/2 = (p+1)/2.$$

5) Propose a randomized algorithm to find t and update your complexity estimate. [You may use the Note above.]

Problem (Dedekind's criterion)

Let $K = \mathbb{Q}[X]/(T)$ a number field, where $T \in \mathbb{Z}[X]$ is monic. We write α for the class of X modulo T and let $\mathcal{O} = \mathbb{Z}[\alpha] = \mathbb{Z}[X]/(T)$. Given a prime p, we want to study the p-maximality of \mathcal{O} . We write \overline{f} for the canonical projection of $f \in \mathbb{Z}[X]$ to $\mathbb{F}_p[X]$. Conversely, given $\overline{f} \in \mathbb{F}_p[X]$, we let f denote any lift to $\mathbb{Z}[X]$ of \overline{f} .

Let I_p the ideal of those $x \in \mathcal{O}$ that become nilpotent in $\mathcal{O}/p\mathcal{O}$, and

$$\mathcal{O}' := (I_p : I_p) = \{ x \in K : xI_p \subset I_p \}.$$

We proved during the lectures that $\mathcal{O} = \mathcal{O}'$ if and only if \mathcal{O} is p-maximal. We factor T over $\mathbb{F}_p[X]$, $\overline{T} = \prod_i T_i^{e_i}$ where the T_i are distinct monic irreducible polynomials, and define

$$\overline{f} = \prod T_i, \qquad \overline{g} = \overline{T}/\overline{f}, \qquad h = \frac{T - fg}{p}.$$

1) Show that $I_p/p\mathcal{O}$ is generated by \overline{f} ; hence $I_p = p\mathcal{O} + f(\alpha)\mathcal{O}$.

- 2) Let $x \in \mathcal{O}'$, which we write in the form $x = \beta/p$, $\beta \in K$. We have $\beta = B(\alpha)$ for some $B \in \mathbb{Q}[X]$.
 - a) Show that $xp \in I_p$ if and only if $B \in \mathbb{Z}[X]$ and $\overline{f} \mid \overline{B}$ in $\mathbb{F}_p[X]$.
- b) Show that $xf(\alpha) \in I_p$ if and only if $\overline{gk} \mid \overline{B}$, where $\overline{k} := \overline{f}/(\overline{h}, \overline{f})$. [We must have $Bf \in p^2\mathbb{Z}[X] + pf\mathbb{Z}[X] + T\mathbb{Z}[X]$. Reduce mod p to prove $\overline{g} \mid \overline{B}$, then write B = pU + gV and refine.]
- **3)** Let $\delta = \gcd(\overline{f}, \overline{g}, \overline{h})$ in $\mathbb{F}_p[X]$.
 - a) Show that $\gcd(\overline{f}, \overline{kg}) = \overline{k}\delta$, then $\operatorname{lcm}(\overline{f}, \overline{gk}) = \overline{T}/\delta$.
 - b) Let $U \in \mathbb{Z}[X]$ a lift of \overline{T}/δ ; prove that $\mathcal{O}' = \mathcal{O} + \frac{U(\alpha)}{p}\mathcal{O}$.
 - c) Prove that $[\mathcal{O}':\mathcal{O}] = p^{\deg \delta}$.
- d) Given p and T, estimate the complexity of the computation of \mathcal{O}' in terms of relevant parameters. Prove that the algorithm is polynomial-time in terms of the size of the input. What about the space complexity?
- 4) A monic polynomial $T \in \mathbb{Z}[X]$ has Eisenstein type at p if

$$T = f^k + ph,$$

where $f, h \in \mathbb{Z}[X]$, f monic, such that \overline{f} is irreducible and $\overline{f} \nmid \overline{h}$ in $\mathbb{F}_p[X]$. Show that T is irreducible and that $\mathbb{Z}[X]/(T)$ is p-maximal.

- 5) Let $\ell \neq \pm 1$ a squarefree integer and $T = X^3 \ell$.
 - a) Show that $K = \mathbb{Q}[X]/(T)$ is a number field of degree 3.
- \star b) Noting that disc $T=27\ell^2$, compute the ring of integers \mathbb{Z}_K of K. You should use the result from 4) for all troublesome primes, except possibly 3. [We find $\mathcal{O} := \mathbb{Z}[X]/(X^3 \ell) = \mathbb{Z}_K$ if and only if $\ell \not\equiv \pm 1 \pmod{9}$. For the remaining case, compute \mathcal{O}' (the final part uses \mathbb{Z} -linear algebra to reduce a system of 6 generators to the needed 3).]
 - **6)** Let A, B two sub \mathbb{Z} -modules of rank $\dim_{\mathbb{Q}} K = n$, given by a \mathbb{Z} -basis.
 - a) Give a formal algorithm to compute (A:B).
 - b) Estimate its complexity in terms of relevant parameters.
 - c) Compare to what we obtained above for the computation of $\mathcal{O}' = (I_p : I_p)$ using Dedekind's method.