	SEMESTER- IV												
Sl. No.	Subject Codes	Subject	Periods		Evaluation Scheme			End Semester		Total	Credit		
			L	T	P	CT	TA	Total	PS	TE	PE		-
1	KAS402/ KOE041- 48	Maths IV/Engg. Science Course	3	1	0	30	20	50		100		150	4
2	KVE401/ KAS301	Universal Human Values/ Technical Communication	3	0	0	30	20	50		100		150	3
3	KCS401	Operating Systems	3	0	0	30	20	50		100		150	3
4	KCS402	Theory of Automata and Formal Languages	3	1	0	30	20	50		100		150	4
5	KCS403	Microprocessor	3	1	0	30	20	50		100		150	4
6	KCS451	Operating Systems Lab	0	0	2				25		25	50	1
7	KCS452	Microprocessor Lab	0	0	2				25		25	50	1
8	KCS453	Python Language Programming Lab	0	0	2				25		25	50	1
9	KNC402/ KNC401	Python Programming/Computer System Security	2	0	0	15	10	25		50			0
10		MOOCs (Essential for Hons. Degree)		1		<u> </u>	<u> </u>				<u> </u>		
		Total										900	21

Mathematics-IV

(PDE, Probability and Statistics)

Computer/Electronics/Electrical & Allied Branches, CS/IT, EC/IC, EE/EN, Mechanical& Allied Branches, (ME/AE/AU/MT/PE/MI/PL) Textile/Chemical & Allied Branches, TT/TC/CT, CHE/FT

Subject Code	KAS302/KA	AS402						
Category	Basic Science Course							
Subject Name	MATHEMATICS-IV							
	I T D	Theory	Se	ssional	TD - 4 - 1	C 114		
Scheme and Credits	L-T-P	Marks	Test	Assig/Att.	Total	Credit		
	3—1—0	100	30	20	150	4		
Pre- requisites (if any)	Knowledge of Mathematics I and II of B. Tech or equivalent							

Course Outcomes

The objective of this course is to familiarize the students with partial differential equation, their application and statistical techniques. It aims to present the students with standard concepts and tools at an intermediate to superior level that will provide them well towards undertaking a variety of problems in the discipline.

The students will learn:

- The idea of partial differentiation and types of partial differential equations
- The idea of classification of second partial differential equations, wave , heat equation
 - and transmission lines
- The basic ideas of statistics including measures of central tendency, correlation, regression and their properties.
- The idea s of probability and random variables and various discrete and continuous probability distributions and their properties.
- The statistical methods of studying data samples, hypothesis testing and statistical quality control, control charts and their properties.

Module I: Partial Differential Equations

Origin of Partial Differential Equations, Linear and Non Linear Partial Equations of first order, Lagrange's Equations, Charpit's method, Cauchy's method of Characteristics, Solution of Linear Partial Differential Equation of Higher order with constant coefficients, Equations reducible to linear partial differential equations with constant coefficients.

Module II: Applications of Partial Differential Equations:

Classification of linear partial differential equation of second order, Method of separation of variables, Solution of wave and heat conduction equation up to two dimension, Laplace equation in two dimensions, Equations of Transmission lines.

Module III: Statistical Techniques I:

Introduction: Measures of central tendency, Moments, Moment generating function (MGF) , Skewness, Kurtosis, Curve Fitting , Method of least squares, Fitting of straight lines, Fitting of second degree parabola, Exponential curves ,Correlation and Rank correlation, Regression Analysis: Regression lines of y on x and x on y, regression coefficients, properties of regressions coefficients and non linear regression.

Module IV: Statistical Techniques II:

Probability and Distribution: Introduction, Addition and multiplication law of probability, Conditional probability, Baye's theorem, Random variables (Discrete and Continuous Random variable) Probability mass function and Probability density function, Expectation and variance, Discrete and Continuous Probability distribution: Binomial, Poission and Normal distributions.

Module V: Statistical Techniques III:

Sampling, Testing of Hypothesis and Statistical Quality Control: Introduction , Sampling Theory (Small and Large) , Hypothesis, Null hypothesis, Alternative hypothesis, Testing a Hypothesis, Level of significance, Confidence limits, Test of significance of difference of means, T-test, F-test and Chi-square test, One way Analysis of Variance (ANOVA). Statistical Quality Control (SQC) , Control Charts , Control Charts for variables (\overline{X} and R Charts), Control Charts for Variables (\overline{p} , np and C charts).

