Resolución de ecuaciones

Profesor Filánder Sequeira Chavarría

Organización de la presentación

- Introducción
- 2 Iteración de bisección
- Iteración de punto fijo
- 1 Iteración de Newton
- 6 Iteración de Secante

Considere la ecuación no lineal:

$$e^x - 2x - 1 = 0$$

en la cual no es posible despejar x explícitamente.

Si embargo, reescribiendo el problema de la forma:

$$e^x = 2x + 1$$

se transforma el problema de hallar los ceros de la función $f(x) := e^x - 2x - 1$, a un problema de hallar la o las intersecciones entre las curvas $y = e^x$ y y = 2x + 1.

Gráficamente, se observa que sí existen intersecciones en el intervalo [0,2], tal y como se muestra:

Si embargo, reescribiendo el problema de la forma:

$$e^x = 2x + 1$$

se transforma el problema de hallar los ceros de la función $f(x) := e^x - 2x - 1$, a un problema de hallar la o las intersecciones entre las curvas $y = e^x$ y y = 2x + 1.

Gráficamente, se observa que sí existen intersecciones en el intervalo [0,2], tal y como se muestra:

Lo anterior evidencia que existen dos soluciones para la ecuación:

$$e^x - 2x - 1 = 0,$$

donde una de ellas es distinta de cero y se encuentra dentro del intervalo [1, 2].

De hecho, se puede verificar, con ayuda de la calculadora, que el conjunto solución corresponde a:

$$S = \{0, 1.256431208\}.$$

Lo anterior evidencia que existen dos soluciones para la ecuación:

$$e^x - 2x - 1 = 0$$
,

donde una de ellas es distinta de cero y se encuentra dentro del intervalo [1, 2].

De hecho, se puede verificar, con ayuda de la calculadora, que el conjunto solución corresponde a:

$$\mathcal{S} = \{0, 1.256431208\}.$$

El teorema de los valores intermedios

El siguiente teorema brinda una alternativa algebraica para detectar la existencia de los cero de una función.

Teorema (de los valores intermedios)

Sea $f:[a,b]\to\mathbb{R}$ una función continua sobre [a,b]. Si se cumple que:

$$f(a)f(b) \leq 0,$$

entonces existe $\xi \in [a, b]$ tal que $f(\xi) = 0$.

La condición $f(a)f(b) \leq 0$ establece que si una función continua presenta cambio de signo en dos puntos distintos, entonces entre ellos existe un cero de la función.

El teorema de los valores intermedios

El siguiente teorema brinda una alternativa algebraica para detectar la existencia de los cero de una función.

Teorema (de los valores intermedios)

Sea $f:[a,b]\to\mathbb{R}$ una función continua sobre [a,b]. Si se cumple que:

$$f(a)f(b) \leq 0,$$

entonces existe $\xi \in [a, b]$ tal que $f(\xi) = 0$.

La condición $f(a)f(b) \leq 0$ establece que si una función continua presenta cambio de signo en dos puntos distintos, entonces entre ellos existe un cero de la función.

Ejemplo

Considere la función:

$$f(x) := e^x - 2x - 1$$

y nótese que:

- f(1) = -0.281718175 < 0
- f(2) = 2.389056099 > 0

Por lo tanto, el T.V.I garantiza que existe $\xi \in [1, 2]$ tal que:

$$f(\xi) = 0.$$

Ejemplo

Considere la función:

$$f(x) := e^x - 2x - 1$$

y nótese que:

- f(1) = -0.281718175 < 0
- f(2) = 2.389056099 > 0

Por lo tanto, el T.V.I garantiza que existe $\xi \in [1, 2]$ tal que:

$$f(\xi) = 0.$$

Observación

El Teorema de Valores Intermedios solamente garantiza la existencia de una solución y no su unicidad.

Observación

El recíproco del teorema previo es falso. Más precisamente, dada f continua en [a,b] tal que $f(\xi)=0$ para algún $\xi\in[a,b]$. Pero, f(a)f(b)>0.

Por ejemplo, la función $f(x) := x^2$ sobre [-1, 1].

Ejercicio

Ejercicio

Para cualquier $\alpha \in \mathbb{R}$, considere la ecuación:

$$\alpha x - \cos(x) - \ln(4x) = 0. \tag{1}$$

Determine los valores α para que la ecuación (1) tenga soluciones en el intervalo $\left[\frac{\pi}{4}, \frac{3\pi}{4}\right]$.

Solución.

$$\alpha \in \underbrace{\left[\frac{2}{3\pi} \left(2\ln(3\pi) - \sqrt{2}\right), \frac{2}{\pi} \left(2\ln(\pi) + \sqrt{2}\right)\right]}_{[0.6520, 2.3578]}$$

Ejercicio

Ejercicio

Para cualquier $\alpha \in \mathbb{R}$, considere la ecuación:

$$\alpha x - \cos(x) - \ln(4x) = 0. \tag{1}$$

Determine los valores α para que la ecuación (1) tenga soluciones en el intervalo $\left[\frac{\pi}{4}, \frac{3\pi}{4}\right]$.

Solución.

$$\alpha \in \underbrace{\left[\frac{2}{3\pi} \left(2\ln(3\pi) - \sqrt{2}\right), \frac{2}{\pi} \left(2\ln(\pi) + \sqrt{2}\right)\right]}_{[0.6520, 2.3578]}$$

Organización de la presentación

- Introducción
- 2 Iteración de bisección
- 3 Iteración de punto fijo
- 1 Iteración de Newton
- 6 Iteración de Secante

Dada f continua en [a, b], el objetivo es hallar $\xi \in [a, b]$ tal que:

$$f(\xi) = 0.$$

Para ello, se utiliza el T.V.I. Más precisamente, lo que se hace es que si $f(a)f(b) \leq 0$, se sabe que $\xi \in [a,b]$. Luego, se considera el punto medio $\frac{a+b}{2}$, por lo que:

$$\xi \in \left[a, \frac{a+b}{2}\right]$$
 obien $\xi \in \left[\frac{a+b}{2}, b\right]$.

De esta forma, observe que al tomar el intervalo que contiene a ξ (aquel que continúa satisfaciendo la condición de cambio de signo), se obtiene un nuevo intervalo que contiene a ξ con la mitad de longitud que el original.

Nótese que al continuar sucesivamente este proceso, el intervalo será cada vez más pequeño, pero conteniendo a ξ . En otras palabras, se está "encerrando la solución" a cada paso.

De esta forma, observe que al tomar el intervalo que contiene a ξ (aquel que continúa satisfaciendo la condición de cambio de signo), se obtiene un nuevo intervalo que contiene a ξ con la mitad de longitud que el original.

Nótese que al continuar sucesivamente este proceso, el intervalo será cada vez más pequeño, pero conteniendo a ξ . En otras palabras, se está "encerrando la solución" a cada paso.

Más precisamente, si f(a)f(b) < 0, entonces:

• Se definen:

$$a_0 := a$$
 $b_0 := b$
 $x_0 := \frac{a_0 + b_0}{2}$

② Se calcula $f(x_0)$. Si $f(x_0) \neq 0$, entonces se definen:

$$[a_1, b_1] := \begin{cases} [a_0, \mathbf{x}_0] & \text{si } f(a_0) f(x_0) < 0 \\ [\mathbf{x}_0, b_0] & \text{si } f(a_0) f(x_0) > 0 \end{cases}$$

у

$$x_1 := \frac{a_1 + b_1}{2}$$

Más precisamente, si f(a)f(b) < 0, entonces:

• Se definen:

$$a_0 := a$$
 $b_0 := b$
 $x_0 := \frac{a_0 + b_0}{2}$

② Se calcula $f(x_0)$. Si $f(x_0) \neq 0$, entonces se definen:

$$[a_1, b_1] := \begin{cases} [a_0, \mathbf{x_0}] & \text{si } f(a_0) f(x_0) < 0 \\ [\mathbf{x_0}, b_0] & \text{si } f(a_0) f(x_0) > 0 \end{cases}$$

у

$$x_1 := \frac{a_1 + b_1}{2}$$

 \bullet Se calcula $f(x_1)$. Si $f(x_1) \neq 0$, entonces se definen:

$$[a_2, b_2] := \begin{cases} [a_1, \mathbf{x}_1] & \text{si } f(a_1) f(x_1) < 0 \\ [\mathbf{x}_1, b_1] & \text{si } f(a_1) f(x_1) > 0 \end{cases}$$

У

$$x_2 := \frac{a_2 + b_2}{2}$$

O Continuando este proceso hasta $k \in \mathbb{N}$, se realiza:

$$[a_{k+1}, b_{k+1}] := \begin{cases} [a_k, \mathbf{x}_k] & \text{si } f(a_k) f(\mathbf{x}_k) < 0 \\ [\mathbf{x}_k, b_k] & \text{si } f(a_k) f(\mathbf{x}_k) > 0 \end{cases}$$

V

$$x_{k+1} := \frac{a_{k+1} + b_{k+1}}{2}$$

 \bullet Se calcula $f(x_1)$. Si $f(x_1) \neq 0$, entonces se definen:

$$[a_2, b_2] := \begin{cases} [a_1, \mathbf{x}_1] & \text{si } f(a_1) f(x_1) < 0 \\ [\mathbf{x}_1, b_1] & \text{si } f(a_1) f(x_1) > 0 \end{cases}$$

у

$$x_2 := \frac{a_2 + b_2}{2}$$

4 Continuando este proceso hasta $k \in \mathbb{N}$, se realiza:

$$[a_{k+1}, b_{k+1}] := \begin{cases} [a_k, \mathbf{x}_k] & \text{si } f(a_k) f(x_k) < 0 \\ [\mathbf{x}_k, b_k] & \text{si } f(a_k) f(x_k) > 0 \end{cases}$$

