Esercizi

Nel seguito, dati

- ullet lo stato P di un automa deterministico A
- la stringa $\beta = X_1 X_2 \dots X_n$

si indica con $P[X_1X_2...X_n]$ lo stato di A che si raggiunge da P tramite il cammino $X_1X_2...X_n$.

Esercizio 1

Sia $\mathcal{L} = \{ww \mid w \in \mathcal{L}((a \mid b)^*)\}$. Se \mathcal{L} è un linguaggio regolare rispondere "SI" e dire quanti stati ha il minimo DFA per il riconoscimento di \mathcal{L} e quanti di questi stati sono finali. Se invece \mathcal{L} non è regolare, allora rispondere "NO" e fornire una stringa z da utilizzare con successo nella dimostrazione per contraddizione rispetto al Pumping Lemma dei linguaggi regolari.

Esercizio 2

Se la seguente affermazione è vera rispondere "VERO", altrimenti rispondere "FALSO": "Se i linguaggi \mathcal{L}_1 e \mathcal{L}_2 sono entrambi regolari allora $\mathcal{L}_1 \cup \mathcal{L}_2$ è regolare."

Esercizio 3

Sia $r = b^* \mid b^*a(\epsilon \mid a \mid b)^*$ e sia \mathcal{D} il DFA minimo per il riconoscimento di $\mathcal{L}(r)$. Dire quanti stati ha \mathcal{D} e quanti di questi stati sono finali.

Esercizio 4

Sia \mathcal{N}_1 lo NFA con stato iniziale A, stato finale E e con la seguente funzione di transizione

	ϵ	a	b
\overline{A}	$\{B,E\}$	Ø	Ø
B	$\{C\}$	Ø	$\{E\}$
\overline{C}	Ø	$\{D\}$	Ø
\overline{D}	$\{E\}$	Ø	<i>{B}</i>
\overline{E}	Ø	$\{E\}$	$\{A\}$

Chiamiamo \mathcal{D} il DFA ottenuto da \mathcal{N}_1 per subset construction e Q lo stato iniziale di \mathcal{D} . Dire a quale sottoinsieme degli stati di \mathcal{N}_1 corrisponde $Q[\![ab]\!]$.

Esercizio 5

Sia \mathcal{D}_1 il DFA con stato iniziale A, stato finale D e con la seguente funzione di transizione

	a	$\mid b \mid$
\overline{A}	B	
B	D	C
C	D	
\overline{D}		B

Chiamiamo \mathcal{D}_m il DFA ottenuto per minimizzazione di \mathcal{D}_1 e P lo stato iniziale di \mathcal{D}_m . Dire a quale sottoinsieme degli stati di \mathcal{D}_1 corrisponde P[abab].