32位MIPS处理器实验设计文档

Cache小组 2015年1月11日

目录

1 引言

1.1 编写目的

在此前编写的需求文档中,已经明确了此次联合实验预期达到的目标,实验中需要完成的各部分工作,也对实验中需要用到的关键技术做了简要的原理性说明,此次实验的前期准备工作的需求文档中基本体现。

进入实际的代码开发阶段,VHDL代码的编写需要更加详细的接口,更加精准的功能说明,更加细化的流程控制。从前的需求文档已经不足以对开发过程进行具体的指导了,需要一份更加详细的设计文档。

因此, 为了指导代码的实际开发过程, 编写此设计文档。

设计文档预期读者为任务提出者: 刘卫东老师、李山山老师、白晓颖老师。 未来需要完成此实验的同学也可参考本文档进行设计。

1.2 背景

系统名称: 32位MIPS处理器

任务提出者: 计算机组成原理课程: 刘卫东老师、李山山老师

软件工程课程: 白晓颖老师

开发者: 计23 李天润

计23 胡津铭 计23 孙皓

1.3 参考资料

实验指导文档

OsLab实验参考文档

计算机组成原理综合实验报告 贾开

《计算机组成和设计 硬件/软件接口》

《See MIPS Run》

2 模块设计

2.1 取指令模块

2.1.1 端口说明

端口名	端口方向	端口类型	
	端口描述		
clk	in	std_logic	
	CPU时钟信号		
rst	in	std_logic	
	初始化信号,在CPU启动时使用。		
state	in	status (自定义状态集合)	
	CPU当前为	· · · · · · · · · · · · · · · · · · ·	
mmu_ready	in	std_logic	
	标志访存是	是否结束	
PCSrc	in	std_logic_vector(31 downto 0)	
	说明:非异常状态下的指令地址。 来源:WB模块。 到达时间:当前指令InsF上升沿之前。 产生时间:上一条指令WB上升沿之后。		
EBase	in	std_logic_vector(31 downto 0)	
	来源: CP(5处理基地址。	
EPC	in	std_logic_vector(31 downto 0)	
	说明:ERET指令的返回地址。 来源:CPO模块。 到达时间:当前指令InsF上升沿到来之前。		
pc_sel	in	std_logic_vector(1 downto 0)	
	来源: ID核 产生时间:	t_enable,使能信号。 莫块。 上一条指令ID上升沿之后。 直到下一条指令的IF阶段。	

 $pc_sel(0)$:

说明: pc_control, 判断是否为异常状态。

来源:异常模块。

到达时间: 当前指令InsF上升沿到来之前。

PC out std_logic_vector(31 downto 0)

说明: PC寄存器, 时序逻辑。

产生时间:当前指令InsF上升沿到来之后。 有效时间:直到下一条指令的IF阶段。

PCmmu out std_logic_vector(31 downto 0)

说明:为MMU单元提供的PC,组合逻辑。 产生时间:当前指令InsF上升沿到来之前。 有效时间:直到当前指令IF阶段结束。

图 1: 取指令模块端口示意图

2.1.2 内部实现

需要的数据有PcSrc、EBase、EPC。

PcSrc产生于上一条指令的WB阶段。EBase为固定值,直接从CPO部分连接过来。EPC在异常阶段写入,直接从CPO部分连接过来。pc_sel为上一条指令的解码阶段产生。因此,所有的数据都能够在InsF时钟上升沿之前准备完毕。

内部分为两个部分对PC进行计算: 首先为组合逻辑部分, 需要在InsF时钟上升沿到来之前为MMU计算出PC值, 通过条件赋值语句, 即时计算出PC值, 连接到MMU部分, 使得MMU能够在InsF上升沿进行取指令的操作。

其次为时序逻辑部分,在InsF时钟上升沿时,对PC进行选择,选择方式与PCmmu相同。且由于访存可能持续多个时钟周期,因此需要对mmu ready位

进行判断,保证只在访存的第一个时钟周期锁存PC的值。此process产生的PC,在当前指令的全部周期有效,是计算RPC、branch、jump的地址的基础。

2.2 指令解析模块

2.2.1 端口说明

端口名	端口方向	引 端口类型			
	端口描述				
clk	in	std_logic			
	CPU时钟信	 [당。			
rst	in	std_logic			
	初始化信号	号,在CPU启动时使用。			
state	in	status (自定义状态集合)			
	CPU当前划	冷态。			
instruction	in	std_logic_vector(31 downto 0)			
instr_out	out	std_logic_vector(31 downto 0)			
	均从此产生	今寄存器,除三个寄存器的编号,其他所有控制线 E。之后周期中如果需要用到指令也从此处获得。 当前指令InsD上升沿之后。			
rs_addr	out	std_logic_vector(4 downto 0)			
		月寄存器编号1,在InsD阶段需要读取到值。 当前指令InsD上升沿之前。			
rt_addr	out	std_logic_vector(4 downto 0)			
	要读取到值	用寄存器编号2、写入寄存器编号,在InsD阶段需值。 当前指令InsD上升沿之前。			
rd_addr out s		std_logic_vector(4 downto 0)			
	读取到值。	D寄存器编号、写入寄存器编号,在InsD阶段需要 当前指令InsD上升沿之前。			
pc_op	out	std_logic_vector(1 downto 0)			
	-				

说明: PCSrc选择器, 正常状态下PC的选择方式。输出到WB 模块, 4选1数据选择器的控制信号, 选择正确的PC。

产生时间: 当前指令InsD上升沿之后。 有效时间:下一条指令InsD上升沿之前。

00 PC+4的计算结果。

01 branch指令PC计算的结果。

10 jump指令目标地址。 11 主ALUOut计算结果。

eret enable

std_logic

说明: ERET使能,对PC进行选择。专门对ERET指令使用,

输出到IFetch模块。

out

产生时间:当前指令InsD上升沿之后。 有效时间:下一条指令InsF上升沿之前。

comp_op

std_logic_vector(2 downto 0) out

说明:比较信号,branch指令的跳转条件。输出到WB模

块,如果为branch系列指令则通过此信号进行选择。

产生时间: 当前指令InsD上升沿之后。 有效时间:下一条指令InsD上升沿之前。

000 BEQ (R[s] = R[t])

001 BGEZ(R[s] >= 0)

010 BGTZ(R[s] > 0)

 $011 \text{ BLEZ}(R[s] \le 0)$

100 BLTZ(R[s] < 0)

101 BNE(R[s] != R[t])

imme

std_logic_vector(31 downto 0)

