Introduction To Commutative Algebra

Atiyah & Macdonald

June 30, 2020

Contents

1	Rings and Ideals	2
2	Prime Ideals	11
3	Radicals	18
4	Modules	24
5	Exact Sequence	31

1 Rings and Ideals

A unit is an element u with a reciprocal 1/u or the multiplicative inverse. The units form a multiplicative group, denoted R^{\times}

A ring **homomorphism**, or simply a **ring map**, $\varphi: R \to R'$ is a map preserving sum, products and 1

If there is an unspecified isomorphism between rings R and R', then we write R = R' when it is **canonical**; that is, it does not depend on any artificial choices.

A subset $R'' \subset R$ is a **subring** if R'' is a ring and the inclusion $R'' \hookrightarrow R$ is a ring map. In this case, we call R a (**ring**) **extension**.

An R-algebra is a ring R' that comes equipped with a ring map $\varphi: R \to R'$, called the **structure map**, denoted by R'/R. For example, every ring is canonically a \mathbb{Z} -algebra. An R-algebra homomorphism, or R-map, $R' \to R''$ is a ring map between R-algebras.

A group G is said to **act** on R if there is a homomorphism given from G into the group of automorphism of R. The **ring of invariants** R^G is the subring defined by

$$R^G := \{ x \in R \mid gx = g \text{ for all } g \in G \}$$

Similarly a group G is said to **act** on R'/R if G acts on R' and each $g \in G$ is an R-map. Note that R'^G is an R-subalgebra

Boolean rings

The simplest nonzero ring has two elements, 0 and 1. It's denoted \mathbb{F}_2

Given any ring R and any set X, let R^X denote the set of functions $f: X \to R$. Then R^X is a ring.

For example, take $R := \mathbb{F}_2$. Given $f : X \to R$, put $S := f^{-1}\{1\}$. Then f(x) = 1 if $x \in S$. In other words, f is the **characteristic function** χ_S . Thus the characteristic functions form a ring, namely, \mathbb{F}_2^X

Given $T \subset X$, clearly $\chi_S \cdot \chi_T = \chi_{S \cap T}$. $\chi_S + \chi_T = \chi_{S \triangle T}$, where $S \triangle T$ is the **symmetric difference**:

$$S \triangle T := (S \cup T) - (S \cap T)$$

Thus the subsets of X form a ring: sum is symmetric difference, and product is intersection. This ring is canonically isomorphic to \mathbb{F}_2^X

A ring *B* is called **Boolean** if $f^2 = f$ for all $f \in B$. If so, then 2f = 0 as $2f = (f+f)^2 = f^2 + 2f + f^2 = 4f$

Suppose X is a topological space, and give \mathbb{F}_2 the **discrete** topology; that is, every subset is both open and closed. Consider the continuous functions $f: X \to \mathbb{F}_2$. Clearly, they are just the χ_S where S is both open and closed.

Polynomial rings

Let R be a ring, $P := R[X_1, ..., X_n]$. P has this **Universal Mapping Property** (UMP): given a ring map $\varphi : R \to R'$ and given an element x_i of R' for each i, there is a unique ring map $\pi : P \to R'$ with $\pi | R = \varphi$ and $\pi(X_i) = x_i$. In fact, since π is a ring map, necessarily π is given by the formula:

$$\pi(\sum a_{(i_1,\dots,i_n)}X_1^{i_1}\dots X_n^{i_n}) = \sum \varphi(a_{(i_1,\dots,i_n)})x_1^{i_1}\dots x_n^{i_n} \tag{1.0.1}$$

In other words, P is universal among R-algebras equipped with a list of n elements

Similarly let $\mathcal{X} := \{X_{\lambda}\}_{{\lambda} \in \Lambda}$ be any set of variables. Set $P' := R[\mathcal{X}]$; the elements of P' are the polynomials in any finitely many of the X_{λ} . P' has essentially the same UMP as P

Ideals

Let *R* be a ring. A subset a is called an **ideal** if

- 1. $0 \in \mathfrak{a}$
- 2. whenever $a, b \in \mathfrak{a}$, also $a + b \in \mathfrak{a}$
- 3. whenever $x \in R$ and $a \in \mathfrak{a}$ also $xa \in \mathfrak{a}$

Given a subset $\mathfrak{a} \subset R$, by the ideal $\langle \mathfrak{a} \rangle$ that \mathfrak{a} **generates**, we mean the smallest ideal containing \mathfrak{a}

All ideal containing all the a_{λ} contains any (finite) **linear combination** $\sum x_{\lambda}a_{\lambda}$ with $x_{\lambda} \in R$ and almost all 0.

Given a single element a, we say that the ideal $\langle a \rangle$ is **principal**

Given a number of ideals \mathfrak{a}_{λ} , by their **sum** $\sum \mathfrak{a}_{\lambda}$ we mean the set of all finite linear combinations $\sum x_{\lambda}a_{\lambda}$ with $x_{\lambda} \in R$ and $a_{\lambda} \in \mathfrak{a}_{\lambda}$

Given two ideals \mathfrak{a} and \mathfrak{b} , by the **transporter** of \mathfrak{b} into \mathfrak{a} we mean the set

$$(\mathfrak{a} : \mathfrak{b}) := \{x \in R \mid x\mathfrak{b} \subset \mathfrak{a}\}\$$

(a : b) is an ideal. Plainly,

$$ab \subset a \cap b \subset a + b$$
, $a, b \subset a + b$, $a \subset (a : b)$

Further, for any ideal \mathfrak{c} , the distributive law holds: $\mathfrak{a}(\mathfrak{b} + \mathfrak{c}) = \mathfrak{a}\mathfrak{b} + \mathfrak{a}\mathfrak{c}$

Given an ideal fa, notice $\mathfrak{a} = R$ if and only if $1 \in \mathfrak{a}$. It follows that $\mathfrak{a} = R$ iff \mathfrak{a} contains a unit.

Given a ring map $\varphi: R \to R'$, denote by $\mathfrak{a}R'$ or \mathfrak{a}^e the ideal of R' generated by the set $\varphi(\mathfrak{a})$. We call it the **extension** of \mathfrak{a}

Given an ideal \mathfrak{a}' of R', its preimage $\varphi^{-1}(\mathfrak{a}')$ is an ideal of R. We call $\varphi^{-1}(\mathfrak{a}')$ the **contraction** of \mathfrak{a}' and sometimes denote it by \mathfrak{a}'^c

Residue rings

kernel $\ker(\varphi)$ is defined to be the ideal $\varphi^{-1}(0)$ of R Let \mathfrak{g} be an ideal of R. Form the set of cosets of \mathfrak{g}

$$R/\mathfrak{a} := \{x + \mathfrak{a} \mid x \in R\}$$

 R/\mathfrak{a} is called the **residure ring** or **quotient ring** or **factor ring** of R **modulo** \mathfrak{a} . From the **quotient map**

$$\kappa: R \to R/\mathfrak{a}$$
 by $\kappa x := x + \mathfrak{a}$

The element $\kappa x \in R/\mathfrak{a}$ is called the **residue** of x.

If $\ker(\varphi) \supset \mathfrak{a}$, then there is a ring map $\psi : R/\mathfrak{a} \to R'$ with $\psi \kappa = \varphi$; that is, the following diagram is commutative

$$R \xrightarrow{\kappa} R/\mathfrak{a}$$

$$\downarrow^{\psi}$$

$$R'$$

by $\psi(x\mathfrak{a}) = \varphi(x)$. Then we only need to verify that ψ is a map

Conversely, if ψ exists, then $\ker(\varphi) \supset \mathfrak{a}$, or $\varphi \mathfrak{a} = 0$, or $\mathfrak{a}R' = 0$, since $\kappa \mathfrak{a} = 0$ Further, if ψ exists, then ψ is unique as κ is surjective

Finally, as κ is surjective, if ψ exists, then ψ is surjective iff ψ is so. In addition, ψ is injective iff $\mathfrak{a} = \ker(\varphi)$. Hence ψ is an isomorphism iff φ is surjective and $\mathfrak{a} = \ker(\varphi)$. Therefore,

$$R/\ker(\varphi) \xrightarrow{\sim} \operatorname{im}(\varphi)$$

 R/\mathfrak{a} has UMP: $\kappa(\mathfrak{a})=0$, and given $\varphi:R\to R'$ s.t. $\varphi:R\to R'$ s.t. $\varphi(\mathfrak{a})=0$, there is a unique ring map $\psi:R/\mathfrak{a}\to R'$ s.t. $\psi\kappa=\varphi$. In other words, R/\mathfrak{a} is universal among R-algebras R' s.t. $\mathfrak{a}R'=0$

If $\mathfrak a$ is the ideal generated by elements a_{λ} , then the UMP can be usefully rephrased as follows: $\kappa(a_{\lambda}) = 0$ for all λ , and given $\varphi : R \to R'$ s.t. $\varphi(a_{\lambda}) = 0$ for all λ , there is a unique ring map $\psi : R/\mathfrak a \to R'$ s.t. $\psi \kappa = \varphi$

The UMP serves to determine R/\mathfrak{a} up to unique isomorphism. Say R', equipped with $\varphi: R \to R'$ has the UMP too. $\kappa(\mathfrak{a}) = 0$ so there is a unique $\psi': R' \to R/\mathfrak{a}$ with $\psi'\varphi = \kappa$. Then $\psi'\psi\kappa = \kappa$. Hence $\psi'\psi = 1$ by uniqueness. Thus ψ and ψ' are inverse isomorphism

Proposition 1.1. *Let* R *be a ring,* P := R[X], $a \in R$ *and* $\pi : P \to R$ *the* R-algebra map defined by $\pi(X) := a$. Then

- 1. $\ker(\pi) = \{F(X) \in P \mid F(a) = 0\} = \langle X a \rangle$
- 2. $R/\langle X-a\rangle \simeq R$

Proof. Set G := X - a. Given $F \in P$, let's show F = GH + r with $H \in P$ and $r \in R$. By linearity, we may assume $F := X^n$. If $n \ge 1$, then $F = (G + a)X^{n-1}$, so $F = GH + aX^{n-1}$ with $H := X^{n-1}$.

Then $\pi(F) = \pi(G)\pi(H) + \pi(r) = r$. Hence $F \in \ker(\pi)$ iff F = GH. But $\pi(F) = F(a)$ by 1.0.1

Degree of a polynomial

Let R be a ring, P the polynomial ring in any number of variables. If F is a monomial M, then its degree deg(M) is the sum of its exponents; in general, deg(F) is the largest deg(M) of all monomials M in F

Given any $G \in P$ with FG nonzero, notice that

$$deg(FG) \le deg(F) + deg(G)$$

Order of a polynomial

Let R be a ring, P the polynomial ring in variable X_{λ} for $\lambda \in \Lambda$, and $(x_{\lambda}) \in R^{\Lambda}$ a vector. Let $\varphi_{(x_{\lambda})}: P \to P$ denote the R-algebra map defined by $\varphi_{(x_{\lambda})}X_{\mu}:=X_{\mu}+x_{\mu}$ for all $\mu \in \Lambda$. Fix a nonzero $F \in P$

The **order** of F at the zero vector (0), denoted $\operatorname{ord}_{(0)} F$, is defined as the smallest $\operatorname{deg}(\mathbf{M})$ of all the monomials \mathbf{M} in F. In general, the **order** of F at the vector (x_{λ}) , denoted $\operatorname{ord}_{(x_{\lambda})} F$ is defined by the formula: $\operatorname{ord}_{(x_{\lambda})} F := \operatorname{ord}_{(0)}(\varphi_{(x_{\lambda})} F)$

Notice that $\operatorname{ord}_{(x_1)} F = 0$ iff $F(x_\lambda) \neq 0$ as $(\varphi_{x_1} F)(0) = F(x_\lambda)$

Given μ and $x \in R$, form $F_{\mu,x}$ by substituting x for X_{μ} in F. If $F_{\mu,x_{\mu}} \neq 0$, then

$$\operatorname{ord}_{(x_{\lambda})} F \leq \operatorname{ord}_{(x_{\lambda})} F_{\mu, x_{\mu}}$$

If $x_{\mu}=0$, then $F_{\mu,x_{\mu}}$ is the sum of the terms without x_{μ} in F. Hence if $(x_{\lambda})=(0)$, then 1 holds. But substituting 0 for X_{μ} in $\varphi_{(x_{\lambda})}F$ is the same as substituting x_{μ} for X_{μ} in F and then applying $\varphi_{(x_{\lambda})}$ to the result; that is, $(\varphi_{(x_{\mu})}F)_{\mu,0}=\varphi_{(x_{\lambda})}F_{\mu,x_{\mu}}$ Given any $G\in P$ with FG nonzero,

$$\operatorname{ord}_{(x_{\lambda})} FG \ge \operatorname{ord}_{(x_{\lambda})} F + \operatorname{ord}_{(x_{\lambda})} G$$

Nested ideals

Let *R* be a ring, $\mathfrak a$ an ideal, and $\kappa: R \to R/\mathfrak a$ the quotient map. Given an ideal $\mathfrak b \supset \mathfrak a$, form the corresponding set of cosets of $\mathfrak a$

$$\mathfrak{b}/\mathfrak{a} := \{b + \mathfrak{a} \mid b \in \mathfrak{b}\} = \kappa(\mathfrak{b})$$

Clearly, $\mathfrak{b}/\mathfrak{a}$ is an ideal of R/\mathfrak{a} . Also $\mathfrak{b}/\mathfrak{a} = \mathfrak{b}(R/\mathfrak{a})$

The operation $\mathfrak{b} \mapsto \mathfrak{b}/\mathfrak{a}$ and $\mathfrak{b}' \mapsto \kappa^{-1}(\mathfrak{b}')$ are inverse to each other, and establish a bijective correspondence between the set of ideals \mathfrak{b} of R containing \mathfrak{a} and the set of all ideals \mathfrak{b}' of R/\mathfrak{a} . Moreover, this correspondence preserves inclusions

Given an ideal $\mathfrak{b} \supset \mathfrak{a}$, form the composition of the quotient maps

$$\varphi: R \to R/\mathfrak{a} \to (R/\mathfrak{a})/(\mathfrak{b}/\mathfrak{a})$$

 φ is surjective and $\ker(\varphi) = \mathfrak{b}$. Hence φ factors

$$\begin{array}{ccc}
R & \longrightarrow & R/\mathfrak{b} \\
\downarrow & & & \downarrow \psi \\
R/\mathfrak{a} & \longrightarrow & (R/\mathfrak{a})/(\mathfrak{b}/\mathfrak{a})
\end{array}$$

Idempotents

Let *R* be a ring. Let $e \in R$ be an **idempotent**; that is, $e^2 = e$. Then Re is a ring with e as 1.

