Mario Bunge La ciencia. Su método y su filosofía

¿Qué es la ciencia?

1. Introducción

Mientras los animales inferiores sólo están en el mundo, el hombre trata de entenderlo; y sobre la base de su inteligencia imperfecta pero perfectible, del mundo, el hombre intenta enseñorearse de él para hacerlo más confortable. En este proceso, construye un mundo artificial: ese creciente cuerpo de ideas llamado "ciencia", que puede caracterizarse como conocimiento racional, sistemático, exacto, verificable y por consiguiente falible. Por medio de la investigación científica, el hombre ha alcanzado una reconstrucción conceptual del mundo que es cada vez más amplia, profunda y exacta.

Un mundo le es dado al hombre; su gloria no es soportar o despreciar este mundo, sino enriquecerlo construyendo otros universos. Amasa y remoldea la naturaleza sometiéndola a sus propias necesidades animales y espirituales, asícomo a sus sueños: crea así el mundo de los artefactos y el mundo de la cultura. La ciencia como actividad —como investigación—pertenece a la vida social; en cuanto se la aplica al mejoramiento de nuestro medio natural y artificial, a la invención y manufactura de bienes materiales y culturales, la ciencia se convierte en tecnología. Sin embargo, la ciencia se nos aparece como la más deslumbrante y asombrosa de las estrellas de la cultura cuando la consideramos como un bien en sí mismo, esto es como una actividad productora de nuevas ideas (investigación científica). Tratemos de caracterizar el conocimiento y la investigación científicos tal como se los conoce en la actualidad.

2. Ciencia formal y ciencia fáctica

No toda la investigación científica procura el conocimiento objetivo. Así, la lógica y la matemática —esto es, los diversos sistemas de lógica formal y los diferentes capítulos de la matemática pura— son racionales, sistemáticos y verificables, pero no son objetivos; no nos dan informaciones acerca de la realidad: simplemente, no se ocupan de los hechos. La lógica y la matemática tratan de entes ideales; estos entes, tanto los abstractos como los interpretados, sólo existen en la mente humana. A los lógicos y matemáticos no se les da objetos de estudio: ellos construyen sus propios objetos. Es verdad que a menudo lo hacen por abstracción de objetos reales (naturales y sociales); más aún, el trabajo del lógico o del matemático satisface a menudo las necesidades del naturalista, del sociólogo o del tecnólogo, y es por esto que la sociedad los tolera y, ahora, hasta los estimula. Pero la materia prima que emplean los lógicos y los matemáticos no es fáctica sino ideal.

Por ejemplo, el concepto de número abstracto nació, sin duda, de la coordinación

(correspondencia biunívoca) de conjuntos de objetos materiales, tales como dedos, por una parte, y guijarros, por la otra; pero no por esto aquel concepto se reduce a esta operación manual, ni a los signos que se emplean para representarlo. Los números no existen fuera de nuestros cerebros, y aun allí dentro existen al nivel conceptual, y no al nivel fisiológico. Los objetos materiales son numerables siempre que sean discontinuos; pero no son números; tampoco son números puros (abstractos) sus cualidades o relaciones. En el mundo real encontramos 3 libros, en el mundo de la ficción construimos 3 platos voladores. ¿Pero quién vio jamás un 3, un simple 3?

La lógica y la matemática, por ocuparse de inventar entes formales y de establecer relaciones entre ellos, se llaman a menudo ciencias formales, precisamente porque sus objetos no son cosas ni procesos, sino, para emplear el lenguaje pictórico, formas en las que se puede verter un surtido ilimitado de contenidos, tanto fácticos como empíricos. Esto es, podemos establecer correspondencias entre esas formas (u objetos formales), por una parte, y cosas y procesos pertenecientes a cualquier nivel de la realidad por la otra. Así es como la física, la química, la fisiología, la psicología, la economía, y las demás ciencias recurren a la matemática, empleándola como herramienta para realizar la más precisa reconstrucción de las complejas relaciones que se encuentran entre los hechos y entre los diversos aspectos de los hechos; dichas ciencias no identifican las formas ideales con los objetos concretos, sino que interpretan las primeras en términos de hechos y de experiencias (o, lo que es equivalente, formalizan enunciados fácticos).

Lo mismo vale para la lógica formal: algunas de sus partes —en particular, pero no exclusivamente, la lógica proposicional bivalente—pueden hacerse corresponder a aquellas entidades psíquicas que llamamos pensamientos. Semejante aplicación de las ciencias de la forma pura a la inteligencia del mundo de los hechos, se efectúa asignando diferentes interpretaciones a los objetos formales. Estas interpretaciones son, dentro de ciertos límites, arbitrarias; vale decir, se justifican por el éxito, la conveniencia o la ignorancia. En otras palabras el significado fáctico o empírico que se les asigna a los objetos formales no es una propiedad intrínseca de los mismos. De esta manera, las ciencias formales jamás entran en conflicto con la realidad. Esto explica la paradoja de que, siendo formales, se "aplican" a la realidad: en rigor no se aplican, sino que se emplean en la vida cotidiana y en las ciencias fácticas a condición de que se les superpongan reglas de correspondencia adecuada. En suma, la lógica y la matemática establecen contacto con la realidad a través del puente del lenguaje, tanto el ordinario como el científico.

Tenemos así una primera gran división de las ciencias, en formales (o ideales) y fácticas (o materiales). Esta ramificación preliminar tiene en cuenta el objeto o tema de las respectivas disciplinas; también da cuenta de la diferencia de especie entre los enunciados que se proponen establecer las ciencias formales y las fácticas: mientras los enunciados formales consisten en relaciones entre signos, los enunciados de las ciencias fácticas se refieren, en su mayoría, a entes extracientíficos: a sucesos y procesos. Nuestra división también tiene en

cuenta el método por el cual se ponen a prueba los enunciados verificables: mientras las ciencias formales se contentan con la lógica para demostrar rigurosamente sus teoremas (los que, sin embargo, pudieron haber sido adivinados por inducción común o de otras maneras), las ciencias fácticas necesitan más que la lógica formal: para confirmar sus conjeturas necesitan de la observación y/o experimento. En otras palabras, las ciencias fácticas tienen que mirar las cosas, y, siempre que les sea posible, deben procurar cambiarlas deliberadamente para intentar descubrir en qué medida sus hipótesis se adecuan a los hechos.

Cuando se demuestra un teorema lógico o matemático no se recurre a la experiencia: el conjunto de postulados, definiciones, reglas de formación de las expresiones dotadas de significado, y reglas de inferencia deductiva —en suma, la base de la teoría dada—, es necesaria y suficiente para ese propósito. La demostración de los teoremas no es sino una deducción: es una operación confinada a la esfera teórica, aun cuando a veces los teoremas mismos (no sus demostraciones) sean sugeridos en alguna esfera extramatemática y aun cuando su prueba (pero no su primer descubrimiento) pueda realizarse con ayuda de calculadoras electrónicas. Por ejemplo, cualquier demostración rigurosa del teorema de Pitágoras prescinde de las mediciones, y emplea figuras sólo como ayuda psicológica al proceso deductivo: que el teorema de Pitágoras haya sido el resultado de un largo proceso de inducción conectado a operaciones prácticas de mediciones de tierras, es objeto de la historia, la sociología y la psicología del conocimiento.

La matemática y la lógica son, en suma, ciencias deductivas. El proceso constructivo, en que la experiencia desempeña un gran papel de sugerencias, se limita a la formación de los puntos de partida (axiomas). En matemática la verdad consiste, por esto, en la coherencia del enunciado dado con un sistema de ideas admitido previamente: por esto, la verdad matemática no es absoluta sino relativa a ese sistema, en el sentido de que una proposición que es válida en una teoría puede dejar de ser lógicamente verdadera en otra teoría. (Por ejemplo, en el sistema de aritmética que empleamos para contar las horas del día, vale la proposición de 24+1=1.) Más aún las teorías matemáticas abstractas, esto es, que contienen términos no interpretados (signos a los que no se atribuye un significado fijo, y que por lo tanto pueden adquirir distintos significados) pueden desarrollarse sin poner atención al problema de la verdad.

Considérese el siguiente axioma de cierta teoría abstracta (no interpretada): "Existe por lo menos un x tal que es F". Se puede dar un número ilimitado de interpretaciones (modelos) de este axioma, dándose a x y F otros tantos significados. Si decimos que S designa punto, obtenemos un modelo geométrico dado: si adoptamos la convención de que L designa número, obtenemos un cierto modelo aritmético, y así sucesivamente. En cuanto "llenamos" la forma vacía con un contenido específico (pero todavía matemático), obtenemos un sistema de entes lógicos que tienen el privilegio de ser verdaderos o falsos dentro del sistema dado de proposiciones: a partir de ahí tenemos que habérnoslas con el problema de la verdad

matemática. Aún así tan sólo las conclusiones (teoremas) tendrán que ser verdaderas: los axiomas mismos pueden elegirse a voluntad. La batalla se habrá ganado si se respeta la coherencia lógica esto es, si no se violan las leyes del sistema de lógica que se ha convenido en usar.

En las ciencias fácticas, la situación es enteramente diferente. En primer lugar, ellas no emplean símbolos vacíos (variables lógicas) sino tan sólo símbolos interpretados; por ejemplo no involucran expresiones tales como 'x es F', que no son verdaderas ni falsas. En segundo lugar, la racionalidad —esto es, la coherencia con un sistema de ideas aceptado previamente— es necesaria pero no suficiente para los enunciados fácticos; en particular la sumisión a algún sistema de lógica es necesaria pero no es una garantía de que se obtenga la verdad. Además de la racionalidad, exigimos de los enunciados de las ciencias fácticas que sean verificables en la experiencia, sea indirectamente (en el caso de las hipótesis generales), sea directamente (en el caso de las consecuencias singulares de las hipótesis). Únicamente después que hay a pasado las pruebas de la verificación empírica podrá considerarse que un enunciado es adecuado a su objeto, o sea que es verdadero, y aún así hasta nueva orden. Por eso es que el conocimiento fáctico verificable se llama a menudo ciencia empírica.

En resumidas cuentas, la coherencia es necesaria pero no suficiente en el campo de las ciencias de hechos: para anunciar que un enunciado es (probablemente) verdadero se requieren datos empíricos (proposiciones acerca de observaciones o experimentos). En última instancia, sólo la experiencia puede decirnos si una hipótesis relativa a cierto grupo de hechos materiales es adecuada o no. El mejor fundamento de esta regla metodológica que acabamos de enunciar es que la experiencia le ha enseñado a la humanidad que el conocimiento de hecho no es convencional, que si se busca la comprensión y el control de los hechos debe partirse de la experiencia. Pero la experiencia no garantizará que la hipótesis en cuestión sea la única verdadera: sólo nos dirá que es probablemente adecuada, sin excluir por ello la posibilidad de que un estudio ulterior pueda dar mejores aproximaciones en la reconstrucción conceptual del trozo de realidad escogido. El conocimiento fáctico, aunque racional, es esencialmente probable: dicho de otro modo: la inferencia científica es una red de inferencias deductivas (demostrativas) y probables (inconcluyentes).

Las ciencias formales demuestran o prueban: las ciencias fácticas verifican (confirman o disconfirman) hipótesis que en su mayoría son provisionales. La demostración es completa y final; la verificación es incompleta y por eso temporaria. La naturaleza misma del método científico impide la confirmación final de las hipótesis fácticas. En efecto los científicos no sólo procuran acumular elementos de prueba de sus suposiciones multiplicando el número de casos en que ellas se cumplen; también tratan de obtener casos desfavorables a sus hipótesis, fundándose en el principio lógico de que una sola conclusión que no concuerde con los hechos tiene más peso que mil confirmaciones. Por ello, mientras las teorías formales pueden ser llevadas a un estado de perfección (o estancamiento), los sistemas relativos a los hechos son esencialmente defectuosos: cumplen, pues, la condición necesaria para ser

perfectibles. En consecuencia si el estudio de las ciencias formales vigoriza el hábito del rigor, el estudio de las ciencias fáctiles puede inducirnos a considerar el mundo como inagotable, y al hombre como una empresa inconclusa e interminable.

Las diferencias de método, tipo de enunciados y referentes que separan las ciencias fácticas de las formales, impiden que se las examine conjuntamente más allá de cierto punto. Por ser una ficción seria, rigurosa y a menudo útil, pero ficción al cabo, la ciencia formal requiere un tratamiento especial. En lo que sigue nos concentraremos en la ciencia fáctica. Daremos un vistazo a las características peculiares de las ciencias de la naturaleza y de la cultura en su estado actual, con la esperanza de que la ciencia futura enriquezca sus cualidades o, al menos, de que las civilizaciones por venir hagan mejor uso del conocimiento científico.

Los rasgos esenciales del tipo de conocimiento que alcanzan las ciencias de la naturaleza y de la sociedad son la racionalidad y la objetividad. Por conocimiento racional se entiende:

- a) que está constituido por conceptos, juicios y raciocinios y no por sensaciones, imágenes, pautas de conducta, etc. Sin duda, el científico percibe, forma imágenes (por ejemplo, modelos visualizables) y hace operaciones; por tanto el punto de partida como el punto final de su trabajo son ideas;
- b) que esas ideas pueden combinarse de acuerdo con algún conjunto de reglas lógicas con el fin de producir nuevas ideas (inferencia deductiva). Estas no son enteramente nuevas desde un punto de vista estrictamente lógico, puesto que están implicadas por las premisas de la deducción; pero no gnoseológicamente nuevas en la medida en que expresan conocimientos de los que no se tenía conciencia antes de efectuarse la deducción;
- c) que esas ideas no se amontonan caóticamente o, simplemente, en forma cronológica, sino que se organizan en sistemas de ideas, esto es en conjuntos ordenados de proposiciones (teorías).

Que el conocimiento científico de la realidad es objetivo, significa:

- a) que concuerda aproximadamente con su objeto; vale decir que busca alcanzar la verdad fáctica;
- b) que verifica la adaptación de las ideas a los hechos recurriendo a un comercio peculiar con los hechos (observación y experimento), intercambio que es controlable y hasta cierto punto reproducible.

Ambos rasgos de la ciencia fáctica, la racionalidad y la objetividad, están íntimamente soldados. Así, por ejemplo, lo que usualmente se verifica por medio del experimento es alguna consecuencia —extraída por vía deductiva— de alguna hipótesis; otro ejemplo: el cálculo no sólo sigue a la observación sino que siempre es indispensable para planearla y registrarla. La racionalidad y objetividad del conocimiento científico pueden analizarse en un cúmulo de características a las que pasaremos revista en lo que sigue.

3. Inventario de las principales características de la ciencia fáctica

1) El conocimiento científico es fáctico: parte de los hechos, los respeta hasta cierto punto, y siempre vuelve a ellos. La ciencia intenta describir los hechos tal como son, independientemente de su valor emocional o comercial: la ciencia no poetiza los hechos ni los vende, si bien sus hazañas son una fuente de poesía y de negocios. En todos los campos, la ciencia comienza estableciendo los hechos; esto requiere curiosidad impersonal, desconfianza por la opinión prevaleciente, y sensibilidad a la novedad.

Los enunciados fácticos confirmados se llaman usualmente "datos empíricos"; se obtienen con ayuda de teorías (por esquemáticas que sean) y son a su vez la materia prima de la elaboración teórica. Una subclase de datos empíricos es de tipo cuantitativo; los datos numéricos y métricos se disponen a menudo en tablas, las más importantes de las cuales son las tablas de constantes (tales como las de los puntos de fusión de las diferentes sustancias). Pero la recolección de datos y su ulterior disposición en tablas no es la finalidad principal de la investigación: la información de esta clase debe incorporarse a teorías si ha de convertirse en una herramienta para la inteligencia y la aplicación. ¿De qué sirve conocer el peso específico del hierro si carecemos de fórmulas mediante las cuales podemos relacionarlos con otras cantidades?

No siempre es posible, ni siquiera deseable, respetar enteramente los hechos cuando se los analiza, y no hay ciencia sin análisis, aun cuando el análisis no sea sino un medio para la reconstrucción final de los todos. El físico atómico perturba el átomo al que desea espiar; el biólogo modifica e incluso puede matar al ser vivo que analiza; el antropólogo empeñado en el estudio de campo de una comunidad provoca en ella ciertas modificaciones. Ninguno de ellos aprehende su objeto tal como es, sino tal como queda modificado por sus propias operaciones; sin embargo, en todos los casos tales cambios son objetivos, y se presume que pueden entenderse en términos de leyes: no son conjurados arbitrariamente por el experimentador. Más aún, en todos los casos el investigador intenta describir las características y el monto de la perturbación que produce en el acto del experimento; procura, en suma estimar la desviación o "error" producido por su intervención activa. Porque los científicos actúan haciendo tácitamente la suposición de que el mundo existiría aun en su ausencia, aunque desde luego, no exactamente de la misma manera.

2) El conocimiento científico trasciende los hechos: descarta los hechos, produce nuevos hechos, y los explica. El sentido común parte de los hechos y se atiene a ellos: a menudo se imita al hecho aislado, sin ir muy lejos en el trabajo de correlacionarlo con otros o de explicarlo. En cambio, la investigación científica no se limita a los hechos observados: los científicos exprimen la realidad a fin de ir más allá de las apariencias; rechazan el grueso de los hechos percibidos, por ser un montón de accidentes, seleccionan los que consideran que son relevantes, controlan hechos y, en lo posible, los reproducen. Incluso producen cosas nuevas desde instrumentos hasta partículas elementales; obtienen nuevos compuestos químicos, nuevas variedades vegetales y animales, y al menos en principio, crean nuevas

pautas de conducta individual y social.

Más aún, los científicos usualmente no aceptan nuevos hechos a menos que puedan certificar de alguna manera su autenticidad; y esto se hace, no tanto contrastándolos con otros hechos, cuanto mostrando que son compatibles con lo que se sabe. Los científicos descartan las imposturas y los trucos mágicos porque no encuadran en hipótesis muy generales y fidedignas, que han sido puestas a prueba en incontables ocasiones. Vale decir, los científicos no consideran su propia experiencia individual como un tribunal inapelable; se fundan, en cambio, en la experiencia colectiva y en la teoría.

Hay más: el conocimiento científico racionaliza la experiencia en lugar de limitarse a describirla; la ciencia da cuenta de los hechos no inventariándolos sino explicándolos por medio de hipótesis (en particular, enunciados de leyes) y sistemas de hipótesis (teorías). Los científicos conjeturan lo que hay tras los hechos observados, y de continuo inventan conceptos (tales como los del átomo, campo, masa, energía, adaptación, integración, selección, clase social, o tendencia histórica) que carecen de correlato empírico, esto es, que no corresponden a preceptos, aun cuando presumiblemente se refieren a cosas, cualidades o relaciones existentes objetivamente. No percibimos los campos eléctricos o las clases sociales: inferimos su existencia a partir de hechos experimentables y tales conceptos son significativos tan sólo en ciertos contextos teóricos.

Este trascender la experiencia inmediata, ese salto del nivel observacional al teórico, le permite a la ciencia mirar con desconfianza los enunciados sugeridos por meras coincidencias; le permite predecir la existencia real de las cosas y procesos ocultos a primera vista pero que instrumentos (materiales o conceptuales) más potentes pueden descubrir. Las discrepancias entre las previsiones teóricas y los hallazgos empíricos figuran entre los estímulos más fuertes para edificar teorías nuevas y diseñar nuevos experimentos. No son los hechos por sí mismos sino su elaboración teórica y la comparación de las consecuencias de las teorías con los datos observacionales, la principal fuente del descubrimiento de nuevos hechos.

3) La ciencia es analítica: la investigación científica aborda problemas circunscriptos, uno a uno, y trata de descomponerlo todo en elementos (no necesariamente últimos o siquiera reales). La investigación científica no se planta cuestiones tales como "¿Cómo es el universo en su conjunto?", o "¿Cómo es posible el conocimiento?" Trata, en cambio, de entender toda situación total en términos de sus componentes; intenta descubrir los elementos que explican su integración.

Los problemas de la ciencia son parciales y así son también, por consiguiente, sus soluciones; pero, más aún: al comienzo los problemas son estrechos o es preciso estrecharlos. Pero, a medida que la investigación avanza, su alcance se amplía. Los resultados de la ciencia son generales, tanto en el sentido de que se refieren a clases de objetos (por ejemplo, la lluvia), como en que están, o tienden a ser incorporados en síntesis conceptuales llamadas teorías. El análisis, tanto de los problemas como de las cosas, no es tanto un

objetivo como una herramienta para construir síntesis teóricas. La ciencia auténtica no es atomista ni totalista.

La investigación comienza descomponiendo sus objetos a fin de descubrir el "mecanismo" interno responsable de los fenómenos observados. Pero el desmontaje del mecanismo no se detiene cuando se ha investigado la naturaleza de sus partes; el próximo paso es el examen de la interdependencia de las partes, y la etapa final es la tentativa de reconstruir el todo en términos de sus partes interconectadas. El análisis no acarrea el descuido de la totalidad; lejos de disolver la integración, el análisis es la única manera conocida de descubrir cómo emergen, subsisten y se desintegran los todos. La ciencia no ignora la síntesis: lo que sí rechaza es la pretensión irracionalista de que las síntesis pueden ser aprehendidas por una intuición especial, sin previo análisis.

4) La investigación científica es especializada: una consecuencia del enfoque analítico de los problemas es la especialización. No obstante la unidad del método científico, su aplicación depende, en gran medida, del asunto; esto explica la multiplicidad de técnicas y la relativa independencia de los diversos sectores de la ciencia.

Sin embargo, es menester no exagerar la diversidad de las ciencias al punto de borrar su unidad metodológica. El viejo dualismo materia-espíritu había sugerido la división de las ciencias en Naturwissenschaften, o ciencias de la naturaleza, y Geisteswissenschaften, o ciencias del espíritu. Pero estos géneros difieren en cuanto al asunto, a las técnicas y al grado de desarrollo, no así en lo que respecta al objetivo, método y alcance. El dualismo razón-experiencia había sugerido, a su vez, la división de las ciencias fácticas en racionales y empíricas. Menos sostenible aún es la dicotomía ciencias deductivas—ciencias inductivas, ya que toda empresa científica —sin excluir el dominio de las ciencias formales— es tan inductiva como deductiva, sin hablar de otros tipos de inferencia.

