Gluon Radiation Off Scalar Stop Particles

W. Beenakker, R. Höpker and P. M. Zerwas

Deutsches Elektronen-Synchrotron DESY, D-22603 Hamburg, FRG

ABSTRACT

We present the distributions for gluon radiation off stop-antistop particles produced in e^+e^- annihilation: $e^+e^- \to \tilde{t}\,\tilde{t}\,g$. For high energies the splitting functions of the fragmentation processes $\tilde{t} \to \tilde{t}\,g$ and $g \to \tilde{t}\,\tilde{t}$ are derived; they are universal and apply also to high-energy stop particles produced at hadron colliders.

Introduction. Stop particles are exceptional among the supersymmetric partners of the standard-model fermions. Since the top quarks are heavy, the masses of the two stop particles \tilde{t}_1 and \tilde{t}_2 , mixtures of the left (L) and right (R) squarks, may split into two levels separated by a large gap [1]-[3]. The mass of the lightest eigenstate \tilde{t}_1 could be so low that the particle may eventually be accessible at the existing $p\bar{p}$ and even e^+e^- storage rings. So far the result of search experiments at e^+e^- colliders [4, 5] has been negative and a lower limit of 45.1 GeV has been set at LEP [5] for the L/R mixing angle outside the band of $\cos^2\theta_t$ between 0.17 and 0.44 and for a mass difference between the \tilde{t}_1 and the lightest neutralino $\tilde{\chi}_1^0$ of more than 5 GeV. The higher energy at LEP2 and dedicated efforts at the Tevatron will open the mass range beyond the current limits soon.

To begin, we briefly summarize the well-known theoretical predictions for the cross section of the production process [Fig.1(a)]

$$e^+ e^- \rightarrow \tilde{t}_1 \, \bar{\tilde{t}}_1$$

For a given value θ_t of the L/R mixing angle, the vertices of the \tilde{t}_1 pair with the photon and the Z boson may be written as $ie_0\tilde{Q}[p_{\tilde{t}_1}-p_{\tilde{t}_1}]_{\mu}$, where $p_{\tilde{t}_1}$ and $p_{\tilde{t}_1}$ are the 4-momenta of the stop and antistop squarks, and the charges read

$$\tilde{Q}_{\gamma} = -e_t
\tilde{Q}_Z = (\cos^2 \theta_t - 2e_t \sin^2 \theta_W) / \sin 2\theta_W$$

respectively. θ_W is the standard electroweak mixing angle and $e_0 = \sqrt{4\pi\alpha}$ is the electromagnetic coupling to be evaluated with $\alpha^{-1}(M_Z) = 129.1$ in the improved Born approximation [6]. The Z boson coupling vanishes for the L/R mixing angle $\cos^2\theta_t \to 2e_t\sin^2\theta_W \approx 0.30$. Defining the γ and Z vector/axial-vector charges of the electron, as usual, by $e_e = -1$, $v_e = -1 + 4\sin^2\theta_W$ and $a_e = -1$, the cross section can be expressed in the compact form [2]

$$\sigma_{B}[e^{+}e^{-} \to \tilde{t}_{1}\bar{\tilde{t}}_{1}] = \frac{\pi\alpha^{2}}{s} \left[\tilde{Q}_{\gamma}^{2} + \frac{(v_{e}^{2} + a_{e}^{2})\tilde{Q}_{Z}^{2}}{4\sin^{2}2\theta_{W}} \frac{s^{2}}{(s - M_{Z}^{2})^{2} + M_{Z}^{2}\Gamma_{Z}^{2}} + \frac{v_{e}\tilde{Q}_{\gamma}\tilde{Q}_{Z}}{\sin2\theta_{W}} \frac{s(s - M_{Z}^{2})}{(s - M_{Z}^{2})^{2} + M_{Z}^{2}\Gamma_{Z}^{2}} \right] \beta^{3}$$
(1)

where \sqrt{s} is the center of mass energy and M_Z , Γ_Z are the mass and the total width of the Z boson, respectively. The P-wave excitation near the threshold gives rise to the familiar β^3 suppression, where $\beta = (1 - 4m_{\tilde{t}_1}^2/s)^{1/2}$ is the velocity of the stop particles. Angular momentum conservation enforces the $\sin^2\theta$ law, $\sigma_B^{-1}d\sigma_B/d\cos\theta = \frac{3}{4}\sin^2\theta$, for the angular distribution of the stop particles with respect to the beam axis.

