Superficies de Riemann (tarea 3)

Eduardo León (梁遠光)

Junio 2020

Ejercicio 1. Sea X una superficie de Riemann. Pruebe que el fibrado tangente

$$TX = \bigcup_{p \in X} \{p\} \times T_p X$$

es un fibrado vectorial real diferenciable de dimensión 2.

Solución. Tomemos un atlas diferenciable sobre X. Para cada vecindad $U \subset X$ con una carta coordenada $\varphi: U \to \mathbb{R}^2$, sea TU la parte de TX que se proyecta sobre U y definamos $T\varphi: TU \to \mathbb{R}^4$ por

$$T\varphi(p, v_p) = (\varphi(p), (\varphi \circ \gamma)'(0))$$

donde $\gamma:(-\varepsilon,\varepsilon)\to S$ es una curva que pasa por $\gamma(0)=p$ con velocidad v_p .

Dada una segunda carta $\psi: U \to \mathbb{R}^2$, sin pérdida de generalidad definida sobre la misma vecindad U, consideremos la función de transición $\tau: \varphi(U) \to \psi(U)$. Por la regla de la cadena,

$$(\psi \circ \gamma)'(0) = (\tau \circ \varphi \circ \gamma)'(0) = J\tau(z) \cdot (\varphi \circ \gamma)'(0)$$

donde $z = \varphi(p)$. Entonces la función de transición $T\tau : \varphi(U) \times \mathbb{R}^2 \to \psi(U) \times \mathbb{R}^2$ en el fibrado es

$$T\tau(z,v) = (\tau(z), J\tau(z) \cdot v)$$

Por construcción, las funciones de transición en el fibrado tangente son diferenciables, \mathbb{R} -lineales en las componentes vectoriales y conmutan con la proyección a la base. Entonces, el atlas sobre TX define una estructura de fibrado vectorial real diferenciable de dimensión 2 en cada fibra.

Ejercicio 2. Sea X una superficie de Riemann. Pruebe que el fibrado cotangente

$$T^{\star}X = \bigcup_{p \in X} \{p\} \times T_p^{\star}X$$

es un fibrado vectorial real diferenciable de dimensión 2.

Solución. Para cada punto $p \in X$, el espacio cotangente T_p^*X es el dual del espacio tangente T_pX . Por lo tanto, el fibrado cotangente T^*X es el dual del fibrado tangente TX. Entonces, el atlas de TX tiene las mismas trivializaciones locales que TX, pero las funciones de transición en TX

$$T^{\star}\tau(z,\alpha) = (\tau(z), J\tau(z)^{-1} \cdot \alpha)$$

donde $\tau: \varphi(U) \to \psi(U)$ es una función de transición en la base.

Nuevamente, por construcción, las funciones de transición en el fibrado cotangente son diferenciables, \mathbb{R} -lineales en las componentes vectoriales y conmutan con la proyección a la base. Entonces, el atlas sobre T^*X define una estructura de fibrado vectorial real diferenciable de dimensión 2 en cada fibra.

$$T^{\star}\tau(z,\alpha) = (\tau(z), \alpha \cdot (J\tau(z)^T)^{-1})$$

¹Esto asume que $\alpha \in T_z^*\mathbb{R}^n$ se representa como un vector columna. Si queremos enfatizar la dualidad entre los vectores y las 1-formas en la representación matricial, entonces α debe ser un vector fila y la función de transición será

Ejercicio 3. Sea X una superficie de Riemann. Sea $\alpha \in \Omega^1(X)$ una 1-forma. Pruebe que α es una sección diferenciable del fibrado cotangente T^*X .

Soluci'on. En una coordenada local z=x+iy,la forma α se representa como

$$\alpha = \alpha_1 dx + \alpha_2 dy$$

Entonces la función $\alpha: X \to T^*X$ se representa como

$$\alpha(x,y) = (x, y, \alpha_1, \alpha_2)$$

La composición de α con la proyección $\pi: T^*X \to X$ se representa como

$$\pi \circ \alpha(x,y) = \pi(x,y,\alpha_1,\alpha_2) = (x,y)$$

Entonces $\pi \circ \alpha = id$. Por ende, α es una sección diferenciable de T^*X .

Ejercicio 4. Sea X una superficie de Riemann. Sea $v \in \mathfrak{X}^{\infty}(X)$ un campo vectorial. Pruebe que v es una sección diferenciable del fibrado tangente TX.

Solución. En una coordenada local z = x + iy, el campo vectorial v se representa como

$$v = v_1 \frac{\partial}{\partial x} + v_2 \frac{\partial}{\partial y}$$

Entonces la función $v:X\to TX$ se representa como

$$v(x,y) = (x, y, v_1, v_2)$$

La composición de v con la proyección $\pi: TX \to X$ se representa como

$$\pi \circ v(x,y) = \pi(x,y,v_1,v_2) = (x,y)$$

Entonces $\pi \circ v = id$. Por ende, v es una sección diferenciable de TX.

Ejercicio 5. Sea $\Omega^{\star}(\mathbb{R}^n)$ el espacio de formas diferenciales en \mathbb{R}^n y sea $d:\Omega^{\star}(\mathbb{R}^n)\to\Omega^{\star}(\mathbb{R}^n)$ el operador derivada exterior. Pruebe las siguientes afirmaciones:

- a) $d(\alpha \wedge \beta) = d\alpha \wedge \beta + (-1)^p \alpha \wedge d\beta$, para todo $\alpha \in \Omega^p(\mathbb{R}^n)$, $\beta \in \Omega^q(\mathbb{R}^n)$.
- b) $d^2 = d \circ d = 0$, esto es, $\Omega^*(\mathbb{R}^n)$ es un complejo de cadenas.

Solución.

