

结构方程模型及其应用 Structural Equation Model and Its Applications

简介

I Introduction

侯傑泰(**侯杰泰**)
Kit-Tai Hau
香港中文大学教育心理系
Educational Psychology Dept,
The Chinese University of Hong Kong
使用时请着明出处

100个推理测验分数

```
21, 31, 32, 05, 06, 09, 10, 22, 29, 18,
11, 01, 39, 92, 23, 27, 93, 97, 30, 02,
96, 40, 53, 78, 04, 98, 36, 07, 08, 24,
54, 55, 77, 99, 34, 03, 86, 87, 59, 60,
15, 62, 63, 43, 52, 28, 79, 58, 65, 95,
81, 85, 57, 14, 17, 33, 16, 19, 20, 37,
25, 69, 84, 61, 64, 68, 70, 42, 45, 72,
83, 89, 44, 38, 47, 71, 00, 73, 12, 35,
82, 56, 75, 41, 46, 49, 50, 94, 66, 67,
76, 51, 88, 90, 74, 13, 26, 80, 48, 91
均值Mean=53,标准差SD(Std Dev)=15
```


100名学生在9个不同学科间的相关系数 (correlation coefficient matrix)

9个不同学科间观察所得的相关矩阵 S

学科	1	2	3	4	5	6	7	8	9
学科1	1.00						-		
学科 2	.12	1.00							
学科3	.08	.08	1.00						
学科4	.50	.11	.08	1.00					
学科5	.48	.03	.12	.45	1.00				
学科6	.07	.46	.15	.08	.11	1.00			
学科7	.05	.44	.15	.12	.12	.44	1.00		
学科 8	.14	.17	.53	.14	.08	.10	.06	1.00	
学科9	.16	.05	.43	.10	.06	.08	.10	.54	1.00

再生/隐含矩阵 (reproduced/implied matrix)

依据输入的相关矩阵 S 和模型 M_1 所得的再生矩阵 Σ

学科	1	2	3	4	5	6	7	8	9
学科1	1.00								
学科 2	.10	1.00							
学科 3	.11	.10	1.00						
学科 4	.50	.09	.10	1.00					
学科5	.48	.09	.09	.45	1.00				
学科6	.10	.46	.10	.09	.09	1.00			
学科 7	.09	.44	.09	.09	.08	.44	1.00		
学科 8	.13	.12	.53	.12	.12	.12	.11	1.00	
学科9	.11	.10	.43	.10	.10	.10	.09	.54	1.00

9个不同学科间观察所得的相关矩阵 8

学科	1	2	3	4	5	6	7	8	9
学科1	1.00						-		
学科 2	.12	1.00							
学科3	.08	.08	1.00						
学科 4	.50	.11	.08	1.00					
学科 5	.48	.03	.12	.45	1.00				
学科 6	.07	.46	.15	.08	.11	1.00			
学科7	.05	.44	.15	.12	.12	.44	1.00		
学科8	.14	.17	.53	.14	.08	.10	.06	1.00	
学科9	.16	.05	.43	.10	.06	.08	.10	.54	1.00

依据输入的相关矩阵 S 和模型 M_I 所得的再生矩阵 Σ

学科	1	2	3	4	5	6	7	8	9
学科1	1.00								
学科 2	.10	1.00							
学科 3	.11	.10	1.00						
学科 4	.50	.09	.10	1.00					
学科 5	.48	.09	.09	.45	1.00				
学科 6	.10	.46	.10	.09	.09	1.00			
学科 7	.09	.44	.09	.09	.08	.44	1.00		
学科 8	.13	.12	.53	.12	.12	.12	.11	1.00	
学科9	.11	.10	.43	.10	.10	.10	.09	.54	1.00

KI MAU SEIVI P. 7

9个不同学科间观察所得的相关矩阵 8

						OBSERVED WARRANTS	A. C.			18 GF 2/1
学科	1	2	3	4	5	6	7	8	9	
学科1	1.00									
学科 2	.12	1.00								
学科3	.08	.08	1.00			學科1	.			
学科 4	.50	.11	.08	1.00		· · · · ·	.73			
学科 5	.48	.03	.12	.45	1.0	學科4	.69		第1組入	
学科 6	.07	.46	.15	.08	.1	711.	.65		\ \\	
学科7	.05	.44	.15	.12	. 1	學科 5			/	
学科8	.14	.17	.53	.14	.0				.19	
学科9	.16	.05	.43	.10	.0				•==	\
						▶ 學科2	.68		,	/ \
							.68		/	1
		依据	居輸入的村	1关矩阵 5	和核	■ 學科 6	.65_		第2組	.22
学科	1	2	3	4	5		.05		1]
学科1	1.00					學科 7			'	\ /
学科 2	.10	1.00							.22	1 /
学科3		.10	1.00			ES##V O				1 /
	.11	. 10	1.00							
学科 4	.11	.09	.10	1.00		學科3	.65		/	' /
				1.00	1.					
学科 4	.50	.09	.10		1.	學科3	.81		第3組	
学科 4 学科 5	.50 .48	.09	.10 .09	.45	3	學科8			第3組	
学科 4 学科 5 学科 6	.50 .48 .10	.09 .09 .46	.10 .09 .10	.45 .09	- 2-5-5-66		.81		第3組	

- 检查模型的准确性 (accuracy)和简洁性 (parsimony)

 - df=[不重复元素non-duplicating elements, p(p+1)/2] [估计参数 estimated parameters]
 - 在前面例子 df =9 x 10/2 - 21 = 24

	9个个同字科间观察所得的相天矩阵 5											
学科	1	2	3	4	5	6	7	8	9	D TO		
学科1	1.00											
学科 2	.12	1.00										
学科3	.08	.08	1.00									
学科 4	.50	.11	.08	1.00								
学科5	.48	.03	.12	.45	1.00							
学科6	.07	.46	.15	.08	.11	1.00						
学科7	.05	.44	.15	.12	.12	.44	1.00					
学科8	.14	.17	.53	.14	.08	.10	.06	1.00				
学科9	.16	.05	.43	.10	.06	.08	.10	.54	1.00			

0.人工用兴利尚观察乐组从相关标味。

样本相关(或协方差)矩阵 correlation/covariance matrix S

一个或多个有理据的可能模型 (alternative models)

Σ、各路径参数(因子负荷loading、 因子相关系数factor correlations等) 各种拟合指数

结构方程模型及其应用 Structural Equation Model and Its Applications

- ■探索性与验证性因子分析
- II Exploratory vs Confirmatory Factor Analysis

侯傑泰(侯杰泰)

Kit-Tai Hau 香港中文大学教育心理系

Educational Psychology Dept,
The Chinese University of Hong Kong
使用时请着明出处

Additional notes on EFA

Exploratory Factor Analyses (EFA) In the above analyses, we have a

- In the above analyses, we have a structure in mind to test, this process is called confirmatory factor analysis (CFA)
- It is also possible that we have no "theory" in mind to test, i.e., we have the following research questions:
 - How many cluster of subjects are there? How do these 9 subjects relate to each of these clusters (factors)?
 - Which of these subjects are more closely related/correlated than others?

Using LISREL, run the following program

DA NI=9 NO=100

KM

1.00

0.12 1.00

0.08 0.08 1.00

0.50 0.11 0.08 1.00

0.48 0.03 0.12 0.45 1.00

0.07 0.46 0.15 0.08 0.11 1.00

0.05 0.44 0.15 0.12 0.12 0.44 1.00

0.14 0.17 0.53 0.14 0.08 0.10 0.06 1.00

0.16 0.05 0.43 0.10 0.06 0.08 0.10 0.54 1.00

PC NC=6

OU

The output:

Principal Components Analysis

Eigenvalues and Eigenvectors

PC_1 PC_2 PC_3 PC_4 PC_5 PC_6

Eigenvalue 2.56 1.66 1.63 0.69 0.59 0.56

% Variance 28.42 18.49 18.15 7.65 6.50 6.18

Cum% Var 28.42 46.91 65.06 72.71 79.21 85.39

3 rules to determine number of factors

- EV(eigenvalue特征值) ≥ 1
- scree test碎石:
 greatest change in
 slope
- meaningful dimensions

Assume 3 factors, we run the following program and obtain further information

DA NI=9 NO=100

KM

1.00

0.12 1.00

0.08 0.08 1.00

0.50 0.11 0.08 1.00

0.48 0.03 0.12 0.45 1.00

0.07 0.46 0.15 0.08 0.11 1.00

0.05 0.44 0.15 0.12 0.12 0.44 1.00

0.14 0.17 0.53 0.14 0.08 0.10 0.06 1.0

0.16 0.05 0.43 0.10 0.06 0.08 0.10 0.54 1.0

FA NF=3

OU

The Output:

