

WP 3.2 Application

Alessandro Maccarini

Researcher
Aalborg University - Department of the Built Environment
amac@build.aau.dk

Goals of WP3.2

Goal 1: To demonstrate capabilities enabled by the use of Modelica for the design and operation of building and district energy systems

Goal 2: To develop user-friendly tools and interfaces to facilitate the use of Modelica

Outcome

Outcome 1: Collection of application case studies

Outcome 2: Python-based tool for automatic generation of Modelica models from 3D urban building models

Collection of case studies

Participants fill in a "case study template" available at https://github.com/ibpsa/project1/tree/master/wp_3_2_app

Template for description of application case studies – IBPSA Project 1 WP3.2
1. Title and authors
-Provide a title for the application case study
-Name the authors that are responsible for the case study
Name/Institution/Country
2. General Description:
-Formulate a general outline of the case study by including: objective, description of HVAC/district systen and main results (if already available)

3 Diagra	am and side or
3. Diagr	am and picture
-Include	at least two pictures for your case study:
	One diagram showing the layout of the HVAC/district system One picture of Modelica model
4. Thern	nal zone modeling
-How m	any buildings have you modelled?
-How m	any thermal zones per building have you modelled? How many in total?
-What's	the complexity of the thermal zone model (Low order / High order)?
-(only fo	or district simulations) Are network and buildings coupled or decoupled? □ Coupled □ Decoupled
5. Mode	elica libraries and tools:
-Which	Modelica library have you used? (Keep in mind that IBPSA library is for developers, not for users)
	☐ AixLib
	☐ Buildings
	☐ BuildingSystems

List of case studies

				Status	
	Title	Institute	Scale	Template received	Case study uploaded to website
1	Quantifying uncertainty propagation for the district energy demand	KU Leuven	District	✓	✓
2	MPC-oriented models of a small district with geothermal heat pumps	University of Southern Denmark	District	✓	✓
3	Single-zone model of a university building with hydronic heating and CO2-driven ventilation	University of Southern Denmark	Building	✓	✓
4	Dimensioning of IBPSA plug flow pipes for Vejle Nord LiveLab using Dymola FMI and Python	University of Southern Denmark	District	✓	✓
5	Multi-Infrastructure Modeling of Smart and Connected Communities	University of Colorado Boulder	District	✓	✓
6	Equation-Based Object-Oriented Modeling and Simulation for Data Center Cooling	University of Colorado Boulder	Building	✓	✓
7	Comprehensive Pliant Permissive Priority Optimization (C3PO)	University of Colorado Boulder	District	✓	✓
8	Modeling Air-to-Air and Finned-Tube Heat Exchangers	University of Colorado Boulder	Component	✓	✓
9	Feasibility study of DHC system in Køge (Denmark)	Aalborg University	District	✓	✓
10	Erdeis II – Local DHC provided with a LTN for residential buildings	RWTH Aachen	District	✓	✓
11	Feasibility study of DHC system in Toronto (Canada)	LBNL	District	✓	
12	Co-simulation for building energy modeling with active integrated envelopes	Yale University	Building		

Uploading case studies on IBPSA Project 1 website

Development of a new Python-based tool

Motivation

It would be useful to have a tool that enables users to **visually**:

- Create 3D urban building forms
- Assign building properties (e.g. U-values)
- Export Modelica models for calculation of heating and cooling loads

BAGEL (Blender-based Automatic Generator of Energy Loads)

What is Blender? 3D computer graphics modeling software Why Blender? Free and open source / Blender Python API

BAGEL (Blender-based Automatic Generator of Energy Loads)

Breakout session

