MN41 Projet : Analyse statique d'une barre à section variable par la Méthode des Éléments Finis

Consignes générales :

- Le projet est à faire en binôme (composition libre, les groupes de TP pouvant être mélangés);
- Sont à rendre : un court rapport de 4 pages max + vos codes ;
- Les réalisations sont à déposer sur Moodle avant les finaux : Dimanche 14 Janvier à 23h59:59.

Le rapport doit rendre compte des développements théoriques et des résultats numériques obtenus.

Définition du problème

Le problème qui nous intéresse est une structure barre en traction simple. La particularité réside dans la forme de la barre : elle est à section circulaire variable, le rayon r(x) variant linéairement entre sa valeur R_0 en x=0et sa valeur R_L en x = L.

Figure 1: Barre à section circulaire variable en traction simple.

L'équilibre statique de la structure peut être décrit à l'aide du problème suivant où l'on cherche le déplacement longitudinal $u:[0,L]\to\mathbb{R}$ comme solution de :

$$\frac{d}{dx}\left(EA(x)\frac{du}{dx}(x)\right) = 0 \quad \text{sur} \quad]0,L[\;, \tag{1}$$

$$u(0) = 0, (2)$$

$$u(0) = 0,$$

$$EA(L)\frac{du}{dx}(L) = F.$$
(3)

avec:

- E le module d'Young (ou module d'élasticité) du matériau composant la barre ;
- A(x) l'aire de la section de la barre à la position x;
- L la longueur de la barre ;
- F l'effort de traction s'appliquant sur l'extrémité x=L de la barre.

On considère que la barre est de section circulaire à rayon variable. Le rayon r(x) varie linéairement entre sa valeur R_0 en x=0 et sa valeur R_L en x=L. C'est-à-dire :

$$r(x) = \frac{R_L - R_0}{L}x + R_0, \quad \text{et} \quad A(x) = \pi r^2(x).$$
 (4)

But : il s'agit de résoudre numériquement le problème avec la méthode des éléments finis et de comparer ces résultats numériques avec la solution analytique du problème.

Nous considérons deux configurations :

	Section uniforme	Section variable
Module d'Young E	60000 MPa	60000 MPa
Effort F	10000 N	10000 N
Longueur ${\cal L}$	1000 mm	1000 mm
Rayon R_0	10 mm	20 mm
Rayon R_L	10 mm	9 mm

Résolution analytique

Le problème est suffisamment simple pour pouvoir être résolu "à la main".

• Task 1. Montrez que le déplacement longitudinal le long de la barre est donnée par :

$$u(x) = \frac{Fx}{E\pi R_0 r(x)}.$$

• Task 2. Montrez que la contrainte normale $\sigma(x)=E\frac{du}{dx}(x)$ le long de la barre est donnée par :

$$\sigma(x) = \frac{F}{A(x)}.$$

A l'aide de la librairie C# de visualisation ScottPlot :

- Task 3. Tracez le graphe représentant le déplacement en fonction de la position ;
- Task 4. Tracez le graphe représentant la contrainte en fonction de la position.

Mémo : après avoir installé le package depuis le gestionnaire NuGet (voir procédure TP4), un graphe peut être généré ainsi :

```
double[] dataX = new double[5] { 1, 2, 3, 4, 5 };
double[] dataY = new double[5] { 1, 4, 9, 16, 25 };

ScottPlot.Plot myPlot = new ScottPlot.Plot(400, 300);
myPlot.AddScatter(dataX, dataY);

myPlot.SaveFig("quickstart.png");
```

Pour plus d'information, veuillez vous référer à la documentation de ScottPlot.

Résolution Éléments Finis

La formulation faible associée au problème initial s'écrit :

Trouver
$$u$$
 $t.q.: u(0) = 0$ et
$$\int_0^L EA(x) \frac{du}{dx}(x) \frac{d\psi}{dx}(x) dx - F\psi(L) = 0, \quad \forall \psi.$$
 (5)

Discrétisation EF

Nous cherchons une **solution approchée** en discrétisant la solution à l'aide de **polynômes de Lagrange de degré 1** (ou encore fonctions "chapeau").

Figure 2: Fonctions de bases pour la discrétisation éléments finis.

En d'autres termes, nous cherchons une solution sous la forme :

$$u^h(x) = \sum_{i=0}^{n_e} N_i(x)U_i,$$

où U_i sont les inconnues (degrés de liberté) et N_i sont les fonctions de bases données par :

$$N_i(x) = \begin{cases} (x - x_i)/h + 1 & \text{si } x \in [x_i - h, x_i], \\ (x_i - x)/h + 1 & \text{si } x \in [x_i, x_i + h], \\ 0 & \text{sinon.} \end{cases}$$

Pour cela:

• Task 5. Décomposez la barre en n_e éléments de longueur identique $h=L/n_e$ en générant une liste définissant les n_e+1 noeuds x_0,x_1,\ldots,x_{n_e} (avec forcément $x_0=0$ et $x_{n_e}=L$).

Matrice élémentaire

Le e-ième **élément fini** est défini sur le segment $[x_e, x_{e+1}]$, les indices commençant à 0 (convention C#). Sa **matrice élémentaire** est définie par :

$$\mathbf{K}^{e} = \begin{bmatrix} \int_{x_{e}}^{x_{e+1}} EA(x) \frac{dN_{e}}{dx}(x) \frac{dN_{e}}{dx}(x) dx & \int_{x_{e}}^{x_{e+1}} EA(x) \frac{dN_{e}}{dx}(x) \frac{dN_{e+1}}{dx}(x) dx \\ \int_{x_{e}}^{x_{e+1}} EA(x) \frac{dN_{e+1}}{dx}(x) \frac{dN_{e}}{dx}(x) dx & \int_{x_{e}}^{x_{e+1}} EA(x) \frac{dN_{e+1}}{dx}(x) \frac{dN_{e+1}}{dx}(x) dx \end{bmatrix}.$$
 (6)

• Task 6. Montrez que la matrice élémentaire de l'élément e est donnée par :

$$\mathbf{K}^{e} = k^{e} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}, \quad k^{e} = \frac{1}{h^{2}} \int_{x_{e}}^{x_{e+1}} EA(x) dx = \frac{E\pi}{3h} \left(r^{2}(x_{e+1}) + r(x_{e+1})r(x_{e}) + r^{2}(x_{e}) \right). \tag{7}$$

• *Task* 7. Implémentez une fonction C# qui retourne la matrice élémentaire à partir des données d'entrée définissant l'élément.

Assemblage, conditions aux limites, et résolution

Note : les procédures d'assemblage et d'extraction du système réduit sont plus simples que ce qui a été vu en TP car nous sommes sur un problème 1D.

- *Task 8*. Construisez la matrice globale ainsi que le second membre incluant les conditions aux limites de Neumann (ici effort extérieur) ;
- Task 9. Appliquez les conditions aux limites de Dirichlet pour obtenir le système réduit ;
- Task 10. Résolvez le système à l'aide de l'algorithme du pivot de Gauss déjà implémenté en TP.

Post-traitement et comparaison

Une fois la solution numérique EF obtenue, il est intéressant de la comparer à la solution exacte. Pour cela :

• Task 11. Tracez les graphes des déplacements et des contraintes obtenus à l'aide de la méthode des éléments finis.

Pour une meilleure comparaison avec le déplacement et la contrainte calculés analytiquement, vous pouvez les tracer sur les mêmes graphes.

• *Task 12.* Etudiez l'influence du nombre d'éléments sur la qualité des résultats, pour les deux configurations : rayon fixe et rayon variable.