

S/191/62/000/012/007/015
B101/B186

AUTHORS: Volkov, V. L., Kafyrov, M. I., Kleshcheynikova, S. I.,
Rumyantseva, Ye. I.

TITLE: Synthesis of triethoxy silane

PERIODICAL: Plasticheskiye massy, no. 12, 1962, 28-29

TEXT: Triethoxy silane is synthesized by bringing trichlorosilane into reaction with ethanol at 25-30°C without using a solvent. The following conditions must be satisfied: (1) In the reaction, the component ratio must be strictly adhered to. The volume ratio indicated is: $\text{SiHCl}_3:\text{C}_2\text{H}_5\text{OH}=1:1.75$. (2) The water content of the ethanol must be less than 0.2%. (3) The hydrogen chloride formed must be evacuated rapidly from the reaction vessel. This was secured by passing through nitrogen at a rate of 1-1.5 l/min per liter of reacting liquid, by increasing the nitrogen rate to 3-4 l/min when the introduction of components was completed, and by heating to 50°C when the Cl content of the reaction mixture had reached 7%. The flow of nitrogen was stopped when the Cl content dropped below

Card 1/2

KAGAKOV, A.

Adopting the proposal of an efficiency promoter. Pozh.delo
6 no.1:4 Ja '60. (MIRA 13:5)

1. Starshiy inspektor Inspeksii pozharnoy okhrany, Kara-Kalpakskaya ASSR.
(Kara-Kalpak--Cotton manufacture--Fires and fire prevention)

KAGAL'NIKOV, P.A., inzh.

Safety measures in mining. Bezop. truda v prom. 2 no.5:11-13 My '58.
(Mining engineering--Safety measures) (MIRA 11:4)

KAGAL'NIKOV, P.A., inzh.

~~Automatic ventilation gates. Bezop.truda v prom. 2 no.9:31 S '58.~~
(MIRA 11:9)
(Mine ventilation)

RADZYEVSKIY, V.V.; KAGAL'NIKOVA, I.I.

Nature of gravitation. Biul.VAGO no.26:3-14 '60. (MIRA 13:10)

1. Gor'kovskoye otdeleniye Vsesoyuznogo astronomo-geodezicheskogo
obshchestva i Yaroslavskoye otdeleniye Vsesoyuznogo astronomo-
geodezicheskogo obshchestva.
(Gravitation)

KAGAL'NIKOVA, I.I.; RADZIYEVSKIY, V.V.; CHERNIKOV, Yu.A.;
CHERNYSHEV, V.I.; SHUVALOV, V.V.

Observation of the gravity effect of the solar eclipse of
February 15, 1961 in Yaroslavl. Biul. VAGO no.31:15-17 '62.
(MIRA 16:4)

1. Yaroslavskiy gosudarstvennyy pedagogicheskiy institut
imeni K.D. Ushinskogo i Yaroslavskoye otdeleniye Vsesoyuznogo
astronomo-geodesicheskogo obshchestva.
(Yaroslavl—Eclipses, Solar) (Gravity)

KAGAL'NIKOVA, I.I.

History of the development of nonrelativistic notions on the
nature of gravitation. Uch. zap. IAr. gos. ped. inst. no.56:
87-188 '63. (MIRA 17:10)

KAGAL'NITSKIY, V.G., shturman dal'nego plavaniya (Tallinn); STRELKOV, P.P.

Bats over the sea. Priroda 49 no.10:95 O '60. (MIRA 13:10)

1. Zoologicheskiy institut AN SSSR, Leningrad (for Strelkov).
(Black Sea--Bats)

KAGAL'NYAK, G. I. [Kahal'niak, H. I.]

Peculiarities of comparison among younger pupils. Mauk. zap. Mauk. -
dosl. inst. psykhol. 11:69-72 '59. (MIRA 13:11)

1. Pedagogicheskij institut, Uman'.
(Comparison (Psychology))

KOLOMIN, Ye., kand.ekonom.nauk; KAGALOVSKAYA, E.

Our consultations. Sov. profsciuz 18 no.17:43-44 S '62.
(MIRA 15:8)

1. Starshiy ekonomist otstala gosudarstvennogo strakhovaniya
Ministerstva finansov SSSR.

(Insurance) (Disability evaluation)
(Employees, Dismissal of)

KAGALOVSKAYA, M. P.
25841

Dva Sluchaya Anevrizmy Serdtsa. Sbornik Nauch.
Robot Lecheb. Uchrezhdeniy Mosk. Voyen. Okr.
Gor'kiy, 1948, S. 239-45

SO: LETOPIS NO. 30, 1948

AUTHOR: Kagalovskiy, A.I. SOV/136-59-3-21/21
TITLE: Equipment for the Pressing of Metals (Oborudovaniye
dlya pressovaniya metallov)
PERIODICAL: Tsvetnyye Metally, 1959, ³Nr 3, pp 89 - 94 (USSR)
ABSTRACT: The author surveys recent foreign literature on
equipment for pressing metals.
There are 5 figures, 3 tables and 17 references,
12 of which are English, 3 German, 1 French and
1 Italian.

Card 1/1

USCOMM-DC-60,725

KODAK SAFETY FILM 100

34

PHASE I BOOK EXPLOITATION

sov/5799

Unksov, Ye.P., Doctor of Technical Sciences, Professor, Ed.

Sovremennoye sostoyaniye kuznechno-shtampovochnogo proizvodstva (Present State of the Pressworking of Metals) [Moscow] Mashgiz, 1961. 434 p. 5000 copies printed.

Ed. of Publishing House: A.I. Sirotin; Tech. Ed.: B.I. Model'; Managing Ed. for
Literature on the Hot Working of Metals: S.Ya. Golovin, Engineer.

Title: Kuznechno-shtampovochnoye proizvodstvo v SSSR (The Pressworking of Metals in the USSR) by: A.V. Altykis, D.I. Berezhevskiy, V.F. Volkovitskiy, I.I. Girsh (deceased), L.D. Gol'man, S.P. Granovskiy, N.S. Dobrinskiy, A.K. Zinin, S. L. Zlotnikov, A.I. Kagalo'skiy, P.V. Lobachev, V.N. Mertynov, Ye.M. Mozhnin, G.A. Navrotskiy, Ya.M. Okhrimenko, G.N. Rovinskiy, Ye.A. Stosha, Yu.L. Rozhestvenskiy, N.V. Tikhomirov, Ye.P. Unkssov, V.F. Shcheglov, and L.N. Shofman; Eds: Ye.P. Unkssov, Doctor of Technical Sciences, Professor, and B.V. Rosa-nov.

Title: Kuznechno-shtampovochnoye proizvodstvo v ChSSR (The Pressworking of Metals in the Czechoslovak SR) by: S. Burda, F. Hradil, F. Drustik, F. Zlatohlávek

Card 1/8

3.5

Present State of the (Cont.)

SGI/5799

Z. Kejval, V. Krauz, F. Kupka, P. Maier, K. Marvan, J. Novák, J. Odřehal,
K. Paul, B. Schmer, M. Honz, J. Častlín, V. Šindelář, and J. Dole; Eds.:
A. Nejepaa and M. Vlk.

PURPOSE: This book is intended for engineers and scientific personnel concerned
with the pressworking of metals.

COVERAGE: Published jointly by Mashgiz and SNTL, the book discusses the present
state of the pressworking of metals in the USSR and the Czechoslovak Socialist
Republic. Chapters were written by both Soviet and Czechoslovak writers. No
personalities are mentioned. There are 129 references: 98 Soviet, 16 English,
8 German, 5 Czech, and 2 French.

