Phys 2110-4 9/12/11

Note Title 9/12/2011

Chap 3 20

20 Motion

Corrd. system:

>> Vectors

Ax, Ax one x, y components

A, O are magnitude le direction.

Ay= A SMO

Might be negative!

$$A = \sqrt{\sqrt{\sqrt{x} + \sqrt{x}}}$$

tano = Ay/Ax

$$\frac{1}{2} = \tan^{-1}(Ax)$$

To del vectors: Decompose into components Add the components separately, Then can ford may & dir of Example: Find the mag & direction of -52+63 = A $A = \sqrt{(-5)^2 + 6^2} = 7.8$ Div: $\delta = \tan(-1.7)$?

$$\vec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$$

Coming up: Multiplication vectors

A.B > scalar AxB > vector

$$\Delta \hat{r} = (X_2 - X_1) \hat{l} + (Y_2 - Y_1) \hat{j}$$

$$= \Delta X \hat{l} + \Delta y \hat{j}$$

$$= \hat{r} = \hat{r}$$

How rapidly is position changing?

$$\nabla_{av} = \sum_{\Delta t} = \sum_{\Delta t} (\Delta x (\Delta x))$$

$$= (\Delta x) (\Delta x)$$

$$= ($$

How fast is relocity changing? $=\overline{Q}_{X}(\hat{Q}_{X})$ is instantaneous take of of velocity? Dt >> $\overline{Q} = \frac{dv_x}{dt} \hat{l} + \frac{dv_t}{dt} \hat{J} = Q_x \hat{l} + Q_y \hat{J}$

$$\vec{a} = \frac{d\vec{v}}{dt} = \alpha_{x} (1 + \alpha_{y})$$

3.30 Position of object as fixed time is

 $\vec{F} = (3.2t + 1.8t^{2})(1 + (1.7t - 2.4t^{2}))$ [m

Find object's accel. vector.

 $\vec{V} = (3.2 + 3.6t)(1 + (1.7 - 4.8t))$]

 $\vec{A} = 3.6(1 - 4.8)$ [m/s²]

Interesting case: Constant acceleration.

> Non -const accel

 $a_x = const$ $a_y = const$ $a_y = const$ $a_x = fall$ $a_x = 0$ $a_y = -g$

Speed = 171 -velocity

$$y = y_0 + v_0 + \frac{1}{2} a_{\gamma} t^2$$