第8.3章 集合的基数

主要内容

- 🌑 集合的等势及其性质
- 重要的等势或不等势的结果
- 集合的优势及其性质
- 自然数与自然数集合
- 集合的基数
- 可数集

第一节 集合的等势与优势

一、集合的等势

1. 等势定义

定义 9.1 设 A, B 是集合,如果存在着从 A 到 B 的双射函数,就 称 A 和 B 是等势的,记作 $A \approx B$.如果 A 不与 B 等势,则记作 $A \approx B$.

2. 集合等势的实例.

例 (1) Z≈N.

$$f: Z \to N, \quad f(x) = \begin{cases} 2x & x \ge 0 \\ -2x - 1 & x < 0 \end{cases}$$

则f是Z到N的双射函数. 从而证明了 $Z\approx N$.

(2) $N \times N \approx N$.

N×N 中所有的元素排成有序图形

图 1

双射函数
$$f: N \times N \to N$$
, $f(< m, n >) = \frac{(m+n+1)(m+n)}{2} + m$

(3) $N\approx Q$.

为建立 N 到 Q 的双射函数, 先把所有形式为 p/q (p,q 为整数且 q>0) 的数排成一张表.在计数中只考虑每个数的第一次出现. 表中数 p/q 上方的方括号内标明了这个有理数所对应的计数结果.

双射函数 $f: N \to Q$,其中 f(n)是 [n]下方的有理数. 从而证明了 $N \approx Q$.

图 2

- (4) $(0,1)\approx R$. 其中实数区间 $(0,1)=\{x|x\in R\land 0< x<1\}$. 令 双射函数 $f:(0,1)\to R$, $f(x)=\tan\pi\frac{2x-1}{2}$
- (5) [0,1]≈(0,1). 其中(0,1)和[0,1]分别为实数开区间和闭区间.双射函数 f: [0,1]→(0,1)

$$f(x) = \begin{cases} 1/2 & x = 0 \\ 1/2^2 & x = 1 \\ 1/2^{n+2} & x = 1/2^n, n = 1, 2, \dots \\ x & \sharp \, \dot{\Xi} x \end{cases}$$

(6) 对任何 $a, b \in R, a < b, [0,1] \approx [a,b]$.

双射函数 $f: [0,1] \rightarrow [a,b], f(x) = (b-a)x+a$

类似地可以证明,对任何 $a, b \in R$, a < b, 有 $(0,1) \approx (a,b)$.

证 如下构造从P(A) 到 $\{0,1\}^A$ 的函数

$$f: P(A) \rightarrow \{0,1\}^A, f(A') = \chi_{A'}, \forall A' \in P(A).$$

其中 $\chi_{A'}$ 是集合 A'的特征函数. 易证f是单射的.

对于任意的 $g \in \{0,1\}^A$, 那么有 $g: A \rightarrow \{0,1\}$. 令

$$B = \{x \mid x \in A \land g(x) = 1\}$$

则 $B \subseteq A$,且 $\chi_B = g$,即 $\exists B \in P(A), f(B) = g$. 从而证明了 f

是满射的. 由等势定义得

$$P(A) \approx \{0,1\}^{A}$$
.

3. 等势的性质

定理 9.1 设 A, B, C 是任意集合,

- (1) $A \approx A$.
- (2) 若 *A≈B*,则 *B≈A*.
- (3) 若 $A\approx B$, $B\approx C$, 则 $A\approx C$.

证明思路:利用等势的等义.

- (1) I_A 是从 A 到 A 的双射
- (2) $E_f: A \rightarrow B$ 是双射,则 $f^{-1}: B \rightarrow A$ 是从 $E_f: A \rightarrow B$ 到 $A_f: A \rightarrow B$ 的双射.

1. 等势结果

 $N \approx Z \approx Q \approx N \times N$

任何实数区间都与实数集合 R 等势

2. 不等势的结果

定理 9.2 (康托定理)

- (1) $N \approx R$
- (2) 对任意集合 A 都有 A≈P(A).

证明思路:

- (1) 只需证明任何函数 f: N→[0,1]都不是满射的.
 任取函数 f: N→[0,1],列出 f 的所有函数值.
 然后构造一个[0,1]区间的小数 b,使得 b 与所有的函数值都不相等.
- (2) 任取函数 $f: A \rightarrow P(A)$,构造 $B \in P(A)$,使得 B = f 的任何函数值都不等.

