Describe Model

TIME SERIES ANALYSIS IN PYTHON

Rob Reider

Adjunct Professor, NYU-Courant
Consultant, Quantopian

Mathematical Description of MA(1) Model

$$R_t$$
 equals μ + ϵ_t + θ ϵ_{t-1}

- Since only one lagged error on right hand side, this is called:
 - MA model of order 1, or
 - MA(1) model
- MA parameter is heta
- Stationary for all values of θ

Interpretation of MA(1) Parameter

$$R_t = \mu + \epsilon_t + \theta \epsilon_{t-1}$$

- Negative θ : One-Period Mean Reversion
- Positive θ : One-Period Momentum

If theta is negative, a positive shock last period, represented by epsilon t-1, would have caused last period's return to be positive, but this period's return is more likely to be negative. A shock two periods ago would have no effect on today's return — only the shock now and last period.

• Note: One-period autocorrelation is $heta/(1+ heta^2)$, not heta

Comparison of MA(1) Autocorrelation Functions

• $\theta = 0.9$

• $\theta=0.5$

• $\theta = -0.9$

• $\theta = -0.5$

In each case, there is zero autocorrelation for an MA(1) beyond lag 1. When theta is positive, the lag 1 autocorrelation is positive.

Example of MA(1) Process: Intraday Stock

Returns

Stocks trade at discrete one-cent increments rather than at continuous prices, and you can see that stock can bounce back and forth over a one-cent range for long periods of time.

Autocorrelation Function of Intraday Stock Returns

Higher Order MA Models

MA(1)

$$R_t = \mu + \epsilon_t - \theta_1 \; \epsilon_{t-1}$$

• MA(2)

$$R_t = \mu + \epsilon_t - \theta_1 \; \epsilon_{t-1} - \theta_2 \; \epsilon_{t-2}$$

• MA(3)

$$R_t = \mu + \epsilon_t - \theta_1 \ \epsilon_{t-1} - \theta_2 \ \epsilon_{t-2} - \theta_3 \ \epsilon_{t-3}$$

• ...

Simulating an MA Process

```
from statsmodels.tsa.arima_process import ArmaProcess
ar = np.array([1])
ma = np.array([1, 0.5])
AR_object = ArmaProcess(ar, ma)
simulated_data = AR_object.generate_sample(nsample=1000)
plt.plot(simulated_data)
```

Let's practice!

TIME SERIES ANALYSIS IN PYTHON

Estimation and Forecasting an MA Model

TIME SERIES ANALYSIS IN PYTHON

Rob Reider

Adjunct Professor, NYU-Courant
Consultant, Quantopian

Estimating an MA Model

Same as estimating an AR model (except order=(0,1))

```
from statsmodels.tsa.arima_model import ARMA
mod = ARMA(simulated_data, order=(0,1))
result = mod.fit()
```

Forecasting an MA Model

```
from statsmodels.tsa.arima_model import ARMA
mod = ARMA(simulated_data, order=(0,1))
res = mod.fit()
res.plot_predict(start='2016-07-01', end='2017-06-01')
plt.show()
```


Let's practice!

TIME SERIES ANALYSIS IN PYTHON

ARMA models

TIME SERIES ANALYSIS IN PYTHON

Rob Reider

Adjunct Professor, NYU-Courant Consultant, Quantopian

ARMA Model

• ARMA(1,1) model:

$$R_t = \mu + \phi R_{t-1} + \epsilon_t + \theta \epsilon_{t-1}$$

Converting Between ARMA, AR, and MA Models

Converting AR(1) into an MA(infinity)

$$R_t = \mu + \phi R_{t-1} + \epsilon_t$$

$$R_t = \mu + \phi(\mu + \phi R_{t-2} + \epsilon_{t-1}) + \epsilon_t$$

•

$$R_t = \frac{\mu}{1 - \phi} + \epsilon_t + \phi \epsilon_{t-1} - \phi^2 \epsilon_{t-2} + \phi^3 \epsilon_{t-3} + \dots$$

Let's practice!

TIME SERIES ANALYSIS IN PYTHON