Varimax-Rotated Factor Loadings

Factor 1 Factor 2 Factor 3 Unique Var

VAR 1	0.10	0.73	0.04	0.46
VAR 2	0.09	0.06	0.66	0.55
VAR 3	0.63	0.05	0.12	0.58
VAR 4	0.08	0.67	0.08	0.53
VAR 5	0.04	0.65	0.07	0.57
VAR 6	0.07	0.05	0.68	0.54
VAR 7	0.05	0.07	0.65	0.57
VAR 8	0.82	80.0	0.07	0.32
VAR 9	0.65	0.09	0.04	0.56

Promax-Rotated Factor Loadings

Factors a	llowed to
be correla	ated斜交

Factor 1 Factor 2 Factor 3 Unique Var

斜交					
VA	AR 1	0.73	-0.03	0.03	0.46
VA	AR 2	0.00	0.66	0.02	0.55
VA	AR 3	-0.02	0.06	0.64	0.58
VA	AR 4	0.68	0.02	0.01	0.53
VA	AR 5	0.66	0.01	-0.03	0.57
VA	AR 6	-0.01	0.68	0.00	0.54
VA	AR 7	0.01	0.66	-0.02	0.57
VA	4R 8	0.00	-0.01	0.83	0.32
VA	AR 9	0.03	-0.03	0.66	0.56
	_				

Factor Correlations

	Factor 1	Factor 2	Factor	3
Factor 1	1.00			
Factor 2	0.19	1.00		
Factor 3	0.21	0.22	1.00	KT HAU SEM p. 19

EFA (exploratory FA)	CFA (confirmatory FA)
No specific idea on how variable are related	Have some guess (hypotheses) on relations among variables (e.g., Variables 1, 4, 5 should load on Factor 3)
determine number of factors using Eigenvalue (EV ≥ 1 or scree test)	know beforehand the number of factors
each item loaded on ALL factors, though some loadings are small	Items loaded on targeted factors only

结构方程模型及其应用 Structural Equation Model and Its Applications

III 原理 III Principle

侯傑泰(**侯杰泰**)
Kit-Tai Hau
香港中文大学教育心理系
Educational Psychology Dept,
The Chinese University of Hong Kong
使用时请着明出处

100名学生在9个不同学科间的相关系数 (correlation coefficient matrix)

9个不同学科间观察所得的相关矩阵 S

学科	1	2	3	4	5	6	7	8	9
学科1	1.00						-		
学科 2	.12	1.00							
学科3	.08	.08	1.00						
学科4	.50	.11	.08	1.00					
学科5	.48	.03	.12	.45	1.00				
学科6	.07	.46	.15	.08	.11	1.00			
学科7	.05	.44	.15	.12	.12	.44	1.00		
学科8	.14	.17	.53	.14	.08	.10	.06	1.00	
学科9	.16	.05	.43	.10	.06	.08	.10	.54	1.00

9 个不同学科间观察所得的相关矩阵 8

学科	1	2	3	4	5	6	7	8	9
学科1	1.00						-		
学科 2	.12	1.00							
学科3	.08	.08	1.00						
学科 4	.50	.11	.08	1.00					
学科 5	.48	.03	.12	.45	1.00				
学科 6	.07	.46	.15	.08	.11	1.00			
学科7	.05	.44	.15	.12	.12	.44	1.00		
学科8	.14	.17	.53	.14	.08	.10	.06	1.00	
学科9	.16	.05	.43	.10	.06	.08	.10	.54	1.00

依据输入的相关矩阵 S 和模型 M_1 所得的再生矩阵 Σ

学科	1	2	3	4	5	6	7	8	9
学科1	1.00								
学科 2	.10	1.00							
学科3	.11	.10	1.00						
学科 4	.50	.09	.10	1.00					
学科 5	.48	.09	.09	.45	1.00				
学科 6	.10	.46	. 10	.09	.09	1.00			
学科7	.09	.44	.09	.09	.08	.44	1.00		
学科8	.13	.12	.53	.12	.12	.12	.11	1.00	
学科9	.11	.10	.43	. 10	.10	.10	.09	.54	1.00

模型 df	χ^2 NNFI CFI	(no. of estimated parameters) 需要估计的参数个数
M1 24	40 .973 .982	21 = 9 Load + 9 Uniq + 3 Corr
M2 27	503 .294 .471	18 = 9 Load + 9 Uniq
M3 26	255 .647 .745	19 = 9 Load + 9 Uniq + 1 Corr
M4 26	249 .656 .752	19 = 9 Load + 9 Uniq + 1 Corr
M5 27	263 .649 .727	18 = 9 Load + 9 Uniq
M6 24	422 .337 .558	21 = 9 Load + 9 Uniq + 3 Corr
M7 21	113 .826 .898	24 = 9 Load + 9 Uniq + 6 Corr

模型比较 (Model Comparison)

• 自由度(df), 拟合程度 (fit), 不能保证最好,可能存在 更简洁(parsimonious) 又拟合(fit)得很好的模型

• 输入Input:

- −相关(或协方差)矩阵correlation/covariance matrix §
- -一个或多个有理据的可能模型 (alternative models)

• 输出Output:

- 既符合某指定模型,又与S差异最小的矩阵 Σ
- 估计各路径参数parameter(因子负荷loading、因子相关系数factor correlations等)。
- 计算出各种拟合指数(goodness of fit indexes)

样本相关(或协方差)矩阵 correlation/covariance matrix S

一个或多个有理据的可能模型 (alternative models)

Σ、各路径参数(因子负荷loading、 因子相关系数factor correlations等) 各种拟合指数

结构方程模型的重要性

- Structural Equation Model , SEM
- Covariance Structure Modeling, CSM
- Linear Structural RELationship , LISREL
 - (EQS, AMOS, Mplus, etc.)

结构方程模型的结构

• 测量模型 (measurement model)

$$x = \Lambda_x \xi + \delta$$

$$y = A_y \eta + \varepsilon$$

x ——外源指标exogenous (如6项社经指标)

y — 内生指标endogenous (如语、数、英成绩)

 Λ_x , Λ_v —因子负荷矩阵 (loading)

 $oldsymbol{\delta}$, $oldsymbol{\varepsilon}$ —误差项 (uniqueness, measurement errors)

• 结构模型 (structural model)

$$\eta = B\eta + \Gamma \xi + \zeta$$

结构方程模型的优点

- ▶ 同时处理多个因变量(many dependent variables)
- ► 同时估计因子结构 factor structure和因 子关系

➤ 容许自变量 independent variable和因变量 dependent variable 含测量误差 measurement error [传统方法(如回归 regression)假设自变量 independent

variable没有误差]

	英文			卢文	
观察	真	误差	观察	真	误差
得分	分数		得分	分数	
observ	ed true	error	observ	ed true	error
score	score		score	score	
X	T_{X}	е	Y	T_V	e _
8	7	+1	5	3	+2
5	6	-1	6	7	-1
7	5	+2	9	7	+2
9	8	+1	5	8	-3

$$X = T_X + e$$
 $Y = T_y + e$
if $r(X, Y) = 0.5$
 $r(T_X, T_y) = 0.5 / [(r_{Xt-t}) (r_{Yt-t})]^{1/2}$
 $= 0.71$ (assume $r_{t-t} = 0.7$)

KT HAU SEM p. 39

- > 容许更大弹性的测量模型
- ➤ 估计整个模型的拟合程度 model fit[用以比较不同模型]
- ➤ SEM包括:回归分析 regression、因子分析(验证性因子分析CFA、探索性因子分析EFA)、t检验t-test、方差分析ANOVA、比较各组因子均值group mean comparison、交互作用模型 interaction、实验设计expt design

结构方程模型及其应用 Structural Equation Model and Its Applications

IV 验证性因子分析 IV Confirmatory Factor Analysis

侯傑泰(**侯杰泰**)
Kit-Tai Hau
香港中文大学教育心理系
Educational Psychology Dept,
The Chinese University of Hong Kong

使用时请着明出处

12 13 14 15 16 17.

