УНИВЕРСИТЕТ ИТМО

Факультет программной инженерии и компьютерной техники Дисциплина «Дискретная математика»

Курсовая работа

Часть 1 Вариант 51

Студент Мироненко Артем Дмитриевич P3131

Преподаватель Поляков Владимир Иванович Функция $f(x_1, x_2, x_3, x_4, x_5)$ принимает значение 1 при $x_4x_5 + x_1x_2x_3 = 3, 5, 8, 10$ и неопределенное значение при $x_1x_2x_4 = 0$.

Таблица истинности

Nº	x_1	x_2	x_3	$\overline{x_4}$	x_5	x_4x_5	$x_1x_2x_3$	$x_1x_2x_4$	f
0	0	0	0	0	0	0	0	0	d
1	0	0	0	0	1	1	0	0	d
2	0	0	0	1	0	2	0	1	0
3	0	0	0	1	1	3	0	1	1
4	0	0	1	0	0	0	1	0	d
5	0	0	1	0	1	1	1	0	d
6	0	0	1	1	0	2	1	1	1
7	0	0	1	1	1	3	1	1	0
8	0	1	0	0	0	0	2	2	0
9	0	1	0	0	1	1	2	2	1
10	0	1	0	1	0	2	2	3	0
11	0	1	0	1	1	3	2	3	1
12	0	1	1	0	0	0	3	2	1
13	0	1	1	0	1	1	3	2	0
14	0	1	1	1	0	2	3	3	1
15	0	1	1	1	1	3	3	3	0
16	1	0	0	0	0	0	4	4	0
17	1	0	0	0	1	1	4	4	1
18	1	0	0	1	0	2	4	5	0
19	1	0	0	1	1	3	4	5	0
20	1	0	1	0	0	0	5	4	1
21	1	0	1	0	1	1	5	4	0
22	1	0	1	1	0	2	5	5	0
23	1	0	1	1	1	3	5	5	1
24	1	1	0	0	0	0	6	6	0
25	1	1	0	0	1	1	6	6	0
26	1	1	0	1	0	2 6		7	1
27	1	1	0	1	1	3	6	7	0
28	1	1	1	0	0	0	7	6	0
29	1	1	1	0	1	1	7	6	1
30	1	1	1	1	0	2	7	7	0
31	1	1	1	1	1	3	7	7	1

Аналитический вид

Каноническая ДНФ:

 $f = \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, x_4 \, x_5 \vee \overline{x_1} \, \overline{x_2} \, x_3 \, x_4 \, \overline{x_5} \vee \overline{x_1} \, x_2 \, \overline{x_3} \, \overline{x_4} \, x_5 \vee \overline{x_1} \, x_2 \, \overline{x_3} \, x_4 \, x_5 \vee \overline{x_1} \, x_2 \, x_3 \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, x_2 \, x_3 \, x_4 \, \overline{x_5} \vee \overline{x_1} \, x_2 \, x_3 \, x_4 \, \overline{x_5} \vee \overline{x_1} \, x_2 \, x_3 \, x_4 \, \overline{x_5} \vee \overline{x_1} \, x_2 \, x_3 \, x_4 \, \overline{x_5} \vee \overline{x_1} \, x_2 \, x_3 \, x_4 \, x_5 \vee \overline{x_1} \, x_2 \, x_3 \,$

Каноническая КНФ:

 $f = (x_1 \lor x_2 \lor x_3 \lor \overline{x_4} \lor x_5) (x_1 \lor x_2 \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5}) (x_1 \lor \overline{x_2} \lor x_3 \lor x_4 \lor x_5) (x_1 \lor \overline{x_2} \lor x_3 \lor \overline{x_4} \lor x_5)$ $(x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor \overline{x_5}) (x_1 \lor \overline{x_2} \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5}) (\overline{x_1} \lor x_2 \lor x_3 \lor x_4 \lor x_5) (\overline{x_1} \lor x_2 \lor x_3 \lor \overline{x_4} \lor x_5)$ $(\overline{x_1} \lor x_2 \lor x_3 \lor \overline{x_4} \lor \overline{x_5}) (\overline{x_1} \lor x_2 \lor \overline{x_3} \lor x_4 \lor \overline{x_5}) (\overline{x_1} \lor x_2 \lor \overline{x_3} \lor \overline{x_4} \lor x_5) (\overline{x_1} \lor \overline{x_2} \lor x_3 \lor x_4 \lor x_5)$ $(\overline{x_1} \lor \overline{x_2} \lor x_3 \lor x_4 \lor \overline{x_5}) (\overline{x_1} \lor \overline{x_2} \lor x_3 \lor \overline{x_4} \lor \overline{x_5}) (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3} \lor \overline{x_4} \lor x_5)$

Минимизация булевой функции методом Квайна-Мак-Класки

Кубы различной размерности и простые импликанты

$K^0(f)$			K	$^{-1}(f)$		$K^2(f)$	Z(f)	
m_0	00000	√	m_0 - m_1	0000X	√	m_0 - m_1 - m_4 - m_5	00X0X	11010
m_1	00001	√	m_0 - m_4	00X00	\checkmark	m_1 - m_3 - m_9 - m_{11}	0X0X1	X0001
m_4	00100	\checkmark	m_1 - m_3	000X1	√	m_4 - m_6 - m_{12} - m_{14}	0X1X0	X0100
m_3	00011	√	m_4 - m_5	0010X	\checkmark			111X1
m_6	00110	\checkmark	m_4 - m_6	001X0	\checkmark			1X111
m_9	01001	\checkmark	m_1 - m_5	00X01	\checkmark			00X0X
m_{12}	01100	\checkmark	m_1 - m_9	0X001	\checkmark			0X0X1
m_{17}	10001	\checkmark	m_4 - m_{12}	0X100	\checkmark			0X1X0
m_{20}	10100	\checkmark	m_1 - m_{17}	X0001				
m_5	00101	\checkmark	m_4 - m_{20}	X0100				
m_{11}	01011	√	m_9 - m_{11}	010X1	√			
m_{14}	01110	✓	m_{12} - m_{14}	011X0	\checkmark			
m_{26}	11010		m_3 - m_{11}	0X011	\checkmark			
m_{23}	10111	√	m_6 - m_{14}	0X110	\checkmark			
m_{29}	11101	\checkmark	m_{29} - m_{31}	111X1				
m_{31}	11111	√	m_{23} - m_{31}	1X111				

Таблица импликант

Вычеркнем строки, соответствующие существенным импликантам (это те, которые покрывают вершины, не покрытые другими импликантами), а также столбцы, соответствующие вершинам, покрываемым существенными импликантами. Затем вычеркнем импликанты, не покрывающие ни одной вершины.

		0-кубы										
	0	0	0	0 1	0	0	0	1 0	0	1	1	1
Простые импликанты	0		0	0 1	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$		0 0	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	1 1		$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	1 1
	3	6	9	11	12	14	17	20	23	26	29	31
11010										 X		
X0001							X					
X0100								Х				
								-1			+	v
111X1											Λ.	Λ
1X111		\vdash							<u> </u>			<u> </u>
00X0X												
0X0X1	Х		Х	X								
0X1X0		X			X	X						

Ядро покрытия:

$$T = \begin{cases} 0X0X1 \\ X0001 \\ 0X1X0 \\ X0100 \\ 1X111 \\ 11010 \\ 111X1 \end{cases}$$

Вся таблица вычеркнулась, следовательно ядро покрытия является минимальным покрытием

Рассмотрим следующее минимальное покрытие:

$$C_{\min} = \begin{cases} 0X0X1 \\ X0001 \\ 0X1X0 \\ X0100 \\ 1X111 \\ 11010 \\ 111X1 \end{cases}$$
$$S^{a} = 27$$
$$S^{b} = 34$$

