MATH70033 Algebraic curves :: Lecture notes

Lecturer: Soheyla Feyzbakhsh

Last edited: 23rd November 2024

Contents

1	Gro	undwork
		Definitions and theoretical background
	1.2	Factorisation
2	Proj	ective variety
	2.1	Motivation, definitions, basic results
	2.2	Projective plane curves – affine plane curves
		Singular point, smooth curve
3		out theorem
	3.1	Projective transformation
	3.2	Resultant
	3.3	Proof and applications of the theorem
		Resultant, reprise, and a better theorem

Every ring in this module is commutative.

1 Groundwork

1.1 Definitions and theoretical background

Definition 1.1.1. Let \mathbb{K} be a field and $f_1, \ldots, f_n \in \mathbb{K}[x_1, \ldots, x_m]$. An *affine algebraic set* is of the form

$$\mathbb{V}_{\mathbb{K}}(f_1,\ldots,f_n) = \{(x_1,\ldots,x_m): f_1(x_1,\ldots,x_m) = \cdots = f_n(x_1,\ldots,x_m) = 0\}.$$

Example 1.1.2. $\mathbb{V}_{\mathbb{R}}(x^2 + y^2 - 1)$ is a unit circle, $\{x = 2, y = 3\}$ can be understood as $\mathbb{V}_{\mathbb{R}}(x - 2, y - 3)$, the whole \mathbb{R}^n can be understood as $\mathbb{V}_{\mathbb{R}}(0)$, $\{a_1, \ldots, a_n\} \in \mathbb{C}$ can be understood as $\mathbb{V}_{\mathbb{C}}((x - a_1) \cdots (x - a_n))$.

 $\mathbb{Z} \subset \mathbb{C}$ is not an affine algebraic set since any nonzero polynomial has a finite number of solutions and the more polynomials one has, the less common solutions there are.

Definition 1.1.3. An *affine plane curve* over \mathbb{K} is a affine algebraic set defined by $C = \mathbb{V}_{\mathbb{K}}(p) \subset \mathbb{K}^2$ where p is a nonconstant polynomial in $\mathbb{K}[x, y]$.

Definition 1.1.4. The *degree* of a plane curve $C = \mathbb{V}_{\mathbb{K}}(p)$ is the degree of the polynomial $p \in \mathbb{K}[x, y]$, i.e. write $p = \sum_{i \geq 0, i \geq 0} a_{ij} x^i y^j$ then deg $C = \deg p = \max\{i + j : a_{ij} \neq 0\}$.

Example 1.1.5. Find all $(a,b,c) \in \mathbb{Z}^3$: $a^2+b^2=c^2$, the Pythagorean triples. Rewrite the equation as $\left(\frac{a}{c}\right)^2+\left(\frac{b}{c}\right)^2=1$ and consider the curve $\mathbb{V}_{\mathbb{Q}}(x^2+y^2-1)$. But how do we parameterise the rational points? We can consider instead $\mathbb{V}_{\mathbb{R}}(y-t(x+1),x^2+y^2-1)$ where $t \in \mathbb{Q}$. From this it's simple calculation and one finds

$$\mathbb{V}_{\mathbb{Q}}(x^2+y^2-1) = \{(-1,0)\} \cup \left\{ \left(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2}\right) : t \in \mathbb{Q} \right\}.$$

Definition 1.1.6. An *ideal* $I \subseteq R$ of a ring R is a subset of R such that $a, b \in I, r \in R \implies a + b, ar \in I$. For $X \subset R$, denote by I(X) the ideal generated by X (the smallest ideal containing X). If $X = \{r_1, \ldots, r_n\}$ one also writes $I(X) = \{r_1, \ldots, r_n\}$.

Theorem 1.1.7 (Hilbert basis theorem). If R is a Noetherian ring then R[x] is also Noetherian, i.e. any ideal in R[x] is finitely generated if any ideal in R is finitely generated.

Corollary 1.1.8. For a field \mathbb{K} , any $I \subseteq \mathbb{K}[x_1, \dots, x_n]$ has a finite generating set.

Notation. $\mathbb{V}_{\mathbb{K}}(I) = \{(a_1, \dots, a_n) : f(a_1, \dots, a_n) = 0 \ \forall f \in I\}.$

Remark 1.1.9. By corollary above, one can write $I = \langle f_1, \ldots, f_m \rangle$. We claim $\mathbb{V}_{\mathbb{K}}(I) = \mathbb{V}_{\mathbb{K}}(f_1, \ldots, f_m)$. Indeed, $\{f_1, \ldots, f_m\} \subset I$ so clearly $\mathbb{V}_{\mathbb{K}}(I) \subset \mathbb{V}_{\mathbb{K}}(f_1, \ldots, f_m)$. But for any $g \in I$ one can write $g = g_1 f_1 + \cdots + g_m f_m$, so $\mathbb{V}_{\mathbb{K}}(I) \supset \mathbb{V}_{\mathbb{K}}(f_1, \ldots, f_m)$ as well.

Week 2, lecture 1, 7th October

Definition 1.1.10. Define the *Zariski topology* by: a set $V \subset \mathbb{K}^n$ is closed $\iff V$ is an affine algebraic set.

Remark 1.1.11. The Zariski topology is indeed a topology: $\mathbb{K}^n = \mathbb{V}_{\mathbb{K}}(0), \emptyset = \mathbb{V} = \mathbb{K}(1)$, intersection of arbitrary closed sets is closed by 1.1.7 ($\mathbb{V}_{\mathbb{K}}(f_1, \ldots, f_n) \cap \mathbb{V}_{\mathbb{K}}(g_1, \ldots, g_m) = \mathbb{V}_{\mathbb{K}}(f_1, \ldots, f_n, g_1, \ldots, g_m)$), and finite union of closed sets is close ($\mathbb{V}_{\mathbb{K}}(f_1, \ldots, f_m) \cup \mathbb{V}_{\mathbb{K}}(g_1, \ldots, g_m) = \mathbb{V}_{\mathbb{K}}(\prod_{i,j} f_i g_j)$.

Note that Zariski topology is coarser (weaker) than the usual Euclidean topology since any polynomial is a continuous function, and closedness is preserved under preimage, but e.g. $[a,b] \subset \mathbb{R}$ is closed with respect to Euclidean norm, but not an affine algebraic set.

Definition 1.1.12. A field \mathbb{K} is algebraically closed if $f \in \mathbb{K}[x] \implies \exists a \in \mathbb{K} : f(a) = 0$.

Theorem 1.1.13 (Fundamental theorem of algebra). \mathbb{C} is algebraically closed.

Lemma 1.1.14. An algebraically closed field must be infinite.

Proof. Suppose \mathbb{K} is a finite field, then $f(x) = \prod_{a \in \mathbb{K}} (x - a) + 1$ has no roots in \mathbb{K} .

Theorem 1.1.15. If \mathbb{K} is algebraically closed, then any plane curve $C \subset \mathbb{K}^2$ has infinitely many points.

Proof. Let $C = \mathbb{V}_{\mathbb{K}}(p)$ be a plane curve and consider $p \in \mathbb{K}[x, y] = \mathbb{K}[y][x]$ as

$$Q_d(y)x^d + \cdots + Q_1(y)x + Q_0(y)$$

where WLOG $d \ge 1$ and $Q_i(y) \in \mathbb{K}[y]$. Now $Q_d(y)$ has at most $\deg_y Q_d$ roots, so since \mathbb{K} is infinite by 1.1.14, there are infinitely many $y_0 : Q_d(y_0) \ne 0 \implies \deg p = d$. But again \mathbb{K} is algebraically closed, hence for every such y_0 , $\exists x_0 : p(x_0, y_0) = 0$.

1.2 Factorisation

Definition 1.2.1. An *integral domain* or *domain* is a ring where product of any two nonzero elements is nonzero. An element $a \in R$ of a ring is a *unit* if $\exists a^{-1} : a^{-1}a = 1$.

A nonzero element $a \in R$ is *irreducible* if it's not a product of two nonunit elements.

A *unique factorisation domain* is a domain *R* where any nonzero and nonunit element can be written uniquely (up to reordering and multiplication by units) as product of irreducible elements.

Theorem 1.2.2. If R is a UFD, then R[x] is a UFD.

Proof. See MATH70035 Algebra 3.

Corollary 1.2.3. If \mathbb{K} is a field, then $\mathbb{K}[x_1, \dots, x_n]$ is a UFD.

Theorem 1.2.4 (Weak Nullstellensatz). If \mathbb{K} is algebraically closed and $I \subseteq \mathbb{K}[x_1, \dots, x_n]$, then $\mathbb{V}_{\mathbb{K}}(I) = \emptyset \iff 1 \in I \iff I = \mathbb{K}[x_1, \dots, x_n]$.

Proof. Let $m = \langle x1 - a_1, \dots, x_n - a_n \rangle$ ≤ $\mathbb{K}[x_1, \dots, x_n]$ be a maximal ideal which has $\mathbb{V}_{\mathbb{K}}(m) = \{(a_1, \dots, a_n)\}$. But then for any ideal I other than \mathbb{K} one has $I \subset m$, so $\mathbb{V}_{\mathbb{K}}(m) \subset \mathbb{V}_{\mathbb{K}}(I)$, in particular $\mathbb{V}_{\mathbb{K}}(I) \neq \emptyset$.

Corollary 1.2.5. If $f, g \in \mathbb{K}[x_1, \dots, x_n]$ then $f \mid g \implies \mathbb{V}_{\mathbb{K}}(f) \subset \mathbb{V}_{\mathbb{K}}(g)$.

Proposition 1.2.6 (The converse). Let \mathbb{K} be algebraically closed and $f, g \in \mathbb{K}[x_1, \dots, x_n]$. If f is irreducible and $\mathbb{V}_{\mathbb{K}}(f) \subset \mathbb{V}_{\mathbb{K}}(g)$ then $f \mid g$.

Proof. $\mathbb{V}_{\mathbb{K}}(f) \subset \mathbb{V}_{\mathbb{K}}(g) \iff \{f = 0\} \cap \{g \neq 0\} = \emptyset$, but $g(x_1, \dots, x_n) \neq 0 \iff \exists t \in \mathbb{K} : tg(x_1, \dots, x_n) = 1$ (any nonzero element of a field is a unit), so one has $\mathbb{V}_{\mathbb{K}}(f) \cap \mathbb{V}_{\mathbb{K}}(tg - 1) = \mathbb{V}_{\mathbb{K}}(f, tg - 1) = \emptyset$ where $tg - 1 \in \mathbb{K}[x_1, \dots, x_n, t]$. By 1.2.4, $1 \in \langle f, tg - 1 \rangle$, i.e. af + b(tg - 1) = 1 for some $a, b \in \mathbb{K}[x_1, \dots, x_n, t]$. Now write $t = \frac{1}{g}$ and multiply the above by g^N where N is large enough so that $\widetilde{a}f = g^N$ where $\widetilde{a} \in \mathbb{K}[x_1, \dots, x_n]$. In particular $f \mid g^N$, but f is irreducible, so since $\mathbb{K}[x_1, \dots, x_n]$ is a UFD by 1.2.3 f is prime, hence $f \mid g$. □

Week 2, lecture 2, 7th October

Definition 1.2.7. A topological space *X* is *irreducible* if for any two closed subsets $A, B \subset X$,

$$X = A \cup B \implies X = A \text{ or } X = B.$$

An affine algebraic set $\mathbb{V} \subset \mathbb{K}^n$ is *reducible* if one can write $\mathbb{V} = \mathbb{V}_1 \cup \mathbb{V}_2$ where V_i 's are affine algebraic and $V_i \neq V$. Otherwise it's *irreducible*, i.e. if $\mathbb{V} = \mathbb{V}_1 \cup \mathbb{V}_2 \implies \mathbb{V} = \mathbb{V}_1$ or \mathbb{V}_2 .

Theorem 1.2.8. Let \mathbb{K} be algebraically closed. Then a plane curve $C \subset \mathbb{K}^2$ is irreducible $\iff C = \mathbb{V}_{\mathbb{K}}(f)$ for some nonconstant irreducible $f \in \mathbb{K}[x,y]$.

