BASES DE DATOS

DISEÑO DE BASES DE DATOS

- 1. Diagrama entidad relación.
- 2. Diagrama entidad relación extendido.
- 3. Diagrama relacional.
- 4. Normalización

DIAGRAMA ENTIDAD RELACIÓN

DIAGRAMA ENTIDAD RELACIÓN

Modelo de datos entidad-relación está basado en la percepción del mundo real que consta de un conjunto de objetos básicos llamados entidades y de relaciones entre estos objetos.

- Conjuntos de entidades
- Conjuntos de relaciones
- Conjuntos de atributos

EL DIAGRAMA ENTIDAD RELACIÓN

ENTIDAD

Una entidad es una <u>cosa</u> u <u>objeto</u> en el mundo real que es distinguible de todos los demás.

- física o real (una persona, un libro, un empleado)
- abstracta o conceptual (una asignatura, un viaje)

Conlleva una serie de propiedades que permite identificar de forma unívoca una entidad

Conjunto de entidades

Es la totalidad de las entidades del mismo tipo que comparten las mismas propiedades o atributos

- Cada conjunto de entidades tiene una llave
- Cada atributo tiene un dominio

ATRIBUTOS

Los atributos describen propiedades que posee cada miembro de un conjunto de entidades.

- Permiten representar una entidad utilizando un conjunto de atributos.
- Describen cada entidad por medio de un par valor-atributo.

ATRIBUTOS

Simples o compuestos

- Simple: no se puede dividir en otros atributos. Ej → Segundo apellido
- Compuesto: puede dividirse en otros atributos. Ej → Nombre y apellidos.

Valor único o multivalores

- Valor único: sólo un valor para cada entidad. Ej → fecha nacimiento.
- Multivalores: un atributo puede tener varios valores. Ej → Número de teléfono.

ATRIBUTOS

Atributos derivados

- Valor calculado a partir de otra información ya existente (atributos, entidades relacionadas)
- Son información redundante. → Edad de un empleado cálculo a partir de fechanacim

Atributos NULL

- No es un valor como tal, es un estado. Significa valor desconocido.
- En realidad no es un atributo como tal sino un valor que puede adquirir.
 - El valor es desconocido bien porque falta o porque no se puede conocer.

RELACIONES

Una relación o vinculo entre dos o más entidades describe alguna interacción entre las mismas.

Conjunto de relaciones

Un conjunto de relaciones del mismo tipo.

Estructura genérica o abstracción del conjunto de relaciones existentes entre dos o más tipos de entidad

En <u>SQL</u> las relaciones son llamadas <u>tablas</u>.

RELACIONES

Número de tipos de entidad que participan en una relación.

- Binaria: grado 2 es el más frecuente
- Ternaria: grado 3
- Reflexiva (o recursiva): grado1

RELACIONES

Atributos en una relación

Una relación puede tener atributos descriptivos.

Todo tipo de entidad que participa en un tipo de relación juega un papel específico en la relación

RESTRICCIONES EN UNA RELACIÓN

Cardinalidad

Número de entidades que pueden asociarse vía una relación.

- Una a una (1,1). Una entidad en A se asocia como mucho con una entidad en B y una entidad en B sólo puede relacionarse con una de A.
- Una a muchos (1, n). Una entidad en A se puede asociar con cualquier número (cero a más) de entidades en B; sin embargo, B solo puede asociarse con una entidad de A
- Muchos a uno (n,1). Una entidad en A solo puede asociarse con una entidad de B, pero una entidad de B puede asociarse con muchas entidades de A.
- Muchos a muchos. Una entidad de A puede asociarse con muchas entidades de B y B puede asociarse con muchas entidades de A.

RESTRICCIONES DE UNA RELACIÓN

RESTRICCIONES DE UNA RELACIÓN

RESTRICCIONES DE UNA RELACIÓN

RESTRICCIONES RELACIÓN

Restricción de participación

Una participación de una entidad en una relación puede ser:

- Total: Todas las entidades participan en al menos una relación.
- Parcial: Algunas de las entidades pueden no participar en la relación.

En el diagrama E/R la participación se especifica por medio de la cardinalidad:

- Total: (1,1) o (1,n)
- Parcial: (0,1) o (0,n)

CLAVES O LLAVES

Dentro de una entidad tiene que haber un atributo principal que identifica a la entidad y su valor tiene que ser único.

