Modulhandbuch IT-Ingenieurwesen Bachelor of Science

Version B_ITE25.0_W

Letzte Änderung: 2025-02-25 14:46:44

Inhaltsverzeichnis

- MB002 Mathematische Konzepte und Diskrete Mathematik
- MB003 Programmstrukturen 1
- MB004 Informationstechnik
- MB006 Einführung in die Digitaltechnik
- MB166 Praktikum Wirkprinzipien und Technologie
- MB252 Mechanik und Elektrotechnik
- MB001-Analysis
- MB019 Deskriptive Statistik und Grundlagen der Linearen Algebra
- $MB020-Programmstrukturen\ 2$
- MB023 Rechnerstrukturen und Digitaltechnik
- MB032 Übertragungstechnik
- MB186 Computer-aided Prototyping
- MB008 Chemie und Chemietechnik
- MB037 Rechnernetze
- MB040 Algorithmen und Datenstrukturen
- MB043 Systemnahe Programmierung
- MB045 Lineare Algebra
- MB046 Ingenieurmathematik
- MB034 Einführung in die Betriebswirtschaft
- MB073 Systemtheorie
- MB101 Echtzeitsysteme
- MB120 Entre- und Intrapreneurship
- MB234 Optik, Strömungs- und Wärmelehre
- MB236 Industrie 4.0
- MB317 Materialtechnik
- MB048 Elektronik
- MB050 Konstruktionstechnik
- MB052 Einführung in Datenbanken
- MB093 Softwarequalität
- MB095 Anwendungen der Künstlichen Intelligenz
- MB107 Einführung in die Robotik
- MB109 Regelungstechnik
- MB130 Seminar IT-Ingenieurwesen
- MB058 Software-Design
- MB059 Web-Anwendungen
- MB067 Fertigungstechnik
- MB068 Halbleiterschaltungstechnik
- MB077 Softwareprojekt IT-Ingenieurwesen
- MB118 Soft Skills
- MB122 IT-Sicherheit
- MB233 Projekt IT-Ingenieurwesen
- MB257 Auslandssemester
- MB150 Bachelor-Thesis
- MB159-Praktikum
- MB160 Bachelor-Kolloquium

Module

♦ MB002 – Mathematische Konzepte und Diskrete Mathematik

Verantwortliche:	Sebastian Iwanowski
	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB003 – Diskrete Mathematik	Vorlesung	Klausur		120 Min.	5.0	Drittelnoten	jedes Semester	150 Stunden	Sebastian Iwanowski

Lehrinhalte:

- Logik
 - Einführung
 - o Aussagenlogik
 - o Prädikatenlogik
- Mengenlehre
 - o Grundlegende Begriffe und Konzepte
 - o Relationen
 - o Funktionen
 - o Boolesche Algebren
- Beweisführung
 - o Strukturen der mathematischen Beweisführung
 - Vollständige Induktion
 - o Beweisstrategien
- Zahlentheorie
 - Teilbarkeit
 - o Teilen mit Rest
 - o Primzahlen
 - o Modulare Arithmetik
- · Algebraische Strukturen
 - Gruppen
 - Körper
- Kombinatorik
 - o Zählformeln für Mengen
 - o Permutationen
- Graphentheorie
 - Terminologie und Repräsentation
 - · Wege in Graphen
 - o Bäume
 - o Planare Graphen
 - o Färbungen

Qualifikationsziele:

Nach Abschluss der Veranstaltung besitzen die Studierenden folgende Kompetenzen:

- Beherrschen der grundlegenden mathematischen Begriffe und Konzepte (Definition, Satz, Beweis) und Fähigkeit zur Unterscheidung derselben.
- Beherrschen der Grundlagen und der Formalisierung logischen Denkens.
- Verständnis elementarer Logik und Mengenlehre und des inneren Zusammenhangs dieser Gebiete.
- Darauf aufbauendes Verständnis von Relationen und Funktionen.
- Fähigkeit, elementare Beweisprinzipien wie vollständige Induktion in verschiedenen Kontexten anzuwenden.
- Beherrschen der grundlegenden Sätze der elementaren Zahlentheorie, Gruppen- und Körpertheorie, Kombinatorik und Graphentheorie und selbständige Anwendung an Beispielen.

Verwendbarkeit:

Das Modul ist ein Einführungsmodul. Es liefert die Konzepte für ein tieferes Verständnis der anderen Mathematikmodule wie "Analysis" und "Lineare Algebra". Die vermittelten Konzepte und Inhalte werden gebraucht in den Modulen "Informationstechnik", "Einführung in Digitaltechnik", "Programmstrukturen 1 und 2", "Formale Sprachen", "Algorithmen und Datenstrukturen", "Einführung in Datenbanken" und "Anwendungen der Künstlichen Intelligenz". Außerdem werden die in diesem Modul vermittelten Kenntnisse in allen Mastervorlesungen der IT-orientierten Studiengänge vorausgesetzt.

Voraussetzungen und Empfehlungen:

Literatur:

• Sebastian Iwanowski / Rainer Lang:

Diskrete Mathematik mit Grundlagen, Springer 2014, ISBN 978-3-658-07130-1 (Print), 978-3-658-07131-8 (Online)

• Albrecht Beutelspacher / Marc-Alexander Zschiegner:

Diskrete Mathematik für Einsteiger.

Vieweg 2004 (2. Auflage), ISBN 3-528-16989-3

• Norman L. Biggs:

Discrete Mathematics.

Oxford University Press 2002, ISBN 0-19-850717-8

• Neville Dean: Diskrete Mathematik.

Pearson Studium, Reihe "im Klartext" 2003, ISBN 3-8273-7069-8

• Christoph Meinel / Martin Mundhenk:

Mathematische Grundlagen der Informatik.

Teubner 2002 (2. Auflage), ISBN 3-519-12949-3

- Computer Games Technology Bachelor of Science Version 23.0 (1. Semester)
- Data Science & Artificial Intelligence Bachelor of Science Version 25.0 (1. Semester)
- E-Commerce Bachelor of Science Version 23.0 (1. Semester)
- Informatik Bachelor of Science Version 25.0 (1. Semester)
- IT-Ingenieurwesen Bachelor of Science Version 25.0 (1. Semester)
- IT-Management & Consulting Bachelor of Science Version 25.0 (1. Semester)
- IT-Management / -Consulting & -Auditing Bachelor of Science Version 23.0 (1. Semester)
- Medieninformatik Bachelor of Science Version 25.0 (1. Semester)
- Smart Technology Bachelor of Science Version 24.0 (1. Semester)
- Technische Informatik Bachelor of Science Version 24.0 (1. Semester)
- Wirtschaftsinformatik Bachelor of Science Version 23.0 (1. Semester)

♦ MB003 – Programmstrukturen 1

Verantwortliche:	Dennis Proppe
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB004 - Programmstrukturen 1	Vorlesung	Klausur + ggf. Bonus		120 Min.	3.0	Drittelnoten	jedes Semester	90 Stunden	Dennis Proppe
TB005 – Übg. Programmstrukturen 1	Übung	Abnahme	10 Aufgaben	15 Min.	2.0	Bestanden/nicht Bestanden	jedes Semester	60 Stunden	Lars Neumann

Lehrinhalte:

Ausgehend von den Grundlagen der Programmierung wie Datentypen, Verzweigungen und Iterationen werden in der Übung Programmstrukturen 1 in den einzelnen Aufgaben Ein- und Ausgabe, Operatoren, Bedingungen, Schleifen, Strings (sowohl über Stringfunktionen als auch über indizierten Zugriff), Arrays, Records, Mengen, Prozeduren und Funktionen, Zeiger und Listen sowie Dateien und Exceptions behandelt.

Die Inhalte höherer Aufgaben schließen dabei in der Regel die Inhalte der vorherigen mit ein.

- Grundkonzepte der Datenverarbeitung
- Entwurf und Darstellung von Algorithmen
- Allgemeine Aspekte von Programmiersprachen
- Daten in Programmen
 - o Grundlegende Datentypen
 - o Variablen, Zuweisungen, Konstanten
- Grundsätzlicher Aufbau von Programmen
- Operatoren und Ausdrücke
- Einfache und strukturierte Anweisungen
- · Statische strukturierte Datentypen und ihre Nutzung
 - Strings
 - o Arrays
 - o Records
 - o Sets
- Zeigertypen
 - o Besonderheiten und Probleme bei der Nutzung von Zeigertypen
 - o Aufbau dynamischer Datenstrukturen mit Hilfe von Zeigertypen
- Strukturierung von Programmen
 - o Prozeduren und Funktionen
 - o Units

Qualifikationsziele:

Die Studierenden ...

- festigen und vertiefen ihr Wissen zu den in der zugehörigen Vorlesung "Programmstrukturen 1" vorgestellten Konzepten
- beherrschen die Arbeit mit einer modernen Entwicklungsumgebung (Embarcadero Delphi 11.1)
- lernen Grundlagen des Debugging und der Versionsverwaltung kennen
- erweitern ihre Teamfähigkeit durch die eigenständige praktische Anwendung des erlernten Wissens in Zweiergruppen

Die Studierenden ...

- kennen die grundlegenden Konzepte imperativer Programmiersprachen und ihre Umsetzung in der Programmiersprache Pascal und können diese benennen.
- kennen die Syntax, Semantik und Pragmatik als wesentliche Aspekte von Programmiersprachen und können diese unterscheiden.
- kennen die wichtigsten Sprachbestandteile der Programmiersprache Pascal und beschreiben diese.
- setzen die Konzepte und Sprachbestandteile angemessen zur Lösung von Problemstellungen begrenzter Komplexität ein und bauen vollständige Programme für diese Problemstellungen auf.
- kennen die wesentlichen statischen Datenstrukturen imperativer Programmiersprachen, wählen bei der Programmierung zwischen diesen in Abhängigkeit von der Aufgabenstellung sicher aus und setzen sie angemessen zur Realisierung der Programmfunktionalität ein
- · kennen die Realisierung einfacher dynamischer Datenstrukturen und können diese zur Realisierung von Algorithmen nutzen.
- kennen wesentliche Qualitätskriterien für Software und können diese bei der Software-Entwicklung berücksichtigen.
- führen eine Fehlersuche und -beseitigung (Debugging) bei ihren Programmtexten durch.

Verwendbarkeit:

Das Modul ist ein Einführungsmodul in den Themenbereich Programmierung für alle Studiengänge mit Informatikbezug. Die erworbenen Kompetenzen sind insbesondere die Grundlage für das Modul "Programmstrukturen 2", aber auch für die Module "Systemnahe Programmierung" und "UNIX und Shell-Programmierung".

Voraussetzungen und Empfehlungen:

Es wird kein Vorwissen erwartet. Wer sich schon vor Beginn des Studiums vorbereiten möchte, kann sich mit grundlegenden algorithmischen Strukturen in einer beliebigen (imperativen) Programmiersprache beschäftigen. Zudem ist die Installation von Embarcadero Delphi auf dem eigenen Rechner empfehlenswert.

Das Skript und weiteres Material werden individuell jedes Semester über die hochschuleigene Lernplattform zur Verfügung gestellt.

Literatur:

Skript:

- OTTMANN, Thomas; WIDMAYER, Peter:
 Programmierung mit PASCAL: Eine Einführung für Programmieranfänger, 9. Aufl., Springer Vieweg, 2018
- Collingbourne, Huw:
- The Little Book Of Delphi Programming: Learn To Program with Object Pascal, Dark Neon, 2020
- CANTU, Marco:
 - Object Pascal Handbook, CreateSpace Independent Publishing Platform, 2015
- GUMM, Heinz-Peter; SOMMER, Manfred:

Einführung in die Informatik.

- 11. Aufl. München: Oldenbourg Wissenschaftsverlag, 2013.
- MATTHÄUS, Wolf-Gert:
- Grundkurs Programmieren mit Delphi: Systematisch programmieren lernen für Einsteiger, 5. Aufl., Springer Vieweg, 2016
- WIRTH, Niklaus:
 - Algorithmen und Datenstrukturen: Pascal-Version. 5. Aufl., Teubner-Verlag, 2013

- Computer Games Technology Bachelor of Science Version 23.0 (1. Semester)
- Data Science & Artificial Intelligence Bachelor of Science Version 25.0 (1. Semester)
- E-Commerce Bachelor of Science Version 23.0 (Wahlmöglichkeit 1. Semester)
- Informatik Bachelor of Science Version 25.0 (1. Semester)
- IT-Ingenieurwesen Bachelor of Science Version 25.0 (1. Semester)
- IT-Management & Consulting Bachelor of Science Version 25.0 (1. Semester)
- IT-Management / -Consulting & -Auditing Bachelor of Science Version 23.0 (1. Semester)
- Medieninformatik Bachelor of Science Version 25.0 (1. Semester)
- Smart Technology Bachelor of Science Version 24.0 (1. Semester)
- Technische Informatik Bachelor of Science Version 24.0 (1. Semester)
- Wirtschaftsinformatik Bachelor of Science Version 23.0 (1. Semester)

♦ MB004 – Informationstechnik

Verantwortliche:	Dennis Säring
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB006 – Informationstechnik	Vorlesung	Klausur		60 Min.	5.0	Drittelnoten	iährlich	150 Stunden	Dennis Säring

Lehrinhalte:

- Grundlagen der Halbleitertechnik
- · Logikgatter und Schaltnetze
- · Zahlendarstellung und Berechnung
- FlipFlop und weitere Speicherstrukturen
- Moderne Rechnerarchitekturen
- Programmcode zu Assembler
- Computerperipherie
- · Informationstheorie und Kodierung

Qualifikationsziele:

Die Studierenden ...

- besitzen grundlegende Kompetenzen zum Verständnis der Funktionalität von Rechnern in Bezug auf ihre informationstheoretischen Grundlagen und deren praktische Implementierung
- können Vorgänge der Informationsverarbeitung auf der Maschinenebene theoretisch sowie praktisch umsetze
- sind in der Lage die Umsetzung von Befehlen höherer Sprachebenen in Maschinenbefehle und in deren rechnerinternen Interpretation nachzuvollziehen
- kennen die Ansätze aktueller Rechnerstrukturen und Kommunikationsschnittstellen mit der Peripherie
- sind vertraut mit Informationstheoretischen Ansätzen und unterschiedlichen Kodierungsverfahren.

Verwendbarkeit:

Das Modul "Informationstechnik" ist ein Einführungsmodul und soll ein breites Grundverständnis für die Funktionsweise von Rechnern vermitteln. Die erworbenen Kompetenzen stellen damit die Grundlagen für zum Beispiel die Module "Rechnerstrukturen und Digitaltechnik", "Systemsoftware" und "Großintegrierte Systeme" dar.

Voraussetzungen und Empfehlungen:

Grundlegendes Interesse an der Informationstechnik

Literatur:

- Gumm, Hans-Peter; Sommer, Manfred: Einführung in die Informatik, Oldenbourg, 8. Auflage 2009.
- Müller, Käser, et., al.: Technische Informatik 1, vdf-Hochschulverlag Zürich, 2003
- Schiffmann, Schmitz: Technische Informatik 2, Grundlagen der Computertechnik, Springer-Verlag 1998
- Märtin: Einführung in die Rechnerarchitektur, Fachbuchverlag Leibzig, 2003

- Computer Games Technology Bachelor of Science Version 23.0 (1. Semester)
- Data Science & Artificial Intelligence Bachelor of Science Version 25.0 (Wahlmöglichkeit 3. Semester)
- Informatik Bachelor of Science Version 25.0 (1. Semester)
- IT-Ingenieurwesen Bachelor of Science Version 25.0 (1. Semester)
- Medieninformatik Bachelor of Science Version 25.0 (1. Semester)
- Smart Technology Bachelor of Science Version 24.0 (1. Semester) • Technische Informatik Bachelor of Science Version 24.0 (1. Semester)
- Wirtschaftsinformatik Bachelor of Science Version 23.0 (1. Semester)
- Wirtschaftsingenieurwesen Bachelor of Science Version 25.0 (Wahlmöglichkeit 3. Semester)

♦ MB006 – Einführung in die Digitaltechnik

Verantwortliche:	Sergei Sawitzki
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB065 - Einführung in die Digitaltechnik	Vorlesung	Klausur		90 Min.	3.0	Drittelnoten	jedes Semester	90 Stunden	Sergei Sawitzki
TB069 - Prakt. Digitaltechnik	Praktikum	Praktikumsbericht / Protokoll	4 Seiten		2.0	Bestanden/nicht Bestanden	jedes Semester	60 Stunden	Thomas Starke

Lehrinhalte:

- Einleitung: Digitale Systeme
- Mathematische Grundlagen
 - o Entstehungsgeschichte
 - o Aussagenlogik und Boolesche Algebra
 - o Schaltalgebra, Schaltfunktionen und Schaltfunktionssysteme
 - o Operatorensysteme
 - o Normalformen und Dualitätsprinzip
- Schaltnetze
 - Darstellung
 - o Vereinfachung (KV-Diagramme, QMCV, BDDs)
 - Analyse (Funktion, Komplexität, Zeitverhalten)
 - o Synthese und Realisierung
 - o Beispiele
- Speicherelemente
- Schalnetzentwurf: Schaltnetz wird aus einer gegebenen Spezifikation formal entworfen. Der Entwurf wird auf einem IC-Trainer realisiert. Die Schaltung wird auf Funktion und Einhaltung der Spezifikation überprüft. Die Ergebnisse werden dokumentiert.
- Schaltwerkentwurf: Schaltwerk (z. B. ein Zähler) wird aus einer gegebenen Spezifikation formal entworfen. Der Entwurf wird auf einem IC-Trainer realisiert. Die Schaltung wird auf Funktion und Einhaltung der Spezifikation überprüft. Die Ergebnisse werden dokumentiert.

Qualifikationsziele:

Die Studierenden ...

- kennen die mathematischen Grundlagen des Schaltnetz-Entwurfs
- können darauf aufbauend einfache Schaltnetze entwerfen und optimieren
- erkennen Schaltnetze als technische Umsetzung von Schaltfunktionen
- kennen grundlegende Bausteine digitaler Systeme (Logikgatter, Multiplexer, Demultiplexer, arithmetische Schaltungen)
- können die Funktionsweise von einfachen Speicherelementen erläutern
- sind fähig, einfache digitale Systeme zu begreifen, zu spezifizieren, zu entwerfen und zu optimieren

Verwendbarkeit:

Das Modul "Einführung in Digitaltechnik" ist ein Einführungsmodul. Die erworbenen Kompetenzen stellen Grundlagen für zum Beispiel die Module "Rechnerstrukturen und Digitaltechnik", "Diskrete Systeme" und "Systementwurf mit VHDL" dar. Grundsätzlich kann das Modul sinnvoll mit den Modulen kombiniert werden, die ein Rechnersystem auf höheren Abstraktionsebenen (über dem Gatterniveau) behandeln. Das Modul ist fachübergreifend für alle Studiengänge relevant, die eine grundlegende Hardware-Kompetenz voraussetzen und hat somit eine direkte Verbindung zu den Studiengangszielen des Studiengangs "Bachelor Technische Informatik".

Voraussetzungen und Empfehlungen:

Grundlegende Vorstellung von digitalen Rechnern

Literatur:

- Hoffmann, Dirk: Grundlagen der technischen Informatik, 5. Auflage, Carl Hanser Verlag 2016
- Schiffmann, Wolram; Schmitz, Robert: Technische Informatik, in 3 Bänden. 3. Auflage Springer Verlag, 1996
- Beuth, Klaus: Elektronik 4. Digitaltechnik, 13. Auflage Vogel Verlag und Druck 2003

- Informatik Bachelor of Science Version 25.0 (1. Semester)
- IT-Ingenieurwesen Bachelor of Science Version 25.0 (1. Semester)
- Smart Technology Bachelor of Science Version 24.0 (1. Semester)
- Technische Informatik Bachelor of Science Version 24.0 (1. Semester)

♦ MB166 – Praktikum Wirkprinzipien und Technologie

Verantwortliche:	Ulrich Hoffmann
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB207 - Prakt, Wirkprinzipien und Technologie	Praktikum	Praktikumsbericht / Protokoll	10 Seiten	15 Min.	5.0	Drittelnoten	iährlich	150 Stunden	Ulrich Hoffmann

Lehrinhalte:

- Einführung in die Techniktheorie
- Wirkprinzipien nach Wolffgramm
- Ausgewählte technologische Fallbeispiele und ihre Wirkprinzipien
- Vorstellung einiger im FabLab verfügbarer einfacher Anlagen
- Erarbeitung und Beschreibung eigener Wirkprinzipien an ausgewählten Aufgabenstellungen
- Praktischer Einsatz der FabLab Anlagen im Rahmen der Themenstellung
- Präsentation der Praktikumsergebnisse

Qualifikationsziele:

Die Studierenden ...

- können den Begriff Smart Technology erläutern
- sind mit den Eigenschaften intelligenter Systeme vertraut und können diese benennen.
- kennen den gewöhnlichen Nutzen zahlreicher Geräte und können den Zusatznutzen der smarten Varianten erläutern.
- kennen ausgewählte naturwissenschaftliche, technologische und technische Vorgänge und ihre Gesetzmäßigkeiten.
- erkennen grundlegende physikalische und technische Effekte.
- ordnen die Effekte geometrischer und stofflicher Eigenschaften zu und beurteilen grundlegend ihre Wechselwirkungen.
- kennen existierende Wirkprinzipien.
- übertragen Wirkprinzipien auf neue Situationen.
- erkennen neue Wirkprinzipien und können diese in systematischer Weise beschreiben.
- setzen einige der im FabLab verfügbaren Anlagen für die Fertigung vorgegebener Werkstücke und für einfache Variationen ein.

Verwendbarkeit:

Das Modul lässt sich sinnvoll mit anderen produktionsorientierten Modulen aller Studienrichtungen kombinieren, da es grundlegende Kompetenzen der konkreten Benutzung des FabLabs vermittelt. Insbesondere ist es mit den Projektmodulen "Workshop Rapid Manufacturing", "Projekt Eingebettete Software", "Projekt Eingebettete Systeme", "Projekt intelligente Systeme" und "Projekt intelligente Umgebungen" kombinierbar, da es ihre fertigungstechnische Grundlage bildet.

Voraussetzungen und Empfehlungen:

Voraussetzungen und Empfehlungen nicht angegeben.

Literatur:

• themenspezifisch

- IT-Ingenieurwesen Bachelor of Science Version 25.0 (1. Semester)
- Smart Technology Bachelor of Science Version 24.0 (1. Semester)
- Technische Informatik Bachelor of Science Version 24.0 (1. Semester)

♦ MB252 – Mechanik und Elektrotechnik

	Carsten Burmeister
	6 Monate
Unterrichtssprache:	deutsch/englisch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB108 – Grundlagen der Elektrotechnik, Grundlagen der Mechanik	Vorlesung mit integrierter Übung	Klausur		150 Min.	5.0	Drittelnoten	Wintersemester	150 Stunden	Carsten Burmeister Andreas Haase

Lehrinhalte:

- Maßsystem und Einheiten
- Kinematik
- Dynamik (Translation und Rotation)
- Die Newtonschen Gesetze
- · Arbeit, Leistung und Energie
- Impuls- und Energieerhaltung
- Reibungskräfte
- Bewegung starrer Körper
- Physikalische Größen, Einheiten, Gleichungen
- Lineare Gleichstromkreise
 - o Grundbegriffe: Strom, Spannung, Arbeit, Leistung, Wirkungsgrad
 - o Das Ohmsche Gesetz
 - o Spannungsquellen
 - o Stromquellen
 - o Die Kirchhoffschen Sätze
 - o Strom- und Spannungsteiler
 - o Berechnung von Netzwerken mit einer Quelle
 - o Lineare Überlagerung mehrerer Quellen
 - o Ersatzspannungs- und -stromquellen
 - o Leistungsanpassung
 - Knotenpotenzialverfahren
- Das Kondensatorgesetz
 - o Elektrische Ladung und ihre Wirkung
 - Kapazität von Kondensatoren
 - o Energie des elektrischen Feldes
 - o Zusammenschaltung von Kondensatoren
- Das Induktionsgesetz
 - Magnetische Feldgrößen
 - o Durchflutungsgesetz
 - $\circ \ \ Ferromagnetismus$
 - \circ Induktion
 - o Energie des magnetischen Feldes
 - o Selbst- und Gegeninduktivität

Qualifikationsziele:

Die Studierenden ...

- besitzen ein Verständnis linearer elektrotechnischer Grundzusammenhänge und deren Wirkungsweisen in Gleichstromkreisen.
- haben Kenntnis der Anwendung von linearen elektrischen Kreisen in der Energieübertragung, in der Nachrichtenübertragung und bei Übergangsvorgängen.
- haben die Fähigkeit, Wirkungsweisen linearer Schaltungen zu verstehen und zu berechnen.
- besitzen die Fähigkeit zur Abstraktion bei der Beschreibung komplexer linearer Systeme, speziell Matrixgleichungssysteme.

Die Lernenden beherrschen nach erfolgreichem Besuch der Lehrveranstaltung grundlegende physikalischen Gesetzmäßigkeiten und verstehen die Arbeitsweise der Physik, die zum Verständnis mechanischer, aber auch in nachfolgenden Veranstaltungen zu behandelnde nicht-mechanischer Phänomene erforderlich sind. Sie können ...

- die vorgestellten physikalischen Begriffe und Gesetze der Mechanik selbständig erklären und zueinander in Beziehung setzen bzw. gegeneinander abgrenzen.
- für ausgesuchte Aufgaben aus der Mechanik selbständig eine Lösungsstrategie entwickeln.
- · Aufgaben unter Anwendung der erlernten physikalischen und mathematischen Mittel und Methoden eigenständig lösen.
- das Ergebnis einer gelösten Aufgabe kritisch bewerten und daraus Schlüsse und Folgerungen ziehen.

Verwendbarkeit:

Das Modul bereitet auf weiterführende Fächer der Ingenieurwissenschaften und technischen Informatik vor. So ist es z.B. mit der Übertragungstechnik zu kombinieren oder mit Industrie 4.0.

Voraussetzungen und Empfehlungen:

- Sicherer Umgang mit den Grundrechenarten (Addition, Subtraktion, Multiplikation, Division)
- Kenntnisse in Algebra (Gleichungen, Ungleichungen, Funktionen)
- Grundkenntnisse in Geometrie und Trigonometrie
- Verständnis für grundlegende physikalische Größen und Einheiten

Literatur:

- Halliday, Resnick, Walker: Halliday Physik, Wiley-VCH (2017)
- Kersten (Hrsg.), Tipler: Physik für Studierende der Naturwissenschaften und Technik, Springer Spektrum (2019)
- Giancoli: Physik: Lehr- und Übungsbuch, Pearson (2019)
- Meschede: Gerthsen Physik, Springer Spektrum (2015)
- Harten: Physik: Eine Einführung für Ingenieure und Naturwissenschaftler, Springer Vieweg (2021)
- Hagmann, G.: Grundlagen der Elektrotechnik. Aula-Verlag, 2000 (7. Auflage)
- Führer, A.; Heidemann, K.; Nerreter, W.: Grundgebiete der Elektrotechnik, Bd. 1: Stationäre Vorgänge. Hanser-Verlag, 1990
- Paul, R.: Elektrotechnik: Grundlagenlehrbuch, Bd. 1: Felder und einfache Stromkreise. Springer-Verlag, 1993 (3. Auflage)
- Paul, S.: Grundlagen der Elektrotechnik und Elektronik 1: Gleichstromnetzwerke und ihre Anwendungen. Springer-Verlag, 2014 (5.Auflage)
- Papula, L.: Mathematik für Ingenieure, Bd. 2. Vieweg, 2000 (9. Auflage)

- Data Science & Artificial Intelligence Bachelor of Science Version 25.0 (Wahlmöglichkeit 3. Semester)
- IT-Ingenieurwesen Bachelor of Science Version 25.0 (1. Semester)
- Medieninformatik Bachelor of Science Version 25.0 (Wahlmöglichkeit 3. Semester)
- Smart Technology Bachelor of Science Version 24.0 (1. Semester)
- Technische Informatik Bachelor of Science Version 24.0 (1. Semester)
- Wirtschaftsingenieurwesen Bachelor of Science Version 25.0 (1. Semester)

♦ MB001 – Analysis

Verantwortliche:	Fikret Koyuncu
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB001 – Analysis	Vorlesung	Klausur		120 Min.	3.0	Drittelnoten	jedes Semester	90 Stunden	Fikret Koyuncu
TB002 – Übg. Analysis	Übung	Teilnahme	50 Seiten		2.0	Bestanden/nicht Bestanden	jedes Semester	60 Stunden	Fikret Koyuncu

Lehrinhalte:

- Bearbeitung von Übungsaufgaben aus dem Themenspektrum der zugehörigen Lehrveranstaltung
- Vorstellung und Diskussion möglicher Lösungswege
- Zahlentypen
- Folgen
 - o Bildungsgesetze
 - o Grenzwerte
- Funktionen, Relationen
 - Funktionstypen
 - o Umkehrfunktion
- · Differentialrechnung
 - o Differentiationsregeln
 - o Anwendungen der Differentialrechnung (Kurvendiskussionen und Extremwerte)
- Unendliche Reihen
- Integralrechnung
 - o Integrationsmethoden
 - o Anwendungen der Integralrechnung
- Funktionen mit zwei Variablen
 - o Partielle Differentiation
 - o Extremwertaufgaben ohne Nebenbedingungen

Qualifikationsziele:

Die Studierenden können ...

- praktische Problemstellungen mathematisch formulieren
- beurteilen, welche analytischen Hilfsmittel zielführend sind
- neue, unklare und ungewöhnliche Aufgabenstellungen als solche erkennen und mit weiterführender Hilfestellung bearbeiten
- Lösungsansätze präsentieren und begründen

Die Studierenden ...