- a) Por inducción, en el grado total de $\alpha \wedge \beta$, tenemos los siguientes casos:
 - Si $\alpha = f$ y $\beta = g$ son funciones, entonces

$$d(fg) = \frac{\partial}{\partial x^i}(fg) dx^i = g \frac{\partial f}{\partial x^i} dx^i + f \frac{\partial g}{\partial x^i} dx^i = g df + f dg$$

• Si $\alpha = \alpha_i \wedge dx^i$ es de grado positivo, entonces

$$d(\alpha \wedge \beta) = (-1)^{pq} d(\beta \wedge \alpha) = (-1)^{pq+q} \beta \wedge d\alpha + (-1)^{pq} d\beta \wedge \alpha = d\alpha \wedge \beta + (-1)^{p} \alpha \wedge d\beta$$

• Si $\beta = \beta_i \wedge dx^i$ es de grado positivo, entonces

$$d(\alpha \wedge \beta) = d(\alpha \wedge \beta_i \wedge dx^i)$$

$$= d(\alpha \wedge \beta_i) \wedge dx^i$$

$$= [d\alpha \wedge \beta_i + (-1)^p \alpha \wedge d\beta_i] \wedge dx^i$$

$$= d\alpha \wedge \beta_i \wedge dx^i + (-1)^p \alpha \wedge d\beta \wedge dx^i$$

$$= d\alpha \wedge \beta + (-1)^p \alpha \wedge d\beta$$

- b) Por inducción en el grado de $\omega \in \Omega^k(\mathbb{R}^n)$, tenemos los siguientes casos:
 - Si $\omega = f$ es una función, entonces²

$$d^2f = \frac{\partial^2 f}{\partial x^i \partial x^j} \, dx^i \wedge dx^j = 0$$

• Si $\omega = \omega_i \wedge dx^i$ es de grado positivo, entonces

$$d^2\omega = d^2(\omega_i \wedge dx^i) = d^2\omega_i \wedge dx^i = 0$$

Ejercicio 6. Sea U un subconjunto abierto de \mathbb{R}^n . Muestre que toda forma exacta en U es cerrada.

Solución. Supongamos primero que existe un difeomorfismo $f: U \to \mathbb{R}^n$. Entonces $f^*: \Omega^*(\mathbb{R}^n) \to \Omega^*(U)$ es un isomorfismo de complejos de cadenas. En particular, f^* identifica las formas cerradas (resp. exactas) sobre U con las formas cerradas (resp. exactas) sobre \mathbb{R}^n . Entonces, por el ítem b) del ejercicio anterior, toda forma exacta sobre U es cerrada.

Consideremos ahora el caso general. Dadas una forma exacta $\alpha \in \Omega^*(U)$ y una bola incrustada $B \subset U$, la restricción $\alpha|_B$ también es exacta. Puesto que B es difeomorfa a \mathbb{R}^n , el argumento del párrafo anterior implica que $\alpha|_B$ es cerrada, i.e., $d\alpha|_B = 0$. Finalmente, como U puede ser cubierto por bolas, $d\alpha$ se anula alrededor de cada punto $p \in U$, lo cual implica que $d\alpha = 0$, i.e., α es cerrada.

Ejercicio 7. Sea U un subconjunto abierto de \mathbb{R}^n .

- a) Muestre que los grupos de cohomología de de Rham $H^k_{dR}(U)$ son \mathbb{R} -espacios vectoriales.
- b) Muestre que la dimensión de $H_{dR}^0(U)$ es el número de componentes conexas de U.
- c) Muestre que $H_{dR}^k(U) = 0$ si y sólo si toda k-forma cerrada sobre U es exacta.

Solución.

a) El complejo de de Rham es el diagrama de R-módulos y R-homomorfismos

$$0 \stackrel{d}{\longrightarrow} \Omega^0(U) \stackrel{d}{\longrightarrow} \Omega^1(U) \stackrel{d}{\longrightarrow} \Omega^2(U) \stackrel{d}{\longrightarrow} \dots$$

Los \mathbb{R} -submódulos de cociclos (formas cerradas) y cofronteras (formas exactas) son

$$Z^k = \ker d: \Omega^k(U) \to \Omega^{k+1}(U), \qquad \qquad B^k = \operatorname{im} d: \Omega^{k-1}(U) \to \Omega^k(U)$$

La condición $d^2=0$ implica que $B^k\subset Z^k$. Por ende, los grupos de cohomología

$$H_{dR}^{k}(U) = \frac{Z^{k}}{R^{k}} = \frac{\ker d^{(k)}}{\operatorname{im} d^{(k-1)}}$$

están bien definidos y son \mathbb{R} -espacios vectoriales.

- b) Los elementos de $H^0(U)$ son las funciones $f:U\to\mathbb{R}$ cuya derivada se anula. Esto implica que f es localmente constante. Entonces f toma un único valor en cada componente conexa de U.
 - Puesto que U es localmente homeomorfo a \mathbb{R}^n , entonces U es localmente conexo y sus componentes conexas son abiertas. Entonces el valor de f en cada componente se puede escoger libremente.
 - Por ende, $H^0_{dR}(U)$ es el producto directo de tantas copias de \mathbb{R} como U tenga componentes conexas. Si U tiene un número de componentes conexas, entonces este producto directo es también una suma directa y $\dim_{\mathbb{R}} H^0_{dR}(U)$ cuenta el número de sumandos, i.e., el número de componentes conexas.
- c) Por construcción, $H_{dR}^k(U)=0$ si y sólo si $Z^k=B^k$, si y sólo si toda k-forma cerrada es exacta.

²La contracción de un tensor simétrico con uno antisimétrico es cero.

