R06725048 資管碩一 陳信豪

MLDS HW2 Report

1. Model description

- 文字處理
 - 濾掉標點符號、轉小寫、並以空白做 split 取出 word tokens
 - 將 captions 轉成 token sequences,並在前後加上起始結束的 tag
 - 設定 sequence 最大的長度 max_sent_len,不足的部分做 padding Ex: [<s>, a, man, is, walking, </s>, <pad>, <pad>, <pad>, <pad>]
 - 最後透過建立好的 dictionary,將 token sequence 轉成 index sequence 後再餵人 model
- 由於一個 video 有多個 caption,我的處理方式是每次先選好 video 後,再隨機選擇其中的一個 caption 當 label,所以每次 epoch 跑的 數量都會是一樣 1450 筆 data,但 video features 會在不同 epoch 中對應到不同 label (caption)。

S2VT Model

為 Conditional Generation

疊兩層 RNN (GRU/LSTM),第一層作為 encoder,會把 pre-trained CNN Outputs 拿進來做 training 取出影像的代表特徵;第二層作為 decoder,會將影片的的代表特徵和前一次的 decoder 輸出一起放入 input (condition) 做 training 得到輸出結果

Sequence to Sequence – Video to Text:

http://www.cs.utexas.edu/users/ml/papers/venugopalan.iccv15.pdf

其中「前一次的 decoder 輸出」實際上在做 training 時是直接 reference 原本 label captions 正確的前一個字,而在 testing 時才是真正的去拿 model 前一個的輸出 (exposure bias),因為如果不這麼做的話 model 會很難 train 起來,(因為 decoder 會一步錯,步步錯)。

● 參數設置:

epochs: 500

batch size: 128

layer_dim: 768 (for word_embedding, encoding rnn, decoding rnn)

learning rate: 0.001

max_sent_len: 15

loss: cross-entropy (透過 masking 來濾掉 padding 的部分)

optimizer: adam

● 輸出處理:

濾掉起始 tag 和 pad tag,並將輸出截斷至結尾 tag 第一次出現之時

● 結果:

Loss 如下圖來到了 5 左右,Average bleu score 為 0.281514

2. Attention mechanism

為 Dynamic Conditional Generation

在 encoder 與 decoder 之間加入 attention,讓 decoder 的 input 會專注 在某部分上 (context 上下文的概念)。

其作法是透過給 encoder 每個 timestep 輸出一個權重做 weight and sum 再餵入 decoder,而這組權重是透過一個 match function 所產生,這 match_function 會吃 [encoder layer 此次輸出] 和 [decoder layer 前個輸出]

得到一組權重 lpha

而我的 match function 是學出來的: $\alpha = softmax(h^TWz)$ (W 是學出來的,為 neural network 的一部分)

因此我的 decoder input 會再多出 context feature : $c=\Sigma \alpha h$

上課 slide

3. How to improve your performance

Masking

masking 指的意思是說我們在餵 feature 進 model 時會另外有一個對應 feature 的 binary array,而這個 array 對應到 padding 時值為 0,非 padding 時值為 1

Why masking? => 因為 padding 值非常好預測到,而這會導致我們在 計算 loss 時產生一種 model loss 已經很低的錯覺,也就是說 padding loss 其實不應該被算入 model loss 中,而透過 masking 我們 就可以將 padding loss 濾掉

Scheduled Sampling

誠如 1 所提到的 exposure bias 問題,為了解決此問題我們可以嘗試 Scheduled Sampling,其作法是在一開始 training 時我們都採用 from reference 來取前一個字,而漸漸的 (我使用 linear decay) 會有一個比例開始慢慢轉換成採用 from model 來取前一個字。

Why Scheduled Sampling? => 解決 exposure bias

*這一部分我來不及放進 best model 中,不過有 implement 在 train.py/test.py/hw2_model.py 中,照理來說如果放進 best model 應 該有助於 performance

4. Experimental results and settings

實驗基本參數設置如下:

- batch size: 48

- layer_dim: 512 (for word_embedding, encoding rnn, decoding rnn)

- epochs: 350

- GRU

- Not Attend

- Decoder 前一個 step 的輸入為 Reference

• "LSTM" vs "GRU"

	LSTM	GRU
Epoch Time	15.0075	14.5248
Loss	model loss 80 60 0 50 100 150 200 250 300 350 epoch	model loss model loss 40 - 60 - 60 - 60 - 60 - 60 - 60 - 60 -
Final Loss	4.62784	5.2831
Average Bleu Score	0.2770	0.2680

LSTM 在 loss 上 和 Bleu Score 上略優於 GRU, 速度上則是略輸

"Attend" vs "Not Attend"

Attend 的時間會比原本久很多,而 Bleu Score 似乎沒有多大的進步