MATEMÁTICA DISCRETA II

Correcção do Exame da Segunda Chamada - Época Normal

CURSO: Engenharia de Sistemas e Informática

Duração: 2h

1. Considere a definição indutiva do conjunto das fórmulas do Cálculo Proposicional e seja $X \subseteq \mathcal{F}^{CP}$ o conjunto das fórmulas com o seguinte esquema de árvore de formação:

$$\frac{\sigma_{1} \in \mathcal{F}^{CP}}{\sigma_{1} \in \mathcal{F}^{CP}} r_{1} \qquad \sigma_{3} \in \mathcal{F}^{CP}} r_{2} \qquad \sigma_{3} \in \mathcal{F}^{CP}}{\sigma_{2} \in \mathcal{F}^{CP}} r_{3} \qquad r_{4} < \sigma_{5} \in \mathcal{F}^{CP}} r_{5} \qquad \sigma_{6} < \sigma_{6} <$$

(a) Indique, justificando, uma fórmula de X.

Os elementos de X são as fórmulas do Cálculo Proposicional com o esquema de árvore de formação dado. A fórmula $p_1 \to (\neg p_2 \land \bot)$ admite a árvore de formação

$$\frac{p_{2} \in \mathcal{F}^{CP}}{p_{1}} p_{2} \xrightarrow{p_{2} \in \mathcal{F}^{CP}} \neg \frac{1}{\bot \in \mathcal{F}^{CP}} \bot$$

$$\frac{p_{1} \in \mathcal{F}^{CP}}{p_{1} \to (\neg p_{2} \land \bot) \in \mathcal{F}^{CP}} \to \cdots$$

Portanto, a fórmula $p_1 \to (\neg p_2 \land \bot)$ é um elemento de X.

Nota: como as regras r_1 , r_3 e r_5 são regras base, $\sigma_1, \sigma_3, \sigma_5 \in \mathcal{V^{CP}} \cup \{\bot\}$. Tem-se ainda que, $r_4, r_6 \in \{\rightarrow, \leftarrow, \lor, \land\}$, dado que correspondem a conectivos binários, e que $r_2 = \neg$, uma vez que \neg é o único conectivo unário.

(b) Qual o número mínimo de subfórmulas de uma fórmula $\sigma \in X$? Justifique.

Se σ é um elemento de X, σ é uma fórmula do Cálculo Proposicional com a forma

$$x\square_1(\neg y\square_2 z), \text{ com } x,y,z\in\mathcal{V^{CP}}\cup\{\bot\} \text{ e } \square_1,\square_2\in\{\rightarrow,\leftrightarrow,\vee,\wedge\} \ .$$

As subformulas de σ são: x, y, z, $\neg y$, $\neg y \square_2 z$ e $x \square_1 (\neg y \square_2 z)$.

Então, os elementos de X, para os quais x = y = z, têm o número mínimo de subfórmulas.

Portanto, o número mínimo de subfórmulas é 4.

(c) Sendo $\sigma \in X$ e admitindo que \bot não é uma subfórmula de σ , que r_4 corresponde à conjunção e que r_6 corresponde à disjunção, diga, justificando, se é possível concluir que σ é uma forma normal disjuntiva.

Se σ é um elemento de X tal que \bot não é uma subfórmula de σ , r_4 corresponde à conjunção e que r_6 corresponde à disjunção, então σ é da forma

$$x \vee (\neg y \wedge z)$$
 , com $x,y,z \in \mathcal{V^{CP}}$.

Dado que, uma forma normal disjuntiva é uma fórmula da forma

$$(l_{11} \wedge ... \wedge l_{1n_1}) \vee ... \vee (l_{k1} \wedge ... \wedge l_{kn_k})$$

onde $k, n_1, ..., n_k$ são naturais e os l_{ij} literais (variáveis proposicionais ou negações de variáveis proposicionais), podemos concluir que σ é uma forma normal disjuntiva, em que k=2, $n_1=1$, $n_2=2$, $l_{11}=x$, $l_{21}=\neg y$ e $l_{22}=z$.

(d) Indique, justificando, o número de elementos de X que são formas normais disjuntivas e cujo conjunto de variáveis proposicionais é $\{p_1\}$.

