Assignment 26

Alex Clemmer

Student number: u0458675

1

First find $\phi(N)$: (p-1)(q-1)=504. This is the Euler Totient Function; we'll call it n for short. Given that e=5. The smallest x such that $5x\equiv 1 \pmod{504}$ is x=101. Thus $\mathbf{d}=\mathbf{101}$. Pretty simple.

2

Encrypting 55 is pretty straightforward. Given $m^e \pmod{n}$, we have $55^5 \pmod{504} = 55$. If that doesn't seem right, we can reverse it given $m^d \pmod{504}$: $55^{101} \pmod{504} = 55$.

3

Given the above, this is super simple. $189^101 \pmod{504} = 189$. We can confirm this odd result by $189^5 \pmod{504} = 189$.