

PHYSICS Chapter 03

2nd SECONDARY

CANTIDADES FÍSICAS

El desarrollo de la física sólo ha sido posible conforme se ha podido efectuar mediciones y obtener resultados numéricos. En verdad la acción de medir es una de las actividades científicas más antiguas en la historia del hombre.

¿Qué es medir?

Es **comparar** una cantidad física con otra que se considera patrón de medida o "unidad de medida"

Cantidad física

Es toda característica medible de un fenómeno, a la cual le asignaremos un número y una unidad de medida.

La temperatura

La velocidad

La fuerza

CLASIFICACIÓN POR SU ORIGEN

CANTIDADES FÍSICAS

Cantidades Fundamentales

Cantidades Derivadas

- Sirven de base, porque dan origen a otras cantidades físicas.
- Son independientes.

 Se expresan en términos de las cantidades fundamentales.

SISTEMA INTERNACIONAL (SI)

En el SI son siete las cantidades físicas fundamentales

Cantidad física	Unidad base	Símbolo
Longitud	metro	m
Masa	kilogramo	kg
Tiempo	segundo	S
Intensidad de corriente eléctrica	ampere	A
Temperatura	kelvin	K
Intensidad luminosa	candela	cd
Cantidad de sustancia	mol	mol

Cantidades físicas derivadas en el SI.

Se muestran algunas:

Cantidad física	Unidad	Símbolo
Velocidad	metro por segundo	m/s
Aceleración	metro por segundo cuadrado	m/s^2
Fuerza	newton	N
Energía	joule	J
Presión	pascal	Pa
Densidad	kilogramo por metro cúbico	kg/m ³

Indica cuál no es una cantidad física

- A) Altura
- B) Solidaridad
- C) Temperatura
- D) Área

Según su origen, las cantidades físicas se

clasifican en **FUNDAMENTALES** y **DERIVADAS**

Relacionar

Indique si las siguientes cantidades físicas son fundamentales (F) o derivadas (D).

Señale la proposición correcta.

- A) La temperatura es una cantidad física fundamental.
- B) La densidad es una cantidad física fundamental.
- C) Las cantidades física derivadas son 7 según el SI.
- D) Las cantidades físicas derivadas sirven para definir las cantidades físicas fundamentales.

Carlos se dirige de casa al colegio con una rapidez media de 1 m/s pero cuando nota que se le hace tarde corre para llegar a la hora exacta 7:50 am por lo cual los 150 m que le faltaban desplazarse lo hizo corriendo por lo cual al llegar a la puerta su temperatura aumento.

Del texto anterior, ¿cuántas cantidades físicas se han mencionado?

4 cantidades físicas

Hoy en día cada vez que ingresamos a un centro comercial nos apuntan con un termómetro digital. ¿Que cantidad física nos están midiendo?

La temperatura