Exercises chapter 6

Andreas Slåttelid

Exercise 6.2

We have the following contractual information:

```
T <- 10  #length of contract

x <- 60  #age of insured

D <- 20000  #disability pension while disabeld

B <- 50000  #death benefit

r <- 0.05  #intensity rate
```

Where our state space is $S = \{*, \diamond, \dagger\}$, we have the following policy-functions:

$$a_{\diamond}(t) = \begin{cases} 0, & t < 0 \\ Dt, & t \in [0, T) \\ DT, & t > T \end{cases} \quad a_{*\dagger}(t) = \begin{cases} B, & t \in [0, T) \\ 0, & else \end{cases}$$

Since we for now do not care about the premiums in the policy-functions, we get

$$\dot{a}_*(t) = 0$$

and

$$\dot{a}_{\diamond}(t) = D \mathbb{1}_{[0,T)}(t)$$

We can set up thieles differential equations:

$$\frac{d}{dt}V_*^+(t) = r(t)V_*(t) - \mu_{*\diamond}^x(t)[V_\diamond^+(t) - V_*^+(t)] - \mu_{*\uparrow}^x(t)[B\mathbb{1}_{[0,T)}(t) - V_*^+(t)]$$

$$\frac{d}{dt}V_\diamond^+(t) = r(t)V_\diamond(t) - D\mathbb{1}_{[0,T)}(t) - \mu_{*\diamond}^x(t)[V_*^+(t) - V_\diamond^+(t)] + \mu_{\diamond\uparrow}^x(t)V_\diamond^+(t)$$

With finial conditions: $V_*^+(T) = V_{\diamond}^+(T) = 0$

In order to solve this numerically, we partition up [0,T] in times $t_i = t_0 + ih$, with $0 = t_0 < \cdots < t_n = T$. We also iterate backwards, giving us:

$$\frac{V_*^+(t_i) - V_*^+(t_{i-1})}{h} = rV_*(t_i) - \mu_{*\diamond}^x(t_i)[V_\diamond^+(t_i) - V_*^+(t_i)] - \mu_{*\dagger}^x(t_i)[B - V_*^+(t_i)]$$

We then solve for $V_*(t_{i-1})$, giving us:

$$V_*^+(t_{i-1}) = V_*^+(t_i) - h \left[rV_*^+(t_i) - \mu_{*\dagger}^x(t_i) [V_{\diamond}^+(t_i) - V_*^+(t_i)] - \mu_{*\dagger}^x(t) [B - V_*(t_i)] \right]$$

We do the same for $V_{\diamond}^+(t_{i-1})$:

$$V_{\diamond}^{+}(t_{i-1}) = V_{\diamond}^{+}(t_i) - h \left[r V_{\diamond}^{+}(t_i) - D \mathbb{1}_{[0,T)}(t) - \mu_{\diamond*}^{x}(t_i) [V_{*}^{+}(t_i) - V_{\diamond}^{+}(t_i)] + \mu_{\diamond\dagger}^{x}(t_i) V_{\diamond}^{+}(t_i) \right]$$

```
#states O:alive, 1:disabled, 2:dead
mu01 <- function(u){</pre>
  a1 \leftarrow 4*10^{-4}
  b1 <- 3.4674*10^{-6}
  c1 <- 0.138755
 return(a1 + b1*exp(c1*u))
mu02 <- function(u){</pre>
  a2 <- 5*10^{-4}
  b2 <- 7.5858*10^{-5}
  c2 <- 0.087498
  return(a2 + b2*exp(c2*u))
mu12 <- function(u){</pre>
 return(mu02(u))
mu10 <- function(u){</pre>
  return(0.1*mu01(u))
}
\#a.e.\ derivative\ of\ a_{\{\diamond\}(t)\}
dis_dot <- function(t){</pre>
if(t >= 0 && t<T){ return(D) }</pre>
 if(t \ge T) \{ return(0) \}
#PV of policy VO and V1
h <- 1/12
N \leftarrow T/h
PV_act <- PV_dis <- rep(0,N+1)</pre>
PV_act[N+1] <- PV_dis[N+1] <- 0 #by construction of contract
for(i in N:1){
  PV_act[i] <- PV_act[i+1] - h*(r*PV_act[i+1]</pre>
                                    - mu01(x+(i+1)*h)*(PV_dis[i+1]-PV_act[i+1])
                                    - mu02(x+(i+1)*h)*(B-PV_act[i+1])
  PV_{dis}[i] \leftarrow PV_{dis}[i+1] - h*(r*PV_{dis}[i+1] - dis_{dot}((i+1)*h)
                                    - mu10(x+(i+1)*h)*(PV_act[i+1]-PV_dis[i+1])
                                    + mu12(x+(i+1)*h)*PV_dis[i+1]
}
```

