Algoritmos em Grafos

Adaptado de Humberto C. B. Oliveira

História dos Grafos

Leonhard Euler

Em 1735, Euler ganha fama mundial ao resolver um problema que por décadas foi desafio para os matemáticos da época (Série infinita da soma dos inversos dos quadrados – conhecido como problema da Basiléia);

- A maioria dos grandes matemáticos de seu tempo tentaram sem êxito encontrar o resultado desta série infinita;
- Euler possuía apenas 28 anos na época;

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \lim_{n \to \infty} \left(\frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{n^2} \right) = \frac{\pi^2}{6}$$

Leonhard Euler

 Um ano mais tarde (1736), Euler resolve o problema conhecido como as <u>Sete pontes de</u>

Königsberg.

• Problema:

 É possível que uma pessoa faça um percurso na cidade de tal forma que inicie e volte a mesma posição passando por todas as pontes somente uma única vez?

- Euler resolve este problema simplificando a forma de se enxergar o mapa:
- Cada faixa de terra representa um ponto, e as pontes são ligações entre os pontos.

- Obviamente, existem duas respostas possíveis para o dilema:
 - Ou Existe solução...
 - Basta mostrar uma!!! Fácil... ©
 - Será mesmo simples??? Para todo problema...
 - Ou não existe solução
 - Pode se mostrar enumerando todos os caminhos possíveis, e mostrar que todos falham;
 - Árvore de possibilidades
 - ou de forma mais elegante, provando através das características do grafo que não existe solução para o problema

- Aparentemente n\u00e3o existe solu\u00e7\u00e3o;
- Partindo do vértice A, e percorrendo outros vértices, podemos ver a utilização de no mínimo duas arestas (pontes) <u>"chegada" e a de "saída".</u>
- Assim, se for possível achar uma rota que usa todas as arestas do grafo e começa e termina em A, então o numero total de chegadas e saidas de cada vértice deve ser um valor múltiplo de 2

• No entanto, temos:

```
    grau(A) = grau(C) = grau(D) = 3;
    grau(B) = 5.
```

Assim, por este raciocínio não é
 possível percorrer as faixas de terra,
 passando por cada ponte uma única
 vez, retornando ao vértice de partida.

1736, Königsberg, Prússia 2007, Kaliningrad, Rússia

- Foto de 29/04/2007.
- A configuração das pontes está diferente.
- Mas agora existe caminho que satisfaz ao problema proposto no passado?

- Verifique a beleza da solução de Euler...
- Mesmo para diferentes problemas,
 - Tal verificação pode ser efetuada em tempo polinomial, sem a necessidade de enumerar (implícita ou explicitamente todas as possibilidades)
- Quando existe tal ciclo, ele é classificado como ciclo Euleriano...

Leonhard Euler curiosidades...

 Euler é atualmente considerado um dos maiores matemáticos de todos os tempos;

- Produziu mais de 1100 artigos e livros;
- Durante os últimos 17 anos de vida, ele ficou praticamente cego, quando produziu quase que metade de seus trabalhos.

Um pouco de história...

- Apesar da beleza da solução de Euler para o problema das sete pontes, a solução foi um detalhe na imensidão de contribuições do matemático;
- A resolução de um toy problem, e não aparentava a princípio ser de grande relevância para a ciência;
- <u>Seu método de abstração</u> ficou durante 150 anos oculto em meio ao seu mar de livros e artigos.

Um pouco de história...

 1859 – Hamilton propôs um toy problem, a princípio sem aplicação prática. A busca por um circuito fechado em um dodecaedro regular;

Um pouco de história...

