CS116-Automata Theory and Formal Languages

Lecture 1
Introduction

Computer Science Department 1st Semester 2025-2026

Three Central Areas of the Theory of Computation

What are the fundamental capabilities and limitations of computers?

- Complexity Theory: what makes some problems computationally hard and others easy? how much time/space is needed (P, NP, NP-complete, etc.)
- Computability Theory: what can/can't be solved by any algorithm (Decidable vs. Undecidable). Halting problem, problem of determining whether a mathematical statement is true or false
- Automata Theory: machine models (FA, PDA, TM) and the languages they recognize.

Theory of Computation: A Historical Perspective

1930s	 Alan Turing studies Turing machines Decidability Halting problem
1940-1950s	 "Finite automata" machines studied Noam Chomsky proposes the "Chomsky Hierarchy" for formal languages
1969	Cook introduces "intractable" problems or "NP-Hard" problems
1970-	Modern computer science: compilers, computational & complexity theory evolve

(A pioneer of automata theory)

Alan Turing (1912-1954)

- Father of Modern Computer Science
- English mathematician
- Studied abstract machines called *Turing machines* even before computers existed
- Heard of the Turing test?

What is Automata Theory?

- Study of abstract computing devices, or "machines"
- Automaton = an abstract computing device
 - Note: A "device" need not even be a physical hardware!
- A fundamental question in computer science:
 - Find out what different models of machines can do and cannot do
 - The theory of computation
 - Computation = language recognition

Outline of the course contents

Computation

Example:
$$f(x)=x^3$$

$$f(x)=x^3$$

temporary memory

$$f(x)=x^3$$

$$z=2*2=4$$
 $f(x)=z*2=8$

input

x=2

CPU

output

Program memory

compute x * x

compute $x^2 * x$

$$f(x)=x^3$$

$$z=2*2=4$$

$$f(x)=z*2=8$$
input
$$x=2$$

CPU

x=2

Program memory

f(x)=8

output

X * Xcompute

compute $x^2 * x$

Automaton

Automaton

Different Kinds of Automata

Automata are distinguished by the temporary memory

• Finite Automata: no temporary memory

Pushdown Automata: stack

• Turing Machines: random access memory

Finite Automaton

Example: Elevators, Vending Machines (small computing power)

Pushdown Automaton

Example: Compilers for Programming Languages (medium computing power)

Turing Machine

Examples: Any Algorithm

(highest computing power)

Power of Automata

Simple problems

More complex problems

Hardest problems

Finite
Automata

Pushdown Automata

Turing

Machine

Less power

———

More power

Solve more

computational problems

The Chomsky Hierarchy

A containment hierarchy of classes of formal languages

Turing Machine is the most powerful computational model known

Question: Are there computational problems that a Turing Machine cannot solve?

Answer: Yes (unsolvable problems)

Time Complexity of Computational Problems:

NP-complete problems

Believed to take exponential time to be solved

P problems

Solved in polynomial time

Languages

Language: a set of strings

String: a sequence of symbols from some alphabet

Example:

```
Strings: cat, dog, house Language: {cat, dog, house} Alphabet: \Sigma = \{a,b,c,\ldots,z\}
```

Languages are used to describe computation problems:

$$PRIMES = \{2,3,5,7,11,13,17,...\}$$

$$EVEN = \{0,2,4,6,...\}$$

Alphabet:
$$\Sigma = \{0,1,2,...,9\}$$

Alphabets and Strings

An alphabet is a set of symbols

Example Alphabet:
$$\Sigma = \{a, b\}$$

A string is a sequence of symbols from the alphabet

Decimal numbers alphabet
$$\Sigma = \{0,1,2,\ldots,9\}$$

Binary numbers alphabet

$$\Sigma = \{0,1\}$$

Unary numbers alphabet
$$\Sigma = \{1\}$$

String Operations

$$w = a_1 a_2 \cdots a_n$$

$$v = b_1 b_2 \cdots b_m$$

Concatenation

$$wv = a_1 a_2 \cdots a_n b_1 b_2 \cdots b_m$$

abbabbbaaa

$$w = a_1 a_2 \cdots a_n$$

ababaaabbb

Reverse

$$w^R = a_n \cdots a_2 a_1$$

bbbaaababa

String Length

$$w = a_1 a_2 \cdots a_n$$

|a| = 1

Length:
$$|w| = n$$

Examples:
$$|abba| = 4$$

 $|aa| = 2$

Length of Concatenation

$$|uv| = |u| + |v|$$

Example:
$$u = aab$$
, $|u| = 3$
 $v = abaab$, $|v| = 5$

$$|uv| = |aababaab| = 8$$

 $|uv| = |u| + |v| = 3 + 5 = 8$

Empty String

A string with no letters is denoted: λ or ε

Observations:
$$|\lambda| = 0$$

$$\lambda w = w\lambda = w$$

$$\lambda abba = abba\lambda = ab\lambda ba = abba$$

Substring

Substring of string: a subsequence of consecutive characters

String	Substring
<u>ab</u> bab	ab
<u>abba</u> b	abba
$ab\underline{b}ab$	b
$a\underline{bbab}$	bbab

