

Lecture 3: Random Variable, Part I

Yi, Yung (이용)

EE210: Probability and Introductory Random Processes KAIST EE

April 19, 2021

Roadmap

- (1) Random variable: Idea and formal definition
- (2) Popular discrete random variables
- (3) Summarizing random variables: Expectation and Variance
- (4) (Functions of) multiple random variables
- (5) Conditioning for random variables
- (6) Independence for random variables

Roadmap

3 / 42

- (1) Random variable: Idea and formal definition
- (2) Popular discrete random variables
- (3) Summarizing random variables: Expectation and Variance
- (4) (Functions of) multiple random variables
- (5) Conditioning for random variables
- (6) Independence for random variables

L3(1) April 19, 2021

Random Variable: Idea

- In reality, many outcomes are , e.g., stock price.
- Even if not, very convenient if we map numerical values to random outcomes, e.g., '0' for male and '1' for female.

(b) Two rolls of tetrahedral dice

Random Variable: Idea

- In reality, many outcomes are numerical, e.g., stock price.
- Even if not, very convenient if we map numerical values to random outcomes, e.g., '0' for male and '1' for female.

(b) Two rolls of tetrahedral dice

¹Finite or countably infinite.

• Mathematically, a random variable X is a which maps from Ω to \mathbb{R} .

¹Finite or countably infinite.

• Mathematically, a random variable X is a function which maps from Ω to \mathbb{R} .

¹Finite or countably infinite.

- Mathematically, a random variable X is a function which maps from Ω to \mathbb{R} .
- \circ Notation. Random variable X, numerical value x.

¹Finite or countably infinite.

- Mathematically, a random variable X is a function which maps from Ω to \mathbb{R} .
- Notation. Random variable X, numerical value x.
- o Different random variables can be defined on the same sample space.

¹Finite or countably infinite.

- Mathematically, a random variable X is a function which maps from Ω to \mathbb{R} .
- Notation. Random variable X, numerical value x.
- Different random variables can be defined on the same sample space.
- \circ For a fixed value x, we can associate an that a random variable X has the value x, i.e.,

¹Finite or countably infinite.

- Mathematically, a random variable X is a function which maps from Ω to \mathbb{R} .
- \circ Notation. Random variable X, numerical value x.
- Different random variables can be defined on the same sample space.
- \circ For a fixed value x, we can associate an event that a random variable X has the value x, i.e.,

¹Finite or countably infinite.

5 / 42

- Mathematically, a random variable X is a function which maps from Ω to \mathbb{R} .
- Notation. Random variable X, numerical value x.
- Different random variables can be defined on the same sample space.
- For a fixed value x, we can associate an event that a random variable X has the value x, i.e., $\{\omega \in \Omega \mid X(\omega) = x\}$
- Assume that values x are discrete¹ such as $1, 2, 3, \ldots$. For notational convenience,

$$\rho_X(x) \triangleq \mathbb{P}(X=x) \triangleq \mathbb{P}\Big(\{\omega \in \Omega \mid X(\omega)=x\}\Big)$$

L3(1)

¹Finite or countably infinite.

- Mathematically, a random variable X is a function which maps from Ω to \mathbb{R} .
- \circ Notation. Random variable X, numerical value x.
- Different random variables can be defined on the same sample space.
- \circ For a fixed value x, we can associate an event that a random variable X has the value x, i.e., $\{\omega \in \Omega \mid X(\omega) = x\}$
- Assume that values x are discrete such as $1, 2, 3, \ldots$ For notational convenience.

$$p_X(x) \triangleq \mathbb{P}(X = x) \triangleq \mathbb{P}(\{\omega \in \Omega \mid X(\omega) = x\})$$

• For a discrete random variable X, we call $p_X(x)$ (PMF).

5 / 42

¹Finite or countably infinite.

- Mathematically, a random variable X is a function which maps from Ω to \mathbb{R} .
- Notation. Random variable X, numerical value x.
- Different random variables can be defined on the same sample space.
- o For a fixed value x, we can associate an event that a random variable X has the value x, i.e., $\{\omega \in \Omega \mid X(\omega) = x\}$
- Assume that values x are discrete¹ such as 1, 2, 3, For notational convenience.

$$p_X(x) \triangleq \mathbb{P}(X = x) \triangleq \mathbb{P}(\{\omega \in \Omega \mid X(\omega) = x\})$$

 \circ For a discrete random variable X, we call $p_X(x)$ probability mass function

L3(1)

¹Finite or countably infinite.

Roadmap

- (1) Random variable: Idea and formal definition
- (2) Popular discrete random variables
- (3) Summarizing random variables: Expectation and Variance
- (4) (Functions of) multiple random variables
- (5) Conditioning for random variables
- (6) Independence for random variables

L3(2)

Only binary values

¹w.p.: with probability
_{L3(2)}

Only binary values

$$X = \begin{cases} 0, & \text{w.p.} \quad 1 - p, \\ 1, & \text{w.p.} \quad p \end{cases}$$

In other words, $p_X(0) = 1 - p$ and $p_X(1) = p$ from our PMF notation.

¹w.p.: with probability

Only binary values

$$X = \begin{cases} 0, & \text{w.p.} \quad 1 - p, \\ 1, & \text{w.p.} \quad p \end{cases}$$

In other words, $p_X(0) = 1 - p$ and $p_X(1) = p$ from our PMF notation.

• Models a trial that results in binary results, e.g., success/failure, head/tail

¹w.p.: with probability

Only binary values

$$X = \begin{cases} 0, & \text{w.p.} \quad 1 - p, \\ 1, & \text{w.p.} \quad p \end{cases}$$

In other words, $p_X(0) = 1 - p$ and $p_X(1) = p$ from our PMF notation.

- Models a trial that results in binary results, e.g., success/failure, head/tail
- Very useful for an of an event A.

¹w.p.: with probability

Only binary values

$$X = \begin{cases} 0, & \text{w.p.} \quad 1 - p, \\ 1, & \text{w.p.} \quad p \end{cases}$$

In other words, $p_X(0) = 1 - p$ and $p_X(1) = p$ from our PMF notation.

- Models a trial that results in binary results, e.g., success/failure, head/tail
- Very useful for an indicator rv of an event A. Define a rv $\mathbf{1}_A$ as:

$$\mathbf{1}_{\mathcal{A}} = egin{cases} 1, & ext{if A occurs,} \ 0, & ext{otherwise} \end{cases}$$

¹w.p.: with probability
L3(2)

April 19, 2021

• integers a, b, where $a \le b$

- integers a, b, where $a \le b$
- Choose a number out of $\Omega = \{a, a+1, \dots, b\}$ uniformly at random.

- integers a, b, where $a \le b$
- Choose a number out of $\Omega = \{a, a+1, \dots, b\}$ uniformly at random.
- $p_X(i) =$

- integers a, b, where a < b
- Choose a number out of $\Omega = \{a, a+1, \dots, b\}$ uniformly at random.
- $p_X(i) = \frac{1}{b-a+1}, i \in \Omega$

- integers a, b, where a < b
- Choose a number out of $\Omega = \{a, a+1, \dots, b\}$ uniformly at random.

•
$$p_X(i) = \frac{1}{b-a+1}, i \in \Omega$$

Models complete ignorance (I don't know anything about X)

 $[\]binom{1}{k} = \frac{n!}{k!(n-k)!}$, which we read 'n choose k'.

 Models the number of successes in a given number of independent trials

 $[\]binom{n}{k} = \frac{n!}{k!(n-k)!}$, which we read 'n choose k'

- Models the number of successes in a given number of independent trials
- *n* independent trials, where one trial has the success probability *p*.

$$p_X(k) =$$

 $[\]binom{1}{k} = \frac{n!}{k!(n-k)!}$, which we read 'n choose k'.

- Models the number of successes in a given number of independent trials
- *n* independent trials, where one trial has the success probability p.

$$p_X(k) =$$

 $[\]frac{n!}{k!(n-k)!}$, which we read 'n choose k'. L3(2)

- Models the number of successes in a given number of independent trials
- *n* independent trials, where one trial has the success probability *p*.

$$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

 $[\]binom{1}{k} = \frac{n!}{k!(n-k)!}$, which we read 'n choose k'.

