4.2. Elementos algebraicos y trascendentes.

Sea \mathbb{F} extensión de un cuerpo \mathbb{K} y sea $\alpha \in \mathbb{F}$.

Se dice que α es algebraico sobre \mathbb{K} si existe un polinomio no nulo $f \in \mathbb{K}[x]$ tal que $f(\alpha) = 0$.

Si $\alpha \in \mathbb{F}$ es algebraico sobre \mathbb{K} , se denomina **polinomio mínimo de** α **sobre** \mathbb{K} al polinomio mónico $h \in \mathbb{K}[x]$ generador del ideal $\{f \in \mathbb{K}[x] : f(\alpha) = 0\}$.

Si $\alpha \in \mathbb{F}$ no es algebraico sobre \mathbb{K} se dice que es **trascendente sobre** \mathbb{K} .

Se dice que \mathbb{F} es una extensión algebraica sobre \mathbb{K} si todo $\alpha \in \mathbb{F}$ es algebraico sobre \mathbb{K} .

Propiedades del polinomio mínimo

- 1. El polinomio mínimo de α sobre \mathbb{K} es de grado mínimo entre los polinomios no nulos de $\{f \in \mathbb{K}[x] : f(\alpha) = 0\}$.
- 2. Si $h \in \mathbb{K}[x]$ es un polinomio mónico e irreducible, que tiene a $\alpha \in \mathbb{F}$ como raíz, entonces es su polinomio mínimo.

Caracterización de elementos algebraicos y trascendentes

Sea \mathbb{F} un cuerpo extensión del cuerpo \mathbb{K} y sea $\alpha \in \mathbb{F}$ entonces

- 1. α es algebraico sobre $\mathbb{K} \Leftrightarrow \mathbb{K}[\alpha] = \mathbb{K}(\alpha)$
- 2. α es trascendente sobre $\mathbb{K} \Leftrightarrow \mathbb{K}[\alpha] \approx \mathbb{K}[x]$.

Grado de extensión de un cuerpo

Si \mathbb{F} es una extensión del cuerpo \mathbb{K} entonces \mathbb{F} es un espacio vectorial sobre el cuerpo \mathbb{K} . La dimensión de \mathbb{F} como \mathbb{K} -espacio vectorial, se denomina **grado de extensión** de \mathbb{F} sobre \mathbb{K} :

$$[\mathbb{F}:\mathbb{K}]$$

Grado de extensión

Sea F un cuerpo extensión del cuerpo K.

Si $\alpha \in \mathbb{F}$ es algebraico sobre $\mathbb{K} \Rightarrow \text{el grado del polinomio mínimo de } \alpha \text{ sobre } \mathbb{K} \text{ es } [\mathbb{K}(\alpha) : \mathbb{K}] < \infty.$

Si $\alpha \in \mathbb{F}$ es trascendente sobre $\mathbb{K} \Rightarrow [\mathbb{K}(\alpha) : \mathbb{K}] = \infty$.

Base de una extensión algebraica. Polinomio mínimo y polinomio característico

Sea \mathbb{F} un cuerpo extensión de \mathbb{K} . $\alpha \in \mathbb{F}$ algebraico sobre \mathbb{K} , $\alpha \notin \mathbb{K}$.

- 1. El grado del polinomio mínimo de α sobre \mathbb{K} es $n \Leftrightarrow$ una base de $\mathbb{K}(\alpha)$ sobre \mathbb{K} es: $B = \{1, \alpha, \alpha^2, \cdots, \alpha^{n-1}\}$
- 2. Si $[\mathbb{K}(\alpha) : \mathbb{K}] = n < \infty \Rightarrow$ el polinomio mínimo de α sobre \mathbb{K} es $(-1)^n$ por el polinomio característico de la aplicación lineal $f : \mathbb{K}(\alpha) \to \mathbb{K}(\alpha)$ definida por $f(x) = \alpha x$.

