Circuitos Elétricos III

Prof. Danilo Melges

Depto. de Eng. Elétrica

Universidade Federal de Minas Gerais

Introdução aos circuitos de seleção de freqüência

Introdução

- Circuitos seletores de freqüências (filtros): atenuam sinais de entrada com freqüências fora de uma dada faixa.
- Função de transferência: análise de resposta em frequência. => resposta em regime permanente senoidal

$$y_{rp}(t) = A|H(j\omega)|\cos [\omega t + \phi + \theta(\omega)]$$

Introdução

- faixa de passagem: freqüências não atenuadas pelo filtro.
- faixa de rejeição: freqüências atenuadas pelo filtro.
- Tipo de circuito de seleção: determinado por sua resposta em frequência.

Resposta em freqüência

- Resposta em frequência: caracterização de um sistema quanto
 - ao Módulo em função da freqüência (Espectro de Amplitude): |H(jω)|
 - ao Ângulo de fase em função da freqüência (Espectro de Fase): θ(jω)

Categorias de Filtros

Filtro passa-baixas

Filtro passa-altas

Freqüência de corte (ω_c) separa a banda passante da banda de rejeição.

Categorias de Filtros

Filtro passa-bandas

Filtro rejeita-bandas

Filtros: observações

 Filtro ideal: fase linear na banda de passagem => evita distorção de fase.

 Filtros passivos: utilizam elementos passivos (resistores, capacitores e indutores).

 Normalmente, para filtros passivos o máximo ganho na banda de passagem é 1.

Filtro passa-baixas

Filtro passa-baixas

Filtro passa-baixas

- Para $\omega=0$: $v_o=v_i$, logo $|H(j\omega)|=1$
- Conforme ω aumenta, a impedância do indutor (jωL) aumenta → atenuação da amplitude e alteração da fase.
- Para $\omega = \infty$: $|H(j\omega)|$ decresce e $\theta(j\omega) > 90^{\circ}$.

Frequência de corte

 Como definir a frequência de corte quando não houver uma frequência única que separe as bandas de passagem e rejeição?

Frequência de corte

 Definição: A frequência para a qual a potência cai à metade de seu valor máximo, ou, de forma equivalente:

$$|H(j\omega_c)| = \frac{1}{\sqrt{2}}H_{\text{max}},$$

onde H_{max} é a máxima amplitude da função de transferência.

Também chamado de frequência de meia potência.

Circuito RL série

tempo

 $R \geqslant v_o$

Função de

transferência: $H(s) = \frac{R/L}{s + R/L}$.

Resposta em Frequência:
$$H(j\omega) = \frac{R/L}{j\omega + R/L}$$

Módulo:
$$|H(j\omega)| = \frac{R/L}{\sqrt{\omega^2 + (R/L)^2}},$$

Ângulo de fase:
$$\theta(j\omega) = -\operatorname{tg}^{-1}\left(\frac{\omega L}{R}\right)$$

Circuito RL série

- Para ω=0: |H(jω)|=1, logo v_o=v_i
- Conforme ω aumenta, a impedância do indutor (jωL).
 Aumenta ->atenuação da amplitude e alteração da fase.
- Para $\omega = \infty$: $|H(j\omega)| = 0$ e $\theta(j\omega) > 90^{\circ}$.

Módulo:
$$|H(j\omega)| = \frac{R/L}{\sqrt{\omega^2 + (R/L)^2}}$$

Ângulo de fase:

$$\theta(j\omega) = -\operatorname{tg}^{-1}\left(\frac{\omega L}{R}\right)$$

Circuito RL série

• Qual a frequência de corte? $|H(j\omega_c)| = \frac{1}{\sqrt{2}}|1| = \frac{R/L}{\sqrt{\omega_c^2 + (R/L)^2}}$

$$\omega_c = \frac{R}{L}$$

• Ou seja, a freq. de corte pode ser controlada por meio de R e L.

Circuito RC série

Circuito RC série

- Para $\omega=0$: $1/j\omega C=\infty$, $\log o v_o=v_i e |H(j\omega)|=1$
- Quando ω aumenta, 1/jωC reduz ->atenuação da amplitude e alteração da fase.
- Para $\omega = \infty$: $1/j\omega C = 0$, logo $v_o = 0$ e $|H(j\omega)| = 0$.

Circuito RC série

$$H(s) = \frac{1/RC}{s + 1/RC}$$
$$\omega_c = 1/RC$$

Filtros passa-baixas

$$V_{i} = \frac{1}{sC} + H(s) = \frac{1/RC}{s+1/RC}$$

$$\omega_{c} = 1/RC$$

$$\omega_{c} = 1/RC$$

• Forma geral para função de transferência destes filtros:

$$H(s) = \frac{\omega_c}{s + \omega_c}$$

• Relação entre domínio da frequência e do tempo: $au=1/\omega_c$.

tempo

Função de transferência:

Módulo:

 $\begin{array}{c|c}
 & & \text{freqüência} \\
\hline
V_i(s) & + & \\
 & & \\
\end{array}$

Resposta em Frequência: $H(j\omega) = \frac{j\omega}{j\omega + 1/RC}$

$$|H(j\omega)| = \frac{\omega}{\sqrt{\omega^2 + (1/RC)^2}}$$

Ângulo de fase: $\theta(j\omega) = 90^{\circ} - \mathrm{tg^{-1}}\omega RC$

Módulo:
$$|H(j\omega)| = \frac{\omega}{\sqrt{\omega^2 + (1/RC)^2}}$$

Ângulo de fase:

$$\theta(j\omega) = 90^{\circ} - tg^{-1}\omega RC$$

Módulo:
$$|H(j\omega)| = \frac{\omega}{\sqrt{\omega^2 + (1/RC)^2}}$$

Freqüência de corte: sabemos que H_{max}=|H(j∞)| =1, logo

$$\frac{1}{\sqrt{2}} = \frac{\omega_c}{\sqrt{\omega_c^2 + (1/RC)^2}}$$

$$\omega_c = \frac{1}{RC}$$
.

Módulo:
$$|H(j\omega)| = \frac{\omega}{\sqrt{\omega^2 + (1/RC)^2}}$$

Freqüência de corte: sabemos que H_{max}=|H(j∞)| =1, logo

$$\frac{1}{\sqrt{2}} = \frac{\omega_c}{\sqrt{\omega_c^2 + (1/RC)^2}}$$

$$\omega_c = \frac{1}{RC}$$
.

Ou seja, a freqüência de corte do circuito RC série é a mesma, não importando o tipo de operação.

tempo

Módulo:
$$|H(j\omega)| = \frac{\omega}{\sqrt{\omega^2 + (R/L)^2}}$$

Freqüência de corte:

$$\frac{1}{\sqrt{2}} = \frac{\omega_c}{\sqrt{\omega_c^2 + (R/L)^2}} \longrightarrow \omega_c = \frac{R}{L}$$

$$\longrightarrow \omega_c = \frac{R}{L}$$

Filtros passa-altas

$$V_{i} = \frac{R}{SL} + H(s) = \frac{s}{s + R/L}$$

$$\omega_{c} = R/L$$

$$\omega_{c} = R/L$$

Função de transferência de filtros passa-altas:

$$H(s) = \frac{s}{s + \omega_c}$$

Filtros passa-altas: efeito da carga

Filtros passa-altas: efeito da carga

Determinar o efeito da adição de uma carga R_L ao filtro passa-altas R_I série.

tempo

onde

$$K = \frac{R_L}{R + R_L}, \quad \omega_c = KR/L.$$