- kennen und verstehen die grundlegenden Begriffe, Aussagen und Methoden der Analysis,
- können mathematische Regeln korrekt anwenden,
- verstehen Beweistechniken,
- erkennen die fundamentale Bedeutung des Grenzwertbegriffes für die Analysis,
- beherrschen die Methoden des Differenzierens und Integrierens,
- können die eindimensionale Differentialrechnung bei praxisorientierten Fragestellungen flexibel in unterschiedlichen Fachgebieten einsetzen und dabei beurteilen, welche analytischen Hilfsmittel für welche Problemstellungen zielführend sind
- erkennen die Anwendbarkeit und den Nutzen der Analysis für unterschiedliche Fachgebiete und deren spezifischen Problemstellungen,
- können praxisorientierte Problemstellungen in mathematische Beziehungen bzw. Modelle umzusetzen und anhand analytischer Modelle weiter bearbeiten
- können neue, unklare und ungewöhnliche Aufgabenstellungen als solche erkennen und zur Bearbeitung weiterführende Hilfestellung in Anspruch nehmen,
- verfügen über gesteigerte Kompetenzen sich Fähigkeit durch Selbststudium anzueignen und sich in neue formale Systeme einzuarbeiten

Verwendbarkeit:

Das Modul ist sinnvoll mit anderen Modulen der Mathematik zu kombinieren und zur Bildung mathematischer Grundlagenkompetenzen in allen naturwissenschaftlichen, ingenieurtechnischen und wirtschaftswissenschaftlichen Studiengängen verwendbar. Es stellt Querbezüge zur Finanzmathematik, Linearen Algebra, Statistik, Physik und Betriebswirtschaftslehre her.

Voraussetzungen und Empfehlungen:

- · Schulbildung in mathematischen Grundlagen
- Empfehlung: Brückenkurs Mathematik

Literatur:

• BÖHME, Gert:

Analysis 1.

6. Aufl. Berlin: Springer-Verlag, 1990

• FETZER, Albert; FRÄNKEL, Heiner:

Mathematik 1.

10. bearbeitete Aufl. Berlin: Springer-Verlag, 2008

• FETZER, Albert; FRÄNKEL, Heiner:

Mathematik 2.

6. korrigierte Aufl.. Berlin: Springer-Verlag, 2009

• HENZE, Norbert; Last, Günter:

Mathematik für Wirtschaftsingenieure 1.

2. Aufl. Wiesbaden: Vieweg + Teubner Verlag, 2005

• KUSCH, Lothar:

Mathematik. Aufgabensammlung mit Lösungen. Bd. 3

9. Aufl. Berlin: Cornelsen Verlag, 1995

• OHSE, Dietrich: Mathematik für Wirtschaftswissenschaftler 1. Analysis.

6. Aufl. München: Verlag Vahlen, 2004

• PAPULA, Lothar:

Mathematik für Ingenieure und Naturwissenschaftler 1: Ein Lehr- und Arbeitsbuch für das Grundstudium.

12. überarbeitete und erweiterte Aufl. Wiesbaden: Vieweg + Teubner Verlag, 2009

• PREUSS, Wolfgang; WENISCH, Günter:

Lehr- und Übungsbuch Mathematik 1: Grundlagen - Funktionen - Trigonometrie.

2. neu bearbeitete Aufl. München: Carl Hanser Verlag, 2003

• PREUSS, Wolfgang; WENISCH, Günter:

Lehr- und Übungsbuch Mathematik 2: Analysis.

3. Aufl. München: Carl Hanser Verlag, 2003

 PAPULA, Lothar: Mathematik für Ingenieure und Naturwissenschaftler: Klausur- und Übungsaufgaben 4. überarbeitete und erweiterte Aufl. Wiesbaden: Vieweg + Teubner Verlag, 2010

- Betriebswirtschaftslehre Bachelor of Science Version 23.0 (1. Semester)
- Computer Games Technology Bachelor of Science Version 23.0 (1. Semester)
- Data Science & Artificial Intelligence Bachelor of Science Version 25.0 (1. Semester)
- E-Commerce Bachelor of Science Version 20.0 (1. Semester)
- Informatik Bachelor of Science Version 25.0 (1. Semester)
- IT-Ingenieurwesen Bachelor of Science Version 25.0 (2. Semester)
- IT-Management / -Consulting & -Auditing Bachelor of Science Version 23.0 (1. Semester)
- Medieninformatik Bachelor of Science Version 25.0 (1. Semester)
- Smart Technology Bachelor of Science Version 24.0 (2. Semester)
- Technische Informatik Bachelor of Science Version 24.0 (2. Semester)
- Wirtschaftsinformatik Bachelor of Science Version 23.0 (1. Semester)
- Wirtschaftsingenieurwesen Bachelor of Science Version 25.0 (1. Semester)

♦ MB019 – Deskriptive Statistik und Grundlagen der Linearen Algebra

Vanantrivantliaha	Andreas Haase
Verantwortliche:	Franziska Bönte
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB009 – Deskriptive Statistik, Grundlagen der Linearen Algebra	Vorlesung mit integrierter Übung	Klausur		120 Min.	5.0	Drittelnoten	Commonomontos	150 Stunden	Andreas Haase
TB009 – Deskriptive Statistik, Grundlagen der Linearen Algebra	Vorlesung mit integrierter Ubung	Kiausui		120 Mill.	5.0	Difficilioteli	Sommersemester		Franziska Bönte

Lehrinhalte:

- · Lineare algebraische Gleichungssysteme
 - o Gauß-Algorithmus
 - Systematisierung des Lösungsverhaltens
 - o Unterbestimmte Systeme
- Matrixrechnung
 - o Matrixalgebra
 - o Inverse Matrix
 - o Matrixgleichungen
 - o Zusammenhang mit linearen Gleichungssystemen
- Determinanten
 - o Definition
 - o Zusammenhang mit linearen Gleichungssystemen
- Vektorrechnung
 - o Geometrische Vektoren
 - o Rechenregeln
 - o Lineare (Un-)Abhängigkeit
 - Rang einer Matrix
 - o Nochmal Gleichungssysteme, Rangkriterium

Im Rahmen der beschreibenden / deskriptiven Statistik werden folgende Themen behandelt:

- · Begrifflichkeiten
- Lage- und Streuungsmaße
- Abhängigkeitsmessung bei qualitativen, komperativen und quantitativen Merkmalen insbesondere Regressionsanalyse
- · Deskriptive Zeitreihenanalyse mit Trend-, Saison- und Restkomponentenschätzung nach unterschiedlichen Methoden
- Meß- und Indexzahlen

Qualifikationsziele:

Nach der Lehrveranstaltung können die Studierenden ...

- Statistische Daten verdichten und graphisch aussagekräftig darstellen
- Wesentliche Aussagen über Daten anhand geeigneter Kennzahlen treffen und interpretieren
- Die Ableitung von Regressionsformeln verstehen und komplexe Regressions- und deskriptive Zeitreihenanalysen abgestimmt auf den jeweiligen Datensatz durchführen und interpretieren
- sicher im Umgang mit Meß- und Indexzahlen agieren

Nach dem erfolgreichen Besuch der Vorlesung sind die Lernenden in der Lage ...

- lineare algebraische Gleichungssysteme mittels des Gauß-Algorithmus in die Lösbarkeitskategorien (eindeutig lösbar, unendlich viele Lösungen, unlösbar) einzuteilen und ggfs. die Lösung anzugeben.
- die Techniken und Methoden der Vektorrechnung anzuwenden.
- die Techniken und Methoden der Matrixrechnung anzuwenden.
- die Determinante einer niedrigdimensionalen Matrix zu berechnen und den Zusammenhang der Determinante zur Lösungstheorie linearer Gleichungssysteme herzustellen
- einfache technische oder ökonomische Systeme mittels der Techniken und Methoden der linearen Algebra zu modellieren und aus der ermittelten Lösung der mathematischen Formulierung das System quantitativ zu beurteilen.

Verwendbarkeit:

Das Modul "Deskriptive Statistik & Grundlagen der Linearen Algebra" ist ein Einführungsmodul. Zusammen mit dem Modul "Analysis", stellt es die Grundlage für nahezu alle quantitativ ausgerichteten weiterführenden Module und Veranstaltungen des Studienverlaufs dar.

Voraussetzungen und Empfehlungen:

Grundlegende mathematische Kenntnisse, wie sie im Mathematik-Brückenkurs vermittelt werden, werden vorausgesetzt.

Literatur:

• PAPULA, Lothar:

Mathematik für Ingenieure und Naturwissenschaftler,

Band 2, Teil I. 13. Aufl. Wiesbaden: Vieweg + Teubner Verlag 2012

• HELM, Werner; PFEIFER, Andreas; OHSER, Joachim:

Mathematik für Wirtschaftswissenschaftler.

1. Aufl. München: Carl Hanser Verlag 2011

• GRAMLICH, Günter:

Lineare Algebra: Eine Einführung.

1. Aufl. München: Carl Hanser Verlag 2011

• TESCHL, Gerald; TESCHL, Susanne:

Mathematik für Informatiker,

Band 1: Diskrete Mathematik und lineare Algebra.

3. Aufl. Heidelberg: Springer Verlag 2008

• FISCHER, Gerd:

Lineare Algebra: Eine Einführung für Studienanfänger. 18. aktualisierte Aufl. Wiesbaden: Springer Verlag 2014

- Christensen, B.; Christensen, S.; Missong, M.: Statistik klipp \& klar; 2019; Springer Gabler Verlag
- Bamberg, G.; Baur, F; Krapp, M: Statistik; 18. Auflage; 2017; De Gruyter Oldenbourg Verlag; München
- Missong, Martin; Aufgabensammlung zur deskriptiven Statistik; 2005; 7. Auflage; Verlag R. Oldenbourg, München.
- Schneider, Wolfgang; Kornrumpf, J.; Mohr, Walter; Statistische Methodenlehre --- Definitions- und Formelsammlung zur deskriptiven und induktiven Statistik mit Erläuterungen; 1993; Verlag Oldenbourg, München.

- Angewandte Wirtschaftspsychologie & Data Analytics Bachelor of Science Version 25.0 (2. Semester)
- Betriebswirtschaftslehre Bachelor of Science Version 23.0 (2. Semester)
- Computer Games Technology Bachelor of Science Version 23.0 (2. Semester)
- Data Science & Artificial Intelligence Bachelor of Science Version 25.0 (2. Semester)
- E-Commerce Bachelor of Science Version 23.0 (2. Semester)
- Informatik Bachelor of Science Version 25.0 (2. Semester)
- IT-Ingenieurwesen Bachelor of Science Version 25.0 (2. Semester)
- IT-Management & Consulting Bachelor of Science Version 25.0 (2. Semester)
- IT-Management / -Consulting & -Auditing Bachelor of Science Version 23.0 (2. Semester)
- Medieninformatik Bachelor of Science Version 25.0 (2. Semester)
- Smart Technology Bachelor of Science Version 24.0 (2. Semester)
- Technische Informatik Bachelor of Science Version 24.0 (2. Semester)
- Wirtschaftsinformatik Bachelor of Science Version 23.0 (2. Semester)
- Wirtschaftsingenieurwesen Bachelor of Science Version 25.0 (2. Semester)

♦ MB020 – Programmstrukturen 2

Verantwortliche:	Dennis Proppe
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB010 - Programmstrukturen 2	Vorlesung	Klausur + ggf. Bonus	1 Seiten	120 Min.	3.0	Drittelnoten	jedes Semester	90 Stunden	Dennis Proppe
TB011 – Übg. Programmstrukturen 2	Übung	Abnahme	8 Aufgaben	30 Min.	2.0	Bestanden/nicht Bestanden	jedes Semester	60 Stunden	Gerit Kaleck

Lehrinhalte:

Es wird in die Programmierung mit Java und die Entwicklungsumgebung IntelliJ eingeführt. In der Übung werden die in der Vorlesung vorgestellten Grundkonzepte der objektorientierten Programmierung durch das Lösen verbal forumulierter Aufgabenstellungen in kleinen Teams angewendet. Das Testen und Präsentieren sauber strukturierter Lösungen wird geübt.

Behandelte Grundkonzepte sind:

- Grundkonzept der Programmiersprache Java
 - o Grundlegende Eigenschaften der Sprache
 - o Grundlegender Aufbau von Java-Programmen
 - Ausführung von Java-Programmen
- Grundlegende Programmelemente
 - o Primitive Datentypen in Java
 - o Variablen, Zuweisung, Gültigkeitsbereiche
 - o Operatoren und Ausdrücke
 - o Anweisungen
- Referenzdatentypen
 - Arrays
 - Klassen
- Statische Methoden
- Grundlegende Klassen
 - String
 - o StringBuilder
 - o Wrapper-Klassen für primitive Datentypen
 - ∘ Enum
- Grundkonzepte der Objektorientierung
 - o Klassen und Instanzen mit Attributen und Methoden
 - o Sichtbarkeit, Packages
 - o Konstruktoren
 - Vererbung und Überschreiben
 - $\circ \ \ Dynamisches \ Binden, \ Polymorphie$
 - o Objektorientierte Realisierung rekursiver dynamischer Datenstrukturen (Listen)
 - Generische Typen
 - o Abstrakte Klassen und Interfaces Deklaration und Nutzung
 - o Realisierung grafischer Benutzungsoberflächen
 - o Behandlung von Laufzeitfehlern
 - o Klassen zur Realisierung von Dateioperationen

Qualifikationsziele:

Die Studierenden ...

- identifizieren die Basiskonzepte der Objektorientierten Programmierung und stellen diese den Konzepten der prozeduralen Programmierung gegenüber.
- entwickeln Software auf der Grundlage der Kernkonzepte der Objektorientierten Programmierung.
- stellen die grundlegenden Sprachelemente (Datentypen, Anweisungen, Realisierung von objektorientierten Konzepten) von Java zusammen und wählen daraus aus, um Java-Programme mittlerer Komplexität zu entwickeln.
- vergleichen die Programmiersprachen Pascal und Java und stellen ihre Gemeinsamkeiten und Unterschiede heraus.
- setzen eine moderne Entwicklungsumgebung zur Unterstützung der Softwareentwicklung ein und stellen die damit verbundenen Funktionalitäten und Vorgehensweisen dar.
- entwerfen einfache dynamische Datenstrukturen im Kontext einer objektorientierten Programmiersprache.
- erläutern grundlegende Algorithmen, die auf den vermittelten Datenstrukturen arbeiten.
- entwerfen für Programme mittlerer Komplexität durch Einsatz geeigneter Elemente der Programmiersprache Java eine angemessene Modularisierung und legen entsprechende Schnittstellen zwischen den Modulen fest.
- benennen die Grundregeln der benutzungsgerechten Gestaltung von Programmen und nutzen diese, um Benutzungsoberflächen von Programmen begrenzter Funktionalität sowohl strukturell als auch funktional angemessen zu gestalten.
- kennen die grundlegenden Klassen und ihre Operationen, mit denen dateibezogene Operationen implementiert werden können.

Die Studierenden ...

- kennen die Basiskonzepte objektorientierter Programmiersprachen und können sie in Java umsetzen.
- können einfache dynamische Datenstrukturen im Kontext einer objektorientierten Programmiersprache umsetzen und grundlegende Algorithmen auf diesen Datenstrukturen anwenden.
- sind firm in Nutzung einer aktuellen Version einer verbreiteten Entwicklungsumgebung (IntelliJ).
- können ein vollständiges Software-System kleineren Umfangs ausgehend von einer verbalen Aufgabenstellung realisieren.
- entwickeln Software erfolgreich im kleinen Team.
- ermitteln geeignete Testfälle zur Qualitätssicherung.
- kennen die Grundregeln zur Gestaltung benutzungsgerechter Oberflächen und bedienfreundlicher Software.

Verwendbarkeit:

Das Modul basiert auf den im Modul "Programmstrukturen 1" erworbenen Kompetenzen. Es schafft die Grundlagen für Module der fortgeschrittenen Programmierung in Informatik-Studiengängen, zum Beispiel die Module "Algorithmen und Datenstrukturen", "Fortgeschrittene Objektorientierte Programmierung" und "Web-Anwendungen".

Voraussetzungen und Empfehlungen:

Die in "Programmstrukturen 1" vermittelten Konzepte sollten verstanden sein und flüssig umgesetzt werden können. Die Installation der Entwicklungsumgebung IntelliJ auf dem eigenen Rechner ist empfehlenswert.

Literatur:

- Christian Ullenboom: Java ist auch eine Insel. 17. Auflage, Rheinwerk Verlag, 2023
- Hans-Peter Habelitz: Programmieren lernen mit Java. 7. Auflage, Rheinwerk Computing, 2022
- Michael Bonacina: Java Programmieren f
 ür Einsteiger: Der leichte Weg zum Java-Experten!
 2. Auflage, BMU Verlag, 2018
- Markus Neumann: Java Kompendium: Professionell Java programmieren lernen. BMU Verlag, 2019
- Dietmar Ratz et al.: Grundkurs Programmieren in Java. 8. Auflage, Carl Hanser Verlag, 2018
- Michael Inden: Einfach Java: Gleich richtig programmieren lernen. dpunkt.verlag, 2021
- David Kopec: Algorithmen in Java, 32 Klassiker vom Rucksackproblem bis zu neuronalen Netzen, 1. Aufl. Rheinwerk Computing, 2021
- Kathy Sierra et al.: Java von Kopf bis Fuß: Eine abwechslungsreiche Entdeckungsreise durch die objektorientierte Programmierung. O'Reilly, 2023
- Ralph Steyer: Einführung in JavaFX/OpenJFX: Moderne GUIs für RIAs und Java-Applikationen. 2. Aufl., Springer Vieweg, 2022
- Anton Epple: JavaFX 8: Grundlagen und fortgeschrittene Techniken. dpunkt.verlag, 2015
- Sergey Grinev: Mastering JavaFX 10: Build advanced and visually stunning Java applications. Packt Publishing, 2018
- Herbert Schildt: Introducing JavaFX 8 Programming (Oracle Press). Mcgraw-Hill Education, 2015

- Computer Games Technology Bachelor of Science Version 23.0 (2. Semester)
- Data Science & Artificial Intelligence Bachelor of Science Version 25.0 (2. Semester)
- E-Commerce Bachelor of Science Version 23.0 (Wahlmöglichkeit 2. Semester)
- Informatik Bachelor of Science Version 25.0 (2. Semester)
- IT-Ingenieurwesen Bachelor of Science Version 25.0 (2. Semester)
- IT-Management & Consulting Bachelor of Science Version 25.0 (2. Semester)
- IT-Management / -Consulting & -Auditing Bachelor of Science Version 23.0 (2. Semester)
- Medieninformatik Bachelor of Science Version 25.0 (2. Semester)
- Smart Technology Bachelor of Science Version 24.0 (2. Semester)
- Technische Informatik Bachelor of Science Version 24.0 (2. Semester)
- Wirtschaftsinformatik Bachelor of Science Version 23.0 (2. Semester)

♦ MB023 – Rechnerstrukturen und Digitaltechnik

Verantwortliche:	Sergei Sawitzki
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB062 - Digitaltechnik, Rechnerstrukturen	Vorlesung	Klausur		150 Min.	5.0	Drittelnoten	Sommersemester	150 Stunden	Dennis Säring Sergei Sawitzki

Lehrinhalte:

- Rechnerarchitekturen (Entwicklung, Architekturkonzepte, parallele und nicht sequentielle Architekturen)
- Mikroprogrammierung
- Architekturkonzepte
- Mikroprogrammierung
- Mehrprozessorsysteme
- Aktuelle und zukünftige Entwicklungen
- Schaltwerke
 - o Einleitung und Grundbegriffe, Definitionen
 - Speicherelemente
 - o Analyse
 - o Synthese
 - o Zusammenschaltung
 - o Transformationen
 - Zustandskodierung
 - o Zustandsminimierung
 - o Realisierung, Beispiele
- Zeitverhalten
 - o Zeitverhalten von Schaltnetzen
 - o Modellierung der Gatter- und Leitungsverzögerungen
 - o Statische Timing-Analyse (STA)
 - o Zeitverhalten von Schaltwerken
 - Metastabilität

Qualifikationsziele:

Die Studierenden ...

- kennen grundlegende Rechnerarchitekturkonzepte, die beschreiben, wie verschiedene Baugruppen von Rechnern zusammenarbeiten und wie sich unterschiedliche Rechnersysteme voneinander unterscheiden
- kennen die Funktionselemente von Rechnern mit ihren typischen Systemeigenschaften und deren Abbildung auf ein bestimmtes Architekturmodell
- können das Zusammenwirkens der beteiligten Hardware- und Softwarekonzepte im Rahmen einer Aufgabe zur Informationsverarbeitung einschätzen
- besitzen ein Verständnis für Ansätze zur Steigerung der Systemleistung insbesondere unter Berücksichtigung der Aspekte von Parallelität
- kennen Aufbau und Funktionsweise von Speicherelementen und Schaltwerken
- beherrschen die Methoden zur Analyse, Darstellung und Vereinfachung von endlichen Zustandsautomaten
- erkennen ein Schaltwerk als technische Umsetzung eines endlichen Zustandsautomaten
- beherrschen die Methoden der Zeitverhaltensanalyse und Zeitverhaltensoptimierung von digitalen Systemen, sowie können das Zeitverhalten und die Zeitvorgaben beim Entwurf digitaler Systemen berücksichtigen
- können digitale Systeme mittlerer Komplexität begreifen, spezifizieren, entwerfen und optimieren

Verwendbarkeit:

Das Modul "Rechnerstrukturen und Digitaltechnik" baut auf den im Modul "Einführung in Digitaltechnik" erworbenen Kenntnissen und Fähigkeiten auf. Die im Modul "Rechnerstrukturen und Digitaltechnik" erworbenen Kompetenzen stellen die Grundlagen für zum Beispiel die Module "Diskrete Systeme" und "Systementwurf mit VHDL" dar. Das Modul kann sinnvoll mit den Modulen, die einerseits Grundlagen der Digitaltechnik beleuchten und andererseits ein Rechnersystem auf höheren Abstraktionsebenen (über dem Gatterniveau) behandeln, kombiniert werden. Das Modul ist fachübergreifend für alle Studiengänge relevant, die eine grundlegende Hardware-Kompetenz sowie Kenntnisse moderner Rechnerarchitekturen voraussetzen und hat somit eine direkte Verbindung zu den Studiengangszielen des Studiengangs "Bachelor Technische Informatik".

Voraussetzungen und Empfehlungen:

Kenntnisse der wichtigsten Komponenten eines Rechnersystems.

Literatur:

- Märtin: Einführung in die Rechnerarchitektur, Fachbuchverlag Leibzig, 2003
- Oberschelp, Gossen: Rechneraufbau und Rechnerstrukturen, Verlag Oldenbourg 1998
- van de Goor: Computer Architecture and Design, Verlag Addison Wesley, 1989
- Müller-Schloer, Schmitter: RISC-Workstation Architekturen, Verlag Springer 1991
- Ungerer: Datenfluß-Rechner, Verlag Teubner, 1993
- Hoffmann, Dirk: Grundlagen der technischen Informatik, Carl Hanser Verlag 2007
- Schiffmann, Wolram; Schmitz, Robert: Technische Informatik, in 3 Bänden. 3. Auflage Springer Verlag, 1996
- Rabaey, Jan; Chandrakasan, Anantha; Nokilic, Borivoje: Digital Integrated Circuits, A Design Perspective, 2nd edition, Prentice Hall 2003
- Beuth, Klaus: Elektronik 4. Digitaltechnik, 13. Auflage, Vogel Verlag und Druck 2003

- Informatik Bachelor of Science Version 25.0 (2. Semester)
- IT-Ingenieurwesen Bachelor of Science Version 25.0 (2. Semester)
- Smart Technology Bachelor of Science Version 24.0 (2. Semester)
- Technische Informatik Bachelor of Science Version 24.0 (2. Semester)

♦ MB032 – Übertragungstechnik

Verantwortliche:	Carsten Burmeister
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch/englisch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB182 – Übertragungstechnik	Vorlesung mit integrierter Übung	Klausur + ggf, Bonus		90 Min.	5.0	Drittelnoten	iährlich	150 Stunden	Carsten Burmeister

Lehrinhalte:

- Signalformen: Signalanalyse und -synthese
 - Sinusförmige Signale
 - o Nicht-sinusförmige periodische Signale
 - o Nicht-periodische Signale
- Komplexe Wechselstromrechnung
 - o Zeigerdarstellung von sinusförmigen Größen
 - Wechselstromkreise mit Widerstand, Kondensator und Spule
- Ersatzschaltbilder realer elektrischer Bauteile
- · Leistungsberechnung im Wechselstromkreis
- Filterstrukturen
 - o Tiefpass und Hochpass 1. Ordnung
 - o Tiefpass und Hochpass 2. und höherer Ordnung
 - o Bandpass und Bandsperre 2. und höherer Ordnung
- · Schwingkreise
 - o Reihenschwingkreis
 - o Parallelschwingkreis
 - o Frequenzgänge, Ortskurven und Bodediagramm

Qualifikationsziele:

Die Studierenden ...

- besitzen ein Verständnis für Signalformen, -verzerrungen und -verarbeitung bei der Übertragung analoger und diskreter Signale.
- können elektrische Schaltungen in der Nachrichtenübertragung anwenden.
- besitzen die Kenntnis hinsichtlich der Maßnahmen zur Qualitätssicherung bei der Signalübertragung.
- kennen physikalische und logische Übertragungsnetzstrukturen.

Verwendbarkeit:

Das Modul ist mit dem Modul "Physik und Elektrotechnik" und weiteren Modulen aus dem Bereich der technischen Informatik zu kombinieren.

Voraussetzungen und Empfehlungen:

- Grundlagen der Elektrotechnik: Sicherer Umgang mit den Grundbegriffen der Elektrotechnik (Strom, Spannung, Widerstand, Leistung) und den grundlegenden Gesetzen (Ohmsches Gesetz, Kirchhoffsche Regeln).
- Gleichstromnetzwerke: Verständnis für den Aufbau und die Funktionsweise von Gleichstromnetzwerken sowie die Fähigkeit, einfache Schaltungen zu analysieren.

Literatur:

- Hagmann, G.: Grundlagen der Elektrotechnik. Aula-Verlag, 2000 (7. Auflage)
- Führer, A.; Heidemann, K.; Nerreter, W.: Grundgebiete der Elektrotechnik, Bd. 2: Zeitabhängige Vorgänge. Hanser-Verlag, 1990
- Papula, L.: Mathematik für Ingenieure, Bd. 2. Vieweg, 2000 (9. Auflage)
- Tanenbaum, A. S.: Computernetzwerke. Prentice-Hall International, 2003 (4. Auflage)
- Meyer, M.: Kommunikationstechnik. Vieweg-Teubner, 2008 (3. Auflage)
- Paul, S.: Grundlagen der Elektrotechnik und Elektronik 2: Elektromagnetische Felder und ihre Anwendungen. Springer-Verlag, 2019 (2. Auflage)

- IT-Ingenieurwesen Bachelor of Science Version 25.0 (2. Semester)
- Smart Technology Bachelor of Science Version 24.0 (2. Semester)
- Technische Informatik Bachelor of Science Version 24.0 (2. Semester)
- Wirtschaftsingenieurwesen Bachelor of Science Version 25.0 (Wahlmöglichkeit 4. Semester)

♦ MB186 – Computer-aided Prototyping

Verantwortliche:	Ulrich Hoffmann
	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB160 - CAD-Praktikum	Übung	Abnahme	5 Aufgaben		2.5	Bestanden/nicht Bestanden	jährlich	75 Stunden	Dominik Miller
TB181 - Technisches Zeichnen	Vorlesung	Klausur		75 Min.	2.5	Drittelnoten	jährlich	75 Stunden	Jürgen Günther
TB205 - AG Smart Technology	Projektarbeit	Präsentation / Referat	5 Seiten	20 Min.		Bestanden/nicht Bestanden	jährlich		Ulrich Hoffmann

Lehrinhalte:

- Systemhandhabung vom Einloggen bis zur Datensicherung
- · Erstellung von 2D-Skizzen
- Vermittlung von grundlegenden Methoden zur Erzeugung von Volumenkörpern, u. a. auch die Nutzung spezieller Konstruktionselemente wie Gewinde, Fasen, Rundungen, Verbundkörper, Zugkörper etc.
- Erstellung von Baugruppen
- · Ableitung von Fertigungszeichnungen, Baugruppenzeichnungen sowie Generierung von Stücklisten
- Plotten und Drucken von Zeichnungen
- Simulation von Bewegungen
- Bearbeiten eines Projektes (mehrteiliges Objekt) im Team mit Abgabe eines kompletter Zeichnungssatzes
- · Einführung und Grundlagen
 - o Normen, die Grammatik des Technischen Zeichnens
 - o Arbeitsmittel
 - o Papier und Schriftfelder
 - o Zeichnungsarten
 - o Stücklisten
- Darstellung von Werkstücken
 - o Maßstäbe, Normschrift und Linienarten
 - o Projektionsmethoden und Ansichten
 - o Sonderfälle und Vereinfachungen
 - o Schnittdarstellungen
 - o Darstellung von Schraubverbindungen
- Bemaßung
 - o Grundlagen der Maßeintragung
 - o Fertigungsbezogene Bemaßung
 - o Sonderzeichen und Bemaßung von Formelementen
 - Vereinfachungen
- Werkstoffe und ihre Bezeichnungen
- Toleranzen und Passungen
 - o Einführung, Grundbegriffe und Tolerierungsgrundsätze
 - Maßtoleranzen
 - o Passungen
 - o Form- und Lagetoleranzen
- Angaben zu Oberflächengüte und Werkstückkanten
 - o Grundlagen zur Oberflächengüte, zu Kenngrößen und ihrer Messung
 - o Normgerechte Angaben zur Oberflächengüte
 - Angaben zu Werkstückkanten
- Abschlussübung

Die Studierenden führen einzeln oder in Gruppen von zwei Personen ein von ihnen strukturiert vorgeschlagenes und vereinbartes Projekt durch, in dem ein einfaches intelligentes System, meist ein smartes Gerät, konzipiert, entworfen und prototypisch realisiert wird.

Dabei wird der gesamte Projektbearbeitungsprozess durchlaufen und in Grundzügen praktisch erarbeitet. In wöchentlichen Treffen berichten die Studierenden über den Fortschritt ihres Projekts, diskutieren auftretende Problem mit den Dozenten und mit Kommillitonen aus dem gleichen oder aus anderen Semestern und beratschlagen das weitere Vorgehen. Unter anderem während der gemeinsamen AG-Präsenzzeit wird auf die Ausstattung des Smart Labs für die Verwirklichung des Projekts zurückgegriffen.

Die Studierenden stellen den Stand Ihres Projekts formal in einem Zwischenbericht und das letztlich realisierte smarte Geräte in einem Abschlußpräsentation vor.

Qualifikationsziele:

Nach Abschluss der Veranstaltung ...

