

Repeated Subarray

Given an array of n positive integers: a_1 , a_2 , a_3 ..., a_n and there are m queries. Each of the queries will be defined by 4 numbers: l, r, x, y. For each query you need to answer the number of distinct values that are repeated from x to y times in the sub-array a_l , a_{l+1} ,..., a_r

Input

The first line contains the integer n ($1 \le n \le 50000$) – the length of the array.

The following line contains n positive integers representing the array a_1 , a_2 , a_3 ..., a_n ($a_i \le 10^9$)

The next line contains an integer m $(1 \le m \le 50000)$ – the number of queries.

Each of the next m lines consists of 4 integers $l_i, r_i, x_i, y_i (1 \le l_i \le r_i \le n, 1 \le x_i \le y_i \le n)$ — the query for how many distinct values that appear at least x_i and at most y_i times within the sub-array from l_i to r_i of the array.

Output

Output m lines each of which answers for the respective query.

Examples

Standard Input	Standard Output
6	1
112223	1
4	2
1212	1
1522	
1523	
3623	
10	1
1242355421	3
5	2
2522	1
2512	1
4 10 2 2	
1 10 3 3	
6 10 2 2	