

Modelo general de los métodos de Clasificación

Definición de Clasificación

- Dada una base de datos $D = \{t_1, t_2, ..., t_n\}$ de tuplas o registros (individuos) y un conjunto de clases $C = \{C_1, C_2, ..., C_m\}$, el **problema de la clasificación** es encontrar una función $f: D \to C$ tal que cada t_i es asignada una clase C_j .
- f: D → C podría ser una Red Neuronal, un Árbol de Decisión, un modelo basado en Análisis Discriminante, o una Red Beyesiana.

Ejemplo: Créditos en un Banco

Tabla de Aprendizaje

Variable Discriminante

OL	DEMARRR.DI	MExditoViviendaPeq					
	Id	MontoCredito	IngresoNeto	CoeficienteCre	MontoCuota	GradoAcademic	to BuenPagador
•	1	2	4	3	1	4	1
	2	2	3	2	1	4	1
	3	4	1	1	4	2	2
	4	1	4	3	1	4	1
	5	3	3	1	3	2	2
	6	3	4	3	1	4	1
	7	4	2	1	3	2	2
	8	4	1	3	3	2	2
	9	3	4	3	1	3	1
	10	1	3	2	2	4	1
*	NULL	NULL	NULL	NULL	NULL	NULL	WULL

Con la Tabla de Aprendizaje se entrena (aprende) el modelo matemático de predicción, es decir, a partir de esta tabla se calcula la función **f** de la definición anterior.

Ejemplo: Créditos en un Banco Tabla de Testing

Variable Discriminante

OLDEMARRR.DMEiviendaPeqPRED OLDEMARRR.DMExditoViviendaPeq						/		
	Id	MontoCredito	IngresoNeto	CoeficienteCre	MontoCuota	GradoAcademico	BuenPagador	
•	11	3	3	3	3	1	2	
	12	2	2	2	2	1	1	
	13	2	2	3	2	1	1	
	14	1	3	4	3	2	2	
	15	1	2	4	2	1	1	
*	NULL	NULL	NULL	NULL	NULL	NULL	NULL	

- Con la Tabla de Testing se valida el modelo matemático de predicción, es decir, se verifica que los resultados en individuos que no participaron en la construcción del modelo es bueno o aceptable.
- Algunas veces, sobre todo cuando hay pocos datos, se utiliza la Tabla de Aprendizaje también como de Tabla Testing.

Ejemplo: Créditos en un Banco Nuevos Individuos

Variable Discriminante

/OLI	DEMARRR.DMEx	editoViviendaNI					/	
	Id	MontoCredito	IngresoNeto	CoeficienteCre	MontoCuota	GradoAcademico	BuenPagador	1
	100	4	4	2	2	3	?	1
	101	1	4	3	2	4	?	
	102	3	2	3	4	2	?	
* *	NULL	NULL	NULL	NULL	NULL	NULL	NULL	

Con la Tabla de Nuevos Individuos se predice si estos serán o no buenos pagadores.

Un ejemplo de un árbol de decisión

categorica categorica continua

		•	O ^s			
1	d	Reembolso	Estado Civil	Ingresos Anuales	Fraude	Variables de División
•	1	Sí	Soltero	125K	No	
4	2	No	Casado	100K	No	Reembolso
(3	No	Soltero	70K	No	Sí No
4	4	Sí	Casado	120K	No	NO Es-Civil
į	5	No	Divorcia do	95K	Sí	Soltero, Divorciado Casado
6	6	No	Casado	60K	No	Ingresos
7	7	Sí	Divorcia do	220K	No	< 80K > 80K
8	3	No	Soltero	85K	Sí	NOSÍ
Ś	9	No	Casado	75K	No	
•	10	No	Soltero	90K	Sí	

Tabla de Aprendizaje

Modelo: Árbol de Decisión

Inicia desde la raíz del árbol

Datos de Prueba

Reebolso	Estado Civil	Ingresos	Fraude
No	Casado	80K	?