Proof. Let $C = \mathbb{V}_{\mathbb{K}}(f)$ be irreducible and write $f = f_1^{\alpha_1} \cdots f_n^{\alpha_n}$ where f_i 's are irreducible. Then $C = \mathbb{V}_{\mathbb{K}}(f_1) \cup \cdots \cup \mathbb{V}_{\mathbb{K}}(f_n)$. By definition, $\exists i : C = \mathbb{V}_{\mathbb{K}}(f_i)$.

Now let $C = \mathbb{V}_{\mathbb{K}}(p)$ where p is irreducible and suppose for a contradiction that C is reducible, i.e. $\exists p_1, p_2 : \mathbb{V}_{\mathbb{K}}(p) = \mathbb{V}_{\mathbb{K}}(p_1) \cup \mathbb{V}_{\mathbb{K}}(p_2) = \mathbb{V}_{\mathbb{K}}(p_1p_2)$. But by 1.2.6, $p \mid p_1p_2$, so WLOG $p \mid p_1$, so by 1.2.5 $\mathbb{V}_{\mathbb{K}}(p) \subset \mathbb{V}_{\mathbb{K}}(p_1) \subset \mathbb{V}_{\mathbb{K}}(p)$, hence $\mathbb{V}_{\mathbb{K}}(p) = \mathbb{V}_{\mathbb{K}}(p_1)$, i.e. C is irreducible.

Theorem 1.2.9. For any affine algebraic set $\mathbb{V} \subset \mathbb{K}^n$, there are unique irreducible affine algebraic sets $\mathbb{V}_1, \ldots, \mathbb{V}_k$: $\mathbb{V} = \bigcup_{i=1}^k \mathbb{V}_i$ and $\mathbb{V}_i \not\subset \mathbb{V}_j \ \forall i \neq j$. The \mathbb{V}_i 's are called *irreducible components* of \mathbb{V} .

Proof. For existence, we prove that the set

 $\mathcal{F} := \{ \text{affine algebraic sets } \mathbb{V} \subset \mathbb{K}^n : \mathbb{V} \text{ is not the union of a finite number of irreducible affine algebraic sets} \}$

is empty. For a contradiction, suppose $\mathbb{V} \in \mathcal{F}$ and it's minimal with respect to inclusion. First note that \mathbb{V} is reducible, so one can write $\mathbb{V} = \mathbb{V}_1 \cup \mathbb{V}_2$ where $\mathbb{V}_1, \mathbb{V}_2$ are affine algebraic, but then $\mathbb{V}_1, \mathbb{V}_2 \subset \mathbb{V}$ so by assumption $\mathbb{V}_1, \mathbb{V}_2 \notin \mathbb{F}$, i.e. $\mathbb{V}_1 = \bigcup_i \mathbb{V}_{1i}, \mathbb{V}_2 = \bigcup_j \mathbb{V}_{2j}$, but then \mathbb{V} is union of these.

For the condition $V_i \not\subset V_j \ \forall i \neq j$ one simply needs to remove the redundant components by inclusion. It remains to show that two decompositions are the same up to reordering. Write

$$\mathbb{V} = \mathbb{V}_1 \cup \cdots \cup \mathbb{V}_k = \mathbb{W}_1 \cup \cdots \mathbb{W}_{k'}$$

then

$$\mathbb{V}_i = (\mathbb{V}_i \cap \mathbb{W}_1) \cup \cdots \cup (\mathbb{V}_i \cap \mathbb{W}_{k'})$$

which is irreducible, so $\mathbb{V}_i = \mathbb{V}_i \cap \mathbb{W}_{j(i)}$ for some j(i), i.e. $\mathbb{V}_i \subset \mathbb{W}_{j(i)}$. But the argument is symmetrical, so $\mathbb{W}_{j(i)} \subset \mathbb{V}_k$ for some k, but since we got rid of redundant components, it must be $\mathbb{V}_i = \mathbb{V}_k$ and in particular $\mathbb{V}_i = \mathbb{W}_{j(i)}$.

Corollary 1.2.10. Write $p = p_1^{d_1} \cdots p_n^{d_n} \in \mathbb{K}[x, y]$ where p_i are irreducible and $\mathbb{C} = \mathbb{V}_{\mathbb{K}}(p)$, then

- 1. $C = \mathbb{V}_{\mathbb{K}}(p_1) \cup \cdots \cup \mathbb{V}_{\mathbb{K}}(p_n)$, and
- 2. if $C = C_1 \cup \cdots \cup C_k$ is the irreducible decomposition of C, then (up to reordering) $C_i = \mathbb{V}_{\mathbb{K}}(p_i)$ and k = n.

Corollary 1.2.11. If each of the irreducible decompositions of f, $g \in \mathbb{K}[x,y]$ has no repeated factors, then $\mathbb{V}_{\mathbb{K}}(f) = \mathbb{V}_{\mathbb{K}}(g) \iff f = \lambda g$ for some $\lambda \in \mathbb{K}$.

Week 2, lecture 3, 11th October

2 Projective variety

2.1 Motivation, definitions, basic results

The motivation to define projective things is we want things to be compact (in the usual Euclidean topology): consider intersection of curves $y^2 = x^2 + 1$ and $y = \alpha x$. If $\alpha \neq \pm 1$ one always has exactly two intersections, but if $\alpha = \pm 1$ the line is asymptotic so we don't have intersection – that is, if we don't consider points at infinity.

But how do we formalise "points at infinity"? That's where the word "projective" comes in.

For any point $(x, y) \in \mathbb{K}^2$, one can "project" it to the z = 1 plane to get a unique point (x, y, 1) in the way shown above. One then consider points as lines, more specifically 1-dimensional subspaces. The points at infinity have z-coordinate 0, i.e. the line connecting origin and the projected point is entirely in the xy-plane so they don't reach the z = 1 plane.

Definition 2.1.1. The *n*-dimensional *projective space*, denoted by \mathbb{P}^n (or more specifically $\mathbb{P}^n(\mathbb{K})$) is $\mathbb{K}^{n+1}\setminus\{0\}$ modulo the equivalence relation $p \sim q \iff p = \lambda q$ for some $\lambda \in \mathbb{K}$. An element of \mathbb{P}^n is written as $[x_0, \ldots, x_n]$, which is the equivalence class for (x_0, \ldots, x_n) .

One equips \mathbb{P}^n with the quotient topology: $U \subset \mathbb{P}^n$ is open if $\{x \in \mathbb{K}^{n+1} \setminus \{0\} : x \sim u \text{ for some } u \in U\}$ is open.

Example 2.1.2. \mathbb{P}^0 is a point, \mathbb{P}^1 can be understood as $\mathbb{K} \cup \mathbb{P}^0$ (the lines y = ax where a is allowed to be ∞ (the y-axis)).

Remark 2.1.3. We claim $U_j := \{[x_0, \dots, x_n] : x_j \neq 0\} \subset \mathbb{P}^n$ (the *affine charts* in manifold language) is homeomorphic to \mathbb{K}^n . The map φ defined by

$$\varphi: U_j \to \mathbb{K}^n: [x_0, \dots, x_n] \mapsto \left(\frac{x_0}{x_j}, \dots, \frac{x_{j-1}}{x_j}, \frac{x_{j+1}}{x_j}, \dots, \frac{x_n}{x_j}\right)$$
$$\varphi^{-1}: \mathbb{K}^n \to U_j: (y_1, \dots, y_n) \mapsto [y_1, \dots, y_j, 1, y_{j+1}, \dots, y_n]$$

is indeed bijective, and since \mathbb{P}^n is equipped with quotient topology inherited from $\mathbb{K}^{n+1} \supset \mathbb{K}^n$ one has that φ preserves open sets as well, i.e. it's homeomorphic.

Now note that $\mathbb{P}^n = \bigcup_{j=0}^n U_j$, so one can understand \mathbb{P}^n as n+1 copies of \mathbb{K}^n . One can also think of \mathbb{P}^n as $\mathbb{K}^n \cup \mathbb{P}^{n-1}$, where \mathbb{K}^n corresponds to the $x_n \neq 0$ part and \mathbb{P}^{n-1} corresponds to the $x_n = 0$ part (see image above).

Remark 2.1.4. Let $\mathbb{K} = \mathbb{C}$. Define

$$S^{2n+1}:=\{(x_0,\ldots,x_n)\in\mathbb{C}^{n+1}\cong\mathbb{R}^{2n+2}:|x_0|^2+\cdots+|x_n|^2=1\}$$

and

$$\pi: S^{2n+1} \to \mathbb{P}^n(\mathbb{C}): (x_0, \dots, x_n) \mapsto [x_0, \dots, x_n].$$

The preimage of $[x_0, \ldots, x_n]$ is then $\{(\lambda x_0, \ldots, \lambda x_n) \in S^{2n+1}\}$.

The map is clearly surjective and, similar to previous remark, continuous. We've shown $\mathbb{P}^n(\mathbb{C})$ is compact since S^{2n+1} is compact (closed and bounded) by Heine–Borel. It's also Hausdorff.

Week 3, lecture 1, 14th October

To make sense of polynomials over \mathbb{P}^n , we need to characterise polynomials satisfying that if (x_0, \dots, x_n) is a solution then $(\lambda x_0, \dots, \lambda x_n)$ is also a solution for any $\lambda \in \mathbb{K}$.

Definition 2.1.5. A polynomial $f \in \mathbb{K}[x_0, \dots, x_n]$ is homogeneous of degree d if

$$f(\lambda x_0, \dots, \lambda x_0) = \lambda^d f(x_0, \dots, x_n) \qquad \forall \lambda \in \mathbb{K}, (x_0, \dots, x_n) \in \mathbb{K}^{n+1}.$$

Remark 2.1.6. Observe that monomial $f = cx_0^{e_0} \cdots x_n^{e_n}$ is homogeneous of degree $\sum_{i=0}^n e_i$. We claim any homogeneous polynomial is a sum of monomials of the same degree. Indeed, for any $f \in \mathbb{K}[x_0, \dots, x_n]$ with degree d one can write $f = f_d + f_{d-1} + \dots + f_0$ where f_i only contain monomials of degree i. Then i is homogeneous of degree i and i is homogeneous by the observation. Now if i is homogeneous then

$$f(\lambda x_0, \dots, \lambda x_n) = \lambda^d f_d(x_0, \dots, x_n) + \lambda^d f_{d' < d}(x_0, \dots, x_n)$$
 by definition of homogeneous
$$= \lambda^d f_d(x_0, \dots, x_n) + \lambda^{d-1} f_{d-1}(x_0, \dots, x_n) + \dots + \lambda f_1(x_0 + \dots + x_n) + f_0$$
 by calculation,

so it must e $f_{d' < d} = 0$.

Also a key observation is that if p = gh is homogeneous then g, h are homogeneous, which can be proved easily by contradiction.

Lemma 2.1.7. If $f \in \mathbb{K}[x_0, \dots, x_n]$ is homogeneous then the set

$$\{[x_0,\ldots,x_n]\in\mathbb{P}^n: f(x_0,\ldots,x_n)=0\}$$

is well-defined.

Proof. It suffices to show that the set does not depend the choice of representative (x_0, \ldots, x_n) of $[x_0, \ldots, x_n]$, i.e. if $p \sim q$ and f(p) = 0 then f(q) = 0, but this is clear:

$$f(x_0,\ldots,x_n)=0 \implies f(\lambda x_0,\ldots,\lambda x_n)=\lambda^d f(x_0,\ldots,x_n)=\lambda^d 0=0.$$

Definition 2.1.8. A *projective variety* is a set $\mathbb{V} \subset \mathbb{P}^n(\mathbb{K})$ that can be written as

$$\mathbb{V} = \{ [x_0, \dots, x_n] \in \mathbb{P}^n : f_1(x_0, \dots, x_n) = \dots = f_k(x_0, \dots, x_n) = 0 \}$$

where f_i 's are homogeneous.

