General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

JAN 1970

NASA TH X- 63789

SPECTRAL ANALYSIS OF DATA FROM THE "SIRIO" FLUXGATE MAGNETOMETER

NORMAN F. NESS

NOVEMBER 1969

GREENBELT, MARYLAND

1

SPECTRAL ANALYSIS OF DATA FROM THE "SIRIO" FLUXGATE MAGNETOMETER

Norman F. Ness*

Laboratory for Space Sciences NASA-Goddard Space Flight Center Greenbelt, Maryland USA

November 1969

Extraterrestrial Physics Branch Preprint Series

^{*}On Sabbatical Leave at the University of Rome, Marconi Institute of Physics, Rome, Italy

1.0 INTRODUCTION

The magnetic field experiment on the SIRIO spacecraft uses a triaxial set of sensors to obtain precise measurements of the vector magnetic field (Ness et al., 1969). An early assignment of telemetry allocated a total of 96 words of 8 bits each in the telemetry format, as shown in Figure 1.

The sampling rate of the instrument was 4 times per frame, uniformly spaced, so that the Nyquist frequency was 2 times the frame rate (of 1 per second) or $f_N = 2$ Hz. This frequency is twice the nominal spin frequency of the satellite but only slightly higher than the proton cyclotron frequency, $f_p = 1.7$ Hz, assuming a field of 110 gamma. Time variations of the field of up to 50% are expected so that fp will range between 0.85 and 3.4 Hz.

In mid-October, discussions of the possible use of more telemetry for the magnetic field experiment were held. The net result was that the sampling rate could be doubled in frames 0-6, but not in frame 7, and of equal importance an increase in the precision for each A/D conversion from 8 to 9 bits was also permitted. This substantially improves the experiment since the digitization uncertainty is now ± 85 gamma/512 = ± 0.16 gamma while the Nyquist frequency is 4 Hz, well above the cyclotron frequency.

However, since in frame 7 the sampling rate is only one half that of the other frames, a question arises about the effects in spectral analysis using data which periodically contain missing values. It is the purpose of this note to investigate this problem in the specific situation of the SIRIO experiment.

This note will also outline the general principles for analyzing the effects on spectral analysis of uniformly sampled data streams which contain missing values.

2.0 MATHEMATICAL BASIS (Bracewell, 1965)

It is well-known that a continuous time function, f(t) whose spectrum F(f) is band limited from 0 to f_N Hz, is uniquely representable for all values of t by uniformly spaced discrete samples at a rate $f_S = f_N * 2$.

That is, given f(t) then multiplication by

$$\Sigma \qquad \delta(t-k\Delta t)$$

$$K = -\infty$$

will produce a discrete time series at the sample points $t_k = k\Delta t$ such that F(f) can be uniquely determined ($\Delta t = 1/f_S = 1/2 f_N$). $\delta(t-t_0)$ is an impulse at $t=t_0$ such that $\delta(t-t_0)=0$ everywhere except at t_0 when it = ∞ and normalized so that.

$$\int_{-\infty}^{\infty} \delta(t-t_0)dt = 1.$$

The spectrum F(f) is then replicated in the frequency domain so that the discrete time series spectrum is given by

(2.1)
$$\begin{array}{c} + \infty \\ \Sigma \\ k = - \infty \end{array}$$
 $(f-k/\Delta t)$

For the analysis to be performed, use shall be made of the following three Fourier Transform theorems:

Addition: the spectrum of time series A plus time series B is simply the sum of the corresponding spectra, i.e.

(2.2)
$$F_{A+B}(f) = F_A(f) + F_B(f)$$

Shifting: The spectrum of a time series A offset in time by an amount Δt is given by the produce of the spectrum and exp $(-i2\pi f\Delta t)$ i.e.