- Beherrschen die Studierenden grundlegende CAD-Funktionen
- besitzen sie die Fähigkeit zur selbständigen Einarbeitung in weitergehende CAD-Funktionen

• können sie normgerechte CAD-Zeichnungen erstellen.

Die Studierenden haben nach erfolgreichem Absolvieren des Moduls

- die Fähigkeit, einfache Projekte mit einem Smart-Technolgy-Fokus strukturiert vorzuschlagen
- Kenntnis über die Struktur einer Projektdurchführung im Smart-Technlogy-Kontext und ihrer einzelnen Bestandteile.
- die Fähigkeit über den Stand Ihres Projekts in nachvollziehbarer Weise strukturiert zu berichten und in eine Fachdiskussion einzutreten.
- die Fähigkeit über die Eigenschaften der von ihnen entworfenen smarten Systeme zu berichten, ihren intelligenten Zusatznutzen zu erläutern und sie gegenüber nicht-smarten Pendents abzugrenzen.
- die Fähigkeit die Resultat ihres Projekts in nachvollziehbarer Weise zu präsentieren.
- die Fähigkeit einfache Objekte, Bestandteil ihrer smarten Geräte, mit Hilfe von Lasercutter und 3D-Drucker in einem Fab-Lab herzustellen.
- Kenntnisse über die Struktur eines Smart-Technology-Projekts und können seine Bestandteile in Mechanik, Elektronik und Informatik benennen.
- Kentnisse über die Herausforderungen bei der Durchführung von Projekten im Bezug auf Termintreue, Ressourcenvergabe, Lieferzeiten, notwendiger Dokumentation und Qualitätsansprüchen.

Die Studierenden können nach dem Besuch der Veranstaltung ...

- Technische Zeichnungen lesen und verstehen
- einfache Zeichnungen selbst normgerecht (Ansichten, Bemaßung) manuell erstellen
- die Bedeutung von Toleranzen, Passungen und Oberflächengüte für die Bauteilfunktion verstehen
- für Bauteile entsprechend ihrer Funktion geeignete Toleranzen, Passungen und Oberflächengüten auswählen.

Verwendbarkeit:

Das Modul lässt sich sinnvoll mit den Projekten "Praktikum Wirkprinzipien und Technologie", "Workshop Eingebettete Software" und dem Modul "Problemlösungs- und Kreativitätstechniken" kombinieren, bei denen Studierende selbständig aber geleitet an Smart-Technology-Projekten arbeiten und geeignete Kreativitätstechniken zur Ideenfindung erwerben. In den anschließenden Modulen "Projekt Intelligente Systeme" und "Projekt Intelligente Umgebungen" werden diese Fähigkeiten in großem Rahmen eingebracht.

Außerhalb des Studiengangs Smart Technology ist eine Kombination mit dem Medienprojekt der Medieninformatik oder dem Laborprojekt der Technischen Informatik sinnvoll.

Voraussetzungen und Empfehlungen:

Voraussetzungen und Empfehlungen nicht angegeben.

Literatur:

• Hesser, Wilfried; Hoischen, Hans:

Technisches Zeichnen - Grundlagen, Normung, Beispiele, Darstellende Geometrie Frankfurt, Cornelsen-Scriptor, 33. Auflage 2011

• Kurz, Ulrich; Wittel, Herbert:

Technisches Zeichnen - Grundlagen, Normung, Darstellende Geometrie und Übungen Stuttgart, Teubner, 25. Auflage 2010

• Labisch, Susanna; Weber, Christian:

Technisches Zeichnen - Intensiv und effektiv lernen und üben

Wiesbaden, Vieweg, 3. Auflage 2008

• Klein, Martin:

Einführung in die DIN-Normen

Stuttgart, Teubner, 14. Auflage 2007

- Begleitendes Skript des Lehrenden
- Vogel, Manfred; Ebel, Thomas:

Creo Parametric und Creo Simulate.

München, Hanser, 2012

• Wyndorps, Paul Theodor:

3D-Konstruktion mit CREO PARAMETRIC.

Haan-Gruiten, Europa-Lehrmittel, 2013

- PROJEKTMANAGEMENT: Das Grundlagen Buch zu agiles Projektmanagement, Scrum & Kanban. Vincent Matthiesen, Independently published, 2019
- slide:ology: The Art and Science of Presentation Design. Nancy Duarte, O'Reilly and Associates, 2008
- KREATIV! Auf Knopfdruck systematisch Ideen generieren. Lutz Lungershausen, mitp, 2017
- Kommunikation im Projekt: Schnell, effektiv und ergebnisorientiert informieren. Tomas Bohinc, GABAL, 2014
- weiter projektspezifische Literatur

- IT-Ingenieurwesen Bachelor of Science Version 25.0 (2. Semester)
- Smart Technology Bachelor of Science Version 24.0 (2. Semester)
 Technische Informatik Bachelor of Science Version 24.0 (2. Semester)

♦ MB008 – Chemie und Chemietechnik

Verantwortliche:	Mike Schmitt
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB161 - Chemie, Chemietechnik	Vorlesung	Klausur		120 Min.	4.0	Drittelnoten	jährlich	120 Stunden	Mike Schmitt
TB169 - Prakt. Chemie	Übung	Praktikumsbericht / Protokoll	8 Seiten		1.0	Drittelnoten	jährlich	30 Stunden	Christian Krug

Lehrinhalte:

- Einführung
 - o Bedeutung der Chemie in den unterschiedlichen Lebensbereichen
- Grundlagen
 - o Elemente und Verbindungen
 - o Homogene Systeme / Heterogene Systeme
 - o Chemische Symbole und Formelsprache
 - o Gesetz der konstanten und multiplen Proportionen
 - o Gesetz von der Erhaltung der Masse
- Elementare Atomtheorie, Atombau
 - o Aufbau der Materie und Atommodelle
 - Linienspektrum des Wasserstoffatoms
 - o Bohrsches und wellenmechanische Atommodell
 - o Aufbau der Elektronenhülle und Atomorbitale
 - Elektronenkonfiguration
- Periodensystem der Elemente
 - o Allgemeine Zusammenhänge
 - o Aufbau
 - o Haupt -und Nebengruppen / Perioden
 - o Metallcharakter
 - o Atomradien
 - o Ionisierungsenergie, Elektronenaffinität, Elektronegativität
 - o Chemische Symbole / Formelsprache
- Grundtypen der chemischen Bindung
 - Ionenbindung (Heteropolare Bindung)
 - Atombindung (Homöopolare und kovalente Bindung)
 - o Metallische Bindung / Elektronengas
 - o Van-der-Waals-Bindung
 - Wasserstoffbrückenbindung
- Stöchiometrie
 - o Chemische Formeln
 - o Chemische Reaktionsgleichungen
 - o Chemische Formelumsätze / Stöchiometrisches Rechnen
- Energieumsatz bei chemischen Reaktionen
 - o Reaktionsenthalpie
 - o Bildungsenthalpie
 - o Triebkraft chemischer Reaktionen
 - o Aktivierungsenergie
 - o Katalyse
- Chemie in wässriger Lösung
 - o Wassermolekül, Wasserstoffbrückenbindung, Eis-und Flüssigkeitsstruktur, Anomalie des Wassers
 - o Chemisches Gleichgewicht
 - Massenwirkungsgesetz (MGW)
 - o Eigendissoziation des Wassers
 - o Protolyse-Gleichgewicht
 - o pH-Wert
 - $\circ \ \ Elektrolytische \ Dissoziation$
- Säure-Base-Reaktionen
 - o Stärke von Säuren und Basen
 - o Hydrolyse
 - o Neutralisation, Säure-Base-Reaktionen, Konzentrationsangaben
 - o Aufbau und Struktur von Säuren
- Oxidations- und Reduktionsreaktionen
 - o Begriffe Oxidation und Reduktion
 - o Oxidationsstufe und Wertigkeit
 - o Redoxreaktionen und Aufstellen von Reaktionsgleichungen
- Elektrochemie
 - Elektrodenvorgänge

- o Galvanische Elemente
- Standard-Wasserstoff-Elektrode
- o Redoxpotentiale und Spannungsreihe
- o Nernstsche Gleichung
- o Technische Anwendungen
- Organische Chemie
 - Kohlenwasserstoffe
 - o Aromatische Kohlenwasserstoffe
 - Funktionelle Gruppen
- Technische Chemie
 - o Kohlenwasserstoffe als Primärenergieträger
 - Katalyse / Reaktionslenkung
 - Tenside
 - Polymere
- Konzentrationsbestimmung einer Schwefelsäure
- Inversionsgeschwindigkeitsbestimmung von Rohrzucker
- Bestimmung der Molekülabmessung von Stearinsäure
- Bestimmung des Eisengehalts im Mohrsches Salz (Ammoniumeisen(II)-sulfat)
- Bestimmung des Gefrierpunktes organischer Stoffe
- Dünnschichtchromatographie

Qualifikationsziele:

Die Studierenden wenden die in der Vorlesung gewonnenen Kompetenzen auf im Labor durchzuführende Versuche an. Dabei können Sie gegebene Aufgabenstellungen selbständig bearbeiten. Hierzu wenden Sie die folgenden Kompetenzen an:

- Erläutern der chemischen Prozesse aus den Versuchsbeschreibungen.
- Darlegen der Schlüsse und Folgerungen aus dem Versuchsablauf mit der Versuchsbeschreibung.
- Qualitatives Durchführen der Laborarbeiten zum jeweiligen Versuch.
- Entnahme sicherheitsrelevanter Informationen aus den Sicherheitsdatenblättern.
- Erarbeiten einer wissenschaftlichen Darstellung der Ergebnisse.
- Beurteilen und Ableitung der Ergebnisse.
- Die Studierenden beschreiben das Modell zum Aufbau von Atomen aus Protonen, Neutronen und Elektronen. Das Modell zum Aufbau der Elektronenstruktur von Atomen verwenden die Studierenden um die Lichtemissionsspektren des Wasserstoffatoms zu erklären. Verschiedene Modelle zum Atomaufbau werden durch die Studierenden beschrieben und verglichen, um daraus Unterschiede abzuleiten und zu bewerten. Die Studierenden erstellen mit Hilfe wichtiger Regeln (Pauli-Prinzip, Hund-Regel) die Besetzung der Elektronenstruktur von Atomen im Grundzustand.
- Sie erläutern wie mit Hilfe der Elektronensturkturen und Eigenschaften von Atomen die Modelle zu chemischen Bindungen zu erklären sind.
- Die Studierenden erläutern den Aufbau des Periodensystems der Elemente (PSE). Sie erklären die Einteilung der Elemente in Gruppen und Perioden und beschreiben die Unterteilung des PSE in Hauptgruppen und Nebengruppen. Die Studierenden legen die Bedeutung der Anzahl von Valenzelektronen bei Hauptgruppenelementen für deren chemisches Reaktionsverhalten dar. Sie benennen und erklären die Begriffe Ionisierungsenergie, Elektronegativität, Elektronenaffinität und Metallcharakter ausführlich und erläutern mit Hilfe diese Begriffe das chemische Verhalten von chemischen Elementen. Sie wenden Regeln zur Abschätzung der relativen Veränderung von Atomgrößen, Elektronegativität, Ionisierungsenergie und Elektronenaffinität innerhalb des PSE an.
- Die Studierenden benennen und erläutern die unterschiedlichen Arten von chemischen Bindungen (Ionenbindung, Atombindung, Metallische Bindung, Wasserstoffbrückenbindung, Intermolekulare Wechselwirkungen). Sie stellen den wesentlichen Charakter einer Ionenbindung heraus und geben typische Ionenverbindungen an und erklären diese. Sie erläutern wie eine Ionenbindung die Struktur von Ionenkristallen und deren physikalische und chemische Eigenschaften beeinflusst.
- Die Studierenden erklären die Bindung von Molekülen über Atombindungen. Sie wenden die Lewis-Theorie und Lewis-Formeln zur Beschreibung von Molekülen an. Sie erläutern die Grundlagen der Atombindungstheorien (VB-Theorie, MO-Theorie). Sie erläutern ausführlich wie eine Atombindung die Struktur der entstehenden Moleküle sowie deren physikalische und chemische Eigenschaften beeinflusst.
- Die Studierenden nutzen das Bändermodell zur Erklärung der metallischen Bindung.
- Die Studierenden beschreiben das Zustandekommen von Wasserstoffbrückenbindungen.
- Die Studierenden erklären wie "Intermolekularen Wechselwirkungen" das Verhalten unterschiedlicher Teilchen zueinander beeinflusst.
- Die Studierenden stellen die unterschiedlichen Typen chemischer Bindungen gegenüber und leiten daraus Gemeinsamkeiten und Unterschiede ab.
- Die Studierenden wenden Stöchiometrie an, um chemische Reaktionsgleichungen aufzustellen und zu lösen. Sie berechnen aus chemischen Reaktionsgleichungen Umsätze bei chemischen Reaktionen. Sie verwenden die Zustandsgleichung für Ideale Gase, um quantitive Berechnungen durchzuführen.
- Die Studierenden erläutern die Triebkräfte für chemische Reaktionen. Sie benennen und erklären wichtige energetische Begriffe wie Innere Energie, Enthalpie, Bildungsenthalpie, Reaktionsenergie, Reaktionsenthalpie, endotherm, exotherm, Aktivierungsenergie, Katalyse und wenden diese Begriffe an um den Ablauf chemischer Reaktionen umfassend zu beschreiben.
- Die Studierenden beschreiben einen katalytischen Ablauf einer chemischen Reaktion und vergleichen diesen mit dem Ablauf ohne Katalysator. Dabei stellen sie die Funktion und die Wirkweise des Katalysators heraus. Sie erklären den Unterschied zwischen homogener und heterogener Katalyse.

- Die Studierenden erläutern die Bedeutung der Wasserstoffbrückenbindung und die Anomalie des Wassers und beschreiben darauf aufbauend weshalb Wasser ein gutes polares Lösungsmittel für viele Stoffe darstellt.
- Die Studierenden wenden das chemische Gleichgewicht auf chemische Reaktionen an und leiten das Massenwirkungsgesetz ab, woraus sie Gleichgewichtskonstanten berechnen können, mit Hilfe derer sie Aussagen hinsichtlich der Lage von chemischen Gleichgewichten treffen. Sie erläutern das Prinzip des kleinsten Zwanges (Prinzip von Le Chatelier) und wenden dieses auf gegebene Reaktionsgleichungen und Reaktionsbedingungen an. Sie formulieren die Autoprotolyse von Wasser und das Ionenprodukt von Wasser.
- Die Studierenden erklären Säuren und Basen nach Brönstedt und nach Lewis. Sie benennen wichtige Säuren und Basen. Sie formulieren die pH-Wert-Definition, erläutern die pH-Wert-Skala und führen pH-Wert-Berechnungen durch. Die Studierenden ordnen Säuren und Basen entsprechend ihrer durch pK-Werte charakterisierten Stärken in eine Reihenfolge. Sie erklären was eine Neutralisation bedeutet.
- Die Studierenden nutzen wichtige Begriffe wie Oxidation, Reduktion, Oxidationsmittel, Reduktionsmittel um Redoxreaktion zu beschreiben und zu formulieren.
- Die Studierenden erläutern den prinzipiellen Aufbau eines galvanischen Elementes und der Standardwasserstoffelektrode. Sie erklären was unter Normalpotentialen zu verstehen ist und erläutern die elektrochemische Spannungsreihe. Sie stellen die Nernstsche Gleichung auf und führen damit Potentialberechnungen durch. Die Studierenden bestimmen aus Zellspannungen und Gleichgewichtskonstanten die Lage von Redox-Gleichgewichten. Sie erklären den Aufbau und die Durchführung einer Elektrolyse. Sie zeigen an ausgewählten Beispielen die elektrochemische Stromerzeugung auf.
- Die Studierenden erklären worauf die Vielfalt organischer Verbindungen beruht. Sie benennen und erläutern verschiedene Arten von Kohlenwasserstoffen und stellen die homologe Reihe der Alkane, Alkene und Alkine auf. Sie erläutern den Begriff der Isomerie. Die Studierenden definieren und erkennen den aromatischen Zustand organischer Verbindungen. Sie erkennen und benennen funktionelle organische Gruppen in organischen Verbindungen und erklären wie diese die Reaktivität von organischen Verbindungen beeinflussen.
- Die Studierenden erläutern die großtechnische Gewinnung von Kohlenwasserstoffverbindungen aus Erdöl.
- Die Studierenden erläutern den Aufbau und die Funktionsweise von Tensiden und organischen Farbstoffen.

Verwendbarkeit:

Das Modul "Chemie und Chemietechnik" ist ein Einführungsmodul. Die erworbenen Kompetenzen stellen die Grundlagen für zum Beispiel die Module "Materialtechnik", "Verfahrenstechnik", "Energietechnik", "Umwelttechnik", "Elektrotechnik" und "Fertigungstechnik" dar.

Voraussetzungen und Empfehlungen:

Grundlagen der Mathematik, insbesondere Grundrechenarten, Dreisatzrechnung, Lösung linearer Gleichungssysteme.

Literatur:

Versuchsbeschreibungen

• MORTIMER, E. Charles; MÜLLER, Ulrich:

Chemie - Das Basiswissen der Chemie

13. Auflage. Stuttgart: Georg Thieme Verlag, 2019

• RIEDEL, Erwin:

Allgemeine und Anorganische Chemie

12. Auflage. Berlin: Verlag de Gruyter, 2018

• RIEDEL, Erwin; JANIAK, Christoph:

Anorganische Chemie

10. Auflage. Berlin: Verlag de Gruyter, 2022

• WIBERG, Nils; WIBERG, Egon; HOLLEMANN, Fr. Arnold:

Lehrbuch der Anorganischen Chemie

103. Auflage. Berlin: Verlag de Gruyter, 2016

• BEYER, Hans; WALTER, Wolfgang, FRANCKE, Wittko:

Lehrbuch der organischen Chemie

25. Auflage. Stuttgart: Hirzel Verlag, 2015

- IT-Ingenieurwesen Bachelor of Science Version 25.0 (3. Semester)
- Wirtschaftsingenieurwesen Bachelor of Science Version 25.0 (1. Semester)

♦ MB037 – Rechnernetze

Verantwortliche:	Ilja Kaleck
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB013 - Rechnernetze	Vorlesung	Klausur		90 Min.	3.0	Drittelnoten	jedes Semester	90 Stunden	Ilja Kaleck
TB014 - Prakt. Rechnernetze	Praktikum	Abnahme	12 Aufgaben		2.0	Bestanden/nicht Bestanden	jedes Semester	60 Stunden	Ilja Kaleck

Lehrinhalte:

- Allgemeine Grundlagen und Begriffe
 - o Allgemeine Strukturen in der Datenkommunikation
 - o Protokolle und Protokollabläufe
 - Netztopologien und Klassifizierung von Übertragungsnetzen
- Das ISO-OSI Referenzmodell
 - o Prinzip der Schichtenbildung und Schichtenfunktionen im Überblick
 - o Datenfluss im Modell
 - o Aktuelle Koppelelemente zum Netzaufbau im Kontext der OSI-Modells
- Die Internet-Architektur
 - o Historie, Architekturübersicht, Standardisierungen
 - o IPv4-Adressstrukturen und Netzaufbau, Subnetting
 - o UDP-/TCP-Kommunikation, Sockets bzw. Socket-Kommunikation
 - $\circ~$ Betrachtung ausgewählter Anwendungsprotokolle (DNS, TELNET / SSH, SMTP, HTTP, ...)
 - o Network Address Translation (NAT) und der Einsatz von Proxy-Servern
 - o Einführung in das neue Internet Protocol Version 6 (IPv6)
 - Adress- und Netzstruktur, Migrationshinweise
 - Änderungen an höheren Protokollen in Bezug auf das IPv6
- Technik Lokaler Netze (LANs)
 - o Ablauf der Kommunikation in IEEE 802 LANs (Layer-2, IP, inkl. DHCP)
 - o Schwerpunktbetrachtung: Ethernet-Technik, Zugriffsverfahren und
 - o Technische Umsetzungen (10Mbps / 100FE / 1GbE / 10GbE)
 - o Überblick über andere LAN-Technologien
- Koppelelemente und Vermittlungstechniken
 - o Repeater, Brücken- bzw. Layer-2 Switching-Technologie
 - Virtuelle LANs (VLANs), Class-of-Services im LAN
 - o Router bzw. IP-Routing, Link-State und Distanzvektor-Verfahren,
 - o Hierarchisches Routing und IP-Multicasting
 - o Drahtlose Netze nach IEEE 802.11,
 - Struktur, Aufbau, Übertragungskonzepte, Sicherheitsbetrachtungen
- Verzeichnisdiente
 - Einführung und grundlegendes Konzept des X.500
 - Herstellerspezifische Lösungen (Active Directory)
 - Lightweight Directory Access Protocol (LDAP)

Durchführung eines Laborpraktikums durchgängig individuell am eigenen PC-System unter Einsatz dedizierter Wechselfestplatten (Teilnehmer; Arbeitsgruppe)

- Einrichtung eines Server-Betriebssystems und Konfiguration der grundlegenden Kommunikationsprotokolle (IPv4, IPv6).
 - Nutzung typischer Internetdienstprogramme und Betrachtung der dabei verwendeten Protokolle.
- Einsatz von Techniken zur Unix/Windows-Integration (NFS, SAMBA, X-Windows, Unix mit Posix-ACLs)
- Nutzung einfacher Benutzer- und Rechteverwaltung im Netz (Domänenkonzept).
- · Einsatz von Virtualisierungstechniken auf dem Desktop
 - o Aufbau einer lokalen Netzinfrastuktur und Einrichtung des lokalen IP-Routings (inkl. NAT)
 - o Grundlegende Firewall-Konfiguration
- Einrichten und Arbeiten mit aktuellen Verzeichnisdiensten
 - o Aufbau einer eigenen Verzeichnisstruktur (Directory)
 - o Formulierung von Suchanfragen an Verzeichnisdienste (Active Directory, LDAP-Server)
- Konfiguration grundlegender Internet-Serverdienste (DNS, FTP, HTTP, Proxy-Server, TELNET / SSH)
 - Nutzung der SSH Port-Forwarding Funktion
- Protokollanalyse und Fehlersuche im LAN mit einem LAN-Analyzer
 - o Nutzung einer Remote-Probes zur verteilten LAN-Analyse im Netz.
 - Einfache LAN-Performance Messungen
- Konfiguration einer Arbeitsstation in einem Wireless-LAN (Adhoc und Infrastrukturnetz)
 - o Analyse des drahtlosen Daten- und Kontrollverkehrs mit einem WLAN-Analyzer
- Einrichtung eines Voice-over-IP (VoIP) Clients (Wahlaufgabe)
 - o Betrachtung dabei genutzter VoIP-Technologien und Übertragungsprotokolle
 - o Einsatz eines LAN-Analyzers zur VoIP-Übertragungsanalyse

- Einführung in die Multi-Media Übertragung in Netzen (Wahlaufgabe)
 - Einrichtung eines eines aktuellen Streaming-Servers
 - o Betrachtung der beteiligten Realtime-Übertragungsprotokolle
- Weitere Wahlthemen nach Aktualität.

Qualifikationsziele:

Die Studierenden erlangen ...

- ein grundlegendes Verständnis für den Aufbau einer herstellerneutralen Kommunikationsarchitektur (OSI).
- Kenntnisse über den Aufbau und die Funktion des Internet-Architekturmodells.
 - o Kenntnis über IPv4-Adress- und Netzstrukturen.
 - o Verständnis über die Arbeitsweise essentieller Anwendungsprotokolle.
 - Fähigkeit zum Verständnis des Ablaufs einfacher Interprozesskommunikation, u.a. als Basis für die Realisierung komplexerer verteilter Anwendungen.
 - o die Arbeitsweise spezifischer Maßnahmen gegen den IPv4-Adressmangel im IPv4 (NAT, Proxyserver-Dienste) kennen.
 - Wissen über die Eigenschaften des neuen Internet-Protokolls Version 6 (IPv6) und Änderungen an bestehenden Internet-Protokollen (u. a. DNS, ICMP).
- Verständnis über den technischen Aufbau und den Betrieb Lokaler Netze (LANs).
 - o Verständnis hinsichtlich des generellen Ablaufs der IP-Kommunikation in LANs.
 - o Wissen um die Eigenschaften aktueller Netztechnologien (Schwerpunkt: Ethernet-Technik).
 - o Kenntnisse zum Aufbau und Betrieb drahtloser Netze (IEEE 802.11 WLANs).
- Wissen um den technischen Aufbau von Netzstrukturen bzw. des Internets.
 - o Wissen um die Aufgabe Funktionsweise der klassischen von Koppelelemente in Netzen.
 - elementares Wissen um die Arbeitsweise praxisrelevanter Routingverfahren für kleinere und größere Netze (u. a. einfaches IP-Routing; hierarchisches Routing).
- Grundkenntnisse über den Aufbau und die Funktionsweise von Verzeichnisdiensten.

Die Studierenden erlangen ...

- die Fähigkeit zum praktischen Umgang mit der Internet-Technologie am eigenen PC.
 - o die Fähigkeit zum Anschluss von Systemen an ein Unternehmensnetz.
 - o die Fähigkeit zur grundlegenden Konfiguration des Internet-Protokolls (IPv4, IPv6).
 - o das Verständnis für Sicherheitsrichtlinien auf Multi-User Systemen (Windows, Linux).
 - die Fähigkeit zur Analyse und Behebung typischer Fehlersituationen im Rahmen der Kommunikation von Anwendungen und Systemen im Netz.
 - $\circ\,$ die Fähigkeit zur Konfiguration grundlegender Internet-Dienste (u. a. DNS, HTTP, FTP).
- das Verständnis für Lösungsansätze aktueller Techniken zur Unix-/Windows Integration in heterogenen Unternehmensnetzen (NFS, SAMBA, X-Windows).
- das Verständnis über aktuelle Konzepte zur Benutzer- und Rechteverwaltung in Netzen.
 - o die Fähigkeit zur Benutzerverwaltung mittels eines Domänenkonzeptes (Windows).
 - $\circ\,$ die Fähigkeit zum Einrichtung von Verzeichnisdiensten (LDAP, Active Directory).
- die Grundkenntnisse zum praktischen Einsatz von Virtualisierungstechniken auf dem Desktop.
 - o die Fähigkeit zur Einrichtung einfacher IP-Routingfunktionen auf einem System.
- das Verständnis über den praktischen Aufbau und Betrieb eines WLANs und dessen interne Kommunikationsabläufe (inkl. Sicherheitsbetrachtungen).
- die Fähigkeit zum Einsatz eines LAN-Analyzers zur Analyse von Kommunikationsabläufen zwischen Anwendungen sowie zur Fehleranalyse in LANs und WLANs.
- grundlegende Kenntnisse digitaler Sprachübertragung in Netzen mittels der Voice-over-IP (VoIP) Technik (Wahlthema).
- grundlegende Kenntnisse zu Streaming-Media Technik und den Real-Time Protokollen zur Übertragung multimedialer Inhalte in Netzen (Wahlthema).

Verwendbarkeit:

Das Modul ist sinnvoll mit den Inhalten der Grundlagenmodule "Informationstechnik" und "Programmstrukturen 1 und 2" zu kombinieren.

Voraussetzungen und Empfehlungen:

Dieses Modul setzt intensive Lesekompetenz voraus. Das Praktikum erfordert aufmerksames Lesen und Befolgen von Anleitungen. Das sichere Navigieren in Dateibäumen sowie das Installieren und verwenden von Software unter Microsoft Windows wird vorausgesetzt. Ein grundlegendes Verständnis über die haushaltsübliche Nutzung von Netzwerken (WLAN, Internet) wird empfohlen.

Literatur:

• TANNENBAUM, Andrew S.:

Computer Netzwerke.

5. Aufl. München: Pearson Education, 2012, ISBN 978-3-86894-137-1

 KUROSE, James F.; ROSS, Keith W.: Computer Netzwerke. Der Top-Down Ansatz. 6. Aufl.: Pearson Education, 2014, ISBN 978-3-86894-237-8

• HALSALL, Fred:

Computer Networking and the Internet.

5. Aufl. München: Addison-Wesley, 2005, ISBN 978-0321263582

RECH, Jörg:

Ethernet. Technologien und Protokolle für die Computervernetzung.

2. Aufl. Heidelberg: dPunkt-Verlag, 2007, ISBN 978-3-936931-40-2

• RECH, Jörg:

Wireless LANs. 802.11-WLAN-Technologie und praktische Umsetzung im Detail.

4. Aufl. Heidelberg: dPunkt-Verlag, 2012, ISBN 978-3-936931-75-4

• BADACH, Anatol; HOFFMANN, Erwin:

Technik der IP-Netze. Funktionsweise, Protokolle und Dienste.

2. Aufl. München: Hanser, 2007, ISBN 978-3446215016

• DAVIES, Joseph:

Understanding IPv6. Covers Windows 8 and Windows Server 2012.

3rd Edition: Microsoft Press, 2012, ISBN 978-0-7356-5914-8

SCHÄFER Günther:

Netzwerksicherheit. Algorithmische Grundlagen und Protokolle.

Heidelberg: dPunkt-Verlag, 2003, ISBN 3-89864-212-7

• SPERZEL Christian:

Netzwerksicherheit. Schützen Sie Ihr Netzwerk vor dem Zugriff anderer

Online-Videotrainig, Video2brain GmbH, 2014,

• BUEROSSE, Jörg:

Sichere E-Mails. Verschlüsselung und digitale Signatur unter Windows, Linux, OS X, iOS und Android.

Online-Videotrainig, Video2brain GmbH, 2014

• FRISCH; HÖLZEL; LINTERMANN; SCHAÄFER:

Vernetzte IT-Systeme.

6. Aufl.:Bildungsverlag EINS, 2013, ISBN 978-3-8237-1141-4

• GRABA, Jan:

An Introduction to Network Programming with Java, Java 7 Compatible

3rd Edition: Springer-Verlag, 2013, ISBN 978-1-4471-5253-8

• CIUBOTARU, Bogdan; MUNTEAN, Gabriel-Miro:

Advanced Network Programming - Principles and Techniques. Network Application Programming with Java.

Springer-Verlag, 2013, ISBN 978-1-4471-5291-0

• HAROLD, Elliotte Rusty:

Java Network Programming. Developing Networked Applications.

4th Edition, OReilly Media, 2013, ISBN 978-1-44935-767-2

• KLÜNTER, Dieter; LASER, Jochen:

LDAP verstehen, OpenLDAP einsetzen. Grundlagen und Praxiseinsatz.

