Hacer los impares y el 15.4-40

15.3

59-60 Encuentre el valor promedio de f sobre la región D.

59. f(x, y) = xy, D es el triángulo con vértices (0, 0), (1, 0)y(1, 3)

15.4

19-27 Use coordenadas polares para hallar el volumen del sólido.

19. Bajo el cono $z = \sqrt{x^2 + y^2}$ y arriba del disco $x^2 + y^2 \le 4$

20. Bajo el paraboloide $z = 18 - 2x^2 - 2y^2$ y arriba del plano xy

21. Encerrada por el hiperboloide $-x^2 - y^2 + z^2 = 1$ y el plano

22. Dentro de la esfera $x^2 + y^2 + z^2 = 16$ y fuera del cilindro $x^2 + y^2 = 4$

23. Una esfera de radio a

24. Acotado por el paraboloide $z = 1 + 2x^2 + 2y^2$ y el plano z = 7 en el primer octante

25. Arriba del cono $z = \sqrt{x^2 + y^2}$ y bajo la esfera

26. Acotado por los paraboloides $z = 3x^2 + 3y^2$ y $z = 4 - x^2 - y^2$

27. Dentro del cilindro $x^2 + y^2 = 4$ y el elipsoide $4x^2 + 4y^2 + z^2 = 64$

29-32 Evalúe la integral iterada convirtiendo a coordenadas

29. $\int_{-3}^{3} \int_{0}^{\sqrt{9-x^2}} \sin(x^2 + y^2) \, dy \, dx$ **30.** $\int_{0}^{a} \int_{-\sqrt{a^2-y^2}}^{0} x^2 y \, dx \, dy$

31. $\int_{0}^{1} \int_{0}^{\sqrt{2-y^2}} (x+y) dx dy$ 32. $\int_{0}^{2} \int_{0}^{\sqrt{2x-x^2}} \sqrt{x^2+y^2} dy dx$

Eiercicios

1-6 Encuentre el jacobiano de la transformación

1. x = 5u - v, y = u + 3v

2. x = uv, y = u/v

3. $x = e^{-r} \operatorname{sen} \theta$, $y = e^{r} \cos \theta$

4. $x = e^{s+t}$, $y = e^{s-t}$

5. x = u/v, y = v/w, z = w/u

6. $x = v + w^2$, $y = w + u^2$, $z = u + v^2$

15-20 Utilice las transformaciones dadas para evaluar la integral.

15. $\iint_{R} (x - 3y) dA$, donde R es la región triangular con vértices $(0, 0), (2, 1) y (1, 2); \quad x = 2u + v, \ y = u + 2v$

16. $\iint_R (4x + 8y) dA$, donde R es el paralelogramo con vértices (-1, 3), (1, -3), (3, -1) y (1, 5); $x = \frac{1}{4}(u + v), y = \frac{1}{4}(v - 3u)$

17. $\iint_R x^2 dA$, donde R es la región acotada por la elipse $9x^2 + 4y^2 = 36$; x = 2u, y = 3v

19. $\iint_{\mathbb{R}} xy \, dA$, donde R es la región en el primer cuadrante acotada por las rectas y = x y y = 3x y las hipérbolas xy = 1, xy = 3; x = u/v, y = v

40. a) Se define la integral impropia (sobre todo el plano ℝ²)

$$I = \iint_{\mathbb{R}^2} e^{-(x^2 + y^2)} dA = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(x^2 + y^2)} dy dx$$
$$= \lim_{a \to \infty} \iint_{D_a} e^{-(x^2 + y^2)} dA$$

donde D_a es el disco con radio a y centro en el origen. Demuestre que

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(x^2+y^2)} dA = \pi$$

b) Una definición equivalente de la integral impropia del inciso a) es

$$\iint_{\mathbb{R}^2} e^{-(x^2+y^2)} dA = \lim_{a \to \infty} \iint_{S_-} e^{-(x^2+y^2)} dA$$

donde S_a es el cuadrado con vértices ($\pm a$, $\pm a$). Use este para demostrar que

$$\int_{-\infty}^{\infty} e^{-x^2} dx \int_{-\infty}^{\infty} e^{-y^2} dy = \pi$$

c) Deduzca que

$$\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$$

d) Haciendo el cambio de variable $t = \sqrt{2} x$, demuestre qu

$$\int_{0}^{\infty} e^{-x^2/2} dx = \sqrt{2\pi}$$

(Éste es un resultado fundamental para probabilidad y estadística.)

41. Use el resultado del ejercicio 40 inciso c) para evaluar las siguientes integrales

a)
$$\int_0^\infty x^2 e^{-x^2} dx$$

a)
$$\int_0^\infty x^2 e^{-x^2} dx$$
 b) $\int_0^\infty \sqrt{x} e^{-x} dx$

59.
$$\frac{3}{4}$$

15.4

17.
$$\frac{\pi}{3} + \frac{\sqrt{3}}{2}$$
 19. $\frac{16}{3}\pi$ 21. $\frac{4}{3}\pi$ 23. $\frac{4}{3}\pi a^3$

25.
$$(2\pi/3)[1-(1/\sqrt{2})]$$
 27. $(8\pi/3)(64-24\sqrt{3})$ **29.** $\frac{1}{2}\pi(1-\cos 9)$ **31.** $2\sqrt{2}/3$ **33.** 4.5951

29.
$$\frac{1}{2}\pi(1-\cos 9)$$
 31. $2\sqrt{2}/3$ **33.** 4.5951

41. a)
$$\sqrt{\pi}/4$$
 b) $\sqrt{\pi}/2$

15.10

EJERCICIOS 15.10 ■ PÁGINA 1047

1. 16 **3.**
$$\sin^2 \theta - \cos^2 \theta$$
 5. 0

15.
$$-3$$
 17. 6π 19. $2 \ln 3$