у

$$x_{k+1} := \frac{a_{k+1} + b_{k+1}}{2}$$

En conclusión, se construye una sucesión (o iteración):

$$\{x_k\}_{k\in\mathbb{N}}\subseteq [a,b]\,,$$

donde se "espera" que:

$$x_k \xrightarrow{k \to +\infty} \xi$$

En efecto, dado que $x_k, \xi \in [a_k, b_k]$, se sigue que:

$$|x_k - \xi| \le b_k - a_k = \frac{b_{k-1} - a_{k-1}}{2} = \frac{b_{k-2} - a_{k-2}}{4}$$

$$= \cdots = \frac{b_0 - a_0}{2^k} = \frac{b - a}{2^k} \xrightarrow{k \to +\infty} 0$$

lo que establece que $\{x_k\}_{k\in\mathbb{N}}$ converge a ξ cuando $k\to+\infty$

En conclusión, se construye una sucesión (o iteración):

$$\{x_k\}_{k\in\mathbb{N}}\subseteq [a,b]\,,$$

donde se "espera" que:

$$x_k \xrightarrow{k \to +\infty} \xi$$

En efecto, dado que $x_k, \xi \in [a_k, b_k]$, se sigue que:

$$|x_k - \xi| \le b_k - a_k = \frac{b_{k-1} - a_{k-1}}{2} = \frac{b_{k-2} - a_{k-2}}{4}$$

= $\cdots = \frac{b_0 - a_0}{2^k} = \frac{b - a}{2^k} \xrightarrow{k \to +\infty} 0$

lo que establece que $\{x_k\}_{k\in\mathbb{N}}$ converge a ξ cuando $k\to+\infty$.

Aplicando el método de bisección a $f(x) := e^x - 2x - 1$ en [1, 2].

• Iteración k = 0

$$a_0 = 1$$
 $f(1) < 0$
 $b_0 = 2$ $f(2) > 0$
 $x_0 = \frac{1+2}{2} = \frac{3}{2} = 1.5$ $f(1.5) > 0$

• Iteración k=1

$$a_1 = 1$$
 $f(1) < 0$
 $b_1 = 1.5$ $f(1.5) > 0$
 $x_1 = \frac{1+1.5}{2} = \frac{5}{4} = 1.25$ $f(1.25) < 0$

Aplicando el método de bisección a $f(x) := e^x - 2x - 1$ en [1, 2].

• Iteración k=0

$$a_0 = 1$$
 $f(1) < 0$
 $b_0 = 2$ $f(2) > 0$
 $x_0 = \frac{1+2}{2} = \frac{3}{2} = 1.5$ $f(1.5) > 0$

• Iteración k=1

$$a_1 = 1$$
 $f(1) < 0$
 $b_1 = 1.5$ $f(1.5) > 0$
 $x_1 = \frac{1+1.5}{2} = \frac{5}{4} = 1.25$ $f(1.25) < 0$

Ejemplo de la completa del completa del completa de la completa del completa del la completa del la completa del la completa de la completa del la completa

• Iteración k=2

$$a_2 = 1.25$$
 $f(1.25) < 0$
 $b_2 = 1.5$ $f(1.5) > 0$
 $x_2 = \frac{1.25 + 1.5}{2} = \frac{11}{8} = 1.375$ $f(1.375) > 0$

Iteración k=3

$$a_3 = 1.25$$
 $f(1.25) < 0$
 $b_3 = 1.375$ $f(1.375) > 0$
 $x_3 = \frac{1.25 + 1.375}{2} = \frac{21}{16} = 1.3125$ $f(1.3125) > 0$

• Iteración k=2

$$a_2 = 1.25$$
 $f(1.25) < 0$
 $b_2 = 1.5$ $f(1.5) > 0$
 $x_2 = \frac{1.25 + 1.5}{2} = \frac{11}{8} = 1.375$ $f(1.375) > 0$

• Iteración k=3

$$a_3 = 1.25$$
 $f(1.25) < 0$
 $b_3 = 1.375$ $f(1.375) > 0$
 $x_3 = \frac{1.25 + 1.375}{2} = \frac{21}{16} = 1.3125$ $f(1.3125) > 0$

¿Cuándo detenerse?

La iteración $\{x_k\}_{k\in\mathbb{N}}$ de bisección converge a una solución de f(x)=0 cuando $k\to +\infty$. Sin embargo, en la práctica no se puede llegar a infinito. Más aún, debido a los problemas de la aritmética de precisión finita, tampoco hay garantía de, siendo capaces de hacer $k\to +\infty$, llegar al valor exacto de una solución.

¿Cuándo detenerse?

La iteración $\{x_k\}_{k\in\mathbb{N}}$ de bisección converge a una solución de f(x)=0 cuando $k\to +\infty$. Sin embargo, en la práctica no se puede llegar a infinito. Más aún, debido a los problemas de la aritmética de precisión finita, tampoco hay garantía de, siendo capaces de hacer $k\to +\infty$, llegar al valor exacto de una solución.

Lo que se hace es considerar dos criterios/condiciones de parada.

lerror en la iteración k| < tol: Se considera una tolerancia tol > 0 con el fin de obtener una aproximación adecuada para la solución (en términos de dígitos significativos). Dado que:

error en la iteración
$$k = x_k - \xi$$

<u>no es posible calcularlo</u> (no se conoce ξ). Así, lo que se usa es:

$$|x_k - x_{k-1}| < tol, \text{ o bien, } \frac{|x_k - x_{k-1}|}{|x_k|} < tol.$$

$$|b_{k+1} - a_{k+1}| < tol$$

Lo que se hace es considerar dos criterios/condiciones de parada.

• | error en la iteración k| < tol: Se considera una tolerancia tol > 0 con el fin de obtener una aproximación adecuada para la solución (en términos de dígitos significativos). Dado que:

error en la iteración
$$k = x_k - \xi$$

no es posible calcularlo (no se conoce ξ). Así, lo que se usa es:

$$|x_k - x_{k-1}| \ < \ tol \, , \quad ext{o bien}, \quad rac{|x_k - x_{k-1}|}{|x_k|} \ < \ tol \, .$$

$$|b_{k+1} - a_{k+1}| < tol$$

Lo que se hace es considerar dos criterios/condiciones de parada.

• | error en la iteración k| < tol: Se considera una tolerancia tol > 0 con el fin de obtener una aproximación adecuada para la solución (en términos de dígitos significativos). Dado que:

error en la iteración
$$k = x_k - \xi$$

<u>no es posible calcularlo</u> (no se conoce ξ). Así, lo que se usa es:

$$|x_k - x_{k-1}| < tol, \text{ o bien, } \frac{|x_k - x_{k-1}|}{|x_k|} < tol.$$

$$|b_{k+1} - a_{k+1}| < tol$$

Lo que se hace es considerar dos criterios/condiciones de parada.

• | error en la iteración k| < tol: Se considera una tolerancia tol > 0 con el fin de obtener una aproximación adecuada para la solución (en términos de dígitos significativos). Dado que:

error en la iteración
$$k = x_k - \xi$$

<u>no es posible calcularlo</u> (no se conoce ξ). Así, lo que se usa es:

$$|x_k - x_{k-1}| < tol$$
, o bien, $\frac{|x_k - x_{k-1}|}{|x_k|} < tol$.

$$|b_{k+1} - a_{k+1}| < tol$$

Lo que se hace es considerar dos criterios/condiciones de parada.

• | error en la iteración k| < tol: Se considera una tolerancia tol > 0 con el fin de obtener una aproximación adecuada para la solución (en términos de dígitos significativos). Dado que:

error en la iteración
$$k = x_k - \xi$$

<u>no es posible calcularlo</u> (no se conoce ξ). Así, lo que se usa es:

$$|x_k - x_{k-1}| < tol$$
, o bien, $\frac{|x_k - x_{k-1}|}{|x_k|} < tol$.

$$|b_{k+1} - a_{k+1}| < tol$$

Lo que se hace es considerar dos criterios/condiciones de parada.

② k < iterMax: Se considera un entero máximo de iteraciones $iterMax \in \mathbb{N}$ a realizar.

Esto es importante, ya que debido a los errores provenientes de la precisión finita, la iteración podría nunca converger con la tolerancia dada.

Lo que se hace es considerar dos criterios/condiciones de parada.

② k < iterMax: Se considera un entero máximo de iteraciones $iterMax \in \mathbb{N}$ a realizar.

Esto es importante, ya que debido a los errores provenientes de la precisión finita, la iteración podría nunca converger con la tolerancia dada.

Considere la ecuación:

$$\cos(e^x - 2) = e^x - 2.$$

Determine una aproximación de la solución en [0.5, 1.5], utilizando iteración de bisección con una tolerancia de 10^{-2} . Recuerde emplear radianes, así como redondeo a cuatro decimales.

Definiendo $f(x) := \cos(e^x - 2) - e^x + 2$, se sigue que:

• Iteración
$$k = 0$$
 $a_0 := 0.5, b_0 := 1.5, f(a_0) > 0, f(b_0) < 0.$

$$x_0 = \frac{0.5 + 1.5}{2} = 1 \implies f(x_0) > 0$$

Nuevo intervalo: $a_1 := 1$ y $b_1 := 1.5$

Error: $|b_1 - a_1| = 0.5 > 0.01!$ (Se debe seguir).

• Iteración
$$k = 1$$
 $a_1 := 1, b_1 := 1.5, f(a_1) > 0, f(b_1) < 0.$

$$x_1 = \frac{1+1.5}{2} = 1.25 \implies f(x_1) < 0$$

Nuevo intervalo: $a_2 := 1$ y $b_2 := 1.25$

Error: $|b_2 - a_2| = 0.25 > 0.01!$ (Se debe seguir).

