Réseaux à composantes continues

Emmanuel Bengio

28 juillet 2014

Machine Learning

- Utiliser des données pour apprendre quelque chose d'utile
 - Classifier
 - Prédire une valeur
 - Prédire une probabilité
- ▶ Images, son, ADN, texte, symptômes, météo, etc.
- ► Algorithmes statistiques, optimisation
- On apprends à partir des données du monde réel

Deep Learning

- Tourne autour de la notion de représentation
- ► On "empile" plusieurs couches de transformations
- Abstraction
- Apprentissage

Représentation?

- Pixels, intensités sonores, bag of words
- Features "géométriques"
- Probabilités
- Représentation intermédiaire quelconque

Bonne représentation?

- Question difficile, quelques pistes:
 - ▶ "Démèler" les facteurs de variations
 - ► Préserver l'information
- Comment passer de données brutes à des bonnes représentations?
 - PCA, clustering
 - Sparse coding
 - Manifold learning
 - Autoencodeurs

Réseaux de neurones

Couche cachée typique, **h** est une représentation intermédiaire.

$$h = f(Wx + b)$$
 $f(t) = \frac{1}{1 + e^{-t}}$

$$\mathbf{y} = f(W^{(y)}\mathbf{h} + \mathbf{b}^{(y)})$$

Réseaux de neurones

- ▶ Apprentissage des W et \boldsymbol{b} via descente de gradient, on minimise une fonction de perte \mathcal{L} par $\frac{\partial W_{ij}}{\mathcal{L}}, \frac{\partial b_j}{\mathcal{L}}$
- ► Classification, régression $\mathcal{L}(y,t) = -(y \log t + (1-y) \log(1-t))$
- Autoencodeurs $\mathcal{L}(x, x^{(r)}) = (x x^{(r)})^2$

Autoencodeurs

$$x \to s \to x^{(r)}$$

On reconstruit $x^{(r)}$ depuis la représentation intermédiaire s, tel que $x^{(r)}$ soit fidèle à x.

$$s = f(b^{(s)} + W^{(s)}f(b^{(x)} + W^{(x)}x))$$

$$x^{(r)} = f(b^{(xr)} + W^{(x)^{T}}f(b^{(sr)} + W^{(s)^{T}}s))$$

s devrait donc préserver l'information.

Autoencodeurs

- Denoising autoencoder
 - ▶ On force le réseau à débruiter son entrée
- Contractive autoencoder
 - On force le réseau à moins faire varier la représentation dans certaines directions

Motivation

- Données brutes en très haute dimension d
- Hypothèse du manifold
 - ▶ $n \ll d$ facteurs de variations des données
- Activations binaires des représentations
- Une représentation continue (au sens topologique), plus abstraite?
 - ► Translation, rotation
 - Degré d'expression
 - Paramètres d'identité

Composantes continues

On force la reconstruction de h à s'activer de manière binaire autour de certaines configurations de s.

$$h_i^{(r)} = \exp\left(-(s-\mu_i)^T D_i(s-\mu_i)\right)$$

Une unité $h_i^{(r)}$ donnée est active si s est proche de μ_i (un paramètre) dans les dimensions spécifiées par D_i (autre paramètre)

Composantes continues

$$h_i^{(r)} = \exp\left(-(s-\mu_i)^T D_i(s-\mu_i)\right)$$

- $ightharpoonup s_j$, ensemble de μ_i , d'où le "continu"
- ▶ e.g. translation vers la droite, 10 μ_i pour les 10 translations possibles (0;0.1;0.2;...;0.8;0.9)
- ► Chaque valeur active un *unique hi*.

Projet

- ► Theano, librairie Python de calcul multi-dimensionnel
- Code qui crée, optimise et teste notre modèle (ainsi qu'un baseline)
- Code pour finetune ces modèles (apprentissage supervisé)
- Code pour visualiser les poids, les gradients, et les résultats (très important!)

Apprentissage non-supervisé

Visages (TFD), MNIST, figures géométriques.


```
37693295803335570154
37693295803335570154
```


Apprentissage non-supervisé

Les poids de la première couche

Problèmes

- ► Très sensible au taux d'apprentissage
- lacksquare Sensible à la configuration de D et μ
- ► Long à entrainer

Résultats numériques

En termes d'erreur de reconstruction, notre modèle fait presque aussi bien qu'un autoencodeur standard. Sur MNIST, ~10% de plus (log-likelihood) Sur Faces, ~3-5% de plus

Apprentissage supervisé

Si on utilise les poids appris dans la dernière tâche et qu'on les *finetune* pour apprendre à classifier, on obtient de bons résultats.

	MNIST	Faces
Notre méthode	12.96%	17.60%
AE	6.52%	19.50%
Réseau à convolution	0.9%	14.2%

lci en fait j'ai comparé notre méthode avec un autoencodeur à capacité égale.

Futur

- ► On peut faire mieux
 - ▶ Initialisation de *D*
 - ► architecture
- ► Comparer avec d'autres méthodes similaire
- ► Fonctions de régularisation

Projet

- source disponible sur github: github.com/bengioe/ccae
- rapport et comptes rendus: bengioe.github.io/ccae