Deep Learning Srihari

RBM: Log-likelihood gradient

Sargur N. Srihari srihari@cedar.buffalo.edu

Topics in Partition Function

- Definition of Partition Function
- 1. The log-likelihood gradient
 - 1.RBM Log-likelihood gradient
- 2.Stochastic maximum likelihood and contrastive divergence
- 3.Pseudolikelihood
- 4. Score matching and Ratio matching
- 5. Denoising score matching
- 6. Noise-contrastive estimation
- 7. Estimating the partition function

RBM with visible and hidden units

Joint configuration (v,h)

 visible and hidden units has an energy (Hopfield 1982)

$$E(\boldsymbol{v},\boldsymbol{h}) = -\sum_{i \in \text{visible}} a_i v_i - \sum_{j \in \text{hidden}} b_j h_j - \sum_{i,j} v_i h_j w_{ij}$$

 Network assigns a probability to every pair of hidden and visible vectors

$$p(\boldsymbol{v}, \boldsymbol{h}) = \frac{1}{Z} e^{-E(\boldsymbol{v}, \boldsymbol{h})}$$

 where partition function Z is a sum over all possible pairs of visible/hidden vectors

$$Z = \sum_{v,h} e^{-E(v,h)}$$

Probability that network assigns to a visible vector v is

$$p(\boldsymbol{v}) = \frac{1}{Z} \sum_{\boldsymbol{h}} e^{-E(\boldsymbol{v}, \boldsymbol{h})} \bigg|$$

Stochastic binary pixels *v* connected to stochastic binary feature detectors *h* using symmetrically weighted connections

Changing probability of image

- Probability network assigns to a training image is raised by adjusting weights and biases
 - Lower the energy of that image & raise energy of other images
 - Especially those that have low energies and make a high contribution to the partition function
 - Maximum likelihood approach to determine W, h, v

Likelihood:
$$P(\{\boldsymbol{v}^{(1)},..\boldsymbol{v}^{(M)}\}) = \prod_{m} p(\boldsymbol{v}^{(m)})$$

Log-likelihood:
$$\ln P(\{\boldsymbol{v}^{(1)},..\boldsymbol{v}^{(M)}\}) = \sum_{m} \ln p(\boldsymbol{v}^{(m)}) = \sum_{m} \ln \left(\frac{1}{Z}\sum_{\boldsymbol{h}} e^{-E(\boldsymbol{v},\boldsymbol{h})^{(m)}}\right) = \sum_{m} \ln \left(\sum_{\boldsymbol{h}} e^{-E(\boldsymbol{v},\boldsymbol{h})^{(m)}}\right) - \sum_{m} \ln \left(\sum_{\boldsymbol{v},\boldsymbol{h}} e^{-E(\boldsymbol{v},\boldsymbol{h})}\right)$$

Derivative of the log-probability of a training vector wrt a weight: $\frac{\partial \ln p(\boldsymbol{v})}{\partial \boldsymbol{w}_{\cdot \cdot \cdot}} = \mathbb{E}_{\text{data}}(\boldsymbol{v}_{\boldsymbol{i}}\boldsymbol{h}_{\boldsymbol{j}}) - \mathbb{E}_{\text{model}}(\boldsymbol{v}_{\boldsymbol{i}}\boldsymbol{h}_{\boldsymbol{j}})$

Learning rule for stochastic steepest ascent $\Delta w_{ij} = \varepsilon \Big(\mathbb{E}_{\text{data}}(v_i h_j) - \mathbb{E}_{\text{model}}(v_i h_j) \Big).$ where ε is the learning rate

$$p(\boldsymbol{v}, \boldsymbol{h}) = \frac{1}{Z} e^{-E(\boldsymbol{v}, \boldsymbol{h})} \qquad p(\boldsymbol{v}) = \frac{1}{Z} \sum_{\boldsymbol{h}} e^{-E(\boldsymbol{v}, \boldsymbol{h})}$$

$$E(\boldsymbol{v},\boldsymbol{h}) = -\sum_{i \in \text{visible}} a_i v_i - \sum_{i \in \text{hiddene}} b_j h_j - \sum_{i,j} v_i h_j w_{ij}$$

$$\left| \frac{\partial}{\partial w_{i,j}} E(\boldsymbol{v}, \boldsymbol{h}) = -v_i h_j \right| \qquad \left| \frac{d}{dx} \ln x = \frac{1}{x} \right|$$

$$\frac{d}{dx}\ln x = \frac{1}{x}$$

Samples for Computing Expectations

- Getting unbiased samples for $E_{\text{data}}(v_i h_j)$
 - Given a random training image \mathbf{v} , the binary state h_j for each hidden unit is set to 1 with probability

