Quiz 5

Chemistry 3BB3; Winter 2006

		and the second	lence on \hbar , e , m_e , etc		
	2,3.	_	electronic energy of the hydrogonis the ground state wave function		
4,5. What is the ground state electronic energy of the hydrogen molecule cation, H ₂ ⁺ , in separated atom limit? What is the ground state wave function? (You can use at units in this problem.)					
	6-10.	Complete the following t ground states.	able by filling in the appropria	te properties for the molecular	
L	Mole	ecule	Bond Order	Multiplicity	
	H_2				
	He ₂				
	Li ₂				
	Be ₂				
	B_2				

 C_2

 N_2

 O_2

 F_2

Ne₂

Quiz 5

Chemistry 3BB3; Winter 2006

1. Write the electronic Schrödinger equation for the hydrogen molecule cation, H_2^+ , in SI units, showing the dependence on \hbar , e, m_e , etc..

$$\left(-\frac{\hbar^{2}}{2m_{e}}\nabla^{2}-\frac{e^{2}}{4\pi\varepsilon_{0}r_{l}}--\frac{e^{2}}{4\pi\varepsilon_{0}r_{r}}\right)\psi\left(r_{l},r_{r},\phi\right)=E\psi\left(r_{l},r_{r},\phi\right)$$

where r_i and r_r are the distances from the "left" and "right" nuclei, respectively

2,3. What is the ground state electronic energy of the hydrogen molecule cation, H_2^+ , in the united atom limit? What is the ground state wave function? (You can use atomic units in this problem.)

$$\begin{array}{l} E_{\scriptscriptstyle u.a.} = -\frac{2^2}{2} = -2 \ {\rm Hartree} \\ \psi_{\scriptscriptstyle u.a.} \propto e^{-2r} \end{array}$$

4,5. What is the ground state electronic energy of the hydrogen molecule cation, H_2^+ , in the separated atom limit? What is the ground state wave function? (You can use atomic units in this problem.)

$$E_{sep.a.} = -.5$$
 Hartree
$$\psi_{\text{sep.a.}} \propto \left(ce^{-\eta} \pm \sqrt{1-|c|^2}e^{-r_r}\right)$$
 where r_i and r_r are the distances from the "left" and "right" nuclei, respectively.

6-10. Complete the following table by filling in the appropriate properties for the molecular ground states.

Molecule	Bond Order	Multiplicity	
H_2	1	1	
He ₂	0	1	
Li ₂	1	1	
Be ₂	0	1	
B_2	1	3	
C_2	2	1	
N_2	3	1	
O_2	2	3	
F ₂	1	1	
Ne ₂	0	1	