MATH 1530 Problem Set 6

Tanish Makadia

(Collaborated with Esmé and Kazuya)

March 2023

Problem 1. Let G be a finite Abelian group and let n be a positive integer that is relatively prime to |G|. Prove that the mapping $a \mapsto a^n$ is an automorphism of G.

 $\textit{Proof.} \ \, \text{Define} \,\, \alpha:G\to G \,\, \text{such that} \,\, \alpha\mapsto \alpha^n. \,\, \text{Let} \,\, g,h\in G.$

1. Injective: Suppose $g^n = h^n$.

$$g^{n} = h^{n} \implies e = g^{n}h^{-n}$$

$$\implies e = (gh^{-1})^{n}$$

$$\implies |gh^{-1}| \mid n$$

Additionally, $gh^{-1} \in G$. By Lagrange's Theorem, we have $|gh^{-1}| \mid |G|$. Since $|gh^{-1}|$ divides both n and |G|, and gcd(n,|G|)=1, we have that $|gh^{-1}|=1$. Therefore, $gh^{-1}=e \implies g=eh \implies g=h$.

- 2. **Surjective:** Consider g^n . We have that $g \mapsto g^n$.
- 3. Preserves Group Operation: $\alpha(gh) = (gh)^n = g^nh^n = \alpha(g) \cdot \alpha(h)$.

Problem 2. Let G be a group of order pqr, where p, q, r are distinct primes. If H is a subgroup of G of order pq and K is a subgroup of G of order qr, prove that $|H \cap K| = q$.

Proof. We have already proven that $H \cap K$ is a subgroup of G. This implies that $H \cap K$ is also a subgroup of H and K. By Lagrange's Theorem, we have that

$$|H \cap K| | |H|, |K| \implies |H \cap K| | pq, qr$$

Therefore, $|H \cap K|$ is either 1 or q. Assume for contradiction that $|H \cap K| = 1$. By lemma 1, we have that

$$|\mathsf{HK}| = \frac{\mathsf{pq} \cdot \mathsf{qr}}{1} = \mathsf{pq}^2 \mathsf{r}$$

which is a contradiction since HK is a subset of G, which implies that $|HK| \le |G|$. Therefore, we have shown that $|H \cap K| = q$ as desired.

Lemma 1. Let H and K be subgroups of a finite group G. Then,

$$|HK| = \frac{|H||K|}{|H \cap K|} \text{ where } HK = \{hk \mid h \in H, \ k \in K\}$$

Proof. We can separate HK into a union of left cosets of K in G:

$$HK = \bigcup_{h \in H} hK$$

By the properties of cosets, we have that hK = h'K or $hK \cap h'K = \emptyset$ for all $h, h' \in H$. We must now determine how many of these cosets are distinct.

Suppose hK = h'K for some $h, h' \in H$. Since $hK = h'K \Leftrightarrow h^{-1}h' \in K$, we have that $h^{-1}h' = k$ for some $k \in K$. This implies that $k \in H \Longrightarrow k \in H \cap K$. Additionally, h' = hk. Thus, there are $|H \cap K|$ ways to create the same coset for each $h' \in H$ (by *Cayley's Theorem*, we know that each $k \in H \cap K$ has exactly one corresponding $h \in H$ such that hk = h'). Therefore, the number of distinct cosets hK where $h \in H$ is $|H|/|H \cap K|$.

Since |hK| = |h'K| for all $h, h' \in H$, the number of elements in each coset is |hK| = |K|. Therefore, the cardinality of HK equals the number of distinct cosets times the number of distinct elements in each coset, giving us

$$|HK| = \frac{|H||K|}{|H \cap K|}$$

Problem 3. Calculate the order of the group of rotations of a regular dodecahedron:

Proof. Let G be the rotation group of the dodecahedron. Assign each of the 12 faces of the dodecahedron a unique number 1-12. Since every rotation must take each face to exactly one other face, G is a group of permutations on the set $\{1, \ldots, 12\}$.

Consider a single face, $f \in \{1, ..., 12\}$, of the dodecahedron. By the *orbit-stabilizer theorem*, we have that

$$|G| = |\operatorname{orb}_{G}(f)| \cdot |\operatorname{stab}_{G}(f)|$$

- 1. $|\mathbf{orb_G}(\mathbf{f})|$: Picking an axis of rotation through the centers of any two parallel faces allows us to bring f to any other face $\mathbf{f}' \in \{1, \dots, 12\}$. Therefore, $\mathbf{orb_G}(\mathbf{f}) = \{1, \dots, 12\}$ which implies that $|\mathbf{orb_G}(\mathbf{f})| = 12$.
- 2. $|\mathbf{stab_G(f)}|$: Let $\overline{f} \in \{1, \dots, 12\}$ be the face parallel to f. Picking an axis of rotation through the centers of f and \overline{f} allows us to rotate the dodecahedron in 5 distinct ways while fixing the position of f. This implies that $|\mathbf{stab_G(f)}| = 5$.

Together, we have $|G| = 12 \cdot 5 = 60$.

Problem 4. Determine the number of cyclic subgroups of order 15 in $\mathbb{Z}_{90} \oplus \mathbb{Z}_{36}$.

Problem 5. Let p and q be odd primes and let m and n be positive integers. Prove that $U(p^m) \oplus U(q^n)$ is not cyclic. [hint: read the book to find a useful result we didn't cover in class]