

## Prover Agent: An Agent-based Framework for **Formal Mathematical Proofs**

Kaito Baba<sup>1</sup>, Chaoran Liu<sup>2</sup>, Shuhei Kurita<sup>3</sup>, Akiyoshi Sannai<sup>4</sup> <sup>5</sup> <sup>6</sup> <sup>2</sup> <sup>7</sup>

 $^{-1}$ The University of Tokyo, Tokyo, Japan  $^2$ Research and Development Center for Large Language Models, National Institute of Informatics, Tokyo, Japan  $^3$ National Institute of Informatics, Tokyo, Japan  $^4$ Kyoto University, Kyoto, Japan  $^5$ Shiga University, Shiga, Japan <sup>6</sup>RIKEN Center for Advanced General Intelligence for Science Program, Kobe, Japan <sup>7</sup>National Institute of Science Technology Policy (NISTEP), Tokyo, Japan



#### Our paper

### Motivation

- ► Large language models (LLMs):
- ✓ Capable of powerful reasoning and generation
- X Prone to errors and hallucinations
- ▶ Formal proof assistants (e.g., Lean):
- Verify mathematical correctness
- X Not generative; requires painstaking meticulous detail
- LLM-based formal proving is gaining attention
- XYet, a large gap remains between informal reasoning and formal proving

Our goal: Bridge this gap

## Our Contributions

- Coordination of informal and formal reasoning with Lean feedback
- Auxiliary lemma generation for strategy discovery
- Helps discover strategies even when the solution path is not apparent at first
- ► State-of-the-art theorem-proving performance among methods using small language models
- ► Efficiency in inference-time cost
- Much smaller sample budget than prior work



Comparison of theorem-proving performance on the MiniF2F benchmark

# Prover Agent







# **Formal** Proof

## Three Key Components of Prover Agent $\Diamond$

- Lemma Generation via Informal Reasoning
- Generate auxiliary lemmas
- Specific cases
- Potentially useful intermediate facts
- ► Not limited to subgoals of predefined proof sketch
- Key difference from prior approachs
- e.g. Problem: Show that  $n^2 + an$  is even Consider  $n^2 + n$  or  $n^2 + 3n$   $(n \in \mathbb{N}, a: even)$ O Consider  $n^2 + n$  or  $n^2 + 3n$
- → Help discover overall proof strategy
- Mirrors how human mathematicians typically work

- 2 Formal Proof Construction Guided by Informal Reasoning and Iterative Feedback
- Leverage the stronger mathematical ability of the informal LLM
- Construct a formal proof using an informal proof as a guide
- Iteratively refine the proof based on Lean feedback
- Can be seen as self-correction through in-context learning
- Akin to how humans improve their understanding based on feedback
- 3 Final Proof Synthesis Guided by Verified Lemmas and Iterative Feedback
- Consider overall proof using the lemmas Use only the verified lemmas
- Allows bottom-up strategy construction
- even when the full plan isn't initially clear O Prior work: top-down approach requiring the
- full plan upfront Iteratively refine the proof based

on Lean feedback

## Experiments

## ♦ Experimental Setup ♦

- Informal LLM: DeepSeek-R1-0528-Qwen3-8B
- Formal prover model: DeepSeek-Prover-V2-7B
- O AutoFormalizer: Kimina-Autoformalizer-7B
- ♦ Comparison of Formal Theorem-Proving Performance

