# Wine Quality Classification

Bishal Adhikari Rijan Pokhrel Nirajan Bekoju Manoj Khatri

### **Topics of discussion**

- Problem Statement
- Dataset Description
- Exploratory Data Analysis (EDA)
- Imbalance Data Handling
- Model Development
- Model Evaluation
- Experiment Tracking
- Tools and Technologies

### **Problem Statement**

- The dataset describes the amount of various chemicals present in wine and their effect on it's quality.
- The datasets can be viewed as classification or regression tasks.
- The classes are ordered and not balanced (e.g. there are much more normal wines than excellent or poor ones)
- The complexity arises due to the fact that the dataset has fewer samples, & is highly imbalanced

### **Dataset Description**

- The dataset is related to red variants of the Portuguese "Vinho Verde" wine.
- Data Source: <a href="https://archive.ics.uci.edu/ml/datasets/wine+quality">https://archive.ics.uci.edu/ml/datasets/wine+quality</a>

```
Data columns (total 13 columns):
    Column
                         Non-Null Count
                                         Dtype
 0
    fixed acidity
                         1143 non-null
                                         float64
    volatile acidity
                         1143 non-null
                                         float64
    citric acid
                         1143 non-null float64
    residual sugar
                         1143 non-null
                                         float64
                    1143 non-null
    chlorides
                                         float64
    free sulfur dioxide 1143 non-null
                                        float64
    total sulfur dioxide
                         1143 non-null
                                         float64
    density
                         1143 non-null
                                         float64
 8
    pH
                         1143 non-null
                                        float64
    sulphates
                          1143 non-null
                                         float64
 10
    alcohol
                         1143 non-null
                                         float64
 11
    quality
                         1143 non-null
                                        int64
 12 Id
                          1143 non-null
                                         int64
dtypes: float64(11), int64(2)
memory usage: 116.2 KB
```

The count plot of the whole dataset on the basis of the quality of wine is shown aside.



- label 3 and label 4 => label 0
- label 5 => label 1
- label 6 => label 2
- label 7 and label 8 => label 3



### **EDA**

### • Descriptive Statistics

|       | fixed<br>acidity | volatile acidity | citric acid | residual<br>sugar | chlorides   | free sulfur<br>dioxide | total sulfur<br>dioxide | density     | рН          | sulphates   | alcohol     |
|-------|------------------|------------------|-------------|-------------------|-------------|------------------------|-------------------------|-------------|-------------|-------------|-------------|
| count | 1143.000000      | 1143.000000      | 1143.000000 | 1143.000000       | 1143.000000 | 1143.000000            | 1143.000000             | 1143.000000 | 1143.000000 | 1143.000000 | 1143.000000 |
| mean  | 8.311111         | 0.531339         | 0.268364    | 2.532152          | 0.086933    | 15.615486              | 45.914698               | 0.996730    | 3.311015    | 0.657708    | 10.442111   |
| std   | 1.747595         | 0.179633         | 0.196686    | 1.355917          | 0.047267    | 10.250486              | 32.782130               | 0.001925    | 0.156664    | 0.170399    | 1.082196    |
| min   | 4.600000         | 0.120000         | 0.000000    | 0.900000          | 0.012000    | 1.000000               | 6.000000                | 0.990070    | 2.740000    | 0.330000    | 8.400000    |
| 25%   | 7.100000         | 0.392500         | 0.090000    | 1.900000          | 0.070000    | 7.000000               | 21.000000               | 0.995570    | 3.205000    | 0.550000    | 9.500000    |
| 50%   | 7.900000         | 0.520000         | 0.250000    | 2.200000          | 0.079000    | 13.000000              | 37.000000               | 0.996680    | 3.310000    | 0.620000    | 10.200000   |
| 75%   | 9.100000         | 0.640000         | 0.420000    | 2.600000          | 0.090000    | 21.000000              | 61.000000               | 0.997845    | 3.400000    | 0.730000    | 11.100000   |
| max   | 15.900000        | 1.580000         | 1.000000    | 15.500000         | 0.611000    | 68.000000              | 289.000000              | 1.003690    | 4.010000    | 2.000000    | 14.900000   |

Box Plot of different features









 Correlation matrix visualized as a heatmap



• Distribution of features having higher correlation with target, visualized with respect to 'quality'





# **Train Test Split**





80% Train Data

#### 20% Train Data



### **Imbalance Data Handling**

- Undersampling
- Oversampling
- Smote
- Class Weights

### **Model Development**

- Logistic Regression
- Decision Trees (Experiment with early stopping, pruning)
- Ensembling methods
- Random Forest

### **Model Evaluation**

- F1-score as the primary evaluation metric
- roc
- auc-score
- precision and recall

# **Experiment Tracking**

Tensorboard

### **Tools and Technologies**

- Trello for agile methodology
- Discord for team meeting

### **CONCLUSION**