

Février 2019

TP DevOps

M1-APP-RI

TP-1 Déploiement sous AWS

AWS Account

Créer un compte AWS Education avec un email EFREI pour obtenir un code promotionnel de 100\$ de crédit AWS offert.

Se connecter ensuite avec les identifiants root du compte. (email + password).

Ajouter le code promotionnel dans le service « Billing » de votre compte AWS personnel.

https://aws.amazon.com/premiumsupport/knowledge-center/add-aws-promotional-code/

Root user

OAUTHY

Pour des raisons de sécurité, prendre l'habitude de toujours configurer un MFA pour le user « root » que pour les utilisateurs créés dans IAM.

Télécharger l'application Authy depuis votre smartphone pour la gestion des MFA.

<u>Users</u>

Créer un utilisateur auquel nous donnons le droit Administrateur.

Se connecter ensuite avec cet utilisateur (Id du compte ou alias / User / Password).

Ne pas oublier d'assigner un MFA à vos utilisateurs.

La bonne pratique est d'appliquer une « policy » aux utilisateurs qui interdit toutes actions si l'utilisateur n'a pas de MFA configuré. Pour plus de détails suivre le lien ci-dessous :

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_examples_aws_my-sec-creds-self-manage.html

VPC (Virtual Private Cloud)

https://docs.aws.amazon.com/fr fr/vpc/latest/userguide/VPC Subnets.html

https://docs.aws.amazon.com/vpc/latest/userguide/VPC Scenario2.html

Se rendre dans le service VPC.

Créer un VPC avec le CIDR suivant : 172.16.0.0/16

Name Tag	CIDR
TP_CICD	172.16.0.0/16

Une fois le VPC créé, activer la fonctionnalité DNS hostnames.

Subnets

Créer les 2 subnets suivants.

Name Tag	VPC	Availability	CIDR
		Zone	
TP_CICD_Public	172.16.1.0/24	eu-west-1a	172.16.1.0/24
TP_CICD_Private	172.16.2.0/24	eu-west-1a	172.16.2.0/24

Internet Gateway

Créer une Internet Gateway, la rattacher au VPC TP_CICD et la nommer TP_CICD_IGW

Rattacher l'internet Gateway au VPC.

Route Tables

« Route table » par défaut

Renommer le « Name Tag » de la « route table » créée par default avec le VPC par « TP_CICD_Default »

La route par défaut de la route table « TP_CICD_Default », pourra être déclarée lorsque nous aurons créé l'instance NAT.

« Route table » publique

Créer la « route table » TP_CICD_Public

Ajouter la route suivante dans la table de routage.

Destination	Target
0.0.0.0/0	TP_CICD_IGW

Le fait d'avoir cette route rends mon « subnet » public lorsque je l'attache à ma route table.

Attacher la route table « TP_CICD_Public » au subnet « TP_CICD_Public »

Jump Host/NAT instance

Sélectionner la région eu-west-1

Démarrer une EC2.

Utiliser une AMI Publique Ubuntu.

Utiliser une instance de type T2 Micro.

Sélectionner votre VPC et le subnet « Public » et activer l'affectation d'une IP publique.

Insérer les « user data » pour activer l'IP Forwarding sur l'instance :

#!/bin/bash

sysctl -w net.ipv4.ip_forward=1

/sbin/iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

Concernant le stockage, laisser les paramètres par défaut.

Définir un « Name Tag » « Nat_JumpHost »

Autoriser les connexions entrantes sur le port 22 depuis sa propre IP publique (EFREI).

Autoriser toutes les connexions entrantes depuis le sous-réseau privé pour autoriser les flux provenant des futures instances déployées dans le réseau privé vers l'instance de NAT.

Générer et télécharger une « key pair »

Retrouver l'instance en cours de démarrage.

Désactiver source/destination check de l'instance depuis la console

Maintenant, ajouter la route vers la « NAT Instance » dans la « main route table ».

Destination	Target
0.0.0.0/0	NAT Instance

Tests

Se connecter au bastion à l'aide de mobaXterm ou de putty.

Lancer une EC2 « T2.micro »vdans le private subnet, depuis la console.

Créer un « Sécurity Group » et autoriser le port 22 entrant depuis l'IP privée du Nat JumpHost.

Se connecter en SSH à votre machine à l'aide de la « private key » précédemment copiée sur le JumpHost.

ssh -i <private_key> ubuntu@<ip_PrivateHost>

Exécuter un ping vers 8.8.8.8

Eteindre ou détruire vos instances à la fin de votre travail pour éviter de gaspiller du crédit AWS inutilement !!!