验证性因子分析

Confirmatory Factor Analysis, CFA

17个题目: 学习态度及取向 $A \cdot B \cdot C \cdot D \cdot E$

350个学生

```
1 .1..
                                                       .02 .03 .04 .1
                                                    5 .15 .19 .14 .02 1.
                                                    6 .17 .15 .20 .01 .42 .1
                                                   7 .20 .13 .12 .00 .40 .21 1
                                                      .32 .32 .21 .03 .10 .10 .07 .1
4、4、3、3、3颗%
                                                     .10 .17 .12 .02 .15 .18 .23 .13 .1
                                                       .14 .16 .15 .03 .14 .19 .18 .18 .37..1.
                                                    11 .14 .15 .19 .01 .18 .30 .13 .08 .38 .38 .1
                                                    12 .18 .16 .24 .02 .14 .21 .21 .22 .06 .23 .18 .1
                                                    13 .19 .20 .15 .01 .14 .24 .09 .24 .15 .21 .21 .45 .1.
                                                    14 .18 .21 .18 .03 .25 .18 .18 .18 .22 .12 .24 .28 .35 .1.
                                                       .08 .18 .16 .01 .22 .20 .22 .12 .16 .21 .25 .20 .26 .1.
                                                    16 .12 .16 .25 .02 .15 .12 .20 .14 .17 .20 .14 .20 .15 .20 .50 <u>...</u>
                                                    17 .20 .16 .18 .04 .25 .14 .21 .17 .21 .21 .23 .15 .21 .22 .29 .41 .1.
```


Confirmatory Factor Analysis Example 1

```
DA NI=17 NO=350 MA=KM
KM SY
.34 1
MO NX=17 NK=5 LX=FU,FI PH=ST TD=DI,FR
PA LX
4(1 0 0 0 0)
4(0 1 0 0 0)
3(0 0 1 0 0)
3(0 0 0 1 0)
3(0 0 0 0 1)
OU MI SS SC
```


Confirmatory Factor Analysis Ex DA NI=17 NO=350 MA=KM KM SY 1 .34 1

Confirmatory Factor An DA NI=17 NO=350 MA KM SY 1

DATE: 6/24 005 TIME: 16/22 LISREL 8 71

Karl G. J□eskog & Dag S□bom

This program is published exclusively by Scientific Software International, Inc. 7383 N. Lincoln Avenue, Suite 100 Lincolnwood, IL 60712, U.S.A.

• 什么情况下固定 (fixed, FI)?

- -两个变量(指标或因子)间没有关系,将元素固定 为0
 - 例如,不从属,将因子负荷(LX 1,2)固定为0。又如,因子和因子没有相关,PH 1,2 固定为0。
- 需要设定因子的度量单位(set metric/scale)
 - 因子没有单位 (metric),无法计算。
 - 一种将所有因子的方差固定为1(或其他常数),简
 称为固定方差法 (fixed variance method)
 - 一种是在每个因子中选择一个负荷固定为1(或其他常数),简称为固定负荷法(fixed loading)
- 什么情况下设定为自由(free,FR):所有需要估计的参数

表3-3 PH矩阵用PH=ST的设定→

					41
	ξ ₁	<u> چ</u>	<u>څ</u>	Ĕ ₄	\$ ₅ ₽
					<u></u> ب
ξ ₁ ξ ₂	固定为1 自由	自由 固定为1	自由 自由	自由 自由	自由↓ 自由↓
ξ3	自由	自由	固定为1	自由	自由↩
Š ₄	自由	自由	自由	固定为1	自由↩
ξs	自由	自由	自由	自由	固定为1↩
					پ <u></u>

补充例子

9个题目:

- 第1个因子:第1、2、3题
- 第2个因子:第4、5、6题
- 第3个因子:第7、8、9题
- 设因子1, 2, 3互 有相关

固定方差法 (fixed variance)

	因子1	因子2	因子3
第1题, x1	FR	FI	FI
第2题, x2	FR	FI	F
第3题, x3	FR	FI	F
第4题, x4	FI	FR	F
第5题, x5	FI	FR	F
第6题, x6	FI	FR	FI
第7题, x7	FI	FI	FR
第8题, x8	FI	FI	FR
第9题, x9	FI	FI	FR

固定方差法 (fixed variance)

MO NX=9 NK=3 LX=FU,FI PH=ST TD=DI,FR FR LX 1,1 LX 2,1 LX 3,1 LX 4,2 LX 5,2 FR LX 6,2 LX 7,3 LX 8,3 LX 9,3

固定负荷法(fixed loading)

MO NX=9 NK=3 LX=FU,FI PH=SY,FR TD=DI,FR FR LX 2,1 LX 3,1 LX 5,2 LX 6,2 LX 8,3 LX 9,3 VA 1 LX 1,1 LX 4,2 LX 7,3

• 设因子1和因子3无关(uncorrelated),因子1和因子2、 因子2和因子3相关(correlated)

固定方差法(fixed variance)

MO NX=9 NK=3 LX=FU,FI PH=ST TD=DI,FR FR LX 1,1 LX 2,1 LX 3,1 LX 4,2 LX 5,2 FR LX 6,2 LX 7,3 LX 8,3 LX 9,3 FI PH 1,3

固定负荷法(fixed loading)

MO NX=9 NK=3 LX=FU,FI PH=SY,FR TD=DI,FR FR LX 2,1 LX 3,1 LX 5,2 LX 6,2 LX 8,3 LX 9,3 VA 1 LX 1,1 LX 4,2 LX 7,3 FI PH 1,3

Number of Input Variables 17 (读入变量个数)

Number of Y - Variables 0 (Y-变量个数)

Number of X - Variables 17 (X-变量个数)

Number of ETA - Variables 0 (Y-因子个数)

Number of KSI - Variables 5 (X-因子个数)

Number of Observations 350 (样品个数)

Parameter Specifications 参数设定

LAMBDA-X

	KSI 1	KSI 2	KSI 3	KSI 4	KSI 5
VAR 1	1	0	0	0	0
VAR 2	2	0	0	0	0
VAR 3	3	0	0	0	0
VAR 4	4	0	0	0	0
VAR 5	0	5	0	0	0
VAR 6	0	6	0	0	0
VAR 7	0	7	0	0	0
VAR 8	0	8	0	0	0
VAR 9	0	0	9	0	0
VAR 10	0	0	10	0	0
VAR 11	0	0	11	0	0
VAR 12	0	0	0	12	0
VAR 13	0	0	0	13	0
VAR 14	0	0	0	14	0
VAR 15	0	0	0	0	15
VAR 16	0	0	0	0	16
VAR 17	0	0	0	0	17

PHI

	KSI 1	KSI 2	KSI 3	KSI 4	KSI	5
						-
KSI 1	0					
KSI 2	18	0				
KSI 3	19	20	0			
KSI 4	21	22	23	0		
KSI 5	24	25	26	27	0	

THETA-DELTA

VAR1 VAR2 VAR3 VAR4 VAR5 VAR6 VAR7 VAR8 VAR9 VAR10 VAR 11 VAR 12 VAR 13 VAR 14 VAR 15 VAR 16 VAR 17

Number of Iterations = 19

LISREL Estimates (Maximum Likelihood) 参数估计

VAR 5	 0.64 (0.06) 10.46		
VAR 6	 0.57 (0.06) 9.32		
VAR 7	 0.51 (0.06) 8.29		
VAR 8	 0.28 (0.06) 4.41		
VAR 9	 	0.59 (0.06) 9.56	

VAR 10	 	0.61		
		(0.06) 9.99		
VAR 11	 	0.64		
		(0.06)		
		10.47		
VAR 12	 		0.62	
			(0.06)	
			10.28	
VAR 13	 		0.66	
		,	(0.06)	
WAD 44		•	10.84	
VAR 14	 		0.54	
			(0.06)	
WAD 45			8.96	0.05
VAR 15	 			0.65
				(0.06)
				11.14
VAR 16	 			0.72
				(0.06)
				12.19
VAR 17	 			0.55
				(0.06)
				9.36

	KSI 1	KSI 2	KSI 3	KSI 4	KSI 5
KSI 1	1.00				
KSI 2	0.52 (0.07) 7.06	1.00			
KSI 3	0.40 (0.08) 5.21	0.53 (0.07) 7.24	1.00		
KSI 4	0.51 (0.07) 6.97	0.54 (0.07) 7.47	0.48 (0.07) 6.60	1.00	
KSI 5	0.42 (0.07) 5.77	0.50 (0.07) 6.99	0.44 (0.07) 6.22	0.50 (0.07) 7.17	1.00

lacktriangle

THETA-DELTA

VAR 1	VAR 2	VAR 3	VAR 4	VAR 5	VAR 6
0.65	0.66	0.61	1.00	0.59	0.67
(0.07)	(0.07)	(0.07)	(0.08)	(0.07)	(0.07)
9.63	9.85	9.02	13.19	8.82	10.21
VAR 7	VAR 8	VAR 9	VAR 10	VAR 11	VAR 12
0.74	0.92	0.66	0.63	0.59	0.61
(0.07)	(0.07)	(0.07)	(0.07)	(0.07)	(0.06)
11.05	12.70	9.96	9.46	8.80	9.46
VAR 13	VAR 14	VAR 15	VAR 16	VAR 17	•
0.57	0.70	0.57	0.48	0.69	
(0.07)	(0.07)	(0.06)	(0.06)	(0.06)	
8.70	10.75	9.13	7.49	10.91	

Goodness of Fit Statistics

拟合优度统计量

Degrees of Freedom = 109

Minimum Fit Function Chi-Square = 194.57 (P = 0.00)

Normal Theory Weight Least Sq Chi-Sq = 190.15 (P = 0.00)

