Вектора и скалярное произведение

Примеры

- 1. Найдите угол между диагоналями AD и BF в правильном шестиугольнике ABCDEF.
- 2. Найдите угол, лежащий против основания равнобедренного треугольника, если медианы, проведенные к боковым сторонам, взаимно перпендикулярны.

Задачи

- **1.** (а) Пусть A,B,C и D произвольные точки плоскости. Докажите, что $\overrightarrow{AB} \cdot \overrightarrow{CD} + \overrightarrow{BC} \cdot \overrightarrow{AD} + \overrightarrow{CA} \cdot \overrightarrow{BD} = 0$.
 - (b) Докажите, что высоты треугольника пересекаются в одной точке.
 - (${\bf c}$) Известно, что в тетраэдре две пары скрещивающихся ребер перпендикулярны. Докажите, что и третья пара скрещивающихся ребер обладает этим свойством.
- **2.** (а) Докажите, что сумма квадратов расстояний от произвольной точки плоскости до двух противоположных вершин прямоугольника равна сумме квадратов расстояний от этой точки до двух других вершин прямоугольника.
 - (b) Дан прямоугольник ABCD и точка P. Докажите, что $\overrightarrow{PA} \cdot \overrightarrow{PC} = \overrightarrow{PB} \cdot \overrightarrow{PD}$.
 - (c) Дан прямоугольник ABCD и точка P. Прямые, проходящие через A и B и перпендикулярные, соответственно, PC и PD, пересекаются в точке Q. Докажите, что $PQ \perp AB$.
- **3.** Пусть O центр описанной окружности, H ортоцентр и M точка пересечения медиан треугольника ABC.
 - (a) Докажите, что $\overrightarrow{OH} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}$.
 - (b) Выведите из этого, что точки M, H, O лежат на одной прямой (прямая Эйлера), причем $MH = 2 \cdot OM$.
 - (**c**) Докажите, что $OH^2 = 9R^2 (a^2 + b^2 + c^2)$.
- **4.** Четырёхугольник ABCD вписанный. Пусть H_a ортоцентр треугольника BCD, а M_a середина отрезка AH_a . Аналогично определим M_b , M_c и M_d . Докажите, что M_a , M_b , M_c и M_d совпадают.
- **5.** Пусть O центр окружности, описанной около равнобедренного треугольника ABC~(AB=AC), D середина стороны AB, а E точка пересечения медиан треугольника ACD. Докажите, что $OE \perp CD$.