Linearni sistemi

DEFINICIJA: Naj bo $\vec{x}(t) = A(t)\vec{x}(t)$ sistem in $A(t) \in \mathbb{R}^{n \times n} \forall t$. Rešitev enačbe $\dot{X} = AX$, ki je obrnljiva (stolpci so neodvisni), se imenuje **fundamentalna** rešitev. Dve fundamentalni rešitvi se razlikujeta za obrnljivo matriko. Splošna rešitev $\vec{x} = A\vec{x}$ je $X\vec{c}$, kjer je \vec{c} konstantni vektor. X je fundamentalna rešitev tam, kjer je det $X \neq 0$.

 $X = [x_1, x_2, \dots x_n]$ $X\vec{c} = c_1\vec{x_1} + c_2\vec{x_2} + \dots + c_n\vec{x_n}$

Naj bo A matrika konstant. $\dot{\vec{x}} = A\vec{x}$ ima splošno rešitev $\vec{x} = Pe^{Jt}\vec{c}$, kjer je $A = PJP^{-1}$ jordanska kanonična forma. POSTOPEK:

- (1) Izračunaj lastne vrednosti matrike A.
 - Če so vse lastne vrednosti različne, izračunaj lastne vektorje za vse lastne vrednosti in določi J in P (pazi, da vrstni red lastnih vrednosti v J sovpada z vrstnim redom lastnih vektorjev v P)
 - Če je lastna vrednost λ večkratna in zanjo obstaja le en lastni vektor, izračunaj korenski vektor in ga preslikaj z $A \lambda I$
- (2) Zapiši rešitev $\vec{x} = Pe^{Jt}\vec{c} = c_1e^{\lambda_1t}v_1 + c_2e^{\lambda_2t}v_2 + \cdots c_ne^{\lambda_nt}v_n$, kjer $P = [v_1, v_2, \dots, v_n]$. Iz tega dobiš $X = [\vec{x_1}, \vec{x_2}, \dots, \vec{x_n}]$, kjer $x_i = e^{\lambda_it}v_i$.

OPOMBA: Pri kompleksnih lastnih vrednostih in vektorjih z uporabo $e^{\lambda+i\mu}=e^{\lambda}(\cos\mu+i\sin\mu)$ loči realni in imaginarni del (hočemo realne lastne vektorje, konstante pred njimi pa so lahko kompleksne). Če λ in $\overline{\lambda}$ lastni vrednosti, sta lastna vektorja v in \overline{v} .

$$\begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} a(t) & b(t) \\ c(t) & d(t) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Ko rešuješ sistem $\begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} a(t) & b(t) \\ c(t) & d(t) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix},$ iz prve enačbe izrazi y, enačbo odvajaj in vstavi dobljeni \dot{y} v drugo. Dobiš diferencialno enačbo za x, iz katere izračunaš x in y. Splošno rešitev sistema X dobiš tako, da razpišeš x in y po bazi konstant C_1, C_2 (prvi stolpec: $C_1 = 1, C_2 = 0$ in drugi stolpec: $C_1 = 0, C_2 = 1$).

LIOUVILLEOV IZREK: Naj bo $\dot{\vec{z}} = A\vec{z}$ in $A: [a,b] \to \mathbb{R}^{n \times n}$ zvezna za vsak t. Potem obstaja fundamentalna rešitev sistema, ki je obrnljiva na [a,b] X(t)taka, da velja (to uporabiš, če imaš sistem in poznaš eno rešitev!):

Nehomogena: $\vec{x} = X\vec{c} = X \int X^{-1} \vec{f} dt$

$$\det(X(t)) = \det(X(t_0))e^{\int_{t_0}^t slA(\xi)d\xi}.$$

Linearne DE višjega reda

 $a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = f(x)$

Naj bo
$$y$$
 rešitev enačbe. Potem:
$$\vec{z} = \begin{bmatrix} y \\ y' \\ y'' \\ \vdots \\ y^{(n-1)} \end{bmatrix}, \quad \vec{z}' = \begin{bmatrix} y' \\ y'' \\ \vdots \\ y^{(n)} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -a_0/a_n & -a_1/a_n & -a_2/a_n & \cdots & -a_{n-1}/a_n \end{bmatrix} \begin{bmatrix} y \\ y' \\ \vdots \\ y^{(n-2)} \\ y^{(n-1)} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ f/a_n \end{bmatrix}$$

 $\vec{x} = X\vec{c} = X \int X^{-1} \vec{f} dt$, rabimo samo prvo vrstico (y).

