

#### **MICROCONTROLADORES**

#### Práctica No. 12. Interrupciones.

#### 1. Objetivo

- Display LCD alfanumérico 2x16.
- Modulo PCF8574.
- PUSHBUTTON.

#### 2. Material y Equipo.

- Computador o laptop con el STM32CubeIDE.
- Un Display LCD alfanumérico.
- Un módulo PC8574.
- Un PUSHBUTTON.

#### 3. Marco de Referencia.

Las interrupciones son una herramienta indispensable en cualquier microcontrolador pues estas nos permiten liberar al CPU de estar verificando constantemente el estado de una bandera de algún periférico. Las interrupciones son asíncronas y pueden ocurrir en cualquier momento y cuando ocurren el CPU termina de ejecutar la última instrucción que estuviera ejecutando y guarda en el Stack la dirección de la siguiente instrucción que va a ejecutar después de retornar de la interrupción una vez guardada esta dirección se guarda también el contexto actual de ejecución y brinca al vector de la interrupción detectada y dentro de ese vector hay un salto a una rutina especial llamada Rutina de Servicio a la Interrupción (ISR) donde se debe ejecuta un código muy corto para reducir la latencia de la interrupción y al finalizar se limpia la bandera que provoco la interrupción y el microcontrolador regresa al programa principal en la última instrucción que se iba a ejecutar y continua el flujo normal del programa.



Organismo Público Descentralizado del Gobierno del Estado de Coahuila

Los STM32 manejar algo llamado excepción e interrupciones. Las excepciones son interrupciones especiales y tiene la mayor prioridad dentro de la tabla de interrupciones y dicha prioridad no se puede cambiar, para poder servir tanto a las interrupciones como a las excepciones los procesadores ARM tiene un controlador de excepciones especial llamado NVIC (Nested Vectored Interrupt Controller) este controlador esta solo disponible en los microcontroladores ARM Cortex-M para los procesadores ARM Cortex-A se deja al fabricante del procesador agregar su propio controlador de interrupciones. El NVIC se encarga de dar servicio a las interrupciones que ocurren dentro y fuera del microcontrolador, tales como las interrupciones externas EXTI, USART, SPI, Timers, etc.

La siguiente imagen muestra la estructura simplificada del NVIC.



La tabla de interrupciones según la hoja de datos para el STM32F103C8T6 se muestra a continuación.



| Position | Priority | Type of priority | Acronym       | Description                                                                                    | Address                      |
|----------|----------|------------------|---------------|------------------------------------------------------------------------------------------------|------------------------------|
| -        | -        | -                | -             | Reserved                                                                                       | 0x0000_0000                  |
| -        | -3       | fixed            | Reset         | Reset                                                                                          | 0x0000_0004                  |
| -        | -2       | fixed            | NMI           | Non maskable interrupt. The RCC<br>Clock Security System (CSS) is<br>linked to the NMI vector. | 0x0000_0008                  |
| -        | -1       | fixed            | HardFault     | All class of fault                                                                             | 0x0000_000C                  |
| -        | 0        | settable         | MemManage     | Memory management                                                                              | 0x0000_0010                  |
| 3.       | 1        | settable         | BusFault      | Prefetch fault, memory access fault                                                            | 0x0000_0014                  |
| -        | 2        | settable         | UsageFault    | Undefined instruction or illegal state                                                         | 0x0000_0018                  |
| -        | -        | -                | -             | Reserved                                                                                       | 0x0000_001C -<br>0x0000_002B |
| -        | 3        | settable         | SVCall        | System service call via SWI instruction                                                        | 0x0000_002C                  |
| -        | 4        | settable         | Debug Monitor | Debug Monitor                                                                                  | 0x0000_0030                  |
| -        | -        | -                | -             | Reserved                                                                                       | 0x0000_0034                  |
| -        | 5        | settable         | PendSV        | Pendable request for system service                                                            | 0x0000_0038                  |
| -        | 6        | settable         | SysTick       | System tick timer                                                                              | 0x0000_003C                  |
| 0        | 7        | settable         | WWDG          | Window watchdog interrupt                                                                      | 0x0000_0040                  |
| 1        | 8        | settable         | PVD           | PVD through EXTI Line detection<br>interrupt                                                   | 0x0000_0044                  |
| 2        | 9        | settable         | TAMPER        | Tamper interrupt                                                                               | 0x0000_0048                  |
| 3        | 10       | settable         | RTC           | RTC global interrupt                                                                           | 0x0000_004C                  |
| 4        | 11       | settable         | FLASH         | Flash global interrupt                                                                         | 0x0000_0050                  |
| 5        | 12       | settable         | RCC           | RCC global interrupt                                                                           | 0x0000_0054                  |
| 6        | 13       | settable         | EXTI0         | EXTI Line0 interrupt                                                                           | 0x0000_0058                  |
| 7        | 14       | settable         | EXTI1         | EXTI Line1 interrupt                                                                           | 0x0000_005C                  |
| 8        | 15       | settable         | EXTI2         | EXTI Line2 interrupt                                                                           | 0x0000_0060                  |
| 9        | 16       | settable         | EXTI3         | EXTI Line3 interrupt                                                                           | 0x0000_0064                  |
| 10       | 17       | settable         | EXTI4         | EXTI Line4 interrupt                                                                           | 0x0000_0068                  |
| 11       | 18       | settable         | DMA1_Channel1 | DMA1 Channel1 global interrupt                                                                 | 0x0000_006C                  |
| 12       | 19       | settable         | DMA1_Channel2 | DMA1 Channel2 global interrupt                                                                 | 0x0000_0070                  |
| 13       | 20       | settable         | DMA1_Channel3 | DMA1 Channel3 global interrupt                                                                 | 0x0000_0074                  |



