

TEORIA OBLICZALNOŚCI

Marcin Piątkowski

Wykład 7

Problemy obliczeniowe i decyzyjne

Problem

 $\mathcal{P} = \text{,,Liczba naturalna } x \text{ jest parzysta''}$

Zbiór

$$Z_{\mathcal{P}} = \{0, 2, 4, 6, 8, 10, 12, 14, 16, \ldots\}$$

Język

 $L_{\mathcal{P}} = \left\{ w \in \{0,1\}^* : w \text{ jest binarnym zapisem liczby parzystej} \right\}$

Instancje pozytywne

 $2 \in Z_{P}$ $110100100 \in L_{P}$

Instancje negatywne

 $3 \notin Z_{\mathcal{P}}$ $101101 \notin L_{\mathcal{P}}$

Problem

$$\mathcal{P} = \mathsf{,,Graf}\ \mathit{G}\ \mathsf{jest}\ \mathsf{sp\acute{o}jny}$$

Zbiór

$$Z_{\mathcal{P}} = \{G : G \text{ jest grafem spójnym}\}$$

Język

 $L_{\mathcal{P}} = \left\{ w \in \Sigma^* : w \text{ jest reprezentacją/opisem grafu spójnego} \right\}$

Język

 $\mathcal{L}_{\mathcal{P}} = \left\{ w \in \Sigma^* : w \text{ jest reprezentacją/opisem grafu spójnego} \right\}$

Rozstrzygalność

Język $L\subseteq \Sigma^*$ nazywamy **rozstrzygalnym** jeśli istnieje maszyna Turinga, która zatrzymuje się dla każdego słowa $w\in \Sigma^*$ odpowiednio w stanie **akceptującym** jeśli $w\in L$ oraz w stanie **odrzucającym** jeśli $w\notin L$

Rozstrzygalność

Język $L\subseteq \Sigma^*$ nazywamy **rozstrzygalnym** jeśli istnieje maszyna Turinga, która zatrzymuje się dla każdego słowa $w\in \Sigma^*$ odpowiednio w stanie **akceptującym** jeśli $w\in L$ oraz w stanie **odrzucającym** jeśli $w\notin L$

Problem \mathcal{P}_1 : "liczba $x \in \mathbb{N}$ jest parzysta" jest **rozstrzygalny**

Problem \mathcal{P}_2 : "graf G jest spójny" jest rozstrzygalny

Problem " ϕ_{x} jest totalna" jest **nierozstrzygalny**

Problem " ϕ_x jest totalna" jest **nierozstrzygalny**

1 Przypuśćmy, że problem " $\phi_{ extstyle exts$

Problem " ϕ_x jest totalna" jest **nierozstrzygalny**

1 Przypuśćmy, że problem " $\phi_{ extstyle exts$

Problem " ϕ_{x} jest totalna" jest **nierozstrzygalny**

1 Przypuśćmy, że problem " $\phi_{ extstyle x}$ jest totalna" jest rozstrzygalny

$$g(x) = t(x,x) + 1 \implies \text{totalna i obliczalna}$$

$$g = \phi_i \implies g(y) = \phi_i(y) = t(i,y)$$

Problem " ϕ_x jest totalna" jest nierozstrzygalny

- Przypuśćmy, że problem " ϕ_x jest totalna" jest rozstrzygalny
- $2 t(x,y) = \begin{cases} \phi_x(y) & \text{jeśli } \phi_x \text{ jest totalna} \\ 0 & \text{jeśli } \phi_x \text{ nie jest totalna} \end{cases}$ totalna i obliczalna
- $g(x) = t(x,x) + 1 \implies \text{totalna i obliczalna}$ $g = \phi_i \implies g(y) = \phi_i(y) = t(i,y)$
- definicja obliczalność

Problem ", ϕ_x jest totalna" jest nierozstrzygalny

- Przypuśćmy, ze propier w jest rozstrzygalny
- $2 t(x,y) = \begin{cases} \phi_x(y) & \text{jeśli } \phi_x \text{ jest totalna} \\ 0 & \text{jeśli } \phi_x \text{ nie jest totalna} \end{cases}$ totalna i obliczalna
- $g(x) = t(x,x) + 1 \implies \text{totalna i obliczalna}$ $g = \phi_i \implies g(y) = \phi_i(y) = t(i,y)$
- definicja obliczalność

