

Chương 2 Máy tính

Mục tiêu

- Hiểu được vai trò của máy tính trong tương tác người máy
- Các thành phần cơ bản ảnh hưởng tới quá trình tương tác
- Ý nghĩa đối với người thiết kế phần mềm

Nội dung

- 1. Tổng quan về máy tính và ý nghĩa trong tương tác người máy
- 2. Thiết bị nhập dữ liệu văn bản
- 3. Thiết bị định vị, trỏ và vẽ
- 4. Thiết bị hiển thị
- 5. Thực tại ảo và tương tác 3D
- 6. Điều khiển vật lý, cảm biến
- 7. Bộ nhớ
- 8. Xử lý và mạng thông tin
- 9. Thảo luận

Tổng quan về máy tính và ý nghĩa trong tương tác người máy

1. Máy tính

- Hệ thống máy tính được tạo lên từ nhiều thành phần
- Mỗi thành phần trong đó đều ảnh hưởng tới quá trình tương tác
- Thiết bị nhập dữ liệu: ký tự và con trỏ
- Thiết bị xuất dữ liệu: màn hình (to hay nhỏ), bảng điện tử
- Thực tại ảo: các tương tác đặc biết và các thiết bị hiển thị

Máy tính (tiếp)

- Tương tác vật lý vd: âm thanh, cảm giác, ...
- Giấy: đóng vai trò đầu ra dữ liệu (máy in) và dữ liệu đầu vào (scan)
- Bộ nhớ: RAM, ổ cứng, ... ảnh hưởng tới khả năng lưu trữ cũng như khả năng truy cập
- Bộ xử lý: tốc độ xử lý, tốc độ truyền thông qua mạng

Tương tác với máy tính

 Để hiểu được tương tác người máy, ta phải hiểu về máy tính.

Một hệ máy tính thông thường

- Màn hình, hiển thị trên đó là các cửa sổ chương trình.
- •Bàn phím
- Con chuột, hoặc touchpad
- Có rất nhiều các hệ thống máy tính:
- Máy bàn, MTXT, Smartphone, ...
- ✓ Mỗi loại thiết bị sẽ quyết định kiểu (style) tương tác mà hệ thống hỗ trợ
- ✓ Với mỗi loại thiết bị khác nhau thì cần có những giao diện hỗ trợ một kiểu tương tác khác nhau

Máy tính ở đâu!

Trong nhà bạn có bao nhiều máy tính?

Có máy tính trong túi xách của bạn không?

Sự tương tác?

Các hệ thống cũ

 Xử lý theo gói (batch processing)

Hiện tại và tương lai

 Xử lý có tương tác (online)

"nhanh hơn = tốt hơn?"

Các loại hình tương tác

- Các loại hình tương tác đa dạng, phát triển dựa trên sự ra đời của các loại thiết bị, cảm biến...
 - . Camera
 - · Hiển thị 3D
 - Thiết bị đọc suy nghĩ (tương lai gần)

Thiết bị nhập dữ liệu văn bản

Thiết bị nhập văn bản

- Bàn phím
 - PC
 - Phone
 - Chord
- Handwriting
- Đồng bộ tiếng nói

- Thiết bị nhập văn bản cơ bản và phổ biến nhất
- Cho phép nhập dữ liệu với tốt độ cao, ổn định.
- Kết nối có dây hoặc không dây với máy tính trong phạm vi gần

Bàn phím - Các kiểu bố trí

- Kiểu bố trí (layout) QWERTY là chuẩn bố trí bàn phím phổ biến nhất hiện nay, tuy nhiên:
 - QWERTY được thiết kế cho tiếng anh là một ngôn ngữ không có dấu → cần các scripts thay thế
 - QWERTY không phải kiểu bố trí tốt ưu cho đánh máy, nó "thuận tay trái"
- Mặc dù có những kiểu bố trí khác tối ưu hơn nhưng lịch sử khó thay đổi.