Text Books

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 9thEdition, John Wiley & Sons, 2006.
- 2 P. G. Hoel, S. C. Port and C. J. Stone, Introduction to Probability Theory, Universal Book Stall, 2003(Reprint).
- 3. S. Ross: A First Course in Probability, 6th Ed., Pearson Education India, 2002.
- 4. W. Feller, An Introduction to Probability Theory and its Applications, Vol. 1, 3rd Ed., Wiley, 1968.

Reference Books

- 1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 35th Edition, 2000.
- 2.T.Veerarajan : Engineering Mathematics (for semester III), Tata McGraw-Hill, New Delhi.
- 3. R.K. Jain and S.R.K. Iyenger: Advance Engineering Mathematics; Narosa Publishing House, New Delhi.
- 4. J.N. Kapur: Mathematical Statistics; S. Chand & Sons Company Limited, New Delhi.
- 5. D.N.Elhance, V. Elhance & B.M. Aggarwal: Fundamentals of Statistics; Kitab Mahal Distributers, New Delhi.

B.TECH. (COMPUTER SCIENCE AND ENGINEERING)

FOURTH SEMESTER (DETAILED SYLLABUS)

	Operating systems (KCS401)			
Course Outcome (CO) Bloom's Knowledge Lev				
	At the end of course , the student will be able to understand			
CO 1	Understand the structure and functions of OS	K ₁ , K ₂		
CO 2	Learn about Processes, Threads and Scheduling algorithms.	K ₁ , K ₂		
CO 3	Understand the principles of concurrency and Deadlocks	K_2		
CO 4	Learn various memory management scheme	K_2		
CO 5	Study I/O management and File systems.	K ₂ ,K ₄		
	DETAILED SYLLABUS	3-0-0		
Unit	Topic	Proposed Lecture		
I	Introduction : Operating system and functions, Classification of Operating systems- Batch, Interactive, Time sharing, Real Time System, Multiprocessor Systems, Multiprocess Systems, Multiprocessor Systems Structure- Layered structure, System Components, Operating System services, Reentrant Kernels, Monolithic and Microkernel Systems.			
II	Concurrent Processes: Process Concept, Principle of Concurrency, Producer / Consumer Problem, Mutual Exclusion, Critical Section Problem, Dekker's solution, Peterson's solution, Semaphores, Test and Set operation; Classical Problem in Concurrency- Dining Philosopher Problem, Sleeping Barber Problem; Inter Process Communication models and Schemes, Process generation.			
Ш	CPU Scheduling: Scheduling Concepts, Performance Criteria, Process States, Process Transition Diagram, Schedulers, Process Control Block (PCB), Process address space, Process identification information, Threads and their management, Scheduling Algorithms, Multiprocessor Scheduling. Deadlock: System model, Deadlock characterization, Prevention, Avoidance and detection, Recovery from deadlock.	08		
IV	Memory Management: Basic bare machine, Resident monitor, Multiprogramming with fixed partitions, Multiprogramming with variable partitions, Protection schemes, Paging, Segmentation, Paged segmentation, Virtual memory concepts, Demand paging, Performance of demand paging, Page replacement algorithms, Thrashing, Cache memory organization, Locality of reference.	08		
V	I/O Management and Disk Scheduling: I/O devices, and I/O subsystems, I/O buffering, Disk storage and disk scheduling, RAID. File System: File concept, File organization and access mechanism, File directories, and File sharing, File system implementation issues, File system protection and security.	08		

Text books:

- 1. Silberschatz, Galvin and Gagne, "Operating Systems Concepts", Wiley
- 2. Sibsankar Halder and Alex A Aravind, "Operating Systems", Pearson Education
- 3. Harvey M Dietel, "An Introduction to Operating System", Pearson Education
- 4. D M Dhamdhere, "Operating Systems: A Concept based Approach", 2nd Edition,
- 5. TMH 5. William Stallings, "Operating Systems: Internals and Design Principles", 6th Edition, Pearson Education