TABLE OF CONTENTS:

PRESSWORKING IN THE USSR

Ch. I. The Characteristics of Forging Shops in USSR Plants [A.I. Zimin and
Ye.P. Unkov] 5

Ch. II. Methods of Calculating the Pressure for Forging in the Pressworking

Card 2/8

3.

Present State of the (Cont.)	SOV/5799
of Metals [Ye.P. Unkov]	15
Ch. III. Die Forging on Forging Presses [V.F. Volkovitskiy]	22
Ch. IV. Die Forging on Horizontal Upsetters [I.I. Girsh, deceased]	31
Ch. V. Die Forging on Drop Hammers and [Power-Screw] Percussion Presses [Ya. M. Okhrimenko and V.F. Sushaglov]	41
Ch. VI. The Making of Forgings and Shaped Blanks in Forging Rolls [V.N. Martynov]	58
Ch. VII. Die-Sizing in Squeeze-Forming Presses [V.F. Volkovitskiy]	77
Ch. VIII. Rolling-Out Annular Blanks [Yu.L. Rozhdestvenskiy]	82
Ch. IX. The Manufacture of Metal Hardware on Foresworking Automatics [G.A. Navrotskiy]	93

Card 3/8

36

Present State of the (Cont.)	SCV/5799
Ch. XVII. Mass Production of Parts [Solid Wheels and Tires] by Forging With Subsequent Rolling [A.V. Altykis. and L.D. Gol'man]	208
Ch. XVIII. Forging and Bending of Plates [Ye.M. Kochnin]	216
Ch. XIX. Making Large Forgings on Hydraulic Presses [J.S. Dobrinskiy. and N.V. Tikhomirov]	229
Ch. XX. Drop-Hammer and Crank-Press Forging [D.I. Berenkovskiy. and V.P. Shcheglov]	224
Bibliography	225

PRESSWORKING IN THE ChSSR

Ch. I. The Development of Metal Presworking Processes in the Czechoslovakian Socialist Republic [F. Draštík, Railroad Engineering Institute, Prague]	261
--	-----

Card 5/8

36

Present State of the (Cont.)	SOV/5799
Ch. II. Making Large Forgings [B. Kraus, New Metallurgical Plant imeni Klement Gottwald, Kunčice]	272
Ch. III. The Forging of Rotors for Turbogenerators [J. Novák, Metallurgical Plant imeni Lenin, Plzeň]	299
Ch. IV. The Forging of Large Crankshafts [S. Burda, K. Paul, and M. Honz, Metallurgical Plant imeni Lenin, Plzeň]	314
Ch. V. Techniques Used in Forging Large Rotors [F. Zlatník, Vítkovice Metallurgical Plant imeni Klement Gottwald, Ostrava]	335
Ch. VI. The Forging of Forked Pipes for Gas Pipelines [J. Nětka, Vítkovice Metallurgical Plant imeni Klement Gottwald, Ostrava]	345
Ch. VII. The Forging of Large Strengthening Rings for the Runners of Mixed-Flow Turbines [F. Kurnik, Vítkovice Metallurgical Plant imeni Klement Gottwald, Ostrava]	348

Card 6/8

34

Present State of the (Cont.)	SOV/5799
Ch. VIII. Scientific Research Work in the Field of Cold Impact Forging of Metals [F. Hrdadil, Plant imeni Smral, Brno]	355
Ch. IX. Experience in the Cold Impact Forging of Nonferrous Metals [K. Marvan and J. Ochnal, Plant Tesla, National Enterprise, Bloubořín, and V. Šindelák, Scientific Research Institute of Vacuum Electrical Engineering, Prague]	381
Ch. X. The Manufacturing Process and Organization in the Stamping of Bodies at the Automobile Plant "National Enterprise (AZNP) Mladá Boleslav" [Z. Kejval, AZNP, Mladá Boleslav]	397
Ch. XI. The Mechanization of Obsolete Enterprises as a Means of Increasing Labor Productivity [B. Semerád, Vítkovice Metallurgical Plant imeni Klement Gottwald, Ostrava]	410
Ch. XII. The Initial Pressworking of FeAl Alloys and Large FeCrAl Castings [F. Maier and J. Holeček, Scientific Research Institute of Iron, Prague].	

Card 7/8

SHOFMAN, L.A.; KAGALOVSKIY, A.I.

Die stamping in the United states of large-size parts on powerful .
hydraulic presses (review of foreign publications). Kuz. shtam.
proizv. 3 no. 5:37-41 My '61. (MIRA 14:5)
(United States--Sheet-metal work)

KAGALOVSKIY, A.I.

Equipment for the press-working of steel. Kuz.-shtam. proizv.
4 no.3:32-39 Mr '62. (MIRA 15:3)
(Power presses) (Pipe mills)

L 12892-63 ENP(k)/ENP(g)/ENT(m)/BDS AFFTC/ASD 1f-4 JD/HM
ACCESSION NR: AP3001423 S/0136/63/000/005/0069/1078

100

AUTHOR: Kagalovskiy, A. I.

TITLE: The regulation of the temperature range-pressing rate of metals /6

SOURCE: Tsvetnye metally, no. 6, 1963, 69-78

TOPIC TAGS: pressing, low plastic ferrous alloys, crack formation, automatic controls, rate of pressing, oil hydraulic servomechanism

ABSTRACT: Deviation from optimum temperature ranges and heating rates during the pressing of low plastic ferrous alloys leads to crack formation. Devices have been developed by UZTM for the automatic regulation of rate of pressing, using an oil hydraulic servo mechanism, thus increasing productivity and quality of pieces. Orig. art. has: 6 figures.

ASSOCIATION: none

SUBMITTED: 00

DATE ACQ: 09Jul63

ENCL: 00

SUB CODE: 00

NO. REF Sov: 004

OTHER: 003

Card 1/1

KAGALOVSKIY, D.I., inzh.; POKRASS, L.I., inzh.

Dismountable structures for storing cement. Avt.dor. 23
no.2:16-17 F '60. (MIRA 13:5)
(Cement--Storage)

SMEKHOV, M.K., inzh.; KAGALOVSKIY, D.I., inzh.

Site for manufacturing precast reinforced concrete articles. Avtodor,
24 no.5:12-14 My '61. (MIRA 14:6)
(Reinforced concrete)

SUDOVKIN, I.A.; KAGANOVICH, D.S.; VIKHREV, A.S.

Modernizing contractors for storing cement and mineral
fines. Avtoder. 24, no. 3:13-16 S '62. (CIA 14:06)
(Cement--Storage)

BOGUSH, L.K., prof.; SHIFMAN, N.D., kand. med. nauk.; KUDALOVSKIY, O.M., vrach.

Directed segmental bronchography. Khirurgia 34 no.3:72-77 Mr '58.

(MIRA 12:1)

1. Iz khirurgicheeskoy kliniki (sav. - prof. L.K. Bogush) Instituta tuberkuleza AMN SSSR (dir. Z.A. Lebedeva).

(BRONCHI, radiography

directed segmental bronchography (Rus))

KAGALOVSKIY, G.M.

Forceps for grasping the pleura. Probl. tub. 36 no.8:98 '58
(MIEA 12:7)

1. Iz khirurgicheskogo otdeleniya (zav. - kand. med. nauk R. E.
Kogan Moskovskoy gorodskoy tsentral'noy klinicheskoy tuberkulosnoy
bol'nisay (glavnnyy vrach - prof. V. L. Zynis)
(FORCEPS)

KAGALOVSKY, G.M.

Pleural retractor. Probl.tub. 37 no.1:110-111 '59.

