Correction T.D.6

T.D. 6: Exercice 1

- 1. Soit pour tout u, x dans \mathbb{R} , $\varphi(u, x) = f(x) \mathbb{1}_{]-\infty, u]}(x)$. On a :
 - pour tout $u, \varphi(u, \cdot)$ est mesurable.
 - Soit $u_0 \in \mathbb{R}$ fixé. Alors $\phi(u, x) = f(x) \mathbb{1}_{[x, +\infty[}(u) \text{ donc } u \mapsto \varphi(u, x) \text{ est continue dès que } x \neq u_0$ c'est à dire λ p.p (car $\{u_0\}$ est de mesure de Lebesgue nulle).
 - pour tout $u, x, |\varphi(u, x)| \leq |f(x)|$ et |f| intégrable.

D'après le théorème de continuité des intégrales dépendant d'un paramètre, on a F définie en tout point de \mathbb{R} et F continue en u_0 . C'est vrai pour tout $u_0 \in \mathbb{R}$ donc F continue sur \mathbb{R} .

2. Pour tout u, G(u) = F(u) - F(a) d'où G continue sur \mathbb{R} .

T.D. 6: Exercice 2

- 1. Soit pour tout $(u,x) \in \mathbb{R}_+ \times \mathbb{R}_+^*$, $f(u,x) = \frac{1-\cos(x)}{x^2}e^{-ux}$. On a:
 - pour tout $u \ge 0$, $f(u, \cdot)$ continue sur \mathbb{R}_+^* donc mesurable.
 - Pour tout $x \in \mathbb{R}_+^*$, $f(\cdot, x)$ continue sur \mathbb{R}_+ .
 - Pour tout $(u, x) \in \mathbb{R}_+ \times \mathbb{R}_+^*$, $|f(u, x)| \leq \frac{1 \cos(x)}{x^2} = g(x)$ avec g intégrable $(g \text{ tend vers } 1/2 \text{ en } 0 \text{ et est un } O(1/x^2) \text{ en } +\infty)$.

D'après le théorème de continuité des intégrales dépendant d'un paramètre, F est continue sur \mathbb{R}_+ .

Soit $(u_n)_n$ une suite tendant vers $+\infty$. On applique le TCD à $(f_n = f(u_n, \cdot))_n$, qui converge simplement vers 0, en utilisant la même domination par g. On obtient que $F(u_n) \to 0$. C'est vrai pour tout suite $(u_n)_n$ tendant vers $+\infty$ donc $F(u) \to 0$ quand $u \to +\infty$.

- 2. On a:
 - pour tout x > 0, $f(\cdot, x)$ \mathcal{C}^2 sur \mathbb{R}_+^* et $\partial_u f(u, x) = -\frac{1 \cos(x)}{x} e^{-ux}$ et $\partial_u^2 f(u, x) = (1 \cos(x))e^{-ux}$.
 - Soit $\varepsilon > 0$ fixé. Pour tout $(u, x) \in [\varepsilon, +\infty] \times \mathbb{R}_+^*$,

$$|\partial_u f(u, x)| \le \frac{1 - \cos(x)}{x} e^{-\varepsilon x} = g_1(x),$$

$$|\partial_u^2 f(u, x)| \le (1 - \cos(x)) e^{-\varepsilon x} = g_2(x).$$

 g_1 et g_2 sont toutes les deux intégrables sur \mathbb{R}_+^* car des $O(1/x^2)$ en $+\infty$ et $g_1(x) \to 0$ quand $x \to 0$.

D'après le théorème de dérivabilité des intégrales dépendant d'un paramètre, on en déduit que F est \mathcal{C}^2 sur $[\varepsilon, +\infty[$. Comme $\varepsilon > 0$ est quelconque, on en déduit F est \mathcal{C}^2 sur \mathbb{R}_+^* . De plus, on a $F'(u) = -\int_0^{+\infty} \frac{1-\cos(x)}{x} e^{-ux} dx$ et $F''(u) = \int_0^{+\infty} (1-\cos(x)) e^{-ux} dx$. En utilisant le fait que $\cos(x) = \operatorname{Re}(e^{ix})$, on obtient alors que pour tout u > 0, $F''(u) = \frac{1}{u} - \frac{u}{1+u^2}$.

