Sintaxi i semàntica estàtica

Sintaxi

Anàlisi semàntica Compilación i Enllac

Semàntica dinàmica

Operacional Small-step Big-step

Axiomàtica

Propietats semantiques

Implementac.

Bibliografía

Tema 2. Fonaments dels Llenguatges de Programació

Llenguatges, Tecnologies i Paradigmes de Programació (LTP)

DSIC, ETSInf

Tema 2

LTP

Sintaxi i semàntica estàtica

Anàlisi semàntica Compilación i

Semàntica dinàmica

Operaciona Small-step Big-step

Axiomàtica

Propietats semàntiques

Implementac.

Bibliogra

Sintaxi i semàntica estàtica dels llenguatges de programació

Sintaxi

Anàlisi semàntica Compilació i Enllaç

2 Semàntica dinàmica dels llenguatges de programació

3 Semàntica Operacional
Semàntica operacional de pas xicotet
Semàntica operacional de pas gran

- 4 Semàntica Axiomàtica
- 6 Propietats semàntiques
- 6 Implementació
- 7 Bibliografía

Sintaxi i semàntica estàtica

Sintaxi Anàlisi semàntica Compilación i Enllac

dinàmica

Operaciona Small-step Big-step

Axiomàtica

Propietats semàntiques

Implementac.

Bibliografía

Descripció formal d'un LP

- Sintaxi: quina seqüència de caràcters constitueixen un programa "legal"
 - elements sintàctics del llenguatge
- Semàntica: què significa (què calcula) un programa legal donat. Importància:
 - 1 Ajuda al programador a "raonar" sobre el programa
 - És necessària per a implementar correctament el llenguatge (models d'execució)
 - 3 Permet desenvolupar tècniques i eines de:
 - Anàlisi i Optimització
 - Depuració
 - Verificació
 - Transformació

Sintaxi i semàntica estàtica

Sintaxi Anàlisi semàntica

Compilación i Enllaç

dinàmica

Small-step

Big-step

Axiomàtica

Propietats semàntiques

Implementac.

Bibliografía

Sintaxi

Us de gramàtiques BNF

Notació BNF:

- Amb <w> es nomena un grup d'expressions definit per alguna regla de construcció de expressions
- el símbol | significa "or"

```
<letter> ::= a | b | c | d | A | B | C | D
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<id> ::= <letter> | <id><letter> | <id><digit>
```

- els claudàtors [i] se situen al voltant dels items opcionals
- les claus {} (o l'asterisc *) serveixen per a indicar una següencia de 0 o més items
- el símbol + serveix per a indicar una seqüencia d'1 o més items

```
<\!\!\text{realNumber>}\quad ::=\quad [+|-]<\!\!\text{digit>}^+\;.\;\;[E|e]\;[+|-]\;\{<\!\!\text{digit>}\}
```

Sintaxi i semàntica estàtica

Sintaxi Anàlisi semantica

Compilación i Enllac

dinàmica

Operacional Small-step

Big-step

Axiomàtica

Propietats semantiques

Implementac.

Bibliografía

Sintaxi

Us de gramàtiques BNF

Exemple: sintaxi del bucle while

Java

< while_statement> ::= while (<expression>) <statement>

Modula-2

Tema 2

LTP

Sintaxi i semàntica estàtica

Sintaxi

Anàlisi semàntica Compilación i Enllaç

Semàntica dinàmica

Operacional Small-step Big-step

Axiomàtica

Propietats semàntiques

Implementac.

Bibliografí

Processament d'un programa font

Sintaxi i semàntica

Sintaxi

Anàlisi semàntica Compilación i Enllaç

dinàmica

Operacional Small-step Big-step

Axiomàtica

Propietats semàntiques

Implementac.

Ribliograf

Anàlisi lèxic y sintàctic

- El analitzador lèxic (scanner) divideix una seqüència de caràcters (el programa) en una seqüència de components sintàctics primitius o paraules (tokens) que actuen com a identificadors, nombres, paraules reservades, etc.
- El analitzador sintàctic (parser) reconeix una seqüència de tokens i obté una seqüència de instruccions en forma de arbre sintàctic estructura

Example

Sintaxi i semàntica estàtica

Sintaxi

Anàlisi semàntica Compilación i Enllaç

Semàntic dinàmica

Operacional Small-step Big-step

Axiomàtica

Propietats semàntiques

Implementac.