Prefix and Suffix

abbab

Prefixes Suffixes

 λ abbab

a bbab

ab bab

abb ab

abba b

abbab

Another Operation

$$w^n = \underbrace{ww\cdots w}_n$$

Example:
$$(abba)^2 = abbaabba$$

Definition:
$$w^0 = \lambda$$

$$(abba)^0 = \lambda$$

The * Operation

 $\Sigma^*\colon$ the set of all possible strings from alphabet Σ

$$\Sigma = \{a,b\}$$

$$\Sigma^* = \{\lambda,a,b,aa,ab,ba,bb,aaa,aab,...\}$$

The + Operation

 Σ^+ : the set of all possible strings from alphabet Σ except λ

$$\Sigma = \{a,b\}$$

$$\Sigma^* = \{\lambda,a,b,aa,ab,ba,bb,aaa,aab,...\}$$

$$\Sigma^{+} = \Sigma^{*} - \lambda$$

$$\Sigma^{+} = \{a, b, aa, ab, ba, bb, aaa, aab, \dots\}$$

Languages

A language over alphabet Σ is any subset of $\Sigma*$ Examples:

$$\Sigma = \{a, b\}$$

$$\Sigma^* = \{\lambda, a, b, aa, ab, ba, bb, aaa, \dots\}$$

Language: $\{\lambda\}$

Language: $\{a,aa,aab\}$

Language: $\{\lambda, abba, baba, aa, ab, aaaaaa\}$

More Language Examples

Alphabet
$$\Sigma = \{a, b\}$$

An infinite language $L = \{a^n b^n : n \ge 0\}$

$$\left. egin{array}{c} \lambda \\ ab \\ aabb \\ aaaaabbbbb \\ \end{array}
ight) \in L \qquad abb \notin L$$

Prime numbers

Alphabet
$$\Sigma = \{0,1,2,...,9\}$$

Language:

$$PRIMES = \{x : x \in \Sigma^* \text{ and } x \text{ is prime}\}$$

$$PRIMES = \{2,3,5,7,11,13,17,...\}$$

Even and odd numbers

Alphabet
$$\Sigma = \{0,1,2,...,9\}$$

$$EVEN = \{x : x \in \Sigma^* \text{ and } x \text{ is even} \}$$

 $EVEN = \{0,2,4,6,...\}$

$$ODD = \{x : x \in \Sigma^* \text{ and } x \text{ is odd}\}$$
$$ODD = \{1,3,5,7,...\}$$

Unary Addition

Alphabet:
$$\Sigma = \{1,+,=\}$$

Language:

$$ADDITION = \{x + y = z : x = 1^n, y = 1^m, z = 1^k, n + m = k\}$$

$$11 + 111 = 111111 \in ADDITTON$$

$$111 + 111 = 111 \notin ADDITION$$

Squares

Alphabet:
$$\Sigma = \{1, \#\}$$

Language:

$$SQUARES = \{x \# y : x = 1^n, y = 1^m, m = n^2\}$$

Note that:

$$\emptyset = \{\} \neq \{\lambda\}$$

$$\left|\left\{\,\right\}\right| = \left|\varnothing\right| = 0$$

$$|\{\lambda\}| = 1$$

String length
$$|\lambda| = 0$$

$$|\lambda| = 0$$

Operations on Languages

The usual set operations

$${a,ab,aaaa} \cup {bb,ab} = {a,ab,bb,aaaa}$$

 ${a,ab,aaaa} \cap {bb,ab} = {ab}$
 ${a,ab,aaaa} - {bb,ab} = {a,aaaa}$

Complement:
$$\overline{L} = \Sigma^* - L$$

$$\overline{\{a,ba\}} = \{\lambda,b,aa,ab,bb,aaa,\ldots\}$$

Reverse

Definition:
$$L^R = \{w^R : w \in L\}$$

Examples:
$$\{ab, aab, baba\}^R = \{ba, baa, abab\}$$

$$L = \{a^n b^n : n \ge 0\}$$

$$L^R = \{b^n a^n : n \ge 0\}$$

Concatenation

Definition:
$$L_1L_2 = \{xy : x \in L_1, y \in L_2\}$$

Example:
$$\{a,ab,ba\}\{b,aa\}$$

$$= \{ab, aaa, abb, abaa, bab, baaa\}$$

Another Operation

Definition:
$$L^n = \underbrace{LL \cdots L}_n$$

$$\{a,b\}^3 = \{a,b\}\{a,b\}\{a,b\} =$$

$$\{aaa,aab,aba,abb,baa,bab,bba,bbb\}$$

Special case:
$$L^0 = \{\lambda\}$$

$${a,bba,aaa}^0 = {\lambda}$$

$$L = \{a^n b^n : n \ge 0\}$$

$$L^2 = \{a^n b^n a^m b^m : n, m \ge 0\}$$

 $aabbaaabbb \in L^2$

Star-Closure (Kleene *)

All strings that can be constructed from L

Definition:
$$L^* = L^0 \cup L^1 \cup L^2 \cdots$$

Example:
$$\left\{a,bb\right\}^* = \left\{\begin{matrix} \lambda,\\ a,bb,\\ aa,abb,bba,bbb,\\ aaa,aabb,abba,abbb,... \end{matrix} \right\}$$

Positive Closure

Definition:
$$L^+ = L^1 \cup L^2 \cup \cdots$$

Same with L^* but without the λ

$$\{a,bb\}^{+} = \begin{cases} a,bb, \\ aa,abb,bba,bbb, \\ aaa,aabb,abba,abbb, \dots \end{cases}$$