10 / 42

 Infinitely many independent Bernoulli trials, where each trial has success probability p

L3(2) April 19, 2021

- Infinitely many independent Bernoulli trials, where each trial has success probability p
- Random variable: number of trials until the first success.

$$p_X(k) =$$

- Infinitely many independent Bernoulli trials, where each trial has success probability p
- Random variable: number of trials until the first success.

$$p_X(k) = (1-p)^{k-1}p$$

- Infinitely many independent Bernoulli trials, where each trial has success probability p
- Random variable: number of trials until the first success.

$$p_X(k) = (1-p)^{k-1}p$$

 Models waiting times until something happens.

Roadmap

- (1) Random variable: Idea and formal definition
- (2) Popular discrete random variables
- (3) Summarizing random variables: Expectation and Variance
- (4) (Functions of) multiple random variables
- (5) Conditioning for random variables
- (6) Independence for random variables

Expectation/Mean

Average

Definition

$$\mathbb{E}[X] = \sum_{x} x p_X(x)$$

• $p_X(x)$: relative frequency of value x (trials with x/total trials)

Expectation/Mean

Average

Definition

$$\mathbb{E}[X] = \sum_{x} x p_X(x)$$

- $p_X(x)$: relative frequency of value x (trials with x/total trials)
- Example. Bernoulli rv with p

$$\mathbb{E}[X] = 1 \times p + 0 \times (1 - p) = p = p_X(1)$$

Properties of Expectation

Not very surprising. Easy to prove using the definition.

• If
$$X \ge 0$$
, $\mathbb{E}[X] \ge 0$.

• If
$$a \leq X \leq b$$
, $a \leq \mathbb{E}[X] \leq b$.

• For a constant
$$c$$
, $\mathbb{E}[c] = c$.

• For a rv X, Y = g(X) is also a r.v.

- For a rv X, Y = g(X) is also a r.v.
- $\mathbb{E}[Y] = \mathbb{E}[g(X)] = \sum_{x} g(x) p_X(x)$

- For a rv X, Y = g(X) is also a r.v.
- $\mathbb{E}[Y] = \mathbb{E}[g(X)] = \sum_{x} g(x) p_X(x)$
- Compute $\mathbb{E}[Y]$ for the following:

L3(3)

- For a rv X, Y = g(X) is also a r.v.
- $\mathbb{E}[Y] = \mathbb{E}[g(X)] = \sum_{x} g(x) p_X(x)$
- Compute $\mathbb{E}[Y]$ for the following:

$$4 \times (0.4 + 0.3) + 3 \times (0.1 + 0.2)$$

= 2.8 + 0.9 = 3.7

- For a rv X, Y = g(X) is also a r.v.
- $\mathbb{E}[Y] = \mathbb{E}[g(X)] = \sum_{x} g(x) p_X(x)$
- Compute $\mathbb{E}[Y]$ for the following:

$$4 \times (0.4 + 0.3) + 3 \times (0.1 + 0.2)$$

= $2.8 + 0.9 = 3.7$

Linearity of Expectation

$$\mathbb{E}[aX + b] = a\mathbb{E}[X] + b$$

15 / 42

• Measures how much the spread of a PMF is.

- Measures how much the spread of a PMF is.
- What about $\mathbb{E}[X \mu]$, where $\mu = \mathbb{E}[X]$? Zero

- Measures how much the spread of a PMF is.
- What about $\mathbb{E}[X \mu]$, where $\mu = \mathbb{E}[X]$? Zero
- Then, what about $\mathbb{E}[(X \mu)^2]$?

- Measures how much the spread of a PMF is.
- What about $\mathbb{E}[X \mu]$, where $\mu = \mathbb{E}[X]$? Zero
- Then, what about $\mathbb{E}[(X \mu)^2]$?

Variance, Standard Deviation

$$\operatorname{var}[X] = \mathbb{E}[(X - \mu)^2]$$

$$\sigma_X = \sqrt{\operatorname{var}[X]}$$

L3(3)

•
$$\operatorname{var}[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$

•
$$Y = X + b$$
, $var[Y] = var[X]$

•
$$Y = aX$$
, $var[Y] = a^2var[X]$

•
$$\operatorname{var}[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$

$$var[X] = \mathbb{E}[X^2 - 2\mu X + \mu^2]$$

= $\mathbb{E}[X^2] - 2\mu \mathbb{E}[X] + \mu^2 = \mathbb{E}[X^2] - \mu^2$

•
$$Y = X + b$$
, $var[Y] = var[X]$

•
$$Y = aX$$
, $var[Y] = a^2 var[X]$

•
$$\operatorname{var}[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$

 $\operatorname{var}[X] = \mathbb{E}[X^2 - 2\mu X + \mu^2]$
 $= \mathbb{E}[X^2] - 2\mu \mathbb{E}[X] + \mu^2 = \mathbb{E}[X^2] - \mu^2$

•
$$Y = X + b$$
, $var[Y] = var[X]$
 $var[Y] = \mathbb{E}[(X + b)^2] - (\mathbb{E}[X + b])^2$

•
$$Y = aX$$
, $var[Y] = a^2 var[X]$

L3(3)

•
$$\operatorname{var}[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$

 $\operatorname{var}[X] = \mathbb{E}[X^2 - 2\mu X + \mu^2]$
 $= \mathbb{E}[X^2] - 2\mu \mathbb{E}[X] + \mu^2 = \mathbb{E}[X^2] - \mu^2$

•
$$Y = X + b$$
, $var[Y] = var[X]$
 $var[Y] = \mathbb{E}[(X + b)^2] - (\mathbb{E}[X + b])^2$

•
$$Y = aX$$
, $var[Y] = a^2 var[X]$

$$var[Y] = \mathbb{E}[a^2X^2] - (a\mathbb{E}[X])^2$$

L3(3)

16 / 42

•
$$\operatorname{var}[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$

 $\operatorname{var}[X] = \mathbb{E}[X^2 - 2\mu X + \mu^2]$
 $= \mathbb{E}[X^2] - 2\mu \mathbb{E}[X] + \mu^2 = \mathbb{E}[X^2] - \mu^2$

•
$$Y = X + b$$
, $var[Y] = var[X]$
 $var[Y] = \mathbb{E}[(X + b)^2] - (\mathbb{E}[X + b])^2$

•
$$Y = aX$$
, $var[Y] = a^2 var[X]$
 $var[Y] = \mathbb{E}[a^2X^2] - (a\mathbb{E}[X])^2$

Example: Variance of a Bernoulli rv (p)

•
$$\operatorname{var}[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$

 $\operatorname{var}[X] = \mathbb{E}[X^2 - 2\mu X + \mu^2]$
 $= \mathbb{E}[X^2] - 2\mu \mathbb{E}[X] + \mu^2 = \mathbb{E}[X^2] - \mu^2$

- Y = X + b, var[Y] = var[X] $var[Y] = \mathbb{E}[(X + b)^2] - (\mathbb{E}[X + b])^2$
- Y = aX, $var[Y] = a^2 var[X]$ $var[Y] = \mathbb{E}[a^2X^2] - (a\mathbb{E}[X])^2$

Example: Variance of a Bernoulli rv (p)

$$\mu = \mathbb{E}[X] = 1 \times p + 0 \times (1 - p) = p$$
 $\mathbb{E}[X^2] = 1 \times p + 0 \times (1 - p) = p$
 $\text{var}[X] = \mathbb{E}[X^2] - \mu^2 = p - p^2$
 $= p(1 - p)$

Roadmap

17 / 42

- (1) Random variable: Idea and formal definition
- (2) Popular discrete random variables
- (3) Summarizing random variables: Expectation and Variance
- (4) (Functions of) multiple random variables
- (5) Conditioning for random variables
- (6) Independence for random variables

L3(4) April 19, 2021

L3(4) April 19, 2021 18 / 42

For two random variables X, Y, consider two events $\{X = x\}$ and $\{Y = y\}$, and

$$\mathbb{P}\Big(\{X=x\}\cap\{Y=y\}\Big)$$

• Joint PMF. For two random variables X, Y, consider two events $\{X = x\}$ and $\{Y = y\}$, and

$$p_{X,Y}(x,y) \triangleq \mathbb{P}(\{X=x\} \cap \{Y=y\})$$

• Joint PMF. For two random variables X, Y, consider two events $\{X = x\}$ and $\{Y = y\}$, and

$$p_{X,Y}(x,y) \triangleq \mathbb{P}(\{X=x\} \cap \{Y=y\})$$

•
$$\sum_{x}\sum_{y}p_{X,Y}(x,y)=1$$

• Joint PMF. For two random variables X, Y, consider two events $\{X = x\}$ and

$$\{Y=y\}$$
, and

$$p_{X,Y}(x,y) \triangleq \mathbb{P}(\{X=x\} \cap \{Y=y\})$$

- $\sum_{x} \sum_{y} p_{X,Y}(x,y) = 1$
- •

$$p_X(x) = \sum_{Y} p_{X,Y}(x,y),$$

$$p_Y(y) = \sum_{x,y} p_{X,Y}(x,y)$$

Joint PMF. For two random variables

$$\overline{X}$$
, \overline{Y} , consider two events $\{X = x\}$ and $\{Y = y\}$, and

$$p_{X,Y}(x,y) \triangleq \mathbb{P}(\{X=x\} \cap \{Y=y\})$$

- $\sum_{x} \sum_{y} p_{X,Y}(x,y) = 1$
- Marginal PMF.

$$p_X(x) = \sum_{y} p_{X,Y}(x,y),$$

$$p_Y(y) = \sum_{y} p_{X,Y}(x,y)$$

Example.

