Ciencias de la Computación I Teoría de Grafos II

Eduardo Contrera Schneider

Universidad de la Frontera

9 de noviembre de 2016

Subgrafos

2 Isomorfismos

Grados

Subgrafos

Así como en teoría de conjuntos se definen conjuntos contenidos en otros más grandes, podemos hacer lo mismo con los grafos.

Subgrafo

Sean G = (V, E) y G' = (V', E') dos grafos. Si $V' \subseteq V$ y $E' \subseteq E$, entonces se dice que G' es un **subgrafo** de G (y G es **supergrafo** de G'), escrito como $G' \subseteq G$.

Menos formalmente decimos que G contiene a G'. Si $G' \subseteq G$ y $G' \neq G$ entonces G' es un subgrafo propio de G.

Subgrafo Inducido

Sea G = (V, E) un grafo (dirigido o no). Si $\emptyset \neq U \subseteq V$, el subgrafo de G inducido por U es el subgrafo cuyo conjutno de vértices es U y que contiene todas las aristas (de G) de la forma $\{x,y\}$ para $x,y \in U$. Denotamos este subgrafo con $\langle U \rangle$.

Componentes conexas

Cuando un grafo es disconexo, podemos al menos distinguir dos partes del grafo que están separadas pero que son conexas en sí misma. Esto motiva la siguiente definición:

Componente Conexa

Sea G = (V, E) un grafo. Un subgrafo maximal conexo de G es llamado una **componente conexa** de G. El número de componentes conexas de G se denota con $\kappa(G)$.

Así, podemos separar un grafo en sus componentes conexas, las cuales forman una partición del conjunto de vértices. Cabe notar que el si el grafo es conexo si y sólo si $\kappa(G)=1$.

Complemento

Complemento

Sea G un grafo no dirigido sin lazos con n vértices. El **complementario** de G, que se denota con \overline{G} , es el subgrafo de K_n formado por los n vértices de G y todas las aristas que no están en G.

Si $G = K_n$, \bar{G} es un grafo con n vértices y ninguna arista. A este grafo se le llama grafo nulo (o vacío).

Subgrafo recubridor

Sea G = (V, E) y G' = (V', E'), con $G' \subseteq G$. Si V' = V entonces G' es un subgrafo recubridor de G.

Isomorfismos

Como un grafo en particular se puede dibujar de diferentes maneras, debido a la arbitrariedad en la disposición de sus vértices, entonces podemos pensar que dos dibujos distintos del grafo representas dos grafos distintos, a pesar de mantener sus propiedades estructurales (conexidad, caminos, etc). Matemáticamente podemos definir una transformación de Grafos, de modo que nos permita identificar aquellos que poseen la misma estructura.

Isomorfismos

Sean G = (V, E) y G' = (V', E') dos grafos no dirigidos. Una función $f: V \to V'$ es un isomorfismo de grafos si

- f es biyectiva.
- para todos $a, b \in V$ tenemos que $\{a, b\} \in E$ si y sólo si $\{f(a), f(b)\} \in E'$.

Cuando existe tal función, decimos que G y G' son **grafos** isomorfos.

Operaciones sobre Grafos

Existen distintas formas de crear nuevos grafos a partir de otros ya existentes. En esta parte definiremos algunas operaciones sobre grafos para cumplir con tal propósito.

Eliminar un vértice

Sea G = (V, E) un grafo y $v \in V$. Para eliminar un vértice de G definimos G - v como un nuevo grafo H cuyo conjunto de vértices es V(H) = V - v y conjunto de aristas E(H) = E - N donde $N = \{ \{v, y\} \mid y \in V, \ y \neq v \}$ es el conjunto de todas las aristas incidentes con v.

Eliminar una arista

Para eliminar una arista $e \in E$ definimos G - e un grafo H con conjunto de nodos V(H) = V y conjunto de aristas $E(H) = E - \{e\}$. De esta manera podemos extender estas operaciones a la resta de un conjunto de vértices G - V' donde $V' \subset V$ y entendiendo el conjunto de vértices del nuevo grafo H como $V(H) = V \setminus V'$ y E(H) = E - N con $N = \{\{v, y\} \mid v \in V', y \in V, y \neq v\}$.

Grados

Grado de un Vértice

Sea G = (V, E) un grafo. Para cualquier vértice v de G, el **grado** de v, que se denota como $\delta(v)$, es el número de aristas en G que son incidentes en v.

Teorema

Si
$$G = (V, E)$$
 es un grafo, entonces $\sum_{v \in V} \delta(v) = 2|E|$.

Corolario

Para cualquier grafo, el número de vértices de grado impar debe ser par.

Grados de Salida y Entrada

Sea G = (V, E) un grafo dirigido o multigrafo. Para cualquier $v \in V$,

- El grado de salida de v, denotado por $\delta^+(v)$, es el número de aristas de G que parten desde v.
- El grado de entrada de v, denotado por $\delta^-(v)$, es el número de aristas de G que llegan a v.

Grafos Regulares

Un grafo donde todos los vértices tienen el mismo grado se denomina regular. Si $\delta(v)=k$ para todo $v\in V$, entonces el grafo se dice que es k-regular.

¿Es posible tener un grafo 4-regular con diez aristas? ¿Y con 15?

Grafos Planos

Grafo Plano

Un grafo G es plano si podemos dibujar G en el plano de modo tal que sus aristas se intersecten sólo en los vértices de G. Este dibujo se conoce como *inmersión* de G en el plano.

Muchas veces un dibujo de un grafo es engañoso, puesto que existe otro isomorfo que se puede dibujar sin intersectar las aristas del grafo.

Grafos Bipartitos

Grafos Bipartitos

Sea G = (V, E) un grafo. Se dice que G es bipartito si $V = V_1 \cup V_2$, $V_1 \cap V_2 = \emptyset$ y cada arista de G es de la forma $\{a, b\}$ con $a \in V_1$ y $b \in V_2$. Si cada vértice de V_1 está unido con los vértices de V_2 , se tiene un grafo **bipartito completo**. En este caso, si $|V_1| = m$ y $|V_2| = n$, el grafo se denota con $K_{m,n}$.