Deep Generative Models

Lecture 3

Roman Isachenko

Moscow Institute of Physics and Technology

Autumn, 2021

Recap of previous lecture

MLE problem for autoregressive model

$$oldsymbol{ heta}^* = rg \max_{oldsymbol{ heta}} p(\mathbf{X}|oldsymbol{ heta}) = rg \max_{oldsymbol{ heta}} \sum_{i=1}^n \sum_{j=1}^m \log p(x_{ij}|\mathbf{x}_{i,1:j-1}oldsymbol{ heta}).$$

Sampling

$$\hat{x}_1 \sim p(x_1|\boldsymbol{\theta}), \quad \hat{x}_2 \sim p(x_2|\hat{x}_1, \boldsymbol{\theta}), \ldots, \quad \hat{x}_m \sim p(x_m|\hat{\mathbf{x}}_{1:m-1}, \boldsymbol{\theta})$$

New generated object is $\hat{\mathbf{x}} = (\hat{x}_1, \hat{x}_2, \dots, \hat{x}_m)$.

Masking helps to make neural network autoregressive.

- ► MADE masked autoencoder (MLP).
- ► WaveNet masked 1D convolutions.
- ▶ PixelCNN masked 2D convolutions.

PixelCNN++ uses discretized mixture of logistic distribution to make the output distribution more natural.

Recap of previous lecture

Posterior distribution

$$p(\theta|\mathbf{X}) = \frac{p(\mathbf{X}|\theta)p(\theta)}{p(\mathbf{X})} = \frac{p(\mathbf{X}|\theta)p(\theta)}{\int p(\mathbf{X}|\theta)p(\theta)d\theta}$$

Bayesian inference

$$p(\mathbf{x}|\mathbf{X}) = \int p(\mathbf{x}|\boldsymbol{\theta})p(\boldsymbol{\theta}|\mathbf{X})d\boldsymbol{\theta}$$

Maximum a posteriori (MAP) estimation

$$\boldsymbol{\theta}^* = \argmax_{\boldsymbol{\theta}} p(\boldsymbol{\theta}|\mathbf{X}) = \argmax_{\boldsymbol{\theta}} \left(\log p(\mathbf{X}|\boldsymbol{\theta}) + \log p(\boldsymbol{\theta})\right)$$

MAP inference

$$p(\mathbf{x}|\mathbf{X}) = \int p(\mathbf{x}|\theta)p(\theta|\mathbf{X})d\theta \approx p(\mathbf{x}|\theta^*).$$

Latent variable models (LVM)

MLE problem

$$m{ heta}^* = rg \max_{m{ heta}} p(\mathbf{X}|m{ heta}) = rg \max_{m{ heta}} \prod_{i=1}^n p(\mathbf{x}_i|m{ heta}) = rg \max_{m{ heta}} \sum_{i=1}^n \log p(\mathbf{x}_i|m{ heta}).$$

The distribution $p(\mathbf{x}|\theta)$ could be very complex and intractable (as well as real distribution $\pi(\mathbf{x})$).

Extended probabilistic model

Introduce latent variable z for each sample x

$$p(\mathbf{x}, \mathbf{z}|\theta) = p(\mathbf{x}|\mathbf{z}, \theta)p(\mathbf{z}); \quad \log p(\mathbf{x}, \mathbf{z}|\theta) = \log p(\mathbf{x}|\mathbf{z}, \theta) + \log p(\mathbf{z}).$$

$$p(\mathbf{x}|\theta) = \int p(\mathbf{x}, \mathbf{z}|\theta)d\mathbf{z} = \int p(\mathbf{x}|\mathbf{z}, \theta)p(\mathbf{z})d\mathbf{z}.$$

Motivation

The distributions $p(\mathbf{x}|\mathbf{z}, \theta)$ and $p(\mathbf{z})$ could be quite simple.

