

2.15. TRANSPORT PROPERTIES

Introduction The tables and nomographs in this subsection are organized roughly with mass transport properties first (surface tension, viscosity, diffusion coefficient) followed by thermal transport properties.

Unit Conversions For this subsection, the following unit conversions are applicable:

Diffusivity: to convert square centimeters per second to square feet per hour, multiply by 3.8750; to convert square meters per second to square feet per hour, multiply by 38,750.

Pressure: to convert bars to pounds-force per square inch, multiply by 14.504.

Temperature: F = 9/5C + 32; R = 9/5K.

Thermal conductivity: to convert watts per meter-kelvin to British thermal unit-feet per hour-square foot-degree Fahrenheit, multiply by 0.57779; and to convert British thermal unit-feet per hour-square foot-degree Fahrenheit to watts per meter-kelvin, multiply by 1.7307.

Viscosity: to convert pascal-seconds to centipoise, multiply by 1000.

Additional References An extensive coverage of the general pressure and temperature variation of thermal conductivity is given in the monograph by Vargaftik, N. B., L. P. Filippov, A. A. Tarzimanov and E. E. Totskiy, *Thermal Conductivity of Liquids and Gases* (in Russian), Standards Press, Moscow, 1978, now published in English translation by CRC Press, Miami, Fla.

For a similar work on viscosity, see Stephan and Lucas, *Viscosity of Dense Fluids*, Plenum, New York and London, 1979. Tables and polynomial fits for refrigerants in both the gaseous and the liquid states are contained in *ASHRAE Handbook—Fundamentals*, SI ed., ASHRAE, Atlanta, 2005. Other sources for viscosity include Fischer & Porter Co. catalog 10-A-94, "Fluid Densities and Viscosities," 1953 (200 industrial fluids in 48 pp.) and D. van Velzen, R. L. Cardozo et al., EURATOM Ispra, Italy rept. 4735 e, 1972 (160 pp.). Liquid viscosity, 314 cpds, is summarized in *I&EC Fundtls.*, 11 (1972): 20–26. Five hundred fortynine binary and ternary systems are discussed in Skubla, P., *Coll. Czech. Chem. Commun.*, **46** (1981): 303–339.

See also Duhne, C. R., *Chem. Eng.* (NY), **86**: 15 (July 16, 1979): 83–91 (equations and 326 liquids); and Rao, K. V. K., *Chem. Eng.* (NY), **90**, 11 (May 30, 1983): 90–91 (nomograph, 87 liquids). For rheology, non-Newtonian behavior, see, for instance, Barnes, H., *The Chem. Engr.* (UK), (June 24, 1993): 17–23; Hyman, W. A., *I&EC Fundtls.*, **16** (1976): 215–218; and Ferguson, J., and Z. Kemblowski, *Applied Fluid Rheology*, Elsevier, 1991 (325 pp.). Other sources for thermal conductivity include Ho, C. Y., R. W. Powell et al., *J. Phys. Chem. Ref. Data*, **1** (1972) and **3**, suppl. 1 (1974); Childs, Ericks et al., *N.B.S. Monogr.* 131, 1973; Jamieson, D. T., J. B. Irving et al., *Liquid Thermal Conductivity*, H.M.S.O., Edinburgh, Scotland, 1975 (220 pp.).

Other references include B. Poling, J. Prausnitz, and J. O'Connell, *The Properties of Gases and Liquids*, 5th ed., McGraw-Hill, New York, 2000; N.B. Vargaftik, Y.K. Vinogradov, and V.S. Yargin, *Handbook of Physical Properties of Liquids and Gases*, Begell House, New York, 1996; Carl Yaws, *Chemical Properties Handbook: Physical, Thermodynamics, Environmental Transport, Safety & Health Related Properties for Organic & Inorganic Chemicals*, McGraw-Hill, New York, 1998; and M.R. Riazi, *Characterization and Properties of Petroleum Fractions*, ASTM, West Conshohocken, Pa., 2005. Free web resources include the NIST Webbook at http://webbook.nist.gov and the KDB (Korea thermophysical properties) database at http://www.cheric.org/research/kdb/.

2.15.1. MASS TRANSPORT PROPERTIES

Table 2-137 Surface Tension r (dyn/cm) of Various Liquids

Compound	<i>T</i> , K	σ	Compound	<i>T</i> , K	σ	Compound	<i>T</i> , K	σ
Acetic acid	293	27.59	p-Cresol	313	34.88	Isobutyric acid	293	25.04
	333	23.62		373	29.32		313	23.2
Acetone	298	24.02	Cyclohexane	293	25.24		333	21.36
	308	22.34		313	22.87		363	18.6
	318	21.22		333	20.49	Methyl formate	293	24.62
Aniline	293	42.67	Cyclopentane	293	22.61		323	20.05
	313	40.5		313	19.68		373	12.9
	333	38.33	Diethyl ether	288	17.56		423	6.3
	353	36.15		303	16.2		473	0.87
Benzene	293	28.88	2,3-Dimethylbutane	293	17.38	Methyl alcohol	293	22.56
	313	26.25		313	15.38		313	20.96
	333	23.67	Ethyl acetate	293	23.97		333	19.41
	353	21.2		313	21.65	Phenol	313	39.27
Benzonitrile	293	39.37		333	19.32		333	37.13
	323	35.89		353	17		373	32.96
	363	31.26		373	14.68	n-Propyl alcohol	293	23.71
Bromobenzene	293	35.82	Ethyl benzoate	293	35.04		313	22.15
	323	32.34		313	32.92		333	20.6
	373	26.54		333	30.81		363	18.27
<i>n</i> -Butane	203	23.31	Ethyl bromide	283	25.36	n-Propyl benzene	293	29.98
	233	19.69		303	23.04		313	26.83
	293	12.46	Ethyl mercaptan	288	23.87		333	24.68
Carbon disulfide	293	32.32		303	22.68		353	22.53
	313	29.35	Formamide	298	57.02		373	20.38
Carbon tetrachloride	288	27.65		338	53.66	Pyridine	293	37.21
	308	25.21		373	50.71		313	34.6
	328	22.76	n-Heptane	293	20.14		333	31.98

Compound	<i>T</i> , K	σ	Compound	<i>T</i> , K	σ	Compound	<i>T</i> , K	σ
	348	20.31		313	18.18			
	368	17.86		333	16.22			
Chlorobenzene	293	33.59		353	14.26			
	323	30.01						
	373	24.06						

Methyl formate values from D. B. Macleod, *Trans. Faradaay Soc.* **19**:38, 1923. All others from J. J. Jasper, *J. Phys. Chem. Ref. Data* **1**:841, 1972.

Click here for the Compressible Flow of Air in Non-Circular Ducts spreadsheet calculator.
Click here for the Compressible (Fanno) Flow of Air in a Pipe spreadsheet calculator.
Click here for the Natural Convection Heat Transfer Coefficients spreadsheet calculator.
Click here for the Venturi Meter Gas Flow Calculations spreadsheet calculator.
Click here for the Compressible Fanno Flow Through a Pipe spreadsheet calculator.

Table 2-138 Vapor Viscosity of Inorganic and Organic Substances (Pa·s)

Cmpd. no.	Name	Formul a	CAS	Mol. wt.	C ₁	C_2	<i>C</i> ₃	C ₄	T _{min} , K	Viscosi ty at T _{min}	T _{max} , K	Viscosi ty at T _{max}
1	Acetal dehyde	C ₂ H ₄ O	75-07- 0	44.052 56	1.9703 E-05	0.1764 6	1564.6		149.78	4.166E -06	1000	2.600E -05
2	Aceta mide	C ₂ H ₅ N O	60-35- 5	59.067 2	1.4230 E-07	0.7574	272.14		353.33	6.842E -06	1000	2.093E -05
3	Acetic acid	C ₂ H ₄ O	64-19- 7	60.052	1.5640 E-08	1.078			289.81	7.053E -06	1000	2.681E -05
4	Acetic anhydr ide	C ₄ H ₆ O	108- 24-7	102.08 864	1.0939 E-05	0.2346 6	1209.5		200.15	5.386E -06	1000	2.504E -05
5	Aceton e	C ₃ H ₆ O	67-64- 1	58.079 14	3.1005 E-08	0.9762	23.139		178.45	4.329E -06	1000	2.571E -05
6	Aceton itrile	C ₂ H ₃ N	75-05- 8	41.051 9	4.7754 E-07	0.6027 3	327.16		229.32	5.208E -06	1000	2.314E -05
7	Acetyl ene	C ₂ H ₂	74-86- 2	26.037 28	1.2025 E-06	0.4952	291.4		192.40	6.468E -06	600	1.923E -05

Cmpd. no.	Name	Formul a	CAS	Mol. wt.	С	С	С	С	Т,К	Viscosi ty at T	Т,К	Viscosi ty at T
8	Acrolei n	C ₃ H ₄ O	107- 02-8	56.063 26	6.5230 E-07	0.579	410.8		185.45	4.174E -06	1000	2.523E -05
9	Acrylic acid	C ₃ H ₄ O	79-10- 7	72.062 66	1.7154 E-07	0.7418	138.4		286.15	7.679E -06	1000	2.532E -05
10	Acrylo nitrile	C ₃ H ₃ N	107- 13-1	53.062 6	2.4910 E-08	0.9888 2			189.63	4.455E -06	1000	2.306E -05
11	Air	Mixtur e	13225 9-10-0	28.96	1.4250 E-06	0.5039	108.3		80.00	5.508E -06	2000	6.227E -05
12	Ammo nia	H ₃ N	7664- 41-7	17.030 52	4.1855 E-08	0.9806	30.8		195.41	6.378E -06	1000	3.551E -05
13	Anisol e	C ₇ H ₈ O	100- 66-3	108.13 782	1.7531 E-07	0.72	176.17		235.65	5.122E -06	1000	2.154E -05
14	Argon	Ar	7440- 37-1	39.948	9.2121 E-07	0.6052 9	83.24		83.78	6.742E -06	3273.1	1.205E -04
15	Benza mide	C ₇ H ₇ N O	55-21- 0	121.13 658	2.5082 E-08	0.9666 3			403.00	8.274E -06	1000	1.992E -05
16	Benze ne	C ₆ H ₆	71-43- 2	78.111 84	3.1340 E-08	0.9676	7.9		278.68	7.077E -06	1000	2.486E -05
17	Benze nethiol	C ₆ H ₆ S	108- 98-5	110.17 684	1.1184 E-07	0.8002	152.43		442.29	1.089E -05	1000	2.441E -05
18	Benzoi c acid	C ₇ H ₆ O	65-85- 0	122.12 134	7.4266 E-08	0.8289	91.197		395.45	8.578E -06	1000	2.087E -05
19	Benzo nitrile	C ₇ H ₅ N	100- 47-0	103.12 13	3.4647 E-05	0.1239 6	3260.2		260.28	5.104E -06	1000	1.915E -05
20	Benzo pheno ne	C ₁₃ H ₁₀ 0	119- 61-9	182.21 79	3.7790 E-07	0.6005	409		321.35	5.324E -06	1000	1.698E -05
21	Benzyl alcoho	C ₇ H ₈ O	100- 51-6	108.13 782	6.9022 E-08	0.8401 4	74.746		257.85	5.680E -06	1000	2.129E -05
22	Benzyl ethyl ether	C ₉ H ₁₂ O	539- 30-0	136.19 098	1.5600 E-07	0.7181	180		458.15	9.122E -06	1000	1.886E -05
23	Benzyl merca ptan	C ₇ H ₈ S	100- 53-8	124.20 342	4.0138 E-08	0.9073 5	34.714		243.95	5.151E -06	1000	2.045E -05
24	Biphen yl	C ₁₂ H ₁₀	92-52- 4	154.20 78	1.3874 E-06	0.4434	678.22		342.20	6.186E -06	1000	1.768E -05

Cmpd. no.	Name	Formul a	CAS	Mol. wt.	С	С	С	С	Т,К	Viscosi ty at T	Т,К	Viscosi ty at T
25	Bromi ne	Br ₂	7726- 95-6	159.80 8	7.3534 E-08	0.9379 8			265.85	1.383E -05	600	2.967E -05
26	Bromo benze ne	C ₆ H ₅ B	108- 86-1	157.00 79	2.2320 E-07	0.7146	184.9		429.24	1.187E -05	1000	2.623E -05
27	Bromo ethane	C ₂ H ₅ B	74-96- 4	108.96 5	6.2597 E-08	0.9115			154.25	6.182E -06	1000	3.397E -05
28	Bromo metha ne	CH ₃ Br	74-83- 9	94.938 52	6.5411 E-08	0.9291 4			179.44	8.126E -06	1000	4.009E -05
29	1,2- Butadi ene	C ₄ H ₆	590- 19-2	54.090 44	6.0259 E-07	0.5309	199.64		136.95	3.340E -06	1000	1.966E -05
30	1,3- Butadi ene	C ₄ H ₆	106- 99-0	54.090 44	2.6960 E-07	0.6715	134.7		164.25	4.553E -06	1000	2.457E -05
31	Butane	C ₄ H ₁₀	106- 97-8	58.122 2	3.4387 E-08	0.9460 4			134.86	3.559E -06	1000	2.369E -05
32	1,2- Butane diol	C ₄ H ₁₀ O ₂	584- 03-2	90.121	7.5626 E-08	0.8352 1	71.798		220.00	5.157E -06	1000	2.260E -05
33	1,3- Butane diol	C ₄ H ₁₀ O ₂	107- 88-0	90.121	7.0728 E-08	0.8438	64.391		196.15	4.580E -06	1000	2.259E -05
34	1- Butano	C ₄ H ₁₀	71-36- 3	74.121 6	1.4031 E-06	0.4611	537		183.85	3.961E -06	1000	2.207E -05
35	2- Butano	C ₄ H ₁₀	78-92- 2	74.121 6	1.2114 E-07	0.7697 2	92.661		158.45	3.772E -06	1000	2.259E -05
36	1- Butene	C ₄ H ₈	106- 98-9	56.106 32	6.9744 E-07	0.5462	305.25		87.80	1.795E -06	1000	2.325E -05
37	cis-2- Butene	C ₄ H ₈	590- 18-1	56.106 32	4.2898 E-08	0.9134 9			134.26	3.770E -06	1000	2.360E -05
38	trans- 2- Butene	C ₄ H ₈	624- 64-6	56.106 32	1.0500 E-06	0.4867	358.7		167.62	4.044E -06	1000	2.229E -05
39	Butyl acetat e	C ₆ H ₁₂ O ₂	123- 86-4	116.15 828	1.0060 E-07	0.7788 1	95.108		199.65	4.216E -06	1000	1.993E -05
40	Butylb enzene	C ₁₀ H ₁₄	104- 51-8	134.21 816	3.4205 E-07	0.5976 4	234.21		185.30	3.424E -06	1000	1.720E -05

Cmpd. no.	Name	Formul a	CAS	Mol. wt.	С	С	С	С	Т,К	Viscosi ty at T	Т,К	Viscosi ty at T
41	Butyl merca ptan	C ₄ H ₁₀ S	109- 79-5	90.187 2	5.4539 E-08	0.8889 6	43.687		157.46	3.833E -06	1000	2.427E -05
42	sec- Butyl merca ptan	C ₄ H ₁₀ S	513- 53-1	90.187 2	3.1378 E-08	0.9651			133.02	3.520E -06	1000	2.466E -05
43	1- Butyne	C ₄ H ₆	107- 00-6	54.090 44	2.7856 E-06	0.377	663.14		147.43	3.329E -06	800	1.893E -05
44	Butyral dehyde	C ₄ H ₈ O	123- 72-8	72.105 72	4.2200 E-05	0.1011 8	2840		176.80	4.175E -06	1000	2.211E -05
45	Butyric acid	C ₄ H ₈ O	107- 92-6	88.105 1	1.2566 E-08	1.0939			267.95	5.692E -06	1000	2.404E -05
46	Butyro nitrile	C ₄ H ₇ N	109- 74-0	69.105 1	1.8178 E-05	0.1751 3	2110.6		161.30	3.144E -06	1000	1.959E -05
47	Carbon dioxid e	CO ₂	124- 38-9	44.009 5	2.1480 E-06	0.46	290		194.67	9.749E -06	1500	5.203E -05
48	Carbon disulfi de	CS ₂	75-15- 0	76.140 7	5.8204 E-08	0.9262	44.581		161.11	5.048E -06	800	2.693E -05
49	Carbon monox ide	СО	630- 08-0	28.010 1	1.1127 E-06	0.5338	94.7		68.15	4.434E -06	1250	4.654E -05
50	Carbon tetrach loride	CCI ₄	56-23- 5	153.82 27	3.1370 E-06	0.3742	491.5		250.33	8.361E -06	1000	2.789E -05
51	Carbon tetrafl uoride	CF ₄	75-73- 0	88.004 3	2.1709 E-06	0.4585 3	208		89.56	5.132E -06	1000	4.267E -05
52	Chlorin e	Cl ₂	7782- 50-5	70.906	2.6000 E-07	0.7423	98.3		200.00	8.900E -06	1000	3.992E -05
53	Chloro benze ne	C ₆ H ₅ Cl	108- 90-7	112.55 69	1.0650 E-07	0.7942	94.7		227.95	5.611E -06	1000	2.348E -05
54	Chloro ethane	C ₂ H ₅ Cl	75-00- 3	64.514 1	3.5554 E-08	0.9845 5			136.75	4.506E -06	1000	3.195E -05
55	Chloro form	CHCl ₃	67-66- 3	119.37 764	1.6960 E-07	0.7693	96.6		209.63	7.091E -06	1000	3.143E -05
56	Chloro metha ne	CH ₃ Cl	74-87- 3	50.487 5	6.2860 E-08	0.907			175.43	6.820E -06	1000	3.307E -05

Cmpd. no.	Name	Formul a	CAS	Mol. wt.	С	С	С	С	Т,К	Viscosi ty at T	Т,К	Viscosi ty at T
57	1- Chloro propan e	C ₃ H ₇ Cl	540- 54-5	78.540 68	4.7100 E-08	0.911			150.35	4.533E -06	1000	2.547E -05
58	2- Chloro propan e	C ₃ H ₇ Cl	75-29- 6	78.540 68	3.8802 E-07	0.6367	205.08		155.97	4.175E -06	1000	2.618E -05
59	m- Cresol	C ₇ H ₈ O	108- 39-4	108.13 782	1.4427 E-07	0.7438	166.15		285.39	6.113E -06	1000	2.108E -05
60	o- Cresol	C ₇ H ₈ O	95-48- 7	108.13 782	8.7371 E-08	0.8077 5	98.538		304.19	6.687E -06	1000	2.108E -05
61	p- Cresol	C ₇ H ₈ O	106- 44-5	108.13 782	1.4305 E-07	0.7451	159.8		307.93	6.731E -06	1000	2.120E -05
62	Cumen e	C ₉ H ₁₂	98-82- 8	120.19 158	3.3699 E-07	0.6075 1	221.17		177.14	3.480E -06	1000	1.834E -05
63	Cyano gen	C ₂ N ₂	460- 19-5	52.034 8	3.7385 E-08	0.9843 3			245.25	8.411E -06	1000	3.355E -05
64	Cyclob utane	C ₄ H ₈	287- 23-0	56.106 32	1.0881 E-06	0.4835 9	330.86		182.48	4.797E -06	1000	2.308E -05
65	Cycloh exane	C ₆ H ₁₂	110- 82-7	84.159 48	6.7700 E-08	0.8367	36.7		279.69	6.671E -06	900	1.928E -05
66	Cycloh exanol	C ₆ H ₁₂	108- 93-0	100.15 888	7.9581 E-08	0.8376	104.97		296.60	6.917E -06	1000	2.346E -05
67	Cycloh exano ne	C ₆ H ₁₀ O	108- 94-1	98.143	5.2312 E-08	0.8942	58.008		242.00	5.714E -06	1000	2.381E -05
68	Cycloh exene	C ₆ H ₁₀	110- 83-8	82.143 6	1.3326 E-06	0.4537	445		169.67	3.778E -06	1000	2.118E -05
69	Cyclop entane	C ₅ H ₁₀	287- 92-3	70.132 9	2.3619 E-07	0.6746 5	139		179.28	4.409E -06	1000	2.191E -05
70	Cyclop entene	C ₅ H ₈	142- 29-0	68.117 02	3.0260 E-07	0.6499 1	167.14		138.13	3.369E -06	1000	2.309E -05
71	Cyclop ropane	C ₃ H ₆	75-19- 4	42.079 74	1.7578 E-06	0.4265	370.34		145.59	4.150E -06	1000	2.441E -05
72	Cycloh exyl merca ptan	C ₆ H ₁₂ S	1569- 69-3	116.22 448	3.9150 E-08	0.9142 7	22.264		189.64	4.238E -06	1000	2.118E -05

Cmpd. no.	Name	Formul a	CAS	Mol. wt.	С	С	С	С	Т,К	Viscosi ty at T	Т,К	Viscosi ty at T
73	Decan al	C ₁₀ H ₂₀ O	112- 31-2	156.26 52	3.5018 E-05	0.1172 5	3394.6		285.00	5.262E -06	1000	1.791E -05
74	Decan e	C ₁₀ H ₂₂	124- 18-5	142.28 168	2.6400 E-08	0.9487	71		243.51	3.755E -06	1000	1.729E -05
75	Decan oic acid	C ₁₀ H ₂₀ O ₂	334- 48-5	172.26 5	7.1748 E-08	0.7982	109.38		304.55	5.070E -06	1000	1.604E -05
76	1- Decan ol	C ₁₀ H ₂₂ 0	112- 30-1	158.28 108	5.5065 E-08	0.8341	79.56		280.05	4.715E -06	1000	1.622E -05
77	1- Decen e	C ₁₀ H ₂₀	872- 05-9	140.26 58	6.1192 E-08	0.8254 6	77.434		206.89	3.632E -06	1000	1.701E -05
78	Decyl merca ptan	C ₁₀ H ₂₂	143- 10-2	174.34 668	3.2720 E-08	0.9302	39.13		247.56	4.761E -06	1000	1.944E -05
79	1- Decyn e	C ₁₀ H ₁₈	764- 93-2	138.24 992	5.6914 E-07	0.5074 4	273.3		229.15	4.091E -06	1000	1.488E -05
80	Deuteri um	D ₂	7782- 39-0	4.0316	2.4999 E-07	0.6878	0.5962		60.00	4.137E -06	480	1.744E -05
81	1,1- Dibro moeth ane	C ₂ H ₄ B r ₂	557- 91-5	187.86 116	1.4125 E-07	0.8097	83.243		210.15	7.685E -06	1000	3.502E -05
82	1,2- Dibro moeth ane	C ₂ H ₄ B r ₂	106- 93-4	187.86 116	1.1379 E-07	0.8502	93.816		282.85	1.038E -05	1000	3.696E -05
83	Dibro momet hane	CH ₂ Br	74-95- 3	173.83 458	2.9444 E-07	0.728	154.74		370.10	1.538E -05	1000	3.895E -05
84	Dibutyl ether	C ₈ H ₁₈	142- 96-1	130.22 792	7.7147 E-08	0.7990 6	80.765		175.30	3.278E -06	1000	1.781E -05
85	m- Dichlor obenz ene	C ₆ H ₄ Cl	541- 73-1	147.00 196	2.3340 E-07	0.714	260		248.39	5.850E -06	1000	2.569E -05
86	o- Dichlor obenz ene	C ₆ H ₄ Cl	95-50- 1	147.00 196	1.6030 E-07	0.763	205		256.15	6.127E -06	1000	2.588E -05

Cmpd. no.	Name	Formul a	CAS	Mol. wt.	С	С	С	С	Т,К	Viscosi ty at T	Т,К	Viscosi ty at T
87	p- Dichlor obenz ene	C ₆ H ₄ Cl	106- 46-7	147.00 196	1.5913 E-07	0.7639	193.14		326.14	8.313E -06	1000	2.611E -05
88	1,1- Dichlor oethan e	C ₂ H ₄ Cl	75-34- 3	98.959 16	2.0135 E-07	0.7342 1	111.98		176.19	5.487E -06	1000	2.887E -05
89	1,2- Dichlor oethan e	C ₂ H ₄ Cl	107- 06-2	98.959 16	1.4321 E-07	0.7785	98.159		237.49	7.164E -06	1000	2.824E -05
90	Dichlor ometh ane	CH ₂ Cl ₂	75-09- 2	84.932 58	7.6787 E-07	0.5741	276.16		178.01	5.895E -06	1000	3.175E -05
91	1,1- Dichlor opropa ne	C ₃ H ₆ Cl	78-99- 9	112.98 574	1.4906 E-07	0.7617	105.9		200.00	5.515E -06	1000	2.599E -05
92	1,2- Dichlor opropa ne	C ₃ H ₆ Cl	78-87- 5	112.98 574	1.1989 E-07	0.7910 8	84.37		172.71	4.742E -06	1000	2.611E -05
93	Dietha nol amine	C ₄ H ₁₁ NO ₂	111- 42-2	105.13 564	3.3628 E-08	0.9426	39.587		301.15	6.450E -06	1000	2.176E -05
94	Diethyl amine	C ₄ H ₁₁	109- 89-7	73.136 84	4.3184 E-07	0.6035	247		223.35	5.364E -06	1000	2.239E -05
95	Diethyl ether	C ₄ H ₁₀	60-29- 7	74.121 6	1.9480 E-06	0.41	495.8		156.85	3.720E -06	1000	2.212E -05
96	Diethyl sulfide	C ₄ H ₁₀	352- 93-2	90.187 2	6.5492 E-08	0.8623 2	59.455		169.20	4.046E -06	1000	2.388E -05
97	1,1- Difluor oethan e	C ₂ H ₄ F	75-37- 6	66.049 97	2.7228 E-06	0.3953 1	445.07		154.56	5.148E -06	1000	2.891E -05
98	1,2- Difluor oethan e	C ₂ H ₄ F	624- 72-6	66.049 97	4.3934 E-07	0.6486 7	169.64		215.00	8.001E -06	1000	3.317E -05
99	Difluor ometh ane	CH ₂ F ₂	75-10- 5	52.023 39	7.7484 E-07	0.5797 8	198.7		136.95	5.478E -06	1000	3.547E -05

Cmpd. no.	Name	Formul a	CAS	Mol. wt.	С	С	С	С	Т,К	Viscosi ty at T	Т,К	Viscosi ty at T
100	Diisopr opyl amine	C ₆ H ₁₅ N	108- 18-9	101.19	4.1380 E-07	0.5999	269.5		357.05	8.016E -06	1000	2.055E -05
101	Diisopr opyl ether	C ₆ H ₁₄ O	108- 20-3	102.17 476	1.6910 E-07	0.7114	124		187.65	4.218E -06	1000	2.049E -05
102	Diisopr opyl ketone	C ₇ H ₁₄ 0	565- 80-0	114.18 546	9.2797 E-08	0.7819	93.399		204.81	4.089E -06	1000	1.881E -05
103	1,1- Dimeth oxyeth ane	C ₄ H ₁₀ O ₂	534- 15-6	90.121	4.4172 E-08	0.9109 8			159.95	4.497E -06	1000	2.388E -05
104	1,2- Dimeth oxypro pane	C ₅ H ₁₂ O ₂	7778- 85-0	104.14 758	3.9833 E-08	0.9156 6			226.10	5.701E -06	1000	2.224E -05
105	Dimeth yl acetyle ne	C ₄ H ₆	503- 17-3	54.090 44	1.9377 E-06	0.4093	492.69		240.91	6.006E -06	1000	2.194E -05
106	Dimeth yl amine	C ₂ H ₇ N	124- 40-3	45.083 68	2.7570 E-07	0.6841	133.2		180.96	5.563E -06	1000	2.744E -05
107	2,3- Dimeth ylbuta ne	C ₆ H ₁₄	79-29- 8	86.175 36	6.8567 E-07	0.5254 2	278.82		145.19	3.211E -06	1000	2.021E -05
108	1,1- Dimeth ylcyclo hexane	C ₈ H ₁₆	590- 66-9	112.21 264	7.8220 E-07	0.4994	371.6		392.70	7.936E -06	1000	1.796E -05
109	cis- 1,2- Dimeth ylcyclo hexane	C ₈ H ₁₆	2207- 01-4	112.21 264	8.4576 E-07	0.487	398		402.94	7.900E -06	1000	1.749E -05
110	trans- 1,2- Dimeth ylcyclo hexane	C ₈ H ₁₆	6876- 23-9	112.21 264	9.9104 E-07	0.4723	436.89		396.58	7.957E -06	1000	1.801E -05
111	Dimeth yl disulfi de	C ₂ H ₆ S	624- 92-0	94.199 04	3.2282 E-08	0.9774 2			188.44	5.405E -06	1000	2.762E -05

Cmpd. no.	Name	Formul a	CAS	Mol. wt.	С	С	С	С	Т,К	Viscosi ty at T	Т,К	Viscosi ty at T
112	Dimeth yl ether	C ₂ H ₆ O	115- 10-6	46.068 44	2.6800 E-06	0.3975	534		131.65	3.688E -06	1000	2.722E -05
113	N,N- Dimeth yl forma mide	C ₃ H ₇ N O	68-12- 2	73.093 78	3.5538 E-06	0.3766	1176.1		212.72	4.097E -06	1000	2.202E -05
114	2,3- Dimeth ylpent ane	C ₇ H ₁₆	565- 59-3	100.20 194	5.0372 E-07	0.5446 2	227.44		160.00	3.300E -06	1000	1.766E -05
115	Dimeth yl phthal ate	C ₁₀ H ₁₀ O ₄	131- 11-3	194.18 4	5.2195 E-08	0.8558 4	69.036		274.18	5.089E -06	1000	1.804E -05
116	Dimeth ylsilan e	C ₂ H ₈ Si	1111- 74-6	60.170 42	4.7238 E-08	0.9084 9			122.93	3.739E -06	1000	2.511E -05
117	Dimeth yl sulfide	C ₂ H ₆ S	75-18- 3	62.134	5.2854 E-07	0.6112	302.85		174.88	4.544E -06	1000	2.766E -05
118	Dimeth yl sulfoxi de	C ₂ H ₆ O S	67-68- 5	78.133 44	8.6101 E-08	0.8345	167.86		291.67	6.231E -06	1000	2.350E -05
119	Dimeth yl terepht halate	C ₁₀ H ₁₀ O ₄	120- 61-6	194.18 4	3.9554 E-08	0.8925 97			413.79	8.569E -06	1000	1.884E -05
120	1,4- Dioxan e	C ₄ H ₈ O	123- 91-1	88.105 12	2.7334 E-07	0.7393	129.93		284.95	1.226E -05	1000	3.995E -05
121	Diphen yl ether	C ₁₂ H ₁₀ 0	101- 84-8	170.20 72	2.8451 E-08	0.9362 2			300.03	5.933E -06	1000	1.831E -05
122	Diprop yl amine	C ₆ H ₁₅ N	142- 84-7	101.19	1.2900 E-07	0.744	117.03		210.15	4.429E -06	1000	1.970E -05
123	Dodec ane	C ₁₂ H ₂₆	112- 40-3	170.33 484	6.3440 E-08	0.8287	219.5		263.57	3.511E -06	1000	1.593E -05
124	Eicosa ne	C ₂₀ H ₄₂	112- 95-8	282.54 748	2.9236 E-07	0.6245 8	702.84		309.58	3.214E -06	1000	1.284E -05
125	Ethane	C ₂ H ₆	74-84- 0	30.069	2.5906 E-07	0.6798 8	98.902		90.35	2.643E -06	1000	2.583E -05

Cmpd. no.	Name	Formul a	CAS	Mol. wt.	С	С	С	С	Т,К	Viscosi ty at T	Т,К	Viscosi ty at T
126	Ethano I	C ₂ H ₆ O	64-17- 5	46.068 44	1.0613 E-07	0.8066	52.7		200.00	6.029E -06	1000	2.651E -05
127	Ethyl acetat e	C ₄ H ₈ O	141- 78-6	88.105 12	3.2140 E-06	0.3572	667		189.60	4.632E -06	1000	2.274E -05
128	Ethyl amine	C ₂ H ₇ N	75-04- 7	45.083 68	4.9340 E-07	0.5924	239.17		192.15	4.953E -06	1000	2.384E -05
129	Ethylb enzene	C ₈ H ₁₀	100- 41-4	106.16 5	4.2231 E-07	0.5815 4	239.21		178.20	3.673E -06	1000	1.893E -05
130	Ethyl benzo ate	C ₉ H ₁₀ O ₂	93-89- 0	150.17 45	6.3441 E-08	0.8369	73.63		238.45	4.733E -06	1000	1.915E -05
131	2-Ethyl butano ic acid	C ₆ H ₁₂ O ₂	88-09- 5	116.15 828	9.2371 E-08	0.7908	102.32		258.15	5.344E -06	1000	1.975E -05
132	Ethyl butyrat e	C ₆ H ₁₂ O ₂	105- 54-4	116.15 828	1.6175 E-07	0.7163	142.27	3590	175.15	3.392E -06	1000	1.989E -05
133	Ethylcy clohex ane	C ₈ H ₁₆	1678- 91-7	112.21 264	4.1070 E-07	0.5714 3	230.06		161.84	3.103E -06	1000	1.729E -05
134	Ethylcy clopen tane	C ₇ H ₁₄	1640- 89-7	98.186 06	2.1696 E-06	0.3812	577.77		134.71	2.659E -06	1000	1.914E -05
135	Ethyle ne	C ₂ H ₄	74-85- 1	28.053 16	2.0789 E-06	0.4163	352.7		169.41	5.714E -06	1000	2.726E -05
136	Ethyle nedia mine	C ₂ H ₈ N	107- 15-3	60.098 32	1.3744 E-07	0.7557	122.8		284.29	6.863E -06	1000	2.264E -05
137	Ethyle ne glycol	C ₂ H ₆ O	107- 21-1	62.067 84	8.6706 E-08	0.8392	75.512		260.15	7.150E -06	1000	2.655E -05
138	Ethyle neimin e	C ₂ H ₅ N	151- 56-4	43.067 8	2.8132 E-07	0.6792	238.46		329.00	8.359E -06	1000	2.477E -05
139	Ethyle ne oxide	C ₂ H ₄ O	75-21- 8	44.052 56	4.3403 E-08	0.9480 6			160.65	5.356E -06	1000	3.032E -05
140	Ethyl format e	C ₃ H ₆ O	109- 94-4	74.078 54	6.7610 E-07	0.5804	354.9		193.55	5.069E -06	1000	2.750E -05

Cmpd. no.	Name	Formul a	CAS	Mol. wt.	С	С	С	С	Т,К	Viscosi ty at T	Т,К	Viscosi ty at T
141	2-Ethyl hexan oic acid	C ₈ H ₁₆ O ₂	149- 57-5	144.21 1	2.5704 E-08	0.9473 8			155.15	3.058E -06	1000	1.787E -05
142	Ethylh exyl ether	C ₈ H ₁₈	5756- 43-4	130.22 792	7.9129 E-08	0.7956 5	83.193		180.00	3.371E -06	1000	1.781E -05
143	Ethylis opropy I ether	C ₅ H ₁₂ O	625- 54-7	88.148 18	1.3974 E-07	0.7426 6	98.58		140.00	3.219E -06	1000	2.150E -05
144	Ethylis opropy I ketone	C ₆ H ₁₂ O	565- 69-5	100.15 888	1.0498 E-07	0.7698 8	100.41		204.15	4.224E -06	1000	1.946E -05
145	Ethyl merca ptan	C ₂ H ₆ S	75-08- 1	62.134 04	8.5992 E-08	0.8427	58.148		125.26	3.441E -06	1000	2.742E -05
146	Ethyl propio nate	C ₅ H ₁₀ O ₂	105- 37-3	102.13 17	5.5300 E-07	0.6061	273.66		199.25	5.768E -06	1000	2.857E -05
147	Ethylpr opyl ether	C ₅ H ₁₂	628- 32-0	88.148 18	5.1539 E-07	0.5726	288.76		145.65	2.994E -06	1000	2.088E -05
148	Ethyltri chloro silane	C ₂ H ₅ Cl ₃ Si	115- 21-9	163.50 6	2.6635 E-05	0.1577 9	2173.5		167.55	4.277E -06	1000	2.496E -05
149	Fluorin e	F ₂	7782- 41-4	37.996 8064	6.3600 E-07	0.6638	61.6		53.48	4.148E -06	1000	5.873E -05
150	Fluoro benze ne	C ₆ H ₅ F	462- 06-6	96.102 3032	2.1174 E-07	0.7087	157.42		357.88	9.491E -06	1000	2.446E -05
151	Fluoro ethane	C ₂ H ₅ F	353- 36-6	48.059 5	4.0868 E-06	0.3552 6	651.07		129.95	3.832E -06	1000	2.880E -05
152	Fluoro metha ne	CH₃F	593- 53-3	34.032 92	3.9346 E-08	1.0027			131.35	5.237E -06	1000	4.009E -05
153	Formal dehyde	CH ₂ O	50-00- 0	30.025 98	1.5948 E-05	0.2151 6	1151.1		155.15	5.608E -06	1000	3.277E -05
154	Forma mide	CH ₃ NO	75-12- 7	45.040 62	6.8290 E-08	0.8774	54.864		275.60	7.882E -06	1000	2.776E -05
155	Formic acid	CH ₂ O ₂	64-18- 6	46.025 7	5.0702 E-08	0.9114			281.45	8.658E -06	1000	2.749E -05

Cmpd. no.	Name	Formul a	CAS	Mol. wt.	С	С	С	С	Т ,К	Viscosi ty at T	Т,К	Viscosi ty at T
156	Furan	C ₄ H ₄ O	110- 00-9	68.073 96	6.4320 E-07	0.5854	325.3		187.55	5.037E -06	1000	2.768E -05
157	Helium -4	Не	7440- 59-7	4.0026	3.2530 E-07	0.7162	-9.6	107	20.00	3.530E -06	2000	7.561E -05
158	Hepta decan e	C ₁₇ H ₃₆	629- 78-7	240.46 774	3.1338 E-07	0.6238	692.2		295.13	3.254E -06	1000	1.377E -05
159	Hepta nal	C ₇ H ₁₄ 0	111- 71-7	114.18 546	4.2392 E-05	0.1011	3420		229.80	4.625E -06	1000	1.928E -05
160	Hepta ne	C ₇ H ₁₆	142- 82-5	100.20 194	6.6720 E-08	0.8283 7	85.752		182.57	3.391E -06	1000	1.878E -05
161	Hepta noic acid	C ₇ H ₁₄ O ₂	111- 14-8	130.18 5	1.3633 E-08	1.0595			265.83	5.052E -06	1000	2.056E -05
162	1- Hepta nol	C ₇ H ₁₆ 0	111- 70-6	116.20 134	2.5720 E-07	0.6502	248.6		239.15	4.440E -06	1000	1.838E -05
163	2- Hepta nol	C ₇ H ₁₆ 0	543- 49-7	116.20 134	3.4649 E-05	0.1070 5	2900.7		220.00	4.351E -06	1000	1.861E -05
164	3- Hepta none	C ₇ H ₁₄ 0	106- 35-4	114.18 546	8.9656 E-08	0.7823 6	100.14		234.15	4.485E -06	1000	1.812E -05
165	2- Hepta none	C ₇ H ₁₄ 0	110- 43-0	114.18 546	8.8629 E-08	0.7837 6	100.18		238.15	4.550E -06	1000	1.809E -05
166	1- Hepte ne	C ₇ H ₁₄	592- 76-7	98.186 06	7.7509 E-08	0.8108 9	69.927		154.12	3.169E -06	1000	1.962E -05
167	Heptyl merca ptan	C ₇ H ₁₆ S	1639- 09-4	132.26 694	4.6970 E-08	0.8932	57.6		229.92	4.832E -06	1000	2.124E -05
168	1- Heptyn e	C ₇ H ₁₂	628- 71-7	96.170 18	5.9501 E-07	0.5275 8	274.02		192.22	3.932E -06	1000	1.787E -05
169	Hexad ecane	C ₁₆ H ₃₄	544- 76-3	226.44 116	1.2463 E-07	0.7322	395	6000	291.31	3.274E -06	1000	1.399E -05
170	Hexan al	C ₆ H ₁₂ O	66-25- 1	100.15 888	4.0986 E-05	0.1034 9	3180.6		214.93	4.523E -06	1000	2.004E -05
171	Hexan e	C ₆ H ₁₄	110- 54-3	86.175 36	1.7514 E-07	0.7073 7	157.14		177.83	3.631E -06	1000	2.005E -05

Cmpd. no.	Name	Formul a	CAS	Mol. wt.	С	С	С	С	Т,К	Viscosi ty at T	Т,К	Viscosi ty at T
172	Hexan oic acid	C ₆ H ₁₂ O ₂	142- 62-1	116.15 8	1.2145 E-08	1.0861			269.25	5.294E -06	1000	2.201E -05
173	1- Hexan ol	C ₆ H ₁₄ O	111- 27-3	102.17 476	1.5773 E-07	0.7189	163.3		228.55	4.567E -06	1000	1.945E -05
174	2- Hexan ol	C ₆ H ₁₄ O	626- 93-7	102.17 5	1.0652 E-07	0.7702 2	105.85		223.00	4.650E -06	1000	1.970E -05
175	2- Hexan one	C ₆ H ₁₂ O	591- 78-6	100.15 888	9.7820 E-08	0.7772	99.53		217.35	4.397E -06	1000	1.909E -05
176	3- Hexan one	C ₆ H ₁₂ O	589- 38-8	100.15 888	9.8882 E-08	0.7755	99.825		217.50	4.403E -06	1000	1.907E -05
177	1- Hexen e	C ₆ H ₁₂	592- 41-6	84.159 48	8.0060 E-08	0.8129 3	65.274		133.39	2.871E -06	1000	2.064E -05
178	3- Hexyn e	C ₆ H ₁₀	928- 49-4	82.143 6	5.2127 E-07	0.5444	237.01		170.05	3.567E -06	1000	1.811E -05
179	Hexyl merca ptan	C ₆ H ₁₄ S	111- 31-9	118.24 036	4.3636 E-08	0.9074 7	42.32		192.62	4.235E -06	1000	2.209E -05
180	1- Hexyn e	C ₆ H ₁₀	693- 02-7	82.143 6	2.9986 E-07	0.6264 7	178.17		141.25	2.947E -06	1000	1.928E -05
181	2- Hexyn e	C ₆ H ₁₀	764- 35-2	82.143 6	5.5562 E-07	0.5337	244.38		183.65	3.851E -06	1000	1.782E -05
182	Hydraz ine	H ₄ N ₂	302- 01-2	32.045 16	2.3489 E-07	0.7151	205.05		274.69	7.460E -06	1673.1 5	4.225E -05
183	Hydrog en	H ₂	1333- 74-0	2.0158 8	1.7970 E-07	0.685	-0.59	140	13.95	6.517E -07	3000	4.330E -05
184	Hydrog en bromid e	BrH	10035- 10-6	80.911 94	9.1700 E-08	0.9273			206.45	1.285E -05	800	4.512E -05
185	Hydrog en chlorid e	CIH	7647- 01-0	36.460 94	4.9240 E-07	0.6702	157.7		200.00	9.594E -06	1000	4.358E -05

Cmpd. no.	Name	Formul a	CAS	Mol. wt.	С	С	С	С	Т,К	Viscosi ty at T	Т,К	Viscosi ty at T
186	Hydrog en cyanid e	CHN	74-90- 8	27.025 34	1.2780 E-08	1.0631	340		300.00	2.576E -06	425	4.421E -06
187	Hydrog en fluorid e	FH	7664- 39-3	20.006 3432	4.5101 E-14	3.0005	-521.8 3	76,111	285.50	9.931E -06	472.68	2.019E -05
188	Hydrog en sulfide	H ₂ S	7783- 06-4	34.080 88	3.9314 E-08	1.0134			250.00	1.058E -05	480	2.050E -05
189	Isobut yric acid	C ₄ H ₈ O	79-31- 2	88.105 12	1.1202 E-07	0.7822	100.3		227.15	5.415E -06	1000	2.261E -05
190	Isopro pyl amine	C ₃ H ₉ N	75-31- 0	59.110 26	5.2542 E-08	0.8806 3			177.95	5.037E -06	1000	2.304E -05
191	Maloni c acid	C ₃ H ₄ O	141- 82-2	104.06 146	6.7978 E-05	0.0927 66	4637.3		409.15	9.629E -06	1000	2.289E -05
192	Metha crylic acid	C ₄ H ₆ O	79-41- 4	86.089 24	9.1130 E-08	0.8222	93.57		288.15	7.242E -06	1000	2.440E -05
193	Metha ne	CH ₄	74-82- 8	16.042 5	5.2546 E-07	0.5900 6	105.67		90.69	3.470E -06	1000	2.800E -05
194	Metha nol	CH ₄ O	67-56- 1	32.041 86	3.0663 E-07	0.6965 5	205		240.00	7.523E -06	1000	3.128E -05
195	N- Methyl aceta mide	C ₃ H ₇ N O	79-16- 3	73.093 78	8.0599 E-08	0.8392	77.332		301.15	7.714E -06	1000	2.464E -05
196	Methyl acetat e	C ₃ H ₆ O	79-20- 9	74.078 54	1.3226 E-06	0.4885	504.3		250.00	6.505E -06	800	2.125E -05
197	Methyl acetyle ne	C ₃ H ₄	74-99- 7	40.063 86	1.1630 E-06	0.4787	316		170.45	4.769E -06	800	2.045E -05
198	Methyl acrylat e	C ₄ H ₆ O	96-33- 3	86.089 24	1.6480 E-06	0.4444	510.66		196.32	4.781E -06	1000	2.350E -05
199	Methyl amine	CH ₅ N	74-89- 5	31.057 1	5.6409 E-07	0.5863	231.9		179.69	5.167E -06	1000	2.628E -05

Cmpd. no.	Name	Formul a	CAS	Mol. wt.	С	С	С	С	Т,К	Viscosi ty at T	Т,К	Viscosi ty at T
200	Methyl benzo ate	C ₈ H ₈ O	93-58- 3	136.14 792	7.4106 E-08	0.8243 6	83.086		260.75	5.515E -06	1000	2.034E -05
201	3- Methyl -1,2- butadi ene	C ₅ H ₈	598- 25-4	68.117 02	4.0824 E-07	0.5923	208.22		159.53	3.572E -06	1000	2.021E -05
202	2- Methyl butane	C ₅ H ₁₂	78-78- 4	72.148 78	2.4344 E-08	0.9737 6	-91.59 7	18,720	150.00	2.621E -06	1000	2.190E -05
203	2- Methyl butano ic acid	C ₅ H ₁₀ O ₂	116- 53-0	102.13 17	1.8690 E-07	0.7096	192		450.15	1.000E -05	1000	2.109E -05
204	3- Methyl -1- butano	C ₅ H ₁₂	123- 51-3	88.148 2	8.9348 E-08	0.8019 7	77.653		155.95	3.422E -06	1000	2.111E -05
205	2- Methyl -1- butene	C ₅ H ₁₀	563- 46-2	70.132 9	5.0602 E-07	0.5525 8	199.82		135.58	3.083E -06	1000	1.918E -05
206	2- Methyl -2- butene	C ₅ H ₁₀	513- 35-9	70.132 9	8.5423 E-07	0.4738 9	239.34		139.39	3.263E -06	1000	1.820E -05
207	2- Methyl -1- butene -3-yne	C ₅ H ₆	78-80- 8	66.101 14	5.6844 E-07	0.553	227.18		160.15	3.893E -06	1000	2.112E -05
208	Methyl butyl ether	C ₅ H ₁₂ 0	628- 28-4	88.148 18	3.9342 E-08	0.9108 6			157.48	3.947E -06	1000	2.125E -05
209	Methyl butyl sulfide	C ₅ H ₁₂ S	628- 29-5	104.21 4	4.9950 E-08	0.8947 9	44.662		175.30	4.052E -06	1000	2.312E -05
210	3- Methyl -1- butyne	C ₅ H ₈	598- 23-2	68.117 02	4.0748 E-08	0.9270 9			183.45	5.112E -06	1000	2.463E -05
211	Methyl butyrat e	C ₅ H ₁₀ O ₂	623- 42-7	102.13 17	3.7330 E-07	0.6177	256.5		187.35	3.993E -06	1000	2.118E -05

