Data-dependent PAC-Bayes priors via differential privacy

Speaker: Yi-Shan Wu

Institute of Information Science

Academia Sinica

Taiwan

May 25, 2018

- data-dependent PAC-bound
- Weak convergence suffice

Notations

- ullet observe $\mathcal{S} \sim \mathcal{D}^m$: m i.i.d. samples from \mathcal{D}
- ullet parameter of NN : $\mathbf{w} \in \mathbb{R}^p$
- $L_{\mathcal{D}}(\mathbf{w}) = \mathbb{E}_{z \sim \mathcal{D}} [\ell(\mathbf{w}, z)]$
- $\bullet \ L_{\mathcal{D}}(\mathcal{Q}) = \mathop{\mathbb{E}}_{\mathbf{w} \sim \mathcal{Q}} \left[L_{\mathcal{D}}(\mathbf{w}) \right] = \mathop{\mathbb{E}}_{\mathbf{w} \sim \mathcal{Q}} \left[\mathop{\mathbb{E}}_{z \sim \mathcal{D}} \left[\ell(\mathbf{w}, z) \right] \right]$
- $\hat{L}_{\mathcal{S}}(\mathcal{Q}) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{E}_{\mathbf{w} \sim \mathcal{Q}} \left[\ell(\mathbf{w}, z_i) \right]$
- ullet generalization error : $L_{\mathcal{D}}(\mathcal{Q}) \hat{L}_{\mathcal{S}}(\mathcal{Q})$

PAC-Bayes bounds

Theorem 7 (PAC-Bayes; Maurer 2004, Thm. 5) *Under bounded loss* $\ell \in [0, 1]$, for every $\delta > 0$, $m \in \mathbb{N}$, distribution \mathcal{D} on Z, and distribution P on \mathbb{R}^p ,

$$\mathbb{P}_{S \sim \mathcal{D}^m} \left((\forall Q) \operatorname{KL}(\hat{L}_S(Q) | | L_{\mathcal{D}}(Q)) \le \frac{\operatorname{KL}(Q | | P) + \log 2\sqrt{m}}{m} + \frac{1}{m} \log \frac{1}{\delta} \right) \ge 1 - \delta.$$
(2)

General PAC-Bayes bound, where the prior ${\cal P}$ is chosen before observing samples.

Typically the KL term is the dominant quantity in the bound and analysis is constrained by the need to choose $\mathcal Q$ such that $\mathit{KL}(\mathcal Q \| \mathcal P)$ is not large. If $\mathbf w^*$ receives low probability from $\mathcal P$, ($\mathcal P$ is chosen badly), the bound is obvious bad.

Prior results by Lever[2013]

Catoni [2007] started studying the problem on finding bounds for data-distribution-dependent prior. Lever [2013] studied the randomized classifier with $\mathcal{Q}(\mathcal{S}) \propto exp(-\tau \hat{L}_{\mathcal{S}})$, $\mathcal{P}(\mathcal{S}) \propto exp(-\tau L_{\mathcal{D}})$. They are able to bound $\mathit{KL}(\mathcal{Q}||\mathcal{P})$ independent of \mathcal{D} , yielding

Theorem 1 (Lever, Laviolette, and Shawe-Taylor 2013) For $S \in Z^m$, let $Q(S) = P_{\exp(-\tau \tilde{L}_S)}$ be a Gibbs posterior with respect to some measure P on \mathbb{R}^p and some bounded (surrogate) risk \tilde{L}_S . Under bounded loss $\ell \in [0,1]$, for every $\delta > 0$, $m \in \mathbb{N}$, distribution \mathcal{D} on Z,

$$\underset{S \sim \mathcal{D}^m}{\mathbb{P}} \Big(\mathrm{KL} \big(\hat{L}_S(Q(S)) || L_{\mathcal{D}}(Q(S)) \big) \leq \frac{1}{m} \Big(\tau \sqrt{\frac{2}{m} \log \frac{2\sqrt{m}}{\delta} + \frac{\tau^2}{2m} + \log \frac{2\sqrt{m}}{\delta}} \Big) \Big) \geq 1 - \delta. \quad (1)$$

However, the bound can be still loose, since it allows classifier overfits on some distribution.

data-dependent PAC-Bayes bound (Goal)

Trivial but bad approach to consider several $\mathcal{P}s$: by union bound. Fix a distribution \mathcal{D} on \mathcal{Z} ,

$$R(\epsilon) = \{ S \in \mathcal{Z}^m : (\exists \mathcal{Q}) KL(\hat{L}_S(\mathcal{Q}) || L_D(\mathcal{Q})) > \epsilon \} - - \text{before}$$

$$R(\epsilon_p) = \{ S \in \mathcal{Z}^m : (\exists Q) KL(\hat{L}_S(Q) || L_D(Q)) > \epsilon_p \} - -\text{now}$$

If we union M kinds of \mathcal{P} , then the probability becomes $1 - M\delta$.

