

MINISLIDE MSQscale Messsystem

Längenmesssystem integriert in Mikrorolltisch MINISLIDE MSQ

Aktuelle Version der Kataloge

 $\label{thm:eq:continuous} \mbox{Im Download Bereich unserer Website finden Sie immer die aktuelle Version unserer Kataloge.}$

Haftungsausschluss

Diese Druckschrift wurde mit großer Sorgfalt erstellt und alle Angaben wurden auf ihre Richtigkeit überprüft. Dennoch kann für fehlerhafte oder unvollständige Angaben keine Haftung übernommen werden. Aufgrund der Weiterentwicklung unserer Produkte bleiben Änderungen der Angaben und technischen Daten vorbehalten. Nachdruck oder Vervielfältigung, auch auszugsweise, ist ohne unsere schriftliche Genehmigung nicht gestattet.

Inhaltsverzeichnis

Seitenzahl

1	Prod	luktübersicht MINISLIDE MSQscale	4
	1.1	Technische Daten	6
2	Prod	lukteigenschaften von MINISLIDE MSQscale	7
	2.1	Hohe Geschwindigkeiten und Beschleunigungen	7
	2.2	Hohe Prozesssicherheit dank Käfigzwangssteuerung	7
	2.3	Höchste Steifigkeit und Tragzahlen	8
	2.4	Anschlag- und Auflageflächen	8
	2.5	Ablaufgenauigkeit und Parallelität der Auflageflächen	8
	2.6	Toleranz der Bauhöhe	9
	2.7	Verschiebekraft und Vorspannung	9
	2.8	Reibung und Laufruhe	9
3	Arbe	eitsweise und Komponenten von MINISLIDE MSQscale	10
	3.1	Massverkörperung und optischer Sensor	10
	3.2	Schnittstellenmodul	12
	3.3	Schmierung	15
4	Opti	onen	16
	4.1	Schnittstellenmodule	16
	4.2	Auflösung Digital Schnittstellenmodul	16
	4.3	Höhenabgestimmt (HA)	16
	4.4	Kundenspezifische Schmierungen (KB)	16
	4.5	Linearitätsprotokoll	16
5	Zub	ehör	17
	5.1	Verlängerungen	17
	5.2	Zähler und Positionsanzeige für MINISLIDE MSQscale	18
6	Mas	stabellen, Tragzahlen, Gewichte und Momentbelastungen	19
	6.1	MSQS 7	19
	6.2	MSQS 9	20
	6.3	MSQS 12	21
	6.4	MSQS 15	22
		fähigkeit und Lebensdauer	23
	7.1	Grundlagen	23
	7.2	Berechnung der Lebensdauer L gemäss DIN ISO-Norm	24
8	Best	tellangaben	26

Produktübersicht MINISLIDE MSQscale

Das MINISLIDE MSQscale Sortiment

Herausfordernde Applikationen verlangen besondere Führungen. Diese aussergewöhnliche Innovation verbindet die Funktionen «Führen» und «Messen» in einem hoch integrierten Design. MINISLIDE MSQscale ermöglicht äusserst kompakte Applikationen und vereinfacht Konstruktion und Montage massgeblich. Dadurch ist MINISLIDE MSQscale eine enorm wirtschaftliche Lösung für hohe technische Ansprüche.

MINISLIDE MSQscale basiert auf unseren MINISLIDE MSQ Führungen. MINISLIDE MSQ verkörpern die neuste Generation von Miniaturführungen für sehr anspruchsvolle Anwendungen. Sie sind äusserst robust und überzeugen in jeder Anwendung durch ihre hohe Laufkultur, ihre Präzision und Zuverlässigkeit.

Die Führung ist mit einem hoch präzisen, optischen, inkrementellen Messsystem ausgerüstet. Massverkörperung und Sensor sind perfekt in die Führung integriert.

Das MINISLIDE MSQscale Sortiment umfasst die Baugrössen 7, 9, 12 und 15 mit Verfahrwegen von 20 mm bis 102 mm.

Produktübersicht MINISLIDE MSQscale

MINISLIDE MSQscale

Hoch integriertes, kompaktes Design

- Der Sensor ist perfekt in den Wagen integriert und versiegelt
- Die Massverkörperung ist direkt auf der Schiene aufgebracht

Geringer Konstruktionsaufwand

- Die Aufwendungen für ein separates Längenmesssystem entfallen
- Kompaktere Konstruktionen können realisiert werden

Einfache und schnelle Montage

- MSQscale wird einbaufertig angeliefert
 - Zusatzbauteile und -bearbeitungen, wie sie beispielsweise für einen Glasmassstab nötig sind, entfallen
- Das separate Justieren eines Lesekopfes entfällt
- Kein Ausrichten oder Aufkleben der Messskala notwendig

Gleichbleibend hohe Genauigkeit

- Hohe Laufgüte, da keine Wälzkörperpulsation auftritt
- Die Positionsmessung erfolgt direkt beim Reibungspunkt des Systems
 Dies vereinfacht die Regelungstechnik bei Mikrobewegungen und dynamischen Bewegungen
- Keine Umkehrfehler oder Positionierfehler im Vergleich zu Systemen mit Kugelumlaufspindeln mit Drehgebern
- Die Messung erfolgt direkt beim Arbeitsprozess, dadurch reduziert sich der Abbe-Fehler
- Hohe Wiederholbarkeit
- Unempfindlich auf Vibrationen und Erschütterungen, da eine Einheit

Hohe Zuverlässigkeit und Lebensdauer

MSQscale basiert auf dem erfolgreichen Design von MINISLIDE MSQ und der bewährten Messtechnik von MINISCALE Plus

Produktübersicht MINISLIDE MSQscale

1.1 Technische Daten

Max. Beschleunigung	300 m/s ²
Max. Geschwindigkeit	3 m/s
Vorspannung	Spielfrei
Genauigkeit Führung	Siehe Kapitel 2.5
Einsatzbereiche:	
Temperaturbereich (1)	-40 °C bis +80 °C (-40 °F bis +176 °F)
Luftfeuchtigkeit	10 % - 70 % (nicht kondensierend)
Vakuumtauglichkeit (2)	Hochvakuum (10 ⁻⁷ mbar)
Reinraumtauglichkeit	Reinraumklasse ISO 7 und ISO 6 (gem. ISO 14644-1)
Materialien:	
Schiene, Wagen, Kugeln	Rostbeständiger, durchgehärteter Stahl
Käfig und Zahnrad	PEEK
Endstücke	PEEK
Auflösung	TTL Ausgang 0.1 μm ⁽³⁾ (optional: 1 μm / 10 μm)
Genauigkeit Messsystem (4)	+/- 3 µm
Wiederholgenauigkeit (4)	Unidirektional +/- 0.1 μm Bidirektional +/- 0.2 μm (bei Auflösung 0.1 μm)
Massverkörperung	Teilung 100 µm Ausdehnungskoeffizient 11.7 x 10 ⁻⁶ K ⁻¹
Versorgungsspannung	5 V DC +/- 5 %
Stromaufnahme	60 mA (analog) / 70 mA (digital)
Ausgangssignal	Analog: 1 Vss Digital: TTL entsprechend der RS 422 Norm
Ausgangsformat	Analog: Differentielle sin/cos Analogsignale mit Referenzimpuls oder Digital: Differentielle, interpolierte Digitalsignale (A, B, R) Das Referenzsignal ist mit den Inkrementalsignalen synchronisiert

⁽¹⁾ Die Standardschmierung deckt einen Temperaturbereich von -20 °C bis +80 °C ab. Schmierungen für andere Temperaturen können bei Schneeberger angefragt werden (siehe Kapitel 4.4).

