Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа	P3209	К работе допущен
Студент	Кулагин Вячеслав	Работа выполнена
Преподава	тель Агабабаев В. А.	Отчет принят

Рабочий протокол и отчет по лабораторной работе № 1.01

Распределение случайной величины

1. Цель работы.

Исследование распределения случайной величины на примере многократных измерений определённого интервала времени.

2. Задачи, решаемые при выполнении работы.

- 1. Провести многократные измерения определенного интервала времени.
 - 2. Построить гистограмму распределения результатов измерения.
 - 3. Вычислить среднее значение и дисперсию полученной выборки.
- 4. Сравнить гистограмму с графиком функции Гаусса с такими же как и у экспериментального распределения средним значением и дисперсией.

3. Объект исследования.

Распределение случайной величины на примере многократного измерения определённого временного интервала с помощью секундомера.

4. Метод экспериментального исследования.

Проведение многократного измерения секундомером промежутка времени в 5 секунд.

5. Рабочие формулы и исходные данные.

- $\langle t \rangle_N = \frac{1}{N} \, (t_1 + t_2 + \ldots + t_N) = \frac{1}{N} \, \sum_{i=1}^N t_i$ среднее арифметическое всех результатов измерений.
- $\sigma_N = \sqrt{\frac{1}{N-1}\sum_{i=1}^N (t_i \langle t \rangle_N)^2}$ выборочное среднеквадратичное отклонение
- $ho_{max} = rac{1}{\sigma\sqrt{2\pi}} -$ максимальное значение плотности распределения
- $\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^N (t_i \langle t \rangle_N)^2}$ среднеквадратичное отклонение среднего значения
- $\rho(t)=rac{1}{\sigma\sqrt{2\pi}}exp\left(-rac{(t-\langle t
 angle)^2}{2\sigma^2}
 ight)$ нормальное распределение, описываемое функцией Гаусса.
- $\overline{\Delta t} = t_{\alpha,N} \cdot \sigma_{\langle t \rangle}$ доверительный интервал.
- $\Delta t = \sqrt{(\overline{\Delta t})^2 + \frac{2}{3}v^2} \text{погрешность}$

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Секундомер	Цифровой	0 – 10 c	0,01 c

7. Схема установки (перечень схем, которые составляют Приложение 1).

Измерение цифровым секундомером интервала в 5 секунд, которые отсчитываются по секундной стрелке аналогового будильника

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Таблица 1: Результаты прямых измерений

Nº	t_i , c	$t_i - \langle t \rangle_N$, c	$(t_i - \langle t \rangle_N)^2$, c^2
1	4,59	-0,4082	0,1666
2	4,88	-0,1182	0,0140
3	5,18	0,1818	0,0331
4	4,92	-0,0782	0,0061
5	4,87	-0,1282	0,0164
6	5,01	0,0118	0,0001
7	5,25	0,2518	0,0634
8	4,81	-0,1882	0,0354
9	4,90	-0,0982	0,0096
10	5,07	0,0718	0,0052
11	5,05	0,0518	0,0027
12	4,96	-0,0382	0,0015
13	5,03	0,0318	0,0010
14	4,81	-0,1882	0,0354
15	5,35	0,3518	0,1238
16	4,82	-0,1782	0,0318
17	5,17	0,1718	0,0295
18	4,88	-0,1182	0,0140
19	4,87	-0,1282	0,0164
20	5,10	0,1018	0,0104
21	5,06	0,0618	0,0038
22	4,98	-0,0182	0,0003
23	4,96	-0,0382	0,0015
24	5,19	0,1918	0,0368
25	4,75	-0,2482	0,0616
26	5,13	0,1318	0,0174

Nº	t _i , c	$t_i - \langle t \rangle_N$, c	$(t_i - \langle t \rangle_N)^2$, c^2
27	5,06	0,0618	0,0038
28	5,13	0,1318	0,0174
29	5,00	0,0018	0,000
30	4,73	-0,2682	0,0719
31	5,26	0,2618	0,0685
32	4,94	-0,0582	0,0034
33	4,85	-0,1482	0,0220
34	4,94	-0,0582	0,0034
35	5,00	0,0018	0,000
36	5,09	0,0918	0,0084
37	5,03	0,0318	0,0010
38	4,91	-0,0882	0,0078
39	5,07	0,0718	0,0052
40	4,91	-0,0882	0,0078
41	5,23	0,2318	0,0537
42	4,86	-0,1382	0,0191
43	5,18	0,1818	0,0331
44	4,86	-0,1382	0,0191
45	4,98	-0,0182	0,0003
46	5,00	0,0018	0,0000
47	4,89	-0,1082	0,0117
48	5,20	0,2018	0,0407
49	5,26	0,2618	0,0685
50	4,94	-0,0582	0,0034
	$\langle t \rangle_N = 5,00 \text{ c}$	$\sum_{i=1}^{N} (t_i - \langle t \rangle_N) = 0 \text{ c}$	$\sigma_N = 0.1570 \text{ c}$ $\rho_{max} = 2.5409 \text{ c}^{-1}$

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

•
$$\langle t \rangle_N = \frac{1}{N} (t_1 + t_2 + ... + t_N) = \frac{1}{N} \sum_{i=1}^N t_i = \frac{1}{50} \sum_{i=1}^{50} t_i = 4,9982 \text{ c}$$

•
$$\langle t \rangle_N = \frac{1}{N} (t_1 + t_2 + \dots + t_N) = \frac{1}{N} \sum_{i=1}^N t_i = \frac{1}{50} \sum_{i=1}^{50} t_i = 4,9982 \text{ c}$$