Cmpd. no.	Name	Formul a	CAS	Mol. wt.	С	С	С	С	Т,К	Viscosi ty at T	т,к	Viscosi ty at T
212	Methyl chloro silane	CH ₅ Cl Si	993- 00-0	80.588 9	4.8806 E-08	0.9254 9			139.05	4.698E -06	1000	2.917E -05
213	Methyl cycloh exane	C ₇ H ₁₄	108- 87-2	98.186 06	6.5281 E-07	0.5294	310.59		146.58	2.934E -06	1000	1.930E -05
214	1- Methyl cycloh exanol	C ₇ H ₁₄ O	590- 67-0	114.18 546	8.5736 E-08	0.8027 7	100.77		299.15	6.232E -06	1000	1.994E -05
215	cis-2- Methyl cycloh exanol	C ₇ H ₁₄ O	7443- 70-1	114.18 546	2.4000 E-07	0.68	210		280.15	6.331E -06	1000	2.175E -05
216	trans- 2- Methyl cycloh exanol	C ₇ H ₁₄ O	7443- 52-9	114.18 546	2.0000 E-07	0.704	187		269.15	6.062E -06	1000	2.181E -05
217	Methyl cyclop entane	C ₆ H ₁₂	96-37- 7	84.159 48	9.0798 E-07	0.495	355.89		130.73	2.722E -06	1000	2.046E -05
218	1- Methyl cyclop entene	C ₆ H ₁₀	693- 89-0	82.143 6	3.7026 E-08	0.9284 9			146.62	3.800E -06	1000	2.259E -05
219	3- Methyl cyclop entene	C ₆ H ₁₀	1120- 62-3	82.143 6	3.9771 E-08	0.9224 2			115.00	3.165E -06	1000	2.327E -05
220	Methyl dichlor osilan e	CH ₄ Cl ₂ Si	75-54- 7	115.03 396	1.9770 E-07	0.7453	131.22		182.55	5.574E -06	1000	3.009E -05
221	Methyl ethyl ether	C ₃ H ₈ O	540- 67-0	60.095 02	2.6098 E-07	0.6827 6	133.4		160.00	4.551E -06	1000	2.573E -05
222	Methyl ethyl ketone	C ₄ H ₈ O	78-93- 3	72.105 72	2.6552 E-08	0.9831 6			186.48	4.534E -06	1000	2.364E -05
223	Methyl ethyl sulfide	C ₃ H ₈ S	624- 89-5	76.160 6	8.6219 E-08	0.8359 1	72.564		167.23	4.341E -06	1000	2.588E -05
224	Methyl format e	C ₂ H ₄ O	107- 31-3	60.051 96	6.9755 E-06	0.3154	1034.5		174.15	5.117E -06	1000	3.029E -05

Cmpd. no.	Name	Formul a	CAS	Mol. wt.	С	С	С	С	Т,К	Viscosi ty at T	Т,К	Viscosi ty at T
225	Methyl isobut yl ether	C ₅ H ₁₂ O	625- 44-5	88.148 18	1.5035 E-07	0.7338	108.5		150.00	3.448E -06	1000	2.157E -05
226	Methyl isobut yl ketone	C ₆ H ₁₂ O	108- 10-1	100.15 888	9.4257 E-08	0.7845	90.183		189.15	3.901E -06	1000	1.951E -05
227	Methyl Isocya nate	C ₂ H ₃ N O	624- 83-9	57.051 32	3.1573 E-07	0.6640 4	173.59		256.15	7.481E -06	1000	2.642E -05
228	Methyl isopro pyl ether	C ₄ H ₁₀ O	598- 53-8	74.121 6	1.9250 E-07	0.7091	109		127.93	3.242E -06	1000	2.327E -05
229	Methyl isopro pyl ketone	C ₅ H ₁₀ O	563- 80-4	86.132 3	1.0826 E-07	0.7738 2	93.349		180.15	3.968E -06	1000	2.076E -05
230	Methyl isopro pyl sulfide	C ₄ H ₁₀ S	1551- 21-9	90.187 2	8.6077 E-08	0.8166 9	71.294		171.64	4.065E -06	1000	2.265E -05
231	Methyl merca ptan	CH ₄ S	74-93- 1	48.107 46	1.6370 E-07	0.7670 6	107.97		150.18	4.450E -06	1000	2.956E -05
232	Methyl metha crylate	C ₅ H ₈ O	80-62- 6	100.11 582	4.8890 E-07	0.6096	342.23		224.95	5.265E -06	1000	2.456E -05
233	2- Methyl octano ic acid	C ₉ H ₁₈ O ₂	3004- 93-1	158.23 802	7.2131 E-08	0.8031 9	99.437		240.00	4.162E -06	1000	1.685E -05
234	2- Methyl pentan e	C ₆ H ₁₄	107- 83-5	86.175 36	1.1164 E-06	0.4537	374.74		119.55	2.366E -06	1000	1.865E -05
235	Methyl pentyl ether	C ₆ H ₁₄ 0	628- 80-8	102.17 476	1.0546 E-07	0.7710 6	93.745		176.00	3.707E -06	1000	1.983E -05
236	2- Methyl propan e	C ₄ H ₁₀	75-28- 5	58.122 2	1.0871 E-07	0.7813 5	70.639		150.00	3.707E -06	1000	2.242E -05

Cmpd. no.	Name	Formul a	CAS	Mol. wt.	С	С	С	С	Т,К	Viscosi ty at T	Т,К	Viscosi ty at T
237	2- Methyl -2- propan ol	C ₄ H ₁₀	75-65- 0	74.121 6	9.6050 E-07	0.4856	381		298.97	6.727E -06	600	1.312E -05
238	2- Methyl propen e	C ₄ H ₈	115- 11-7	56.106 32	9.0981 E-07	0.4928 8	260.08		132.81	3.423E -06	1000	2.174E -05
239	Methyl propio nate	C ₄ H ₈ O	554- 12-1	88.105 12	3.5642 E-07	0.6327	232.2		185.65	4.316E -06	1000	2.288E -05
240	Methyl propyl ether	C ₄ H ₁₀	557- 17-5	74.121 6	4.4941 E-08	0.9019 9			133.97	3.725E -06	1000	2.284E -05
241	Methyl propyl sulfide	C ₄ H ₁₀ S	3877- 15-4	90.187 2	5.8223 E-08	0.8805 7	48.298		160.17	3.908E -06	1000	2.434E -05
242	Methyl silane	CH ₆ Si	992- 94-9	46.143 84	3.8926 E-07	0.6315 9	169.45		116.34	3.196E -06	1000	2.612E -05
243	alpha- Methyl styren e	C ₉ H ₁₀	98-83- 9	118.17 57	7.1455 E-07	0.4983 2	303.31		249.95	5.057E -06	1000	1.714E -05
244	Methyl tert- butyl ether	C ₅ H ₁₂ O	1634- 04-4	88.148 2	1.5779 E-07	0.7322 4	112.15		164.55	3.938E -06	1000	2.232E -05
245	Methyl vinyl ether	C ₃ H ₆ O	107- 25-5	58.079 14	7.6460 E-07	0.5476	284		278.65	8.264E -06	1000	2.616E -05
246	Napht halene	C ₁₀ H ₈	91-20- 3	128.17 052	6.4318 E-07	0.5389	400.16		353.43	7.125E -06	1000	1.900E -05
247	Neon	Ne	7440- 01-9	20.179 7	7.1900 E-07	0.6659	5.3		30.00	5.884E -06	3273.1	1.573E -04
248	Nitroet hane	C ₂ H ₅ N O ₂	79-24- 3	75.066 6	2.4391 E-07	0.702	280		183.63	3.752E -06	1000	2.432E -05
249	Nitrog en	N ₂	7727- 37-9	28.013 4	6.5592 E-07	0.6081	54.714		63.15	4.372E -06	1970	6.432E -05
250	Nitrog en trifluor ide	F ₃ N	7783- 54-2	71.001 91	8.2005 E-07	0.6142	114.58		66.46	3.964E -06	1000	5.122E -05

Cmpd. no.	Name	Formul a	CAS	Mol. wt.	С	С	С	С	Т,К	Viscosi ty at T	Т,К	Viscosi ty at T
251	Nitrom ethane	CH ₃ NO	75-52- 5	61.040 02	4.0700 E-07	0.6485	367.5		244.60	5.756E -06	1000	2.625E -05
252	Nitrou s oxide	N ₂ O	10024- 97-2	44.012 8	2.1150 E-06	0.4642	305.7		182.30	8.854E -06	1000	4.000E -05
253	Nitric oxide	NO	10102- 43-9	30.006 1	1.4670 E-06	0.5123	125.4		110.00	7.618E -06	1500	5.737E -05
254	Nonad ecane	C ₁₉ H ₄₀	629- 92-5	268.52 09	3.0465 E-07	0.6221 8	705.34		305.04	3.231E -06	1000	1.314E -05
255	Nonan al	C ₉ H ₁₈	124- 19-6	142.23 862	3.8518 E-05	0.1086 7	3502.7		267.30	5.013E -06	1000	1.812E -05
256	Nonan e	C ₉ H ₂₀	111- 84-2	128.25 51	1.0344 E-07	0.7730 1	220.47		219.66	3.335E -06	1000	1.767E -05
257	Nonan oic acid	C ₉ H ₁₈ O ₂	112- 05-0	158.23 8	1.8105 E-08	0.9966 8			285.55	5.074E -06	1000	1.769E -05
258	1- Nonan ol	C ₉ H ₂₀ O	143- 08-8	144.25 45	1.2000 E-07	0.74	180		268.15	4.499E -06	1000	1.688E -05
259	2- Nonan ol	C ₉ H ₂₀ O	628- 99-9	144.25 5	3.5879 E-05	0.1010 9	3258.2		238.15	4.250E -06	1000	1.694E -05
260	1- Nonen e	C ₉ H ₁₈	124- 11-8	126.23 922	6.6329 E-08	0.8202 7	76.204		191.91	3.542E -06	1000	1.781E -05
261	Nonyl merca ptan	C ₉ H ₂₀ S	1455- 21-6	160.32 01	3.8673 E-08	0.9114 2	50.646		253.05	4.995E -06	1000	1.996E -05
262	1- Nonyn e	C ₉ H ₁₆	3452- 09-3	124.22 334	6.1447 E-07	0.5070 5	287.19		223.15	4.170E -06	1000	1.585E -05
263	Octade cane	C ₁₈ H ₃₈	593- 45-3	254.49 432	3.2095 E-07	0.6183 9	709.09		301.31	3.266E -06	1000	1.345E -05
264	Octana I	C ₈ H ₁₆ O	124- 13-0	128.21 2	3.9500 E-05	0.1078 7	3390		251.65	4.955E -06	1000	1.896E -05
265	Octane	C ₈ H ₁₈	111- 65-9	114.22 852	3.1191 E-08	0.9292 5	55.092		216.38	3.677E -06	1000	1.813E -05
266	Octano ic acid	C ₈ H ₁₆ O ₂	124- 07-2	144.21 1	1.5557 E-08	1.0299			289.65	5.338E -06	1000	1.913E -05

Cmpd. no.	Name	Formul a	CAS	Mol. wt.	С	С	С	С	Т,К	Viscosi ty at T	Т,К	Viscosi ty at T
267	1- Octano	C ₈ H ₁₈	111- 87-5	130.22 792	1.7520 E-07	0.6941	206.8		257.65	4.583E -06	1000	1.755E -05
268	2- Octano	C ₈ H ₁₈	123- 96-6	130.22 8	3.4163 E-05	0.1066 1	3028		241.55	4.530E -06	1000	1.771E -05
269	2- Octano ne	C ₈ H ₁₆	111- 13-7	128.21 204	8.0901 E-08	0.7906 2	99.338		252.85	4.611E -06	1000	1.733E -05
270	3- Octano ne	C ₈ H ₁₆	106- 68-3	128.21 204	6.1515 E-11	1.8808			255.55	2.075E -06	1000	2.700E -05
271	1- Octene	C ₈ H ₁₆	111- 66-0	112.21 264	5.0324 E-05	0.0776 11	3604.6		171.45	3.406E -06	1000	1.868E -05
272	Octyl merca ptan	C ₈ H ₁₈	111- 88-6	146.29 352	3.3253 E-08	0.9351	32.426		223.95	4.579E -06	1000	2.057E -05
273	1- Octyne	C ₈ H ₁₄	629- 05-0	110.19 676	5.7084 E-07	0.5244 6	271.76		193.55	3.757E -06	1000	1.681E -05
274	Oxalic acid	C ₂ H ₂ O	144- 62-7	90.034 88	6.3032 E-05	0.1048 7	4210.1		462.65	1.188E -05	1000	2.496E -05
275	Oxyge n	02	7782- 44-7	31.998 8	1.1010 E-06	0.5634	96.3		54.35	3.773E -06	1500	6.371E -05
276	Ozone	03	10028- 15-6	47.998 2	1.1960 E-07	0.8479 7			80.15	4.922E -06	1000	4.184E -05
277	Pentad ecane	C ₁₅ H ₃₂	629- 62-9	212.41 458	4.0828 E-08	0.8766	212.68		283.07	3.288E -06	1000	1.436E -05
278	Pentan al	C ₅ H ₁₀ O	110- 62-3	86.132 3	4.3300 E-05	0.0986 76	3090		191.59	4.246E -06	1000	2.093E -05
279	Pentan e	C ₅ H ₁₂	109- 66-0	72.148 78	6.3412 E-08	0.8475 8	41.718		143.42	3.305E -06	1000	2.124E -05
280	Pentan oic acid	C ₅ H ₁₀ O ₂	109- 52-4	102.13 2	1.0971 E-08	1.11			239.15	4.793E -06	1000	2.346E -05
281	1- Pentan ol	C ₅ H ₁₂ O	71-41- 0	88.148 2	1.8903 E-07	0.7031	175.9		410.95	9.111E -06	1000	2.068E -05
282	2- Pentan ol	C ₅ H ₁₂ O	6032- 29-7	88.148 2	1.1749 E-07	0.7649	103.78		200.00	4.452E -06	1000	2.098E -05

Cmpd. no.	Name	Formul a	CAS	Mol. wt.	С	С	С	С	Т,К	Viscosi ty at T	Т,К	Viscosi ty at T
283	2- Pentan one	C ₅ H ₁₀	107- 87-9	86.132 3	2.4630 E-07	0.6653	208.7		196.29	4.003E -06	1000	2.019E -05
284	3- Pentan one	C ₅ H ₁₀ O	96-22- 0	86.132 3	1.1640 E-07	0.7615	107.94		234.18	5.079E -06	1000	2.023E -05
285	1- Penten e	C ₅ H ₁₀	109- 67-1	70.132 9	1.6378 E-06	0.4433 7	636.11	- 26,218	108.02	2.813E -06	1000	2.176E -05
286	2- Pentyl merca ptan	C ₅ H ₁₂ S	2084- 19-7	104.21 378	8.8646 E-08	0.8149 2	85.198		160.75	3.638E -06	1000	2.275E -05
287	Pentyl merca ptan	C ₅ H ₁₂ S	110- 66-7	104.21 378	2.7467 E-08	0.9755 5			197.45	4.766E -06	1000	2.320E -05
288	1- Pentyn e	C ₅ H ₈	627- 19-0	68.117 02	4.1022 E-08	0.9058 5			167.45	4.242E -06	1000	2.141E -05
289	2- Pentyn e	C ₅ H ₈	627- 21-4	68.117 02	5.7650 E-07	0.5349 8	235.2		163.83	3.621E -06	1000	1.879E -05
290	Phena nthren e	C ₁₄ H ₁₀	85-01- 8	178.22 92	4.3478 E-07	0.5272	238.27		372.38	6.010E -06	1000	1.340E -05
291	Phenol	C ₆ H ₆ O	108- 95-2	94.111 24	1.0094 E-07	0.799	103.1		314.06	7.514E -06	1000	2.283E -05
292	Phenyl isocya nate	C ₇ H ₅ N O	103- 71-9	119.12 07	8.5360 E-08	0.8087	88.273		243.15	5.324E -06	1000	2.093E -05
293	Phthali c anhydr ide	C ₈ H ₄ O	85-44- 9	148.11 556	4.3511 E-08	0.908	102.73		404.15	8.072E -06	1000	2.090E -05
294	Propad iene	C ₃ H ₄	463- 49-0	40.063 86	6.0758 E-07	0.5384 5	173.45		136.87	3.788E -06	1000	2.135E -05
295	Propan e	C ₃ H ₈	74-98- 6	44.095 62	4.9054 E-08	0.9012 5			85.47	2.702E -06	1000	2.480E -05
296	1- Propan ol	C ₃ H ₈ O	71-23- 8	60.095 02	7.9420 E-07	0.5491	415.8		200.00	4.732E -06	1000	2.490E -05
297	2- Propan ol	C ₃ H ₈ O	67-63- 0	60.095	1.2003 E-06	0.494	479.78		187.35	4.471E -06	1000	2.461E -05

Cmpd. no.	Name	Formul a	CAS	Mol. wt.	С	С	С	С	Т,К	Viscosi ty at T	Т,К	Viscosi ty at T
298	Propen ylcyclo hexene	C ₉ H ₁₄	13511- 13-2	122.20 746	5.4749 E-07	0.5389 3	283.52		199.00	3.914E -06	1000	1.765E -05
299	Propio naldeh yde	C ₃ H ₆ O	123- 38-6	58.079 14	3.8397 E-05	0.1082 1	2510.9		165.00	4.114E -06	1000	2.309E -05
300	Propio nic acid	C ₃ H ₆ O	79-09- 4	74.078 5	1.4807 E-08	1.0733			252.45	5.607E -06	1000	2.457E -05
301	Propio nitrile	C ₃ H ₅ N	107- 12-0	55.078 5	9.6891 E-06	0.2460 1	1537.6		180.37	3.652E -06	1000	2.089E -05
302	Propyl acetat e	C ₅ H ₁₀ O ₂	109- 60-4	102.13 17	2.1372 E-07	0.6894	178.57		178.15	3.802E -06	1000	2.122E -05
303	Propyl amine	C ₃ H ₉ N	107- 10-8	59.110 26	1.6200 E-07	0.7285	117		188.36	4.540E -06	1000	2.223E -05
304	Propyl benze ne	C ₉ H ₁₂	103- 65-1	120.19 158	3.0387 E-07	0.6194 5	210.35		173.55	3.350E -06	1000	1.812E -05
305	Propyl ene	C ₃ H ₆	115- 07-1	42.079 74	7.3919 E-07	0.5423	263.73		87.89	2.093E -06	1000	2.477E -05
306	Propyl format e	C ₄ H ₈ O	110- 74-7	88.105 12	6.0741 E-07	0.5863	367.29		180.25	4.203E -06	1000	2.550E -05
307	2- Propyl merca ptan	C ₃ H ₈ S	75-33- 2	76.160 62	3.5532 E-08	0.9565 4			142.61	4.085E -06	1000	2.632E -05
308	Propyl merca ptan	C ₃ H ₈ S	107- 03-9	76.160 62	7.9457 E-08	0.8465 6	65.878		159.95	4.132E -06	1000	2.583E -05
309	1,2- Propyl ene glycol	C ₃ H ₈ O	57-55- 6	76.094 42	4.5430 E-08	0.9173	61		213.15	4.832E -06	1000	2.418E -05
310	Quinon e	C ₆ H ₄ O	106- 51-4	108.09 476	1.1085 E-07	0.8008	152.51		388.85	9.439E -06	1000	2.429E -05
311	Silicon tetrafl uoride	F ₄ Si	7783- 61-1	104.07 911	2.1671 E-07	0.7675 7	16.28		250.00	1.410E -05	500	2.475E -05
312	Styren e	C ₈ H ₈	100- 42-5	104.14 912	6.3863 E-07	0.5254	295.1		242.54	5.158E -06	1000	1.858E -05

Cmpd. no.	Name	Formul a	CAS	Mol. wt.	С	С	С	С	Т,К	Viscosi ty at T	Т,К	Viscosi ty at T
313	Succin ic acid	C ₄ H ₆ O	110- 15-6	118.08 804	5.7821 E-05	0.0994 67	4409.6		460.85	1.007E -05	1000	2.125E -05
314	Sulfur dioxid e	028	7446- 09-5	64.063 8	6.8630 E-07	0.6112	217		197.67	8.280E -06	1000	3.844E -05
315	Sulfur hexafl uoride	F ₆ S	2551- 62-4	146.05 54192	5.3986 E-07	0.6349	34.5	19,000	205.15	9.790E -06	5000	1.195E -04
316	Sulfur trioxid e	038	7446- 11-9	80.063 2	3.9067 E-06	0.3845	470.1		297.93	1.355E -05	694.19	2.883E -05
317	Tereph thalic acid	C ₈ H ₆ O	100- 21-0	166.13 084	3.9218 E-05	0.1258 9	3861.1		700.15	1.373E -05	1000	1.925E -05
318	o- Terphe nyl	C ₁₈ H ₁₄	84-15- 1	230.30 376	7.0859 E-07	0.5197 1	652.24		329.35	4.837E -06	1000	1.554E -05
319	Tetrad ecane	C ₁₄ H ₃₀	629- 59-4	198.38 8	5.1567 E-09	1.1561			279.01	3.465E -06	1000	1.516E -05
320	Tetrah ydrofur an	C ₄ H ₈ O	109- 99-9	72.105 72	3.7780 E-07	0.6533	271.01		164.65	4.006E -06	1000	2.710E -05
321	1,2,3,4- Tetrah ydrona phthal ene	C ₁₀ H ₁₂	119- 64-2	132.20 228	5.0784 E-07	0.5614	328.55		237.38	4.592E -06	1000	1.847E -05
322	Tetrah ydrothi ophen e	C ₄ H ₈ S	110- 01-0	88.171 32	8.5988 E-08	0.8284 1	68.172		176.99	4.520E -06	1000	2.461E -05
323	2,2,3,3- Tetra methyl butane	C ₈ H ₁₈	594- 82-1	114.22 852	8.1458 E-07	0.5025 7	380.29		373.96	7.930E -06	1000	1.900E -05
324	Thioph ene	C ₄ H ₄ S	110- 02-1	84.139 56	1.0300 E-06	0.5497	569.4		234.94	6.049E -06	1000	2.926E -05
325	Toluen e	C ₇ H ₈	108- 88-3	92.138 42	8.7268 E-07	0.4939 7	323.79		178.18	4.008E -06	1000	2.000E -05
326	1,1,2- Trichlo roetha ne	C ₂ H ₃ Cl	79-00- 5	133.40 422	2.7081 E-07	0.6955	187.93		236.50	6.756E -06	1000	2.782E -05

Cmpd. no.	Name	Formul a	CAS	Mol. wt.	С	С	С	С	Т,К	Viscosi ty at T	Т,К	Viscosi ty at T
327	Tridec ane	C ₁₃ H ₂₈	629- 50-5	184.36 142	3.5585 E-08	0.8987	165.3		267.76	3.344E -06	1000	1.517E -05
328	Triethy I amine	C ₆ H ₁₅ N	121- 44-8	101.19	2.4110 E-07	0.6845	223		158.45	3.210E -06	1000	2.230E -05
329	Trimet hyl amine	C ₃ H ₉ N	75-50- 3	59.110 26	1.2434 E-06	0.4832	447.7		156.08	3.689E -06	1000	2.418E -05
330	1,2,3- Trimet hylben zene	C ₉ H ₁₂	526- 73-8	120.19 158	7.8498 E-07	0.4985 5	362.79		247.79	4.975E -06	1000	1.803E -05
331	1,2,4- Trimet hylben zene	C ₉ H ₁₂	95-63- 6	120.19 158	6.8812 E-07	0.5106 3	330.88		229.33	4.520E -06	1000	1.760E -05
332	2,2,4- Trimet hylpen tane	C ₈ H ₁₈	540- 84-1	114.22 852	1.1070 E-07	0.746	72.4		165.78	3.488E -06	1000	1.786E -05
333	2,3,3- Trimet hylpen tane	C ₈ H ₁₈	560- 21-4	114.22 852	8.2418 E-07	0.4931	371.44		387.91	7.958E -06	1000	1.812E -05
334	1,3,5- Trinitr obenz ene	C ₆ H ₃ N ₃ O ₆	99-35- 4	213.10 452	3.4066 E-08	0.9525 2	43.528		398.40	9.208E -06	1000	2.352E -05
335	2,4,6- Trinitr otolue ne	C ₇ H ₅ N ₃ O ₆	118- 96-7	227.13 11	2.8471 E-08	0.9657 1	30.83		354.00	7.581E -06	1000	2.179E -05
336	Undec ane	C ₁₁ H ₂₄	1120- 21-4	156.30 826	3.5940 E-08	0.9052	125		247.57	3.506E -06	1000	1.660E -05
337	1- Undec anol	C ₁₁ H ₂₄ 0	112- 42-5	172.30 766	5.9537 E-08	0.8184 2	90.245		288.45	4.677E -06	1000	1.558E -05
338	Vinyl acetat e	C ₄ H ₆ O	108- 05-4	86.089 24	1.3880 E-07	0.7599	98		180.35	4.659E -06	1000	2.407E -05
339	Vinyl acetyle ne	C ₄ H ₄	689- 97-4	52.074 56	6.7484 E-07	0.5304	230.17		173.15	4.459E -06	1000	2.140E -05

Cmpd. no.	Name	Formul a	CAS	Mol. wt.	С	С	С	С	Т,К	Viscosi ty at T	Т,К	Viscosi ty at T
340	Vinyl chlorid e	C ₂ H ₃ Cl	75-01- 4	62.498 22	2.3790 E-07	0.7151 7	102.84		119.36	3.907E -06	1000	3.016E -05
341	Vinyl trichlor osilan e	C ₂ H ₃ Cl ₃ Si	75-94- 5	161.48 972	3.6429 E-08	0.9592 4			178.35	5.260E -06	1000	2.749E -05
342	Water	H ₂ 0	7732- 18-5	18.015 28	1.7096 E-08	1.1146			273.16	8.882E -06	1073.1 5	4.082E -05
343	<i>m</i> - Xylene	C ₈ H ₁₀	108- 38-3	106.16 5	6.8293 E-07	0.5219 9	324.17		225.30	4.735E -06	1000	1.898E -05
344	o- Xylene	C ₈ H ₁₀	95-47- 6	106.16 5	8.3436 E-07	0.4971 3	365.86		247.98	5.225E -06	1000	1.894E -05
345	<i>p</i> - Xylene	C ₈ H ₁₀	106- 42-3	106.16 5	9.3485 E-07	0.4768 3	371.96		286.41	6.037E -06	1000	1.836E -05

The vapor viscosity is calculated by

$$\mu = C_1 T^{C_2} / (1 + C_3 / T + C_4 / T^2)$$

where μ is the viscosity in Pa·s and T is the temperature in K. Viscosities are at either 1 atm or the vapor pressure, whichever is lower.

Values in this table were taken from the Design Institute for Physical Properties (DIPPR) of the American Institute of Chemical Engineers (AIChE), 801 Critically Evaluated Gold Standard™ Database, copyright 2016 AIChE, and reproduced with permission of AIChE and of the DIPPR Evaluated Process Design Data Project Steering Committee. Their source should be cited as "R. L. Rowley, W. V. Wilding, J. L. Oscarson, T. A. Knotts, and N. F. Giles, *DIPPR® Data Compilation of Pure Chemical Properties*, Design Institute for Physical Properties, AIChE, New York, NY (2016)".

Click here for the Natural Convection Heat Transfer Coefficients spreadsheet calculator.
Click here for the Forced Convection Heat Transfer Coefficients spreadsheet calculator.
Click here for the Thermal Design of Double Pipe Heat Exchangers spreadsheet calculator.
Click here for the Venturi Meter Liquid Flow Calculations spreadsheet calculator.
Click here for the Gas Flow Orifice Meter Calculations spreadsheet calculator.
Click here for the Incompressible Orifice Flow Meter Calculations spreadsheet calculator.
Click here for the Incompressible Annulus and Duct Flow Calculations spreadsheet calculator.

Table 2-139 Viscosity of Inorganic and Organic Liquids (Pa·s)

Eqn	Cmp d. no.	Nam e	Form ula	CAS	Mol. wt.	C ₁	C ₂	<i>C</i> ₃	C ₄	C ₅	T _{min} , K	Visco sity at T _{min}	T _{max} , K	Visco sity at T _{max}
101	1	Acet aldeh yde	C ₂ H ₄ 0	75- 07-0	44.05 256	-10.9 76	755.1 2				149.7 8	2.647 E-03	294.1 5	2.229 E-04
101	2	Acet amid e	C ₂ H ₅ NO	60- 35-5	59.06 72	1.552 5	1376. 4	-2.01 26			353.3 3	1.728 E-03	494.3	2.895 E-04
101	3	Aceti c acid	C ₂ H ₄ O ₂	64- 19-7	60.05 2	-9.03	1212. 3	-0.32 2			289.8 1	1.265 E-03	391.0 5	3.890 E-04
101	4	Aceti c anhy dride	C ₄ H ₆ O ₃	108- 24-7	102.0 8864	-20.4 57	1638. 6	1.383 4			200.1 5	7.159 E-03	412.7	2.874 E-04
101	5	Acet one	C ₃ H ₆ O	67- 64-1	58.07 914	-14.9 18	1023. 4	0.596 1			190	1.655 E-03	329.4 4	2.351 E-04
101	6	Acet onitri le	C ₂ H ₃	75- 05-8	41.05 19	5.471 1	143.9 9	-2.44 32			229.3 2	7.616 E-04	354.8 1	2.100 E-04
101	7	Acet ylene	C ₂ H ₂	74- 86-2	26.03 728	6.224	-151. 8	-2.65 54			193.1 5	1.958 E-04	273.1 5	9.819 E-05
101	8	Acrol ein	C ₃ H ₄	107- 02-8	56.06 326	-12.0 32	867.3 4	0.195 34			185.4 5	1.773 E-03	353.2 2	2.181 E-04
101	9	Acryl ic acid	C ₃ H ₄ O ₂	79- 10-7	72.06 266	-28.1 2	2280. 2	2.395 6			286.1 5	1.359 E-03	460	2.086 E-04
101	10	Acryl onitri le	C ₃ H ₃	107- 13-1	53.06 26	-0.24 126	350.5 7	-1.56 76			189.6 3	1.340 E-03	350.4 5	2.191 E-04
101	11	Air	Mixtu re	1322 59- 10-0	28.96	-20.0 77	285.1 5	1.784	-6.23 8E- 22	10	59.15	3.430 E-04	130	4.276 E-05
101	12	Amm onia	H ₃ N	7664- 41-7	17.03 052	-6.74 3	598.3	-0.73 41	-3.69 0E- 27	10	195.4 1	5.240 E-04	393.1 5	4.858 E-05
101	13	Anis ole	C ₇ H ₈	100- 66-3	108.1 3782	-15.4 07	1518. 7	0.601 72			235.6 5	3.429 E-03	426.7 3	2.736 E-04
101	14	Argo n	Ar	7440- 37-1	39.94 8	-8.86 85	204.2 9	-0.38 305	-1.29 4E- 22	10	83.78	2.950 E-04	150	3.823 E-05
101	15	Benz amid e	C ₇ H ₇ NO	55- 21-0	121.1 3658	-12.6 32	2668. 2				403	2.451 E-03	563.1 5	3.730 E-04

Eqn	Cmp d. no.	Nam e	Form ula	CAS	Mol. wt.	С	С	С	С	С	т, к	Visco sity at T	т, К	Visco sity at T
101	16	Benz ene	C ₆ H ₆	71- 43-2	78.11 184	7.511 7	294.6 8	-2.79 4			278.6 8	7.761 E-04	545	7.106 E-05
101	17	Benz enet hiol	C ₆ H ₆ S	108- 98-5	110.1 7684	-8.45 62	1024. 4	-0.30 635			258.2 7	2.047 E-03	442.2 9	3.333 E-04
101	18	Benz oic acid	C ₇ H ₆ O ₂	65- 85-0	122.1 2134	-12.9 47	2557. 9				395.5 2	1.534 E-03	600.8	1.683 E-04
101	19	Benz onitri le	C ₇ H ₅	100- 47-0	103.1 213	-23.2 68	1880. 5	1.799 4			260.2 8	2.393 E-03	464.1 5	2.836 E-04
101	20	Benz ophe none	C ₁₃ H ₁₀ O	119- 61-9	182.2 179	-148. 6	8377. 2	20.55 9	-0.00 0013 3	2	321.3 5	5.369 E-03	664	2.614 E-04
101	21	Benz yl alcoh ol	C ₇ H ₈ O	100- 51-6	108.1 3782	-14.1 52	2652				257.8 5	2.092 E-02	478.6	1.821 E-04
101	22	Benz yl ethyl ether	C ₉ H ₁ ₂ O	539- 30-0	136.1 9098	-11.4 6	1497	-0.04 3397			275.6 5	1.886 E-03	458.1 5	2.121 E-04
101	23	Benz yl merc apta n	C ₇ H ₈ S	100- 53-8	124.2 0342	-11.4 59	1334. 4	0.000 4969 4			243.9 5	2.513 E-03	472.0 3	1.788 E-04
101	24	Biph enyl	C ₁₂ H	92- 52-4	154.2 078	-9.92 65	1576. 3	-0.21 119			342.2	1.427 E-03	723.1 5	1.076 E-04
101	25	Brom ine	Br ₂	7726- 95-6	159.8 08	16.77 5	-314	-3.97 63			265.8 5	1.353 E-03	350	6.021 E-04
101	26	Brom oben zene	C ₆ H ₅ Br	108- 86-1	157.0 079	-20.6 11	1656. 5	1.441 5			242.4 3	2.842 E-03	429.2 4	3.310 E-04
101	27	Brom oeth ane	C ₂ H ₅ Br	74- 96-4	108.9 65	-5.05 39	645.8	-0.87 689			154.2 5	5.065 E-03	393.1 5	1.751 E-04
101	28	Brom omet hane	CH₃B r	74- 83-9	94.93 852	-16.6 15	931.4 4	0.943 66			179.4 4	1.464 E-03	363.1 5	2.060 E-04
101	29	1,2- Buta diene	C ₄ H ₆	590- 19-2	54.09 044	-10.1 43	472.7 9	-0.02 8241			136.9 5	1.081 E-03	284	1.773 E-04

Eqn	Cmp d. no.	Nam e	Form ula	CAS	Mol. wt.	С	С	С	С	С	т, К	Visco sity at T	т, к	Visco sity at <i>T</i>
101	30	1,3- Buta diene	C ₄ H ₆	106- 99-0	54.09 044	17.84 4	-310. 2	-4.50 58			250	2.547 E-04	400	4.880 E-05
101	31	Buta ne	C ₄ H ₁	106- 97-8	58.12 22	-7.24 71	534.8 2	-0.57 469	-4.66 25E- 27	10	134.8 6	2.243 E-03	420	3.566 E-05
101	32	1,2- Buta nedio	C ₄ H ₁ ₀ O ₂	584- 03-2	90.12	-393. 86	19,04 2	59.97 8	-0.04 9479	1	220	2.020 E+02	544	3.441 E-04
101	33	1,3- Buta nedio	C ₄ H ₁ ₀ O ₂	107- 88-0	90.12 1	-390. 03	18,60 9	60.01 4	-0.05 5844	1	196.1 5	4.410 E+04	540.8	2.890 E-04
101	34	1- Buta nol	C ₄ H ₁ ₀ O	71- 36-3	74.12 16	-82.8 51	4481. 8	11.18 2	-0.00 0020 943	2	190	2.602 E-01	391.9	3.845 E-04
101	35	2- Buta nol	C ₄ H ₁ ₀ O	78- 92-2	74.12 16	-16.3 23	3141. 7				238	4.404 E-02	372.9	3.715 E-04
101	36	1- Bute ne	C ₄ H ₈	106- 98-9	56.10 632	-10.7 73	591.6 1				87.8	1.769 E-02	335.6	1.222 E-04
101	37	cis- 2- Bute ne	C ₄ H ₈	590- 18-1	56.10 632	-10.3 46	522.3	-0.01 1847			134.2 6	1.483 E-03	276.8 7	1.982 E-04
101	38	trans -2- Bute ne	C ₄ H ₈	624- 64-6	56.10 632	-10.3 35	521.3 9	-0.01 3184			167.6 2	6.810 E-04	274.0 3	2.022 E-04
101	39	Butyl aceta te	C ₆ H ₁ ₂ O ₂	123- 86-4	116.1 5828	-17.4 88	1478. 2	0.918 28			250	1.496 E-03	399.2 6	2.521 E-04
101	40	Butyl benz ene	C ₁₀ H	104- 51-8	134.2 1816	-23.8 02	1887. 2	1.847 9			200	1.030 E-02	456.4 6	2.359 E-04
101	41	Butyl merc apta n	C ₄ H ₁ ₀ S	109- 79-5	90.18 72	-10.8 07	966.7 4	-0.01 4851			157.4 6	8.716 E-03	373.1 5	2.475 E-04
101	42	sec- Butyl merc apta n	C ₄ H ₁ ₀ S	513- 53-1	90.18 72	-10.9 03	932.8 2	0.023 034			133.0 2	2.287 E-02	358.1 3	2.851 E-04

Eqn	Cmp d. no.	Nam e	Form ula	CAS	Mol. wt.	С	С	С	С	С	т, к	Visco sity at T	т,	Visco sity at <i>T</i>
101	43	1- Buty ne	C ₄ H ₆	107- 00-6	54.09 044	-3.46 44	334.5	-1.08 11			147.4 3	1.369 E-03	373.1 5	1.271 E-04
101	44	Butyr aldeh yde	C ₄ H ₈	123- 72-8	72.10 572	-6.45 51	744.7	-0.67 524			176.8	3.223 E-03	347.9 4	2.570 E-04
101	45	Butyr ic acid	C ₄ H ₈ O ₂	107- 92-6	88.10 51	-9.81 7	1388	-0.23 8			267.9 5	2.561 E-03	436.4 2	3.087 E-04
101	46	Butyr onitri le	C ₄ H ₇ N	109- 74-0	69.10 51	-11.1 3	1084. 1				161.3	1.217 E-02	390.7 4	2.351 E-04
101	47	Carb on dioxi de	CO ₂	124- 38-9	44.00 95	18.77 5	-402. 92	-4.68 54	-6.91 71E- 26	10	216.5 8	2.488 E-04	303.1 5	5.652 E-05
101	48	Carb on disul fide	CS ₂	75- 15-0	76.14 07	-10.3 06	703.0 1				161.5 8	2.592 E-03	441.6	1.643 E-04
101	49	Carb on mon oxide	СО	630- 08-0	28.01 01	-4.97 35	97.67	-1.10 88			68.15	2.688 E-04	131.3 7	6.515 E-05
101	50	Carb on tetra chlor ide	CCI ₄	56- 23-5	153.8 227	-8.07 38	1121. 1	-0.47 26			250	2.032 E-03	455	2.030 E-04
101	51	Carb on tetraf luori de	CF ₄	75- 73-0	88.00 43	-9.92 12	300.5				89.56	1.408 E-03	145.1	3.897 E-04
101	52	Chlor ine	Cl ₂	7782- 50-5	70.90 6	-9.54 12	456.6 2				172.1 2	1.020 E-03	333.7 2	2.822 E-04
101	53	Chlor oben zene	C ₆ H ₅ CI	108- 90-7	112.5 569	0.157 72	540.5	-1.60 75			250	1.422 E-03	540	1.291 E-04
101	54	Chlor oeth ane	C ₂ H ₅ CI	75- 00-3	64.51 41	10.92 22	-118. 895	-3.30 5			136.7 5	2.026 E-03	423.1 5	8.727 E-05
101	55	Chlor ofor m	CHCI 3	67- 66-3	119.3 7764	-14.1 09	1049. 2	0.537 7			209.6 3	1.970 E-03	353.2	3.410 E-04

Eqn	Cmp d. no.	Nam e	Form ula	CAS	Mol. wt.	С	С	С	С	С	т, К	Visco sity at T	т, К	Visco sity at T
101	56	Chlor omet hane	CH₃C I	74- 87-3	50.48 75	10.39	-134. 38	-3.26 2			175.4 3	7.234 E-04	416.2 5	6.726 E-05
101	57	1- Chlor opro pane	C ₃ H ₇ CI	540- 54-5	78.54 068	10.27 183	-67.2 235	-3.16 64			150.3 5	2.362 E-03	423.1 5	1.190 E-04
101	58	2- Chlor opro pane	C ₃ H ₇ CI	75- 29-6	78.54 068	-15.4 58	1086	0.654			250	5.514 E-04	308.8 5	2.767 E-04
101	59	m- Cres ol	C ₇ H ₈	108- 39-4	108.1 3782	-914. 12	38,85 5	139.1 1	-0.00 0147 57	2	273.1 5	8.438 E-02	564.6 8	1.793 E-05
101	60	o- Cres ol	C ₇ H ₈	95- 48-7	108.1 3782	-377. 23	17,90 9	55.56 5	-0.00 0048 41	2	293.1 5	9.548 E-03	558.0 4	1.514 E-04
101	61	p- Cres ol	C ₇ H ₈ O	106- 44-5	108.1 3782	-851. 12	36,68 6	129.1 3	-0.00 0133 29	2	273.1 5	9.674 E-02	563.7 2	2.992 E-05
101	62	Cum ene	C ₉ H ₁	98- 82-8	120.1 9158	-24.9 88	1807. 9	2.055 6			200	6.363 E-03	400	2.881 E-04
101	63	Cyan ogen	C ₂ N ₂	460- 19-5	52.03 48	-11.7 94	992.3 3				245.2 5	4.317 E-04	320.1 2	1.676 E-04
101	64	Cyclo buta ne	C ₄ H ₈	287- 23-0	56.10 632	-3.49 68	397.9 4	-1.10 87			182.4 8	8.345 E-04	367.9 4	1.278 E-04
101	65	Cyclo hexa ne	C ₆ H ₁	110- 82-7	84.15 948	-33.7 63	2497. 2	3.223 6			279.6 9	1.264 E-03	443.0 4	2.070 E-04
101	66	Cyclo hexa nol	C ₆ H ₁ ₂ O	108- 93-0	100.1 5888	280.8 7	-31,8 69	-38.8 37	3,994, 500	-2.00 2	296.6	6.328 E-02	520.0 8	1.652 E-04
101	67	Cyclo hexa none	C ₆ H ₁	108- 94-1	98.14 3	-44.8 77	3227. 7	4.887			242	8.960 E-03	428.5 8	4.402 E-04
101	68	Cyclo hexe ne	C ₆ H ₁	110- 83-8	82.14 36	-11.6 41	1154. 3	0.066 511			200	4.017 E-03	373.1 5	2.877 E-04
101	69	Cyclo pent ane	C ₅ H ₁	287- 92-3	70.13 29	-3.26 12	614.1 6	-1.15 6			225	1.122 E-03	325	3.167 E-04

Eqn	Cmp d. no.	Nam e	Form ula	CAS	Mol. wt.	С	С	С	С	С	т, К	Visco sity at T	т,	Visco sity at T
101	70	Cyclo pent ene	C ₅ H ₈	142- 29-0	68.11 702	-4.15 08	599.7 7	-1.03 08			138.1 3	7.531 E-03	405.6	1.416 E-04
101	71	Cyclo prop ane	C ₃ H ₆	75- 19-4	42.07 974	-3.52 4	342.5 4	-1.15 99			145.5 9	9.601 E-04	318.4	1.080 E-04
101	72	Cyclo hexyl merc apta n	C ₆ H ₁ ₂ S	1569- 69-3	116.2 2448	-11.3 38	1304. 1	0.000 0923 96			189.6 4	1.155 E-02	431.9 5	2.440 E-04
101	73	Deca nal	C ₁₀ H ₂₀ O	112- 31-2	156.2 652	4.118 4	629.9 8	-2.20 76			285	2.134 E-03	481.6 5	2.718 E-04
101	74	Deca ne	C ₁₀ H	124- 18-5	142.2 8168	-97.6 63	4342. 7	13.64 5	-0.00 0019 319	2	240.0 5	2.741 E-03	494.1 6	1.292 E-04
101	75	Deca noic acid	C ₁₀ H ₂₀ O ₂	334- 48-5	172.2 65	-12.3 05	2324. 1	-0.05 5494			304.5 5	6.798 E-03	543.1 5	2.304 E-04
101	76	1- Deca nol	C ₁₀ H ₂₂ O	112- 30-1	158.2 8108	-69.9 85	5818. 8	8.071 5			285	1.937 E-02	503	2.727 E-04
101	77	1- Dece ne	C ₁₀ H	872- 05-9	140.2 658	-15.8 68	1434. 8	0.680 71			206.8 9	4.975 E-03	443.7 5	2.064 E-04
101	78	Decyl merc apta n	C ₁₀ H ₂₂ S	143- 10-2	174.3 4668	-11.4 64	1510. 1	-0.01 2754			247.5 6	4.364 E-03	512.3 5	1.848 E-04
101	79	1- Decy ne	C ₁₀ H	764- 93-2	138.2 4992	-2.36 33	791.9 3	-1.22 72			229.1 5	3.786 E-03	505.6	2.167 E-04
100	80	Deut eriu m	D ₂	7782- 39-0	4.031 6	0.000 0013 48					20.35	1.348 E-06	20.35	1.348 E-06
101	81	1,1- Dibro moet hane	C ₂ H ₄ Br ₂	557- 91-5	187.8 6116	-10.4 57	1101. 1	-0.00 3135 4			210.1 5	5.331 E-03	381.1 5	5.071 E-04
101	82	1,2- Dibro moet hane	C ₂ H ₄ Br ₂	106- 93-4	187.8 6116	-17.5 82	1635. 4	0.993 2			282.8 5	2.042 E-03	404.5 1	5.120 E-04