Una clave puede estar compuesta por uno o más atributos.

Existen dos tipos de claves:

- Superllave: Uno o mas atributos que nos permite identificar una entidad en especifico dentro de un conjunto de entidades y ninguna otra entidad la tiene. Toda relación tiene por lo menos una superllave llamada llave primaria.
- Llave candidata: Son aquellos atributos que tienen características para ser superllaves, pero hay dos o mas en una entidad; una se tomara como llave primaria y otra como llave secundaria

CLAVES O LLAVES

- Clave primaria (Primary Key): es el valor o conjunto de valores que identifican una fila dentro de una tabla. Nunca puede ser NULL. Un ejemplo claro de clave primaria seria el DNI, que es único para cada persona y no puede ser NULL.
- Clave ajena (Foreign Key): es el valor o valores de una tabla que corresponde con el valor de una clave primaria en otra tabla. Esta clave es la que representa las relaciones entre las tablas.

TIPOS DE ENTIDADES

Tipo de entidades

- Débil: es aquella que no tiene llave primaria.
- Fuerte: es aquella que tiene llave primaria

ENTIDADES DÉBILES

Una instancia se identifica por su relación con una instancia de otro tipo de entidad

- Tipo de relación identificador
 - Relaciona un tipo de entidad débil y un tipo de entidad regular (fuerte, dominante, padre, propietaria)
- Clave parcial (o discriminante)
 - Atributos de la entidad débil, que identifican de forma única cada instancia, siempre que esté relacionada con una instancia del tipo de entidad regular
- Clave = (clave_entidad_regular,clave_parcial)

Una entidad débil **siempre** tiene una **restricción de participación total** en la relación que la une a su entidad propietaria

RELACIONES EN ENTIDADES DÉBILES

Dependencia en existencia

 Una entidad tipo débil (weak entity) queda definida siempre a través de una interrelación especial que induce la dependencia de esta entidad de otra de orden superior (que puede ser entidad fuerte o débil).

Dependencia en identificación

 Existen algunas entidades débiles que no tienen suficientes propiedades para garantizar la identificación o distinción de entidades. En estos casos es necesario forzar el mecanismo de identificación de dicha entidad débil con la composición de atributos primarios de la entidad de orden superior y algunos atributos de la entidad débil.

RELACIONES EN ENTIDADES DÉBILES

Dependencia en existencia

Dependencia en identificación

SIMBOLO	NOMBRE	DESCRIPCIÓN
	Rectángulo	Representa conjunto de entidades.
	Rectángulo doble	Representa una entidad débil.
	Elipse	Representan atributos.
	Rombo	Representa conjuntos de relaciones
	Conexión	Conectan los atributos a los conjuntos de entidades, y los conjuntos de relaciones.

Elipses

- Atributo
- Clave primaria
- Clave candidata
- Identificador compuesto
- Multivalores
- Atributo compuesto
- Atributo multivalor compuesto
- Opcional

Lineas

- Asociando atributos bien a una entidad o a una relación.
- Asociando entidades o relaciones
 - Líneas indirectas: cardinalidad 1
 - Con flecha: cardinalidad N

Otros

- Cardinalidad
 - (min, max) → Entidades
 - 1:N → Relaciones
- Etiquetas par indicar roles en relaciones recursivas
- Relaciones no binarias
 - Conectar la relación con todas las entidades.

DIAGRAMA ENTIDAD RELACIÓN EXTENDIDO

ESPECIALIZACIÓN

Permite reflejar el hecho de que hay una entidad general, que denominamos entidad superclase, que se puede especializar en entidades subclase.

Proceso de definición de un conjunto de subtipos de un tipo de entidad

GENERALIZACIÓN

Es el resultado de la unión de 2 o más conjuntos de entidades (de bajo nivel) para producir un conjunto de entidades de más alto nivel.

Se suprimen las diferencias entre varios tipos de entidades y generalizamos sus características comunes para formar una entidad superclase.

HERENCIA

Los conjuntos de entidades de nivel más bajo (subclases) heredan los atributos y la participación en las relaciones de los conjuntos de entidades de nivel más alto (superclase)

Jerarquía

 En una jerarquía un conjunto de entidades dado puede estar implicado como un conjunto de entidades de nivel más bajo sólo en una ´única relación ES

Herencia Múltiple

 Si un conjunto de entidades es un conjunto de entidades de nivel más bajo en más de una relación ES, entonces el conjunto de entidades tiene herencia múltiple

AGREGACIÓN

La agregación surge de la limitación que existe en el modelado de E-R, al no permitir expresar las relaciones entre relaciones de un modelo E-R.

