Wydział Informatyki i Telekomunikacji Laboratorium Podstaw Elektroniki

Sprawozdanie z ćwiczenia

Tytuł Konfiguracja odwracająca i nieodwracająca wzmacniacza operacyjnego		Rok akademicki 2019/2020
Data wykonania ćwiczenia 29.05.2020	Data oddania sprawozdania 30.05.2020	Kierunek Informatyka
Skład grupy laboratoryjnej 1. Dawid Królak 2. Michał Matuszak 3. Mateusz Miłkowski 4. Dominik Pawłowski	Rok, semestr, grupa Rok 1, semestr 2, grupa I2.1	

1. Cel ćwiczenia.

Symulacyjne przedstawienie konfiguracji odwracającej i nieodwracającej wzmacniacza operacyjnego. Określenie sposobu dobierania współczynnika wzmocnienia w tych wzmacniaczach.

2. Przebieg ćwiczenia.

a) Konfiguracja nieodwracająca

Zaprojektowany obwód:

Uzyskane wzmocnienie w danym układzie można obliczyć za pomocą wzoru:

$$\frac{U_{out}}{U_{in}} = 1 + \frac{R1}{R2}$$

$$U_{out} = (1 + \frac{R1}{R2}) \cdot U_{in}$$

$$U_{in} \cdot k = (1 + \frac{R1}{R2}) \cdot U_{in}$$

$$k = (1 + \frac{R1}{R2})$$

Dla ustalonych wartości $R1=9k\Omega$ oraz $R2=1k\Omega$, wzmocnienie powinno zatem wynieść k=10

Za pomocą symulacji zmiennoprądowej i wykresów odczytano następujące wartości amplitud napięcia wejściowego i wyjściowego:

$$V_{in} = 5V$$

$$V_{out} = 50V$$

Zwiększając liniowo wartość napięcia wejściowego za pomocą symulacji .dc sweep otrzymujemy następujący wykres odczytów V_{in} i V_{out} :

Wnioski:

Obie symulacje potwierdzają obliczenia analityczne - wzmocnienie układu jest dziesięciokrotne, dla każdego V_{in} zachowana jest zależność $V_{out}=k\cdot V_{in}=10\cdot V_{in}.$

b) Konfiguracja odwracająca

Zaprojektowany obwód:

Uzyskane wzmocnienie w danym układzie można obliczyć za pomocą wzoru:

$$\frac{U_{out}}{U_{in}} = -\frac{R1}{R2}$$

$$U_{out} = -\frac{R1}{R2} \cdot U_{in}$$

$$U_{in} \cdot k = -\frac{R1}{R2} \cdot U_{in}$$

$$k = -\frac{R1}{R2}$$

 $k=-\frac{R1}{R2}$ Dla ustalonych wartości $R1=9k\Omega$ oraz $R2=1k\Omega$, wzmocnienie powinno zatem wynieść k=-9. Znak minus oznacza odwrócenie fazy przebiegu wyjściowego względem przebiegu wejściowego.

Za pomocą symulacji zmiennoprądowej i wykresów odczytano następujące wartości amplitud napięcia wejściowego i wyjściowego:

$$V_{in} = 5V$$

$$V_{out} = 45V$$

Można zauważyć, że wykres $V_{out}(t)$ jest przesunięty w fazie o 180 stopni względem $V_{in}(t)$:

Zwiększając liniowo wartość napięcia wejściowego za pomocą symulacji .dc sweep otrzymujemy następujący wykres odczytów V_{in} i V_{out} :

Wnioski:

Obie symulacje potwierdzają obliczenia analityczne - wzmocnienie układu jest dziewięciociokrotne, przy czym faza prądu wyjściowego jest odwrócona względem wejściowego, dla każdego V_{in} zachowana jest zależność $V_{out}=k\cdot V_{in}=-9\cdot V_{in}.$