- Diferentemente do problema de Euler (que não se repete aresta, e pode se repetir vértices), o problema de Hamilton não permite a repetição de vértices, e consequentemente também não se repetem arestas;
- Atualmente, o ciclo Hamiltoniano é utilizado na definição formal do problema do Caixeiro Viajante (um dos mais importantes e complexos problemas já descritos – definitivamente, o mais estudado problema de otimização combinatória);
- É interessante observar que os problemas de Euler e Hamilton encontraram aplicações práticas 100 anos mais tarde, na área de Pesquisa Operacional;

Um pouco de história... Aplicação do ciclo Hamiltoniano

- Imagine que você precisa construir uma placa de circuito impresso.
- Esta possui inúmeros furos para o encaixe de seus componentes.
- Suponha que você possui a disposição um braço eletrônico para perfurar a placa e precisa descrever um algoritmo para encontrar a ordem perfuração dos buracos;

Um pouco de história... Aplicação do ciclo Euleriano

- Imagine que você precisa entregar encomendas em todas as ruas de uma região.
- Existe a possibilidade de encontrar uma rota sem repetir ruas inutilmente?
 - Minimizando assim o trajeto a ser percorrido..

Exemplos de Aplicações

Exemplo de Aplicação: Sociograma

• Os sociogramas representam relacionamentos entre indivíduos;

Exemplo de aplicação: Representação de Localidades

 A representação é base para inúmeras aplicações em grafos...

Exemplo de aplicação:

Caminho mínimo

- Exemplo:
 - Caminho mínimo entre BH e Alfenas calculado pelo Google Maps.
- O melhor algoritmo para este problema foi proposto por Dijkstra;
- O mesmo que propôs diversos algoritmos e estruturas na área de Sistemas Operacionais;

Exemplo de aplicação: Circuitos elétricos

 Atualmente existem muitos problemas em aberto dedicados a prevenção de falhas no sistema elétrico de grandes metrópoles.

Exemplo de aplicação: Química molecular

• Representação bidimensional de moléculas utilizando grafos...

Exemplo de aplicação: Redes de computadores

 Apesar das redes de computadores serem complexas no mundo real, onde inúmeros fatores descrevem o ambiente....

 É necessária uma forma de abstração para a eficiente comunicação dos computadores.

Exemplo de aplicação: Redes de computadores

 Que informações podemos utilizar para montar as tabelas de encaminhamento de cada switch?

Exemplo de aplicação: Sistemas Operacionais

• Hierarquia de Processos – Árvores são grafos especiais...

Exemplo de aplicação: Teoria da Computação

- Reconhecimento de textos de uma língua/linguagem qualquer.
 - Ex.: C++, Java,Português...

Aplicação:

 Detecção de erros sintáticos em frases de um documento por Máquinas de Turing ou Máquina equivalente.

Exemplo de aplicação:

Teoria da Computação e Engenharia de Software

Caso: Abrir arquivo

A: File

B: Open

D: Name

E: Select

F: Cancel

H: Open

Exemplo de sequências reconhecidas pelo autômato:

w1: AB, BE, EH (menor palavra da linguagem)

w2: AA, AA, AA, AB, BF, AB, BE, EH

Atualmente...

Grafos na atualidade

- Da "era Euler" até os dias atuais, a teoria dos grafos se desenvolveu rapidamente;
- Eu a considero uma teoria estável e de grande bagagem para resolução da maioria dos problemas práticos;
- Apesar da limitação computacional:
 - Seja ela de complexidade,
 - Seja ela de decidibilidade;

Conceitos Básicos

Grafos - Introdução

- Os grafos são formados por:
 - Vértices conjunto V;
 - Arestas conjunto A;
- Formalmente descrito como:
 - G=(V,A)

• Grafo simples:

 Para qualquer conjunto V, denotamos por V(2) o conjunto de todos os pares não ordenados de elementos de V;

$$V(2) = \{(a,b), (a,c), (a,d), (b,c), (b,d), (c,d)\}$$

- Portanto, em um grafo simples: $A \subseteq V_{(2)}$
- "Um grafo é um par <u>(V,A)</u>, em que <u>V</u> é um conjunto arbitrário "<u>(finito)</u>", e <u>A</u> <u>é</u> <u>um subconjunto de <u>V(2</u>)."</u>