# Universidad Tecnológica de Torreón Organismo Público Descentralizado del Gobierno del Estado de Coahuila

| 14 | 21 | settable | DMA1_Channel4      | DMA1 Channel4 global interrupt                         | 0x0000_0078 |
|----|----|----------|--------------------|--------------------------------------------------------|-------------|
| 15 | 22 | settable | DMA1_Channel5      | DMA1 Channel5 global interrupt                         | 0x0000_007C |
| 16 | 23 | settable | DMA1_Channel6      | DMA1 Channel6 global interrupt                         | 0x0000_0080 |
| 17 | 24 | settable | DMA1_Channel7      | DMA1 Channel7 global interrupt                         | 0x0000_0084 |
| 18 | 25 | settable | ADC1_2             | ADC1 and ADC2 global interrupt                         | 0x0000_0088 |
| 19 | 26 | settable | USB_HP_CAN_<br>TX  | USB High Priority or CAN TX interrupts                 | 0x0000_008C |
| 20 | 27 | settable | USB_LP_CAN_<br>RX0 | USB Low Priority or CAN RX0 interrupts                 | 0x0000_0090 |
| 21 | 28 | settable | CAN_RX1            | CAN RX1 interrupt                                      | 0x0000_0094 |
| 22 | 29 | settable | CAN_SCE            | CAN SCE interrupt                                      | 0x0000_0098 |
| 23 | 30 | settable | EXTI9_5            | EXTI Line[9:5] interrupts                              | 0x0000_009C |
| 24 | 31 | settable | TIM1_BRK           | TIM1 Break interrupt                                   | 0x0000_00A0 |
| 25 | 32 | settable | TIM1_UP            | TIM1 Update interrupt                                  | 0x0000_00A4 |
| 26 | 33 | settable | TIM1_TRG_COM       | TIM1 Trigger and Commutation interrupts                | 0x0000_00A8 |
| 27 | 34 | settable | TIM1_CC            | TIM1 Capture Compare interrupt                         | 0x0000_00AC |
| 28 | 35 | settable | TIM2               | TIM2 global interrupt                                  | 0x0000_00B0 |
| 29 | 36 | settable | TIM3               | TIM3 global interrupt                                  | 0x0000_00B4 |
| 30 | 37 | settable | TIM4               | TIM4 global interrupt                                  | 0x0000_00B8 |
| 31 | 38 | settable | I2C1_EV            | I <sup>2</sup> C1 event interrupt                      | 0x0000_00BC |
| 32 | 39 | settable | I2C1_ER            | I <sup>2</sup> C1 error interrupt                      | 0x0000_00C0 |
| 33 | 40 | settable | I2C2_EV            | I <sup>2</sup> C2 event interrupt                      | 0x0000_00C4 |
| 34 | 41 | settable | I2C2_ER            | I <sup>2</sup> C2 error interrupt                      | 0x0000_00C8 |
| 35 | 42 | settable | SPI1               | SPI1 global interrupt                                  | 0x0000_00CC |
| 36 | 43 | settable | SPI2               | SPI2 global interrupt                                  | 0x0000_00D0 |
| 37 | 44 | settable | USART1             | USART1 global interrupt                                | 0x0000_00D4 |
| 38 | 45 | settable | USART2             | USART2 global interrupt                                | 0x0000_00D8 |
| 39 | 46 | settable | USART3             | USART3 global interrupt                                | 0x0000_00DC |
| 40 | 47 | settable | EXTI15_10          | EXTI Line[15:10] interrupts                            | 0x0000_00E0 |
| 40 | 41 | Settable | EX1115_10          |                                                        | 0X0000_00E0 |
| 41 | 48 | settable | RTCAlarm           | RTC alarm through EXTI line interrupt                  | 0x0000_00E4 |
| 42 | 49 | settable | USBWakeup          | USB wakeup from suspend through<br>EXTI line interrupt | 0x0000_00E8 |
| 43 | 50 | settable | TIM8_BRK           | TIM8 Break interrupt                                   | 0x0000_00EC |
| 44 | 51 | settable | TIM8_UP            | TIM8 Update interrupt                                  | 0x0000_00F0 |
| 45 | 52 | settable | TIM8_TRG_COM       | TIM8 Trigger and Commutation interrupts                | 0x0000_00F4 |
| 46 | 53 | settable | TIM8_CC            | TIM8 Capture Compare interrupt                         | 0x0000_00F8 |
| 47 | 54 | settable | ADC3               | ADC3 global interrupt                                  | 0x0000_00FC |
| 48 | 55 | settable | FSMC               | FSMC global interrupt                                  | 0x0000_0100 |
| 49 | 56 | settable | SDIO               | SDIO global interrupt                                  | 0x0000_0104 |
| 50 | 57 | settable | TIM5               | TIM5 global interrupt                                  | 0x0000_0108 |
| 51 | 58 | settable | SPI3               | SPI3 global interrupt                                  | 0x0000_010C |
| 52 | 59 | settable | UART4              | UART4 global interrupt                                 | 0x0000_0110 |
| 53 | 60 | settable | UART5              | UART5 global interrupt                                 | 0x0000_0114 |
| 54 | 61 | settable | TIM6               | TIM6 global interrupt                                  | 0x0000_0118 |
| 55 | 62 | settable | TIM7               | TIM7 global interrupt                                  | 0x0000_011C |
| 56 | 63 | settable | DMA2_Channel1      | DMA2 Channel1 global interrupt                         | 0x0000_0120 |
| 57 | 64 | settable | DMA2_Channel2      | DMA2 Channel2 global interrupt                         | 0x0000_0124 |
| 58 | 65 | settable | DMA2 Channel3      | DMA2 Channel3 global interrupt                         | 0x0000_0128 |
| 59 | 66 | settable | DMA2_Channel4_5    | DMA2 Channel4 and DMA2<br>Channel5 global interrupts   | 0x0000_012C |

