This kernel is under active upgradation

Is to "build the largest, most-trusted, and vibrant home-related marketplace in the world." Spaulding noted that trust is paramount for a company like Zillow. He brought up how many real estate agents think Zillow is in business to cut brokers out of their industry.

Throughout this notebook. I have used plotty, which is a library built on top of d3.js that has a steep-learning curve JavaScript library. There are Plotty API for Matlab, R, Python that helps us to create interactive visuals and dashboards. In other words, we can manipulate data manipulations in Pandas DataFrame and create interactive visual works easily.

In this notebook I will be focusing on Exploratory Data Analysis on the Price Per Square Feets of the house in the USA. My aim is to do visual analysis of price varrying from State to State and providing some basic answers to general questions about the dataset.

Report Structure:

- 1. Importing the Libraries
- 2. Importing the Data Set
- 3. Exploring the Data Set
- Exploring the Data Set
 Basic Q/A Section
 Data Analysis and Visualisation
 Conclusion

Section 1:

· Importing the Libraries:

```
In [1]: # section 1 importing Libs:
                import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import os
# my style:
                # my style:
sns.set(style= "whitegrid")
                # My favourite Library for visualisation
from plotly import __version__
import cufflinks as cf
                from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot
init_notebook_mode(connected=True)
                cf.go_offline()
                import plotly.figure_factory as ff
import plotly.offline as py
               #ffor online lotting use import plotly.plotly as py import plotly.graph objs as go py.init.notebook mode (connected-True) from plotly import tools
```

Section 2:

```
In [3]: df = pd.read_csv("pricepersqft.csv")
df_rent = pd.read_csv("price.csv")
```

Let's see what both the dataset is about:

A brief information about the PPSFT dataset.

- Number of observations (n) = 11919
- Number of columns (p) = 81
 5 object type columns, rest are floats

A brief information about the Rent dataset.

- Number of observations (n) = 13131
 Number of columns (p) = 81
 Data Type: float(17), int(60), object(4)

Run dataframe.info() for more details

Head of the Datasets:

In [4]: df.head(10)

Out[4]:

	City Code	City	Metro	County	State	Population Rank	November 2010	December 2010	January 2011	February 2011	April 2016	May 2016	June 2016	July 2016	August 2016	September 2016	October 2016	November 2016	December 2016	January 2017
0	6181	New York	New York	Queens	NY	1	NaN	NaN	NaN	NaN	1.806	1.810	1.816	1.824	1.828	1.836	1.844	1.858	1.866	1.872
1	12447	Los Angeles	Los Angeles	Los Angeles	CA	2	1.578	1.578	1.580	1.582	1.990	2.004	2.018	2.026	2.032	2.038	2.042	2.048	2.056	2.064
2	17426	Chicago	Chicago	Cook	IL	3	1.244	1.248	1.254	1.254	1.354	1.362	1.370	1.374	1.378	1.380	1.380	1.380	1.376	1.374
3	39051	Houston	Houston	Harris	TX	4	0.788	0.784	0.784	0.786	0.984	0.984	0.982	0.980	0.976	0.974	0.974	0.976	0.976	0.974
4	13271	Philadelphia	Philadelphia	Philadelphia	PA	5	0.854	0.858	0.858	0.858	0.948	0.956	0.962	0.964	0.964	0.966	0.968	0.972	0.974	0.974
5	40326	Phoenix	Phoenix	Maricopa	AZ	6	0.764	0.766	0.766	0.766	0.862	0.870	0.876	0.880	0.882	0.884	0.886	0.890	0.892	0.894
6	18959	Las Vegas	Las Vegas	Clark	NV	7	0.750	0.750	0.748	0.748	0.768	0.770	0.772	0.774	0.772	0.774	0.774	0.778	0.780	0.780
7	6915	San Antonio	San Antonio	Bexar	TX	8	0.694	0.698	0.700	0.700	0.820	0.822	0.824	0.822	0.822	0.822	0.824	0.830	0.834	0.836
8	54296	San Diego	San Diego	San Diego	CA	9	1.492	1.494	1.492	1.490	1.772	1.782	1.788	1.792	1.794	1.796	1.802	1.808	1.814	1.816
9	38128	Dallas	Dallas-Fort Worth	Dallas	TX	10	0.802	0.810	0.818	0.824	1.026	1.034	1.040	1.046	1.048	1.050	1.054	1.060	1.062	1.064

10 rows × 81 columns

In [5]: df_rent.head(10)

