<u> 作明の名称</u>

光導波路型回折格子素子およびその製造方法

関連する出願の対応

本出願は、その全体内容が、引用されて組み込まれた、2001 年 12 月 18 日出願の米国 仮出願出願番号 60/340484 の優先権を主張する。

発明の背景

5

10

ļП

ľU

T1 4

£ 4 m

13

20

25

発明の分野

本発明は、光ファイバ等の光導波路の長手方向の一部に、屈折率の周期的変化等の周期的変動部 (屈折率変調部)を形成した光導波路型フィルタ、回折格子素子及びその製造方法、並びにその光導波路型フィルタ、回折格子素子を使用した光ファイバ増幅器に関する。

|関連する背景技術

光ファイバの一部に比較的長周期の屈折率の周期的変動部を形成した長周期型傾斜型 光ファイバグレーティングは、JOURNAL OF LIGHTWAVE TECHNO LOGY、VOL. 14、NO. 1、58~65頁、A. M. Vengskar他、「L ong-Period Fiber Grating as

Band-Rejection Filters」等にて知られている。

また、光ファイバの一部に比較的短周期の周期的変動部をその等位面に対する垂直な 直線を光ファイバの光軸に対して傾斜させて形成した傾斜型光ファイバグレーティング は、ELECTRONICS LETTERS、Vol. 29、No. 2、154~15 6頁、R. Kashyap他、「WIDEBAND GAIN FLATTENED ERBIUM FIBRE AMPLIFIERUSING A PHOTOSENSITIVE FIBRE BLAZEDGRATING」、OPTIC S LETTERS、Vol. 20、No. 18、1838~1840頁、

T.Erdogan他「Radiation-mode coupling loss in tileted fiber phase graitings」等の文献で知られて

いる。

8-----

5

10

これら長周期型光ファイバグレーティング、傾斜型光ファイバグレーティングは共に 光導波路を基にしたもので、波長1.5 μm帯等の波長選択型ロスフィルタとして機能 し、同じ機能を持つエタロン等の光部品と比較すれば、光ファイバ等の光導波路との接 続が容易で、挿入損失が少ないという利点を有している。

長周期型光ファイバグレーティングは、感光性ドーバントを有する光ファイバの一部に、数百μmのマスキング周期を有するマスクプレートを使って紫外線を照射し、光ファイバに数百μmの周期で屈折率の変動部を形成したものである。

この長周期型光ファイバグレーティングは、光ファイバ上に被覆層を設けると波長選択型ロスフィルタとしての機能発現に必須のクラッド全体に形成される漏洩モードが変化・消失し、遮断スペクトルが変化するため、被覆層を設けることが困難である。ところが被覆層を設けないと光ファイバを傷つけて破断させる危険性が大きく取り扱いが容易ではない。また、長周期型光ファイバグレーティングは、遮断中心波長がコア・クラッドの屈折率差に大きく左右され、コア・クラッドの屈折率差は温度によって大きく変化するため、温度が変化すると遮断中心波長が変化するという現象が起こる。

一方、傾斜型光ファイバグレーティングは、このような長周期型光ファイバグレーティングの欠点を有してはいないので、波長選択型ロスフィルタとしてはより好ましい形態とされている。

図1A、1B及び1Cは、傾斜型光ファイバグレーティング(以下「傾斜型FG」という。)の一例を示す図であって、図1Aはその縦断面図、図1Bはその横断面図、図1Cはその斜視図である。図1A、1B及び1Cにおいて、1は光ファイバ、2はコア、3はクラッド、4は屈折率の周期的変動部、Aは周期的変動部中の光軸上の任意の点のを通る直線であってかつ前記任意の点を通る等位面Lに対して垂直な直線、Xは光軸、Yは偏角方向、Lは等位面、Mは周期的変動部中の光軸上の任意の点のを通る直線であってかつ前記任意の点を通る等位面Lに対して垂直な直線Aと光軸Xとがなす平面であって偏角面とも言う、Oは任意の点、θは傾斜角である。

5

10

この傾斜型FGは、コア2とクラッド3からなる光ファイバ1の長手方向の一部に屈 折率が周期的に変化した部分、即ち周期的変動部4を形成したものであって、周期的変 動部4における屈折率が等位なる平面、即ち等位面上は光ファイバ1の光軸Xに対して 垂直な平面から傾いている。また、傾斜型FGの周期的変動部中の任意の点Oを通る等 位面上に対して垂直な直線Aは光軸Xに対して傾きをもっており、直線Aと光軸Xとの なす角は傾斜角のである。

また、偏角面Mの平面内において、点Oを通り光軸Xに対して直角な方向を、偏角方向Yとする。従って、光軸X、直線A、偏角方向Yは、全て偏角面Mの平面内にある。

従来から知られている傾斜型FGにおいては、周期的変動部4の中で任意の点〇の位置が変わっても、等位面Lは全て平行である。従って、周期的変動部4の任意の点〇の位置が変わっても、偏角面Mは同じ一平面であり、偏角方向Yは常に平行で一方向を向いている。

また、このような傾斜型FGは、次のようにして製造される。図2A及び2Bは、製造方法の主要部を示す図であって、図2Aはその斜視図、図2Bはその横側面図である。図2A及び2Bにおいて、5は位相格子、6は格子面、7はエキシマレーザ、8は紫外線である。コア2にゲルマニウム等の感光性ドーバントを含んだ光ファイバ1を、通常1μm程度のピッチで数千本~数万本の荷状凹凸からなる格子面6を形成した位相格子5と平行に配置して、エキシマレーザ7を使って紫外線8を位相格子5を通して光ファイバ1に照射する。そうすると、位相格子5の格子面6によって、紫外線8の干渉縞が生じ、その干渉縞が光ファイバ1に照射される。また、紫外線光源としてはエキシマレーザ以外にアルゴンレーザを使うこともある。

光ファイバ1のコア2は紫外線の強弱に応じて屈折率が変化するので、紫外線の干渉 縞によって、光ファイバ1には屈折率の周期的変動部4が形成される。また、格子面6 の溝方向を光ファイバ1の光軸に直角な方向に合わせておけば、周期的変動部4の等位 面に対して光軸が垂直な通常の光ファイバグレーティングが得られ、光ファイバ1の光 軸Xに直角な方向に対して、格子面6の溝方向を5度程度傾けておけば、周期的変動部

25

5

10

4の等位而に対する垂直な直線が光軸に対して傾いた、所謂傾斜型FGが得られる。

傾斜型FGを波長選択型ロスフィルタとして使用する場合、先に説明したように長周 期光ファイバグレーティングに比較して温度変化に対する遮断中心波長の変動が少なく、 また光ファイバ上に被覆層を設けることが出来るため、取り扱いが容易という利点があ る。

しかし、この従来技術による傾斜型FGの周期的変動部は、偏角方向が常に一定の方向を向いており、偏角方向の偏波と偏角方向に対して垂直方向の偏波に対する遮断特性は異なっているため、傾斜型FGとしての遮断特性は偏波依存性を有する。そして、この偏波依存性は傾斜型FGを光ファイバ増幅器等に使用したとき、利得が信号光の偏波状態によって変わるという問題をもたらすことがある。

発明の概要

本発明は、偏波依存性を少なくした傾斜型FGを使った光導波路型フィルタ、回折格子素子及びその製造方法、並びにその光導波路型フィルタ、回折格子素子を使用した光ファイバ増幅器を提供するものである。