Para saber mejor cuales interrupciones son las que soporta el STM32F103C8T6 podemos consultar el archivo



Organismo Público Descentralizado del Gobierno del Estado de Coahuila

"startup\_stm32f103c8tx.s" en la carpeta "Core/Startup" dentro del proyecto.

Como se pude ver en la tabla anterior cada excepción (interrupción) tiene una prioridad la excepción con el número de prioridad más baja es la excepción con mayor prioridad sobre otras con numero de prioridad mas alto.

Los procesadores Cortex-M3 y Cortex-M4 tienen un registro de prioridades donde nosotros podemos cambiar la prioridad de alguna excepción para que sea atendida con mayor prioridad sobre otras este registro es el IPR y es de ocho bits de los cuales solo se utilizan los 4 bits mas significativos de este registro para la prioridad teniendo las prioridades 0x10, 0x20, 0x30, 0x40, 0x50, 0x,60, 0x70, 0x80, 0x90, 0xA0, 0xB0, 0xC0, 0xD0, 0xE0 y 0xF0. De este mismo registro nosotros podemos partir estos bits y asignar 1, 2 o 3 de los 4 bits para subprioridades. Las sub-prioridades solo dice si dos interrupciones que están en espera cual de esas dos tiene la sub-prioridad de mayor prioridad es reiniciada primero.

Cada pin del STM32 tiene la capacidad de emitir una interrupción por cambio de estado de alguno de sus pines, a estas interrupciones se les conoce como interrupciones externas (EXTI). Estas interrupciones se agrupan por ejemplo los pines PAO, PBO y PCO se agrupan al EXTIO por lo cual no se puede usar el PAO y PBO con interrupción externa al mismo tiempo como se muestra en la siguiente figura.



Organismo Público Descentralizado del Gobierno del Estado de Coahuila



Lo primero que tenemos que hacer es habilitar la interrupción externa para habilitar cualquier interrupción las librerías HAL nos proporcionan la siguiente función.

```
void HAL_NVIC_EnableIRQ(IRQn_Type IRQn);
```

Esta función recibe como parámetro la interrupción que se desea habilitar en nuestro caso será "EXTIO\_IRQn", para deshabilitar cualquier interrupción tenemos la siguiente función.

```
void HAL_NVIC_DisableIRQ(IRQn_Type IRQn);
```

Por último, tenemos otra función para poder establecer la prioridad de las interrupciones.

```
void HAL_NVIC_SetPriority(IRQn_Type IRQn, uint32_t PreemptPriority, uint32_t SubPriority);
```

Esta función recibe como parámetros la interrupción (en nuestro caso EXTIO\_IRQn), el segundo parámetro es la prioridad que puede ser de 0 a 15 y por último la sub-prioridad que por el momento la vamos a manejar en 0.