Out[5]:

•	City Code	City	Metro	County	State	Population Rank	November 2010	December 2010	January 2011	February 2011	April 2016	May 2016	June 2016	July 2016	August 2016	September 2016	October 2016	November 2016	December 2016	January 2017
0	6181	New York	New York	Queens	NY	1	NaN	NaN	NaN	NaN	2334	2339	2345	2344	2336	2324	2318	2321	2321	2322
1	12447	Los Angeles	Los Angeles	Los Angeles	CA	2	2184.0	2184.0	2183.0	2188.0	2637	2662	2687	2704	2716	2723	2731	2740	2748	2753
2	17426	Chicago	Chicago	Cook	IL	3	1563.0	1555.0	1547.0	1537.0	1684	1686	1687	1685	1681	1675	1668	1656	1644	1632
3	39051	Houston	Houston	Harris	TX	4	1198.0	1199.0	1199.0	1200.0	1444	1446	1446	1443	1440	1438	1437	1437	1435	1430
4	13271	Philadelphia	Philadelphia	Philadelphia	PA	5	1092.0	1099.0	1094.0	1087.0	1206	1211	1218	1222	1223	1220	1216	1211	1209	1212
5	40326	Phoenix	Phoenix	Maricopa	AZ	6	1087.0	1080.0	1071.0	1067.0	1228	1236	1240	1240	1238	1238	1239	1241	1244	1247
6	18959	Las Vegas	Las Vegas	Clark	NV	7	1188.0	1183.0	1178.0	1177.0	1222	1225	1227	1227	1227	1228	1230	1234	1237	1239
7	6915	San Antonio	San Antonio	Bexar	TX	8	1057.0	1043.0	1037.0	1032.0	1244	1245	1245	1241	1236	1234	1235	1239	1245	1250
8	54296	San Diego	San Diego	San Diego	CA	9	2070.0	2059.0	2043.0	2030.0	2414	2428	2438	2442	2441	2442	2449	2457	2465	2469
9	38128	Dallas	Dallas-Fort Worth	Dallas	TX	10	1114.0	1135.0	1156.0	1159.0	1338	1347	1353	1358	1364	1370	1377	1385	1389	1391

10 rows × 81 columns

A brief description about botht the data sets.

- PPSFT dataset
 Rent Dataset

In [6]: df.describe()

Out[6]:

	City Code	Population Rank	November 2010	December 2010	January 2011	February 2011	March 2011	April 2011	May 2011	June 2011	 April 2016	May 2016	June 2016	July 2016	August 2016	September 2016	October 2016	November 2016	Decem 2
count	11919.000000	11919.000000	10600.000000	10600.000000	10600.000000	10744.000000	10829.000000	10878.000000	10885.000000	10885.000000	 11919.000000	11919.000000	11919.000000	11919.000000	11919.000000	11919.000000	11919.000000	11919.000000	11919.000
mean	77097.011998	5960.000000	0.860989	0.863896	0.865602	0.864939	0.862232	0.860946	0.859769	0.859848	 0.958509	0.962608	0.964971	0.964989	0.963645	0.962379	0.962570	0.963743	0.964
std	118093.323482	3440.863264	0.286088	0.286489	0.284910	0.281532	0.278903	0.277075	0.275870	0.275311	 0.371177	0.373848	0.376643	0.378865	0.380334	0.381100	0.381545	0.381775	0.381
min	3300.000000	1.000000	0.360000	0.358000	0.358000	0.358000	0.362000	0.366000	0.366000	0.366000	 0.394000	0.392000	0.388000	0.384000	0.382000	0.378000	0.378000	0.378000	0.378
25%	18762.000000	2980.500000	0.676000	0.678000	0.680000	0.682000	0.680000	0.678000	0.678000	0.678000	 0.732000	0.734000	0.734000	0.732000	0.730000	0.728000	0.728000	0.728000	0.730
50%	34637.000000	5960.000000	0.796000	0.799000	0.802000	0.802000	0.800000	0.800000	0.798000	0.800000	 0.870000	0.872000	0.872000	0.872000	0.870000	0.870000	0.870000	0.870000	0.872
75%	51298.500000	8939.500000	0.972000	0.974000	0.976000	0.972000	0.970000	0.968000	0.968000	0.968000	 1.072000	1.076000	1.080000	1.082000	1.080000	1.080000	1.082000	1.082000	1.080
max	737791.000000	11919.000000	4.482000	4.508000	4.558000	4.564000	4.548000	4.536000	4.528000	4.536000	 6.252000	6.342000	6.404000	6.452000	6.476000	6.486000	6.476000	6.470000	6.440

