In [1]: import pandas as pd
 import numpy as np
 from matplotlib import pyplot as plt
 import seaborn as sns
 from sklearn.linear\_model import LinearRegression,LogisticRegression,Lasso,Ridge,Elastifrom sklearn.model\_selection import train\_test\_split

#### Out[2]:

|        | date                       | BEN | со  | EBE | NMHC | NO    | NO_2 | O_3  | PM10 | PM25 | SO_2 | тсн  | TOL | station  |
|--------|----------------------------|-----|-----|-----|------|-------|------|------|------|------|------|------|-----|----------|
| 0      | 2011-11-<br>01<br>01:00:00 | NaN | 1.0 | NaN | NaN  | 154.0 | 84.0 | NaN  | NaN  | NaN  | 6.0  | NaN  | NaN | 28079004 |
| 1      | 2011-11-<br>01<br>01:00:00 | 2.5 | 0.4 | 3.5 | 0.26 | 68.0  | 92.0 | 3.0  | 40.0 | 24.0 | 9.0  | 1.54 | 8.7 | 28079008 |
| 2      | 2011-11-<br>01<br>01:00:00 | 2.9 | NaN | 3.8 | NaN  | 96.0  | 99.0 | NaN  | NaN  | NaN  | NaN  | NaN  | 7.2 | 28079011 |
| 3      | 2011-11-<br>01<br>01:00:00 | NaN | 0.6 | NaN | NaN  | 60.0  | 83.0 | 2.0  | NaN  | NaN  | NaN  | NaN  | NaN | 28079016 |
| 4      | 2011-11-<br>01<br>01:00:00 | NaN | NaN | NaN | NaN  | 44.0  | 62.0 | 3.0  | NaN  | NaN  | 3.0  | NaN  | NaN | 28079017 |
|        |                            |     |     |     |      |       |      |      |      |      |      |      |     |          |
| 209923 | 2011-09-<br>01<br>00:00:00 | NaN | 0.2 | NaN | NaN  | 5.0   | 19.0 | 44.0 | NaN  | NaN  | NaN  | NaN  | NaN | 28079056 |
| 209924 | 2011-09-<br>01<br>00:00:00 | NaN | 0.1 | NaN | NaN  | 6.0   | 29.0 | NaN  | 11.0 | NaN  | 7.0  | NaN  | NaN | 28079057 |
| 209925 | 2011-09-<br>01<br>00:00:00 | NaN | NaN | NaN | 0.23 | 1.0   | 21.0 | 28.0 | NaN  | NaN  | NaN  | 1.44 | NaN | 28079058 |
| 209926 | 2011-09-<br>01<br>00:00:00 | NaN | NaN | NaN | NaN  | 3.0   | 15.0 | 48.0 | NaN  | NaN  | NaN  | NaN  | NaN | 28079059 |
| 209927 | 2011-09-<br>01<br>00:00:00 | NaN | NaN | NaN | NaN  | 4.0   | 33.0 | 38.0 | 13.0 | NaN  | NaN  | NaN  | NaN | 28079060 |

209928 rows × 14 columns

### In [3]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 209928 entries, 0 to 209927 Data columns (total 14 columns): Column Non-Null Count Dtype \_\_\_\_\_ ---------209928 non-null object 0 date 1 BEN 51393 non-null float64 2 CO 87127 non-null float64 3 EBE 51350 non-null float64 4 NMHC 43517 non-null float64 5 208954 non-null float64 NO NO\_2 6 208973 non-null float64 7 0 3 122049 non-null float64 8 PM10 103743 non-null float64 9 PM25 51079 non-null float64 10 SO 2 87131 non-null float64 float64 11 TCH 43519 non-null 51175 non-null float64 12 TOL station 209928 non-null int64 dtypes: float64(12), int64(1), object(1) memory usage: 22.4+ MB

