CS 224n: Assignment #4

This assignment is split into two sections: Neural Machine Translation with RNNs and Analyzing NMT Systems. The first is primarily coding and implementation focused, whereas the second entirely consists of written, analysis questions. If you get stuck on the first section, you can always work on the second as the two sections are independent of each other. Note that the NMT system is more complicated than the neural networks we have previously constructed within this class and takes about 2 hours to train on a GPU. Thus, we strongly recommend you get started early with this assignment. Finally, the notation and implementation of the NMT system is a bit tricky, so if you ever get stuck along the way, please come to Office Hours so that the TAs can support you.

1. Neural Machine Translation with RNNs (45 points)

In Machine Translation, our goal is to convert a sentence from the *source* language (e.g. Mandarin Chinese) to the *target* language (e.g. English). In this assignment, we will implement a sequence-to-sequence (Seq2Seq) network with attention, to build a Neural Machine Translation (NMT) system. In this section, we describe the **training procedure** for the proposed NMT system, which uses a Bidirectional LSTM Encoder and a Unidirectional LSTM Decoder.

Figure 1: Seq2Seq Model with Multiplicative Attention, shown on the third step of the decoder. Hidden states $\mathbf{h}_i^{\text{enc}}$ and cell states $\mathbf{c}_i^{\text{enc}}$ are defined on the next page.

Model description (training procedure)

Given a sentence in the source language, we look up the character or word embeddings from an **embeddings matrix**, yielding $\mathbf{x}_1, \dots, \mathbf{x}_m$ ($\mathbf{x}_i \in \mathbb{R}^{e \times 1}$), where m is the length of the source sentence and e is

the embedding size. We then feed the embeddings to a **convolutional layer** 1 while maintaining their shapes. We feed the convolutional layer outputs to the **bidirectional encoder**, yielding hidden states and cell states for both the forwards (\rightarrow) and backwards (\leftarrow) LSTMs. The forwards and backwards versions are concatenated to give hidden states $\mathbf{h}_i^{\text{enc}}$ and cell states $\mathbf{c}_i^{\text{enc}}$:

$$\mathbf{h}_{i}^{\text{enc}} = [\overleftarrow{\mathbf{h}_{i}^{\text{enc}}}; \overrightarrow{\mathbf{h}_{i}^{\text{enc}}}] \text{ where } \mathbf{h}_{i}^{\text{enc}} \in \mathbb{R}^{2h \times 1}, \overleftarrow{\mathbf{h}_{i}^{\text{enc}}}, \overrightarrow{\mathbf{h}_{i}^{\text{enc}}} \in \mathbb{R}^{h \times 1}$$

$$1 \le i \le m$$
 (1)

$$\mathbf{c}_{i}^{\text{enc}} = [\overleftarrow{\mathbf{c}_{i}^{\text{enc}}}; \overrightarrow{\mathbf{c}_{i}^{\text{enc}}}] \text{ where } \mathbf{c}_{i}^{\text{enc}} \in \mathbb{R}^{2h \times 1}, \overleftarrow{\mathbf{c}_{i}^{\text{enc}}}, \overrightarrow{\mathbf{c}_{i}^{\text{enc}}} \in \mathbb{R}^{h \times 1}$$

$$1 \leq i \leq m$$
 (2)

We then initialize the **decoder**'s first hidden state $\mathbf{h}_0^{\mathrm{dec}}$ and cell state $\mathbf{c}_0^{\mathrm{dec}}$ with a linear projection of the encoder's final hidden state and final cell state.²

$$\mathbf{h}_0^{\text{dec}} = \mathbf{W}_h[\overleftarrow{\mathbf{h}}_1^{\text{enc}}; \overrightarrow{\mathbf{h}}_m^{\text{enc}}] \text{ where } \mathbf{h}_0^{\text{dec}} \in \mathbb{R}^{h \times 1}, \mathbf{W}_h \in \mathbb{R}^{h \times 2h}$$
(3)

