Ampliació de la Ontologia pizza.owl

SID - Grup 03

Enric Segarra Marc Font Pablo Calomardo

08/03/2025

1 SuperMarioPizza

En aquesta secció, hem ampliat l'ontologia pizza.owl amb una nova classe anomenada SuperMarioPizza i el corresponent ingredient TurtleTopping.

1.1 Classes afegides

- SuperMarioPizza: Una pizza temàtica basada en el videojoc Super Mario Bros. Aquesta pizza es caracteritza per tenir bolets i tortugues com a ingredients. La classe es crea dins de NamedPizza.
- TurtleTopping: Un nou tipus de topping que representa les tortugues. La classe es crea dins de FishTopping com a subclasse.

1.2 Axiomes en Lògica Descriptiva

Els axiomes afegits a l'ontologia per definir la SuperMarioPizza són:

TurtleTopping és una subclasse de FishTopping:

$$TurtleTopping \sqsubseteq FishTopping \tag{4}$$

1.3 Individus d'exemple

Per demostrar l'aplicació d'aquestes extensions, hem creat l'individu PizzaMarioInferida. El raonador HermiT infereix correctament que PizzaMarioInferida és de tipus SuperMarioPizza basant-se en els axiomes definits. Això demostra que les condicions necessàries i suficients per a la classe SuperMarioPizza funcionen correctament.

2 Afegir Pizzes

En aquesta secció, s'ha ampliat l'ontologia pizza.owl amb diverses pizzes, cada una amb les seves condicions.

2.1 NamedPizzaInstancia3onMarisco

Per afegir aquesta pizza, s'ha creat la classe NamedPizzaInstancia3onMarisco i, per a que complís amb la condició de portar marisc.

2.1.1 Axiomes en la Lògica Descriptiva

Els axiomes afegits a l'ontologia per definir la NamedPizzaInstancia3onMarisco són:

```
NamedPizzaInstancia3onMarisco ⊑ Pizza (5)
NamedPizzaInstancia3onMarisco ⊑ ∃hasTopping.MixedSeafoodTopping (6)
NamedPizzaInstancia3onMarisco ⊑ ∃hasTopping.PrawnsTopping (7)
```

2.2 PizzaDeMarisco

Per afegir aquesta pizza, s'ha creat la classe PizzaDeMarisco.

2.2.1 Axiomes en la Lògica Descriptiva

Els axiomes afegits a l'ontologia per definir la PizzaDeMarisco són:

```
PizzaDeMarisco \sqsubseteq Pizza (8)
PizzaDeMarisco \sqsubseteq \forallhasTopping.(MixedSeafoodTopping \sqcup PrawnsTopping) (9)
```

2.2.2 Individus d'Exemple

S'ha creat una instancia de Pizza, PizzaMarsicoInstancia amb el toping Gambitas (del domini de PrawnsTopping). El reasoner correctament la infereix com a PizzaDeMarisco

2.3 PizzaEclectica

Per afegir aquesta pizza, s'ha creat la classe PizzaEclectica.

2.3.1 Axiomes en la Lògica Descriptiva

Els axiomes afegits a l'ontologia per definir la PizzaEclectica són:

$$PizzaEclectica \sqsubseteq Pizza$$
 (10)

$$PizzaEclectica \sqsubseteq \exists hasTopping.min 10 PizzaTopping$$
 (11)

On l'axioma ∃hasTopping.min 10 PizzaTopping representa que una PizzaEclectica ha de tenir com a mínim 10 toppings.

2.3.2 Individus d'Exemple

S'ha creat una instancia de Pizza, PizzaEclecticaInstancia amb 10 toppings diferents. El reasoner correctament la infereix com a PizzaEclectica.

2.4 PizzaDeOferta

Per afegir aquesta pizza, s'ha creat la classe PizzaDeOferta.

2.4.1 Axiomes en la Lògica Descriptiva

Els axiomes afegits a l'ontologia per definir la PizzaDeOferta són:

$$PizzaDeOferta \subseteq Pizza$$
 (12)

$$PizzaDeOferta \sqsubseteq \exists hasTopping.max \ 2 \ PizzaTopping \tag{13}$$

On l'axioma ∃hasTopping.max 2 PizzaTopping representa que una PizzaDeOferta ha de tenir com a màxim 2 toppings diferents.

2.4.2 Individus d'Exemple

S'ha creat una instancia de Pizza, PizzaOfertaInstancia amb 2 toppings diferents. El reasoner correctament la infereix com a PizzaDeOferta.

2.5 PizzaTriqueso

Per afegir aquesta pizza, s'ha creat la classe PizzaTriqueso.

2.5.1 Axiomes en la Lògica Descriptiva

Els axiomes de la classe són els següents

$$PizzaTriqueso \sqsubseteq Pizza$$
 (14)

$$PizzaTriqueso \sqsubseteq = 3 hasTopping. CheeseTopping$$
 (15)

D'aquesta manera es garanteix que tota pizza amb exactament 3 toppings CheeseTopping és una PizzaTriqueso

2.5.2 Individus d'exemple

Per demostrar que la lògica és correcta, s'ha creat la instància PizzaTriquesoInstancia, amb exactament tres toppings de la categoria CheeseTopping. El reasoner l'ha inferit correctament com a una PizzaTriquesoInstancia.

2.6 PizzaEscandinava

Per afegir aquesta pizza, s'ha creat la classe PizzaEscandinava.

2.6.1 Axiomes en la Lògica Descriptiva

Els axiomes afegits a l'ontologia per definir la PizzaEscandinava són:

PizzaEscandinava 🗆 Pizza	(16)
$\texttt{PizzaEscandinava} \sqsubseteq (\exists \texttt{hasCountryOfOrigin.Denmark} \sqcup \exists$	(17)
$\texttt{hasCountryOfOrigin.Norway} \sqcup \exists$	(18)
hasCountryOfOrigin.Sweden)	(19)

2.6.2 Individus d'exemple

Per demostrar l'aplicació d'aquesta extensió, es pot crear un individu PizzaEscandinavaInstance amb els següents axiomes:

El raonador inferirà automàticament que PizzaEscandinavaInstance és de tipus PizzaEscandinava basant-se en el seu país d'origen.

3 Propietat hasCreator

En aquesta secció, hem ampliat l'ontologia pizza.owl amb una nova propietat anomenada hasCreator que permet assignar un creador a una pizza amb nom.

3.1 Propietat afegida

• hasCreator: Una propietat funcional que relaciona una NamedPizza amb la persona que l'ha creat. Aquesta propietat és important per documentar l'origen i la història de cada tipus de pizza.

3.2 Característiques de la propietat

La propietat hasCreator té les següents característiques:

- Funcional: Cada pizza només pot tenir un únic creador.
- Domini: Pizzes amb nom (NamedPizza).
- Rang: Persones (Persona).

3.3 Axiomes en Lògica Descriptiva

Els axiomes que defineixen la propietat hasCreator són:

$$hasCreator \sqsubseteq ObjectProperty \tag{22}$$

$${\tt Functional(hasCreator)} \tag{23}$$

(24)

I per restringir el domini i el rang:

$$\exists$$
hasCreator. $\top \sqsubseteq \forall$ hasCreator.NamedPizza (25)

$$\top \sqsubseteq \forall \text{hasCreator}^-.\text{Persona}$$
 (26)

3.4 Individus d'exemple

Per demostrar l'ús d'aquesta propietat, hem creat l'associació entre la pizza NamedPizzaInstancia1 i el seu creador Paco:

On NamedPizzaInstancia1 és un individu de tipus NamedPizza i Paco és un individu de tipus Persona.

4 Propietat influencedBy

En aquesta secció, hem ampliat l'ontologia pizza.owl amb una nova propietat anomenada influencedBy que permet representar les relacions d'influència entre pizzes amb nom.

4.1 Propietat afegida

• influencedBy: Una propietat transitiva que relaciona una pizza amb una altra pizza que l'ha influenciada. Aquesta propietat permet construir una xarxa de relacions històriques i culinàries entre les diferents pizzes.

4.2 Característiques de la propietat

La propietat influencedBy té les següents característiques:

- Transitiva: Si la pizza A està influenciada per la pizza B, i la pizza B està influenciada per la pizza C, llavors la pizza A també està influenciada per la pizza C.
- Domini i Rang: Tant el domini com el rang són pizzes amb nom (NamedPizza).

4.3 Axiomes en Lògica Descriptiva

Els axiomes que defineixen la propietat influencedBy són:

$$influencedBy \sqsubseteq ObjectProperty$$
 (28)

I per restringir el domini i el rang:

$$\exists influencedBy. \top \sqsubseteq \exists influencedBy. NamedPizza$$
 (30)

$$\top \sqsubseteq \exists influencedBy^{-}.NamedPizza \tag{31}$$

4.4 Individus d'exemple

Per demostrar l'ús d'aquesta propietat, hem creat l'associació entre NamedPizzaInstancia2 i NamedPizzaInstancia1:

On NamedPizzaInstancia2 és una instància de la classe NamedPizza i NamedPizzaInstancia1 és una instància de la classe NamedPizza. Aquesta relació indica que la NamedPizzaInstancia2 ha estat influenciada per la NamedPizzaInstancia1 en la seva creació o desenvolupament.

4.5 Inferències

Gràcies a la transitivitat d'aquesta propietat, si afegim més relacions d'influència, podem inferir automàticament relacions indirectes. Per exemple, si definim:

El raonador inferirà automàticament:

Això ens permet construir una xarxa complexa de relacions històriques i d'influència culinària entre les diferents variants de pizza.

5 QuantumPizza

En aquesta secció, hem ampliat l'ontologia pizza.owl amb una nova classe anomenada QuantumPizza i una nova propietat simètrica i irreflexiva anomenada DontCombine.

5.1 Classes i propietats afegides

- QuantumPizza: Una classe equivalent que representa una pizza que conté simultàniament ingredients que no combinen bé.
- **DontCombine**: Una propietat simètrica i irreflexiva que relaciona dos toppings que no combinen bé quan es posen junts a una pizza.

5.2 Característiques de la propietat DontCombine

La propietat DontCombine té les següents característiques:

- Simètrica: Si l'ingredient A no combina bé amb l'ingredient B, llavors l'ingredient B tampoc combina bé amb l'ingredient A.
- Irreflexiva: Un ingredient no pot no combinar bé amb si mateix.
- Domini i Rang: Tant el domini com el rang són ingredients de pizza (PizzaTopping).

5.3 Axiomes en Lògica Descriptiva

Els axiomes que defineixen la propietat DontCombine són:

```
{\tt DontCombine} \sqsubseteq {\tt ObjectProperty\ Symmetric(DontCombine)\ Irreflexive(DontCombine)}
```

Els axiomes que defineixen la classe QuantumPizza són:

Aquest axioma expressa que una QuantumPizza és equivalent a una pizza que té algun topping que no combina bé amb un altre topping que també té la mateixa pizza.

6 Repartiment

Les tasques del problema s'han distribuït a parts iguals per tots els membres del grup. Tots i cadascun d'ells han treballat de forma professional i cooperativa, generant així un àmbit de treball fructífer durant el temps que s'ha estat fent la pràctica.