8 rows × 77 columns

In [7]: df_rent.describe()

Out[7]:

	City Code	Population Rank	November 2010	December 2010	January 2011	February 2011	March 2011	April 2011	May 2011	June 2011	 April 2016	May 2016	June 2016	July 2016	August 2016	September 2016	October 2016	November 2016	Decem 2
count	13131.000000	13131.000000	11348.000000	11348.000000	11348.000000	11500.000000	11673.000000	11722.000000	11732.000000	11732.000000	 13131.000000	13131.000000	13131.000000	13131.000000	13131.000000	13131.000000	13131.000000	13131.000000	13131.000
mean	78126.756454	6566.000000	1327.100458	1331.831953	1334.447744	1331.935217	1327.595819	1323.824518	1321.730822	1321.872826	 1466.406519	1470.625695	1472.876856	1471.627370	1468.666667	1465.817988	1465.572157	1467.105247	1467.524
std	119604.910806	3790.737527	652.531343	655.822002	653.931315	647.853483	640.168818	636.392831	633.675563	631.981504	 813.253498	815.322324	819.417181	823.317848	825.885842	826.421670	825.621199	824.678612	821.891
min	3300.000000	1.000000	547.000000	539.000000	536.000000	542.000000	535.000000	533.000000	533.000000	536.000000	 543.000000	548.000000	547.000000	544.000000	539.000000	532.000000	527.000000	518.000000	517.000
25%	18803.000000	3283.500000	982.000000	984.750000	986.000000	984.000000	979.000000	973.000000	971.000000	972.000000	 1041.000000	1044.000000	1046.000000	1043.500000	1038.000000	1034.000000	1032.000000	1033.000000	1034.000
50%	34678.000000	6566.000000	1195.000000	1199.000000	1201.500000	1201.000000	1201.000000	1196.000000	1194.000000	1193.000000	 1275.000000	1277.000000	1278.000000	1276.000000	1270.000000	1268.000000	1266.000000	1267.000000	1267.000
75%	51385.500000	9848.500000	1479.000000	1479.000000	1479.000000	1477.000000	1473.000000	1471.000000	1472.000000	1473.000000	 1625.000000	1630.000000	1633.000000	1629.000000	1628.000000	1628.000000	1630.500000	1630.000000	1632.000
max	737791.000000	13131.000000	18787.000000	18848.000000	19054.000000	19019.000000	18997.000000	18939.000000	19119.000000	19442.000000	 21344.000000	20547.000000	20400.000000	20639.000000	20695.000000	20615.000000	20163.000000	19460.000000	18605.000

8 rows × 77 columns

The above Data Frame gives the gerneral specification of the columns: Mean, Standard Deviation, Minimum, Maximum values in every column.

Alot of questions can be answered using the above DF:

- Minimum, Maximum values in each columns.
 What is the mean, standard deviation of the columns and get the specifications which we see in a Boxplot.

