UNIVERSIDAD AUTÓNOMA DE CHIAPAS LICENCIATURA EN SISTEMAS COMPUTACIONALES

Área de formación: Disciplinaria Unidad académica: Algoritmos Ubicación: Primer semestre

Clave:

Horas semana-mes: 5

Horas Teoría: 3 Horas Práctica: 2

Créditos: 8

PRESENTACIÓN

Los algoritmos son parte fundamental en la construcción del software, no se puede concebir la programación estructurada, orientada a objetos u otro tipo de programación sin las estructuras básicas: secuenciales, condicionales y repetitivas.

La algoritmia le brindará al estudiante las bases fundamentales para el curso de programación estructurada, así como para otras asignaturas ligadas con la ingeniería de software.

Asimismo, a través de estos conocimientos desarrollará la capacidad de abstracción, análisis y síntesis para el desarrollo de programas computacionales.

OBJETIVO GENERAL

El alumno aplicará las técnicas de diseño de algoritmos computacionales para la construcción de programas en forma correcta y metodológica en la solución de problemas.

UNIDAD I.- CONCEPTOS BÁSICOS Y METOLOGÍA PARA LA SOLUCIÓN DE PROBLEMAS COMPUTACIONALES

TIEMPO APROXIMADO: 12 Horas

OBJETIVO DE LA UNIDAD: Aplicar los conceptos básicos de los algoritmos en la solución de problemas programables.

CONTENIDO

- 1.1 Definición de algoritmo
- 1.2 Características de los algoritmos
- 1.3 Tipos de algoritmos
- 1.4 Procesos e instrucciones
 - 1.4.1 Procesos y su descripción
 - 1.4.2 Variables
- 1.5 Especificación de un algoritmo
 - 1.5.1 Predicados
 - 1.5.2 Elementos de una especificación
- 1.6 Metodología para la solución de problemas
 - 1.6.1 Definición del problema
 - 1.6.2 Análisis de los datos
 - 1.6.3 Diseño de la solución
 - 1.6.4 Codificación
 - 1.6.5 Prueba y depuración
 - 1.6.6 Documentación
 - 1.6.7 Mantenimiento

UNIDAD II.- ENTIDADES BÁSICAS PARA EL DESARROLLO DE ALGORITMOS

TIEMPO APROXIMADO: 10 Horas

OBJETIVO DE LA UNIDAD: Construir los conceptos de entidades básicas para el desarrollo de algoritmos.

CONTENIDO

- 2.1 Tipos de datos
- 2.2 Operadores y operandos
- 2.3 Expresiones
- 2.4 Identificadores

UNIDAD III.- TÉCNICAS DE PROGRAMACIÓN CON CALIDAD Y REPRESENTACIÓN DE ALGORITMOS

TIEMPO APROXIMADO: 10 Horas

OBJETIVO DE LA UNIDAD: Aplicar técnicas de programación y representación de algoritmos con calidad.

CONTENIDO

- 3.1 Técnicas de programación
 - 3.1.1 Top down
 - 3.1.2 Botton up
 - 3.1.3 Warnier
- 3.2 Representación de algoritmos
 - 3.2.1 Diagramas de flujo
 - 3.2.2 Pseudocódigo
- 3.3 Técnicas de programación con calidad
 - 3.3.1 Metodología
 - 3.3.2 Tamaño del producto
 - 3.3.3 Técnicas de estimación
 - 3.3.4 Agenda de trabajo y seguimiento a la agenda de trabajo
 - 3.3.5 Administración de los defectos

UNIDAD IV.- CONCEPTOS BÁSICOS DE PROGRAMACIÓN

TIEMPO APROXIMADO: 10 Horas

OBJETIVO DE LA UNIDAD: Diseñar algoritmos y aplicar los conceptos esenciales para la elaboración de programas básicos.

CONTENIDO

- 4.1. Componentes básicos de un lenguaje de programación
 - 4.1.1. Palabras reservadas
 - 4.1.2. Comentarios
 - 4.1.3. Tipos de datos
 - 4.1.4. Identificadores
 - 4.1.5. Operadores
- 4.2 Estructura general de un programa
- 4.3 Programas básicos

UNIDAD V.- ESTRUCTURAS DE CONTROL

TIEMPO APROXIMADO: 15 Horas

OBJETIVO DE LA UNIDAD: Aplicar estructuras de control en el diseño de algoritmos básicos y convertirlos a un lenguaje de alto nivel.

CONTENIDO.

- 5.1 Secuenciales
 - 5.1.1 Asignación
 - 5.1.2 Entrada
 - 5.1.3 Salida

- 5.2 Condicionales
 - 5.2.1 Simple
 - 5.3.2 Múltiple
- 5.3 Estructuras Repetitivas
 - 5.3.1 Mientras (while)
 - 5.3.5 Repetir (do while)
 - 5.3.3 Desde para (for)

UNIDAD VI.- PROCEDIMIENTOS Y FUNCIONES

TIEMPO APROXIMADO: 23 Horas

OBJETIVO DE LA UNIDAD: Conocer las partes que integran los subprogramas.

CONTENIDO

- 6.1 La importancia de las funciones
- 6.2 Funciones sin parámetros
- 6.3 Funciones que reciben y devuelven parámetros
- 6.4 Prototipos
- 6.5 Transferencia de parámetros desde el sistema operativo
- 6.6 Definición de subprogramas
- 6.7 Funcionamiento de subprogramas
- 6.8 Manipulación de subprogramas

EXPERIENCIAS DE APRENDIZAJE

- Foro de discusión mediante el portal en Internet
- Elaboración de proyectos
- Ejercicios grupales fuera y dentro de clase
- Exposición de investigaciones y tareas por equipos de trabajo
- Planteamiento y solución de problemas
- Diseño de programas

CRITERIOS DE EVALUACIÓN

Exámenes por unidad	50%
Investigación y tareas	30%
Proyecto Final	<u>20%</u>
Total	100%

BIBLIOGRAFÍA BÁSICA

Tremblay, Jean Paul & Bunt, Richard B. (1998). <u>Introducción a la ciencia de las computadoras.</u> México: Mc. Graw Hill.

Joyanes, Luis (1998). Metodología de la programación. México: Mc. Graw Hill.

Castro Jorge y otros (1993). Curso de Programación. España: Mc Graw Hill.

Joyanes, Luis (1998). <u>Fundamentos de programación</u>. España: Mc. Graw Hill, 2da. Edición.

Weiss, Mark Allen (1999). <u>Estructuras de datos y análisis de algoritmos.</u> México: Addison_Wesley Longman.

Joyanes, Luis (1998). Fundamentos de programación. España: Mc. Graw Hill.

Pratt, Terrence W. Y Marvin V. Zelkowitz (1997). <u>Lenguajes de programación:</u> diseño e implementación. México: Prentice Hall.

BIBLIOGRAFÍA COMPLEMENTARIA

Humphrey, W. (1995). <u>A Discipline for Software Engineering</u> READING, MASS: Addison Wesley, SEI Series in Software Engineering.

Humphrey, W. (1997). <u>Introduction to the Personal Software Process</u> READING, MASS: Addison. Wesley, SEI Series in Software Engineering.