Файл с локализацией звезд:

Z:\M5...\LocTable OΓ-32P № 713.txt

Файл с углами поворотов:

Z:...\19.12.25_12-37-59_Measures.txt

Файл с Дисторсией:

Z:\MБОК3-2P\MБ...\dist_cft_3pow.txt

Файл со значениями линейки:

Z:...\19.03.25_15-04-25_Measures.txt

Файл со значениями зеркала:

Z:...\19.01.10_16-05-16_Measures.txt

Фокус прибора:

Главная точка:

<u>Размер матрицы</u>:

Размер пикселя:

focus := 32mm

X0 := 0 X0 := 0

matrix_size:= 2048

pixel size:= 0.0055mm

Направление ОХ прибора (ОХ всегда в теодолит):

Включить учет дисторсии:

Учёт дисторсии

- ОХ прибора вниз
- ОХ прибора вверх (ОГ-32Р)
- ОХ прибора влево (БОКЗ-МР)
- ОХ прибора вправо (БОКЗ-М, -M60, -M60/1000)

Данные для кубика

Горизонтальный угол с Т1 на ТЗв:

$$\gamma := DMS(COMBO_{7,5}) = 19.987131 \cdot deg$$

Измерение граней:

Измерения труба в трубу:

$$T1_k1 := \begin{pmatrix} 0 \\ DMS(COMBO_{3,6}) \end{pmatrix} = \begin{pmatrix} 0 \\ 89.840491 \end{pmatrix} \cdot deg \qquad T1_T2 := \begin{pmatrix} DMS(COMBO_{5,5}) \\ DMS(COMBO_{5,6}) \end{pmatrix} = \begin{pmatrix} 347.938518 \\ 90.22141 \end{pmatrix} \cdot deg$$

$$T1_T2 := \begin{pmatrix} DMS(COMBO_{5,5}) \\ DMS(COMBO_{5,6}) \end{pmatrix} = \begin{pmatrix} 347.938518 \\ 90.22141 \end{pmatrix} \cdot deg$$

$$T2_k2 := \begin{pmatrix} 0 \\ DMS(COMBO_{4,6}) \end{pmatrix} = \begin{pmatrix} 0 \\ 89.77988 \end{pmatrix} \cdot deg$$

$$T2_{k2} := \begin{pmatrix} 0 \\ DMS(COMBO_{4,6}) \end{pmatrix} = \begin{pmatrix} 0 \\ 89.77988 \end{pmatrix} \cdot deg \qquad T2_{T1} := \begin{pmatrix} DMS(COMBO_{6,5}) \\ DMS(COMBO_{6,6}) \end{pmatrix} = \begin{pmatrix} 77.937942 \\ 89.778657 \end{pmatrix} \cdot deg$$

Данные для кубика

▼Определение матрицы поворота

Определение матрицы поворота

▼Формулы (ВСК-ТБ)

Подготовка:

points :=
$$rows(file) = 19$$

i := 1.. points

Перевод пиксиелей в миллиметры:

$$px2mm(px) := \left(px - \frac{matrix_size}{2}\right) \cdot pixel_size$$

Координаты Х и Ү измеренные на матрице прибора:

$$x(i) := px2mm(file_{i,2})$$

$$y(i) := px2mm(file_{i,3})$$

Учёт дисторсии:

$$x(i) := \begin{cases} x(i) - dx(x(i), y(i)) & \text{if distr_acc} = 1 \\ x(i) & \text{otherwise} \end{cases}$$

$$y(i) := \begin{cases} y(i) - dy(x(i), y(i)) & \text{if distr_acc} = 1 \\ y(i) & \text{otherwise} \end{cases}$$

Матрица перехода от ВСК к СК Т3:

$$El(ax,ay,az) := \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(ax) & -\sin(ax) \\ 0 & \sin(ax) & \cos(ax) \end{pmatrix} \cdot \begin{pmatrix} \cos(ay) & 0 & \sin(ay) \\ 0 & 1 & 0 \\ -\sin(ay) & 0 & \cos(ay) \end{pmatrix} \cdot \begin{pmatrix} \cos(az) & -\sin(az) & 0 \\ \sin(az) & \cos(az) & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot Mper$$

Координаты от теодолита:

$$RA(i) := -\left[\left(file_{i,4}\right) \cdot deg + \gamma - 180^{\circ}\right]$$

 $Dec(i) := (90 - file_{i,5}) \cdot deg$

[RA, Dec истинные (рад.)]

$$LMN(i) := \begin{pmatrix} cos(RA(i)) \cdot cos(Dec(i)) \\ sin(RA(i)) \cdot cos(Dec(i)) \\ sin(Dec(i)) \end{pmatrix}$$

$$LMN\texttt{вск_ckt3}(i, \texttt{ax}, \texttt{ay}, \texttt{az}) \coloneqq El(\texttt{ax}, \texttt{ay}, \texttt{az})^T \cdot LMN(i)$$

$$X(i,ax,ay,az,f) := -\frac{LMN\texttt{Bck_ckt3}(i,ax,ay,az)_1}{LMN\texttt{Bck_ckt3}(i,ax,ay,az)_3} \cdot f$$

$$Y(i,ax,ay,az,f) := -\frac{LMNBck_ckt3(i,ax,ay,az)_2}{LMNBck_ckt3(i,ax,ay,az)_3} \cdot f$$

■ Формулы (ВСК-ТБ)

уравнивание (ВСК-ТБ)

 $ay := 1^{\circ}$

Первые приближения:

$$ax := 1^{\circ}$$
 $f := focus$

$$points = 19$$

Всего звёзд:

Настройки решателя:

$$\underline{TOL} := 10^{-15}$$

$$az := 1^{\circ}$$
 CTOL := 10^{-15}

Уравнивание:

$$resid(i,ax,ay,az,f) := \left[\sqrt{\left(X(i,ax,ay,az,f) - x(i)\right)^2 + \left(Y(i,ax,ay,az,f) - y(i)\right)^2} \right]$$

$$\begin{aligned} Resid(i,ax,ay,az,f) \coloneqq & & \text{for } i \in 1..\,rows(file) \\ & & R_i \leftarrow resid(i,ax,ay,az,f) \\ & & \text{return } R \end{aligned}$$

Given

0 = Resid(i, ax, ay, az, f)

Уравнивание фокуса:

$$f = 0.032 \,\text{m}$$

$$\begin{pmatrix}
ax \\
ay \\
az \\
f_{m}
\end{pmatrix} := Minerr(ax, ay, az, f)$$

 $f = 0.031998 \,\mathrm{m}$

 $Mвск_тб := El(ax, ay, az)$

▲ Уравнивание (ВСК-ТБ)

▼ Результат (ВСК-ТБ)

Количество точек:

points = 19

Расположение точек:

 $ax = -0.320354 \cdot deg$

 $ay = -0.559158 \cdot deg$ $az = 0.00495 \cdot deg$

$$ax = \begin{pmatrix} 0 \\ -19 \\ -13.273501 \end{pmatrix} \cdot DMS \qquad ay = \begin{pmatrix} 0 \\ -33 \\ -32.968891 \end{pmatrix} \cdot DMS \qquad az = \begin{pmatrix} 0 \\ 0 \\ 17.821395 \end{pmatrix} \cdot DMS$$

$$f = 31.997535 \cdot mm$$

$$check_error(ERR) = "OK"$$

Матрица от ВСК к ТБ:

$$El(ax,ay,az) = \begin{pmatrix} -0.009758994 & -0.000086396 & -0.999952376 \\ 0.005590932 & 0.999984361 & -0.000140964 \\ 0.99993675 & -0.005592042 & -0.009758358 \end{pmatrix} \quad check_matrix(El(ax,ay,az)) = "OK"$$

Невязки решения:

$$\begin{split} residX(i,ax,ay,az,f) &\coloneqq (X(i,ax,ay,az,f) - x(i)) \\ Res_i &\coloneqq resid(i,ax,ay,az,f) \\ residY(i,ax,ay,az,f) &\coloneqq (Y(i,ax,ay,az,f) - y(i)) \end{split}$$

 $mean(Res) = 0.001198 \cdot mm$ $stdev(Res) = 0.65921 \cdot \mu m$

 $max(Res) = 3.134421 \cdot \mu m$

Результат (ВСК-ТБ)

▼ Формулы (ВСК-КУБ)

$$T1_k2 := \begin{pmatrix} T1_T2_1 - T2_T1_1 - 180^{\circ} \\ T2_k2_2 \end{pmatrix}$$

 $T1_Xk_lmn := norm_vector(lmn(T1_k1_1, T1_k1_2))$

 $T1_Yk_lmn := norm_vector(lmn(T1_k2_1, T1_k2_2) \times T1_Xk_lmn)$

 $T1_Zk_lmn := norm_vector(T1_Xk_lmn \times T1_Yk_lmn)$

$$T1_k2 = \begin{pmatrix} 90.000577 \\ 89.779878 \end{pmatrix} \cdot deg$$

$$check_vector(T1_Xk_lmn) = "OK"$$

$$check_vector(T1_Yk_lmn) = "OK"$$

$$check_vector(T1_Zk_lmn) = "OK"$$

Ориетация куба в СК Т1:

$$\text{Mky6_t6} := \begin{pmatrix} \text{T1_Xk_lmn}_1 & \text{T1_Yk_lmn}_1 & \text{T1_Zk_lmn}_1 \\ \text{T1_Xk_lmn}_2 & \text{T1_Yk_lmn}_2 & \text{T1_Zk_lmn}_2 \\ \text{T1_Xk_lmn}_3 & \text{T1_Yk_lmn}_3 & \text{T1_Zk_lmn}_3 \end{pmatrix} \qquad \\ \text{lmn} \left(\text{T1_k2}_1, \text{T1_k2}_2 \right) = \begin{pmatrix} -0.00001 \\ -0.999993 \\ 0.003842 \end{pmatrix}$$

$$lmn(T1_k2_1, T1_k2_2) = \begin{pmatrix} -0.00001\\ -0.999993\\ 0.003842 \end{pmatrix}$$