- 3. Soit $(u_n)_n$ une suite tendant vers 0 en décroissant. On définit $\varphi_n(x) = \frac{1-\cos(x)}{x^2}e^{-u_nx}$ sur \mathbb{R}_+^* . (φ_n) est mesurable et converge simplement en croissant vers $x \mapsto \frac{1-\cos(x)}{x^2}$. Donc d'après le théorème de Beppo Levi, $F'(u_n) \to -\int_0^{+\infty} \frac{1-\cos(x)}{x^2} dx = -\infty$. Donc F n'est pas dérivable à droite en 0.
- 4. Soit u > 0 et $X \ge u$. En utilisant le fait que $F'(X) F'(u) = \int_u^X F''(v) dv$, en intégrant puis en faisant $X \to +\infty$ (sachant que $F'(X) \to 0$ dans ce cas), on obtient $F'(u) = \frac{1}{2} \ln \left(\frac{u^2}{1+u^2} \right) = -\frac{1}{2} \ln (1 + \frac{1}{u^2})$.

On utilise de même $F(X) - F(u) = \int_u^X F'(v) dv$. Or une primitive de $u \mapsto \frac{1}{2} \ln(1 + \frac{1}{u^2})$ est $\frac{u}{2} \ln(1 + \frac{1}{u^2})$ - $\arctan(\frac{1}{u})$ (faire une intégration par partie), on obtient

$$F(u) = \frac{u}{2}\ln(\frac{u^2}{1+u^2}) + \frac{\pi}{2} - \arctan(u),$$

 $\operatorname{car}\, F(X) \to 0, \, \tfrac{X}{2} \ln(1+\tfrac{1}{X^2}) \to 0 \text{ et } \arctan(\tfrac{1}{X}) \to 0 \text{ quand } X \to +\infty.$

5. On a $F(0) = \int_0^{+\infty} \frac{1-\cos(x)}{x^2} dx$. Or comme F est continue à droite en 0 et que l'on a son expression pour tout u > 0 grâce à 4), par passage à la limite, on obtient que l'intégrale vaut $\frac{\pi}{2}$.

T.D. 6: Exercice 3

- 1. Montrons que F est continue sur \mathbb{R}
 - i. $\forall t \in \mathbb{R}, x \mapsto f(t, x)$ continue sur \mathbb{R}_+^* donc est mesurable.
 - ii. $\forall x \in \mathbb{R}_+^*, t \mapsto f(t, x)$ continue sur \mathbb{R} .
 - iii. $\forall t \in \mathbb{R}, \, \forall x \in \mathbb{R}_+^*,$

$$|f(t,x)| \le \frac{1}{\sqrt{2\pi}} \exp(-x^2/2),$$

et $x \mapsto \frac{1}{\sqrt{2\pi}} \exp(-x^2/2)$ est intégrable sur \mathbb{R}_+^* .

Donc d'après le théorème de continuité des IDP, F est continue sur $\mathbb{R}.$

- \bullet Clairement F est paire.
- 2. Soit $t_0 > 0$, $\varepsilon > 0$ et $I_{t_0,\varepsilon} =]t_0 \varepsilon$, $t_0 + \varepsilon[$.
 - Montrons que F est dérivable sur $I_{t_0,\varepsilon}$
 - i. $\forall t \in \mathbb{R}, x \mapsto f(t,x)$ est intégrable sur \mathbb{R}_+^* (voir question 1)
 - ii. $\forall x \in \mathbb{R}_+^*, t \mapsto f(t,x)$ est dérivable sur $I_{t_0,\varepsilon}$.
 - iii. $\forall x \in \mathbb{R}_+^*, \forall t \in I_{t_0,\varepsilon}$, on a

$$\left| \frac{\partial f}{\partial t}(t,x) \right| = \frac{1}{t} e^{-x^2/2} \varphi\left(\frac{t^2}{x^2}\right),$$

où $\varphi(y) = y \exp(-y/2)$. La fonction φ est continue sur \mathbb{R}_+ , de limites nulles en 0^+ et en $+\infty$. Donc φ est bornée par K > 0 sur \mathbb{R}_+ . Ainsi, $\forall x \in \mathbb{R}_+^*$, $\forall t \in I_{t_0,\varepsilon}$,

$$\left|\frac{\partial f}{\partial t}(t,x)\right| \leq K \frac{1}{t} e^{-x^2/2} \leq \frac{K}{t_0 - \varepsilon} e^{-x^2/2} = A e^{-x^2/2},$$

avec $A = K/(t_0 - \varepsilon) > 0$. Et $x \mapsto Ae^{-x^2/2}$ est intégrable sur \mathbb{R}_+^* .

Donc d'après le théorème de dérivation des IDP, F est dérivable sur $I_{t_0,\varepsilon}$ et pour tout $t \in I_{t_0,\varepsilon}$,

$$F'(t) = -\int_0^{+\infty} \frac{t}{\sqrt{2\pi}x^2} \exp\left(\frac{1}{2}\left(x^2 + \frac{t^2}{x^2}\right)\right) dx.$$

ullet Montrons que F est dérivable sur \mathbb{R}^*

Comme le point d'avant est vrai pour tout voisinage de $t_0 > 0$, F est dérivable sur \mathbb{R}_+^* . Par parité de F, F est donc dérivable sur \mathbb{R}^* .

