

Mecánica de Sólidos

01. Conceptos Básicos

Universidad Nacional de Colombia sede Manizales Departamento de Ingeniería Civil

> Michael Heredia Pérez mherediap@unal.edu.co

Docente Ocasional Ingeniero Civil Esp. en Estructuras Maestrando en Estructuras – Investigación

Derrotero

- 1.1. ¿Qué es la mecánica de sólidos?
- 1.2. ¿Qué es un sólido?
- 1.3. Diferenciales de primer, segundo y tercer órden
- 1.4. Fuerzas que actúan sobre un sólido

Advertencia

Estas presentaciones son solo una herramienta didáctica para guiar la clase, el estudiante no debe tomarlas como material de estudio y debe dirigirse a la literatura recomendada.

1.1. ¿Qué es la mecánica de sólidos?

Es la rama de la mecánica clásica que estudia el comportamiento de la materia sólida deformable sometida a acciones externas, como:

- Fuerzas superficiales
- Cambios de temperatura
- Desplazamientos aplicados

1.1. ¿Qué es la mecánica de sólidos?

Cinemática Dinámica Estática Mecánica celeste Mecánica relativista Mecánica estadística Mecánica Clásica Se habla de la descripción lagrangiana y euleriana Mecánica de fluidos Mecánica del medio continuo Teoría de la elasticidad Teoría de la plasticidad Obieto de Mecánica de sólidos este curso Resistencia de materiales

1.2. ¿Qué es un sólido?

Agrupación de las partículas en los diferentes estados. Tomado de: Estados de la materia: qué son y cuáles son sus características - Significados

Un sólido se caracteriza por:

- Oponer resistencia a la deformación (cambios de forma y de volume)
- Valores altos de módulo de elasticidad (E) y cortante (G)

1.2. ¿Qué es un sólido?

Sólido en función de su respuesta al esfuerzo aplicado

Sólido rígido

• Sólido elástico Objeto de este curso

Sólido visco-elástico

• Sólido plástico

8/8/2022

7

1.2. ¿Qué es un sólido?

Propiedades del sólido elástico

• Isotropía —— Propiedades físicas del material son las mismas en todas las direcciones

• Continuidad → No existen discontinuidades intersticiales
Discontinuidad

• Homogeneidad —— Cualquier muestra del sólido posee las mismas propiedades físicas

1.3. Diferenciales de primer, Segundo y tercer orden

Figura 1.2: Diferenciales de línea, de área (superficie) y de volumen. Estos son respectivamente diferenciales de primer, segundo y tercer orden.

1.3. Diferenciales de primer, Segundo y tercer orden

Figura 1.3: Variación de las funciones x, x^2 y x^3 . Observe que a medida de que x tiende a cero por la derecha, la función x^3 decrece mucho más rápido que x^2 (es decir, x^3 se vuelve cero primero que x^2) y esta última disminuye de forma aún más rápida que x. Por esta razón, es posible despreciar los diferenciales de tercer y segundo orden cuando estos se comparan con diferenciales de primer orden.

1.4. Fuerzas que actúan sobre un sólido

Fuerzas másicas

(body forces)

Están distribuidas en todo el sólido, de modo que estas actúan directamente en todas las partículas del cuerpo.

$$b(x, y, z) := [X(x, y, z), Y(x, y, z), Z(x, y, z)]^T$$

Fuerzas superficiales

(surface forces)

Están presentes únicamente en el contorno del sólido, y se producen por el contacto con otro sólido o fluido.

$$f(x, y, z) := [\bar{X}(x, y, z), \bar{Y}(x, y, z), \bar{Z}(x, y, z)]^T$$

Referencias

- Álvarez Diego A. (2022) Notas de clase del curso mecánica de sólidos. En preparación. (main.pdf)
- El material de las secciones 1.3. y 1.4 está explicado en los videos de YouTube que aparecen en la siguiente lista de reproducción:

https://youtube.com/playlist?list=PLOq9elBrzPDHGRNnsNqhGFy4IHYecCOm-