	Theory of Automata and Formal Languages (KCS402)	
	Course Outcome (CO) Bloom's Knowledge Lev	el (KL)
	At the end of course, the student will be able to understand	
CO 1	Analyse and design finite automata, pushdown automata, Turing machines, formal languages, and grammars	K ₄ , K ₆
CO 2	Analyse and design, Turing machines, formal languages, and grammars	K ₄ , K ₆
CO 3	Demonstrate the understanding of key notions, such as algorithm, computability, decidability, and complexity through problem solving	K ₁ , K ₅
CO 4	Prove the basic results of the Theory of Computation.	K ₂ ,K ₃
CO 5	State and explain the relevance of the Church-Turing thesis.	K_1, K_5
	DETAILED SYLLABUS	3-1-0
Unit	Topic	Proposed
		Lecture
I	Basic Concepts and Automata Theory: Introduction to Theory of Computation- Automata, Computability and Complexity, Alphabet, Symbol, String, Formal Languages, Deterministic Finite Automaton (DFA)- Definition, Representation, Acceptability of a String and Language, Non Deterministic Finite Automaton (NFA), Equivalence of DFA and NFA, NFA with ε-Transition, Equivalence of NFA's with and without ε-Transition, Finite Automata with output- Moore Machine, Mealy Machine, Equivalence of Moore and Mealy Machine, Minimization of Finite Automata, Myhill-Nerode Theorem, Simulation of DFA and NFA	08
II	Regular Expressions and Languages: Regular Expressions, Transition Graph, Kleen's Theorem, Finite Automata and Regular Expression- Arden's theorem, Algebraic Method Using Arden's Theorem, Regular and Non-Regular Languages- Closure properties of Regular Languages, Pigeonhole Principle, Pumping Lemma, Application of Pumping Lemma, Decidability- Decision properties, Finite Automata and Regular Languages, Regular Languages and Computers, Simulation of Transition Graph and Regular language.	08
III	Regular and Non-Regular Grammars : Context Free Grammar(CFG)-Definition, Derivations, Languages, Derivation Trees and Ambiguity, Regular Grammars-Right Linear and Left Linear grammars, Conversion of FA into CFG and Regular grammar into FA, Simplification of CFG, Normal Forms- Chomsky Normal Form(CNF), Greibach Normal Form (GNF), Chomsky Hierarchy, Programming problems based on the properties of CFGs.	08
IV	Push Down Automata and Properties of Context Free Languages: Nondeterministic Pushdown Automata (NPDA)- Definition, Moves, A Language Accepted by NPDA, Deterministic Pushdown Automata(DPDA) and Deterministic Context free Languages(DCFL), Pushdown Automata for Context Free Languages, Context Free grammars for Pushdown Automata, Two stack Pushdown Automata, Pumping Lemma for CFL, Closure properties of CFL, Decision Problems of CFL, Programming problems based on the properties of CFLs.	08
V Text boo	Turing Machines and Recursive Function Theory: Basic Turing Machine Model, Representation of Turing Machines, Language Acceptability of Turing Machines, Techniques for Turing Machine Construction, Modifications of Turing Machine, Turing Machine as Computer of Integer Functions, Universal Turing machine, Linear Bounded Automata, Church's Thesis, Recursive and Recursively Enumerable language, Halting Problem, Post's Correspondance Problem, Introduction to Recursive Function Theory.	08

- 1. Introduction to Automata theory, Languages and Computation, J.E.Hopcraft, R.Motwani, and Ullman. 2nd edition, Pearson Education Asia
- 2. Introduction to languages and the theory of computation, J Martin, 3rd Edition, Tata McGraw Hill
- 3. Elements and Theory of Computation, C Papadimitrou and C. L. Lewis, PHI
- 4. Mathematical Foundation of Computer Science, Y.N.Singh, New Age Internationa

