PH101

Application of Newton's laws of motion

By

Dr. Murtaza

18-08-2014

Concept of force and Newton's Laws

Newton's First Law

Every body continues in its state of rest, or of uniform motion in a right line, unless it is compelled to change that state by forces impressed upon it.

$$\sum \vec{F}_i = \vec{0} \implies \vec{v} = \text{constant}$$

Newton's Second Law

The change of motion is proportional to the motive force impresses, and is made in the direction of the right line in which that force is impressed,

$$\sum_{i=1}^{N} \vec{F}_{i} = m \vec{a}$$

$$\sum_{i=1}^{N} \vec{F}_{i} = m(\ddot{r} - r\dot{\theta}^{2})\hat{r} + (r\ddot{\theta} + 2 \dot{r} \dot{\theta})\hat{\theta}$$

Newton's Third Law

To every action there is always opposed an equal reaction: or, the mutual action of two bodies upon each other are always equal, and directed to contrary parts.

$$\overrightarrow{F_{1,2}} = -\overrightarrow{F_{2,1}}$$

$$\overrightarrow{F}_{1,2} \qquad \overrightarrow{F}_{2,1} \qquad 2$$

Action-reaction pair of forces cannot act on same body; they act on different bodies.

Strategy to solve problems

- 1. Divide the system into smaller systems of a point mass.
- 2. Draw a force diagram.
- 3. Introduce coordinate system.
- 4. If two bodies in the system interact, the forces between them must be equal and opposite.
 - 5. Introduce constraint equations (if any).

Applications of Newton's Laws

1-The astronauts' tug-of-war

Two astronauts, A and B with mass M_a and M_b , initially at rest in free space, pull on either end of a rope that has mass M_p (but negligibly small). Astronaut A is stronger than Astronaut B. Find their motion, if each pulls the rope as hard as they can.

Although astronaut A is stronger than astronaut B, we still have $\overrightarrow{F_{a'}} = -\overrightarrow{F_{b'}}$ from the Newton's third law, i.e., the force exerting on B by A is the same as the force on A by B.

2-Freight Train

Three freight cars, each with mass M, are pulled by a force F. Ignore the friction. Determine the force on each car and their acceleration.

According to the Newton's third law, we have $\overrightarrow{F_1} = -\overrightarrow{F_{1'}}$ and $\overrightarrow{F_2} = -\overrightarrow{F_{2'}}$

The cars move together, therefore $\overrightarrow{a_1} = \overrightarrow{a_2} = \overrightarrow{a_3} = \overrightarrow{a}$

$$\overrightarrow{F_1} = M\overrightarrow{a}$$

$$\overrightarrow{F_2} - \overrightarrow{F_1} = M\overrightarrow{a}$$

$$\overrightarrow{F} - \overrightarrow{F_2} = M\overrightarrow{a}$$

$$F = nM \times F/NM$$
Force is proportional to

 $F_n = nM \times F/NM$: Force is proportional to number of car pulled

Constraints: Since the cars are joined, they are constrained to have same acceleration. However, this is not always true.

Block on string (Radial and tangential acceleration)

Mass m is whirled on the end of a string length R. The motion is in a vertical plane in the gravitational field of the earth. The forces on m

Radial equation
$$-(T+W\sin\theta)=ma_r$$

$$=m(\ddot{r}-r\dot{\theta}^2).$$
 Since $r=R=$ constant, $a_r=-R(\dot{\theta}^2)=-v^2/R$
$$T=\frac{mv^2}{R}-W\sin\theta$$

The string can pull but not push, so that T cannot be negative.

hence
$$mv^2/R \geq W \sin \theta$$

The maximum value of W $\sin\theta$ occurs when the mass is vertical up, i. e $mv^2/2 > W$. If this condition is failed, mass starts to fall and \ddot{r} is no longer zero.

Tangential equation
$$-W\cos\theta = ma_{\theta} \\ = m(r\ddot{\theta} + 2\dot{r}\dot{\theta}).$$
 Since $\dot{r} = 0$;
$$a_{\theta} = R\ddot{\theta} \\ = -\frac{W\cos\theta}{m}$$

The mass does not move with constant speed; it accelerates tangentially. On the downswing the tangential speed increases, on the upswing it decreases.