Latent variable models (LVM)

$$\log p(\mathbf{x}|oldsymbol{ heta}) = \log \int p(\mathbf{x}|\mathbf{z},oldsymbol{ heta}) p(\mathbf{z}) d\mathbf{z}
ightarrow \max_{oldsymbol{ heta}}$$

Examples

Mixture of gaussians

PCA model

- $ho(\mathbf{x}|z, oldsymbol{ heta}) = \mathcal{N}(\mathbf{x}|oldsymbol{\mu}_z, oldsymbol{\Sigma}_z)$
- $ightharpoonup p(z) = \mathsf{Categorical}(\pi)$
- $p(\mathbf{z}) = \mathcal{N}(\mathbf{z}|0,\mathbf{I})$

Latent variable models (LVM)

$$\log p(\mathbf{x}|oldsymbol{ heta}) = \log \int p(\mathbf{x}|\mathbf{z},oldsymbol{ heta}) p(\mathbf{z}) d\mathbf{z}
ightarrow \max_{oldsymbol{ heta}}$$

PCA projects original data **X** onto a low dimensional latent space while maximizing the variance of the projected data.

- $p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) = \mathcal{N}(\mathbf{x}|\mathbf{W}\mathbf{z} + \boldsymbol{\mu}, \sigma^2 \mathbf{I})$
- $p(z) = \mathcal{N}(z|0, I)$
- $p(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \mathbf{W}\mathbf{W}^T + \sigma^2 \mathbf{I})$
- $p(\mathbf{z}|\mathbf{x}) = \mathcal{N}(\mathbf{M}^{-1}\mathbf{W}^T(\mathbf{x} \boldsymbol{\mu}), \sigma^2\mathbf{M}), \text{ where } \mathbf{M} = \mathbf{W}\mathbf{W}^T + \sigma^2\mathbf{I}$

Maximum likelihood estimation for LVM

MLE for extended problem

$$egin{aligned} m{ heta}^* &= rg\max_{m{ heta}} p(\mathbf{X}, \mathbf{Z} | m{ heta}) = rg\max_{m{ heta}} \prod_{i=1}^n p(\mathbf{x}_i, \mathbf{z}_i | m{ heta}) = \ &= rg\max_{m{ heta}} \sum_{i=1}^n \log p(\mathbf{x}_i, \mathbf{z}_i | m{ heta}). \end{aligned}$$

However, **Z** is unknown.

MLE for original problem

$$\begin{aligned} \boldsymbol{\theta}^* &= \arg\max_{\boldsymbol{\theta}} \log p(\mathbf{X}|\boldsymbol{\theta}) = \arg\max_{\boldsymbol{\theta}} \sum_{i=1}^n \log p(\mathbf{x}_i|\boldsymbol{\theta}) = \\ &= \arg\max_{\boldsymbol{\theta}} \sum_{i=1}^n \log \int p(\mathbf{x}_i, \mathbf{z}_i|\boldsymbol{\theta}) d\mathbf{z}_i = \\ &= \arg\max_{\boldsymbol{\theta}} \log \sum_{i=1}^n \int p(\mathbf{x}_i|\mathbf{z}_i, \boldsymbol{\theta}) p(\mathbf{z}_i) d\mathbf{z}_i. \end{aligned}$$

Naive approach

Monte-Carlo estimation

$$p(\mathbf{x}|\boldsymbol{\theta}) = \int p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) p(\mathbf{z}) d\mathbf{z} = \mathbb{E}_{p(\mathbf{z})} p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) pprox rac{1}{K} \sum_{k=1}^{K} p(\mathbf{x}|\mathbf{z}_k, \boldsymbol{\theta})$$

Challenge: to cover the space properly, the number of samples grows exponentially with respect to dimensionality of **z**.

Variational lower bound

Derivation 1

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log \int p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) d\mathbf{z} =$$

$$= \log \int \frac{q(\mathbf{z})}{q(\mathbf{z})} p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) d\mathbf{z} = \log \mathbb{E}_q \left[\frac{p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta})}{q(\mathbf{z})} \right] \geq$$

$$\geq \mathbb{E}_q \log \frac{p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta})}{q(\mathbf{z})} = \int q(\mathbf{z}) \log \frac{p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta})}{q(\mathbf{z})} d\mathbf{z} = \mathcal{L}(q, \boldsymbol{\theta})$$

