Intégration numérique (Introduction)

Pablo de Oliveira (pablo.oliveira@uvsq.fr) 2022-2023

M1 Calcul Haute Performance Simulation, Calcul Numérique

Sommaire

Problème de Cauchy

Méthode d'Euler explicite

Analyse d'erreur et convergence

Stabilité pour un système linéaire

Méthode d'Euler implicite

Références

Problème de Cauchy

Problème de Cauchy

Équation différentielle du premier ordre

$$\begin{cases} y' = f(t, y(t)) \\ y(t_0) = y_0, t_0 \in I \end{cases}$$

avec une fonction f définie sur $I \times \mathbb{R}^p \to \mathbb{R}^p$ où I est un intervalle de \mathbb{R} .

Si p > 1 il s'agit d'un système différentiel. Dans la suite on prendra p = 1.

Théorème Cauchy-Lipschitz

Le problème de Cauchy **admet une unique solution** y(t) si:

- f(t, y(t)) est une fonction continue
- f(t, y(t)) est Lipschitzienne en y, c'est à dire

$$\forall t, y_1, y_2, \exists k > 0, \qquad |f(t, y_1) - f(t, y_2)| \le k|y_1 - y_2|$$

Objectif: Calculer numériquement la solution y(t) sur l'intervalle $t \in [t_0, t_0 + T]$

Exemple

- Problème de Cauchy: y' = y, y(0) = 1
- Solution analytique: $y(t) = e^t$
- Methode numérique pour tracer la solution lorsqu'une solution analytique n'est pas connue?

Méthode d'Euler explicite

Exemple

Idée: On simule la solution en se déplaçant à partir du point initial avec un *pas d'intégration h*.

Figure 1: Champ vectoriel pour y' = f(t, y(t)) = y(t)

Exemple

Figure 2: h = 0.25

Intégration numérique

$$\int_{t}^{t+h} y'(t)dt = y(t+h) - y(t)$$

$$y(t+h) = y(t) + \int_{t}^{t+h} y'(t)dt$$

$$y(t+h) = y(t) + \int_{t}^{t+h} f(t, y(t))dt \qquad \text{car } y' = f(t, y(t))$$

Méthode des rectangles

On approxime l'aire sous la courbe par un rectangle.

Méthode d'Euler explicite

```
def euler(f, y0, t0, h, n):
    s, y, t = [], y0, t0
    for i in range(n):
        v = v + f(v, t) * h
        t = t + h
        s.append((t, y))
    return s
# application: v' = v
f = lambda y, t: y
v0 = 1.0
t.0 = 0.0
h = .25
solution = euler(f, y0, t0, h, 7)
```

Méthode d'Euler explicite: y' = y

i	t	\widetilde{y}
1	0.25	1.250000
2	0.50	1.562500
3	0.75	1.953125
4	1.00	2.441406
5	1.25	3.051758
6	1.50	3.814697
7	1.75	4.768372

Figure 3: h = 0.25

Analyse d'erreur et convergence

Analyse d'erreur pour la méthode itérative

- Soit y(t) la vraie solution du problème de Cauchy.
- Soit \tilde{y}_n la valeur approchée à l'étape n.
- · Par exemple pour les premières étape d'Euler explicite,

$$\widetilde{y}_1 = y(t_0) + h.f(t_0, y_0)$$
 $\widetilde{y}_2 = \widetilde{y}_1 + h.f(t_1, \widetilde{y}_1)$ avec $t_1 = t_0 + h$
 $\widetilde{y}_3 = \widetilde{y}_2 + h.f(t_2, \widetilde{y}_2)$ avec $t_2 = t_0 + 2h$

. .

Erreurs locales et globale

• Erreur locale (à chaque étape n)

$$e_n = y(t_n) - \widetilde{y}_n$$

• Erreur globale sur l'intervalle $[t_0, t_0 + T]$

$$\epsilon(T,h) = \max_{0 \leqslant n \leqslant \frac{T}{h}} |e_n|$$

Origine des erreurs

- · Erreurs de méthode (schéma numérique):
 - Erreur locale de troncature: le pas d'intégration est une approximation au premier ordre de la fonction.
 - À chaque nouvelle étape f est évalué sur $\tilde{y}_n \neq y(t_n)$. Il y a un « décalage » du point sur lequel on évalue la dérivée.
- · Erreurs numériques:
 - Dues à l'utilisation de nombres flottants (arrondis, cancellation).

