UNIVERSIDAD TECNICA

Profesor: Michael Karkulik Ayudante: Sebastián Fuentes

Pauta Ayudantía 7 Análisis Funcional

13 de octubre de 2022

Problema 1. (Teorema de Banach-Saks) Sea H espacio de Hilbert. Muestre que si $x_n \rightharpoonup x$ entonces existe una subsucesión $(x_{n_k})_k$ de tal modo que la sucesión de medias

$$y_k := \frac{1}{k}(x_{n_1} + \ldots + x_{n_k})$$

converge en la topología de la norma.

Demostración. Sin pérdida de generalidad podemos asumir x=0. Construiremos de manera inductiva una subsucesión (x_{n_k}) de tal modo que

$$|\langle x_{n_1}, x_{n_k} \rangle| \le \frac{1}{k}, \quad |\langle x_{n_2}, x_{n_k} \rangle| \le \frac{1}{k}, \quad \dots, \quad |\langle x_{n_{k-1}}, x_{n_k} \rangle| \le \frac{1}{k} \quad \forall k \ge 2$$

Seleccionamos primero $n_1 = 1$ y de manera inductiva suponemos construidos n_1, \ldots, n_k verificando las condiciones anteriores. Ahora, notemos que, para cada $j \in \{1, ... k\}$ podemos hallar $N_j \in \mathbb{N}$ tal que

$$|\langle x_{n_j}, x_n \rangle| \le \frac{1}{k+1} \quad \forall n \ge N_j$$

Luego, considerando $n_{k+1} = \max_j N_j$ se cumple la propiedad solicitada. Notar que lo anterior es posible ya que gracias al teorema de representación de Riesz $\langle x_k, x_n \rangle \xrightarrow{n \to \infty} 0$ para todo $k \in \mathbb{N}$. Ahora, usando lo anterior vemos que

$$\left\| \sum_{i=1}^{k} x_{n_i} \right\|^2 = \left\langle \sum_{i=1}^{k} x_{n_i}, \sum_{j=1}^{k} x_{n_j} \right\rangle \le 2 \sum_{i=1}^{k} \sum_{j=1}^{i-1} |\langle x_{n_i}, x_{n_j} \rangle| \le 2 \sum_{i=1}^{k} \sum_{j=1}^{i-1} \frac{1}{i-1} = 2k$$

y entonces

$$\left\| \frac{1}{k} \sum_{i=1}^{k} x_{n_i} \right\|^2 \le \frac{2}{k}$$

de donde se tiene la conclusión.

Problema 2. Sea X espacio de Banach y $(x_n) \subseteq X$. Definimos

$$K_n = \overline{\operatorname{conv}\left(\bigcup_{i=n}^{\infty} \{x_i\}\right)}$$

donde conv denota la envoltura convexa de un conjunto.

1. Demuestre que si $x_n \rightharpoonup x$ en la topología $\sigma(X, X')$ entonces

$$\bigcap_{n=1}^{\infty} K_n = \{x\}$$

2. Suponga ahora que X es reflexivo. Muestre que si (x_n) es acotada y $\bigcap_{n=1}^{\infty} K_n = \{x\}$, entonces $x_n \rightharpoonup x$.

MAT227 UTFSM

Demostración.

1. Note que K_n es cerrado por definición, y es también convexo dado que la adherencia de un conjunto convexo es convexo, y por lo tanto es cerrado débil. Además, note que para cada $p \in \mathbb{N}$ $x_{n+p} \in K_n$ para todo $n \in \mathbb{N}$, y tomando límite débil tenemos que $x \in K_p$. Considere ahora V vecindad convexa de x en la topología $\sigma(X, X')$. Como $x_n \rightharpoonup x$, existe $N \in \mathbb{N}$ tal que $x_n \in V$ para todo $n \geq N$ y luego $K_n \subseteq \overline{V}$ para $n \geq N$. De esto deducimos que $\bigcap_{n=1}^{\infty} K_n \subseteq \overline{V}$. Finalmente, recordando que la topología débil $\sigma(X, X')$ posee una base de vecindades convexa en cada punto (ver Ayudantía 6) podemos concluir que

$$\bigcap_{n=1}^{\infty} K_n \subseteq \bigcap_{\substack{x \in V \\ V \in \sigma(X, X') \\ V \text{ convexa}}} \overline{V} = \{x\}$$

