CLAIM AMENDMENTS

This listing of claims will replace all prior versions, and listings, of claims in the application.

- (Previously Presented) A method of determining a placement of services of a 1. 1 distributed application onto nodes of a distributed resource infrastructure comprising 2 3 the steps of: establishing a placement indicator for a specific service; 4 forming communication constraints between node pairs which ensure that a 5 6 sum of transport demands between a particular node pair does not exceed a transport capacity between the particular node pair, each term of the sum 7 8 comprising a product of a first placement variable, a second placement variable, and the transport demand between the services associated with the first and 9 10 second placement variables; 11 forming an objective; and employing a local search solution to solve an integer program comprising the 12 placement indicator, the communication constraints, and the objective to 13 determine the placement of the services onto the nodes. 14
- 1 2. (Original) The method of claim 1 wherein the placement indicator comprises a pre-defined placement.
- 1 3. (Original) The method of claim 2 wherein the pre-defined placement comprises 2 placing the specific service onto a specific node.
- 1 4. (Original) The method of claim 2 wherein the pre-defined placement comprises 2 not placing the specific service onto a specific node.
- 1 5. (Original) The method of claim 1 wherein the placement indicator comprises a neutral indication of whether the specific service is to be placed onto a specific node.

1	6.	(Previously Presented) A method of determining a placement of services of a
2		distributed application onto nodes of a distributed resource infrastructure comprising
3		the steps of:
4		establishing an application model of the services comprising transport
5		demands between the services;
6		establishing an infrastructure model of the nodes comprising transport
7		capacities between the nodes;
8		establishing a placement model comprising placement indicators for the
9		services;
10		forming an integer program that comprises:
11		a set of placement variables for a combination of the services and the
12		nodes, each of the placement variables indicating whether a particular service
13		is located on a particular node;
14		communication constraints between node pairs which ensure that a sum of
15		the transport demands between a particular node pair does not exceed the
16		transport capacity between the particular node pair, each term of the sum
17		comprising a product of a first placement variable, a second placement
18		variable, and the transport demand between the services associated with the
19		first and second placement variables;
20		placement constraints for the services which ensure that the services are
21		placed onto the nodes in accord with the placement indicators; and
22		an objective; and
23		employing a local search solution to solve the integer program which
24		determines the placement of the services onto the nodes.

- 7. (Original) The method of claim 6 wherein a particular placement indicator comprises an indication that a specific service is to be placed onto a specific node.
- 1 8. (Original) The method of claim 6 wherein a particular placement indicator
 2 comprises an indication that a specific service is not to be placed onto a specific node.

1	9. (Original) The method of claim 6 wherein a particular placement indicator
2	comprises a neutral indication of whether a specific service is to be placed onto a
3	specific node.
1	10. (Original) The method of claim 9 wherein a default for the placement indicators
2	comprises the neutral indication.
1	11. (Previously Presented) A method of determining a placement of services of a
2	distributed application onto nodes of a distributed resource infrastructure comprising
3	the steps of:
4	establishing an application model of the services that comprises processing
5	demands for the services, storage demands for the services, and transport
6	demands between the services;
7	establishing an infrastructure model of the nodes that comprises processing
8	capacities for the nodes, storage capacities for the nodes, and transport capacities
9	between the nodes;
10	establishing a placement model comprising placement indicators for the
11	services;
12	forming an integer program that comprises:
13	a set of placement variables for a combination of the services and the
14	nodes, each of the placement variables indicating whether a particular service
15	is located on a particular node;
16	processing constraints which ensure that a sum of the processing demands
17	for each of the nodes does not exceed the processing capacity for the node;
18	storage constraints which ensure that a sum of the storage demands for
19	each of the nodes does not exceed the storage capacity for the node;
20	first placement constraints which ensure that each of the services is placed
21	on one and only one node;
22	second placement constraints which ensure that the services are placed
23	onto the nodes in accord with the placement indicators;

24	communication constraints between node pairs which ensure that a sum of
25	the transport demands between a particular node pair does not exceed the
26	transport capacity between the particular node pair, each term of the sum
27	comprising a product of a first placement variable, a second placement
28	variable, and the transport demand between the services associated with the
29	first and second placement variables; and
30	an objective of minimizing communication traffic between the nodes and
31	balancing processing loads on the nodes; and
32	employing a local search solution to solve the integer program which
33	determines the placement of the services onto the nodes.
1	12. (Previously Presented) A computer readable memory comprising computer code
2	for directing a computer to make a determination of a placement of services of a
3	distributed application onto nodes of a distributed resource infrastructure, the
4	determination of the placement of the services onto the nodes comprising the steps of
5	establishing a placement indicator for a specific service;
6	forming communication constraints between node pairs which ensure that a
7	sum of transport demands between a particular node pair does not exceed a
8	transport capacity between the particular node pair, each term of the sum
9	comprising a product of a first placement variable, a second placement variable,
10	and the transport demand between the services associated with the first and
11	second placement variables;
12	forming an objective; and
13	employing a local search solution to solve an integer program comprising the
14	placement indicator, the communication constraints, and the objective to
15	determine the placement of the services onto the nodes.
1	(Original) The computer readable memory of claim 12 wherein the placement