(2.3)
$$F_{A(t+\Delta t)} (f) = F_{A(t)} (f) * e^{-i2\pi f \Delta t}$$

Similarity: the spectrum of a time series A', distorted in time linearly by a factor a, is given by the original spectrum distorted in frequency linearly by a-1 and in amplitude by 1/|a|

(2.4)
$$F_{A'(f)} = \frac{1 F(f/a)}{|a|}$$
where $f_{A'}(t) = f$ (at)

3.0 APPLICATIONS

In our study of the SIRIO uniformly sampled time series with periodic data gaps, we will assume the original time series, f(t), to be appropriately band limited so that F(f)=0 for $f \geq f_N$ where f_N is computed on the basis of 8 samples per frame, i.e. $F_N=4$ Hz.

We assume that the repetitive time base for the time series is 8 frames or one format. If data points were available at the uniform rate of f_s , then the length of this time base would be $8x8x\Delta t = 64\Delta t$. The real window can be considered to be of equal length but with some of the data points missing.

The SIRIO sampling window is then given by the following function:

(3.1)
$$w(t) = \sum_{k=-\infty}^{+\infty} W_k \delta(t-k\Delta t)$$

where

(3.2)
$$W_K = 1$$
 for $-28 \le K \pmod{64} \le +28$ $W_K = 1$ for $K \pmod{64} = \pm 30$ $W_K = 0$ for $K \pmod{64} = \pm 29; \pm 31$ $W_K = 0.5$ for $K \pmod{64} = \pm 32$

The origin has been selected so that the sampling window is an even function of time and the repetition rate is the format rate. (See Figure 2).

The weights for the end values are one half because the window overlaps at these terminal points.

Spectral analysis of the STRTO data will yield a result which is the convolution of the true spectrum F(f) with the spectrum of the window given in (3.1). The spectrum of the window in 3.1 is readily obtained by the use of the three theorems given in (2.2) to (2.4).

The principal effect to be noticed from application of the theorems is that the spectrum of the window (3.1) will contain lines (impulses of variable amplitude) at frequencies equal to 1/64 of the sampling frequency. We shall refer to these as "parasitic lines". That is, the spectrum of (3.1) is

(3.4)
$$W_{SIRIO}(f) = \sum_{k=-\infty}^{+\infty} b_k \delta(f - \frac{k}{64} f_s)$$

The values of the \mathbf{b}_K are determined by the values of the \mathbf{W}_K as follows:

(3.5)
$$W_{SIRIO}(f) = 1 + \sum_{k=0}^{32} W_{K} \exp (i 2\pi K f/f_{N})$$

Note that if all the $W_K = 1.0$ except for K (modulo 64)=32 when W_K -0 5, then b_K =0 for all K except K(modulo 64 = 0 when $b_K = 1.0$. This of course is what would be expected since the completely filled data window for SIRIO should be invariant to a selection of time base for repetition. The actual time window for SIRIO is as given in (3.2) and the corresponding spectral window is shown in Figure 3a for $0 \le f \le f_N$.

The effect of the missing sample points is to introduce relatively small amplitude lines (<7% of the main line at f=0). These lines will lead to a contamination of all spectral estimates since the estimated spectrum from the SIRIO data will be related to the true spectrum through the convolution of (3.3) with F(f). That is

(3.6)
$$F_{\text{estimated}} (f) = \int_{-\infty}^{+\infty} F_{\text{true}}(\xi) * W_{\text{SIRIO}}(f - \xi) d\xi$$

The contaminating lines are seen to be both small and of alternating sign. Thus, depending upon the exact properties of F(f), i.e. the position of lines and the general shape, $F_{\rm est}$ (f) may or may not be a valid approximation to F(f). Especially in the interpretation of the spectral results, should one be aware of these contaminating effects.

As an example, if the true spectrum of F(f) contained only one line of amplitude A at $f = \alpha f_N$, then the estimated spectrum would be given by

(3.7) F_{est} (f) = A * W_{SIRIO} (f - α f_N)

and a whole set of parasitic lines would be computed and appear to be present in the estimated spectrum.

