Guía 7- Lengueze y compiladores

 ${\bf v}_{f r}$ is the core practice is variables j,x,y,z (y has define que aparecen) son concretas.

- (1.) Considerar las siguientes expresiones lambda:
 - (a) $(\lambda f.\lambda x.f(fx))(\lambda z.\lambda x.\lambda y.zyx)(\lambda z.\lambda w.z)$.
 - (b) $(\lambda z.zz)(\lambda f.\lambda x.f(fx))$.

Para cada expresión e, reducir a su forma normal e_0 . Indicar la 1er forma canónica e_1 .

(a)
$$(\lambda f \lambda x f(fx)) (\lambda z \lambda x \lambda y z y x) (\lambda z \lambda w z) \rightarrow$$
 $(\lambda x (\lambda z \lambda x \lambda y z y x) (\lambda z \lambda x \lambda y z y x) x) (\lambda z \lambda w z) \rightarrow$
 $(\lambda z \lambda x \lambda y z y x) ((\lambda z \lambda x \lambda y z y x) (\lambda z \lambda w z)) \rightarrow$
 $(\lambda x \lambda y ((\lambda z \lambda x \lambda y z y x) (\lambda z \lambda w z)) y x) \rightarrow$
 $(\lambda x \lambda y ((\lambda x \lambda y (\lambda z \lambda w z) y x) y x) \rightarrow$
 $(\lambda x \lambda y ((\lambda x \lambda y (\lambda z \lambda w z) y x) y x) \rightarrow$
 $(\lambda x \lambda y ((\lambda x \lambda y (\lambda z \lambda w z) y x)) \rightarrow$
 $(\lambda x \lambda y ((\lambda x \lambda w z) x y)) \rightarrow$
 $(\lambda x \lambda y ((\lambda x \lambda w z) x y)) \rightarrow$
 $(\lambda x \lambda y x \rightarrow p m a no m a)$

(b)
$$(\lambda \xi \ \xi \xi) (\lambda f \lambda x f(fx)) \Rightarrow$$

 $(\lambda f \lambda x f(fx)) (\lambda f \lambda x f(fx)) (\lambda f \lambda x f(fx)) x) \Rightarrow \text{ter homa (anónico}$
 $(\lambda x (\lambda f \lambda x f(fx)) ((\lambda f \lambda x f(fx)) x)) \Rightarrow \text{ter homa (anónico}$

