Нули решений линейных дифференциальных уравнений второго порядка. Теорема сравнения.

Рассмотрим два дифференциальных уравнения:

$$y_1'' + y_1 = 0$$
 и $y_2'' - y_2 = 0$

Решения их нам хорошо известны. Это

$$y = C_1 \sin x + C_2 \cos x$$
 и $y = C_1 \sin x + C_2 \cot x$

Мы видим, что любое решение первого на отрезке, длина которого больше π , обязательно обратится в ноль хотя бы два раза. Решения второго уравнения могут обратиться в ноль не более одного раза на отрезке любой длины.

Если решение дифференциального уравнения обращается в ноль на данном интервале не более одного раза, оно называется *неколеблющимся* на этом интервале. В противном случае оно называется *колеблющимся*.

Важно понимать, что если ненулевое решение дифференциального уравнения y'' + a(x)y' + b(x)y = 0 обращается в ноль в точке x_0 , то оно обязательно меняет знак в этой точке. Поэтому колебательный характер решения связан с наличием у него нулей.

Мы знаем (см. занятие 21), что заменой $y(x) = \rho(x)u(x)$ уравнение y'' + a(x)y' + b(x)y = 0 можно привести к виду

$$u''(x) + Q(x)u = 0. (29.1)$$

При этом функция $\rho(x)$ может быть найдена из уравнения $2\rho'(x) + a(x)\rho(x) = 0$, а функция Q(x) — из уравнения $Q(x) = -\frac{1}{4}a^2(x) - \frac{1}{2}a'(x) + b(x)$. Может сложиться обманчивое представление, что колебательный характер решения связан с тем, является ли функция Q(x) знакопостоянной на каком-то отрезке, и с тем, каков этот знак. Однако, это не так.

Пример 1. Изучим поведение решений уравнения Эйлера

$$y'' + \frac{a^2}{x^2}y = 0$$

на интервале $(0; +\infty)$. Определяющее уравнение $\lambda(\lambda - 1) + a^2 = 0$ имеет корни $\lambda_{1,2} = \frac{1}{2} \pm \sqrt{\frac{1}{4} - a^2}$.

Если $a^2 = \frac{1}{4}$, то общее решение $y(x) = C_1 \sqrt{x} + C_2 \ln x \sqrt{x}$. Как видим, любое решение является неколеблющимся.

Если $a^2<\frac{1}{4}$, то корни $\lambda_{1,2}$ вещественные, и общее решение $y(x)=C_1x^{\lambda_1}+C_2x^{\lambda_2}$. Мы опять видим неколеблющиеся решения.

Если же $a^2 > \frac{1}{4}$, то корни $\lambda_{1,2}$ комплексно-сопряженные, и общее решение

$$y(x) = C_1 \sqrt{x} \cos(\sqrt{a^2 - \frac{1}{4}} \ln x) + C_2 \sqrt{x} \sin(\sqrt{a^2 - \frac{1}{4}} \ln x).$$

Очевидно, на интервале $(0; +\infty)$ эти функции являются колеблющимися.

Таким образом, из положительности функции Q(x) нельзя сделать вывод о колебательном характере решений. Но можно показать, что если $Q(x) \leq 0$ на интервале (a;b), то на этом интервале любое решение уравнения (29.1) будет неколеблющимся.

Следующая теорема, называемая теоремой сравнения, занимает центральное место при исследовании колебательного характера решений линейных дифференциальных уравнений второго порядка.

Рассмотрим два уравнения:

$$u''(x) + A(x)u = 0$$

$$v''(x) + B(x)v = 0$$

Функции A(x) и B(x) определены и непрерывны на интервале (a;b). Будем говорить, что эти уравнения образуют штурмову пару, если $\forall x \in (a;b)$ выполняется $A(x) \leqslant B(x)$.

Если функция u(x), являющаяся решением первого уравнения, колеблется на интервале (a;b) и x_1, x_2 — какие-либо два последовательных нуля этой функции, то любое решение v(x) второго уравнения обращается в ноль хотя бы один раз на интервале $(x_1; x_2)$.