Этому покрытию соответствует следующая МДН Φ :

$$f = \overline{x_1} \, \overline{x_3} \, x_5 \vee \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, x_5 \vee \overline{x_1} \, x_3 \, \overline{x_5} \vee \overline{x_2} \, x_3 \, \overline{x_4} \, \overline{x_5} \vee x_1 \, x_3 \, x_4 \, x_5 \vee x_1 \, x_2 \, \overline{x_3} \, x_4 \, \overline{x_5} \vee x_1 \, x_2 \, x_3 \, x_5$$

Минимизация булевой функции на картах Карно

Определение МДНФ

 $f = \overline{x_1}\,\overline{x_3}\,x_5 \vee \overline{x_2}\,\overline{x_3}\,\overline{x_4}\,x_5 \vee \overline{x_1}\,x_3\,\overline{x_5} \vee \overline{x_2}\,x_3\,\overline{x_4}\,\overline{x_5} \vee x_1\,x_3\,x_4\,x_5 \vee x_1\,x_2\,\overline{x_3}\,x_4\,\overline{x_5} \vee x_1\,x_2\,x_3\,x_5$

Определение МКНФ

$$f = (x_1 \lor x_3 \lor x_5) \ (x_1 \lor \overline{x_3} \lor \overline{x_5}) \ (x_3 \lor x_4 \lor x_5) \ (x_2 \lor \overline{x_3} \lor x_4 \lor \overline{x_5}) \ (\overline{x_1} \lor x_2 \lor x_3 \lor \overline{x_4})$$
$$(\overline{x_1} \lor x_2 \lor \overline{x_4} \lor x_5) \ (\overline{x_1} \lor \overline{x_2} \lor x_3 \lor \overline{x_5}) \ (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3} \lor x_5)$$

Преобразование минимальных форм булевой функции

Факторизация и декомпозиция МДНФ

$$f = \overline{x_1} \, \overline{x_3} \, x_5 \vee \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, x_5 \vee \overline{x_1} \, x_3 \, \overline{x_5} \vee \overline{x_2} \, x_3 \, \overline{x_4} \, \overline{x_5} \vee x_1 \, x_3 \, x_4 \, x_5 \vee x_1 \, x_2 \, \overline{x_3} \, x_4 \, \overline{x_5} \vee x_1 \, x_2 \, x_3 \, x_5 \quad S_Q = 34 \quad \tau = 2$$

$$f = x_3 \, \overline{x_5} \, (\overline{x_1} \vee \overline{x_2} \, \overline{x_4}) \vee \overline{x_3} \, x_5 \, (\overline{x_1} \vee \overline{x_2} \, \overline{x_4}) \vee x_1 \, x_3 \, x_5 \, (x_2 \vee x_4) \vee x_1 \, x_2 \, \overline{x_3} \, x_4 \, \overline{x_5} \qquad S_Q = 29 \quad \tau = 4$$

$$\varphi = x_1 \, (x_2 \vee x_4)$$

$$\overline{\varphi} = \overline{x_1} \vee \overline{x_2} \, \overline{x_4}$$

$$f = x_3 \, \overline{x_5} \, \overline{\varphi} \vee \overline{x_3} \, x_5 \, \overline{\varphi} \vee \varphi \, x_3 \, x_5 \vee x_1 \, x_2 \, \overline{x_3} \, x_4 \, \overline{x_5} \qquad S_Q = 23 \quad \tau = 5$$

Факторизация и декомпозиция МКНФ

$$f = \underbrace{(x_1 \vee x_3 \vee x_5)}_{(\overline{x_1} \vee x_2 \vee \overline{x_4} \vee x_5)} \underbrace{(x_1 \vee \overline{x_3} \vee \overline{x_5})}_{(\overline{x_1} \vee \overline{x_2} \vee x_3 \vee \overline{x_5})} \underbrace{(x_2 \vee \overline{x_3} \vee x_4 \vee \overline{x_5})}_{(\overline{x_1} \vee x_2 \vee \overline{x_3} \vee x_4)} \underbrace{S_Q = 37}_{T = 2}$$