Section 3

Basic Question and Answer Section:

```
In [8]: print("\n"+"In the month of November 2010, Maximum and Minimum Price Per Square Peet ")
    print(df[df["November 2010"]==df["November 2010"].max()][["Netro", "County", "November 2010"]])
    print(df[df["November 2010"]==df["November 2010"].min())[["City", "Metro", "County", "November 2010"]])
    print("_____")
                print("\n"+"In the month January 2011, Maximum and Minimum Price Per Square Feet ")
print(df[df["January 2011"]==df["January 2011"].max())][["City", "County", "January 2011"]])
print(df[df["January 2011"]==df["January 2011"].min())][["City", "Metro", "County", "January 2011"]])
print("______")
               print("\n"+"In the month January 2012, Maximum and Minimum Price Per Square Peet ")
print(df[df["January 2012"]==df["January 2012"].max())[["city", "County", "January 2012"]])
print(df[df["January 2012"]==df["January 2012"].min())[["city", "Metro", "County", "January 2012"]])
print("_____")
                print("\n"+"In the month January 2015, Maximum and Minimum Price Per Square Peet ")
print(df[df["January 2015"]==df["January 2015"].max())[["City", "County", "January 2015"]])
print(df[df["January 2015"]==df["January 2015"].min())[["City", "Metro", "County", "January 2015"]])
print("_____")
                print("\n"+"In the month January 2016, Maximum and Minimum Price Per Square Feet ")
print(df[df["January 2016"]==df["January 2016"].max()][["City", "County", "January 2016"]])
print(df[df["January 2016"]==df["January 2016"].min()][["City", "Metro", "County", "January 2016"]])
print("
                In the month of November 2010, Maximum and Minimum Price Per Square Feet
```

```
In the month January 2011, Maximum and Minimum Price Per Square Feet
City County January 2011
11627 Fisher Island Miani-Dade 4.558
City Metro County January 2011
6387 Fort Mitchell Columbus Russell 0.358
In the month January 2012, Maximum and Minimum Price Per Square Feet
City County January 2012
11627 Fisher Island Miami-Dade 4.602
City Metro County January 2012
8480 Wheeler NaN Wheeler 0.358
In the month January 2013, Maximum and Minimum Price Per Square Feet
City County January 2013
11627 Fisher Island Miami-Dade 4.894
City Metro County January 2013
8480 Wheeler NaN Wheeler 0.36
In the month January 2014, Maximum and Minimum Price Per Square Feet City County January 2014

11627 Fisher Island Hismi-Dade 5.198
City Metro County January 2014

9018 State Road Mount Airy Surry 0.378
In the month January 2015, Maximum and Minimum Price Per Square Feet City County January 2015
11627 Fisher Island Miani-Dade 5.89
City Metro County January 2015
4312 Elkin Mount Airy Surry 0.386
In the month January 2016, Maximum and Minimum Price Per Square Feet
City County January 2016
11627 Fisher Island Miami-Dade 6.294
City Metro County January 2016
4312 Elkin Mount Airy Surry 0.394
```

I hingly recommend to use SQL to get more detailed and concise abstractions/answers from a data set but we can also do alot in Python. However the block of codes can get huge

- We can see in the above report The City: Fisher Island, County: Miami- Dade has the highest Price Per Square Feet Rate in the beginning of the all the Years.
 While on the other hand the minimum Price Per Sq Ft has varied among the Cities: Fort Mitchell, Wheeler, State Road County: Surry and Elkin.

In []:

Section:

Data Analysis and Visualisation

* Total number of listing for all the States:

States with Highest listing

Export to plot.ly »

```
In [10] # Highest 20 Metro's
metro_count.index,
y=metro_count.talex,
title= 10 Metro_vith Highest listing', yaxis = dict(title = "Proquency'))
data = [trace]
fig = go.Tiguridata=data, layout-layout)
y=tillot(tis)
label = metro_count.index
y=metro_count.talex,
y
```

20 Metro with Highest listing

Top 20 Metro Distribution

Export to plot.ly »

Type $\mathit{Markdown}$ and LaTeX : α^2

```
In [1]: years = list(set([y.split( )[1] for y in df.columns[6:]]))
months = df.columns[6:]
```

1. Let's explore more about Boston Metro:

```
In [12]: # Getting a dataframe of boston city only:
    boston = df[df["Metro"]=="Boston"]
    boston.head()
```

Out[12]:

	City C	ode	City	Metro	County	State	Population Rank	November 2010	December 2010	January 2011	February 2011	April 2016	May 2016	June 2016	July 2016	August 2016	September 2016	October 2016	November 2016	December 2016	January 2017	
2	1 44	269	Boston	Boston	Suffolk	MA	22	1.774	1.776	1.798	1.830	2.500	2.512	2.520	2.520	2.522	2.522	2.524	2.524	2.522	2.516	
28	6 25	659	Lowell	Boston	Middlesex	MA	287	1.156	1.156	1.150	1.140	1.358	1.374	1.388	1.398	1.402	1.404	1.412	1.420	1.424	1.426	
28	9 3	934 C	Cambridge	Boston	Middlesex	MA	290	2.128	2.156	2.206	2.266	2.656	2.654	2.674	2.696	2.716	2.726	2.732	2.748	2.754	2.756	
35	6 40	013	Newton	Boston	Middlesex	MA	357	1.678	1.688	1.700	1.700	1.822	1.828	1.840	1.846	1.848	1.846	1.844	1.850	1.854	1.856	
35	7 44	328	Brockton	Boston	Plymouth	MA	358	1.042	1.040	1.040	1.048	1.288	1.296	1.292	1.276	1.254	1.244	1.244	1.250	1.256	1.258	