La especialización no ha impedido la formación de campos interdisciplinarios tales como la biofísica, la bioquímica, la psicofisiología, la psicología social, la teoría de la información, la cibernética, o la investigación operacional. Con todo, la investigación tiende a estrechar la visión del científico individual; un único remedio ha resultado eficaz contra la unilateralidad profesional, y es una dosis de filosofía.

5) El conocimiento científico es claro y preciso: sus problemas son distintos, sus resultados son claros. El conocimiento ordinario, en cambio, usualmente es vago e inexacto; en la vida diaria nos preocupamos poco por definiciones precisas, descripciones exactas, o mediciones afinadas: si éstas nos preocuparan demasiado, no lograríamos marcharal paso de la vida. La ciencia torna impreciso lo que el sentido común conoce de manera nebulosa; pero, desde luego la ciencia es mucho más que sentido común organizado: aunque proviene del sentido común, la ciencia constituye una rebelión contra su vaguedad y superficialidad. El conocimiento científico procura la precisión; nunca está enteramente libre de vaguedades,

pero se las ingenia para mejorar la exactitud; nunca está del todo libre de error, pero posee una técnica única para encontrar errores y para sacar provecho de ellos.

La claridad y la precisión se obtienen en ciencia de las siguientes maneras:

- a) los problemas se formulan de manera clara; lo primero, y a menudo lo más difícil, es distinguir cuáles son los problemas; ni hay artillería analítica o experimental que pueda ser eficaz si no se ubica adecuadamente al enemigo;
- b) la ciencia parte de nociones que parecen claras al no iniciado; y las complica, purifica y eventualmente las rechaza; la transformación progresiva de las nociones corrientes se efectúa incluyéndolas en esquemas teóricos. Así, por ejemplo, "distancia" adquiere un sentido preciso al ser incluida en la geometría métrica y en la física;
- c) la ciencia define la mayoría de sus conceptos: algunos de ellos se definen en términos de conceptos no definidos o primitivos, otros de manera implícita, esto es, por la función que desempeñan en un sistema teórico (definición contextual). Las definiciones son convencionales, pero no se las elige caprichosamente: deben ser convenientes y fértiles. (¿De qué vale, por ejemplo, poner un nombre especial a las muchachas pecosas que estudian ingeniería y pesan más de 50 kg?) Una vez que se ha elegido una definición, el discurso restante debe guardarte fidelidad si se quiere evitar inconsecuencias;
- d) la ciencia crea lenguajes artificiales inventando símbolos (palabras, signos matemáticos, símbolos químicos, etc.; a estos signos se les atribuye significados determinados por medio de reglas de designación (tal como "en el presente contexto H designa el elemento de peso atómico unitario"). los símbolos básicos serán tan simples como sea posible, pero podrán combinarse conforme a reglas determinadas para formar configuraciones tan complejas como sea necesario (las leyes de combinación de los signos que intervienen en la producción de expresiones complejas se llaman reglas de formación);
- e) la ciencia procura siempre medir y registrar los fenómenos. Los números y las formas geométricas son de gran importancia en el registro, la descripción y la inteligencia de los sucesos y procesos. En lo posible, tales datos debieran disponerse en tablas o resumirse en fórmulas matemáticas. Sin embargo, la formulación matemática, deseable como es, no es una condición indispensable para que el conocimiento sea científico; lo que caracteriza el conocimiento científico es la exactitud en un sentido general antes que la exactitud numérica o métrica, la que es inútil si media la vaguedad conceptual. Más aún, la investigación científica emplea, en medida creciente, capítulos no numéricos y no métricos de la matemática, tales como la topología, la teoría de los grupos, o el álgebra de las clases, que no son ciencias del número y la figura, sino de la relación.
- 6) El conocimiento científico es comunicable: no es inefable sino expresable, no es privado sino público. El lenguaje científico comunica información a quienquiera haya sido adiestrado para entenderlo. Hay, ciertamente, sentimientos oscuros y nociones difusas, incluso en el

desarrollo de la ciencia (aunque no en la presentación final del trabajo científico); pero es preciso aclararlos antes de poder estimar su adecuación. Lo que es inefable puede ser propio de la poesía o de la música, no de la ciencia, cuyo lenguaje es informativo y no expresivo o imperativo. La inefabilidad misma es, en cambio, tema de investigación científica, sea psicológica o lingüística.

La comunicabilidad es posible gracias a la precisión; y es a su vez una condición necesaria para la verificación de los datos empíricos y de las hipótesis científicas. Aun cuando, por "razones" comerciales o políticas, se mantengan en secreto durante algún tiempo unos trozos del saber, deben ser comunicables en principio para que puedan ser considerados científicos. La comunicación de los resultados y de las técnicas de la ciencia no sólo perfecciona la educación general sino que multiplica las posibilidades de su confirmación o refutación. La verificación independiente ofrece las máximas garantías técnicas y morales, y ahora es posible, en muchos campos, en escala internacional. Por esto, los científicos consideran el secreto en materia científica como enemigo del progreso de la ciencia; la política del secreto científico es, en efecto, el más eficaz originador de estancamiento en la cultura, en la tecnología y en la economía, así como una fuente de corrupción moral.

7) El conocimiento científico es verificable: debe aprobar el examen de la experiencia. A fin de explicar un conjunto de fenómenos, el científico inventa conjeturas fundadas de alguna manera en el saber adquirido. Sus suposiciones pueden ser cautas o audaces simples o complejas; en todo caso deben ser puestas a prueba. El test de las hipótesis fácticas es empírico, esto es, observacional o experimental. El haberse dado cuenta de esta verdad hoy tan trillada es la contribución inmortal de la ciencia helenística. En ese sentido, las ideas científicas (incluidos los enunciados de leyes) no son superiores a las herramientas o a los vestidos: si fracasan en la práctica, fracasan por entero.

La experimentación puede calar más profundamente que la observación, porque efectúa cambios en lugar de limitarse a registrar variaciones: aísla y controla las variables sensibles o pertinentes. Sin embargo los resultados experimentales son pocas veces interpretables de una sola manera. Más aún, no todas las ciencias pueden experimentar; y en ciertos capítulos de la astronomía y de la economía se alcanza una gran exactitud sin ayuda del experimento. La ciencia fáctica es por esto empírica en el sentido de que la comprobación de sus hipótesis involucra la experiencia; pero no es necesariamente experimental y en particular no es agotada por las ciencias de laboratorio, tales como la física.

La prescripción de que las hipótesis científicas deben ser capaces de aprobar el examen de la experiencia es una de las reglas del método científico; la aplicación de esta regla depende del tipo de objeto, del tipo de la hipótesis en cuestión y de los medios disponibles. Por esto se necesita una multitud de técnicas de verificación empírica. La verificación de la fórmula de un compuesto químico se hace de manera muy diferente que la verificación de un cálculo astronómico o de una hipótesis concerniente al pasado de las rocas o de los hombres. Las

técnicas de verificación evolucionan en el curso del tiempo; sin embargo, siempre consisten en poner a prueba consecuencias particulares de hipótesis generales (entre ellas, enunciados de leyes). Siempre se reducen a mostrar que hay, o que no hay, algún fundamento para creer que las suposiciones en cuestión corresponden a los hechos observados o a los valores medidos. La verificabilidad hace a la esencia del conocimiento científico; si así no fuera, no podría decirse que los científicos procuran alcanzar conocimiento objetivo.

8) La investigación científica es metódica: no es errática sino planeada. Los investigadores no tantean en la oscuridad: saben lo que buscan y cómo encontrarlo. El planeamiento de la investigación no excluye el azar; sólo que, a hacer un lugar a los acontecimientos imprevistos es posible aprovechar la interferencia del azar y la novedad inesperada. Más aún a veces el investigador produce el azar deliberadamente. Por ejemplo, para asegurar la uniformidad de una muestra, y para impedir una preferencia inconsciente en la elección de sus miembros, a menudo se emplea la técnica de la casualización, en que la decisión acerca de los individuos que han de formar parte de ciertos grupos se deja librada a una moneda o a algún otro dispositivo. De esta manera, el investigador pone el azar al servicio de orden: en lo cual no hay paradoja, porque el acaso opera al nivel de los individuos, al par que el orden opera en el grupo con totalidad.

Todo trabajo de investigación se funda sobre el conocimiento anterior, y en particular sobre las conjeturas mejor confirmadas. (Uno de los muchos problemas de la metodología es, precisamente averiguar cuáles son los criterios para decidir si una hipótesis dada puede considerarse razonablemente confirmada, eso es, si el peso que le acuerdan los fundamentos inductivos y de otro orden basta para conservarla). Más aun, la investigación procede conforme a reglas y técnicas que han resultado eficaces en el pasado pero que son perfeccionadas continuamente, no sólo a la luz de nuevas experiencias, sino también de resultados del examen matemático y filosófico. Una de las reglas de procedimiento de la ciencia fáctica es la siguiente: las variables relevantes (o que se sospecha que son sensibles) debieran variarse una cada vez.

La ciencia fáctica emplea el método experimental concebido en un sentido amplio. Este método consiste en el test empírico de conclusiones particulares extraídas de hipótesis generales (tales como "los gases se dilatan cuando se los calienta" o "los hombres se rebelan cuando se los oprime"). Este tipo de verificación requiere la manipulación de la observación y el registro de fenómenos; requiere también el control de las variables o factores relevantes; siempre que fuera posible debiera incluir la producción artificial deliberada de los fenómenos en cuestión, y en todos los casos exige el análisis de los datos obtenidos en el curso de los procedimientos empíricos. Los datos aislados y crudos son inútiles y no son dignos de confianza; es preciso elaborarlos, organizarlos y confrontarlos con las conclusiones teóricas. El método científico no provee recetas infalibles para encontrar la verdad: sólo contiene un conjunto de prescripciones falibles (perfectibles) para el planeamiento de observaciones y

experimentos, para la interpretación de sus resultados, y para el planteo mismo de los problemas. Es, en suma, la manera en que la ciencia inquiere en lo desconocido. Subordinadas a las reglas generales del método científico, y al mismo tiempo en apoyo de ellas, encontramos las diversas técnicas que se emplean en las ciencias especiales: las técnicas para pesar, para observar por el microscopio, para analizar compuestos químicos, para dibujar gráficos que resumen datos empíricos, para reunir informaciones acerca de costumbres, etc. La ciencia es pues, esclava de sus propios métodos y técnicas mientras éstos tienen éxito: pero es libre de multiplicar y de modificar en todo momento sus reglas, en aras de mayor racionalidad y objetividad.

9) El conocimiento científico es sistemático: una ciencia no es un agregado de informaciones inconexas, sino un sistema de ideas conectadas lógicamente entre sí. Todo sistema de ideas caracterizado por cierto conjunto básico (pero refutable) de hipótesis peculiares, y que procura adecuarse a una clase de hechos, es una teoría. Todo capítulo de una ciencia especial contiene teorías o sistemas de ideas que están relacionadas lógicamente entre sí, esto es, que están ordenadas mediante la relación "implica". Esta conexión entre las ideas puede calificarse de orgánica, en el sentido de que la sustitución de cualquiera de las hipótesis básicas produce un cambio radical en la teoría o grupo de teorías.

El fundamento de una teoría dada no es un conjunto de hechos sino, más bien, un conjunto de principios, o hipótesis de cierto grado de generalidad (y, por consiguiente, de cierta fertilidad lógica). Las conclusiones (o teoremas) pueden extraerse de los principios, sea en la forma natural, o con la ayuda de técnicas especiales que involucran operaciones matemáticas.

El carácter matemático del conocimiento científico —esto es, el hecho de que es fundado, ordenado y coherente— es lo que lo hace racional. La racionalidad permite que el progreso científico se efectúe no sólo por la acumulación gradual de resultados, sino también por revoluciones. Las revoluciones científicas no son descubrimientos de nuevos hechos aislados, ni son perfeccionamientos en la exactitud de las observaciones, sino que consisten en la sustitución de hipótesis de gran alcance (principios) por nuevos axiomas, y en el reemplazo de teorías enteras por otros sistemas teóricos. Sin embargo, semejantes revoluciones son a menudo provocadas por el descubrimiento de nuevos hechos de los que no dan cuenta las teorías anteriores, aunque a veces se encuentran en el proceso de comprobación de dichas teorías; y las nuevas teorías se tornan verificables en muchos casos, merced a la invención de nuevas técnicas de medición, de mayor precisión.

10) El conocimiento científico es general: ubica los hechos singulares en pautas generales, los enunciados particulares en esquemas amplios. El científico se ocupa del hecho singular en la medida en que éste es miembro de una clase o caso de una ley; más aún, presupone que todo hecho es clasificable y legal. No es que la ciencia ignore la cosa individual o el hecho

irrepetible; lo que ignora es el hecho aislado. Por esto la ciencia no se sirve de los datos empíricos —que siempre son singulares— como tales; éstos son mudos mientras no se los manipula y convierte en piezas de estructuras teóricas.

En efecto, uno de los principios ontológicos que subyacen a la investigación científica es que la variedad y aun la unicidad en algunos respectos son compatibles con la uniformidad y la generalidad en otros respectos. Al químico no le interesa ésta o aquella hoguera, sino el proceso de combustión en general: trata de descubrir lo que comparten todos los singulares. El científico intenta exponer los universales que se esconden en el seno de los propios singulares; es decir, no considera los universales *ante rem* ni *post rem* sino *in re*: en la cosa, y no antes o después de ella. Los escolásticos medievales clasificarían al científico moderno como realista inmanentista, porque, al descartar los detalles al procurar descubrir los rasgos comunes a individuos que son únicos en otros respectos, al buscar las variables pertinentes (o cualidades esenciales) y las relaciones constantes entre ellas (las leyes), el científico intenta exponer la naturaleza esencial de las cosas naturales y humanas.

El lenguaje científico no contiene solamente términos que designan hechos singulares y experiencias individuales, sino también términos generales que se refieren a clases de hechos. La generalidad del lenguaje de la ciencia no tiene, sin embargo, el propósito de alejar a la ciencia de la realidad concreta: por el contrario, la generalización es el único medio que se conoce para adentrarse en lo concreto, para apresar la esencia de las cosas (sus cualidades y leyes esenciales). Con esto, el científico evita en cierta medida las confusiones y los engaños provocados por el flujo deslumbrador de los fenómenos. Tampoco se asfixia la utilidad en la generalidad: por el contrario, los esquemas generales de la ciencia encuadran una cantidad ilimitada de casos específicos, proveen leyes de amplio alcance que incluyen y corrigen todas las recetas válidas de sentido común y de la técnica precientífica.

11) El conocimiento científico es legal: busca leyes (de la naturaleza y de la cultura) y las aplica. El conocimiento científico inserta los hechos singulares en pautas generales llamadas "leyes naturales" o "leyes sociales". Tras el desorden y la fluidez de las apariencias, la ciencia fáctica descubre las pautas regulares de la estructura y del proceso del ser y del devenir. En la medida en que la ciencia es legal, es esencialista: intenta legar a la raíz de las cosas. Encuentra la esencia en las variables relevantes y en las relaciones invariantes entre ellas. Hay leyes de hechos y leyes mediante las cuales se pueden explicar otras leyes. El principio de Arquímedes pertenece a la primera clase; pero a su vez puede deducirse de los principios generales de la mecánica; por consiguiente, ha dejado de ser un principio independiente, y ahora es un teorema deducible de hipótesis de nivel más elevado. Las leyes de la física proveen la base de las leyes de las combinaciones químicas; las leyes de la fisiología explican ciertos fenómenos psíquicos; y las leyes de la economía pertenecen a los fundamentos de la sociología. Es decir, los enunciados de las leyes se organizan en una estructura de niveles. Ciertamente, los enunciados de las leyes son transitorios; pero ¿son inmutables las leyes

mismas? Si se considera a las leyes como las pautas mismas del ser y del devenir, entonces debieran cambiar junto con las cosas mismas; por lo menos, debe admitirse que, al emerger nuevos niveles, sus cualidades peculiares se relacionan entre sí mediante nuevas leyes. Por ejemplo, las leyes de la economía han emergido en el curso de la historia sobre la base de otras leyes (biológicas y psicológicas) y, más aún, algunas de ellas cambian con el tipo de organización social.

Por supuesto, no todos los hechos singulares conocidos han sido ya convertidos en casos particulares de leyes generales; en particular los sucesos y procesos de los niveles superiores han sido legalizados sólo en pequeña medida. Pero esto se debe en parte al antiguo prejuicio de que lo humano no es legal, así como a la antigua creencia pitagórica de que solamente las relaciones numéricas merecen llamarse "leyes científicas". Debiera emplearse el stock íntegro de las herramientas conceptuales en la búsqueda de las leyes de la mente y de la cultura; más aún, acaso el stock de que se dispone es insuficiente y sea preciso inventar herramientas radicalmente nuevas para tratar los fenómenos mentales y culturales, tal como el nacimiento de la mecánica moderna hubiera sido imposible sin la invención expresa del cálculo infinitesimal.

Pero el ulterior avance en el progreso de la legalización de los fenómenos no físicos requiere por sobre todo, una nueva actitud frente al concepto mismo de ley científica. En primer lugar, es preciso comprender que hay muchos tipos de leyes (aun dentro de una misma ciencia), ninguno de los cuales es necesariamente mejor que los tipos restantes. En segundo lugar, debiera tornarse un lugar común entre los científicos de la cultura el que las leyes no se encuentran por mera observación y el simple registro sino poniendo a prueba hipótesis: los enunciados de leyes no son, en efecto, sino hipótesis confirmadas. Y cómo habríamos de emprender la confección de hipótesis científicas si no presumiéramos que todo hecho singular es legal?

12) La ciencia es explicativa: intenta explicar los hechos en términos de leyes, y las leyes en términos de principios. Los científicos no se conforman con descripciones detalladas; además de inquirir cómo son las cosas, procuran responder al por qué: por qué ocurren los hechos como ocurren y no de otra manera. La ciencia deduce proposiciones relativas a hechos singulares a partir de leyes generales, y deduce las leyes a partir de enunciados nomológicos aún más generales (principios). Por ejemplo, las leyes de Kepler explicaban una colección de hechos observados del movimiento planetario; y Newton explicó esas leyes deduciéndolas de principios generales explicación que permitió a otros astrónomos dar cuenta de las irregularidades de las órbitas de los planetas que eran desconocidas para Kepler.

Solía creerse que explicar es señalar la causa, pero en la actualidad se reconoce que la explicación causal no es sino un tipo de explicación científica. La explicación científica se efectúa siempre en términos de leyes, y las leyes causales no son sino una subclase de las leyes científicas. Hay diversos tipos de leyes científicas y, por consiguiente, hay una

variedad de tipos de explicación científica: morfológicas, cinemáticas, dinámicas, de composición, de conservación, de asociación, de tendencias globales, dialécticas, teleológicas, etc.

La historia de la ciencia enseña que las explicaciones científicas se corrigen o descartan sin cesar. ¿Significa esto que son todas falsas? En las ciencias fácticas, la verdad y el error no son del todo ajenos entre sí: hay verdades parciales y errores parciales; hay aproximaciones buenas y otras malas. La ciencia no obra como Penélope, sino que emplea la tela tejida ayer. Las explicaciones científicas no son finales pero son perfectibles.

13) El conocimiento científico es predictivo: Trasciende la masa de los hechos de experiencia, imaginando cómo puede haber sido el pasado y cómo podrá ser el futuro. La predicción es, en primer lugar, una manera eficaz de poner a prueba las hipótesis; pero también es la clave del control y aun de la modificación del curso de los acontecimientos. La predicción científica en contraste con la profecía se funda sobre leyes y sobre informaciones específicas fidedignas, relativas al estado de cosas actual o pasado. No es del tipo "ocurrirá E", sino más bien de este otro: "ocurrirá E_1 siempre que suceda C_1 , pues siempre que sucede C es seguido por o está asociado con E". C y E designan clases de sucesos en tanto que C_1 y E_1 denotan los hechos específicos que se predicen sobre la base del o los enunciados que conectan a C con E en general.

La predicción científica se caracteriza por su perfectibilidad antes que por su certeza. Más aún, las predicciones que se hacen con la ayuda de reglas empíricas son a veces más exactas que las predicciones penosamente elaboradas con herramientas científicas (leyes, informaciones específicas y deducciones); tal es el caso con frecuencia de los pronósticos meteorológicos, de la prognosis médica y de la profecía política. Pero en tanto que la profecía no es perfectible y no puede usarse para poner a prueba hipótesis, la predicción es perfectible y, si falla, nos obliga a corregir nuestras suposiciones, alcanzando así una inteligencia más profunda. Por esto la profecía exitosa no es un aporte al conocimiento teórico, en tanto que la predicción científica fallida puede contribuir a él.

Puesto que la predicción científica depende de leyes y de ítems de información específica, puede fracasar por inexactitud de los enunciados de las leyes o por imprecisión de la información disponible. (También puede fallar, por supuesto, debido a errores cometidos en el proceso de inferencia lógica o matemática que conduce de las premisas (leyes e informaciones) a la conclusión (enunciado predictivo)). Una fuente importante de fallos en la predicción es el conjunto de suposiciones acerca de la naturaleza del objeto (sistema físico, organismo vivo, grupo social, etc.) cuyo comportamiento ha de predecirse. Por ejemplo, puede ocurrir que creamos que el sistema en cuestión está suficientemente aislado de las perturbaciones exteriores, cuando en rigor éstas cuentan a la larga; dado que la aislación es una condición necesaria de la descripción del sistema con ayuda de un puñado de enunciados de leyes, no debiera sorprender que fuera tan difícil predecir el comportamiento

de sistemas abiertos tales como el océano, la atmósfera, el ser vivo o el hombre.

