X射线透射法, X和β射线反散射法 测定煤炭灰分的误差

前言

目前,波兰试验性测灰仪采用 β射线 反散射原理,连续测灰仪采用能量约60千 电子伏的 X射线透射或反散射原理。这些 方法均以下述为依据。

1、灰分和矿物质的关系是

M = K A

式中 A---煤中灰分;

M ——煤中矿物质,

K——取决于矿物质的化学组成和灰分的比例系数。

2、矿物质和有机物质的宏观有效截 · 面积,对射线的作用,如质量吸收系数, 散射质量吸收系数是不同的。

X射线照射固定表面密度煤样而反回 的射线强度N是取决于质量吸收系数 μω

$$N = N_c e^{-\mu} \omega^d \tag{1}$$

式中 d——煤样厚度。

X射线反散射强度 N_x取决于散 射 质量吸收系数 σω 和一次射线的质量吸收系

数 μ_{ω} 及射线的散射质量吸收系数 μ_{ω}^*

$$Nr = P - \frac{\sigma_{\omega}}{\mu_{\omega} + \mu_{\omega}^{*}}$$
 (2)

 β 射线的散射强度取决于散射质量吸收系数 σ_{ω} (β)。

$$Nr = p' \sigma_{\omega} (\beta)$$
 (3)

式中 N。——初始射线强度,

p p'一与测量条件有关的常数。

X射线的质量吸收系数取决于物质的 有效原子序数,其计算式如下:

$$\mu_{\omega} \approx \sum_{i} \alpha_{i} Z_{i}^{n}$$
 (4)

式中 α, ——表示某种物质的比重,

Z₁——表示某种物质的原子序数:

i ——原子序数表示此种物质 的组成部份。

散射的质量吸收系数均与有效的原子序数成比例。

$$\sigma\omega \approx \sum \alpha_i Z_i$$
 (5)

由此得出,在测定煤的灰分时,化学成分的波动对测灰法产生各种不同的数量 影响。

本文作者旨在比较化学成分波动对 β 射线散射法和能量60千电子伏的 X射线吸收法和反散射法测灰精度的影响。

试 验 方 法

用放射性测灰法测出的灰分A(R) 值与用烧灰法得出的灰分A(S)值之间

37

的差数作为测灰精度。

对上西里西亚煤田各矿的煤样进行了 源灰试验。灰分的化学成分波动很大:

SiO ₂	22-52%
$A1_2 \bigcirc 3$	11—30%
Fe ₂ O ₃	5-23 %
CaO	2.8-17%
MgO	0.40-8.9%
K ₂ O	0.8-2.7%
Na ₂ O	0.673.5%
S Os	1.7-17%
P 2 O 3	微量-1.13%

煤样灰分与下列因素有关:

- 1、β射线的反散射强度,
- 2、煤的质量吸收系数;
- 3、能量约60千电子伏X射线通过煤 样固定表面密度而反回的射线强度。

实验室用 I M P_{*}测灰仪 测 量 β射线的散射强度。利用能量约60千电子伏的 X 射线,根据灰分的化学成分和有机物质,算出质量吸收系数。当使用定型的测定系统组装成试验性装置时,根据所得到的结果,确定灰分和 X 射线反回的强度之间的试验关系。

对0-0.2毫米级煤样进行了试验。试验证明,煤样分布不均匀有关的误差可忽略不计。

对于机械强烈粉碎的煤,使用 \ \ 射线 反散射法测定灰 分 有 困 难。因 为 在 这 些测灰 法 中 煤 样 表 面 密 度均要求大于 20克/厘米²。

以一般方法确定反散射法的误差,推 算出透射法和反散射法之间的关系。

试 验 结 果

第1、2和3图说明煤对射线强度、 质量吸收系数和灰分间的关系。表综合了 测定煤样灰分的差值。

图 1 β射线反散射强度和灰分的关系 (IMP »型测灰仪校准曲线)