$$\mathbf{c}_0^{\text{dec}} = \mathbf{W}_c[\overleftarrow{\mathbf{c}}_1^{\text{enc}}; \overleftarrow{\mathbf{c}}_m^{\text{enc}}] \text{ where } \mathbf{c}_0^{\text{dec}} \in \mathbb{R}^{h \times 1}, \mathbf{W}_c \in \mathbb{R}^{h \times 2h}$$

$$\tag{4}$$

With the decoder initialized, we must now feed it a target sentence. On the t^{th} step, we look up the embedding for the t^{th} subword, $\mathbf{y}_t \in \mathbb{R}^{e \times 1}$. We then concatenate \mathbf{y}_t with the *combined-output vector* $\mathbf{o}_{t-1} \in \mathbb{R}^{h \times 1}$ from the previous timestep (we will explain what this is later down this page!) to produce $\overline{\mathbf{y}_t} \in \mathbb{R}^{(e+h) \times 1}$. Note that for the first target subword (i.e. the start token) \mathbf{o}_0 is a zero-vector. We then feed $\overline{\mathbf{y}_t}$ as input to the decoder.

$$\mathbf{h}_{t}^{\text{dec}}, \mathbf{c}_{t}^{\text{dec}} = \text{Decoder}(\overline{\mathbf{y}_{t}}, \mathbf{h}_{t-1}^{\text{dec}}, \mathbf{c}_{t-1}^{\text{dec}}) \text{ where } \mathbf{h}_{t}^{\text{dec}} \in \mathbb{R}^{h \times 1}, \mathbf{c}_{t}^{\text{dec}} \in \mathbb{R}^{h \times 1}$$
 (5)

(6)

We then use $\mathbf{h}_t^{\text{dec}}$ to compute multiplicative attention over $\mathbf{h}_1^{\text{enc}}, \dots, \mathbf{h}_m^{\text{enc}}$:

$$\mathbf{e}_{t,i} = (\mathbf{h}_t^{\text{dec}})^T \mathbf{W}_{\text{attProj}} \mathbf{h}_i^{\text{enc}} \text{ where } \mathbf{e}_t \in \mathbb{R}^{m \times 1}, \mathbf{W}_{\text{attProj}} \in \mathbb{R}^{h \times 2h}$$
 $1 \le i \le m$ (7)

$$\alpha_t = \operatorname{softmax}(\mathbf{e}_t) \text{ where } \alpha_t \in \mathbb{R}^{m \times 1}$$
 (8)

$$\mathbf{a}_{t} = \sum_{i=1}^{m} \alpha_{t,i} \mathbf{h}_{i}^{\text{enc}} \text{ where } \mathbf{a}_{t} \in \mathbb{R}^{2h \times 1}$$
(9)

 $\mathbf{e}_{t,i}$ is a scalar, the *i*th element of $\mathbf{e}_t \in \mathbb{R}^{m \times 1}$, computed using the hidden state of the decoder at the *t*th step, $\mathbf{h}_t^{\text{dec}} \in \mathbb{R}^{h \times 1}$, the attention projection $\mathbf{W}_{\text{attProj}} \in \mathbb{R}^{h \times 2h}$, and the hidden state of the encoder at the *i*th step, $\mathbf{h}_t^{\text{enc}} \in \mathbb{R}^{2h \times 1}$.

We now concatenate the attention output \mathbf{a}_t with the decoder hidden state $\mathbf{h}_t^{\text{dec}}$ and pass this through a linear layer, tanh, and dropout to attain the *combined-output* vector \mathbf{o}_t .

$$\mathbf{u}_t = [\mathbf{a}_t; \mathbf{h}_t^{\text{dec}}] \text{ where } \mathbf{u}_t \in \mathbb{R}^{3h \times 1}$$
 (10)

$$\mathbf{v}_t = \mathbf{W}_u \mathbf{u}_t \text{ where } \mathbf{v}_t \in \mathbb{R}^{h \times 1}, \mathbf{W}_u \in \mathbb{R}^{h \times 3h}$$
 (11)

$$\mathbf{o}_t = \operatorname{dropout}(\tanh(\mathbf{v}_t)) \text{ where } \mathbf{o}_t \in \mathbb{R}^{h \times 1}$$
 (12)

