7. Übungsblatt zur Vorlesung Statistische Methoden der Datenanalyse Abgabe: 06.12.2018 23:59

Zeit	Raum	Abgabe im Moodle; Mails mit Betreff: [SMD1819]
Di. 10-12	CP-03-150	tobias.hoinka@udo.edu, felix.geyer@udo.edu
		und jan.soedingrekso@udo.edu
Di. 16-18	CP-03-150	simone.mender@udo.edu und alicia.fattorini@udo.edu
Mi. 10-12	CP-03-150	$\operatorname{mirco.huennefeld@udo.edu}$ und kevin3.schmidt@udo.edu

Aufgabe 19: kMeans per Hand

Population: (1;4) (1;5) (1;6) (3;3) (3;2) (4;1) (5;1) (6;2) (6;3) (8;4) (8;5) (8;6)

- a) Führen Sie den kMeans-Algorithmus (euklidisches Abstandsmaß) per Hand durch, um die Punkte der Population in Cluster zu gruppieren. Verwenden Sie als Startwerte die zufällig gewählten Clusterzentren (3;4), (7;4) und (3;7). Berechnen Sie die Abstände nur, wenn die Zugehörigkeit zum Clusterzentrum nicht offensichtlich ist. Skizzieren Sie die neuen Clusterzentren sowie die Grenzen zwischen den Clustern in der vorgefertigten Abbildung 1.
- b) Führen Sie 4 weitere Iterationen von kMeans durch. Fertigen Sie bei jeder Iteration wieder eine Skizze an.
- c) Nach wie vielen Iterationen konvergiert der Algorithmus? Entspricht das Ergebnis Ihren Erwartungen?

Aufgabe 20: DeepLearning Kurzfragen

5 P.

5 P.

WS 2018/2019

Prof. W. Rhode

- a) Was beschreibt die Lossfunktion und wofür wird sie benötigt?
- b) Wie kann die Lossfunktion minimiert werden?
- c) Welche Funktion haben die Aktivierungsfunktionen bzw. welches Problem wird durch diese gelöst? Nennen Sie drei gängige Aktivierungsfunktionen.
- d) Was ist ein Neuron?
- e) Nennen Sie drei Anwendungsbeispiele für Neuronale Netze und beschreiben Sie kurz warum sie für diese Beispiele besonders geeignet sind.

Abbildung 1: Population zum Einzeichnen der Clusterzentren und Clustergrenzen. Zu Aufgabe $\underline{19}$

Prof. W. Rhode

WS 2018/2019

Aufgabe 21: Lineare Klassifikation mit Softmax

10 P.

Für eine Parameteranpassung bei der Klassifikation mittels der Softmax-Funktion muss der Gradient der Kostenfunktion für alle anzupassenden Parameter bestimmt werden. Die Kostenfunktion C ist wie aus der Vorlesung bekannt, gegeben durch:

$$C(f) = \frac{1}{m} \sum_{i=1}^{m} \hat{C}(f_i) = \frac{1}{m} \sum_{i=1}^{m} \left[-\sum_{k=1}^{K} \mathbf{1}(y_i = k) \log \frac{\exp(f_{k,i})}{\sum_{j} \exp(f_{j,i})} \right]. \tag{1}$$

Zur Ableitung der Kostenfunktion wird die Kettenregel verwendet:

$$\nabla_{W}\hat{C} = \sum_{k=1}^{K} \frac{\partial \hat{C}}{\partial f_{k,i}} \cdot \frac{\partial f_{k,i}}{\partial W}$$
 (2)

$$\nabla_b \hat{C} = \sum_{k=1}^K \frac{\partial \hat{C}}{\partial f_{k,i}} \cdot \frac{\partial f_{k,i}}{\partial b}.$$
 (3)

- a) Gegeben seien K Klassen und m Beispiele x_i jeweils mit M Komponenten. Welche Dimension haben die einzelnen Komponenten x_i , C, W, b, $\nabla_W \hat{C}$, $\nabla_{f_i} \hat{C}$, $\frac{\partial f_{k,i}}{\partial W}$, $\frac{\partial f_{k,i}}{\partial b}$? Unterscheiden Sie dabei auch zwischen Zeilen- und Spaltenvektoren.
- b) Zeigen Sie, dass sich für die Ableitung der Kostenfunktion nach den Scores für die Klasse a folgendes ergibt:

$$\nabla_{f_a} C(f) = \frac{1}{m} \sum_{i=1}^m \left[\frac{\exp(f_{a,i})}{\sum_j \exp(f_{j,i})} - \mathbf{1}(y_i = a) \right]. \tag{4}$$

- c) Bestimmen Sie als zweiten Schritt der Kettenregel die Ableitungen von $f_{k,i}$ nach W und b mit $f_{k,i} = W_k x_i + b_k$.
- d) Implementieren Sie die lineare Klassifikation mit Softmax für die zwei Populationen P_0 und P_1 aus der im moodle zu findenen Datei populationen.hdf5. Verfahren Sie dabei wie folgt:
 - Lesen Sie die Populationen aus den Keys P_0 und P_1 ein.
 - Führen Sie beide Populationen zusammen und erstellen Sie die entsprechenden Label (P1 hat dabei Label 1).
 - Initialisieren Sie die Gewichtsmatrix und den Bias-Vektor.
 - Nutzen Sie eine learning-rate von 0,5 und trainieren Sie 100 Epochen.

- WS 2018/2019 Prof. W. Rhode
- Implementieren Sie die folgenden Schritte vektorisiert (Nutzen Sie np.matmul).
 - Implementieren Sie die Softmax Funktion und die Indikatorfunktion.
 - Iterieren Sie über die Anzahl der Epochen. Berechnen Sie in jeder Iteration die Softmax-Funktion für die aktuellen Parameter W und b. Bestimmen Sie mithilfe der erhaltenen Werte den Gradienten der Kostenfunktion bzgl. W und b. Und führen Sie schließlich ein Parameterupdate durch.

Tipp: Der Gradient nach W lässt sich auch nach $\nabla_W C = \nabla_f C \cdot x_i^T$ berechnen.

e) Stellen Sie das Resultat (die trennende Gerade) zusammen mit den beiden Populationen in einem Scatterplot dar. Zur Herleitung der Geradengleichung nutzen Sie die Bedingung $f_1 = f_2$. Warum gilt das?