$$f = \underbrace{(x_3 \vee x_5 \vee x_1 x_4)}_{(\overline{x_1} \vee \overline{x_2} \vee (x_3 \vee \overline{x_5})} \underbrace{(\overline{x_3} \vee x_5)}_{(\overline{x_3} \vee x_5)} \underbrace{(\overline{x_3} \vee x_5)}_{(\overline{x_3} \vee \overline{x_5} \vee x_1} \underbrace{(x_2 \vee x_4)}_{(\overline{x_1} \vee x_2 \vee \overline{x_4} \vee x_3 x_5)} \underbrace{S_Q = 31}_{T = 4}$$

$$\varphi = x_1 x_4$$

$$\overline{\varphi} = \overline{x_1} \vee \overline{x_4}$$

$$f = \underbrace{(x_3 \vee x_5 \vee \varphi)}_{(\overline{x_1} \vee \overline{x_2} \vee (x_3 \vee \overline{x_5})} \underbrace{(\overline{x_3} \vee x_5)}_{(\overline{x_3} \vee x_5)} \underbrace{(\overline{x_3} \vee \overline{x_5} \vee x_1 (x_2 \vee x_4))}_{(\overline{y} \vee x_2 \vee x_3 x_5)} \underbrace{S_Q = 31}_{T = 4}$$

$$\mathcal{F} = \underbrace{(x_3 \vee x_5 \vee x_1 x_4)}_{(\overline{x_1} \vee \overline{x_2} \vee (x_3 \vee \overline{x_5})} \underbrace{(\overline{x_3} \vee x_5)}_{(\overline{x_3} \vee x_5)} \underbrace{(\overline{x_3} \vee \overline{x_5} \vee x_1 (x_2 \vee x_4))}_{(\overline{y_3} \vee \overline{x_5} \vee x_1 (x_2 \vee x_4))} \underbrace{(\overline{\varphi} \vee x_2 \vee x_3 x_5)}_{(\overline{y_3} \vee x_5 \vee x_1 (x_2 \vee x_4))} \underbrace{(\overline{y_3} \vee x_5 \vee x_3 x_5)}_{(\overline{y_3} \vee x_5 \vee x_1 (x_2 \vee x_4))} \underbrace{(\overline{y_3} \vee x_2 \vee x_3 x_5)}_{(\overline{y_3} \vee x_5 \vee x_1 (x_2 \vee x_4))} \underbrace{(\overline{y_3} \vee x_2 \vee x_3 x_5)}_{(\overline{y_3} \vee x_5 \vee x_1 (x_2 \vee x_4))} \underbrace{(\overline{y_3} \vee x_2 \vee x_3 x_5)}_{(\overline{y_3} \vee x_5 \vee x_1 (x_2 \vee x_4))} \underbrace{(\overline{y_3} \vee x_2 \vee x_3 x_5)}_{(\overline{y_3} \vee x_5 \vee x_1 (x_2 \vee x_4))} \underbrace{(\overline{y_3} \vee x_2 \vee x_3 x_5)}_{(\overline{y_3} \vee x_5 \vee x_1 (x_2 \vee x_4))} \underbrace{(\overline{y_3} \vee x_2 \vee x_3 x_5)}_{(\overline{y_3} \vee x_5 \vee x_1 (x_2 \vee x_4))} \underbrace{(\overline{y_3} \vee x_2 \vee x_3 x_5)}_{(\overline{y_3} \vee x_5 \vee x_1 (x_2 \vee x_4))} \underbrace{(\overline{y_3} \vee x_2 \vee x_3 x_5)}_{(\overline{y_3} \vee x_5 \vee x_1 (x_2 \vee x_4))} \underbrace{(\overline{y_3} \vee x_2 \vee x_3 x_5)}_{(\overline{y_3} \vee x_5 \vee x_1 (x_2 \vee x_4))} \underbrace{(\overline{y_3} \vee x_2 \vee x_3 x_5)}_{(\overline{y_3} \vee x_5 \vee x_1 (x_2 \vee x_4))} \underbrace{(\overline{y_3} \vee x_2 \vee x_3 x_5)}_{(\overline{y_3} \vee x_5 \vee x_1 (x_2 \vee x_4))} \underbrace{(\overline{y_3} \vee x_3 \vee x_5 \vee x_1 (x_2 \vee x_4))}_{(\overline{y_3} \vee x_5 \vee x_1 (x_2 \vee x_4))} \underbrace{(\overline{y_3} \vee x_3 \vee x_5 \vee x_1 (x_2 \vee x_4))}_{(\overline{y_3} \vee x_5 \vee x_1 (x_2 \vee x_4))} \underbrace{(\overline{y_3} \vee x_3 \vee x_5 \vee x_1 (x_2 \vee x_4))}_{(\overline{y_3} \vee x_5 \vee x_1 (x_2 \vee x_4))} \underbrace{(\overline{y_3} \vee x_3 \vee x_3 \vee x_5 \vee x_1 (x_2 \vee x_4))}_{(\overline{y_3} \vee x_3 \vee x$$

