Ιόνιο Πανεπιστήμιο – Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών

Αναπαράσταση Μη Αριθμητικών Δεδομένων

(κείμενο, ήχος και εικόνα στον υπολογιστή)

http://di.ionio.gr/~mistral/tp/csintro/

Μ.Στεφανιδάκης

Η ερμηνεία της αναπαράστασης

• Αναπαράσταση δεδομένων

Στα ερωτήματα

αυτά μπορεί να

δεδομένα!

απαντήσει μόνο ο

προγραμματιστής

της εφαρμογής που χειρίζεται τα

- Κάπου στη μνήμη του υπολογιστή...
 - Βρίσκεται αποθηκευμένη η σειρά bits 0100110111010001
- Πόσα σύμβολα αναπαριστά;
 - Πόσα bits ανά σύμβολο;
- Ποιος ο τύπος των δεδομένων;
- Ποια συγκεκριμένη ποσότητα συμβολίζει;
- Πώς θα το χειριστεί ο υπολογιστής;

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Αναπαράσταση Μη Αριθμητικών Δεδομένων"

Αναπαράσταση δεδομένων • Αναπαράσταση δεδομένων εντολές κείμενο αριθμοί μηχανής βίντεο συνεχείς διακριτέ (αναλογικές) σειρές bits αριθμοί ποσότητες (σύμβολα) Διαδικασία μετατροπής συνεχών τιμών σε διακριτά σύμβολα Δεδομένα: ανεξάρτητα από Αναπαράσταση τύπο και Διαδικασία αντιστοίχισης συμβόλων σε δυαδικούς αριθμούς προέλευση, στον Κωδικοποίηση υπολογιστή υπάρχουν σε μία Αποθήκευση δυαδικών αριθμών σε σειρές bits μορφή: 0 και 1 Εισαγωγή στην Επιστήμη των Υπολογιστών - "Αναπαράσταση Μη Αριθμητικών Δεδομένων"

Αναπαράσταση με δυαδικούς αριθμούς

• Αναπαράσταση δεδομένων

Σειρά n bits

- Δυαδικός αριθμός με n bits (n≥1) μπορεί να αναπαραστήσει 2ⁿ διαφορετικά σύμβολα
- Μη αριθμητικά δεδομένα
 - Κείμενο, εντολές μηχανής, ήχος, εικόνα...
 - Σύνολο διαφορετικών αντικειμένων (συμβόλων)
 - Αντιστοίχιση κάθε συμβόλου σε μοναδικό δυαδικό αριθμό (code point)
 - "Αναπαράσταση"
 - Η ακριβής αντιστοίχιση συνήθως ορίζεται σε ένα πρότυπο (standard)

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Αναπαράσταση Μη Αριθμητικών Δεδομένων"

Αρχικές αναπαραστάσεις κειμένου

- Αναπαράσταση δεδομένων
- Κείμενο
- Οι πρώτες αναπαραστάσεις κειμένου
 - Στον υπολογιστή
 - 6-7 bits ανά χαρακτήρα
 - Πόσοι διαφορετικοί χαρακτήρες;
 - Μη εκτυπώσιμοι χαρακτήρες
 - Χαρακτήρες ελέγχου
 - Ιδιαίτερα χρήσιμοι για τις συσκευές εξόδου της εποχής (εκτυπωτές, τηλέτυπα...)
 - Νέα γραμμή (LINE FEED LF)
 - Επιστροφή κεφαλής εκτύπωσης (CARRIAGE RETURN -
 - Καμπανάκι (BELL) κλπ

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Αναπαράσταση Μη Αριθμητικών Δεδομένων"

11

Κείμενο σε κώδικα ASCII

- Αναπαράσταση δεδομένων
- Κείμενο
- Mε 7 bits ανά χαρακτήρα και χρήση bytes, 1 bit αχρησιμοποίητο. Πόσοι επιπλέον

χαρακτήρες με το bit αυτό:

- 7 bits ανά χαρακτήρα
 - 128 γαρακτήρες
 - Αναπαράσταση με τους αριθμούς 0...127
- Κανονικοί χαρακτήρες (εκτυπώσιμοι)
 - 32...64, 91...96, 123...126 = σημεία στίξης $\kappa.\alpha.$ (32 = SPACE!)
 - 65...90 = κεφαλαία λατινικά (A-Z)
 - 97...122 = πεζά λατινικά (a-z)
- Χαρακτήρες ελέγχου (μη εκτυπώσιμοι)
 - 0...31, 127 − επιζούν τα: 9 (TAB), 13/10 (CR/LF, σήμανση "νέας γραμμής")

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Αναπαράσταση Μη Αριθμητικών Δεδομένων"

Κώδικας ASCII

• Αναπαράσταση δεδομένων

ASCII: American

Standard Code for

Information Exchange

- Κείμενο
- Βασικό αρχικό πρότυπο αναπαράστασης κειμένου
 - 7 bits ανά χαρακτήρα

STANDARD ASCII ΚΩΔΙΚΑΣ

hex	char	hex	char	hex	char
20		40	@	60	,
21	!	41	Α	61	а
22	"	42	В	62	b
23	#	43	С	63	С
24	\$	44	D	64	d
25	%	45	E	65	е
26	&	46	F	66	f
27		47	G	67	g
28	(48	Н	68	h
29)	49		69	i
2A	*	4A	J	6A	j
2B	+	4B	K	6B	k
2C	,	4C	L	6C	
2D	-	4D	M	6D	m
2E		4E	N	6E	n
or.	,	45	^	er.	_

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Αναπαράσταση Μη Αριθμητικών Δεδομένων"

Κείμενο σε κώδικα ASCII

- Αναπαράσταση δεδομένων
- Κείμενο

• Παράδειγμα

ı																
	H	a	v	e		a		n	i	С	e		d	a	У	!
	72	97	118	101	32	97	32	110	105	99	101	32	100	97	121	33

Εφόσον η κωδικοποίηση είναι με 1 byte ανά χαρακτήρα, δεν τίθεται θέμα "little-" ή "bigendian"

- Γλώσσες προγραμματισμού
 - Συμβολοσειρά (string)
 - Σε γλώσσες όπως η C, το 0 (αριθμητικό) συμβολίζει το τέλος της συμβολοσειράς
 - Ο υπολογιστής μπορεί να κάνει πράξεις (π.χ. σύγκριση) με τη συμβολοσειρά

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Αναπαράσταση Μη Αριθμητικών Δεδομένων"

12

10

Επεκτάσεις κώδικα ASCII

• Αναπαράσταση δεδομένων

Χρησιμοποιώντας

δεν είναι δυνατή η αναπαράσταση

τον ISO-8859-1

των ελληνικών!

• Κείμενο

- Χρήση του 1 επιπλέον bit του byte
 - 128 + 128 χαρακτήρες, αριθμοί 0...255
 - 0...127 αντιστοιγούν στον αρχικό ASCII
 - 127...255: επεκταμένα αλφάβητα
- Επέκταση αλφαβήτων (πρότυπα)
 - Χαρακτήρες που δεν υπάρχουν στον ASCII
 - Διαφορετικά ανά γλώσσα! Π.γ.:
 - ISO-8859-1: Δυτική Ευρώπη (Å, Ñ, Æ,ä, ø κλπ)
 - ΙSΟ-8859-7: Νέα Ελληνικά
 - ...και πολλά άλλα πρότυπα για τις υπόλοιπες γλώσσες
 - Επίσης: μη πρότυπες λύσεις
 - Για Windows, Mac ..

Εισαγωγή στην Επιστήμη των Υπολογιστών – "Αναπαράσταση Μη Αριθμητικών Δεδομένων"

13

Κείμενο σε κώδικα ISO-8859-7

- Αναπαράσταση δεδομένων
- Κείμενο

• Παράδειγμα

г	ε	ι	α		σ	0	υ	!
195	229	233	225	32	243	239	245	33

αναπαραστάσεις αλφαβήτων με 1 byte ανά χαρακτήρα τείνουν να καταργηθούν!