本発明の光導波路型フィルタは、光導波路の長手方向の一部に屈折率の周期的変化等の周期的変動部を設け、該周期的変動部の等位而に対する垂直な直線が前記光導波路の光軸に対して傾きをもつようにする。そして、該光導波路を捻回を与えずに直線状にしたとき、周期的変動部中の光軸上の任意の点を通る直線であってかつ前記任意の点を通る等位面に対して垂直な直線と前記光軸とがなす平面即ち偏角面が、光導波路の前記任意の点の長手方向の位置によって同一平面でない部分を含むようにし、光導波路の長手方向に偏角方向を変えた部分を作る。このようにすることによって、偏角方向の偏波と偏角方向に対して垂直方向の偏波とに対する遮断特性の差を光導波路の長手方向に打ち消し合うようにして、遮断特性の偏波依存性を小さくする。

光導波路の長手方向の位置によって偏角方向を変える方法としては、まず光導波路の 長手方向に偏角方向が変化しない傾斜型FGを作って、それを光導波路の光軸周りに捻 回させることによって、光導波路の長手方向に偏角方向を変える方法と、まず光導波路

25

5

10

の 部を光軸周りに捻回させて、その捻回部分に偏角方向が変化しない傾斜型 F G を 形成し、その後捻回を元に戻して偏角方向を光導波路の長丁方向に変化させる方法がある。

また、光導波路の長手方向に偏角方向の変化しない傾斜型FGを複数個作って、それらを互いに偏角方向が異なるように光軸周りに回転角を変えて回転させて、それらを互いに融着接続して1本の光導波路とすることによって、長手方向に偏角方向が変化した光導波路型フィルタを形成することが出来る。

更に、光導波路の長手方向に一部に偏角方向の変化しない周期的変動部を形成し、そこから長手方向に離れた箇所において、光導波路を光軸周りに回転させて前の周期的変動部の偏角方向とは異なる偏角方向を有する周期的変動部を形成し、このような操作を複数回繰り返すことによって、光導波路の長手方向に互いに偏角方向の異なる周期的変動部を複数箇所形成することで、長手方向に偏角方向が変化した光導波路型フィルタを形成することも出来る。

また、以上のようにして形成した本発明にかかる光導波路型フィルタを少なくともエルビウムドープ光ファイバと励起レーザ光源とを有する光ファイバ増幅器の回路中に挿入することによって、利得等化器として作用させ、大きな波長幅で増幅スペクトル特性を平坦化することが出来る。

更に、本発明に係る光導波路型回折格子素子では、(1) 光導波路の長手方向に沿ってN (Nは2以上の整数) 個の回折率変調部が形成されており、(2) N個の回折率変調部それぞれの回折率等位面に垂直な直線が光導波路の光軸と平行でなく、(3) N個の回折率変調部それぞれの屈折率等位面に垂直な直線と光導波路の光軸とがなす偏角面が互いに一致しておらず、(4) N個の回折率変調部のうちの何れか2つの屈折率変調部それぞれの形成領域が互いに少なくとも一部が重なっていることを特徴とする。

また、木発明に係る光導波路型回折格了素了製造方法は、(1) 光導波路の長手 方向に沿ってN(Nは2以上の整数) 個の屈折率変調部を、屈折率等位面に垂直 な直線が光導波路の光軸と平行とならないようにして順次に形成するとともに、

5

10

(2) 第n (nは2以上N以下の整数)番目の屈折率変調部を形成する際に、屈折率等位面に垂直な直線と光導波路の光軸とがなす偏角面が、既に形成した第1番口~第(n-1)番目の屈折率変調部それぞれの偏角面の何れとも一致しないようにし、(3) N個の屈折率変調部のうちの何れか2つの屈折率変調部それぞれの形成領域が互いに少なくとも一部が重なるようにして、光導波路型回折格子素子を製造することを特徴とする。

本発明に係る光導波路型回折格子素子、および、本発明に係る光導波路型回折格子素子製造方法により製造される光導波路型回折格子素子は、N個の屈折率変調部が形成されていて、各屈折率変調部の屈折率等位面に垂直な直線が光導波路の光軸と平行でなく、各屈折率変調部の偏角面が互いに一致しておらず、何れか2つの屈折率変調部それぞれの形成領域が互いに少なくとも 部が重なっている。このように構成されることで、光導波路型回折格子素子は、短尺であって、偏波依存損失が低減されたものとなる。

また、本発明に係る光導波路型回折格子素子は、N個の屈折率変調部それぞれの偏角面が光導波路の光軸の回りに180度/Nずつずれていることを特徴とする。木発明に係る光導波路型回折格子素子製造方法は、N個の屈折率変調部それぞれの偏角面を光導波路の光軸の回りに180度/Nずつずらして、光導波路型回折格子素子を製造することを特徴とする。この場合には、光導波路型回折格子素子は、偏波依存損失が効率よく低減されたものとなる。

また、本発明に係る光導波路型回折格子素子では、N個の屈折率変調部それぞれは、屈折率等位面に垂直な直線と光導波路の光軸とがなす角度が互いに同一であり、光導波路の長手方向に沿った形成領域の長さが互いに同一であり、屈折率変調振幅が互いに同一であることを特徴とする。本発明に係る光導波路型回折格子素子製造方法は、N個の屈折率変調部それぞれを形成する際に、屈折率等位面に垂直な直線と光導波路の光軸とがなす角度を互いに同一にし、光導波路の長手方向に沿った形成領域の長さを互いに同一

5

10

し、屈折率変調周期を互いに同一にし、屈折率変調振幅を互いに同一にすることを特徴とする。この場合にも、光導波路型回折格子素子は、偏波依存損失が効率 よく低減されたものとなる。

And the state of t

また、本発明に係る光導波路型回折格子素子は、透過損失が最大となる波長に おいて偏波依存損失が透過損失最大値の1/10以下であることを特徴とする。 この場合には、光導波路型回折格子素子は、光通信の分野で偏波依存損失が小さ いことが要求される光学装置(またはその一部)として好適に用いられる。

また、本発明に係る光導波路型回折格子素子製造方法は、透過損失をモニタしながらN個の屈折率変調部それぞれを形成することを特徴とする。或いは、偏波依存損失をモニタしながらN個の屈折率変調部それぞれを形成することを特徴とする。この場合には、製造される光導波路型回折格子素子は、偏波依存損失が効率よく低減されたものとなる。