Если обозначить через $d_u(a;b)$ расстояние между любыми двумя последовательными нулями функции u(x) на интервале (a;b), а через $d_v(a;b)$ — расстояние между любыми двумя последовательными нулями функции v(x), то теорема сравнения может быть кратко записана следующим образом: если $A(x) \leq B(x)$ на интервале (a;b), то $d_v(a;b) < d_u(a;b)$.

Или, переходя на сленг, говорят, что функция v(x) колеблется на интервале (a;b) чаще, чем функция u(x).

Из теоремы сравнения следует, что если $m \leqslant Q(x) \leqslant M$ на (a;b), то расстояние между любыми двумя последовательными нулями любого решения уравнения (29.1) заключено в пределах от $\frac{\pi}{\sqrt{M}}$ до $\frac{\pi}{\sqrt{m}}$.

Вернемся к примеру 1. Уравнения $u''(x) + a^2u = 0$ и $y'' + \frac{a^2}{x^2}y = 0$ образуют штурмову пару на интервале $(\varepsilon;1)$ $(\varepsilon>0)$. Расстояние между любыми двумя последовательными нулями любого решения первого уравнения равно $\frac{\pi}{a}$, и для того чтобы они попадали на интервал $(\varepsilon;1)$, необходимо, чтобы $\frac{\pi}{a} < 1 - \varepsilon$, то есть $a^2 > (\frac{\pi}{1-\varepsilon})^2$.

Таким образом, при достаточно больших a все решения уравнения $y'' + \frac{a^2}{r^2}y = 0$ имеют хотя бы один ноль на интервале $(\varepsilon; 1)$.

Уравнения $y'' + \frac{a^2}{x^2}y = 0$ и $v''(x) + a^2v = 0$ образуют штурмову пару на интервале $(1; +\infty)$. Если мы уже знаем, что решения первого уравнения колеблются, то эта пара дает возможность оценить снизу расстояние между двумя последовательными нулями решения первого уравнения величиной $\frac{\pi}{a}$. Если же мы не знаем, что первое уравнение имеет колеблющиеся решения, то на основании этой пары сделать вывод о колебательном характере решений мы не можем.

Наконец, на интервале (1;M) уравнения $u'' + \frac{a^2}{M^2}u = 0$ и $y'' + \frac{a^2}{x^2}y = 0$ образуют штурмову пару. Расстояние между двумя последовательными нулями любого решения первого уравнения равно $\frac{M\pi}{a}$, и можно выбрать достаточно большое значение M, чтобы на интервале (1;M) решения первого уравнения были колеблющимися. Но тогда будут колеблющимися и решения второго уравнения, причем расстояние между двумя последовательными нулями любого его решения оценивается сверху числом $\frac{M\pi}{a}$.

Сравнивая результаты проведенного анализа с точным решением, полученным ранее, мы видим, что теорема Штурма дает качественную оценку колебательного характера решений, но зато освобождает нас от необходимости искать точное решение.

Пример 2. Оценить сверху и снизу расстояние d между двумя последовательными нулями любого решения уравнения y'' + (1+x)y = 0 на отрезке [24; 80].

На этом отрезке $25\leqslant Q(x)\leqslant 81$, следовательно, для расстояния d получаем оценку $\frac{\pi}{9}\leqslant d\leqslant \frac{\pi}{5}.$

Можно оценить и число нулей N на этом отрезке. Длина отрезка равна 56, поэтому $5\frac{56}{\pi}\leqslant N\leqslant 9\frac{56}{\pi},$ или $90\leqslant N\leqslant 160.$

Пример 3. Покажем, что уравнение y'' + xy = 0 имеет на отрезке [-25; 25] не менее 15 нулей.

Рассмотрим отрезок $[\varepsilon^2;25]$. На нем расстояние d между двумя последовательными нулями любого решения заключено в пределах от $\frac{\pi}{5}$ до $\frac{\pi}{\varepsilon}$. Число нулей $N\geqslant \frac{(25-\varepsilon^2)\cdot\varepsilon}{\pi}$.

Найдем такое ε , чтобы функция $f(\varepsilon) = \frac{(25 - \varepsilon^2) \cdot \varepsilon}{\pi}$ принимала максимальное значение. $f'(\varepsilon_0) = 0$ при $\varepsilon_0^2 = \frac{25}{3}$. При этом $f(\varepsilon_0) \approx 15, 3$. Таким образом, на отрезке $[\frac{25}{3}; 25]$ любое решение имеет не менее 15 нулей.

