Internship Program Report

By

NERUSU VIJAY KUMAR - 18481A0268

In association with

Contents

Introduction	3
Programorganiser	3
Courtesy	3
Programdetails	3
Internshipprogram	3
3 rd May2021:IntroductiontoEPCIndustry	.4
4 th May2021:EngineeringdocumentationforEPCprojects	.5
5 th May2021:Engineeringdocumentationforcommandsandformulae	6
7 th May2021:Engineeringdocumentationfor Electrical system design	7
10 th May2021:EngineeringdocumentationforTypicaldiagrams	8
11 th May2021:ClassificationofTransformersandGenerators	9
12 th May2021:ClassificationofSwitchgareconstructionandpowerfactorimprovement1	L O
17 th May2021:DetailingaboutUPSsystemandBusducts	1
18 th May2021:DetailingaboutMotorStarters andSizingofmotors1	12
19 th May2021:DiscribingaboutEarthingsystemandLightingProtection1	13
20 th May 2021: Lighting or illumination systems and calculations	L 4
21 th May2021:Lightingorilluminationsystemsusing DIALUXsoftware1	1 5
24 th May2021:Cabling andtheircalculationsandtypes1	16
25 th May2021:CablingcalculationsandCableglandselection	L 7
28thMay2021:LoadcalculationsandTransformersizingcalculations1	18
29thMay2021:DGsetcalculations	L 9
2ndjune2021:CaluculationsofEarthingandLightingprotection	20
5thjune2021:Cablesizingandcabletraysizingcalculations	21
Conclusion	22

Introduction

Internship program arranged by GUDLAVALLERU ENGINEERING COLLEGE in association withSmart Internz, Hyderabad for the benefit of 3rd year EEE batch 2018-2022 on ElectricalDetaileddesignEngineeringforOil&Gas,PowerandUtilityindustrialsectors.

Programorganiser

SmartBridge, Hyderabad.

Pione erinor ganising Internships, knowledge workshops, debates, hackathons, Technical

sessions and Industrial Automation projects.

Courtesy

Dr.SriB.Dasu-HOD-EEE,GEC

Mr. G. Srinivasa Rao – Internship

coordinatorMr.RameshV-Mentor

Mr.VinayKumar-SystemSupport

Mr.Harikanth-Software/Technical Support

Programdetails

Smart Internz program schedule: 4 weeks starting from 3rd May

2021Daily scheduletime shallbe4PMto6.30PM

ModeofClasses:OnlinethroughZOOMPres

enter:MrRameshV

Internshipprogram

We have been given the opportunity to learn and interact within dustry experience dengineering special is to learn the Electrical detailed designengineering for various industrial sectors.

3rdMay2021:IntroductiontoEPCIndustry

1	EPC Industry	EPCIndustry	Introduction
	&Electrical	Engineering	TypesofEngineering
	DetailedEngineeri	Procurement	Engineeringroleinprocurement
	ng	Construction	Engineeringroleduringconstruction

Topicdetails:

Engineeringphases, Engineeringdeliverables (drawings & documents) list, Design Engineerroleat various phases of project.

4thMay2021:Engineeringdocumentation forEPCprojects

2	Electrical	EngineeringDeliverableslist	Sequenceofdeliverables
	DesignDocumen	DetailedEngineeringworkflow	Detailedengineeringprocess
	tation	Documenttransmission	Documentsubmissionandinfoe
			xchange
		Deliverablestypes	Differenttypesofdeliverables

2

3. ELECTRICAL DESIGN & DETAILED ENGINEERING - PROCESS

Topicdetails:

Engineeringdeliverableslist,detailedengineeringflow,engineeringsupportflow,engineering supporttoprocurements.

5thMay2021:Engineeringdocumentationforcommandsandformulae

3	Document &	MSWord	Report/Calculations formats
	Drawingtools	MSExcel	Basicexcelcommands
		Autocad	Basic line diagrams and
			layoutcommends

3C. AUTOCAD BASIC COMMANDS

A	AUTOCAD BASIC KEYS							
STANDARD		DRAW		MOD	MODIFY		FORMAT	
NEW	Ctrl+N	LINE	l	ERASE	E	PROPERTIES	MO	
OPEN	Ctrl+0	RAY	RAY	COPY	CO	SELECT COLOR	COL	
SAVE	Ctrl+S	PLINE	PL	MIRROR	MI	LAYER	LA	
PLOT	Ctrl+P	3DPGLY	3P	OFFSET	0	LINETYPE	ŁT	
PLOT PREVIEW	PRE	POLIGONE	POL	ARRAY	AR	LINEWEIGHTS	LW	
CUT	Ctrl+X	RECTANGLE	REC	MOVE	M	LT SCALE	LTS	
COPY	Ctrl+C	ARC	A	ROTATE	RO	LIST	LI	
PASTE	Ctrl+V	CIRCLE	С	SCALE	SC	DIMEN. STYLE	D	
MATCH PROPE.	MA	SPLINE	SPL	STRECH	S	RENAME	REN	
CLOSE	Ctrl+F4	ELLIPSE	EL	TRIM	TR	OPTION	OP	
EXIT	Ctrl+Q	BLOCK	В	EXTENED	EX			
		POINT	PO	BRAKE	BR			
		HATCH	Н	CHAMFER	CHA			
		GRADIENT	GD	FILLET	F			
		REGION	REG	EXPLODE	Х			
		BOUNDARY	ВО					
		DONUT	DO					

	EXTRA			DRAF	FING	PAPER SIZE
UNIT	UN	UCS	UCS	ORTHO	F8, Ctrl+L	A4=210*297
LIMITS	LIMITS	SINGLE TEXT	DT	OSNAP	F3, Ctrl+F	A3=297*420
(0,0; 1000,	1000)	MULTILINE TEXT	MT	POLAR	F10, Ctrl+U	A2=420*594
ZOOM	Z	EDIT TEXT	ED	GRID D	F7, Ctrl+G	A1=594*841
ALL	Α	OBJECT SNAP	ОВ	OTRACK	F11	A0=841*1189
PAN	P	DIMENTION	DIM	SNAP	F9	
CLEAN SCREEN	Ctrl+0	HORIZONTAL	HOR			
COMMAMD WIN	Ctrl+9	VERTICAL	VER			

Topicdetails:

Here we need to learn the basis of the autocadbasic keys like standard, modify, draw, format, paper size etc..

