Hypothesis Testing $\hat{\theta}$: unrestricted mle; $H_0: \theta = \theta_0$ vs. $H_1: \theta \neq \theta_0$. Wald Test - MLE $\hat{\theta}$ under null $\theta = \theta_0$,

$$W=\frac{(\hat{\theta}-\theta_0)^2}{1/I(\hat{\theta})}\sim \chi_{(1)};~W=\frac{\hat{\theta}-\theta_0}{\mathrm{SE}(\hat{\theta})}\sim N(0,1)[\mathrm{I}(\hat{\theta})~\mathrm{obs~info~matrix}]$$

Score Test - Null distribution θ_0 by CLT $S(\theta) \sim N(0, I_n(\theta))$ under null $\frac{S(\theta_0)^2}{I(\theta_0)} \sim \chi_{(1)}; \; \frac{S(\theta_0)}{\sqrt{I(\theta_0)}} \sim N(0,1) \; E[S(\theta)] = 0 \text{ and } V(S(\theta)) = I_n(\theta)$

Res. Deviance : pf. $l(\theta_0)$ expand around $\hat{\theta}$. Power Function: type I: P(reject null| null); power: p(accept null| h1); type II: 1- power

Survival Analysis

Basics $S(t)=P(\bar{T}>t)=1-F(t)$ $f(t)=\frac{dF(t)}{dt}=-\frac{dS(t)}{dt};$ hazard fun. (rate, instantaneous occurrence) $\lambda(t)=\lim_{\delta\to 0}\frac{P(t\leq \bar{T}<t+\delta|\bar{T}>t)^{=\lambda\delta}}{\delta}$ $\lim\frac{F(t+\delta)-F(t)}{S(t)\delta}=\frac{f(t)}{S(t)}=-\frac{dS(t)}{S(t)dt}=-\frac{d}{dt}\ln S(t)=-\frac{d}{dt}\ln 1-F(t);$ $\int_0^t \lambda(u) du = \int_0^t \frac{f(u)}{1 - F(u)} du = -\ln(1 - F(u)) \Big|_0^t \to \Lambda(t) = -\ln S(t)$ $\stackrel{\text{A1}}{=} P(C_i > t | x_i, \theta) P(t < \tilde{T}_i < t + dt | \tilde{T}_i > t) P(\tilde{T}_i > t | x_i, \theta) \stackrel{\text{A2}}{=}$ $\propto \lambda_i(t|x_i,\theta)dtS_i(t|x_i,\theta)$

(2) censored($E_i = 0$) at $t \Leftrightarrow P(t \leq T_i < t + dt; E_i = 0) \stackrel{\text{A1}}{=}$ $P(t \le C_i < t + dt | x_i, \theta) \ P(\tilde{T}_i > t | x_i, \theta) \stackrel{A2}{=} \propto S_i(t_i | x_i, \theta)$

A1: indep censoring $C_i \perp \tilde{T}_i | X_i$ A2: noninfo. censor C_i not involve θ $\ell(\theta) \propto \sum e_i \log(\lambda_i(t_i|x_i,\theta)) + \sum \log S_i(t_i|x_i,\theta) / \sum - \int_0^t \lambda(t;\theta) dt$ pois likelihood $D \sim \text{pois}(\lambda)$ (1) one sample:

 $\ell(\lambda) = D \log(\lambda) - \lambda \sum_{i=1}^{n} t_i / \lambda Y$, Y: total person-year; $\hat{\lambda} = \frac{D}{Y}$ $\operatorname{se}(\hat{\lambda}) = \frac{\sqrt{D}}{Y}$, reparam $\alpha = \log(\lambda)$ [more symmetric], se $\log(\hat{\lambda}) = \sqrt{\frac{1}{D}}$