图 2 能量约60千电子伏的 X 射线对煤 的质量吸收系数和灰分间的理论关系

图 8 能量约60千电子伏的 X射线照射 固定表面密度的煤样反回的强度与灰 分之间的关系

38

用烧灰法和放射性测灰法测出的灰分差一般取决于测量技术。

29个煤样经30次测试, β射线的反散 射法测灰的相对误差不超过10%。对于灰 分大于30%的煤,则其测量误差较大,而 灰分小于12%的煤,则其测量误差较小。 用 X 射线吸收法测灰时相对误差值达到灰分值的100%。由试验 曲 线 (图 8) 和理论曲线 (图 2) 中确定的误差表明是一致的,随着灰分的增长,没有任何的变化。

理论误差一般均小于试验误差。因准

A ^a	$\mathbf{Y}_{\mathbf{q}}$	ΔA* (β)	A*(x),	$\Delta A^{d}(\mathbf{x})_{T}$	A.	\mathbf{A}^{d}	ΔΑ* (β)	A'(x) _D	$\Delta A^{-1}(\mathbf{x})_{\mathrm{T}}$
1 2	$\overrightarrow{2}$	3	4	5	1	2	3	4	5
5.3 6	3.2	0.3	1.38	0.80	21.3	22.8	1.2	2.3	0.4
6.2^{1} 7	7. 3	0.0	1.2	0.60	22.2	23.2	1.6	1.2	1.1
6.9 7	7.7	0.2	6.4	1.70	23.0	23.5	0.6	3.2	3.1
$9.1^{ 10}$	0.0	0.4	6.1	1.80	24.3	$24.7^{'}$	0.0	4.5	4.2
10.5 11	L.8	0.9	3.5	1.60	25.3	26.4	1.5	2.0	2.6
11.112	2.2	1.2	6.3	2.60	25.6	27.8	2.3	3.6	4.8
12.5 -	— Ì	2.6	4.0	9.0	27.1	28.2	0.6	4.1	1.4
13.5 15	5.3	0.4	0.5	0.60	28.1	29.8	0.6	2.1	4.8
14.4 -	-	1.6	2.6	}	29.0	31.7	0.5	7.0	1.7
15.2 16	8.6	0.8	8.8	4.2	30.4		3.5	1.4	-
16.017	7.8	0.8	7.4	2.6	30.8	32.1	1.3	3.2	5.0
16.2	— İ	1.6	11.6	17.0	32.1	33.3	1.5	3.7	3.9
18.018	8.7.	0.0	1.4	2.7	33.6	35.1	0.5	5.7	5.7
19.0	_	1.1	0.6	5.2	34.6	36.5	0.6	5.6	5.3
20.12	$oldsymbol{1.4}_{\scriptscriptstyle \parallel}^{\mid}$	0.8	12.1	0.7]			

说明。 $\triangle A$ (β) — β 射线散射法的测量结果与烧灰法结果之差值。 $\triangle A$ (X) — X射线吸收法的测量结果与烧灰法结果之差值。 D — 试验结果。 T — 理论结果。

确测量射线强度是有困难的,因为误差较大。当射线强度每秒相当于40000脉冲时,射线起伏测定的标准误差相当于每秒200脉冲,测灰精度达到0.5%;标准误差每秒为600脉冲时,测灰精度为1.5%。

射线强度测定结果说明,理论误差和试验误差不相等。但是,根据理论公式计算的结果和试验结果相接近。由此得出。根据理论关系 $\mu\omega$ (图 2) 的 放射性测灰法测定的误差值是最小的。

X射线反散射法误差的评定

煤中含铁量的变化是降低 X射线反散 射法精度的系数。 X射线的反散射强度与 截面成正比例。

$$\sigma_{\boldsymbol{\omega}}$$
: $(\mu_{\boldsymbol{\omega}} + \mu_{\boldsymbol{\omega}}^*)$