Microprocessor (KCS403)						
	Course Outcome (CO) Bloom's Knowledge Level					
	At the end of course, the student will be able to understand					
CO 1	Apply a basic concept of digital fundamentals to Microprocessor based personal computer system.	K ₃ , K ₄				
CO 2	A 1 1 1 1 1 0 1 1 1 1 C1 M	K _{2,} K ₄				
CO 3	Illustrate how the different peripherals (8085/8086) are interfaced with Microprocessor.	K ₃				
CO 4	Analyze the properties of Microprocessors(8085/8086)	K ₄				
CO 5	Evaluate the data transfer information through serial & parallel ports.	K ₅				
	DETAILED SYLLABUS	3-1-0				
Unit	Торіс	Proposed Lecture				
I	Microprocessor evolution and types, microprocessor architecture and operation of its components, addressing modes, interrupts, data transfer schemes, instruction and data flow, timer and timing diagram, Interfacing devices.					
II	Pin diagram and internal architecture of 8085 microprocessor, registers, ALU, Control & status, interrupt and machine cycle. Instruction sets. Addressing modes. Instruction formats Instruction Classification: data transfer, arithmetic operations, logical operations, branching operations, machine control and assembler directives.					
Ш	Architecture of 8086 microprocessor: register organization, bus interface unit, execution unit, memory addressing, and memory segmentation. Operating modes. Instruction sets, instruction format, Types of instructions. Interrupts: hardware and software interrupts.					
IV	Assembly language programming based on intel 8085/8086. Instructions, data transfer, arithmetic, logic, branch operations, looping, counting, indexing, programming techniques, counters and time delays, stacks and subroutines, conditional call and return instructions	08				
V	Peripheral Devices: 8237 DMA Controller, 8255 programmable peripheral interface, 8253/8254programmable timer/counter, 8259 programmable interrupt controller, 8251 USART and RS232C.	08				

- 1. Gaonkar, Ramesh S, "Microprocessor Architecture, Programming and Applications with
- 2. 8085", Penram International Publishing.
- 3. Ray A K, Bhurchandi K M, "Advanced Microprocessors and Peripherals", TMH
- 4. Hall D V, "Microprocessor Interfacing', TMH
- 5. Liu and, "Introduction to Microprocessor", TMH
- 6. Brey, Barry B, "INTEL Microprocessors", PHI
- 7. Renu Sigh & B.P. Gibson G A, "Microcomputer System: The 8086/8088 family", PHI
- 8. Aditya P Mathur Sigh, "Microprocessor, Interfacing and Applications M Rafiqzzaman, "Microprocessors, Theory and Applications
- 9. J.L. Antonakos, An Introduction to the Intel Family of Microprocessors, Pearson, 1999

- 1. William Stallings, Network Security Essentials: Applications and Standards, Prentice Hall, 4th edition, 2010.
- 2. Michael T. Goodrich and Roberto Tamassia, Introduction to Computer Security, Addison Wesley, 2011.
- 3. William Stallings, Network Security Essentials: Applications and Standards, Prentice Hall, 4th edition, 2010.
- 4. Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone, Handbook of Applied Cryptography, CRC Press, 2001.

Mapped With: https://ict.iitk.ac.in/product/computer-system-security/

	PYTHON PROGRAMMING			
	Course Outcome (CO) Bloom's Knowledge Le			
	At the end of course , the student will be able to understand			
CO 1	To read and write simple Python programs.	K ₁ , K ₂		
CO 2	To develop Python programs with conditionals and loops.	K ₂ , K ₄		
CO 3	To define Python functions and to use Python data structures — lists, tuples, dictionaries	K ₃		
CO 4	To do input/output with files in Python	K ₂		
CO 5	To do searching ,sorting and merging in Python	K ₂ , K ₄		
	DETAILED SYLLABUS	3-1-0		
Unit	Торіс	Proposed Lecture		
I	Introduction: The Programming Cycle for Python , Python IDE, Interacting with Python Programs , Elements of Python, Type Conversion. Basics: Expressions, Assignment Statement, Arithmetic Operators, Operator Precedence, Boolean Expression.	08		
п	Conditionals: Conditional statement in Python (if-else statement, its working and execution), Nested-if statement and Elif statement in Python, Expression Evaluation & Float Representation. Loops: Purpose and working of loops, While loop including its working, For Loop, Nested Loops, Break and Continue.	08		
III	Function: Parts of A Function, Execution of A Function, Keyword and Default Arguments, Scope Rules. Strings: Length of the string and perform Concatenation and Repeat operations in it. Indexing and Slicing of Strings. Python Data Structure: Tuples, Unpacking Sequences, Lists, Mutable Sequences, List Comprehension, Sets, Dictionaries Higher Order Functions: Treat functions as first class Objects, Lambda Expressions	08		