In [4]: df1=df.dropna()
df1

#### Out[4]:

|        | date                   | BEN | со  | EBE | NMHC | NO   | NO_2 | O_3  | PM10 | PM25 | SO_2 | тсн  | TOL | station  |
|--------|------------------------|-----|-----|-----|------|------|------|------|------|------|------|------|-----|----------|
| 1      | 2011-11-01<br>01:00:00 | 2.5 | 0.4 | 3.5 | 0.26 | 68.0 | 92.0 | 3.0  | 40.0 | 24.0 | 9.0  | 1.54 | 8.7 | 28079008 |
| 6      | 2011-11-01<br>01:00:00 | 0.7 | 0.3 | 1.1 | 0.16 | 17.0 | 66.0 | 7.0  | 22.0 | 16.0 | 2.0  | 1.36 | 1.7 | 28079024 |
| 25     | 2011-11-01<br>02:00:00 | 1.8 | 0.3 | 2.8 | 0.20 | 34.0 | 76.0 | 3.0  | 34.0 | 21.0 | 8.0  | 1.71 | 7.4 | 28079008 |
| 30     | 2011-11-01<br>02:00:00 | 1.0 | 0.4 | 1.3 | 0.18 | 31.0 | 67.0 | 5.0  | 25.0 | 18.0 | 3.0  | 1.40 | 2.9 | 28079024 |
| 49     | 2011-11-01<br>03:00:00 | 1.3 | 0.2 | 2.4 | 0.22 | 29.0 | 72.0 | 3.0  | 33.0 | 20.0 | 8.0  | 1.75 | 6.2 | 28079008 |
|        |                        |     |     |     |      |      |      |      |      |      |      |      |     |          |
| 209862 | 2011-08-31<br>22:00:00 | 0.4 | 0.1 | 1.0 | 0.06 | 1.0  | 13.0 | 33.0 | 21.0 | 6.0  | 5.0  | 1.26 | 0.7 | 28079024 |
| 209881 | 2011-08-31<br>23:00:00 | 0.9 | 0.1 | 1.8 | 0.16 | 11.0 | 45.0 | 30.0 | 32.0 | 17.0 | 3.0  | 1.34 | 4.9 | 28079008 |
| 209886 | 2011-08-31<br>23:00:00 | 0.6 | 0.1 | 1.1 | 0.05 | 1.0  | 12.0 | 48.0 | 19.0 | 7.0  | 5.0  | 1.26 | 0.9 | 28079024 |
| 209905 | 2011-09-01<br>00:00:00 | 0.6 | 0.1 | 1.3 | 0.15 | 6.0  | 35.0 | 34.0 | 21.0 | 12.0 | 3.0  | 1.32 | 3.8 | 28079008 |
| 209910 | 2011-09-01<br>00:00:00 | 0.7 | 0.1 | 1.1 | 0.04 | 1.0  | 12.0 | 46.0 | 8.0  | 5.0  | 5.0  | 1.25 | 0.9 | 28079024 |

16460 rows × 14 columns

```
In [5]: df1=df1.drop(["date"],axis=1)
```

```
In [6]: sns.heatmap(df1.corr())
```

Out[6]: <AxesSubplot:>



```
In [7]: plt.plot(df1["EBE"],df1["PM25"],"o")
```

Out[7]: [<matplotlib.lines.Line2D at 0x1aa70adb160>]



```
In [8]: x=df1.drop(["EBE"],axis=1)
y=df1["EBE"]
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

## Linear

```
In [9]: li=LinearRegression()
li.fit(x_train,y_train)
```

Out[9]: LinearRegression()

```
In [10]: prediction=li.predict(x_test)
   plt.scatter(y_test,prediction)
Out[10]: <matplotlib.collections.PathCollection at 0x1aa70cb4cd0>
```



```
In [11]: lis=li.score(x_test,y_test)
```

```
In [12]: df1["TCH"].value_counts()
```

```
Out[12]: 1.30
                  897
          1.29
                  878
          1.28
                  856
          1.31
                  827
          1.27
                  820
          3.41
                    1
          2.88
                    1
          2.41
                    1
          2.80
                    1
          2.49
          Name: TCH, Length: 171, dtype: int64
```

```
In [13]: df1.loc[df1["TCH"]<1.40,"TCH"]=1
    df1.loc[df1["TCH"]>1.40,"TCH"]=2
    df1["TCH"].value_counts()
```