Eqn	Cmp d. no.	Nam e	Form ula	CAS	Mol. wt.	С	С	С	С	С	т, К	Visco sity at T	т, К	Visco sity at T
101	83	Dibro mom etha ne	CH ₂ B r ₂	74- 95-3	173.8 3458	-10.0 13	921.3 1				220.6	2.919 E-03	488.8	2.951 E-04
101	84	Dibut yl ether	C ₈ H ₁ ₈ O	142- 96-1	130.2 2792	10.02 7	206	-3.16 07			175.3	5.931 E-03	414.1 5	1.989 E-04
101	85	m- Dichl orob enze ne	C ₆ H ₄ Cl ₂	541- 73-1	147.0 0196	-114. 7	4905. 4	16.35 8	-0.00 0020 577	2	248.3 9	2.463 E-03	547.1 6	1.565 E-04
101	86	o- Dichl orob enze ne	C ₆ H ₄ Cl ₂	95- 50-1	147.0 0196	-30.6	2153. 4	2.937 1			256.1 5	2.726 E-03	453.5 7	3.761 E-04
101	87	p- Dichl orob enze ne	C ₆ H ₄ Cl ₂	106- 46-7	147.0 0196	31.63	-108 0	-6.11 4			326.1 4	8.543 E-04	447.2 1	3.039 E-04
101	88	1,1- Dichl oroet hane	C ₂ H ₄ Cl ₂	75- 34-3	98.95 916	-8.99 1	870.2	-0.28 05			176.1 9	4.076 E-03	330.4 5	3.407 E-04
101	89	1,2- Dichl oroet hane	C ₂ H ₄ Cl ₂	107- 06-2	98.95 916	15.31 2	-41.1 2	-3.91 9			237.4	1.839 E-03	400	2.557 E-04
101	90	Dichl orom etha ne	CH ₂ C I ₂	75- 09-2	84.93 258	-13.0 71	940.0	0.373			208.3	1.406 E-03	373.9 3	2.374 E-04
101	91	1,1- Dichl oropr opan e	C ₃ H ₆ Cl ₂	78- 99-9	112.9 8574	-10.8 72	1033. 1	-0.00 0674 35			192.5	4.051 E-03	361.2 5	3.301 E-04
101	92	1,2- Dichl oropr opan e	C ₃ H ₆ Cl ₂	78- 87-5	112.9 8574	-11.2 69	1195. 3	0.012 736			172.7 1	1.381 E-02	369.5 2	3.495 E-04
101	93	Dieth anol amin e	C ₄ H ₁ ₁ NO ₂	111- 42-2	105.1 3564	-375. 21	17,17 7	66.66	-3.63 67	0.5	293.1 5	8.128 E-01	589.2 8	1.090 E-04

Eqn	Cmp d. no.	Nam e	Form ula	CAS	Mol. wt.	С	С	С	С	С	т, К	Visco sity at T	т,	Visco sity at T
101	94	Dieth yl amin e	C ₄ H ₁ ₁ N	109- 89-7	73.13 684	-17.5 7	1385. 7	0.856 47			223.3 5	1.190 E-03	329.1	2.260 E-04
101	95	Dieth yl ether	C ₄ H ₁ ₀ O	60- 29-7	74.12 16	10.19 7	-63.8	-3.22 6			200	7.359 E-04	373.1 5	1.141 E-04
101	96	Dieth yl sulfi de	C ₄ H ₁ ₀ S	352- 93-2	90.18 72	-5.13 5	667.5	-0.85 53			225	1.113 E-03	365.2 5	2.354 E-04
101	97	1,1- Diflu oroet hane	C ₂ H ₄ F ₂	75- 37-6	66.04 997	10.50 1	-52.1 81	-3.34 59			154.5 6	1.229 E-03	343.1 5	1.026 E-04
101	98	1,2- Diflu oroet hane	C ₂ H ₄ F ₂	624- 72-6	66.04 997	-10.0 72	710.4 8	-0.14 677			179.6	1.030 E-03	283.6 5	2.257 E-04
101	99	Diflu orom etha ne	CH ₂ F	75- 10-5	52.02 339	-17.7 23	850.2	1.060 1	-1.17 19E- 18	7	137	1.832 E-03	343.1 5	6.050 E-05
101	100	Diiso propy I amin e	C ₆ H ₁ ₅ N	108- 18-9	101.1 9	-1.73 66	599.8	-1.42 37			250	7.479 E-04	357.0 5	2.193 E-04
101	101	Diiso propy I ether	C ₆ H ₁ ₄ O	108- 20-3	102.1 7476	-11.5	993	0.022			187.6 5	2.258 E-03	341.4 5	2.110 E-04
101	102	Diiso propy I keto ne	C ₇ H ₁ ₄ O	565- 80-0	114.1 8546	-15.0 97	1426. 9	0.515 12			204.8	4.569 E-03	397.5 5	2.194 E-04
101	103	1,1- Dime thoxy etha ne	C ₄ H ₁ ₀ O ₂	534- 15-6	90.12	-10.9 68	885.4 9				159.9 5	4.375 E-03	337.4 5	2.378 E-04
101	104	1,2- Dime thoxy prop ane	C ₅ H ₁ ₂ O ₂	7778- 85-0	104.1 4758	-10.6 31	1086. 4				226.1	2.950 E-03	366.1 5	4.695 E-04

Eqn	Cmp d. no.	Nam e	Form ula	CAS	Mol. wt.	С	С	С	С	С	т, К	Visco sity at T	т,	Visco sity at T
101	105	Dime thyl acety lene	C ₄ H ₆	503- 17-3	54.09 044	0.108 42	300.2	-1.68 31			240.9 1	3.796 E-04	371	1.186 E-04
101	106	Dime thyl amin e	C ₂ H ₇ N	124- 40-3	45.08 368	-10.9 3	699.5				200	5.917 E-04	308.1 5	1.734 E-04
101	107	2,3- Dime thylb utan e	C ₆ H ₁	79- 29-8	86.17 536	7.256 5	221.4	-2.79 46			220	1.103 E-03	331.1 3	2.509 E-04
101	108	1,1- Dime thylc ycloh exan e	C ₈ H ₁	590- 66-9	112.2 1264	-10.7 16	1140. 5	-0.04 7736			239.6	1.992 E-03	392.7	3.045 E-04
101	109	cis- 1,2- Dime thylc ycloh exan e	C ₈ H ₁	2207- 01-4	112.2 1264	-11.7 96	1463. 5				223.1 6	5.311 E-03	484.9 2	1.541 E-04
101	110	trans -1,2- Dime thylc ycloh exan e	C ₈ H ₁	6876- 23-9	112.2 1264	-11.3 44	1168. 9	0.045 13			184.9 9	8.315 E-03	396.5 8	2.956 E-04
101	111	Dime thyl disul fide	C ₂ H ₆ S ₂	624- 92-0	94.19 904	-10.5 77	1172. 6	-0.14 244			188.4 4	6.093 E-03	382.9	2.336 E-04
101	112	Dime thyl ether	C ₂ H ₆ 0	115- 10-6	46.06 844	-10.6 2	448.9 9	0.000 0839 67			131.6 5	7.398 E-04	248.3 1	1.490 E-04
101	113	N,N- Dime thyl form amid e	C ₃ H ₇ NO	68- 12-2	73.09 378	-20.4 25	1515. 5	1.444 4			240	2.041 E-03	425.1 5	2.981 E-04
101	114	2,3- Dime thylp enta ne	C ₇ H ₁	565- 59-3	100.2 0194	-12.0 8	1112. 2	0.096 54			160	9.669 E-03	362.9 3	2.147 E-04

Eqn	Cmp d. no.	Nam e	Form ula	CAS	Mol. wt.	С	С	С	С	С	т, К	Visco sity at T	т, К	Visco sity at T
101	115	Dime thyl phth alate	C ₁₀ H ₁₀ O ₄	131- 11-3	194.1 84	152.9	-10,1 83	-22.7 09	50,37 3,000, 000	-4	274.1 8	6.023 E-02	612.8	1.109 E-04
	116	Dime thylsi lane	C ₂ H ₈ Si	1111- 74-6	60.17 042									
101	117	Dime thyl sulfi de	C ₂ H ₆ S	75- 18-3	62.13 4	-17.6 41	1067. 5	1.031 7			225	6.696 E-04	310.4 8	2.528 E-04
101	118	Dime thyl sulfo xide	C ₂ H ₆ OS	67- 68-5	78.13 344	-37.3 47	2835	3.793 7			291.6 7	2.253 E-03	464	3.547 E-04
101	119	Dime thyl terep hthal ate	C ₁₀ H ₁₀ O ₄	120- 61-6	194.1 84	-16.0 542	2221. 79	0.638 29			413.7 9	1.071 E-03	559.2	3.214 E-04
101	120	1,4- Diox ane	C ₄ H ₈ O ₂	123- 91-1	88.10 512	-46.1 66	3086. 2	5.104			284.9 5	1.525 E-03	374.6 5	4.610 E-04
101	121	Diph enyl ether	C ₁₂ H ₁₀ O	101- 84-8	170.2 072	-12.3 73	2017. 5				293.1 5	4.124 E-03	613.4 4	1.134 E-04
101	122	Dipro pyl amin e	C ₆ H ₁ ₅ N	142- 84-7	101.1 9	-15.4 04	1390	0.556 4			260	9.454 E-04	382.3 5	2.118 E-04
101	123	Dode cane	C ₁₂ H	112- 40-3	170.3 3484	-134. 91	6054. 2	19.33 7	-0.00 0024 43	2	262.1 5	3.002 E-03	526.4	1.220 E-04
101	124	Eicos ane	C ₂₀ H	112- 95-8	282.5 4748	-18.3 15	2283. 5	0.954 85			309.5 8	4.242 E-03	616.9 3	2.078 E-04
101	125	Etha ne	C ₂ H ₆	74- 84-0	30.06 9	-7.00 46	276.3 8	-0.60 87	-3.11 E-18	7	90.35	1.247 E-03	300	3.587 E-05
101	126	Etha nol	C ₂ H ₆	64- 17-5	46.06 844	7.875	781.9 8	-3.04 18			200	1.315 E-02	440	1.416 E-04
101	127	Ethyl aceta te	C ₄ H ₈ O ₂	141- 78-6	88.10 512	14.35 4	-154. 6	-3.78 87			220	1.132 E-03	473.1 5	9.061 E-05
101	128	Ethyl amin e	C ₂ H ₇ N	75- 04-7	45.08 368	19.82 2	-0.12 598	-4.97 93			192.1 5	1.727 E-03	289.7 3	2.236 E-04

Eqn	Cmp d. no.	Nam e	Form ula	CAS	Mol. wt.	С	С	С	С	С	т, к	Visco sity at T	т, к	Visco sity at T
101	129	Ethyl benz ene	C ₈ H ₁	100- 41-4	106.1 65	-13.5 63	1208. 6	0.377			178.2	8.012 E-03	413.1	2.326 E-04
101	130	Ethyl benz oate	C ₉ H ₁ ₀ O ₂	93- 89-0	150.1 745	-40.7 06	3035	4.265 5			250	6.643 E-03	486.5 5	3.109 E-04
101	131	2- Ethyl buta noic acid	C ₆ H ₁ ₂ O ₂	88- 09-5	116.1 5828	-12.2 4	1836. 4	0.021 868			258.1 5	6.705 E-03	466.9 5	2.822 E-04
101	132	Ethyl butyr ate	C ₆ H ₁ ₂ O ₂	105- 54-4	116.1 5828	-15.4 85	1325. 6	0.643 2			250	1.319 E-03	394.6 5	2.533 E-04
101	133	Ethyl cyclo hexa ne	C ₈ H ₁	1678- 91-7	112.2 1264	-22.1 1	1673	1.641			200	6.406 E-03	404.9 4	2.956 E-04
101	134	Ethyl cyclo pent ane	C ₇ H ₁	1640- 89-7	98.18 606	-6.89 4	818.6	-0.59 41			253.1 5	9.605 E-04	378.1 5	2.599 E-04
101	135	Ethyl ene	C ₂ H ₄	74- 85-1	28.05 316	1.887 8	78.86 5	-2.15 54			104	6.334 E-04	250	6.142 E-05
101	136	Ethyl enedi amin e	C ₂ H ₈ N ₂	107- 15-3	60.09 832	-53.9 08	4030. 8	5.970 4			284.2	2.487 E-03	483.1 5	1.723 E-04
101	137	Ethyl ene glyco I	C ₂ H ₆ O ₂	107- 21-1	62.06 784	-290. 36	14,25 1	42.48 6	-0.00 0040 369	2	260.1 5	1.305 E-01	576	1.276 E-04
101	138	Ethyl enei mine	C ₂ H ₅	151- 56-4	43.06 78	-11.0 12	967.4				250	7.909 E-04	329	3.123 E-04
101	139	Ethyl ene oxide	C ₂ H ₄ O	75- 21-8	44.05 256	-8.52 1	634.2	-0.33 14			160.6 5	1.918 E-03	283.8 5	2.863 E-04
101	140	Ethyl form ate	C ₃ H ₆ O ₂	109- 94-4	74.07 854	-9.84 17	876.4	-0.17 08			245	7.435 E-04	345	2.486 E-04
101	141	2- Ethyl hexa noic acid	C ₈ H ₁ ₆ O ₂	149- 57-5	144.2 11	-13.0 37	2346				155.1 5	8.035 E+00	510.1	2.165 E-04

Eqn	Cmp d. no.	Nam e	Form ula	CAS	Mol. wt.	С	С	С	С	С	т, К	Visco sity at T	т, К	Visco sity at T
101	142	Ethyl hexyl ether	C ₈ H ₁ ₈ O	5756- 43-4	130.2 2792	-11.3 11	1337. 2	-0.02 982			180	1.765 E-02	417.1 5	2.522 E-04
101	143	Ethyli sopr opyl ether	C ₅ H ₁ ₂ O	625- 54-7	88.14 818	-11.3 31	908.4 6	0.000 4247 8			140	7.908 E-03	326.1 5	1.949 E-04
101	144	Ethyli sopr opyl keto ne	C ₆ H ₁ ₂ O	565- 69-5	100.1 5888	-11.4 52	1172. 7	-0.00 0100 95			204.1 5	3.319 E-03	386.5 5	2.207 E-04
101	145	Ethyl merc apta n	C ₂ H ₆ S	75- 08-1	62.13 404	-9.75 74	729.4 3	-0.14 912			125.2 6	9.520 E-03	308.1 5	2.626 E-04
101	146	Ethyl propi onat e	C ₅ H ₁ ₀ O ₂	105- 37-3	102.1 317	-8.92 15	950.8	-0.32 687			250	9.848 E-04	372.2 5	2.480 E-04
101	147	Ethyl propy I ether	C ₅ H ₁ ₂ O	628- 32-0	88.14 818	0.710 9	386.5 1	-1.77 54			200	1.156 E-03	337.0 1	2.086 E-04
101	148	Ethyl trichl orosi lane	C ₂ H ₅ Cl ₃ Si	115- 21-9	163.5 06	-11.4 99	1122. 6				167.5 5	8.239 E-03	371.0 5	2.089 E-04
101	149	Fluor ine	F ₂	7782- 41-4	37.99 6806 4	8.18	-75.6	-3.51 48			53.48	7.317 E-04	140	5.954 E-05
101	150	Fluor oben zene	C ₆ H ₅	462- 06-6	96.10 2303 2	-10.0 64	1058. 7	-0.17 162			232.1 5	1.599 E-03	453.1 5	1.542 E-04
101	151	Fluor oeth ane	C ₂ H ₅	353- 36-6	48.05 95	-10.1 18	464.4 2				129.9 5	1.438 E-03	235.4 5	2.900 E-04
101	152	Fluor omet hane	CH ₃ F	593- 53-3	34.03 292	-10.5 01	427.7 8	0.008 6309			131.3 5	7.450 E-04	194.8 2	2.587 E-04
101	153	Form aldeh yde	CH ₂ O	50- 00-0	30.02 598	-7.65 91	603.3 6	-0.53 378			155.1 5	1.560 E-03	253.8 5	2.645 E-04
101	154	Form amid e	CH ₃ N O	75- 12-7	45.04 062	-74.5 21	5081. 5	9.087 3			273.1 5	7.171 E-03	493	3.829 E-04

Eqn	Cmp d. no.	Nam e	Form ula	CAS	Mol. wt.	С	С	С	С	С	т, К	Visco sity at T	т,	Visco sity at T
101	155	Form ic acid	CH ₂ O 2	64- 18-6	46.02 57	-48.5 29	3394. 7	5.390 3			281.4 5	2.319 E-03	373.7 1	5.444 E-04
101	156	Fura n	C ₄ H ₄ O	110- 00-9	68.07 396	-10.9 23	894.6 3	-0.00 0684 18			200	1.575 E-03	304.5	3.392 E-04
101	157	Heliu m-4	Не	7440- 59-7	4.002 6	-9.63 12	-3.84 1	-1.45 8	-1.06 5E- 08	10	2.2	3.628 E-06	5.1	2.532 E-06
101	158	Hept adec ane	C ₁₇ H 36	629- 78-7	240.4 6774	-19.9 91	2245. 1	1.198 2			295.1 3	3.814 E-03	575.3	2.088 E-04
101	159	Hept anal	C ₇ H ₁	111- 71-7	114.1 8546	-9.54 68	1147. 2	-0.23 251			229.8	2.971 E-03	426.1 5	2.580 E-04
101	160	Hept ane	C ₇ H ₁	142- 82-5	100.2 0194	-98.1 59	3592. 6	14.19 7	-0.00 0029 555	2	180.1 5	4.341 E-03	432.1 6	1.003 E-04
101	161	Hept anoic acid	C ₇ H ₁ ₄ O ₂	111- 14-8	130.1 85	-40.5 43	3328. 3	4.180 4			265.8 3	9.242 E-03	496.1 5	3.754 E-04
101	162	1- Hept anol	C ₇ H ₁ ₆ O	111- 70-6	116.2 0134	-66.6 54	5325. 8	7.66	-2.25 12E- 28	9.904 1	239.1 5	8.805 E-02	448.6	3.190 E-04
101	163	2- Hept anol	C ₇ H ₁ ₆ O	543- 49-7	116.2 0134	-125. 81	7996	16.41 2	-7.66 43E- 17	6	220	3.856 E-01	432.9	2.707 E-04
101	164	3- Hept anon e	C ₇ H ₁ ₄ 0	106- 35-4	114.1 8546	-9.38 74	1204. 9	-0.32 618			234.1 5	2.427 E-03	421.1 5	2.040 E-04
101	165	2- Hept anon e	C ₇ H ₁ ₄ O	110- 43-0	114.1 8546	-13.9 29	1321. 9	0.403 82			250	1.642 E-03	424.1 8	2.318 E-04
101	166	1- Hept ene	C ₇ H ₁	592- 76-7	98.18 606	-10.8 19	841.3 3				154.1 2	4.701 E-03	429.9 2	1.417 E-04
101	167	Hept yl merc apta n	C ₇ H ₁ ₆ S	1639- 09-4	132.2 6694	-11.8 12	1291. 9	0.076 469			229.9	3.097 E-03	450.0 9	2.087 E-04
101	168	1- Hept yne	C ₇ H ₁	628- 71-7	96.17 018	-2.79 47	563.8 6	-1.16 36			192.2	2.528 E-03	447.2	1.777 E-04

Eqn	Cmp d. no.	Nam e	Form ula	CAS	Mol. wt.	С	С	С	С	С	т, К	Visco sity at <i>T</i>	т,	Visco sity at <i>T</i>
101	169	Hexa deca ne	C ₁₆ H 34	544- 76-3	226.4 4116	-20.1 82	2203. 5	1.228 9			291.3 1	3.536 E-03	564.1 5	2.054 E-04
101	170	Hexa nal	C ₆ H ₁	66- 25-1	100.1 5888	0.136 9	633.7 7	-1.66 59			214.9 3	2.849 E-03	401.1 5	2.563 E-04
101	171	Hexa ne	C ₆ H ₁	110- 54-3	86.17 536	-56.5 69	2140. 5	7.517 5	-0.00 0017 676	2	174.6 5	2.379 E-03	406.0 8	1.164 E-04
101	172	Hexa noic acid	C ₆ H ₁ ₂ O ₂	142- 62-1	116.1 58	-46.4 02	3448. 6	5.084 9			269.2 5	5.854 E-03	478.8 5	4.019 E-04
101	173	1- Hexa nol	C ₆ H ₁ ₄ O	111- 27-3	102.1 7476	-39.3 24	3841	3.693 3	-2.12 E-30	10.48 5	228.5 5	8.570 E-02	429.9	3.343 E-04
101	174	2- Hexa nol	C ₆ H ₁ ₄ O	626- 93-7	102.1 75	-82.7 05	7404. 9	6.472 1	1.501 6	0.410 14	223	4.919 E-01	412.4	3.274 E-04
101	175	2- Hexa none	C ₆ H ₁ ₂ O	591- 78-6	100.1 5888	-11.4 45	1187. 2	0.002 9076			217.3 5	2.561 E-03	400.7	2.108 E-04
101	176	3- Hexa none	C ₆ H ₁ ₂ O	589- 38-8	100.1 5888	-13.6 84	1283. 4	0.337 55			217.5	2.563 E-03	396.6 5	2.185 E-04
101	177	1- Hexe ne	C ₆ H ₁	592- 41-6	84.15 948	-10.9 03	796.1 9				133.3 9	7.197 E-03	336.6 3	1.959 E-04
101	178	3- Hexy ne	C ₆ H ₁	928- 49-4	82.14 36	-4.26 84	647.6	-1.00 87			170.0 5	3.550 E-03	432	1.377 E-04
101	179	Hexyl merc apta n	C ₆ H ₁ ₄ S	111- 31-9	118.2 4036	-10.0 73	1123. 3	-0.16 515			192.6 2	6.035 E-03	425.8 1	2.172 E-04
101	180	1- Hexy ne	C ₆ H ₁	693- 02-7	82.14 36	-4.72 63	594.4 3	-0.86 247			141.2 5	8.332 E-03	412	2.083 E-04
101	181	2- Hexy ne	C ₆ H ₁	764- 35-2	82.14 36	-3.74 64	624.2	-1.08 4			183.6 5	2.483 E-03	435	1.368 E-04
101	182	Hydr azine	H ₄ N ₂	302- 01-2	32.04 516	-75.7 81	4175. 4	9.650 8	-7.27 E-09	3	274.6 9	1.451 E-03	522.5 2	2.191 E-04
101	183	Hydr ogen	H ₂	1333- 74-0	2.015 88	-11.6 61	24.7	-0.26 1	-4.10 E-16	10	13.95	2.546 E-05	33	3.906 E-06

Eqn	Cmp d. no.	Nam e	Form ula	CAS	Mol. wt.	С	С	С	С	С	т, К	Visco sity at T	т, К	Visco sity at T
101	184	Hydr ogen brom ide	BrH	1003 5-10- 6	80.91 194	-11.6 33	316.3 8	0.561 91			185.1 5	9.207 E-04	206.4 5	8.206 E-04
101	185	Hydr ogen chlor ide	CIH	7647- 01-0	36.46 094	-116. 34	3834. 6	16.86 4	-2.58 75E- 10	4	158.9 7	1.003 E-03	318.1 5	5.777 E-05
101	186	Hydr ogen cyani de	CHN	74- 90-8	27.02 534	-21.9 27	1266. 5	1.592 7			259.8 3	2.754 E-04	298.8 5	1.821 E-04
101	187	Hydr ogen fluori de	FH	7664- 39-3	20.00 6343 2	353.9 9	13,92 8	-41.7 17	-296 2	-0.5	189.7 9	1.545 E-03	368.9 2	1.185 E-04
101	188	Hydr ogen sulfi de	H ₂ S	7783- 06-4	34.08 088	-10.9 05	762.1 1	-0.11 863			187.6 8	5.726 E-04	350	8.089 E-05
101	189	Isobu tyric acid	C ₄ H ₈ O ₂	79- 31-2	88.10 512	-11.4 97	1365. 7	0.036 966			250	2.938 E-03	450	2.649 E-04
101	190	Isopr opyl amin e	C ₃ H ₉ N	75- 31-0	59.11 026	-31.1 57	1926	2.925			250	6.737 E-04	453.1 5	1.214 E-04
101	191	Malo nic acid	C ₃ H ₄ O ₄	141- 82-2	104.0 6146	-117. 73	9943. 3	14.58 9			409.1 5	3.386 E-03	580	4.281 E-04
101	192	Meth acryli c acid	C ₄ H ₆ O ₂	79- 41-4	86.08 924	-14.5 27	1497. 7	0.517 47			288.1 5	1.664 E-03	434.1 5	3.582 E-04
101	193	Meth ane	CH ₄	74- 82-8	16.04 25	-6.15 72	178.1 5	-0.95 239	-9.06 06E- 24	10	90.69	2.063 E-04	188	2.262 E-05
101	194	Meth anol	CH ₄ O	67- 56-1	32.04 186	-25.3 17	1789. 2	2.069			175.4 7	1.193 E-02	337.8 5	3.442 E-04
101	195	N- Meth yl aceta mide	C ₃ H ₇ NO	79- 16-3	73.09 378	-4.64 8	1832	-1.21 91			301.1 5	3.995 E-03	478.1 5	2.392 E-04

Eqn	Cmp d. no.	Nam e	Form ula	CAS	Mol. wt.	С	С	С	С	С	т, К	Visco sity at T	т, К	Visco sity at T
101	196	Meth yl aceta te	C ₃ H ₆ O ₂	79- 20-9	74.07 854	13.55 7	-187. 3	-3.65 92			250	6.135 E-04	425	1.198 E-04
101	197	Meth yl acety lene	C ₃ H ₄	74- 99-7	40.06 386	-2.87 37	301.3 5	-1.22 71			170.4 5	6.045 E-04	373.1 5	8.846 E-05
101	198	Meth yl acryl ate	C ₄ H ₆ O ₂	96- 33-3	86.08 924	10.84 8	75	-3.29 7			275	6.126 E-04	400	1.636 E-04
101	199	Meth yl amin e	CH ₅ N	74- 89-5	31.05 71	-17.0 44	1074	0.842 03			179.6 9	1.236 E-03	273.1 5	2.275 E-04
101	200	Meth yl benz oate	C ₈ H ₈ O ₂	93- 58-3	136.1 4792	-21.9 71	2267. 4	1.417			288.1 5	2.299 E-03	472.6 5	2.149 E-04
101	201	3- Meth yl- 1,2- buta diene	C ₅ H ₈	598- 25-4	68.11 702	-10.4 81	648.3 7	-0.04 1947			159.5 3	1.321 E-03	314	1.739 E-04
101	202	2- Meth ylbut ane	C ₅ H ₁	78- 78-4	72.14 878	-12.5 96	889.1 1	0.204 69			150	3.542 E-03	310	1.928 E-04
101	203	2- Meth ylbut anoic acid	C ₅ H ₁ ₀ O ₂	116- 53-0	102.1 317	-1.03 5	1048. 5	-1.54 74			298.1 5	1.774 E-03	450.1 5	2.859 E-04
101	204	3- Meth yl-1- buta nol	C ₅ H ₁ ₂ O	123- 51-3	88.14 82	-46.3 77	4169. 6	4.7			155.9 5	5.989 E+01	404.1 5	3.891 E-04
101	205	2- Meth yl-1- bute ne	C ₅ H ₁	563- 46-2	70.13 29	-10.7 55	705.4 8	-0.01 1113			135.5 8	3.675 E-03	304.3	2.034 E-04
101	206	2- Meth yl-2- bute ne	C ₅ H ₁	513- 35-9	70.13 29	-8.44 53	639.2 1	-0.38 409			139.3 9	3.164 E-03	311.7	1.841 E-04

Eqn	Cmp d. no.	Nam e	Form ula	CAS	Mol. wt.	С	С	С	С	С	т, к	Visco sity at T	т,	Visco sity at T
101	207	2- Meth yl -1- bute ne-3- yne	C ₅ H ₆	78- 80-8	66.10 114	-3.65 85	441.1	-1.05 47			160.1 5	1.915 E-03	390.1 5	1.476 E-04
101	208	Meth ylbut yl ether	C ₅ H ₁ ₂ 0	628- 28-4	88.14 818	-11.2 78	949.1 2	-0.00 0123 43			157.4 8	5.239 E-03	343.3 1	2.006 E-04
101	209	Meth ylbut yl sulfi de	C ₅ H ₁ ₂ S	628- 29-5	104.2 14	-10.9 7	1067. 3	-0.01 7484			175.3	6.930 E-03	396.5 8	2.286 E-04
101	210	3- Meth yl-1- butyn e	C ₅ H ₈	598- 23-2	68.11 702	-1.88 42	433.5 8	-1.32 38			183.4 5	1.628 E-03	364	2.035 E-04
101	211	Meth yl butyr ate	C ₅ H ₁ ₀ O ₂	623- 42-7	102.1 317	-12.2 06	1141. 7	0.150 14			200	3.339 E-03	375.9	2.539 E-04
101	212	Meth ylchl orosi lane	CH₅C ISi	993- 00-0	80.58 89	-12.0 02	1009. 7				139.0 5	8.734 E-03	353.6	1.066 E-04
101	213	Meth ylcyc lohex ane	C ₇ H ₁	108- 87-2	98.18 606	-11.3 58	1213. 1				146.5 8	4.587 E-02	457.6 8	1.653 E-04
101	214	1- Meth ylcyc lohex anol	C ₇ H ₁ ₄ O	590- 67-0	114.1 8546	-6.15 34	3219	-1.44 94			299.1 5	2.584 E-02	548.8	8.025 E-05
101	215	cis- 2- Meth ylcyc lohex anol	C ₇ H ₁ ₄ O	7443- 70-1	114.1 8546	-6.69 04	3150. 5	-1.39 2			280.1 5	3.729 E-02	491.2	1.360 E-04
101	216	trans -2- Meth ylcyc Iohex anol	C ₇ H ₁ ₄ O	7443- 52-9	114.1 8546	-6.69 15	3173. 2	-1.30 46			269.1 5	1.107 E-01	493.6	2.356 E-04

Eqn	Cmp d. no.	Nam e	Form ula	CAS	Mol. wt.	С	С	С	С	С	т, К	Visco sity at T	т, К	Visco sity at T
101	217	Meth ylcyc lopen tane	C ₆ H ₁	96- 37-7	84.15 948	-1.85 53	612.6 2	-1.37 74			248.1 5	9.288 E-04	353.1 5	2.742 E-04
101	218	1- Meth ylcyc lopen tene	C ₆ H ₁	693- 89-0	82.14 36	-4.85 15	679.0 7	-0.93 238			146.6 2	7.669 E-03	433.6	1.301 E-04
101	219	3- Meth ylcyc lopen tene	C ₆ H ₁	1120- 62-3	82.14 36	-6.74 24	788.8 6	-0.69 862			168.5 4	3.539 E-03	420.8	1.129 E-04
101	220	Meth yldic hloro silan e	CH₄C I₂Si	75- 54-7	115.0 3396	-10.5 17	745.3 2				275	4.070 E-04	314.7	2.891 E-04
101	221	Meth yleth yl ether	C ₃ H ₈ O	540- 67-0	60.09 502	-11.1 04	627.1 8	0.036 581			160	9.133 E-04	280.5	1.731 E-04
101	222	Meth yleth yl keto ne	C ₄ H ₈	78- 93-3	72.10 572	-1.05 98	520.6 8	-1.49 61			186.4 8	2.266 E-03	535.5	7.577 E-05
101	223	Meth yleth yl sulfi de	C ₃ H ₈ S	624- 89-5	76.16 06	-10.8 42	863.6 5	-0.00 0746 03			167.2 3	3.409 E-03	339.8	2.474 E-04
101	224	Meth yl form ate	C ₂ H ₄ O ₂	107- 31-3	60.05 196	-39.6 41	2113. 3	4.308			250	6.104 E-04	304.9	3.134 E-04
101	225	Meth yliso butyl ether	C ₅ H ₁ ₂ O	625- 44-5	88.14 818	-11.2 7	888.4 2	0.024 736			188	1.637 E-03	331.7	2.143 E-04
101	226	Meth yliso butyl keto ne	C ₆ H ₁ ₂ O	108- 10-1	100.1 5888	-11.3 94	1168. 7	-0.00 7539			189.1 5	5.222 E-03	389.1 5	2.170 E-04
	227	Meth yl isocy anat e	C ₂ H ₃ NO	624- 83-9	57.05 132									

Eqn	Cmp d. no.	Nam e	Form ula	CAS	Mol. wt.	С	С	С	С	С	т, К	Visco sity at T	т,	Visco sity at T
101	228	Meth yliso propy I ether	C ₄ H ₁ ₀ O	598- 53-8	74.12 16	-11.2 16	737.7 5	0.019 308			127.9 3	4.722 E-03	303.9	1.703 E-04
101	229	Meth yliso propy I keto ne	C ₅ H ₁ ₀ O	563- 80-4	86.13 23	-11.2 72	1048. 9	0.000 3049 3			180.1 5	4.305 E-03	367.5 5	2.212 E-04
101	230	Meth yliso propy I sulfi de	C ₄ H ₁ ₀ S	1551- 21-9	90.18 72	-11.0 75	990.7 2				171.6 4	4.977 E-03	553.1	9.292 E-05
101	231	Meth yl merc apta n	CH ₄ S	74- 93-1	48.10 746	-10.6 28	645	0.025 885			150.1 8	2.022 E-03	279.1 1	2.826 E-04
101	232	Meth yl meth acryl ate	C ₅ H ₈ O ₂	80- 62-6	100.1 1582	-0.09 9	496	-1.59 39			260	8.635 E-04	400	2.229 E-04
101	233	2- Meth yloct anoic acid	C ₉ H ₁ ₈ O ₂	3004- 93-1	158.2 3802	-12.5 79	2224. 2				240	3.646 E-02	518.1 5	2.519 E-04
101	234	2- Meth ylpen tane	C ₆ H ₁	107- 83-5	86.17 536	-12.8 6	946.9	0.261 91			119.5 5	2.506 E-02	333.4 1	2.038 E-04
101	235	Meth yl penty I ether	C ₆ H ₁ ₄ O	628- 80-8	102.1 7476	-11.3 91	1090. 8	1.075 2E- 07			176	5.554 E-03	372	2.120 E-04
101	236	2- Meth ylpro pane	C ₄ H ₁	75- 28-5	58.12 22	-13.9 12	797.0 9	0.453 08			110	1.072 E-02	310.9 5	1.588 E-04
101	237	2- Meth yl-2- prop anol	C ₄ H ₁	75- 65-0	74.12 16	400.3 5	-30,3 87	-56.9 71	550,6 80,00 0	-3	295.5 6	5.334 E-03	451.2 1	1.006 E-04

Eqn	Cmp d. no.	Nam e	Form ula	CAS	Mol. wt.	С	С	С	С	С	т, К	Visco sity at T	т, К	Visco sity at T
101	238	2- Meth yl prop ene	C ₄ H ₈	115- 11-7	56.10 632	-10.3 85	599.5 9	-0.04 6088			132.8 1	2.253 E-03	266.2 5	2.270 E-04
101	239	Meth yl propi onat e	C ₄ H ₈ O ₂	554- 12-1	88.10 512	-4.84 1	696.7	-0.91 94			250	8.002 E-04	352.6	2.593 E-04
101	240	Meth ylpro pyl ether	C ₄ H ₁ ₀ O	557- 17-5	74.12 16	-10.7 05	788.9 4	-0.04 8383			133.9 7	6.390 E-03	312.2	2.127 E-04
101	241	Meth ylpro pyl sulfi de	C ₄ H ₁ ₀ S	3877- 15-4	90.18 72	-10.5 69	952.3 8	-0.06 3873			160.1 7	7.103 E-03	368.6 9	2.333 E-04
	242	Meth ylsila ne	CH ₆ S i	992- 94-9	46.14 384									
101	243	alpha - Meth yl styre ne	C ₉ H ₁	98- 83-9	118.1 757	-11.6 32	1251. 6	0.071 692			249.9 5	1.972 E-03	438.6 5	2.382 E-04
101	244	Meth yl tert- butyl ether	C ₅ H ₁	1634- 04-4	88.14 82	-13.4 15	1050. 5	0.331 57	0	0	164.5 5	4.801 E-03	328.2	2.502 E-04
101	245	Meth yl vinyl ether	C ₃ H ₆ 0	107- 25-5	58.07 914	-10.3 4	519.6 1	-0.01 3899			151.1 5	9.377 E-04	278.6 5	1.929 E-04
101	246	Naph thale ne	C ₁₀ H	91- 20-3	128.1 7052	-19.3 08	1822. 5	1.218			353.4 3	9.077 E-04	633.1 5	1.892 E-04
101	247	Neon	Ne	7440- 01-9	20.17 97	-17.9 45	115.5 7	1.428	-2.14 E-17	10	25.09	1.602 E-04	44.13	2.706 E-05
101	248	Nitro etha ne	C ₂ H ₅ NO ₂	79- 24-3	75.06 66	-4.43 8	746.5	-0.93 85			200	3.420 E-03	387.2 2	3.027 E-04
101	249	Nitro gen	N ₂	7727- 37-9	28.01 34	16.00 4	-181. 61	-5.15 51			63.15	2.633 E-04	124	3.331 E-05

Eqn	Cmp d. no.	Nam e	Form ula	CAS	Mol. wt.	С	С	С	С	С	т, К	Visco sity at T	т, К	Visco sity at T
	250	Nitro gen triflu oride	F ₃ N	7783- 54-2	71.00 191									
101	251	Nitro meth ane	CH ₃ N O ₂	75- 52-5	61.04 002	-9.55 56	981.6 4	-0.19 453			244.6	1.344 E-03	374.3 5	3.078 E-04
101	252	Nitro us oxide	N ₂ O	1002 4-97- 2	44.01 28	19.32 9	-381. 68	-4.86 18			210	2.065 E-04	283.0 9	7.730 E-05
101	253	Nitric oxide	NO	1010 2-43- 9	30.00 61	-246. 65	3150. 3	49.98	-0.22 541	1	109.5	3.858 E-04	180.0 5	3.791 E-05
101	254	Nona deca ne	C ₁₉ H 40	629- 92-5	268.5 209	-16.4 03	2119. 5	0.688 1			305.0 4	4.012 E-03	603.1 5	2.068 E-04
101	255	Nona nal	C ₉ H ₁ ₈ O	124- 19-6	142.2 3862	-4.34 92	1052. 7	-1.00 35			267.3	2.432 E-03	465.5 2	2.606 E-04
101	256	Nona ne	C ₉ H ₂	111- 84-2	128.2 551	-68.5 4	3165. 3	9.091 9	-0.00 0013 519	2	218.1 5	3.306 E-03	593.1 5	4.997 E-05
101	257	Nona noic acid	C ₉ H ₁ ₈ O ₂	112- 05-0	158.2 38	-48.8 51	4095	5.294			285.5 5	1.030 E-02	528.7 5	3.670 E-04
101	258	1- Nona nol	C ₉ H ₂ ₀ O	143- 08-8	144.2 545	-39.8 63	4089	3.763 1			280	1.733 E-02	486.2 5	2.823 E-04
101	259	2- Nona nol	C ₉ H ₂ ₀ O	628- 99-9	144.2 55	-98.8 54	7183. 8	12.28 3			238.1 5	2.310 E-01	471.7	3.334 E-04
101	260	1- None ne	C ₉ H ₁	124- 11-8	126.2 3922	-11.0 69	1081. 7				191.9 1	4.372 E-03	420.0 2	2.048 E-04
101	261	Nony I merc apta n	C ₉ H ₂ ₀ S	1455- 21-6	160.3 201	-11.3 19	1428	-0.02 2545			253.0 5	3.026 E-03	492.9 5	1.912 E-04
101	262	1- Nony ne	C ₉ H ₁	3452- 09-3	124.2 2334	-2.34 09	715.5 2	-1.22 2			223.1 5	3.206 E-03	487.2	2.172 E-04
101	263	Octa deca ne	C ₁₈ H	593- 45-3	254.4 9432	-22.6 88	2466	1.570 3			301.3 1	3.926 E-03	589.8 6	2.057 E-04

Eqn	Cmp d. no.	Nam e	Form ula	CAS	Mol. wt.	С	С	С	С	С	т, К	Visco sity at T	т, К	Visco sity at T
101	264	Octa nal	C ₈ H ₁	124- 13-0	128.2 12	-2.53 73	900.9 1	-1.26 85			251.6 5	2.555 E-03	445.1 5	2.614 E-04
101	265	Octa ne	C ₈ H ₁	111- 65-9	114.2 2852	-98.8 05	3905. 5	14.10 3	-0.00 0025 112	2	211.1 5	2.629 E-03	454.9 6	1.111 E-04
101	266	Octa noic acid	C ₈ H ₁ ₆ O ₂	124- 07-2	144.2 11	-60.7 95	4617. 8	7.028			289.6 5	6.652 E-03	512.8 5	3.576 E-04
101	267	1- Octa nol	C ₈ H ₁ ₈ O	111- 87-5	130.2 2792	-0.22 128	3018. 4	-2.80 54	0.000 0131 41	2	280	1.472 E-02	468.3 5	2.902 E-04
101	268	2- Octa nol	C ₈ H ₁ ₈ O	123- 96-6	130.2 28	-145. 99	9296. 7	19.28 5			241.5 5	1.856 E-01	452.9	5.409 E-04
101	269	2- Octa none	C ₈ H ₁ ₆ O	111- 13-7	128.2 1204	-11.7 36	1415. 2	0.000 3618			252.8 5	2.161 E-03	446.1 5	1.913 E-04
101	270	3- Octa none	C ₈ H ₁ ₆ O	106- 68-3	128.2 1204	-20.8 04	1834. 6	1.340 3			255.5 5	2.039 E-03	440.6 5	2.075 E-04
101	271	1- Octe ne	C ₈ H ₁	111- 66-0	112.2 1264	-11.1 9	1057. 4				171.4 5	6.587 E-03	453.5 2	1.422 E-04
101	272	Octyl merc apta n	C ₈ H ₁ ₈ S	111- 88-6	146.2 9352	-11.4 98	1362. 1	0.015 575			223.9 5	4.837 E-03	472.1 9	1.999 E-04
101	273	1- Octy ne	C ₈ H ₁	629- 05-0	110.1 9676	-3.85 52	684.2 2	-1.00 71			193.5 5	3.614 E-03	468	1.868 E-04
101	274	Oxali c acid	C ₂ H ₂ O ₄	144- 62-7	90.03 488	-27.9 78	2915. 1	2.337 4			462.6 5	6.539 E-04	516	4.399 E-04
101	275	Oxyg en	02	7782- 44-7	31.99 88	-4.14 76	94.04	-1.20 7			54.36	7.170 E-04	150	6.990 E-05
101	276	Ozon e	03	1002 8-15- 6	47.99 82	-10.9 4	415.9 6				77.55	3.787 E-03	208.8	1.300 E-04
101	277	Pent adec ane	C ₁₅ H 32	629- 62-9	212.4 1458	-19.2 99	2088. 6	1.109 1			283.0 7	3.486 E-03	543.8 4	2.091 E-04
101	278	Pent anal	C ₅ H ₁	110- 62-3	86.13 23	-8.21 85	919.4 3	-0.42 363			191.5 9	3.532 E-03	375.1 5	2.539 E-04

Eqn	Cmp d. no.	Nam e	Form ula	CAS	Mol. wt.	С	С	С	С	С	т, К	Visco sity at T	т,	Visco sity at T
101	279	Pent ane	C ₅ H ₁	109- 66-0	72.14 878	-53.5 09	1836. 6	7.140 9	-0.00 0019 627	2	143.4 2	3.529 E-03	465.1 5	4.796 E-05
101	280	Pent anoic acid	C ₅ H ₁ ₀ O ₂	109- 52-4	102.1 32	-37.0 67	2856. 7	3.734 4			270	3.773 E-03	458.9 5	3.510 E-04
101	281	1- Pent anol	C ₅ H ₁ ₂ O	71- 41-0	88.14 82	-36.5 61	3542. 2	3.336 4	-8.04 87E- 37	12.84	253.1 5	1.649 E-02	410.9 5	3.842 E-04
101	282	2- Pent anol	C ₅ H ₁ ₂ O	6032- 29-7	88.14 82	-16.4 56	3209. 9				200	6.660 E-01	392.2	2.557 E-04
101	283	2- Pent anon e	C ₅ H ₁ ₀ O	107- 87-9	86.13 23	-11.0 55	1005. 3	0.003 9301			250	9.009 E-04	375.4 6	2.354 E-04
101	284	3- Pent anon e	C ₅ H ₁ ₀ O	96- 22-0	86.13 23	-2.86 95	596.3 2	-1.20 25			234.1 8	1.024 E-03	375.1 4	2.232 E-04
101	285	1- Pent ene	C ₅ H ₁	109- 67-1	70.13 29	-10.6 67	659.5 6				108.0 2	1.045 E-02	303.2 2	2.051 E-04
101	286	2- Pent yl merc apta n	C ₅ H ₁ ₂ S	2084- 19-7	104.2 1378	-6.91 68	818.7 6	-0.59 628			220	1.643 E-03	385.1 5	2.385 E-04
101	287	Pent yl merc apta n	C ₅ H ₁ ₂ S	110- 66-7	104.2 1378	-11.6 77	1091. 2	0.106 58			197.4 5	3.745 E-03	399.7 9	2.463 E-04
101	288	1- Pent yne	C ₅ H ₈	627- 19-0	68.11 702	-1.72 73	424.3 4	-1.34 2			167.4 5	2.322 E-03	378	1.898 E-04
101	289	2- Pent yne	C ₅ H ₈	627- 21-4	68.11 702	-3.72 41	516.5 4	-1.11 67			163.8 3	1.902 E-03	415.2	9.980 E-05
101	290	Phen anthr ene	C ₁₄ H	85- 01-8	178.2 292	-22.4 72	2566. 9	1.574 9			372.3 8	1.920 E-03	610.0 3	2.849 E-04
101	291	Phen ol	C ₆ H ₆ O	108- 95-2	94.11 124	-15.8 22	3301. 8				291.4 5	1.119 E-02	555.4	5.134 E-05

Eqn	Cmp d. no.	Nam e	Form ula	CAS	Mol. wt.	С	С	С	С	С	т, К	Visco sity at T	т, К	Visco sity at T
101	292	Phen yl isocy anat e	C ₇ H ₅ NO	103- 71-9	119.1 207	-11.3 1	1280				243.1 5	2.368 E-03	522.4	1.420 E-04
101	293	Phth alic anhy dride	C ₈ H ₄ O ₃	85- 44-9	148.1 1556	195.2 5	-11,0 72	-29.0 84			404.1 5	1.229 E-03	557.6 5	1.986 E-04
101	294	Prop adien e	C ₃ H ₄	463- 49-0	40.06 386	-6.35 28	240.8 5	-0.58 229			136.8 7	5.772 E-04	298.1 5	1.416 E-04
101	295	Prop ane	C ₃ H ₈	74- 98-6	44.09 562	-17.1 56	646.2 5	1.110 1	-7.34 39E- 11	4	85.47	9.458 E-03	360	4.275 E-05
101	296	1- Prop anol	C ₃ H ₈	71- 23-8	60.09 502	23.46 7	116.0 7	-5.33 72	2,880, 100,0 00	-4.02 67	146.9 5	2.069 E+01	370.3 5	4.735 E-04
101	297	2- Prop anol	C ₃ H ₈	67- 63-0	60.09 5	-8.89 18	2357. 6	-0.91 376			185.2 6	3.917 E-01	355.3	4.892 E-04
101	298	Prop enylc ycloh exen e	C ₉ H ₁	1351 1-13- 2	122.2 0746	-11.2 08	1079. 8				199	3.083 E-03	508.8	1.133 E-04
101	299	Propi onald ehyd e	C ₃ H ₆ O	123- 38-6	58.07 914	-5.94 02	617.9 5	-0.74 183			165	2.522 E-03	322.1 5	2.470 E-04
101	300	Propi onic acid	C ₃ H ₆ O ₂	79- 09-4	74.07 85	-23.9 31	1834. 6	1.912 4			252.4 5	2.275 E-03	414.3 2	3.430 E-04
101	301	Propi onitri le	C ₃ H ₅	107- 12-0	55.07 85	-6.69 8	753.5 8	-0.63 783			180.3 7	2.928 E-03	370.2 5	2.172 E-04
101	302	Prop yl aceta te	C ₅ H ₁ ₀ O ₂	109- 60-4	102.1 317	17.79 7	-252. 43	-4.29 1			250	1.002 E-03	473.1 5	1.045 E-04
101	303	Prop yl amin e	C ₃ H ₉ N	107- 10-8	59.11 026	-9.80 74	1010. 4	-0.25 697			188.3 6	3.060 E-03	321	2.908 E-04
101	304	Prop ylben zene	C ₉ H ₁	103- 65-1	120.1 9158	-18.2 82	1549. 7	1.045 4			200	6.774 E-03	432.3 9	2.357 E-04