 $^{^{1}} Checkout \ https://cs231n.github.io/convolutional-networks \ for \ an \ in-depth \ description \ for \ convolutional \ layers \ if \ you \ are not familiar$

²If it's not obvious, think about why we regard $[\overleftarrow{\mathbf{h}_1^{\text{enc}}}, \overrightarrow{\mathbf{h}_m^{\text{enc}}}]$ as the 'final hidden state' of the Encoder.

CS 224n Assignment 4 Page 3 of 11

Then, we produce a probability distribution \mathbf{P}_t over target subwords at the t^{th} timestep:

$$\mathbf{P}_t = \operatorname{softmax}(\mathbf{W}_{\text{vocab}} \mathbf{o}_t) \text{ where } \mathbf{P}_t \in \mathbb{R}^{V_t \times 1}, \mathbf{W}_{\text{vocab}} \in \mathbb{R}^{V_t \times h}$$
 (13)

Here, V_t is the size of the target vocabulary. Finally, to train the network we then compute the cross entropy loss between \mathbf{P}_t and \mathbf{g}_t , where \mathbf{g}_t is the one-hot vector of the target subword at timestep t:

$$J_t(\theta) = \text{CrossEntropy}(\mathbf{P}_t, \mathbf{g}_t)$$
 (14)

Here, θ represents all the parameters of the model and $J_t(\theta)$ is the loss on step t of the decoder. Now that we have described the model, let's try implementing it for Mandarin Chinese to English translation!

Setting up your Virtual Machine

Follow the instructions in the CS224n Azure Guide (link also provided on website and Ed) in order to create your VM instance. This should take you approximately 45 minutes. Though you will need the GPU to train your model, we strongly advise that you first develop the code locally and ensure that it runs, before attempting to train it on your VM. GPU time is expensive and limited. It takes approximately 1.5 to 2 hours to train the NMT system. We don't want you to accidentally use all your GPU time for debugging your model rather than training and evaluating it. Finally, make sure that your VM is turned off whenever you are not using it.

If your Azure subscription runs out of money, your VM will be temporarily locked and inaccessible. If that happens, please fill out a request form here.

In order to run the model code on your **local** machine, please run the following command to create the proper virtual environment:

```
conda env create --file local_env.yml
```

Note that this virtual environment will not be needed on the VM.

Implementation and written questions

- (a) (2 points) (coding) In order to apply tensor operations, we must ensure that the sentences in a given batch are of the same length. Thus, we must identify the longest sentence in a batch and pad others to be the same length. Implement the pad_sents function in utils.py, which shall produce these padded sentences.
- (b) (3 points) (coding) Implement the ___init___ function in model_embeddings.py to initialize the necessary source and target embeddings.
- (c) (4 points) (coding) Implement the ___init___ function in nmt_model.py to initialize the necessary model layers (LSTM, CNN, projection, and dropout) for the NMT system.
- (d) (8 points) (coding) Implement the encode function in nmt_model.py. This function converts the padded source sentences into the tensor \mathbf{X} , generates $\mathbf{h}_1^{\mathrm{enc}}, \dots, \mathbf{h}_m^{\mathrm{enc}}$, and computes the initial state $\mathbf{h}_0^{\mathrm{dec}}$ and initial cell $\mathbf{c}_0^{\mathrm{dec}}$ for the Decoder. You can run a non-comprehensive sanity check by executing:

```
python sanity_check.py 1d
```

(e) (8 points) (coding) Implement the decode function in nmt_model.py. This function constructs $\bar{\mathbf{y}}$ and runs the step function over every timestep for the input. You can run a non-comprehensive sanity check by executing:

```
python sanity_check.py 1e
```

