Job No.: PUHI PEAKS Address: 1695 Puhi Puhi Road,, Puhi Puhi, New Date: 27/05/2025

STATION Zealand

Latitude: -42.188837 **Longitude:** 173.770736 **Elevation:** 556 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N3	Ground Snow Load	1.22 KPa	Roof Snow Load	0.85 KPa
Earthquake Zone	4	Subsoil Category	D	Exposure Zone	В
Importance Level	1	Ultimate wind & Earthquake ARI	100 Years	Max Height	5 m
Wind Region	NZ2	Terrain Category	3.0	Design Wind Speed	50.99 m/s
Wind Pressure	1.56 KPa	Lee Zone	YES	Ultimate Snow ARI	50 Years
Wind Category	extra High	Earthquake ARI	100		

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Mono Enclosed

For roof Cp, i = -0.3

For roof CP,e from 0 m To 2.50 m Cpe = -0.9167 pe = -1.29 KPa pnet = -1.29 KPa

For roof CP,e from 2.50 m To 5.00 m Cpe = -0.8917 pe = -1.25 KPa pnet = -1.25 KPa

For wall Windward Cp, i = -0.3 side Wall Cp, i = -0.3

For wall Windward and Leeward CP,e from 0 m To 9.6 m Cpe = 0.7 pe = 0.98 KPa pnet = 1.45 KPa

For side wall CP,e from 0 m To 5 m Cpe = pe = -0.91 KPa pnet = -0.91 KPa

Maximum Upward pressure used in roof member Design = 1.29 KPa

Maximum Downward pressure used in roof member Design = 0.47 KPa

Maximum Wall pressure used in Design = 1.45 KPa

Maximum Racking pressure used in Design = 1.67 KPa

Design Summary

Purlin Design

Purlin Spacing = 900 mm Purlin Span = 4650 mm Try Purlin 250x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

Second page

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 0.97

K8 Upward =0.66 S1 Downward =12.68 S1 Upward =20.27

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M1.35D	0.82 Kn-m	Capacity	3.40 Kn-m	Passing Percentage	414.63 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	2.8 Kn-m	Capacity	4.53 Kn-m	Passing Percentage	161.79 %
M0.9D-WnUp	-2.59 Kn-m	Capacity	-3.83 Kn-m	Passing Percentage	147.88 %
V _{1.35D}	0.71 Kn	Capacity	12.06 Kn	Passing Percentage	1698.59 %
V _{1.2D+1.5L} 1.2D+Sn 1.2D+WnDn	2.41 Kn	Capacity	16.08 Kn	Passing Percentage	667.22 %
$ m V_{0.9D ext{-}WnUp}$	-2.23 Kn	Capacity	-20.10 Kn	Passing Percentage	901.35 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3 considering at least 4 members acting together

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 11.13 mm

Limit by Woolcock et al, 1999 Span/240 = 19.17 mm

Deflection under Dead and Service Wind = 8.84 mm

Limit by Woolcock et al, 1999 Span/100 = 46.00 mm

Reactions

Maximum downward = -2.41 kn Maximum upward = -2.23 kn

Number of Blocking = 1 if 0 then no blocking required, if 1 then one midspan blocking required

Rafter Design Internal

Internal Rafter Load Width = 4800 mm Internal Rafter Span = 9850 mm Try Rafter 2x400x63 LVL13

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 1.00 S1 Downward = 6.26 S1 Upward = 6.26

Shear Capacity of timber =5.3 MPa Bending Capacity of timber =48 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M1.35D	19.65 Kn-m	Capacity	73.78 Kn-m	Passing Percentage	375.47 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	66.95 Kn-m	Capacity	98.38 Kn-m	Passing Percentage	146.95 %

$M_{0.9D ext{-W}nUp}$	-62.00 Kn-m	Capacity	-122.98 Kn-m	Passing Percentage	198.35 %
V _{1.35D}	7.98 Kn	Capacity	85.9 Kn	Passing Percentage	1076.44 %
V _{1.2D+1.5L} 1.2D+Sn 1.2D+WnDn	27.19 Kn	Capacity	114.54 Kn	Passing Percentage	421.26 %
V _{0.9D-WnUp}	-25.18 Kn	Capacity	-143.18 Kn	Passing Percentage	568.63 %