Datos de Prueba Reebolso Estado Ingresos Fraude Civil Casado 80K ? No Reembolso Sí No **Es-Civil** NO Casado Soltero, Divorciado **Ingresos** NO > 80K < 80K SÍ NO

¿Cómo se generan los árboles de decisión?

- Muchos algoritmos usan una versión con un enfoque "top-down" o "dividir y conquista" conocido como Algoritmo de Hunt.
- Sea D_t el conjunto de registros de entrenamiento en un nodo t dado.
- Sea $y_t = \{y_1, y_2, ..., y_c\}$ el conjunto de etiquetas de las clases.

Algoritmo de Hunt:

- Si todos los registros D_t pertenecen a la misma clase y_t, entonces t es un nodo hoja que se etiqueta como y_t
- Si D_t contiene registros que pertenecen a más de una clase, se escoge una variable (atributo) para dividir los datos en subconjuntos más pequeños.
- Recursivamente se aplica el procedimiento a cada subconjunto.

Un ejemplo del algoritmo de Hunt

¿Cómo aplicar el algoritmo de Hunt?

- Por lo general, se lleva a cabo de manera que la separación que se elige en cada etapa sea <u>óptima</u> de acuerdo con algún criterio.
- Sin embargo, puede no ser óptima al final del algoritmo (es decir no se encuentre un árbol óptimo como un todo). Aún así, este el enfoque computacional es eficiente por lo que es muy popular.

¿Cómo aplicar el algoritmo de Hunt?

- ✓ Utilizando el enfoque de optimización aún se tienen que decidir tres cosas:
 - 1. ¿Cómo dividiremos las variables?
 - 2. ¿Qué variables (atributos) utilizar y en que orden? ¿Qué criterio utilizar para seleccionar la "mejor" división?
 - 3. ¿Cuándo dejar de dividir? Es decir, ¿Cuándo termina el algoritmo?

¿Cómo aplicar el algoritmo de Hunt?

- Para la pregunta 1, se tendrán en cuenta sólo divisiones binarias tanto para predictores numéricos como para los categóricos, esto se explica más adelante (Método CART).
- Para la pregunta 2 se considerarán el Error de Clasificación, el Índice de Gini y la Entropía.
- La pregunta 3 tiene una respuesta difícil de dar porque implica la selección del modelo. Se debe tomar en cuenta qué tanto se quieren afinar las reglas generadas.

Pregunta #1: Solamente se usarán divisiones Binarias (Método CART):

Nominales:

Ordinales: Como en las nominales, pero sin violar el orden

{Pequeño, | Mediano, | Pequeño}

{Grande}

Grande}

Sí

Ingresos

> 80K?

No

Numéricas: Frecuentemente se divide en el punto medio

Mediano}

Pregunta #2: Se usarán los siguientes criterios de <u>IMPUREZA</u>: el *Error de Clasificación*, el *Índice de Gini* y la *Entropía*, para esto se define la siguiente probabilidad:

- $p(j|t) = La \ probalidad \ de \ pertenecer \ a \ la \ clase "j" estando en el nodo t.$
- Muchas veces simplemente se usa p_j

Pregunta #2: Se usarán el *Error de* Clasificación, el Índice de Gini y la Entropía

Error de clasificación:
$$\underbrace{Error(t) = 1 - \max_{j} [p(j|t)]}_{j}$$

Índice de Gini:
$$\frac{GINI(t) = 1 - \sum_{j} [p(j|t)]^2}{}$$

Entropía:
$$Entropía(t) = -\sum_{j} p(j|t) \log_2 p(j|t)$$

Ejemplo de cálculo de índices:

	N1	N2	N3
C1	0	1	2
C2	6	5	4

Ejemplo de cálculo de Gini

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

C1	0
C2	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
 $Gini = 1 - P(C1)^2 - P(C2)^2 = 1 - 0 - 1 = 0$

