Gaussian Processes (GP) & Locally Weighted Project Regression(LWPR)

KUO-SHIH TSENG (曾國師) DEPARTMENT OF MATHEMATICS NATIONAL CENTRAL UNIVERSITY, TAIWAN 2021/05/26

Course Announcement

Course Announcement

- Final project proposal:
 - Check your proposal is
 - feasible?
 - Clear?

Course Announcement

Mes to me ▼ Sun, May 2, 5:33 PM

ズ Chinese (Traditional) ▼ > English ▼

English ▼ Translate message

Turn off for: Chinese (Traditional) 🗶

老師我聽朋友說做機器學習會一直用到高微和泛函,這是真的嗎XD感覺上到現在都沒有看過。

Gaussian Processes: 我這不就來了嗎~

Outline

- Need
- Gaussian Distribution
- MAP of Bayesian Linear Regression
- Kernel Functions
- Gaussian Processes (GP)
 - EX: Coverage approximation
- Locally Weighted Project Regression(LWPR)
 - EX: Coverage approximation

[6] Carl Edward Rasmussen and Christopher K. I. Williams, "Gaussian Processes for Machine Learning," MIT Press, 2006.

Outline

Need

 Parametric approximation needs good features. However, theses features are based on domain know-how. If we can learn the model <u>without features</u>, it could be applied to different domains.

Nonparametric approximation

Need

Function approximation for these cases:

Given:

$$\{(\mathbf{x}_i, y_i)\}, i = 1 \sim 6$$

 \mathbf{X}_7

Find:

Given:

$$\{(\mathbf{x}_i, y_i)\}, i = 1 \sim N$$

 \mathbf{X}_*

Find:

 $(y_i)_i, i=1$

 $P(\mathbf{y}_* \mid \mathbf{x}, \mathbf{y}, \mathbf{x}_*) = ?$

No more feature information!

X1

150

Need

- Nonparametric approximation approaches include Gaussian processes (GP)[1], Locally Weighted Project Regression (LWPR) and neural network (NN).
- These approaches enable robots to learn some complex tasks[2].

[1] http://www.gaussianprocess.org/gpml/[2] http://www-clmc.usc.edu/~sschaal/

- Mean & variance \rightarrow p(x)
- Probability density function (PDF)

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

https://en.wikipedia.org/wiki/Normal_distribution

Bivariate

$$X = \begin{pmatrix} X \\ Y \end{pmatrix} \qquad X \sim N(\mu, \Sigma)$$

$$p(\mathbf{x}) = \frac{1}{2\pi \|\mathbf{\Sigma}\|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{\mu})^T \mathbf{\Sigma}^{-1}(\mathbf{x} - \mathbf{\mu})\right)$$

$$\mu = \begin{pmatrix} \mu_{x} \\ \mu_{y} \end{pmatrix} \quad \Sigma = \begin{pmatrix} \sigma^{2}_{x} & \sigma_{xy} \\ \sigma_{xy} & \sigma^{2}_{y} \end{pmatrix}$$

Statistical Data Mining Tutorials by Andrew Moore

In this example, x and y are almost independent

In this example, x and "x+y" are clearly not independent

In this example, x and "20x+y" are clearly not independent

The correlation coefficient $\rho_{X,Y}$ between two random variables X and Y with expected values μ_X and μ_Y and standard deviations σ_X and σ_Y is defined as:

$$\rho_{X,Y} = \frac{\mathrm{cov}(X,Y)}{\sigma_X \sigma_Y} = \frac{E((X - \mu_X)(Y - \mu_Y))}{\sigma_X \sigma_Y},$$

Source: WIKI

Correlation	Negative	Positive
Small	-0.3 to -0.1	0.1 to 0.3
Medium	-0.5 to -0.3	0.3 to 0.5
Large	−1.0 to −0.5	0.5 to 1.0

$$\rho_{X,Y} = \frac{\operatorname{cov}(X,Y)}{\sigma_X \sigma_Y} = \frac{E((X - \mu_X)(Y - \mu_Y))}{\sigma_X \sigma_Y},$$

$$\rho_{X,Y} = \frac{\Sigma_{XY}}{\sigma_x \sigma_y}$$

$$= \frac{\Sigma_{XY}}{\Sigma_x^{0.5} \Sigma_y^{0.5}}$$

$$= \frac{20.5665}{\sqrt{1.02654} \sqrt{412.982}}$$

$$= 0.998$$

Error Ellipses in Action

Kai Arras

Social Robotics Lab, University of Freiburg

April 2010 🗓 🗓 Social Robotics Laboratory

Multivariate

$$\mathbf{X} = \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_m \end{pmatrix} \qquad X \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{\frac{m}{2}} \|\mathbf{\Sigma}\|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)$$

$$\boldsymbol{\mu} = \begin{pmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_m \end{pmatrix} \quad \boldsymbol{\Sigma} = \begin{pmatrix} \sigma^2_1 & \sigma_{12} & \cdots & \sigma_{1m} \\ \sigma_{12} & \sigma^2_2 & \cdots & \sigma_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{1m} & \sigma_{2m} & \cdots & \sigma^2_m \end{pmatrix}$$

Calculations of Gaussian

Summation

$$x \sim N(\mu_x, \Sigma_x)$$

$$y \sim N(\mu_y, \Sigma_y)$$

$$x + y \sim N(\mu_x + \mu_y, \Sigma_x + \Sigma_y)$$

Multiplication

$$x \sim N(\mu_x, \Sigma_x)$$
 $bx \sim N(b\mu_x, b^T \Sigma_x b)$

Conditional Gaussian

$$\sum_{z \sim N(\mu_z, \Sigma_{zz})} \sum_{z \sim N(\mu_z, \Sigma_{zz})} \begin{cases} \mu_{x|z} = \mu_x + \Sigma_{xz} \Sigma_{zz}^{-1} (\mathbf{z} - \mu_z) \\ \Sigma_{xx|z} = \Sigma_{xx} - \Sigma_{xz} \Sigma_{zz}^{-1} \Sigma_{zx} \end{cases}$$

Conditional Gaussian

$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix}, P(\mathbf{x}) \sim N(\mu_x, \Sigma_{xx}) = \frac{1}{\sqrt{(2\pi)^n |\Sigma_{xx}|}} e^{-\frac{1}{2}(\mathbf{x} - \mu_x)^T \Sigma_{xx}^{-1}(\mathbf{x} - \mu_x)}$$

$$\mathbf{z} = \begin{bmatrix} z_1 \\ \vdots \\ z_n \end{bmatrix}, \mathbf{x} \text{ and } \mathbf{z} \text{ are jointly Gaussian, } P(\mathbf{z}) \sim N(\mu_z, \Sigma_{zz})$$
Reminder: We want to find $P(\mathbf{y}_* | \mathbf{x}, \mathbf{y}, \mathbf{x}_*) = ?$

Find $P(\mathbf{x}|\mathbf{z}) = ?$

$$\begin{cases} \mu_{x|z} = \mu_x + \sum_{xz} \sum_{zz}^{-1} (\mathbf{z} - \mu_z) \\ \sum_{xx|z} = \sum_{xx} - \sum_{xz} \sum_{zz}^{-1} \sum_{zx} \end{cases}$$

See the appendix for the proof.

