

Mark Scheme (Results)

Summer 2025

Pearson Edexcel International Advanced Level In Statistics (WST02) Paper 01

## **Edexcel and BTEC Qualifications**

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <a href="https://www.edexcel.com">www.edexcel.com</a> or <a href="https://www.edexcel.com">www.btec.co.uk</a>. Alternatively, you can get in touch with us using the details on our contact us page at <a href="https://www.edexcel.com/contactus">www.edexcel.com/contactus</a>.

### Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <a href="https://www.pearson.com/uk">www.pearson.com/uk</a>

Summer 2025

Question Paper Log number: P79509A
Publications Code WST02\_01\_2506\_MS
All the material in this publication is copyright
© Pearson Education Ltd 2025

# **EDEXCEL IAL MATHEMATICS General Marking Guidance**

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

#### **General Instructions for Marking**

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
  - M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
  - A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
  - **B** marks are unconditional accuracy marks (independent of M marks)
  - Marks should not be subdivided.

#### 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol  $\sqrt{\text{will}}$  be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- \* The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
  - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
  - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer

# Special notes for marking Statistics exams (for AAs only)

- Any correct method should gain credit. If you cannot see how to apply the mark scheme but believe the method to be correct then please send to review.
- For method marks, we generally allow or condone a slip or transcription error if these are seen in an expression. We do not, however, condone or allow these errors in accuracy marks.

| Question<br>Number |                                                                       | Scheme                                                                                                                                                                                                                                                       | Ma       | rks  |
|--------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|
| 1(a)               | [F(1) = 1]                                                            | 1 so] $k(6 \times 1^2 - 1^4) = 1$ leading to $k = \frac{1}{5}$ *                                                                                                                                                                                             | B1*      |      |
|                    |                                                                       |                                                                                                                                                                                                                                                              |          | (1)  |
| (b)                | [1 - F(0)]                                                            | $1.6) = 1 - \frac{1}{5} (6 \times 0.6^2 - 0.6^4)$                                                                                                                                                                                                            | M1       |      |
|                    | = 0.5939                                                              | 92 awrt 0.594                                                                                                                                                                                                                                                | A1       |      |
|                    |                                                                       |                                                                                                                                                                                                                                                              |          | (2)  |
| (c)(i)             | $\frac{1}{5}(6m^2-$                                                   | $-m^4$ ) = $\frac{1}{2}$                                                                                                                                                                                                                                     | M1       |      |
|                    | $2m^4-12$                                                             | $2m^2 + 5 = 0$ oe                                                                                                                                                                                                                                            | A1       |      |
| (ii)               | m = 0.67                                                              | 711 awrt 0.671                                                                                                                                                                                                                                               | A1       |      |
|                    |                                                                       |                                                                                                                                                                                                                                                              |          | (3)  |
| (d)                | $\left[\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{6}{5}\right)\right]$ | $\left(x^{2} - \frac{1}{5}x^{4}\right) = \left[\frac{12}{5}x - \frac{4}{5}x^{3}\right]$                                                                                                                                                                      | M1       |      |
|                    | $\int \frac{\mathrm{d}}{\mathrm{d}x} \left( \frac{12}{5} \right)$     | $\left(x - \frac{4}{5}x^3\right) = \left[\frac{12}{5} - \frac{12}{5}x^2 = 0\right]$                                                                                                                                                                          | M1       |      |
|                    | x=1                                                                   | , <u> </u>                                                                                                                                                                                                                                                   | A1       |      |
|                    |                                                                       |                                                                                                                                                                                                                                                              |          | (3)  |
| (e)                | Mean <                                                                | "Median" < "Mode"                                                                                                                                                                                                                                            | M1       | \ /  |
|                    | So negat                                                              | tive [skew]                                                                                                                                                                                                                                                  | A1ft     |      |
|                    |                                                                       |                                                                                                                                                                                                                                                              |          | (2)  |
|                    |                                                                       | Notes                                                                                                                                                                                                                                                        | Tota     | l 11 |
| (a)                | B1*                                                                   | for use of $F(1) = 1$ leading to the given answer (minimum required is $k(6-1) = 1$ )<br>Allow use of $F(1) - F(0) = 1$ e.g. $k(6-1) - k(0-0) = 1$                                                                                                           |          |      |
| (b)                | M1                                                                    | The answer is given so no incorrect working can be seen for using $1 - F(0.6)$ May be implied by $1 - \frac{1269}{3125}$ or $\frac{1856}{3125}$                                                                                                              |          |      |
|                    | A1                                                                    | awrt 0.594 Allow $\frac{1856}{3125}$                                                                                                                                                                                                                         |          |      |
| (c)(i)             | M1                                                                    | for setting $F(m) = 0.5$ Allow any letter (including $x$ )                                                                                                                                                                                                   |          |      |
| (*)(1)             | A1                                                                    | for a correct 3TQ oe <b>NB</b> the values of $a$ , $b$ and $c$ must be integers                                                                                                                                                                              |          |      |
| (ii)               | A1                                                                    | awrt 0.671 Allow $\sqrt{\frac{6-\sqrt{26}}{2}}$ (must reject other roots if seen)                                                                                                                                                                            |          |      |
|                    |                                                                       | <b>NB</b> It is possible to score M1A0A1                                                                                                                                                                                                                     |          |      |
| (d)                | M1                                                                    | for differentiating F(x) with at least one $x^n \to x^{n-1}$ May be left in terms of k eg. $k(1)$ Condone missing $k$                                                                                                                                        |          |      |
|                    | M1                                                                    | for differentiating twice with at least one $x^n \to x^{n-1}$ and setting = 0 oe May be left eg. $k(12-12x^2)=0$ Condone missing $k$                                                                                                                         | in terms | of k |
|                    | A1                                                                    | Cao (Must reject $x = -1$ if seen)                                                                                                                                                                                                                           |          |      |
| (e)                | M1                                                                    | a correct justification using the Mean and their Median and/or their Mode. This must for their values Allow use of figures e.g. $0.64 < 0.671 < 1$ Allow comparisons of and "mode" on its own.  Comparison with 0.5 is M0 unless 0.5 is their median or mode |          |      |
|                    | A1ft                                                                  | a correct conclusion based on their comparison (Do not allow a conclusion that is no supported by their comparison)                                                                                                                                          | ot fully |      |