 G_1

Neste outro exemplo, o grafo simples
 Go é denotado por:

- $G_0=(V,A)$, onde:
 - $V=\{a,b,c,d\}$
 - $A = \{(a,b), (a,c), (b,d), (c,d)\}$
- Repare que <u>A</u> <u>é um subconjunto de</u> <u>V(2</u>);
- $V_{(2)} = \{(a,b), (a,c), (a,d), (b,c), (b,d), (c,d)\}$

• Em um grafo simples, se a cardinalidade de V é igual a n, qual é a cardinalidade do conjunto $V_{(2)}$?

- |V| = n
- $|V_{(2)}| = ????$
- Lembrando que $V_{(2)}$ são os pares não ordenados de V.

 G_1

- |V| = n
- $|V_{(2)}| = ????$
- Lembrando que $V_{(2)}$ são os pares não ordenados de V.

$$|V^{(2)}| = \sum_{i=1}^{n-1} i = \frac{n(n-1)}{2}$$

Grafos simples

- Por que isso é importante?
 - Memória pode ser um fator limitador dos sistemas computacionais...
 - É importante o sistema saber antes da operação, se o computador possui memória suficiente para executá-lo...
 - Pode ser crítico em aplicações que utilizam grandes mapas, por exemplo.

Grafo <u>complementar</u> de um grafo simples

- Considere o grafo G = (V,A)
- Seu complemento é denotado por

$$\overline{G} = (V, V_{(2)} \setminus A)$$

Grafos simples

- Uma aresta como {a,b} será denotada simplesmente por ab ou por ba.
- Dizemos que a aresta ab incide em a e em b.
- Dizemos que a e b são pontas da aresta;
- Se ab é uma aresta, vamos dizer que a e b são vértices <u>vizinhos</u> ou <u>adjacentes</u>.

Grafos simples

- De acordo com nossa definição, um grafo simples não pode:
 - Ter arestas paralelas;
 - Ter arestas do tipo "laço". Ex.: bb, aa, hh, ...

Grafos simples completo

• Um grafo

$$G = (V,A)$$

• é completo se somente se

$$|A| = V_{(2)}$$

Grafos simples vazio

• Um grafo

$$G = (V,A)$$

(C)

 \widehat{d}

(d)

é vazio se somente se

$$|A| = 0$$

$$A = \{ \}$$

(a)

(c)

(d)

C

(d)

Grafos simples <u>completo</u> Grafos simples <u>vazio</u>

A expressão

$$G=K_n$$

- é uma abreviação para dizer que G é simples e completo e tem n vértices;
- E a expressão

$$G = K_n$$

• é uma abreviação para dizer que G é vazio e tem n vértices.

Grafos simples <u>completo</u> Grafos simples <u>vazio</u>

Grafos não orientados

Grafos não orientados

- Estrutura bem parecida com os grafos simples;
- A diferença é que pode possuir arestas paralelas e também arestas "laço";

Grafos não orientados

Aplicações:

 Em alguns casos, como fluxo em redes, por exemplo, existem dois caminhos que o objeto em questão pode passar entre dois vértices;

• Exemplo:

• Uma rede de computadores que possui dois canais de envio de informação;

Grafos orientados simples

Grafos orientados

- Grafo orientado:
 - Para qualquer conjunto V, denotamos por V₂ o conjunto de todos os pares ordenados de elementos de V;
 - $V=\{a, b, c, d\}$
 - $V_2 = \{(a,b), (b,a), (a,c), (c,a), (a,d), (d,a), (b,c), (c,b), (b,d), (d,b), (c,d), (d,c)\}$
 - Portanto: $A \subseteq V_2$

Grafos orientados

• Em um grafo orientado, se a cardinalidade de V é igual a n, qual é a cardinalidade do conjunto V_2 ?

