Unit5 local extremum

Sunday, November 13, 2022 2:06 PM

unit5_local..

MAT137

- By December 8, we will cover: Rolle's theorem, L'Hopital and finally Curve sketching.
- Today we will go over local max and min.
- Problem set 3 has been posted a week ago and it is due Nov.24.

Definition of Local extremum

Local min and max

Consider function $f:[a,b] \to \mathbb{R}$.

• We say that $p \in [a,b]$ corresponds to a local minimum of f is there is a small enough $\delta > 0$ such that for $x \in [a,b]$,

Definition of Local extremum

Local min and max

Consider function $f:[a,b] \to \mathbb{R}$.

• We say that $p \in [a, b]$ corresponds to a local minimum of f is there is a small enough $\delta = 0$ such that for $x \in [a, b]$,

If
$$|x-p| < \delta$$
 then $f(x) \ge f(p)$.

• We say that $p \in [a,b]$ corresponds to a *local maximum* of f is there is a $\delta > 0$ such that for $x \in [a,b]$,

If
$$|x - p| < \delta$$
 then $f(x) \le f(p)$. (2)

Definition of local extremum

Find local and global extrema of the function with this graph:

1 It Pi we have glob max.
bic
$$x \in D \implies f(x) \le f(P_1)$$
.
2) It Po = 2 qlobal Min

bic reD => T(x) = T(x1).

2) At Po-2 global Min

bic $\chi \in P \implies f(x) \ge f(Pz)$

3) A+ P3=3 local max

take 8 = 2

 $|\chi-P_3| \leq 8 \Rightarrow f(\kappa) \leq f(P_3)$

4) A+ Pu = 4.5 local Max Take 8 ≤ >

(x-Pa) < 8 => f(Ra)

5) At Pr = 5 loral max

Tala 8 = 4

 $|x-P_s| \leq \delta \Rightarrow f(x) \leq f(P_5)$

6) all the y + (6,7) are local mins with 028 47-1

7) A + x=7 we have location and take S = 1

8) At x=8 local min 8 4 8-25 = 5.5

q) At X=q locd min take & <1

1x-91 < 8 => fm > f/9).

Extremum and derivative

As we saw above we can have local max/min even if not

Extremum and derivative

As we saw above we can have local \max/\min even if not differentiable. Here is a partial converse:

Criterion for local max/min/saddle

Suppose f'(p) = 0.

Extremum and derivative

As we saw above we can have local \max/\min even if not differentiable. Here is a partial converse:

Criterion for local max/min/saddle

Suppose f'(p) = 0. If for all small enough h > 0

Extremum and derivative

As we saw above we can have local \max/\min even if not differentiable. Here is a partial converse:

Criterion for local max/min/saddle

Suppose f'(p) = 0. If for all small enough h > 0

- f'(p-h) < 0 and f'(p+h) > 0, then p is a local min.
- f'(p-h) > 0 and f'(p+h) < 0, then p is a local max.
- $f'(p-h) \cdot f'(p+h) > 0$, then p is a local saddle.

Where is the maximum?

We know the following about the function h:

- The domain of h is (-4, 4).
- h is continuous on its domain.
- h is differentiable on its domain, except at 0.
- $h'(x) = 0 \iff x = -1 \text{ or } 1.$

What can you conclude about the maximum of h?

Where is the maximum?

We know the following about the function h:

- The domain of h is (-4, 4).
- h is continuous on its domain.
- h is differentiable on its domain, except at 0.
- $h'(x) = 0 \iff x = -1 \text{ or } 1.$

What can you conclude about the maximum of h?

- 1. h has a maximum at x = -1, or 1.
- 2. h has a maximum at x = -1, 0, or 1.
- 3. *h* has a maximum at x = -4, -1, 0, 1, or 4.
- 4. None of the above.

What can you conclude?

We know the following about the function f.

- ullet f has domain \mathbb{R} .
- \bullet f is continuous
- f(0) = 0
- For every $x \in \mathbb{R}$, $f(x) \ge x$.

What can you conclude about f'(0)? Prove it.

 $\it Hint:$ Sketch the graph of $\it f.$ Looking at the graph, make a conjecture.

To prove it, imitate the proof of the Local EVT from Video 5.3.

Let
$$g(x) = x^{2/3}(x-1)^3$$
.

Find local and global extrema of g on [-1,2].

Trig extrema

Let
$$f(x) = \frac{\sin x}{3 + \cos x}$$
.

Find the maximum and minimum of f.