Пример 3. Доказать, что расстояние между двумя последовательными нулями любого решения уравнения $y'' + x^2y = 0$ стремится к нулю при $x \to \pm \infty$

Мы должны показать, что для любого $\varepsilon > 0$ найдется $\delta(\varepsilon) > 0$ такое, что на интервалах $(\delta; +\infty)$ и $(-\infty; -\delta)$ расстояние между двумя последовательными нулями любого решения уравнения меньше ε .

Фиксируем $\varepsilon > 0$. Рассмотрим штурмову пару

$$u''(x) + a^2u = 0$$
 и $y'' + x^2y = 0$.

На интервале |x|>|a| расстояние между двумя последовательными нулями любого решения второго уравнения оценивается сверху числом $\frac{\pi}{|a|}$. Если $\varepsilon=\frac{\pi}{|a|}$, то $|a|=\frac{\pi}{\varepsilon}$, и следовательно надо взять $\delta=|a|=\frac{\pi}{\varepsilon}$.

Итак, для любого $\varepsilon>0$ полагаем $\delta=\frac{\pi}{\varepsilon}$, тогда при $|x|>\delta$ расстояние между двумя последовательными нулями любого решения уравнения меньше ε .

Исследуем колебательный характер функций Бесселя. Рассмотрим уравнения Бесселя порядка ν

$$x^{2}y''(x) + xy'(x) + (x^{2} - \nu^{2})y = 0.$$

Сделаем замену $y(x) = \frac{z(x)}{\sqrt{x}}$. Она приведет уравнение к виду

$$z'' + \left(1 - \frac{\nu^2 - \frac{1}{4}}{r^2}\right)z = 0.$$

Если $\nu^2 = \frac{1}{4}$, то общее решение этого уравнения

$$y = C_1 \sin x + C_2 \cos x$$

и расстояние между двумя последовательными нулями любого решения равно π .

Пусть $\nu^2 = \frac{9}{4}$. Покажем сначала, что любое решение уравнения

$$z'' + \left(1 - \frac{2}{x^2}\right)z = 0$$

действительно является колеблющимся на интервале $(0; +\infty)$.

Для этого рассмотрим штурмову пару

$$u'' + (1 - \varepsilon)u = 0$$
 и $z'' + (1 - \frac{2}{x^2})z = 0$

При этом необходимо, чтобы $1-\varepsilon\geqslant 1-\frac{2}{x^2}$, то есть $x\in[\sqrt{\frac{2}{\varepsilon}};+\infty)$. Решения первого уравнения, очевидно, являются колеблющимися при $\varepsilon<1$, и расстояние между любыми двумя нулями любого решения равно $\frac{\pi}{\sqrt{1-\varepsilon}}$.

Следовательно на интервале $x \geqslant \sqrt{\frac{2}{\varepsilon}}$ расстояние d между любыми двумя нулями функции z(x), являющейся решением второго уравнения, допускает оценку $d < \frac{\pi}{\sqrt{1-\varepsilon}} < \pi(1+\frac{\varepsilon}{2}).$

Зная теперь, что решение z(x) имеет колебательный характер, рассмотрим штурмову пару

$$z'' + \left(1 - \frac{2}{x^2}\right)z = 0$$
 и $v'' + v = 0$,

и сделаем вывод, что $d > \pi$.

Итак, мы показали, что $\pi < d < \pi(1+\frac{\varepsilon}{2})$ при $x \geqslant \sqrt{\frac{2}{\varepsilon}}$. Полученный результат означает, что расстояние между любыми двумя последовательными нулями функции Бесселя $J_{3/2}(x)$ всегда больше, чем π , и стремится к π при $x \to +\infty$.

Функция $J_{3/2}(x)$ имеет достаточно простой вид:

$$J_{3/2}(x) = \sqrt{\frac{2}{\pi x}} (\frac{\sin x}{x} - \cos x).$$

Но получить отсюда оценку расстояния между ее нулями (и даже сделать вывод о ее колебательном характере!) затруднительно.