VIDEO PAUSE

$$p_{X,Y}(1,3) =$$

$$p_X(4) =$$

$$p_{X}(4) =$$

$$\mathbb{P}(X = Y) =$$

Joint PMF. For two random variables

$$\overline{X}$$
, \overline{Y} , consider two events $\{X = x\}$ and $\{Y = y\}$, and

$$p_{X,Y}(x,y) \triangleq \mathbb{P}(\{X=x\} \cap \{Y=y\})$$

- $\sum_{x}\sum_{y}p_{X,Y}(x,y)=1$
- Marginal PMF.

$$p_X(x) = \sum_{y} p_{X,Y}(x,y),$$
$$p_Y(y) = \sum_{y} p_{X,Y}(x,y)$$

Example.

VIDEO PAUSE

$$p_{X,Y}(1,3) = 2/20$$

$$p_X(4) = 2/20 + 1/20 = 3/20$$

$$\mathbb{P}(X = Y) = 1/20 + 4/20 + 3/20 = 8/20$$

Functions of Multiple RVs

• Consider a rv Z = g(X, Y). (Ex) X + Y, $X^2 + Y^2$. Then, PMF of Z is:

Similarly,

$$\mathbb{E}[Z] = \mathbb{E}[g(X,Y)] =$$

Functions of Multiple RVs

• Consider a rv Z = g(X, Y). (Ex) X + Y, $X^2 + Y^2$. Then, PMF of Z is:

$$p_Z(z) = \mathbb{P}(g(X, Y) = z) = \sum_{(x,y):g(x,y)=z} p_{X,Y}(x,y)$$

Similarly,

$$\mathbb{E}[Z] = \mathbb{E}[g(X,Y)] = \sum_{x} \sum_{y} g(x,y) p_{X,Y}(x,y)$$

L3(4)

• Remember: $\mathbb{E}[aX + b] = a\mathbb{E}[X] + b$

- Remember: $\mathbb{E}[aX + b] = a\mathbb{E}[X] + b$
- · Similarly,

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

(easy to prove, using the definition.)

- Remember: $\mathbb{E}[aX + b] = a\mathbb{E}[X] + b$
- · Similarly,

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

(easy to prove, using the definition.)

- $\mathbb{E}[X_1 \ldots + X_n] = \mathbb{E}[X_1] + \ldots + \mathbb{E}[X_n]$
- $\mathbb{E}[2X+3Y-Z]=2\mathbb{E}[X]+3\mathbb{E}[Y]-\mathbb{E}[Z]$

- Remember: $\mathbb{E}[aX + b] = a\mathbb{E}[X] + b$
- · Similarly,

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$
 (easy to prove, using the definition.)

- $\mathbb{E}[X_1 \ldots + X_n] = \mathbb{E}[X_1] + \ldots + \mathbb{E}[X_n]$
- $\mathbb{E}[2X+3Y-Z] = 2\mathbb{E}[X]+3\mathbb{E}[Y]-\mathbb{E}[Z]$

- Example. Mean of a binomial rv Y with (n, p)
- Y: number of successes in n Bernoulli trials with p

- Remember: $\mathbb{E}[aX + b] = a\mathbb{E}[X] + b$
- Similarly,

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$
 (easy to prove, using the definition.)

- $\mathbb{E}[X_1 \ldots + X_n] = \mathbb{E}[X_1] + \ldots + \mathbb{E}[X_n]$
- $\mathbb{E}[2X+3Y-Z]=2\mathbb{E}[X]+3\mathbb{E}[Y]-\mathbb{E}[Z]$

- Example. Mean of a binomial rv Y with (n, p)
- Y: number of successes in n Bernoulli trials with p
- $Y = X_1 + ... X_n$, where X_i is a Bernoulli rv.
- $\mathbb{E}[Y] = n\mathbb{E}[X_i] = n\mathbb{P}(X_i = 1) = np$

- Remember: $\mathbb{E}[aX + b] = a\mathbb{E}[X] + b$
- Similarly,

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$
 (easy to prove, using the definition.)

- $\mathbb{E}[X_1 \ldots + X_n] = \mathbb{E}[X_1] + \ldots + \mathbb{E}[X_n]$
- $\mathbb{E}[2X+3Y-Z]=2\mathbb{E}[X]+3\mathbb{E}[Y]-\mathbb{E}[Z]$

- Example. Mean of a binomial rv Y with (n, p)
- Y: number of successes in n Bernoulli trials with p
- $Y = X_1 + ... X_n$, where X_i is a Bernoulli rv.

•
$$\mathbb{E}[Y] = n\mathbb{E}[X_i] = n\mathbb{P}(X_i = 1) = np$$

Message. When some rv X is write as a linear combination of other rvs, it is often easy to handle X.

Roadmap

- (1) Random variable: Idea and formal definition
- (2) Popular discrete random variables
- (3) Summarizing random variables: Expectation and Variance
- (4) (Functions of) multiple random variables
- (5) Conditioning for random variables
- (6) Independence for random variables

L3(5)

21 / 42

Conditional PMF: Conditioning on an event

Remember two probability laws: $\mathbb{P}(\cdot)$ and $\mathbb{P}(\cdot|A)$ for an event A.

L3(5) April 19, 2021

22 / 42

•
$$p_X(x) \triangleq \mathbb{P}(X=x)$$

•
$$p_{X|A}(x) \triangleq \mathbb{P}(X = x|A)$$

22 / 42

- $p_X(x) \triangleq \mathbb{P}(X=x)$
- $\mathbb{E}[X] = \sum_{x} x p_X(x)$

- $p_{X|A}(x) \triangleq \mathbb{P}(X = x|A)$ $\mathbb{E}[X|A] \triangleq \sum_{x} x p_{X|A}(x)$

•
$$p_X(x) \triangleq \mathbb{P}(X = x)$$

•
$$\mathbb{E}[X] = \sum_{x} x p_X(x)$$

•
$$\mathbb{E}[g(X)] = \sum_{x} g(x) p_X(x)$$

$$p_{X|A}(x) \triangleq \mathbb{P}(X=x|A)$$

$$\mathbb{E}[X|A] \triangleq \sum_{x} x p_{X|A}(x)$$

•
$$p_{X|A}(x) \triangleq \mathbb{P}(X = x|A)$$

• $\mathbb{E}[X|A] \triangleq \sum_{x} x p_{X|A}(x)$
• $\mathbb{E}[g(X)|A] \triangleq \sum_{x} g(x) p_{X|A}(x)$

•
$$p_X(x) \triangleq \mathbb{P}(X = x)$$

•
$$\mathbb{E}[X] = \sum_{x} x p_X(x)$$

•
$$\mathbb{E}[g(X)] = \sum_{x} g(x) p_X(x)$$

•
$$\operatorname{var}[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$

$$p_{X|A}(x) \triangleq \mathbb{P}(X=x|A)$$

•
$$p_{X|A}(x) \triangleq \mathbb{P}(X = x|A)$$

• $\mathbb{E}[X|A] \triangleq \sum_{x} x p_{X|A}(x)$

•
$$\mathbb{E}[g(X)|A] \triangleq \sum_{x} g(x) p_{X|A}(x)$$

•
$$\operatorname{var}[X|A] \triangleq \mathbb{E}[X^2|A] - (\mathbb{E}[X|A])^2$$

Remember two probability laws: $\mathbb{P}(\cdot)$ and $\mathbb{P}(\cdot|A)$ for an event A.