Proposition 2.1.9. Let \mathbb{K} be algebraically closed and $f \in \mathbb{K}[x, y]$ homogeneous of degree d, then one can write $f(x, y) = \prod_{i=1}^{d} (a_i x + b_i y)$ where a_i, b_i not both 0, and $\mathbb{P}^1 \supset \mathbb{V}(f) = \{[-b_1, a_1], \dots, [-b_d, a_d]\}$.

Proof. Write $f = y^{d-e}g(x, y)$ where g is homogeneous of degree e and $y \nmid g(x, y)$. Write

$$g(x,y) = c_e x^e + c_{e-1} x^{e-1} y + \dots + c_0 y^e \quad \text{where } c_e \neq 0$$

$$= y^e c_e \left(\left(\frac{x}{y} \right)^e + \frac{c_{e-1}}{c_e} \left(\frac{x}{y} \right)^{e-1} + \dots + \frac{c_0}{c_e} \right)$$

$$= y^e c_e \prod_{i=1}^e \left(\frac{x}{y} - t_i \right) \quad \text{for some } t_i \in \mathbb{K} \text{ since } \mathbb{K} \text{ is algebraically closed}$$

$$= c_e \prod_{i=1}^e (x - t_i y).$$

So projective varieties in \mathbb{P}^1 are not so interesting after all. To have curves we need to go one dimension higher.

Definition 2.1.10. A projective plane curve of degree d > 0 is a set of the form

$$C = \{ [x_0, x_1, x_2] \in \mathbb{P}^2 : p(x_0, x_1, x_2) = 0 \}$$

where p is nonconstant and homogeneous of degree d.

Week 3, lecture 2, 14th October

One can define irreducibility similar for projective plane curves to 1.2.7 and analogously one has:

Proposition 2.1.11. If \mathbb{K} is algebraically closed and $C \subset \mathbb{P}^2(\mathbb{K})$ is a projective plane curve, then

1. *C* has infinitely many points. (cf. 1.1.15)

- 2. *C* is irreducible \iff $C = \{p = 0\}$ for some irreducible homogeneous polynomial p. (cf. 1.2.8)
- 3. If $p, q \in \mathbb{K}[x, y, z]$ are irreducible homogeneous polynomials, then $\{p = 0\} = \{q = 0\} \iff p = \lambda q \text{ for some } \lambda \in \mathbb{K} \text{ (cf. 1.2.11)}$
- 4. If $p = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$ where p_i 's are irreducible, then the irreducible components of $C = \{p = 0\}$ are precisely $\{p_i = 0\}$. (cf. 1.2.10)

Proposition 2.1.12. Let $C \subset \mathbb{P}^2(\mathbb{C})$ be a projective plane curve. Then C is compact.

This is the key motivation/expectation when we defined projective spaces.

Proof. $\mathbb{P}^2(\mathbb{C})$ is compact by 2.1.4, and $C \subset \mathbb{P}^2(\mathbb{C})$ is closed since its preimage in $\mathbb{C}^3 \setminus \{0\}$ with respect to the natural quotient map is closed (since it's a preimage of a closed set of a continuous function, see 1.1.11), but any closed subset of a compact space is compact.

2.2 Projective plane curves – affine plane curves

Again, per 2.1.3, consider \mathbb{P}^2 as $\{x \neq 0\} \cup \{y \neq 0\} \cup \{z \neq 0\}$, and every point $(x, y) \in \mathbb{K}^2$ corresponds uniquely to the point [x, y, 1] in \mathbb{P}^2 , i.e. the unique point where the line defined by (0, 0, 0) and (x, y, 1) intersects with the z = 1 plane.

For a projective plane curve $\overline{C} = \{p(x, y, z) = 0\}$ where $z \nmid p$ (i.e. the line $\{z = 0\}$ (the "line at infinity", denoted by L_{∞}) is not fully contained in \overline{C}), one can map it to an affine plane curve $C = \{p(x, y, 1) = 0\} \in \mathbb{K}^2$ where now $p \in \mathbb{K}[x, y]$ (since $z \nmid p$, one can make sure this p is nonconstant).

Example 2.2.1. The projective plane curve $\overline{C} = \{xy + z^2 = 0\}$ corresponds to $C = \{xy + 1 = 0\} \subset \mathbb{K}^2$, so it's a hyperbola. But it also has points at infinity, i.e. $\overline{C} \cap L_{\infty} = \{xy = 0\} = \{[1,0,0],[0,1,0]\}$.

How does one map an affine plane curve to a projective one? First note that f may not be homogeneous so one needs to homogenize it, and also a polynomial over \mathbb{P}^2 has three variables so we need to add one more. We can do both at the same time.

Lemma 2.2.2. If $f \in \mathbb{K}[x,y]$ is of degree d, then its *homogenization* $F(x,y,z) := z^d f\left(\frac{x}{z},\frac{y}{z}\right)$ is homogeneous of degree d such that F(x,y,1) = f(x,y) and $z \nmid F$.

Proof. Any monomial in f is of the form cx^iy^j where $i+j \leq d$, which is homogenized to $z^dc\left(\frac{x}{z}\right)^i\left(\frac{y}{z}\right)^j=cz^{d-i-j}x^iy^j$, indeed a monomial in $\mathbb{K}[x,y,z]$ with degree d-i-j+i+j=d. Since $\deg f=d$, there is a homogenized monomial cx^iy^j where i+j=d, so $z\nmid F$.

We can now map $C = \{0 = f \in \mathbb{K}[x, y]\} \subset \mathbb{K}^2$ to $\overline{C} = \{F[x, y, z] = 0\}$ where F is the homogenization of f. We claim

Theorem 2.2.3. The map

$$\phi$$
: {projective plane curves not containing $\{z=0\}\} \to \{\text{affine plane curves}\}\$
 $\overline{C} = \{p(x,y,z)=0\} \subset \mathbb{P}^2(\mathbb{K}) \mapsto C = \{p(x,y,1)=0\} \subset \mathbb{K}^2$

is bijective with the inverse

$$\psi$$
: {affine plane curves} \to {projective plane curves not containing { $z = 0$ }} $C = \{f(x, y) = 0\} \subset \mathbb{R}^2 \mapsto \overline{C} = \{F(x, y, z) = 0\} \subset \mathbb{P}^2(\mathbb{K})$

Proof. It suffices to see that F(x, y, 1) = f(x, y) which follows from the lemma above.

Of course this bijection is not unique, we chose in particular the z = 1 hyperplane.

Week 3, lecture 3, 18th October: example/exercise class

Week 4, lecture 1, 21st October

We mentioned "points at infinity" many times and let's now formalise it.

Definition 2.2.4. Let *C* be an affine plane curve. The *points at infinity* of *C* is the set $\overline{C} \cap L_{\infty}$.

Proposition 2.2.5. There is a bijection

$$\overline{C} \cap L_{\infty} \leftrightarrow \{[x,y] \in \mathbb{P}^1 : f_d(x,y) = 0\}$$

 $[x,y,0] \mapsto [x,y]$

where f_d is the homogeneous of degree d part of f.

Proof. Let $C = \{f(x, y) = 0\} \subset \mathbb{K}^2$ where deg f = d. Then one can write $f = f_d + f_{d-1} + \cdots + f_0$ where each f_i is homogeneous of degree i. Then

$$F(x, y, z) = f_d(x, y) + z f_{d-1}(x, y) + \dots + z^d f_0(x, y).$$

Hence

$$\overline{C} \cap L_{\infty} = \{F(x, y, z) = 0\} \cap \{z = 0\} = \{F(x, y, 0) = 0\} = \{[x, y, 0] : f_d(x, y) = 0\}.$$

Example 2.2.6. Consider $C = \mathbb{V}_{\mathbb{K}}(f)$ where $f(x,y) = x^3 + xy^2 + xy + \cdots$. Then $\overline{C} \cap L_{\infty} = \{[x,y,0] \in \mathbb{P}^1 : x^3 + xy^2 = 0\} = \{[0,1,0], [i,-1,0], [i,1,0]\}.$

From now on we assume our polynomials have no repeated factors, i.e. if $F = f_1^{\alpha_1} \cdots f_n^{\alpha_n}$ where each f_i is irreducible then each $\alpha_i = 1$.

2.3 Singular point, smooth curve

Recall in real analysis one has

Theorem 2.3.1 (Special case of implicit function theorem). Let $F : \mathbb{R}^2 \to \mathbb{R}$ be a smooth (i.e. infinitely differentiable) function with F(a,b) = 0 and $\frac{\partial F}{\partial u}(a,b) \neq 0$. Then $\exists \delta, \varepsilon > 0$ such that $\forall x$ in the box

$$\beta = \{(x, y) \in \mathbb{R}^2 : |x - a| < \delta, |y - b| < \varepsilon\}$$

 $\exists ! y$ in the box such that F(x, y) = 0.

This correspondence gives a smooth function f over $|x-a| < \delta$ such that F(x,y) = 0 for $(x,y) \in \beta \iff y = f(x)$. In plain English, the theorem says a smooth curve is locally the graph of a smooth function.

Proof. WLOG assume $\frac{\partial F}{\partial y}(a,b) > 0$. Than F is increasing in y in a small enough neighbourhood of (a,b), i.e. $\exists \delta_1, \varepsilon_1 > 0 : \frac{\partial F}{\partial y}(x,y) > 0 \ \forall x,y: |x-a| < \delta_1, |y-b| < \varepsilon_1$. Hence by continuity of F, $\exists \delta, \varepsilon: |x-a| < \delta \implies F(x,b+\varepsilon) > 0$ and $F(x,b-\varepsilon) < 0$. But then the intermediate value theorem says $\forall x: |x-a| < \delta, \ \exists !y: |y-b| < \varepsilon$ and F(x,y) = 0.

Definition 2.3.2. Let $C = \{f(x, y) = 0\} \subset \mathbb{K}^2$ be an affine plane curve. C is *smooth* at $(a, b) \in C$ if

$$\left(\frac{\partial f}{\partial x}(a,b),\frac{\partial f}{\partial y}(a,b)\right)\neq (0,0).$$

Otherwise the point is *singular*, or a *singularity*.

One can therefore write the down the set of singular points of $C = \mathbb{V}_{\mathbb{K}}(f)$ as $\mathbb{V}_{\mathbb{K}}\left(f, \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$.

C is a *smooth curve* if *C* is smooth at every $(a, b) \in C$.

For a smooth point $p \in C$, one can define its *tangent line* by

$$T_pC = \left\{ \frac{\partial f}{\partial x}(a,b)(x-a) + \frac{\partial f}{\partial y}(a,b)(y-b) = 0 \right\}$$

Example 2.3.3. Any affine line $\mathbb{V}_{\mathbb{K}}(f = ax + by + c)$ is smooth; since ax + by + c is nonconstant, either $a = \frac{\partial f}{\partial x}$ or $b = \frac{\partial f}{\partial y}$ is nonzero.

Definition 2.3.4. A *nodal* singularity is where two smooth irreducible components intersect. We'll later see a proof of why we don't have to specify anything about partial derivatives.

Week 4. lecture 2. 21st October

Definition 2.3.6. A *cusp* singularity is a sharp point of a curve where there's a sudden change in direction.

Example 2.3.7. The curve $C = \{f = y^2 - x^3 = 0\}$ has a singularity where

$$\frac{\partial f}{\partial x} = 3x^2 = \frac{\partial f}{\partial y} = 2y = y^2 - x^3 = 0,$$

so (0,0) is singular, which is a cusp as evident on the right.

$$\frac{\partial f}{\partial x} = -3x^2 + 1 = \frac{\partial f}{\partial y} = 2y = y^2 - x^3 + x = 0,$$

which has no solutions, hence *C* is smooth.