図面の簡単な説明

図1A、1B及び1Cは、従来技術による傾斜型光ファイバグレーティングの一例を示し、それぞれ、その縦断面図、その横断面図及びその斜視図である。

図2A及び2Bは、傾斜型光ファイバグレーティング(傾斜型FG)の製造方法の主要部を示し、それぞれ、その斜視図及びその横側面図である。

図3A及び3Bは、本発明の光導波路型フィルタの第1の実施例を示す図であって、 それぞれ、その縦断面図及びそのP、Q、R、Sの各位置における横断面図である。

図4A及び4Bは、本発明にかかる第1の実施例の光導波路型フィルタ製造時の捻回の状態を示す図であって、それぞれ、その縦断面図及びその各箇所における横断面図である。

図5は、図4A及び4Bに示す方法で製造した光導波路型フィルタの固定方法を示す 縦断面図である。

図6A及び6Bは、本発明の光導波路型フィルタの第2の実施例を示す図であって、 それぞれ、その縦断面図及びその光ファイバの長手方向の各位置での横断面図である。

5

10

図7A及び7Bは、本発明の光導波路型フィルタの更に別の第3の実施例を示す図であって、それぞれ、縦断面図及びその光ファイバの長手方向の各位置での横断面図である。

図8は、本発明の光導波路型フィルタを用いた光ファイバ増幅器の例を示す図である。 図9は、本発明の実験例1及び比較例の特性を示すグラフである。

図10A及び10Bは、実験例5にしめす本発明の光導波路型フィルタを示す図であって、それぞれ、その縦断面図及びそれぞれの光ファイバの周期的変動部の横断面図である。

図11は、図10に示す光導波路型フィルタの特性を示すグラフである。

図12A及び12Bは、実験例6に示す本発明にかかる4箇所の周期的変動部を有する光導波路型フィルタを示す図であって、それぞれ、その縦断面図及び各周期的変動部における横断面図である。

図13は、図12A及び12Bにかかる光導波路型フィルタの特性と、それを用いた 光ファイバ増幅器における利得机対値をそれぞれ示すグラフである。

図14は、木発明に係る第4の実施例である光導波路型回折格子素子 (傾斜型 回折格子素子) の説明図である。

図15は、図14に示す本発明に係る第4実施例の光導波路型回折格子素子製造 方法を説明するための斜視図である。

図16A、16B、16C及び16Dは、図15に示す本発明に係る光導波路型 回折格子素子製造方法を説明するための断面図である。

図17A及び17Bは、第4の実施例の光導波路型回折格子素子(傾斜型回折格子素子)の透過特性を示す図であって、それぞれ、第1番目の屈折率変調部の形成終了時点での透過特性を示す図及び第2番目の屈折率変調部の形成終了時点での透過特性を示す図である。

図18A及び18Bは、第4の実施例の光導波路型回折格子素子(傾斜型回折格子素子)の透過特性および偏波依存損失特性をそれぞれ示す図である。

5

10

図19A及び19Bは、木発明に従う第4の実施例で、更に、第3番目、第4 番目の屈折率変調部を形成後の透過特性及び偏波依存損失特性を示す図である。

図 2 0 は、第 5 の実施例に係る光導波路型回折格了素子 (傾斜型回折格了素子) 2 0 0 の説明図である。

図21A及び21Bは、1方向のみから屈折率変化誘起光が照射されて1つの屈折率変調部が形成された傾斜型回折格子素子についての特性を示す図である。

図22A及び22Bは、互いに90度だけ異なる2方向から屈折率変化誘起光が照射されて2つの屈折率変調部が形成された傾斜型回折格子素子の特性について示す図である

図23A及び23Bは、互いに90度ずつ異なる4方向から屈折率変化誘起光が照射されて4つの屈折率変調部が形成された傾斜型同折格了素子の特性について示す。

好適な実施例の説明

以下、添付図面を参照して、本発明の実施例を詳細に説明する。なお、図面の説明に おいて同一の要素には、同一符号を付して、重複する説明は省略してある。

図3A及び3Bは、本発明に従う光導波路型フィルタの第1の実施例を示す図であって、図3Aは縦断面図、図3BはP、Q、R、Sの各位置における各横断面図である。1は光ファイバ、2はコア、3はクラッド、4は周期的変動部、Aは周期的変動部中の光軸上の任意の点Oを通りかつ前記任意の点を通る等位面上に対して垂直な直線、Lは等位面、Mは周期的変動部中の光軸上の任意の点Oを通る直線であってかつ前記任意の点を通る等位面上に対して垂直な直線Aと光軸Xとがなす平面であって偏角面とも言う、Oは周期的変動部中の光軸上の任意の点、Xは光軸、Yは偏角方向である。

この光導波路型フィルタにおいては、周期的変動部(屈折率変調部)4における偏角 面Mの傾きは光ファイバ1の長手方向の位置によって変化しており、偏角方向Yは光フ ァイバ1の長手方向に光軸Xの周りに回転している。従って、偏角方向Yによって形成 される包絡面は螺旋状の曲面となっている。この光導波路型フィルタの場合、偏角方向 Yの光軸周りの変化角は周期的変動部の両端間で最も大きくなる。この偏角方向Yの変

5

10

化角の最大角は90度とすることが、偏波依存性を小さくする上で最も好ましいが、4 5度以上とし、出来るだけ60度以上としても十分な効果を得ることが可能である。

また、図3A 及び3B に示す光導波路型フィルタは、図2A及び2Bに示す製造装置を利用して製造することが可能である。図2A及び2Bにおいて、光ファイバ1を光軸周りに捻回させて配置し、その光ファイバ1に屈折率の周期的変動部4を傾斜させて形成する。その状態では、周期的変動部の偏角方向は光ファイバの長于方向の位置が変わっても常に一方向を向いており、偏角面も一平面上にある。周期的変動部を形成した後、光ファイバ1の光軸周りの捻回を開放して捻回のない状態に戻す。そうすると、周期的変動部の偏角方向は、光ファイバの長于方向には光軸周りに回転した状態になり、偏角面も一平面上にある状態ではなくなり平面が長手方向に回転した状態になり、図3に示す光導波路型フィルタが形成される。

また、図2A及び2Bに示す方法で製造した傾斜型FGを使って、それを光ファイバの光軸間りに捻回させてスリープ等の固定部材で捻回が元に戻らないように固定することによって、図3に示す本発明の光導波路型フィルタと同様の機能を備えたものを形成することも可能である。

図4A及び4Bは、その捻回の状態を示す図であって、図4Aは縦断面図、図4Bは各阿所における横断面図である。図4Aに示すように光軸周りの捻回によって、光ファイバ1の長手方向の位置によって偏角方向Yは変化する。なお、図5はこの方法で製造した光導波路型フィルタの固定方法を示す縦断面図である。図5の光導波路型フィルタでは、捻回させた光ファイバ1の周期的変動部4を形成した部分を固定部材9の空洞中に収容し、固定部材の貫通箇所9a、9bにおいて接着削等で固定部材9に固定し、光ファイバ1の捻回が戻らないようにする。また、固定部材9の空洞は樹脂等で充填することもある。

また、光ファイバの捻回に当たって、光ファイバの偏波依存損失をモニターしながら 捻回を行い、偏波依存損失が最小となったところで、光ファイバの捻回が戻らないよう に固定することで、より確実に偏波依存損失の小さい光導波路フィルタを製造すること 図6A及び6Bは、本発明の光導波路型フィルタの他の第2の実施例を示す図であって、図6Aは縦断面図、図6Bは光ファイバの長手方向の各位置での横断面図である。 図6A及び6Bの光導波路型フィルタは、1本の光ファイバ1の長手方向3箇所に周期的変動部4a、4b、4cを形成したものであって、それぞれの周期的変動部4a、4b、4cの各周期的変動部間においては、偏角方向Yの方向が異なる。

このような光導波路型フィルタは、図2A及び2Bに示す方法によって、まず光ファイバ1の一部に周期的変動部4aを形成し、次いで光ファイバ1の紫外線照射位置を変えて、更に光ファイバ1を光軸周りに一定角度回転させて、次の周期的変動部4bを形成する。そして、そのような操作を繰り返して他の周期的変動部4cを形成することによって、それ周期的変動部4a、4b、4cの偏角方向Yを変えることが出来る。