•
$$|V| = n$$

•
$$|V_2| = ????$$

 Lembrando que V₂ são os <u>pares</u> ordenados de V.

Grafos orientados

• |V| = n

 $= n^2 - n$

- $|V_2| = ????$
- Lembrando que V₂ são os <u>pares</u> ordenados de V.

$$|V^2| = \sum_{i=1}^n (n-1) = n(n-1)$$

$$= \sum_{i=1}^{n} (n-1) = n(n-1)$$

Grafos orientados com aresta "laço"

 Se os grafos orientados aceitam aresta do tipo laço,

• O número máximo de aresta é???

Grafos orientados com aresta "laço"

 Se os grafos orientados aceitam aresta do tipo laço,

$$\sum_{i=1}^{n} (n) = n(n)$$
$$= n^{2}$$

Grafos Valorados

Grafos valorados

• São utilizados rótulos também nas arestas;

• Grafos valorados podem ser orientados e não orientados;

Grafos valorados

- Geralmente utilizamos rótulos em arestas para representar o custo de alguma coisa:
 - Por exemplo, a distância para sair da cidade a e chegar na cidade b.
 - Ou o tempo necessário...
 - Em Redes de Computadores, a aresta muitas vezes recebe o RTT (*round-trip time*), tempo de ida e volta...

Algoritmos em Grafos

Representação Computacional

Representação

E se quisermos a<u>rmazenar</u> um grafo em um computador?

Precisamos ar<u>mazenar os dados essenciais</u> da definição de grafo;

A partir desta informação podemos, por exemplo:

Construir uma representação visual ou efetuar operações sobre o grafo;

Aplicar algoritmos para otimizar determinadas tarefas; Determinar se alguma tarefa é possível de ser realizada.

Representação

Diversas são as formas de representar tal estrutura computacionalmente;;

Estruturas comumente utilizadas:

Matriz de Adjacência;;

Matriz de Incidência;;

Lista de Adjacência.

Matriz de Adjacência

Representação

Matriz de adjacência

Lembrando o conceito de adjacência:

```
a é adjacente a b se a está conectado a b;
```

A matriz de adjacência possui a informação que reflete este conceito:

Suponha a matriz quadrada M

1, se i é adjacente a j m_{i,j} 0, em caso contrário

	0	1	2	3
0	0	1	0	0
1	1	0	1	0
2	0	1	0	1
3	0	0	1	0

Em um grafo K4, como seria a matriz de adjacência?

E em um grafo complemento de K4?

m i, j

se i é adjacente a j
 em caso contrário

Em um grafo K4, como seria a matriz de adjacência?

	0	1	2	3
0	0	1	1	1
1	1	0	1	1
2	1	1	0	1
3	1	1	1	0

1, se i é adjacente a j m_{i,j} 0, em caso contrário

E em um grafo complemento de K4?

	0	1	2	3
0	0	0	0	0
1	0	0	0	0
2	0	0	0	0
3	0	0	0	0

	0	1	2	3
0	0	1	0	0
1	1	0	1	0
2	0	1	0	1
3	0	0	1	0

G

Vantagem????

Desvantagem???

Acesso: (1)

Desvantagens???

Memória:

$$(V|^2)$$

	0	1	2	3
0	0	1	0	0
1	1	0	1	0
2	0	1	0	1
3	0	0	1	0

Representação

Matriz de adjacência

É possível representar grafos direcionados usando matriz de adjacência???

É possível representar grafos direcionados usando matriz de adjacência???

Uma forma...

	a	b	c	d
a	0	+1	- 1	0
b	-1	0	+1	+1
С	+1	-1	0	-1
d	0	-1	+1	0

É possível representar grafos direcionados usando matriz de adjacência???

Outra forma...

	a	b	c	d
a	0	0	1	0
b	1	0	0	0
С	0	1	0	1
d	0	1	0	0

É possível representar grafos com <u>arestas laço</u> utilizando matriz de adjacência?