(f) (10 points) (coding) Implement the step function in nmt_model.py. This function applies the Decoder's LSTM cell for a single timestep, computing the encoding of the target subword $\mathbf{h}_t^{\text{dec}}$, the attention scores \mathbf{e}_t , attention distribution α_t , the attention output \mathbf{a}_t , and finally the combined output \mathbf{o}_t . You can run a non-comprehensive sanity check by executing:

```
python sanity_check.py 1f
```

(g) (3 points) (written) The generate_sent_masks() function in nmt_model.py produces a tensor called enc_masks. It has shape (batch size, max source sentence length) and contains 1s in positions corresponding to 'pad' tokens in the input, and 0s for non-pad tokens. Look at how the masks are used during the attention computation in the step() function (lines 311-312).

First explain (in around three sentences) what effect the masks have on the entire attention computation. Then explain (in one or two sentences) why it is necessary to use the masks in this way.

Solution:

- 1. By setting the attention scores corresponding to the padding tokens to $-\infty$ before softmax, the softmax function will assign them a probability of 0. This prevent the attention mechanism from attending to the padding tokens in the source sentence.
- 2. It is necessary to use the masks in this way because the padding tokens do not contain any information about the source sentence, and the attention mechanism should not attend to the padding tokens in the source sentence.
- 3. If the attention mechanism attends to the padding tokens, it will suffer from the noise introduced by the padding tokens, and it may not be able to learn the correct alignment between the source and target sentences.

Now it's time to get things running! As noted earlier, we recommend that you develop the code on your personal computer. Confirm that you are running in the proper conda environment and then execute the following command to train the model on your local machine:

```
sh run.sh train_local
(Windows) run.bat train local
```

For a faster way to debug by training on less data, you can run the following instead:

```
sh run.sh train_debug
(Windows) run.bat debug
```

To help with monitoring and debugging, the starter code uses tensorboard to log loss and perplexity during training using TensorBoard³. TensorBoard provides tools for logging and visualizing training information from experiments. To open TensorBoard, run the following in your conda environment:

```
tensorboard --logdir=runs
```

³https://pytorch.org/docs/stable/tensorboard.html

You should see a significant decrease in loss during the initial iterations. Once you have ensured that your code does not crash (i.e. let it run till iter 10 or iter 20), power on your VM from the Azure Web Portal. Then read the *Managing Code Deployment to a VM* section of our Practical Guide to VMs (link also given on website and Ed) for instructions on how to upload your code to the VM.

Next, install necessary packages to your VM by running:

```
pip install -r gpu_requirements.txt
```

Finally, turn to the *Managing Processes on a VM* section of the Practical Guide and follow the instructions to create a new tmux session. Concretely, run the following command to create tmux session called nmt.

```
tmux new -s nmt
```

Once your VM is configured and you are in a tmux session, execute:

```
sh run.sh train
(Windows) run.bat train
```

Once you know your code is running properly, you can detach from session and close your ssh connection to the server. To detach from the session, run:

```
tmux detach
```

You can return to your training model by ssh-ing back into the server and attaching to the tmux session by running:

```
tmux a -t nmt
```

(h) (3 points) (written) Once your model is done training (this should take under 2 hours on the VM), execute the following command to test the model:

```
sh run.sh test
(Windows) run.bat test
```

Please report the model's corpus BLEU Score. It should be larger than 18.

Solution:

- (i) (4 points) (written) In class, we learned about dot product attention, multiplicative attention, and additive attention. As a reminder, dot product attention is $\mathbf{e}_{t,i} = \mathbf{s}_t^T \mathbf{h}_i$, multiplicative attention is $\mathbf{e}_{t,i} = \mathbf{s}_t^T \mathbf{W} \mathbf{h}_i$, and additive attention is $\mathbf{e}_{t,i} = \mathbf{v}^T \tanh(\mathbf{W}_1 \mathbf{h}_i + \mathbf{W}_2 \mathbf{s}_t)$.
 - i. (2 points) Explain one advantage and one disadvantage of dot product attention compared to multiplicative attention.
 - ii. (2 points) Explain one advantage and one disadvantage of additive attention compared to multiplicative attention.