Uniwersytet Mikołaja Kopernika Marcin Piątkowski

Problem " $x \in D_x$ " jest nierozstrzygalny

Problem " $x \in D_x$ " jest nierozstrzygalny

1 Przypuśćmy, że problem " $x \in D_x$ " jest rozstrzygalny

Problem " $x \in D_x$ " jest nierozstrzygalny

Przypuśćmy, że problem " $x \in D_x$ " jest rozstrzygalny

Problem " $x \in D_x$ " jest nierozstrzygalny

1 Przypuśćmy, że problem " $x \in D_x$ " jest rozstrzygalny

 $3 \quad m \in D_m \quad \Longleftrightarrow \quad m \in D_g \quad \Longleftrightarrow \quad m \notin D_m$

Problem " $x \in D_x$ " jest nierozstrzygalny

- 1 Przypuśćmy, ze projekty przypuśćmy, ze projekty przypuśćmy, ze projekty przypuśćmy, ze przypuje za p
- - $3 \quad m \in D_m \quad \Longleftrightarrow \quad m \in D_g \quad \Longleftrightarrow \quad m \notin D_m$

Zbiory rekurencyjne

Zbiór $A \subseteq \mathbb{N}^n$ nazywamy **rekurencyjnym** jeśli jego funkcja charakterystyczna $c_A: \mathbb{N}^n \to \mathbb{N}$ określona następująco

$$c_A(\overline{x}) = \begin{cases} 1 & \overline{x} \in A \\ 0 & \overline{x} \notin A \end{cases}$$

jest obliczalna

- ✓ Zbiór liczb parzystych jest rekurencyjny
- X Zbiór $\{x \in \mathbb{N} : x \in D_x\}$ nie jest rekurencyjny

Uniwersytet Mikołaja Kopernika Marcin Piątkowski

Zbiory rekurencyjne

Zbiór $A\subseteq N^n$ nazywamy **rekurencyjnym** jeśli jego funkcja charakterystyczna $c_A:N^n\to N$ określona następująco

$$c_A(\overline{x}) = \begin{cases} 1 & \overline{x} \in A \\ 0 & \overline{x} \notin A \end{cases}$$

jest obliczalna

- ✓ Zbiór liczb parzystych jest rekurencyjny
- X Zbiór $\{x \in \mathsf{N}: x \in D_x\}$ nie jest rekurencyjny
- ✓ Zbiór nieskierowanych grafów spójnych jest rekurencyjny

Zbiory rekurencyjne

Własności zbiorów rekurencyjnych

Twierdzenie

Dla ustalonego $n \ge 1$ zbiór wszystkich podzbiorów rekurencyjnych $A \subseteq N^n$ jest zamknięty na operacje teoriomnogościowe

 \emptyset oraz N^n są rekurencyjne

 $oxtimes \operatorname{dopelnienie:} c_{N^n \setminus A}(\overline{x}) = 1 - c_A(\overline{x})$

suma: $c_{A \cup B}(\overline{x}) = \max(c_A(\overline{x}), c_B(\overline{x}))$

Redukcja problemu obliczeniowego

Redukcja A do B

Język (problem) $A\subseteq \Sigma_1^*$ jest redukowalny do języka (problemu) $B\subseteq \Sigma_2^*$ jeśli istnieje totalna i obliczalna funkcja $f:\Sigma_1^*\longrightarrow \Sigma_2^*$ taka, że

$$\forall_{x \in \Sigma_1^*} \ x \in A \iff f(x) \in B$$

Redukcja problemu obliczeniowego

Obserwacja

Jeśli problem A redukuje się do problemu B:

Możliwe jest wykorzystanie rozwiązania problemu B w celu rozwiązania problemu A

Rozwiązanie problemu A nie może być trudniejsze niż rozwiązanie problemu B

Twierdzenie

Niech A i B będą językami, zaś funkcja f redukcją A do B. Jeśli język B jest **rozstrzygalny**, również język A jest **rozstrzygalny**.