And from this we can find the one-time premium $\pi_0 = V_*^+(0)$:

```
pi0 <- PV_act[1]
pi0</pre>
```

[1] 20608.17

We were asked to find the yearly premium π , we then use the method, where we create an artificial policy, where one pays a premium of NOK 1 during [0, T), i.e this is the only contribution of interest, thus:

$$\begin{split} a_*^{Prem=1}(t) &= \begin{cases} 0, & t < 0 \\ -t, & t \in [0,T) \implies \dot{a}_*^{Prem=1}(t) = -1\mathbbm{1}_{[0,T)}(t) \\ -T, & t \geq T \end{cases} \\ a_\diamond^{Prem=1}(t) &= 0, \ \forall t \implies \dot{a}_\diamond^{Prem=1}0 \\ a_{*\dagger}^{Prem=1}(t) &= 0 \end{split}$$

We can now set up the new thieles equations:

$$\frac{d}{dt}V_*^+(t,A^{Prem=1}) = rV_*^+(t) - \dot{a}_*(t) - \mu_{*\diamond}^x(t)[V_\diamond^+(t) - V_*^+(t)] + \mu_{*\dagger}^x(t)V_*^+(t)$$

$$\frac{d}{dt}V_\diamond^+(t,A^{Prem=1}) = rV_\diamond(t) - \mu_{*\diamond}^x(t)[V_*^+(t) - V_\diamond^+(t)] + \mu_{\diamond\dagger}^x(t)V_\diamond^+(t)$$

And again solve for $V_*^+(t_{i-1})$ and $V_{\diamond}^+(t_{i-1})$:

$$V_*^+(t_{i-1}) = V_*^+(t_i) - h \left[r V_*^+(t_i) - \dot{a}_*(t_i) - \mu_{*\dagger}^x(t_i) [V_{\diamond}^+(t_i) - V_*^+(t_i)] + \mu_{*\dagger}^x(t) V_*(t_i) \right]$$

$$V_{\diamond}^+(t_{i-1}) = V_{\diamond}^+(t_i) - h \left[r V_{\diamond}^+(t_i) - \mu_{\diamond*}^x(t_i) [V_*^+(t_i) - V_{\diamond}^+(t_i)] + \mu_{\diamond\dagger}^x(t_i) V_{\diamond}^+(t_i) \right]$$

```
#a.e derivative a_{*}:
a_dot_prem1 <- function(t){</pre>
  if(t >= 0 \&\& t < T) \{ return(-1) \}
  if(t >= T) \{ return(0) \}
}
PV_prem1_act <- PV_prem1_dis <- rep(0,N+1)</pre>
PV_prem1_act[N+1] <- PV_prem1_dis[N+1] <- 0 #follows from contract
for(i in N:1){
  PV\_prem1\_act[i] \leftarrow PV\_prem1\_act[i+1] - h*(r*PV\_prem1\_act[i+1] - a\_dot\_prem1((i+1)*h)
                                   - mu01(x+(i+1)*h)*(PV_prem1_dis[i+1]-PV_prem1_act[i+1])
                                   + mu02(x+(i+1)*h)*(PV_prem1_act[i+1])
  PV_prem1_dis[i] <- PV_prem1_dis[i+1] - h*(r*PV_prem1_dis[i+1]</pre>
                                   - mu10(x+(i+1)*h)*(PV_prem1_act[i+1]-PV_prem1_dis[i+1])
                                   + mu12(x+(i+1)*h)*PV_prem1_dis[i+1]
                                   )
}
PV_prem1_act[1]
```