2. Sea X reflexivo. Notemos ahora que los conjuntos K_n son compactos en $\sigma(X,X')$ puesto que son acotados $((x_n)$ es acotada), convexos y cerrados. Ahora, si consideramos V vecindad de x en $\sigma(X,X')$, el conjunto $K'_n = K_n \cap V^c$ es compacto (cerrados en compactos son compactos) en $\sigma(X,X')$. Sin embargo, como $K_n = \bigcap_{n=1}^{\infty} K_n = \{x\}$, tenemos que $\bigcap_{n=1}^{\infty} K'_n = \emptyset$, pero además se verifica que $K'_{n+1} \subseteq K'_n$, y gracias al Lema 1 debe existir $N \in \mathbb{N}$ tal que $K'_N = \emptyset$, es decir, $K_N \subseteq V$. Así $x_n \in V$ para todo $n \geq N$ y dado que esto se puede hacer para cada vecindad abierta débil $\sigma(X,X')$ tenemos que $x_n \rightharpoonup x$.

Problema 3.(Propiedad de Schur en ℓ^1) El objetivo de este problema es analizar un ejemplo en dimensión infinita en que la convergencia débil coincide con la convergencia fuerte. Para ello consideraremos el espacio de sucesiones ℓ^1 y probaremos entonces que en este espacio toda sucesión convergente débil también converge de manera fuerte. Para ello considere $(f_k) \in \ell^1$ convergente débil, y suponiendo que esta sucesión no converge en norma siga los siguientes pasos:

1. Muestre que podemos suponer que $(f_k) \subseteq \ell^1$ es tal que $f_k \rightharpoonup 0$ y existe $\varepsilon > 0$ tal que $||f_k||_{\ell^1} > \varepsilon$ para todo $k \in \mathbb{N}$, y que además $f_k(n) \to 0$ para todo $n \in \mathbb{N}$.

2. Construya por inducción dos sucesiones crecientes $\alpha: \mathbb{N} \to \mathbb{N}, \beta: \mathbb{N} \to \mathbb{N}$ con $\alpha(1) = 0$ tales que para todo

$$\sum_{n=1}^{\alpha(k-1)} |f_{\beta(k)}(n)| \le \frac{\varepsilon}{5}, \qquad \sum_{n=\alpha(k)+1}^{\infty} |f_{\beta(k)}(n)| \le \frac{\varepsilon}{5} \qquad \forall k \ge 1$$

3. Construya ahora una sucesión $h: \mathbb{N} \to \mathbb{R}$ de tal modo que: |h(n)| = 1 y $f_{\beta(k)}(n)h(n) = |f_{\beta(k)}(n)|$ para todo n tal que $\alpha(k-1) < n \le \alpha(k)$. Muestre que para cada $j \in \mathbb{N}$

$$\sum_{n=\alpha(k-1)+1}^{\alpha(k)} f_{\beta(k)}(n)h(n) \ge \frac{3\varepsilon}{5}$$

4. Concluya el resultado probando que $(f_{\beta(k)})$ no converge débilmente a 0.

Demostración. Sea $(f_k) \subseteq \ell^1$ tal que $f_k \rightharpoonup f$ y $||f_k - f||_{\ell^1} \nrightarrow 0$. Considerando la sucesión $f_k - f$ podemos suponer sin pérdida de generalidad que $f_k \rightharpoonup f$, y además el hecho de que $||f_k||_{\ell^1} \nrightarrow 0$ implica que existe una subsucesión (f_{k_n}) y $\varepsilon > 0$ de tal modo que $||f_{k_n}||_{\ell^1} > \varepsilon$ para todo $k_n \in \mathbb{N}$. Trabajando con dicha subsucesión podemos asumir $||f_k||_{\ell^1} > \varepsilon$. Ahora, notando que las sucesiones $e_n = (0, \dots, 0, 1, 0, \dots) \in \ell^{\infty}$, por convergencia débil $\langle f_k, e_n \rangle = f_k(n) \rightarrow 0$ para

MAT227 UTFSM

todo $n \in \mathbb{N}$.

A continuación, definimos $\alpha(1) = 0, \beta(1) = 1$ y dado que $f_1 \in \ell^1$, tenemos que existe $\alpha(2)$ tal que

$$\sum_{n=\alpha(2)+1}^{\infty} |f_1(n)| \le \frac{\varepsilon}{5}$$

Ahora, por inducción, suponemos que las sucesiones han sido construidas hasta $k \in \mathbb{N}$. Por el punto 1. sabemos que $f_k(j) \to 0$ para todo $j \in \mathbb{N}$, y por lo tanto podemos considerar $N_j \in \mathbb{N}$ de tal modo que

$$|f_{N_j}(j)| \le \frac{\varepsilon}{5\alpha(k)} \quad \forall j \in \{1, \dots, \alpha(k)\}$$