Solution:

Advantage: Dot product attention is faster and more memory efficient to compute than
multiplicative attention because it does not require an additional matrix multiplication.
And the matrix W may have a large number of parameters according to the dimension of
the hidden state, which may consume a lot of memory.

- Disvantage: Dot product attention can only learn a **hard** (or **fixed**) alignment between the source and target words because it lacks a learnable weight matrix **W**. In other words, Multiplicative attention can learn more complex attention distributions than dot product attention due to the additional learnable weight matrix.
- ii. Advantage: Additive attention can learn **more complex** and **higher abstract** attention distributions than multiplicative attention because it has a additional feed-forward neural network layer, which introduce non-linearity to the attention distribution.
 - Disvantage: Additive attention is **slower** to compute than multiplicative attention because it requires additional layer of computation. And it may suffer from the **valishing gradient** problem because of the activation function tanh.

2. Analyzing NMT Systems (25 points)

(a) (3 points) Look at the src.vocab file for some examples of phrases and words in the source language vocabulary. When encoding an input Mandarin Chinese sequence into "pieces" in the vocabulary, the tokenizer maps the sequence to a series of vocabulary items, each consisting of one or more characters (thanks to the sentencepiece tokenizer, we can perform this segmentation even when the original text has no white space). Given this information, how could adding a 1D Convolutional layer after the embedding layer and before passing the embeddings into the bidirectional encoder help our NMT system? Hint: each Mandarin Chinese character is either an entire word or a morpheme in a word. Look up the meanings of 电, 脑, and 电脑 separately for an example. The characters 电 (electricity) and 脑 (brain) when combined into the phrase 电脑 mean computer.

Solution: The 1D Convolutional layer gives the MT system the ability to learn to recognize local dependencies and specific compositions between tokens. For example, the 1D Convolutional layer can learn to recognize that the characters "电" and "脑" are often used together to form the word "电脑" (computer) rather than being used separately to mean "electricity" and "brain" respectively. The CNN layer can also help the model to guess the meaning of tokens that it has never seen before. For example, it may be able to recognize the words "电视" (television) and "电话" (telephone) as similar words (or have the same POS) to "电脑", since both words share the morpheme "电" (electricity). And it may be able to aware the token "首" (head) has a special meaning of "first" or "chief" when it is often used in the phrase "首相" (prime minister), "首都" (capital city), "首脑" (leader), "首要" (primary), etc.

- (b) (8 points) Here we present a series of errors we found in the outputs of our NMT model (which is the same as the one you just trained). For each example of a reference (i.e., 'gold') English translation, and NMT (i.e., 'model') English translation, please:
 - 1. Identify the error in the NMT translation.
 - 2. Provide possible reason(s) why the model may have made the error (either due to a specific linguistic construct or a specific model limitation).
 - 3. Describe one possible way we might alter the NMT system to fix the observed error. There are more than one possible fixes for an error. For example, it could be tweaking the size of the hidden layers or changing the attention mechanism.

Below are the translations that you should analyze as described above. Only analyze the underlined error in each sentence. Rest assured that you don't need to know Mandarin to answer these questions. You just need to know English! If, however, you would like some additional color on the source sentences, feel free to use a resource like https://www.archchinese.com/chinese_english_

dictionary.html to look up words. Feel free to search the training data file to have a better sense of how often certain characters occur.

i. (2 points) Source Sentence: 贼人其后被警方拘捕及被判处盗窃罪名成立。

Reference Translation: the culprits were subsequently arrested and convicted.

NMT Translation: the culprit was subsequently arrested and sentenced to theft.

