Logical Equivalences

Given any statement variables, p, q, and r, a tautology \mathbf{t} and a contradiction \mathbf{c} , the following logical equivalences hold

1. Commutative laws: $p \land q \equiv q \land p$ $p \lor q \equiv q \lor p$ $(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$ 2. Associative laws: $(p \lor q) \lor r \equiv p \lor (q \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$ $p \lor (q \land r) \equiv (p \lor q) \land (q \lor r)$ 3. Distributive laws: 4. Identity Laws: $p \wedge \mathbf{t} \equiv p$ $p \vee \mathbf{c} \equiv p$ 5. Negation Laws: $p \lor \sim p \equiv \mathbf{t}$ $p \land \sim p \equiv \mathbf{c}$ 6. Double neagative law: $\sim (\sim p) \equiv p$ 7. Idempotent Laws: $p \wedge p \equiv p$ $p \lor p \equiv p$ 8. Universal bound Laws: $p \wedge \mathbf{c} \equiv \mathbf{c}$ $p \lor \mathbf{t} \equiv \mathbf{t}$ 9. De Morgan's laws: $\sim (p \land q) \equiv \sim p \lor \sim q$ $\sim (p \lor q) \equiv \sim p \land \sim q$ 10. Absorption laws: $p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$ 11. Negation of **t** and **c**: $\sim t \equiv c$ $\sim c \equiv t$

Rules of Inference for Statements 1. Modus Ponens: $p \rightarrow q$ p ∴ q 2. Modus Tollens: $p \rightarrow q$ $\sim q$ ∴~ *p* 3. Generalization: *a*) *p b*) *q* $\therefore p \vee q$ $\therefore p \vee q$ 4. Specialization: a) $p \wedge q$ b) $p \wedge q$ ∴ *p* $\therefore q$ 5. Conjunction: p q $\therefore p \wedge q$ 6. Elimination: a) $p \lor q$ b) $p \vee q$ $\Box q$ $\Box p$ ∴ *p* ∴ q 7. Transitivity: $p \rightarrow q$ $q \rightarrow r$ $\therefore p \rightarrow r$ 8. Division into cases: $p \vee q$ $p \rightarrow r$ $q \rightarrow r$ ∴ r 9. Contradiction rule: $\square p \rightarrow \mathbf{c}$ ∴ *p*

Valid Argument forms (Rules of Inference)

Rules of Inference for Quantified Statements

1. Universal Instantiation: $\forall x \in D, P(x)$ $a \in D$

 $\therefore P(a)$

2. Universal Generalization: P(a) for every $a \in D$

 $\therefore \forall x \in D, P(x)$

3. Existential Instantiation: $\exists x \in D \text{ such that } P(x)$

 $\therefore P(a)$ for some $a \in D$

4. Existential Generalization: P(a) for some $a \in D$

 $\therefore \exists x \in D \text{ such that } P(x)$

Set Identities

Let A, B and C be sets of elements of a universal set U, and let ϕ be the empty set. The following set identities hold:

1. Commutative laws:	$A \cap B = B \cap A$	$A \cup B = B \cup A$
2. Associative laws:	$(A \cap B) \cap C = A \cap (B \cap C)$	$(A \cup B) \cup C = A \cup (B \cup C)$
3. Distributive laws:	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
4. Identity Laws:	$A \cap U = A$	$A \cup \emptyset = A$
5. Complement Laws:	$A \cup A^c = U$	$A \cap A^c = \emptyset$
6. Double Complement law: $(A^c)^c = A$		
7. Idempotent Laws:	$A \cap A = A$	$A \cup A = A$
8. Universal bound Laws:		$A \cup U = U$
9. De Morgan's laws:	$(A \cap B)^c = A^c \cup B^c$	$(A \cup B)^c = A^c \cap B^c$
10. Absorption laws:	$A \cup (A \cap B) = A$	$A \cap (A \cup B) = A$
11. Complement of U and \emptyset : $U^c = \emptyset$ $\emptyset^c = U$		
12. Set-difference Law:	$A - B = A \cap B^c$	