Go to Appendix

Gaussian processes proof flow:

 $y = \mathbf{x}^T \mathbf{w} + \varepsilon, \quad \varepsilon \sim N(0, \sigma_n^2)$

3

$$y = \Phi(\mathbf{x})^T \mathbf{w} + \varepsilon, \quad \varepsilon \sim N(0, \sigma_n^2)$$

MAP:

$$P(\mathbf{w} \mid \mathbf{y}, X) \propto P(\mathbf{y} \mid X, \mathbf{w}) P(\mathbf{w})$$

Prediction:

$$P(y_* \mid x_*, y, X)$$

$$P(\mathbf{w} \mid \mathbf{y}, X) \propto P(\mathbf{y} \mid X, \mathbf{w}) P(\mathbf{w})$$

Prediction:

$$P(y_* \mid x_*, y, X)$$

Training data D

$$D = \{(x_i, y_i) | i = 1, \dots, N\} = \{X, y\}$$

$$\mathbf{y} = \begin{bmatrix} x_{\{1,1\}} & \cdots & x_{\{1,m\}} \\ \vdots & \ddots & \vdots \\ x_{\{N,1\}} & \cdots & x_{\{N,m\}} \end{bmatrix} \begin{bmatrix} w_1 \\ \vdots \\ w_m \end{bmatrix} + \epsilon$$

$$y = \sum_i w_i f_i(\mathbf{x}) + \varepsilon, \quad \varepsilon \sim N(0, \sigma_n^2)$$

$$\Rightarrow y = \mathbf{x}^T \mathbf{w} + \varepsilon$$

Let's take x vector as features.

If we can find w vector, we got a linear approximation model! We can use online/offline least square methods to find w.

Let's look at this problem from probabilistic perspective.

$$y = \mathbf{x}^{T} \mathbf{w} + \varepsilon, \quad \varepsilon \sim N(0, \sigma_{n}^{2})$$

$$y = w_{0} + w_{1}x + \varepsilon, \quad \varepsilon \sim N(0, \sigma_{n}^{2})$$

$$y - (w_{0} + w_{1}x) = \varepsilon$$

 $-\sigma_n \circ \sigma_n$

Let's look at this problem from probabilistic perspective.

$$y = \mathbf{x}^{T} \mathbf{w} + \varepsilon, \quad \varepsilon \sim N(0, \sigma_{n}^{2})$$

$$y = w_{0} + w_{1}x_{1} + w_{2}x_{2} + \varepsilon, \quad \varepsilon \sim N(0, \sigma_{n}^{2})$$

$$y - (w_{0} + w_{1}x_{1} + w_{2}x_{2}) = \varepsilon$$

$$P[y - (w_{0} + w_{1}x_{1} + w_{2}x_{2})]$$

 Let's look at this problem in probabilistic domain and try to find maximum a posterior (MAP) estimation of w.

$$y = \mathbf{x}^T \mathbf{w} + \varepsilon, \quad \varepsilon \sim N(0, \sigma_n^2)$$

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

$$P(\mathbf{w} \mid \mathbf{y}, X) = \frac{P(\mathbf{y} \mid X, \mathbf{w})P(\mathbf{w})}{P(\mathbf{y} \mid X)}$$

$$P(\mathbf{w} \mid \mathbf{y}, X) \propto P(\mathbf{y} \mid X, \mathbf{w}) P(\mathbf{w})$$

Let's find w vector with **MAP** estimation.

$$P(\mathbf{w} \mid \mathbf{y}, X) = \frac{P(\mathbf{y}, X \mid \mathbf{w})P(\mathbf{w})}{P(\mathbf{y}, X)}$$

$$= \frac{P(\mathbf{y} \mid X, \mathbf{w})P(X \mid \mathbf{w})P(\mathbf{w})}{P(\mathbf{y} \mid X)P(X)} \dots \therefore P(X \mid \mathbf{w}) = P(X)$$

$$= \frac{P(\mathbf{y} \mid X, \mathbf{w})P(\mathbf{w})}{P(\mathbf{y} \mid X)} \qquad \mathbf{x}^{T} : x \text{ vector/matrix}$$

$$X : \text{input data}$$

$$\mathbf{y} : \text{output data}$$

$$P(\mathbf{w} | y, X) \propto P(y | X, \mathbf{w}) P(\mathbf{w})$$

$$\mathbf{y} = \mathbf{x}^{T} \mathbf{w} + \varepsilon, \quad \varepsilon \sim N(0, \sigma_{n}^{2})$$

$$P(\mathbf{y} | X, \mathbf{w})$$

$$= \prod_{i=1}^{n} p(y_{i} | \mathbf{x}_{i}, \mathbf{w}) \quad \because \text{iid}$$

$$= \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma_{n}^{2}} \exp\left(-\frac{(y_{i} - \mathbf{x}_{i}^{T} \mathbf{w})^{2}}{2\sigma_{n}^{2}}\right)$$

$$= \frac{1}{(2\pi\sigma_{n})^{n/2}} \exp\left(-\frac{1}{2\sigma_{n}^{2}} |\mathbf{y} - X^{T} \mathbf{w}|^{2}\right)$$

$$P(\mathbf{y} | X, \mathbf{w}) \sim N(X^{T} \mathbf{w}, \sigma_{n}^{2})$$

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{\frac{m}{2}} \|\mathbf{\Sigma}\|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)$$

Assume $P(\mathbf{w}) \sim N(0, \sum_{p})$

$$\frac{P(\mathbf{w}) = \frac{1}{(2\pi)^{n/2} \left\| \sum_{p} \right\|^{1/2}} \exp\left(-\frac{1}{2} \mathbf{w}^{T} \sum_{p}^{-1} \mathbf{w}\right)$$

$$P(\mathbf{y} | X, \mathbf{w}) \sim N(X^T \mathbf{w}, \sigma_n^2)$$

$$= \frac{P(\mathbf{y} | X, \mathbf{w})}{\left[(2\pi\sigma)^{n/2} \exp\left(-\frac{1}{2\sigma_n^2} |\mathbf{y} - X^T \mathbf{w}|^2\right)\right]}$$

$$P(\mathbf{w}) \sim N(0, \sum_p)$$

$$P(\mathbf{w}) = \frac{1}{(2\pi)^{n/2} \left\|\sum_p \right\|^{\frac{1}{2}}} \exp\left(-\frac{1}{2} \mathbf{w}^T \sum_p^{-1} \mathbf{w}\right)$$

$$P(\mathbf{w} | \mathbf{y}, X) \propto P(\mathbf{y} | X, \mathbf{w}) P(\mathbf{w})$$

$$\propto \frac{1}{(2\pi\sigma)^{n/2}} \exp\left(-\frac{1}{2\sigma_n^2} |\mathbf{y} - X^T \mathbf{w}|^2\right) \frac{1}{(2\pi)^{n/2} ||\Sigma_p||^{\frac{1}{2}}} \exp\left(-\frac{1}{2} \mathbf{w}^T \Sigma_p^{-1} \mathbf{w}\right)$$

