MOOC Statistique pour ingénieur Thème 3 : tests d'hypothèses, analyse de la variance

Vidéo 3 : Tests de comparaison de deux populations

Thierry Verdel

Mines Nancy

Test de comparaison des variances

Test de comparaison des moyennes

Test de comparaison des variances

Test de comparaison des moyennes

Test de comparaison des variances

$$\mathcal{H}_0:\sigma_1^2=\sigma_2^2$$

$$X_1$$
 X_2

n°	Amont	Aval
1	5.32	5.33
2	6	6.13
3	5.64	5.66
4	4.5	4.59
5	5.35	5.49
6	6.17	6.32
7	4.11	4.24
8	5.86	5.83
9	6.13	6.27
10	4.68	4.86

$$Z_1 = rac{n_1 S_1^2}{\sigma_1^2} \sim \chi^2 (n_1 - 1)$$

$$Z_2 = rac{n_2 S_2^2}{\sigma_2^2} \sim \chi^2 (n_2 - 1)$$

$$F = rac{rac{n_2 S_2^2}{\sigma_2^2} \, / (n_2 - 1)}{rac{n_1 S_1^2}{\sigma_1^2} \, / (n_1 - 1)} \sim \mathcal{F}(n_2 - 1, n_1 - 1)$$

Test de comparaison des variances

$$\mathcal{H}_0:\sigma_1^2=\sigma_2^2$$

non rejet

$$F = rac{rac{n_2 S_2^2}{\sigma_2^2} \, / (n_2 - 1)}{rac{n_1 S_1^2}{\sigma_1^2} \, / (n_1 - 1)} \sim \mathcal{F}(n_2 - 1, n_1 - 1)$$

$$F = rac{rac{n_2 S_2^2}{n_2 - 1}}{rac{n_1 S_1^2}{n_1 - 1}} = rac{S_2^2}{S_1^2} \sim \mathcal{F}(9,9)$$

$$f = \frac{s_2^2}{s_1^2} = \frac{0.464}{0.475} = 1.18537 = 0.977$$

Test de comparaison des variances

$$S^{*2} = rac{n_1 S_1^2 + n_2 S_2^2}{n_1 + n_2 - 2}$$
 estimateur sans biais de σ^2

$$s^{*2} = \frac{10 \times 0.475^2 + 10 \times 0.464^2}{10 + 10 - 2} = 0.5219$$

$$s^* = 0.7224$$

Test de comparaison des variances

Test de comparaison des moyennes

Test de comparaison des moyennes

$$X_1$$
 X_2

n°	Amont	Aval
1	5.32	5.33
2	6	6.13
3	5.64	5.66
4	4.5	4.59
5	5.35	5.49
6	6.17	6.32
7	4.11	4.24
8	5.86	5.83
9	6.13	6.27
10	4.68	4.86

$$\mathbb{E}(\overline{X}_1) = \mu_1 \qquad \qquad \mathbb{E}(\overline{X}_2) = \mu_2 \ \mathbb{V}(\overline{X}_1) = rac{\sigma^2}{n_1} \qquad \qquad \mathbb{V}(\overline{X}_2) = rac{\sigma^2}{n_2}$$

$$\mathbb{V}(\overline{X}_2 - \overline{X}_1) = \frac{\sigma^2}{n_2} + \frac{\sigma^2}{n_1} = \sigma^2 \left(\frac{1}{n_2} + \frac{1}{n_1}\right)$$

$$U=rac{(\overline{X}_2-\overline{X}_1)-(\mu_2-\mu_1)}{\sigma\sqrt{rac{1}{n_1}+rac{1}{n_2}}}\sim\mathcal{N}(0,1)$$

Test de comparaison des moyennes

$$\mathcal{H}_0: \mu_2 \leq \mu_1$$
 $\mathcal{H}_{10}: \mu_{12} \geq \mu_1$

$$U=rac{(\overline{X}_2-\overline{X}_1)-(\mu_2-\mu_1)}{\sigma\sqrt{rac{1}{n_1}+rac{1}{n_2}}}\sim \mathcal{N}(0,1)$$

$$T = rac{(\overline{X}_2 - \overline{X}_1) - (\mu_2 - \mu_1)}{s^* \sqrt{rac{1}{n_1} + rac{1}{n_2}}} \sim \mathcal{T}(n_1 + n_2 - 2)$$

$$T = rac{(\overline{X}_2 - \overline{X}_1)}{s^* \sqrt{rac{1}{n_1} + rac{1}{n_2}}} \sim \mathcal{T}(18)$$

$$t = \frac{5.472 - 5.276}{0.7224\sqrt{\frac{1}{10} + \frac{1}{10}}} = 0.137$$

Test de comparaison des variances

Test de comparaison des moyennes

$$X_1$$
 X_2

n°	Amont	Aval
1	5.32	5.33
2	6	6.13
3	5.64	5.66
4	4.5	4.59
5	5.35	5.49
6	6.17	6.32
7	4.11	4.24
8	5.86	5.83
9	6.13	6.27
10	4.68	4.86

moy	5.376	5.472
var	0.475	0.464

Test des appariements

$$X_1$$
 X_2

Jour	Amont	Aval
1	5.32	5.33
2	6	6.13
3	5.64	5.66
4	4.5	4.59
5	5.35	5.49
6	6.17	6.32
7	4.11	4.24
8	5.86	5.83
9	6.13	6.27
10	4.68	4.86

0.13

0.09

0.14

0.15

0.13

0.14

0.18

$$\mathcal{H}_0: \mu_D \leq 0$$
 $\mathcal{H}_1: \mu_D > 0$

$$U=rac{D-\mu_D}{\sigma_D/\sqrt{n}}\sim \mathcal{N}(0,1)$$

$$T=rac{\overline{D}-\mu_D}{s_D/\sqrt{n-1}}\sim \mathcal{T}(n-1)$$

$$t = rac{ar{d} - \mu_D}{s_D/\sqrt{n-1}} = rac{0.096}{\sqrt{0.0045/\sqrt{9}}}$$

$$t=4.29$$
 p-valeur = 1‰

Région de non rejet Région critique

