Non-linear Dimension Reduction Techniques

Emmanuelle Dankwa, Natalia Garcia Martin, Deborah Sulem

OxWaSP

October 18, 2019

Motivation for dimensionality reduction

- Unsupervised learning: insight on data and visualization
- High-dimensional data with structure
- Data lives on a low-dimensional manifold
- Example: hand-written digits under distorsions

Quick overview of methods

Many techniques to find representations in a latent space (embeddings):

- linear / non-linear methods
- probabilistic / deterministic model on the latent space
- mapping from a latent space to the data space or the reverse (proximity data methods)
- convex / non-convex objective function

Some challenges:

- preserving neighborhoods
- handling missing data
- projecting new data points in the latent space
- handling non-Gaussian noise models

Setting and datasets

Some notations:

- N number of data points
- D dimension of the observation space
- Q dimension of the latent space
- $\mathbf{Y} \in \mathbf{R}^{N \times D}$ (centered) data matrix
- $\mathbf{X} \in \mathbf{R}^{N \times Q}$ latent variables matrix

Applications

(a) The Swiss roll

(b) Oil flow dataset

Metrics for dimension reduction

- With labelled data: One-Nearest-Neighbour classification error
- Without labels: k-neighborhood preservation
 - Trustworthiness:

$$T(k) = 1 - \frac{2}{nk(2n - 3k - 1)} \sum_{n=1}^{N} \sum_{j \in U_n^{(k)}} r(n, j) - k$$

Continuity:

$$C(k) = 1 - \frac{2}{nk(2n - 3k - 1)} \sum_{n=1}^{N} \sum_{j \in V_n^{(k)}} \hat{r}(n, j) - k$$

Building block 1: Gaussian Processes

- Class of probabilistic models which specify distributions over function spaces
- Definition: collection of RV, any finite number of which have a joint Gaussian distribution

$$f(\mathbf{x}) \sim GP(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))$$

- m(x) = E[f(x)]
- k(x, x') = E[(f(x) m(x))(f(x') m(x'))]

Building block 2: Principal Component Analysis

- *D*-dimensional observed data $\mathbf{Y} \in \mathbb{R}^{N \times D}$
- Lower-dimensional representation $\boldsymbol{X} \in \mathbb{R}^{N \times Q}$
- Standardise the data
- Obtain the eigenvectors and eigenvalues from the covariance matrix
- Sort eigenvalues in descending order and choose the Q eigenvectors that correspond to the Q largest eigenvalues
- lacktriangle Construct the projection matrix $oldsymbol{M}$ from the selected Q eigenvectors
- $footnote{\circ}$ Transform the original dataset $m{Y}$ via $m{M}$ to obtain a Q-dimensional feature subspace $m{X}$

Building block 2: Principal Component Analysis

- Latent-variable formulation: probabilistic PCA (Tipping and Bishop, 1999)
- Extension to non-linear mappings using Gaussian processes: GP-LVM (Lawrence, 2004)

Related method: Kernel PCA

- Extends conventional PCA to a high dimensional feature space using the kernel trick
- Linear kernel

$$k(\boldsymbol{x},\boldsymbol{y}) = \boldsymbol{x}^T \boldsymbol{y}$$

RBF kernel

$$k(\mathbf{x}, \mathbf{y}) = \exp\left(-\gamma ||\mathbf{x} - \mathbf{y}||^2\right), \gamma > 0$$

Sigmoid kernel

$$k(\mathbf{x}, \mathbf{y}) = \tanh(\gamma \mathbf{x}^T \mathbf{y} + r)$$

Polynomial kernel

$$k(\mathbf{x}, \mathbf{y}) = (\gamma \mathbf{x}^T \mathbf{y} + r)^d$$

KPCA

Figure: KPCA performance on oil flow dataset.

KPCA

Figure: KPCA performance on swiss roll dataset.