Eqn	Cmp d. no.	Nam e	Form ula	CAS	Mol. wt.	С	С	С	С	С	т, К	Visco sity at T	т,	Visco sity at T
101	305	Prop ylene	C ₃ H ₆	115- 07-1	42.07 974	-92.0 82	1907. 3	15.63 9	-0.04 3098	1	87.89	1.549 E-02	333.1 5	5.147 E-05
101	306	Prop yl form ate	C ₄ H ₈ O ₂	110- 74-7	88.10 512	-73.7 35	2668. 2	10.99	-0.01 8364	1	180.2 5	5.852 E-03	353.9 7	2.810 E-04
101	307	2- Prop yl merc apta n	C ₃ H ₈ S	75- 33-2	76.16 062	-5.72 44	638.2	-0.76 415			142.6 1	6.477 E-03	325.7 1	2.784 E-04
101	308	Prop yl merc apta n	C ₃ H ₈ S	107- 03-9	76.16 062	-10.1 53	840.7 1	-0.09 3763			159.9 5	4.641 E-03	340.8 7	2.656 E-04
101	309	1,2- Prop ylene glyco I	C ₃ H ₈ O ₂	57- 55-6	76.09 442	-804. 54	30,48 7	130.7 9	-0.15 449	1	213.1 5	9.502 E+02	500.8	3.307 E-04
101	310	Quin one	C ₆ H ₄ O ₂	106- 51-4	108.0 9476	-14.8 46	1829. 4	0.372 9			388.8 5	3.642 E-04	454	1.965 E-04
	311	Silico n tetraf luori de	F ₄ Si	7783- 61-1	104.0 7911									
101	312	Styre ne	C ₈ H ₈	100- 42-5	104.1 4912	-22.6 75	1758	1.670 1			242.5 4	1.919 E-03	418.3 1	2.268 E-04
101	313	Succi nic acid	C ₄ H ₆ O ₄	110- 15-6	118.0 8804	-104. 32	9615. 1	12.58 7			460.8 5	1.913 E-03	591	4.426 E-04
101	314	Sulfu r dioxi de	028	7446- 09-5	64.06 38	46.22	-137 8	-8.74 75			225	6.900 E-04	400	6.557 E-05
101	315	Sulfu r hexaf luori de	F ₆ S	2551- 62-4	146.0 5541 92	3.830 5	41.21	-2.13 42			223.1 5	5.388 E-04	318.6 9	2.383 E-04
101	316	Sulfu r trioxi de	038	7446- 11-9	80.06 32	-88.7 93	6400. 7	10.70 9			289.9 5	2.477 E-03	318.1 5	9.456 E-04

Eqn	Cmp d. no.	Nam e	Form ula	CAS	Mol. wt.	С	С	С	С	С	т, К	Visco sity at T	т, К	Visco sity at <i>T</i>
101	317	Tere phth alic acid	C ₈ H ₆ O ₄	100- 21-0	166.1 3084	-11.5 66	2843. 2				700.1 5	5.502 E-04	795.2 8	3.385 E-04
101	318	o- Terp henyl	C ₁₈ H	84- 15-1	230.3 0376	-215. 09	11,61 2	31.84 9	-0.02 6882	1	329.3 5	1.736 E-02	723.1 5	1.522 E-04
101	319	Tetra deca ne	C ₁₄ H 30	629- 59-4	198.3 88	-136. 73	6421. 3	19.49	-0.00 0022 97	2	277.6 5	3.350 E-03	554.4	1.170 E-04
101	320	Tetra hydro furan	C ₄ H ₈	109- 99-9	72.10 572	-10.3 21	900.9 2	-0.06 9128			164.6 5	5.505 E-03	373.1 5	2.446 E-04
101	321	1,2,3, 4- Tetra hydro naph thale ne	C ₁₀ H	119- 64-2	132.2 0228	-118. 86	5829. 5	16.60 5	-0.00 0016 991	2	237.4	1.183 E-02	576	1.458 E-04
101	322	Tetra hydro thiop hene	C ₄ H ₈ S	110- 01-0	88.17 132	-10.8 43	1165. 2				293.1 5	1.040 E-03	303.1 5	9.125 E-04
101	323	2,2,3, 3- Tetra meth ylbut ane	C ₈ H ₁	594- 82-1	114.2 2852	5.535 1	632.3 8	-2.65 76			373.9 6	1.999 E-04	454	8.859 E-05
101	324	Thio phen e	C ₄ H ₄ S	110- 02-1	84.13 956	-16.6 71	1342. 5	0.838			250	1.269 E-03	393.1 5	2.625 E-04
101	325	Tolu ene	C ₇ H ₈	108- 88-3	92.13 842	-226. 08	6805. 7	37.54 2	-0.06 0853	1	178.1 8	1.569 E-02	383.7 8	2.428 E-04
101	326	1,1,2- Trich loroe than e	C ₂ H ₃ Cl ₃	79- 00-5	133.4 0422	0.388	736.5	-1.70 63			236.5	2.955 E-03	387	3.798 E-04
101	327	Tride cane	C ₁₃ H	629- 50-5	184.3 6142	-111. 98	5468. 6	15.57 9	-0.00 0016 992	2	267.6 7	3.399 E-03	540	1.520 E-04
101	328	Triet hyl amin e	C ₆ H ₁ ₅ N	121- 44-8	101.1 9	-3.70 67	585.7 8	-1.09 26			250	6.135 E-04	359.0 5	2.028 E-04

Eqn	Cmp d. no.	Nam e	Form ula	CAS	Mol. wt.	С	С	С	С	С	т, К	Visco sity at T	т,	Visco sity at T
101	329	Trim ethyl amin e	C ₃ H ₉ N	75- 50-3	59.11 026	10.14 2	-130. 41	-3.21 99			200	5.156 E-04	308.1 5	1.612 E-04
101	330	1,2,3- Trim ethyl benz ene	C ₉ H ₁	526- 73-8	120.1 9158	-11.7 56	1483. 1	-0.04 0387			247.7 9	2.495 E-03	449.2 7	1.663 E-04
101	331	1,2,4- Trim ethyl benz ene	C ₉ H ₁	95- 63-6	120.1 9158	-9.64 61	1281. 2	-0.29 478			229.3 3	3.477 E-03	442.5 3	1.942 E-04
101	332	2,2,4- Trim ethyl pent ane	C ₈ H ₁	540- 84-1	114.2 2852	-12.9 28	1137. 5	0.257 25	-3.69 29E- 28	10	165.7 8	8.636 E-03	541.1 5	4.530 E-05
101	333	2,3,3- Trim ethyl pent ane	C ₈ H ₁	560- 21-4	114.2 2852	-4.03 09	990.7 6	-1.17 71			172.2 2	1.305 E-02	387.9 1	2.049 E-04
101	334	1,3,5- Trinit robe nzen e	C ₆ H ₃ N ₃ O ₆	99- 35-4	213.1 0452	-10.7 07	1818. 5				398.4	2.150 E-03	676.8	3.288 E-04
101	335	2,4,6- Trinit rotol uene	C ₇ H ₅ N ₃ O ₆	118- 96-7	227.1 311	-11.5 04	3301	-0.39 102			353.1 5	1.167 E-02	625	1.601 E-04
101	336	Unde cane	C ₁₁ H	1120- 21-4	156.3 0826	52.17 6	-495 1.9	-8.56 76	570,9 80	-2	247.5 7	3.240 E-03	511.2	1.569 E-04
101	337	1- Unde canol	C ₁₁ H ₂₄ O	112- 42-5	172.3 0766	-69.7 78	5905. 2	8.021 4			288.4 5	2.089 E-02	590.1 5	1.856 E-04
101	338	Vinyl aceta te	C ₄ H ₆ O ₂	108- 05-4	86.08 924	-22.4 07	1462. 8	1.700 6			225	1.237 E-03	345.6 5	2.654 E-04
101	339	Vinyl acety lene	C ₄ H ₄	689- 97-4	52.07 456	-2.23 33	320.3 7	-1.29 15			173.1 5	8.764 E-04	364	1.273 E-04
101	340	Vinyl chlor ide	C ₂ H ₃ CI	75- 01-4	62.49 822	0.262 97	276.5 5	-1.72 82			130	2.425 E-03	400	8.272 E-05

Eqn	Cmp d. no.	Nam e	Form ula	CAS	Mol. wt.	С	С	С	С	С	т, К	Visco sity at T	т, К	Visco sity at T
101	341	Vinyl trichl orosi lane	C ₂ H ₃ Cl ₃ Si	75- 94-5	161.4 8972	-10.3 7	823.3 1				178.3 5	3.171 E-03	434.5 2	2.086 E-04
101	342	Wate r	H ₂ O	7732- 18-5	18.01 528	-52.8 43	3703. 6	5.866	-5.87 9E- 29	10	273.1 6	1.702 E-03	646.1 5	5.028 E-05
101	343	<i>m</i> - Xylen e	C ₈ H ₁	108- 38-3	106.1 65	-11.9 1	1094. 9	0.138 25			225.3	1.834 E-03	413.1	2.189 E-04
101	344	o- Xylen e	C ₈ H ₁	95- 47-6	106.1 65	-15.4 89	1393. 5	0.637 11			247.9 8	1.735 E-03	418.1	2.459 E-04
101	345	p- Xylen e	C ₈ H ₁	106- 42-3	106.1 65	-7.38 1	911.7	-0.54 152			286.4 1	7.021 E-04	413.1	2.169 E-04

Except for deuterium, the liquid viscosity is calculated by Eqn 101: $\mu = \exp(C_1 + C_2/T + C_3 \ln T + C_4 T^{C5})$ where μ is the viscosity in Pa·s and T is the temperature in K. Viscosity is either 1 atm or the vapor pressure, whichever is higher. For deuterium, liquid viscosity is calculated by Eqn 100: $\mu = C_1 + C_2 T + C_3 T^2 + C_4 T^3 + C_5 T^4$ where μ is the viscosity in Pa·s and T is the temperature in K.

Values in this table were taken from the Design Institute for Physical Properties (DIPPR) of the American Institute of Chemical Engineers (AIChE), 801 Critically Evaluated Gold Standard™ Database, copyright 2016 AIChE, and reproduced with permission of AIChE and of the DIPPR Evaluated Process Design Data Project Steering Committee. Their source should be cited as "R. L. Rowley, W. V. Wilding, J. L. Oscarson, T. A. Knotts, N. F. Giles, *DIPPR*® *Data Compilation of Pure Chemical Properties*, Design Institute for Physical Properties, AIChE, New York, NY (2016)".

Table 2-140 Viscosities of Liquids: Coordinates for Use with Fig. 2-19

Liquid	х	Υ	Liquid	X	Υ
Acetaldehyde	15.2	4.8	Glycerol, 100%	2.0	30.0
Acetic acid, 100%	12.1	14.2	Glycerol, 50%	6.9	19.6
Acetic acid, 70%	9.5	17.0	Heptane	14.1	8.4
Acetic anhydride	12.7	12.8	Hexane	14.7	7.0
Acetone, 100%	14.5	7.2	Hydrochloric acid, 31.5%	13.0	16.6
Acetone, 35%	7.9	15.0	Iodobenzene	12.8	15.9
Acetonitrile	14.4	7.4	Isobutyl alcohol	7.1	18.0
Acrylic acid	12.3	13.9	Isobutyric acid	12.2	14.4
Allyl alcohol	10.2	14.3	Isopropyl iodide	13.7	11.2
Allyl bromide	14.4	9.6	Kerosene	10.2	16.9

Liquid	X	Υ	Liquid	Х	Υ
Allyl iodide	14.0	11.7	Linseed oil, raw	7.5	27.2
Ammonia, 100%	12.6	2.0	Mercury	18.4	16.4
Ammonia, 26%	10.1	13.9	Methanol, 100%	12.4	10.5
Amyl acetate	11.8	12.5	Methanol, 90%	12.3	11.8
Amyl alcohol	7.5	18.4	Methanol, 40%	7.8	15.5
Aniline	8.1	18.7	Methyl acetate	14.2	8.2
Anisole	12.3	13.5	Methyl acrylate	13.0	9.5
Arsenic trichloride	13.9	14.5	Methyl i-butyrate	12.3	9.7
Benzene	12.5	10.9	Methyl n-butyrate	13.2	10.3
Brine, CaCl ₂ , 25%	6.6	15.9	Methyl chloride	15.0	3.8
Brine, NaCl, 25%	10.2	16.6	Methyl ethyl ketone	13.9	8.6
Bromine	14.2	13.2	Methyl formate	14.2	7.5
Bromotoluene	20.0	15.9	Methyl iodide	14.3	9.3
Butyl acetate	12.3	11.0	Methyl propionate	13.5	9.0
Butyl acrylate	11.5	12.6	Methyl propyl ketone	14.3	9.5
Butyl alcohol	8.6	17.2	Methyl sulfide	15.3	6.4
Butyric acid	12.1	15.3	Naphthalene	7.9	18.1
Carbon dioxide	11.6	0.3	Nitric acid, 95%	12.8	13.8
Carbon disulfide	16.1	7.5	Nitric acid, 60%	10.8	17.0
Carbon tetrachloride	12.7	13.1	Nitrobenzene	10.6	16.2
Chlorobenzene	12.3	12.4	Nitrogen dioxide	12.9	8.6
Chloroform	14.4	10.2	Nitrotoluene	11.0	17.0
Chlorosulfonic acid	11.2	18.1	Octane	13.7	10.0
Chlorotoluene, ortho	13.0	13.3	Octyl alcohol	6.6	21.1
Chlorotoluene, meta	13.3	12.5	Pentachloroethane	10.9	17.3
Chlorotoluene, para	13.3	12.5	Pentane	14.9	5.2

Liquid	х	Υ	Liquid	х	Υ
Cresol, meta	2.5	20.8	Phenol	6.9	20.8
Cyclohexanol	2.9	24.3	Phosphorus tribromide	13.8	16.7
Cyclohexane	9.8	12.9	Phosphorus trichloride	16.2	10.9
Dibromomethane	12.7	15.8	Propionic acid	12.8	13.8
Dichloroethane	13.2	12.2	Propyl acetate	13.1	10.3
Dichloromethane	14.6	8.9	Propyl alcohol	9.1	16.5
Diethyl ketone	13.5	9.2	Propyl bromide	14.5	9.6
Diethyl oxalate	11.0	16.4	Propyl chloride	14.4	7.5
Diethylene glycol	5.0	24.7	Propyl formate	13.1	9.7
Diphenyl	12.0	18.3	Propyl iodide	14.1	11.6
Dipropyl ether	13.2	8.6	Refrigerant R-22	17.2	4.7
Dipropyl oxalate	10.3	17.7	Sodium	16.4	13.9
Ethyl acetate	13.7	9.1	Sodium hydroxide, 50%	3.2	25.8
Ethyl acrylate	12.7	10.4	Stannic chloride	13.5	12.8
Ethyl alcohol, 100%	10.5	13.8	Succinonitrile	10.1	20.8
Ethyl alcohol, 95%	9.8	14.3	Sulfur dioxide	15.2	7.1
Ethyl alcohol, 40%	6.5	16.6	Sulfuric acid, 110%	7.2	27.4
Ethyl benzene	13.2	11.5	Sulfuric acid, 100%	8.0	25.1
Ethyl bromide	14.5	8.1	Sulfuric acid, 98%	7.0	24.8
2-Ethyl butyl acrylate	11.2	14.0	Sulfuric acid, 60%	10.2	21.3
Ethyl chloride	14.8	6.0	Sulfuryl chloride	15.2	12.4
Ethyl ether	14.5	5.3	Tetrachloroethane	11.9	15.7
Ethyl formate	14.2	8.4	Thiophene	13.2	11.0
2-Ethyl hexyl acrylate	9.0	15.0	Titanium tetrachloride	14.4	12.3
Ethyl iodide	14.7	10.3	Toluene	13.7	10.4
Ethyl propionate	13.2	9.9	Trichloroethylene	14.8	10.5
Ethyl propyl ether	14.0	7.0	Triethylene glycol	4.7	24.8

Liquid	х	Υ	Liquid	х	Υ
Ethyl sulfide	13.8	8.9	Turpentine	11.5	14.9
Ethylene bromide	11.9	15.7	Vinyl acetate	14.0	8.8
Ethylene chloride	12.7	12.2	Vinyl toluene	13.4	12.0
Ethylene glycol	6.0	23.6	Water	10.2	13.0
Ethylidene chloride	14.1	8.7	Xylene, ortho	13.5	12.1
Fluorobenzene	13.7	10.4	Xylene, meta	13.9	10.6
Formic acid	10.7	15.8	Xylene, para	13.9	10.9

Figure 2-19 Nomograph for viscosities of liquids at 1 atm. For coordinates see Table 2-141. To convert centipoise to pascal-seconds, multiply by 0.001.

Table 2-141 Diffusivities of Pairs of Gases and Vapors (1 atm), D_v in cm²/s

Subs tance	Temp ., °C	Air	Α	H ₂	02	N ₂	CO ₂	N ₂ O	CH₄	C ₂ H ₆	C ₂ H ₄	<i>n-</i> C₄H	<i>i-</i> C₄H 10	Ref.
Aceti c acid	0	0.106 4		0.416			0.071 6							8
Acet one	0	.109		.361										6, 16
n-Am yl alcoh ol	0	.0589		.235			.0422							8
sec-A myl alcoh ol	30	.072												5
Amyl butyr ate	0	.040												8
Amyl form ate	0	.0543												8
i-Am yl form ate	0	.058												8
Amyl isobu tyrat e	0	.0419		.171										8
Amyl propi onat e	0	.046		.1914			.0347							8
Anili ne	0	.0610												8
	30	.075												5
Anthr acen e	0	.0421												8
Argo n	20					0.194								18
Benz ene	0	.077		.306	0.079 7		.0528							8, 15
Benzi dine	0	.0298												8

Subs tance	Temp ., °C	Air	Α	Н	0	N	СО	N O	СН	СН	СН	n-C H	<i>i-</i> C H	Ref.
Benz yl chlor ide	0	.066												8
n-But yl aceta te	0	.058												8
i-But yl aceta te	0	.0612		.2364			.0425							8
n-But yl alcoh ol	0	.0703		.2716			.0476							8
	30	.088												5
<i>i-</i> But yl alcoh ol	0	.0727		.2771			.0483							8
Butyl amin e	0	.0821												8
<i>i-</i> But yl amin e	0	.0853												8
<i>i-</i> But yl butyr ate	0	.0468		.185			.0327							8
<i>i-</i> But yl form ate	0	.0705												8
i-But yl isobu tyrat e	0	.0457		.191			.0364							8
i-But yl propr ionat e	0	.0529		.203			.0366							8

Subs tance	Temp ., °C	Air	Α	Н	0	N	СО	N O	СН	СН	СН	n-C H	<i>i-</i> C H	Ref.
<i>i-</i> But yl valer ate	0	.0424		.173			.0308							8
Butyr ic acid	0	.067		.264			.0476							8
i-But yric acid	0	.0679		.271			.0471							8
Cad miu m	0					.17								13
Capr oic acid	0	.050												8
i-Cap roic acid	0	.0513												8
Carb on dioxi de	0	.138		.550	.139			0.096	0.153					8
	20					.163								19
	25							.0996	.0021 5 [†]					1, 9
	500 [‡]				.9									18
Carb on disul fide	0	.0892		.369			.063							8
Carb on mon oxide	0			.651	.185		.137				0.116			8
	450 [‡]				1.0									18
Carb on tetra chlor ide	0			.293	0.063 6									16, 17
Chlor oben zene	30	.075												5

Subs tance	Temp ., °C	Air	Α	н	0	N	СО	N O	СН	СН	СН	n-C H	<i>i-</i> C H	Ref.
Chlor ofor m	0	.091												6
Chlor opicr in	25	.088												10
m-Ch lorot oluen e	0	.054												8
o-Chl oroto luene	0	.059												8
p-Chl oroto luene	0	.051												8
Cyan ogen chlor ide	0	.111												10
Cyclo hexa ne	15		0.071 9	.319	.0744	.0760								3
	45	.086												6
n-De cane	90			.306		.0841								3
Dieth ylami ne	0	.0884												8
2,3- Dime thyl buta ne	15		.0657	.301	.0753	.0751								3
Diph enyl	0	.0610												8
n-Do deca ne	126			.308		.0813								3
Etha ne	0			.459										8
Etha nol	0			.377			.0686							20

Subs tance	Temp ., °C	Air	A	Н	0	N	CO	N O	СН	СН	СН	n-C H	<i>i-</i> C H	Ref.
Ether (diet hyl)	0	.0778		.298			.0546							7, 8
Ethyl aceta te	0	.0715		.273			.0487							8
	30	.089												5
Ethyl alcoh ol	0	.102		.375			.0685							8
Ethyl benz ene	0	.0658												8
Ethyl n-but yrate	0	.0579		.224			.0407							8
Ethyl <i>i</i> -buty rate	0	.0591		.229			.0413							8
Ethyl ene	0			.486										8
Ethyl form ate	0	.0840		.337			.0573							8
Ethyl propi onat e	0	.068		.236			.0450							4, 8
Ethyl valer ate	0	.0512		.205			.0367							8
Euge nol	0	.0377												8
Form ic acid	0	.1308		.510			.0874							8
Heliu m	0		.641											8
	20					.705								19
n-He ptan e	38								.066 [§]					

Subs tance	Temp ., °C	Air	Α	Н	0	N	CO	N O	СН	СН	СН	n-C H	<i>i-</i> C H	Ref.
n-He xane	15		.0663	.290	.0753	.0757								3
Hexyl alcoh ol	0	.0499		.200			.0351							8
Hydr ogen	0	.611			.697	.674	.550	.535	.625	0.459	0.486	0.272	0.277	8
	25						.646			.537	.726			2
	500				4.2									18
Hydr ogen cyani de	0	0.173												10
Hydr ogen pero xide	60	.188												11
lodin e	0	.07				0.070								8, 12, 14
Merc ury	0	.112		0.53		.13								8, 12, 13
Mesi tylen e	0	.056												8
Meth ane	500				1.1								18	
Meth yl aceta te	0	.084		.333			0.056 7							8
Meth yl alcoh ol	0	.132		.506			.0879							8
Meth yl butyr ate	0	.0633		.242			.0446							8
Meth yl <i>i</i> -buty rate	0	.0639		.257			.0451							8

Subs tance	Temp ., °C	Air	Α	Н	0	N	CO	N O	СН	СН	СН	n-C H	<i>i-</i> C H	Ref.
Meth yl cyclo pent ane	15		0.073 1	.318	0.074	0.075 8								3
Meth yl form ate	0	.0872												8
Meth yl propi onat e	0	.0735		.295			.0528							8
Meth yl valer ate	0	0.056 9												8
Naph thale ne	0	.0513												8
Nitro gen	0				0.181									8
	25						0.165			0.148	0.163	0.096 0	0.090 8	2
Nitro us oxide	0			0.535			.096							8
n-Oct ane	0	.0505												8
	30		0.064 2	.271	0.070 5	0.071 0								3
Oxyg en	0	.178		.697		0.181	.139							8
Phos gene	0	.095												10
Propi onic acid	0	.0829		.330			.0588							8
Prop yl aceta te	0	.067												8

Subs tance	Temp ., °C	Air	Α	Н	0	N	СО	N O	СН	СН	СН	n-C H	<i>i-</i> C H	Ref.
n-Pro pyl alcoh ol	0	.085		.315			.0577							8
i-Pro pyl alcoh ol	0	.0818												8
	30	.101												5
n-Pro pyl benz ene	0	.0481												8
<i>i-</i> Pro pyl benz ene	0	.0489												8
n-Pro pyl brom ide	0	.085												8
<i>i-</i> Pro pyl brom ide	0	.0902												8
Prop yl butyr ate	0	.0530		.206			.0364							8
Prop yl form ate	0	.0712		.281			.0490							8
n-Pro pyl iodid e	0	.079												8
<i>i-</i> Pro pyl iodid e	0	.0802												8
n-Pro pyl isobu tyrat e	0	.0549		.212			.0388							8

Subs tance	Temp ., °C	Air	Α	Н	0	N	СО	N O	СН	СН	СН	n-C H	<i>i-</i> C H	Ref.
i-Pro pyl isobu tyrat e	0	.059												8
Prop yl propi onat e	0	.057		.212			.0395							8
Prop yl valer ate	0	.0466		.189			.0341							8
Safro I	0	.0434												8
<i>i</i> -Safr ol	0	.0455												8
Sulfu r hexaf luori de	25			.418										2
Tolu ene	0	.076	0.071											4, 8
	30	.088												5
Trim ethyl carbi nol	0	.087												8
2,2,4- Trim ethyl pent ane	30		0.061 8	.288	0.068	0.070 5								3
2,2,3- Trim ethyl hept ane	90			.270		0.068								3
n-Val eric acid	0	0.050												8
i-Val eric acid	0	0.054 4		.212			.0376							8

Subs tance	Temp ., °C	Air	Α	н	0	N	со	N O	СН	СН	СН	n-C H	i-C H	Ref
Wate r	0	0.220		.75			.138							8, 2
	450				1.3									18
*320 m	ımHg.						-							
[†] 40 atn	n.													
‡Also a	it other te	emperatur	es.											
§Stron(g functio	n of conce	entration											
Refere	nces													
¹ Amdu	r, Irvine, I	Mason, ar	ıd Ross,	J. Chem.	Phys., 20	, 436 (19	52).							
² Boyd,	Stein, Ste	eingrimss	on, and F	Rumpel, J	I. Chem. P	hys., 19,	548 (195	1).						
³ Cumn	nings and	Ubbeloh	de, J. Che	em. Soc.	(London),	1953, p.	3751.							
⁴ Fairba	inks and	Wilke, <i>Ind</i>	. Eng. Ch	em., 42,	471 (1950	0).								
⁵ Gillilaı	nd, <i>Ind</i> . E	ng. Chem.	, 26, 681	(1934).										
⁶ Goryn	nova and	Kuvskins	kii, <i>Zhur</i>	Tekh. Fi	z., 18, 142	21 (1948)).							
⁷ Hanse	en, Disser	tation, Je	na, 1907											
⁸ Interna	ational Cr	itical Tab	es, vol. 5	, p. 62.										
⁹ Jeffrie	es and Dr	ickamer,	J. Chem.	Phys., 2 2	2, 436 (19	54).								
¹⁰ Klotz	and Mill	er, <i>J. Am</i> .	Chem. S	oc., 69, 2	557 (194	7).								
¹¹ McM	urtrie and	d Keyes, J	. Am. Ch	em. Soc.,	70, 3755	(1948).								
¹² Mulla	aly and Ja	acques, Pl	hil. Mag.,	48, 6, 11	05 (1924).								
¹³ Spier	, Physica,	, 6 (1939)	: 453; 7 ,	381 (194	0).									
¹⁴ Tople	ey and Wl	hytlaw-Gr	ay, <i>Phil. I</i>	∕lag., 4, 8	73 (1927)).								
¹⁵ Traut	tz and Lu	dwig, <i>Ann</i>	. Physik,	5, 5, 887	(1930).									
¹⁶ Traut	tz and Mu	ıller, <i>Ann</i> .	Physik, 2	22, 353 (*	1935).									
¹⁷ Traut	z and Rie	es, Ann. P	hysik, 8,	163 (193	1).									
		estenberg												

Subs tance	Temp ., °C	Air	A	н	0	N	со	N O	СН	СН	СН	n-C H	i-C H	Ref.
¹⁹ Westenberg and Walker, <i>J. Chem. Phys.,</i> 26, 1753 (1957).														
²⁰ Wink	elmann, V	/ied. Ann.	, 22, 152	2 (1884); 2	23, 203 (1	1884); 26	, 105 (18	85); 33, 4	45 (1888	3); 36, 92 ((1889).			

Table 2-143 has a representative selection of diffusion coefficients. The subsection "Prediction and Correlation of Physical Properties" should be consulted for estimation techniques.

Table 2-142 Diffusivities in Liquids (25°C)

Solute†	Solvent	D _L × 10 ⁵ , sq cm/sec	Estimated possible, error, ± %1	Ref.
Acetal*	Ethanol	1.25	5	11
Acetamide*	Ethanol	0.68	5	11
Acetamide*	Water	1.19	3	11
Acetic acid	Acetone	3.31		4
Acetic acid	Benzene	2.11		1, 4
Acetic acid	Carbon tetrachloride	1.49		4
Acetic acid	Ethylene glycol	0.13		4
Acetic acid	Toluene	2.26		4
Acetic acid*	Water	1.24	3	11
Acetonitrile	Water	1.66	5	11
Acetylene	Water	1.78, 2.11		1, 24
Allyl alcohol*	Ethanol	1.06	5	11
Allyl alcohol	Water	1.19	6	11
Ammonia*	Water	1.7, 2.0, 2.3		1, 11
i-Amyl alcohol*	Ethanol	0.87	5	11
i-Amyl alcohol	Water	1.0	8	11, 25
Benzene	Carbon tetrachloride	1.53		7
Benzene (50 mole %)	n-Decane	1.72		26
Benzene (50 mole %)	2,4-Dimethyl pentane	2.49		26
Benzene (50 mole %)	n-Dodecane	1.40		26

Solute†	Solvent	D × 10 , sq cm/sec	Estimated possible, error, ± %1	Ref.
Benzene (50 mole %)	n-Heptane	2.47		26
Benzene (50 mole %)	n-Hexadecane	0.96		26
Benzene (50 mole %)	n-Octadecane	0.86		26
Benzoic acid	Acetone	2.62		4
Benzoic acid	Benzene	1.38		4
Benzoic acid	Carbon tetrachloride	0.91		4
Benzoic acid	Ethylene glycol	0.043		4
Benzoic acid	Toluene	1.49		4
Bromine	Benzene	2.7		11
Bromine	Carbon disulfide	4.1		11
Bromine	Water	1.3		11
Bromobenzene	Benzene	2.30		25
Bromoform*	Acetone	2.90		11
Bromoform	i-Amyl alcohol	0.53		11
Bromoform	Ethanol	1.08	5	11
Bromoform*	Ethyl ether	3.62		11
Bromoform	Methanol	2.20		23
Bromoform	n-Propanol	0.94		11
n-Butanol	Water	0.96	5	1, 11, 18, 25
Caffeine	Water	0.63	6	11
Carbon dioxide	Ethanol	4.0	6	11
Carbon dioxide	Water	1.96	1	1, 3, 5, 20, 24, 28
Carbon disulfide (50 mole %, 200 atm.)	n-Butanol	3.57		14
Carbon disulfide (50 mole %, 200 atm.)	i-Butanol	2.42		14
Carbon disulfide (50 mole %, 218 atm.)	Chlorobenzene	3.00		14

Solute†	Solvent	D ×10 ,sq cm/sec	Estimated possible, error, ± %1	Ref.
Carbon disulfide (50 mole %, 200 atm.)	2,4-Dimethyl pentane	3.63		14
Carbon disulfide (50 mole %, 100 atm.)	n-Heptane	3.0		14
Carbon disulfide (50 mole %, 50 atm.)	Methyl cyclohexane	3.5		14
Carbon disulfide (50 mole %, 200 atm.)	n-Octane	3.10		14
Carbon disulfide (50 mole %)	Toluene	2.06		14
Carbon tetrachloride	Benzene	2.04	3	7, 9
Carbon tetrachloride*	Cyclohexane	1.49	2	9, 10*
Carbon tetrachloride	Decalin	0.776	2	9
Carbon tetrachloride	Dioxane	1.02	2	9
Carbon tetrachloride*	Ethanol	1.50	2	9, 10*
Carbon tetrachloride	n-Heptane	3.17	2	9
Carbon tetrachloride	Kerosene	0.961	2	9
Carbon tetrachloride	Methanol	2.30	2	9
Carbon tetrachloride	i-Octane	2.57	2	9
Carbon tetrachloride	Tetralin	0.735	2	9
Chloral*	Ethanol	0.68	5	11
Chloral hydrate	Water	0.77	7	11
Chlorine	Water	1.44	4	1, 28
Chlorobenzene	Benzene	2.66		25
Chloroform	Benzene	2.50	6	1, 25
Chloroform	Ethanol	1.38	3	11
Cinnamic acid	Acetone	2.41		4
Cinnamic acid	Benzene	1.12		4
Cinnamic acid	Carbon tetrachloride	0.76		4
Cinnamic acid	Toluene	2.41		4

Solute†	Solvent	D × 10 , sq cm/sec	Estimated possible, error, ± %1	Ref.
1,1'-Dichloropropanol	Water	1.0	6	11
Dicyanodiamide*	Water	1.18	4	11
Diethyl ether	Benzene	2.73		25
Diethyl ether	Water	0.85		2
2,4-Dimethyl pentane (50 mole %)	n-Dodecane	1.44		26
2,4-Dimethyl pentane (50 mole %)	n-Hexadecane	0.88		26
Ethanol*	Water	1.28	4	1, 7, 9,* 11,* 22
Ethyl acetate	Ethyl benzoate	0.94		6
Ethylene dichloride	Benzene	2.8		1, 25
Formic acid	Acetone	3.77		4
Formic acid	Benzene	2.28		4
Formic acid	Carbon tetrachloride	1.89		4
Formic acid	Ethylene glycol	0.094		4
Formic acid	Toluene	2.65		
Formic acid	Water	1.37	10	11
Glucose	Water	0.69	6	11
Glycerol	i-Amyl alcohol	0.12		11
Glycerol	Ethanol	0.56		11
Glycerol*	Water	0.94	6	1, 11*
n-Heptane (50 mole %)	n-Dodecane	1.58		26
n-Heptane (50 mole %)	n-Hexadecane	1.00		26
n-Heptane (50 mole %)	n-Octadecane	0.92		26
n-Heptane (50 mole %)	n-Tetradecane	1.29		26
Hexamethylene tetramine	Water	0.67		11
Hydrogen chloride*	Water	3.10	3	4, 11,* 12*
Hydrogen	Water	5.85 (4.4)		1, 11, 24(?)

Solute†	Solvent	D × 10 , sq cm/sec	Estimated possible, error, ± %1	Ref.
Hydrogen sulfide	Water	1.61		1
Hydroquinone*	Ethanol	0.53	5	11
Hydroquinone*	Water	0.88, 1.12		2, 11*
lodine	Acetic acid	1.13		11
lodine	Anisole	1.25		11
lodine	Benzene	1.98		9, 19, 23
lodine	Bromobenzene	1.25	10	4, 11, 19
lodine	Carbon disulfide	3.2		11, 19, 23
lodine	Carbon tetrachloride	1.45	8	9, 11, 19
lodine	Chloroform	2.30	3	11, 23
lodine	Cyclohexane	1.80		4
lodine	Dioxane	1.07		9
lodine*	Ethanol	1.30		4, 11*
lodine	Ethyl acetate	2.2		11, 19
lodine	Ethyl ether	3.61		11
lodine	Ethylene bromide	0.93		11
lodine	n-Heptane	3.4, 2.5		9, 11, 19
lodine	n-Hexane	4.15		4, 9
lodine	Mesitylene	1.49		9
lodine	Methanol	1.74		19
lodine	Methyl cyclohexane	2.1		4
lodine	n-Octane	2.76		4
lodine	Tetrabromoethane	2.0		11
lodine	n-Tetradecane	0.96		4
lodine	Toluene	2.1		11
lodine	m-Xylene	1.82		9, 11

Solute†	Solvent	D × 10 , sq cm/sec	Estimated possible, error, ± %1	Ref.
lodobenzene	Ethanol	1.09	3	11
Lactose*	Water	0.49	5	11
Maltose*	Water	0.48	5	11
Mannitol*	Water	0.65	5	11
Methanol	Water	1.6		1, 7, 11
Nicotine*	Water	0.60	8	11
Nitric acid*	Water	2.98	2	11
Nitrobenzene	Carbon tetrachloride	1.00		7
Nitrogen	Water	1.9		1, 24
Nitrous oxide	Water	1.8		1, 11
Oxalic acid*	Water	1.61	2	11
Oxygen	Glycerol*-water (106 poise)	0.24		13
Oxygen	Sucrose*-water (125 poise)	0.25		13
Oxygen	Water	2.5	20	1, 3, 15, 21, 24
Pentaerythritol*	Water	0.77	4	11
Phenol	i-Amyl alcohol	0.2		11
Phenol	Benzene	1.68		1
Phenol	Carbon disulfide	3.7		11
Phenol	Chloroform	2.0		11
Phenol	Ethanol	0.89		11
Phenol	Ethyl ether	3.9		11
n-Propanol	Water	1.1		1, 7, 11
Pyridine*	Ethanol	1.24	3	11
Pyridine	Water	0.76	7	11
Pyrogallol	Water	0.74	7	11

Solute†	Solvent	D × 10 , sq cm/sec	Estimated possible, error, ± %1	Ref.
Raffinose*	Water	0.41	4	11
Resorcinol*	Ethanol	0.46	5	11
Resorcinol*	Water	0.87	4	11
Saccharose*	Water	0.49	4	11
Stearic acid*	Ethanol	0.65	5	11
Succinic acid*	Water	0.94		11
Sucrose	Water	0.56	6	2, 27
Sulfur dioxide	Water	1.7		15, 17
Sulfuric acid*	Water	1.97	3	11
Tartaric acid*	Water	0.80	10	11
1,1,2,2-Tetrabromoethane	1,1,2,2-Tetra- chloroethane	0.61	4	11
Toluene	n-Decane	2.09		4
Toluene	n-Dodecane	1.38		4
Toluene	n-Heptane	3.72		4
Toluene	n-Hexane	4.21		4
Toluene	n-Tetradecane	1.02		4
Urea	Ethanol	0.73		11
Urea	Water	1.37	2	8, 11
Urethane	Water	1.06		11, 25
Water	Glycerol	0.021		16

References

¹Arnold, J. Am. Chem. Soc., **52**, 3937 (1930).

²Calvet, J. Chim. Phys., **44**, 47 (1947).

³Carlson, J. Am. Chem. Soc., **33**, 1027 (1911).

⁴Chang and Wilke, *J. Phys. Chem.*, **59**, 592 (1955).

⁵Davidson and Cullen, *Trans. Inst. Chem. Eng.*, **35**, 51 (1957).

Solute†	Solvent	D ×10 ,sq cm/sec	Estimated possible, error, ± %1	Ref.
⁶ Dummer, Z. <i>Anorg. Chem.</i> , 109 , 31 (1	949).			
⁷ Gerlach, Ann. Phys. (Leipzig), 10 , 437	(1931).			
⁸ Gosting and Akeley, J. Am. Chem. So	c., 74, 2058 (1952).			
⁹ Hammond and Stokes, <i>Trans. Farada</i>	y Soc., 49, 890 (1953);	49, 886 (1953).		
¹⁰ Hammond and Stokes, <i>Trans. Farad</i>	ay Soc., 52, 781 (1956).			
¹¹ International Critical Tables, vol. 5, p	. 63.			
¹² James, Hollingshead, and Gordon, J	l. Chem. Phys., 7, 89 (19	39); 7, 836 (1939).		
¹³ Jordon, Ackermann, and Berger, <i>J. A</i>	Am. Chem. Soc., 78, 297	79 (1956).		
¹⁴ Koeller and Drickamer, <i>J. Chem. Phy</i>	/s., 21, 575 (1953).			
¹⁵ Kolthoff and Miller, J. Am. Chem. So	c., 63, 1013 (1941).			
†Dilute solutions and 1 atm unless ot reference gives effect of concentration		T = constant to estimat	e effect of temperature; * indicate	s that

2.15.2. THERMAL TRANSPORT PROPERTIES

Table 2-143 Transport Properties of Selected Gases at Atmospheric Pressure*

	Thermal conductivity, W/(m · K) Temperature, K ubs 250 300 400 500 60						cosity, 10	-4 Pa⋅s Te	emperatur	e, K	Prandtl number, dimensionless Temperature, K			
Subs tance	250	300	400	500	600	250	300	400	500	600	250	300	400	500
Acet one	0.008 0	0.011 5	0.020 1	0.031 0			0.077	0.101	0.128	0.156				
Acet ylene	0.016 2	0.021 3	0.033 2	0.045 2	0.056 1		0.104	0.135	0.164					
Benz ene	0.007 7	0.010 4	0.019 5	0.033 5	0.052 4		0.076	0.101	0.127	0.154				
Brom ine	0.003	0.004 8	0.006 7					0.203	0.260	0.291				
CCI ₄	0.005 3	0.006 7	0.009 9	0.012 6			0.101	0.131	0.162	0.191				
Chlor ine	0.007 1	0.008 9	0.012 4	0.015 6	0.019 0		0.136	0.178	0.218	0.259				
Deut eriu m	0.122	0.141	0.176			0.111	0.126	0.153	0.178	0.201				
Prop ylene	0.011 4	0.016 8	0.022 6	0.043 0	0.058 0	0.073	0.087	0.115	0.141		0.860	0.797	0.762	
R 22	0.008	0.010 9	0.017 0	0.023 0	0.029 0	0.109	0.129	0.168			0.820	0.771	0.760	
SO ₂	0.007 8	0.009 6	0.014 3	0.020 0	0.025 6		0.129	0.175	0.217	0.256				

^{*}An approximate interpolation scheme is to plot the logarithm of the viscosity or the thermal conductivity versus the logarithm of the absolute temperature. At 250 K the viscosity of gaseous argon is to be read as 1.95×10^{-5} Pa · s = 0.0000195 N · s/m².

Table 2-144 Prandtl Number of Air*, Pressure, bar

Tempe rature, K	1	5	10	20	30	40	50	60	70	80	90	100
80	mix	2.31	2.32	2.35	2.37	2.40	2.42	2.45	2.48	2.51	2.54	2.57
90	0.796	1.76	1.77	1.78	1.79	1.81	1.82	1.83	1.85	1.87	1.89	1.91
100	0.786	0.872	1.54	1.53	1.53	1.53	1.53	1.53	1.53	1.54	1.54	1.55
120	0.773	0.813	0.89	1.44	1.65	1.54	1.48	1.43	1.40	1.38	1.36	1.34
140	0.763	0.782	0.82	0.94	1.20	1.59	2.14	2.43	2.07	1.78	1.62	1.52

Tempe rature, K	1	5	10	20	30	40	50	60	70	80	90	100
160	0.754	0.765	0.78	0.84	0.92	1.03	1.13	1.25	1.37	1.65	1.83	1.72
180	0.745	0.754	0.763	0.792	0.830	0.876	0.932	1.00	1.07	1.14	1.20	1.25
200	0.738	0.743	0.749	0.766	0.788	0.812	0.841	0.87	0.90	0.95	0.97	1.00
240	0.724	0.727	0.729	0.737	0.746	0.756	0.767	0.78	0.80	0.81	0.81	0.82
280	0.710	0.711	0.713	0.717	0.721	0.726	0.731	0.737	0.742	0.75	0.75	0.76
300	0.705	0.707	0.708	0.712	0.715	0.717	0.721	0.725	0.728	0.732	0.737	0.742
350	0.699	0.699	0.699	0.701	0.703	0.705	0.707	0.709	0.711	0.712	0.714	0.716
400	0.694	0.694	0.694	0.695	0.696	0.697	0.698	0.699	0.700	0.701	0.703	0.704
450	0.691	0.691	0.691	0.691	0.692	0.692	0.693	0.693	0.694	0.695	0.695	0.696
500	0.689	0.689	0.689	0.689	0.689	0.690	0.690	0.690	0.690	0.691	0.691	0.691
600	0.690	0.690	0.690	0.689	0.689	0.689	0.689	0.689	0.689	0.690	0.690	0.690
700	0.696	0.696	0.695	0.695	0.695	0.695	0.695	0.695	0.695	0.695	0.695	0.695
800	0.705	0.704	0.704	0.704	0.704	0.703	0.703	0.703	0.703	0.702	0.702	0.702
900	0.709	0.709	0.708	0.708	0.708	0.708	0.708	0.708	0.708	0.708	0.708	0.708
1000	0.711	0.711	0.711	0.711	0.711	0.710	0.710	0.710	0.710	0.709	0.709	0.709

^{*}Compiled by P. E. Liley from tables of specific heat at constant pressure, thermal conductivity, and viscosity given in SI units for integral kelvin temperatures and pressures in bars by Vasserman. *Thermophysical Properties of Air and Its Components* and *Thermophysical Properties of Liquid Air and Its Components*. Nauka, Moscow, and in translated form by the National Bureau of Standards, Washington. The number of significant figures given above reflects the similar numbers appearing for the constituent properties in the source references. While reasonable agreement occurs for atmospheric pressure with some other works, the fragmentary data available for the saturated, etc., states show large deviations.

Click here for the Natural Convection Heat Transfer Coefficients spreadsheet calculator.

