Chapitre 1

Feuille d'exercices : Séquence 2

S Exercice 1.

Pour chacune des matrices A_k , $k \in \{1, 2, 3\}$, ci-dessous, calculer

- 1) la transposée A_k^t ,
- 2) l'adjointe A_k^* .

$$A_{1} = \begin{pmatrix} 2 & -3i \\ i+4 & 2 \end{pmatrix}, \qquad A_{2} = \begin{pmatrix} -2 & 0 & 3 \\ 0 & 4 & -1 \\ 2 & -1 & 2 \end{pmatrix}, \qquad A_{3} = \begin{pmatrix} i & 5 & 2+3i & 1/5 \\ \sqrt{3} & 0 & 8i+2/3 & \pi i \\ 2 & -i & 2 & i-6\sqrt{3} \\ 0 & 3 & 8i & -1 \end{pmatrix}.$$

Solution:

$$A_1^t = \begin{pmatrix} 2 & i+4 \\ -3i & 2 \end{pmatrix}, \qquad A_1^* = \begin{pmatrix} 2 & -i+4 \\ 3i & 2 \end{pmatrix}.$$
$$A_2^t = A_2^* = \begin{pmatrix} -2 & 0 & 2 \\ 0 & 4 & -1 \\ 3 & -1 & 2 \end{pmatrix}.$$

$$A_3^t = \begin{pmatrix} i & \sqrt{3} & 2 & 0 \\ 5 & 0 & -i & 3 \\ 2+3i & 8i+2/3 & 2 & 8i \\ 1/5 & \pi i & i-6\sqrt{3} & -1 \end{pmatrix}, \quad A_3^* = \begin{pmatrix} i & \sqrt{3} & 2 & 0 \\ 5 & 0 & i & 3 \\ 2-3i & -8i+2/3 & 2 & -8i \\ 1/5 & -\pi i & -i-6\sqrt{3} & -1 \end{pmatrix}.$$

S Exercice 2.

- 1) Trouver une matrice de $\mathcal{M}_2(\mathbb{R})$ dont la transposée soit son opposée.
- 2) Donner la matrice A (resp. B) de taille 2×3 dont les coefficients a_{ij} (resp. b_{ij}) sont donnés, pour tous $i \in \{1, 2\}$ et $j \in \{1, 2, 3\}$, par

$$a_{ij} = i + j + \delta_{ij}$$
 et $b_{ij} = i + j - \delta_{ij}$.

Solution:

- 1) $A = \begin{pmatrix} 0 & b \\ -b & 0 \end{pmatrix}$ convient. 2) $A = \begin{pmatrix} 3 & 3 & 4 \\ 3 & 5 & 5 \end{pmatrix}$ et $B = \begin{pmatrix} 1 & 3 & 4 \\ 3 & 3 & 5 \end{pmatrix}$.

S Exercice 3.

- 1) Soient $A, B \in \mathcal{M}_{n,p}(\mathbb{K})$. Montrer que $(A+B)^* = A^* + B^*$.
- 2) Soient $q \in \mathbb{N}^*$, $A \in \mathcal{M}_{n,p}(\mathbb{K})$ et $B \in \mathcal{M}_{p,q}(\mathbb{K})$. Montrer que $(AB)^* = B^*A^*$.

Exercice 4.

- 1) Soient $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. Calculer $(A+B)^2$ et $A^2 + 2AB + B^2$. Que peut-on en déduire?
- 2) Soient $A, B \in \mathcal{M}_n(\mathbb{K})$ telles que AB = BA (on dit alors que A et B commutent). Montrer que $(A+B)^2 = A^2 + 2AB + B^2$.

Exercice 5.

Soit $A = \frac{1}{2} \begin{pmatrix} -1 & \sqrt{3} \\ -\sqrt{3} & -1 \end{pmatrix}$. Calculer A^3 . En déduire que A est inversible et donner A^{-1} .

Solution:

$$A^{-1} = \frac{1}{2} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}.$$

Exercice 6.

Soit
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
.