2. Aufl. Heidelberg: dPunkt-Verlag, 2007, ISBN 978-3-89864-263-7

• RECH, Jörg:

Wireless LANs. 802.11-WLAN-Technologie und praktische Umsetzung im Detail. 4. Aufl. Heidelberg: dPunkt-Verlag, 2012, ISBN 978-3-936931-75-4

• BADACH, Anatol:

Voice-over-IP. Grundlagen, Protokolle, Anwendungen, Migration, Sicherheit. 4. Aufl. München: Hanser, 2009, ISBN 978-3-446-41772-4

• LIU/MATTHEW/PARZIALE/DAVIS/FORRESTER/BRITT:

TCP/IP Tutorial and Technical Overview (PDF). 8th. Ed. 2006: IBM-Redbook Serie. http://www.redbooks.ibm.com/redbooks/Aktualisierungsdatum 29.06.2014

- GROUPER IEEE 802.11: Aktuelle Spezifikationen zu IEEE 802.11. http://standards.ieee.org/getieee802/802.11.html Aktualisierungsdatum 29.06.2014
- IETF: Internet-Draft Dokumente und aktuelle RFCs. http://www.ietf.org/ Aktualisierungsdatum 29.06.2014
- CISCO SYSTEMS: Internetworking Technology Handbook. http://www.cisco.com/c/en/us/td/docs/internetworking/technology/handbook/itodoc.html Aktualisierungsdatum 29.06.2014
- SPERZEL, Christian:

Netzwerksicherheit. Schützen Sie Ihr Netzwerk vor dem Zugriff anderer

Online-Videotrainig, Video2brain GmbH, 2014,

https://www.video2brain.com/de/videotraining/netzwerksicherheit - Aktualisierungsdatum 29.06.2014

• BUEROSSE, Jörg:

Sichere E-Mails. Verschlüsselung und digitale Signatur unter Windows, Linux, OS X, iOS und Android. Online-Videotrainig, Video2brain GmbH, 2014,

https://www.video2brain.com/de/videotraining/sichere-e-mails - Aktualisierungsdatum 29.06.2014

• DIVERSE:

 $Schulungskurse\ zum\ Thema\ "Virtualisierung".\ Online-Videotrainig,\ Video2brain\ GmbH,\ 2013,$

https://www.video2brain.com/de/search.htm?searchentry=Virtualisierung - Aktualisierungsdatum 29.06.2014

• WOWZA MEDIA SYSTEMS:

Online Dokumentation zur "Wowza Streaming Engine"

http://www.wowza.com/forums/content.php?188-documentation - Aktualisierungsdatum 29.06.2014

- Computer Games Technology Bachelor of Science Version 23.0 (Wahlmöglichkeit 3. Semester)
- E-Commerce Bachelor of Science Version 14.0 (3. Semester)
- Informatik Bachelor of Science Version 25.0 (2. Semester)
- IT-Ingenieurwesen Bachelor of Science Version 25.0 (3. Semester)
- IT-Management / -Consulting & -Auditing Bachelor of Science Version 23.0 (3. Semester)
- Medieninformatik Bachelor of Science Version 20.0 (3. Semester)
- Smart Technology Bachelor of Science Version 24.0 (3. Semester)
- Technische Informatik Bachelor of Science Version 24.0 (3. Semester)
- Wirtschaftsinformatik Bachelor of Science Version 23.0 (3. Semester)

♦ MB040 – Algorithmen und Datenstrukturen

Verantwortliche:	Christian Uhlig
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB015 - Algorithmen und Datenstrukturen	Vorlesung	Klausur		90 Min.	3.0	Drittelnoten	jährlich	90 Stunden	Christian Uhlig
TB016 - Übg. Algorithmen und Datenstrukturen	Übung	Abnahme	2 Aufgaben	75 Min.	2.0	Bestanden/nicht Bestanden	Wintersemester	60 Stunden	Malte Heins

Lehrinhalte:

- Analyse von Algorithmen
 - o Laufzeit und Speicherbedarf
 - o Groß-O / Groß-Omega / Groß-Theta Notationen
 - o Amortisierte Laufzeitanalyse
 - o Iterative vs rekursive Implementierungen
- Sortieren und Suchen
- Listenstrukturen
 - o Verkettete Listen (lineare Listen, Ringlisten, einfach und doppelt verkettete Listen)
 - o Arraybasierte Listen
 - Skiplisten
- Baumstrukturen
 - o Binäre Suchbäume
 - o Balancierte Suchbäume: 2-3-Bäume
 - o Balancierte Binäre Suchbäume: Rot/Schwarz-Bäume
 - o Spreizbäume
 - o Tries
 - o Arraybasierte Binäre Heaps
- · Hash-Tabellen
- · Abstrakte Datentypen und ihre Implementierung
 - Listen
 - Mengen
 - o Verzeichnisse
 - o Warteschlangen
- Java Collections Framework

Bearbeitung von Übungsaufgaben parallel zum Stoff der Vorlesung in Zweiergruppen mit Abnahme und Diskussion der Lösungen. Zusätzlich werden im Rahmen der Übungsaufgaben praxisrelevante Aspekte der Anwendungsentwicklung mit der Programmiersprache Java behandelt, die nicht Bestandteil der Vorlesung sind.

Qualifikationsziele:

Die Studierenden ...

- analysieren, diskutieren und vergleichen einfache Algorithmen und Datenstrukturen hinsichtlich ihres Bedarfs an Laufzeit und Speicher.
- differenzieren bei der Analyse von Algorithmen hinsichtlich best case, worst case und average case.
- differenzieren die Laufzeit von Algorithmen nach ihrem konstanten Faktor und ihrem Wachstum in Abhängigkeit von der Problemgröße.
- beurteilen die Laufzeit von Algorithmen ausgehend von Komplexitätsklassen in den Groß-O-, Groß-Omega- und Groß-Theta-Notationen.
- nennen und erläutern wesentliche Aspekte, Funktionsweisen und Eigenschaften von Algorithmen zum Suchen und Sortieren.
- erläutern die Differenzierung in abstrakte Datentypen und ihre Implementierung.
- nennen und erläutern typische abstrakte Datentypen wie Listen, Mengen, Verzeichnisse und Warteschlangen mit ihren Operationen und Anwendungsbereichen.
- nennen und erläutern Motivation, Funktionsweise und Eigenschaften typischer Implementierungen abstrakter Datentypen mit verketteten Listen, Arrays, Baumstrukturen und Hash-Tabellen.
- wählen zu einer gegebenen Problemstellung einen geeigneten abstrakten Datentypen nebst einer geeigneten Implementierung aus.
- wenden die Elemente allgemein der objektorientierten Programmierung und speziell der Programmiersprache Java zur Lösung algorithmischer Problemstellungen an
- wenden die abstrakten Datentypen und Implementierungen des Java Collections Frameworks an

Verwendbarkeit:

Das Modul setzt unmittelbar auf den Inhalten des Moduls "Programmstrukturen 2" auf und eignet sich damit als Weiterqualifikation im Anschluss an "Programmstrukturen 2" und das "Programmierpraktikum". Es kann ergänzend mit fortgeschrittenen Modulen zur Software-Technik kombiniert werden, insbesondere mit "Software-Design", "Fortgeschrittene Objektorientierte Programmierung" und "Systemnahe Programmierung".

Voraussetzungen und Empfehlungen:

Vorausgesetzt werden Grundkenntnisse der prozeduralen und der objektorientierten Programmierung, insbesondere in der Programmiersprache Java. Diese Kenntnisse sollten insbesondere die Abbildung abstrakter Datentypen per Interfaces und abstrakter Klassen und die Verwendung einfacher generischer Typen umfassen. Es empfiehlt sich, bereits vorhandenes Grundlagenwissen zu Arraylisten, zu verketteten Listen und zu Sortieralgorithmen im Vorwege aufzufrischen.

Literatur:

- Sedgewick, Robert; Wayne, Kevin: Algorithms, 4th Edition, Addison-Wesley, 2011
- Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein, Clifford: Introduction to Algorithms, 3rd Edition, The MIT Press. 2009
- Knuth, Donald E.: The Art of Computer Programming Vol. 1 Fundamental Algorithms, 3rd Edition, Addison-Wesley, 1997
- Knuth, Donald E.: The Art of Computer Programming Vol. 3 Sorting and Searching, 2nd Edition, Addison-Wesley, 1998
- Wirth, Niklaus: Algorithmen und Datenstrukturen, 5. Auflage, Teubner, 2013
- Aho, Alfred V.; Hopcroft, John E.; Ullman, Jeffrey D.: The Design and Analysis of Computer Algorithms, 1st Edition, Pearson, 1975
- Aho, Alfred V.; Hopcroft, John E.; Ullman, Jeffrey D.: Data Structures and Algorithms, Addison-Wesley, 1983
- Aho, Alfred V.; Ullman, Jeffrey D.: Foundations of computer science, Computer Science Press, 1992
- Dokumentation zur Java-API

- Computer Games Technology Bachelor of Science Version 23.0 (3. Semester)
- Data Science & Artificial Intelligence Bachelor of Science Version 25.0 (3. Semester)
- E-Commerce Bachelor of Science Version 23.0 (Wahlmöglichkeit 3. Semester)
- Informatik Bachelor of Science Version 25.0 (3. Semester)
- IT-Ingenieurwesen Bachelor of Science Version 25.0 (3. Semester)
- IT-Management & Consulting Bachelor of Science Version 25.0 (Wahlmöglichkeit 5. Semester)
- IT-Management / -Consulting & -Auditing Bachelor of Science Version 23.0 (3. Semester)
- Medieninformatik Bachelor of Science Version 25.0 (5. Semester)
- Smart Technology Bachelor of Science Version 24.0 (3. Semester)
- Technische Informatik Bachelor of Science Version 24.0 (3. Semester)
- Wirtschaftsinformatik Bachelor of Science Version 23.0 (3. Semester)

♦ MB043 – Systemnahe Programmierung

Verantwortliche:	Christian Uhlig
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB072 – Systemnahe Programmierung	Vorlesung	Klausur		120 Min.	2.0	Drittelnoten	jährlich	60 Stunden	Christian Uhlig
TB074 – Übg. Systemnahe Programmierung	Übung	Abnahme	4 Aufgaben	35 Min.	3.0	Bestanden/nicht Bestanden	jährlich	90 Stunden	Malte Heins

Lehrinhalte:

- Typische Elemente und Eigenschaften eines C-Programms
- Datentypen
 - o Ganzzahl- und Aufzählungstypen, Wahrheitswerte als Ganzzahlen
 - o Fließkommatypen, Grundlagen von Fließkommazahlen
 - o Strukturierte Typen
 - o Vereinigungstypen
 - Zeigertypen
 - Arraytypen
- · Funktionszeiger und ihre Anwendungsbereiche
- Konvertierungen
- · Arrays und ihre Beziehung zu Zeigern
- Ausdrücke
 - o Konstanten
 - o Grundlegende Ausdrücke (Zuweisungen, Funktionsaufrufe, etc.)
 - o Arithmetische Ausdrücke
 - o Boolesche Ausdrücke, Vergleichsoperatoren, logische Operatoren
 - o Bitweise Operatoren
 - o Arbeit mit Zeigern und Zeigerarithmetik
 - Vorrang und Assoziativität
 - Aspekte der Auswertung (Auswertungsreihenfolge, verkürzte Auswertung, sequence points)
- Anweisungen, insbesondere Verzweigungen und Schleifen
- Dynamische Speicherverwaltung
- Übersetzungsprozess und C-Präprozessor
- Funktionsaufrufe in Maschinen, Aufrufstapel
- Gefahren der Sprache C am Beispiel eines Buffer Overflows mit Manipulation der Rücksprungadresse

Bearbeitung von Übungsaufgaben parallel zum Stoff der Vorlesung in Zweiergruppen mit Abnahme und Diskussion der Lösungen. Zusätzlich werden im Rahmen der Übungsaufgaben praxisrelevante Aspekte der Anwendungsentwicklung mit der Programmiersprache C und der C-Standardbibliothek behandelt, die nicht Bestandteil der Vorlesung sind.

Qualifikationsziele:

Die Studierenden ...

- formulieren Programme in der Programmiersprache C unter Berücksichtigung der Besonderheiten der Programmiersprache insbesondere in Hinblick auf undefiniertes Verhalten, Plattformabhängigkeiten und Unsicherheiten bestimmter Sprachkonstrukte (z.B. Zeigerarithmetik und fehlende Boundary Checks).
- erläutern in groben Zügen die Repräsentation von Daten und die Abläufe in einem Rechner bei der Ausführung von Anweisungen und Auswertung von Ausdrücken in einer höheren Programmiersprache, insbesondere im Rahmen von Unterprogrammaufrufen.
- erstellen maschinennahe Programme unter besonderer Berücksichtigung von Effizienzaspekten bezogen auf den konstanten Faktor des realisierten Algorithmus
- erläutern typische Gefahren bei Verwendung der Programmiersprache C wie z.B. buffer overflows und berücksichtigen diese Aspekte in der Softwareentwicklung

Verwendbarkeit:

Das Modul setzt auf den konzeptionellen Inhalten des Moduls "Programmstrukturen 1" und der im Modul "Programmstrukturen 2" erworbenen fortgeschrittenen Programmiererfahrung auf. Es kann mit anderen fortgeschrittenen Modulen zur Software-Technik kombiniert werden, insbesondere mit "Algorithmen und Datenstrukturen", und schafft die notwendigen Voraussetzungen für Anschlussmodule (z.B. im Bereich der Computergrafik), die Kenntnisse in der Programmiersprache C erfordern.

Voraussetzungen und Empfehlungen:

Vorausgesetzt werden Grundkenntnisse in statisch getypten imperativen Programmiersprachen, die insbesondere charakteristische Datentypen und Kontrollstrukturen (Sequenz, Selektion, Iteration) umfassen und idealerweise auch bereits den Umgang mit Zeigern. Diese Kenntnisse sollten mit gefestigter Programmierpraxis in einer entsprechenden Sprache verbunden sein. Gegebenenfalls empfiehlt es sich, die Kenntnisse am Beispiel einfacher Programmieraufgaben im Vorwege aufzufrischen, um den Einstieg zu erleichtern.

Weiterhin wird ein sicherer Umgang mit der Kommandozeile zum Einsatz der Softwarewerkzeuge in der Übung vorausgesetzt. Gegebenenfalls empfiehlt es sich, die entsprechenden Kenntnisse vorzugsweise am Beispiel der UNIX-Kommandozeile im Vorwege aufzufrischen.

Literatur:

- Harbison, Samuel; Steele, Guy L.: C A Reference Manual, 5th edition, Prentice Hall, New Jersey, 2002
- Kernighan, Brian W.; Ritchie, Dennis M.: C Programming Language, Prentice Hall, New Jersey, 1998
- Standard zur Programmiersprache, insbesondere ISO/IEC 9899:1999 und ISO/IEC 9899:2011

- Computer Games Technology Bachelor of Science Version 23.0 (3. Semester)
- Informatik Bachelor of Science Version 25.0 (3. Semester)
- IT-Ingenieurwesen Bachelor of Science Version 25.0 (3. Semester)
- Medieninformatik Bachelor of Science Version 25.0 (3. Semester)
- Smart Technology Bachelor of Science Version 24.0 (3. Semester)
- Technische Informatik Bachelor of Science Version 24.0 (3. Semester)

♦ MB045 – Lineare Algebra

Verantwortliche:	Andreas Haase
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB068 - Lineare Algebra	Vorlesung	Klausur		120 Min.	5.0	Drittelnoten	iährlich	150 Stunden	Andreas Haase

Lehrinhalte:

- Wiederholung: Grundlagen der linearen Algebra
- Determinanten
 - o der Entwicklungssatz von Laplace
 - o lineare Gleichungssysteme
- Vektorräume
 - o Definition, Beispiele und Eigenschaften
 - o Unterräume
 - o Lineare Abhängigkeit, Basis und Dimension
- Euklidische und unitäre Vektorräume
 - Skalarprodukt und Norm
 - o Orthogonalität
 - o Orthogonal- und Orthonormalbasen
- Analytische Geometrie
 - o Darstellung von Geraden und Ebenen
 - Lagebeziehung zwischen linearen geometrischen Objekten
 - o Einfache nichtlineare Objekte am Beispiel
- Abbildungen
 - o Lineare Abbildungen
 - Affine Abbildungen
 - Koordinatentransformationen
- Eigenwerte und Eigenvektoren
 - o Charakteristisches Polynom, Eigenwerte, Eigenvektoren
 - Diagonalisierung
 - Matrixfunktionen

Qualifikationsziele:

Nach dem erfolgreichen Besuch der Veranstaltung können die Studierenden ...

- die Determinante eine Matrix beliebiger Dimension berechnen und den Zusammenhang zur Lösungstheorie linearer Gleichungssysteme herstellen.
- die Vektorraumaxiome nennen und eine gegebene Menge mit Verknüpfungen darauf überprüfen ob diese ein Vektorraum (über R oder C) ist.
- Die Definition eines Unterraums nennen; Teilmengen von Vektorräumen darauf überprüfen ob diese Unterräume sind.
- das Konzept der linearen Abhängigkeit von Vektoren erklären; Teilmengen von Vektorräumen auf lineare Abhängigkeit überprüfen.
- die Definition einer Basis nennen. Teilmengen von Vektorräumen darauf überprüfen, ob diese eine Basis sind.
- die Definition eines Skalarproduktes nennen; verschiedene lineare Abbildungen auf Vektorräumen darauf überprüfen ob diese ein Skalarprodukt sind.
- die Definition einer Norm nennen; den Zusammenhang zwischen Skalarprodukt und Norm nennen.
- Die Definition einer Orthonormalbasis nennen; eine Orthonormalbasis aus einer gegebenen Basis konstruieren (Gram-Schmidt-Verfahren).
- die Parameter und Koordinatendarstellung von Geraden und Ebenen formulieren; Lagebeziehungen zwischen linearen geometrischen Objekten berechnen; Lagebeziehungen zwischen linearen und einfachen nichtlinearen Geometrischen Objekten berechnen.
- die Definition einer linearen Abbildung nennen; lineare Abbildungen mittels Matrix-Vektor-Schreibweise ausdrücken. Eigenschaften gegebener linearer Abbildungen bestimmen.
- die Definition einer affinen Abbildung nennen; affine Abbildungen mittels Matrix-Vektor-Schreibweise ausdrücken. Eigenschaften gegebener affiner Abbildungen bestimmen.
- Koordinatentransformationen als affine Abbildung durchführen; die affine Abbildung einer Koordinatentransformation berechnen; aktive und passive Koordinatentransformationen unterscheiden.
- das charakteristische Polynom einer Matrix aufstellen; die Eigenwerte einer Matrix berechnen; die Eigenvektoren einer Matrix berechnen.
- eine Matrix diagonalisieren.
- bestimmte Funktionen einer Matrix berechnen.

Verwendbarkeit:

Die im Modul "Lineare Algebra" erworbenen Kompetenzen stellen die Grundlage für zum Beispiel die weiterführenden Module

Voraussetzungen und Empfehlungen:

Das Modul "Lineare Algebra" baut auf den in der Veranstaltung "Grundlagen der Linearen Algebra" aus dem Modul "Deskriptive Statistik und Grundlagen der Linearen Algebra" erworbenen Kenntnissen und Fähigkeiten auf. Hierzu gehören Kenntnisse zu Vektoren, Vektoralgebra, Matrizen, Matrizalgebra, Lösen von linearen Gleichungssystemen mittels Gauß-Verfahren.

Literatur:

• GRAMLICH, Günter M.:

Lineare Algebra: Eine Einführung.

5. aktualisierte Aufl. München: Carl Hanser Verlag 2021

• FISCHER, Gerd:

Lernbuch Lineare Algebra und Analytische Geometrie.

4. Aufl. Wiesbaden: Vieweg + Teubner Verlag 2019

• ANTON, Howard:

Elementary Linear Algebra.

John Wiley & Sons Inc 2019

• FARIN, Gerald; HANSFORD, Dianne:

Lineare Algebra: Ein geometrischer Zugang,

Springer Verlag 2003

• FISCHER, Gerd:

Lineare Algebra: Eine Einführung für Studienanfänger.

18., aktualisierte Aufl. Wiesbaden: Springer Verlag 2013

• LIESEN, Jörg; MEHRMANN, Volker:

Lineare Algebra: Ein Lehrbuch über die Theorie mit Blick auf die Praxis.

1. Aufl. Wiesbaden: Vieweg + Teubner Verlag 2011

• ZIESCHANG, Heiner:

Lineare Algebra und Geometrie.

1. Aufl. Stuttgart, Teubner Verlag 1997

- Computer Games Technology Bachelor of Science Version 23.0 (3. Semester)
- Data Science & Artificial Intelligence Bachelor of Science Version 25.0 (3. Semester)
- Informatik Bachelor of Science Version 25.0 (3. Semester)
- IT-Ingenieurwesen Bachelor of Science Version 25.0 (3. Semester)
- Medieninformatik Bachelor of Science Version 25.0 (3. Semester)
- Technische Informatik Bachelor of Science Version 24.0 (3. Semester)

♦ MB046 – Ingenieurmathematik

Verantwortliche:	Dominik Miller
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB165 – Ingenieurmathematik	Vorlesung	Klausur		120 Min.	5.0	Drittelnoten	iährlich	150 Stunden	Dominik Miller

Lehrinhalte:

Teil 1: Höhere Analysis

- Funktionen mehrerer Variablen
- Differenzialrechnung für Funktionen mehrerer Variablen
 - o partielle Differenziation
 - Kettenregel und Richtungsableitung
 - o Extremwerte mit und ohne Nebenbedingung
- Integralrechnung
 - o Doppelintegral
 - o Dreifachintegral
- Gewöhnliche Differenzialgleichungen 1. und 2. Ordnung

Teil 2: Numerische Mathematik

- Rechnerarithmetik; Gleitkommazahlen und Fehlerrechnung
- Numerische Lösung von Nullstellenproblemen
 - o Bisektionsverfahren
 - Fixpunktiteration
 - o Newtonverfahren
- Numerische Lösung linearer Gleichungssysteme
 - o Gauß-Algorithmus und Dreieckszerlegung
 - Fehlerrechnung
 - Iterative Verfahren
- Interpolation, Polynome und kubische Splines.
- Approximation, Lineare Ausgleichsrechnung.
- Numerisches Differenzieren und Integrieren
- · Anfangswertprobleme gewöhnlicher Differenzialgleichungen

Qualifikationsziele:

Die Veranstaltung gliedert sich in zwei sukzessive Teile.

Teil 1: Höhere Analysis.

Die Lernenden können nach dem erfolgreichen Besuch ...

- eine skalare Funktion von mehreren Variablen einmal und mehrfach nach allen Variablen ableiten.
- das totale Differenzial einer mehrdimensionalen skalaren Funktion bilden und seine Bedeutung erklären.
- die mehrdimensionale Kettenregel und die implizite Differenziation anwenden.
- die Lage der lokalen Extrema einer mehrdimensionalen skalaren Funktion, mit und ohne Nebenbedingung, berechnen.
- Flächen und Volumenintegrale berechnen.
- ausgewählte Klassen gewöhnlicher Differenzialgleichungen erster und zweiter Ordnung nach Lösungsmethode klassifizieren und mittels der vorgestellten Verfahren lösen.

Teil 2: Numerische Mathematik

Die Lernenden können nach dem erfolgreichen Besuch ...

- die Notwendigkeit für numerische Verfahren anführen.
- die prinzipiellen Beschränkungen und Fehler numerischer Verfahren aufzählen und darlegen.
- Nullstellen von skalaren nichtlinearen Funktionen mittels der vorgestellten Methoden n\u00e4herungsweise bestimmen und die G\u00fcte der Approximation mittels Fehleranalyse untersuchen.
- lineare Gleichungssysteme numerisch mittels direkter und iterativer Verfahren lösen und die Güte des erhaltenen Ergebnisses mittels Fehleranalyse evaluieren.
- eine gegebene Menge von Datenpunkten interpolieren. Insbesondere können die Lernenden das einfache Interpolationspolynom berechnen und sind in der Lage eine lineare stückweise Interpolierende zu berechnen.
- eine gegebene Menge von Datenpunkten mittels einer Menge von Ansatzfunktionen approximieren. Dabei können sie das zu Grunde liegende Minimierungsproblem selbständig formulieren und lösen.
- eine gegebene eindimensionale Funktion numerisch differenzieren und integrieren und die Fehler der Algorithmen bewerten und die Fehler des Ergebnisses berechnen.

- eine gegebene gewöhnliche Differenzialgleichung erster Ordnung mittels verschiedener Einschrittverfahren n\u00e4herungsweise l\u00f6sen und den Fehler des Ergebnisses unter Verwendung der Fehleranalyse absch\u00e4tzen.
- Programmiererfahrene Lernende können die dargestellten Algorithmen in entsprechende Computercodes übersetzen.

Verwendbarkeit:

Das Modul "Ingenieurmathematik" baut auf den in der Veranstaltung "Analysis" und "Deskriptive Statistik & Grundlagen der Linearen Algebra" erworbenen Kenntnissen und Fähigkeiten auf. Die im Modul "Ingenieurmathematik" erworbenen Kompetenzen stellen die Grundlage für zum Beispiel die weiterführenden Module "Regelungstechnik", "Einführung in die Robotik", "Elektrotechnik" oder "Diskrete Systeme" dar.

Voraussetzungen und Empfehlungen:

• Analysis und Lineare Algebra

Literatur:

• PAPULA, Lothar:

Mathematik für Ingenieure und Naturwissenschaftler. Band 2

- 13. durchgesehene Aufl. Wiesbaden: Vieweg + Teubner 2012
- PAPULA, Lothar:

Mathematik für Ingenieure und Naturwissenschaftler.Band 3

- 6. überarbeitete und erweiterte Aufl. Wiesbaden: Vieweg + Teubner 2011
- KNORRENSCHILD, Michael:

Numerische Mathematik: Eine beispielorientierte Einführung.

- 5. aktualisierte Aufl. München: Carl Hanser Verlag 2013
- SCHWARZ, Rudolf; KÖCKLER, Norbert:

Numerische Mathematik.

• 8. aktualisierte Aufl. Wiesbaden: Vieweg + Teubner 2011

- IT-Ingenieurwesen Bachelor of Science Version 25.0 (3. Semester)
- Smart Technology Bachelor of Science Version 23.0 (Wahlmöglichkeit 3. Semester)
- Technische Informatik Bachelor of Science Version 24.0 (3. Semester)
- Wirtschaftsingenieurwesen Bachelor of Science Version 25.0 (Wahlmöglichkeit 3. Semester)

♦ MB034 – Einführung in die Betriebswirtschaft

Verantwortliche:	Fikret Koyuncu
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB064 - Einführung in die Betriebswirtschaft	Vorlesung	Klausur		75 Min.	5.0	Drittelnoten	iedes Semester	150 Stunden	Fikret Kovuncu

Lehrinhalte:

Die Studierenden erlernen Grundtatbestände der Betriebswirtschaftslehre, beginnend vom Erfahrungs- und Erkenntnisobjekt dieser wissenschaftlichen Disziplin, über zu fällende konstitutive Entscheidungen, bis hin zu den diversen betriebswirtschaftlichen Funktionen innerhalb eines Betriebes.

Letztere stehen im Mittelpunkt der Veranstaltung. Die theoretischen Inhalte werden durch Praxisbeispiele untersetzt.

Durch zahlreiche Übungen wird das Verständnis für die betriebswirtschaftlichen Prozesse und deren Zusammenhänge gefestigt sowie das eigenständige Arbeiten gefördert.

Inhalte der Veranstaltung sind im Einzelnen:

- Betriebswirtschaftslehre als wissenschaftliche Disziplin
- Grundlagen der Betriebswirtschaftslehre
- Rechnungswesen
- Unternehmensführung
- Materialwirtschaft
- · Produktionswirtschaft
- Marketing & Absatz
- Investition & Finanzierung
- Umfangreiche Übungen zu verschiedenen Vorlesungsteilen

Qualifikationsziele:

Die Studierenden können ...

- das Erfahrungs- und Erkenntnisobjekt der Betriebswirtschaftslehre benennen,
- die Begriffe Wirtschaften und Ökonomisches Prinzip erklären sowie eine Break-Even-Analyse durchführen,
- Unternehmensziele aufzählen; die Aufgaben der Zielbildung erläutern sowie den Zielbildungsprozess wiedergeben,
- ausgewählte Kennzahlen ausrechnen,
- Ziele der Unternehmensführung erläutern, Führungsebenen voneinander abgrenzen, den Führungsprozess beschreiben sowie ausgewählte Führungsstile erläutern und -prinzipien erklären,
- Ableiten des Begriffsinhalts, der Bedeutung, der Funktion und der Teilgebiete des Rechnungswesens,
- Durchführen der buchhalterischen Erfassung ausgewählter Geschäftsvorfälle,
- Einführung, Begriffserklärungen, Kostentheorie,
- Betriebsabrechnungsbogen und Preiskalkulation
- die Ziele der Materialwirtschaft wiedergeben und durch Anwendung von Methoden materialwirtschaftliche Analysen durchführen und Handlungsanweisungen ableiten,
- ausgewählte Erzeugnisstrukturdarstellungen für gegebene Problemstellungen erstellen und mit programmorientierten Verfahren die Materialbedarfsplanung durchführen,
- mit ausgewählten Verfahren die optimale Bestellmenge bestimmen,
- den Input, Throughput und Output von Produktionsprozessen beschreiben,
- das optimale Produktionsprogramm für ausgewählte Fälle ermitteln,
- ausgewählte Aufgaben der Produktionsprozessplanung ausführen,
- die Ziele des Marketings nennen, Methoden zur Ableitung der Marketing-Strategie beschreiben und anwenden sowie die Instrumente des Marketing-Mix erläutern,
- Investitionsarten voneinander abgrenzen; den Investitionsprozess beschreiben und die Aufgabe der Investitionskontrolle skizzieren sowie die Vorteilhaftigkeit einer Investition mittels Methoden beurteilen,
- die Ziele und Aufgaben der Finanzwirtschaft nennen; die Finanzierung aus Abschreibungen erläutern sowie den Financial-Leverage-Effekt an einem Beispiel demonstrieren,
- die Bedeutung informationstechnischer Systeme zur Bewältigung betriebswirtschaftlicher Aufgaben erläutern.

