Operation Analytics & Investagating metric spike case study

PROJECT DESCRIPTION

- As a Data Analyst, I focus on analyzing extensive datasets to extract insights
 that optimize operations. I collaborate with teams across marketing,
 operations, and support to address queries and resolve data-related
 challenges. A key aspect of my work involves diagnosing sudden shifts in
 critical metrics, such as decreases in sales or user engagement.
- Leveraging advanced SQL techniques, I uncover patterns and address data anomalies with precision. These insights support actionable strategies that drive informed decision-making and enhance overall company performance.

APPROACH

- Understanding the data, identify key metrices, using of Adv. SQL queries for analysis, generate actionable insights and communicate findings effectively.
- Using MS Excel's dynamic feature for visualizing the generated actionable insights for the given case studys.

TECH-STACK USED

- SQL -> For querying and analyzing the dataset.
- MySQL Workbench -> Database Management tool used for executing SQL queries and visualizing results.
- MS Excel
- MS PPT

```
15. ENCLOSED BY '''.

16. LINES TERMINATED BY '\n

17. IGNORE I RONS;
```

Case Study 1 -> **Job Data Analysis**

A. Jobs Reviewed Over Time:

select ds, count(job_id)
as jobs_per_day, sum(time_spent)/3600 as time_spent_dayfrom job_data
group by ds
order by ds;

	ds	jobs_per_day	time_spent_day				
•	2020-11-26	1	0.0156				
	2020-11-27	1	0.0289				
	2020-11-28	2	0.0092				
	2020-11-29	1	0.0056				
	2020-11-30	2	0.0111				
	in a						

Case Study 1 -> **Job Data Analysis**

B. Throughput Analysis:

select ds, jobs_reviewed,

avg(jobs_reviewed) over (order by ds rows between 6 preceding and current row) as throughput_7 from (

select ds, count(distinct job_id) as jobs_reviewed from job_data where ds between '2020-11-01' and '2020-11-30'group by ds) as a;

	ds	jobs_reviewed	throughput_7
١	2020-11-26	1	1.0000
	2020-11-27	1	1.0000
	2020-11-28	2	1.3333
	2020-11-29	1	1.2500
	2020-11-30	2	1.4000

Case Study 1 -> **Job Data Analysis**

C. Language Share Analysis:

select language, p.total_per_lan,
 round(p.total_per_lan/t.total_lan *100,2) as
lan_percent_share from(
select language, count(language) as total_per_lan
from job_data
group by language)as p,
(select count(language) as total_lan
from job_data)as t;

	language	total_per_lan	lan_percent_share
١	English	1	14.29
	Hindi	1	14.29
	Persian	3	42.86
	Arabic	1	14.29
	French	1	14.29

Case Study 1 -> Job Data Analysis

D. Duplicate Rows Detection:

select * from

(select *,row_number() over (partition by job_id) as rownum from job_data)

as a

where rownum>1;

	ds	job_id	actor_id	event	language	time_spent	org	rownum
)	2020-11-26	23	1004	skip	Persian	56	A	2
	2020-11-28	23	1005	transfer	Persian	22	D	3

Case Study 2 -> Investigating Metric Spike

#A. Weekly User Engagement:

select extract(week from occurred_at) as weeks,
count(distinct user_id) as no_of_users

from events

where event_type="engagement"

group by weeks

order by weeks;

		1	
	weeks	no_of_users	
•	17	496	
	18	449	
	19	256	
	20	193	
	21	142	
	22	139	
	23	137	
Re	sult 1 ×		

Case Study 2 -> Investigating Metric Spike

#B. User Growth Analysis:

SELECT year, num_week,
num_active_users,SUM(num_active_users) OVER
(ORDER BY year, num_week ROWS BETWEEN
UNBOUNDED PRECEDING AND CURRENT ROW)AS
cumm_active_users FROM(

SELECT EXTRACT(YEAR FROM a.activated_at) AS year, EXTRACT(WEEK FROM a.activated_at) AS num_week, COUNT(DISTINCT user_id) AS num_active_users

FROM users a

GROUP BY year, num_week

ORDER BY year, num_week) AS B;