Remark 2.3.9. Suppose $f = g^2 h \in \mathbb{K}[x, y]$. Then by chain rule and product rule

$$\frac{\partial f}{\partial x} = 2gh\frac{\partial g}{\partial x} + g^2\frac{\partial h}{\partial x}, \qquad \frac{\partial f}{\partial y} = 2gh\frac{\partial g}{\partial y} + g^2\frac{\partial h}{\partial y},$$

so $\{g = 0\} \subset \{\text{singularities of } f\}$, but then every point of $\{f = 0\}$ is singular, a strange behaviour. This is why we are assuming our polynomials have no repeated factors.

Definition 2.3.10. Suppose char $\mathbb{K}=0$. A projective plane curve $C=\{F(x,y,z)=0\}\subset \mathbb{P}^2(\mathbb{K})$ is *singular* at [a,b,c] if

$$\frac{\partial F}{\partial x}(a,b,c) = \frac{\partial F}{\partial y}(a,b,c) = \frac{\partial F}{\partial z}(a,b,c) = 0.$$

Otherwise the point is *smooth*.

Example 2.3.11. $C = \{F = x^d + y^d + z^d = 0\} \subset \mathbb{P}^2$ is smooth since $\frac{\partial F}{\partial x} = \frac{\partial F}{\partial y} = \frac{\partial F}{\partial z} = 0$ only at (0,0,0), but this is not a point in \mathbb{P}^2 .

Note that unlike the affine case, we didn't have to specify that $[a, b, c] \in C$, since char $\mathbb{K} = 0$ implies that as long as the partial derivatives are zero, the point automatically lies on the curve:

Proposition 2.3.12 (Euler's identity). Let $F \in \mathbb{K}[x_0, \dots, x_n]$ be homogeneous of degree d. Then

$$\sum_{i=0}^{n} x_i \frac{\partial F}{\partial x_i} = dF.$$

In particular, if $d \neq 0$ in \mathbb{K} (e.g. if char $\mathbb{K} = 0$) and $\frac{\partial F}{\partial x_i}(a_0, \dots, a_n) = 0 \ \forall i$, then $F(a_0, \dots, a_n) = 0$.

Proof 1. It suffices to show for a monomial $F = x_0^{i_0} \cdots x_n^{i_n}$ since a homogeneous polynomial is a sum of monomials of the same degree and one can extend the result linearly. But then

$$x_0 i_0 x_0^{i_0 - 1} x_1^{i_1} \cdots x_n^{i_n} + \cdots + x_n x_0 \cdots i_n x_n^{i_n - 1} = i_0 F + \cdots + i_n F = dF$$

Proof 2. Alternatively, by definition of homogeneous

$$F(\lambda x_0, \ldots, \lambda x_n) = \lambda^d F(x_0, \ldots, x_n).$$

Treat λ as a variable and differentiate both sides with respect to it:

$$\sum_{i=0}^{n} x_i \frac{\partial F}{\partial x_i}(\lambda x_0, \dots, \lambda x_n) = d\lambda^{d-1} F(x_0, \dots, x_n),$$

and setting $\lambda = 1$ gives the desired.

as desired.

Proposition 2.3.13. Let $\overline{C} \subset \mathbb{P}^2(\mathbb{K})$ be the projectivisation of an affine curve $C \subset \mathbb{K}^2$. Then $(a, b) \in C$ is singular $\iff [a, b, 1] \in \overline{C}$ is singular.

Proof. Since f(x, y) = F(x, y, 1), clearly

$$\frac{\partial F}{\partial x}(a,b,1) = \frac{\partial f}{\partial x}(a,b)$$
 and $\frac{\partial F}{\partial y}(a,b,1) = \frac{\partial f}{\partial y}(a,b)$,

so $[a,b,1] \in \overline{C}$ is singular $\implies (a,b) \in C$ is singular. Conversely, if $(a,b) \in C$ is singular, then $[a,b,1] \in \overline{C}$ and by above $\frac{\partial F}{\partial x}(a,b,1) = \frac{\partial F}{\partial y}(a,b,1) = 0$ so by 2.3.12

$$\frac{\partial F}{\partial z}(a,b,1) = dF(a,b,1) - a\frac{\partial F}{\partial x}(a,b,1) - b\frac{\partial F}{\partial y}(a,b,1) = 0.$$

One can therefore consider tangent lines (planes in \mathbb{K}^3) of projective plane curves:

$$T_p\overline{C} = \left\{ \frac{\partial F}{\partial x}(a,b,c)(x-a) + \frac{\partial F}{\partial y}(a,b,c)(y-b) + \frac{\partial F}{\partial z}(a,b,c)(z-c) = 0 \right\},$$

where the polynomial is indeed homogeneous again by 2.3.12.

Proposition 2.3.14. Let C be a projective plane curve over an algebraically closed field \mathbb{K} and C_1, C_2 be two different irreducible components with $[a, b, c] \in C_1 \cap C_2$. Then C is singular at [a, b, c].

Proof. By 2.1.11, one can write $C_1 = \{f_1 = 0\}$, $C_2 = \{f_2 = 0\}$ and $f_1 = f_1 f_2 g_2$ where f_1 , f_2 are irreducible. Then

$$\frac{\partial F}{x_i} = \frac{\partial f_1}{x_i} f_1 f_2 g + f_1 \frac{\partial f_2}{x_i} + f_1 f_2 \frac{\partial g}{x_i} \quad \forall i$$

which is 0 at [a, b, c] since $f_1(a, b, c) = f_2(a, b, c) = 0$.

Corollary 2.3.15. If **K** is algebraically closed, then a smooth projective plane curve must be irreducible.

This follows from Bézout's theorem, which we will later encounter and prove.

Theorem 2.3.16. Let $C = \{F(x, y, z) = 0\} \subset \mathbb{P}^2(\mathbb{C})$ be a smooth projective plane curve. Then C is a compact Riemann surface (a smooth complex manifold of complex dimension 1).

Week 4, lecture 3, 25th October

3 Bézout theorem

3.1 Projective transformation

Lemma 3.1.1. For $A \in GL_{n+1}(\mathbb{K})$, there is a bijection $\phi_A : \mathbb{P}^n \to \mathbb{P}^n : [x_0, \dots, x_n] \mapsto A \begin{bmatrix} x_0 \\ \vdots \\ x_n \end{bmatrix}$.

Proof. First ϕ_A is well-defined: it's clear that $A\begin{bmatrix} x_0 \\ \vdots \\ x_n \end{bmatrix}$ is never zero, and $\phi_A(\lambda p) = \lambda \phi_A(p) \sim \phi_A(p)$. The bijectivity follows immediately from A is invertible.

Remark 3.1.2. Note that ϕ_A is continuous: a map $f: \mathbb{P}^n \to X$ is continuous $\iff f \circ \pi : \mathbb{C}^{n+1} \setminus \{0\} \to X$ is continuous where $\pi : \mathbb{C}^{n+1} \setminus \{0\} \to \mathbb{P}^n$ is the natural quotient map (which is by definition continuous).

Definition 3.1.3. A projective transformation $\phi : \mathbb{P}^n \to \mathbb{P}^n$ is $\phi = \phi_A$ for some $A \in GL_{n+1}(\mathbb{K})$, which form the projective general linear group PGL_{n+1} .

Remark 3.1.4. Note that $\phi_A = \mathrm{id}_{\mathbb{P}^n} \iff A = \lambda I_{n+1}$, i.e. $\mathrm{PGL}_{n+1} \cong \mathrm{GL}_{n+1}(\mathbb{K})/\{\lambda I\}$, so one can view PGL_{n+1} as the group of equivalence classes: $A \sim B \iff A = \lambda B$ for some $\lambda \in \mathbb{K}$.

Example 3.1.5 (Möbius transformation). $f: \mathbb{C} \to \mathbb{C}: z \mapsto \frac{az+b}{cz+d}$ where $ad-bc \neq 0$. One can extend it to infinity: $\overline{f}(\infty) = \frac{a}{c}$. But $\mathbb{C} \cup \{\infty\}$ is \mathbb{P}_1 (recall 2.1.2), so \overline{f} defines a projective transformation $\mathbb{P}^1(\mathbb{C}) \to \mathbb{P}^1(\mathbb{C}): [x,y] \mapsto [ax+by,cx+dy]$, where the matrix can be written: $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$.

Remark 3.1.6. There is a explicit Möbius transformation that sends any three distinct points $w_1, w_2, w_3 \in \mathbb{C}$ to $0, 1, \infty$:

$$f(z) = \frac{z - w_1}{z - w_3} \frac{w_2 - w_3}{w_2 - w_1}.$$

Lemma 3.1.7. Given three distinct $w_1, w_2, w_3 \in \mathbb{P}_1$, $\exists !$ projective transformation $\phi : w_1 \mapsto [0,1], w_2 \mapsto [1,1], w_3 \mapsto [1,0]$.

Proof. Write $w_i = [a_i, b_i]$ and define

$$\phi: [x, y] \mapsto \left[\left(\frac{x}{y} - \frac{a_1}{b_1} \right) \left(\frac{a_2}{b_2} - \frac{a_3}{b_3} \right), \left(\frac{x}{y} - \frac{a_3}{b_3} \right) \left(\frac{a_2}{b_2} - \frac{a_1}{b_1} \right) \right]$$

$$= [(b_1 x - a_1 y)(a_2 b_3 - a_3 b_2), (b_3 x - a_3 y)(a_2 b_1 - a_1 b_2)]$$

Now suppose ϕ , ϕ' are two such projective transformations. We want to show $\phi \circ \phi'^{-1} = \lambda I_2$ for some $\lambda \in \mathbb{K}$. Note that $\phi \circ \phi'^{-1} : [0,1] \mapsto [0,1], [1,0] \mapsto [1,0]$ and $[1,1] \mapsto [1,1]$, so the matrix for $\phi \circ \phi'^{-1}$ has eigenvectors (1,0) and (0,1), which means the whole \mathbb{K}^2 is the eigenspace.

Proposition 3.1.8. If no three of $w_1, w_2, w_3, w_4 \in \mathbb{P}^2$ are colinear, i.e. writing $w_i = \begin{bmatrix} x_i, y_i, z_i \end{bmatrix}$ one has $\begin{vmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{vmatrix} \neq 0$

0 (geometrically, the three in points in \mathbb{K}^3 are not on the same plane), then $\exists!$ projective transformation $\phi_A: \mathbb{P}^2 \to \mathbb{P}^2: w_1 \mapsto [1,0,0], w_2 \mapsto [0,1,0], w_3 \mapsto [0,0,1], w_4 \mapsto [1,1,1].$

Proof. To find this transformation, one first maps an arbitrary w_4 to [1,1,1], and then maps w_1, w_2, w_3 to [1,0,0], [0,1,0], [0,0,1] in the following way: we first make a map that fixes [1,0,0], [0,1,0], [0,0,1] and sends $[x_4,y_4,z_4]$ to [1,1,1] by the matrix

$$C = \begin{pmatrix} \frac{1}{x_4} & 0 & 0\\ 0 & \frac{1}{y_4} & 0\\ 0 & 0 & \frac{1}{z_4} \end{pmatrix}$$

(we know x_4 , y_4 , $z_4 \neq 0$ by the linear independency assumption), and clearly the matrix

$$A = \begin{pmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{pmatrix},$$

(which we assumed to be invertible) maps [1,0,0], [0,1,0], [0,0,1] to w_1,w_2,w_3 respectively, so one needs only to find its inverse and compose it with C.

Week 5, lecture 1, 28th October

Proposition 3.1.9. Let $C = \{F(x, y, z) = 0\} \in \mathbb{P}^2(\mathbb{K})$ be a projective plane curve and ϕ_A a projective transformation. Then

- 1. $\phi_A(C)$ is also a projective plane curve.
- 2. If C_0 is an irreducible component of C, then $\phi_A(C_0)$ is an irreducible component of $\phi_A(C)$.
- 3. If $p \in C$ is smooth then $\phi_A(p) \in \phi_A(C)$ is smooth. Moreover, ϕ_A preserves the tangent line, i.e. $\phi_A(T_pC) = T_{\phi_A(p)}\phi_A(C)$. In particular, if C is smooth then $\phi_A(C)$ is smooth.