Table 2-145 Vapor Thermal Conductivity of Inorganic and Organic Substances [W/(m·K)]

Eqn	Cmpd. no.	Name	Formu la	CAS	Mol. wt.	C ₁	C_2	<i>C</i> ₃	C ₄	T _{min} , K	Therm al cond. at T _{min}	T _{max} , K	Therm al cond. at T _{max}
102	1	Acetal dehyd e	C ₂ H ₄ O	75- 07-0	44.05 256	1.094 3E-07	2.027 9			294.1 5	0.011 10	1000	0.132 69

Eqn	Cmpd. no.	Name	Formu la	CAS	Mol. wt.	С	С	С	С	Т ,К	Therm al cond. at T	Т ,К	Therm al cond. at T
102	2	Aceta mide	C ₂ H ₅ NO	60- 35-5	59.06 72	0.000 13195	0.97	728.3		494.3	0.021 89	1000	0.062 06
100	3	Acetic acid	C ₂ H ₄ O ₂	64- 19-7	60.05	2.414 8	-0.02 0867	0.000 05940 9	-5.47 18E- 08	391.0 5	0.067 49	458.1 5	0.062 59
100	3	Acetic acid	C ₂ H ₄ O ₂	64- 19-7	60.05 2	1.087 9	-0.00 38977	3.622 7E-06		458.1 5	0.062 58	541.5	0.039 55
102	3	Acetic acid	C ₂ H ₄ O ₂	64- 19-7	60.05 2	3.390 1E-06	1.958 8	36053	14,08 6,000	541.5	0.039 25	1000	0.111 05
102	4	Acetic anhyd ride	C ₄ H ₆ O ₃	108- 24-7	102.0 8864	3.128 9E-06	1.461 8			412.7	0.020 84	1000	0.076 00
102	5	Aceto ne	C ₃ H ₆ O	67- 64-1	58.07 914	-26.8	0.909 8	126,5 00,00 0		329.4 4	0.013 63	1000	0.113 62
102	6	Aceto nitrile	C ₂ H ₃	75- 05-8	41.05 19	8.365 3E-07	1.648 1			339.0 9	0.012 38	1000	0.073 58
102	7	Acetyl ene	C ₂ H ₂	74- 86-2	26.03 728	0.000 07578 2	1.032 7	-36.2 27	31,43 2	189.3 5	0.010 11	1000	0.095 45
102	8	Acrol ein	C ₃ H ₄	107- 02-8	56.06 326	0.024 098	0.328 5	1325. 3	577,8 30	325.8 4	0.015 34	1000	0.080 28
102	9	Acryli c acid	C ₃ H ₄ O ₂	79- 10-7	72.06 266	0.000 9265	0.703 5	627.5 8	112,4 60	414.1 5	0.020 27	1000	0.068 67
102	10	Acrylo nitrile	C ₃ H ₃	107- 13-1	53.06 26	-0.00 0861	0.772 81	-2555 .2		298.1 5	0.009 29	1000	0.115 25
102	11	Air	Mixtu re	13225 9-10- 0	28.96	0.000 31417	0.778 6	-0.71 16	2121. 7	70	0.006 03	2000	0.116 75
102	12	Amm onia	H ₃ N	7664- 41-7	17.03 052	9.660 8E-06	1.379 9			200	0.014 46	900	0.115 23
102	13	Anisol e	C ₇ H ₈	100- 66-3	108.1 3782	0.000 59858	0.752 7	354.0 4	241,8 30	426.7 3	0.018 09	1000	0.067 96
102	14	Argon	Ar	7440- 37-1	39.94 8	0.000 633	0.622 1	70		90	0.005 85	3273. 1	0.095 25
102	15	Benza mide	C ₇ H ₇ NO	55- 21-0	121.1 3658	0.025 389	0.285 47	1018. 3	1,228, 600	563.1 5	0.023 17	1000	0.056 18

Eqn	Cmpd. no.	Name	Formu la	CAS	Mol. wt.	С	С	С	С	Т ,К	Therm al cond. at T	Т ,К	Therm al cond. at T
102	16	Benze ne	C ₆ H ₆	71- 43-2	78.11 184	0.000 01652	1.311 7	491		339.1 5	0.014 07	1000	0.095 42
102	17	Benze nethio	C ₆ H ₆	108- 98-5	110.1 7684	0.000 47951	0.781 8	463.4	189,4 10	442.2 9	0.018 61	1000	0.064 27
102	18	Benzo ic acid	C ₇ H ₆ O ₂	65- 85-0	122.1 2134	0.000 1163	0.970 5	740		522.4	0.020 90	1000	0.054 52
102	19	Benzo nitrile	C ₇ H ₅	100- 47-0	103.1 213	1.391 7E-06	1.538 9			464.1 5	0.017 67	1000	0.057 58
102	20	Benzo pheno ne	C ₁₃ H ₁ ₀ O	119- 61-9	182.2 179	0.000 1235	0.949 5	778.7		579.2 4	0.022 13	1000	0.048 99
102	21	Benzy I alcoh ol	C ₇ H ₈ O	100- 51-6	108.1 3782	0.000 23476	0.863 9	187.8	193,8 40	478.6	0.021 67	1000	0.066 36
102	22	Benzy I ethyl ether	C ₉ H ₁₂ O	539- 30-0	136.1 9098	0.000 96451	0.692 25	519.9 9	278,9 30	458.1 5	0.019 36	1000	0.063 98
102	23	Benzy I merca ptan	C ₇ H ₈ S	100- 53-8	124.2 0342	0.000 15525	0.944 6	715.7 8		472.0 3	0.020 71	1000	0.061 71
102	24	Biphe nyl	C ₁₂ H ₁	92- 52-4	154.2 078	2.864 6E-06	1.409 8	-391. 35	156,8 20	373.1 5	0.011 23	1000	0.063 47
102	25	Bromi ne	Br ₂	7726- 95-6	159.8 08	1.040 4E-06	1.468 5			300	0.004 52	500	0.009 56
102	26	Brom obenz ene	C ₆ H ₅ Br	108- 86-1	157.0 079	0.000 27085	0.793 2	278.3 3	165,8 80	429.2 4	0.013 02	1000	0.044 95
102	27	Brom oetha ne	C ₂ H ₅ Br	74- 96-4	108.9 65	0.000 99879	0.718 94	2358. 4		311.4 9	0.007 23	1000	0.042 67
102	28	Brom ometh ane	CH ₃ Br	74- 83-9	94.93 852	5.781 6E-07	1.666 6			273	0.006 64	1000	0.057 79
102	29	1,2- Butad iene	C ₄ H ₆	590- 19-2	54.09 044	0.000 08822 1	1.027 3	75.31 6	99,06 3	284	0.011 72	1000	0.090 71

Eqn	Cmpd. no.	Name	Formu la	CAS	Mol. wt.	С	С	С	С	т ,К	Therm al cond. at <i>T</i>	Т ,К	Therm al cond. at T
102	30	1,3- Butad iene	C ₄ H ₆	106- 99-0	54.09 044	-2089 0	0.959 3	-93,8 20,00 0,000		268.7 4	0.012 81	1000	0.168 09
102	31	Butan e	C ₄ H ₁₀	106- 97-8	58.12 22	0.051 094	0.452 53	5455. 5	1,979, 800	272.6 5	0.013 57	1000	0.137 99
102	32	1,2- Butan ediol	C ₄ H ₁₀ O ₂	584- 03-2	90.12 1	0.000 14035	1.003	711.6 6		469.5 7	0.026 72	1000	0.083 83
102	33	1,3- Butan ediol	C ₄ H ₁₀ O ₂	107- 88-0	90.12 1	-918. 39	-0.21 199	33442 0	-2,88 4,200, 000	481.3 8	0.021 10	1000	0.083 32
102	34	1- Butan ol	C ₄ H ₁₀ O	71- 36-3	74.12 16	0.001 1484	0.876 47	3253. 7		370.7	0.020 97	712.9 4	0.065 36
102	35	2- Butan ol	C ₄ H ₁₀ O	78- 92-2	74.12 16	4.589 4E-06	1.448 4			372.9	0.024 35	1000	0.101 61
102	36	1- Buten e	C ₄ H ₈	106- 98-9	56.10 632	0.000 09680 9	1.115 3	781.8 2		266.9 1	0.012 52	1000	0.120 49
102	37	cis-2- Buten e	C ₄ H ₈	590- 18-1	56.10 632	0.000 06773 7	1.070 9	-65.8 81	129,3 90	273.1 5	0.011 05	1273. 15	0.139 26
102	38	trans- 2- Buten e	C ₄ H ₈	624- 64-6	56.10 632	0.000 07857 6	1.056 5	14.63	105,9 20	274.0 3	0.012 00	1257	0.137 04
102	39	Butyl acetat e	C ₆ H ₁₂ O ₂	123- 86-4	116.1 5828	5.86E- 09	2.376	-401. 32	69,28 0	273	0.007 83	800	0.076 34
102	40	Butylb enzen e	C ₁₀ H ₁	104- 51-8	134.2 1816	0.180 7	0.008 2225	-129. 42	1,691, 500	456.4 6	0.021 51	1000	0.074 65
102	41	Butyl merca ptan	C ₄ H ₁₀	109- 79-5	90.18 72	0.000 97826	0.786 43	1531. 5	67,11 5	371.6 1	0.018 32	1000	0.086 10
102	42	sec- Butyl merca ptan	C ₄ H ₁₀ S	513- 53-1	90.18 72	0.971 9	-0.11 1	1167. 2	3,163, 200	358.1 3	0.017 49	1000	0.084 70
102	43	1- Butyn e	C ₄ H ₆	107- 00-6	54.09 044	0.000 03726 9	1.142 7	-43.8 44	79,42 1	281.2 2	0.012 68	1000	0.096 44

Eqn	Cmpd. no.	Name	Formu la	CAS	Mol. wt.	С	С	С	С	Т ,К	Therm al cond. at T	Т ,К	Therm al cond. at T
102	44	Butyr aldeh yde	C ₄ H ₈	123- 72-8	72.10 572	9.965 2E-07	1.655 8			347.9 4	0.016 10	1000	0.092 45
100	45	Butyri c acid	C ₄ H ₈ O ₂	107- 92-6	88.10 51	0.787 3	-0.00 36161	5.664 1E-06	-2.84 51E- 09	436.4 2	0.051 47	706.9 5	0.056 47
102	45	Butyri c acid	C ₄ H ₈ O ₂	107- 92-6	88.10 51	9.206 9E-08	2.031 2			706.9 5	0.056 47	1000	0.114 21
102	46	Butyr onitril e	C ₄ H ₇ N	109- 74-0	69.10 51	1.375 1E-06	1.578 6			390.7 4	0.016 98	1000	0.074 84
102	47	Carbo n dioxid e	CO ₂	124- 38-9	44.00 95	3.69	-0.38 38	964	1,860, 000	194.6 7	0.008 87	1500	0.090 25
102	48	Carbo n disulfi de	CS ₂	75- 15-0	76.14 07	0.000 3467	0.734 5	479		273.1 5	0.007 76	1000	0.037 45
102	49	Carbo n mono xide	СО	630- 08-0	28.01 01	0.000 59882	0.686	57.13	501.9 2	70	0.005 76	1500	0.087 24
102	50	Carbo n tetrac hlorid e	CCI ₄	56- 23-5	153.8 227	0.000 16599	0.943 75	1449. 6		349.7 9	0.008 12	1000	0.045 95
102	51	Carbo n tetrafl uoride	CF ₄	75- 73-0	88.00 43	0.000 09200 4	1.016 4	270.8 3		145.1	0.005 05	1000	0.081 08
102	52	Chlori ne	Cl ₂	7782- 50-5	70.90 6	0.000 9993	0.547 2	458.6		200	0.005 51	1000	0.030 02
102	53	Chlor obenz ene	C ₆ H ₅	108- 90-7	112.5 569	0.000 4783	0.899 4	1845. 5	163,0 00	400	0.015 79	1000	0.079 35
102	54	Chlor oetha ne	C ₂ H ₅ Cl	75- 00-3	64.51 41	4.917 78E- 07	1.706 39	-232. 008	46603 .4	285.4 5	0.010 04	1000	0.079 43
102	55	Chlor oform	CHCI ₃	67- 66-3	119.3 7764	0.000 43073	0.838 78	1874. 5		334.3 3	0.008 54	1000	0.049 20

Eqn	Cmpd. no.	Name	Formu la	CAS	Mol. wt.	С	С	С	С	Т ,К	Therm al cond. at <i>T</i>	Т ,К	Therm al cond. at T
102	56	Chlor ometh ane	CH ₃ CI	74- 87-3	50.48 75	-3263 .77	0.067 5	-46,8 03,20 0	-25,0 00,70 0,000	248.9 5	0.008 01	1000	0.072 46
102	57	1- Chlor oprop ane	C ₃ H ₇ Cl	540- 54-5	78.54 068	0.016 52	0.441 54	2444. 42	793,3 92	319.6 7	0.012 85	1000	0.082 32
102	58	2- Chlor oprop ane	C ₃ H ₇ Cl	75- 29-6	78.54 068	0.000 09154	1.068 1	746.6		308.8 5	0.012 22	1000	0.083 89
102	59	m- Creso	C ₇ H ₈	108- 39-4	108.1 3782	0.000 19307	0.924 8	710		475.4 3	0.023 16	1000	0.067 16
102	60	o- Creso	C ₇ H ₈	95- 48-7	108.1 3782	0.000 18648	0.930 2	709.3 7		464.1 5	0.022 30	1000	0.067 36
102	61	p- Creso	C ₇ H ₈	106- 44-5	108.1 3782	0.000 19063	0.928 2	716.9 1		475.1 3	0.023 19	1000	0.067 62
102	62	Cume ne	C ₉ H ₁₂	98- 82-8	120.1 9158	1.674 3E-07	1.836 9	-449. 46	112,7 60	380	0.015 34	1000	0.081 81
102	63	Cyano gen	C ₂ N ₂	460- 19-5	52.03 48	0.000 01443 3	1.210 4			251.9	0.011 64	1000	0.061 74
102	64	Cyclo butan e	C ₄ H ₈	287- 23-0	56.10 632	-4499 10	0.273 64	-10,0 01,00 0,000	-9.86 54E+1 2	285.6 6	0.013 56	1000	0.149 94
102	65	Cyclo hexan e	C ₆ H ₁₂	110- 82-7	84.15 948	0.000 00085 9	1.770 9	243		325	0.013 80	1000	0.141 98
102	66	Cyclo hexan ol	C ₆ H ₁₂	108- 93-0	100.1 5888	0.003 2207	0.599 1	608.6 9	509,2 90	434	0.023 99	1000	0.095 35
102	67	Cyclo hexan one	C ₆ H ₁₀ O	108- 94-1	98.14 3	-1095 .5	-0.02 3408	498, 780	-7,83 5,500, 000	428.5 8	0.022 91	1000	0.127 04
102	68	Cyclo hexen e	C ₆ H ₁₀	110- 83-8	82.14 36	0.000 0901	1.089 7	655		356.1 2	0.019 14	1000	0.101 16
102	69	Cyclo penta ne	C ₅ H ₁₀	287- 92-3	70.13 29	9.546 1E-06	1.464 1	632.6 2		273	0.010 61	1000	0.144 29

Eqn	Cmpd. no.	Name	Formu la	CAS	Mol. wt.	С	С	С	С	Т ,К	Therm al cond. at T	Т ,К	Therm al cond. at T
102	70	Cyclo pente ne	C ₅ H ₈	142- 29-0	68.11 702	0.001 0949	0.716 44	175.5 5	346,0 40	317.3 8	0.013 60	1000	0.101 48
102	71	Cyclo propa ne	C ₃ H ₆	75- 19-4	42.07 974	-91.3 83	0.897 18	-283, 310,0 00		240.3 7	0.010 61	1000	0.158 54
102	72	Cyclo hexyl merca ptan	C ₆ H ₁₂	1569- 69-3	116.2 2448	0.000 0813	1.067 4	697.6		431.9 5	0.020 22	1000	0.076 29
102	73	Decan al	C ₁₀ H ₂ ₀ O	112- 31-2	156.2 652	1.974 9E-06	1.534 9			481.6 5	0.025 90	1000	0.079 48
102	74	Decan e	C ₁₀ H ₂	124- 18-5	142.2 8168	-668. 4	0.932 3	-4,07 1,000, 000		447.3	0.021 73	1000	0.102 86
102	75	Decan oic acid	C ₁₀ H ₂ ₀ O ₂	334- 48-5	172.2 65	3.325 1E-09	2.487 6	-124. 9		543.1 5	0.027 46	1000	0.110 29
102	76	1- Decan ol	C ₁₀ H ₂ ₂ O	112- 30-1	158.2 8108	-0.30 72	0.489	-67,5 00	-29,4 00,00 0	504	0.025 90	1000	0.093 89
102	77	1- Decen e	C ₁₀ H ₂	872- 05-9	140.2 658	0.000 02723 2	1.257	751.7		443.7 5	0.021 49	1000	0.091 75
102	78	Decyl merca ptan	C ₁₀ H ₂ ₂ S	143- 10-2	174.3 4668	0.000 12058	1.011 1	740		512.3 5	0.027 09	1000	0.074 82
102	79	1- Decyn e	C ₁₀ H ₁	764- 93-2	138.2 4992	0.000 01670 7	1.212 8	-206. 08	153,8 50	447.1 5	0.020 92	1000	0.076 67
102	80	Deute rium	D ₂	7782- 39-0	4.031 6	0.000 28527	0.987 4	-200. 51	21,80 7	233.1 5	0.114 74	1500	0.445 47
102	81	1,1- Dibro moeth ane	C ₂ H ₄ Br ₂	557- 91-5	187.8 6116	0.000 21231	0.805 2	649.5 1		381.1 5	0.009 40	1000	0.033 51
102	82	1,2- Dibro moeth ane	C ₂ H ₄ Br ₂	106- 93-4	187.8 6116	0.000 15878	0.863 6	659.5		404.5 1	0.010 77	1000	0.037 29
102	83	Dibro mome thane	CH ₂ Br	74- 95-3	173.8 3458	0.000 21302	0.871 9	1620		370.1	0.006 87	1000	0.033 56

Eqn	Cmpd. no.	Name	Formu la	CAS	Mol. wt.	С	С	С	С	Т ,К	Therm al cond. at T	Т ,К	Therm al cond. at T
102	84	Dibuty I ether	C ₈ H ₁₈ O	142- 96-1	130.2 2792	0.003 2694	0.586 33	1259. 9	300,8 90	323.1 5	0.012 44	1000	0.073 30
102	85	m- Dichlo roben zene	C ₆ H ₄ Cl ₂	541- 73-1	147.0 0196	-1067 .8	0.754	-3,03 6,100, 000		446.2 3	0.015 61	1000	0.064 30
102	86	o- Dichlo roben zene	C ₆ H ₄ Cl ₂	95- 50-1	147.0 0196	-1420	0.761 4	-4,50 4,000, 000		453.5 7	0.015 07	1000	0.060 66
102	87	p- Dichlo roben zene	C ₆ H ₄ Cl ₂	106- 46-7	147.0 0196	-1520 .8	0.754	-433, 2800, 000		447.2 1	0.015 64	1000	0.064 17
102	88	1,1- Dichlo roeth ane	C ₂ H ₄ Cl ₂	75- 34-3	98.95 916	0.000 1315	1.011 3	1023. 8		330.4 5	0.011 32	1000	0.070 25
102	89	1,2- Dichlo roeth ane	C ₂ H ₄ Cl ₂	107- 06-2	98.95 916	0.000 21054	0.957 4	1414		356.5 9	0.011 77	1000	0.064 98
102	90	Dichlo romet hane	CH ₂ CI	75- 09-2	84.93 258	0.001 4796	0.695 31	2657. 4		312.9	0.008 47	1000	0.049 31
102	91	1,1- Dichlo ropro pane	C ₃ H ₆ Cl ₂	78- 99-9	112.9 8574	0.000 05760 3	1.114 8	849.9 8		361.2 5	0.012 20	1000	0.068 81
102	92	1,2- Dichlo ropro pane	C ₃ H ₆ Cl ₂	78- 87-5	112.9 8574	0.000 06243 5	1.103	913.4 3		369.5 2	0.012 22	1000	0.066 47
102	93	Dieth anol amine	C ₄ H ₁₁ NO ₂	111- 42-2	105.1 3564	-11,6 33	0.462 1	-3,79 3,900, 000		541.5 4	0.030 44	1000	0.074 63
102	94	Diethy I amine	C ₄ H ₁₁	109- 89-7	73.13 684	0.000 01706	1.248	-112. 8	77,96 0	273.1 5	0.011 48	1000	0.098 04
102	95	Diethy I ether	C ₄ H ₁₀ O	60- 29-7	74.12 16	-0.00 44894	0.615 5	-3266 .3		200	0.007 64	600	0.051 81
102	96	Diethy I sulfid e	C ₄ H ₁₀ S	352- 93-2	90.18 72	0.001 8097	0.674 06	1179. 7	174,8 50	365.2 5	0.017 43	1000	0.080 89

Eqn	Cmpd. no.	Name	Formu la	CAS	Mol. wt.	С	С	С	С	Т ,К	Therm al cond. at T	Т ,К	Therm al cond. at T
102	97	1,1- Difluo roeth ane	C ₂ H ₄ F	75- 37-6	66.04 997	0.000 05924 9	1.071	101.8 4	45,97 4	248.9 5	0.010 16	1000	0.084 47
102	98	1,2- Difluo roeth ane	C ₂ H ₄ F	624- 72-6	66.04 997	2.419 4E-06	1.445 6			303.6 5	0.009 38	993.6 5	0.052 06
102	99	Difluo romet hane	CH ₂ F ₂	75- 10-5	52.02 339	0.000 01301 5	1.189 7			221.5	0.008 03	1000	0.048 26
102	100	Diisop ropyl amine	C ₆ H ₁₅ N	108- 18-9	101.1 9	0.000 51305	0.807 6	360.1 9	154,5 10	357.0 5	0.018 36	1000	0.089 67
102	101	Diisop ropyl ether	C ₆ H ₁₄ O	108- 20-3	102.1 7476	0.000 19879	0.942	306.8	106,2 30	328.0 5	0.015 98	1000	0.094 44
102	102	Diisop ropyl keton e	C ₇ H ₁₄ O	565- 80-0	114.1 8546	-8.53 57	-0.00 56423	1882. 1	-65,6 22,00 0	397.5 5	0.020 15	1000	0.130 85
102	103	1,1- Dimet hoxye thane	C ₄ H ₁₀ O ₂	534- 15-6	90.12 1	0.000 46265	0.819 68	539.3 4	104,5 30	337.4 5	0.015 54	1000	0.080 99
102	104	1,2- Dimet hoxyp ropan e	C ₅ H ₁₂ O ₂	7778- 85-0	104.1 4758	3.796 2E-06	1.446 2			366.1 5	0.019 36	1000	0.082 79
102	105	Dimet hyl acetyl ene	C ₄ H ₆	503- 17-3	54.09 044	0.000 21761	0.918 7	217	132,0 70	300.1 3	0.012 88	1000	0.091 99
102	106	Dimet hyl amine	C ₂ H ₇ N	124- 40-3	45.08 368	1.608 5	-0.11 03	2160. 3	2,989, 300	280.0 3	0.018 45	1000	0.122 09
102	107	2,3- Dimet hylbut ane	C ₆ H ₁₄	79- 29-8	86.17 536	0.000 03474 1	1.164 6	-99.9 56	130,8 20	331.1 3	0.015 81	1000	0.105 06
102	108	1,1- Dimet hylcyc lohex ane	C ₈ H ₁₆	590- 66-9	112.2 1264	0.008 856	0.421 5	-50.6 45	764,5 80	392.7	0.018 84	1000	0.095 00

Eqn	Cmpd. no.	Name	Formu la	CAS	Mol. wt.	С	С	С	С	Т ,К	Therm al cond. at T	Т ,К	Therm al cond. at T
102	109	cis- 1,2- Dimet hylcyc lohex ane	C ₈ H ₁₆	2207- 01-4	112.2 1264	0.013 298	0.369	0.102 7	852,5 40	402.9 4	0.019 48	1000	0.091 96
102	110	trans- 1,2- Dimet hylcyc lohex ane	C ₈ H ₁₆	6876- 23-9	112.2 1264	0.012 144	0.385	52.19 1	803,5 90	396.5 8	0.019 52	1000	0.093 76
102	111	Dimet hyl disulfi de	C ₂ H ₆ S ₂	624- 92-0	94.19 904	0.000 22578	0.892	697		382.9	0.016 13	1000	0.063 10
102	112	Dimet hyl ether	C ₂ H ₆	115- 10-6	46.06 844	0.059 975	0.266 7	1018. 6	1,098, 800	248.3 1	0.011 39	1500	0.194 58
102	113	N,N- Dimet hyl forma mide	C ₃ H ₇ NO	68- 12-2	73.09 378	0.014 449	0.361	595.2 2	728,1 30	425.1 5	0.020 01	1000	0.075 39
102	114	2,3- Dimet hylpe ntane	C ₇ H ₁₆	565- 59-3	100.2 0194	0.000 02242 1	1.213 7	-146. 91	131,8 30	362.9 3	0.017 97	1000	0.099 62
102	115	Dimet hyl phthal ate	C ₁₀ H ₁ ₀ O ₄	131- 11-3	194.1 84	0.000 12822	0.932 4	752.5		556.8 5	0.019 81	1000	0.045 87
102	116	Dimet hylsil ane	C ₂ H ₈ Si	1111- 74-6	60.17 042	0.001 1808	0.742	1131	6400	253.5 5	0.012 91	1000	0.092 96
102	117	Dimet hyl sulfid e	C ₂ H ₆ S	75- 18-3	62.13 4	0.000 23614	0.920 4	638		310.4 8	0.015 20	1000	0.083 19
102	118	Dimet hyl sulfox ide	C ₂ H ₆ OS	67- 68-5	78.13 344	0.000 64761	0.771 6	1013. 3	82,56 3	462.1 5	0.020 59	1000	0.063 79

Eqn	Cmpd. no.	Name	Formu la	CAS	Mol. wt.	С	С	С	С	Т ,К	Therm al cond. at T	Т ,К	Therm al cond. at T
102	119	Dimet hyl terep hthala te	C ₁₀ H ₁ ₀ O ₄	120- 61-6	194.1 84	0.004 02358	0.575 48	3598. 32		559.2	0.020 63	1000	0.046 61
102	120	1,4- Dioxa ne	C ₄ H ₈ O ₂	123- 91-1	88.10 512	6.403 2E-07	1.719 4			337.8 5	0.014 27	768.0 1	0.058 55
102	121	Diphe nyl ether	C ₁₂ H ₁ ₀ O	101- 84-8	170.2 072	0.000 14629	0.937 7	745.8 9		531.4 6	0.021 88	1000	0.054 49
102	122	Dipro pyl amine	C ₆ H ₁₅ N	142- 84-7	101.1 9	0.000 1123	0.995 8	183.2	98,00 0	279.6 5	0.010 55	1000	0.085 15
102	123	Dodec ane	C ₁₂ H ₂	112- 40-3	170.3 3484	0.000 00571 9	1.469 9	579.4		489.4 7	0.023 54	1000	0.093 01
102	124	Eicos ane	C ₂₀ H ₄	112- 95-8	282.5 4748	-375. 32	1.070 8	-8,78 3,600, 000		616.9 3	0.025 63	1000	0.069 68
102	125	Ethan e	C ₂ H ₆	74- 84-0	30.06 9	0.000 07386 9	1.168 9	500.7 3		184.5 5	0.008 86	1000	0.158 07
102	126	Ethan ol	C ₂ H ₆	64- 17-5	46.06 844	-0.01 0109	0.647 5	-7332	-268, 000	293.1 5	0.014 75	1000	0.134 17
102	127	Ethyl acetat e	C ₄ H ₈ O ₂	141- 78-6	88.10 512	1.357 5E-07	1.968 1			273.1 5	0.008 47	990.2 1	0.106 81
102	128	Ethyl amine	C ₂ H ₇	75- 04-7	45.08 368	0.393 5	0.013 1	1380	1,710, 000	289.7 3	0.016 22	1000	0.105 32
102	129	Ethylb enzen e	C ₈ H ₁₀	100- 41-4	106.1 65	0.000 01753 7	1.314 4	560.6 5		409.3 5	0.020 07	1000	0.098 59
102	130	Ethyl benzo ate	C ₉ H ₁₀ O ₂	93- 89-0	150.1 745	0.000 02012	1.151 3	-89.5 83	125,4 10	486.5 5	0.018 55	1000	0.055 24
102	131	2- Ethyl butan oic acid	C ₆ H ₁₂ O ₂	88- 09-5	116.1 5828	0.000 17727	0.942	712.4		466.9 5	0.023 06	1000	0.069 73
102	132	Ethyl butyra te	C ₆ H ₁₂ O ₂	105- 54-4	116.1 5828	829.2 9	1.015 6	8,955, 300,0 00		394.6 5	0.015 83	1000	0.103 14

Eqn	Cmpd. no.	Name	Formu la	CAS	Mol. wt.	С	С	С	С	Т ,К	Therm al cond. at T	Т ,К	Therm al cond. at T
102	133	Ethylc ycloh exane	C ₈ H ₁₆	1678- 91-7	112.2 1264	0.000 0748	1.110 3	686		404.9 5	0.021 80	1000	0.095 05
102	134	Ethylc yclop entan e	C ₇ H ₁₄	1640- 89-7	98.18 606	0.004 3244	0.542 9	333.6 7	570,4 70	376.6 2	0.018 32	1000	0.096 59
102	135	Ethyle ne	C ₂ H ₄	74- 85-1	28.05 316	8.680 6E-06	1.455 9	299.7 2	-29,4 03	170	0.008 79	590.9 2	0.066 13
102	136	Ethyle nedia mine	C ₂ H ₈ N ₂	107- 15-3	60.09 832	0.165 5	0.179 8	3827. 9	1,600, 000	390.4 1	0.022 72	1000	0.089 15
102	137	Ethyle ne glycol	C ₂ H ₆ O ₂	107- 21-1	62.06 784	-8145 800	-0.30 502	1,832, 500,0 00	-1.18 42E+1 3	470.4 5	0.025 13	1000	0.098 96
102	138	Ethyle neimi ne	C ₂ H ₅	151- 56-4	43.06 78	0.000 77079	0.771 3	446.1 6	197,9 30	329	0.016 10	1000	0.096 59
102	139	Ethyle ne oxide	C ₂ H ₄	75- 21-8	44.05 256	-0.00 03788	1.115	-5641		273.1 5	0.010 04	1000	0.180 63
102	140	Ethyl forma te	C ₃ H ₆ O ₂	109- 94-4	74.07 854	508	0.902 3	2,170, 000,0 00		327.4 6	0.014 26	1000	0.119 21
102	141	2- Ethyl hexan oic acid	C ₈ H ₁₆ O ₂	149- 57-5	144.2 11	2.580 4E-06	1.466 9			500.6 6	0.023 53	1000	0.064 92
102	142	Ethylh exyl ether	C ₈ H ₁₈	5756- 43-4	130.2 2792	0.005 2833	0.529 82	1415. 7	378,1 80	417.1 5	0.019 67	1000	0.073 48
102	143	Ethyli sopro pyl ether	C ₅ H ₁₂ O	625- 54-7	88.14 818	0.000 21652	0.941 92	632.1 6		326.1 5	0.017 17	1000	0.088 82
102	144	Ethyli sopro pyl keton e	C ₆ H ₁₂	565- 69-5	100.1 5888	-1524 00	-0.04 9106	80,95 5,000	-9.31 22E+1 1	386.5 5	0.018 89	1000	0.127 68
102	145	Ethyl merca ptan	C ₂ H ₆ S	75- 08-1	62.13 404	0.001 5251	0.702 43	1347. 5	35,08 5	308.1 5	0.014 87	1000	0.081 95

Eqn	Cmpd. no.	Name	Formu la	CAS	Mol. wt.	С	С	С	С	Т ,К	Therm al cond. at <i>T</i>	Т ,К	Therm al cond. at T
102	146	Ethyl propio nate	C ₅ H ₁₀ O ₂	105- 37-3	102.1 317	1.050 7E-07	1.985 4			400	0.015 40	1000	0.094 99
102	147	Ethylp ropyl ether	C ₅ H ₁₂ 0	628- 32-0	88.14 818	5.817 4E-08	2.011 6	-372. 68	57,69 0	273.1 5	0.011 33	550	0.036 90
102	148	Ethylt richlor osilan e	C ₂ H ₅ Cl ₃ Si	115- 21-9	163.5 06	2.714 2E-06	1.428 1			371.0 5	0.012 68	1000	0.052 23
102	149	Fluori ne	F ₂	7782- 41-4	37.99 68064	0.000 12144	0.938 31			70	0.006 54	700	0.056 75
102	150	Fluoro benze ne	C ₆ H ₅ F	462- 06-6	96.10 23032	0.000 05343 2	1.157 6	760.7 5		357.8 8	0.015 46	600	0.038 74
102	151	Fluoro ethan e	C ₂ H ₅ F	353- 36-6	48.05 95	6.352 2E-06	1.346			235.4 5	0.009 90	1000	0.069 33
102	152	Fluoro metha ne	CH ₃ F	593- 53-3	34.03 292	0.000 04899 8	1.017 5			194.8 2	0.010 47	1000	0.055 29
102	153	Form aldeh yde	CH ₂ O	50- 00-0	30.02 598	5.220 1E-06	1.417			253.8 5	0.013 33	1000	0.093 04
102	154	Form amide	CH ₃ N O	75- 12-7	45.04 062	0.000 25893	0.908 3	723.6		493	0.029 30	1000	0.079 73
100	155	Formi c acid	CH ₂ O	64- 18-6	46.02 57	-0.83 03	0.004 6141	-5.74 66E- 06		420	0.093 92	470	0.068 90
100	155	Formi c acid	CH ₂ O	64- 18-6	46.02 57	1.889 7	-0.00 6901	6.440 7E-06		470	0.068 98	537.9	0.041 18
102	155	Formi c acid	CH ₂ O 2	64- 18-6	46.02 57	0.000 72291	1.889 8	4,877, 600	-1,88 9,300, 000	537.9	0.041 20	1000	0.112 96
102	156	Furan	C ₄ H ₄ O	110- 00-9	68.07 396	-6449 50	0.286 2	-16,7 94,00 0,000	-1.73 72E+1 3	304.5	0.013 67	1000	0.136 31
102	157	Heliu m-4	Не	7440- 59-7	4.002 6	0.002 26	0.730 5	-18.6 3	440	30	0.031 24	2000	0.588 20
102	158	Hepta decan e	C ₁₇ H ₃	629- 78-7	240.4 6774	-114. 41	1.056 6	-2,21 1,400, 000		575.3	0.024 54	1000	0.076 49

Eqn	Cmpd. no.	Name	Formu la	CAS	Mol. wt.	С	С	С	С	Т ,К	Therm al cond. at <i>T</i>	Т ,К	Therm al cond. at T
102	159	Hepta nal	C ₇ H ₁₄ O	111- 71-7	114.1 8546	1.432 6E-06	1.589 6			426.1 5	0.021 68	1000	0.084 13
102	160	Hepta ne	C ₇ H ₁₆	142- 82-5	100.2 0194	-0.07 0028	0.380 68	-7049 .9	-2,40 0,500	339.1 5	0.015 83	1000	0.114 93
100	161	Hepta noic acid	C ₇ H ₁₄ O ₂	111- 14-8	130.1 85	-0.08 8162	0.000 65022	-1.28 03E- 06	9.134 9E-10	496.1 5	0.030 85	643.1 1	0.043 46
102	161	Hepta noic acid	C ₇ H ₁₄ O ₂	111- 14-8	130.1 85	4.449 E-08	2.133			643.1 1	0.043 49	1000	0.111 50
102	162	1- Hepta nol	C ₇ H ₁₆ O	111- 70-6	116.2 0134	-0.06 1993	0.279 2	-3336	-1,64 2,000	449.4 5	0.023 45	1000	0.107 22
102	163	2- Hepta nol	C ₇ H ₁₆ O	543- 49-7	116.2 0134	0.000 18818	0.963 38	696.0 2		432.9	0.025 01	1000	0.086 16
102	164	3- Hepta none	C ₇ H ₁₄ 0	106- 35-4	114.1 8546	1348. 6	1.031	14,83 2,000, 000		420.5 5	0.019 43	1000	0.112 87
102	165	2- Hepta none	C ₇ H ₁₄ O	110- 43-0	114.1 8546	2049. 3	1.032 3	22,98 3,000, 000		424.1 8	0.019 51	1000	0.111 45
102	166	1- Hepte ne	C ₇ H ₁₄	592- 76-7	98.18 606	0.000 02133	1.288 5	487.8		366.7 9	0.018 45	1000	0.105 18
102	167	Hepty I merca ptan	C ₇ H ₁₆ S	1639- 09-4	132.2 6694	0.008 3145	0.518 62	2253	532,5 90	450.0 9	0.022 89	1000	0.078 99
102	168	1- Hepty ne	C ₇ H ₁₂	628- 71-7	96.17 018	0.000 06073 2	1.058 6	-102. 79	143,1 40	372.9 3	0.018 27	1000	0.087 51
102	169	Hexad ecane	C ₁₆ H ₃	544- 76-3	226.4 4116	0.000 00443 8	1.494 9	682		560.0 1	0.025 68	1000	0.080 55
102	170	Hexan al	C ₆ H ₁₂	66- 25-1	100.1 5888	1.542 7E-06	1.582 4			401.1 5	0.020 31	1000	0.086 20
102	171	Hexan e	C ₆ H ₁₄	110- 54-3	86.17 536	-650. 5	0.805 3	-1,41 2,100, 000		339.0 9	0.017 04	1000	0.120 03

Eqn	Cmpd. no.	Name	Formu la	CAS	Mol. wt.	С	С	С	С	Т ,К	Therm al cond. at T	Т ,К	Therm al cond. at T
102	172	Hexan oic acid	C ₆ H ₁₂ O ₂	142- 62-1	116.1 58	12,04 9,00,0 00	-4.00 59	-1668 .8	722,5 50	478.8 5	0.033 17	641.4 2	0.044 35
102	172	Hexan oic acid	C ₆ H ₁₂ O ₂	142- 62-1	116.1 58	6.126 8E-08	2.087 4			641.4 2	0.044 35	1000	0.112 06
102	173	1- Hexan ol	C ₆ H ₁₄ O	111- 27-3	102.1 7476	-4935 500	-0.16 53	1,563, 100,0 00	-1.57 52E+1 3	429.9	0.022 20	1000	0.111 04
102	174	2- Hexan ol	C ₆ H ₁₄ O	626- 93-7	102.1 75	0.000 18361	0.971 99	677.0 5		412.4	0.024 21	1000	0.090 22
102	175	2- Hexan one	C ₆ H ₁₂	591- 78-6	100.1 5888	-1.21 58	0.026 637	-1711 .6	-13,1 76,00 0	273	0.007 75	1000	0.105 23
102	176	3- Hexan one	C ₆ H ₁₂	589- 38-8	100.1 5888	-0.33 262	0.120 54	-2472 .6	-5,49 3,400	273	0.008	1000	0.109 80
102	177	1- Hexen e	C ₆ H ₁₂	592- 41-6	84.15 948	0.000 06425 6	1.135 5	445.1 5	64,81 0	336.6 3	0.016 44	1000	0.108 50
102	178	3- Hexyn e	C ₆ H ₁₀	928- 49-4	82.14 36	6.968 2E-06	1.347	-214. 35	110,4 80	354.3 5	0.014 85	1000	0.085 46
102	179	Hexyl merca ptan	C ₆ H ₁₄ S	111- 31-9	118.2 4036	0.074 318	0.300 35	4470. 1	1,775, 800	425.8 1	0.021 51	1000	0.081 67
102	180	1- Hexyn e	C ₆ H ₁₀	693- 02-7	82.14 36	0.000 05811 6	1.072 4	-77.1 65	123,9 00	344.4 8	0.016 79	1000	0.091 55
102	181	2- Hexyn e	C ₆ H ₁₀	764- 35-2	82.14 36	0.000 01163 1	1.275 3	-202. 84	122,9 90	357.6 7	0.015 06	1000	0.084 66
102	182	Hydra zine	H ₄ N ₂	302- 01-2	32.04 516	0.000 43196	0.866 03	641.4 8		386.6 5	0.028 28	1000	0.104 30
102	183	Hydro gen	H ₂	1333- 74-0	2.015 88	0.002 653	0.745 2	12		22	0.017 18	1600	0.642 99
102	184	Hydro gen bromi de	BrH	10035 -10-6	80.91 194	0.000 49725	0.630 88	331.6 2		206.4 5	0.005 51	600	0.018 12

Eqn	Cmpd. no.	Name	Formu la	CAS	Mol. wt.	С	С	С	С	Т ,К	Therm al cond. at T	Т ,К	Therm al cond. at T
102	185	Hydro gen chlori de	CIH	7647- 01-0	36.46 094	0.001 865	0.497 55	358		190	0.008 80	700	0.032 13
102	186	Hydro gen cyani de	CHN	74- 90-8	27.02 534	4.649 6E-06	1.366 9	-210. 76	58,29 5	273.1 5	0.009 85	673.1 5	0.041 85
102	187	Hydro gen fluori de	FH	7664- 39-3	20.00 63432	0.000 03462 9	1.122 4	18.74 4		350	0.023 56	450	0.031 60
102	188	Hydro gen sulfid e	H ₂ S	7783- 06-4	34.08 088	1.381 E-07	1.837 9	-352. 09	46,04 1	212.8	0.007 24	600	0.032 58
102	189	Isobut yric acid	C ₄ H ₈ O ₂	79- 31-2	88.10 512	0.000 214	0.924 8	698		427.8 5	0.022 06	1000	0.074 97
102	190	Isopro pyl amine	C ₃ H ₉ N	75- 31-0	59.11 026	0.000 28183	0.920 94	619.1 7		304.9 2	0.018 04	1000	0.100 81
102	191	Malon ic acid	C ₃ H ₄ O ₄	141- 82-2	104.0 6146	4.828 4E-06	1.359 9			580	0.027 66	1000	0.058 01
102	192	Metha crylic acid	C ₄ H ₆ O ₂	79- 41-4	86.08 924	0.000 19847	0.928 4	678.6 9		434.1 5	0.021 76	1000	0.072 10
102	193	Metha ne	CH ₄	74- 82-8	16.04 25	8.398 3E-06	1.426 8	-49.6 54		111.6 3	0.012 63	600	0.084 25
102	194	Metha nol	CH ₄ O	67- 56-1	32.04 186	5.799 2E-07	1.786 2			273	0.013 03	684.3 7	0.067 26
102	195	N- Methy I aceta mide	C ₃ H ₇ NO	79- 16-3	73.09 378	0.034 177	0.331	2070	1,195, 600	478.1 5	0.024 98	1000	0.078 95
102	196	Methy I acetat e	C ₃ H ₆ O ₂	79- 20-9	74.07 854	-2534 3	-0.19 34	11,16 4,000	-67,2 59,00 0,000	330.0 9	0.014 15	1000	0.118 78
102	197	Methy I acetyl ene	C ₃ H ₄	74- 99-7	40.06 386	0.000 26544	0.892	222.1 9	79,86 9	249.9 4	0.011 54	1000	0.096 75

Eqn	Cmpd. no.	Name	Formu la	CAS	Mol. wt.	С	С	С	С	Т ,К	Therm al cond. at T	Т ,К	Therm al cond. at T
102	198	Methy I acryla te	C ₄ H ₆ O ₂	96- 33-3	86.08 924	0.473 4	-0.11 11	533.5 7	1,649, 600	353.3 5	0.015 69	1000	0.069 04
102	199	Methy I amine	CH ₅ N	74- 89-5	31.05 71	-55.1 3	1.065	-448, 200,0 00		266.8 2	0.012 59	650	0.079 17
102	200	Methy I benzo ate	C ₈ H ₈ O ₂	93- 58-3	136.1 4792	0.000 02396 3	1.130 8	-67.2 72	125,7 20	472.6 5	0.017 84	1000	0.055 88
102	201	3- Methy I-1,2- butadi ene	C ₅ H ₈	598- 25-4	68.11 702	0.000 2509	0.899	253.4	149,5 00	314	0.013 26	1000	0.089 02
102	202	2- Methy Ibutan e	C ₅ H ₁₂	78- 78-4	72.14 878	0.000 8968	0.774 2	456	230,6 40	273.1 5	0.011 98	1000	0.111 76
102	203	2- Methy Ibutan oic acid	C ₅ H ₁₀ O ₂	116- 53-0	102.1 317	0.000 1799	0.945 7	704.6		450.1 5	0.022 66	1000	0.072 53
102	204	3- Methy I-1- butan ol	C ₅ H ₁₂ O	123- 51-3	88.14 82	2054. 5	0.901 09	8,760, 500,0 00		404.1 5	0.021 16	1000	0.118 43
102	205	2- Methy I-1- buten e	C ₅ H ₁₀	563- 46-2	70.13 29	0.000 19098	0.934	84.07	155,7 20	304.3	0.013 48	1000	0.097 71
102	206	2- Methy I-2- buten e	C ₅ H ₁₀	513- 35-9	70.13 29	0.000 21736	0.917	112.3	177,6 90	311.7 1	0.013 20	1000	0.095 04
102	207	2- Methy I -1- buten e-3- yne	C ₅ H ₆	78- 80-8	66.10 114	0.000 15498	0.936 4	15.36 6	137,4 00	305.4	0.013 04	1000	0.086 64
102	208	Methy Ibutyl ether	C ₅ H ₁₂ O	628- 28-4	88.14 818	0.000 02399 3	1.197 6	58.59	35,66 7	273.1 5	0.011 73	1000	0.085 86

Eqn	Cmpd. no.	Name	Formu la	CAS	Mol. wt.	С	С	С	С	Т ,К	Therm al cond. at <i>T</i>	Т ,К	Therm al cond. at T
102	209	Methy Ibutyl sulfid e	C ₅ H ₁₂ S	628- 29-5	104.2 14	0.079 414	0.234 42	2671. 9	1,366, 100	396.5 8	0.019 66	1000	0.079 60
102	210	3- Methy I-1- butyn e	C ₅ H ₈	598- 23-2	68.11 702	0.000 06585 5	1.072	-36.3 69	106,4 30	302.1 5	0.014 68	1000	0.101 20
102	211	Methy I butyra te	C ₅ H ₁₀ O ₂	623- 42-7	102.1 317	1333. 1	0.996	12,31 7,000, 000		375.9	0.014 95	1000	0.105 43
102	212	Methy Ichlor osilan e	CH₅CI Si	993- 00-0	80.58 89	0.000 37057	0.813 67	609.1 7		281.8 5	0.011 55	1000	0.063 57
102	213	Methy Icyclo hexan e	C ₇ H ₁₄	108- 87-2	98.18 606	0.000 0719	1.127 4	667		374.0 8	0.020 56	1000	0.103 99
102	214	1- Methy Icyclo hexan ol	C ₇ H ₁₄ O	590- 67-0	114.1 8546	0.000 11359	1.031 1	709.2 7		441.1 5	0.023 22	1000	0.082 38
102	215	cis-2- Methy Icyclo hexan ol	C ₇ H ₁₄ O	7443- 70-1	114.1 8546	0.069 565	0.163 3	208.7	1,209, 500	438.1 5	0.024 15	1000	0.088 88
102	216	trans- 2- Methy Icyclo hexan ol	C ₇ H ₁₄ O	7443- 52-9	114.1 8546	0.075 448	0.155	218.4 4	1,252, 500	440.1 5	0.024 35	1000	0.089 08
102	217	Methy lcyclo penta ne	C ₆ H ₁₂	96- 37-7	84.15 948	0.002 4385	0.617 74	223.0 1	477,5 70	344.9 6	0.015 92	1000	0.102 27
102	218	1- Methy Icyclo pente ne	C ₆ H ₁₀	693- 89-0	82.14 36	0.004 0082	0.544 62	242.1 2	559,0 40	348.6 4	0.015 44	1000	0.095 78

Eqn	Cmpd. no.	Name	Formu la	CAS	Mol. wt.	С	С	С	С	Т ,К	Therm al cond. at <i>T</i>	Т ,К	Therm al cond. at T
102	219	3- Methy Icyclo pente ne	C ₆ H ₁₀	1120- 62-3	82.14 36	0.001 9845	0.639	227.1 1	434,1 20	338.0 5	0.015 01	1000	0.098 88
102	220	Methy Idichl orosil ane	CH ₄ CI ₂ Si	75- 54-7	115.0 3396	0.000 41077	0.756 88	591.5		314.7	0.011 09	1000	0.048 13
102	221	Methy lethyl ether	C ₃ H ₈	540- 67-0	60.09 502	0.000 24036	0.931 77	588.1 4		273	0.014 19	1000	0.094 47
102	222	Methy lethyl keton e	C ₄ H ₈	78- 93-3	72.10 572	-4202 700	-0.15 24	2,084, 600,0 00	-1.45 77E+1 3	352.7 9	0.015 46	1000	0.117 40
102	223	Methy lethyl sulfid e	C ₃ H ₈ S	624- 89-5	76.16 06	0.003 4805	0.619 06	1810. 8	166,2 90	339.8	0.016 53	1000	0.084 15
102	224	Methy I forma te	C ₂ H ₄ O ₂	107- 31-3	60.05 196	-8000 40	-0.22 85	248,1 00,00 0	-1.50 34E+1 2	300	0.013 69	1000	0.131 48
102	225	Methy lisobu tyl ether	C ₅ H ₁₂ O	625- 44-5	88.14 818	0.000 20053	0.953 81	644.4 2		331.7	0.017 29	1000	0.088 63
102	226	Methy lisobu tyl keton e	C ₆ H ₁₂	108- 10-1	100.1 5888	-2483 300	-0.04 6517	1,313, 100,0 00	-1.57 98E+1 3	389.6 5	0.018 69	1000	0.124 33
102	227	Methy I Isocy anate	C ₂ H ₃ NO	624- 83-9	57.05 132	0.002 6136	0.62	1631. 7	126,7 20	312	0.012 21	1000	0.068 64
102	228	Methy lisopr opyl ether	C ₄ H ₁₀ O	598- 53-8	74.12 16	2.119 1	-0.19 015	1453. 4	3,575, 500	303.9 2	0.016 06	1000	0.094 51
102	229	Methy lisopr opyl keton e	C ₅ H ₁₀	563- 80-4	86.13 23	-5935 000	-0.08 9497	3,098, 800,0 00	-2.79 94E+1 3	367.5 5	0.017 60	1000	0.128 47