7thMay2021:EngineeringdocumentationforElectricalsystemdesign

4	Electrical	Overallplantdescription
	systemdesign for	Sequenceofapproach
	a	Approachtodetaileddesign
	smallsmallproject	

Topicdetails:

Smart Internz

1C. DETAILED ENGINEERING

Herewe

observed that how to do a project and Sequence of approach, Approach to detail design and Overall plant distribution system.

10thMay2021: EngineeringdocumentationforTypicaldiagrams

5	Electrical		
	systemdesignfortypi		
	cal		
	diagrams		
		Loadlistsshedule	Powerflowdiagram
		Singleline diagram	Typical
			schematicdia
			gram

Topicdetails:

We conclude here how to do load calculations and Typical diagrams and inernal structure and also about the powerflow diagram.

$11^{th} May 2021: Classification of Transformers and Generators\\$

(6 CI	assificationof		
		ransformers ndGenerators	Different types of Transformers	DifferenttypesofGenerators

Topicdetails:

Classification of Transformers and Generators

$12^{th} May 2021: Classification of Switch gar econstruction and power factor improvement\\$

7	Classificationof Switchgare constructionand power factor	DifferenttypesofSwitchgare assembles	Powerfactorimprovement	Ī
	improvement			

Topicdetails:

Classification of Switch gar econtruction and Power Factor Improvement

 $17^{th} May 2021: Detailing about UPS system and Busducts.\\$

8	Detailing		
	aboutUPS	Uninterruptiblepowersupplys	Busdutsofthesystem
	system	ystem	
	andBusducts		

Topic details: Power distribution of UPS system and Busducts.

UPS systems are designed to provide continuous power to a load, even withan interruption or loss of utility supply power. UPS generally involves a balance ofcostVs need.

ROLLNO:18481A0268

18thMay2021:DetailingaboutMotorStarters andSizingofmotors.

9	Detailing about	Motor startersanddrives	Sizingandselectionof
	MotorStarters and		motors
	Sizing ofmotors		

Topic details: Detailing about Motor Starter and Sizing of motors and their selection.

The principal function of a motor starter is to start and stop the respectivemotor connected with specially designed electromechanical switches which are similar in some ways to relays. The main difference between a relay and a starteristhatastarterhasoverload protection for the motor that is missing in a relay.

Differenttypesofmotorstartersareasfollows:

- Direct-On-LineStarter
- RotorResistanceStarter
- StatorResistanceStarter
- AutoTransformerStarter

 $19^{th} May 2021: Discribing about Earthing system and Lighting Protection.\\$

10	Discribingabo	PlantEarthingsystem	LightingProtectionmaterials
	utEarthingsyst		
	em and		
	LightingPr		
	otection.		

Topic details: Discribing about Earthing system and Lighting Protection.

Lightningprotectionrequiredforhighrisestructuresandimportantbuildingsagainstlightningcur rentsduringthunderstorms.PrimarilyLightningprotectionsystemcalculations are done based on soil resistivity, conductor material, coverage structure /Buildingtodetermine whetherlightningprotectionisrequiredornot.

20thMay2021:Lightingorilluminationsystems and calculations.

11	Lightingor Illuminatio	Lightingorilluminationsystems	Lightingcalculations
	n systemsan		
	d		
	Calculation s		

Topicdetails: Lightingorllluminationsystems and Calculations.

All outdoor lighting fittings shall be connected with armoured PVC cable ofsuitable no. of cores and size. Necessary type and no. of junction boxes shall be provided for branch connections. Indoor light fittings shall be connected with FRLSPVC wires laid in cable trunks or conduits.

Inputsrequired: Equipmentand cablerouting layouts, lighting calculations, Designbasis for type of light fittings to be used, required lux levels

Lightingcalculationssoftware:Dialux, Chalmlite, Calculux, Relux, Luxicon, CG

LuxApplicableStandards:IS6665: Codeofpracticeforindustrial

lighting,IS3646:Code

ofpracticeforinteriorillumination, IEC 60598: Luminaires,

IEC 62493: Assessment of lighting equipment related to human exposure to electromagnetic field

Deliverables: Indoor Lighting layouts, socket outlet layouts, Street lighting and are a lighting layouts. BOQ.

Typesoflightfittings:Industrial,flameprooftype(EXd),increasedsafetytype(Exe).

$21^{th} May 2021: Lighting or illumination systems using DIALUX software.\\$

12	LightingorIllu minationusing DIALUX	Lightingorilluminationsystems	Operation	of dialuxsoftwa
	software		re	

Topicdetails:LightingorIlluminationCalculations using DIALUXsoftware.

 $Here we are using this Dialuxevo 5.9.2 software windows to construct the \\powerplant and we can perform the operation from this software.$

$24^{th} May 2021: Cabling and their calculations and types.\\$

13	Cablingandtheirt vpes	Cablingcalculations	Types	of
	and	Cuomigealculations	1 7 1 2 3	cablingmateria
	claculations		ls	

Topicdetails: Cablingandtheir types and claculations.