Theorem 8 Under bounded loss $\ell \in [0,1]$, for every $\delta > 0$, $m \in \mathbb{N}$, distribution \mathcal{D} on Z, and ϵ -differentially private data-dependent prior $\mathscr{P} \colon Z^m \leadsto \mathcal{M}_1(\mathbb{R}^p)$,

$$\mathbb{P}_{S \sim \mathcal{D}^m} \Big((\forall Q) \operatorname{KL}(\hat{L}_S(Q) || L_{\mathcal{D}}(Q)) \le \frac{\operatorname{KL}(Q || \mathscr{P}(S)) + \ln 2\sqrt{m}}{m} + \max \Big\{ \frac{2}{m} \ln \frac{3}{\delta}, \ 2\epsilon^2 \Big\} \Big) \ge 1 - \delta.$$

differential privacy

Since now our goal is to obtain a "data-dependent prior \mathcal{P} , bad \mathcal{S} may lead to bad prior \mathcal{P} , and bad prior lead to bad $R(\epsilon_p)$. However, If $\mathcal{P}_{\mathcal{S}}$ is generated by some "stable" mechanism, then maybe we don't have to union too much of them.

differential private algorithm

Definition 3 A randomized algorithm $\mathscr{A}: Z^m \leadsto T$ is (ϵ, δ) -differentially private if, for all pairs $S, S' \in Z^m$ that differ at only one coordinate, and all measurable subsets $B \subseteq T$, we have $\mathbb{P}\{\mathscr{A}(S) \in B\} \leq e^{\epsilon} \mathbb{P}\{\mathscr{A}(S') \in B\} + \delta$.

Under such intuition, we have the following theorems,

differential privacy

Theorem 6 (Dwork et al. 2015b, Thm. 11) Let $m \in \mathbb{N}$, let $\mathscr{A}: Z^m \leadsto T$, let \mathcal{D} be a distribution over Z, let $\beta \in (0,1)$, and, for each $t \in T$, fix a set $R(t) \subseteq Z^m$ such that $\mathbb{P}_{S \sim \mathcal{D}^m} \{S \in R(t)\} \leq \beta$. If \mathscr{A} is ϵ -differentially private for $\epsilon \leq \sqrt{\ln(1/\beta)/(2m)}$, then $\mathbb{P}_{S \sim \mathcal{D}^m} \{S \in R(\mathscr{A}(S))\} \leq 3\sqrt{\beta}$.

(for each
$$\mathcal{P} \in \mathcal{M}_1(\mathbb{R}^p)$$
, fix a set $R(\mathcal{P}) = \{ \mathcal{S} \in \mathcal{Z}^m : \text{conditions} \}$ such that $\mathbb{P}_{\mathcal{S} \sim \mathcal{D}^m} \{ \mathcal{S} \in R(\mathcal{P}) \leq \beta \}$)

That is, with a stable algorithm, the probability only enlarge to $3\sqrt{\beta}$.

Theorem 8 Under bounded loss $\ell \in [0,1]$, for every $\delta > 0$, $m \in \mathbb{N}$, distribution \mathcal{D} on Z, and ϵ -differentially private data-dependent prior $\mathscr{P} \colon Z^m \leadsto \mathcal{M}_1(\mathbb{R}^p)$,

$$\underset{S \sim \mathcal{D}^m}{\mathbb{P}} \Big((\forall Q) \ \mathrm{KL}(\hat{L}_S(Q) || L_{\mathcal{D}}(Q)) \leq \frac{\mathrm{KL}(Q || \mathscr{P}(S)) + \ln 2\sqrt{m}}{m} + \max \Big\{ \frac{2}{m} \ln \frac{3}{\delta}, \ 2\epsilon^2 \Big\} \Big) \geq 1 - \delta.$$

If we have probability $\geq 1-\beta$ in Theorem 7, then $\delta=3\sqrt{\beta}$

Ideally

For convenience, choose $\mathcal{P}_{\mathbf{w}} = \mathcal{N}(\mathbf{w}, \Sigma)$, where $\mathbf{w}_0 \in \mathbb{R}^p$ is chosen by private mechanism and approximately minimzing $\hat{\mathcal{L}}_{\mathcal{S}}$. (Ideal prior : easy to calculate & data dependent)

Theorem 10 Let $\tau > 0$ and assume loss is bounded $\ell \in [0,1]$. One sample from the Gibbs posterior $P_{\exp(-\tau \hat{L}_S)}$ is $\frac{2\tau}{m}$ -differentially private.

