# Formato para Recurso de Aprendizaje TAREA









| Nombre de la Asignatura |                  |                                                                                                           | Cálculo                            |
|-------------------------|------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------|
| Nombre del estudiante   |                  |                                                                                                           | Jacobo Josué Chimbolema Chimbolema |
| Nombre del docente      |                  |                                                                                                           | Ing. Arístides Becardi Reyes       |
| Curso                   |                  |                                                                                                           | Aula B-01                          |
| Carrera                 |                  |                                                                                                           | Ingeniería de Software             |
| Unidad N°               | 2                | Derivada de función de una variable real                                                                  |                                    |
| Tema N°                 | 1<br>2<br>3<br>4 | Conceptos de derivada Derivada de funciones de una variable Aplicaciones de la derivada Trazado de curvas |                                    |

# Tipo de Tarea

Resolución de ejercicios

## **Objetivo de la Tarea**

Aplicar los diferentes procedimientos de la unidad 2 para resolver los ejercicios de límites y continuidad



### **EJERCICIOS A DESARROLLAR**

1.- Determine la primera derivada de las siguientes funciones (regla de la cadena)

$$y = \cos^{3}\left(\frac{x^{2}}{1-x}\right)$$

$$y = x^{2} \tan \frac{1}{x}$$

$$f(x) = \frac{1}{4} \ln\left(\frac{x^{2}}{x^{2}-4}\right) - \frac{1}{x^{2}-4}$$

$$J' = \frac{1}{2} \left( \frac{x^2}{1-x} \right)$$



$$f(x) = \frac{1}{4} \cdot \frac{x^{2}}{x^{2}} \cdot \frac{3x^{3} + 16x}{1}$$

$$f(x) = \frac{1}{4} \cdot \frac{x^{2}}{x^{2}} \cdot \frac{2x(x^{2} - 4) - x^{2}(2x)}{1} - \frac{2x}{2x^{2} + 4}$$

$$f(x) = \frac{1}{4} \cdot \frac{x^{2}}{x^{2}} \cdot \frac{2x(x^{2} - 4) - x^{2}(2x)}{1} - \frac{2x}{2x^{2} + 4}$$

$$f(x) = \frac{1}{4} \cdot \frac{x^{2}}{x^{2}} \cdot \frac{2x(x^{2} - 4) - x^{2}(2x)}{1} - \frac{2x}{2x^{2} + 4}$$

$$f(x) = \frac{1}{4} \cdot \ln \left( \frac{x^{2}}{x^{2}} - \frac{1}{4} \right) - \frac{1}{2x^{2} + 4} - \frac{1}{2x^{2} + 4}$$



2.- Determine la primera derivada de las siguientes funciones (derivación implícita)

$$\ln(xy) + \sqrt{y} = 5 \qquad (\text{sen } \pi x + \cos \pi y)^2 = 2$$
$$x^3 + y^3 = 6xy + 1,$$

$$= (2) \frac{1}{2} = (21) \frac{1}{2} + ((21) \frac{1}{2})$$

$$= (2) \frac{1}{2} = (21) \frac{1}{2} + ((21) \frac{1}{2})$$

$$= (2) \frac{1}{2} + ((21) \frac{1}{2} + ((21) \frac{1}{2}) \frac{1}{2}$$

$$= (2) \frac{1}{2} + ((21) \frac{1}{2} + ((2$$



| 2 (3+  | x (3) + x 15 (3) = 0                                        |              |
|--------|-------------------------------------------------------------|--------------|
| 27 +   | 2x 8x + x 15 82 = 0                                         |              |
| 2 x dy | + 219 82 = -29                                              |              |
| (2d+   | 15) 97 = 57 = 97<br>20 = 50 = 50 = 50 = 50 = 50 = 50 = 50 = | 24<br>2x+x15 |
| 8x =   | 27 19 - 47<br>4x - xy                                       |              |