なお、図6A及び6Bでは周期的変動部の数を3箇所としたものを示したが、周期的変動部の数をNとし、それぞれの周期的変動部の偏角方向を90度/(N-1)ずつずらすことによって、偏波依存性の少ない光導波路型フィルタを構成することが出来る。また、N個の周期的変動部を配列する場合、偏角方向の配列順序は特に指定する必要はない。また、複数の周期的変動部の間隔は一定で無くても良いし、周期的変動部の周期、変動の大きさも必ずしも一定である必要はない。

図7A及び7Bは、本発明の光導波路型フィルタの第3の実施例を示す図であって、図7Aはその縦断面図、図7Bは光ファイバの長手方向の各位置での横断面図である。図6A及び6Bの光導波路型フィルタでは、まず光ファイバ1a、1b、1cに対して、それぞれ屈折率等を変化させた従来技術による傾斜型FGと同様に図2A及び2Bに示す方法によって、周期的変動部4a、4b、4cを形成する。周期的変動部4a、4b、4cの内部での偏角方向は一定方向とする。

その後、それらの光ファイバ1a、1b、1cを直列に並べて、相互の偏角方向が異なるように光ファイバ1a、1b、1cを光軸周りに回転角を変えて回転させ、互いに

5

-

Ш

20

5

10

端面を突き合せて突き合せ部10a、10bを剛着接続する。この光導波路型フィルタの場合、図7A及び7Bでは3本の光ファイバを融着接続するものを示したが、光ファイバの数をNとし、それぞれの周期的変動部の偏角方向を90度/(N-1)づつずらすことによって、偏波依存性の少ない光導波路型フィルタを構成することが出来る。また、N本の光ファイバを配列する場合、偏角方向の配列順序は特に指定する必要はない。

図8は、本発明に従う光導波路型フィルタを用いた光ファイバ増幅器の例を示す図であって、11はエルビウムドープ光ファイバ、12は励起レーザ光源、13はカプラ、14はアイソレータ、15は光導波路型フィルタである。この光ファイバ増幅器では、一段の光ファイバ増幅器の出力側に光導波路フィルタ15を挿入して利得等化器として機能させているが、多段の光ファイバ増幅器の途中に光導波路型フィルタを挿入することも可能であるし、また、エルビウムドープ光ファイバとカブラとの間の励起光が流れる箇所に光導波路型フィルタを挿入し、不用の励起光を除去することも可能である。

以上、本発明の光導波路型フィルタとして、コアとクラッドからなる光ファイバに屈折率を周期的に変化させ周期的変動部を形成したものについて説明したが、光ファイバの周期的変動部は屈折率の周期的変化には限らず、コアの周期的外径変動等によっても波長選択型ロスフィルタとして機能させることが出来る。また、光ファイバの上には適当な被覆を設けて保護することも可能である。更に光ファイバ以外の平面導波路等の光導波路の場合でも、コアに周期的変動部を形成し、偏角方向を変えることによって本発明の適用が可能である。

ここで、本発明に従った光導波路型フィルタを実際に製作し、その効果を確認した。「実験例1」及び「比較例」: 比屈折率差0.35%、コア径8μm、クラッド径125μm、コア材質GeO2・SiO2、クラッド材質SiO2のステップインデックス型光ファイバを使って、空温にて200気圧の水素雰囲気下で2週間の前処理を行って光ファイバを準備し、その光ファイバに位相格子を介してエキシマレーザから波長248nmの紫外線を照射した。位相格子は格子ピッチ1.073~1.075μmで5mm長のものを使用し、位相格子の溝方向を光ファイバの光軸に対して直角方向から5度傾け

てセットし、伝送波長の遮断量が3dBとなる時点で紫外線の照射を停止した。

そして製作した光ファイバそのままのもの、即ち捻回を与えないもの(これを比較例 とする)と、光ファイバに30mm当たり1回転の捻回を与えて捻回が戻らないように 固定部材に固定したもの(これを実験例1とする)を作り、それぞれ偏波依存損失(以 下「PDL」と略称する。)、遮断量を測定した。その結果は図9に示す通りである。遮 断量は両者共に同じであるが、PDLは比較例の場合は破線で示す値となり、実験例1 の場合は実線で示す値となった。この結果から捻回を与えない比較例のものはPDLの 最大値が0.25dBであるのに対し、捻回を与えた本発明にかかる実験例1のものは PDLの最大値が0.06dBで人きく改善されていることが確認出来た。

10

5

「実験例2」:上記実験例1の照射前の光ファイバと同じ光ファイバを用い、光ファイ バを30mm当たり1回転の割合で捻回させて位相格子と平行に配置し、位相格子を介 して紫外線を照射した。位相格子及びエキシマレーザは実施例1と同じものを使用した。 紫外線の照射は遮断量3dBの時点で停止した。そして照射後、光ファイバの捻回を元 に戻した。その光導波路型フィルタについて、遮断量、PDLを測定したところ、遮断 量は3dB、PDL最大値は0.05dBで、この場合も従来技術による前記の比較例 のものに比較してPDLが大きく改善されていることが確認出来た。

ļ. 1 ü

「実験例3」: 上記実験例1の照射前の光ファイバと同じ光ファイバを用い、上記実験 例1と同じ方法で位相格子を介して紫外線を照射した。そして、遮断量が1.5dBと なったところで一旦紫外線の照射を停止し、光ファイバの照射位置を15mmずらせて、 光ファイバを光刺問りに90度回転させ、再び紫外線を照射し、遮断量が3dBとなっ た時点で紫外線照射を停止した。この光導波路型フィルタについて、遮断量、PDLを 測定したところ、遮断量は3dB、PDL最大値は0.01dBで、上記比較例と比較 してPDLが大きく改善されており、実験例1、実験例2よりもPDLを低くすること が出来ることが確認出来た。

25

「実験例4」: 上記実験例1の照射後の光ファイバと同じ光ファイバを2本準備し、… 方を光軸周りに回転させて偏角方向を互いに光軸周りに90度ずらせて配置し、突き合

5

10

せ部にて融資接続を行なった。この光導波路型フィルタについて、遮断量とPDLを測定した結果、遮断量は6dB、PDL最大値は0.1dBで、この場合も上記比較例のものと比較してPDLが1/2以下に改善されていることが確認出来た。

「実験例5」: 上記実験例1の照射前の光ファイバと同じ光ファイバを2本準備し、それぞれ位相格子を変えて紫外線照射を行なった。位相格子は格子ピッチ $1.073\sim1.075\mu$ mで5mm長のものと、格子ピッチ $1.077\sim1.079\mu$ mで5mm長のものを準備し、それぞれの光ファイバに使用した。なお、位相格子の傾きは両者共5度とした。また、それぞれ遮断量が3dBとなった時点で紫外線の照射を停止した。また、エキシマレーザは上記実験例1とおなじものを使用した。出来上がった2本の光ファイバの一方を光刺周りに回転させて偏角方向を互いに90度ずらせて配置し、突き合せ部にて融着接続を行なった。