说明: 32位立即数, 针对不同指令的需求产生。立即数本身 作为ALUSrc的来源之一。

产生时间: 当前指令InsD上升沿之后。 有效时间:下一条指令InsD上升沿之前。

立即数产生方式有四种,均为从不同立即数长度扩展为32

out

16位有符号扩展, 16位无符号扩展, 移位指令需要的5位到 32位扩展, jump指令的立即数扩展。

alu_ops

std_logic_vector(8 downto 0)

说明:控制ALU模块。

ALUSrcA(8 downto 7): ALU第一输入的选择信号, 四选一数

ALUSrcB(6 downto 5): ALU第二输入的选择信号, 四选一数

据选择。

 mem_op	ALUOp(4 downto 0): ALU操作, 5位, 整合了乘法器相关运算, 详细说明见ALU模块说明。 产生时间: 当前指令InsD上升沿之后。 有效时间: 下一条指令InsD上升沿之前。 out std_logic_vector(2 downto 0)
- r	说明:控制MEM模块。 MEMRead(2):是否可读内存。 MEMWrite(1):是否可写内存。 MEMValue(0):选择写入内存的值,寄存器的数据或者SB指令处理之后的数据。 产生时间:当前指令InsD上升沿之后。 有效时间:下一条指令InsD上升沿之前。
wb_op	out std_logic_vector(4 downto 0) 说明:控制WB模块。 产生时间:当前指令InsD上升沿之后。 有效时间:下一条指令InsD上升沿之前。 RegDst(5 downto 4):写回寄存器编号。如果为00则写回16到20位rt寄存器,如果为01则写回11到15位rd寄存器,如果为10则写回31号寄存器。如果为11则不写寄存器。 RegValue(3 downto 1):写回寄存器的内容 000主ALU计算结果 001读取内存的数据 010 RPC 011 Zero-extend内存byte 100 Signed-extend内存byte 101 Zero-extend内存word 110 CPO寄存器
cp0_op	out std_logic_vector(1 downto 0) 说明:控制CPO模块。 EPCValue(1):异常产生时,EPC写入的内容,选择写入PC或者PC+4。 CPOWrite(0):CPO寄存器是否可写。 产生时间:当前指令InsD上升沿之后。 有效时间:下一条指令InsD上升沿之前。
tlbwi_enable	out std_logic 说明: TLB写使能。 产生时间: 当前指令InsD上升沿之后。 有效时间: 下一条指令InsD上升沿之前。
align_type	out std_logic_vector(1 downto 0)

说明: 访存对齐方式

产生时间: 当前指令InsD上升沿之后。 有效时间: 下一条指令InsD上升沿之前。

exc_code

std_logic_vector(1 downto 0)

说明: 指令解析模块产生的异常

产生时间: 当前指令InsD下降沿之后, 在下一条指令的下降

沿时消除

out

有效时间:一个CPU时钟周期,需要异常模块及时处理。

00 没有产生异常

01 syscall

10 未定义的指令异常

图 2: 指令解析模块端口示意图

2.2.2 内部实现

需要的数据有instruction,产生于当前指令InsF上升沿之后,能够在当前指令InsD上升沿之前到达。

内部实现有一下四个要点:

1. 在InsD阶段除了解码指令之外,还需要读取通用寄存器和CPO寄存器的值。需要在InsD上升沿到来之前,将三个寄存器编号发送给寄存器堆。该功能在解码模块之外的顶层模块实现,解码模块中输出的rs,rt,rd三个寄存器编号,有效期均为整条指令。

- 2. 其他控制线的生成均通过时钟驱动,在IDEcode有相应寄存器,连接至输出端。在InsD时钟上升沿之后,根据指令解码产生控制信号。产生的控制信号根据需要,输出到ALU、WB、MEM、CPO、IFetch、MMU模块。
- 3. 除eret_enable信号之外,所有时序逻辑产生的信号有效期均到下一条指令的解码阶段。在lab5中出现syscall异常返回后立刻在取指阶段触发tlbmiss异常,因此需要把eret_enable信号在取指阶段消除,否则触发tlbmiss时并没有进入解码阶段,eret_enable信号就不会被消掉。

4. 异常:

在指令解码阶段可能产生两种异常:系统调用或者未定义的指令异常。由于ALUOp的生成需要使用case语句对每条指令单独处理,因此选择在case的when others部分生成未定义的指令异常如果是syscall则产生异常,并且将ALUOp置为无用的操作。

异常信号产生的时间为指令解码阶段的时钟下降沿,直接通过exc_code 输出到异常处理模块,再利用其控制CPU主状态机的工作流程。

异常在下一个时钟的下降沿会被消除,因此需要异常处理模块即使将异常信息捕获。

2.3 ALU模块

2.3.1 端口说明

端口名	端口方向	端口类型
	端口描述	
clk	in	std_logic
	CPU时钟信	号。
rs_value	in	std_logic_vector(31 downto 0)
		寄存器堆的第一个值。需要在Clk时钟上升沿之前准备 寺到Clk时钟上升沿之后一极短时间。
rt_value	in	std_logic_vector(31 downto 0)
		寄存器堆的第二个值。需要在Clk时钟上升沿之前准备 寺到Clk时钟上升沿之后一极短时间。
imme	in	std_logic_vector(31 downto 0)
		含的立即数,来自指令解析模块。需要在clk时钟上升 备好,并保持到clk时钟上升沿之后一极短时间。
cp0_value	in	std_logic_vector(31 downto 0)
		·存器,mfcO指令需要。需要在clk时钟上升沿之前准 保持到clk时钟上升沿之后一极短时间。
state	in	status(自定义状态集合)

来自状态控制模块,用来指示当前处于工作状态的模块。若当前非ALU工作状态,则任何外部输入都不会对ALU的hi、lo寄存器以及ALU的输出造成修改。需要在clk时钟上升沿之前准备好,并保持到clk时钟上升沿之后一极短时间。