Electricalcablesmustbeproperlysupportedtorelievemechanicalstresses on the conductors, and protected from harsh conditions such as abrasion which might degrade the insulation.

Cables generally laid in the cable trays above ground, direct buriedundergroundandinmetallicorPVCconduits.Deratingfactorsmaybeapplicable for eachtypeofcablelayingconditions.

$25^{th} May 2021: Cabling calculations and Cable gland selection.\\$

14	Cablingclaculat ionsand cable glandselect	Cablingcalculations	Cableglandselection
	ion		

Topicdetails: Cablesizing calculation and cable glands election.

Inputsrequired: LoadList, Design basis, Electricalequipmentlayout, cableschedule, vendorcatalogues for cable tray.

Cable tray sizing shall be performed for each branch of cable tray routing upto the load point. Results shall be checked with specified limits mentioned indesignbasis.

Cablegland:

Cable Gland Selection Table
Refer to illustration at the top of the page.

Cable Gland Size	Available Entry Threads "C" (Alternate Metric Thread Lengths Available)		Cable Bedding Diameter "A"	Overall Cable Diameter "8"	Armour Range		Across Flats "D"	Across Corners "D"	Protrusion Length "F"
3126	Metric	Thread Length (Metric) "E"	Max	Max	Min	Max	Max	Max	Length F
20516	M20	10.0	8.7	13.2	8.0	1.25	24.0	26.4	35.2
205	M20	10.0	11.7	15.9	0.8	1.25	24.0	26.4	32.2
20	M20	10.0	14.0	20.9	0.8	1.25	30.5	33.6	30.6
25	M25	10.0	20.0	26.2	1.25	1.6	36.0	39.6	36.4
32	M32	10.0	26.3	33.9	1.6	2.0	46.0	50.6	32.6
40	M40	15.0	32,2	40.4	1.6	2.0	55.0	60.5	36.6
505	M50	15.0	38.2	46.7	2.0	2.5	60.0	66.0	39,6
50	M50	15.0	44.1	53.1	2.0	2.5	70.1	77.1	39.1
635	M63	15.0	50.0	59.4	2.0	2.5	75.0	82.5	52.0
63	M63	15.0	56.0	65.9	2.0	2.5	80.0	0.88	49.8
758	M75	15.0	62.0	72,1	2.0	2.5	90.0	99.0	63.7
75	M75	15.0	68.0	78.5	2.5	3.0	100.0	110.0	57.3
90	M90	24.0	0.08	90.4	3.15	4.0	114.3	125.7	56.6

June2021 ROLLNO:18481A0268

28thMay2021:LoadcalculationsandTransformersizingcalculations

15	Load calculationsand TR	Loadcalculations	TRealculations
	calculations		

Topicdetails:

Listofelectricalloadcalculations.

SL	Equipment	Equipment Description	Breaker	Breaker	Breaker	ELCB	Absorbed	Motor / Load	Load	Efficiency	Power	kW = [A] / [D]		Consumed	Load	kVAR = kW	x tan φ	Remarks
No.	No.	Equipment Description	Rating	Туре	No. of Poles	Rating	Load	Rating	Factor [A] / [B]	at Load Factor [C]	Factor at Load Factor [C]	Continue	ous	Interm	ittent	Stand-l	by	Politicalities
					l	l L	[A]	[8]	[C]	[0]								
			A			mA	KW	KW	decimal	decimal	006 P	kW	KVAR	kW	KVAR	kW	KVAR	
1	PU2315	Silica filter feed pump			_	-	14.34	15.00	0.96	0.85	0.73	16.87	15.79					
2		Absorbesnt/Neutral oil pump (W)	_		_	-	4.16	4.70	0.89		0.73	4.9	4.6		_		-	
3	PU 2314-A	Absorbesnt/Neutral oil pump (S)			_	-	3.58	3.70	0.97	0.85	0.73	4.9	- D			4.2	3.9	
4	PU2305	Feed Pump (Seperator)				-	14.47	15.00	0.96	0.85	0.73	17.0	15.9		_	7.2		
- 5		MIXER (W)			_	-	14.58	15.00	0.97	0.85	0.73	17.2	16.1				_	
- 6	MX 2308	MIXER (8)				-	14.58	15.00	0.97	0.85	0.73		-			17.2	16.1	
7	BW2313	Blower				-	6.27	7.50	0.84	0.85	0.73	7.4	6.9					
- 8	Rotary valve	TK 2313B (I)				-	0.61	0.75	0.81	0.85	0.73			0.7	0.7			
9	SC2314	Screw conveyor (f)				-	1.41	1.50	0.94		0.73		•	1.66	1.55		l i	
10	AG 2324A	Citric acid tan agitator (W)				-	1.05	1.10	0.95	0.85	0.73	1.24	1.16				l i	
11	AG 2324B	Citric acid tank agitator (S)				-	1.05	1.10	0.95	0.85	0.73					1.2	1.2	
12	AG 2305	Citric oil rection vessol agitator				-	3.84	4.70	0.82	0.85	0.73	4.52	4.23				t i	
13	AG 2309	Lye oil reaction vessel agitator				\Box	1.39	1.50	0.93	0.85	0.73	1.64	1.53					
14	AG 2310	Lye oil reaction vessel agitator				-	1.39	1.50	0.93	0.85	0.73	1.64	1.53					
15	AG 2314	Soap Adsorbent Tank Agitator				\Box	2.44	3.00	0.81	0.85	0.73	2.87	2.69					
						-												
						-												
						-											\vdash	
						-												
						-					_				_		-	
	Maximum of norm (Est. x%E + y%F)	all running plant load : 75.9 kW		71.1	KVAR		sqrt (i	kW2 +kVAR2) =	104.0	kVA	TOTAL	75.21	70.42	2.38	2.22	22.60	21.16	
	Peak Load : (Est. x%E + y%F -	+ 2%G) 78.2 kW		73.2	KVAR		sqrt (i	kW ² +kVAR ²) =	107.1	kVA	KVA	103.0	3	3.2	16	30.96		
		Tickency and Power factor. Load Rairing (MV) *20 - 45 - 150 *45 - 45 - 55	Effici 0.8 0.5 0.5	15 11 13		Power fa 0.73 0.78 0.82 0.91	ctor											
		>= 150 ctors x= 1.0, y= 0.3, and z=0.1 considered for contrious, intermitts				0.91												

