Gömülü Sistemler ve Linux

Örnek Uygulama: Navigasyon Cihazı Tasarımı

Serdar KÖYLÜ

Özgür Yazılım ve Linux Günleri 2011

Gömülü sistem, bilgisayarın kendisini kontrol eden cihaz tarafından içerildiği özel amaçlı bir sistemdir.

Genel maksatlı, örneğin kişisel bilgisayar gibi bir bilgisayardan farklı olarak, gömülü bir sistem kendisi için önceden özel olarak tanımlanmış görevleri yerine getirir.

Gömülü Sistemlerin Avantaj / Dezavantajları

Gömülü Sistemlerin Avantaj / Dezavantajları

Ne yapacağız?

Aradığımız yeri bulan, gösteren bir alet. Bir ekranı olsun, ekranda yerimizi ve yolumuzu göstersin.

Navigasyon Cihazı...

İçin Neler Gerekir?

Konum Bilgisi İstikamet bilgisi Coğrafya ???

Sensörler

Bilinenler

Sunum

Doğrusallık (Linearite)

Örnekleme hızı

Veri iletim yöntemi

Sorgulama (Polling), Kesme (Interrupt)

Arabirim (Interface)

Paralel Arabirimler Seri Arabirimler USB, UART, SPI, I²C

Paralel Arabirimler

Paralel Arabirimler

USB, UART

SPI (SSP) - Serial Peripheral Interface

SPI (SSP) - Serial Peripheral Interface

Independent

Daisy Chain

I²C Inter – Integrated Circuit (2-Wire)

I²C Inter – Integrated Circuit (2-Wire)

Diğer hususlar

- Maliyet
- Boyutlar
- Güç Tüketimi
- Uygulama kolaylığı
- Sensöre özel kriterler

LCD Paneller

- Hitachi HD44780 Uyumlu Paralel arabirim
- RS232/UART uyumlu harici bağlantılar
- ✓ SPI, I2C

LCD Paneller - TFT

 $240 \times 3 = 720 \text{ Gate Hatti}$

LCD Paneller - TFT

LCD Panel Zamanlaması

LCD Panel Zamanlaması

1 frame (1 refresh cycle)

Total clocks per frame = Total LCD lines * Total clocks per line

LCD Panel Arabirimi - RGB

RGB*RnGnB n*

- > RGB555 15bpp
- > RGB565 16bpp
- > RGB666 18bpp
- > RGB888 24bpp

LCD Panel Arabirimi

LCD Panel Arabirimi

LCD Panel Arabirimi - LVDS

LCD Panel Arabirimi - LVDS

NL10276BC30-04D

MTD – Memory Technology Devices

Flash ROM

Flash ROM Karakteristikleri

- Üretimde tüm bitler "1" olarak hazırlanabilir.
- Yazma işlemi sadece "1" olan bitleri "0" olarak değiştirmedir.
- "0" olan bitler tümü birden özel silme işlemiyle "1" yapılabilir.
- ✓ Yazma sayısı sınırlıdır, 10.000, 100.000
- Bir süre sonra kendiliğinden bozulur.

NOR Flash

Kelime (Byte, Word) bazında okuma/yazma erişimi Bloklar halinde silme işlemi.

NAND Flash

Sayfa ve blok bazında okuma/yazma/silme işlemleri Hata tespit ve giderme için ayrılmış alanlar.

Karşılaştırma

	NOR	NAND
Arabirim	Bus	I/O
Yoğunluk	Düşük	Yüksek
Fiyat	Yüksek	Düşük
Okuma	Hızlı	Yavaş
Tek kelime yazma	Hızlı	Yavaş
Blok yazma	Yavaş	Hızlı
Silme	Yavaş	Hızlı
Güç tüketimi	Yüksek	Düşük
Lüzumsuz işyükü.	Yok gibi.	Fazla.
0 km.de bozuk alanlar	Yok	Olabilir.

Diğer türevler

SDCARD, MMC, SDHC, SDX.....

Kompakt yapı, taşınabilir.

OneNAND

NOR benzeri NAND Flash. Senkron erişim, farklı hardware, NOR software Özel mimari, yüksek hız, dahili ECC vs.

MovieNAND

MMC Arabirimi, chip kılıfında. Yüksek kapasite ve hız.

GPS Modülü

SIRF StarIII GPS chipset
Passive patch antenna

Asynchronous serial, 4800 bps @ TTL Level

Pusula için Manyetometre

I²C interface 400kHz

Pusula için Hızlanma sensörü

MMA6900Q Block Diagram

LCD Panel, CPU, Storage

SAMSUNG S3C2440 ARM9 Core @502 MHz LCD/2D

BOOT Loader – ÖNYÜKLEYİCİ

- Kesmelerin durdurulması
- ✓ Sistem saatlerinin (CLOCK) düzenlenmesi.
- Sistem belleğinin düzenlenmesi.
- ✓ Çevre birimlerinin ilklendirilmesi.
- Asıl uygulamanın (OS) yüklenip işletilmesi.

BOOT Loader - ÖNYÜKLEYİCİ

Linux Startup Code

Yazılım tarafı – RESET ardından bellek haritası

U-BOOT, VIVI

- X Genel amaçlı
- x Fazla büyük
- X Gereğinden fazla karmaşık
- X Bağımlılık sorunları

Kendi bootloaderinizi türetin veya yazın.