$$\mathsf{M}\mathsf{B}\mathsf{C}\mathsf{K}_\mathsf{L}\mathsf{K}\mathsf{y}\mathsf{\delta} := \mathsf{M}\mathsf{K}\mathsf{y}\mathsf{\delta}_\mathsf{L}\mathsf{T}\mathsf{\delta}^\mathsf{T} \cdot \mathsf{M}\mathsf{B}\mathsf{C}\mathsf{K}_\mathsf{L}\mathsf{T}\mathsf{\delta} \\ \mathsf{M}\mathsf{K}\mathsf{y}\mathsf{\delta}_\mathsf{L}\mathsf{T}\mathsf{\delta} = \begin{pmatrix} 0.9999961248 & -0.0027839303 & -0.0000106955 \\ 0 & 0.0038418589 & -0.999999262 \\ 0.0027839508 & 0.9999887449 & 0.003841844 \end{pmatrix} \\ \mathsf{M}\mathsf{B}\mathsf{C}\mathsf{K}_\mathsf{L}\mathsf{K}\mathsf{y}\mathsf{\delta} = \begin{pmatrix} -0.0069751811 & -0.0001019641 & -0.9999756679 \\ 0.9999741433 & -0.0017499395 & -0.006974992 \\ -0.0017491857 & -0.9999984637 & 0.0001141676 \end{pmatrix} \\ \mathsf{Check}_\mathsf{L}\mathsf{matrix}(\mathsf{M}\mathsf{K}\mathsf{y}\mathsf{\delta}_\mathsf{L}\mathsf{T}\mathsf{\delta}) = \mathsf{"O}\mathsf{K}\mathsf{"} \\ \mathsf{Check}_\mathsf{L}\mathsf{matrix}(\mathsf{M}\mathsf{B}\mathsf{C}\mathsf{K}_\mathsf{L}\mathsf{K}\mathsf{y}\mathsf{\delta}) = \mathsf{"O}\mathsf{K}\mathsf{"} \\ \mathsf{Check}_\mathsf{L}\mathsf{matrix}(\mathsf{M}\mathsf{B}\mathsf{C}\mathsf{K}_\mathsf{L}\mathsf{K}\mathsf{y}\mathsf{\delta}) = \mathsf{"O}\mathsf{K}\mathsf{"} \\ \mathsf{Check}_\mathsf{L}\mathsf{matrix}(\mathsf{M}\mathsf{B}\mathsf{C}\mathsf{K}_\mathsf{L}\mathsf{K}\mathsf{y}\mathsf{\delta}) = \mathsf{"O}\mathsf{K}\mathsf{"} \\ \mathsf{Check}_\mathsf{L}\mathsf{matrix}(\mathsf{M}\mathsf{B}\mathsf{C}\mathsf{K}_\mathsf{L}\mathsf{K}\mathsf{y}\mathsf{\delta}) = \mathsf{"O}\mathsf{K}\mathsf{"} \\ \mathsf{Check}_\mathsf{L}\mathsf{M}\mathsf{D}\mathsf{C}\mathsf{C}_\mathsf{L}\mathsf{C}\mathsf{M}\mathsf{D}\mathsf{C}\mathsf{C}_\mathsf{L}\mathsf{C} \\ \mathsf{Check}_\mathsf{L}\mathsf{C}\mathsf{C}\mathsf{C}_\mathsf{L}\mathsf{C} \\ \mathsf{Check}_\mathsf{L}\mathsf{C}\mathsf{C}\mathsf{C}_\mathsf{L}\mathsf{C} \\ \mathsf{Check}_\mathsf{L}\mathsf{C}\mathsf{C}\mathsf{C}_\mathsf{L}\mathsf{C} \\ \mathsf{Check}_\mathsf{L}\mathsf{C}\mathsf{C}\mathsf{C}_\mathsf{L}\mathsf{C} \\ \mathsf{Check}_\mathsf{L}\mathsf{C}\mathsf{C}\mathsf{C}_\mathsf{L}\mathsf{C} \\ \mathsf{Check}_\mathsf{L}\mathsf{C}\mathsf{C}_\mathsf{L}\mathsf{C} \\ \mathsf{Check}_\mathsf{L}\mathsf{C}\mathsf{C}_\mathsf{L}\mathsf{C} \\ \mathsf{Check}_\mathsf{L}\mathsf{C}\mathsf{C}_\mathsf{L}\mathsf{C} \\ \mathsf{Check}_\mathsf{L}\mathsf{C}\mathsf{C}_\mathsf{L}\mathsf{C} \\ \mathsf{Check}_\mathsf{L}\mathsf{C}\mathsf{C}_\mathsf{L}\mathsf{C} \\ \mathsf{Check}_\mathsf{L}\mathsf{C}\mathsf{C}_\mathsf{L}\mathsf{C} \\ \mathsf{Check}_\mathsf{L}\mathsf{C}_\mathsf{L}\mathsf{C} \\ \mathsf{Check}_\mathsf{L}\mathsf{C} \\ \mathsf{Check}_\mathsf{L} \\ \mathsf{Ch$$

Формулы (ВСК-КУБ)

▼Результат (ВСК-КУБ)

Проверка ГУ и ВУ с теодолитов (должен быть не более 10 угл. с):

$$\begin{split} & \text{check_angle} \Big[\Big(90^{\circ} - \text{T1_T2}_2 \Big) + \Big(90^{\circ} - \text{T2_T1}_2 \Big) \text{,} \\ & \text{DMS} (0,0,10) \Big] = \text{"OK"} \\ & \text{check_angle} \Big(\text{asin} \Big(\text{sin} \Big(\text{T1_T2}_1 - \text{T2_T1}_1 + 270^{\circ} \Big) \Big) \text{,} \\ & \text{DMS} (0,0,10) \Big) = \text{"OK"} \\ \end{split}$$

$$\mathbf{M}_{\mathbf{B}\mathbf{C}\mathbf{K}_{\mathbf{T}}\mathbf{T}\mathbf{G}} = \begin{pmatrix} -0.0097589937 & -0.0000863964 & -0.9999523762 \\ 0.0055909323 & 0.9999843607 & -0.0001409637 \\ 0.9999367498 & -0.0055920417 & -0.009758358 \end{pmatrix} \qquad \text{check_matrix}(\mathbf{M}_{\mathbf{B}\mathbf{C}\mathbf{K}_{\mathbf{T}}\mathbf{T}\mathbf{G}}) = "OK"$$

$$\label{eq:mkyd_total_matrix} \mathbf{M} \mathbf{\kappa} \mathbf{y} \mathbf{\delta}_{-} \mathbf{\tau} \mathbf{\delta} = \begin{pmatrix} 0.9999961248 & -0.0027839303 & -0.0000106955 \\ 0.0000000000 & 0.0038418589 & -0.9999926200 \\ 0.0027839508 & 0.9999887449 & 0.0038418440 \end{pmatrix} \qquad \text{check_matrix}(\mathbf{M} \mathbf{\kappa} \mathbf{y} \mathbf{\delta}_{-} \mathbf{\tau} \mathbf{\delta}) = \text{"OK"}$$

$$\mathbf{M}_{\mathbf{B}\mathbf{C}\mathbf{K}_{-}\mathbf{K}\mathbf{y}\mathbf{\delta}} = \begin{pmatrix} -0.0069751811 & -0.0001019641 & -0.9999756679 \\ 0.9999741433 & -0.0017499395 & -0.006974992 \\ -0.0017491857 & -0.9999984637 & 0.0001141676 \end{pmatrix} \quad \text{check_matrix}(\mathbf{M}_{\mathbf{B}\mathbf{C}\mathbf{K}_{-}\mathbf{K}\mathbf{y}\mathbf{\delta}}) = "OK"$$

angle_M Mbck_ky6,
$$\begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} -5405.990725 \\ -18.545542 \\ 19.129242 \end{pmatrix} \cdot \frac{\text{deg}}{60}$$