 $\begin{array}{l} [\mathrm{FI}](2) \; \mathrm{two \; sample} \; \ell(\lambda_0,\lambda_1) = d_0 \log(\lambda_0) - \lambda_0 \sum_{i=1}^n \, t_i^{\lambda_0 \, Y_0} + \\ d_1 \log(\lambda_1) - \lambda_1 \sum_{i=1}^n t_i^{\lambda_1 \, Y_1} \; \mathrm{mle} \; \hat{\lambda}_i = \frac{d_i}{Y_i} \; \mathrm{reparam:} \; \log(\lambda_0) = \alpha, \end{array}$ $\log(\lambda_1) = \alpha + \beta$; mle $\hat{\alpha} = \log(\frac{d_0}{Y_0})$, $\hat{\beta} = \log(\frac{d_0}{Y_0} / \frac{d_1}{Y_1})$

bern likelihood N bins each iid Bern (π) , length h(Y=Nh). $\mu=\lambda Y=N\pi\to\lambda^{constant}=\pi\frac{N}{Y}=\frac{\pi}{h}/\frac{\mu}{Y}$ [bern/pois]. surv one bin=1- risk

=1- π = (1- λ h). T-year surv:(1- λ h)^N = exp(log(1- λ h)^N) = exp(N × (- λ h)) \approx exp(- λ T) [T = Nh], trick $e^x \approx 1 + x$, log(1+x) $\approx x$ exp likelihood λ exp(- λ t), then $L(\lambda) = e^{-\lambda U_{n+1}} \prod_{j=1}^{D} \lambda \exp(-\lambda u_j)$ = $\lambda^D \exp^{-\lambda T}, \, [\text{aggre data,each interval} \,\, U_j \,\, \text{is exp dist}, \, U_{j+1} \,\, \text{censor at T}]$ (1) one sample mle $\frac{n}{\sum y_i} \sum y_i \sim \Gamma \rightarrow \chi$ cal CI (2) two sample: HR ω

(OI), ρ hazard in group 0, LRT=2($\ell(\hat{\omega},\hat{\rho})$ - $\ell(\omega_0,\hat{\rho}_{\omega_0}))$

exp model repa $\tilde{T} \sim \exp(\lambda = \lambda_0 e^{\beta X} = e^{\alpha + \beta X})$, model $\lambda = \lambda_0 e^{\beta X}$. $S_i(t;\theta) = e^{-\int_0^t \lambda_0 e^{\beta x_i} dt} = e^{-t\lambda_0} e^{\beta x_i} = S_0(t;\theta) e^{\beta x_i} [\log(-\log S)]$

AFT $\log \tilde{T}_i = \alpha + \gamma x_i + \sigma \epsilon$, $S_i(te^{\gamma x_i}) = S_0(t)$ or $S_i(t) = S_0(te^{-\gamma x_i})$

 $\lambda_0 = e^{-\alpha}, \ \beta = -\gamma \text{ or } (-\gamma/\sigma); \ \sigma = 1 \text{ or } (1/\kappa)$ Weibull $\lambda_i(t;\theta) = \lambda \kappa (\lambda t)^{\kappa-1} e^{\beta x_i}$; $S_i(t;\theta) = e^{-(\lambda t)^{\kappa} e^{\beta x_i}}$ shape param

Discrete case $S(t_j) = P(\tilde{T} > t_j) = \frac{P(\tilde{T} > t_j)}{P(\tilde{T} > t_{j-1})} P(\tilde{T} > t_{j-1}) =$ $\frac{P(\tilde{T} > t_j)}{P(\tilde{T} > t_{j-1})} \frac{P(\tilde{T} > t_{j-1})}{P(\tilde{T} > t_{j-2})} \dots = \prod \frac{S(t_j)}{S(t_{j-1})} = \prod (1 - h(t_j))$

Discrete hazard is a condit. prob $h(t_j) = P(\tilde{T} = t_j | \tilde{T} \ge t_j)$ $= \frac{S(t_{j-1}) - S(t_j)}{S(t_{j-1})} = 1 - \frac{S(t_j)}{S(t_{j-1})} \rightarrow S(t_j) = \prod_{j \le t} \frac{S(t_j)}{S(t_{j-1})}$ $= \prod_{t_j \le t} (1 - h(t_j)) [S(t) \text{ multiplication of previous survivals}]$

Discrete likelihood $\ell(\vec{h}) = \sum_{j=1}^{T} d_j \log(h_j) + \sum_{j=1}^{T} (r_j - d_j) \log(1 - h_j)$

Kaplan-Meier from liklhd, $\hat{h}_j = \frac{d_j}{r_i}$, so $\hat{S}(t) = \prod_{j:t_i < t} \left[1 - \frac{d_j}{r_i}\right]$