Verwendbarkeit:

Das Modul "Einführung in die Betriebswirtschaft" ist ein Einführungsmodul. Die erworbenen Kompetenzen stellen wesentliche Grundlagen für eine Vielzahl weiterer Module dar, wie zum Beispiel "Operatives Produktionsmanagement", "Business Planning" oder "Controlling & Unternehmensführung".

Voraussetzungen und Empfehlungen:

keine

Literatur:

- BECKER, Hans Paul: Investition und Finanzierung. 7. akt. Aufl. Wiesbaden: Gabler, 2016
- BERNECKER, Michael: Grundlagen der Betriebswirtschaftslehre. 4. Aufl. Köln: Johanna, 2011.
- BLOHM, Hans; LÜDER, Klaus; SCHÄFER, Christina: Investition. 10. akt. Aufl. München: Vahlen, 2012
- DÄUMLER, Klaus-Dieter; GRABE, Jürgen: Grundlagen der Investitions- und Wirtschaftlichkeitsrechnung. 12. vollst. überarbeitete Aufl. Berlin; Herne: Neue Wirtschafts-Briefe, 2007
- JUNG, Hans: Allgemeine Betriebswirtschaftslehre. akt. 13. Aufl. München: Oldenbourg, 2016
- SCHIERENBECK, Henner; WÖHLE, Claudia: Grundzüge der Betriebswirtschaftslehre. 18. überarb. Aufl. München: Oldenburg, 2012.
- SPECHT, Olaf; SCHMITT, Ulrich: Betriebswirtschaftslehre f
 ür Ingenieure + Informatiker. 5. Aufl. M
 ünchen; Wien: Oldenbourg, 2000
- THOMMEN, Jean-Paul; ACHLEITNER, Ann-Kristin: Allgemeine Betriebswirtschaftslehre. 7. vollst. überarb. Aufl. Wiesbaden: Gabler, 2012
- VAHS, Dietmar; SCHÄFER-KUNZ, Jan: Einführung in die Betriebswirtschaftslehre. 7. überarb. Aufl. Stuttgart: Schäffer-Poeschel, 2015
- WEBER, Wolfgang; KABST, Rüdiger: Einführung in die Betriebswirtschaftslehre. 9. akt. u. überarb. Aufl. Wiesbaden: Gabler, 2014
- WÖHE, Günter; DÖRING, Ulrich: Einführung in die Allgemeine Betriebswirtschaftslehre. 26. überarbeitete und aktualisierte Aufl. München: Vahlen, 2016

- Betriebswirtschaftslehre Bachelor of Science Version 14.0 (1. Semester)
- Computer Games Technology Bachelor of Science Version 23.0 (Wahlmöglichkeit 3. Semester)
- Data Science & Artificial Intelligence Bachelor of Science Version 24.0 (1. Semester)
- E-Commerce Bachelor of Science Version 17.1 (1. Semester)
- Informatik Bachelor of Science Version 25.0 (Wahlmöglichkeit 4. Semester)
- IT-Ingenieurwesen Bachelor of Science Version 25.0 (Wahlmöglichkeit 4. Semester)
- IT-Management / -Consulting & -Auditing Bachelor of Science Version 16.0 (1. Semester)
- Medieninformatik Bachelor of Science Version 22.0 (1. Semester)
- Smart Technology Bachelor of Science Version 24.0 (Wahlmöglichkeit 4. Semester)
- Technische Informatik Bachelor of Science Version 24.0 (Wahlmöglichkeit 4. Semester)
- Wirtschaftsinformatik Bachelor of Science Version 14.0 (1. Semester)
- Wirtschaftsingenieurwesen Bachelor of Science Version 18.0 (1. Semester)

♦ MB073 – Systemtheorie

Verantwortliche:	Carsten Burmeister
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch/englisch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB179 - Systemtheorie	Vorlesung mit integrierter Übung	Klausur + ggf, Bonus			5.0	Drittelnoten	iährlich	150 Stunden	Carsten Burmeister

Lehrinhalte:

- Beschreibung und Analyse von kontinuierlichen Signalen und Systemen im Zeitbereich
 - Signale und Signalarten
 - o Systeme und Systemeigenschaften
 - o Impulsantwort und Faltung
- Beschreibung und Analyse von kontinuierlichen Signalen und Systemen im Frequenzbereich
 - o Fourieranalyse
 - o Fourierreihen
 - o Fouriertransformation
- · Beschreibung und Analyse von kontinuierlichen Signalen und Systemen im Bildbereich
 - Laplacetransformation
 - Systemstabilität
- Beschreibung und Analyse von zeitdiskreten Signalen und Systemen
 - o Abtastung / Abtasttheorem
 - o Digitale Signalverarbeitung
 - o z-Transformation
 - o Diskrete Fouriertransformation und FFT

Qualifikationsziele:

Die Studierenden ...

- kennen zeitkontinuierliche und zeitdiskrete Integraltransformationen und deren Eigenschaften.
- können Integraltransformationen zur Spektralanalyse, zur Lösung linearer Differentialgleichungssysteme und zur allgemeinen Analyse nachrichtentechnischer und regelungstechnischer Systeme anwenden.

Verwendbarkeit:

Das Modul legt die theoretischen Grundlagen für das Modul "Regelungstechnik" und kann mit weiteren technisch orientierten Modulen der technischen Informatik und der Ingenieurwissenschaften kombiniert werden.

Voraussetzungen und Empfehlungen:

- Fundierte Kenntnisse in Analysis (Differentiation, Integration, Differentialgleichungen)
- Grundkenntnisse in linearer Algebra (Matrizen, Vektoren, Eigenwerte)
- Kenntnisse in komplexer Analysis sind von Vorteil

Literatur:

Meyer, M.: Signalverarbeitung. Vieweg und Teubner 2011, 6. Auflage

Oppenheim, A., Willsky, S.: Signals and Systems, 2nd Edition. Pearson 1996, 2. Auflage

Chaparro, L.: Signals and Systems using MATLAB. Academic Press 2018, 3. Auflage

- IT-Ingenieurwesen Bachelor of Science Version 25.0 (4. Semester)
- Smart Technology Bachelor of Science Version 24.0 (4. Semester)
- Technische Informatik Bachelor of Science Version 24.0 (4. Semester)
- Wirtschaftsingenieurwesen Bachelor of Science Version 25.0 (Wahlmöglichkeit 6. Semester)

♦ MB101 – Echtzeitsysteme

Verantwortliche:	Sergei Sawitzki
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB063 – Echtzeitsysteme, Interface-Technologie	Vorlesung	Klausur		150 Min.	3.0	Drittelnoten	Sommersemester	90 Stunden	Dennis Säring Sergei Sawitzki
TB070 - Prakt. Echtzeitsysteme	Praktikum	Abnahme	1 Aufgaben	30 Min.	2.0	Bestanden/nicht Bestanden	jährlich	60 Stunden	Timm Bostelmann

Lehrinhalte:

- Grundlagen der Prozessdatenverarbeitung (PDV)
- Sensortechniken
- Strategien zur Fusionierung von Prozessdaten
- Prädiktionsmodell Kalman- und Partikel-Filter
- Moderne BUS-Systeme
- Prozesse
 - o Grundbegriffe
 - o Technische Umsetzung
 - Aufgaben des Betriebssystems
 - o Probleme und Lösungsansätze
 - o Kommunikationsmechanismen
- Modellierung (Flussdiagramme Petri-Netze)
- · Scheduling
 - o Einleitung
 - o Strategien
 - o Zeitverwaltung
 - o Beispiele
- Einführungsvorlesung
 - o Motivation zur Veranstaltung
 - o Beschreibung der Systemumgebung
 - o Einführung in die Verwendung des Echtzeitkerns
- Einführungsaufgabe
 - o Geführtes Erstellen eines Beispielprojektes
 - o Teilweise geführte Programmierung eines Prozesses
 - Selbstständige Programmierung eines Prozesses
- Eine Aufgabe aus dem Umfeld Echtzeit, Multitasking, Simulation wird gestellt und steht den Studierenden als Anforderungskatalog zur Verfügung
 - o Struktureller Programmentwurf
 - Kodierung und Test
 - o Erstellung einer Dokumentation
 - o Abnahme durch den Betreuer

Qualifikationsziele:

Die Studierenden ...

- kennen die grundlegenden Begriffe der Prozessdatenverarbeitung
- kennen die mathematischen Modelle für eine prädiktive Zustandsschätzungen auf Basis zurückliegender Messergebnisse
- können die Anforderungen an moderne BUS-Systeme im Kontext von komplexen Kommunikationsstrukturen (z.B. PKW, Flugzeug) einschätzen
- kennen die Anforderungen, die für die Programmierung von Embedded Systems, Systemen mit kleinen Hardwareressourcen und Echtzeitsystemen erforderlich sind
- kennen Modellierungstechniken und -methoden bei Programmierung von nebenläufigen Prozessen, Modellierung und Anwendung von Prozesskommunikations- und Synchronisationsmechanismen
- können Aufgabenstellungen auf Systeme nebenläufiger (kooperierender und konkurrierender) Prozesse abbilden und diese softwaretechnisch umsetzen
- kennen die Methodik der Programmierung paralleler Prozesse, unter besonderer Berücksichtigung von Echtzeitanforderungen
- können einfache Echtzeitsysteme konzipieren und realisieren
- können sich mit Hilfe eines Handbuches in die Schnittstelle eines Echtzeitbetriebssystems einarbeiten
- · eine Lösung auf System- und Implementierungsebene in einer schriftlichen Ausarbeitung dokumentieren.

Verwendbarkeit:

Das Modul "Echtzeitsysteme" baut auf den in den Modulen "Algorithmen und Datenstrukturen" und (im geringeren Maße) "Systemnahe Programmierung" erworbenen Kenntnissen und Fähigkeiten auf und vertieft diese im Bezug auf Echtzeitanwendungen. Das Modul kann sinnvoll durch die Module, die allgemeine Aspekte von Betriebssystemen (ohne besonderen Augenmerk auf Echtzeitfähigkeit) vermitteln,

ergänzt werden. Auch eine Vertiefung durch die Module, die aktuelle industrielle Standards und Anwendungen betrachten, ist denkbar. Das Modul ist fachübergreifend in allen informatik-affinen Studiengängen einsetzbar, die Kompetenzen zum Echtzeit-Betrieb von Rechnersystemen vermitteln. Das Modul hat einen direkten Bezug zum Studiengangsziel des Studiengangs "Bachelor Technische Informatik" softwarenahe Kompetenzen in technischen Anwendungen der Informatik zu erwerben.

Voraussetzungen und Empfehlungen:

- Grundlegende Kenntnisse von Programmierung und Datenstrukturen
- Kenntnisse der Programmiersprache C
- Kenntnisse von Prozesskommunikations- und Synchronisationsmechanismen
- Grundlegende Kenntnisse von Prozessdatenverarbeitung

Literatur:

- Börcsök: Prozeßrechner- und Automation, Heise-Verlag, 1997
- Jacobsen: Einführung in die Prozeßdatenverarbeitung, Hanser-Verlag, 1996
- Wittgruber: Digitale Schnittstellen und BUS-Systeme, Vieweg-Verlag, 1999
- Tanenbaum, Andrew: Moderne Betriebssysteme, Pearson Studium, 3. Auflage, 2009
- Witzak, Michael: Echtzeit Betriebssysteme, Franzis Verlag, 2000
- Baumgarten, Bernd: Petri-Netze, Wissenschaftsverlag, 1990
- Labrosse, Jean: MicroC/OS-II, CMP Books, 2002
- Quade, Jürgen; Mächtel, Michael: Moderne Realzeitsysteme kompakt, dpunkt.verlag, 2012
- Labrosse, Jean: MicroC/OS-II, CMP Books, 2002

- Informatik Bachelor of Science Version 25.0 (4. Semester)
- IT-Ingenieurwesen Bachelor of Science Version 25.0 (4. Semester)
- Smart Technology Bachelor of Science Version 24.0 (4. Semester)
- Technische Informatik Bachelor of Science Version 24.0 (4. Semester)

♦ MB120 – Entre- und Intrapreneurship

Verantwortliche:	Jan-Paul Lüdtke
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB044 - Entre- und Intrapreneurship	Vorlesung	Klausur		60 Min.	2.0	Drittelnoten	jährlich	60 Stunden	Jan-Paul Lüdtke
TB045 - Workshop Entre- und Intrapreneurship	Workshop	Abnahme	15 Aufgaben		3.0	Bestanden/nicht Bestanden	jährlich	90 Stunden	Jan-Paul Lüdtke

Lehrinhalte:

- Heutige Bedeutung unternehmerischen Denkens
- Corporate Entrepreneurship und Intrapreneurship
- Lean-Startup Methode
- Finanzierung und Teambildung
- · Wachstum und Skalierung
- Social Entrepreneurship und Nachhaltigkeit

Qualifikationsziele:

Die Studierenden...

- verstehen den Wert unternehmerischen Denkens in einer Welt, die von hoher Veränderungsgeschwindigkeit, Unsicherheit, Komplexität und Mehrdeutigkeit geprägt ist.
- kennen Werkzeuge zur Identifikation von unternehmerischen Herausforderungen, geschäftlichen Opportunitäten oder bestehenden Problemen bei Zielgruppen.
- können unternehmerische Methoden für den Einsatz in etablierten Unternehmen im Rahmen von Intrapreneurship oder Corporate Entrepreneurship identifizierten und anwenden.
- können mit Hilfe von Instrumenten der Lean-Startup-Methode eigene Gründungsvorhaben entsprechend von Zielgruppenbedürfnissen entwickeln, erproben und vor Kunden, Investoren und Partnern gewinnend vorstellen.
- erkennen die Herausforderungen einer nachhaltigen wirtschaftlichen Entwicklung und die Chancen, die sich durch Social Entrepreneurship bieten.

Verwendbarkeit:

Das Modul ist sinnvoll mit vorangegangen Modulen des Studiengangs zu kombinieren und ist zur Entwicklung studiengangsorientierter Geschäftsmodelle verwendbar. Es stellt Querbezüge zur Betriebswirtschaftslehre her. Die erworbenen Kenntnisse sind die Grundlage für die Module "Startup Track" und "Gründungsthesis".

Voraussetzungen und Empfehlungen:

Grundlagen der Betriebswirtschaftslehre sollten vorhanden sein.

Literatur:

- Freiling, Jörg, Harima, Jan (2019): Entrepreneurship: Gründung und Skalierung von Startups, Gabler Verlag
- Fueglistaller, Urs et al. (2019): Entrepreneurship: Modelle Umsetzung Perspektiven Mit Fallbeispielen aus Deutschland, Österreich und der Schweiz, Gabler Verlag
- Hölzle/Tiberius/Surrey (2020): Perspektiven des Entrepreneurships: Unternehmerische Konzepte zwischen Theorie und Praxis
- Kailer/Weiß (2009): Gründungsmanagement kompakt, von der Idee zum Businessplan, Linde Verlag Wien
- Maurya, Ash (2012): Running Lean: Iterate from Plan A to a Plan That Works. Sebastopol/CA 2012
- Osterwalder, Alexander; Pigneur, Yves (2013) Business Model Generation: A Handbook for Visionaries, Game Changers, and Challengers. Hoboken/NJ
- Ries, Eric (2011): The Lean Startup: How Todays Entrepreneurs Use Continuous Innovation to Create Radically Successful Businesses. New York/NY

- Betriebswirtschaftslehre Bachelor of Science Version 23.0 (6. Semester)
- Computer Games Technology Bachelor of Science Version 23.0 (Wahlmöglichkeit 6. Semester)
- Data Science & Artificial Intelligence Bachelor of Science Version 25.0 (Wahlmöglichkeit 6. Semester)
- E-Commerce Bachelor of Science Version 23.0 (Wahlmöglichkeit 6. Semester)
- Informatik Bachelor of Science Version 25.0 (Wahlmöglichkeit 6. Semester)
- IT-Ingenieurwesen Bachelor of Science Version 25.0 (Wahlmöglichkeit 4. Semester)
- IT-Management & Consulting Bachelor of Science Version 25.0 (Wahlmöglichkeit 6. Semester)
- IT-Management / -Consulting & -Auditing Bachelor of Science Version 23.0 (Wahlmöglichkeit 6. Semester)

- Smart Technology Bachelor of Science Version 24.0 (Wahlmöglichkeit 4. Semester)
- Technische Informatik Bachelor of Science Version 24.0 (Wahlmöglichkeit 4. Semester)
- Wirtschaftsinformatik Bachelor of Science Version 23.0 (5. Semester)
- Wirtschaftsingenieurwesen Bachelor of Science Version 25.0 (Wahlmöglichkeit 6. Semester)

♦ MB234 – Optik, Strömungs- und Wärmelehre

Verantwortliche:	Andreas Haase
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB167 - Optik, Strömungs- und Wärmelehre	Vorlesung	Klausur		100 Min.	3.0	Drittelnoten	Sommersemester	90 Stunden	Andreas Haase
TB170 – Prakt. Elektrizität	Praktikum	Praktikumsbericht / Protokoll	10 Seiten		0.5	Drittelnoten	jährlich	15 Stunden	Jürgen Günther
TB171 – Prakt. Mechanik	Übung	Praktikumsbericht / Protokoll	10 Seiten		0.5	Drittelnoten	jährlich	15 Stunden	Jürgen Günther
TB172 – Prakt. Optik	Übung	Praktikumsbericht / Protokoll	10 Seiten		0.5	Drittelnoten	jährlich	15 Stunden	Jürgen Günther
TB174 – Prakt. Wärme	Übung	Praktikumsbericht / Protokoll	10 Seiten		0.5	Drittelnoten	jährlich	15 Stunden	Jürgen Günther

Lehrinhalte:

Die Vorlesung Optik umfasst die Inhalte...

- Reflexion
 - o Reflexionsgesetz
 - o Totalreflexion und Lichtleiter
 - o Ebene und sphärische Spiegel
- Brechung
 - o Brechungsgesetz von Snellius
 - o Dispersion
 - o Dünne Linsen
 - o Abbildungsfehler
- Optische Instrumente
 - o Das Auge
 - o Die Lupe
 - o Das Mikroskop
 - o Das Fernrohr
 - o Die Kamera
- Interferenz
 - o Lichtwellen
 - o Das Huygenssche Prinzip
 - o Interferenz am Doppelspalt
 - o Interferenz an dünnen Schichten
 - Kohärenz
- Beugung
 - o Beugung am Einzelspalt
 - o Beugung am Gitter
 - o Beugung an der Lochblende
- Polarisation
 - o Polarisation
 - o Polarisationsfilter
 - $\circ \ \ Polarisations ver fahren$
- Quantenoptik
 - o Lichtquant
 - o Energiezustände und Spektren
 - Der Laser

Die Vorlesung Strömungs- und Wärmelehre umfasst die Inhalte...

- Hydrostatik
 - o Hydrostatische Druck und Pascal'sches Prinzip
 - o Archimedisches Prinzip und Auftrieb
 - o Druckmessung
- Grenzflächen
 - Kohäsion
 - o Oberflächenspannung
 - o Adhäsion
 - o Haftspannung, Kapillarität
- Hydrodynamik
 - o Laminare Strömung, Kontinuitätsgleichung, Bernoulli-Gleichung
 - o Innere Reibung, Strömungswiderstand
 - o Hagen-Poiseuille
 - o Turbulente Strömung und Reynoldszahl
- Temperatur
 - Temperaturmessung
 - o thermische Ausdehnung
- Wärme

- o Brownsche Bewegung
- Wärmekapazität
- o Wärmetransport
- Phasenübergang
- Kinetische Gastheorie
 - o Zustandsgleichung für das ideale Gas
 - o Freiheitsgrade und der Gleichverteilungssatz

Praktikum Elektrizität

- Messtechnische Untersuchung einer Spannungsquelle, Aufnahme der Strom-Spannungs-Kennlinie, Berechnung der Leistungsabgabe, Fehlerbetrachtung.
- Bestimmung von elektrischen Widerständen durch Strom-Spannungs-Messung und mithilfe einer Wheatstone-Messbrücke.

Praktikum Mechanik

- Bestimmung von Federkonstanten mit verschiedenen Methoden
- Bestimmung der Schwerpunktlage eines Körpers mit verschiedenen Methoden

Praktikum Optik

- Untersuchung des Strahlenganges durch eine Sammellinse, mithilfe eines Laserstrahls
- Kollimation, Abbildung mit Linsen
- Aufbau und Wirkungsweise eines astronomischen (Kepler-) und eines terrestrischen (Galileo-) Fernrohrs
- Aufnahme den Kalibrierkurve eines Prismenspektrometers mithilfe einer Hg-Cd-Dampflampe
- Vermessung des Transmissionsbereichs von Interferenzfiltern

Praktikum Wärme

- Experimentelle Bestimmung von Längenausdehnungskoeffizienten
- Experimentelle Bestätigung des Stefan-Boltzmann-, sowie des Abstandsgesetzes
- Bestimmung der Absorptionsgrade verschiedener Oberflächen

Qualifikationsziele:

Die Lernenden können nach dem erfolgreichen Besuch der Vorlesung Optik ...

- die vorgestellten physikalischen Begriffe und Gesetze der Optik selbständig erklären und zueinander in Beziehung setzen, bzw. gegeneinander abgrenzen.
- für ausgesuchte Aufgaben aus der Optik selbständig eine Lösungsstrategie entwickeln, in dem sie die dargestellte Problematik in den richtigen Kontext aus der Vorlesung einordnen.
- Aufgaben unter Anwendung der erlernten physikalischen und mathematischen Mittel und Methoden, eigenständig lösen.
- das Ergebnis einer gelösten Aufgabe kritisch bewerten und daraus Schlüsse und Folgerungen ziehen.

Die Lernenden haben nach dem erfolgreichen Besuch der Vorlesung Strömungs- und Wärmelehre ein Grundverständnis für Hydrostatik, Hydrodynamik, Strömungen, das Verhalten von Materie in den Aggregatzuständen fest, flüssig und gasförmig, sowie von Oberflächenphänomenen, Temperatur und Wärmeenergie erworben und können...

- die vorgestellten physikalischen Begriffe und Gesetze der Strömungs- und Wärmelehre selbständig erklären und zueinander in Beziehung setzen, bzw. gegeneinander abgrenzen.
- für ausgesuchte Aufgaben aus der Strömungs- und Wärmelehre selbständig eine Lösungsstrategie entwickeln, in dem sie die dargestellte Problematik in den richtigen Kontext aus der Vorlesung einordnen.
- Aufgaben unter Anwendung der erlernten physikalischen und mathematischen Mittel und Methoden, eigenständig lösen.
- das Ergebnis einer gelösten Aufgabe kritisch bewerten und daraus Schlüsse und Folgerungen ziehen.

In den Praktika sollen die Lehrinhalte der Vorlesungen "Grundlagen der Mechanik und Elektrotechnik" sowie "Strömungs- und Wärmelehre" praktisch untermauert werden. Die Studierenden wenden die in der Vorlesung gewonnenen Kompetenzen an, um die Versuche durchzuführen. Dabei sollen mögliche Fehler erkannt und korrigiert werden. Dabei wenden sie weitere Kompetenzen an wie:

- Fähigkeit zum exakten, präzisen und sauberen Arbeiten im Labor unter Einhaltung von Sicherheitsauflagen.
- Praktische Kenntnisse hinsichtlich klassischer Messmethoden sowie Messbeobachtung und Messauswertung.
- Fähigkeit, sich in den Umgang mit Laborgeräten / Apparaturen einzuarbeiten.
- Fähigkeit zur teamorientierten Zusammenarbeit.
- Kompetenz zur Bewältigung von Konflikten in Arbeitsteams und organisatorischen Hierarchien.

Verwendbarkeit:

Das Modul "Optik, Strömungs- und Wärmelehre" ist ein Einführungsmodul. Die erworbenen Kenntnisse erlauben den Zugang zu den Inhalten zum Beispiel der später unterrichteten Module "Konstruktionstechnik", "Fertigungstechnik" oder "Verfahrenstechnik".

Voraussetzungen und Empfehlungen:

Grundlegende mathematische Kenntnisse, wie sie im Mathematik-Brückenkurs vermittelt werden, werden vorausgesetzt. Physikalisches Grundwissen (Schulniveau) ist vorteilhaft.

Literatur:

- Halliday, Resnick, Walker: Halliday Physik, Wiley-VCH (2017)
- Kersten (Hrsg.), Tipler: Physik für Studierende der Naturwissenschaften und Technik, Springer Spektrum (2019)
- Giancoli: Physik: Lehr- und Übungsbuch, Pearson (2019)
- Meschede: Gerthsen Physik, Springer Spektrum (2015)
- Harten: Physik: Eine Einführung für Ingenieure und Naturwissenschaftler, Springer Vieweg (2021)
- Eichler, Kronfeldt, Sahm: Das neue Physikalische Grundpraktikum: 53 Themenkreise mit über 300 Vorschlägen für Experimente, Springer Spektrum (2016)
- Bergmann/Schäfer: Lehrbuch der Experimentalphysik Bd. 3 (Optik), deGruyter (2004)
- Kuypers: Physik für Ingenieure und Naturwissenschaftler, Band 2: Elektrizität, Optik, Wellen, Wiley-VCH (2012)
- W. Dzieia et, al.: Elektrotechnische Grundlagen der Elektronik, HPI-Fachbuchreihe (Pflaum Verlag 1995)
- Versuchsvorlagen zu den Experimenten, Tabellenwerke, Laborfibel, Handouts

- IT-Ingenieurwesen Bachelor of Science Version 25.0 (4. Semester)
- Wirtschaftsingenieurwesen Bachelor of Science Version 25.0 (2. Semester)

♦ MB236 – Industrie 4.0

	Carsten Burmeister
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB110 - Industrie 4.0	Vorlesung	Klausur / Mündliche Prüfung + ggf. Bonus		30 Min.	3.0	Drittelnoten	jährlich	90 Stunden	Carsten Burmeister
TB116 - Prakt. Industrie 4.0	Projektarbeit	Schriftl. Ausarbeitung (ggf. mit Präsentation)			2.0	Drittelnoten	jährlich	60 Stunden	Carsten Burmeister

Lehrinhalte:

themenabhängig

- Industrie 4.0 Überblick
- Technologien
 - o Sensoren
 - o Embedded Systems
 - o Internet der Dinge
 - Cloud Computing
- Konzepte
 - o Cyber-physische Systeme
 - o Digitaler Zwilling
 - o Cloud-basierte Produktion
 - o Digitale Fabrik
- Fallbeispiele

Qualifikationsziele:

Nach Abschluss des Projekts haben die Studierenden Kenntnis der wesentlichen Technologien und deren Wirkweise im Rahmen von Industrie 4.0 Anwendungen. Sie haben sich einen Aspekt des Industrie 4.0 Oberbegriffes im Detail erarbeitet und dadurch die Fähigkeit erlangt sich selbständig in komplexe Sachverstände einzuarbeiten. Sie haben die Fähigkeit den Nutzen, das Risiko und die Komplexität von Industrie 4.0 Anwendungen abzuschätzen.

Die Studierenden haben

- Kenntnis der Industrie 4.0 Technologien, ihrer Funktion und Wirkungsweise und der Möglichkeiten ihres Einsatzes,
- Kenntnis verschiedener Konzepte innerhalb des Themengebiets Industrie 4.0,
- die Fähigkeit Konzepte mit Hilfe der erlernten Technologien umzusetzen.

Verwendbarkeit:

Das Modul kann mit Modulen der angewandten Informatik oder der Wirtschaftsingenieurwissenschaften kombiniert werden.

Voraussetzungen und Empfehlungen:

- Kenntnisse über elektrische Größen (Strom, Spannung, Widerstand, Leistung)
- Kenntnisse in Mechanik (Kraft, Bewegung, Energie)
- Verständnis für grundlegende physikalische Größen und Einheiten
- Erfahrung in mindestens einer Programmiersprache (z.B. Python, Java, C++, Visual Basic)
- Verständnis von grundlegenden Programmierkonzepten (Variablen, Schleifen, Funktionen)
- Fähigkeit zur Entwicklung einfacher Algorithmen und Programme

Literatur:

Stefan Reinheimer, "Industrie 4.0, Herausforderungen, Konzepte und Praxisbeispiele", Springer Vieweg, 2017.

 $Mark\ Skilton, Felix\ Hovsepian, "The\ 4th\ Industrial\ Revolution", Palgrave\ MacMillan,\ 2018.$

Elena G. Popkova et.al., "Industry 4.0: Industrial Revolution of the 21st Century", Springer, 2019.

Abhängig vom Projekt Thema

- Data Science & Artificial Intelligence Bachelor of Science Version 25.0 (Wahlmöglichkeit 4. Semester)
- IT-Ingenieurwesen Bachelor of Science Version 25.0 (4. Semester)
- Wirtschaftsingenieurwesen Bachelor of Science Version 25.0 (Wahlmöglichkeit 4. Semester)

♦ MB317 – Materialtechnik

	Mike Schmitt
Moduldauer:	6 Monate
Unterrichtssprache:	None

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB166 - Materialtechnik	Vorlesung	Klausur		120 Min.	4.0	Drittelnoten	jährlich	120 Stunden	Mike Schmitt
TB309 - Prokt Werkstoffprüfung	Lernform nicht angegeben	Praktikumsbericht / Protokoll	Priifungsumfang nicht angegeben	Prüfungsdauer nicht angegeben	1.0	Drittelnoten	None Turnus nicht aenfleat	30 Stunden	Jürgen Günther

Lehrinhalte:

None Lehrinhalte nicht angegeben.

Qualifikationsziele:

None Qualifikationsziele nicht angegeben.

Verwendbarkeit:

None Verwendbarkeit nicht angegeben.

Voraussetzungen und Empfehlungen:

None Voraussetzungen und Empfehlungen nicht angegeben.