LINEARNA NDE S KONSTANTNIMI KOEFICIENTI: $y^{(n)} + a_{n-1}y^{(n-1)} + \cdots + a_0y = b(t), a_0, \ldots, a_{n-1} \in \mathbb{R}$.

Homogen del
: substitucija $y=e^{\lambda x}$. Dobimo $\lambda_1,\ldots\lambda_k$ paroma različne.

Rešitev: $y = y_1 + \dots + y_k$, kjer y_j ustreza λ_j in $y_j = c_1 e^{\lambda_j x} + c_2 x e^{\lambda_j x} + \dots + c_{k_j} x^{k_j - 1} e^{\lambda_j x}$, kjer je k_j večkratnost λ_j .

Partikularni del: za b oblike $e^{\mu x}q(x)$, $\mu\in\mathbb{C}$ in q(x) polinom stopnje m. $y_p=p(x)e^{\mu x}x^k$, kjer k večkratnost μ kot λ in p stopnje m.

Par $x^k e^{(a+bi)x}$, $x^k e^{(a-bi)x}$ gre v $x^k e^{ax} \cos(bx)$, $x^k e^{ax} \sin(bx)$.

Za b oblike $e^{ax}(p_{m1}(x)\cos(bx)+p_{m2}\sin(bx))$, kjer a+bi k-kratna ničla in $m=\max m1, m2$ stopnja pol.: $y_p=x^ke^{ax}(q_m(x)\cos(bx)+r_m\sin(bx))$.

CAUCHY-EULERJEVA ENAČBA: $x^ny^{(n)} + a_{n-1}x^{n-1}y^{(n-1)} + \cdots + a_1xy' + a_0y = b$. Uvedemo novo spremenljivko $x = e^t$, enačba se prevede na enačbo s konstantnimi koeficienti. V praksi porabimo nastavek $y=x^{\lambda}.$

Rešitev: $y = y_1 + \dots + y_k$, kjer y_j ustreza λ_j in $y_j = c_1 x^{\lambda_j} + c_2 \log(x) x^{\lambda_j} + \dots + c_{k_j} \log^{k_j - 1}(x) x^{\lambda_j}$, kjer je k_j večkratnost λ_j .

Partikularni del: za b oblike $p(\ln t)t^{\mu}$. Nastavek $y_p = q(\ln t)t^{\mu} \ln^k t$, kjer st $(q) = \operatorname{st}(p)$ in k večkratnost μ med λ_i , ki rešijo "karakteristični polinom".

Par $Ax^i + Bx^{-i} = Ae^{i\log x} + Be^{-i\log x}$ gre v $(A+B)\cos(\log x) + (iA-iB)\sin(\log x)$.

Par $(\log x)^k x^{a+bi}$, $(\log x)^k x^{a-bi}$ gre v $(\log x)^k x^a \cos(b \log x)$, $(\log x)^k x^a \sin(b \log x)$.

Variacijski račun

DEFINICIJA: Naj bo $A:X\longrightarrow Y$ linearna preslikava med normiranima vektorskima prostoroma. A je omejena, če obstaja $M\geq 0$, da velja $\|Ax\|_Y\leq 1$ $M\|x\|_{X}. \text{ \'Ce je A omejena, potem } \|A\| := \sup_{x \neq 0} \frac{\|Ax\|}{\|x\|} := \sup_{\|x\| \leq 1} \|Ax\| := \sup_{\|x\| = 1} \|Ax\|.$

Trditev: A je omejena \iff A zvezna. $\|Ax\|_Y \leq \|\ddot{A}\| \|x\|_X$ ($\|\ddot{A}\|$ je norma v prostoru operatorjev)

Za Banachova prostora $(C[a, b], ||..||_{\infty})$ in $(C^1[a, b], ||..||_1)$ je $||f||_1 := ||f||_{\infty} + ||f'||_{\infty}$

Definicija: Naj bosta X in Y Banachova, $\mathcal{U}^{odp} \subseteq X$ in $F: \mathcal{U} \longrightarrow Y$. F je:

a) krepko (Fréchetjevo) odvedljiva v točki x, če obstaja (DF)(x) omejen linearni operator iz $X \vee Y$, da velja:

$$\frac{\|F(x+h) - F(x) - (DF)(x)(h)\|}{\|h\|} \xrightarrow[h \to 0]{} 0$$

b) šibko (Gâuteauxjevo) odvedljiva, če obstaja $g_x(h) := \lim_{t\to 0} \frac{F(x+th)-F(x)}{t} = (\frac{d}{dt}F(x+th))|_{t=0}$

IZREK: Če je F krepko odvedljiva $\Longrightarrow F$ šibko odvedljiva in odvoda sta enaka.