14. (Original) The computer readable memory of claim 13 wherein the pre-defined

indicator comprises a pre-defined placement.

2

1

2	placement comprises placing the specific service onto a specific node.
1	15. (Original) The computer readable memory of claim 13 wherein the pre-defined
2	placement comprises not placing the specific service onto a specific node.
1	16. (Original) The computer readable memory of claim 12 wherein the placement
2	indicator comprises a neutral indication of whether the specific service is to be placed
3	onto a specific node.
1	17. (Previously Presented) A computer readable memory comprising computer code
2	for directing a computer to make a determination of a placement of services of a
3	distributed application onto nodes of a distributed resource infrastructure, the
4	determination of the placement of the services onto the nodes comprising the steps of:
5	establishing an application model of the services comprising transport
6	demands between the services;
7	establishing an infrastructure model of the nodes comprising transport
8	capacities between the nodes;
9	establishing a placement model comprising placement indicators for the
10	services;
11	forming an integer program that comprises:
12	a set of placement variables for a combination of the services and the
13	nodes, each of the placement variables indicating whether a particular service
14	is located on a particular node;
15	communication constraints between node pairs which ensure that a sum of
16	the transport demands between a particular node pair does not exceed the
17	transport capacity between the particular node pair, each term of the sum
18	comprising a product of a first placement variable, a second placement
19	variable, and the transport demand between the services associated with the
20	first and second placement variables;
21	placement constraints for the services which ensure that the services are
22	placed onto the nodes in accord with the placement indicators; and

23	an objective; and
24	employing a local search solution to solve the integer program which
25	determines the placement of the services onto the nodes.
1	18. (Original) The computer readable memory of claim 17 wherein a particular
2	placement indicator comprises an indication that a specific service is to be placed
3	onto a specific node.
1	19. (Original) The computer readable memory of claim 17 wherein a particular
2	placement indicator comprises an indication that a specific service is not to be placed
3	onto a specific node.
1	20. (Original) The computer readable memory of claim 17 wherein a particular
2	placement indicator comprises a neutral indication of whether a specific service is to
3	be placed onto a specific node.
1	21. (Original) The computer readable memory of claim 20 wherein a default for the
2	placement indicators comprises the neutral indication.
1	22. (Original) The computer readable memory of claim 20 wherein a matrix is
2	specified which expresses constraints or preferences for identifying a placement of
3	services onto nodes.
1	23. (Previously Presented) A computer readable memory comprising computer code
2	for directing a computer to make a determination of a placement of services of a
3	distributed application onto nodes of a distributed resource infrastructure, the
4	determination of the placement of the services onto the nodes comprising the steps of:
5	establishing an application model of the services that comprises processing
6	demands for the services, storage demands for the services, and transport
7	demands between the services;
8	establishing an infrastructure model of the nodes that comprises processing

capacities for the nodes, storage capacities for the nodes, and transport capacities 9 10 between the nodes; establishing a placement model comprising placement indicators for the 11 12 services: forming an integer program that comprises: 13 14 a set of placement variables for a combination of the services and the nodes, each of the placement variables indicating whether a particular service 15 is located on a particular node; 16 processing constraints which ensure that a sum of the processing demands 17 for each of the nodes does not exceed the processing capacity for the node; 18 19 storage constraints which ensure that a sum of the storage demands for each of the nodes does not exceed the storage capacity for the node; 20 first placement constraints which ensure that each of the services is placed 21 22 on one and only one node; second placement constraints which ensure that the services are placed 23 24 onto the nodes in accord with the placement indicators; communication constraints between node pairs which ensure that a sum of 25 26 the transport demands between a particular node pair does not exceed the transport capacity between the particular node pair, each term of the sum 27 comprising a product of a first placement variable, a second placement 28 variable, and the transport demand between the services associated with the 29 first and second placement variables; and 30 an objective of minimizing communication traffic between the nodes and 31 balancing processing loads on the nodes; and 32 employing a local search solution to solve the integer program which 33 determines the placement of the services onto the nodes. 34