5 rows × 81 columns

```
In [13]: boston_r = df_rent[df_rent["Metro"]=="Boston"]
boston_r.head()
 Out[13]:
                                                                                                    City Metro County State Population Rank November 2010 December 2010 January 2011 ... April 2016 May 2016 June 2016 June 2016 July 2016 August 2016 September 2016 October 2016 November 2016 December 2016 January 2017
                                                      City Code
                                                                                              Boston Boston Suffolk MA
                                                                                                                                                                                                                                                                                                                        1771.0
                                        21 44269
                                                                                                                                                                                                                                   22
                                                                                                                                                                                                                                                                          1783.0
                                                                                                                                                                                                                                                                                                                                                                  1789.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          2509
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  2524
                                                                                                                                                                                                                                                                                                                                                                                                              1819.0 ...
                                                                                                                                                                                                                                                                                                                                                                                                                                                           2500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          2506
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         2496
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               2490
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 2486
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           2489
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          2495
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         2510
                                       284 25659 Lowell Boston Middlesex MA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         1980
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 1977
                                                                                                                                                                                                                                   285
                                                                                                                                                                                                                                                                           1658.0
                                                                                                                                                                                                                                                                                                                      1631.0
                                                                                                                                                                                                                                                                                                                                                                  1597.0
                                                                                                                                                                                                                                                                                                                                                                                                              1565.0 ...
                                                                                                                                                                                                                                                                                                                                                                                                                                                            1909
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          1943
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         1968
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  1969
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           1972
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          1976
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         1989
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  2004
                                       287 3934 Cambridge Boston Middlesex MA
                                                                                                                                                                                                                             288
                                                                                                                                                                                                                                                                        2011.0
                                                                                                                                                                                                                                                                                                                      2036.0
                                                                                                                                                                                                                                                                                                                                                                 2118.0
                                                                                                                                                                                                                                                                                                                                                                                                              2200.0 ...
                                                                                                                                                                                                                                                                                                                                                                                                                                                           2572
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        2570
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        2584
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        2602
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               2625
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 2638
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          2648
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          2662
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         2658
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  2648
                                       354 40013 Newton Boston Middlesex MA
                                                                                                                                                                                                                             355
                                                                                                                                                                                                                                                                       3008.0
                                                                                                                                                                                                                                                                                                                      2977.0
                                                                                                                                                                                                                                                                                                                                                                2957.0
                                                                                                                                                                                                                                                                                                                                                                                                              2909.0 ...
                                                                                                                                                                                                                                                                                                                                                                                                                                                        3017
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        3014
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       3009
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       3000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              3002
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                3011
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          3024
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         3023
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         3019
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  3010
                                                                                                                                                                                                       356
                                       355 44328 Brockton Boston Plymouth MA
                                                                                                                                                                                                                                                             1414.0
                                                                                                                                                                                                                                                                                                            1415.0
                                                                                                                                                                                                                                                                                                                                                            1414.0
                                                                                                                                                                                                                                                                                                                                                                                                              1415.0 ... 1747 1753 1740
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       1716
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               1692
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  1688
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           1700
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          1718
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         1726
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  1724
                                   5 rows × 81 columns
 In [14]: boston_r = df_rent[df_rent["Metro"]=="Boston"]
In [15]: # Let's see most expensive & least expensice city in boston:
    print(" Highest Price Per Square Feet for Jan'10 and Jan'17")
    print(boston|boston("November 2010") == boston("Movember 2010").max())[["City", "Metro", "November 2010"])
    print(boston|boston("January 2011") == boston("January 2011").max())[["City", "Metro", "January 2011"]))
    print(boston|boston("January 2017") == boston("January 2017").max()][["City", "Metro", "January 2017"]])
    print("Dispersion of the print of the 
                                   print(" Lowest Price Per Square Feet for Jan'10 and Jan'17")
print(boston[boston("November 2010"] == boston["November 2010"].min()][["City", "Metro", "November 2010"]])
print(boston[boston("January 2011"] == boston("January 2011"],.min())[["City", "Metro", "January 2011"]])
print(boston[boston("January 2017"] == boston("January 2017"],min())[["City", "Metro", "January 2017"]])
                                      print("
                                       Highest Price Per Square Feet for Jan'10 and Jan'17
                                   | Section | Sect
                                   Plot coparison between Median Rent and PPSFT in Boston
```

Distribution in Boston

Price in Boston Per Square Feet VS Rent


```
In [ ]:
```

In []:

Comparing between New Jersey and New York

2. let's explore about New York Metro

```
In [17]: ny = df[df["Metro"]=="New York"]
    ny.head(1)
    ny_n] = ny.groupby("State")[months].median()

In [ ]:

In [ 18]: ny_rent = df_rent[df_rent["Metro"]=="New York"]
    ny_rent.head(1)
    ny_nj_rent = ny.groupby("State")[months].median()

In [ 30]: stat1 = list (set([x for x in ny["State"]]))
    #np.median(ny/ny["State"]==stat[0]][months], axis = 0)

# For Scatter Plot
```

```
In [26]:
```

This is the format of your plot grid: [(1,1) x1,y1] [(1,2) x2,y2]

/Users/keshavrastogi/anaconda3/lib/python3.6/site-packages/numpy/lib/function_base.py:4033: RuntimeWarning:

All-NaN slice encountered

Median Rent Price of New York VS New Jersey


```
In [27]:
```

```
# Box Plot block of code:

my_gr = ny.groupby("State")[months].median()

print(ny_gr)

trace0 = go.Box(y=ny_gr.loot["NJ"],name="New Jersey",fillcolor='navy')

trace1 = go.Box(y=ny_gr.loot["NY"],name="New York",fillcolor='lime')

trace2 = go.Box(y=ny_gr.loot["NY"],name="New York",fillcolor='aqua')

layout = go.Layout(title = "Boxplot of NY, NJ, PA")

data = [trace0, trace1, trace2]

fig = go.Pigure(data = data, layout = layout)

py.iplot(fig)

November 2010 December 2010 January 2011 February 2011 March 2011 \
State

NJ 1.210 1.220 1.224 1.228 1.232
```

```
NJ
NY
PA
                    NaN
0.738
                                          NaN
0.746
                                                              NaN
0.751
                                                                                    NaN
0.750
                                                                                                    NaN
0.747
          April 2011 May 2011 June 2011 July 2011 August 2011
State
NJ
NY
PA
                1.234
NaN
0.740
                             1.228
NaN
0.733
                                             1.228
NaN
0.730
                                                              1.226
NaN
0.727
                                                                                1.222
NaN
0.718
          April 2016 May 2016 June 2016 July 2016 August 2016 \
State
NJ
NY
PA
                               1.360
1.745
0.771
                                             1.362
1.755
0.772
                 1.352
1.732
0.771
                                                              1.364
1.763
0.773
          September 2016 October 2016 November 2016 December 2016 \
State
NJ
NY
PA
                     1.362
1.777
0.778
                                                                                     1.356
1.815
0.765
          January 2017
State
                   1.350
1.814
0.757
NJ
NY
PA
```


Boxplot of NY, NJ, PA

Export to plot.ly »

Type $\mathit{Markdown}$ and LaTeX : α^2

[3 rows x 75 columns]

Type $\mathit{Markdown}$ and LaTeX : α^2

3. Median PPSFT for all States:

In [20]: states = list(df["State"].unique())
 state_group = df.groupby("State")[months].median().reset_index()
 state_group.head(5)

Out[20]:

	State	November 2010	December 2010	January 2011	February 2011	March 2011	April 2011	May 2011	June 2011	July 2011	April 2016	May 2016	June 2016	July 2016	August 2016	September 2016	October 2016	November 2016	December 2016	January 2017
0	AK	NaN	NaN	NaN	NaN	0.928	0.936	0.942	0.940	0.932	0.964	0.966	0.958	0.956	0.954	0.952	0.950	0.944	0.928	0.900
1	AL	0.598	0.600	0.602	0.601	0.602	0.602	0.604	0.605	0.605	0.644	0.646	0.644	0.638	0.634	0.634	0.634	0.634	0.636	0.634
2	AR	0.554	0.562	0.564	0.564	0.562	0.562	0.562	0.562	0.560	0.632	0.636	0.634	0.628	0.626	0.624	0.624	0.626	0.624	0.622
3	AZ	0.696	0.698	0.703	0.704	0.700	0.699	0.697	0.696	0.695	0.753	0.763	0.770	0.768	0.765	0.756	0.756	0.758	0.760	0.762
4	CA	1.146	1.140	1.130	1.126	1.120	1.110	1.102	1.098	1.100	1.246	1.248	1.257	1.260	1.265	1.266	1.270	1.275	1.283	1.286