Синтез комбинационных схем

Будем анализировать схемы на следующих наборах аргументов:

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 1, x_5 = 0]) = 0$$

$$f([x_1 = 0, x_2 = 0, x_3 = 1, x_4 = 1, x_5 = 1]) = 0$$

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 1, x_5 = 1]) = 1$$

$$f([x_1 = 0, x_2 = 0, x_3 = 1, x_4 = 1, x_5 = 0]) = 1$$

Булев базис

Схема по упрощенной МДНФ:

$$f = x_3 \overline{x_5} \overline{\varphi} \vee \overline{x_3} x_5 \overline{\varphi} \vee \varphi x_3 x_5 \vee x_1 x_2 \overline{x_3} x_4 \overline{x_5} \quad (S_Q = 23, \tau = 5)$$
$$\varphi = x_1 (x_2 \vee x_4)$$

Схема по упрощенной МКНФ:

$$f = (x_3 \lor x_5 \lor x_1 x_4) \ (\overline{x_1} \lor \overline{x_2} \lor (x_3 \lor \overline{x_5}) \ (\overline{x_3} \lor x_5)) \ (\overline{x_3} \lor \overline{x_5} \lor x_1 \ (x_2 \lor x_4)) \ (\overline{x_1} \lor x_2 \lor \overline{x_4} \lor x_3 x_5) \quad (S_Q = 31, \tau = 4)$$

Сокращенный булев базис (И, НЕ)

Схема по упрощенной МДНФ в базисе И, НЕ:

$$f = \overline{\overline{x_3} \, \overline{x_5} \, \overline{\varphi}} \, \overline{\overline{x_3} \, x_5} \, \overline{\varphi} \, \overline{\varphi} \, \overline{x_3} \, \overline{x_5} \, \overline{x_1} \, x_2 \, \overline{x_3} \, x_4 \, \overline{x_5}} \quad (S_Q = 29, \tau = 8)$$

$$\varphi = x_1 \, \overline{\overline{x_2} \, \overline{x_4}}$$

Схема по упрощенной МКНФ в базисе И, НЕ:

$$f = \overline{x_3} \, \overline{x_5} \, \overline{x_1} \, \overline{x_4} \, \overline{\varphi} \, \overline{x_1} \, \overline{x_2} \, \overline{x_4} \, \overline{\varphi} \, \overline{\varphi} \, \overline{x_2} \, \overline{x_4} \, \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_5} \, \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_5} \quad (S_Q = 38, \tau = 5)$$

Универсальный базис (И-НЕ, 2 входа)

Схема по упрощенной МДН Φ в базисе И-НЕ с ограничением на число входов:

$$f = \overline{x_3 \overline{\overline{x_5} \varphi \overline{\varphi} x_5}} \overline{\overline{x_3} \overline{\overline{x_5} \varphi \overline{\overline{x_1} x_2}} \overline{\overline{x_4} \overline{x_5}}} \qquad (S_Q = 32, \tau = 7)$$

$$\varphi = \overline{x_1 \overline{\overline{x_2} \overline{x_4}}}$$

Схема по упрощенной МКН Φ в базисе И-НЕ с ограничением на число входов:

