Equational theories

Terence Tao

September 26, 2024

Introduction

Definition 1. A Magma is a set G equipped with a binary operation $\circ: G \times G \to G$.

Equations

```
Definition 2 (Equation 1). Equation 1 is the law x = x.
Definition 3 (Equation 2). Equation 2 is the law x = y.
Definition 4 (Equation 3). Equation 3 is the law x = x \circ x.
Definition 5 (Equation 4). Equation 4 is the law x = x \circ y.
Definition 6 (Equation 5). Equation 5 is the law x = y \circ x.
Definition 7 (Equation 6). Equation 6 is the law x = y \circ y.
Definition 8 (Equation 7). Equation 7 is the law x = y \circ z.
Definition 9 (Equation 8). Equation 8 is the law x = x \circ (x \circ x).
Definition 10 (Equation 42). Equation 42 is the law x \circ y = x \circ z.
Definition 11 (Equation 43). Equation 43 is the law x \circ y = y \circ x.
Definition 12 (Equation 46). Equation 46 is the law x \circ y = z \circ w.
Definition 13 (Equation 387). Equation 387 is the law x \circ y = (y \circ y) \circ x.
Definition 14 (Equation 4512). Equation 4512 is the law x \circ (y \circ z) = (x \circ y) \circ z.
Definition 15 (Equation 4513). Equation 4513 is the law x \circ (y \circ z) = (x \circ y) \circ w.
Definition 16 (Equation 4552). Equation 4552 is the law x \circ (y \circ z) = (x \circ w) \circ u.
Definition 17 (Equation 4582). Equation 4582 is the law x \circ (y \circ z) = (w \circ u) \circ v.
```

Implications

To reduce clutter, trivial or very easy implications will not be displayed here.

Theorem 18 (387 implies 43). Definition 13 implies Definition 11.

Proof. (From MathOverflowhttps://mathoverflow.net/a/450905/766). By Definition 13, one has the law

$$(x \circ x) \circ y = y \circ x. \tag{3.1}$$

Specializing to $y = x \circ x$, we conclude

$$(x \circ x) \circ (x \circ x) = (x \circ x) \circ x$$

and hence by another application of (13) we see that $x \circ x$ is idempotent:

$$(x \circ x) \circ (x \circ x) = x \circ x. \tag{3.2}$$

Now, replacing x by $x \circ x$ in (3.1) and then using (3.2) we see that

$$(x \circ x) \circ y = y \circ (x \circ x)$$

so in particular $x \circ x$ commutes with $y \circ y$:

$$(x \circ x) \circ (y \circ y) = (y \circ y) \circ (x \circ x). \tag{3.3}$$

Also, from two applications of (3.1) one has

$$(x \circ x) \circ (y \circ y) = (y \circ y) \circ x = x \circ y.$$

Thus (3.3) simplifies to $x \circ y = y \circ x$, which is Definition 11.

Counterexamples

Theorem 19 (46 does not imply 3). Definition 12 does not imply Definition 4.
<i>Proof.</i> Use the natural numbers $\mathbb N$ with operation $x \circ y := 0$.
Theorem 20 (3 does not imply 4582). Definition 4 does not imply Definition 17.
<i>Proof.</i> Use the natural numbers $\mathbb N$ with operation $x \circ y := x$.
Theorem 21 (3 does not imply 43). Definition 4 does not imply Definition 11.
<i>Proof.</i> Use the natural numbers $\mathbb N$ with operation $x \circ y := x$.
Theorem 22 (Equation 4582 does not imply Equation 42). Definition 17 does not imply Definition 10.
<i>Proof.</i> Use the natural numbers $\mathbb N$ with operation $x \circ y$ equal to 1 if $x = y = 0$ and 2 otherwise. \square
Theorem 23 (Equation 4582 does not imply Equation 43). Definition 17 does not imply Definition 11.
<i>Proof.</i> Use the natural numbers $\mathbb N$ with operation $x\circ y$ equal to 3 if $x=1$ and $y=2$ and 4 otherwise.
Theorem 24 (Equation 42 does not imply Equation 43). Definition 10 does not imply Definition 11.
<i>Proof.</i> Use the natural numbers $\mathbb N$ with operation $x \circ y := x$.
Theorem 25 (Equation 42 does not imply Equation 4512). Definition 10 does not imply Definition 14.
<i>Proof.</i> Use the natural numbers $\mathbb N$ with operation $x \circ y := x+1$.
Theorem 26 (Equation 43 does not imply Equation 42). Definition 11 does not imply Definition 10.
<i>Proof.</i> Use the natural numbers $\mathbb N$ with operation $x \circ y := x + y$.
Theorem 27 (Equation 43 does not imply Equation 4512). Definition 11 does not imply Definition 14.

<i>Proof.</i> Use the natural numbers $\mathbb N$ with operation $x \circ y := x \cdot y + 1$.
Theorem 28 (Equation 4513 does not imply Equation 4552). Definition 15 does not imply Definition 16.
<i>Proof.</i> Use the natural numbers $\mathbb N$ with operation $x \circ y$ equal to 1 if $x = 0$ and $y \leq 2$, 2 if $x = 0$ and $y > 2$, and x otherwise.
Theorem 29 (Equation 4512 does not imply Equation 4513). Definition 14 does not imp Definition 15.
<i>Proof.</i> Use the natural numbers \mathbb{N} with operation $x \circ y := x + y$.