Set e' := 1 - e. Then e' is idempotent and $e \cdot e' = 0$. We call e and e' **complementary idempotents**. Conversely, if two elements $e_1, e_2 \in R$ satisfy $e_1 + e_2 = 1$ and $e_1e_2 = 0$, then they are complementary idempotents, as for each i,

$$e_i = e_i \cdot 1 = e_i(e_1 + e_2) = e_i^2$$

We denote the set of all idempotents by Idem(R). Let $\varphi : R \to R'$ be a ring map. Then $\varphi(e)$ is idempotent. So the restriction of φ to Idem(R) is a map

$$Idem(\varphi) : Idem(R) \rightarrow Idem(R')$$

Example 1.1. Let $R := R' \times R''$ be a **product** of two rings. Set e' := (1,0) and e'' := (0,1). Then e' and e'' are complementary idempotents.

Proposition 1.2. Let R be a ring, and e', e'' complementary idempotents. Set R' := Re' and R'' := Re''. Define $\varphi : R \to R' \times R''$ by $\varphi(x) := (xe', xe'')$. Then φ is a ring isomorphism. Moreover, R' = R/Re'' and R'' = R/Re'

Proof. Define a surjection $\varphi': R \to R'$ by $\varphi'(x) := xe'$. Then φ' is a ring map, since $xye' = xye'^2 = (xe')(ye')$. Moreover, $\ker(\varphi') = Re''$ since $x = x \cdot 1 = xe' + xe'' = xe''$. Thus R' = R/Re''

Since φ is a ring map. It's surjective since $(xe', x'e'') = \varphi(xe' + x'e'')$

Exercise

Exercise 1.0.1. Let $\varphi: R \to R'$ be a map of rings, $\mathfrak{a}_1, \mathfrak{a}_2, \mathfrak{a}$ ideals of $R, \mathfrak{b}_1, \mathfrak{b}_2, \mathfrak{b}$ ideals of R'. Prove

- 1. $(\mathfrak{a}_1 + \mathfrak{a}_2)^e = \mathfrak{a}_1^e + \mathfrak{a}_2^e$
- 2. $(\mathfrak{b}_1 + \mathfrak{b}_2)^c \supset \mathfrak{b}_1^c + \mathfrak{b}_2^c$
- 3. $(\mathfrak{a}_1 \cap \mathfrak{a}_2)^e \subset \mathfrak{a}_1^e \cap \mathfrak{a}_2^e$
- 4. $(\mathfrak{b}_1 \cap \mathfrak{b}_2)^c = \mathfrak{b}_1^c \cap \mathfrak{b}_2^c$
- 5. $(\mathfrak{a}_1\mathfrak{a}_2)^e = \mathfrak{a}_1^e\mathfrak{a}_2^e$
- 6. $(\mathfrak{b}_1\mathfrak{b}_2)^c \supset \mathfrak{b}_1^c\mathfrak{b}_2^c$
- 7. $(\mathfrak{a}_1 : \mathfrak{a}_2)^e \subset (\mathfrak{a}_1^e : \mathfrak{a}_2^e)$
- 8. $(\mathfrak{b}_1 : \mathfrak{b}_2)^c \subset (\mathfrak{b}_1^c : \mathfrak{b}_2^c)$

Exercise 1.0.2. Let $\varphi : R \to R'$ be a map of rings, \mathfrak{a} an ideal of R, and \mathfrak{b} an ideal of R'. Prove the following statements:

- 1. $\mathfrak{a}^{ec} \supset \mathfrak{a}$ and $\mathfrak{b}^{ce} \subset \mathfrak{b}$
- 2. $\mathfrak{a}^{ece} = \mathfrak{a}^{e}$ and $\mathfrak{b}^{cec} = \mathfrak{b}^{c}$
- 3. If \mathfrak{b} is an extension, then \mathfrak{b}^c is the largest ideal of R with extension \mathfrak{b}
- 4. If two extensions have the same contraction, then they are equal

Exercise 1.0.3. Let R be a ring, \mathfrak{a} an ideal, \mathscr{X} a set of variables. Prove:

- 1. The extension $\mathfrak{a}(R[\mathcal{X}])$ is the set $\mathfrak{a}[\mathcal{X}]$
- 2. $\mathfrak{a}(R[\mathcal{X}]) \cap R = \mathfrak{a}$

Exercise 1.0.4. Let R be a ring, a an ideal, and \mathcal{X} a set of variables. Set P := $R[\mathcal{X}]$. Prove $P/\mathfrak{a}P = (R/\mathfrak{a})[\mathcal{X}]$

Exercise 1.0.5. Let R be a ring, $P := R[\{X_{\lambda}\}]$ the polynomial ring in variables X_{λ} for $\lambda \in \Lambda$ a vector. Let $\pi_{(x_{\lambda})}: P \to R$ denote the R-algebra map defined by $\pi_{(x_{\lambda})}X_{\mu} := x_{\mu}$ for all $\mu \in \Lambda$. Show:

- 1. Any $F \in P$ has the form $F = \sum a_{(i_1,\dots,i_n)}(X_{\lambda_1}^{i_1} x_{\lambda_1}) \dots (X_{\lambda_n} x_{\lambda_n})^{i_n}$ for unique $a_{(i_1,\ldots,i_n)} \in R$
- 2. $\ker(\pi_{(x_1)}) = \{ F \in P \mid F((x_{\lambda})) = 0 \} = \langle \{ X_{\lambda} x_{\lambda} \} \rangle$
- 3. π induces an isomorphism $P/\langle \{X_{\lambda} x_{\lambda}\}\rangle \simeq R$
- 4. Given $F \in P$, its residue in $P/\langle \{X_{\lambda} x_{\lambda}\} \rangle$ is equal to $F((x_{\lambda}))$
- 5. Let \mathcal{Y} be a second set of variables. Then $P[\mathcal{Y}]/\langle \{X_{\lambda} x_{\lambda}\} \rangle \simeq R[\mathcal{Y}]$

1. Let $\varphi_{(x_{\lambda})}$ be the *R*-automorphism of *P*. Say $\varphi_{(x_{\lambda})}F = \sum a_{(i_1,\dots,i_n)}X_{\lambda_1}^{i_1}\dots X_{\lambda_n}^{i_n}$ Proof. . And $\varphi_{(x_{\lambda})}^{-1}\varphi_{(x_{\lambda})}F = F$

- 2. Note that $\pi_{(x_{\lambda})}F = F((x_{\lambda}))$. Hence $F \in \ker(\pi_{(x_{\lambda})})$ iff $F((x_{\lambda})) = 0$. If $F((x_{\lambda})) = 0$, then $a_{(0,\dots,0)} = 0$, and so $F \in \langle \{X_{\lambda} - x_{\lambda}\} \rangle$
- 5. Set $R' := R[\mathcal{Y}]$

Exercise 1.0.6. Let R be a ring, $P := R[X_1, ..., X_n]$ the polynomial ring in variables X_i . Given $F = \sum a_{(i_1,...,i_n)} X_1^{i_1} \dots X_n^{i_n} \in P$, formally set

$$\partial F/\partial X_j := \sum i_j a_{(i_1,\dots,i_n)} X_1^{i_i} \dots X_n^{i_n}/X_j \in P$$

Given $(x_1,...,x_n) \in \mathbb{R}^n$, set $\mathbf{x} := (x_1,...,x_n)$, set $a_i := (\partial F/\partial X_i)(\mathbf{x})$, and set $\mathfrak{M} := \langle X_1 - x_1, \dots, X_n - x_n \rangle. \text{ Show } F = F(\mathbf{x}) + \sum a_j (X_j - x_j) + G \text{ with } G \in \mathfrak{M}^2.$ First show that if $F = (X_1 - x_1)^{i_1} \dots (X_n - x_n)^{i_n}$, then $\partial F/\partial X_i = i_i F/(X_i - x_i)$

Proof.
$$(\partial F/\partial X_j)(\mathbf{x}) = b_{(\delta_{1j},...,\delta_{nj})}$$
 where δ_{ij} is the Kronecker delta

Exercise 1.0.7. Let R be a ring, X a variable, $F \in P := R[x]$, and $a \in R$. Set $F' := \partial F/\partial X$. We call a a **root** of F if F(a) = 0, a **simple root** if also $F'(a) \neq 0$, and a **supersimple root** if also F'(a) is a unit.

Show that a is a root of F iff F = (X - a)G for some $G \in P$, and if so, then G is unique; that a is a simple root iff also $G(a) \neq 0$; and that a is a supersimple root iff also G(a) is a unit

Exercise 1.0.8. Let R be a ring, $P := R[X_1, ..., X_n]$, $F \in P$ of degree d and $F_i := X_i^{d_i} + a_1 X_i^{d_i-1} + ...$ a monic polynomial in X_i aloen for all i. Find $G, G_i \in P$ s.t. $F = \sum_{i=1}^n F_i G_i + G$ where $G_i = 0$ or $\deg(G_i) \le d - d_i$ and where the highest power of X_i in G is less than d_i

Proof. By linearity, we may assume $F := X_1^{m_1} \dots X_n^{m_n}$. If $m_i < d_i$ for all i, set $G_i := 0$ and G := F and we're done. Else, fix i with $m_i \ge d_i$, and set $G_i := F/X_i^{d_i}$ and $G := (-a_1X_i^{d_i-1} - \dots)G_i$

Exercise 1.0.9 (Chinese Remainder Theorem). Let R be a ring

- 1. Let \mathfrak{a} and \mathfrak{b} be **comaximal** ideals; that is, $\mathfrak{a} + \mathfrak{b} = R$. Show
 - (a) $\mathfrak{ab} = \mathfrak{a} \cap \mathfrak{b}$
 - (b) $R/\mathfrak{ab} = (R/\mathfrak{a}) \times (R/\mathfrak{b})$
- 2. Let \mathfrak{a} be comaximal to both \mathfrak{b} and \mathfrak{b}' . Show \mathfrak{a} is also comaximal to $\mathfrak{b}\mathfrak{b}'$
- 3. Given $m, n \ge 1$, show $\mathfrak a$ and $\mathfrak b$ are comaximal iff $\mathfrak a^m$ and $\mathfrak b^n$ are.
- 4. Let $\mathfrak{a}_1, \dots, \mathfrak{a}_n$ be pairwise comaximal. Show
 - (a) \mathfrak{a}_1 and $\mathfrak{a}_2 \dots \mathfrak{a}_n$ are comaximal
 - (b) $\mathfrak{a}_1 \cap \cdots \cap \mathfrak{a}_n = \mathfrak{a}_1 \dots \mathfrak{a}_n$
 - (c) $R/(\mathfrak{a}_1 \dots \mathfrak{a}_n) \simeq \prod (R/\mathfrak{a}_i)$
- 5. Find an example where a and b satisfy 1.1 but aren't comaximal

Proof. 1. $\mathfrak{a} + \mathfrak{b} = R$ implies x + y = 1 with $x \in \mathfrak{a}$ and $y \in \mathfrak{b}$. So given $z \in \mathfrak{a} \cap \mathfrak{b}$, we have $z = xz + yz \in \mathfrak{a}\mathfrak{b}$

- 2. $R = (\mathfrak{a} + \mathfrak{b})(\mathfrak{a} + \mathfrak{b}') = (\mathfrak{a}^2 + \mathfrak{b}\mathfrak{a} + \mathfrak{a}\mathfrak{b}') + \mathfrak{b}\mathfrak{b}' \subseteq \mathfrak{a} + \mathfrak{b}\mathfrak{b}' \subseteq R$
- 3. Build with $\mathfrak{a} + \mathfrak{b}^2 = R$. Conversely, note that $\mathfrak{a}^n \subset \mathfrak{a}$
- 4. Induction
- 5. Let k be a field. Take R := k[X, Y] and $\mathfrak{a} := \langle X \rangle$ and $\mathfrak{b} := \langle Y \rangle$. Given $f \in \langle X \rangle \cap \langle Y \rangle$, note that every monomial of f contains both X and Y, and so $f \in \langle X \rangle \langle Y \rangle$. But $\langle X \rangle$ and $\langle Y \rangle$ are not comaximal

