V. CLASSIFICATION WITH K-NEAREST NEIGHBORS

supervised regression classification unsupervised dimension clustering

continuous categorical supervised regression classification unsupervised | dimension clustering

SUPERVISED LEARNING

Fisher's Iris Data

150 observations (n = 150)

risher's Ins Data				
Sepal length ¢	Sepal width ¢	Petal length ¢	Petal width ¢	Species ¢
5.1	3.5	1.4	0.2	I. setosa
4.9	3.0	1.4	0.2	I. setosa
4.7	3.2	1.3	0.2	I. setosa
4.6	3.1	1.5	0.2	I. setosa
5.0	3.6	1.4	0.2	I. setosa
5.4	3.9	1.7	0.4	I. setosa
4.6	3.4	1.4	0.3	I. setosa
5.0	3.4	1.5	0.2	I. setosa

4 predictors
$$(p = 4)$$

Q: How does a classification problem work? A: Data in, predicted labels out.

Figure 4.2. Classification as the task of mapping an input attribute set x into its class label y.

CLASSIFICATION WITH KNN

Suppose we want to predict the color of the gray dot.

QUESTION:

What are the predictors? What is the response?

1) Pick a value for k.

- 1) Pick a value for k.
- 2) Find colors of k nearest neighbors.

- 1) Pick a value for k.
- 2) Find colors of k nearest neighbors.
- 3) Assign the most common color to the gray dot.

- 1) Pick a value for k.
- Find colors of k nearest neighbors.
- 3) Assign the most common color to the gray dot.

Advantages of KNN:

- Simple to understand and explain
- Model training phase is fast
- Non-parametric (does not presume a "form" of the "decision boundary")

Disadvantages of KNN:

- Prediction phase can be slow when n is large
- Sensitive to irrelevant features

DATA SCIENCE