P(C1) = 1/6 P(C2) = 5/6
Gini = 1 -
$$(1/6)^2$$
 - $(5/6)^2$ = 0.278

$$P(C1) = 2/6$$
 $P(C2) = 4/6$
 $Gini = 1 - (2/6)^2 - (4/6)^2 = 0.444$

Ejemplo de cálculo de la Entropía

C1	0
C2	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
Entropía = -0 log 0 - 1 log 1 = -0 - 0 = 0

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

Entropía =
$$-(1/6) \log_2 (1/6) - (5/6) \log_2 (5/6) = 0.65$$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Entropía =
$$-(2/6) \log_2(2/6) - (4/6) \log_2(4/6) = 0.92$$

Ejemplo de cálculo del Error de Clasificación

C1	0
C2	6

Error Clasificación = 1-max[0/6,6/6]= 0

C1	1
C2	5

Error Clasificación = 1-max[1/6,5/6]=0,167

C1	2
C2	4

Error Clasificación = 1-max[2/6,4/6]=0,333

Comparación Gráfica

Gini Split

Después de que el índice de Gini se calcula en cada nodo, el valor total del índice de Gini se calcula como el promedio ponderado del índice de Gini en cada nodo:

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

Ejemplo de cálculo GINI_{Split}

	N1	N2	N3
C1	0	1	2
C2	6	5	4

Ejemplo de cálculo de GINI_{split}

C1	0
C2	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
 $Gini = 1 - P(C1)^2 - P(C2)^2 = 1 - 0 - 1 = 0$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

Gini =
$$1 - (1/6)^2 - (5/6)^2 = 0.278$$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Gini =
$$1 - (2/6)^2 - (4/6)^2 = 0.444$$

$$GINI_{split} = (6/18)*0+(6/18)*0.278+(6/18)*0.444 = 0.24$$

En este caso todos los pesos son iguales porque todas las clases tienen 6 elementos

Entropía Split

Después de que el índice de Entropía se calcula en cada nodo, el valor total del índice de Entropía se calcula como el promedio ponderado del índice de Entropía en cada nodo:

$$Entropia_{split} = \sum_{i=1}^{k} \frac{n_i}{n} Entropia(i)$$

Error de Clasificación Split

Después de que el Error de Clasificación (EC) se calcula en cada nodo, el valor total del índice del EC se calcula como el promedio ponderado del índice EC en cada nodo:

$$EC_{split} = \sum_{i=1}^{k} \frac{n_i}{n} EC(i)$$

Información Ganada -> IG_{Split}

- Cada vez que se va a hacer una nueva división en el árbol (split the tree) se debe comparar el grado de impureza del nodo padre respecto al grado de impureza de los nodos hijos.
- ✓ Esto se calcula con el índice de Información Ganada (IG), que es la resta de la impureza del nodo padre menos el promedio ponderado de las impurezas de los nodos hijos.
- ✓ La idea en IG_{Split} sea máximo y esto se logra si el promedio ponderado de las impurezas de los nodos hijos es mínimo.

$$\Delta = IG_{split} = I(padre) - \left(\sum_{i=1}^{k} \frac{n_i}{n} I(i)\right)$$

• Donde I es el índice de GINI, la Entropía o el Error de Clasificación.

Ejemplo: Información Ganada -> IG_{Split}

	Padre
C1	7
C2	3
Gini = 0.42	

$$IG_{split} = I(padre) - \left(\sum_{i=1}^{k} \frac{n_i}{n} I(i)\right) = 0.42 - 0.343 = 0.077$$

¿Cómo escoger la mejor división?

Se debe escoger la variable B ya que maximiza la Información Ganada al minimizar **GINI**_{split}

¿Cómo escoger la mejor división?

	Car Type	
	{Sports, Luxury}	{Family}
CO	9	1
C1	7	3
Gini	0.468	

	Car Type	
	{Sports}	{Family, Luxury}
CO	8	2
C1	0	10
Gini	0.167	

(a) Binary split

 Car Type

 Family
 Sports
 Luxury

 C0
 1
 8
 1

 C1
 3
 0
 7

 Gini
 0.163

(b) Multiway split

¿Cómo escoger la mejor división?