Bibliografía

1 Seqüència de caràcters

2 Seqüència de paraules (tokens)

```
fun,{,Fact,N,},if,N,==,0,then,1,else,N,*,{,Fact,N,
-,1,},endif,end
```

3 Instrucció

```
fun {Fact N}
  if N == 0 then 1 else N{Fact N-1}
  endif
end
```

Tema 2

LTP

Sintaxi i semàntica estàtica

Sintaxi

Anàlisi semàntica Compilación i Enllaç

Semàntic dinàmica

Operacional Small-step

Big-step

Axiomàtica

Propietats semàntiques

Implementac.

Bibliografía

Example

Arbre sintàctic (parse tree)

Sintaxi i semàntica estàtica

Anàlisi semàntica Compilación i

Semàntic dinàmica

Operacional
Small-step
Big-step

Axiomàtica

Propietats semàntiques

Implementac.

Bibliografía

Anàlisi semàntic

descripció Semàntica: concepto i necessitat

Semàntica estática: restriccions de la sintaxi que no poden expressar-se mitjançant la notació BNF però que sí poden comprovar-se en temps de compilació

Exemple

A := B + C podria no ser legal si A, B o C no han sigut declarades prèviament

Semàntica dinàmica: restriccions que només es poden comprovar durant l'execució del programa (e.g. comprovació d'índexs dins del rang del vector)

ITP

Sintaxi i semàntica estàtica

Anàlisi semàntica Compilación i Enllaç

dinàmica

Small-step
Big-step

Axiomàtica

Propietats semàntiques

Implementac.

Ribliograf

Anàlisi semàntic

Semàntica estática

- Comprovacions en el analitzador semàntic:
 - 1 Declaració de variables prèvia al seu ús
 - Compatibilitat i conversió de tipus (coerció)
 - 3 Signatura de les funcions: els paràmetres reals coincideixen en nombre i tipus amb els formals
 - 4 ...
- Produeix un códi intermedi que és la base per al procés de compilació posterior

Compilación i Enllaç Semàntica

Operaciona Small-step Big-step

Axiomàtica

Propietats semàntiques

Implementac.

Bibliograf

Compilació i Enllaç

Generació de codi executable

- Primer es optimitza el codi intermedi rebut de la fase anterior
- La fase de generació de codi produeix el codi objecte del programa
- El codi objecte es enllaça amb codi procedent d'altres programes o llibreries per a obtenir el codi executable.

Compilación i Enllaç

Small-step

Big-step **Axiomàtica**

semàntiques

Implementac.

Bibliografía

Evolució de la representació interna d'un programa durant les diferents etapes del procés de compilació.

Considerarem el següent programa:¹

posicio = inicial + velocitat * 60

on les variables posicio, inicial i velocitat són de tipus real.

¹En les pàgines 12 i 13 de Aho, Sethi and Ullman. Compiladores: Principios, técnicas y herramientas. Addisón-Wesley Iberoamericana, 1990.

Semàntica dinàmica

Operacional Small-step Big-step

Axiomàtica

Propietats semantiques

Implementac.

Bibliografía

Semàntica dinàmica

Per què la semàntica no és sempre "estàtica"?

El compilador no pot detectar tots els errors possibles:

- 1 Alguns errors només es manifesten durant l'execució:
 - Z=X/Y produeix un error si s'executa amb Y = 0
 - Z=V[Y] produeix un error si Y té un valor que cau fora del rang del vector V
- 2 Moltes propietats interessants d'un programa no són decidibles.
- la acabació (però és 'semidecidible': hi ha prou en executar el programa per a "semi-decidir-ho")
- si dos programes qualssevol computen la mateixa funció
- si dues descripcions BNF generen el mateix llenguatge

Semàntica dinàmica

Operacional
Small-step
Big-step

Axiomàtica

Propietats semàntiques

Implementac.

Bibliografía

Semàntica dinàmica

Estils de definició Semàntica

- Operacional
- Axiomàtica
- Declarativa:
 - Denotacional
 - Algebraica
 - Teoria de models
 - Punt fix

Sintaxi i semàntica estàtica

Sintaxi Anàlisi semantica

Compilación i Enllaç

dinàmica

Operacional Small-step

Big-step

Axiomàtica

Propietats semantiques

Implementac.