⁽²⁾ Die Vakuumtauglichkeit bezieht sich auf die eingesetzten Materialien. Um MSQscale im Vakuum einsetzen zu k\u00f6nnen, sind die Befestigungsschrauben und Stirnplatten zu entfernen. Zudem gibt es Einschr\u00e4nkungen in der Verwendung von Sensorzubeh\u00f6r. Der Einsatz im Vakuum bedingt eine Spezialschmierung, die bei SCHNEEBERGER angefragt werden kann. Die Details ihrer Vakuumanwendung besprechen sie bitte mit ihrer SCHNEEBERGER Kontaktperson.

⁽³⁾ Beachten Sie die hohen Signalfrequenzen bei hoher Auflösung und hoher Geschwindigkeit.

 $^{^{(4)}}$ Die Werte gelten bei 20 °C (68 °F)

Das Sortiment umfasst die Schienenbreiten 7 mm, 9 mm, 12 mm und 15 mm, die je nach Typ in vier bis fünf Längen- und Hubvarianten erhältlich sind.

MSQscale 7	MSQS 7-30.20	MSQS 7-40.28	MSQS 7-50.36	MSQS 7-60.50	MSQS 7-70.58
Systemlänge in mm	30	40	50	60	70
Max. Hub in mm	20	28	36	50	58

MSQscale 9	MSQS 9-40.34	MSQS 9-50.42	MSQS 9-60.50	MSQS 9-70.58	MSQS 9-80.66
Systemlänge in mm	40	50	60	70	80
Max. Hub in mm	34	42	50	58	66

MSQscale 12	MSQS 12-50.45	MSQS 12-60.48	MSQS 12-80.63	MSQS 12-100.70
Systemlänge in mm	50	60	80	100
Max. Hub in mm	45	48	63	70

MSQscale 15	MSQS 15-70.66	MSQS 15-90.70	MSQS 15-110.96	MSQS 15-130.102
Systemlänge in mm	70	90	110	130
Max. Hub in mm	66	70	96	102

2.1 Hohe Geschwindigkeiten und Beschleunigungen

Anwendungen mit hohen Beschleunigungen verlangen durchdachte Lösungen. Durch ihr einzigartiges Design mit integrierter Käfigzwangssteuerung erfüllen MINISLIDE MSQscale die Anforderungen modernster Antriebstechnik und ermöglichen Geschwindigkeiten von 3 m/s und Beschleunigungen von 300 m/s².

2.2 Hohe Prozesssicherheit dank Käfigzwangssteuerung

Die robuste Käfigzwangssteuerung von MINISLIDE MSQscale

A Verzahnungen an Wagen und Schiene

B Käfig mit Zahnrad

In jeder Linearführung kann sich der Käfig in der Längsachse frei bewegen. Durch ungleichmässige Lastverteilung, hohe Beschleunigungen, vertikalen Einbau oder Temperaturunterschiede verschiebt sich der Käfig in der Regel aus dem Zentrum. Dieses Käfigwandern beeinträchtigt die Effektivität jeder Applikation, weil der Käfig mit erhöhtem Kraftaufwand mittels Korrekturhüben regelmässig zentriert werden muss.

Die MINISLIDE MSQscale sind mit einer ausgereiften, robusten Käfigzwangssteuerung ausgerüstet, welche das Käfigwandern eliminiert. Die Verzahnungen der Zwangssteuerung sind direkt in Wagen und Schiene eingearbeitet. Käfig und Zahnrad sind aus hochwertigem Kunststoff gefertigt.

Mit diesem kompakten und robusten Design sowie einem Minimum an integrierten Bauteilen ist für höchste Zuverlässigkeit in jeder Betriebssituation gesorgt.

Eine mechanische Hubbegrenzung schützt den Mechanismus der Käfigzwangssteuerung und erleichtert Montage und Unterhalt (darf während des Betriebs nicht als Wegbegrenzung verwendet werden).

Produkteigenschaften von MINISLIDE MSQscale

2.3 Höchste Steifigkeit und Tragzahlen

MINISLIDE MSQscale mit vier Laufbahnen mit Kreisbogenprofil in O-Form Anordnung

MINISLIDE MSQscale verfügen über vier Laufbahnen mit Kreisbogenprofil. Aufgrund deren Anordnung in O-Form werden grosse, innere Stützabstände realisiert. Im Zusammenspiel mit den um 90 Grad versetzten Laufbahnen werden eine gleichmässige und hohe Aufnahme von Kräften aus allen Richtungen sowie eine hohe Momenten Steifigkeit erzielt.

MINISLIDE MSQscale sind spielfrei vorgespannt. In Kombination mit der hohen Anzahl Rollkörper ist eine sehr hohe Systemsteifigkeit und somit höchste Präzision garantiert.

2.4 Anschlag- und Auflageflächen

Die Anschlag- und Auflageflächen von Wagen und Schiene sind nachfolgend bezeichnet. Die Anschlagseite des Wagens liegt gegenüber der Wagenseite mit dem Firmenlogo/Typenbezeichnung. Die Schiene kann beidseitig angeschlagen werden.

2.5 Ablaufgenauigkeit und Parallelität der Auflageflächen

Die Toleranz für die Geradheit des Hubes hängt von der Länge der Führung ab. In der nachfolgenden Tabelle sind die entsprechenden Maximalwerte aufgeführt. Die Messungen werden im unbelasteten Zustand und auf einer ebenen Unterlage durchgeführt.