图 4 和 5 所示之灰分中 F e 2 O s 含 量和质量吸收系数及灰分散射质量吸收系数

图 4 分 灰 对 能 量约60千电子伏的 X 射线的质量吸收系数 和 F e 2 O a 之间的理论关系

间的关系表明,量约60千电子伏X射线 对媒散射质量吸收系数和质量吸收系数均 达到

图 5 灰分对能量约60千电子伏 X 射线的散射质量系数和 Fe₂O₃之间的理论关系

$$\sigma_{\omega} = (\sigma R - \sigma_{\odot}) A + (\sigma F e - \sigma R) \alpha + \sigma_{\odot}$$
(6)

$$\mu_{\omega} = (\mu R - \mu_{o}) A + (\sigma Fe - \mu R) \alpha + \mu_{o}$$
(7)

式中 R、O和Fe-分别为不含铁的矿物 质、有机物质和铁, α-煤中铁的化合物。

根据灰分中 $F_{02}O_{3}(\Delta ap)$ 密 度的变化测定灰分的相对误差:

$$\frac{\Delta A}{A} = \frac{\partial_{\mu\omega}}{\partial \alpha} \left(\frac{\partial_{\mu\omega}}{\partial A} \right)^{-1} \Delta \alpha P \frac{1 - \frac{\mu_{\omega}}{\sigma_{\omega}} \frac{\mu_{Q\omega}}{\partial \alpha} \left(\frac{\partial_{\mu\omega}}{\partial \alpha} \right)^{-1}}{1 - \frac{\mu_{\omega}}{\sigma_{\omega}} \frac{\partial_{\sigma\omega}}{\partial A} \left(\frac{\partial_{\mu\omega}}{\partial A} \right)^{-1}} (8)$$

推导公式得出 $\mu_{\omega} = \mu_{\omega}^*$

方程式
$$\frac{\partial_{\mu\omega}}{\partial \alpha} - (\frac{\partial_{\mu\omega}}{\partial A})^{-1} \Delta \alpha p (9)$$

是采用透射法时测定的相对误差,而使用 散射法得出的误差可用系数 R 表 明 公 式 (8)的另一部分。

公式(8)中的偏导数对煤中灰分和 铁的变化有相应的宏观有效断面的灵敏度 特点。 同时考虑

$$\frac{\partial \sigma_{\omega}}{\partial \alpha} = A^{-1} - \frac{\partial \sigma_{\omega}}{\partial \alpha_{D}}$$
 (10)

和

$$\frac{\partial \mu_{\omega}}{\partial \alpha} = A^{-1} - \frac{\partial \mu_{\omega}}{\partial \alpha_{D}}$$
 (11)

式中 α P 为灰分中的 Fe_2 O_8 ,根据 图 4 和图 5 的曲线计算相应的编导数,但 是根据图 6 的数据计算 $\mu_{\omega}/\sigma_{\omega}$ 。

图 6 上西里西亚煤田的一般化学组成来 计算能量约60千电子伏X射线的散 射质量系数、质量吸收系数和灰分 之间的理论关系

灰分A=8%和16%,则R系数0.96和0.95。

结 论

对于矿物质化学成分差别较大的煤, β射线的反散射法测灰出现误差大的可能 性较小。

用 3射线反散射法测定上西里西亚煤 田煤的灰分时灰分相对误差最大 不 超 过 20%,当使用能量约60千电子伏的 X射线 反散射法和透射法时测灰精度为100%。

当煤灰中的F e 2 O a 含量较大时,若用X射线测定法测灰,则可用回归方程曲线来表示。

使用反散射法测灰的误差比透射法的 测灰误差约小5%。

对于不均质煤,使用 β 射线反散射法 测灰为最有效。

对于一个矿井的同一种煤或化学特性 彼此接近的煤层的煤所测结果 是不 相 同 的。

> 郑痴佛摘译自波兰《采矿观察》, 1976年,第11期,504—507页

(上接第52页)

气吹式干燥机主要参数

处理能力, 吨/时: 250 按為发水分计 30 气体最初温度, C 1100—1200 干燥物料粒度, 毫米 0—13 物料水分, %: 入料 15—18

干燥产品 6—7 干燥机单位体积排出的水分,公斤/米³·时 3500—4000 蒸发1吨水需电耗,干瓦小时/吨 32 重力分离在人料浓度大于 1公斤/公斤(气体)时的效率,% 97 空气动力阻抗。公斤/米³ 320—400

吳式瑜整理

41