$$\propto \exp\left(-\frac{1}{2\sigma_n^2} |\mathbf{y} - X^T \mathbf{w}|^2\right) \exp\left(-\frac{1}{2} \mathbf{w}^T \Sigma_p^{-1} \mathbf{w}\right)$$

$$P(\mathbf{w} | \mathbf{y}, X) \propto \underline{P(\mathbf{y} | X, \mathbf{w})} P(\mathbf{w})$$

$$\propto \exp\left(-\frac{1}{2\sigma_n^2} |\mathbf{y} - X^T \mathbf{w}|^2\right) \exp\left(-\frac{1}{2} \mathbf{w}^T \sum_p^{-1} \mathbf{w}\right)$$

$$\propto \exp\left(-\frac{1}{2} (\mathbf{w} - \overline{\mathbf{w}})^T \left(\frac{1}{\sigma_n^2} X X^T + \sum_p^{-1}\right) (\mathbf{w} - \overline{\mathbf{w}})\right)$$
where $\overline{\mathbf{w}} = \sigma_n^{-2} (\sigma_n^{-2} X X^T + \sum_p^{-1})^{-1} X \mathbf{y}$

$$P(\mathbf{w} | \mathbf{y}, X) \sim N \left(\overline{\mathbf{w}} = \frac{1}{\sigma_n^2} A^{-1} X \mathbf{y}, A^{-1}\right)$$
where $A = \sigma_n^{-2} X X^T + \sum_p^{-1}$

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{\frac{m}{2}} \|\mathbf{\Sigma}\|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)$$

Expand the summation term to Gaussian form.

$$P(\mathbf{y} | X, \mathbf{w}) \sim N(X^T \mathbf{w}, \sigma_n^2)$$

$$P(\mathbf{w}) \sim N(0, \sum_{p})$$

Prediction based on a Gaussian distribution

$$P(\mathbf{w} \mid y, X) \sim N\left(\overline{\mathbf{w}} = \frac{1}{\sigma_n^2} A^{-1} X \mathbf{y}, A^{-1}\right)$$

Prediction

(Total probability & independence) (Scaling a Gaussian to another Gaussian)

$$P(y_* \mid x_*, y, X) = \int \underline{P(y_* \mid x_*, \mathbf{w})} P(\mathbf{w} \mid y, X) d\mathbf{w} = \int \underline{x_*^T} \underline{P(\mathbf{w} \mid y, X)} d\mathbf{w}$$

$$= N \left(\frac{1}{\sigma_n^2} \underline{x_*^T} A^{-1} X \mathbf{y}, \underline{x_*^T} A^{-1} \underline{x_*} \right)$$

$$x \sim N(\mu_{x}, \Sigma_{x})$$

$$bx \sim N(b\mu_{x}, b^{T}\Sigma_{x}b)$$

where
$$A = \sigma_n^{-2} X X^T + \sum_p^{-1}$$

$$\begin{cases} \overline{y}_* = \frac{1}{\sigma_n^2} x_*^T A^{-1} X \mathbf{y} \\ \sum_{v_*} = x_*^T A^{-1} x_* \end{cases}$$
 Where is **W**?

$$\begin{cases} \mu_{x|z} = \mu_x + \sum_{xz} \sum_{zz}^{-1} (\mathbf{z} - \mu_z) \\ \sum_{xx|z} = \sum_{xx} - \sum_{xz} \sum_{zz}^{-1} \sum_{zx} \end{cases}$$

• Prediction based on a Gaussian distribution $P(\mathbf{w} | \mathbf{y}, X) \propto P(\mathbf{y} | X, \mathbf{w}) P(\mathbf{w})$

Prediction based on a Gaussian distribution

Given:

$$\{(\mathbf{x}_i, y_i)\}, i = 1 \sim 6$$

 \mathbf{X}_7

Find:

$$y_7 = ?\operatorname{cov}(y_7) = ?$$

$$\begin{cases} \overline{y}_* = \frac{1}{\sigma_n^2} x_*^T A^{-1} X \mathbf{y} \\ \sum_{y_*} = x_*^T A^{-1} x_* \end{cases}$$

We can use it to predict yi based on the training data!

The prediction of linear model could not work very well.

$$y = \mathbf{x}^T \mathbf{w} + \varepsilon, \quad \varepsilon \sim N(0, \sigma_n^2)$$

• In this model, it's a special case of feature base approximation. We

adopt "X" as features.

Let's project data (X) to feature space.

$$y = \mathbf{x}^{T} \mathbf{w} + \varepsilon, \quad \varepsilon \sim N(0, \sigma_n^2)$$
$$y - (w_0 + w_1 x_1 + w_2 x_2) = \varepsilon$$

$$y = \Phi(\mathbf{x})^T \mathbf{w} + \varepsilon, \quad \varepsilon \sim N(0, \sigma_n^2)$$

Let's project data (X) to feature space.

$$y = \mathbf{x}^T \mathbf{w} + \varepsilon$$

$$y = \Phi(\mathbf{x})^T \mathbf{w} + \varepsilon$$

If
$$\Phi(x) = (1, x, x^2, x^3,....)^T$$
,
it's a polynomial regression!

Let's project data (X) to feature space.

$$y = \mathbf{x}^T \mathbf{w} + \varepsilon$$

$$P(y_* \mid x_*, y, X) = N\left(\frac{1}{\sigma_n^2} x_*^T A^{-1} X \mathbf{y}, x_*^T A^{-1} x_*\right)$$

where
$$A = \sigma_n^{-2} X X^T + \sum_{p=0}^{-1} T$$

$$\begin{cases} \overline{y}_* = \frac{1}{\sigma_n^2} x_*^T A^{-1} X \mathbf{y} \\ \sum_{y_*} = x_*^T A^{-1} x_* \end{cases}$$

$$y = \Phi(\mathbf{x})^T \mathbf{w} + \varepsilon$$

$$P(y_* \mid x_*, y, X) = N\left(\frac{1}{\sigma_n^2} x_*^T A^{-1} X \mathbf{y}, x_*^T A^{-1} x_*\right) P(y_* \mid x_*, y, X) = N\left(\frac{1}{\sigma_n^2} \underline{\Phi(x_*)}^T A^{-1} X \mathbf{y}, \underline{\Phi(x_*)}^T A^{-1} \underline{\Phi(x_*)}\right)$$

where
$$A = \sigma_n^{-2} \Phi \Phi^T + \sum_p^{-1}$$

$$\begin{cases} \overline{y}_* = \frac{1}{\sigma_n^2} \underline{\Phi(x_*)}^T A^{-1} \underline{\Phi y} \\ \sum_{y_*} = \underline{\Phi(x_*)}^T A^{-1} \underline{\Phi(x_*)} \end{cases}$$

$$P(y_* \mid x_*, y, X) = N \left(\frac{1}{\sigma_n^2} \Phi(x_*)^T A^{-1} X \mathbf{y}, \Phi(x_*)^T A^{-1} \Phi(x_*) \right)$$

where
$$A = \sigma_n^{-2} \Phi \Phi^T + \sum_p^{-1} = \sigma_n^{-2} K + \sum_p^{-1}$$

$$\begin{cases} \overline{y}_* = \frac{1}{\sigma_n^2} \Phi(x_*)^T A^{-1} \Phi \mathbf{y} \\ \sum_{y_*} = \Phi(x_*)^T A^{-1} \Phi(x_*) \end{cases}$$