3. Avec le changement de variables $u=t/x,\,t>0$, on remarque que F'(t)=-F(t). Ainsi, pour tout t>0, $F(t)=Ce^{-t}$ avec $C\in\mathbb{R}$. Et par continuité de F en 0, on a $C=\lim_{t\to 0^+}F(t)=F(0)=1/2$. Puis par parité, on conclut

$$F(t) = \frac{1}{2}e^{-|t|}$$
 pour tout $t \in \mathbb{R}$.

T.D. 6: Exercice 4

- 1. i. \hat{f} est bien définie car pour tout $X \in \mathbb{R}$, pour tout $t \in \mathbb{R}$, $|f(x)e^{itx}| = |f(x)|$ et $|f| \in \mathcal{L}^1_{\mathbb{R}_+}$.
 - ii. \hat{f} est bornée car pour $t \in \mathbb{R}$,

$$|\hat{f}(t)| \le \int_{\mathbb{R}} |e^{-itx} f(x)| dx \le \int |f| d\lambda = ||f||_1 < +\infty.$$

iii. \hat{f} est uniformément continue sur \mathbb{R} . En effet, soit $a, b \in \mathbb{R}$,

$$|\hat{f}(b) - \hat{f}(a)| \le \int_{\mathbb{R}} |f(x)|e^{-ixb} - e^{-ixa}|dx \le \int_{\mathbb{R}} |f(x)| \min(2, |b - a||x|) dx,$$

car pour tout $s, t \in \mathbb{R}$, $|e^{it} - e^{is}| \le |t - s|$ et $|e^{it} - e^{is}| \le 2$. Soit maintenant $g(x, \theta) = |f(x)| \min(2, \theta|x|)$ définie sur $\mathbb{R} \times \mathbb{R}_+^*$. Alors pour tout $\theta > 0$, $|g(x, \theta)| \le 2|f(x)|$ et $\lim_{\theta \to 0^+} g(x, \theta) = 0$, donc d'après le TCD,

$$\lim_{\theta \to 0^+} \int g(x,\theta) dx = 0.$$

Soit maintenant $G(\theta) = \int_{\mathbb{R}} g(x,\theta) dx$ définie pour tout $\theta > 0$. Soit $\varepsilon > 0$. Soit $\theta_{\varepsilon} > 0$ tel que $\delta \leq \theta_{\varepsilon} \Rightarrow G(\delta) \leq \varepsilon$ (un tel θ_{ε} existe par le point précédent). Alors pour tout $a,b \in \mathbb{R}$ tel que $|b-a| \leq \theta_{\varepsilon}$, $|\hat{f}(b) - \hat{f}(a)| \leq G(|b-a|) \leq \varepsilon$. Donc \hat{f} est uniformément continue sur \mathbb{R} (donc en particulier continue).

Remarque : On peut prouver que f est continue sur \mathbb{R} à l'aide du théorème de continuité des IDP (voir cours).

- 2. Soit $h(t,x) = f(x)e^{-itx}$ définie sur $\mathbb{R} \times \mathbb{R}$
 - i. $x \mapsto h(t, x)$ est intégrable (voir question précédente)
 - ii. $\forall x \in \mathbb{R}, t \mapsto h(t, x)$ est de classe \mathcal{C}^1 sur \mathbb{R} .
 - iii. $\forall x \in \mathbb{R}, \forall t \in \mathbb{R},$

$$\left| \frac{\partial h}{\partial t}(t,x) \right| = \left| -ixf(x)e^{-itx} \right| = |xf(x)|,$$

et $x \mapsto |xf(x)|$ est intégrable sur \mathbb{R}_+ par hypothèse. Donc d'après le théorème de dérivation des IDP, \hat{f} est \mathcal{C}^1 sur \mathbb{R} , et

$$\hat{f}'(t) = -i \int_{\mathbb{R}} x f(x) e^{-itx} dx = -i\hat{g}(t),$$

où q(x) = x f(x).