(MIRA 12:2)

1. Iz khirurgicheskogo otdeleniya (zav. - kand.med.nauk R.E. Kogan)
Moskovskoy gorodskoy TSentral'noy klinicheskoy tuberkuleznoy bol'-
nitsy (glavnny vrach - prof. V.L. Eynis).
(PNEUMONECTOMY, appar. & instr.
pleural retractor (Rus))

BOGUSH, L.K. (Moskva, D-63, ul. Savitana, d.1/40, kv.223); KAGALOVSKIY,
G.M.

New apparatus for closing the bronchial stump in pulmonary
resection. Grud.khir. no.3:67-69 '61. (MIRA 14:9)

1. Iz khirurgicheskogo otdeleniya Instituta tuberkuleza (dir. -
chlen-korrespondent AMN SSSR N.A. Shmelev) AMN SSSR.

(LUNGS—^{CH}URGERY)

(SURGICAL INSTRUMENTS AND APPARATUS)

KAGALOVSKIY, G.M. (Novosibirsk, 99, ul. Chaplygina, d.35, kv.25); OGIRENKO, A.P.

Concentric osteomuscular thoracoplasty in patients with a postresection empyema of the pleural cavity and a bronchial fistula.
Grud. khir. 6 no.5:85-87 S-0 '84. (MIRA 18:4)

1. Khirurgicheskiye otdeleniya Novosibirskoy gorodskoy tuberkuleznoy bol'nitsy No.26.

AGB, 3, 1991. Mikhailov, G.I.

Informing with the aim of a planned dismantling of the
Khr. Langst. G no. 3:64-64. Dm-10-1991.

Urgent 01:3

1. Khrangichengoye otchleniye (Detachement) imeni Tukirevskogo
(dir. - Zhegutin) chlen 1/2 s'ezd. N.I. Shchel'd. Nizkoratva
zdravookruglye funktsii, dzhidza.

KAGALOVSKIY, G.M.; CHEREMNYKH, L.P., kand.med.nauk

Pathohistological changes in the bronchi at the site of trans-
section during pulmonary resection for tuberculosis. Probl. tub.
42 no.8:70-74 '64. (MIRA 18:12)

1. Novosibirskaya gorodskaya protivotuberkuleznoya bol'ница
No.26 (glavnnyy vrach V.V.Semenova).

G
KANALOVSKIY, S.P., Cand Tech Sci -- (diss) "Sorting of cotton-~~plant~~ seeds ~~in~~ at cotton-cleaning plants."

Tashkent 1958, 19 pp (Min of Higher Education USSR.)

Tashkent Textile Inst) 180 copies (KL, 32-58, 108)

KAGALOVSKIY, S. P.

USSR/Cultivated Plants - Commercial. Oil-Bearing. Sugar-Bearing.

M-5

Abs Jour : Ref Zhur - Biol., No 20, 1958, 91741

Author : Vol'kovich, N.Ye., Kagalovskiy, S.P., Yerofeyev, S.B.

Inst : AS Uzbed SSR, Inst. Matematiki i Mekhaniki im. V.I. Romanowskogo

Title : Distribution of Bolls on Cotton Bushes in Square-Pocket Planting.

Orig Pub : UzSSR Fanlar Akad. dokladlari, Dokl. AN UzSSR, 1957, Nr. 10, 45-49.

Abstract : For the purpose of creating a correct technological basis for cotton harvesting machines the Institute of Mathematics and Mechanics of the Academy of Sciences of Uzbed SSR conducted laboratory and field experiments on square-pocket sowing of cotton (variety 108-F) with different sides to the square and different numbers of plants in the bunch.

Card 1/2

"APPROVED FOR RELEASE: 08/10/2001

CIA-RDP86-00513R000619910008-7

KAGAN, A., UMANSKIY, J., YELUTINA, V., and PIVOVAROV, L.

"X-ray Diffraction Data on the Changes in Mossics Caused by Disintegration" (Section 11-4) a paper submitted at the General Assembly and International Congress of Crystallography, 10-19 Jul 57, Montreal, Canada.

C-3,800,189

Valovaja st. 4 fl. bl (UMANSKIY)

Moscow (YELUTINA, KAGAN, and PIVOVAROV)

APPROVED FOR RELEASE: 08/10/2001

CIA-RDP86-00513R000619910008-7"

70-4-9/16

AUTHOR: Umanskiy, Ya., Yelyutina, V., Kagan, A. and Pivovarov, L.

TITLE: X-ray analysis of the changes in the mosaic structure during ageing of beryllium bronze. (Rentgenoanaliz izmeneniy mozaichnoy struktury pri starenii berilliyevoj bronzy)

PERIODICAL: "Kristallografiya" (Crystallography), 1957,
Vol.2, No.4, pp. 503 - 507 (U.S.S.R.)

ABSTRACT: Disintegration of supersaturated solid solutions, as shown by means of X-rays, is followed by changes in mosaic structure, maximum hardness corresponding to minimum size of mosaic blocks.

A study of the disintegration of supersaturated solid solution of tungsten carbide in titanium carbide carried out by one of the authors showed that this process in its early stage is accompanied by an increase in the intensity of the (200) diffraction line of the solid solution. This increase could only be interpreted as caused by a decrease in the size of mosaic blocks of titanium carbide due to the influence of particles of precipitating phase. A similar increase of intensity was observed by other investigators after decrease of block dimensions caused by plastic deformation.

Card 1/4 In the present investigation this assumption was studied

APPROVED FOR RELEASE: 08/10/2001 CIA-RDP86-00513R000619910008-7

X-ray analysis of the changes in the mosaic structure during ageing of beryllium bronze. (Cont.)

on Ni-Be and Cu-Be alloys containing 2.28% and 2.40% Be, respectively. Nickel content in the latter alloy was about 0.37%.

The intensity of the (111) diffraction line was measured. It was proved that the disintegration of solid solution after an isothermal annealing of quenched Ni-Be alloys at 630 C and a similar annealing of quenched Cu-Be alloys at 250 and 320 C is followed in its early stages by an increase in the intensity of this diffraction line. The corresponding curve for Ni-Be alloy has a sharp maximum after 10 min. annealing at 630 C, that for Cu-Be alloy has a sloping maximum after 10 hours annealing at 320 C.

Calculations based on the equation $I'/I = th(nq)/nq$ (i.e. taking into account only primary extinction) yielded the following data on the hardness and the block dimensions of heat-treated alloys at various break-up stages:

Card 2/4

BLOZEROV, G.; BORODIN, A.; KAGAN, A.; PLATONOV, A.; CHUKHAR'KO, Z.

Methods of determining the economic effectiveness of investments
in the grain storing and milling industry. Muk.-elev. prom. 26
no. 10:21-23 0'60.
(Grain--Storage) (Grain milling)

(MIRA 13:10)

ABRAMOVICH, Z., inzh.; DUSAVITSKIY, A., inzh.; KAGAN, A., inzh.; RUBIN, L., inzh.

Design practices which increase the intervals between the bearing elements
of overhead intrafactory pipelines. Prom. stroi. i inzh. soor. 5 no.2:
45-46 Mr-Ap '63. (MIRA 16:4)

(Pipelines)

KAGAN, A

D

Zapasnyye chasti avtomobilya GAZ-MM; Al'bom chert-zhay (Spare parts for the GAZ-MM automobile; album of drawings) Moskva, Mashgiz, 1952

110 p. diagrs., tables

N/5
743.25
.X1

GOL'MAN, A.B., inzh.; KAGAN, A.G., inzh.

Response to IU. IA Golger's and I.G. Samoilov's article "Improved flowsheet for the dressing of Melenovka limestone." Gor. zhur. no. 12:69-70 D '60. (MIRA 13:12)

1. Yuzhgiproruda, Khar'kov.
(Ore dressing) (Golger, IU. IA.) (Samoilov, I.G.)

KRIKUN, Zukhar Nikitovich; KAGAN, Abram Iosifovich; SMOTRITSKIY,
Shmul' Moyseyevich; SOLGANIK, G.Ya., red.