Tem-se que os conectivos \bot , \to e \leftrightarrow não podem ocorrer em FND's. Por outro lado, os elementos de X cujo conjunto das variáveis proposicionais é $\{p_1\}$ e onde não ocorrem os conectivos \bot , \to e \leftrightarrow são:

$$p_1 \vee (\neg p_1 \wedge p_1), \ p_1 \vee (\neg p_1 \vee p_1), \ p_1 \wedge (\neg p_1 \wedge p_1), \ p_1 \wedge (\neg p_1 \vee p_1).$$

Como a fórmula $p_1 \wedge (\neg p_1 \vee p_1)$ é a única fórmula que não é FND, tem-se que o número de elementos de X, que são FND's e cujo conjunto das variáveis é $\{p_1\}$, é 3.

2. Considere as seguintes fórmulas proposicionais:

$$\varphi_0 = (\neg p_1 \land p_2) \to p_0$$

$$\varphi_1 = p_1 \leftrightarrow (\neg p_1 \lor p_2)$$

$$\varphi_2 = p_0 \lor \neg p_2$$

(a) Indique, se possível, uma valoração v que satisfaça o conjunto $\{\varphi_0, \varphi_1, \varphi_2\}$. Justifique.

Seja v uma valoração tal que $v(p_0)=v(p_1)=v(p_2)=1$, por exemplo, a valoração que atribui o valor lógico 1 a todas as variáveis proposicionais. É fácil verificar que $v(\varphi_0)=v(\varphi_1)=v(\varphi_2)=1$, logo, v satisfaz o conjunto de fórmulas $\{\varphi_0,\varphi_1,\varphi_2\}$.

(b) Sendo v uma valoração, diga, justificando, se $v(p_1) = 1$ é uma condição necessária para $v(\varphi_1) = 1$.

A afirmação é verdadeira. Supondo que $v(\varphi_1)=1$, vejamos que $v(p_1)=1$. Se tivéssemos $v(p_1)=0$ então $v(\neg p_1\vee p_2)=1$ independentemente do valor de $v(p_2)$ e, assim, $v(p_1)\neq v(\neg p_1\vee p_2)$, pelo que $v(p_1\leftrightarrow (\neg p_1\vee p_2))=0$. Portanto, $v(p_1)=1$ é condição necessária para $v(\varphi_1)=1$.

(c) Construa uma derivação em DNP de \perp a partir de $\{\varphi_1, \neg p_1\}$

$$\frac{\neg p_1}{\neg p_1 \lor p_2} \lor_1 I \quad p_1 \leftrightarrow (\neg p_1 \lor p_2) \\ \hline p_1 \qquad \qquad \bot \qquad \qquad \neg p_1 \\ \bot \qquad \qquad \bot$$

(d) Indique se existe algum conjunto de fórmulas Γ que seja consistente e tal que $\varphi_1 \in \Gamma$ e $\Gamma \models \neg p_1$. Justifique.

Tendo em vista uma contradição, suponhamos que existe um conjunto de fórmulas Γ que é consistente e tal que $\varphi_1 \in \Gamma$ e $\Gamma \models \neg p_1$. Como Γ é consistente, existe uma valoração v_0 que satisfaz Γ . Em particular, como $\varphi_1 \in \Gamma$, temos que $v_0(\varphi_1) = 1$. Por outro lado, como $\Gamma \models \neg p_1$, então $v_0(\neg p_1) = 1$. Mas, como visto na alínea (b), quando φ_1 tem valor lógico 1 então, necessariamente, p_1 tem valor lógico 1. Chegamos, assim, a uma contradição. Portanto, não existe nenhum conjunto nas condições apresentadas.

- 3. Sejam $\varphi, \psi \in \mathcal{F}^{CP}$ tais que $\varphi \vee \psi$ é uma tautologia. Mostre que, dada $\theta \in \mathcal{F}^{CP}$:
 - (a) se $\Gamma, \varphi \vdash \theta$ e $\Gamma, \psi \vdash \theta$ então $\Gamma \vdash \theta$;

Suponhamos que $\Gamma, \varphi \vdash \theta$ e $\Gamma, \psi \vdash \theta$. Assim, existe uma derivação D_1 de θ a partir de $\Gamma \cup \{\varphi\}$ e existe uma derivação D_2 de θ a partir de $\Gamma \cup \{\psi\}$. Dado que $\varphi \lor \psi$ é uma tautologia, pelo Teorema da Completude, $\varphi \lor \psi$ é um teorema e, portanto, existe uma derivação D cuja conclusão é $\varphi \lor \psi$ e cujas hipóteses estão todas canceladas. Assim, a construção

é uma derivação de θ a partir de Γ , donde, como pretendido, $\Gamma \vdash \theta$.

