Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

1 Input Parameters

Modu	ıle			Fin Plate
MainMo	odule			Shear Connection
Connect	tivity			Column flange-Beam web
Shear(l	κN)*			150.0
	•	Supporting Se	ection	
	Supportin	ng Section		PBP 300X222.9
	Mate	erial *		E 250 (Fe 410 W)B
т Ү	Ultimate strei	ngth, fu (MPa)		410
,	Yield Streng	th , fy (MPa)		250
α	Mass	222.92	Iz(cm4)	526988000.0
ZZ D	Area(cm2) - A	28400.0	Iy(cm4)	175746300.0
1	D(mm)	337.9	rz(cm)	136.2
R ₁	B(mm)	325.7	ry(cm)	78.7
R ₂	t(mm)	30.3	Zz(cm3)	3119190.0
Y	T(mm)	30.4	Zy(cm3)	1079190.0
•	FlangeSlope	90	Zpz(cm3)	3653090.0
	R1(mm)	1.52	Zpy(cm3)	1079190.0
	R2(mm)	0.0		
		Supported Se	ction	
	Supported Section			UB 406 x 178 x 74
_ Y	Material *		E 250 (Fe 410 W)B	
		ngth, fu (MPa)	410	
		th , fy (MPa)	250	
(B-t)	Mass	74.2	Iz(cm4)	273100000.0
ZZ D	Area(cm2) -	9450.0	Iy(cm4)	15450000.0
	D(mm)	413.0	rz(cm)	170.0
-R ₂	B(mm)	179.5	ry(cm)	40.0
В	t(mm)	9.5	Zz(cm3)	1323000.0
Y	T(mm)	16.0	Zy(cm3)	172000.0
	FlangeSlope	90	Zpz(cm3)	1501000.0
	R1(mm)	10.2	Zpy(cm3)	172000.0
	R2(mm)	0.0		
	/ *	Bolt Deta		20.140.200.210.200.200.
Diameter	· /		,	2.0, 16.0, 20.0, 24.0, 30.0, 36.0]
Grade * Type *		[3.6, 4.6, 4.8, 5.6, 5.8, 6.8, 8.8, 9.8, 10.9, 12.9]		
			Bearing Bolt	
Bolt hole				Standard
			1	0.9
Slip factor	r (μ_t)			0.3

Type of edges

a - Sheared or hand flame cut

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

Gap between beam and support (mm)	10.0
Are the members exposed to corrosive influences	False
Plate Det	ails
Thickness(mm)*	[3.0, 4.0, 5.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0]
Material *	E 250 (Fe 410 W)A
Ultimate strength, fu (MPa)	410
Yield Strength , fy (MPa)	250
Weld Det	ails
Weld Type	Fillet
Type of weld fabrication	Shop Weld
Material grade overwrite (MPa) Fu	410.0

	Company Name	LoremIpsum	Project Title	Fossee
	Group/Team Name	LoremIpsum	Subtitle	
	Designer	LoremIpsum	Job Number	123
ĺ	Date	18 /05 /2020	Client	LoremIpsum

2 Design Checks

2.1 Bolt Design Checks

Check	Required	Provided	Remarks
Diameter (mm)*		20.0	
Grade *		6.8	
Shear Capacity (kN)		$V_{dsb} = \frac{f_u b \ n_n \ A_{nb}}{\sqrt{3} \ \gamma_{mb}}$ $= \frac{600.0 * 1 * 245}{\sqrt{3} * 1.25}$ $= 67.9$	
Bearing Capacity (kN)		$V_{dpb} = \frac{2.5 \ k_b \ d \ t \ f_u}{\gamma_{mb}}$ $= \frac{2.5 \ * 0.51 * 20.0 * 9.5 * 410}{1.25}$ $= 79.46$	
Capacity (kN)		$V_{db} = min (V_{dsb}, V_{dpb})$ = $min (67.9, 79.46)$ = 67.9	
No of Bolts	$R_{u} = \sqrt{V_{u}^{2} + A_{u}^{2}}$ $n_{trial} = R_{u}/V_{bolt}$ $R_{u} = \frac{\sqrt{150.0^{2} + 30.0^{2}}}{67.9}$ $= 3$	3	
No of Columns		1	
No of Rows		3	
Min. Pitch (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 20.0 = 50.0$	0.0	N/A
Max. Pitch (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ = $\min(32 * 9.5, \ 300 \ mm)$ = 304.0	0.0	N/A
Min. Gauge (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 20.0 = 50.0$	85	Pass
Max. Gauge (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ $= \min(32 * 9.5, \ 300 \ mm)$ $= 304.0$	85	Pass
Min. End Distance (mm)	$e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 22.0 = 37.4	40	Pass
Max. End Distance (mm)	$e/e'_{max} = 12 \ t \ \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 \ *10.0 * \sqrt{\frac{250}{250}}$ $= 120.0$	40	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

