Exploring the Neighbourhoods in Toronto, Canada.

Siddharaj Maramwar

Introduction

As a part of the IBM Data Science professional program Capstone Project, I worked on the real datasets to get an experience of what a data scientist goes through in real life. Main objectives of this project were to define a business problem, look for data in the web and, use Foursquare location data to compare different neighborhoods of Toronto to figure out which neighborhood is suitable for starting a new restaurant business. In this project we will follow step by step methods to get the results.

Problem Description

Consider a situation where a person who wants to open a new Indian restaurant. And the person is Indo-Canadian and lives in the most populated city of Canada Toronto. So he has some doubts in his mind whether it is a good idea to open a restaurant. And if it is good idea in which Neighbourhood he should open his new restaurant, such that it should be profitable for him.

Benefits

There are different people who will have benefit of this project.

- Business Person who wants to open a new restaurant in the neighbourhood.
- Indian people who wants to move to the neighbourhoods which has ample Indian restaurants and culture.
- Data Analyst / Data Scientist who analyse the neighbourhood using statistical and Exploratory Data analysis.

Data acquisition

There are different sources from which I will collect the data for different purpose.

- 1. List of postal Codes for Canada:-
 - I will get the postal code of the neighbourhoods in Canada from Wikipedia.
 - Link https://en.wikipedia.org/wiki/List_of_postal_codes_of_C
 anada: M
- 2. Geographical Co-ordinates:-
 - I will use a csv file which consist latitude and longitude of the neighbourhoods in Canada.
 - We can use geocoder for the same purpose, but it is not persistent sometime. So I choose the csv file instead using geocoder.
 - Link for csv http://cocl.us/Geospatial_data
- 3. Fetching Details of the venue:
 - I will use Foursquare API for fetching the details and location of the venues.
 - I will use venue ratings as a threshold. And finally visualize using Folium.

From Foursquare API (https://developer.foursquare.com/docs),

I retrieved the following for each venue:

- a) Name: The name of the venue.
- b) Category: The category type as defined by the API.
- c) Latitude: The latitude value of the venue.
- d) Longitude: The longitude value of the venue.
- e) Likes: Likes of the venue, that the user liked the restaurant.
- f) Rating: Rating of the venue.
- g) Tips: Tips given by the users.

Data Cleaning

Cleaning the Postal Code data

- The dataframe will consist of three columns: PostalCode, Borough, and Neighborhood
- Only process the cells that have an assigned borough. Ignore cells with a borough that is **Not assigned.**
- More than one neighborhood can exist in one postal code area.
 For example, in the table on the Wikipedia page, you will notice that M5A is listed twice and has two neighborhoods: Harbourfront and Regent Park. These two rows will be combined into one row with the neighborhoods separated with a comma as shown in row 11 in the above table.
- If a cell has a borough but a **Not assigned** neighborhood, then the neighborhood will be the same as the borough.

Neighborhood	Borough	PostalCode	
Central Bay Street	Downtown Toronto	M5G	0
Hillcrest Village	North York	M2H	1
Parkview Hill, Woodbine Gardens	East York	M4B	2
Scarborough Village	Scarborough	M1J	3
Leaside	East York	M4G	4
Studio District	East Toronto	M4M	5
Wexford, Maryvale	Scarborough	M1R	6
South Steeles, Silverstone, Humbergate, Jamest	Etobicoke	M9V	7
Humber Summit	North York	M9L	8
CN Tower, King and Spadina, Railway Lands, Har	Downtown Toronto	M5V	9
Malvern, Rouge	Scarborough	M1B	10
Regent Park, Harbourfront	Downtown Toronto	M5A	11

Data Frame of Postal Codes in Canada.

Adding Geographical Co-ordinates

For this I will use a csv file which consist latitude and longitude of the neighbourhoods in Canada.

