Computergrafik

Übungsblatt 7

Aufgabe 1 Invertierung der Perspektivischen Projektion Aus der Vorlesung wissen wir, dass

$$P = M_O \cdot M_B$$

$$\text{mit } \boldsymbol{M}_{O} = \boldsymbol{S}_{\frac{2}{r-l't-b}, -\frac{2}{f-n}} \cdot \boldsymbol{T}_{-\frac{1}{2}(r+l), -\frac{1}{2}(t+b), \frac{1}{2}(f+n)} \text{ und } \boldsymbol{M}_{P} = \begin{bmatrix} -n & 0 & 0 & 0 \\ 0 & -n & 0 & 0 \\ 0 & 0 & n+f & -nf \\ 0 & 0 & -1 & 0 \end{bmatrix}.$$

Wie lautet die inverse Matrix P^{-1} ?

Hinweis: Sie müssen die Inversen nicht kompliziert mittels der allgemeinen Formel zur Invertierung von 4x4 Matrizen verwenden. Nutzen Sie aus, dass

- die Inversen der Skalierung von $S_{\frac{2}{r-l't-b},-\frac{2}{f-n}}$ und der Translation $T_{-\frac{1}{2}(r+l),-\frac{1}{2}(t+b),\frac{1}{2}(f+n)}$ relative leicht bestimmt werden können,
- P^{-1} mittels Falk-Schema und der Tatsache, dass $P^{-1} \cdot P = Id$ ausgeknobelt werden kann
- allgemein für Matrizen gilt: $(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$.

Aufgabe 2 Verkehrte Linie

Die Projektion von dem View-Space-Koordinatensystem in das Eye-Space-Koordinatensystem lautet

$$\begin{bmatrix} e_x \\ e_y \\ e_z \\ 1 \end{bmatrix} = H(\mathbf{M}_P \cdot \vec{v}) = H \begin{pmatrix} \begin{bmatrix} -n & 0 & 0 & 0 \\ 0 & -n & 0 & 0 \\ 0 & 0 & n+f & -nf \\ 0 & 0 & -1 & 0 \end{bmatrix} \cdot \begin{bmatrix} v_x \\ v_y \\ v_z \\ 1 \end{bmatrix} \right).$$

- a) Wie lautet die Matrix M_P mit den folgenden Parameter: n=-2, f=-7?
- b) Transformieren Sie die Punkte $\vec{a} = \left[0, \frac{3}{2}, -3, 1\right]^T$, $\vec{b} = [0, 5, -5, 1]^T$, $\vec{c} = [0, -3, 3, 1]^T$ vom View-Space-Koordinatensystem das Eye-Space-Koordinatensystem.
- c) Wo liegen die Linien (\vec{a}, \vec{b}) und (\vec{a}, \vec{c}) vor der Projektion im View-Space-Koordinatensystem? Fertigen Sie eine Skizze an! Hinweise: Es reicht eine 2D Skizze anzufertigen. Dabei wir v_z auf die horizontale Achse, v_y auf die vertikale Achse angetragen wird (wie in der Vorlesung).
- d) Wo liegen die Linien (\vec{a}, \vec{b}) und (\vec{a}, \vec{c}) nach der Projektion auf der Near-Plane? Hinweis: Nicht die Normalisierungstransformation mit ausführen.
- e) Was stimmt mit der Projektion der Linie (\vec{a}, \vec{c}) nicht? Wo sollte die Projektion eigentlich auf der Near-Plane liegen?