证 (1) 首先规定[0,1]中数的表示. 对任意的 $x \in [0,1]$, 令

$$x = 0.x_1x_2..., 0 \le x_i \le 9$$

注意在 x 的表示式中不允许在某位 (比如第 i 位为 0) 之后有无数个 9 的情况. 若遇到这种情况,则将 x 的第 i 位变成 1,而后面全是 0.

设 $f: N \rightarrow [0,1]$ 是从N到[0,1]的任何一个函数. 如下列出f的所有函数值:

$$f(0)=0.a_1^{(1)}a_2^{(1)}...$$

$$f(1)=0.a_1^{(2)}a_2^{(2)}...$$
...
$$f(n-1)=0.a_1^{(n)}a_2^{(n)}...$$

令 y 的表示式为 $0.b_1b_2...$,并且满足 $b_i \neq a_i^{(i)}$, i=1,2,...,那么 $y \in [0,1]$,且 y 与上面列出的任何一个函数值都不相等. 这就推出 $y \notin \text{ran} f$,即 f 不是满射的.

(2) 我们将证明任何函数 $g: A \rightarrow P(A)$ 都不是满射的.

设 $g: A \rightarrow P(A)$ 是从 A 到 P(A) 的函数,如下构造集合 B:

 $B = \{x \mid x \in A \land x \notin g(x)\}$

则 $B \in P(A)$, 但对任意 $x \in A$ 都有

 $x \in B \iff x \notin g(x)$

从而证明了对任意的 $x \in A$ 都有 $B \neq g(x)$. 即 $B \notin \text{rang}$.

注意:根据这个定理可以知道 $N \approx P(N)$, $N \approx \{0,1\}^N$.

三. 优势

1. 优势定义

定义 9.2

(1) 设A, B 是集合,如果存在从A 到B 的单射函数,就称B 优势于A,记作 $A \le \cdot B$.

如果 B 不是优势于 A,则记作 $A \preceq \cdot B$.

(2) 设 A, B 是集合, 若 $A \leq \cdot B$ 且 $A \neq B$, 则称 B 真优势于 A, 记作 $A < \cdot B$. 如果 B 不是真优势于 A, 则记作 $A \ll \cdot B$.

实例 $N \leq \cdot N$, $N \leq \cdot R$, $A \leq \cdot P(A)$,

 $R \preceq \cdot N$

 $N \prec \cdot R$, $A \prec \cdot P(A)$, $\not\sqsubseteq N \prec \cdot N$.

2. 优势的性质.

定理 9.3 设 A, B, C 是任意的集合, 则

- (1) $A \leq A$
- (2) 若 $A \leq \cdot B$ 且 $B \leq \cdot A$,则 $A \approx B$
- (3) 若 $A \leq \cdot B$ 且 $B \leq \cdot C$,则 $A \leq \cdot C$

证明: 略

例 证明 $\{0,1\}^N \approx [0,1)$.

设 $x \in [0,1)$, $0.x_1x_2...$ 是x 的二进制表示. 规定表示式中不允许出现连续无数个 1.

对于 x, 如下定义 $f: [0,1) \rightarrow \{0,1\}^{N}$, 使得

$$f(x) = t_x$$
, $\exists t_x : N \rightarrow \{0,1\}, t_x(n) = x_{n+1}, n = 0,1,2,...$

例如 x = 0.10110100...,则对应于 x 的函数 t_x 是:

n 0 1 2 3 4 5 6 7...

 $t_x(n)$ 1 0 1 1 0 1 0 0...

易见 $t_x \in \{0,1\}^N$,且对于 $x,y \in [0,1), x \neq y$,必有 $t_x \neq t_y$,即 $f(x) \neq f(y)$. 这就证明了 $f: [0,1) \rightarrow \{0,1\}^N$ 是单射的.

考虑 t ∈ {0,1}^N, 其中

$$t(0)=0, t(n)=1, n=1, 2, \dots$$

按照f的定义,只有x=0.011...才能满足f(x)=t. 但根据规定,这个数x 应该记为 0.100...,所以根本不存在 $x \in [0,1)$,满足f(x)=t.