Gaussian Process Latent Variable Model [Lawrence, 2004]

Probabilistic model with noise ϵ :

$$\mathbf{Y} = f(\mathbf{X}) + \epsilon$$

Probabilistic PCA: linear mapping with parameters $W \in \mathbb{R}^{D \times Q}$

$$y_n = \mathbf{W} x_n + \epsilon_n$$

- Assume spherical Gaussian noise $\epsilon_n \sim \mathcal{N}(0_D, \beta^{-1} \mathbf{I}_D)$
- Normal prior on the latent variables $x_n \sim \mathcal{N}(0_Q, \mathbf{I}_Q)$
- Marginalizing the likelihood over X:

$$p(\mathbf{Y}|\mathbf{W},\beta) = \prod_{n=1}^{N} \mathcal{N}(y_n; 0_D, \mathbf{W}\mathbf{W}^T + \beta^{-1}\mathbf{I}_D)$$

ullet Maximize over the parameters $oldsymbol{W}$

Gaussian Process Latent Variable Model

Dual Probabilistic PCA:

- ullet Conjugate prior on the parameters $p(oldsymbol{W}) = \Pi_{d=1}^D \mathcal{N}(w_d; 0_Q, oldsymbol{\mathsf{I}}_Q)$
- Marginal likelihood over W:

$$p(\mathbf{Y}|\mathbf{X},\beta) = \prod_{n=1}^{N} \mathcal{N}(y_n; 0_D, \mathbf{X}\mathbf{X}^T + \beta^{-1}\mathbf{I}_D)$$

• Let $K = XX^T + \beta^{-1}I_D$, the log-likelihood is then:

$$L = -\frac{DN}{2}\log 2\pi - \frac{N}{2}\log \det(\boldsymbol{K}) - \frac{1}{2}tr(\boldsymbol{K}^{-1}\boldsymbol{Y}\boldsymbol{Y}^{T})$$

• Maximize L over K, i.e $\{X, \beta\}$

GP-LVM: Replace K by a non-linear covariance matrix on the latent variables

Gaussian Process Latent Variable Model

GP-LVM:

- Each dimension of the marginal likelihood is an independent
 Gaussian process
- Choice of covariance function determines the class of functions considered
- Example: Radial Basis Function kernel

$$k(\mathbf{x}, \mathbf{x}') = \sigma^2 \exp\left(\frac{-||\mathbf{x} - \mathbf{x}'||^2}{2\lambda^2}\right).$$

- Optimization with gradient-based method
- Implementation in GPy

Gaussian Process Latent Variable Model

Examples:

(a) The Swiss roll (error: 8.0 %)

(b) Oil flow dataset (error: 0.1 %)

Autoencoders

- Encoder h = f(x) which transforms the input to a hidden code
- Decoder which reconstructs the input from hidden code: r = g(h)
- Minimise L(x, g(f(x)))

Figure: Example of autoencoder structure (van der Maaten et al., 2009).

Autoencoders

Figure: Autoencoder performance (3 hidden layers) on oil flow dataset.

Generative Topographic Mapping I

General Idea:

Image Credit: Bishop et al. (1998)

 GTM models a map from a d-dimensional latent space onto a d-dimensional manifold embedded in D-dimensional data space.

Generative Topographic Mapping (GTM) II

- Consider the following:
 - $\phi(\mathbf{x}; W)$: non-linear function mapping from latent space, X to data space Y, where W is a parameter matrix of weights.
 - Let $\phi(\mathbf{x}; W) = \mathbf{q}$. Then, the distribution of \mathbf{y} given \mathbf{x} and W is chosen to be Gaussian:

$$p(\mathbf{y}|\mathbf{x}, \mathbf{W}, \beta) = \left(\frac{\beta}{2\pi}\right)^{D/2} \exp\left\{-\frac{\beta}{2}||\mathbf{q} - \mathbf{y}||\right\}$$

where β^{-1} is the variance of the distribution.

Generative Topographic Mapping (GTM) II

- Consider the following:
 - $\phi(\mathbf{x}; W)$: non-linear function mapping from latent space, X to data space Y, where W is a parameter matrix of weights.
 - Let $\phi(\mathbf{x}; W) = \mathbf{q}$. Then, the distribution of \mathbf{y} given \mathbf{x} and W is chosen to be Gaussian:

$$p(\mathbf{y}|\mathbf{x}, \mathbf{W}, \beta) = \left(\frac{\beta}{2\pi}\right)^{D/2} \exp\left\{-\frac{\beta}{2}||\mathbf{q} - \mathbf{y}||\right\}$$

where β^{-1} is the variance of the distribution.

• Integrating over the latent variables, we obtain:

$$p(\mathbf{y}|\mathbf{W}, eta) = \int p(\mathbf{y}|\mathbf{x}, \mathbf{W}, eta) p(\mathbf{x}) d\mathbf{x},$$

with
$$p(\mathbf{x}) = \frac{1}{K} \sum_{i=1}^{K} \delta(\mathbf{x} - \mathbf{x_i})$$
.

