

$$L(f|R) = \prod_{i=1}^{R} P(f_i = r_i)$$

$$= T \leq P(f_{i}=r_{i}|T_{i}=t)P(T_{i}=t)$$

$$= 1 + \epsilon T$$

with
$$J(t_i) = \sum_{i=1}^{\infty} F(i) \left(l(t_i) - i + 1 \right)$$

Called the "adjusted length"

$$= \prod_{i=1}^{\infty} \sum_{t \in T} \frac{F(i) \left(l(t_i) - i + 1 \right)}{I(t_i) - I_t(r_i) + 1}$$

Next to estimate

We could optimize bot $|x_t| = 60,000$

Too big to optimize.

Iden partition the genome.

$$t_3 \qquad \qquad t_4 \qquad \qquad t_5 \qquad \qquad t_6 \qquad \qquad t_7 \qquad \qquad t_8 \qquad \qquad t_9 \qquad \qquad t_9$$

Introduce Li a region when fi Corresponds to and Xa=# et fragments falling into region by. $\beta_g \equiv P(L_i = g) = 27 \propto_t$ = 2 0, T+ [(+) 5/19/2 on In [(u) h=1 u 69/ - og é (Gg) 5/19/ on 2(Gn)

Oy = I PE tegy

It = PE

I Pa

So the full likelihood

$$= \left\{ \begin{array}{ll} \frac{16l}{1} & \frac{1}{1} & \frac{1}{2} & \frac$$

So
$$B = \frac{X_G}{R}$$
 Y_E can be

found via constrained optimization.

- * We even han variance estimate
- · Unstable
 - identificbility

- 3 Mg importance sampling from likelihod. For mean I vaviance estimak. Yz Gov (J)
- · Using this we can define the FPRM statistic with its corresp.

 Variance.

Testing Diff. Expression

log (xg re Rb) and we can estimate the variance as well.

then the test stat. is

In log (ratio) - 0 ~ N(0,1)

Vest var

- » If W: how can we test differences between multiple groups.
 - · Differential gene transcript expression analysis of ...
 - a Question HW: hew do un de multiple testing in Cufflinks.