One other note here is that in this treatment we have assumed an infinitely long time series so that the spectra are all composed of lines. In any real computation we shall be faced with use of a finite length record (time interval = T), the effect of which is to broaden each line by convolution by the transform ($\sin (\pi f T)/\pi f T$) of the data window corresponding to the available time interval. In order to avoid overlapping the individual parasitic lines, at a spacing of $\frac{1}{32}$ f_N , it would be necessary to consider using a time series on the order or greater than 32 times the sequence length.

Another important note is that the present discussion has dealt exclusively with the amplitude spectra. It is most probable that in practice the power spectra will be computed. The effect of this is to multiply the true power spectrum by the square of the data window's transform.

Thus the maximum contamination for the raw SIRIO window will be $(0.065)^2 = 0.42\%$ of the main peak. At the same time, we should be aware that any overall amplitude spectral slope

such as $f^{-\alpha}$ will now become $f^{-2\alpha}$ and the problem of contamination is improved only to the extent that the alternating signs of the parasitic lines leads to cancellation of their individual contribution. This cancellation occurs only for the amplitude spectra.

4.0 IMPROVEMENTS

It is possible to consider improving the accuracy of STRIO spectral estimates, at least to some degree, by using techniques similar to those employed for treating spurious data points which occur at random in any real experimental data set. These are due to a variety of causes, such as poor transmission, reception, encoding, decoding, etc. In these cases the conceptually simple and quantitatively defined method of numerical interpolation can be employed.

In this method the value for a missing data point is obtained from a weighted sum of neighboring data points. Classical formulae used in the well known techniques of data smoothing (Hildebrand, 1956) are especially convenient for solution to this problem.

As a first approximation consider using the zeroth order, 3 point formula:

(4.1)
$$y_i = \frac{1}{3} (f_{i-1} + f_i + f_{i+1})$$

where y_i represents the smoothed output for three data points, centered about the ith point. If in fact f_i is not available (as would be the case for K (modulo 64) = ± 29 , ± 31 , then solving for f_i (assumed = y_i) we obtain the estimate

(4.2)
$$y_i = \frac{1}{2} (f_{i-1} + f_{i+1})$$

Applying this to the case of SIRIO we have the following weights

 W_K = 1 for K (modulo 64) \leq -27 W_K = 1+ $\frac{1}{2}$ for K (modulo 64) = $\frac{+28}{2}$ W_K = 2 for K (modulo 64) = $\frac{+30}{2}$ W_K = 1 for K (modulo 64) = $\frac{+32}{2}$

Substituting these values in (3.4) yields the corresponding data window shown in Figure 3b. Here is is seen that there is a substantial reduction in the amplitude of the parasitic lines for $f < 0.5f_N$, a slight increase for $0.5f_N < f < 0.75f_N$ and an increase by almost a factor of two for $f > 0.8f_N$.

This window is more attractive, from an analysis viewpoint, since contamination greater than 1% does not occur until $f/f_N > 0.6$. This means that if the true spectrum falls off rapidly with frequency, such as $f^{-\alpha}$ where $\alpha > 1$, only the values near the folding frequency will possibly be contaminated. If the bandpass of the instrument is chosen to be less than f_N , say $f_{LP} < 0.8 \ f_N$, then almost undistorted spectral estimates can be obtained.

This technique of using smoothing formulae to estimate the values associated with t_k where K (modulo 64) = ± 29 , ± 31 can be extended to higher order, which naturally requires additional data points. In those instances where the estimated value for t_K , K (modulo 64) = ± 31 , depends upon the value of t_K K(modulo 64) = ± 29 or viceversa, then repeated

or chained use of the formulae is required. Given here without further derivation are the modified weights (which are non-unity) for the following cases:

The improvements, or lack thereof, can be seen in Figures 3c, 3d, 3e and 3f respectively.