	好,开体行到CIK的钳工力石之后一		
alu_op	in std_logic_vector(4 downto 0)		
alu_op	来自指令解析模块的ALU运算操作符。需要在clk时钟上升沿之前准备好,并保持到clk时钟上升沿之后一极短时间。各操作符代表的意义为(A、B分别代表经过alu_srcA、alu_srcB选择后的值,result代表alu_result,lo、hi代表乘法寄存器):00000 result = A + B 00001 result = A - B 00010 result = A - B (比较大小,实际做减法) 00011 result = A & B 00100 result = A B 00101 result = A / B 00110 result = A / B 00110 result = B >> A (算术右移) 01000 result = B >> A (逻辑右移) 01001 result = A < B? (有符号比较,结果真时最低位输出1,否则输出0,其他位总是输出0) 01011 result = A < B? (无符号比较,结果真时最低位输出1,否则输出0,其他位总是输出0) 10000 hi_lo = A * B (补码乘法) 10001 result = lo 10010 result = hi		
-1 n - A	10100 hi = A		
alu_srcA	in std_logic_vector(1 downto 0)		
	ALU的第一个操作数的选择码,当值为"00"时选取rs_value,当值为"01"时选取imme,当值为"10"时选取cp0_value,当值为"11"时选取立即数16。需要在clk时钟上升沿之前准备好,并保持到clk时钟上升沿之后一极短时间。		
alu_srcB	in std_logic_vector(1 downto 0)		
	ALU的第二个操作数的选择码, 当值为"00"时选取rt_value, 当值为"01"时选取imme, 当值为"10"时选取cp0_value。需要在clk时钟上升沿之前准备好, 并保持到clk时钟上升沿之后一极短时间。		
alu_result	out std_logic_vector(31 downto 0)		

ALU的输出,在下一个时钟上升沿之前准备好,并保持直到下一次能使ALU输出改变(state为ALU工作状态、alu_op非写hi、lo寄存器)的时钟上升沿。

图 3: ALU模块端口示意图

2.3.2 内部实现

每次时钟上升沿到来时,检查state,若不是ALU工作状态则不进行任何操作。根据alu_srcA选择第一个操作数,根据alu_srcB选择第二个操作数,根据操作码进行相应的运算,将结果输出或保存到hi、lo寄存器中。

注意乘法运算需要较多的时间,因此若在某一个时钟上升沿进行乘法运算,不能认为在下一个时钟上升沿就能在hi、lo寄存器中取到正确的结果。一般来说,在25MHz时钟频率下进行乘法运算在1个时钟周期内可以完成,那么如果在此频率运行的CPU上,可以保证两条连续的乘法、取hi(lo)寄存器指令能得到正确的结果。乘法运算时间需要根据不同的硬件平台、时钟频率进行测量,不能一概而论。

2.4 访存模块

2.4.1 端口说明

端口名 端口方向 端口类型

端口描述

result	in std_logic_vector(31 downto 0)		
	说明: 访存地址 来源: ALU模块 到达时间: 指令执行阶段时钟上升沿后。		
	保持时间:至少保持到访存阶段时钟上升沿之后。		
rst	in std_logic		
	初始化信号,在CPU启动时使用。		
mem_op	in std_logic_vector(2 downto 0)		
	说明:内存操作控制线来源:IDecode模块到达时间:指令解码时钟上升沿之后。保持时间:至少保持到访存阶段结束。mem_op(2):memRead:内存读使能。mem_op(1):memWrite:内存写使能。mem_op(0):memValue:内存写入数据。如果为0则写入来自寄存器的数据,如果为1则写入SB指令处理之后的数据。		
rt_value	in std_logic_vector(31 downto 0)		
	说明:来自寄存器的数值,访存阶段写入数据的可能来源之一。 一。 来源:通用寄存器。 到达时间:指令解码时钟上升沿之后。		
mmu_value	in std_logic_vector(31 downto 0)		
	说明:访存得到的数据,为SB指令提供支持。 来源:MMU模块。 到达时间:第二次访存操作上升沿之前。 产生时间:第一次访存操作下降沿之后。		
addr_mmu	out std_logic_vector(31 downto 0)		
	说明:访存阶段的地址。 产生时间:访存阶段时钟上升沿之前。		
write_value	out std_logic_vector(31 downto 0)		
	说明:访存阶段写入数据。 产生时间:访存阶段时钟上升沿之前。		
read_enable	out std_logic		
	说明: 访存读使能。		
write_enable	out std_logic		
	说明: 访存写使能。		

2.4.2 内部实现

- 1. MEM模块在指令的执行周期之后,但是内存访问模块需要使用访存周期的时钟上升沿,因此MEM模块不能占用时钟上升沿,需要设计为一个组合逻辑模块。其主要功能为访存周期的预处理,为其生成访存的地址与写入的数据,以及产生使能信号。
- 2. MEM模块内部完全由组合逻辑实现。

目前MEM模块有一些输入输出之间采取的是直接连线的方式,主要目的在于比较清晰地体现出访存的设计思路。后期可能将部分连线直接连接到MMU模块,或者在Xilinx编译与优化的过程中,由编译器直接优化掉。

直接连线部分: addr_mmu输出直接与输入的result端口相连, 将访存地址直接输出到MMU模块。read_enable输出直接与输入的mem_op(2)相连, 将读使能输出到MMU模块。write_enable输出直接与输入的mem_op(1)相连, 将写使能输出到MMU模块。

组合逻辑部分: wrirte_value为内存写入值,需要根据memValue信号进行选择。如果memValue为0,则write_value的取值为rt_value,写入寄存器2的值。如果memValue为1,说明此条指令为SB指令,有两个访存阶段。第一访存阶段为读,此时不需要write_value的值。第二访存阶段为写,在此阶段开始之前,第一访存阶段已经取出内存中addr_mmu地址中的数据,在此基础上进行一个byte的修改,利用addr_mmu最后两位选择修改位置,将rt_value的最低位byte写入,整体作为内存的写入值传递给MMU模块。

图 4: 访存模块端口示意图

2.5 写回模块

2.5.1 端口说明

端口名	端口方向 端口类型		
场口 石	11 11 11 11 11 11 11 11 11 11 11 11 11		
	端口描述		
clk	in std_logic		
	CPU时钟信号		
state	in status (自定义状态集合)		
	CPU当前状态		
WB_e	in std_logic		
	WB文件的使能信号		
RPC	in std_logic_vector(31 downto 0)		
	即本周期的PC+4,要求ALU阶段上升沿之前准备好。		
mmu_value	in std_logic_vector(31 downto 0)		
	来自MMU的读取值,要求WB阶段上升沿之前准备好。		
cp0_value	in std_logic_vector(31 downto 0)		
	来自CPO的读取值, 要求WB阶段上升沿之前准备好。		
alu_result	in std_logic_vector(31 downto 0)		
	来自ALU的读取值,要求WB阶段上升沿之前准备好。		
wb_op	in std_logic_vector(4 downto 0)		
	WB阶段写入寄存器编号的来源与写入数据的来源选择,要求WB阶段上升沿之前准备好。 4-3位为写入寄存器编号来源的控制信号:		
	00表示写入rt寄存器; 01表示写入rd寄存器; 10表示写入31寄存器; 11或其他信号表示不写;		
	2-0位为写入数据来源的控制信号: 000表示数据来自ALU; 001表示数据来自MMU; 010表示数据来自RPC;		
	O10农小数据来自RFC, O11表示数据来自MMU,此时为LBU操作,根据alu_result 的低2位决定使用MMU数据的哪一字节,高位零扩展;		

