Frühjahr 24 Themennummer 3 Aufgabe 2 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Bestimmen Sie alle holomorphen Funktionen $f:\mathbb{C}\to\mathbb{C}$ und $g:\mathbb{C}\to\mathbb{C}$ mit der Eigenschaft

- a) f(0) = 1 und Re $f(z) \ge 1$ für alle $z \in \mathbb{C}$ bzw.
- b) $g'(z) = g(z)^2$ für alle $z \in \mathbb{C}$.

Lösungsvorschlag:

- a) Ist f holomorph mit den gesuchten Eigenschaften, so ist $h(z) = \exp(-f(z))$ ebenfalls holomorph, also ganz. Für alle $z \in \mathbb{C}$ gilt nun $|h(z)| = |\exp(-f(z))| = \exp(\mathrm{Re}(-f(z))) = \exp(-\mathrm{Re}\ f(z)) \le \exp(-1)$, d. h. h ist beschränkt und nach dem Satz von Liouville somit konstant. Daher ist die Ableitung konstant 0 und wir folgern $0 = h'(z) = -f'(z)\exp(-f(z))$, also 0 = f'(z) für alle $z \in \mathbb{C}$. Damit ist auch f konstant und für alle $z \in \mathbb{C}$ gilt bereits f(z) = f(0) = 1. Daher ist $f \equiv 1$ die einzige Funktion mit den gesuchten Eigenschaften.
- b) Weil g ganz ist, können wir g in eine auf \mathbb{C} konvergente Potenzreihe um 0 entwickeln, d. h. $a_n \in \mathbb{C}$ finden mit $g(z) = \sum_{n=0}^{\infty} a_n z^n$ für alle $z \in \mathbb{C}$. Mit dem Cauchyprodukt und der gliedweisen Differentiation folgt aus der Voraussetzung

$$\sum_{n=0}^{\infty} (n+1)a_{n+1}z^n = g'(z) = \sum_{n=0}^{\infty} (\sum_{k=0}^{n} a_k a_{n-k})z^n$$

für alle $z \in \mathbb{C}$ und aus dem Identitätssatz schließlich $(n+1)a_{n+1} = \sum_{k=0}^{n} a_k a_{n-k} \iff a_{n+1} = \frac{1}{n+1} \sum_{k=0}^{n} a_k a_{n-k}$ für alle $n \in \mathbb{N}$. Wir zeigen induktiv, dass $a_n = a_0^{n+1}$ für alle $n \in \mathbb{N}_0$ gilt. Für n = 0 ist das trivialerweise erfüllt und der Induktionsanfang gezeigt. Wir nehmen nun an, dass für ein $n \in \mathbb{N}_0$ die Formel für alle $k \in \{0, 1, \dots, n\}$ gilt und zeigen als Induktionsschritt die Formel für n + 1:

$$a_{n+1} = \frac{1}{n+1} \sum_{k=0}^{n} a_k a_{n-k} = \frac{1}{n+1} \sum_{k=0}^{n} a_0^{k+1} a_0^{n-k+1} = \frac{1}{n+1} \sum_{k=0}^{n} a_0^{n+2} = \frac{a_0^{n+2}}{n+1} \sum_{k=0}^{n} 1 = a_0^{n+2}.$$

Daraus folgt $g(z)=\sum\limits_{n=0}^{\infty}a_nz^n=\sum\limits_{n=0}^{\infty}a_0^{n+1}z^n=a_0\sum\limits_{n=0}^{\infty}(a_0z)^n$ für alle $z\in\mathbb{C}$. Dies ist eine geometrische Reihe und konvergiert genau dann, wenn $|a_0z|<1$ gilt. Nach unserer Annahme muss die Reihe aber für alle $z\in\mathbb{C}$ konvergieren, dies ist nur für $a_0=0$ möglich, denn ist $a_0\neq 0$ so ist für $z=\frac{1}{a_0}|a_0\cdot\frac{1}{a_0}|=|1|=1$. Daraus folgt insbesondere g(z)=0 für alle $z\in\mathbb{C}$ und $g\equiv 0$ ist die einzige Funktion mit den gesuchten Eigenschaften.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$