y luego definiendo $\beta(k+1) \ge \max_{j=1,...,\alpha(k)} N_j$ verificando también $\beta(k+1) > \beta(k)$ tenemos que se cumple

$$\sum_{n=1}^{\alpha(k)} |f_{\beta(k+1)}(n)| \le \frac{\varepsilon}{5}$$

Ahora, como $f_{\beta(k+1)} \in \ell^1$, podemos seleccionar $\alpha(k+1) > \alpha(k)$ tal que

$$\sum_{n=\alpha(k+1)+1}^{\infty} |f_{\beta(k+1)}(n)| \le \frac{\varepsilon}{5}$$

Así, hemos construido α, β con las propiedades deseadas.

A continuación, note que definiendo

$$h(n) = \operatorname{sign}(f_{\beta(k)}(n)) \quad \forall \alpha(k-1) < n \le \alpha(k)$$

se verifican las propiedades deseadas, y luego vemos que

$$\sum_{n=\alpha(k-1)+1}^{\alpha(k)} f_{\beta(k)}(n)h(n) = \sum_{n=\alpha(k-1)+1}^{\alpha(k)} |f_{\beta(k)}(n)| \ge ||f_{\beta(k)}||_{\ell^1} - \frac{2\varepsilon}{5} > \frac{3\varepsilon}{5}$$

Para concluir, notemos que $||h(n)||_{\ell^{\infty}} = 1$, es decir, $h \in \ell^{\infty}$ pero

$$\langle h, f_{\beta(k)} \rangle_{\ell^{\infty}, \ell^{1}} = \sum_{n=1}^{\infty} h(n) f_{\beta(k)}(n)$$

$$= \sum_{n=1}^{\alpha(k-1)} h(n) f_{\beta(k)}(n) + \sum_{n=\alpha(k-1)+1}^{\alpha(k)} h(n) f_{\beta(k)}(n) + \sum_{n=\alpha(k-1)+1}^{\alpha(k)} h(n) f_{\beta(k)}(n)$$

$$\geq \sum_{n=\alpha(k-1)+1}^{\alpha(k)} |f_{\beta(k)}(n)| - \sum_{n=1}^{\alpha(k-1)} |f_{\beta(k)}(n)| - \sum_{n=\alpha(k-1)+1}^{\alpha(k)} |f_{\beta(k)}(n)|$$

$$\geq \frac{3\varepsilon}{5} - \frac{2\varepsilon}{5} = \frac{\varepsilon}{5}$$

Hemos encontrado así una subsucesión de (f_k) que no converge débil a 0, lo cual supone una contradicción.

MAT227 UTFSM

Lema 1. Sea (X, \mathcal{T}) espacio topológico compacto y $\{V_n\}$ sucesión de cerrados no vacíos tal que $V_{n+1} \subseteq V_n$ para todo $n \in \mathbb{N}$. Entonces $\bigcap_{n \in \mathbb{N}} V_n \neq \emptyset$.

Demostración. Note que los conjuntos V_n son compactos y supongamos que

$$\bigcap_{n\in\mathbb{N}}V_n=\emptyset$$

Ahora, como cada V_n es cerrado, V_n es cerrado en V_1 , así que $V_1 \setminus V_n$ es abierto en V_1 apra cada $n \in \mathbb{N}$. Observando que

$$V_1 = V_1 \setminus \left(\bigcap_{n \in \mathbb{N}} V_n\right) = \bigcup_{n \in \mathbb{N}} (V_1 \setminus V_n)$$

vemos que $\{V_1 \setminus V_n\}$ es un cubrimiento abierto de V_1 . Como V_1 es compacto existe un subrecubrimiento finito $\{V_1 \setminus V_{n_1}, V_1 \setminus V_{n_2}, \dots, V_1 \setminus V_{n_k}\}$, es decir,

$$V_1 = \bigcup_{i=1}^k (V_1 \setminus V_{n_k}) = V_1 \setminus \left(\bigcap_{i=1}^k V_{n_k}\right)$$

Por otro lado, como los conjuntos verifican $V_{n_1} \subseteq V_n$ tenemos que

$$\bigcap_{i=1}^{k} V_{n_k} \subseteq V_1 \qquad \Rightarrow \qquad \bigcap_{i=1}^{k} V_{n_k} = \emptyset$$

Como la colección $\{V_n\}$ es no vacía, para cada $x \in V_{n_k}$ existe $1 \le j < k$ tal que $x \notin V_{n_j}$ lo cual supone una contradicción.