Zastosowanie algorytmów ewolucyjnych do wyznaczania przybliżonych reduktów

Dyplomant: Jan Gromko

Promotor: prof. dr hab. Jarosław Stepaniuk

19 kwietnia 2017 r.

Plan prezentacji

Redukcia

Istota problemu redukcji

Prosty algorytm wyznaczania reduktu

Problem złożoności dokładnych algorytmów redukcji

Alternatywne metody redukcji

Propozycje algorytmów genetycznych do wyznaczania przybliżonych reduktów

Założenia algorytmu

Schemat działania

Druga propozycja algorytmu genetycznego

Założenia

Porównanie wyników działania różnych wersji algorytmu

Redukcja

Czy można zredukować zbiór pod względem atrybutów w ten sposób, by zachowana była rozróżnialność elementów z oryginalnego zbioru?

Redukcja

Zbiór niezależny

Zbiór atrybutów $B_1 \subset A$ jest *niezależny* w danym systemie informacyjnym, jeśli dla każdego $B_2 \subset B_1$ zachodzi $IND(B_1) \neq IND(B_2)$.

Redukt

Reduktem zbioru atrybutów $B_1 \subseteq A$ nazywamy każdy niezależny zbiór $B_2 \subseteq B_1$, dla którego $IND(B_1) = IND(B_2)$, przy czym B_2 powinien być jak najmniej liczny. Może istnieć wiele reduktów.

Przykładowy zbiór

Pacjent	Ból głowy	Ból mięśni	Temperatura	Grypa
1	nie	tak podwyższona		tak
2	tak	nie	podwyższona	tak
3	tak	tak	wysoka	tak
4	nie	tak		
5	tak	nie	podwyższona	nie
6	nie	nie	wysoka	tak

Tabela 1. Tablica decyzyjna przykładowego zbioru.

Macierz rozróżnialności

	1	2	3	4	5	6
1	Ø	_	_	_	_	_
2	Ø	Ø	_	_	_	_
3	Ø	Ø	Ø	_	_	_
4	t	g, m, t	g, t	Ø	_	_
5	g, m	Ø	m, t	Ø	Ø	_
6	Ø	Ø	Ø	m, t	g, t	Ø

Tabela 2. Macierz rozróżnialności.

g – ból głowy; m – ból mięśni; t – temperatura

Macierz rozróżnialności – redukcja

	1	2	3	4	5	6
1	Ø	_	_	_	_	_
2	Ø	Ø	_	_	_	_
3	Ø	Ø	Ø	_	_	_
4	t	g, t	g, t	Ø	_	_
5	g	Ø	t	Ø	Ø	_
6	Ø	Ø	Ø	t	g, t	Ø

Tabela 3. Macierz rozróżnialności po redukcji.

Prosty algorytm wyznaczania reduktu

- 1. Zliczenie wystąpień atrybutów w macierzy rozróżnialności.
- Wybór atrybutu występującego najliczniej w macierzy rozróżnialności; dodanie wybranego atrybutu do wynikowego zbioru atrybutów Red.
- 3. Wykreślenie komórek zawierających wybrany atrybut.
- Jeśli wszystkie komórki zostały wykreślone, wynikiem jest uzyskany zbiór Red, w przeciwnym razie powrót do kroku 1.

Prosty algorytm redukcji

	1	2	3	4	5	6
4	t	g, m, t	g, t	Ø	_	_
5	g, m	Ø	m, t	Ø	Ø	_
6	Ø	Ø	Ø	m, t	g, t	Ø

Tabela 4. Fragment macierzy rozróżnialności zawierający istotne dane.

$$g-4$$
 $m-4$ $t-6$

Prosty algorytm redukcji

	1	2	3	4	5	6
4	ŧ	g, m, t	g, t	Ø	_	_
5	g, m	Ø	m, t	Ø	Ø	_
6	Ø	Ø	Ø	m, t	g, t	Ø

Tabela 5. Fragment macierzy rozróżnialności zawierający istotne dane.

$$Red = \{t\}$$
$$g-1 \qquad m-1$$

Prosty algorytm redukcji

	1	2	3	4	5	6
4	ŧ	g, m, t	g, t	Ø	_	_
5	g, m	Ø	m, t	Ø	Ø	_
6	Ø	Ø	Ø	m, t	g, t	Ø

Tabela 6. Fragment macierzy rozróżnialności zawierający istotne dane.

