Лист №2. λ -Представимость и неразрешимость

 λ -исчисление, 2024

2.1. Пусть $M_1, M_2, ..., M_k$ и $N_1, N_2, ..., N_k$ — два набора λ -выражений. Покажите, что

$$\langle M_1, M_2, ..., M_k \rangle = \langle N_1, N_2, ..., N_k \rangle \iff M_1 = N_1, M_2 = N_2, ..., M_k = N_k$$

- 2.2. Постройте λ -выражения $A,B\in\Lambda$ таким образом, чтобы Ax=A и Bx=xB.
- 2.3. Постройте выражения $F, \pi \in \Lambda^0$, такие, что:
 - $\forall n \in \mathbb{N} : F \lceil n \rceil xy = xy^{\sim n}$
 - $\forall n \in \mathbb{N}, \ \forall i \leqslant n : \pi \lceil n \rceil \lceil i \rceil = \pi_i^n$
- 2.4. Постройте λ -выражение **Mult**, такое, что **Mult** $\lceil n \rceil \lceil m \rceil = \lceil mn \rceil$ для любых $m, n \in \mathbb{N}_0$.
 - Постройте λ -выражение **Fac**, такое, что **Fac** $\lceil n \rceil = \lceil n! \rceil$ для любого $n \in \mathbb{N}_0$.
- 2.5. Элементарная функция Aккермана φ определяется следующими соотношениями:

$$\varphi(0,n) = n+1,$$

$$\varphi(m+1,0) = \varphi(m,1),$$

$$\varphi(m+1,n+1) = \varphi(m,\varphi(m+1,n)).$$

Покажите, что φ рекурсивна, и найдите λ -выражение, которое её λ -представляет.

- 2.6. Постройте функцию предшествующего элемента для чисел Чёрча: \mathbf{P}_c^- такое, что $\mathbf{P}_c^-c_{n+1}=c_n$ при всех $n\in\mathbb{N}_0$.
- 2.7. Допустим, что каждый символ в упрощённой записи λ -выражения (переменная, скобка, точка, запятая, лямбда) занимает 0.5см пространства на бумаге. Найдите λ -выражение длиной менее 25см, имеющее нормальную форму длиной не менее $10^{10^{150}}$ световых лет (скорость света составляет $3 \cdot 10^{10}$ см/сек.)
- 2.8. Пусть

Покажите, что \$ — комбинатор неподвижной точки.

- 2.9. Докажите, что $M \in \Lambda$ комбинатор неподвижной точки $\iff M = (\mathbf{SI})M$.
- 2.10. Пусть $f,g-\lambda$ -выражения. Положим $X\equiv \mathbf{\Theta}(f\circ g)$. Докажите, что g(X) неподвижная точка выражения $g\circ f$.
- 2.11. Положим $\mathbf{Y}_M \equiv \lambda f.~WWM$, где $W \equiv \lambda x, z.~f(xxz)$. Докажите, что \mathbf{Y}_M комбинатор неподвижной точки для любого $M \in \Lambda.$
- 2.12. Докажите, что $\mathbf{Y}_M = \mathbf{Y}_N \,\Rightarrow\, M = N$. (\mathbf{Y}_M и \mathbf{Y}_N определены как в предыдущей задаче)
- 2.13. Пусть $f:\mathbb{N}_0^2 \to \mathbb{N}_0$ рекурсивная функция. Постройте последовательность X_0,X_1,\dots λ -выражений, такую, что при всех $n\in\mathbb{N}_0$ выполняется $X_nX_m=X_{f(n,m)}.$
 - Пусть $X=\{x_1,x_2,...,x_n\}$, и пусть \times бинарная операция на X. Постройте λ -выражения $X_1,X_2,...,X_n$ таким образом, чтобы выполнялось $X_iX_j=X_k\iff x_i\times x_j=x_k$ при всех i,j,k.
- 2.14. Пусть d числовая система. Докажите, что d адекватна тогда и только тогда, когда

$$\exists F, F^{-1} \in \Lambda: \ \forall n \in \mathbb{N}_0: \ (F \lceil n \rceil = d_n) \land (F^{-1}d_n = \lceil n \rceil).$$

- 2.15. Пусть $d_0,d_1,...-$ адекватная числовая система. Положим $d_n'\equiv \mathbf{YC}d_n$, где $\mathbf{C}\equiv \lambda x,y,z.$ x(zy). Покажите, что все рекурсивные функции одного аргумента $\varphi:\mathbb{N}_0\to\mathbb{N}_0$ λ -представляются с помощью d'. (подсказка: рассмотрите $F'\equiv \lambda x.$ xF)
- 2.16. Пусть $f_0 \equiv \lambda x, y, z.$ y и $\mathbf{S}_f^+ \equiv \lambda x.$ $\langle x \rangle$. Покажите, что функции $\mathbf{P}_f^- \equiv \langle I \rangle$ и $\mathbf{Zero}_f \equiv \lambda x, y, z.$ $x(\lambda x', y', z'.$ z')yz превращают $\left(f_0, \mathbf{S}_f^+\right)$ в адекватную числовую систему.
- 2.17. Рассмотрим последовательность $a_n \equiv \mathbf{K}^n$ I. Покажите, что $a-\mathbf{he}$ числовая система.
- 2.18. Покажите, что множество $\{M \in \Lambda \mid M = \mathbf{I}\}$ **не** рекурсивное.
- 2.19. Докажите, что существует λ -выражение M, такое, что $M = \lceil M \rceil$. (подсказка: обратите внимание на доказательство теоремы Скотта-Карри о неразрешимости)
- 2.20. Докажите вторую теорему о неподвижной точке: $\forall F \in \Lambda: \exists X \in \Lambda: F \ulcorner X \urcorner = X.$