	Class		No		No	•	N	0	Ye	s	Ye	s	Υe	S	N	0	N	lo	N	lo		No	
			Annual Income																				
Sorted Values→			60		70)	75	5	85		90)	9	5	10	00	12	20	12	25		220	
Split Positions→		5	5	6	5	7	2	8	0	8	7	9	2	9	7	11	0	12	22	17	2	23	30
		<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>
	Yes	0	3	0	3	0	3	0	3	1	2	2	1	3	0	3	0	3	0	3	0	3	0
	No	0	7	1	6	2	5	3	4	3	4	3	4	3	4	4	3	5	2	6	1	7	0
Gini		0.4	20	0.4	00	0.3	75	0.3	43	0.4	17	0.4	00	0.3	00	0.3	43	0.3	75	0.4	00	0.4	20

La variable "Annual Income" se debe dividir en "97" ya que maximiza la Información Ganada al minimizar **GINI_{snlit}**

¿Porqué se escoge "Reembolso" como variable inicial?

$$GINI(No) = 1-(4/7)^2-(3/7)^2 = 1-0.326-0.184 = 0.142$$

$$GINI(Si) = 1-(0/3)^2-(3/3)^2 = 1-0-1 = 0$$

$$GINI_{split} = (3/10)*0+(7/10)*0.142 = 0.0994$$

ld	Reembolso	Estado Civil	Ingresos Anuales	Fraude
1	Sí	Soltero	125K	No
2	No	Casado	100K	No
3	No	Soltero	70K	No
4	Sí	Casado	120K	No
5	No	Divorciado	95K	Sí
6	No	Casado	60K	No
7	Sí	Divorciado	220K	No
8	No	Soltero	85K	Sí
9	No	Casado	75K	No
10	No	Soltero	90K	Sí

¿Porqué se escoge "Reembolso" como variable inicial?

GINI(Casado) = $1-(0/4)^2-(4/4)^2=0$

ld	Reembolso	Estado Civil	Ingresos Anuales	Fraude
1	Sí	Soltero	125K	No
2	No	Casado	100K	No
3	No	Soltero	70K	No
4	Sí	Casado	120K	No
5	No	Divorciado	95K	Sí
6	No	Casado	60K	No
7	Sí	Divorciado	220K	No
8	No	Soltero	85K	Sí
9	No	Casado	75K	No
10	No	Soltero	90K	Sí

GINI(Soltero/Divorciado) =
$$1-(3/6)^2-(3/6)^2=1-0.25-0.25=0.5$$

$$GINI_{split} = (6/10)*0.5+(4/10)*0 = 0.3$$

¿Porqué se escoge "Reembolso" como variable inicial?

$$GINI(>=80K) = 1-(3/7)^2-(4/7)^2 = 0.49$$

$$GINI(<80K) = 1-(0/3)^2-(3/3)^2 = 1-0-1 = 0$$

$$GINI_{split} = (3/10)*0+(7/10)*0.49 = 0.343$$

ld	Reembolso	Estado Civil	Ingresos Anuales	Fraude
1	Sí	Soltero	125K	No
2	No	Casado	100K	No
3	No	Soltero	70K	No
4	Sí	Casado	120K	No
5	No	Divorciado	95K	Sí
6	No	Casado	60K	No
7	Sí	Divorciado	220K	No
8	No	Soltero	85K	Sí
9	No	Casado	75K	No
10	No	Soltero	90K	Sí

Pregunta #3 ¿Cuándo dejar de dividir?

