# Neural Networks Assignment

### Sections in the code

- Preparation of Data
- Network Architecture
- Learning rate
- Dropout rate

### **Preparation of Data**

- Import CIFAR10 (60,000 32x32 pixel colour images)
- Split into training and test data
  - Array of integers (32x32x3 per image)
  - Each image has a corresponding label
- Experiment 1:
  - 2/3 images for training, 1/3 images for testing
- Experiment 2:
  - ½ images for training, ½ images for testing

### **Network Architecture**

#### **Brief**

- 3 Convolutional layers
- 2 Fully connected layers

#### **Testing**

- Max Pooling layers
- Flattening layer
- Activation functions
  - ReLU

(0+)

Softmax

- (0-1)
- Optimisation functions
  - Adam
  - SGD



- 3 Convolutional layers
  - A Max Pooling layer after each
- A Flattening layer
- 2 Fully Connected layers
- Adam
- ReLU

## Experiment 1 – Learning Rate

#### **Brief**

Compare networks with a set learning rate to ones using a Scheduler



#### **Testing**

- Learning Rates
  - 0.0005, 0.001, 0.0015,0.002, 0.0025
  - Compared Results
- Scheduler
  - Various learning rate combinations

#### **Outcome**

- 0.0005 had highest accuracy and least overfitting
  - took longer
- Scheduler was
  - More consistent between trials
  - Higher loss over 20 epochs

### Experiment 2 – Dropout Rate

#### **Brief**

Investigate how dropout can affect a neural network



#### **Testing**

- Dropout Rates
  - 0, 0.05, 0.1, 0.15, 0.2
  - Compared Results
- Freezing layers

### Outcome

- 0.2 dropout had highest accuracy and lowest loss
- 0 dropout was led to a more accurate network