Exercise 1.0.10. First given a prime number p and a $k \ge 1$, find the idempotents in $\mathbb{Z}/\langle p^k \rangle$. Second, find the idempotents in $\mathbb{Z}/\langle 12 \rangle$. Third, find the number of idempotents in $\mathbb{Z}/\langle n \rangle$ where $n = \prod_{i=1}^N p_i^{n_i}$ with p_i distinct prime numbers

Proof. x = 0, 1

Since -3 + 4 = 1, the Chinese Remainder Theorem yields

$$\mathbb{Z}/\langle 12 \rangle = \mathbb{Z}/\langle 3 \rangle \times \mathbb{Z}/\langle 4 \rangle$$

m is idempotent in $\mathbb{Z}/\langle 12 \rangle$ iff it's idempotent in $\mathbb{Z}/\langle 3 \rangle$ and $\mathbb{Z}/\langle 4 \rangle$

Г

 $p_i^{n_i}$ has a linear combination equal to 1. Hence 2^N

Exercise 1.0.11. Let $R := R' \times R''$ be a product of rings, $\mathfrak{a} \subset R$ an ideal. Show $\mathfrak{a} = \mathfrak{a}' \times \mathfrak{a}''$ with $\mathfrak{a}' \subset R$ and $\mathfrak{a}'' \subset R''$ ideals. Show $R/\mathfrak{a} = (R'/\mathfrak{a}') \times (R''/\mathfrak{a}'')$

Exercise 1.0.12. Let R be a ring; e, e' idempotents. Show

- 1. Set $\mathfrak{a} := \langle e \rangle$. Then \mathfrak{a} is idempotent; that is, $\mathfrak{a}^2 = \mathfrak{a}$
- 2. Let \mathfrak{a} be a principal idempotent ideal. Then $\mathfrak{a} = \langle f \rangle$ with f idempotent
- 3. Set e'' := e + e' ee'. Then $\langle e, e' \rangle = \langle e'' \rangle$ and e'' is idempotent
- 4. Let e_1, \dots, e_r be idempotents. Then $\langle e_1, \dots, e_r \rangle = \langle f \rangle$ with f idempotent
- 5. Assume *R* is Boolean. Then every finitely generated ideal is principal

Proof. 3.
$$ee'' = e^2 = e$$

Exercise 1.0.13. Let *L* be a **lattice**, that is, a partially ordered set in which every pair $x, y \in L$ has a sup $x \lor y$ and an inf $x \land y$. Assume *L* is **Boolean**; that is:

- 1. L has a least element 0 and a greatest element 1
- 2. The operations \vee and \wedge **distribute** over each other

$$x \land (y \lor z) = (x \land y) \lor (x \land z)$$
 and $x \lor (y \land z) = (x \lor y) \land (x \lor z)$

3. Each $x \in L$ has a unique **complement** x'; that is, $x \wedge x' = 0$ and $x \vee x' = 1$

Show that the following six laws obeyed

$$x \wedge x = x$$
 and $x \vee x = x$ (idempotent)
 $x \wedge 0 = 0, x \wedge 1 = x$ and $x \vee 1 = 1, x \vee 0 = x$ (unitary)
 $x \wedge y = y \wedge x$ and $x \vee y = y \vee x$ (commutative)
 $x \wedge (y \wedge z) = (x \wedge y) \wedge z$ and $x \vee (y \vee z) = (x \vee y) \vee z$ (associative)
 $x'' = x$ and $0' = 1, 1' = 0$ (involutory)
 $(x \wedge y)' = x' \vee y'$ and $(x \vee y)' = x' \wedge y'$ (De Morgan's)

Moreover, show that $x \le y$ iff $x = x \land y$

Exercise 1.0.14. Let L be a Boolean lattice. For all $x, y \in L$, set

$$x + y := (x \wedge y') \vee (x' \wedge y)$$
 and $xy := x \wedge y$

Show

- 1. $x + y = (x \lor y)(x' \lor y')$
- 2. $(x + y)' = (x'y') \lor (xy)$
- 3. *L* is a Boolean ring

Exercise 1.0.15. Given a Boolean ring R, order R by $x \le y$ if x = xy. Show R is thus a Boolean lattice. Viewing this construction as a map ρ from the set of Boolean-ring structures on the set R to the set of Boolean-lattice structures on R, show ρ is bijective with inverse the map λ associated to the construction in 1.0.14

Proof. First check *R* is partially ordered.

```
Given x, y \in R, set x \lor y := x + y + xy and x \land y := xy. Then x \le x \lor y as x(x + y + xy) = x^2 + xy + x^2y = x + 2xy = x. If z \le x and z \le y, then z = zx and z = zy, and so z(x \lor y) = z; thus z \le x \lor y
```

Exercise 1.0.16. Let X be a set, and L the set of all subsets of X, partially ordered by inclusion. Show that L is a Boolean lattice and that the ring structure on L constructed in 1 coincides with that constructed in 1.0.14

Assume X is a topological space, and let M be the set of all its open and closed subsets. Show that M is a sublattice of L, and that the subring structure on M of 1 coincides with the ring structure of 1.0.14 with M for L

2 Prime Ideals

Zerodivisors

Let R be a ring. An element x is called a **zerodivisor** if there is a nonzero y with xy = 0; otherwise x is called a **nonzerodivisor**. Denote the set of zerodivisors by z. div(R) and the set of nonzerodivisor by S_0

Multiplicative subsets, prime ideals

Let *R* be a ring. A subset *S* is called **multiplicative** if $1 \in S$ and if $x, y \in S$ implies $xy \in S$

An ideal $\mathfrak p$ is called **prime** if its complement $R - \mathfrak p$ is multiplicative, or equivalently, if $1 \notin \mathfrak p$ and if $xy \in \mathfrak p$ implies $x \in \mathfrak p$ or $y \in \mathfrak p$

Fields, domains

A ring is called a **field** if $1 \neq 0$ and if every nonzero element is a unit.

A ring is called an **integral domain**, or simply a **domain**, if $\langle 0 \rangle$ is prime, or equivalently, if R is nonzero and has no nonzero zerodivisors.

Every domain R is a subring of its **fraction field** Frac(R). Conversely, any subring R of a field K, including K itself, is a domain. Further, Frac(R) has

this UMP: the inclusion of R into any field L extends uniquely to an inclusion of Frac(R) into L.

Polynomials over a domain

Let R be a domain, $\mathcal{X} := \{X_{\lambda}\}_{{\lambda} \in \Lambda}$ a set of variables. Set $P := R[\mathcal{X}]$. Then P is a domain too. In fact, given nonzero $F, G \in P$, not only is their product FG nonzero, but also given a well ordering of the variables, the grlex leading term of FG is the product of the grlex leading terms of F and G, and

$$\deg(FG) = \deg(F) + \deg(G)$$

Using the given ordering of the variables, well order all the monomials M of the same degree via the lexicographic order on exponents. Among the M in F with deg(M) = deg(F), the largest is called the **grlex leading monomial** (graded lexicographic) of F. Its **grlex leading term** is the product aM whre $a \in R$ is the coefficient of M in F, and A is called the **grlex leading coefficient**

The grlex leading term of FG is the product of those a M and b N of F and G. and 2 holds, for the following reasons. First, $ab \neq 0$ as R is domain. Second

$$\deg(\mathbf{M}\,\mathbf{N}) = \deg(\mathbf{M}) + \deg(\mathbf{N}) = \deg(F) + \deg(G)$$

Third, $deg(\mathbf{M} \mathbf{N}) \ge deg(\mathbf{M}' \mathbf{N}')$ for every pair of monomials \mathbf{M}' and \mathbf{N}' in F and G.

The grlex hind term of FG is the product of the grlex hind terms of F and G. Further, given a vector $(x_{\lambda}) \in R^{\Lambda}$, then

$$\operatorname{ord}_{(x_{\lambda})} FG = \operatorname{ord}_{(x_{\lambda})} F + \operatorname{ord}_{(x_{\lambda})} G$$

Among the monomials \mathbf{M} in F with $\operatorname{ord}(\mathbf{M}) = \operatorname{ord}(F)$, the smallest is called the **grlex hind monomial** of F. The **grlex hind term** of F os the product $a\mathbf{M}$ where $a \in R$ is the coefficient of \mathbf{M} in F

The fraction field Frac(P) is called the field of **rational functions**, and is also denoted by $K(\mathcal{X})$ where K := Frac(R)

Unique factorization

Let *R* be a domain, *p* a nonzero nonunit. We call *p* **prime** if whenever $p \mid xy$, either $p \mid x$ or $p \mid y$. *p* is prime iff $\langle p \rangle$ is prime

We call p **irreducible** if whenever p = yz, either y or z is a unit. We call R a **Unique Factorization Domain** (UFD) if

1. every nonzero nonunit factors into a product of irreducibles

2. the factorization is unique up to order and units. If R is a UFD, then gcd(x, y) always exists

Lemma 2.1. Let $\varphi: R \to R'$ be a ring map, and $T \subset R'$ a subset. If T is multiplicative, then $\varphi^{-1}T$ is multiplicative; the converse holds if φ is surjective

Proposition 2.2. Let $\varphi: R \to R'$ be a ring map, and $\mathfrak{q} \subset R'$ an ideal. Set $\mathfrak{p}:=\varphi^{-1}\mathfrak{q}$. If \mathfrak{q} is prime, then \mathfrak{p} is prime; the converse holds if φ is surjective

Corollary 2.3. *Let* R *be a ring,* \mathfrak{p} *an ideal. Then* \mathfrak{p} *is prime iff* R/\mathfrak{p} *is a domain*

Proof. By Proposition 2.2, \mathfrak{p} is prime iff $\langle 0 \rangle \subset R/\mathfrak{p}$ is

Exercise 2.0.1. Let R be a ring, $P := R[\mathcal{X}, \mathcal{Y}]$ the polynomial ring in two sets of variables \mathcal{X} and \mathcal{Y} . Set $\mathfrak{p} := \langle \mathcal{X} \rangle$. Show \mathfrak{p} is prime iff R is a domain

Proof. \mathfrak{p} is prime iff $R[\mathcal{Y}]$ is a domain

Definition 2.4. Let *R* be a ring. An ideal \mathfrak{m} is said to be **maximal** if \mathfrak{m} is proper and if there is no proper ideal \mathfrak{a} with $\mathfrak{m} \subsetneq \mathfrak{a}$

Example 2.1. Let *R* be a domain, R[X,Y] the polynomial ring. Then $\langle X \rangle$ is prime. However, $\langle X \rangle$ is not maximal since $\langle X \rangle \subsetneq \langle X,Y \rangle$

Proposition 2.5. A ring R is a field iff $\langle 0 \rangle$ is a maximal ideal

Proof. If $\langle 0 \rangle$ is maximal. Take $x \neq 0$, then $\langle x \rangle \neq 0$. So $\langle x \rangle = R$ and x is a unit.

Corollary 2.6. Let R be a ring, \mathfrak{m} an ideal. Then \mathfrak{m} is maximal iff R/\mathfrak{m} is a field.

Proof. \mathfrak{m} is maximal iff $\langle 0 \rangle$ is maximal in R/\mathfrak{m} by Correspondence Theorem.

Example 2.2. Let R be a ring, P the polynomial ring in variable X_{λ} , and $x_{\lambda} \in R$ for all λ . Set $\mathfrak{m} := \langle \{X_{\lambda} - x_{\lambda}\} \rangle$. Then $P/\mathfrak{m} = R$ by Exercise ??. Thus \mathfrak{m} is maximal iff R is a field

Corollary 2.7. *In a ring, every maximal ideal is prime*

Coprime elements

Let *R* be a ring and $x, y \in R$. We say *x* and *y* are **(strictly) coprime** if their ideals $\langle x \rangle$ and $\langle y \rangle$ are comaximal

Plainly, *x* and *y* are coprime iff there are $a, b \in R$ s.t. ax + by = 1

Plainly, x and y are coprime iff there is $b \in R$ with $by \equiv 1 \mod \langle x \rangle$ iff the residue of y is a unit in $R/\langle x \rangle$

Fix $m, n \ge 1$. By Exercise 1.0.9, x and y are coprim eiff x^m and x^n are. If x and y are coprime, then their images in algebra R' too.