定义函数 $g: \{0,1\}^N \rightarrow [0,1). g$ 的映射法则恰好与f相反. 即

 $\forall t \in \{0,1\}^N$, $t: N \to \{0,1\}$, $g(t)=0.x_1x_2...$, $\sharp \models x_{n+1}=t(n)$.

但不同的是,将 $0.x_1x_2...$ 看作数 x 的十进制表示. 这样就避免了形如 0.0111... 和 0.1000... 在二进制表示中对应了同一个数的情况,从而保证了 g 的单射性.

根据定理 9.3 有 $\{0,1\}^N \approx [0,1)$. 再使用等势的传递性得 $\{0,1\}^N \approx R$.

总结:

重要的等势或优势的结果.

- $N \approx Z \approx Q \approx N \times N$
- $R \approx [a,b] \approx (c,d) \approx \{0,1\}^N \approx P(N)$
- $N \prec R$
- $A \prec P(A)$

其中[a,b], (c,d)代表任意的实数闭区间和开区间.

第二节 集合的基数

一. 自然数与自然数集合

1. 定义

定义 9.3 设 a 为集合, 称 $a \cup \{a\}$ 为 a 的后继, 记作 a^{\dagger} ,

$$\mathbb{P} a^+ = a \cup \{a\}.$$

如下定义自然数:

$$0=\varnothing$$

$$1=0^{+}=\emptyset^{+}=\{\emptyset\}=\{0\}$$

$$2=1^{+}=\{\varnothing\}^{+}=\{\varnothing\}\cup\{\{\varnothing\}\}=\{\varnothing,\{\varnothing\}\}=\{0,1\}$$

$$3=2^{+}=\{\emptyset,\{\emptyset\}\}^{+}=\{\emptyset,\{\emptyset\},\{\emptyset,\{\emptyset\}\}\}=\{0,1,2\}$$

• • •

$$n=\{0, 1, ..., n-1\}$$

...

定义 9.4 设 A 为集合,如果满足下面的两个条件:

- (1) $\varnothing \in A$
- $(2) \ \forall a(a \in A \rightarrow a^+ \in A)$

则称 A 是归纳集.

例如下面的集合

$$\{\varnothing,\varnothing^{+},\varnothing^{++},\varnothing^{+++},\dots\}$$
$$\{\varnothing,\varnothing^{+},\varnothing^{++},\varnothing^{+++},\dots,a,a^{+},a^{++},a^{+++},\dots\}$$

都是归纳集.

定义 9.5

- (1) 一个自然数 n 是属于每一个归纳集的集合.
- (2) 自然数集 N 是所有归纳集的交集.

两个定义得到同样的结果.

鉴于自然数都是集合,有关集合的运算对自然数都是适用的,例如:

2∪5,3∩4等

2. 自然数的性质

- (1) 对任何自然数 $n \neq n \approx n$.
- (2) 对任何自然数 n, m, 若 $m \in n,$ 则 $m \subseteq n$.
- (3) 对任何自然数 n 和 m, 以下三个式子:

 $m \in n, m \approx n, n \in m$

必成立其一且仅成立其一. 这个性质称为自然数的三歧性.

3. 自然数的相等与大小顺序

对任何自然数m和n,

 $m = n \Leftrightarrow m \approx n$

 $m < n \Leftrightarrow m \in n$

二、有穷集和无穷集.

定义 9.6

一个集合是有穷的当且仅当它与某个自然数等势;

如果一个集合不是有穷的, 就称作无穷集.

实例:

{a,b,c}是有穷集,因为3={0,1,2},且

 ${a,b,c} \approx {0,1,2} = 3$

N和R都是无穷集,因为没有自然数与N和R等势 利用自然数的性质可以证明:任何有穷集只与惟一的自然数等势.