= $\prod_{u < t} \left[1 - \frac{1\{Y(u) > 0\}}{Y(u)} dN(u) \right]$ term2: $(1 - \lambda(t)dt) \left[d_j \text{ death at j; } r_j \text{ risk} \right]$ at j]; , var (\hat{h}_j) = var $(1-\hat{h}_j)$ = $\frac{\hat{h}_j(1-\hat{h}_j)}{r_j}$ [OFI inverse]. curve [5,14) Greenwood $V(\hat{S}(t))$ $V(log\hat{S}(t)) = \sum_{j: t_j \le t}^{S} V(log(1 - \frac{d_j}{r_j}))$

 $\overset{\mathrm{g=log(1-h)}}{\approx} \sum_{j:t_i \leq t} [1/(1-d_j/n_j)^2] V(\tfrac{d_j}{r_j}) = \sum \tfrac{d_j}{r_j(r_j-d_j)};$ $V(\hat{S}(t)) = \hat{S}(t)^2 \sum_{i:t,i < t} \frac{d_j}{n_j(n_j - d_j)} = \hat{S}(t)^2 \int_0^t \frac{dN(u)}{Y(u)[Y(u) - dN(u)]}$

[delta2: $g = exp(x) \ x = logS(t)$]; twice delta method. Problem: CI not bounded in (0,1).

Nelson-Aalen unbiased cum. hazard $\hat{\Lambda}_{NA}(t) = \sum_{j:t_i < t} \frac{d_j}{r_i}$ $=\int_0^t \frac{\mathbf{1}_{\{Y(u)>0\}}}{Y(u)} dN(u) \, \hat{S}_{KM}(t) \approx \exp[-\hat{\Lambda}_{NA}(t)],$ $CI=\Lambda(t)\stackrel{\cdot}{\pm} z_{1-\frac{\alpha}{2}}\times S.E.[\hat{\Lambda}(t)]$, var($\hat{\Lambda}(t))=$ var(log(S(t))) as $\hat{\Lambda}(t) = -\log(S(t))$ see greenwood; KM var : $V(\hat{H}(t)) = \sum_{j:t_j \le t} \frac{d_j}{r^2}$

 $\overline{\text{COX reg partial likelihood model } \lambda_i(t; Z_i)} = \lambda_0(t) \exp(\beta' Z_i(t))$ $z_i(t) = 1_{\{v_i < t\}}, \, \prod_{i=1}^n \left(\frac{\exp(\beta' z_i(t_i))}{\sum_{l=1}^n Y_l(t_i) \exp(\beta' z_l(t_i))} \right)^{e_i},$ i and j with $v_i < t$ and $v_j > t \frac{\lambda_i(t)}{\lambda_i(t)} = \exp(\beta)$ [time-varying cov/immortal]

 $\log\text{-rank } d_{kj} \sim Bin(r_{kj}, \lambda_j h) \ \& \ d_{kj} | d_j \sim hyp(r_{kj}, r_j, d_j), \ r_{kj} \ \text{is the number at risk for group } k \ \text{at time } t_j, \ d_{kj} \ \text{is event count for group } k \ \text{at}$ time t_j , n_j is total count. $E_j(0) = \frac{d_j r_{1j}}{r_j} V_j(0) = \frac{d_j r_{0j} r_{1j} (r_j - d_j)}{r_j^2 (r_j - 1)}$

 $U(0)^2/I(0) = \left(\sum_{j=1}^g d_{1j} - \sum_{j=1}^g E_j\right)^2 / \sum_{j=1}^g V_j \sim \chi^2(1)$

Breslow Estimator $\hat{\Lambda}_0(t)$ $S_i(t) = e^{-\hat{\Lambda}_0(t) \exp(\hat{\beta}'X)}$ [Model-based survival probability], $\hat{\Lambda}_0(t_i) = \sum_{j:t_j \leq t} \left(\frac{d_j}{\sum_{l=1}^n Y_l \exp(\beta X_l)} \right)$ where $Y_i(t) = 1_{T_i \geq t}$

at-risk. $\hat{\Lambda}(t) = \hat{\Lambda}_0(t)e^{\hat{\beta}'X}$ s-year risk $\pi_i(s) = 1 - S_i(s) = 1 - e^{-\Lambda_0(s) \exp(\hat{\beta}' X)}$