Literatur:

None

- IT-Ingenieurwesen Bachelor of Science Version 25.0 (4. Semester)
- Wirtschaftsingenieurwesen Bachelor of Science Version 25.0 (2. Semester)

♦ MB048 – Elektronik

Verantwortliche:	Sergei Sawitzki
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB185 – Elektronik	Vorlesung	Klausur		90 Min.	5.0	Drittelnoten	iährlich	150 Stunden	Sergei Sawitzki

Lehrinhalte:

- Passive Bauelemente und Schalter
 - o Übersicht der elektronischen Bauelemente, E-Normreihen
 - o Widerstand, Kondensator, Spule
 - o Schalter
- Thermisches Verhalten von Bauelementen
 - o Einleitung und Grundbegriffe, Wärmestromkreis
 - o Aspekte des thermischen Verhaltens
 - o Erwärmung und Abkühlung, Einsatz von Kühlkörpern
- Lineare Netzwerke bei Gleichstrom
 - o Strom- und Spannungsquellen, Grundstromkreis
 - Bestimmung des Arbeitspunktes
 - o Allgemeine Netzwerkanalyse
- Lineare Netzwerke bei zeitabhängiger Erregung
 - Wechselstrom und Wechselspannung
 - o Passive Filter, Schwingkreise und Resonatoren
 - Wechselstrombrücken
 - Ausgleichsvorgänge
- Anwendungen der Systemanalyse
 - o Einleitung
 - o Fourier-Reihen, Klirrfaktor
 - o Fourier-und Laplace-Transformation
 - o Vierpoltheorie

Qualifikationsziele:

Die Studierenden ...

- kennen die theoretischen Grundlagen der Elektronik
- kennen Methoden und Werkzeuge für Entwurf und Analyse von elektronischen Systemen
- können das reale Verhalten von elektronischen Bauteilen (Toleranzen, Temperaturabhängigkeiten usw.) beim Schaltungsentwurf berücksichtigen
- können einfache analoge und digitale Systeme aus dem Bereich der technischen Informatik begreifen, spezifizieren und entwerfen
- können mit modernen Entwurfs- und Simulationswerkzeugen arbeiten

Verwendbarkeit:

Das Modul "Elektronik" baut auf den in den Modulen "Analysis", "Deskriptive Statistik & Grundlagen der Linearen Algebra", "Mechanik und Elektrotechnik" und "Übertragungstechnik" erworbenen Kenntnissen und Fähigkeiten auf. Die im Modul "Elektronik" erworbenen Kompetenzen stellen die Grundlagen für zum Beispiel die Module "Halbleiterschaltungstechnik" und "Systemtheorie" dar. Das Modul kann sinnvoll mit Modulen zu elektrotechnischen Grundlagen und digitaler Elektronik bzw. Halbleiterschaltungstechnik kombiniert werden. Das Modul hat einen direkten Bezug zum Studiengangsziel des Studiengangs "Bachelor Technische Informatik" hardwarenahe Kompetenzen in technischen Anwendungen der Informatik zu erwerben.

Voraussetzungen und Empfehlungen:

Kenntnisse der elektrotechnischen Grundlagen, Umgang mit komplexen Zahlen und Funktionen, Infinitesimalrechnung

Literatur:

- Tietze, Ulrich; Schenk, Christoph: Halbleiterschaltungstechnik, 16. Auflage Springer Verlag, 2016
- Stiny, Leonhard: Handbuch passiver elektronischer Bauelemente, Franzis Verlag 2007
- Hering, Ekbert; Bessler, Klaus; Gutekunst, Jürgen: Elektronik für Ingenieure und Naturwissenschaftler, Springer Verlag 2005
- Lunze, Klaus: Berechnung elektrischer Stromkreise, 15. Auflage Huss Medi 1990
- Horowitz, Paul; Hill, Winfield: Die Hohe Schule der Elektronik. Teil 1: Analogtechnik, 8. Auflage Elektor-Verlag 2006
- Schiffmann, Wolram; Schmitz, Robert: Technische Informatik, in 3 Bänden. 3. Auflage Springer Verlag, 1996
- Brauer, Harry; Lehmann, Constans; Lindner, Helmut: Taschenbuch der Elektrotechnik und Elektronik, 9. Auflage Hanser

- IT-Ingenieurwesen Bachelor of Science Version 25.0 (Wahlmöglichkeit 5. Semester)
- Smart Technology Bachelor of Science Version 24.0 (3. Semester)
- Technische Informatik Bachelor of Science Version 24.0 (3. Semester)

♦ MB050 – Konstruktionstechnik

Verantwortliche:	Frank Bargel
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB163 – Einführung in die Konstruktion	Vorlesung mit integrierter Übung	Klausur		105 Min.	5.0	Drittelnoten	iährlich	150 Stunden	Frank Bargel

Lehrinhalte:

- Grundzüge der Statik und Elastostatik
 - Freiheitsgrade eines Körpers
 - o Gleichgewichtsbedingungen
 - o Schnittreaktionen
 - o Spannungen und Verformungen
- Grundzüge der Festigkeitslehre
 - o Normal- und Tangentialbeanspruchungen
 - o Zusammengesetzte Beanspruchungen und Festigkeitshypothesen
 - o Schwingende Bauteilbeanspruchung
 - Knickung und Flächenpressung
 - o Werkstoffverhalten und Festigkeitskenngrößen
 - o Statische und dynamische Bauteilfestigkeit
- Wesentliche Maschinen- und Konstruktionselemente
 - o Grundzüge der Tribologie
 - o Zahnräder und Zahnradgetriebe
 - o Achsen und Wellen
 - $\circ~$ Wälz- und Gleitlager sowie Führungen
 - o Welle-Nabe-Verbindungen
 - o Unlösbare Verbindungen von Maschinenteilen
 - Schraubverbindungen
- Einführung in das Methodische Konstruieren
 - o Einordnung der Konstruktion in das betriebliche Umfeld
 - o Grundlagen des systematischen Konstruierens
 - o Phasen des Entwicklungs- und Konstruktionsprozesses
 - o Methoden, Hilfsmittel und Informationsquellen
 - Gestaltungsregeln und Design for X

Qualifikationsziele:

Nach Abschluss des Moduls kennen die Studierenden die die Grundlagen der Konstruktionstechnik wie Statik, Elastostatik und Festigkeitslehre sowie wesentliche Maschinen- und Konstruktionselemente. Sie sind in der Lage, Maschinen- und Konstruktionselemente den Anforderungen entsprechend auszuwählen und auszulegen. Darüber hinaus verfügen die Studierenden über grundlegende Kenntnisse der Konstruktionsmethodik und können diese Kenntnisse anwenden. Sie kennen den Lebenszyklus eines Produktes und sind in der Lage, die Rahmenbedingungen für Konstruktion und Produktentwicklung sowie die Anforderungen an einen Konstrukteur auch vor dem Hintergrund der Produktion eines Produktes realistisch einzuschätzen.

Die Studierenden können nach Besuch des Moduls ...

- · Grundlagen der Statik und Festigkeitslehre als Grundlage jeder konstruktiven Gestaltung anwenden
- für einfache Anwendungsfälle Spannungen und Verformungen berechnen.
- wesentliche Maschinen- und Konstruktionselemente überschlägig auslegen sowie einen geeigneten Werkstoff auswählen.
- die Grundzüge des methodischen Konstruierens anwenden
- die Bedeutung der Konstruktionsphasen (Planen, Konzipieren, Entwerfen, Ausarbeiten) für den späteren Fertigungsprozess verstehen
- wesentlicher Gestaltungsregeln unter Berücksichtigung von Fertigungs-, Montage-, Festigkeits-, Kostenaspekten, etc. anwenden.

Verwendbarkeit:

Das Modul "Konstruktionstechnik" baut auf den in den Modulen "Technische Kommunikation" und "Mechanik und Elektrotechnik" erworbenen Kenntnissen und Fähigkeiten auf. Die im Modul erworbenen Kompetenzen stellen die Grundlage zum Beispiel für die Module "Produktionstechnisches Projekt" sowie "Produktentwicklung und Qualitätsmanagement" dar.

Voraussetzungen und Empfehlungen:

Die Studierenden sollten über ein ausbaufähiges räumliches Vorstellungsvermögen und technisches Verständnis verfügen. Es wird daher dringend empfohlen, das Technische Grundpraktikum vor Aufnahme des Studiums zu absolvieren.

Ferner werden grundlegende Kenntnisse der Mechanik sowie der Technischen Kommunikation benötigt.

Die Studierenden benötigen ferner die Fähigkeit, sich auf Basis der Vorlesung und der dort empfohlenen Literatur selbständig vertiefend in

Literatur:

• Böge, Alfred; Böge, Gert; Böge, Wolfgang:

Technische Mechanik - Statik, Dynamik, Fluidmechanik, Festigkeitslehre

Wiesbaden, Springer Gabler, 31. Auflage 2015

• Magnus, Kurt; Müller-Slany, Hans Heinrich:

Grundlagen der Technischen Mechanik

Stuttgart, Teubner, 7. Auflage 2005

• Grote, Karl-Heinrich; Feldhusen, Jörg:

Dubbel Taschenbuch für den Maschinenbau

Berlin, Springer Vieweg, 26. Auflage 2020

• Läpple, Volker:

Einführung in die Festigkeitslehre

Wiesbaden, Springer Fachmedien, 4. Auflage 2016

• Wittel, Herbert; Muhs, Dieter; Jannasch, Dieter; Volek, Joachim:

Roloff/Matek Maschinenelemente - Normung, Berechnung, Gestaltung (mit Tabellenbuch)

Wiesbaden, Springer Vieweg, 22. Auflage 2015

• Decker, Karl-Heinz; Kabus, Karlheinz:

Maschinenelemente - Funktion, Gestaltung und Berechnung

München, Hanser, 19. Auflage 2014

• Conrad, Klaus-Jörg:

Grundlagen der Konstruktionslehre - Methoden und Beispiele für den Maschinenbau

München, Hanser, 6. Auflage 2013

• Kurz, Ulrich; Hintzen, Hans; Laufenberg, Hans:

Konstruieren, Gestalten, Entwerfen

Wiesbaden, Vieweg, 4. Auflage 2009

• Pahl, Gerhard; Beitz, Wolfgang; Feldhusen, Jörg:

Konstruktionslehre - Grundlagen erfolgreicher Produktentwicklung, Methoden und Anwendung

Berlin, Springer, 8. Auflage 2013

- IT-Ingenieurwesen Bachelor of Science Version 25.0 (5. Semester)
- Wirtschaftsingenieurwesen Bachelor of Science Version 25.0 (3. Semester)

♦ MB052 – Einführung in Datenbanken

Verantwortliche:	Marco Pawlowski
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB020 - Einführung in Datenbanken	Vorlesung	Klausur		60 Min.	3.0	Drittelnoten	jährlich	90 Stunden	Marco Pawlowski
TB021 – Übg. Einführung in Datenbanken	Übung	Abnahme	2 Aufgaben	20 Min.	2.0	Bestanden/nicht Bestanden	jährlich	60 Stunden	Mustapha Zorgati

Lehrinhalte:

Vorlesungsbegleitende praktische Übungen in SQL und zum Datenbankentwurf

- Einführung in die Datenbanktechnologie
- Datenbanksprache SQL Einführung
- Datenbank-Abfrage mit SQL
- Datenbanksprache SQL Einrichten der Datenbank
- Das Entity-Relationship-Datenmodell
- Das Relationale Datenmodell
 - o Relationenschemata und Datenabhängigkeiten
 - o Relationale Datenbanken
 - o Normalformen
- Datenbank Lebenszyklus

Qualifikationsziele:

Die Studierenden ...

- besitzen die Fähigkeit, ein Datenbanksystem mit SQL zu befragen und in nicht-triviale textuelle Anfrageanforderungen in SQL zu überführen.
- haben grundlegende Kenntnisse über die Ausführung der von ihnen gestellten Anfragen.
- haben die Kompetenz, ein Datenbankentwurfswerkzeug grundlegend zu bedienen.

Die Studierenden ...

- beherrschen die Grundlagen der relationalen Datenbanktechnologie;
- erlangen die Fähigkeit, selbstständig einen Datenbankentwurfsprozess zu planen, eine relationale Datenbank unter Nutzung von SQL einzurichten und die Informationsverarbeitung mittels relationaler Datenbanksysteme unter Nutzung von SQL durchzuführen;
- erlangen die Fähigkeit, mit einem Entwurfstool einen Datenbankentwurfsprozess durchzuführen und mittels SQL selbständig Anfragen an ein Datenbanksystem zu stellen.

Verwendbarkeit:

Das Modul komplementiert Einführungen in die Programmierung ("Einführung in die Programmierung", "Programmstrukturen 1") in allen Studiengängen. Es ist mit den fortgeschrittenen Modulen "Datenbanktheorie und -implementierung" (Bachelor) und "Konzepte der Datenbanktechnologie" (Master) kombinierbar. Das Modul sollte in allen Studiengängen verwendet werden, in denen Datenhaltung wesentlich ist.

Voraussetzungen und Empfehlungen:

Vorausgesetzt wird ein grundlegendes Verständnis der Konzepte von Programmiersprachen.

Empfohlen wird die Einrichtung der in der Übung verwendeten Werkzeuge.

Literatur:

- Elmasri, Ramez; Navathe, Shamkant B.: Grundlagen von Datenbanksystemen. 3. Aufl. München: Pearson Verlag, 2009.
- Meier, Andreas: Relationale Datenbanken Leitfaden für die Praxis. Berlin: Springer-Verlag, 2004.
- Vetter, Max: Aufbau betrieblicher Informationssysteme mittels konzeptioneller Datenmodellierung. 8. Aufl. Stuttgart: Vieweg-Teubner, 1998.
- Vossen, Gottfried:Datenmodelle, Datenbanksprachen und Datenbank-Management-Systeme. 5. Aufl. Oldenbourg-Wissenschaftsverlag, 2008.

Vorlesungsunterlagen

- Angewandte Wirtschaftspsychologie & Data Analytics Bachelor of Science Version 25.0 (3. Semester)
- Betriebswirtschaftslehre Bachelor of Science Version 23.0 (3. Semester)
- Computer Games Technology Bachelor of Science Version 23.0 (3. Semester)
- Data Science & Artificial Intelligence Bachelor of Science Version 25.0 (3. Semester)
- E-Commerce Bachelor of Science Version 23.0 (3. Semester)
- Informatik Bachelor of Science Version 25.0 (3. Semester)
- IT-Ingenieurwesen Bachelor of Science Version 25.0 (5. Semester)
- IT-Management & Consulting Bachelor of Science Version 25.0 (3. Semester)
- IT-Management / -Consulting & -Auditing Bachelor of Science Version 23.0 (3. Semester)
- Medieninformatik Bachelor of Science Version 25.0 (1. Semester)
- Smart Technology Bachelor of Science Version 24.0 (3. Semester)
- Technische Informatik Bachelor of Science Version 24.0 (Wahlmöglichkeit 5. Semester)
- Wirtschaftsinformatik Bachelor of Science Version 23.0 (3. Semester)
- Wirtschaftsingenieurwesen Bachelor of Science Version 25.0 (Wahlmöglichkeit 3. Semester)

♦ MB093 – Softwarequalität

Verantwortliche:	Gerd Beuster
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB034 – Softwarequalität	Vorlesung	Klausur + ggf. Bonus		90 Min.	5.0	Drittelnoten	iährlich	150 Stunden	Jochen Brunnstein

Lehrinhalte:

- Einführung und Motivation
 - o Definition des Begriffs "Software-Qualität"
 - o Bedeutung der Software-Qualität
- Merkmale der Software-Qualität
- Software-Maße und -Metriken
- Modelle der Software-Oualität
- Einschränkungen der Software-Qualität und ihre Gründe
- Software-Qualitätsmanagement
 - o Aufgabenbereiche
 - o Grundlegende Prinzipien
- Maßnahmen der Software-Qualitätssicherung
 - o Konstruktive Maßnahmen
 - o Prozessbezogene Maßnahmen
 - o Produktbezogene Maßnahmen
- Analytische Maßnahmen
 - o Statische Prüftechniken
 - o Dynamische Prüftechniken
- Testen als Maßnahme der Qualitätssicherung
- Black-Box- und White-Box-Testing
- Verfahren des Black-Box-Testing
- Verfahren des White-Box-Testing
 - o Graphenbasierte Testfallgenerierung
 - o Schnittstellensignaturbasierte Testfallgenerierung
 - o Testfallgenerierung nach logischen Kriterien
 - o Syntaxbasierte Testfallgenerierung
- Testen eingebetteter Systeme

Qualifikationsziele:

Die Studierenden kennen Qualitätsmerkmale und -kriterien und die Methoden zur Erreichung entsprechender Qualitätsziele. Sie können die gängigen Methoden und Verfahren zur Sicherstellung von Softwarequalität umsetzen.

- Kenntnis der wesentlichen Qualitätsmerkmale von Software und ihrer wechselseitigen Abhängigkeiten.
- Kenntnis der typischen Defizite der Software-Qualität und ihrer Gründe.
- Kenntnis der Aufgabenbereiche des Software-Qualitätsmanagement und Überblick über die wesentlichen Managementkonzepte.
- Kenntnis des Konzepts der Qualitätsmodelle und der relevanten Qualitätsmerkmale und -metriken.
- Überblick über mögliche Maßnahmen der Software-Qualitätssicherung, Kenntnis der wesentlichen konstruktiven und analytischen Maßnahmen der Software-Qualitätssicherung.
- Fähigkeit, ausgewählte Maßnahmen der Qualitätssicherung umzusetzen.
- Erkenntnis der besonderen Bedeutung der Usability als benutzerzentriertes Qualitätsmerkmal.
- Kenntnis der wesentlichen Ansätze, die Usability einer Software zu bewerten und zu gestalten.
- Kenntnis der methodischen Ansätze zur angemessenen Einbeziehung ergonomischer Aspekte in Software-Entwicklungsprozesse, insbesondere Potentiale und Probleme partizipativer Software-Entwicklung.
- Kenntnis von KI-Verfahren zur effektiven Qualitätssicherung von Software
- Erkenntnis der besonderen Bedeutung von Qualitätskriterien zum Testen von KI-generierten Anwendungen

Verwendbarkeit:

Die Studierenden sind mit den Kenntnissen des Moduls in der Lage, allgemeine Methoden der Qualitätssicherung auf Software anzuwenden. Sie sind auch mit den speziellen Methoden der Qualitätssicherung von Software, insbesondere Methoden zur systematischen Erstellung von Softwaretests, vertraut.

Voraussetzungen und Empfehlungen:

Das Modul setzt grundlegende Kenntnisse der Softwareerstellung, insbesondere der Programmierung in einer höheren Programmiersprache, voraus.

Literatur:

- Ammann, Paul; Offutt, Jeff: Introduction to Software Testing. 1. Auflage. Cambridge, UK: Cambridge University Press, 2008.
- Balzert, Helmut: Lehrbuch der Softwaretechnik: Basiskonzepte und Requirements Engineering. 3. Auflage. Heidelberg: Spektrum Akademischer Verlag, 2009.
- Balzert, Helmut: Lehrbuch der Softwaretechnik: Softwaremanagement. 2. Auflage. Heidelberg: Spektrum Akademischer Verlag, 2008
- Hoffmann, Dirk W.: Software-Qualität. Berlin: Springer-Verlag, 2008.
- Kneuper, Ralf: CMMI : Verbesserung von Software- und Systementwicklungsprozessen mit Capability Maturity Model Integration. Heidelberg: Dpunkt Verlag, 2007
- Kahn, Stephen H.: Metrics and Models in Software Quality Engineering. 2. Auflage. Boston (MA), USA: Addison-Wesley, 2002.
- Liggesmeyer, Peter: Software-Qualität: Testen, Analysieren und Verifizieren von Software. 2. Auflag. Heidelberg: Spektrum Akademischer Verlag, 2009.
- Schneider, Kurt: Abenteuer Softwarequalität: Grundlagen und Verfahren für Qualitätssicherung und Qualitätsmanagement. 2. Auflage. Heidelberg: Dpunkt Verlag, 2012
- Spillner, Andreas; Linz, Tilo: Basiswissen Softwaretest: Aus- und Weiterbildung zum Certified Tester Foundation Level nach ISTQB®-Standard. 7. Überarbeitete Auflage, Heidelberg, dpunkt Verlag, 2024
- Spillner, A.; Roßner, T; Winter, M; Linz, T.: Praxiswissen Softwaretest Testmanagement: Aus- und Weiterbildung zum Certified Tester – Advanced Level nach ISTQB®-Standard. 4. Überarbeitete und erweiterte Auflage, dpunkt Verlag, Heidelberg, 2014
- Tian, Jeff: Software Quality Engineering. 1. Auflage. Hoboken (NJ), USA: John Wiley & Sons, 2005.
- Wallmüller, Ernest: Software Quality Engineering: Ein Leitfaden für bessere Software-Qualität. 3. Auflage. München: Carl Hanser Verlag, 2011.

- E-Commerce Bachelor of Science Version 20.0 (Wahlmöglichkeit 6. Semester)
- Informatik Bachelor of Science Version 25.0 (Wahlmöglichkeit 5. Semester)
- IT-Ingenieurwesen Bachelor of Science Version 25.0 (Wahlmöglichkeit 5. Semester)
- IT-Management & Consulting Bachelor of Science Version 25.0 (Wahlmöglichkeit 5. Semester)
- IT-Management / -Consulting & -Auditing Bachelor of Science Version 23.0 (Wahlmöglichkeit 3. Semester)
- Medieninformatik Bachelor of Science Version 20.0 (5. Semester)
- Smart Technology Bachelor of Science Version 24.0 (Wahlmöglichkeit 5. Semester)
- Technische Informatik Bachelor of Science Version 24.0 (Wahlmöglichkeit 5. Semester)
- Wirtschaftsinformatik Bachelor of Science Version 23.0 (Wahlmöglichkeit 5. Semester)

♦ MB095 – Anwendungen der Künstlichen Intelligenz

Verantwortliche:	Sebastian Iwanowski
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch/englisch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB036 – Anwendungen der Künstlichen Intelligenz	Vorlesung	Klausur + ggf. Bonus		120 Min.	5.0	Drittelnoten	iährlich	150 Stunden	Sebastian Iwanowski

Lehrinhalte:

- Einführung
 - o Definition und Ziele der KI
 - o Überblick über die Basistechnologien der KI
 - o Auswahl von Anwendungsbeispielen
- Basistechnologien
 - o Wissensbasierte Systeme mit den Ausprägungen Regelbasierte Systeme, Modellbasierte Systeme und Fallbasierte Systeme
 - o Machine Learning
 - o Suchstrategien
 - o Schwarmintelligenz
 - o Grundlagen von semantischen Netzwerken
- Anwendungen
 - o Verkehrsinformation und -navigation
 - o Logistische Fragestellungen
 - o Technische Diagnose
 - o Bilderkennung

Qualifikationsziele:

Nach Abschluss der Veranstaltung besitzen die Studierenden folgende Kompetenzen:

- Kenntnis und Interesse für die grundsätzlichen Ziele der Künstlichen Intelligenz.
- Kenntnis der Basistechnologien der Künstlichen Intelligenz.
- Fähigkeit, elementare Techniken der Künstlichen Intelligenz in Implementierungen anzuwenden.
- Kenntnis verschiedener komplexer Anwendungsbeispiele.

Verwendbarkeit:

Das Modul liefert praktische Anwendungen aus verschiedenen Bereichen der teilnehmenden Studiengänge. Es gibt Ideen für das Praktikum und die anschließende Bachelor-Thesis. Es liefert Grundlagen, die zur Aufnahme eines Masterstudiums motivieren.

Voraussetzungen und Empfehlungen:

Gute Programmiererfahrung, Diskrete Mathematik, etwas Statistik

Literatur:

• Marco Dorigo / Thomas Stützle:

Ant Colony Optimization,

MIT Press 2004, ISBN 0-262-04219-3

Goodfellow, Ian, Yoshua Bengio und Aaron Courville: Deep Learning. http://www.deeplearningbook.org. MIT Press, 2016. ISBN: 978-0-262-03561-3

• Ute Schmid / Günter Görz / Josef Schneeberger:

Handbuch der Künstlichen Intelligenz,

Oldenbourg 2013 (5. Auflage), ISBN 978-3-486-71307-7

• Stuart Russell / Peter Norvig:

Künstliche Intelligenz: Ein moderner Ansatz,

Pearson Studium 2012 (3. Auflage), ISBN 978-3-86894-098-5

• Liyang Yu: A Developer's Guide to the Semantic Web , Springer 2011, ISBN 978-3-642-15969-5

- Computer Games Technology Bachelor of Science Version 23.0 (5. Semester)
- Data Science & Artificial Intelligence Bachelor of Science Version 25.0 (5. Semester)
- E-Commerce Bachelor of Science Version 20.0 (Wahlmöglichkeit 6. Semester)
- Informatik Bachelor of Science Version 25.0 (5. Semester)

- IT-Ingenieurwesen Bachelor of Science Version 25.0 (Wahlmöglichkeit 5. Semester)
- IT-Management & Consulting Bachelor of Science Version 25.0 (Wahlmöglichkeit 5. Semester)
- Medieninformatik Bachelor of Science Version 20.0 (Wahlmöglichkeit 5. Semester)
- Smart Technology Bachelor of Science Version 24.0 (Wahlmöglichkeit 5. Semester)
- Technische Informatik Bachelor of Science Version 24.0 (Wahlmöglichkeit 5. Semester)
- Wirtschaftsinformatik Bachelor of Science Version 23.0 (Wahlmöglichkeit 5. Semester)

♦ MB107 – Einführung in die Robotik

Verantwortliche:	Ulrich Hoffmann
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB080 - Einführung in die Robotik	Vorlesung	Klausur		60 Min.	2.0	Drittelnoten	Wintersemester	60 Stunden	Ulrich Hoffmann
TB086 – Prakt. Robotik	Praktikum	Praktikumsbericht / Protokoll	10 Seiten	10 Min.	3.0	Drittelnoten	Wintersemester	90 Stunden	Hermann Höhne

Lehrinhalte:

Anhand eines Projekts werden die Inhalte aus der Vorlesung praktisch umgesetzt. Die konkreten Zielsetzungen werden jedes Jahr angepasst. Schwerpunkt liegt bei den Grundlagen zur Programmierung mobiler Roboter bis hin zu einfachem autonomen Fahren. Der Charakter des Praktikums liegt beim praktischen betreuten Umsetzen von Verfahren, welche zuvor in der Vorlesung präsentiert worden sind.

- Strukturen der Fertigungstechnik
- Flexible Fertigungszellen
- Industrieroboter
- Strukturen und Aufbau von Robotern
- Kinematik
- Antriebe
- Effektoren
- Steuerstrategien
- Koordinatentransformationen
- Punkt-zu-Punkt-Steuerung
- Steuerung mit Interpolation
- Mensch-Maschine-Kommunikation
- Roboter-Programmiersysteme
- Roboter-Sprachen
- Intelligente Sensorik
- Integration von Optischen Sensoren

Qualifikationsziele:

Nach Bearbeitung des Praktikums sind die Studierenden in der Lage ...

- Lerninhalte der Vorlesung im Rahmen eigener Erfahrungen zu vertiefen.
- Ein gegebenes Roboterprogrammiersystem zu nutzen.
- Techniken zum Sammeln, Glätten und Bewerten von Sensordaten anzuwenden.
- Typische Problemstellungen mittels grundlegender Algorithmen zu lösen.
- Eigene Ideen und Lösungsansätze zu implementieren.
- Versuchsergebnisse in einer schriftlichen Dokumentation zu präsentieren.

Die Studierenden ...

- besitzen fundierte Kenntnisse der technischen Grundlagen der Robotik.
- besitzen ausgehend von den Entwicklungstendenzen im Bereich der Flexiblen Fertigungstechnik die grundlegende Kompetenz für das Verständnis für Funktionsweisen und Einsatzschwerpunkte von Industrierobotern.
- verfügen über die Kompetenz, die Möglichkeiten der Verbindung von Robotern mit "intelligenten" Sensoren zu durchdringen, insbesondere die Erkennung und Einschätzung der Eigenschaften optischer Sensorsysteme.
- können verschiedene Konzepte der Offline-Programmierung von Industrierobotern identifizieren.
- verstehen aktuelle Entwicklungstendenzen zur Erhöhung der Selbständigkeit bei Robotern.

Verwendbarkeit:

Das Modul lässt sich sinnvoll mit dem Modulen "Bildbearbeitung und -analyse" und "Projekt Eingebettete Systeme" kombinieren. Es wendet Inhalte der Module "Elektronik", "Halbleiterschaltungstechnik" und "Systemnahe Programmierung" praktisch an und kann damit gut in technischen Studiengängen verwendet werden. In einem konsekutiven Studiengang kann das Modul als Grundlage für das Master-Modul "Robotics" dienen.

Voraussetzungen und Empfehlungen:

- Kentnisse in Linearer Algebra
- Grundlegende Fähigkeiten imperative Programme zu erstellen und auf Software-Bibliiotheken zuzugreifen
- Grundkenntnisse und grundlegende F\u00e4higkeiten in der Programmierung von Bildverarbeitungsalgorithmen und der Benutzung einschl\u00e4giger Bibliotheken.

Literatur:

- Hertzberg, J: "Mobile Roboter: Eine Einführung aus Sicht der Informatik", eXamen.press, 2012
- Prat: "Sensordatenfusion und Bildverarbeitung zur Objekt- und Gefahrenerkennung", 2010
- McKerrow: Introduction to Robotics, Addison Wesley, 1990
- Wirth: Flexible Fertigungssysteme, Hüthig-Verlag
- Vukobratovic: Introduction to Robotics, Springer, 1995
- Blume, Dillmann: Frei Programmierbare Roboter, Vogel Verlag
- Blume, Jakob: Programmiersprachen für Industrieroboter, Vogel Verlag, 1985

- IT-Ingenieurwesen Bachelor of Science Version 25.0 (5. Semester)
- Medieninformatik Bachelor of Science Version 25.0 (Wahlmöglichkeit 5. Semester)
- Smart Technology Bachelor of Science Version 24.0 (5. Semester)
- Technische Informatik Bachelor of Science Version 24.0 (5. Semester)

♦ MB109 – Regelungstechnik

Verantwortliche:	Carsten Burmeister
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch/englisch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB188 - Regelungstechnik	Vorlesung mit integrierter Übung	Klausur + ggf. Bonus			4.0	Drittelnoten	jährlich	120 Stunden	Carsten Burmeister
TB191 - Übg. Simulationssoftware	Übung	Schriftl. Ausarbeitung (ggf. mit Präsentation)			1.0	Bestanden/nicht Bestanden	jährlich	30 Stunden	Carsten Burmeister

Lehrinhalte:

- Einführung in die Regelungstechnik
 - o Anwendungsbeispiele
 - o Regelziele Genauigkeit, Dynamik, Stabilität
- Grundlagen der Systemtheorie
 - o Strukturdiagramme
 - Linearisierung und Normierung
 - Lösung linearer Differentialgleichungen durch Laplace-Transformation
- Systemfunktionen
 - o Einfache Funktionen: P-, I-, D-, Tt-Glieder
 - o Zusammengesetzte Funktionen: PT1-, DT1-, PT2-Glieder
 - o Lineare Regelalgorithmen: P-, I-, PI-, PID-Regler
 - o Unstetige Regler: Zweipunkt-, Dreipunktregler ohne und mit Rückkopplungen
- Analyse von Regelkreisen
 - o Übertragungsfunktionen offener und geschlossener Kreise
 - Regelung einfacher Kreise
 - o Beurteilung von Regelzielen
- Stabilität
 - o Wurzelortsverfahren
 - o Das Nyquist-Kriterium
 - o Frequenzkennlinienverfahren
- Empirische Verfahren
 - o Ziegler-Nichols Verfahren
 - o Wendetangentenverfahren nach Schwarze
- Einführung in MATLAB / Octave + Simulink
- Entwicklung von Ortskurven zum Umgang mit komplexen Zahlen
- Lösung linearer Systeme
- numerische Lösung technischer Problemstellungen

Qualifikationsziele:

Die Studierenden haben ...