PIDs

A domain *R* is called a **Principal Ideal Domain** (PID) if every ideal is principal. A PID is a UFD

Let R be a PID, $\mathfrak p$ a nonzero prime ideal. Say $\mathfrak p = \langle p \rangle$. Then p is prime, so irreducible. Now let $q \in R$ be irreducible. Then $\langle q \rangle$ is maximal for: if $\langle q \rangle \subsetneq \langle x \rangle$, then q = xy for some nonunit y; so x must be a unit as q is irreducible. So $R/\langle q \rangle$ is a field. Also $\langle q \rangle$ is prime; so q is prime Thus every irreducible element is prime, and every nonzero prime ideal is maximal

Exercise 2.0.2. Show that, in a PID, nonzero elements *x* and *y* are **relatively prime** (share no prime factor) iff they are coprime

Proof. Say
$$\langle x \rangle + \langle y \rangle = \langle d \rangle$$
. Then $d = \gcd(x, y)$

Example 2.3. Let R be a PID, and $p \in R$ a prime. Set $k := R/\langle p \rangle$. Let X be a variable, and set P := R[X]. Take $G \in P$; let G' be its image in k[X]; assume G' is irreducible. Set $\mathfrak{m} := \langle p, G \rangle$. Then $P/\mathfrak{m} \simeq k[X]/\langle G' \rangle$ by ?? and 1 and $k[X]/\langle G' \rangle$ is a field; hence \mathfrak{m} is maximal

Theorem 2.8. Let R be a PID. Let P := R[X] and \mathfrak{p} a nonzero prime ideal of P

- 1. $\mathfrak{p} = \langle F \rangle$ with F prime or \mathfrak{p} is maximal
- 2. Assume \mathfrak{p} is maximal. Then either $\mathfrak{p} = \langle F \rangle$ with F prime, or $\mathfrak{p} = \langle p, G \rangle$ with $p \in R$ prime, $pR = \mathfrak{p} \cap R$ and $G \in P$ prime with image $G' \in (R/pR)[X]$ prime

Proof. P is a UFD.

If $\mathfrak{p} = \langle F \rangle$ for some $F \in P$, then F is prime. Assume \mathfrak{p} isn't principal

Take a nonzero $F_1 \in \mathfrak{p}$. Since \mathfrak{p} is prime, \mathfrak{p} contains a prime factor F_1' of F_1 . Replace F_1 by F_1' . As \mathfrak{p} isn't principal, $\mathfrak{p} \neq \langle F_1 \rangle$. So there is a prime $F_2 \in \mathfrak{p} - \langle F_1 \rangle$. Set $K := \operatorname{Frac}(R)$, Gauss's lemma implies that F_1 and F_2 are also prime in K[X]. So F_1 and F_2 are relatively prime in K[X]. So 2.0.2 yield $G_1, G_2 \in P$ and $C \in P$ with $(G_1/C)F_1 + (G_2/C)F_2 = 1$. So $C = G_1F_1 + G_2F_2 \in R \cap \mathfrak{p}$.

Hence $R \cap \mathfrak{p} \neq 0$. But $R \cap \mathfrak{p}$ is prime, and R is a PID; so $R \cap \mathfrak{p} = pR$ where p is prime. Also pR is maximal.

Set k := R/pR. Then k is a field. Set $\mathfrak{q} := \mathfrak{p}/pR \subset k[X]$. Then $k[X]/\mathfrak{q} = P/\mathfrak{p}$ by 1. But \mathfrak{p} is prime, so P/\mathfrak{p} is a domain. So $k[X]/\mathfrak{q}$ is a domain too. So \mathfrak{q} is prime. So \mathfrak{q} is maximal. So \mathfrak{p} is maximal.

Since k[X] is a PID and \mathfrak{q} is prime, $\mathfrak{q} = \langle G' \rangle$ where G' is prime in k[X]. Take $G \in \mathfrak{p}$ with image G'

Theorem 2.9. Every proper ideal **a** is contained in some maximal ideal

Proof. Set $\mathcal{S} := \{ \text{ideals } \mathfrak{b} \mid \mathfrak{b} \supset \mathfrak{a} \text{ and } \mathfrak{b} \not\ni 1 \}$. Then $\mathfrak{a} \in \mathcal{S} \text{ and } \mathcal{S} \text{ is partially ordered by inclusion. By Zorn's Lemma$

Corollary 2.10. *Let* R *be a ring,* $x \in R$. *Then* x *is a unit iff* x *belongs to no maximal ideal*

Exercise

Exercise 2.0.3. Let $\mathfrak a$ and $\mathfrak b$ be ideals, and $\mathfrak p$ a prime ideal. Prove that these conditions are equivalent

- 1. $\mathfrak{a} \subset \mathfrak{p}$ or $\mathfrak{b} \subset \mathfrak{p}$
- 2. $\mathfrak{a} \cap \mathfrak{b} \subset \mathfrak{p}$
- 3. $\mathfrak{ab} \subset \mathfrak{p}$

Exercise 2.0.4. Let *R* be a ring, \mathfrak{p} a prime ideal, and $\mathfrak{m}_1, \dots, \mathfrak{m}_n$ maximal ideals. Assume $\mathfrak{m}_1 \dots \mathfrak{m}_n = 0$. Show $\mathfrak{p} = \mathfrak{m}_i$ for some *i*

Proof. Note
$$\mathfrak{p} \supset 0 = \mathfrak{m}_1 \dots \mathfrak{m}_n$$
. So $\mathfrak{p} \supset \mathfrak{m}_1$ or $\mathfrak{p} \supset \mathfrak{m}_2 \dots \mathfrak{m}_n$ by 2.0.3

Exercise 2.0.5. Let *R* be a ring, and $\mathfrak{p}, \mathfrak{a}_1, \dots, \mathfrak{a}_n$ ideals with \mathfrak{p} prime

- 1. Assume $\mathfrak{p} \supset \bigcap_{i=1}^n \mathfrak{a}_i$. Show $\mathfrak{p} \supset \mathfrak{a}_j$ for some j
- 2. Assume $\mathfrak{p} = \bigcap_{i=1}^n \mathfrak{a}_i$. Show $\mathfrak{p} = \mathfrak{a}_j$ for some j

Exercise 2.0.6. Let R be a ring, S the set of all ideals that consist entirely of zerodivisors. Show that S has maximal elements and they're prime. Conclude that z. div(R) is a union of primes.

Proof. Order $\mathcal S$ by inclusion. $\mathcal S$ is not empty. $\mathcal S$ consists of a maximal element $\mathfrak p$.

Given $x, x' \in R$ with $xx' \in \mathfrak{p}$, but $x, x' \notin \mathfrak{p}$. Hence $\langle x \rangle + \mathfrak{p}, \langle x' \rangle + \mathfrak{p} \notin \mathcal{S}$. So there are $a, a' \in R$ and $p, p' \in \mathfrak{p}$ s.t. y := ax + p and y' := a'x' + p' are not zerodivisors. Then $yy' \in \mathfrak{p}$. So $yy' \in z$. div(R), a contradiction. Thus \mathfrak{p} is prime.

Given $x \in z$. div(R), note $\langle x \rangle \in \mathcal{S}$. So $\langle x \rangle$ lies in a maximal element \mathfrak{p} of \mathcal{S} . Thus $x \in \mathfrak{p}$ and \mathfrak{p} is prime *Exercise* 2.0.7. Given a prime number p and an integer $n \ge 2$, prove that the residue ring $\mathbb{Z}/\langle p^n \rangle$ does not contain a domain as a subring *Proof.* Any subring of $\mathbb{Z}/\langle p^n \rangle$ must contain 1, and 1 generates $\mathbb{Z}/\langle p^n \rangle$ as an Abelian group. So $\mathbb{Z}/\langle p^n \rangle$ contains no proper subrings. Exercise 2.0.8. Let $R := R' \times R''$ be a product of two rings. Show that R is a domain if and only if either R' or R" is a domain and the other 0 *Proof.* Assume *R* is a domain. As $(1,0) \cdot (0,1) = (0,0)$, either *R'* or *R''* is 0. *Exercise* 2.0.9. Let $R := R' \times R''$ be a product of rings, $\mathfrak{p} \subset R$ an ideal. Show \mathfrak{p} is prime iff either $\mathfrak{p} = \mathfrak{p}' \times R''$ with $\mathfrak{p}' \subset R'$ prime or $\mathfrak{p} = R' \times \mathfrak{p}''$ with $\mathfrak{p}'' \subset R''$ prime *Proof.* $1 \in \mathfrak{p}$. $(1,0)(0,1) \in \mathfrak{p}$. Hence $(1,0) \in \mathfrak{p}$ or $(0,1) \in \mathfrak{p}$. П Exercise 2.0.10. Let R be a domain, and $x, y \in R$. Assume $\langle x \rangle = \langle y \rangle$. Show x = uy for some unit u*Proof.* (1 - tu)y = 0 and domain *Exercise* 2.0.11. Let k be a field, R a nonzero ring, $\varphi: k \to R$ a ring map. Prove φ is injective *Proof.* Since $1 \neq 0$, $\ker(\varphi) \neq k$. And by 2.5, $\ker(\varphi) = 0$ and hence φ is injective *Exercise* 2.0.12. Let R be a ring, \mathfrak{p} a prime, \mathcal{X} a set of variables. Let $\mathfrak{p}[\mathcal{X}]$ denote the set of polynomials with coefficients in p. Prove 1. $\mathfrak{p}R[\mathcal{X}]$ and $\mathfrak{p}[\mathcal{X}]$ and $\mathfrak{p}R[\mathcal{X}] + \langle \mathcal{X} \rangle$ are primes of $R[\mathcal{X}]$, which contract to p 2. Assume \mathfrak{p} is maximal. Then $\mathfrak{p}R[\mathcal{X}] + \langle \mathcal{X} \rangle$ is maximal 1. R/\mathfrak{p} is a domain. $\mathfrak{p}R[\mathcal{X}] = \mathfrak{p}[\mathcal{X}]$ by 1.0.3. $(\mathfrak{p}R[\mathcal{X}] + \langle \mathcal{X} \rangle / \mathfrak{p}R[\mathcal{X}])$ is equal to $\langle \mathcal{X} \rangle \subset (R/\mathfrak{p})[\mathcal{X}]$. $(R/\mathfrak{p})\langle \mathcal{X} \rangle / \langle \mathcal{X} \rangle$ is equal to R/\mathfrak{p} . Hence $R[X]/(\mathfrak{p}R[\mathcal{X}] + \langle \mathcal{X} \rangle) = (R[x]/\mathfrak{p}R[X])/((\mathfrak{p}R[\mathcal{X}] + \mathcal{X}))$ $\langle \mathcal{X} \rangle / \mathfrak{p} R[X]) = R/\mathfrak{p}$ Since the canonical map $R/\mathfrak{p} \to R[\mathcal{X}]/(\mathfrak{p}R[\mathcal{X}] + \langle \mathcal{X} \rangle)$ is bijective, it's injective.

2.
$$R/\mathfrak{p} \simeq R[\mathcal{X}]/(\mathfrak{p}R[\mathcal{X}] + \langle \mathcal{X} \rangle)$$
 \square

Exercise 2.0.13. Let R be a ring, X a variable, $H \in P := R[X]$ and $a \in R$. Given $n \ge 1$, show $(X - a)^n$ and H are coprime iff $H(a)$ is a unit.

Proof. $(X - a)^n$ and H are coprime iff $X - a$ and H are coprime. $R[x]/\langle X - a \rangle = 0$

H(a) is a unit. \square Exercise 2.0.14. Let R be a ring, X a variable, $F \in P := R[X]$, and $a \in R$. Set

 $\langle H \rangle / \langle X - a \rangle$, which implies the residue of H modulo X - a is a unit. Hence

- 1. a is a supersimple root of F
- 2. a is a root of F, and X a and F' are coprime

 $F' := \partial F/\partial X$. Show the following statements are equivalent

3. F = (X - a)G for some G in P coprime to X - a Show that if (3) holds, then G is unique

Exercise 2.0.15. Let R be a ring, \mathfrak{p} a prime; \mathcal{X} a set of variables; $F, G \in R[\mathcal{X}]$. Let c(F), c(G), c(FG) be the ideals of R generated by the coefficients of F, G, FG

- 1. Assume $\mathfrak p$ doesn't contain either c(F) or c(G). Show $\mathfrak p$ doesn't contain c(FG)
- 2. Assume c(F) = R and c(G) = R. Show c(FG) = R

Proof. 1. Denote the residues of F, G, FG in $(R/\mathfrak{p})[\mathcal{X}]$ by \overline{F} , \overline{G} and \overline{FG} . Since $\mathfrak{p} \not\supset c(F), c(G)$, $\overline{F}, \overline{G} \neq 0$. Since R/\mathfrak{p} is a domain, so is $(R/\mathfrak{p})[\mathcal{X}]$ and we have $\overline{FG} \neq 0$. Note that $\overline{FG} = \overline{FG}$, we have $\overline{FG} \neq 0$.

2. Assume c(F) = c(G) = R, since $\mathfrak{p} \not\supset c(F)$, c(G) we have $\mathfrak{p} \not\supset c(FG)$ for any prime ideals \mathfrak{p} . Hence c(FG) = R. If c(FG) = R, $c(FG) \subset c(F)$

Exercise 2.0.16. Let *B* be a Boolean ring. Show that every prime $\mathfrak p$ is maximal, and that $B/\mathfrak p = \mathbb F_2$

Proof. x(x-1) = 0 in B/\mathfrak{p} . Since B/\mathfrak{p} is a domain, x = 0 or x = 1.