QCD corrections. Gluonic corrections modify the cross section $[7, 8]^1$. The virtual corrections, Fig.1(b), can be expressed by the form factor

¹Since we focus on QCD gluon effects for light stop particles in the LEP range, we do not take into account quark-gluino loop effects, assuming the gluino to be heavy; these loop effects have been discussed for squark production at the Tevatron in Ref.[9] and at e^+e^- colliders in Ref.[10].

$$F(s) = \frac{4}{3} \frac{\alpha_s}{\pi} \left\{ \frac{s - 2m_{\tilde{t}_1}^2}{s\beta} \left[2\operatorname{Li}_2(w) + 2\log(w)\log(1 - w) - \frac{1}{2}\log^2(w) + \frac{2}{3}\pi^2 - 2\log(w) - \log(w)\log\left(\frac{\lambda^2}{m_{\tilde{t}_1}^2}\right) \right] - 2 - \log\left(\frac{\lambda^2}{m_{\tilde{t}_1}^2}\right) \right\}$$
(2)

where α_s is the strong coupling constant and the kinematical variable w is defined as $w = (1 - \beta)/(1 + \beta)$. The form factor is infrared (IR) divergent. We have regularized this divergence by introducing a small parameter λ for the gluon mass. The IR singularity is eliminated by adding the contribution of the soft gluon radiation [Fig.1(c)], with the scaled gluon energy integrated up to a cut-off value $\epsilon_g = 2E_g^{cut}/\sqrt{s} \ll 1$. The sum of the virtual correction (V) and the soft-gluon radiation (S) depends only on the physical energy cut-off ϵ_g ,

$$\sigma_{V+S} = \sigma_B \frac{4}{3} \frac{\alpha_s}{\pi} \left\{ \frac{s - 2m_{\tilde{t}_1}^2}{s\beta} \left[4\operatorname{Li}_2(w) - 2\log(w)\log(1+w) + 4\log(w)\log(1-w) + \frac{1}{3}\pi^2 - 2\log(w)\log(\epsilon_g) \right] + \frac{4m_{\tilde{t}_1}^2 - 3s}{s\beta}\log(w) + \log\left(\frac{m_{\tilde{t}_1}^2}{s}\right) - 2\log(\epsilon_g) - 2 \right\}$$

After including the hard gluon radiation, the dependence on the cut-off ϵ_g disappears from the total cross section. The total QCD corrections can finally be summarized in a universal factor [8]

$$\sigma[e^+e^- \to \tilde{t}_1\,\bar{\tilde{t}}_1(g)] = \sigma_B \left[1 + \frac{4}{3} \frac{\alpha_s}{\pi} f(\beta) \right] \tag{3}$$

with (Fig.2)

$$f(\beta) = \frac{1+\beta^2}{\beta} \left[4\operatorname{Li}_2(w) + 2\operatorname{Li}_2(-w) + 2\log(w)\log(1-w) + \log(w)\log(1+w) \right] \\ -4\log(1-w) - 2\log(1+w) + \left[3 + \frac{1}{\beta^3} \left(2 - \frac{5}{4}(1+\beta^2)^2 \right) \right] \log(w) + \frac{3}{2} \frac{1+\beta^2}{\beta^2}$$

Very close to the threshold the Coulombic gluon exchange between the slowly moving stop particles generates the universal Sommerfeld rescattering singularity [11] $f \to \pi^2/2\beta$, which damps the threshold suppression, yet does not neutralize it entirely. Employing methods based on non-relativistic Green's functions, an adequate description of stop pair production near threshold has been given in Ref.[12], which also takes into account screening effects due to the finite decay width of the stop particles. In the high-energy limit [8] the correction factor in eq.(3) approaches the value $(1 + 4\alpha_s/\pi)$.

In this note we present a general analysis of hard gluon radiation. We also include stop fragmentation due to collinear gluon emission in the perturbative regime at high energies and we give an account of non-perturbative fragmentation effects.