IV	Sieve of Eratosthenes: generate prime numbers with the help of an algorithm given by the Greek Mathematician named Eratosthenes, whose algorithm is known as Sieve of Eratosthenes. File I/O: File input and output operations in Python Programming Exceptions and Assertions Modules: Introduction, Importing Modules, Abstract Data Types: Abstract data types and ADT interface in Python Programming. Classes: Class definition and other operations in the classes, Special Methods (such as _init_, _str_, comparison methods and Arithmetic methods etc.), Class Example, Inheritance, Inheritance and OOP.	08
V	Iterators & Recursion: Recursive Fibonacci, Tower Of Hanoi Search: Simple Search and Estimating Search Time, Binary Search and Estimating Binary Search Time Sorting & Merging: Selection Sort, Merge List, Merge Sort, Higher Order Sort	08

- 1. Allen B. Downey, "Think Python: How to Think Like a Computer Scientist", 2nd edition, Updated for Python 3, Shroff/O'Reilly Publishers, 2016 (http://greenteapress.com/wp/thinkpython/)
- 2. Guido van Rossum and Fred L. Drake Jr, —An Introduction to Python Revised and updated for Python 3.2, Network Theory Ltd., 2011.
- 3.John V Guttag, —Introduction to Computation and Programming Using Python", Revised and expanded Edition, MIT Press , 2013
- 4.Robert Sedgewick, Kevin Wayne, Robert Dondero, —Introduction to Programming in Python: An Inter-disciplinary Approach, Pearson India Education Services Pvt. Ltd., 2016.
- 5. Timothy A. Budd, —Exploring Python, Mc-Graw Hill Education (India) Private Ltd., 2015.
- 6.Kenneth A. Lambert, —Fundamentals of Python: First Programs, CENGAGE Learning, 2012.
- 7. Charles Dierbach, —Introduction to Computer Science using Python: A Computational ProblemSolving Focus, Wiley India Edition, 2013.
- 8. Paul Gries, Jennifer Campbell and Jason Montojo, —Practical Programming: An Introduction to Computer Science using Python 31, Second edition, Pragmatic Programmers, LLC, 2013.

Mapped With: https://ict.iitk.ac.in/product/python-programming-a-practical-approach/

Operating Systems Lab (KCS451)

- Study of hardware and software requirements of different operating systems (UNIX,LINUX,WINDOWS XP, WINDOWS7/8
- 2. Execute various UNIX system calls for
 - i. Process management
 - ii. File management
 - iii. Input/output Systems calls
- 3. Implement CPU Scheduling Policies:
 - i. SJF
 - ii. Priority
 - iii. FCFS
 - iv. Multi-level Queue
- 4. Implement file storage allocation technique:
 - i. Contiguous(using array)
 - ii. Linked –list(using linked-list)
 - iii. Indirect allocation (indexing)
- 5. Implementation of contiguous allocation techniques:
 - i. Worst-Fit
 - ii. Best-Fit
 - iii. First-Fit
- 6. Calculation of external and internal fragmentation
 - i. Free space list of blocks from system
 - ii. List process file from the system
- 7. Implementation of compaction for the continually changing memory layout and calculate total movement of data
- 8. Implementation of resource allocation graph RAG)
- 9. Implementation of Banker"s algorithm
- 10. Conversion of resource allocation graph (RAG) to wait for graph (WFG) for each type of method used for storing graph.
- 11. Implement the solution for Bounded Buffer (producer-consumer)problem using inter process communication techniques-Semaphores
- 12. Implement the solutions for Readers-Writers problem using inter process communication technique -Semaphore

Microprocessor Lab (KCS452)

- 1. Write a program using 8085 Microprocessor for Decimal, Hexadecimal addition and subtraction of two Numbers.
- 2. Write a program using 8085 Microprocessor for addition and subtraction of two BCD numbers.
- 3. To perform multiplication and division of two 8 bit numbers using 8085.
- 4. To find the largest and smallest number in an array of data using 8085 instruction set.
- 5. To write a program to arrange an array of data in ascending and descending order.
- 6. To convert given Hexadecimal number into its equivalent ASCII number and vice versa using 8085 instruction set.
- 7. To write a program to initiate 8251 and to check the transmission and reception of character.
- 8. To interface 8253 programmable interval timer to 8085 and verify the operation of 8253 in six different modes.
- 9. To interface DAC with 8085 to demonstrate the generation of square, saw tooth and triangular wave.
- 10. Serial communication between two 8085 through RS-232 C port.

