Exercise 1 (2.1.1). Suppose R is a ring, prove the following:

- (a) Every maximal ideal is prime.
- (b) Every prime ideal is radical.
- (c) If $I \triangleleft R$, then $\sqrt{I} \triangleleft R$.

Answer

i) Let $\mathfrak{m} \leq R$, maximal, and $r, s \in R$ with $rs \in \mathfrak{m}$. Aiming for a contradiction let us suppose that neither r nor s lie inside of \mathfrak{m} .

Since $r \notin \mathfrak{m}$, then the ideal generated by r and \mathfrak{m} is the whole ring R. This means that $ar + m_1 = 1$ for $a \in R$ and $m_1 \in \mathfrak{m}$. Likewise for some $b \in R$ and $m_2 \in \mathfrak{m}$ it follows that $bs + m_2 = 1$. Now

$$1 = (ar + m_1)(bs + m_2) = (ab)rs + arm_2 + bsm_1 + m_1m_2$$

and this last expression is a combination of elements in \mathfrak{m} . It follows that $1 \in \mathfrak{m}$, but this means that $R = \mathfrak{m}$. This is impossible, so it must follow that $r \in \mathfrak{m}$ or $s \in \mathfrak{m}$.

ii) Suppose $\mathfrak{p} \leq R$ is prime. We want to show that for any $p \in \sqrt{\mathfrak{p}}$, $p \in \mathfrak{p}$. As $p \in \sqrt{\mathfrak{p}}$, then $p^n \in \mathfrak{p}$. We will prove that $p^n \in \mathfrak{p} \Rightarrow p \in \mathfrak{p}$.

By induction, our base case is n=1, but there is nothing to prove there. So let us suppose that $p^{n+1} \in \mathfrak{p}$. Then

$$p^{n+1} = pp^n \in \mathfrak{p} \Rightarrow (p \in \mathfrak{p}) \lor (p^n \in \mathfrak{p}).$$

If the first statement holds, we are done. If the second one holds, we are done by induction hypothesis.

iii) First, let us show that the radical is non-empty. Since $0 \in I$, then $0 = 0^n \in I$ and it follows that $0 \in I$.

Suppose now that $x, y \in \sqrt{I}$, we will show that $x + y, xy \in \sqrt{I}$, thus proving that \sqrt{I} is a subring. Our hypothesis tells us that $x^m, y^n \in I$ for some $m, n \in \mathbb{N}$. In this case we have that

$$(x+y)^{m+n} = \sum_{k=0}^{m+n} {m+n \choose k} x^k y^{m+n-k},$$

and $x^k y^{m+n-k} \in \sqrt{I}$ because

$$k < n \iff k + (m+n) < n + (m+n) \iff (m+n) < m + 2n - k$$

which means that in case that one of our elements is not inside, then the other one will surely be.

Now $(x^m)^n, (y^n)^m \in I$ and then $(xy)^{mn} \in I$ and so $xy \in \sqrt{I}$.

Finally if $r \in R$ and $x \in \sqrt{I}$, then $rx^m \in I$. It follows that $(rx)^m \in I$ and so $rx \in \sqrt{I}$, proving that \sqrt{I} is absorbent. We conclude that \sqrt{I} is an ideal of R whenever I is.

Exercise 2 (2.1.2). Suppose R is a ring, prove the following:

- (a) \mathfrak{m} is maximal \iff $^R/_{\mathfrak{m}}$ is a field.
- (b) \mathfrak{p} is prime \iff R/\mathfrak{p} is an integral domain.

Answer

(a) (\Rightarrow) If \mathfrak{m} is a proper maximal ideal, take $r \in R \setminus \mathfrak{m}$. Then the ideal generated by r and \mathfrak{m} is the whole ring R. It follows that for some $a \in R$ and $m \in \mathfrak{m}$, ar + m = 1. If we translate this expression to the quotient ring we obtain

$$ar + m \equiv 1 \mod \mathfrak{m} \Rightarrow ar \equiv 1 \mod \mathfrak{m}$$
.

Since r was arbitrary, we have found an inverse a for any element r inside the quotient ring. Since $^R/_{\mathfrak{m}}$ is already a commutative ring with identity, and now we have inverses, it follows that $^R/_{\mathfrak{m}}$ is a field.

(\Leftarrow) On the other hand suppose $^R/_{\mathfrak{m}}$ is a field. Let I be an ideal of R which properly contains \mathfrak{m} . If $r \in I \backslash \mathfrak{m}$, then there exists $s \in R$ such that $rs \equiv 1 \mod \mathfrak{m}$. This means that

$$rs-1\in \mathfrak{m}\subsetneq I\Rightarrow rs-\left(rs-1\right)\in I\Rightarrow 1\in I\Rightarrow I=R.$$

Since I is arbitrary, it follows that no proper ideal besides the whole ring contains \mathfrak{m} . This means that \mathfrak{m} is maximal.

(b) (\Rightarrow) If $\mathfrak p$ is a prime ideal, suppose $rs \equiv 0 \mod \mathfrak p$. This means that $rs \in \mathfrak p$, from which follows that $r \in \mathfrak p$ or $s \in \mathfrak p$ because $\mathfrak p$ is a prime ideal. In any case this means that

$$r \equiv 0 \bmod \mathfrak{p} \quad \lor s \equiv 0 \bmod \mathfrak{p}$$

and therefore R/p has no zero divisors.

