НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ «ЛЬВІВСЬКА ПОЛІТЕХНІКА» Кафедра загальної фізики

3BIT

про виконання лабораторної роботи № 3

Назва роботи «Перевірка закону Ома для електричного кола постійного струму»

Виконав: Марущак А.С.

студент групи ПЗ-15

інституту ІКНІ

Лектор: доцент Рибак О.В

Керівник лабораторних занять:

Ільчук Г.А.

Мета роботи: необхідно перевірити закон Ома для постійного струму.

Прилади та матеріали: Електричне коло з амперметром та 3-ма вольтметрами.

Короткі теоретичні відомості:

Закон Ома для однорідної ділянки кола (тобто ділянки, яка не містить ЕРС) формулюється так:

сила струму I на ділянці кола прямо пропорційна напрузі (різниці потенціалів) на його кінцях і обернено пропорційна опору R цієї ділянки:

$$I = \frac{U}{R} = \frac{\varphi_1 - \varphi_2}{R},$$

де R – опір однорідної ділянки кола, причому

$$R = \rho \frac{\ell}{S} ,$$

Величина σ , обернена до питомого опору ρ , називається питомою електропровідністю речовини:

$$\sigma = \frac{1}{\rho}$$

Після коротких перетворень можна отримати рівність:

 $j = \sigma E$ - закон Ома у диференціальній формі.

Закон Ома для неоднорідної ділянки кола (тобто ділянки, яка містить джерело з електрорушійною силою (EPC) ε_{12}) записується так:

$$I = \frac{\varphi_1 - \varphi_2 + \mathcal{E}_{12}}{R} ,$$

де $\phi 1$ - $\phi 2$ різниця потенціалів на кінцях цієї ділянки, R – опір неоднорідної ділянки кола, ε_{12} - EPC, яка діє на ділянці 1-2, причому:

$$\mathbf{E}_{1,2} = \int_{0}^{2} (\mathbf{E}_{crop}, \mathbf{d}\ell)$$

Електрорушійна сила $\varepsilon_{1,2}$ чисельно дорівнює роботі, виконаній сторонніми силами при переміщенні вздовж ділянки кола одиничного додатного заряду із точки 1 в точку 2.

Спадом напруги U12 на ділянці кола 1-2 називають фізичну величину, яка чисельно дорівнює роботі, яка виконана сумарним полем кулонівських і сторонніх сил при переміщенні вздовж кола одиничного додатного заряду з точки 1 у точку 2:

$$U_{12} = \int_{1}^{2} (E_{\kappa yn} + E_{crop}), d\ell,$$

aso
$$U_{12} = \varphi_1 - \varphi_2 + \mathcal{E}_{12}$$

Звідси:

$$IR = \varphi_1 - \varphi_2 + \varepsilon_{12}$$

Якщо електричне коло замкнене, то точки 1 і 2 збігаються, тому $\phi 1 = \phi 2$ і тоді:

$$I = \frac{\varepsilon}{R_{\text{nobh}}}$$

Контрольні запитання:

1. Пояснити принцип дії містка постійного струму (Уітстона)

Робота цієї конструкції базується на тому, що є два плеча супротиву, через які може протікати струм, причому кожне складається з 20х резисторів. Між резисторами прокладена перемичка на якій власне і знаходиться вимірювальний пристрій. Якщо опори двох плеч однакові, то струм через місток не потече, як між точками рівних потенціалів, і стрілка вимірювального пристрою залишиться на нулі. Якщо ж опори не однакові, то стрілка почне відхилятися. До того ж, знаючи покази приладу і опори інших резисторів, можна визначити опір невіомих. Схожу концепцію в повсякденному житті можемо бачити на шалькових терезах.

2. Сформулювати правила Кірхгофа.

перше правило Кірхгофа можна сформулювати так: сума всіх струмів, які входить у точку розгалуження, дорівнює сумі струмів, які виходять з цієї точки, тобто: Isx1+Isx2+...=Isux1+Isux2+... Друге правило Кірхгофа можна сформулювати так: у будь-якому замкнутому контурі, довільно вибраному в розгалуженому електричному колі, алгебраїчна сума добутків величин струмів Ік на

опори Rк відповідних ділянок дорівнює алгебраїчній сумі електрорушійних сил, що діють у цьому контурі.

3. Вивести розрахункову формулу для визначення опору провідника містком Уінстона

Складаємо рівняння за першим правилом Кірхгофа (напрями струмів через резистори R., Rm, R1 і R2 вибирають умовно) для вузлів A, B, C:

$$\mathbf{I} = \mathbf{I}_x + \mathbf{I}_1$$
 (для вузла \mathbf{A}), $\mathbf{I}_x = \mathbf{I}_m + \mathbf{I}_r$ (для вузла \mathbf{B}) $\mathbf{I} = \mathbf{I}_m + \mathbf{I}_2$ (для вузла \mathbf{C})

Складаємо рівняння за другим правилом Кірхгофа:

$${f I}_x{f R}_x + {f I}_r{f R}_r$$
 - ${f I}_1{f R}_1 = {f 0}$ (для контуру ABDA); ${f I}_m{f R}_m$ - ${f I}_2{f R}_2$ - ${f I}_r{f R}_r = {f 0}$ (для контуру BCDB).