Ejercicio 8. Pruebe el lema de Poincaré:

$$H_{dR}^{k}(\mathbb{R}^{n}) = \begin{cases} \mathbb{R}, & \text{si } k = 0\\ 0, & \text{si } k \neq 0 \end{cases}$$

Observación. El enunciado original pide demostrar los casos n=1,2,3,4, pero es más fácil dar una única prueba válida para todo $n \in \mathbb{N}$.

Solución. Sea M una variedad arbitaria. Toda forma $\omega \in \Omega^k([0,1] \times M)$ se puede escribir como

$$\omega = \alpha_t + dt \wedge \beta_t$$

donde $\alpha_t \in \Omega^k(M)$ y $\beta_t \in \Omega^{k-1}(M)$ están parametrizadas por $t \in [0,1]$. Diferenciando, tenemos

$$d\omega = dt \wedge \left[\frac{\partial \alpha_t}{\partial t} - \delta \beta_t \right] + \delta \alpha_t$$

donde δ es el operador derivada exterior de M. En particular, si ω es cerrada, entonces la expresión entre corchetes se anula, lo cual implica que

$$\alpha_1 - \alpha_0 = \int_0^1 \frac{\partial \alpha_t}{\partial t} dt = \int_0^1 \delta \beta_t dt = \delta \int_0^1 \beta_t dt$$

es una forma exacta sobre M.

Supongamos que $\omega = F^*\rho$, donde $F:[0,1]\times M\to N$ es una homotopía diferenciable y $\rho\in\Omega^k(N)$ es una forma cerrada. Entonces $\alpha_t=f_t^*\rho$, donde $f_t=F(t,-)$ es la función en el instante t de la homotopía. Por el párrafo anterior, la clase de cohomología de $f_t^*\rho$ no depende de t, i.e., el homomorfismo de grupos $f_t^*:H^k(N)\to H^k(M)$ no depende de t. Esto se conoce como la invarianza homotópica de la cohomología de Rham.

En particular, pongamos $M=N=\mathbb{R}^n$ y consideremos la homotopía $f_t(x)=tx$, cuyos extremos son la función idénticamente cero $f_0=0$ y la función identidad $f_1=$ id. Puesto que $df_0=0$, el pullback f_0^\star es el homomorfismo cero en todas las dimensiones positivas. Esto implica que el homomorfismo identidad f_1^\star es igual al homomorfismo cero en todas las dimensiones positivas. Por ende, todos los grupos de cohomología $H_{dR}^k(\mathbb{R}^n)$ de dimensión positiva k>0 son triviales.

Finalmente, en dimensión cero, tenemos $H^0_{dR}(\mathbb{R}^n) = 0$, porque \mathbb{R}^n tiene una componente conexa.

Ejercicio 9. Sea $U_n \subset \mathbb{R}^2$ el plano agujereado en n puntos. Pruebe que

$$H^{k}(U_{n}) = \begin{cases} \mathbb{R}, & \text{si } k = 0\\ \mathbb{R}^{n}, & \text{si } k = 1\\ 0, & \text{si } k \ge 2 \end{cases}$$

y halle bases explícitas para dichos espacios vectoriales.

Solución. En este ejercicio y el siguiente, usaremos el teorema de Mayer-Vietoris: dada una cobertura de una variedad U por dos subconjuntos abiertos A, B, tenemos una sucesión exacta corta

$$0 \longrightarrow \Omega^{\star}(U) \longrightarrow \Omega^{\star}(A) \oplus \Omega^{\star}(B) \longrightarrow \Omega^{\star}(A \cap B) \longrightarrow 0$$

que induce una sucesión exacta larga en cohomología

$$0 \longrightarrow H^{0}(U) \longrightarrow H^{0}(A) \oplus H^{0}(B) \longrightarrow H^{0}(A \cap B)$$

$$\longrightarrow H^{1}(U) \longrightarrow H^{1}(A) \oplus H^{1}(B) \longrightarrow H^{1}(A \cap B)$$

$$\longrightarrow H^{2}(U) \longrightarrow H^{2}(A) \oplus H^{2}(B) \longrightarrow H^{2}(A \cap B)$$

$$\longrightarrow H^{3}(U) \longrightarrow H^{3}(A) \oplus H^{3}(B) \longrightarrow H^{3}(A \cap B)$$

$$\longrightarrow \cdots$$

El hecho clave es el siguiente: dada una sucesión exacta finita de espacios vectoriales, la suma alternada de las dimensiones de los espacios involucrados debe ser cero.

■ Para hallar la cohomología de U_1 , tomemos A como el complemento del eje X no positivo y B como el complemento del eje X no negativo. Entonces A, B son difeomorfos a U_0 , mientras que $A \cap B$ es difeomorfo a la unión disjunta de dos copias de U_0 .

La sucesión exacta larga en cohomología se rompe en dos tramos:

$$0 \longrightarrow H^0(U_1) \longrightarrow \mathbb{R}^2 \longrightarrow \mathbb{R}^2 \longrightarrow H^1(U_1) \longrightarrow 0, \qquad 0 \longrightarrow H^2(U_1) \longrightarrow 0$$

Puesto que U_1 es conexo, $H^0(U_1) = \mathbb{R}$, así que

$$H^k(U_1) = \begin{cases} \mathbb{R}, & \text{si } k = 0, 1\\ 0, & \text{si } k \ge 2 \end{cases}$$

■ Para hallar la cohomología de U_{n+1} , tomemos A como la parte de U_{n+1} en el semiplano x < 2 y B como la parte de U_{n+1} en el semiplano x > 1. Entonces A es difeomorfo a U_1 , B es difeomorfo a U_n , $A \cap B$ es difeomorfo a U_0 .