[Remote control in petroleum refineries] Telemekhaniza-
tsiya neftepererabatyvayushchikh zavodov. Moskva, Khi-
mija, 1964. 93 p. (MIRA 18:1)

KAGAN, A.I.

Reliability of the remote-control channels of an oil field. Mash.
i neft. obor. no. 8:25-28 '64. (MIRA 17:11)

I. Groznyenskiy filial Vsesoyuznogo nauchno-issledovatel'skogo i proyektno-konstruktorskogo instituta kompleksnoy avtomatizatsii neftyanoy i gazovoy promyshlennosti.

KHGAN H.I.

CA

Blood transfusion following poisoning with nitrochlorobenzene. A. I. Klima [redacted] expd. (Ukraine) 1937. No. 7. As-202-1. Nitrochlorobenzene (a 50% soln. in acetone) was injected subcutaneously into dogs (400 mg./kg. body wt.). Nitrochlorobenzene poisoning leads to methemoglobin formation and therefore to anemia, bleeding and subsequent replacement of the blood by Ringer-Locke decreased the methemoglobin content. Blood transfusion was more effective than bleeding and markedly decreased the percentage of lethal cases. The anemia which ordinarily follows 5-10 days after the poisoning can be combated by blood transfusion at that time. S. A. Corson

~~KHGAN.H.I.~~

CH

Determination of fat in bakery products. A. I. Kappan and K. I. Shima. *Lab. Prakt.* U. S. S. R. 17, No. 12, p. 20 (1940).—Place 10 g. of the finely cut sample in a 300-ml. beaker, boil for 5 min. in 100 ml. of HCl (10 ml. of strong HCl per 100 ml. of water), cool and filter through a Buchner funnel. Wash with 20% NaCl solution until free from acid. Transfer the filter with the ppt. to a small porcelain mortar, dry at 100°, grind with burned gypsum until a dry mass is obtained and transfer to a small porous mortar 2-3 times with ether and add with 75 ml. of sodium ether to the same flask and stopper. Shake the contents for 10-15 min. and let stand overnight. Filter the residue, wash with ether, dist. off the ether, dry and weigh the fat. The method for the determination of fat without hydrolysis gives higher results than the method without hydrolysis. The proposed method is suitable for the sanitary-hygienic lab. Three references. W. R. H.

12

ABR-51A METALLURGICAL LITERATURE CLASSIFICATION

APPROVED FOR RELEASE: 08/10/2001

CIA-RDP86-00513R000619910008-7"

"APPROVED FOR RELEASE: 08/10/2001

CIA-RDP86-00513R000619910008-7

REF ID: A6522
Kozin, A. I. - MVD - Internal Affairs Ministry of the USSR, Moscow, Russia, USSR, 1955.

SC: Let p: 1 External Station, No. 3, Moscow, 1955

APPROVED FOR RELEASE: 08/10/2001

CIA-RDP86-00513R000619910008-7"

KAGAN, A.I.

[Tuberculosis of the lungs; a popular science outline] Tuberkul'or
lehen'; naukovo-populiarnii naris. Kyiv, Dersh. med. vyd-vo URSR,
1951. 39 p.
(Tuberculosis)

KAGAN, A.I.

Certain considerations on classification of tuberculosis.
Probl. tuberk., Moskva No.6:58-61 Nov.-Dec. 1953. (CMIL 25:5)

1. Docent. 2. Of the Tuberculosis Clinic (Head --- Prof. V.P. Rulin) of Kiev Medical Institute (Director --- Docent T. Ia. Kalininchuk) and the Tuberculosis Division of Clinical Hospital imeni Oktyabr'skaya Revolyutsiiya (Head Physician --- Docent. I.S. Bogomolets).

KLEBANOV, Mark Abramovich, professor; DRABKINA, Rakhil' Osipovna, professor;
KAGAN, A. I., redaktor; LOKHMATYY, Ye.O., tekhnicheskiy redaktor

[Antibacterial therapy for tubercular patients] Antibakterial'naya
terapiia tuberkulesnykh bol'nykh. Kiev, Gos.med.izd-vo USSR, 1955.
(MIRA 9:2)
281 p.

(TUBERCULOSIS)

KAGAN, A.I., kand.med.nauk

Treatment of pneumopleuritis [with summary in English]. Probl.tub.
37 no.1:79-84 '59. (MIRA 12:2)

1. Iz Pecherskogo protivotuberkuleznogo dispensera (zav. K.A. Gi-
verts, konsul'tant A.I. Kagan) (Kiyev).
(PNEUMONIA, ther.
pneumopleuritis (Rus))
(PLEURISY, ther.
same)

KAGAN, A.I.

Reliability of the remote-control channels of an oil field
(continuation). Mash. i neft. obor. no.9:21-24 '64. (MIRA 17:11)

1. Groznenskiy filial Vsesoyuznogo nauchno-issledovatel'skogo i
projektno-konstruktorskogo instituta kompleksnoy avtomatizatsii
neftyanoy i gazovoy promyshlennosti.

KAGAN, A.L.

New machine tools in East Germany. Biul.tekh.-ekon.inform. no.11:
(MIRK 11:12)
82-84 '58.
(Germany, East--Machine tools)

KAGAN, A.M., inzh.

Snow load on roofs of industrial buildings in the Southern Urals.
Prom. stroi. 42 no.10:26-29 O '64. (MIRA 17:11)

1. Ural'skiy nauchno-issledovatel'skiy institut zhelezobetonov i
betonov.

KAGAN, A.M.; SUTAKOV, V.N.

Structure of a complete class of unbiased estimates for families
of distributions of a special type. Dokl. AN SSSR 164 no.2:
267-269 S '65. (MRA 18:9)

1. Leningradskoye otdeleniye Matematicheskogo instituta im. V.A.
Steklova AN SSSR. Submitted February 17, 1965.

KAGAN, A.M.; FASTOVSKIY, V.G.; ROVINSKIY, A.Ye.

Heat transfer from a fluidized bed of solid particles to the coil
pipe surface. Khim.prom. no.11:790-793 N '61. (MIRA 15:1)
(Fluidization) (Heat—Transmission)

8/064/53/000/002/004/005
B117/B186

AUTHORS: Gel'perin, I. I., Kagan, A. M.

TITLE: Effect of thermal conductivity of granular substances on the heat exchange of the gases passing through these substances

PERIODICAL: Khimicheskaya promyshlennost', no. 2, 1963, 52 - 55

TEXT: The heat transfer of granular substances was studied on the gases passing through them in a U-shaped tube, of 12 mm diameter, heated with boiling water. 8 Fractions of granular substances having different thermal conductivities were used. Packings of these substances were filled into the tube in a section 408 mm long. The mass flow rate of the air was varied from 0.6 to 7.3 kg/cm².sec during the experiments. The air temperature at the inlet and the outlet of the tube was measured by copper-constantan thermocouples with a special device for averaging the temperature of the air current. The temperature of the tube walls was measured with five thermocouples fitted into them. The mean temperature difference between gas and tube wall was determined by a planimeter from the area bounded by the temperature curves. The accuracy of the experiments was guaranteed by the fact that the heat transfer coefficient was not influenced

Card 1/2

S/064/05/000/002/004/005
3117/B/86

Effect of thermal conductivity...

by other variable factors (achieved through same size and shape of grains). The heat transfer coefficient was not found to be influenced considerably by the thermal conductivity of the material. This is explained by the thermal resistance of the boundary layer on the tube wall being higher than the resistance of heat transfer from the core to the wall. When the granular layer of the material is heated without gas current it was found that only the length of the period until stationary conditions set in is influenced by the thermal conductivity and the thermal capacity of the granular material. There are 4 figures and 3 tables.