| Question          |                         | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Marks                                                                                                                                                                                                                                             |
|-------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number            |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                   |
| 2(a)              | Poisson                 | with $\lambda = 10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B1                                                                                                                                                                                                                                                |
| (1.)              | <b>C</b> 4              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (1)                                                                                                                                                                                                                                               |
| (b)               | Custom                  | ers [enter the shop] singly/randomly/independently/at a constant rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | B1 (1)                                                                                                                                                                                                                                            |
| ( )               | II . 2 _                | "10" II . 2 - "10"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (1)                                                                                                                                                                                                                                               |
| (c)               | $\Pi_0 \cdot \lambda -$ | "10" $H_1: \lambda \neq$ "10"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B1ft (1)                                                                                                                                                                                                                                          |
|                   | Γ- /                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (1)                                                                                                                                                                                                                                               |
| (d)               | _                       | $[P(X_{*}, 2)] = \text{awrt } 0.0103$ $[P(X_{*}, 2)] = \text{awrt } 0.0293$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M1                                                                                                                                                                                                                                                |
|                   | P(X1                    | [P(X18) =] awrt 0.0270 $[P(X18) =]$ awrt 0.0143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M1                                                                                                                                                                                                                                                |
|                   | X,, 3 🔾                 | X18 oe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A1                                                                                                                                                                                                                                                |
|                   |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (3)                                                                                                                                                                                                                                               |
| (e)               | 0.0103 +                | -0.0143 = 0.0246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M1                                                                                                                                                                                                                                                |
|                   | So 2.469                | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A1ft                                                                                                                                                                                                                                              |
|                   |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (2)                                                                                                                                                                                                                                               |
| (f)               |                         | ot in the CR/Do not reject H <sub>0</sub> /Not significant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M1                                                                                                                                                                                                                                                |
|                   |                         | insufficient evidence to suggest that the <b>rate/number/amount</b> of customers the shop has <b>changed</b> /[is] <b>different</b> oe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A1ft                                                                                                                                                                                                                                              |
|                   | 8                       | The state of the s                                             | (2)                                                                                                                                                                                                                                               |
|                   |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \ <del>-</del> /                                                                                                                                                                                                                                  |
|                   |                         | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Total 10                                                                                                                                                                                                                                          |
| (a)               | B1                      | Notes for Poisson/Po and $\lambda = 10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                   |
| (a)<br>(b)        | B1<br>B1                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Total 10                                                                                                                                                                                                                                          |
| (b)               | B1                      | for Poisson/Po and $\lambda = 10$<br>for a correct assumption (must have context of customers/people) Ignore irrelevant of statements<br>both hypotheses correct. Must be correctly attached to $H_0$ and $H_1$ in terms of $\lambda$ or $\lambda$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Total 10 or incorrect                                                                                                                                                                                                                             |
|                   |                         | for Poisson/Po and $\lambda = 10$ for a correct assumption (must have context of customers/people) Ignore irrelevant of statements both hypotheses correct. Must be correctly attached to $H_0$ and $H_1$ in terms of $\lambda$ or $\lambda$ Allow $H_0: \lambda = 20$ $H_1: \lambda \neq 20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | or incorrect  If t part a                                                                                                                                                                                                                         |
| (b)               | B1                      | for Poisson/Po and $\lambda = 10$ for a correct assumption (must have context of customers/people) Ignore irrelevant of statements both hypotheses correct. Must be correctly attached to $H_0$ and $H_1$ in terms of $\lambda$ or $\lambda$ Allow $H_0: \lambda = 20$ $H_1: \lambda \neq 20$ for use of Po(10) to find the lower critical value. May be implied by awrt 0.0103 or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | or incorrect  If t part a                                                                                                                                                                                                                         |
| (b) (c)           | B1 B1ft M1              | for Poisson/Po and $\lambda=10$ for a correct assumption (must have context of customers/people) Ignore irrelevant of statements both hypotheses correct. Must be correctly attached to $H_0$ and $H_1$ in terms of $\lambda$ or $\lambda$ Allow $H_0: \lambda=20$ $H_1: \lambda\neq 20$ for use of Po(10) to find the lower critical value. May be implied by awrt 0.0103 or or a correct lower critical region (These must be seen in part (d))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Total 10  or incorrect  If t part a  awrt 0.0293                                                                                                                                                                                                  |
| (b) (c)           | B1                      | for Poisson/Po and $\lambda=10$ for a correct assumption (must have context of customers/people) Ignore irrelevant of statements both hypotheses correct. Must be correctly attached to $H_0$ and $H_1$ in terms of $\lambda$ or $\lambda$ Allow $H_0: \lambda=20$ $H_1: \lambda\neq 20$ for use of Po(10) to find the lower critical value. May be implied by awrt 0.0103 or or a correct lower critical region (These must be seen in part (d)) for use of Po(10) to find the upper critical value. May be implied by awrt 0.027 or an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | or incorrect  If the part a  awrt 0.0293  wrt 0.0143 or                                                                                                                                                                                           |
| (b) (c)           | B1 B1ft M1              | for Poisson/Po and $\lambda=10$ for a correct assumption (must have context of customers/people) Ignore irrelevant of statements both hypotheses correct. Must be correctly attached to $H_0$ and $H_1$ in terms of $\lambda$ or $\lambda$ Allow $H_0: \lambda=20$ $H_1: \lambda\neq 20$ for use of Po(10) to find the lower critical value. May be implied by awrt 0.0103 or or a correct lower critical region (These must be seen in part (d))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | or incorrect  If t part a  awrt 0.0293  wrt 0.0143 or part (d))                                                                                                                                                                                   |
| (b)<br>(c)        | B1 B1ft M1              | for Poisson/Po and $\lambda=10$ for a correct assumption (must have context of customers/people) Ignore irrelevant of statements both hypotheses correct. Must be correctly attached to $H_0$ and $H_1$ in terms of $\lambda$ or $\lambda$ Allow $H_0: \lambda=20$ $H_1: \lambda\neq 20$ for use of Po(10) to find the lower critical value. May be implied by awrt 0.0103 or or a correct lower critical region (These must be seen in part (d)) for use of Po(10) to find the upper critical value. May be implied by awrt 0.027 or awrt 0.973 or awrt 0.9857 or a correct upper critical region (These must be seen in for a correct critical region oe e.g. $X < 4$ and $X > 17$ Allow $0 \le x \le 3$ and $18 \le x \le 2$ or $\{0, 1, 2, 3\}$ $\{18, 19,\}$ Condone use of () or [] for $\{\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | or incorrect  If the part a  awrt 0.0293  wrt 0.0143 or part (d))                                                                                                                                                                                 |
| (b) (c)           | B1 B1ft M1 M1           | for Poisson/Po and $\lambda = 10$ for a correct assumption (must have context of customers/people) Ignore irrelevant of statements both hypotheses correct. Must be correctly attached to $H_0$ and $H_1$ in terms of $\lambda$ or $\lambda$ Allow $H_0: \lambda = 20$ $H_1: \lambda \neq 20$ for use of Po(10) to find the lower critical value. May be implied by awrt 0.0103 or or a correct lower critical region (These must be seen in part (d)) for use of Po(10) to find the upper critical value. May be implied by awrt 0.027 or a awrt 0.973 or awrt 0.9857 or a correct upper critical region (These must be seen in for a correct critical region oe e.g. $X < 4$ and $X > 17$ Allow $0 \le x \le 3$ and $18 \le x \le 2$ or $\{0, 1, 2, 3\}$ $\{18, 19,\}$ Condone use of () or [] for $\{\}$ Do not allow if written as probability statements Allow any letter. Accept $CR \le 3$ $CR$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Total 10  or incorrect  u ft part a  awrt 0.0293  wrt 0.0143 or part (d)) $0$ $R \ge 18$                                                                                                                                                          |
| (b) (c)           | B1 B1ft M1 M1           | for Poisson/Po and $\lambda = 10$ for a correct assumption (must have context of customers/people) Ignore irrelevant of statements both hypotheses correct. Must be correctly attached to $H_0$ and $H_1$ in terms of $\lambda$ or $\lambda$ Allow $H_0: \lambda = 20$ $H_1: \lambda \neq 20$ for use of Po(10) to find the lower critical value. May be implied by awrt 0.0103 or or a correct lower critical region (These must be seen in part (d)) for use of Po(10) to find the upper critical value. May be implied by awrt 0.027 or awrt 0.973 or awrt 0.9857 or a correct upper critical region (These must be seen in for a correct critical region oe e.g. $X < 4$ and $X > 17$ Allow $0 \le x \le 3$ and $18 \le x \le 2$ or $\{0, 1, 2, 3\}$ $\{18, 19,\}$ Condone use of () or [] for $\{\}$ Do not allow if written as probability statements Allow any letter. Accept $CR \le 3$ C for adding the probabilities for the 2 tails of their $CR$ together May be implied by a form of the probabilities for the 2 tails of their $CR$ together May be implied by a form of the probabilities for the 2 tails of their $CR$ together May be implied by a form of the probabilities for the 2 tails of their $CR$ together May be implied by a form of the probabilities for the 2 tails of their $CR$ together $CR$ is a correct assumption of the probabilities for the 2 tails of their $CR$ together $CR$ is a correct assumption of the probabilities for the 2 tails of their $CR$ together $CR$ is a correct assumption of the probabilities for the 2 tails of their $CR$ together $CR$ is a correct assumption of the probabilities for the 2 tails of their $CR$ together $CR$ is a correct assumption of the probabilities for the 2 tails of their $CR$ together $CR$ is a correct assumption of the probabilities $CR$ together $CR$ is a correct assumption of the probabilities $CR$ together $CR$ is a correct assumption of the probabilities $CR$ together $CR$ is a correct assumption of the probabilities $CR$ together $CR$ is a correct assumption of the probabilities $CR$ together $CR$ is a correct assumption of the probabilities   | Total 10  or incorrect  u ft part a  awrt 0.0293  wrt 0.0143 or part (d)) $0$ $R \ge 18$                                                                                                                                                          |
| (b)<br>(c)<br>(d) | B1 B1ft M1 M1 A1        | for Poisson/Po and $\lambda = 10$ for a correct assumption (must have context of customers/people) Ignore irrelevant of statements  both hypotheses correct. Must be correctly attached to $H_0$ and $H_1$ in terms of $\lambda$ or $\lambda$ Allow $H_0: \lambda = 20$ $H_1: \lambda \neq 20$ for use of Po(10) to find the lower critical value. May be implied by awrt 0.0103 or or a correct lower critical region (These must be seen in part (d))  for use of Po(10) to find the upper critical value. May be implied by awrt 0.027 or at awrt 0.973 or awrt 0.9857 or a correct upper critical region (These must be seen in part (d))  for a correct critical region oe e.g. $X < 4$ and $X > 17$ Allow $0 \le x \le 3$ and $18 \le x \le 2$ or $\{0, 1, 2, 3\}$ $\{18, 19,\}$ Condone use of () or [] for $\{\}$ Do not allow if written as probability statements Allow any letter. Accept $CR \le 3$ of an adding the probabilities for the 2 tails of their $CR$ together May be implied by a conserved conserved for their $CR$ together May be implied by a conserved conserved for their $CR$ together May be implied by a conserved conserved for their $CR$ together May be implied by a conserved conserved for their $CR$ together May be implied by a conserved conserved for their $CR$ together May be implied by a conserved for their $CR$ together May be implied by a conserved for their $CR$ together May be implied by a conserved for their $CR$ together May be implied by a conserved for their $CR$ together May be implied by a conserved for their $CR$ together May be implied by a conserved for their $CR$ together May be implied by a conserved for their $CR$ together May be implied by a conserved for their $CR$ together May be implied by a conserved for the $CR$ together $CR$ togethe   | Total 10  or incorrect  u ft part a  awrt 0.0293  wrt 0.0143 or part (d)) $0$ $R \ge 18$ correct                                                                                                                                                  |
| (b)<br>(c)<br>(d) | B1 B1ft M1 M1 A1 A1ft   | for Poisson/Po and $\lambda = 10$ for a correct assumption (must have context of customers/people) Ignore irrelevant of statements  both hypotheses correct. Must be correctly attached to $H_0$ and $H_1$ in terms of $\lambda$ or $\lambda$ . Allow $H_0: \lambda = 20$ $H_1: \lambda \neq 20$ for use of Po(10) to find the lower critical value. May be implied by awrt 0.0103 or or a correct lower critical region (These must be seen in part (d))  for use of Po(10) to find the upper critical value. May be implied by awrt 0.027 or a awrt 0.973 or awrt 0.9857 or a correct upper critical region (These must be seen in for a correct critical region oe e.g. $X < 4$ and $X > 17$ Allow $0 \le x \le 3$ and $18 \le x \le 2$ or $\{0, 1, 2, 3\}$ $\{18, 19, \ldots\}$ Condone use of () or [] for $\{\}$ Do not allow if written as probability statements Allow any letter. Accept $CR \le 3$ Condone use of their CR together May be implied by a conswer awrt 0.0246 or ft their CR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Total 10  or incorrect  or fit part a  awrt 0.0293  wrt 0.0143 or part (d))  or R $\geq 18$ correct  2 tailed CR)                                                                                                                                 |
| (b)<br>(c)<br>(d) | B1 B1ft M1 M1 A1        | for Poisson/Po and $\lambda=10$ for a correct assumption (must have context of customers/people) Ignore irrelevant of statements both hypotheses correct. Must be correctly attached to $H_0$ and $H_1$ in terms of $\lambda$ or $\lambda$ Allow $H_0: \lambda=20$ $H_1: \lambda\neq 20$ for use of Po(10) to find the lower critical value. May be implied by awrt 0.0103 or or a correct lower critical region (These must be seen in part (d)) for use of Po(10) to find the upper critical value. May be implied by awrt 0.027 or a awrt 0.973 or awrt 0.9857 or a correct upper critical region (These must be seen in for a correct critical region oe e.g. $X < 4$ and $X > 17$ Allow $0 \le x \le 3$ and $18 \le x \le 2$ or $\{0, 1, 2, 3\}$ $\{18, 19,\}$ Condone use of () or [] for $\{\}$ Do not allow if written as probability statements Allow any letter. Accept $CR \le 3$ of adding the probabilities for the 2 tails of their $CR$ together May be implied by a consequence of their $CR$ dependent on having found a 2 tailed $CR$ in part (d) for a correct statement (ft their $CR$ dependent on having found a 2 tailed $CR$ in part (d) for a correct statement (ft their $CR$ dependent on having found a 2 tailed $CR$ in part (d) for a correct statement (ft their $CR$ dependent on having found a 2 tailed $CR$ in part (d) for a correct statement (ft their $CR$ dependent on having found a 2 tailed $CR$ in part (d) for a correct statement (ft their $CR$ dependent on having found a 2 tailed $CR$ in part (d) for a correct statement (ft their $CR$ dependent on having found a 2 tailed $CR$ in part (d) for a correct statement (ft their $CR$ dependent on having found a 2 tailed $CR$ in part (d) for a correct statement (ft their $CR$ dependent on having found a 2 tailed $CR$ in part (d) for a correct statement (ft their $CR$ dependent on having found a 2 tailed $CR$ in part (d) for a correct statement (ft their $CR$ dependent on having found a 2 tailed $CR$ in part (d) for a correct statement (ft their $CR$ dependent $CR$ dependent $CR$ dependent $CR$ dependent $CR$ dependent $CR$ dependent $CR$ dep | Total 10  or incorrect  of t part a  awrt 0.0293  wrt 0.0143 or part (d))  or part (d)) |
| (b)<br>(c)<br>(d) | B1 B1ft M1 M1 A1 A1ft   | for Poisson/Po and $\lambda = 10$ for a correct assumption (must have context of customers/people) Ignore irrelevant of statements both hypotheses correct. Must be correctly attached to $H_0$ and $H_1$ in terms of $\lambda$ or $\lambda$ Allow $H_0: \lambda = 20$ $H_1: \lambda \neq 20$ for use of Po(10) to find the lower critical value. May be implied by awrt 0.0103 or or a correct lower critical region (These must be seen in part (d)) for use of Po(10) to find the upper critical value. May be implied by awrt 0.027 or a awrt 0.973 or awrt 0.9857 or a correct upper critical region (These must be seen in for a correct critical region oe e.g. $X < 4$ and $X > 17$ Allow $0 \le x \le 3$ and $18 \le x \le 2$ or $\{0, 1, 2, 3\}$ $\{18, 19,\}$ Condone use of () or [] for $\{\}$ Do not allow if written as probability statements Allow any letter. Accept $CR \le 3$ C for adding the probabilities for the 2 tails of their $CR$ together May be implied by a canswer awrt 0.0246 or ft their $CR$ dependent on having found a 2 tailed $CR$ in part (d) for a correct statement (ft their $CR$ no context needed but do not allow contradicting non contextual comments. May $CR$ a correct contextual statement on its own. We ignore any comparison of numbers/pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Total 10  or incorrect  If the part a  awrt 0.0293  wrt 0.0143 or part (d))  Or incorrect  ER $\geq 18$ correct  2 tailed CR) be implied by obabilities                                                                                           |
| (b)<br>(c)<br>(d) | B1 B1ft M1 M1 A1 A1ft   | for Poisson/Po and $\lambda=10$ for a correct assumption (must have context of customers/people) Ignore irrelevant of statements both hypotheses correct. Must be correctly attached to $H_0$ and $H_1$ in terms of $\lambda$ or $\lambda$ Allow $H_0: \lambda=20$ $H_1: \lambda\neq 20$ for use of Po(10) to find the lower critical value. May be implied by awrt 0.0103 or or a correct lower critical region (These must be seen in part (d)) for use of Po(10) to find the upper critical value. May be implied by awrt 0.027 or a awrt 0.973 or awrt 0.9857 or a correct upper critical region (These must be seen in for a correct critical region oe e.g. $X < 4$ and $X > 17$ Allow $0 \le x \le 3$ and $18 \le x \le 2$ or $\{0, 1, 2, 3\}$ $\{18, 19,\}$ Condone use of () or [] for $\{\}$ Do not allow if written as probability statements Allow any letter. Accept $CR \le 3$ of adding the probabilities for the 2 tails of their $CR$ together May be implied by a consequence of their $CR$ dependent on having found a 2 tailed $CR$ in part (d) for a correct statement (ft their $CR$ dependent on having found a 2 tailed $CR$ in part (d) for a correct statement (ft their $CR$ dependent on having found a 2 tailed $CR$ in part (d) for a correct statement (ft their $CR$ dependent on having found a 2 tailed $CR$ in part (d) for a correct statement (ft their $CR$ dependent on having found a 2 tailed $CR$ in part (d) for a correct statement (ft their $CR$ dependent on having found a 2 tailed $CR$ in part (d) for a correct statement (ft their $CR$ dependent on having found a 2 tailed $CR$ in part (d) for a correct statement (ft their $CR$ dependent on having found a 2 tailed $CR$ in part (d) for a correct statement (ft their $CR$ dependent on having found a 2 tailed $CR$ in part (d) for a correct statement (ft their $CR$ dependent on having found a 2 tailed $CR$ in part (d) for a correct statement (ft their $CR$ dependent on having found a 2 tailed $CR$ in part (d) for a correct statement (ft their $CR$ dependent $CR$ dependent $CR$ dependent $CR$ dependent $CR$ dependent $CR$ dependent $CR$ dep | Total 10  or incorrect  u ft part a  awrt 0.0293  wrt 0.0143 or part (d))  CR ≥ 18  correct  2 tailed CR) be implied by obabilities be.                                                                                                           |

