Lecture 14 Signals and Systems (ELL205)

By Dr. Abhishek Dixit

Dept. of Electrical Engineering

IIT Delhi

System designing

Basic DT system

Basic characteristics:

Linear (if delay starts at rest)

Time-Invariant

Causal

Recipe system

FIR system

Basic DT system

Basic characteristics:

Linear

Time-Invariant

Causal

Constraint/feedback system

IIR system

Different approaches

- 1) Graphical method
- 2) Step-by-step method
- 3) Guess method
- 4) Polynomial approach

CT system (Graphical)

Basic CT system

$$h(t) = e^{pt}u(t)$$

CT system (Graphical)

Basic CT system

$$h(t) = e^{pt}u(t)$$

$$h(t) = \left(1 + pt + \frac{1}{2}p^2t^2 + \frac{1}{6}p^3t^3 + \frac{1}{6}p^3$$

CT system (Graphical)

Basic CT system

$$h(t) = e^{pt}u(t)$$

$$h(t)=e^{pt}u(t)$$

CT system (Guess)

Basic CT system

$$h(t) = e^{pt}u(t)$$

$$y\dot{(}t) = x(t) + py(t)$$

By Guess

$$y(t) = Ce^{st}u(t)$$

Substituting

$$Ce^{st}\delta(t)+sCe^{st}u(t)=\delta(t)+pCe^{st}u(t)$$

Comparing

$$C = 1 \& s = p$$

$$y(t) = e^{pt}u(t)$$

CT system (Polynomial)

Basic CT system

$$h(t) = e^{pt}u(t)$$

$$y\dot{(}t) = x(t) + py(t)$$

$$y(t) = \int x(t) + p \int y(t)$$

Operator

$$Y = AX + pAY$$

$$\frac{Y}{X} = \frac{A}{1 - pA}$$

$$h(t) = (1 + pA + p^2A^2 + \cdots)A\delta(t)$$

$$h(t) = (1 + pA + p^2A^2 + \cdots)u(t)$$

$$h(t) = \left(1 + pt + \frac{p^2t^2}{2} + \cdots\right)u(t)$$

$$h(t) = e^{pt}u(t)$$

Why does polynomials work even for CT system?

Fourier series/Fourier Transforms

$$x(t) = \sum_{k} a_k e^{jk\omega_0 t}$$

$$x(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3 + \cdots$$

$$x(t) = b_0 + b_1 A + b_2 A^2 + b_3 A^3 + \cdots$$

CT and DT system

Basic CT system

Basic DT system

$$h(t) = e^{pt}u(t)$$

$$h[n] = p_o^n u[n]$$

Impulse-invariance

Basic CT system

Basic DT system

$$h(t) = e^{pt}u(t)$$

$$h[n] = p_o^n u[n] = e^{pn} u[n]$$

Towards Fourier Series Love of Sinusoid

- Why sinusoids?
- How an LTI system react to sinusoids?
- How do we break signal as sums of sinusoids?

- Why sinusoids?
 - **Psychoacoustics**
 - **Images**
 - Signal generation
- How an LTI system react to sinusoids?
- How do we break signal as sums of sinusoids?

Why sinusoids?

Psychoacoustics

Images

Signal generation

- How an LTI system react to sinusoids?
- How do we break signal as sums of sinusoids?

Psychoacoustics

• Study of how human ear hears

J. S. Bach, 1685-1750

А	880
G#	831
G	784
F♯	740
F	698
E	659
D#	622
D	587
C#	554
С	523
В	494
A#	466
А	440

440 to 880 octave (musical term for factor two)

$$494 \times \sqrt[12]{2}$$

$$466 \times \sqrt[12]{2}$$

$$440 \times \sqrt[12]{2}$$

J. S. Bach, 1685-1750

А	880
G#	831
G	784
F♯	740
F	698
E	659
D#	622
D	587
C#	554
С	523
В	494
A#	466
А	440

440 to 880 octave (musical term for factor two)

