XLNet: Generalized Autoregressive Pretraining for Language Understanding

Content

- > Transformer
- Model Comparison
- Unsupervised Pre-training Tasks
- Performance
- Ablation Studies
- References

Transformer Model

Figure 1: The Transformer - model architecture.

Attention

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several attention layers running in parallel.

Key, Value, Query

Aultiplying x1 by the WQ weight matrix produces q1, the "query" vector associated with that word. We end up creating a "query", a "key", and a "value" projection of each word in the input sentence.

Multi head attention

```
MultiHead(Q, K, V) = Concat(head_1, ..., head_h)W^O

where head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)
```

Where the projections are parameter matrices $W_i^Q \in \mathbb{R}^{d_{\text{model}} \times d_k}$, $W_i^K \in \mathbb{R}^{d_{\text{model}} \times d_k}$, $W_i^V \in \mathbb{R}^{d_{\text{model}} \times d_v}$ and $W^O \in \mathbb{R}^{hd_v \times d_{\text{model}}}$.

- dmodel = 512; dk = dv = dmodel/h
- Jointly attend to information from different representation subspaces at different positions
- Reduced dimension of each head, the total computational cost is similar to single-head attention with full dimensionality

Model

- Embeddings + Positional Encoding
- Encoder
 - Multi head attention + Fully Positionwise FFN
 - Implements residual connections with batch normalization
- Decoder
- Masked Multi Head Attention : to prevent positions from attending to subsequent positions
 - Encoder Decoder Multi Head Attention + Fully Positionwise FFN
- > Two Linear Layers & Softmax

Model Comparison

- ELMo (Peters et al. NAACL 2018)
 - BiLSTM Pretrained using LM
 - Embeddings from Hidden Layers
- ULMFiT (Howard & Ruder ACL 2018)
 - > LSTM Pretrained using LM & Fine Tuned on Specific Task
 - Add Classification layer for Predictions
- OpenAl GPT (Radford et al. 2018)
 - Transformer Decoder Pretrained using LM(Left to Right)
 - Add Classification layer for Predictions
- ➤ BERT (Devlin et al. 2018)
 - > Transformer encoder Pretrained using MLM & NPS
 - Add Classification layer for Predictions

Masked Language Model

- Rather than always replacing the chosen words with [MASK], the data generator will do the following:
- 80% of the time: Replace the word with the [MASK] token, e.g., my dog is hairy → my dog is [MASK]
- 10% of the time: Replace the word with a random word, e.g., my dog is hairy → my dog is apple
- 10% of the time: Keep the word unchanged, e.g., my dog is hairy → my dog is hairy. The purpose of this is to bias the representation towards the actual observed word.

- Why not <MASK> everywhere ?
 - Might not predict well during fine tuning
 - Might learn good contextual representation of only <MASK>
- Why leave some sentences intact?
 - Biasing to learn masked tokens better
 - Helps model learn representation for all the tokens
- Will random words confuse the model?
 - > Yes. Hence, only small percentage
 - ➤ Didn't affect model performance

Next Sentence Prediction

- ➤ Helps understanding the relationship between two text sentences
- ➤ 50% of time B is the actual next sentence that follows A, & other 50% random sentence from corpus
- > 97%-98% accuracy at this task

Denoising autoencoding approach

Advantages:

Context dependency

Disadvantages:

- Input noise -> Pretrain-Finetune discrepancy
- Independence assumption

Permutation Language Modelling

Factorization order: $4 \rightarrow 3 \rightarrow 1 \rightarrow 2$

Masked LM Comparison

$$\mathcal{J}_{BERT} = \log p(\text{New} \mid \text{is a city}) + \log p(\text{York} \mid \text{is a city}),$$

$$\mathcal{J}_{XLNet} = \log p(\text{New} \mid \text{is a city}) + \log p(\text{York} \mid \text{New}, \text{is a city}).$$

Two Stream Attention Motivation

- ➤ Predict using current position & previous context
- > But, also encode previous and current content for next token prediction

Two Stream self attention – Target Aware Prediction

Content Stream visualization

Joint View of the Content Stream (Factorization order: $3 \rightarrow 2 \rightarrow 4 \rightarrow 1$)

Content Stream visualization

Split View of the Content Stream (Factorization order: $3 \rightarrow 2 \rightarrow 4 \rightarrow 1$)

Query Stream visualization

Joint View of the Query Stream (Factorization order: $3 \rightarrow 2 \rightarrow 4 \rightarrow 1$)

Query Stream visualization

Split View of the Query Stream (Factorization order: $3 \rightarrow 2 \rightarrow 4 \rightarrow 1$)