- Kenntnis der grundlegenden Ziele der Regelungstechnik.
- · die Fähigkeit zur Beurteilung von Stabilität, Dynamik und Genauigkeit offener und geschlossener Kreise.
- Kenntnis über Rechenverfahren im Zeit- und Bildbereich zur Dimensionierung von Regeleinrichtungen und zum Nachweis der Regelziele.
- die Fähigkeit, eindimensionale Systeme zu analysieren, passende Regelalgorithmen für vorgegebene Aufgabenstellungen zu entwerfen und sie bezüglich des Erreichens von Regelzielen zu beurteilen.

Die Studierenden haben ...

- die Fähigkeiten im Umgang mit Numerik- und Simulations-Software.
- Kenntnisse über die Arbeitsweise und Umfang industrieüblicher Numerik- und Simulationssoftware.
- Fähigkeiten der typischen Programmierung in den jeweiligen Script-Sprachen.
- die Fähigkeit mit den Methoden und Techniken zur Visualisierung numerischer Probleme umzugehen.

Verwendbarkeit:

Das Modul ist mit dem Modul "Systemtheorie" zu kombinieren.

Voraussetzungen und Empfehlungen:

- Fundierte Kenntnisse in höherer Mathematik (Differentialgleichungen, lineare Algebra, komplexe Zahlen)
- Sicherer Umgang mit der Laplace-Transformation und ihren Anwendungen

- Grundkenntnisse in Systemtheorie und Signalverarbeitung
- Grundkenntnisse in Elektrotechnik oder Mechanik sind von Vorteil

Literatur:

- BEUCHER, Ottmar: MATLAB und Simulink: Grundlegende Einführung für Studenten und Ingenieure in der Praxis. 4. Aufl., Pearson Studium, 2008
- OKORO, Ogbonnaya Inya; CHIKUNI, Edward: The Essential MATLAB & Simulink: For Engineers and Scientists. Juta Legal and Academic Publishers, 2009
- Lunze, J.: Regelungstechnik 1 Systemtheoretische Grundlagen, Analyse und Entwurf einschleifiger Regelungen, Springer Verlag, 2010
- Zacher, S., Reuter, M.: Regelungstechnik für Ingenieure Analyse, Simulation und Entwurf von Regelkreisen, Springer Verlag 2014

- IT-Ingenieurwesen Bachelor of Science Version 25.0 (5. Semester)
- Smart Technology Bachelor of Science Version 23.0 (Wahlmöglichkeit 5. Semester)
- Technische Informatik Bachelor of Science Version 24.0 (5. Semester)

♦ MB130 – Seminar IT-Ingenieurwesen

	Carsten Burmeister
	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB040 - Seminar	Seminar	Schriftl. Ausarbeitung (ggf. mit Präsentation)	25 Seiten	30 Min.	5.0	Drittelnoten	iedes Semester	150 Stunden	Carsten Burmeister

Lehrinhalte:

Fachvorträge mit anschließender Gruppendiskussion.

Qualifikationsziele:

Seminararbeiten dienen insbesondere dem Erlernen von Fertigkeiten zum Erstellen der Bachelor-Thesis. Wesentlich ist die eigenständige Erarbeitung und Darlegung der Inhalte zu einem vorgegebenen Thema unter Einhaltung der Formalia. Die Ausarbeitung soll das Interesse an einer eigenständigen Befassung mit Inhalten aus dem Themengebiet und den Einstieg in die zugehörige wissenschaftliche Fachliteratur und Methodik fördern und anregen. Schließlich ist die obligatorische Präsentation der Ergebnisse ebenfalls Aufgabe innerhalb des Seminars

Nach erfolgreicher Teilnahme können sie ...

- · wissenschaftliche Themen angemessen strukturieren.
- eine eigenständige Zielsetzung erarbeiten und umsetzen.
- Inhalte recherchieren und übersichtlich aufbereiten.
- formale Kriterien sicher beachten und anwenden.
- eine schriftliche Ausarbeitung größeren Umfangs erstellen.
- kontroverse Lehrmeinungen und aktuelle Trends zu einem Thema herausarbeiten.
- ihre Ergebnisse in angemessener Form vortragen und mit den Seminarteilnehmern diskutieren.

Verwendbarkeit:

Das Modul ist sinnvoll mit den vorausgehenden Modulen aus dem Bereich Informatik und Technik zu kombinieren.

Voraussetzungen und Empfehlungen:

- Kenntnisse der Grundlagen der Informatik und Ingenieurwissenschaften:
- Verständnis für grundlegende Konzepte der Informatik (Algorithmen, Datenstrukturen, Softwareentwicklung)
- Grundkenntnisse in Elektrotechnik und anderen Ingenieurwissenschaften
- Verständnis für technische Systeme und Prozesse

Literatur:

Recherche nach aufgabenbezogener Literatur, teilweise aufgabenspezifische Vorgabe einzelner Literaturquellen.

Empfehlungen zur Einführung in das wissenschaftliche Arbeiten

- Axel Bänsch, Dorothea Alewell, Wissenschaftliches Arbeiten, 11. Aufl., München [u.a.]: Oldenbourg 2013.
- Werner Heister, Dagmar Weßler-Poßberg, Studieren mit Erfolg: Wissenschaftliches Arbeiten für Wirtschaftswissenschaftler, 2., überarbeitete Auflage, Stuttgart: Schäffer-Poeschel 2011.
- Jens Hiller, Arbeitstechniken und wissenschaftliches Arbeiten, Herne: Kiehl 2017.
- Walter Krämer, Wie schreibe ich eine Seminar- oder Examensarbeit. 3., überarbeitete und aktualisierte Aufl., Frankfurt: Campus 2009
- Lydia Prexl, Mit digitalen Quellen arbeiten. Richtig zitieren aus Datenbanken, E-Books, YouTube & Co., 2., aktualisierte und erweiterte Aufl., Paderborn: Ferdinand Schöningh (UTB) 2016.
- Manuel René Theisen, Wissenschaftliches Arbeiten: Technik Methodik Form, 15. Aufl., München: Vahlen 2011.

Studiengänge:

• IT-Ingenieurwesen Bachelor of Science Version 25.0 (5. Semester)

♦ MB058 – Software-Design

Verantwortliche:	Christian Uhlig
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB026 - Software-Design	Vorlesung	Klausur		120 Min.	5.0	Drittelnoten	iährlich	150 Stunden	Christian Uhlig

Lehrinhalte:

- Einordnung und Bedeutung des Entwurfs im Softwareentwicklungsprozess
- Informelle Modellierungstechniken im Software-Entwurf: OMT, UML, ERM/ERD
- Verträge zwischen Softwarekomponenten, Design by Contract
- Objektorientierte Entwurfsmuster
 - o Erzeugungsmuster
 - Strukturmuster
 - o Verhaltensmuster
- Fallstudien
- Serviceorientierte Architektur

Qualifikationsziele:

Die Studierenden ...

- erkennen und erläutern die Einordnung des Entwurfs in den Softwareentwicklungsprozess.
- erkennen und erläutern die Bedeutung der Modellbildung im Softwaredesign.
- erkennen und erläutern die Bedeutung von Verträgen bei Entwurf und Implementierung abstrakter Datentypen.
- erkennen und erläutern das Entwurfsparadigma Design by Contract am Beispiel der Programmiersprachen Eiffel und Java.
- differenzieren Vererbung und Komposition als zentrale Konzepte des objektorientierten Entwurfs und wählen problemadäquat aus.
- wenden informelle Notationen und Methoden (OMT, UML, ERD, ...) zur Modellierung eines Softwaresystems an.
- wenden formale Notationen (z.B. Haskell) zur Definition der Datenstrukturen und der Schnittstellen eines Softwaresystems an.
- differenzieren Entwurfsmuster auf Grundlage von Struktur, Motivation und Zielsetzung.
- wenden typische objektorientierte Entwurfsmuster zur Lösung von softwaretechnischen Problemstellungen an.
- nennen und erläutern sprachabhängige und -unabhängige Implementierungsaspekte bei der Anwendung von Entwurfsmustern.
- erkennen und erläutern die Anwendbarkeit und Kombinierbarkeit einzelner Entwurfsmuste.
- differenzieren Flexibilität und Effizienz bei der problembezogenen Auswahl und Anwendung von Entwurfsmustern.
- nennen und erläutern die Grundzüge der serviceorientierten Architektur.

Verwendbarkeit:

Das Modul setzt unmittelbar auf den Inhalten des Moduls "Programmstrukturen 2" auf und eignet sich damit als Weiterqualifikation im Anschluss an "Programmstrukturen 2". Es kann mit fortgeschrittenen Modulen zur Software-Technik kombiniert werden, insbesondere mit dem "Programmierpraktikum", "Software-Projekt" und "Fortgeschrittene Objektorientierte Programmierung".

Voraussetzungen und Empfehlungen:

Vorausgesetzt werden Grundkenntnisse in imperativen und speziell objektorientierten Programmiersprachen sowie konkret in der Programmiersprache Java. Dies umfasst insbesondere objektorientierte Sprachelemente (Schnittstellen, abstrakte Klassen, konkrete Klassen) und Konzepte der Wiederverwendung (insbesondere Vererbung und dynamisches Binden).

Literatur:

- Balzert, Helmut: Lehrbuch der Softwaretechnik: Entwurf, Implementierung, Installation und Betrieb, 3. Auflage, Spektrum, 2011
- Balzert, Helmut; Balzert, Heide; Koschke, Rainer; Lämmel, Uwe; Liggesmeyer, Peter; Quante, Jochen: Lehrbuch der Softwaretechnik: Basiskonzepte und Requirements Engineering, 3. Auflage, Spektrum, 2009
- Gamma, Erich; Helm, Richard; Johnson, Ralph; Vlissides, John: Design Patterns: Entwurfsmuster als Elemente wiederverwendbarer objektorientierter Software, mitp, 2014
- Freeman, Eric; Robson, Elisabeth; Bates, Bert; Sierra, Kathy: Head First Design Patterns, OReilly, 2014
- Rumbaugh, James; Blaha, Michael; Premerlani, William; Eddy, Frederick; Lorensen, William: Objektorientiertes Modellieren und Entwerfen, Hanser, 1994
- Fowler, Martin: UML Distilled: A Brief Guide to the Standard Object Modeling Language, 3. revidierte Auflage, Addison-Wesley, 2003

- Computer Games Technology Bachelor of Science Version 23.0 (Wahlmöglichkeit 6. Semester)
- E-Commerce Bachelor of Science Version 23.0 (Wahlmöglichkeit 6. Semester)
- Informatik Bachelor of Science Version 25.0 (Wahlmöglichkeit 4. Semester)
- IT-Ingenieurwesen Bachelor of Science Version 25.0 (Wahlmöglichkeit 6. Semester)
- IT-Management & Consulting Bachelor of Science Version 25.0 (Wahlmöglichkeit 6. Semester)
- IT-Management / -Consulting & -Auditing Bachelor of Science Version 23.0 (Wahlmöglichkeit 4. Semester)
- Medieninformatik Bachelor of Science Version 20.0 (4. Semester)
- Smart Technology Bachelor of Science Version 24.0 (Wahlmöglichkeit 6. Semester)
- Technische Informatik Bachelor of Science Version 24.0 (Wahlmöglichkeit 6. Semester)
- Wirtschaftsinformatik Bachelor of Science Version 23.0 (4. Semester)

♦ MB059 – Web-Anwendungen

Verantwortliche:	Marian Gajda
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB027 - Web-Anwendungen	Vorlesung	Klausur		75 Min.	3.0	Drittelnoten	jährlich	90 Stunden	Marian Gajda
TB028 – Übg. Web-Anwendungen	Übung	Abnahme	3 Aufgaben	45 Min.	2.0	Bestanden/nicht Bestanden	jährlich	60 Stunden	Marian Gajda

Lehrinhalte:

- Basiskonzepte des WWW
 - o Klassische Auszeichnungsmöglichkeiten in HTML
 - o HTML-Formulare und ihre Möglichkeiten
 - o Style Sheets
 - o CSS-Animationen
 - o Templating
 - Responsive Design
- Dynamik in Web-Seiten mit Javascript
 - o Client-seitige Dynamik
 - o Server-seitige Dynamik
- · Asynchronous Javascript

Bearbeitung von Übungsaufgaben, die sich am Stoff der Vorlesung orientieren, in Zweiergruppen mit Abnahme der Lösungen. Erstellt wird eine im Verlaufe der einzelnen Übungseinheiten komplexer werdende Web-Anwendung, wobei die einzelnen Schritte aufeinander aufbauen, so dass am Ende eine komplexe Web-Anwendung entsteht, die einen Großteil der in der Vorlesung erlernten Techniken und Konzepte nutzt.

Oualifikationsziele:

Die Studierenden ...

- sind in der Lage, die in der Vorlesung vermittelten theoretischen Hintergründe selbst praktisch anzuwenden.
- haben umfangreiche Kenntnisse und praktische Erfahrungen zu den Themen HTML, CSS, serverseitiger Dynamik, clientseitiger Dynamik mit JavaScript und AJAX, Einsatz JSON zum Austausch von Daten zwischen Client und Server, Einsatz von Cookies und Sessions zum temporären Speichern von Daten.
- steigern ihre Teamfähigkeit durch intensive Arbeit in Zweierteams und Kommunikation über auftretende Probleme in der ganzen Gruppe.

Die Studierenden ...

- führen die technischen Randbedingungen des Internet auf und benennen ihre Auswirkungen.
- beschreiben die konzeptionellen Aspekte von Stylesheets und der zentralen Möglichkeiten zur Festlegung der Darstellung in den Cascading Stylesheets und nutzen diese zur Erzeugung angestrebter Darstellungsweisen.
- können responsive Web-Layouts erstellen
- kennen wichtige Konzepte, Sprachen, Frameworks und Architekturen zur Realisierung dynamischer Webseiten auf, wählen zwischen diesen problembezogen aus und nutzen sie zur Erstellung dynamischer Webseiten.
- geben die zusätzliche Konzepte und Sprachelemente von HTML 5 an und entwerfen damit Webseiten.
- nutzen die theoretisch vermittelten Inhalte zur eigenständigen Realisierung von Webanwendungen begrenzter Komplexität.

Verwendbarkeit:

Das Modul baut auf den Kompetenzen auf, die durch Module des Themenbereichs Programmierung in Informatik-Studiengängen, insbesondere "Programmstrukturen 1", "Programmstrukturen 2" und "Algorithmen und Datenstrukturen", vermittelt werden. Es schafft die Voraussetzungen für Module im fortgeschrittenen Studienverlauf, in denen Kenntnisse zur Realisierung von Web-Anwendungen benötigt werden. Dies kann beispielsweise in den Modulen "Software-Projekt", "E-Commerce Grundlagen" und der Bachelor-Thesis der Fall sein.

Voraussetzungen und Empfehlungen:

Die Studierenden müssen gegebenen Quelltext lesen und fehlerfrei reproduzieren können. Die in vorigen Veranstaltungen erlernten Fertigkeiten im Umgang mit einem Versionskontrollsystem wird in der Übung vorausgesetzt. Es ist hilfreich, wenn die Grundlagen der Netzwerktechnik (Hostname, IP-Adresse, Port) bekannt sind.

Zur Vorbereitung auf Heimarbeit kann ein beliebiger Quelltext-Editor installiert werden.

Literatur:

- WOLF, Jürgen: HTML5 und CSS Das umfassende Handbuch 2019
- ACKERMANN, Philipp: JavaScript Das umfassende Handbuch 2019
- LABORENZ, Kai: CSS: Das umfassende Handbuch. Galileo Computing, 2011
- GASSTON, Peter: Moderne Webentwicklung: Geräteunabhängige Entwicklung Techniken und Trends in HTML5, CSS3 und JavaScript, dpunkt.verlag, 2014
- WORLD WIDE WEB CONSORTIUM: HTML 5. http://www.w3.org/TR/2014/WD-html5-20140617/

- Computer Games Technology Bachelor of Science Version 23.0 (Wahlmöglichkeit 6. Semester)
- Data Science & Artificial Intelligence Bachelor of Science Version 25.0 (4. Semester)
- E-Commerce Bachelor of Science Version 14.0 (4. Semester)
- Informatik Bachelor of Science Version 25.0 (4. Semester)
- IT-Ingenieurwesen Bachelor of Science Version 25.0 (Wahlmöglichkeit 6. Semester)
- IT-Management & Consulting Bachelor of Science Version 25.0 (4. Semester)
- IT-Management / -Consulting & -Auditing Bachelor of Science Version 23.0 (4. Semester)
- Medieninformatik Bachelor of Science Version 25.0 (4. Semester)
- Smart Technology Bachelor of Science Version 24.0 (Wahlmöglichkeit 6. Semester)
- Technische Informatik Bachelor of Science Version 24.0 (Wahlmöglichkeit 6. Semester)
- Wirtschaftsinformatik Bachelor of Science Version 23.0 (4. Semester)

♦ MB067 – Fertigungstechnik

Verantwortliche:	Frank Bargel
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB184 – Wirtschaftliches Fertigen	Vorlesung	Mündliche Prüfung		20 Min.	5.0	Drittelnoten	iährlich	150 Stunden	Frank Bargel

Lehrinhalte:

- Einführung
- Fertigungsprozesse Urformen
 - o Gießverfahren
 - o Pulvermetallurgie
 - o Rapid Prototyping
 - o Fertigungsgerechte Gestaltung von Urformteilen
- Fertigungsprozesse Umformen
 - o Grundlagen
 - o Massivumformung (wie Walzen, Schmieden, Strangpressen)
 - o Blechumformung
 - o Fertigungsgerechte Gestaltung von Umformteilen
- Fertigungsprozesse Trennen
 - o Grundlagen
 - o Zerteilen
 - Spanende Bearbeitung
 - o Fertigungsgerechte Gestaltung von spanend hergestellten Bauteilen
 - o Abtragsverfahren
- Fertigungsprozesse Fügen
 - o Grundlagen
 - Löten
 - o Schweißen
 - o Fügen durch Umformen
 - o Kleben
 - o Fertigungsgerechte Gestaltung von Fügeverbindungen
- Fertigungsprozesse Beschichten
 - o Grundlagen
 - o Beschichten aus dem festen Zustand
 - o Beschichten aus dem flüssigen Zustand
 - o Beschichten aus dem ionisierten Zustand
- Montage
 - o Grundlagen
 - o Montagegerechte Produktgestaltung (Design for Assembly (DFA))
 - Montageplanung
 - o Arbeitswissenschaftliche Grundlagen (Ergonomie)
- Fertigung und Wirtschaftlichkeit

Oualifikationsziele:

Nach Abschluss des Moduls kennen die Studierenden wichtige etablierte und neue Fertigungsverfahren sowie Montageprozesse und verstehen ihre physikalischen und/oder chemischen Wirkmechanismen. Sie sind in der Lage, Fertigungsverfahren und Montageprozesse hinsichtlich ihrer Wirtschaftlichkeit und der erreichbaren Produktqualität einzuschätzen, um dadurch unter Berücksichtigung von Randbedingungen wie Stückzahl, Variantenvielfalt, Lieferzeit usw. geeignete Verfahren und Prozessketten auswählen bzw. ein neues Verfahren und neue Prozessketten konzipieren zu können. Sie kennen und verstehen diese besondere Relevanz, vor allem in Bezug auf Hochlohnstandorte wie Deutschland. Sie wissen, dass die Montage häufig sehr zeitaufwendig und kostenintensiv ist und können gleichzeitig nachvollziehen, dass hierbei aber die höchste Wertschöpfung erzielt wird.

Nach Besuch des Moduls können die Studierenden ...

- die Technik, die Wirtschaftlichkeit und die erreichbare Produktqualität verbreiteter industrieller Fertigungsverfahren und Montageprozesse erklären
- die zugrunde liegenden physikalischen und/oder chemischen Wirkmechanismen erläutern
- die oben genannten Fertigungs- und Montageprozesse sowohl in technologischer als auch in wirtschaftlicher und arbeitswissenschaftlicher Hinsicht bewerten
- am konkreten Produkt die angewandten Fertigungsverfahren erkennen und vorhandene Prozessketten analysieren
- für ein Produkt geeignete Fertigungs- und Montageverfahren sowie Prozessketten auswählen und dabei das Dreiecks aus Qualität, Kosten und Zeit sowie betrieblicher Rahmenbedingungen berücksichtigen.

Verwendbarkeit:

Das Modul "Fertigungstechnik" baut auf den in den Modulen "Technische Kommunikation", "Materialtechnik" und "Grundlagen Rechnungswesen" erworbenen Kenntnissen und Fähigkeiten auf. Die im Modul erworbenen Kompetenzen stellen die Grundlage zum Beispiel für die Module "Produktionstechnisches Projekt" sowie "Produktentwicklung und Qualitätsmanagement" dar.

Voraussetzungen und Empfehlungen:

Die Studierenden müssen die Bedeutung von Toleranzen, Passungen und Oberflächengüte für die Bauteilfunktion kennen sowie über werkstoffkundliche Grundkenntnisse verfügen. Um die Einflussmöglichkeiten auf die Wirtschaftlichkeit verstehen zu können, sind Grundkenntnisse inKosten- und Investitionsrechnung erforderlich.

Literatur:

- Kalpakjian, Serope; Schmid, Steven:
 Manufacturing Engineering and Technology
 Upper Saddle River (NJ), Prentice Hall, 4. Auflage 2001
 Fritz, A. Herbert u.a.:
- Fertigungstechnik Berlin, Springer Vieweg, 12. Auflage 2018 • Westkämper, Engelbert; Warnecke, Hans-Jürgen:
- Westkämper, Engelbert; Warnecke, Hans-Jürgen: Einführung in die Fertigungstechnik Stuttgart, Teubner, 8. Auflage 2010
- Awiszus, Birgit; Bast, Jürgen: Grundlagen der Fertigungstechnik München, Fachbuchverlag Leipzig, 7. Auflage 2021
- Koether, Reinhard; Sauer, Alexander: Fertigungstechnik für Wirtschaftsingenieure München, Hanser, 5. Auflage 2017
 Lotter Bruno: Wiendahl Hans-Peter:
- Lotter, Bruno; Wiendahl, Hans-Peter: Montage in der industriellen Produktion Berlin, Springer, 2006
- Luczak, Holger: Arbeitswissenschaft Berlin, Springer, 3. Auflage 2010

- IT-Ingenieurwesen Bachelor of Science Version 25.0 (Wahlmöglichkeit 6. Semester)
- Wirtschaftsingenieurwesen Bachelor of Science Version 25.0 (4. Semester)

♦ MB068 – Halbleiterschaltungstechnik

Verantwortliche:	Sergei Sawitzki
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB186 – Halbleiterschaltungstechnik	Vorlesung	Klausur		90 Min.	3.0	Drittelnoten	jährlich	90 Stunden	Sergei Sawitzki
TB190 - Übg. Elektronik und Halbleiterschaltungstechnik	Übung	Abnahme	10 Aufgaben		2.0	Bestanden/nicht Bestanden	jährlich	60 Stunden	Timm Bostelmann

Lehrinhalte:

- · Grundlagen der Halbleiterphysik
- Halbleiter-Bauelemente
 - o pn-Übergang, Diode
 - Bipolartransistor
 - o Feldeffekttransistoren
 - o Überblick über sonstige Bauelemente
 - o Grundschaltungen, Verstärker
- Halbleiterschaltungstechnik
 - o Strom- und Spannungsquellen
 - o Operationsverstärker
 - o Transistoren als Schalter, Digitale Schaltungen
- · Passive Netze
 - o Filterschaltungen
 - o Einschwingvorgänge
 - o Stabilisierungsschaltungen
- Verstärkerschaltungen
 - o Arbeitspunkteinstellungen
 - o Statisches und dynamisches Verhalten
 - o Gegenkopplungen
- Operationsverstärkerschaltungen
 - o Beschaltungen
 - o Anwendungen
 - o Stabilität

Qualifikationsziele:

Die Studierenden ...

- können analoge und digitale elektronische Systeme, soweit sie für die technische Informatik von Belang sind, verstehen und entwerfen
- kennen die Methodik des Schaltungsentwurfs und können diese praktisch einsetzen
- haben ein Verständnis für realitätsnahe Schaltungsentwicklung unter Einbeziehung des realen Bauteilverhaltens (Toleranzen, Streuungen, Temperaturabhängigkeiten usw.)
- können bestehende Schaltungen und Systeme analysieren
- kennen den Aufbau und die Funktionsweise von den wichtigsten Halbleiter-Bauelementen
- erkennen Verbindungen zwischen Digitaltechnik und Halbleiterschaltungstechnik als technologischer Grundlage digitaler Schaltungen und Systeme
- können typische Aufgaben aus dem Stoffumfang der Vorlesungen Elektronik und Halbleiterschaltungstechnik eigenständig lösen
- Kenndaten elektronischer Bauteile aus Datenblättern entnehmen

Verwendbarkeit:

Das Modul "Halbleiterschaltungstechnik" baut auf den in den Modulen "Elektronik" und "Rechnerstrukturen und Digitaltechnik" erworbenen Kenntnissen und Fähigkeiten auf. Die im Modul "Halbleiterschaltungstechnik" erworbenen Kompetenzen stellen die Grundlagen für zum Beispiel die Module "Großintegrierte Systeme" dar. Grundsätzlich ist eine Kombination mit den Modulen, die integrierte Schaltungen und Systeme auf höheren Abstraktionsebenen betrachten, sinnvoll. Das Modul hat einen direkten Bezug zum Studiengangsziel des Studiengangs "Bachelor Technische Informatik" hardwarenahe Kompetenzen in technischen Anwendungen der Informatik zu erwerben und praktisch einzusetzen.

Voraussetzungen und Empfehlungen:

Erfahrungen im Umgang mit Simulationswerkzeugen (insbesondere Pspice)

Literatur:

- Tietze, Ulrich; Schenk, Christoph: Halbleiterschaltungstechnik, 16. Auflage Springer Verlag, 2016
- Stiny, Leonhard: Handbuch aktiver elektronischer Bauelemente, Franzis Verlag 2009
- Hering, Ekbert; Bessler, Klaus; Gutekunst, Jürgen: Elektronik für Ingenieure und Naturwissenschaftler, Springer Verlag 2005
- Horowitz, Paul; Hill, Winfield: Die Hohe Schule der Elektronik. Teil 1: Analogtechnik, 8. Auflage Elektor-Verlag 2006
- Schiffmann, Wolram; Schmitz, Robert: Technische Informatik, in 3 Bänden. 3. Auflage Springer Verlag, 1996
- Brauer, Harry; Lehmann, Constans; Lindner, Helmut: Taschenbuch der Elektrotechnik und Elektronik, 9. Auflage Hanser Fachbuchverlag 2008
- Taur, Yuan; Ning, Tak H.: Fundamentals of Modern VLSI Devices, 2nd edition, Cambridge University Press 2009
- Ng, Kwok K.: Complete Guide to Semiconductor Devices, 2nd edition, Jaohn Wiley & Sons 2002

- IT-Ingenieurwesen Bachelor of Science Version 25.0 (Wahlmöglichkeit 6. Semester)
- Smart Technology Bachelor of Science Version 24.0 (4. Semester)
- Technische Informatik Bachelor of Science Version 24.0 (4. Semester)

♦ MB077 – Softwareprojekt IT-Ingenieurwesen

	Carsten Burmeister
	6 Monate
Unterrichtssprache:	deutsch/englisch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB189 – Softwareprojekt IT-Ingenieurwesen	Projektarbeit	Schriftl. Ausarbeitung (ggf. mit Präsentation)			5.0	Bestanden/nicht Bestanden	iährlich	150 Stunden	Carsten Burmeister

Lehrinhalte:

themenabhängig

Qualifikationsziele:

Das technische Software Projekt konzentriert sich auf den Softwareentwurf um eine technische Problemstellung zu lösen. Typische technische Problemstellungen sind Optimierungen technischer Prozesse oder Systeme. Studierende sollen Erfahrungen mit betreuter Projektarbeit im technischen Umfeld sammeln. Dabei soll theoretisches Wissen über Softwareentwicklung in der praktischen Projektarbeit vertieft werden. Wichtig ist dabei außerdem das kompetente Einbringen der erworbenen Kenntnisse in die Gruppenleistung. Zusätzlich soll die Bedeutung von inhaltlichen und organisatorischen Schnittstellen im Rahmen der Arbeit an der Gesamtthematik des Projekts vertieft werden.

Verwendbarkeit:

Das Projekt erfordert von den Studierenden die gelernten Softwareentwicklungsfähigkeiten und die erlernten Ingenieursfähigkeiten zu kombinieren und gemeinsam strukturiert anzuwenden. Es steht also nach den essentiellen Softwareentwicklungsmodulen und den für das Projekt wichtigen Ingenieursfächern.

Voraussetzungen und Empfehlungen:

- Programmierkenntnisse:
 - Erfolgreicher Abschluss der Module "Programmstrukturen 1" und "Programmstrukturen 2" oder vergleichbare Kenntnisse in einer höheren Programmiersprache (z.B. Java, C++, Python).
 - Sicherer Umgang mit grundlegenden Programmierkonzepten wie Variablen, Datentypen, Kontrollstrukturen (Schleifen, Bedingungen), Funktionen/Methoden und Objektorientierung.
 - o Erfahrung in der Entwicklung kleinerer Softwareprojekte.
- Technisches Verständnis:
 - o Grundkenntnisse in ingenieurwissenschaftlichen Grundlagenfächern wie Mathematik, Physik und Elektrotechnik.
 - o Verständnis für technische Systeme und Prozesse.
 - Fähigkeit zur Analyse technischer Problemstellungen und zur Entwicklung softwarebasierter Lösungen.

