

Multi-category Graph Reasoning for Multi-modal Brain Tumor Segmentation

Dongzhe Li, Baoyao Yang*, Weide Zhan and Xiaochen He

Guangdong University of Technology, Guangzhou, China ybaoyao@gdut.edu.cn

Background & Motivation

Four categories of sub-regions in brain tumor images: Background, Enhancing Tumor (ET), Edema (ED), and the Necrotic Tumor Core (NCR).

Limitations of exisiting studies

ignore the relationship between multiple categories in brain tumor segmentation, leading to irrational tumor area distribution in the predictive results.

Inspiration: Contours are strongly structurally correlated with multi-category subregions:

- Provide precise localization and differentiation between multi-category subregions:
 - I. Enhance the clarity of contours.
 - II. Make the **boundary information** of multiple category areas more accurate.

Our idea:

Integrating multi-category and contour information

- ✓ assist the localization of tumor regions
- ✓ alleviate the problem of edge blurring

Contribution

- Propose a Multi-category Region-guided Graph Reasoning Network that leverages multi-modal and multi-category information in brain tumor images and introduces contour information to assist segmentation.
- Develop a Transformer-based Multi-Category Interaction Module (TMIM) to capture the multi-category feature relationships among brain tumor subregions of NCT, ET, and ED.

Method

- Multi-task Feature Extraction: 1) The Multi-task Feature Extraction Network: Effectively integrate information from multi-modal medical images and reduces the computational cost. 2) CAG: Enhance the utilization of contour information ---- effective in reducing boundary errors and providing complementary information for subregion localization.
- Multi-category Region-guided Graph Reasoning: 1) Region-guided Reasoning: Capture semantic relationships between regions and contours ---- facilitate the identification of tumor locations and guiding contour learning. 2) TMIM: Identify and locate brain tumor subregions, addressing the challenge of contour overlap.

Results

Table 1. Result Comparison on BraTS 2019

Model	$Dice(\%) \uparrow$				$HD95(mm) \downarrow$			
	ET	TC	WT	Ave	ET	TC	\overline{WT}	Ave
TransBTS	80.86	81.19	89.35	83.80	5.642	6.048	4.332	5.460
Nestedformer	82.11	86.42	91.18	86.57	5.534	5.906	5.317	5.585
SF-Net	80.08	82.33	88.61	83.67	4.787	7.440	7.288	6.505
ACM-Net	80.63	87.15	88.08	85.28	4.564	7.774	3.862	5.400
Eoformer	82.94	86.83	90.39	86.72	4.053	5.843	5.822	5.239
Ours	83.23	89.10	90.44	87.59	5.110	7.523	3.775	5.469

Table2.	Result Comparison				on BraTS2020					
Model	Dice($Dice(\%)\uparrow$				$HD95(mm) \downarrow$				
	ET	TC	WT	Ave	ET	TC	WT	Ave		
TransBTS	80.89	83.25	90.10	84.08	5.873	6.875	4.876	5.824		
Nestedformer	82.85	86.48	91.20	86.84	5.721	6.115	4.598	5.528		
SF-Net	81.10	83.84	89.01	84.65	4.305	7.661	7.720	6.562		
ACM-Net	82.42	87.75	90.08	86.75	4.492	7.624	3.956	5.375		
Eoformer	83.54	87.12	90.87	87.17	5.911	6.041	3.852	5.268		
Ours	84.38	89.21	90.77	88.12	5.413	7.759	3.844	5.672		

Table3. Ablation Study

Model	Dice(%)						
	ET	TC	WT	Ave			
(1) Unet	79.10	81.00	87.93	82.67			
(2) Unet+CAG	80.73	83.23	89.62	84.52			
(3) Unet+GCN	80.93	85.09	88.12	84.71			
(4) Unet+CAG+GCN	81.69	88.12	90.11	86.64			
Proposed	83.23	89.10	90.44	87.59			

Visual Results on BraTS2019