Asumamos inductivamente que

$$H^{k}(U_{n}) = \begin{cases} \mathbb{R}, & \text{si } k = 0\\ \mathbb{R}^{n}, & \text{si } k = 1\\ 0, & \text{si } k \ge 2 \end{cases}$$

Entonces la sucesión larga en cohomología se rompe en dos tramos:

$$0 \longrightarrow H^0(U_{n+1}) \longrightarrow \mathbb{R}^2 \longrightarrow \mathbb{R} \longrightarrow H^1(U_{n+1}) \longrightarrow \mathbb{R}^{n+1} \longrightarrow 0, \qquad 0 \longrightarrow H^2(U_1) \longrightarrow 0$$

Puesto que U_{n+1} es conexo, $H^0(U_{n+1}) = \mathbb{R}$, así que

$$H^{k}(U_{n+1}) = \begin{cases} \mathbb{R}, & \text{si } k = 0\\ \mathbb{R}^{n+1}, & \text{si } k = 1\\ 0, & \text{si } k \ge 2 \end{cases}$$

Ahora hallemos bases de los R-módulos de cohomología:

- La función constante 1 es una base de $H^0(U_n)$, para todo $n \in \mathbb{N}$.
- Consideremos la forma $\omega \in \Omega^1(U_1)$ definida por

$$\omega = \frac{x \, dy - y \, dx}{x^2 + y^2}$$

Si integramos ω a lo largo de un pequeño círculo γ alrededor del origen, obtenemos

$$\int_{\gamma} \omega = 2\pi$$

Por ende, ω no exacta. En particular, $[\omega]$ es la base estándar de $H^1(U_1)$

■ Sean $p_1, \ldots, p_n \in \mathbb{R}^2$ los agujeros de U_n . Para cada i, tomemos un pequeño círculo γ_i alrededor de p_i y sea $f_i: U_n \to U_1$ la traslación de \mathbb{R}^2 que envía p_i al origen. Pongamos $\omega_i = f_i^*\omega$. Entonces,

$$\int_{\gamma_i} \omega_j = \begin{cases} 2\pi, & \text{si } i = j \\ 0, & \text{si } i \neq j \end{cases}$$

Por ende, $[\omega_1], \ldots, [\omega_n]$ es una base de $H^1(U_n)$.

Ejercicio 10. Pruebe el lema de Poincaré para la cohomología con soporte compacto:

$$H_c^k(\mathbb{R}^n) = \begin{cases} \mathbb{R}, & \text{si } k = n \\ 0, & \text{si } k \neq n \end{cases}$$

Observación. El enunciado original pide demostrar los casos n=1,2, pero es más elegante dar una única prueba válida para todo $n \in \mathbb{N}$.

Solución. La compactificación de Alexandroff de \mathbb{R}^n es la esfera $S^n = \mathbb{R}^n \cup \{\infty\}$. Hallemos sus grupos de cohomología de de Rham:

 \blacksquare En dimensión cero, S^0 es la unión disjunta de dos puntos, así que

$$H^{k}(S^{0}) = \begin{cases} \mathbb{R}^{2}, & \text{si } k = 0\\ 0, & \text{si } k \neq 0 \end{cases}$$

■ En dimensiones superiores, S^{n+1} es la unión no disjunta de dos copias de \mathbb{R}^{n+1} , que identificaremos con los complementos del polo norte y el polo sur. La intersección de estas copias es un cilindro que admite un retracto de deformación fuerte a S^n .

Tenemos la sucesión exacta corta de complejos de cadenas

$$0 \longrightarrow \Omega^{\star}(S^{n+1}) \longrightarrow \Omega^{\star}(\mathbb{R}^{n+1})^2 \longrightarrow \Omega^{\star}(S^n) \longrightarrow 0$$

Esto induce una sucesión exacta larga en cohomología

$$0 \longrightarrow H^0(S^{n+1}) \longrightarrow H^0(\mathbb{R}^{n+1})^2 \longrightarrow H^0(S^n)$$

$$\longrightarrow H^1(S^{n+1}) \longrightarrow H^1(\mathbb{R}^{n+1})^2 \longrightarrow H^1(S^n)$$

$$\longrightarrow H^2(S^{n+1}) \longrightarrow H^2(\mathbb{R}^{n+1})^2 \longrightarrow H^2(S^n)$$

$$\longrightarrow H^3(S^{n+1}) \longrightarrow H^3(\mathbb{R}^{n+1})^2 \longrightarrow H^3(S^n)$$

$$\longrightarrow \cdots$$

 \blacksquare Para n=0, la sucesión exacta larga en cohomología se reduce a

$$0 \longrightarrow H^0(S^1) \longrightarrow \mathbb{R}^2 \longrightarrow \mathbb{R}^2 \longrightarrow H^1(S^1) \longrightarrow 0$$

Por ende, los grupos de cohomología del círculo S^1 son

$$H^{k}(S^{1}) = \begin{cases} \mathbb{R}, & \text{si } k = 0, 1\\ 0, & \text{si } k \neq 0, 1 \end{cases}$$

■ Para n > 0, asumamos inductivamente que

$$H^{k}(S^{n}) = \begin{cases} \mathbb{R}, & \text{si } k = 0, n \\ 0, & \text{si } k \neq 0, n \end{cases}$$

Entonces la sucesión exacta larga en cohomología se rompe en los siguientes tramos:

- $0 \longrightarrow H^0(S^{n+1}) \longrightarrow \mathbb{R}^2 \longrightarrow \mathbb{R} \longrightarrow H^1(S^{n+1}) \longrightarrow 0$
- $0 \longrightarrow H^k(S^{n+1}) \longrightarrow 0$,

para todo $k = 2, \ldots, n$.