Literatur:

themenabhängig

Studiengänge:

• IT-Ingenieurwesen Bachelor of Science Version 25.0 (Wahlmöglichkeit 6. Semester)

♦ MB118 – Soft Skills

	Frank Bargel
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB042 – Assistenz	Assistenz	Schriftl. Ausarbeitung (ggf. mit Präsentation)	15 Seiten		3.0	Bestanden/nicht Bestanden	jedes Semester	90 Stunden	Frank Bargel
TB043 - Communication Skills	Workshop	Schriftl. Ausarbeitung (ggf. mit Präsentation)	15 Seiten		2.0	Bestanden/nicht Bestanden	jedes Semester	60 Stunden	Anna-Magdalena Kölzer

Lehrinhalte:

Communication Skills

Im Rahmen des Workshops werdendie folgenden Inhalte behandelt:

- Selbstanalyse (Fragebogen) als Grundlage für Bewerbungen
- Rhetorik & Präsentation (Theorie und Praxis)
- Struktur und Aufbau von Bewerbungsunterlagen
- Bewerbungsprozess
- Interview (Theorie und Praxis)
- Assessment Center (Theorie)
- Persönlichkeitsfragebogen und Testverfahren (Intelligenz und Konzentration) (Praxis)
- Gruppenübungen (Praxis)

Assistenz

Im Rahmen der Assistenz werden die Studierenden von den Hochschullehrern mit konkreten (Teil)-Projekten betraut. Diese können ein weites Spektrum umfassen. So sind z.B. die Durchführung kleinerer empirischer Umfragen oder auch die eigenständige Recherche und Ausarbeitung spezieller Fachinhalte denkbar. Ebenso in Betracht kommen die Durchführung von Tutorien oder Übungen. Die Assistenz ist selbständig zu bearbeiten und kann die Abstimmung mit anderen Studierenden erfordern.

Qualifikationsziele:

Nach Abschluss des Moduls haben die Studierenden die Fähigkeit erworben, in Kooperation mit den Dozenten und Assistenten, ihr Wissen und ihre Erfahrungen aus früheren Veranstaltungen der Betriebswirtschaftslehre, Mathematik und Informatik an Studierende jüngerer Semester weiter zu geben. Mit zunehmender Dauer des Semesters verbinden die Studierenden Kenntnisse aus dem Workshop "Communication Skills" mit ihrer Assistenztätigkeit.

Die Studierenden verfügen nach dem Besuch des Workshops über folgende Kompetenzen:

- Besitz verbesserter persönlicher Soft Skills, wie sie für Studium oder Beruf erforderlich sind
- Sensibilität für menschliche Interaktionen und Betriebsprozesse
- Besitz erweiterter rhetorischer Fähigkeiten im Rahmen von Präsentationen, Vorträgen und Referaten sowie sozialer Kompetenz
- Kenntnis der Bedeutung von verbalen und nonverbalen Signalen für die eigene Kommunikation sowie die Fähigkeit, diese zu erkennen
- Fähigkeit zum angemessenen Verhalten bei Teamarbeit oder Projekten
- Fähigkeit zur Selbstdarstellung bei Bewerbungen, Interviews, Assessment-Centern.

Die Studierenden entwickeln im Rahmen der Assistenz unter Anleitung eines Hochschullehrers die Fähigkeiten ...

- fachspezifische Aufgabenstellungen zu analysieren
- problemspezifische Lösungen zu konzipieren und
- als Ergebnis begründet zu präsentieren.

Verwendbarkeit:

Die Inhalte dieses Moduls können gewinnbringend in Projekten, der Bachelor-Thesis und im täglichen Berufsleben genutzt werden.

Voraussetzungen und Empfehlungen:

Fachliche Inhalte der ersten vier Studiensemester

Literatur:

• ARNOLD, Frank:

Management von den besten lernen. München: Hans Hauser Verlag, 2010

• APPELMANN, Björn:

Führen mit emotionaler Intelligenz.

Bielefeld: Bertelsmann Verlag, 2009

• BIERKENBIEHL, Vera F.:

Rhetorik, Redetraining für jeden Anlass. Besser reden, verhandeln, diskutieren.

12. Aufl. München: Ariston Verlag, 2010

• BOLLES, Nelson:

Durchstarten zum Traumjob. Das ultimative Handbuch für Ein-, Um- und Aufsteiger.

2. Aufl. Frankfurt/New York: Campus Verlag, 2009

• DUDENREDAKTION mit HUTH, Siegfried A.:

Reden halten - leicht gemacht. Ein Ratgeber.

Mannheim/Leipzig: Dudenverlag, 2007

• GRÜNING; Carolin; MIELKE; Gregor:

Präsentieren und Überzeugen. Das Kienbaum Trainingskonzept.

Freiburg: Haufe-Lexware Verlag, 2004

• HERTEL, Anita von:

Professionelle Konfliktlösung. Führen mit Mediationskompetenz.

Handelsblatt, Bd., 6, Kompetent managen.

Frankfurt: Campus Verlag, 2009

• HESSE, Jürgen; SCHRADER, Hans Christian:

Assessment-Center für Hochschulabsolventen.

5. Auflage, Eichborn: Eichborn Verlag, 2009

• MENTZEL, Wolfgang; GROTZFELD, Svenja; HAUB, Christine:

Mitarbeitergespräche.

Freiburg: Haufe-Lexware Verlag, 2009

• MORITZ, Andr; RIMBACH, Felix:

Soft Skills für Young Professional. Alles was Sie für ihre Karriere wissen müssen.

2. Aufl. Offenbach: Gabal Verlag, 2008

• PERTL, Klaus N.:

Karrierefaktor Selbstmanagement. So erreichen Sie ihre Ziele.

Freiburg: Haufe-Verlag, 2005

• PORTNER, Jutta:

Besser verhandeln. Das Trainingsbuch.

Offenbach: Gabal Verlag, 2010

• PÜTTJER, Christian; SCHNIERDA, Uwe:

Assessment-Center. Training für Führungskräfte.

Frankfurt/New York: Campus Verlag, 2009

• PÜTTJER, Christian; SCHNIERDA, Uwe:

Das große Bewerbungshandbuch. Frankfurt: Campus Verlag, 2010

• SCHULZ VON THUN, Friedemann; RUPPEL, Johannes; STRATMANN, Roswitha:

Miteinander Reden. Kommunikationspsychologie für Führungskräfte.

10. Auflage, Reinbek bei Hamburg: rororo, 2003

- Angewandte Wirtschaftspsychologie & Data Analytics Bachelor of Science Version 25.0 (4. Semester)
- Betriebswirtschaftslehre Bachelor of Science Version 23.0 (6. Semester)
- Computer Games Technology Bachelor of Science Version 23.0 (Wahlmöglichkeit 6. Semester)
- Data Science & Artificial Intelligence Bachelor of Science Version 25.0 (Wahlmöglichkeit 6. Semester)
- E-Commerce Bachelor of Science Version 14.0 (5. Semester)
- Informatik Bachelor of Science Version 25.0 (Wahlmöglichkeit 6. Semester)
- IT-Ingenieurwesen Bachelor of Science Version 25.0 (Wahlmöglichkeit 6. Semester)
- IT-Management & Consulting Bachelor of Science Version 25.0 (2. Semester)
- IT-Management / -Consulting & -Auditing Bachelor of Science Version 23.0 (Wahlmöglichkeit 6. Semester)
- Medieninformatik Bachelor of Science Version 25.0 (Wahlmöglichkeit 6. Semester)
- Smart Technology Bachelor of Science Version 24.0 (Wahlmöglichkeit 6. Semester)
- Technische Informatik Bachelor of Science Version 24.0 (Wahlmöglichkeit 6. Semester)
- Wirtschaftsinformatik Bachelor of Science Version 23.0 (Wahlmöglichkeit 6. Semester)

♦ MB122 – IT-Sicherheit

Verantwortliche:	Gerd Beuster
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch/englisch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB048 - IT-Sicherheit	Vorlesung	Klausur + ggf. Bonus		60 Min.	5.0	Drittelnoten	iährlich	150 Stunden	Gerd Beuster

Lehrinhalte:

- Gegenstandsbereich der IT-Sicherheit
- Aktuelle Richtlinien, Standards, Normen und Gesetze
- Bedrohungen der IT-Sicherheit und daraus resultierende Risiken
- Primäre Sicherheitsziele
- Überblick über Verfahren zur Erreichung der Ziele
- Kryptografische Verfahren
 - o Verschlüsselungsverfahren
 - Symmetrische Verschlüsselungsverfahren
 - Asymmetrische Verschlüsselungsverfahren
 - o Hash-Funktionen
 - o Schlüsselmanagement
 - Zertifikate
 - Kryptografische Protokolle
 - Digitale Signatur
 - Zeitstempel
 - TLS-Protokoll
- Authentifizierungsverfahren
- Übertragungssicherheit in Netzen
 - o Sichere IP-Kommunikation
 - VPN-Technologien
- Sicherheitsarchitekturen und ihre Komponenten
 - o Sicherheitsaspekte von Web-Servern
 - Firewall-Systeme
 - o Intrusion Detection-Systeme
- Sicherheit von Web-Anwendungen
- Technisch / organisatorische Maßnahmen zur Erhöhung der IT-Sicherheit
- Risiko- und Sicherheitsmanagement

Qualifikationsziele:

Die Studierenden erwerben die notwendigen Kenntnisse, um Softwaresysteme und ihre betrieblichen Einsatzszenarien in Hinblick auf ihre Sicherheit einschätzen zu können. Sie sind in der Lage, bei der Konzeption und Entwicklung von Softwaresystemen und in ihrem Unternehmenseinsatz relevante Sicherheitsaspekte zu berücksichtigen.

- Kenntnis der unterschiedlichen Bedrohungsszenarien und -arten.
- Kenntnis der besonderen Gefahren bei internetbasierten Anwendungen.
- Kenntnis typischer primärer Sicherheitsziele (Vertraulichkeit, Authentifizierung, Verbindlichkeit, u.a.).
- Kenntnis der Verfahren zur Gewährleistung der unterschiedlichen Sicherheitsziele.
- Kenntnis der praxisrelevanten kryptografischen Verfahren und Protokolle.
- Kenntnis der Sicherungsmaßnahmen in Rechnernetzen.
- Fähigkeit, grundlegende Sicherungsmaßnahmen für Web-Anwendungen umzusetzen.
- Kenntnis der Bestandteile einer IT-Sicherheitsinfrastruktur und ihrer zentralen Funktionalitäten.
- Kenntnis der Verfahren zur Risikoabschätzung und Bewertung der Sicherheit von IT-Systemen und die Fähigkeit, diese anzuwenden.

Verwendbarkeit:

Nach Abschluss des Moduls verfügen die Studierenden über weiterführende Kenntnisse auf den Gebieten Computernetze, Kryptographie und Programmierung. Dies ist insbesondere verwendbar für Tätigkeiten und weiterführende Veranstaltungen im Bereich IT-Sicherheit.

Voraussetzungen und Empfehlungen:

Das Modul setzt grundlegende Kenntnisse der Programmierung und des Aufbaus eines Computersystems sowie von Computernetzen

Literatur:

- Anderson, Ross J.: Security Engineering: A Guide to Building Dependable Distributed Systems. 3. Auflage. Hoboken (NJ), USA: Wiley & Sons, 2020.
- BSI Bundesamt für Sicherheit in der Informationstechnik (Hrsg.): Informationssicherheit und IT-Grundschutz : BSI-Standards 200-1, 200-2 und 200-3. 1. Auflage. Bonn : BSI, 2017.
- Eckert, Claudia: IT-Sicherheit: Konzepte Verfahren Protokolle. 10. Auflage. München: Oldenbourg, 2018.
- Ferguson, Niels; Schneier Bruce, Kohno; Tadayoshi: Cryptography Engineering: Design Principles and Practical Applications. Hoboken (NJ), USA: Wiley & Sons, 2010.
- Kersten, Heinrich; Klett, Gerhard: Der IT Security Manager. 4. Auflage. Wiesbaden: Springer Vieweg, 2015.
- Pfleeger, Charls P.; Pfleeger, Shari Lawrence: Security in Computing. 6. Auflage. München: Prentice Hall, 2023.
- Proguntke, Werner: Basiswissen IT-Sicherheit: Das Wichtigste für den Schutz von Systemen & Daten. 3. Auflage. Heidelberg: Springer Campus, 2017.
- Stallings, William: Computer Security: Principles and Practice. 4. Auflage. München: Pearson, 2018.
- Stallings, William: Cryptography and Network Security: Principles and Practice. 8. Auflage. München: Pearson, 2022.
- Swoboda, Joachim; Spitz, Stephan; Pramateftakis, Michael: Kryptographie und IT-Sicherheit: Grundlagen und Anwendungen. 2. Auflage Wiesbaden: Vieweg + Teubner Verlag, 2011.

- E-Commerce Bachelor of Science Version 17.0 (Wahlmöglichkeit 6. Semester)
- Informatik Bachelor of Science Version 25.0 (2. Semester)
- IT-Ingenieurwesen Bachelor of Science Version 25.0 (Wahlmöglichkeit 6. Semester)
- IT-Management & Consulting Bachelor of Science Version 25.0 (Wahlmöglichkeit 6. Semester)
- IT-Management / -Consulting & -Auditing Bachelor of Science Version 23.0 (4. Semester)
- Medieninformatik Bachelor of Science Version 20.0 (Wahlmöglichkeit 6. Semester)
- Smart Technology Bachelor of Science Version 24.0 (Wahlmöglichkeit 6. Semester)
- Technische Informatik Bachelor of Science Version 24.0 (Wahlmöglichkeit 6. Semester)
- Wirtschaftsinformatik Bachelor of Science Version 23.0 (Wahlmöglichkeit 6. Semester)

♦ MB233 – Projekt IT-Ingenieurwesen

Verantwortliche:	Carsten Burmeister
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB046 - Projektmanagement	Vorlesung	Klausur		60 Min.	2.0	Drittelnoten	jährlich	60 Stunden	Gerrit Remané
TB187 - Projekt IT-Ingenieurwesen	Praktikum	Schriftl. Ausarbeitung (ggf. mit Präsentation)			3.0	Drittelnoten	jährlich	90 Stunden	Carsten Burmeister

Lehrinhalte:

Im Rahmen der digitalen Transformation werden wiederkehrende Aufgaben zunehmend automatisiert. Einmalige Tätigkeiten hingegen lassen sich schwierig automatisieren und werden daher in Zukunft weiter an Bedeutung gewinnen. Diese einmaligen, temporären Aufgaben sind per Definition Projekte; nicht zuletzt aufgrund dieses Umstandes wird Projektmanagement eine der wichtigsten Fähigkeiten für eine erfolgreiche Karriere im 21. Jahrhundert.

Wie schwierig Projektmanagement in der Praxis ist, wird beispielsweise dadurch ersichtlich, dass mehr als 2 von 3 IT-Projekten ihre Ziele verfehlen. Auch wenn die Gründe hierfür im Einzelfall sehr unterschiedlich sein mögen, lassen diese sich doch in zwei breite Gruppen unterteilen. Zur ersten Gruppe zählen fehlende Projektmanagement-Kompetenzen wie Auswahl der Projektmethodik, Projektplanung oder Risikokontrolle. Zur zweiten Gruppe zählen ungenügende Soft Skills, um alle beteiligten Stakeholder zu managen, wie beispielsweise Motivation, Konfliktlösung oder Veränderungsmanagement.

Zielsetzung dieser Veranstaltung ist die Entwicklung wesentlicher Grundlagen in beiden Bereichen: Grundlegende Projektmanagementfähigkeiten (im engeren Sinne) sowie notwendige Softskills eines Projektleiters.

Kurzgliederung:

- Einführung in Projektmanagement
- Projektphasen (Initiierung, Planung, Durchführung, Abschluss)
- Soft Skills (Motivation, Veränderungsmanagement, Feedback, ...)
- Spezifische Ansätze (Wasserfall, Agil, Großprojekte, ...)

themenabhängig

Qualifikationsziele:

Nach Abschluss des Projekts haben die Studierenden die Fähigkeit erlangt oder verbessert sich selbständig in komplexe Sachverstände einzuarbeiten. Sie können ein Projekt selbständig bearbeiten, indem Sie das Problem beschreiben, ein System modellieren, einen Lösungsweg entwickeln und umsetzen.

- Sie verstehen die spezifischen Charakteristika und Herausforderungen von Projekten (z.B. im Unterschied zu Prozessen)
- Sie können die wichtigsten Projektmanagement-Tools je Projektphase anwenden (Initiierung, Planung, Durchführung, Abschluss)
- Sie können wesentliche Konzepte und Methoden anwenden, um Mensch-bezogene Herausforderungen im Projektumfeld zu analysieren und zu lösen (z.B. Motivation, Feedback, Veränderung)
- Sie können geeignete Projektmanagement-Ansätze (Wasserfall vs. Agil) je nach Projekttyp auswählen

Verwendbarkeit:

Das Projekt erfordert von den Studierenden die gelernten Softwareentwicklungsfähigkeiten und die erlernten Ingenieursfähigkeiten zu kombinieren und gemeinsam strukturiert anzuwenden. Es steht also nach den essentiellen Softwareentwicklungsmodulen und den für das Projekt wichtigen Ingenieursfächern.

Voraussetzungen und Empfehlungen:

- Programmierkenntnisse:
 - Erfolgreicher Abschluss der Module "Programmstrukturen 1" und "Programmstrukturen 2" oder vergleichbare Kenntnisse in einer höheren Programmiersprache (z.B. Java, C++, Python).
 - Sicherer Umgang mit grundlegenden Programmierkonzepten wie Variablen, Datentypen, Kontrollstrukturen (Schleifen, Bedingungen), Funktionen/Methoden und Objektorientierung.
 - Erfahrung in der Entwicklung kleinerer Softwareprojekte.
- Technisches Verständnis:
 - o Grundkenntnisse in ingenieurwissenschaftlichen Grundlagenfächern wie Mathematik, Physik und Elektrotechnik.
 - Verständnis für technische Systeme und Prozesse.
 - o Fähigkeit zur Analyse technischer Problemstellungen und zur Entwicklung softwarebasierter Lösungen.

Literatur:

Abhängig vom Projektthema

- Verzuh: The Fast Forward MBA in Project Management, Fifth Edition, New Jersey, 2016
- Wysocki: Effective Project Management Traditional, Agile, Extreme, Seventh Edition, Indianapolis, 2014
- PMI: A Guide to the Project Management Body of Knowledge (Pmbok Guide), Sixth Edition, Newton Square, 2017

Studiengänge:

• IT-Ingenieurwesen Bachelor of Science Version 25.0 (Wahlmöglichkeit 6. Semester)

♦ MB257 – Auslandssemester

Verantwortliche:	Samantha Lauenstein
Moduldauer:	6 Monate
Unterrichtssprache:	Deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB039 – Auslandssemester	Ausland	Ausland			30.0	Drittelnoten	iedes Semester	900 Stunden	Samantha Lauenstein

Lehrinhalte:

Für ein freiwilliges Auslandssemester ist der Umfang der zu leistenden ECTS-Punkte (bzw. der gleichwertige Umfang in lokalen Credits) in der jeweiligen Studienordnung vorgegeben. An der ausländischen Hochschule sind fachspezifische Kurse zu belegen, die mit dem in Wedel belegten Studiengang in ergänzendem Zusammenhang stehen. Das Studienprogramm wird vor der Abreise individuell mit dem International Office vereinbart.

Qualifikationsziele:

Nach Abschluss des Auslandsemester besitzen die Studierenden ...

- fundierte Sprachkompetenzen in englischer, französischer oder spanischer Sprache.
- erweiterte Kenntnisse über die Kultur des Gastlandes.

Verwendbarkeit:

Studierende sammeln sprachliche Erfahrungen und erweitern ihre sozialen Kompetenzen, die sie in ihr Berufsleben nach Studiumsabschluss einbringen können.

Voraussetzungen und Empfehlungen:

Es wird empfohlen, mindestens eine der Sprachen zu beherrschen, die an der ausländischen Hochschule gesprochen wird.

Literatur:

Abhänigig von der ausländischen Hochschule

- Angewandte Wirtschaftspsychologie & Data Analytics Bachelor of Science Version 25.0 (Wahlmöglichkeit 5. Semester)
- Computer Games Technology Bachelor of Science Version 23.0 (Wahlmöglichkeit 6. Semester)
- Data Science & Artificial Intelligence Bachelor of Science Version 25.0 (Wahlmöglichkeit 6. Semester)
- E-Commerce Bachelor of Science Version 23.0 (Wahlmöglichkeit 6. Semester)
- Informatik Bachelor of Science Version 25.0 (Wahlmöglichkeit 6. Semester)
- IT-Ingenieurwesen Bachelor of Science Version 25.0 (Wahlmöglichkeit 6. Semester)
- IT-Management & Consulting Bachelor of Science Version 25.0 (Wahlmöglichkeit 6. Semester)
- IT-Management / -Consulting & -Auditing Bachelor of Science Version 23.0 (Wahlmöglichkeit 6. Semester)
- Medieninformatik Bachelor of Science Version 25.0 (Wahlmöglichkeit 6. Semester)
- Smart Technology Bachelor of Science Version 24.0 (Wahlmöglichkeit 6. Semester)
- Technische Informatik Bachelor of Science Version 24.0 (Wahlmöglichkeit 6. Semester)
- Wirtschaftsinformatik Bachelor of Science Version 23.0 (Wahlmöglichkeit 6. Semester)

♦ MB150 – Bachelor-Thesis

Verantwortliche:	Sergei Sawitzki
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
BTH - Bachelor-Thesis	Thesis	Abschlussarbeit			12.0	Zehntelnoten	iedes Semester	360 Stunden	Sergei Sawitzki

Lehrinhalte:

Die Bachelor-Thesis soll im Regelfall in Kooperation mit einem Unternehmen erarbeitet werden. Themen aus den Arbeitsgruppen und Laboren der Hochschule sind ebenfalls möglich. Die Arbeit ist als abschließende, vom Studierenden eigenständig aber hochschul- und unternehmensseitig betreutes Projekt zu verstehen. Im Sinne der Zielsetzung der Bachelor-Ausbildung, der Erlangung des ersten berufsqualifizierenden Abschlusses, ist die Arbeit thematisch an einer Problemstellung eines kooperierenden Unternehmens orientiert oder sie besteht aus einer praxisrelevanten hochschulinternen Aufgabe.

Qualifikationsziele:

Die Studierenden ...

- besitzen die Fähigkeit zur Durchführung einer praxisorientierten Arbeit
- können eine Fragestellung selbständig erarbeiten
- können die zu erarbeitende Problematik klar strukturieren
- können die Vorgehensweise und Ergebnisse in einer Ausarbeitung übersichtlich darstellen
- stärken ihre praktischen Fähigkeiten im Projektmanagement-Bereich und zur Selbstorganisation

Verwendbarkeit:

In der Bachelorarbeit finden verschiedene Aspekte des Recherchierens, Experimentierens und Formulierens anwendung, welche in vielen vorangegangenen Veranstaltungen geübt wurden. Dies schließt insbesondere das wissenschaftliche Arbeiten, Seminarvorträge und praktische Übungen mit ein.

Voraussetzungen und Empfehlungen:

Fachliche und persönliche Kompetenzen der zurückliegenden Semester, insbesondere themenabhängig fachverwandte Module und Seminar

Literatur:

themenabhängig

- Angewandte Wirtschaftspsychologie & Data Analytics Bachelor of Science Version 25.0 (7. Semester)
- Betriebswirtschaftslehre Bachelor of Science Version 23.0 (7. Semester)
- Computer Games Technology Bachelor of Science Version 23.0 (7. Semester)
- Data Science & Artificial Intelligence Bachelor of Science Version 25.0 (7. Semester)
- E-Commerce Bachelor of Science Version 23.0 (7. Semester)
- Informatik Bachelor of Science Version 25.0 (7. Semester)
- IT-Ingenieurwesen Bachelor of Science Version 25.0 (7. Semester)
- IT-Management & Consulting Bachelor of Science Version 25.0 (7. Semester)
- IT-Management / -Consulting & -Auditing Bachelor of Science Version 23.0 (7. Semester)
- Medieninformatik Bachelor of Science Version 25.0 (7. Semester)
- Smart Technology Bachelor of Science Version 24.0 (7. Semester)
- Technische Informatik Bachelor of Science Version 24.0 (7. Semester)
- Wirtschaftsinformatik Bachelor of Science Version 23.0 (7. Semester)
- Wirtschaftsingenieurwesen Bachelor of Science Version 25.0 (7. Semester)

♦ MB159 – Praktikum

Verantwortliche:	Sergei Sawitzki
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB051 – Praktikum	Praktikum	Praktikumsbericht / Protokoll	20 Seiten		17.0	Bestanden/nicht Bestanden	iedes Semester	510 Stunden	Sergei Sawitzki

Lehrinhalte:

- Sammeln von beruflichen Erfahrungen in einem der durch die Prüfungsverfahrensordnung vorgesehenen Tracks:
 - o Business-Track, berufliche Tätigkeit in einem etablierten Unernehmen
 - o Start-up-Track, Vorbereitung der Gründung eines eigenen Unternehmens
 - o Project-Track, Teilnahme an einem größeren Projekt mit wechselnden Projektteams
 - o Science-Track, detaillierte und forschungsorientierte Auseinandersetzung mit einem wissenschaftlichen Themenkomple
- Erstellung eines Praktikumsberichts
- Das berufsbildende Praktikum ist unabhängig vom Track im Umfang von 12 Wochen zu absolvieren

Qualifikationsziele:

Die Studierenden

- erweitern ihre sozialen Kompetenzen und ihre Kontakte zu Unternehmen. Beides können sie nach ihrem Studiumsabschluss gewinnbringend für eine Bewerbung oder das Einleben bei ihrem späteren Arbeitgeber bzw. Gründung eines eigenen Unternehmens verwenden
- können Fach- und Methodenkompetenz auf ausgewählte Abläufe und Problemstellungen des betrieblichen Alltags zu übertragen

Verwendbarkeit:

Die erworbenen Fähigkeiten und Kenntnisse stellen die Grundlage für die Bachelor-Thesis dar.

Voraussetzungen und Empfehlungen:

Fachliche und persönliche Kompetenzen der zurückliegenden Semester, insbesondere themenabhängig fachverwandte Module und "Soft Skills"

Literatur:

themenabhängig

- Angewandte Wirtschaftspsychologie & Data Analytics Bachelor of Science Version 25.0 (7. Semester)
- Betriebswirtschaftslehre Bachelor of Science Version 23.0 (7. Semester)
- Computer Games Technology Bachelor of Science Version 23.0 (7. Semester)
- Data Science & Artificial Intelligence Bachelor of Science Version 25.0 (7. Semester)
- E-Commerce Bachelor of Science Version 23.0 (7. Semester)
- Informatik Bachelor of Science Version 25.0 (7. Semester)
- IT-Ingenieurwesen Bachelor of Science Version 25.0 (7. Semester)
- IT-Management & Consulting Bachelor of Science Version 25.0 (7. Semester)
- IT-Management / -Consulting & -Auditing Bachelor of Science Version 23.0 (7. Semester)
- Medieninformatik Bachelor of Science Version 25.0 (7. Semester)
- Smart Technology Bachelor of Science Version 24.0 (7. Semester)
- Technische Informatik Bachelor of Science Version 24.0 (7. Semester)
- Wirtschaftsinformatik Bachelor of Science Version 23.0 (7. Semester)
- Wirtschaftsingenieurwesen Bachelor of Science Version 25.0 (7. Semester)

♦ MB160 – Bachelor-Kolloquium

Verantwortliche:	Sergei Sawitzki
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB052 – Bachelor-Kolloquium	Kolloguium	Kolloquium		20 Min.	1.0	Drittelnoten	iedes Semester	30 Stunden	Sergei Sawitzki

Lehrinhalte:

- nach Thema der Bachelor-Arbeit unterschiedlich
- Fachvortrag über das Ergebnis der Bachelor-Arbeit
- Diskussion der Qualität der gewählten Lösung
- Fragen und Diskussion zum Thema der Bachelor-Arbeit und verwandten Gebieten

Qualifikationsziele:

Die Studierenden ...

- besitzen die Fähigkeit der konzentrierten Darstellung eines intensiv bearbeiteten Fachthemas.
- verfestigen die Kompetenz, eine fachliche Diskussion über eine Problemlösung und deren Qualität zu führen.
- verfügen über ausgeprägte Kommunikations- und Präsentationsfähigkeiten.

1	701	PXX	701	Ŋ,	hя	wl.	70	:+	
•	<i>(</i>	rw	ær	H	ŊЯ	ırı	ĸe	ш	1

Keine.

Voraussetzungen und Empfehlungen:

Fachliche und persönliche Kompetenzen der zurückliegenden Semester, insbesondere themenabhängig fachverwandte Module und Bachelor-Thesis

Literatur:

themenabhängig

- Angewandte Wirtschaftspsychologie & Data Analytics Bachelor of Science Version 25.0 (7. Semester)
- Betriebswirtschaftslehre Bachelor of Science Version 23.0 (7. Semester)
- Computer Games Technology Bachelor of Science Version 23.0 (7. Semester)
- Data Science & Artificial Intelligence Bachelor of Science Version 25.0 (7. Semester)
- E-Commerce Bachelor of Science Version 23.0 (7. Semester)
- Informatik Bachelor of Science Version 25.0 (7. Semester)
- IT-Ingenieurwesen Bachelor of Science Version 25.0 (7. Semester)
- IT-Management & Consulting Bachelor of Science Version 25.0 (7. Semester)
- IT-Management / -Consulting & -Auditing Bachelor of Science Version 23.0 (7. Semester)
- Medieninformatik Bachelor of Science Version 25.0 (7. Semester)
- Smart Technology Bachelor of Science Version 24.0 (7. Semester)
- Technische Informatik Bachelor of Science Version 24.0 (7. Semester)
- Wirtschaftsinformatik Bachelor of Science Version 23.0 (7. Semester)
- Wirtschaftsingenieurwesen Bachelor of Science Version 25.0 (7. Semester)