Bibliografía

Semàntica Operacional

Consisteix a definir una màquina (abstracta) M i expressar el significat de cada construcció del llenguatge en termes de les accions a realitzar per la màquina per a executar aquesta instrucció. Semàntic dinàmica

Operacional

Small-step Big-step

Axiomática

Propietats semàntiques

Implementac.

Bibliografía

Semàntica Operacional

• Representem l'estat de la màquina (abstracta) que executa el programa com una funció $s: \mathcal{X} \to D$ que assigna valors en un domini D a les variables $x, y, \ldots \in \mathcal{X}$ del programa.

Notació

ja que en un programa utilitzem un conjunt finit de variables $\mathcal{X} = \{x_1, \dots, x_n\}$, podem representar l'estat com un conjunt de parells variable-valor:

$$s = \{x_1 \mapsto v_1, \dots, x_n \mapsto v_n\}.$$

La configuració de la màquina és un parell

$$\langle i, s \rangle$$

que registra el estat actual (s) al costat de la instrucció a avaluar (i), bé siga simple o composta (un programa es considera una instrucció composta).

estàtica
Sintaxi
Anàlisi semàntica
Compilación i

Semantic dinàmica

Operacional Small-step

Big-step

Axiomàtica

Propietats semàntiques

Implementac.

Bibliografía

Semàntica Operacional

- Per a formalitzar la ejecució del programa en la màquina utilitzem una relació de transició '→' entre configuracions.
- La relació es defineix mitjançant regles de transició:

$$rac{ extit{premissa}}{\langle i, s
angle
ightarrow \langle i', s'
angle}$$
 (1)

que descriuen la configuració $\langle i', s' \rangle$ obtinguda a partir la configuració de partida $\langle i, s \rangle$ quan es satisfà la premissa o condició sobre la configuració $\langle i, s \rangle$.

- També utilitzem altres relacions per a descriure
 - la avaluació de expressions aritmètiques (⟨exp, s⟩ ⇒ n).
 - la obtenció directa d'un estat final ($\langle i, s \rangle \Downarrow s'$).

i les definim mitjançant regles similars a (1).

Axiomàtica

Propietats semàntiques

Implementac.

Ribliogra

El llenguatge SIMP

La gramàtica en estil BNF del minillenguatge imperatiu SIMP que utilitzarem en aquest tema es defineix així:

• Expressions aritmètiques:

$$a ::= C \mid V \mid a_1 + a_2 \mid a_1 - a_2 \mid a_1 * a_2$$

on C i V denoten les constants numèriques (0, 1, 2, ...) i les variables (x, y, ...) respectivament

Expressions booleanes:

$$b ::= true \mid false \mid a_1 = a_2 \mid a_1 \le a_2 \mid \neg b \mid b_1 \lor b_2$$

Instruccions:

 $i ::= skip \mid V := a_1 \cdot \mid i; i_1 \mid \text{if } b \text{ then } i_1 \text{ else } i_2 \mid \text{while } b \text{ do } i$ on skip denota la instrucció buida.

Anàlisi semantica Compilación i Enllaç

Semàntic dinàmica

Operacional

Small-step Big-step

Axiomàtica

Propietats semàntiques

Implementac.

Bibliografía

El llenguatge SIMP

Avaluació d'expressions

- Escrivim $\langle exp, s \rangle \Rightarrow n$ per a indicar que l'expressió exp s'avalua a n en l'estat s.
- Usem aquesta relació de avaluació per a avaluar les expressions aritmètiques i booleanes.

Ribliografía

El llenguatge SIMP

Avaluació de expressions aritméticas

Constants numèriques:

$$\langle n, s \rangle \Rightarrow n$$

Variables:

$$\langle x, s \rangle \Rightarrow s(x)$$

Recordem que l'estat s és una funció de variables en valors. s(x) no és més que el valor de la variable x en l'estat de la màquina s.

Addició:

$$\frac{\langle a_1, s \rangle \Rightarrow n_1 \quad \langle a_2, s \rangle \Rightarrow n_2}{\langle a_1 + a_2, s \rangle \Rightarrow n}$$

si n és la suma d'i n_1 n_2 .

Resta i producte: similar.