Geradheit des Hubes

Systemlänge L	Geradheit des Hubes (horizontal und vertikal)
30 mm	3 µm
40 - 80 mm	4 μm
90 - 130 mm	5 μm

A		
		•

Systemlänge L	Parallelität der Auflageflächen (Mikrorolltisch in Mittelstellung)
30 mm	12 µm
40 - 80 mm	15 µm
90 - 130 mm	18 µm

2 Produkteigenschaften von MINISLIDE MSQscale

2.6 Toleranz der Bauhöhe

Toleranz der Bauhöhe

2.7 Verschiebekraft und Vorspannung

Die Verschiebekraft wird beeinflusst von der Vorspannung und dem eingesetzten Schmiermittel. Standardmässig werden MINISLIDE MSQscale spielfrei, leicht vorgespannt geliefert.

2.8 Reibung und Laufruhe

Bei der Herstellung legt SCHNEEBERGER grössten Wert auf eine hohe Laufkultur. Die Qualität der Oberflächen und Materialien haben höchste Priorität. Dies gilt auch für die eingesetzten Wälzkörper, die höchsten Qualitätsansprüchen genügen müssen. Unter normalen Einsatzbedingungen kann mit einer Reibungszahl von 0.003 gerechnet werden.

Komponenten von MINISLIDE MSQscale

MINISLIDE MSQscale ist ein optisches, inkrementelles Messsystem und besteht aus dem Mikrorolltisch MINISLIDE MSQ und folgenden, zusätzlichen Komponenten:

- A Massverkörperung auf der Führungsschiene
- B Optischer Sensor im Führungswagen integriert
- C Flexibler Sensorprint (darf nicht dynamisch belastet werden)
- D Schnittstellenmodul

Das Steuerungskabel E ist kundenseitig zur Verfügung zu stellen und muss gegebenenfalls schleppkettentauglich sein.

Die Schnittstellenmodule sind in verschiedenen Bauformen erhältlich. Diese werden im Kapitel 3.2 beschrieben.

Mit einem flexiblen Flachbandkabel (Flat-Flex-Cable, kurz: FFC), das zwischen dem flexiblen Sensorprint und dem Schnittstellenmodul eingefügt wird, kann das Schnittstellenmodul flexibel platziert werden. Die FFC Kabel sind für dynamische Belastungen geeignet. (Weitere Informationen zum Zubehör finden Sie im Kapitel 5)

3.1 Massverkörperung und optischer Sensor

Die hochgenaue Massverkörperung ist Teil der Oberfläche der gehärteten Schiene mit einer Teilungsperiode von 100 μ m. Mittels zwei LED beleuchtet der Sensor die Massverkörperung. Durch die Beleuchtung der unterschiedlich strukturierten Bereiche auf der Massverkörperung, bilden sich hell-dunkel Felder. Diese optischen Signale werden vom Sensor erfasst und in elektrische Signale umgewandelt. Die vom Sensor gelieferten Rohsignale werden im Schnittstellenmodul aufbereitet.

Die Beleuchtungsstärke der LED wird aktiv geregelt. Damit kann der Alterung des Systems entgegengewirkt werden und auch Verunreinigungen auf der Massverkörperung werden ausgeglichen.

Sensorprinzip

A Sensor

B Schiene mit Massverkörperung

3.1.1. Referenzmarke

Um beim inkrementellen Messsystem einen lokalen Nullpunkt bestimmen zu können, wird eine Referenzmarke benötigt. Die Referenzspur befindet sich neben der Inkrementalspur und wird auch mit dem optischen Sensor erfasst.

Schiene mit Massverkörperung

Standard Version

Standardmässig sind folgende Referenzpositionen definiert:

Alle Grössen MSQS 7, Grösse MSQS 9-50.42 und MSQS 9-60.50:
 4 mm neben Schienenmitte

Position der Referenzmarke bei allen Grössen von MSQS7, bei Grösse MSQS9-50.42 und MSQS9-60.5

Restliche Grössen: in Schienenmitte

Spezial Versionen

Die Referenzmarke kann an einer beliebigen Position auf der Referenzspur gewählt werden und in beliebiger Anzahl. Dabei ist zu beachten, dass die Referenzmarken mit der Massverkörperung synchronisiert sind. Das heisst konkret, dass die Markenabstände nur ganze Vielfache von 0.1 mm sein können, da der Pitch der Massverkörperung 0.1 mm beträgt. Es ist ein Minimalabstand zwischen den Referenzmarken von 1.5 mm einzuhalten. Zudem muss der Abstand zum Ende der Inkrementalspur mindestens 2 mm betragen.

Einschränkungen:

- Bei den Schienenbreiten 7 und 9 liegen die Befestigungsbohrungen der Schiene in der Referenzspur. Deshalb muss bei diesen beiden Grössen die Referenzmarke ZWISCHEN den Befestigungsbohrungen liegen.
- Beachten Sie bei der Definition der Referenzmarke/n, dass diese vom Sensor des Wagens erreicht werden kann/können.

3.2 Schnittstellenmodul

Komponenten des Schnittstellenmoduls

Die Rohsignale werden im Schnittstellenmodul zu normgerechten Ausgangssignalen aufbereitet. Es stehen analoge oder digitale Schnittstellenmodule zur Verfügung.

Beachten Sie die Zugänglichkeit zum ZIF-Stecker F und die freie Sicht auf die LED-Anzeigen (G und H) des Schnittstellenmodules. Im Vergleich zur analogen Schnittstelle verfügt die digitale Version zusätzlich über eine Abgleichtaste I, die ebenfalls zugänglich sein muss.

- C Flexibler Sensor Print
- D Elektronik (in verschiedenen Bauformen)
- F ZIF Stecker
- G LED grün (Betriebsspannung)
- H LED rot (Fehleranzeige)
- I Abgleichtaste (nur bei digitalem Schnittstellenmodul)

Die Schnittstellenmodule sind in den folgenden Bauformen erhältlich:

Mit Gehäuse Mit D-Sub 9 Stecker

Bestellbezeichnung: MG (Standard)

Ohne Gehäuse Mit D-Sub 9 Stecker

Bestellbezeichnung: OG

Ohne Gehäuse Mit Micro Match Stecker

(für Steckmontage auf Elektronik Platine)

Bestellbezeichnung: MM

Ohne Gehäuse Ohne Stecker Mit Lötanschlüssen

Bestellbezeichnung: NL

In Absprache mit Schneeberger ist es für Kunden mit Elektronik Know How zudem möglich, das digitale Schnittstellenmodul selber aufzubauen und in die eigene Elektronik zu integrieren.

Bestellbezeichnung: KI

Referenzpunkt - Sinus - Kosinus - Referenz

Differentielle, analoge sin/cos Signale mit Referenzimpuls

3.2.1. Signalverarbeitung

Analoges Ausgangsformat:

Differentiell, sin/cos analog Signale 1 Vss mit Referenzimpuls

Die Inkrementalsignale Sinus und Cosinus sind 90° in der Phase verschoben und korrelieren mit den Markierungen auf der Inkrementalspur. Eine elektrische Signalperiode (360°) entspricht dabei genau der Teilungsperiode der Massverkörperung, welche 100 µm beträgt.

