EXPERIMENT NUMBER 6

TITLE: Implementation of 4x1 multiplexer, 8x1 multiplexer and 1x4 demultiplexer using logic gates.

OBJECTIVE:

To analyse the truth table and working of 1x4 De-Multiplexer by using 3-input NAND and 1-input NOT logic gate ICs and 4x1 Multiplexer by using 3-input AND, 3-input OR, and 1-input NOT logic gate ICs and Implementation of 8x1 MUX using MSI ICs.

***APPARTUS REQUIRED:**

- Switches
- Power supply
- Resistances
- LEDs
- IC 7411 NAND Gates, 7404 Hex inverters, IC 74LS153etc

***THEORY:**

Multiplexer -

Multiplexer is a device that has multiple inputs and a single line output. The select lines determine which input is connected to the output, and also to increase the amount of data that can be sent over a network within certain time. It is also called a data selector.

Multiplexers are classified into four types:

a)2-1multiplexer(1selectline)

b)4-1multiplexer(2selectlines)

c)8-1multiplexer(3selectlines)

d) 16-1 multiplexer(4selectlines)

4x1 Multiplexer -

4x1 Multiplexer has four data inputs Do, D1, D2 & D3, two selection linesS0 & S1 and one output Y.

Fig: Truth table of 4x1 Multiplexer

8x1 Multiplexer -

In this section, let us implement 8x1 Multiplexer using 4x1 Multiplexers and 2x1 Multiplexer. We know that 4x1 Multiplexer has 4 data inputs, 2 selection lines and one output. Whereas, 8x1 Multiplexer has 8 data inputs, 3 selection lines and one output. So, we require two 4x1 Multiplexers in first stage in order to get the 8 data inputs. Since, each 4x1 Multiplexer produces one output, we require a 2x1 Multiplexer in second stage by considering the outputs of first stage as inputs and to produce the final output. Let the 8x1 Multiplexer has eight data inputs I₇ to I₀, three selection lines s₂, s₁ & s₀ and one output Y.

Selection Inputs			Output
S ₂	S ₁	S₀	Y
0	0	0	l ₀
0	0	1	I ₁
0	1	0	\mathbf{I}_2
0	1	1	l ₃
1	0	0	I ₄
1	0	1	I ₅
1	1	0	I ₆
1	1	1	I ₇

De-multiplexer -

De-multiplexer is also a device with one input and multiple output lines. It is used to send a signal to one of the many devices. The main difference between a multiplexer and a de-multiplexer is that a multiplexer takes two or more signals and encodes them on a wire, whereas a de-multiplexer does reverse to what the multiplexer does.

De-multiplexer are classified into four types:

a)1-2demultiplexer(1selectline)

b)1-4demultiplexer(2selectlines)

c)1-8demultiplexer(3selectlines)

d)1-16 demultiplexer(4selectlines)

1x4De-multiplexer -

1x4 De-Multiplexer has one input Data(D), two selection lines, S0 & S1 and four outputs Y0, Y1, Y2 & Y3.

CIRCUIT DIAGRAM AND CALCULATIONS:

• 4x1 Multiplexer:

• 1x4 DeMultiplexer:

• 8x1 Multiplexer:

***RESULTS:**

Verified the output of 4:1 Multiplexer , 8:1 Multiplexer, and 1:4 De-Multiplexer.

***PRECAUTIONS:**

- All the connections should be made properly as per the circuit diagram.
- Connections should be tight and easy to inspect.
- Power supply should be 5v.
- Keep the switch turned off while making connections.

2101227_VISHALKUMARPRJAPATI_EXPNO6