Solution:

- Error: The model uses the singular form of the word "culprit" instead of the plural form.
- Possible Reason: The word "贼人" often appears in the training data as a singular word, so the model may have learned to use the singular form of the word.
- Possible Fix: We can try to add more training data to the model, so that it can learn to use the plural form of the word "culprit".
- ii. (2 points) Source Sentence: 几乎已经没有地方容纳这些人, 资源已经用尽。

Reference Translation: there is almost no space to accommodate these people, and resources have run out.

NMT Translation: the resources have been exhausted and resources have been exhausted.

Solution:

- Error: The model repeats the sentence "resources have been exhausted".
- Possible Reason: The model gives significant attention to the second sentence in the source sentence, which is "资源已经用尽" (resources have been exhausted).
- Possible Fix: We can try to use a different attention mechanism, such as the Transformer's multi-head attention mechanism, which allows the model to attend to different parts of the source sentence at the same time. Or we can add more beam search candidates to the decoding process, which may help the model to find a better translation. Or we can introduce a penalty term to the loss function to prevent repeated translations.
- iii. (2 points) Source Sentence: 当局已经宣布今天是国殇日。

Reference Translation: authorities have announced a national mourning today.

NMT Translation: the administration has announced today's day.

Solution:

- Error: The model translates "国殇日" (national mourning day) as "today's day".
- Possible Reason: The model failed to recognize the word "国殇日" (national mourning day) as a noun phrase.
- Possible Fix: Add more training data or increase the size of the vocabulary, so that the model can learn to recognize these specific noun phrases.
- iv. (2 points) Source Sentence⁴: 俗语有云:"唔做唔错"。

Reference Translation: <u>"act not, err not"</u>, so a saying goes.

NMT Translation: as the saying goes, "it's not wrong."

Solution:

⁴This is a Cantonese sentence! The data used in this assignment comes from GALE Phase 3, which is a compilation of news written in simplified Chinese from various sources scraped from the internet along with their translations. For more details, see https://catalog.ldc.upenn.edu/LDC2017T02.

- Error: The model could not understand the Chinese idiom "唔做唔错" (act not, err not).
- **Possible Reason**: The source sentence is extremely rare in the training data. The model failed to understand these type of domain-specific idioms.
- **Possible Fix**: Provide more training data contains these type of domain-specific idioms. Or fine-tune the pre-trained model on the target domain.
- (c) (14 points) BLEU score is the most commonly used automatic evaluation metric for NMT systems. It is usually calculated across the entire test set, but here we will consider BLEU defined for a single example.⁵ Suppose we have a source sentence \mathbf{s} , a set of k reference translations $\mathbf{r}_1, \ldots, \mathbf{r}_k$, and a candidate translation \mathbf{c} . To compute the BLEU score of \mathbf{c} , we first compute the modified n-gram precision p_n of \mathbf{c} , for each of n = 1, 2, 3, 4, where n is the n in n-gram:

$$p_n = \frac{\sum_{\substack{\text{ngram} \in \mathbf{c}}} \min \left(\max_{i=1,\dots,k} \text{Count}_{\mathbf{r}_i}(\text{ngram}), \text{ Count}_{\mathbf{c}}(\text{ngram}) \right)}{\sum_{\substack{\text{ngram} \in \mathbf{c}}} \text{Count}_{\mathbf{c}}(\text{ngram})}$$
(15)

Here, for each of the n-grams that appear in the candidate translation \mathbf{c} , we count the maximum number of times it appears in any one reference translation, capped by the number of times it appears in \mathbf{c} (this is the numerator). We divide this by the number of n-grams in \mathbf{c} (denominator).