| Prover System                                                                                                                                                                                    | Method                                                   | Model<br>Size        | Sample<br>Budget                                                                                                   | miniF2F<br>test                                                                                          |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--|
| Large language models                                                                                                                                                                            |                                                          |                      |                                                                                                                    |                                                                                                          |  |
| Kimina-Prover-Preview (Wang et al., 2025)                                                                                                                                                        | Whole-proof                                              | 72B                  | 1<br>32<br>1024<br>8192                                                                                            | 52.9%<br>68.9%<br>77.9%<br>80.7%<br>59.5%<br>73.8%<br>76.7%<br>78.3%<br>61.9%<br>82.4%<br>86.6%<br>88.9% |  |
| DeepSeek-Prover-V2 (non-CoT) (Ren et al., 2025)                                                                                                                                                  | Whole-proof                                              | 671B                 | 1<br>32<br>1024<br>8192                                                                                            |                                                                                                          |  |
| DeepSeek-Prover-V2 (CoT) (Ren et al., 2025)                                                                                                                                                      | Whole-proof                                              | 671B                 | 1<br>32<br>1024<br>8192                                                                                            |                                                                                                          |  |
| Small language models                                                                                                                                                                            |                                                          |                      |                                                                                                                    |                                                                                                          |  |
| DeepSeek-Prover-V1.5-RL $+$ RMaxTS (Xin et al., 2025a) InternLM2.5-StepProver $+$ BFS $+$ CG (Wu et al., 2024) HunyuanProver v16 $+$ BFS $+$ DC (Li et al., 2025) BFS-Prover (Xin et al., 2025b) | Tree search<br>Tree search<br>Tree search<br>Tree search | 7B<br>7B<br>7B<br>7B | $32 \times 16 \times 400$<br>$256 \times 32 \times 600$<br>$600 \times 8 \times 400$<br>$2048 \times 2 \times 600$ | 63.5%<br>65.9%<br>68.4%<br>70.8%                                                                         |  |
| Leanabell-Prover-GD-RL (Zhang et al., 2025)<br>Goedel-Prover-SFT (Lin et al., 2025)<br>STP (Dong & Ma, 2025)                                                                                     | Whole-proof<br>Whole-proof<br>Whole-proof                | 7B<br>7B<br>7B       | 128<br>25600<br>25600                                                                                              | 61.1%<br>64.7%<br>67.6%                                                                                  |  |
| Kimina-Prover-Preview-Distill (Wang et al., 2025)                                                                                                                                                | Whole-proof                                              | 7B                   | 1<br>32<br>1024                                                                                                    | 52.5%<br>63.1%<br>70.8%                                                                                  |  |
| DeepSeek-Prover-V2 (non-CoT) (Ren et al., 2025)                                                                                                                                                  | Whole-proof                                              | 7B                   | 1<br>32<br>1024<br>8192                                                                                            | 55.5%<br>68.0%<br>73.2%<br>75.0%                                                                         |  |
| DeepSeek-Prover-V2 (CoT) (Ren et al., 2025)                                                                                                                                                      | Whole-proof                                              | 7B                   | 1<br>32<br>1024<br>8192                                                                                            | 58.6%<br>75.6%<br>79.9%<br>82.0%                                                                         |  |
| Prover Agent (Ours)  (Direct proving w/o iterative refinement) (Direct proving w/o iterative refinement) (Direct proving w/ iterative refinement) (Final Proof Synthesis w/ Lemma)               | Agent                                                    | 8B                   | 1<br>100<br>400<br>2000                                                                                            | 61.5%<br>80.7%<br>84.0%<br><b>86.1%</b>                                                                  |  |

- State-of-the-art performance among methods using SLMs
- High success rate under low sample budget
- Better performance than prior work through coordination

#### Performance on Olympiad-Level Problems

|                                                                                                                                                                                   |               |                         | Olympiad                            |                              |                                     | MATH                                |                              |                              | Custom                       |                              |                              |                              |                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------|-------------------------------------|------------------------------|-------------------------------------|-------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
|                                                                                                                                                                                   | Model<br>Size | Sample<br>Budget        | IMO                                 | AIME                         | AMC                                 | Sum                                 | Algebra                      | Number<br>Theory             | Sum                          | Algebra                      | Number<br>Theory             | Induction                    | Sum                          |
| Number of Problems                                                                                                                                                                |               |                         | 20                                  | 15                           | 45                                  | 80                                  | 70                           | 60                           | 130                          | 18                           | 8                            | 8                            | 34                           |
| Prover Agent (Ours) (Direct proving w/o iterative refinement) (Direct proving w/o iterative refinement) (Direct proving w/ iterative refinement) (Final Proof Synthesis w/ Lemma) | 8B            | 1<br>100<br>400<br>2000 | 40.0<br>70.0<br>80.0<br><b>80.0</b> | 53.3<br>80.0<br>80.0<br>80.0 | 62.2<br>82.2<br>88.9<br><b>91.1</b> | 55.0<br>78.8<br>85.0<br><b>86.3</b> | 71.4<br>82.9<br>84.3<br>85.7 | 60.0<br>88.3<br>91.7<br>91.7 | 66.2<br>85.4<br>87.7<br>88.5 | 55.6<br>66.7<br>66.7<br>72.2 | 75.0<br>75.0<br>75.0<br>87.5 | 50.0<br>62.5<br>62.5<br>75.0 | 58.8<br>67.6<br>67.6<br>76.5 |
| DeepSeek-Prover-V2 (Ren et al., 2025)                                                                                                                                             | 671B          | 8192                    | 50.0                                | 93.3                         | 77.8                                | 73.8                                | 100.0                        | 96.7                         | 98.5                         | 83.3                         | 87.5                         | 100.0                        | 88.2                         |

