STAT 3011 Discussion 015

Standard Normal Distribution: Week 6

Talha Hamza University of Minnesota

Spring 2025

The Binomial Distribution

Definition: A discrete random variable X that counts the number of successes in n independent trials, each with success probability p, follows a binomial distribution:

$$X \sim \mathsf{Binom}(n, p)$$

Conditions for Binomial Distribution:

- 1. Each trial has two possible outcomes: success or failure.
- 2. The probability of success, p, remains constant for each trial.
- 3. Trials are independent of each other.
- 4. The number of trials, *n*, is fixed.

Examples:

• Number of heads in 5 coin tosses of a fair coin: $X \sim \text{Binom}(5, 0.5)$

Expected Value and Variance of Binomial Distribution

Expected Value:

$$E(X) = n \cdot p$$

Variance:

$$Var(X) = n \cdot p \cdot (1 - p)$$

where:

- *n* is the number of trials.
- p is the probability of success in each trial.

Understanding the Standard Normal Distribution

- The normal distribution is a continuous probability distribution completely characterized by:
 - **Mean** (μ) : The center of the distribution.
 - Standard deviation (σ): Measures data spread.
- The **standard normal distribution** is a special case where:
 - $\mu = 0, \, \sigma = 1$
 - Denoted as: $Z \sim N(0,1)$

Z-Score and Any Normal Distribution

• Any normal distribution $X \sim N(\mu, \sigma^2)$ can be converted to the standard normal distribution using the **z-score**:

$$Z = \frac{X - \mu}{\sigma}$$

- This transformation allows us to use standard normal tables or R's pnorm() function for probability calculations.
- **Key Idea:** The z-score tells us how far a value is from the mean, making different normal distributions comparable.

Using pnorm() in R

To find the probability under the standard normal curve:

- P(Z < z): pnorm(z)
- P(Z > z): **1** pnorm(z)
- $P(z_a < Z < z_b)$: pnorm (z_b) pnorm (z_a)

Note: pnorm() can also be used for any normal distribution $X \sim N(\mu, \sigma^2)$ by specifying the mean and standard deviation:

- P(X < x): pnorm(x, mean = μ , sd = σ)
- P(X > x): 1 pnorm(x, mean = μ , sd = σ)

Examples

Example 1: Find P(Z < 0.9)

pnorm(0.9)

Output: 0.8159

Examples

Example 2: Find P(Z > 0.5)

1 - pnorm(0.5) OR pnorm(0.5, LOWER.TAIL = FALSE)

Output: 0.3085

Examples

Example 3: Find P(-1.5 < Z < 0.5)

pnorm(0.5) - pnorm(-1.5)
Output: 0.6247

Using qnorm() in R

To find the z-value corresponding to a given percentile:

- z such that P(Z < z) = p: 'qnorm(p)'
- z such that P(Z > z) = p: 'qnorm(1 p)'

Example

Example 4: Find the z-value that marks the 90th percentile of the standard normal distribution.

qnorm(0.9)

Output: 1.2816

pnorm() vs. qnorm()

- pnorm(z) → Returns the probability (area under the curve) below z.
 "Given a z-score, what proportion of values are smaller?"
- **qnorm(p)** → Returns the z-score that corresponds to a given probability. "Given a probability, what z-score separates the lower area?"

Conclusion: pnorm() finds the area give a z-score, qnorm() finds the z-score given the area.

Questions? Let's Discuss!