Next, we compute the *brevity penalty* BP. Let len(c) be the length of **c** and let len(r) be the length of the reference translation that is closest to len(c) (in the case of two equally-close reference translation lengths, choose len(r) as the shorter one).

$$BP = \begin{cases} 1 & \text{if } len(c) \ge len(r) \\ \exp\left(1 - \frac{len(r)}{len(c)}\right) & \text{otherwise} \end{cases}$$
 (16)

Lastly, the BLEU score for candidate \mathbf{c} with respect to $\mathbf{r}_1, \dots, \mathbf{r}_k$ is:

$$BLEU = BP \times \exp\left(\sum_{n=1}^{4} \lambda_n \log p_n\right)$$
 (17)

where $\lambda_1, \lambda_2, \lambda_3, \lambda_4$ are weights that sum to 1. The log here is natural log.

i. (5 points) Please consider this example:

Source Sentence s: 需要有充足和可预测的资源。

Reference Translation \mathbf{r}_1 : resources have to be sufficient and they have to be predictable

Reference Translation \mathbf{r}_2 : adequate and predictable resources are required

NMT Translation c_1 : there is a need for adequate and predictable resources

NMT Translation \mathbf{c}_2 : resources be sufficient and predictable to

Please compute the BLEU scores for \mathbf{c}_1 and \mathbf{c}_2 . Let $\lambda_i = 0.5$ for $i \in \{1, 2\}$ and $\lambda_i = 0$ for $i \in \{3, 4\}$ (this means we ignore 3-grams and 4-grams, i.e., don't compute p_3 or p_4). When computing BLEU scores, show your work (i.e., show your computed values for p_1 , p_2 , len(c), len(r) and BP). Note that the BLEU scores can be expressed between 0 and 1 or between 0 and 100. The code is using the 0 to 100 scale while in this question we are using the

⁵This definition of sentence-level BLEU score matches the sentence_bleu() function in the nltk Python package. Note that the NLTK function is sensitive to capitalization. In this question, all text is lowercased, so capitalization is irrelevant. http://www.nltk.org/api/nltk.translate.html#nltk.translate.bleu_score.sentence_bleu

0 to 1 scale. Please round your responses to 3 decimal places.

Which of the two NMT translations is considered the better translation according to the BLEU Score? Do you agree that it is the better translation?

S: 需要有充足和可预测的资源。

- R1: resources have to be sufficient and they have to be predictable
- R2: adequate and predictable resources are required

C: there is a need for adequate and predictable resources

	С	R1	R2	$\max_{i=1,,k} Count_{\mathbf{r}_i}(ngram)$	$\min \left(\max_{l=1,\dots,k} Count_{\mathbf{r}_l}(ngram), Count_{\mathbf{c}}(ngram) \right)$	p_n
1-grar	{"there": 1, "is": 1, "a": 1, "need": 1, "for": 1, "adequate": 1, "and": 1, "predictable": 1, "resources": 1}	"to": 2, "be": 2, "sufficient": 1, "and": 1, "they": 1,	{"adequate": 1, "and": 1, "predictable": 1, "resources": 1, "are": 1, "required": 1}			
		"need": 0, "for": 0, "adequate": 0, "and": 1,	"need": 0, "for": 0, "adequate": 1, "and": 1,		{"there": 0, "is": 0, "a": 0, "need": 0, "for": 0, "adequate": 1, "and": 1, "predictable": 1, "recovered": 1)	$\frac{4}{9}$
2-gran	{"there is": 1, "is a": 1, "a need": 1, "need for": 1, "for adequate": 1, "adequate and": 1, "and predictable": 1, "predictable resources": 1}	{"resources have": 1, "have to": 2, "to be": 2, "be sufficient": 1, "sufficient and": 1, "and they": 1, "they have": 1, "be predictable": 1}	{"adequate and": 1, "and predictable": 1, "predictable resources": 1, "resources are": 1, "are required": 1}			
			{"there is": 0, "is a": 0, "a need": 0, "need for": 0, "for adequate": 0, "adequate and":1, "and predictable": 1, "predictable resources": 1}	{"there is": 0, "is a": 0, "a need": 0, "need for": 0, "for adequate": 0, "adequate and": 1, "and predictable": 1, "predictable resources": 1}	{"there is": 0, "is a": 0, "a need": 0, "need for": 0, "for adequate": 0, "adequate and": 1, "and predictable": 1, "predictable resources": 1}	3 8

