Lambda Calculus and category theory

Valeran MAYTIE

Contents

1	Introduction	1
2	Categories	2
3	Functors	3
	Transformation 4.1 Post-composition	
	4.2 Pre-composition	5

1 Introduction

\mathbf{Boole}

- If you consider propositions (no quantifiers) of classical logic : $A ::= P|A \wedge B| \neg A|A \wedge B| \top |\bot|$
- Ordered by logical implication $A \leq B \Leftrightarrow A \Rightarrow B$, A implies B or $A \vdash B$

Observation $A \wedge B \leq A, A \wedge B \leq B$. moreover if $C \leq A$ and $C \leq B$ then $C \leq A \wedge B$ (for all proprieties) Which means that $A \wedge B$ define a infimum of A and B (greatest lower bound, or glb)

Definition
$$-A \Rightarrow B = (\neg A) \lor B = \neg (A \land \neg B).$$

Observation:

- $A \wedge (A \Rightarrow B) \leq B$
- $A \vee \neg A \leq \text{true}$
- $A \wedge \neg A \ge$ false

Frege Ideography (first proof system)

The idea that a mathematical proof is a mathematical object. In particular there may be different proofs of a proposition A formula.

$$\pi_1 \left(\neq \right) \pi_2 \qquad \qquad \begin{vmatrix} \mathbf{B} \\ \leq \mathbf{A} \end{vmatrix} \leq \mathbf{A}$$
 Lambek Lambek

Lambek understood connection between:

Definition – A monoid (M, \bullet, e) is a set M equipped with a binary operation $\bullet : M \times M \to M$ with a neutral element $e \in M_e : M^0 \to M$ satisfying two equations :

- (associativity) $\forall x, y, z \in M, x \bullet (y \bullet z) = (x \bullet y) \bullet z$
- (neutrality) $\forall x, \in M, x \bullet e = x = e \bullet x$

Example $-(\mathbb{N},+,0),(\mathbb{Z},+,0),(\mathbb{N},\times,1)$ and any group.

Free monoid on a set (=alphabet) A. A^* contains finite sequences of element $A w = [a_1 \dots a_n]$

- Binary operation is concatenation.
- Neutral element is the empty word.

2 Categories

Definition – A category C is a graph

- Whose nodes are called objects
- Whose edges are called morphism/maps/arrow.

The objects of C form a <u>class</u> of objects.

Every pair of object A, B comes with a set Hom(A, B) of morphisms $A \xrightarrow{f} B, f \in Hom(A, B)$ The graph is equipped with:

- A morphism $id_A \in Hom(A, A)$ for all object A of C
- A composition defined as a function $\circ_{A,B,C}: Hom(B,C) \times Hom(A,B) \to Hom(A,C)$ for every objects A,B,C of \mathcal{C}

It satisfying the following equation:

- associativity:

- neutrality:

$$\begin{array}{ccc} Id_A & & Id_B \\ \bigcap & & \bigcap \\ A & & f \end{array} \rightarrow \begin{array}{c} B \end{array}$$

$$Id_B \circ f = f = f \circ Id_A$$

 $\mathbf{Definition}$ — A small category is a category whose class of object is a set. What we defined as a category is called "locally small category".

Example – Ordered Set: Every ordered set A defines a category.

- Objects: elements of A
- Morphisms : $a \rightarrow b \Leftrightarrow a \leq b$

$$Hom(a,b) = \begin{cases} singleton & a \le b \\ \emptyset & \end{cases}$$

The composition is defined by transitivity:

$$\begin{array}{cccc}
a & \xrightarrow{a \leq b} & b & \xrightarrow{b \leq c} & c \\
a & & \leq & & c \\
\end{array}$$

Definition – An ordered category \mathcal{C} is a category where Hom(A,B) is a singleton for all object A,B of \mathcal{C} .

Observation – An ordered category is the same thing as a pre-order (= trans, refl).

