Labo #2

Récursivité, analyse des algorithmes et patrons de conception

Ce travail peut être fait en équipe.

Vous allez créer en Java un projet labo2 et dans celui-ci créer 3 classes Exercice1.java, Exercice2.java et Exercice3.java. Il pourrait y avoir d'Autres classes utilitaires à ces nommées.

Exercice 1

Dans le document sur la récursivité nous avons parlé des **tours de Hanoï**. Vous pouvez lire sur ce sujet dans internet.

À faire

- Implanter cet algorithme Java (classe Exercice1)
- Tester votre algorithme sur plusieurs exemplaires
- Faire l'analyse asymptotique de votre algorithme

Exercice 2

À faire

- Faire un programme Java pour implanter un algorithme de tri (de votre choix) de façon récursive
- Faire l'analyse asymptotique de votre algorithme
- Implanter cet algorithme Java (classe Exercice2)

Exercice 3 (patrons de conception)

À faire

- Vous allez utiliser le patron de conception Fabrique (Factory) abstraite pour représenter le cas suivant :
 Représentation de véhicules dont ceux-ci peuvent être terrestres, maritimes et aériens. Par exemple les véhicules terrestres peuvent être des autos, camions, motos et bicyclettes
- Vous allez implanter ce patron de conception en Java
- Faire les tests nécessaires

REMISE

Le projet sera déposé dans LEA. Lors de la remise placez l'url de votre vidéo des tests ainsi que le nom des membres de votre équipe. Pour les tests **suivre l'ordre des exercices** de ce document. Vous devez parler dans votre vidéo sans à voir à montrer votre code (sauf si celui-ci ne fonctionne pas), seulement les tests. Vous allez créer dans le dossier **labo2** (votre projet) un dossier **documents** qui sera placé dans le dossier **src** de votre projet. Dans le dossier documents vous allez y mettre le fichier **analyse.pdf** (pas en Word). Ce fichier contiendra votre démarche d'analyse des algorithmes utilisés dans **Exercice 1** et **Exercice 2**.

Toute consigne non respectée vous fera perdre 10% de la note finale.