```
Out[13]: 1.0 12828
2.0 3632
```

Name: TCH, dtype: int64

## Lasso

```
In [14]: la=Lasso(alpha=5)
la.fit(x_train,y_train)
```

Out[14]: Lasso(alpha=5)

```
In [15]: prediction1=la.predict(x_test)
plt.scatter(y_test,prediction1)
```

Out[15]: <matplotlib.collections.PathCollection at 0x1aa70d1ee80>



```
In [16]: las=la.score(x_test,y_test)
```

# Ridge

```
In [17]: rr=Ridge(alpha=1)
    rr.fit(x_train,y_train)
```

Out[17]: Ridge(alpha=1)

```
In [18]: prediction2=rr.predict(x_test)
plt.scatter(y_test,prediction2)
```

Out[18]: <matplotlib.collections.PathCollection at 0x1aa70b271f0>



```
In [19]: rrs=rr.score(x_test,y_test)
```

# **ElasticNet**

```
madrid_data(2011_12) - Jupyter Notebook
         en=ElasticNet()
In [20]:
         en.fit(x_train,y_train)
Out[20]: ElasticNet()
In [21]: prediction2=rr.predict(x test)
         plt.scatter(y_test,prediction2)
Out[21]: <matplotlib.collections.PathCollection at 0x1aa70d9ca30>
           10
            8
            6
            4
            2
                                                       10
In [22]:
         ens=en.score(x_test,y_test)
In [23]:
         print(rr.score(x_test,y_test))
         rr.score(x_train,y_train)
```

0.8305645679872002

Out[23]: 0.8132155812013233

# Logistic

```
In [24]: | g={"TCH":{1.0:"Low",2.0:"High"}}
         df1=df1.replace(g)
         df1["TCH"].value counts()
Out[24]: Low
                 12828
         High
                  3632
         Name: TCH, dtype: int64
In [25]:
         x=df1.drop(["TCH"],axis=1)
         y=df1["TCH"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [26]: lo=LogisticRegression()
         lo.fit(x_train,y_train)
```

Out[26]: LogisticRegression()

```
In [27]: prediction3=lo.predict(x_test)
plt.scatter(y_test,prediction3)
```

Out[27]: <matplotlib.collections.PathCollection at 0x1aa70b57cd0>



```
In [28]: los=lo.score(x_test,y_test)
```

### **Random Forest**

```
In [29]:
         from sklearn.ensemble import RandomForestClassifier
         from sklearn.model selection import GridSearchCV
In [30]:
         g1={"TCH":{"Low":1.0,"High":2.0}}
         df1=df1.replace(g1)
In [31]: x=df1.drop(["TCH"],axis=1)
         y=df1["TCH"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [32]: rfc=RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out[32]: RandomForestClassifier()
In [33]:
         parameter={
             'max_depth':[1,2,4,5,6],
             'min_samples_leaf':[5,10,15,20,25],
             'n_estimators':[10,20,30,40,50]
         }
         grid_search=GridSearchCV(estimator=rfc,param_grid=parameter,cv=2,scoring="accuracy")
         grid search.fit(x train,y train)
Out[34]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                      param_grid={'max_depth': [1, 2, 4, 5, 6],
                                   'min_samples_leaf': [5, 10, 15, 20, 25],
                                   'n_estimators': [10, 20, 30, 40, 50]},
                       scoring='accuracy')
```