Proof. Write $B = A^{-1} = (b_{ij})$ and hence $\phi_B = (\phi_A)^{-1}$.

1. Note that

$$\begin{split} [x_0,x_1,x_2] \in \phi_A(C) &\iff \phi_B([x_0,x_1,x_2]) \in C \\ &\iff \left[\sum_{i=0}^2 b_{0i}x_i,\dots,\sum_{i=0}^2 b_{ni}x_i\right] \in C \\ &\iff F\left(\sum_{i=0}^2 b_{0i}x_i,\dots,\sum_{i=0}^2 b_{ni}x_i\right) = 0, \end{split}$$

so $\phi_A(C)$ is given by the polynomial $G = F \cdot \phi_B$, which is also homogeneous of same degree.

2. It suffices to show that if C_0 is irreducible then $\phi_A(C_0)$ is also irreducible since

$$\phi_A(C) = \phi_A(C_0 \cup \cdots \cup C_n) = \phi_A(C_0) \cup \cdots \cup \phi_A(C_n).$$

Indeed,

$$x \in \phi_A(C_0 \cup \dots \cup C_n) \implies \phi_B x \in C_0 \cup \dots \cup C_n \implies \phi_B x \in C_i \text{ for some } i$$

$$\implies x \in \phi_A(C_i) \implies x \in \phi_A(C_0) \cup \dots \cup \phi_A(C_n)$$

If $\phi_A(C_0) = C_1 \cup C_2$, then $C_0 = \phi_B(C_1) \cup \phi_B(C_2)$, so WLOG $C_0 = \phi_B(C_1)$ by assumption, hence $\phi_A(C_0) = C_1$ as desired.

3. Let $p \in \phi_A(C)$ with $\phi_B(p) = q \in C$ smooth. Then by chain rule

$$\left[\frac{\partial G}{\partial x_0}(p), \frac{\partial G}{\partial x_1}(p), \frac{\partial G}{\partial x_2}(p)\right] = \left[\frac{\partial F}{\partial x_0}(\phi_B(p)), \frac{\partial F}{\partial x_1}(\phi_B(p)), \frac{\partial F}{\partial x_2}(\phi_B(p))\right] B$$

$$= \left[\frac{\partial F}{\partial x_0}(q), \frac{\partial F}{\partial x_1}(q), \frac{\partial F}{\partial x_2}(q)\right] B \neq 0,$$

so p is smooth. Now recall

$$T_qC = \left\{ \frac{\partial F}{\partial x_0}(q)x_0 + \frac{\partial F}{\partial x_1}(q)x_1 + \frac{\partial F}{\partial x_2}(q)x_2 = 0 \right\},\,$$

so

$$\phi_A(T_qC) = \left\{ \frac{\partial F}{\partial x_0}(\phi_B p) \sum_{i=0}^2 b_{0i} x_i + \frac{\partial F}{\partial x_1}(\phi_B p) \sum_{i=0}^2 b_{1i} x_i + \frac{\partial F}{\partial x_2}(\phi_B p) \sum_{i=0}^2 b_{2i} x_i = 0 \right\}$$

where the coefficient for x_i is $\frac{\partial G}{\partial x_i}(p)$ again by chain rule.

3.2 Resultant

Let R be a UFD (and so R[x] is a UFD) and f, $g \in R[x]$. We introduce an algebraic tool called resultant to tell us when do f, g have common factors.

Lemma 3.2.1. If $f, g \in R[x]$ are of degree $d, e \ge 1$ respectively, then f, g have a non-constant common factor $\iff \exists a, b \in R[x] : a, b \ne 0, \ af + bg = 0$ with deg $a \le e - 1$, deg $b \le d - 1$.

Proof. ⇒ Suppose f, g have a non-constant common factor and write f = hq and g = hr where deg $h \ge 1$ (so deg $q \le d - 1$ and deg $r \le e - 1$). Then a = r, b = -q satisfy the desired.

Write $f = cf_1^{\alpha_1} \cdots f_k^{\alpha_k}$ with $\sum_{i=1}^k \alpha_i = d$. Since R[x] is a UFD, in the factorisation of bg = -af one can find $h = f_1^{\beta_1} \cdots f_k^{\beta_k}$ where $\beta_i \geq \alpha_i \ \forall i$. But then $\deg h = \sum_{i=1}^k \beta_i \geq d$, so $h \nmid b$ and at least some $f_i^{\gamma_i} \mid g$ where $\gamma_i \geq 1$.

Definition/Theorem 3.2.2. Another way to formulate the lemma: if one writes the required a, b in the general form: $a(x) = \alpha_{e-1}x^{e-1} + \cdots + \alpha_0$, $b(x) = \beta_{d-1}x^{d-1} + \cdots + \beta_0$ then f, g have a non-constant common factor if

$$af + bg = \alpha_{e-1}x^{e-1}f(x) + \cdots + \alpha_0f(x) + \beta_{d-1}\beta^{d-1}g(x) + \cdots + \beta_0g(x) = 0$$

11

for some $\alpha_{e-1}, \ldots, \alpha_0, \beta_{d-1}, \ldots, \beta_0 \in R$ not all zero, i.e. the d+e polynomials $x^{e-1}f(x), \ldots, f(x), b^{d-1}g(x), \ldots, g(x)$ are linearly dependent over R. Now write $f(x) = a_d x^d + \cdots + a_0$, $g(x) = b_e x^e + \cdots + b_0$, then if one writes coefficients of the d+e polynomials of maximum d+e-1 degree (and hence have d+e coefficients) in rows of a $(d+e) \times (d+e)$ matrix

$$\begin{pmatrix} a_{d} & \cdots & a_{0} & & & & \\ & a_{d} & \cdots & a_{0} & & & \\ & & \ddots & & \ddots & & \\ & & a_{d} & \cdots & a_{0} \\ b_{e} & \cdots & b_{0} & & & & \\ & b_{e} & \cdots & b_{0} & & & \\ & & \ddots & & \ddots & \\ & & & b_{e} & \cdots & b_{0} \end{pmatrix},$$

and consider its determinant, called the *resultant* of f and g and denoted by $\mathcal{R}_{f,g}$, then the lemma says: f, g have a non-constant common factor $\iff \mathcal{R}_{f,g} = 0$.

Week 5, lecture 2, 28th October

Example 3.2.3. An easy example makes it clear: consider f(x) = x - a, $g(x) = x - b \in R[x]$. Then deg $f = \deg g = 1$ so one has a 2×2 matrix with

$$\mathcal{R}_{f,g} = \det \begin{pmatrix} 1 & -a \\ 1 & -b \end{pmatrix} = -b + a,$$

so f, g have a common factor $\iff a = b$.

Proposition 3.2.4. If the field of fractions of R has characteristic 0, then $f \in R[x]$ has repeated factors $\iff \mathcal{R}_{f,f'} = 0$.

Proof. \Longrightarrow Write $f = g^2h$ where $g, h \in R[x]$ and $\deg g \ge 1$. Then $f' = 2gg'h + g^2h'$, so f, f' have the nonconstant common factor g, so by 3.2.2 one has $\mathcal{R}_{f,f'} = 0$.

For any f with $\mathcal{R}_{f,f'} = 0$ and an irreducible factor g of f, write f = gh and $g \mid f'$. Then f' = g'h + gh', so $g \mid f' - gh' = g'h$. But $\deg g' < \deg g$, so $g \nmid g'$ (one can rule out g' = 0 since characteristic is 0), hence $g \mid h$ and $g^2 \mid f$.

Since this module deals with curves, we are interested in polynomials in more variables.

Proposition 3.2.5. Consider $\mathbb{K}[x, y, z]$ as $\mathbb{K}[y, z][x]$ and let $R = \mathbb{K}[y, z]$. Any homogeneous polynomial F(x, y, z) of degree d can be written as

$$x^d f_0(y, z) + \cdots + f_d(y, z) \in R[x]$$
 where each f_i is homogeneous of degree i .

The leading coefficient is $f_0(y, z) = F(1, 0, 0)$. To make sure it has the same degree over \mathbb{K} and R as we would expect, assume $F(1, 0, 0) \neq 0$.

Now similarly write another polynomial G(x,y,z) as $y^e g_0(y,z) + \cdots + g_e(y,z) \in R[x]$ with $g_0(y,z) = G(0,0,1) \neq 0$. Then $\mathcal{R}_{FG} \in R$ is well-defined, and we claim: $\exists A, B \in \mathbb{K}[x,y,z] : \deg_x A \leq e-1, \deg_x B \leq d-1$ and $\mathcal{R}_{F,G} = AF + BG$.

Moreover, if $\mathcal{R}_{F,G} \neq 0$ then it's homogeneous of degree de (as an element of $\mathbb{K}[y,z]$).

Proof. Write $\mathcal{R}_{F,G} = \det M$ where M is by definition

$$\begin{pmatrix} f_0(y,z) & \cdots & f_d(y,z) \\ & f_0(y,z) & \cdots & f_d(y,z) \\ & & \ddots & & \ddots \\ & & & f_0(y,z) & \cdots & f_d(y,z) \\ g_0(y,z) & \cdots & g_e(y,z) & & & & \\ & & g_0(y,z) & \cdots & g_e(y,z) \\ & & & \ddots & & & \\ & & & g_0(y,z) & \cdots & g_e(y,z) \end{pmatrix}$$

and do the following column operations to get a new matrix N: add $x^{d+e-j} \times$ the jth column to the last d+eth column for each j from 1 to d+e-1. The last column of N is then

$$\begin{pmatrix} f_0 x^{d+e-1} + \dots + f_d x^{e-1} \\ \vdots \\ f_0 x^d + \dots + f_d \\ g_0 x^{d+e-1} + \dots + g_e x^{d-1} \\ \vdots \\ g_0 x^e + \dots + g_e \end{pmatrix} = \begin{pmatrix} x^{e-1} F \\ \vdots \\ F \\ x^{d-1} G \\ \vdots \\ G \end{pmatrix}.$$

Since column operation doesn't change determinant, det $N = \mathcal{R}_{F,G}$, which is a R-linear combination of

$$x^{e-1}F, \ldots, F, x^{d-1}G, \ldots, G.$$

This proves $\mathcal{R}_{F,G} = AF + BG$ where A, B satisfy the desired properties.

Now by definition (write $M = (a_{i,j})$)

$$\mathcal{R}_{F,G} = \det M = \sum_{\sigma \in S_{d+e}} (-1)^{\sigma} a_{1,\sigma(1)} \cdots a_{d+e,\sigma(d+e)},$$

and it remains to see each summand A_{σ} is homogeneous of degree de. Forget the sign (not relevant considering homogeneity or degree) and split it to two parts: the first e rows (the ones with f) and the last d rows (the ones with g):

$$A_{\sigma} = \prod_{i=1}^{e} a_{i,\sigma(i)} \prod_{j=e+1}^{d+e} a_{j,\sigma(j)}.$$

Then for $1 \le i \le e$, $a_{i,\sigma(i)} = f_{\sigma(i)-i}(y,z)$ which by construction is homogeneous of degree $\sigma(i) - i$, and for $e+1 \le j \le d+e$, $a_{j,\sigma(j)} = g_{\sigma(j+e)-j}(y,z)$, homogeneous of degree $\sigma(j+e)-j$. So

$$\deg A_{\sigma} = \sum_{i=1}^{e} (\sigma(i) - i) + \sum_{j=1}^{d} (\sigma(j+e) - j)$$

$$= \sum_{i=1}^{d+e} \sigma(i) - \sum_{i=1}^{d} i - \sum_{i=1}^{e} i$$

$$= \frac{(d+e)(d+e+1)}{2} - \frac{e(e+1)}{2} - \frac{d(d+1)}{2}$$

$$= \frac{d^{2} + d(e+1) + de}{2} - \frac{d(d+1)}{2}$$

$$= \frac{de + de}{2} = de.$$

Week 5, lecture 3, 1st November

Corollary 3.2.6. $R_{F,G}$ is the zero polynomial \iff F and G share a nonconstant common factor.