Je nach Bewegungsrichtung eilt das Sinussignal dem Cosinus Signal vor oder nach.

Der Referenzimpuls wird durch die Referenzmarke auf der Schiene ausgelöst und ist eine Signalperiode lang.

5 9

Kontaktbelegung analoges Schnittstellenmodul (1Vss)

Männlicher 9-poliger D-Sub Stecker oder Lötanschlüsse:

Pin	Signal	Beschreibung
1	Ua1 -	Quadratursignal
2	OV	Masse
3	Ua2 -	Quadratursignal
4	ERR NOT	Fehlersignal (Low = Fehler)
5	Ua0 -	Referenzsignal
6	Ua1 +	Quadratursignal
7	+ 5V DC	Speisespannung
8	Ua2 +	Quadratursignal
9	Ua0 +	Referenzsignal

Bild 1: Pinbelegung D-Sub 9 Stecker am Schnittstellenmodul

Bild 2: Pinbelegung Schnittstellenmodul mit Lötanschlüssen

Pinbelegung Micro Match Stecker am Schnittstellenmodul

Männlicher 10-poliger Micro Match Stecker:

Pin	Signal	Beschreibung
1	nc	
2	Ua1 +	Quadratursignal
3	+ 5V DC	Speisespannung
4	Ua2 +	Quadratursignal
5	Ua0 +	Referenzsignal
6	Ua1 -	Quadratursignal
7	OV	Masse
8	Ua2 -	Quadratursignal
9	ERR NOT	Fehlersignal (Low = Fehler)
10	Ua0 -	Referenzsignal

3

Arbeitsweise und Komponenten von MINISLIDE MSQscale

Differentielle, digitale Signale mit Referenzimpuls

Digitales Ausgangsformat:

Differentiell, interpolierte digital Signale mit Referenzimpuls (A, B, R) TTL Signal (RS422).

Das digitale Schnittstellenmodul bereitet nicht nur die Rohsignale auf, sondern interpoliert ausserdem die aufbereiteten Analogsignale. Durch die Interpolation wird eine Wegauflösung von bis zu 0.1 µm erreicht.

Der digitale Signalverlauf besteht aus einem A-Signal und einem B-Signal. Der Abstand zwischen zwei Signalflanken der beiden Signale A und B entspricht dabei genau einer Wegstrecke von einer Auflösung (Standardmässig 0.1 μ m). Die Teilungsperiode von 100 μ m der Inkrementalspur auf der Massverkörperung wird dementsprechend durch Interpolation in 1000 Abschnitte von 0.1 μ m geteilt. Je nach Bewegungsrichtung eilt dabei das A-Signal dem B-Signal vor oder nach.

Der Referenzimpuls ist so breit wie der Abstand zwischen zwei Signalflanken der beiden Signale A und B (eine Auflösung breit).

Die Flanken der Inkremental- und Referenz-Signale sind synchronisiert.

6 9

Kontaktbelegung digitales Schnittstellenmodul (TTL)

Männlicher 9-poliger D-Sub Stecker oder Lötanschlüsse:

Pin	Signal	Beschreibung
1	A -	Quadratursignal
2	OV	Masse
3	B -	Quadratursignal
4	ERR NOT	Fehlersignal (Low = Fehler)
5	R -	Referenzsignal
6	A +	Quadratursignal
7	+ 5V DC	Speisespannung
8	B +	Quadratursignal
9	R +	Referenzsignal

Bild 1: Pinbelegung D-Sub 9 Stecker am Schnittstellenmodul

Bild 2: Pinbelegung Schnittstellenmodul mit Lötanschlüssen

Pinbelegung Micro Match Stecker am Schnittstellenmodul

Männlicher 10-poliger Micro Match Stecker:

Pin	Signal	Beschreibung
1	nc	
2	A +	Quadratursignal
3	+ 5V DC	Speisespannung
4	B +	Quadratursignal
5	R +	Referenzsignal
6	A -	Quadratursignal
7	OV	Masse
8	B -	Quadratursignal
9	ERR NOT	Fehlersignal (Low = Fehler)
10	R -	Referenzsignal

3.3 Schmierung

Die Schmierung ist ein Konstruktionselement und muss deshalb in der Entwicklungsphase einer Maschine oder Applikation definiert werden.

Standartmässig sind MINISLIDE MSQscale mit Klüber Microlube GL 262 geschmiert. Dieses Fett hat eine optimale Schmierwirkung im Grenzreibungsbereich und ist für normale und Kurzhubanwendungen geeignet.

Für besondere Anwendungen kommen spezielle Schmiermittel zum Einsatz. Zu diesen gehören u.a. Schmierungen für den Vakuumbereich, den Reinraum, die Lebensmittelindustrie, für hohe oder tiefe Temperaturen, für hohe Geschwindigkeiten oder hochfrequente Hübe. Für jeden dieser Einsatzbereiche kann SCHNEEBERGER die Führungen mit entsprechender Schmierung liefern.

3.3.1. Initialschmierung von MINISLIDE MSQscale

MINISLIDE MSQscale sind ab Werk mit Klüber Microlube GL 262 geschmiert. Die Systeme werden einbaufertig geliefert. Es bedarf keiner zusätzlichen Initialschmierung.

3.3.2. Nachschmierintervalle von MINISLIDE

Die Nachschmierintervalle hängen von verschiedenen Einflussgrössen ab, wie z.B. der Belastung, Umgebung, Geschwindigkeiten etc. und sind deshalb nicht errechenbar. Somit ist die Schmierstelle über einen längeren Zeitraum zu beobachten.

Die erste, werkseitig aufgebrachte Schmierung kann, je nach Beanspruchung, mehrere Jahre reichen.

Beim Nachschmieren darf nur das Originalfett verwendet werden. Schmiermittelmengen gering halten, da ein Überschmieren den Ausfall des optischen Sensors verursachen kann.

Weitere Informationen zur Schmierung finden Sie in der MINISLIDE MSQscale Montageanleitung.

4 Optionen

4.1 Schnittstellenmodule

Die erhältlichen Bauformen der Schnittstellenmodule sind im Kapitel 3.2 beschrieben.

4.2 Auflösung Digital Schnittstellenmodul

Die Standard Auflösung des digitalen Schnittstellenmoduls beträgt 0.1 µm. Optional können Auflösungen von 1 µm oder 10 µm geliefert werden.