Definiendo $f(x) := \cos(e^x - 2) - e^x + 2$, se sigue que:

• Iteración k = 0 $a_0 := 0.5, b_0 := 1.5, f(a_0) > 0, f(b_0) < 0.$

$$x_0 = \frac{0.5 + 1.5}{2} = 1 \implies f(x_0) > 0$$

Nuevo intervalo: $a_1 := 1$ y $b_1 := 1.5$

Error: $|b_1 - a_1| = 0.5 > 0.01!$ (Se debe seguir).

• Iteración k = 1 $a_1 := 1, b_1 := 1.5, f(a_1) > 0, f(b_1) < 0.$

$$x_1 = \frac{1+1.5}{2} = 1.25 \implies f(x_1) < 0$$

Nuevo intervalo: $a_2 := 1$ y $b_2 := 1.25$

Error: $|b_2 - a_2| = 0.25 > 0.01!$ (Se debe seguir).

• Iteración
$$k = 2$$
 $a_2 := 1, b_2 := 1.25, f(a_2) > 0, f(b_2) < 0.$

$$x_2 = \frac{1+1.25}{2} = 1.125 \implies f(x_2) < 0$$

Nuevo intervalo: $a_3 := 1$ y $b_3 := 1.125$

Error: $|b_3 - a_3| = 0.125 > 0.01!$ (Se debe seguir).

• Iteración
$$k = 3$$
 $a_3 := 1, b_3 := 1.125, f(a_3) > 0, f(b_3) < 0.$

$$x_3 = \frac{1+1.125}{2} = 1.0625 \implies f(x_3) < 0$$

Nuevo intervalo: $a_4 := 1 \ y \ b_4 := 1.0625$

Error: $|b_4 - a_4| = 0.0625 > 0.01!$ (Se debe seguir)

• Iteración
$$k = 2$$
 $a_2 := 1, b_2 := 1.25, f(a_2) > 0, f(b_2) < 0.$

$$x_2 = \frac{1+1.25}{2} = 1.125 \implies f(x_2) < 0$$

Nuevo intervalo: $a_3 := 1$ y $b_3 := 1.125$

Error: $|b_3 - a_3| = 0.125 > 0.01!$ (Se debe seguir).

• Iteración
$$k = 3$$
 $a_3 := 1, b_3 := 1.125, f(a_3) > 0, f(b_3) < 0.$

$$x_3 = \frac{1+1.125}{2} = 1.0625 \implies f(x_3) < 0$$

Nuevo intervalo: $a_4 := 1 \ y \ b_4 := 1.0625$

Error: $|b_4 - a_4| = 0.0625 > 0.01!$ (Se debe seguir).

• Iteración
$$k = 4$$
 $a_4 := 1, b_4 := 1.0625, f(a_4) > 0, f(b_4) < 0.$

$$x_4 = \frac{1 + 1.0625}{2} = 1.0313 \implies f(x_4) < 0$$

Nuevo intervalo: $a_5 := 1 \ y \ b_5 := 1.0313$

Error: $|b_5 - a_5| = 0.0313 > 0.01!$ (Se debe seguir).

• Iteración
$$k = 5$$
 $a_5 := 1, b_5 := 1.0313, f(a_5) > 0, f(b_5) < 0.$

$$x_5 = \frac{1 + 1.0313}{2} = 1.0157 \implies f(x_5) < 0$$

Nuevo intervalo: $a_6 := 1 \ y \ b_6 := 1.0157$

Error: $|b_6 - a_6| = 0.0157 > 0.01!$ (Se debe seguir)

• Iteración
$$k = 4$$
 $a_4 := 1, b_4 := 1.0625, f(a_4) > 0, f(b_4) < 0.$

$$x_4 = \frac{1 + 1.0625}{2} = 1.0313 \implies f(x_4) < 0$$

Nuevo intervalo: $a_5 := 1 \ y \ b_5 := 1.0313$

Error: $|b_5 - a_5| = 0.0313 > 0.01!$ (Se debe seguir).

• Iteración
$$k = 5$$
 $a_5 := 1, b_5 := 1.0313, f(a_5) > 0, f(b_5) < 0.$

$$x_5 = \frac{1 + 1.0313}{2} = 1.0157 \implies f(x_5) < 0$$

Nuevo intervalo: $a_6 := 1$ y $b_6 := 1.0157$

Error: $|b_6 - a_6| = 0.0157 > 0.01!$ (Se debe seguir).

• Iteración
$$k = 6$$
 $a_6 := 1, b_6 := 1.0157, f(a_6) > 0, f(b_6) < 0.$
$$x_6 = \frac{1 + 1.0157}{2} = 1.0079 \Rightarrow f(x_6) < 0$$

Nuevo intervalo: $a_7 := 1$ y $b_7 := 1.0079$

Error: $|b_7 - a_7| = 0.0079 < 0.01!$ (Se detiene).

Por lo tanto, se obtiene $x_6 = 1.0079$ como una aproximación para la solución de f(x) = 0.

Ejercicio

Ejercicio para la casa (I Examen, IIC-2016)

Considere la siguiente variante del método de bisección, la cual conoceremos como la **iteración de tribisección**: dados a_0 y b_0 tales que $f(a_0)f(b_0) \leq 0$, se divide, en cada iteración, el intervalo $[a_k, b_k]$ en tres partes iguales:

donde,
$$p_k := \frac{2a_k + b_k}{3}, \ q_k := \frac{a_k + 2b_k}{3}$$
 y

$$[a_{k+1}, b_{k+1}] := \begin{cases} [a_k, p_k] & \text{si } f(a_k) f(p_k) < 0 \\ [p_k, q_k] & \text{si } f(p_k) f(q_k) < 0 \\ [q_k, b_k] & \text{en otro caso} \end{cases}$$

y así la nueva aproximación es: $x_k := \frac{a_{k+1} + b_{k+1}}{2}$.

Ejercicio

Ejercicio para la casa (I Examen, IIC-2016)

a) Realice 4 iteraciones del método de bisección para aproximar una solución de

$$2x - \cos(x) - \sin(x) = 0$$
 en $[0, 2]$.

- b) Repita la parte a) usando el método de tribisección.
- c) Tomando $\xi = 0.704812002...$, determine la cantidad de dígitos significativos en las dos aproximaciones anteriores.

Organización de la presentación

- Introducción
- 2 Iteración de bisección
- 3 Iteración de punto fijo
- 4 Iteración de Newton
- 6 Iteración de Secante

Considere la función continua:

$$f(x) := 1 + \operatorname{sen}\left(\frac{\pi(x+\sqrt{2})}{2}\right)$$

en el intervalo [0,3] cuya gráfica corresponde a:

Observe que para esta función <u>no</u> se satisface la condición de cambio de signo. Sin embargo, f si posee un cero en [0,3] el cual viene dado por:

$$\xi = 3 - \sqrt{2}.$$

En otras palabras, el método de bisección no puede ser aplicado para aproximar $\xi \in [0,3]$ debido a que este requiere de la condición de cambio de signo.

¿Cómo se determina una aproximación de ξ ?

Observe que para esta función <u>no</u> se satisface la condición de cambio de signo. Sin embargo, f si posee un cero en [0,3] el cual viene dado por:

$$\xi = 3 - \sqrt{2}.$$

En otras palabras, el método de bisección no puede ser aplicado para aproximar $\xi \in [0,3]$ debido a que este requiere de la condición de cambio de signo.

¿Cómo se determina una aproximación de ξ ?

Observe que para esta función <u>no</u> se satisface la condición de cambio de signo. Sin embargo, f si posee un cero en [0,3] el cual viene dado por:

$$\xi = 3 - \sqrt{2}.$$

En otras palabras, el método de bisección no puede ser aplicado para aproximar $\xi \in [0,3]$ debido a que este requiere de la condición de cambio de signo.

¿Cómo se determina una aproximación de ξ ?

Antes de responder, considere ahora la función continua:

$$g(x) := \frac{1}{2} - \frac{1}{1 + M|x - 1.05|},$$

donde, para M=200 en el intervalo [0.8,1.8] su gráfica corresponde a:

La ecuación g(x) = 0 tiene dos soluciones:

$$\xi_1 = 1.05 - \frac{1}{M}$$
 y $\xi_2 = 1.05 + \frac{1}{M}$,

donde es claro que la distancia entre ambas soluciones es de $\frac{2}{M}$. Así, para valores grandes de M se tiene que ambas soluciones están muy juntas, lo que hace difícil conseguir un intervalo [a,b] tal que:

$$\xi_1 \in [a, b]$$
 o $\xi_2 \in [a, b]$

con además la condición $g(a)g(b) \leq 0$.

Nuevamente el método de bisección no es una opción!

La ecuación g(x) = 0 tiene dos soluciones:

$$\xi_1 = 1.05 - \frac{1}{M}$$
 y $\xi_2 = 1.05 + \frac{1}{M}$,

donde es claro que la distancia entre ambas soluciones es de $\frac{2}{M}$. Así, para valores grandes de M se tiene que ambas soluciones están muy juntas, lo que hace difícil conseguir un intervalo [a,b] tal que:

$$\xi_1 \in [a, b]$$
 o $\xi_2 \in [a, b]$

con además la condición $g(a)g(b) \leq 0$.

Nuevamente el método de bisección no es una opción!

La ecuación g(x) = 0 tiene dos soluciones:

$$\xi_1 = 1.05 - \frac{1}{M}$$
 y $\xi_2 = 1.05 + \frac{1}{M}$,

donde es claro que la distancia entre ambas soluciones es de $\frac{2}{M}$. Así, para valores grandes de M se tiene que ambas soluciones están muy juntas, lo que hace difícil conseguir un intervalo [a,b] tal que:

$$\xi_1 \in [a, b]$$
 o $\xi_2 \in [a, b]$

con además la condición $g(a)g(b) \leq 0$.

