Matematickou analýzou proti koronaviru I

V první části prvního úkolu začneme zlehka: povětšinou se jen ujistíme, že to, co jsme dělali na prvním cviku, opravdu umíme..

1. Najděte řešení následujících (ne)rovnic pro $x \in \mathbb{R}$, případně \mathbb{C} :

- (a) $x^2 + 6x = -16$
- (b) $x^2 5x \le -6$
- (c) $\frac{x^3 2x^2 3x}{x+1} \ge 0$
- 2. Doplňte na čtverec, tj. do tvaru $(x+a)^2+b$ pro vhodná $a,b\in\mathbb{R}$, výraz $x^2+6x+14$.
- 3. Najděte maxima, minima, infima a suprema následujících množin:
 - (a) $2\mathbb{Z} = \{2 \cdot k \mid k \in \mathbb{Z}\}$
 - (b) $M = \{r \in \mathbb{R} \mid r^2 \le 2 \& |r| = r\} \cap \mathbb{Q}$
 - (c) $N = \left\{ \frac{n+1}{n+2} \mid n \in \mathbb{N} \right\}$

Ve druhé části už budete muset místy zapřemýšlet, co se dělo na přednášce:

- 4. Ukažte, že $\sqrt{7}$ je iracionální číslo.
- 5. Mějme f rostoucí funkci. Co můžeme říci z hlediska růstu/klesání o funkci:
 - (a) -3f
 - (b) 5f
 - (c) |f| (kreslete si plno obrázků)
 - (d) f^2
 - (e) 1/(2f)?
- 6. Určete definiční obory následujících funkcí:
 - (a) $f(x) = \frac{2-x}{x^2-11}$
 - (b) $g(x) = \sqrt{x^2 4} + \sqrt{3x^2 + 7} + \frac{1}{7}\sqrt{2 x}$
 - (c) $h(x) = \log (1 \log (x^2 5x + 16))$
 - (d) $j(x) = \arccos\sqrt{x + \frac{1}{2}}$
 - (e) $k(x) = \ln|\cos x|$
 - (f) $\ell(x) = (\arctan(x+1))^{-1/x}$ (Před řešením se podívejte na stránku č. 2 pod tabulku hodnot funkce sin v "Přehledu přednášky" najdete v Moodlu)