元素及其化合物·二·「铁 (Fe) 及其化合物」

铁单质

物理性质

- 银白色固体,有金属性光泽
- 容易被磁铁吸引
- 地壳中居第四位

化学性质

铁元素性质活泼,有较强的还原性,主要化合价为+2价和+3价

- 1. 与非金属单质反应
 - $3 \operatorname{Fe} + 2 \operatorname{O}_2 \stackrel{\text{ iny AM}}{=\!\!\!=\!\!\!=\!\!\!=} \operatorname{Fe}_3 \operatorname{O}_4$
 - $2\operatorname{Fe} + 3\operatorname{Cl}_2 \stackrel{\text{ iny fixed}}{=\!\!\!=\!\!\!=\!\!\!=} \operatorname{FeCl}_3$
 - Fe + S $\stackrel{\Delta}{=}$ FeS
- 2. 与水反应
 - 铁在高温下与水蒸气反应: $3\operatorname{Fe} + 4\operatorname{H}_2\operatorname{O}(\operatorname{g}) \stackrel{\operatorname{\overline{a}}\mathbb{A}}{=\!=\!=\!=} \operatorname{Fe}_3\operatorname{O}_4 + 4\operatorname{H}_2$
- 3. 与酸反应
 - 与非还原性酸: $Fe + 2H^+ = Fe^{2+} + H_2 \uparrow$
 - 与少量稀硝酸: $3\,\mathrm{Fe} + 8\,\mathrm{H}^+ + 2\,\mathrm{NO}_3^- \,=\, 3\,\mathrm{Fe}^{2+} + 2\,\mathrm{NO} \uparrow \,+\, 4\,\mathrm{H}_2\mathrm{O}$
 - 与过量稀硝酸: Fe + 4H⁺ + NO₃⁻ = Fe³⁺ + NO↑ + 2H₂O
 - 铁遇到冷的浓硫酸或浓硝酸会钝化

常考:对于特定比例的Fe与HNO3进行反应的方程式

- 1. 当比例大于等于 3:8,此时铁过量,生成物全部都是亚铁 $3 \text{ Fe}(过量) + 8 \text{ HNO}_3(稀) = 3 \text{ Fe}(\text{NO}_3)_2 + 2 \text{ NO} \uparrow + 4 \text{ H}_2 \text{O}$
- 2. 比例介于 3:8 和 1:4 之间,则会有部分二价铁继续被硝酸氧化成三价铁 $3 \, {\rm Fe}({\rm NO}_3)_2 + 4 \, {\rm HNO}_3(稀) = 3 \, {\rm Fe}({\rm NO}_3)_3 + {\rm NO} \, \uparrow \, + 2 \, {\rm H}_2{\rm O}$
- 3. 比例小于等于1:4,此时稀硝酸足量,铁单质全都被氧化成三价铁 $Fe + 4HNO_3(稀) = Fe(NO_3)_3 + NO \uparrow + 2H_2O$

- 置换反应: $Fe + Cu^{2+} = Fe^{2+} + Cu$
- 与氯化铁溶液: $Fe + 2Fe^{3+} = 3Fe^{2+}$

铁的氧化物

物理性质

名称	氧化亚铁 FeO	氧化铁 Fe ₂ O ₃	四氧化三铁 Fe ₃ O ₄
俗称	-	铁红	磁性氧化铁
化合价	+2	+3	+2、+3
物理性质	黑色粉末	红褐色粉末	黑色粉末
用途	-	炼铁、铝热剂、油漆、涂料	炼铁

化学性质

- 1. 与非氧化性酸(盐酸 HCl)反应:
 - 氧化亚铁 FeO: $FeO + 2H^+ = Fe^{2+} + H_2O$
 - 氧化铁 Fe_2O_3 : $Fe_2O_3 + 6H^+ = 2Fe^{3+} + 3H_2O$
 - 四氧化三铁 Fe_3O_4 : $Fe_3O_4 + 8H^+ = Fe^{2+} + 2Fe^{3+} + 4H_2O$
- 2. 与氧化性酸(过量稀硝酸 HNO₃)反应:
 - 氧化亚铁 FeO: $3 \text{ FeO} + 10 \text{ H}^+ + \text{NO}_3^- = 3 \text{ Fe}^{3+} + \text{NO} \uparrow + 5 \text{ H}_2 \text{O}$
 - 氧化铁 Fe_2O_3 : $Fe_2O_3 + 6H^+ = 2Fe^{3+} + 3H_2O$
 - 四氧化三铁 Fe_3O_4 : $3Fe_3O_4 + 28H^+ + NO_3^- = 9Fe^{3+} + NO \uparrow + 14H_2O$
- 3. 与氧化性酸(少量稀硝酸 HNO₃)反应:
 - 氧化亚铁 FeO: $FeO + 2 HNO_3 = Fe(NO_3)_2 + H_2O$
 - 氧化铁 Fe_2O_3 : $Fe_2O_3 + 6 HNO_3 = 2 Fe(NO_3)_3 + 3 H_2O$
- 四氧化三铁 Fe_3O_4 : $Fe_3O_4 + 8HNO_3 = 3Fe(NO_3)_3 + 2H_2O_3$
- 4. 与还原性酸 (氢碘酸 HI) 反应:
 - 氧化亚铁 $FeO: FeO + 2H^+ = Fe^{2+} + H_2O$
 - 氧化铁 Fe_2O_3 : $Fe_2O_3 + 6H^+ + 2I^- = 2Fe^{2+} + I_2 + 3H_2O$
 - 四氧化三铁 Fe_3O_4 : $Fe_3O_4 + 8H^+ + 2I^- = 3Fe^{2+} + I_2 + 4H_2O$
- 5. 与还原性物质(CO)反应:
 - 氧化亚铁 FeO: $FeO + CO = Fe + CO_2$
 - \mathfrak{A} CO = $2 \operatorname{Fe} + 3 \operatorname{CO} = 2 \operatorname{Fe} + 3 \operatorname{CO}_2$
 - 四氧化三铁 Fe_3O_4 : $Fe_3O_4 + 4CO = 3Fe + 4CO_2$

铁的氢氧化物

物理性质

名称	氢氧化亚铁	氢氧化铁
颜色状态	白色固体	红褐色固体

名称	氢氧化亚铁 Fe(OH) ₂	氢氧化铁 Fe(OH)3
水溶性	难溶	难溶

化学性质

- 1. 与非氧化性酸(盐酸 HCl)反应:
 - 氢氧化亚铁 $Fe(OH)_2$: $Fe(OH)_2 + 2HCl = FeCl_2 + 2H_2O$
 - 氢氧化铁 Fe(OH)₃: Fe(OH)₃ + 3 HCl = FeCl₃ + 3 H₂O
- 2. 与氧化性酸(稀硝酸 HNO₃)反应:
 - 氢氧化亚铁 $\mathrm{Fe}(\mathrm{OH})_2$: $\frac{\mathrm{Fe}(\mathrm{OH})_2 + 2\,\mathrm{HNO}_3($ 少量 $)}{3\,\mathrm{Fe}(\mathrm{OH})_2 + 10\,\mathrm{HNO}_3($ 过量 $) = 3\,\mathrm{Fe}(\mathrm{NO}_3)_3 + 2\,\mathrm{H}_2\mathrm{O}$
 - 氢氧化铁 $Fe(OH)_3$: $Fe(OH)_3 + 3HNO_3 = Fe(NO_3)_3 + 3H_2O$
- 3. 与还原性酸 (氢碘酸 HI) 反应:
 - 氢氧化亚铁 $Fe(OH)_2$: $Fe(OH)_2 + 2HI = FeI_2 + 2H_2O$
 - 氢氧化铁 Fe(OH)₃: Fe(OH)₃ + 3 HI = FeI₃ + 3 H₂O
- 4. 稳定性
 - Fe(OH) $_2$ 不稳定,在空气中易被氧化 $4 \operatorname{Fe}(OH)_2 + O_2 + 2 \operatorname{H}_2O = 4 \operatorname{Fe}(OH)_2$
 - Fe(OH) $_3$ 不稳定(但较 Fe(OH) $_2$ 稳定),受热分解 $2\,{\rm Fe}({\rm OH})_3\,\stackrel{\Delta}{=}\,{\rm Fe}_2{\rm O}_3+3\,{\rm H}_2{\rm O}$
- 5.制备
 - Fe(OH)₂: Fe²⁺ + 2 OH⁻ = Fe(OH)₂ ↓
 (将含有 NaOH 的滴管插入到含 Fe²⁺ 的溶液中,防止被空气中的 O₂ 氧化)
 - $Fe(OH)_3$: $Fe^{2+} + 3OH^- = Fe(OH)_3 \downarrow$
- 6. 转化

$$4\,{\rm Fe}({\rm OH})_2 + {\rm O}_2 + 2\,{\rm H}_2{\rm O} \; = \; 4\,{\rm Fe}({\rm OH})_3$$

铁盐与亚铁盐

Fe^{2+}

含有 Fe²⁺ 的溶液呈浅绿色,既有氧化性又有还原性

- 1. 氧化性: $Zn + Fe^{2+} = Fe + Zn^{2+}$
- 2. 还原性: $Cl_2 + 2 Fe^{2+} = 2 Fe^{3+} + 2 Cl^{-}$
- 3. 特性: 含有 Fe^{2+} 的盐溶液遇铁氰化钾 $K_3[Fe(CN)_6]$ 生成蓝色沉淀

$\mathrm{Fe^{3+}}$

含有 Fe3+ 的溶液呈黄色, 有较强的氧化性

1. 氧化性

- **1.** 铁离子与铜(Cu)的反应: $Fe^{3+} + Cu = Fe^{2+} + Cu^{2+}$
- 2. 铁离子与碘离子 (I^{-}) 的反应: $2 \operatorname{Fe}^{3+} + 2 \operatorname{I}^{-} = 2 \operatorname{Fe}^{2+} + \operatorname{I}_{2}$
- 3. 铁离子与硫离子(S^{2-})的反应: $2 \operatorname{Fe}^{3+} + 3 \operatorname{S}^{2-} = \operatorname{Fe}_2 S_3$
- 2. 特性: 含有 Fe³⁺ 的盐溶液遇 KSCN 溶液 变成红色

常见的铁盐与亚铁盐

- 1. 三氯化铁 $FeCl_3$: 棕黄色固体,一种常见的氧化剂,能与多种还原剂发生氧化还原反应,能回收废铜,刻制印刷电路板时作腐蚀液,其反应的离子方程式为 $2Fe^{3+}+Cu=2Fe^{2+}+Cu^{2+}$
 - 制备无水 FeCl₃: 在 HCl 气氛中加热蒸干 FeCl₃ 溶液,抑制 FeCl₃ + 3 H₂O ⇌ Fe(OH)₃ + 3 HCl 正移
 - 制备 Fe(OH)3 胶体:向沸水中滴入饱和 FeCl3 溶液并煮沸至溶液呈红褐色为止
- 2. 绿矾 $FeSO_4 \cdot 7H_2O$: 一种重要的还原剂,可用作补血剂及植物的补铁剂
- 3. 高铁酸钾 K_2 FeO₄: 深紫色晶体,具有强氧化性,可用作水处理剂和高能电池
- 4. 铁铵矾 $NH_4Fe(SO_4)_2 \cdot 12H_2O$: 无色晶体,易溶于水,常用作化学分析试剂药物和织物媒染剂
- 5. 赤血盐 $K_3[Fe(CN)_6]$: 红色晶体,易溶于水,常用于检验 Fe^{2+} ,生成蓝色沉淀

盐溶液保存

- Fe^{2+} 的盐溶液:加入少量铁粉,防止 Fe^{2+} 被氧化;加入少量对应的酸,抑制 Fe^{2+} 水解
- Fe³⁺ 的盐溶液:加入少量对应的酸,抑制Fe³⁺ 水解

Fe²⁺ 与 Fe³⁺ 的检验

- 1. 直接观察颜色
 - 含有 Fe²⁺ 的溶液呈浅绿色
 - 含有 Fe³⁺ 的溶液呈黄色
- 2. 利用显色反应
 - KSCN 溶液
 - 溶液变红色: Fe³⁺
 - 溶液不变色,加入 HCl / 氯水,变红色: Fe²⁺
 - 苯酚
 - 溶液呈紫色: Fe²⁺
- 3. 利用 Fe(OH)3 沉淀的颜色
 - NaOH溶液
 - 红褐色沉淀: Fe³⁺
 - 生成白色絮状沉淀,白色沉淀变为灰绿色,最后变为红褐色: Fe²⁺
- 4. 利用 Fe³⁺ 的氧化性
 - Cu 片

- 铜被腐蚀,溶液变为蓝绿色: Fe³⁺
- 淀粉-KI 试纸
 - 变蓝: Fe³⁺
- H₂S 水溶液
 - 产生淡黄色沉淀: Fe³⁺
- 5. 利用 Fe²⁺ 的还原性
 - 溴水
 - 溴水褪色: Fe²⁺
 - KMnO₄ 溶液
 - 紫色褪去: Fe²⁺
- 6. 利用 Fe²⁺ 的特殊反应
 - $K_3[Fe(CN)_6]$
 - 生成蓝色沉淀: KFe[Fe(CN)₆]

铁及其重要化合物的转化