- Esta es una difícil ya que implica sutil selección de modelos.
- Una idea sería controlar el Error de Clasificación (o el Índice de Gini o la Entropía) en el conjunto de datos de prueba de manera que se detendrá cuando el índice selecciona comience a aumentar.
- La "Poda" (pruning) es la técnica más popular. Usada en el Método CART propuesto por Breiman, Friedman, Olshen, and Stone, 1984, (CART=Classification And Regression Trees)

Algoritmo CART

Para cada nodo v del Árbol hacer los pasos 1 y 2

- 1. Para j = 1, 2, ..., p calcular: (p = número de variables)
 - Todas las divisiones binarias correspondientes a la variable discriminante Y
 - La división binaria óptima d(j) correspondiente a la variable Y, es decir la división binaria maximiza el descenso de la impureza
- 2. Recursivamente calcular la mejor división binaria para d(1), d(2), ...,d(p)

FIN

Árbol podado y reestructurado

Árboles de Decisión en Rattle

> library(rattle)

Rattle: A free graphical interface for data mining with R. Versión 2.6.21 Copyright (c) 2006-2012 Togaware Pty Ltd. Escriba 'rattle()' para agitar, sacudir y rotar sus datos.

> rattle()

Ejemplo 1: IRIS.CSV

Ejemplo con la tabla de datos IRIS IRIS Información de variables:

- 1.sepal largo en cm
- 2.sepal ancho en cm
- 3.petal largo en cm
- 4.petal ancho en cm
- 5.clase:
 - Iris Setosa
 - Iris Versicolor
 - Iris Virginica

4	Α	В	С	D	Е
1	s.largo	s.ancho	p.largo	p.ancho	tipo
2	5.1	3.5	1.4	0.2	setosa
3	4.9	3.0	1.4	0.2	setosa
4	4.7	3.2	1.3	0.2	setosa
5	4.6	3.1	1.5	0.2	setosa
6	5.0	3.6	1.4	0.2	setosa
7	5.4	3.9	1.7	0.4	setosa
8	4.6	3.4	1.4	0.3	setosa
9	5.0	3.4	1.5	0.2	setosa
10	4.4	2.9	1.4	0.2	setosa
11	4.9	3.1	1.5	0.1	setosa
12	5.4	3.7	1.5	0.2	setosa
13	4.8	3.4	1.6	0.2	setosa
14	4.8	3.0	1.4	0.1	setosa
15	4.3	3.0	1.1	0.1	setosa
16	5.8	4.0	1.2	0.2	setosa
17	5.7	4.4	1.5	0.4	setosa
18	5.4	3.9	1.3	0.4	setosa
19	5.1	3.5	1.4	0.3	setosa
20	5.7	3.8	1.7	0.3	setosa
21	5.1	3.8	1.5	0.3	setosa
22	5.4	3.4	1.7	0.2	setosa
23	5.1	3.7	1.5	0.4	setosa
24	4.6	3.6	1.0	0.2	setosa
25					

- > library(scatterplot3d)
- > scatterplot3d(datos\$p.ancho,datos\$s.largo,datos\$s.ancho)

- > library(rgl)
- > D <- as.matrix(dist(datos[,1:4]))
- > heatmap(D)

Ejemplo 1: iris.csv

Árboles de Decisión en Ratlle

Árbol de decisión iris.csv \$ tipo

Reglas en Rattle

Árbol como reglas:

```
Rule number: 2 [tipo=setosa cover=33 (31%) prob=1.00]
p.largo< 2.6

Rule number: 7 [tipo=virginica cover=35 (33%) prob=0.00]
p.largo>=2.6
p.largo>=4.85

Rule number: 6 [tipo=versicolor cover=37 (35%) prob=0.00]
p.largo>=2.6
p.largo< 4.85
```

Matriz de confusión en Rattle (Matriz de Error)