•
$$p_X(x) \triangleq \mathbb{P}(X = x)$$

•
$$\mathbb{E}[X] = \sum_{x} x p_X(x)$$

•
$$\mathbb{E}[g(X)] = \sum_{x} g(x) p_X(x)$$

•
$$var[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$

$$p_{X|A}(x) \triangleq \mathbb{P}(X=x|A)$$

•
$$p_{X|A}(x) \triangleq \mathbb{P}(X = x|A)$$

• $\mathbb{E}[X|A] \triangleq \sum_{x} x p_{X|A}(x)$

•
$$\mathbb{E}[g(X)|A] \triangleq \sum_{x} g(x) p_{X|A}(x)$$

•
$$\operatorname{var}[X|A] \triangleq \mathbb{E}[X^2|A] - (\mathbb{E}[X|A])^2$$

• (Note) $p_{X|A}(x)$, $\mathbb{E}[X|A]$, $\mathbb{E}[g(X)|A]$, and var[X|A] are all just notations!

$$A = \{X \ge 2\}$$

$$\mathbb{E}[X] =$$

$$var[X] =$$

$$\mathbb{E}[X|A] =$$

$$var[X|A] =$$

$$A = \{X \ge 2\}$$

$$\mathbb{E}[X] = \frac{1}{4}(1+2+3+4) = 2.5$$
 $\mathsf{var}[X] =$

$$\mathbb{E}[X|A] =$$

$$var[X|A] =$$

$$A = \{X \ge 2\}$$

$$p_X(x)$$

$$\mathbb{E}[X] = \frac{1}{4}(1+2+3+4) = 2.5$$

$$var[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$
$$= \frac{1}{4}(1 + 2^2 + 3^2 + 4^2) - 2.5^2$$

$$\mathbb{E}[X|A] =$$

$$\mathsf{var}[X|A] =$$

$$A = \{X \ge 2\}$$

$$p_X(x)$$

$$\mathbb{E}[X] = \frac{1}{4}(1+2+3+4) = 2.5$$

$$var[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$
$$= \frac{1}{4}(1 + 2^2 + 3^2 + 4^2) - 2.5^2$$

$$\mathbb{E}[X|A] = \frac{1}{3}(2+3+4) = 3$$

$$var[X|A] =$$

$$A = \{X \ge 2\}$$

$$p_X(x)$$

$$\mathbb{E}[X] = \frac{1}{4}(1+2+3+4) = 2.5$$

$$var[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$
$$= \frac{1}{4}(1 + 2^2 + 3^2 + 4^2) - 2.5^2$$

$$\mathbb{E}[X|A] = \frac{1}{3}(2+3+4) = 3$$

$$\text{var}[X|A] = \mathbb{E}[X^2|A] - (\mathbb{E}[X|A])^2$$

$$\operatorname{\mathsf{var}}[X|A] = \mathbb{E}[X^2|A] - (\mathbb{E}[X|A])^2$$

$$A = \{X \ge 2\}$$

$$p_X(x)$$

$$\mathbb{E}[X] = \frac{1}{4}(1+2+3+4) = 2.5$$

$$var[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$
$$= \frac{1}{4}(1 + 2^2 + 3^2 + 4^2) - 2.5^2$$

$$\mathbb{E}[X|A] = \frac{1}{3}(2+3+4) = 3$$

$$\mathbb{E}[X|A] = \frac{1}{3}(2+3+4) = 3$$

$$\text{var}[X|A] = \mathbb{E}[X^2|A] - (\mathbb{E}[X|A])^2$$

$$= \frac{1}{3}(2^2 + 3^2 + 4^2) - 3^2 = 2/3$$

24 / 42

•
$$p_{X|A}(x) \triangleq \mathbb{P}(X=x|A)$$

•
$$p_{X|Y}(x|y) \triangleq \mathbb{P}(X=x|Y=y)$$

- $p_{X|A}(x) \triangleq \mathbb{P}(X = x|A)$ $\mathbb{E}[X|A] \triangleq \sum_{x} x p_{X|A}(x)$

- $p_{X|Y}(x|y) \triangleq \mathbb{P}(X = x|Y = y)$ $\mathbb{E}[X|Y = y] \triangleq \sum_{x} x p_{X|Y}(x|y)$

- $p_{X|A}(x) \triangleq \mathbb{P}(X = x|A)$
- $\mathbb{E}[X|A] \triangleq \sum_{x} x p_{X|A}(x)$
- $\mathbb{E}[g(X)|A] \triangleq \sum_{x} g(x) p_{X|A}(x)$

- $p_{X|Y}(x|y) \triangleq \mathbb{P}(X = x|Y = y)$ $\mathbb{E}[X|Y = y] \triangleq \sum_{x} x p_{X|Y}(x|y)$ $\mathbb{E}[g(X)|Y = y] \triangleq \sum_{x} g(x) p_{X|Y}(x|y)$

•
$$p_{X|A}(x) \triangleq \mathbb{P}(X = x|A)$$

•
$$\mathbb{E}[X|A] \triangleq \sum_{x} x p_{X|A}(x)$$

•
$$\mathbb{E}[g(X)|A] \triangleq \sum_{x} g(x) p_{X|A}(x)$$

•
$$\operatorname{var}[X|A] \triangleq \mathbb{E}[X^2|A] - (\mathbb{E}[X|A])^2$$

$$p_{X|Y}(x|y) \triangleq \mathbb{P}(X=x|Y=y)$$

•
$$p_{X|Y}(x|y) \triangleq \mathbb{P}(X = x|Y = y)$$

• $\mathbb{E}[X|Y = y] \triangleq \sum_{x} x p_{X|Y}(x|y)$

•
$$\mathbb{E}[g(X)|Y=y] \triangleq \sum_{x} g(x)p_{X|Y}(x|y)$$

•
$$\operatorname{var}[X|Y = y] \triangleq \mathbb{E}[X^2|Y = y] - (\mathbb{E}[X|Y = y])^2$$

Conditional PMF

• Multiplication rule.

$$p_{X,Y}(x,y) =$$

•
$$p_{X,Y,Z}(x,y,z) =$$

Conditional PMF

$$p_{X|Y}(x|y) \triangleq \mathbb{P}(X=x|Y=y) = \frac{p_{X,Y}(x,y)}{p_{Y}(y)}$$

for y such that $p_Y(y) > 0$.

• Multiplication rule.

$$p_{X,Y}(x,y) =$$

•
$$p_{X,Y,Z}(x,y,z) =$$

Conditional PMF

$$p_{X|Y}(x|y) \triangleq \mathbb{P}(X=x|Y=y) = \frac{p_{X,Y}(x,y)}{p_{Y}(y)}$$

for y such that $p_Y(y) > 0$.

- $\sum_{x} p_{X|Y}(x|y) = 1$
- Multiplication rule.

$$p_{X,Y}(x,y) =$$

• $p_{X,Y,Z}(x,y,z) =$

Conditional PMF

$$p_{X|Y}(x|y) \triangleq \mathbb{P}(X=x|Y=y) = \frac{p_{X,Y}(x,y)}{p_{Y}(y)}$$

for y such that $p_Y(y) > 0$.

- $\sum_{x} p_{X|Y}(x|y) = 1$
- Multiplication rule.

$$p_{X,Y}(x,y) = p_Y(y)p_{X|Y}(x|y)$$
$$= p_X(x)p_{Y|X}(y|x)$$

• $p_{X,Y,Z}(x,y,z) =$

Conditional PMF

$$p_{X|Y}(x|y) \triangleq \mathbb{P}(X=x|Y=y) = \frac{p_{X,Y}(x,y)}{p_{Y}(y)}$$

for y such that $p_Y(y) > 0$.

- $\sum_{x} p_{X|Y}(x|y) = 1$
- Multiplication rule.

$$p_{X,Y}(x,y) = p_Y(y)p_{X|Y}(x|y)$$
$$= p_X(x)p_{Y|X}(y|x)$$

• $p_{X,Y,Z}(x,y,z) = p_X(x)p_{Y|X}(y|x)p_{Z|X,Y}(z|x,y)$

VIDEO PAUSE

$$p_{X|Y}(2|2) =$$

$$p_{X|Y}(3|2) =$$

$$\mathbb{E}[X|Y=3]=$$

Conditional PMF

$$p_{X|Y}(x|y) \triangleq \mathbb{P}(X=x|Y=y) = \frac{p_{X,Y}(x,y)}{p_{Y}(y)}$$

for y such that $p_Y(y) > 0$.

