Sistemi - Modulo di Sistemi a Eventi Discreti

Laurea Magistrale in Ingegneria e Scienze Informatiche Tiziano Villa

19 Settembre 2011

Nome e Cognome:

Matricola:

Posta elettronica:

problema	punti massimi	i tuoi punti
problema 1	10	
problema 2	10	
problema 3	10	
totale	30	

- 1. Si considerino le seguente macchine a stati finiti M_2 e M_1 . M_2 :
 - stati: s_1, s_2, s_3 con s_1 stato iniziale;
 - due variabili d'ingresso $X=\{0,1\}$ e $V=\{0,1\}$, due variabili d'uscita $U=\{0,1\}$ e $Z=\{0,1\}$;
 - transizione da s_1 a s_1 : 1 /11, transizione da s_1 a s_2 : 00/10, transizione da s_1 a s_3 : 01/10, transizione da s_2 a s_3 : -0/01, transizione da s_2 a s_3 : -1/10, transizione da s_3 a s_1 : -1/01, transizione da s_3 a s_2 : -0/00.

M_1 :

- stati: $s_a, s_b, s_c, s_d \text{ con } s_a \text{ stato iniziale};$
- una variabile d'ingresso $U = \{0, 1\}$, una variabile d'uscita $V = \{0, 1\}$;
- transizione da s_a a s_b : 1/0, transizione da s_a a s_c : 1/1, transizione da s_a a s_d : 0/-, transizione da s_b a s_a : 0/0, transizione da s_b a s_b : 1/0, transizione da s_b a s_d : 0/1, transizione da s_c a s_a : 0/1, transizione da s_c a s_b : 1/0, transizione da s_c a s_c : 1/1, transizione da s_d a s_d : -/-.
- (a) Si chiudano ad anello la macchina M_1 con la macchina M_2 , eliminando i segnali U e V per ottenere una macchina composta con ingresso X e uscita Z. Si costruisca la macchina composta.

La composizione di M_1 e M_2 e' ben formata, cioe' definisce per ogni stato e per ogni ingresso x una sola uscita z?

Traccia di soluzione.

La composizione di M_1 e M_2 , denotata anche come $M_1 \bullet M_2$, genera una macchina non-deterministica con ingresso x e uscita z. Si acclude un grafico che mostra la composizione.

La composizione e' ben formata perche', a partire dallo stato iniziale, in ogni stato per una data x si puo' produrre una sola z (e iterativamente si puo' andare in stati in cui per una data x si produce una sola e medesima z, anche quando sono stati diversi).

(b) Si minimizzi il numero degli stati della macchina composta (indipendentemente dal fatto che sia ben formata oppure no), spiegando con chiarezza i passi del procedimento.

Traccia di soluzione.

Applicando il procedimento che ottiene la macchina con il minimo numero di stati bisimile alla composizione $M_1 \bullet M_2$ si ottiene una macchina con 2 stati, mostrata nel disegno accluso (si fondono gli stati (s_1, s_a) , (s_1, s_b) , (s_1, s_c) in uno stato, e gli stati (s_2, s_b) , (s_3, s_c) in un altro stato). Si noti che la macchina minimizzata e' deterministica, confermando che la composizione e' ben formata.

- 2. Si consideri il seguente automa temporizzato di un termostato con una variabile d'ingresso $\tau(t)$ (temperatura), una variabile di stato s(t) (orologio) e una variabile d'uscita h(t) (segnale di acceso o spento):
 - locazioni: l_1, l_2 , con l_1 locazione iniziale, con condizione iniziale $s(0) := T_c$;
 - dinamica della locazione l_1 : $\dot{s}(t) = 1, h(t) = 0$, invariante della locazione l_1 : vero, dinamica della locazione l_2 : $\dot{s}(t) = 1, h(t) = 1$, invariante della locazione l_2 : vero;
 - transizione da l_1 a l_2 : A/h(t), s(t) := 0, transizione da l_2 a l_1 : B/h(t), s(t) := 0, dove $A = \{\tau(t) \leq 20 \land s(t) \geq T_c\}$, dove $B = \{\tau(t) \geq 20 \land s(t) \geq T_h\}$ (la sintassi delle annotazioni di una transizione e' guardia/uscita, azione);
 - ingresso $\tau(t) \in Reali$;
 - uscita $h(t) \in \{0, 1\}$.
 - (a) Si disegni il diagramma di transizione degli stati dell'automa, annotando con precisione locazioni e transizioni.

(b) Si spieghi il funzionamento del termostato modellato dall'automa temporizzato.

Qual e' il significato delle locazioni l_1 e l_2 ?

Traccia di soluzione.

Lo stato iniziale ha un assegnamento $s(t):=T_c$ che assicura che all'inizio il termostato puo passare subito dallo stato di raffreddamento l_1 a quello di riscaldamento l_2 se la temperatura e' ≤ 20 gradi. Nelle altre due transizioni l'orologio e' riassegnato a zero. La clausola della guardia $s(t) \geq T_h$ garantisce che la caldaia stara' accesa per almeno un tempo T_h . La clausola della guardia $s(t) \geq T_c$ garantisce che la caldaia stara' spenta per almeno un tempo T_c .