Opomba: Izračunamo šibkega, dobimo kandidata za krepkega. Po definiciji izračunamo limito krepkega. Dokažemo omejenost g_x .

Uporabno: $|\int (f+f')dx| \le \int (|f|+|f'|)dx \le \int (|f|_{\infty}+||f'||_{\infty})dx = \int ||f||_1dx$ in I in I, kjer f strogo naraščajoča, imata pri istih robnih pogojih iste ekstremale.

Trditev: Naj bo X Banachov prostor in $F,G:X\longrightarrow\mathbb{R}$ krepko odvedljivi v $x_0\in X$. Potem je $FG:X\longrightarrow\mathbb{R}$ krepko odvedljiva v x_0 in velja $D(FG)(x_0) = F(x_0)DG(x_0) + G(x_0)DF(x_0) \text{ in (druge predpostavke) } (D(G \circ F))(h) = DG(F(h)) \cdot DF(h).$

RAZMADZEJEV IZREK: Naj bosta M in N zvezni funkciji na [a,b]. Denimo, da za vsako testno funkcijo $\varphi \in \mathcal{D}([a,b])$ velja:

 $\int_a^b (M\varphi + N\varphi')dx = 0$. Tedaj je N odvedljiva in velja N' = M.

EULER-LAGRANGEEVA ENAČBA: $L_y - \frac{d}{dx}L_{y'} = 0$ + robni pogoji $L_{y'}|_a^b = 0$ Naj velja $L_y = \frac{d}{dx}L_{y'}$ in $L_{y'}h|_a^b = 0$ za vse dopustne variacije.

- če poznamo $y(a), y(b) \Longrightarrow h(a) = h(b) = 0$ za vse dopustne variacije.
- če poznamo $y(a) \Longrightarrow h(a) = 0$ za vse dopustne variacije $(L_{y'}(b) = 0)$.
- če poznamo $y(b) \Longrightarrow h(b) = 0$ za vse dopustne variacije $(L_{u'}(a) = 0)$.
- če y(a), y(b) ne poznamo $\Longrightarrow L_{y'}(a) = 0$ in $L_{y'}(b) = 0$ (??????)
- če $y(a) = y(b) \Longrightarrow L_{y'}(a) = L_{y'}(b)$

Klasični problem: $I[y] = \int_a^b L(x, y, y') dx$.

(1) Če $L = L(x, y') \Longrightarrow L_{y'} = C$ (Iz te enačbe izrazi y' = f(x), z integracijo izračunaj $y = \int f(c)$ in vstavi robne pogoje, da določiš konstante.)

