JUSTIFIQUEU TOTES LES RESPOSTES

F1. Considerem les matrius de l'espai $\mathcal{M}_2(\mathbb{R})$ format per les matrius 2×2 amb coeficients reals:

$$M_1 = \begin{pmatrix} 1 & 0 \\ 0 & a \end{pmatrix}, M_2 = \begin{pmatrix} a & 1 \\ 1 & 1 \end{pmatrix}, M_3 = \begin{pmatrix} -1 & 0 \\ 1 & 1 \end{pmatrix}, M_4 = \begin{pmatrix} a & 0 \\ 1 & 1 \end{pmatrix}.$$

- (a) Determineu per a quins valors del paràmetre a les matrius M_1, M_2, M_3, M_4 són linealment dependents. Per a cadascun dels valors trobats, expresseu una de les matrius com a combinació lineal de la resta.
- (b) Suposem que a=0. Doneu una base del subespai S generat per M_1, M_2, M_3, M_4 i completeu-la fins a una base de $\mathcal{M}_2(\mathbb{R})$. Quin sistema d'equacions lineals han de satisfer x, y, z i t per tal que la matriu $\begin{pmatrix} x & y \\ z & t \end{pmatrix}$ sigui de S?
- **F2.** Sigui $P_2(\mathbb{R})$ l'espai vectorial de polinomis amb coeficients reals de grau com a molt 2. Considerem

les bases canòniques
$$\left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$$
 de \mathbb{R}^3 i $\{1, x, x^2\}$ de $P_2(\mathbb{R})$.

Definim les aplicacions lineals $f: \mathbb{R}^3 \longrightarrow P_2(\mathbb{R})$ i $g: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ de la forma següent:

•
$$f(\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}) = 3 + 6x^2$$
, $f(\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}) = 1 - x + 3x^2$, $f(\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}) = -4 - x - 7x^2$;

- la matriu associada a g en la base canònica de \mathbb{R}^3 és la matriu $A = \begin{pmatrix} 2 & 0 & -2 \\ 0 & 1 & 0 \\ 3 & 0 & -3 \end{pmatrix}$.
- (a) Calculeu la matriu associada a f en les bases canòniques de \mathbb{R}^3 i de $P_2(\mathbb{R})$. Calculeu la dimensió dels subespais nucli i imatge de f. Determineu si f és injectiva, exhaustiva o bijectiva.
- (b) Calculeu la matriu associada a $f \circ g$ en les bases canòniques de \mathbb{R}^3 i de $P_2(\mathbb{R})$. Calculeu totes les antiimatges per $f \circ g$ del polinomi $2 + x + 3x^2$ i del polinomi $1 + x + x^2$.
- **F3.** (a) (2 punts sobre 10) Sigui $A \in \mathcal{M}_n(\mathbb{R})$ tal que es pot escriure com $A = PDP^{-1}$, on D és una matriu diagonal i P és una matriu invertible. Proveu que per tot enter k > 0, es té $A^k = PD^kP^{-1}$.
 - (b) (6 punts sobre 10) Calculeu el polinomi característic, els valors propis i vectors propis de la matriu A següent, i feu-los servir per trobar matrius D i P tals que $A = PDP^{-1}$.

$$A = \begin{pmatrix} -5 & 0 & -6 \\ 3 & 1 & 3 \\ 3 & 0 & 4 \end{pmatrix}$$

(c) (2 punts sobre 10) Calculeu A^6 utilitzant els apartats anteriors.

Informacions

- Durada de l'examen: 100 minuts.
- S'ha de respondre amb tinta blava o negra.
- Cal lliurar els exercicis per separat.
- No es poden utilitzar ni llibres, ni apunts, ni calculadores, ni mòbils, ni dispositus electrònics que puguin emmagatzemar, emetre o rebre informació.
- Els tres problemes valen igual.
- Les inverses s'han de calcular amb el mètode de Gauss-Jordan.