

# EIE4512 - Digital Image Processing Totorial



#### Qin Wang

qinwang@cuhk.edu.cn School of Science and Engineering The Chinese University of Hong Kong, Shen Zhen

March 14, 2019

#### Agenda



Harris corner detector

HM1:Filtered Noise

HM1:Filtering in the two Domains

HM1:Histogram Equalization

#### Harris corner detector

#### Theory

- R depends only on eigenvalues of M
- R is large for a corner
- *R* is negative with large magnitude for an edge
- |R| is small for a flat region



- Work flow
  - ► Find points with large corner response function R (R ¿ threshold)
  - ► Take the points of local maximum of R

 $\lambda_2$ 

#### 香港中文大學(深圳) The Chinese University of Hong Kong, Shenzhen

#### HM1:Filtered Noise

Consider the filter with Fourier transform

$$H(u,v) = \frac{1}{u^2 + v^2}$$

on the interval  $[-127,128] \times [-127,128]$ . This is known as a  $1/f^2$  transfer function. Since it blows up at the origin, replace that value with zero. Apply this filter to a  $256 \times 256$  image of normally distributed random noise (use **randn**). For practical reasons, it is best to perform this operation in the frequency domain. Hint: you will need to use **meshgrid**, **fft2**, **ifft2**, and **fftshift**. Also, due to numerical error, you will need to use real to look at the real part of the filtered image in the spatial domain.

## HM1:Filtering in the two Domains HeChinese University of Hong Kong, Sheuzhen





### HM1:Histogram Equalization



- (a) Write an m-file to show picture histogram. Hint: use imhist
- (b) Do histogram equalization on the input image, and compare the histogram difference between input image and output image. Hint: use **histeq**