8.1 Valores característicos y vectores característicos

Sea $T: V \to W$ una transformación lineal. En diversas aplicaciones (una de las cuales se da en la siguiente sección) resulta útil encontrar un vector \mathbf{v} en V tal que $T\mathbf{v}$ y \mathbf{v} son paralelos. Es decir, se busca un vector \mathbf{v} y un escalar λ tal que

$$T\mathbf{v} = \lambda \mathbf{v} \tag{8.1.1}$$

Si $\mathbf{v} \neq \mathbf{0}$ y λ satisface (8.1.1), entonces λ se denomina un valor característico de T y \mathbf{v} un vector característico de T correspondiente al valor característico λ . El propósito de este capítulo es investigar las propiedades de los valores característicos y vectores característicos. Si V tiene dimensión finita, entonces T se puede representar por una matriz A_T . Por esta razón se estudiarán los valores y los vectores característicos de las matrices de $n \times n$.

D

Definición 8.1.1

Valor característico y vector característico

Sea A una matriz de $n \times n$ con componentes reales.* El número λ (real o complejo) se denomina valor característico de A si existe un vector diferente de cero \mathbf{v} en \mathbb{C}^n tal que

$$A\mathbf{v} = \lambda \mathbf{v} \tag{8.1.2}$$

El vector $\mathbf{v} \neq \mathbf{0}$ se denomina vector característico de A correspondiente al valor característico λ .

Nota

Los valores y vectores característicos también se denominan valores y vectores propios o eigenvalores y eigenvectores; el término alemán eigen significa "propio".

Observación. Como se verá (ejemplo 8.1.6), una matriz con componentes reales puede tener valores y vectores característicos complejos. Por esta razón, en la definición se asegura que $v \in \mathbb{C}^n$. No se usarán en este libro muchos hechos sobre los números complejos. En el apéndice B se hace una presentación de unos cuantos de ellos que sí son necesarios.

Valores característicos y vectores característicos de una matriz de 2 × 2

Sea
$$A = \begin{pmatrix} 10 & -18 \\ 6 & -11 \end{pmatrix}$$
. Entonces $A \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 10 & -18 \\ 6 & -11 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$. Así, $\lambda_1 = 1$ es un valor caracte-

rístico de A con el correspondiente vector característico $\mathbf{v}_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$. De manera similar, $A \begin{pmatrix} 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 10 & -18 \\ 6 & -11 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} = \begin{pmatrix} -6 \\ -4 \end{pmatrix} = -2 \begin{pmatrix} 3 \\ 2 \end{pmatrix}$, de modo que $\lambda_2 = -2$ es un valor característico de A con el correspondiente vector característico $\mathbf{v}_2 = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$. Como se verá en seguida, éstos son los únicos valores característicos de A.

^{*} Esta definición es válida si A tiene componentes complejas, pero como las matrices que se manejaban tienen, en su mayoría, componentes reales, la definición es suficiente para nuestros propósitos.