Coordination Detection

Lorenzo Cima

lorenzo.cima@phd.unipi.it; lorenzo.cima@iit.cnr.it

Coordinated Behaviour

- **Direct interactions:** voluntary interactions done with a direct action (message, follower...)
- Indirect interactions: interactions between users based on similar behaviours (co-actions)
- Co-actions: two actions of the same type performed by two different users, such as re-sharing a post, or sharing a post with the same URL or mention.

Detection Frameworks

- Pacheco method
 - Bipartite graph

Pacheco, Diogo, et al. "Uncovering coordinated networks on social media: methods and case studies."

Proceedings of the international AAAI conference on web and social media. Vol. 15, 2021.

- Nizzoli method
 - Complete weighted network

Nizzoli, Leonardo, et al. "Coordinated behavior on social media in 2019 UK general election." Proceedings of the International AAAI Conference on Web and Social Media. Vol. 15. 2021.

Weber framework

Weber, Derek, and Frank Neumann. "Amplifying influence through coordinated behaviour in social networks." Social Network Analysis and Mining 11.1 (2021).

1 Extract co-actions

Convert social media posts to a set of one or more interesting actions and define the corresponding set of co-actions

2 Define time windows

Why? Temporal Analysis, Orchestration,
Decrease Network Size (computational limits)

2 Define time windows

The time windows may overlap (sliding window) or be adjacent
We validate a co-action only if composed of two actions
occurring within the time window

(3) Build Latent Coordination Networks (LCNs)

On each time window an LCN is extracted

Latent Coordination Network

The Latent Coordination Network (LCN) is a weighted network built in this way: when two users do a co-action, they become nodes and an edge connects them.

The higher the number of co-actions, the higher the edge weight

4 Network filtering

The network is filtered using a variant of the Focal Structural Analysis (FSA) algorithm provided by the authors
In the end, on each time window we obtain Highly Coordinated Communities (HCCs)

All the HCCs are combined to obtain a unique merged network, which accounts for all the time windows

6 Find coordinated communities

The authors use the Louvain algorithm to find coordinated communities

Charachterization Task

Lack of Ground Truth

- Harmfulness
- Authenticity
- Orchestration

The content is not the focus anymore, but it is a proxy for insights into the type of coordination and the intent of an orchestrated campaign

Harmfulness Proxies

Topic-modelling

News URLs Shared

Propaganda

Inauthenticity Proxies

Bot Detection

Data Collection

Troll Detection

Other Characterizations

Political Leaning

Network Measures

Polarization

Ground-Truth Characterization

Presence of a Ground Truth

 Clustering quality for labelled data

The results should be compared with the ground truth, to evaluate clustering quality

Ground-Truth Characterization

Cima, Lorenzo, et al. "Coordinated Behaviors in Information Operations on Twitter." IEEE Access. 2024.

How can we define a good clustering result for labelled data?

Perfect clustering: one cluster for each type, composed only of elements of that type

Example: we have 3 clusters and the division (blue, green, red) perfectly match the type labelling (type 1, type 2, type 3)

Perfect clustering!

We have three red nodes graphically into the green cluster. Is that a problem for clustering quality?

The visual position of the nodes doesn't matter, if we have labelled data!
We only need to check that red nodes have really the red label

How can we define a good clustering result for labelled data?

Perfect clustering: one cluster for each type, composed only by elements of that type

Example: we have 3 clusters, but only two different labels (type 1 and type 2)

No perfect clustering!

Good quality because type 1 nodes and type 2 nodes are not mixed

 How can we define a good clustering result for labelled data?

Perfect clustering: one cluster for each type, composed only of elements of that type

Example: we have 3 clusters, but only two different labels (type 1 and type 2)

No perfect clustering!

Low quality because type 1 nodes and type 2 nodes are mixed, we have elements of the three clusters for each of them

Clustering quality

RAND INDEX

C: ground truth assignment

K: clustering assignment

a: pairs of elements that are in the same set in C and in the same set in K

b: pairs of elements that are in different sets in C and in different sets in K

 $C_2^{n_{samples}}$: number of possible unordered pairs in the dataset

$$RI = \frac{a+b}{C_2^{n_{samples}}}$$

Homogeneity and Completeness

Homogeneity: a measure that identifies if each cluster contains only members of a single type

Completeness: a measure that identifies if all members of a given type are assigned to the same cluster

A good clustering is homogeneous and complete

V_measure: harmonic mean between homogeneity and completeness, weighted by β factor

$$v = \frac{(1+\beta) \times \text{homogeneity} \times \text{completeness}}{(\beta \times \text{homogeneity} + \text{completeness})}$$

Homogeneity: each cluster contains only members of a single type?