For unpolarized lepton beams the cross section for gluon radiation off \tilde{t}_1 squarks

$$e^+ \, e^- \rightarrow \tilde{t}_1 \, \bar{\tilde{t}}_1 \, g$$

depends on four variables: the polar angle θ between the momentum of the \tilde{t}_1 squark and the e^- momentum, the azimuthal angle χ between the $\tilde{t}_1\bar{t}_1g$ plane and the plane spanned by the e^\pm beam axis with the \tilde{t}_1 momentum [see Ref.[13]], and two of the scaled energies $x(\tilde{t}_1)$, $\bar{x}(\tilde{t}_1)$, z(g) in units of the beam energy. The energies are related through $x + \bar{x} + z = 2$ and vary over the intervals $\mu \leq x, \bar{x} \leq 1$ and $0 \leq z \leq 1 - \mu^2$, where $\mu = 2m_{\tilde{t}_1}/\sqrt{s}$ denotes the squark mass in units of the beam energy. For the angles between the squark and gluon momenta we have

$$\cos \theta_{\tilde{t}_1 \tilde{t}_1} = \frac{2 - 2(x + \bar{x}) + x\bar{x} + \mu^2}{\sqrt{(x^2 - \mu^2)(\bar{x}^2 - \mu^2)}}$$
$$\cos \theta_{\tilde{t}_1 g} = \frac{2 - 2(x + z) + xz}{z\sqrt{x^2 - \mu^2}}$$

The spin-1 helicity analysis of the cross section results in the following well-known angular decomposition [14]

$$\frac{d\sigma}{dx\,d\bar{x}\,d\cos\theta\,d\chi/2\pi} = \frac{3}{8}(1+\cos^2\theta)\frac{d\sigma^U}{dx\,d\bar{x}} + \frac{3}{4}\sin^2\theta\frac{d\sigma^L}{dx\,d\bar{x}} - \frac{3}{2\sqrt{2}}\sin 2\theta\cos\chi\frac{d\sigma^I}{dx\,d\bar{x}} + \frac{3}{4}\sin^2\theta\cos 2\chi\frac{d\sigma^T}{dx\,d\bar{x}} \tag{4}$$

[U = transverse (no flip), L = longitudinal, I = trv*long, T = trv*trv (flip)]. If the polar and azimuthal angles are integrated out, the cross section is given by $\sigma = \sigma^U + \sigma^L$.

It is convenient to write the helicity cross sections as

$$\frac{\beta^3}{\sigma_B} \frac{d\sigma^j}{dx \, d\bar{x}} = \frac{\alpha_s}{4\pi} \frac{S^j + \mu^2 N^j}{(1 - x)(1 - \bar{x})} \tag{5}$$

The densities S^j and N^j are summarized in Table 1; p is the momentum of the \tilde{t}_1 squark, \bar{p} and k are the longitudinal momenta of \bar{t}_1 and g in the \tilde{t}_1 direction, and p_T is the modulus of the transverse \bar{t}_1 , g momentum with respect to this axis [all momenta in units of the beam energy]. Since I, T correspond to γ, Z helicity flips by 1 and 2 units, they are of order p_T and p_T^2 , respectively. Note that the threshold suppression is absent in the U, I, T components and attenuated in the leading longitudinal L term as expected from eq.(3).

Fragmentation. In the limit where the gluons are emitted from fast moving squarks with small angles, the gluon radiation

$$\tilde{t}_1 \to \tilde{t}_1 g$$

can be interpreted as a perturbative fragmentation process. From the form of the differential cross section $d\sigma/dz dp_T^2$ we find in this limit for the splitting functions, in analogy to the

	S^{j}	N^{j}
U	$\frac{32}{3}\left(1-x\right)\left(1-\bar{x}\right)$	$-\frac{4}{3}p_T^2\frac{1-x}{1-\bar{x}}$
L	0	$\frac{4}{3} \left[p_T^2 \frac{1-x}{1-\bar{x}} - \beta^2 \left(\frac{1-x}{1-\bar{x}} + \frac{1-\bar{x}}{1-x} + 2 \right) \right]$
I	$-rac{4\sqrt{2}}{3}p_Tp$	$\frac{2\sqrt{2}}{3}p_T\left(p-\bar{p}\frac{1-x}{1-\bar{x}}\right)$
T	0	$\frac{2}{3} p_T^2 \frac{1-x}{1-\bar{x}}$

Table 1: Coefficients of the helicity cross sections in eq.(5). The energy and momentum variables are defined in the text.