- Permite combinar varios tipos de entidad, relacionados mediante un tipo de relación, para formar un tipo de entidad agregada de nivel superior
- Útil cuando el tipo de entidad agregado debe relacionarse con otros tipos de entidad

REPRESENTACIÓN DE LAS RELACIONES ES

Se utiliza para indicar con mayor precisión la condición de pertenencia en una generalización o especialización

Se utiliza para indicar si una entidad de la superclase puede permanecer a uno o varias entidades del nivel inferior

Se utiliza el circulo para indicar que una entidad de la superclase debe pertenecer al menos a una de las entidades del nivel inferior.

DIAGRAMA RELACIONAL

DIAGRAMA RELACIONAL

Entidades fuertes

Se reducen a una tabla con los mismos atributos

 Los atributos compuestos se separan creando un atributo por cada componente del atributo.

Entidades débiles

 Se convierten en una tabla en la que cada atributo es un campo y se añade un campo en el que se incluye una referencia al identificador de la entidad fuerte.

Relaciones

Muchas a muchas

Es necesario crear una nueva tabla con las columnas de las claves primarias de las dos entidades representantes de la relación y los atributos descriptivos de la relación.

Muchas a una o una a muchas

Cuando la participación es total se añade un atributo extra a la tabla correspondiente a la relación muchas que hace referencia a la clave primaria de la otra tabla.

Si la participación es parcial puede ser mejor crear una tabla adicional.

Una a una

Es igual que el caso anterior y se escoge cualquier tabla como si fuese la relación de muchas.

Atributos multivalorados

Para un atributo de este tipo siempre se crea una nueva tabla.
 La nueva tabla tendrá un atributo correspondiente a la clave primaria de la entidad y un atributo correspondiente al atributo multivalorado.

Cada nuevo valor será una fila nueva de la tabla.

Especializaciones / Generalizaciones

Existen dos métodos que se pueden aplicar

Método1

- Se crea una tabla para la entidad del nivel superior con todos sus atributos.
- Se crea una tabla para cada entidad del nivel inferior con sus atributos en la que le incluyen la clave primaria del nivel superior

Cuenta

Cuenta Saldo **Cuenta corriente**

<u>Cuenta</u>

Tipo interés

Cuenta ahorro

<u>Cuenta</u> Descubierto

Método2

 Se crea una tabla para cada uno de los hijos con los atributos del hijo y del padre. Esto solo vale para una generalización completa y disjunta.

Agregación

- Se crea una tabla para el conjunto de relaciones que asocian el conjunto de entidades y la agregación.
- En esta tabla se debe incluir una columna para cada clave primaria de las entidades que participan en la agregación.
- Se debe incluir además las claves primarias de todas las entidades que estén relacionadas.
- Se debe incluir también cualquier conjunto de atributos descriptivos de las relaciones que intervienen en la agregación.

Tipo de reducción	Número de tablas
Conjunto de entidades fuerte	1
Conjunto de entidades débiles	1
Conjunto de relaciones	El número depende de la redundancia existente y la combinación de tablas que se pueda realizar.
Atributos multivalorados	1
Generalización	Caso general : 1 tabla para el padre y otra para cada hijo. Generalización disjunta y completa: si interesa, 1 tabla para cada hijo.
Agregación	1 tabla para el conjunto de relaciones de la agregación cuya clave primaria será la del conjunto de entidades junto con la del conjunto de relaciones de la agregación (claves primarias de los dos conjuntos de entidades de la relación).

RESTRICCIONES AL MODELO RELACIONAL

- En una tabla no pueden existir dos tuplas (conjunto de atributos, valores) iguales, todas las filas de una tabla tienen que ser distintas. Por ello se establece una clave primaria que tiene que ser única.
- El orden de la tuplas no tiene importancia.
- Cada atributo toma un valor único dentro de su dominio.
 Un atributo no puede tener varios valores.
- Los atributos que son parte de una clave primaria no pueden ser NULL

RESTRICCIONES SEMANTICAS

- Restricciones de clave primaria (PRIMARY KEY): permiten declarar un atributo o un conjunto de atributos como clave primaria.
- Restricciones de unicidad (UNIQUE): permiten declarar claves alternativas. Se debe tener en cuenta que todas estas claves alternativas tienen que ser distintas.
- Restricciones de obligatoriedad (NOT NULL): permiten determinar aquellos atributos que deben tomar obligatoriamente algún valor.
- Restricciones de clave ajena (FOREIGN KEY): estas claves ajenas se utilizan para enlazar tablas dentro de una base de datos siempre manteniendo la integridad referencial.