É possível representar grafos com <u>arestas laco</u> utilizando matriz de adjacência?

	a	b	C	d
a	0	1	1	1
b	1	1	1	1
С	1	1	0	1
d	1	1	1	0

Matriz de adjacência

É possível representar grafos com <u>arestas</u> <u>paralelas</u> utilizando matriz de adjacência?

Representação Matriz de adjacência

É possível representar grafos com <u>arestas</u> paralelas utilizando matriz de adjacência?

	a	b	c	d
a	0	1	2	1
b	1	0	1	1
С	2	1	0	1
d	1	1	1	0

Representação Matriz de adjacência

É possível representar grafos com arestas valoradas utilizando matriz de adjacência?

Representação Matriz de adjacência

É possível representar grafos com <u>arestas</u> <u>valoradas</u> utilizando matriz de adjacência?

	a	b	c	d	e
a		0			
b			0		
С				1	
d			1		1
e					

Matriz de adjacência

É possível representar grafos com arestas valoradas e com arestas paralelas utilizando matriz de adjacência?

Matriz de adjacência

É possível representar grafos com arestas valoradas e com arestas paralelas utilizando matriz de adjacência?

	a	b
a	0	-2
b	+2	0

Não é possível sem utilizar estruturas auxiliares.

Matriz de Incidência

Matriz de Incidência

 $m_{i,j}$

A matriz de incidência possui a seguinte dimensão:

se a aresta j incide no vértice i
 em caso contrário

Matriz de Incidência

1, se a aresta j incide no vértice i m_{i,j} 0, em caso contrário

	e1	e2
a	1	0
b	1	1
С	0	1

Podemos representar <u>grafos orientados</u> utilizando matriz de incidência???

Matriz de Incidência

1, se a aresta j tem como origem o vértice i

 $m_{i,j}$

-1, se a aresta j tem como destino o vértice i 0, em caso contrário

	e1	e2	e3
a	- 1	0	+1
b	+1	- 1	0
С	0	+1	-1

Matriz de Incidência

É possível representar grafos com <u>arestas laço</u> utilizando matriz de incidência?

É possível representar grafos com <u>arestas laco</u> utilizando matriz de incidência?

	e1	e2	e3	e4	e5	e6	e7
a	1	1	1	0	0	0	0
b	1	0	0	1	1	0	2
С	0	1	0	1	0	1	0
d	0	0	1	0	1	1	0

É possível representar grafos com arestas paralelas utilizando matriz de incidência?

É possível representar grafos comarestas paralelas utilizando matriz de incidência?

Matriz de Incidência

É possível representar grafos com arestas valoradas utilizando matriz de incidência?

Matriz de Incidência

É possível representar grafos com arestas valoradas utilizando matriz de incidência?

c_j, se a aresta j incide no vértice i m_{i,j} infinito, em caso contrário

	e1	E2	e3
a	10	20	
С	10		30
d		20	30

Lista de Adjacência

Estrutura de dados:

Vetor de listas;

Podemos representar grafos orientados utilizando lista de adjacência?

Lista de Adjacência

Podemos representar grafos orientados utilizando lista de adjacência?

Lista de Adjacência

É possível representar grafos com <u>arestas laço</u> utilizando lista de adjacência?

É possível representar grafos com <u>arestas laco</u> utilizando lista de adjacência?

É possível representar grafos com arestas paralelas utilizando lista de adjacência?

É possível representar grafos com<u>arestas</u> paralelas utilizando lista de adjacência?

É possível representar grafos com arestas valoradas utilizando lista de adjacência?

É possível representar grafos comarestas valoradas utilizando lista de adjacência?

Lista de Adjacência

Vantagem?

Desvantagem?

Vetor de Listas

Lista de Adjacência

Vantagem?

Memória:

$$(V + A)$$

Desvantagem

Acesso:

(|A|)

Vetor de Listas

Algoritmos em Grafos

Dúvidas?