Optical failure localization practical course

Tapolcai János Kőrösi Attila Vass Balázs

Task

- Identify the edges of the input graphs with the as few m-trails as possible
- The winner will be that team who
 - Has solution for all the graphs
 - The total number of their m-trails (i.e. the sum of the number of m-trails required) is minimal

Sample input

Input file format: example on G8

```
//Number of nodes = n
                                //Adjacency matrix n x n
1 1 0 0 1 0 0 0
0 0 0 1 0 0 0 1
0 0 0 0 0 1 1 0
                               //incidency matrix n x m
0 0 0 0 0 0 0 -1 0 0 1
0 0 0 0 0 0 0 0 0 -1 -1
                                //coordinates of the nodes on the plane n x 2
6 9
7 3
8 4
9 10
10 9
```

Sample output (for G8)

- First line: your Neptun codes
- Matrix:
 - Rows correspond to edges
 - Columns correspont to m-trails

#neptun							
1	1	0	0	0	0	0	
1	0	1	0	0	0	0	
0	1	1	0	0	0	0	
0	1	0	1	0	0	0	
0	1	0	0	1	0	0	
0	0	1	0	1	0	0	
0	0	0	1	0	1	0	
0	0	0	1	0	0	1	
0	0	0	0	1	1	0	
0	0	0	0	0	1	1	
0	0	0	0	0	0	1	

#neptun							
1	1	0	0	0	0	0	
1	0	1	0	0	0	0	
0	1	1	0	0	0	0	
0	1	0	1	0	0	0	
0	1	0	0	1	0	0	
0	0	1	0	1	0	0	
0	0	0	1	0	1	0	
0	0	0	1	0	0	1	
0	0	0	0	1	1	0	
1	0	0	0	0	1	0	
1	0	0	0	0	0	1	

#poptup									
## 1	#neptun								
1	1	0	0	0	0				
1	0	1	0	0	0				
0	1	1	0	0	0				
0	1	0	0	0	0				
0	1	0	1	0	0				
0	0	1	1	0	0				
0	1	0	0	1	0				
0	1	0	0	0	1				
0	0	0	1	1	0				
0	0	0	0	1	1				
0	0	0	0	0	1				

Usage of mtrail.py

- python mtrail.py -g G8 -m M8_1
 - In case of graph G8 and mtrail file M8_1 it returns sum of the number of connected components of the columns in the mtrail file (in this case: 8)
- python plot.py -g G8 -m M8_1 -c 2
 - Draws graph G8 with blue edges, and on top of it draws the edges from mtrail file M8_1 column 2 with red
- python plot.py -g G8
 - Draws graph G8