| Question<br>Number |                    | Scheme                                                                                                                                                                                                                                                           | Marks           |
|--------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 3(a)               | np = 3 a           | and $np(1-p) = 2.55$                                                                                                                                                                                                                                             | M1              |
|                    | p = 0.15           | oe $n = 20$                                                                                                                                                                                                                                                      | A1 A1           |
|                    |                    |                                                                                                                                                                                                                                                                  | (3)             |
| (b)                | [B(40, 0.          | 2) so] $E(X) = 8$                                                                                                                                                                                                                                                | B1              |
|                    | $\int P(X > 8)$    | $(8) = 1 - P(X_{1}, 8)$                                                                                                                                                                                                                                          | M1              |
|                    | = 0.4069           | Calc: 0.40687 awrt 0.407                                                                                                                                                                                                                                         | A1              |
|                    |                    |                                                                                                                                                                                                                                                                  | (3)             |
| (c)(i)             | $[Po(n \times p)]$ | p(x) = ]Po(8)                                                                                                                                                                                                                                                    | M1              |
|                    | P(X1)              | $2) = ]1 - P(X_{,11})$                                                                                                                                                                                                                                           | M1              |
|                    | = 0.1119           | Calc: 0.11192 awrt 0.112                                                                                                                                                                                                                                         | A1              |
| (ii)               | because i          | n is large and $p$ is small                                                                                                                                                                                                                                      | B1              |
| ` '                |                    | <u> </u>                                                                                                                                                                                                                                                         | (4)             |
|                    |                    | Notes                                                                                                                                                                                                                                                            | Total 10        |
| (a)                | M1                 | for both $np = 3$ and $np(1-p) = 2.55$ Allow $q$ to imply $1-p$                                                                                                                                                                                                  |                 |
|                    | A1                 | either $p = 0.15$ oe or $n = 20$                                                                                                                                                                                                                                 |                 |
|                    | A1                 | both $p = 0.15$ oe and $n = 20$                                                                                                                                                                                                                                  |                 |
| (b)                | B1                 | for E(X) = 8 Condone $\mu/np = 8$ May be implied by $40 \times 0.2 = 8$ or P(X > 8) or $1 - P(X = 8)$                                                                                                                                                            | $X \leq 8$ ) or |
|                    | M1                 | for writing or using $1-P(X,, 8)$                                                                                                                                                                                                                                |                 |
|                    |                    | for writing or using 1 1 (11,1, 0)                                                                                                                                                                                                                               |                 |
|                    | A1                 | awrt 0.407 <b>NB</b> cao scores 3 out of 3                                                                                                                                                                                                                       |                 |
| (c)(i)             |                    |                                                                                                                                                                                                                                                                  |                 |
| (c)(i)             | A1                 | awrt 0.407 <b>NB</b> cao scores 3 out of 3                                                                                                                                                                                                                       |                 |
| (c)(i)             | A1<br>M1<br>M1     | awrt 0.407 <b>NB</b> cao scores 3 out of 3 for writing or using Po(8) May be implied by awrt 0.112 or 0.888 for writing or using $1-P(X, 11)$ awrt 0.112 ( <b>NB</b> exact binomial gives awrt 0.1004 and would score M0M1A0)                                    |                 |
| (c)(i)             | A1<br>M1           | awrt 0.407 <b>NB</b> cao scores 3 out of 3 for writing or using Po(8) May be implied by awrt 0.112 or 0.888 for writing or using $1-P(X_{,,}11)$ awrt 0.112 ( <b>NB</b> exact binomial gives awrt 0.1004 and would score M0M1A0) <b>NB</b> cao scores 3 out of 3 |                 |
| (c)(i)             | A1<br>M1<br>M1     | awrt 0.407 <b>NB</b> cao scores 3 out of 3 for writing or using Po(8) May be implied by awrt 0.112 or 0.888 for writing or using $1-P(X, 11)$ awrt 0.112 ( <b>NB</b> exact binomial gives awrt 0.1004 and would score M0M1A0)                                    | ot allow        |