Diagnostic (1) martingale resi fun form cont var (2) cum hazard vs cox-snell resi (model fit linear) (3)score res outlier/influential (4) schoenfeld res PH assump (5) dfbeta(s) influential obs $\frac{2}{\sqrt{n}}$ threshold Assess PH assmp. (1) Schoenfeld residuals, (2) log(-log(S(t)) plots parallel lines, (3) covariate-time interaction.

homogeneous pois process: (1) $N(t) - N(s) \sim poi(\lambda(t-s))$ (2) interarrival time U_i idep $exp(1/\lambda)$ (3) num event in non-overlap tiem

Counting process: $(1)\tilde{N}_i(t) = \mathbf{1}_{\{\tilde{\mathbf{T}}_i < \mathbf{t}_i\}}$; At-risk $Y_i(t) = \mathbf{1}_{\{\tilde{T}_i > t_i\}}$; (2) jump: $d\tilde{N}_i(t) = \tilde{N}_i(t^- + dt) - \tilde{N}_i(t^-)$; (3) $P(d\tilde{N}_i(t) = 1 | \tilde{N}_i(t) = 0)$ $=\lambda(t)dt$. (4) $N(t)=\sum N_i(t)$ (cum case); dN(t): jump/cases at t; $Y(t) = \sum Y_i(t)$ (5) $P(dN_i(t) = 1|F_{t-}) = E(dN_i(t)|F_{t-}) = Y_i(t)\lambda_i(t)dt$ intensity process $Y_i(t)\lambda_i(t)$ define diff $dM_i(t) = dN_i(t) - Y_i(t)\lambda_i(t)dt$ (O-E), take **E**, $E[dM_i(t) \mid \mathcal{F}_{t-}] = E[dN_i(t) \mid \mathcal{F}_{t-}]^{=}$ $-E[Y_i(t)\lambda_i(t) dt \mid \mathcal{F}_{t-}] = 0$

martingale ϵ $M_i(t) = N_i(t) - \int_0^t Y_i(u)\lambda_i(u)du$; $M_i = \delta_i - e^{\beta^T z_i}\hat{H}_0(t_i)$; $E[M_i(t) \mid \mathcal{F}_s] = M_i(s), E[M(t) - M(s) \mid \mathcal{F}_s] = 0$

competing risk 1 - p(transplant): die before trans or surv not trans. cause-speci hazard $\lambda_i(t) \equiv \lim P(t \leq \tilde{T}_i < t + h, \tilde{E}_i = j \mid \tilde{T}_i \geq t)/h;$ $f_j(t)dt = \lambda_j(t) dt \exp\left\{-\int_0^t \sum_{k=1}^J \lambda_k(u) du\right\}$ no event occ, $\sum f_j = 1$; $\text{cox-type:} \lambda_{ij}(t) = \lambda_{0j}(t) \exp\{\beta'_j x_i\}; \text{ cum incidence: } \hat{\pi}_{ij}(s) =$ $\sum_{k} d\hat{\Lambda}_{ij}(t_k) \exp\left\{-\sum_{j=1}^{J} \hat{\Lambda}_{ij}(t_{k-1})\right\}, \Lambda_{ij}(t) = \Lambda_{0j}(t) \exp\{\beta'_j x_i\} \text{ cum}$ base from breslow; non-param: nelson+KM, AalenJohansen