• $\sigma_N = \sqrt{\frac{1}{N-1} \sum_{i=1}^N (t_i - \langle t \rangle_N)^2} = \sqrt{\frac{1}{50-1} \sum_{i=1}^{50} (t_i - 4,9982)^2} = 0,1570 \text{ c}$

•
$$\rho_{max} = \frac{1}{\sigma\sqrt{2\pi}} = \frac{1}{0.1570 \times \sqrt{2\pi}} = 2.5409 \text{ c}^{-1}$$

•
$$\rho_{max} = \frac{1}{\sigma\sqrt{2\pi}} = \frac{1}{0,1570 \times \sqrt{2\pi}} = 2,5409 \text{ c}^{-1}$$

• $\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2} = \sqrt{\frac{1}{50(50-1)} \sum_{i=1}^{50} (t_i - 4,9982)^2} = 0,0222 \text{ c}$

•
$$\overline{\Delta t} = t_{\alpha,N} \cdot \sigma_{(t)} = 2,01 \times 0,0222 = 0,04 \text{ c}$$

•
$$\overline{\Delta t} = t_{\alpha,N} \cdot \sigma_{\langle t \rangle} = 2,01 \times 0,0222 = 0,04 \text{ c}$$

• $\Delta t = \sqrt{(\overline{\Delta t})^2 + \frac{2}{3}v^2} = \sqrt{0,04^2 + \frac{2}{3}0,01^2} = 0,04 \text{ c}$

•
$$t_{min} = 4,59 \text{ c}$$

•
$$t_{max} = 5.35 \text{ c}$$

•
$$t_{max} = 5.35 \text{ c}$$

• $\sqrt{N} \approx 7$; $\delta t = 0.11 \text{ c}$

Таблица 2: Данные для построения гистограммы

Границы интервалов, с	ΔN	$\frac{\Delta N}{N\Delta t}$, c ⁻¹	t, c	ρ , c ⁻¹
4,58				
4,69	1	0,1818	4,64	0,1750
4,69	2	0,3636	4,75	0,6923
4,80	2	0,3030	4,73	0,0923
4,80	14	2,5455	4,86	1,6763
4,91	14	2,0400	4,00	1,0700
4,91	14	2,5455	4,97	2,4847
5,02	17	2,0400	7,37	2,4047
5,02	11	2,0000	5,08	2,2544
5,13	11	2,0000	5,00	2,2344
5,13	8	1,4545	5,19	1,2520
5,24	0	1,4040	5,19	1,2320
5,24	4	0,7273	5,30	0,4256
5,35	4	0,1213	5,30	0,4250

Пример вычислений для первого интервала:

$$\frac{\Delta N}{N\Delta t} = \frac{1}{50 \cdot 0.11} = 0.1818$$

$$\rho(4.64) = \frac{1}{0.1570\sqrt{6.28}} exp\left(-\frac{(4.64 - 4.9982)^2}{2 * 0.1570^2}\right) = 0.1750$$

Таблица 3: Стандартные доверительные интервалы

	Интер	вал, с	A N/	ΔN	D
	ОТ	до	ΔN	N	P
$\langle t \rangle_N \pm \sigma_N$	4,8412	5,1552	34	0,68	0,683
$\langle t \rangle_N \pm 2\sigma_N$	4,6842	5,3122	48	0,96	0,954
$\langle t \rangle_N \pm 3\sigma_N$	4,5272	5,4692	50	1	0,997

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

$$\Delta_{ut} = 0.01 \ \mathrm{c}$$
 $\overline{\Delta t} = t_{\alpha,N} \times \sigma_{\langle t \rangle} \approx 2.01 \times 0.0222 \approx 0.04 \ \mathrm{c}$ Итоговая абсолютная погрешность: $\Delta t = \sqrt{(\overline{\Delta t})^2 + \frac{2}{3} (\Delta_{ut})^2} \approx \sqrt{0.04^2 + \frac{2}{3} 0.01^2} \approx 0.04 \ \mathrm{c}$

Относительная погрешность в итоге: $\varepsilon_x = \frac{\Delta x}{\bar{x}} \times 100\% \approx \frac{0.04}{5.00} \times 100\% \approx 0.8\%$

11. Графики (перечень графиков, которые составляют Приложение 2).

12. Окончательные результаты.

- Среднеквадратичное отклонение среднего значения: $\sigma_{\langle t \rangle} = 0.02~{
 m c}$
- Выборочное среднеквадратичное отклонение: $\sigma_N = 0.16 \ {\rm c}$
- Табличное значение коэффициента Стьюдента для доверительной вероятности $\alpha=0.95;\ t_{\alpha,N}=2.01$
- Доверительный интервал: $\Delta t = 0.04 \text{ c}$
- Максимальное значение плотности распределения: $\rho_{max} = 2.54 \ {
 m c}^{-1}$
- Итоговый результат: $\langle t \rangle_N = 5{,}00 \pm 0{,}04 \,\mathrm{c}$

13. Выводы и анализ результатов работы.

В ходе этой работы были проведены многократные измерения определенного промежутка времени (5 секунд), чтобы выяснить, как происходит распределение случайной величины на примере этого эксперимента. Также была построена гистограмма распределения этих значений и функция Гаусса. Сравнение со стандартными доверительными интервалами показало, что значения близки к табличным значениям. Кроме этого, была посчитана погрешность для итогового значения.