5.0 COMMENTS

As a part of this study, the effect of changing the location of the missing data points within the data set was investigated. The purpose here was to see whether or not an improvement was realized simply by redistributing the sampling times. The intuitively least influential distribution might seem to be, at first consideration, that of a uniform distribution of missing values. In the case at hand, SIRIO, this would be 7 consecutive values followed by one missing data value. We would expect this to introduce a partioning of the spectral window by eighths and it is precisely what happens, as seen in Figure 3g. Here the 7 resitic lines, of alternating sign, have equal magnitude = 6.5%.

We conclude that the spacing of gaps periodically is not an improvement since the cancellation enjoyed by alternating signs occurs now over a much wider frequency interval than for the present SIRIO distribution. In addition, the amplitudes are all at the same relatively large value. This result might have been anticipated if we had considered the effects of constructive interference of the missing values, with respect to this time distribution.

The effect of estimating the values in the data gaps by using the simple formula in (4.2) yields the data window shown in Figure 3h. Again the amplitudes of the parasitic lines at frequencies near the main line f=0 are reduced while those near f_N are increased. An improvement is made which is similar in spirit to that of cases 3a, 3b.

If the missing points are immediately adjacent to each other then a slight alteration of these parasitic lines is effected.

6.0 FUTURE STUDIES

It is clear that the use of higher order formula for interpolation (and smoothing) of the data may lead to significant improvements beyond those already achieved. Possibly these shall be worth the computational effort and they definitely should be investigated.

In addition it might be of interest to construct some artificial time series, representative of the anticipated data, and examine the effects of these various windows.

7.0 REFERENCES

- Bracewall, R., The Fourier Transform and Its Application, McGraw Hill, N. Y., 1965.
- Hildebrand, F. B., <u>Introduction to Numerical Analysis</u>, McGraw Hill, N. Y., 1956.
- Ness, N. F., D. H. Fairfield, F. Mariani and S. Cantarano, <u>Magnetic</u>

 Field Experiment for SIRIO Spacecraft, NASA-GSFC X-616-69-293.

8.0 LIST OF FIGURES

- 1. Telemetry format for SIRIO Trapped Radiation Experiments
- 2. Data Sampling Window for Magnetic Field Experiment for SIRIO
- 3. Spectral Windows for various data sampling windows discussed in the text.

9.0 APPENDIX A

The following computer pointouts represent the results of the numerical evaluation of formula (3.5). The weights used are listed in the format:

W_{1}	8 ^W
w ₉	W16
W _{1.7} ······	W ₂₄
W ₂₅ · · · · · · · · · · · · · · · · · · ·	₩ 32

CONTAINS THE 9TH BITS OF 27 BIT BYTES FOR TWO SETS OF XYZ READOUTS

NEW SIRIO FORMAT - Sampling at Words 0,8,16,24,32,40,48,56 (FOR FRAME 7 DELETE 8,24,40,56)

SIRIO Magnetic Field Sampling Window

Fig. 2

SIRIO WINDOW USING SIMILARITY . + SHIFT THEOREMS

000000	000000	000000
1:	H •(7
000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000	000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000	100000 1.000000 1.000000 1.000000 1.000000 1.000000 X.000000
1.000000	1.000000	1.000000
1.000000	1.000000	1.000000
1.000000	1.000000	1.300000
1.000000	1.000000	1.000000
1.000000	1.000060	1.000000
TO 32 ARE 1.000000 1.0	1.000000 1.0	1.000000 1.0
ARE		
32		
2		
H 5		
FRO		
WEIGHTS FROM 1		

1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 .500000

AM	00000	-00000	00000	000	000	00000-	0	00000-	0	0	00000	00000	00000-	8	0	00000	00000	0	00000	0		00000	00001	000	-0000	00	•00000
F/FC	1.03125	1.06250	1.12500	.1875	200	.2812	•	1.34375		-	7	1	1.53125	•	1.	1.65625	•	•	•	•	•	•	• •	•	.9687	00	•0315
AMP	1.00000	000000	00000	000		30	000	000000	0000	• 00000	00000	00000	000000•	00000	• 00000	8	8	$\overline{}$	8	000	Ö	000	00000	00000	000	Ö	00000•
F/FC	00000	.03125	.09375	S	•18750 •18750	4 W	.28125	.31250	.37500	• 40625	•43750	v	.53125	··•	.59375	a	LO (•68750	**	SO (፟	-	.84375	0		687	1.00000