Sintaxi i semàntica estàtica _{Sintaxi}

Sintaxi Anàlisi semàntica Compilación i Enllaç

Semàntic dinàmica

Operacional Small-step

Big-step

Axiomàtica

Propietats semàntiques

Implementac.

Bibliografía

El llenguatge SIMP

Avaluació de expressions booleanas

Valors booleans:

$$\langle \mathtt{false}, \mathbf{s} \rangle \Rightarrow \mathit{false} \qquad \langle \mathtt{true}, \mathbf{s} \rangle \Rightarrow \mathit{true}$$

· Igualtat:

$$\frac{\langle a_1, s \rangle \Rightarrow n_1}{\langle a_1 = a_2, s \rangle \Rightarrow true}$$
 si n_1 i n_2 són iguals $\frac{\langle a_1, s \rangle \Rightarrow n_1}{\langle a_1 = a_2, s \rangle \Rightarrow false}$ si n_1 i n_2 són diferents

· Menor o igual:

$$\begin{array}{ll} \frac{\langle a_1,s\rangle\Rightarrow n_1}{\langle a_1\leq a_2,s\rangle\Rightarrow true} & \text{si } n_1 \text{ es menor o igual que } n_2 \\ \frac{\langle a_1,s\rangle\Rightarrow n_1}{\langle a_1\leq a_2,s\rangle\Rightarrow talse} & \text{si } n_1 \text{ es major que } n_2 \end{array}$$

- Negació: $\frac{\langle b,s \rangle \Rightarrow true}{\langle \neg b,s \rangle \Rightarrow false}$ $\frac{\langle b,s \rangle \Rightarrow false}{\langle \neg b,s \rangle \Rightarrow true}$
- Disjunció: EXERCICI

Semàntic dinàmica

Operacional Small-step Big-step

Axiomàtica

Propietats semàntiques

Implementac.

Bibliografía

Semàntica Operacional

Pas xicotet (small-step)

- En la descripció semàntica operacional de Pas xicotet l'execució d'un programa es pot seguir instrucció a instrucció.
- En executar un programa P a partir del estat inicial s_I (on cap variable està assignada a cap valor, és a dir: s_I = {}), s'obté una seqüència de configuracions (denominada traça):

$$\langle P, s_I \rangle = \langle P_1, s_1 \rangle \rightarrow \langle P_2, s_2 \rangle \rightarrow \cdots \rightarrow \langle P_n, s_n \rangle$$

Distingim dues situacions:

- 1 P_n és la instrucció buida (*skip*) per a algun $n \ge 1$. Llavors l'execució del programa acaba amb un estat final $s_F = s_n$.
- 2 P_n mai arriba a ser la instrucció buida per a cap n: l'execució del programa no acaba.

Propietats semàntiques

Implementac.

Bibliografía

El llenguatge SIMP

Semàntica de Pas xicotet (I)

Seqüència:

$$\frac{\langle i_1, s \rangle \rightarrow \langle i'_1, s' \rangle}{\langle skip; i, s \rangle \rightarrow \langle i, s \rangle} \frac{\langle i_1, s \rangle \rightarrow \langle i'_1, s' \rangle}{\langle i_1; i_2, s \rangle \rightarrow \langle i'_1; i_2, s' \rangle}$$

Assignació:

$$\frac{\langle a,s\rangle \Rightarrow n}{\langle x:=a,s\rangle \rightarrow \langle skip,s[x\mapsto n]\rangle}$$

on el nou estat $s[x \mapsto n]$ es defineix eliminant del s possible vincle que existisca per a x i afegint en qualsevol cas el nou vincle $x \mapsto n$:

$$s[x \mapsto n](y) = \begin{cases} s(y) & \text{si } y \neq x \\ n & \text{si } y = x \end{cases}$$

Anàlisi semantica

Compilación i Enllaç Semàntica

Operaciona

Small-step

Big-step

Axiomàtica

Propietats semàntiques

Implementac.

Bibliografía

El llenguatge SIMP

Semàntica de Pas xicotet (II)

Condicional:

$$\frac{\langle b,s\rangle\!\Rightarrow\! \mathit{true}}{\langle \text{if } b \text{ then } i_1 \text{ else } i_2,s\rangle\!\rightarrow\!\langle i_1,s\rangle} \qquad \frac{\langle b,s\rangle\!\Rightarrow\! \mathit{false}}{\langle \text{if } b \text{ then } i_1 \text{ else } i_2,s\rangle\!\rightarrow\!\langle i_2,s\rangle}$$

Bucle while:

Exercici

Definir la semàntica del bucle *while* amb una única regla utilitzant la instrucció condicional.