Weizsäcker-Williams [15] and Altarelli-Parisi splitting functions [16],

$$P[\tilde{t}_1 \to \tilde{t}_1; x] = \frac{\alpha_s}{2\pi} \frac{8}{3} \frac{x}{1 - x} \log \frac{Q^2}{m_{\tilde{t}_1}^2}$$

$$P[\tilde{t}_1 \to g; z] = \frac{\alpha_s}{2\pi} \frac{8}{3} \frac{1 - z}{z} \log \frac{Q^2}{m_{\tilde{t}_1}^2}$$
(6)

As usual, x and z are the fractions of energy transferred from the \tilde{t}_1 beam to the squark \tilde{t}_1 and the gluon g after fragmentation, respectively; Q is the evolution scale of the elementary process, normalized by the squark mass rather than the QCD Λ parameter [in contrast to the light quark/gluon sector]. As a consequence of angular-momentum conservation, the gluon cannot pick up the total momentum of the squark beam. [Similar zeros have been found for helicity-flip fragmentation functions in QED/ QCD [16, 17].]

By using the crossing rules $\{z \to 1, 1 \to x\}$ and $\{1 - x \leftrightarrow 1 - x\}$, familiar from the analogous splitting functions in QED [18], we derive for the elementary gluon splitting process into a squark-antisquark pair

$$g \to \tilde{t}_1 \bar{\tilde{t}_1}$$

the distribution

$$P[g \to \tilde{t}_1; x] = \frac{\alpha_s}{2\pi} \frac{1}{2} x (1 - x) \log \frac{Q^2}{m_{\tilde{t}_1}^2}$$
 (7)

after adjusting color and spin coefficients properly. This splitting function is symmetric under the $\tilde{t}_1 \leftrightarrow \tilde{t}_1$ exchange, i.e. $\{x \leftrightarrow 1-x\}$. The probability is maximal for the splitting into equal fractions x=1/2 of the momenta, in contrast to spinor QED/QCD where the splitting into a quark-antiquark pair is proportional to $x^2 + (1-x)^2$ and hence asymmetric configurations are preferred.

The above splitting functions provide the kernels for the shower expansions in perturbative QCD Monte Carlos for e^+e^- annihilation such as Pythia [19] and Herwig [20]. They serve

the same purpose in the hadron-hadron versions of these generators as well as Isajet [21]. Of course, the interpretation of the radiation processes as universal fragmentation processes becomes increasingly adequate with rising energy of the fragmenting squarks/gluons.

If the \tilde{t}_1 squark is lighter than the top quark, the lifetime will be long, $\tau \geq 10^{-20} {\rm sec}$, since the dominant decay channel $\tilde{t}_1 \to t + \tilde{\chi}_1^0$ is shut off $[\tilde{\chi}_1^0 = LSP]$. The decay widths corresponding to the 2-body decay $\tilde{t}_1 \to c + \tilde{\chi}_1^0$ and 3-body slepton decays involve the electroweak coupling twice and hence will be very small [2]. As a result, the lifetime is much longer than the typical non-perturbative fragmentation time of order 1 fm [i.e. $\mathcal{O}(10^{-23} {\rm sec})$] so that the squark has got enough time to form $(\tilde{t}_1 \bar{q})$ and $(\tilde{t}_1 qq)$ fermionic and bosonic hadrons. However, the energy transfer due to the non-perturbative fragmentation, evolving after the early perturbative fragmentation, is very small as a result of Galilei's law of inertia. Describing this last step in the hadronization process of a \tilde{t}_1 jet by the non-perturbative fragmentation function à la Peterson et al. [22] (which accounts very well for the heavy-quark analogue), we find

$$D(x)^{NP} \approx \frac{4\sqrt{\epsilon}}{\pi} \frac{1}{x \left[1 - 1/x - \epsilon/(1 - x)\right]^2}$$
(8)

with the parameter $\epsilon \sim 0.5\,\mathrm{GeV}^2/m_{\tilde{t}_1}^2$. Here, $x=E[(\tilde{t}_1\,\bar{q})]/E[\tilde{t}_1]$ is the energy fraction transferred from the \tilde{t}_1 parton to the $(\tilde{t}_1\,\bar{q})$ hadron etc. The resulting average non-perturbative energy loss

$$<1-x>^{NP} \sim \frac{2\sqrt{\epsilon}}{\pi} \left[\log\left(\frac{1}{\epsilon}\right) - 3 \right]$$

is numerically at the level of a few percent.