4.3 Höhenabgestimmt (HA)

Die Bauhöhe der MSQscale beträgt standartmässig \pm 20 μ m. Dieser Toleranzbereich kann für bestimmte Konfigurationen zu gross sein – beispielsweise wenn die Distanzen zwischen den einzelnen Slides zu gering ausfällt; wenn der Wagenabstand $L_{\rm b}$ kleiner ist als die Wagenlänge L. Für diese Fälle lässt sich der Toleranzbereich der Bauhöhe kundenspezifisch bis \pm 3 μ m reduzieren.

4.4 Kundenspezifische Schmierungen (KB)

Für besondere Anwendungen kommen spezielle Schmiermittel zum Einsatz. Zu diesen gehören u.a. Schmierungen für den Vakuumbereich, den Reinraum, die Lebensmittelindustrie, für hohe oder tiefe Temperaturen, für hohe Geschwindigkeiten oder hochfrequente Hübe. Für jeden dieser Einsatzbereiche kann SCHNEEBERGER die Führungen mit entsprechender Schmierung liefern.

Weitere getestete Schmiermittel:

Hohe Geschwindigkeiten / Tiefe Temperaturen

Reinraum

VakuumLebensmittel

Klüber Isoflex NBU 15 Klübersynth BEM 34-32 Castrol Braycote 600EF Klübersynth UH1 14-31

4.5 Linearitätsprotokoll

Zu jedem System wird ein Linearitätsprotokoll der Massverkörperung erstellt. Das Protokoll wird auf Wunsch der Lieferung beigelegt. Um die Linearitätsabweichungen in der eigenen Applikation zu kompensieren, kann das Protokoll auch in elektronischer Form verlangt werden.

Grafik des Linearitätsprotokolls

ち

Zubehör

5.1 Verlängerungen

Einbaubeispiel MINISLIDE MSQscale mit FFC Verlängerung

FFC-Kabel mit Adapter

Überall dort, wo das Schnittstellenmodul nicht unmittelbar beim Sensor angebracht werden kann, bietet sich die Verwendung des Verlängerungssets an. Zwischen dem Sensorprint und dem Schnittstellenmodul wird dabei ein flexibles Flachbandkabel (Flat-Flex-Cable, kurz: FFC) eingesetzt.

Dies kann folgende Vorteile bieten:

- Durch die Verlagerung des Schnittstellenmoduls kann die bewegte Masse eines Aufbaus reduziert werden, indem das Schnittstellenmodul in den ruhenden Teil verlagert wird.
- Das im Verlängerungsset enthaltene geschirmte FFC-Kabel ist dazu ausgelegt auch dynamisch belastet zu werden. Der empfohlene minimale Biegeradius ist 10 mm. Im Gegensatz dazu darf der flexible Sensorprint nur statisch verlegt werden.
- Das FFC-Kabel bietet eine geringe Verschiebekraft. Dies kann überall dort ein Vorteil sein, wo ein schleppkettenfähiges Kabel zu starr wäre.
- Das FFC-Kabel darf bei der Montage auch einmalig gefaltet werden.

Die FFC Kabel werden in drei Längen angeboten: 250 mm, 400 mm und 600 mm. Ein Adapterboard wird mit dem FFC-Verlängerungskabel mitgeliefert.

Adapter

Dient zur elektrischen Verbindung zwischen dem Sensorprint und dem Verlängerungskabel. Zu diesem Zweck sind zwei ZIF-Verbinder auf dem Adapter vorhanden.

Klemmplatte

Kann für eine Zugentlastung oder zum Führen des FFC Kabels verwendet werden. Auf dem Board sind zwei M3 Distanzhülsen verbaut.

Basisplatte

Kann als Unterlage oder zum Klemmen des Kabels verwendet werden.

5 Zubehör

5.2 Zähler und Positionsanzeige für MINISLIDE MSQscale

Für einfache Anwendungen, Versuchs- oder Prototypenaufbauten empfehlen wir die USB-Zähler der Heilig & Schwab GmbH & Co. KG. Die nachfolgenden Zähler können dort direkt bestellt werden (www.heilig-schwab.de).

1-Achs-USB-Zähler

5.2.1. 1-Achs-USB-Zähler

Mit dem USB-Zähler kann ein MINISLIDE MSQscale oder ein anderer inkrementaler Encoder mit TTL-, 1 Vss- oder 11 µAss-Signalausgang direkt an einen Rechner mit USB-Schnittstelle angeschlossen werden.

Mit der im Lieferumfang enthaltenen Treiber-Software kann der USB-Zähler schnell und einfach in Ihre Anwendung integriert werden.

3-Achs-USB-Zähler

5.2.2. 3-Achs-USB-Zähler

Mit diesem USB-Zähler können drei MINISLIDE MSQscale oder andere inkrementale Encoder mit TTL- oder 1 Vss-Signalausgang direkt an einen Rechner mit USB-Schnittstelle angeschlossen werden. Zusätzlich steht für jeden Zählereingang ein Latchsignal-Eingang zur Verfügung.

Mit der im Lieferumfang enthaltenen Treiber-Software kann der USB-Zähler schnell und einfach in Ihre Anwendung integriert werden.

Digitalanzeigen-Programm "UCount basic"

5.2.3. Digitalanzeigen-Programm "UCount basic"

UCount basic ist ein Digitalanzeigen-Programm zur Auswertung von Linear- und Winkelgebern, die über USB-Zähler der Heilig & Schwab GmbH & Co. KG an einen Computer (PC, Notebook oder Tablet) angeschlossen werden. Alternativ können Zähler auch über WLAN mit dem Computer verbunden werden.

- Einfache Bedienung und übersichtliche Darstellung aller Funktionen
- Zähleranzeige von bis zu 9 Signaleingängen
- Zählerstopp-Funktion
- Akustische Zählerüberwachung (Schwellenwert)
- Rechenfunktionen (Addition, Subtraktion)
- Messfunktionen (Abstand, Winkel, eingeschlossener Winkel, Radius)
- Korrekturfunktion (lineare Korrektur, abschnittsweise (ABS-)Korrektur, Parallelitätskorrektur)
- Bezugspunkt-Verwaltung
- Erweiterungsfähig nach Kundenwunsch

Systemanforderungen:

- PC, Notebook oder Tablet
- Windows-Betriebssystem, 32- oder 64-Bit-Version
- USB- oder WLAN-Schnittstelle

