Coursera Machine Learning Project

Louis

11/15/2020

I loaded the necessary libraries to do the machine learning.

```
library(caret)
## Warning: package 'caret' was built under R version 4.0.3
## Loading required package: lattice
## Loading required package: ggplot2
library(dplyr)
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
       filter, lag
##
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
library(ggplot2)
library(rpart.plot)
## Warning: package 'rpart.plot' was built under R version 4.0.3
## Loading required package: rpart
library(corrplot)
## Warning: package 'corrplot' was built under R version 4.0.3
## corrplot 0.84 loaded
```

library(randomForest) ## Warning: package 'randomForest' was built under R version 4.0.3 ## randomForest 4.6-14 ## Type rfNews() to see new features/changes/bug fixes. ## ## Attaching package: 'randomForest' ## The following object is masked from 'package:dplyr': ## ## combine ## The following object is masked from 'package:ggplot2': ## ## margin library(latexpdf)

The test and training data was loaded and I created an data partition where I then made training and test validation data sets based on the data partition.

```
train_data <- read.csv("pml-training.csv")
test_data <- read.csv("pml-testing.csv")
intrain <- createDataPartition(train_data$classe, p=0.7, list = FALSE)
train_valid <- train_data[intrain,]
test_valid <- train_data[-intrain,]</pre>
```

Get rid of variables with zero variance then removed variable with over 95% NA values to make the training as efficient as possible.

```
near_zero <- nearZeroVar(train_valid)
train_valid <- train_valid[,-near_zero]
test_valid <- test_valid[, -near_zero]

all_na <- sapply(train_valid,function(1) mean(is.na(1))) > 0.95
train_valid <- train_valid[, all_na == FALSE]
test_valid <- test_valid[, all_na == FALSE]</pre>
```

#Remove uncessary variables

```
train_valid <- train_valid[, -c(1:6)]
test_valid <- test_valid[, -c(1:6)]</pre>
```

Find what data is correlated with one another and used a cutoff of 0.7 to determine the best correlation

```
corr_train <- cor(train_valid[, -53], use = "pairwise.complete.obs")
corr_high <- findCorrelation(corr_train, cutoff = 0.7)
#corrplot doesn't help much
corrplot(corr_train, order = "hclust" , method = "color" ,type = "upper",tl.col="black", tl.srt=45)</pre>
```