T/Fcalculation:

29thMay2021:DGsetcalculations

16	DG
	setcalculati

Topicdetails:

Transformer and DG set calculations, types, sizing or selections

	DG SIZING CALCULATIONS		
	Design Data		
	Rated Volatge	415	KV
	Power factor (CosØ)	0.76	Avg
	Efficiency	0.88	Avg
	Total operating load on DG set in kVA at 0.76 power factor	315.1	
	Largest motor to start in the sequence - load in KW	55	KW
	Running kVA of last motor (CosØ= 0.91)	82	KVA
	Starting current ratio of motor	6	(Considering starting method as Soft starter)
	Starting KVA of the largest motor (Running kVA of last motor X Starting current ratio of motor)	493	KVA
	(Rulling KVA of last motor X starting current ratio of motor)		
	Base load of DG set in KVA (Total operating load in kVA - Running kVA of last motor)	233	KVA
A	Continous operation under load -P1		
	Capacity of DG set based on continuous operation under load P1	233	KVA
			RVA
В	Transient Voltage dip during starting of Last motor P2	726	10.4
	Total momentary load in KVA (Starting KVA of the last motor+Base load of DG set in KVA	726	KVA
	(otal and two of the last motor base load of bo set in two		
	Subtransient Reactance of Generator (Xd")	7.91%	(Assumed)
	Transient Reactance of Generator (Xd')	10.065%	(Assumed)
	Xd''' = (Xd'' + Xd')/2	0.089875	
	Transient Voltage Dip	15%	(Max)
	Transient Voltage dip during Soft starter starting of Last motor P2 = Total momentary load in KVA x Xd* x (1-Transient Voltage Dip) (Transient Voltage Dip)	370	KVA
C	Overload capacity P3		
	Capacity of DG set required considering overload capacity		
	Total momentary load in KVA	726	KVA
	A DECEMBER OF THE PROPERTY OF		
	overcurrent capacity of DG (K) (Ref: IS/IEC 60034-1, Clause 9.3.2)	150%	
	Capacity of DG set required considering overload capacity (P3) = Total momentary load in KVA overcurrent capacity of DG (K)	484	KVA
	Considering the last value amongst P1, P2 and P3		
	Continous operation under load -P1	233	KVA
	Transient Voltage dip during Soft starter starting of Last motor P2	370	KVA
	Overload capacity P3	484	KVA
	Considering the last value amongst P1, P2 and P3	484	KVA
	Hence, Existing Generator 484 KVA is adequate to cater the loads as per re-	al .	
	NOTE: VOLTAGE DIP CONSIDERED - 15%		

 ${\bf 2ndjune 2021:} Caluculations of Earthing and Lighting protection.$

17	Calculation of		
	Earthingand	Earthingcalculations	Lightingprotection
	Lighting	_	Calculation
	protection		
	calculations		

Topicdetails:

Calculation of Earthing and Lighting protection calculations

Earthingcalculation

Lightningcalculation

5 th june 2021: Cable sizing and cable tray sizing calculations.

18	Cablesizingand		
	cable	Cablesizingcalculations	Cabletraycalculation
	traysizing		-
	calculations		

Topicdetails:

CablesizingandcabletraysizingcalculationsforLV cablesandMV/HVcables.