Результат (ВСК-КУБ)

▼Данные для калибровочной матрицы (ЛИНЕЙКА)

Измерение граней кубика:

Измерения труба в трубу

$$T1_k1_L := \begin{pmatrix} DMS(ruler_{1,6}) \\ DMS(ruler_{1,7}) \end{pmatrix} \qquad T1_T2_L := \begin{pmatrix} DMS(ruler_{6,6}) \\ DMS(ruler_{6,7}) \end{pmatrix}$$

$$T2_k2_L := \begin{pmatrix} DMS(ruler_{2,6}) \\ DMS(ruler_{2,7}) \end{pmatrix} \qquad T2_T1_L := \begin{pmatrix} DMS(ruler_{7,6}) \\ DMS(ruler_{7,7}) \end{pmatrix}$$

Зеркало на линейке:

$$T1_mir_L := \begin{pmatrix} DMS(ruler_{3,6}) \\ DMS(ruler_{3,7}) \end{pmatrix}$$

Данные для калибровочной матрицы (ЛИНЕЙКА)

⋥ ЛИНЕЙКА формулы

$$\begin{split} & \text{check_angle} \Big[\Big(90^{\circ} - \text{T1_T2_L}_2 \Big) + \Big(90^{\circ} - \text{T2_T1_L}_2 \Big) \text{,} \\ & \text{DMS} (0,0,15) \Big] = \text{"OK"} \\ & \text{check_angle} \Big(\text{asin} \big(\text{sin} \big(\text{T1_T2_L}_1 - \text{T2_T1_L}_1 + 270^{\circ} \big) \big) \text{,} \\ & \text{DMS} (0,0,20) \big) = \text{"OK"} \\ \end{split}$$

$$T1_k2_L := \begin{pmatrix} T1_T2_L_1 - T2_T1_L_1 - 180^{\circ} \\ T2_k2_L_2 \end{pmatrix} \cdot deg$$

$$T1_k2_L = \begin{pmatrix} 90.0022 \\ 89.834191 \end{pmatrix} \cdot deg$$

$$T1_Xk_L_{mn} := norm_vector(lmn(T1_k1_L_1, T1_k1_L_2))$$

$$T1_Yk_L_{lmn} := norm_vector(lmn(T1_k2_L_1, T1_k2_L_2) \times T1_Xk_L_{lmn})$$

$$T1_Zk_L_{lmn} := norm_vector(T1_Xk_L_{lmn} \times T1_Yk_L_{lmn})$$

Ориетация куба в СК Т1 (добавлен поворот вокруг оси ОУ Т1, т.к. кронштейн положили):

$$\label{eq:mky6_to_l} Mky6_t6_L := \begin{pmatrix} T1_Xk_L_lmn_1 & T1_Yk_L_lmn_1 & T1_Zk_L_lmn_1 \\ T1_Xk_L_lmn_2 & T1_Yk_L_lmn_2 & T1_Zk_L_lmn_2 \\ T1_Xk_L_lmn_3 & T1_Yk_L_lmn_3 & T1_Zk_L_lmn_3 \end{pmatrix} \cdot El(0,90^\circ,0) \cdot El(180^\circ,0,0)$$

$$T1_Xk_L := lmn(T1_mir_L_1, T1_mir_L_2)$$
 $T1_Xk_I$

Нормаль зеркала линейки в кубике:

$$mir_k_L := Mky6_T6_L^T \cdot T1_Xk_L \qquad mir_k_L = \begin{pmatrix} -0.000023 \\ -0.004926 \\ -0.999988 \end{pmatrix}$$

■ ЛИНЕЙКА формулы

▼Данные для калибровочной матрицы (ЗЕРКАЛО)

ЗЕРКАЛО измерение граней кубика

$$T1_k1_M := \begin{pmatrix} 0^{\circ} \\ DMS(mirror_{3,7}) \end{pmatrix}$$
$$T2_k2_M := \begin{pmatrix} 0^{\circ} \\ DMS(mirror_{4,7}) \end{pmatrix}$$

Измерения труба в трубу

$$T1_T2_M := \begin{pmatrix} DMS(mirror_{5,6}) \\ DMS(mirror_{5,7}) \end{pmatrix}$$

$$T2_T1_M := \begin{pmatrix} DMS(mirror_{6,6}) \\ DMS(mirror_{6,7}) \end{pmatrix}$$

ЗЕРКАЛО перестановка теодолитов

$$T2_mir_M1 := \begin{pmatrix} 0^{\circ} \\ DMS(mirror9, 7) \end{pmatrix}$$

$$T2_mir_M2 := \begin{pmatrix} DMS(mirror_{10,6}) \\ DMS(mirror_{10,7}) \end{pmatrix}$$

$$T2_mir_M3 := \begin{pmatrix} DMS(mirror_{11,6}) \\ DMS(mirror_{11,7}) \end{pmatrix}$$

$$T2_mir_M4 := \begin{pmatrix} DMS(mirror_{12,6}) \\ DMS(mirror_{12,7}) \end{pmatrix}$$