- $\sum_{x} p_{X|Y}(x|y) = 1$
- Multiplication rule.

$$p_{X,Y}(x,y) = p_Y(y)p_{X|Y}(x|y)$$
$$= p_X(x)p_{Y|X}(y|x)$$

• $p_{X,Y,Z}(x,y,z) =$ $p_X(x)p_{Y|X}(y|x)p_{Z|X,Y}(z|x,y)$

VIDEO PAUSE

$$p_{X|Y}(2|2) = \frac{1}{1+3+1}$$

$$p_{X|Y}(3|2) = \frac{3}{1+3+1}$$

$$\mathbb{E}[X|Y=3] = 1(2/9) + 2(4/9) + 3(1/9) + 4(2/9)$$

Remind: Total Probability Theorem (from Lecture 2)

- Partition of Ω into A_1, A_2, A_3
- Known: $\mathbb{P}(A_i)$ and $\mathbb{P}(B|A_i)$
- What is $\mathbb{P}(B)$? (probability of result)

Total Probability Theorem

$$\mathbb{P}(B) = \sum_{i} \mathbb{P}(A_i) \mathbb{P}(B|A_i)$$

L3(5)

26 / 42

Total Probability Theorem: $B = \{X = x\}$

27 / 42

• Partition of Ω into A_1, A_2, A_3

Total Probability Theorem

$$p_X(x) = \sum_i \mathbb{P}(A_i)\mathbb{P}(X = x|A_i) = \sum_i \mathbb{P}(A_i)p_{X|A_i}(x)$$

Total Expectation Theorem for $\{A_i\}$

• Partition of Ω into A_1, A_2, A_3

Total Probability Theorem

$$p_X(x) = \sum_i \mathbb{P}(A_i)\mathbb{P}(X = x|A_i) = \sum_i \mathbb{P}(A_i)p_{X|A_i}(x)$$

Total Expectation Theorem

$$\mathbb{E}[X] = \sum_{i} \mathbb{P}(A_i) \mathbb{E}[X|A_i]$$

Total Expectation Theorem for $\{Y = y\}$

• Partition of Ω into A_1, A_2, A_3

Total Expectation Theorem

$$\mathbb{E}[X] = \sum_{i} \mathbb{P}(A_i) \mathbb{E}[X|A_i]$$

Total Expectation Theorem for $\{Y = y\}$

• Partition of Ω into A_1, A_2, A_3

Total Expectation Theorem

$$\mathbb{E}[X] = \sum_{i} \mathbb{P}(A_i) \mathbb{E}[X|A_i]$$

Total Expectation Theorem

$$\mathbb{E}[X] = \sum_{y} \mathbb{P}(Y = y) \mathbb{E}[X|Y = y] = \sum_{y} p_{Y}(y) \mathbb{E}[X|Y = y]$$

• Using the definition of expectation,

$$\mathbb{E}[X] =$$

30 / 42

• Using the definition of expectation,

$$\mathbb{E}[X] = \frac{1}{9}(0+1+2) + \frac{2}{9}(6+7+8)$$
$$= \frac{3+12+14+16}{9} = 5$$

• Using the definition of expectation,

$$\mathbb{E}[X] = \frac{1}{9}(0+1+2) + \frac{2}{9}(6+7+8)$$
$$= \frac{3+12+14+16}{9} = 5$$

• Let's use TET, for which consider

$$A_1 = \{X \in \{0, 1, 2\}\}, \ A_2 = \{X \in \{6, 7, 8\}\}$$

• Using the definition of expectation,

$$\mathbb{E}[X] = \frac{1}{9}(0+1+2) + \frac{2}{9}(6+7+8)$$
$$= \frac{3+12+14+16}{9} = 5$$

Let's use TET, for which consider

$$A_1 = \{X \in \{0, 1, 2\}\}, \ A_2 = \{X \in \{6, 7, 8\}\}$$

 $\mathbb{E}[X] = \sum_{i=1,2} \mathbb{P}(A_i)\mathbb{E}[X|A_i]$
 $= 1/3 \cdot 1 + 2/3 \cdot 7 = 5$

31 / 42

• Some random variable often does not have memory.

31 / 42

- Some random variable often does not have memory.
- Definition. A random variable X is called memoryless if, for any $n, m \ge 0$,

$$\mathbb{P}(X > n + m | X > m) = \mathbb{P}(X > n)$$

L3(5) April 19, 2021

- Some random variable often does not have memory.
- Definition. A random variable X is called memoryless if, for any $n, m \ge 0$,

$$\mathbb{P}(X > n + m | X > m) = \mathbb{P}(X > n)$$

• Meaning. Conditioned on X > m, X - m's distribution is the same as the original X.

$$\mathbb{P}(X-m>n|X>m)=\mathbb{P}(X>n)$$

L3(5)

31 / 42

- Some random variable often does not have memory.
- Definition. A random variable X is called memoryless if, for any $n, m \ge 0$,

$$\mathbb{P}(X > n + m | X > m) = \mathbb{P}(X > n)$$

• Meaning. Conditioned on X > m, X - m's distribution is the same as the original X.

$$\mathbb{P}(X-m>n|X>m)=\mathbb{P}(X>n)$$

 Suppose that X is the time of waiting for a bus and X is memoryless. At the bus stop, I have waited for the bus for 10 mins. Then, the time until the bus arrival does not depend on how much I have waited for a bus. No memory.

L3(5) April 19, 2021 31 / 42

Background: Memoryless Property of Geometric RVs

32 / 42

• Theorem. Any geometric random variable is memoryless.

Background: Memoryless Property of Geometric RVs

32 / 42

- Theorem. Any geometric random variable is memoryless.
- Remind. Geometric rv X with parameter p

$$\mathbb{P}(X = k) = (1 - p)^{k-1}p, \quad \mathbb{P}(X > k) = 1 - \sum_{k'=1}^{k} (1 - p)^{k'-1}p = (1 - p)^{k}$$

Background: Memoryless Property of Geometric RVs

- Theorem. Any geometric random variable is memoryless.
- Remind. Geometric rv X with parameter p

$$\mathbb{P}(X=k)=(1-p)^{k-1}p, \quad \mathbb{P}(X>k)=1-\sum_{k'=1}^k(1-p)^{k'-1}p=(1-p)^k$$

Proof.

$$\mathbb{P}(X > n + m | X > m) = \frac{\mathbb{P}(X > n + m \text{ and } X > m)}{\mathbb{P}(X > m)} = \frac{\mathbb{P}(X > n + m)}{\mathbb{P}(X > m)}$$
$$= \frac{(1 - p)^{n + m}}{(1 - p)^m} = (1 - p)^n = \mathbb{P}(X > n)$$

L3(5)

32 / 42

Background: Memoryless Property of Geometric RVs

- Theorem. Any geometric random variable is memoryless.
- Remind. Geometric rv X with parameter p

$$\mathbb{P}(X=k)=(1-p)^{k-1}p, \quad \mathbb{P}(X>k)=1-\sum_{k'=1}^k(1-p)^{k'-1}p=(1-p)^k$$

Proof.

$$\mathbb{P}(X > n + m | X > m) = \frac{\mathbb{P}(X > n + m \text{ and } X > m)}{\mathbb{P}(X > m)} = \frac{\mathbb{P}(X > n + m)}{\mathbb{P}(X > m)}$$
$$= \frac{(1 - p)^{n+m}}{(1 - p)^m} = (1 - p)^n = \mathbb{P}(X > n)$$

• Meaning. Conditioned on X > m, X - m is geometric with the same parameter.

L3(5)

33 / 42

 Write softwares over and over, and each time w.p. p of working correctly (independent from prev. programs).

L3(5) April 19, 2021

- Write softwares over and over, and each time w.p. p of working correctly (independent from prev. programs).
- X: number of trials until the program works correctly.

L3(5) April 19, 2021 33 / 42

- Write softwares over and over, and each time w.p. p of working correctly (independent from prev. programs).
- X: number of trials until the program works correctly.
- (Q) mean of *X*

L3(5) April 19, 2021 33 / 42

- Write softwares over and over, and each time w.p. p of working correctly (independent from prev. programs).
- X: number of trials until the program works correctly.
- (Q) mean of X
- X is geometric

L3(5) April 19, 2021 33 / 42

- Write softwares over and over, and each time w.p. p of working correctly (independent from prev. programs).
- X: number of trials until the program works correctly.
- (Q) mean of X
- X is geometric
- Direct computation is boring.

$$\mathbb{E}[X] = \sum_{k=1}^{\infty} k(1-p)^{k-1}p$$

- Write softwares over and over, and each time w.p. p of working correctly (independent from prev. programs).
- X: number of trials until the program works correctly.
- (Q) mean of *X*
- X is geometric
- Direct computation is boring.

$$\mathbb{E}[X] = \sum_{k=1}^{\infty} k(1-p)^{k-1}p$$

 Total expectation theorem and memorylessness helps a lot.