Deflections

Modulus of Elasticity = 11000 MPa NZS3603 Amt 4, Table 2.3

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 22.83 mm Limit by Woolcock et al, 1999 Span/240 = 41.67 mm Deflection under Dead and Service Wind = 31.07 mm Limit by Woolcock et al, 1999 Span/100 = 100.00 mm

Reactions

Maximum downward = 27.19 kn Maximum upward = -25.18 kn

Rafter to Pole Connection check

Bolt Size = M16 Number of Bolts = 3

Calculations as per NZS 3603:1993 Amend 2005 clause 4.4

Joint Group for Rafters =J2 Joint Group for Pole = J5

Minimum Bolt edge, end and spacing for Load perpendicular to grains = 80 mm

Factor of Safety = 0.7

For Perpendicular to grain loading

K11 = 12.6 fpj = 22.7 Mpa for Rafter with effective thickness = 126 mm

For Parallel to grain loading

K11 = 2.0 fcj = 36.1 Mpa for Pole with effective thickness = 100 mm

Capacity under short term loads = 77.63 Kn > -25.18 Kn

Girt Design Front and Back

Girt's Spacing = 650 mm Girt's Span = 4800 mm Try Girt 200x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.75 S1 Downward =11.27 S1 Upward =18.41

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	2.71 Kn-m	Capacity	2.79 Kn-m	Passing Percentage	102.95 %
$ m V_{0.9D ext{-}WnUp}$	2.26 Kn	Capacity	16.08 Kn	Passing Percentage	711.50 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 46.27 mm Limit by Woolcock et al, 1999 Span/100 = 48.00 mm Sag during installation = 32.19 mm

Reactions

Maximum = 2.26 kn

Girt Design Sides

Girt's Spacing = 1300 mm Girt's Span = 2500 mm Try Girt 200x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.73 S1 Downward =11.27 S1 Upward =18.79

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	1.47 Kn-m	Capacity	2.72 Kn-m	Passing Percentage	185.03 %
$ m V_{0.9D ext{-}WnUp}$	2.36 Kn	Capacity	16.08 Kn	Passing Percentage	681.36 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 6.81 mm Limit by Woolcock et al. 1999 Span/100 = 25.00 mm Sag during installation = 2.37 mm

Reactions

Maximum = 2.36 kn

Middle Pole Design

Geometry

275 SED H5 (Minimum 300 dia. at Floor Level)	Dry Use	Height	4600 mm
Area	64885 mm2	As	48663.8671875 mm2
Ix	335197731 mm4	Zx	2331810 mm3
Iy	335197731 mm4	Zx	2331810 mm3
Lateral Restraint	4600 mm c/c		

Loads

Total Area over Pole = 24 m^2

Dead	6.00 Kn	Live	6.00 Kn
Wind Down	11.28 Kn	Snow	20.40 Kn
Moment wind	37.48 Kn-m	Moment snow	7.30 Kn-m
Phi	0.8	K8	0.86
K1 snow	0.8	K1 Dead	0.6
K1wind	1		

Material

Peeling	Steaming	Normal	Dry Use
fb =	36.3 MPa	$f_S =$	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ft =	22 MPa	E =	9257 MPa

Capacities

PhiNex Wind	803.16 Kn	PhiMnx Wind	58.21 Kn-m	PhiVnx Wind	115.24 Kn
PhiNcx Dead	481.90 Kn	PhiMnx Dead	34.93 Kn-m	PhiVnx Dead	69.14 Kn
PhiNcx Snow	642.53 Kn	PhiMnx Snow	46.57 Kn-m	PhiVnx Snow	92.19 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.69 < 1 OK