Якщо змінювати опори Rm , R1, R2, то при певних значеннях цих опорів потенціали точок B і D будуть рівними, тоді струм Ir = 0. Врахувавши це у формулах отримаємо:

$$\begin{aligned} & \textbf{I}_x &= \ \textbf{I}_m \ ; \\ & \textbf{I}_1 &= \ \textbf{I}_2 ; \\ & \textbf{I}_1 \textbf{R}_1 &= \ \textbf{I}_x \textbf{R}_x \ ; \\ & \textbf{I}_2 \textbf{R}_2 &= \ \textbf{I}_m \textbf{R}_m \ . \end{aligned}$$

Розв'язавши цю систему, дістаємо:

$$\mathbf{R}_{\mathbf{x}} = \mathbf{R}_{\mathbf{m}} \frac{\mathbf{R}_{1}}{\mathbf{R}_{2}}.$$

Робочі формули:

$$\varepsilon^{\text{o6}} = U_{R_m}^B + U_R^B + U_{R_A}$$

$$I^{\text{o6}} = \frac{\varepsilon^B}{R + R_M + R_A}$$

$$U_R^{\text{o6}} = I^{\text{o6}}R = \frac{\varepsilon^B}{R + R_M + R_A}R$$

Хід роботи

1. Скласти електричне коло, яке зображене на рис.

- 2. За допомогою магазину опорів встановлюємо опір R_M , значення якого вказане на робочому місці, та записуємо його у таблицю.
- 3. Записуємо в таблицю значення опорів R і R_A .
- 4. Вимірюємо силу струму I^{B} в колі за допомогою амперметра.
- 5. За допомогою вольтметра вимірюємо:

 - а) напругу U_R^B на опорі R, б) напругу $U_{R_m}^B$ на клемах магазину опорів,
 - в) ЕРС ε^B джерела струму. Для цього треба вийняти вилку з розетки
 - "24 В " і приєднати вольтметр до цієї розетки.

- г) напругу U_{R_A} на амперметрі.
- 6. Обчислюємо $\varepsilon^{o6} = U_{R_m}^B + U_R^B + U_{R_A}$, враховуючи, що внутрішній опір джерела струму малий порівняно з зовнішнім. Порівнюємо отримане значення ε^{o6} з виміряним.
- 7. Перевіряємо справедливість закону Ома для замкнутого кола, обчисливши на основі формули величину струму $I^{\text{of}} = \frac{\varepsilon^B}{R + R_M + R_A}$ і порівнюємо це значення з виміряним.
- 8. Перевіряємо справедливість закону Ома для однорідної ділянки кола. Для цього обчислюємо

$$U_R^{\text{of}} = I^{\text{of}}R = \frac{\varepsilon^B}{R + R_M + R_A}R$$

і порівнюємо обчислене значення з виміряним

- 9. Усі вимірювання і обчислення проводимо у випадку послідовного з'єднання трьох відомих опорів, причому R = R1 + R2 + R3.
- 10. Визначаємо відносну і абсолютну похибки I^B і ε^B .

Таблиця результатів

R_M ,	R_A .	R,	I^B ,	U_R^B ,	$U_{R_m}^B$,	U_{R_A} ,	ε^B ,	ΔI ,	δI ,	Δε,	δε,
Ом	Ом	Ом	10^{-3} A	В	В	В	В	10^{-3} A	%	В	%
2000	20	280	12	3	22	0.3	26	0.7	6.2	0.7	2.8
			$I^{\mathrm{of}},$	U_R^{of} ,			$\varepsilon^{ m of}$,				
			10^{-3} A	В			В				
			11.3	3.16			25,3				
		R,	I^B ,	U_R^B ,	$U_{R_m}^B$,	U_{R_A} ,	ε^B ,	δI ,			
		Ом	10^{-3} A	В	В	В	В	%			
		800	10	8	18	0.2	26	8.7			
			$I^{\mathrm{of}},$	U_R^{of} ,			$\varepsilon^{ m of}$,		_		
			10^{-3} A	В			В				
			9.2	7.38			26.2				

Обчислення

$$\varepsilon_1^{06} = 22 + 3 + 0.3 = 25.3(B)$$

$$I_1^{06} = \frac{26}{280 + 2000 + 20} = 11.3 \cdot 10^{-3}(A)$$

$$U_{R_1}^{06} = \frac{26}{280 + 2000 + 20} 280 = 3.16(B)$$

$$\Delta \varepsilon = 26 - 25.3 = 0.7(B)$$

$$\delta \varepsilon = \frac{0.7}{25.3} \cdot 100\% = 2.8\%$$

$$\Delta I = 12 - 11.3 = 0.7(A)$$

$$\delta I_1 = \frac{0.7}{11.3} \cdot 100\% = 6.2\%$$

$$\varepsilon_2^{06} = 8 + 18 + 0.2 = 26.2(B)$$

$$I_1^{06} = \frac{26}{800 + 2000 + 20} = 9.2 \cdot 10^{-3}(A)$$

$$U_{R_1}^{06} = \frac{26}{800 + 2000 + 20} 800 = 7.38(B)$$

$$\delta I_2 = \frac{0.8}{9.2} \cdot 100\% = 8.7\%$$

Аналіз результатів:

Як бачимо, величина похибок не ϵ надто високою. Врахувавши деякі похибки вимірювань, а також внутрішній опір джерела струму маємо підтвердження того, що закон Ома ϵ дійсним.

Висновок:

Виконавши цю лабаратону роботу ми перевірили закон Ома для постійого струму. Зробили ми це за допомогою деяких вимірювань і обчислень, і в результаті отримали мінімальні похибки.