Design choices

Partial prediction

Transformer-XL

- Relative position encoding
- Recurrence mechanism

Experiments

RACE	Accuracy	Middle	High
GPT [25]	59.0	62.9	57.4
BERT [22]	72.0	76.6	70.1
BERT+OCN* [28]	73.5	78.4	71.5
BERT+DCMN* [39]	74.1	79.5	71.8
XLNet	81.75	85.45	80,21

RACE Dataset (reading comprehension)

SQuAD1.1	EM	F1	SQuAD2.0	EM	F1
Dev set result	s without	data aug	mentation		
BERT 10	84.1	90.9	BERT† [10]	78.98	81.77
XLNet	88.95	94.52	XLNet	86.12	88.79
Test set result	s on lead	erboard,	with data augmentation (as of June 19,	2019)	
Human [27]	82.30	91.22	BERT+N-Gram+Self-Training [10]	85.15	87.72
ATB	86.94	92.64	SG-Net	85.23	87.93
BERT* [10]	87.43	93.16	BERT+DAE+AoA	85.88	88.62
XLNet	89,90	95.08	XLNet	86.35	89.13

SQUAD Dataset (Question answering)

GLUE Benchmark

Model	MNLI	QNLI	QQP	RTE	SST-2	MRPC	CoLA	STS-B	WNL
Single-task single	models on de	ev	11111			1930	100.00	1100	
BERT [2]	86.6/-	92.3	91.3	70.4	93.2	88.0	60.6	90.0	2
XLNet	89.8/-	93.9	91.8	83.8	95.6	89.2	63.6	91.8	2
Single-task single	models on te	st							
BERT 10	86.7/85.9	91.1	89.3	70.1	94.9	89.3	60.5	87.6	65.1
Multi-task ensem	bles on test (fi	rom leade	rboard as	of June	19, 2019)			
Snorkel* [29]	87.6/87.2	93.9	89.9	80.9	96.2	91.5	63.8	90.1	65.1
ALICE*	88.2/87.9	95.7	90.7	83.5	95.2	92.6	68.6	91.1	80.8
MT-DNN* [18]	87.9/87.4	96.0	89.9	86.3	96.5	92.7	68.4	91.1	89.0
XLNet*	90.2/89.7	98.6^{\dagger}	90.3 [†]	86.3	96.8 [†]	93.0	67.8	91.6	90.4

Experiments

Model	IMDB	Yelp-2	Yelp-5	DBpedia	AG	Amazon-2	Amazon-5
CNN [14]	4	2.90	32.39	0.84	6.57	3.79	36.24
DPCNN [14]		2.64	30.58	0.88	6.87	3.32	34.81
Mixed VAT [30, 20]	4.32	×	75	0.70	4.95	-	-
ULMFiT [13]	4.6	2.16	29.98	0.80	5.01		7
BERT [35]	4.51	1.89	29.32	0.64	-	2.63	34.17
XLNet	3.79	1.55	27.80	0.62	4.49	2.40	32.26

Model	NDCG@20	ERR@20
DRMM [12]	24.3	13.8
KNRM 8	26.9	14.9
Conv 8	28.7	18.1
BERT [†]	30.53	18.67
XLNet	31.10	20.28

ClueWeb09-B (Document ranking)

Text Classification

Ablation Studies

#	Model	RACE	SQuAD2.0		MNLI	SST-2	
		***************************************	F1	EM	m/mm		
1	BERT-Base	64.3	76.30	73.66	84.34/84.65	92.78	
2	DAE + Transformer-XL	65.03	79.56	76.80	84.88/84.45	92.60	
3	XLNet-Base $(K = 7)$	66.05	81.33	78.46	85.84/85.43	92.66	
4	XLNet-Base $(K = 6)$	66.66	80.98	78.18	85.63/85.12	93.35	
5	- memory	65.55	80.15	77.27	85.32/85.05	92.78	
6	 span-based pred 	65.95	80.61	77.91	85.49/85.02	93.12	
7	- bidirectional data	66.34	80.65	77.87	85.31/84.99	92.66	
8	+ next-sent pred	66.76	79.83	76.94	85.32/85.09	92.89	

References

- https://arxiv.org/pdf/1706.03762.pdf
- https://arxiv.org/pdf/1802.05365.pdf
- https://arxiv.org/pdf/1801.06146.pdf
- https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
- https://medium.com/@hyponymous/paper-summary-bert-12af7c89d2e0
- https://medium.com/dissecting-bert/dissecting-bert-part2-335ff2ed9c73
- https://www.lyrn.ai/2018/11/07/explained-bert-state-of-the-art-language-model-for-nlp/
- http://jalammar.github.io/illustrated-bert/
- http://mlexplained.com/2019/01/07/paper-dissected-bert-pre-training-of-deep-bidirectional-transformers-for-language-understanding-explained/