جامعة الملك سعود كلية العلـــوم قسم الرياضيــات

تمارین 151 ریض

نظرية الرسومات GRAPHTHEORY (5.4)

(الرسومات المترابطة)

CONNECTED GRAPHS

إعداد: مالك عبدالرحمن زين العابدين  $\frac{1439}{2018}$ 

. ليكن G=(V,E) عدداً صحيحاً G=(V,E) ليكن

تعریف (1): المسار: إذا كانت  $v_1, e_1, v_2, \dots, e_{n-1}, v_n$  متتالیة من الرؤوس و الأضلاع حیث b فی a و  $e_i = \{v_i, v_{i+1}\}$  و  $v_n = b$  و  $v_1 = a$  . ( a Walk from a to b )



، b مسار من W:  $a, e_1, v_2, e_2, v_3, e_3, b$  طوله L(W) = |E| = 3 فردي)

تعریف $v_1=v_n=a$  فإننا نسمیه  $v_1,e_1,v_2,\ldots,e_{n-1},v_n$  فإننا نسمیه (closed walk at a) مساراً مغلقاً من a إلى a



(trail) تعریف b فإننا نسمیه طریقاً  $v_1,e_1,v_2,\dots,e_{n-1},v_n$  مساراً من a إذا كان  $e_i\neq e_j$  لكل  $e_i\neq e_j$  لكل و إذا كان الطريق مغلقاً أي  $v_1=v_n$  فإننا نسمیه دارة  $v_1=v_n$  فإننا نسمیه دارة  $v_1=v_n$ 

(path) أي b فإننا نسميه ممراً  $v_1,e_1,v_2,...,e_{n-1},v_n$  تعريف  $v_1=v_1$  إذا كان  $v_1=v_2$  لكل  $v_1=v_2$  لكل  $v_1=v_3$  لكل  $v_1=v_3$  فإننا نسميه دورة  $v_1=v_3$  .  $v_1=v_3$  فإننا نسميه دورة  $v_1=v_3$ 

ملحوظة(1): نعتبر المتتالية المكونة من رأس واحد فقط a و لا تحتوي على أية أضلاع، مسار أ طوله صفر L(W)=0 .

ملحوظة (2): نرمز للممر المفتوح الذي يحتوي على n رأساً بالرمز  $P_n$  . كما نرمز للدورة التي تحتوي على n رأساً بالرمز n .  $L(C_n)=n$  و أن  $L(P_n)=n-1$  . لاحظ أن كل دورة هي دارة و أن  $L(P_n)=n-1$  و أن

#### مبرهنة

# مبرهنة

- (أ) إذا و جد مسار من a إلى b فإنه يو جد ممر من a إلى b
- (ب) إذا و حدت دارة من a إلى a فإنه توجد دورة من a إلى a

\_\_\_\_\_\_

الشكل التالي يلخص التعاريف والمبر هنات الواردة أعلاه:



مثال

ليكن G هو الرسم المعطى في الشكل



# نلاحظ أن:

- (أ) ae<sub>2</sub>e<sub>3</sub>e<sub>4</sub>e<sub>3</sub>b مسار من a إلى b طوله 4.
- (ب)  $ae_2e_3e_4e_5e_7e_8e_9a$  دارة فردية طولها 7 وليست دورة.
  - (ج) ce4e5e7e8c دورة زوجية طولها 4 □

# مبرهنة

لــيكن G=(V,E) رسماً وليكن  $a,b\in V$  بحيث G=(V,E) إذا وجد ممران مختلفان من a إلى b فإن b يحتوي على دورة.

### ملحوظة

 $a,b \in V$  رسماً بحيث G لا يحتوي على دورات وليكن G = (V,E) رسماً بحيث G = (V,E) على دورات وليكن  $a \neq b$  حيــــث  $a \neq b$  . بالاستناد إلى المكافىء العكسي للمبرهنة في الأكثر من a إلى b .

### نعريف

لیکن  $a \neq b$  نقول إن a مرتبط  $a,b \in V$  بیث  $a \neq b$  بیث  $a \neq b$  بیکن  $a \neq b$  بیک

### ملحوظة

لاحظ أن المتتالية a المكونة من الرأس a ولا تحتوي على أية أضلاع تعتبر دورة طولها صفر وبالتالي فإن a مرتبط مع نفسه.