Organismo Público Descentralizado del Gobierno del Estado de Coahuila

La configuración de la interrupción externa seria de la siguiente forma.

```
void MX_GPIO_Init(void)
{
    GPIO_InitTypeDef GPIO_InitStruct = {0};

    /* GPIO Ports Clock Enable */
    _HAL_RCC_GPIOD_CLK_ENABLE();
    _HAL_RCC_GPIOA_CLK_ENABLE();
    _HAL_RCC_GPIOB_CLK_ENABLE();

    /*Configure GPIO pin : PA0 */
    GPIO_InitStruct.Pin = GPIO_PIN_0;
    GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING;
    GPIO_InitStruct.Pull = GPIO_PULLDOWN;
    HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

    /* EXTI interrupt init*/
    HAL_NVIC_SetPriority(EXTIO_IRQn, 0, 0);
    HAL_NVIC_EnableIRQ(EXTIO_IRQn);
}
```

Podemos ver en el código anterior que en la opción "GPIO\_InstStruct.Mode = GPIO\_MODE\_IT\_RISING" con esta opción el STM32 esta esperando un cambio de Bajo a Alto para provocar una interrupción.

Las opciones que tenemos para configurar las interrupciones externas son las siguientes.

```
#define GPIO_MODE_IT_RISING
#define GPIO_MODE_IT_FALLING
#define GPIO_MODE_IT_RISING_FALLING
```

GPIO\_MODE\_IT\_RISING: Detecta el cambio de flanco de bajo a alto. GPIO\_MODE\_IT\_FALLING: Detecta el cambio de flanco de alto a bajo. GPIO\_MODE\_IT\_RISING\_FALLING: Detecta el cambio en ambos flancos.



Organismo Público Descentralizado del Gobierno del Estado de Coahuila

#### 4. Desarrollo y Procedimiento.

Se creará un proyecto en el STM32CubeIDE como se indicó anteriormente.

Damos click sobre el pin PAO y seleccionamos la opción "GPIO\_EXTIO" después en la columna izquierda vamos a "System Core/GPIO" donde haremos la siguiente configuración.



Después vamos a "System Core/NVIC" se nos muestra una tabla en la columna central como se muestra a continuación y lo único que hacemos en la columna "enable" de la tabla palomeamos la opción "EXTI line0 interrupt". La configuración deberá queda como se muestra en la siguiente imagen.



Organismo Público Descentralizado del Gobierno del Estado de Coahuila



#### El código de la práctica es el siguiente.

```
1 #include "main.h"
 2 #include "i2c.h"
 3 #include "gpio.h"
 4 #include "lcd.h"
 5 #include <stdio.h>
 7 char msg1[] = "Contador";
 8 char outStr[5];
 9 volatile uint8_t conta;
10 volatile uint8_t isrFlag;
11
12 void SystemClock_Config(void);
14<sup>⊕</sup> int main(void)
15 {
       HAL_Init();
16
17
        SystemClock_Config();
       MX_GPIO_Init();
18
19
       MX_I2C1_Init();
20
21
       Lcd_Init();
22
       Lcd_Gotoxy(1, 1);
        Lcd_Print(msg1);
23
       Lcd_Gotoxy(1, 2);
sprintf(outStr, "%3d", conta);
24
25
26
       Lcd_Print(outStr);
       while (1)
28
29
30
           if(isrFlag){
31
                isrFlag = 0;
                if(conta > 100)
32
33
                    conta = 0;
                sprintf(outStr, "%3d", conta);
34
               Lcd_Gotoxy(1, 2);
35
36
               Lcd_Print(outStr);
37
38
       }
39 }
```



Organismo Público Descentralizado del Gobierno del Estado de Coahuila

#### Función callback.

```
80 /* USER CODE BEGIN 4 */
810 void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin){
82    isrFlag = 1;
83    conta++;
84 }
85 /* USER CODE END 4 */
```

### 5. Esquemático del circuito.

El esquemático de la práctica se muestra a continuación.



# 6. Mejora

Modifique el programa para habilitar la interrupción externa (EXTI1) y usarla para hacer un contador ascendente y descendente.



# Universidad Tecnológica de Torreón Organismo Público Descentralizado del Gobierno del Estado de Coahuila

#### 7. Observaciones.

Esta sección es para que el alumno anote sus observaciones.

#### 8. Conclusiones.

Esta sección es para que el alumno anote sus conclusiones.

### 9. Importante.

La práctica deberá ser validad en el salón de clases antes de anexar el reporte al manual de prácticas. Una vez validad realizar el reporte de practica como se anteriormente y anexar al manual de prácticas que se entregara a final del curso.