- Write softwares over and over, and each time w.p. p of working correctly (independent from prev. programs).
- X: number of trials until the program works correctly.
- (Q) mean of *X*
- X is geometric
- · Direct computation is boring.

$$\mathbb{E}[X] = \sum_{k=1}^{\infty} k(1-p)^{k-1}p$$

 Total expectation theorem and memorylessness helps a lot. • $A_1 = \{X = 1\}$ (first try is success), $A_2 = \{X > 1\}$ (first try is failure).

$$\mathbb{E}[X] = 1 + \mathbb{E}[X - 1]$$

_

- Write softwares over and over, and each time w.p. p of working correctly (independent from prev. programs).
- X: number of trials until the program works correctly.
- (Q) mean of *X*
- X is geometric
- · Direct computation is boring.

$$\mathbb{E}[X] = \sum_{k=1}^{\infty} k(1-p)^{k-1}p$$

 Total expectation theorem and memorylessness helps a lot.

•
$$A_1 = \{X = 1\}$$
 (first try is success), $A_2 = \{X > 1\}$ (first try is failure).
$$\mathbb{E}[X] = 1 + \mathbb{E}[X - 1]$$
$$= 1 + \mathbb{P}(A_1)\mathbb{E}[X - 1|X = 1]$$
$$+ \mathbb{P}(A_2)\mathbb{E}[X - 1|X > 1]$$

- Write softwares over and over, and each time w.p. p of working correctly (independent from prev. programs).
- X: number of trials until the program works correctly.
- (Q) mean of *X*
- X is geometric
- · Direct computation is boring.

$$\mathbb{E}[X] = \sum_{k=1}^{\infty} k(1-p)^{k-1}p$$

 Total expectation theorem and memorylessness helps a lot.

•
$$A_1 = \{X = 1\}$$
 (first try is success), $A_2 = \{X > 1\}$ (first try is failure).
$$\mathbb{E}[X] = 1 + \mathbb{E}[X - 1]$$
$$= 1 + \mathbb{P}(A_1)\mathbb{E}[X - 1|X = 1]$$
$$+ \mathbb{P}(A_2)\mathbb{E}[X - 1|X > 1]$$
$$= 1 + (1 - p)\mathbb{E}[X]$$

33 / 42

- Write softwares over and over, and each time w.p. p of working correctly (independent from prev. programs).
- X: number of trials until the program works correctly.
- (Q) mean of *X*
- X is geometric
- · Direct computation is boring.

$$\mathbb{E}[X] = \sum_{k=1}^{\infty} k(1-p)^{k-1}p$$

 Total expectation theorem and memorylessness helps a lot.

•
$$A_1 = \{X = 1\}$$
 (first try is success), $A_2 = \{X > 1\}$ (first try is failure). $\mathbb{E}[X] = 1 + \mathbb{E}[X - 1]$ $= 1 + \mathbb{P}(A_1)\mathbb{E}[X - 1|X = 1]$ $+ \mathbb{P}(A_2)\mathbb{E}[X - 1|X > 1]$ $= 1 + (1 - p)\mathbb{E}[X]$

 $\mathbb{E}[X] = 1 + (1 - p)\frac{1}{p} = 1/p.$

Roadmap

- (1) Random variable: Idea and formal definition
- (2) Popular discrete random variables
- (3) Summarizing random variables: Expectation and Variance
- (4) (Functions of) multiple random variables
- (5) Conditioning for random variables
- (6) Independence for random variables

L3(6)

34 / 42

35 / 42

L3(6) April 19, 2021

Two events

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$$

$$\mathbb{P}(A \cap B | C) = \mathbb{P}(A | C) \cdot \mathbb{P}(B | C)$$

35 / 42

Two events

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$$

$$\mathbb{P}(A \cap B | C) = \mathbb{P}(A | C) \cdot \mathbb{P}(B | C)$$

A rv and an event

$$\mathbb{P}(\{X = x\} \cap B) = \mathbb{P}(X = x) \cdot \mathbb{P}(B), \text{ for all } x$$

$$\mathbb{P}(\{X = x\} \cap B | \mathbf{C}) = \mathbb{P}(X = x | \mathbf{C}) \cdot \mathbb{P}(B | \mathbf{C}), \text{ for all } x$$

L3(6) April 19, 2021

Two events

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$$

$$\mathbb{P}(A \cap B | C) = \mathbb{P}(A | C) \cdot \mathbb{P}(B | C)$$

A rv and an event

$$\mathbb{P}(\{X = x\} \cap B) = \mathbb{P}(X = x) \cdot \mathbb{P}(B), \text{ for all } x$$

$$\mathbb{P}(\{X = x\} \cap B | C) = \mathbb{P}(X = x | C) \cdot \mathbb{P}(B | C), \text{ for all } x$$

Two rvs

$$\mathbb{P}(\{X=x\} \cap \{Y=y\}) = \mathbb{P}(X=x) \cdot \mathbb{P}(Y=y), \text{ for all } x, y$$

$$\mathbb{P}(\{X=x\} \cap \{Y=y\} | Z=z) = \mathbb{P}(X=x | Z=z) \cdot \mathbb{P}(Y=y | Z=z), \text{ for all } x, y$$

Two events

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$$

$$\mathbb{P}(A \cap B | C) = \mathbb{P}(A | C) \cdot \mathbb{P}(B | C)$$

A rv and an event

$$\mathbb{P}(\{X = x\} \cap B) = \mathbb{P}(X = x) \cdot \mathbb{P}(B), \text{ for all } x$$

$$\mathbb{P}(\{X = x\} \cap B | \mathbf{C}) = \mathbb{P}(X = x | \mathbf{C}) \cdot \mathbb{P}(B | \mathbf{C}), \text{ for all } x$$

Two rvs

$$\mathbb{P}(\{X = x\} \cap \{Y = y\}) = \mathbb{P}(X = x) \cdot \mathbb{P}(Y = y), \text{ for all } x, y$$
$$p_{X,Y}(x, y) = p_X(x) \cdot p_Y(y)$$

$$\mathbb{P}(\{X=x\} \cap \{Y=y\} | \mathbf{Z} = \mathbf{z})) = \mathbb{P}(X=x | \mathbf{Z} = \mathbf{z}) \cdot \mathbb{P}(Y=y | \mathbf{Z} = \mathbf{z}), \text{ for all } x, y$$
$$p_{X,Y|\mathbf{Z}}(x,y) = p_{X|\mathbf{Z}}(x) \cdot p_{Y|\mathbf{Z}}(y)$$

Example

• *X* ⊥⊥ *Y*?

• $X \perp \!\!\! \perp Y | \{X \le 2 \text{ and } Y \ge 3\}$?

Example

•
$$X \perp \!\!\!\perp Y$$
?
 $p_{X,Y}(1,1) = 0$, $p_X(1) = 3/20$
 $p_Y(1) = 1/20$.

• $X \perp \!\!\! \perp Y | \{X \le 2 \text{ and } Y \ge 3\}$?

Example

• *X* ⊥⊥ *Y*? $p_{X,Y}(1,1) = 0, \quad p_X(1) = 3/20$ $p_Y(1) = 1/20.$

• $X \perp \!\!\! \perp Y | \{X \le 2 \text{ and } Y \ge 3\}$? - Yes.

Y = 4 (1/3)	1/9	2/9
Y = 3 (2/3)	2/9	4/9
	X = 1 (1/3)	X = 2(2/3)

L3(6)

36 / 42

• Always true.

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

L3(6) April 19, 2021 37 / 42

Always true.

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

• Generally, $\mathbb{E}[g(X,Y)]
eq g(\mathbb{E}[X],\mathbb{E}[Y])$

Always true.

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

- Generally, $\mathbb{E}[g(X,Y)]
 eq g(\mathbb{E}[X],\mathbb{E}[Y])$
- However, if $X \perp \!\!\! \perp Y$,

$$\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$$

$$\mathbb{E}[g(X)h(Y)] = \mathbb{E}[g(X)]\mathbb{E}[g(Y)]$$

L3(6)

Always true.