Estimated Non-centrality Parameter (NCP) = 81.15

90 Percent Confidence Interval for NCP = (46.71; 123.45)

Minimum Fit Function Value = 0.56 —

Population Discrepancy Function Value (F0) = 0.23

90 Percent Confidence Interval for F0 = (0.13; 0.35)

Root Mean Square Error of Approximation (RMSEA) = 0.046

90 Percent Confidence Interval for RMSEA = (0.035; 0.057)

P-Value for Test of Close Fit (RMSEA < 0.05) = 0.71

Expected Cross-Validation Index (ECVI) = 0.80

90 Percent Confidence Interval for ECVI = (0.70; 0.92)

ECVI for Saturated Model = 0.88

ECVI for Independence Model = 5.78

Chi – df = 190.15-109

 $0.56 \times (N-1) = chi$

0.56x349=194.57


```
Chi-Square for Independence Model with 136 df = 1982.04
```

Independence AIC = 2016.04

Model AIC = 278.15

Saturated AIC = 306.00

Independence CAIC = 2098.63

Model CAIC = 491.90

Saturated CAIC = 1049.26

Normed Fit Index (NFI) = 0.90

Non-Normed Fit Index (NNFI) = 0.94

Parsimony Normed Fit Index (PNFI) = 0.72

Comparative Fit Index (CFI) = 0.95

Incremental Fit Index (IFI) = 0.95

Relative Fit Index (RFI) = 0.88

Critical N (CN) = 263.34

Root Mean Square Residual (RMR) = 0.054

Standardized RMR = 0.054

Goodness of Fit Index (GFI) = 0.94

Adjusted Goodness of Fit Index (AGFI) = 0.92

Parsimony Goodness of Fit Index (PGFI) = 0.67

NNFI=TLI

CFI = RNI

Oldest LISREL indexes: RMR, SRMR,GFI, AGFI

Modification Indices for LAMBDA-X 修正指数

ŀ	KSI 1	KSI 2	KSI 3	KSI 4	KSI 5
					-
VAR 1		0.06	0.66	0.09	2.53
VAR 2		0.38	0.53	0.23	0.11
VAR 3		0.72	0.01	0.03	1.49
VAR 4		0.00	0.03	0.01	0.03
VAR 5	7.73		9.62	9.23	1.50
VAR 6	0.01		3.29	1.07	1.50
VAR 7	0.12		0.25	0.12	2.26
VAR 8	41.35		3.66	22.02	4.78
VAR 9	0.40	0.02		2.19	0.22
VAR 10	0.03	0.10		0.30	0.22

. . .

Maximum Modification Index is 41.35 for Element (8,1)LX 修正指数:该参数由固定改为自由估计, χ^2 会减少的数值

LAMBDA-X

	/\				
	KSI 1	KSI 2	KSI 3	KSI 4	KSI 5
VAR 1	0.59				
VAR 2	0.58				
VAR 3	0.62				
VAR 4	0.05				
VAR 5		0.64			
VAR 6		0.57			
VAR 7		0.51			
VAR 8		0.28			
VAR 9		-, -,	0.59		
VAR 10			0.61		
VAR 11			0.64		
VAR 12				0.62	
VAR 13				0.66	
VAR 14				0.54	
VAR 15					0.65
VAR 16					0.72
VAR 17					0.55

PHI

	KSI 1	KSI 2	KSI 3	KSI 4	KSI 5	
KSI 1	1.00					
KSI 2	0.52	1.00				
KSI3	0.40	0.53	1.00			
KSI 4	0.51	0.54	0.48	1.00	C	
KSI 5	0.42	0.50	0.44	0.50	1.00	
THETA	A-DELTA					
VAR 1	VAR 2	2 VAR	3 VA	AR 4	VAR 5	VAR 6
0.65	0.66	0.61	1	.00	0.59	0.67
\/AD 7	\/AD () \/AD	0 \/^	D 10	\/AD 11	\/AD 10
VAR /	VAR	O VAK	9 VA	K IU	VARII	VAR 12
0.74	0.92	0.66	0.	63	0.59	0.61
VAR 1	3 VAR	14 VAF	R 15 \	VAR 16	VAR 1	7
0.57	0.70		 57	0.48	0.69	
0.07	0.70	٥.	. .	0.10	0.00	

结果解释

- Q4在A的负荷loading很小 (LX = 0.05), 但在其他因子的修正指数 (MI, modification index) 也不高
 - 不从属A, 也不归属其他因子
- Q8在B的负荷不高(0.28),但在A的MI是41.4,可能归属A
- 因子间相关很高 (0.40 至 0.54)
- 模型拟合fit相当好: χ^{2} (109) =194.57,RMSEA=0.046, NNFI = .94. CFI= .95。
- 仔细检查题目内容后,删去Q4,Q8归入A

模型修正MB

DA NI=17 NO=350 KM SY

....(此处输入相关矩阵)

SE; 1 2 3 5 6 7 8 9 10 11 12 13 14 15 16 17/

MO NX=16 NK=5 PH=ST TD=DI,FR

PA LX

3(1 0 0 0 0)

3(0 1 0 0 0)

1(1 0 0 0 0)

3(0 0 1 0 0)

3(0 0 0 1 0)

3(0 0 0 0 1)

OU MI SS SC

SE

1 2 3 5 6 7 8 9 10 11 12 13 14 15 16 17/

(note: 2 lines without ";")

- Q8归属A,因子负 荷很高(.49),
- χ^2 (94) =149.51 , RMSEA=.040 , NNFI=.96 , CFI = .97 \circ

嵌套概念

		2		(no. of estimated parameters)
模型	df	χ^{z}	NNFI CFI	需要估计的参数个数

$$M_X$$
 26 249 .656 .752 19 = 9 Load + 9 Uniq + 1 Corr M_Y 27 263 .649 .727 18 = 9 Load + 9 Uniq $\Delta \chi^2$ (Δdf) = $\Delta \chi^2$ (1) = 14, p < .05

- 虽然没有嵌套关系, 模型 M_B 比 M_A 好
- Q8同时从属A和B?

DA NI=17 NO=350 KM SY

3(0 0 0 0 1) OU MI SS SC KT HAU SEM p. 70

模型 M_c 的结果

- χ^2 (93)= 148.61, RMSEA=.040, NNFI = .96, CFI = .97 °
- Q8在A负荷为 .54, 在B负荷为 -.08
- \bullet 因为概念上Q8应与B成正相关,故不合理。 而且这负荷相对低,所以我们选择 $\mathbf{M}_{\mathtt{R}}$
- 通常,每题只归属一个因子

修正modification前后模型的拟合指数比较

模型 df χ^2 RMSEA NNFI CFI 註

M-A 109 195 .046 .94 .95 原模型

M-B 94 150 .040 .96 .97 删Q4,Q8-A

M-C 93 149 .040 .96 .97 删Q4,Q8-A,B

MB-2 99 152 .038 .94 .95 2阶因子

	内容	矩阵大小	固定负荷法	固定方差法
			fixed loading	fixed variance
LX	因子与观察变 量(指标)的从属 关系(因子负荷)	NX x NK	000 VA1LX11 100 VA1LX42 100 VA1LX73 000 010 010 000 001	100 100 100 010 010 010 001 001
PH	因子与因子间 的相关 (协方差)	NK x NK	111或100111010111001因子间因子间有关无关	011 或 000 101 000 110 000 VA1PH11PH22 VA1PH33
TD	指标误差间的 关系(协方差)	NX x NX	100000000 01000000 00100000 000100000 000010000	100000000 01000000 00100000 000100000 000010000

LX(LAMBDA-X,因子负荷)

	KSI 1	KSI 2	KSI 3	KSI 4	KSI 5
VAR 1	1	0	0	0	0
VAR 2	1	0	0	0	0
VAR 3	1	0	0	0	0
VAR 4	1	0	0	0	0
VAR 5	0	1	0	0	0
VAR 6	0	1	0	0	0
VAR 7	0	1	0	0	0
VAR 8	0	1	0	0	0
VAR 9	0	0	1	0	0
VAR 10	0	0	1	0	0
VAR 11	0	0	1	0	0
VAR 12	0	0	0	1	0
VAR 13	0	0	0	1	0
VAR 14	0	0	0	1	0
VAR 15	0	0	0	0	1
VAR 16	0	0	0	0	1
VAR 17	0	0	0	0	1

用PA 指令	亦可简化为	
PA LX	PA LX	对应的PH设定: (假设所有
10000	4(10000)	因子互有相关):
10000	,	PA PH
10000	4(01000)	01111
10000	3(00100)	
01000	3(00010)	10111
01000	3(00001)	11011
01000	0(00001)	11101
01000	p.	11110
00100	或	VA 1 PH 1 1 PH 2 2
00100	FR LX 1 1 LX 2 1 LX 3 1	
00100	FR LX 4 1 LX 5 2 LX 6 2	VA 1 PH 3 3 PH 4 4
00010	FR LX 7 2 LX 8 2 LX 9 3	VA 1 PH 5 5
00010		
00010	FR LX 10 3 LX 11 3	
00001	FR LX 12 4 LX 13 4	
00001	FR LX 14 4 LX 15 5	
00001	FR LX 16 5 LX 17 5	

