Machine Learning HW7 Report

學號:R07942115 系級:電信碩一 姓名:謝硯澤

1. PCA of color faces:

a. 請畫出所有臉的平均。

b. 請畫出前五個 Eigenfaces,也就是對應到前五大 Eigenvalues 的 Eigenvectors。

c. 請從數據集中挑出任意五張圖片,並用前五大 Eigenfaces 進行 reconstruction,並畫出結果。

d. 請寫出前五大 Eigenfaces 各自所佔的比重,請用百分比表示並四捨五入 到小數點後一位。

Eigenface1	4.1%
Eigenface2	2.9%
Eigenface3	2.4%
Eigenface4	2.2%
Eigenface5	2.1%

2. Image clustering:

a. 請實作兩種不同的方法,並比較其結果(reconstruction loss, accuracy)。 (不同的降維方法或不同的 cluster 方法都可以算是不同的方法) Reconstruction loss (per image)計算方法:(1)求出原本 data 與經過 autoencoder 後的 reconstruct data 之間的誤差(2)再取平方(3)全部相加(4) 最後除以 data 量。

	Autoencoder + TSNE + Kmeans	Autoencoder + PCA + Kmeans
Reconstruction	10.715	10.715
loss		
Kaggle public	0.95894	0.94372
score		
Kaggle private	0.95910	0.94353
score		

b. 預測 visualization.npy 中的 label,在二維平面上視覺化 label 的分佈。 (用 PCA, t-SNE 等工具把你抽出來的 feature 投影到二維,或簡單的取前兩維 2 的 feature)

其中 visualization.npy 中前 2500 個 images 來自 dataset A,後 2500 個 images 來自 dataset B,比較和自己預測的 label 之間有何不同。

跟我預測的結果蠻接近的,我的作法就是先透過 encoder 將維到 32 維,再用 TSNE 降維到 2 維,最後做 Kmeans 分群。

c. 請介紹你的 model 架構(encoder, decoder, loss function...),並選出任意 32 張圖片,比較原圖片以及用 decoder reconstruct 的結果。

Model Architecture:

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	(None, 1024)	0
dense_1 (Dense)	(None, 384)	393600
dense_2 (Dense)	(None, 32)	12320
dense_3 (Dense)	(None, 384)	12672
dense_4 (Dense)	(None, 1024)	394240
Total params: 812.832)	

Total params: 812,832 Trainable params: 812,832 Non-trainable params: 0

Loss function	mse
Optimizer	adam
Epoch	1000
Batch size	256
TSNE	n_components=2, n_iter=3000, perplexity=50
K-Means	n_clusters=2

我的 model 架構如上表所述,先經過 Encoder 後,再用 TSNE 降到 2 維,最後使用 kmeans 分成兩群。

32 張原圖

32 張還原圖

我那時候在寫作業時,讀取影像的時候是以灰階影像做讀取,所以上圖的比較圖也是用灰階影像來呈現。從上圖的比較結果可以發現整體其實還原的沒有很好,但人臉的影像相對還原的好很多,可以大致看得清楚臉部及五官的輪廓,代表 encoder 可能只有做到抽取出人臉的資訊?!這可能也是為什麼最後仍有辦法在經過 encoder 後區分兩個 dataset 的原因。