$$494 \times \sqrt[12]{2}$$

$$466 \times \sqrt[12]{2}$$

$$440 \times \sqrt[12]{2}$$

J. S. Bach, 1685-1750

А	880
G#	831
G	784
F♯	740
F	698
E	659
D#	622
D	587
C#	554
С	523
В	494
A#	466
А	440

440 to 880 octave (musical term for factor two)

$$494 \times \sqrt[12]{2}$$

$$466 \times \sqrt[12]{2}$$

$$440 \times \sqrt[12]{2}$$

J. S. Bach, 1685-1750

А	880
G#	831
G	784
F#	740
F	698
Е	659
D#	622
D	587
C#	554
С	523
В	494
A#	466
А	440

440 to 880 octave (musical term for factor two)

$$494 \times \sqrt[12]{2}$$
 $466 \times \sqrt[12]{2}$
 $440 \times \sqrt[12]{2}$

J. S. Bach, 1685-1750

А	880
G#	831
G	784
F♯	740
F	698
E	659
D#	622
D	587
C#	554
С	523
В	494
A#	466
А	440

440 to 880 octave (musical term for factor two)

$$494 \times \sqrt[12]{2}$$

$$466 \times \sqrt[12]{2}$$

$$440 \times \sqrt[12]{2}$$

J. S. Bach, 1685-1750

А	880
G#	831
G	784
F♯	740
F	698
E	659
D#	622
D	587
C#	554
С	523
В	494
A#	466
А	440

440 to 880 octave (musical term for factor two)

$$494 \times \sqrt[12]{2}$$

$$466 \times \sqrt[12]{2}$$

$$440 \times \sqrt[12]{2}$$

J. S. Bach, 1685-1750

А	880
G#	831
G	784
F♯	740
F	698
E	659
D#	622
D	587
C#	554
С	523
В	494
A#	466
А	440

440 to 880 octave (musical term for factor two)

$$494 \times \sqrt[12]{2}$$

$$466 \times \sqrt[12]{2}$$

$$440 \times \sqrt[12]{2}$$

J. S. Bach, 1685-1750

А	880
G#	831
G	784
F♯	740
F	698
E	659
D#	622
D	587
C#	554
С	523
В	494
A#	466
А	440

440 to 880 octave (musical term for factor two)

$$494 \times \sqrt[12]{2}$$

$$466 \times \sqrt[12]{2}$$

$$440 \times \sqrt[12]{2}$$

J. S. Bach, 1685-1750

А	880
G#	831
G	784
F♯	740
F	698
Е	659
D#	622
D	587
C#	554
С	523
В	494
A#	466
А	440

440 to 880 octave (musical term for factor two)

$$494 \times \sqrt[12]{2}$$

$$466 \times \sqrt[12]{2}$$

$$440 \times \sqrt[12]{2}$$

J. S. Bach, 1685-1750

А	880
G#	831
G	784
F♯	740
F	698
E	659
D#	622
D	587
C#	554
С	523
В	494
A#	466
А	440

440 to 880 octave (musical term for factor two)

$$494 \times \sqrt[12]{2}$$

$$466 \times \sqrt[12]{2}$$

$$440 \times \sqrt[12]{2}$$

J. S. Bach, 1685-1750

А	880
G#	831
G	784
F#	740
F	698
E	659
D#	622
D	587
C#	554
С	523
В	494
A#	466
А	440

440 to 880 octave (musical term for factor two)

$$494 \times \sqrt[12]{2}$$
 $466 \times \sqrt[12]{2}$
 $440 \times \sqrt[12]{2}$