Proof. By 3.2.4, $R_{F,G} = 0 \iff F,G$ have a nonconstant common factor as polynomials in x, so it remains to ensure that they don't have a common factor that is considered to be "constant" in the ring $R = \mathbb{K}[y,z]$. Suppose that F(x,y,z) = H(y,z)F'(x,y,z). But then $F(1,0,0) \neq 0$ and H(y,z) = 0 (since any factor of a homogeneous polynomial must be homogeneous, recall 2.1.6), a contradiction.

Conversely it's a more direct application or 3.2.4.

The above discussion about common factors relies on the a priori restrictive condition that [1,0,0] is not on the curves C_F , C_G , but this turns out to be not restrictive: we claim that for any F, G, one can always find a projective transformation such that $\{F=0\}$ and $\{G=0\}$ do not pass through [1,0,0], by the following lemma.

Lemma 3.2.7. Let \mathbb{K} be algebraically closed and $C_1, \ldots, C_n \in \mathbb{P}^2(\mathbb{K})$ projective plane curves. Then $C_1 \cup \cdots \cup C_n$ is a proper subset of $\mathbb{P}^2(\mathbb{K})$.

Proof. If $C_i = \{F_i(X, Y, Z) = 0\}$ then $C_1 \cup \cdots \cup C_n = \{\prod_{i=1}^n F_i(X, Y, Z) = 0\}$. For a contradiction, suppose $\{x - cy = 0\} \subset \{\prod_{i=1}^n F_i(X, Y, Z) = 0\}$ ∀ $c \in \mathbb{K}$. This would imply $C_1 \cup \cdots \cup C_n = \mathbb{P}^2(\mathbb{K})$. But \mathbb{K} is algebraically closed, so in particular it's infinite, and it's impossible for $\prod_{i=1}^n F_i(X, Y, Z)$ to have infinite irreducible factors, which would follow from our assumption. \square

3.3 Proof and applications of the theorem

Theorem 3.3.1 (Weak Bézout). Let \mathbb{K} be algebraically closed and $C, C' \subset \mathbb{P}^2(\mathbb{K})$ two projective plane curves with degree $d \geq 1$, $e \geq 1$ respectively. Then $C \cap C' \neq \emptyset$ and moreover, either $|C \cap C'| \leq de$ or $C \cap C'$ contains a plane curve.

Proof. Write $C = \{F_d(X, Y, Z) = 0\}$ and $C' = \{G_e(X, Y, Z) = 0\}$, and WLOG assume $[1, 0, 0] \notin C, C'$. Consider $\mathcal{R}_{F,G} \in \mathbb{K}[y, z]$ of degree de.

If $\mathcal{R}_{F,G} = 0$ then F, G have a nonconstant common factor, i.e. $C \cap C' \neq \emptyset$ and contain a plane curve given by the zero set of the common factor.

If $\mathcal{R}_{F,G} \neq 0$, since \mathbb{K} is algebraically closed, one has $a_i, b_i \in \mathbb{K} : \mathcal{R}_{F,G} = \prod_{i=1}^{de} (a_i y + b_i z)$. Now fix $[y_0, z_0]$ and consider $F(x, y_0, z_0), G(x, y_0, z_0) \in \mathbb{K}[x]$. Then they have a common root $\iff \mathcal{R}_{F(x, y_0, z_0), G(x, y_0, z_0)} = 0$, so $\mathcal{R}_{F,G}$ vanishes on $[y_0, z_0]$, i.e. $[y_0, z_0] = [b_i, -a_i]$ for some i. We've proved that for any fix $[y_0, z_0], \exists x_0 : [x_0, y_0, z_0] \in C \cap C' \iff [y_0, z_0] = [b_i, -a_i]$ for some i, so $C \cap C' \neq \emptyset$. It remains to show $|C \cap C'| \leq de$, so suppose $|C \cap C'| > de$ and let $S \subset C \cap C' : |S| = de + 1$. Consider the finite collection of curves

 $\{C, C', \text{ lines through any pair of distinct points in } S\}$,

and again WLOG assume none of them passes through [1,0,0]. Since $|C \cap C'| > de$, we know for some $1 \le i \le de$, there are two distinct solutions $[x_0, y_i, z_i]$, $[x'_0, y_i, z_i] \in S$, but then the line through them $\{a_iy + b_iz = 0\}$ passes through [1,0,0].

Week 6, lecture 1, 4th November

We have already seen an application of Bézout, which is 2.3.15:

Proof of 2.3.15. Write $C = C_1 \cup C_2$, then C is singular at points in $C_1 \cap C_2$ (2.3.14), which is nonempty by Bézout. □

What about the converse?

Proposition 3.3.2. Let \mathbb{K} be algebraically closed with char $\mathbb{K} = 0$ and $\{F = 0\} = C \subset \mathbb{P}^2(\mathbb{K})$ be irreducible of degree d. Then C has finitely many singular points.

Proof. Since char $\mathbb{K} = 0$, not all partial derivatives are zero, so WLOG assume $\frac{\partial F}{\partial x} \neq 0$. Then the set of singular points of C

$$\operatorname{sing}(C) \subset \left\{ [a,b,c] \subset \mathbb{P}^2(\mathbb{K}) : F(a,b,c) = 0, \frac{\partial F}{\partial x}(a,b,c) = 0 \right\},\,$$

and $\gcd\left(F, \frac{\partial F}{\partial x}\right) = 1$ since F is irreducible and $d = \deg F > \deg \frac{\partial F}{\partial x} = d - 1$, so $|\operatorname{sing}(C)| \le d(d - 1)$.

Definition 3.3.3. A *conic* is a projective plane curve of degree 2. In particular, it's of the form

$$\{F = ax^2 + bxy + cy^2 + dxz + eyz + fz^2 = 0\} \subset \mathbb{P}^2(\mathbb{K}).$$

Theorem 3.3.4. Let \mathbb{K} be algebraically closed and $C \subset \mathbb{P}^2(\mathbb{K})$ an irreducible conic. Then C is projectively equivalent to $\{x^2 = yz\}$, in particular C is smooth.

Proof. By 3.3.2, \exists a smooth point $P \in C$. Let $q \in T_pC$ be another point. Then we claim \exists a projective transformation ϕ that sends p to [1,0,0] and q to [0,1,0]. We now work with the "nice" curve $\phi(C)$ and replace C with it. Note that now T_pC is the unique line that goes through [1,0,0] and [0,1,0], which is $\{z=0\}$ (see coursework 1, question 2). Now $[1,0,0] \in C$ implies a=0, and

$$T_pC = \left\{\frac{\partial F}{\partial x}(1,0,0)x + \frac{\partial F}{\partial y}(1,0,0)y + \frac{\partial F}{\partial z}(1,0,0)z\right\} = \left\{by + dz = 0\right\} = \left\{z = 0\right\}$$

implies b=0 and $d\neq 0$. Now $c\neq 0$ since if c=0 then $dxz+eyz+fz^2$ is reducible with the factor z. So we now have the polynomial $(\sqrt{c}y)^2+(dx+ey+fz)z$. After the projective transformation $\sqrt{c}y\mapsto y$, $dx+ey+fz\mapsto x$ and $z\mapsto -z$ we have the desired form.

Remark 3.3.5. If \mathbb{K} is algebraically closed and $\{F = 0\} = C \subset \mathbb{P}^2(\mathbb{K})$ is reducible of degree 2, then by definition it must be a union of two lines $L_1 \cup L_2$. If F has no repeated factor, then C is projectively equivalent to $\{x^2 + y^2 = 0\}$.

A motivating question in algebraic geometry is, to uniquely determine a curve, how many points do I need? We already know two points determine a line (again see coursework 1, question 2). Knowing how many points determine a conic is very hard using high school level maths, but it's quite easy now with all the buildup.

Proposition 3.3.6. Any five points in $\mathbb{P}^2(\mathbb{K})$ lie on a conic. If no three of them are colinear, then this conic is unique.

Proof. Write $p_i = [x_i, y_i, z_i] \in \mathbb{P}^2(\mathbb{K})$ for i = 1, ..., 5, and let $\{F = ax^2 + bxy + cy^2 + dxz + eyz + fz^2 = 0\} \subset \mathbb{P}^2(\mathbb{K})$ be a conic. By substituting F with the p_i 's, we get five linear equations for six variables a, ..., f, which has at least one nonzero solution.

Now assume no three of them are colinear and for a contradiction, suppose distinct conics C, C' pass through the p_i 's. Consider C, $C' \subset \mathbb{P}^2(\overline{\mathbb{K}})$ where $\overline{\mathbb{K}}$ is the algebraic closure of \mathbb{K} . If we can prove C = C' in $\mathbb{P}^2(\overline{\mathbb{K}})$ then surely C = C' in $\mathbb{P}^2(\mathbb{K})$. Now $p_1, \ldots, p_5 \in C \cap C' \subset \mathbb{P}^2(\overline{\mathbb{K}})$, so by $3.3.1 \ C \cap C'$ must contain a plane curve since if it doesn't it contains at most 4 points. Since $C \neq C'$, $C \cap C'$ must be some line L, but this implies p_i 's are colinear, contradicting our assumption.

Week 6, lecture 2, 4th November

Definition 3.3.7. A *cubic* a projective plane curve of degree 3.

Theorem 3.3.8 (Cayley–Bacharach). Let \mathbb{K} be algebraically closed. Suppose two projective plane cubics $C = \{F(x,y,z) = 0\}$, $C' = \{G(x,y,z) = 0\}$ intersect at exactly 9 points p_1, \ldots, p_9 . If a cubic $C'' \subset \mathbb{P}^2(\mathbb{K})$ passes through p_1, \ldots, p_8 , then C'' belongs to the *pencil* (2-dimensional family of cubics) $\{C_{[a,b]} = \{aF + bG = 0\} : [a,b] \in \mathbb{P}^1\}$. In particular, $p_9 \in C''$.

Proof. Let's first understand more about the 9 points, which are intersections of two arbitrary cubics:

- 1. No four of the p_i 's can be colinear: suppose p_1, \ldots, p_4 lie on L, in particular $|L \cap C| > 3$, then by 3.3.1 one has $L \cap C$ contains a plane curve, so $L \subset C$, hence similarly $L \subset C'$, but then $L \subset C \cap C'$, contradicting that C and C' intersect at and only at 9 points.
- 2. No seven of the p_i 's lie on the same conic: suppose p_1, \ldots, p_7 lie on D, in particular $|L \cap C| > 6$, then by 3.3.1 $C \cap D$ and $C' \cap D$ contain a plane curve. If D is irreducible then $C \cap D = C' \cap D = D$, again a contradiction. If D is reducible, write $D = L \cup \widetilde{L}$, but then one has 7 points on union of two lines, so one of them has at least 4 points, contradicting our first observation.
- 3. Any five of the p_i 's determine a unique conic: if no three are colinear, one can use 3.3.6, so suppose $p_1, p_2, p_3 \in L$ for some line L, and let L' be the unique line that goes through $p_4, p_5 \notin L$ (by 1). Then $D = L \cup L'$ is a conic, which we want to prove is unique, so suppose a distinct D' also goes through p_1, \ldots, p_5 . But $|D \cap D'| > 4$, so $D \cap D'$ must contain a plane curve by 3.3.1, which is either L or L', but if $L \subset D'$ then since $p_4, p_5 \in D'$, one must have $D' = L \cup L'$, and if $L' \subset D'$, then at most one of p_1, p_2, p_3 lies on L' by 1, so WLOG assume $p_1 \in L'$, then D contains the unique line that goes through p_2, p_3 , which is L. Hence $D' = L \cup L' = D$.

Now we prove the theorem by contradiction. Suppose \exists a cubic $C'' = \{H = 0\}$ that goes through p_1, \ldots, p_8 but H is not a linear combination of F and G. We claim in this case, no three of p_1, \ldots, p_8 are colinear. For a contradiction, suppose $p_1, p_2, p_3 \in L$ for some line L. Then by $1, p_4, \ldots, p_8 \notin L$. By 3, they uniquely determine a conic D. By 2, at most one of p_1, p_2, p_3 lies on D. Let $\widetilde{C} = L \cup D$ be the cubic containing all 8 points.