Card 2/2

GEL'PERIN, I.I.; KAGAN, A.M.

Effect of the heat conductivity of granular materials on the
heat transfer in gases passing through them. Khim. prom.
no.2:132-135 F '63. (MIRA 16:7)

(Granular materials—Thermal properties)
(Gases) (Heat—Transmission)

KAGAN, A.M.; GEL'PERIN, I.I.

Effect of the thermophysical properties of gases on their heat transfer in the presence of granular materials. Khim. prom.
(MIRA 16:12)
no.8:620-622 Ag '63.

GEL'PERIN, I.I.; KAGAN, A.M.

Direction of the heat flow and its effect on the heat transfer of
gases in packed tubes. Khim.prom. no.11:859-865 '63.
(MIRA 17:4)

KAGAN, A.M.; GEL'PERIN, I.I.

Stabilization of the process of heat transfer in packed tubes.
Zhur. VKHO 9 no. 2:233-234 '64. (MIRA 17:9)

1. Gosudarstvennyy institut azotnoy promyshlennosti.

KAGAN, A.M.; SUDAKOV, V.N.

Breaking up of certain families of measures. Vest. LGU 19
no.13:147-150. '64 (MIRA 178)

GEL'PERIN, I.I.; KAGAN, A.M.

Heat emission from boiling water at small thermal loads. Khim.prom.
(MIRA 18:4)
40 no.8:616-619 Ag '64.

SIRAZHDINOV, S.Kh.; KAGAN, A.M.

H. Cramer's condition. Dokl.AN Uz.SSR no.12:5-7 '58.
(MERA 12:1)
1. Chlen-korrespondent AN UzSSR (for Sirazhdinov). 2. Institut
matematiki i mehaniki im. V.I.Romanovskogo AN UzSSR i
Sredneaziatskiy gosudarstvennyy universitet im. V.I.Lenina.
(Mathematical statistics)

Empirical Bayesian approach ...

S/020/62/147/005/006/032
B172/B112

$$\varrho(p_{G_1}, p_{G_2}) = \sup_{x_i} | p_{G_1}(x_i) - p_{G_2}(x_i) |$$

and the following two theorems are formulated. Theorem 1: An estimate $E(\alpha/x)$ on the basis of an independent observation of X according to Robbins' scheme (Proc. III Berkeley Symposium on Math. Statistics and Probability, 1, 1956) exists if and only if

$$\int_A \alpha p(x_i; \alpha) dG(\alpha) = \lim_{n \rightarrow \infty} F_n(p_G; x),$$

where $F_n(p_G; x)$, $n = 1, 2, \dots$, are continuous functionals over \mathcal{P} .

Theorem 2: If $G_1 + G_2$ follows from

$$\int_A p(x_i; \alpha) dG_1(\alpha) = \int_A p(x_i; \alpha) dG_2(\alpha), \quad i = 1, 2, \dots,$$

and if the $p_i(x_i; \alpha)$ are continuous then the estimate mentioned in theorem 1 exists. A simple example is also given for which $E(\alpha/x)$ does not exist.

Card 2/3

KAGAN, A. M.

Robbins' scheme. Dokl. AN SSSR 150 no.4:733-735 Je '63.
(MIRA 16:6)

1. Predstavлено академиком V.I. Smirnovым.
(Mathematical statistics)

KAGAN, A.M.

Theory of fisher's information quantity. Dokl. AN SSSR 151
no.2:277-278 Jl '63. (MIRA 16:7)

1. Predstavлено академиком V.I.Smirnovym.
(Probabilities)

KAGAN, A. M.

Transactions of the Sixth Conference (Cont.)

SOV/6371

- | | | |
|-----|---|-----|
| 71. | Gladkov, B. V. Some Problems in the Tabulation of the Beta-Distribution | 385 |
| 72. | D'yachenko, Z. N. Surface of a Gamma-Type Distribution | 389 |
| 73. | Kagan, A. M. Some Properties of the Estimates of Maximum Likelihood | 397 |
| 74. | Chentsov, N. N. On the Asymptotic Effectiveness of an Estimate of Maximum Likelihood (comment on A. M. Kagan's report "Some Properties of the Estimates of Maximum Likelihood") | 399 |
| 75. | Krasulina, T. P. On Stochastic Approximation | 403 |
| 76. | Maniya, G. M. Quadratic Estimation of the Discrepancy of the Densities of a Normal Two-Dimensional Distribution From Sampling Data | 407 |

Transactions of the 6th Conf. on Probability Theory and Mathematical Statistics and of the Symposium on Distributions in Infinito-Dimensional Spaces held in Vil'nyus, 5-10 Sep '60. Vil'nyus Gospolizdat Lit SSR, 1962. 493 p. 250 copies printed

"APPROVED FOR RELEASE: 08/10/2001

CIA-RDP86-00513R000619910008-7

KAGAN, A.M.

A class of measures in a space of sequences. Sib. mat. zhur. 4 no.4:
(MIR 16:9)
956-959 Jl-Ag '63.

APPROVED FOR RELEASE: 08/10/2001

CIA-RDP86-00513R000619910008-7"

KAGAN, A.M.

Some statistical problems relating to a certain type of
observation. Vest. LGU. 18 no.19:142-143 '63. (MIRA 16:11)

KAGAN, A.M.

Distribution families and separating partitions. Dokl. AN
SSSR 153 no.3:522-525 N '63. (MIRA 17:1)

1. Predstavлено академиком А.Н. Колмогоровым.

"APPROVED FOR RELEASE: 08/10/2001

CIA-RDP86-00513R000619910008-7

KAGAN, A. M.; LINNIK, Yu. V.

A class of families of distributions admitting f similar zones.
(MIKA 17:7)
Vest. LGU 19 no.7:16-18 '64.

APPROVED FOR RELEASE: 08/10/2001

CIA-RDP86-00513R000619910008-7"

KAGAN, A.M.; SHALAYEVSKIY, O.V.

Behrens - Fisher's problem concerning the existence of similar
zones in an algebra of sufficient statistics. Dokl. AN SSSR 155
no.6:1250-1252 Ap '64. (MIRA 17:4)

1. Predstavлено академиком А.Н.Колмогоровым.

ABRAMOVICH, Z.A., inzh.; DUSAVITSKIY, A.K., inzh.; KAGAN, A.P., inzh.;
RUBIN, L.B., inzh.

Laying pipes above ground at existing enterprises. Stroi.
truboprov. 6 no.6:12-14 Je '61. (MIRA 14:7)

1. Ukrainskiy Gosudarstvennyy proyektnyy institut "Santekhproyekt",
g. Khar'kov.
(Gas pipes)

IA 2/49T17

KAGAN, A. S.

May 48

USSR/Engineering
Welding

"The Activity of the Leningrad Department, NITTO,
of Welders for 1947," Prof N. O. Okertlow, A. S.
Kagan, 1 $\frac{1}{2}$ pp

"Avtogen Delo" No 5

In 1947, scientific research societies were assigned
task of aiding the people of the USSR to fulfill
second-year plans of the Five-Year Plan. Briefs
some contributions made by the societies.

2/49T17

137-58-6-11980

Translation from: Referativnyy zhurnal, Metallurgiya, 1958, Nr 6, p 113 (USSR)

AUTHORS: Lyumkis, S.Ye., Chermak, L.L., Kagan, A.S.