| Question<br>Number |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                          | Scheme                                                                          |                           |                                                 | Marks                               |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------|-------------------------------------------------|-------------------------------------|
| 4(a)               | 3, 6, 9, 12                                                                                                                                                                                                                                       | 2                                                                                                                                                                                                                        |                                                                                 |                           |                                                 | B1                                  |
|                    | [P(black)                                                                                                                                                                                                                                         | $=$ ] $\frac{2}{7}$ and [P(white                                                                                                                                                                                         | $(2)=]\frac{5}{7}$                                                              |                           |                                                 | B1                                  |
|                    |                                                                                                                                                                                                                                                   | $= \left  \left( \frac{5}{7} \right)^3 \right  \text{ or } \left[ P(X) \right]$                                                                                                                                          | $=12)=\left]\left(\frac{2}{7}\right)^3$                                         |                           |                                                 | M1                                  |
|                    | P(X=6)                                                                                                                                                                                                                                            | $= 3 \times \left(\frac{5}{7}\right)^2 \times \frac{2}{7}$                                                                                                                                                               |                                                                                 |                           |                                                 | M1                                  |
|                    | P(X=9)                                                                                                                                                                                                                                            | $) = ]3 \times \frac{5}{7} \times \left(\frac{2}{7}\right)^2$                                                                                                                                                            |                                                                                 |                           |                                                 | M1                                  |
|                    | X                                                                                                                                                                                                                                                 | 3                                                                                                                                                                                                                        | 6                                                                               | 9                         | 12                                              |                                     |
|                    | $\mathbf{P}(X=x$                                                                                                                                                                                                                                  | $\frac{125}{343}$ (0.3644)                                                                                                                                                                                               | 150<br>343<br>(0.4373)                                                          | $\frac{60}{343}$ (0.1749) | $\frac{8}{343}$ (0.0233)                        | A1                                  |
|                    | _                                                                                                                                                                                                                                                 | , , ,                                                                                                                                                                                                                    | ,                                                                               |                           | ,                                               | (6)                                 |
| (b)                | $\left( \frac{283}{343} \right)^n < 0.05$ oe                                                                                                                                                                                                      |                                                                                                                                                                                                                          |                                                                                 |                           |                                                 |                                     |
|                    | $n > 15.57$ or $n > \frac{\log(0.05)}{\log\left(\frac{283}{343}\right)}$ or $n > \log_{\left(\frac{283}{343}\right)}(0.05)$                                                                                                                       |                                                                                                                                                                                                                          |                                                                                 |                           |                                                 | dM1                                 |
|                    | n = 16                                                                                                                                                                                                                                            |                                                                                                                                                                                                                          |                                                                                 |                           |                                                 | A1                                  |
|                    |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                          | NT 4                                                                            |                           |                                                 | (3)                                 |
| (a)                | B1                                                                                                                                                                                                                                                | for all 4 possible ou                                                                                                                                                                                                    | Not tcomes and no ext                                                           |                           |                                                 | Total 9                             |
|                    | for writing or using $\frac{5}{7}$ and $\frac{2}{7}$ . May be implied by a correct probability for $P(X = 6)$ or $P(X = 3)$ and $P(X = 12)$ Allow awrt 0.714 and awrt 0.286                                                                       |                                                                                                                                                                                                                          |                                                                                 |                           |                                                 | or $P(X = 6)$ or $P(X = 9)$         |
|                    | M1                                                                                                                                                                                                                                                |                                                                                                                                                                                                                          |                                                                                 |                           |                                                 | rt 0.023                            |
|                    |                                                                                                                                                                                                                                                   | M1 for $p^3$ where $0  May be implied by \frac{125}{343} or awrt 0.364 or \frac{8}{343} or awrt 0.023M1 for 3 \times p^2 \times (1-p) where 0  May be implied by \frac{150}{343} or awrt 0.437 or \frac{60}{343} or awr$ |                                                                                 |                           |                                                 |                                     |
|                    | M1                                                                                                                                                                                                                                                |                                                                                                                                                                                                                          | where $0  M$                                                                    |                           |                                                 | and $\frac{60}{343}$ or awrt 0.175  |
|                    | for all 4 probabilities correct and associated with the correct values. Need not be in a table but probabilities must be attached to the correct total.  If decimals are used then they must be awrt 0.364, awrt 0.437, awrt 0.175 and awrt 0.023 |                                                                                                                                                                                                                          |                                                                                 |                           |                                                 |                                     |
| (b)                | M1 for $\left(1 - \frac{60}{343}\right)^n < 0.05$ oe Condone =/ $\leq$ instead of <                                                                                                                                                               |                                                                                                                                                                                                                          |                                                                                 |                           |                                                 |                                     |
|                    | dM1                                                                                                                                                                                                                                               | Dependent on the property for $n > $ awrt 15.6 or the two trials betwee Allow = instead of $>$                                                                                                                           | $n > \frac{\log(0.05)}{\log\left(\frac{283}{343}\right)}$<br>en $n = 15$ and 16 |                           | $a > \log_{\left(\frac{283}{343}\right)}(0.05)$ | ) ft their $\frac{283}{343}$ or for |
|                    | A1                                                                                                                                                                                                                                                | cao (do not allow ar                                                                                                                                                                                                     |                                                                                 |                           |                                                 |                                     |