6.1 MSQS 7

				Grössen							
	Bezeichnung A Customböhe		MSQS 7-30.20	MSQS 7-40.28	MSQS 7-50.36	MSQS 7-60.50	MSQS 7-70.58				
	А	Systemhöhe	8	8	8	8	8				
	A ₁	Systemhöhe mit Sensor	9.2	9.2	9.2	9.2	9.2				
	В	Systembreite	17	17	17	17	17				
	B ₁	Schienenbreite	7	7	7	7	7				
	B ₂	Abstand Anschlagflächen	5	5	5	5	5				
	J	Wagenhöhe	6.5	6.5	6.5	6.5	6.5				
	J ₁	Schienenhöhe	4.5	4.5	4.5	4.5	4.5				
	Н	Hub	20	28	36	50	58				
	L	Systemlänge	30	40	50	60	70				
	L ₁	Abstand Bohrungen	10	10	10	10	10				
	L ₂	Anfangs-/Endabstand Bohrungen	10	10	10	10	10				
	L ₄	Abstand Bohrungen	15	15	15	15	15				
Ē	L ₅	Anfangs-/Endabstand Bohrungen	7.5	5	10	7.5	5				
Abmessungen (mm)	N	Abstand Bohrungen quer	12	12	12	12	12				
nnge	е	Gewinde	M2	M2	M2	M2	M2				
lessi	f ₁	Durchmesser Durchgangsbohrungen	2.4	2.4	2.4	2.4	2.4				
Abn	f ₂	Senklochdurchmesser	4.2	4.2	4.2	4.2	4.2				
	g	Nutzbare Gewindelänge	3	3	3	3	3				
	g ₁	Klemmlänge	2.2	2.2	2.2	2.2	2.2				
		Kugeldurchmesser	1	1	1	1	1				
	fз	Anfangsabstand Durchgangsbohrung	5.7	6	7	15	15				
	f ₄	Abstand Durchgangsbohrung	-	28	36	30	40				
	f ₅	Abstand Durchgangsbohrung quer	8.5	8.5	8.5	8.5	8.5				
	S	Position Sensormitte	15	20	25	30	35				
	S ₁	Abstand zum Sensor	3.7	3.7	3.7	3.7	3.7				
	S 2	Sensorbreite	5.4	5.4	5.4	5.4	5.4				
	S 3	Sensorlänge	13	13	13	13	13				
	S4	Länge des Sensorprints	75	75	75	75	75				
	r min	Zulässiger Biegeradius	2	2	2	2	2				
zahl I)	Co	Statische Tragzahl	1193	1670	2148	2386	2864				
Tragzahl (N)	С	Dynamische Tragzahl (≙ C₁₀₀)	609	770	919	989	1124				
	Μοα	Zulässiges statisches Moment quer	5.1	7.2	9.2	10.3	12.3				
Momente (Nm)	MoL	Zulässiges statisches Moment längs	5	8.6	13.1	15.8	21.8				
Mom (N	Ma	Zulässiges dynamisches Moment quer	2.6	3.3	4	4.3	4.8				
	ML	Zulässiges dynamisches Moment längs	2.5	4	5.6	6.5	8.5				
Gewicht	(g)		24.5	32.6	40.5	48.5	56.3				

6.2 MSQS 9

	P	i-h		Grössen						
	Bezeichnung		MSQS 9-40.34	MSQS 9-50.42	MSQS 9-60.50	MSQS 9-70.58	MSQS 9-80.66			
	Α	Systemhöhe	10	10	10	10	10			
	В	Systembreite	20	20	20	20	20			
	B ₁	Schienenbreite	9	9	9	9	9			
	B ₂	Abstand Anschlagflächen	5.5	5.5	5.5	5.5	5.5			
	J	Wagenhöhe	8	8	8	8	8			
	J ₁	Schienenhöhe	5.5	5.5	5.5	5.5	5.5			
	Н	Hub	34	42	50	58	66			
	L	Systemlänge	40	50	60	70	80			
	L ₁	Abstand Bohrungen	10	10	10	10	10			
	L ₂	Anfangs-/Endabstand Bohrungen	10	10	10	10	10			
	L ₄	Abstand Bohrungen	20	20	20	20	20			
_	L ₅	Anfangs-/Endabstand Bohrungen	10	5	10	5	10			
Abmessungen (mm)	N	Abstand Bohrungen quer	15	15	15	15	15			
gen	е	Gewinde	M3	M3	M3	M3	M3			
ssun	f ₁	Durchmesser Durchgangsbohrungen	3.5	3.5	3.5	3.5	3.5			
ome	f ₂	Senklochdurchmesser	6	6	6	6	6			
₹	g	Nutzbare Gewindelänge	3	3	3	3	3			
	g 1	Klemmlänge	2	2	2	2	2			
		Kugeldurchmesser	1	1	1	1	1			
	fз	Anfangsabstand Durchgangsbohrung	10	10	15	15	15			
	f ₄	Abstand Durchgangsbohrung	-	30	30	40	50			
	f ₅	Abstand Durchgangsbohrung quer	10	10	10	10	10			
	S	Position Sensormitte	20	25	30	35	40			
	S ₁	Abstand zum Sensor	4.2	4.2	4.2	4.2	4.2			
	S ₂	Sensorbreite	5.4	5.4	5.4	5.4	5.4			
	S 3	Sensorlänge	13	13	13	13	13			
	S4	Länge des Sensorprints	75	75	75	75	75			
	rmin	Zulässiger Biegeradius	2	2	2	2	2			
zahl)	Со	Statische Tragzahl	1432	1909	2386	2864	3341			
Tragzahl (N)	С	Dynamische Tragzahl (≙ C₁₀₀)	692	846	989	1124	1252			
	Moq	Zulässiges statisches Moment quer	7.6	10.1	12.6	15.2	17.7			
Momente (Nm)	MoL	Zulässiges statisches Moment längs	6.7	10.8	15.8	21.8	28.7			
MON N	Ma	Zulässiges dynamisches Moment quer	3.7	4.5	5.2	6	6.6			
<	ML	Zulässiges dynamisches Moment längs	3.2	4.8	6.5	8.5	10.7			
Gewicht	(g)		45.6	56.9	68.1	79.2	90.3			