Train the necessary prediction models and compare the accuracy of the seperate prediction models to find the best model to use.

```
control <- trainControl(method = "cv", number = 3,verboseIter=FALSE)
metric <- "Accuracy"</pre>
```

```
#Prediction models
#Random Forest
set.seed(13)
fit.rf <- train(classe~., data=train valid, method="rf", metric=metric, trControl=control)
#Classification Tree
set.seed(13)
fit.ct <- train(classe~., data=train_valid, method="rpart", trControl=control)</pre>
#Linear Algorithms
set.seed(13)
fit.la <- train(classe~., data=train_valid, method="lda", metric = metric, trControl=control)
#Rpart
set.seed(13)
fit.cart <- train(classe~., data=train_valid, method="rpart", metric=metric, trControl=control)
#Gradient Boosting method
set.seed(13)
fit.gbm <- train(classe~., data=train_valid, method="gbm", metric=metric, trControl=control)
## Iter
          TrainDeviance
                           ValidDeviance
                                            StepSize
                                                       Improve
##
                                                        0.1292
        1
                  1.6094
                                              0.1000
                                     nan
        2
##
                                              0.1000
                                                        0.0864
                  1.5227
                                     nan
##
        3
                                              0.1000
                                                        0.0680
                  1.4654
                                     nan
##
        4
                  1.4207
                                     nan
                                              0.1000
                                                        0.0524
##
        5
                  1.3864
                                     nan
                                              0.1000
                                                        0.0495
##
        6
                                                        0.0386
                  1.3539
                                     nan
                                              0.1000
        7
##
                  1.3282
                                     nan
                                              0.1000
                                                        0.0428
##
        8
                 1.3018
                                     nan
                                              0.1000
                                                        0.0366
                 1.2787
##
        9
                                              0.1000
                                                        0.0264
                                     nan
##
       10
                  1.2603
                                     nan
                                              0.1000
                                                        0.0312
##
       20
                  1.1076
                                              0.1000
                                                        0.0150
                                     nan
##
       40
                  0.9337
                                              0.1000
                                                        0.0084
                                     nan
##
                  0.8267
                                              0.1000
                                                        0.0066
       60
                                     nan
##
       80
                  0.7474
                                              0.1000
                                                        0.0040
                                     nan
##
      100
                 0.6847
                                              0.1000
                                                        0.0035
                                     nan
##
      120
                  0.6314
                                     nan
                                              0.1000
                                                        0.0035
##
      140
                  0.5882
                                              0.1000
                                                        0.0021
                                     nan
##
      150
                                              0.1000
                                                        0.0021
                  0.5683
                                     nan
##
          TrainDeviance
                           ValidDeviance
                                            StepSize
                                                       Improve
## Iter
##
        1
                  1.6094
                                              0.1000
                                                        0.1879
                                     nan
        2
##
                  1.4881
                                     nan
                                              0.1000
                                                        0.1258
##
        3
                                                        0.1038
                 1.4037
                                     nan
                                              0.1000
##
        4
                  1.3381
                                              0.1000
                                                        0.0850
                                     nan
        5
##
                  1.2844
                                     nan
                                              0.1000
                                                        0.0697
##
        6
                  1.2392
                                     nan
                                              0.1000
                                                        0.0657
##
        7
                  1.1966
                                     nan
                                              0.1000
                                                        0.0587
##
        8
                  1.1588
                                              0.1000
                                                        0.0516
                                     nan
##
        9
                  1.1248
                                              0.1000
                                                        0.0421
                                     nan
##
       10
                                              0.1000
                  1.0974
                                                        0.0419
                                     nan
##
       20
                  0.8953
                                     nan
                                              0.1000
                                                        0.0251
##
       40
                  0.6864
                                              0.1000
                                                        0.0113
                                     nan
##
       60
                  0.5567
                                              0.1000
                                                        0.0067
                                     nan
```

##	80	0.4716	nan	0.1000	0.0049
##	100	0.4051	nan	0.1000	0.0034
##	120	0.3499	nan	0.1000	0.0041
##	140	0.3046	nan	0.1000	0.0027
##	150	0.2854	nan	0.1000	0.0028
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.2276
##	2	1.4611	nan	0.1000	0.1557
##	3	1.3624	nan	0.1000	0.1239
##	4	1.2823	nan	0.1000	0.1022
##	5	1.2174	nan	0.1000	0.0875
##	6	1.1605	nan	0.1000	0.0713
##	7	1.1139		0.1000	0.0713
##	8		nan		
		1.0639	nan	0.1000	0.0543
##	9	1.0282	nan	0.1000	0.0590
##	10	0.9918	nan	0.1000	0.0499
##	20	0.7561	nan	0.1000	0.0225
##	40	0.5349	nan	0.1000	0.0093
##	60	0.4070	nan	0.1000	0.0072
##	80	0.3249	nan	0.1000	0.0072
##	100	0.2685	nan	0.1000	0.0023
##	120	0.2245	nan	0.1000	0.0018
##	140	0.1890	nan	0.1000	0.0022
##	150	0.1734	nan	0.1000	0.0010
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1285
##	2	1.5233	nan	0.1000	0.0897
##	3	1.4637	nan	0.1000	0.0661
##	4	1.4203	nan	0.1000	0.0533
##	5	1.3851	nan	0.1000	0.0475
##	6	1.3531	nan	0.1000	0.0475
##	7	1.3236	nan	0.1000	0.0390
##	8	1.2996	nan	0.1000	0.0361
##	9	1.2758	nan	0.1000	0.0282
##	10	1.2576	nan	0.1000	0.0347
##	20	1.0989	nan	0.1000	0.0165
##	40	0.9252	nan	0.1000	0.0097
##	60	0.8170	nan	0.1000	0.0055
##	80	0.7354	nan	0.1000	0.0028
##	100	0.6711	nan	0.1000	0.0057
##	120	0.6174	nan	0.1000	0.0036
##	140	0.5719	nan	0.1000	0.0017
##	150	0.5532	nan	0.1000	0.0018
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1897
##	2	1.4857	nan	0.1000	0.1254
##	3	1.4043	nan	0.1000	0.1059
##	4	1.3360	nan	0.1000	0.0855
##	5	1.2798	nan	0.1000	0.0728
##	6	1.2333	nan	0.1000	0.0571
##	7	1.1938	nan	0.1000	0.0522

