Sistemas Digitais

ET46B

Prof. Eduardo Vinicius Kuhn

kuhn@utfpr.edu.br Curso de Engenharia Eletrônica Universidade Tecnológica Federal do Paraná

Capítulo 7 Contadores e Registradores

Conteúdo

- 7.1 Contadores assíncronos
- 7.2 Atraso de propagação em contadores assíncronos
- 7.3 Contadores síncronos (paralelos)
- 7.4 Contadores de módulo $< 2^N$
- 7.5 Contadores síncronos crescentes/decrescentes
- 7.6 Contadores com carga paralela
- 7.7 Circuitos integrados de contadores síncronos
- 7.8 Decodificando um contador
- 7.9 Análise de contadores síncronos
- 7.10 Projeto de contadores síncronos
- 7.14 Máquinas de estados finitos
- 7.15 Transferência de dados em registradores
- 7.17 Contadores com registradores de deslocamento

Objetivos

- Revisitar a operação de contadores <u>assíncronos</u> e <u>introduzir o</u> conceito de contadores <u>síncronos</u>.
- Implementar contadores com ${\it m\'odulo} < 2^N$, crescentes e decrescentes, e com sequências arbitrárias de contagem.
- Conectar contadores em cascata a fim de produzir faixas de contagens e fatores de divisão de frequência maiores.
- Descrever formas para decodificar contadores.
- Apresentar um procedimento geral de projeto de circuitos sequenciais, usando tanto FFs JK quanto FFs D.
- Explicar a forma de operação de diversos tipos de registradores (e.g., PIPO, SISO, PISO e SIPO).

Contadores e registradores, com características específicas, podem ser construídos a partir de FFs e portas lógicas.

PARTE 1 - Contadores

Contadores assíncronos

Com respeito à operação de um contador (assíncrono) de módulo 2^N , é importante observar que:

- ullet Os pulsos são aplicados apenas na entrada CLK do FF A.
- A saída do FF A funciona como clock para o FF B e assim por diante.
- Na 16^a borda de descida do clock, o contador é "<u>reciclado</u>" e começará um novo ciclo de contagem.

Portanto, em um contador assíncrono (ou contador ondulante), os FFs não mudam de estado com o mesmo pulso de *clock* (i.e., em sincronismo).

Contadores assíncronos

As saídas dos FFs D, C, B e A representam um número binário de 4 bits, em que D denota o MSB e A o LSB.

Divisão de frequência

Exemplo: Considere que um contador assíncrono de módulo 16 opera com clock de entrada de $16~\rm kHz$.

A partir disso, determine a frequência da forma de onda observada nas saídas $A,\,B,\,C$ e D.

Divisão de frequência

Exemplo: Considere que um contador assíncrono de módulo 16 opera com *clock* de entrada de 16 kHz.

A partir disso, determine a frequência da forma de onda observada nas saídas $A, B, C \in D$.

R: A forma de onda na saída A tem frequência de 8 kHz, na saída B, de 4 kHz, na saída C, de 2 kHz, e na saída D, de 1 kHz.

Em um contador, o sinal de saída do último FF (MSB) tem frequência igual à do clock de entrada dividida pelo módulo do

contador.

Contadores assíncronos

Exemplo: Um contador é necessário para contar o número de itens que passam por uma esteira de transporte. Uma fotocélula combinada a uma fonte de luz é usada para gerar um único pulso cada vez que um item passa pelo feixe de luz. O contador deve ser capaz de contar 1000 itens. Quantos FFs são necessários?

Exemplo: O primeiro passo envolvido na construção de um relógio digital é obter um sinal de 60 Hz para gerar uma forma de onda de 1 Hz. Essa forma de onda entra em uma série de contadores, que contam os segundos, minutos e horas. Quantos FFs são necessários para implementar um contador de módulo 60?

Contadores assíncronos

Exemplo: Um contador é necessário para contar o número de itens que passam por uma esteira de transporte. Uma fotocélula combinada a uma fonte de luz é usada para gerar um único pulso cada vez que um item passa pelo feixe de luz. O contador deve ser capaz de contar 1000 itens. Quantos FFs são necessários?

R: Como $2^{10} = 1024_{10}$, 10 FFs são necessários.

Exemplo: O primeiro passo envolvido na construção de um relógio digital é obter um sinal de 60 Hz para gerar uma forma de onda de 1 Hz. Essa forma de onda entra em uma série de contadores, que contam os segundos, minutos e horas. Quantos FFs são necessários para implementar um contador de módulo 60?