$$p(h_j = 1 \mid \boldsymbol{v}) = \sigma \left(b_j + \sum_i v_i w_{ij}\right)$$

• Given a random training image \mathbf{v} , the binary state v_i for a visible unit is set to 1 with probability

$$p(v_i = 1 \mid \boldsymbol{v}) = \sigma\left(ai + \sum_j h_j w_{ij}\right)$$

- Getting unbiased samples for $E_{\text{model}}(v_i h_j)$
 - Can be done by starting at a random state of visible units and performing Gibbs sampling for a long time
 - One iteration of alternating Gibbs sampling consists of updating all hidden units in parallel followed by updating all visible units

Srihari

Summary of RBM training

Probability Distribution of Undirected model (Gibbs)

$$p(\boldsymbol{x};\boldsymbol{\theta}) = \frac{1}{Z(\boldsymbol{\theta})} \, \tilde{p}(\boldsymbol{x},\boldsymbol{\theta})$$

$$p(\mathbf{x}; \mathbf{\theta}) = \frac{1}{Z(\mathbf{\theta})} \tilde{p}(\mathbf{x}, \mathbf{\theta}) \qquad Z(\mathbf{\theta}) = \sum_{\mathbf{x}} \tilde{p}(\mathbf{x}, \mathbf{\theta})$$

Intractable Partition function

For an RBM: $x = \{v, h\}$

$$\theta = \{W, a, b\}$$

Determine parameters θ that maximize log-likelihood (negative loss) $\max_{\boldsymbol{\theta}} L(\{\boldsymbol{x}^{(1)},..\boldsymbol{x}^{(M)}\};\boldsymbol{\theta}) = \sum_{m} \log p(\boldsymbol{x}^{(m)};\boldsymbol{\theta})$

$$L(\{\boldsymbol{x}^{(1)},..\boldsymbol{x}^{(M)}\};\boldsymbol{\theta}) = \sum_{m} \log \tilde{p}(\boldsymbol{x}^{(m)};\boldsymbol{\theta}) - \sum_{m} \log Z(\boldsymbol{\theta})$$

$$E(\boldsymbol{v}, \boldsymbol{h}) = -\boldsymbol{h}^T W \boldsymbol{v} - \boldsymbol{a}^T \boldsymbol{v} - \boldsymbol{b}^T \boldsymbol{h} = \sum_i \sum_j W_{i,j} v_i h_j - \sum_i a_i v_i - \sum_j b_j h_j$$

For stochastic gradient ascent, take derivatives:

$$p(\mathbf{v}, \mathbf{h}) = \frac{1}{Z} \exp(-E(\mathbf{v}, \mathbf{h}))$$

$$Z = \sum \exp(-E(\boldsymbol{v}, \boldsymbol{h}))$$

$$g_{m} = \nabla_{\boldsymbol{\theta}} \log p(\boldsymbol{x}^{(m)}; \boldsymbol{\theta}) = \nabla_{\boldsymbol{\theta}} \log \tilde{p}(\boldsymbol{x}^{(m)}; \boldsymbol{\theta}) - \nabla_{\boldsymbol{\theta}} \log Z(\boldsymbol{\theta}) \middle| \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \boldsymbol{\varepsilon} \boldsymbol{g} \middle|$$

$$\theta \leftarrow \theta + \varepsilon g$$

$$\frac{\partial}{\partial W_{i,j}} E(\boldsymbol{v}, \boldsymbol{h}) = -v_i h$$

Derivative of positive phase:

$$\left| rac{1}{M} \sum_{m=1}^{M}
abla_{oldsymbol{ heta}} \log ilde{p}(oldsymbol{x}^{(m)}; oldsymbol{ heta})
ight|$$

Summation is over samples from the training set Since it is summed m times 1/m has no effect

Derivative of negative phase:

$$\boxed{ \nabla_{\pmb{\theta}} \log Z(\pmb{\theta}) = \mathbb{E}_{\pmb{x} \sim p(\pmb{x})} \nabla_{\pmb{\theta}} \log \tilde{p}(\pmb{x}) } \quad \text{An identity}$$

$$\left| \mathbb{E}_{\boldsymbol{x} \sim p(\boldsymbol{x})} \nabla_{\boldsymbol{\theta}} \log \tilde{p}(\boldsymbol{x}) = \frac{1}{M} \sum_{i=1}^{M} \nabla_{\boldsymbol{\theta}} \log \tilde{p}(\boldsymbol{x}^{(m)}; \boldsymbol{\theta}) \right|$$

Summation is over samples from the RBM