Let
$$Z^{-1} = \sum_{p} W^{-1} = \sigma_n^2 I, U = V = \Phi$$

$$A^{-1} = \left(\sigma_n^{-2} \Phi \Phi^T + \sum_{p=0}^{-1}\right)^{-1}$$

$$= \sum_{p} -\sum_{p} \Phi \left(\sigma_{n}^{2} I + \Phi \sum_{p} \Phi^{T} \right) \Phi^{T} \sum_{p} \Phi^{T} \Phi^{T}$$

$$\sum_{y_*} = \Phi(x_*)^T A^{-1} \Phi(x_*) = \Phi_*^T \sum_p \Phi_* - \Phi_*^T \sum_p \Phi \left(K + \sigma_n^2 I \right)^{-1} \Phi^T \sum_p \Phi_*$$

Matrix inversion lemma:

$$\begin{vmatrix} (Z + UWV^{T})^{-1} \\ = Z^{-1} - Z^{-1}U(W^{-1} + V^{T}Z^{-1}U)^{-1}V^{T}Z^{-1} \end{vmatrix}$$

$$\begin{cases} \mu_{x|z} = \mu_x + \sum_{xz} \sum_{zz}^{-1} (\mathbf{z} - \mu_z) \\ \sum_{xx|z} = \sum_{xx} - \sum_{xz} \sum_{zz}^{-1} \sum_{zx} \end{cases}$$

$$\sum_{y_*} = \Phi_*^T \sum_p \Phi_* - \Phi_*^T \sum_p \Phi \left(K + \sigma_n^2 I \right)^{-1} \Phi^T \sum_p \Phi_*$$

$$\mu_x = \mathbf{0}, \mu_z = \mathbf{0}$$

$$\sum_{xz} = \Phi_*^T \sum_p \Phi$$

$$\sum_{zz} = K + \sigma_n^2 I$$

$$\therefore \overline{y}_* = \Phi_*^T \sum_p \Phi \left(K + \sigma_n^2 I \right)^{-1} \mathbf{y}$$

The Gaussian distribution is as follows:

$$\begin{cases} \bar{y}_* = \Phi_*^T \sum_p \Phi(K + \sigma_n^2 I)^{-1} \mathbf{y} \\ \sum_{y_*} = \Phi_*^T \sum_p \Phi_* - \Phi_*^T \sum_p \Phi (K + \sigma_n^2 I)^{-1} \Phi^T \sum_p \Phi_* \end{cases}$$

$$\begin{cases} \mu_{x|z} = \mu_x + \sum_{xz} \sum_{zz}^{-1} (\mathbf{z} - \mu_z) \\ \sum_{xx|z} = \sum_{xx} - \sum_{xz} \sum_{zz}^{-1} \sum_{zx} \end{cases}$$

Let's rewrite it.

$$y = \Phi(\mathbf{x})^T \mathbf{w} + \varepsilon$$

$$P(y_* | x_*, y, X) = N \left(\Phi_*^T \sum_p \Phi(K + \sigma_n^2 I)^{-1} \mathbf{y}, \Phi_*^T \sum_p \Phi_* - \Phi_*^T \sum_p \Phi(K + \sigma_n^2 I)^{-1} \Phi^T \sum_p \Phi_* \right)$$

where $K = \Phi^T \sum_{n} \Phi$

let's define $k(\mathbf{x}, \mathbf{x}') = \Phi(\mathbf{x})^T \sum_{p} \Phi(\mathbf{x}')$

$$k_* = k(\mathbf{x}, \mathbf{x}_*)$$

$$k_{**} = k(\mathbf{x}_*, \mathbf{x}_*)$$

$$P(y_* \mid x_*, y, X) = N(k_*^T (K + \sigma_n^2 I)^{-1} \mathbf{y}, k_{**} - k_*^T (K + \sigma_n^2 I)^{-1} k_*) \begin{cases} \mu_{x|z} = \mu_x + \sum_{xz} \sum_{zz}^{-1} (\mathbf{z} - \mu_z) \\ \sum_{xx|z} = \sum_{xz} -\sum_{xz} \sum_{zz}^{-1} \sum_{zz} \sum_{zz} k_z \end{cases}$$

We call "K" kernel function. It can project data to feature space. How to choose a good kernel?

$$K = \begin{bmatrix} k(x_1, x_1) & k(x_1, x_2) & \cdots & k(x_1, x_n) \\ k(x_2, x_1) & k(x_2, x_2) & \cdots & k(x_2, x_n) \\ \vdots & \vdots & \ddots & \vdots \\ k(x_n, x_1) & k(x_n, x_2) & \cdots & k(x_n, x_n) \end{bmatrix}$$

$$\begin{cases} \mu_{x|z} = \mu_x + \sum_{xz} \sum_{zz}^{-1} (\mathbf{z} - \mu_z) \\ \sum_{xx|z} = \sum_{xx} - \sum_{xz} \sum_{zz}^{-1} \sum_{zx} \end{cases}$$

Figure 1.1: Examples of structures expressible by some basic kernels.

https://github.com/duvenaud/phd-thesis

40

The squared exponential kernel

$$k(x,x') = \sigma_f^2 \exp\left(-\frac{1}{2l^2}(x-x')^2\right)$$

We call them "Hyperparameters"

Kuo-Shih

You use two parameters!!

Math students

The squared exponential kernel

$$k(x, x') = \sigma_f^2 \exp\left(-\frac{1}{2l^2}(x - x')^2\right)$$

Hyperparameters can be learned from data (X)!

Kuo-Shih

What's the difference?

Math students

Definition: A Gaussian process is a collection of random variables (Function space view) with a joint Gaussian distribution.

$$y = \Phi(\mathbf{x})^T \mathbf{w} + \varepsilon, \ \varepsilon \sim N(0, \sigma_n^2)$$

let's define
$$f(\mathbf{x}) = \Phi(\mathbf{x})^T \mathbf{w}, \mathbf{w} \sim N(0, \sum_P)$$

Mean function :
$$m(\mathbf{x}) = E[f(\mathbf{x})]$$

Covariance function :
$$k(\mathbf{x}, \mathbf{x}') = E[(f(\mathbf{x}) - m(\mathbf{x}))(f(\mathbf{x}') - m(\mathbf{x})')]$$

$$\Rightarrow f(\mathbf{x}) \sim GP(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))$$

$$m(\mathbf{x}) = E[f(\mathbf{x})] = \Phi(\mathbf{x})^T E[\mathbf{w}] = 0$$

$$E[f(\mathbf{x})f(\mathbf{x}')] = \Phi(\mathbf{x})^T E[\mathbf{w}\mathbf{w}^T] \Phi(\mathbf{x}') = \Phi(\mathbf{x})^T \sum_{n} \Phi(\mathbf{x}')$$

$$\begin{bmatrix} \mathbf{y} \\ y_* \end{bmatrix} \sim N \left(0, \begin{bmatrix} K(X, X) + \sigma_n^2 I & K(X, X_*) \\ K(X_*, X) & K(X_*, X_*) \end{bmatrix} \right)$$