T.D. 6: Exercice 5

- 1. Soit $f(x,t) = \frac{e^{xt}}{1+t^2}$ définie sur $(\mathbb{R}_+)^2$.
 - i. Pour tout $x \in \mathbb{R}_+$, $t \mapsto f(x,t)$ est mesurable et positive, donc F est bien définie à valeurs dans $[0,+\infty]$. De plus, pour tout $(x,t) \in (\mathbb{R}_+)^2$, $0 \le f(x,t) \le 1/(1+t^2)$ et $t \mapsto 1/(1+t^2)$ intégrable sur \mathbb{R}_+ . Donc $F < +\infty$.
 - ii. Pour tout $t \in \mathbb{R}_+$ et pour tout $0 \le x \le y$, $f(x,t) \ge f(y,t) \Rightarrow F(x) \ge F(y)$, donc F est décroissante.
- 2. Soit $x_0 > 0$ et soit $\varepsilon > 0$ tel que $x_0 \varepsilon > 0$. Notons $I_{x_0,\varepsilon} =]x_0 \varepsilon, x_0 + \varepsilon[$. Alors
 - i. $\forall x \in I_{x_0,\varepsilon}, t \mapsto f(x,t)$ intégrable sur \mathbb{R}_+ .
 - ii. $\forall t \in \mathbb{R}_+, x \mapsto f(x,t)$ est deux fois dérivable sur $I_{x_0,\varepsilon}$
 - iii. $\forall t \in \mathbb{R}_+, \forall x \in I_{x_0,\varepsilon}$

$$\left| \frac{\partial f}{\partial x}(x,t) \right| = \frac{te^{-xt}}{1+t^2} \le \frac{1}{2}e^{-xt} \le \frac{1}{2}e^{-(x_0-\varepsilon)t},$$

car $t \le (1 + t^2)/2$. Et

$$\left| \frac{\partial^2 f}{\partial x^2}(x,t) \right| = \frac{t^2 e^{-xt}}{1+t^2} \le e^{-xt} \le e^{-(x_0 - \varepsilon)t}.$$

Comme $x_0 - \varepsilon > 0$, $t \mapsto e^{-(x_0 - \varepsilon)t}$ est intégrable.

D'après le théorème de dérivation des IDP, F est deux fois dérivable sur $I_{t_0,\varepsilon}$. Vrai pour tout voisinage de $x_0 > 0$ et tout $x_0 > 0$, F est deux fois dérivable sur \mathbb{R}_+^* et on a pour tout $x \in \mathbb{R}_+^*$,

$$F''(x) = \int_0^{+\infty} \frac{t^2 e^{-xt}}{1 + t^2} dt.$$

3. Soit x > 0,

$$F''(x) + F(x) = \int_0^{+\infty} e^{-xt} dt = \frac{1}{x}.$$

T.D. 6: Exercice 6

- 1. L'égalité entre les deux intégrales vient du changement de variables z = x y.
 - Pour la continuité : soit h(x,y) = f(y)g(x-y) définie sur \mathbb{R}^2 .
 - i. $\forall x \in \mathbb{R}, y \mapsto f(x, y)$ mesurable sur \mathbb{R} .
 - ii. $\forall y \in \mathbb{R}, x \mapsto h(x, y)$ est continue sur \mathbb{R} .
 - iii. $\forall x \in \mathbb{R}, \forall y \in \mathbb{R},$

$$|h(x,y)| = |f(y)||g(x-y)| \le |f(y)|||g||_{\infty},$$

et $||g||_{\infty}|f| \in \mathcal{L}^1_{\mathbb{R}_+}$ par hypothèses.

Donc par le théorème de continuité des IDP, $f \star g$ est continue sur \mathbb{R} .

• Enfin pour tout $x \in \mathbb{R}$,

$$|f \star g(x)| \le \int_{\mathbb{R}} |f(y)| ||g||_{\infty} dy = ||g||_{\infty} ||f||_{1} < +\infty,$$

donc $f \star g$ est bornée.

- 2. i. $\forall y \in \mathbb{R}, x \mapsto h(x,y)$ est de classe \mathcal{C}^1 sur \mathbb{R} par hypothèses.
 - ii. $\forall x \in \mathbb{R}, y \mapsto h(x, y)$ est intégrable (voir question précédente).
 - iii. $\forall x \in \mathbb{R}, \forall y \in \mathbb{R},$

$$\left| \frac{\partial h}{\partial x}(x,y) \right| = |g'(x-y)||f(y)| \le ||g'||_{\infty}|f(y)|,$$

et
$$||g'||_{\infty}|f| \in \mathcal{L}^1_{\mathbb{R}_+}$$
.

Donc d'après le théorème de dérivation des IDP, $f \star g$ est dérivable sur \mathbb{R} et $(f \star g)' = f \star g'$. Enfin par 1., $f \star g'$ est continue bornée. Noter que ce résultat s'étend par récurrence à g n fois dérivable continuement avec des dérivées bornées jusqu'à l'ordre n.