Exercise 2.0.17. Let R be a ring. Assume that, given any $x \in R$, there is an $n \ge 2$ with $x^n = x$. Show that every prime \mathfrak{p} is maximal

Proof. Same. Every element has an inverse

Exercise 2.0.18. Prove the following statements or give a counterexample

1. The complement of a multiplicative subset is a prime ideal

- 2. Given two prime ideals, their intersection is prime
- 3. Given two prime ideals, their sum is prime
- 4. Given a ring map $\varphi: R \to R'$, the operation φ^{-1} carries maximal ideals of R' to maximal ideals of R
- 5. An ideal $\mathfrak{m}' \subset R/\mathfrak{a}$ is maximal iff $\kappa^{-1}\mathfrak{m}' \subset R$ is maximal in 1

Proof. 1. 0 can be belongs to the multiplicative subset

- 2. False. In \mathbb{Z} , $\langle 2 \rangle \cap \langle 3 \rangle = \langle 6 \rangle$
- 3. False. In \mathbb{Z} , $\langle 2 \rangle + \langle 3 \rangle = \mathbb{Z}$
- 4. False. Consider $\varphi : \mathbb{Z} \to \mathbb{Q}$. $\varphi^{-1}(\langle 0 \rangle) = \langle 0 \rangle$

5.

3 Radicals

Definition 3.1. Let *R* be a ring. Its (Jacobson) **radical** rad(*R*) is defined to be the intersection of all its maximal ideals

Proposition 3.2. Let R be a ring, $\mathfrak a$ an ideal, $x \in R$, $u \in R^{\times}$. Then $x \in \operatorname{rad}(R)$ iff $u - xy \in R^{\times}$ for all $x \in R$. In particular, the sum of an element of $\operatorname{rad}(R)$ and a unit is a unit, and $\mathfrak a \subset \operatorname{rad}(R)$ if $1 - \mathfrak a \in R^{\times}$

Proof. Assume $x \in \operatorname{rad}(R)$. Given a maximal ideal \mathfrak{m} , suppose $u - xy \in \mathfrak{m}$. Since $x \in \mathfrak{m}$ too, also $u \in \mathfrak{m}$, a contradiction. Thus u - xy is a unit by 2.10. In particular, tkaing y := -1 yields $u + x \in R^{\times}$

Conversely, assume $x \notin \operatorname{rad}(R)$. Then there is a maximal ideal \mathfrak{m} with $x \notin \mathfrak{m}$. So $\langle x \rangle + \mathfrak{m} = R$. Hence there exists $y \in R$ and $m \in \mathfrak{m}$ s.t. xy + m = u. Then $u - xy = m \in \mathfrak{m}$. A contradiction

In particular, given $y \in R$, set $a := u^{-1}xy$. Then $u - xy = u(1 - a) \in R^{\times}$ if $1 - a \in R^{\times}$

Corollary 3.3. *Let* R *be a ring,* \mathfrak{a} *an ideal,* $\kappa: R \to R/\mathfrak{a}$ *the quotient map. Assume* $\mathfrak{a} \subset \operatorname{rad}(R)$. Then $\operatorname{Idem}(\kappa)$ is injective

Proof. Given $e, e' \in \text{Idem}(R)$ with $\kappa(e) = \kappa(e')$, set x := e - e'. Then

$$x^3 = e - e' = x$$

Hence $x(1-x^2)=0$. But $\kappa(x)=0$; so $x\in\mathfrak{a}$. But $\mathfrak{a}\subset\operatorname{rad}(R)$. Hence $1-x^2$ is a unit by 3.2. Thus x=0. Thus $\operatorname{Idem}(\kappa)$ is injective

Definition 3.4. A ring is called **local** if it has exactly one maximal ideal, and **semilocal** if it has at least one and at most finitely many

By the **residue field** of a local ring A, we mean the field A/\mathfrak{m} where \mathfrak{m} is the maximal ideal of A

Lemma 3.5 (Nonunit Criterion). *Let A be a ring,* $\mathfrak n$ *the set of nonunits. Then A is local iff* $\mathfrak n$ *is an ideal; if so, then* $\mathfrak n$ *is the maximal ideal*

Proof. Assume *A* is local with maximal ideal \mathfrak{m} . Then $A - \mathfrak{n} = A - \mathfrak{m}$ by 2.10. Thus \mathfrak{n} is an ideal

Example 3.1. The product ring $R' \times R''$ is not local by 3.5 if both R' and R'' are nonzero. (1,0) and (0,1) are nonunits, but their sum is a unit.

Example 3.2. Let R be a ring. A **formal power series** in the n variables X_1, \ldots, X_n is a formal *infinite* sum of the form $\sum a_{(i)}X_1^{i_1} \ldots X_n^{i_n}$ where $a_{(i)} \in R$ and where $(i) := (i_1, \ldots, i_n)$ with each $i_j \geq 0$. The term $a_{(0)}$ where $(0) := (0, \ldots, 0)$ is called the **constant term**. Addition and multiplication are performed as for polynomials; with these operations, these series form a ring $R[[X_1, \ldots, X_n]]$

Set $P := R[[X_1, ..., X_n]]$ and $\mathfrak{a} := \langle X_1, ..., X_n \rangle$. Then $\sum a_{(i)} X_1^{i_1} ... X_n^{i_n} \mapsto a_{(0)}$ is a canonical surjective ring map $P \to R$ with kernel \mathfrak{a} ; hence $P/\mathfrak{a} = R$

Given an ideal $\mathfrak{m} \subset R$, set $\mathfrak{n} := \mathfrak{a} + \mathfrak{m}P$. Then 1 yields $P/\mathfrak{n} = R/\mathfrak{m}$

A power series F is a unit iff its constant term is a unit. If $a_{(0)}$ is a unit, then $F = a_{(0)}(1-G)$ with $G \in \mathfrak{a}$. Set $F' := a_{(0)}^{-1}(1+G+G^2+...)$;

Suppose R is a local ring with maximal ideal \mathfrak{m} . Given a power series $F \notin \mathfrak{n}$, its constant term lies outside \mathfrak{m} , so is a unit. So F is itself a unit. Hence the nonunits constitutes \mathfrak{n} . Thus P is local.

Example 3.3. Let k be a ring, and A := k[[X]] the formal power series ring in one variables. A **formal Laurent series** is a formal sum of the form $\sum_{i=-m}^{\infty} a_i X^i$ with $a_i \in k$ and $m \in \mathbb{Z}$. Plainly, these seires form a ring $k\{\{X\}\}$. Set $K := k\{\{X\}\}$

Set $F := \sum_{i=-m}^{\infty} a_i X^i$. If $a_{-m} \in k^{\times}$, then $F \in K^{\times}$; indeed, $F = a_{-m} X^{-m} (1 - G)$ where $G \in A$ and

Assume k is a field. If $F \neq 0$, then $F = X^{-m}H$ with $H := a_{-m}(1 - G) \in A^{\times}$. Let $\mathfrak{a} \subset A$ be a nonzero ideal. Suppose $F \in \mathfrak{a}$. Then $X^{-m} \in \mathfrak{a}$. Let n be the smallest integer s.t. $X^n \in \mathfrak{a}$. Then $-m \geq n$. Set $E := X^{-m-n}H$. Then $E \in A$ and $F = X^n E$. Hence $\mathfrak{a} = \langle X^n \rangle$. Thus A is a PID

Further, K is a field. In fact, K = Frac(A).

Let A[Y] be the polynomial ring in one variable, and $\iota:A\hookrightarrow K$ the inclusion. Define $\varphi:A[Y]\to K$ by $\varphi|A=\iota$ and $\varphi(Y)=X^{-1}$. Then φ is

surjective. Set $\mathfrak{m}:=\ker(\varphi)$. Then \mathfrak{m} is maximal. So by 2.8 \mathfrak{m} has the form $\langle F \rangle$ with F irreducible, or the form $\langle p,G \rangle$ with $p \in A$ irreducible and $G \in A[Y]$. But $\mathfrak{m} \cap A = \langle 0 \rangle$ as ι is injective. So $\mathfrak{m} = \langle F \rangle$. But XY - 1 belongs to \mathfrak{m} , and is clearly irreducible; hence XY - 1 = FH with H a unit. Thus $\langle XY - 1 \rangle$ is maximal

In addition, $\langle X, Y \rangle$ is maximal. Indeed, $A[Y]/\langle X, Y \rangle = A/\langle X \rangle = k$. Howevery $\langle X, Y \rangle$ is not principal, as no nonunit of A[Y] divides both X and Y. Thus A[Y] has both principal and nonprincipal maximal ideals, two types allows by 2.8

Proposition 3.6. Let R be a ring, S a multiplicative subset, and \mathfrak{a} an ideal with $\mathfrak{a} \cap S = \emptyset$. Set $S := \{ideals \ \mathfrak{b} \mid \mathfrak{b} \supset \mathfrak{a} \ and \ \mathfrak{b} \cap S = \emptyset\}$. Then S has a maximal element \mathfrak{p} , and every such \mathfrak{p} is prime

Proof. Take $x, y \in R - \mathfrak{p}$. Then $\mathfrak{p} + \langle x \rangle$ and $\mathfrak{p} + \langle y \rangle$ are strictly larger than \mathfrak{p} . So there are $p, q \in \mathfrak{p}$ and $a, b \in R$ with $p + ax, q + by \in S$. Hence $pq + pby + qax + abxy \in S$. But $pq + pby + qax \in \mathfrak{p}$, so $xy \notin \mathfrak{p}$. Thus \mathfrak{p} is prime

Exercise 3.0.1. Let $\varphi : R \to R'$ be a ring map, \mathfrak{p} an ideal of R. Show

- 1. there is an ideal \mathfrak{q} of R' with $\varphi^{-1}(\mathfrak{q}) = \mathfrak{p}$ iff $\varphi^{-1}(\mathfrak{p}R') = \mathfrak{p}$
- 2. if \mathfrak{p} is prime with $\varphi^{-1}(\mathfrak{p}R') = \mathfrak{p}$, then there is a prime \mathfrak{q} of R' with $\varphi^{-1}(\mathfrak{q}) = \mathfrak{p}$

Saturated multiplicative subsets

Let *R* be a ring, and *S* a multiplicative subset. We say *S* is **saturated** if given $x, y \in R$ with $xy \in S$, necessarily $x, y \in S$

Lemma 3.7 (Prime Avoidance). Let R be a ring, \mathfrak{a} a subset of R that is stable under addition and multiplication, and $\mathfrak{p}_1, ..., \mathfrak{p}_n$ ideals s.t. $\mathfrak{p}_3, ..., \mathfrak{p}_n$ are prime. If $\mathfrak{a} \not\subset \mathfrak{p}_j$ for all j, then there is an $x \in \mathfrak{a}$ s.t. $x \notin \mathfrak{p}_j$ for all j; or equivalently, if $\mathfrak{a} \subset \bigcup_{i=1}^n \mathfrak{p}_i$, then $\mathfrak{a} \subset \mathfrak{p}_i$ for some i

Proof. Assume there is an $x_i \in \mathfrak{a}$ s.t. $x_i \notin \mathfrak{p}_j$ for all $i \neq j$ and $x_i \in \mathfrak{p}_i$ for every i. If n = 2 then clearly $x_1 + x_2 \notin \mathfrak{p}_j$ for j = 1, 2. If $n \geq 3$, then $(x_1 \dots x_{n-1}) + x_n \notin \mathfrak{p}_j$ for all j as, if j = n, then $x_n \in \mathfrak{p}_n$ and \mathfrak{p}_n is prime.

Other radicals

Let R be a ring, a a subset. Its radical \sqrt{a} is the set

$$\sqrt{\mathfrak{a}} := \{ x \in R \mid x^n \in \mathfrak{a} \text{ for some } n \ge 1 \}$$

If \mathfrak{a} is an ideal and $\mathfrak{a} = \sqrt{\mathfrak{a}}$, then \mathfrak{a} is said to be **radical**. For example, suppose $\mathfrak{a} = \bigcap \mathfrak{p}_{\lambda}$ with all \mathfrak{p}_{λ} prime. If $x^n \in \mathfrak{a}$ for some $n \geq 1$, then $x \in \mathfrak{p}_{\lambda}$. Thus \mathfrak{a} is radical. Hence two radicals coincide

We call $\sqrt{\langle 0 \rangle}$ the **nilradical**, and sometimes denote it by nil(R). We call an element $x \in R$ **nilpotent** if x belongs to $\sqrt{\langle 0 \rangle}$. We call an ideal a **nilpotent** if $a^n = 0$ for some $n \ge 1$

$$\langle 0 \rangle \subset \operatorname{rad}(R)$$
. So $\sqrt{\langle 0 \rangle} \subset \sqrt{\operatorname{rad}(R)}$. Thus

$$nil(R) \subset rad(R)$$

We call R **reduced** if $nil(R) = \langle 0 \rangle$

Theorem 3.8 (Scheinnullstellensatz). *Let R be a ring,* a *an ideal. Then*

$$\sqrt{\mathfrak{a}} = \bigcap_{\mathfrak{p} \supset \mathfrak{a}} \mathfrak{p}$$

where \mathfrak{p} runs through all the prime ideals containing \mathfrak{a} . (By convention, the empty intersection is equal to R)

Proof. Take $x \notin \sqrt{\mathfrak{a}}$. Set $S := \{1, x, x^2, ...\}$. Then S is multiplicative, and $\mathfrak{a} \cap S = \emptyset$. By 3.6 there is a $\mathfrak{p} \supset \mathfrak{a}$, but $x \notin \mathfrak{p}$, but $x \notin \mathfrak{p}$. So $x \notin \bigcap_{\mathfrak{p} \supset \mathfrak{a}} \mathfrak{p}$. Thus $\sqrt{\mathfrak{a}} \supset \bigcap_{\mathfrak{p} \supset \mathfrak{a}} \mathfrak{p}$.