```
In [35]: rfcs=grid_search.best_score_
In [36]: rfc best=grid search.best estimator
In [37]: from sklearn.tree import plot tree
         plt.figure(figsize=(80,40))
         plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_names=['Yes',"No"],fill
         Text(40.95412844036697, 155.3142857142857, 'gini = 0.117\nsamples = 35\nvalue = [4
         5, 3]\nclass = Yes'),
          Text(122.86238532110092, 155.3142857142857, 'gini = 0.0\nsamples = 56\nvalue = [85,
         0]\nclass = Yes'),
          Text(245.72477064220183, 465.9428571428573, 'NO 2 <= 23.5 \ngini = 0.348 \nsamples =
         128\nvalue = [152, 44]\nclass = Yes'),
          Text(204.77064220183485, 155.3142857142857, 'gini = 0.408\nsamples = 12\nvalue =
         [4, 10] \setminus nclass = No'),
          Text(286.6788990825688, 155.3142857142857, 'gini = 0.304\nsamples = 116\nvalue = [1
         48, 34]\nclass = Yes'),
          Text(491.44954128440367, 776.5714285714287, 'SO 2 <= 3.5\ngini = 0.431\nsamples = 6
         96\nvalue = [761, 349]\nclass = Yes'),
          Text(409.5412844036697, 465.9428571428573, 'EBE <= 1.85\ngini = 0.495\nsamples = 19
         8\nvalue = [171, 141]\nclass = Yes'),
          Text(368.58715596330273, 155.3142857142857, 'gini = 0.485\nsamples = 181\nvalue =
         [168, 119]\nclass = Yes'),
          Text(450.4954128440367, 155.3142857142857, 'gini = 0.211\nsamples = 17\nvalue = [3,
         221\nclass = No'),
          Text(573.3577981651376, 465.9428571428573, 'BEN <= 1.75\ngini = 0.385\nsamples = 49 ▼
In [38]: print("Linear:",lis)
         print("Lasso:",las)
         print("Ridge:",rrs)
         print("ElasticNet:",ens)
         print("Logistic:",los)
         print("Random Forest:",rfcs)
         Linear: 0.8305073316874275
         Lasso: 0.5846802065548421
         Ridge: 0.8305645679872002
         ElasticNet: 0.7133987542437089
         Logistic: 0.7778452814904819
```

## **Best Model is Random Forest**

Random Forest: 0.8899496615170978

In [39]: df2=pd.read\_csv("C:/Users/user/Downloads/FP1\_air/csvs\_per\_year/csvs\_per\_year/madrid\_2013
df2

#### Out[39]:

|        | date                   | BEN | СО  | EBE | NMHC | NO   | NO_2 | 0_3  | PM10 | PM25 | SO_2 | тсн  | TOL | station  |
|--------|------------------------|-----|-----|-----|------|------|------|------|------|------|------|------|-----|----------|
| 0      | 2012-09-01<br>01:00:00 | NaN | 0.2 | NaN | NaN  | 7.0  | 18.0 | NaN  | NaN  | NaN  | 2.0  | NaN  | NaN | 28079004 |
| 1      | 2012-09-01<br>01:00:00 | 0.3 | 0.3 | 0.7 | NaN  | 3.0  | 18.0 | 55.0 | 10.0 | 9.0  | 1.0  | NaN  | 2.4 | 28079008 |
| 2      | 2012-09-01<br>01:00:00 | 0.4 | NaN | 0.7 | NaN  | 2.0  | 10.0 | NaN  | NaN  | NaN  | NaN  | NaN  | 1.5 | 28079011 |
| 3      | 2012-09-01<br>01:00:00 | NaN | 0.2 | NaN | NaN  | 1.0  | 6.0  | 50.0 | NaN  | NaN  | NaN  | NaN  | NaN | 28079016 |
| 4      | 2012-09-01<br>01:00:00 | NaN | NaN | NaN | NaN  | 1.0  | 13.0 | 54.0 | NaN  | NaN  | 3.0  | NaN  | NaN | 28079017 |
|        |                        |     |     |     |      |      |      |      |      |      |      |      |     |          |
| 210715 | 2012-03-01<br>00:00:00 | NaN | 0.6 | NaN | NaN  | 37.0 | 84.0 | 14.0 | NaN  | NaN  | NaN  | NaN  | NaN | 28079056 |
| 210716 | 2012-03-01<br>00:00:00 | NaN | 0.4 | NaN | NaN  | 5.0  | 76.0 | NaN  | 17.0 | NaN  | 7.0  | NaN  | NaN | 28079057 |
| 210717 | 2012-03-01<br>00:00:00 | NaN | NaN | NaN | 0.34 | 3.0  | 41.0 | 24.0 | NaN  | NaN  | NaN  | 1.34 | NaN | 28079058 |
| 210718 | 2012-03-01<br>00:00:00 | NaN | NaN | NaN | NaN  | 2.0  | 44.0 | 36.0 | NaN  | NaN  | NaN  | NaN  | NaN | 28079059 |
| 210719 | 2012-03-01<br>00:00:00 | NaN | NaN | NaN | NaN  | 2.0  | 56.0 | 40.0 | 18.0 | NaN  | NaN  | NaN  | NaN | 28079060 |

210720 rows × 14 columns

### In [40]: df2.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 210720 entries, 0 to 210719
Data columns (total 14 columns):

| C - 1   | Nam No.11 Carrat                                        | D4                                                                                                                                                                                                                                         |
|---------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Column  | Non-Null Count                                          | Dtype                                                                                                                                                                                                                                      |
|         |                                                         |                                                                                                                                                                                                                                            |
| date    | 210720 non-null                                         | object                                                                                                                                                                                                                                     |
| BEN     | 51511 non-null                                          | float64                                                                                                                                                                                                                                    |
| CO      | 87097 non-null                                          | float64                                                                                                                                                                                                                                    |
