Associations of Healthcare Costs and Early Detection with Colorectal Cancer Mortality in Canada

Yulin Yuan, Ruohan Sun, Tony Lee

April 4, 2025

Introduction

Study Objective

Clearly define the research questions or objectives.

Dataset Overview

The dataset we decide to conduct our analysis of Mortality status (Alive/Dead) was sourced from Kaggle, which the dataset name is "Colorectal Cancer Global Dataset & Predictions". For the objective of this project, we only considered the data from Canada, which includes patient demographics, lifestyle risks, medical history, cancer stage, treatment types, survival chances, and healthcare costs. Key variables of we are going to investigate as follows:

Response Variable

Variable	Description	Type
Mortality Status	Status of patients' mortality (Yes/No)	Categorical, nominal

Explanatory Variables

Variable	Description	Type	
Alcohol Consumption	Status of patient's alcohol consumption (Yes/No)	Categorical, nominal	
Age	Patient's age in years	Numerical, continuous	
Cancer Stage	Diagnosis stage of cancer (Localized, Regional,	Categorical, ordinal	
	Metastatic)		
Diabetes	Status of patient's diabetes (Yes/No)	Categorical, nominal	
Diet Risk	Level of dietary risk (Low, Moderate, High)	Categorical, ordinal	
Early Detection Detection of colorectal cancer at an early stage		Categorical, nominal	
	(Yes/No)		
Family History	Presence of family history of colorectal cancer	Categorical, nominal	
	(Yes/No)		
Genetic Mutation	Presence of genetic mutations for colorectal cancer	Categorical, nominal	
	(Yes/No)		
Gender	Gender of the patient (Male/Female)	Categorical, nominal	
Healthcare Cost	Estimated healthcare expenditure per patient (1,000	Numerical, continuous	
	units in \$)		
Inflammatory Bowel	Status of inflammatory bowel disease (Yes/No)	Categorical, nominal	
Disease			
Insurance Status	Health insurance coverage (Insured/Uninsured)	Categorical, nominal	

Obesity BMI	BMI classification (Normal, Overweight, Obese)	Categorical, ordinal
Physical Activity	Level of physical activity (Low, Moderate, High)	Categorical, ordinal
Screening History	Cancer screening history (Regular, Irregular, Never)	Categorical, ordinal
Smoking History	Patient's smoking history (Yes/No)	Categorical, nominal
Treatment Type	Type of treatment received (Surgery, Chemotherapy,	Categorical, ordinal
	Radiotherapy, Combination)	
Tumor Size	Colorectal tumor size in millimeters (mm)	Numerical, continuous
Urban or Rural	Patient's area of residence (Urban/Rural)	Categorical, nominal

Motivation

- Why is this question or data important/interesting?
- Need to explain why we remove country-level variable and Patient_ID, reasonable is fine.

Analysis

Exploratory Data Analysis (EDA)

Balance of Response Variable

Figure 1: Class Distribution of the Mortality Variable Before and After Balancing

Continuous Variables

Figure 2: Distribution of continuous variables by mortality status

Categorical Variables

Figure 3: Proportion Bar plots for Categorical variables by mortality status

Interpretation of Findings

Pattern, trends, suggested operations

Model Choice and Reasoning

Logistic Regression

explain why choose this model based on EDA and Data description

Assumption Check

1. Binary Response

Based on $Figure\ 1$, the response variable is binary

2. Independence

No duplicate rows, independence hold

3. Variance Structure

Figure 4: Variance peaks at predicted probability = 0.5.

4. Linearity

Figure 5: Linearity check – logit of mortality plotted against continuous variables

Feature Selection

Figure 6: AIC vs Number of Covariates – demonstrating backward feature selection.

Model	Residual Deviance	AIC
Full Model	9710.7 (df = 6997)	9764.7
Backward-Selected Model	9725.6 (df = 7019)	9735.6

Table 1: Residual Deviance and AIC between the backward-selected and full models

...

Statistical Analysis

Test Statistic	Degrees of Freedom	p-value
$\chi^2 = 0.549$	1	0.4586

Table 2: Wilks' likelihood ratio test comparison for Additive and Interaction

The result suggests the interaction term does not significantly improve model fit.

...

Predictor	Estimate	Std. Error	z value	$\mathbf{Pr}(> z)$	Significance
(Intercept)	0.2256713	0.0804475	2.805	0.00503	**
Cancer_StageMetastatic	-0.0707315	0.0648033	-1.091	0.27506	
Cancer_StageRegional	-0.1151017	0.0537461	-2.142	0.03223	*
Family_HistoryYes	-0.0817314	0.0520083	-1.572	0.11607	
Healthcare_Costs	-0.0018622	0.0008735	-2.132	0.03301	*
Early_DetectionYes	-0.0081611	0.0487565	-0.167	0.86707	

Table 3: Regression output with significance levels: * p < 0.05, ** p < 0.01

...

Results Interpretation

inference results

Conclusion

Main Findings

Interpreting result in real-world context, careful about causality

Limitations

- Discuss possible sources of bias, limitations in data, model assumptions
- Suggest improvements or next steps

Potential Further research

Mention anything interesting you found that doesn't fit elsewhere

Appendix

- Full regression output
- Extra plots or tables not essential to the main body
- Model selection steps