B. 用固定负荷法 PA LX	可用下述指令描述 PA LX	对应的PH	设定为	S. Contractions of the second
00000	4(10000)	(假设所有)	因子有相关)	1
10000	4(01000)	PA PH		
10000	3(00100)	11111		
10000 00000	3(00100)	11111		
01000	3(00001)	11111		
01000	FI LX 1 1 LX 5 2 LX 9 3	11111		
01000	FI LX 12 4 LX 15 5	11111		
00000	VA 1 LX 1 1 LX 5 2			
00100 00100	VA 1 LX 9 3 LX 12 4			
00000	VA 1 LX 15 5			
00010	或			
00010	FR LX 2 1 LX 3 1 LX 4 1			
00000 00001	FR LX 6 2 LX 7 2 LX 8 2			
00001	FR LX 10 3 LX 11 3			
VA 1 LX 1 1 LX 5 2	FR LX 13 4 LX 14 4			
VA 1 LX 9 3 LX 12 4	FR LX 16 5 LX 17 5			
VA 1 LX 15 5	VA 1 LX 1 1 LX 5 2 LX 9 3			
	VA 1 LX 12 4 LX 15 5		KT HAU SEM p. 70	6

结构方程模型及其应用 Structural Equation Model and Its Applications

V 多质多法模型 V multitrait-multimethod (MTMM)

侯傑泰(**侯杰泰**)
Kit-Tai Hau
香港中文大学教育心理系
Educational Psychology Dept,
The Chinese University of Hong Kong
使用时请着明出处

多质多法模型

multitrait-multimethod(MTMM)

- 五种方法(method): 家长,教师,学生, 纸笔测验,专题报告
- 五种能力(trait): 创造力,美术技巧,数学能力,语文能力,科学知识
- 25个得分(观测变量)5种方法x5种能力

• 分析方法一: 相关特质相关方法 (CTCM, correlated-trait correlated-method)

表 3-6 多质多迭核型变量与因子从属关系

特质 因子					7活团	了				
夜量 (慶目)	创造	美术	数学	御文	科学	家长	数师	学生	躯笼	专题
1. 创造,家长						4				
2. 创造、数师	i 🗸						4			
3. 创造,学生	· •							4		
4. 创造,纸笔	₹								√.	
5. 创造,专题	. v									4
6. 黄禾, 家长		4				4				
7. 黄承,数师	í	4					4			
8. 英承, 学生	- -	4						4		
9. 黄承,躯笼	Ξ	4							4	
10.英术,专题		4								4
11.数学。家长	;		4			4				
12.数学,数师			4				4			
13.数学、学生			4					A.		
14.数学, 纸笔			4						4	
15.数学、专题			4							4
16.审文,家长				4		4				
17.语文,数师				4			A.			
18.语文,学生				4				A.		
19. 建文、纸笔				4					4	
20.建文、专题				4						4
21.科学, 家长					A.	4				
22.科学、教师					4		4			
23.科学、学生					4			4		
24.科学, 纸笔					A.				4	
25.科学、专题	1				J					4

DA NI=25 NO=500 MA=KM KM SY

- 1.0
- .40 1.0
- .44 .43 1.0
- .39 .41 .43 1.0
- .44 .38 .44 .45 1.0
- .50 .21 .18 .19 .19 1.0
- .19 .48 .22 .23 .18 .45 1.0
- .20 .21 .53 .18 .23 .42 .43 1.0
- .22 .19 .19 .53 .22 .41 .45 .45 1.0
- .19 .17 .22 .19 .52 .46 .41 .39 .44 1.0
- .49 .23 .23 .17 .23 .51 .23 .17 .23 .23 1.0

MO NX=25 NK=10 PH=SY,FI TD=DI,FR PA LX


```
0010000010
```

FI LX 1 1 LX 7 2 LX 13 3 LX 19 4 LX 25 5 LX 6 6

FI LX 12 7 LX 18 8 LX 24 9 LX 5 10

VA 1 LX 1 1 LX 7 2 LX 13 3 LX 19 4 LX 25 5 VA 1 LX 6 6 LX 12 7 LX 18 8 LX 24 9 LX 5 10

PA PH

1

1 1

111

1111

1 1 1 1 1

000001

0000011

00000111

000001111

0000011111

OU AD=OFF IT=2000 SS SC

AD=Admissibility test

容许性检查

(default=20)

IT = No. of iteration

迭代次数上限

(3 x t free para.)

- 许多时候CTCM模型并不收敛(non-converged),在本例中,用固定方差法,固定为1也不收敛,可固定为2来解决(helps only in this specific case)
- 模型复杂,过早检查解答是否正定(positive definite, proper)并不合适,所以让 AD=OFF。IT=2000是加大迭代次数 (iteration number)

多质多法模型 方法二:相关特质相关特性 correlated uniqueness (CTCU)

• 较大MTMM模型(如7方法×7特质)收敛机 会较大

- 只留下首五 个特质因子 (NK=5)
- 容许他们的特殊因子uniqueness(也称为误差,error)相关
- e.g., 第1、6、 11、16、21 个变量为同 一个方法的 分数

- FR TD 1 6 TD 1 11 TD 1 16 TD 1 21
- FR TD 6 11 TD 6 16 TD 6 21 TD 11 16
- FR TD 11 21 TD 16 21
- NK=10改为NK=5; TD=DI, FR改为TD=SY, FI
- 将部份对角线以外的TD元素,改为自由

DA NI=25 NO=500 MA=KM KM SY

(此处输入相关矩阵)

MO NX=25 NK=5 PH=ST TD=SY, FI

PA LX

5(10000)

5(0 1 0 0 0)

5(0 0 1 0 0)

5(0 0 0 1 0)

5(0 0 0 0 1)


```
PA TD
0 1
001
0001
00001
100001
0100001
00100001
000100001
0000100001
10000100001
010000100001
0010000100001
00010000100001
000010000100001
```



```
1000010000100001
01000010000100001
001000010000100001
0001000010000100001
00001000010000100001
100001000010000100001
0100001000010000100001
00100001000010000100001
000100001000010000100001
0000100001000010000100001
OU AD=OFF IT=2000 SS SC
```


结构方程模型及其应用 Structural Equation Model and Its Applications

VI 全模型 VI Full model

侯傑泰(**侯杰泰**)
Kit-Tai Hau
香港中文大学教育心理系
Educational Psychology Dept,
The Chinese University of Hong Kong
使用时请着明出处

全模型(Full model)

- 兴趣(x1,2,3)、学生智力(x4,5,6)、自信(x7,8,9)如何影响学业(y1,y2,y3)、课外活动(y4,5,6)和服务 热诚 (y7,8,9)? N=500
- LX vs LY, TD vs TE
- GA 是KSI (x) 对 ETA (y)因子的效应, 大小: NE (ETA) × NK (KSI) 矩阵, 与传统的回归系数相似。e.g. GA 3,1 KSI 1 -> ETA 3
- BE是NE×NE矩阵, ETA (y)对ETA (y)的效应。
- PS是结构方程残差的协方差矩阵, NE×NE矩阵。与PH相似, 但PS是因子的残差(未被解释的部份)方差。

DA NI=18 NO=500 FI LY 1 1 LY 4 2 LY 7 3 MA=KM FI LX 1 1 LX 4 2 LX 7 3 KM SY VA 1 LY 1 1 LY 4 2 LY 7 3 VA 1 LX 1 1 LX 4 2 LX 7 3 MO NY=9 NE=3 NX=9 NK=3 PH=SY,FR PA GA PS=SY,FI TD=DI,FR 1 1 1 TE=DI,FR BE=FU,FI 001 PA LY 100 $3(1\ 0\ 0)$ FR BE 2 1 3(0 1 0)FR PS 1 1 PS 2 2 PS 3 3 $3(0\ 0\ 1)$ FR PS 2 3 PA LX OU SS SC MI ND=3 $3(1\ 0\ 0)$ $3(0\ 1\ 0)$ $3(0\ 0\ 1)$ KT HAU SEM p. 95

结果解释

- χ^2 (125)=292.51,RMSEA=0.050,NNFI=0.93, CFI=0.94,拟合不错
- BE 3,2 (MI=21.95) 及GA 3,3 (MI = 21.86)。 因为BE3,2理论上不太合理,且ETA2,3间已有相关
- 故第一个修正模型M2是让GA 3, 3自由估计,
 =270.14; GA 3,3 = 0.353, 说明增加路径GA 3,3是合适。
- 然后考虑要不要减少原有路径。在各因子关系中, BE 2,1= 0.011 (SE = 0.052, t = 0.215)的效应最小,可以删除该路径。将模型M2的 BE 2,1固定为0,变成模型M3。