National Central University

Assume $P(\mathbf{w}) \sim N(0, \sum_{p})$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix}, P(\mathbf{x}) \sim N(\mu_x, \Sigma_{xx}) = \frac{1}{\sqrt{(2\pi)^n |\Sigma_{xx}|}} e^{-\frac{1}{2}(\mathbf{x} - \mu_x)^T \Sigma_{xx}^{-1}(\mathbf{x} - \mu_x)}$$

$$\mathbf{z} = \begin{bmatrix} z_1 \\ \vdots \\ z_n \end{bmatrix}$$
, \mathbf{x} and \mathbf{z} are jointly Gaussian, $P(\mathbf{z}) \sim N(\mu_z, \Sigma_{zz})$

Find
$$P(\mathbf{x}|\mathbf{z}) = ?$$

$$\begin{cases} \mu_{x|z} = \mu_x + \sum_{xz} \sum_{zz}^{-1} (\mathbf{z} - \mu_z) \\ \sum_{xx|z} = \sum_{xx} - \sum_{xz} \sum_{zz}^{-1} \sum_{zx} \end{cases}$$

$$\begin{bmatrix} \mathbf{y} \\ y_* \end{bmatrix} \sim N \left(\mathbf{0}, \begin{bmatrix} K(X,X) + \sigma_n^2 I & K(X,X_*) \\ K(X_*,X) & K(X_*,X_*) \end{bmatrix} \right) \qquad \begin{cases} \mu_{x|z} = \mu_x + \sum_{xz} \sum_{zz}^{-1} (\mathbf{z} - \mu_z) \\ \sum_{xx|z} = \sum_{xx} - \sum_{xz} \sum_{zz}^{-1} \sum_{zx} \end{bmatrix} \right) \\ \left\{ \mu_{y_*|y} = \mu_{y_*} + \sum_{y_*y} \sum_{yy}^{-1} (\mathbf{y} - \mathbf{0}) = K(X_*,X) (K(X,X) + \sigma_n^2 I)^{-1} \mathbf{y} \\ \sum_{y_*y_*|y} = \sum_{y_*y_*} - \sum_{y_*y} \sum_{yy}^{-1} \sum_{yy} \sum_{yy_*} = K(X_*,X_*) - K(X_*,X) (K(X,X) + \sigma_n^2 I)^{-1} K(X,X_*) \right) \\ \left\{ \overline{y}_* = K_*^T (K + \sigma_n^2 I)^{-1} \mathbf{y} \\ \sum_{y_*} = K_{**} - K_*^T (K + \sigma_n^2 I)^{-1} K_* \right\}$$

Prediction algorithm

[Input]

X: data input, σ_n : noise, \mathbf{y} : data label

k: covariance function

 X_* : test input

$$1.\overline{y}_* = K_*^T (K + \sigma_n^2 I)^{-1} \mathbf{y}$$

$$2.\Sigma_{y_*} = K_{**} - K_*^T (K + \sigma_n^2 I)^{-1} K_*$$

Return

$$k(x, x') = \underline{\sigma_f^2} \exp\left(-\frac{1}{2l^2}(x - x')^2\right)$$

[Training]

$$O(N^3)$$
 Matrix

Matrix invresion

[Prediction]

$$O(N^2)$$

• Learning Hyperparameters log P(y | X, w)

$$\log P(\mathbf{y} \mid X, \mathbf{w})$$

$$= \frac{1}{2} \mathbf{y}^{T} K^{-1} \mathbf{y} - \frac{1}{2} \log |K| - \frac{n}{2} \log 2\pi$$

$$\frac{\partial \log P(\mathbf{y} \mid X, \mathbf{w})}{\partial w_{j}}$$

$$= \frac{1}{2} \mathbf{y}^{T} K^{-1} \frac{\partial K}{\partial w_{j}} \mathbf{y} - \frac{1}{2} tr \left(K^{-1} \frac{\partial K}{\partial w_{j}} \right)$$

$$= \frac{1}{2} tr \left((K^{-1} \mathbf{y} \mathbf{y}^{T} K^{-1}^{T} - K^{-1}) \frac{\partial K}{\partial w_{j}} \right)$$

$$w_{j} = w_{j} + \alpha \frac{\partial \log P(\mathbf{y} \mid X, \mathbf{w})}{\partial w_{j}}$$

$$k(\mathbf{x}, \mathbf{x}') = \underline{\sigma}_f^2 \exp\left(-\frac{1}{2l^2} (\mathbf{x} - \mathbf{x}')^2\right)$$

$$P(\mathbf{y}|\mathbf{X}, \mathbf{W}) = \frac{1}{2\pi\sigma^{n/2}} \exp\left(-\frac{1}{2\sigma_n^2} |\mathbf{y} - \mathbf{X}^T \mathbf{w}|^2\right)$$

$$P(\mathbf{y}|\mathbf{X}, \mathbf{W}) = \frac{1}{2\pi\sigma^{n/2}} \exp\left(-\frac{1}{2\sigma_n^2} |\mathbf{y} - \mathbf{\Phi}(\mathbf{X})^T \mathbf{w}|^2\right)$$

- GP Library:
- scikit-learn (Python)
 - https://scikit-learn.org/stable/modules/gaussian_process.html
- SheffieldML (C++)
 - https://github.com/SheffieldML/GPc
- GP ML (MATLAB)
 - http://www.gaussianprocess.org/gpml/code/matlab/doc/
- Gpstuff (MATLAB)
 - https://github.com/gpstuff-dev/gpstuff

GP - EX:

Example source: Mark Ebden, "Gaussian Processes: A Quick Introduction," arXiv, 2015

GP — EX: Coverage Approximation

1D case (X: robot's Y position)

GP — EX: Coverage Approximation

2D case (X1: robot1's Y position, X2: robot2's Y position,)

- ©
 - Don't need hand crafting (features)
 - Provide uncertainty information (mean and covariance)
 - Easy to predict (O(N^2))
- - Need to select kernels
 - Computational complexity of training: O(N^3), <15,000 samples

Locally Weighted Project Regression(LWPR)

- Fastest & Scalable
 - O(N^2) for training
- Input space is high-dimension, data lies on low-dimension manifold.

