

Optimizing Your System Software for Embedded Vision and Al

ThunderSoft – Intelligent Vision

Agenda

- ➤ Embedded Vision Challenges
- ➤ Case Studies of System Optimization
- ➤ Embedded AI Challenges

Vision Architecture

Embedded Vision Challenges

- A good quality vision system depends on many factors, like module optical characteristics, drivers, image processing algorithms (3A, HDR, etc.), camera framework and ISP tuning tools, etc.
- The fragmentation of hardware requires good knowledge of image quality tuning and complex tuning processes.
- Power consumption and performance.
- ThunderSoft has rich experience to solve all of these issues

Camera Framework Optimization for Automotive

Image Quality Optimizations on Automotive

- Fine tuning of WDR (Wide Dynamic Range) and AE (Auto Exposure) convergence is extremely important for ADAS applications.
- Sharpness of image is also important for Al algorithms (blur, etc.)

4 Camera Harmonization for Automotive

 Bayer sensors in automotive and surround view applications require the 4 sensors to be harmonized in order to reduce the artifacts in overlapping areas (stitching algorithm requirements)

GPU/DSP Acceleration

Image Quality Tuning

- Industry best class Image Quality team with 17+ years of experience, in Bulgaria
- 5 TIPA "Best Mobile Imaging Award" and top DxO scores
- State of Art Camera Labs

Image Quality Tuning

- The core of IQ tuning is tuning all characteristics of the image pipeline and 3A algorithms in order to achieve optimal and desirable image quality.
- It may include:
 - ✓ Brightness, contrast
 - ✓ White balance
 - ✓ Color accuracy and saturation
 - √ Focus
 - ✓ Details, texture
 - ✓ Noise

Image Quality Tuning | Example

No IQ Tuning

Good IQ Tuning

Image Quality Tuning | Example

No IQ Tuning

Good IQ Tuning

Image Quality Tuning Process

 Stage 0, software functionality check, no major bugs blocking IQ tuning, and verify raw capture, EXIF, AE parameters, calibration data, etc.

- Stage 1, studio and lab tuning (LSC, AWB, AE, gamma, contrast enhancement, CCM, DPC, noise filters, edge enhancement, CAF/AF, PDAF, etc.)
- Stage 2, Real-life tuning (field testing), lots of scenes side by side with reference cameras (people, pets, landscape, portraits, outdoor, low light, office, home, flash, backlit, movies, etc.)

Challenges of Embedded Al

- Balance of computing power, therma control, and accuracy.
- Different middleware eco-system (Qualcomm SNPE / Al Engine, Intel CVSDK, NVidia, Cambricon, etc.) requires specific algorithm porting and optimization.

Optimization of Neural Network for Embedded

Optimization for Embedded Al

Customized Al models, optimize the operators based on Hexagon,
GPU or ARM CPU instruction sets.

 Assembly code to optimize some image pre-processing steps, like scale, rotation, crop, etc., for better performance.

Optimization on Qualcomm 820

• input feature:64x64x3

filter: 3x3x32

• output: 64x64x32

input feature:16x16x3

filter: 3x3x256

• output: 16x16x256

Al Also Contributes to Good Image Quality

- Scene detection and recognition will greatly help AWB (Auto White Balance), Noise, HDR (High Dynamic Range), etc.
- Apply specific camera image quality parameters for specific scenes to create a better user experience.

Conclusion

- The optimization of system software really depends on the pain points in specific use cases (Smart Phone, Automotive, Surveillance, Small IoT, etc.)
- Consider fully leveraging the computing engines other than the CPU when this offers better performance or power consumption (GPU, DSP, Al acceleration chipset).
- Fine tuning is very important to achieve a good image quality, based on the fact of hardware fragmentation and vertical use cases.
- Al is converging with traditional image processing algorithms to contribute a better user experience.

Visit us at booth #206

- Contact us: biz@thundersoft.com
- https://www.thundersoft.com
- https://www.mm-sol.com

About ThunderSoft

Staying customer-centric Enabling Edge Computing & On-Device AI

About ThunderSoft

