TYPES SN54194, SN54LS194A, SN54S194, SN74194, SN74LS194A, SN74S194 4-BIT BIDIRECTIONAL UNIVERSAL SHIFT REGISTERS

MARCH 1974-REVISED APRIL 1985

- Parallel Inputs and Outputs
- Four Operating Modes:

Synchronous Parallel Load Right Shift Left Shift Do Nothing

- Positive Edge-Triggered Clocking
- Direct Overriding Clear

TYPE	TYPICAL MAXIMUM CLOCK FREQUENCY	TYPICAL POWER DISSIPATION
194	36 MHz	195 mW
'LS194A	36 MHz	75 mW
'S194	105 MHz	425 mW

description

These bidirectional shift registers are designed to incorporate virtually all of the features a system designer may want in a shift register. The circuit contains 46 equivalent gates and features parallel inputs, parallel outputs, right-shift and left-shift serial inputs. operating-mode-control inputs, and a direct overriding clear line. The register has four distinct modes of operation, namely:

Inhibit clock (do nothing) Shift right (in the direction Q_A toward Q_D) Shift left (in the direction QD toward QA) Parallel (broadside) load

SN54194, SN54LS194A, SN54S194 . . . J ORW PACKAGE SN74194 . . . J OR N PACKAGE SN74LS194A, SN74S194 . . . D, J OR N PACKAGE

(TOP VIEW)

CLR [11	U ₁₆	h	Vcc
SR SER	2	15	Б	QA
ΑŪ	3	14		QΒ
в []4	13		QC
c [5	12		Q_D
D []6	11		CLK
SL SER [7	10		S1
GND [18	9	П	S0

SN54LS194A, SN54S194 . . . FK PACKAGE SN74LS194A, SN74S194 . . . FN PACKAGE (TOP VIEW)

NC - No internal connection

Synchronous parallel loading is accomplished by applying the four bits of data and taking both mode control inputs, S0 and S1, high. The data are loaded into the associated flip-flops and appear at the outputs after the positive transition of the clock input. During loading, serial data flow is inhibited.

Shift right is accomplished synchronously with the rising edge of the clock pulse when S0 is high and S1 is low. Serial data for this mode is entered at the shift-right data input. When S0 is low and S1 is high, data shifts left synchronously and new data is entered at the shift-left serial input.

Clocking of the shift register is inhibited when both mode control inputs are low. The mode controls of the SN54194/SN74194 should be changed only while the clock input is high.

		_			FUNCTIO	N T	ABLE						
				INPUT	s						OUT	PUTS	
01.540	МС	DE	01.001	SE	RIAL		PARA	LLE	L _			_	_
CLEAR	S1	SO	CLOCK	LEFT	RIGHT	Α	В	С	D	QΑ	QΒ	σc	σD
L	×	×	×	х	x	х	х	х	×	L	L	L	L
н	x	x	L.	×	x	x	х	Х	х	QAO	Q_{B0}	σ_{C0}	Q_{D0}
н	н	Н	Ť	x	×	а	b	С	d	а	b	c	d
н	L	Н	1	×	H-	х	X	X	×	н	\mathbf{Q}_{An}	Q_{Bn}	α_{Cn}
н	L	Н	1	x	L	×	X	Х	х	L	Q_{An}	Q_{Bn}	Q_{Cn}
н	н	L	1	н	×	×	Х	Х	Х	QBn	α_{Cn}	α_{Dn}	Н
н	[н	L	1	L	x	x	х	х	х	QBn	α_{Cn}	α_{Dn}	L
Н	L	L	×	×	×	×	Х	Х	X	Q _{A0}	σ_{B0}	σ_{C0}	σ_{D0}

- H = high level (steady state)
- L = low level (steady state)
- X = irrelevant (any input, including transitions)
- 1 = transition from low to high level
- a, b, c, d = the level of steady-state input at inputs A, B, C, or D, respectively.
- Q_{A0}, Q_{B0}, Q_{C0}, Q_{D0} = the level of Q_A, Q_B, Q_C, or Q_D, respectively, before the indicated steady-state input conditions were established.
- $Q_{An}, Q_{Bn}, Q_{Cn}, Q_{Dn}$ = the level of Q_{An}, Q_{Bn}, Q_{Cn} , respectively, before the most-recent 1 transition of the clock.

schematics of inputs and outputs

EQUIVALENT OF EACH INPUT

VCC

INPUT

CLK input: $R_{eq} = 4 \text{ k}\Omega \text{ NOM}$ All others: $R_{eq} = 6 \text{ k}\Omega \text{ NOM}$

'LS194A

Pin numbers shown on logic notation are for D, J or N packages.

typical clear, load, right-shift, left-shift, inhibit, and clear sequences

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1) .				 						7	V
Input voltage				 						5.5	V
Operating free-air temperature range:	SN54194			 		 			-!	55°C to 125°	°C
	SN74194			 		 				0°C to 70	°C
Storage temperature range				 		 			-1	65°C to 150°	°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