Puesto que la predicción científica se funda en las leyes científicas, hay tantas clases de predicciones como clases de enunciado nomológicos. Algunas leyes nos permiten predecir resultados individuales, aunque no sin error si la predicción se refiere al valor de una cantidad. Otras leyes; incapaces de decirnos nada acerca del comportamiento de los individuos (átomos, personas, etc.) son en cambio la base para la predicción de algunas tendencias globales y propiedades colectivas de colecciones numerosas de elementos similares; son las leyes estadísticas. Las leyes de la historia son de este tipo; y por esto es casi imposible la predicción de los sucesos individuales en el campo de la historia, pudiendo preverse solamente el curso general de los acontecimientos.

14) La ciencia es abierta: no reconoce barreras a priori que limiten el conocimiento. Si un conocimiento fáctico no es refutable en principio, entonces no pertenece a la ciencia sino a algún otro campo. Las nociones acerca de nuestro medio, natural o social, o acerca del yo, no son finales: están todas en movimiento, todas son falibles. Siempre es concebible que pueda surgir una nueva situación (nuevas informaciones o nuevos trabajos teóricos) en que nuestras ideas, por firmemente establecidas que parezcan, resulten inadecuadas en algún sentido. La ciencia carece de axiomas evidentes: incluso los principios más generales y seguros son postulados que pueden ser corregidos o reemplazados. A consecuencia del carácter hipotético de los enunciados de leyes, y de la naturaleza perfectible de los datos empíricos la ciencia no es un sistema dogmático y cerrado sino controvertido y abierto. O, más bien, la ciencia es abierta como sistema porque es falible y por consiguiente capaz de progresar. En cambio, puede argüirse que la ciencia es metodológicamente cerrada no en el sentido de que las reglas del método científico sean finales sino en el sentido de que es autocorrectiva: el requisito de la verificabilidad de las hipótesis científicas basta para asegurar el progreso científico.

Tan pronto como ha sido establecida una teoría científica, corre el peligro de ser refutada o, al menos, de que se circunscriba su dominio. Un sistema cerrado de conocimiento fáctico que excluya toda ulterior investigación, puede llamarse sabiduría pero es en rigor un detritus de la ciencia. El sabio moderno, a diferencia del antiguo no es tanto un acumulador de conocimientos como un generador de problemas. Por consiguiente, prefiere los últimos números de las revistas especializadas a los manuales, aun cuando estos últimos sean depósitos de verdad más vastos y fidedignos que aquellas. El investigador moderno ama la verdad pero no se interesa por las teorías irrefutables. Una teoría puede haber permanecido intocada no tanto por su alto contenido de verdad cuanto porque nadie la ha usado. No se necesita emprender una investigación empírica para probar la tautología de que ni siquiera los científicos se casan con solteronas.

Los modernos sistemas de conocimiento científico son como organismos en crecimiento: mientras están vivos cambian sin pausa. Esta es una de las razones por las cuales la ciencia

es éticamente valiosa: porque nos recuerda que la corrección de errores es tan valiosa como el no cometerlos y que probar cosas nuevas e inciertas es preferible a rendir culto a las viejas y garantizadas. La ciencia, como los organismos, cambia a la vez internamente y debido a sus contactos con sus vecinos; esto es, resolviendo sus problemas específicos y siendo útil en otros campos.

15) La ciencia es útil: porque busca la verdad, la ciencia es eficaz en la provisión de herramientas para el bien y para el mal. El conocimiento ordinario se ocupa usualmente de lograrresultados capaces de ser aplicados en forma inmediata; con ello no es suficientemente verdadero, con lo cual no puede ser suficientemente eficaz. Cuando se dispone de un conocimiento adecuado de las cosas es posible manipularlas con éxito. La utilidad de la ciencia es una consecuencia de su objetividad; sin proponerse necesariamente alcanzar resultados aplicables, la investigación los provee a la corta o a la larga. La sociedad moderna paga la investigación porque ha aprendido que la investigación rinde. Por este motivo, es redundante exhortar a los científicos a que produzcan conocimientos aplicables: no pueden dejar de hacerlo. Es cosa de los técnicos emplear el conocimiento científico con fines prácticos, y los políticos son los responsables de que la ciencia y la tecnología se empleen en beneficio de la humanidad. Los científicos pueden, a lo sumo, aconsejar acerca de cómo puede hacerse uso racional, eficaz y bueno de la ciencia.

La técnica precientífica era primordialmente una colección de recetas pragmáticas no entendidas, muchas de las cuales desempeñaban la función de ritos mágicos. La técnica moderna es, en medida creciente —aunque no exclusivamente—, ciencia aplicada. La ingeniería es física y química aplicadas, la medicina es biología aplicada, la psiquiatría es psicología y neurología aplicadas; y debiera llegar el día en que la política se convierta en sociología aplicada.

Pero la tecnología es más que ciencia aplicada: en primer lugar porque tiene sus propios procedimientos de investigación, adaptados a circunstancias concretas que distan de los casos puros que estudia la ciencia. En segundo lugar, porque toda rama de la tecnología contiene un cúmulo de reglas empíricas descubiertas antes que los principios científicos en los que —si dichas reglas se confirman— terminan por ser absorbidas. La tecnología no es meramente el resultado de aplicar el conocimiento científico existente a los casos prácticos: la tecnología viva es esencialmente, el enfoque científico de los problemas prácticos, es decir, el tratamiento de estos problemas sobre un fondo de conocimiento científico y con ayuda del método científico. Por eso la tecnología, sea de las cosas nuevas o de los hombres, es fuente de conocimientos nuevos.

La conexión de la ciencia con la tecnología no es por consiguiente asimétrica. Todo avance tecnológico plantea problemas científicos cuya solución puede consistir en la invención de nuevas teorías o de nuevas técnicas de investigación que conduzcan a un conocimiento más adecuado y a un mejor dominio del asunto. La ciencia y la tecnología constituyen un ciclo de

sistemas interactuantes que se alimentan el uno al otro. El científico torna inteligible lo que hace el técnico y éste provee a la ciencia de instrumentos y de comprobaciones; y lo que es igualmente importante el técnico no cesa de formular preguntas al científico añadiendo así un motor externo al motor interno del progreso científico. La continuación de la vida sobre la Tierra depende del ciclo de carbono: los animales se alimentan de plantas, las que a su vez obtienen su carbono de lo que exhalan los animales. Análogamente la continuación de la civilización moderna depende, en gran medida del ciclo del conocimiento: la tecnología moderna come ciencia, y la ciencia moderna depende a su vez del equipo y del estímulo que le provee una industria altamente tecnificada.

Pero la ciencia es útil en más de una manera. Además de constituir el fundamento de la tecnología, la ciencia es útil en la medida en que se la emplea en la edificación de concepciones del mundo que concuerdan con los hechos, y en la medida en que crea el hábito de adoptar una actitud de libre y valiente examen, en que acostumbra a la gente a poner a prueba sus afirmaciones y a argumentar correctamente. No menor es la utilidad que presta la ciencia como fuente de apasionantes rompecabezas filosóficos, y como modelo de la investigación filosófica.

En resumen, la ciencia es valiosa como herramienta para domar la naturaleza y remodelar la sociedad; es valiosa en sí misma, como clave para la inteligencia del mundo y del yo; y es eficaz en el enriquecimiento, la disciplina y la liberación de nuestra mente.

¿Cuál es el método de la ciencia?

"The lame in the path outstrips the swift who wander from it." F. Bacon

1. La ciencia, conocimiento verificable

En su deliciosa biografía del Dante (ca. 1360), Boccaccio¹ expuso su opinión —que no viene al caso— acerca del origen de la palabra "poesía" concluyendo con este comentario: "otros lo atribuyen a razones diferentes, acaso aceptables; pero ésta me *gusta más*". El novelista aplicaba, al *conocimiento* acerca de la poesía y de su nombre el mismo criterio que podría apreciarse para apreciar la poesía misma: el gusto. Confundía así valores situados en niveles diferentes: el estético, perteneciente a la esfera de la sensibilidad, y el gnoseológico, que no obstante estar enraizado en la sensibilidad está enriquecido con una cualidad emergente: la razón.

Semejante confusión no es exclusiva de poetas: incluso Hume, en una obra célebre por su crítica mortífera de varios dogmas tradicionales escogió el gusto como criterio de verdad. En su *Treatise of Human Nature* (1739) puede leerse²: "No es sólo en poesía y en música que *debemos seguir nuestro gusto*, sino también en la filosofía (que en aquella época incluía también a la ciencia). Cuando estoy convencido de algún principio, no es sino una idea que me golpea (strikes) con mayor fuerza. Cuando prefiero un conjunto de argumentos por sobre otros, no hago sino decidir, sobre la base de mi sentimiento, acerca de la superioridad de su influencia". El subjetivismo era así la playa en que desembarcaba la teoría psicologista de las "ideas" inaugurada por el empirismo de Locke.

El recurso al gusto no era, por supuesto, peor que el argumento de autoridad, criterio de verdad que ha mantenido enjaulado al pensamiento durante tanto tiempo y con tanta eficacia. Desgraciadamente, la mayoría de la gente, y hasta la mayoría de los filósofos, aún creen —u obran como si creyeran— que la manera correcta de decir el valor de verdad de un enunciado es someterlo a la prueba de algún texto: es decir verificar si es compatible con (o deducible de) frases más o menos célebres tenidas por verdades eternas, o sea, principios infalibles de alguna escuela de pensamiento. En efecto, son demasiados los argumentos filosóficos que se ajustan al siguiente molde: "X está equivocado, porque lo que dice contradice lo que escribió el maestro Y", o bien "el X-ismo es falso porque sus tesis son incompatibles con las proposiciones fundamentales de Y-ismo". Los dogmáticos —antiguos y modernos fuera y

¹ G. Bocaccio Vita di Dante, en Il comento alla Divina Commedia e gli altri scriti intorno a Dante (Bari, Laterza 1918), I, p. 37. Subrayado mío.

² D. Hume, A Treatise of Human Nature (London, Everyman, 1911) I, p. 105. Subrayado mío.

dentro de la profesión científica, maliciosos o no— obran de esta manera aun cuando no desean convalidar creencias que simplemente no pueden ser comprobadas, sea empíricamente, sea racionalmente. Porque "dogma" es, por definición, toda opinión no confirmada de la que no se exige verificación porque se la supone verdadera y, más aún, se la supone fuente de verdades ordinarias.

Otro criterio de verdad igualmente difundido ha sido la evidencia. Según esta opinión, verdadero es aquello que parece aceptable a primera vista, sin examen ulterior: aquello, en suma, que se intuye. Así, Aristóteles³ afirmaba que la intuición "aprehende las premisas primarias" de todo discurso, y es por ello "la fuente que origina el conocimiento científico". No sólo Bergson, Husserl y mucho otros intuicionistas e irracionalistas han compartido la opinión de que las esencias pueden cogerse sin más: también el racionalismo ingenuo, tal como el que sostenía Descartes, afirma que hay principios evidentes que, lejos de tener que someterse a prueba alguna, son la piedra de toque de toda otra proposición, sea formal o fáctica.

Finalmente, otros han favorecido las "verdades vitales" (o las "mentiras vitales"), esto es, las afirmaciones que se creen o no por conveniencia, independientemente de su fundamento racionaly/o empírico. Es el caso de Nietzsche y los pragmatistas posteriores, todos los cuales han exagerado el indudable valor instrumental del conocimiento fáctico, al punto de afirmar que "la posesión de la verdad, lejos de ser (...) un fin en sí, es sólo un medio preliminar para alcanzar otras satisfacciones vitales"⁴, de donde "verdadero" es sinónimo de "útil".

Pregúntese a un científico si cree que tiene derecho a suscribir una afirmación en el campo de las ciencias tan sólo porque le guste, o porque la considere un dogma inexpugnable o porque a él le parezca evidente, o porque la encuentre conveniente. Probablemente conteste más o menos así: ninguno de esos presuntos criterios de verdad garantiza la objetividad, y el conocimiento objetivo es la finalidad de la investigación científica. Lo que se acepta sólo por gusto o por autoridad, o por parecer evidente (habitual) o por conveniencia, no es sino creencia u opinión, pero no es conocimiento científico. El conocimiento científico es a veces desagradable, a menudo contradice a los clásicos (sobre todo si es nuevo), en ocasiones tortura al sentido común y humilla a la intuición; por último, puede ser conveniente para algunos y no para otros. En cambio aquello que caracteriza al conocimiento científico es su verificabilidad: siempre es susceptible de ser verificado (confirmado o disconfirmado).

2. Veracidad y verificabilidad

Obsérvese que no pretendemos que el conocimiento científico, por contraste con el ordinario,

³ Aristóteles, *Analíticos Posteriores*, libro II, cap. XIX 110 b.

⁴ W. James, *Pragmatism*, (New York, Meridian Books, 1935), p. 134.

el tecnológico o el filosófico, sea verdadero. Ciertamente lo es con frecuencia, y siempre intenta serlo más y más. Pero la veracidad, que es un objetivo, no caracteriza el conocimiento científico de manera tan inequívoca como el modo, medio o método por el cual la investigación científica plantea problemas y pone a prueba las soluciones propuestas.

En ocasiones, puede alcanzarse una verdad con sólo consultar un texto. Los propios científicos recurren a menudo a un argumento de autoridad atenuada: lo hacen siempre que emplean datos (empíricos o formales) obtenidos por otros investigadores —cosa que no pueden dejar de hacer, pues la ciencia moderna es, cada vez más, una empresa social—. Pero, por grande que sea la autoridad que se atribuye a una fuente, jamás se la considera infalible: si se aceptan sus datos, es sólo provisionalmente y porque se presume que han sido obtenidos con procedimientos que concuerdan con el método científico, de manera que son reproducibles por quienquiera que se disponga a aplicar tales procedimientos. En otras palabras: un dato será considerado verdadero hasta cierto punto, siempre que pueda ser confirmado de manera compatible con los cánones del método científico.

En consecuencia, para que un trozo de saber merezca ser llamado "científico", no basta —ni siquiera es necesario— que sea verdadero. Debemos saber, en cambio, cómo hemos llegado a saber, o a presumir, que el enunciado en cuestión es verdadero: debemos ser capaces de enumerar las operaciones (empíricas o racionales) por las cuales es verificable (confirmable o disconfirmable) de una manera objetiva al menos en principio. Esta no es sino una cuestión de nombres: quienes no deseen que se exija la verificabilidad del conocimiento deben abstraerse de llamar "científicas" a sus propias creencias, aun cuando lleven bonitos nombres con raíces griegas. Se las invita cortésmente a bautizarlas con nombres más impresionantes, tales como "reveladas, evidentes, absolutas, vitales, necesarias para la salud del Estado, indispensables para la victoria del partido", etc.

Ahora bien, para verificar un enunciado —porque las proposiciones, y no los hechos, son verdaderas y falsas y pueden, por consiguiente, ser verificadas— no basta la contemplación y ni siquiera el análisis. Comprobamos nuestras afirmaciones confrontándolas con otros enunciados. El enunciado confirmatorio (o disconfirmatorio), que puede llamarse el *verificans*, dependerá del conocimiento disponible y de la naturaleza de la proposición dada, la que puede llamarse *verificandum*. Los enunciados confirmatorios serán enunciados referentes a la experiencia si lo que se somete a prueba es una afirmación fáctica, esto es, un enunciado acerca de hechos, sean experimentados o no. Observemos, de pasada, que el científico tiene todo el derecho de especular acerca de hechos inexperienciales, esto es, hechos que en una etapa del desarrollo del conocimiento están más allá de alcance de la experiencia humana; pero entonces está obligado a señalar las experiencias que permiten inferir tales hechos inobservados o aun inobservables; vale decir tiene la obligación de anclar sus enunciados fácticos en experiencias conectadas de alguna manera con los hechos transempíricos que supone. Baste recordar la historia de unos pocos inobservables distinguidos: la otra cara de la Luna, las ondas luminosas, los átomos, la conciencia, la lucha de clases y la opinión

pública.

En cambio, si lo que se ha verificado no es una proposición referente al mundo exterior sino un enunciado respecto al comportamiento de signos (tal como por ej. 2+3=5), entonces los enunciados confirmatorios serán definiciones, axiomas, y reglas que se adoptan por una razón cualquiera (p. ej., porque son fecundas en la organización de los conceptos disponibles y en la elaboración de nuevos conceptos). En efecto, la verificación de afirmaciones pertenecientes al dominio de las formas (lógica y matemática) no requiere otro instrumento material que el cerebro; sólo la verdad fáctica —como en el caso de "la Tierra es redonda"— requiere la observación o el experimento.

Resumiendo: la verificación de enunciados formales sólo incluye operaciones racionales, en tanto que las proposiciones que comunican información acerca de la naturaleza o de la sociedad han de ponerse a prueba por ciertos procedimientos empíricos tales como el recuento o la medición. Pues, aunque el conocimiento de los hechos no provienen de la experiencia pura —por ser la teoría un componente indispensable de la recolección de informaciones fácticas— no hay otra manera de verificar nuestras sospechas que recurrir a la experiencia, tanto "pasiva" como activa.

3. Las proposiciones generales verificables: hipótesis científicas

La descripción que antecede satisfará, probablemente, a cualquier científico contemporáneo que reflexione sobre su propia actividad. Pero no resolverá la cuestión para el metacientífico o epistemólogo, para quien los procedimientos, las normas y a veces hasta los resultados de la ciencia son otros tantos problemas. En efecto, el metacientífico no puede dejar de preguntarse cuáles son las afirmaciones verificables, cómo se llega a afirmarlas, cómo se las comprueba, y en qué condiciones puede decirse que han sido confirmadas. Tratemos de esbozar una respuesta a estas preguntas.

En primer lugar si hemos de tratar el problema de la verificación, debemos averiguar qué se puede verificar, ya que no toda afirmación —ni siquiera toda afirmación significativa— es verificable. Así, por ejemplo, las definiciones nominales —tales como "América es el continente situado al oeste de Europa"— se aceptan o rechazan sobre la base del gusto, de la conveniencia, etc., pero no pueden verificarse, y ello simplemente porque no son verdaderas nifalsas. Por ejemplo, si convenimos en llamar "norte-sur" a la dirección que toma normalmente la aguja de una brújula, semejante nombre puede gustarnos o no, pero es inverificable: no es sino un nombre, no se funda sobre elemento de prueba alguno y ninguna operación podría confirmarlo o disconfirmarlo. En cambio lo que puede confirmarse o disconfirmarse es una afirmación fáctica que contenga a ese término tal como "la 5ª Avenida corre de sur a norte". La verificación de esa afirmación es posible, y puede hacerse con la ayuda de una brújula.

No sólo las definiciones nominales sino también las afirmaciones acerca de fenómenos

sobrenaturales son inverificables, puesto que por definición trascienden todo cuanto está a nuestro alcance, y no se las puede poner a prueba con ayuda de la lógica ni de la matemática. Las afirmaciones acerca de la sobrenaturaleza son inverificables no porque no se refieran a hechos —pues a veces pretenden hacerlo—, sino porque no se dispone de método alguno mediante el cual se podrá decidir cuál es su valor de verdad. En cambio, muchas de ellas son perfectamente significativas para quien se tome el trabajo de ubicarlas en su contexto sin pretender reducirlas, por ejemplo, a conceptos científicos. La verificación torna más exacto el significado, pero no produce significado alguno. Más bien al contrario, la posesión de un significado determinado es una condición necesaria para que una proposición sea verificable. Pues, ¿cómo habríamos de disponernos a comprobar lo que no entendemos?

Ahora bien, los enunciados verificables son de muchas clases. Hay proposiciones singulares tales como "este trozo de hierro está caliente"; particulares o existenciales, tales como "algunos trozos de hierro están calientes" (que es verificablemente falsa). Hay, además, enunciados de leyes, tales como "todos los metales se dilatan con el calor" (o mejor, "para todo x, si x es un trozo de metal que se calienta, entonces x se dilata"). Las proposiciones singulares y particulares pueden verificarse a menudo de manera inmediata, con la sola ayuda de los sentidos o eventualmente, con el auxilio de instrumentos que amplíen su alcance; pero otras veces exigen operaciones complejas que implican enunciados de leyes y cálculos matemáticos, como es el caso de "la distancia media entre la Tierra y el Sol es de unos 1.500 millones de kilómetros".

Cuando un enunciado verificable posee un grado de generalidad suficiente, habitualmente se lo llama hipótesis científica. O, lo que es equivalente, cuando una proposición general (particular o universal) puede verificarse sólo de manera indirecta —esto es, por el examen de algunas de sus consecuencias— es conveniente llamarla "hipótesis científica". Por ejemplo, "todos los trozos de hierro se dilatan con el calor", y a fortiori, "todos los metales se dilatan con el calor", son hipótesis científicas: son puntos de partida de raciocinios y, por ser generales, sólo pueden ser confirmados poniendo a prueba sus consecuencias particulares, esto es, probando enunciados referentes a muestras específicas de metal.

Solía creerse que el discurso científico no incluye elementos hipotéticos sino tan sólo hechos, y, sobre todo, lo que en inglés se denominan *hard facts*. Ahora se comprende que el núcleo de toda teoría científica es un conjunto de hipótesis verificables. Las hipótesis científicas son, por una parte, remates de cadenas inferenciales no demostrativas (analógicas o inductivas) más o menos oscuras; por otra parte, son puntos de partida de cadenas deductivas cuyos últimos eslabones —los más próximos a los sentidos, en el caso de la ciencia fáctica—, deben pasar la prueba de la experiencia.

Más aún: habitualmente se concuerda en que debiera llamarse "hipótesis" no sólo a las conjeturas de ensayo, sino también a las suposiciones razonablemente confirmadas o establecidas, pues probablemente no hay enunciados fácticos generales perfectos. La experiencia ha sugerido adoptar este sentido de la palabra "hipótesis". Considérese, por

ejemplo, la ley de Newton de la gravedad, que ha sido confirmada en casi todos los casos con una precisión asombrosa. Tenemos dos razones para llamarla hipótesis: la primera es que ha pasado la prueba sólo un número finito de veces; la segunda, es que hemos terminado por aprehender que incluso ese célebre enunciado de ley es tan sólo una primera aproximación de un enunciado más exacto incluido en la teoría general de la relatividad, que tampoco es probable que sea definitiva.

4. El método científico ¿ars inveniendi?

Hemos convenido en que un enunciado fáctico general susceptible de ser verificado puede llamarse hipótesis, lo que suena más respetable que corazonada, sospecha, conjetura, suposición o presunción, y es también más adecuado que estos términos, ya que la etimología de "hipótesis" es punto de partida, que ciertamente lo es una vez que se ha dado con ella. Abordemos ahora el segundo problema que nos propusimos, a saber: ¿existe una técnica infalible para inventar hipótesis científicas que sean probablemente verdaderas? En otras palabras: ¿existe un método, en el sentido cartesiano de conjunto de "reglas ciertas y fáciles" que nos conduzca a enunciar verdades fácticas de gran extensión?

Muchos hombres, en el curso de muchos siglos, han creído en la posibilidad de descubrir la técnica del descubrimiento, y de inventar la técnica de la invención. Fue fácil bautizar al niño no nacido, y se lo hizo con el nombre de *ars inveniendi*. Pero semejante arte jamás fue inventado. Lo que es más, podría argüirse que jamás se lo inventará, a menos que se modifique radicalmente la definición de "ciencia"; en efecto, el conocimiento científico por oposición a la sabiduría revelada, es esencialmente falible, esto es, susceptible de ser parcial o aun totalmente refutado. La falibilidad del conocimiento científico, y, por consiguiente, la imposibilidad de establecer reglas de oro que nos conduzcan derechamente a verdades finales, no es sino el complemento de aquella verificabilidad que habíamos encontrado en el núcleo de la ciencia.

Vale decir, no hay reglas infalibles que garanticen por anticipado el descubrimiento de nuevos hechos y la invención de nuevas teorías, asegurando así la fecundidad de la investigación científica: la certidumbre debe buscarse tan solo en las ciencias formales. ¿Significa esto que la investigación científica es errática e ilegal, y por consiguiente que los científicos lo esperan todo de la intuición o de la iluminación? Ta es la moraleja que algunos científicos y filósofos eminentes han extraído de la inexistencia de leyes que nos aseguren contra la infertilidad y el error. Por ejemplo, Bridgman —el expositor del operacionismo— ha negado la existencia del método científico, sosteniendo que "la ciencia es lo que hacen los científicos, y hay tantos métodos científicos como hombres de ciencia"⁵.

⁵ P. W. Bridgam, Reflections of a Physicist (N. York, Philosophical Library, 1955), p. 83.

Es verdad que en ciencia no hay caminos reales; que la investigación se abre camino en la selva de los hechos, y que los científicos sobresalientes elaboran su propio estilo de pesquisa. Sin embargo esto no debe hacernos desesperar de la posibilidad de descubrir pautas, normalmente satisfactorias de plantear problemas y poner a prueba hipótesis. Los científicos que van en pos de la verdad no se comportan ni como soldados que cumplen obedientemente las reglas de la ordenanza (opiniones de Bacon y Descartes), ni como los caballeros de Mark Twain, que cabalgaban en cualquier dirección para llegar a Tierra Santa (opinión de Bridgman). No hay avenidas hechas en ciencia, pero hay en cambio una brújula mediante la cual a menudo es posible estimar si se está sobre una huella promisoria. Esta brújula es el método científico, que no produce automáticamente el saber, pero que nos evita perdernos en el caos aparente de los fenómenos, aunque sólo sea porque nos indica cómo no plantear los problemas y cómo no sucumbir al embrujo de nuestros prejuicios predilectos. La investigación no es errática sino metódica; sólo que no hay una sola manera de sugerir hipótesis, sino muchas maneras: las hipótesis no se nos imponen por la fuerza de los hechos, sino que son inventadas para dar cuenta de los hechos. Es verdad que la invención no es ilegal, sino que sigue ciertas pautas; pero éstas son psicológicas antes que lógicas, son peculiares de los diversos tipos intelectuales, y, por añadidura, los conocemos poco, porque apenas se los investiga. Hay, ciertamente, reglas que facilitan la invención científica, y en especial la formulación de hipótesis; entre ellas figuran las siguientes: el sistemático reordenamiento de los datos, la supresión imaginaria de factores con el fin de descubrir las variables relevantes, el obstinado cambio de representación en busca de analogías fructíferas. Sin embargo, las reglas que favorecen o entorpecen el trabajo científico no son de oro sino plásticas; más aún, el investigador rara vez tiene conciencia del camino que ha tomado para formular sus hipótesis. Por esto la investigación científica puede planearse a grandes líneas y no en detalle, y aún menos puede ser regimentada.

Algunas hipótesis se formulan por vía inductiva, esto es, como generalizaciones sobre la base de la observación de un puñado de casos particulares. Pero la inducción dista de ser la única o siquiera la principal de las vías que conducen a formular enunciados generales verificables. Otras veces, el científico opera por analogía; por ejemplo la teoría ondulatoria de la luz le fue sugerida a Huy ghens (1690) por una comparación con las olas⁶. En algunos casos el principio heurístico es una analogía matemática; así, por ejemplo, Maxwell (1873) predijo la existencia de ondas electromagnéticas sobre la base de una analogía formal entre sus ecuaciones del campo y la conocida ecuación de las ondas elásticas⁷. Ocasionalmente, el investigador es guiado por consideraciones filosóficas; así fue como procedió Oersted (1820); buscó

⁶ C. Huyghens Traité de la lumière (París, Gauthier-Villars 1920), p. 5.

⁷ J. C. Maxwell, A Treatise of Electricity and Magnetism, 3^a ed. (Oxford, University Press 1937), II, pp. 434 y ss.

deliberadamente una conexión entre la electricidad y el magnetismo, obrando sobre la base de la convicción a priori de que la estructura de todo cuanto existe es polar, y que todas las "fuerzas" de la naturaleza están conectadas orgánicamente entre s⁸. La convicción filosófica de que la complejidad de la naturaleza es ilimitada le llevó a Bohm a especular sobre un nivel subcuántico, fundándose en una analogía con el movimiento browniano clásico⁹. Ni siquiera la fantasía teológica ha dejado de contribuir, aunque por cierto en mínima medida; recuérdese el principio de la mínima acción de Maupertuis (1747), formulado en la creencia de que el Creador lo había dispuesto todo de la manera más económica posible.

A las hipótesis científicas se llega, en suma, de muchas maneras: hay muchos principios heurísticos, y el único invariante es el requisito de verificabilidad. La inducción, la analogía y la deducción de suposiciones extracientíficas (p. ej. filosóficas) proveen puntos de partida que deben ser elaborados y probados.

5. El método científico, técnica de planteo y comprobación

Los especialistas científicos habitualmente no se interesan por el problema de la génesis de las hipótesis científicas; esta cuestión es de competencia de las diversas ciencias de la ciencia. El proceso que conduce a la enunciación de una hipótesis científica puede estudiarse en diversos niveles; el lógico, el psicológico y el sociológico. El lógico se interesará por la inferencia plausible como conexión inversa (no deductiva) entre proposiciones singulares y generales. El psicólogo investigará la etapa de la "iluminación" o relámpago en el proceso de resolución de los problemas, etapa en que se produce la síntesis de elementos anteriormente inconexos; también se propondrá estudiar fenómenos tales como los estímulos e inhibiciones que caracterizan al trabajo en equipo. El sociólogo inquirirá por qué determinada estructura social favorece ciertas clases de hipótesis mientras desalienta a otras.

El metodólogo, en cambio no se ocupará de la génesis de las hipótesis, sino del planteo de los problemas que las hipótesis intentan resolver y de su comprobación. El origen del nexo entre el planteo y la comprobación —esto es, el surgimiento de la hipótesis— se lo deja a otros especialistas. El motivo es, nuevamente, una cuestión de nombres: lo que hoy se llama "método científico" no es ya una lista de recetas para dar con las respuestas correctas a las preguntas científicas, sino el conjunto de procedimientos por los cuales: a) se plantean los problemas científicos y, b) se ponen a prueba las hipótesis científicas.

El estudio del método científico es, en una palabra, la teoría de la investigación. Esta teoría es descriptiva en la medida en que descubre pautas en la investigación científica (y aquí

 $^{^8}$ Véase, p. ej. S. F. Mason, A History of the Sciences (London, Routledge & Kegan Paul, 1953). p. 386

⁹ D. Bohm, "A proposed Explanation of Quantum Theory in Terms of Hidden Variables at a Sub Quantum Mechanical Level", en Colston Papers (London, Butterworths Scientific Publications 1957) IX, p. 33.

interviene la historia de la ciencia, como proveedora de ejemplos). La metodología es normativa en la medida en que muestra cuáles son las reglas de procedimiento que pueden aumentar la probabilidad de que el trabajo sea fecundo. Pero las reglas discernibles en la práctica científica exitosa son perfectibles, no son cánones intocables, porque no garantizan la obtención de la verdad; pero, en cambio, facilitan la detección de errores.

Si la hipótesis que ha de ser puesta a prueba se refiere a objetos ideales (números, funciones, figuras, fórmulas lógicas, suposiciones filosóficas, etc.), su verificación consistirá en la prueba de su coherencia—o incoherencia—con enunciados (postulados, definiciones, etc.) previamente aceptados. En este caso, la confirmación puede ser una demostración definitiva. En cambio, si el enunciado en cuestión se refiere (de manera significativa) a la naturaleza o a la sociedad, puede ocurrir, o bien que podamos averiguar su valor de verdad con la sola ayuda de la razón, o que debamos recurrir, además, a la experiencia.

El análisis lógico basta cuando el enunciado que se pone a prueba es de alguno de los siguientes tipos: a) una simple tautología, o sea, un enunciado verdadero en virtud de su sola forma, independientemente de su contenido (como el caso de "El agua moja o no moja"); b) una definición, o equivalencia entre dos grupos de términos (como en el caso de "Los seres vivos se alimentan, crecen y se reproducen); c) una consecuencia de enunciados fácticos que poseen una extensión o alcance mayor (como ocurre cuando se deduce el principio de la palanca de la ley de conservación de la energía). Vale decir, el análisis lógico y matemático comprobará la validez de los enunciados (hipótesis) que son analíticos en determinado contexto. Muchos enunciados no son intrínsecamente analíticos: su analiticidad es relativa o contextual, como lo demuestra el hecho de que esta propiedad puede perderse, si se estrecha o amplía el contexto, o si se reagrupan los enunciados de la teoría correspondiente, de manera tal que los antiguos teoremas se conviertan en postulados y viceversa.

Vale decir, la mera referencia a los hechos no basta para decidir qué herramienta, si el análisis o la experiencia, ha de emplearse. Para convalidar una proposición hay que empezar por determinar su status y estructura lógica. En consecuencia, el análisis lógico (tanto sintáctico como semántico) es la primera operación que debiera emprenderse al comprobar las hipótesis científicas, sean fácticas o no. Esta norma debiera considerarse como una regla del método científico.

Los enunciados fácticos no analíticos —esto es, las proposiciones referentes a hechos, pero indecidibles con la sola ayuda de la lógica—tendrán que concordar con los datos empíricos o adaptarse a ellos. Esta norma, que distaba de ser obvia antes del siglo XVIII, y que contradice tanto el apriorismo escolástico como el racionalismo cartesiano, es la segunda regla del método científico. Podemos enunciarla de la siguiente manera: el método científico, aplicado a la comprobación de afirmaciones informativas, se reduce al método experimental.

6. El método experimental

La experimentación involucra la modificación deliberada de algunos factores, es decir, la sujeción del objeto de experimentación a estímulos controlados. Pero lo que habitualmente se llama "método experimental" no envuelve necesariamente experimentos en el sentido estricto del término, y puede aplicarse fuera del laboratorio. Así, por ejemplo, la astronomía no experimenta con cuerpos celestes (por el momento) pero es una ciencia empírica porque aplica el método experimental. En lugar de elaborar una definición del término, veamos cómo funcionó en un caso famoso tan conocido que casi siempre se lo entiende mal.

Adams y Le Verrier descubrieron el planeta Neptuno procediendo de una manera que es típica de la ciencia moderna. Sin embargo, no ejecutaron un solo experimento; ni siquiera partieron de "hechos sólidos". En efecto, el problema que se plantearon fue el de explicar ciertas irregularidades halladas en el movimiento de los planetas exteriores (a la Tierra); pero esas irregularidades no eran fenómenos observables: consistían en discrepancias entre las órbitas observadas y las calculadas. El hecho que debía explicar no era un conjunto de datos de los sentidos, sino un conflicto entre datos empíricos y consecuencias deducidas de los principios de la mecánica celeste.

La hipótesis que propusieron para explicar la discrepancia fue que un planeta transuraniano inobservado perturbaba el movimiento de los planetas exteriores entonces conocidos. También podrían haber imaginado que la ley de Newton de la gravitación falla a grandes distancias, pero esto era apenas concebible en una época en que la Weltanschauung prevaleciente entre los científicos incluía una fe dogmática en la física newtoniana. De esta hipótesis, unida a los principios aceptados de la mecánica celeste y ciertas suposiciones específicas (referentes, entre otras, al plano de la órbita), Adams y Le Verrier dedujeron consecuencias observables con la sola ayuda de la lógica y la matemática: predijeron el lugar en que se encontraba el "nuevo" planeta en tal y cual noche. La observación del cielo y el descubrimiento no fueron sino el último eslabón de un largo proceso por el cual se probaron conjuntamente varias hipótesis.

No es fácil decidir si una hipótesis concuerda con los hechos. En primer lugar, la verificación empírica rara vez puede determinar cuál de los componentes de una teoría dada ha sido confirmado o disconfirmado; habitualmente se prueban sistemas de proposiciones antes que enunciados aislados. Pero la principal dificultad proviene de la generalidad de las hipótesis científicas. La hipótesis de Adams y Le Verrier era general, aun cuando ello no es aparente a primera vista: tácitamente habían supuesto que el planeta existía en todo momento dentro de un largo lapso; y comprobaron la hipótesis tan sólo para unos pocos breves intervalos de tiempo. En cambio, las proposiciones fácticas singulares no son tan difíciles de probar. Así, por ejemplo, no es difícil comprobar si "El Sr. Pérez, que es obeso, es cardíaco"; bastan una balanza y un estetoscopio. Lo difícil de comprobar son las proposiciones fácticas generales, esto es, los enunciados referentes a clases de hechos y no a hechos singulares. La razón es sencilla: no hay hechos generales, sino tan sólo hechos singulares; por consiguiente, la frase "adecuación de las ideas a los hechos" está fuera de la cuestión en lo que respecta a las

hipótesis científicas.

Supongamos que se sugiere la hipótesis "los obesos son cardíacos", sea por la observación de cierto número de correlaciones entre la obesidad y las enfermedades del corazón (esto es, por inducción estadística, sea sobre la base del estudio de la función del corazón en la circulación (esto es, por deducción). El enunciado general "los obesos son cardíacos" no se refiere solamente a nuestros conocidos, sino a todos los gordos del mundo; por consiguiente, no podemos esperar verificarlo directamente (esto es, por el examen de un inexistente "gordo general") ni exhaustivamente (auscultando a todos los seres humanos presentes, pasados y futuros). La metodología nos dice cómo debemos proceder; en este caso, examinaremos sucesivamente los miembros de una muestra suficientemente numerosa de personas obesas. Vale decir, probamos una consecuencia particular de nuestra suposición general. Esta es una tercera máxima del método científico: obsérvense singulares en busca de elementos de prueba universales.

Hasta aquí todo parece sencillo; pero los problemas relacionados con la prueba real distan de ser triviales, y algunos de ellos no han sido resueltos satisfactoriamente. Debemos recurrir a las técnicas del planteo de problemas de este tipo, es decir, a las técnicas de diseño de los procedimientos empíricos adecuados. Esta técnica nos aconseja comenzar por decidir lo que hemos de entender por "obeso" y por "cardíaco", lo que no es en modo alguno tarea sencilla, ya que el umbral de obesidad es en gran medida convencional. O sea, debemos empezar por determinar el exacto sentido de nuestra pregunta. Y ésta es una cuarta regla del método científico, a saber: formúlese preguntas precisas.

Luego procederemos a elegir la técnica experimental (clase de balanza, tipo de examen de corazón, etc.) y la manera de registrar datos y de ordenarlos. Además debemos decidir el tamaño de la muestra que habremos de observar y la técnica de escoger sus miembros, con el fin de asegurar que será una fiel representante de la población total. Sólo una vez realizadas estas operaciones preliminares podremos visitar al Sr. Pérez y a los demás miembros de la muestra, con el fin de reunir datos. Y aquí se nos muestra una quinta regla del método científico: la recolección y el análisis de datos deben hacerse conforme a las reglas de la estadística.

Después que los datos han sido reunidos, clasificados y analizados, el equipo que tiene a su cargo la investigación podrá realizar una inferencia estadística concluyendo que "el N % de los obesos son cardíacos". Más aún, habrá que estimar el error probable de esta afirmación. Obsérvese que la hipótesis que había motivado nuestra investigación era un enunciado universal de la forma "para todo x, si x es F, entonces x es G". Por otro lado, el resultado de la investigación es un enunciado estadístico, a saber: "de la clase de las personas obesas, una subclase que llega a su N/100ava parte está compuesta por cardíacos". Esto es, nuestra hipótesis de trabajo ha sido corregida. ¿Debemos contentarnos con esta respuesta? Nos gustaría formular otras preguntas: deseamos entender la ley que hemos hallado, nos gustaría deducirla de las leyes de la fisiología humana. Y aquí se aplica una sexta regla del método

científico, a saber: no existen respuestas definitivas, y ello simplemente porque no existen preguntas finales.

7. Métodos teóricos

Toda ciencia fáctica especial elabora sus propias técnicas de verificación; entre ellas, las técnicas de medición son típicas de la ciencia moderna. Pero en todos los casos estas técnicas, por diferentes que sean, no constituyen fines en sí mismos; todas ellas sirven para contrastar ciertas ideas con ciertos hechos por la vía de la experiencia. O, si se prefiere, el objetivo de las técnicas de verificación es probar enunciados referentes a hechos por vía del examen de proposiciones referentes a la experiencia (y en particular, al experimento). Este es el motivo por el cual los experimentadores no tienen por qué construir cada uno de sus aparatos e instrumentos, pero deben en cambio diseñarlos y/o usarlos a fin de poner a prueba ciertas afirmaciones. Las técnicas especiales, por importantes que sean, no son sino etapas de la aplicación del método experimental, que no es otra cosa que el método científico en relación con la ciencia fáctica, y la ciencia, por fáctica que sea, no es un montón de hechos sino un sistema de ideas.

En el párrafo anterior ejemplificamos el método experimental analizando el proceso de verificación que requeriría el enunciado "los obesos son cardíacos"; encontramos que esta hipótesis requería una precisión cuantitativa, y después de una investigación imaginaria adoptamos, en su lugar, cierta generalización empírica del tipo de los enunciados estadísticos. Ahora bien: las generalizaciones empíricas tan caras a Aristóteles y a Bacon, y aun cuando se las formule en términos estadísticos, no son distintivas de la ciencia moderna. El tipo de hipótesis característico de la ciencia moderna no es el de los enunciados descriptivos aislados cuya función principal es resumir experiencias. Lo peculiar de la ciencia moderna es que consiste en su mayor parte en teorías explicativas, es decir, en sistemas de proposiciones que pueden clasificarse en: principios, leyes, definiciones, etc., y que están vinculadas entre sí mediante conectivas lógicas (tales como "y, o, si... entonces", etc.).

Las teorías dan cuenta de los hechos no sólo describiéndolos de manera más o menos exacta, sino también proveyendo modelos conceptuales de los hechos, en cuyos términos puede explicarse y predecirse, al menos en principio, cada uno de los hechos de una clase. Las posibilidades de una hipótesis científica no se advierten por entero antes de incorporarlas en una teoría; y es sólo entonces cuando puede encontrársele varios soportes. Al sumergirse en una teoría, el enunciado dado es apoyado —o aplastado— por toda la masa del saber disponible; permaneciendo aislado es difícil de confirmar y de refutar y, sobre todo, sigue sin ser entendido.

La conversión de las generalizaciones empíricas en leyes teóricas envuelve trascender la esfera de los fenómenos y el lenguaje observacional: ya no se trata de hacer afirmaciones acerca de hechos observables, sino de adivinar su "mecanismo" interno (el que, desde luego

no tiene por qué ser mecánico). Supóngase que un psicólogo desea estudiar las correlaciones entre cierto estímulo observable S y cierta conducta observable R, que —a modo de ensayo— considera como la respuesta al estímulo dado. Si, después de una sucesión de experimentos, llegara a confirmar su hipótesis de trabajo y deseara trascender las fronteras de la psicología fenomenista, intentaría elaborar, digamos, un modelo neurológico que explicara el nexo S-R en términos fisiológicos. No es tarea fácil: el psicólogo tiene que inventar diversas hipótesis acerca de otros tantos canales nerviosos posibles que conecten los hechos observables extremos, S y R. Análogamente, los físicos atómicos imaginan diversos mecanismos ocultos que conectan los fenómenos macroscópicos con su soporte microscópico.

Pero nuestro psicólogo no andará del todo a tientas: podrá probar si su conexión concuerda con algunos de los esquemas pavlovianos de los reflejos, o con cualquier otro mecanismo. Cada una de sus hipótesis —sea que consistan en suponer que interviene un reflejo innato o condicionado— tendrá que especificar el aparato receptor, el nervio aferente, la estación central, el nervio eferente, el órgano receptor, etc. Más aún, sus varias hipótesis de trabajo tendrán que ser compatibles con el saber más firmemente establecido (aunque no inamovible) y tendrán que ser puestas a prueba mediante técnicas especiales (excitación o destrucción de nervios, registro de impulsos nerviosos, etc.) Vale la pena emprender esta difícil tarea: la eventual confirmación de una de las hipótesis puestas a prueba no sólo explicará el nexo S-R dado, sino que también lo ubicará en su contexto: además, apoyará la hipótesis misma de que tal nexo no es accidental. Pues, aunque suene a paradoja, un enunciado fáctico es tanto más fidedigno cuanto mejor está apoyado por consideraciones teóricas.