• $0 \longrightarrow \mathbb{R} \longrightarrow H^{n+1}(S^{n+1}) \longrightarrow 0$

Por ende, los grupos de cohomología de la esfera S^{n+1} son

$$H^{k}(S^{n+1}) = \begin{cases} \mathbb{R}, & \text{si } k = 0, n+1\\ 0, & \text{si } k \neq 0, n+1 \end{cases}$$

Toda forma con soporte compacto $\omega \in \Omega_c^k(\mathbb{R}^n)$ se puede extender a S^n poniendo $\omega_{\infty} = 0$. Dicha extensión se anula no sólo en ∞ , sino en toda una vecindad de ∞ . Recíprocamente, toda forma $\omega \in \Omega^k(S^n)$ que se anula en una vecindad de ∞ se puede restringir a una forma con soporte compacto sobre \mathbb{R}^n .

■ Sean $\alpha \in \Omega^k(U)$, $\beta \in \Omega^k(V)$ dos formas locales definidas en ∞ . Diremos que α, β son equivalentes si su diferencia $\alpha - \beta$ se anula en alguna vecindad de ∞ . Un germen de k-forma en ∞ es una clase de equivalencia de k-formas locales definidas en ∞ .

El espacio de gérmenes de formas en ∞ se denota por $\Omega^*(S^n)_{\infty}$ y tiene una estructura de \mathbb{R} -álgebra graduada diferencial inducida por $\Omega^*(-)$. En particular, un germen $[\omega] \in \Omega^k(S^n)_{\infty}$ es cerrado (resp. exacto) tiene un representante cerrado (resp. exacto) $\omega \in \Omega^k(V)$ en alguna vecindad $\infty \subset V \subset S^n$.

Tenemos la sucesión exacta corta de complejos de cadenas

$$0 \longrightarrow \Omega_c^{\star}(\mathbb{R}^n) \longrightarrow \Omega^{\star}(S^n) \longrightarrow \Omega^{\star}(S^n)_{\infty} \longrightarrow 0$$

Esto induce una sucesión exacta larga en cohomología

$$\begin{split} 0 &\longrightarrow H^0_c(\mathbb{R}^n) \longrightarrow H^0(S^n) \longrightarrow H^0(S^n)_\infty \\ &\longrightarrow H^1_c(\mathbb{R}^n) \longrightarrow H^1(S^n) \longrightarrow H^1(S^n)_\infty \\ &\longrightarrow H^2_c(\mathbb{R}^n) \longrightarrow H^2(S^n) \longrightarrow H^2(S^n)_\infty \\ &\longrightarrow H^3_c(\mathbb{R}^n) \longrightarrow H^3(S^n) \longrightarrow H^3(S^n)_\infty \\ &\longrightarrow \cdots \end{split}$$

- Dado un germen de forma cerrada $[\omega] \in \Omega^k(S^n)_{\infty}$, tomemos un representante cerrado $\omega \in \Omega^k(V)$ y restrinjámoslo a una vecindad anidada $U \subset V$ difeomorfa al disco. Por supuesto, dicha restricción es también cerrada, así que, por el lema de Poincaré, ocurre una de dos cosas:
 - $[\omega] \in \Omega^0(S^n)_{\infty}$ es un germen de función constante.
 - $[\omega] \in \Omega^k(S^n)_{\infty}$ es un germen de forma exacta de grado k > 0.

Por ende, $\Omega^k(S^n)_{\infty}$ tiene la misma cohomología que $\Omega^{\star}(\mathbb{R}^n)$. Es decir,

$$H_{dR}^k(S^n)_{\infty} = \begin{cases} \mathbb{R}, & \text{si } k = 0\\ 0, & \text{si } k \neq 0 \end{cases}$$

lacktriangle Para n=0 la sucesión exacta larga en cohomología se reduce a

$$0 \longrightarrow H_c^0(\mathbb{R}^n) \longrightarrow \mathbb{R}^2 \longrightarrow \mathbb{R} \longrightarrow 0$$

Por ende, los grupos de cohomología con soporte compacto del punto \mathbb{R}^0 son

$$H_c^k(\mathbb{R}^0) = \begin{cases} \mathbb{R}, & \text{si } k = 0\\ 0, & \text{si } k \neq 0 \end{cases}$$

 \blacksquare Para n=1, la sucesión exacta larga en cohomología se reduce a

$$0 \longrightarrow H_c^0(\mathbb{R}^1) \longrightarrow \mathbb{R} \longrightarrow \mathbb{R} \longrightarrow H_c^1(\mathbb{R}^1) \longrightarrow \mathbb{R} \longrightarrow 0$$

Puesto que la recta \mathbb{R}^1 no es compacta, $H_c^0(\mathbb{R}^1) = 0$, así que

$$H_c^k(\mathbb{R}^1) = \begin{cases} \mathbb{R}, & \text{si } k = 1\\ 0, & \text{si } k \neq 1 \end{cases}$$

- Para n > 1, la sucesión exacta larga en cohomología se rompe en los siguientes tramos:
 - $0 \longrightarrow H_c^0(\mathbb{R}^n) \longrightarrow \mathbb{R} \longrightarrow \mathbb{R} \longrightarrow H_c^1(\mathbb{R}^n) \longrightarrow 0$
 - $0 \longrightarrow H_c^k(\mathbb{R}^n) \longrightarrow 0$,

para todo $k = 2, \ldots, n - 1$.