6.3 MSQS 12

	Do-	isha	Grössen						
	Beze	eichnung	MSQS 12-50.45	MSQS 12-60.48	MSQS 12-80.63	MSQS 12-100.70			
	А	Systemhöhe	13	13	13	13			
	В	Systembreite	27	27	27	27			
	B ₁	Schienenbreite	12	12	12	12			
	B ₂	Abstand Anschlagflächen	7.5	7.5	7.5	7.5			
	J	Wagenhöhe	10	10	10	10			
	J ₁	Schienenhöhe	7.5	7.5	7.5	7.5			
	Н	Hub	45	48	63	70			
	L	Systemlänge	50	60	80	100			
	L ₁	Abstand Bohrungen	15	15	15	15			
	L ₂	Anfangs-/Endabstand Bohrungen	10	7.5	10	12.5			
	L ₄	Abstand Bohrungen	25	25	25	25			
=	L ₅	Anfangs-/Endabstand Bohrungen	12.5	5	15	12.5			
Abmessungen (mm)	N	Abstand Bohrungen quer	20	20	20	20			
igen	е	Gewinde	M3	M3	M3	M3			
ssnu	f ₁	Durchmesser Durchgangsbohrungen	3.5	3.5	3.5	3.5			
рше	f ₂	Senklochdurchmesser	6	6	6	6			
¥	g	Nutzbare Gewindelänge	3.5	3.5	3.5	3.5			
	g 1	Klemmlänge	3	3	3	3			
		Kugeldurchmesser	1.5	1.5	1.5	1.5			
	fз	Anfangsabstand Durchgangsbohrung	10	15	17.5	20			
	f ₄	Abstand Durchgangsbohrung	30	30	45	60			
	f ₅	Abstand Durchgangsbohrung quer	13.5	13.5	13.5	13.5			
	S	Position Sensormitte	25	30	40	50			
	S ₁	Abstand zum Sensor	6.7	6.7	6.7	6.7			
	S 2	Sensorbreite	5.4	5.4	5.4	5.4			
	S 3	Sensorlänge	13	13	13	13			
	S4	Länge des Sensorprints	75	75	75	75			
	rmin	Zulässiger Biegeradius	2	2	2	2			
Tragzahl (N)	Co	Statische Tragzahl	2685	3759	5370	7518			
Trag ()	С	Dynamische Tragzahl (≙ C₁₀₀)	1427	1806	2318	2934			
	Moq	Zulässiges statisches Moment quer	18.9	26.5	37.9	53			
Momente (Nm)	MoL	Zulässiges statisches Moment längs	15.7	27	49.5	90.1			
Mom N)	Ma	Zulässiges dynamisches Moment quer	10.1	12.7	16.3	20.7			
	ML	Zulässiges dynamisches Moment längs	8.3	12.9	21.4	35.1			
Gewicht ((g)		103.9	124.4	165.5	206.5			

6.4 MSQS 15

	Danishawa			Grössen					
	Bezeichnung		MSQS 15-70.66	MSQS 15-90.70	MSQS 15-110.96	MSQS 15-130.102			
	Α	Systemhöhe	16	16	16	16			
	В	Systembreite	32	32	32	32			
	B ₁	Schienenbreite	15	15	15	15			
	B ₂	Abstand Anschlagflächen	8.5	8.5	8.5	8.5			
	J	Wagenhöhe	12	12	12	12			
	J ₁	Schienenhöhe	9.5	9.5	9.5	9.5			
	Н	Hub	66	70	96	102			
	L	Systemlänge	70	90	110	130			
	L ₁	Abstand Bohrungen	20	20	20	20			
	L ₂	Anfangs-/Endabstand Bohrungen	15	15	15	15			
	L ₄	Abstand Bohrungen	40	40	40	40			
=	L ₅	Anfangs-/Endabstand Bohrungen	15	5	15	5			
Abmessungen (mm)	N	Abstand Bohrungen quer	25	25	25	25			
gen	е	Gewinde	M3	M3	M3	M3			
ssun	f ₁	Durchmesser Durchgangsbohrungen	3.5	3.5	3.5	3.5			
ome	f ₂	Senklochdurchmesser	6	6	6	6			
₹	g	Nutzbare Gewindelänge	4	4	4	4			
	g 1	Klemmlänge	5	5	5	5			
		Kugeldurchmesser	2	2	2	2			
	f ₃	Anfangsabstand Durchgangsbohrung	15	25	25	25			
	f ₄	Abstand Durchgangsbohrung	40	40	60	80			
	f ₅	Abstand Durchgangsbohrung quer	16	16	16	16			
	S	Position Sensormitte	35	45	55	65			
	S ₁	Abstand zum Sensor	8.3	8.3	8.3	8.3			
	S 2	Sensorbreite	5.4	5.4	5.4	5.4			
	S 3	Sensorlänge	13	13	13	13			
	S4	Länge des Sensorprints	75	75	75	75			
	r _{min}	Zulässiger Biegeradius	2	2	2	2			
zahl I)	Co	Statische Tragzahl	4773	7637	8592	11456			
Tragzahl (N)	С	Dynamische Tragzahl (≙ C₁₀₀)	2611	3628	3940	4820			
	Moq	Zulässiges statisches Moment quer	42.5	68	76.5	102			
Momente (Nm)	MoL	Zulässiges statisches Moment längs	36.7	80.9	99.5	166.6			
Mg //	Ma	Zulässiges dynamisches Moment quer	23.2	32.3	35.1	42.9			
_	ML	Zulässiges dynamisches Moment längs	20.1	38.4	45.6	70.1			
Gewicht	(g)		216.2	277.5	338.6	399.5			

Tragfähigkeit und Lebensdauer

Tragfähigkeit und Lebensdauer

7.1 Grundlagen

Die Tragzahlen basieren auf den Grundlagen von DIN 636.

Gemäss DIN kann in den meisten Anwendungen eine bleibende Gesamtverformung des 0.0001-fachen Wälzkörperdurchmessers zugelassen werden, ohne dass das Betriebsverhalten des Lagers beeinträchtigt wird. Folglich wird die statische Tragzahl Co so hoch angesetzt, dass vorgängig erwähnte Verformung ungefähr dann eintritt, wenn die äquivalente statische Belastung der statischen Tragzahl entspricht. Damit die vorgängige Gesamtverformung nicht eintritt, ist es empfehlenswert, sich an der dynamischen Tragzahl C zu orientieren.

Die dynamische Tragzahl C ist die Belastung, bei der sich eine nominelle Lebensdauer L von 100'000 m Verfahrweg ergibt. Es ist zu beachten, dass für die Lebensdauerberechnung nicht nur die Last, die senkrecht auf die Führung wirkt zu berücksichtigen ist, sondern das Lastkollektiv aller auftretenden Kräfte und Momente.

Die Lebensdauer entspricht dem Verfahrweg in Meter, der von einer Führung zurückgelegt wird. Und dies bevor erste Anzeichen von Materialermüdung an einem der beteiligten Wälzführungselemente auftreten. Die nominelle Lebensdauer wird erreicht, wenn unter üblichen Betriebsbedingungen 90 % baugleicher Führungen die entsprechenden Verfahrwege erreichen oder überschreiten.

Entscheidend für die Dimensionierung der Führungen sind die auftretenden Belastungen im Verhältnis zur dynamischen Tragzahl C.

Die im Katalog angegebene dynamische Tragzahl C entspricht (△) der Definition von C₁00.

Definition der Lebensdauer

Wie vorgängig erwähnt, basiert die dynamische Tragzahl C_{100} auf einer Lebensdauer von 100'000 m. Andere Hersteller geben die Tragzahl C_{50} häufig für eine Lebensdauer von 50'000 m an. Daraus ergeben sich Tragzahlen, die um mehr als 20 % höher liegen als nach DIN ISO-Norm.