Questa soluzione con due tempi minimi di accensione e spegnimento impedisce l'oscillazione indefinita attorno al valore di 20 gradi; in alternativa si potrebbe progettare un termostato a isteresi che usi una temperatura minima e una massima per decidere il passaggio tra accensione e spegnimento.

La locazione l_1 rappresenta lo stato spento di raffreddamento, quella l_2 lo stato acceso di riscaldamento.

(c) Data la forma d'onda della temperatura in ingresso $\tau(t)$ mostrata nella figura allegata, si disegnino qualitativamente sugli assi delle coordinate le forme d'onda della variabile d'uscita h(t) e della variabile di stato s(t), a partire da l_1 e $s(0) = T_c > 0$.

Traccia di soluzione.

Si allega una figura con i grafici di h(t) e s(t) in risposta all'ingresso $\tau(t)$. Inizialmente si assume che la temperatura sia sopra i 20 gradi, per cui il termostato rimane nello stato di raffreddamento l_1 finche' la temperatura scende a 20 gradi al tempo t_1 , nel qual momento esegue subito la transizione allo stato di riscaldamento l_2 perche' $s(t) \geq T_c$. La transizione riassegna l'orologio a 0 e accende la caldaia che stara' accesa fino al tempo t_1+T_h (la temperatura sale sempre a partire da 20 gradi). Al tempo t_1+T_h il termostato tornera' nello stato l_1 di raffreddamento spegnendo la caldaia, dove stara' per almeno un tempo T_c e finche' la temperatura scenda di nuovo a 20 gradi, nel qual momento si riaccendera' la caldaia.

- 3. Siano dati K e $M=\overline{M}$ linguaggi sull'alfabeto di eventi E, gli eventi controllabili $E_c\subseteq E$, gli eventi osservabili $E_o\subseteq E$, e sia P la proiezione da E^* a E_o^* .
 - (a) Si presenti intuitivamente la nozione di K osservabile rispetto a M, E_o, E_c e poi la si scriva formalmente, commentando come la definizione matematica rispecchi puntualmente la nozione intuitiva.

Traccia di soluzione.

Si consultino le dispense per i dettagli.

Definizione intuitiva: se non si possono differenziare due stringhe in base alla loro osservazione, allora esse dovrebbero richiedere la medesima azione di controllo.

Si considerino i linguaggi K e $M=\overline{M}$ definiti sull'alfabeto di eventi E, con $E_c\subseteq E$, $E_o\subseteq E$ e P la proiezione naturale da E^* a E_o^* .

Si dice che K e' osservabile rispetto a M, E_o, E_c se per tutte le stringhe $s \in \overline{K}$ e per tutti gli eventi $\sigma \in E_c$

$$(s\sigma \not\in \overline{K}) \land (s\sigma \in M) \Rightarrow P^{-1}[P(s)]\sigma \cap \overline{K} = \emptyset.$$

L'insieme di stringhe denotato dal termine $P^{-1}[P(s)]\sigma\cap\overline{K}$ contiene tutte le stringhe che hanno la medesima proiezione di s e possono essere prolungate in \overline{K} con il simbolo σ . Se tale insieme non e' vuoto, allora \overline{K} contiene due stringhe s e s' tali che P(s) = P(s') per cui $s\sigma \notin \overline{K}$ e $s'\sigma \in \overline{K}$. Tali due stringhe richiederebbero un'azione di controllo diversa rispetto a σ (disabilitare σ nel caso di s, abilitare σ nel caso di s'), ma un supervisore non saprebbe distinguere tra s e s' per l'osservabilita' ristretta, e quindi non potrebbe esistere un supervisore che ottiene esattamente il linguaggio \overline{K} .

(b) Siano $E = \{u, b\}$ e $M = \overline{\{ub, bu\}}, E_o = \{b\}, E_c = \{b\}.$

Applicando la definizione, si verifichi se il linguaggio $K_3 = \{bu\}$ e' osservabile rispetto a M, E_o, E_c .

Traccia di soluzione.

Osservabile.

Sia $s=\epsilon$, si ha che $s\sigma=\epsilon b=b\in\overline{K_3}$, antecedente falso ed implicazione vera.

Sia s=b, si ha che $s\sigma=bb\not\in\overline{K_3}$ ma $s\sigma=bb\not\in M$, antecedente falso ed implicazione vera.

Sia s=bu, si ha che $s\sigma=bub\not\in\overline{K_3}$ ma $s\sigma=bbu\not\in M$, antecedente falso ed implicazione vera.

Le condizioni di osservabilita' sono verificate.

(c) Si riporti la definizione di controllabilita'.

Si verifichi se il linguaggio $K_3 = \{bu\}$ e' controllabile rispetto a M, E_c suggerendo una strategia di controllo, se esiste.

Traccia di soluzione.

Incontrollabile.

Il controllore non puo' impedire all'impianto di produrre u (che non si puo' disabilitare) e quindi non puo restringere l'impianto al linguaggio K_3 .

Si noti che K_3 e' osservabile, e quindi non e' l'inosservabilita' ad impedire ad un supervisore di controllare l'impianto.