If $q_1, q_2 \in \mathbb{P}^2(\mathbb{K})$, note that $\exists (a, b, c) \neq (0, 0, 0) : \{P = 0\}$ goes through q_1, q_2 where P = aF + bG + cH, since F, G, H are assumed to be linearly independent, so 2 equations gives at least one nonzero solutions to 3 variables. Now choose $q_1 \in L$ with $q_1 \neq p_1, p_2, p_3$ and $q_2 \in \mathbb{P}^2(\mathbb{K}) \setminus \widetilde{C}$. Then $\{P = 0\}$ is distinct from \widetilde{C} by construction, but this is a contradiction: again, apply 3.3.1 to L and $\{P = 0\}$ to see that $L \subset \{P = 0\}$, so $\{P = 0\} = L \cup D'$ for some conic D', which contains p_4, \ldots, p_8 , but five points uniquely determine a conic, so D = D' and $\widetilde{C} = \{P = 0\}$. \square

Week 6, lecture 3, 8th November

Theorem 3.3.9 (Pascal's). Let $C \subset \mathbb{P}^2$ be a conic and $p_1, p_2, p_3, q_1, q_2, q_3 \in C$ with no three of them colinear. Denote the line that goes through p_i and q_j by L_{ij} , and the intersection point of L_{ij} and L_{ji} where $i \neq j$ by r_{6-i-j} (i.e. the one in $\{1, 2, 3\}$ that's not i or j). Then r_1, r_2, r_3 are colinear.

Proof. Consider the two cubics $L_{12} \cup L_{23} \cup L_{31}$ and $L_{21} \cup L_{32} \cup L_{13}$, which intersect at exactly the 9 points $p_1, p_2, p_3, q_1, q_2, q_3, r_1, r_2, r_3$, and the cubic $C \cup L$ where L is the line that goes through r_1 and r_2 , which passes through $p_1, p_2, p_3, q_1, q_2, q_3, r_1, r_2$. Applying Cayley–Bacharach to the three cubics gives us $r_3 \in C \cup L$, so it remains to show $r_3 \notin C$, but this is trivial: if $r_3 \in C$ then $L_{12} \subset C$, but then $C = L_{12} \cup C$ is a union of two lines, so there must be three of $p_1, p_2, p_3, q_1, q_2, q_3$ being colinear, contradicting assumption. □

Week 7, lecture 1, 11th November

3.4 Resultant, reprise, and a better theorem

Proposition 3.4.1. Let f, $g \in R[x]$ and write $f(x) = a(x - \lambda_1) \cdots (x - \lambda_d)$ and $g(x) = b(x - \mu_1) \cdots (x - \mu_e)$ where d, e > 0. Then

$$\mathcal{R}_{f,g} = a^e b^d \prod_{\substack{1 \le i \le d \\ 1 \le j \le e}} (\lambda_i - \mu_j) = a^e \prod_{i=1}^d g(\lambda_i)$$

Proof. First observe that for any arbitrary f, $g \in R[x]$ and a, $b \in R$, one has $\mathcal{R}_{af,bg} = a^e b^d \mathcal{R}_{f,g}$ by the fact that multiplying one row of the matrix M by λ changes $\det M$ by a factor of λ as well, so it suffices to prove the case where a = b = 1.

Consider the ring homomorphism

$$\psi: S := R[y_1, \dots, y_d, z_1, \dots, z_e] \to R$$
$$y_i \mapsto \lambda_i$$
$$z_j \mapsto \mu_j$$

which extends to a homomorphism $\overline{\psi}: S[x] \to R[x]$, under which $\overline{f} = \prod_{i=1}^d (x-y_i)$ is mapped to f and $\overline{g} = \prod_{j=1}^e (x-z_j)$ is mapped to g. It's then clear that $\psi\left(\mathcal{R}_{\overline{f},\overline{g}}\right) = \mathcal{R}_{f,g}$.

Now if $y_i - z_j = 0$, then $(x - y_i)$ and $(x - z_j)$ are common factors of \overline{f} , \overline{g} , hence $\mathcal{R}_{\overline{f},\overline{g}} = 0$ by 3.2.2. Hence $(y_i - z_j) \mid \mathcal{R}_{\overline{f},\overline{g}}$. Apply this to any pair i,j and compare degrees, one has

$$\mathcal{R}_{\overline{f},\overline{g}} = c \prod_{\substack{1 \le i \le d \\ 1 \le j \le e}} (y_i - z_j)$$

for some constant c. Substituting $y_i = 1$, $z_j = 0$ for all i, j, one has $\overline{f} = (x - 1)^d$ and $\overline{g} = x^e$, so

$$c = c(1-0)^{de} = \mathcal{R}_{(x-1)^d, x^e} = \det \begin{pmatrix} * & (-1)^d & 0 & 0 & \cdots & 0 \\ * & * & (-1)^d & 0 & \cdots & 0 \\ * & * & * & (-1)^d & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ * & * & * & * & \cdots & (-1)^d \\ \hline I_d & 0 & 0 & 0 & \cdots & 0 \end{pmatrix},$$

now, moving the last d row to the top requires de exchange of two rows, with the resulting matrix with determinant $1^d \cdot ((-1)^d)^e = (-1)^d e$, so $(-1)^{de} c = (-1)^d e$, i.e. c = 1.

Proposition 3.4.2. If $g \in R[x]$ has deg $g \ge 1$, then $\mathcal{R}_{x-c,g(x)} = g(c)$.

Proof. Applying (the second equality of) 3.4.1 one has

$$R_{x-c,g(x)} = \prod_{i=1}^{1} g(c) = g(c).$$

But g may not completely split into linear factors, so it remains to show that resultant is invariant in \overline{k} , the algebraic closure of the field of fractions k of R, which is clear.

Proposition 3.4.3. For nonconstant f, g, $h \in R[x]$, $\mathcal{R}_{f,gh} = \mathcal{R}_{f,g}\mathcal{R}_{f,h}$.

Proof. Use the same trick to consider f, g, $h \in \overline{k}[x]$ where \overline{k} is algebraically closed, and write $f(x) = a(x - \lambda_1) \cdots (x - \lambda_d)$, then by 3.4.1

$$\mathcal{R}_{f,gh} = a^{\deg gh} \prod_{i=1}^d gh(\lambda_i) = \left(a^{\deg g} \prod_{i=1}^d g(\lambda_i)\right) \left(a^{\deg h} \prod_{i=1}^d h(\lambda_i)\right) = \mathcal{R}_{f,g}\mathcal{R}_{f,h}.$$

Proposition 3.4.4. For f, g, $h \in R[x]$ such that f, g, hf + g are nonconstant and f is monic, $\mathcal{R}_{f,g} = \mathcal{R}_{f,hf+g}$.

Proof. Again applying 3.4.1 and writing $f = \prod_{i=1}^{d} (x - \lambda_i)$ one has

$$\mathcal{R}_{f,g+hf} = \prod_{i=1}^d (hf+g)(\lambda_i) = \prod_{i=1}^d (h(\lambda_i)f(\lambda_i) + g(\lambda_i)) = \prod_{i=1}^d g(\lambda_i) = \mathcal{R}_{f,g}.$$

Week 7, lecture 2, 11th November

Remark 3.4.5. Consider the curves $C: y = x^2 - t$ and D: y = 0. By 3.3.1, they have at most two intersection points. But when t = 0, naively they have only one intersection at the origin. This is messy and we want to refine our formation of the theorem so that these exceptions don't appear by associate a number $I_p(C, D)$, intersection multiplicity, for the intersection of C and D at p so that we have the universal form $\sum_{p \in C \cap D} I_p(C, D) = \deg f \cdot \deg g$.

Naively we want $I_v(C, D)$ to satisfy:

- 1. $I_p(C, D) = I_p(D, C)$
- 2. $p \notin C \cap D \implies I_p(C, D) = 0$
- 3. If a curve $C_0 \subset C \cap D$ and $p \in C_0$, then $I_p(C, D) = \infty$
- 4. If *C*, *D* are distinct lines intersecting at *p*, then $I_p(C, D) = 1$
- 5. $D = D_1 \cap D_2 \implies I_p(C, D) = I_p(C, D_1) + I_p(C, D_2)$
- 6. For $C = \{F = 0\}$ and $D = \{G = 0\}$, one has $I_p(C, D) = I_p(C, D')$ where $D' = \{FQ + G = 0\}$. In English, if I perturb my curve a little bit, the multiplicity shouldn't change

So, how do we uniquely define $I_v(C, D)$ so that it always satisfy the above?

Example 3.4.6. By the properties above, for p = [0, 0, 1],

$$I_n(y^2z - x^3, x) = I_n(x, y^2z - x^3) = I_n(x, y^2z) = 2I_n(x, y) + I_n(x, z) = 2$$

so from the properties without any explicit formula, one can uniquely determine (at least in this case) $I_v(C, D)$!

Definition/Theorem 3.4.7. There's one and only one way to define the *intersection multiplicity* $I_p(C, D)$ that satisfies the 6 properties above.

Proof. For uniqueness, see Frances Kirwan's *Complex algebraic curves*, in which she proved by induction on $k = I_p(C, D)$ (express $I_p(C, D) = k$ by intersection multiplicities strictly less than k by the 6 properties). We define $I_p(C, D)$ as follows:

- 1. If $p \notin C \cap D$ then $I_p(C, D) = 0$.
- 2. If *p* lies on a common component of *C*, *D*, then $I_p(C, D) = \infty$.
- 3. Now consider $C' \subset C$ and $D' \subset D$ such that C', D' have no common components. Observe that in the 6 properties above, we didn't mention any specific coordinates, which means for any projective transformation ϕ , one has

$$I_{\phi(p)}(\phi(C'), \phi(D')) = I_p(C', D'),$$

so WLOG suppose $[1,0,0] \notin \{C',D' \text{ lines through pairs of intersections of } C',D'\}$.

If \mathbb{K} is algebraically closed, recall proof of 3.3.1 and write $C' = \{F = 0\}, D' = \{G = 0\}$ and $\mathcal{R}_{F,G} = \prod_{i=1}^{de} (a_i y + b_i z)$. We proved that $\exists x_0 \in \mathbb{K} : [x_0, y_0, z_0] \in C \cap D \iff [y_0, z_0] = [-b_i, a_i]$ for some i, and such x_0 is unique. Moreover, every intersection corresponds to one such x_0 .

Then, write p = [a, b, c] and define $I_p(C, D)$ as the usual multiplicity of [b, c] as a root of $\mathcal{R}_{F,G}(y, z)$, i.e. the largest k such that $(cy - bz)^k \mid \mathcal{R}_{F,G}(y, z)$.

Week 7, lecture 3, 15th November

It remains to check this definition satisfies the 6 properties.

- 1. This is clear since $R_{F,G}(y,z) = \pm R_{G,F}(y,z)$, so their roots are exactly the same.
- 2. By definition.
- 3. By definition.
- 4. Write $\ell_1 = \{f_1(x) = ax + by + cz = 0\}$ and $\ell_2 = \{f_2(x) = dx + ey + fz = 0\}$, then p = [bf ce, cd af, ae bd]. Since $(a, b, c) \neq (d, e, f)$, indeed $p \in \mathbb{P}^2(\mathbb{K})$. By applying a projective transformation, we can assume $p \neq [1, 0, 0]$ and write

$$R_{f_1,f_2} = \det \begin{pmatrix} a & by + cz \\ d & ey + fz \end{pmatrix} = (ae - bd)y + (af - cd)z,$$

and clearly the root [cd - af, ae - bd] has multiplicity 1.

- 5. By 3.4.3.
- 6. By 3.4.4

Theorem 3.4.8 (Bézout). If \mathbb{K} is algebraically closed and $C, D \subset \mathbb{P}^2(\mathbb{K})$ are two curves of degree $d, e \geq 1$ with no common component, then

$$\sum_{p\cap D}I_p(C,D)=de.$$

Proof. Repeat the proof 3.3.1 and apply the definition above.