図10A及び10Bはその光導波路型フィルタを示す図であって、図10Aはその縦断面図、図10Bはそれぞれの光ファイバの周期的変動部16a、16bの横断面図である。周期的変動部16a、16bはそれぞれの位相格子を介して紫外線を照射した部分であり、その偏角方向Yは光軸周りに互いに90度ずれている。また、17は融着接続された突き合せ部である。また、図9はその光導波路型フィルタの遮断量とPDLの結果を示すグラフであって、遮断量は5.2dB、PDL最大値は0.11dBであった。実験例4と比較すると、位相格子の格子ピッチを変えたものであっても、遮断量は少し減るが、PDLは殆ど変わらないことが分かる。

「実験例6」: 上記実験例1の照射前の光ファイバと同じ光ファイバを用い、その光ファイバの長手方向の4箇所にそれぞれ位相格子を介して紫外線を照射してそれぞれ周期的変動部を形成した。最初の2箇所は、格子ピッチ1.064~1.068μm、長さ5mmの位相格子を用い、その位相格子を5度傾けてそれを介して光ファイバに紫外線を照射した。1箇所口において遮断量3dBで紫外線照射を一旦行い、次に10mm光ファイバをずらせた2箇所口において光ファイバを光軸間りに90度回転させて紫外線を照射し、遮断量が6dBになったところで紫外線照射を停止した。

5

10

その後更に光ファイバを $10\,\mathrm{mm}$ ずらせて3何所目において、位相格子を格子ビッチ $1.080\sim1.084\,\mu\mathrm{m}$ 、長さ $5\,\mathrm{mm}$ のものに変更して、位相格子を $5\,\mathrm{g}$ 何けてその位相格子を介して紫外線照射を行なった。3箇所目の紫外線照射は遮断量 $0.7\,\mathrm{dB}$ で停止し、更に光ファイバを $10\,\mathrm{mm}$ ずらせて、かつ光ファイバを光刺間りに $90\,\mathrm{g}$ 回 転させ、同じ位相格子を使って遮断量が $1.4\,\mathrm{dB}$ になるまで紫外線照射を行なった。なお、エキシマレーザは上記実験例1で使用したものと同じとした。

図12A及び12Bは、上記によって製作した光導波路型フィルタを示す図であって、図12Aはその縦断面図、図12Bは各周期的変動部における横断面図である。なお、18a、18b、18c、18dはそれぞれ1~4箇所日の周期的変動部を示す。

このようにして出来た4箇所に周期的変動部を有する光導波路型フィルタの特性を測定したところ、図13に示す通り、遮断量は1530nm付近に6dBのピークを持ち、1555nm付近に1.4dBのピークを持つもので、PDL最大値は0.01dBであった。

また、上記実施例では、紫外線照射方向を限定して説明しているが、照射方向は、全方向のいずれでも可能である。

また、実験例6の光導波路フィルタを使って図8に示す光ファイバ増幅器を構成した。また、励起レーザ光源は波長1.48μmのものを用いた。図13は光導波路型フィルタの特性と、光ファイバ増幅器における光導波路型フィルタの前後における利得相対値を示すグラフであって、利得相対値の破線は光導波路フィルタ挿入前の値を、実線は光導波路フィルタ挿入前の値を、実線は光導波路フィルタ挿入後の値を示す。実線の値から分かるように、本発明の光導波路型フィルタの挿入によって、20nm以上の波長帯域で利得スペクトルを平坦化することが出来る。

本発明に従う上記光導波路型フィルタは、周期的変動部に光軸に対する傾きをもたせ、かつ光軸と前記等位面に対する垂直な直線とがなす平面即ち偏角面が光導波路の長手方向の位置によって同一平面でない部分を有せしめることによって、偏角方向の偏波と偏角方向に対して垂直方向の偏波とに対する遮断特性の差を光導波路の長手方向に打ち消

5

10

し合うようにしたものであって、遮断特性の偏波依存性の小さい波長選択型ロスフィル タとすることが出来る。

光導波路の長手方向の位置によって偏角方向を変える方法として、まず偏角方向が変化しない傾斜型FGを作って、それを光導波路の長手方向に捻回させることによって、 光導波路の長手方向に偏角方向を変える方法と、まず光導波路の一部を捻回させて、その捻回部分に偏角方向が変化しない傾斜型FGを形成し、その後捻回を元に戻して偏角方向を光導波路の長手方向に変化させる方法があるが、これらの製造方法は、いずれも従来技術による傾斜型FGの製造方法を大きく変更することなく適用が可能である。

また、光導波路の長手方向に偏角方向の変化しない傾斜型下 Gを複数個作って、それらを互いに偏角方向が異なるように光軸周りの回転角を変えて回転させて、互いに融着接続して1本の光導波路とすることによっても、本発明の長手方向に偏角方向が変化した光導波路型フィルタを形成することが出来るが、この方法によれば、光ファイバを光軸周りに捻回させる場合に比較して、偏角方向の変化をより大きくし、偏波依存性をより小さくした光導波路型フィルタを形成することが出来る。

更に、光導波路の長手方向に一部に偏角方向の変化しない周期的変動部を形成し、そこから長手方向に離れた箇所において光導波路を光軸周りに回転させて、前の周期的変動部の偏角方向とは異なる偏角方向を有する周期的変動部を形成し、このような操作を複数回繰り返すことによって、光導波路の長手方向に互いに偏角方向の異なる周期的変動部を複数筒所形成することで、長手方向に偏角方向が変化した光導波路型フィルタを形成することも出来るが、この方法は融着接続をすることなく、偏角方向のずれを大きくすることが可能であるので、極めて偏波依存性の小さい光導波路型フィルタを形成することが出来る。

また、本 作明にかかる 光 停波路型 フィルタを 光 ファイバ 増幅器 の 同路中に 挿入する ことによって、 利 得等 化器として 作用 させ、 大きな 波長幅 でスペクトル 特性を 平坦 化する ことが 出来る。

次に、木発明に従う第2の実施例について説明する。

5

10

以下に説明する木発明の更に別の実施例では、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。

図14は、本発明の係る第2の実施例である光導波路型回折格子素子(傾斜型回折格子素子)100の説明図である。この図には、光軸を含む面で切断したときの断面図、および、光軸に垂直な面で切断したときの断面図が示されている。この図に示される本実施形態に係る傾斜型回折格子素子100は、光導波路である光ファイバ110の長手方向に沿って、N(Nは2以上の整数)個の屈折率変調部(上記実施例の周期変動部に相当する)11 3_1 ~11 3_N が形成されている。光ファイバ110は、石英ガラスをベースとするものであって、GeO $_2$ が添加されたコア領域111と、このコア領域111を取り囲むクラッド領域12とを含む。

N個の屈折率変調部 $1\,1\,3_1$ ~ $1\,1\,3_N$ のうちの何れか 2 つの屈折率変調部 $1\,1\,3_M$, $1\,1\,3_M$ それぞれの形成領域は、互いに少なくとも一部が重なっている。図 $1\,4$ では、例えば、屈折率変調部 $1\,1\,3_M$ の形成領域は、屈折率変調部 $1\,1\,3_M$ の形成領域と 一部が重なっており、屈折率変調部 $1\,1\,3_M$ の形成領域とも一部が重な

5

10

っており、また、屈折率変調部 1 1 3 $_{\rm N}$ の形成領域とも一部が重なっている。また、 N個の屈折率変調部 1 1 3 $_{\rm N}$ それぞれの形成領域は全て一致しているの が好適である。