			SN5419	4		SN7419	4	
•		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH				-800			-800	μA
Low-level output current, IOL				16		•	16	mA
Clock frequency, f _{clock}		0		25	0		25	MHz
Width of clock or clear pulse, tw		20			20			пs
	Mode control	30			30			ns
Setup time, t _{su}	Serial and parallel data	20			20			ns
	Clear inactive-state	25			25			ns
Hold time at any input, th		0			0			ns
Operating free-air temperature, TA		-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

		TEST SOUSITIONS!		SN5419	4		N7419	4	
	PARAMETER	TEST CONDITIONS†	MIN	TYP‡	MAX	MIN	түр‡	MAX	UNIT
VIH	High-level input voltage	-	2			2			٧
VIL	Low-level input voltage		1		8.0			0.8	V
Vik	Input clamp voltage	V _{CC} = MIN, I _I = -12 mA	1		-1.5			-1.5	V
V	High-level output voltage	V _{CC} = MIN, V _{IH} = 2 V,	2.4	3.4		2.4	3.4		v
vон	righ-level output voltage	$V_{1L} = 0.8 \text{ V}, I_{OH} = -800 \mu\text{A}$. 2.4	3.4		2.4	3.4		ľ
V	Low level output voltage	V _{CC} = MIN, V _{IH} = 2 V,		0.2	0.4		0.2	0.4	v
VOL	Low-level output voltage	VIL = 0.8 V, IOL = 16 mA		0.2	0.4		0.2	0.4	
I _I	Input current at maximum input voltage	V _{CC} = MAX, V _I = 5.5 V			1			1	mA
Ή	High-level input current	V _{CC} = MAX, V _I = 2.4 V			40			40	μΑ
կլ	Low-level input current	V _{CC} = MAX, V _I = 0.4 V			-1.6			-1.6	mA
los	Short-circuit output current§	V _{CC} = MAX	-20		-57	-18		-57	mA
¹cc	Supply current	V _{CC} = MAX, See Note 2		39	63		39	63	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 2: With all outputs open, inputs A through D grounded, and 4.5 V applied to S0, S1, clear, and the serial inputs, I_{CC} is tested with a momentary GND, then 4.5 V applied to clock.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{max} Maximum clock frequency	C ₁ = 15 pF,	25	36		MHz
tPHL Propagation delay time, high-to-low-level output from clear	R _L = 400 Ω,		19	30	ns
tpLH Propagation delay time, low-to-high-level output from clock	See Figure 1		14	22	ns
tphl Propagation delay time, high-to-low-level output from clock	See Figure 1		17	26	ns

[‡]All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$. §Not more than one output should be shorted at a time.

TYPES SN54LS194A, SN74LS194A 4-BIT BIDIRECTIONAL UNIVERSAL SHIFT REGISTERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1) .													7 '	٧
Input voltage														
Operating free-air temperature range:	SN54LS194A									-5	i5°	C to	125°	С
	SN74LS194A										0	°C t	o 70°	С
Ctorono tomonoresturo nonno										c	۰ <u>-</u> ۰	C +0	150°	^

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		SN	154LS19	94A	SN	74LS19	14A	UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	UNII
Supply voltage, V _{CC}		4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH				-400			-400	μА
Low-level output current, IOL				4			8	mΑ
Clock frequency, fclock		0		25	0		25	MHz
Width of clock or clear pulse, tw		20			20			ns
	Mode control	30			30			ns
Setup time, t _{SU}	Serial and parallel data	20			20			ns
	Clear inactive-state	25			25			ns
Hold time at any input, th		0			0			ns
Operating free-air temperature, TA		-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

				and .	SN	54LS19	14A	SN	74LS19	4A	
	PARAMETER	'E	ST CONDITIO	JN2.	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage	1			2			2			V
VIL	Low-level input voltage				7.		0.7			0.8	V
Vι	Input clamp voltage	V _{CC} = MIN,	I _I = -18 mA				-1.5			-1.5	V
Voн	High-level output voltage	V _{CC} = MIN, V _{IL} = V _{IL} max,	V _{IH} = 2 V, , I _{OH} = -400	μΑ	2.5	3.5		2.7	3.5		·v
		V _{CC} = MIN,	V _{IH} = 2 V,	I _{OL} = 4 mA	1	0.25	0.4		0.25	0.4	V
VOL	Low-level output voltage	VIL = VIL max		IOL = 8 mA					0.35	0.5	
l _l	Input current at maximum input voltage	V _{CC} = MAX,	V _I = 7 V				0.1			0.1	mA
ΊΗ	High-level input current	V _{CC} = MAX,	V _I = 2.7 V				20			20	μА
ΊL	Low-level input current	V _{CC} = MAX,	V ₁ = 0.4 V		1		-0.4			-0.4	mA
los	Short-circuit output current §	V _{CC} = MAX			-20		-100	-20		-100	mA
Icc	Supply current	V _{CC} = MAX,	See Note 2	-		15	23		15	23	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{max} Maximum clock frequency	C ₁ = 15 pF,	25	36		MHz
tpHL Propagation delay time, high-to-low-level output from clear	$R_1 = 2 k\Omega$		19	30	ns
tplH Propagation delay time, low-to-high-level output from clock	See Figure 1		14	22	ns
tPHL Propagation delay time, high-to-low-level output from clock	See Figure 1		17	26	ns

 $^{^\}ddagger$ All typical values are at V_{CC} = 5 V, T_A = 25°C.