Sintaxi Anàlisi semantica Compilación i

Semàntica dinàmica

Operaciona Small-step Big-step

xiomàtica

Propietats semàntiques

Implementac.

Bibliografía

Semàntica Operacional

Pas gran (big-step)

- En la descripció semàntica operacional de Pas gran (big-step) s'especifica l'execució d'un programa P com una transició directa des de la configuració inicial (P, s_I) al estat final s_F.
- A diferència de la semàntica de pas xicotet, doncs, la relació de transició de pas gran
 ↓ relaciona configuracions amb estats: ⟨P, s⟩ ↓ s'

Propietats semàntiques

Implementac.

Bibliograf

El llenguatge SIMP

Semàntica de Pas gran

Instrucció buida:

$$\overline{\langle skip, s \rangle \Downarrow s}$$

• Seqüència:

$$\frac{\langle i_1, s \rangle \Downarrow s_1}{\langle i_1; i_2, s \rangle \Downarrow s'}$$

Assignació:

$$\frac{\langle a, s \rangle \Rightarrow n}{\langle x := a, s \rangle \Downarrow s[x \mapsto n]}$$

Condicional:

$$\frac{\langle b,s\rangle \Rightarrow \textit{true}}{\langle \text{if } b \text{ then } i_1 \text{ else } i_2,s\rangle \Downarrow s'} \qquad \frac{\langle b,s\rangle \Rightarrow \textit{false}}{\langle \text{if } b \text{ then } i_1 \text{ else } i_2,s\rangle \Downarrow s'} \qquad \frac{\langle b,s\rangle \Rightarrow \textit{false}}{\langle \text{if } b \text{ then } i_1 \text{ else } i_2,s\rangle \Downarrow s'}$$

Bucle while:

Sintaxi i semàntica estàtica

Sintaxi Anàlisi semantica

Compilación i Enllaç

dinàmica

Operacional

Small-step Big-step

. . . .

Axiomàtica

Propietats semàntiques

Implementac.

Bibliografía

El llenguatge SIMP

Semàntica de Pas gran

Exercici

Definir la semàntica del bucle *while* amb una única regla utilitzant la instrucció condicional.

Sintaxi i semàntica estàtica

Sintaxi Anàlisi semàntica Compilación i

Semàntio dinàmica

Operaciona Small-step Big-step

Axiomàtica

Propietats semàntiques

Implementac.

Dibliografi

Semàntica d'unprograma

Definim la semàntica $\mathcal{S}(P)$ d'un programa ("terminant") P mitjançant les descripcions operacionals small-step i big-step:

• $S^{small}(P)$ és la traça finita (única)

$$\langle P, s_I \rangle = \langle P_1, s_1 \rangle \rightarrow \langle P_2, s_2 \rangle \rightarrow \cdots \rightarrow \langle P_n, s_n \rangle = \langle \textit{skip}, s_F \rangle$$

obtinguda a partir del sistema de transició small-step.

• $\mathcal{S}^{big}(P)$ és l'estat final s_F obtingut en utilitzar el sistema de transició big-step per a calcular $\langle P, s_I \rangle \Downarrow s_F$.

Ambdues estan relacionades (mateix s_F). Però \mathcal{S}^{big} té un nivell d'abstracció major que \mathcal{S}^{small} (\mathcal{S}^{big} no guarda els detalls del còmput de s_F)

Exercici

Calcular la semàntica de: P=(x:=4; while x>3 do x:=x-1)

Sintaxi i semàntica estàtica

Anàlisi semàntica Compilación i Enllaç

Semantic dinàmica

Operacional Small-step Big-step

Axiomàtica

Propietats semantiques

Implementac.