Twierdz Istnieje rozstrzygająca go maszyna M_B

Niech A i B będą językami sá funkcja f redukcją A do B. Jeśli język B jest rozstrzygalny, również język A jest rozstrzygalny.

Konstrukcja maszyny M_A rozstrzygającej A

 \bigcirc Oblicz wartość f(x)

 \square Uruchom maszynę M_B na wejściu f(x)

 $^{f oxtimes}$ Jako wynik zwróć wynik działania maszyny M_B

Twierdzenie

Niech A i B będą językami, zaś funkcja f redukcją A do B. Jeśli język B jest **rozstrzygalny**, również język A jest **rozstrzygalny**.

Konstrukcja maszyny M_A rozstrzygającej A

- \bigcirc Oblicz wartość f(x)
- \square Uruchom maszynę M_B na wejściu f(x)
- Jako wynik zwróć wynik działania maszyny M_B

Wniosek

Jeśli **nierozstrzygalny** problem *A* jest redukowalny do problemu *B*, to problem *B* również jest **nierozstrzygalny**

Twierdzenie

Niech A i B będą językami, zaś funkcja f redukcją A do B. Jeśli

Istnienie redukcji problemu A do problemu B nic nie mówi na temat rozstrzygalności żądnego z nich. Daje ona jedynie możliwość rozwiązania problemu A korzystając z rozwiązania problemu B oraz

uzakżnia rozstrzygalność A od rozstrzygalności B.

Jeśli **nierozstrzygalny** problem A jest redukowalny do problemu B, to problem B również jest nierozstrzygalny

Uniwersytet Mikołaja Kopernika Marcin Piątkowski

$$\mathcal{P}_{STOP} = \left\{ \left(M, x
ight) : ext{ maszyna } M ext{ zatrzymuje się na danych } x
ight\}$$

$$\mathcal{P}_{STOP} = \left\{ \left(M, x \right) : \text{ maszyna } M \text{ zatrzymuje się na danych } x
ight\}$$

Twierdzenie

Problem stopu P_{STOP} jest nierozstrzygalny

$$\mathcal{P}_{STOP} = \left\{ \left(M, x \right) : \text{ maszyna } M \text{ zatrzymuje się na danych } x \right\}$$

Twierdzenie

Problem stopu P_{STOP} jest nierozstrzygalny

$$\mathcal{P}_{ACC} \ = \ \Big\{ ig(M, x ig) : ext{Maszyna Turinga } M ext{ akceptuje dane wejciowe } x \Big\}$$

 \mathcal{P}_{ACC} \mathcal{P}_{STOP}

lstnieje rozstrzygająca go maszyna M_S

Przypuśćmy, że \mathcal{P}_{STOP} jest rozstrzygalny

Przypuśćmy, że \mathcal{P}_{STOP} jest rozstrzygalny

Maszyna M_A

Uruchom maszynę M_S na danych wejściowych (M,x)

lacksquare Jeśli maszyna M_S odrzuci $(M,x)\Longrightarrow \operatorname{odrzuć}$

If Jeśli maszyna M_S zaakceptuje $(M,x) \Longrightarrow$ symuluj działanie maszyny M na x

Zwróć wynik (akceptacja/odrzucenie) zwrócony przez maszynę M

2

Przypuśćmy, że \mathcal{P}_{STOP} jest rozstrzygalny

Maszyna M_A

- Uruchom maszynę M_S na danych wejściowych (M, x)
- lacksquare Jeśli maszyna M_S odrzuci $(M,x) \Longrightarrow {\color{red} {\sf odrzuć}}$
 - If Jeśli maszyna M_S zaakceptuje $(M,x) \Longrightarrow$ symuluj działanie maszyny M na x
- Zwróć wynik (akceptacja/odrzucenie) zwrócony przez maszynę *M*

3

Jeśli maszyna M_S rozstrzygałaby problem \mathcal{P}_{STOP} maszyna M_A rozstrzygałaby problem \mathcal{P}_{ACC} . Wiemy jednak, że problem \mathcal{P}_{ACC} jest nierozstrzygalny. Zatem również \mathcal{P}_{STOP} nie może być rozstrzygalny.

