几何法: 复杂不推荐

(1) 证明:

连接 C_1F , 取 G 使 $C_1G = 2CG$, 连接 GB平面 BCC_1B_1 内, $C_1G = \frac{2}{3}CC_1 = \frac{2}{3}BB_1 = FB$ 又 ,FB // C_1G , 则 C_1GBF 为平行四边形 则 $GB \not \sqsubseteq C_1F$ 又 $CG = \frac{1}{3}CC_1 = \frac{1}{3}DD_1 = DE$, DE // CG则 ABGE 共面且为平行四边形,则 $GB \not \sqsubseteq AE$ 故 $AE \not \sqsubseteq C_1F$, AEC_1F 共面

(2) 解:

记 EF 中点为 H, 由 (1) 知 AEC_1F 为平行 四边形

$$C_1F = \sqrt{1+1} = \sqrt{2}, AF = \sqrt{2^2+2^2} = 2\sqrt{2},$$

$$AC_1 = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{14}, AH = HC_1 = \frac{\sqrt{14}}{2}$$

由余弦定理:

田永知及注望:
$$\cos AHF = \frac{(\frac{\sqrt{14}}{2})^2 + (\frac{EF}{2})^2 - (2\sqrt{2})^2}{2^{\frac{\sqrt{14}}{2}} \times \frac{EF}{2}}$$

$$= -\cos C_1 HF = -\frac{(\frac{\sqrt{14}}{2})^2 + (\frac{EF}{2})^2 - (\sqrt{2})^2}{2^{\frac{\sqrt{14}}{2}} \times \frac{EF}{2}}$$
故有: $\frac{7}{2} + \frac{1}{4}EF^2 - 8 = -\frac{7}{2} - \frac{1}{4}EF^2 + 2$

$$\frac{1}{2}EF^2 = 2 + 8 - 7$$

$$EF = \sqrt{6}$$

由
$$AE^2 + EF^2 = 2 + 6 = 8 = AF^2$$

故 $\angle AEF = \frac{\pi}{2}$,即 $AE \perp EF$
 $\triangle A_1EF$ 中,易知 $A_1F = A_1E = \sqrt{5}$
故 $A_1H \perp EF$,作 $HI \parallel AE$ 交 AF 于 I

则 $\angle IHA_1$ 即为所求二面角的二面角 易知 HI 为 $\triangle FAE$ 中位线, $IH=\frac{1}{2}AE=\frac{\sqrt{2}}{2}$ 又 H 为 AC_1 中点,即立方体几何中心,故 $A_1H=\frac{1}{2}AC_1=\frac{\sqrt{14}}{2}$ 在平面 AFA_1 中,通过辅助线易得 $A_1I=\sqrt{5}$ $\triangle IHA_1$ 中,

$$\triangle IHA_1$$
 中,
$$\cos \angle IHA_1 = \frac{(\frac{\sqrt{2}}{2})^2 + (\frac{\sqrt{7}}{2})^2 - (\sqrt{5})^2}{2 \times \frac{\sqrt{2}}{2} \times \frac{\sqrt{14}}{2}}$$

$$= \frac{\frac{1}{2} + \frac{7}{2} - 5}{\sqrt{7}}$$

$$= -\frac{\sqrt{7}}{7}$$
故 $\sin IHA = \sqrt{1 - (-\frac{\sqrt{7}}{7})^2} = \frac{\sqrt{42}}{7}$
故 二面角 $A - EF - A_1$ 的正弦值为 $\frac{\sqrt{42}}{7}$