

Università di Bologna - Scuola di Scienze

Esame scritto di Calcolo delle Probabilità e Statistica 28 giugno 2018

Esercizio 1

Un'urna contiene sedici palline, sette rosse e nove blu. Si estraggono tre palline senza reimmissione. Si considerino gli eventi:

A = "la prima pallina estratta è rossa, le altre due sono blu"

B = "al più una pallina estratta è rossa"

- 1) Si calcoli la probabilità dell'evento A.
- 2) Si calcoli la probabilità dell'evento B.
- 3) Quanto vale la probabilità condizionata P(A|B)? $A \in B$ sono indipendenti?

Si considerino ora le variabili aleatorie discrete:

X = "n° di palline rosse estratte"

Y = "no di palline blu estratte"

4) Determinare supporto, densità discreta congiunta e densità marginali di X ed Y. [Nel calcolo della densità discreta congiunta, si usi che $p_{(X,Y)}(3,0) = 0.0625$.]

SOLUZIONE

1) Etichettiamo le sette palline rosse presenti nell'urna con R1, R2, R3, R4, R5, R6, R7 e le nove palline blu con $B1, \ldots, B9$. Possiamo dunque descrivere l'esperimento aleatorio tramite il seguente spazio campionario:

$$\Omega = \{(x_1, x_2, x_3) : x_i = R_1, \dots, R_7, B_1, \dots, B_9, \text{ con } x_1, x_2, x_3 \text{ distinti fra loro} \}.$$

Dato che le terne (x_1, x_2, x_3) sono equiprobabili, consideriamo su Ω la probabilità classica, che è data da casi favorevoli/casi possibili.

Il numero di casi possibili è pari alla cardinalità di Ω , ovvero $16 \cdot 15 \cdot 14 = 3360$. Calcoliamo ora il numero di casi favorevoli, ovvero la cardinalità di A. Per farlo, utilizziamo il metodo delle scelte successive. A è l'insieme di tutte le terne $(x_1, x_2, x_3) \in \Omega$ tali che:

- x_1 è una pallina rossa scelta fra R1, R2, R3, R4, R5, R6, R7: 7 scelte possibili;
- \bullet x_2 è una pallina blu scelta fra le nove blu disponibili: 9 scelte possibili;
- \bullet x_3 è una pallina blu scelta fra le otto blu rimaste nell'urna: 8 scelte possibili.

Quindi $\#A = 7 \cdot 9 \cdot 8 = 504$, perciò

$$\mathbb{P}(A) = \frac{504}{3360} = \frac{3}{20} = 0.15.$$

2) Siano

 E_0 = "nessuna pallina estratta è rossa"

 $E_1 =$ "una pallina estratta è rossa, le altre due sono blu"

Allora $B = E_0 \cup E_1$, inoltre gli eventi E_0 e E_1 sono disgiunti. Dunque, per la proprietà di additività della probabilità,

$$\mathbb{P}(B) = \mathbb{P}(E_0) + \mathbb{P}(E_1) = \frac{\#E_0}{\#\Omega} + \frac{\#E_1}{\#\Omega}.$$

Restano da calcolare $\#E_0$ e $\#E_1$. Abbiamo che $\#E_0 = 9 \cdot 8 \cdot 7 = 504$, mentre $\#E_1 = 3 \#A$, dato che l'evento E_1 non specifica se la pallina rossa è estratta per prima (come invece accade per A) o per seconda o per terza. Dunque $\mathbb{P}(E_0) = \mathbb{P}(A) = 0.15$, mentre $\mathbb{P}(E_1) = 3 \mathbb{P}(A) = 0.45$. In conclusione

$$\mathbb{P}(B) = 4\,\mathbb{P}(A) = \frac{12}{20} = 0.6.$$

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

Sappiamo che $\mathbb{P}(B)=4\,\mathbb{P}(A)=0.6$, resta da calcolare $\mathbb{P}(A\cap B)$. Notiamo che $A\subset B$, quindi $A\cap B=A$, perciò

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(A)}{4\,\mathbb{P}(A)} = \frac{1}{4} = 0.25.$$

Infine, $A \in B$ non sono indipendenti, infatti $\mathbb{P}(A \cap B) \neq \mathbb{P}(A) \mathbb{P}(B)$.