مثال



رسم عدد مركباته = 1 (رسم مترابط)

(ب) الرسم المعطى أدناه في الشكل أدناه رسم غير مترابط.

رسم عدد مركباته = 2 أكبر من 1 (رسم غير مترابط) b كبر مرتبط بالرأس b

### مبرهنة

ليكن G = (V, E) رسماً. ولتكن T علاقة على المجموعة V معرفة كالتالي: لكل X , X , X إذا وفقط إذا كان X مرتبطاً بالرأس X عندئذ، X علاقة تكافؤ على X.

#### نعريف

لــــتكن T العلاقة المعرفة في المبرهنة أعلاه . ولتكن  $V_1,...,V_m$  فصول تكافؤ (induced)  $1 \le i \le m$  للرسم الجزئي المحدث أو المولد (induced) .T لرسم الجزئي من G الذي رؤوسه G أي أن أن أن G هو الرسم الجزئي من G الذي رؤوسه G والذي أضلاعه هي جميع الأضلاع الموجودة في G والتي أطرافها تنتمي إلى G. يسمى G مركبة مترابطة (connected component) للرسم G.

: نلاحظ أن كل مركبة  $C_i$  تحقق ما يلي

(۱) C, رسم مترابط.

(٢) إذا كــان H رسماً جزئياً مترابطاً من G وكان C, رسماً جزئياً من H فإن C, إذا كــان H هي رؤوس C, وأضلاع H هي أضلاع H

مثال



عندئذ، مركبات G هي:



المبر هنة التالية تقدم لنا حداً أدنى لعدد أضلاع الرسم المترابط بدلالة عدد رؤوسه .

#### مبرهنة:

. n-1 کل رسم متر ابط عدد رؤوسه  $n \geq 1$  یجب لأن یکون عدد أضلاعه أکبر من أو یساوي

تعريف

G في G اليكن G = (V, E) رسماً وليكن  $e \in E$  . نقول إن G = (V, E) في G إذا كان عدد مركبات G - e أكبر من عدد مركبات G .

مبر هنة

ليكن G=(V,E) رسمـــــأ وليكن  $e\in E$  عندئذ، إن G=(V,E) إذا وفقط إذا كان e غير محتوى في أية دورة من دورات e .

مبر هنة

إذا كان G رسماً بسيطاً فإن G أو  $\overline{G}$  رسم مترابط.

مبرهنة

 $G=(V\,,E)$  مصفوفة الستجاور للرسم  $A=[a_{ij}]$  حيث  $A=[a_{ij}]$  عندئذ ، عدد المسارات  $V=\{x_1,x_2,...,x_n\}$  المختلفة من A الى A ذات الطول A يساوي A.

### ميرهنة

 $A=[a_{ij}]$  .  $V=\{x_1,x_2,...,x_n\}$  . G=(V,E) . G

.  $i \neq j$  لکل  $b_{ii} \neq 0$  ان کان  $b_{ii} \neq 0$  کان G مندئذ، G رسم مترابط إذا وفقط إذا کان

مثال

احسب عدد المسارات من الطول 4 من  $x_4$  إلى  $x_5$  للرسم المبين في الشكل أدناه

Find the number of distinct walks of length 4 from  $x_4$  to  $x_5$ , in the given graph G



$$\Delta = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \end{bmatrix}.$$
 each equation of the equation of

$$A^{4} = \begin{bmatrix} 9 & 3 & 11 & 1 & 6 \\ 3 & 15 & 7 & 11 & 8 \\ 11 & 7 & 15 & 3 & 8 \\ 1 & 11 & 3 & 9 & 6 \\ 6 & 8 & 8 & 6 & 8 \end{bmatrix}$$

$$U_{2} A^{2} = \begin{bmatrix} 2 & 0 & 2 & 0 & 1 \\ 0 & 3 & 1 & 2 & 1 \\ 2 & 1 & 3 & 0 & 1 \\ 0 & 2 & 0 & 2 & 1 \\ 1 & 1 & 1 & 1 & 2 \end{bmatrix}$$