Bibliografía

Semàntica Axiomàtica

Una terna de Hoare (Hoare triple) $\{P\}$ S $\{Q\}$ representa la correcció d'un programa S respecte a

- una precondició P (que restringeix els estats de entrada a S) i
- una postcondició Q (que representa els estats de eixida desitjats)

Correcció d'un programa

Sempre que un estat s satisfà P, l'estat final s' resultant d'executar S satisfarà Q

Exemples

$$\{y = 4\}$$
 $x := y$ $\{x = 4\}$ (2)

$$\{y \le x\}$$
 $z:=x; z:=z+1 \{y < z\}$ (3)

Sintaxi Anàlisi semàntica Compilación i

Semàntic dinàmica

Operacional
Small-step
Big-step

Axiomàtica

Propietats semàntiques

Implementac.

Ribliogra

Semàntica Axiomàtica

Dijkstra va idear un transformador de predicats que associa a cada tipus d'instrucció i i postcondició Q una precondició més feble pmd(i, Q)

Aquesta *precondició més debil* ha de complir l'estat anterior a l'execució de *i* perquè, després d'aquesta execució, es garantisca Q

La correcció d'una instrucció S simple o composta (programa) respecte a P i Q, és a dir $\{P\}$ S $\{Q\}$, es comprova com segueix:

- 1 Calcular P' = pmd(S, Q).
- 2 Comprovar que $P \Rightarrow P'$.

semàntica estàtica Sintaxi Anàlisi semàntica

Semàntic dinàmica

Operaciona Small-step Big-step

Axiomàtica

Propietats semàntiques

Implementac.

Bibliografía

Semàntica Axiomàtica

El transformador de predicats pmd

Assignació:

$$pmd(x:=a,Q) = Q[x \mapsto a]$$

ací $x \mapsto a$ és una sustitució que reemplaça una variable x en una expressió per una altra expressió a. Així, $Q[x \mapsto a]$ és el resultat d'aplicar aqueixa substitució a l'expressió lògica Q.

Condicional:

$$pmd(if b then i_1 else i_2, Q) =$$

$$(b \land pmd(i_1, Q)) \lor (\neg b \land pmd(i_2, Q))$$

Seqüència:

$$pmd(i_1;i_2,Q) = pmd(i_1,pmd(i_2,Q))$$

I TP

Sintaxi i semàntica estàtica

Sintaxi Anàlisi semàntica

Enllaç

dinàmica

Small-step
Big-step

Axiomàtica

Propietats semàntiques

Implementac.

Bibliografía

Semàntica Axiomàtica

Example de cálculo amb pmd

- 1 Càlcul (de baix dalt) de P' (ací igual a P_1):
 - $P_3 = pmd(y := t, Q) = Q[y \mapsto t] = (x = 1 \land t = 0).$
 - $P_2 = pmd(x := y, P_3) = P_3[x \mapsto y] = (y = 1 \land t = 0).$
 - $P_1 = pmd(t:=x, P_2) = P_2[t \mapsto x] = (y = 1 \land x = 0).$
- 2 Com $P_1 = pmd(S, Q)$, comprovem $P \Rightarrow P_1$, i.e.,

$$(x = 0 \land y = 1 \land z = 2) \Rightarrow (y = 1 \land x = 0)$$

que és clarament cert.

Semàntic dinàmica

Operaciona Small-step Big-step

Axiomàtica

Propietats semàntiques

Implementac.

Bibliografía

Semàntica Axiomàtica

Donada la següent terna de Hoare:

$$\{P\} = \{x = 1\}$$
$$x := x - 1$$
$$\{Q\} = \{x \ge 0\}$$

podem dir que el programa és correcte?

Solució: Atès que

$$pmd(x := x - 1, x \ge 0) = (x - 1 \ge 0) \Leftrightarrow x \ge 1$$

i que

$$x = 1 \Rightarrow x \ge 1$$
,

concloem que el programa és correcte respecte a P i Q.

I TP

Sintaxi i semàntica estàtica

Sintaxi Anàlisi semàntica Compilación i

Semàntic dinàmica

Operaciona Small-step Big-step

Axiomàtica

Propietats semàntiques

Implementac.

Bibliografí

Propiedades Semànticas

Equivalencia de programas

La semàntica d'un llenguatge ens permet raonar sobre l'equivalència de programes

Equivalència semàntica

Dos programes P i P' són equivalents respecte a una descripció Semàntica \mathcal{S} (e.g., \mathcal{S}^{big} o \mathcal{S}^{small}) si i solament si

$$\mathcal{S}(P) = \mathcal{S}(P')$$

Denotem açò escrivint $P \equiv_{\mathcal{S}} P'$.