La re forma canóne a

$$\begin{array}{ll} & (\lambda \times (\lambda f \lambda \times f(f_{x})) (\lambda f \lambda \times f(f_{x})) \times)) \Rightarrow \\ & (\lambda \times (\lambda f \lambda \times f(f_{x})) (\lambda \times (\lambda \times f(f_{x})))) \Rightarrow \\ & (\lambda \times (\lambda \times f(f_{x})) (\lambda \times (\lambda \times f(f_{x}))))) \Rightarrow \\ & (\lambda \times (\lambda f \lambda \times f(f_{x})) (\lambda f \lambda \times f(f_{x}))))) \Rightarrow \\ & (\lambda \times (\lambda f \lambda \times f(f_{x})) (\lambda f \lambda \times f(f_{x}))))) \Rightarrow \\ & (\lambda \times (\lambda f \lambda \times f(f_{x})) (\lambda f \lambda \times f(f_{x}))))) \Rightarrow \\ & (\lambda \times (\lambda f \lambda \times f(f_{x})) (\lambda f \lambda \times f(f_{x})))) \Rightarrow \\ & (\lambda \times (\lambda f \lambda \times f(f_{x})) (\lambda f \lambda \times f(f_{x})))) \Rightarrow \\ & (\lambda \times (\lambda f \lambda \times f(f_{x})) (\lambda f \lambda \times f(f_{x})))) \Rightarrow \\ & (\lambda \times (\lambda f \lambda \times f(f_{x})) (\lambda f \lambda \times f(f_{x})))) \Rightarrow \\ & (\lambda \times (\lambda f \lambda \times f(f_{x})) (\lambda f \lambda \times f(f_{x})))) \Rightarrow \\ & (\lambda \times (\lambda f \lambda \times f(f_{x})) (\lambda f \lambda \times f(f_{x})))) \Rightarrow \\ & (\lambda \times (\lambda f \lambda \times f(f_{x})) (\lambda f \lambda \times f(f_{x})))) \Rightarrow \\ & (\lambda \times (\lambda f \lambda \times f(f_{x})) (\lambda f \lambda \times f(f_{x})))) \Rightarrow \\ & (\lambda \times (\lambda f \lambda \times f(f_{x})) (\lambda f \lambda \times f(f_{x})))) \Rightarrow \\ & (\lambda \times (\lambda f \lambda \times f(f_{x})) (\lambda f \lambda \times f(f_{x})))) \Rightarrow \\ & (\lambda \times (\lambda f \lambda \times f(f_{x})) (\lambda f \lambda \times f(f_{x})))) \Rightarrow \\ & (\lambda \times (\lambda f \lambda \times f(f_{x})) (\lambda f \lambda \times f(f_{x})))) \Rightarrow \\ & (\lambda \times (\lambda f \lambda \times f(f_{x})) (\lambda f \lambda \times f(f_{x})))) \Rightarrow \\ & (\lambda \times (\lambda f \lambda \times f(f_{x})) (\lambda f \lambda \times f(f_{x})))) \Rightarrow \\ & (\lambda \times (\lambda f \lambda \times f(f_{x})) (\lambda f \lambda \times f(f_{x})))) \Rightarrow \\ & (\lambda \times (\lambda f \lambda \times f(f_{x})) (\lambda f \lambda \times f(f_{x})))) \Rightarrow \\ & (\lambda \times (\lambda f \lambda \times f(f_{x})) (\lambda f \lambda \times f(f_{x})))) \Rightarrow \\ & (\lambda \times (\lambda f \lambda \times f(f_{x})) (\lambda f \lambda \times f(f_{x})))) \Rightarrow \\ & (\lambda \times (\lambda f \lambda \times f(f_{x})) (\lambda f \lambda \times f(f_{x})))) \Rightarrow \\ & (\lambda \times (\lambda f \lambda \times f(f_{x})) (\lambda f \lambda \times f(f_{x})))) \Rightarrow \\ & (\lambda \times (\lambda f \lambda \times f(f_{x})) (\lambda f \lambda \times f(f_{x})))) \Rightarrow \\ & (\lambda \times (\lambda f \lambda \times f(f_{x})) (\lambda f \lambda \times f(f_{x})) (\lambda f \lambda \times f(f_{x}))) \Rightarrow \\ & (\lambda \times (\lambda f \lambda \times f(f_{x})) (\lambda f \lambda \times f(f_{x}))) (\lambda f \lambda \times f(f_{x}))) \Rightarrow \\ & (\lambda \times (\lambda f \lambda \times f(f_{x}))) \Rightarrow \\ & (\lambda \times (\lambda f \lambda \times f(f_{x})) (\lambda f \lambda \times f$$

Considerar las expresiones lambda:

$$TRUE = \lambda x. \lambda y. x$$

 $FALSE = \lambda x. \lambda y. y$

$$NOT = \lambda b.\lambda x.\lambda y.byx$$

 $AND = \lambda b.\lambda c.\lambda x.\lambda y.b(cxy)y$
 $IF = \lambda b.\lambda x.\lambda y.bxy$

Demostrar:

- (a) NOT TRUE →* FALSE,
- (b) IF TRUE e₀ e₁ →* e₀,
- (c) AND TRUE TRUE →* TRUE,
- (d) AND FALSE e →* FALSE,

(a) NOT TRUE =

(6)

(AbAxAy bxy) (AxAyx) eoca > (AxAy (AxAyx)xy) eo ea >

(\lambda \lambda \lamb

(by eo) en -

IF TRUE Co en =

lo

(c) AND TRUE TRUE =

$(\lambda_x \lambda_y (\lambda_y (x) y)) \rightarrow$
(lx ly x) = TRUE
(d) AND FALSE e =
(lb lc lx ly b(ixy)y) (lx ly y) e →
(le lx ly (lx ly y) (cxy)y)e >
(XX XY (XXXYY) (exy) Y) ->
$(\lambda \times \lambda y (\lambda y y) y) \rightarrow$
(\lambda x \lambda y) = FALSE
3) ¿Cuáles afirmaciones son verdaderas y cuáles falsas? Justificar.
(a) Toda expresión lambda cerrada tiene forma normal.
(b) Toda expresión lambda cerrada tiene forma canónica. (c) Toda forma canónica cerrada es forma normal.
(d) Toda forma normal cerrada es forma canónica.
(a) Falso
$(\lambda_{2.23})(\lambda_{2.xx})$
es una expresión lambda cerada que no tiene poma normal
(b) Falso, mismo wntraejemplo que en el a.
(c) Falso
λ_{X} . $(\lambda_{Y}, y)_{X}$
es de forma canónica cerrada pero no es de porna nomal
(d) Verdadero, condusión de la propredad "Una aplicación cerrada no puede ser
lorne normal "
WALL TO THE WALL
Demostrar que una aplicación cerrada no puede ser una forma normal.
Sea e una aplicación cerroda. Sea eslolarren en donde lo no es una