 (\Leftarrow) The opposite direction is quite similar. Consider $rs \in \mathfrak{p}$ for some $r,s \in R$. Then

$$rs \in \mathfrak{p} \Rightarrow rs \equiv 0 \mod \mathfrak{p} \Rightarrow (r \equiv 0 \mod \mathfrak{p}) \lor (s \equiv 0 \mod \mathfrak{p}) \Rightarrow (r \in \mathfrak{p}) \lor (s \in \mathfrak{p})$$

where the second implication follows from the fact that $^R/_{\mathfrak{p}}$ has no zero divisors. We conclude that \mathfrak{p} is prime.

Exercise 3. Suppose $f: R \to S$ is a ring homomorphism and $\mathfrak{q} \triangleleft S$ is a prime ideal. Show that $f^{-1}[\mathfrak{q}] \triangleleft R$ is a prime ideal.

Answer

We will first show that ring homomorphisms take ideals back into ideals, and then that they take primes back into primes.

Suppose $r_1, r_2 \in f^{-1}[\mathfrak{q}]$. We want to see that this an absorbent subring. Our hypothesis tells us that

$$f(r_1), f(r_2) \in \mathfrak{q} \Rightarrow f(r_1) + f(r_2), f(r_1)f(r_2) \in \mathfrak{q}$$

 $\Rightarrow f(r_1 + r_2), f(r_1r_2) \in \mathfrak{q}$
 $\Rightarrow r_1 + r_2, r_1r_2 \in f^{-1}[\mathfrak{q}].$

This lets us conclude that $f^{-1}[\mathfrak{q}]$ is a subring of R. To prove it is absorbent, suppose that $r \in R$ and $p \in f^{-1}[\mathfrak{q}]$. This means that $f(r) \in S$ and $f(p) \in \mathfrak{q}$, and since \mathfrak{q} is a prime ideal in S, it follows that $f(r)f(p) \in \mathfrak{q}$. We conclude that $rp \in f^{-1}[\mathfrak{q}]$, and thus, this set is an ideal.

Let us now consider r_1, r_2 as before, but now with the hypothesis that $r_1r_2 \in f^{-1}[\mathfrak{q}]$. This means that

$$f(r_1)f(r_2) = f(r_1r_2) \in \mathfrak{q} \Rightarrow (f(r_1) \in \mathfrak{q}) \lor (f(r_2) \in \mathfrak{q})$$
$$\Rightarrow (r_1 \in f^{-1}[\mathfrak{q}]) \lor (r_1 \in f^{-1}[\mathfrak{q}]).$$

We conclude that $f^{-1}[\mathfrak{q}]$ is also prime.

Exercise 4 (2.3.3). Show that if $I \leq \mathbb{C}[\mathbf{x}]$ is radical, then $I = \bigcap_{\substack{\mathfrak{m} \supseteq I \\ \mathfrak{m} \text{ maximal}}} \mathfrak{m}$.

Answer

We have the following:

$$\bigcap_{\substack{\mathfrak{m}\supseteq I\\\mathfrak{m}\text{ maximal}}}\mathfrak{m}=\sqrt{\bigcap_{\substack{\mathfrak{m}\supseteq I\\\mathfrak{m}\text{ maximal}}}\mathfrak{m}}=I\left(V\left(\bigcap_{\substack{\mathfrak{m}\supseteq I\\\mathfrak{m}\text{ maximal}}}\mathfrak{m}\right)\right)=I\left(\bigcup_{\substack{\mathfrak{m}\supseteq I\\\mathfrak{m}\text{ maximal}}}V(\mathfrak{m})\right)$$

where we have applied the Nullstellensatz on the second-to-last equality. Since the variety associated to a maximal ideal corresponds to a point, it follows that

$$I\left(\bigcup_{\substack{\mathfrak{m}\supseteq I\\\mathfrak{m}\text{ maximal}}}V(\mathfrak{m})\right) = I\left(\bigcup_{\mathbf{a}\in V(I)}\{\,a\,\}\right) = I[V(I)] = \sqrt{I} = I.$$

Once again in the second-to-last equality we have applied the Nullstellensatz.

We have used a couple of facts which we will prove as a lemma:

Lemma 1. The following facts are true for any ideals I, J in a ring R:

(a) $\bigcap_{\alpha \in A} \mathfrak{m}_{\alpha}$ is a radical ideal.

(b)
$$V\left(\bigcap_{\alpha\in\mathcal{A}}I_{\alpha}\right)=\bigcup_{\alpha\in\mathcal{A}}V(I_{\alpha}).$$

Proof

(a) The left to right inclusion is immediate. On the other hand

$$x \in \sqrt{\bigcap_{\alpha \in \mathcal{A}} \mathfrak{m}_{\alpha}} \Rightarrow x^{n} \in \bigcap_{\alpha \in \mathcal{A}} \mathfrak{m}_{\alpha} \Rightarrow \forall \alpha (x^{n} \in \mathfrak{m}_{\alpha}) \Rightarrow \forall \alpha (x \in \mathfrak{m}_{\alpha}) \Rightarrow x \in \bigcap_{\alpha \in \mathcal{A}} \mathfrak{m}_{\alpha}$$

(b)

Exercise 5. Prove that the coordinate ring of an affine algebraic variety is:

- i) reduced;
- ii) fin. gen. as C-algebra;
- iii) Noetherian.

Answer

Recall the for a variety V, its coordinate ring is $\mathbb{C}[\mathbf{x}]/I(V)$. The ideal I(V) is radical and therefore $\mathbb{C}[\mathbf{x}]/I(V)$ is reduced.

The finite set of generators are the polynomials $x_i \mod I(V)$.

Finally any ideal in $\mathbb{C}[\mathbf{x}]/I(V)$ is finitely generated, since it has the form I/I(V) with $I(V) \subseteq I \subseteq \mathbb{C}[\mathbf{x}]$ and this is a Noetherian ring.

Terminar con lema cociente por radical es reducido