SIRIO WINDOW USING SIMILARITY . + SHIFT THEOREMS WEIGHT

1.000000	000	1.0000	1.0000	1.0000	1.0000	1.0000
1.000000 1.000001	1.000000 1.0000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000 1.000000 1.000000 1.0000000 1.0000000 1.000000 1.000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.00000000	1.000000 1.0000000 1.0000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000 1.000000 1.000000 1.0000000 1.000000 1.000000 1.000000 1.0000000 1.0000000 1.0000000 1.000000 1.00000000	1.000000 1.000000 1.000000 1.000000 1.00000	1.000000 1.000000 1.000000 1.000000 1.00000	1.000000 1.000000 1.000000 1.000000 1.00000	1.000000 1.000000 1.000000 1.000000 1.00000
1.000000	1.000000 1.000000 1.000000	1.000000 1.000000 1.000000 1.000000	1.000000 1.000000 1.000000	1.000000 1.000000 1.000000	1.000000 1.000000 1.000000	1.000000 1.000000 1.000000 1.000000
	1.000000	1.000000 1.000000	1.000000 1.000000	1.000000 1.000000	1.000000 1.000000	1.000000 1.000000
1.000000						

AMP	00000	00000	00000	00000	00000	00000	00000	.00000	00000	00000	00000	00000	000000	00000	000000	00000	000000	00000	000000	00000	00000	00000	00001	000	0000	1.00000	000
F/FC	1.03125	1.06259	1,12500	1.18750	1.25000	1.28125	1.31250	1.34375	1.40625	1.43750	1.46875	1.50000	1,53125	1.59375	1.62500	1.65625	1.68750	1.71875	1.75000	1.78125	1.81250	1.84375	1.90625	1.93750	.9687	2.00000	.0312
AMP	1.00000	000000	000000-	00000	00000	00000	00000	000000-	00000	000000	00000	000000	000000	00000	000000	00000	000000	00000	000000	00	000	00	000000	000	00	000000	000
F/FC	000000	.03125	.12500	15625	.21875	.25000	.28125	.34375	.37500	•40625	.43750	•46875	.53125	.56250	.59375	•62500	•65625	•68750	.71875	.75000	.78125	.81250	.84375	•90655	.93750	.96875	1.00000

SIRIO WINDOW USING SIMILARITY ++ SHIFT THEOREMS

1.000000	1.000000	1.000000
WEIGHTS FROM 1 TO 32 ARE 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000	1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000	1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1.000000	1.000000	1.000000
1.000000	1.000000	1.000000
1.000000	1.000000	1.000000
1.000000	1.000000	1.000000
1.000000	1.000000	1.000000
1.000000	1.000000	1.000000
ARE		
32		
10		
FROM 1		
WEIGHTS		

1.000000 1.000000 1.000000 1.000000 .000000 1.000000 .000000 .500000

AMP	0	_	220	435	20	12	100	9	082	41	174	180	160	20	190	000	190	0120	160	180	174	.01417	085		100	12	•03266	35	3	8	650	1.00000	651
F/FC	1.03125	1.06250	1.093/5	1.12500	1.15625	1.18750		1.25000	1.28125	.,		1.37500	7	7	1.46875		47	3,	.,	9	9	3	•	•	-	~	~	~	•	•	•	•	•
AMP	1.00000	•06507	PC	53	K)	.03266	21	0	0	00825	4		Ø	O	N	90		VO.	C)	•01609	∞	~	3	a)	0	0.7	.02122	W	• 04355	ניו	9	06507	99
F/FC	.00000	03125	220	937	250	562	875	187	500	12	125	437	750	062	75	87	8	12	23	.59375	20	3	875	187	•75000	812	.81250	437	·87500	62	375	.96875	000