(2) $L = L(y, y') \Longrightarrow L - y'L_{y'} = C$ (ločljive spremenljivke, verjetno potrebna obravnava glede na vrednost C = 0, > 0, < 0) IZOPERIMETRIČNI POLINOM: $A: I[y] = \int_a^b L(x,y,y')dx + \text{robni pogoji} + \text{dodatni pogoji}: \int_a^b G_1(x,y,y')dx = A_1, \dots \int_a^b G_n(x,y,y')dx = A_n \Longrightarrow \text{obstajajo}$ $\lambda_1, \dots \lambda_n : \int_a^b (L - \lambda_1 G_1 - \dots \lambda_n G_n) dx = \tilde{I}[y]$. Ekstremali za A so ekstremali za \tilde{I} z nekaterimi robnimi pogoji. (Da dobiš λ izračunaj najprej $y(x, \lambda)$, nato pa uporabi dodatni pogoj. Dodatno: Čey(a)ni podan: $\tilde{L}_{y'}(a)=0)$ $I[y] = \int_a^b L(x,y,y',\dots,y^{(n)}) dx \Longrightarrow L_y - \frac{d}{dx} L_{y'} - \dots + (-1)^n \frac{d^n}{dx^n} L_{y^{(n)}} = 0 \text{ in } (DI)[y](h) = \int_a^b (L_y h + L_{y'} h' + \dots + L_{y^{(n)}} h^{(n)}) dx = 0 + \text{ dodatni robni pogoji, ki jih dobiš s per partesom (npr. za <math>n = 2$ pride $((L_{y'} - \frac{d}{dx} L_{y''})h + L_{y''}h')|_a^b = 0)$ $I[y_1,y_2,\ldots,y_n] = \int_a^b L(x,y_1,\ldots,y_n,y_1',\ldots,y_n') dx \text{ in podani } y_1(a),\ldots,y_n(a),y_1(b),\ldots,y_n(b). \text{ Potem za } i=1,\ldots,n \text{ velja: } L_{y_i} = \frac{d}{dx}L_{y_i'} + \text{per partes za } i=1,\ldots,n \text{ velja: } L_{y_i} = \frac{d}{dx}L_{y_i'} + \text{per partes za } i=1,\ldots,n \text{ velja: } L_{y_i} = \frac{d}{dx}L_{y_i'} + \text{per partes za } i=1,\ldots,n \text{ velja: } L_{y_i} = \frac{d}{dx}L_{y_i'} + \text{per partes za } i=1,\ldots,n \text{ velja: } L_{y_i} = \frac{d}{dx}L_{y_i'} + \text{per partes za } i=1,\ldots,n \text{ velja: } L_{y_i} = \frac{d}{dx}L_{y_i'} + \text{per partes za } i=1,\ldots,n \text{ velja: } L_{y_i} = \frac{d}{dx}L_{y_i'} + \text{per partes za } i=1,\ldots,n \text{ velja: } L_{y_i} = \frac{d}{dx}L_{y_i'} + \text{per partes za } i=1,\ldots,n \text{ velja: } L_{y_i} = \frac{d}{dx}L_{y_i'} + \text{per partes za } i=1,\ldots,n \text{ velja: } L_{y_i} = \frac{d}{dx}L_{y_i'} + \text{per partes za } i=1,\ldots,n \text{ velja: } L_{y_i} = \frac{d}{dx}L_{y_i'} + \frac{d}{dx}L_{x_i'} + \frac{d}{dx}L_{$ ostale robne pogoje. Neklasična naloga: kaj so dopustne variacije + $(DI)[y](h) = 0(\star)$ za vse dop. var. + (\star) obstreljuješ s testnimi funk. + Razmadze, da dobiš DE za ekstremale + uporabiš vezi in (\star) obstreljuješ z izbranimi dop. var. Nelinearni sistemi: Če $\dot{x} = f(x,y), \dot{y} = g(x,y) \Longrightarrow y'(x) = \frac{g(x,y)}{f(x,y)}, (\frac{y}{x}) = \frac{x\dot{y} - y\dot{x}}{x^2}, (xy) = \dot{x}y + x\dot{y}$ NDE 1. reda Ločljive spremeljivke: y' = f(x)g(y)Linearna: y' = a(x)y + b(x), rešujemo $y_s = y_h + y_p$ Trik: $y(x) \leftrightarrow x(y) \implies y' = 1/\dot{x}$ Homogena: $f(tx,ty) = t^{\alpha}f(x,y)$, v posebnem $f(x,y) = f(1,x/y) \implies z = y/x, y' = z + xz' \implies$ linearna Bernoullijeva: $y' = a(x)y + b(x)y^{\alpha}$, rešujemo $z = y^{1-\alpha}$, $\implies \frac{1}{1-\alpha}z' = a(x)z + b(x)$ Ricattijeva: $y' = a(x)y^2 + b(x)y + c(x)$, ena rešitev y_1 . Nova spr. $y = y_1 + \frac{1}{y_1}$ $y' = y'_1 - \frac{u'}{u^2}$ po pretvorbi $u' = -u(2ay_1 + b) - a$ Integrirajoči množitelj: Pdx + Qdy = 0, iščemo μ : $(\mu P)_y = (\mu Q)_x$. Rešitev $u(x,y) = \int Pdx = \int Qdy = 0$ $\mu = \mu(x) \iff \frac{\mu_x}{\mu} = \frac{P_y - Q_x}{Q}$ odvisno samo od x. $\mu = \mu(y) \iff \frac{\mu_y}{\mu} = \frac{Q_x - P_y}{P}$ odvisno samo od y. Če $\mu=f(x,y),$ pazi, da odvajaš kot kompozitum. Parametrično: x=X(u,v), y=Y(u,v), y'=Z(u,v). Rešujemo: $dY=Z\,dX$ Triki: $\cos^2+\sin^2=1, ch^2-sh^2=1, y'=tx$. Clairautova: y = xy' + b(y'). Rešitev: y = Cx + b(C). Tudi singularna rešitev (ogrinjača). Lagrangeeva: y = a(y')x + b(y'). Rešujemo parametrično: $X = u, Z = y' = v, Y = a(v)u + b(v) \implies$ linearna.