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

- Generally, $\mathbb{E}[g(X,Y)]
 eq g(\mathbb{E}[X],\mathbb{E}[Y])$
- However, if $X \perp \!\!\! \perp Y$,

$$\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$$

$$\mathbb{E}[g(X)h(Y)] = \mathbb{E}[g(X)]\mathbb{E}[g(Y)]$$

$$\mathbb{E}[g(X)h(Y)] = \sum_{x} \sum_{y} g(x)h(y)p_{X,Y}(x,y)$$
$$= \sum_{x} xp_{X}(x) \sum_{y} yp_{Y}(y)$$

Always true.

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

- Generally, $\mathbb{E}[g(X,Y)] \neq g(\mathbb{E}[X],\mathbb{E}[Y])$
- However, if $X \perp \!\!\! \perp Y$,

$$\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$$

$$\mathbb{E}[g(X)h(Y)] = \mathbb{E}[g(X)]\mathbb{E}[g(Y)]$$

• Proof.

$$\mathbb{E}[g(X)h(Y)] = \sum_{x} \sum_{y} g(x)h(y)p_{X,Y}(x,y)$$
$$= \sum_{x} xp_{X}(x) \sum_{y} yp_{Y}(y)$$

• Always true. $var[aX] = a^2 var[X]$, var[X + a] = var[X]

Always true.

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

- Generally, $\mathbb{E}[g(X,Y)] \neq g(\mathbb{E}[X],\mathbb{E}[Y])$
- However, if $X \perp \!\!\! \perp Y$,

$$\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$$

 $\mathbb{E}[g(X)h(Y)] = \mathbb{E}[g(X)]\mathbb{E}[g(Y)]$

$$\mathbb{E}[g(X)h(Y)] = \sum_{x} \sum_{y} g(x)h(y)p_{X,Y}(x,y)$$
$$= \sum_{x} xp_{X}(x) \sum_{y} yp_{Y}(y)$$

- Always true. $var[aX] = a^2 var[X]$, var[X + a] = var[X]
- Generally, $var[X + Y] \neq var[X] + var[Y]$

Always true.

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

- Generally, $\mathbb{E}[g(X,Y)] \neq g(\mathbb{E}[X],\mathbb{E}[Y])$
- However, if $X \perp \!\!\! \perp Y$,

$$\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$$

 $\mathbb{E}[g(X)h(Y)] = \mathbb{E}[g(X)]\mathbb{E}[g(Y)]$

$$\mathbb{E}[g(X)h(Y)] = \sum_{x} \sum_{y} g(x)h(y)p_{X,Y}(x,y)$$
$$= \sum_{x} xp_{X}(x) \sum_{y} yp_{Y}(y)$$

- Always true. $var[aX] = a^2 var[X]$, var[X + a] = var[X]
- Generally, $var[X + Y] \neq var[X] + var[Y]$
- However, if $X \perp \!\!\! \perp Y$, var[X + Y] = var[X] + var[Y]
- Practice.

Always true.

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

- Generally, $\mathbb{E}[g(X,Y)] \neq g(\mathbb{E}[X],\mathbb{E}[Y])$
- However, if $X \perp \!\!\! \perp Y$,

$$\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$$

 $\mathbb{E}[g(X)h(Y)] = \mathbb{E}[g(X)]\mathbb{E}[g(Y)]$

$$\mathbb{E}[g(X)h(Y)] = \sum_{x} \sum_{y} g(x)h(y)p_{X,Y}(x,y)$$
$$= \sum_{x} xp_{X}(x) \sum_{y} yp_{Y}(y)$$

- Always true. $var[aX] = a^2 var[X]$, var[X + a] = var[X]
- Generally, $var[X + Y] \neq var[X] + var[Y]$
- However, if $X \perp \!\!\! \perp Y$, var[X + Y] = var[X] + var[Y]
- Practice.

$$\circ X = Y \Longrightarrow \mathsf{var}[X + Y] = \mathsf{4var}[X]$$

Always true.

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

- Generally, $\mathbb{E}[g(X,Y)] \neq g(\mathbb{E}[X],\mathbb{E}[Y])$
- However, if $X \perp \!\!\! \perp Y$,

$$\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$$

 $\mathbb{E}[g(X)h(Y)] = \mathbb{E}[g(X)]\mathbb{E}[g(Y)]$

• Proof.

$$\mathbb{E}[g(X)h(Y)] = \sum_{x} \sum_{y} g(x)h(y)p_{X,Y}(x,y)$$
$$= \sum_{x} xp_{X}(x) \sum_{y} yp_{Y}(y)$$

• Always true. $var[aX] = a^2 var[X]$, var[X + a] = var[X]

• Generally, $var[X + Y] \neq var[X] + var[Y]$

- However, if $X \perp \!\!\! \perp Y$, var[X + Y] = var[X] + var[Y]
- Practice.

$$\circ X = Y \Longrightarrow \text{var}[X + Y] = 4\text{var}[X]$$

$$\circ X = -Y \Longrightarrow var[X + Y] = 0$$

Always true.

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

- Generally, $\mathbb{E}[g(X,Y)] \neq g(\mathbb{E}[X],\mathbb{E}[Y])$
- However, if $X \perp \!\!\! \perp Y$,

$$\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$$

$$\mathbb{E}[g(X)h(Y)] = \mathbb{E}[g(X)]\mathbb{E}[g(Y)]$$

$$\mathbb{E}[g(X)h(Y)] = \sum_{x} \sum_{y} g(x)h(y)p_{X,Y}(x,y)$$
$$= \sum_{x} xp_{X}(x) \sum_{y} yp_{Y}(y)$$

- Always true. $var[aX] = a^2 var[X]$, var[X + a] = var[X]
- Generally, $var[X + Y] \neq var[X] + var[Y]$
- However, if $X \perp \!\!\! \perp Y$, var[X + Y] = var[X] + var[Y]
- Practice.

$$\circ X = Y \Longrightarrow \text{var}[X + Y] = 4\text{var}[X]$$

$$\circ \ X = -Y \Longrightarrow \mathsf{var}[X+Y] = 0$$

$$x \perp Y \Longrightarrow$$

$$var[X - 3Y] = var[X] + 9var[Y]$$

38 / 42

• Why not generally true?

$var[X + Y] \neq var[X] + var[Y]$

38 / 42

• Why not generally true?

$$var[X + Y] = \mathbb{E}[(X + Y)^{2}] - (\mathbb{E}[X + Y])^{2}$$

$$= \mathbb{E}[X^{2} + Y^{2} + 2XY] - ((\mathbb{E}[X])^{2} + (\mathbb{E}[Y])^{2} + 2\mathbb{E}[X]\mathbb{E}[Y])$$

$$= var[X] + var[Y] + 2(\mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y])$$

L3(6) April 19, 2021

$\operatorname{var}[X+Y] eq \operatorname{var}[X] + \operatorname{var}[Y]$

• Why not generally true?

$$var[X + Y] = \mathbb{E}[(X + Y)^{2}] - (\mathbb{E}[X + Y])^{2}$$

$$= \mathbb{E}[X^{2} + Y^{2} + 2XY] - ((\mathbb{E}[X])^{2} + (\mathbb{E}[Y])^{2} + 2\mathbb{E}[X]\mathbb{E}[Y])$$

$$= var[X] + var[Y] + 2(\mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y])$$

is a sufficient condition for $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$

$[\mathsf{var}[X+Y] eq \mathsf{var}[X] + \mathsf{var}[Y]^t$

• Why not generally true?

$$var[X + Y] = \mathbb{E}[(X + Y)^{2}] - (\mathbb{E}[X + Y])^{2}$$

$$= \mathbb{E}[X^{2} + Y^{2} + 2XY] - ((\mathbb{E}[X])^{2} + (\mathbb{E}[Y])^{2} + 2\mathbb{E}[X]\mathbb{E}[Y])$$

$$= var[X] + var[Y] + 2(\mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y])$$

 $\circ \mid {m{\mathsf{X}}} \perp \!\!\! \perp {m{\mathsf{Y}}} \mid$ is a sufficient condition for $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$

L3(6)

38 / 42

38 / 42

• Why not generally true?

$$var[X + Y] = \mathbb{E}[(X + Y)^{2}] - (\mathbb{E}[X + Y])^{2}$$

$$= \mathbb{E}[X^{2} + Y^{2} + 2XY] - ((\mathbb{E}[X])^{2} + (\mathbb{E}[Y])^{2} + 2\mathbb{E}[X]\mathbb{E}[Y])$$

$$= var[X] + var[Y] + 2(\mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y])$$

- \circ $X \perp\!\!\!\perp Y$ is a sufficient condition for $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$
- Also, a necessary condition? we will see later, when we study covariance.

