Deconstructing the Filter Bubble: User Decision-Making and Recommender Systems

Guy Aridor
Columbia Economics

Duarte Gonçalves Columbia Economics Shan Sikdar Everquote

September 2020

ACM Conference on Recommender Systems

Introduction

Consequences of RS on user consumption choices?

Within user: Filter Bubbles

Users consume items in increasingly narrow portion of product space

Across users: Homogenization

Users consume increasingly similar items

Introduction

Consequences of RS on user consumption choices?

Within user: Filter Bubbles

Users consume items in increasingly narrow portion of product space

Across users: Homogenization

Users consume increasingly similar items

Filter bubbles occur independently of recommendation (Nguyen et al. 2014)

Introduction

Consequences of RS on user consumption choices?

Within user: Filter Bubbles

Users consume items in increasingly narrow portion of product space

Across users: Homogenization

Users consume increasingly similar items

Filter bubbles occur independently of recommendation (Nguyen et al. 2014)

This paper

Economic model to explain empirically observed dynamics

RS's influence on decisions and its implications for design

- 1. Users sequentially consume small set of items from large choice set
- 2. Users are uncertain about item's true valuations
 - Users have beliefs about items they haven't consumed yet
 - Users potentially risk-averse

- 1. Users sequentially consume small set of items from large choice set
- 2. Users are uncertain about item's true valuations
 - Users have beliefs about items they haven't consumed yet
 - Users potentially risk-averse
- 3. Users value similar items similarly
 - Consuming item and learning its value informs user about possible valuation of similar items

- 1. Users sequentially consume small set of items from large choice set
- 2. Users are uncertain about item's true valuations
 - Users have beliefs about items they haven't consumed yet
 - Users potentially risk-averse
- 3. Users value similar items similarly
 - Consuming item and learning its value informs user about possible valuation of similar items
- 4. Users' valuations include idiosyncratic and common-value parts
 - Draws from distinct Gaussian distributions
 - RS reveals the common-value component

- 1. Users sequentially consume small set of items from large choice set
- 2. Users are uncertain about item's true valuations
 - Users have beliefs about items they haven't consumed yet
 - Users potentially risk-averse
- 3. Users value similar items similarly
 - Consuming item and learning its value informs user about possible valuation of similar items
- 4. Users' valuations include idiosyncratic and common-value parts
 - Draws from distinct Gaussian distributions
 - RS reveals the common-value component

Evaluate model via simulation over grid of parameters

Illustrative Example

Illustrative Example

$$\mu = \begin{pmatrix} \mathbb{E}[x_0] \\ \mathbb{E}[x_1] \\ \mathbb{E}[x_2] \\ \mathbb{E}[x_3] \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \Sigma = \sigma^2 \begin{pmatrix} \rho^0 & \rho^1 & \rho^2 & \rho^0 \\ \rho^1 & \rho^0 & \rho^1 & \rho^2 \\ \rho^2 & \rho^1 & \rho^0 & \rho^1 \\ \rho^1 & \rho^2 & \rho^1 & \rho^0 \end{pmatrix}$$

Illustrative Example

$$\mu = \begin{pmatrix} \mathbb{E}[x_0] \\ \mathbb{E}[x_1] \\ \mathbb{E}[x_2] \\ \mathbb{E}[x_3] \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \Sigma = \sigma^2 \begin{pmatrix} \rho^0 & \rho^1 & \rho^2 & \rho^0 \\ \rho^1 & \rho^0 & \rho^1 & \rho^2 \\ \rho^2 & \rho^1 & \rho^0 & \rho^1 \\ \rho^1 & \rho^2 & \rho^1 & \rho^0 \end{pmatrix}$$

Realization of utility for item 0 is y, then updated beliefs are:

$$(\mu \mid x_0 = y) = \begin{pmatrix} \rho y \\ \rho^2 y \\ \rho y \end{pmatrix}, (\Sigma \mid x_0 = y) = \begin{pmatrix} \frac{3}{4} & \frac{3}{8} & 0 \\ \frac{3}{8} & \frac{15}{16} & \frac{3}{8} \\ 0 & \frac{3}{8} & \frac{3}{4} \end{pmatrix}$$

If y > 0, then always consumes item 1 or 3

If y < 0, then consumes item 2 unless sufficiently risk-averse

Filter Bubble Effects

Informational Spillovers Lead to Filter Bubble Effects

No Recommendation

Additional Results

Filter bubble effects amplified by risk aversion

Spillover reduces uncertainty

Welfare Gains from RS

Decreases as correlation between valuations increases

Diversity vs. Welfare

Without RS, diversity and welfare negatively correlated

With RS, diversity and welfare uncorrelated

RS increases homogeneity

Coordination around high common value component items

Folk wisdom: accurate recommendations not necessarily the most useful

Folk wisdom: accurate recommendations not necessarily the most useful

Suppose user liked John Wick; recommend John Wick: Chapter Two?

Folk wisdom: accurate recommendations not necessarily the most useful

Suppose user liked John Wick; recommend John Wick: Chapter Two?

Recommender systems traditionally ignore inference users themselves make and ignore user beliefs entirely

Folk wisdom: accurate recommendations not necessarily the most useful

Suppose user liked John Wick; recommend John Wick: Chapter Two?

Recommender systems traditionally ignore inference users themselves make and ignore user beliefs entirely

Our approach:

Goal: pairing prediction with valuable information

Valuable information: steering user behavior towards better choices

Implications: Collect data not only on post-consumption ratings but also on pre-consumption *beliefs*