Nuevamente el método de bisección no es una opción!

Punto fijo

Ahora, se define una nueva forma de determinar la solución de f(x) = 0, para lo cual se considera la siguiente definición.

Definición

Considere $\varphi : [a, b] \to \mathbb{R}$ una función. Se dice que $\xi \in [a, b]$ es un **punto fijo de** φ si y sólo si $\varphi(\xi) = \xi$.

Punto fijo

¿Qué relación tiene la existencia de puntos fijos en la solución de f(x) = 0?

El problema f(x) = 0 siempre se puede escribir como un problema de hallar un punto fijo de otra función φ , la cual depende de f.

Por ejemplo, volviendo a la ecuación $e^x - 2x - 1 = 0$ en [1,2], nótese que:

$$e^x - 2x - 1 = 0$$
 \Rightarrow $x = \frac{e^x - 1}{2}$

donde se puede tomar $\varphi(x) := \frac{e^x - 1}{2}$ para escribir el problema f(x) = 0 de la forma $x = \varphi(x)$.

Punto fijo

¿Qué relación tiene la existencia de puntos fijos en la solución de f(x) = 0?

El problema f(x) = 0 siempre se puede escribir como un problema de hallar un punto fijo de otra función φ , la cual depende de f.

Por ejemplo, volviendo a la ecuación $e^x - 2x - 1 = 0$ en [1, 2], nótese que:

$$e^x - 2x - 1 = 0 \qquad \Rightarrow \qquad x = \frac{e^x - 1}{2}$$

donde se puede tomar $\varphi(x) := \frac{e^x - 1}{2}$ para escribir el problema f(x) = 0 de la forma $x = \varphi(x)$.

¿Qué relación tiene la existencia de puntos fijos en la solución de f(x) = 0?

El problema f(x) = 0 siempre se puede escribir como un problema de hallar un punto fijo de otra función φ , la cual depende de f.

Por ejemplo, volviendo a la ecuación $e^x - 2x - 1 = 0$ en [1,2], nótese que:

$$e^x - 2x - 1 = 0 \qquad \Rightarrow \qquad x = \frac{e^x - 1}{2}$$

donde se puede tomar $\varphi(x) := \frac{e^x - 1}{2}$ para escribir el problema f(x) = 0 de la forma $x = \varphi(x)$.

Similarmente, se tiene que:

$$e^x - 2x - 1 = 0$$
 \Rightarrow $x = \ln(2x + 1)$

donde ahora $\varphi(x) := \ln(2x+1)$.

$$x^{2} = 2 \Rightarrow x = \frac{2}{x}$$

$$\Rightarrow \varphi(x) := \frac{2}{x}, x \neq 0$$

$$x^{2} + x = 2 + x \Rightarrow x(x+1) = x+2$$

$$\Rightarrow \varphi(x) := \frac{x+2}{x+1}, x \neq -1$$

$$x^{2} - x = 2 - x \Rightarrow x(x-1) = 2 - x$$

$$\Rightarrow \varphi(x) := \frac{2-x}{x-1}, x \neq 1$$

Similarmente, se tiene que:

$$e^x - 2x - 1 = 0$$
 \Rightarrow $x = \ln(2x + 1)$

donde ahora $\varphi(x) := \ln(2x+1)$.

$$x^{2} = 2 \implies x = \frac{2}{x}$$

$$\Rightarrow \varphi(x) := \frac{2}{x}, x \neq 0$$

$$x^{2} + x = 2 + x \implies x(x+1) = x+2$$

$$\Rightarrow \varphi(x) := \frac{x+2}{x+1}, x \neq -1$$

$$x^{2} - x = 2 - x \implies x(x-1) = 2 - x$$

$$\Rightarrow \varphi(x) := \frac{2-x}{x-1}, x \neq 1$$

Similarmente, se tiene que:

$$e^x - 2x - 1 = 0$$
 \Rightarrow $x = \ln(2x + 1)$

donde ahora $\varphi(x) := \ln(2x+1)$.

$$x^{2} = 2 \implies x = \frac{2}{x}$$

$$\Rightarrow \varphi(x) := \frac{2}{x}, x \neq 0$$

$$x^{2} + x = 2 + x \implies x(x+1) = x+2$$

$$\Rightarrow \varphi(x) := \frac{x+2}{x+1}, x \neq -1$$

$$x^{2} - x = 2 - x \implies x(x-1) = 2 - x$$

$$\Rightarrow \varphi(x) := \frac{2-x}{x-1}, x \neq 1$$

Similarmente, se tiene que:

$$e^x - 2x - 1 = 0$$
 \Rightarrow $x = \ln(2x + 1)$

donde ahora $\varphi(x) := \ln(2x+1)$.

$$x^{2} = 2 \implies x = \frac{2}{x}$$

$$\Rightarrow \varphi(x) := \frac{2}{x}, x \neq 0$$

$$x^{2} + \mathbf{x} = 2 + \mathbf{x} \implies x(x+1) = x+2$$

$$\Rightarrow \varphi(x) := \frac{x+2}{x+1}, x \neq -1$$

$$x^{2} - \mathbf{x} = 2 - \mathbf{x} \implies x(x-1) = 2 - x$$

$$\Rightarrow \varphi(x) := \frac{2-x}{x-1}, x \neq 1$$

Existencia de puntos fijos

Teorema (Punto fijo de Brouwer)

Sea $\varphi:[a,b]\to\mathbb{R}$ una función continua sobre [a,b]. Suponga además que

$$\varphi(x) \in [a, b]$$
 para todo $x \in [a, b]$.

Entonces, existe $\xi \in [a, b]$ tal que $\xi = \varphi(\xi)$.

Este teorema garantiza la existencia de algún punto fijo de φ en [a,b], siempre que el $\varphi([a,b]) \subseteq [a,b]$.

Existencia de puntos fijos

Teorema (Punto fijo de Brouwer)

Se
a $\varphi:[a,b]\to\mathbbm{R}$ una función continua sobre [a,b]. Suponga además que

$$\varphi(x) \in [a, b]$$
 para todo $x \in [a, b]$.

Entonces, existe $\xi \in [a, b]$ tal que $\xi = \varphi(\xi)$.

Este teorema garantiza la existencia de algún punto fijo de φ en [a,b], siempre que el $\varphi([a,b]) \subseteq [a,b]$.

Observaciones

- El teorema previo solo garantiza existencia de puntos fijos y no la unicidad.
- Todo problema f(x) = 0 se puede escribir, de forma equivalente, a $x = \varphi(x)$. Sin embargo, no hay garantía que la nueva función φ cumple las hipótesis del teorema previo.

Observaciones

- El teorema previo solo garantiza existencia de puntos fijos y no la unicidad.
- Todo problema f(x) = 0 se puede escribir, de forma equivalente, a $x = \varphi(x)$. Sin embargo, no hay garantía que la nueva función φ cumple las hipótesis del teorema previo.

Ejemplo

Considere la ecuación $e^x - 2x - 1 = 0$ para $x \in [1, 2]$. Determine una función $\varphi(x)$ que cumpla las condiciones del teorema de punto fijo de Brouwer.

De acuerdo con lo anterior, una forma es considerar:

$$\varphi(x) := \frac{e^x - 1}{2},$$

la cual es continua sobre [1, 2]. Sin embargo, nótese que:

$$\varphi(1) \approx 0.8591 \notin [1, 2]$$
.

por lo que no se cumplen las condiciones del teorema. Así, se debe considerar otra expresión para $\varphi(x)$.

La segunda opción corresponde a:

$$\varphi(x) := \ln(2x+1)$$

también continua sobre [1, 2]. En particular, observe que:

$$\varphi(1) \approx 1.0986 \in [1, 2]$$
 y $\varphi(2) \approx 1.6094 \in [1, 2]$,

lo cual no revela mayor información como en el caso anterior.

Luego, nótese que:

$$\varphi'(x) = \frac{2}{2x+1}$$

donde se observa que:

$$\varphi'(x) = 0 \quad \Rightarrow \quad \frac{2}{2x+1} = 0 \quad \Rightarrow \quad \mathbf{2} = \mathbf{0}$$

no posee solución. Esto implica que no hay extremos relativos de φ dentro del intervalo [1, 2]. Así, los únicos candidatos son los extremos.

Por lo tanto, se concluye que:

$$x \in [1,2]$$
 \Rightarrow $\varphi(x) \in [1,2]$.

Luego, nótese que:

$$\varphi'(x) = \frac{2}{2x+1}$$

donde se observa que:

$$\varphi'(x) = 0 \quad \Rightarrow \quad \frac{2}{2x+1} = 0 \quad \Rightarrow \quad \mathbf{2} = \mathbf{0}$$

no posee solución. Esto implica que no hay extremos relativos de φ dentro del intervalo [1, 2]. Así, los únicos candidatos son los extremos.

Por lo tanto, se concluye que:

$$x \in [1,2]$$
 \Rightarrow $\varphi(x) \in [1,2]$.

Luego, nótese que:

$$\varphi'(x) = \frac{2}{2x+1}$$

donde se observa que:

$$\varphi'(x) = 0 \quad \Rightarrow \quad \frac{2}{2x+1} = 0 \quad \Rightarrow \quad \mathbf{2} = \mathbf{0}$$

no posee solución. Esto implica que no hay extremos relativos de φ dentro del intervalo [1, 2]. Así, los únicos candidatos son los extremos.

Por lo tanto, se concluye que:

$$x \in [1, 2]$$
 \Rightarrow $\varphi(x) \in [1, 2]$.

En conclusión, la función:

$$\varphi(x) := \ln(2x+1)$$

satisface las hipótesis del teorema de punto fijo de Brouwer en [1,2]. De esta forma, se sabe que existe $\xi \in [1,2]$ punto fijo de φ , tal que $f(\xi) = 0$.