Check	Required	Provided	Remarks
Min. Edge Distance (mm)	$e/e^{\circ}_{min} = [1.5 \text{ or } 1.7] * d_0$	40	Pass
	= 1.7 * 22.0 = 37.4		2 000
Max. Edge Distance (mm)	$e/e'_{max} = 12 t \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 * 10.0 * \sqrt{\frac{250}{250}}$ $= 120.0$	40	Pass
Capacity (kN)	73.68	79.46	Pass

	Company Name	LoremIpsum	Project Title	Fossee
	Group/Team Name	LoremIpsum	Subtitle	
	Designer	LoremIpsum	Job Number	123
ĺ	Date	18 /05 /2020	Client	LoremIpsum

2.2 Plate Design Checks

Check	Required	Provided	Remarks
Min. Plate Height (mm)	$0.6 * d_b = 0.6 * 413.0 = 247.8$	250	Pass
Max. Plate Height (mm)	$d_b - 2(t_{bf} + r_{b1} + gap)$ = 413.0 - 2 * (16.0 + 10.2 + 10)	250	Pass
Min. Plate Length (mm)	$ = 360.6 $ $2 * e_{min} + (n c - 1) * p_{min} $ $= 2 * 37.4 + (1 - 1) * 50.0 $ $= 84.8 $	90.0	Pass
Min.Plate Thickness (mm)	$t_w = 9.5$	10.0	Pass
Shear yielding Capacity (V_dy) (kN)		$V_{dg} = \frac{A_v * f_y}{\sqrt{3} * \gamma_{mo}}$ $= \frac{250 * 10.0 * 250}{\sqrt{3} * 1.1}$ $= 328.04$	
Shear Rupture Capacity (V_dn) (kN)		$V_{dn} = \frac{328.04}{\sqrt{3} * A_{vn} * f_u}$ $= 1 * (250 - (3 * 22.0)) * 10.0 * 42$ $= 565.8$	10
Block Shear Capacity in Shear (V_db) (kN)		355.08	
Shear Capacity (V_d) (kN)	150.0	$V_d = Min(V_{dy}, V_{dn}, V_{db})$ $= Min(328.04, 565.8, 355.08)$ $= 328.04$	Pass
Tension Yielding Capacity (kN)		$T_{dg} = \frac{l * t_p * f_y}{\gamma_{mo}}$ $= \frac{250 * 10.0 * 250}{1.1}$ $= 568.18$	
Tension Rupture Capacity (kN)		$T_{dn} = \frac{0.9 * A_n * f_u}{\gamma_{m1}}$ $= \frac{0.9 * (250 - 3 * 22.0) * 10.0 * 4}{1.25}$ $= 673.06$	10
Block Shear Capacity in Tension (T_db) (kN)		394.28	
Tension Capacity (kN)	30.0	$T_d = Min(T_{dg}, T_{dn}, T_{db})$ = $Min(568.18, 673.06, 394.28)$ = 394.28	Pass
Moment Capacity (kN-m)	7.5	35.51	Pass
Interaction Ratio	≤1	$\frac{7.5}{35.51} + \frac{30.0}{394.28} = 0.29$	Pass

	Company Name	LoremIpsum	Project Title	Fossee
	Group/Team Name	LoremIpsum	Subtitle	
	Designer	LoremIpsum	Job Number	123
ĺ	Date	18 /05 /2020	Client	LoremIpsum

2.3 Weld Checks

Check	Required	Provided	Remarks
Min Weld Size (mm)		6	Pass
Max Weld Size (mm)	Thickness of Thinner part $= Min(30.4, 10.0) = 10.0$ $t_{w_{max}} = 10.0$	6	Pass
Weld Strength (kN/mm)	$R_{w} = \sqrt{(T_{wh} + A_{wh})^{2} + (T_{wv} + V_{wv})^{2}}$ $T_{wh} = \frac{M * y_{max}}{Ipw} = \frac{7500000.0 * 119.0}{2246878.67}$ $T_{wv} = \frac{M * x_{max}}{Ipw} = \frac{7500000.0 * 0.0}{2246878.67}$ $V_{wv} = \frac{V}{l_{w}} = \frac{150000.0}{476}$ $A_{wh} = \frac{A}{l_{w}} = \frac{30000.0}{476}$ $R_{w} = \sqrt{(397.22 + 63.03)^{2} + (0.0 + 315.13)^{2}}$ $= 715.13$	$f_w = \frac{t_t * f_u}{\sqrt{3} * \gamma_{mw}}$ $= \frac{4.2 * 410}{\sqrt{3} * 1.25}$ $= 795.36$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

3 3D View

Figure 1: 3D View