- Show strong performance on Olympiad-level problems
- Suggest that coordination with informal reasoning may be the key
  - Olympiad-level problems require a high degree of mathematical reasoning
- Consistent gap in MATH and Custom
- Suggests that model size and sample budget may play a more significant role here
  - Prover model also possesses a certain level of mathematical reasoning ability

## Case study: Success with Lemma-Guided Proofs

#### ▶ Problem:

theorem induction\_nfactltnexpnm1ngt3  $(n : \mathbb{N})$  $(h_0 : 3 \le n) :$  $(n)! < n^{(n-1)} := by sorry$ 

- ► Reasoning trace w/ lemmas: Consider the specific cases for n = 3, 4, 5
  - Clearly identify the use of mathematical induction
- Employ proof techniques used in the lemmas
- Reasoning trace w/o lemmas: XProof strategy is unclear
- XThe details cannot be worked out sufficiently

#### ▶ Generated lemmas:

 $a^n < b^n$ 

exact h\_main



exact Nat.pow\_lt\_pow\_of\_lt\_left h3 (by omega)

 $_{-}$  =  $(n + 1)^{n} (n - 1) := by rfl$ 

#### 参考文献

Dong, K. and Ma, T. STP: Self-play Ilm theorem provers with iterative conjecturing and proving. arXiv preprint arXiv:2502.00212, 2025. Li, Y., Du, D., Song, L., Li, C., Wang, W., Yang, T., and Mi, H. HunyuanProver: A scalable data synthesis framework and guided tree search for automated theorem proving. arXiv preprint arXiv:2412.20735, 2025.

Lin, Y., Tang, S., Lyu, B., Wu, J., Lin, H., Yang, K., Li, J., Xia, M., Chen, D., Arora, S., and Jin, C. Goedel-Prover: A frontier model for open-source automated theorem proving. arXiv preprint arXiv:2502.07640, 2025.

Ren, Z. Z., Shao, Z., Song, J., Xin, H., Wang, H., Zhao, W., Zhang, L., Fu, Z., Zhu, Q., Yang, D., Wu, Z. F., Gou, Z., Ma, S., Tang, H., Liu, Y., Gao, W., Guo, D., and Ruan, C. DeepSeek-Prover-V2: Advancing formal mathematical reasoning via reinforcement learning for subgoal decomposition. 2025.

Wang, H., Unsal, M., Lin, X., Baksys, M., Liu, J., Santos, M. D., Sung, F., Vinyes, M., Ying, Z., Zhu, Z., Lu, J., de Saxcé, H., Bailey, B., Song, C., Xiao, C., Zhang, E., Pu, F., Zhu, H., Liu, J., Bayer, J., Michel, J., Yu, L., Dreyfus-Schmidt, L., Tunstall, L., Pagani, L., Machado, M., Bourigault, P., Wang, R., Polu, S., Barroyer, T., Li, W.-D., Niu, Y., Fleureau, Y., Hu, Y., Yu, Z., Wang, Z., Yang, Z., Liu, Z., and Li, J. Kimina-prover preview: Towards large formal reasoning models with reinforcement learning. arXiv preprint arXiv:2504.11354, 2025. doi: 10.48550/arXiv.2504.11354.

Wu, Z., Huang, S., Zhou, Z., Ying, H., Wang, J., Lin, D., and Chen, K. InternLM2.5-StepProver: Advancing automated theorem proving via expert iteration on large-scale lean problems. 2024.

Xin, H., Ren, Z. Z., Song, J., Shao, Z., Zhao, W., Wang, H., Liu, B., Zhang, L., Lu, X., Du, Q., Gao, W., Zhu, Q., Yang, D., Gou, Z., Wu, Z. F., Luo, F., and Ruan, C. DeepSeek-Prover-V1.5: Harnessing proof assistant feedback for reinforcement learning and monte-carlo tree search, 2025a.

Xin, R., Xi, C., Yang, J., Chen, F., Wu, H., Xiao, X., Sun, Y., Zheng, S., and Shen, K. BFS-Prover: Scalable best-first tree search for Ilm-based automatic theorem proving. 2025b.

Zhang, J., Wang, Q., Ji, X., Liu, Y., Yue, Y., Zhang, F., Zhang, D., Zhou, G., and Gai, K. Leanabell-Prover: Posttraining scaling in formal reasoning. arXiv preprint arXiv:2504.06122, 2025.