4. Übung

Informatik A

WS 13/14

Klaus Kriegel

Abgabe: 18.11.2013, 12:00 Uhr

Aufgabe 1:

KNF und DNF 1

(4 Punkte)

Konstruieren Sie die kanonische DNF und die kanonische KNF für die 3-stellige Boolesche Funktion f, die durch folgende Eigenschaft definiert ist:

 $f(x,y,z)=1 \Longleftrightarrow \mbox{ die Zahl } n=4x+2y+z$ hat beim Teilen durch 4 einen Rest ≥ 2

Vereinfachen Sie beide Normalformen soweit wie möglich.

Aufgabe 2:

KNF und DNF 2

(2+1+2+3 Punkte)

Es sei f_n die n-stellige Boolesche Funktion, die genau für solche n-Tupel den Wert 1 annimmt, welche mit i Nullen beginnen und mit n-i Einsen enden (für ein $0 \le i \le n$).

- a) Konstruieren Sie die kanonische DNF der Funktion f_3 und vereinfachen Sie diese Normalform soweit wie möglich.
- b) Aus wie vielen vollständigen Mintermen bzw. Maxtermen besteht die kanonische DNF bzw. KNF der Funktion f_n .
- c) Entwickeln Sie eine möglichst einfache KNF für die Funktion f_n . Hinweis: Wer b) richtig gelöst hat, sollte erkennen, dass die kanonische KNF als Startpunkt schlecht geeignet ist. Überlegen Sie statt dessen, wie man f_n als Konjunktion aus einfachen Implikationen ausdrücken kann.
- d) Entwickeln Sie eine DNF für die Funktion f_n , die nur aus $\lceil \frac{n+1}{2} \rceil$ Mintermen besteht und begründen Sie, dass diese Anzahl nicht verkleinert werden kann.

Aufgabe 3: Vollständigkeit von Signaturen

(3+2+1+2 Punkte)

- a) Zeigen Sie, dass die Signatur $\Sigma_1 = \{0, \rightarrow\}$ vollständig ist, aber die Signatur $\Sigma_2 = \{1, \rightarrow\}$ unvollständig ist.
- b) Zeigen Sie, dass die Signatur $\Sigma_3 = \{ \land, \leftrightarrow, \oplus \}$ vollständig ist (das ist etwas zum Knobeln).
- c) Zeigen Sie, das die Signatur $\Sigma_4 = \{ \land, \lor, \oplus \}$ unvollständig ist.
- d) Zeigen Sie, das die Signatur $\Sigma_5 = \{0, 1, \neg, \leftrightarrow, \oplus\}$ unvollständig ist.