工科数学分析期中试题

班级	学号	姓名
クェクス	1 2	A-11

(本试卷共6页,十一个大题. 解答题必须有解题过程. 试卷后面空白纸撕下做草稿纸. 试卷不得拆散.)

题号	1	11	11]	四	五	六	七	八	九	+	+ 1	总分
得分												

- 一. 填空题 (每小题 2 分, 共 10 分)

- 3. 已知 $f'(x_0) = A$,则 $\lim_{\Delta x \to 0} \frac{f(x_0 + \alpha \Delta x) f(x_0 \beta \Delta x)}{\Delta x} = \underline{\hspace{1cm}}$.
- 4. 一质点 P 沿曲线 $9y = 4x^2$ 运动,已知质点 P 的横坐标的速率为 30cm/sec,当质点 P 位于

点(3,4)(单位:cm)时, 从原点到质点 P 的距离随时间的变化率为_____.

5.
$$\lim_{x \to 0^{+}} \frac{2e^{2\sqrt{x}} - e^{\sqrt{x}} - 3\sqrt{x} - 1}{(e^{\sqrt{x}} - 1)^{2}} = \underline{\hspace{1cm}}$$

二. (8 分) 设
$$\begin{cases} x = \sqrt{1 - t^2} \\ y = \arcsin t \end{cases}$$
 求 $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$.

三. (9 分) 求极限
$$\lim_{x\to 0} \left(\frac{\ln(1+x)}{x}\right)^{\frac{1}{e^x-1}}$$
.

四. (9 分) 设
$$f(x) = \begin{cases} 3x^2 + x \tan x & 0 \le x < \frac{\pi}{2} \\ x \arctan \frac{1}{x^2} & x < 0 \end{cases}$$
 求 $f'(x)$.

五. (9 分) 设 $x_1 = \sqrt{3}, x_n = \sqrt{3x_{n-1}}$ $(n \ge 2)$, 证明数列 $\{x_n\}$ 有极限, 并求此求极限.

六. (9分) 已知椭圆 $4x^2 + y^2 = 5$,试求与此椭圆切于点 A(1,-1) 和点 B(-1,-1) 的抛物线方程.

七. (8分) 判断方程 $3x^4 - 4x^3 - 6x^2 + 12x - 20 = 0$ 的实根个数.

八. (9分) 将半径为R的球切削成一圆柱体,问圆柱体的高h和半径r分别为多少时能使圆柱体的侧面积最大. (要求用微积分的方法)

九. (9 分) 证明不等式 $(x+1)\ln\frac{x+1}{x} > 1$ (x>0).

十. (12 分) 设 $y = \frac{(x+1)^3}{(x-1)^2}$, 研究函数的性态, 并作出函数的图形.

十一. (8 分) 设 f(x) 在区间 [a,b] 上连续,在 (a,b) 内可导,其中 a > 0, $\lim_{x \to a} \frac{f(x)}{x-a} = 1$,证明 在 (a,b) 内存在 ξ ,使得 $f(\xi) = \frac{b-\xi}{a} f'(\xi)$.