Bàn phím - Các kiểu bố trí

Các kiểu bố trí khác

Alphabetic

- Kiểu bố trí bàn phím theo thứ tự bảng chữ cái
- Chậm, khó sử dụng

Dvorak

- Tăng tốc độ gõ nhờ giảm chuyển động của ngón tay
- Được tất cả các HĐH hỗ trợ

Các kiểu bố trí khác

- Bàn phím đặc biệt
- Thiết kế để giảm thiểu mệt mỏi do RSI (chấn thương do các căng thẳng lặp đi lặp lại)
- Sử dụng 1 tay hoặc 2 tay

Bàn phím Chord

- Chỉ có một vài phím 4 hoặc
 5.
- Các ký tự hoặc lệnh được nhập vào dựa trên tổ hợp các phím được bấm
- Kích thước nhỏ gọn
- → Dành cho các thiết bị chuyên dụng, ứng dụng chuyên biệt.

Bàn phím điện thoại

- Sử dụng các phím số với nhiều lần nhấn để thay đổi ký tự cần nhập
- →So sánh với bàn phìm QWERTY, nhanh/chậm?
- Kiểu nhập liệu T9 bộ tiên đoán từ

Bàn phím số

- Dùng để nhập dữ liệu số:
 - calculator, PC keyboard
- Điện thoại

Không giống nhau!!

ATM giống ĐT

telephone

Nhận dạng chữ viết tay

- Ký tự có thể được nhập bằng cách sử dụng bút và bảng điện tử (bảng cảm ứng)
- → Kiểu tương tác tự nhiên
- Tuy nhiên, ta gặp phải các vấn đề về kỹ thuật:
 - Việc nắm bắt các thông tin hữu ích sự ngắt nghỉ, lực nhấn, ... một cách tự nhiên.
 - Phân chia các đoạn viết tay thành các ký tự
 - Nhận dạng từng ký tự
 - Phân biệt các phong cách viết khác nhau

Nhận dạng chữ viết tay

Không còn bàn phím ...

Nhận dạng giọng nói

- Hướng nghiên cứu đang phát triển mạnh
- Đã có những thành công nhất định
 - Một người sử dụng quá trình học, nhận dạng ban đầu
 - Hệ thống lệnh có giới hạn

Nhận dạng giọng nói

- Các vấn đề cần giải quyết:
 - Nhiễu ồn
 - Phát âm không chính xác
 - Số lượng từ vựng khổng lồ
 - Các chất giọng khác nhau

Thiết bị định vị, trỏ và vẽ

Mouse, touchpad, trackballs, joysticks, ...

Con trỏ chuột

- Thiết bị điều khiển con trỏ
 - Tiện dụng
 - Phổ biến
- Có 2 đặc điểm chính:
 - Di chuyển trên mặt phẳng
 - Thường có 2 hoặc 3 phím (bấm, cuộn)

Con trỏ chuột (tiếp)

- Mouse được đặt trên mặt phẳng (bàn)
- Chuyển động tương đối của con chuột được liên hệ với con trỏ trên màn hình máy tính
- Dạng giao tiếp gián tiếp
 - Bản thân thiết bị không che khuất màn hình
 - Vấn đề phối hợp tay, mắt với người dùng mới Lê Đình Trang - IS.FIT.MTA

Con trỏ chuột (tiếp)

Cách thức làm việc của con chuột? Có 2 phương pháp xác định di chuyển:

 Cơ học: Sử dụng quả bóng biết di chuyển tự do trên mặt phẳng thành các xung thể hiện sự di chuyển trên 2 trục XY

Con trỏ chuột (tiếp)

• Quang học:

- Sử dụng đèn led, dựa trên sự thay đổi về cường độ sáng để xác định chuyển động trên mặt XY
- Ít bị ảnh hưởng của bụi bẩn.

