The process of mapping points between frames can be generalized and also applied to translate points, rotate vectors, or do both.

> Translational operators:

A translation moves a point in space a finite distance along a given vector direction. Translating a point in space is accomplished with the same mathematics as mapping the point to a second frame. The Figure below shows the translation of vector AP_1 by vector AO .

The consequence of the translation is ${}^{A}P_{2}$ given by

$${}^{A}P_{2} = {}^{A}P_{1} + {}^{A}Q$$

Which is similar to the equation used to map translated frames with no rotation. To write this translation in a compact form, a homogeneous transform matrix operator $D_Q(q)$ is defined as shown below.

$${}^{A}P_{2}^{*} = D_{O}(q) {}^{A}P_{1}^{*}$$

Here, q is the signed magnitude of the translation along the vector direction \widehat{Q} .

$$D_Q(q) = \begin{bmatrix} 1 & 0 & 0 & q_x \\ 0 & 1 & 0 & q_y \\ 0 & 0 & 1 & q_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotational operators:

Likewise, rotating a vector AP_1 to a new vector AP_2 is accomplished in exactly the same way that mapping involving rotated frames and no translation is carried out. For the sake of consistency, a rotational operator that clearly indicates which axis is being rotated about is defined below:

$$^{A}P_{2} = R_{k}(\theta) ^{A}P_{1}$$

Here, $R_k(\theta)$ is a homogeneous transform matrix operator that performs a rotation about the axis direction \widehat{K} by θ degrees and is given below. Here, $R(\theta)$ is the rotation matrix for rotation in direction \widehat{K} by θ degrees.

$$R_k(\theta) = \begin{bmatrix} R(\theta) & 0 \\ 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

> Transformation operators:

As explained in the previous lecture, mapping involving both translated and rotated frames can be expressed in compact form using a homogenous transform matrix $_B^AT$. However, for the general case where only one coordinate system is involved, symbol T is used without subscripts or superscripts. The operator T rotates and translates a vector AP_1 to compute a new vector AP_2 as shown below

$$^{A}P_{2} = T^{A}P_{1}$$

NOTE: Homogeneous transforms uses 4×4 matrices that contain orientation and position information. The term transformation is a generalization of translation and rotation. Hence, the term transform is often used even when speaking of a pure rotation or translation.

TRANSFORMATION ARITHMETIC

Multiplication of transforms and inversion of transforms are two important elementary operations.

 \triangleright Compound transformations
In the figure below, we are given ${}^{C}P$ and are required to find ${}^{A}P$.

Frame {C} is known relative to frame {B}, and frame {B} is known relative to frame {A}. Hence, ${}^{C}P$ can be transformed into ${}^{B}P$ as below:

$$^{B}P = {^{B}_{C}}T {^{C}}P$$

Likewise, $\,^{B}P$ can be transformed into $\,^{A}P$ as below:

$$^{A}P = {}^{A}_{B}T {}^{B}P$$

Thus combining the equations, we get

$$^{A}P = {^{A}_{B}T} {^{C}_{C}T} {^{C}P}$$

Resulting in the following equation

$$_{C}^{A}T = _{B}^{A}T _{C}^{B}T$$

Equivalently, the homogenous 4×4 transform matrix is obtained as

$${}_{C}^{A}T = \begin{bmatrix} {}_{B}^{A}R {}_{C}^{B}R & {}_{B}^{A}R {}^{B}P_{CORG} + {}^{A}P_{BORG} \\ 0 & 0 & 1 \end{bmatrix}$$

> Inverting a transform

Consider a frame {B} that is known with respect to a frame {A}. To get a description of {A} relative to {B}, we need to invert the transform. Here, we know A_BT and need to find B_AT .

$$_{A}^{B}T = _{B}^{A}T^{-1}$$

The following 4×4 homogenous transform matrix can be used to compute B_AT .

$${}_{A}^{B}T = \begin{bmatrix} {}_{B}^{A}R^{T} & {} {}_{B}^{A}R^{T} {}_{A}P_{BORG} \\ 0 & 0 & 1 \end{bmatrix}$$

EXAMPLE 2.5

The figure below shows a frame {B} that is rotated relative to frame {A} about \hat{Z} by 30 degrees and translated four units in \hat{X}_A and three units in \hat{Y}_A . Thus, we have a description of A_BT . Find B_AT .

The frame defining {B} is

$${}_{B}^{A}T = \begin{bmatrix} 0.866 & -0.500 & 0.000 & 4.000 \\ 0.500 & 0.866 & 0.000 & 3.000 \\ 0.000 & 0.000 & 1.000 & 0.000 \\ 0.000 & 0.000 & 0.000 & 1.000 \end{bmatrix}$$

Therefore

$${}_{A}^{B}T = \begin{bmatrix} 0.866 & 0.500 & 0.000 & -4.964 \\ -0.500 & 0.866 & 0.000 & -0.598 \\ 0.000 & 0.000 & 1.000 & 0.000 \\ 0.000 & 0.000 & 0.000 & 1.000 \end{bmatrix}$$