| EBE     | 51482 non-null                                          | float64                                                                                                                                                                                                                                    |
| NMHC    | 30736 non-null                                          | float64                                                                                                                                                                                                                                    |
| NO      | 209871 non-null                                         | float64                                                                                                                                                                                                                                    |
| NO_2    | 209872 non-null                                         | float64                                                                                                                                                                                                                                    |
| 0_3     | 122339 non-null                                         | float64                                                                                                                                                                                                                                    |
| PM10    | 104838 non-null                                         | float64                                                                                                                                                                                                                                    |
| PM25    | 52164 non-null                                          | float64                                                                                                                                                                                                                                    |
| S0_2    | 87333 non-null                                          | float64                                                                                                                                                                                                                                    |
| TCH     | 30736 non-null                                          | float64                                                                                                                                                                                                                                    |
| TOL     | 51373 non-null                                          | float64                                                                                                                                                                                                                                    |
| station | 210720 non-null                                         | int64                                                                                                                                                                                                                                      |
|         | date BEN CO EBE NMHC NO NO_2 O_3 PM10 PM25 SO_2 TCH TOL | BEN 51511 non-null CO 87097 non-null EBE 51482 non-null NMHC 30736 non-null NO 209871 non-null NO_2 209872 non-null O_3 122339 non-null PM10 104838 non-null PM25 52164 non-null SO_2 87333 non-null TCH 30736 non-null TOL 51373 non-null |

dtypes: float64(12), int64(1), object(1)

memory usage: 22.5+ MB

In [41]: df3=df2.dropna()
df3

#### Out[41]:

|        | date                   | BEN | со  | EBE | NMHC | NO   | NO_2 | O_3  | PM10 | PM25 | SO_2 | тсн  | TOL | station  |
|--------|------------------------|-----|-----|-----|------|------|------|------|------|------|------|------|-----|----------|
| 6      | 2012-09-01<br>01:00:00 | 0.4 | 0.2 | 0.8 | 0.24 | 1.0  | 7.0  | 57.0 | 11.0 | 7.0  | 2.0  | 1.33 | 0.6 | 28079024 |
| 30     | 2012-09-01<br>02:00:00 | 0.4 | 0.2 | 0.7 | 0.24 | 1.0  | 5.0  | 55.0 | 5.0  | 5.0  | 2.0  | 1.33 | 0.5 | 28079024 |
| 54     | 2012-09-01<br>03:00:00 | 0.4 | 0.2 | 0.7 | 0.24 | 1.0  | 4.0  | 56.0 | 6.0  | 4.0  | 2.0  | 1.33 | 0.5 | 28079024 |
| 78     | 2012-09-01<br>04:00:00 | 0.3 | 0.2 | 0.7 | 0.25 | 1.0  | 5.0  | 54.0 | 6.0  | 5.0  | 2.0  | 1.34 | 0.4 | 28079024 |
| 102    | 2012-09-01<br>05:00:00 | 0.4 | 0.2 | 0.7 | 0.24 | 1.0  | 3.0  | 53.0 | 8.0  | 5.0  | 2.0  | 1.33 | 0.5 | 28079024 |
|        |                        |     |     |     |      |      |      |      |      |      |      |      |     | •••      |
| 210654 | 2012-02-29<br>22:00:00 | 0.6 | 0.3 | 0.5 | 0.09 | 1.0  | 35.0 | 57.0 | 25.0 | 21.0 | 3.0  | 1.12 | 2.3 | 28079024 |
| 210673 | 2012-02-29<br>23:00:00 | 2.0 | 0.4 | 2.4 | 0.21 | 16.0 | 79.0 | 20.0 | 37.0 | 25.0 | 12.0 | 1.33 | 6.2 | 28079008 |
| 210678 | 2012-02-29<br>23:00:00 | 0.7 | 0.3 | 0.6 | 0.09 | 1.0  | 27.0 | 63.0 | 22.0 | 18.0 | 3.0  | 1.11 | 1.9 | 28079024 |
| 210697 | 2012-03-01<br>00:00:00 | 1.5 | 0.4 | 1.7 | 0.21 | 16.0 | 79.0 | 17.0 | 28.0 | 21.0 | 11.0 | 1.34 | 4.9 | 28079008 |
| 210702 | 2012-03-01<br>00:00:00 | 0.6 | 0.3 | 0.5 | 0.09 | 1.0  | 23.0 | 61.0 | 18.0 | 16.0 | 3.0  | 1.11 | 1.2 | 28079024 |

10916 rows × 14 columns

In [42]: df3=df3.drop(["date"],axis=1)

In [43]: sns.heatmap(df3.corr())

#### Out[43]: <AxesSubplot:>