aplicación lomo e es una aplicación n≥1, Si lo que a una variable, e no sería

cerada, por lo tanto es una abstracción y e contiene al	redex even. Por lo fanto
no es forma normal.	
•	
(5) Para cada expresión del ejercicio 1, evaluar en orden normal $e \Rightarrow$	$\Rightarrow_N e_1$, e eager $e \Rightarrow_E e_1$.
noimal	
(a) $[(\lambda f. \lambda x. f(fx)) (\lambda z. \lambda x. \lambda y zyx) (\lambda z \lambda \omega z)$	appración, hipo: a,b
	as aptración, hipo: acb
	zas abstraction
3)	ab: abstracão n
(Xx (Xz xxxx)) (Xz xxxx sx) x))	
=D () x (12/x/syx) ((x txxxy xyx) x)]	terminó a
$[(\lambda_z \lambda_x \lambda_y \epsilon_{yx}) ((\lambda_z \lambda_x \lambda_y \epsilon_{yx}) (\lambda_z \lambda_w \epsilon))$	b ap reación, hope a, b
$[(\chi_{xyx}) = 0 (\chi_{xx})]$	ba: abstracçãos
[\understand \und	bb: abstraction
[XY ((xys yxxx sx)) yxxx	
[xy/(swhsh) (xys yhxhsh)) yx]	teumin ó b
=> lx by ((lzlxby zyx)(lzlwz))yx]	termino la prveba
	,
eager	
[()t.)x f(fx) ()2.)x. 2yx) (12. /w. 2)	aplication, hisporia, b, c
[(yf.)x.f(fx)) (ys.y/xxxx)	a aplication, hips: a, b, c
$[(\lambda f. \lambda x. f(fx)) \Rightarrow (\lambda f. \lambda x. f(fx))]$	aa: abstraction
[(xz. hy. hx eyx) =0 (hz. hy. hxzyx)]	ab: abstraction
((\lambda . (\lambda 2, \lambda . \lambda \lambda . \lambda \lambda . \lambda	-
[(x, (xz, xx, yx, xx)) ((xt, xx, xx, xx))]	
$[(\chi(\chi_{YS}\chi_{K,Y},\chi_{K,S}))(\chi_{YS}\chi_{K,Y},\chi_{K,S})]$	terninó a
$[(\lambda_{\varepsilon},\lambda_{\omega},\xi)] = (\lambda_{\varepsilon},\lambda_{\omega},\xi)$	6° abstraction
$(\lambda_5, \lambda_7, \lambda_{XSYX}) ((\lambda_5, \lambda_7, \lambda_{XSYX}) (\lambda_5, \lambda_\omega, z))$	c? aptración, hyps: u,b,c
	, , , , ,