Επέκταση κώδικα ASCII

- 0...127 όπως στον ASCII
- 128...159 πρόσθετοι χαρακτήρες ελέγχου
- 160...255 ελληνικά και σχετικά σύμβολα

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Αναπαράσταση Μη Αριθμητικών Δεδομένων"

15

Κώδικας ISO-8859-7

- Αναπαράσταση δεδομένων
- Κείμενο

[Wikipedia]

14

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Αναπαράσταση Μη Αριθμητικών Δεδομένων"

Πρότυπο Unicode

- Αναπαράσταση δεδομένων
- Κείμενο

Με περισσότερα

από 1 bytes ανά

θέμα σειράς

bytes!

χαρακτήρα τίθεται

αποθήκευσης των

- αλφαβήτων! Έγουν οριστεί σχεδόν 100.000 χαρακτήρες

Για την αναπαράσταση όλων των

- Καλύπτει ιδεογράμματα, φωνητικές αναπαραστάσεις κλπ
- Θα μπορούσε να καλύψει πάνω από 1 εκ. χαρακτήρες! (0 ... 10FFFF)
- Κάθε γαρακτήρας αναπαρίσταται με περισσότερα από ένα bytes
 - Συνήθεις κωδικοποιήσεις: UCS-2 (ή UTF-16) και UTF-8
- Το πρότυπο Unicode περιέχει επίσης
 - πληροφορία ισοδύναμων ή παρόμοιων χαρακτήρων
 - οδηγίες συνδυασμών τόνων/διακριτικών και γραμμάτων

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Αναπαράσταση Μη Αριθμητικών Δεδομένων"

Unicode σε κωδικοποίηση UTF-8

- Αναπαράσταση δεδομένων
- Κείμενο

• Αναπαράσταση μεταβλητού μήκους

Unicode	Κωδικοποίηση UTF-8				
007F	0xxxxxx				
807FF	110xxxxx 10xxxxxx				
800FFFF	1110xxxx 10xxxxxx 10xxxxxx				
1000010FFFF	11110xxx 10xxxxxx 10xxxxxx 10xxxxxx				

Η κωδικοποίηση UTF-8 τείνει να επικρατήσει σε όλα τα προγράμματα που χειρίζονται κείμενα Unicode!

- Το βασικό λατινικό αλφάβητο (ASCII) χρησιμοποιεί 1 byte ανά χαρακτήρα
 - Προς τα πίσω συμβατότητα
- Τα ελληνικά, 2 bytes
 - Ποια η κωδικοποίηση κατά UTF-8 του τελευταίου παραδείγματος;

19

Εισαγωγή στην Επιστήμη των Υπολογιστών – "Αναπαράσταση Μη Αριθμητικών Δεδομένων"

Εναλλακτικά: διανυσματικά γραφικά • Αναπαράσταση δεδομένων • Κείμενο • Ήχος • Εικόνα • Με συντεταγμένες • Εύρεση σημείων μέσω μαθηματικού τύπου • Εύκολη αλλαγή μεγέθους γραφικών • Χωρίς παραμόρφωση των σχημάτων

Παράδειγμα: απλή αναπαράσταση pixels με 16,7 εκ. χρώματα

- 3 bytes/pixel (24bits): R(ed) G(reen) B(lue)
 - 256 στάθμες ανά συνιστώσα χρώματος
 256x256x256 = 16.777.216 χρώματα
 - εικόνες με μεγαλύτερο βάθος χρώματος
 - 32 έως 48 bits

Εισαγωγή στην Επιστήμη των Υπολογιστών – "Αναπαράσταση Μη Αριθμητικών Δεδομένων"

Αναπαράσταση βίντεο

- Αναπαράσταση δεδομένων
- Κείμενο
- Ήχος
- Εικόνα
- Βίντεο
- "Κινούμενη εικόνα" (καρέ)
 - όπως αναπαριστούμε τις απλές εικόνες

22

24

- αλλά: με χρήση συμπίεσης
 - Για μείωση όγκου δεδομένων
 - Γειτονικά καρέ έχουν πολλές ομοιότητες

Εισαγωγή στην Επιστήμη των Υπολογιστών – "Αναπαράσταση Μη Αριθμητικών Δεδομένων"