Extensiones de una extensión

Para toda sucesión de extensiones de cuerpos $\mathbb{E} \supseteq \mathbb{F} \supseteq \mathbb{K}$ se verifica que

$$[\mathbb{E}:\mathbb{K}]=[\mathbb{E}:\mathbb{F}][\mathbb{F}:\mathbb{K}]$$

4.2.18. Problemas

- 1. Encontrar una base y el grado de extensión para cada una de las siguientes extensiones de cuerpos:
 - $a) \ \mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2})$
 - $b) \ \mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$
 - $c) \ \mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$
 - $d) \mathbb{Q} \subseteq \mathbb{Q}(\sqrt[3]{2}, \sqrt{2})$
- 2. Hallar el polinomio mínimo y deducir el grado de extensión pedido en cada caso:
 - a) Polinomio mínimo de $\alpha = \sqrt[3]{7}$ sobre \mathbb{Q} . Grado de extensión: $[\mathbb{Q}(\sqrt[3]{7}):\mathbb{Q}]$
 - b) Polinomio mínimo de $\alpha = \sqrt[4]{2}$ sobre $\mathbb{Q}(\sqrt{2})$. Grado de extensión: $[\mathbb{Q}(\sqrt[4]{2}) : \mathbb{Q}(\sqrt{2})]$
 - c) Polinomio mínimo de $\alpha = \sqrt{3}$ sobre \mathbb{R} . Grado de extensión: $[\mathbb{R}(\sqrt{3}) : \mathbb{R}]$
 - d) Polinomio mínimo de $\alpha = \sqrt[6]{5}$ sobre \mathbb{Q} . Grado de extensión: $[\mathbb{Q}(\sqrt{5}, \sqrt[6]{5}) : \mathbb{Q}]$
 - e) Polinomio mínimo de $\alpha = \sqrt{1 + \sqrt{3}}$ sobre \mathbb{Q} . Grado de extensión: $[\mathbb{Q}(\sqrt{1 + \sqrt{3}}) : \mathbb{Q}]$
- 3. Obtener el polinomio mínimo de α sobre el cuerpo indicado en cada caso:
 - a) Polinomio mínimo de $\alpha = \pi + ei$ sobre \mathbb{R}
 - b) Polinomio mínimo de $\alpha = \frac{1+\sqrt{-7}}{2}$ sobre \mathbb{Q}
 - c) Polinomio mínimo de $\alpha = \sqrt{2 + \sqrt{2}}$ sobre \mathbb{Q}
 - d) Polinomio mínimo de $\alpha = \sqrt{2} + \sqrt{6}$ sobre \mathbb{Q}
 - e) Polinomio mínimo de $\alpha = \sqrt[3]{2} + \sqrt[3]{4}$ sobre \mathbb{Q}
 - f) Polinomio mínimo de $\alpha = \sqrt[3]{9} + \sqrt[3]{3} + 1$ sobre \mathbb{Q}
- 4. Sea $h = x^3 x 2 \in \mathbb{Q}[x]$ y $\alpha \in \mathbb{Q}[x]/(h)$ raíz de h. Obtener una base de la extensión $\mathbb{Q}(\alpha)$ sobre \mathbb{Q} y expresar el elemento $\frac{\alpha+1}{\alpha-1} \in \mathbb{Q}[x]/(h)$ como combinación lineal de los elementos de dicha base.
- 5. Sea $h = x^4 6x + 3 \in \mathbb{Q}[x]$ y $\alpha \in \mathbb{Q}[x]/(h)$ raíz de h. Obtener una base de la extensión $\mathbb{Q}(\alpha)$ sobre \mathbb{Q} y expresar el elemento $(\alpha^2 1)(\alpha^2 + 2) \in \mathbb{Q}[x]/(h)$ como combinación lineal de los elementos de dicha base.
- 6. Indicar justificadamente si existe una relación de igualdad o de contenido entre los cuerpos $\mathbb{Q}(\sqrt{3})$ y $\mathbb{Q}(\sqrt{3}+\sqrt{3})$.