このように、この別の実施例に係る傾斜型回折格子素子100では、N個の屈折率変調部 113_1 ~ 113_N が形成されていて、各屈折率変調部 113_n の角度 θ_n が0でなく、各屈折率変調部 113_n の偏角面 M_n が互いに一致しておらず、何れか2つの屈折率変調部 113_n 1、 113_n 2 それぞれの形成領域が互いに少なくとも一部が重なっている。このように構成された傾斜型回折格子素子100は、短尺であって、偏波依存損失が低減されたものとなる。

また、N個の配折率変調部 $1 1 3_1 \sim 1 1 3_N$ それぞれの偏角而 $M_1 \sim M_N$ は、光ファイバ 1 0 の光軸の回りに 1 8 0 度/Nずつずれているのが好適である。例えば、N=2 であれば、偏角面 M_1 と偏角面 M_2 とは互いに直交している。また、例えば、N=3 であれば、偏角面 $M_1 \sim M_3$ は光ファイバ 1 1 0 の光軸の回りに 6 0 度ずつずれている。このように偏角面 $M_1 \sim M_N$ が配置されることにより、傾斜型回折格子素子 1 は、偏波依存損失が効率よく低減されたものとなる。

また、N個の屈折率変調部 $13_1 \sim 13_n$ それぞれは、直線 A_n と光軸とがなす角度 θ_n が互いに同一であり、光ファイバ 110 の長手方向に沿った形成領域の長さ D_n が互いに同一であり、屈折率変調周期が互いに同一であり、屈折率変調振幅が互いに同一であるのが好適である。このように各屈折率変調部 113_n が形成されることにより、傾斜型回折格子素子 1 は、偏波依存損失が効率よく低減されたものとなる。

そして、この第2の実施例に係る傾斜型回折格子素子100は、透過損失が最大となる波長において、偏波依存損失が透過損失最大値の1/10以下であるのが好適である。このような傾斜型回折格子素了100は、光通信の分野で偏波依存損失が小さいことが要求される光学装置(またはその一部)として好適に用いられ、例えば光ファイバ増幅器の利得を等化する利得等化器として好適に用いら

れ得る。

5

10

In

14 125

ų۵

H III

11.0

次に、この第2の実施例に係る光導波路型回折格子素子(傾斜型回折格子素子) 100の製造方法について説明する。図15および図16A~16Dは、この第2の実施例に係る光導波路型回折格子素子製造方法を説明するための図である。図15は斜視図であり、図16A~16Dは光軸に垂直な面で切断したときの断面図である。

初めに、光ファイバ110、位相格子マスク120および光源130が用意される。光ファイバ110は、上述したように、石英ガラスをベースとするものであって、 GeO_2 が添加されたコア領域111と、このコア領域111を取り囲むクラッド領域112とを含むものである。位相格子マスク120は、石英ガラス平板の一方の面に周期2 Λ の溝状凹凸からなる位相格子が形成されたものである。光源130は、光ファイバ110のコア領域111の屈折率変化を誘起せしめる波長の光(以下「屈折率変化誘起光」という。)を出力するものであり、例えば、波長248nmのレーザ光を屈折率変化誘起光として出力するKrFx キシマレーザ光源が用いられる。

= 20

5

10

このように図16Aに示された配置状態で屈折率変化誘起光UVが一定時間だけ照射されることで第1番目の屈折率変調部113 $_1$ が形成される。形成後、屈折率変化誘起光UVの照射が中断され、その間に光ファイバ110が一定角度だけ光軸回りに回転されて、図16Bに示された配置状態となる。そして、図16Bに示された配置状態で屈折率変化誘起光UVが一定時間だけ照射されることで第2番日の屈折率変調部113 $_2$ が形成される。このようにして形成された第2番目の屈折率変調部113 $_2$ は、屈折率等位面 L_2 に垂直であって光ファイバ10の光軸と交わる直線を A_2 としたときに、この直線 A_2 と光軸とがなす角度が θ_2 であり、直線 A_2 と光軸とがなす偏角面 M_2 が位相格子マスク20の面に平行である。第2番日の屈折率変調部113 $_2$ の偏角面 M_2 は、既に形成された第1番目の屈折率変調部113 $_1$ の偏角面 M_1 と一致していない。

5

10

以降も同様にして、第4番目〜第N番目の屈折率変調部 113_{A} 〜 113_{N} が順次に形成される。第N番目の屈折率変調部 113_{N} の形成の際には、図16 Dに示された配置状態で屈折率変化誘起光UVが一定時間だけ照射されることで第N番目の屈折率変調部 113_{N} が形成される。このようにして形成された第N番目の屈折率変調部 113_{N} は、屈折率等位面 L_{N} に垂直であって光ファイバ110の光軸と交わる直線を A_{N} としたときに、この直線 A_{N} と光軸とがなす角度が θ_{N} であり、直線 A_{N} と光軸とがなす偏角面 M_{N} が位相格子マスク120の面に平行である。第N番目の屈折率変調部 113_{N} の偏角面 M_{N} は、既に形成された第1番目〜第(N-1)番目の屈折率変調部 113_{N} への偏角面 M_{N} は、既に形成された第1番目〜第(N-1)番目の屈折率変調部 113_{N} への偏角面 M_{N}

なお、位相格子マスク120が位置冏定のままであれば各 θ_n は全て同一値であるが、位相格子マスク120がその面上で回転されることにより各 θ_n は異なるものとすることができる。また、1つの位相格子マスク20が用いられれば、各屈折率変調部113 において直線 A_n に沿った屈折率変調周期は全て同一値であるが、異なる位相格了周期の位相格子マスクに交換されることで、各屈折率変調部113 において直線 A_n に沿った屈折率変調周期は異なるものとすることができる。

このように、第2の実施例に係る光導波路型回折格子素子製造方法では、N個の屈折率変調部 $113_1 \sim 113_N$ は、光ファイバ110の長手方向に沿って、屈折率等位面 L_n に垂直な直線 A_n が光ファイバ110の光軸と平行とならない(すなわち角度 $\theta_n \neq 0$ となる)ようにして順次に形成される。また、第 n 番目の屈折率変調部 113_n を形成する際に、その偏角而 M_n が、既に形成された第 1 番目 π 第 π 第 π 9 の 何れとも一致しないようにされる。さらに、N個の屈折率変調部 π 1 π 1 π 2 の 何れか 2 つの屈折率変調部 π 2 の形成領域が互いに少なくとも一部が重なるように形成される。このようにして、本実施形態に係る傾斜型回折格

5

10

子素子1が製造される。

また、各屈折率変調部113、を形成する際に、製造途中の傾斜型回折格子素子 100の透過損失または偏波依存損失をモニタするのが好適である。このように することで、製造される傾斜型回折格子素子100は、偏波依存損失が効率よく 低減されたものとなる。

次に、第2の実施例に係る光導波路型回折格子素子(傾斜型回折格子素子)100およびその製造方法の実施例について説明する。本実施例では、光ファイバ110は、コア領域111だけでなくクラッド領域112にもGeO₂が添加されたものであった。位和格子マスク120は、一定周期ではなく、満方向に垂直な方向に沿って周期が次第に変化していて、中心周期が1.0650μmであり、周期変化率が10.0nm/cmであった。光源130は、波長248nmのレーザ光を屈折率変化誘起光として出力するKrFエキシマレーザ光源が用いられた。

