Problem 1: A wetted-wall column is sometimes used to strip volatile organic solutes such as TCE from an aqueous solution. To estimate the gas film coefficient (k_G) for a wetted-wall column, a mass-transfer correlation for a gas flow through a pipe can be used but for the liquid film coefficient (k_L) a mass-transfer correlation for a gaseous solute to a falling liquid film is used. Following the steps below, determine the overall mass-transfer coefficient, K_L , for TCE stripping from water into an airstream at 293K. Assume that water evaporation is negligible.

A schematic of the wetted wall column is shown below. The column is 2.0 m high and has an inner diameter of 4.0 cm. The column is run in counter current direction, the air bulk velocity is v_{∞} =0.40 m/s and mass flow rate of the water is 0.05 kg/s. Correlations for Sh number for flow through a pipe for different Re numbers are listed in section 30.2 WRF 6th and 7th ed and *on the second page of this worksheet*.

- A. Determine the overall K_L
- B. Evaluate the concentration of TCE vapor in the air stream exciting the wetted-wall column. (here you need to do a mass balance and integrate, amount coming in/out is $(c_A v \pi r^2)$ at x and x+ Δx plus the flux from the liquid $N_A\pi 2r$).

Hint (suggested steps) to find the overall K_L is to first determine k_G and k_L,

- a. Calculate the gas film mass transfer coefficient (k_G) [kgmole/m² s atm]?
 - i. Write a flux equation for flux from the bulk gas to the gas-liquid interface.
 - ii. To calculated k_G, should you use the properties of the gas or the liquid?
 - iii. Calculate Re. Is the flow laminar or turbulent?
 - iv. Determine k_G

To determine k_L for the liquid, we need to use a Sh number correlation for convective mass transfer of gaseous solute into a falling liquid film wetting the inner surface of a tube shown below. The Re number for liquid flowing down the inner surface of the wetted tube.

- b. Suggested steps to calculate the liquid film mass transfer coefficient (k_L) [m/s]?
 - i. Write a flux equation for flux from the bulk liquid to the gas-liquid interface.
 - ii. To calculated k_I, should you use the properties of the gas or the liquid?
 - iii. Determine k_L using the appropriated correlation for Sh number.
- c. Calculate the overall liquid-phase mass-transfer coefficient, K_L

Top and cross-sectional view of wetted wall column

ChE 333

Useful data:

The equilibrium solubility of TCE in water follows Henry's law: $p_{A,i} = H c_{A,i}$ were H=9.92 m³ atm/kgmole

	Air (293 K)	Water (293 K)
Density (ρ)	1.19 kg/m^3	998.2 kg/m^3
Viscosity (µ)	$1.84 \times 10^{-5} \text{ kg/m s}$	$9.93 \times 10^{-4} \text{ kg/m s}$
Diff. coef. TCE- air/water	$8.0 \times 10^{-6} \mathrm{m}^2/\mathrm{s}$	$8.9 \times 10^{-10} \text{ m}^2/\text{s}$

Sherwood number for falling liquid film:

$$Sh = 0.433Sc^{1/2} \left(\frac{\rho_L^2 \cdot g \cdot z^3}{\mu_L^2}\right)^{4/6} Re_L^{0.4} \qquad Re_L = \frac{4w}{\pi D\mu_L} \qquad \mbox{w is mass velocity.} \label{eq:shear}$$

Convective Mass transfer correlations for <u>flow through pipe</u> (30.2 WRF 6th ed.)

Sieder-Tate eqn	$Sh = 1.86 \left(\frac{D}{L}Re \cdot Sc\right)^{1/3}$	Laminar flow Re < 2000 Re Sc (D/L) > 10
Linton and Sherwood	$Sh = 0.023Re^{0.83}Sc^{1/3}$	Turbulent liquid flow 2000 < Re < 35,000 1000 < Sc < 2260
Gilliland and Sherwood	$Sh = \frac{P}{p_{B,lm}} 0.023 Re^{0.83} Sc^{0.44}$	Turbulent gas flow 2000 < Re < 35,000 0.6 < Sc < 2.5

Solution to part B.

$$ln\left(\frac{c_A^* - c_{Ao}}{c_A^* - c_{AL}}\right) = \frac{4k_c L}{Dv}$$

Part A. find K_2 $\left[\frac{1}{K_2} = \frac{1}{k_L} + \frac{1}{Hk_Q}\right]$

a) determine ka

i. Write a flux equation for flux from the bulk gas to the gas-liquid interface.

ii. To calculated k_G, should you use the properties of the gas or the liquid?

iii. Calculate Re. Is the flow laminar or turbulent?