R: Não há potência inteira de 2 que seja igual à 60; logo, 6 FFs são usados para produzir um contador de módulo 64.

- Contadores assíncronos têm uma grande desvantagem decorrente do fato que cada FF subsequente é disparado pela transição de saída do FF precedente.
- O atraso entre as respostas de FFs sucessivos (e.g., $t_{\rm pd}$ de 5 a 20 ns por FF) pode ser problemático.
- Os atrasos de propagação se acumulam tal que o N-ésimo FF não muda de estado por um intervalo $N \times t_{\rm pd}$, após a transição do clock de entrada.

Note que a saída do FF A comuta 50 ns, após a borda de descida do clock de cada pulso de entrada; apesar disso, o contador opera "adequadamente" dado que $T_{\rm clock}=1000$ ns.

Caso $T_{\rm clock}=100$ ns, a condição de contagem $CBA=100_2$ nunca ocorrerá, uma vez que a frequência do clock de entrada é muito alta.

Devido ao acúmulo de atrasos de propagação dos FFs, é possível mostrar que, para uma operação adequada,

$$T_{
m clock} \ge N imes t_{
m pd}$$

ou, em termos de frequência máxima de operação,

$$f_{\max} \le \frac{1}{N \times t_{\mathrm{pd}}}.$$

Note que, à medida que o número de FFs N aumenta, o atraso de propagação total aumenta e $f_{\rm max}$ diminui.

Portanto, a aplicabilidade prática de contadores assíncronos torna-se limitada; especialmente, em sistemas digitais de alta velocidade e/ou com grande número de bits.

Exemplo: Explique como a frequência máxima dos contadores ondulantes diminui à medida que aumenta o número de FFs?

$$f_{\text{max}} \le \frac{1}{N \times t_{\text{pd}}}$$

Exemplo: Determinado FF JK tem um $t_{
m pd}=12$ ns. Qual é o contador de maior módulo que pode ser construído a partir desses FFs que seja capaz operar em uma frequência de até 10 MHz?

Exemplo: Explique como a frequência máxima dos contadores ondulantes diminui à medida que aumenta o número de FFs?

$$f_{\text{max}} \le \frac{1}{N \times t_{\text{pd}}}$$

R: Conforme $N \to \infty$, verifica-se que $f_{\text{max}} \to 0$.

Exemplo: Determinado FF JK tem um $t_{\rm pd}=12$ ns. Qual é o contador de maior módulo que pode ser construído a partir desses FFs que seja capaz operar em uma frequência de até 10 MHz?

R: Como

$$N \le \frac{1}{f_{\text{max}} \times t_{\text{pd}}}$$
$$< 8.333$$

verifica-se que o contador pode ter módulo $2^8 = 256$.

"Restrições de tempo" estão se tornando cada vez mais críticas em sistemas digitais de alta velocidade, inviabilizando assim o uso de determinadas abordagens/soluções.

Em contadores síncronos,

- os FFs são disparados simultaneamente pelo *clock* de entrada.
- Somente o FF A (LSB) tem entradas J=K=1 (constante).
- As entradas J e K dos FFs subsequentes são acionadas com base nas saídas dos FFs precedentes.

Note que o circuito de um contador síncrono é "mais complexo" do que o de um contador assíncrono.

- Por segurança, apenas os FFs que supostamente devem comutar assumem entradas J=K=1.
- Cada FF tem suas entradas J e K conectadas de modo que assumam nível ALTO apenas quando as saídas dos FFs de ordem menor estiverem em nível ALTO.

Como vantagem dos contadores síncronos, tem-se que o tempo total de resposta de um contador síncrono reduz-se à

Atraso total
$$=t_{
m pd}\,$$
 do FF $+\,t_{
m pd}\,$ da porta `AND`

Portanto,

o atraso total não depende do número de FFs do contador

podendo assim operar com frequência de entrada elevada.

Exemplo: Determine $f_{\rm max}$ para o contador síncrono se o $t_{\rm pd}$ de cada FF for 50 ns e o $t_{\rm pd}$ de cada porta AND for 20 ns. Compare esses valores com $f_{\rm max}$ para um contador assíncrono de módulo 16.

Exemplo: O que deve ser feito para mudar o módulo de um contador de 16 para 32?