| Question<br>Number |                                                                                                                        |                                                                                                                                     |                                                                                         |                                                                                                   |       |  |  |
|--------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------|--|--|
| TAUTHOCI           | Scheme                                                                                                                 |                                                                                                                                     |                                                                                         |                                                                                                   | Marks |  |  |
| 5(0)               | $\frac{2}{21} \int_0^k x  \mathrm{d}x$ $\frac{2}{15} \int_k^6 (6 - \frac{1}{2})^4  \mathrm{d}x$                        |                                                                                                                                     | $\frac{1}{2}(k-0) \times \frac{2}{21}k$ and $\frac{1}{2}(6-k) \times \frac{2}{15}(6-k)$ | For 0,, $x$ ,, $k$<br>$F(x) = \frac{1}{21}x^2$                                                    | M1    |  |  |
|                    | $\frac{2}{21} \left[ \frac{x^2}{2} \right]_0^k$                                                                        |                                                                                                                                     | $\frac{1}{2}(k-0) \times \frac{2}{21}k + \frac{1}{2}(6-k) \times \frac{2}{15}(6-k) = 1$ | For $k < x$ ,, 6 $F(x) = \frac{2}{15} \left( 6x - \frac{x^2}{2} \right) - \frac{7}{5} \text{ oe}$ | M1    |  |  |
| -                  | $\frac{1}{21}k^2 + \frac{2}{15}\left(18 - \left(\frac{1}{2}\right)^2\right)$                                           | $\left(6k - \frac{k^2}{2}\right) = 1$                                                                                               | $\frac{1}{21}k^{2} + $ oe $\frac{1}{15}(36 - 12k + k^{2})[=1]$                          | $\frac{1}{21}x^2 = \frac{2}{15}\left(6x - \frac{x^2}{2}\right) - \frac{7}{5}$                     | dM1   |  |  |
|                    |                                                                                                                        |                                                                                                                                     | $4k^2 - 28k + 49 = 0 \text{ oe}$                                                        |                                                                                                   | dM1   |  |  |
|                    |                                                                                                                        | e.g.                                                                                                                                | $(2k-7)^2 = 0 \text{ leading to } k = 3$                                                | 3.5 *                                                                                             | A1*   |  |  |
|                    |                                                                                                                        |                                                                                                                                     |                                                                                         |                                                                                                   | (5)   |  |  |
| (b) I              | $E(X) = \frac{7}{2}$                                                                                                   | $\frac{2}{11} \int_0^{3.5} x^2  \mathrm{d}x + \frac{2}{15} \int_{3.5}^6 ($                                                          | $6x-x^2$ ) dx                                                                           |                                                                                                   | M1    |  |  |
| - /                | $\frac{2}{21} \left[ \frac{x^3}{3} \right]_0^{3.5}$                                                                    | $\frac{1}{1} \left[ \frac{x^3}{3} \right]_0^{3.5} + \frac{2}{15} \left[ 3x^2 - \frac{x^3}{3} \right]_{3.5}^{6}$ dM1                 |                                                                                         |                                                                                                   |       |  |  |
| -                  | $\frac{2}{21} \left( \frac{343}{24} \right)$                                                                           | $\left(\frac{343}{24}\right) + \frac{2}{15}\left(36 - \left(\frac{147}{4} - \frac{343}{24}\right)\right) = \frac{19}{6}$ dM1A1      |                                                                                         |                                                                                                   |       |  |  |
|                    |                                                                                                                        |                                                                                                                                     |                                                                                         |                                                                                                   |       |  |  |
| (c) \[ \]          | $Var(X) = \frac{277}{24} - \left(\frac{19}{6}\right)^{2} = \frac{109}{72}$                                             |                                                                                                                                     |                                                                                         |                                                                                                   | M1A1  |  |  |
|                    |                                                                                                                        |                                                                                                                                     |                                                                                         |                                                                                                   |       |  |  |
|                    | NotesTotal 11for writing/using the integral of $f(x)$ and setting = 1 ignore limits                                    |                                                                                                                                     |                                                                                         |                                                                                                   |       |  |  |
| (a)                | M1                                                                                                                     |                                                                                                                                     |                                                                                         |                                                                                                   |       |  |  |
|                    | M1                                                                                                                     | for an attempt at integration on either part with $x^n \to x^{n+1}$ ignore limits or adding the area of the 2 triangles and set = 1 |                                                                                         |                                                                                                   |       |  |  |
|                    |                                                                                                                        |                                                                                                                                     | on for $F(x)$ between $k \le x \le 6$ for substitution of $k$ , 0 and 6 int             | o the integral of $f(x)$                                                                          |       |  |  |
|                    | dM1                                                                                                                    |                                                                                                                                     |                                                                                         |                                                                                                   |       |  |  |
|                    | dM1 dependent on previous M1 for a correct 3TQ equal to 0 e.g. $\frac{4}{35}k^2 - \frac{12}{15}k + \frac{7}{5} = 0$ oe |                                                                                                                                     |                                                                                         |                                                                                                   |       |  |  |
|                    | 35 15 5  A1* for solving the 3TQ leading to the given answer (Working must be shown)                                   |                                                                                                                                     |                                                                                         |                                                                                                   |       |  |  |