gas flow through a pipe
$$Re = \frac{\sqrt{50}}{V_{00}} = \frac{(0.40)(0.64)}{1.55 \times 10^{-5}} = 1035 \text{ laminar}$$

iv. Determine k_G

Sh for lawinar flow through a pipe
$$Sh = 1.86 \left(\frac{D}{L} Re \cdot Sc\right)^{1/3}$$
 Sieder-Tate eqn , $Sh = 1.86 \left(\frac{D}{L} Re \cdot Sc\right)^{1/3}$

$$5c = \frac{V_{air}}{D_{TCE-air}} = \frac{1.55 \times 10^{-5} \, m^2/s}{8.0 \times 10^{-6} \, m^2/s} = 1.93$$

$$k_c = \frac{D_{AB}}{D}$$
 1.86 $\left(\frac{D}{2} \text{Re Sc}\right)^{1/3} = 1.27 \times 10^{-3} \text{m/s}$

$$N_A = k_c \left(C_{AG,i} - C_{AG} \right) = \frac{k_c}{RT} \left(P_{AG,i} - P_{AG} \right)$$

$$= k_c \left(C_{AG,i} - C_{AG} \right) = \frac{k_c}{RT} \left(P_{AG,i} - P_{AG} \right)$$

$$= k_c \left(C_{AG,i} - C_{AG} \right) = \frac{k_c}{RT} \left(P_{AG,i} - P_{AG} \right)$$

$$= k_c \left(C_{AG,i} - C_{AG} \right) = \frac{k_c}{RT} \left(P_{AG,i} - P_{AG} \right)$$

$$= k_c \left(C_{AG,i} - C_{AG} \right) = \frac{k_c}{RT} \left(P_{AG,i} - P_{AG} \right)$$

b) determine k

i. Write a flux equation for flux from the bulk liquid to the gas-liquid interface.

ii. To calculated k_L, should you use the properties of the gas or the liquid?

iii. Determine k_L using the appropriated correlation for Sh number.

$$Sh = 0.433Sc^{1/2} \left(\frac{\rho_L^2 \cdot g \cdot z^3}{\mu_L^2} \right)^{1/6} Re_L^{0.4}$$

$$Re_{L} = \frac{4w}{\pi D \mu_{L}} = \frac{(4)(0.05)}{\% (6.04)(9.85.10^{-7})} = 1603$$

$$5c = \frac{v_{water}}{D_{TCE-water}} = \frac{(9.93 \times 10^{-4})}{(998.2)(8.9 \times 10^{-10})} = 1118$$

$$Sh_2 = 5.74 \times 10^4$$

$$K_2 = 2.56 \times 10^{-5} \, \text{m/s}$$

Determine K2:

$$\frac{1}{K_{L}} = \frac{1}{k_{L}} + \frac{1}{Hk_{q}} + D \quad K_{L} = 2.44 \times 10^{-5} \text{m/s}$$

$$K_{L} \simeq k_{L} \quad \text{liquid resistant}$$

B. Part

find concentration of TCE in outlet vapor

Material balance

Q C 52 CD

$$\frac{dC_A}{dz} + N_A \frac{y}{\sqrt{D}} = \emptyset$$

 $\frac{dC_{A}}{dz} + N_{A} \frac{Y}{V_{\infty}D} = \emptyset$ $= \emptyset$ = Could also use $K_{C} \left(C_{A}^{k} - C_{A}\right) K_{C} \left(C_{AL} - C_{A}^{*}\right)$

$$\int_{C_{A,in}}^{C_{A,out}} \frac{dC_{A}}{C_{A}^{*}-C_{A}} = -\frac{\sqrt{K_{G}}}{\sqrt{M_{G}}} \int_{0}^{L} dZ$$

 $\int_{C_{A,in}}^{C_{A,out}} \frac{dC_{A}}{C_{A}^{*}-C_{A}} = -\frac{\sqrt{K_{G}}}{\sqrt{K_{G}}} \int_{0}^{L} dZ$ $\int_{C_{A,in}}^{C_{A}^{*}-C_{A}} \frac{dC_{A}}{C_{A}^{*}-C_{A}} = -\frac{\sqrt{K_{G}}}{\sqrt{K_{G}}} \int_{0}^{L} dZ$ $\int_{0}^{C_{A,in}} \frac{dC_{A}}{C_{A}^{*}-C_{A}} = -\frac{\sqrt{K_{G}}}{\sqrt{K_{G}}} \int_{0}^{L} dZ$ $\int_{0}^{C_{A}} \frac{dC_{A}}{C_{A}^{*}-C_{A}} = -\frac{\sqrt{K_{G}}}{\sqrt{K_{G}}} \int_{0}^{L} dZ$