 $T2_{mir}M1 := lmn(T2_{mir}M1_1, T2_{mir}M1_2)$

 $T2_{mir}M2 := lmn(T2_{mir}M2_1, T2_{mir}M2_2)$

 $T2_{mir}M3 := lmn(T2_{mir}M3_1, T2_{mir}M3_2)$

 $T2_{mir}M4 := lmn(T2_{mir}M4_1, T2_{mir}M4_2)$

 $lmn2V(lmn) := 90^{\circ} - asin(lmn_3)$

 $lmn2Hz(lmn) := -atan2(lmn_1, lmn_2)$

 $mean_vector4(lmn1, lmn2, lmn3, lmn4) := norm_vector(lmn1 + lmn2 + lmn3 + lmn4)$

T2_mir_M_1 := mean_vector4(T2_mir_M1, T2_mir_M2, T2_mir_M3, T2_mir_M4)

 $HZ := lmn2Hz(T2_mir_M_1) = 0.0034495899 \cdot deg$

 $V_{\text{mir}} := \text{lmn2V}(\text{T2}_{\text{mir}}M_{1}) = 89.4918949044 \cdot \text{deg}$

$$T2_mir_M := \begin{pmatrix} HZ \\ V \end{pmatrix} = \begin{pmatrix} 0.0034495899 \\ 89.4918949044 \end{pmatrix} \cdot deg$$

Измерения труба в трубу, после перестановки ТИ

$$T1_T2_M_2 := \begin{pmatrix} DMS(mirror_{13,6}) \\ DMS(mirror_{13,7}) \end{pmatrix}$$

$$T2_T1_M_2 := \begin{pmatrix} DMS(mirror_{14,6}) \\ DMS(mirror_{14,7}) \end{pmatrix}$$

Данные для калибровочной матрицы (ЗЕРКАЛО)

▼ ЗЕРКАЛО формулы

$$check_angle\Big[\left(90^{\circ}-T1_T2_M_{2}\right)+\left(90^{\circ}-T2_T1_M_{2}\right),DMS\left(0\,,0\,,10\right)\Big]="OK"$$

$$check_angle\Big[\Big(90^{\circ} - T1_T2_M_2\Big) + \Big(90^{\circ} - T2_T1_M_2\Big), DMS(0, 0, 10)\Big] = "OK"$$

$$T1_k2_M := \begin{pmatrix} T1_T2_M_1 - T2_T1_M_1 - 180^{\circ} \\ T2_k2_M_2 \end{pmatrix} \cdot deg$$

$$\begin{split} &T1_Xk_M_lmn := lmn \Big(T1_k1_M_1 \,, T1_k1_M_2 \Big) \\ &T1_Yk_M_lmn := norm_vector \Big(lmn \Big(T1_k2_M_1 \,, T1_k2_M_2 \Big) \times T1_Xk_M_lmn \Big) \\ &T1_Zk_M_lmn := norm_vector \Big(T1_Xk_M_lmn \times T1_Yk_M_lmn \Big) \end{split}$$

Ориетация куба в СК Т1:

$$M\kappa y \delta_{-} T \delta_{-} M := \begin{pmatrix} T1_{-}Xk_{-}M_{-}lmn_{1} & T1_{-}Yk_{-}M_{-}lmn_{1} & T1_{-}Zk_{-}M_{-}lmn_{1} \\ T1_{-}Xk_{-}M_{-}lmn_{2} & T1_{-}Yk_{-}M_{-}lmn_{2} & T1_{-}Zk_{-}M_{-}lmn_{2} \\ T1_{-}Xk_{-}M_{-}lmn_{3} & T1_{-}Yk_{-}M_{-}lmn_{3} & T1_{-}Zk_{-}M_{-}lmn_{3} \end{pmatrix}$$

Измеряем нормаль зеркала через перестановку 2го теодолита:

$$T1_mir_M := \begin{pmatrix} T1_T2_M_2_1 - T2_T1_M_2_1 + 180^\circ + T2_mir_M_1 \\ T2_mir_M_2 \end{pmatrix} \qquad T1_mir_M = \begin{pmatrix} 0.049608 \\ 89.491895 \end{pmatrix} \cdot deg$$

Нормаль зеркала в ТБ: $T1_Xk_M := lmn \Big(T1_mir_M_1 \,, T1_mir_M_2 \Big) \qquad T1_Xk_M = \begin{pmatrix} 0.99996 \\ -0.000866 \\ 0.008868 \end{pmatrix}$ Нормаль зеркала в кубике: $mirP_r := Mky6_r6_M^T \cdot T1_Xk_M \qquad mirP_r = \begin{pmatrix} 0.99998 \\ 0.006324 \\ 0.00089 \end{pmatrix}$ Нормаль зеркала в ТБ:

Нормаль зеркала в кубике:

mirP_r := Mky6_r6_M
$$^{\text{T}}$$
·T1_Xk_M mirP_r =
$$\begin{pmatrix} 0.99998 \\ 0.006324 \\ 0.00089 \end{pmatrix}$$

■ ЗЕРКАЛО формулы

▼Формулы (ВСК-ПСК)

$$mirP_r = \begin{pmatrix} 0.99998 \\ 0.006324 \\ 0.00089 \end{pmatrix} \qquad mir_k_L = \begin{pmatrix} -0.000023 \\ -0.004926 \\ -0.999988 \end{pmatrix}$$

$$\begin{aligned} \text{mirP_r} &= \begin{pmatrix} 0.99998 \\ 0.006324 \\ 0.00089 \end{pmatrix} & \text{mir_k_L} &= \begin{pmatrix} -0.000023 \\ -0.004926 \\ -0.999988 \end{pmatrix} \\ \text{Zpck} &:= \text{norm_vector}(-\text{mirP_r}) &= \begin{pmatrix} -0.99998 \\ -0.006324 \\ -0.00089 \end{pmatrix} & \text{Zpck} &= \begin{pmatrix} -0.99998 \\ -0.006324 \\ -0.00089 \end{pmatrix} \end{aligned}$$

Yпск := norm_vector(Zпск × Xпск)
$$Yпск = \begin{pmatrix} 0.000922 \\ -0.00492 \\ -0.999987 \end{pmatrix}$$

$$\mbox{Mpck_ky6} := \mbox{augment}(\mbox{Xpck}\,,\mbox{Ypck}\,,\mbox{Zpck}) = \begin{pmatrix} -0.00632 & 0.000922 & -0.99998 \\ 0.999968 & -0.00492 & -0.006324 \\ -0.004925 & -0.999987 & -0.00089 \end{pmatrix}$$

$$\mathbf{M} \mathbf{B} \mathbf{c} \mathbf{k} - \mathbf{n} \mathbf{c} \mathbf{k} := \mathbf{M} \mathbf{n} \mathbf{c} \mathbf{k} - \mathbf{k} \mathbf{y} \mathbf{\delta}^{\mathbf{T}} \cdot \mathbf{M} \mathbf{B} \mathbf{c} \mathbf{k} - \mathbf{k} \mathbf{y} \mathbf{\delta} = \begin{pmatrix} 0.999995 & 0.003176 & -0.000656 \\ -0.003177 & 0.999994 & -0.001001 \\ 0.000652 & 0.001003 & 0.999999 \end{pmatrix}$$

▲ Формулы (ВСК-ПСК)

Результаты определения матриц перехода прибора XXXXXX зав. № XXXX

X0 = 0 Y0 = 0

Дата проведения измерений XX.XX.XXXX

Оператор: Будков В.А.

Параметры ВСК:

Фокуссное расстояние: Координаты главной точки:

Дисторсия (D):

 $f = 31.9975 \cdot mm$ - стенд $fk = 60.131 \cdot mm$ - небо ВСК

Матрица перехода ВСК-ПСК (стенд):

$$\mathbf{Mbck_nck} = \begin{pmatrix} 0.99999474 & 0.00317622 & -0.00065556 \\ -0.00317687 & 0.99999445 & -0.00100137 \\ 0.00065238 & 0.00100345 & 0.99999928 \end{pmatrix}$$

Матрица перехода ВСК-ПСК (небо):

D =		1	2
	1	-0.00191	-0.000497
	2	0.000039	8.694606·10 ⁻⁶
	3	0.000042	-0.000042
	4	0.000218	0.000018
	5	0.000037	0.000151
	6	0.000052	0.000044
	7	7.271266·10 ⁻⁶	1.471158·10 ⁻⁶
	8	4.296558·10 ⁻⁷	5.501426·10 ⁻⁶
	9	3.211019·10 ⁻⁶	-1.230586·10 ⁻⁶
	10	-8.849768·10 ⁻⁷	0.000011

$$\mbox{Mheбo} := \begin{pmatrix} 0.99999951 & -0.00098902 & 0.00004016 \\ 0.00098896 & 0.99999859 & 0.00135457 \\ -0.00004150 & -0.00135453 & 0.99999908 \end{pmatrix}$$

Параметры перехода (стенд), °' ":

$$ax1 = \begin{pmatrix} 0 \\ 3 \\ 26.761781 \end{pmatrix} \cdot DMS$$
 $ay1 = \begin{pmatrix} 0 \\ -2 \\ -14.891169 \end{pmatrix} \cdot DMS$ $az1 = \begin{pmatrix} 0 \\ -10 \\ -55.210243 \end{pmatrix} \cdot DMS$

Параметры перехода (небо), °' ":

$$ax2 = \begin{pmatrix} 0 \\ -4 \\ -39.396125 \end{pmatrix} \cdot DMS$$
 $ay2 = \begin{pmatrix} 0 \\ 0 \\ 8.421796 \end{pmatrix} \cdot DMS$ $az2 = \begin{pmatrix} 0 \\ 3 \\ 23.993927 \end{pmatrix} \cdot DMS$

Разницы углов стенд-небо, °' ":

$$dx = \begin{pmatrix} 0 \\ 8 \\ 6.211098 \end{pmatrix} \cdot DMS \qquad dy = \begin{pmatrix} 0 \\ -2 \\ -23.654494 \end{pmatrix} \cdot DMS \qquad dz = \begin{pmatrix} 0 \\ -14 \\ -19.117006 \end{pmatrix} \cdot DMS$$

Параметры уравнивания (стенд):

points = 19
$$ERR = 5.95945 \times 10^{-6}$$
 $stdev(Res) = 0.65921 \cdot \mu m$

Параметры уравнивания (небо):

$$\varphi = \begin{pmatrix} 55 \\ 39 \\ 18.69 \end{pmatrix} \cdot \text{DMS} \qquad \qquad \sigma \varphi = \begin{pmatrix} 0 \\ 0 \\ 2.92 \end{pmatrix} \cdot \text{DMS}$$

_____ Будков В.А. _____ Строилов Н.А.

Результаты определения матриц перехода прибора ОГ-32Р зав. № 713

Дата проведения измерений 25.12.2019 Оператор: Будков В.А.

Параметры ВСК прибора:

Фокуссное расстояние (f): Координаты главной точки (X0, Y0): Дисторсия (D):

$$f = 31.9975 \cdot mm$$
 $X0 = 0$ $Y0 = 0$

Матрица перехода ВСК-ПСК стенда:

$$\label{eq:mbck_nck} \text{Mbck_nck} = \begin{pmatrix} 0.99999474 & 0.00317622 & -0.00065556 \\ -0.00317687 & 0.999999445 & -0.00100137 \\ 0.00065238 & 0.00100345 & 0.99999928 \end{pmatrix}$$

		1	2
D =	1	-0.00191	-0.000497
	2	0.000039	8.694606·10 ⁻⁶
	3	0.000042	-0.000042
	4	0.000218	0.000018
	5	0.000037	0.000151
	6	0.000052	0.000044
	7	7.271266·10 ⁻⁶	1.471158·10 ⁻⁶
	8	4.296558·10 ⁻⁷	5.501426·10 ⁻⁶
	9	3.211019·10-6	-1.230586·10 ⁻⁶

Параметры уравнивания стенда:

points = 19

$$ERR = 5.95945 \times 10^{-6}$$

10 -8.849768 10-7 0.000011

 $stdev(Res) = 0.65921 \cdot \mu m$

 $mean(Res) = 1.198 \cdot \mu m$

Параметры перехода стенда, °' ":

$$ax1 = \begin{pmatrix} 0 \\ 3 \\ 26.761781 \end{pmatrix} \cdot DMS$$

DMS
$$\text{ay1} = \begin{pmatrix} 0 \\ -2 \\ -14.891169 \end{pmatrix}$$
 DMS $\text{az1} = \begin{pmatrix} 0 \\ -10 \\ -55.2102 \end{pmatrix}$

$$az1 = \begin{pmatrix} 0 \\ -10 \\ -55.210243 \end{pmatrix} \cdot DMS$$

Будков В.А.