Schaal, S.; Atkeson, C. G.; Vijayakumar, S., "Scalable techniques from nonparameteric statistics for real-time robot learning," Applied Intelligence, 2002

Locally Weighted Project Regression(LWPR)

Least square(LS):

$$y = \beta X$$

$$\beta = (X^T X)^{-1} X^T y$$

Weighted LS(WLS):

$$y = \beta X$$

$$w_{ii} = \frac{1}{\sigma^2}$$

$$\beta = (X^T W X)^{-1} X^T W y$$

Locally Weighted Regression(LWR):

$$y = \beta X$$

$$w_{ii} = \exp\left(-\frac{1}{2}(x_i - x_q)^T D(x_i - x_q)\right)$$

$$\beta = (X^T W X)^{-1} X^T W y$$

LWPR=LWR + PLS (partial least square)

LWPR – EX: CTG

http://wcms.inf.ed.ac.uk/ipab/slmc/research/software-lwpr

Conclusions

- Nonparametric approximation :
- GP generates the most accurate approximation but its complexity is $O(N^3)$.
- LWPR is the fastest method.
- If you have a few data (N<15,000), use GP.
- If you want to be fast, use LWPR.
- If you want to make a trade-off, use LGP, a mixture of GP and LWPR.
- After 2012, researchers start to adapt deep learning.
- During 2018~2020, researchers indicate that GP outperforms DL in many cases.

Nguyen-Tuong, D.; Seeger, M.; Peters, "Model Learning with Local Gaussian Process Regression, Advanced Robotics," 2009.

 \mathbf{x}^{MMSE} in Gaussian distribution.

$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix}, P(\mathbf{x}) \sim N(\mu_x, \Sigma_{xx}) = \frac{1}{\sqrt{(2\pi)^n |\Sigma_{xx}|}} e^{-\frac{1}{2}(\mathbf{x} - \mu_x)^T \Sigma_{xx}^{-1}(\mathbf{x} - \mu_x)}$$

 $\mathbf{z} = \begin{bmatrix} z_1 \\ \vdots \\ z_n \end{bmatrix}$, \mathbf{x} and \mathbf{z} are jointly Gaussian, $P(\mathbf{z}) \sim N(\mu_z, \Sigma_{zz})$ (multivariate normal distribution)

Find
$$P(\mathbf{x}|\mathbf{z}) = ?$$

$$P(\mathbf{x}) \sim N(\mu_x, \Sigma_{xx})$$
 and $P(\mathbf{z}) \sim N(\mu_z, \Sigma_{zz}), P(\mathbf{x}, \mathbf{z}) = P(\mathbf{y}) = N(\mu_y, \Sigma_{yy})$

Mean:
$$\mathbf{y} = \begin{bmatrix} \mathbf{x}_{(m,1)} \\ \mathbf{z}_{(n,1)} \end{bmatrix}$$

$$\mu_{y} = \mathbf{E}[\mathbf{y}] = \mathbf{E}\begin{bmatrix}\mathbf{x}\\\mathbf{z}\end{bmatrix} = \begin{bmatrix}\mathbf{E}[\mathbf{x}]\\\mathbf{E}[\mathbf{z}]\end{bmatrix} = \begin{bmatrix}\mu_{x}\\\mu_{z}\end{bmatrix}$$

Covariance:
$$\Sigma_{yy} = \begin{bmatrix} \Sigma_{xx} & \Sigma_{xz} \\ \Sigma_{zx} & \Sigma_{zz} \end{bmatrix}$$

$$\Sigma_{xx} = \mathbf{E} [(\mathbf{x} - \mu_x)(\mathbf{x} - \mu_x)^T] \Sigma_{zz} = \mathbf{E} [(\mathbf{z} - \mu_z)(\mathbf{z} - \mu_z)^T]$$
$$\Sigma_{xz} = \mathbf{E} [(\mathbf{x} - \mu_x)^T(\mathbf{z} - \mu_z)^T] \Sigma_{zx} = \Sigma_{xz}^T$$

$$P(\mathbf{x}|\mathbf{z}) = \frac{P(\mathbf{x},\mathbf{z})}{P(\mathbf{z})} = \frac{\frac{1}{\sqrt{(2\pi)^{m+n}|\Sigma_{yy}|}} e^{-\frac{1}{2}(\mathbf{y}-\mu_{y})^{T} \Sigma_{yy}^{-1}(\mathbf{y}-\mu_{y})}}{\frac{1}{\sqrt{(2\pi)^{m}|\Sigma_{zz}|}} e^{-\frac{1}{2}(\mathbf{z}-\mu_{z})^{T} \Sigma_{zz}^{-1}(\mathbf{z}-\mu_{z})}}$$

$$= \frac{1}{\sqrt{(2\pi)^{n}|\Sigma_{yy}|/|\Sigma_{zz}|}} e^{-\frac{1}{2}[(\mathbf{y}-\mu_{y})^{T} \Sigma_{yy}^{-1}(\mathbf{y}-\mu_{y})-(\mathbf{z}-\mu_{z})^{T} \Sigma_{zz}^{-1}(\mathbf{z}-\mu_{z})]}}$$

$$= \frac{1}{\sqrt{(2\pi)^{n} \beta}} e^{-\frac{1}{2}[\alpha]}$$
If we can find α and β , we know the mean and covariance.

$$\alpha = (\mathbf{y} - \boldsymbol{\mu}_{y})^{T} \boldsymbol{\Sigma}_{yy}^{-1} (\mathbf{y} - \boldsymbol{\mu}_{y}) - (\mathbf{z} - \boldsymbol{\mu}_{z})^{T} \boldsymbol{\Sigma}_{zz}^{-1} (\mathbf{z} - \boldsymbol{\mu}_{z})$$

$$= \begin{bmatrix} \widetilde{\mathbf{X}} \\ \widetilde{\mathbf{z}} \end{bmatrix}^{T} \begin{bmatrix} \boldsymbol{\Sigma}_{xx} & \boldsymbol{\Sigma}_{xz} \\ \boldsymbol{\Sigma}_{zx} & \boldsymbol{\Sigma}_{zz} \end{bmatrix}^{-1} \begin{bmatrix} \widetilde{\mathbf{X}} \\ \widetilde{\mathbf{z}} \end{bmatrix} - \widetilde{\mathbf{z}}^{T} \boldsymbol{\Sigma}_{zz}^{-1} \widetilde{\mathbf{z}}$$

$$= \begin{bmatrix} \widetilde{\mathbf{X}} \\ \widetilde{\mathbf{z}} \end{bmatrix}^{T} \begin{bmatrix} \boldsymbol{I}_{xx} & \boldsymbol{I}_{xz} \\ \boldsymbol{I}_{zx} & \boldsymbol{I}_{zz} \end{bmatrix} \begin{bmatrix} \widetilde{\mathbf{X}} \\ \widetilde{\mathbf{z}} \end{bmatrix} - \widetilde{\mathbf{z}}^{T} \boldsymbol{\Sigma}_{zz}^{-1} \widetilde{\mathbf{z}}$$

$$= \widetilde{\mathbf{X}}^{T} \boldsymbol{I}_{xx} \widetilde{\mathbf{X}} + \widetilde{\mathbf{X}}^{T} \boldsymbol{I}_{xz} \widetilde{\mathbf{Z}} + \widetilde{\mathbf{Z}}^{T} \boldsymbol{I}_{zx} \widetilde{\mathbf{X}} + \widetilde{\mathbf{Z}}^{T} \boldsymbol{I}_{zz} \widetilde{\mathbf{Z}} - \widetilde{\mathbf{Z}}^{T} \boldsymbol{\Sigma}_{zz}^{-1} \widetilde{\mathbf{Z}}$$