|     | NB :                                                                                                                                                                               | Solution based on the assumption that $\frac{2}{21}k = \frac{2}{15}(6-k)$ scores M0M0dM0dM0A0                                                                                                                                  |  |  |  |  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|     | e.g. $\frac{2}{21}k = \frac{2}{15}(6-k)$ or $\frac{1}{2} \times 6 \times \frac{2}{21}k = 1$ or $\frac{1}{2}(k-0) \times \frac{2}{21}k + \frac{1}{2}(6-k) \times \frac{2}{21}k = 1$ |                                                                                                                                                                                                                                |  |  |  |  |
|     |                                                                                                                                                                                    | Use of verification can score M1M1dM0dM0A0                                                                                                                                                                                     |  |  |  |  |
|     | e.g. $\frac{2}{21}$                                                                                                                                                                | $\left[\frac{x^2}{2}\right]_0^{3.5} + \frac{2}{15}\left[6x - \frac{x^2}{2}\right]_{3.5}^{6} \left[=1\right] \text{ or } \frac{1}{2}(3.5 - 0) \times \frac{2}{21}(3.5) + \frac{1}{2}(6 - 3.5) \times \frac{2}{15}(6 - 3.5) = 1$ |  |  |  |  |
| (b) | M1                                                                                                                                                                                 | for writing or using the integral of $xf(x)$ ignore limits but must be both parts                                                                                                                                              |  |  |  |  |
|     | dM1                                                                                                                                                                                | dependent on 1 <sup>st</sup> M1 for an attempt at integration on both parts with $x^n \to x^{n+1}$ ignore limits                                                                                                               |  |  |  |  |
|     | 13.54                                                                                                                                                                              | dependent on previous M1 for substitution of 3.5, 0 and 6                                                                                                                                                                      |  |  |  |  |
|     | dM1                                                                                                                                                                                | $(\frac{49}{36} \text{ and } \frac{65}{36} \text{ is the minimum required to imply this mark})$                                                                                                                                |  |  |  |  |
|     | A1                                                                                                                                                                                 | allow awrt 3.17                                                                                                                                                                                                                |  |  |  |  |
| (c) | M1                                                                                                                                                                                 | for use of $E(X^2) - E(X)^2$ ft their $E(X)$                                                                                                                                                                                   |  |  |  |  |
|     | A1                                                                                                                                                                                 | allow awrt 1.51                                                                                                                                                                                                                |  |  |  |  |