TITLE: Methods of Increasing the Activity of Powdered Nickel (Puti povysheniya aktivnosti nikellevogo poroshka)

PERIODICAL: Byul. tsvetn. metallurgii, 1957, Nr 16, pp 20-22

ABSTRACT: The conditions required to obtain active Ni powders are investigated. It is established that the size class of the initial oxide and the temperature at which it was heat treated are the dominant factors determining the degree of activity of the Ni powders. By means of X-ray analysis it was established that high-temperature processing increases the size of the crystallites grains of the nickelous oxide which, in turn, reduces the activity of the powder. In order to obtain a suboxide with grains of the required size ($3-5 \mu$), it is essential that in the process of roasting of a metal sulfide product (obtained by besmerization of mattes) the temperature of the suboxide not be allowed to exceed 800-900°C. Results of laboratory investigations are utilized in the development of an industrial method for the production of active Ni powder. 1. Nickel powders--Properties
2. Nickel powders--Temperature factors
3. Nickel powders--X-ray analysis
4. Nickel powders--Production

Card 1/1

18.8000

75394
SOV/149-2-5-20/32

AUTHORS: Kagan, A. S., Umanskiy, Ya. S.

TITLE: Characteristic Temperatures of Cu-Al Alloy in the Temperature Interval 96 to 803°.

PERIODICAL: Izvestiya vysshikh uchebnykh zavedeniy. Tsvetnaya metalurgiya, 1959, Vol 2, Nr 5, pp 143-145 (USSR)

ABSTRACT: The conventional method for determination of the characteristic temperature Θ (Debye temperature) according to changes in intensity of X-ray diffraction maxima, is inaccurate owing to considerable distortions found in solid solutions. A discrepancy will be found between Θ determined (a) from the X-ray data and (b) from elasticity modulus. In a previous work by Il'ina, V. A., and Kritskaya, V. K., Kurdyumov, G. V., Osip'yan, Yu. A., and Stelletskaya, T. I., Problems of Metal Study and Metal Physics (Problemy metallovedeniya i fiziki metallov), Vol 5, 1958, a conformity is indicated in the changes of Θ and of Young's modulus (E). However, there is a

Card 1/5

Characteristic Temperatures of Cu-Al
Alloy in the Temperature Interval
96 to 803°.

75394
SOV/149-2-5-20/32

disproportion in these changes: if θ of an annealed Fe-Cr alloy differs from θ of a quenched Fe-Cr alloy by 30%, E differs only by 0.5%. Therefore, the authors undertook a determination of the characteristic temperature of a Cu-Al alloy containing 8.8% Al using the radiographic method as well as that of elastic constants. An ingot weighing 0.6 kg was prepared from electrolytic copper and aluminum in a graphite crucible covered with charcoal, cast in an iron mold, cold forged, and homogenized at 1,000° during 4 hr. Nine-mm OD rods were forged from which 5-mm OD 250-mm long rods were machined. These rods were annealed in argon at 700° for 1 hr before measuring their moduli. Specimens for radiographic study at high temperatures were upset in a press and annealed at 580° for 1 hr. For lower temperatures a powder specimen was prepared, after annealing it at 520° for 30 min. The characteristic temperature was determined in accordance with the reflection intensity (changing with the temperature) of lines 331 and 420. A URS-50-I installation and Cu K α radiation were

Card 2/5

Characteristic Temperatures of Cu-Al
Alloy in the Temperature Interval
96 to 803°.

70394
SOV/149-2-5-20/32

used. Readings at high temperatures were taken in a rotating furnace attached to the goniometer. The rotation speed was 1 rpsec. Low-temperature readings were taken in a chamber consisting of a Dewar metal container, the inner section of which was filled with liquid nitrogen. Results were control-checked with those for pure copper. Following values of θ for Cu-Al alloy were obtained: for the intervals 96-295°, 295-423°, 295-473°, and 295-523° they were 342, 341, 330, and 330° respectively. θ values at higher temperatures are shown in Fig. 1.

Card 3/5

Characteristic Temperatures of Cu-Al
Alloy in the Temperature Interval
96 to 803°

75394
SOV/149-2-5-20/32

Fig. 1. Logarithm of intensity ratio for lines 331 vs temperature. The curve of Cu is shifted upward by 0.1. Solid lines express theoretical values of $\Theta = 315^\circ$ for Cu and $\Theta = 341^\circ$ for Cu-Al).

Card 4/5

Characteristic Temperatures of Cu-Al
Alloy in the Temperature Interval
96 to 803°.

75394
SOV/149-2-5-20/32

Elasticity and stretching moduli E and G were determined in accordance with methods described by Korotkov, V. I., Fizika metallov i metallovedenie, 2, Vol. 1, 1956 (Metal Physics and Metal Studies), while the characteristic temperature was determined by the same author in DAN USSR, Nr 5, 108, 1956 (Reports S.S. USSR). The characteristic temperature found by this method was 350°, which coincides fairly well with the radiographic data. While the atomic diameters of Cu and Al differ by 9%, the lattice identity period (when 8.84% Al are dissolved) increases by 1.2%, and the static distortions are low:

$\sqrt{U^2_{st}} = 0.055$ Å. This probably explains the agreement of both results. The help of Korotkov, V. I., candidate of physical & mathematical sciences, for measuring elasticity moduli is acknowledged. There is 1 figure; and 3 Soviet references.

ASSOCIATION: Moscow Steel Institute. Chair of Metal Physics and of Radiography (Moskovskiy institut stali. Kafedra fiziki metallov i rentgenografii)
Card 5/5

18.12.20

67767

SOV/126-8-5-20/29

AUTHORS: Kagan, A.S., and Umanskiy, Ya.S.TITLE: Analysis of the Kinetics of the Two-phase Decomposition
of a Cu-Be^{Alloy} by the Electric Resistance MethodPERIODICAL: Fizika metallov i metallovedeniye, Vol 8, 1959, Nr 5,
pp 758-760 (USSR)

ABSTRACT: X-ray diffraction studies have shown that a two-phase decomposition takes place in a Cu-Be alloy containing 1.9% Be at temperatures up to 400 °C. This seems to contradict earlier results obtained by one of the authors (Ref 1) and this contradiction is attributed to differences in the quantity of extraneous admixtures in the alloys under investigation, particularly that of nickel. The Ni content of the alloy used in the experiments was 0.1%, whilst the alloy used in the earlier experiments did not contain any nickel. In the present paper the authors attempt to analyse the super-kinetics of the two-phase decomposition of the supersaturated solid solution of Be in Cu by the electric resistance method. Fig 1 is a plot of the electric conductivity as a function of the ageing time at 350 and 400 °C. It can be seen that, after a certain

Card
1/2

28(4), 18(7)

S/032/5c/026/01/037/052
U310/B306

AUTHORS: Kagan, A. S., Uvanskiy, Ya. S.

TITLE: Cameras for the URS-50I Apparatus, Adapted for
Photographs at High and Low Temperatures

PERIODICAL: Zavodskaya laboratoriya, 1959, Vol 26, Nr 1, pp 108-109
(USSR)

ABSTRACT: Two cameras intended for use at the URS-50I apparatus are described, which permit X-ray photographs to be taken at high and low temperatures. The camera for high-temperature investigations (Fig 1) consists essentially of a rotating oven, and is fixed to the larger holder of the goniometer. A jacket containing the four heating elements is mounted on the oven. At the free end of the jacket, the sample is held by a copper ring, its temperature being measured by a thermocouple. The emf of the latter is measured potentiometrically. The camera for X-ray photographs at low temperatures (Fig 2) is, essentially, a metal Dewar vessel, the inner wall of which (filled with liquid nitrogen) has a nozzle shaped projection to which the

Card 1/2

Cameras for the URS-50I Apparatus, Adapted for S/032/60/026/01/037/052
Photographs at High and Low Temperatures B010/B006

sample is attached. The outer wall also has a projection sealed by a celluloid film. The projection of the inner wall protrudes into that of the outer wall, thus enabling the X-rays to be focussed through the celluloid film on the sample. The temperature of the sample is measured by a thermocouple. Rapid sample heating from - 177° to room temperature can be effected by means of small heating elements. There are 2 figures and 1 reference.