SIRIO WINDOW USING SIMILARITY ++ SHIFT THEOREMS

1.000000	1.000000	1.000000
000000 1.006000 1.006000 1.000000 1.006000 1.006000 1.000000	000000 1.000000 1.700000 1.000000 1.000000 1.000000 1.000000	0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
1.000000	1.000000	1.000000
1.000000	1.000000	1.000000
1.000000	1.100000	1.000000
1.000000	1.000000	1.000000
1.000000		1.000000
WEIGHTS FROM 1 TO 32 ARE 1.000000 1.	1.0000001.	1.000000 1.
ARE		
32		
10		
ROM		
ITS F		
EIGH		

1.000000 1.000000 1.000000 1.500000 .000000 2.000000 .000000 1.000000

dWV	12171	1:9933	00	16	36	01670	60	2	206	9	M	•01946	01346	• 00660	00000	00542	.00907	01071	.01044	00865	•00591	00283	00000•	a	m	.00361	31	•00212	00106	· 00024:	00	•00035
F/FC	1.03125	1:89358	•	1.15625	•	_	•	•	•	•	•		•	_	•	•	•	•	•	1.65625	•	•	•	•	•	•	•	•	•	687	.0000	2.03125
AMP	1.00000	::88483	.00214	03	036	n	.00214	000	00283	• 00591	- 00865	104	0107 ¹	10600.	00542	00000	• 00660	01346	•01940	02338	•02408	02067	•01264		19	9	576	• 07856	3	.11218	~	•12500
F/FC	00000	: 83155	.09375	.12500	15625	.18750	.21875	•25000	.28125	.31250	.34375	.37500	• 40625	.43750	•46875	•50000	.53125	.56250	.59375	•62500	•65625	.68750	.71875	•75000	.78125	.81250	m	75	ŏ	375	189	1.00000

SIRIO WINDOW USING SIMILARITY . + SHIFT THEOREMS

1.000000	1.000000	1.000000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	000000 1.000000, 1.000000 1.000000 1.000000 1.000000 1.000000	0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
1.000000	1.000000	1.000000
1.000000	1.000000	1.000000
1.000000	1.000000	1.000000
1.000000	1.000005	1.000000
1.000000	-	•
WEIGHIS FROM 1 TO 32 ARE 1.00000	1.000000	1.0000001
ARE		
32		
10		
FROM 1		
WEIGHIS		

.250000 1.000000 1.250000 2.500000 .000000 2.000000 .000000 .500000

AMP	14618	18	08183	3	13	00667	.01802	02478	•03155	04043	• 04982	05520	.05157	03647	.01190	.01563	03722	.04502	03548	.01100	.02078	04978	•06726	06897	• 05640	03570	.01480	00005	00603	.00518	•	1.00000	00167
F/FC	1,03125	1.06250	1.09375	1.12500	1.15625	1.18750	1.21875	1.25000	•	1,31250	•	•	•	1.43750	1.46875	•	1.53125	•	1.59375	•	•	•	1.71875	•	1.78125	1.81250	1.84375	1.87500	1.90625	1.93750	•	2.00000	•
AMP	1.00000	~	.00515	090	00007	148	03572	.05641	06897	.06726	-•04978	.02078	.01100	03549	• 04502	-~03722	-	-	03648	.05158	S	• 04982		Ď	54	80	00665	136	.04427	08184	8	46	Ñ
F/FC	00000	• 03125	• 06250	• 09375	•12500	•15625	.18750	.21875	• 52000	.28125	.31250	.34375	•37500	• 40625	•43750	•46875	.50000	.53125	.56250	.59375	•62500	•65625	•68750	.71875	•75000	.78125	.81250	.84375	.87500	• 90625	.93750	• 96875	1.00000