TC	ABLES								
ABI	E TRAY: FROM	1.7-4		TO	1	7-5		1	
Sr. No.	Cable Roule (From-To)	Type & Cable Size	Size of Cable (mm2)	No. of Cable	Overall Diameter of sech Cable (mm)	Sum of Cable OD (mm)	Self Weight of Cable (Kg-Mt)	Total Weight of Cable (Kg/Mit)	Samurka
1	PMCC-2 TO NEW COOLING WATER CROULATION PLMP- NP-3003A	SC x 185 Sq. mm, XLPE, FRLS AL Cable	185	1	48	46	3.96	3.95	
2	PMCC-2 TO SPACE HEATER FOR NEW COOLING WATER CIRCULATION PUMP- MP-3003A	2C x 4 Sq. rem, XLPE, FRLS CU Cable	*	*	14	14	n.30*	9.37	
3	PMCC-2 TO NEW COOLING WATER CRCULATION PLANT- MP-30038	3C a 185 Sq. mm, XLPE, FRLS AL Cabre	1.85	35	46	46	3.96	2.95	
4	PMCC-2 TO SPACE HEATER FOR NEW COOLING WATER CRICULATION PUMP- MP-3003A	2C x 4 Sq. Herr, XLPE, FRLS CUI Cable	46	1	14	14	0.37	0.37	
5	PMCC-2 TO NEW COOLING WATER CRICULATION PUMP- NP-3003C	3C x 185 Sq. mm, XLPE, FRLS AL Cobie	185	10	-94	46	3.95	3.95	
	PMCC-2 TO SPACE HEATER FOR NEW COOLING WATER CIRCULATION PUMP- MP-2003A	2C s 4 Sq. mm, XLPE, FRLS CU Cable		1	54	14	n.32	9.37	
7	PMCC-2 TO BLOW DOWN PIT PUMP. MP-3111A	SC x 25 Sq. mm, XLPE, FRLS AL Cable	25	1	22	22	0.9	0.9	
	PMCC-2 TO BLOW DOWN PIT PUMP- MP-3111B	3C x 25 Sq. mm, XLPE, FRLS AL Cable	25	30	22	32	0.9	0.9	
	PMCC-2 TO ETP PANEL- MP-3008A	FRLS AL Cabrie	130	+	40	40	2.9	2.9	
10	PMCC-2 TO 110V AC UPS-1	3.5C x 35 5q mm, XLPE. FRLS AL Cobie	36	1	26	26	1.2	1.2	
11	PMCC-2 TO 110V AC UPS-2	3.5C x 35 Sq. mm, XLPE, FRLS AL Color	365	45	26	26	1.2	1.2	
12	PMCC-2 TO 110V AC UPS-3	3.5C x 35 Sq. mm, XLPE. FRLS AL Cable	35	1	26	26	1.2	1.2	
13	PMCC-2 TO AUXILIARY PANEL-1	7.5C x 50 Sq. mm, XLPE, FRLS AL Cable	5/3	1	28	28	1.45	1.45	1
14	PMCC-2 TO AUXILIARY PANEL-2(A/C)	5.5C x 70 Sq mm, XLPE, FRLS AL Cable	272	+	33	33	2	2	
15	PMCC-2 TO COOLING TOWER DOSING SYSTEM PACKAGE PMCC-2 TO WELDING RECEPTAGE-1	3.5C x 95.5q mm, XLPE, FRLS AL Celsie 3.5C x 95.5q mm, XLPE	95	3.5	36	36	2.4	2.4	
16	8.2	FRILS AL Cebie	05	313	38	36	2.4	2.4	
17	MEDB TO LDB(COOLING TOWER AREA)	4C x 16 Sq. mm; XLPE, FRLS AL Cabrie	165		21	21	0.865	0.85	
18	MLDB TO LDB(ETP AREA)	FRLS AL Cable	16	10	21	21	13.865	0.05	
19	MLDB TO LDB(DG AREA)	FRUS AL Cabre	16	1	21	21	0.85	0.05	i
203	MLDB TO LDB(SWITCHYARD)	5.5C x 25 Sq. mm, XLPE, FRLS AL Cable	23	+	. 23	23	3 3	- 4	
25	MLDB TO LDB(CONTROL ROOM)	#C to 16 Sq. mm, XLPE. FRLS AL Cebrie	10	1	21	21	0.85	0.05	
	Total		38	25	55	582	33.91	33.81	
archine alcu alcu alcu alcu alcu alcu alcu alcu	culation recording Charactery of Cabble Trays recording to Cabble Control of Cabble Control of Cabble Control		46 30%, 0 757 34504 1 1 600 100 50	mm mm Sq. mm Nos mm Kg/Weter		Required Cable 1 Required Nos of Required Cable 1 Type of Cable Tr	Tray Depth: Tray Weight: Tray Size: to Tray or width of 6 Tray Size: Cable Tray: Tray Weight:	Hert adequate O.K. O.K. Not adequate	Including Spare Capacity Including Spare Capacity man No Kg-Water/Tray

Conclusion

 $We have been taught many aspects of engineering activities during the {\tt EPC} stages for all electrical and related other disciplines also. \\$

Feedback

SmartBridge

Theyconductsummerinternships, workshops, debates, hackthons, technical sessions.

Methodofconductingprogram

On line virtual program with presentations lides and explanation on the topic and practical usage of topic and with some examples.

ternz

Programhighlights

Itisforthedetaileddesignofanyindustrialsectors.

Material

Thematerialwas good.

Benefits

Ithasbeengiventheopportunitytolearnandinteractwithindustryexperiencedengineering specialist to learn the Electrical detailed design engineering for variousindustrialsectors.

ASSIGNMENT1 ELECTRICALLOADCALCULATIONSLVMCC

												kW=[A]/[D]		Consumed	Load	kVAR=kWxt	anφ	
-	EquipmentNo ·	EquipmentDescription	Breaker Rating	Breaker Type	Breaker No.ofP oles	ELCB Rating	Absorbed Load	Motor / LoadRating [B]	LoadFa ctor[A]/[B]	Eff ciency at Loadto Fa r[C]	PowerFa ctorat LoadFact or[C]	Continu	ous	Interm	nittent	Stand	·by	Ren
			А			mA	[A] Kw	kW	[C] decimal	[D] decimal	cosφ	kW	kVAR	kW	kVAR	kW	kVAF	
	PU2315	Silicafilterfeedpump					14.34	15.00	0.96	0.85	0.73	16.8	15.79					
	PU2314-A	Absorbesnt/Neutraloilpump(W)					4.16	4.70	0.89	0.85	0.7	4.9	4.0					
_	PU2314 -B	Absorbesnt/Neutraloilpump(S)					3.58	3.70	0.97	0.85	0.7					4.2	3.	
	PU2305	FeedPump(Seperator)					14.47	15.00	0.96	0.85	0.73	17.0	15.9					
	MX2305	MIXER(W)					14.58	15.00	0.97	0.85	0.73	17.2	16.					
I	MX2308	MIXER(S)					14.58	15.00	0.97	0.85	0.73					17.2	16.	
	BW2313	Blower					6.27	7.50	0.84	0.85	0.73	7.4	6.9					
1	Rotaryvalve	TK2313B(I)					0.61	0.7	0.81	0.85	0.7			0.7	0.			
•••	SC2314	Screwconveyor(I)					1.41	1.50	0.94	0.85	0.73			1.66	1.5			
4	AG2324A	Citricacidtanagitator(W)					1.05	1.1(0.9	0.85	0.7	1.24	1.10					
	AG2324B	Citricacidtankagitator(S)					1.05	1.10	0.95	0.85	0.7					1.2	1.	
	AG2305	Citricoilrectionvessolagitator					3.84	4.70	0.82	0.85	0.73	4.52	4.23					
	AG2309	Lyeoilreactionvesselagitator					1.39	1.50	0.93	0.85	0.73	1.64	1.53					
	AG2310	Lyeoilreactionvesselagitator					1.39	1.50	0.93	0.85	0.73	1.64	1.53					
,	AG2314	SoapAdsorbantTankAgitator					2.44	3.00	0.81	0.85	0.73	2.87	2.69					
	Maximumofnorma E + y%F)	Irunningplantload:(Est.x% 75.9kW		71.1	kVAR		sqrt(k\	W²+kVAR²)=	104.0k	VA	TOTAL	75.2 ⁻	70.42	2.38	2.22	22.60	21.16	
	PeakLoad: (Est.x%E+y%F+;	78.2kW z%G)		73.2	2 kVAR		sqrt(k)	W²+kVAR²)=	107.1k	VA	kVA	103.0	3	3.2	26	30.9	6	