Se define una **clave ajena** como aquel atributo de una tabla que es clave primaria en otra tabla con la cual está relacionada. Esta clave ajena sólo puede tomar valores que estén permitidos en la clave primaria.

BORRADO Y MODIFICACIÓN DE CLAVES AJENAS

- Borrado en cascada (CASCADE): cuando se borra al padre se borran todos los hijos (siempre se habla del borrado de tuplas).
- Borrado restringido (RESTRICT): no se puede borrar al padre en caso de que tenga algún hijo.
- Borrado con puesta a valores nulos (SET NULLS): siempre que la clave ajena lo permita, al borrar al padre se pone la clave ajena a valor nulo.
- Borrado con puesta a valor por defecto (SET DEFAULT): al borrar al padre la clave ajena del hijo toma un valor por defecto que ya ha sido determinado con anterioridad a crear la relación.

BORRADO Y MODIFICACIÓN DE CLAVES AJENAS

- El borrado en cascada se denotará como B:C.
- El borrado restringido se denotará como B:R.
- El borrado con puesta a NULL se denotará como B:N.
- El borrado con puesta a valores por defecto se denotará como B:D.
- La modificación en cascada se denotará como M:C.
- La modificación restringida se denotará como M:R.
- La modificación con puesta a NULL se denotará como M:N.
- La modificación con puesta a valores por defecto se denotará como M:D.

RESTRICCIONES ADICIONALES

- Restricción de verificación (CHECK): con esta restricción se especifica una condición para los valores de un atributo cuando estos se introducen o actualizan en una tabla.
 - Se aplica a cada fila de la tabla.
 - Se debe verificar una condición
 - El resultado de la comprobación puede ser Verdadero, Falso o Desconocido. En caso de que el resultado sea Falso no se puede introducir ese valor.
- Aserciones (ASSERTION): especifican condiciones de valores de atributos en varias tablas. Se debe poner un nombre específico a cada una de las aserciones dado que no se sabe a qué tablas se aplican exactamente.

RESTRICCIONES ADICIONALES

- Disparadores (TRIGGERS): es un código que se ejecuta automáticamente en respuesta a un determinado evento de la base.
 - Se utilizan para mantener la integridad de la información de una base.
 - También se utilizan para la actualización de atributos dependientes.
 - Un ejemplo serían las condiciones aplicadas en la inserción en tablas: al insertar un empleado nuevo en la tabla "Trabajadores" (más general) se quiere que lo inserte también en la de "Vendedores" (más específica). Se pueden considerar reglas 'ECA' (evento, condición, acción), según las cuales, dado un evento y cumpliendo una condición, se realiza una determinada acción.

NOTACIÓN EN EL DIAGRAMA RELACIONAL

- El nombre de la tabla se pondrá en mayúsculas.
- El nombre de la clave primaria debe estar subrayado.
- Cualquier valor asignado a una clave ajena debe pertenecer a los valores permitidos por la clave primaria a la que está asociada.
- Aquellos atributos cuyo valor NOT NULL venga impuesto por la reducción del diagrama Entidad/Relación a Relacional o como una restricción indicada en el enunciado del problema, se marcarán con un asterisco en el interior de un círculo.
- El lado en el que se encuentra la clave primaria se determinará con un círculo.
- El lado en el que se encuentra la clave ajena se denotará con un doble círculo.

NORMALIZACIÓN

NORMALIZACIÓN

Proceso mediante el cual se transforman datos complejos un conjunto de estructuras de datos más pequeñas.

- Hace las cosas fáciles de entender
- Hay menos repetición de datos, lo que implica un menor uso de espacio en disco
- Ayuda a prevenir errores lógicos en la manipulación de datos
- Facilita agregar nuevas columnas sin romper el esquema actual ni las relaciones.

NIVELES DE NORMALIZACIÓN

Existen distintos niveles de normalización y cada uno de ellos nos acerca más a hacer una base de datos verdaderamente relacional.