```
In [44]: x=df3.drop(["TCH"],axis=1)
y=df3["TCH"]
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

### Linear

```
In [45]: li=LinearRegression()
          li.fit(x_train,y_train)
Out[45]: LinearRegression()
 In [ ]:
In [46]:
          prediction=li.predict(x_test)
          plt.scatter(y_test,prediction)
Out[46]: <matplotlib.collections.PathCollection at 0x1aa72e176a0>
           2.4
           2.2
           2.0
           1.8
           1.6
           1.4
           1.2
           1.0
                                                    3.5
                                     2.5
                                             3.0
              1.0
                      1.5
                             2.0
                                                            4.0
In [47]:
         lis=li.score(x_test,y_test)
In [48]: df3["TCH"].value_counts()
Out[48]: 1.30
                  737
          1.31
                  676
          1.32
                  644
          1.33
                  552
          1.29
                  529
          3.03
                     1
          3.01
                     1
          2.47
                     1
          2.33
                     1
          2.07
```

Name: TCH, Length: 167, dtype: int64

```
In [49]: df3.loc[df3["TCH"]<1.40,"TCH"]=1
    df3.loc[df3["TCH"]>1.40,"TCH"]=2
    df3["TCH"].value_counts()
```

Out[49]: 1.0 8772 2.0 2144

Name: TCH, dtype: int64

In [ ]:

### Lasso

```
In [50]: la=Lasso(alpha=5)
la.fit(x_train,y_train)
```

Out[50]: Lasso(alpha=5)

```
In [51]: prediction1=la.predict(x_test)
plt.scatter(y_test,prediction1)
```

Out[51]: <matplotlib.collections.PathCollection at 0x1aa71741790>



```
In [52]: las=la.score(x_test,y_test)
```

# Ridge

```
In [53]: rr=Ridge(alpha=1)
rr.fit(x_train,y_train)
```

Out[53]: Ridge(alpha=1)

```
In [54]: prediction2=rr.predict(x_test)
plt.scatter(y_test,prediction2)
```

Out[54]: <matplotlib.collections.PathCollection at 0x1aa717a3310>



```
In [55]: rrs=rr.score(x_test,y_test)
```

## **ElasticNet**

```
In [56]: en=ElasticNet()
en.fit(x_train,y_train)
```

Out[56]: ElasticNet()

In [57]: prediction2=rr.predict(x\_test)
plt.scatter(y\_test,prediction2)

Out[57]: <matplotlib.collections.PathCollection at 0x1aa717f88e0>



```
In [58]: ens=en.score(x_test,y_test)
```