Completeness: all members of a given type are assigned to the same cluster?

Fowlkes-Mallows index

TP: pairs that belong to the same clusters in both the ground-truth labels and the predicted labels

FP: pairs that belong to the same clusters in the ground-truth labels and not in the predicted labels (incomplete)

FN: pairs that belong in the same clusters in the predicted labels and not in the ground-truth labels (not homogeneous)

$$\mathrm{FMI} = \frac{\mathrm{TP}}{\sqrt{(\mathrm{TP} + \mathrm{FP})(\mathrm{TP} + \mathrm{FN})}}$$

Case study: Inauthentic information operations provided by Twitter

Usage of Weber's detection framework

Cima, L., Mannocci, L., Avvenuti, M., Tesconi, M., Cresci S. (2024). Coordinated Behavior in Information Operations on Twitter. IEEE Access. 2024

Malicious Dataset

- Two kinds of datasets: "malicious" (from inauthentic IOs) and "genuine" (from harmless conversations about the same topics)
- Twitter provides malicious datasets about discovered inauthentic IOs, to be used as a ground truth for analyses
- Honduras campaign: compulsive retweeting of president's communications (@JuanOrlandoH)

Honduras

Genuine Dataset

Twitter provides only "malicious" datasets, used as a ground truth.
 The counterpart has to be built using search APIs

- TOP-N used hashtag strategy
- The number N of considered hashtags depends on a virtual machine's capacity for analysis (about 3M tweets)
- Policy "all or nothing" when the limit of tweets is reached

Hashtag	# Tweets	Partial	
Bad Dataset	137K	137K	
AlivioDeDeuda	5K	142K	
${\bf ParqueVidaMejor}$	2K	144K	
${\bf Navidad Catracha}$	8K	152K	
${\bf Honduras En La ONU}$	3K	$155\mathrm{K}$	
${\it Fiestas Patrias} 2019$	38K	193K	
VivaHonduras	3K	196K	
VidaMejor	7K	203K	
EEUU	1M	1,2M	
${\bf Feriado Morazanico}$	3K	1,2M	
PCAs	> 9M	> 10M	

Honduras

Isolate inauthentic coordinated communities (malicious) from the authentic ones (genuine) using network science

- Computational Time
- Memory
- Disk
- Connectivity

•

- Retweets used as interaction primitive
- 980K (77% of the whole dataset) retweets

- The datasets are divided into non-overlapping time windows
- Time window: a week

Latent Coordination Networks (LCNs)

Timestamp	Source	Target	Inter.	rt_id	ot_id	Good
1569438480	1156602892515770000	170713179	RT	1176936531606600000	1176899571747840000	0
1569438480	115730566536788000	58244743	RT	1176936457547800000	1166897869363760000	0
1569438480	1119109982803210000	58244743	RT	1176936656366110000	1166897869363760000	1
1569438481	796621164667895000	141493488	RT	1176936649231650000	1176581575024300000	1
1569438482	796621164667895000	1059436475476030000	RT	1176936622954350000	1176706264816130000	1

- If two different sources retweet the same tweet (same ot_id), they become nodes on the network (co-retweet)
- An edge connects the two nodes
- The higher the number of co-retweets, the higher the edge weight
- One LCN graph for each time window

Network filtering

 First, a threshold filtering to delete edges with low weights (random connections)

- Then a complex filtering step, based on the FSA_V algorithm, to obtain highly coordinated communities (HCCs) from all the 17 LCN graphs
- One HCC graph for each time window

Merged Coordination Network

 Final merge of the HCC graphs, to obtain a single HCCs graph, which covers the whole analyzed period

Merge done using inference rules

Characterization Task

Perfect clustering: one cluster for each class, composed only by elements of that class

In our binary example, perfect clustering is obtained if we have only two communities: one contains only malicious (red) nodes, and the other only genuine (green) nodes

https://github.com/weberdc/find_hccs