Definition 3.4.9. $C, D \subset \mathbb{P}^2(\mathbb{K})$ are *transverse* at $p \in C \cap D$ if p is smooth on both curves and $I_v(C, D) = 1$.

Then, 3.4.8 says two smooth curves C, D has deg C deg D intersections $\iff C$, D intersect transversely at every intersection.

Proposition 3.4.10. C, D are transverse at $p \iff T_pC \neq T_pD$.

Proof. Since p is smooth, there is a unique irreducible component C' of C that passes through p by 2.3.14, and since $I_p(C,D) = I_p(C',D)$, one can assume C, and symmetrically D are irreducible. Moreover C and D can be assumed to be different since if C = D then $I_p(C,D) = \infty$ and of course $T_pC = T_pD$. WLOG suppose $\deg C = d \ge e = \deg D$.

By 3.3.1, $|C \cap D| < \infty$. Apply a projective transformation so that p = [0,0,1], $T_pD = \{x = 0\}$ and none of C, D or lines through pairs of intersections of C and D passes through [1,0,0]. Now we can write $I_p(C,D)$ using

resultants. Write $F(x, y, z) = f_0(y, z)x^d + \cdots + f_d(y, z)$ and $G(x, y, z) = g_0(y, z)x^e + \cdots + g_e(y, z)$ where f_i, g_i are homogeneous of degree i. Then $I_p(C, D)$ is the largest k such that $y^k \mid \mathcal{R}_{F,G}(y, z)$.

By 2.3.12, $0 = dF(0,0,1) = \frac{\partial F}{\partial z}(0,0,1)$, so since p is smooth, $\left(\frac{\partial F}{\partial x}(0,0,1), \frac{\partial F}{\partial y}(0,0,1)\right) \neq (0,0)$. Now write $f_d(y,z) = az^d + bz^{d-1}y + \cdots$ where $y^2 \mid \cdots$. Note that $F(0,0,1) = 0 = f_d(0,1) = a$, and $b = \frac{\partial F}{\partial y}(0,0,1)$. Hence $y^2 \mid f_d(y,z) \iff b = 0 \iff T_pC = \{x = 0\} = T_pD$.

Week 8, lecture 1, 18th November

Via the same argument, $T_pC = T_pD \iff y^2 \mid g_e(y,z)$. Also, since $g_{e-1}(0,1) = \frac{\partial G}{\partial x}(0,0,1) \neq 0$, one can rescale and assume $g_{e-1}(0,1) = 1$. Now if e = 1, then $G(x,y,z) = g_e(y,z) + x$, so $T_pC = T_pD \iff G(x,y,z) = x$. By 3.4.2, we then have (up to sign) $\mathcal{R}_{F,G} = F(0,y,z) = f_d(y,z)$, so we're done. If $e \geq 2$,

$$\mathcal{R}_{F,G} = \det \begin{pmatrix} f_0 & \cdots & f_d \\ & f_0 & \cdots & f_d \\ & & \ddots & & \ddots \\ & & & f_0 & \cdots & f_d \\ g_0 & \cdots & g_e & & & \\ & g_0 & \cdots & g_e & & & \\ & & \ddots & & \ddots & \\ & & & g_0 & \cdots & g_e \end{pmatrix}$$

but if one looks at the last column, one can write it in the form $\mathcal{R}_{F,G} = \pm f_d \det A \pm g_e \det B$ for some minors A, B, hence it remains to prove that $T_pC \neq T_pD \implies y^2 \nmid \mathcal{R}_{F,G}(y,z)$. Let's be a bit more careful and write

$$\mathcal{R}_{F,G} \equiv f_d \det \begin{pmatrix} f_0 & \cdots & f_d \\ & f_0 & \cdots & f_d \\ & & \ddots & & \ddots \\ & & & f_0 & \cdots & f_d \\ g_0 & \cdots & g_{e-1} & 0 & \\ & & g_0 & \cdots & g_{e-1} & 0 \\ & & & \ddots & & \ddots \\ & & & & g_0 & \cdots & g_{e-1} \end{pmatrix} \equiv \mathcal{R}_{F,H}(y,z) \operatorname{mod} y^2$$

where

$$H(x,y,z) = g_0(y,z)x^{e-1} + \dots + g_1(y,z)x^{e-1} + \dots + g_{e-2}(y,z)x + g_{e-1}(y,z),$$

so $G = Hx + g_e$, hence if we can show $y \nmid \mathcal{R}_{F,H}$ then $y^2 \nmid \mathcal{R}_{F_G}$. Suppose for a contradiction that $y \mid \mathcal{R}_{F,H}$, then [0,1] is a root so $\{F=0\}$ and $\{H=0\}$ intersect at $[\lambda,0,1]$ for some λ . If $\lambda=0$ then $H(0,0,1)=g_{e-1}(0,1)=0$, a contradiction. If $\lambda \neq 0$, $G(\lambda,0,1)=H(\lambda,0,1)\lambda+g_e(0,1)=0$ since $g_e(0,1)=G(0,0,1)=0$. But then the line through $[\lambda,0,1]$ and [0,0,1] passes through [1,0,0], a contradiction.

Corollary 3.4.11. For a smooth point $p \in C \subset \mathbb{P}^2$ and a line L, one has $I_p(C, L) \geq 2 \iff L = T_p(C)$.

Week 8, lecture 2, 18th November

Notation. For $\alpha = (\alpha_1, \alpha_2, \alpha_3)$ where $\alpha_i \in \mathbb{N}$, write $|\alpha| := \alpha_1 + \alpha_2 + \alpha_3$ and

$$\partial^{\alpha} F := \frac{\partial^{|\alpha|F}}{\partial x^{\alpha_1} \partial y^{\alpha_2} \partial z^{\alpha_3}}.$$

Definition 3.4.12. $p = [a, b, c] \in C = \{F = 0\}$ has multiplicity $m_v(C) = k$ if

- 1. all $\partial^{\alpha} F|_{p} = 0$ for $|\alpha| < k$ and
- 2. $\partial^{\alpha} F|_{v} \neq 0$ for some α with $|\alpha| = k$.

This doesn't depend on the coordinates a, b, c since $\partial^{\alpha} F$ is homogeneous of degree deg $F - |\alpha|$ if F is homogeneous.

Remark 3.4.13. Note that

1. p is singular $\iff m_p(C) = 1$.

- 2. $m_v(C) = m_{\phi(v)}(\phi(C))$ for any projective transformation ϕ .
- 3. $m_v(C) \leq \deg C$.
- 4. If $p \in C$ and $p \notin D$, then $m_p(C) = m_p(C \cup D)$, i.e. multiplicity is a local behaviour (by product rule)

Example 3.4.14. The point p = [0,0,1] on $C = \{F(x,y,z) = y^2z - x^3 = 0\}$ is singular, but how singular is it? Note that

$$\partial^{(0,2,0)}F|_{[0,0,1]} = \frac{\partial^2 F}{\partial u^2}|_{[0,0,1]} = 2 \neq 0,$$

so $m_v(C) = 2$, so not that singular.

Proposition 3.4.15. Let \mathbb{K} be of character zero and $C, D \subset \mathbb{P}^2(\mathbb{K})$ with $p \in C \cap D$. Then $I_p(C, D) \geq m_p(C)m_p(D)$.

Proof. If *C* and *D* have a common component, then $I_p(C, D) = \infty$ so there's nothing to prove, so assume *C* and *D* have no common components. Write $r := m_p(C)$ and $s = m_p(D)$. As always, apply a projective transformation such that p = [0, 0, 1] and the point $[1, 0, 0] \notin \{C, D, \text{ all lines that pass through pairs of points in } C \cap D\}$ and write

$$F(x,y,z) = f_0(y,z)x^d + \dots + f_{d-1}(y,z)x + f_d(y,z).$$

We claim that for any i = 0, ..., r, one has $y^{r-i} \mid f_{d-i}(y, z)$. By definition, $\partial^{(i,j,0)} F|_{p=[0,0,1]} = 0 \ \forall i = 0, ..., r-1$ and j < r-i. We now calculate

$$\frac{\partial^{i} F}{\partial x^{i}} = \frac{\partial^{i}}{\partial x^{i}}(\cdots) + \frac{\partial^{i}}{\partial x^{i}}f_{d-i}x^{i} + \frac{\partial^{i}}{\partial x^{i}}f_{d-i+1}x^{i-1} + \cdots = \frac{\partial^{i}}{\partial x^{i}}(\cdots) + i!f_{d-i}$$

where \cdots are the first i-1 terms, but now

$$0 = \partial^{(i,j,0)} F|_{[0,0,1]} = \left. \frac{\partial^j}{\partial y^j} \frac{\partial^i}{\partial x^i} (\cdots) \right|_{[0,0,1]} + i! \frac{\partial^j f_{d-i}(0,1)}{\partial y^j} = i! \frac{\partial^j f_{d-i}(0,1)}{\partial y^j},$$

so if one writes $f_{d-i} = a_0 z^{d-i} + a_1 y z^{d-i-1} + \cdots$, then in particular for j = 0, $f_{d-i}(0,1) = 0 = a_0$, and for j = 1, $\frac{\partial f_{d-i}}{\partial y}(0,1) = 0 = a_1$, and one can do this for all j < r - i by above, hence the claim is proven.

Now for any $i \le r$, write $f_{d-i}(y,z) = y^{r-i}\widetilde{f}_{d-i}(y,z)$ for some other homogeneous polynomial \widetilde{f} . By the same argument, for any $j \le s$, one can write $g_{e-j}(y,z) = y^{e-j}\widetilde{g}_{e-j}(y,z)$. So

$$\mathcal{R}_{F,G} = \det \begin{pmatrix} f_0 & \cdots & y^{r-1}\widetilde{f}_{d-1} & y^r\widetilde{f}_d \\ & \ddots & & \ddots & \ddots \\ & & f_0 & \cdots & y^{r-1}\widetilde{f}_{d-1} & y^r\widetilde{f}_d \\ g_0 & \cdots & y^{s-1}\widetilde{g}_{e-1} & y^s\widetilde{g}_e \\ & \ddots & & \ddots & \ddots \\ & & g_0 & \cdots & y^{s-1}\widetilde{g}_{e-1} & y^s\widetilde{g}_e \end{pmatrix}$$

Now multiplying the last s rows e, e-1,..., e-s+1 in the first block by y^s , y^{s-1} ,..., y respectively and multiplying the last r rows d+e, d+e-1,..., d+e-r+1 in the second block by y^r , y^{r-1} ,..., y respectively changes the determinant to

$$y^{s+s-1+\cdots+1+r+r-1+\cdots+1}\mathcal{R}_{F,G}=y^{\frac{s(s+1)}{2}+\frac{r(r+1)}{2}}\mathcal{R}_{F,G},$$

but now the last r+s columns of the new matrix are divisible by y^{r+s} , y^{r+s-1} , . . . , y respectively, so the above calculated determinant is divisible by $y^{r+s}y^{r+s-1}\cdots y=y^{\frac{(r+s)(r+s+1)}{2}}$, and since

$$\frac{(r+s)(r+s+1)}{2} - \frac{s(s+1)}{2} - \frac{r(r+1)}{2} = \frac{r^2 + 2rs + r + s^2 + s - s^2 - s - r^2 - r}{2} = \frac{2rs}{2} = rs,$$

one has $y^{rs} \mid \mathcal{R}_{F.G.}$

Corollary 3.4.16. For $p \in C \cap D$ where $C, D \subset \mathbb{P}^2(\mathbb{K})$, $I_p(C, D) = 1 \iff p$ is a smooth point of C and D and $T_pC \neq T_pD$.

Proof. $I_p(C,D)=1 \implies m_p(C)m_p(D) \le 1 \implies m_p(C)=m_p(D) \implies C,D$ are smooth at p. It then follows from 3.4.10.

Week 8, lecture 3, 22nd November: cancelled