ca: abstraction

[(xz.xx.yx.sk) c= (xysxx.yx.sk)]

```
[ ( \ z . \ \ y . \ \ x \ z \ x \ ) ( \ \ z \ \ \ w . \ \ )
                                                                        ch: ap1: causon, hrps: a,b,c
       [(Az. Xy. Xx Zyx) => (Az Xy. Ax. Zyx)]
                                                                        cha: abstraction
       [ ( hz. hw. z) = ( hz. hw.z)]
                                                                          db: abstracción
       [(xy. xx (x2 xw.z) yx) = (xy.xx(x2xx)) chc: obstraction
           =D (dy. ) x (d + dw, 2) y x)]
                                                                          temins ub
     ( Ay. Xx ( Ay. Ax ( ) Z Aw z ) Yx ) =
                                                                           ec? abstraution
       ( hy. hx ( hy. hx ( h z hwz)yx) yx) ]
     => ly.lx (ly.lx (lelw t)yx) yx]
                                                                             terminó c
  => ly.lx (ly.lx (lz lwzlyxlyx]
                                                                            teminó la prueba
(b)
      Normal
   [(\lambda_2, z_1) (\lambda_f, \lambda_X f(f_X))
                                                                           aplication, hips: a,b
     [(\lambda z. zt) = 0 (\lambda z. zt)]
                                                                           a: abstruction
    L(\lambda_f, \lambda_x f(f_x)) (\lambda_f, \lambda_x f(f_x))
                                                                           bapticación, hips: a/s
      [( kf. dx + (fx)) = ) ( 24. dx + (fx))]
                                                                           ha: abstrucción
     [(\lambda x . (\lambda f . (\lambda x . f (f x )) x ))
                                                                            bb: abstraction
         => ( \lambda x . (\lambda f . \lambda x f (fx)) ( (\lambda f . \lambda x f (fx)) x))]
                                                                             terminó b
     = X \x. (\f. \x f(fx))((\f. \x f(fx))x))]
  => \lambda x. (\lambda_1.\lambda x f(fx)) ((\lambda_1.\lambda x f(fx).\lambda)
                                                                             temino la presa
       eager
    [ ( lz. Ez) ( lf. lx f(fx))
                                                                       aplicación, hijos a, b, c
     [(\lambda_2,\xi_2) = 0 (\lambda_2,\xi_2)]
                                                                      a: obstrucción
      [( \f. \x. f(fx)) = ( \f. \x f(fx))]
                                                                      b: abstracción
     [( \f. \x f(fx)) ( \f. \x f(fx))
                                                                      c: aptroucon, hips: ash, e
       [( \ f. \ x f (fx )) = P ( \ \ f. \ \ x f (fx ))]
                                                                       (a: abstraction
       [(hf. lx f(fx)) = (hf. lx f(fx))]
                                                                        ch: dos tración
       [(Ax. (Af. Dx f (fx)) ( (Af. Dx f(fx)) x)
                                                                         cca abstracción
         =D ( \( \lambda_x . \( \lambda_t . \lambda_x \tau (\fx) \) \( \lambda_t . \lambda_x \tau (\fx) \) \( \lambda_t . \lambda_x \tau (\fx) \) \( \lambda_t . \lambda_x \tau (\fx) \)
```

```
= D \left( \lambda_x \cdot (\lambda_1 \cdot y_x + (\lambda_x)) \cdot ((\lambda_1 \cdot y_x + (\lambda_x))^x \right) 
                                                            temino c
   = 0 /x . ( x f. ) x f (fx)) ( (x f. ) x f (fx)) x ]
                                                             temino la prueba
  (6) (a) Para ambos órdenes, pruebe que e ⇒ e' implica e →* e'.
       (b) Decida si la siguiente afirmación es cierta y justifique su respuesta:
          si e \Rightarrow_N e_1 y e \Rightarrow e_2, entonces existe e' tal que e_1 \rightarrow^* e' y e_2 \rightarrow^* e'.
  (a) Suporgamo e=ge' Tenemos dos caros
  (1) e= ne' payme=e'= lvev labstracción)
  O na tenemos ave = 3 aveo
     y daramode hu.e. > hu.e.
     lo wal implica lueo = lueo
 (2) e Pre porque e=eoes (0=p \v.ez (ez/v-ren)=pe' (aplicación)
    Tomamos wmo H.t
        i. eo $ \v.ez = P lo - \v.ez
        ". (e2/v→en) =pe' = P(e2/v≠en) → e'
      Y veamos que e - je!
   e=eoen → (\lambda v.ez) en → (e2/v.zen) → e)

H.I(?)

reduction (?)
         Fin prueha normal
     Suporgamo e=pe' Tenemos dos caros
   (1) e = pre' payme=e'= liver labstracción)
    D ha tenemos ave = Aveo
    y daramede lu.e. > lueo
    lo wal smylica laveo > laveo
(2) e = po que e= eoes eo= p \v.e. e1= pz (e2/v-12) = Pz e'
  Tomamos umo H.t
      i. e = 2 \ \v.ez = 0 e - \ \v.ez
      ii. en Dez Den De
      " (e2/v-2) =De' =P (e2/v+2) -e'
```

Por Church-Rosser si e -5 en y e -5 er, entonum existe e' tal que en -5 e', ez -5 e'

(7) Explique por qué no es cierto que $NOT\ TRUE \Rightarrow FALSE$ en ambos órdenes.

Residens qui

NOT TRUE =

Ya (\lambda x \lambda y (\lambda x \lambda y x) x) es una porma canónica, y de hecho en ambus evaluaciones llegamos a que not true =D (\lambda x \lambda y (\lambda x \lambda y x) x) \neq FALSE.