SIRIO WINDOW USING SIMILARITY . SHIFT THEOREMS

1.000000	1.000000	1.000000	1.071429
000000 1.0000000 2.0000000 1.0000000 1.0000000 1.0000000 1.0000000	00000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000	000000 1.0000000 1.000000 1.000000 1.000000 1.000000 1.000000	000000 1.163265 1.326531 .000000 1.938776 .000000 1.071429
1.000000	1.000000	1.000000	1.938776
1.000000	1.000000	1.000000	.000000
1.000000	1.000000	1.000000	1.326531
1.000000	1.000000	1.000000	1.163265
1.000000	1.000000	1.000000	1.000000
WEIGHTS FROM 1 TO 32 ARE 1.000000 1.0	1.000000 1.0	1.000000 1.0	1.000000 1.0
ARE			
32			
. 10			
FROM 1			
WEIGHTS			

AMP	11256	-:19538	.08138	64	46	28	=	8	14	21	2	2	17	מ	50	90	m		18	17	13	96800	30	0	00302	3	00417	m	4	8	0	•00020
F/FC	1.03125	• •	1.12500	• 15	• 18	-21	-25	•28	.31	.34	.37	040	643	•46	50	53	•56	• 59	•62	•65	•68	.71	• 75	•78	.83	9	.87	96	.9	• 96	• 00	•03
AMP	1.00000	-:88945	03	041	.00432	030	8	+00000	80	13	17	18	17	2	-•00692	0	50	01754	22	24	2	01487	9	7	02847	46	3	8	09539	•10598	11256	•11480
F/FC	00000	FAU	.09375	C	LO .	œ ∙	-	L D	œ	-	3	~	_	P)	w	0	F)	w	Q,	w	u)	a) (•	u,	w.	-	J	.87500	-	.93750	w	1.00000

SIRIO WINDOW USING SIMILARITY ++ SHIFT THEOREMS

000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000	000000 1.0000000 1.000000 1.000000 1.000000 1.000000 1.000000	1000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
1.000000	1.000000	1,000000
1.000000	1.000000	1.000000
1.000000	1.000000	1.000000
1.000000	1.000000	1.000000
1.000000	1.000000	1.000000
1.000000	1.000000	1.000000
WEIGHTS FROW 1 TO 32 ARE 1.000000 1.0	1.000000 1.0	1.000000 1.00
ARE		
32		
1 10		
%0×		
TS FI		
WEIGH		

1.000000 1.000000 1.000000 1.250000 .000000 2.500000 .000000 .750000

AMP	12201	1:19357	.08178	614	#	91	00	162	89	•03759	04225	410	0369	312	σ	7	0130	084	8	23	08	9	003	03	02	0001		000	0000	00	•00000•
F/FC	1.03125	1:09359	50	562	.1875	.2187	.2500	.2815	125	37	1.37500	4375	4687	.5000	.5312	10	.5937	•6250	•6562	•6875	~	.7500	.7812	.8125	~	8750	7006	.9375	87	• 0000	2
AMP	1.00000	00000 00000 •	00002	001	005	003	603	0	003	00236	.00485	130	0187		312	69	412	432	422	375	289	162	000	191		06149	170	995	•	220	
F/FC	000000	. 93125	93	25	56	87	87	20	81	12	.34375	90	.43750	8	8	31	.56250	נט נא	S	56	87	3	20	8	77	.84375	2	90	- (896.	1.00000

SIRIO WINDOW USING SIMILARITY . + SHIFT THEOREMS

1.000000	1.000000	1.219282
000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000	0000000 1.0000000 1.0000000 1.0000000 1.000000 1.000000 1.000000	000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.219282
1.000000	1.000000	1.000000
1.000000	1.000000	1.000000
1.000000	1.000000	1.000000
1.000000	1.000000	1.000000
1.000000	1.000000	1.000000
WEIGHTS FROM 1 TO 32 ARE 1.000000 1.	1.000000 1.0	1.000000 1.
ARE		
32		
10		
ROM 1		
WEIGHTS !		