Case Study 2 -> Investigating Metric Spike

#C. Weekly Retention Analysis:

```
SELECT user id, COUNT(user id) AS no of users, SUM(CASE WHEN
retention week = 1
                                           END) AS per_week_retention
                      THEN 1
                                 ELSE 0
FROM (
SELECT a.user_id,
                      a.signup_week,
                                           b.engagement_week,
DATEDIFF(b.engagement_week, a.signup_week) AS retention_week
          SELECT DISTINCT user_id,
                                          EXTRACT(WEEK FROM
FROM (
occurred_at) AS signup_week
FROM events
WHERE event_type = 'signup_flow'
                                      AND event_name =
                      AND EXTRACT(WEEK FROM occurred_at) = 18 ) a DISTINCT user_id, EXTRACT(WEEK FROM
'complete_signup'
LEFT JOIN ( SELECT DISTINCT user id,
occurred_at) AS engagement_week
FROM events
```

WHERE event_type = 'engagement') b	ON a.user_id = b.user_id)
dGROUP BY user_id		
ORDER BY user_id;		

	1000			7 2 1 1 2
		user_id	no_of_users	per_week_retention
П	•	11919	1	0
П		11920	1	0
		11924	1	0
		11926	1	0
П		11928	1	0
П		11929	1	0
П		11931	1	0
П		11933	1	0
		11936	1	0
	Res	sult 5 ×		

Case Study 2 -> Investigating Metric Spike

#D. Weekly Engagement Per Device:

SELECT year(occurred_at) AS year, week(occurred_at) AS no_of_weeks,

device,

COUNT(DISTINCT user_id) AS no_of_user

FROM events

WHERE event_type = 'engagement'

GROUP BY 1, 2, 3

ORDER BY 1, 2, 3;

	year	no_of_weeks	device	no_of_user
•	2014	17	acer aspire desktop	6
	2014	17	acer aspire notebook	10
	2014	17	amazon fire phone	3
	2014	17	asus chromebook	15
	2014	17	dell inspiron desktop	12
	2014	17	dell inspiron notebook	34
	2014	17	hp pavilion desktop	5
	2014	17	htc one	8
	2014	17	inad air	16
Res	ult 4 ×			

Case Study 2 -> Investigating Metric Spike

#E. Email Engagement Analysis:

Select

week,num_users,time_weekly_digest_sent,time_weekly_digest_sent-lag(time_weekly_digest_sent) over(order by week) as

time_weekly_digest_sent_growth,time_email_open,time_e mail_open-lag(time_email_open) over(order by week) as time_email_open_growth,time_email_clickthrough,time_email_clickthrough-lag(time_email_clickthrough) over

(order by week) as time email clickthrough growth From(

select week(occurred_at)as week,count(distinct user_id) as num_users, sum(if(action='sent_weekly_digest',1,0)) as time_weekly_digest_sent,sum(if(action='email_open',1,0)) as time_email_open,sum(if(action='email_clickthrough',1,0)) as time_email_clickthrough

from email events

group by 1

order by 1) a;

	week	num_users	time_weekly_digest_sent	time_weekly_digest_sent_growth	time_email_open	time_email_open_growth	time_email_dickthrough	time_email_dickthrough_growth
>	17	950	908	NULL	0	NULL	0	NULL
	18	1793	1694	786	0	0	0	0
	19	167	63	-1631	0	0	0	0
	20	186	68	5	0	0	0	0
	21	174	89	21	0	0	0	0
	22	185	89	0	0	0	0	0
	23	196	92	3	0	0	0	0
	24	219	102	10	0	0	0	0
	25	217	102	0	0	0	0	0
Res	ult 3 ×							

RESULT

Operational analytics is pivotal in driving company performance by thoroughly examining end-to-end operations and pinpointing areas for improvement. As a Data Analyst, applying advanced SQL techniques to investigate metric fluctuations is vital for uncovering reasons behind sudden shifts in key metrics like user engagement and sales. By delivering actionable insights from data analysis, departments such as operations, support, and marketing can make well-informed decisions that streamline operations and foster business growth. This structured method not only resolves daily issues but also contributes to strategic planning and ongoing organizational development.