$$\begin{split} \alpha &= \widetilde{\mathbf{X}}^T \boldsymbol{I}_{xx} \widetilde{\mathbf{X}} + \widetilde{\mathbf{X}}^T \underline{\boldsymbol{I}}_{xz} \widetilde{\mathbf{Z}} + \widetilde{\mathbf{Z}}^T \underline{\boldsymbol{I}}_{zx} \widetilde{\mathbf{X}} + \widetilde{\mathbf{Z}}^T \underline{\boldsymbol{I}}_{zz} \widetilde{\mathbf{Z}} - \widetilde{\mathbf{Z}}^T \boldsymbol{\Sigma}_{zz}^{-1} \widetilde{\mathbf{Z}} \\ &= \widetilde{\mathbf{X}}^T \boldsymbol{I}_{xx} \widetilde{\mathbf{X}} - \widetilde{\mathbf{X}}^T \underline{\boldsymbol{I}}_{xx} \boldsymbol{\Sigma}_{xz} \boldsymbol{\Sigma}_{zz}^{-1} \widetilde{\mathbf{Z}} - \widetilde{\mathbf{Z}}^T \boldsymbol{\Sigma}_{zz}^{-1} \boldsymbol{\Sigma}_{zx} \boldsymbol{I}_{xx} \widetilde{\mathbf{X}} \\ &+ \widetilde{\mathbf{Z}}^T \left(\boldsymbol{\Sigma}_{zz}^{-1} + \boldsymbol{\Sigma}_{zz}^{-1} \boldsymbol{\Sigma}_{zx} \boldsymbol{I}_{xx} \boldsymbol{\Sigma}_{xz} \boldsymbol{\Sigma}_{zz}^{-1} \right) \widetilde{\mathbf{Z}} - \widetilde{\mathbf{Z}}^T \boldsymbol{\Sigma}_{zz}^{-1} \widetilde{\mathbf{Z}} \\ &= \widetilde{\mathbf{X}}^T \underline{\boldsymbol{I}}_{xx} \widetilde{\mathbf{X}} - \widetilde{\mathbf{X}}^T \underline{\boldsymbol{I}}_{xx} \boldsymbol{\Sigma}_{xz} \boldsymbol{\Sigma}_{zz}^{-1} \widetilde{\mathbf{Z}} - \widetilde{\mathbf{Z}}^T \boldsymbol{\Sigma}_{zz}^{-1} \boldsymbol{\Sigma}_{zx} \underline{\boldsymbol{I}}_{xx} \widetilde{\mathbf{X}} + \widetilde{\mathbf{Z}}^T \boldsymbol{\Sigma}_{zz}^{-1} \boldsymbol{\Sigma}_{zx} \underline{\boldsymbol{I}}_{xx} \boldsymbol{\Sigma}_{xz} \boldsymbol{\Sigma}_{zz}^{-1} \widetilde{\mathbf{Z}} \\ &= \left(\widetilde{\mathbf{X}} - \boldsymbol{\Sigma}_{xz} \boldsymbol{\Sigma}_{zz}^{-1} \widetilde{\mathbf{Z}} \right)^T \boldsymbol{I}_{xx} \left(\widetilde{\mathbf{X}} - \boldsymbol{\Sigma}_{xz} \boldsymbol{\Sigma}_{zz}^{-1} \widetilde{\mathbf{Z}} \right) \\ &= \left(\widetilde{\mathbf{X}} - \boldsymbol{\Sigma}_{xz} \boldsymbol{\Sigma}_{zz}^{-1} \widetilde{\mathbf{Z}} \right)^T \boldsymbol{I}_{xx} \left(\widetilde{\mathbf{X}} - \boldsymbol{\Sigma}_{xz} \boldsymbol{\Sigma}_{zz}^{-1} \widetilde{\mathbf{Z}} \right) \\ &= \left(\boldsymbol{\Sigma}_{xx} - \boldsymbol{\Sigma}_{xz} \boldsymbol{\Sigma}_{zz}^{-1} \widetilde{\mathbf{Z}} \boldsymbol{\Sigma}_{zx} \boldsymbol{\Sigma}_{zz}^{-1} \widetilde{\mathbf{Z}} \right) \\ &= \left(\boldsymbol{\Sigma}_{xx} - \boldsymbol{\Sigma}_{xz} \boldsymbol{\Sigma}_{zz}^{-1} \widetilde{\mathbf{Z}} \boldsymbol{\Sigma}_{zx} \boldsymbol{\Sigma}_{zz}^{-1} \widetilde{\mathbf{Z}} \right) \\ &= \left(\boldsymbol{\Sigma}_{xx} - \boldsymbol{\Sigma}_{xz} \boldsymbol{\Sigma}_{zz}^{-1} \widetilde{\mathbf{Z}} \boldsymbol{\Sigma}_{zx} \boldsymbol{\Sigma}_{xx} \boldsymbol{\Sigma}_{zz}^{-1} \widetilde{\mathbf{Z}} \right) \\ &= (\boldsymbol{\Sigma}_{xx} - \boldsymbol{\Sigma}_{xz} \boldsymbol{\Sigma}_{zz}^{-1} \widetilde{\mathbf{Z}} \boldsymbol{\Sigma}_{zx} \boldsymbol{\Sigma}_{xx} \boldsymbol{\Sigma}_{zz}^{-1} \widetilde{\mathbf{Z}} \boldsymbol{\Sigma}_{zx} \boldsymbol{\Sigma}_{zz}^{-1} \widetilde{\mathbf{Z}} \boldsymbol{\Sigma}_{zx} \boldsymbol{\Sigma}_{zx}^{-1} \boldsymbol{\Sigma}_{zx} \boldsymbol{\Sigma}_{zz}^{-1} \widetilde{\mathbf{Z}} \boldsymbol{\Sigma}_{zx} \boldsymbol{\Sigma}_{zx}^{-1} \boldsymbol{\Sigma}_{zx} \boldsymbol{\Sigma}_{zz}^{-1} \boldsymbol{\Sigma}_{zx} \boldsymbol{\Sigma}_{zz}^{-1} \boldsymbol{\Sigma}_{zx} \boldsymbol{\Sigma}_{zx}^{-1} \boldsymbol{\Sigma}_{$$

$$\alpha = \left(\widetilde{\mathbf{x}} - \Sigma_{xz} \Sigma_{zz}^{-1} \widetilde{\mathbf{z}}\right)^{T} I_{xx} \left(\widetilde{\mathbf{x}} - \Sigma_{xz} \Sigma_{zz}^{-1} \widetilde{\mathbf{z}}\right) \qquad I_{xx} = \left(\Sigma_{xx} - \Sigma_{xz} \Sigma_{zz}^{-1} \Sigma_{zx}\right)^{-1}$$

