

Independent samples t-test

David McLernon

Research Fellow in Medical Statistics

Comparing groups of continuous data or categorical data?

Number of groups for comparison

- Paired or independent groups?
- Parametric vs non-parametric tests

Comparing groups of continuous data or categorical data?

Number of groups for comparison

Paired or independent groups?

Comparing groups of continuous data or categorical data?

Number of groups for comparison =2

Paired or independent groups?

Comparing groups of continuous data or categorical data?

Number of groups for comparison =2

Paired or independent groups?

Comparing groups of continuous data or categorical data?

Number of groups for comparison =2

Paired or independent groups?

 Distribution: Outcome variable is normally distributed in both groups

 Distribution: Outcome variable is normally distributed in both groups

2. Comparison is between two independent groups

 Distribution: Outcome variable is normally distributed in both groups

2. Comparison is between two independent groups

3. Variances are assumed to be equal

Unequal variances

 Distribution: Outcome variable is normally distributed in both groups

CHECK BY PLOTTING A HISTOGRAM FOR EACH GROUP

2. Comparison is between two independent groups

Variances are assumed to be equal

 Distribution: Outcome variable is normally distributed in both groups

- 2. Comparison is between two independent groups

 DIFFERENT INDIVIDUALS IN EACH GROUP
- Variances are assumed to be equal

 Distribution: Outcome variable is normally distributed in both groups

2. Comparison is between two independent groups

- Variances are assumed to be equal USE LEVENE'S TEST:
 - ► H_o : There is no difference between the variance of group 1 and the variance of group 2 in the population (i.e. H_o : $\sigma_1^2 = \sigma_2^2$)

Example of independent samples t-test

 Is there a difference between the mean total cholesterol of males and females?

• The null hypothesis is that the group means are the same. That is:

$$H_0$$
: $\mu_{Males} = \mu_{Females}$

The alternative hypothesis:

$$H_1$$
: $\mu_{Males} \neq \mu_{Females}$

Normality assumption for example

Total cholesterol for males

Total cholesterol for females

Example of independent samples t-test

Group Statistics

	Sex	N	Mean	Std. Deviation	Std. Error Mean
Total cholesterol (mmol/l)	Female	77	7.3622	1.25750	.14331
	Male	84	6.6262	1.23788	.13506

 In order to perform the test, we must again construct a test statistic t

The test statistic:

Difference in sample means

Difference in hypothesised population means (usually zero)

$$t = \frac{(\bar{x}_1 - \bar{x}_2) - (\bar{n}_1 + 1/n_2)}{s_p \sqrt{1/n_1 + 1/n_2}}$$

Standard error of the difference

$$t = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{s_p \sqrt{1/n_1 + 1/n_2}}$$

Group Statistics

	Sex	N	Mean	Std. Deviation	Std. Error Mean
Total cholesterol (mmol/l)	Female	77	7.3622	1.25750	.14331
	Male	84	6.6262	1.23788	.13506

$$t = \frac{(7.36 - 6.63) - 0}{s_p \sqrt{1/77 + 1/84}}$$

Group Statistics

	Sex	N	Mean	Std. Deviation	Std. Error Mean
Total cholesterol (mmol/l)	Female	77	7.3622	1.25750	.14331
	Male	84	6.6262	1.23788	.13506

$$t = \frac{(7.36 - 6.63) - 0}{s_p \sqrt{1/77 + 1/84}}$$

Group Statistics

	Sex	N	Mean	Std. Deviation	Std. Error Mean
Total cholesterol (mmol/l)	Female	77	7.3622	1.25750	.14331
	Male	84	6.6262	1.23788	.13506

 S_n is the pooled SD i.e. the average of the 2 sample variances

$$s_p = \sqrt{\frac{(df_1)s^2 + (df_2)s^2}{df_1 + df_2}}$$

$$t = \frac{(7.36 - 6.63) - 0}{s_p \sqrt{1/77 + 1/84}}$$

Group Statistics

	Sex	N	Mean	Std. Deviation	Std. Error Mean
Total cholesterol (mmol/l)	Female	77	7.3622	1.25750	.14331
	Male	84	6.6262	1.23788	.13506

 S_p is the pooled SD i.e. the average of the 2 sample variances

$$s_p = \sqrt{\frac{(76)1.2575^2 + (83)1.2379^2}{76 + 83}} = 1.247$$

$$t = \frac{(7.362 - 6.626) - 0}{1.247\sqrt{1/77 + 1/84}}$$

Therefore,

$$t = 3.74$$

with 77+84-2=159 df

Group Statistics

	Sex	N	Mean	Std. Deviation	Std. Error Mean
Total cholesterol (mmol/l)	Female	77	7.3622	1.25750	.14331
	Male	84	6.6262	1.23788	.13506

http://www.psychstat.missouristate.edu/introbook/sbk24m.htm

Output from example

Group Statistics

	Sex	N	Mean	Std. Deviation	Std. Error Mean
Total cholesterol (mmol/l)	Female	77	7.3622	1.25750	.14331
	Male	84	6.6262	1.23788	.13506

Independent Samples Test

		Levene's Test for Equality of Variances		t-test for Equality of Means						
							Mean	Std. Error	95% Confidence Differ	
		F	Sig.	t	df	Sig. (2-tailed)	Difference	Difference	Lower	Upper
Total cholesterol (mmol/l)	Equal variances assumed	.011	.918	3.740	159	.000	.73602	.19679	.34736	1.12467
	Equal variances not assumed			3.738	157.322	.000	.73602	.19692	.34706	1.12497

Output from example

Group Statistics

	Sex	N	Mean	Std. Deviation	Std. Error Mean
Total cholesterol (mmol/l)	Female	77	7.3622	1.25750	.14331
	Male	84	6.6262	1.23788	.13506

Independent Samples Test

Conclusions

- Female total cholesterol levels were on average
 0.736mmol/l higher than male total cholesterol.
- The value of t=3.74 is highly significant at the 5% level.
- Therefore, we reject the null hypothesis and conclude that female total cholesterol levels are significantly higher than male total cholesterol levels in the population.
- In the wider population there is a 95% chance that the actual mean difference is between 0.347 and 1.125mmol/l.

Summary

- Independent samples t-test is a parametric test that is used when we want to compare the mean of a continuous measurement in two independent groups.
- The assumptions:
 - The continuous or outcome measure must be approximately normally distributed in each group
 - Tested by drawing a histogram
 - The variance of the outcome measure is assumed equal in both groups
 - Tested using Levene's test.

Copyright Statement

- Unless otherwise stated all content Copyright University of Aberdeen.
- The University of Aberdeen subscribes to the Copyright Licensing Agency's Higher Education Photocopying and Scanning Licence. You may access, download and print out a copy of any material included under the terms of this licence.
- Any digital or print copy supplied to or made by you are for use in connection with this Course of Study. You may retain such copies after the end of the course, but strictly for your own personal use.
- All copies (including electronic copies) shall include this Copyright Notice and shall be destroyed and/or deleted if and when required by the University of Aberdeen.
- Except as provided by copyright law, no further copying, storage or distribution (including by e-mail) is permitted without the consent of the copyright holder.
- The author has moral rights in the work. No distortion, mutilation, or other modifications of the work, or any other derogatory treatment prejudicial to the honour or reputation of the author is permitted.