Bootloader yerine doğrudan kerneli yükleyin

LCD için Framebuffer sürücüsü

- ✓ LCD seçerken RGB veya LVDS tercihi Framebuffer işini CPU'ya yüklemek
- ✓ MCU seçerken Linux desteğini gözetmek Hazır FB sürücülerini kullanabilme imkanı
- ✓ LCD + MCU için tam Linux desteği
- Kontrolcüsü dahili LCD'lerden kaçının.

linux/include/linux/fb.h

```
fb_var_screeninfo
fb_fix_screeninfo
fb_cmap
fb_info
fb_ops
```

fbmem.c

```
register_framebuffer(struct fb_info *fb_info) unregister_framebuffer(struct fb_info *fb_info)
```

✓ linux/drivers/fb/skeleton.c

- Frame buffer'in fiziksel adresini belirleyin fb_get_fix()
- ✓ ioctl() için gereken operasyonları gerçekleyin.

FBIOGET_VSCREENINFO fb_get_var

FBIOPUT_VSCREENINFO fb_set_var

FBIOGET_FSCREENINFO fb_get_fix

FBIOPUTCMAP fb_set_cmap

FBIOGETCMAP fb_get_cmap

FBIOPAN_DISPLAY fb_pan_display

fb_set_var()

Mod (320x240x8 gibi) değişimi gerekiyor mu?

Yeni modu hazırlayın, FB bit paternlerini belirleyin.

Gerekliyse "colormap" ları düzenleyin.

LCD kontrol registerleri yeni duruma göre düzenleyin.

http://www.slideshare.net/menonnishanth/linuxwithoutabootloader

✓ Ext2, ext3, FAT32 ...

HDD için optimize.

NAND okuma/yazma limitlerine uygun değil.

FS yükü fazla.

✓ Yaffs, yaffs2, jfs, jffs2 ...

NAND/NOR vs. için optimize.

Embedded sistemler için kullanışlı ekler.

On-the-fly compression, bad sector move...

Genellikle daha yavaş

CONFIG MTD=y CONFIG MTD PARTITIONS=y CONFIG MTD CHAR=y CONFIG MTD BLOCK=y CONFIG MTD NAND=y CONFIG_MTD NAND YOURBOARD=y CONFIG JFFS2 FS=y CONFIG JFFS2 FS DEBUG=0 CONFIG JFFS2 FS NAND=y

Sistem için kökdizini

```
mkdir /nav_device_path/rootfs

cd /nav_device_path/rootfs

for I in sys dev etc bin sbin usr lib; do

mkdir $I

done
```

✓ Gerekli /dev girdilerini oluşturma mknod T MAJOR MINOR /dev/hede

Init dosyaları

vi /etc/inittab mkdir /etc/rc.d || vi /etc/rc.d/init-script

LIBC

- Statik / Dinamik kullanım
- ✓ Çeşitli varyasyonlar
 GLIBC
 EGLIBC
 uClibc
 dietlibc
 newlib
 android libc

Grafik arabirim

DirectFB

GTKFB

X over FB

Micro X

SDL

Qtopia & Qt4/E

Grafik arabirimler için ipuçları

- RGBA yerine Palet tabanlı GUI
- Gerekmeyen her şeyi atın. Bitmap'ler, ikonlar. Kullanılmayan widgetler Dil/karakter destekleri. Giriş yöntemleri Hata ayıklama kodları

- C en taşınabilir dildir, onu C++ izler.
- Uygunsa emulatör kullanımı QEMU, P-SIM ...
- Geliştirme kitleri / Embedded kartlar
 - 1. Kodlama
 - 2. Derleme
 - 3. Emülatörle test / Geliştirme kitinde test
 - 4. Prototip üzerinde test.
 - 5. Nihai uygulama imajı

USB erişimi

- USB Host, OTG desteği için kernel...
- ✓ USB Device olarak...
 Doğrudan kernel kodlama
 GADGETFS (libgadgetfs)
 USB Storage
 USB Serial
 USB Ethernet
 RNDIS

I²C erişimi

- Kernel sürücüsü gerekebilir !
- Kernel sürücüsü, sadece bus için şarttır.
- Bazı I2C cihazları kernelden desteklenir.
- ✓ I2C cihazları için, I2C Framework.. /sys/class/i2c-adapter /dev/i2c-*

I²C erişimi

```
#include linux/i2c-dev.h> // from i2c-tools
```

```
int file = open("/dev/i2c-0", O_RDWR);
if (file < 0) ERROR HANDLING;
int addr = 0x40;
if (ioctl(file, I2C_SLAVE, addr) < 0)
         ERROR HANDLING; 3)
buf[0] = DEV_register;
buf[1] = 0x55;
buf[2] = 0xAA;
if (write(file, buf, 3) != 3)
         ERROR HANDLING;
  if (read(file, buf, 1) != 1)
  ERROR HANDLING;
  /* huf[\Omega] = readed hyte */
```

SPI erişimi

- CS Chip Select problemi!
- Kernel sürücüsü kullanılmalıdır.
- Bazı MSSP'lar GPIO desteğiyle hazır olabilir.
- SPI kontrolcüsü yazmak en kolay yoldur.

http://www.jumpnowtek.com/index.php?option=com_content&view=article&id=57&Itemid=62

SPI erişimi

Kernel sürücüsü hazır olunca /dev/spidevB.C

B = Bus (MSSP) numarası.

C = CS numaras1

Kullanıcı erişimi IOCTL ile sağlanır. Documentation / spi / spidev spidev_test.c