

Electrical Circuits for Engineers (EC1000)

Lecture-9 (b)
AC circuits
Sinusoidal Steady State Analysis (Ch. 10)
Network Theorems

Steps to Analyse AC circuits

- 1. Transform the circuit to the phasor or frequency domain.
- 2. Solve the problem using circuit techniques (nodal, Mesh, theorem etc.,)
- 3. Transform the resulting phasor to the time domain

3. Superposition Theorem

Since ac circuits are linear, superposition theorem applies to ac circuits.

1. Determine the current I_0 in the circuit of figure below using Super Position Theorem.

3. Superposition Theorem

Let $I_0 = I_{01} + I_{02}$, where I_{01} is due to the dc source and I_{02} is due to the ac source. For I_{01} , consider the circuit in Fig. (a).

Clearly,

$$I_{o1} = 8/2 = 4 A$$

For I_{o2} , consider the circuit in Fig. (b).

3. Superposition Theorem

By the current division principle,

$$\mathbf{I}_{o2} = \frac{4/3}{4/3 + j4} (2.5 \angle 0^{\circ})$$

$$\mathbf{I}_{o2} = 0.25 - j0.75 = 0.79 \angle -71.56^{\circ}$$

Thus,

$$I_{o2} = 0.79\cos(4t - 71.56^{\circ}) A$$

Therefore,

$$I_o = I_{o1} + I_{o2} = [4 + 0.79\cos(4t-71.56^\circ)] A$$

Example Problem

Find v_o for the circuit in Fig $v_s = 6 \cos 2t + 4 \sin 4t \text{ V}$.

We apply superposition principle. We let

$$v_0 = v_1 + v_2$$

where v_1 and v_2 are due to the sources 6cos2t and 4sin4t respectively.

$$V_4 = \frac{2}{2 - j2} V(6) = 3 + j3 = 4.243 \angle 45^{\circ}$$

$$V_2 = \frac{2}{2-1}(4) = 3.2 + 111.6 = 3.378 \angle 26.36^{\circ}$$

$$v_1(t) = 4.243\cos(2t+45^\circ)$$
 volts.

$$v_2(t) = 3.578\sin(4t+25.56^\circ)$$
 volts.

$$v_o = [4.243\cos(2t+45^\circ) + 3.578\sin(4t+25.56^\circ)] \text{ volts.}$$

11/2/2023

Practice Problem

1. Find I₀ in the circuit of figure below using Super Position Theorem

$$i_o(t) = 1.4142\cos(2t + 45^\circ) A$$

4. Thevenin & Norton Equivalent Circuit

Norton Equivalent Circuit

Example Problem

1. Find Thevenin and Norton Equivalent Circuits at the terminals a-b

Solution:

(a) To find \mathbf{Z}_{th} , consider the circuit in Fig. (a).

To find V_{th} , consider the circuit in Fig. (b).

$$\mathbf{Z}_{N} = \mathbf{Z}_{th} = 10 + j20 || (-j10) = 10 + \frac{(j20)(-j10)}{j20 - j10}$$

= $10 - j20 = 22.36 \angle -63.43^{\circ} \Omega$

$$\begin{array}{c|c}
 & \mathbf{j20} \ \Omega & \mathbf{10} \ \Omega \\
\hline
 & \mathbf{50} \angle \mathbf{30}^{\circ} \ \mathbf{V} & \mathbf{+} \\
\hline
 & \mathbf{-j10} \ \Omega & \mathbf{V}_{t} \\
\hline
 & \mathbf{-j} \\
\end{array}$$

$$V_{th} = \frac{-j10}{j20 - j10} (50 \angle 30^\circ) = -50 \angle 30^\circ V$$

$$I_{N} = \frac{V_{th}}{Z_{th}} = \frac{-50\angle 30^{\circ}}{22.36\angle -63.43^{\circ}} = 2.236\angle 273.4^{\circ} A$$

Example Problem

2. Obtain the Thevenin Equivalent at terminals a-b for the below

Solution

The Thevenin impedance is the series combination of \mathbb{Z}_1 and \mathbb{Z}_2 ; that is,

$$\mathbf{Z}_{\text{Th}} = \mathbf{Z}_1 + \mathbf{Z}_2 = 6.48 - j2.64 \,\Omega$$

To find V_{Th} , consider the circuit in Fig. 10.23(b). Currents I_1 and I_2 are obtained as

$$\mathbf{I}_1 = \frac{120/75^{\circ}}{8 - j6} \,\mathrm{A}, \qquad \mathbf{I}_2 = \frac{120/75^{\circ}}{4 + j12} \,\mathrm{A}$$

Applying KVL around loop bcdeab in Fig. 10.23(b) gives

$$\mathbf{V}_{\mathrm{Th}} - 4\mathbf{I}_2 + (-j6)\mathbf{I}_1 = 0$$

$$\mathbf{V}_{\text{Th}} = 4\mathbf{I}_{2} + j6\mathbf{I}_{1} = \frac{480\sqrt{75^{\circ}}}{4 + j12} + \frac{720\sqrt{75^{\circ} + 90^{\circ}}}{8 - j6}$$

$$= 37.95\sqrt{3.43^{\circ}} + 72\sqrt{201.87^{\circ}}$$

$$= -28.936 - j24.55 = 37.95/220.31^{\circ} \text{ V}$$

Practice Problem

1. Obtain the Thevenin Equivalent at terminals a-b for the below circuit

$$\mathbf{Z}_{N} = \mathbf{Z}_{th} = j10 \parallel (8 - j5) = \frac{(j10)(8 - j5)}{j10 + 8 - j5} = \mathbf{10} \angle \mathbf{26}^{\circ} \Omega$$

$$\mathbf{V}_{\text{th}} = \text{j}10\,\mathbf{I}_{\circ} = \frac{\text{j}320}{8+\text{j}5} = 33.92\angle 58^{\circ}\,\mathbf{V}$$

$$I_{N} = \frac{V_{th}}{Z_{th}} = \frac{33.92 \angle 58^{\circ}}{10 \angle 26^{\circ}} = 3.392 \angle 32^{\circ} A$$

Practice Problem

2. Find the Thevenin and Norton equivalent circuits for the circuit shown in

$$Z_{th} = 21.633 \angle -33.7^{\circ} \Omega$$

$$\mathbf{V}_{\text{th}} = \frac{\text{j20}}{5 - \text{j10} + \text{j20}} (60 \angle 120^{\circ}) = \frac{\text{j4}}{1 + \text{j2}} (60 \angle 120^{\circ})$$
$$= \mathbf{107.3} \angle \mathbf{146.56^{\circ} V}$$

$$I_{N} = \frac{V_{th}}{Z_{th}} = \frac{107.3 \angle 146.56^{\circ}}{21.633 \angle -33.7^{\circ}} = 4.961 \angle -179.7^{\circ} A$$

Practice Problems

1. Find the Thevenin's equivalent circuit for the circuit shown below.

Answer: $\mathbf{Z}_{Th} = 12.4 - j3.2 \,\Omega$, $\mathbf{V}_{Th} = 47.43 / -51.57^{\circ} \,\mathrm{V}$.

2. Find the Norton equivalent circuits for the circuit shown below.