Link for csv - http://cocl.us/Geospatial_data

	Postalcode	Borough	Neighborhood	Latitude	Longitude
0	M1B	Scarborough	Malvern, Rouge	43.806686	-79.194353
1	M1C	Scarborough	Rouge Hill, Port Union, Highland Creek	43.784535	-79.160497
2	M1E	Scarborough	Guildwood, Morningside, West Hill	43.763573	-79.188711
3	M1G	Scarborough	Woburn	43.770992	-79.216917
4	M1H	Scarborough	Cedarbrae	43.773136	-79.239476
98	M9N	York	Weston	43.706876	-79.518188
99	M9P	Etobicoke	Westmount	43.696319	-79.532242
100	M9R	Etobicoke	Kingsview Village, St. Phillips, Martin Grove	43.688905	-79.554724

Data Frame ~ Neighborhoods with Co-ordinates.

Now we will work only with boroughs that contain Toronto

Borough	Neighborhood	Latitude	Longitude
East Toronto	The Beaches	43.676357	-79.293031
East Toronto	The Danforth West, Riverdale	43.679557	-79.352188
East Toronto	India Bazaar, The Beaches West	43.668999	-79.315572
East Toronto	Studio District	43.659526	-79.340923
Central Toronto	Lawrence Park	43.728020	-79.388790
Central Toronto	Davisville North	43.712751	-79.390197
Central Toronto	North Toronto West, Lawrence Park	43.715383	-79.405678
Central Toronto	Davisville	43.704324	-79.388790
Central Toronto	Moore Park, Summerhill East	43.689574	-79.383160
Central Toronto	Summerhill West, Rathnelly, South Hill, Forest	43.686412	-79.400049
Downtown Toronto	Rosedale	43.679563	-79.377529

Data Frame ~ Consists Boroughs only containing Toronto.

Indian Restaurants in the Toronto

Now fetch all the Indian restaurants in the Toronto

Code Snippet

indian_rest_to.head()

:	Borough	Neighborhood	ID	Name
0	East Toronto	The Beaches	4dcd7c6352b1f8915b7e7f7e	Delhi Bistro
1	East Toronto	The Danforth West, Riverdale	4c1d5337eac020a1cb1048c2	Sher-E-Punjab
2	! East Toronto	India Bazaar, The Beaches West	4ae0c7a8f964a520638221e3	Udupi Palace
3	East Toronto	India Bazaar, The Beaches West	4afc9816f964a520312422e3	Motimahal
4	East Toronto	India Bazaar, The Beaches West	4bac30a2f964a52018ea3ae3	Bombay Chowpatty

Data Frame ~ Indian Restaurants in Toronto.

Exploratory Analysis

Let's analyse how many Indian restaurants are present in each Borough.

```
plt.figure(figsize=(9,5), dpi = 100)
# title
plt.title('Number of Indian Resturants for each Borough in Toronto City')
#On x-axis
plt.xlabel('Borough', fontsize = 15)
#On y-axis
plt.ylabel('No.of Indian Resturants', fontsize=15)
#giving a bar plot
indian_rest_to.groupby('Borough')['ID'].count().plot(kind='bar')
#legend
plt.legend()
#displays the plot
plt.show()
```

Code Snippet

fig ~ Number of Indian Restaurants in each borough in Toronto.

Let's also analyse how many Indian restaurants are present in each Neighborhood.

```
plt.figure(figsize=(9,5), dpi = 100)
# title
plt.title('Number of Indian Resturants for each Neighborhood in Toronto City')
#0n x-axis
plt.xlabel('Neighborhood', fontsize = 15)
#0n y-axis
plt.ylabel('No.of Indian Resturants', fontsize=15)
#giving a bar plot
indian_rest_to.groupby('Neighborhood')['ID'].count().nlargest(5).plot(kind='bar')
#legend
plt.legend()
#displays the plot
plt.show()
```

Code Snippet

fig ~ Number of Indian Restaurants in each neighborhoods in Toronto.

