Algoritmos e Estruturas de Dados III

Tipos de Grafos - Parte 1

Patrícia Lucas

Bacharelado em Sistemas de Informação IFNMG - Campus Salinas

Salinas Dezembro 2020

Grafo nulo Tipos de Grafos

- Um vértice que possui grau zero é um vértice isolado.
- É possível que um grafo não contenha nenhuma aresta.
- Nesse caso todos os vértices são isolados e o grafo é chamado grafo nulo.

Grafo Regular

Tipos de Grafos

Um grafo regular é aquele no qual todos os vértices possuem o mesmo grau. Um grafo regular com vértices de grau k é chamado de **k-regular**.

Grafo Completo

Tipos de Grafos

Um grafo com n vértices é chamado de completo, e denotado de K_n , se para cada par de vértices distintos existe exatamente uma aresta conectando-os. Ou seja, é um grafo simples que contém o número máximo de arestas.

Grafo Completo Tipos de Grafos

O número de arestas em um grafo completo é:

$$|E| = |V|(|V| - 1)/2$$

Complemento de um Grafo

Tipos de Grafos

O Complemento de um grafo simples G, denotado por G', é o grafo simples que possui o mesmo conjunto de vértices de G, e tal que dois vértices distintos são adjacentes em G' se não são em G.

Subgrafos

Tipos de Grafos

Um subgrafo G' do grafo G = (V, E) é um grafo (V', E') tal que $V' \subseteq V$ e $E' \subseteq E$.

- Todo grafo é subgrafo dele mesmo.
- O subgrafo de um subgrafo de G é um subgrafo de G.
- Um vértice de *G* é um subgrafo de *G*.

Subgrafos especiais

Tipos de Grafos

- Clique: uma clique é um subgrafo que é completo.
- Subgrafo induzido: seja H(W, F) um subgrafo de G = (V, E).
 Uma aresta entre dois vértices de W existe se e somente se essa aresta existe em V, dizemos que H é um subgrafo induzido por W.
- Conjunto independente de vértices: um subgrafo induzido de G que n\u00e3o cont\u00e9m nenhuma aresta.

Exercício Tipos de Grafos

Considere o grafo G:

- Dê nome aos seus vértices e indique o grau de cada um deles.
- Desenhe seu complementar G'.
- Desenhe um subgrafo simples de G.
- Desenhe um subgrafo clique de G.
- Desenhe um subgrafo induzido de G.

Caminhos Tipos de Grafos

Caminho de v_1 a v_n é uma sequência de arestas $(v_1, v_2), (v_2, v_3), \ldots, (v_{n-1}, v_n)$, denotado como: $v_1, v_2, v_3, \ldots, v_{n-1}, v_n$.

O comprimento de um caminho é o seu número de arestas.

Exemplo: caminho de v_1 a v_4 de comprimento 8.

Circuitos Tipos de Grafos

É um caminho de v_1 a v_n , onde $v_1 = v_n$ e nenhuma aresta é repetida.

Ex: circuito de v_1 a v_1 de comprimento 5.

Ciclos Tipos de Grafos

É um circuito onde nenhum vértice é repetido.

Um laço é um ciclo de comprimento 1.

Ex: ciclo de v_1 a v_1 de comprimento 4.

Caminhos em dígrafos

Tipos de Grafos

- \bigcirc Existe um caminho de v_1 a v_6 ?
- Como definir os graus do vértice em um dígrafo?

Caminhos em dígrafos

Tipos de Grafos

O grau de um vértice é definido como o número de arestas incidentes em tal vértice.

Caminho de v_1 a v_6 de comprimento 3

Grau de	Grau de
entrada	saída
0	2
1	1
2	0
0	0
1	2
1	1
1	0
	entrada 0 1 2

Caminhos em dígrafos

Tipos de Grafos

Um grafo é conexo se existe um caminho ligando quaisquer dois vértices.

Dígrafo conexo

Tipos de Grafos

- Um dígrafo é dito fortemente conexo se, para todos os pares de vértices (v_i, v_j), existe caminho de vi para v_i e de v_j para v_i.
- Um dígrafo é fracamente conexo se apenas sua "versão não-direcionada" for conexa.