Solution:

there is a need for adequate and predictable resources

• len(c): 9

• len(r): 11

• BP: 0.801

• p1: 4/9 = 0.444

• p2: 3/8 = 0.375

• p3: 2/7= 0.286

• BLEU: 0.327

• NLTK BLEU: 0.869

resources be sufficient and predictable to

• len(c): 6

• len(r): 6

• BP: 1.000

• p1: 6/6 = 1.000

• p2: 3/5 = 0.600

• p3: 1/4= 0.250

• BLEU: 0.775

• NLTK BLEU: 0.888

The second translation is considered better according to the BLEU score. I do not agree that it is the better translation. The first translation is more accurate and the second translation is not grammatically correct.

ii. (5 points) Our hard drive was corrupted and we lost Reference Translation \mathbf{r}_1 . Please recompute BLEU scores for \mathbf{c}_1 and \mathbf{c}_2 , this time with respect to \mathbf{r}_2 only. Which of the two NMT translations now receives the higher BLEU score? Do you agree that it is the better translation?

Solution:

• there is a need for adequate and predictable resources

len(c): 9len(r): 6BP: 1.000

p1: 4/9= 0.444
p2: 3/8= 0.375
BLEU: 0.408

• NLTK BLEU: 0.764

resources be sufficient and predictable to

len(c): 6
len(r): 6
BP: 1.000
p1: 3/6= 0.500
p2: 1/5= 0.200
BLEU: 0.316

• NLTK BLEU: 0.627

This time the first translation is considered better according to the BLEU score. I agree that it is the better translation.

iii. (2 points) Due to data availability, NMT systems are often evaluated with respect to only a single reference translation. Please explain (in a few sentences) why this may be problematic. In your explanation, discuss how the BLEU score metric assesses the quality of NMT translations when there are multiple reference transitions versus a single reference translation.

Solution:

- NMT systems evaluated with respect to only a single reference translation may be problematic because the reference translation may vary remarkably from human judgements. And BLEU score depends only on single reference may have a huge difference if the reference translation is different. Therefore, it is hard to evaluate the quality of the translation.
- NMT systems evaluated with respect to multiple reference transitions may be more accurate and robust because the modified n-gram precision p_n is dependent on the maximum number of times it appears in any one reference translation, and the brevity penalty BP is dependent on the length of the reference translation that is closest to the length of the candidate translation. This may reduce the impact of the diversity and bias of the reference translation.
- iv. (2 points) List two advantages and two disadvantages of BLEU, compared to human evaluation, as an evaluation metric for Machine Translation.

Solution:

- Advantages:
 - 1. BLEU is automatic, fast, cheap, scalable and easy to implement, and does not require human intervention.
 - 2. BLEU is language independent, and can be used for any language pair.
 - 3. BLEU is subjective and consistent, while human evaluation is often objective.

- Disadvantages:
 - 1. BLEU depends on position independent n-gram precision, which is not robust and accurate enough, and may not reflect the fluency, adequency and fidelity of the translation.
 - 2. BLEU does not consider the overall meaning and the grammatical correctness of the translation, which is not consistent with human evaluation.
 - 3. BLEU often needs multiple reference translations, which is not always available.

Submission Instructions

You shall submit this assignment on GradeScope as two submissions – one for "Assignment 4 [coding]" and another for 'Assignment 4 [written]":

- 1. Run the collect_submission.sh script on Azure to produce your assignment4.zip file. You can use scp to transfer files between Azure and your local computer.
- 2. Upload your assignment 4.zip file to GradeScope to "Assignment 4 [coding]".
- 3. Upload your written solutions to GradeScope to "Assignment 4 [written]". When you submit your assignment, make sure to tag all the pages for each problem according to Gradescope's submission directions. Points will be deducted if the submission is not correctly tagged.