Basic Integration Formulas

1.
$$\int [f(x) \pm g(x)] dx = \int f(x) dx \pm \int g(x) dx$$

2.
$$\int x^{n} dx = \frac{x^{n+1}}{n+1} + C, \ n \neq -1$$

$$3. \int \frac{\mathrm{d}x}{x} = \ln|x| + C$$

$$4. \int e^x \, \mathrm{d}x = e^x + C$$

$$5. \int \sin x \, dx = -\cos x + C$$

$$6. \int \cos x \, dx = \sin x + C$$

$$7. \int \tan x \, dx = \ln|\sec x| + C$$

$$8. \int \cot x \, dx = -\ln|\csc x| + C$$

9.
$$\int \sec x \, dx = \ln |\sec x + \tan x| + C$$

10.
$$\int \csc x \, dx = -\ln|\csc x + \cot x| + C$$

11.
$$\int \sec^2 x \, dx = \tan x + C$$

$$12. \int \csc^2 x \, dx = -\cot x + C$$

13.
$$\int \sec x \, \tan x \, dx = \sec x + C$$

$$14. \int \csc x \cot x \, dx = -\csc x + C$$

15.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin\left(\frac{x}{a}\right) + C$$

16.
$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan\left(\frac{x}{a}\right) + C$$

FUNDAMENTAL THEOREM OF CALCULUS

$$\int_{a}^{b} F'(x) dx = F(b) - F(a)$$

INTEGRATION BY PARTS

$$\int u \, dv = uv - \int v \, du$$

Trigonometric Substitution ($\alpha > 0$)

- $\sqrt{\alpha^2 x^2}$ requires $x = a \sin \theta$. Then $\sqrt{\alpha^2 x^2} = a \cos \theta$, where $-\pi/2 \le \theta \le \pi/2$.
- $\sqrt{a^2 + x^2}$ requires $x = a \tan \theta$. Then $\sqrt{a^2 + x^2} = a \sec \theta$, where $-\pi/2 < \theta < \pi/2$.
- $\sqrt{x^2 a^2}$ requires $x = a \sec \theta$. Then $\sqrt{x^2 a^2} = \pm a \tan \theta$.
 - If x > a, use $\sqrt{x^2 a^2} = +a \tan \theta$, where $0 \le \theta < \pi/2$.
 - If $x < \alpha$, use $\sqrt{x^2 \alpha^2} = -\alpha \tan \theta$, where $\pi/2 < \theta \leqslant \pi$.