20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A.

TELEPHONE: (973) 376-2922

(212) 227-6005

FAX: (973) 376-8960

N-P-N TYPES 2N1302, 2N1304, 2N1306, AND 2N1308 ALLOY-JUNCTION GERMANIUM TRANSISTORS

High-Frequency Transistors for Computer and Switching Applications

environmental tests

To ensure maximum integrity, stability, and long life, finished devices are subjected to the following tests and conditions prior to thorough testing for rigid adherence to specified characteristics.

- All devices receive a 100°C stabilization bake for 100 hours.
- The hermetic seal for all devices is verified by helium leak testing.
- Production samples are life tested at regularly scheduled periods to ensure maximum reliability under extreme operating conditions.
- Continuous Quality Control checks on in-process assembly are maintained.

*mechanical data

The transistors are in a JEDEC TO-5 hermetically sealed welded package with glass to metal seal between case and leads. Approximate weight is one gram.

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

	2N1302, 2N1304 2N1303, 2N1305, 2N1306, 2N1308 2N1307, 2N1309
Collector-Base Voltage	
Emitter-Base Voltage	
Collector Current	
Total Device Dissipation at (or below) 25°C Free-Air Temperature	150 mw
Operating Collector Junction Temperature	
Storage Temperature Range	

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

Quality Semi-Conductors

TYPES 2N1302, 2N1304, 2N1306, AND 2N1308 N-P-N ALLOY-JUNCTION GERMANIUM TRANSISTORS

electrical characteristics at 25°C free-air temperature

	242445772	FOUNTIONS		1		2N 1 304	1	:	2N1304	•	2N1308			UNIT		
	PARAMETER	ARAMETER TEST CONDITIONS	CORDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
₹V CHO	Collector-Base Broakdown Voltage	I _C = 100 με,	_i = 0	25	-	-	25	-	-	25	-	1	25	-	_	Ľ
BYRRO	Emitter-Base Breakdown Voltage	$I_{\rm E}=100~\mu e$,	I ^C = 0	25	-	-	25	-	-	25	-	1	25	-		L
*V _{PT}	Punch Through Voltage†	V _{60f1} = 1 v		25	-	_	20	_	+	15		•	15			L
*Iceo	Collector Cutoff Current	V _{CB} == 25 v,	I _E = 0	_	,	6	-	3	6	1	1	4	_	3	•	1
*IEBO	Emitter Cutoff Current	Y _{E0} = 25 v,	1 _C = 0	_	2	4	_	2	6	-	2	4	_	2	6	Ľ
There.	Static Forward Current	Y _{CE} == 1 v,	I _C = 10 me	20	100		40	115	200	40	130	300	80	140	<u> </u>	Ŀ
•	Transfer Ratio	$V_{CE}=0.35 v$	I _C = 200 ms	10	100	-	15	110	_	20	125	_	20	140	-	Ŀ
**	Base-Emitter Veltage	l ₈ = 0.5 ms,	I _C = 10 me	0.15	0.22	0.40	0.15	0.22	0.35	0.15	0.22	0.35	0.15	0.22	0.35	L
	Collector-Emiller Saluration Vallage	1 ₈ = 0.5 ma,	I _C == 10 me	_	0.07	0.20	_	_	_	_	_	_	<u> </u> –	-	<u> </u>	L
*VCB(set)		} ₈ = 0.25 ma,	I _C = 10 me			-	_	0.07	0.20	_	_	_	<u> </u>	_	_	L
		ig == 0.17 me,	I _C = 10 me	_		_	<u> - </u>	_	_		0.07	0.20		_	-	L
		$l_8 = 0.13 \text{ me},$	I _C == 10 me	<u> -</u>	<u> -</u>	_	<u> </u>	_	_	_	-	_	<u> - </u>	0.07	0.20	
h _{ib}	Small-Signal Common-Bose Input Impedence	$V_{CB} = 5 v$, $I = 1 kc$	I _E = -1 ma		28	-	_	24	-	_	20	_	_	28	_	ŀ
h _{rb}	Smell-Signel Common-Bese Reverse Voltage Transfer Ratio	Y _{CB} = 5 v, f = 1 kc	I _E = - I me	-	5 x 10-4	_	-	5 x 10-4	_	-	5 x 10 ⁻⁴	_	-	5 x 10 ⁻⁴	-	
h _{eb}	Small-Signal Common-Base Output Admittance	V _{CB} = 5 v, f = 1 kc	l _E = −1 me	-	0.34	-	_	0.34			0.34	-		0.34	-	"
H.	Small-Signal Common-Emitter Forward Current Transfer Ratio	V _{CE} = 5 v, 1 = 1 ke	I _C = 1 me	-	105	-	-	120	-	-	135	_	-	170	-	
*fheb	Common-Base Alpha- Cutoff Frequency	V _{C8} = 5 v,	I _E = -1 me	,	12	_	5	14	-	10	16	-	15	20	-	
•Cop	Common-Base Open Circuit Output Capacitance	V _{CB} = 5 v, t = 1 mc	I _E = 0	_	14	20	-	14	20	_	14	20	_	14	29	L
Cib	Common-Base Open-Circuit	$V_{EB} = 5 \text{ v},$ $f = 1 \text{ mc}$	I _C = 0	_	13	-	-	13	-	-	13	-	-	13	-	

 $[\]uparrow V_{PT}$ is determined by measuring the emitter-base floating potential V_{EBfl} . The collector-base voltage, V_{CB} , is increased until $V_{EBfl}=1$ volt; this value of $V_{CB}=(V_{PT}+1\,v)$.

switching characteristics at 25°C free-air temperature

		TEST CONDITIONS	2N1302			2N1304			2N1304			2N1308			UNIT
	PARAMETER	1251 CONDITIONS []	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
td	Belay Time		-	0.07	-	_	9.07	_		0.06	_	_	0.06	-	μ14¢
+,	Risa Time	I _C = 10 md, I _{N(1)} = 1.3 ms	-	0.20	_	-	0.20	_		0.18	_	_	0.15	_	μи
1,	Storage Time	I _{B(2)} = − 0.7 ms, V _K (off) = − 0.8 v	-	0.70	-	_	0.70	[_	0.44	_		0.64	-	μям
t _e	Fall Time	$R_{k} = 1 \text{ k } \Omega \text{ (See Fig. 1)}$	-	0.40	-	-	0.40	_	-	0.36	_	_	0.34		μ 38 ξ
Q.,	Stored Base Charge	$I_{B(1)} \equiv 1 \text{ ma}, I_C \equiv 10 \text{ me (See Fig. 2)}$	<u> </u>	800	-	_	760	_		720	-		480	_	jęb

^{††}Voltage and current values shown are nominal; exact values vary slightly with device parameters.

operating characteristics at 25°C free-air temperature

PARAMETER		TEST CONDITIONS	2N1302			2N1304			2N1306			2N1308			UNIT
			MIN	TYP	MAX	U.V.I.									
MF	Spot Hoise Figure	$V_{CB} = 5 \text{ V}$ $i_B = -1 \text{ me}$ $f = 1 \text{ kc}, R_B = 1 \text{ k } \Omega$	-	•	-	-	•	-	-	;	-	1	3		•