Exemplo: Determine $f_{\rm max}$ para o contador síncrono se o $t_{\rm pd}$ de cada FF for 50 ns e o $t_{\rm pd}$ de cada porta AND for 20 ns. Compare esses valores com $f_{\rm max}$ para um contador assíncrono de módulo 16.

R: Para o contador síncrono (paralelo),

$$f_{
m max} \leq rac{1}{t_{
m pd} \; {
m do} \; {
m FF} + t_{
m pd} \; {
m da} \; {
m porta} \; {
m AND}} = 14{,}3 \; {
m MHz}$$

enquanto, para o contador assíncrono,

$$f_{
m max} \leq rac{1}{N imes t_{
m pd}} = 5 \ {
m MHz}.$$

Exemplo: O que deve ser feito para mudar o módulo de um contador de 16 para 32?

R: Adicionar mais um FF, tal que $2^5 = 32$, e realizar as conexões.

Como modificar o circuito de um contador para que ele reinicie antes do último estado?

Como modificar o circuito de um contador para que ele reinicie antes do último estado?

Basta incluir um circuito que detecte o estado desejado e realize o reset dos FFs.

- O contador síncrono projetado está limitado ao valor do módulo que é igual a 2^N, em que N é o número de FFs.
- Contudo, um contador pode ser modificado para gerar um módulo $< 2^N$, fazendo com que o contador pule estados.

Os FFs A, B e C mudam de estado à medida que os pulsos são aplicados na entrada de clock.

O contador chega ao estado 110, mas se mantém por apenas alguns nanossegundos antes de "reciclar" para 000; logo, o contador vai de 000 (zero) a 101 (cinco) e então "recicla", pulando os estados 110 e 111.

A forma de onda na saída B contém um spike/glitch causado pela ocorrência momentânea do estado 110 antes do reset. Isso pode provocar problemas, caso a saída B seja usada para acionar outros circuitos externos ao contador.

Diagrama de estados de um contador de módulo $< 2^N$

- Cada círculo representa um dos possíveis estados e as setas indicam transições de estado em resposta ao *clock*.
- Passa por 6 estados diferentes; por isso, trata-se de um contador de módulo 6.

Diagrama de estados de um contador de módulo $< 2^N$

- Não há nenhuma seta entrando no estado 111 porque o contador nunca avançará até esse estado.
- Caso o estado 111 ocorra indevidamente, o contador é imediatamente "reciclado" para 000 pela lógica do circuito.

Exemplo: Qual é o módulo do contador e a frequência na saída D?

Exemplo: Qual é o módulo do contador e a frequência na saída D?

R: Um contador de 4 bits tem módulo 16; entretanto, como o reset ocorre em 1110, o módulo do contador fica limitado à 14. Por consequência, a frequência de saída D é

$$\frac{30 \text{ kHz}}{14} = 2.14 \text{ kHz}.$$

Não usar as entradas assíncronas dos FFs (PRESET e CLEAR) elimina a necessidade

de lidar com estados temporários

e a ocorrência de possíveis glitches.

Contadores síncronos decrescentes

- Um contador decrescente síncrono pode ser criado de maneira semelhante, usando as saídas invertidas para controlar as entradas dos FFs de ordem mais alta.
- Os FFs são "pré-setados", tal que DCBA = 1111.

Contadores síncronos decrescentes

Observe que a sequência de contagem DCBA inicia em 1111 e vai até 0000.

Como implementar contadores síncronos crescentes/decrescentes no mesmo circuito?

A entrada ${\rm Up}/\overline{{\rm Down}}$ controla se as entradas J e K dos FFs subsequentes são acionadas pelas saídas

- normais (contagem crescente); ou
- invertidas (contagem decrescente)

dos FFs precedentes (de menor ordem).

Enquanto a entrada Up/Down estiver em nível

- ALTO, as portas AND 1 e 2 estarão habilitadas, e as portas
 3 e 4 estarão desabilitadas.
- BAIXO, as portas AND 3 e 4 estarão habilitadas, e as portas 1 e 2 estarão desabilitadas.

Nos primeiros 5 pulsos de clock, $Up/\overline{Down}=1$ e a contagem é crescente. Por outro lado, para os últimos 5 pulsos, $Up/\overline{Down}=0$ e a contagem é decrescente.

Existem duas setas deixando cada estado, indicando uma transição condicional relacionada a entrada Up/Down.