1 Przypuśćmy, że \mathcal{P}_{STOP} jest ze

Maszyna M_A

- Uruchom maszynę M_S na danych wejściowych (M, x)
- Jeśli maszyna M_S odrzuci $(M,x) \Longrightarrow \operatorname{odrzuć}$
 - If Jeśli maszyna M_S zaakceptuje $(M,x) \Longrightarrow$ symuluj działanie maszyny M na x
- Zwróć wynik (akceptacja/odrzucenie) zwrócony przez maszynę *M*

Jeśli maszyna M_S rozstrzygałaby problem \mathcal{P}_{STOP} maszyna M_A rozstrzygałaby problem \mathcal{P}_{ACC} . Wiemy jednak, że problem \mathcal{P}_{ACC} jest nierozstrzygalny. Zatem również \mathcal{P}_{STOP} nie może być rozstrzygalny.

Twierdzenie Rice'a

Twierdzenie Rice'a – wersja I

Niech $\mathcal B$ będzie właściwym i niepustym podzbiorem zbioru wszystkich funkcji obliczalnych. Wówczas problem " $\phi_x \in \mathcal B$ " jest nierozstrzygalny. Równoważnie, zbiór $B = \{x \in \mathbf N: \phi_x \in \mathcal B\}$ nie jest rekurencyjny.

Twierdzenie Rice'a – wersja II

Niech $\mathcal B$ będzie właściwym i niepustym podzbiorem zbioru wszystkich języków rozpoznawalnych przez maszyny Turinga. Wówczas problem " $L(M) \in \mathcal B$ " jest nierozstrzygalny (zbiór $\mathcal B = \{M: L(M) \in \mathcal B\}$ nie jest rekurencyjny).

Twierdzenie Rice'a – wersja III

Zbiór $B = \{x \in \mathbb{N} : \phi_x \in \mathcal{B}\}$ jest rekurencyjny (problem " $\phi_x \in \mathcal{B}$ " jest rozstrzygalny) wtedy i tylko wtedy, gdy $B = \emptyset$ lub $B = \mathbb{N}$.

Twierdzenie Rice'a – dowód

 \mathcal{B} – **niepusty** i **właściwy** podzbiór zbioru wszystkich języków rozpoznawalnych przez maszyny Turinga

Twierdzenie Rice'a – dowód

- ${\cal B}$ **niepusty** i **właściwy** podzbiór zbioru wszystkich języków rozpoznawalnych przez maszyny Turinga
- f 1 Bez straty ogólności możemy założyć, że język pusty $\emptyset
 otin \mathcal{B}$

W przeciwnym przypadku rozważamy dopełnienie ${\cal B}$

Twierdzenie Rice'a - dowód

- \mathcal{B} **niepusty** i **właściwy** podzbiór zbioru wszystkich języków rozpoznawalnych przez maszyny Turinga
- f 1 Bez straty ogólności możemy założyć, że język pusty $\emptyset
 otin \mathcal{B}$
- $\mathcal{B}
 eq \emptyset$, zatem istnieje język $L \in \mathcal{B}$ rozpoznawany przez maszynę M_L

Twierdzenie Rice'a – dowód

- ${\cal B}$ **niepusty** i **właściwy** podzbiór zbioru wszystkich języków rozpoznawalnych przez maszyny Turinga
- f 1 Bez straty ogólności możemy założyć, że język pusty $\emptyset
 otin \mathcal{B}$
- $oldsymbol{\mathcal{B}}
 eq\emptyset$, zatem istnieje język $L\in\mathcal{B}$ rozpoznawany przez maszynę M_L

Dla pary (M,x) tworzymy maszynę M_x działającą na wejściu y według schematu:

- Symuluj działanie maszyny M na wejściu x
- $oxed{3}$ oxtimes Jeśli M odrzuci $x \Longrightarrow$ odrzuć
 - lacksquare Jeśli M zaakceptuje x, symuluj działanie M_L na wejściu y
 - lacksquare Jeśli maszyna M_L zatrzyma się, M_X zwróć wynik jej działania

