

# PCA y Reducción de la Dimensionalidad

### **MACHINE LEARNING**

PhD. César Astudillo | Facultad de Ingeniería



<u>This Photo</u> by Unknown Author is licensed under <u>CC BY-SA</u>

## ¿Qué es PCA?

- Definición: Análisis de Componentes Principales (PCA) es una técnica de reducción de dimensionalidad que transforma un conjunto de variables correlacionadas en un nuevo conjunto de variables no correlacionadas llamadas componentes principales.
- **Objetivo:** Simplificar la complejidad de los datos mientras se retiene la mayor cantidad de información posible.

# ¿Cómo funciona PCA?



## ¿Cómo funciona PCA?

- A través de un mecanismo del Algebra lineal, encuentra nuevas direcciones (componentes principales) que capturan la mayor variabilidad de los datos.
- Los datos son proyectados a un nuevo espacio con menos dimensiones.

## Aplicaciones Comunes de PCA

- Visualización de datos complejos.
- Eliminación de ruido.
- Reducción de multicolinealidad.

## Fundamentos Matemáticos de PCA

#### **Concepto Clave:**

 Proyección de los datos en nuevas bases ortogonales (componentes principales).

#### Pasos del Algoritmo:

- 1. Estandarización: Centrar los datos en media 0 y varianza 1.
- 2. Cálculo de la Matriz de Covarianza: Capturar relaciones lineales entre variables.
- 3. Descomposición en Autovalores y Autovectores: Los autovectores son las direcciones principales.
- 4. Selección de Componentes: Mantener los componentes con mayor varianza explicada.

#### Fórmula Clave:

• X\_{transformado} = XW donde W es la matriz de autovectores.

## ¿Cómo funciona PCA?



This Photo by Unknown Author is licensed under CC BY-SA

## Interpretación de los Componentes

#### ¿Qué representa cada componente?

• Los componentes principales son combinaciones lineales de las variables originales.

#### Varianza Explicada:

- El primer componente explica la mayor parte de la varianza.
- Los siguientes explican varianzas decrecientes.

#### Cómo Determinar Cuántos Componentes Usar:

- Scree Plot: Visualización del codo de la curva.
- Proporción de Varianza Explicada: Seleccionar el número que captura un % alto de varianza.

## Scree Plot



## Varianza Acumulada

|     | Eigenvalue | % Variance | Cumulated % Variance |
|-----|------------|------------|----------------------|
| PC1 | 8.21       | 39.12      | 39.12                |
| PC2 | 2.99       | 14.26      | 53.38                |
| PC3 | 2.81       | 13.36      | 66.74                |
| PC4 | 2.34       | 11.12      | 77.86                |
| PC5 | 1.37       | 6.53       | 84.39                |

## Ventajas y Limitaciones de PCA

#### Ventajas:

- Reducción efectiva de dimensionalidad.
- Elimina la multicolinealidad.
- Mejora la visualización de los datos.

#### **Limitaciones:**

- Solo captura relaciones lineales.
- Sensible a la escala de los datos.
- Difícil de interpretar cuando se reducen muchas dimensiones.



# PCA y Reducción de la Dimensionalidad

### **MACHINE LEARNING**

PhD. César Astudillo | Facultad de Ingeniería