Como iniciar a contagem em um dado valor?

Como iniciar a contagem em um dado valor?

Inserindo um circuito para realizar o

PRESET/CLEAR dos FFs.

- Alguns contadores podem ser inicializados em um dado valor/estado.
- Esse processo de inicialização, denominado "carga paralela"
 do contador, pode ser realizado de forma
 - assíncrona, usando as entradas de PRESET e CLEAR dos FFs para definir diretamente os estados dos bits;
 - síncrona, sendo o valor desejado carregado na transição ativa do clock.
- A carga síncrona é preferível em sistemas de alta velocidade, visando evitar problemas com glitches bem como garantir sincronismo nas operações.

A carga no contador é realizada da seguinte maneira:

- Aplique a entrada desejada em P_2 , P_1 e P_0 .
- Aplique um pulso na entrada de carga paralela PL.

Os níveis lógicos de P_2 , P_1 e P_0 são transferidos para Q_2 , Q_1 e Q_0 , respectivamente.

Quando PL retorna ao nível ALTO, os FFs voltam a responder às entradas de *clock*; assim, o contador pode prosseguir com a contagem a partir do valor carregado.

CIs de contadores síncronos

• Entradas de carga paralela: *DCBA*

• Saídas: $Q_DQ_CQ_BQ_A$

• Clock: CLK

• Carga paralela: LOAD

• Reset: $\overline{\text{CLR}}$

• Habilitar contagem: ENT e ENP

• Indica o estado final: RCO

CLK
ENT RCO
ENP
CLR
CLR
COAD
C QC
B QB
A QA

A saída RCO é útil quando dois ou mais CIs de contadores são conectados em um arranjo de múltiplos estágios para criar contadores maiores. Como o estado atual de um contador pode

ser decodificado (identificado)?

Decodificando um contador

- Decodificar o conteúdo de um contador significa identificar estados, visando gerar saídas correspondentes.
- Essa operação é fundamental em aplicações onde
 - onde a contagem precisa ser visualizada; ou
 - onde é necessário controlar a temporização ou o sequenciamento de operações.
- Um circuito lógico pode ser usado para decodificar (i.e., identificar) um determinado estado de um contador.
- Uma malha de decodificação é um circuito lógico que gera uma saída diferente para cada estado do contador.

Exemplo de uma malha de decodificação

Em uma malha de decodificação, cada estado do contador é decodificado (com uma porta AND) em uma saída diferente (e.g., $2^3=8$ estados/saídas).

Decodificando um contador

Exemplo: Quantas portas AND são necessárias para decodificar completamente todos os estados de um contador de módulo 32?

Exemplo: Quais são as entradas da porta que decodificam a contagem 21 de um contador módulo 32?

Exemplo: Quantas portas AND são necessárias para decodificar completamente um contador de 6 bits?

Decodificando um contador

Exemplo: Quantas portas AND são necessárias para decodificar completamente todos os estados de um contador de módulo 32? **R:** Um contador de módulo 32 tem 32 estados possíveis; logo, 32 portas AND são necessárias.

Exemplo: Quais são as entradas da porta que decodificam a contagem 21 de um contador módulo 32? **R:** $EDCBA = 10101_2$; logo, $E\overline{D}C\overline{B}A$.

Exemplo: Quantas portas AND são necessárias para decodificar completamente um contador de 6 bits?

R: Como $2^6 = 64$, são necessárias 64 portas AND.

Como analisar e projetar cont<u>adores</u>

(síncronos)?

Análise de contadores síncronos

- A análise de um contador é facilitada por meio de uma tabela de estados, a qual relaciona o estado atual ao próximo.
- A partir dessa tabela de estados, torna-se possível elaborar um diagrama de transição de estados <u>e vice-versa</u>.
- Ambas as representações descrevem o comportamento de um contador, i.e., o que ocorre a cada pulso de clock.

Esta	do AT	UAL	PR	ÓXIMO (estado
С	В	Α	С	В	Α
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	0

Análise de contadores síncronos

- A partir dessa tabela de estados, é possível definir os sinais de controle para os FFs (a depender do tipo de FF usado).
- Dispositivos lógicos programáveis (e.g., FPGAs) utilizam FFs do tipo D como componentes de memória.
- Por isso, é usual projetar circuitos sequenciais utilizando
 "FFs D", já que isso simplifica a implementação em PLDs.
- O uso de "FFs D" permite obter diretamente as equações de excitação, facilitando a síntese do circuito lógico.