Derivation 2

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \int q(\mathbf{z}) \log p(\mathbf{x}|\boldsymbol{\theta}) d\mathbf{z} =$$

$$= \int q(\mathbf{z}) \log \frac{p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta})}{p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta})} d\mathbf{z} = \int q(\mathbf{z}) \log \frac{p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta})q(\mathbf{z})}{p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta})q(\mathbf{z})} d\mathbf{z} =$$

$$= \int q(\mathbf{z}) \log \frac{p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta})}{q(\mathbf{z})} d\mathbf{z} + \int q(\mathbf{z}) \log \frac{q(\mathbf{z})}{p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta})} d\mathbf{z} =$$

$$= \mathcal{L}(q, \boldsymbol{\theta}) + KL(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta})) \ge \mathcal{L}(q, \boldsymbol{\theta}).$$

Variational lower bound

Evidence Lower Bound (ELBO)

$$\mathcal{L}(q, \theta) = \int q(\mathbf{z}) \log \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z})} d\mathbf{z} =$$

$$= \int q(\mathbf{z}) \log p(\mathbf{x}|\mathbf{z}, \theta) d\mathbf{z} + \int q(\mathbf{z}) \log \frac{p(\mathbf{z})}{q(\mathbf{z})} d\mathbf{z}$$

$$= \mathbb{E}_q \log p(\mathbf{x}|\mathbf{z}, \theta) - KL(q(\mathbf{z})||p(\mathbf{z}))$$

Log-likelihood decomposition

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \mathbb{E}_q \log p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta}) - KL(q(\mathbf{z})||p(\mathbf{z})) + KL(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})).$$

Instead of maximizing incomplete likelihood, maximize ELBO (equivalently minimize KL)

$$\max_{m{ heta}} p(\mathbf{x}|m{ heta}) \quad o \quad \max_{m{q},m{ heta}} \mathcal{L}(m{q},m{ heta}) \equiv \min_{m{q},m{ heta}} \mathit{KL}(m{q}(\mathbf{z})||p(\mathbf{z}|\mathbf{x},m{ heta})).$$

EM-algorithm

$$\mathcal{L}(q, oldsymbol{ heta}) = \int q(\mathbf{z}) \log p(\mathbf{x}|\mathbf{z}, oldsymbol{ heta}) d\mathbf{z} + \int q(\mathbf{z}) \log rac{p(\mathbf{z})}{q(\mathbf{z})} d\mathbf{z}.$$

Block-coordinate optimization

- lnitialize θ^* ;
- ► E-step

$$egin{aligned} q^*(\mathbf{z}) &= rg \max_q \mathcal{L}(q, oldsymbol{ heta}^*) = \ &= rg \min_q \mathit{KL}(q(\mathbf{z}) || \mathit{p}(\mathbf{z}|\mathbf{x}, oldsymbol{ heta}^*)) = \mathit{p}(\mathbf{z}|\mathbf{x}, oldsymbol{ heta}^*); \end{aligned}$$

M-step

$$\theta^* = \arg\max_{oldsymbol{ heta}} \mathcal{L}(q^*, oldsymbol{ heta});$$

Repeat E-step and M-step until convergence.

EM illustration

Amortized variational inference

E-step

$$q(\mathbf{z}) = rg \max_{q} \mathcal{L}(q, oldsymbol{ heta}^*) = rg \min_{q} \mathit{KL}(q||p) = p(\mathbf{z}|\mathbf{x}, oldsymbol{ heta}^*).$$

- \triangleright $p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta}^*)$ could be intractable;
- $ightharpoonup q(\mathbf{z})$ is different for each object \mathbf{x} .

Idea

Restrict a family of all possible distributions $q(\mathbf{z})$ to a parametric class $q(\mathbf{z}|\mathbf{x}, \phi)$ conditioned on samples \mathbf{x} with parameters ϕ .