шш	0	1 1500		0 1000	0 0010
##	8	1.1596	nan	0.1000	0.0610
##	9	1.1227	nan	0.1000	0.0483
##	10	1.0925	nan	0.1000	0.0496
##	20	0.8860	nan	0.1000	0.0250
##	40	0.6699	nan	0.1000	0.0100
##	60	0.5399	nan	0.1000	0.0070
##	80	0.4547	nan	0.1000	0.0045
##	100	0.3881	nan	0.1000	0.0033
##	120	0.3352	nan	0.1000	0.0028
##	140	0.2962	nan	0.1000	0.0013
##	150	0.2785	nan	0.1000	0.0020
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.2391
##	2	1.4565	nan	0.1000	0.1601
##	3	1.3540	nan	0.1000	0.1192
##	4	1.2759	nan	0.1000	0.1102
##	5	1.2062	nan	0.1000	0.0893
##	6	1.1498	nan	0.1000	0.0791
##	7	1.0988	nan	0.1000	0.0615
##	8	1.0595	nan	0.1000	0.0601
##	9	1.0202	nan	0.1000	0.0614
##	10	0.9810	nan	0.1000	0.0549
##	20	0.7441	nan	0.1000	0.0226
##	40	0.5190	nan	0.1000	0.0081
##	60	0.3987	nan	0.1000	0.0077
##	80	0.3122	nan	0.1000	0.0043
##	100	0.2597	nan	0.1000	0.0026
##	120	0.2142	nan	0.1000	0.0017
##	140	0.1805	nan	0.1000	0.0015
##	150	0.1670	nan	0.1000	0.0004
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1294
##	2	1.5216	nan	0.1000	0.0864
##	3	1.4613	nan	0.1000	0.0650
##	4	1.4174	nan	0.1000	0.0563
##	5	1.3811	nan	0.1000	0.0461
##	6	1.3499	nan	0.1000	0.0440
##	7	1.3224	nan	0.1000	0.0361
##	8	1.2978	nan	0.1000	0.0324
##	9	1.2765	nan	0.1000	0.0375
##	10	1.2526	nan	0.1000	0.0289
##	20	1.0978	nan	0.1000	0.0162
##	40	0.9236	nan	0.1000	0.0094
##	60	0.8167	nan	0.1000	0.0053
##	80	0.7360	nan	0.1000	0.0034
##	100	0.6758	nan	0.1000	0.0029
##	120	0.6239	nan	0.1000	0.0023
##	140	0.5798	nan	0.1000	0.0020
##	150	0.5601	nan	0.1000	0.0017
##	100	0.5001	IIail	0.1000	0.0001
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094		0.1000	0.1818
πĦ	1	1.0034	nan	0.1000	0.1010