(b) se $\Gamma \vdash \theta$ então $\Gamma, \varphi \vdash \theta$ e $\Gamma, \psi \vdash \theta$.

Admitamos que $\Gamma \vdash \theta$. Assim, existe uma derivação D de θ a partir de Γ . Deste modo, a conclusão de D é θ e as hipóteses não canceladas de D são elementos de Γ . Por maioria de razão, as hipóteses não canceladas de D são elementos de $\Gamma \cup \{\varphi\}$ e de $\Gamma \cup \{\psi\}$. Portanto, D é também uma derivação de θ a partir de $\Gamma \cup \{\varphi\}$ e uma derivação de θ a partir de $\Gamma \cup \{\psi\}$, pelo que $\Gamma, \varphi \vdash \theta$ e $\Gamma, \psi \vdash \theta$.

Nota: Resoluções alternativas destas duas alíneas podem ser obtidas por aplicação dos teoremas da Correcção e da Completude, substituindo derivabilidade por consequência semântica.

- 4. Seja $L = (\{c, f\}, \{=\}, N)$ a linguagem onde N(c) = 0, N(f) = 1 e N(=) = 2.
 - (a) Dê exemplo de variáveis x e y distintas e de L-termos t_0 , t_1 e t_2 de tal modo que $(t_0[t_1/x])[t_2/y] \neq (t_0[t_2/y])[t_1/x]$. Justifique.

Sejam, por exemplo, $x=x_0$, $y=x_1$, $t_0=f(x_0)$, $t_1=x_1$ e $t_2=f(x_0)$. Então, por definição de substituição em L-termos,

$$(t_0[t_1/x])[t_2/y]=(f(x_0)[x_1/x_0])[f(x_0)/x_1]=f(x_1)[f(x_0)/x_1]=f(f(x_0)),\\ (t_0[t_2/y])[t_1/x]=(f(x_0)[f(x_0)/x_1)[x_1/x_0]=f(x_0)[x_1/x_0]=f(x_1),\\ \text{e, como \'e\' o\'bvio, }f(f(x_0))\neq f(x_1).$$

(b) Sejam x e y variáveis distintas e t_1 e t_2 L-termos tais que $x \notin var(t_2)$ e $y \notin var(t_1)$. Prove que, para qualquer L-termo t_0 , $(t_0[t_1/x])[t_2/y] = (t_0[t_2/y])[t_1/x]$.

Sejam x e y variáveis distintas e t_1 e t_2 L-termos tais que $x \notin var(t_2)$ e $y \notin var(t_1)$.

Sejam $t_0 \in \mathcal{T}_L$ e $P(t_0)$ a propriedade $(t_0[t_1/x])[t_2/y] = (t_0[t_2/y])[t_1/x]$.

A prova de que $P(t_0)$ é válida para todo $t_0 \in \mathcal{T}_L$ é feita recorrendo ao Teorema de Indução Estrutural para o conjunto \mathcal{T}_L .

i) P(c)

Por definição de substituição $(t_0[t_1/x])[t_2/y]=c=(t_0[t_2/y])[t_1/x]$. Logo P(c).

ii) $P(x_i)$, para todo $i \in \mathbb{N}_0$

Caso $x_i = x$:

$$(t_0[t_1/x])[t_2/y] = (x_i[t_1/x_i])[t_2/y] = t_1[t_2/y] = t_1 \\ \text{(note-se que } y \not\in var(t_1), \ \log o \ t_1[t_2/y] = t_1); \\ (t_0[t_2/y])[t_1/x] = (x_i[t_2/y])[t_1/x_i] = x_i[t_1/x_i] = t_1 \\ \text{(note-se que } y \neq x, \ \log o \ x_i[t_2/y] = x_i); \\$$