Minero de date	os R - [Rattle (iris	s.csv)]							
Proyecto Herrar	nien <u>t</u> as Config	guración Ayud	a						
	~ ~								
Ejecutar Nu	evo Abrir		orme Exportar	Detener	₩ <u>I</u> Salir				
Datos Explorar	Prueba Transfo	rmar Clúster	Asociada Mod	elo Evaluar	Registro				
Tipo: Matriz de	e error 🦱 Ries	go 🔘 Curva de	costo 🔵 Hand	d 🔘 Elevaci	ón 🔘 ROC	Precisión	Sensibilidad		
Modelo: 📝 Árbo	Potenciar	Bosque S	SVM Lineal [Red neura	I Supervi	vencia 🗌 KM	eans HClust		
Datos: C Entrena	Datos: Entrenamiento Convalidación Prueba Completo Ingresar Archivo CSV Docum								
Variable de riesgo:				Inforn	ne: Clase	Probabili	dad Incluir: (iii)		
Matriz de er	ror para el	. modelo Ári	ool de deci	isión en	iris.csv	[prueba]	(cuentas):		
,	Predicho								
Real	getoga ver	sicolor vi	rainica						
setosa	11	0	0						
versicolor		6	2						
	0	0	4						
virginica	U	U	7						
Matriz de er:	ror para el	. modelo Árk	ool de deci	isión en	iris.csv	[prueba]	(%):		
]	Predicho								
Real	setosa ver	sicolor vi	rginica						
setosa	48	0	0						
versicolor	0	26	9						
virginica	0	0	17						

Ejemplo 2: Credit-Scoring

MuestraAprendizajeCredito2500.csv MuestraTestCredito2500.csv

- > setwd("C:/Users/Oldemar/Google Drive/Curso Mineria Datos II Optativo/Datos")
- > taprendizaje<-read.csv("MuestraAprendizajeCredito2500.csv",sep = ";",header=T)
- > taprendizaje

	capienaizaje					
	MontoCredito	IngresoNeto	CoefCreditoAvaluo	${\tt MontoCuota}$	${\tt GradoAcademico}$	BuenPagador
1	1	1	1	1	1	Si
2	3	1	1	1	1	Si
3	2	1	1	1	1	Si
4	1	2	1	1	1	Si
5	1	1	1	1	1	Si
6	2	1	1	1	1	Si
7	4	1	1	1	1	Si
8	1	2	1	1	1	Si
9	1	2	1	1	1	Si
10) 3	2	1	1	1	Si
1:	1	1	1	1	1	Si
12	2 1	2	1	1	1	Si
1:	3	1	1	1	1	Si
1	3	1	1	1	1	Si
1	2	1	1	1	1	Si
1	3	1	1	1	1	Si
1	3	1	1	1	1	Si

Descripción de Variables

MontoCredito

1=Muy Bajo

2=Bajo 3=Medio

4=Alto

IngresoNeto

1=Muy Bajo

2=Bajo

3=Medio

4=Alto

MontoCuota

1=Muy Bajo

2=Bajo

3=Medio

4=Alto

GradoAcademico

1=Bachiller

2=Licenciatura

3=Maestría

4=Doctorado

CoeficienteCreditoAvaluo

1=Muy Bajo

2=Bajo

3=Medio

4=Alto

BuenPagador

1=NO

2=Si

Árboles de Decisión en Rattle

Árbol de decisión MuestraAprendizaje@redito2500.csv \$ BuenPagador

Reglas en Rattle

Árbol como reglas:

```
Rule number: 25 [BuenPagador=Si cover=7 (0%) prob=1.00]
CoefCreditoAvaluo>=11.5
GradoAcademico>=1.5
MontoCuota>=3.5
IngresoNeto>=1.5

Rule number: 21 [BuenPagador=Si cover=19 (1%) prob=1.00]
CoefCreditoAvaluo< 11.5
GradoAcademico>=1.5
MontoCredito>=2.5
CoefCreditoAvaluo< 3.5
```

Matriz de confusión en Rattle (Matriz de Error)

Curva ROC

- Una curva ROC compara la tasa de falsos positivos con la de verdaderos positivos.
- El área bajo la curva ROC = 0.8967

Curva ROC MuestraAprendizajeCredito2500.csv