Eqn	Cmpd. no.	Name	Formu la	CAS	Mol. wt.	С	С	С	С	т ,К	Therm al cond. at T	Т ,К	Therm al cond. at T
102	230	Methy lisopr opyl sulfid e	C ₄ H ₁₀ S	1551- 21-9	90.18 72	0.007 1536	0.539 07	2700. 7	241,7 30	171.6 4	0.004 59	1000	0.075 16
102	231	Methy I merca ptan	CH ₄ S	74- 93-1	48.10 746	0.000 02653	1.163 1	29.99 6	32,51 9	273.1 5	0.011 71	1000	0.077 04
102	232	Methy I metha crylat e	C ₅ H ₈ O ₂	80- 62-6	100.1 1582	0.000 72502	0.739 5	365.6 8	204,3 60	373.4 5	0.016 80	1000	0.076 37
102	233	2- Methy loctan oic acid	C ₉ H ₁₈ O ₂	3004- 93-1	158.2 3802	0.000 1813	0.929 12	793.4 5		518.1 5	0.023 83	1000	0.061 95
102	234	2- Methy Ipenta ne	C ₆ H ₁₄	107- 83-5	86.17 536	0.000 06111 9	1.086 1	-59.5 92	141,2 60	333.4 1	0.016 06	1000	0.102 42
102	235	Methy I pentyl ether	C ₆ H ₁₄ O	628- 80-8	102.1 7476	0.933 12	-0.11 72	1154. 3	2,961, 700	372	0.018 28	1000	0.081 17
102	236	2- Methy Ipropa ne	C ₄ H ₁₀	75- 28-5	58.12 22	0.089 772	0.185 01	639.2 3	1,114, 700	261.4 3	0.012 73	1000	0.117 01
102	237	2- Methy I-2- propa nol	C ₄ H ₁₀ O	75- 65-0	74.12 16	1.177 6E-06	1.661 8			333.8 2	0.018 39	766.8 7	0.073 25
102	238	2- Methy I prope ne	C ₄ H ₈	115- 11-7	56.10 632	-488. 1	0.887 7	-1,44 8,500, 000		266.2 5	0.012 76	1000	0.155 13
102	239	Methy I propio nate	C ₄ H ₈ O ₂	554- 12-1	88.10 512	-200. 9	-0.13 21	104,0 00	-846, 000,0 00	350	0.014 02	1000	0.108 86
102	240	Methy Ipropy I ether	C ₄ H ₁₀ O	557- 17-5	74.12 16	0.011 136	0.483 1	21,70. 3	281,2 20	312.2	0.016 48	1000	0.090 79

Eqn	Cmpd. no.	Name	Formu la	CAS	Mol. wt.	С	С	С	С	Т ,К	Therm al cond. at <i>T</i>	Т ,К	Therm al cond. at T
102	241	Methy Ipropy I sulfid e	C ₄ H ₁₀ S	3877- 15-4	90.18 72	0.002 3574	0.674 34	1804. 1	155,6 60	368.6 9	0.018 02	1000	0.083 98
102	242	Methy Isilan e	CH ₆ Si	992- 94-9	46.14 384	12.24 8	-0.56 11	-1067	2,715, 200	216.2 5	0.011 08	1000	0.095 90
102	243	alpha- Methy I styren e	C ₉ H ₁₀	98- 83-9	118.1 757	0.212 76	-0.02 2299	-194. 68	1,708, 700	438.6 5	0.019 69	1000	0.072 55
102	244	Methy I tert- butyl ether	C ₅ H ₁₂	1634- 04-4	88.14 82	0.000 2084	0.930 34	364.8 32	73,04 1	328.2	0.016 38	1000	0.089 58
102	245	Methy I vinyl ether	C ₃ H ₆ O	107- 25-5	58.07 914	0.000 32359	0.889	623.2 2		278.6 5	0.014 93	1000	0.092 73
102	246	Napht halen e	C ₁₀ H ₈	91- 20-3	128.1 7052	0.000 09182 8	1.034 5	731.7 8		491.1 4	0.022 43	1000	0.067 30
102	247	Neon	Ne	7440- 01-9	20.17 97	0.001 1385	0.664 6	8.7		30	0.008 46	3273. 1	0.246 16
102	248	Nitroe thane	C ₂ H ₅ NO ₂	79- 24-3	75.06 66	0.001 1282	0.689 5	679.1 1	238,8 00	387.2 2	0.015 80	1000	0.068 87
102	249	Nitrog en	N ₂	7727- 37-9	28.01 34	0.000 33143	0.772 2	16.32 3	373.7 2	63.15	0.006 02	2000	0.116 38
102	250	Nitrog en trifluo ride	F ₃ N	7783- 54-2	71.00 191	2.144	-0.30 545	1860. 3	1,216, 700	144.0 9	0.006 48	1000	0.063 77
102	251	Nitro metha ne	CH ₃ N O ₂	75- 52-5	61.04 002	0.000 03135	1.111	-91.6	128,0 00	374.3 5	0.013 65	1000	0.065 53
102	252	Nitrou s oxide	N ₂ O	10024 -97-2	44.01 28	0.001 096	0.667	540		182.3	0.008 91	1000	0.071 33
102	253	Nitric oxide	NO	10102 -43-9	30.00 61	0.000 4096	0.750 9	45.6		121.3 8	0.010 94	750	0.055 67

Eqn	Cmpd. no.	Name	Formu la	CAS	Mol. wt.	С	С	С	С	Т ,К	Therm al cond. at <i>T</i>	Т ,К	Therm al cond. at T
102	254	Nona decan e	C ₁₉ H ₄	629- 92-5	268.5 209	0.000 04957 1	1.265 2	3332. 3		603.0 5	0.025 02	1000	0.071 47
102	255	Nona nal	C ₉ H ₁₈	124- 19-6	142.2 3862	0.000 00175	1.553 4			465.5 2	0.024 40	1000	0.080
102	256	Nona ne	C ₉ H ₂₀	111- 84-2	128.2 551	-0.06 5771	0.271 98	-3482 .3	-1,58 0,300	423.9 7	0.021 30	1000	0.105 97
102	257	Nona noic acid	C ₉ H ₁₈ O ₂	112- 05-0	158.2 38	46.08	-1.00 37	-2460 .2	1,867, 000	528.7 5	0.028 15	1000	0.110 42
102	258	1- Nona nol	C ₉ H ₂₀ O	143- 08-8	144.2 545	-30.7 15	-0.10 75	8107	-156, 830,0 00	485.2	0.024 36	1000	0.098 95
102	259	2- Nona nol	C ₉ H ₂₀ O	628- 99-9	144.2 55	0.000 16806	0.968 76	713.6 7		471.7	0.026 03	1000	0.079 04
102	260	1- None ne	C ₉ H ₁₈	124- 11-8	126.2 3922	0.000 02126 9	1.294 3	662.2 1		420.0 2	0.020 51	1000	0.097 72
102	261	Nonyl merca ptan	C ₉ H ₂₀ S	1455- 21-6	160.3 201	0.047 041	0.297 33	2460. 6	1,367, 200	492.9 5	0.025 59	1000	0.075 98
102	262	1- Nonyn e	C ₉ H ₁₆	3452- 09-3	124.2 2334	0.000 01668 1	1.218	-199. 41	144,5 80	423.8 5	0.019 81	1000	0.079 56
102	263	Octad ecane	C ₁₈ H ₃	593- 45-3	254.4 9432	-291. 08	1.061 5	-6,01 9,900, 000		589.8 6	0.024 91	1000	0.073 95
102	264	Octan al	C ₈ H ₁₆ O	124- 13-0	128.2 12	0.000 00166	1.566 9			445.1 5	0.023 45	1000	0.083 33
102	265	Octan e	C ₈ H ₁₈	111- 65-9	114.2 2852	-8758	0.844 8	-27,1 21,00 0,000		339	0.015 03	1000	0.110 53
100	266	Octan oic acid	C ₈ H ₁₆ O ₂	124- 07-2	144.2 11	-0.20 973	0.001 2201	-2.18 43E- 06	1.394 2E-09	512.8 5	0.029 55	637.3 5	0.041 57
102	266	Octan oic acid	C ₈ H ₁₆ O ₂	124- 07-2	144.2 11	3.200 3E-08	2.18			637.3 5	0.041 57	1000	0.110 97
102	267	1- Octan ol	C ₈ H ₁₈	111- 87-5	130.2 2792	-0.00 30238	0.874 5	-1335 2		468.3 5	0.023 80	1000	0.102 88

Eqn	Cmpd. no.	Name	Formu la	CAS	Mol. wt.	С	С	С	С	Т ,К	Therm al cond. at T	Т ,К	Therm al cond. at T
102	268	2- Octan ol	C ₈ H ₁₈	123- 96-6	130.2 28	0.000 16915	0.972 38	698.5 5		452.9	0.025 45	1000	0.082 29
102	269	2- Octan one	C ₈ H ₁₆ O	111- 13-7	128.2 1204	-0.00 20184	1.002 7	-2040 6		446.1 5	0.020 46	1000	0.105 97
102	270	3- Octan one	C ₈ H ₁₆ O	106- 68-3	128.2 1204	8.183 3E-08	2.041 8			440.6 5	0.020 50	1000	0.109 23
102	271	1- Octen e	C ₈ H ₁₆	111- 66-0	112.2 1264	0.000 0133	1.355 4	504.5 9		394.4 1	0.019 26	1000	0.102 95
102	272	Octyl merca ptan	C ₈ H ₁₈ S	111- 88-6	146.2 9352	-3965 .5	0.521 3	-1,85 1,900, 000		472.1 9	0.025 05	1000	0.078 45
102	273	1- Octyn e	C ₈ H ₁₄	629- 05-0	110.1 9676	0.000 06073 4	1.051 6	-124. 91	158,3 00	399.3 5	0.019 67	1000	0.083 94
102	274	Oxalic acid	C ₂ H ₂ O ₄	144- 62-7	90.03 488	2.796 9E-06	1.316 4			516	0.010 41	1000	0.024 88
102	275	Oxyge n	02	7782- 44-7	31.99 88	0.000 44994	0.745 6	56.69 9		80	0.006 91	2000	0.126 55
102	276	Ozone	03	10028 -15-6	47.99 82	0.004 3147	0.479 99	700.0 9		161.8 5	0.009 31	1000	0.069 90
102	277	Penta decan e	C ₁₅ H ₃	629- 62-9	212.4 1458	4.779 6E-06	1.485 1	643.1 3		543.8 4	0.025 29	1000	0.082 99
102	278	Penta nal	C ₅ H ₁₀ O	110- 62-3	86.13 23	0.000 00113	1.632 3			375.1 5	0.017 99	1000	0.089 12
102	279	Penta ne	C ₅ H ₁₂	109- 66-0	72.14 878	-684. 4	0.764	-1,05 5,000, 000		273.1 5	0.012 88	1000	0.127 07
100	280	Penta noic acid	C ₅ H ₁₀ O ₂	109- 52-4	102.1 32	0.447 36	-0.00 19667	2.997 3E-06	-1.41 41E- 09	458.9 5	0.039 38	706.9 5	0.055 36
102	280	Penta noic acid	C ₅ H ₁₀ O ₂	109- 52-4	102.1 32	7.528 4E-08	2.058			706.9 5	0.055 37	1000	0.113 08
102	281	1- Penta nol	C ₅ H ₁₂ O	71- 41-0	88.14 82	2896	0.898 5	12,73 5,000, 000		410.9	0.020 84	990.9 5	0.110 87

Eqn	Cmpd. no.	Name	Formu la	CAS	Mol. wt.	С	С	С	С	Т ,К	Therm al cond. at <i>T</i>	Т ,К	Therm al cond. at T
102	282	2- Penta nol	C ₅ H ₁₂ O	6032- 29-7	88.14 82	0.000 19575	0.969 2	664.0 4		392.2	0.023 72	1000	0.095 09
102	283	2- Penta none	C ₅ H ₁₀ O	107- 87-9	86.13 23	-0.01 719	0.483 2	-3798	-1,23 5,000	273	0.008 77	1000	0.120 02
102	284	3- Penta none	C ₅ H ₁₀ O	96- 22-0	86.13 23	22.77 5	1.001 9	191,0 00,00 0		273	0.008 98	1000	0.120 82
102	285	1- Pente ne	C ₅ H ₁₀	109- 67-1	70.13 29	2.708 1E-06	1.549 3	41.07 5	8301. 3	303.2 2	0.015 46	1000	0.114 72
102	286	2- Pentyl merca ptan	C ₅ H ₁₂ S	2084- 19-7	104.2 1378	0.000 22307	0.933 58	794.1 6		385.1 5	0.018 90	1000	0.078 58
102	287	Pentyl merca ptan	C ₅ H ₁₂	110- 66-7	104.2 1378	0.000 11261	1.034	693.0 5		399.7 9	0.020 19	1000	0.084 12
102	288	1- Penty ne	C ₅ H ₈	627- 19-0	68.11 702	0.000 05241 5	1.094 8	-51.0 9	101,1 60	313.3 3	0.015 17	1000	0.096 08
102	289	2- Penty ne	C ₅ H ₈	627- 21-4	68.11 702	0.000 25623	1.007 3	1423. 7		329.2 7	0.016 53	1000	0.111 19
102	290	Phena nthre ne	C ₁₄ H ₁	85- 01-8	178.2 292	0.000 10167	0.988	797		610.0 3	0.024 90	1000	0.052 08
102	291	Pheno I	C ₆ H ₆	108- 95-2	94.11 124	0.038 846	0.239	985.8 1	937,1 70	454.9 9	0.021 83	1000	0.069 36
102	292	Pheny I isocy anate	C ₇ H ₅ NO	103- 71-9	119.1 207	0.000 16675	0.917 77	730.1		439.4 3	0.016 69	1000	0.054 61
102	293	Phtha lic anhyd ride	C ₈ H ₄ O ₃	85- 44-9	148.1 1556	0.000 0593	1.046	765.5		557.6 5	0.018 64	1000	0.046 15
102	294	Propa diene	C ₃ H ₄	463- 49-0	40.06 386	0.000 06162 9	1.073 1	1.857 9	70,12 8	238.6 5	0.009 80	1000	0.095 26
102	295	Propa ne	C ₃ H ₈	74- 98-6	44.09 562	-1.12	0.109 72	-9834 .6	-7,53 5,800	231.1 1	0.011 14	1000	0.145 99

Eqn	Cmpd. no.	Name	Formu la	CAS	Mol. wt.	С	С	С	С	Т ,К	Therm al cond. at T	Т ,К	Therm al cond. at T
102	296	1- Propa nol	C ₃ H ₈ O	71- 23-8	60.09 502	-613. 84	0.792 7	-1,15 7,400, 000		370.3 5	0.021 35	720.2 5	0.070 34
102	297	2- Propa nol	C ₃ H ₈	67- 63-0	60.09 5	7.390 7E-07	1.741 9			355.3	0.020 49	1000	0.124 28
102	298	Prope nylcyc lohex ene	C ₉ H ₁₄	13511 -13-2	122.2 0746	0.000 10242	1.048 6	701.5 6		431.6 5	0.022 62	1000	0.084 21
102	299	Propi onald ehyde	C ₃ H ₆ O	123- 38-6	58.07 914	9.071 1E-07	1.670 9			322.1 5	0.014 07	1000	0.093 40
100	300	Propi onic acid	C ₃ H ₆ O ₂	79- 09-4	74.07 85	1.001 4	-0.00 45954	7.151 7E-06	-3.58 78E- 09	414.3 2	0.069 93	616.1 5	0.045 78
102	300	Propi onic acid	C ₃ H ₆ O ₂	79- 09-4	74.07 85	1.890 5E-07	1.93			616.1 5	0.045 78	1000	0.116 57
102	301	Propi onitril e	C ₃ H ₅ N	107- 12-0	55.07 85	1.167 1E-06	1.603 3			370.2 5	0.015 32	1000	0.075 34
102	302	Propyl acetat e	C ₅ H ₁₀ O ₂	109- 60-4	102.1 317	1325. 3	1	12,23 5,000, 000		374.6 5	0.015 20	1000	0.108 32
102	303	Propyl amine	C ₃ H ₉	107- 10-8	59.11 026	0.283 3	0.055 046	1325. 9	1,817, 600	321	0.017 09	1000	0.100 00
102	304	Propyl benze ne	C ₉ H ₁₂	103- 65-1	120.1 9158	0.169 92	0.021 288	-54.4 84	1,624, 800	432.3 9	0.020 22	1000	0.076 58
102	305	Propyl ene	C ₃ H ₆	115- 07-1	42.07 974	0.000 0449	1.201 8	421		225.4 5	0.010 54	1000	0.127 37
102	306	Propyl forma te	C ₄ H ₈ O ₂	110- 74-7	88.10 512	740.1	0.973 2	5,646, 000,0 00		353.9 7	0.014 03	1000	0.108 93
102	307	2- Propyl merca ptan	C ₃ H ₈ S	75- 33-2	76.16 062	0.000 18367	0.962 7	646.0 1		325.7 1	0.016 16	1000	0.086 24
102	308	Propyl merca ptan	C ₃ H ₈ S	107- 03-9	76.16 062	0.008 7425	0.517 33	2358. 1	334,5 90	340.8 7	0.016 54	1000	0.084 39

Eqn	Cmpd. no.	Name	Formu la	CAS	Mol. wt.	С	С	С	С	Т ,К	Therm al cond. at T	Т ,К	Therm al cond. at T
102	309	1,2- Propyl ene glycol	C ₃ H ₈ O ₂	57- 55-6	76.09 442	0.000 1666	0.976 5	706		460.7 5	0.026 24	1000	0.083 02
102	310	Quino ne	C ₆ H ₄ O ₂	106- 51-4	108.0 9476	-5678 600	-0.04 5252	2,615, 700,0 00	-3.54 15E+1 3	454	0.025 93	1000	0.126 65
102	311	Silico n tetrafl uoride	F ₄ Si	7783- 61-1	104.0 7911	0.000 0955	0.928	63.6		333.5 5	0.017 61	702.4 5	0.038 37
102	312	Styre ne	C ₈ H ₈	100- 42-5	104.1 4912	0.010 048	0.403 3	553.7 4	685,5 70	418.3 1	0.018 37	1000	0.072 76
102	313	Succi nic acid	C ₄ H ₆ O ₄	110- 15-6	118.0 8804	5.526 3E-06	1.344			591	0.029 34	1000	0.059 49
102	314	Sulfur dioxid e	028	7446- 09-5	64.06 38	10.52 7	-0.77 32	-1333	1,506, 400	250	0.007 45	900	0.039 69
102	315	Sulfur hexafl uoride	F ₆ S	2551- 62-4	146.0 55419 2	0.000 48883	0.651 8	-117. 08	78,86 3	273.1 5	0.011 63	1000	0.045 87
102	316	Sulfur trioxid e	038	7446- 11-9	80.06 32	1.070 2	-0.23 48	2010. 4	1,277, 000	317.9	0.013 86	1000	0.049 30
102	317	Terep hthali c acid	C ₈ H ₆ O ₄	100- 21-0	166.1 3084	3.408 2E-06	1.364 7			795.2 8	0.030 97	1000	0.042 33
102	318	o- Terph enyl	C ₁₈ H ₁	84- 15-1	230.3 0376	0.000 07865 2	0.951 74	-282. 82	289,4 90	373.1 5	0.009 50	1000	0.055 98
102	319	Tetra decan e	C ₁₄ H ₃	629- 59-4	198.3 88	-163. 62	0.919 3	-1,08 7,600, 000		526.7 3	0.025 17	1000	0.086 15
102	320	Tetra hydrof uran	C ₄ H ₈	109- 99-9	72.10 572	9.552 1E-06	1.456 1	662.2 2		339.1 2	0.015 64	1000	0.134 19
102	321	1,2,3,4 - Tetra hydro napht halen e	C ₁₀ H ₁	119- 64-2	132.2 0228	0.000 07754	1.077	729		480.7 7	0.023 95	1000	0.076 76

Eqn	Cmpd. no.	Name	Formu la	CAS	Mol. wt.	С	С	С	С	Т ,К	Therm al cond. at T	Т ,К	Therm al cond. at T
102	322	Tetra hydrot hioph ene	C ₄ H ₈ S	110- 01-0	88.17 132	0.000 85604	0.729 7	531.9 9	213,8 40	394.2 7	0.018 01	1000	0.075 79
102	323	2,2,3,3 - Tetra methy Ibutan e	C ₈ H ₁₈	594- 82-1	114.2 2852	0.000 01523 5	1.281 6	-111. 88	124,1 20	379.4 4	0.019 64	1000	0.105 28
102	324	Thiop hene	C ₄ H ₄ S	110- 02-1	84.13 956	0.000 13384	0.981 15	645.9 5		357.3 1	0.015 25	1000	0.071 39
102	325	Tolue ne	C ₇ H ₈	108- 88-3	92.13 842	0.000 02392	1.269 4	537		383.7 8	0.019 01	1000	0.100 07
102	326	1,1,2- Trichl oroet hane	C ₂ H ₃ Cl ₃	79- 00-5	133.4 0422	0.000 0952	1.042 3	1243. 3		387	0.011 25	1000	0.056 84
102	327	Tridec ane	C ₁₃ H ₂	629- 50-5	184.3 6142	5.370 1E-06	1.475 1	599.0 9		508.6 2	0.024 22	1000	0.089 42
102	328	Trieth yl amine	C ₆ H ₁₅ N	121- 44-8	101.1 9	0.000 106	1.016 1	91	132,9 00	273.1 5	0.010 18	1000	0.096 80
102	329	Trime thyl amine	C ₃ H ₉	75- 50-3	59.11 026	0.000 27648	0.901	167.6 8	132,2 00	273.1 5	0.012 80	1000	0.107 34
102	330	1,2,3- Trime thylbe nzene	C ₉ H ₁₂	526- 73-8	120.1 9158	0.000 09840 8	1.045 2	720.4 9		449.2 7	0.022 38	1000	0.078 16
102	331	1,2,4- Trime thylbe nzene	C ₉ H ₁₂	95- 63-6	120.1 9158	0.000 08498	1.061	708		442.5 3	0.020 98	1000	0.075 83
102	332	2,2,4- Trime thylpe ntane	C ₈ H ₁₈	540- 84-1	114.2 2852	0.000 01758	1.311 4	392.9		355.1 5	0.018 46	1000	0.108 47
102	333	2,3,3- Trime thylpe ntane	C ₈ H ₁₈	560- 21-4	114.2 2852	0.000 02024 8	1.228	-174. 72	147,8 00	387.9 1	0.020 01	1000	0.100 79

Eqn	Cmpd. no.	Name	Formu la	CAS	Mol. wt.	С	С	С	С	Т ,К	Therm al cond. at T	Т ,К	Therm al cond. at T
102	334	1,3,5- Trinitr obenz ene	C ₆ H ₃ N ₃ O ₆	99- 35-4	213.1 0452	0.000 20544	0.871 37	807.3		629.6	0.024 74	1000	0.046 75
102	335	2,4,6- Trinitr otolue ne	C ₇ H ₅ N ₃ O ₆	118- 96-7	227.1 311	0.000 18189	0.887 44	803.3 9		625	0.024 10	1000	0.046 35
102	336	Undec ane	C ₁₁ H ₂	1120- 21-4	156.3 0826	0.038 012	0.686 15	34,66 3	8,721, 900	469.0 8	0.022 59	1000	0.097 98
102	337	1- Undec anol	C ₁₁ H ₂ ₄ 0	112- 42-5	172.3 0766	2498. 8	0.952 09	20,16 7,000, 000		520.3	0.024 86	1000	0.088 99
102	338	Vinyl acetat e	C ₄ H ₆ O ₂	108- 05-4	86.08 924	-3279 500	-0.12 941	1,710, 400,0 00	-1.27 27E+1 3	345.6 5	0.015 15	1000	0.121 77
102	339	Vinyl acetyl ene	C ₄ H ₄	689- 97-4	52.07 456	0.000 05419 7	1.063 2	-70.5 89	90,61 7	278.2 5	0.011 23	1000	0.082 22
102	340	Vinyl chlori de	C ₂ H ₃ Cl	75- 01-4	62.49 822	-229. 41	0.595 82	-169, 430,0 00		259.2 5	0.009 63	1000	0.083
102	341	Vinyl trichlo rosila ne	C ₂ H ₃ Cl ₃ Si	75- 94-5	161.4 8972	3510. 8	0.225	401,7 20,00 0		363.8 5	0.011 98	1000	0.041 35
102	342	Water	H ₂ O	7732- 18-5	18.01 528	6.204 1E-06	1.397 3			273.1 6	0.015 74	1073. 15	0.106 52
102	343	<i>m</i> - Xylen e	C ₈ H ₁₀	108- 38-3	106.1 65	3.059 3E-09	2.418 2	-569. 28	121,0 60	320	0.008 67	1000	0.099 65
102	344	o- Xylen e	C ₈ H ₁₀	95- 47-6	106.1 65	4.970 7E-06	1.378 7	-225. 64	66,78 6	320	0.014 92	1000	0.080 84
102	345	<i>p</i> - Xylen e	C ₈ H ₁₀	106- 42-3	106.1 65	9.930 5E-08	1.922 9	-469. 93	113,4 60	320	0.010 19	1000	0.090 60

Eqn	Cmpd. no.	Name	Formu la	CAS	Mol. wt.	С	С	С	С	Т ,К	Therm al cond. at <i>T</i>	Т	, K	Therm al cond. at T
														'

Except for acetic acid, butyric acid, formic acid, heptanoic acid, octanoic acid, pentanoic acid, propionic acid, the vapor thermal conductivity is calculated by Eqn 102: $k = C_1 T^{C2}/(1 + C_3/T + C_4/T^2)$ where k is the thermal conductivity in W/(m·K) and T is the temperature in K. Thermal conductivities are at either 1 atm or the vapor pressure, whichever is lower.

Eqn 100, used for the limited temperature ranges as noted for the associating compounds above, $k = C_1 + C_2T + C_3T^2 + C_4T^3$

Values in this table were taken from the Design Institute for Physical Properties (DIPPR) of the American Institute of Chemical Engineers (AIChE), 801 Critically Evaluated Gold Standard™ Database, copyright 2016 AIChE, and reproduced with permission of AIChE and of the DIPPR Evaluated Process Design Data Project Steering Committee. Their source should be cited as "R. L. Rowley, W. V. Wilding, J. L. Oscarson, T. A. Knotts, N. F. Giles, *DIPPR*® *Data Compilation of Pure Chemical Properties*, Design Institute for Physical Properties, AIChE, New York, NY (2016)".

Table 2-146 Thermophysical Properties of Miscellaneous Saturated Liquids

Sub sta nce	Pro pert y	−50 °C	-40 °C	-30 °C	-20 °C	-10 °C	0°C	10° C	20° C	30°	40° C	50° C	60° C	70° C	80°	90° C	100 ℃
Ace tald ehy de	ρ (kg /m ³)	863	852	840	828	816	804	794	783								
	c _p (kJ /kg· K)	2.0 5	2.0	2.1 1	2.1 4	2.1 7	2.2	2.2	2.2								
	μ (10 ⁻⁶ P a·s)	460	404	358	321	290	263	241	222								
	k (W/ m· K)	0.2 11	0.2 06	0.2 00	0.1 95	0.1 89	0.1 84	0.1 82	0.1 80								
	Pr	4.4 7	4.0 8	3.7 8	3.5 2	3.3 3	3.1 4	2.9 7	2.8 1								
Ace tic aci d	ρ (kg /m ³)								104 9	103 9	102 8	101 8	100 6	995	984	972	960
	c _p (kJ /kg· K)								2.0 31								
	μ (10 ⁻⁶ P a·s)								121 0	110 2	101 0	795	600				

Sub sta nce	Pro pert y	−50 °C	−40 °C	°C -30	−20 °C	-10 °C	0°C	10° C	20° C	30°	40° C	50° C	60° C	70° C	80° C	90° C	100 °C
	<i>k</i> (W/ m⋅ K)								0.1 73	0.1 70	0.1 68	0.1 67	0.1 65	0.1 63	0.1 61		
	Pr								14. 2								
Anil ine	ρ (kg /m³)	-	_	-	-	-	103 9	103 0	102 2	101	100 5	996	987	978	969	960	951
	c _p (kJ /kg· K)	-	_	-	-	_	2.0 24	2.0 47	2.0 71	2.0 93	2.1 13	2.1 32	2.1 7	2.2	2.2	2.2	2.3
	μ (10 ⁻⁶ P a·s)	_	_	_	_	_	102 00	650 0	440 0	316 0	237	185 0	151 0	127 0	109 0	935	825
	k (W/ m· K)	_	_	_	_	_	0.1 86	0.1 84	0.1 82	0.1 80	0.1 77	0.1 74	0.1 71	0.1 69	0.1 68	0.1 67	0.1 67
	Pr	-	_	-	-	-	111	72	50	36. 7	28. 3	22. 7	19. 2	16. 5	14. 5	12. 7	11. 5
But ano I	ρ (kg /m ³)	845	841	837	833	829	825	817	810	803	797	791	784	776	768	760	753
	c _p (kJ /kg· K)	1.9 47	1.9 96	2.0 46	2.1 00	2.1 53	2.2 02	2.2 62	2.3 45	2.4 37	2.5 24	2.6 21					
	μ (10 ⁻⁶ P a·s)	347 00	224 00	147 00	103 00	740 0	519 0	387 0	295 0	230 0	178 0	141 0	114 0	930	760	630	535
	k (W/ m· K)	0.1 75	0.1 74	0.1 73	0.1 72	0.1 71	0.1 70	0.1 68	0.1 67	0.1 66	0.1 65	0.1 64	0.1 63	0.1 62	0.1 61	0.1 60	0.1 59
	Pr	386 0	257 0	174 0	126 0	930	670	120	41	33. 8	27. 2	22. 5					

Sub sta nce	Pro pert y	-50 °C	−40 °C	°C -30	-20 °C	-10 °C	0°C	10° C	20° C	30°	40° C	50° C	60° C	70° C	80°	90°	100 °C
Car bon	ρ (kg /m ³)	136 2	134 8	133 4	132 0	130 6	129 2	127 8	126 3								
dis ulfi de	c _p (kJ /kg· K)	0.9 88	0.9 89	0.9 90	0.9 91	0.9 93	0.9 96	1.0 04	1.0 17								
	μ (10 ⁻⁶ P a·s)	630	580	535	496	463	435	405	375	350	330						
	k (W/ m· K)	0.1 94	0.1 90	0.1 86	0.1 82	0.1 78	0.1 74	0.1 70	0.1 66	0.1 61	0.1 58	0.1 56	0.1 54	0.1 52	0.1 50		
	Pr	3.2 1	3.0 2	2.8 5	2.7 0	2.5 8	2.4 9	2.3 9	2.3 0								
Cyc loh exa ne	ρ (kg /m³)	_	_	_	_	_	_	789	779	769	759	750	740	731	721		
	c _p (kJ /kg· K)	-	_	_	_	_	_	2.0 68	2.0 81	2.0 94	2.1 06	2.1 19					
	μ (10 ⁻⁶ P a·s)	_	_	_	_	_	_	117 5	980	820	710	605	540				
	k (W/ m· K)	_	_	_	_	_	_	0.1 22	0.1 20	0.1 19	0.1 18	0.1 17	0.1 16	0.1 14	0.1 12		
	Pr	-	_	_	_	_	_	19. 9	17. 0	14. 4	12. 7	11. 0					
Eth ano I	ρ (kg /m ³)						806	798	789	781	776	763	754	745	735	725	716
	c _p (kJ /kg· K)	2.0	2.0	2.0	2.1	2.1 9	2.2 7	2.3	2.4	2.5 2	2.6	2.7	2.8	2.9	3.0	3.1 9	3.3 0

Sub sta nce	Pro pert y	−50 °C	−40 °C	-30 °C	−20 °C	-10 °C	0°C	10° C	20° C	30°	40° C	50° C	60° C	70° C	80° C	90° C	100 °C
	μ (10 ⁻⁶ P a·s)	640 0	479 0	365 0	282 5	222 0	177 0	147 0	120 0	100 0	835	700	590	500	435	370	314
	<i>k</i> (W/ m⋅ K)	0.1 88	0.1 86	0.1 84	0.1 81	0.1 79	0.1 77	0.1 75	0.1 73	0.1 71	0.1 68	0.1 65	0.1 62	0.1 59	0.1 56	0.1 53	0.1 51
	Pr	68. 4	52. 5	41. 3	33. 2	27. 2	22. 7	19. 7	16. 9	14. 7	13. 0	11. 6	10. 3	9.2	8.4	7.7	6.9
Eth yl	ρ (kg /m ³)				947	935	924	912	901	888	876	863	851	838	825	811	797
ace tate	c _p (kJ /kg· K)								2.0								
	μ (10 -6P a·s)	109 0					580	510	455	400	370	345	310	280	250	230	220
	k (W/ m· K)								0.1 45	0.1 42	0.1 39	0.1 36	0.1 33	0.1 30	0.1 27	0.1 23	0.1 19
	Pr								6.3								
Eth yla min e	ρ (kg /m³)	761	750	739	729	718	707	695	683	671	658	646	633	620	607		
	c _p (kJ /kg· K)	2.9 5	2.9 7	2.9	3.0	3.0 1	3.0										
	μ (10 ⁻⁶ P a·s)	580	500	435	390	350	320										
	k (W/ m· K)	0.2 04	0.2 01	0.1 99	0.1 96	0.1 94	0.1 91										
	Pr	8.3 9	7.3 9	6.5 1	5.9 7	5.4 3	5.0 8										

Sub sta nce	Pro pert y	−50 °C	−40 °C	°C -30	−20 °C	−10 °C	0°C	10° C	20° C	30°	40° C	50° C	60° C	70° C	80° C	90° C	100 °C
Eth yl	ρ (kg /m ³)	790	780	769	758	747	736	725	714	702	689	676	666	653	640	625	611
eth er	c _p (kJ /kg· K)	2.1 35	2.1 56	2.1 79	2.2 05	2.2 33	2.2 65	2.2 99	2.3 32	2.3 6	2.3	2.4	2.4	2.5 1			
	μ (10 ⁻⁶ P a·s)	550	470	410	365	330	290	265	233	214	197	181	166	153	140	129	118
	k (W/ m· K)	0.1 59	0.1 55	0.1 51	0.1 47	0.1 44	0.1 40	0.1 39	0.1 34	0.1 29	0.1 25	0.1 20	0.1 16	0.1 12			
	Pr	7.3 9	6.5 4	5.9 2	5.4 8	5.1 2	4.6 9	4.3 8	4.0 5	3.9 2	3.7 7	3.6 7	3.5 4	3.4 3			
Eth yl	ρ (kg /m ³)																
iodi de	c _p (kJ /kg· K)			0.6 56	0.6 63	0.6 70	0.6 77	0.6 84	0.6 91	0.6 98	0.7 05	0.7 12	0.7 18	0.7 24			
	μ (10 -6P a·s)						730	655	590	539	495	455	420	390			
	k (W/ m· K)						0.0 92	0.0 90	0.0 88	0.0 86	0.0 85	0.0 83	0.0 81	0.0 80			
	Pr						5.3 7	4.9 8	4.6 3	4.3 0	4.1 1	3.9 0	3.7 2	3.5 3			
Eth yle ne	ρ (kg /m ³)						112 7	112 0	111 3	110 6	109 9	109 2	108 5	107 7	107 0	106 3	105 6
gly col	c _p (kJ /kg· K)						2.2 72	2.3 27	2.3 81	2.4 31	2.4 84	2.5 36	2.5 86	2.6 36	2.6 85	2.7 34	2.7 79

Sub sta nce	Pro pert y	−50 °C	−40 °C	-30 °C	−20 °C	-10 °C	0°C	10° C	20° C	30° C	40° C	50° C	60° C	70° C	80° C	90° C	100 °C
	μ (10 ⁻⁶ P a·s)						570 00	333 00	202 00	134 00	910 0	707 0	400 0	345 0	300 0	244 0	200 0
	<i>k</i> (W/ m⋅ K)						0.2 54	0.2 55	0.2 56	0.2 58	0.2 59	0.2 60					
	Pr						510	305	190	126	87. 3	69. 0					
For mic aci d	ρ (kg /m ³)						124 1	123 1	122 0	120 9	119 6	118 4	117 0	115 6	114 0	112 4	110 8
	c _p (kJ /kg· K)																
	μ (10 ⁻⁶ P a·s)							226 0	180 0	147 0	122 0	103 0	890	780	680	615	550
	k (W/ m· K)						0.2 65	0.2 61	0.2 57	0.2 57	0.2 53	0.2 50	0.2 46	0.2 43	0.2 40	0.2 36	0.2 32
	Pr																
Gas olin e	ρ (kg /m ³)				784	775	767	759	751	743	735	721	717	708	699	690	681
	c _p (kJ /kg· K)				1.8	1.9 2	1.9 7	2.0	2.0	2.1 1	2.1 5	2.2	2.2 5	2.3	2.3 5	2.4	2.4
	μ (10 ⁻⁶ P a·s)	171 0	140 0	117 0	990	850	735	645	530	464	410	367	330	298	270	246	225
	k (W/ m· K)	0.1 31	0.1 28	0.1 25	0.1 23	0.1 21	0.1 20	0.1 18	0.1 16	0.1 14	0.1 12	0.1 10	0.1 08	0.1 06	0.1 04	0.1 02	0.1 00
	Pr				15. 1	13. 5	12. 1	11. 0	9.4 1	8.5 9	7.8 7	7.3 4	6.8 8	6.4 7	6.1 0	5.8 1	5.5 4

Sub sta nce	Pro pert y	−50 °C	−40 °C	°C -30	−20 °C	−10 °C	0°C	10° C	20° C	30°	40° C	50° C	60° C	70° C	80° C	90° C	100 °C
Gly cer ol	ρ (kg /m ³)	_	_	_	_	-	127 6	127 0	126 0	125 4	124 8	124 2					
	c _p (kJ /kg· K)								2.3 93	2.4 06	2.4 57	2.5 04	2.5 48	2.5 88	2.6 25	2.6 57	2.6 86
	μ (10 -6P a·s)						1.2. +7	4.0. +6	1.5. +6								
	<i>k</i> (W/ m⋅ K)								0.2 84	0.2 85	0.2 87	0.2 88	0.2 89	0.2 91	0.2 93	0.2 94	0.2 95
	Pr								126 50								
Ker ose ne	ρ (kg /m ³)						781	774	767	760	754	748	742				
	c _p (kJ /kg· K)						1.9 1	1.9 6	2.0	2.0 7	2.1	2.1	2.2	2.2	2.3	2.3 5	2.3
	μ (10 ⁻⁶ P a·s)	115 0	725	500	360	275	215	173	149	126	108	95	83	73	66	60	55
	k (W/ m· K)						0.1 40	0.1 39	0.1 39	0.1 38	0.1 38	0.1 37	0.1 37				
	Pr						2.9	2.4 4	2.1 7	1.8 9	1.6 7	1.5 1	1.3 5				
Met han ol	ρ (kg /m ³)									783	774	766	756	746	736	725	711
	c _p (kJ /kg· K)	2.3	2.3	2.3	2.3	2.4	2.4	2.4 5	2.4	2.4	2.5	2.5 5	2.6 5	2.7	2.9	3.1 3	3.3 0

Sub sta nce	Pro pert y	−50 °C	-40 °C	°C -30	-20 °C	-10 °C	0°C	10° C	20° C	30°	40° C	50° C	60° C	70° C	80°	90°	100 °C
	μ (10 ⁻⁶ P a·s)	230 5	180 0	141 0	117 0	975	820	692	590	510	455	400	355	315	271	240	218
	k(W/ m· K)	0.2 25	0.2 22	0.2 19	0.2 16	0.2 12	0.2 09	0.2 06	0.2 03	0.1 99	0.1 95	0.1 92	0.1 89	0.1 87	0.1 84	0.1 82	0.1 80
	Pr	23. 6	18. 8	15. 1	12. 9	11. 0	9.5 3	8.2 3	7.1 8	6.3 8	5.8 8	5.3 1	4.9 8	4.6 8	4.3 4	4.1 3	3.9 9
Met hyl	ρ (kg /m ³)	106 9	105 6	104 3	103 0	101 7	100 3	989	975	960	944	929	913	897	880	863	845
for mat e	c _p (kJ /kg· K)	1.8 4	1.8 6	1.8 8	1.9 0	1.9 2	1.9 5	1.9 9	2.0	2.0							
	μ (10 ⁻⁶ P a·s)	830	711	618	544	481	430	380	345	315							
	k (W/ m· K)	0.2 17	0.2 13	0.2 09	0.2 05	0.2 00	0.1 95	0.1 91	0.1 86	0.1 80							
	Pr	7.0 4	6.2 1	5.5 6	5.0 4	4.6 2	4.3 0	3.9 6	3.7 7	3.6 4							
Oil,	ρ (kg /m ³)																
cas tor	c _p (kJ /kg· K)																
	μ (10 ⁻⁶ P a·s)							2,42 0,00 0	986, 000	451, 000	231, 000	125, 000	74,0 00	43,0 00			
	k (W/ m· K)							0.1 82	0.1 81	0.1 80	0.1 79	0.1 78	0.1 77	0.1 76	0.1 75	0.1 74	0.1 7
	Pr																

Sub sta nce	Pro pert y	−50 °C	−40 °C	-30 °C	-20 °C	−10 °C	0°C	10° C	20° C	30°	40° C	50° C	60° C	70° C	80° C	90° C	100 °C
Oil,	ρ (kg /m ³)								914								
oliv e	c _p (kJ /kg· K)								1.6 33								
	μ (10 ⁻⁶ P a·s)							138, 000	84,0 00	52,0 00	36,3 00	24,5 00	17,0 00	12,4 00			
	k (W/ m· K)							0.1 70	0.1 69	0.1 68	0.1 67	0.1 66	0.1 66	0.1 65	0.1 65	0.1 64	0.1 64
	Pr								810								
Pen tan e	ρ (kg /m ³)	693	684	674	665	656	646	636	626	616	606	596	585	574	562	550	538
	c _p (kJ /kg· K)	2.0 60	2.0 84	2.1 10	2.1 37	2.1 67	2.2 06	2.2 39	2.2 73								
	μ (10 -6P a·s)	489	428	379	339	307	279	254	234	209	190	175	161	148	137	124	113
	k (W/ m· K)	0.1 42	0.1 39	0.1 36	0.1 32	0.1 28	0.1 25	0.1 22	0.1 19	0.1 15	0.1 12	0.1 08	0.1 05	0.1 01	0.0 98	0.0 95	0.0 91
	Pr	7.1 4	6.4 2	5.8 8	5.4 9	5.2 0	4.9 2	4.6 6	4.4 7								
Pro pan ol	ρ (kg /m ³)	849					819	811	814	796	788	779	770	761	752	747	743
	c _p (kJ /kg· K)	1.9 55					2.2 19										
	μ (10 -6P a·s)	20, 200	13, 500	950 0	690 0	511 0	390 0	290 0	224 5	172 0	140 0	113 0	921	760	630	508	447

Sub sta nce	Pro pert y	−50 °C	-40 °C	-30	-20 °C	-10 °C	0°C	10° C	20° C	30°	40° C	50° C	60° C	70° C	80° C	90° C	100 °C
	k (W/ m· K)	0.1 67	0.1 66	0.1 65						0.1 71	0.1 69	0.1 68	0.1 67	0.1 65	0.1 64	0.1 63	0.1 62
	Pr	236															
Sulf uric	ρ (kg /m ³)								183 4								
aci d	c _p (kJ /kg· K)								1.3 82								
	μ (10 -6P a·s)						48,4 00	35,2 00	25,4 00	15,7 00	11,5 00	882 0	722 0	609 0	519 0		
	k (W/ m· K)						0.3 14										
	Pr																
Tol uen e	ρ (kg /m ³)	932	923	913	904	895	886	876	867	858	848	839	829	820	810	800	790
	c _p (kJ /kg· K)	1.5 14	1.5 35	1.5 56	1.5 79	1.6 02	1.6 33	1.6 52	1.6 75	1.7 01	1.7	1.7 6	1.8 0	1.8	1.8 7	1.9 2	1.9 7
	μ (10 -6P a·s)	212 0	167 0	134 5	110 0	915	770	670	590	520	470	420	380	355	325	295	270
	k (W/ m· K)	0.1 52	0.1 49	0.1 47	0.1 44	0.1 42	0.1 39	0.1 37	0.1 34	0.1 32	0.1 29	0.1 26	0.1 24	0.1 22	0.1 19	0.1 17	0.1 14
	Pr	21. 1	17. 8	14. 2	12. 1	10. 3	9.0	8.1	7.4	6.7	6.3	5.9	5.5	5.3	5.1	4.8	4.7
Tur pen tine	ρ (kg /m³)																

Sub sta nce	Pro pert y	−50 °C	−40 °C	-30 °C	-20 °C	-10 °C	0°C	10° C	20° C	30°	40° C	50° C	60° C	70° C	80° C	90° C	100 °C
	c _p (kJ /kg· K)						1.7 2	1.7 6	1.8 0			1.9 3					
	μ (10 ⁻⁶ P a·s)						225 0	178 0	149 0	127 0	107 0	925	820	730	675		
	k (W/ m· K)						0.1 30	0.1 29	0.1 28	0.1 27	0.1 26	0.1 25					
	Pr						29. 8	24. 3	20. 9	18. 4	16. 1	14. 3					

	Click here for the Natural Convection Heat Transfer Coefficients spreadsheet calculator.
	Click here for the Forced Convection Heat Transfer Coefficients spreadsheet calculator.
	Click here for the Thermal Design of Double Pipe Heat Exchangers spreadsheet calculator.