ASSOCIATION: Moskovskiy institut stali im. I. V. Stalina (Moscow
Institute of Steel imeni I. V. Stalin)

Card 2/2

KAGAN, A. S., CAND TECH SCI, ^{"Effect} ^{Temperature} THE INFLUENCE OF MEASURING AND
HEAT TREATMENT TEMPERATURES ^{upon} ON CHARACTERISTIC X-RAY TEM-
PERATURES OF CERTAIN SOLID SOLUTIONS. MOSCOW, 1960.
(CENTRAL SCI RES INST ^{of RDS} FOR METALLURGY). (KL, 2-61, 208).

-136-

KAGAN, A. S., SOMENKOV, V. A., UMANSKIY, YA. S.

"~~o~~-1. Diffuse Scattering of X-Rays by Aluminum Brass."

Steel Inst., Leninsky Prospekt 6, Moscow, USSR.

paper submitted for 5th Gen. Assembly, Symposium on Lattice Defects, Intl. Union of
Crystallography, Cambridge U.K. Aug 1960.

18.8100

77703
SOV/148-60-1-26/34

AUTHORS: Kagan, A. S., Umanskiy, Ya. S.

TITLES: Characteristic Temperature of an Ag-Au Alloy Within a Temperature Range From 279 To 523° K

PERIODICAL: Izvestiya vysshikh uchebnykh zavedeniy. Chernaya metalurgiya, 1960, Nr 1, pp 152-154 (USSR)

ABSTRACT: In order to determine the characteristic temperature θ of Ag-Au alloys and of pure Ag in terms of the drop of the diffraction intensities with the increasing atomic thermal vibrations, the authors measured the diffraction intensities at 279-523° K by ionization set URS-50I. When a steady-intensity incident beam is applied

$$\ln \frac{I_{T_1}}{I_{T_0}} \frac{\Phi_{T_1}}{\Phi_{T_0}} = -2M_{T_1} + 2M_{T_0}$$

Card 1/4

Characteristic Temperature of an Ag-Au
Alloy Within a Temperature Range From
279 To 523° K

77703
SOV/148-60-1-26/34

holds, where Φ_{T_1} , Φ_{T_2} denote the products of all factors except temperature and

$$2M = \frac{12h^3}{mk\theta} \left[\frac{\Phi(x)}{x} + \frac{1}{4} \right] - \frac{\sin^2 \theta}{2^3}.$$

describes the Debye-Waller intensity connections. The powdered Au and Ag, containing traces of Fe, Cu, Al, were mixed at 15:85 ratio and molten in an induction furnace with argon atmosphere. The obtained alloy was deformed, homogenized at 950° C for 2.5 hr, powdered and recrystallized at 300° C for 1 hr, after which the crystals became about 1 to 2 μ . The powder was stuck on a copper plate, fastened at the end of an electric heater, and placed on the axis of the X-ray goniometer. Two to three diffraction intensity curves were obtained for each desired interval of temperatures which were

Card 2/4

Characteristic Temperature of an Ag-Au
Alloy Within a Temperature Range From
279 To 523° K

77703
SOV/148-6Q-1-26/34

controlled by a thermocouple. The method provided $\pm 2.5\%$ accuracy of the computed θ . The mean θ for Ag was found to be 208.5° K which is within 203 to 215° K of values determined by various investigators by means other than X-rays. The θ for the Au-Ag alloy at the intervals of (° K): 279-370, 279-423, 279-474, and 279-523 were 200, 197, 194, and 200° K, respectively. Their average, 197° K, is close to the value determined by R. W. James (198° K) according to the elasticity method. The static or "chemical" distortion of the Ag structure due to the presence of dissolved Au proved to equal zero. This fact is the obvious result of only 0.17% difference between the atomic radii of Ag and Au. The Debye-Waller intensity connections proved to remain valid for the entire temperature interval used in the experiments. The connections are for many solids, composed of less heavy atoms, restricted to much lower temperatures. This is because of the inversely proportional relation of the amplitude of thermal

Card 3/4

Characteristic Temperature of an Ag-Au
Alloy Within a Temperature Range From
279 To 523° K

77754
SGI/148-601-106/31

vibrations of atoms to the square root of $m\theta^2$ in
which atomic mass m is high for both Au and Ag. There
is 1 figure; and 9 references, 4 Soviet, 4 U.K., 1
Danish. The U.K. references are: M. Blackman, Phil.
Mag., 42, 1951; R. W. James, G. W. Brindley, Proc.
Roy. Soc., A 121, 155 1928; R. W. James, F. M. Fifth,
Proc. Roy. Soc., A 117, 62, 1927; R. W. James,
Manchester Memoirs, 71, 9, 1926-1927.

ASSOCIATION: Moscow Steel Institute (Moskovskiy Institut Stalit)

SUBMITTED: December 15, 1958

Card 4/4

S/070/60/005/003/024/024/XX
E132/E460

AUTHORS: Kagan, A.S., Somenkov, V.A., and Umanskiy, Ya.S.
TITLE: An X-Ray Camera for Studying the Diffuse Scattering by
Polycrystalline Materials

PERIODICAL: Kristallografiya, 1960, Vol.5, No.3, pp.468-469

TEXT: There are stricter requirements in the use of diffuse scattering methods in metal physics than in ordinary structure analysis. Air scattering and slit scattering must be reduced and the monochromatization must be of a high standard. An attachment for the YPC-501 (URS-501) diffractometer which satisfies these conditions is described. It is basically a cylindrical enclosure with celluloid windows which surrounds the specimen. The enclosure can be evacuated. Slits are provided for removing radiation scattered by the air outside the enclosure from the primary beam from the monochromator. A crystal of Ge (111 plane) is used for monochromatization as it gives no 222 reflexion. The 333 reflexion is suppressed by reducing the tube voltage. When there is no specimen and the direct beam passes straight through the camera, the count rate recorded is equal to the cosmic ray

Card 1/2

S/070/60/005/003/024/024/XX
E132/E460

An X-Ray Camera for Studying the Diffuse Scattering by
Polycrystalline Materials

count rate. The apparatus can be used to record the diffuse background between 8 and 45°. Its operation has been tested with specimens of fused quartz and Cu. Comparisons with the theoretical scattering are reproduced and appear satisfactory. There are 3 figures and 4 references: 2 Soviet and 2 English.

ASSOCIATION: Moskovskiy institut stali im. I.V.Stalina
(Moscow Steel Institute im. I.V.Stalin)

SUBMITTED: November 18, 1959

Card 2/2

S/070/60/005/004/015/016/XX
E132/E460

AUTHORS: Kagan, A.S., Somenkov, V.A. and Umanskiy, Ya.C.