	100表示数据来自MMU,此时为LB操作,根据alu_result的低2位决定使用MMU数据的哪一字节,高位符号扩展; 101表示数据来自MMU,此时为LHU操作,根据alu_result的低2位决定使用MMU数据的哪一字节,高位零扩展; 110表示数据来自CPO寄存器;		
rd_addr	in std_logic_vector(4 downto 0)		
	rd寄存器编号,要求WB阶段上升沿之前准备好。		
rt_addr	in std_logic_vector(4 downto 0)		
	rt寄存器编号,要求WB阶段上升沿之前准备好。		
write_addr	out std_logic_vector(4 downto 0)		
	写入通用寄存器组的地址,请在每一时钟上升沿使用。保持到下一WB阶段时钟上升沿。 对于IP core的片内RAM模块组成的通用寄存器组,此信号请直接接至通用寄存器组。		
write_value	out std_logic_vector(31 downto 0)		
	写入通用寄存器组的数据,请在每一时钟上升沿使用。保持到下一WB阶段时钟上升沿。 对于IP core的片内RAM模块组成的通用寄存器组,此信号请直接接至通用寄存器组。		
write_enable	out std_logic		
	写入通用寄存器组的使能,请在每一时钟上升沿使用。保持到下一WB阶段时钟上升沿。 对于IP core的片内RAM模块组成的通用寄存器组,此信号请直接接至通用寄存器组。		
pc_op	in std_logic_vector(2 downto 0)		
	非ERET指令时,选择新PC的控制信号 OO时,选PC+4,即RPC; O1时,根据比较是否成立进行选择,成立则跳转到PC +4+immediate,即RPC+immediate;否则跳转到RPC。 10时,跳转到immediate << 2,对应某些J、JAL语句; 11时,跳转到ALU的计算结果,对应某些JALR、JR语句; 要求WB阶段上升沿之前准备好。		
comp_op	in std_logic_vector(2 downto 0)		
	比较跳转时的比较控制信号,一般对应B系列指令。跳转条件如下:000时,条件为rs的值等于rt的值;001时,条件为rs的值>=0;010时,条件为rs的值>0;		

011时,条件为rs的值<=0; 100时,条件为rs的值<0; 101时,条件为rs的值不等于rt的值; 其他情况,恒为非; 要求ALU阶段上升沿之前准备好。

	X 42 = 001 (c=)14 = 011 = 11 × 10		
rs_value	in std_logic_vector(31 downto 0)		
	rs的值,要求ALU阶段上升沿之前准备好。		
rt_value	in std_logic_vector(31 downto 0)		
	rt的值,要求ALU阶段上升沿之前准备好。		
imme	in std_logic_vector(31 downto 0)		
	指令中包含的立即数,要求WB阶段上升沿之前准备好。		
PcSrc	out std_logic_vector(31 downto 0)		
	非ERET指令时,新PC值。WB阶段上升沿之后可读。		

2.5.2 内部实现

WB文件包含两个模块,即WB模块与PC模块。WB模块在WB阶段上升沿运行。根据输入的控制信号,选择是否写入以及写入的寄存器编号的来源。同时,根据输入的控制信号,选择从哪里获得写入数据。非扩展的情况比较简单,直接将写出数据赋为相应输入值即可。对于扩展的情况,需要根据alu_result选择使用mmu_value的哪一部分作为写入数据的低位。对于符号扩展的情况,扩展方法是根据有效位最高位决定扩展位写全0或写全1。

PC模块在ALU阶段上升沿进行比较。比较方式使用compare_op控制;在WB阶段,根据pc_op控制对输出PC的赋值。其中,如果输出PC需要由比较结果决定,使用ALU阶段的比较结果控制输出PC的值。这一步输出的PC还需在之后使用别的控制信号决定是否用于IF。

WB模块状态跳转: ALU阶段由ALU模块处理。WB阶段, 无条件跳转至IF阶段。

WB模块异常触发:无。

2.6 MMU模块

2.6.1 端口说明

端口名	端口方向	端口类型	
	端口描述		
clk	in	std_logic	
	CPU时钟信号		
rst	in	std_logic	
	初始化信号	号,在CPU启动时使用。	
state	in	status(自定义状态集合)	
	说明: CPU	J状态机信号	
if_addr	in	std_logic_vector(31 downto 0)	
	说明:取指令地址 来源:IFetch模块 到达时间:取指令时钟上升沿之前		
instruction	out	std_logic_vector(31 downto 0)	
		旨令阶段得到的32位指令 访存阶段结束之后,根据ready位进	
virtual_addr	in	std_logic_vector(31 downto 0)	
	来源: ME	字阶段的虚拟地址 M模块 访存阶段时钟上升沿之前	
data_in	in	std_logic_vector(31 downto 0)	
	说明: 访存阶段的写入数据		
	来源: ME 到达时间:	M模块 访存阶段时钟上升沿之前	
read_enable	in	std_logic	

	说明:内存读使能,需要进一步处理 来源:MEM模块 到达时间:访存阶段时钟上升沿之前
write_enable	in std_logic
	说明:内存写使能,需要进一步处理 来源:MEM模块 到达时间:访存阶段时钟上升沿之前
data_out	out std_logic_vector(31 downto 0)
	说明:访存阶段输出的结果 产生时间:访存阶段结束之前,在ready位置1 的时候
ready	out std_logic
	说明:标志位,访存是否结束 产生时间:访存阶段结束之前
serial_int	out std_logic
	说明:串口中断信号,输出到异常模块产生时间:外部中断,任意时间均可产生
exc_code	out std_logic_vector(2 downto 0)
	说明: 异常信号,输出到异常模块 产生时间: 访存阶段第一个下降沿,下一个下 降沿就被清空 000 无异常产生 001 TLB修改异常 010 TLB缺失(读) 011 TLB缺失(写) 100 地址不对齐(读) 101 地址不对齐(写)
tlb_write_struct	in std_logic_vector(66 downto 0)
	说明: TLB写结构, 包含一个TLB表项所需的所有信息 来源: CPO模块 到达时间: 始终从CPO模块连接到MMU, 始终 处于可读状态
tlb_write_enable	in std_logic
	说明: TLB写使能, 判断是否写入 来源: 指令解码模块 到达时间: 指令解码阶段上升沿之后