- 1) Montrer que $A^3 3A^2 + 3A = I_3$.
- 2) En déduire que A est inversible et déterminer A^{-1} .

Solution:

$$A^{-1} = A^2 - 3A + 3I_3 = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}.$$

Exercice 7.

Soit $A \in \mathcal{M}_n(\mathbb{K})$ telle qu'il existe $B \in \mathcal{M}_n(\mathbb{K})$ vérifiant

$$AB = I_n + A + A^2.$$

- 1) Montrer que A est inversible et déterminer A^{-1} .
- 2) Montrer que A et B commutent.

S Exercice 8.

Soit $\theta \in]-\pi;\pi]$. On appelle **matrice de rotation d'angle** θ , la matrice $R_{\theta} \in \mathcal{M}_2(\mathbb{R})$ définie par

$$R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.$$

26

- 1) Donner les matrices de rotation d'angle $0, \frac{\pi}{2}, \frac{\pi}{3}$ et $\frac{\pi}{4}$.
- 2) Vérifier que $R_{\theta}^t = R_{-\theta}$.
- 3) Soit $\theta' \in]-\pi;\pi]$. Calculer $R_{\theta}R_{\theta'}$.
- 4) En déduire que R_{θ} est inversible et donner R_{θ}^{-1} .

Solution:

1)
$$R_0 = I_2$$
, $R_{\frac{\pi}{2}} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, $R_{\frac{\pi}{3}} = \frac{1}{2} \begin{pmatrix} 1 & -\sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$, $R_{\frac{\pi}{4}} = \frac{\sqrt{2}}{2} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$.

- 2) $R_{\theta}^{t} = R_{-\theta}$. 3) $R_{\theta}R_{\theta'} = R_{\theta+\theta'}$.
- 4) $R_{\theta}^{-1} = R_{-\theta}$.

Exercice 9.

Soient $A, B \in \mathcal{GL}_n(\mathbb{K})$. Montrer que $AB \in \mathcal{GL}_n(\mathbb{K})$ et que $(AB)^{-1} = B^{-1}A^{-1}$.

S Exercice 10.

On pose

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & -1 & 2 \end{pmatrix} \quad \text{et} \quad P = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -1 & 1 \end{pmatrix}.$$

- 1) Calculer $P^3 P^2 + P$.
- 2) En déduire P^{-1} .
- 3) Calculer $D = P^{-1}AP$.

Solution:

1)
$$P^3 - P^2 + P = I_3$$
.

2)
$$P^{-1} = P^2 - P + I_3 = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
.

3)
$$D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
.

Exercice 11.

Déterminer à quelle condition une matrice diagonale est inversible et, dans ce cas, déterminer son inverse.

S Exercice 12.

Soit $A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$.

- 1) Calculer A^2 , A^3 et A^4 .
- 2) En déduire A^k pour tout $k \in \mathbb{N}$.

Solution : Pour tout $k \in \mathbb{N}$, $A^k = \begin{pmatrix} 1 & 2k \\ 0 & 1 \end{pmatrix}$.

Exercice 13.

Soit $A \in \mathcal{M}_n(\mathbb{K})$ inversible. Montrer que A^* est inversible et $(A^*)^{-1} = (A^{-1})^*$.

S Exercice 14.

Soient $P \in \mathcal{M}_n(\mathbb{K})$ une matrice inversible et $D \in \mathcal{M}_n(\mathbb{K})$ une matrice diagonale.

- 1) Déterminer D^k , pour tout $k \in \mathbb{N}$.
- 2) Soient $A = PDP^{-1}$ et $k \in \mathbb{N}$. Donner A^k en fonction de D et P.

Solution: On a $D = (d_{ij}\delta_{ij})_{1 \leq i,j \leq n}$ où $d_{ij} \in \mathbb{K}$ pour tout $(i,j) \in [1;n]^2$.

- 1) Pour tout $k \in \mathbb{N}$, $D = (d_{ij}^k \delta_{ij})_{1 \le i, j \le n}$.
- 2) Pour tout $k \in \mathbb{N}$, $A^k = PD^kP^{-1}$.