4) $S_X = S_Y = \{0, 1, 2, 3\}$, mentre la densità discreta congiunta e le densità marginali sono date da (la densità discreta congiunta è zero se $X + Y \neq 3$):

				-	-	
X	Y	0	1	2	3	p_X
	0	0	0	0	0.15	0.15
	1	0	0	0.45	0	0.45
	2	0	0.3375	0	0	0.3375
	3	0.0625	0	0	0	0.0625
	p_Y	0.0625	0.3375	0.45	0.15	1

Si noti che $p_{(X,Y)}(0,3) = \mathbb{P}(E_0) = 0.15$ e $p_{(X,Y)}(1,2) = \mathbb{P}(E_1) = 0.45$, dove E_0 e E_1 sono gli eventi introdotti al punto 2. Dato che $p_{(X,Y)}(3,0)$ è dato, resta da calcolare $p_{(X,Y)}(2,1)$ che è necessariamente pari a

$$p_{(X,Y)}(2,1) = 1 - p_{(X,Y)}(3,0) - p_{(X,Y)}(1,2) - p_{(X,Y)}(0,3) = 0.3375.$$

Esercizio 2

Siano X ed Y due variabili aleatorie discrete con densità discreta congiunta e densità marginali date da

X Y	0	2	4	6	p_X
0	0.2	0.1	0.2	0	0.5
3	0.1	0	0.1	0.2	0.4
7	0	0.1	0	0	0.1
p_Y	0.3	0.2	0.3	0.2	1

- 1) $X \in Y$ sono indipendenti?
- 2) Quanto vale $\mathbb{P}(X < Y)$?
- 3) Quanto vale $\mathbb{P}(XY > 0)$?
- 4) Calcolare $\mathbb{E}[XY]$ e Cov(X, Y).

Sia ora Z la variabile aleatoria discreta data da Z=XY.

5) Determinare la densità discreta di \mathbb{Z} .

SOLUZIONE

1) No, infatti ad esempio $p_{(X,Y)}(0,0) \neq p_X(0) p_Y(0)$.

2)
$$\mathbb{P}(X < Y) = p_{(X,Y)}(0,2) + p_{(X,Y)}(0,4) + p_{(X,Y)}(0,6) + p_{(X,Y)}(3,4) + p_{(X,Y)}(3,6) = 0.6.$$

3)
$$\mathbb{P}(XY > 0) = p_{(X,Y)}(3,2) + p_{(X,Y)}(3,4) + p_{(X,Y)}(3,6) + p_{(X,Y)}(7,2) + p_{(X,Y)}(7,4) + p_{(X,Y)}(7,6) = 0.4.$$

4)
$$\mathbb{E}[X] = 0 \cdot 0.5 + 3 \cdot 0.4 + 7 \cdot 0.1 = 1.9,$$

$$\mathbb{E}[Y] = 0 \cdot 0.3 + 2 \cdot 0.2 + 4 \cdot 0.3 + 6 \cdot 0.2 = 2.8,$$

$$\mathbb{E}[XY] = \sum_{\substack{i=0,3,7 \\ j=0,2,4,6}} i \, j \, p_{(X,Y)}(i,j)$$

$$= 3 \cdot 4 \cdot p_{(X,Y)}(3,4) + 3 \cdot 6 \cdot p_{(X,Y)}(3,6) + 7 \cdot 2 \cdot p_{(X,Y)}(7,2) = 6.2,$$

$$\operatorname{Cov}(X,Y) = \mathbb{E}[XY] - \mathbb{E}[X] \, \mathbb{E}[Y] = 0.88.$$

Esercizio 3

Sia X una variabile aleatoria continua con funzione di ripartizione

$$F_X(x) = \frac{1}{1 + e^{-x}}, \quad \forall x \in \mathbb{R}.$$

Si dice che X ha distribuzione logistica.

- 1) Quanto vale $\mathbb{P}(X \geq 0)$?
- 2) Determinare la densità di X.
- 3) Calcolare $\mathbb{E}\left[\frac{2}{1+e^{-X}}\right]$.
- 4) Qual è la densità della variabile aleatoria continua Z=4X+7?

Sia ora Y una variabile aleatoria continua con funzione di ripartizione

$$F_Y(x) = \frac{a}{3 + e^{-x}}, \quad \forall x \in \mathbb{R},$$

dove a è un parametro reale.

5) Dato che F_Y è una funzione di ripartizione, quanto vale a? Perché?

SOLUZIONE

1)
$$\mathbb{P}(X \ge 0) = 1 - F_X(0) = \frac{1}{2}$$
.