Umrechnungsbeispiel für Kugeln

C₅₀ Tragzahlen nach DIN ISO-Norm in C₁₀₀ umrechnen: $C_{100} = 0.79 * C_{50}$ C₁₀₀ Tragzahlen in C₅₀ umrechnen: $C_{50} = 1.26 * C_{100}$

 C_{50} = dynamische Tragzahl C in N für 50'000 m Verfahrweg

 C_{100} = dynamische Tragzahl C in N für 100'000 m Verfahrweg, definiert nach DIN ISO-Norm

7 Tragfähigkeit und Lebensdauer

7.2 Berechnung der Lebensdauer L gemäss DIN ISO-Norm

7.2.1. Die Formel zur Berechnung der nominellen Lebensdauer für Kugelführungen in Metern lautet:

$$L = a \cdot \left(\frac{C_{eff}}{P}\right)^3 \cdot 10^5 \,\mathrm{m}$$

a = Erlebenswahrscheinlichkeits-Faktor

Ceff = Effektive Tragfähigkeit in N

P = Dynamisch, äquivalente Belastung in N

= Nominelle Lebensdauer in m

Erlebenswahrscheinlichkeitfaktor a

Die Tragfähigkeiten für Wälzlager entsprechen der DIN ISO-Norm. Diese stellt einen Wert aus der Lebensdauerberechnung dar, der im Betriebseinsatz der Führung mit 90%iger Wahrscheinlichkeit übertroffen wird.

Ist die vorgängig erwähnte theoretische Erlebenswahrscheinlichkeit von 90% nicht ausreichend, müssen die Lebensdauerwerte mit einem Faktor a angepasst werden.

Erlebenswahrscheinlichkeit in %	90	95	96	97	98	99
Faktor a	1	0.62	0.53	0.44	0.33	0.21

7.2.2. Die Formel zur Berechnung der nominellen Lebensdauer in Stunden lautet:

$$L_h = \frac{L}{2 \cdot s \cdot n \cdot 60} = \frac{L}{60 \cdot v_m}$$

L = Nominelle Lebensdauer in m

L_h = Nominelle Lebensdauer in h

s = Hublänge in m

n = Hubfrequenz in min⁻¹

v_m = mittlere Verfahrgeschwindigkeit in m/min

7.2.3. Effektive Tragfähigkeit Ceff

Konstruktive und äussere Einflüsse können die dynamische Tragzahl C vermindern, so dass Ceff berechnet werden muss.

$$C_{eff} = f_K \cdot C$$

Ceff = Effektive Tragfähigkeit in N

fk = Kontaktfaktor

C = Max. zulässige dynamische Tragfähigkeit in N

Traofähiokeit und Lebensdauer

Tragfähigkeit und Lebensdauer

Kontaktfaktor fk

Werden mehrere Führungswagen in einem geringen Abstand ($L_b < L$) hintereinander montiert, wird aufgrund der Fertigungstoleranzen der Führungselemente und der Montageflächen eine gleichmässige Lastverteilung erschwert. Solche Einbausituationen lassen sich mit dem Kontaktfaktor f_k berücksichtigen:

Anzahl Führungswagen	1	2	3	4	5
Kontaktfaktor fk	1	0.81	0.72	0.66	0.62

7.2.4. Dynamische äquivalente Belastung P

Stufenförmige Belastung

Die auf ein Linearführungssystem wirkende Belastungen (F) unterliegen während des Betriebs häufigen Schwankungen. Dieser Umstand sollte bei der Berechnung der Lebensdauer berücksichtigt werden. Als dynamische äquivalente Belastung P bezeichnet man die wechselnde Belastungsaufnahme der Führung bei unterschiedlichen Betriebsbedingungen während der Verfahrstrecke.

$$P = \sqrt{\frac{1}{L}(F_1^3 \cdot L_1 + F_2^3 \cdot L_2 + \dots F_n^3 \cdot L_n)}$$

Sinusförmige Belastung

$$P = 0.7 F_{max}$$

= Äquivalente Belastung in N

F₁... F_n = Einzelbelastung in N während des Teilweges L L_n

 $F_{max} = Max.$ Belastung in N

L = L1 + ...+ Ln = Gesamtweg während eines Belastungszyklus in mm

L₁... L_n = Teilweg in mm einer Einzelbelastung während eines Belastungszyklus

Bestellbezeichnung:

Bestellreihenfolge		100	MSQS	7-	30.	20-	A-	MG-	0.1-	RS-	SB-	SH-	HA-	КВ
Stückzahl														
Baureihe	MSQS													
Schienenbreite B ₁	in mm													
Schienenlänge L	in mm													
Hub H	in mm													
Analog oder Digital	A, D													
Schnittstellenmodul	MG, OG, NL, MM, KI													
Auflösung [µm]	0.1, 1, 10													
Spezielle Refernzmarke	RS													
Spezielles Bohrbild	SB													
Spezieller Hub (1)	SH													
Höhenabgestimmt	НА													
Schmierung kundenspezifisch	KB													

Legende:

Α	Analog	KI	Kein Interface
D	Digital	RS	Referenzmarke Spezial
MG	Mit Gehäuse (Standard)	SB	Spezial Bohrbild
OG	Ohne Gehäuse	SH	Spezieller Hub (1)
NL	Nur Leiterplatte	HA	Höhenabgestimmt
MM	Micro Match	KB	Schmierung Kundenspeziefisch

⁽¹⁾ Mit der Option SH wird der Hub nach Kundenwunsch gekürzt und gleichzeitig der Käfig maximal verlängert, um höchste Belastungen zu ermöglichen.

Optionen:

Die Optionen sind gesondert zu bestellen:

Bestellnummer	Artikel
556 100 151	Basisplatte
556 100 152	Klemmplatte
556 100 160	FFC Verlängerungskabel 250 mm inklusive Adapter
556 100 161	FFC Verlängerungskabel 400 mm inklusive Adapter
556 100 162	FFC Verlängerungskabel 600 mm inklusive Adapter

www.schneeberger.com/kontakt

PROSPEKTE

- FIRMENBROSCHÜRE
- KUNDENSPEZIFISCHE FÜHRUNGEN
- LINEARFÜHRUNGEN und UMLAUFKÖRPER
- LINEARTISCHE
- MINERALGUSS SCHNEEBERGER
- MINISLIDE MSQscale

- MINI-X MINIRAIL / MINISCALE PLUS / MINISLIDE
- MONORAIL und AMS Profilschienen-Führungen mit integriertem Wegmesssyster
- MONORAIL und AMS Applikationskatalog
- POSITIONIERSYSTEME
- ZAHNSTANGEN

www.schneeberger.com