Рассмотрим уравнение Бесселя нулевого порядка

$$y''(x) + \frac{1}{x}y'(x) + y = 0.$$

Замена $y(x) = \frac{z(x)}{\sqrt{x}}$ приведет уравнение к виду

$$z'' + \left(1 + \frac{1}{4x^2}\right)z = 0.$$

Из теоремы сравнения для пары уравнений

$$u'' + u = 0$$
 и $z'' + \left(1 + \frac{1}{4x^2}\right)z = 0$

сразу следует и то, что решения z(x) колеблющиеся, и оценка расстояния между любыми двумя последовательными нулями $d < \pi$.

Теперь составим штурмову пару

$$z'' + \left(1 + \frac{1}{4x^2}\right)z = 0$$
 и $v'' + (1 + \varepsilon)v = 0$, где $x > \frac{1}{\sqrt{\varepsilon}}$.

Отсюда можно получить оценку для расстояния между любыми двумя последовательными нулями снизу: $\frac{\pi}{\sqrt{1+\varepsilon}} < d$

Так как $\frac{1}{\sqrt{1+\varepsilon}} > 1 - \frac{\varepsilon}{2}$ для достаточно малых ε , то можно упростить оценку, и окончательно получить

$$\pi(1 - \frac{\varepsilon}{2}) < d < \pi$$

Таким образом, расстояние между любыми двумя последовательными нулями функции Бесселя $J_0(x)$ меньше π , и стремится к π при $x \to +\infty$.

Теперь можно немного по-другому взглянуть на график функции $J_0(x)$ (рис. 26.1 занятия 26)) Получить информацию о колебательном характере этой функции из степенного ряда совершенно невозможно (впрочем, то же самое можно сказать про ряды для функций $\sin x$ и $\cos x$). Именно дифференциальное уравнение явилось для нас источником новых сведений о его решениях.

Модифицированная функция Бесселя $I_0(x)$ удовлетворяет уравнению

$$y''(x) + \frac{1}{x}y'(x) - y = 0,$$

которое заменой $y(x) = \frac{z(x)}{\sqrt{x}}$ приводится к виду

$$z'' + \left(-1 + \frac{1}{4x^2}\right)z = 0.$$

Если $x \geqslant \frac{1}{2}$, то $Q(x) \leqslant 0$. Следовательно, никакое решение не может иметь более одного нуля на этом интервале. Можно показать, что на отрезке $[\varepsilon; \frac{1}{2}]$ при любом ε функция $I_0(x)$ также не имеет нулей (еще раз посмотрите на рис. 26.3)

Таким образом, модифицированные функции Бесселя $I_{\nu}(x)$ являются неколеблющимися, а функции Бесселя $J_{\nu}(x)$ — колеблющимися. Некоторые студенты употребляют именно такие термины: «колеблющиеся функции Бесселя» для $J_{\nu}(x)$ и «неколеблющиеся функции Бесселя» для $I_{\nu}(x)$. Нам кажется, что такая терминология не только допустима, но и более информативна, чем нейтральное название «модифицированная функция Бесселя».

Самостоятельная работа

- 1. Оцените расстояние между двумя последовательными нулями любого решения уравнения y'' + xy = 0 на отрезке [16; 25].
- **2.** Оцените количество нулей на отрезке [0;4] любого решения уравнения $y'' + 2^x y = 0$.
- 3. Покажите, что функция $y=\sin(2\ln x),\,x>0,$ является решением уравнения Эйлера $x^2y''+xy'+4y=0.$ Сделайте выводы о расстоянии

между нулями решения при $x \to +\infty$ и при $x \to +0$. Можно ли получить ту же информацию, не находя решения, а делая оценки с помощью теоремы сравнения?

4. К какому пределу стремится расстояние между двумя последовательными нулями любого решения уравнения $y'' + (1 + e^{-x})y = 0$ при $x \to +\infty$ и при $x \to -\infty$?

Ответы к самостоятельной работе

1.
$$\frac{\pi}{5} < d < \frac{\pi}{4}$$

2. Указание:
$$m = 1, M = 16 \Rightarrow \frac{\pi}{4} < d < \pi \Rightarrow \frac{4}{\pi} < N < \frac{16}{\pi}$$

Otbet: $2 \leqslant N \leqslant 5$

4. $d \to \pi$ при $x \to +\infty$; $d \to 0$ при $x \to -\infty$.