[§] Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

NOTE 2: With all outputs open, inputs A through D grounded, and 4.5 V applied to S0, S1, clear, and the serial inputs, ICC is tested with a momentary GND, then 4.5 V, applied to clock.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage, V_{CC} (see Note 1) SN74S194 -65°C to 150°C Storage temperature range

recommended operating conditions

NOTE 1: Voltage values are with respect to network ground terminal.

		s	N54S19	94	S	N74S19	94	
		MIN	NOM	MAX	MIN	NOM	MAX	רואט
Supply voltage, V _{CC}		4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH				-1			-1	mA
Low-level output current, IOL				20			20	mA
Clock frequency, f _{clock}		0		70	0		70	MHz
Width of clock pulse, tw(clock)		7			7			ns
Width of clear pulse, tw(clear)		12			12			ns
	Mode control	11			11			ns
Setup time, t _{su}	Serial and parallel data	5		_	5			ns
	Clear inactive-state	9			9			ns
Hold time at any input, th		3			3			ns
Operating free-air temperature, TA		-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	DADAMETED	TEST SOURITIONS!	SN54S194			SN74S194			
PARAMETER		TEST CONDITIONS [†]	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage		2			2			V
VIL	Low-level input voltage				0.8			0.8	V
VIK	Input clamp voltage	V _{CC} = MIN, I _I = -18 mA			-1.2			-1.2	V
Vон	High-level output voltage	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OH} = -1 mA	2.5	3.4		2.7	3.4		v
VOL	Low-level output voltage	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OL} = 20 mA			0.5			0.5	v
П	Input current at maximum input voltage	V _{CC} = MAX, V _I = 5.5 V			1			1	mA
Ιн	High-level input current	$V_{CC} = MAX$, $V_I = 2.7 V$			50			50	μА
IIL	Low-level input current	V _{CC} = MAX, V ₁ = 0.5 V			-2	·		-2	mA
Ios	Short-circuit output current§	V _{CC} = MAX	-40		-100	-40		-100	mA
lcc	Supply current	V _{CC} = MAX, See Note 2		85	135		85	135	
		V _{CC} = MAX, T _A = 125°C, W package See Note 2			110				mA

 $^{^\}dagger$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{max} Maximum clock frequency	C ₁ = 15 pF,	70	105		MHz
tpHL Propagation delay time, high-to-low-level output from clear	ne, high-to-low-level output from clear $R_1 = 280 \Omega$,		12.5	18.5	ns
tPLH Propagation delay time, low-to-high-level output from clock	See Figure 1	4	8	12	ńs
tphL Propagation delay time, high-to-low-level output from clock	See Figure 1	4	11	16.5	ns

 $[\]ddagger$ AII typical values are at V_{CC} = 5 V, T_A = 25°C. § Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

NOTE 2: With all outputs open, inputs A through D grounded, and 4.5 V applies to S0, S1, clear, and the serial inputs, ICC is tested with a momemtary GND, then 4.5 V, applied to clock.

PARAMETER MEASUREMENT INFORMATION

TEST TABLE FOR SYNCHRONOUS INPUTS

DATA INPUT	S1	S0	OUTPUT TESTED		
FOR TEST	31	30	(SEE NOTE E)		
Α	4.5 V	4.5 V	Q _A at t _{n+1}		
В	4.5 V	4.5 V	QB at tn+1		
С	4.5 V	4.5 V	Q _C at t _{n+1}		
D	4.5 V	4.5 V	OD at tn+1		
L Serial Input	4.5 V	0 V	Q _A at t _{n+4}		
R Serial Input	0 V	4.5 V	QD at tn+4		

- NOTES: A. The clock pulse generator has the following characteristics: $Z_{out} \approx 50~\Omega$ and PRR \leqslant 1 MHz, For '194, $t_r \leqslant$ 7 ns and $t_f \leqslant$ 7 ns. For 'LS194A, $t_r \le 15$ ns and $t_f \le 6$ ns. For 'S194, $t_r \le 2.5$ ns and $t_f \le 2.5$ ns. When testing f_{max} , vary PRR.
 - B. C_L includes probe and jig capacitance.
 - C. All diodes are 1N3064 or 1N916.
 - D. A clear pulse is applied prior to each test.
 - E. For '194 and 'S194, $V_{ref} = 1.5 \text{ V}$; for 'LS194A, $V_{ref} = 1.3 \text{ V}$.
 - F. Propagation delay times (tplH and tpHL) are measured at tn+1. Proper shifting of data is verified at tn+4 with a functional test.
 - G. $t_n = bit time before clocking transition.$
 - t_{n+1} = bit time after one clocking transition.
 - t_{n+4} = bit time after four clocking transitions.

FIGURE 1-SWITCHING TIMES