Touchpad

- Dạng bàn cảm ứng nhỏ, chạm để di chuyển con trỏ chuột.
- Thường thấy ở laptop
- Càn chú ý tới điều chỉnh tốc độ đáp ứng
 - Tốc độ chạm nhanh
 - Con trỏ di chuyển dài
 - Việc di chuyển tới đối tượng nhanh hơn
 - Tốc độ chạm chậm
 - Con trỏ di chuyển ngắn
 - Cho các ứng dụng đòi hỏi chính xác

Trackball, thumbwheels

Trackball

- Quả bóng quay bên trong vỏ cố định
- Ung dụng tương tác với không gian đồ họa 3D, độ chính xác cao
- Đôi khi sử dụng trên các thiết bị di động
- Thumbwheel?

Màn cảm ứng

- Xác định trỏ tay hoặc bút trên màn hình
- Có nhiều loại màn cảm ứng khác nhau: điện trở, điện dung, sóng cơ bề mặt ... đơn và đa điểm.
- Uu điểm
- Nhược điểm

Các thiết bị khác

- Light pen
- Joystick
- Keyboard nipple
- Digitizing table
- Eyegaze (điều khiển con trỏ bằng mắt)

4

Thiết bị hiển thị

Màn hình, giấy điện tử,

Hiển thị điểm ảnh

 Hình ảnh được tạo lên từ các điểm ảnh nhỏ

Hiển thị điểm ảnh (tiếp)

- Độ phân giải:
 - Số điểm ảnh trên màn hình
 - Mật độ điểm ảnh (pixel or dot per inch)
- Tỷ lệ độ rộng và độ dài khung hình
- Độ sâu của màu:
 - Số màu khác nhau mà màn hình có thể hiển thị
 - Số bit màu: 8 bits, 24 bits, ...

Hiển thị điểm ảnh (tiếp)

- Hiện tượng răng cưa Đường chéo bị ngắt gãy do việc xử lý quét theo chiều ngang
- Chống răng cưa mềm hóa các góc cạnh bằng cách sử dụng phương pháp bóng mờ

Hiển thị điểm ảnh (tiếp)

- Cathode ray tube (CRT)
- Liquid crystal displays (LCD)
- Các loại màn hình lớn
 - Sử dụng cho trình chiếu, hội nghị
 - Plasma, video wall, projecter, ...

Hiển thị công cộng

- Các thiết bị hiển thị hình ảnh được đặt tại các địa điểm công cộng
 - To hoặc nhỏ
 - Cho một nhóm nhỏ hoặc đám đông
- Chỉ hiển thị hay có tương tác
 - Màn hình quảng cáo, tuyên truyền
 - Màn hình các thiết bị công cộng (ATM, ...)

Giấy điện tử (EPD)

- Hiến thị dựa trên nguyên tắc phản xạ ánh sáng (giống như giấy)
- Cảm giác giống như đọc trên giấy thật
- Bị giới hạn về nội dung hiển thị (màu sắc, tốc độ)
- Mêm dẻo linh hoạt (vật lý)

5 Thực tại ảo và tương tác 3D

Định vị trong không gian 3 chiều

Định vị trong KG 3D

- Buồng lái và điều khiển giả lập
- Con chuột 3D chuyển động 6 chiều: x,y,z + roll, pitch and yaw
- Data glove
- VR helmets xác định chuyển động của đầu, mắt
- Định vị toàn bộ cơ thể
 Đặng Lê Đình Trang IS.FIT.MTA

Chuyển động 6 chiều

Hiển thị 3D

- Có 3 loại hiển thị 3D:
 - 3D trong không gian phẳng: hiệu ứng 3D nhờ các khối hình lập thể, chuyển động trên màn hình phẳng
 - Trường nhìn 3D: sự thay đổi góc nhìn theo góc quay của đầu, mắt tạo cảm giác về không gian 3D
 - Ảnh nổi: tạo hiệu ứng 3D dựa trên sự chênh lệch góc nhìn giữa 2 mắt

Hiển thị 3D (tiếp)

6 Điều khiển vật lý, cảm biến,

Hiển thị chuyên dụng, đồng hồ Âm thanh, cảm giác, mùi Môi trường điều khiển vật lý và cảm biến

Hiển thị chuyên dụng

- Hiển thị tương tự: quay số, đồng hồ, đèn,
 ...
- Hiển thị số: Màn hình LCD nhỏ, đèn LED,...
- Head-up display

Âm thanh

- Các loại âm thanh báo hiệu: bíp, hú, ...
 -> Thường dùng để thông báo lỗi, cảnh báo, ...
- Âm thanh để phản hồi các hành động của người dùng: bấm phím, kích chuột, ...