Variational Bayes

► E-step

$$\phi_k = \phi_{k-1} + \eta \nabla_{\phi} \mathcal{L}(\phi, \theta_{k-1})|_{\phi = \phi_{k-1}}$$

M-step

$$\theta_k = \theta_{k-1} + \eta \nabla_{\theta} \mathcal{L}(\phi_k, \theta)|_{\theta = \theta_{k-1}}$$

Variational EM-algorithm

ELBO

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \mathcal{L}(\boldsymbol{\phi}, \boldsymbol{\theta}) + \mathit{KL}(q(\mathbf{z}|\mathbf{x}, \boldsymbol{\phi})||p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta})) \geq \mathcal{L}(\boldsymbol{\phi}, \boldsymbol{\theta}).$$

E-step

$$\phi_k = \phi_{k-1} + \eta \nabla_{\phi} \mathcal{L}(\phi, \theta_{k-1})|_{\phi = \phi_{k-1}},$$

where ϕ – parameters of variational distribution $q(\mathbf{z}|\mathbf{x},\phi)$.

M-step

$$\theta_k = \theta_{k-1} + \eta \nabla_{\theta} \mathcal{L}(\phi_k, \theta)|_{\theta = \theta_{k-1}},$$

where θ – parameters of the generative distribution $p(\mathbf{x}|\mathbf{z},\theta)$.

Now all we have to do is to obtain two gradients $\nabla_{\phi} \mathcal{L}(\phi, \theta)$, $\nabla_{\theta} \mathcal{L}(\phi, \theta)$.

Challenge: Number of samples n could be huge (we heed to derive unbiased stochastic gradients).

ELBO gradients

$$\mathcal{L}(\phi, oldsymbol{ heta}) = \mathbb{E}_q \left[\log p(\mathbf{x}|\mathbf{z}, oldsymbol{ heta}) + \log rac{p(\mathbf{z})}{q(\mathbf{z}|\mathbf{x}, oldsymbol{\phi})}
ight]
ightarrow \max_{\phi, oldsymbol{ heta}}.$$

M-step: $\nabla_{\theta} \mathcal{L}(\phi, \theta)$

$$egin{aligned}
abla_{m{ heta}} \mathcal{L}(m{\phi}, m{ heta}) &= \int q(\mathbf{z}|\mathbf{x}, m{\phi})
abla_{m{ heta}} \log p(\mathbf{x}|\mathbf{z}, m{ heta}) d\mathbf{z} pprox \\ &pprox
abla_{m{ heta}} \log p(\mathbf{x}|\mathbf{z}^*, m{ heta}), \quad \mathbf{z}^* \sim q(\mathbf{z}|\mathbf{x}, m{\phi}). \end{aligned}$$

E-step: $\nabla_{\phi} \mathcal{L}(\phi, \theta)$

Difference from M-step: density function $q(\mathbf{z}|\mathbf{x}, \phi)$ depends on the parameters ϕ , it is impossible to use the Monte-Carlo estimation:

$$egin{aligned}
abla_{\phi} \mathcal{L}(\phi, oldsymbol{ heta}) &=
abla_{\phi} \int q(\mathbf{z}|\mathbf{x}, \phi) \left[\log p(\mathbf{x}|\mathbf{z}, oldsymbol{ heta}) + \log rac{p(\mathbf{z})}{q(\mathbf{z}|\mathbf{x}, \phi)}
ight] d\mathbf{z} \ &
eq \int q(\mathbf{z}|\mathbf{x}, \phi)
abla_{\phi} \left[\log p(\mathbf{x}|\mathbf{z}, oldsymbol{ heta}) + \log rac{p(\mathbf{z})}{q(\mathbf{z}|\mathbf{x}, \phi)}
ight] d\mathbf{z} \end{aligned}$$

Reparametrization trick

Law of the unconscious statistician (LOTUS)

Let X be a random variable and let Y = g(X). Then

$$\mathbb{E}_{p_Y}Y = \mathbb{E}_{p_X}g(X) = \int g(\mathbf{x})p(\mathbf{x})d\mathbf{x}.$$

Examples

- $r(x) = \mathcal{N}(x|0,1), y = \sigma \cdot x + \mu, p_Y(y|\theta) = \mathcal{N}(y|\mu,\sigma^2), \\ \theta = [\mu,\sigma].$
- $ightharpoonup \epsilon^* \sim r(\epsilon), \quad \mathbf{z} = g(\mathbf{x}, \epsilon, \phi), \quad \mathbf{z} \sim q(\mathbf{z}|\mathbf{x}, \phi)$

$$\nabla_{\phi} \int q(\mathbf{z}|\mathbf{x}, \phi) f(\mathbf{z}) d\mathbf{z} = \nabla_{\phi} \int r(\epsilon) f(\mathbf{z}) d\epsilon$$
$$= \int r(\epsilon) \nabla_{\phi} f(g(\mathbf{x}, \epsilon, \phi)) d\epsilon \approx \nabla_{\phi} f(g(\mathbf{x}, \epsilon^*, \phi))$$