Proposition 3.9. *Let* R *be a ring,* \mathfrak{a} *an ideal. Then* $\sqrt{\mathfrak{a}}$ *is an ideal*

Proof. Assume $x^n, y^m \in \mathfrak{a}$. Then

$$(x+y)^{m+n-1} = \sum_{i+j=m+n-1} {n+m-1 \choose j} x^i y^j$$

Thus $x + y \in \mathfrak{a}$

Alternatively by 3.8

Exercise 3.0.2. Use Zorn's lemma to prove that any prime ideal \mathfrak{p} contains a prime ideal \mathfrak{q} that is minimal containing any given subset $\mathfrak{s} \subset \mathfrak{p}$

Minimal primes

Let *R* be a ring, $\mathfrak a$ an ideal, $\mathfrak p$ a prime. We call $\mathfrak p$ a **minimal prime** of $\mathfrak a$, or over $\mathfrak a$, if $\mathfrak p$ is minimal in the set of primes containing $\mathfrak a$. We call $\mathfrak p$ a **minimal prime** of *R* if $\mathfrak p$ is a minimal prime of $\langle 0 \rangle$

Owing to 3.0.2, every prime of R containing $\mathfrak a$ contains a minimal prime of $\mathfrak a$. So owing to the Scheinnullstellensatz 3.8, the radical $\sqrt{\mathfrak a}$ is the intersection of all the minimal primes of $\mathfrak a$.

Proposition 3.10. *A ring R is reduced and has only one minimal prime if and only if R is a domain*

Proof. 3 implies $\langle 0 \rangle = \mathfrak{q}$

Exercise 3.0.3. Let R be a ring, $\mathfrak a$ an ideal, X a variable, R[[X]] the formal power series ring, $\mathfrak M \subset R[[X]]$ an ideal, $F := \sum a_n X_n \in R[[X]]$. Set $\mathfrak m := \mathfrak M \cap R$ and $\mathfrak A := \{\sum b_n X^n \mid b_n \in \mathfrak a\}$. Prove the following statements:

- 1. If F is a nilpotent, then a_n is nilpotent for all n. The converse is false
- 2. $F \in \operatorname{rad}(R[[X]])$ iff $a_0 \in \operatorname{rad}(R)$
- 3. Assume $X \in \mathfrak{M}$. Then X and \mathfrak{m} generate \mathfrak{M}
- 4. Assume \mathfrak{M} is maximal. Then $X \in \mathfrak{M}$ and \mathfrak{m} is maximal
- 5. If $\mathfrak a$ is finitely generated, then $\mathfrak a R[[X]] = \mathfrak A$. However, there's an example of an R with a prime ideal $\mathfrak a$ s.t. $\mathfrak a R[[X]] \neq \mathfrak A$
- *Proof.* 1. Assume F and a_i for i < n nilpotent. Set $G := \sum_{i \ge n} a_i X^i$. Then $G = F \sum_{i < n} a_i X^i$. So G is nilpotent by 3.9; say $G^m = 0$ for some $m \ge 1$. Then $a_n^m = 0$
 - Set $P := \mathbb{Z}[X_2, X_3, ...]$. Set $R := P/\langle X_2^2, X_3^3, ... \rangle$. Let a_n be the residue of X_n . Then $a_n^n = 0$, but $\sum a_n X^n$ is not nilpotent.
 - 2. By 3.2, suppose $G = \sum b_i X^i$

 $F \in \operatorname{rad}(R[[X]]) \iff 1 + FG \in R[[X]]^{\times} \iff 1 + a_0b_0 \in R^{\times} \iff a_0 \in \operatorname{rad}(R)$

5. Take $R := \mathbb{Z}[a_1, a_2, ...]$ and $\mathfrak{a} := \langle a_1, ... \rangle$. Then $R/\mathfrak{a} = \mathbb{Z}$ and \mathfrak{a} is prime. Given $G \in \mathfrak{a}R[[X]]$, say $G = \sum_{i=1}^m b_i G_i$ with $b_i \in \mathfrak{a}$ and $G_i = \sum_{n \geq 0} b_{in} X^n$ and $F \neq G$ for any m

Example 3.4. Let R be a ring, R[[X]] the formal power series ring. Then every prime \mathfrak{p} of R is the contraction of a prime of R[[X]]. Indeed $\mathfrak{p}R[[X]] \cap R = \mathfrak{p}$. So by 3.0.1 there is a prime \mathfrak{q} of R[[X]] with $\mathfrak{q} \cap R = \mathfrak{p}$. In fact ,a specific choice for \mathfrak{q} is the set of series $\sum a_n X^n$ with $a_n \in \mathfrak{q}$. Indeed, the canonical map $R \to R/\mathfrak{p}$ induces a surjection $R[[X]] \to (R/\mathfrak{p})[[X]]$ with kernel \mathfrak{q} ; so $R[[X]]/\mathfrak{q} = (R/\mathfrak{p})[[X]]$. But 3.0.3 shows \mathfrak{q} may not be equal to $\mathfrak{p}R[[X]]$

Exercise

Exercise 3.0.4. Let R be a ring, $\mathfrak{a} \subset \operatorname{rad}(R)$ an ideal, $w \in R$ and $w' \in R/\mathfrak{a}$ its residue. Prove that $w \in R^{\times}$ iff $w' \in (R/\mathfrak{a})^{\times}$. What if $\mathfrak{a} \not\subset \operatorname{rad}(R)$?

Proof. Assume $\mathfrak{a} \subset \operatorname{rad}(R)$. $\mathfrak{m} \mapsto \mathfrak{m}/\mathfrak{a}$ is a bijection for maximal ideal \mathfrak{m} . So w belongs to a maximal ideal of R iff w' belongs to one of R/\mathfrak{a}

Assume $\mathfrak{a} \not\subset \operatorname{rad}(R)$, then there is a maximal ideal \mathfrak{m} s.t. $\mathfrak{a} \not\subset \mathfrak{m}$. So $\mathfrak{a} + \mathfrak{m} = R$. So there are $a \in \mathfrak{a}$ and $v \in \mathfrak{m}$ s.t. a + v = w. Then $v \notin R^{\times}$ but the residue of v is w', even if $w' \in (R/\mathfrak{a})^{\times}$. For example, take $R := \mathbb{Z}$ and $\mathfrak{a} = \langle 2 \rangle$ and w := 3. Then $w \notin R^{\times}$ but the residue of w is $1 \in (R/\mathfrak{a})^{\times}$

Exercise 3.0.5. Let A be a local ring, e an idempotent. Show e = 1 or e = 0

Proof. 1 - e + e = 1. Since $1 \notin m$, at least one of 1 - e and e doesn't belong to m

Exercise 3.0.6. Let A be a ring, \mathfrak{m} a maximal ideal s.t. 1+m is a unit for every $m \in \mathfrak{m}$. Prove A is local. Is this assertion still true if \mathfrak{m} is not maximal?

Proof. Let $y \in A - \mathfrak{m}$. Then $\langle y \rangle + \mathfrak{m} = A$ and there is a $x \in A$ s.t. xy + m = 1. Hence xy is a unit and $\langle xy \rangle = \langle y \rangle$. y is a unit.

Exercise 3.0.7. Let R be a ring, and S a subset. Show that S is saturated multiplicative iff R - S is a union of primes.

Proof. Assume *S* is saturated multiplicative. Take $x \in R - S$. Then $xy \notin S$ for all $y \in R$; in other words, $\langle x \rangle \cap S = \emptyset$. Then 3.6 gives a prime $\mathfrak{p} \supset \langle x \rangle$ with $\mathfrak{p} \cap S = \emptyset$. Thus R - S is a union of primes.

Exercise 3.0.8. Let *R* be a ring, and *S* a multiplicative subset. Define its **saturation** to be the subset

$$\bar{S} := \{x \in R \mid \text{there is } y \in R \text{ with } xy \in S\}$$

- 1. Show that $\bar{S} \supset S$ and that \bar{S} is saturated multiplicative and that any saturated multiplicative subset T containing S also contains \bar{S}
- 2. Set $U := \bigcup_{\mathfrak{p} \cap S = \emptyset} \mathfrak{p}$. Show that $R \overline{S} = U$
- 3. Let $\mathfrak a$ an ideal; assume $S=1+\mathfrak a$; set $W:=\bigcup_{\mathfrak p\supset\mathfrak a}\mathfrak p$. Show $R-\bar S=W$
- 4. Given $f, g \in R$, show that $\bar{S_f} \subset \bar{S_g}$ iff $\sqrt{\langle f \rangle} \supset \sqrt{\langle g \rangle}$, where $S_f = \{f^n \mid n \geq 0\}$

Proof. 3. First take a prime $\mathfrak p$ with $\mathfrak p \cap S = \emptyset$. Then $1 \notin \mathfrak p + \mathfrak a$; else, 1 = p + a and $p = 1 - a \in \mathfrak p \cap S$. So $\mathfrak p + \mathfrak a$ lies in a maximal ideal $\mathfrak m$. Then $\mathfrak a \subset \mathfrak m$; so $\mathfrak m \subset W$. But also $\mathfrak p \subset W$. So $U \subset W$

Conversely, take $\mathfrak{p} \supset \mathfrak{a}$. Then $1 + \mathfrak{p} \supset 1 + \mathfrak{a} = S$. But $\mathfrak{p} \cap (1 + \mathfrak{p}) = \emptyset$. So $\mathfrak{p} \cap S = \emptyset$. Thus $U \subset W$. Thus U = W. Thus 2 implies (3)

4.
$$\bar{S_f} \subset \bar{S_g}$$
 iff $f \in \bar{S_g}$ iff $hf = g^n$ iff $g \in \sqrt{\langle f \rangle}$ iff $\sqrt{\langle g \rangle} \subset \sqrt{\langle f \rangle}$

Exercise 3.0.9. Let R be a nonzero ring, S a subset. Show S is maximal in the \mathfrak{S} of multiplicative subsets T of R with $0 \notin T$ iff R - S is a minimal prime

Proof. First assume S is maximal. Then S = S. So R - S is a union of primes \mathfrak{p} . Fix a \mathfrak{p} . Then 3.0.2 yields in \mathfrak{p} a minimal prime ideal \mathfrak{q} . Then $S \subset R - \mathfrak{q}$. But $R - \mathfrak{q} \in \mathfrak{S}$. $S = R - \mathfrak{q}$

If R - S is a minimal prime. Then $S \in \mathfrak{S}$. Given $T \in \mathfrak{S}$ with $S \subset T$, note $R - \overline{T} = \bigcup \mathfrak{p}$ with \mathfrak{p} prime. Fix a \mathfrak{p} , then $S \subset T \subset \overline{T}$. So $\mathfrak{q} \supset \mathfrak{p}$. But \mathfrak{q} is minimal and hence $\mathfrak{q} = \mathfrak{p}$. Hence $\mathfrak{q} = R - \overline{T}$. So $S = \overline{T}$

Exercise 3.0.10. Let k be a field, X_{λ} for $\lambda \in \Lambda$ variables, and Λ_{π} for $\pi \in \Pi$ disjoint subsets of Λ . Set $P := k[\{X_{\lambda}\}_{\lambda \in \Lambda}]$ and $\mathfrak{p}_{\pi} := \langle \{X_{\lambda}\}_{\lambda \in \Lambda_{\pi}} \rangle$ for all $\pi \in \Pi$. Let $F, G \in P$ be nonzero, and $\mathfrak{a} \subset P$ a nonzero ideal. Set $U := \bigcup_{\pi \in \Pi} \mathfrak{p}_{\pi}$. Show

- 1. Assume $F \in \mathfrak{p}_{\pi}$ for some $\pi \in \Pi$, then every monomial of F is in \mathfrak{p}_{π}
- 2. Assume there are $\pi, \rho \in \Pi$ s.t. $F + G \in \mathfrak{p}_{\pi}$ and $G \in \mathfrak{p}_{\rho}$ but \mathfrak{p}_{ρ} contains no monomial of F. Then \mathfrak{p}_{π} contains every monomial of F and of G
- 3. Assume $\mathfrak{a} \subset U$. Then $\mathfrak{a} \subset \mathfrak{p}_{\pi}$ for some $\pi \in \Pi$

4 Modules

Modules

Let R be a ring. Recall that an R-module M is an abelian group, written additively, with a scalar multiplication, $R \times M \to M$, written $(x, m) \mapsto xm$, which is

- 1. **distributive**, x(m+n) = xm + xn and (x + y)m = xm + xn
- 2. **associative**, x(ym) = (xy)m
- 3. **unitary**, $1 \cdot m = m$

For example, if R is a field, then an R-module is a vector space. A \mathbb{Z} -module is just an abelian group

A **submodule** N of M is a subgroup that is closed under multiplication.; that is, $xn \in N$ for all $x \in R$ and $n \in N$. For example, the ring R is itself an R-module, and the submodules are just the ideals. Given an ideal \mathfrak{a} , let $\mathfrak{a}N$ denote the smallest submodule containing all products an with $a \in \mathfrak{a}$ and $n \in N$. $\mathfrak{a}N$ is equal to the set of finite sums $\sum a_i n_i$.

