A complex FIR (finite impulse response) filter, takes the digital input date, manipulates it, and outputs the digital data. In this example, a simple convolution operation course between the complex input data (X_I and X_Q), the FIR filter coefficients (a_I and a_Q) to give an output (Y_I and Y_Q) which is the convolution between $X_I + jX_Q$ and $a_I + ja_Q$.

The design of a complex multiplier can be created through 4 multipliers and two adders as shown:

Shown below is a generic design of a 4 tap complex FIR filter. As we can see, a FIR filter tap consists of delay block (Z^{-1}), a multiplication block (\otimes), and the addition block (\oplus).

-6x17

X

-6x-3

Χ

Χ

-3

The following convolution process between two complex numbers can be confirmed to be correct through by checking the corresponding operation in MATLAB, as shown below:

```
>> x = [2+3i 5+10i -2-3i 0-6i];
>> a = [3+7i 2+0i 17+5i 0-3i];
>> conv(x,a)

ans =
    1.0e+02 *
    Columns 1 through 6
    -0.1500 + 0.2300i -0.5100 + 0.7100i 0.4400 + 0.5800i 0.8200 + 1.6500i 0.1100 - 0.8800i 0.2100 - 0.9600i
Column 7
    -0.1800 + 0.0000i
```