Monte Carlo programs for the hadronization of \tilde{t}_1 squarks link the early perturbative fragmentation with the subsequent non-perturbative hadronization. The relative weight of perturbative and non-perturbative fragmentation can be characterized by the average energy loss in the two consecutive steps. The overall retained average energy of the \tilde{t}_1 squarks factorizes into the two components,

$$\langle x \rangle = \langle x \rangle^{NP} \langle x \rangle^{PT} \tag{9}$$

Summing up the energy loss due to multiple gluon radiation at high energies, we find in analogy to heavy-quark fragmentation [23]

$$\langle x \rangle^{PT} = \left[\frac{\alpha_s(m_{\tilde{t}_1}^2)}{\alpha_s(E^2)} \right]^{-8/3b}$$

with $b = (11-2n_f/3)+(-2-n_f/3)$ being the LO QCD β function including the colored supersymmetric particle spectrum. At high energies, the perturbative multi-gluon radiation has a bigger impact than the final non-perturbative hadronization mechanism, e.g. $\langle x \rangle^{PT} \approx 0.93$ for a \tilde{t}_1 beam energy E = 1 TeV and $m_{\tilde{t}_1} = 200$ GeV as compared to $\langle x \rangle^{NP} \approx 0.98$. At low energies the two fragmentation effects are of comparable size.

After finalizing the manuscript, we received a copy of Ref.[10] in which the total cross sections for squark pair production in e^+e^- annihilation have been discussed including squark-gluon and quark-gluino loops, yet not the gluon-jet distributions analysed in the present note.

We thank our colleagues at the LEP2 Workshop who demanded the analysis presented here to refine the experimental stop search techniques.

References

- [1] J. Ellis and S. Rudaz, Phys. Lett. **B128** (1983) 248.
- [2] K. Hikasa and M. Kobayashi, Phys. Rev. **D36** (1987) 724.
- [3] K.A. Olive and S. Rudaz, Phys. Lett. **B340** (1990) 74.
- [4] J. Shirai et al. (Venus), Phys. Rev. Lett. **72** (1994) 3313.
- [5] R. Akers *et al.* (Opal), Phys. Lett. **B337** (1994) 207.
- [6] J.M.L. Swartz, SLAC-PUB-6710 (Nov. 1994).
- [7] J. Schwinger, Particles, Sources and Fields vol. II (Addison-Wesley, New York 1973).
- [8] M. Drees and K. Hikasa, Phys. Lett. **B252** (1990) 127.
- [9] W. Beenakker, R. Höpker, M. Spira and P.M. Zerwas, Report DESY 94-212.
- [10] A. Arhrib, M. Capdequi-Peyranere and A. Djouadi, Montreal Report UdeM-GPP-94-13.
- [11] A. Sommerfeld, Atombau und Spektrallinien vol. 2 (Vieweg, Braunschweig 1939).
- [12] I.I. Bigi, V.S. Fadin and V. Khoze, Nucl. Phys. **B377** (1992) 461.
- [13] E. Laermann, K.H. Streng and P.M. Zerwas, Z. Phys. C3 (1980) 289.
- [14] E. Laermann and P.M. Zerwas, Phys. Lett. **B89** (1980) 225.
- [15] C.F.v. Weizsäcker, Z. Phys. 88 (1934) 612; E.J. Williams, Phys. Rev. 45 (1934) 729.
- [16] G. Altarelli and G. Parisi, Nucl. Phys. **B126** (1977) 298.
- [17] B. Falk and L.M. Sehgal, Phys. Lett. **B325** (1994) 509.
- [18] M.-S. Chen and P.M. Zerwas, Phys. Rev. **D12** (1975) 187.
- [19] T. Sjöstrand, Comp. Phys. Commun. 82 (1994) 74.
- [20] G. Marchesini et al., Comp. Phys. Commun. 67 (1992) 465; B.R. Webber, Cavendish-HEP-94/17.
- [21] H. Baer, F. E. Paige, S. D. Protopopescu and X. Tata, Report on ISAJET 7.0/ ISASUSY 1.0, FSU-HEP 930329 and UH-511-764-93.
- [22] C. Peterson, D. Schlatter, I. Schmitt and P.M. Zerwas, Phys. Rev. **D27** (1983) 105.
- [23] I.I. Bigi, Yu.L. Dokshitser, V. Khoze, J.H. Kühn and P.M. Zerwas, Phys. Lett. B181 (1986) 157.

Figure 1: Generic diagrams for $\tilde{t}_1\bar{\tilde{t}}_1$ production in e^+e^- collisions. (a) Born level; (b) virtual QCD corrections; (c) gluon radiation.

Figure 2: Coefficient of the QCD correction to the total cross section; shown is $\beta f(\beta)$, cf. eq.(3), with $\beta = (1 - 4m_{\tilde{t}_1}^2/s)^{1/2}$.