| Question<br>Number |                                    | Scheme                                                                                                                                                                                                                                                                            | Marks       |  |  |  |
|--------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|
| 6(a)               | $\frac{5-2}{b-a} = \frac{1}{1}$ oe | $\frac{3}{16}$ oe or $1 - \left(\frac{2-a}{b-a} + \frac{b-5}{b-a}\right) = \frac{3}{16}$ $\frac{5-a}{b-a} = \frac{3}{16}$ oe                                                                                                                                                      | M1          |  |  |  |
|                    |                                    | $\frac{a+b}{2} = 6 \text{ oe}$                                                                                                                                                                                                                                                    | M1          |  |  |  |
|                    | a = -2 a                           | and $b = 14$ $a = 4.4$ and $b = 7.6$                                                                                                                                                                                                                                              | A1 (3)      |  |  |  |
| (b)                |                                    | $[cE(X)+1=3 \Longrightarrow]6c+1=3$                                                                                                                                                                                                                                               | M1          |  |  |  |
|                    |                                    | $c = \frac{1}{3}$                                                                                                                                                                                                                                                                 | A1          |  |  |  |
|                    |                                    |                                                                                                                                                                                                                                                                                   | (2)         |  |  |  |
| (c)                |                                    | $= \frac{(b-a)^2}{12} = \frac{64}{3} \text{ oe} \qquad \left[ \text{Var} X = \frac{(b-a)^2}{12} = \frac{64}{75} \text{ oe} \right]$                                                                                                                                               | B1ft        |  |  |  |
|                    |                                    |                                                                                                                                                                                                                                                                                   | (1)         |  |  |  |
| (d)                | $E(X^2) =$                         | $= "\left(\frac{64}{3}\right)" + 6^2 = \frac{172}{3} \text{ or} $ $E(X^2) = "\left(\frac{64}{75}\right)" + 6^2 = \frac{2764}{75}$                                                                                                                                                 | M1A1        |  |  |  |
|                    |                                    |                                                                                                                                                                                                                                                                                   | (2)         |  |  |  |
| (e)                | $P\bigg(\frac{3}{2}X -$            | $-b > a$ $\Rightarrow P(X > 8) = \frac{3}{8}$ $P(X > 8) = 0$                                                                                                                                                                                                                      | M1A1        |  |  |  |
|                    |                                    |                                                                                                                                                                                                                                                                                   | (2)         |  |  |  |
|                    |                                    | Notes Notes                                                                                                                                                                                                                                                                       | Total 10    |  |  |  |
| (a)                | M1                                 | for using P(2 < X < 5) = $\frac{3}{16}$ or P(a < X < 5) = $\frac{3}{16}$ to form a correct equation i<br>May be implied by $b - a = 16$                                                                                                                                           |             |  |  |  |
|                    | M1                                 | for using $E(X) = 6$ to form a correct equation in $a$ and $b$ May be implied by $a + b = 12$                                                                                                                                                                                     |             |  |  |  |
| (b)                | M1                                 | for $a = -2$ and $b = 14$ or $a = 4.4$ and $b = 7.6$<br>for use of $cE(X) + 1 = 3$ or fully correct integration seen e.g. $c\int_{-2^{-}}^{-14^{-}} \frac{1}{16^{-}} x  dx + 1 [= 3]$<br>May be implied by $c = \frac{1}{3}$                                                      |             |  |  |  |
|                    | A1                                 | Cao                                                                                                                                                                                                                                                                               |             |  |  |  |
| (c)                | B1ft                               | ft their a and b Allow decimal answers correct to 3sf e.g 21.3                                                                                                                                                                                                                    |             |  |  |  |
| (d)                | M1                                 | for use of $Var(X) + E(X)^2$ ft their $Var(X)$ or a fully correct integration seen e.g. $\int_{-2^n}^{14^n} \frac{1}{16^n} x^2 dx \left[ = \frac{172}{3} \right]$ or $\int_{-4.4^n}^{17.6^n} \frac{5}{16} x^2 dx \left[ = \frac{2764}{75} \right]$ ft their <i>a</i> and <i>b</i> |             |  |  |  |
|                    | A1                                 | for $\frac{172}{3}$ oe or awrt 57.3 or $\frac{2764}{75}$ or awrt 36.9 oe <b>NB</b> Answer must match the                                                                                                                                                                          | method used |  |  |  |
| (-)                | M1                                 | for P(X > 8) or P $\left(X > \frac{2("a" + "b")}{3}\right)$ ft their a and b May be implied by a correct answer                                                                                                                                                                   |             |  |  |  |
| (e)                |                                    | 3 ) It then it and it may be implied by a                                                                                                                                                                                                                                         |             |  |  |  |