- 增加自由参数free parameter (模型变复杂),模型的卡方chi-square会减少;减少自由参数(模型变简单),模型的卡方会增加。
- 如果增加自由参数后,卡方非常显著地减少, 说明增加自由参数是值得的。
- 如果減少自由参数后,卡方没有显著地增加, 说明減少自由参数是可取的。

矩阵	矩阵大小	内容
LX	NX x NK	X指标在ξ因子的负荷
LY	NY x NE	Y指标在η因子的负荷
PH	NK x NK	ξ因子的协方差(相关)
PS	NE x NE	η因子残差的协方差(相关)
TD	NX x NX	X指标误差间的关系(协方差)
TE	NY x NY	Y指标误差间的关系(协方差)
GA	NE x NK	ξ因子对η因子的效应
BE	NE x NE	η因子对η因子的效应

矩阵	一般设定方法
LX LY	(a)指标与因子有从属关系的:自由估计(FR) (b)若用"固定负荷法",则每个因子,选取一个负荷固定为"1"
PH	(a) 非对角线元素:因子间互有相关的位置,自由估计(b) 对角线元素:若用"固定方差法",则:固定为"1"若用"固定负荷法",则:自由估计
PS	(a)非对角线元素:η因子残差互 有相关的位置,自由估计 (b)对角线元素:自由估计

矩阵	一般设定 setting 方法
TD TE	(a)对角线diagonal的 元素:自由估计
	(b)非对角线non-diagonal的元素:固定为"零";有特殊情况,容许额外的对应相关,该TD元素自由估计
GA BE	因子对因子有效应 effect的参数:自由估 计

PA GA 111 001 100

结构方程模型的结构

• 测量模型

(measurement model)

$$x = \Lambda_x \xi + \delta$$

$$y = \Lambda_v \eta + \varepsilon$$

x ——外源指标exogenous

(如6项社经指标)

y —内生指标endogenous

(如:语、数、英成绩)

 Λ_x Λ_y —因子负荷矩阵(loading)

δ &─误差项

(uniqueness, measurement errors)

• 结构模型 (structural model) $\eta = B\eta + \Gamma \xi + \zeta$

$$\eta = B\eta + \Gamma \xi + \zeta$$

结构方程模型及其应用 Structural Equation Model and Its Applications

VII 高阶因子分析 VII High-order Factor Analysis

侯傑泰(**侯杰泰**)
Kit-Tai Hau
香港中文大学教育心理系
Educational Psychology Dept,
The Chinese University of Hong Kong
使用时请着明出处

KT HAU SEM p. 102

高阶因子分析

(high-order factor analysis)

- 设一阶first-order能力因子有相关,需估计的参数 很多。5个一阶因子时,共有10个因子间相关。
- 设有一个普遍能力(二阶second order)因子, 影响各一阶能力因子的表现。10个相关改由5个 参数parameter(二阶因子与一阶因子的关系)所 替代。
- 二阶因子卡方必然较大,自由度df也增加,只要增加的卡方不到显著水平nonsignificant,从模型简洁性parsimony,我们选择二阶模型secondorder factor model

Higher Order CFA DA NI=17 NO=350 **KM SY** SE; 1 2 3 5 6 7 8 9 10 11 12 13 14 15 16 17/ MO NK=1 NY=16 NE=5 PS=DI,FR TE=DI,FR GA=FU,FR PH=ST PA LY 3(1 0 0 0 0) 3(0 1 0 0 0) 1(10000) 3(0 0 1 0 0) 3(0 0 0 1 0) 3(0 0 0 0 1) FI LY 1 1 LY 4 2 LY 8 3 LY 11 4 LY 14 5 VA 1 LY 1 1 LY 4 2 LY 8 3 LY 11 4 LY 14 5 OU SS SC

- MB-2ord节省5个df, χ^2 大致相同,其他指数index 拟合fit较好
- 二阶因子与一阶因子关系(GA系数)很强 (.66, .66, .66, .75, .66)
- 若一阶因子间相关很弱,没有建立二阶因子的需要
- 当模型只有3个一阶因子时(共有3个相关),二阶因子在数学上等同于equivalent一阶因子模型
- 因拟合指数fit index反映整个模型的拟合程度,一阶因子模型要有较好的拟合指数。对因子少的一阶模型(如:只含4或5个一阶因子),一般一阶与二阶拟合指数相差不大,难区分nondifferentiating

另一个二阶因 子模型例子

25个题:语文、 数学、英语、历 史和地理能力

- M-1-ord: χ² = 464, df = 265, RMSEA
 = .034, TLI = .91; 5个因子之间的相关系数在 .41至 .50之间。
- M-2-ord: 拟合优度大致相同, χ² = 465, df = 270, RMSEA = .033, TLI = .92, RNI = .93。按简约parsimony原则, 我们应取二阶模型2-order factor model。二阶与一阶因子关系也很强(BE .70, .64, .69, .64, .66)

一般在二阶因子模型中:

- 一阶因子间不再容许相关
- 二阶与一阶因子间路径:方向是由二阶至一阶
- 二阶与一阶因子各路径中,我们取其中一个固定为1(固定负荷法)
- 对只有3个或以下一阶因子,不再构划二阶因子
- 何时宁取二阶模型,要考虑:
 - 二阶自由度较对应一阶模型为大
 - 二阶模型较对应一阶模型简单 (parsimonious)
 - 二阶的χ2较一阶为大
 - 若二阶模型简化甚多,但χ**2**增加 不多(模型拟合恶化不严重),则 宁取二阶模型
- 在LISREL中设定高阶因子,可
 - 二阶因子用 ξ ,一阶因子用 η 代表
 - 二阶与一阶因子均用n代表

结构方程模型及其应用 Structural Equation Model and Its Applications

VIII 单纯形模型 VIII simplex model

侯傑泰(**侯杰泰**)
Kit-Tai Hau
香港中文大学教育心理系
Educational Psychology Dept,
The Chinese University of Hong Kong
使用时请着明出处

单纯形模型(simplex model)

Simplex correlation matrix

单纯形模型相关矩阵

单纯形模型相关矩阵的形态

	T_1	T_2	T_3	T_4	T_5
T_1	1		^		
T_2		1	下降→		
T_3		←下降	1	下降→	
T_4			←下降	1	
T_5			\		1
		单纯	形模型相关矩	车	
	T_1	T ₂	T ₃	T_4	T ₅
T_1	1	0.5	0.4	0.3	0.2
T ₂	0.5	1	0.5	0.4	0.3
T ₃	0.4	0.5	1	0.5	0.4
T_4	0.3	0.4	0.5	1	0.5
T ₅	0.2	0.3	0.4	0.5	1

拟单纯形模型 (quasi-simplex)

对单纯或拟单纯形模型,一般而言

- 我们可全用η因子,不用 ξ
- 对单指标的单纯型模型, 首尾两个指标的误差方差, 我们需强制为零或相等
- 多指标的拟单纯形模型,所有指针误差方差可自由估计
- 用误差相关去描述跨年相同对应学科误差的相关时,这些相关应为正值(positive)才合理
- 加了误差相关,模式的自由度减少

结构方程模型及其应用 Structural Equation Model and Its Applications

IX 多组SEM分析 IX Multiple-group SEM

侯傑泰(侯杰泰)

Kit-Tai Hau

香港中文大学教育心理系

Educational Psychology Dept,
The Chinese University of Hong Kong
使用时请着明出处

多组SEM分析

(multiple-group SEM)

- 第一类:多组验证性因子分析multiple-group CFA (或路径分析path analyses)
 - 各组(例如男、女组)的因子结构factor structure是否相同?某些路径path参数 parameter/coefficient在不同的组是否有显著差 异significant difference? (与比较多组回归系数 regression coefficients in multiple group是否 相同类似)
- 第二类:各组的因子均值是否相同(Multiple-group Mean Structure Analysis)。这与传统方差分析 ANOVA相似 (通常需要先做第一类分析)

多组验证性因子分析 multiple-group CFA

- 1. 形态相同 (configural/pattern invariance)
- 2. 因子负荷factor loading LX等同invariance
- 3. 误差方差uniqueness TD等同invariance
- 4. 因子方差factor variance, diagonal of PH 等同invariance
- 5. 因子协方差factor covariance PH 等同 invariance