Table 2-147 Thermal Conductivity of Inorganic and Organic Liquids [W/(m·K)]

Cmpd . no.	Name	Formu la	CAS	Mol. wt.	C ₁	c_2	<i>C</i> ₃	C ₄	C ₅	T _{min} , K	Therm al cond. at T _{min}	T _{max} , K	Therm al cond. at T _{max}
1	Acetal dehyd e	C ₂ H ₄ 0	75- 07-0	44.05 256	0.335 15	-0.00 05522 7				149.7 8	0.252 4	294.1 5	0.172 7
2	Aceta mide	C ₂ H ₅ NO	60- 35-5	59.06 72	0.393 63	-0.00 03705 3				353.3 3	0.262 7	494.3	0.210 5
3	Acetic acid	C ₂ H ₄ O ₂	64- 19-7	60.05 2	0.214	-0.00 01834				289.8 1	0.160 8	391.0 5	0.142 3
4	Acetic anhyd ride	C ₄ H ₆ O ₃	108- 24-7	102.0 8864	0.236 38	-0.00 02426 3				200.1 5	0.187 8	412.7	0.136 2
5	Aceto ne	C ₃ H ₆ O	67- 64-1	58.07 914	0.287 8	-0.00 0427				178.4 5	0.211 6	343.1 5	0.141 3
6	Aceto nitrile	C ₂ H ₃	75- 05-8	41.05 19	0.307 55	-0.00 0402				229.3 2	0.215 4	354.8 1	0.164 9

Cmpd . no.	Name	Formu la	CAS	Mol. wt.	С	С	С	С	С	Т ,К	Therm al cond. at T	т ,К	Therm al cond. at T
7	Acetyl ene	C ₂ H ₂	74- 86-2	26.03 728	0.333 63	-0.00 08365 5				192.4	0.172 7	250	0.124 5
8	Acrol ein	C ₃ H ₄	107- 02-8	56.06 326	0.270 3	-0.00 03764				185.4 5	0.200 5	325.8 4	0.147 7
9	Acryli c acid	C ₃ H ₄ O ₂	79- 10-7	72.06 266	0.244 1	-0.00 02904				286.1 5	0.161 0	484.5	0.103 4
10	Acrylo nitrile	C ₃ H ₃	107- 13-1	53.06 26	0.307 51	-0.00 0487				189.6 3	0.215 2	350.4 5	0.136 8
11	Air	Mixtu re	13225 9-10- 0	28.96	0.284 72	-0.00 17393				75	0.154 3	125	0.067 3
12	Amm onia	H ₃ N	7664- 41-7	17.03 052	1.169	-0.00 2314				195.4 1	0.716 8	400.0 5	0.243 3
13	Anisol e	C ₇ H ₈	100- 66-3	108.1 3782	0.234 94	-0.00 02647 7				235.6 5	0.172 5	512.5	0.099
14	Argon	Ar	7440- 37-1	39.94 8	0.181 9	-0.00 03176	-0.00 00041 1			83.78	0.126 4	150	0.041
15	Benza mide	C ₇ H ₇ NO	55- 21-0	121.1 3658	0.284 85	-0.00 02522 5				403	0.183 2	563.1 5	0.142 8
16	Benze ne	C ₆ H ₆	71- 43-2	78.11 184	0.234 44	-0.00 03057 2				278.6 8	0.149 2	413.1	0.108
17	Benze nethio	C ₆ H ₆	108- 98-5	110.1 7684	0.209 96	-0.00 02146				258.2 7	0.154 5	442.2 9	0.115 0
18	Benzo ic acid	C ₇ H ₆ O ₂	65- 85-0	122.1 2134	0.239 1	-0.00 02325				395.4 5	0.147 2	596	0.100 5
19	Benzo nitrile	C ₇ H ₅ N	100- 47-0	103.1 213	0.206 03	-0.00 02102 3				260.2 8	0.151 3	464.1 5	0.108 5
20	Benzo pheno ne	C ₁₃ H ₁ ₀ O	119- 61-9	182.2 179	0.258 67	-0.00 02251 6				321.3 5	0.186 3	664	0.109
21	Benzy I alcoh ol	C ₇ H ₈	100- 51-6	108.1 3782	0.178 47	-0.00 00658 43				257.8 5	0.161 5	478.6	0.147 0

Cmpd . no.	Name	Formu la	CAS	Mol. wt.	С	С	С	С	С	Т,К	Therm al cond. at T	Т,К	Therm al cond. at T
22	Benzy I ethyl ether	C ₉ H ₁₂ O	539- 30-0	136.1 9098	0.202 9	-0.00 02226				275.6 5	0.141 5	528.6	0.085 2
23	Benzy I merca ptan	C ₇ H ₈ S	100- 53-8	124.2 0342	0.203 16	-0.00 01991 2				243.9 5	0.154 6	472.0 3	0.109 2
24	Biphe nyl	C ₁₂ H ₁	92- 52-4	154.2 078	0.190 53	-0.00 01514 5				342.2	0.138 7	723.1 5	0.081 0
25	Bromi ne	Br ₂	7726- 95-6	159.8 08	-0.21 85	0.004 2143	-0.00 00177 53	3.104 1E-08	-2.01 08E- 11	266	0.129 9	584	0.031 6
26	Brom obenz ene	C ₆ H ₅ Br	108- 86-1	157.0 079	0.169 83	-0.00 01981				242.4 3	0.121 8	429.2 4	0.084
27	Brom oetha ne	C ₂ H ₅ Br	74- 96-4	108.9 65	0.162 9	-0.00 02119 8				154.2 5	0.130 2	327	0.093 6
28	Brom ometh ane	CH ₃ Br	74- 83-9	94.93 852	0.161 43	-0.00 02128 7				179.4 4	0.123 2	413.1 5	0.073 5
29	1,2- Butad iene	C ₄ H ₆	590- 19-2	54.09 044	0.219 66	-0.00 03436				136.9 5	0.172 6	284	0.122 1
30	1,3- Butad iene	C ₄ H ₆	106- 99-0	54.09 044	0.222 31	-0.00 03664				164.2 5	0.162 1	268.7 4	0.123 8
31	Butan e	C ₄ H ₁₀	106- 97-8	58.12 22	0.273 49	-0.00 07126 7	5.155 5E-07			134.8 6	0.186 8	400	0.070 9
32	1,2- Butan ediol	C ₄ H ₁₀ O ₂	584- 03-2	90.12 1	0.064 621	0.000 67625	-1.04 91E- 06			220	0.162 6	469.5 7	0.150 8
33	1,3- Butan ediol	C ₄ H ₁₀ O ₂	107- 88-0	90.12 1	-0.00 32865	0.001 1463	-1.55 25E- 06			196.1 5	0.161 8	481.3 8	0.188 8
34	1- Butan ol	C ₄ H ₁₀ O	71- 36-3	74.12 16	0.228 88	-0.00 025				183.8 5	0.182 9	391	0.131 1
35	2- Butan ol	C ₄ H ₁₀ O	78- 92-2	74.12 16	0.185 99	-0.00 01722 7				158.4 5	0.158 7	372.9	0.121 8

Cmpd . no.	Name	Formu la	CAS	Mol. wt.	С	С	С	С	С	Т ,К	Therm al cond. at T	Т ,К	Therm al cond. at T
36	1- Buten e	C ₄ H ₈	106- 98-9	56.10 632	0.221 53	-0.00 03502 3				87.8	0.190 8	266.9 1	0.128 1
37	cis-2- Buten e	C ₄ H ₈	590- 18-1	56.10 632	0.213 78	-0.00 03544 5				134.2 6	0.166 2	276.8 7	0.115 6
38	trans- 2- Buten e	C ₄ H ₈	624- 64-6	56.10 632	0.211 53	-0.00 03505 6				167.6 2	0.152 8	274.0 3	0.115 5
39	Butyl acetat e	C ₆ H ₁₂ O ₂	123- 86-4	116.1 5828	0.217 21	-0.00 02656 3				199.6 5	0.164 2	453.7 5	0.096 7
40	Butylb enzen e	C ₁₀ H ₁	104- 51-8	134.2 1816	0.187 07	-0.00 02003 7				185.3	0.149 9	473.1 5	0.092
41	Butyl merca ptan	C₄H ₁₀ S	109- 79-5	90.18 72	0.211 43	-0.00 0258				157.4 6	0.170 8	371.6 1	0.115 6
42	sec- Butyl merca ptan	C ₄ H ₁₀ S	513- 53-1	90.18 72	0.206 9	-0.00 02568				133.0 2	0.172 7	358.1 3	0.114 9
43	1- Butyn e	C ₄ H ₆	107- 00-6	54.09 044	0.223 34	-0.00 03515				147.4 3	0.171 5	281.2 2	0.124 5
44	Butyr aldeh yde	C ₄ H ₈	123- 72-8	72.10 572	0.249 62	-0.00 0325				176.8	0.192 2	347.9 4	0.136 5
45	Butyri c acid	C ₄ H ₈ O ₂	107- 92-6	88.10 51	0.196 7	-0.00 0168				267.9 5	0.151 7	573.1 5	0.100 4
46	Butyr onitril e	C ₄ H ₇ N	109- 74-0	69.10 51	0.240 77	-0.00 02866 5				161.3	0.194 5	390.7 4	0.128 8
47	Carbo n dioxid e	CO ₂	124- 38-9	44.00 95	0.440 6	-0.00 12175				216.5 8	0.176 9	300	0.075 4
48	Carbo n disulfi de	CS ₂	75- 15-0	76.14 07	0.233	-0.00 0275				161.1 1	0.189 0	319.3 7	0.145 5

Cmpd . no.	Name	Formu la	CAS	Mol. wt.	С	С	С	С	С	Т ,К	Therm al cond. at <i>T</i>	Т,К	Therm al cond. at T
49	Carbo n mono xide	со	630- 08-0	28.01 01	0.285 5	-0.00 1784				68.15	0.163 9	125	0.062 5
50	Carbo n tetrac hlorid e	CCI ₄	56- 23-5	153.8 227	0.158 9	-0.00 01987				250.3 3	0.109 2	349.7 9	0.089 4
51	Carbo n tetrafl uoride	CF ₄	75- 73-0	88.00 43	0.207 71	-0.00 07888 3				89.56	0.137 1	145.1	0.093
52	Chlori ne	Cl ₂	7782- 50-5	70.90 6	0.224 6	-0.00 0064	-0.00 00007 88			172.1 2	0.190 2	410	0.065 9
53	Chlor obenz ene	C ₆ H ₅	108- 90-7	112.5 569	0.184 1	-0.00 01917				227.9 5	0.140 4	404.8 7	0.106 5
54	Chlor oetha ne	C ₂ H ₅ Cl	75- 00-3	64.51 41	0.237 79	-0.00 03952 09				136.7 5	0.183 7	348.1 5	0.100
55	Chlor oform	CHCl ₃	67- 66-3	119.3 7764	0.177 8	-0.00 02023				209.6 3	0.135 4	400	0.096 9
56	Chlor ometh ane	CH ₃ CI	74- 87-3	50.48 75	0.253 81	-0.00 04318 03				175.4 3	0.178 1	333	0.110 0
57	1- Chlor oprop ane	C ₃ H ₇ Cl	540- 54-5	78.54 068	0.218 51	-0.00 03376 2				150.3 5	0.167 7	393.1 5	0.085 8
58	2- Chlor oprop ane	C ₃ H ₇ Cl	75- 29-6	78.54 068	0.212 32	-0.00 03149				155.9 7	0.163 2	386.7	0.090 6
59	m- Creso	C ₇ H ₈	108- 39-4	108.1 3782	0.182 41	-0.00 01110 9				285.3 9	0.150 7	475.4 3	0.129 6
60	o- Creso	C ₇ H ₈	95- 48-7	108.1 3782	0.191 86	-0.00 01303				304.1 9	0.152 2	464.1 5	0.131 4
61	p- Creso I	C ₇ H ₈ O	106- 44-5	108.1 3782	0.179 71	-0.00 01203 7				307.9 3	0.142 6	475.1 3	0.122 5

Cmpd . no.	Name	Formu la	CAS	Mol. wt.	С	С	С	С	С	т ,К	Therm al cond. at T	Т,К	Therm al cond. at T
62	Cume ne	C ₉ H ₁₂	98- 82-8	120.1 9158	0.185 5	-0.00 02089 5				177.1 4	0.148 5	413.1 5	0.099 2
63	Cyano gen	C ₂ N ₂	460- 19-5	52.03 48	0.378 45	-0.00 06994 5				245.2 5	0.206 9	251.9	0.202 3
64	Cyclo butan e	C ₄ H ₈	287- 23-0	56.10 632	0.222 62	-0.00 03408 2				182.4 8	0.160 4	285.6 6	0.125 3
65	Cyclo hexan e	C ₆ H ₁₂	110- 82-7	84.15 948	0.198 13	-0.00 02505				279.6 9	0.128 1	353.8 7	0.109 5
66	Cyclo hexan ol	C ₆ H ₁₂ O	108- 93-0	100.1 5888	0.171 5	-0.00 01255				296.6	0.134 3	563.1 5	0.100 8
67	Cyclo hexan one	C ₆ H ₁₀ O	108- 94-1	98.14 3	0.175 57	-0.00 01239 2				242	0.145 6	428.5 8	0.122 5
68	Cyclo hexen e	C ₆ H ₁₀	110- 83-8	82.14 36	0.209 26	-0.00 02603 7				169.6 7	0.165 1	356.1 2	0.116 5
69	Cyclo penta ne	C ₅ H ₁₀	287- 92-3	70.13 29	0.206 6	-0.00 02696				179.2 8	0.158 3	322.4	0.119 7
70	Cyclo pente ne	C ₅ H ₈	142- 29-0	68.11 702	0.217 76	-0.00 02778 3				138.1 3	0.179 4	333.1 5	0.125 2
71	Cyclo propa ne	C ₃ H ₆	75- 19-4	42.07 974	0.243 48	-0.00 04256 8				145.5 9	0.181 5	240.3 7	0.141 2
72	Cyclo hexyl merca ptan	C ₆ H ₁₂ S	1569- 69-3	116.2 2448	0.183 74	-0.00 01925				189.6 4	0.147 2	431.9 5	0.100 6
73	Decan al	C ₁₀ H ₂ ₀ O	112- 31-2	156.2 652	0.213 63	-0.00 02300 4				285	0.148 1	481.6 5	0.102 8
74	Decan e	C ₁₀ H ₂	124- 18-5	142.2 8168	0.206 3	-0.00 025				243.5 1	0.145 4	447.3	0.094 5
75	Decan oic acid	C ₁₀ H ₂ ₀ O ₂	334- 48-5	172.2 65	0.206	-0.00 02				304.7 5	0.145 1	543.1 5	0.097 4

Cmpd . no.	Name	Formu la	CAS	Mol. wt.	С	С	С	С	С	Т ,К	Therm al cond. at T	Т ,К	Therm al cond. at T
76	1- Decan ol	C ₁₀ H ₂ ₂ O	112- 30-1	158.2 8108	0.236 171	-0.00 025				280.0 5	0.166 2	503	0.110 4
77	1- Decen e	C ₁₀ H ₂	872- 05-9	140.2 658	0.202 37	-0.00 02418 7				206.8 9	0.152 3	443.7 5	0.095 0
78	Decyl merca ptan	C ₁₀ H ₂ ₂ S	143- 10-2	174.3 4668	0.201 34	-0.00 02082 6				247.5 6	0.149 8	512.3 5	0.094 6
79	1- Decyn e	C ₁₀ H ₁	764- 93-2	138.2 4992	0.208 39	-0.00 02362 2				229.1 5	0.154 3	447.1 5	0.102 8
80	Deute rium	D ₂	7782- 39-0	4.031 6	1.264					20.4	1.264 0	20.4	1.264 0
81	1,1- Dibro moeth ane	C ₂ H ₄ Br ₂	557- 91-5	187.8 6116	0.142 6	-0.00 01640 2				210.1 5	0.108 1	498.4	0.060 9
82	1,2- Dibro moeth ane	C ₂ H ₄ Br ₂	106- 93-4	187.8 6116	0.136 22	-0.00 01179				282.8 5	0.102 9	404.5 1	0.088 5
83	Dibro mome thane	CH ₂ Br	74- 95-3	173.8 3458	0.175 58	-0.00 02249 9				220.6	0.125 9	370.1	0.092 3
84	Dibuty I ether	C ₈ H ₁₈	142- 96-1	130.2 2792	0.194 18	-0.00 02224 6				175.3	0.155 2	523.1 5	0.077 8
85	m- Dichlo roben zene	C ₆ H ₄ Cl ₂	541- 73-1	147.0 0196	0.166 94	-0.00 01667				248.3 9	0.125 5	446.2 3	0.092 6
86	o- Dichlo roben zene	C ₆ H ₄ Cl ₂	95- 50-1	147.0 0196	0.169 94	-0.00 01637				262.8 7	0.126 9	351.7 1	0.112 4
87	p- Dichlo roben zene	C ₆ H ₄ Cl ₂	106- 46-7	147.0 0196	0.169 77	-0.00 01799				326.1 4	0.111 1	548	0.071 2
88	1,1- Dichlo roeth ane	C ₂ H ₄ Cl ₂	75- 34-3	98.95 916	0.188 81	-0.00 02608 3				176.1 9	0.142 9	416.9	0.080 1

Cmpd . no.	Name	Formu la	CAS	Mol. wt.	С	С	С	С	С	т ,к	Therm al cond. at T	Т,К	Therm al cond. at T
89	1,2- Dichlo roeth ane	C ₂ H ₄ Cl ₂	107- 06-2	98.95 916	0.214	-0.00 0266				253.1 5	0.146 7	356.5 9	0.119 1
90	Dichlo romet hane	CH ₂ CI	75- 09-2	84.93 258	0.238 47	-0.00 03336 6				178.0 1	0.179 1	325	0.130 0
91	1,1- Dichlo ropro pane	C ₃ H ₆ Cl ₂	78- 99-9	112.9 8574	0.18	-0.00 02314 4				192.5	0.135 4	438	0.078 6
92	1,2- Dichlo ropro pane	C ₃ H ₆ Cl ₂	78- 87-5	112.9 8574	0.196 53	-0.00 02501 2				172.7 1	0.153 3	457.6	0.082 1
93	Dieth anol amine	C ₄ H ₁₁ NO ₂	111- 42-2	105.1 3564	0.021 8	0.001 0315	-0.00 00013 55			301.1 5	0.209 5	673.1 5	0.102 2
94	Diethy I amine	C ₄ H ₁₁ N	109- 89-7	73.13 684	0.258 7	-0.00 05434 3	4.209 7E-07			223.3 5	0.158 3	453.1 5	0.098 9
95	Diethy I ether	C ₄ H ₁₀	60- 29-7	74.12 16	0.249 5	-0.00 0407				156.8 5	0.185 7	433.1 5	0.073 2
96	Diethy I sulfid e	C ₄ H ₁₀ S	352- 93-2	90.18 72	0.210 65	-0.00 02623				169.2	0.166 3	365.2 5	0.114 8
97	1,1- Difluo roeth ane	C ₂ H ₄ F	75- 37-6	66.04 997	0.270 19	-0.00 0661	3.443 E-07			154.5 6	0.176 3	363.1 5	0.075 6
98	1,2- Difluo roeth ane	C ₂ H ₄ F	624- 72-6	66.04 997	0.231 71	-0.00 03850 3				179.6	0.162 6	372.8	0.088
99	Difluo romet hane	CH ₂ F ₂	75- 10-5	52.02 339	0.372 96	-0.00 08870 7	2.576 2E-07			136.9 5	0.256 3	302.5 6	0.128 2
100	Di-iso propyl amine	C ₆ H ₁₅ N	108- 18-9	101.1 9	0.184 4	-0.00 0239				176.8 5	0.142 1	357.0 5	0.099 1
101	Di-iso propyl ether	C ₆ H ₁₄	108- 20-3	102.1 7476	0.191 62	-0.00 02762				187.6 5	0.139 8	400.1	0.081 1

Cmpd . no.	Name	Formu la	CAS	Mol. wt.	С	С	С	С	С	Т ,К	Therm al cond. at T	Т,К	Therm al cond. at T
102	Di-iso propyl keton e	C ₇ H ₁₄ O	565- 80-0	114.1 8546	0.220 76	-0.00 02762 4				204.8 1	0.164 2	460	0.093 7
103	1,1- Dimet hoxye thane	C ₄ H ₁₀ O ₂	534- 15-6	90.12 1	0.220 78	-0.00 03127 1				159.9 5	0.170 8	337.4 5	0.115
104	1,2- Dimet hoxyp ropan e	C ₅ H ₁₂ O ₂	7778- 85-0	104.1 4758	0.229 98	-0.00 03037 2				226.1	0.161 3	366.1 5	0.118 8
105	Dimet hyl acetyl ene	C ₄ H ₆	503- 17-3	54.09 044	0.227 73	-0.00 03480 4				240.9 1	0.143 9	300.1 3	0.123 3
106	Dimet hyl amine	C ₂ H ₇ N	124- 40-3	45.08 368	0.245 4	-0.00 0338				180.9 6	0.184	403.1 5	0.109
107	2,3- Dimet hylbut ane	C ₆ H ₁₄	79- 29-8	86.17 536	0.177 4	-0.00 02436				145.1 9	0.142 0	331.1 5	0.096 7
108	1,1- Dimet hylcyc lohex ane	C ₈ H ₁₆	590- 66-9	112.2 1264	0.180 7	-0.00 02177				239.6 6	0.128 5	392.7	0.095
109	cis- 1,2- Dimet hylcyc lohex ane	C ₈ H ₁₆	2207- 01-4	112.2 1264	0.180 92	-0.00 02108				223.1 6	0.133 9	402.9 4	0.096 0
110	trans- 1,2- Dimet hylcyc lohex ane	C ₈ H ₁₆	6876- 23-9	112.2 1264	0.176 75	-0.00 02077				184.9 9	0.138	596.1 5	0.052 9
111	Dimet hyl disulfi de	C ₂ H ₆ S ₂	624- 92-0	94.19 904	0.213 73	-0.00 02447				188.4 4	0.167 6	382.9	0.120 0

Cmpd . no.	Name	Formu la	CAS	Mol. wt.	С	С	С	С	С	Т ,К	Therm al cond. at <i>T</i>	Т,К	Therm al cond. at T
112	Dimet hyl ether	C ₂ H ₆ O	115- 10-6	46.06 844	0.311 74	-0.00 05638				131.6 5	0.237 5	320.0 3	0.131 3
113	N,N- Dimet hyl forma mide	C ₃ H ₇ NO	68- 12-2	73.09 378	0.26	-0.00 0255				250	0.196 3	425.1 5	0.151 6
114	2,3- Dimet hylpe ntane	C ₇ H ₁₆	565- 59-3	100.2 0194	0.179 64	-0.00 0246				160	0.140 3	362.9 3	0.090 4
115	Dimet hyl phthal ate	C ₁₀ H ₁ ₀ O ₄	131- 11-3	194.1 84	0.139 05	0.000 1509	-3.97 8E-07			273.1 5	0.150 6	556.8 5	0.099 7
116	Dimet hylsil ane	C ₂ H ₈ Si	1111- 74-6	60.17 042	0.255 47	-0.00 04411				122.9 3	0.201 2	253.5 5	0.143 6
117	Dimet hyl sulfid e	C ₂ H ₆ S	75- 18-3	62.13 4	0.239 42	-0.00 03311				174.8 8	0.181 5	310.4 8	0.136 6
118	Dimet hyl sulfox ide	C ₂ H ₆ OS	67- 68-5	78.13 344	0.314 2	-0.00 03080 9				291.6 7	0.224 3	464	0.171 2
119	Dimet hyl terep hthala te	C ₁₀ H ₁ ₀ O ₄	120- 61-6	194.1 84	0.219 56	-0.00 02099 55				413.7 9	0.132 7	559.2	0.102 2
120	1,4- Dioxa ne	C ₄ H ₈ O ₂	123- 91-1	88.10 512	0.302 7	-0.00 04827				284.9 5	0.165 2	374.4 7	0.121 9
121	Diphe nyl ether	C ₁₂ H ₁ ₀ O	101- 84-8	170.2 072	0.186 86	-0.00 01495 3				300.0 3	0.142 0	531.4 6	0.107 4
122	Dipro pyl amine	C ₆ H ₁₅	142- 84-7	101.1 9	0.222 4	-0.00 0314				210.1 5	0.156 4	382	0.102 5
123	Dodec ane	C ₁₂ H ₂	112- 40-3	170.3 3484	0.204 7	-0.00 02326				263.5 7	0.143 4	489.4 7	0.090
124	Eicos ane	C ₂₀ H ₄	112- 95-8	282.5 4748	0.217 8	-0.00 02233				309.5 8	0.148 7	616.9 3	0.080

Cmpd . no.	Name	Formu la	CAS	Mol. wt.	С	С	С	С	С	т ,К	Therm al cond. at T	Т,К	Therm al cond. at T
125	Ethan e	C ₂ H ₆	74- 84-0	30.06 9	0.357 58	-0.00 11458	6.186 6E-07			90.35	0.259 1	300	0.069 5
126	Ethan ol	C ₂ H ₆ O	64- 17-5	46.06 844	0.246 8	-0.00 0264				159.0 5	0.204 8	353.1 5	0.153 6
127	Ethyl acetat e	C ₄ H ₈ O ₂	141- 78-6	88.10 512	0.250 1	-0.00 03563				189.6	0.182 5	350.2 1	0.125 3
128	Ethyl amine	C ₂ H ₇	75- 04-7	45.08 368	0.300 59	-0.00 0581	6.602 E-07			192.1 5	0.213 3	293.1 5	0.187 0
129	Ethylb enzen e	C ₈ H ₁₀	100- 41-4	106.1 65	0.199 9	-0.00 02382 3				178.2	0.157 4	413.1	0.101 5
130	Ethyl benzo ate	C ₉ H ₁₀ O ₂	93- 89-0	150.1 745	0.207 71	-0.00 02126 5				238.4 5	0.157 0	549.4	0.090 9
131	2- Ethyl butan oic acid	C ₆ H ₁₂ O ₂	88- 09-5	116.1 5828	0.217 5	-0.00 02407				258.1 5	0.155 4	516.5	0.093
132	Ethyl butyra te	C ₆ H ₁₂ O ₂	105- 54-4	116.1 5828	0.210 43	-0.00 02490 3				175.1 5	0.166 8	453.1 5	0.097 6
133	Ethylc ycloh exane	C ₈ H ₁₆	1678- 91-7	112.2 1264	0.176 62	-0.00 02014				161.8 4	0.144 0	404.9 4	0.095 1
134	Ethylc yclop entan e	C ₇ H ₁₄	1640- 89-7	98.18 606	0.183 34	-0.00 02228				134.7 1	0.153 3	376.6 2	0.099 4
135	Ethyle ne	C ₂ H ₄	74- 85-1	28.05 316	0.419 4	-0.00 1591	0.000 00130 6			104	0.268 1	280	0.076 3
136	Ethyle nedia mine	C ₂ H ₈ N ₂	107- 15-3	60.09 832	0.364 34	-0.00 04433				284.2 9	0.238 3	390.4 1	0.191 3
137	Ethyle ne glycol	C ₂ H ₆ O ₂	107- 21-1	62.06 784	0.088 067	0.000 94712	-1.31 14E- 06			260.1 5	0.245 7	470.4 5	0.243 4
138	Ethyle neimi ne	C ₂ H ₅ N	151- 56-4	43.06 78	0.309 7	-0.00 04023				195.2	0.231 2	329	0.177 3

Cmpd . no.	Name	Formu la	CAS	Mol. wt.	С	С	С	С	С	Т ,К	Therm al cond. at <i>T</i>	Т ,К	Therm al cond. at T
139	Ethyle ne oxide	C ₂ H ₄ 0	75- 21-8	44.05 256	0.269 57	-0.00 03984				160.6 5	0.205 6	283.8 5	0.156 5
140	Ethyl forma te	C ₃ H ₆ O ₂	109- 94-4	74.07 854	0.258 7	-0.00 033				193.5 5	0.194 8	433.1 5	0.115 8
141	2- Ethyl hexan oic acid	C ₈ H ₁₆ O ₂	149- 57-5	144.2 11	0.209 54	-0.00 02225 1				155.1 5	0.175 0	500.6 6	0.098 1
142	Ethylh exyl ether	C ₈ H ₁₈	5756- 43-4	130.2 2792	0.193 56	-0.00 02410 2				180	0.150 2	466.4	0.081
143	Ethyli sopro pyl ether	C ₅ H ₁₂ O	625- 54-7	88.14 818	0.219 28	-0.00 03256 8				140	0.173 7	391.2	0.091 9
144	Ethyli sopro pyl keton e	C ₆ H ₁₂	565- 69-5	100.1 5888	0.228 73	-0.00 02913				204.1 5	0.169	450.1	0.097 6
145	Ethyl merca ptan	C ₂ H ₆ S	75- 08-1	62.13 404	0.233 92	-0.00 03206				125.2 6	0.193 8	308.1 5	0.135 1
146	Ethyl propio nate	C ₅ H ₁₀ O ₂	105- 37-3	102.1 317	0.213 7	-0.00 02515				199.2 5	0.163 6	495	0.089
147	Ethylp ropyl ether	C ₅ H ₁₂ 0	628- 32-0	88.14 818	0.227 17	-0.00 03298				145.6 5	0.179 1	400.0 7	0.095 2
148	Ethylt richlor osilan e	C ₂ H ₅ Cl ₃ Si	115- 21-9	163.5 06	0.196 53	-0.00 01690 7	-1.66 98E- 07			167.5 5	0.163 5	371.0 5	0.110 8
149	Fluori ne	F ₂	7782- 41-4	37.99 68064	0.275 8	-0.00 16297				53.48	0.188 6	130	0.063 9
150	Fluoro benze ne	C ₆ H ₅ F	462- 06-6	96.10 23032	0.209 62	-0.00 02803 4				238.1 5	0.142 9	353.1 5	0.110 6
151	Fluoro ethan e	C ₂ H ₅ F	353- 36-6	48.05 95	0.258 66	-0.00 0498				129.9 5	0.193 9	235.4 5	0.141 4

Cmpd . no.	Name	Formu la	CAS	Mol. wt.	С	С	С	С	С	т ,К	Therm al cond. at T	т ,К	Therm al cond. at T
152	Fluoro metha ne	CH₃F	593- 53-3	34.03 292	0.481 62	-0.00 10709	0	0		131.3 5	0.341 0	194.8 2	0.273 0
153	Form aldeh yde	CH ₂ O	50- 00-0	30.02 598	0.336 00324 3	-0.00 054				155.1 5	0.252 2	253.8 5	0.198 9
154	Form amide	CH ₃ N O	75- 12-7	45.04 062	0.384 7	-0.00 01065				275.7	0.355 3	493	0.332 2
155	Formi c acid	CH ₂ O	64- 18-6	46.02 57	0.302	-0.00 0108				281.4 5	0.271 6	373.7 1	0.261 6
156	Furan	C ₄ H ₄	110- 00-9	68.07 396	0.219 8	-0.00 03140 5				187.5 5	0.160 9	304.5	0.124 2
157	Heliu m-4	Не	7440- 59-7	4.002 6	-0.01 3833	0.022 913	-0.00 54872	0.000 4585		2.2	0.014 9	4.8	0.020 4
158	Hepta decan e	C ₁₇ H ₃	629- 78-7	240.4 6774	0.209 26	-0.00 02215				295.1 3	0.143 9	575.3	0.081 8
159	Hepta nal	C ₇ H ₁₄ O	111- 71-7	114.1 8546	0.228 41	-0.00 02627 3				229.8	0.168 0	426.1 5	0.116 4
160	Hepta ne	C ₇ H ₁₆	142- 82-5	100.2 0194	0.215	-0.00 0303				182.5 7	0.159 7	371.5 8	0.102 4
161	Hepta noic acid	C ₇ H ₁₄ O ₂	111- 14-8	130.1 85	0.202	-0.00 02				265.8 3	0.148 8	496.1 5	0.102 8
162	1- Hepta nol	C ₇ H ₁₆ 0	111- 70-6	116.2 0134	0.234 063	-0.00 025				239.1 5	0.174 3	573.1 5	0.090 8
163	2- Hepta nol	C ₇ H ₁₆ 0	543- 49-7	116.2 0134	0.211 42	-0.00 02479 3				220	0.156 9	432.9	0.104 1
164	3- Hepta none	C ₇ H ₁₄ O	106- 35-4	114.1 8546	0.202 6	-0.00 02234				234.1 5	0.150 3	553.1 5	0.079 0
165	2- Hepta none	C ₇ H ₁₄ O	110- 43-0	114.1 8546	0.210 8	-0.00 0246				238.1 5	0.152 2	424.0 5	0.106 5
166	1- Hepte ne	C ₇ H ₁₄	592- 76-7	98.18 606	0.196 64	-0.00 01662 3	-2.52 41E- 07			154.1 2	0.165 0	366.7 9	0.101 7

Cmpd . no.	Name	Formu la	CAS	Mol. wt.	С	С	С	С	С	Т ,К	Therm al cond. at <i>T</i>	Т,К	Therm al cond. at T
167	Hepty I merca ptan	C ₇ H ₁₆ S	1639- 09-4	132.2 6694	0.203 7	-0.00 02252				229.9 2	0.151 9	450.0 9	0.102 3
168	1- Hepty ne	C ₇ H ₁₂	628- 71-7	96.17 018	0.210 98	-0.00 02665 2				192.2 2	0.159 7	372.9 3	0.111 6
169	Hexad ecane	C ₁₆ H ₃	544- 76-3	226.4 4116	0.207 49	-0.00 02191 7				291.3 1	0.143 6	560.0 1	0.084 8
170	Hexan al	C ₆ H ₁₂	66- 25-1	100.1 5888	0.228 32	-0.00 02648 2				214.9 3	0.171 4	401.1 5	0.122 1
171	Hexan e	C ₆ H ₁₄	110- 54-3	86.17 536	0.224 92	-0.00 03533				177.8 3	0.162 1	370	0.094
172	Hexan oic acid	C ₆ H ₁₂ O ₂	142- 62-1	116.1 58	0.185 5	-0.00 0146				269.2 5	0.146 2	603.1 5	0.097 4
173	1- Hexan ol	C ₆ H ₁₄ O	111- 27-3	102.1 7476	0.230 656	-0.00 025				228.5 5	0.173 5	575	0.086 9
174	2- Hexan ol	C ₆ H ₁₄ O	626- 93-7	102.1 75	0.213 91	-0.00 02604 2				223	0.155 8	412.4	0.106 5
175	2- Hexan one	C ₆ H ₁₂	591- 78-6	100.1 5888	0.210 76	-0.00 024				217.3 5	0.158 6	400.8 5	0.114 6
176	3- Hexan one	C ₆ H ₁₂	589- 38-8	100.1 5888	0.234 93	-0.00 02912				217.5	0.171 6	466	0.099
177	1- Hexen e	C ₆ H ₁₂	592- 41-6	84.15 948	0.191 12	-0.00 00835 19	-5.14 07E- 07			133.3 9	0.170 8	336.6 3	0.104 8
178	3- Hexyn e	C ₆ H ₁₀	928- 49-4	82.14 36	0.209 96	-0.00 02692				170.0 5	0.164 2	354.3 5	0.114 6
179	Hexyl merca ptan	C ₆ H ₁₄	111- 31-9	118.2 4036	0.205 8	-0.00 02324				192.6 2	0.161 0	425.8 1	0.106 8
180	1- Hexyn e	C ₆ H ₁₀	693- 02-7	82.14 36	0.214 92	-0.00 02899				141.2 5	0.174 0	344.4 8	0.115 1

Cmpd . no.	Name	Formu la	CAS	Mol. wt.	С	С	С	С	С	т ,к	Therm al cond. at T	т ,к	Therm al cond. at T
181	2- Hexyn e	C ₆ H ₁₀	764- 35-2	82.14 36	0.211 9	-0.00 02704 8				183.6 5	0.162 2	357.6 7	0.115 2
182	Hydra zine	H ₄ N ₂	302- 01-2	32.04 516	1.367 5	-0.00 15895				274.6 9	0.930 9	623.1 5	0.377 0
183	Hydro gen	H ₂	1333- 74-0	2.015 88	-0.09 17	0.017 678	-0.00 0382	-3.33 24E- 06	1.026 6E-07	13.95	0.075 4	31	0.084 8
184	Hydro gen bromi de	BrH	10035 -10-6	80.91 194	0.234	-0.00 04636				185.1 5	0.148 2	290.6 2	0.099
185	Hydro gen chlori de	CIH	7647- 01-0	36.46 094	0.804 5	-0.00 2102				273.1 5	0.230	323.1 5	0.125 2
186	Hydro gen cyani de	CHN	74- 90-8	27.02 534	0.434 54	-0.00 07008				259.8 3	0.252 5	298.8 5	0.225 1
187	Hydro gen fluori de	FH	7664- 39-3	20.00 63432	0.751 6	-0.00 10874				189.7 9	0.545 2	394.4 5	0.322 7
188	Hydro gen sulfid e	H ₂ S	7783- 06-4	34.08 088	0.484	-0.00 1184				193.1 5	0.255 5	292.4 2	0.138 0
189	Isobut yric acid	C ₄ H ₈ O ₂	79- 31-2	88.10 512	0.216 68	-0.00 02556				227.1 5	0.158 6	482.7 5	0.093 3
190	Isopro pyl amine	C ₃ H ₉	75- 31-0	59.11 026	0.237	-0.00 0332				177.9 5	0.177 9	305.5 5	0.135 6
191	Malon ic acid	C ₃ H ₄ O ₄	141- 82-2	104.0 6146	0.282 31	-0.00 02401 9				409.1 5	0.184 0	580	0.143 0
192	Metha crylic acid	C ₄ H ₆ O ₂	79- 41-4	86.08 924	0.230 6	-0.00 02520 1				288.1 5	0.158 0	530	0.097 0
193	Metha ne	CH₄	74- 82-8	16.04 25	0.417 68	-0.00 24528	3.558 8E-06			90.69	0.224 5	180	0.091 5

Cmpd . no.	Name	Formu la	CAS	Mol. wt.	С	С	С	С	С	т ,к	Therm al cond. at T	т ,к	Therm al cond. at T
194	Metha nol	CH ₄ O	67- 56-1	32.04 186	0.283 7	-0.00 0281				175.4 7	0.234 4	337.8 5	0.188 8
195	N- Methy I aceta mide	C ₃ H ₇ NO	79- 16-3	73.09 378	0.237 43	-0.00 02362				301.1 5	0.166 3	478.1 5	0.124 5
196	Methy I acetat e	C ₃ H ₆ O ₂	79- 20-9	74.07 854	0.277 7	-0.00 0417				175.1 5	0.204 7	386.1 5	0.116 7
197	Methy I acetyl ene	C ₃ H ₄	74- 99-7	40.06 386	0.236 48	-0.00 04163 9				170.4 5	0.165 5	249.9 4	0.132 4
198	Methy I acryla te	C ₄ H ₆ O ₂	96- 33-3	86.08 924	0.260 82	-0.00 03506				196.3 2	0.192 0	421	0.113 2
199	Methy I amine	CH ₅ N	74- 89-5	31.05 71	0.334 46	-0.00 06742 7	8.033 E-07			179.6 9	0.239 2	283.1 5	0.207 9
200	Methy I benzo ate	C ₈ H ₈ O ₂	93- 58-3	136.1 4792	0.221 42	-0.00 02275 9				260.7 5	0.162 1	547.9	0.096 7
201	3- Methy I-1,2- butadi ene	C ₅ H ₈	598- 25-4	68.11 702	0.198	-0.00 02822				159.5 3	0.153 3	314	0.109 7
202	2- Methy Ibutan e	C ₅ H ₁₂	78- 78-4	72.14 878	0.212 46	-0.00 03358 1				113.2 5	0.174 4	368.1 3	0.088
203	2- Methy Ibutan oic acid	C ₅ H ₁₀ O ₂	116- 53-0	102.1 317	0.222 84	-0.00 02516				357.1 5	0.133 0	480.9	0.101 8
204	3- Methy I-1- butan ol	C ₅ H ₁₂ O	123- 51-3	88.14 82	0.174 71	-0.00 01256				155.9 5	0.155 1	404.1 5	0.123 9

Cmpd . no.	Name	Formu la	CAS	Mol. wt.	С	С	С	с	С	Т ,К	Therm al cond. at <i>T</i>	т ,к	Therm al cond. at T
205	2- Methy I-1- buten e	C ₅ H ₁₀	563- 46-2	70.13 29	0.194 47	-0.00 02901				135.5 8	0.155 1	304.3	0.106 2
206	2- Methy I-2- buten e	C ₅ H ₁₀	513- 35-9	70.13 29	0.196 36	-0.00 0291				139.3 9	0.155 8	311.7	0.105 7
207	2- Methy I -1- buten e-3- yne	C ₅ H ₆	78- 80-8	66.10 114	0.203 85	-0.00 02874				160.1 5	0.157 8	305.4	0.116
208	Methy Ibutyl ether	C ₅ H ₁₂ O	628- 28-4	88.14 818	0.222 35	-0.00 03044				157.4 8	0.174 4	463.1 5	0.081 4
209	Methy Ibutyl sulfid e	C ₅ H ₁₂ S	628- 29-5	104.2 14	0.206 98	-0.00 02443 9				175.3	0.164 1	396.5 8	0.110 1
210	3- Methy I-1- butyn e	C ₅ H ₈	598- 23-2	68.11 702	0.203 48	-0.00 03106				183.4 5	0.146 5	302.1 5	0.109 6
211	Methy I butyra te	C ₅ H ₁₀ O ₂	623- 42-7	102.1 317	0.217 48	-0.00 02591 3				187.3 5	0.168 9	493.1 5	0.089 7
212	Methy Ichlor osilan e	CH ₅ CI Si	993- 00-0	80.58 89	0.246 83	-0.00 03885 4				139.0 5	0.192 8	281.8 5	0.137 3
213	Methy Icyclo hexan e	C ₇ H ₁₄	108- 87-2	98.18 606	0.179 1	-0.00 02291				273.1 5	0.116 5	374.0 8	0.093 4
214	1- Methy Icyclo hexan ol	C ₇ H ₁₄ O	590- 67-0	114.1 8546	0.215 58	-0.00 02272 8				299.1 5	0.147 6	548.8	0.090 9

Cmpd . no.	Name	Formu la	CAS	Mol. wt.	С	С	С	С	С	Т ,К	Therm al cond. at <i>T</i>	Т,К	Therm al cond. at T
215	cis-2- Methy Icyclo hexan ol	C ₇ H ₁₄ O	7443- 70-1	114.1 8546	0.218 39	-0.00 02577 6				280.1 5	0.146 2	484.2	0.093 6
216	trans- 2- Methy Icyclo hexan ol	C ₇ H ₁₄ O	7443- 52-9	114.1 8546	0.218 28	-0.00 02557				269.1 5	0.149 5	484.8	0.094
217	Methy lcyclo penta ne	C ₆ H ₁₂	96- 37-7	84.15 948	0.192 9	-0.00 02492				130.7 3	0.160 3	344.9 5	0.106 9
218	1- Methy Icyclo pente ne	C ₆ H ₁₀	693- 89-0	82.14 36	0.200 23	-0.00 02558 1				146.6 2	0.162 7	348.6 4	0.111 0
219	3- Methy Icyclo pente ne	C ₆ H ₁₀	1120- 62-3	82.14 36	0.199 4	-0.00 02614 9				168.5 4	0.155 3	338.0 5	0.111 0
220	Methy Idichl orosil ane	CH ₄ CI ₂ Si	75- 54-7	115.0 3396	0.219 56	-0.00 03215 3				182.5 5	0.160 9	314.7	0.118 4
221	Methy lethyl ether	C ₃ H ₈	540- 67-0	60.09 502	0.273 04	-0.00 04518				160	0.200 8	341.3 4	0.118 8
222	Methy lethyl keton e	C ₄ H ₈ O	78- 93-3	72.10 572	0.219 7	-0.00 02505				186.4 8	0.173 0	352.7 9	0.131 3
223	Methy lethyl sulfid e	C ₃ H ₈ S	624- 89-5	76.16 06	0.221 36	-0.00 02893 8				167.2 3	0.173 0	339.8	0.123 0
224	Methy I forma te	C ₂ H ₄ O ₂	107- 31-3	60.05 196	0.324 6	-0.00 0468				174.1 5	0.243 1	373.1 5	0.150 0
225	Methy lisobu tyl ether	C ₅ H ₁₂ O	625- 44-5	88.14 818	0.222	-0.00 03221 7				188	0.161 4	390	0.096 4

Cmpd . no.	Name	Formu la	CAS	Mol. wt.	С	С	С	С	С	Т,К	Therm al cond. at T	т,к	Therm al cond. at T
226	Methy lisobu tyl keton e	C ₆ H ₁₂ O	108- 10-1	100.1 5888	0.230 1	-0.00 02889 9				189.1 5	0.175 4	451.4 2	0.099 6
227	Methy I Isocy anate	C ₂ H ₃ NO	624- 83-9	57.05 132	0.282	-0.00 04203 7				256.1 5	0.174 5	312	0.151 0
228	Methy lisopr opyl ether	C ₄ H ₁₀ O	598- 53-8	74.12 16	0.241 54	-0.00 03774				127.9 3	0.193 3	370	0.101 9
229	Methy lisopr opyl keton e	C ₅ H ₁₀ O	563- 80-4	86.13 23	0.233	-0.00 03044				180.1 5	0.178 4	435.9	0.100 5
230	Methy lisopr opyl sulfid e	C ₄ H ₁₀ S	1551- 21-9	90.18 72	0.209 78	-0.00 02646 8				171.6 4	0.164 4	357.9 1	0.115 0
231	Methy I merca ptan	CH ₄ S	74- 93-1	48.10 746	0.261 19	-0.00 03834 5				150.1 8	0.203 6	279.1 1	0.154 2
232	Methy I metha crylat e	C ₅ H ₈ O ₂	80- 62-6	100.1 1582	0.258	-0.00 0379				290.1 5	0.148	363.4 5	0.120 6
233	2- Methy loctan oic acid	C ₉ H ₁₈ O ₂	3004- 93-1	158.2 3802	0.209 11	-0.00 02185 2				208.2	0.163 6	555.2	0.087 8
234	2- Methy Ipenta ne	C ₆ H ₁₄	107- 83-5	86.17 536	0.193 34	-0.00 02803 8				119.5 5	0.159 8	389.2 5	0.084
235	Methy I pentyl ether	C ₆ H ₁₄ O	628- 80-8	102.1 7476	0.216 98	-0.00 02899 8				176	0.165 9	432.3	0.091 6
236	2- Methy Ipropa ne	C ₄ H ₁₀	75- 28-5	58.12 22	0.204 55	-0.00 03658 9				113.5 4	0.163 0	400	0.058 2

Cmpd	Name	Formu la	CAS	Mol. wt.	С	С	С	С	С	Т,К	Therm al	Т,К	Therm al
. no.		Ia		Wt.							cond. at T		cond. at T
237	2- Methy I-2- propa nol	C ₄ H ₁₀	75- 65-0	74.12 16	0.212 58	-0.00 02986 4				298.9 7	0.123 3	404.9 6	0.091 6
238	2- Methy I prope ne	C ₄ H ₈	115- 11-7	56.10 632	0.280	-0.00 0786	6.516 E-07			132.8 1	0.187	395.2	0.071 3
239	Methy I propio nate	C ₄ H ₈ O ₂	554- 12-1	88.10 512	0.225 34	-0.00 02683				185.6 5	0.175 5	475	0.097 9
240	Methy Ipropy I ether	C ₄ H ₁₀ O	557- 17-5	74.12 16	0.248 17	-0.00 03774				133.9 7	0.197 6	373	0.107 4
241	Methy Ipropy I sulfid e	C ₄ H ₁₀ S	3877- 15-4	90.18 72	0.211 03	-0.00 02598 5				160.1 7	0.169 4	368.6 9	0.115 2
242	Methy Isilan e	CH ₆ Si	992- 94-9	46.14 384	0.277 4	-0.00 05460 8				116.3 4	0.213 9	216.2 5	0.159 3
243	alpha- Methy I styren e	C ₉ H ₁₀	98- 83-9	118.1 757	0.196 57	-0.00 02118				249.9 5	0.143 6	438.6 5	0.103 7
244	Methy I tert- butyl ether	C ₅ H ₁₂ O	1634- 04-4	88.14 82	0.225 26	-0.00 03723 5	1.168 9E-07	0	0	164.5 5	0.167 2	328.2	0.115 6
245	Methy I vinyl ether	C ₃ H ₆ O	107- 25-5	58.07 914	0.280 35	-0.00 04646				151.1 5	0.210 1	341.1	0.121 9
246	Napht halen e	C ₁₀ H ₈	91- 20-3	128.1 7052	0.170 96	-0.00 01005 9				353.4 3	0.135 4	646.9 7	0.105 9
247	Neon	Ne	7440- 01-9	20.17 97	0.297 1	-0.01 7356	0.000 5911	-0.00 00074 21		25	0.116 7	44	0.045 7
248	Nitroe thane	C ₂ H ₅ NO ₂	79- 24-3	75.06 66	0.247	-0.00 02814				183.6 3	0.195 3	387.2 2	0.138 0