Es importante advertir, en efecto, que la experiencia dista de ser el único juez de las teorías fácticas, o siquiera el último. Las teorías se contrastan con los hechos y con otras teorías. Por ejemplo, una de las pruebas de la generalización de una teoría dada es averiguar si la nueva teoría se reduce a la vieja dentro de un cierto dominio, de modo tal que cubra por lo menos el mismo grupo de hechos. Más aún, el grado de sustentación o apoyo de las teorías no es idéntico a su grado de confirmación. Las teorías no se constituyen ex nihilo, sino sobre ciertas bases: éstas las sostienen antes y después de la prueba; la prueba misma, si tiene éxito, provee los apoyos restantes de la teoría y fija su grado de confirmación. Aun así el grado de confirmación de una teoría no basta para determinar la probabilidad de la misma.

8. En qué se apoya una hipótesis científica

Una hipótesis de contenido fáctico no sólo es sostenida por la confirmación empírica de cierto número de sus consecuencias particulares (p. ej. predicciones). Las hipótesis científicas están incorporadas en teorías o tienden a incorporarse en ellas; y las teorías están relacionadas entre sí, constituyendo la totalidad de ellas la cultura intelectual. Por esto, no debiera sorprender que las hipótesis científicas tengan soportes no sólo científicos, sino

también extracientíficos: los primeros son empíricos y racionales, los últimos son psicológicos y culturales. Expliquémonos.

Cuanto más numerosos sean los hechos que confirman una hipótesis, cuanto mayor sea la precisión con que ella reconstruye los hechos, y cuanto más vastos sean los nuevos territorios que ayuda a explorar, tanto más firme será nuestra creencia en ella, esto es, tanto mayor será la probabilidad que le asignemos. Esto es, esquemáticamente dicho, lo que se entiende por el soporte empírico de las hipótesis fácticas. Pero la experiencia disponible no puede ser considerada como inapelable: en primer lugar, porque nuevas experiencias pueden mostrar la necesidad de un remiendo: en segundo término, porque la experiencia científica no es pura, sino interpretada, y toda interpretación se hace en términos de teorías, motivo por el cual la primera reacción de los científicos experimentados ante informaciones sobre hechos que parecerían trastornar teorías establecidas es de escepticismo.

Cuanto más estrecho sea el acuerdo de la hipótesis en cuestión con el conocimiento disponible de mismo orden, tanto más firme es nuestra creencia en ella; semejante concordancia es particularmente valiosa cuando consiste en una compatibilidad con enunciados de leyes. Esto es lo que hemos designado con el nombre de soporte racional de las hipótesis fácticas. Este es, dicho sea de paso, el motivo por el cual la mayoría de los científicos desconfían de los informes acerca de la llamada percepción extransensorial, porque los llamados fenómenos psi contradicen el cuerpo de hipótesis psicológicas y fisiológicas bien establecidas. En resumen, las teorías científicas deben adecuarse, sin duda, a los hechos, pero ningún hecho aislado es aceptado en la comunidad de los hechos controlados científicamente a menos que tenga cabida en alguna parte del edificio teórico establecido. Desde luego, el soporte racional no es garantía de verdad; si lo fuera, las teorías fácticas serían invulnerabes a la experiencia. Los soportes empíricos y racionales de las hipótesis fácticas son interdependientes.

En cuanto a los soportes extracientíficos de las hipótesis científicas, uno de ellos es de carácter psicológico: influye sobre nuestra elección de las suposiciones y sobre el valor que le asignamos a su concordancia con los hechos. Por ejemplo, los sentimientos estéticos que provocan la simplicidad y la unidad lógica estimulan unas veces y otras obstaculizan la investigación sobre la validez de las teorías. Esto es lo que hemos denominado el soporte psicológico de las hipótesis fácticas; a menudo es oscuro, y no sólo está vinculado a características personales, sino también sociales.

Lo que hemos llamado soporte cultural de las hipótesis fácticas consiste en su compatibilidad con alguna concepción del mundo, y en particular, con la Zeitgeist prevaleciente. Es obvio que tendemos a asignar mayor peso a aquellas hipótesis que congenian con nuestro fondo cultural y, en particular, con nuestra visión del mundo, que aquellas hipótesis que lo contradicen. La función dual del soporte cultural de las conjeturas científicas se advierte con facilidad: por una parte, nos impulsa a poner atención en ciertas clases de hipótesis y hasta interviene en la sugerencia de las mismas; por otra parte, puede impedirnos apreciar otras

posibilidades, por lo cual puede constituir un factor de obstinación dogmática. La única manera de minimizar este peligro es cobrar conciencia del hecho de que las hipótesis científicas no crecen en un vacío cultural.

Los soportes empíricos y racionales son objetivos, en el sentido de que en principio son susceptibles de ser sopesados y controlados conforme a patrones precisos y formulables. En cambio, los soportes extracientíficos son, en gran medida, materia de preferencia individual, de grupo o de época; por consiguiente, no debieran ser decisivos en la etapa de la comprobación, por prominentes que sean en la etapa heurística. Es importante que los científicos sean personas cultas, aunque sólo sea para que adviertan la fuerte presión que ejercen los factores psicológicos y culturales sobre la formulación, elección, investigación y credibilidad de las hipótesis fácticas. La presión, para bien o para mal, es real y nos obliga a tomar partido por una u otra concepción del mundo; es mejor hacerlo conscientemente que inadvertidamente.

La enumeración anterior de los tipos de soportes de las hipótesis científicas no tenía otro propósito que mostrar que el método experimental no agota el proceso que conduce a la aceptación de una suposición fáctica. Este hecho podría invocarse en favor de la tesis de que la investigación científica es un arte.

9. La ciencia: técnica y arte

La investigación científica es legal, pero sus leyes —las reglas del método científico— no son pocas, ni simples, ni infalibles, ni bien conocidas: son, por el contrario numerosas, complejas, más o menos eficaces, y en parte desconocidas. El arte de formular preguntas y de probar respuestas —esto es, el método científico— es cualquier cosa menos un conjunto de recetas; y menos técnica todavía es la teoría del método científico. La moraleja es inmediata: desconfíese de toda descripción de la vida de la ciencia —y en primer lugar de la presente—pero no se descuide ninguna. La investigación es una empresa multilateral que requiere el más intenso ejercicio de cada una de las facultades psíquicas, y que exige un concurso de circunstancias sociales favorables; por este motivo, todo testimonio personal, perteneciente a cualquier período, y por parcial que sea, puede echar alguna luz sobre algún aspecto de la investigación.

A menudo se sostiene que la medicina y otras ciencias aplicadas son artes antes que ciencias, en el sentido de que no pueden ser reducidas a la simple aplicación de un conjunto de reglas que pueden formularse todas explícitamente y que pueden elegirse sin que medie el juicio personal. Sin embargo, en este sentido la física y la matemática también son artes: ¿quién conoce recetas hechas y seguras para encontrar leyes de la naturaleza o para adivinar teoremas? Si "arte" significa una feliz conjunción de experiencia, destreza, imaginación, visión y habilidad para realizar inferencias del tipo no analítico, entonces no sólo son artes la medicina, la pesquisa criminal, la estrategia militar, la política y la publicidad, sino también

toda otra disciplina. Por consiguiente, no se trata de si un campo dado de la actividad humana es un arte, sino si, además, es científico.

La ciencia es ciertamente comunicable; si un cuerpo de conocimiento no es comunicable, entonces por definición no es científico. Pero esto se refiere a los resultados de la investigación antes que a las maneras en que éstos se obtienen; la comunicabilidad no implica que el método científico y las técnicas de las diversas ciencias especiales puedan aprenderse en los libros: los procedimientos de la investigación se dominan investigando, y los metacientíficos debieran por ello practicarlos antes de emprender su análisis. No se sabe de obra maestra alguna de la ciencia que haya sido engendrada por la aplicación consciente y escrupulosa de las reglas conocidas del método científico; la investigación científica es practicada en gran parte como un arte no tanto porque carezca de reglas cuanto porque algunas de ellas se dan por sabidas, y no tanto porque requiera una intuición innata cuanto porque exige una gran variedad de disposiciones intelectuales. Como toda otra experiencia, la investigación puede ser comprendida por otros pero no es íntegramente transferible; hay que pagar por ella el precio de un gran número de errores, y por cierto que al contado. Por consiguiente, los escritos sobre el método científico pueden iluminar el camino de la ciencia, pero no pueden exhibir toda su riqueza, y sobre todo, no son un sustituto de la investigación misma, del mismo modo que ninguna biblioteca sobre botánica puede reemplazar a la contemplación de la naturaleza, aunque hace posible que la contemplación sea más provechosa.

10. La pauta de la investigación científica

La variedad de habilidades y de información que exige el tratamiento científico de los problemas ayuda a explicar la extremada división del trabajo prevaleciente en la ciencia contemporánea, en la que encuentra lugar toda capacidad natural y toda habilidad adquirida. Es posible apreciar esta variedad exponiendo la pauta general de la investigación científica. Creo que esa pauta —o sea, el método científico— es, a grandes líneas, la siguiente:

1 PLANTEO DEL PROBLEMA

- 1.1 Reconocimiento de los hechos: examen del grupo de hechos, clasificación preliminar y selección de los que probablemente sean relevantes en algún respecto.
- 1.2 Descubrimiento del problema: hallazgo de la laguna o de la incoherencia en el cuerpo del saber.
- 1.3 Formulación del problema: planteo de una pregunta que tiene probabilidad de ser la correcta; esto es, reducción del problema a su núcleo significativo, probablemente soluble y probablemente fructífero, con ayuda de conocimiento disponible.

2 CONSTRUCCIÓN DE UN MODELO TEÓRICO

- 2.1 Selección de los factores pertinentes: invención de suposiciones plausibles relativas a las variables que probablemente son pertinentes.
- 2.2 Invención de las hipótesis centrales y de las suposiciones auxiliares: propuesta de un conjunto de suposiciones concernientes a los nexos entre las variables pertinentes; p. ej. formulación de enunciados de ley que se espera puedan amoldarse a los hechos observados.
- 2.3 Traducción matemática: cuando sea posible, traducción de las hipótesis, o de parte de ellas, a alguno de los lenguajes matemáticos.

3 DEDUCCIÓN DE CONSECUENCIAS PARTICULARES

- 3.1 Búsqueda de soportes racionales: deducción de consecuencias particulares que pueden haber sido verificadas en el mismo campo o en campos contiguos.
- 3.2 Búsqueda de soportes empíricos: elaboración de predicciones (o retrodicciones) sobre la base de modelo teórico y de datos empíricos, teniendo en vista técnicas de verificación disponibles o concebibles.

4 PRUEBA DE LAS HIPÓTESIS

- 4.1 Diseño de la prueba: planeamiento de los medios para poner a prueba las predicciones; diseño de observaciones, mediciones, experimentos y demás operaciones instrumentales.
- 4.2 Ejecución de la prueba: realización de las operaciones y recolección de datos.
- 4.3 Elaboración de los datos: clasificación, análisis, evaluación, reducción, etc., de los datos empíricos.
- 4.4 Inferencia de la conclusión: interpretación de los datos elaborados a la luz del modelo teórico.

5 INTRODUCCIÓN DE LAS CONCLUSIONES EN LA TEORÍA

- 5.1 Comparación de las conclusiones con las predicciones: contraste de los resultados de la prueba con las consecuencias del modelo teórico, precisando en qué medida éste puede considerarse confirmado o disconfirmado (inferencia probable).
- 5.2 Reajuste del modelo: eventual corrección o aun reemplazo del modelo.
- 5.3 Sugerencias acerca de trabajo ulterior: búsqueda de lagunas o errores en la teoría y/o los procedimientos empíricos, si el modelo ha sido disconfirmado; si ha sido confirmado, examen de posibles extensiones y de

posibles consecuencias en otros departamentos del saber.

11. Extensibilidad del método científico

Para elaborar conocimiento fáctico no se conoce mejor camino que el de la ciencia. El método de la ciencia no es, por cierto, seguro; pero es intrínsecamente progresivo, porque es autocorrectivo: exige la continua comprobación de los puntos de partida, y requiere que todo resultado sea considerado como fuente de nuevas preguntas. Llamemos filosofía científica a la clase de concepciones filosóficas que aceptan el método de la ciencia como la manera que nos permite: a) plantear cuestiones fácticas "razonables" (esto es, preguntas que son significativas, no triviales, y que probablemente pueden se respondidas dentro de una teoría existente o concebible); y b) probar respuestas probables en todos los campos especiales del conocimiento.

No debe confundirse la filosofía científica con el cientificismo en cualquiera de sus dos versiones: el enciclopedismo científico y el reduccionismo naturalista. El enciclopedismo científico pretende que la única tarea de los filósofos es recoger los resultados más generales de la ciencia, elaborando una imagen unificada de los mismos, y preferiblemente formulándolos todos en un único lenguaje (p. ej., el de la física). En cambio, la filosofía, científica o no, analiza lo que se le presente y, a partir de este material, construye teorías de segundo nivel, es decir teorías de teorías; la filosofía será científica en la medida en que elabore de manera racional los materiales previamente elaborados por la ciencia. Así es como puede entenderse la extensión del método científico al trabajo filosófico.

En cuanto al cientificismo concebido como reduccionismo naturalista —y que a veces se superpone con el enciclopedismo científico como ocurre con el fisicalismo—, puede describírselo como una tentativa de resolver toda suerte de problemas con ayuda de las técnicas creadas por las ciencias naturales, desdeñando las cualidades específicas, irreductibles, de cada nivel de la realidad. El cientificismo radical de esta especie sostendría, por ejemplo, que la sociedad no es más que un sistema físico-químico (o, a lo sumo, biológico), de donde los fenómenos sociales debieran estudiarse exclusivamente mediante la ayuda de metros, relojes, balanzas y otros instrumentos de la misma clase. En cambio, la filosofía científica favorece la elaboración de técnicas específicas en cada campo, con la única condición de que estas técnicas cumplan las exigencias esenciales del método científico en lo que respecta a las preguntas y a las pruebas. De esta manera es como puede entenderse la extensión del método científico a todos los campos especiales del conocimiento.

Pero también debería emplearse el método de la ciencia en las ciencias aplicadas y, en general, en toda empresa humana en que la razón haya de casarse con la experiencia; vale decir, en todos los campos excepto en arte, religión y amor. Una adquisición reciente del método científico es la investigación operativa (operations research), esto es, el conjunto de procedimientos mediante los cuales los dirigentes de empresas pueden obtener un

fundamento cuantitativo para tomar decisiones, y los administradores pueden adquirir ideas para mejorar la eficiencia de la organización¹⁰. Pero, desde luego la extensión del método científico a las cosas humanas está aún en su infancia. Pídasele a un político que pruebe sus afirmaciones, no recurriendo a citas y discursos, sino confrontándolos con hechos certificables (tal como se recogen y elaboran, por ejemplo, con ayuda de las técnicas estadísticas). Si es honesto, cosa que puede suceder, o bien: a) admitirá que no entiende la pregunta, o b) concederá que todas sus creencias son, en el mejor de los casos, enunciados probables, ya que sólo pueden ser probados imperfectamente, o c) llegará a la conclusión de que muchas de sus hipótesis favoritas (principios, máximas, consignas) tienen necesidad urgente de reparación. En este último caso puede terminar por admitir que una de las virtudes delmétodo de la ciencia es que facilita la regulación o readaptación de las ideas generales que guían (o justifican) nuestra conducta consciente, de manera tal que ésa pueda corregirse con el fin de mejorar los resultados.

Desgraciadamente, la cientifización de la política la haría más eficaz, pero no necesariamente mejor, porque el método puede dar la forma y no el contenido; y el contenido de la política está determinado por intereses que no son primordialmente culturales o éticos, sino materiales. Por esto, una política científica puede dirigirse a favor o en contra de cualquier grupo social: los objetivos de la estrategia política, así como los de la investigación científica aplicada, no son fijados por patrones científicos, sino por intereses sociales. Esto muestra a la vez el alcance y los límites del método científico: por una parte, puede producir saber, eficiencia y poder; por la otra, este saber, esta eficiencia y este poder pueden usarse para bien o para mal, para libertar o para esclavizar.

12. El método científico: ¿un dogma más?

¿Es dogmático favorecer la extensión del método científico a todos los campos del pensamiento y de la acción consciente? Planteamos la cuestión en términos de conducta. El dogmático vuelve sempiternamente a sus escrituras, sagradas o profanas, en búsqueda de la verdad; la realidad le quemaría los papeles en los que imagina que está enterrada la verdad: por esto elude el contacto con los hechos. En cambio, para el partidario de la filosofía científica todo es problemático: todo conocimiento fáctico es falible (pero perfectible), y aun las estructuras formales pueden reagruparse de maneras más económicas y racionales; más aún, el propio método de la ciencia será considerado por él como perfectible, como lo muestra la reciente incorporación de conceptos y técnicas estadísticas. Por consiguiente, el partidario del método científico no se apegará obstinadamente al saber, ni siquiera a los medios consagrados para adquirir conocimiento, sino que adoptará una actitud investigadora; se

¹⁰ Véase P. M. Morse y G. E. Kimball, Methods of Operations Research, ed. rev. (Cambridge, Mass., The Technology Press of Massachussets Institute of Technology; N. York, John Wiley & Sons, 1951).

esforzará por aumentar y renovar sus contactos con los hechos y el almacén de las ideas mediante las cuales los hechos pueden entenderse, controlarse y a veces reproducirse.

No se conoce otro remedio eficaz contra la fosilización del dogma —religioso, político, filosófico o científico— que el método científico, porque es el único procedimiento que no pretende dar resultados definitivos. El creyente busca la paz en la aquiescencia; el investigador, en cambio, no encuentra paz fuera de la investigación y la disensión: está en continuo conflicto consigo mismo, puesto que la exigencia de buscar conocimiento verificable implica un continuo inventar, probar y criticar hipótesis. Afirmar y asentir es más fácil que probar y disentir; por esto hay más creyentes que sabios, y por esto, aunque el método científico es opuesto al dogma, ningún científico y ningún filósofo científico debieran tener la plena seguridad de que han evitado todo dogma.

De acuerdo con la filosofía científica, el peso de los enunciados —y por consiguiente su credibilidad y su eventual eficacia práctica— depende de su grado de sustentación y de confirmación. Si, como estimaba Demócrito, una sola demostración vale más que el reino de los persas, puede calcularse el valor del método científico en los tiempos modernos. Quienes lo ignoran íntegramente no pueden llamarse modernos; y quienes lo desdeñan se exponen a no ser veraces ni eficaces.

¿Qué significa "ley científica"?

1. Cuatro significados del término "ley científica"

Probablemente la mayoría de los científicos y metacientíficos concuerden en que la corriente central de la investigación científica consiste en la búsqueda, explicación y aplicación de las leyes científicas. Sin embargo, sólo unos pocos estudiosos de la ciencia concuerdan respecto de lo que designa el .término "ley" en el contexto de la ciencia. Así, por ejemplo, la expresión "ley de Newton del movimiento" se interpreta unas veces como cierta pauta objetiva del movimiento mecánico. Otras veces los mismos términos designan la fórmula de Newton "Fuerza = masa x aceleración", o cualquier otro enunciado que la incluye. Finalmente, "la ley de Newton del movimiento" se entiende a veces como una regla de procedimiento por medio de la cual se puede predecir o controlar las trayectorias de los cuerpos. En el primer caso se hace referencia a un trozo de la realidad física; en el segundo, el designado (designatum) es una pieza del conocimiento; en el tercero, es una regla de acción.

A cuál de los tres designados se refiere el científico cuando habla acerca de la "ley de Newton del movimiento, dependerá de las circunstancias o del contexto en que usa la expresión, así como de su filosofía explícita o tácita. Si concede que el mundo físico subsiste aun cuando no haya quien lo perciba o lo piense, entonces la expresión en cuestión podrá significar una conexión objetiva entre las cualidades fuerza, masa y aceleración, sea que se las mida o no. En cambio, si el científico no asigna existencia autónoma a los objetos físicos, entonces entenderá por "ley científica" una relación invariante entre términos anclados de alguna manera a datos de los sentidos (los cuales funcionarán como términos últimos o "hechos atómicos y no como señales elementales de nuestro comercio con las cosas). Y si sólo accede a hablar acerca de operaciones posibles, entonces podrá significar por "ley científica" cierta pauta de la conducta humana (p. ej.. la predicción) en relación con cierta clase de datos empíricos (cuya totalidad llamará "sistema de cuerpos en movimiento", o algo parecido), y cierto tipo de objetivo. En particular nuestro científico podrá sostener que tan sólo las "ecuaciones de laboratorio merecen ser llamadas leyes naturales, pues ellas —y no los principios de los cuales eventualmente se derivan— son comprobables directamente en el laboratorio. Finalmente, cualquiera que sea la preferencia filosófica de nuestro científico, si ha oído hablar de la física teórica contemporánea podrá admitir que hay una clase especial de enunciados que se refieren a las leyes mismas, y que operan como principios reguladores, tales como: "las leyes naturales no dependen de los sistemas de referencia ni, en particular, del cuadro de referencia del observador".

En total debiéramos distinguir, pues, por lo menos cuatro significados del término "ley" en

el contexto de las ciencias fácticas.

2. Nomenclatura propuesta.

Nunca se señala semejante variedad semántica. Sin embargo, debiera ser de utilidad distinguir entre los diversos significados del término "ley" tal como se lo usa en las ciencias naturales y sociales, así como la consiguiente adopción de una nomenclatura uniforme. Puesto que los cuatro significados corresponden al mismo término. sería conveniente añadirles subíndices con el fin de eliminar la ambigüedad señalada. Permítaseme proponer las siguientes reglas de designación:

- (1) Ley₁, o simplemente ley, denota toda pauta inmanente del ser o del devenir; esto es, toda relación constante y objetiva en la naturaleza, en la mente o en la sociedad.
- (2) Ley₂ o enunciado nomológico o enunciado de *ley*, designa toda hipótesis general que tiene como referente mediato una ley₁, y que constituye una reconstrucción conceptual de ella. Todo enunciado de ley tiene, en realidad. dos referentes: uno es la pauta de cierta clase de hechos, al que se supone que se adecua (nunca perfectamente) el enunciado en cuestión, podemos llamarlo el *referente mediato* del enunciado de ley. El *referente inmediato* de un enunciado nomológico es, en cambio, el modelo teórico al que se aplica exactamente. Así, por ejemplo, la mecánica analítica se refiere en forma mediata a las partículas materiales, siendo su referente inmediato el concepto llamado "sistema de puntos materiales".
- (3) Ley₃, o enunciado nomopragmático, designa toda regla mediante la cual puede regularse (exitosamente o no) una conducta. Las leyes₃ son casi siempre consecuencias de leyes₂ en conjunción con ítems de información específica. Una clase conspicua de este tipo de ley es la de los enunciados nomológicos predictivos, esto es, las proposiciones mediante las cuales se hacen predicciones (o retrodicciones) de sucesos singulares.
- (4) Ley 4, o enunciado *metanomologico*, designa todo principio general acerca de la forma y/o alcance de los enunciados de ley pertenecientes a algún capítulo de la ciencia fáctica.