Estado ATUAL			Entrac	Entradas de controle			PRÓXIMO estado		
С	В	Α	D _c	D_B	D_A		С	В	Α
0	0	0	0	0	1		0	0	1
0	0	1	0	1	0		0	1	0
0	1	0	0	1	1		0	1	1
0	1	1	1	0	0		1	0	0
1	0	0	1	0	1		1	0	1
1	0	1	1	1	0		1	1	0
1	1	0	1	1	1		1	1	1
1	1	1	0	0	0		0	0	0

$$D_C = C\overline{B} + C\overline{A} + \overline{C}BA$$

$$D_B = \overline{B}A + B\overline{A}$$

$$D_A = \overline{A}$$

Análise de contadores síncronos

O circuito de controle de um contador com FFs do tipo D costuma ser mais complexo do que usando FFs JK, mas tem a metade do número de entradas.

Projeto de contadores síncronos

- Em determinadas situações, um "contador" deve seguir uma sequência arbitrária de contagem, e.g.,
 - 000, 010, 101, 001, 110, 000...
 - 110, 001, 101, 010, 000, 110...
 - 1010, 1011, 1110, 1010...
- Diferentes métodos de projeto de contadores que sigam sequências arbitrárias estão disponíveis, os quais utilizam
 - FFs JK; ou
 - FFs D (como comumente usado em circuitos sequenciais).
- A mesma técnica de projeto de contadores pode ser adotada para outros tipos de circuitos sequenciais.

- 1) Determine o número de bits (i.e., FFs) necessários para uma dada sequência de contagem.
- 2) Desenhe o diagrama de transição de estados, contendo todos os estados (inclusive os que não serão utilizados).
- A partir do diagrama de transição de estados, monte a tabela de estados, relacionando os estados atuais aos próximos.
- 4) Escolha o tipo de FF, acrescente colunas na tabela de estados para cada entrada J e K ou D e defina o sinal de cada entrada de controle para produzir a transição ao próximo estado.
- 5) Obtenha as expressões lógicas descrevendo o sinal de controle de cada entrada J e K ou D.
- 6) Implemente os circuitos lógicos a partir das expressões.

1) Determine o número de bits (i.e., FFs) para uma dada sequência de contagem.

С	В	Α
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
0	0	0
0	0	1
	etc.	

2) Desenhe o diagrama de transição de estados, contendo todos os estados.

3) A partir do diagrama de transição de estados, monte a tabela de estados, relacionando os estados atuais aos próximos.

	Esta	Estado ATUAL				(IMO e	stado
	С	В	Α		С	В	Α
Linha 1	0	0	0		0	0	1
2	0	0	1		0	1	0
3	0	1	0		0	1	1
4	0	1	1		1	0	0
5	1	0	0		0	0	0
6	1	0	1		0	0	0
7	1	1	0		0	0	0
8	1	1	1		0	0	0

4) Escolha o tipo de FF, acrescente colunas na tabela de estados para cada entrada J e K e defina o sinal de cada entrada de controle para produzir a transição ao próximo estado.

	Esta	ado AT	UAL	PRÓ)	PRÓXIMO estado							
	С	В	Α	С	В	Α	J _c	K _c	$J_{\rm B}$	$K_{\rm B}$	J_{A}	K_A
Linha 1	0	0	0	0	0	1	0	х	0	х	1	Х
2	0	0	1	0	1	0	0	х	1	х	х	1
3	0	1	0	0	1	1	0	х	x	0	1	х
4	0	1	1	1	0	0	1	х	x	1	x	1
5	1	0	0	0	0	0	х	1	0	х	0	х
6	1	0	1	0	0	0	х	1	0	х	х	1
7	1	1	0	0	0	0	х	1	x	1	0	х
8	1	1	1	0	0	0	х	1	х	1	х	1

Tabela de transição de estados de FFs JK e D.

Transição	Q_n	Q_{n+1}	J	K	D
$0 \rightarrow 0$	0	0	0	×	0
$0 \rightarrow 1$	0	1	1	×	1
$1 \rightarrow 0$	1	0	×	1	0
$1 \rightarrow 1$	1	1	×	0	1

5) Obtenha as expressões lógicas descrevendo o sinal de controle de cada entrada $J \in K$.

6) Implemente os circuitos lógicos a partir das expressões.