Given $m \in M$, we call the set of $x \in R$ with xm = 0 the **annihilator** of m, and denote it Ann(m). We call the set of $x \in R$ with xm = 0 for all $m \in M$ the **annihilator** of M, and denote it Ann(M)

Homomorphisms

Let *R* be a ring, *M* and *N* modules. A **homomorphism**, or **module map** is a map $\alpha : M \to N$ that is *R*-linear:

$$\alpha(xm + yn) = x(\alpha m) + y(\alpha n)$$

Note that f is injective iff it has a left inverse. f is surjective iff it has a right inverse

A homomorphism α is an isomorphism iff there is a set map $\beta: N \to M$ s.t. $\beta \alpha = 1_M$ and $\alpha \beta = 1_N$, and then $\beta = \alpha^{-1}$.

The set of homomorphisms α is denoted by $\operatorname{Hom}_R(M, N)$ or simply $\operatorname{Hom}(M, N)$. It is an R-module with addition and scalar multiplication defined by

$$(\alpha + \beta)m := \alpha m + \beta m$$
 and $(x\alpha)m := x(\alpha m) = \alpha(xm)$

Homomorphisms $\alpha:L\to M$ and $\beta:N\to P$ induce, via composition, a map

$$\operatorname{Hom}(\alpha, \beta) : \operatorname{Hom}(M, N) \to \operatorname{Hom}(L, P)$$

When α is the identity map 1_M , we write $\text{Hom}(M, \beta)$ for $\text{Hom}(1_M, \beta)$ *Exercise* 4.0.1. Let R be a ring, M a module. Consider the map

$$\theta: \operatorname{Hom}(R, M) \to M$$
 defined by $\theta(\rho) := \rho(1)$

Show that θ is an isomorphism, and describe its inverse

Proof. First, θ is R-linear. Set $H := \operatorname{Hom}(R, M)$. Define $\eta : M \to H$ by $\eta(m)(x) := xm$. It is easy to check that $\eta\theta = 1_H$ and $\theta\eta = 1_M$. Thus θ and η are inverse isomorphism

Endomorphisms

Let R be a ring, M a module. An **endomorphism** of M is a homomorphism $\alpha: M \to M$. The module of endomorphism $\operatorname{Hom}(M, M)$ is also denoted $\operatorname{End}_R(M)$. Further, $\operatorname{End}_R(M)$ is a subring of $\operatorname{End}_{\mathbb{Z}}(M)$

Given $x \in R$, let $\mu_x : M \to M$ denote the map of **multiplication** by x, defined by $\mu_x(m) := xm$. It is an endomorphism. Further, $x \mapsto \mu_x$ is a ring map

$$\mu_R: R \to \operatorname{End}_R(M) \subset \operatorname{End}_{\mathbb{Z}}(M)$$

(Thus we may view μ_R as representing R as a ring of operators on the abelian gorup). Note that $\ker(\mu_R) = \operatorname{Ann}(M)$

Conversely, given an abelian group N and a ring map

$$\nu: R \to \operatorname{End}_{\mathbb{Z}}(N)$$

we obtain a module structure on N by setting xn := (vx)(n). Then $\mu_R = v$ We call M **faithful** if $\mu_R : R \to \operatorname{End}_R(M)$ is injective, or $\operatorname{Ann}(M) = 0$. For example, R is a faithful R-module for $x \cdot 1 = 0$ implies

Algebras

Fix two rings R and R'. Suppose R' is an R-algebra with structure map φ . Let M' be an R'-module. Then M' is also an R-module by **restriction on scalars**: $xm := \varphi(x)m$. In other words, the R-module structure on M' corresponds to the composition

$$R \xrightarrow{\varphi} R' \xrightarrow{\mu_{R'}} \operatorname{End}_{\mathbb{Z}}(M')$$

In particular, R' is an R-module; further, for all $x \in R$ and $y, z \in R'$

$$(xy)z = x(yz)$$

by restriction on scalars

Conversely, suppose R' is an R-module s.t. (xy)z = x(yz). Then R' has an R-algebra structure that is compatible with the given R-module structure.. Indeed, define $\varphi: R \to R'$ by $\varphi(x) := x \cdot 1$. Then $\varphi(x)z = xz$ as $(x \cdot 1)z = x(1 \cdot z)$. So the composition $\mu_{R'}\varphi: R \to R' \to \operatorname{End}_{\mathbb{Z}}(R')$ is equal to μ_R . Hence φ is a ring map. Thus R' is an R-algebra, and restriction of scalars recovers its given R-module structure

Suppose that $R' = R/\mathfrak{a}$ for some ideal \mathfrak{a} . Then an R-module M has a compatible R'-module structure iff $\mathfrak{a}M = 0$; if so, then the R'-structure is unique. Indeed, the ring map $\mu_R : R \to \operatorname{End}_{\mathbb{Z}}(M)$ factors through R' iff $\mu_R(\mathfrak{a}) = 0$, so iff $\mathfrak{a}M = 0$

Again suppose R' is an arbitrary R-algebra with structure map φ . A **subalgebra** R'' of R' is a subring s.t. φ maps into R''. The subalgebra **generated** by $x_1, \ldots, x_n \in R'$ is the smallest R-subalgebra that contains them. We denote it by $R[x_1, \ldots, x_n]$.

We say R' is a **finitely generated** R**-subalgebra** or is **algrbra finite over** R if there exist $x_1, \ldots, x_n \in R'$ s.t. $R' = R[x_1, \ldots, x_n]$

Residue modules

Let *R* be a ring, *M* a module, $M' \subset M$ a submodule. Form the set of cosets

$$M/M' := \{m + M' \mid m \in M\}$$

M/M' inherits a module structure, and is called the **residue module** or **quotient of** M **modulo** M'. Form the **quotient map**

$$\kappa: M \to M/M'$$
 by $\kappa(m) := m + M'$

Clearly κ is surjective, κ is linear, and κ has kernel M'

Let $\alpha: M \to N$ be linear. Note that $\ker(\alpha') \supset M'$ iff $\alpha(M') = 0$

If $\ker(\alpha) \supset M'$, then there exists a homomorphism $\beta: M/M' \to N$ s.t. $\beta \kappa = \alpha$

Always

$$M/\ker(\alpha) \cong \operatorname{im}(\alpha)$$

M/M' has the following UMP: $\kappa(M') = 0$, and given $\alpha : M \to N$ s.t. $\alpha(M') = 0$, there is a unique homomorphism $\beta : M/M' \to N$ s.t. $\beta \kappa = \alpha$

Cyclic modules

Let R be a ring. A module M is said to be **cyclic** if there exists $m \in M$ s.t. M = Rm. If so, form $\alpha : R \to M$ by $x \mapsto xm$; then α induces an isomorphism $R/\operatorname{Ann}(m) \cong M$. Note that $\operatorname{Ann}(m) = \operatorname{Ann}(M)$. Conversely, given any ideal α , the R-module R/α is cyclic, generated by the coset of 1, and $\operatorname{Ann}(R/\alpha) = \alpha$

Noether Isomorphisms

Let *R* be a ring, *N* a module, and *L* and *M* submodules.

First, assume $L \subset M \subset N$. Form the following composition of quotient maps:

$$\alpha: N \to N/L \to (N/L)/(M/L)$$

 α is surjective and $\ker(\alpha) = M$. Hence

$$\begin{array}{ccc}
N & \longrightarrow & N/M \\
\downarrow & & \searrow \beta \\
N/L & \longrightarrow & (N/L)/(M/L)
\end{array}$$

Second, let L+M denote the set of all sums l+m with $l \in L$ and $m \in M$. Clearly L+M is a submodule of N. It is called the **sum** of L and M

Form the composition α' of the inclusion map $L \to L+M$ and the quotient map $L+M \to (L+M)/M$. Clearly α' is surjective and $\ker(\alpha') = L \cap M$. Hence

$$\begin{array}{ccc}
L & \longrightarrow & L/(L \cap M) \\
\downarrow & & \simeq \downarrow \beta' \\
L+M & \longrightarrow & (L+M)/M
\end{array}$$

Cokernels, coimages

Let *R* be a ring, $\alpha: M \to N$ a linear map. Associated to α are its **cokernel** and its **coimage**

$$coker(\alpha) := N/im(\alpha)$$
 and $coim(\alpha) := M/ker(\alpha)$

they are quotient modules, and their quotient maps are both denoted by κ . UMP of the cokernel: $\kappa\alpha=0$ and given a map $\beta:N\to P$ with $\beta:N\to P$ with $\beta\alpha=0$, there is a unique map $\gamma:\operatorname{coker}(\alpha)\to P$ with $\gamma\kappa=\beta$

$$M \xrightarrow{\alpha} N \xrightarrow{\kappa} \operatorname{coker}(\alpha)$$

Further, $coim(\alpha) \Rightarrow im(\alpha)$

Free modules

Let R be a ring, Λ a set, M a module. Given elements $m_{\lambda} \in M$ for $\lambda \in \Lambda$, by the submodule they **generate**, we mean the smallest submodule that contains then all. Clearly, any submodule that contains them all contains any (finite) linear combination $\sum x_{\lambda}m_{\lambda}$ with $x_{\lambda} \in R$

 m_{λ} are said to be **free** or **linearly independent** if whenever $\sum x_{\lambda}m_{\lambda} = 0$, also $x_{\lambda} = 0$ for all λ . Finally, the m_{λ} are said to form a **free basis** of M if they are free and generate M; if so, then we say M is **free** on the m_{λ}

We say *M* is **free** if it has a free basis. Any two free bases have the same number *l* of elements, and we say *M* is **free** of rank *l*

For example, form the set of restricted vectors

$$R^{\oplus \Lambda} := \{(x_{\lambda}) \mid x_{\lambda} \in R \text{ with } x_{\lambda} = 0 \text{ for almost all } \lambda\}$$

It's a module under componentwise addition and scalar multiplication. It has a **standard basis**, which consists of the vectors e_{μ} whose λ th component is the value of the **Kronecker delta function**

If Λ has a finite number l of elements, then $R^{\oplus \Lambda}$ is often written R^l and called the **direct sum of** l **copies** of R

The free module $R^{\oplus \Lambda}$ has the following UMP: given a module M and elements $m_{\lambda} \in M$ for $\lambda \in \Lambda$, there is a unique homomorphism

$$\alpha: R^{\oplus \Lambda} \to M \text{ with } \alpha(e_{\lambda}) = m_{\lambda} \text{ for each } \lambda \in \Lambda$$

namely, $\alpha((x_{\lambda})) = \alpha(\sum x_{\lambda}e_{\lambda}) = sumx_{\lambda}m_{\lambda}$. Note the following obvious statements:

- 1. α is surjective iff m_{λ} generate M
- 2. α is injective iff m_{λ} are linearly independent
- 3. α is an isomorphism iff m_{λ} for a free basis Thus M is free of rank l iff $M \simeq R^l$

Exercise 4.0.2. Take $R := \mathbb{Z}$ and $M := \mathbb{Q}$. Then any two $x, y \in M$ are not free. Aso M is not finitely generated. Indeed, given any $m_1/n_1, \ldots, m_r/n_r \in M$, let d be a common multiple of n_1, \ldots, n_r . Then $(1/d)\mathbb{Z}$ contains every linear combination but $(1/d)\mathbb{Z} \neq \mathbb{Q}$

Exercise 4.0.3. Let R be a domain, and $x \in R$ nonzero. Let M be the submodule of Frac(R) generated by $1, x^{-1}, x^{-2}, ...$ Suppose that M is finitely generated. Prove that $x^{-1} \in R$ and conclude that M = R

Proof. Suppose M is generated by $m_1, ..., m_k$. Say $m_i = \sum_{j=0}^{n_i} a_{ij} x^{-j}$ for some n_i and $a_{ij} \in R$. Set $n := \max\{n_i\}$. Then $1, x^{-1}, ..., x^{-n}$ generate M. So

$$x^{-n+1} = a_n x^{-n} + \dots + a_0$$

Thus

$$x^{-1} = a_n + \dots + a_0 x^n$$

Direct Products, Direct Sums

Let *R* be a ring, Γ a set, M_{λ} a module for $\lambda \in \Lambda$. The **direct product** of the M_{λ} is the set of arbitrary vectors:

$$\prod M_{\lambda} := \{ (m_{\lambda}) \mid m_{\lambda} \in M_{\lambda} \}$$

The **direct sum** of the M_{λ} is the subset of **restricted vectors**:

$$\bigoplus M_{\lambda} := \{(m_{\lambda}) \mid m_{\lambda} = 0 \text{ for almost all } \lambda\} \subset \prod M_{\lambda}$$

The direct product comes equipped with projections

$$\pi_{\kappa}: \prod M_{\lambda} \to M_{\kappa} \quad \text{given by} \quad \pi_{\kappa}((m_{\lambda})) := m_{\kappa}$$