Las leyes₁ son estructuras nómicas (pautas invariantes) al nivel óntico. Las leyes₂ son proposiciones (que a menudo toman la forma de ecuaciones) acerca de pautas objetivas: son pautas al nivel del conocimiento. Las leyes₃, son relaciones invariantes al nivel pragmático: son guías para la acción fundada científicamente. Y las leyes₄ son prescripciones metodológicas y/o principios ontológicos (hipótesis acerca de rasgos conspicuos de la realidad).

3. Ejemplificación de las distinciones

Consideremos nuevamente la ley del movimiento mecánico. Ésta puede considerarse como una pauta objetiva (ley₁) que diversos enunciados de ley (leyes₂) reconstruyen en diferentes aproximaciones. A saber: (a) la ley de Aristóteles "La fuerza es igual a la resistencia

multiplicada por la velocidad"; (b) y "La fuerza es igual a la masa multiplicada por la aceleración"; © la ley de Einstein "La fuerza es igual a la velocidad de variación del impulso"; (d) el teorema de Ehrenfest "La fuerza media es igual al valor medio de la velocidad de variación del impulso"; (e) el teorema de Broglie-Bohm "La fuerza exterior más la fuerza cuántica es igual a la velocidad de variación del impulso «ocultos»".

Al no haber "hechos generales", no es posible verificar directamente hipótesis generales como son los enunciados de leyes; ni es posible aplicarlos sin más. Sólo pueden comprobarse y usarse las consecuencias particulares de hipótesis científicas. Por consiguiente, ninguno de los enunciados de ley que acabamos de mencionar puede considerarse como una ley,, esto es, como una regla de acción. Pero ciertos teoremas deducidos de esas leyes serán leyes. Por ejemplo, toda solución de la ecuación de Newton con condiciones iniciales dadas (posición inicial x₀ y velocidad inicial v0) será una ley. Así, la ecuación de Galileo:

$$x(t) = x_0 + v_0 t + \frac{1}{2}g t^2$$

es una consecuencia verificable de la segunda ley del movimiento de Newton, F = ma, y se usa para predecir, por ejemplo, tiempos de caída (siempre que se especifiquen los valores de las variables y parámetros, esto es, a condición de que el enunciado universal se convierta en singular); por esto, la ley de Galileo es una típica "ecuación de laboratorio" que cumple nuestra definición de enunciado nomopragmático (ley₃).

Obsérvese que, a diferencia de la correspondiente ley_2 una ley_3 puede incluir ítems de informaciones específicas, tales como la posición y velocidad iniciales de un cuerpo, o el contorno de una membrana vibrante. Más aún, las $leyes_3$ no serán, en general, invariantes respecto de las mismas transformaciones que dejan invariantes a las correspondientes $leyes_2$. Vale decir, mientras que las leyes de los hechos no dependen de nuestro "punto de vista" (sistema de referencia, unidades de medición, y otras convenciones), las $leyes_3$, sí dependen de nuestro punto de vista. En otras palabras, la *descripción* de los fenómenos del presente, del pasado o del futuro depende esencialmente del operador, aun cuando los fenómenos mismos ocurran sin nuestra intervención. Las transformaciones que dejan invariante a la ley de Newton del movimiento (pero no a sus consecuencias) son las que constituyen el grupo de Galileo (X = x - vt). El principio de la relatividad del movimiento es el enunciado metanomológico (ley_4) que corresponde a la ley de Newton del movimiento, en efecto, dicho principio se refiere a esta ley del movimiento (y, específicamente, a sus propiedades de invariancia respecto de cierto conjunto de cambios en la representación de los fenómenos).

4. Justificación de la distinción entre leyes y enunciados de leyes

La distinción entre las leyes₁ y sus reconstrucciones conceptuales (leyes₂) debiera ser obvia para todo no idealista, aunque sólo sea por el hecho de que suele suponerse que un referente

mediato único (una ley₁) les corresponde a los diversos enunciados de leyes (leyes₂) de un cierto tipo, que se suceden históricamente. Semejante distinción está involucrada en la noción misma de perfectibilidad de la descripción científica de los hechos, que contrasta con la presunta constancia de las pautas de los hechos (presunción ésta que es indudablemente correcta en primera aproximación y en relación con cada uno de los niveles de la realidad, no así en relación con la totalidad de la realidad, puesto que la emergencia de nuevos niveles va acompañada de la emergencia de nuevas leyes).

Lo que habitualmente designa el término "ley de la realidad física o cultural" no depende de nuestro conocimiento, a menos que se trate de una ley del proceso cognoscitivo. Antes bien, nuestro conocimiento de las leyes₁ (esto es, las leyes₂) presupone la existencia de pautas objetivas. Si no hacemos esta distinción, podemos caer en la visión mágica del mundo exterior, propuesta por Chesterton (según la cual "no hay leyes, sino tan sólo repeticiones misteriosas" [weird]), o rendirnos a la conclusión no menos nihilista de Bridgman, de que "la naturaleza es intrínsecamente y en sus elementos incomprensible y no está sujeta a la ley". Normalmente, los científicos no aceptan ninguna de estas versiones del contingentismo, sino que se inclinan más bien a admitir el principio leibniziano de la inagotabilidad de los actuales, el correspondiente principio de Waismann de la textura abierta de los conceptos empíricos, y la hipótesis de que en el mundo exterior no hay repeticiones sino tan sólo leyes (probablemente) constantes, siendo la repetición una ficción inventada por el hombre para arreglárselas con la variedad y la novedad.

Las leyes₁ no son verdaderas ni falsas: simplemente son. Sólo las leyes₂ pueden ser más o menos exactas. Las leyes₁, aunque objetivas, no son objetos sensibles sino inteligibles: no percibimos las leyes, sino que las inferimos a partir de los fenómenos, tal como inferimos todo otro universal fáctico. Éste es el motivo por el cual los empiristas deben negar la existencia de las leyes, porque las leyes objetivas no son observables. Semejante inferencia dista de ser directa: no "aprehendemos" leyes, (a duras penas "aprehendemos los singulares") en su pureza, sin distorsión. El proceso del descubrimiento científico es cualquier cosa menos un mero reflejo de los hechos sobre la conciencia, por la vía de la percepción y de la inducción; es, por el contrario, un arduo trabajo de ensayo de reconstrucción, por medio de conceptos teóricos más o menos elaborados. En particular, las construcciones conceptuales llamadas "leyes científicas" (nuestras leyes₂) son las reconstrucciones cambiantes de las leyes objetivas en el nivel del pensamiento racional. O, si se prefiere, las construcciones conceptuales llamadas "leyes₂" son la proyección deformada e incompleta de las leyes₁ sobre el plano conceptual.

En suma, mientras las leyes de la naturaleza, del pensamiento y de la sociedad (leyes₁) son la estructura de la realidad, los correspondientes enunciados nomológicos (leyes₂) pertenecen a nuestros modelos ideales de la realidad, por lo cual se aplican —en el mejor de los casos—sólo aproximadamente, nunca con toda la exactitud deseada.

5. Justificación de la necesidad de las distinciones restantes

Ocupémonos ahora de esas pautas que empleamos en la descripción de fenómenos singulares en términos de esquemas generales, y que usamos cuando enriquecemos nuestra experiencia y la hacemos más exitosa. Los enunciados nomopragmáticos (leyes₃) no se consideran habitualmente como proposiciones que pertenecen a una clase aparte, acaso porque rara vez son axiomas independientes. En efecto, casi siempre son aplicaciones de leyes₂ a situaciones o a clases de situaciones especificas.

Los enunciados nomopragmáticos se deducen casi siempre de leyes₂ en conjunción con datos empíricos (esto es, proposiciones particulares que se refieren a miembros de esa subclase de hechos que llamamos "experiencia"). Esta peculiaridad se advierte claramente en el caso de los enunciados predictivos deducidos de los enunciados nomológicos y de las condiciones iniciales. Pero los datos empíricos no tienen por qué ser condiciones iniciales, valores de frontera, o trozos análogos de información específica. Considérese la ley (aproximadamente verdadera) de Cuvier, de la correlación morfológicas; una consecuencia de esta ley₂ es la conocida directiva para predicciones paleontológicas: "La reconstrucción del organismo entero sólo requiere el examen de una parte de sus restos", ejemplo típico de ley,. Obsérvese, de paso, que en relación con el uso de las leyes₂ ocurre la siguiente inversión de la relación hecho-ley: al establecer enunciados de leyes asignamos prioridad a los hechos, al menos en una etapa dada de la investigación; pero al *aplicar* las leyes₂ razonamos como silas leyes planearan por encima de los hechos cuya estructuray *tiempo* son en realidad. Así, por ejemplo,

con frecuencia pronunciamos frases de esta clase: "El hecho E es imposible porque su producción violaría la ley L". Con ello no queremos decir que los sucesos están sujetos a nuestros enunciados nomológicos; ni siquiera significamos que los hechos deben obedecer a las leyes₁. Sólo estamos haciendo predicciones sobre la base de enunciados de leyes.

¿Toda ley $_3$ no es sino consecuencia lógica de una ley $_2$, en conjunción con informaciones especificas? Decididamente, esto no es así en la mecánica cuántica que —a diferencia de la física clásica— contiene postulados que se refieren explícitamente a resultados posibles de los experimentos, a diferencia de aquellos que se refieren a posibles aspectos de las cosas en sí. Sea, por ejemplo, el siguiente axioma de la mecánica cuántica en su formulación e interpretación habituales: "Los autovalores a_n de un operador A_{op} , son los únicos resultados posibles de una medición exacta de la variable dinámica A representada por ese operador". O, si no, este otro postulado: "La probabilidad de hallar el valor a_n al medir la variable A es igual a c_n^2 , donde "c" designa el n-ésimo coeficiente del desarrollo de la función de estado en funciones propias del operador que representa a A". Ambos postulados son típicas leyes $_3$ porque no se refieren a las cualidades A de las cosas en sí, sino, al contrario, a las cualidades tales como nos son conocidas en la experimentación (donde se manifiestan acopladas con las cualidades del dispositivo experimental).

Si se arguyera que las que acabamos de mencionar no son leyes sino "meras" reglas semánticas que asignan un contenido empírico a ciertos símbolos (A_{op} , a_ny c_n), podrá arguirse que las leyes, no son reglas convencionales de significado, que establecen vínculos arbitrarios entre signos y designados, sino que, por el contrario, se supone que expresan pautas constantes de la experiencia, tal como lo prueba el hecho de que nos permiten recoger nuevas informaciones empíricas, así como controlar (al menos estadísticamente) ciertos procesos físicos.

Otra objeción podría ser la siguiente. Los ejemplos aducidos han sido tomados de la ciencia física; ¿hay algún motivo para sostener la distinción propuesta en el campo de las ciencias sociales? La respuesta es ésta: precisamente en las ciencias del hombre es donde debiera ser de mayor utilidad la distinción entre enunciado nomológico y enunciado nomopragmático. El sociólogo manipula leyes sociológicas (leyes, que pretenden dar cuenta de las leyes sociales, o leves del nivel social; pero también manipula reglas, prescripciones propuestas, e ideales de política social. Si no distingue las dos clases de enunciados puede confundir proposiciones científicas con consignas (las que pueden apoyarse sobre consideraciones científicas, pero que no son enunciados de las ciencias sociales). Las leyes sociológicas (leyes₂) no son ideales ni imperativos; tan sólo ciertos enunciados universales acerca de la práctica social (leyes₃) pueden convertirse en ideales o normas para ciertos grupos sociales en ciertas circunstancias (y a condición de que se los reformule en un lenguaje normativo). Desde luego, los ideales y las normas sociales, así como las propuestas de acción social, serán viables en la medida en que se funden sobre leyes, que encuadren con suficiente exactitud los hechos sociales. Pero esta relación de dependencia de los enunciados sociales nomopragmáticos respecto de las leyes sociológicas no implica que ambas clases de enunciados se recubren; los enunciados acerca de las pautas sociales pertenecen a las ciencias sociales, en tanto que los que se refieren a la política social pertenecen a la tecnología social.

Por último consideremos el cuarto significado de "ley científica". Probablemente fue en la física moderna donde se advirtió por primera vez la necesidad de disponer de enunciados explícitos de leyes*acerca de* las leyes. Las leyes₄ no son requisitos lógicos o metodológicos conocidos de antiguo, tales como "Los enunciados nomológicos deben ser generales, significativos y verificables". Las leyes₄ son reglas que guían la construcción de las teorías. Miembros conspicuos de esta clase de leyes son los siguientes: (a) el principio de la covariancia general ("Las ecuaciones que expresan leyes físicas deben ser invariantes de forma respecto de transformaciones generales y continuadas de coordenadas"); (b) el principio de la mecánica cuántica conforme al cual "Las cantidades observables deben representarse por operadores lineales hermíticos". El que estos principios (o reglas) se conserven en el futuro, queda por verse. Lo que nos interesa en este momento es que estos enunciados forman una clase aparte. Podría argüirse que son metacientíficos, o epistemológicos, puesto que hablan acerca de entes y procedimientos científicos; pero esto

sólo mostraría que la metaciencia no está del todo por encima de la ciencia, sino que está en parte, ocluida en ella.

6. Aplicación de la distinción entre leyes, y leyes, ¿son necesarias las leyes científicas?

Con excepción de los empiristas estrictos y de ciertos idealistas objetivos, habitualmente se sostiene, o se implica, que las leyes científicas son necesarias en algún sentido. El análisis de esta proposición requiere un examen semántico previo de los términos que ella pone en relación, que son "ley científica" y "necesario".

El término "ley científica", en la proposición "Las leyes científicas son necesarias", designa por lo común, e indistintamente, pautas objetivas de la naturaleza, de la mente o de la sociedad (esto es, nuestras leyes₁), y enunciados nomológicos (leyes₂). Esta ambigüedad es una de las fuentes de la controversia acerca de la necesidad de las leyes. En cuanto al término "necesario", se le asignan muchos más significados de los cuales los siguientes son pertinentes a nuestro propósito: (a) "necesario' es equivalente de relación constante y biunívoca (uno a uno) entre dos o más colecciones de objetos (p. ej., propiedades); (b) "necesario" es aquello que no podría ser de otra manera (lo opuesto de contingente); (c) "necesidad" significa conexidad lógica y, en particular, analiticidad (deducibilidad a partir de premisas admitidas anteriormente). Designemos las dos primeras acepciones con el término necesidad fáctica, y llamemos necesidad lógica a la conexidad lógica. Dejaremos de lado otros significados de "necesario", sea porque no tienen sentido en el presente contexto (como ocurre con la equivalencia de necesidad y legalidad, ecuación que convierte en tautológico al enunciado que estamos examinando), sea porque pueden incluirse en la necesidad fáctica, o bien porque equivalen a la categoría seudopsicológica de inconcebibilidad.

Tenemos dos clases de objetos generales (leyes₁ y leyes₂) y dos predicados "lógicamente necesario" (que simbolizaremos con L), y "fácticamente necesario" (que designaremos con F). Por consiguiente, a *priori* hay cuatro posibilidades: LF (necesidad lógica y fáctica), L¬F (necesidad lógica y contingencia fáctica), ¬LF (contingencia lógica y necesidad fáctica) y ¬(LF) (contingencia lógica fáctica). Examinémoslas.

(a) Leyes $_1$. Debemos excluir las posibilidades LF y L¬F en relación con las pautas objetivas, pues la necesidad lógica es una propiedad de los enunciados y no de los objetos concretos; quedan dos posibilidades ¬LF y ¬(LF). Propondré un argumento en favor de la tesis de que las leyes $_1$ son fácticamente necesarias y lógicamente contingentes.

Si las leyes₁ fuesen aisladas, si no constituyeran sistemas, entonces podría pensarse que son fácticamente contingentes, esto es, que podrían no haber sido lo que son. Pero las leyes constituyen sistemas nómicos regionales (esto es, redes que caracterizan cada nivel de la realidad); por consiguiente, cada una de las leyes no es contingente. Sin embargo, podría objetarse que nada nos garantiza la constancia de las leyes: ellas podrían cambiar y, más aún, ciertamente lo hacen cada vez que emergen nuevos niveles de la realidad. La cuestión es

averiguar si la variación de las leyes₁ —que es perfectamente concebible—, es a su vez contingente o necesaria. Habiendo admitido que las leyes₁ constituyen sistemas, debiéramos concluir que, si cambian, entonces lo hacen de manera necesaria, y en particular de manera legal, de modo que presumiblemente existen leyes de la variación de las leyes. Concluimos que es verosímil que las leyes sean fácticamente necesarias, pero es seguro que son lógicamente contingentes.

(b) Leyes₂. Puesto que éstas son construcciones conceptuales (constructs), $\neg LF y \neg (LF)$ no son posibles: examinaremos entonces las posibilidades restantes, que son $LF y L \neg F$. Arguiré que las leyes₂ son fácticamente contingentes y lógicamente necesarias en cierto sentido.

Tomado aisladamente, todo enunciado nomológico es lógicamente contingente, puesto que un mismo grupo de fenómenos puede describirse por medio de un número ilimitado de hipótesis universales que merecen el nombre de "leyes". Esto, que es en esencia el argumento de Russell contra el principio de legalidad, vale para generalizaciones tales como las llamadas curvas empíricas, ya que por un número finito de puntos puede hacerse pasar infinitas curvas. Pero deja de valer cuando el enunciado nomológico en cuestión es incluido en una teoría, esto es, cuando se pone en contacto lógico con otros enunciados de leyes: en este caso, no sólo tiene el apoyo de sus casos favorables, sino que también gana el apoyo de hipótesis relacionadas con él, adquiriendo así, en cierta medida, el carácter de lógicamente necesario. Lo mismo se aplica a fortiori a aquellos enunciados nomológicos que son deducibles de axiomas o principios: son analíticos derechamente.

Parece, pues, que podemos concluir: (a) que las leyes₁ (pautas objetivas) son fácticamente necesarias pero lógicamente contingentes; (b) que las leyes₂ (enunciados nomológicos) son fácticamente contingentes y lógicamente necesarias, no en el sentido de ser impuestas por axiomas lógicos, o por principios inmutables de la razón, sino porque están o tienden a estar relacionadas lógicamente con otros enunciados de leyes.

7. Aplicación de la distinción entre leyes $_2$ y leyes $_3$: ¿es la causalidad una propiedad intrínseca de las leyes?

La distinción propuesta puede contribuir a eliminar varios malos entendidos en las filosofías de la ciencia corrientes. Por ejemplo, la distinción entre enunciados nomológicos (leyes₂) y nomopragmáticos (leyes₃) ayuda a aclarar la diferencia de especie que separa la explicación científica de la predicción científica, que se niega tan a menudo¹¹. La diferencia es habitualmente borrada por los metacientíficos que restringen sus análisis a la estructura lógica de ambas operaciones, que en efecto es una. Lo que deseo explicar es el hecho de que

¹¹ Para la elaboración de este punto, cf. el libro del autor *Causality: The Place of the Causal Principie in Modern Science* (Cambridge, Mass., Harvard University Press, 1959), cap. 12. Hay una versión española publicada por la Editorial Universitaria de Buenos Aires, 1961. (N. del E.).

sobre la base de enunciados de leyes causales (o parcialmente causales) se pueden proponer *explicaciones causales* (o parcialmente causales), esto es, explicaciones en términos de causa, pero muy pocas veces predicciones que sean "causales" en la misma medida.

En efecto, la mayoría de las predicciones que se hacen sobre la base de enunciados de leyes -sean causales o no-tienen un componente estadístico que puede estar ausente de la correspondiente ley₂. Así, por ejemplo, las predicciones astronómicas concernientes a las posiciones de los cuerpos celestes son siempre parcialmente estadísticas, en el sentido de que incluyen la estimación del error probable. En compensación, los enunciados de leyes, con fines de verificación, predicción o acción —esto es, las leyes₃— pueden tener un ingrediente causal ausente de la correspondiente ley, (si es que tienen correspondencia en el nivel gnoseológico). Esto ocurre toda vez que podemos controlar algunas de las variables relacionadas por el enunciado nomológico en consideración. El conjunto de las variables bajo control experimental se llama a menudo "causa", si, al cambiar sus valores de manera prescripta, se produce invariablemente cierto efecto de una manera unívoca, sin que a su vez influya apreciablemente sobre la "causa". Sin embargo, esto no basta para asegurar que la relación dada —esto es, la ley₂— sea ella misma causal. Para asegurarlo tendríamos que probar que, eligiendo el conjunto complementario de variables como parámetros bajo control experimental (esto es, manipulando el efecto anterior como causa), la conexión variará. Pues si la conexión permanece invariable (si la relación es simétrica), entonces no puede llamarse propiamente causal, pues, por definición, la causación es una conexión asimétrica.

En conclusión, los ingredientes causal y estadístico de una ley natural o social dada no son siempre propiedades intrínsecas de ella, sino que varían según que se trate de un enunciado nomológico o nomopragmático. Por esto es útil, cuando se discute el problema de la legalidad y de la causalidad, aclarar si se hace referencia a leyes o a enunciados que se usan con fines predictivos o con otros propósitos vinculados con la experiencia. Adviértase, de pasada, que el mero hecho de que puede trazarse una distinción neta entre enunciados nomológicos y enunciados nomopragmáticos constituye un argumento en contra de la pretensión operacionista de que el significado de una proposición sintética consiste en la técnica de su verificación.

