Recap Tuesday: Catalytic Hydrogenation

-catalyst usually firely dispersed metal -> adds H's to same side of molecules (diastereospecific)

- Chiral Catalysts (Soluble transition metal complexes)

→ add preferentially to one side (enantioselective)

Other groups can be hydrogenated

Alkynes: R-C=C-R $\xrightarrow{Ha | Pd}$ \Rightarrow R-C-C-R \xrightarrow{H} $\xrightarrow{H$

Nitro: R-NO2 Hz R-NH2

Nitrile: R-C=N " R-C-N Chem 242!

Imine: R-C-N-CH3 R-C-N-CH3

Carbonyls - can also be reduced by He Icatalyst
(A) Ketones/Aldehydes
R-C-R' Hz R-C-R'
R'= c- (ketone) -> 2° alcohol
R'= H Caldehyde) ? 1° alcohol
* catalyst: Raney Nickel = Finely dispersed Ni powder
-b don't need to add He (gas)!
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Hz/poisoned Pd adds once Hz Tike Lindlar
H2 Pd C Cadds 2x) R-C-H
4
Selectivity of groups towards the /catalyst
R-C-CI > R-C=C-R > R-C-H > C=C > R-C-R > R-C-NH2
need better catalyst / higher pressure H2 to reduce
-> Can selectively reduce only most reactive by choosing appropriate catalyst + conditions
pressure H2/temp.
propose the fields

Selectivity R-	0-H > R-C-R	> B-C-OCH?
œ	in use NaBHy	needs Li Al Hy
	-milder, safer	-reduces "everything"
		- reacts violently with Hao!
e.g Coch	DLIAIHY OH	TH - both reduced
DA (i	BH4 > OH 1H20	_c-octs -only ketone reduced
Other hydride don	or more H's w	orth other groups
70		
AI-H LIO	- Lithium trisk	t-butoxy) aluminum hydride
*	-much more bu	lky : reacts slower (more selective)
EA3BH L:®	"Superhydride"	
-15.011		able to THE (NOBHY/LIAIHY insolute
1 Derivatives of B	orane (BH3) and A	lane (AIH3)
-Ball = HBHB	(0)	(hydroboxatian!)
-BH3. THE = CO-	O H B H	
AI-H = distant	adul alimitani buda	de = DIBAL or DIBAL-H

Special Selectivities A Reduction of Esters Saw: R-C-OCH3 LIMIHZ R-C-H -> R-C-H WOCKUP LI Using DIBAL: O-H R-C-OCH3 DIBAL > R-C-OCH3 H+/HzO R-C-OCH3 H R-C-OCH3 L-18°C, does (cold H-18°C) O-H R-C-OCH3 L-18°C (cold H-18°C) O-H R-C-OCH3 H-/HzO O-H H-/HzO All -18°C, does (cold H-18°C) O-H R-C-OCH3 R-C-OCH3 H-/HzO All -18°C, does (cold H-18°C) O-H R-C-OCH3 R-C-OCH -> as long as keep cold, and no R-C-H + HOCH3 excess DIBAL - 194 aldehyde! B Acyl Halides Seen: R-C-U LiMIHY > R-C-H H > R-C-H WORKUP H Using Lithium tris (4-buttory) aluminum hydride: R-C-C1 1.0 equiv > R-C-C1 0x H+/H2Q R-C-C1 -> R-C-H -78°C to bally for 2nd H" to get in

Addition to <, B-unsaturated ketones