ELBO gradient (E-step, $\nabla_{\phi} \mathcal{L}(\phi, \theta)$)

$$\nabla_{\phi} \mathcal{L}(\phi, \theta) = \nabla_{\phi} \int q(\mathbf{z}|\mathbf{x}, \phi) \log p(\mathbf{x}|\mathbf{z}, \theta) d\mathbf{z} - \nabla_{\phi} \mathsf{KL}(q(\mathbf{z}|\mathbf{x}, \phi)||p(\mathbf{z}))$$

$$= \int r(\epsilon) \nabla_{\phi} \log p(\mathbf{x}|g(\mathbf{x}, \epsilon, \phi), \theta) d\epsilon - \nabla_{\phi} \mathsf{KL}(q(\mathbf{z}|\mathbf{x}, \phi)||p(\mathbf{z}))$$

$$\approx \nabla_{\phi} \log p(\mathbf{x}|g(\mathbf{x}, \epsilon^*, \phi), \theta) - \nabla_{\phi} \mathsf{KL}(q(\mathbf{z}|\mathbf{x}, \phi)||p(\mathbf{z}))$$

Variational assumption

$$egin{aligned} r(\epsilon) &= \mathcal{N}(\mathbf{0}, \mathbf{I}); \quad q(\mathbf{z}|\mathbf{x}, \phi) = \mathcal{N}(\mu_{\phi}(\mathbf{x}), \sigma_{\phi}^2(\mathbf{x})). \ \mathbf{z} &= g(\mathbf{x}, \epsilon, \phi) = \sigma_{\phi}(\mathbf{x}) \cdot \epsilon + \mu_{\phi}(\mathbf{x}). \end{aligned}$$

Here $\mu_{\phi}(\cdot), \sigma_{\phi}(\cdot)$ are parameterized functions (outputs of neural network).

- ▶ $p(\mathbf{z})$ prior distribution on latent variables \mathbf{z} . We could specify any distribution that we want. Let say $p(\mathbf{z}) = \mathcal{N}(0, \mathbf{I})$.
- ▶ $p(\mathbf{x}|\mathbf{z}, \theta)$ generative distibution. Since it is a parameterized function let it be neural network with parameters θ .

Variational autoencoder (VAE)

Final algorithm

- ▶ pick $i \sim U[1, n]$;
- \triangleright compute a stochastic gradient w.r.t. ϕ

$$egin{aligned}
abla_{\phi} \mathcal{L}(\phi, oldsymbol{ heta}) &pprox
abla_{\phi} \log p(\mathbf{x} | g(\mathbf{x}, oldsymbol{\epsilon}^*, \phi), oldsymbol{ heta}) \ &-
abla_{\phi} \mathsf{KL}(q(\mathbf{z} | \mathbf{x}, \phi) || p(\mathbf{z})), \quad oldsymbol{\epsilon}^* \sim r(oldsymbol{\epsilon}); \end{aligned}$$

ightharpoonup compute a stochastic gradient w.r.t. heta

$$abla_{m{ heta}} \mathcal{L}(m{\phi}, m{ heta}) pprox
abla_{m{ heta}} \log p(\mathbf{x}|\mathbf{z}^*, m{ heta}), \quad \mathbf{z}^* \sim q(\mathbf{z}|\mathbf{x}, m{\phi});$$

• update θ , ϕ according to the selected optimization method (SGD, Adam, RMSProp):

$$\phi := \phi + \eta \nabla_{\phi} \mathcal{L}(\phi, \theta),$$

$$\theta := \theta + \eta \nabla_{\theta} \mathcal{L}(\phi, \theta).$$

Variational autoencoder (VAE)

- VAE learns stochastic mapping between x-space, from complicated distribution π(x), and a latent z-space, with simple distribution.
- The generative model learns a joint distribution $p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) = p(\mathbf{z})p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta})$, with a prior distribution $p(\mathbf{z})$, and a stochastic decoder $p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta})$.
- The stochastic encoder $q(\mathbf{z}|\mathbf{x}, \phi)$ (inference model), approximates the true but intractable posterior $p(\mathbf{z}|\mathbf{x}, \theta)$ of the generative model.