8. Los ideales de la ciencia en términos de los diversos niveles de significación de "ley"

Sobre la base de las distinciones elaboradas y justificadas en lo que precede, podríamos comprimir los ideales de la investigación científica fundamental en las siguientes máximas: (1) Legalidad. Los hechos singulares (sucesos y procesos) tales como el lanzamiento del *sputnik*, la última pesadilla del lector, o la última huelga de la historia, deberán considerarse como casos particulares de leyes₁, (o, más exactamente, como secciones de haces de leyes₁). (2) Cognoscibilidad. Las leyes₁ no son perceptibles pero son cognoscibles. Su conocimiento se corporiza en hipótesis generales (particulares o universales) que pueden llamarse "leyes₂"

- o "enunciados nomológicos".
- (3) Limitación y perfectibilidad. Toda ley₂ tiene un dominio de validez peculiar y es falible porque depende en parte de la experiencia; pero todo enunciado nomológico puede perfeccionarse tanto en extensión como en precisión.
- (4) Generalidad del conocimiento fáctico. Los enunciados fácticos singulares son deducibles de enunciados fácticos generales (hipótesis llamadas "leyes₂"). A esto se reduce, desde el punto de vista lógico, la explicación científica de los hechos.
- (5) Sistematicidad. Las leyes₂ constituyen sistemas lógicamente organizados o, al menos, organizables. La mayoría de las leyes₂ son deducibles de hipótesis de tipo más elevado; las de máximo grado en un contexto dado se llaman "axiomas" o "principios". Esto es, la mayoría de los enunciados nomológicos son aplicables en términos de leyes₂ de un grado de generalidad aún mayor (p. ej., las ecuaciones de movimiento son deducibles de principios variacionales). En esto consiste la explicación científica de las leyes.
- (6) Generalidad de los enunciados empíricos. Los enunciados empíricos singulares (los que se refieren a la subclase de hechos que llamamos "experiencia") son deducibles de hipótesis que pueden llamarse "leyes₃". Estas últimas proposiciones son las herramientas de la predicción; contienen variables (ligadas), tales como el tiempo y/o constantes descriptivas que resumen ítems de información específica (tal como los precios del trigo de un año dado). (7) La legalidad de las leyes. Los enunciados nomológicos (leyes₂) encuadran en ciertos esquemas generales que pueden denominarse "leyes". La exigencia (inadecuada) de que todas las leyes debieran ser expresables como ecuaciones diferenciales, y el principio (plausible) de covariancia pertenecen a esta clase de proposiciones (o, mejor, de propuestas). Pueden considerarse como prescripciones metodológicas y/o como suposiciones ontológicas.

Dado que siete es un número célebre por sus propiedades, podemos terminar en este punto nuestra tentativa de caracterizar la ciencia en términos de los diversos significados de la palabra "ley", multiplicidad semántica que ha originado famosos embrollos.

Filosofar científicamente y encarar la ciencia filosóficamente

1. Lugar de la epistemología en la universidad argentina.

Es fácil advertir cuán modesto es el lugar que actualmente ocupa la filosofía de la ciencia en nuestras universidades. Si se exceptúan los pintorescos cursos de "epistemología de la ingeniería" de años recientes, la filosofía de la ciencia se ensena solamente en las facultades de filosofía, y en éstas no ocupa un lugar importante. ¿Qué importancia puede dársele a uno de los pocos cursos de filosofía sistemática que figuran en un plan de estudios que parece confeccionado a la medida de especialistas en filosofía grecorromana y medieval? ¿Qué importancia puede tener un único curso de filosofía de la ciencia, comparado con todos los cursos de filosofías y de lenguas muertas? Es una de tantas materias, acaso la más humilde de todas.

Tan poca importancia se le asigna a la filosofía de la ciencia en nuestra universidad, que el estudiante es lanzado a ella inerme. No se le dota, por ejemplo, de nociones científicas de nivel universitario; no se le equipa con las herramientas de la lógica moderna y del análisis lógico del lenguaje; ni siquiera se le exige un conocimiento suficiente del inglés, del alemán y del francés. Es claro que a menudo se hallaba consuelo en la circunstancia de que tampoco se exigían estos requisitos elementales a quienes ensenaban la materia o simulaban hacerlo. La filosofía de la ciencia está arrinconada en el plan de estudios y, en general, en el panorama filosófico del país. Entre nosotros no se considera deseable que el filósofo se inspire en el modo de proceder del científico, quien comienza por los hechos, luego los describe y más tarde formula hipótesis y construye teorías para explicarlos; después deduce de ellas conclusiones particulares verificables, recurre eventualmente a nuevas observaciones o a nuevos cálculos, y contrasta sus conclusiones con estos resultados, y, finalmente, si lo halla necesario, corrige sus conjeturas sin compasión. Este severo carácter autocorrectivo de la investigación científica no suele estimarse superior al carácter oracular habitual en la filosofía tradicional, la que no siempre titubeaba en formular conjeturas sin fundamento y sin verificación.

Entre nosotros apenas se considera interesante la riquísima problemática filosófica que suscita la ciencia: para algunos, dicha problemática es demasiado estrecha, para otros demasiado árida, y para la mayoría de los filósofos y de los científicos ella apenas existe: se cree vulgarmente, en efecto, que la ciencia carece de problemas filosóficos y que no es más que una máquina de buscar datos. Entre nosotros suele encontrarse más cómodo adoptar una postura especulativa y de desprecio por los hechos y por la razón que adoptar una actitud crítica fundada en los hechos y que haga pleno uso de los instrumentos de la razón: es más

fácil proclamar la bancarrota de la razón y las limitaciones de la ciencia, anunciando que se está en posesión de fórmulas definitivas, o bien de una peculiar intuición que ahorraría el trabajoso camino de la investigación. Se busca la explicación última de todas las cosas sin atender a las explicaciones provisionales y perfectibles de la ciencia.

¿A qué se deben el descuido de la epistemología y el desdén por la actitud científica entre nosotros?

2. Algunos de los motivos del atraso de la epistemología en Latinoamérica

La epistemología apenas se cultiva en Latinoamérica, y ni siquiera goza en ella de buena reputación. La reputación ambigua de la epistemología en estas tierras parece deberse, entre otros, a los siguientes motivos:

- a) En nuestro medio aún no se ha difundido la noticia de que la ciencia se está convirtiendo en el núcleo de la cultura moderna; ni suele estimarse que para filosofar con sentido, rigor y fruto en pleno siglo XX sea necesario estar al corriente de las grandes conquistas y de los grandes problemas de la ciencia, así como adoptar una actividad científica ante los problemas filosóficos.
- b) Durante el último medio siglo han proliferado en Europa, y se han exportado a Latinoamérica, las corrientes irracionalistas. Al negarse la razón y exaltarse en su lugar la intuición, al rechazarse el dato fundado y abrazarse al mito, se niega la ciencia, que es un enfoque racional del mundo, y por consiguiente se niega la epistemología que es la teoría de ese enfoque racional de los hechos materiales y espirituales. En algunos países, el irracionalismo moderno puede interpretarse como síntoma de decadencia social; en nuestra América, tan necesitada de razón, esa mercancía importada goza de gran consumo porque es el complemento intelectual del analfabetismo y del atraso técnico y científico. El irracionalista europeo puede tolerar la ciencia a condición de que no conforme la visión del mundo: la Weltanschauung ha de seguir siendo mítica y no científica, pues quien conoce algo acerca del reloj del mundo puede pretender corregir su atraso. Entre nosotros, la prédica irracionalista es menos compleja: es el complemento filosófico de las pretensiones por retornar a la colonia, a la economía pastoril, a la cultura tradicional de corte predominantemente histórico-literario. No es dable esperar estímulos a la investigación epistemológica en un medio donde las corrientes oscurantistas gozan de mayor prestigio y poder que las iluministas, en un medio donde se habla más de la pretendida crisis de la ciencia que de sus éxitos.
- c) El nivel científico de Latinoamérica es bajo, aunque sube rápidamente. Tenemos un notable déficit de científicos: necesitamos con angustiosa urgencia matemáticos, físicos, químicos, biólogos, psicólogos y sociólogos que contribuyan a la explotación racional de nuestras riquezas, a suplir nuestras deficiencias económicas y a superar la etapa de la cultura colonial. ¿Cómo asombrarse de que entre los escasos científicos latinoamericanos, recargados de

tareas de toda índole, no haya surgido un número ponderable de epistemólogos? Presumiblemente, a lo sumo diez de cada cien científicos suelen tener inquietudes filosóficas, y de estos diez apenas uno se resuelve a encararlas de manera sistemática. En países cuyos científicos puros no llegan a mil, apenas puede esperarse que haya diez epistemólogos.

d) Los filósofos de tipo tradicional no son los únicos escépticos acerca de la utilidad de la epistemología: también la mayoría de los científicos suelen considerarla pasatiempo de profesores jubilados o de discutidores sin prisa por alcanzar resultados "positivos". Es un hecho que, hasta hace una veintena de años, casi todos los científicos que abordaban cuestiones filosóficas lo hacían al promediar su carrera o al terminarla. Este fenómeno no se debe solamente a la información unilateral que suele recibir el especialista: en parte se debe a que, para poder advertir la existencia de problemas filosóficos en el seno mismo de una especialidad científica, y para dedicarse a abordarlos, se necesita adquirir cierta experiencia y despojarse, así sea transitoriamente, de la prisa juvenil que reclama la obtención de resultados inmediatos aun a costa de la profundidad de su comprensión. Esta prisa es particularmente justificable entre nosotros: nuestros científicos, en su mayoría jóvenes, tienen aguda conciencia de que América latina no terminará de incorporarse al mundo culto mientras la aventura bélica, política y deportiva gocen en ella de mayor prestigio y protección que esa estupenda aventura intelectual que es la ciencia. Pero tarde o temprano nuestros investigadores advertirán —como les ha ocurrido a casi todos los científicos de primera línea— que quien encuentra grandes soluciones es quien enfoca los problemas con más amplitud, quien adopta una actitud filosófica ante la ciencia, es decir, quien sitúa el problema dado en su contexto más amplio y está dispuesto a revisar los fundamentos mismos de las teorías o de las técnicas. Así nació la ciencia moderna y así se renovó en el curso del último siglo.

Todas estas circunstancias contribuyen a crear un clima poco propicio para la investigación epistemológica. Afortunadamente, todas ellas son sólo aspectos de nuestra inmadurez económico-social y cultural; por lo tanto, es dado predecir que habrán de extinguirse a medida que nos desarrollemos.

Pero ya es hora de averiguar qué se entiende por "epistemología".

3. Filosofia y ciencia

Cuando decimos "filosofía y ciencia", el signo "y" puede significar la afirmación simultánea de ambos términos, o bien una relación cualquiera entre ellos. Si queremos ser más precisos, debemos recurrir, no ya a una conjunción, sino a las preposiciones, por figurar éstas entre los equivalentes lingüísticos de las relaciones lógicas. Juguemos, pues, un rato con las preposiciones, como una de las maneras de averiguar el nombre más correcto de nuestra disciplina.

Empecemos por "de". Si decimos "filosofía de la ciencia", damos a entender que se trata del

examen filosófico de la ciencia: de sus problemas, métodos, técnicas. estructura lógica, resultados generales, etc. Y así es: de todo esto se ocupa la epistemología; pero también de algo más. Probemos "en". Por "filosofía en la ciencia" o, más exactamente, "filosofía de la filosofía en la ciencia" debiéramos entender, quizás, el estudio de las implicaciones filosóficas de la ciencia, el examen de las categorías e hipótesis que intervienen en la investigación científica, o que emergen en la síntesis de sus resultados. Por ejemplo, las categorías de materia, espacio, tiempo, transformación, conexión, ley y causación; e hipótesis tales como "La naturaleza es cognoscible o "Todos los sucesos son legales". De acuerdo también de esto se ocupa la epistemología; y sin embargo no basta. ¿Qué nos dirá la expresión "filosofía desde la ciencia? Sugiere que se trata de una filosofía que hace pie en la ciencia, que ha sustituido la especulación sin freno por la investigación guiada por el método científico, exigiendo que todo enunciado tenga sentido y que la mayoría de las aseveraciones sean verificables.

Y ¿qué designa "filosofía con la ciencia"? Esta expresión sugiere —ambiguamente— que se trata de una filosofía que acompaña a la ciencia, que no se queda detrás de ella, que no especula sobre el ser y el tiempo al margen de las ciencias que se ocupan de los distintos tipos de ser y de acaecer: que es, en suma, una disciplina que no emplea conocimientos anacrónicos ni trata de forzar puertas ya abiertas. Examinemos, por último, la expresión "filosofía para la ciencia". Sugiere una filosofía que no se limita a nutrirse de la ciencia, sino que aspira a serle útil, al señalar, por ejemplo, las diferencias que existen entre la definición y el dato, o entre la verdad de hecho y la proposición que es verdadera o falsa independientemente de los hechos: será ésta una filosofía que no sólo escarbe los fundamentos de las ciencias para poner en descubierto las hipótesis filosóficas que ellas admiten en un momento dado, sino que además aclare la estructura y función de los sistemas científicos, señalando relaciones y posibilidades inexploradas.

Todo eso es, en efecto, la epistemología: filosofía de, *en, desde*, con y para la ciencia. Para ser equitativos con las cinco preposiciones, convengamos en no emplear ninguna de ellas, eligiendo en cambio un término único que posea todos esos significados. ¿Por qué no epistemología, que etimológicamente significa teoría de la ciencia? O ¿por qué no metaciencia, que significa ciencia de la ciencia? Cualquiera de estas denominaciones tiene la ventaja de que no reduce el ámbito de la disciplina en cuestión a un capítulo de la teoría del conocimiento, sino que permite abarcar todos los aspectos que pueden presentarse en el examen de la ciencia: el lógico, el gnoseológico, y eventualmente el ontológico.

Pero ¿no podríamos proseguir el juego con otras preposiciones, tales como "contra", "sobre" o "bajo"? Es verdad, éstas sirven para caracterizar otras tantas relaciones posibles entre la filosofía y la ciencia; pero veremos que no son adecuadas. En efecto, "filosofía contra la ciencia" es toda filosofía irracionalista o aquella que, sin serlo del todo, es enemiga del método científico.

Aunque escasas y escuetas, hay, sin embargo, filosofías de la ciencia que niegan extensión

y valor a la ciencia o la amputan radicalmente, y que además no encaran los problemas de la ciencia de manera científica o siquiera inteligible. Una epistemología que no sea parasitaria, sino que se esfuerce por ser útil a la ciencia, debe empezar por respetarla, aunque no necesariamente con servilismo, ya que la ciencia siempre puede aprender de la critica filosófica fundada. Quien filosofa contra la ciencia o aun al margen de ella, imita a los escolásticos que rehusaban mirar por el anteojo astronómico de Galileo.

En cuanto a las preposiciones "sobre" y "bajo", al enlazar los términos 'filosofía" y "ciencia" sirven para designar concepciones muy estrechas del lugar y de la función de la epistemología. Si decimos "filosofía sobre la ciencia", significamos una ciencia superior en valory poder a las ciencias particulares: una scientia rectrix con tales pretensiones de rectoría que los científicos se burlan de ella y con razón, pues la investigación científica no tolera úcases. Por su parte la expresión "filosofía bajo la ciencia" sugiere la posición inversa, de dependencia unilateral de la filosofía respecto de la ciencia: es éste un error que los epistemólogos no cometen en los hechos, aunque a veces lo proclaman como la más excelsa de las virtudes epistemológicas. La filosofía de la ciencia no sólo comporta el examen de los supuestos filosóficos de la investigación científica, sino que tiene derecho a una elaboración creadora en un nivel diferente del científico aunque reposa sobre él: el nivel metacientífico. No hay pensador más entremetido que el epistemólogo: hoy señala una hipótesis filosófica oculta en un sistema teórico, mañana le discutirá al científico el derecho a usar cierta categoría en determinado contexto, y pasado mañana propondrá una teoría sobre determinada clase de conceptos o de operaciones de la ciencia. La epistemología no está por encima ni por debajo de la ciencia: está a la vezen la raíz, en los frutos y en el propio tronco del árbol de la ciencia. Es necesario distinguir los problemas metacientíficos de los científicos, pero no hay por qué inventar un abismo que los separe: acaso no exista problema científico que no suscite problemas filosóficos, ni problema filosófico que pueda abordarse con esperanza de éxito si no es adoptando una actitud científica.

Algunos filósofos carentes de formación científica son culpables de las filosofías de la ciencia que son anticientíficas o por lo menos acientíficas, del mismo modo que los científicos sin formación filosófica suelen ser los creyentes más fervorosos en la existencia de la filosofía de la ciencia, que a menudo es aquella que han aprendido en el libro de epistemología con que se han cruzado. No existe la filosofía de la ciencia en cuanto teoría única: apenas hay intentos, si bien cada vez más serios, por "cientificizar" la epistemología y, en general, la filosofía. La situación imperante en este dominio recuerda a la reinante en la física antes de la síntesis newtoniana, o en la biología antes de la síntesis darwiniana: hay muchos resultados dispersos que rompen los moldes caducos de las distintas escuelas, resultados que será preciso ir integrando, cortando para ello las alambradas de púas tendidas entre las escuelas que han hecho contribuciones positivas a la filosofía científica de la ciencia. Quienes emprendan la labor de podar las ramas secas, desarrollar las verdes y coordinarlas en sistemas coherentes —pero transitorios—, cumplirán la misión del sinoptikós de Platón. Pero no lo harán ya al

margen de la ciencia, no lo harán ignorando el saber moderno, sino que se fundarán sobre él. Toda época ha intentado integrar los conocimientos; nuestra época, la era de la ciencia, intenta integrar conocimientos más o menos verificados, pero no pretende elaborar síntesis cristalizadas.

4. Disciplinas contiguas a la epistemología

Si uno de los cometidos del epistemólogo es analizar la estructura lógica de las teorías científicas, entonces la lógica es, una de sus herramientas de trabajo. Naturalmente, el epistemólogo se servirá de la lógica de su siglo, sin ser necesariamente un especialista en ella, del mismo modo que el biólogo emplea la física de su siglo sin ser él mismo físico. Y la lógica de nuestro tiempo —me refiero a la lógica científica—se compone, esencialmente, de la lógica simbólica, o logística, y de la lógica inductiva o de la inferencia, probable. El epistemólogo que ignore la lógica formal moderna podrá confundir expresiones del tipo "Sócrates es mortal" con las del tipo "Sócrates fue maestro de Platón". Y quien ignore la existencia de la lógica de la inferencia no demostrativa, no advertirá las diferencias existentes entre el proceso constructivo de una teoría científica y su posterior reordenamiento racional.

Algo similar puede decirse de la semiótica o ciencia de los signos —y en particular, de los lenguajes—, en la que caben la sintaxis o teoría de las relaciones entre los signos, la semántica o teoría de las relaciones entre los signos y aquello que designan, y la pragmática o teoría del uso de los signos. Dado que toda ciencia emplea signos, el epistemólogo hará bien en emplear los resultados de la semiótica al analizar el lenguaje de la ciencia. Pero no exageremos. Aunque hay quienes sostienen que la filosofía de la ciencia es sólo lógica de la ciencia o a lo sumo análisis sintáctico y semántico del lenguaje científico; y aunque los formalistas afirman que el epistemólogo sólo debe interesarse por la estructura lógica de las teorías acabadas, es un hecho que las ciencias de la realidad no sólo trabajan con conceptos, sino también con cosas, tanto naturales como artificiales. Siendo los actos del científico tan importantes como su pensamiento, la epistemología no debiera limitarse a la lógica y el lenguaje de la ciencia: no debiera ser sólo teoría de teorías, sino también teoría de actos, es decir, metodología y no sólo metateoría. Por consiguiente, la lógica y la teoría de los signos son herramientas importantes del epistemólogo, pero no las únicas.

Muchos epistemólogos hallan tan interesante y fructífero el estudio del proceso de descubrimiento e invención como el de la exposición y justificación de los resultados. Más aún, la historia de la ciencia, si en ella se incluye la más reciente, es nada menos que la proveedora de la materia prima de la epistemología. ¿Por qué ha de interesar la dinámica de la ciencia menos que su estática? Rara vez un interés profundo por las ideas y los actos no lleva a inquirir sobre sus orígenes y desarrollo. Todavía más: la filiación histórica de unas y otros ayuda a comprenderlos. Así como el estado actual de una especie biológica no se entiende adecuadamente si no es como etapa de un proceso, así tampoco se entiende

acabadamente el quehacer científico sisólo se pone atención en sus resultados. Muchos de los esfuerzos del científico del pasado parecen tontos, y milagrosos los éxitos del moderno, si no se los ubica en su contexto histórico. Quien sostiene que el epistemólogo sólo debe ocuparse de la estructura lógica y —de haberlo— del fundamento empírico de las teorías acabadas, adopta una actitud fijista que lleva a petrificar los resultados, a olvidar que todos ellos son aproximados y perfectibles. Si sedesea estudiar en forma cabal una transformación —y la ciencia es cambiante en grado sumo— es menester adoptar una actitud transformista capaz de captar la dinámica de la averiguación científica.

Otro tanto puede decirse de la historia de la filosofía: a menudo se supone que el epistemólogo nada tiene que aprender de los filósofos del pasado, quienes no habrían hecho sino apilar error sobre error. Quien adopta esta actitud arrogante ante sus antecesores se expone a descubrir la pólvora en el mejor de los casos, y la piedra filosofal en el peor. Además, desdeña una de las fuentes de la actividad científica y, a la vez, uno de sus principales resultados, a saber, ciertos principios filosóficos referentes a la realidad en su conjunto, al conocimiento en general, etc. Estos principios participan —habitualmente en forma implícita— de la investigación científica, aunque sólo sea porque intervienen en la visión del mundo del investigador. La adopción de una actitud científica en filosofía, y el tratamiento riguroso de problemas metacientíficos, no implica desdeñar la totalidad de la filosofía tradicional; implica, más bien, abordar integramente su problemática, pero ahora sobre la base de los conocimientos científicos actuales y de las técnicas filosóficas actuales. Desde luego el epistemólogo científico desestimará ciertos problemas tradicionales por considerarlos meros enredos verbales, y concederá a otros problemas mucha menor importancia de la que tuvieron en el pasado. Pero, en compensación, abordará problemas acerca de cuyo solo enunciado no podían tener idea sus antecesores, tales como la estrategia de la experimentación, o las relaciones entre la probabilidad y la frecuencia, o la técnica de la construcción de teorías. El epistemólogo, en suma, no tiene por qué fingir que ha cortado todo vínculo con el pasado, ya que sobre el pasado se encarama, por radicales que sean las novedades que enuncia: si no quiere recaer en viejos errores, se esforzará por asimilar el pasado en lugar de desdeñarlo.