$$Red = \{t, g\} \lor Red = \{t, m\}$$

Rdzeń

	1	2	3	4	5	6
1	Ø	_	_	_	_	_
2	Ø	Ø	_	_	_	_
3	Ø	Ø	Ø	_	_	_
4	t	g, m, t	g, t	Ø	_	_
5	g, m	Ø	m, t	Ø	Ø	_
6	Ø	Ø	Ø	m, t	g, t	Ø

Tabela 7. Macierz rozróżnialności oryginalnego zbioru.

$$Red = \{t, g\} \lor Red = \{t, m\}$$

Zbiory przybliżone – definicje

Atrybut nieusuwalny

Atrybut $p \in P_1$ jest *nieusuwalny* z P_1 , jeśli dla $P_2 = P_1 \setminus \{p\}$ zachodzi $\widetilde{P_2} \neq \widetilde{P_1}$. W przeciwnym przypadku atrybut p jest *zbędny*.

Rdzeń

Rdzeniem P nazywa się zbiór wszystkich atrybutów nieusuwalnych ze zbioru P, co zapisywane jest w następujący sposób:

$$CORE(P) = \{ p \in P : \widetilde{P'} \neq \widetilde{P}, P' = P \setminus \{p\} \}.$$

Problem złożoności wyznaczania reduktu

Wyznaczanie reduktu w zbiorze przybliżonym jest problemem NP-zupełnym – nie jest możliwe znalezienie rozwiązania w czasie wielomianowym.

Alternatywne metody wyznaczania reduktu

Rozwiązania sprzętowe:

► specjalizowane układy programowalne (FPGA, CPLD).

Rozwiązania przybliżone – wykorzystanie innych metod sztucznej inteligencji:

- algorytmy ewolucyjne,
- algorytmy mrówkowe,
- ▶ inteligencja roju,
- metody połączone.

Propozycja algorytmu genetycznego – źródło

Lian Chen, Hongling Liu, Zilong Wan Computer Center, Nanchang University

An Attribute Reduction Algorithm Based on Rough Set Theory and an Improved Genetic Algorithm (2014)

Dane wejściowe i wyjściowe algorytmu

Wejście

System informacyjny S = (U, Q, V, f), gdzie $Q = A \cup D$.

Wyjście

Wynik optymalnej redukcji zbioru.

Metoda kodowania informacji

Chromosomem będzie jednowymiarowa tablica binarna o stałej długości. Długość chromosomu odpowiada liczbie atrybutów warunkowych.

Każdy z genów odpowiada dokładnie jednemu atrybutowi warunkowemu, przy czym wartość 1 będzie ozbaczała, iż atrybut jest wybrany, 0 w przeciwnym wypadku.

Generowanie początkowej populacji

Wartość genów odpowiadających atrybutom należącym do rdzenia ustawiana jest na 1, wartość pozostałych genów ustawiana jest losowo na 0 lub 1.

Funkcja przystosowania

Jakość przystosowania pojedynczego osobnika, zgodnie z definicją redukcji, opiera się na dwóch aspektach – liczbie atrybutów, które zawiera (powinna ona być możliwie jak najmniejsza) oraz zachowanej rozróżnialności obiektów (powinna być jak największa).

Funkcja przystosowania

Zgodnie z tymi wymaganiami, funkcja przystosowania ma postać:

$$f(x) = \frac{1}{rozmiar(x)} + \sigma(x),$$

gdzie rozmiar(x) oznacza liczbę atrybutów, które zawiera chromosom, natomiast $\sigma(x)$ jest znormalizowanym współczynnikiem istotności zbioru atrybutów chromosomu.

Selekcja osobników

Prawdopodobieństwo wybrania danego osobnika i wynosi $p_{si} = \frac{f_i}{\sum\limits_i f_i}$, gdzie f_i jest wartością funkcji przystosowania dla pojedynczego osobnika i, natomiast n jest rozmiarem populacji.

Jeśli wartość funkcji przystosowania najsłabiej przystosowanego osobnika w bieżącym pokoleniu jest niższa, niż wartość funkcji przystosowania najlepiej przystosowanego osobnika z poprzedniego pokolenia, wówczas najsłabszy osobnik z bieżącego pokolenia jest zastępowany najlepszym osobnikiem z poprzedniego pokolenia.