$$\frac{dy}{dx} = \frac{2y^2 - 2x}{2y^2 + 3y^2} + \frac{dy}{dx} = \frac{6y - 3x^2}{6x^2 + 6x} + \frac{dy}{dx} = \frac{3y^2 + 3y^2}{6x} + \frac{dy}{dx} = \frac{6y + 6x}{6x} + \frac{dy}{dx} = \frac{3y^2 + 3y^2}{6x} + \frac{dy}{dx} = \frac{6y + 6x}{6x} + \frac{dy}{dx} = \frac{3y^2 + 3y^2}{6x} + \frac{dy}{dx} = \frac{6y + 6x}{6x} + \frac{dy}{dx} = \frac{3y^2 + 3y^2}{6x} + \frac{dy}{6x} = \frac{6y + 6x}{6x} + \frac{dy}{6x} = \frac{3y^2 + 3y^2}{6x} + \frac{dy}{6x} = \frac{6y + 6x}{6x} + \frac{dy}{6x} = \frac{3y^2 + 3y^2}{6x} + \frac{dy}{6x} = \frac{6y + 6x}{6x} + \frac{dy}{6x} = \frac{3y^2 + 3y^2}{6x} = \frac{dy}{6x} = \frac{6y + 6x}{3x^2 + 6x} + \frac{dy}{6x} = \frac{3y^2 + 3y^2}{6x} = \frac{dy}{6x} = \frac{6y + 6x}{3x^2 + 6x} + \frac{dy}{6x} = \frac{3y^2 + 3y^2}{6x} = \frac{dy}{6x} = \frac{6y + 6x}{3x^2 + 6x} = \frac{dy}{6x} = \frac{dy}{6$$

( DUM TX + (05 7472= 2 dx ((our (17x) + cos (1741)2) = dx (2) \$ (9) \$ (NO) (T+) + (05 (TH) )=0 29 (100 171) TH - NON (THE) TH (41) =0 26m (ma) + cos (mm) (cos (mx) m - non (my) m & (y) )=0 (LT) 20) (PT) 000. TIF (PT) mer (XT) mer (P) & TIC-(XTI) mer (T) 0 = (ELT) wow (5/12) = 0 (EL) 50) (EL) 50) 124 (EL) war (PL) war (E) 16) 45 LE (E) 100 (L) 0 = (ELL) war . The (E) by 11-(TT) run (2TX) -2T (1) [] run (TX) run (TX) +2T (05 (TS) (05/10) 0=(647) war (742)=0 (A) my (21 x) - 24 /2 my (x x) my (27 x) + 27 (25 (25) (25) 0=(Ens) wer (242)=0



(17) 
$$\tan (2\pi a) - 2\pi \tan (\pi a) \tan (\pi a) \frac{d2}{da} + 2\pi \tan (\pi a) \cos (\pi a)$$