•616257 •954631 1.024575 1.703214 .000000 2.134216 .000000 .847826

AMP	13920	11715	601	84	241	すっ	0047	2/2	1.0250Z	20	417	294	115	56	164	78	01111	001	100	160	167	132	82	037	10	00	02	00	00	1.00000	00
F/FC	1.03125	1.06250	25	26	87	8	ည်း	50	エア	1.37500	90	.437	68	90	31	89	50	י מ	56	1.68750	18	•750	81	.812	なる	75	90	.937	• 968	2.0000	•031
AMP	1.00000	00000	001	000	010	037	.0082	7010	01608	0100	-	111	178	164	056	115	200	• U41.7	させな	36	230	078	47	144	241	384	01	881	171		#
F/FC	00000	.03125	.09375	•12500	•15625	.18750	•21875	00000	• KOLKU	.34375	.37500	• 40625	•43750	•46875	• 20000	.53125	• 56250	.58375	•62500	•65625	•68750	.71875	•75000	.78125	.81250	.84375	•87500	• 90625	.93750	• 96875	1.00000

SIRIO WINDOW USING SIMILARITY ++ SHIFT THEOREMS

000000•
1.000000 1.000000
1.000000
1.000000
000000 1.000000 1.000000 1.000000
1.000000
1.000000
1.000000
ARE
32
1 TO
FKON
WEIGHTS FROM

1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 .000000

1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 .500000

		Andrew Control	na.																												
AMP	00000	000000	• 06667	00000•	00000-	00000•	06667	•		•	00000	00000-	00000•	-• 16666	00000	00000	00000	• 06667	00000	00000•	00000	-•06666	00001	•00001	00001	• 06668	00001	000	0000	1.00000	
F/FC	1.03125	1.06250	1.12500	1.15625	1.18750	1.21875	1.25000	1.10201	1.04C+1	1.37500	1.40625	1.43750	1.46875	1.50000	1.53125	1.56250	1.59375	1.62500	1.65625	1.68750	1.71875	1.75000	1.78125	1.81250	1.84375	1.87500	1.90625	1.93750	1.96875	2.0000	2.03125
AMP	1.00000	000000	• 00000	• 06667	00000	00000-	00000	, ,	00000		• 06667	• 00000	00000	• 00000	06667	00000-	00000	00000	• 06667	00000•	00000	00000•	06667	00000	• 00000	00000	• 06667	00000	00000	0	٥
F/FC	00000	.03125	.09375	•12506	.15625	.18750	•21875	28125	420460	.34375	.37500	•40625	•43750	•46875	• 50000	.53125	.56250	•59375	•62500	•65625	•68750	.71875	•75000	.78125	.81250	.84375	.87500	• 90625	•93750	•96875	1.00000

SIRIO WINDOW USING SIMILARITY ++ SHIFT THEOREMS

• 000000
1.500000
1.000000
1.000000
1.000000
00000 1.000000 1.000000
1.000000
1.000000
ARE
32
2
FROM 1
WEIGHTS

1.500000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

•000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.500000 .500000 1.500000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

AMP	00000	000000-	202	00	00000	00000		0	00000-			00000-	00000	06250	00000	00000	00000	• 03859	00000	00000•	00000	01830	00000	00000	00001	,00477	00002	•00003	1.00000	•
F/FC	1.03125	1.06250	250	62	1.18750	1.21875	1.28125	1.31250	•	نگ	7.	7	7	1.50000	ស	ហ	ຜ	1.62500	•	•	-		-	8	1.84375	1.87500	1.90625	.9375	1.96875	.0312
AMP	1.00000	00000	000	• 00416	00000•	00000	0183	00	00	000	85	0	00	000	06250	00000	• 00000	00000	• 08642	\circ	\odot	.00000	0	၁၀	• 00000	00000	.12024	• 00000	00000.	250
F/FC	00000	.03125	.09375	•12500	•15625	.18750	.25000	.28125	.31250	.34375	.37500	• 40625	•43750	• 46875	.50000	.53125	•56250	•59375	•62500	•65625	•68750	•71875	•75000	.78125	.81250	.84375	.87500	• 90625	.93750	1.00000