 $\hat{\pi}_{j}(s) = \sum_{k:t_{k} \leq s} \frac{d_{jk}}{r_{k}} \hat{S}_{KM}(t_{k-1}), \ \hat{S} = \prod_{k:t_{k} \leq t} \left(1 - \frac{\sum_{j=1}^{g} d_{jk}}{r_{k}}\right)$ subdist hazard at risk or devlp other event $\psi_{ij}(t) = \psi_{0j}(t) \exp(\gamma_i' x_i)$ $,\psi_{j}(t)\equiv \lim P\left(t\leq \tilde{T}_{i}< t+h, \tilde{E}_{i}=j\mid \tilde{T}_{i}\geq t \text{ or } (\tilde{T}_{i}< t \text{ and } \tilde{E}_{i}\neq j)\right),$ $\hat{\pi}_{ij}(s) = 1 - \exp\left\{-\hat{\Psi}_{0j}(s)\exp\left\{\hat{\gamma}_j'x_i\right\}\right\}$ connect cox-type-finegray $\pi_i(t) = 1 - \exp\{-\Psi_i(t)\}$ Piecewise hazard: $\prod_{i=1}^{n} \prod_{k=1}^{k} \prod_{l=1}^{l} \lambda_{kl}^{d_{ikl}} exp\left(-y_{ikl}\lambda_{kl}dt\right)$ where $\sum_{i=1}^{n} d_{ikl} \sim pois(\lambda_{kl}, \sum_{i=1}^{n} y_{ikl}), \text{ model } log(\lambda_{ikl}) = \alpha_k + \beta_l + \gamma' X_i$ $L(\beta) = \textstyle \prod_{i=1}^n \textstyle \prod_{k=1}^K [(\lambda_{0k} exp(\beta'x_i))^{d_{ik}} exp(-y_{ik}\lambda_{0k} exp(\beta'x_i)),$ $\hat{\lambda}_{0k}(\beta) = d_k / \{\sum_i^n y_{ik} exp(\beta' x_i)\}$ Diagnostics (1)Sen/TP = $P(\hat{\pi}_i(s) > \pi^* | \tilde{N}_i(s) = 1)$ and $PPV = P(\tilde{N}_i(s) = 1 | \hat{\pi}_i(s) > \pi^*).$ (2) Spe/TN= $P(\hat{\pi}_i(s) < \pi^* | N_i(s) = 0)$ and $NPV = P(N_i(s) = 0 | \hat{\pi}_i(s) < \pi^*)$ AUC sen vs 1-spe $P(\hat{\pi}_i(s) > \hat{\pi}_j(s)|N_i(s) = 1, N_j(s) = 0)$, w/o censoring, estimate as prop. of concordant pairs: $P(\hat{\pi}_i(s) > \hat{\pi}_i(s) | \tilde{T}_i < \tilde{T}_i)$ when censor, use C-index: $(T_{censor} > T_{non-censor})$. Estimate sen/spe w/ censoring: use bayes & KM est. $Sen = \frac{(1 - P(N_i(s) = 0 | \hat{\pi}_i(s) \ge \pi^*) (1 - P(\hat{\pi}_i(s) < \pi^*))}{1 - P(N_i(s) = 0)}.$ $Spe = \frac{P(N_i(s) = 0 | \hat{\pi}_i(s) < \pi^*) P(\hat{\pi}_i(s) < \pi^*) [\text{empirical prop}]}{P(N_i(s) = 0)^{\text{s-year survival KM}}}.$

Calibration Hosmer-Lemeshow $\sum_{k=1}^K \frac{(O_k - E_k)^2}{N_k \bar{\pi}_k (1 - \bar{\pi}_k)} \sim \chi_{k-2}^2$, $E_k = N_k \bar{\pi}_k$; $\bar{\pi}_k$ avg risk in grp k, w/ censor $O_k = N_k (1 - S_k(s))$ from KM. Brier score $(1/n)\sum_{i=1}^{n} \left(\tilde{N}_i(s) - \hat{\pi}_i(s) \right)$

Eliminate nuisance param: (1) data y = (v, w), $P(v, w|\theta, \psi) = P(w|v, \theta)P(v|\theta, \psi)$ if v3 is ancillary. (2) Profile $\prod_{i=1}^{n} \prod_{k=1}^{K} [\lambda_{0k} \exp(\beta' x)]^{d_{ik}} \exp(-y_{ik} \lambda_{ik} \exp(\beta' x_i)) \text{ (person } i, \text{ int } k).$ MLE BaseHaz $\hat{\lambda}_{0k} = \frac{d_k}{\sum_{i=1}^{n} y_{ik} \exp(\beta x_i)} \text{ to get}$