| Question<br>Number | Scheme                                                                                                                                        |                                                                                                                                                                                     |          |      |  |  |  |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|--|--|--|
| 7(a)               | <i>X</i> ~ B(4                                                                                                                                | (0,0.3)                                                                                                                                                                             | B1       |      |  |  |  |
| , (44)             |                                                                                                                                               |                                                                                                                                                                                     |          | (1)  |  |  |  |
| (b)                | Constant                                                                                                                                      | probability of buying <b>insurance</b> or Customers buy <b>insurance</b> independently                                                                                              | B1       | (-)  |  |  |  |
| (0)                |                                                                                                                                               |                                                                                                                                                                                     | D1       | (1)  |  |  |  |
|                    | [n/rr =                                                                                                                                       | N DATE ON 10 0000 [DATE OF DATE OF TO 10 0000                                                                                                                                       | M1       | (1)  |  |  |  |
| (c)                | $[P(X_{,,} 7) = P(X < 8) = ]0.0553 [P(X_{,,} 6) = P(X < 7) = ]0.0238$                                                                         |                                                                                                                                                                                     |          |      |  |  |  |
|                    | So $r = 7$                                                                                                                                    |                                                                                                                                                                                     | A1       |      |  |  |  |
| / <b>1</b> \       | D (200 0                                                                                                                                      | 0) 1 11 17(60 40)                                                                                                                                                                   | 3.54     | (2)  |  |  |  |
| (d)                |                                                                                                                                               | .3) implies N(60, 42)                                                                                                                                                               | M1       |      |  |  |  |
|                    | $\frac{t-0.5-}{t-0.5}$                                                                                                                        | $\frac{"60"}{2"} = -1.62 \text{ or } \frac{"60"-t+0.5}{\sqrt{"42"}} = 1.62$                                                                                                         | M1M      | [1   |  |  |  |
|                    | ,                                                                                                                                             | <u> </u>                                                                                                                                                                            | B1       |      |  |  |  |
|                    | t = 50.0                                                                                                                                      | 01  so ] t = 50                                                                                                                                                                     | A1       | (5)  |  |  |  |
|                    | 7.7                                                                                                                                           | 0.2 H . 0.2                                                                                                                                                                         | 7.1      | (5)  |  |  |  |
| (e)                |                                                                                                                                               | $0.3 	ext{ } H_1: p > 0.3$                                                                                                                                                          | B1       |      |  |  |  |
|                    | P(X1)                                                                                                                                         | $1) = ]1 - P(X_{,,} 10)$                                                                                                                                                            | M1       |      |  |  |  |
|                    | = 0.0978                                                                                                                                      | or CR ≥ 11                                                                                                                                                                          | A1       |      |  |  |  |
|                    | Reject H <sub>0</sub> /Significant/In CR                                                                                                      |                                                                                                                                                                                     |          |      |  |  |  |
|                    | Evidence to suggest that <b>percentage/proportion/probability/number/amount</b> of customers who buy <b>insurance</b> has <b>increased</b> oe |                                                                                                                                                                                     |          |      |  |  |  |
|                    |                                                                                                                                               |                                                                                                                                                                                     |          | (5)  |  |  |  |
|                    |                                                                                                                                               | Notes                                                                                                                                                                               | Tota     | l 14 |  |  |  |
| (a)                | <b>B</b> 1                                                                                                                                    | Allow Binomial $n = 40 p = 0.3$                                                                                                                                                     |          |      |  |  |  |
| (b)                | B1                                                                                                                                            | for a suitable assumption in context. Must include 'insurance' If multiple reasons given any irrelevant or incorrect reasons provided, they are non-contradictory                   | ven igno | re   |  |  |  |
| (c)                | M1                                                                                                                                            | for either probability. May be implied by $r = 7$                                                                                                                                   |          |      |  |  |  |
|                    | A1                                                                                                                                            | Cao                                                                                                                                                                                 |          |      |  |  |  |
| (d)                | for writing or using N(60, 42) May be seen in a standardisation. If N(60, $\sqrt{42}$ ) written                                               |                                                                                                                                                                                     |          |      |  |  |  |
| . ,                | and √42 used in a standardisation then award M1                                                                                               |                                                                                                                                                                                     |          |      |  |  |  |
|                    | M1<br>M1                                                                                                                                      | for standardising using $t$ or $t - 0.5$ or $t + 0.5$ with their mean and their standard deviation for a fully correct standardisation with their mean and their standard deviation | ation    |      |  |  |  |
|                    |                                                                                                                                               | for $\pm$ 1.62 or better (calc: 1.620150314) seen or used.                                                                                                                          |          |      |  |  |  |
|                    | <b>B</b> 1                                                                                                                                    | Must be compatible with their standardisation                                                                                                                                       |          |      |  |  |  |
|                    | A1                                                                                                                                            | Cao Do not allow $t = 50$ from incorrect working                                                                                                                                    |          |      |  |  |  |
| (e)                | B1                                                                                                                                            | for both hypotheses in terms of $p$ or $\pi$                                                                                                                                        |          |      |  |  |  |
|                    | M1                                                                                                                                            | for writing or using $1 - P(X_1, 10)$ May be implied by a correct CR                                                                                                                |          |      |  |  |  |
|                    | A1                                                                                                                                            | for 0.0978 or correct CR                                                                                                                                                            |          |      |  |  |  |
|                    | M1                                                                                                                                            |                                                                                                                                                                                     |          |      |  |  |  |
|                    |                                                                                                                                               | on its own.  a correct contextual statement with words in bold (Allow equivalent statements) ft the                                                                                 | neir     |      |  |  |  |
|                    | A1ft                                                                                                                                          | probability/CR provided a binomial distribution is used                                                                                                                             | ion      |      |  |  |  |
|                    |                                                                                                                                               | If a two tailed test is used, then it is possible to score B0M1A1M1A1                                                                                                               |          |      |  |  |  |
|                    |                                                                                                                                               | $H_0: p = 0.3$ $H_1: p \neq 0.3$ B0                                                                                                                                                 |          |      |  |  |  |
|                    | SC                                                                                                                                            | [P(X11) =]1-P(X,, 10)  or  [P(X12) =]1-P(X,, 11)  M1                                                                                                                                |          |      |  |  |  |
| ı                  |                                                                                                                                               | $= 0.0978$ or $CR \ge 12$ A1                                                                                                                                                        |          |      |  |  |  |
|                    |                                                                                                                                               | Do not reject H <sub>0</sub> /Not significant/Not in CR M1                                                                                                                          |          |      |  |  |  |
|                    |                                                                                                                                               | Proportion who buy insurance has not increased oe A1                                                                                                                                |          |      |  |  |  |