Generative Topographic Mapping (GTM) II

- Consider the following:
 - $\phi(\mathbf{x}; W)$: non-linear function mapping from latent space, X to data space Y, where W is a parameter matrix of weights.
 - Let $\phi(\mathbf{x}; W) = \mathbf{q}$. Then, the distribution of \mathbf{y} given \mathbf{x} and W is chosen to be Gaussian:

$$p(\mathbf{y}|\mathbf{x}, \mathbf{W}, \beta) = \left(\frac{\beta}{2\pi}\right)^{D/2} \exp\left\{-\frac{\beta}{2}||\mathbf{q} - \mathbf{y}||\right\}$$

where β^{-1} is the variance of the distribution.

• Integrating over the latent variables, we obtain:

$$p(\mathbf{y}|\mathbf{W}, \beta) = \int p(\mathbf{y}|\mathbf{x}, \mathbf{W}, \beta)p(\mathbf{x})d\mathbf{x},$$

with
$$p(\mathbf{x}) = \frac{1}{K} \sum_{i=1}^{K} \delta(\mathbf{x} - \mathbf{x_i})$$
.

ullet Assuming $oldsymbol{y}_n$ is i.i.d, parameters $oldsymbol{W}$ and eta are optimized using

$$\boldsymbol{L} = \sum_{n=1}^{N} \ln \left\{ \frac{1}{K} \sum_{i=1}^{K} p(\boldsymbol{y}_{n} | \boldsymbol{x}_{i}, \boldsymbol{W}, \beta) \right\}.$$

t-Distributed Stochastic Neighbour Embedding (tSNE) I

Stochastic Neighbour Embedding (SNE)

- Interprets distances between data points as Gaussian conditional probabilities.
- Consider y_i and y_j in the observed D-dimensional data set. Then, $p_{j|i}$ the probability that y_j is a neighbour of y_i given as

$$p_{j|i} = \frac{\exp(||{\bm{y}}_i - {\bm{y}}_j||^2/2\sigma_i^2)}{\sum_{k \neq i} \exp(||{\bm{y}}_i - {\bm{y}}_k||^2/2\sigma_i^2)}.$$

t-Distributed Stochastic Neighbour Embedding (tSNE) I

Stochastic Neighbour Embedding (SNE)

- Interprets distances between data points as Gaussian conditional probabilities.
- Consider y_i and y_j in the observed D-dimensional data set. Then, $p_{j|i}$ the probability that y_j is a neighbour of y_i given as

$$p_{j|i} = \frac{\exp(||\mathbf{y}_i - \mathbf{y}_j||^2 / 2\sigma_i^2)}{\sum_{k \neq i} \exp(||\mathbf{y}_i - \mathbf{y}_k||^2 / 2\sigma_i^2)}.$$

• Similarly, for corresponding points x_i and x_j in the d-dimensional space, we have

$$q_{j|i} = \frac{\exp(||\boldsymbol{x}_i - \boldsymbol{x}_j||^2/2\sigma_i^2)}{\sum_{k \neq i} \exp(||\boldsymbol{x}_i - \boldsymbol{x}_k||^2/2\sigma_i^2)}.$$

t-Distributed Stochastic Neighbour Embedding (tSNE) I

Stochastic Neighbour Embedding (SNE)

- Interprets distances between data points as Gaussian conditional probabilities.
- Consider \mathbf{y}_i and \mathbf{y}_j in the observed D-dimensional data set. Then, $p_{j|i}$ the probability that \mathbf{y}_i is a neighbour of \mathbf{y}_i given as

$$p_{j|i} = \frac{\exp(||\mathbf{y}_i - \mathbf{y}_j||^2 / 2\sigma_i^2)}{\sum_{k \neq i} \exp(||\mathbf{y}_i - \mathbf{y}_k||^2 / 2\sigma_i^2)}.$$

• Similarly, for corresponding points x_i and x_j in the d-dimensional space, we have

$$q_{j|i} = \frac{\exp(||\mathbf{x}_i - \mathbf{x}_j||^2 / 2\sigma_i^2)}{\sum_{k \neq i} \exp(||\mathbf{x}_i - \mathbf{x}_k||^2 / 2\sigma_i^2)}.$$

• SNE minimises the objective function

$$\sum_{i} \mathit{KL}(P_{i}||Q_{i}) = \sum_{i} \sum_{j} p_{j|i} \log \frac{p_{j|i}}{q_{j|i}}$$

t-Distributed Stochastic Neighbour Embedding (tSNE) II

Limitations of SNE

- Objective function can be difficult to optimize
- "Crowding" problem

t-Distributed Stochastic Neighbour Embedding (tSNE) II

Limitations of SNE

- Objective function can be difficult to optimize
- "Crowding" problem

tSNE (Van Der Maaten et al., 2009) comes to the rescue! How?