Constraints

a. WEDGE AND BLOCK

b. MASSES AND PULLEY

From the geometry,

$$(x - X) = (h - y) \cot \theta$$

Differentiating twice

$$\ddot{x} - \ddot{X} = -\ddot{y} \cot \theta$$

$$l = \pi R + (y_p - y_1) + (y_p - y_2)$$

Differentiating twice

$$0 = 2\ddot{y}_p - \ddot{y}_1 - \ddot{y}_2$$

$$A = \frac{1}{2}(\ddot{y}_1 + \ddot{y}_2) : A = \ddot{y}_p$$

c. PULLEY SYSTEM

$$l = X + \pi R + (X - h) + \pi R + (x - h)$$

Differentiating twice

where R is the radius of the pulleys

$$\ddot{X} = -\frac{1}{2}\ddot{x}.$$

Dynamics of rotational motion

Block on string (Radial acceleration)

Mass m whirls with constant speed v at the end of a string of length R. Find the force on m in the absence of gravity or friction.

$$-T=ma_r$$

$$=m(\ddot{r}-r\dot{ heta}^2).$$
 $\ddot{r}=\ddot{R}=0$ and $\dot{ heta}=v/R$. Hence $a_r=-R(v/R)^2=-v^2/R$ and $T=rac{mv^2}{R}$.

No outward force on m, but a person who does whirling feels this force. Its magnitude is equal to the pulling force but has opposite direction.

Problem

A horizontal frictionless table has a small hole in its center. Block A on the table is connected to block B hanging beneath by a string of negligible mass which passes through the hole.

Initially, B is held stationary and A rotates at constant radius r_0 with steady angular velocity ω_0 . If B is released at t=0, what is its acceleration immediately afterward?

Conical pendulum

Only two forces acting on mass M that are string force (T) and force of gravity (W).

Vertical eqⁿ
$$T \cos \alpha - W = 0$$

because y is constant and \ddot{y} is therefore zero.

Horizontal eqⁿ

The bob is accelerating in the \hat{r} direction with $a_r = -\omega^2 r$.

$$-T \sin \alpha = -Mr\omega^2$$
.

Since $r = l \sin \alpha$ we have

$$T \sin \alpha = M l \omega^2 \sin \alpha$$

or

$$T = Ml\omega^2$$
.

Hence

$$Ml\omega^2\cos\alpha = W$$

$$\cos \alpha = \frac{g}{l\omega^2}$$

Time period of revolution
$$T' = 2\pi \sqrt{\frac{l \cos \alpha}{g}}$$

$$\cos \alpha = \frac{g}{l\omega^2}$$

For $\omega \to \infty$, $\cos \alpha \to 0$ and $\alpha \to \pi/2$.

At high speeds the bob flies out until it is almost horizontal.

However, at low speeds the solution does not make sense. As $\omega \to 0$,

Which does not make any sense because $\cos \alpha \leq 1$

 $\cos \alpha \rightarrow \infty$

Our solution predicts $\cos \alpha > 1$ for $\omega < \sqrt{g/l}$. When $\omega = \sqrt{g/l}$,

 $\cos \alpha = 1$ and $\sin \alpha = 0$; the bob simply hangs vertically.

The only possible solution is $\cos \alpha$ =1, where T = W, for all ω values. The solution corresponds to the pendulum hanging straight down.

Physically, for $\omega \leq \sqrt{g/l}$ the only acceptable solution is $\alpha=0$, $\cos\alpha=1$. For $\omega>\sqrt{g/l}$ there are two acceptable solutions:

1.
$$\cos \alpha = 1$$

2.
$$\cos \alpha = \frac{g}{l\omega^2}$$

Solution 1 corresponds to the bob rotating rapidly but hanging vertically. Solution 2 corresponds to the bob flying around at an angle with the vertical. For $\omega > \sqrt{g/l}$, solution 1 is unstable—if the system is in that state and is slightly perturbed, it will jump outward.