TITLE: Diffuse Scattering of X-Rays by Aluminum Brass

PERIODICAL: Kristallografiya, 1960, Vol.5, No.4, pp.540-543

TEXT: Measurements of the diffuse scattering of X-rays by aluminum brass containing 18 at.% Al is carried out in an evacuated camera by means of a Geiger counter. CuKa radiation used in the investigation was monochromatized. The advantage of such Ge monochromator cut parallel through the (222) reflection. The scattered intensities being the plane (111); absolute scale by comparison with the scattering of Compton scattering and double Bragg scattering, temperature was converted to eliminated. A correction for anomalous dispersion was included into calculations of Laue scattering. The calculation of the short range from 8 to quenched from 700°C samples was measured. The calculation of the size effect β_i are equal coefficients carried out for six coordination shells in the assumption that coefficients of the size effect β_i are equal

S/070/60/005/004/015/016/XX
E132/E460

Diffuse Scattering of X-Rays by Aluminum Brass
to zero gave following figures:

$$\alpha_1 = -0.43 \pm 0.10, \quad \alpha_2 = +0.12 \pm 0.05, \quad \alpha_3 = -0.32 \pm 0.05,$$
$$\alpha_4 = +0.28 \pm 0.10, \quad \alpha_5 = -0.27 \pm 0.05, \quad \alpha_6 = -0.77 \pm 0.10.$$

The diffuse scattering curve plotted on the basis of the short range coefficients given above agrees reasonably with the experimental curve, thus supporting the assumption $\beta_i = 0$ made previously. This assumption is supported also by measurements of static displacements estimated from the intensities of structure lines. The annealing reduces the short range order, the amount of reduction increasing with the annealing temperature. The short range order is considerably destructed by cold working. The best short range order was discovered after a low-temperature annealing (260°C) of cold worked sample. These data explain the anomaly of the behaviour of aluminum brass after cold working and annealing. As the coefficients of the short range order for the first

Card 2/3

S/070/60/005/004/015/016/XX
E132/E460

Diffuse Scattering of X-Rays by Aluminum Brass
coordination shell were considerably higher than they should be for
the superstructure Cu₃Au it was assumed that the atomic scattering
functions of alloy components differ from atomic scattering
functions of pure elements. This assumption was confirmed by an
analysis of the intensities scattered by an intermetallic compound
NiAl. There are 4 figures, 1 table and 12 references:
7 Soviet and 5 English.

ASSOCIATION: Moskovskiy institut stali im. I.V. Stalina
(Moscow Steel Institute im. I.V. Stalin)

SUBMITTED: February 8, 1960

Card 3/3

S/020/60/132/02/22/067
B014/B007

18.8/00
AUTHORS:

Kagan, A.S., Umanskiy, Ya.S.

TITLE:

The Anomalies of the Thermal Factor of the Scattering of X-Rays by
 $\sqrt{\text{Ni}} - \sqrt{\text{Cr}}$, $\sqrt{\text{Cu}} - \sqrt{\text{Zn}}$ and $\sqrt{\text{Ni}} - \sqrt{\text{V}}$ Alloys

PERIODICAL: Doklady Akademii nauk SSSR, 1960, Vol. 132, No. 2, pp. 326-328

TEXT: In the introduction the authors refer to the assumption of the Debye-distribution of thermal waves according to frequency. The actual spectrum in all cases determines more or less considerably from this assumption. In the present paper the results obtained by investigations on a nickel-alloy with 8% V are given. The X-ray diffraction studies were carried out by means of CuKa-emission; determination of the characteristic temperature by means of the modulus of elasticity carried out according to a method previously described by the authors (Ref. 16). The investigations on the nickel-chrome alloy were carried out both on samples, which were in the K-state and on such in which there was no K-state. Investi-

Card 1/3

The Anomalies of the Thermal Factor of the Scattering of X-Rays by Ni - Cr, Cu - Zn and Ni - V Alloys S/020/60/132/02/22/067
BO14/BOOT

gation of the Cu-Zn-alloy was carried out both on samples which had a regular lattice and on samples with a disordered lattice. The pre-treatments of the samples are briefly discussed, and measuring results are shown in the diagrams of Figs. 1-3, in which the dependence of the logarithm of relative intensity on temperature is graphically represented. In tables 1-3 the calculated characteristic temperatures are given. It is found that the characteristic temperature of the samples determined in two ways differs, and besides, the characteristic temperature determined by means of X-ray diffraction study in the temperature range of liquid nitrogen up to room temperature and in the temperature range from room temperature up to higher temperature differs. Only for brass in the ordered state is this difference near the measured error. When discussing the results obtained, the authors point out the fact that in high-temperature measurements it is not the shape of the spectrum but the maximum frequency that exerts an influence upon the thermal factor. The causes of the anomalies of the thermal factor must be explained by investigations of the diffuse scattering on monocrystals. The authors thank Yu.A. Rymashevskiy for his assistance in measuring the moduli of elasticity. There are 3 figures, 3 tables, and 18 references, 7 of which are Soviet.

Card 2/3

APPROVED FOR RELEASE: 08/10/2001 CIA-RDP86-00513R000619910008-7

The Anomalies of the Thermal Factor of the Scattering
of X-Rays by Ni - Cr, Cu - Zn and Ni - V Alloys

30473

S/020/60/132/02/22/067
B014/B007

ASSOCIATION: Moskovskiy institut stali im. I.V. Stalina (Moscow Steel Institute
imeni I.V. Stalin)

PRESENTED: December 29, 1959, by N.V. Belov, Academician

SUBMITTED: December 26, 1959

4

Card 3/3

KAGAN, A.S.; UMANSKIY, Ya.S.

Relation between the X-ray characteristic temperature and
the spectrum of elastic vibrations. Fiz. tver. tela 3 no.9:
2683-2687 S '61. * (MIRA 14:9)

1. Moskovskiy institut stali imeni I.V. Stalina.
(Crystals) (X-rays)

S/126/61/012/004/018/021
E193/E383

AUTHORS: Kagan, A.S., Rass, T.G. and Gorazdovskiy, T.Ya.
TITLE: Some laws governing the formation of, so-called,
"friction austenite"
PERIODICAL: Fizika metallov i metallovedeniye, v. 12, no. 4,
1961, 617 - 619

TEXT: Abrasion-treatment of certain hardened steels brings about the formation of a surface layer, characterized by high hardness and by a structure which is difficult to reveal by metallographic methods. X-ray examination of layers of this type showed them to contain austenite in quantities greater than those in the unaffected part of the specimen - hence the term "friction austenite". The object of the present investigation was to study the relationship between the quantity of friction austenite and the initial quantity of residual austenite in the steel 18X15 (ShKh15), hardened by quenching from 850°C. Specimens with a different residual-austenite content were obtained by varying the conditions of sub-zero treatment of hardened material. The residual-austenite content was determined

Card 1/4

S/126/61/012/004/018/021
E193/E383

Some laws governing

austenite content and that the increase in B due to abrasion-induced work-hardening is almost constant, irrespective of the residual-austenite content. It is true that both the initial B and its increase reflect not only distortions of the second type but also dispersion of the mosaic blocks formed as a result of both $\gamma \rightarrow \alpha$ transformation and work-hardening and that separation of these two effects is, in this case, rather difficult. It can, however, be assumed that the part of the total increase in B which is caused by work-hardening and phase-transformation does not depend on the residual-austenite content. Consequently, it is valid to infer from B the relationship between the magnitude of distortion of the second type and the residual-austenite content. The proportion of friction austenite in steel ShKh15 decreased also (with a corresponding increase in the proportion of martensite) after tempering at 160 °C. This effect can be attributed to stress relief and to the consequent decrease in the stability of austenite. There are 2 figures and 8 Soviet-bloc references.

✓

Card 3/4

S/126/61/012/004/018/021

E193/E383

Some laws governing

ASSOCIATION: Vsesoyuznyy nauchno-issledovatel'skiy
konstruktorsko-tehnologicheskiy institut
podshipnikovoy promyshlennosti g. Moskva
(All-Union Scientific-research Design-technology
Institute for the Bearings Industry, Moscow)

SUBMITTED: January '61

Fig. 2:

Card 4/4