# Logistic

```
In [60]: g={"TCH":{1.0:"Low",2.0:"High"}}
         df3=df3.replace(g)
         df3["TCH"].value_counts()
Out[60]: Low
                 8772
         High
                 2144
         Name: TCH, dtype: int64
In [61]: x=df3.drop(["TCH"],axis=1)
         y=df3["TCH"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [62]: lo=LogisticRegression()
         lo.fit(x_train,y_train)
Out[62]: LogisticRegression()
In [63]: prediction3=lo.predict(x_test)
         plt.scatter(y_test,prediction3)
Out[63]: <matplotlib.collections.PathCollection at 0x1aa716bc580>
          Low
               Low
                                                       High
        los=lo.score(x_test,y_test)
In [64]:
```

## **Random Forest**

```
from sklearn.ensemble import RandomForestClassifier
In [65]:
         from sklearn.model selection import GridSearchCV
         g1={"TCH":{"Low":1.0,"High":2.0}}
In [66]:
         df3=df3.replace(g1)
In [67]:
         x=df3.drop(["TCH"],axis=1)
         y=df3["TCH"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [68]: rfc=RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out[68]: RandomForestClassifier()
In [69]:
         parameter={
             'max_depth':[1,2,4,5,6],
             'min_samples_leaf':[5,10,15,20,25],
             'n_estimators':[10,20,30,40,50]
         }
In [70]: | grid_search=GridSearchCV(estimator=rfc,param_grid=parameter,cv=2,scoring="accuracy")
         grid_search.fit(x_train,y_train)
Out[70]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                      param_grid={'max_depth': [1, 2, 4, 5, 6],
                                   'min samples leaf': [5, 10, 15, 20, 25],
                                   'n_estimators': [10, 20, 30, 40, 50]},
                      scoring='accuracy')
         rfcs=grid search.best score
In [72]: rfc_best=grid_search.best_estimator_
```

```
In [73]: | from sklearn.tree import plot_tree
         plt.figure(figsize=(80,40))
         plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_names=['Yes',"No"],fill
Out[73]: [Text(2493.5625, 2019.0857142857144, 'TOL <= 7.15\ngini = 0.308\nsamples = 4812\nval
         ue = [6188, 1453]\nclass = Yes'),
          Text(1488.0, 1708.457142857143, 'NO <= 22.5\ngini = 0.259\nsamples = 4518\nvalue =
          [6094, 1098]\nclass = Yes'),
          Text(744.0, 1397.8285714285716, '0_3 <= 23.5\ngini = 0.178\nsamples = 3782\nvalue =
         [5456, 597]\nclass = Yes'),
          Text(372.0, 1087.2, 'NMHC <= 0.275 \setminus ini = 0.452 \setminus ini = 574 \setminus ini = [603, 317]
          \nclass = Yes'),
          Text(186.0, 776.5714285714287, 'PM10 <= 16.5\ngini = 0.258\nsamples = 406\nvalue =
         [556, 100]\nclass = Yes'),
          Text(93.0, 465.9428571428573, 'station <= 28079016.0\ngini = 0.18\nsamples = 248\nv
         alue = [361, 40]\nclass = Yes'),
          Text(46.5, 155.3142857142857, 'gini = 0.0\nsamples = 44\nvalue = [73, 0]\nclass = Y
          Text(139.5, 155.3142857142857, 'gini = 0.214\nsamples = 204\nvalue = [288, 40]\ncla
         ss = Yes'),
          Text(279.0, 465.9428571428573, 'TOL <= 1.05\ngini = 0.36\nsamples = 158\nvalue = [1
         95, 60]\nclass = Yes'),
          Text(232.5, 155.3142857142857, 'gini = 0.5\nsamples = 23\nvalue = [20, 20]\nclass =
In [74]: |print("Linear:",lis)
         print("Lasso:",las)
```

In [74]: print("Linear:",lis)
 print("Lasso:",las)
 print("Ridge:",rrs)
 print("ElasticNet:",ens)
 print("Logistic:",los)
 print("Random Forest:",rfcs)

Linear: 0.6851032563985955 Lasso: -0.0014194828338582877 Ridge: 0.6854937601485451 ElasticNet: 0.34195759108298374 Logistic: 0.8006106870229007 Random Forest: 0.9331240896615699

## **Best model is Random Forest**

```
In [ ]:
```