$$= 0$$

$$= \frac{26}{6\pi} (2\pi a) \tan (\pi a) \frac{d2}{da} = 0$$

$$= 1 \tan (2\pi a) \tan (\pi a) \tan (\pi a) \tan (\pi a) \tan (\pi a)$$

$$= 1 \tan (2\pi a) \cos (\pi a) = 0$$

$$= \frac{26}{6\pi} (2\pi a) \tan (\pi a) - (2\pi a) \tan (\pi a) \tan (\pi a)$$

$$= \frac{26}{6\pi} (2\pi a) \tan (\pi a) - (2\pi a) \tan (\pi a) = 0$$

$$= \frac{26}{6\pi} (2\pi a) \cos (\pi a) - (2\pi a) \cot (\pi a) = 0$$

$$= \frac{26}{6\pi} (2\pi a) \tan (\pi a) \tan (\pi a) \cot (\pi a) = 0$$

$$= \frac{26}{6\pi} (2\pi a) \tan (\pi a) \tan (\pi a) \cot (\pi a) = 0$$

$$= \frac{26}{6\pi} (2\pi a) \tan (\pi a) \tan (\pi a) \cot (\pi a) = 0$$

$$= \frac{26}{6\pi} (2\pi a) \tan (\pi a) \tan (\pi a) \cot (\pi a) = 0$$

$$= \frac{26}{6\pi} (2\pi a) \tan (\pi a) \tan (\pi a) \cot (\pi a) = 0$$

$$= \frac{26}{6\pi} (2\pi a) \tan (\pi a) \tan (\pi a) \cot (\pi a) = 0$$

$$= \frac{26}{6\pi} (2\pi a) \tan (\pi a) \tan (\pi a) \cot (\pi a) = 0$$

$$= \frac{26}{6\pi} (2\pi a) \tan (\pi a) \tan (\pi a) \cot (\pi a) = 0$$

$$= \frac{26}{6\pi} (2\pi a) \tan (\pi a) \cot (\pi a) = 0$$

$$= \frac{26}{6\pi} (2\pi a) \tan (\pi a) \cot (\pi a) = 0$$

$$= \frac{26}{6\pi} (2\pi a) \cot (\pi a) \cot (\pi a) = 0$$

$$= \frac{26}{6\pi} (2\pi a) \cot (\pi a) \cot (\pi a) = 0$$

$$= \frac{26}{6\pi} (2\pi a) \cot (\pi a) \cot (\pi a) = 0$$

$$= \frac{26}{6\pi} (2\pi a) \cot (\pi a) \cot (\pi a) = 0$$

$$= \frac{26}{6\pi} (2\pi a) \cot (\pi a) \cot (\pi a) = 0$$

$$= \frac{26}{6\pi} (2\pi a) \cot (\pi a) \cot (\pi a) = 0$$

$$= \frac{26}{6\pi} (2\pi a) \cot (\pi a) \cot (\pi a) = 0$$

$$= \frac{26}{6\pi} (2\pi a) \cot (\pi a) \cot (\pi a) = 0$$

$$= \frac{26}{6\pi} (2\pi a) \cot (\pi a) \cot (\pi a) = 0$$

$$= \frac{26}{6\pi} (2\pi a) \cot (\pi a) \cot (\pi a) = 0$$

$$= \frac{26}{6\pi} (2\pi a) \cot (\pi a) \cot (\pi a) = 0$$

$$= \frac{26}{6\pi} (2\pi a) \cot (\pi a) \cot (\pi a) = 0$$

$$= \frac{26}{6\pi} (2\pi a) \cot (\pi a) \cot (\pi a) = 0$$

$$= \frac{26}{6\pi} (2\pi a) \cot (\pi a) \cot (\pi a) = 0$$

$$= \frac{26}{6\pi} (2\pi a) \cot (\pi a) \cot (\pi a) = 0$$

$$= \frac{26}{6\pi} (2\pi a) \cot (\pi a) \cot (\pi a) = 0$$

$$= \frac{26}{6\pi} (2\pi a) \cot (\pi a) \cot (\pi a) = 0$$

$$= \frac{26}{6\pi} (2\pi a) \cot (\pi a) \cot (\pi a) = 0$$

$$= \frac{26}{6\pi} (2\pi a) \cot (\pi a) \cot (\pi a) = 0$$

$$= \frac{26}{6\pi} (2\pi a) \cot (\pi a) \cot (\pi a) = 0$$

$$= \frac{26}{6\pi} (2\pi a) \cot (\pi a) \cot (\pi a) = 0$$

$$= \frac{26}{6\pi} (2\pi a) \cot (\pi a) \cot (\pi a) = 0$$

$$= \frac{26}{6\pi} (2\pi a) \cot (\pi a) \cot (\pi a) = 0$$

$$= \frac{26}{6\pi} (2\pi a) \cot (\pi a) \cot (\pi a) = 0$$

$$= \frac{26}{6\pi} (2\pi a) \cot (\pi a) \cot (\pi a) = 0$$

$$= \frac{26}{6\pi} (2\pi a) \cot (\pi a) \cot (\pi a) = 0$$

$$= \frac{26}{6\pi} (2\pi a) \cot (\pi a) \cot (\pi a) = 0$$

$$= \frac{26}{6\pi} (2\pi a) \cot (\pi a) \cot (\pi a) = 0$$

$$= \frac{26}{6\pi} (2\pi a) \cot (\pi a) \cot (\pi a) = 0$$

$$= \frac{26}{6\pi} (2\pi a) \cot (\pi a) \cot (\pi a) \cot$$



# 3.- Para cada función mostrada. Determine la ecuación de la recta tangente en los puntos señalados (ver figura),

Parábola



Circunferencia



Hipérbola rotada



Parabola (6,1)