Python Language Programming Lab (KCS453)

- 1. To write a python program that takes in command line arguments as input and print the number of arguments.
- 2. To write a python program to perform Matrix Multiplication.
- 3. To write a python program to compute the GCD of two numbers.
- 4. To write a python program to find the most frequent words in a text file.
- 5. To write a python program find the square root of a number (Newton's method).
- 6. To write a python program exponentiation (power of a number).
- 7. To write a python program find the maximum of a list of numbers.
- 8. To write a python program linear search.
- 9. To write a python program Binary search.
- 10. To write a python program selection sort.
- 11. To write a python program Insertion sort.
- 12. To write a python program merge sort.
- 13. To write a python program first n prime numbers.
- 14. To write a python program simulate bouncing ball in Pygame.

Technical Communication (KAS301/401) (Effective from the session 2019-20)

LTP 210

Unit -1 Fundamentals of Technical Communication:

Technical Communication: Features; Distinction between General and Technical Communication; Language as a tool of Communication; Dimensions of Communication: Reading & comprehension; Technical writing: sentences; Paragraph; Technical style: Definition, types & Methods; The flow of Communication: Downward; upward, Lateral or Horizontal; Barriers to Communication.

Unit - II Forms of Technical Communication:

Technical Report: Definition & importance; Thesis/Project writing: structure & importance; synopsis writing: Methods; Technical research Paper writing: Methods & style; Seminar & Conference paper writing; Expert Technical Lecture: Theme clarity; Analysis & Findings; 7 Cs of effective business writing: concreteness, completeness, clarity, conciseness, courtesy, correctness, consideration, C.V./Resume writing; Technical Proposal: Types, Structure & Draft.

Unit - III Technical Presentation: Strategies & Techniques

Presentation: Forms; interpersonal Communication; Class room presentation; style; method; Individual conferencing: essentials: Public Speaking: method; Techniques: Clarity of substance; emotion; Humour; Modes of Presentation; Overcoming Stage Fear; Audience Analysis & retention of audience interest; Methods of Presentation: Interpersonal; Impersonal; Audience Participation: Quizzes & Interjections.

Unit - IV Technical Communication Skills:

Interview skills; Group Discussion: Objective & Method; Seminar/Conferences Presentation skills: Focus; Content; Style; Argumentation skills: Devices: Analysis; Cohesion & Emphasis; Critical thinking; Nuances: Exposition narration & Description; effective business communication competence: Grammatical; Discourse competence: combination of expression & conclusion; Socio-linguistic competence: Strategic competence: Solution of communication problems with verbal and non verbal means.

Unit - V Dimensions of Oral Communication & Voice Dynamics:

Code and Content; Stimulus & Response; Encoding process; Decoding process; Pronunciation Etiquette; Syllables; Vowel sounds; Consonant sounds; Tone: Rising tone; Falling Tone; Flow in Speaking; Speaking with a purpose; Speech & personality; Professional Personality Attributes: Empathy; Considerateness; Leadership; Competence.

Reference Books

- 1. Technical Communication Principles and Practices by Meenakshi Raman & Sangeeta Sharma, Oxford Univ. Press, 2007, New Delhi.
- 2. Personality Development and Soft Skills by Barun K. Mitra, OUP, 2012, New Delhi.
- 3. Spoken English- A Manual of Speech and Phonetics by R.K.Bansal & J.B.Harrison, Orient Blackswan, 2013, New Delhi.
- 4. Business Correspondence and Report Writing by Prof. R.C. Sharma & Krishna Mohan, Tata McGraw Hill & Co. Ltd., 2001, New Delhi.
- 5. Practical Communication: Process and Practice by L.U.B. Pandey; A.I.T.B.S. Publications India Ltd.; Krishan Nagar, 2014, Delhi.