2)

$$f_X(x) = \frac{e^{-x}}{(1 + e^{-x})^2}, \quad \forall x \in \mathbb{R}.$$

3)

$$\mathbb{E}\left[\frac{2}{1 + e^{-X}}\right] = \int_{-\infty}^{+\infty} \frac{2}{1 + e^{-x}} f_X(x) dx = \int_{-\infty}^{+\infty} \frac{2 e^{-x}}{(1 + e^{-x})^3} dx$$
$$= \left[\frac{1}{(1 + e^{-x})^2}\right]_{-\infty}^{+\infty} = 1.$$

4) La funzione di ripartizione di Z è data da:

$$F_Z(x) = \mathbb{P}(4X + 7 \le x) = \mathbb{P}\left(X \le \frac{x - 7}{4}\right) = F_X\left(\frac{x - 7}{4}\right), \quad \forall x \in \mathbb{R}.$$

Quindi

$$f_Z(x) = F_Z'(x) = \frac{1}{4} F_X'\left(\frac{x-7}{4}\right) = \frac{1}{4} f_X\left(\frac{x-7}{4}\right) = \frac{1}{4} \frac{e^{-\frac{x-7}{4}}}{\left(1 + e^{-\frac{x-7}{4}}\right)^2}.$$

5) Notiamo che

$$\lim_{x \to +\infty} F_Y(x) = \lim_{x \to +\infty} \frac{a}{3 + e^{-x}} = \frac{a}{3}.$$

Poiché ${\cal F}_Y$ è una funzione di ripartizione, deve valere che

$$\lim_{x \to +\infty} F_Y(x) = 1,$$

da cui otteniamo a = 3.

Esercizio 4

Si consideri una catena di Markov $(X_n)_n$ con spazio degli stati $\mathcal{S} = \{1, 2, 3, 4, 5, 6, 7\}$ e matrice di transizione

$$\Pi = \begin{pmatrix} \frac{1}{5} & 0 & \frac{4}{5} & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{3} & 0 & 0 & 0 & \frac{2}{3} & 0 \\ 0 & \frac{3}{4} & 0 & \frac{1}{4} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{4} & 0 & 0 & \frac{3}{4} \\ 0 & 0 & \frac{3}{4} & 0 & 0 & \frac{1}{4} & 0 \\ 0 & \frac{1}{4} & 0 & 0 & \frac{1}{4} & \frac{1}{2} & 0 \\ 0 & \frac{1}{5} & 0 & 0 & \frac{2}{5} & 0 & \frac{2}{5} \end{pmatrix}.$$

- 1) Disegnare il grafo orientato associato alla catena di Markov.
- 2) Quali sono le classi comunicanti?
- 3) Calcolare $\pi_{25}^{(3)}$.
- 4) Calcolare $\mathbb{P}(X_3=3)$ sapendo che la densità discreta di X_1 è data da

1)

2) $\{1\}$ e $\{2, 3, 4, 5, 6, 7\}$.

3)
$$\pi_{25}^{(3)} = \underbrace{\frac{1}{3} \cdot \frac{2}{3} \cdot \frac{1}{4}}_{\text{prob. cammino } 2 \to 2 \to 6 \to 5} + \underbrace{\frac{2}{3} \cdot \frac{1}{2} \cdot \frac{1}{4}}_{\text{prob. cammino } 2 \to 6 \to 6 \to 5} = \frac{5}{36} \simeq 0.1389.$$

4) $\mathbb{P}(X_3=3)$ è il terzo elemento del vettore riga $\overrightarrow{\boldsymbol{p}}_{\boldsymbol{X_3}}=\overrightarrow{\boldsymbol{p}}_{\boldsymbol{X_1}}\Pi^2$, quindi

$$\mathbb{P}(X_3 = 3) = \sum_{i=1}^{7} p_{X_1}(i) \,\pi_{i3}^{(2)} = \frac{1}{2} \,\pi_{13}^{(2)} + \frac{1}{10} \,\pi_{23}^{(2)} + \frac{2}{5} \,\pi_{73}^{(2)}.$$

Si ha che

$$\pi_{13}^{(2)} = \underbrace{\frac{1}{5} \cdot \frac{4}{5}}_{\text{prob. cammino } 1 \to 1 \to 3} = \frac{4}{25},$$

$$\pi_{22}^{(2)} = 0$$

$$\pi_{23}^{(2)} = 0,$$

$$\pi_{73}^{(2)} = \underbrace{\frac{2}{5} \cdot \frac{3}{4}}_{10} = \frac{3}{10}.$$

prob. cammino $7 \rightarrow 5 \rightarrow 3$

Quindi $\mathbb{P}(X_3 = 3) = \frac{1}{5} = 0.2.$