Ejemplo (I Examen, IIC-2019)

Considere la función polinomial $f(x) := x^4 - 8x^3 + 1$ en [-1, 1]. Se tiene que la ecuación f(x) = 0 es equivalente a $x = \varphi(x)$, donde:

$$\varphi(x) := \frac{\sqrt[3]{1+x^4}}{2}.$$

Luego, nótese que $\varphi'(x) = \frac{2x^3}{3(x^4+1)^{\frac{2}{3}}}$, donde $\varphi'(x) = 0 \Rightarrow x = 0$.

Así, dado que:

•
$$\varphi(-1) = \frac{\sqrt[3]{2}}{2} \approx 0.6299605249$$

•
$$\varphi(0) = \frac{1}{2} = 0.5$$

•
$$\varphi(1) = \frac{\sqrt[3]{2}}{2} \approx 0.6299605249$$

se concluye que $\varphi(x) \in [-1,1]$ para $x \in [-1,1]$.

Ejemplo (I Examen, IIC-2019)

Considere la función polinomial $f(x) := x^4 - 8x^3 + 1$ en [-1, 1]. Se tiene que la ecuación f(x) = 0 es equivalente a $x = \varphi(x)$, donde:

$$\varphi(x) := \frac{\sqrt[3]{1+x^4}}{2}.$$

Luego, nótese que $\varphi'(x) = \frac{2x^3}{3(x^4+1)^{\frac{2}{3}}}$, donde $\varphi'(x) = 0 \Rightarrow x = 0$.

Así, dado que:

•
$$\varphi(-1) = \frac{\sqrt[3]{2}}{2} \approx 0.6299605249$$

•
$$\varphi(0) = \frac{1}{2} = 0.5$$

•
$$\varphi(1) = \frac{\sqrt[3]{2}}{2} \approx 0.6299605249$$

se concluye que $\varphi(x) \in [-1,1]$ para $x \in [-1,1]$

Ejemplo (I Examen, IIC-2019)

Considere la función polinomial $f(x) := x^4 - 8x^3 + 1$ en [-1, 1]. Se tiene que la ecuación f(x) = 0 es equivalente a $x = \varphi(x)$, donde:

$$\varphi(x) := \frac{\sqrt[3]{1+x^4}}{2}.$$

Luego, nótese que $\varphi'(x) = \frac{2x^3}{3(x^4+1)^{\frac{2}{3}}}$, donde $\varphi'(x) = 0 \Rightarrow x = 0$.

Así, dado que:

•
$$\varphi(-1) = \frac{\sqrt[3]{2}}{2} \approx 0.6299605249$$

$$\bullet \varphi(0) = \frac{1}{2} = 0.5$$

•
$$\varphi(1) = \frac{\sqrt[3]{2}}{2} \approx 0.6299605249$$

se concluye que $\varphi(x) \in [-1,1]$ para $x \in [-1,1]$.

Método de punto fijo

Definición

Dado $x_0 \in [a, b]$, se define $\{x_k\}_{k \in \mathbb{N}}$ como la sucesión recursiva:

$$x_{k+1} = \varphi(x_k), \quad \text{para} \quad k = 0, 1, 2, \dots,$$

conocida como la iteración de punto fijo o el método de aproximaciones sucesivas.

Ejemplo

Aplicando la iteración de punto fijo a $x = \ln(2x+1)$, para $x_0 = 1$, se sigue que:

k	x_k
0	1
1	$\varphi(x_0) \approx 1.098612289$
2	$\varphi(x_1) \approx 1.162283114$
3	$\varphi(x_2) \approx 1.201339208$
4	$\varphi(x_3) \approx 1.224562891$
5	$\varphi(x_4) \approx 1.238120802$
6	$\varphi(x_5) \approx 1.245951711$
7	$\varphi(x_6) \approx 1.250446981$
8	$\varphi(x_7) \approx 1.253018354$
9	$\varphi(x_8) \approx 1.254486256$
10	$\varphi(x_9) \approx 1.255323263$
11	$\varphi(x_{10}) \approx 1.255800216$

Contracción

Definición

Sea φ una función sobre [a,b]. Entonces, se dice que φ es una **contracción** sobre [a,b], si existe $L\in]0,1[$ tal que

$$|\varphi(x_1) - \varphi(x_2)| \le L|x_1 - x_2| \quad \forall x_1, x_2 \in [a, b].$$

Dada $\varphi(x) := x^2 - 4$, se tiene que:

$$|\varphi(x_1) - \varphi(x_2)| = |x_1^2 - 4 - (x_2^2 - 4)| = |x_1^2 - x_2^2|$$

$$= |(x_1 + x_2)(x_1 - x_2)| = |x_1 + x_2| |x_1 - x_2|$$

$$\leq (|x_1| + |x_2|) \cdot |x_1 - x_2|$$

Si se considera $\varphi(x)$ sobre $\left[0,\frac{1}{3}\right]$ se tiene que $0 \le x_1, x_2 \le \frac{1}{3}$, con lo que:

$$|\varphi(x_1) - \varphi(x_2)| \le \left(\frac{1}{3} + \frac{1}{3}\right) \cdot |x_1 - x_2| = \frac{2}{3} \cdot |x_1 - x_2|$$

Por lo tanto, $\varphi(x)=x^2-4$ es una contracción sobre $\left[0,\frac{1}{3}\right]$, con constante $L=\frac{2}{3}$.

Dada $\varphi(x) := x^2 - 4$, se tiene que:

$$|\varphi(x_1) - \varphi(x_2)| = |x_1^2 - 4 - (x_2^2 - 4)| = |x_1^2 - x_2^2|$$

$$= |(x_1 + x_2)(x_1 - x_2)| = |x_1 + x_2| |x_1 - x_2|$$

$$\leq (|x_1| + |x_2|) \cdot |x_1 - x_2|$$

Si se considera $\varphi(x)$ sobre $\left[0,\frac{1}{3}\right]$ se tiene que $0 \le x_1, x_2 \le \frac{1}{3}$, con lo que:

$$|\varphi(x_1) - \varphi(x_2)| \le \left(\frac{1}{3} + \frac{1}{3}\right) \cdot |x_1 - x_2| = \frac{2}{3} \cdot |x_1 - x_2|$$

Por lo tanto, $\varphi(x)=x^2-4$ es una contracción sobre $\left[0,\frac{1}{3}\right]$, con constante $L=\frac{2}{3}$.

Dada $\varphi(x) := x^2 - 4$, se tiene que:

$$\begin{aligned} |\varphi(x_1) - \varphi(x_2)| &= |x_1^2 - 4 - (x_2^2 - 4)| &= |x_1^2 - x_2^2| \\ &= |(x_1 + x_2)(x_1 - x_2)| &= |x_1 + x_2| |x_1 - x_2| \\ &\leq (|x_1| + |x_2|) \cdot |x_1 - x_2| \end{aligned}$$

Si se considera $\varphi(x)$ sobre $\left[0,\frac{1}{3}\right]$ se tiene que $0 \le x_1, x_2 \le \frac{1}{3}$, con lo que:

$$|\varphi(x_1) - \varphi(x_2)| \le \left(\frac{1}{3} + \frac{1}{3}\right) \cdot |x_1 - x_2| = \frac{2}{3} \cdot |x_1 - x_2|$$

Por lo tanto, $\varphi(x)=x^2-4$ es una contracción sobre $\left[0,\frac{1}{3}\right]$, con constante $L=\frac{2}{3}$.

Contracción para funciones derivables

Teorema

Sea φ una función derivable sobre]a,b[tal que:

$$|\varphi'(x)| \le L \quad \forall x \in [a, b]$$

con 0 < L < 1. Entonces, φ es una contracción sobre [a,b] con constante L.

Volviendo a $\varphi(x) := \ln(2x+1)$ en [1, 2], nótese que:

$$\varphi'(x) = \frac{2}{2x+1} \qquad \Rightarrow \qquad \varphi''(x) = -\frac{4}{(2x+1)^2}$$

donde, como $\varphi''(x) = 0$ no posee solución, los únicos candidatos a extremos relativos de φ' son los extremos del intervalo [1, 2].

Luego, nótese que:

$$|\varphi'(1)| = \frac{2}{3}$$
 y $|\varphi'(2)| = \frac{2}{5}$

Por lo tanto:

$$|\varphi'(x)| \le \frac{2}{3} \quad \forall x \in [1, 2]$$

lo que prueba que φ es una contracción sobre [1,2] con constante $L=\frac{2}{3}.$

Volviendo a $\varphi(x) := \ln(2x+1)$ en [1, 2], nótese que:

$$\varphi'(x) = \frac{2}{2x+1} \qquad \Rightarrow \qquad \varphi''(x) = -\frac{4}{(2x+1)^2}$$

donde, como $\varphi''(x) = 0$ no posee solución, los únicos candidatos a extremos relativos de φ' son los extremos del intervalo [1, 2].

Luego, nótese que:

$$|\varphi'(1)| = \frac{2}{3}$$
 y $|\varphi'(2)| = \frac{2}{5}$

Por lo tanto:

$$|\varphi'(x)| \le \frac{2}{3} \quad \forall x \in [1, 2]$$

lo que prueba que φ es una contracción sobre [1,2] con constante $L=\frac{2}{3}.$

Convergencia de la iteración de punto fijo

Teorema

Sea $\varphi:[a,b]\to\mathbb{R}$ una función tal que:

- es continua sobre [a, b],
- $\bullet \ \varphi(x) \in [a,b] \quad \forall \ x \in [a,b],$
- φ es una contracción sobre [a, b].

Entonces, φ tiene un único punto fijo $\xi \in [a, b]$.

Además, la iteración de punto fijo $x_{k+1} = \varphi(x_k)$ converge a ξ cuando $k \to +\infty$ para cualquier valor $x_0 \in [a, b]$ dado.