表4-2 多组验证性因子分析各模型的拟合指数

Model	df chi-2 RMSEA NNFI CFI				
MO,M男生单独估计	24 49.57 .0423 .969 .979				
M0,F女生单独估计	24 44.93 .0347 .976 .984				
M1 两组同时估计, no Inv	48 94.50 .0384 .972 .982				
M2 Loading Inv	54 107.18 .0389 .972 .979				
M3 Ld, PH(3,1) Inv	55 107.52 .0383 .973 .979				
M4 Ld, FacCov Inv	60 109.32 .0354 .977 .981				
M5 Ld \ FacCov \ U Inv	69 131.20 .0364 .974 .975				
M6 Ld,FacCov,U,Intrcpt In	v78 149.96 .0361 .975 .973				
M7 Ld,FacCov,U,Intrcpt Inv;					
Fac meanFree	75 132.23 .0334 .979 .978				
M8 Ld,FacCov,U,Intrcpt,					
Fac mean Inv	78 146.77 .0360 .975 .973				

Multiple Group using NG=2,M1

Male

DA NI=9 NO=600 NG=2

KM

<男生组相关矩阵>

SD

1.07 1.23 .98 1.02 1.01 1.03 0.99 1.06 0.98 MO NX=9 NK=3 LX=FU,FI PH=SY,FR TD=DI,FR FR LX 2,1 LX 3,1 LX 5,2 LX 6,2 LX 8,3 LX 9,3 VA 1 LX 1,1 LX 4,2 LX 7,3 OU SS SC ND=3

Female

DA NO=700

<<KM, SD 女生组>>

MO LX=PS PH=PS TD=PS

multiple group fixing LX, M2

male

DA NI=9 NO=600 NG=2

<KM, SD 男生组相关矩阵>

MO NX=9 NK=3 LX=FU,FI PH=SY,FR TD=DI,FR

FR LX 2,1 LX 3,1 LX 5,2 LX 6,2 LX 8,3 LX 9,3

VA 1 LX 1,1 LX 4,2 LX 7,3

OU SS SC ND=3

female

DA NO=700

<KM, SD女生组>

MO LX=IN PH=PS TD=PS

OU SS SC nd=3

fixing covariance of PH 3 1 to be equal multiple group, M3

male

DA NI=9 NO=600 NG=2

<KM, SD 男生组相关矩阵>

MO NX=9 NK=3 LX=FU,FI PH=SY,FR TD=DI,FR

FR LX 2,1 LX 3,1 LX 5,2 LX 6,2 LX 8,3 LX 9,3

VA 1 LX 1,1 LX 4,2 LX 7,3

OU SS SC ND=3

female

DA NO=700

<KM, SD女生组相关矩阵>

MO LX=IN PH=PS TD=PS

EQ PH 1 3 1 PH 3 1

fixing all covariances of factors multiple group, M4

male

DA NI=9 NO=600 NG=2

<KM, SD男生组相关矩阵>

MO NX=9 NK=3 LX=FU,FI PH=SY,FR TD=DI,FR

FR LX 2,1 LX 3,1 LX 5,2 LX 6,2 LX 8,3 LX 9,3

VA 1 LX 1,1 LX 4,2 LX 7,3

OU SS SC ND=3

female

DA NO=700

<KM, SD女生组相关矩阵>

MO LX=IN PH=IN TD=PS

fixing all variances of errors multiple group, M5

male

DA NI=9 NO=600 NG=2

<KM, SD男生组相关矩阵>

MO NX=9 NK=3 LX=FU,FI PH=SY,FR TD=DI,FR

FR LX 2,1 LX 3,1 LX 5,2 LX 6,2 LX 8,3 LX 9,3

VA 1 LX 1,1 LX 4,2 LX 7,3

OU SS SC ND=3

female

DA NO=700

<KM, SD女生组相关矩阵>

MO LX=IN PH=IN TD=IN

多组分析:均值结构模型

Multiple-group Mean Structure Analysis

- 不同组别因子均值是否有显著差异(均值结构模型, mean structure models)
- 首先需确定各组的负荷loading相同invariance
 - 更希望因子协方差等同factor covariance,误差方差等 同难实现
- 指标截距indicator interceptTX等同
 - 先让第1组的TX自由(TX=FR)
 - 要求其他组别TX与第1组的相等 (TX=IN)
- 因子均值等同 factor mean equivalence
 - 先设定第1组各因子均值为0(KA=FI)
 - 容许其他组的KA元素自由估计(KA=FR)
 - 因子值>2倍SE(t>2.0),则因子不同于第1组

Multiple Group fixing TX=invariance, M6

male

DA NI=9 NO=600 NG=2

KM

<男生组相关矩阵>

SD

1.07 1.23 .98 1.02 1.01 1.03

0.99 1.06 0.98

ME

2.01 2.45 2.67 3.21 3.33 3.45

2.67 2.19 2.34

MO NX=9 NK=3 LX=FU,FI PH=SY,FR TD=DI,FR TX=FR

FR LX 2,1 LX 3,1 LX 5,2 LX 6,2

LX 8,3 LX 9,3

VA 1 LX 1,1 LX 4,2 LX 7,3

OU SS SC ND=3

female DA NO=700

KM

<女生组相关矩阵>

SD

1.05 1.20 1.02 .99 1.02 1.02

1.02 1.04 0.96

ME

2.02 2.48 2.69 3.10 3.20

3.38 2.75 2.29 2.45

MO LX=IN PH=IN TD=IN

TX=IN

均值结构模型(限制均值等同)

multiple group, M7 Find KA of Female gp

DA NI=9 NO=600 NG=2

<KM, SD, ME 男生组相关矩阵>

MO NX=9 NK=3 LX=FU,FI PH=SY,FR TD=DI,FR TX=FR KA=FI

FR LX 2,1 LX 3,1 LX 5,2 LX 6,2 LX 8,3 LX 9,3

VA 1 LX 1,1 LX 4,2 LX 7,3

OU SS SC ND=3

female

DA NO=700

KM, SD, ME女生组相关矩阵>

MO LX=IN PH=IN TD=IN TX=IN KA=FR

OU

• 结果显示:

- 第2组(女)的KA元素(即语文、数学、英语均值mean)为0.019, -0.102和0.083
- 对应的SE为0.054, 0.041, 0.036
- t-值为0.351、-2.472、2.329
- 这表示:
 - 语文自信 -- 男(均值为0)女(均值为0.019)无 差异 (t=0.351, n.s.)
 - 男生(均值为0)的数学自信高于女生(均值 = -0.102, t = 2.472)
 - 女生的英语自信(均值 = 0.083)则高于男生(均值为0, t = 2.329)

均值结构模型(限制均值等同)

multiple group, M8 Fixing KA to be equal, male

DA NI=9 NO=600 NG=2

<KM, SD, ME 男生组相关矩阵>

MO NX=9 NK=3 LX=FU,FI PH=SY,FR TD=DI,FR TX=FR KA=FI

FR LX 2,1 LX 3,1 LX 5,2 LX 6,2 LX 8,3 LX 9,3

VA 1 LX 1,1 LX 4,2 LX 7,3

OU SS SC ND=3

female

DA NO=700

KM, SD, ME女生组相关矩阵>

MO LX=IN PH=IN TD=IN TX=IN KA=IN

OU

多组比较的次序

在SEM内,比较多组的因子均值,一般依下 述次序,遂项加上条件:

- 各组因子与指标的从属关系(形态)相同
- 各组因子负荷(LX)相同
- 各组因子间相关(协方差)(PH)相同
- 各组指标误差(特性)方差(TD)相同
- 各组指标截距(TX)相同
- 各组因子均值相同(KA)

多组比较检查原則

- 在检查等同条件时,未加等同条件,模型较复杂(df较小)
- 加了等同条件,模型较简单parsimonious (df较大)
- 未加"等同"条件, χ²较小(拟合较好)
- 加"等同"条件, χ²较大(拟合较差)
- 加"等同"条件,若模型简化甚多,但拟合优只是轻微恶化,则"等同"成立及合理
- 加"等同"条件,若模型简化不多,但拟合 优严重恶化,则各组并不等同(等同不成立)

多组比较设定方法

等同检查	第一组	其它组别	检查(每组解答洽当 proper外)
型态等同	依先验(a priori)模型,估计各参数 (parameter)	依先验模型,估 计各自由参数	每组拟合优良good fit
LX等同	估计各自由LX	LX=IN	拟合优fit无严重恶化
PH等同	估计各自由PH	PH=IN	拟合优fit无严重恶化
TD等同	估计各自由TD	TD=IN	拟合优fit无严重恶化
TX等同	估计各自由TX	TX=IN	拟合优fit无严重恶化
KA等同	KA=FI,ZE (zero)	KA=FR	每组KA与第一组(或他组)无显著差异 significant difference

结构方程模型及其应用 Structural Equation Model and Its Applications

X 专题: 结构方程建模和

分析步骤

X Issues: Model Specification and analyses

侯傑泰(侯杰泰)