Get Ratings, Likes, Tips of the restaurants using Foursquare API

Fetching the Ratings, Likes, Tips of the restaurants using Foursquare API

```
#prepare neighborhood list that contains indian resturants
column_names=['Borough', 'Neighborhood', 'ID', 'Name', 'Likes', 'Rating', 'Tips']
indian_rest_stats_to=pd.DataFrame(columns=column_names)
count=1
for row in indian_rest_to.values.tolist():
   Borough, Neighborhood, ID, Name=row
       venue details=get venue details(ID)
        print(venue_details)
       id,name,likes,rating,tips=venue_details.values.tolist()[0]
   except IndexError:
        print('No data available for id=',ID)
        # we will assign 0 value for these resturants as they may have been
        #recently opened or details does not exist in FourSquare Database
       id,name,likes,rating,tips=[0]*5
    print('(',count,'/',len(indian_rest_to),')','processed')
   indian_rest_stats_to = indian_rest_stats_to.append({'Borough': Borough,
                                                 'Neighborhood': Neighborhood,
                                                 'ID': id,
                                                 'Name' : name,
'Likes' : likes,
                                                 'Rating' : rating,
                                                 'Tips' : tips
                                                }, ignore_index=True)
    count+=1
```

Code Snippet

	Borough	Neighborhood	ID	Name	Likes	Rating	Tips
0	East Toronto	The Beaches	4dcd7c6352b1f8915b7e7f7e	Delhi Bistro	6	6.9	3
1	East Toronto	The Danforth West, Riverdale	4c1d5337eac020a1cb1048c2	Sher-E-Punjab	10	7.0	8
2	East Toronto	India Bazaar, The Beaches West	4ae0c7a8f964a520638221e3	Udupi Palace	79	8.7	31
3	East Toronto	India Bazaar, The Beaches West	4afc9816f964a520312422e3	Motimahal	25	8.1	13
4	East Toronto	India Bazaar, The Beaches West	4bac30a2f964a52018ea3ae3	Bombay Chowpatty	7	7.1	5

Data Frame ~ Ratings, Tips, and Likes of the restaurants

The Average rating

Getting The Average rating of restaurants in particular Neighborhood

```
to_neighborhood_stats=indian_rest_stats_to.groupby('Neighborhood',as_index=False).mean()[['Neighborhood','Rating']]
to_neighborhood_stats.columns=['Neighborhood','Average Rating']
```

	Neighborhood	Average Rating
1	Christie	8.450000
4	High Park, The Junction South	8.300000
10	The Annex, North Midtown, Yorkville	8.250000
2	Church and Wellesley	8.000000
6	Queen's Park, Ontario Provincial Government	8.000000
9	St. James Town, Cabbagetown	8.000000
0	Brockton, Parkdale Village, Exhibition Place	7.850000
13	University of Toronto, Harbord	7.800000
3	Davisville	7.133333
8	Runnymede, Swansea	7.000000

Data Frame Average ratings of restaurants

Now we have the list top performing restaurants,

Lets visualize it.

```
to_map = folium.Map(location=geo_location('Toronto'), zoom_start=12)
to_map
```


Data Frame ~ Leaflet Map of Toronto

```
# instantiate a feature group for the incidents in the dataframe
incidents = folium.map.FeatureGroup()

# loop through the 100 crimes and add each to the incidents feature group
for lat, lng, in to_neighborhood_stats[['Latitude','Longitude']].values:
    incidents.add_child(
        folium.CircleMarker(
            [lat, lng],
            radius=10, # define how big you want the circle markers to be
            color='yellow',
            fill=True,
            fill_color='blue',
            fill_opacity=0.6
        )
      )
     )
}
```

```
to_map = folium.Map(location=geo_location('Toronto'), zoom_start=12)
to_geo = r'https://github.com/jasonicarter/toronto-geojson/blob/master/toronto_crs84.geojson'

to_map.choropleth(
    geo_data=to_geo,
    data=to_borough_stats,
    columns=['Borough', 'Average Rating'],
    key_on='feature.properties.boro_name',
    fill_color='YlOrRd',
    fill_opacity=0.7,
    line_opacity=0.2,
    legend_name='Average Rating'
)

# display map
# as this is huge map data , we will save it to a file
ny_map.save('borough_rating.html')
```


Data Frame ~ Choropleth maps of Toronto based on avg Ratings.

Conclusion

Below are the Best Neighborhoods to open an Indian Restaurant Christie, High Park, The Junction South, The Annex, North Midtown, Yorkville, Church and Wellesley, Queen's Park, Ontario Provincial Government, St. James Town, Cabbage town.

Limitations

- 1. The Results are highly dependent on the ratings of the Restaurants.
- 2. The Rating Accuracy is highly dependent on Foursquare API.