Convergencia de la iteración de punto fijo

Teorema

Sea $\varphi:[a,b]\to\mathbb{R}$ una función tal que:

- es continua sobre [a, b],
- $\bullet \ \varphi(x) \in [a,b] \quad \forall \ x \in [a,b],$
- φ es una contracción sobre [a, b].

Entonces, φ tiene un único punto fijo $\xi \in [a, b]$.

Además, la iteración de punto fijo $x_{k+1} = \varphi(x_k)$ converge a ξ cuando $k \to +\infty$ para cualquier valor $x_0 \in [a, b]$ dado.

De acuerdo con lo anterior, la función $\varphi(x) := \ln(2x+1)$ admite un único punto fijo en [1,2], el cual se puede hallar empleando la iteración de punto fijo para cualquier $x_0 \in [1,2]$.

Ejercicio |

Ejercicio

Para la ecuación $x^2 - 5 = 0$ en [2, 3], verifique que la iteración de punto fijo converge al usar

$$\varphi(x) := \frac{x+5}{x+1}.$$

Ejemplo (I Examen, IC-2018)

Sea $f(x) := 12(x-1)e^x + (x+1)^2$. El objetivo del siguiente ejercicio es analizar el problema de resolver la ecuación f(x) = 0 para $x \in [0,2]$, el cual es equivalente a hallar un punto fijo de $\varphi(x)$ en $x \in [0,2]$, donde

$$\varphi(x) := 1 - \frac{(x+1)^2}{12e^x}.$$

- a) Muestre que $\varphi(x)$ cumple todas las condiciones del teorema del punto fijo en [0,2] y concluya así que la iteración de punto fijo converge para todo $x_0 \in [0,2]$.
- b) Aplique el método de punto fijo y determine una aproximación para la solución para f(x) = 0, con una exactitud de 10^{-6} en el intervalo [0, 2] y con la aproximación inicial $x_0 = 1$. Además, debe calcular el error relativo en cada iteración.

a) Primero observe que φ es una función continua dado que está conformada por operaciones de funciones continuas. Luego, nótese que:

$$\varphi'(x) = -\frac{1-x^2}{12e^x} = \frac{(x-1)(x+1)}{12e^x},$$

de donde, se obtienen los candidatos a extremos dados por: x=0, x=1 y x=2. Así, se sigue que:

- $\varphi(0) \approx 0.9167$
- $\varphi(1) \approx 0.8774$
- $\varphi(2) \approx 0.8985$

donde se establece que

$$\forall x \in [0, 2] \quad \Rightarrow \quad \varphi(x) \in [0, 2].$$

a) Primero observe que φ es una función continua dado que está conformada por operaciones de funciones continuas. Luego, nótese que:

$$\varphi'(x) = -\frac{1-x^2}{12e^x} = \frac{(x-1)(x+1)}{12e^x},$$

de donde, se obtienen los candidatos a extremos dados por: x=0, x=1 y x=2. Así, se sigue que:

- $\varphi(0) \approx 0.9167$
- $\varphi(1) \approx 0.8774$
- $\varphi(2) \approx 0.8985$

donde se establece que

$$\forall x \in [0,2] \quad \Rightarrow \quad \varphi(x) \in [0,2].$$

a) Primero observe que φ es una función continua dado que está conformada por operaciones de funciones continuas. Luego, nótese que:

$$\varphi'(x) = -\frac{1-x^2}{12e^x} = \frac{(x-1)(x+1)}{12e^x},$$

de donde, se obtienen los candidatos a extremos dados por: x=0, x=1 y x=2. Así, se sigue que:

- $\varphi(0) \approx 0.9167$
- $\varphi(1) \approx 0.8774$
- $\varphi(2) \approx 0.8985$

donde se establece que

$$\forall x \in [0,2] \quad \Rightarrow \quad \varphi(x) \in [0,2].$$

Ahora, observe que:

$$\varphi''(x) = -\frac{x^2 - 2x - 1}{12e^x},$$

donde el discriminante de $x^2 - 2x - 1$ es negativo, por lo que los únicos candidatos a extremos de φ' esán en los extremos del intervalo [0, 2]. Luego, nótese que:

$$|\varphi'(0)| = \frac{1}{12}$$
 y $|\varphi'(2)| = \frac{1}{4e^2}$.

Así, se concluye que:

$$\varphi$$
 es una contracción en $[0,2]$ con constante $L=\frac{1}{12}$.

Ahora, observe que:

$$\varphi''(x) = -\frac{x^2 - 2x - 1}{12e^x},$$

donde el discriminante de $x^2 - 2x - 1$ es negativo, por lo que los únicos candidatos a extremos de φ' esán en los extremos del intervalo [0, 2]. Luego, nótese que:

$$|\varphi'(0)| = \frac{1}{12}$$
 y $|\varphi'(2)| = \frac{1}{4e^2}$.

Así, se concluye que:

$$\varphi$$
 es una contracción en $[0,2]$ con constante $L=\frac{1}{12}$.

Por lo tanto, se tienen las hipótesis del teorema de punto fijo, por lo que la iteración de punto fijo converge a un único punto fijo de φ en [0,2], para cualquier $x_0 \in [0,2]$.

- b) Usando $x_0 = 1$ se sigue la iteración de punto fijo tal y como se muestra:
 - Iteración k=0

$$x_1 = \varphi(x_0) = 1 - \frac{(1+1)^2}{12e^1} = 0.8773735196 = 0.8774$$

Error:
$$\frac{|0.8774 - 1|}{|0.8774|} = 0.1397310235... > 10^{-6}$$
 (Se sigue).

• Iteración k=1

$$x_2 = \varphi(x_1) = 1 - \frac{(0.8774 + 1)^2}{12e^{0.8774}} = 0.8778531132 = 0.8779$$

Error:
$$\frac{|0.8779 - 0.8774|}{|0.8779|} = 0.0005695... > 10^{-6}$$
 (Se sigue).

- b) Usando $x_0 = 1$ se sigue la iteración de punto fijo tal y como se muestra:
 - Iteración k = 0

$$x_1 = \varphi(x_0) = 1 - \frac{(1+1)^2}{12e^1} = 0.8773735196 = 0.8774$$

Error:
$$\frac{|0.8774 - 1|}{|0.8774|} = 0.1397310235... > 10^{-6}$$
 (Se sigue).

• Iteración k=1

$$x_2 = \varphi(x_1) = 1 - \frac{(0.8774 + 1)^2}{12e^{0.8774}} = 0.8778531132 = 0.8779$$

Error:
$$\frac{|0.8779 - 0.8774|}{|0.8779|} = 0.0005695... > 10^{-6}$$
 (Se sigue).

• Iteración k=2

$$x_3 = \varphi(x_2) = 1 - \frac{(0.8779 + 1)^2}{12e^{0.8779}} = 0.8778491335 = 0.8778$$

Error:
$$\frac{|0.8778 - 0.8779|}{|0.8778|} = 0.0001139... > 10^{-6}$$
 (Se sigue).

• Iteración k=3

$$x_4 = \varphi(x_3) = 1 - \frac{(0.8778 + 1)^2}{12e^{0.8778}} = 0.877849928 = 0.8778$$

Error:
$$\frac{|0.8778 - 0.8778|}{|0.8778|} = 0 < 10^{-6} \text{ (Parar)}.$$

Por lo tanto, una aproximación para la solución del problema dado corresponde a: $x_4 = 0.8778$.

• Iteración k=2

$$x_3 = \varphi(x_2) = 1 - \frac{(0.8779 + 1)^2}{12e^{0.8779}} = 0.8778491335 = 0.8778$$

Error:
$$\frac{|0.8778 - 0.8779|}{|0.8778|} = 0.0001139... > 10^{-6}$$
 (Se sigue).

• Iteración k=3

$$x_4 = \varphi(x_3) = 1 - \frac{(0.8778 + 1)^2}{12e^{0.8778}} = 0.877849928 = 0.8778$$

Error:
$$\frac{|0.8778 - 0.8778|}{|0.8778|} = 0 < 10^{-6} \text{ (Parar)}.$$

Por lo tanto, una aproximación para la solución del problema dado corresponde a: $x_4 = 0.8778$.

• Iteración k=2

$$x_3 = \varphi(x_2) = 1 - \frac{(0.8779 + 1)^2}{12e^{0.8779}} = 0.8778491335 = 0.8778$$

Error:
$$\frac{|0.8778 - 0.8779|}{|0.8778|} = 0.0001139... > 10^{-6}$$
 (Se sigue).

• Iteración k=3

$$x_4 = \varphi(x_3) = 1 - \frac{(0.8778 + 1)^2}{12e^{0.8778}} = 0.877849928 = 0.8778$$

Error:
$$\frac{|0.8778 - 0.8778|}{|0.8778|} = 0 < 10^{-6} \text{ (Parar)}.$$

Por lo tanto, una aproximación para la solución del problema dado corresponde a: $x_4 = 0.8778$.

Ejercicio

Ejercicio para la casa (I Examen, IIC-2019)

Considere la función polinomial $f(x) := x^4 - 8x^3 + 1$. Se tiene que la ecuación f(x) = 0 es equivalente a $x = \varphi(x)$, donde:

$$\varphi(x) := \frac{\sqrt[3]{1+x^4}}{2}.$$

Demuestre que φ es una contracción en [-1,1]. Más aún, determine explícitamente el valor de la constante 0 < L < 1 correspondiente.

Ejercicio

Ejercicio para la casa (I Examen, IIC-2017)

Para cualquier $\alpha \in \mathbb{R}$, considere la ecuación:

$$2(\alpha+2)x + \alpha \operatorname{sen}(2x) = 0.$$

- a) Empleando el Teorema de Valores Intermedios determine todos los valores de α para los cuales la ecuación dada tiene solución en [1, 2].
- b) Muestre que la ecuación dada se puede escribir como un problema de hallar un punto fijo de $x = \varphi(x)$, donde

$$\varphi(x) := -\frac{\alpha x}{2} - \frac{\alpha \operatorname{sen}(2x)}{4}.$$

Además, determine todos los valores de α para los cuales la función φ admite al menos un punto fijo en [1, 2].

Ejercicio (continuación)

Ejercicio para la casa (I Examen, IIC-2017)

- c) Con base en los resultados obtenidos en las partes a) y b), justifique si es mejor usar el método de bisección en la ecuación dada o el método de punto fijo en la ecuación $x = \varphi(x)$.
- d) Aplique el método de punto fijo y determine una aproximación para la solución de la ecuación dada, con una tolerancia de 10^{-3} empleando el error relativo en cada iteración. Use $x_0 = 1$ y $\alpha = -2$.

Organización de la presentación

- Introducción
- 2 Iteración de bisección
- 3 Iteración de punto fijo
- 4 Iteración de Newton
- 6 Iteración de Secante

Introducción

Considere la ecuación f(x)=0, así como la función $\lambda(x)\neq 0$, nótese que:

$$f(x) = 0 \Rightarrow -\lambda(x)f(x) = 0 \Rightarrow \underbrace{x - \lambda(x)f(x) = x}_{\text{problema de punto fijo}}$$

Así, aplicando la iteración de punto fijo a

$$\varphi(x) := x - \lambda(x)f(x)$$

se obtiene la iteración:

$$\begin{cases} x_0 \text{ dado} \\ x_{k+1} = x_k - \lambda(x_k) f(x_k) \text{ para } k = 0, 1, 2, \dots \end{cases}$$

Introducción

Considere la ecuación f(x) = 0, así como la función $\lambda(x) \neq 0$, nótese que:

$$f(x) = 0 \Rightarrow -\lambda(x)f(x) = 0 \Rightarrow \underbrace{x - \lambda(x)f(x)}_{\text{problema de punto fijo}}$$

Así, aplicando la iteración de punto fijo a

$$\varphi(x) := x - \lambda(x)f(x)$$

se obtiene la iteración:

$$\begin{cases} x_0 \text{ dado} \\ x_{k+1} = x_k - \lambda(x_k) f(x_k) \text{ para } k = 0, 1, 2, \dots \end{cases}$$

Introducción

A esta iteración se le conoce como **iteración de relajación**, la cual no es más que una iteración de punto fijo para resolver f(x) = 0.

Una elección que garantiza que $|\varphi'(x)| \le L < 1$ sobre un intervalo cerca de ξ , es dada por:

$$\lambda(x) := \frac{1}{f'(x)}$$

Método de Newton

De acuerdo a lo anterior, se obtiene la iteración:

$$\begin{cases} x_0 \text{ dado} \\ x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} \text{ para } k = 0, 1, 2, \dots \end{cases}$$

conocida como la iteración de Newton o Newton-Raphson.

Ejemplo

Considere la ecuación $\cos^2(2x) = x^2$, la cual posee una solución en $\left[0, \frac{3}{2}\right]$. De esta forma, se tiene que:

$$f(x) := \cos^2(2x) - x^2$$
 y $f'(x) = -2\sin(4x) - 2x$,

y tomando $x_0 = \frac{3}{4}$, se sigue que:

•
$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} \approx 0.4371935074$$

•
$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} \approx 0.5147024678$$

•
$$x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} \approx 0.5149332479$$

•
$$x_4 = x_3 - \frac{f(x_3)}{f'(x_3)} \approx 0.5149332646$$

Ejemplo

Considere la ecuación $\cos^2(2x) = x^2$, la cual posee una solución en $\left[0, \frac{3}{2}\right]$. De esta forma, se tiene que:

$$f(x) := \cos^2(2x) - x^2$$
 y $f'(x) = -2\sin(4x) - 2x$,

y tomando $x_0 = \frac{3}{4}$, se sigue que:

•
$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} \approx 0.4371935074$$

•
$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} \approx 0.5147024678$$

•
$$x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} \approx 0.5149332479$$

•
$$x_4 = x_3 - \frac{f(x_3)}{f'(x_3)} \approx 0.5149332646$$

Criterio de parada

Para efectos de implementación, el criterio de parada , dada una tolerancia tol>0, corresponde a:

$$\frac{|x_k - x_{k-1}|}{|x_k|} \le tol.$$

Ejemplo (I Examen, IIC-2018)

Considere la función $F: \mathbb{R} \to \mathbb{R}$ definida por:

$$F(x) := (x+1)^4 + \int_0^x \arctan(u) du$$
.

El objetivo de este ejercicio es aproximar un mínimo para F(x), para lo cual se resuelve ecuación F'(x) = 0.

- a) Muestre que F es estrictamente convexa, es decir, que para todo $x \in \mathbb{R}$ se cumple que F''(x) > 0. Recuerde que las funciones estrictamente convexas siempre tienen un único mínimo.
- b) Escriba la iteración de Newton para el problema de aproximar un mínimo de F.
- c) Use la iteración encontrada en b) para determinar una aproximación al mínimo (x,y) de F, con $x_0=0.1$ y una tolerancia de 0.02 empleando el error relativo en cada iteración.

a) Empleando el Teorema Fundamental del Cálculo, se tiene que:

$$F'(x) = 4(x+1)^3 + \arctan(x)$$

de donde se sigue que:

$$F''(x) = 12(x+1)^2 + \frac{1}{x^2+1},$$

donde se obtiene que F''(x) > 0 para todo $x \in \mathbb{R}$, lo que establece que F es estrictamente convexa.

b) Para aproximar un mínimo para F(x), se requiere aproximar la solución de la ecuación: F'(x) = 0, por lo que utilizando la iteración de Newton, junto con la parte a), se obtiene el método iterativo:

$$\begin{cases} x_0 \text{ dado} \\ x_{k+1} = x_k - \frac{F'(x_k)}{F''(x_k)} & \text{para } k = 0, 1, 2, \dots \end{cases}$$

- c) Usando la aproximación inicial $x_0 = 0.1$ se tiene que:
 - Iteración k = 0

$$x_1 = x_0 - \frac{F'(x_0)}{F''(x_0)} = 0.1 - \frac{5.4237}{15.5101} = -0.2497$$

Error:
$$\frac{|-0.2497 - 0.1|}{|-0.2497|} = 1.4005 > 0.02$$
 (Se sigue).

• Iteración k=1

$$x_2 = x_1 - \frac{F'(x_1)}{F''(x_1)} = -0.2497 - \frac{1.4448}{7.6967} = -0.4374$$

Error:
$$\frac{|-0.4374 + 0.2497|}{|-0.4374|} = 0.4291 > 0.02$$
 (Se sigue).

- c) Usando la aproximación inicial $x_0 = 0.1$ se tiene que:
 - Iteración k=0

$$x_1 = x_0 - \frac{F'(x_0)}{F''(x_0)} = 0.1 - \frac{5.4237}{15.5101} = -0.2497$$

$$\text{Error: } \frac{|-0.2497 - 0.1|}{|-0.2497|} \ = \ 1.4005 \ > \ 0.02 \ (\text{Se sigue}).$$

• Iteración k=1

$$x_2 = x_1 - \frac{F'(x_1)}{F''(x_1)} = -0.2497 - \frac{1.4448}{7.6967} = -0.4374$$

Error:
$$\frac{|-0.4374 + 0.2497|}{|-0.4374|} = 0.4291 > 0.02$$
 (Se sigue).

• Iteración k=2

$$x_3 = x_2 - \frac{F'(x_2)}{F''(x_2)} = -0.4374 - \frac{0.3000}{4.6376} = -0.5021$$

$$\text{Error: } \frac{|-0.5021 + 0.4374|}{|-0.5021|} \ = \ 0.1289 \ > \ 0.02 \ (\text{Se sigue}).$$

Iteración k=3

$$x_4 = x_3 - \frac{F'(x_3)}{F''(x_3)} = -0.5021 - \frac{0.0284}{3.7735} = -0.5096$$

Error:
$$\frac{|-0.5096 + 0.5021|}{|-0.5096|} = 0.0147 < 0.02 \text{ (Parar)}$$

Por lo tanto, la aproximación al mínimo de F corresponde al punto: (-0.5096, F(-0.5096)) = (-0.5096, 0.1826).

• Iteración k=2

$$x_3 = x_2 - \frac{F'(x_2)}{F''(x_2)} = -0.4374 - \frac{0.3000}{4.6376} = -0.5021$$

$$\text{Error: } \frac{|-0.5021 + 0.4374|}{|-0.5021|} \ = \ 0.1289 \ > \ 0.02 \ (\text{Se sigue}).$$

• Iteración k=3

$$x_4 = x_3 - \frac{F'(x_3)}{F''(x_3)} = -0.5021 - \frac{0.0284}{3.7735} = -0.5096$$

Error:
$$\frac{|-0.5096 + 0.5021|}{|-0.5096|} = 0.0147 < 0.02 \text{ (Parar)}.$$

Por lo tanto, la aproximación al mínimo de F corresponde al punto: (-0.5096, F(-0.5096)) = (-0.5096, 0.1826).

• Iteración k=2

$$x_3 = x_2 - \frac{F'(x_2)}{F''(x_2)} = -0.4374 - \frac{0.3000}{4.6376} = -0.5021$$

$$\text{Error: } \frac{|-0.5021 + 0.4374|}{|-0.5021|} \ = \ 0.1289 \ > \ 0.02 \ (\text{Se sigue}).$$

• Iteración k=3

$$x_4 = x_3 - \frac{F'(x_3)}{F''(x_3)} = -0.5021 - \frac{0.0284}{3.7735} = -0.5096$$

Error:
$$\frac{|-0.5096 + 0.5021|}{|-0.5096|} = 0.0147 < 0.02 \text{ (Parar)}.$$

Por lo tanto, la aproximación al mínimo de F corresponde al punto: (-0.5096, F(-0.5096)) = (-0.5096, 0.1826).

Convergencia de Newton

Teorema

Sea f una función con segunda derivada continua, definida en el intervalo $I_{\delta} = [\xi - \delta, \xi + \delta]$, con $\delta > 0$, tal que $f(\xi) = 0$ y $f''(\xi) \neq 0$. Suponga además que existe un número real A > 0 tal que:

$$\frac{|f''(x)|}{|f'(y)|} \le A, \text{ para todo } x, y \in I_{\delta}.$$

Si $|\xi - x_0| \le \min \{\delta, \frac{1}{A}\}$, entonces la iteración de Newton converge a ξ cuando $k \to +\infty$.

Observación

Lo anterior establece que x_0 debe estar cerca de la solución ξ , para que se de la convergencia del método de Newton. Esto es una clara desventaja del método.

Además, se requieren "buenas" condiciones para f'.

Ejercicio

Ejercicio para la casa (I Examen, IIC-2017)

Considere la ecuación $\operatorname{sen}(x) - e^{-x^2} = 0$ en $\left[0, \frac{3}{2}\right]$.

- a) Use el método de Newton para determinar una aproximación a la solución de la ecuación dada, con $x_0 = 1.5$ y una tolerancia de 10^{-3} empleando el error relativo en cada iteración. Recuerde usar radianes.
- b) Comente por qué la aproximación obtenida en a) no es correcta y explique la causa de ello.
- c) Repita el paso a) usando ahora $x_0 = 1$.
- d) Explique la razón principal de por qué en c) se obtiene una aproximación correcta y no en a). Más aún, tomando $\xi = 0.680598174...$, determine la cantidad de dígitos significativos en la aproximación obtenida en c).

Organización de la presentación

- Introducción
- 2 Iteración de bisección
- 3 Iteración de punto fijo
- 1 Iteración de Newton
- 5 Iteración de Secante

Uno de los inconvenientes del método de Newton es que se requiere que f sea derivable, lo cual no siempre se tiene. Por ende, ahora se intenta deducir un método que no requiera de f'.

Para ello, considere la expansión de Taylor de f alrededor de x_k , es decir:

$$f(x) = f(x_k) + (x - x_k)f'(x_k) + \frac{(x - x_k)^2}{2}f''(\alpha_k)$$

para algún $\alpha_k \in [x, x_k]$.

Uno de los inconvenientes del método de Newton es que se requiere que f sea derivable, lo cual no siempre se tiene. Por ende, ahora se intenta deducir un método que no requiera de f'.

Para ello, considere la expansión de Taylor de f alrededor de x_k , es decir:

$$f(x) = f(x_k) + (x - x_k)f'(x_k) + \frac{(x - x_k)^2}{2}f''(\alpha_k)$$

para algún $\alpha_k \in [x, x_k]$.

Luego, eliminando el término residual, es claro que:

$$f(x) \approx f(x_k) + (x - x_k)f'(x_k),$$

donde sustituyendo en $x = x_{k-1}$, nótese que:

$$f(x_{k-1}) \approx f(x_k) + (x_{k-1} - x_k)f'(x_k),$$

lo que implica que:

$$f'(x_k) \approx \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$$

Luego, eliminando el término residual, es claro que:

$$f(x) \approx f(x_k) + (x - x_k)f'(x_k),$$

donde sustituyendo en $x = x_{k-1}$, nótese que:

$$f(x_{k-1}) \approx f(x_k) + (x_{k-1} - x_k) f'(x_k),$$

lo que implica que:

$$f'(x_k) \approx \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$$
.

Luego, eliminando el término residual, es claro que:

$$f(x) \approx f(x_k) + (x - x_k)f'(x_k),$$

donde sustituyendo en $x = x_{k-1}$, nótese que:

$$f(x_{k-1}) \approx f(x_k) + (x_{k-1} - x_k) f'(x_k),$$

lo que implica que:

$$f'(x_k) \approx \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}.$$

Método de la secante

En otras palabras, se puede aproximar $f'(x_k)$ (pendiente de la recta tangente a f en $x = x_k$) por la pendiente de la recta que pasa por los puntos $(x_{k-1}, f(x_{k-1}))$ y $(x_k, f(x_k))$.

Así, sustituyendo esta aproximación en la iteración de Newton se deduce la siguiente iteración:

$$\begin{cases} x_0 \ y \ x_1 \ dados \\ x_{k+1} \ = \ x_k \ - \ \left(\frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})}\right) f(x_k) \quad \text{para } k = 1, 2, \dots \end{cases}$$

conocida como la iteración de la secante

Método de la secante

En otras palabras, se puede aproximar $f'(x_k)$ (pendiente de la recta tangente a f en $x = x_k$) por la pendiente de la recta que pasa por los puntos $(x_{k-1}, f(x_{k-1}))$ y $(x_k, f(x_k))$.

Así, sustituyendo esta aproximación en la iteración de Newton se deduce la siguiente iteración:

$$\begin{cases} x_0 \ y \ x_1 \ \text{dados} \\ x_{k+1} \ = \ x_k \ - \ \left(\frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})}\right) f(x_k) \quad \text{para } k = 1, 2, \dots \end{cases}$$

conocida como la iteración de la secante.

Ejemplo (I Examen, IC-2017)

Considere le problema de hallar un cero para la función:

$$f(x) := \frac{1}{2} \left[1 + \operatorname{sen} \left(\frac{90\pi}{(x+6)^2} \right) \right]$$
 en $[0,3]$.

- a) Justifique porqué el método de bisección no es conveniente de aplicar para este problema.
- b) Análogamente, justifique porqué el método de Newton, con $x_0 = 0$, no es conveniente.
- c) Realice tres iteraciones del método de la secante para aproximar una solución de este problema.

a) Nótese que

$$f(0) = 1 > 0$$
 y $f(3) = 0.3289899283... > 0.$

Por lo que al no tener cambio de signo no es posible garantizar que el método de bisección funcione bien para este problema.

b) Dado que

$$f'(x) = -\frac{90\pi}{(x+6)^3} \cos\left(\frac{90\pi}{(x+6)^2}\right)$$

entonces $f'(x_0) = f'(0) = 0$, por lo que el método de Newton no se puede aplicar ya que la iteración se indefine.

a) Nótese que

$$f(0) = 1 > 0$$
 y $f(3) = 0.3289899283... > 0.$

Por lo que al no tener cambio de signo no es posible garantizar que el método de bisección funcione bien para este problema.

b) Dado que

$$f'(x) = -\frac{90\pi}{(x+6)^3} \cos\left(\frac{90\pi}{(x+6)^2}\right)$$

entonces $f'(x_0) = f'(0) = 0$, por lo que el método de Newton no se puede aplicar ya que la iteración se indefine.

- c) Considere $x_0 = 0$ y $x_1 = 3$, y entonces:
 - Iteración k=1

$$x_2 = x_1 - \frac{x_1 - x_0}{f(x_1) - f(x_0)} f(x_1)$$
$$= 3 - \frac{3 - 0}{f(3) - f(0)} f(3)$$
$$= 4.4709$$

• Iteración k=2

$$x_3 = x_2 - \frac{x_2 - x_1}{f(x_2) - f(x_1)} f(x_2)$$

$$= 4.4709 - \frac{4.4709 - 3}{f(4.4709) - f(3)} f(4.4709)$$

$$= 1.8946$$

- c) Considere $x_0 = 0$ y $x_1 = 3$, y entonces:
 - Iteración k=1

$$x_2 = x_1 - \frac{x_1 - x_0}{f(x_1) - f(x_0)} f(x_1)$$
$$= 3 - \frac{3 - 0}{f(3) - f(0)} f(3)$$
$$= 4.4709$$

• Iteración k=2

$$x_3 = x_2 - \frac{x_2 - x_1}{f(x_2) - f(x_1)} f(x_2)$$

$$= 4.4709 - \frac{4.4709 - 3}{f(4.4709) - f(3)} f(4.4709)$$

$$= 1.8946$$

• Iteración k=3

$$x_4 = x_3 - \frac{x_3 - x_2}{f(x_3) - f(x_2)} f(x_3)$$

$$= 1.8946 - \frac{1.8946 - 4.4709}{f(1.8946) - f(4.4709)} f(1.8946)$$

$$= 1.8685$$

Por lo tanto, se obtiene una aproximación $x_4 = 1.8685$.

Ejercicio

Ejercicio para la casa (I Examen, IC-2018)

Considere el siguiente método iterativo para resolver la ecuación f(x) = 0 en el intervalo $[x_0, x_1]$:

$$x_{k+1} = x_k - m_k f(x_k), \quad \text{para} \quad k = 1, 2, \dots$$

donde

$$m_k := \begin{cases} \frac{x_1 - x_0}{f(x_1) - f(x_0)} & \text{si } k = 1\\ \frac{1}{2} \left(\frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})} + m_{k-1} \right) & \text{si } k = 2, 3, \dots \end{cases}$$

Se le conocerá como el **método de secante promediada**. Por otro lado, considere $f(x) := x \operatorname{sen}(x) + x^3 + 1$ en [-2, 1].

Ejercicio continuación

Ejercicio para la casa (I Examen, IC-2018)

- a) Demuestre que f(x) = 0 tiene una solución en el intervalo [-2,1].
- b) Realice tres iteraciones del método de la secante para determinar una aproximación a la solución de f(x) = 0. Recuerde usar radianes.
- Repita el paso b) usando ahora el método de secante promediada.
- d) Comente los resultados obtenidos en b) y c).