 $\prod M_{\lambda}$ has UMP: given homomorphisms $\alpha_{\kappa}: N \to M_{\kappa}$, there is a unique homomorphism $\alpha: N \to \prod M_{\lambda}$ satisfying $\pi_{\kappa}\alpha = \alpha_{\kappa}$ for all $\kappa \in \Lambda$; namely $\alpha(n) = (\alpha_{\lambda}(n))$. Often α is denoted (α_{λ}) . In other words, the π_{λ} induce a bijection of sets

$$\operatorname{Hom}(N, \prod M_{\lambda}) \simeq \prod \operatorname{Hom}(N, M_{\lambda})$$

Similarly, the direct sum comes equipped with injections

$$\iota_{\kappa}: M_{\kappa} \to \bigoplus M_{\lambda}$$
 given by $\iota_{\kappa}(m) := (m_{\lambda})$ where $m_{\lambda} := \begin{cases} m & \lambda = \kappa \\ 0 & \end{cases}$

UMP: given homomorphisms $\beta_{\kappa}: M_{\kappa} \to N$, there is a unique homomorphism $\beta: \bigoplus M_{\lambda} \to N$ satisfying $\beta \iota_{\kappa} = \beta_{\kappa}$ for all $\kappa \in \Lambda$ for all $\kappa \in \Lambda$; namely, $\beta((m_{\lambda})) = \sum \beta_{\lambda}(m_{\lambda})$. Often β is denoted $\sum \beta_{\lambda}$; often (β_{λ}) . In other words, the ι_{κ} induce this bijection of sets:

$$\operatorname{Hom}(\bigoplus M_{\lambda}, N) \cong \prod \operatorname{Hom}(M_{\lambda}, N)$$

For example, if $M_{\lambda} = R$ for all λ , then $\bigoplus M_{\lambda} = R^{\oplus \Lambda}$

Exercise 4.0.4. Let Λ be an infinite set, R_{λ} a ring for $\lambda \in \Lambda$. Endow $\prod R_{\lambda}$ and $\bigoplus R_{\lambda}$ with componentwise addition and multiplication. Show that $\prod R_{\lambda}$ has a multiplicative identity (so is a ring), but $\bigoplus R_{\lambda}$ does not (so is not a ring)

Exercise 4.0.5. Let L, M, N be modules. Consider a diagram

$$L \xrightarrow{\alpha} M \xrightarrow{\beta} N$$

where α , β , ρ and σ are homomorphisms. Prove that

$$M = L \oplus N$$
 and $\alpha = \iota_L, \beta = \pi_N, \sigma = \iota_N, \rho = \pi_L$

iff the following relations holds

$$\beta\alpha = 0, \beta\sigma = 1, \rho\sigma = 0, \rho\alpha = 1, \alpha\rho + \sigma\beta = 1$$

Proof. Consider the map $\varphi: M \to L \oplus N$ and $\theta: L \oplus N \to M$ given by $\varphi m := (\rho m, \rho m)$ and $\theta(l, n) := \alpha l + \sigma n$. They are inverse isomorphism since

$$\varphi\theta(l,n) = (\rho\alpha l + \rho\sigma n, \beta\alpha l + \beta\sigma n) = (l,n)$$
 and $\theta\varphi m = \alpha\rho m + \sigma\beta m = m$

Exercise 4.0.6. Let N be a module, Λ a nonempty set, M_{λ} a module for $\lambda \in \Lambda$. Prove that the injections $\iota_{\kappa}: M_{\kappa} \to \bigoplus M_{\lambda}$ induce an injection

$$\bigoplus \operatorname{Hom}(N, M_{\lambda}) \hookrightarrow \operatorname{Hom}(N, \bigoplus M_{\lambda})$$

and that it is an isomorphism if N is finitely generated

Proof. For $(\beta_K) \in \bigoplus \operatorname{Hom}(N, M_{\lambda})$

$$\beta(n) = \begin{cases} \iota_{\kappa} \beta_{\kappa} & \text{if } \beta_{\kappa} \neq 0 \\ 0 & \beta_{\kappa} = 0 \end{cases} \in \text{Hom}(N, \bigoplus M_{\lambda})$$

If N is finitely generated, suppose $a_1, ..., a_n$ generates N and $\beta(a_i) = b_i \in \bigoplus M_{\lambda}$, which means $\beta(N)$ is a finite direct subsum of $\bigoplus M_{\lambda}$. then we have $\beta_{\kappa} = \pi_{\kappa} \beta$ and almost

Exercise 4.0.7. Let \mathfrak{a} be an ideal, Λ a nonempty set, M_{λ} a module for $\lambda \in \Lambda$. Prove $\mathfrak{a}(\bigoplus M_{\lambda}) = \bigoplus \mathfrak{a}M_{\lambda}$. Prove $\mathfrak{a}(\prod M_{\lambda}) = \prod \mathfrak{a}M_{\lambda}$ if \mathfrak{a} is finitely generated

5 Exact Sequence

Definition 5.1. A (finite or infinite) sequence of module homomorphisms

$$\cdots \to M_{i-1} \xrightarrow{\alpha_{i-1}} M_i \xrightarrow{\alpha_i} M_{i+1} \to \cdots$$

is said to be **exact at** M_i if $\ker(\alpha_i) = \operatorname{im}(\alpha_{i-1})$.. The sequence is said to be **exact** if it is exact at every M_i , except an initial source or final target

Example 5.1. 1. A sequence $0 \to L \xrightarrow{\alpha} M$ is exact iff α is injective. If so, then we often identify L with its image $\alpha(L)$

Dually - a sequence $M \xrightarrow{\beta} N \to 0$ is exact iff β is surjective

2. A sequence $0 \to L \xrightarrow{\alpha} M \xrightarrow{\beta} N$ is exact iff $L = \ker(\beta)$, where '=' means "canocially isomorphic". Dually, a sequence $L \xrightarrow{\alpha} M \xrightarrow{\beta} N \to 0$ is exact iff $N = \operatorname{coker}(\alpha)$

Short exact sequences

A sequence $0 \to L \xrightarrow{\alpha} M \xrightarrow{\beta} N \to 0$ is exact iff α is injective and $N = \operatorname{coker}(\alpha)$, or dually, iff β is surjective and $L = \ker(\beta)$. If so, then the sequence is called **short exact**, and often we regard L as a submodule of M, and N as the quotient M/L

For example, the following sequence is shor t exact

$$0 \to L \xrightarrow{\iota_L} L \oplus N \xrightarrow{\pi_N} N \to 0$$

Proposition 5.2. For $\lambda \in \Lambda$, let $M'_{\lambda} \to M_{\lambda} \to M''_{\lambda}$ be a sequence of module homomorphisms. If every sequence is exact, then so are the two induced sequences

$$\bigoplus M'_{\lambda} \to \bigoplus M_{\lambda} \to \bigoplus M''_{\lambda}$$
 and $\prod M'_{\lambda} \to \prod M_{\lambda} \to \prod M''_{\lambda}$

Conversely, if either induced sequence is exact then so is every original one

Exercise 5.0.1. Let M' and M'' be modules, $N \subset M'$ a submodule. Set $M := M' \oplus M''$. Prove $M/N = M'/N \oplus M''$

Proof. $N = N \oplus 0$

The two sequence $0 \to M'' \to M'' \to 0$ and $0 \to N \to M' \to M'/N \to 0$ are exact. So by 5.2, the sequence

$$0 \to N \to M' \oplus M'' \to (M'/N) \oplus M'' \to 0$$

is exact \Box

Exercise 5.0.2. Let $0 \to M' \to M \to M'' \to 0$ be a short exact sequence. Prove the if M' and M'' are finitely generated, then so is M

Lemma 5.3. Let $0 \to M' \xrightarrow{\alpha} M \xrightarrow{\beta} M'' \to 0$ be a short exact sequence, and $N \subset M$ a submodule. Set $N' := \alpha^{-1}$ and $N'' := \beta(N)$. Then the induced sequence $0 \to N' \to N \to N'' \to 0$ is short exact

Definition 5.4. We say that a short exact sequence

$$0 \to M' \xrightarrow{\alpha} M \xrightarrow{\beta} M'' \to 0$$

splits if there is an isomorphism $\varphi: M \Rightarrow M' \oplus M''$ with $\varphi \alpha = \iota_{M'}$ and $\beta = \pi_{M''} \varphi$

We call a homomorphism $\rho: M \to M'$ a **retraction** of α if $\rho\alpha = 1_{M'}$ Dually, we call a homomorphism $\sigma: M'' \to M$ a **section** of β if $\beta\sigma = 1_{M''}$

Proposition 5.5. Let $0 \to M' \xrightarrow{\alpha} M \xrightarrow{\beta} M'' \to 0$ be a short exact sequence. Then the following conditions are equivalent

- 1. The sequence splits
- 2. There exists a retraction
- 3. There exists a section

Proof. Assume (2). Set $\sigma' := 1_M - \alpha \rho$. Then $\sigma' \alpha = 0$. So there exists $\sigma : M'' \to M$ with $\sigma \beta = \sigma'$ by 5.1 and UMP. So $1_M = \alpha \rho + \sigma \beta$. Since $\beta \sigma \beta = \beta$ and β is surjective, $\beta \sigma = 1_{M''}$. Hence $\alpha \rho \sigma = 0$. Since α is injective, $\rho \sigma = 0$. Thus 4.0.5 yields (1) and also (3)

Exercise 5.0.3. Let M', M'' be modules, and set $M := M' \oplus M''$. Let N be a submodule of M containing M', and set $N'' := N \cap M''$. Prove $N = M' \oplus N''$

Proof. Form the sequence $0 \to M' \to N \to \pi_{M''}N \to 0$. It splits by 5.5 as $(\pi_{M'}|N) \circ \iota_{M'} = 1_{M'}$. Finally if $(m',m'') \in N$, then $(0,m'') \in N$ as $M' \subset N$; hence $\pi_{M''}N = N''$

Exercise 5.0.4. Criticize the following misstatement of 5.5: given a short exact sequence $0 \to M' \xrightarrow{\alpha} M \xrightarrow{\beta} M'' \to 0$, there is an isomorphism $M \simeq M' \oplus M''$ iff there is a section $\sigma : M'' \to M$ of β

Proof. We have $\alpha: M' \to M$ and $\iota_{M'}: M' \oplus M''$, but 5.5 requires that they be compatible with the isomorphism $M \simeq M' \oplus M''$.

Let's construct a counterexample. For each integer $n \ge 2$, let M_n be the direct sum of countably many copies of $\mathbb{Z}/\langle n \rangle$. Set $M := \bigoplus M_n$

First let us check these two statements:

- 1. For any finite abelian group G, we have $G \oplus M \simeq M$
- 2. For any finite abelian subgroup $G \subset M$, we have $M/G \simeq M$

Statement (1) holds since *G* is isomorphic to a direct sum of copies of $\mathbb{Z}/\langle n \rangle$

To prove (2), write $M = B \oplus M'$, where B contains G and involes only finitely many components of M. Then $M' \simeq M$. Therefore, 5.0.3 yields

$$M/G \simeq (B/G) \oplus M' \simeq M$$

To construct the counterexample, let p be a prime number. Take one of the $\mathbb{Z}/\langle p^2 \rangle$ components of M, and let $M' \subset \mathbb{Z}/\langle p^2 \rangle$ be the cyclic subgroup of order p. There is no retraction $\mathbb{Z}/\langle p^2 \rangle \to M'$, so there is no traction $M \to M'$ either, since the latter would induce the former. Finally take M'' := M/M'. Then (1) and (2) yield $M \simeq M' \oplus M''$

Lemma 5.6 (Snake). *Consider this commutative diagram with exact rows:*

$$0 \longrightarrow N' \xrightarrow{\alpha} M \xrightarrow{\beta} M'' \longrightarrow 0$$

$$\downarrow^{\gamma'} \qquad \downarrow^{\gamma} \qquad \downarrow^{\gamma''} \qquad \downarrow^{\gamma'} \qquad \downarrow$$

It yields the following exact sequence

$$\ker(\gamma') \xrightarrow{\varphi} \ker(\gamma) \xrightarrow{\psi} \ker(\gamma'') \xrightarrow{\partial} \operatorname{coker}(\gamma') \xrightarrow{\varphi'} \operatorname{coker}(\gamma) \xrightarrow{\psi'} \operatorname{coker}(\gamma'')$$

Moreover, if α is injective, then so is φ ; dually, if β' is surjective, then so is ψ'

Proof. Clearly, α yields a unique compatible homomorphism $\ker(\gamma') \to \ker(\gamma)$ since $\gamma\alpha(\ker(\gamma')) = 0$. By the UMP in 4, α' yields a unique compatible homomorphism φ' because M' goes to 0 in $\operatorname{coker}(\gamma)$.

$$M' \xrightarrow{\gamma'} N' \longrightarrow \operatorname{coker}(\gamma')$$

$$N \xrightarrow{\alpha'} \operatorname{coker}(\gamma)$$

Similarly, β and β' induce corresponding homomorphisms ψ and ψ' To define ∂ , **chase** an $m'' \in \ker(\gamma'')$ through the diagram