三、基数

1. 集合基数的定义

定义 9.7

(1) 对于有穷集合 A, 称与 A 等势的那个惟一的自然数为 A 的基数, 记作 cardA, 即

 $cardA = n \Leftrightarrow A \approx n$ (对于有穷集 A, cardA 也可以记作|A|)

- (2) 自然数集合 N 的基数记作 \aleph_0 ,即 $cardN = \aleph_0$
- (3) 实数集 R 的基数记作 $\stackrel{\triangleright}{\sim}$ (读作阿列夫),即 $\operatorname{card} R = \stackrel{\triangleright}{\sim}$

2. 基数的相等和大小

定义 9.8 设 A, B 为集合, 则

- (1) $\operatorname{card} A = \operatorname{card} B \Leftrightarrow A \approx B$
- (2) $\operatorname{card} A \leq \operatorname{card} B \Leftrightarrow A \leq B$
- (3) $\operatorname{card} A < \operatorname{card} B \Leftrightarrow \operatorname{card} A \leq \operatorname{card} B \wedge \operatorname{card} A \neq \operatorname{card} B$

根据上一节关于势的讨论不难得到:

$$\operatorname{card} Z = \operatorname{card} Q = \operatorname{card} N \times N = \aleph_0$$

$$\operatorname{card}P(N) = \operatorname{card}(2^{N}) = \operatorname{card}(a,b) = \operatorname{card}(c,d) = \aleph$$

其中
$$2^N = \{0,1\}^N$$
.

由于对任何集合 A 都满足 A < P(A),所以有

 $\operatorname{card} A < \operatorname{card} P(A)$

这说明不存在最大的基数. 将已知的基数按从小到大的顺序排列就得到:

 $0, 1, 2, ..., n, ..., \aleph_0, \aleph, ...$

其中:

0, 1, 2..., n, ... 是全体自然数, 是有穷基数.

ℵ₀, ℵ, … 是无穷基数,

 \aleph_0 是最小的无穷基数, \aleph 后面还有更大的基数,如 cardP(R)等.

四.可数集

1. 可数集的定义

定义 9.9 设 A 为集合, 若 $cardA \le \aleph_0$, 则称 A 为可数集或可列集. 实例: $\{a,b,c\}$, 5, 整数集 Z, 有理数集 Q, $N \times N$ 等都是可数集,

实数集 R 不是可数集,与 R 等势的集合也不是可数集. 对于任何的可数集,它的元素都可以排列成一个有序图形.换 句话说,都可以找到一个"数遍"集合中全体元素的顺序.回顾前 边的可数集,特别是无穷可数集,都是用这种方法来证明的.

2. 关于可数集有下面的性质:

- 可数集的任何子集都是可数集.
- 两个可数集的并是可数集.
- 两个可数集的笛卡儿积是可数集.
- 可数个可数集的笛卡儿积仍是可数集.
- 无穷集 A 的幂集 P(A)不是可数集.

例 求下列集合的基数.

(1) T={x | x 是单词"BASEBALL"中的字母}

(2) $B = \{x \mid x \in R \land x^2 = 9 \land 2x = 8\}$

(3) $C=P(A), A=\{1, 3, 7, 11\}$

解 (1) 由 $T=\{B, A, S, E, L\}$ 知 cardT=5.

- (2) 由 $B=\emptyset$, 可知 cardB=0.
- (3) 由|A|=4 可知 cardC=card $P(A)=|P(A)|=2^4=16$.

例 设A,B为集合,且

 $cardA=\aleph_0$, cardB=n, n 是自然数, $n\neq 0$.

求 $cardA \times B$.

解 方法一

由 cardA=♂0, cardB=n, 可知 A, B 都是可数集. 令

$$A = \{a_0, a_1, a_2, \dots\}$$

$$B = \{b_0, b_1, b_2, \dots, b_{n-1}\}$$

对任意的 $\langle a_i,b_i \rangle$, $\langle a_k,b_l \rangle \in A \times B$ 有

$$\langle a_i, b_j \rangle = \langle a_k, b_l \rangle \iff i = k \land j = l$$

定义函数

$$f: A \times B \longrightarrow N$$

$$f(\langle a_i, b_j \rangle) = in + j, \quad i = 0, 1, ..., j = 0, 1, ..., n-1$$

易见f是 $A \times B$ 到N的双射函数,所以

$$cardA \times B = cardN = \aleph_0$$

方法二

直接使用可数集的性质求解.

因为 $cardA=\aleph_0$, cardB=n, 所以 A, B 都是可数集.