Cmpd . no.	Name	Formu la	CAS	Mol. wt.	С	С	С	с	С	т ,к	Therm al cond. at <i>T</i>	Т,К	Therm al cond. at T
249	Nitrog en	N ₂	7727- 37-9	28.01 34	0.265 4	-0.00 1677				63.15	0.159 5	124	0.057 5
250	Nitrog en trifluo ride	F ₃ N	7783- 54-2	71.00 191									
251	Nitro metha ne	CH ₃ N O ₂	75- 52-5	61.04 002	0.327 6	-0.00 0405				244.6	0.228 5	374.3 5	0.176 0
252	Nitrou s oxide	N ₂ O	10024 -97-2	44.01 28	0.101 12					277.5 9	0.101 1	277.5 9	0.101 1
253	Nitric oxide	NO	10102 -43-9	30.00 61	0.187 8	0.001 0293	-0.00 00094 3			110	0.186 9	176.4	0.075 9
254	Nona decan e	C ₁₉ H ₄	629- 92-5	268.5 209	0.212 29	-0.00 022				305.0 4	0.145 2	603.0 5	0.079 6
255	Nona nal	C ₉ H ₁₈	124- 19-6	142.2 3862	0.219 05	-0.00 02401 3				267.3	0.154 9	465.5 2	0.107 3
256	Nona ne	C ₉ H ₂₀	111- 84-2	128.2 551	0.209	-0.00 0264				219.6 6	0.151 0	423.9 7	0.097 1
257	Nona noic acid	C ₉ H ₁₈ O ₂	112- 05-0	158.2 38	0.204	-0.00 02				285.5 5	0.146 9	528.7 5	0.098 3
258	1- Nona nol	C ₉ H ₂₀ O	143- 08-8	144.2 545	0.240 538	-0.00 025				268.1 5	0.173 5	578.6 5	0.095 9
259	2- Nona nol	C ₉ H ₂₀ 0	628- 99-9	144.2 55	0.208 1	-0.00 02286 9				238.1 5	0.153 6	471.7	0.100 2
260	1- None ne	C ₉ H ₁₈	124- 11-8	126.2 3922	0.204 68	-0.00 02573 8				191.9 1	0.155 3	420.0 2	0.096 6
261	Nonyl merca ptan	C ₉ H ₂₀ S	1455- 21-6	160.3 201	0.202 44	-0.00 02134 3				253.0 5	0.148 4	492.9 5	0.097
262	1- Nonyn e	C ₉ H ₁₆	3452- 09-3	124.2 2334	0.209 54	-0.00 02458 8				223.1 5	0.154 7	423.8 5	0.105 3

Cmpd . no.	Name	Formu la	CAS	Mol. wt.	С	С	С	С	С	Т ,К	Therm al cond. at <i>T</i>	Т,К	Therm al cond. at T
263	Octad ecane	C ₁₈ H ₃	593- 45-3	254.4 9432	0.213 7	-0.00 02252				301.3 1	0.145 8	589.8 6	0.080 9
264	Octan al	C ₈ H ₁₆	124- 13-0	128.2 12	0.222 73	-0.00 02503 7				251.6 5	0.159 7	445.1 5	0.111
265	Octan e	C ₈ H ₁₈	111- 65-9	114.2 2852	0.215 6	-0.00 02948 3				216.3 8	0.151 8	398.8 3	0.098
266	Octan oic acid	C ₈ H ₁₆ O ₂	124- 07-2	144.2 11	0.203	-0.00 02				289.6 5	0.145 1	512.8 5	0.100 4
267	1- Octan ol	C ₈ H ₁₈	111- 87-5	130.2 2792	0.235 281	-0.00 025				257.6 5	0.170 9	570.1 5	0.092 7
268	2- Octan ol	C ₈ H ₁₈	123- 96-6	130.2 28	0.209 55	-0.00 02373 3				241.5 5	0.152 2	452.9	0.102
269	2- Octan one	C ₈ H ₁₆	111- 13-7	128.2 1204	0.213 2	-0.00 02494				252.8 5	0.150 1	499	0.088
270	3- Octan one	C ₈ H ₁₆	106- 68-3	128.2 1204	0.217 32	-0.00 02496 9				255.5 5	0.153 5	440.6 5	0.107 3
271	1- Octen e	C ₈ H ₁₆	111- 66-0	112.2 1264	0.204 67	-0.00 02675				171.4 5	0.158 8	394.4 1	0.099
272	Octyl merca ptan	C ₈ H ₁₈ S	111- 88-6	146.2 9352	0.201 2	-0.00 02142				223.9 5	0.153 2	472.1 9	0.100
273	1- Octyn e	C ₈ H ₁₄	629- 05-0	110.1 9676	0.209 5	-0.00 02533 4				193.5 5	0.160 5	399.3 5	0.108
274	Oxalic acid	C ₂ H ₂ O ₄	144- 62-7	90.03 488	0.263 35	-0.00 02246 1				462.6 5	0.159 4	516	0.147 5
275	Oxyge n	02	7782- 44-7	31.99 88	0.274 1	-0.00 138				60	0.191 3	150	0.067 1
276	Ozone	03	10028 -15-6	47.99 82	0.174 83	0.000 75288	-2.52 28E- 06			77.35	0.218 0	161.8 5	0.230 6

Cmpd . no.	Name	Formu la	CAS	Mol. wt.	С	С	С	с	С	т ,к	Therm al cond. at <i>T</i>	т ,к	Therm al cond. at T
277	Penta decan e	C ₁₅ H ₃	629- 62-9	212.4 1458	0.206 49	-0.00 02191 1				283.0 7	0.144 5	543.8 4	0.087 3
278	Penta nal	C ₅ H ₁₀ O	110- 62-3	86.13 23	0.238 94	-0.00 02972 4				191.5 9	0.182 0	375.1 5	0.127 4
279	Penta ne	C ₅ H ₁₂	109- 66-0	72.14 878	0.253 7	-0.00 0576	0.000 00034 4			143.4 2	0.178 2	445	0.065 5
280	Penta noic acid	C ₅ H ₁₀ O ₂	109- 52-4	102.1 32	0.184 8	-0.00 01434				239.1 5	0.150 5	458.6 5	0.119 0
281	1- Penta nol	C ₅ H ₁₂ 0	71- 41-0	88.14 82	0.223 042	-0.00 025				273.1 5	0.154 8	353.1 5	0.134 8
282	2- Penta nol	C ₅ H ₁₂ O	6032- 29-7	88.14 82	0.218 75	-0.00 02784 9				200	0.163 1	392.2	0.109 5
283	2- Penta none	C ₅ H ₁₀ O	107- 87-9	86.13 23	0.216 1	-0.00 02486 6				196.2 9	0.167 3	375.4 6	0.122 7
284	3- Penta none	C ₅ H ₁₀ O	96- 22-0	86.13 23	0.215 69	-0.00 02408 1				234.1 8	0.159 3	375.1 4	0.125 4
285	1- Pente ne	C ₅ H ₁₀	109- 67-1	70.13 29	0.213 61	-0.00 03077 7				108.0 2	0.180 4	303.2 2	0.120 3
286	2- Pentyl merca ptan	C ₅ H ₁₂ S	2084- 19-7	104.2 1378	0.205 97	-0.00 02451 8				160.7 5	0.166 6	385.1 5	0.111 5
287	Pentyl merca ptan	C ₅ H ₁₂ S	110- 66-7	104.2 1378	0.208 6	-0.00 02453 6				197.4 5	0.160 2	399.7 9	0.110 5
288	1- Penty ne	C ₅ H ₈	627- 19-0	68.11 702	0.221 02	-0.00 0322				167.4 5	0.167 1	313.3 3	0.120 1
289	2- Penty ne	C ₅ H ₈	627- 21-4	68.11 702	0.212 82	-0.00 02856				163.8 3	0.166 0	329.2 7	0.118 8
290	Phena nthre ne	C ₁₄ H ₁	85- 01-8	178.2 292	0.137 53	-0.00 00252 47				372.3 8	0.128 1	610.0 3	0.122 1

Cmpd . no.	Name	Formu la	CAS	Mol. wt.	С	С	С	С	С	Т,К	Therm al cond. at T	Т ,К	Therm al cond. at T
291	Pheno I	C ₆ H ₆	108- 95-2	94.11 124	0.188 31	-0.00 01				314.0 6	0.156 9	454.9 9	0.142 8
292	Pheny I isocy anate	C ₇ H ₅ NO	103- 71-9	119.1 207	0.163 26	-0.00 01777 7				243.1 5	0.120 0	439.4 3	0.085 1
293	Phtha lic anhyd ride	C ₈ H ₄ O ₃	85- 44-9	148.1 1556	0.229 46	-0.00 02134 5				404.1 5	0.143 2	557.6 5	0.110 4
294	Propa diene	C ₃ H ₄	463- 49-0	40.06 386	0.230 81	-0.00 04078				136.8 7	0.175 0	238.6 5	0.133 5
295	Propa ne	C ₃ H ₈	74- 98-6	44.09 562	0.267 55	-0.00 06645 7	2.774 E-07			85.47	0.212 8	350	0.068
296	1- Propa nol	C ₃ H ₈	71- 23-8	60.09 502	0.231 44	-0.00 025				200	0.181 4	370.3 5	0.138 9
297	2- Propa nol	C ₃ H ₈	67- 63-0	60.09 5	0.201 61	-0.00 02152 9				185.2 6	0.161 7	425	0.110 1
298	Prope nylcyc lohex ene	C ₉ H ₁₄	13511 -13-2	122.2 0746	0.183 1	-0.00 02027 5				199	0.142 8	431.6 5	0.095 6
299	Propi onald ehyde	C ₃ H ₆ 0	123- 38-6	58.07 914	0.317 21	-0.00 0528				165	0.230 1	322.1 5	0.147
300	Propi onic acid	C ₃ H ₆ O ₂	79- 09-4	74.07 85	0.195 4	-0.00 0164				252.4 5	0.154 0	543.1 5	0.106 3
301	Propi onitril e	C ₃ H ₅ N	107- 12-0	55.07 85	0.267 43	-0.00 03341 8				180.3 7	0.207 2	370.2 5	0.143 7
302	Propyl acetat e	C ₅ H ₁₀ O ₂	109- 60-4	102.1 317	0.233	-0.00 03096				178.1 5	0.178 0	434.8 2	0.098
303	Propyl amine	C ₃ H ₉ N	107- 10-8	59.11 026	0.263 2	-0.00 04278	0.000 00041 2			188.3 6	0.197 2	333.1 5	0.166 4
304	Propyl benze ne	C ₉ H ₁₂	103- 65-1	120.1 9158	0.187 07	-0.00 01984 6				173.5 5	0.152 6	583.1 5	0.071 3

Cmpd . no.	Name	Formu la	CAS	Mol. wt.	С	С	С	С	С	Т,К	Therm al cond. at <i>T</i>	Т ,К	Therm al cond. at T
305	Propyl ene	C₃H ₆	115- 07-1	42.07 974	0.247 19	-0.00 04882 4				87.89	0.204 3	340.4 9	0.081 0
306	Propyl forma te	C ₄ H ₈ O ₂	110- 74-7	88.10 512	0.224 7	-0.00 0264				180.2 5	0.177 1	483.1 5	0.097
307	2- Propyl merca ptan	C ₃ H ₈ S	75- 33-2	76.16 062	0.217 06	-0.00 02895 2				142.6 1	0.175 8	325.7 1	0.122 8
308	Propyl merca ptan	C ₃ H ₈ S	107- 03-9	76.16 062	0.220 2	-0.00 02853 5				159.9 5	0.174 6	340.8 7	0.122 9
309	1,2- Propyl ene glycol	C ₃ H ₈ O ₂	57- 55-6	76.09 442	0.215 2	-0.00 00497				213.1 5	0.204 6	460.7 5	0.192 3
310	Quino ne	C ₆ H ₄ O ₂	106- 51-4	108.0 9476	0.265 24	-0.00 02867 6				388.8 5	0.153 7	545	0.109 0
311	Silico n tetrafl uoride	F ₄ Si	7783- 61-1	104.0 7911									
312	Styre ne	C ₈ H ₈	100- 42-5	104.1 4912	0.202 15	-0.00 02201				242.5 4	0.148 8	418.3 1	0.110 1
313	Succi nic acid	C ₄ H ₆ O ₄	110- 15-6	118.0 8804	0.272 16	-0.00 02318 3				460.8 5	0.165 3	591	0.135 1
314	Sulfur dioxid e	028	7446- 09-5	64.06 38	0.382 18	-0.00 06254				197.6 7	0.258 6	400	0.132 0
315	Sulfur hexafl uoride	F ₆ S	2551- 62-4	146.0 55419 2	0.254 4	-0.00 06595				223.1 5	0.107 2	318.6 9	0.044
316	Sulfur trioxid e	038	7446- 11-9	80.06 32	0.928 82	-0.00 30803	0.000 00266			289.9 5	0.259	481.4 7	0.062 4
317	Terep hthali c acid	C ₈ H ₆ O ₄	100- 21-0	166.1 3084	0.306 3	-0.00 02854 1				700.1 5	0.106 5	795.2 8	0.079 3
318	o- Terph enyl	C ₁₈ H ₁	84- 15-1	230.3 0376	0.168 53	-0.00 01081 7				329.3 5	0.132 9	723.1 5	0.090

Cmpd . no.	Name	Formu la	CAS	Mol. wt.	С	С	С	С	С	Т,К	Therm al cond. at <i>T</i>	Т,К	Therm al cond. at T
319	Tetra decan e	C ₁₄ H ₃	629- 59-4	198.3 88	0.202 93	-0.00 02179 8				279.0 1	0.142 1	526.7 3	0.088 1
320	Tetra hydrof uran	C ₄ H ₈ O	109- 99-9	72.10 572	0.194 28	-0.00 0249				164.6 5	0.153 3	339.1 2	0.109 8
321	1,2,3,4 - Tetra hydro napht halen e	C ₁₀ H ₁	119- 64-2	132.2 0228	0.145 63	-0.00 00536				237.3 8	0.132 9	480.7 7	0.119
322	Tetra hydrot hioph ene	C₄H ₈ S	110- 01-0	88.17 132	0.204 14	-0.00 02121 7				176.9 8	0.166 6	394.2 7	0.120 5
323	2,2,3,3 - Tetra methy Ibutan e	C ₈ H ₁₈	594- 82-1	114.2 2852	0.178 35	-0.00 02370 4				373.9 6	0.089 7	426	0.077
324	Thiop hene	C ₄ H ₄ S	110- 02-1	84.13 956	0.205 71	-0.00 02002 8				234.9 4	0.158 7	357.3 1	0.134
325	Tolue ne	C ₇ H ₈	108- 88-3	92.13 842	0.204 63	-0.00 02425 2				178.1 8	0.161 4	474.8 5	0.089 5
326	1,1,2- Trichl oroet hane	C ₂ H ₃ Cl ₃	79- 00-5	133.4 0422	0.207 31	-0.00 02499 7				236.5	0.148 2	482	0.086 8
327	Tridec ane	C ₁₃ H ₂	629- 50-5	184.3 6142	0.204 47	-0.00 02261 2				267.7 6	0.143 9	508.6 2	0.089 5
328	Trieth yl amine	C ₆ H ₁₅ N	121- 44-8	101.1 9	0.191 8	-0.00 02453				158.4 5	0.152 9	483.1 5	0.073 3
329	Trime thyl amine	C ₃ H ₉ N	75- 50-3	59.11 026	0.238 13	-0.00 03839 7				156.0 8	0.178 2	276.0 2	0.132 1
330	1,2,3- Trime thylbe nzene	C ₉ H ₁₂	526- 73-8	120.1 9158	0.188 54	-0.00 01963				247.7 9	0.139 9	449.2 7	0.100

Cmpd . no.	Name	Formu la	CAS	Mol. wt.	С	С	С	С	С	Т ,К	Therm al cond. at T	Т ,К	Therm al cond. at T
331	1,2,4- Trime thylbe nzene	C ₉ H ₁₂	95- 63-6	120.1 9158	0.192 16	-0.00 02105				229.3 3	0.143 9	442.5 3	0.099 0
332	2,2,4- Trime thylpe ntane	C ₈ H ₁₈	540- 84-1	114.2 2852	0.165 9	-0.00 02268 6				165.7 8	0.128 3	372.3 9	0.081 4
333	2,3,3- Trime thylpe ntane	C ₈ H ₁₈	560- 21-4	114.2 2852	0.168 15	-0.00 02053 5				172.2 2	0.132 8	387.9 1	0.088 5
334	1,3,5- Trinitr obenz ene	C ₆ H ₃ N ₃ O ₆	99- 35-4	213.1 0452	0.184 21	-0.00 01609 7				398.4	0.120 1	629.6	0.082 9
335	2,4,6- Trinitr otolue ne	C ₇ H ₅ N ₃ O ₆	118- 96-7	227.1 311	0.198 98	-0.00 01765 9				354	0.136 5	625	0.088 6
336	Undec ane	C ₁₁ H ₂	1120- 21-4	156.3 0826	0.205 15	-0.00 02393 3				247.5 7	0.145 9	469.0 8	0.092 9
337	1- Undec anol	C ₁₁ H ₂ ₄ O	112- 42-5	172.3 0766	0.218 744	-0.00 025				281	0.148 5	561.2	0.078 4
338	Vinyl acetat e	C ₄ H ₆ O ₂	108- 05-4	86.08 924	0.256	-0.00 03542				180.3 5	0.192 1	410	0.110 8
339	Vinyl acetyl ene	C ₄ H ₄	689- 97-4	52.07 456	0.228 38	-0.00 03517 3				173.1 5	0.167 5	278.2 5	0.130 5
340	Vinyl chlori de	C ₂ H ₃ Cl	75- 01-4	62.49 822	0.233 3	-0.00 03922 3				119.3 6	0.186 5	345.6	0.097 8
341	Vinyl trichlo rosila ne	C ₂ H ₃ Cl ₃ Si	75- 94-5	161.4 8972	0.218 31	-0.00 02912 2				178.3 5	0.166 4	434.5 2	0.091 8
342	Water	H ₂ O	7732- 18-5	18.01 528	-0.43 2	0.005 7255	-0.00 00080 78	1.861 E-09		273.1 6	0.567 2	633.1 5	0.427
343	<i>m</i> - Xylen e	C ₈ H ₁₀	108- 38-3	106.1 65	0.200 44	-0.00 02354 4				225.3	0.147 4	413.1	0.103 2

Cmpd N . no.	Name Formu Ia	CAS	Mol. wt.	С	С	С	С	С	т ,к	Therm al cond. at T	Т ,К	Therm al cond. at T
-----------------	------------------	-----	-------------	---	---	---	---	---	------	------------------------------	------	---------------------------------

344	o- Xylen e	C ₈ H ₁₀	95- 47-6	106.1 65	0.199 89	-0.00 02299		247.9 8	0.142 9	417.5 8	0.103 9
345	p- Xylen e	C ₈ H ₁₀	106- 42-3	106.1 65	0.200 03	-0.00 02357 3		286.4 1	0.132 5	413.1	0.102 6

The liquid thermal conductivity is calculated by $k = C_1 + C_2T + C_3T_2 + C_4T_3 + C_5T_4$ where k is the thermal conductivity in W/(m·K) and T is the temperature in K. Thermal conductivities are at either 1 atm or the vapor pressure, whichever is higher.

Values in this table were taken from the Design Institute for Physical Properties (DIPPR) of the American Institute of Chemical Engineers (AIChE), 801 Critically Evaluated Gold Standard™ Database, copyright 2016 AIChE, and reproduced with permission of AIChE and of the DIPPR Evaluated Process Design Data Project Steering Committee. Their source should be cited as "R. L. Rowley, W. V. Wilding, J. L. Oscarson, T. A. Knotts, N. F. Giles, *DIPPR*® *Data Compilation of Pure Chemical Properties*, Design Institute for Physical Properties, AIChE, New York, NY (2016)".

FIG. 2-20 and TABLE 2-148 Nomograph (*right*) for thermal conductivity of organic liquids. (From B.V. Mallu and Y.J. Rao, *Hydroc. Proc.* 78, 1988.)

Table 2-149 Thermal-Conductivity-Temperature Table for Metals and Nonmetals*, Temperature, K

Sub stan ce	10**	20	40	60	80	100	200	300	400	500	600	800	1000	1200	1400
Alu mina	7	32	121	174	160	125	55	36	26	20	16	10	8	7	6
Alu min um	38,0 00	13,5 00	2,30 0	850	380	300	237	273	240	237	232	220	93	99	105
Anti mon y	470	230	110	80	60	48	32	26	22	20					
Bery Ilium oxid e	47	196	810	1,40 0	1,65 0	1,49 0	480	272	196	146	111	70	47	33	25
Bis mut h	240	100	45	31	24	22	18	16	14	12					
Boro n	165	305	400	327	230	170	45	25	15	12					
Cad miu m	900	250	150	120	110	110	105	104	101	99					
Chro miu m	400	570	450	250	180	158	111	90	87	85	81	71	65	62	61
Cob alt	250	450	380	250	190	160	120	100	85	70					
Con stan tan	4	9	16	18	19	20	23	25	27	30					
Cop per	19,0 00	10,7 00	2,10 0	850	570	483	413	398	392	388	383	371	357	342	
Galli um	2,20 0	640	250	200	170	140	100	85							
Gold	2,80 0	1,50 0	520	380	350	345	327	315	312	309	304	292	278	262	
Grap hite [†]	27	108	135	81	54	39	15	10	7	5	4	3	3	2	2
Grap hite [‡]	81	420	1,63 0	2,98 0	4,29 0	4,98 0	3,25 0	2,00 0	1,46 0	1,14 0	930	680	530	440	370
Hast elloy	1	3	4	5	6	7	9	10	11	13					

Sub stan	10**	20	40	60	80	100	200	300	400	500	600	800	1000	1200	1400
Inco nel	2	4	8	10	11	11	14	15							
Iridi um	1,30 0	1,90 0	750	360	230	172	147	145	143	140					
Iron	710	1,00 0	560	270	170	132	94	80	69	61	55	43	33	28	31
Lead	175	57	43	42	41	40	37	35	34	33	31	19	22	24	26
Mag nesi um	1,20 0	1,30 0	620	290	190	169	159	156	153	151	149	146	84	98	112
Mag nesi um oxid e	1,10 0	3,10 0	2,20 0	950	460	260	75	48	36	27	21	13	10	8	7
Man gane se	2	2	4	5	5	6	7	8	9	9					
Man gani n	2	4	9	11	13	13	17	22	28	34	40				
Mer cury	54	40	35	33	33	32	32	8	10	11	12	13	14		
Moly bden um	150	280	350	250	210	179	143	138	134	130	126	118	112	105	100
Nick el	2,60 0	1,70 0	570	290	200	158	106	91	80	72	66	67	72	76	80
Nylo n	0.04	0.10	0.17	0.20	0.23	0.25	0.28	0.30							
Pall adiu m	1,20 0	610	160	100	88	80	78	78	78	80					
Plati num	1,20 0	490	130	92	82	79	75	73	72	72	72	73	78	78	81
PTF E [§]	0.94	1.43	1.94	2.1	2.15	2.16	2.20	2.25	2.3	2.5					
Pyre x	0.12	0.20	0.33	0.42	0.51	0.57	0.88	1.1	1.6	2.1					
Quar tz	1,20 0	480	82	40	30										

Sub stan ce	10**	20	40	60	80	100	200	300	400	500	600	800	1000	1200	1400
Rho diu m	2,90 0	3,90 0	1,00 0	370	250	190	160	150	145	140					
Rub ber			0.13	0.15	0.16	0.17	0.20	0.22	0.24	0.25					
Sele niu m (axis	140	57	25	15	10	8	6	4	3	2					
Silic a								1.34	1.52	1.70	1.87	2.22	2.60		
Silve r	16,5 00	5,20 0	1,10 0	630	500	430	425	424	420	413	405	389	374	358	
Tant alum	108	146	88	68	62	59	58	57	58	58	59	59	60	61	62
Tellu rium	300	93	29	17	13	11	6	4	3	3					
Tin		320	130	101	90	84	72	67	62	60					
Tita niu m	14	28	39	37	33	31	26	21	20	20	19				
Tun gste n			880	330	310	280	190	180	170	150	140				
Uran ium				20	22	23	26	28	30	32					
Zinc				150	135	130	123	120	116	110	110				
Zirc oniu m	100	110	59	42	38	34	25	23	22	21	21				

*Especially at low temperatures, the thermal conductivity can often be markedly reduced by even small traces of impurities. This table, for the highest-purity specimens available, should thus be used with caution in applications with commercial materials. From Perry, Engineering Manual, 3d ed., McGraw-Hill, New York, 1976. A more detailed table appears as Section 5.5.6 in the Heat Exchanger Design Handbook, Hemisphere Pub. Corp., Washington, DC, 1983.

†Parallel to basal plane.

[‡]Perpendicular to basal plane.

§Also known as Teflon, etc.

**Thermal conductivities tabulated in watts per meter-kelvin

Table 2-150 Thermal Conductivity of Chromium Alloys*, $k = Btu/(h \cdot ft^2)(^{\circ}F/ft)$

American iron and steel institute type no.	k at 212°F	k at 932°F
301, 302, 302B, 303, 304, 316 [†]	9.4	12.4
308	8.8	12.5
309, 310	8.0	10.8
321, 347	9.3	12.8
403, 406, 410, 414, 416 [†]	14.4	16.6
430, 430F [†]	15.1	15.2
442	12.5	14.2
501, 502 [†]	21.2	19.5
*Table 2-150 is based on information from manufacturers.	-	

[†]Shelton and Swanger (National Bureau of Standards), *Trans. Am. Soc. Steel Treat.*, **21**, 1061–1078 (1933).

Table 2-151 Thermal Conductivity of Some Alloys at High Temperature*, Thermal conductivity, Btu/(ft)(hr)(°R)

°R	Kovar	Advance	Monel	Hastelloy A	Inconel	Nichrome V
500	7.8		9.0	5.6	6.0	5.5
600	8.3	11.4	10.2	6.2	6.5	6.1
700	8.6	12.6	11.2	6.8	7.0	6.7
800	8.7	13.9	12.3	7.3	7.6	7.3
900	8.7	15.1	13.4	7.8	8.1	7.8
1000	8.9	16.4	14.4	8.4	8.6	8.4
1100	9.2	17.6	15.4	9.0	9.1	9.0
1200	9.5	18.8	16.5	9.5	9.7	9.5
1300	9.8	20.0	17.6	10.1	10.2	10.1
1400	10.2	21.2	18.7	10.7	10.8	10.7
1500	10.5	22.5	19.8	11.3	11.3	11.3
1600	10.8	23.8	20.8	11.8	11.8	11.9
1700	11.1	25.0	21.9	12.3	12.4	12.4
1800	11.3	26.2	23.0	12.9	13.0	13.0
1900	11.5	27.4	24.0	13.4	13.6	13.5
2000	11.8	28.7	25.1	14.0	14.0	14.1
2100	12.1	30.0	26.1	14.6	14.5	14.7
2200	12.3		27.2	15.1	15.0	15.3

^tSilverman, *J. Metals*, **5,** 631 (1953). Copyright American Institute of Mining, Metallurgical and Petroleum Engineers, Inc

Table 2-152 Thermophysical Properties of Selected Nonmetallic Solid Substances

Material	Density, kg/m³	Emissivity	Specific heat, kJ/(kg·K)	Thermal conductivity, W/(m·K)	Thermal diffusivity, m ² /s × 10 ⁶
Alumina	3975		0.765	36	11.9
Asphalt	2110		0.920	0.06	0.03
Bakelite	1300		1.465	1.4	0.74
Beryllia	3000	0.82	1.030	270	88

Material	Density, kg/m	Emissivity	Specific heat, kJ/(kg·K)	Thermal conductivity, W/(m·K)	Thermal diffusivity, m /s × 10
Brick	1925	0.93	0.835	0.72	0.45
Brick, fireclay	2640	0.93	0.960	1.0	0.39
Carbon, amorphous	1950	0.86	0.724	1.6	1.13
Clay	1460	0.91	0.880	1.3	1.01
Coal	1350	0.80	1.26	0.26	0.15
Cotton	80		1.30	0.06	0.58
Diamond	3500		0.509	2300	1290
Granite	2630		0.775	2.79	1.37
Hardboard	1000		1.38	0.15	0.11
Magnesite	3025	0.38	1.13	4.0	1.2
Magnesia	3635	0.72	0.943	48	14
Oak	770	0.90	2.38	0.18	0.10
Paper	930	0.83	1.34	0.011	0.01
Pine	525	0.84	2.75	0.12	0.54
Plaster board	800	0.91		0.17	
Plywood	540		1.22	0.12	0.18
Pyrex	2250	0.92	0.835	1.4	0.74
Rubber	1150	0.92	2.00	0.2	0.09
Rubber, foam	70	0.90		0.03	
Salt		0.34	0.854	7.1	
Sandstone	2150	0.59	0.745	2.9	1.8
Silica		0.79	0.743	1.3	
Sapphire	3975	0.48	0.765	46	15
Silicon carbide	3160	0.86	0.675	110	230
Soil	2050	0.38	1.84	0.52	0.14
Teflon	2200	0.92	0.35	0.26	0.34

Material	Density, kg/m	Emissivity	Specific heat, kJ/(kg·K)	Thermal conductivity, W/(m·K)	Thermal diffusivity, m /s × 10
Thoria	4160	0.28	0.71	14	4.7
Urethane foam	70		1.05	0.03	0.36
Vermiculite	120		0.84	0.06	0.60

NOTE: Difficulties of accurately characterizing many of the specimens mean that many of the values presented here must be regarded as being of order of magnitude only. For some materials, actual measurement may be the only way to obtain data of the required accuracy. To convert kilograms per cubic meter to pounds per cubic foot, multiply by 0.062428; to convert kilojoules per kilogram-kelvin to British thermal units per pound-degree Fahrenheit, multiply by 0.23885.

Table 2-153 Lower and Upper Flammability Limits, Flash Points, and Autoignition Temperatures for Selected Hydrocarbons

Group	Compound	CAS	Formula	LFL	UFL	Flash point (K)	Autoignition <i>T</i> (K)
Paraffin hydrocarbons	Methane	74-82-8	CH ₄	5.00	15.00	87.12	810.00
Paraffin hydrocarbons	Ethane	74-84-0	C ₂ H ₆	3.00	12.40	139.00	745.00
Paraffin hydrocarbons	Propane	74-98-6	C ₃ H ₈	2.10	9.50	171.00	723.00
Paraffin hydrocarbons	n-Butane	106-97- 8	C ₄ H ₁₀	1.60	8.40	199.15	561.00
Paraffin hydrocarbons	Isobutane	75-28-5	C ₄ H ₁₀	1.80	8.40	191.00	733.15
Paraffin hydrocarbons	n-Pentane	109-66- 0	C ₅ H ₁₂	1.40	7.80	224.15	516.00
Paraffin hydrocarbons	Isopentane	78-78-4	C ₅ H ₁₂	1.40	7.60	218.00	693.15
Paraffin hydrocarbons	Neopentane	463-82- 1	C ₅ H ₁₂	1.40	7.50	205.00	723.15
Paraffin hydrocarbons	n-Hexane	110-54- 3	C ₆ H ₁₄	1.20	7.20	250.15	498.00
Paraffin hydrocarbons	n-Heptane	142-82- 5	C ₇ H ₁₆	1.05	6.70	269.00	477.00
Paraffin hydrocarbons	2,3-Dimethylpentane	565-59- 3	C ₇ H ₁₆	1.10	6.70	261.00	608.15
Paraffin hydrocarbons	n-Octane	111-65- 9	C ₈ H ₁₈	0.96	6.50	287.15	479.00
Paraffin hydrocarbons	2,2,4- Trimethylpentane	540-84- 1	C ₈ H ₁₈	0.95	6.00	265.00	684.15

Group	Compound	CAS	Formula	LFL	UFL	Flash point (K)	Autoignition <i>T</i> (K)
Paraffin hydrocarbons	n-Nonane	111-84- 2	C ₉ H ₂₀	0.85	5.60	304.15	478.00
Paraffin hydrocarbons	n-Decane	124-18- 5	C ₁₀ H ₂₂	0.75	5.40	322.85	474.00
Olefins	Ethylene	74-85-1	C ₂ H ₄	2.70	36.00	129.00	723.15
Olefins	Propylene	115-07- 1	C ₃ H ₆	2.15	11.20	169.00	728.15
Olefins	1-Butene	106-98- 9	C ₄ H ₈	1.60	10.00	198.00	657.00
Olefins	cis-2-Butene	590-18- 1	C ₄ H ₈	1.70	9.70	205.00	598.00
Olefins	trans-2-Butene	624-64- 6	C ₄ H ₈	1.70	9.70	203.00	597.00
Olefins	1-Pentene	109-67- 1	C ₅ H ₁₀	1.40	8.70	222.00	546.00
Acetylenes	Acetylene	74-86-2	C ₂ H ₂	2.50	80.00	151.00	578.15
Acetylenes	Vinylacetylene	689-97- 4	C ₄ H ₄	2.20	31.70	211.00	Decomposes violently on heating. Forms explosive peroxides with air or oxygen.
Acetylenes	Methylacetylene	74-99-7	C ₃ H ₄	1.70	57.30	192.00	613.15
Aromatics	Benzene	71-43-2	C ₆ H ₆	1.20	8.00	262.00	833.15
Aromatics	Toluene	108-88- 3	C ₇ H ₈	1.10	7.10	279.15	753.15
Aromatics	o-Xylene	95-47-6	C ₈ H ₁₀	1.10	6.40	305.15	736.15
Aromatics	Ethylbenzene	100-41- 4	C ₈ H ₁₀	1.00	6.70	296.15	703.15
Aromatics	Cumene	98-82-8	C ₉ H ₁₂	0.88	6.50	309.15	697.00
Aromatics	Anthracene	120-12- 7	C ₁₄ H ₁₀	0.60	5.20	458.15	813.15
Cyclic hydrocarbons	Cyclopropane	75-19-4	C ₃ H ₆	2.40	10.40	180.00	771.00
Cyclic hydrocarbons	Furan	110-00- 9	C ₄ H ₄ O	2.00	23.00	237.00	663.15
Cyclic hydrocarbons	Cyclopentadiene	542-92- 7	C ₅ H ₆	1.70	14.60	227.00	913.15

Group	Compound	CAS	Formula	LFL	UFL	Flash point (K)	Autoignition <i>T</i> (K)
Cyclic hydrocarbons	Cyclohexane	110-82- 7	C ₆ H ₁₂	1.30	7.80	255.93	518.15
Cyclic hydrocarbons	Methylcyclohexane	108-87- 2	C ₇ H ₁₄	1.15	6.70	269.15	523.15
Cyclic hydrocarbons	Phenol	108-95- 2	C ₆ H ₆ O	1.70	8.60	352.15	988.00
Cyclic hydrocarbons	Dicyclopentadiene	77-73-6	C ₁₀ H ₁₂	0.80	6.30	318.15	783.15
Alcohols	Methanol	67-56-1	CH ₄ O	7.18	36.50	284.15	737.00
Alcohols	Ethanol	64-17-5	C ₂ H ₆ O	3.30	19.00	286.15	696.00
Alcohols	Allyl Alcohol	107-18- 6	C ₃ H ₆ O	2.50	18.00	294.00	651.00
Alcohols	1-Propanol	71-23-8	C ₃ H ₈ O	2.10	14.00	297.59	644.00
Alcohols	Isopropanol	67-63-0	C ₃ H ₈ O	2.00	12.70	285.15	728.75
Alcohols	1-Butanol	71-36-3	C ₄ H ₁₀ O	1.70	11.30	310.50	616.00
Alcohols	2-Butanol	78-92-2	C ₄ H ₁₀ O	1.70	9.80	296.15	663.15
Alcohols	2-Methyl-1-propanol	78-83-1	C ₄ H ₁₀ O	1.70	11.00	302.32	681.15
Alcohols	2-Methyl-2-propanol	75-65-0	C ₄ H ₁₀ O	1.84	9.00	284.26	751.00
Alcohols	Cyclohexanol	108-93- 0	C ₆ H ₁₂ O	1.20	11.10	334.15	573.15
Aldehydes	Formaldehyde	50-00-0	CH ₂ O	7.00	73.00	219.80	697.15
Aldehydes	Acetaldehyde	75-07-0	C ₂ H ₄ O	4.00	30.00	232.00	449.15
Aldehydes	Acrolein	107-02- 8	C ₃ H ₄ O	2.80	31.00	247.15	507.00
Aldehydes	Propanal	123-38- 6	C ₃ H ₆ O	2.60	17.00	243.15	500.15
Aldehydes	trans-Crotonaldehyde	123-73- 9	C ₄ H ₆ O	2.10	15.50	286.15	505.00
Aldehydes	<i>cis-</i> Crotonaldehyde	15798- 64-8	C ₄ H ₆ O	2.10	15.50	285.93	505.00
Aldehydes	2-Methylpropanal	78-84-2	C ₄ H ₈ O	1.60	11.00	254.15	478.00
Aldehydes	Butanal	123-72- 8	C ₄ H ₈ O	1.90	12.50	262.15	503.15

Group	Compound	CAS	Formula	LFL	UFL	Flash point (K)	Autoignition <i>T</i> (K)
Aldehydes	Furfural	98-01-1	C ₅ H ₄ O ₂	2.10	19.30	333.15	589.00
Ethers	Dimethyl ether	115-10- 6	C ₂ H ₆ O	3.30	26.20	193.00	499.15
Ethers	Methyl vinyl ether	107-25- 5	C ₃ H ₆ O	2.60	39.00	217.15	560.15
Ethers	Diethyl ether	60-29-7	C ₄ H ₁₀ O	1.70	46.00	228.15	433.15
Ethers	Diphenyl ether	101-84- 8	C ₁₂ H ₁₀ O	0.80	6.00	388.15	891.15
Ketones	Acetone	67-64-1	C ₃ H ₆ O	2.60	13.00	253.15	738.15
Ketones	Methyl ethyl ketone	78-93-3	C ₄ H ₈ O	1.80	11.00	264.15	789.00
Ketones	Acetophenone	98-86-2	C ₈ H ₈ O	1.10	6.70	350.15	843.15
Acids	Acetic acid	64-19-7	C ₂ H ₄ O ₂	4.00	19.90	312.04	700.00
Acids	Hydrogen cyanide	74-90-8	CHN	5.60	40.00	255.00	811.00
Acids	Formic acid	64-18-6	CH ₂ O ₂	12.00	38.00	323.15	753.00
Esters	Methyl formate	107-31- 3	C ₂ H ₄ O ₂	5.20	23.00	247.00	729.00
Esters	Ethyl formate	109-94- 4	C ₃ H ₆ O ₂	2.76	15.70	254.15	728.15
Esters	Methyl acetate	79-20-9	C ₃ H ₆ O ₂	3.13	14.00	260.15	775.00
Esters	Vinyl acetate	108-05- 4	C ₄ H ₆ O ₂	2.60	13.40	265.37	700.00
Esters	Ethyl acetate	141-78- 6	C ₄ H ₈ O ₂	2.18	11.50	269.00	700.00
Esters	n-Propyl acetate	109-60- 4	C ₅ H ₁₀ O ₂	1.80	8.00	283.71	723.00
Esters	Isopropyl acetate	108-21- 4	C ₅ H ₁₀ O ₂	1.76	7.20	274.82	733.15
Esters	n-Butyl acetate	123-86- 4	C ₆ H ₁₂ O ₂	1.40	7.60	298.15	694.00
Esters	Isobutyl acetate	110-19- 0	C ₆ H ₁₂ O ₂	1.42	8.00	291.00	696.00
Esters	n-Pentyl acetate	628-63- 7	C ₇ H ₁₄ O ₂	1.10	7.10	310.15	633.15

Group	Compound	CAS	Formula	LFL	UFL	Flash point (K)	Autoignition <i>T</i> (K)
Inorganic	Hydrogen	1333- 74-0	H ₂	4.00	75.00	14.00	793.15
Inorganic	Ammonia	7664- 41-7	H ₃ N	15.00	28.00	209.00	924.00
Inorganic	Cyanogen	460-19- 5	C ₂ N ₂	6.60	32.00	214.00	984.00
Oxides	Carbon monoxide	630-08- 0	со	12.50	74.20	71.00	882.00
Oxides	Ethylene oxide	75-21-8	C ₂ H ₄ O	3.00	100.00	225.00	702.00
Oxides	1,2-Propylene oxide	75-56-9	C ₃ H ₆ O	2.20	35.50	236.00	703.15
Oxides	1,4-Dioxane	123-91- 1	C ₄ H ₈ O ₂	2.00	22.00	284.15	453.15
Oxides	Mesityl oxide	141-79- 7	C ₆ H ₁₀ O	1.30	8.80	301.00	618.00
Peroxides	Di-t-Butyl peroxide	110-05- 4	C ₈ H ₁₈ O ₂	0.74	8.20	277.15	Organic peroxides can ignite easily
Sulfur containing	Carbon disulfide	75-15-0	CS ₂	1.30	50.00	243.15	363.15
Sulfur containing	Hydrogen sulfide	7783- 06-4	H ₂ S	4.00	44.00	167.00	533.15
Sulfur containing	Carbonyl sulfide	463-58- 1	cos	12.00	29.00	186.00	477.00
Sulfur containing	Dimethyl sulfide	75-18-3	C ₂ H ₆ S	2.20	19.70	237.15	478.15
Chlorine containing	Methyl chloride	74-87-3	CH ₃ Cl	8.10	17.20	203.00	905.00
Chlorine containing	Ethyl chloride	75-00-3	C ₂ H ₅ Cl	3.80	15.40	223.15	802.00
Chlorine containing	Isopropyl chloride	75-29-6	C ₃ H ₇ Cl	2.80	10.70	238.15	866.00
Chlorine containing	1,2-Dichloroethane	107-06- 2	C ₂ H ₄ Cl ₂	4.50	16.00	286.00	686.00
Chlorine containing	1,2-Dichloropropane	78-87-5	C ₃ H ₆ Cl ₂	3.30	14.50	286.15	830.00
Chlorine containing	Dichloromethane	75-09-2	CH ₂ Cl ₂	14.00	22.00	265.00	888.15

Group	Compound	CAS	Formula	LFL	UFL	Flash point (K)	Autoignition <i>T</i> (K)
Chlorine containing	2-Chloroethanol	107-07- 3	C ₂ H ₅ ClO	4.90	15.90	328.15	698.15
Chlorine containing	Trichloroethylene	79-01-6	C ₂ HCl ₃	12.00	29.00	305.15	683.15
Chlorine containing	Hexachloro-1,3- Butadiene	87-68-3	C ₄ Cl ₆	2.90	15.70	389.00	883.15
Chlorine containing	Vinyl chloride	75-01-4	C ₂ H ₃ Cl	3.60	33.00	205.00	745.00
Chlorine containing	Monochlorobenzene	108-90- 7	C ₆ H ₅ Cl	1.30	9.60	301.15	911.00
Chlorine containing	Benzyl chloride	100-44- 7	C ₇ H ₇ Cl	1.10	7.10	333.15	858.15
Bromides	Bromomethane	74-83-9	CH ₃ Br	10.10	16.00	230.00	800.00
Glycols	Ethylene glycol	107-21- 1	C ₂ H ₆ O ₂	3.10	42.00	384.15	669.00
Glycols	Diethylene glycol	111-46- 6	C ₄ H ₁₀ O ₃	1.70	37.00	413.15	636.15
Glycols	Triethylene glycol	112-27- 6	C ₆ H ₁₄ O ₄	0.90	9.20	429.15	644.00
Amines	Methylamine	74-89-5	CH ₅ N	4.90	20.70	217.00	703.15
Amines	Ethylamine	75-04-7	C ₂ H ₇ N	2.70	14.00	227.00	657.00
Amines	Dimethylamine	124-40- 3	C ₂ H ₇ N	2.80	14.40	223.15	595.00
Amines	Isopropylamine	75-31-0	C ₃ H ₉ N	2.00	10.40	236.15	673.15
Amines	Trimethylamine	75-50-3	C ₃ H ₉ N	2.00	11.60	207.00	463.15
Amines	Allylamine	107-11- 9	C ₃ H ₇ N	2.03	24.30	252.00	647.039
Amines	Diethylamine	109-89- 7	C ₄ H ₁₁ N	1.70	10.10	245.15	583.15
Amines	Tert-Butylamine	75-64-9	C ₄ H ₁₁ N	1.70	8.90	236.00	648.15
Amines	Triethylamine	121-44- 8	C ₆ H ₁₅ N	1.20	8.00	262.15	522.15
Amines	Cyclohexylamine	108-91- 8	C ₆ H ₁₃ N	0.66	9.40	299.65	566.15

Group	Compound	CAS	Formula	LFL	UFL	Flash point (K)	Autoignition <i>T</i> (K)
Amines	Monoethanolamine	141-43- 5	C ₂ H ₇ NO	3.00	13.10	366.55	683.15
Amines	Diethanolamine	111-42- 2	C ₄ H ₁₁ NO ₂	1.70	9.80	445.15	935.00
Amines	Dimethylethanolamine	108-01- 0	C ₄ H ₁₁ NO	1.40	12.20	312.15	568.15
Miscellaneous	Acrylonitrile	107-13- 1	C ₃ H ₃ N	3.05	17.00	268.15	754.00
Miscellaneous	Aniline	62-53-3	C ₆ H ₇ N	1.30	11.00	344.15	890.00
Miscellaneous	Diborane	19287- 45-7	B ₂ H ₆	0.80	88.00	142.00	325.00
Miscellaneous	Methyl methacrylate	80-62-6	C ₅ H ₈ O ₂	1.70	12.50	284.15	708.15
Miscellaneous	Styrene	100-42- 5	C ₈ H ₈	1.10	6.10	305.00	763.15
Miscellaneous	Biphenyl	92-52-4	C ₁₂ H ₁₀	0.70	5.80	383.15	813.15
Miscellaneous	Methyl acrylate	96-33-3	C ₄ H ₆ O ₂	2.18	14.40	270.00	741.15
Miscellaneous	Phthalic anhydride	85-44-9	C ₈ H ₄ O ₃	1.20	9.20	425.00	857.00

Values in this table were taken from the Design Institute for Physical Properties (DIPPR) of the American Institute of Chemical Engineers (AIChE), 801 Critically Evaluated Gold Standard™ Database, copyright 2016 AIChE, and reproduced with permission of AIChE and of the DIPPR Evaluated Process Design Data Project Steering Committee. Their source should be cited as "R. L. Rowley, W. V. Wilding, J. L. Oscarson, T. A. Knotts, N. F. Giles, *DIPPR*® *Data Compilation of Pure Chemical Properties*, Design Institute for Physical Properties, AIChE, New York, NY (2016)".