However,

- Gibbs distribution is intractable.
- We can only approximate it by producing a sequence of samples that converges in distribution to the target Gibbs distribution.
 Weak convergence, however, does not yield privacy guarantees.

- 1 data-dependent PAC-bound
- Weak convergence suffice

Weak convergence suffice

Theorem 16 (Weak convergence suffices) Let $\tau > 0$ and let $\Sigma \in \mathbb{R}^{p \times p}$ be positive definite. For every $\mathbf{w} \in \mathbb{R}^p$ and $S \in Z^m$, let $P_{\mathbf{w}} = \mathcal{N}(\mathbf{w}, \Sigma)$, $Q_{\mathbf{w}}^S = (P_{\mathbf{w}})_{\exp(-\tau \tilde{L}_S)}$, where $\tilde{L}_S(\cdot)$ is bounded (surrogate) risk. Then, for every $\epsilon' > 0$ and $\delta, \delta' \in (0,1)$, with probability at least $1 - \delta - \delta'$ over $S \sim \mathcal{D}^m$ and a sequence $\mathbf{w}_1, \mathbf{w}_2, \ldots$ that, conditional on S, converges in distribution a.s. to an ϵ -differentially private mean $\mathbf{w}^*(S)$, there exists $N \in \mathbb{N}$, such that, for all n > N,

$$\mathrm{KL}(\hat{L}_S(Q_{\mathbf{w}_n}^S)||L_{\mathcal{D}}(Q_{\mathbf{w}_n}^S)) \leq \frac{\mathrm{KL}(Q_{\mathbf{w}_n}^S||P_{\mathbf{w}_n}) + \ln 2\sqrt{m}}{m} + \max\{\frac{2}{m}\ln\frac{3}{\delta},\ \epsilon^2\} + \epsilon'.$$

Here, the sequence of \mathbf{w}_i are obtained by SGLD that SGLD converges weakly to Gibbs distribution.

Some prior works

Lemma 15

Using bounded cross-entropy. Define $\mathcal{P}_{\mathbf{w}} = \mathcal{N}(\mathbf{w}, \Sigma)$ and let $G, G_1, G_2, \dots \in \mathcal{M}_1(\mathbb{R}^p)$, where $G_n \to G$ weakly. Then $\forall \epsilon, \delta, \exists N \in \mathbb{N}$ such that $\forall n > N$, w.h.p. over $(\mathbf{w}_n, \mathbf{w}_n^*) \sim (G_n, G)$ that

$$KL(\hat{L}_{\mathcal{S}}(\mathcal{Q}_{\mathbf{w}_{n}}) \| L_{\mathcal{D}}(\mathcal{Q}_{\mathbf{w}_{n}})) \leq KL(\hat{L}_{\mathcal{S}}(\mathcal{Q}_{\mathbf{w}_{n}^{*}}) \| L_{\mathcal{D}}(\mathcal{Q}_{\mathbf{w}_{n}^{*}})) + \epsilon$$

$$KL(\mathcal{Q}_{\mathbf{w}_{n}^{*}} \| \mathcal{P}_{\mathbf{w}_{n}^{*}}) \leq KL(\mathcal{Q}_{\mathbf{w}_{n}} \| \mathcal{P}_{\mathbf{w}_{n}}) + \epsilon$$

- **1** Let $(\mathbf{w}_n, \mathbf{w}_n^*) \sim (G_n, G)$. There exists a sequence of random variables $\mathbf{w}^*, \mathbf{w}_1, \mathbf{w}_2, \cdots$ such that $\mathbf{w}_n \sim G_n$ for all $n \in \mathbb{N}$, $\mathbf{w}^* \sim G$ and $\mathbf{w}_n \sim \mathbf{w}^*$ a.s.
- ② If $\mathcal{P}_{\mathbf{w}} = \mathcal{N}(\mathbf{w}, \Sigma)$, then $\mathcal{P}_{\mathbf{w}_n} \to \mathcal{P}$ and KL() have these inequalities