• "Symmetrizes" objective function to obtain simpler gradients without losing quality of visualization. Modified objective:

$$\mathit{KL}(P||Q) = \sum_{i} \sum_{j} p_{ij} \log \frac{p_{ij}}{q_{ij}}$$

P,Q: joint probability distributions $p_{ij} = p_{ji}$; $q_{ij} = q_{ji} \forall i, j$.

• Models q_{ij} with a student-t distribution (which has heavier tails than the Gaussian).

Multi-dimensional Scaling

 These methods use some measure of proximity between points in high dimensional space to deduce corresponding location of points in a low dimensional space.

Concept:

- Let δ_{ij} denote a proximity value between observed *D*-dimensional points *i* and *j*; $i, j \in (1, ..., N)$.
- The values of δ_{ij} form an $N \times N$ matrix, Λ .
- Given Λ , MDS finds a set of vectors $(\mathbf{x}_1,...,\mathbf{x}_N) \in \mathbb{R}^d$; d << D, such that the stress,

$$A = \sqrt{\frac{\sum_{i} \sum_{j} [f(\mathbf{x}_{i}, \mathbf{x}_{j}) - \delta_{ij}]^{2}}{\sum_{i} \sum_{j} \delta_{ij}^{2}}}.$$

is minimised. f is chosen to be monotonic to preserve the ordering in the original data.

GTM, tSNE MDS in Action!

Figure: tSNE, MDS and GTM performance on artificial data

Figure: tSNE, MDS and GTM performance on oil flow dataset

General Comparisons

	Sp.GP-LVM	tSNE	MDS	GTM	KPCA p.	KPCA s.	KPCA RBF	Auto.
error (%)	8.4				25.4		25.3	23.9
trust.	0.9975	0.9996	0.8949	0.9634	0.8770	0.9473	0.8652	0.8704
continuity	0.9700	0.9916	0.9931	0.9894	0.9911	0.9962	0.9924	0.9930
wall time(s)	132	6.14	3	1.4	0.0351	0.0607	0.0751	0.638

Table: Performance metrics of various dimensionality reduction techniques on artificial data

	Sp.GP-LVM	tSNE	MDS	GTM	KPCA p.	KPCA s.	KPCA RBF	Auto.
error (%)	0.0	0.3	28.9	4.3	32.2	35.2	15.2	14.4
trust.	0.9969	0.9985	0.9306	0.9898	0.9275	0.8957	0.8182	0.9143
continuity	0.9769	0.9964	0.9248	0.9836	0.9886	0.9910	0.9578	0.9707
wall time(s)	144	6.41	3.02	1.48	0.0326	0.0785	0.0774	0.276

Table: Performance metrics of various dimensionality reduction techniques on multi-phase oil flow data

Conclusion

- GP-LVM is a quite robust framework but with a high computation cost $(O(N^3))$: variants include sparsification, hierarchical dynamic models, Bayesian optimisation.
- Further research could explore the optimal choice of hyperparameters to increase performance of dimensionality reduction techniques.
- Inference methods with application to human motion tracking, shape modelling, assisted animation.

References I

- Christopher M Bishop, Markus Svensén, and Christopher KI Williams. Gtm: The generative topographic mapping. *Neural computation*, 10(1): 215–234, 1998.
- Héléna Alexandra Gaspar. ugtm: A python package for data modeling and visualization using generative topographic mapping. *Journal of Open Research Software*, 6(1), 2018.
- Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine learning research, 9(Nov):2579–2605, 2008.
- F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
 O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
 J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
 E. Duchesnay. Scikit-learn: Machine learning in Python. *Journal of Machine Learning Research*, 12:2825–2830, 2011.

References II

Laurens Van Der Maaten, Eric Postma, and Jaap Van den Herik. Dimensionality reduction: a comparative. *J Mach Learn Res*, 10:66–71, 2009.