Če je enačba podana eksplicitno in je desna stran polinom lihe stopnje v y s koeficienti funkcijami v x uvedeš $u=y^2$.

NDE višjih redov

Ne nastopa y: uvedemo z = y'.

Obe strani sta odvoda nečesa: integriramo in dodamo konstanto.

 $s = \int \sqrt{\dot{x}^2 + \dot{y}^2} dt$ $p = 1/2 \int (x\dot{y} - y\dot{x}) dt$ $V = \pi \int y^2 \dot{x} dt$

 $s = \int \sqrt{r^2 + \dot{r}^2} dt \qquad p = 1/2 \int r^2 dt$

Odvodi: $y'/y = (\log(y))', xy' + y = (xy)', \frac{y''y-y'^2}{y^2} = (\frac{y'}{y})', \frac{y'x-y}{x^2} = (\frac{y}{x})'.$ Ne nastopa x: uvedemo $z(y)=y',\ y$ neodvisna spr. $y''=\dot{z}z,\ y'''=\ddot{z}z^2+\dot{z}^2z.$ Homogena: $F(x, ty, ty', \dots, ty^{(n)}) = t^k F(x, y, y', \dots, y^{(n)})$. Vpeljemo z(x) = y'/y. $y''/y = z' + z^2$. Z utežjo: $F(kx, k^m y, k^{m-1} y', \dots, k^{m-n} y^{(n)}) = k^p F(x, y, y', \dots, y^{(n)})$. Uvedemo: $x = e^t, y = u(t)e^{mt}$.

Integrali in formule

```
\int \frac{1}{\sqrt{a^2 - x^2}} \frac{1}{dx} = \arcsin \frac{x}{a} + C
\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \arctan \frac{x}{a} + C
\sin^2(x/2) = \frac{1}{a^2} \sin^2(x/2)
                                                                                   \int \sin^2(x) \, dx = \frac{1}{2} (x - \sin x \cos x) + C \quad \cosh^2 x - \sinh^2 x = 1
                                                                                   \int \cos^2(x) \, dx = \frac{1}{2} (x + \sin x \cos x) + C \quad \tan^2 x = \tan' x - 1
  \sin^2(x/2) = (1 - \cos(x))/2
                                                                                   \cos^2(x/2) = (1 + \cos(x))/2
 Ločna dolžina: \int_a^b \sqrt{1+y'(x)^2} \, dx
\int \frac{1}{ax^2 + bx + c} \, dx = \begin{cases} \frac{1}{\sqrt{a}} \log|2ax + b + 2\sqrt{a}\sqrt{ax^2 + bx + c}| + C, & a > 0\\ \frac{-1}{\sqrt{-a}} \arcsin((2ax + b)/\sqrt{D}) + C, & a < 0 \end{cases}
\int \frac{p(x)}{(x-a)^n (x^2 + bx + c)^m} \, dx = A \log|x - a| + B \log|x^2 + bx + c| + C \arctan(\frac{2x + b}{\sqrt{-D}}) + \frac{\text{polinom st. ena manj kot spodaj}}{(x-a)^{n-1} (x^2 + bx + c)^{m-1}}
\frac{d}{dx} \int_{a(t)}^{b(t)} f(t)dt = f(b(x)b'(x) - f(a(x))a'(x))
Substitucija: t = \tan x, \sin^2 x = t^2/(1+t^2), \cos^2 x = 1/(1+t^2), dx = dt/(1+t^2)
Substitucija: u = \tan(x/2), \sin x = 2u/(1+u^2), \cos x = (1-u^2)/(1+u^2), dx = 2du/(1+u^2)
 Abscisa tangente: X=x-y/y' Ordinata tangente: Y=y-xy' Tangenta v točki (x,y): Y-y=y'(X-x) Abscisa normale: X=x+yy' Ordinata normale: Y=y+x/y' Normala v točki (x,y): Y-y=-\frac{1}{y'}(X-x)
                                                         prostornina vrtenine (okoli x osi)
                              ploščina izseka
                                                                                                                               površina vrtenine (okoli x osi)
 dolžina loka
```

 $V = \pi \int_{0}^{\pi} r^{2} \sin^{2}(t) (\dot{r} \cos(t) - r \sin(t)) dt \quad P = 2\pi \int_{0}^{\pi} r \sin(t) \sqrt{r^{2} + \dot{r}^{2}} dt$

 $P = 2\pi \int y \sqrt{\dot{x}^2 + \dot{y}^2} dt$