J. S. Bach, 1685-1750

А	880
G#	831
G	784
F♯	740
F	698
E	659
D#	622
D	587
C#	554
С	523
В	494
A#	466
А	440

440 to 880 octave (musical term for factor two)

$$494 \times \sqrt[12]{2}$$

$$466 \times \sqrt[12]{2}$$

$$440 \times \sqrt[12]{2}$$

J. S. Bach, 1685-1750

А	880
G#	831
G	784
F♯	740
F	698
E	659
D#	622
D	587
C#	554
С	523
В	494
A#	466
А	440

440 to 880 octave (musical term for factor two)

$$494 \times \sqrt[12]{2}$$

$$466 \times \sqrt[12]{2}$$

$$440 \times \sqrt[12]{2}$$

Combination of Tones to Music

```
song = { 'A' 'A' 'E' 'E' 'F#' 'F#' 'E' 'E' 'D' 'D' 'C#' 'C#' 'B' 'B' 'A' 'A'};
```

Combination of Tones to Music

```
song = { 'A' 'A' 'E' 'E' 'F#' 'F#' 'E' 'E' 'D' 'D' 'C#' 'C#' 'B' 'B' 'A' 'A'};
```


Timbre

Note A: 220 Hz, $\omega = 1382 \text{ rad/sec}$

$$x(t) = \sin(1382t) + r_1\sin(2 \times 1382t) + r_2\sin(3 \times 1382t) + \dots$$

Timbre

Note A: 220 Hz, $\omega = 1382 \text{ rad/sec}$

$$x(t) = \sin(1382t) + r_1\sin(2 \times 1382t) + r_2\sin(3 \times 1382t) + \dots$$

Timbre

Note A: 220 Hz, $\omega = 1382 \text{ rad/sec}$

$$x(t) = \sin(1382t)$$

Ludwig van Beethoven

- 17 December 1770 26 March 1826 (56 years)
- German composer and a pianist
- His best-known compositions include
- 9 symphonies, 5 piano concertos,
- 1 <u>violin concerto</u>, 32 <u>piano sonatas</u>, 16 <u>string quartets</u>, his great <u>Mass</u> the <u>Missa solemnis</u>, and one <u>opera</u>, <u>Fidelio</u>.
 - He was deaf!!

Ludwig van Beethoven

Portrait by Joseph Karl Stieler, 1820

Beethoven (moonlight sonata)

Moonlight Sonata

Moonlight Sonata

Arbitary Sonata

Moonlight Sonata

Moonlight Sonata

Arbitary Sonata

Outline of the lecture

Applications

Psychoacoustics

Images

Signal generation

$$Image(x, y) = \sin(\frac{2\pi x}{H})$$

Image(x,y) =
$$\sin(\frac{2\pi x}{H})$$
 Image(x,y) = $\sin(\frac{2\pi y}{V})$

Image(x,y) =
$$\sin(\frac{2\pi x}{H})$$
 Image(x,y) = $\sin(\frac{2\pi y}{V})$ Image(x,y) = $\sin(\frac{2\pi x}{H}) \times \sin(\frac{2\pi y}{V})$

Outline of the lecture

Applications

Psychoacoustics

Images

Signal generation

Sinusoidal source generator

Outline of the lecture

- Why sinusoids?
- How an LTI system react to sinusoids?
- How do we break signal as sums of sinusoids?

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$$

$$y(t) = \int_{-\infty}^{\infty} h(\tau)x(t-\tau)d\tau$$

$$y(t) = \int_{-\infty}^{\infty} h(\tau)e^{j(\omega(t-\tau)+\theta)}d\tau$$

$$y(t) = \int_{-\infty}^{\infty} h(\tau)e^{j(\omega t + \theta)}e^{-j\omega\tau}d\tau$$

$$y(t) = e^{j(\omega t + \theta)} \int_{-\infty}^{\infty} h(\tau) e^{-j\omega\tau} d\tau$$

$$y(t) = e^{j(\omega t + \theta)} \int_{-\infty}^{\infty} h(\tau) e^{-j\omega \tau} d\tau$$

$$H(\omega) = \int_{-\infty}^{\infty} h(\tau)e^{-j\omega\tau}d\tau$$

$$y(t) = e^{j(\omega t + \theta)}H(\omega)$$

Eigen function Eigen value

Frequency response