• $0 \longrightarrow H_c^n(\mathbb{R}^n) \longrightarrow \mathbb{R} \longrightarrow 0$

Puesto que el espacio \mathbb{R}^n no es compacto, $H_c^0(\mathbb{R}^n)=0$, así que

$$H_c^k(\mathbb{R}^n) = \begin{cases} \mathbb{R}, & \text{si } k = n \\ 0, & \text{si } k \neq n \end{cases}$$

Ejercicio 11. Sea $f: M \to N$ una función diferenciable entre abiertos de \mathbb{R}^m , \mathbb{R}^n . Pruebe que el pullback $f^*: \Omega^*(N) \to \Omega^*(M)$ conmuta con la derivada exterior, i.e., $f^* \circ d_N = d_M \circ f^*$. Concluya que f^* induce homomorfismos en cohomología $f^*: H^k(N) \to H^k(M)$.

Solución. Partamos de los siguientes hechos básicos:

- El pullback $f^*: \Omega^k(N) \to \Omega^k(M)$ es un homomorfismo de \mathbb{R} -algebras graduadas.
- La derivada exterior $d: \Omega^k(M) \to \Omega^{k+1}(M)$ es un homomorfismo de \mathbb{R} -módulos graduados.
- El producto interior $\iota_X: \Omega^k(M) \to \Omega^{k-1}(M)$ es un homomorfismo de \mathbb{R} -módulos graduados. (Para que esto funcione, debemos considerar que $\Omega^*(M)$ es \mathbb{Z} -graduado, pero los submódulos de formas de grado negativo son triviales.)
- Las funciones y las 1-formas exactas localmente generan $\Omega^*(M)$ como \mathbb{R} -álgebra.
- Todas estas operaciones sobre formas y campos se pueden evaluar localmente. Por ello, no nos debe preocupar la posibilidad de que $\mathfrak{X}^{\infty}(M)$ y $\Omega^{\star}(M)$ no tengan suficientes secciones globales³.

Sea $\omega \in \Omega^k(N)$ una forma arbitraria. Por inducción en el grado:

• Si $\omega = g$ es una función, entonces

$$f^{\star}dg(v) = dg(f_{\star}v) = dg \circ df(v) = d(g \circ f)(v) = df^{\star}g(v)$$

para todo campo vectorial $v \in \mathfrak{X}^{\infty}(M)$. Por ende, $f^{\star}dg = df^{\star}g$.

Asumamos inductivamente que $f^*d\omega = df^*\omega$, para todo $\alpha \in \Omega^k(M)$. Tomemos k-formas $\alpha_i \in \Omega^k(N)$ tales que $\omega = \alpha_i \wedge dx^i$. Entonces,

$$df^*\omega = df^*(\alpha_i \wedge dx^i) = d(f^*\alpha_i \wedge f^*dx^i) = df^*\alpha_i \wedge f^*dx^i + (-1)^k f^*\alpha_i \wedge df^*dx^i$$

El segundo término se cancela, porque $df^*dx^i = ddf^*x^i = 0$. Entonces,

$$df^{\star}\omega = df^{\star}\alpha_{i} \wedge f^{\star}dx^{i} = f^{\star}d\alpha_{i} \wedge f^{\star}dx^{i} = f^{\star}(d\alpha_{i} \wedge dx^{i}) = f^{\star}d(\alpha_{i} \wedge dx^{i}) = f^{\star}d\omega$$

Entonces f^* es un morfismo de complejos encadenados. Por ende,

- f^* envía formas cerradas (i.e., representantes de clases de cohomología) a formas cerradas.
- f^* envía formas exactas (i.e., representantes de la clase trivial) a formas exactas.
- f^* envía formas cohomólogas (i.e., que difieren por una forma cerrada) a formas cohomólogas.
- f^* induce homomorfismos en cohomología $f^*: H^k_{dR}(N) \to H^k_{dR}(M)$.

 $^{^3}$ Otra razón para no preocuparnos es que, dada una sección local $\omega \in \Omega^k(U)$, donde U es un entorno de p, podemos usar una partición de la unidad para construir una sección global $\tilde{\omega} \in \Omega^k(M)$ cuyo comportamiento es indistinguible de ω en una vecindad anidada $p \in V \subset U$. No tenemos tales comodidades en la geometría analítica o en la geometría algebraica.

Ejercicio 12. Sea X una superficie de Riemann. Pruebe que toda forma holomorfa sobre X es cerrada.

Observación. No es necesaria la hipótesis de que X es compacta.

Solución. En una coordenada local z = x + iy, toda forma holomorfa se representa como $\alpha = f(z) dz$ para alguna función holomorfa f(z). Diferenciando esta expresión, tenemos

$$d\alpha = df \wedge dz = \partial f \wedge dz + \bar{\partial} f \wedge dz = 0$$

El primer término es cero porque pertenece a $\Omega^{2,0}(X)$, que es trivial. El segundo término también es cero porque f es holomorfa, i.e., $\bar{\partial} f = 0$.

Ejercicio 13. Sea X una superficie de Riemann compacta. Sea α una forma meromorfa sobre X. Pruebe que la suma de residuos de α en todos sus polos es cero.

Solución. Sea $U \subset X$ una unión disjunta de discos que contienen a cada polo de α y sea $S = X \setminus U$. Por construcción, S es una superficie con borde compacta y α es una forma cerrada sobre S. Entonces,

$$\sum_{p} \operatorname{Res}_{p} \alpha = \int_{\partial U} \alpha = -\int_{\partial S} \alpha = -\int_{S} d\alpha = \int_{S} 0 = 0$$

Ejercicio 14. Sea X una superficie de Riemann. Sean f, g funciones diferenciables tales que (a) al menos una es armónica y (b) al menos una tiene soporte compacto. Pruebe que $\langle f, g \rangle_D = 0$.

Observaci'on. No es necesaria la hipótesis de que X es compacta.