Twierdzenie Rice'a - dowód

- ${\cal B}$ **niepusty** i **właściwy** podzbiór zbioru wszystkich języków rozpoznawalnych przez maszyny Turinga
- Bez straty ogólności możemy założyć, że język pusty ∅ ∉ B
- $oldsymbol{2} \mathcal{B}
 eq \emptyset$, zatem istnieje język $L \in \mathcal{B}$ rozpoznawany przez maszynę M_L

Dla pary (M, x) tworzymy maszynę M_x działającą na wejściu y według schematu:

- Symuluj działanie maszyny M na wejściu x
- - lacksquare Jeśli M zaakceptuje x, symuluj działanie M_L na wejściu y
 - lacksquare Jeśli maszyna M_L zatrzyma się, M_X zwróć wynik jej działania
- (a) M akceptuje $x \Longrightarrow M_x$ akceptuje y lub nie zatrzymuje się $\Longrightarrow L(M_x) = L \in \mathcal{B}$
 - (b) M nie akceptuje $x \Longrightarrow M_x$ nie akceptuje $y \Longrightarrow L(M_x) = \emptyset \notin \mathcal{B}$

Odrzuca lub nie zatrzymuje się

Twierdzenie Rice'a - dowód

- ${\cal B}$ **niepusty** i **właściwy** podzbiór zbioru wszystkich języków rozpoznawalnych przez maszyny Turinga
- f 1 Bez straty ogólności możemy założyć, że język pusty $\emptyset
 otin \mathcal{B}$
- $oldsymbol{2} \mathcal{B}
 eq \emptyset$, zatem istnieje język $L \in \mathcal{B}$ rozpoznawany przez maszynę M_L

Dla pary (M, x) tworzymy maszynę M_x działającą na wejściu y według schematu:

- Symuluj działanie maszyny M na wejściu x
- 3 Peśli M odrzuci $x \Longrightarrow$ odrzuć
 - lacksquare Jeśli M zaakceptuje x, symuluj działanie M_L na wejściu y
 - lacksquare Jeśli maszyna M_L zatrzyma się, $M_{ imes}$ zwróć wynik jej działania
- (a) M akceptuje $x \Longrightarrow M_x$ akceptuje y lub nie zatrzymuje się $\Longrightarrow L(M_x) = L \in \mathcal{B}$
 - **(b)** M nie akceptuje $x \Longrightarrow M_x$ nie akceptuje $y \Longrightarrow L(M_x) = \emptyset \notin \mathcal{B}$
- Zatem $L(M_x) \in \mathcal{B} \iff M_A$ akceptuje x
 - \mathcal{P}_{ACC} jest nierozstrzygalny \implies " $L(M_x) \in \mathcal{B}$ " jest nierozstrzygalny

Przykład I

Problem wejścia: " $y \in D_x$ " jest nierozstrzygalny

- 2 $g(x) = 17 \in \mathcal{B} \implies \mathcal{B}$ jest niepusty
- $oldsymbol{\mathfrak{g}}$ $f_\emptyset \notin \mathcal{B} \implies \mathcal{B}$ jest właściwym podzbiorem zbioru wszystkich funkcji obliczalnych

Zbiór \mathcal{B} jest **właściwym** i **niepustym** podzbiorem zbioru wszystkich funkcji obliczalnych. Zatem na mocy twierdzenia Rice'a **nie jest rekurencyjny**. Równoważnie, problem " $y \in D_x$ " jest **nierozstrzygalny**.

Problem wyjścia: " $y \in \operatorname{Im}_{x}$ " jest nierozstrzygalny

- 2 $g(x) = x \in \mathcal{B} \implies \mathcal{B}$ jest niepusty

Zbiór \mathcal{B} jest **właściwym** i **niepustym** podzbiorem zbioru wszystkich funkcji obliczalnych. Zatem na mocy twierdzenia Rice'a **nie jest rekurencyjny**. Równoważnie, problem " $y \in D_x$ " jest **nierozstrzygalny**.