##	2	1.4862	nan	0.1000	0.1285
##	3	1.4021	nan	0.1000	0.1016
##	4	1.3354	nan	0.1000	0.0871
##	5	1.2811	nan	0.1000	0.0726
##	6	1.2349	nan	0.1000	0.0635
##	7	1.1940	nan	0.1000	0.0620
##	8	1.1543	nan	0.1000	0.0500
##	9	1.1219	nan	0.1000	0.0486
##	10	1.0898	nan	0.1000	0.0449
##	20	0.8901	nan	0.1000	0.0235
##	40	0.6715	nan	0.1000	0.0114
##	60	0.5503	nan	0.1000	0.0060
##	80	0.4632	nan	0.1000	0.0063
##	100	0.3979	nan	0.1000	0.0042
##	120	0.3440	nan	0.1000	0.0020
##	140	0.3019	nan	0.1000	0.0026
##	150	0.2824	nan	0.1000	0.0020
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.2309
##	2	1.4564	nan	0.1000	0.1648
##	3	1.3506	nan	0.1000	0.1196
##	4	1.2734	nan	0.1000	0.0985
##	5	1.2096	nan	0.1000	0.0826
##	6	1.1566	nan	0.1000	0.0858
##	7	1.1025	nan	0.1000	0.0656
##	8	1.0618	nan	0.1000	0.0682
##	9	1.0196	nan	0.1000	0.0604
##	10	0.9819	nan	0.1000	0.0480
##	20	0.7465	nan	0.1000	0.0241
##	40	0.5254	nan	0.1000	0.0084
##	60	0.4015	nan	0.1000	0.0088
##	80	0.3185	nan	0.1000	0.0029
##	100	0.2596	nan	0.1000	0.0029
##	120	0.2194	nan	0.1000	0.0028
##	140	0.1857	nan	0.1000	0.0010
##	150	0.1714	nan	0.1000	0.0021
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.2308
##	2	1.4602	nan	0.1000	0.1601
##	3	1.3580	nan	0.1000	0.1278
##	4	1.2759	nan	0.1000	0.1007
##	5	1.2129	nan	0.1000	0.0920
##	6	1.1534	nan	0.1000	0.0801
##	7	1.1047	nan	0.1000	0.0736
##	8	1.0583	nan	0.1000	0.0608
##	9	1.0203	nan	0.1000	0.0614
##	10	0.9816	nan	0.1000	0.0487
##	20	0.7537	nan	0.1000	0.0240
##	40	0.5284	nan	0.1000	0.0143
##	60	0.4054	nan	0.1000	0.0074
##	80	0.3245	nan	0.1000	0.0050
##	100	0.2677	nan	0.1000	0.0023

```
120
                 0.2233
                                            0.1000
                                                      0.0023
##
                                    nan
      140
##
                 0.1892
                                            0.1000
                                                      0.0017
                                    nan
      150
                                            0.1000
##
                 0.1762
                                    nan
                                                      0.0016
results <- resamples(list(lda=fit.la, cart=fit.ct, rf=fit.rf))</pre>
summary(results)
##
## Call:
## summary.resamples(object = results)
## Models: lda, cart, rf
## Number of resamples: 3
## Accuracy
##
             Min.
                    1st Qu.
                               Median
                                           Mean
                                                  3rd Qu.
## lda 0.6977506 0.6983294 0.6989083 0.7029201 0.7055048 0.7121014
## cart 0.5048056 0.5081355 0.5114654 0.5124833 0.5163222 0.5211790
        0.9873362 0.9875533 0.9877703 0.9883528 0.9888611 0.9899519
##
## Kappa
##
             Min.
                    1st Qu.
                               Median
                                           Mean
                                                  3rd Qu.
                                                                Max. NA's
## 1da 0.6180592 0.6182738 0.6184884 0.6240335 0.6270206 0.6355529
## cart 0.3537108 0.3583166 0.3629224 0.3639809 0.3691160 0.3753096
                                                                        0
        0.9839781 0.9842527 0.9845274 0.9852643 0.9859074 0.9872874
                                                                        0
```

dotplot(results)

We found that the random forest model is the most accurate according to the boxplot.

Use predict function to test the random forest model

```
end_result <- predict(fit.rf, newdata = test_data)
summary(end_result)

## A B C D E
## 7 8 1 1 3

end_result

## [1] B A B A A E D B A A B C B A E E A B B B
## Levels: A B C D E</pre>
```