Calculation for Transformer Capacity

1.0 Example of calculation for Transformer Capacity

1.1 Calculation for consumed load

Consumed loads used for this example are as follows:

	kW	kVar	kVA	
a. Continuous load	247.5	189.4	311.64	(i)
b. Intermittent load / Diversity Factor	8.37	7.8	11.45	(ii)
c. Stand-by load required as consumed load	74.36	56.5	93.37	(iii)
Max. Consumed load = ((i) + 30% (ii) + 10% (iii)) =	257.4	197.4	324.39	
Future expansion load (20% capacity)	51.5	39.5	64.88	
Total Load =	308.9	236.8	389.27	

1.2 Calculation for 3.3kV / 0.433 kV transformer capacity

Max. Consumed load = 324.4 kVA
Spare capacity = 64.9 kVA
Required capacity = 389.3 kVA
Transformer rated capacity = 120 kVA

1.3 Voltage regulation check

During starting or reacceleration of max. capacity motor (3400 kW), while all the other loads running, the voltage regulation is as follow

Result: During starting of max. capacity motor, while all other loads are running, the voltage regulation at Transformer secondary terminals is approx. 5.3%, which meets the criteria to maintain less than 15% voltage regulation.

1.4 Selection of rated capacity

120 kVA transformer selected.

ASSIGNMENT 3

	DG SIZING CALCULATIONS		
	Design Data		
	Rated Volatge	415	KV
	Power factor (CosØ)	0.76	Avg
	Efficiency	0.88	Avg
	Total operating load on DG set in kVA at 0.76 power factor	315.1	
	Largest motor to start in the sequence - load in KW	55	KW
	Running kVA of last motor (CosØ= 0.91)	82	KVA
	Starting current ratio of motor	6	(Considering starting method as Soft starter)
	Starting current ratio of motor	493	KVA
	Starting KVA of the largest motor (Running kVA of last motor X Starting current ratio of motor)	133	
		222	101.74
	Base load of DG set in KVA (Total operating load in kVA – Running kVA of last motor)	233	KVA
	(Total operating load in KVA Training KVA or last motor)		
Α	Continous operation under load -P1		
	Capacity of DG set based on continuous operation under load P1	233	KVA
В	Transient Voltage dip during starting of Last motor P2		
	Total momentary load in KVA	726	KVA
	(Starting KVA of the last motor+Base load of DG set in KVA		
	Culatore is at December of Company (VIIII)	7.91%	(0.00000001)
	Subtransient Reactance of Generator (Xd")	10.065%	(Assumed)
	Transient Reactance of Generator (Xd')	0.089875	(Assumed)
	$Xd^{\prime\prime\prime} = (Xd^{\prime\prime} + Xd^{\prime})/2$	0.069675	
	Transient Voltage Dip	15%	(Max)
	Transient Voltage dip during Soft starter starting of Last motor		
	P2 = Total momentary load in KVA x Xd'" x (1-Transient Voltage Dip)	370	KVA
	(Transient Voltage Dip)		
C	Overload capacity P3		
	Capacity of DG set required considering overload capacity		
	Total momentary load in KVA	726	KVA
	overcurrent capacity of DG (K)	150%	
	(Ref: IS/IEC 60034-1, Clause 9.3.2)		
	Capacity of DG set required considering overload capacity	484	KVA
	(P3) = <u>Total momentary load in KVA</u> overcurrent capacity of DG (K)	101	NVA
	overcurrent capacity of DG (K)		
	Considering the last value amongst P1, P2 and P3		
	Continous operation under load -P1	233	KVA
	Transient Voltage dip during Soft starter starting of Last motor P2	370	KVA
	Overload capacity P3	484	KVA
	Considering the last value amongst P1, P2 and P3	484	KVA
	Hence, Existing Generator 484 KVA is adequate to cater the loads as per re-scheduled loads		
	NOTE:VOLTAGE DIP CONSIDERED - 15%		

ASSIGNMENT 4EARTHINGCALCULATION

	10	
Maximumline-to-groundfaultinkAfor1sec	14	
Earthingmaterial(Earthrod&earthstrip)	GI	
Depthofearth flatburrial inmeter	0.5	
Averagedepth/lengthofEarthrodinmeters	4	
Soilresistivity Ω -meter	17	
AmbienttemperatureindegC	50	
Plotdimensions(earthgrid)LxBinmeters	65	125
Numberofearthrodsinnos.	6	

