INDIAN INSTITUTE OF TECHNOLOGY BHILAI CS203: Theory of Computation I

Tutorial Sheet 1

• Solve the following problems before the Tutorial.

- 1. For strings x and y, prove $(xy)^R = y^R x^R$.
- 2. For language L_1 and L_2 , prove $(L_1L_2)^R = L_2^R L_1^R$ and $(L_1 \cap L_2)^R = L_1^R \cap L_2^R$.
- 3. For language L, prove $L^+ = L^*$ if and only if $\epsilon \in L$.
- 4. Let $L = \{ab, aa, baa\}$. Which of the following strings are in L^* : abaabaaabaa, aaaabaaaa, baaaaabaaaab, baaaaabaaa? Which strings are in L^4 ?
- 5. Let $\Sigma = \{a, b\}$ and $L = \{aa, bb\}$. Use set notation to describe \overline{L} , complement of L.
- 6. Let $L_1 = \{\varepsilon, a\}$ and $L_2 = \{a, b\}$. List the elements of the following sets.
 - (i) L_1^2
 - (ii) L_2^3
 - (iii) L_1L_2
 - (iv) L_1^+
 - (v) L_2^*
- 7. Find Kleene star (L^*) of the language $L = \{\varepsilon, 0, 01\}$.
- 8. Prove distributive properties for the languages L_1, L_2, L_3
 - (i) $(L_1 \cup L_2)L_3 = L_1L_3 \cup L_2L_3$
 - (ii) $L_1(L_2 \cup L_3) = L_1L_3 \cup L_1L_3$
- 9. Prove $L^*L = LL^* = L^+$.
- 10. Write the regular expressions corresponding to the following languages:
 - (i) The set of all strings over some alphabet $\Sigma = \{0, 1\}$ with even number of 0's.
 - (iii) The set of all strings over some alphabet \sum that have an a in the 5th position from the right.
 - (iv) The set of all strings over some alphabet \sum with no consecutive a's.
 - (v) The set of all strings over $\{a,b\}$ in which every occurrence of b is not before an occurrence of a.