11 El pla hiperbòlic

Es considera una superfície S que admet una parametrització global definida al semiplà superior $\mathbb{H}=\{(x,y)\in\mathbb{R}^2\mid y>0\}$ en la qual la primera forma fonamental I té coeficients $E=G=\frac{1}{y^2}$ i F=0. Una tal superfície s'anomena pla hiperbòlic. Identifiquem S amb \mathbb{H} a través d'aquesta parametrització.

Exercici 11.1. Comproveu que la mesura d'angles de \mathbb{H} coincideix amb la mesura d'angles euclidiana en el punt de coordenades (x, y).

Exercici 11.2. Calculeu l'àrea de la regió $R_1 = \{(x, y) : 0 < x < 1, 1 < y < \infty\}$. Comproveu que la regió $R_2 = \{(x, y) : 0 < x < 1, 0 < y < 1\}$ té àrea infinita.

Exercici 11.3. Es posible determinar, a partir de les dades anteriors, les línies de curvatura de S? I les línies asimptòtiques?

Exercici 11.4. Determinem les geodèsiques $\gamma(t) = (x(t), y(t))$:

(a) Deduïu, fent servir les equacions d'Euler-Lagrange, que les equacions de les geodèsiques en aquestes coordenades estan donades per

$$\begin{cases} \ddot{x} - \frac{2}{y} \dot{x} \dot{y} &= 0 \\ \ddot{y} + \frac{1}{y} \dot{x}^2 - \frac{1}{y} \dot{y}^2 &= 0 \end{cases}$$

i que per tant els símbols de Christoffel són $-\Gamma^2_{11} = \Gamma^1_{12} = \Gamma^1_{21} = \Gamma^2_{22} = -\frac{1}{y}$ i la resta zero.

- (b) Comproveu que la curvatura de Gauss de \mathbb{H} és constant K=-1.
- (c) Comproveu que les semirectes verticals $\gamma(t) = (x_0, e^{at})$ són geodèsiques.
- (d) Deduïu de les equacions del primer apartat que les geodèsiques compleixen $\dot{x}/y^2=ct$. Veieu que llavors es té que $\cos\phi/y=ct$. on ϕ és l'angle format per la geodèsica γ amb les rectes horitzontals y=ct al punt considerat.
- (e) Proveu que les semicircumferències (euclidianes) a \mathbb{H} amb centre a la recta y=0 compleixen la relació $\frac{1}{y}\cos\phi=ct$. Deduïu d'aquí que les geodèsiques γ de S són de la forma $x=x_0+r\cos\theta$, $y=r\sin\theta$, on $\theta=\theta(t)$ compleix l'equació $\ddot{\theta}=\dot{\theta}^2\cot\theta$.
- (f) Per resoldre $\ddot{\theta} = \dot{\theta}^2 \cot \theta$ busquem $\theta = \theta(t)$ de manera que t sigui un múltiple del paràmetre arc s de γ . Comproveu que $s = \int \frac{1}{\sin \theta} d\theta = \log \left(\tan \frac{\theta}{2} \right)$ i que per tant $\theta = 2 \arctan e^s = 2 \arctan e^{at+b}$.
- (g) Deduïu, com a conclusió, que les geodèsiques (no verticals) de $\mathbb H$ estan donades per

$$x(t) = x_0 + r \frac{1 - e^{2(at+b)}}{1 + e^{2(at+b)}}, \qquad y(t) = r \frac{2e^{at+b}}{1 + e^{2(at+b)}}.$$
 (11.3)

Exercici 11.5. Proveu que les aplicacions de la forma $\Psi_1(x,y) = \frac{1}{x^2+y^2}(x,y), \ \Psi_2(x,y) = (kx,ky)$ i $\Psi_3(x,y) = (x+c,y)$ són isometries de \mathbb{H}^2 , on $k>0, c\in\mathbb{R}$.

Exercici 11.6. Donat $c \in \mathbb{R}$ considerem $\Psi(x,y) = \frac{1+c^2}{(x-c)^2+y^2}(x-c,y) + (c,0)$. Proveu que $\Psi(0,e^{-t}) = (x(t),y(t))$ amb x(t),y(t) donades a (11.3) i trobeu x_0,r,a,b .

Exercici 11.7. Donats dos punts $p, q \in \mathbb{H}$, proveu que existeix una geodèsica $\gamma(t)$ de \mathbb{H} tal que $\gamma(0) = p, \gamma(1) = q$. Proveu que la longitud de $\gamma([0, 1])$ és menor o igual que la longitud de qualsevol corba que uneixi $\gamma(0)$ amb $\gamma(1)$.

Exercici 11.8. Donats $P \in \mathbb{H}$ i $v \in T_P \mathbb{H}$ un vector amb I(v,v)=1, denotem per $\gamma_{P,v}(s)$ la geodèsica parametritzada per l'arc tal que $\gamma_{P,v}(0)=P$ i $\gamma'_{P,v}(0)=v$. Anomenem circumferència hiperbòlica de radi r i centre P al conjunt $S_r(P)=\{\gamma_{P,v}(r):v\in T_P \mathbb{H}, I(v,v)=1\}$.

- a) Dibuixeu amb Sage un parell de circumferències hiperbòliques centrades a P = (0,1).
- b) Proveu que les circumferències hiperbòliques al semiplà es veuen com circumferències euclidianes

Per saber més.

- 1. Corbes especials. La circumferència euclidiana de centre (x_0, a) i radi a és tangent a la recta $\{y = 0\}$ en el punt $(x_0, 0)$ i és ortogonal a totes les geodèsiques que surten aquest punt. Aquest tipus de corbes s'anomenen horocicles i s'obtenen com el límit d'una família de circumferències hiperbòliques que passen per un punt fixat i el centre de les quals tendeix a l'infinit.
 - La intersecció amb \mathbb{H} d'una circumferència euclidiana, quan no és una geodèsica, ni una circumferència hiperbòlica, ni un horociclee (i.e. quan talla y=0 en un angle diferent de 0 i $\pi/2$) s'anomena corba equidistant. Tots els punt d'aquesta corba estan a la mateix distància de la geodèsica que talla y=0 en els mateixos punts.
- 2. Pseudosfera. La pseudosfera (sense un meridià) que hem tractat al seminari anterior és isomètrica a un troç de \mathbb{H} donat per $P = \{(x,y) \in \mathbb{H} : |x| < a^2, y > b^2\}$ (per a,b adequats). Un teorema de Hilbert diu que el plà hiperbòlic (complet) no es pot trobar com a superfície de \mathbb{R}^3 , en canvi un troç d'ell si que es pot trobar, la pseudosfera.

Referències:

- Smogorzhevski, A. Acerca de la geometría de Lobachevski. Lecciones populares de matemáticas, 1978. Ed. MIR, Moscú.
- Ratcliffe, John G. Foundations of hyperbolic manifolds. Graduate Texts in Mathematics, 1994. Springer Verlag, NY.