

## VS78D10 Three-terminal positive voltage regulator

## **FEATURES**

 Maximum output current I<sub>OM</sub>:1.0 A

Output voltage
V<sub>O</sub>: 10 V

Continuous total dissipation
P<sub>D</sub>: 1.25 W ( T<sub>a</sub>= 25 °C )



## ABSOLUTE MAXIMUM RATINGS (Operating temperature range applies unless otherwise specified)

| Parameter                                   | Symbol           | Value    | Unit |
|---------------------------------------------|------------------|----------|------|
| Input Voltage                               | Vi               | 35       | V    |
| Thermal Resistance from Junction to Ambient | R <sub>θJA</sub> | 80       | °C/W |
| Operating Junction Temperature Range        | T <sub>OPR</sub> | -40~+125 | °C   |
| Storage Temperature Range                   | T <sub>STG</sub> | -65~+150 | ℃    |

ELECTRICALCHARACTERISTICSAT SPECIFIED VIRTUAL JINCTION TEMPERATURE (Vi=17V, lo=500mA, Ci=0.33µF, Co=0.1µF, unless otherwise specified )

| Parameter                | Symbol         | Test conditions                                    | Min | Тур  | Max  | Unit  |
|--------------------------|----------------|----------------------------------------------------|-----|------|------|-------|
| Output Voltage           | Vo             | T <sub>J</sub> =25°C                               | 9.7 | 10.0 | 10.3 | V     |
|                          |                | Io= 5mA-1A,                                        | 9.6 | 10.0 | 10.4 | V     |
|                          |                | 13.5V≤ V <sub>i</sub> ≤25V                         |     |      |      |       |
| Load Regulation          | ΔVο            | $I_O$ =5mA -1.0A, $T_J$ =25°C                      |     |      | 200  | mV    |
|                          |                | I <sub>O</sub> =250mA - 750mA,T <sub>J</sub> =25°C |     |      | 100  | mV    |
| Line Regulation          | ΔVο            | 12.5V≤ Vi ≤28V,T <sub>J</sub> =25°C                |     |      | 200  | mV    |
|                          |                | 14V≤V <sub>i</sub> ≤20V,T <sub>J</sub> =25°C       |     |      | 100  | mV    |
| Quiescent Current        | Iq             | T <sub>J</sub> =25°C                               |     | 4.3  | 8.0  | mA    |
| Quiescent Current Change | Δlq            | 5.0mA≤ I <sub>O</sub> ≤1.0A                        |     |      | 0.5  | mA    |
|                          |                | 13V ≤V <sub>i</sub> ≤ 28V,I <sub>O</sub> =500mA    |     |      | 0.8  | mA    |
| Output Voltage Drift     | △Vo/△T         | I <sub>O</sub> =5mA                                |     | 1.3  |      | mV/℃  |
| Output Noise Voltage     | V <sub>N</sub> | f=10Hz to 100KHz,T <sub>J</sub> =25°C              |     | 42   |      | μV/Vo |
| Ripple Rejection         | RR             | f =120Hz, 13V≤ V <sub>i</sub> ≤23V                 |     | 61   |      | dB    |
| Dropout Voltage          | $V_d$          | I <sub>O</sub> =1.0A,T <sub>J</sub> =25°C          |     | 2.0  |      | V     |
| Output Resistance        | Ro             | f = 1KHz                                           |     | 18   |      | mΩ    |
| Short Circuit Current    | Isc            | T <sub>J</sub> =25°C                               |     | 200  |      | mA    |

<sup>\*</sup> Pulse test.

## **TYPICAL APPLICATION**



Note: Bypass capacitors are recommended for optimum stability and transient response and should be located as close as possible to the regulators.