Earthelectrodesizing:

Ac-Required conductor cross section in sq.mm

$$I_{lg} = A_c x \sqrt{\left[\frac{TCAPx10^{-4}}{t_c x \alpha_r x \rho_r}\right] x l_n \left[\frac{K_0 + T_m}{K_0 + T_a}\right]}$$

αr-Thermalco-efficientofresistivity,at20Oc	0.0032
pr-Resistivityofgroundconductorat20Oc	20.10
Ta-Ambient Temperatureis°C	50
I _{I-g} -RMSfaultcurrent inkA =50KA	14
tc-Shortcircuitcurrent durationsec	1
Thermalcapacityfactor,TCAPJ/(cm3.oC)	3.93
Tm-Maximumallowabletemperatureforcopperconductor,inOc	419
KO-FactoratOc	293
ThedatatakenfromIEEE80-2000,Clause11.3,Table-1forcladsteelrod:	
14=Ac*	0.123
Ac-Requiredconductor crosssectioninsq.mm	114
Earthroddiainmm	12
Earthroddia(including25%corrosionallowance)inmm	15

Earthflatsizing:

Ac-Required conductor cross section in sq.mm

$$I_{lg} = A_c x \sqrt{\left[\frac{TCAPx10^{-4}}{t_c x \alpha_r x \rho_r}\right] x l_n \left[\frac{K_0 + T_m}{K_0 + T_a}\right]}$$

αr-Thermalco-efficientofresistivity,at20oC	0.0032
pr-Resistivityofgroundconductorat20oC	20.10
Ta-Ambient Temperatureis°C	50
I _{I-g} -RMSfaultcurrent inkA =50KA	14
tc-Shortcircuitcurrent durationsec	1

Thermalcapacityfactor,TCAPJ/(cm3.oC)	3.93
Tm-Maximumallowabletemperatureforcopperconductor, inoC	419
KO-Factor atoC	293
The data taken from IEEE 80-2000, Clause 11.3, Table-1 for cladsteel rod:	

ASSIGNMNT 5LIGHTNINGCALCULATION

-	4	
•	1	
	•	

Location	Bellari
Building	Concrete, School
Type of Building	Triangle Roofs (c)
Building Length (L)	21
Building breadth (W)	8
Building Height (H)	8

Risk Factor Calculation

1 Collection Area (A_c)

A _c		=	3.14*H*H+2(H*L) 536.96
2 Probability of Being Struck (P)			
P		=	$A_c * N_g * 10^{-6}$
			0.00080544
3 Overall weighing factor			
a) Use of structure (A)		=	1.7
b) Type of construction (B)		=	0.4
c) Contents or consequential effects (C)		=	1.7
d) Degree of isolation (D)		=	1.0
e) Type of country (E)		=	0.3
Wo - Overall weighing factor		=	A * B * C * D * E
		=	0.347
4 Overall Risk Factor	Po	=	P * Wo

As per clause no. 9.7 of BS- 6651, suggested acceptable risk factor (Po) has been taken as 10^{-5} Since Po > Pa lightning protection required.

Po

Pa

0.000279327

10-5

5 Air Terminations

Perimeter of the building	=	2(L+W)	
	=	58	Mts.
6 Down Conductors			
Perimeter of building	=	58	Mts.
No. of down conductors based on perimeter	=	3	Nos.

Hence 3 nos. of Down conductors have been selected.

Size of Down conductor = 20 X 2.5 mm Galvanized Ste

(As per BS6651, lightning currents have very short duration, therefore thermal factors are of little consequence in deciding the cross-section of the conductor. The minimum size of Down conductors - 20mm X 2.5 mm Galvanized Steel Strip)

ASSIGNMENT 6CABLESIZING

6.51 OK 7.37 OK 4.01 OK 5.88 OK 5.23 OK 7.32 OK 7.53 OK 7.51 OK 5.17 OK	DK 21 2 DK 21 2 DK 29 2 DK 29 2 DK 29 2 DK 29 2 DK 22 2 DK 16 2
4.01 OK 5.88 OK 5.23 OK 7.32 OK 7.53 OK 7.11 OK	DK 21 2 DK 29 2 DK 29 2 DK 29 2 DK 29 2 DK 22 2 DK 16 2
5.88 OK 5.23 OK 7.32 OK 7.53 OK 7.11 OK	OK 29 2 OK 29 2 OK 29 2 OK 29 2 OK 22 2 OK 16 2
5.23 OK 7.32 OK 7.53 OK 7.11 OK	OK 29 2 OK 29 2 OK 29 2 OK 22 2 OK 16 2
7.32 OK 7.53 OK 7.11 OK	DK 29 2 DK 22 2 DK 16 2
7.53 OK 7.11 OK	OK 22 2
7.11 OK	DK 16 2
5.17 OK	V 10
	A 10
8.47 OK	OK 17 2
5.78 OK	OK 17 2
7.52 OK	OK 21 2
5.81 OK	OK 18
6.49 OK	
4.66 OK	OK 18 2
	+
	6.49 O

Basis

1. Overallderatingfactork=k1xk2xk3x k4

K1=Ratingfactorforvariationin air/groundtemperature

K2=Ratingfactorfordepthoflaying

K3=Ratingfactorforspacingbetweentwocircuits

K4=Ratingfactorforvariationin thermalresistivityofthesoil

2. LTMotors:RunningVoltageDrop=3%,StartingVoltageDrop=15%

3. Cable type:

TYPE 1: Al Conductor, XLPE Insulated, Armoured, PVC outer

 $sheathed {\it TYPE2:} CuConductor, XLPE Insulated, Armoured, PVC outersheathed$

4. EffectofFrequencyVariation±5%

5. CombinedEffectofVoltage&FrequencyVariation±10%

7CABLETRYSIZIN

		${f G}$							
TCABLES									
CABLETRAY:FROM		LT-4		ТО	L	.T-5			
Sr. No.	CableRoute(From-To)	Type&CableSize	Size ofCabl e(mm 2)	No. ofCab le	OverallDia meter ofeach Cable(mm)	Sum of CableOD (mm)	Self Weight ofCable(K g/Mt)	Total WeightofCable(Kg/ Mt)	Remarks
1	PMCC-2 TO NEW COOLING W ATERCIRCULATIONPUMP-MP-3003A	3Cx185Sq.mm,XLPE,FRLSA LCable	185	1	46	46	3.95	3.95	
2	PMCC-2TOSPACEHEATERFORNEW COOLING W ATER CIRCULATION PUMP- MP-3003A	2C x 4 Sq.mm,XLPE,FRLSCUCab le	4	1	14	14	0.37	0.37	
3	PMCC-2 TO NEW COOLING W ATERCIRCULATIONPUMP-MP-3003B	3Cx185Sq.mm,XLPE,FRLSA LCable	185	1	46	46	3.95	3.95	
4	PMCC-2TOSPACEHEATERFORNEW COOLING W ATER CIRCULATION PUMP- MP-3003A	2C x 4 Sq.mm,XLPE,FRLSCUCab le	4	1	14	14	0.37	0.37	
5	PMCC-2 TO NEW COOLING W ATERCIRCULATIONPUMP-MP-3003C	3Cx185Sq.mm,XLPE,FRLSA LCable	185	1	46	46	3.95	3.95	
6	PMCC-2TOSPACEHEATERFORNEW COOLING W ATER CIRCULATION PUMP- MP-3003A	2C x 4 Sq.mm,XLPE,FRLSCUCab le	4	1	14	14	0.37	0.37	
7	PMCC-2TOBLOWDOWNPITPUMP-MP- 3111A	3Cx25Sq.mm,XLPE,FRLSAL Cable	25	1	22	22	0.9	0.9	
8	PMCC-2TOBLOWDOWNPITPUMP-MP- 3111B	3Cx25Sq.mm,XLPE, FRLSALCable	25	1	22	22	0.9	0.9	
9	PMCC-2TOETPPANEL-MP-3009A	3.5C x 120Sq.mm, XLPE,FRLSALCable	120	1	40	40	2.9	2.9	
10	PMCC-2TO110VACUPS-1	3.5Cx 35 Sq.mm, XLPE,FRLSALCable	35	1	26	26	1.2	1.2	
11	PMCC-2TO110VACUPS-2	3.5Cx 35 Sq.mm, XLPE,FRLSALCable	35	1	26	26	1.2	1.2	
12	PMCC-2TO110VACUPS-3	3.5Cx35Sq.mm,XLPE, FRLSALCable	35	1	26	26	1.2	1.2	
13	PMCC-2TOAUXILIARYPANEL-1	3.5Cx50Sq.mm,XLPE, FRLSALCable	50	1	28	28	1.45	1.45	
14	PMCC-2TOAUXILIARYPANEL-2(A/C)	3.5Cx70Sq.mm,XLPE, FRLSALCable	70	1	33	33	2	2	
15	PMCC-2TOCOOLINGTOWERDOSING SYSTEMPACKAGE	3.5Cx95Sq.mm,XLPE, FRLSALCable	95	1	36	36	2.4	2.4	
16	PMCC-2TOWELDINGRECEPTACLE-1	3.5Cx95Sq.mm,XLPE, FRLSALCable	95	1	36	36	2.4	2.4	
17	MLDB TO LDB(COOLINGTOWERAREA)	4Cx16Sq.mm,XLPE,FRLSAL	16	1	21	21	0.85	0.85	
18	MLDBTOLDB(ETPAREA)	Cable 4Cx16Sq.mm,XLPE,	16	1	21	21	0.85	0.85	
19	MLDBTOLDB(DGAREA)	FRLSALCable 4Cx16Sq.mm,XLPE,FRLSAL	16	1	21	21	0.85	0.85	
20	MLDBTOLDB(SWITCHYARD)	Cable 3.5Cx 25 Sq.mm,	25	1	23	23	1	1	
21	MLDBTOLDB(CONTROLROOM)	XLPE,FRLSALCable 4Cx16Sq.mm,XLPE,	16	1	21	23	0.85	0.85	
21	Total	FRLSALCable	10	21	21	582	33.91	33.91	
	10			21		302	33.31	33.31	
Calculation MaximumCableDiameter: ConsiderSpareCapacityofCableTray: DistancebetweeneachCable: CalculatedWidthofCableTray: CalculatedAreaofCableTray: NoofLayerofCableSinCableTray: SelectedNoofCableTray: SelectedCableTrayWidth: SelectedCableTrayDeightCapacity: SelectedCableTrayDeightCapacity:			46 30% 0 757 34804 1 1 600 100	mm mm Sq.mm Nos. mm mm Kg/Meter		Result SelectedCableTr SelectedCableTr SelectedCableTr SelectedCableTr reaseNoofCable RequiredCableTr RequiredCableTr TypeofCableTray	ayDepth: ayWeight: aySize: FrayorwidthofC raySize: ableTray: ay Weight:	Notadequate O.K O.K Notadequate Ladder	IncludingSpareCapacity IncludingSpareCapacity mm No Kg/Meter/Tray