El epistemólogo que descuida o desdeña la historia de las ideas científicas y filosóficas adopta una postura tan altanera y cerrada como la del historiador de la filosofía que ignora la existencia de la filosofía de la ciencia o la confunde con el movimiento negador o retaceador de la ciencia. El fijista que ignora la historia de las ideas suele tomar por definitiva la teoría más reciente, rodeándola de un caparazón escolástico que más tarde podrá dificultar su desarrollo interno y su crítica epistemológica. Así ocurrió con la mecánica de Newton, así ocurre con la mecánica cuántica. Al proceder de esta manera, lejos de ser útil al progreso científico, el epistemólogo fijista podrá llegar a obstaculizarlo. Además, el fijista —que se priva nada menos que de contemplar la formación y el desarrollo de los conceptos— suele caer en la tentación de filosofar acerca de una ciencia atemporal, perfecta, inexistente,

imitando así al metafísico que inventa un "ser" inmutable e inaccesible, allende el acaecer ordinario. La epistemología, en suma, sin confundirse con la historia de las ideas y de las prácticas de la ciencia y de la filosofía, debe hacer uso de ellas, para poder ubicar su objeto en su contexto histórico.

Los empiristas tradicionales buscaban el significado de las ideas en sus raíces psicológicas: creyendo hacer filosofía hacían psicología del conocimiento. Los materialistas vulgares encontraban el significado de las ideas en su correlación con el medio natural y social en que ellas nacen y se desarrollan: creyendo hacer filosofía hacían sociología del conocimiento. La psicología y la sociología del conocimiento son o aspiran a ser ciencias particulares, no forman parte de la epistemología, aunque a menudo se las confunde con ésta, porque las tres hablan sobre la ciencia. Mientras la psicología de la ciencia estudia el correlato psíquico del concepto y del acto del científico; y mientras la sociología de la ciencia estudia la función social de la ciencia y eventualmente la responsabilidad social del científico, la filosofía de la ciencia, por su parte, se ocupa de los aspectos lógicos, gnoseológicos y ontológicos de la ciencia, y no del comportamiento individual o social del investigador científico. Sin embargo, sería miope el epistemólogo que no aprovechase las conclusiones que le brindan la psicología y la sociología del conocimiento, pues ellas le permiten ubicar y comprender más adecuadamente su objeto.

Las disciplinas que hemos mencionado —la epistemología, la lógica, la teoría del lenguaje, la historia de la ciencia y de la filosofía y la psicología y la sociología de la ciencia— se esfuerzan por saber qué es el saber. Por consiguiente, aunque difieren, distan de ser ajenas entre sí: cada una de ellas ilumina una faceta de un mismo objeto: el saber verificable.

5. Ciencias y humanidades

Apenas se discute ya que la ciencia es lo que distingue la cultura contemporánea de las anteriores. No sólo es el fundamento de la tecnología que está dando una fisonomía inconfundible a nuestra cultura material, sino que de continuo absorbe disciplinas que otrora fueron artísticas y filosóficas: ayer, la antropología, la psicología y la economía; hoy, la sociología y la historia; mañana, quizá, la estética y la ética. Además, la concepción del mundo del hombre contemporáneo se funda, en medida creciente, sobre los resultados de la ciencia: el dato reemplaza al mito, la teoría a la fantasía, la predicción a la profecía. La cultura social y la personal se tornan, en suma, cada vez más científicas. Hace un siglo, quien ignoraba La Ilíada era tildado de ignorante. Hoy lo es, con igual justicia, quien ignora los rudimentos de la física, de la biología, de la economía y de las ciencias formales. Con razón, porque estas disciplinas nos ayudan mejor que Homero a desenvolvernos en la vida moderna; y no sólo son más útiles, sino que también son intelectualmente más ricas.

Semejante actitud no implica desdén para con las artes y las llamadas humanidades; no significa que sea digno de admiración el especialista que permanece insensible a la belleza o

que menosprecia la investigación filológica. Lo criticable es que, en el siglo de los mayores avances sociales y de la energía nuclear, se siga sosteniendo que la literatura y la crítica literaria deben seguir siendo el eje de la cultura o por lo menos la base de la formación cultural. Modernicemos el concepto de humanidades y equilibremos los diversos ingredientes de la educación, ofreciendo las posibilidades de una educación integral y actual. Si la vida no es ni debe ser puro goce, y si la cultura no es ni debe limitarse a ser comentario de textos, entonces es preciso que renovemos las ideas acerca del lugar que deben desempeñar las artes y las humanidades en la educación moderna. Sostener que el goce estético y la educación para refinarlo deben ocupar un lugar más importante que la búsqueda de la verdad, de la utilidad y del bien social, no es hoy signo de cultura refinada, sino de incultura, de egoísmo, de frivolidad propia de salones victorianos.

¿Cómo es posible seguir sosteniendo que la ciencia y la filosofía de la ciencia son áridas, inhumanas o deshumanizadas, siendo por ello preciso dulcificarlas y dignificarlas mediante una dosis de las llamadas humanidades? ¿Acaso las teorías científicas y metacientíficas se encuentran en la naturaleza, para que pueda tildárselas de inhumanas? ¿No son acaso creaciones humanas, que suelen costar un esfuerzo de imaginación y de concepción mayor que la mayoría de las obras literarias y de crítica literaria? ¿Acaso las obras científicas y metacientíficas no emplean, además de elementos sensibles y del lenguaje diario, almacenes de experiencias, instrumentales conceptuales y lenguajes enormemente más ricos que los que usa el escritor? Consúltese cualquier revista científica y se advertirá cuán ardorosa —aunque controlada—es la imaginación requerida para inventar una teoría, o para hacer un cálculo aproximado, o para diseñar un instrumento. Sólo cree que la ciencia es pobre en concepto y en imágenes, y que la investigación científica carece de poesía, quien tiene pobres informaciones acerca de la vida de la ciencia. Junto con la filosofía, ella constituve la más rica creación del espíritu. ¿Por qué, entonces, oponer las humanidades a las ciencias, como si éstas fuesen menos humanas que aquéllas, y como si no fuesen precisamente las ciencias las que alcanzan el conocimiento más profundo y adecuado del hombre? Dígase más bien que las ciencias y las llamadas humanidades no son antagónicas sino complementarias, aun reconociendo que en la época contemporánea el centro de la cultura se desplaza de las humanidades a las ciencias.

¿Cómo lograr eficazmente la integración de la ciencia y de las humanidades en la enseñanza universitaria? La solución que suele ofrecerse en algunos países consiste en agregar trabajos de laboratorio al plan de estudios de las humanidades, y literatura al plan de estudios de ciencia. No debe asombrar que esta solución sumista fracase: lo que se agrega se considera materia "blanda", que se tolera y estudia a desgano, sin que deje rastros. No se logra una reorientación de los estudios universitarios y de la mentalidad de los estudiantes con el mero agregado de cursos. Si lo que se busca es una síntesis, debe ensayarse una solución integradora y no aditiva. ¿Por qué no ensayar el cultivo de una actitud filosófica en las ciencias naturales y sociales, y de una *actitud* científica en la filosofía y en las llamadas

humanidades? No hay por qué buscar la ciencia fuera de las humanidades, cuando lo que se requiere es encararlas en forma científica; ni hay por qué buscar la filosofía fuera de la ciencia, cuando se sabe que ésta posee sustancia filosofíca.

La epistemología es terreno particularmente adecuado para advertir la integración de la ciencia, de la filosofía y de las humanidades, y para promoverla. La epistemología se ocupa de los fundamentos y procedimientos de todas las ciencias, desde la geología hasta la lingüística; la epistemología muestra que la ciencia moderna es una actividad eminentemente espiritual. sirviéndose de la manualidad como de un medio. No es difícil mostrarle al estudiante de ciencia que el quehacer científico no es ajeno al espiritual, ya que se propone edificar sistemas de ideas; que, por añadidura, estos sistemas de ideas suponen hipótesis filosóficas y conducen al establecimiento de otras; y que toda ciencia plantea, a su vez, arduos problemas a la historia de las ideas, a la sociología y a otras disciplinas que suelen o solían considerarse humanísticas. No es necesario invectarle humanidades al científico: basta mostrarle que su propia ciencia las incluye o está relacionada con ellas. Exíjasele precisión conceptual al estudiante de ciencias y terminará esforzándose por afilar su lógica y por pulir su expresión literaria; muéstresele el valor intrínseco y social de la ciencia y convénzaselo de que es conveniente la transparencia lógica de los edificios teóricos para saber cómo repararlos o ampliarlos: de esta manera aprenderá a reconocer en su ciencia bastante más que el estudio de una determinada clase de objetos.

No conseguiremos que el científico sea un hombre culto obligándole a estudiar temas que no le interesan. Estimulémosle, en cambio, a que advierta la raíz gnoseológica y la armazón lógica de su especialidad; habituémosle a que repare en las conexiones de su especialidad con las demás disciplinas; acostumbrémosle a la idea de que su materia tiene un pasado y una función social, de la que en gran parte depende su futuro. Para conseguir todo esto lo más eficaz son las oportunas acotaciones del propio instructor de ciencias; pero como en todas partes son contados los profesores de ciencias que poseen información filosófica e históricosocial, conviene ensayar cursos especiales de filosofía y de historia de la ciencia. A la luz de estas disciplinas, el especialista y el aprendiz de especialista comprenden que la filosofía y las llamadas humanidades no son del todo exteriores a su materia; y al advertirlo se esforzarán por profundizar en estas dimensiones extracientíficas de su especialidad. Así, insensiblemente, se convertirá en un especialista culto. En cambio, del especialista que niega resueltamente que su ciencia tenga relación con la filosofía; de quien se desinteresa totalmente de la estructura lógica, de la evolución histórica o de la función social de su propia especialidad, de éste no puede decirse que sea un hombre culto aun cuando lea novelas o visite exposiciones de pintura. Será tan inculto por desechar todo el saber acerca de lo que a él le interesa saber, que ignorará qué es su propia ciencia.

6. Los estudios epistemológicos en la formación del científico

Hay, sin embargo, quienes piensan que, aunque el científico cobre conciencia de las implicaciones y proyecciones no científicas de su propio trabajo, no por ello será será más eficazen su especialidad: conceden que será más culto y que por consiguiente vivirá una vida más racional y más rica, pero arguyen que, en cambio, no descubrirá ni inventará más ni mejor, sino al contrario, pues se distraerá con las lecturas y meditaciones marginales a su especialidad. Esta difundida opinión refleja, sin duda, una preocupación responsable por ahorrar desvíos inútiles, pero no ha sido compartida por los grandes maestros del pensamiento científico, y es más bien típica de quienes toman los instrumentos por fines.

El estudiante de ciencias o el científico que alguna vez dedique una parte de su tiempo a estudios epistemológicos podrá obtener de éstos algunos de los siguientes beneficios:

- a) no será prisionero de una filosofía incoherente y adoptada inconscientemente; podrá entonces corregir, sistematizar y enriquecer las opiniones filosóficas que de todas maneras integran su visión del mundo;
- b) no confundirá lo que sepostula con lo que se deduce, la convención con el dato empírico, la cosa con sus cualidades, el objeto con su conocimiento, la verdad con su criterio, y así sucesivamente. Esto le ahorrará buscar demostraciones de definiciones, le impedirá confundir prueba lógico-matemática con verificación empírico-lógica y le ayudará a sopesar el soporte empírico de las teorías; no confundirá materia con masa ni atribuirá masa a toda cantidad de energía; no tomará "precedencia" ni "predictibilidad" por "causalidad", y no reducirá la explicación científica a su especie causal.

En general, se esforzará por entender los términos que emplea, tal como se esforzaron, antes que él, los científicos con mentalidad filosófica que construyeron la ciencia moderna;

- c) se habituará a explicar las suposiciones e hipótesis, lo que le permitirá saber qué es lo que hay que corregir cuando la teoría no concuerda satisfactoriamente con los hechos;
- d) se acostumbrará a ordenar sistemáticamente las ideas y a depurar el lenguaje; se habituará, en suma, a buscar la coherencia y la claridad;
- e) afilará su bisturí crítico: la meditación epistemológica, al habituar a exigir pruebas, es buen preventivo del dogmatismo;
- f) el científico con alguna formación epistemológica podrá mejorar la estrategia de la investigación, al proceder con mayor cuidado en el planeamiento de los experimentos o de los cálculos y en la formulación de las hipótesis, así como en la evaluación de las consecuencias de unos y otras. La epistemología ciertamente no ayuda a medir ni a resolver ecuaciones, pero en cambio ayuda a ubicar estas operaciones en el proceso de la investigación;
- g) su atención se desplazará del resultado al problema, de la receta a la explicación, de la ley empírica a la ley teórica. Ninguna teoría de contenido fáctico le satisfará en forma definitiva: siempre encontrará alguna objeción que hacerle. El estudio de la epistemología, al tornarlo protestón, podrá estimularlo a explorar nuevos territorios;
- h) la filosofía y la historia de la ciencia le acostumbrarán a considerar la marcha de la ciencia,

no como un desarrollo meramente aditivo, sino como un proceso en que cada solución plantea nuevos problemas, en que viejas hipótesis desechadas por un motivo pueden volver a cobrar interés por otro motivo, y en que cada problema tiene varias capas y, por lo tanto, varios niveles de solución. En cambio, para quien no enfoca la ciencia con una actitud filosófica e histórica, toda fórmula científica es trivial en cuanto a manejarla, y la teoría más reciente es la definitiva o por lo menos la penúltima. ¿No hay textos que califican de evidentes los principios de Newton, y no hay científicos que esperan con impaciencia la *teoría* futura?; i) se ampliará su horizonte, al enriquecerse el surtido de relaciones lógicas y de posibilidades de interpretación;

j) obrará con cautela cuando tantee terreno nuevo: extremará las exigencias de la verificación, dudará del valor de los datos empíricos que encajen en teorías endebles —o al menos los pondrá en cuarentena— y no dejará que los detalles le oculten lo esencial. Pero no por ello perderá coraje: antes bien, sentirá respeto por las teorías consagradas, aunque no reverencia por ellas. Así como no hay grandes hombres para su valet, tampoco hay teoría intocable para el científico que adopta una actitud filosófica, pues ve a la ciencia, por así decirlo, en pantuflas.

Por todos estos motivos conviene al desarrollo de la ciencia que los instructores de ciencia llamen la atención sobre los problemas filosóficos y las raíces históricas de las cuestiones científicas; por los mismos motivos conviene incluir el estudio de la filosofía y de la historia de la ciencia en los planes de estudio de las diversas ciencias particulares. Con ello no se agregarán conocimientos específicos acerca del mundo, pero sí se facilitará la correcta comprensión, profundización, ordenación y evaluación de dichos conocimientos. El científico o estudiante de ciencias que dedique alguna atención a este género de estudios no se distraerá necesariamente, sino que recibirá estímulos para encarar su tarea con mayor profundidad y responsabilidad, y hasta con más amor: advertirá que su trabajo es más complejo, más importante y hasta más bello de lo que había creído.

Desde luego, existe el peligro de que alguno se pase al campo de la epistemología o al de la historia de la ciencia. ¡Enhorabuena si lo hace! ¿No protestamos acaso por la escasez de filósofos e historiadores de la ciencia que conocen el objeto de sus estudios?

7. El aprendizaje y la enseñanza de la epistemología

Si no es difícil lograr que el estudiante de ciencias llegue a adoptar una actitud filosófica ante su propia especialidad, es de temer en cambio que, en las condiciones actuales, no sea fácil inducir a los estudiantes de filosofía a que adopten una actitud científica. En primer lugar, es la inmadurez de la propia epistemología, la que torna su estudio accidentado. En segundo lugar, porque nuestros estudiantes no han sido preparados para adoptar una actitud científica sino para lo contrario: salvo excepciones, se les ha inculcado indiferencia y a veces desprecio por la ciencia, y no se les ha dado la formación científica indispensable para abordar con

profundidad el estudio de la epistemología.

¿Es posible que existan estudiantes de preceptiva literaria que no sepan leer y escribir? No, porque se trata de una disciplina que versa *sobre* el lenguaje escrito y por lo tanto lo presupone. Y nadie haría caso de un analfabeto que pretendiera ensenarla. En cambio, entre nosotros no provoca asombro y escándalo el que se ensene filosofía de la ciencia a estudiantes que, en el mejor de los casos, sólo están equipados con los recuerdos de las nociones científicas elementales que aprendieron en la escuela secundaria. Y han sido contados los que, en nuestro medio, se han escandalizado de que hubiese audaces que simularan ensenar filosofía de la ciencia sin haber hecho jamás investigación científica, sin siquiera haber estudiado ciencias en el nivel universitario. Esto no ocurre, desde luego, en los centros culturales avanzados, donde la epistemología es ensenada por personas que investigan o han investigado en algún campo de la ciencia, a alumnos que poseen una preparación científica de nivel universitario. No se conoce otra vía para alcanzar un conocimiento adecuado del objeto mismo de la epistemología.

Ni siquiera basta tener nociones sobre la ciencia clásica si se quiere filosofar con provecho sobre la ciencia actual. Para hacer filosofía de la ciencia viva, para hacer epistemología útil a la ciencia, para poder detectar y abordar la problemática filosófica suscitada por la investigación científica que se está haciendo ante nuestra vista, es necesario —aunque ciertamente no es suficiente— tener un conocimiento de primera mano de esa misma ciencia actual. Y esto no le es dado, en toda su amplitud, a un solo individuo. Por esto, la epistemología como cualquier otra rama del saber y acaso más que otras, es una empresa colectiva, a la que contribuyen numerosos especialistas, filósofos de la lógica, de la matemática, de la física, de la biología, de las ciencias socio-históricas, etcétera.

La filosofía de la ciencia que no es ensenada por científicos a estudiantes que poseen una formación científica discreta, tiene mucho de farsa. Es hora de que el estudio de la epistemología cobre entre nosotros la seriedad que lo caracteriza en otras partes. Es hora de facilitar, a quienes deseen estudiarla con seriedad, los instrumentos lógicos, semióticos y científicos necesarios. Esta reforma es propugnada, entre nosotros, por la novísima Agrupación Rioplatense de Lógica y Filosofía Científica. Mientras ello no llegue, será conveniente que alumnos y profesores extrememos la modestia ante las ciencias que hayamos de examinar, tratando de entender sus rudimentos antes de criticarlas.

Para facilitar el aprendizaje científico previo a cualquier consideración epistemológica seria, se contará con la colaboración de científicos y estudiantes de ciencias, quienes estarán a disposición de los estudiantes de epistemología y, a su vez, tendrán oportunidad de informarse, por estos últimos, acerca de los problemas tradicionales de la filosofía, con muchos de los cuales entroncan los problemas filosóficos de la actualidad. En cuanto a las numerosas limitaciones del profesor, para subsanarlas aunque sea en parte, se solicitará el concurso de colegas y de especialistas en diversas ramas de la ciencia, para que expongan los problemas filosóficos que han encontrado en el curso de sus investigaciones. De esta

manera, cada uno de los participantes del curso aprenderá algo.

El curso de epistemología no tendrá una orientación filosófica definida: su objetivo será facilitar la adquisición de información amplia y objetiva, promover la discusión y, sobre todo, incitar a la meditación independiente. Desde luego, el profesor tendrá una orientación definida o la buscará, ya que el pensador sin brújula y sin norte suele carecer de ideas originales y coherentes, así como del entusiasmo necesario para proseguir la búsqueda y para contagiarlo a los demás. No hay filosofía viva sin diálogo y sin cierta parcialidad compatible con la objetividad; al mismo tiempo que se filosofa sobre un tema dado se dialoga con alguien y se teoriza contra alguien, aun cuando en la exposición final no se trasunten el diálogo ni la polémica.

Se tendrán en cuenta las principales orientaciones filosóficas, sin excluir las anticientíficas, aunque sólo sea para analizarlas científicamente. Pero no se tomarán por temas de estudio las escuelas y los autores, sino los *problemas* epistemológicos: ya es hora de abandonar el enfoque exclusiva y predominantemente escolástico e histórico de los problemas filosóficos; es hora de abordarlos sistemáticamente, como lo han hecho quienes han dicho algo nuevo. La tarea informativa quedará, así, subordinada a la labor formativa o, mejor, autoformativa; los autores servirán de peldaños y no de cadenas. Se preferirá el diálogo vivo a la recitación de datos, y la discusión inacabada al oráculo definitivo. Se tendrá la pretensión de guardar fidelidad al lema que eligieron los discípulos de uno de los fundadores de la ciencia moderna: *Provando e riprovando*.

Se intentará, en suma, adoptar una actitud científica ante los problemas epistemológicos, con la esperanza de que produzca frutos que convenzan a los científicos de la conveniencia de encarar filosóficamente la ciencia, y que persuada a los filósofos de que la filosofía rigurosa y fecunda no es un género literario sino una ciencia.

FUENTES

Este volumen contiene cuatro ensayos tomados, con algunas modificaciones, del libro del autor *Metascientific Queries* (Springfield, Ill. Charles C. Thomas, 1959). Los cuatro fueron publicados aisladamente en castellano, pero son hoy difíciles de hallar: el primero por la Facultad de Ingeniería de la Universidad de Buenos Aires (1958), el segundo por la Facultad de Filosofía y Letras de la misma Universidad (1958), el tercero por la Universidad Nacional de México (1958) y el cuarto por la revista Ciencia e Investigación (13, 244, 1957).