 $\prod_{i=1}^n \prod_{k=1}^k \left(\frac{\exp(\beta x_i)}{\sum_{l=1}^n y_l(t_i) \exp(\beta x_l)}\right)^{d_{ik}} \text{ where } i = \text{individual, } k = \text{interval.}$ Only i individuals with events contribute, Cox PH simplifies to $\prod_{i=1}^n \left(\frac{exp(\beta'x_i)}{\sum_l^n Y_l(t_i)dtexp(\beta'x_l)}\right)^{e_i}$ where $Y_l(t_i) = 1_{\{T_l \geq t_i\}}$ and $e_i = 1_{\{T_i < C_i\}}$. Partial lkhd for 1-1 match: $P(D_{i1} = 1|D_{i1} + D_{i2} = 1, z_{i1}, x_{i1}, z_{i2}, x_{i2}, ; \theta) =$ $P(dN_i(t) = 1|dN_{i1}(t) + dN_{i2}(t) = 1, F_{t_i-}, \theta) =$ $\frac{exp(\alpha_i+\beta'Z_{i1}+\gamma'X_{i1})}{exp(\alpha_i+\beta'Z_{i1}+\gamma'X_{i1})+exp(\beta'Z_{i2}+\gamma'X_{i2})}. \text{ Partial LKHD becomes}} {\prod_{i=1}^d \frac{exp(\beta'Z_{i1}+\gamma'X_{i1})+exp(\beta'Z_{i1}+\gamma'X_{i2})}{exp(\beta'Z_{i1}+\gamma'X_{i1})+exp(\beta'Z_{i2}+\gamma'X_{i2})}} \text{ where } \theta = (\alpha,\beta,\gamma).}$

Counting Process: (1) N(0) = 0, (2) $N(t) \in \{..., -1, 0, 1, ...\}$, (3 & 4) $s < t \Rightarrow N(s) < N(t)$ and N(t) - N(s) = # events in interval (s, t]. $N(s+t) - N(s) \sim \text{Poisson}(\lambda t)$ Properties: (1) Memoryless $P(X > s + t | X > t) = P(X > s) \forall s, t > 0$. depends only on the length (2) Independent non-overlapping increments: $N(s+t) - N(s) \perp N(t)$. (3) Poisson-Gamma Duality: $N(t) \sim \text{Poiss}(\lambda t), S_n \sim \text{Gamma}(n, \lambda) \Rightarrow$ $P(N(t) \ge n) = P(S_n \le t), \ N(t) = \sum N_i(t) \sim \text{Pois}(\sum \lambda_k) \text{ Interarrival}$ Times $\{\overline{T}_n, n \geq 1\} \sim \exp{(\lambda)} = \text{time between } (n-1)^{\text{th}} \text{ and } n^{\text{th}} \text{ event.}$ $P(T_1 > t) = P(N(t) = 0).$ $P(T_2 > t) = E[P(T_2 > t \mid T_1] =$ $\int_{0}^{s} P(N(t+s) - N(s) = 0 \mid N(s) = 1) ds \stackrel{\perp}{=} e^{-\lambda t}$ Waiting Times $S_n = \sum_{i=1}^n T_i \sim \text{Gamma}(n, \lambda),$ Order stat: $P(T_1 < s_1, T_2 < s_1 + s_2, ... T_n < s_1 + ... + s_n | N(t) = n) =$ $n!\prod_{i=1}^n\frac{s_i}{t^n}\mathbb{1}(0< s_{(1)}<\ldots< s_{(n)}< t)\Rightarrow U(0,t)$ Ran. Samp. Order S. Cond. Dist: $T_1|N(t)=1\sim U(0,t),\ N(s)|N(t)=n\sim Bin(n,\frac{s}{t})$ $T_i \sim exp(\lambda_i) \Rightarrow P(X_1 < X_2) = \int_0^\infty P(X_1 < X_2 | X_1 = x) P(X_1 = x) dx =$ $\int_0^\infty P(x < X_2) \lambda_1 \exp(-\lambda_1 x) dx = \frac{\lambda_1}{\lambda_1 + \lambda_2}$ MC: at time n, dist of $X_n = \vec{S}_{1 \times M}$ (m states) \rightarrow dist of $X_{n+1} = \vec{S}Q$ as: $p(x_{n+1} = j) = \sum_i P(x_{n+1} = j | x_n = i)^{p_{ij}} P(x_n = i)^{s_i} = \sum_i s_i p_{ij}$