Basic statistics with R

Transformations

round(x, n)	Rounds the elements of x to n decimals
signif(x,n)	Rounds the elements of x to n significant digits
<pre>ceiling(x)</pre>	Rounds to the smallest integers not less than the corresponding elements of x
floor(x)	Rounds to the largest integers not greater than the corresponding elements of x
trunc(x)	Rounds by truncating the values in x toward 0
abs(x)	Computes the absolute values of x
sqrt(x)	Computes the (principal) square root of x
x^0.25	Computes the cubic root of x
log(x, base)	Computes logarithms with base base (default is natural log)
log2(x)	Computes binary (i.e., base 2) logarithm
log10(x)	Computes the base 10 logarithm
log1p(x)	Computes log(1+x)
exp(x)	Computes the exponential function.
exp1m(x)	Computes exp(x) - 1
car::basicPower(()	Computes a simple power transformation
car::bcPower()	Transforms the element in x using the Box-Cox family of scaled power transformations
sin(x), $cos(x)$,	Trigonometric functions; they com-
tan(x), $asin(x)$,	pute the cosine, sine, tangent, arc-
acos(x), $atan(x)$,	cosine, arc-sine, arc-tangent, and the
atan2(x)	two-argument arc-tangent.
scale(x)	Centers and/or scales a vector
	or matrix x; to center only use
	center=FALSE, to reduce only
	scale=FALSE; default is center=TRUE, scale=TRUE for <i>z-transformation</i>

Descriptive statistics

Functions that return a single value (scalar)

sum(x)	Sum of the elements of x
prod(x)	Product of the elements of x
mean(x)	Arithmetic mean of the elements
	of x
<pre>weighted.mean(x, w)</pre>	Mean of x with weights w
median(x)	Median of the elements of x
var(x)	Variance of the elements of x
	(calculated on n – 1)
sd(x)	Standard deviation of x
<pre>sd(x)/sqrt(length(x))</pre>	Calculation of standard error
min(x)	Minimum of the elements of x
max(x)	Maximum of the elements of x

Functions that return a vector

range(x)	Returns minimum and maxi-
<pre>pmin(x,y),pmax(x,y)</pre>	Returns (regular or parallel) min- ima/maxima
quantile(x,probs)	Sample quantiles corresponding to the given probabilities
diff(x)	Lagged and iterated differences of vector x
rank(x)	Ranks of the elements of x
IQR(x)	Interquartile range of the x val-
	ues
mad(x)	Median absolute deviation
cumsum(x)	Cumulative sums of the ele-
Cumbum (x)	ments of x
cumprod(x)	Cumulative product of the ele-
Campi Ca (R)	ments of x
cummin(x)	Cumulative minima of the ele-
Cummit (x)	ments of x
cummax(x)	Cumulative maxima of the ele-
Cummax (x)	ments of x
colSums(x)	Sum of each column
	Sum of each row
rowSums(x)	
colMeans(x)	Arithmentic mean of each col-
	umn
rowMeans(x)	Arithmentic mean of each row

summary(x)	If x is a matrix or data frame, function computes various statistics for each column
cor(x, y)	Linear correlation between x and y, or correlation matrix if they are matrices or data frames (Pearson's product moment correlation coefficient, Kendall's tau or
cov(x,y)	Spearman's rho) Covariance between x and y

Inferential statistics

Probability distributions

Gaussian (normal) di	stribution:
rnorm()	Generates random numbers (rxxx)
pnorm(q)	Returns the probabilities for a given set of quantiles (pxxx)
qnorm(p)	Returns the quantiles for a given set of probabilities (q xxx)
dnorm(x)	Gives the density function (d xxx)

dnorm(x)	Gives the density function (d xxx)
Other standard probability di	stributions:
(see also ?Distributions)	
dpois(n, lambda)	Poisson
<pre>dnbinom(n, size, prob)</pre>	Negative binomial
dbinom(n, size, prob)	Binomial
dmultinom(n, size, prol	o) Multinomial
<pre>dunif(n, min=0, max=1)</pre>	Uniform
<pre>dexp(n, rate=1)</pre>	Exponential
dlnorm(n, meanlog=0, so	ilog=1) Lognormal
dgamma(n, shape, scale	=1) Gamma
dbeta(n, shape1, shape2	2) Beta
dt(n, df)	Student t distribu-
	tion
df(n, df1, df2)	F-distribution
dchisq(n, df)	(Non-central) chi-
	squared distribution
dweibull(n, shape, scal	le=1) Weibull
dcauchy(n, location=0,	scale=1) Cauchy
dgeom(n, prob)	Geometric
<pre>dhyper(nn, m, n, k)</pre>	Hypergeometric

Assumption tests Performs the Shapiro-Wilk test of shapiro.test(x) normality Performs a one- or two-sample ks.test(x,y) Kolmogorov-Smirnov test Performs an Ftest to compare the variances of two samples from var.test(x) normal populations Performs Bartlett's test for hobartlett.test() mogeneity of variance across Computes Levene's test for homogeneity of varicar::leveneTest(y, group) ance across groups car::durbinWatsonTest() Performs Durbin-Watson test for autocorrelated errors

Simple tests	
chisq.test()	Performs chi-squared contingency table tests and goodness-of-fit tests
1- and 2 sample tests	· O
t.test(x)	1-sample <i>t</i> -test
<pre>t.test(x,y)</pre>	2-sample independent <i>t</i> -test
<pre>t.test(x,y, paired=T)</pre>	2-sample dependent t-test
wilcox.test(x)	Non-parametric 1-sample Wilcoxon tests
wilcox.test(x,y)	Non-parametric 2-sample
	Mann Whitney <i>U</i> test (or
	Wilcoxon rank sum test)
<pre>wilcox.test(x,y,paired=T)</pre>	Non-parametric 2-sample Wilcoxon signed rank test
Multiple sample test	Whee Act Signed fank test
kruskal.test(x, g)	Performs the non-
7 3	parametric Kruskal-Wallis
	rank sum test
<pre>friedman.test(y, groups)</pre>	Performs a Friedman rank
	sum test with unreplicated
Completion tests	blocked data
Correlation tests cor.test(x, y)	Test for correlation between
COI. GESU(A, y)	paired samples
	panea samples

Linear models

Formula	
formula()	Provide a way of extracting for- mulae which have been included in other objects
formula(y ~ x)	y as a function of the fixed (continuous or categorical) x
<pre>formula(y ~ Error(x))</pre>	y as a function of the random x
$formula(y \sim x1 + x2)$	y as a function of x1 and x2
formula(y~x1+x2+x1:x2)	y as a function of x1 and x2, including their interaction
formula(y ~ x1 * x2)	Shorthand notation for the interaction inclusion
<pre>formula(y~x1+x2%in%x1)</pre>	y as a function of x1 and x2, which
or x2/x1 or x1+x1:x2	is nested in x1
! or x2/x1 or x1+x1:x2	y as a function of x1 and x2, which is nested in x1
! or x2/x1 or x1+x1:x2	y as a function of x1 and x2, which is nested in x1
update(model, .~x2)	Is used to update model formu- lae. This typically involves adding or dropping terms

Analysis of Variance (ANOVA)		
aov(y ~ x, data)	Fits a (type-I sequential) ANOVA by a call to Im for each stratum; response Y has to be continuous, at least on explanatory variables x has to be categorical (function can be used for ANOVA and AN- COVA)	
summary(model)	Produces a type-I ANOVA table including SS, MS, F-ratio and p-values. Can also be defined explicitely via summary.aov()	
<pre>anova(lm(y ~ x, data))</pre>	Computes (type-I) analysis of variance (or deviance) tables for one or more fitted model objects	
car::Anova(model)	Computes type-II or type-III ANOVA tables for model ob- jects produced by aov, Im, glm, multinom and other model functions	
<pre>drop1(fit,~.,test="F")</pre>	Computes type-III marginal SS and F Tests	
model.tables(model)	Computes summary tables for model fits, especially complex aov fits	
contrasts()	Set and view the contrasts associated with a factor	
<pre>model.matrix()</pre>	Creates a design (or model) matrix, e.g., by expanding factors to a set of dummy variables (depending on the contrasts) and expanding interactions similarly	
<pre>plot.design()</pre>	Plots univariate effects of a design or model	
<pre>interaction.plot() TukeyHSD(model)</pre>	Two-way interaction plot Computes Tukey Honest Significant Differences for <i>post-hoc</i> comparison	

Linear models	
lm(y ~ x, data)	Fits a linear model; response Y has to be continuous, explanatory variables X can be continuous or categorical (function can be used for linear regressions, ANCOVAs and ANOVAs)
coef(model)	Returns the estimated coefficients (sometimes with their standard-errors)
summary(model)	Produces a table of parameter estimates, standard errors, t-statistics and p values. Can also be defined explicitely via summary.lm()
confint(model)	Computes confidence intervals for one or more parameters in a fitted model
broom::tidy()	Returns tibble with estimated coefficients, std.errors, test statistic and p-value
broom::augment()	Returns tibble with observational data and model output (e.g. fitted values with standard error, residuals, Cook's D, etc.)
broom::glance()	Constructs a single row summary "glance" of a model, fit, or other object
effects()	Returns (orthogonal) effects from a fitted model, usually a linear model (Im or glm objects)
residuals(model)	Returns the model residuals (resids(model) can be similarly used)
<pre>fitted(model) predict(model)</pre>	Returns the fitted values Returns predicted values for ob- served or generated predictor val- ues (via argument <i>newdata</i>); can also be defined explicitely via predict.lm()

modelr::data_grid(data, x1, x2)
Generate an evenly spaced grid of points from the data
modelr::add_residuals(data, model)
Adds residuals from a single model to a data frame
modelr::spread_residuals(data, model1, model2,..)
Adds residuals from several models in wide format
modelr::gather_residuals(data, model1, model2,..)
Adds residuals from several models in long format

Model selection	
AIC(model1, model2) step(model)	Computes the Akaike information criterion or AIC Select a formula-based model
step(model)	by AIC in a stepwise algorithm (backward and forward selec- tion); works only for Im and glm objects
<pre>anova(m1,m2, test="F")</pre>	
<pre>anova(m1,m2, test="Chisq")</pre>	Compares two (or more) nested glm models based on the log- likelihood ratio test (LRT)
<pre>drop1(model, test="F")</pre>	Generates alternative models where each term is dropped one at a time respecting their hierarchy, fits those models and computes a table of the changes in fit including an F-test (or LRT, Rao)

Model diagnostics	
plot.lm(model)	Produces diagnostic plots to check model assumptions and influential data points for an Im object
cooks.distance(model)	Computes the (leave-one-out deletion) diagnostics for linear and generalized linear models
rstandard(model)	Standardized residuals
rstudent(model)	Studentized residuals
qqnorm(y)	Produces a normal quantile- quantile plot of the values in y
qqplot()	Produces quantile-quantile plot
qqline()	Adds a line to a normal quantile-
	quantile plot (created with
	qqplot()), which passes through the first and third quartiles
acf()	Computes (and by default plots) estimates of the autocovariance
	or autocorrelation function
pacf()	Computes the partial autocorrelation function
ccf()	Computes the cross-correlation or cross-covariance of two uni-
	variate series
car::vif(model)	Calculates variance-inflation and generalized variance-inflation
	factors for linear, generalized linear, and other models
	inical, and other models

Experimental design

Power analysis Compute the power or determine parameters to obtain a target power: power.t.test() One- or two- sample t test power.anova.test() Balanced one-way ANOVA power.prop.test() Two-sample test for proportions

Useful modelr functions

Modelr::add_predictions(data, model)
Adds predictions from a single model to a data frame
modelr::spread_predictions(data, model1, model2,..)
Adds predictions from several models in wide format
modelr::gather_predictions(data, model1, model2,..)
Adds predictions from several models in long format

