¹³C NMR Spectroscopy

from chapter in the recommended text

A. Introduction

B. Fundamental Physics Of NMR (Nuclear Magnetic Resonance)

Nuclear spin

<u>pairing</u> these spins between aligned and counter-aligned states by applying a <u>radiofrequency</u><u>low</u> energy range of the electromagnetic spectrum, ie <u>low</u> frequency and <u>high</u>

 $\frac{1}{2}$, and for ¹²C the nuclear spin is $\underline{0}$.

<u>high</u>, but that of 13 C is <u>low</u> (<u>1.1</u>

averaged over multiple scans to increase both these parameters.

<u>less</u> than those between vibrational states in IR, and <u>less</u> <u>are</u> sensitive to large external magnetic fields

<u>larger</u> the energy gap between nuclear spin states.

the energy gap between the nuclear spin states / Boltzman distributions / both these parameters.

<u>are</u> sensitive to the electron density and proximal NMR active nuclei in the same molecule, hence these nuclei in different parts of the molecule flip when <u>different</u>

"shield each other

deshielded relative to Chemical Shifts In General

SiMe₄.

frequency of 0 on scale - frequency for nucleus
frequency of 0 on scale

positive.
deshielded
the operating frequency of the machine
200,000,000 Hz.
200 so on
200, ie 200 Hz.

on a 250 MHz machine, 1 ppm corresponds to ____250___ Hz in proton NMR spectra on a 400 MHz machine, 1 ppm corresponds to ____400___ Hz in proton NMR spectra on an 800 MHz machine, 10 ppm corresponds to ___8000____ Hz in proton NMR spectra

```
_25_ Hz.
difference of __0.1__ ppm.
__0.1__ ppm.

_more on a 60 MHz

_more on a 100 MHz

_less as the operating frequency
```

C. Chemical Shifts In ¹³C Spectra

<u>upfield</u> region and corresponds to <u>shielded</u>

<u>downfield</u> region and corresponds to <u>deshielded</u><u>attract</u> electron density tend to <u>deshield</u><u>deshield</u>

less shielded

inequivalent except

the same chemical shifts, and inequivalent ones usually resonate at different

the same as

__5_ inequivalent C

number of resonances (ppm): 0 - 50 __4__ 50 - 100 _ 0__ 100 - 150 _ 0__ above 150 _ 1

__4__ inequivalent C

number of resonances (ppm): 0 - 50 _3__ 50 - 100 _0__ 100 - 150 _0__ above 150 _1

__9__ inequivalent C

number of resonances (ppm): 0 - 50 _3__ 50 - 100 _0__ 100 - 150 _6__ above 150 0

___8__ inequivalent C

number of resonances (ppm): 0 - 50 _2_ 50 - 100 _2_ 100 - 150 _4_ above 150 _0

___6__ inequivalent C

number of resonances (ppm): 0 - 40 _0__ 40 - 100 _1__ 100 - 150 _3__ above 150 _2

__3__ inequivalent C

number of resonances (ppm): 0 - 50 _3__ 50 - 100 _0__ 100 - 150 _0_ above 150 __0_

__5__ inequivalent C

number of resonances (ppm): 0 - 50 _5__ 50 - 100 _0__ 100 - 150 _0_ above 150 _0_

inequivalent C

number of resonances (ppm): 0 - 50 _1__ 50 - 100 _0__ 100 - 150 _3_ above 150 _0_

inequivalent C

number of resonances (ppm): 0 - 50 _1__ 50 - 100 _0_ 100 - 150 _0_ above 150 _1_

__5__ inequivalent C

number of resonances (ppm): 0 - 50 _2__ 50 - 100 _2__ 100 - 150 _0_ above 150 _1__

inequivalent C

number of resonances (ppm): 0 - 50 _1__ 50 - 100 _0__ 100 - 150 _1__ above 150 _0_