- (8) Sean e_0 y e_1 formas canónicas, construya los árboles para
 - (a) NOT TRUE $e_0 e_1 \Rightarrow_E e_1$,
 - (b) AND FALSE (Δ Δ) e₀ e₁ ⇒_N e₁.

```
NOT = ( Nb. Nx. >y.byx)
              (a)
                      TRUE = + = ( \lambda x . \lambda y . x)
                        (NOT/b-T)
                                                                                  T (x-9e1)=1)
                                                                 TENT en=1961
TOW CE TUCK
              TIOT
                                                                                  (yy, 61)
                        =>( \x \) \r (T) \r (\x \)
                                                (λx.λy U) γx) (x 7 co)
                                       Co =D
                                                                                                 (xy'en)(x'-000)
                                                                       Te1 = D ( Ly e1)
                                                                                        co Deo
                                                3) (1) y'eo)
                                                                                  (xy'(T) y'eo) (y' + en)
                          NOT T 60 = (2) (17) 4' (5)
                                                                enspen
                                                  NOT T eo C1 = De1
               (b)
                        AND= (bb. dc. dx. by b (cxy) y)
                        FALSE = F= ( X x. Ay. y)
              AND ( b -0 F)
  and of one
                => ()c. lx. ly (F)(xy)y)
                               ()c. )x, )y (F) (cxy)y) (c - 00)
                                                                                   F(x→(1)0001))
        () ( ) ( (XY) Y)
                                                (XXXY (F) (DD XY) Y (X-DED)
                    AND FLOD) = 9
                                                = (xy'(F) (DD eo y') y')
                    (XX, XY (F) (DDXY) Y)
                              AND F(DD ED) =>
                                                                                     ( ) (F) ( ) ( ) (y' -9 e i)
                                    ( ) Y'CF) (DDeoy) y'
                                                                 F (DD) 66C1 => e1
                                                           QUA
            (9) Explique por qué AND FALSE (Δ Δ) e<sub>0</sub> e<sub>1</sub> no tiene una forma canónica bajo el orden
                eager. ¿La tiene AND FALSE (\lambda w. \Delta \Delta) e_0 e_1?
                  Porque en el orbol de ANO FALSE (DD) hay que evaluar DD, y como vímos
              anteromente, esa expeció lambda no tiene forma comónica
                   Veamos s? AND FALSE ( Dw. DD) eoch la tiene
                AND FALSE (LW.DD) CO CA
             (AND FALSE CLW.DD) CO
               AND FALSE ( \Lambda w. DD)
                AND FALSE
                 AND = AND
                FALSE -> FALSE
```

```
=> ( \lambda . \lambda \lambda (FALSE) (CXY) \lambda)
   ( NW. DD) => (NW.DD)
   [(XX. XY (FALSE)((Xw. DD) XY)y) => (XX. XY (FALSE)((Xw. DD) XY)y)
   = ( lax. ly (FALSE) ((law, DD) ly) ]
    [ eo as eo]
  => ( \( \) ( FALSE) ( (\( \lambda w \lambda \lambda \) (\( \rangle \) \) \]
   [ eq => en]
  [ (FALSÉ) ( ( A W. D D) eo Ca) ea)
     [FALSE OF FALSE]
     ( (hw.ss)ever) en)
    ( Nw.DD) eoes
      ( Nw. DD) eo
        [(AU.DA) => (/w,DA)]
      [ eo => eo]
       si wno es una variable libre de D entonus lus = P DD y no hay forma
canónica ya que no podemos llegar a una abstracción, sepangamos vectV(D); en
este 1000 ju so/(w-seo) = s's' donde s'=s/(w-seo), a menos que s
sea una (o mas) variablels) vamos a requir en el mismo caso, s's' no
tiene forma canónica. Pinduje el coo en que ninguna variable este ligada.
   (10) ¿Qué debe cumplir b para que IF b \to_{\eta}^* b? ¿Cumplen TRUE y FALSE esas condiciones?
        Llumemos e a b pera no confindirlo con la vanadole b
        (lb. lx. ly.bxy) e > e
         Resordemos que Lu. ev -in e si v& FUle)
```

(lb.lx. ly.bxy) e > lx.ly exy Supongamos Xiy& Fule) entonus e= (lx ly eo) 1x ly exy → lx. ly (lx ly eo)x y -> Ax. Ly (Lyeo)y =)x. }y eo =e entonus IF e si e si x,y x xv(e) ademos que dels se de la forma lxly.eo TRUE y FAISE womplen esta propiedad IF TRUE = (Ab. Ax. Ay. bxy) (Ax. Ay. x) → \x. \y (\x. \y, x) xy $\Rightarrow \lambda x \cdot \lambda y (\lambda y \cdot x) y$ -> \x. \xy. x = TRUE Luego EFTRUE -7" TRUE IF FALSE = (16)x. dy, bxy) (xx. dy,y) -> dx. dy (dx. dy.y) dy y (x, yx) y (xy, y) - Axilyy = FALSE Luego Ef Parisé sin Falsé