ولـــذا فإنـــه يوجد 6 مسارات من الطول 4 من  $x_4$  إلى  $x_5$ . وبالرجوع إلى الرسم نجد أن هذه المسارات هي:

$$x_4e_4e_1e_2e_6x_5$$
,  $(x_4e_3e_3e_3e_6x_5)$ ,  $(x_4e_4e_4e_3e_6x_5)$   
 $\Box x_4e_3e_2e_2e_6x_5$ ,  $(x_4e_3e_6e_5e_5x_5)$ ,  $(x_4e_3e_6e_6e_6x_5)$ 

مثال

احسب عدد المسارات من الطول 3 من  $x_1$  إلى  $x_3$  في الرسم المبين في الشكل أدناه



141

مصفوفة التجاور للرسم هي:

$$.A^{3} = \begin{bmatrix} 0 & 16 & 4 \\ 16 & 4 & 18 \\ 4 & 18 & 9 \end{bmatrix}$$
 ولذا فإن  $.A = \begin{bmatrix} 0 & 2 & 0 \\ 2 & 0 & 2 \\ 0 & 2 & 1 \end{bmatrix}$ 

وبالتالي فإنه يوجد 4 مسارات من الطول 3 من  $x_1$  إلى  $x_3$  هي:

#### نعريف

## مبرهنة

يكــون الرسم البسيط G ثنائي التجزئة إذا وفقط إذا كان G لا يحتوي على دورات فردية.

## تمارين 1) في الرسم المبين في الشكل أدناه عين:



(أ) مساراً من x إلى y بحيث لا يكون طريقاً

(ب) طريقاً من x إلى y بحيث لا يكون ممراً

(ج) ممراً من x إلى y بحيث طوله أصغر ما يمكن

(د) ممراً من x إلى y بحيث طوله أكبر ما يمكن

(هـ) دورة عند x بحيث طولها أكبر من الصفر وأصغر ما يمكن

(و) دورة عند x بحيث طولها أكبر ما يمكن

(2) Find the number of walks of length 4 from the vertex  $x_1$  to the vertex  $x_4$ ? المناه على الشكل أدناه  $x_4$  للرسم المبين في الشكل أدناه الحسب على المسارات من الطول 4 من  $x_1$  للرسم المبين في الشكل أدناه



الحل:

(3) Find the number of distinct walks of tall 3 and also of tall 4 from  $x_3$  to  $x_6$ ? احسب عدد المسارات المختلفة من الطول 3 و كذلك من الطول 4 من  $x_3$  للى عدد المسارات المختلفة من الطول 5 و كذلك من الطول 4 من  $x_3$  الحسب عدد المسارات المختلفة من الطول 5 و كذلك من الطول 4 من  $x_3$  الحسب عدد المسارات المختلفة من الطول 5 و كذلك من الطول 5 من الطول 5 من الطول 5 من الطول 6 من  $x_3$  المسارات المختلفة من الطول 5 من الطول 6 من  $x_3$  المسارات المختلفة من الطول 7 من الطول 9 من الطول 9 من  $x_3$  المسارات المختلفة من الطول 9 من  $x_3$ 



(4) Find the number of distinct walks for  $K_4$  of length 2, and also of length 3 between any two distinct vertices?

الرسم التام  $K_4$  احسب عدد المسارات المختلفة بين أي رأسين مختلفين من الطول : (1) (1) (1) (1) (1)

(5) Let G be a simple disconnected graph with n vertices, Prove that the greatest number of edges of G is  $\frac{(n-1)(n-2)}{2}$ ?

$$\frac{(n-1)(n-2)}{2}$$
 هو  $G$  وسماً بسيطاً غير مترابط، عدد رؤوسه  $n$  أثبت أن أكبر عدد ممكن لأضلاع  $G$  هو

(6) Find all bredges in the given graph G?



(7)

في الرسم H المقابل



- Find all pathes from x to z? . z إلى x أوجد كل الممرات من x الممرات من x
- Find a trail from x to z, but not to be a path ? . ليس ممراً z ليس ممراً (ii)

(8)

جد عدد المسارات المختلفة من a إلى b للرسم التالي:

Find the number of distinct walks from a to b, in the given graph G



(9) Find all bredges in the given graph G?





G