 $(Mx/PhiMnx)^2 + (N/phiNcx) = 0.46 < 1 \text{ OK}$

Deflection at top under service lateral loads = 39.04 mm < 46.00 mm

Drained Lateral Strength of Middle pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma 18 Kn/m3 Friction angle 30 deg Cohesion 0 Kn/m3

 $K0 = \frac{(1-\sin(30)) / (1+\sin(30))}{Kp} = \frac{(1+\sin(30)) / (1-\sin(30))}{(1-\sin(30))}$

Geometry For Middle Bay Pole

 $D_S = 0.6 \text{ mm}$ Pile Diameter

L= 2300 mm Pile embedment length

f1 = 3750 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind = 37.48 Kn-m Moment Snow = Kn-m Shear Wind = 9.99 Kn Shear Snow = 7.30 Kn

Pile Properties

Safety Factory 0.55

Hu = 17.92 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 40.97 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.91 < 1 OK

End Pole Design

Geometry For End Bay Pole

Geometry

200 SED H5 (Minimur	n 225 dia lat Floor Le	evel) Dry U	lse Height	4700 mm

Area 35448 mm2 As 26585.7421875 mm2

Ix 100042702 mm4 Zx 941578 mm3
Iy 100042702 mm4 Zx 941578 mm3

Lateral Restraint mm c/c

Loads

Total Area over Pole = 12 m^2

Dead	3.00 Kn	Live	3.00 Kn
Wind Down	5.64 Kn	Snow	10.20 Kn
Moment Wind	12.49 Kn-m	Moment snow	2.43 Kn-m
Phi	0.8	K8	0.57
K1 snow	0.8	K1 Dead	0.6
K1 wind	1		

Material

Peeling	Steaming	Normal	Dry Use
fb =	36.3 MPa	$f_S =$	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ft =	22 MPa	E =	9257 MPa

Capacities

PhiNex Wind	291.05 Kn	PhiMnx Wind	15.59 Kn-m	PhiVnx Wind	62.96 Kn
PhiNcx Dead	174.63 Kn	PhiMnx Dead	9.35 Kn-m	PhiVnx Dead	37.77 Kn
PhiNcx Snow	232.84 Kn	PhiMnx Snow	12.47 Kn-m	PhiVnx Snow	50.36 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.87 < 1 OK

 $(Mx/PhiMnx)^2 + (N/phiNcx) = 0.71 < 1 \text{ OK}$

Deflection at top under service lateral loads = 47.27 mm < 49.88 mm

$D_S =$	0.6 mm	Pile Diameter
L=	1700 mm	Pile embedment length
f1 =	3750 mm	Distance at which the shear force is applied
f2 =	0 mm	Distance of top soil at rest pressure

Loads

Total Area over Pole = 12 m^2

Moment Wind =	12.49 Kn-m	Moment Snow =	2.43 Kn-m
Shear Wind =	3.33 Kn	Shear Snow =	2.43 Kn

Pile Properties

Safety Factory 0.55

Hu = 8.03 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 17.77 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.70 < 1 OK

Drained Lateral Strength of End pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma 18 Kn/m3 Friction angle 30 deg Cohesion 0 Kn/m3

 $K0 = \frac{(1-\sin(30)) / (1+\sin(30))}{Kp} = \frac{(1+\sin(30)) / (1-\sin(30))}{(1-\sin(30))}$

Geometry For End Bay Pole

Ds = 0.6 mm Pile Diameter

L = 1700 mm Pile embedment length

f1 = 3750 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind = 12.49 Kn-m Moment Snow = 2.43 Kn-m Shear Wind = 3.33 Kn Shear Snow = 2.43 Kn

Pile Properties

Safety Factory 0.55

Hu = 8.03 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 17.77 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.70 < 1 OK

Uplift Check

Density of Concrete = 24 Kn/m³

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between

9/10

both is taken equal to soil angle of internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(2300) x Ks(1.5) x 0.5 x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(2300)

Skin Friction = 42.72 Kn

Weight of Pile + Pile Skin Friction = 46.75 Kn

Uplift on one Pile = 25.56 Kn

Uplift is ok