Строилов Н.А.

		1	2	3	4	5
	1	1	967.225952	1024.571167	160	90
	2	1	966.055481	821.610107	162	90
	3	1	964.873352	618.086731	164	90
	4	1	964.395874	516.000122	165	90
	5	1	963.816223	413.891357	166	90
	6	1	968.406372	1228.170044	158	90
	7	1	969.5	1431.77417	156	90
	8	1	969.961609	1533.773926	155	90
file =	9	1	970.612854	1636.089844	154	90
	10	1	967.178101	1024.582886	160	90
	11	1	763.873474	1025.857666	160	92
	12	1	662.032776	1026.529663	160	93
	13	1	559.878723	1027.153809	160	94
	14	1	457.601349	1027.654175	160	95
	15	1	1170.598022	1023.460632	160	88
	16	1	1272.281982	1022.991699	160	87
ļ	17	1	1374.185059	1022.564819	160	86
	18	1	1475.821045	1022.02887	160	85
	19	1	967.185974	1024.514526	160	90

		1	2
	1	-0.00191	-0.000497
	2	0.000039	8.694606·10 ⁻⁶
	3	0.000042	-0.000042
	4	0.000218	0.000018
D =	5	0.000037	0.000151
	6	0.000052	0.000044
	7	7.271266·10 ⁻⁶	1.471158·10 ⁻⁶
	8	4.296558·10 ⁻⁷	5.501426·10 ⁻⁶
	9	3.211019·10 ⁻⁶	-1.230586·10 ⁻⁶
	10	-8.849768·10 ⁻⁷	0.000011

Примечания:

$$\label{eq:file} \begin{array}{l} \left(\mathrm{file_{i\,,\,6}}\right)\cdot\mathrm{deg}+\gamma-180^{\circ} \\ \\ 180^{\circ}-\left[\left(\mathrm{file_{i\,,\,6}}\right)\cdot\mathrm{deg}+\gamma-180^{\circ}\right] \end{array}$$
 [ГК на звезду в СК ТБ]

Примечания:

```
      0.9999960351
      -0.0028159805
      0.000010158

      -0.0000000739
      -0.0036334852
      -0.99999933989

      0.0028159988
      0.999989434
      -0.003633471

      0.9999960351
      0.0028159805
      -0.000010158

      -0.0000000739
      0.0036334852
      0.99999933989

      0.0028159988
      -0.999989434
      0.003633471
```

$$Andr := \begin{pmatrix} 0.99999604 & 0.00000000 & 0.00281579 \\ 0.00001023 & 0.99999340 & -0.00363338 \\ -0.00281578 & 0.00363340 & 0.99998943 \end{pmatrix}$$

$$\mathbf{M} \kappa \mathbf{y} \mathbf{\delta}_{-} \mathbf{T} \mathbf{\delta} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}^{T} = \begin{pmatrix} 0.999996 & 0.000011 & -0.002784 \\ 0 & 0.999993 & 0.003842 \\ 0.002784 & -0.003842 & 0.999989 \end{pmatrix}$$

$$\mathbf{M} \mathsf{K} \mathsf{y} \mathsf{\tilde{o}}_{-} \mathsf{T} \mathsf{\tilde{o}} \cdot \mathsf{A} \mathsf{n} \mathsf{dr}^{\mathsf{T}} = \begin{pmatrix} 0.999992 & -0.002774 & -0.002837 \\ -0.002816 & 0.007475 & -0.999968 \\ 0.002795 & 0.999968 & 0.007467 \end{pmatrix}$$

 $check_vector(T1_Xk_L_lmn) = "OK"$

 $check_vector(T1_Yk_L_lmn) = "OK"$

 $check_vector(T1_Zk_L_lmn) = "OK"$

$$El(0,90^{\circ},0) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

check_matrix(Mκyδ_τδ_L) = "OK"

 $check_vector(T1_Xk_L) = "OK"$

$$M\kappa y \delta_{-} T \delta_{-} L = \begin{pmatrix} 7.772471 \times 10^{-6} & 0.002637 & -0.999997 \\ 0.999996 & -0.002894 & 1.412455 \times 10^{-7} \\ -0.002894 & -0.999992 & -0.002637 \end{pmatrix}$$

check_vector(mir_k_L) = "OK"

check_vector(T1_Xk_M_lmn) = "OK"

check_vector(T1_Yk_M_lmn) = "OK"

 $check_vector(T1_Zk_M_lmn) = "OK"$

 $check_matrix(Mκyδ_τδ_M) = "OK"$

 $check_vector(T1_Xk_M) = "OK"$

check_vector(mirP_r) = "OK"

$$\label{eq:mick_ky6} \mathbf{M} \text{mck_ky6} = \begin{pmatrix} -0.0063199225 & 0.0009215402 & -0.9999796045 \\ 0.9999678987 & -0.0049197336 & -0.0063243824 \\ -0.0049254615 & -0.9999874734 & -0.0008904182 \end{pmatrix}$$

check_matrix(Μπcκ_κyδ) = "OK"