	说明:地	业对齐方式,配合地址不对齐异常使
	来源:指令	令解码模块 指令解码阶段上升沿之后
to_physical_addr	out	std_logic_vector(23 downto 0)
	型以及地址	
	产生时间:	访存阶段第一个下降沿之前
to_physical_data	out	std_logic_vector(31 downto 0)
	说明:给约时需要	物理访存模块的数据, 写内存或串口
	产生时间:	访存阶段第一个下降沿之前
to_physical_read_enable	out	std_logic
	说明:给约直接置O	物理访存模块的读使能, 异常状态下
	产生时间:	访存阶段第一个下降沿之前
to_physical_write_enable	out	std_logic
	直接置0	物理访存模块的写使能,异常状态下
	产生时间:	访存阶段第一个下降沿之前
from_physical_data	in	std_logic_vector(31 downto 0)
	说明:从 直接输出	物理访存模块返回的数据, 经过处理
		物理访存模块
		访存时间长度不定,在ready位置1
from_physical_ready	in	std_logic
	存是否完成产生模块:	物理访存模块返回的状态位,说明访 成 物理访存模块 物理访存结束之后
from_physical_serial	in	std_logic
	产生模块:	口状态,如果串口有数据则为1 物理访存模块 : 串口为外部中断,因此可能在任意

2.6.2 内部实现

MMU模块作为真实访问物理内存阶段的预处理阶段,完成对内存的读写控制,完成TLB查询,充填TLB,抛出TLB异常等操作,并且检查地址是否对齐,根据指令类型抛出地址不对齐异常。

MMU模块的初始化决定CPU第一次取指令的地址,需要保证按下rst开关后,to_physical_addr初始化为ROM的起始地址。

时钟控制: 访存阶段上升沿: 虚拟地址到物理地址的转换, 检查地址是否对齐访存阶段下降沿: 抛出TLB、地址不对齐等异常, 将访存信号传递给物理内存, 开始实际访存访问。

读写控制:

- 1. 从MEM模块输入的读写使能信号需要经过处理后输出到 物理访存模块访存条件为上层有使能信号,处于合适的 CPU阶段地址转换不出现异常,物理访存处于停止状态
- 2. 如果当前state为取指令阶段,则一定为内存读取状态。如果当前为第一访存阶段,因为SB指令读写使能均为1,所以需要进行。如果mem_read_enable为1则进行读操作,否则如果mem_write_enable为1则进行写操作。如果当前为第二访存阶段,则一定为SB指令,进行写操作。

图 6: MMU模块端口示意图

地址映射: 根据实际访问的地址值进行判断。只对部分地址 ([0x20000000 ~0x80000000] 和 [0xC00000000 ~0xFFFFFFFF])进行映射,其他地址不经转换,直接访问。

异常与中断: MMU模块可能出现5种异常,一种中断异常信号输出为exc_code,中断信号输出为serial_int,输出到异常处理模块。异常、中断信号产生时间为访存的时钟下降沿,在下一个时钟下降沿就会被清空,因此需要异常处理模块及时记录异常信息异常中断产生之后,物理内存访问的两个enable为全都会被强制置零,保证在异常状态下不会产生实际的访存操作。

- 1. 地址不对齐异常两种:根据指令类型判断当前指令是否需要对齐地址进行访问。(LB/SB/LBU指令不需要对齐地址,LHU指令最后一位对齐)根据访存地址后两位判断地址是否对齐。根据读写使能最终确定两种异常中的某一种。
- 2. TLB异常共三种:均在TLB查找结束之后生成。TLB缺失 异常信号,根据查找的结果进行判断,如果为全零则根据 度写使能触发异常。TLB修改异常,根据TLB查找结果的 D标志位进行判断。
- 3. 串口中断:直接将物理访存模块的中断信号输出,中断信号产生后将会一直保持,同时由于EXL位屏蔽中断,并不会产生实际的影响直到对串口进行读取操作之后,串口中断才消除。

TLB表查找: 向勇老师的课件中有TLB的详细实现方案。为保证效率,此次实验中采用了全相连的TLB设计,但即使不采用并行查找,换为串行查找的策略,在时间上也不会产生影响,且实现方便很多。

- 1. 采用for_generate/if_generate语句生成TLB查找表。实际 效果相当于将输入的虚拟地址高19位复制16份,同时与16个EntryHi进行比较,结果为16位std_logic_vector,其中只有1位为1,其余15位为0。
- 2. 再利用for_generate/if_generate语句生成TLB结果暂存表,为32*21矩阵32行对应一个16个TLB表项全部Lo部分,21为20位物理地址加一位D标志位。
- 3. 利用并行比较结果和虚拟地址最低位,共同对暂存表进行与操作,由于其中包含大量的0,最终只选择出1*21的std_logic_vector向量,即为20位物理地址与一位D标记位。
- 4. 如果查找到TLB查找到物理地址,且D标记位有效,则TLB查找成功,否则查找失败。

TLB表重填:

- 1. TLB数据来源来自于CPO寄存器,共需要Index、Page-Mask、EntryHi、EntryLoO、EntryLo1五个寄存器的数值。CPO模块与MMU模块之间始终有以上5个寄存器的连线,始终能够获得CPO寄存器的最新值。
- 2. TLB充填发生在TLBWI指令的执行阶段,在时钟上升沿、state为执行阶段、tlb_enable使能信号为1的情况下,重填TLB表项。

多次访存问题:

- 1. 此次实验中访存可能会持续多个时钟周期,因此只能采用 访存第一个周期时的信号,之后几个周期中的信号可能会 发生改变,应算作无效信号,不予处理。
- 2. 访存的虚拟地址,需要在IF或者MEM阶段的第一个始终上升沿进行锁存,否则PCmmu信号可能在下一个上升沿发生变化,产生异常情况。
- 3. 给 物 理 访 存 层 面 的 两 个 使 能 信 号, to_physical_read_enable 与 to_physical_write_enable, 在访存的第一个下降沿赋值,在第二个下降沿清零,防 止出现多次访存的情况。

2.7 CPO模块

2.7.1 端口说明

端口名	端口方向	端口类型
	端口描述	
clk	in	std_logic
	CPU时钟	信号
state	in	status (自定义状态集合)
	CPU当前2	状态
normal_cp0_in	in	std_logic_vector(37 downto 0)
		的CPO读写操作的输入,格式上,37位为写 -32位为地址,31-0位为数据。
	0 ,	时钟上升沿触发, 因此要求数据在时钟上升
	状态方面	,读操作发生在ID阶段的上升沿,写操作发 阶段的上升沿。
bad_v_addr_in	in	std_logic_vector(31 downto 0)