- Primera Forma Normal
- Segunda Forma Normal
- Tercera Forma Normal
- Forma Normal Boyce-Codd
- Cuarta Forma Normal
- Quinta Forma Normal o Forma Normal de Proyección-Unión
- Forma Normal de Proyección-Unión Fuerte
- Forma Normal de Proyección-Unión Extra Fuerte
- Forma Normal de Clave de Dominio.

PRIMERA FORMA NORMAL

Una relación es primera forma normal si:

- Sus tuplas (filas) contienen valores atómicos, es decir, no contienen valores que a su vez sean conjuntos.
- Incluye la eliminación de todos los grupos repetidos
- Todos los atributos (columnas) deben tener todos sus valores, o lo que es lo mismo, no debe haber celdas en blanco.

TABLA NO NORMALIZADA

ID_ORDEN	FECHA	ID_CLIENTE	NOM_CLIENTE	ESTADO	NUM_ITEM	DESC_ITEM	CANT	PRECIO
2301	2/23/03	101	MARTI	CA	3786	RED	3	35
2301	2/23/03	101	MARTI	CA	4011	RAQUETA	6	65
2301	2/23/03	101	MARTI	CA	9132	PAQ-3	8	4.75
2302	2/25/03	107	HERMAN	WI	5794	PAQ-6	4	5.0
2303	2/27/03	110	WE-SPORTS	MI	4011	RAQUETA	2	65
2303	2/27/03	110	WE-SPORTS	MI	3141	FUNDA	2	10

En esta tabla, es un claro ejemplo de Base de Datos sin normalizar.

Se puede observar una repetición de datos

PASADA A PRIMERA FORMA

- ORDENES

ID_ORDEN	FECHA	ID_CLIENTE	NOM_CLIENTE	ESTADO
2301	2/23/03	101	MARTI	CA
2302	2/25/03	107	HERMAN	WI
2303	2/27/03	110	WE-SPORTS	MI

- ARTICULOS_ORDENES

ID_ORDEN	NUM_ITEM	DESC_ITEM	CANT	PRECIO
2301	3786	RED	3	35
2301	4011	RAQUETA	6	65
2301	9132	PAQ-3	8	4.75
2302	5794	PAQ-6	4	5.0
2303	4011	RAQUETA	2	65
2303	3141	FUNDA	2	10

Se observa:

- Eliminación de los grupos repetidos de datos.
- Se crea en su lugar una nueva tabla con el grupo repetido

SEGUNDA FORMA NORMAL

Una relación es segunda forma normal si:

- Es primera forma normal.
- Cualquier atributo (columna) no perteneciente a una clave (primaria o extranjera) tiene dependencia funcional total de la clave primaria, es decir, que a cada valor de dicho atributo solo le corresponde un valor de la clave primaria.
- Todas las dependencias parciales se deben eliminar y separar dentro de sus propias tablas.

PASADA A SEGUNDA FORMA

- ARTICULOS_ORDENES

ID_ORDEN	NUM_ITEM	CANT
2301	3786	3
2301	4011	6
2301	9132	8
2302	5794	4
2303	4011	2
2303	3141	2

- ARTICULOS

NUM_ITEM	DESC_ITEM	PRECIO	
3786	RED	35	
4011	RAQUETA	65	
9132	PAQ-3	4.75	
5794	PAQ-6	5.0	
3141	FUNDA	10	

- Se determinan las columnas que no son llave y no dependen de la llave primaria de la tabla.
- Se eliminan esas columnas de la tabla base.
- Se crea una segunda tabla con esas columnas

TERCERA FORMA NORMAL

Una relación es tercera forma normal si:

- Es segunda forma normal.
- Los atributos (columna) no pertenecientes a una clave (primaria o extranjera) son mutuamente independientes funcionalmente

PASADA A TERCERA FORMA

- ORDENES

ID_ORDEN	FECHA	ID_CLIENTE
2301	2/23/03	101
2302	2/25/03	107
2303	2/27/03	110

- CLIENTES

ID_CLIENTE	NOM_CLIENTE	ESTADO
101	MARTI	CA
107	HERMAN	WI
110	WE-SPORTS	MI

- Se determinan las columnas que son dependientes de otra columna no llave.
- Se eliminan esas columnas de la tabla base.
- Se crea una segunda tabla con esas columnas y con la columna no llave de la cual son dependientes.