Ввод данных для отчета по небу:

$$\varphi := DMS(55, 39, 18.69)$$

$$\sigma \phi \coloneqq DMS(0,0,2.92)$$

$$\begin{pmatrix} ax1 \\ ay1 \\ az1 \end{pmatrix} := angle_M(Mbck_\pi ck, M1)$$

$$\begin{pmatrix} ax2 \\ ay2 \\ az2 \end{pmatrix} := angle_M(MHe6o, M1)$$

Экспорт матриц для расчета ПСК-СКОК:

Проверка компенсаторов:

$$s10 := \frac{10^{\circ}}{3600}$$

В начале:

В конце:

$$\begin{split} \text{check_angle}\big(\text{DMS}\big(\text{COMBO}_{1,5}\big), s10\big) &= \text{"OK"} \\ \text{check_angle}\big(\text{DMS}\big(\text{COMBO}_{1,5}\big), s10\big) &= \text{"OK"} \\ \text{check_angle}\big(\text{DMS}\big(\text{COMBO}_{1,6}\big), s10\big) &= \text{"OK"} \\ \end{split}$$

Проверка углов:

$$s5 := \frac{5^{\circ}}{3600}$$

T1 - Куб Д
$$check_angle(DMS(COMBO_{3,6} - COMBO_{13,6}), s5) = "OK"$$

T1 - T2
$$\Gamma$$
 check_angle(DMS(COMBO_{5,5} - COMBO_{11,5}),s5) = "OK"

$$\begin{tabular}{ll} $\sf T2-T1 \ \Gamma $ & $ check_angle (DMS (COMBO_{6,5}-COMBO_{12,5}), s5) = "OK" \\ \end{tabular}$$

T1 - 3B
$$\Gamma$$
 check_angle(DMS(COMBO_{7.5} - COMBO_{10.5}),s5) = "OK"

T1 - 3B B
$$check_angle(DMS(COMBO_{7,6} - COMBO_{10,6}), s5) = "OK"$$

ORIGIN := 1

Проверка матриц и векторов:

$$check_matrix_andr(M) := \begin{bmatrix} "OK" & if \ 1 - \left| M \right| \le {10}^{-7} \land 1 - \left| M \cdot M^T \right| \le {10}^{-7} \land \left| M^{-1} - M^T \right| \le {10}^{-7} \land \left| M^T - M^T \right| \le {10}^{-7} \land \left| M^T - M^T - M^T \right| \le {10}^{-7} \land \left| M^T - M^T - M^T - M^T \right| \le {10}^{-7} \land \left| M^T - M^T - M^T - M^T - M^T \right|$$

$$check_angle(angle\,,max) := \left| \begin{array}{l} "!!!!!!!!!! \ BAD \ !!!!!!!!!" \ \ if \ \left| angle \right| > max \\ "OK" \ \ otherwise \end{array} \right|$$

Формулы учёта дисторсии:

$$dx(x,y) := ax_1 \cdot mm + ax_2 \cdot x + ax_3 \cdot y + \frac{ax_4 \cdot x^2}{mm} + \frac{ax_5 \cdot x \cdot y}{mm} + \frac{ax_6 \cdot y^2}{mm} + \frac{ax_7 \cdot x^3}{mm^2} + \frac{ax_8 \cdot x^2 \cdot y}{mm^2} + \frac{ax_9 \cdot x \cdot y^2}{mm^2} + \frac{ax_{10} \cdot y^3}{mm^2}$$

$$dy(x,y) := ay_1 \cdot mm + ay_2 \cdot x + ay_3 \cdot y + \frac{ay_4 \cdot x^2}{mm} + \frac{ay_5 \cdot x \cdot y}{mm} + \frac{ay_6 \cdot y^2}{mm} + \frac{ay_7 \cdot x^3}{mm^2} + \frac{ay_8 \cdot x^2 \cdot y}{mm^2} + \frac{ay_9 \cdot x \cdot y^2}{mm^2} + \frac{ay_{10} \cdot y^3}{mm^2}$$

 $(x) \cdot \cos(ay)$ $(y) \cdot \sin(ax)$ (x)

$$DMS(COMBO_{4,6} - COMBO_{14,6}) = \begin{pmatrix} 0\\0\\6.862323 \end{pmatrix} \cdot DMS$$

$$DMS(COMBO_{5,5} - COMBO_{11,5}) = \begin{pmatrix} 0 \\ 0 \\ -2.15549 \end{pmatrix} \cdot DMS$$

DMS(COMBO_{5,6} + COMBO_{6,6} - 180) =
$$\begin{pmatrix} 0 \\ 0 \\ 0.241058 \end{pmatrix}$$
 DMS

DMS(COMBO_{6,5} - COMBO_{12,5}) = $\begin{pmatrix} 0 \\ 0 \\ 0.080303 \end{pmatrix}$ DMS

$$DMS(COMBO_{6,5} - COMBO_{12,5}) = \begin{pmatrix} 0 \\ 0 \\ 0.080303 \end{pmatrix} \cdot DMS$$

DMS(COMBO_{11,6} + COMBO_{12,6} - 180) =
$$\begin{pmatrix} 0 \\ 0 \\ -1.235721 \end{pmatrix}$$
 DMS

Длина вестора:

vector_lenth(V) :=
$$\sqrt{(V_1)^2 + (V_2)^2 + (V_3)^2}$$

Нормирование вектора:

$$norm_vector(V) := \frac{V}{vector_lenth(V)}$$

Направляющие cos для теодолита:

$$lmn(Hz,V) := \begin{bmatrix} cos(-Hz) \cdot cos((90^{\circ} - V)) \\ sin(-Hz) \cdot cos((90^{\circ} - V)) \\ sin((90^{\circ} - V)) \end{bmatrix} \qquad M1 := \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Углы из матрицы ВСК ИСК:

$$M2angle(A) := \begin{pmatrix} angle(A_{3,1}, A_{3,2}) \\ asin(A_{3,3}) \\ angle(A_{2,3}, A_{1,3}) \end{pmatrix}$$

Углы между двумя матрицами:

ŀ