Cảm giác, mùi

- Cảm nhận thông qua kênh xúc giác thường được sử dụng trong các hệ mô phỏng, game
- Mùi hay vị giác còn rất hạn chế.

BMW iDrive

- Menu
- Điều khiển mức
- Dễ dàng lựa chọn các thông số thông qua cảm giác

Môi trường và cảm biến

- Cảm biến ở khắp mọi nơi, được sử dụng rộng rãi, phổ biến.
- Sự dụng để thu nhận các thông số môi trường cũng như con người
 - Nhiệt độ
 - Ánh sáng
 - Màu sắc
 - Nhip tim
 - o ...

7

Bộ xử lý và Bộ nhớ

Bộ nhớ ngắn hạn, dài hạn, tốc độ truy cập, dung lượng, định dạng.

Tốc độ xử lý, xử lý song song

Bộ nhớ ngắn hạn - RAM

- Bộ nhớ truy cập ngẫu nhiên
 - Tốc độ truy cập nhanh
 - Dữ liệu bị mất khi mất điện
 - Băng thông lớn
- Một vài loại bộ nhớ là non-volatile dùng để lưu các thông tin cấu hình
 - EEPROM
 - Flash

Bộ nhớ dài hạn - Đĩa

- Đĩa từ
 - Đĩa mềm
 - Đĩa cứng (HDD)
- Đĩa quang (DVD, CD, ...)
- Ranh giới giữa bộ nhớ ngắn hạn và bộ nhớ dài hạn dần bị xóa nhòa!
 - FRAM
 - SSD (Flash memory)

Tốc độ và dung lượng

Tốc độ xử lý

- Tốc độ xử lý chỉ phụ thuộc vào tốc độ xung nhịp của bộ vi xử lý?
- Các tập lệnh hỗ trợ đặc biệt
 - Xử lý tín hiệu
 - Điều khiển bộ nhớ
- Cơ chế xử lý lệnh
 - Tiền xử lý
 - Pipeline

Xử lý song song

- Các nhà phát triển chương trình cũng cần quan tâm tới khả năng xử lý song song, đa luồng
 - GPU
 - Multithread
- → Tất cả đều ảnh hưởng tới chất lượng tương tác.

8

Mang

Khả năng truy cập Tương tác nội dung

Mạng máy tính

- Cấu hình mạng
 - P2P
 - LAN
 - WAN
- Băng thông, phương thức kết nối
- Môi trường (đối tượng) sử dụng mạng
 - Số lượng
 - Nhu cầu
 - Khả năng

Mạng máy tính (tiếp)

- Một số vấn đề về kỹ thuật cần quan tâm:
 - Độ trễ mạng phản hồi chậm
 - Xung đột truy cập quá nhiều đối tượng truy cập
 - Các yếu tố không dự đoán được sự cố

Mạng và tính tương tác

- Không chỉ là tương tác đơn thuần giữa 1 người sử dụng và máy tính
- Đó là "đa tương tác"
 - Đối tượng
 - Thiết bị
 - Nội dung

9

Thảo luận

Bạn cần tìm hiểu gì?

Câu hỏi thảo luận

- 1. Sự ảnh hưởng của các thiết bị nhập dữ liệu tới thiết kế phần mềm như thế nào?
- 2. Giao diện của một chương trình quan hệ thế nào với thiết bị hiển thị?
- 3. Sự khác nhau giữa tương tác online và tương tác offline?
- 4. Bạn hiểu thế nào về tính đa tương tác khi thiết kế chương trình trên môi trường mạng?