TERMS

Direction: Positive $(+\beta_1)$, Negative $(-\beta_1)$, no association, complex (parabolic). Correlation: unitless, invariant to linear transformation. Highly susceptible to outliers. Can have strong non linear association but correlation close to 0 (complex). $-1 \le r \le 1$: when r = 1, all points on line with positive slope. When r = -1, all points on line with negative slope. Only interpretable for linear. Coefficient of determination: represents the proportion of variation y that is explained by/accounted for by the model. ANOVA tests whether this proportion is "significant". Assumptions for Linear Regression Inference: 1: linear model appropriate. 2: residuals are normally distributed. 3: residuals will have $\mu = 0$ and $\sigma = ?$.

FORMULAS

- $y = \beta_o + \beta_1 x + \epsilon$ [standard formula for linear regression]
- $\epsilon \sim N(0, \sigma)$ [random variable]
- $r = \frac{1}{n-1} \times \Sigma(\frac{x-\bar{x}}{S_x})(\frac{y-\bar{y}}{S_y})$ [correlation]
- $x_i > \bar{x} \to y_i > \bar{y}$ [contribution to r is t]
- $\hat{y} = b_o + b_1 x$ [least squares regression line]
- $t = \frac{\text{Statistic parameter}}{standarderror} = \frac{b_1 \beta_1}{SE_{b_1}} \ [\beta_1 = 0]$
- $F_{observed} \sim F(P, n-P-1)$
- $t_{observed} \sim t(n-p-1)$

- $b_1 = r \times \frac{s_y}{s_x}$
- $\bullet \ b_0 = \bar{y} b_1 \bar{x}$
- $e_i = y_i \hat{y}_i$ [prediction error (residual)]
- $r^2 = \frac{SSM}{SST}$ [coefficient of determination]

t-Test

- If P-value \leq sig level \implies reject H_o $(x_j$ is a sig predictor of y)
- \bullet Else, x_j is not sig, \therefore x_j does not have linear relation with y

ANOVA

Source	DF	Σ (squares)	μ (squares)	F	Pr > F
Model	p	$\sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$	$\frac{SSM}{DFM} = MSM$	$F_{obs} = \frac{MSM}{MSE}$	p-value
Error (e_i)	n-p-1	$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$	$\frac{SSE}{DFE} = MSE$		
Total	n-1	$\sum_{i=1}^{n} (y_i - \bar{y}_i)^2$			

- H_0 : $\mu_1 = \mu_2 = ... = \mu_i$
- Population mean does not depend on group
- • Population mean of y does not depend on x (H_0: $\mu_{y|x} = \mu_y \implies \beta_1 = 0$)
- Reject H_0 : Our model is "significantly better" than null model at explaining changes in $y \implies$ we should use linear model
- Fail to reject H_0 : Our model is not significantly better than null model \implies should use smaller model (null model)

SYMBOL CHART

β_o	y-intercept (b portion in $y = mx + b$)		
β_1	slope (m portion in $y = mx + b$)		
\hat{y}	predicted value of y		
b_o	y-intercept for predicted		
b_1	slope for predicted		
r	coefficient of correlation		
x^*	predictor for $\hat{\mu}$ and \hat{y}		

t-Test for Slope

- H_0 : $\beta_1 = 0 \ t \sim t(n-2)$
- H_a : $\beta \neq = 0$
- We reject H₀ if slope is not 0, so a linear relationship exists between x and y.
- Fail to reject H₀ and it is reasonable to believe that slope is 0 and there is no linear relationship between x and y.

Mean Response

- Model: $\mu_{y|x} = \beta_0 + \beta_1 x$
- \uparrow n \rightarrow \uparrow CI \downarrow relationship
- CI at x^* close to $\bar{x} \to \text{narrower}$
- CI at x^* far from $\bar{x} \to \text{wider}$
- $PI = \hat{y} \pm t^{**} \times SE_{\hat{y}}$
- We are 95% confident in our estimate that when x-variable is value of x^* , the population mean of y-variable for a new observation is between lower and upper bound.

Confidence Interval for Slope

- • Want to find values of β_1 for which t-statistic is $\underline{\mathrm{NOT}}$ in the critical region
- We are 95% confident in our estimate that when x-variable increases by 1 unit, the population mean of y-variable increases (1 decreases) by between lower bound and upper bound.

MULTIPLE LINEAR REGRESSION

basic model

• $\mu_{y|x} = \beta_0 + \beta_1 x_1 + ... + \beta_p x_p$

least squares line

• $\hat{y} = b_0 + b_1 x_1 + \dots + b_p x_p \implies y_i = \hat{y}_i + e_i$

ANOVA

- If p-value \leq sig level \implies reject H_o (our model <u>is</u> significantly better than null for prediction)
- Else, our model is <u>not significantly</u> better than the null for predicting
- Some x-variables may still be important predictors, however "more important" predictors are left out of the model (backward selection)