Kit-Tai Hau

香港中文大学教育心理系

Educational Psychology Dept,
The Chinese University of Hong Kong
使用时请着明出处

专题: 结构方程建模和分析步骤

Model Specification and analyses

- A. 验证模型与产生模型Confirmatory, Model generation
 - 纯粹验证(strictly confirmatory, SC)
 - 心目中只有一个模型
 - 这类分析不多,无论接受还是拒绝,仍希望有更佳的选择
 - 选择模型 (alternative models, AM)
 - 从拟合的优劣,决定那个模型最为可取
 - 但我们仍常做一些轻微修改,成为MG类的 分析

- 产生模型 (model generating, MG)
 - 先提出一个或多个基本模型
 - 基于理论或数据,找出模型中拟合欠 佳的部份
 - 修改模型,通过同一或其他样本,检查修正模型model respecification的 拟合程度,目的在于产生一个最佳模型

B. 结构方程分析步骤

- 模型建构(model specification),指定
 - 观测变量与潜变量(因子)的关系
 - 各潜变量间的相互关系(指定哪些因子间有相关或直接效应direct effect)
 - 在复杂的模型中,可以限制constrain因子负荷loading或因子相关系数等参数的数值或关系(例如,2个因子间相关系数correlation等于0.3;2个因子负荷必须相等)
- 模型拟合(model fitting)
 - · 通常用 ML作模型参数的估计(versus 回归分析,通常用所最小二乘方法拟合模型,相应的参数估计称为最小二乘估计)

C. 模型评价 (model assessment)

- 结构方程的解solution是否适当proper,估计是否收敛,各参数估计值是否在合理范围内(例如,相关系数在+1与-1之内)

- -参数与预设模型的关系是否合理。当然数据分析可能出现一些预期以外的结果,但各参数绝不应出现一些互相矛盾,与先验假设有严重冲突的现象
- 检视多个不同类型的整体拟合指数,如 NNFI、 CFI、RMSEA 和χ²等
- 含较多因子的复杂模型中,无论是否删去某一两个路径(固定它们为0),对整个模型拟合影响不大
- 应当先检查每一个测量模型 measurement model

• D.模型修正 (model modification)

- 依据理论或有关假设,提出一个或数个合理的先验模型a priori model
- 检查潜变量(因子)与指标(题目)间的关系,建立测量模型measurement model
- 可能增删或重组题目
- 若用同一样本数据去修正重组测量模型,再检查新模型的拟合指数,这十分接近探索性因素分析(exploratory factor analysis, EFA),所得拟合指数,不足以说明数据支持或验证模型
- 可以循序渐进地,每次只检查含2个因子的模型,确立测量模型部分的合理后,最后才将所有因子合并成预设的先验模型,作一个总体检查
- 对每一模型,检查标准误、t值、标准化残差std residuals、修正指数Modification index MI、参数期望改变值expected change、及各种拟合指数fit index,据此修改模型并重复步骤。
- 这最后的模型是依据某一个样本数据修改而成,最好用另一个独立样本,交互确定cross-validate

参数估计和拟合函数

Parameter Estimation and Fit Function

- 目标是找一些参数parameter使得再生/隐含implied/reproduced 协方差矩阵 $\Sigma(\theta)$ 与样本协方差矩阵 S "差距"最小
- 拟合透過拟合函数fit function
- 多种拟合函数,参数估计值可能不同
 - 工具变量 (IV, instrumental variable);
 - 两阶段最小二乘 (TSLS, two-stage least squares);
 - 无加权最小二乘 (ULS, unweighted least squares);
 - 最大似然 (ML, maximum likelihood);
 - 广义最小二乘 (GLS, generalized least squares);
 - 一般加权最小二乘 (WLS, generally weighted least sq)
 - 对角加权最小二乘 (DWLS, diagonally weighted least sq)

结构方程模型及其应用 Structural Equation Model and Its Applications

XI 专题: 涉及数据的问题 XI Issues on data

侯傑泰(**侯杰泰**)
Kit-Tai Hau
香港中文大学教育心理系
Educational Psychology Dept,
The Chinese University of Hong Kong
使用时请着明出处

专题: 涉及数据的问题

issues on data

- 样本容量Sample Size
 - 样本:愈大愈好
 - 每个因子上多设计几题,预试协助删去一些不好的题目
 - 最后每个因子应有3个或更多的题目
- 数据类型Data Type
 - 绝大部份分析基于皮尔逊(Pearson)相关(假設等比/ 等距数据interval/ratio data)
 - 来自等级(顺序)量表(ordinal scale),改用多项(polyserial)相关系数,并与渐近方差矩阵 (asymptotical covariance matrix,ACM)合用,以WLS 法拟合模型,除非N很大,额外需要的ACM矩阵多不稳定

- 可否应用相关矩阵作分析?
 - SEM建立在方差和协方差分析上
 - 用相关矩阵,大多数情况下正确
 - 在某些况下并不正确(见Cudeck, 1989):
 - 限制因子方差为 1, 同时限制某指标的因子负荷不等于零
 - 同一个因子,限制其两个或以上指标的因子负荷,不等于零
 - 同一个因子的两个或以上指标,限制其因子负荷相同
 - 不同因子的两个或以上指标,限制其因子负荷相同
 - 限制两个或以上内生潜变量的误差相等

专题:涉及模型拟合fitting的问题

- 忽略测量误差measurement error所引致的错误
 - 方差(变异量)variance
 - x变异量 $var=\xi$ 变异量 $+\delta$ 误差变异量
 - •除非 δ var 等于零,传统统计高估了变量的真正变异量
 - -相关correlation和回归参数regression coefficient $\gamma^* = \gamma \; (\text{var}(\xi)/\text{var}(x))$

$$r_{\xi\eta} = r_{xy} / (r_{xx} r_{yy})^{1/2}$$

$$r_{\xi\eta} = 0.5/(0.7^2)^{1/2} = 0.71$$

- 单指标潜变量(single indicator)
 - 不能同时估计LX 与TD
 - 对相关矩阵 correlation matrix

FI LX 4,3 TD 4,4

VA .15 TD 4,4 ! (1-0.85)=0.15

VA .922 LX 4,3 ! SQRT(.85)=.922

!或 FR LX 4,3

• 误差相关correlated uniqueness

- 只在特殊设计 (重复测量multi-wave panel),刻意容许误差相关
- 在一般研究,通常不容许误差可以相关

• 为甚么要考虑等同模型equivalent models?

- 以同样个数的参数(t),用不同组合产生许多不同模型,而其中再生协方差矩阵,完全相同
- 换句话说,同样个数的参数(t)产生多个与样本数据有相同拟合程度、但结构不同的模型

• 结构方程是否验证变量间的因果关系causal relations?

- 严格来说,非经设计用以探讨变量间因果效应的研究,都不能证明变量间是否真正存在因果关系。单从等同模型,已经可以举出拟合指数相同,但变量间效应相反的例子
- 利用非实验设计non-experimental design:
 - 采用纵贯longitudinal研究数据,每个变量至少要有2次测量(2时段以上设计)
 - 使用多个指标multiple indicator以推算潜变量
 - 样本要够大并具代表性, 使结果具有实质意义和普遍性
 - 考虑不同模型的意义,考虑指标误差项相关的意义

• 合宜和错误的高阶因子(higher-order factor)

- 不一定可以强将数个因子合并,并简化为高阶因子的关系
- 例:学生的性格(不可合并)如何影响学生成绩表现 (或可合并)

结构方程模型及其应用 Structural Equation Model and Its Applications

XII 读取SPSS数据 XII Reading SPSS data

侯傑泰(**侯杰泰**)
Kit-Tai Hau
香港中文大学教育心理系
Educational Psychology Dept,
The Chinese University of Hong Kong
使用时请着明出处

Reading Data from SPSS

- 1. in SPSS (to create .sav file)
 - use compute, recode, etc. edit data
 - save only the variables to be used in LISREL as file1.sav (<filename>.sav) and rearrange the order of variables if necessary

e.g.

save outfile="c:\my documents\SEM\file1.sav"/ keep=v3,v6,v7,v9 to v13,v20.

- 2. in LISREL (to create .psf file)
 - Click "FILE" -> "Import External Data in Other Formats"
 - for "File of type:", select "SPSS for Windows (*.sav)"; select "file1.sav" from the appropriate directory
 - save as file1.psf (or other file name); should see a spreadsheet now

3. in LISREL (to use .psf in .ls8 file)

- click "File", "New" (or "Open an old-file name")
- Read in the raw data (in .psf) using "RA command" e.g., in the p1.ls8 file:

```
DA NI=9 MA=CM
RA=file1.psf
MO NX=9 NK=3.....
OU
```

- Note:
 - still need the "DA command"
 - No need to specify "NO=..."(no. of subjects); all cases from the *.psf
 will be used irrespective of the NO specification
 - No need to specify variable labels "LA....."
 - Mean, SD, KM and CM are available from the .psf file
 - No path is needed if the .psf and .ls8 are in the same directory
- save the file as p1.ls8 (<filename>.ls8)
- Click "run LISREL"