5 rows × 76 columns

```
 \label{eq:constraints}  \begin{aligned} &\text{trace3} = \text{go.Scatter}(x=\text{months}, \\ &y = \text{np.nammedian}(df[df["State"] == "DC"][\text{months}], \text{ axis } = 0), \\ &\text{mode"}[\text{markers}], \text{ marker}=dict(size=3), \\ &\text{name} = "DC") \end{aligned} 
             \label{eq:continuous}  \begin{aligned} \text{trace5} &= \text{go.Scatter}(\text{x=} \text{months}), \\ & \text{y} &= \text{np.nanmedian}(df[df["State"] == "FL"][months], \text{ axis } = 0), \\ & \text{mode} &= "markers', \text{ marker-dict}(\text{size} = 3), \\ & \text{name} &= "FL") \end{aligned} 
             \label{eq:constant}  \begin{aligned} \text{trace6} &= \text{go.Scatter}(x=\text{months}), \\ y &= \text{np.nanmedian}(df[df["State"]=="TX"][\text{months}], \text{ axis } = 0), \\ \text{mode} &= \text{markers}', \text{ marker=dict}(\text{size=3}), \\ \text{name} &= \text{"TX"}) \end{aligned} 
             \label{eq:constraint}  \begin{aligned} \text{trace8} &= \text{go.Scatter}(x=\text{months}, \\ y &= \text{np.nanmedian}(df[df["State"]=="NC"][months], \text{ axis } = 0), \\ &= \text{mode"}["narkers", marker=dict(size=3), \\ &= \text{name} &= "NC") \end{aligned} 
            #Matplotlib plot
plt.figure(figsize=(17,22))
            for st in states:
                 st in states:
st_pick = df[df["State"] == st][months]
plt.plot(months, np.nanmedian(st_pick, axis=0), label = st)
            plt.title("Median PPSFT for all States")
            plt.xlabel("Months")
plt.ylabel("Months")
plt.ylabel("PSST")
plt.xtickg(rotation = 90)
plt.legend(bbox_to_anchor = (1.1, 1), loc = 2, borderaxespad = 0)
plt.show()
```

Median PPSFT for top 20 States

/Users/keshavrastogi/anaconda3/lib/python3.6/site-packages/numpy/lib/function_base.py:4033: RuntimeWarning:

All-NaN slice encountered


```
In [22]:
    plt.figure(figsize = (17, 22))
    for s in states:
        pr = df[df["state"] == s]
        r = min(pr["Population Rank"]) == r]
        label = "{1} {}, "formatics, pr["city"].unique())
        pr = pr[months]
        plt.plot(pr.columns, np.transpose(pr.values), label = label)

    plt.title("PPSFT in Largest Population Cities by State", fontsize = 25)
    plt.xticks(rotation = 90)
    plt.legend(bbox_to_anchor = (1.05, 1), loc = 2, borderaxespad = 0.)
    plt.show()
```


In [33]:

```
#Matplotlib plot
plt.figure(figsize=(17,22))

for st in states:
    st pick = df rent[df_rent["State"] == st][months]
    plt.plot(months, np.nanmedian(st_pick, axis=0), label = st)

plt.title("Median RENT for all States", fontsize = 20)
plt.xlabel("Months", fontsize = 20)
plt.xlabel("MENT", fontsize = 20)
plt.xloks(rotation = 90)
plt.tloks(rotation = 90)
plt.legend(bbox_to_anchor = (1.1, 1), loc = 2, borderaxespad = 0)
plt.show()
```

 $/ Users/keshavrastogi/anaconda 3/lib/python 3.6/site-packages/numpy/lib/function_base.py: 4033: Runtime Warning: A continuous and a continuo$

All-NaN slice encountered

Note: Washington DC has the Highest PPSFT and Rent prince. Following by Hawai at second place.**

Type $\mathit{Markdown}$ and LaTeX : α^2

4. Lastly, let's take a look at California State. And, compare few of its metro.

```
In [24]: cal= df[df["State"]=="CA"]
cal.head(10)
```

Out[24]:

:																				
	City Code	City	Metro	County	State	Population Rank	November 2010	December 2010	January 2011	February 2011	April 2016	May 2016	June 2016	July 2016	August 2016	September 2016	October 2016	November 2016	December 2016	lanuary 2017
1	12447	Los Angeles	Los Angeles	Los Angeles	CA	2	1.578	1.578	1.580	1.582	1.990	2.004	2.018	2.026	2.032	2.038	2.042	2.048	2.056	2.064
8	54296	San Diego	San Diego	San Diego	CA	9	1.492	1.494	1.492	1.490	1.772	1.782	1.788	1.792	1.794	1.796	1.802	1.808	1.814	1.816
10	33839	San Jose	San Jose	Santa Clara	CA	11	1.542	1.546	1.540	1.530	2.224	2.234	2.242	2.246	2.246	2.240	2.232	2.224	2.210	2.200
12	20330	San Francisco	San Francisco	San Francisco	CA	13	2.502	2.526	2.516	2.468	3.594	3.590	3.588	3.580	3.564	3.542	3.518	3.498	3.466	3.442
33	18203	Fresno	Fresno	Fresno	CA	34	0.840	0.838	0.832	0.822	0.814	0.816	0.816	0.818	0.820	0.820	0.822	0.822	0.822	0.824
34	20288	Sacramento	Sacramento	Sacramento	CA	35	0.918	0.926	0.928	0.930	1.074	1.082	1.088	1.094	1.100	1.104	1.108	1.112	1.114	1.118
36	46298	Long Beach	Los Angeles	Los Angeles	CA	37	1.594	1.590	1.588	1.586	1.882	1.888	1.890	1.894	1.898	1.906	1.916	1.928	1.938	1.950
42	13072	Oakland	San Francisco	Alameda	CA	43	1.396	1.404	1.414	1.424	2.212	2.244	2.276	2.300	2.318	2.330	2.344	2.356	2.360	2.358
53	16764	Anaheim	Los Angeles	Orange	CA	54	1.464	1.466	1.466	1.466	1.754	1.762	1.770	1.776	1.782	1.788	1.792	1.794	1.800	1.806
54	47568	Santa Ana	Los Angeles	Orange	CA	55	1.566	1.564	1.566	1.568	1.946	1.956	1.964	1.966	1.966	1.966	1.970	1.972	1.978	1.986

10 rows × 81 columns

```
In [25]: cal_met= cal["Metro"].unique()
                     plt.figure(figsize=(17,22))
                      for met in cal met:

met_price = cal[cal["Metro"]== met][months]
plt.plot(months, np.nanmedian(met_price, axis = 0), label = met)
                    plt.title("Median PPSFT of Metros in California ", fontsize =20)
plt.xlabel("Months", fontsize = 20)
plt.ylabel("PPSFT", fontsize = 20)
plt.ylabel("PPSFT", fontsize = 20)
plt.xloks(rotation = 90)
plt.legend(bbox_to_anchor = (1.1, 1), loc = 2, borderaxespad = 0)
plt.show()
```

/Users/keshavrastogi/anaconda3/lib/python3.6/site-packages/numpy/lib/function_base.py:4033: RuntimeWarning:

All-NaN slice encountered

/ Users/keshavrastogi/anaconda 3/lib/python 3.6/site-packages/numpy/lib/nanfunctions.py: 1018: Runtime Warning: 1018 and 1018 a

Mean of empty slice

In []:

Why median prices instead of mean prices:

In their press releases, the Québec Federation of Real Estate Boards and the province's real estate boards are now using the median price to report on the evolution of property prices. Th National Association of Realtors in the United States has been using this measure for quite some time now to discuss property prices. Let us examine why the median is generally a better indicator than the average when dealing with property prices. The median is the middle point that divides a series into two equal parts. In our case, the median price allows you to divide all transactions into two equal parts: 50% of transactions occur at a price that is lower than the median price and the other 50% occur at a price that is higher. For example, a median price of 150,000/indicates/that/50/percentof/properties/solid/fabb.00band the other 50% sold for more. The advantage of the median as a measure central tendency is that it is not adversely influenced by and conversely, the disadvantage of the average is that it can be influenced by extreme numbers, which can lead to major distortions that bias data interpretation. Consider a geographical area in which property prices are generally in the 150,000ae0,000 range. If, in one particular month, a property that is not representative of the geographic area sells for 2,000,000, this transaction pulls the average higher and results in an adversage for the property prices and in terms of growth between two periods. Regardless of whether the Temedian price of the market in terms of prices and in terms of growth between two periods. Regardless of whether the Temedian price and the contraction of the market in terms of prices and in terms of growth between two periods. Regardless of whether the

. The median price is used, the fewer transactions there are on which to base the calculation, the more the data needs to be interpreted with caution. The standard for this calculation is a minimum of 30 transactions. With fewer than 30 transactions, there is increased risk that neither the median price nor the average price will provide a valid measure of the market value of all properties. The QFREB therefore uses this 30-sale minimum rule to determine whether or not to publish a median or average price.

Source: QFREB market analytics department.

In []:

In []: