

Curso de Tecnologia em Sistemas de Computação Disciplina: Estrutura de Dados e Algoritmos AP3 - Primeiro Semestre de 2014

Nome -Assinatura -

Observações:

- 1. Prova sem consulta e sem uso de máquina de calcular.
- 2. Use caneta para preencher o seu nome e assinar nas folhas de questões e nas folhas de respostas.
- 3. Você pode usar lápis para responder as questões.
- 4. Ao final da prova devolva as folhas de questões e as de respostas.
- 5. Todas as respostas devem ser transcritas nas folhas de respostas. As respostas nas folhas de questões não serão corrigidas.

- 1. Forneça as definições dos seguintes conceitos:
 - (a) (1,0) Limite inferior de um problema

Resposta: O limite inferior de um problema P é uma função ℓ tal que a complexidade de pior caso de qualquer algoritmo que resolva P é $\Omega(\ell)$.

(a) (1,0) Complexidade de pior caso

Resposta: Sejam A um algoritmo, $E = \{E_1, \dots, E_n\}$ o conjunto de todas as entradas possíveis de A e t_i o número de passos efetuados por A, quando a entrada for E_i . A complexidade de pior caso de A é definida por $\max_{E_i \in E} \{t_i \mid E_i \in E\}$.

(c) (1,0) Árvore B

Resposta: Seja d um número natural. Uma árvore B de ordem d é uma árvore ordenada que satisfaz as seguintes propriedades:

- 1) se a raiz não é uma folha, possui no mínimo 2 filhos;
- 2) cada nó interno diferente da raiz possui no mínimo d+1 filhos;
- 3) cada nó possui no máximo 2d + 1 filhos;
- 4) todas as folhas estão no mesmo nível.
- 2. Responda os itens a seguir:
 - (a) (1,0) Desenhe uma árvore binária de busca que seja uma árvore zigue-zague e com altura 5. Não se esqueça de colocar os valores das chaves dentro de cada nó.

Resposta:

(b) (1,0) Escreva a sequência que corresponde à ordem dos nós visitados no **percurso em ordem simétrica**.

Resposta: 3,4,5,6,7.

3. (1,5) Desenhe a árvore AVL resultante da inclusão das chaves com valores 5, 4, 3, 10, 8, 1, nesta ordem, a partir de uma árvore inicialmente vazia. Detalhar o passo a passo do algoritmo, indicando as rotações efetuadas durante a construção da árvore.

Resposta:

Incluir 5:

5

Incluir 4:

Incluir 3:

Rotação à Direita

Incluir 10:

Incluir 8:

Rotação Dupla à Esquerda:

Incluir 1:

- 4. Para cada sequência abaixo, responda se ela corresponde ou não a um **heap** (lista de prioridade). Justifique brevemente.
 - (a) (1,0) 40 32 38 31 04 26 35 30 28
 - (b) (1,0) 40 32 38 04 31 35 26 28 30

Resposta: (a) A sequência é um heap, pois temos a relação $s_i \le s_{\lfloor i/2 \rfloor}, 1 \le i \le n$, sendo satisfeita por todos os seus elementos.

Resposta: (b) A sequência não é um heap, pois temos $s_4 < s_8$ e $s_4 < s_9$.

5. (1,5) Desenhe uma árvore de Huffman para os símbolos $\{s_1,\ldots,s_8\}$, com as seguintes frequências: $f_1=1,\ f_2=1,\ f_3=2,\ f_4=3,\ f_5=3,$ $f_6=4,\ f_7=5,\ f_8=5.$ Demonstre o passo a passo da construção da árvore obtida.

Resposta