Caso $x_i = y$:

$$\begin{array}{c} (t_0[t_1/x])[t_2/y] = (x_i[t_1/x])[t_2/x_i] = x_i[t_2/x_i] = t_2 \\ \text{(note-se que } y \neq x \text{, logo } x_i[t_1/x] = x_i); \\ (t_0[t_2/y])[t_1/x] = (x_i[t_2/x_i])[t_1/x] = t_2[t_1/x] = t_2 \\ \text{(note-se que } x \not\in var(t_2) \text{, logo } t_2[t_1/x] = t_2); \end{array}$$

Caso $x_i \neq x$ e $x_i \neq y$:

$$(t_0[t_1/x])[t_2/y] = (x_i[t_1/x])[t_2/y] = x_i[t_2/y] = x_i;$$

 $(t_0[t_2/y])[t_1/x] = (x_i[t_2/y])[t_1/x] = x_i[t_1/x] = x_i;$

Em qualquer dos casos verifica-se $P(x_i)$.

iii) Para todo $t \in \mathcal{T}_L$, $P(t) \Rightarrow P(f(t))$

Seja $t \in \mathcal{T}_L$. Como Hipótese de Indução suponha-se P(t).

Pretendemos provar P(f(t)). Então da Hipótese de Indução e por definição de substituição temos que:

$$\begin{array}{rcl} (f(t)[t_1/x])[t_2/y] & = & f(t[t_1/x])[t_2/y] \\ & = & f((t[t_1/x])[t_2/y]) \\ & = & f((t[t_2/y])[t_1/x]) \quad \text{por H.I.} \\ & = & f(t[t_2/y])[t_1/x] \\ & = & f(t)[t_2/y][t_1/x] \end{array}$$

Logo, para todo $t \in \mathcal{T}_L$, $P(t) \Rightarrow P(f(t))$.

Então, de i), ii) e iii), concluímos, pelo Teorema de Indução Estrutural para \mathcal{T}_L , que para todo $t_0 \in \mathcal{T}_L$, $P(t_0)$.

(c) Dê exemplo de uma L-fórmula ψ_0 que seja uma instância de tautologia. Justifique.

A fórmula $p_0 \vee \neg p_0$ é uma tautologia do Cálculo Proposicional. Então a L-fórmula

$$=(x_0,x_1)\vee(\neg=(x_0,x_1))$$

é uma instância de tautologia: resulta de $p_0 \vee \neg p_0$ substituindo p_0 pela L-fórmula $= (x_0, x_1)$.

(d) Indique, justificando, uma L-estrutura E_1 que valide a L-fórmula

$$\psi_1 = \exists x_0 \exists x_1 \neg (x_0 = x_1).$$

Uma L-estrutura $E_1=(D,-)$ valida ψ_1 se para toda a atribuição $a:\mathcal{V}\to D$, $E_1\models\psi_1[a]$. Por sua vez, $E_1\models\psi_1[a]$ sse existe $d_0\in D$ existe $d_1\in D$, $\Big(\psi_1\Big[a\Big(\begin{array}{c}x_0\\d_0\end{array}\Big)\Big]\Big)\Big[a\Big(\begin{array}{c}x_1\\d_1\end{array}\Big)\Big]_{E_1}=1$

sse existe
$$d_0 \in D$$
 existe $d_1 \in D, (d_0, d_1) \not\in \equiv$

Então a L-estrutura $E_1 = (\mathbb{N}_0, -)$ onde:

- \overline{c} é o natural zero;
- $\overline{f}: \mathbb{N}_0 \to \mathbb{N}_0$ é a função identidade em \mathbb{N}_0 ;
- $\bullet \equiv$ é a relação de igualdade em \mathbb{N}_0 ,

valida a L-fórmula ψ_1 , uma vez que, por exemplo, existem $1,2\in\mathbb{N}_0$ tais que $1\neq 2$.

(e) A L-estrutura E_1 apontada na alínea (d) valida também a L-fórmula ψ_0 indicada na alínea (c)? Justifique.

A fórmula indicada na alínea (d) é uma instância de tautologia e toda a instância de tautologia é uma fórmula universalmente válida, i.e., é válida em qualquer L-estrutura. Então, em particular, a L-estrutura E_1 valida a fórmula indicada em (d).

Cotação:

4-a) 1.25; **4-b**) 1.5; **4-c**) 1.25; **4-d**) 1.5; **4-e**) 1.25.