そして、製造された第2の実施例の傾斜型回折格子素子100は、2つの屈折

5

10

率変調部 113_1 , 113_2 を有するものであった。2つの屈折率変調部 113_1 , 113_2 それぞれは、形成領域の長さが5 mmであり、 Σ いに全く重ねられて形成された。屈折率変調部 113_1 の偏角面 M_1 と屈折率変調部 113_2 の偏角面 M_2 とは互いに直交するものであった。

第2の実施例の製造方法では、初めに第1番目の屈折率変調部113₁が形成され、その後、屈折率変化誘起光UVの照射が中断されている間に光ファイバ110が90だけ光軸回りに回転されて、続いて第2番目の屈折率変調部113₂が形成された。また、2つの屈折率変調部113₁,113₂それぞれの形成の際に、製造途中の傾斜型回折格了素了1の透過損失がモニタされた。

第2の実施例では、透過損失が最大となる波長における透過損失の目標値は1dBとされた。そして、第1番目の屈折率変調部113,の形成の際には、モニタされた透過損失が目標値の1/2(0.5dB)となった時点で、屈折率変化誘起光UVの照射が中断された。また、続く第2番目の屈折率変調部1132の形成の際には、モニタされた透過損失が目標値(1dB)となった時点で、屈折率変化誘起光UVの照射が終了された。図17Aは、第1番目の屈折率変調部1131の形成終了時点での透過特性を示す図であり、図17Bは、第2番目の屈折率変調部1132の形成終了時点での透過特性を示す図である。この図に示されるように、本実施例の傾斜型回折格子素子100の透過損失の最大値は、第1番目の屈折率変調部1132の形成終了時点では0.5dBであり、第2番目の屈折率変調部1132の形成終了時点では1.0dBであった。

図18Aは、第2の実施例の傾斜型回折格子素子の透過特性を示す図であり、 図18Bは、第2の実施例の傾斜型回折格子素子の偏波依存損失特性を示す図で ある。また、

図19Aは、比較例の傾斜型回折格子素子の透過特性を示す図であり、図19B は、比較例の傾斜型回折格子素子の偏波依存損失特性を示す図である。ここで、 比較例の傾斜型回折格子素子は、重ね書きされることなく1つの屈折率変調部の

5

10

みを有するものであった。

図18Aと図19Aとを比較して判るように、第2の実施例の傾斜型回折格子素了および比較例の傾斜型回折格子素子それぞれは、透過スペクトルの形状が互いに似ており、何れも透過損失の最大値が0.6dB程度であった。しかし、図18Bと図19Bとを比較して判るように、比較例の傾斜型回折格子素子の偏波依存損失の最大値は0.125dB程度であるのに対して、本実施例の傾斜型回折格子素子の偏波依存損失の最大値は0.03dB程度であった。本実施例の傾斜型回折格子素子の偏波依存損失の最大値は、比較例の傾斜型回折格子素子の偏波依存損失の最大値は、比較例の傾斜型回折格子素子の偏波依存損失の最大値は、比較例の傾斜型回折格子素子の偏波依存損失の最大値と比較して約1/4であり、また、本実施例の傾斜型回折格子素子の透過損失の最大値と比較して約1/20であった。

図20は、第5の実施例に係る光導波路型回折格子素子(傾斜型回折格子素子)200説明図である。この図には、光軸を含む面で切断したときの断面図、および、光軸に垂直な面で切断したときの断面図が示されている。この図に示される本実施形態に係る傾斜型回折格子素子200は、光導波路である光ファイバ20の長手方向に沿って、N(Nは2以上の整数)個の屈折率変調部230 $_1$ ~230 $_N$ が形成されている。光ファイバ20は、石英ガラスをベースとするものであって、GeO $_2$ が添加されたコア領域210と、このコア領域210を取り囲むクラッド領域220とを含む。

各屈折率変調部 $2\,3\,0_n$ (nは1以上N以下の任意の整数)について、屈折率が等位となる屈折率等位面を L_n と表し、屈折率等位面 L_n に垂直であって光ファイバ $2\,0$ の光軸(x軸)と交わる直線を A_n と表し、直線 A_n と光軸とがなす角度を θ_n と表し、直線 A_n と光軸とがなす偏角面を M_n と表す。各屈折率変調部 $2\,3_n$ の形成領域、屈折率等位面 L_n 、直線 A_n および角度 θ_n それぞれに関しては、既に説明したとおりである。

この傾斜型回折格子素子200は、各屈折率変調部23 $_n$ の偏角面 M_n が光刺の周りに360度/Nずつずれている点に特徴を有する。なお、図では、N=4としている。この場合、偏角面が互いに180度だけ異なる屈折率変調部 230_1 , 230_3 それぞれが有する非軸対称性に因る複屈折性が相殺され、また、偏角面が互いに180度だけ異な

5

10

る屈折率変調部 230_3 , 230_4 それぞれが有する非軸対称性に因る複屈折性が相殺されるので、このことによっても、光導波路型回折格子素子 20は、更に偏波依介損失が効率よく低減されたものとなる。なお、ここで言う非軸対称性とは、光ファイバ 200 に対して屈折率変化誘起光が照射されて形成された回折率変調部 230_1 において、屈折率変化誘起光の人射側において回折率上昇が大きくなっていることを言う。そこで、光ファイバ 200 に対して屈折率変化誘起光が互いに逆の方向それぞれから照射されて屈折率変調部 230_1 , 230_3 が形成されることにより、各々の非軸対称性に因る複屈折性が相殺される。

この傾斜型回折格子素子2も、透過損失が最大となる波長において、偏波依存損失が 透過損失最人値の1/10以下であるのが好適である。このような傾斜型回折格子素子 20も、光通信の分野で偏波依存損失が小さいことが要求される光学装置(またはその 一部)として好適に用いられ、例えば光ファイバ増幅器の利得を等化する利得等化器と して好適に用いられ得る。

傾斜型回折格子素子100および傾斜型回折格子素子200それぞれでは、各屈折率変 調部は重ねて形成された。

図21A,図22Aおよび図23Aを比較して判るように、3種類の傾斜型回折格子素子それぞれの透過率Tの波長依存性は略同様のものであった。 方、図21B,図22Bおよび図23Bを比較して判るように、1つの屈折率変調部が形成された傾斜型回折格

子素子の偏波依存損失PDLは0.127dBにも達したのに対して、傾斜型回折格子素子1の偏波依存損失PDLは0.023dBと小さく、傾斜型回折格了素子2の偏波依存損失PDLは0.016dBと更に小さかった。

以上、詳細に説明したとおり、本発明に従う上記光導波回折格子素子によれば、N (Nは2以上の整数) 個の屈折率変調部が形成されていて、各屈折率変調部の屈折率等位面に垂直な直線が光導波路の光軸と平行でなく、各屈折率変調部の偏角面が互いに一致しておらず、何れか2つの屈折率変調部それぞれの形成領域が互いに少なくとも一部が重なっている場合には、導波路型回折格子素子は、短尺とすることが可能であり、また、偏波依存損失の低減が実現できる。