39 / 42

- *n* people throw their hats in a box and then pick one at random
- X: number of people with their own hat

39 / 42

- *n* people throw their hats in a box and then pick one at random
- X: number of people with their own hat
- $\mathbb{E}[X]$? var[X]?

- *n* people throw their hats in a box and then pick one at random
- X: number of people with their own hat
- $\mathbb{E}[X]$? var[X]?
- All permutations are equally likely as 1/n!. Thus, this equals to picking one hat at a time.

L3(6) April 19, 2021 39 / 42

- *n* people throw their hats in a box and then pick one at random
- X: number of people with their own hat
- $\mathbb{E}[X]$? var[X]?
- All permutations are equally likely as 1/n!. Thus, this equals to picking one hat at a time.
- Key step 1. Define a rv $X_i = 1$ if i selects own hat and 0 otherwise.

$$X = \sum_{i=1}^{n} X_i.$$

L3(6)

- *n* people throw their hats in a box and then pick one at random
- X: number of people with their own hat
- $\mathbb{E}[X]$? var[X]?
- All permutations are equally likely as 1/n!. Thus, this equals to picking one hat at a time.
- Key step 1. Define a rv $X_i = 1$ if i selects own hat and 0 otherwise.

$$X = \sum_{i=1}^{n} X_i.$$

• $\{X_i\}, i = 1, 2, ..., n$: identically distributed (symmetry)

• $\mathbb{E}[X] = n\mathbb{E}[X_1] = n\mathbb{P}(X_1 = 1) = n \times \frac{1}{n} = 1.$

- $\mathbb{E}[X] = n\mathbb{E}[X_1] = n\mathbb{P}(X_1 = 1) = n \times \frac{1}{n} = 1.$
- Key step 2. Are X_i s are independent? If yes, easy to get var(X).

- $\mathbb{E}[X] = n\mathbb{E}[X_1] = n\mathbb{P}(X_1 = 1) = n \times \frac{1}{n} = 1.$
- Key step 2. Are X_i s are independent? If yes, easy to get var(X).
- Assume n=2. Then, $X_1=1 \rightarrow X_2=1$, and $X_1=0 \rightarrow X_2=0$. Thus, dependent.

- $\mathbb{E}[X] = n\mathbb{E}[X_1] = n\mathbb{P}(X_1 = 1) = n \times \frac{1}{n} = 1.$
- Key step 2. Are X_i s are independent? If yes, easy to get var(X).
- Assume n=2. Then, $X_1=1 \rightarrow X_2=1$, and $X_1=0 \rightarrow X_2=0$. Thus, dependent.

$$\operatorname{var}(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$
$$= \mathbb{E}\left[\sum_{i} X_i^2 + \sum_{i,j:i \neq j} X_i X_j\right] - (\mathbb{E}[X])^2$$

- $\mathbb{E}[X] = n\mathbb{E}[X_1] = n\mathbb{P}(X_1 = 1) = n \times \frac{1}{n} = 1.$
- Key step 2. Are X_i s are independent? If yes, easy to get var(X).
- Assume n=2. Then, $X_1=1 \rightarrow X_2=1$, and $X_1=0 \rightarrow X_2=0$. Thus, dependent.

$$\operatorname{var}(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$

$$= \mathbb{E}\left[\sum_{i} X_i^2 + \sum_{i,j:i \neq j} X_i X_j\right] - (\mathbb{E}[X])^2$$

$$\mathbb{E}[X_i^2] = 1 \times \frac{1}{n} + 0 \times \frac{n-1}{n} = \frac{1}{n}$$

- $\mathbb{E}[X] = n\mathbb{E}[X_1] = n\mathbb{P}(X_1 = 1) = n \times \frac{1}{n} = 1.$
- Key step 2. Are X_i s are independent? If yes, easy to get var(X).
- Assume n=2. Then, $X_1=1 \rightarrow X_2=1$, and $X_1=0 \rightarrow X_2=0$. Thus, dependent.

$$\begin{aligned} \text{var}(X) &= \mathbb{E}[X^2] - (\mathbb{E}[X])^2 \\ &= \mathbb{E}\Big[\sum_i X_i^2 + \sum_{i,j:i \neq j} X_i X_j\Big] - (\mathbb{E}[X])^2 \\ \mathbb{E}[X_i^2] &= 1 \times \frac{1}{n} + 0 \times \frac{n-1}{n} = \frac{1}{n} \\ \mathbb{E}[X_i X_j] &= \mathbb{E}[X_1 X_2] = 1 \times \mathbb{P}(X_1 X_2 = 1) = \mathbb{P}(X_1 = 1)\mathbb{P}(X_2 = 1 | X_1 = 1), \quad (i \neq j) \end{aligned}$$

- $\mathbb{E}[X] = n\mathbb{E}[X_1] = n\mathbb{P}(X_1 = 1) = n \times \frac{1}{n} = 1.$
- Key step 2. Are X_i s are independent? If yes, easy to get var(X).
- Assume n=2. Then, $X_1=1 \rightarrow X_2=1$, and $X_1=0 \rightarrow X_2=0$. Thus, dependent.

$$\begin{aligned} \text{var}(X) &= \mathbb{E}[X^2] - (\mathbb{E}[X])^2 \\ &= \mathbb{E}\Big[\sum_i X_i^2 + \sum_{i,j:i \neq j} X_i X_j\Big] - (\mathbb{E}[X])^2 \\ \mathbb{E}[X_i^2] &= 1 \times \frac{1}{n} + 0 \times \frac{n-1}{n} = \frac{1}{n} \\ \mathbb{E}[X_i X_j] &= \mathbb{E}[X_1 X_2] = 1 \times \mathbb{P}(X_1 X_2 = 1) = \mathbb{P}(X_1 = 1) \mathbb{P}(X_2 = 1 | X_1 = 1), \quad (i \neq j) \end{aligned}$$

•
$$\mathbb{E}[X^2] = n\mathbb{E}[X_1^2] + n(n-1)\mathbb{E}[X_1X_2] = n\frac{1}{n} + n(n-1)\frac{1}{n(n-1)} = 2$$

- $\mathbb{E}[X] = n\mathbb{E}[X_1] = n\mathbb{P}(X_1 = 1) = n \times \frac{1}{n} = 1.$
- Key step 2. Are X_i s are independent? If yes, easy to get var(X).
- Assume n=2. Then, $X_1=1 \rightarrow X_2=1$, and $X_1=0 \rightarrow X_2=0$. Thus, dependent.

$$var(X) = \mathbb{E}[X^{2}] - (\mathbb{E}[X])^{2}$$

$$= \mathbb{E}\left[\sum_{i} X_{i}^{2} + \sum_{i,j:i\neq j} X_{i}X_{j}\right] - (\mathbb{E}[X])^{2}$$

$$\mathbb{E}[X_{i}^{2}] = 1 \times \frac{1}{n} + 0 \times \frac{n-1}{n} = \frac{1}{n}$$

$$\mathbb{E}[X_{i}X_{i}] = \mathbb{E}[X_{1}X_{2}] = 1 \times \mathbb{P}(X_{1}X_{2} = 1) = \mathbb{P}(X_{1} = 1)\mathbb{P}(X_{2} = 1)$$

$$\mathbb{E}[X_i X_j] = \mathbb{E}[X_1 X_2] = 1 \times \mathbb{P}(X_1 X_2 = 1) = \mathbb{P}(X_1 = 1) \mathbb{P}(X_2 = 1 | X_1 = 1), \quad (i \neq j)$$

•
$$\mathbb{E}[X^2] = n\mathbb{E}[X_1^2] + n(n-1)\mathbb{E}[X_1X_2] = n\frac{1}{n} + n(n-1)\frac{1}{n(n-1)} = 2$$

•
$$var(X) = 2 - 1 = 1$$

L3(6)

Questions?

L3(6) April 19, 2021 41 / 42

Review Questions

- 1) What is Random Variable? Why is it useful?
- 2) What is PMF (Probability Mass Function)?
- 3) Explain Bernoulli, Binomial, Poisson, Geometric rvs, when they are used and what their PMFs are.
- 4) What are joint and marginal PMFS?
- 5) Describe and explain the total probability/expectation theorem for random variables?
- 6) When is it useful to use total probability/expectation theorem?
- 7) What is conditional independence?

L3(6) April 19, 2021 42 / 42