根据性质(3)可知 $A \times B$ 也是可数集,所以

 $cardA \times B \leq \aleph_0$

显然当 $B\neq\emptyset$ 时, card $A\leq$ card $A\times B$, 这就推出

 $\aleph_0 \leq \operatorname{card} A \times B$

综合上述得到 $cardA \times B = \aleph_0$.

第8.3章 习题课

- 一、本章的主要内容及要求
 - 1. 主要内容
 - 集合等势的定义
 - 等势的性质
 - 集合优势的定义
 - 优势的性质
 - 重要的集合等势以及优势的结果
 - 自然数及其自然数集合的定义
 - 可数集与不可数集
 - 集合的基数

2. 要求

- 能够证明两个集合等势
- 能够证明一个集合优势于另一个集合
- 知道什么是可数集与不可数集
- 会求一个简单集合的基数

二、练习

- 1. 设 A, B 为二集合,证明:如果 $A \approx B$,则 $P(A) \approx P(B)$
- ⑩ 证 因为 A≈B,存在双射函数 f: A→B,因此存在反函数 $f^{-1}: B→A$,如下构造函数

$$g: P(A) \rightarrow P(B),$$

g(T) = f(T), $\forall T \subseteq A$ (这里的 f(T)是 T 在函数 f 的像)

证明 g 的满射性. 对于任何 $S \subseteq B$,存在 $f^{-1}(S) \subseteq A$,且

$$g(f^{-1}(S)) = f \circ f^{-1}(S) = S$$

证明 g 的单射性.

$$g(T_1) = g(T_2) \Rightarrow f(T_1) = f(T_2)$$

$$\Rightarrow f^{-1}(f(T_1) = f^{-1}(f(T_2)))$$

$$\Rightarrow I_A(T_1) = I_A(T_2) \Rightarrow T_1 = T_2$$

综合上述得到 $P(A) \approx P(B)$.

说明:证明集合 A 与 B 等势的方法

方法一: 直接构造从 A 到 B 的双射函数

给出一个从A 到B 的函数 $f: A \rightarrow B$

证明f的满射性

证明f的单射性

方法二:利用定理 9.3,构造两个单射函数 $f: A \rightarrow B$ 和 $g: B \rightarrow A$.

给出函数f和g

证明 f 和 g 的单射性

方法三: 利用等势的传递性

方法四:直接计算 A 与 B 的基数,得到 cardA=cardB.

注意:

🧶 以上方法中最重要的是方法一.

● 证明集合 A 与自然数集合 N 等势的方法就是找到一个"数遍"A 中元素的顺序.

- 2. 已知 $A = \{n^7 | n \in N\}, B = \{n^{109} | n \in N\}, 求下列各题:$
 - (1) cardA;
 - (2) cardB;
 - (3) $card(A \cup B)$
 - (4) $card(A \cap B)$
- 解: (1) 构造双射函数 $f: N \rightarrow A, f(n) = n^7$,因此 $card A = \aleph_0,$
 - (2) 构造双射函数 $g: N \rightarrow A, g(n) = n^{109}$,因此 card $B = \aleph_0$,
 - (3) 可数集的并仍旧是可数集,因此 card(A∪B)≤ ℵ₀,
 但是 card(A∪B)≥cardA=ℵ₀,
 从而得到 card(A∪B)= ℵ₀.
 - (4) 因为 7 与 109 互素, card(A∩B)={n^{7×109} | n∈N},
 与 (1) 类似得到 card(A∩B)= ℵ₀

- 3. 已知 $cardA=\aleph_0$,且 cardB< cardA,求 card(A-B)
- 解:由 $A-B\subseteq A$ 得到 $\operatorname{card}(A-B) \leq \operatorname{card}A$,即 $\operatorname{card}(A-B) \leq \aleph_0$

由 cardB<cardA 可知 B 为有穷集,

即存在自然数 n 使得 cardB=n.

假设 $card(A-B) < \aleph_0$, 那么存在自然数 m,

使得 card(A-B)=m.

从而得到

$$\operatorname{card} A \leq \operatorname{card} (A \cup B) = \operatorname{card} ((A - B) \cup B) \leq n + m$$
,

与 cardA=\(\circ_0\)矛盾.

因此, card $(A-B)=\aleph_0$.