Exercice 8 – Coloration des sommets d'un graphe

Soit G = (S, A) un graphe non-orienté à n sommets. Une coloration c de G consiste à affecter à chaque sommet s une couleur c(s) de telle sorte que pour chaque arête $\{x, y\}$, les couleurs c(x) et c(y) soient distinctes.

L'exemple de la figure 10 montre une coloration d'un graphe G_1 en 3 couleurs blanc, gris, noir.

FIGURE 10 – Une coloration d'un graphe G_1 .

Soit $\nu: S \mapsto \{1, \ldots, n\}$ une numérotation des sommets de G. On définit le graphe orienté $G(\nu) = (S, A(\nu))$ pour lequel chaque arête $\{x, y\}$ est transformée en l'arc (x, y) si $\nu(x) < \nu(y)$ ou en l'arc (y, x) si $\nu(x) > \nu(y)$. Par abus de langage, dans $G(\nu)$, on identifiera un sommet x et son numéro $\nu(x)$.

Q 8.1 Déterminer le graphe $G_1(\nu_1)$ pour le graphe G_1 et la numérotation ν_1 des sommets de la figure 11 où le numéro $\nu_1(x)$ est inscrit à l'intérieur du cercle associé à x. FIGURE 11 – Une numérotation ν_1 de G_1 .

(12345, 5, 67, 83) at toujours un the topologie de Volide

Q 8.2 Prouver que pour toute numérotation ν , le graphe $G(\nu)$ est sans circuit. Dan séfimition ${\bf Q}$ 8.3 Donner un tri topologique de $G(\nu),$ valide pour toute numérotation $\nu.$ 2) Par C'absurde. Soit (x, xz, 23,..., ep = eq) un circuit dans G(V). Par définition de G(V), on a colors: V(a) < V(az) < V(az)... < V(ap) = V(a). Gatadiction! 3) Tri topologique: tri des sommets a par robe? de v(a) Pour chaque sommet x de $G(\nu)$, on note $d_{\nu}(x)$ la longueur en nombre d'arcs d'un plus long chemin d'extrêmité x dans $G(\nu)$ (c'est-à-dire que $d_{\nu}(x)$ est la longueur maximale d'un chemin dont le dernier sommet est x). On note également $D(\nu)$ la plus grande valeur des $d_{\nu}(x)$.

Q 8.4 A la manière de la relation de récurrence à l'origine de l'algorithme de Bellman, donner une relation de récurrence permettant de déterminer $d_{\nu}(x)$ pour tout x. Comment initialiser la récurrence?

$$d_{\mathcal{O}}(a) = 0$$

$$d_{\mathcal{O}}(a) = \max \{d_{\mathcal{O}}(y) + 1: (y, e) \in A\}$$

Q 8.5 A l'aide de la relation de récurrence précédente, indiquer pour chaque sommet x du graphe $G_1(\nu_1)$ (sommet identifié par son numéro $\nu_1(x)$) sa valeur $d_{\nu_1}(x)$. Quelle est la valeur de $D(\nu_1)$?

x	1	2	3	4	5	6	7	8	9
$d_{ u_1}(x)$	P	1	2	3	1	3	2	2	3

Voir pege prossente

Q 8.6 0.5 En considérant un chemin de $G(\nu)$ de longueur $D(\nu)$, montrer que pour chaque valeur de l

dans
$$\{0, \dots (D(\nu))\}$$
, il existe au moins un sommet x tel que $d_{\nu}(x) = l$.

Soit $(-(a_0, a_1, \dots, a_{D(\nu)}))$ un plus long demin sole $G(\nu)$, montrer que pour chaque valeur de dans $\{0, \dots (D(\nu))\}$, il existe au moins un sommet x tel que $d_{\nu}(x) = l$.

Soit $(-(a_0, a_1, \dots, a_{D(\nu)}))$ un plus long demin sole $G(\nu)$, $(a_1, \dots, a_{D(\nu)})$ un plus long demin sole $(a_1, \dots, a_{D(\nu)})$.

On note $E_l(\nu)$ l'ensemble des sommets x tel que $d_{\nu}(x) = l$. **Q 8.7** Déduire de ce qui précède que les ensembles $E_l(\nu)$ $(l \in \{0, \ldots, D(\nu)\})$ forment une partition de S. (On rappelle qu'une partition de S est famille des parties de S non vides, disjoints deux à deux,) et dont l'union est égale à S.) · E(V) 3 ac de la guestion 8.6 + E(V) + Ø + $E_{\ell}(v) \cap E_{\ell}(v) = \delta \quad \text{poin} \ (\neq \ell' \text{ can happe som mot})$ n'a qu'um sent numero $\text{O(e(v), D(v))} \ E_{\ell}(v) = S \quad \text{can $d > (a) \in \{0, \dots, D(v)\}$. Montrer que si x et y ($x \neq y$) appartiennent à $E_{\ell}(v)$, alors il ne peut exister ni un arc (x, y) ni un arc (y, y) dans $C(v)$.$ exister ni un arc (x, y) ni un arc (y, x) dans $G(\nu)$. En déduire que dans le graphe G, on peut colorier, quel que soit l dans $\{0, \ldots, D(\nu)\}$, tous les sommets de $E_l(\nu)$ avec une même couleur. Par Cab sunde. Soit (a, g) un anc ontre 2 sommets a cty de Ec (v). Alors d (y) > d (a) + 1 car d o (y) = max { dv(a) +1: (a,y) GA}. Contradiction avec du (a)=du (y). The raisonmement pour un arc (y, a).

Q 8.9 Appliquer les résultats des questions précédentes pour déterminer la partition des sommets de G_1 en sous-ensembles de sommets de même couleur, partition obtenue pour la numérotation ν_1 . Von grape de le question 8.1: on obtient une coloration en quate coulains noin, Que, rouge, vat. Le coloration retournée n'est toutefois pas nécessairement aptimale! Sur l'exemple, en voit que en obtient 4 conteurs dons que le graphe est 3-cdorable. O 1 2 Vn plus patit exemple: 1 2 3 3 anteurs alors que le graphe est Par contre, 2x-0-3 sunsiet marche !