Erreur locale de troncature (interprétation graphique)

Figure 4: Erreur de troncature \simeq Aire du triangle $=\frac{h\times h.f'(t_0)}{2}=\frac{h^2}{2}.f'(t_0)$

Erreur locale de troncature (développement limité)

Avec un développement de Taylor:

$$y(t_0 + h) = y(t_0) + h.y'(t_0) + \frac{h^2}{2}.y''(t_0) + \frac{h^3}{6}.y'''(t_0) + O(h^3)$$

$$= \underbrace{y(t_0) + h.f(t_0, y_0)}_{\text{M\'ethode d'Euler}} + \underbrace{\frac{h^2}{2}.f'(t_0, y_0) + \frac{h^3}{6}.f''(t_0, y_0) + O(h^3)}_{\text{Erreur de troncature}}$$

15

Convergence de la méthode

La méthode numérique est convergente si

$$\lim_{h\to 0} \epsilon(h) = \lim_{h\to 0} \max_{0\leqslant n\leqslant \frac{T}{h}} |e_n| = 0$$

C'est à dire, si pour un pas d'intégration qui tends vers 0, l'erreur globale converge aussi vers 0.

Convergence de la méthode d'Euler explicite

Pour f(t, y(t)) Lipschitzienne en y, on montre que la **méthode** d'Euler explicite est convergente.

C'est une méthode du premier ordre, car la convergence est linéaire, $\epsilon(h) \sim O(h)$.

Nous détaillerons la preuve en TD.

Stabilité pour un système linéaire

Étude d'un système linéaire quand $t o\infty$

- Pour $\lambda < 0$, on considère le problème $y' = \lambda y$, $y(0) = y_0 = 1$
- · La solution analytique est: $y(t) = e^{\lambda t} \xrightarrow[t \to \infty]{} 0$
- Pour-quelles valeurs de h aura t'on $\widetilde{y}_n \xrightarrow[n \to \infty]{} 0$?

$$\begin{split} \widetilde{y}_{n+1} = & \widetilde{y}_n + h\lambda \widetilde{y}_n \\ \widetilde{y}_{n+1} = & (1 + \lambda h)\widetilde{y}_n \quad \text{(suite géométrique)} \\ \widetilde{y}_{n+1} = & (1 + \lambda h)^n y_0 \end{split}$$

Converge si $|1 + \lambda h| < 1$, donc pour $h < -\frac{2}{\lambda}$.

Étude d'un système linéaire quand $t \to \infty$

Figure 5: Pour $\lambda = -1$ on obtient y' = -y qui converge pour h < 2

Méthode d'Euler implicite

Euler implicite

Plutôt que en t_0 , on considère le rectangle en $f(t_0 + h)$.

Euler implicite

$$\widetilde{y}_{n+1} = \widetilde{y}_n + f(\widetilde{y}_{n+1}).h$$

- Cette méthode est *implicite* car il faut résoudre l'équation d'inconnue \tilde{y}_{n+1} .
- · Mais parfois plus stable que la version explicite.

Euler implicite sur le système linéaire pour $t o \infty$

Pour
$$\lambda < 0$$
, $y' = \lambda y$, $y(0) = y_0 = 1$

$$\widetilde{y}_{n+1} = \widetilde{y}_n + f(\widetilde{y}_{n+1}).h$$

$$\widetilde{y}_{n+1} = \widetilde{y}_n + \lambda h \widetilde{y}_{n+1}$$

$$\widetilde{y}_{n+1} = (\frac{1}{1 - \lambda h})\widetilde{y}_n$$

$$\widetilde{y}_{n+1} = \left(\frac{1}{1 - \lambda h}\right)^n y_0$$

$$-\lambda h > 0 \Rightarrow 1 - \lambda h > 1 \Rightarrow \frac{1}{1 - \lambda h} < 1$$

Euler implicite converge lorsque $t \to \infty$ pour toute valeur de h.

Étude d'un système linéaire quand $t \to \infty$ (Euler implicite)

Figure 6: $\lambda = -1$ convergence pour tout h

Euler implicite pour f quelconque

$$\widetilde{y}_{n+1} = \widetilde{y}_n + f(\widetilde{y}_{n+1}).h$$

- Il faut résoudre l'équation d'inconnue \widetilde{y}_{n+1} à chaque étape.
- Plus couteuse en calcul! Pour f quelconque besoin d'un algorithme itératif comme Newton-Rhapson pour résoudre l'équation.

Références

Références

Simulation interactive: https://mathlets.org/mathlets/eulers-method/