Solución. Si f es la función armónica, pongamos $\omega = -g \partial f$. Entonces,

$$d\omega = -\bar{\partial}(g\,\partial f) = \partial f \wedge \bar{\partial}g - g\,\bar{\partial}\partial f$$

Si g es la función armónica, pongamos $\omega = f \, \bar{\partial} g$. Entonces.

$$d\omega = \partial(f\,\bar{\partial}g) = \partial f \wedge \bar{\partial}g + f \partial \bar{\partial}g$$

Sea cual fuere el caso, el producto interno de Dirichlet se reduce a

$$\langle f, g \rangle_D = \int_X 2i \, \partial f \wedge \bar{\partial} g = \int_X 2i \, d\omega$$

Por construcción, ω tiene soporte compacto. Sea $U \subset X$ una vecindad del soporte tal que U misma tiene clausura compacta. Entonces ω se anula en la frontera ∂U . Por el teorema de Stokes,

$$\langle f, g \rangle_D = \int_X 2i \, d\omega = \int_U 2i \, d\omega = \int_{\partial U} 2i \, \omega = 0$$

Ejercicio 15. Sea X una superficie de Riemann. Sea $U \subset X$ una subregión compacta con frontera suave. Sea φ una función real positiva en el interior de U que se anula en ∂U . Pruebe que

$$\int_{\partial U} i \, \partial \varphi \ge 0$$

Solución. Sobre ∂U , tenemos $d\varphi = \partial \varphi + \bar{\partial} \varphi = 0$. En una coordenada local z = x + iy, tenemos

$$i\,\partial\varphi=\frac{i}{2}\,\partial\varphi-\frac{i}{2}\,\bar\partial\varphi=\frac{\partial f}{\partial y}\,dx-\frac{\partial f}{\partial x}\,dy=\nabla\varphi\cdot N\,ds$$

donde N es el vector normal unitario entrante y s es un parámetro de longitud de arco para ∂U . Como el valor mínimo de φ en U se alcanza en toda la frontera, $\nabla \varphi$ también es un vector entrante. Por lo tanto, el producto punto es no negativo y toda la integral es no negativa.

Ejercicio 16. Sea X una superficie de Riemann compacta. Sean $p_0, \ldots, p_n \in X$ puntos distintos y sean $w_0, \ldots, w_n \in \mathbb{C}$ valores arbitrarios. Construya una función meromorfa $\varphi: X \to \widehat{\mathbb{C}}$ que envía $\varphi(p_i) = w_i$.

Observación. No es necesaria la hipótesis de que w_0, \ldots, w_n son distintos.

Solución. Sea m=1+2g+n, donde g es el género de X. Por construcción, el divisor

$$D = mp_0 - (p_1 + \dots + p_n)$$

excede en grado al divisor canónico de X. Entonces, por el teorema de Riemann-Roch,

$$\dim_{\mathbb{C}} \mathscr{L}_D = 1 - g + \deg D = 2 + g$$

existen funciones meromorfas no constantes⁴ con un único polo en p_0 y ceros en p_1, \ldots, p_n . Compongamos cualquiera de ellas con una transformación de Möbius que fija 0 y envía $\infty \mapsto w_0$. Entonces tenemos una función meromorfa $\varphi_0: X \to \widehat{\mathbb{C}}$ tal que

$$\varphi_0(p_i) = \begin{cases} w_0, & \text{si } i = 0\\ 0, & \text{si } i \neq 0 \end{cases}$$

Análogamente, para cada $i=1,\dots,n,$ tenemos una función meromorfa $\varphi_i:X\to\widehat{\mathbb{C}}$ tal que

$$\varphi_i(p_j) = \begin{cases} w_i, & \text{si } j = i \\ 0, & \text{si } j \neq i \end{cases}$$

Entonces $\varphi = \varphi_0 + \cdots + \varphi_n$ es la función solicitada.

Ejercicio 17. Sea X una superficie de Riemann compacta de género positivo. Pruebe que no hay ningún punto en X sobre el cual todas las formas holomorfas en X se anulan.

Solución. Sea $p \in X$ un punto sobre el cual todas las formas holomorfas se anulan. Esto es,

$$\dim_{\mathbb{C}} \Omega_p = \dim_{\mathbb{C}} H^{1,0}(X) = g$$

Entonces, por el teorema de Riemann-Roch,

$$\dim_{\mathbb{C}} \mathscr{L}_p - \dim_{\mathbb{C}} \Omega_p = 1 - g + \deg p \implies \dim_{\mathbb{C}} \mathscr{L}_p = 2$$

existen funciones meromorfas no constantes con un único polo simple en p. Esto sólo es posible si X es la esfera de Riemann, que tiene género 0.

Ejercicio 18. Sea X una superficie de Riemann compacta, conexa, tal que $\dim_{\mathbb{C}} H^{0,1}(X) = 1$. Construya una 1-forma meromorfa que no se anula en X. Concluya que X es isomorfa a un toro.

Solución. Por el ejercicio anterior, dados dos puntos $p,q \in X$, podemos encontrar dos formas holomorfas $\alpha, \beta \in H^{1,0}(X)$ que no se anulan en p,q, respectivamente. Pero α,β no son linealmente independientes, ya que $\dim_{\mathbb{C}} H^{1,0}(X) = \dim_{\mathbb{C}} H^{0,1}(X) = 1$, así que β es múltiplo de α . Entonces, α no se anula en q. Como q es arbitrario, α no se anula en ningún punto de X.

La clave para identificar X con un toro \mathbb{C}/Λ es identificar sus recubrimientos universales. Para ello, lo primero que necesitamos es una función $\varphi:\mathbb{C}\to X$ que podamos comparar con el recubrimiento universal abstracto $\pi:\tilde{X}\to X$. Ante todo, φ debe ser un biholomorfismo local, i.e., $d\varphi$ no se puede anular nunca.