Per exemple, per als programes

$$P: x:=1; P': x:=2; x = 2$$

tenim $P \equiv_{S^{big}} P'$, però $P \not\equiv_{S^{small}} P'$ (Per què?).

Sintaxi i semàntica

Sintaxi Anàlisi semàntica Compilación i Enliaç

Semàntic dinàmica

Operaciona Small-step Big-step

Axiomàtica

Propietats semàntiques

Implementac.

Bibliografía

Propiedades Semànticas

Example

Assumint que el llenguatge SIMP s'ha enriquit amb el producte i la divisió, tant a nivelll sintàctic com a semàntic (EXERCICI), considerem els programes

```
P: sum:=(n*(n+1))/2; P': sum:=0; i:=1; while i \le n do sum:=sum+1; i:=i+1:
```

per a calcular $1 + 2 + \cdots + n$ per a un enter positiu n donat.

- Des del punt de vista del nombre de passos de còmput, quin dels dos és més eficient?
- Podem capturar açò amb S^{small} o S^{big} ?
- Só equivalents respecte a \mathcal{S}^{small} o \mathcal{S}^{big} (o ambdues) Per què?

Sintaxi i semàntica estàtica Sintaxi

Anàlisi semàntica Compilación i Enllac

Semàntic dinàmica

Operacional
Small-step
Big-step

Axiomàtic

Propietats semàntiques

Implementac.

Bibliografía

Implementació dels llenguatges de programació

Llenguatges compilats

Llenguatges interpretats

Els bons entorns inclouen tant intèrpret (per a ser usat en la fase de desenvolupament) com a compilador (per a usar-se en explotació).

semàntica estàtica Sintaxi Anàlisi semàntica Compilación i

Semàntic dinàmica

Operacional Small-step Big-step

Axiomàtica

Propietats semàntiques

Implementac.

Ribliografía

Traducció vs interpretació (I)

- La traducció i interpretació pura constitueixen dos extrems
- En la pràctica no se sol usar la traducció pura excepte quan els leguajes són de nivelll molt pròxim (com en el cas dels assembladors)
- La interpretació pura tampoc és molt freqüent, excepte en llenguatges de control de S.O. (scripting) o en llenguatges interactius
- És més comú una implementació mixta: el programa es tradueix primer de la forma original a una altra d'execució més fàcil, que s'executa per interpretació.

Semàntio dinàmica

Operacional Small-step Big-step

Axiomàtica

Propietats semàntiques

Implementac.

Bibliografía

Traducció vs interpretació (II)

Llenguatges típicament compilats:

C, C++, Fortran, Ada

Llenguatges típicament interpretats:

LISP, ML, Smalltalk, Perl, Postscript

- Llenguatges amb implementació mixta (açò facilita la portabilitat a qualsevol plataforma):
- Pascal (P-code),
- Prolog (WAM-code),
- Java (byte-code, el codi de la JVM, i.e., el format estàndard per a la distribució de codi Java)

Sintaxi i semàntica estàtica

Sintaxi Anàlisi semàntica

Anàlisi semantic Compilación i Enllaç

dinàmica

Operacional Small-step Big-step

Axiomàtica

Propietats semàntiques

Implementac.

Bibliografía

Java Virtual Machine (JVM)

Sintaxi i semàntica estàtica Sintaxi Anàlisi semàntica Compilación i Enllac

Semàntic dinàmica

Operaciona Small-step Big-step

Axiomàtica

Propietats semàntiques

Implementac.

Bibliografía

Bibliografía

Bàsica:

- Winskel, G. The formal Semantics of Programming Languages. An introduction. MIT Press, 1993.
- Pratt, T.W. and Zelkowitz, M.V. Lenguajes de programación: diseño e implementación, Prentice-Hall, 1998.
- Scott, M.L. Programming Language Pragmatics, Morgan Kaufmann Publishers, 2003.

Complementaria

- Stuart, T. Understanding Computation (Capítulo 2). Ed. O'Reilly, 2013.
- Kenneth Slonneger, Barry L. Kurtz. Formal Syntax and Semantics of Programming Languages. A Laboratory Based Approach (Capítulos 1 y 11). Addisón-Wesley, 1995.