Operacja krzyżowania

Algorytm zakłada krzyżowanie jednopunktowe – dla każdej pary osobników (w tym wypadku – chromosomów), losowo wybierany jeden punkt, a następnie części chromosomów zamieniane są między osobnikami według tego punktu, co tworzy osobniki kolejnego pokolenia.

Operacja mutacji

Poszczególne geny w chromosomach zmieniane są losowo z pewnym ustalonym prawdopodobieństwem.

Przy przeprowadzaniu mutacji chronione przed mutacją są geny związane z atrybutami należącymi do rdzenia.

Algorytm

- 1. Wygenerowanie populacji początkowej.
- Obliczenie znormalizowanego współczynnika istotności dla każdego chromosomu.
- 3. Selekcja osobników na podstawie algorytmu koła ruletki.
- 4. Krzyżowanie.
- 5. Mutacje.
- Obliczenie wartości funkcji przystosowania dla każdego chromosomu.
- Sprawdzenie warunku zatrzymania algorytmu jeśli warunek jest spełniony, algorytm jest zatrzymywany.
 W przeciwnym razie powrót do punktu 3.

Wynik na podstawie najlepszego osobnika

- Jeśli zbiór atrybutów najlepszego osobnika zawiera atrybuty, których współczynnik istotności nie został obliczony, przejście do punktu 2.; w przeciwnym razie przejście do punktu 3.
- 2. Obliczany jest współczynnik istotności każdego atrybutu, dla którego nie został on wcześniej wyliczony. Jeśli $\sigma(a)=0$, wartość genu zmieniana jest z 1 na 0.
- Wyznaczonym reduktem jest fenotyp najlepszego znalezionego osobnika, po ewentualnych modyfikacjach z punktu 2.

Druga propozycja algorytmu genetycznego

Jakub Wróblewski

Adaptacyjne metody klasyfikacji obiektów (2001)

Podstawowe założenia

- Sprowadzenie problemu wyznaczenia reduktu do problemu pokrycia macierzy, w której kolumny odpowiadają atrybutom, a wiersze parom obiektów, które wymagają rozróżnienia.
- Należy znaleźć pokrycie kolumnowe takiej macierzy.

Krzyżowane są permutacje – w przypadku klasycznego operatora krzyżowania wynik w większości przypadków nie byłby permutacją. Kroki działania operatora MOX:

- Losowanie jednakowej w obu osobnikach sekcji dopasowania;
 początek sekcji jest ustalony na początku chromosomu.
- Sekcje dopasowania obu osobników rodzicielskich pozostawiane są bez zmian, natomiast pozostałe części chromosomów są przekształcane w ten sposób, aby występujące w nich wartości liczbowe były ustawione w takiej kolejności, w jakiej występują u drugiego osobnika rodzicielskiego.

Krzyżowane są permutacje – w przypadku klasycznego operatora krzyżowania wynik w większości przypadków nie byłby permutacją. Kroki działania operatora MOX:

- Losowanie jednakowej w obu osobnikach sekcji dopasowania; początek sekcji jest ustalony na początku chromosomu.
- 2. Sekcje dopasowania obu osobników rodzicielskich pozostawiane są bez zmian, natomiast pozostałe części chromosomów są przekształcane w ten sposób, aby występujące w nich wartości liczbowe były ustawione w takiej kolejności, w jakiej występują u drugiego osobnika rodzicielskiego.

$$v_{MOX} \left(\begin{array}{c|c} 1,2,3 & 4,5,6 \\ 4,2,1 & 3,6,5 \end{array} \right) = \left(\begin{array}{c|c} 1,2,3 & 4,6,5 \\ 4,2,1 & 3,5,6 \end{array} \right)$$

RAND

- ► Algorytm heurystyczno-losowy.
- Zamiast algorytmu genetycznego używany jest losowy generator permutacji.

Porównanie działania wersji algorytmu

Bibliografia

- Zdzisław Pawlak
 Zbiory przybliżone nowa matematyczna metoda analizy danych
- [2] Leszek Rutkowski Metody i techniki sztucznej inteligencji
- [3] Lian Chen, Hongling Liu, Zilong Wan An Attribute Reduction Algorithm Based on Rough Set Theory and an Improved Genetic Algorithm
- [4] Jakub WróblewskiAdaptacyjne metody klasyfikacji obiektów

Pytania

