- **9.1.1** Determine the payoff matrices for the following two-person zero-sum game.
 - (d) P_1 selects a number n from $\{1,2,3\}$, and P_2 is given two guesses. (P_2 's guesses must be from $\{1,2,3\}$ but need not be distinct.) After P_2 makes her two guesses, P_1 reveals his selected number n. If P_2 did not guess n, P_1 wins 2n from P_2 ; if P_2 did guess n, P_2 wins from P_1 an amount equal to P_2 's guess.

Solution. Considering the distinct permutations, the payoff matrix will look like:

$$\begin{array}{c|ccccc} & (1,2) & (2,3) & (3,1) \\ \hline 1 & -1 & 2 & -1 \\ 2 & -2 & -2 & -4 \\ 3 & -6 & -3 & -3 \\ \end{array}$$

9.2.1 Find strategy pairs that satisfy Principles I and II for the games with the following payoff matrices:

(a)
$$\begin{bmatrix} 3 & 1 & 2 \\ 1 & 0 & 5 \end{bmatrix}$$

Solution. Player 1's security level is maximized in row 1. Player 2's security level is maximized with column 2. The corresponding strategy pair is (s_1, t_2) .

(b)
$$\begin{bmatrix} 7 & 1 & 5 & 9 \\ 1 & 0 & 3 & 2 \\ 6 & 3 & 6 & 4 \end{bmatrix}$$

Solution. Similarly, (s_2, t_2) .

9.3.2 For each of the following payoff matrices, determine the set of values of x for which game has a saddle point, and for x in this set, determine the saddle point.

(c)
$$\begin{bmatrix} x & 1 \\ 3 & x \end{bmatrix}$$

Solution. For Player 1, the minimum of the rows are $\min(1, x)$ and $\min(3, x)$. For Player 2, the maximum of the columns are $\max(x, 3)$ and $\max(1, x)$.

We can iterate over the first few integers (not sure if this is the best way to do this...),

\overline{x}	u_1	u_2	Saddle?
0	0	1	no
1	1	1	yes
2	2	2	yes
3	3	3	yes
4	3	4	no
3	3	_	yes

For a saddle point to occur, $x \in \{1, 2, 3\}$ and the saddle point occurs on the x.

9.4.2 For the matrix game A,

$$A = \begin{bmatrix} -1 & 1 & 2 & 0 \\ 4 & -2 & -3 & 2 \\ 0 & 3 & 1 & -2 \end{bmatrix}$$

(a) Compute P_1 's security level for $X_1 = (2/3, 1/3, 0)$ and $X_2 = (1/3, 1/3, 1/3)$.

Solution. Player 1's security level is given by

$$u_1^{(1)} = \min_{Y \in T} \begin{pmatrix} 2/3 \\ 1/3 \\ 0 \end{pmatrix}^T A \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix}$$
$$= \min_{Y \in T} \begin{pmatrix} 2/3 & 0 & 1/3 & 2/3 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix}$$

This is minimized for Y = (0, 1, 0, 0) with $u_1^{(1)} = 0$. For $X_2 = (1/3, 1/3, 1/3)$, we find

$$u_1^{(2)} = \min_{Y \in T} \begin{pmatrix} 1 & 2/3 & 0 & 0 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix}$$

This is minimized with either $Y=(0,0,1,0),\,Y=(0,0,0,1),$ or a linear combination, with $u_1^{(2)}=0.$

(b) Compute P_2 's security level for $Y_1 = (1/4, 1/4, 1/4, 1/4)$ and $Y_2 = (0, 1/2, 0, 1/2)$.

Solution. Player 2's security level can be found with

$$u_2^{(1)} = \max_{X \in S} \begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} \begin{pmatrix} 1/2 \\ 1/4 \\ 1/2 \end{pmatrix}$$

This is maximized for either X=(1,0,0), X=(0,0,1) or a linear combination of these two with $u_2^{(1)}=1/2$. For the other mixed strategy, the security level is

$$u_2^{(2)} = \max_{X \in S} \begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} \begin{pmatrix} 1/2 \\ 0 \\ 1/2 \end{pmatrix}$$

This is maximized in the same way with $u_2^{(2)} = 1/2$.

(c) What can you now conclude about v_1 and v_2 ?

Solution. We can say that $v_1 \ge 0$ and $v_2 \le 1/2$, or

$$0 \le v_1 \le v_2 \le 1/2.$$