10

The The

ľIJ

20

25

- 1. 光導波路の長手方向の一部に屈折率変調部である周期的変動部を設けた光導波路型フィルタにおいて、該周期的変動部の等位面に対する垂直な直線が前記光導波路の光軸に対して傾きをもっており、該光導波路を捻回を与えずに直線状にしたとき、前記周期変動部中の光軸上の任意の点を通る直線であってかつ前記任意の点を通る等位而に対して垂直な直線と前記光軸とがなす平面は、光導波路の前記任意の点の長手方向の位置によって同一平面でない箇所があることを特徴とする光導波路型フィルタ。
- 2. 前記平面は、光導波路の長手方向に対して光軸周りに回転している部分を有することを特徴とする請求項1に記載の光導波路型フィルタ。
- 3. 前記周期的変動部は光導波路の長手方向に複数個の群に分かれており、各郡内においては前記平面は同一平面であり、ある群と別の群との間では前記平面は同一平面でないことを特徴とする請求項1に記載の光導波路型フィルタ。
- 4. 前記周期的変動部は光導波路の長手方向にN個の群に分かれており、各群の前記平面は光軸の周りに90度/(N-1)ずつずれていることを特徴とする請求項3に記載の光導波路型フィルタ。
- 5. 光導波路の長手方向の一部に周期的変動部を設けた光導波路型フィルタの製造方法において、該周期的変動部の等位面に対する垂直な直線が前記光導波路の光軸に対して傾きをもつように、かつ前記光軸上の任意の点を通る直線であってかつ前記等位面に対して垂直な直線と前記光軸とがなす平面が同一平面となるように光導波路に周期的変動部を形成し、その後該光導波路の周期的変動部を形成した部分を長手方向に光軸周りに捻回させて該捻回が戻らないように固定することを特徴とする光導波路型フィルタの製造方法。
- 6. 前記光導波路の長手方向に光軸周りに捻回させるに際し、該光導波路の偏波 依存損失をモニターしながら該捻回を行い、偏波依存損失が最小になったところ で光導波路の捻回が戻らないように固定することを特徴とする請求項5に記載の

光導波路型フィルタの製造方法。

7. 光導波路の長手方向の一部に周期的変動部を設けた光導波路型フィルタの製造方法において、光導波路の一部を長手方向に光軸周りに捻回させて、該捻回した光導波路に対して、周期的変動部に対して垂直な直線が前記光導波路の光軸に対して傾きをもつように、かつ前記光軸上の任意の点を通る直線であってかつ前記等位面に対して垂直な直線と前記光軸とがなす平面が同一平面となるように該光導波路の一部に周期的変動部を形成し、その後該光導波路の捻回を元に戻すことを特徴とする光導波路型フィルタの製造方法。

8. 少なくともエルビウムドーブ光ファイバと励起レーザ光源とを含む光ファイバ増幅器において、光導波路の長手方向の一部に周期的変動部を設け、該周期的変動部の等位面に対して垂直な直線が前記光導波路の光軸に対して傾きをもっており、該光導波路を捻回を与えずに直線状にしたとき、前記周期的変動部中の光軸上の任意の点を通る直線であってかつ前記任意の点を通る等位面に対して垂直な直線と前記光軸とがなす平面が、光ファイバの前記任意の点の長手方向の位置によって同一平面でない部分を有する光導波路型フィルタを、利得等化器として増幅器回路中に挿入したことを特徴とする光ファイバ増幅器。

9. 光導波路の長手方向に沿ってN(Nは2以上の整数)個の屈折率変調部が形成されており、

前記N個の屈折率変調部それぞれの屈折率等位面に垂直な直線が前記光導波路の光軸と平行でなく、

前記N個の屈折率変調部それぞれの屈折率等位面に垂直な直線と前記光導波路の光軸とがなす偏角面が互いに一致しておらず、

前記N個の屈折率変調部のうちの何れか2つの屈折率変調部それぞれの形成領域が互いに少なくとも一部が重なっている

- ことを特徴とする光導波路型回折格子素子。
 - 10. 前記N個の屈折率変調部それぞれの偏角面が前記光導波路の光軸の回りに

10

5

∭ 20

25

U

5

10

- 180度/Nずつずれていることを特徴とする請求項9記載の光導波路型回折格子素子。
- 11. 前記N個の屈折率変調部それぞれは、屈折率等位面に垂直な直線と前記光 導波路の光軸とがなす角度が互いに同一であり、前記光導波路の長手方向に沿っ た形成領域の長さが互いに同一であり、屈折率変調周期が互いに同一であり、屈 折率変調振幅が互いに同一であることを特徴とする請求項9記載の光導波路型回 折格子素子。
- 12. 透過損失が最大となる波長において偏波依存損失が透過損失最大値の1/10以下であることを特徴とする請求項9記載の光導波路型回折格了素了。
- 13. 光導波路の長手方向に沿ってN(Nは2以上の整数)個の屈折率変調部を、 屈折率等位面に垂直な直線が前記光導波路の光軸と平行とならないようにして順 次に形成するとともに、

第n (nは2以上N以下の整数)番目の屈折率変調部を形成する際に、屈折率等位面に垂直な直線と前記光導波路の光軸とがなす偏角面が、既に形成した第1番目〜第(n-1)番目の屈折率変調部それぞれの偏角面の何れとも一致しないようにし、

前記N個の屈折率変調部のうちの何れか2つの屈折率変調部それぞれの形成領域が互いに少なくとも一部が重なるようにして、

光導波路型回折格子素子を製造することを特徴とする光導波路型回折格子素子 製造方法。

- 14. 前記N個の屈折率変調部それぞれの偏角面を前記光導波路の光軸の回りに 180度/Nずつずらすことを特徴とする請求項13記載の光導波路型回折格子 素子製造方法。
- 15. 前記N個の屈折率変調部それぞれを形成する際に、屈折率等位面に垂直な 直線と前記光導波路の光軸とがなす角度を互いに同一にし、前記光導波路の長手 方向に沿った形成領域の長さを互いに同一し、屈折率変調周期を互いに同一にし、

屈折率変調振幅を互いに同一にすることを特徴とする請求項13記載の光導波路型回折格子素子製造方法。

- 16. 透過損失をモニタしながら前記N個の屈折率変調部それぞれを形成することを特徴とする請求項13記載の光導波路型回折格子素子製造方法。
- 5 17. 偏波依存損失をモニタしながら前記N個の屈折率変調部それぞれを形成することを特徴とする請求項13記載の光導波路型回折格子素子製造方法。
 - 18. 前記N個の屈折率変調部それぞれの偏角面が前記光導波路の光軸の回りに360度/Nずつずれていることを特徴とする請求項9記載の光導波路型回折格子素子。
 - 19. 前記周期的変動部は光導波路の長手方向にN個の群に分かれており、各群の前記平面は光軸の周りに90度ずつずれていることを特徴とする請求項1に記載の光導波路型フィルタ。

開示内容の要約

本発明は、光ファイバ等の光導波路の長手方向の一部に屈折率変調部となる周期的変動部を設け、この周期的変動部の等位面に対して垂直な直線が光導波路の光軸Xに対して傾きをもつようにし、捻回等の方法により、この光軸Xとそれに交差するこの直線Aとがなす平面即ち偏角面Mが光導波路の長手方向の位置によって同一平面でない部分を含むようにする。それによって、光導波路の長手方向に偏角方向Yを変えて、偏角方向の偏波と偏角方向に対して垂直方向の偏波とが光導波路の長手方向に打ち消し合うようにして、偏波依存性の小さい光導波路型フィルタを提供する。