	异常发生时写入bad_v_addr_in的数据,要求数据在时钟上升沿之前准备好。使能为interrupt_start_in。
entry_hi_in	in std_logic_vector(19 downto 0)
	异常发生时写入entry_hi_in高20位的数据,要求数据在时钟上升沿之前准备好。使能为inter-rupt_start_in。
interrupt_start_in	in std_logic
	异常写入的使能,控制异常数据的写入,并将status(1)置1.
cause_in	in std_logic_vector(4 downto 0)
	异常发生时写入cause的6-2位的数据,要求数据在时钟上升沿之前准备好。使能为interrupt_start_in。
epc_in	in std_logic_vector(31 downto 0)
	异常发生时写入epc的数据,要求数据在时钟上升沿之前准备好。使能为interrupt_start_in。
eret_enable	in std_logic
	eret 的 使 能 信 号, 将 status(1) 置 0. 优 先 于 interrupt_start_in起效。 请注意,这一数据应当在ALU阶段上升沿之前准备好。
compare_init	in std_logic
	时钟中断恢复的使能。
addr_value	out std_logic_vector(31 downto 0)
	normal_cp0_in读操作时读出的数据,ID阶段上升沿之后起效,下一ID阶段上升沿之前均不变。 初始值为全0.
all_regs	out std_logic_vector(1023 downto 0)
	即时输出全部CPO寄存器的值, CPO寄存器数值被修改的时间内不保证数值稳定。
compare_interrupt	out std_logic
	clock寄存器与compare寄存器数值相同之后被置1;修改compare寄存器的值后置0且该周期不比较clock寄存器与compare寄存器的值。缺少将此值恢复为0的信号。变为1后,若不手动恢复为0或者修改compare寄存器,则1保持。此输出值被检测到为1时触发中断,任一上升沿均可检测,不需太早处理。

2.7.2 内部实现

CPO寄存器编号严格遵照《See MIPS Run》中的标准定义。

时钟触发。检测到cpO_e为O时,对内部值进行初始化。否则,时钟上升沿时根据state进行相应操作。若state为ID,根据输入地址进行读取操作,需要将normal_cpO_in锁存,该信号只能在一个时钟上升沿中保持不变。若state为ALU,首先本次指令是否为ERET,即检查eret_enable,如果为1则将status(1)置O。然后检测本次指令是否为写CPO,即检查normal_cpO_in(37),如果需要写则进行CPO写入。注意,此时不进行clock的自增。对于其他state,检查interrunp start in是否为1,如果为1说明要进行异常信息的写入。

除此之外,还要进行clock寄存器与compare寄存器的比较,compare寄存器的原有值被保存,如果修改,则更新原有值,并将时钟中断置0;否则,比较两寄存器的值,如果相等则置1,否则不变。因此两寄存器第一次相等之后,触发时钟中断。一定要注意,需要将时钟中断恢复的信号!

CPO的Status寄存器有较多内容与软件硬件接口相关,在此单独进行说明。 Status寄存器在此次实验中有4个相关位需要设置:

- 1. EL: 通过软件进行设置,与中断屏蔽相关。硬件上只进行检测,判断是否可以触发中断,该位功能的详细说明请参考《See MIPS Run》。
- 2. EXL:硬件进行设置,进入异常处理时设置为1,退出异常处理时设置为0。硬件上进行检测,判断是否可以触发中断。
- 3. KSU:通过软件进行设置,区分用户态和内核态。硬件上可以不作处理,但是如果需要检测用户态访问内核态地址的错误,可以使用这一位进行判断
- 4. MASK: 通过软件进行设置, 屏蔽某一种中断。硬件上可以不作处理, 但是如果需要单独屏蔽某一种中断, 可以使用这一位进行判断。

24

CPO模块状态跳转:无。 CPO模块异常触发:任何时候检查到compre_interrupt为1均触发异常。此信号会保持且无需即时相应,在适应的时候触发异常即可。

2.8 异常处理模块

2.8.1 端口说明

端口名	端口方向	端口类型
	端口描述	
clk	in	std_logic
	CPU时钟信	- -
state	in	status
	自定义状态	· 、 集合
exception_e	in	std_logic
	exception	模块使能信号
mmu_exc_code	in	std_logic_vector(2 downto 0)
	TLB_L、T	U 的 异 常 信 号, 表 示 TLB_MODIFIED、 LB_S、ADE_L、ADE_S 异 常。 要 求 excep- 钟上升沿之前保持。
serial_int	in	std_logic
	来自串口的沿之前保持	的异常信号。要求exception阶段时钟上升 寺。
compare_interrupt	in	std_logic
	来自CPO的 升沿之前仍	为时钟中断信号。要求exception阶段时钟上 保持。
id_exc_code	in	std_logic_vetor(1 downto 0)
		异常信号,表示SYSCAL,RI异常。要求ex- 段时钟上升沿之前保持。
pc_in	in	std_logic_vector(31 downto 0)
	本指令的F 上升沿之前	PC,来自CPU模块。要求exception阶段时钟 价保持。
v_addr_in	in	std_logic_vector(31 downto 0)
		字虚拟地址,来自MMU。要求exception阶 计沿之前保持。
old_entry_hi	in	std_logic_vector(19 downto 0)

	旧的entry_hi,用于entry_hi不变的情况,来自CPO。 要求exception阶段时钟上升沿之前保持。
old_interrupt_code	in std_logic_vector(5 downto 0)
	旧的中断号,用于中断号不变的情况,来自CPO。要求exception阶段时钟上升沿之前保持。
bad_v_addr_out	out std_logic_vector(31 downto 0)
	bad_v_addr输出值,交给CPO模块进行写入,可以保持到下次改变。
entry_hi_out	out std_logic_vector(19 downto 0)
	entry_hi输出值,交给CPO模块进行写入,可以保持到下次改变。
interrupt_start_out	out std_logic
	CPO模块的异常写入使能,控制CPO模块开始写入异常信息,可以保持到下一时钟上升沿之前。
cause_out	out std_logic_vector(4 downto 0)
	异常号输出值,交给CPO模块进行写入,可以保持到 下次改变。
interrupt_cause_out	out std_logic_vector(5 downto 0)
	中断号输出值,交给CPO模块进行写入,可以保持到下次改变。
epc_out	out std_logic_vector(31 downto 0)
	EPC输出值,交给CPO模块进行写入,可以保持到下次改变
pc_sel0	out std_logic
	IF阶段选择PC的pc_sel的O位,若为1表示应选择异常处理向量作为新的PC。可以保持到下一时钟上升沿之前。

2.8.2 内部实现

exception负责产生、发送异常信息,根据目前的异常号、中断号,从输入 值选择适当的异常信息作为写入CPO的数据。

除写入异常信息外,还需将interrupt_start_out,pc_selO两个控制信号置1,使CPO准备写入以及异常信息保存后跳转到EBase。其他情况下将其置O。 异常处理设计简述:

1. 需要考虑的异常:

(a) Interrupt, 外部中断。包括时钟中断, 串口中断。根据操作系统, 设定串口中断标号为2, 时钟中断编号为7。

- (b) TLB Modify,对内存的只读部分进行写操作。
- (c) TLBL, 读时发生的TLB miss
- (d) TLBS, 写时发生的TLB miss
- (e) ADEL, 对非对齐地址进行读操作
- (f) ADES, 对非对齐地址进行写操作
- (g) SYSCALL, 系统调用
- (h) RI, 执行未定义指令

异常编号严格遵照《See MIPS Run》中的定义。

- 2. 对于以下异常,不予考虑:
 - (a) 访问未定义的CPO寄存器。未定义的寄存器视作通用寄存器。
 - (b) 运算溢出。不予处理。
 - (c) TLB Modify异常在操作系统运行过程中出现,导致程序退出,原因未知。直接将该异常不作处理后,系统就可以正常运行,因此对该异常可以不作处理。
- 3. 异常处理数据来源(部分异常中未明确提到的信号,请保持原值):
 - (a) Interrupt: 由CPO的compare信号与串口的可读信号触发,在IF阶段开始时检查。异常被处理前信号一直保持,时钟中断被处理后需给CPO模块控制信号消除异常,串口中断被处理后由串口读写部分消除异常。CPO status(EXL)即(13)(1)位为'1'时,表示处于异常处理中,不触发外部异常。检查到异常时,记录异常号、中断号,bad v addr取当前指令的地址,EPC取当前指令的地址。

clk state exception e bad v addr out entry_hi_out mmu exc code serial int interrupt_start_out compare_interrupt cause_out id_exc_code interrupt_code_out epc out pc_in pcmmu_in compare_recover v_addr_in pc_sel0 old_entry_hi old_interrupt_code

图 8: 异常处理模块端口示意图

- (b) TLB Modify: 由MMU的对应信号触发,发生在MEM阶段,在ID、WB阶段开始时检查。 异常在下一时钟下降沿消除,因此需在要求的上升沿进行检查。 检查到异常时,记录异常号,bad_v_addr取MMU提供的虚拟地址,EPC取当前指令的地址。
- (c) TLBL: 由MMU的对应信号触发,发生在IF阶段或MEM阶段,在ID、WB阶段开始时检查。异常在下一时钟下降沿消除,因此需在要求的上升沿进行检查。检查到异常时,记录异常号,bad_v_addr取MMU提供的虚拟地址,EPC取当前指令的地址,EntryHi高20位取MMU提供虚拟地址。
- (d) TLBS: 由MMU的对应信号触发,发生在MEM阶段,在ID、WB阶段开始时检查。异常在下一时钟下降沿消除,因此需在要求的上升沿进行检查。检查到异常时,记录异常号,bad_v_addr取MMU提供的虚拟地址,EPC取当前指令的地址,EntryHi高20位取MMU提供虚拟地址。
- (e) ADEL: 由MMU的对应信号触发,发生在IF阶段或MEM阶段,在ID、WB阶段开始时检查。异常在下一时钟下降沿消除,因此需在要求的上升沿进行检查。检查到异常时,记录异常号,bad_v_addr取MMU提供的物理地址,EPC取当前指令的地址。
- (f) ADES: 由MMU的对应信号触发,发生在MEM阶段,在ID、WB阶段开始时检查。异常在下一时钟下降沿消除,因此需在要求的上升沿进行检查。检查到异常时,记录异常号,bad_v_addr取MMU提供的物理地址,EPC取当前指令的地址。
- (g) SYSCALL: 由ID模块的对应信号触发,发生在ID阶段,在ALU阶段 开始时检查。异常在下一时钟上升沿消除,因此需在要求的上升沿 进行检查。检查到异常时,记录异常号,bad_v_addr取当前指令地 址。EPC取当前指令的地址,EPC+4的操作由操作系统完成。
- (h) RI: 由ID模块的对应信号触发,发生在ID阶段,在ALU阶段开始时检查。异常在下一时钟上升沿消除,因此需在要求的上升沿进行检查。检查到异常时,记录异常号,bad_v_addr取当前指令地址,EPC取当前指令的地址。

exception模块状态跳转: 请无条件跳转至IF阶段。

exception模块异常触发: 无。

3 整体设计

3.1 CPU整体设计

CPU元件例化独立的模块,同时对各个模块的异常与状态信息进行收集,决定主状态机的跳转。

图 9: CPU整体设计图

3.2 元件例化

CPU顶层主要的功能为实现例化各个单独模块并进行模块间的互联。按照 CPU整体设计图,元件例化每个在模块设计部分所出现的模块,各个模块间的 连接线由模块设计部分给出。

3.3 其他实现

除元件例化外, CPU顶层还需实现的功能为主状态机的跳转、时钟分频以及 异常信息的处理。

3.3.1 状态机跳转

CPU顶层需要实现主状态机的跳转。 与状态机跳转相关的信号有五个,以下分别对其功能进行说明

信号名	信号类型 信号简介
	信号描述
has_mem1	std_logic 是否有第一访存周期
	由于对PC的修改在WriteBack阶段进行,因此每条指令都必须有写回阶段。为简化实现,也迫使每条指令都有执行阶段,不需要使用ALU的指令在此阶段不做任何操作。在指令解码的时钟上升沿对指令进行分类,对需要进行访存的指令,has_mem1置1,表示有访存阶段。其他不涉及到访存指令的has_mem置0
has_mem2	std_logic 是否有第二访存周期
	专门为SB指令设计,判断是否有第二访存周期。仅当指令为SB时has_mem2置1,其他情况置0
old_state	status 访存保持状态
	CPU对Ram、Flash、串口的访问进行了统一的封装,因此一次访存的时间可能超过一个时钟周期。old_state用来在访存时间超过一个时钟周期时,保持访存的状态不变。
next_state	status 下一状态
	表示当前状态的下一状态。由于执行和写回阶段是每条指令必须经过的阶段,因此只通过has_mem1和has_mem2两个信号,对是否有访存阶段进行选择。该信号通过时序逻辑进行控制,每个时钟上升沿根据state进行变化。
state	status 当前状态
	CPU 状态机的当前状态,可能的取值为old_state或者next_state或者为异常状态。该信号通过组合逻辑进行控制。在访存过程中,访存的busy信号持续为1,此时state保持为old_state,保证一次访存结束之后,CPU主状态机再继续跳转。如果有异常信号被置1,则state变为异常状态。之后由异常处理模块保存异常信息,跳转到异常处理向量,再次进行取指令操作。 其他状态下,state被赋值为next_state,表示正常情况下的状态跳转。