Parabola (6,1)

$$(3-3)^2 = 4(4-5)$$
 $(3-3)^2 = 4(4-5)$ 
 $3^2 - 63 + 9 = 44 - 20$ 
 $3 = 29/4 + 1/4 - 3^2 - 3/2 = 3$ 
 $3 = 29/4 + 1/4 - 3^2 - 3/2 = 3$ 
 $3 = 29/4 + 1/4 - 3^2 = 3+$ 
 $3x + 3 + (2x + 6) = 3x = 0$ 
 $(x+2)^2 + (x-3)^2 = 3+$ 
 $2x + 3 + (2x + 6) = 3x = 0$ 
 $(x+2)^2 + (x-3)^2 = 3+$ 
 $3x = 2x + 6 = 3x = 2x - 4$ 

Herebola votada (1,1)

 $x = 2$ 
 $3x = 2x - 4$ 
 $3x = 2x - 4$ 



### 4.- Resuelva los siguientes ejercicios de razón de cambio

- a) El radio r de una esfera está creciendo a razón de 3 cm/min. Calcular la razón de cambio del volumen cuando r = 9 cm.
- b) Una escalera de 25 pies de longitud está apoyada sobre una pared (ver figura). Su base se desliza por la pared a razón de 2 pies por segundo.

¿A qué razón está bajando su extremo superior por la pared cuando la base está a 7 pies de la pared?

25 pies





### 5.- Resuelva los siguientes ejercicios de optimización.

- a) Un rectángulo se inscribe en un semicírculo de radio, como se muestra en la figura.
- ¿Cuáles son las dimensiones del rectángulo, si su área debe maximizarse?
- b) Una función de precio, p, está definida por

Dado x>0 es el número de unidades. ¿Para qué número x el ingreso marginal es el máximo?

c) Una masa conectada a un resorte se mueve a lo largo del eje, de modo que su abscisa en el tiempo t es. ¿Cuál es la mayor distancia del origen que alcanza la masa?

a) 
$$A - x \sqrt{R^2 - x^2}$$

b)  $3x = 60 + 12x - x^2$ 
 $3x - 60 - 12x + x^2 = 0$ 
 $x^2 - 9x - 60 = 0$ 
 $x = -60 \pm \sqrt{(-9)^2 - 4(1)(-60)}$ 
 $x = 0 \pm \sqrt{8} + 240 = 0$ 
 $x = 0 \pm \sqrt{8} + 240 = 0$ 
 $x = 0 \pm \sqrt{3} = 13,458$ 
 $x = 0 \pm \sqrt{3} = 13,458$ 



6.- Bosquejar las gráficas de las siguientes funciones (mostrar todos los puntos).

$$f(x) = 3x^4 - 4x^3 - 12x^2 + 17$$
  $f(x) = \frac{x^2 + 1}{x^2 - 1}$ 

a) 
$$\frac{1}{2}(x) = 3x^{4} - 4x^{3} - 12x + 17$$
 $\frac{1}{2}(x) = 12x^{2} - 12x^{2} - 24x // R$ 

2 (x) =  $x \in R$ 

• Minima relativo  $x = 0$ 

• Minima relativo  $x = 1$ 

• Intersetam an  $y = 17$ 

• Minima relativo  $x = 2$ 

b)  $\frac{1}{2}(x) = \frac{x^{2} + 1}{x^{2} - 1}$ 

•  $\frac{x^{2} + 1}{x^{2} - 1}$ 

•  $\frac{x^{2} + 1}{(x^{2} - 1)^{2}}$ 

• Minimo relativo  $x = 0$ 

• Asimtota scatical  $x = 1$ ;  $x = 1$ 

• Raintota besignated

• Rox //