Example - Monoid

- A category with one object *, M = Hom(*, *) define a monoid.
 - $\circ : Hom(*,*) \times Hom(*,*) \rightarrow Hom(*,*)$
 - $-id_* \in M = Hom(*,*)$ define the neutral element
- Conversely every monoid $M = (M, \bullet, e)$ defines a category $\mathcal{B}M$ or ΣM with:
 - One object *
 - Hom(*,*) = M
 - Composition defined by $y \circ x = y \bullet x$ with e, the neutral element.

$$\mathcal{B}(\mathbb{N},+,0) \qquad \begin{array}{c} 2 = 1 \circ 1 \\ \hline 0 \\ \\ \\ \end{array}$$

$$\begin{array}{c} \\ \\ \\ \\ \end{array}$$

$$\begin{array}{c} \\ \\ \\ \\ \end{array}$$

$$3 = 2 \circ 1$$

3 Functors

A functor $F: \mathcal{A} \to \mathcal{B}$ between category \mathcal{A} and \mathcal{B} is a graph homomorphism :

- F associates an object FA in $\mathcal B$ to every object A in $\mathcal A$
- F associates a morphism $FA \xrightarrow{Ff} FA'$ in \mathcal{B} to every morphism $A \xrightarrow{f} A'$ in \mathcal{A} .

It preserves composition and identity

Example – List of different application :

• A Functor $F: \mathcal{A} \to \mathcal{B}$ between order category is a same thing as a monotone (=order preserving) function. The reason is that the preservation of composition and identity holds in \mathcal{B} .

• A functor $F: \mathcal{B}M \to \mathcal{B}N$ between categories with one object is a function $H \to M$ which defined monoid homomorphism.

$$F(m \circ_M n) = Fm \circ_N Fn$$

- functor $F: \mathcal{B}M \to Set$ is a same thing as a $Set\ X = F(*)$ equipped with a family of functions $F_m: X \to X$ satisfying the equation:
 - $-Fm \circ Fn = F(m \bullet n)$
 - $-F(e) = Id_X$
 - \hookrightarrow Equivalently a function

$$M \times X \mapsto X$$

 $(m, x) \to m \bullet x$

Where we write $F_m(x) = m \bullet x$ and <u>action</u> of Mon X satisfying the equations of $(m \bullet_M n) \bullet x = m \bullet (m \bullet x)$ and $e \bullet x$.

Example – Given a finite set A (alphabet) of letters. We construct the monoid A^* of finite words on A equipped with concatenation as composition and empty element as neutral element. We write $[a_1 \ldots a_n] \in A^*$ and ϵ : the empty word noted []. A functor $\mathcal{B}A^* \xrightarrow{F} Set$ is a set Q = F(*) equipped with an action that it a function:

$$A^* \times Q \to Q$$

 $([w], q) \to [w] \bullet q$

Remark – this action $A \times Q \to Q$ is equivalent to the data of a family $\delta_a : Q \to Q$ of function called transition function of a deterministic total automata with Set of Q of states.

Exercise – Given a functor $\mathcal{B}M \to Set$ construct a category $\int F$ (Grothendieck construction) whose object are the elements of F(*), whose morphisms $x \xrightarrow{m} y$ are of the form $x \mapsto m \bullet x$. Show that $\int F$ comes with a functors $\pi : \int F \to \mathcal{B}M$.

4 Transformation

Suppose given functors $F,G:\mathcal{A}\to\mathcal{B}$ we want to "compare" F and G in the same way as we compare two monotone functions $f,g:(A,\leq_A)\to(B\leq_g)$ between ordered set.

In ordered Set we have:

$$f \leq_A g \Leftrightarrow \forall a \in A, f(a) \leq_B g(a)$$

Definition – A transformation $\theta: F \Rightarrow G: \mathcal{A} \to \mathcal{B}$ is a family of morphisms $\theta: FA \to GA$ in \mathcal{B} parametrised by the object A of \mathcal{A}

Notation - We write:

Fact – Every pair of categories \mathcal{A}, \mathcal{B} defined a category $\mathit{Trans}(\mathcal{A}, \mathcal{B})$ object are functors $F: A \to B$ and morphism are transformation $\theta: F \Rightarrow G$.

$$\psi: G \Rightarrow H$$

$$\varphi: F \Rightarrow G$$

$$A \xrightarrow{G \uparrow \psi} F$$

The composite transposition it's easy to define $(\psi \circ \varphi)_A = \psi_A \circ \varphi_A$ and the identity is $Id_F : F \Rightarrow F$ $(Id_F)_A = Id_{FA}$.

We can write this:

4.1 Post-composition

Suppose – Given a transformation $\varphi: F \Rightarrow G: \mathcal{A} \to \mathcal{B}$ and a functor $H: \mathcal{B} \to \mathcal{C}$

We define the transformation

$$H \circ_l \varphi_A : \mathcal{A} \mapsto \varphi$$

 $HFA \to HGA$

We can represent this transformation like this:

4.2 Pre-composition