Afortundamente, como α es una forma que nunca se anula, el fibrado cotangente holomorfo $T^*X^{1,0}$ es trivial. Entonces el fibrado tangente holomorfo $TX^{1,0}$ también es trivial y posee una sección global ξ que nunca se anula. Para conseguir φ , tomemos cualquier curva integral de ξ . Como X es compacta, ξ es un campo completo, por ende φ está parametrizada por todo \mathbb{C} , no un mero subconjunto abierto.

 $^{^4{\}rm Si}$ hubiésemos tomado m=2g+n, esta parte de la prueba no funcionaría en el caso g=n=0.

Tenemos en φ un candidato a recubrimiento universal. Para verificar que este candidato sea, en efecto, un recubrimiento universal, debemos constatar que exista una solución al problema de levantamiento

y que dicha solución sea un biholomorfismo. Por lo pronto, lo primero es gratis: $\mathbb C$ es simplemente conexo, ergo, $\tilde{\varphi}$ existe. Es más, $\tilde{\varphi}$ es un biholomorfismo local, porque la estructura compleja de \tilde{X} es calco local de la estructura de X. Sólo nos falta probar que $\tilde{\varphi}$ es una biyección.

Para la sobreyectividad, fijemos un punto de referencia p_0 en la imagen de $\tilde{\varphi}$. Dado otro punto $p_1 \in X$, conectemos p_0, p_1 con una curva $\tilde{\gamma} : [0, 1] \to \tilde{X}$. La proyección $\gamma = \pi \circ \gamma$ está completamente en la imagen de φ , por el teorema de existencia y unicidad de las EDOs. Esto es, existe una curva $\beta : [0, 1] \to \mathbb{C}$ tal que $\gamma = \varphi \circ \beta$. Por construcción, $\tilde{\gamma} = \tilde{\varphi} \circ \beta$ es la única forma de levantar γ a una curva en \tilde{X} que parte de p_0 . Esto implica $\tilde{\gamma}$ está en la imagen de $\tilde{\varphi}$. En particular, p_1 está en la imagen de $\tilde{\varphi}$.

Para la inyectividad, tomemos cualquier antiderivada $\psi: \tilde{X} \to \mathbb{C}$ de la forma exacta $\pi^*\alpha$. Entonces,

$$\frac{\partial}{\partial z}\psi\circ\tilde{\varphi}(z)=d\psi\circ d\tilde{\varphi}(1)=\pi^{\star}\alpha\circ d\tilde{\varphi}(1)=\alpha\circ d\pi\circ d\tilde{\varphi}(1)=\alpha(\xi)$$

Por construcción, $\alpha(\xi)$ es una función holomorfa sobre X, así que $\alpha(\xi)$ es obligatoriamente constante. Por ende, $\psi \circ \tilde{\varphi}$ es una transformación lineal afín. Por ende, $\tilde{\varphi}$ es inyectiva.

Hemos demostrado que \mathbb{C} es el recubrimiento universal de X. Entonces el grupo fundamental $\pi_1(X)$ es un grupo discreto que actúa transitivamente sobre \mathbb{C} por biholomorfismos. Esto implica que $\pi_1(X)$ actúa sobre X por traslaciones. Puesto que las traslaciones de \mathbb{C} forman un grupo isomorfo a \mathbb{C} , deducimos que $\pi_1(X)$ es un subgrupo aditivo discreto de \mathbb{C} . Entonces $\pi_1(X)$ es un grupo abeliano libre de rango ≤ 2 . Es más, el rango debe ser exactamente 2 si queremos que el cociente $X \cong \mathbb{C}/\pi_1(X)$ sea compacto. Por ende, $\pi_1(X)$ es un retículo $\Lambda \subset \mathbb{C}$ y el cociente $X \cong \mathbb{C}/\Lambda$ es un toro.

Una consecuencia de este análisis es que todas las superficies de Riemann de género 1 son \mathbb{T}^2 -espacios principales e incluso adquieren una estructura de grupo abeliano si escogemos un elemento identidad.

Ejercicio 19. Sea X una superficie de Riemann compacta. Sean Z el número de ceros y P el número de polos de una 1-forma meromorfa sobre X. Pruebe que Z - P = 2g - 2, donde g es el género de X.

Solución. Sea K el divisor de la forma en cuestión. Por el teorema de Riemann-Roch,

$$\dim_{\mathbb{C}} \mathscr{L}_K - \dim_{\mathbb{C}} \Omega_K = 1 - g + \deg K$$

$$\dim_{\mathbb{C}} \mathscr{L}_0 - \dim_{\mathbb{C}} \Omega_0 = 1 - g + \deg 0$$

Sabemos que $\mathscr{L}_K \cong \Omega_0$ y $\mathscr{L}_0 \cong \Omega_K$. Por ende, $Z - P = \deg K = 2g - 2$.

Ejercicio 20. Sea X una superficie de Riemann compacta. Muestre que existe un cubrimiento ramificado $f: X \to \widehat{\mathbb{C}}$ cuyos puntos de ramificación son todos simples.

Solución. Asumamos sin pérdida de generalidad que ∞ es un valor regular de f, i.e., todos los polos de f son simples. Entonces los conjuntos P, R de polos y puntos de ramificación de f son disjuntos. Tenemos

$$\operatorname{div}(f)_{\infty} = P,$$
 $\operatorname{deg} f = \operatorname{deg} P$

Cada elemento de P es un polo simple de f, por ende un cero simple de 1/f, por ende no es ni cero ni polo de df/f^2 , por ende es un polo doble de df. Como f es holomorfa en $X \setminus P$, tenemos

$$K = \operatorname{div}(df) = R - 2P, \qquad \deg K = 2q - 2 = -\chi(X)$$

donde $g \in \mathbb{N}$ es el género de X. (Aquí me que dé estancado.)