E, o que ocorre quando FFs D são utilizados?

4) Escolha o tipo de FF, acrescente colunas na tabela de estados para $\underline{\text{cada entrada }D}$ e defina o sinal de cada entrada de controle para produzir a transição ao próximo estado.

	Estado ATUAL		P	RÓXIM estado			Entrada e contro	
С	В	Α	С	В	Α	Dc	D _B	DA
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	0
0	1	0	0	1	1	0	1	1
0	1	1	1	0	0	1	0	0
1	0	0	0	0	0	0	0	0
1	0	1	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0
1	1	1	0	0	0	0	0	0

Tabela de transição de estados de FFs JK e D.

Transição	Q_n	Q_{n+1}	J	K	D
$0 \rightarrow 0$	0	0	0	X	0
$0 \rightarrow 1$	0	1	1	X	1
$1 \rightarrow 0$	1	0	×	1	0
$1 \rightarrow 1$	1	1	×	0	1

5) Obtenha as expressões lógicas descrevendo o sinal de controle de cada entrada *D*.

6) Implemente os circuitos lógicos a partir das expressões.

As expressões lógicas são mais complexas, i.e., requerem mais portas; contudo, o projeto é mais simples já que cada FF D tem apenas uma entrada.

O termo máquina de estado refere-se a um circuito que sequencia um conjunto de

estados predeterminados controlados por um *clock* e outros sinais de entrada; logo,

contadores são máquinas de estados.

Sugestão de leitura: Seção 7.14, a qual trata sobre máquinas de estados finitos

(modelos Mealy e Moore).

PARTE 2 - Registradores

Transferência de dados em registradores

Os diferentes tipos registradores são classificados de acordo com a maneira pela qual os dados são apresentados ao registrador para armazenamento e pelo modo como saem dele, i.e.,

- entrada paralela/saída paralela (PIPO);
- entrada serial/saída serial (SISO);
- entrada paralela/saída serial (PISO); e
- entrada serial/saída paralela (SIPO).

Vale comentar que:

- O fluxo de dados serial por um registrador é, geralmente, chamado de **deslocamento** (*shifting*).
- A entrada paralela de dados é, usualmente, descrita como "carga do registrador".

Transferência de dados em registradores

Transferência de dados em registradores

Sugestão de leitura: Seção 7.17, a qual trata da implementação de contadores com

da implementação de contadores com registradores de deslocamento.

Resumo

- Em contadores assíncronos, o clock é aplicado apenas ao FF LSB sendo os outros disparados pela saída do FF precedente.
- A frequência máxima f_{\max} de clock para um contador assíncrono diminui à medida que $N \to \infty$.
- O módulo de um contador 2^N define o número de estados de contagem possíveis (e o maior fator de divisão de frequência).
- O módulo de um contador pode ser <u>reduzido</u> acrescentando um circuito que faça a "reciclagem" antes do último estado.
- Os contadores podem ser conectados em cascata para produzir faixas de contagens e fatores de divisão de frequência maiores.
- Em contadores síncronos, todos os FFs são disparados a partir do mesmo *clock* de entrada; logo, $f_{\rm max}$ é independente de N.

Resumo

- Um contador que possui entrada de dados pode ser carregado com um dado valor inicial de contagem.
- Um contador crescente/decrescente permite tanto contar de forma crescente quanto decrescente.
- Portas lógicas podem ser arranjadas para decodificar (identificar) um determinado estado de um contador.
- A sequência de contagem de um contador pode ser determinada com uma tabela de estados.
- Máquinas de estados podem ser implementadas seguindo o procedimento de projeto apresentado.
- Sistemas digitais podem ser subdivididos em módulos/blocos menores que podem ser interconectados de forma hierárquica.

Considerações finais

Exercícios sugeridos:

7.2, 7.3, 7.4, 7.7, 7.12-7.14, 7.16, 7.21, 7.26, 7.31 e 7.43.

de R.J. Tocci, N.S. Widmer, G.L. Moss, *Sistemas digitais: princípios e aplicações,* 12a ed., São Paulo: Pearson, 2019. — (Capítulo 7)

Para as próximas aulas:

R.J. Tocci, N.S. Widmer, G.L. Moss, *Sistemas digitais: princípios e aplicações*, 12a ed., São Paulo: Pearson, 2019.

Apresentações \longrightarrow (Capítulos 8, 9, 11 e 12)

Até a próxima aula... =)