__5_ inequivalent C

number of resonances (ppm): 0 - 50 _3_ 50 - 100 _0_ 100 - 150 _2_ above 150 _0_

__5_ inequivalent C

number of resonances (ppm): 0 - 50 _3_ 50 - 100 _0_ 100 - 150 _2_ above 150 _0_

__7_ inequivalent C

number of resonances (ppm): 0 - 50 _3_ 50 - 100 _0_ 100 - 150 _2_ above 150 _2_

__3__ inequivalent C

number of resonances (ppm): 0 - 50 _1__ 50 - 100 _0__ 100 - 150 _1__ above 150 _1_

inequivalent C

number of resonances (ppm): 0 - 50 _1__ 50 - 100 _0_ 100 - 150 _0_ above 150 _0_

inequivalent C

number of resonances (ppm): 0 - 50 _3_ 50 - 100 _0_ 100 - 150 _0_ above 150 _0_

6 inequivalent C

number of resonances (ppm). 0 - 50 _2__ 50 - 100 _0_ 100 - 150 _4_ above 150 _0_

inequivalent C

number of resonances (ppm): 0 - 50 _4_ 50 - 100 _0_ 100 - 150 _4_ above 150 _0_

inequivalent C

number of resonances (ppm): 0 - 40 _2 **40** - 100 _2_ 100 - 150 _0_ above 150 above 150 _1_

OEt

OMe

6 inequivalent C

number of resonances (ppm): 0 - 50 _4__ 50 - 100 _2__ 100 - 150 _0_ above 150 _0_

inequivalent C

OMe

number of resonances (ppm): 0 - 50 _9__ 50 - 100 _3__ 100 - 150 _0_ above 150 _0_

__12__ inequivalent C

number of resonances (ppm): 0 - 50 _12__ 50 - 100 _0__ 100 - 150 _0_ above 150 _0_

inequivalent C number of resonances (ppm): 0 - 50 _0__ 50 - 100 _0__ 100 - 150 _3_ above 150 _0_

__7__ inequivalent C

number of resonances (ppm): 0 - 50 _0__ 50 - 100 _0_ 100 - 150 _7_ above 150 _0_

OMe MeO

MeO OMe

inequivalent C

number of resonances (ppm): 0 - 50 _2_ 50 - 100 _2_ 100 - 150 _0_ above 150 _0_

inequivalent C

number of resonances (ppm): 0 - 50 _2_ 50 - 100 _2_ 100 - 150 _0_ above 150 _0_

inequivalent C

number of resonances (ppm): 0 - 50 _3_ 50 - 100 _0_ 100 - 150 _2_ above 150 _0_

inequivalent C

number of resonances (ppm): 0 - 50 _3_ 50 - 100 _1_ 100 - 150 _0_ above 150 _0_

inequivalent C

number of resonances (ppm): 0 - 50 _3__ 50 - 100 _1__ 100 - 150 _0_ above 150 _0_

inequivalent C

number of resonances (ppm): 0 - 50 _2_ 50 - 100 _ 0_ 100 - 150 _ 0_ above 150 0

inequivalent C

number of resonances (ppm): 0 - 50 _5__ 50 - 100 _ 1_ 100 - 150 _ 0_ above 150 1

inequivalent C

number of resonances (ppm): 0 - 50 _3__ 50 - 100 _0_ 100 - 150 _0_ above 150 _0_

inequivalent C

number of resonances (ppm): 0 - 50 _3_ 50 - 100 _2_ 100 - 150 _6_ above 150 _0_

inequivalent C

number of resonances (ppm): 0 - 50 _3_ 50 - 100 _0_ 100 - 150 _2_ above 150 _0_

cannot be

D. Coupling In ¹³C NMR

¹³CH Spin Systems

The ¹H nucleus <u>is</u>

different to

into two peaks of almost equal intensity; this is called a doublet.

The chemical shift of that carbon is exactly at the center of

coupling with protons

doublet and a singlet, respectively.

In that experiment it would

¹³CH₂ Spin Systems

the same

3 different magentic field strengths influence that ¹³C, ratio 1:2:1

<u>three</u> different magnetic fields and the relative probability is <u>1:2:1</u>. <u>triplet</u> for the carbon and it <u>could</u>

¹³<u>C</u>H₃ Spin Systems quartet for the carbon and it could

__4__ different magentic field strengths influence that ¹³C, ratio ___1:3:3:1__

The relative probabilities for finding the spins in a or o states is 1:3:3:1.

n + 1 peaks.

doing the splitting and not those being observed.

follows Pascal's triangle.

<u>rare</u> and <u>can</u> be ignored.

Differentiating CH, CH₂, And CH₃ In ¹³C Spectra

<u>coupling</u> constant and it is expressed in <u>Hz</u>. <u>different</u> on machines operating at different field strengths, so they are <u>never</u>

DEPT Spectra To Differentiate Quaternary, Methine-, Methylene-, and Methyl-Carbons *quaternary*, *do not positive* peaks, and resonances for CH₂ carbons *negative*.

CH peaks.

<u>can</u> more

nearly always shown.

¹H-NMR signals of the protons attached to them.