3.3.2 异常处理

CPU顶层收集来自各个模块的异常信息,用来判断状态跳转,其他异常相关工作交给异常处理模块负责。

与异常处理相关的信号有三个, 一下分别对其功能进行说明。

信号名

信号类型 信号简介

	信号描述
clock_inter_to_excep	std_logic 时钟中断信号
	初始的时钟中断信号由CPO模块产生,当CPO中status寄存器的EXL位为0且EL为为1时,中断有效。同时,由于外部中断并不需要在产生的时候立刻被处理,因此我们选择在写回阶段,对中断信号进行判断,保证这一条指令正常执行完毕后,再对时钟中断进行处理。
serial_inter_to_excep	std_logic 串口中断信号
	初始的串口中断信号由访存模块产生。其他处理方式与时钟中断相同。
excep	std_logic 异常中断信号
	表明是否发生异常或中断,用来决定CPU主状态机的跳转。 正常情况下所有模块发送来的异常信号均为0,因此 将所有异常位做逻辑或,即为excep信号。

3.3.3 时钟分频

访存模块始终工作在25MHz的高频下,分频后得到CPU时钟的工作频率。 CPU单独运行时采用四分频,工作在6.25MHz。 调试模式与CPU单独运行 时环境完全相同, 也为6.25MHz。

4 操作系统与编译

此次实验中操作系统也是一个重要的组成部分,需要根据硬件的实现情况对操作系统做出相应的修改。

4.1 操作系统组成

此次实验中操作系统bootloader部分使用贾开学长的代码(与Flash访问方式有关),其余均在刘亚宁学长os_lab基础上进行修改,具体修改内容之后有详细叙述。

4.2 时钟中断

在os_lab中,启动过程中是通过MASK位进行中断屏蔽,保证不会被时钟中断所打断。

此次试验在硬件上没有提供对MASK位的支持,选择在操作系统上进行修改。CPO的Compare寄存器初始化为OxFFFFFFF,保证初始化结束之前一定不会触发时钟中断。初始化完成后增加一次对clock_intr函数的调用,将Compare寄存器重填为设定的数字,之后即可触发时钟中断。

标准MIPS时钟中断的"读Count写入Compare"功能,已经在os_lab中通过软件方式解决,不需要另作处理。

4.3 串口地址

从lab3开始,代码支持了在实验板与qemu两个平台上的运行,两平台的串口地址不同。因此,在编译操作系统前需要先调用to_thin脚本,将操作系统转换为实验板上的版本。

4.4 异常处理向量

异常处理向量只有唯一的一个入口Ox80000180,在初始化阶段直接写入EBASE寄存器之后就不需要再进行修改了。异常处理的初始化完全由操作系统完成,在Ox80000180存入一条jump指令,跳转值alltraps函数,硬件上不需要任何的特殊处理。

4.5 Flash访问

因为Flash数据线只有16条, 所以实际上Flash连续的4个byte中只有2个为有效数据, 因此产生了两种Flash访问方式如下:

一种方式为每次访问Flash的4个byte,得到32位数据中只有低16位有效。 之后在软件层进行控制,连续访问两次,将结果移位拼接得到32位有效数据。 另一种方式为每次访问Flash在硬件上访问8个byte,硬件上将两次得到的数据 进行拼接,对操作系统层提供与RAM访问相同的接口。 此次实验中使用第一种方式。因此在bootloader中使用贾开学长的代码,其中包含了将访存结果移位拼接的实现。除bootloader之外的操作系统使用刘亚宁学长的代码,这些代码需要第二种Flash访问方式进行支持。

lab1到lab7不需要进行任何修改,因为所有Flash访问操作均是在bootloader部分完成。在lab8中由于涉及到文件系统sfs.img的加载,需要修改lab8/kern/fs/devs/dev_disk0.c中的disk0_read_blks_nolock函数,将Flash起始地址与DISKO_BLKSIZE均乘2,之后通特别外实现的memcpy_flash将sfs.img加载到内存中。

4.6 编译工具

此次实验中采用的编译工具为mips-linux-gnu工具链,版本为(Sourcery CodeBench Lite 2014.05-27)2.24.51.20140217。编译器版本不同可能导致代码段组装顺序不同,进而可能产生问题。

可能需要修改kern_boot函数,设置栈指针为代码段顶端的kern_init函数。

5 调试工具

在此次实验的扩展部分, 我们完成了基于串口的调试工具。

通过PC端发送命令到实验板,可以完成设置断点、启动、继续运行、单步调试等多种功能。并且可以在PC端查看寄存器的值,查看各个模块间传递的信号。

调试工具的使用方法与命令行下的GDB工具十分相似,有GDB使用经验的人可以轻松上手。

此外,调试工具在设计时就考虑到了复用的问题,因此与原有VHDL代码之间的耦合度非常小,只需要在原有代码上稍作修改即可运行。修改部分也有代码自动生成工具予以辅助,在PC端配置config文件后即可自动生成需要添加的代码。

调试工具的详细设计思路请参见调试工具设计文档。调试工具的具体使用方式请参见调试工具使用手册。

6 文件结构

/	
bin	
cacpu.bit	CPU,烧入FPGA
cpld.jed	
kernel	
sfs.img	
L cadb.bit带有Cache De	
design	
datapath.xls	
product_requirement_document	
src	
cacpu	Cache CPU
cacpu.xise	工程文件
CP0.vhd	CPO模块
Exception.vhd	异常处理模块
IDecode.vhd	指令解析模块
IDecode_const.vhd	指令解析常量
IFetch.vhd	取指令模块
WB.vhd	写回模块
alu.vhd	ALU模块
async.v	开源串口异步收发模块
cacpu.ucf	管脚绑定
cacpu.vhd	顶层控制模块
common.vhd	通用常量
flash.vhd	Flash操作模块
general_register.vhd	通用寄存器模块
mem.vhd	访存模块
mmu_module.vhd	MMU模块
phy_mem.vhd	物理访存模块
ram.vhd	RAM读写模块
rom.vhd	ROM读写模块
cpld	CPLD
cpld.ucf	管脚绑定
cpld.vhd	
cpld.xise	工程文件
cadb	Cache Debugger
com_debug.vhd	调试命令收发解析
bp_debug.vhd	调试控制模块
testcpu.vhd	
testcpu.ucf	管脚绑定

technical_documentation	技术文档
ucore_modified	
lab8	lab8源代码
utils	
cadb	GDB调试工具
com2flash	flash与ram的读写工具
rom	rom生成工具
terminal	