Variational Autoencoder

Variational autoencoder (VAE)

- lacksquare Encoder $q(\mathbf{z}|\mathbf{x},\phi)=\mathsf{NN}_e(\mathbf{x},\phi)$ outputs $\mu_\phi(\mathbf{x})$ and $\sigma_\phi(\mathbf{x})$.
- ▶ Decoder $p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) = \mathsf{NN}_d(\mathbf{z}, \boldsymbol{\theta})$ outputs parameters of the sample distribution.

image credit:

Bayesian framework

Posterior distribution

$$p(\theta|\mathbf{X}) = \frac{p(\mathbf{X}|\theta)p(\theta)}{p(\mathbf{X})} = \frac{p(\mathbf{X}|\theta)p(\theta)}{\int p(\mathbf{X}|\theta)p(\theta)d\theta}$$

Bayesian inference

$$p(\mathbf{x}|\mathbf{X}) = \int p(\mathbf{x}|\theta)p(\theta|\mathbf{X})d\theta$$

Maximum a posteriori (MAP) estimation

$$\boldsymbol{\theta}^* = \argmax_{\boldsymbol{\theta}} \log p(\boldsymbol{\theta}|\mathbf{X}) = \argmax_{\boldsymbol{\theta}} \bigl(\log p(\mathbf{X}|\boldsymbol{\theta}) + \log p(\boldsymbol{\theta})\bigr)$$

MAP inference

$$p(\mathbf{x}|\mathbf{X}) = \int p(\mathbf{x}|\theta)p(\theta|\mathbf{X})d\theta = \int p(\mathbf{x}|\theta)\delta(\theta - \theta^*)d\theta \approx p(\mathbf{x}|\theta^*).$$

VAE as Bayesian model

Posterior distribution

$$p(\theta|\mathbf{X}) = \frac{p(\mathbf{X}|\theta)p(\theta)}{p(\mathbf{X})}$$

ELBO

$$\begin{aligned} \log p(\boldsymbol{\theta}|\mathbf{X}) &= \log p(\mathbf{X}|\boldsymbol{\theta}) + \log p(\boldsymbol{\theta}) - \log p(\mathbf{X}) \\ &= \mathcal{L}(q,\boldsymbol{\theta}) + \mathcal{K}L(q||p) + \log p(\boldsymbol{\theta}) - \log p(\mathbf{X}) \\ &\geq \left[\mathcal{L}(q,\boldsymbol{\theta}) + \log p(\boldsymbol{\theta})\right] - \log p(\mathbf{X}). \end{aligned}$$

EM-algorithm

► E-step

$$q(\mathbf{z}) = rg \max_{q} \mathcal{L}(q, oldsymbol{ heta}^*) = rg \min_{q} \mathit{KL}(q||p) = p(\mathbf{z}|\mathbf{x}, oldsymbol{ heta}^*);$$

M-step

$$oldsymbol{ heta}^* = rg \max_{oldsymbol{ heta}} \left[\mathcal{L}(q, oldsymbol{ heta}) + \log p(oldsymbol{ heta})
ight].$$

Summary

- ► LVM introduces latent representation of observed samples to make model more interpretable.
- ► LVM maximizes variational evidence lower bound (ELBO) to find MLE of model parameters.
- The general variational EM algorithm maximizes ELBO objective.
- Amortized inference allows to efficiently compute stochastic gradients for ELBO using Monte-Carlo estimation.
- ► The reparametrization trick gets unbiased gradients w.r.t to a variational posterior distribution.
- The VAE model is an LVM with two neural network: for stochastic encoder $q(\mathbf{z}|\mathbf{x}, \phi)$ and for stochastic decoder $p(\mathbf{x}|\mathbf{z}, \theta)$.
- ightharpoonup VAE is not a "true" bayesian model since parameters heta do not have a prior distribution.