[1] -6.453883

We will now use the equivalence principle, which tells us:

$$\pi V_*^+(0, A^{Prem=1}) + V_*^+(0) = 0$$

$$\Downarrow$$

$$\pi = -\frac{V_*(0)}{V_*^+(0, A^{Prem=1})}$$

This gives us:

pi0

[1] 20608.17

```
yearly_premium <- (-1)*pi0/PV_prem1_act[1]
yearly_premium</pre>
```

[1] 3193.142

Exercise 6.4

We are dealing with an endownment insurance, meaning that $S = \{*, \dagger\}$, we are asked to calculate the second moment of the benefit payments V_t^+ for $t = 10, \ldots, 20$. The contractual information provided is:

```
x <- 40
T <- 20
E <- 115000
B <- 220000
r <- 0.03
```

We start by writing up the policy functions:

$$a_*^{Pre}(n) = \begin{cases} 0 & , n = 0, \dots, T-1 \\ E & , else \end{cases} \quad a_{*\dagger}^{Post}(n) = \begin{cases} B & , n = 0, \dots, T-1 \\ 0 & , else \end{cases}$$

From chapter.5 we are given the following formula:

$$\mathbb{E}[(V_t^+)^p | X_t = i] = (v_t)^p \sum_j p_{ij}^x(t, t+1) \sum_{k=0}^p \binom{p}{k} (a_{ij}^{Post}(t))^{p-k} \mathbb{E}[(V_{t+1}^+)^k | X_{t+1} = j]$$

Where v_t is the one-step discount factor in [t, t+1] i.e.

$$v(t) = v_0 v_1 \dots v_{t-1}$$

Let's denote $V_2(t) := \mathbb{E}[(V_t^+)^2 | X_t = *]$, and then translate the equation above into our situation:

$$\begin{split} V_2(t) &= (v_t)^2 \sum_j p_{*j}^x(t,t+1) \sum_{k=0}^2 \binom{2}{k} (a_{*j}^{Post}(t))^{2-k} \mathbb{E}[(V_{t+1}^+)^k | X_{t+1} = j] \\ &= (v_t)^2 p_{**}^x(t,t+1) \mathbb{E}[(V_{t+1}^+)^2 | X_{t+1} = *] + (v_t)^2 p_{*\dagger}^x(t,t+1) (a_{*\dagger}^{Post}(t))^2 \\ &= (v_t)^2 p_{**}^x(t,t+1) V_2(t+1) + (v_t)^2 p_{*\dagger}^x(t,t+1) (a_{*\dagger}^{Post}(t))^2 \\ &= e^{-2r} [p_{**}^x(t,t+1) V_2(t+1) + p_{*\dagger}^x(t,t+1) (a_{*\dagger}^{Post}(t))^2] \end{split}$$

This has now become an difference equation, with final condition:

$$V_2(T) = (\Delta a_*^{Pre}(T))^2 = E^2$$

From the exercise it's also given that:

```
\mu_{*\dagger}^x(t) = 0.0018 + 0.0004t
```

```
#0:alive, 1:dead
mu01_x <- function(t){</pre>
 return(0.0018 + 0.0004*t)
p_surv_x <- function(t,s){</pre>
  f <- mu01_x
  integral <- integrate(f, lower = t, upper = s)$value</pre>
  return(exp((-1)*integral))
V2 \leftarrow rep(0,T+1)
V2[T+1] \leftarrow E^{2}
for(n in (T-1):0){
   V2[n+1] \leftarrow exp(-2*r)*(p\_surv\_x(n,n+1)*V2[n+2] + B^{2}*(1-p\_surv\_x(n,n+1))) 
}
V2
##
   [1] 6167825284 6465436986 6765434135 7068218098 7374219626 7683901471
## [7] 7997761234 8316334482 8640198138 8969974190 9306333731 9650001385
## [13] 10001760131 10362456580 10733006746 11114402361 11507717773 11914117511
## [19] 12334864556 12771329405 13225000000
```