$$= \left(\widetilde{\mathbf{x}} - \Sigma_{xz} \Sigma_{zz}^{-1} \widetilde{\mathbf{z}}\right)^{T} \left(\Sigma_{xx} - \Sigma_{xz} \Sigma_{zz}^{-1} \Sigma_{zx}\right)^{-1} \left(\widetilde{\mathbf{x}} - \Sigma_{xz} \Sigma_{zz}^{-1} \widetilde{\mathbf{z}}\right) \qquad \left\{\begin{matrix}\widetilde{\mathbf{x}} = \mathbf{x} - \mu_{x} \\ \widetilde{\mathbf{z}} = \mathbf{z} - \mu_{z}\end{matrix}\right\}$$

$$= \left[\mathbf{x} - \left(\mu_{x} + \Sigma_{xz} \Sigma_{zz}^{-1} (\mathbf{z} - \mu_{z})\right)\right]^{T} \left(\Sigma_{xx} - \Sigma_{xz} \Sigma_{zz}^{-1} \Sigma_{zx}\right)^{-1} \left[\mathbf{x} - \left(\mu_{x} + \Sigma_{xz} \Sigma_{zz}^{-1} (\mathbf{z} - \mu_{z})\right)\right]$$

$$P(\mathbf{x}|\mathbf{z}) = \frac{P(\mathbf{x}, \mathbf{z})}{P(\mathbf{z})} = \frac{1}{\sqrt{(2\pi)^{n} |\Sigma_{yy}| / |\Sigma_{zz}|}} e^{-\frac{1}{2} \left[(\mathbf{y} - \mu_{y})^{T} \Sigma_{yy}^{-1} (\mathbf{y} - \mu_{y}) - (\mathbf{z} - \mu_{z})^{T} \Sigma_{zz}^{-1} (\mathbf{z} - \mu_{z})\right]}$$

$$= \frac{1}{\sqrt{(2\pi)^{n} |\Sigma_{xx} - \Sigma_{xz} \Sigma_{zz}^{-1} \Sigma_{zx}|}} e^{-\frac{1}{2} \left\{\mathbf{x} - \left[\mu_{x} + \Sigma_{xz} \Sigma_{zz}^{-1} (\mathbf{z} - \mu_{z})\right]\right\}^{T} \left(\Sigma_{xx} - \Sigma_{xz} \Sigma_{zz}^{-1} \Sigma_{zx}\right)^{-1} \left\{\mathbf{x} - \left[\mu_{x} + \Sigma_{xz} \Sigma_{zz}^{-1} (\mathbf{z} - \mu_{z})\right]\right\}}$$

$$= \frac{1}{|\Sigma_{yy}|} = |\Sigma_{xx} - \Sigma_{xz} \Sigma_{zz}^{-1} \Sigma_{zx}|$$

$$P(\mathbf{x}|\mathbf{z}) = \frac{1}{\sqrt{(2\pi)^n \left|\Sigma_{xx} - \Sigma_{xz}\Sigma_{zz}^{-1}\Sigma_{zx}\right|}} e^{-\frac{1}{2}\left\{\mathbf{x} - \left[\mu_x + \Sigma_{xz}\Sigma_{zz}^{-1}(\mathbf{z} - \mu_z)\right]\right\}^T \left(\Sigma_{xx} - \Sigma_{xz}\Sigma_{zz}^{-1}\Sigma_{zx}\right)^{-1}\left\{\mathbf{x} - \left[\mu_x + \Sigma_{xz}\Sigma_{zz}^{-1}(\mathbf{z} - \mu_z)\right]\right\}}$$

$$\begin{cases} \mu_{x|z} = \mu_x + \Sigma_{xz} \Sigma_{zz}^{-1} (\mathbf{z} - \mu_z) \\ \Sigma_{xx|z} = \Sigma_{xx} - \Sigma_{xz} \Sigma_{zz}^{-1} \Sigma_{zx} \end{cases}$$

Now, we know how to fuse two data based on jointly Gaussian distribution.

Sensor Fusion

Sensor Fusion

case(i)z = 12.5,
$$x \sim N(10,2)$$
, $z \sim N(12,1)$, $\Sigma_{xz} = 0.1$

$$\begin{cases} \mu_{x|z} = \mu_x + \sum_{xz} \sum_{zz}^{-1} (\mathbf{z} - \mu_z) \\ \sum_{xx|z} = \sum_{xx} - \sum_{xz} \sum_{zz}^{-1} \sum_{zx} \end{cases}$$

$$\mu_{x|z} = 10 + (0.1)1^{-1}(12.5 - 12) = 10.05$$

$$\Sigma_{xx|z} = 2 - (0.1)1^{-1}(0.1) = 1.99$$

case(ii)
$$z = 12.5, x \sim N(10,2), z \sim N(12,1), \Sigma_{xz} = 0.5$$

$$\begin{cases} \mu_{x|z} = \mu_x + \sum_{xz} \sum_{zz}^{-1} (\mathbf{z} - \mu_z) \\ \sum_{xx|z} = \sum_{xx} - \sum_{xz} \sum_{zz}^{-1} \sum_{zx} \end{cases}$$
 0.3

$$\mu_{x|z} = 10 + (0.5)1^{-1}(12.5 - 12) = 10.25$$

$$\Sigma_{xx|z} = 2 - (0.5)1^{-1}(0.5) = 1.75$$

Appendix 1:

Determinant of conditional covariance of jointly Gaussian variables

$$\begin{aligned} & \frac{\left|\Sigma_{yy}\right|}{\left|\Sigma_{zz}\right|} = \left|\Sigma_{xx} - \Sigma_{xz}\Sigma_{zz}^{-1}\Sigma_{zx}\right| \\ & \Sigma_{yy} = \begin{bmatrix}\Sigma_{xx} & \Sigma_{xz} \\ \Sigma_{zx} & \Sigma_{zz}\end{bmatrix} = \begin{bmatrix}C & \Sigma_{xz} \\ 0 & \Sigma_{zz}\end{bmatrix} \begin{bmatrix}I_{n \times n} & 0 \\ D & I_{m \times m}\end{bmatrix} \\ & \Sigma_{xx} = C + \Sigma_{xz}D \\ & \Sigma_{zx} = \Sigma_{zz}D \\ & D = \Sigma_{zz}^{-1}\Sigma_{zx} \\ & C = \Sigma_{xx} - \Sigma_{xz}\Sigma_{zz}^{-1}\Sigma_{zx} \\ & \therefore |AB| = |A||B| \\ & |\Sigma_{yy}| = \left(|C||\Sigma_{zz}|\right) \left(|I_{n \times n}||I_{m \times m}|\right) = |\Sigma_{xx} - \Sigma_{xz}\Sigma_{zz}^{-1}\Sigma_{zx}||\Sigma_{zz}| \end{aligned}$$

Appendix 2:

Inversion of a Partitioned Matrix

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix}^{-1} = \begin{bmatrix} E & F \\ G & H \end{bmatrix}$$

Where

$$E = A^{-1} + A^{-1}BHCA^{-1} = (A - BD^{-1}C)^{-1}$$

$$F = -A^{-1}BH = -EBD^{-1}$$

$$G = -HCA^{-1} = -D^{-1}CE$$

$$H = (D - CA^{-1}B)^{-1} = D^{-1} + D^{-1}CEBD^{-1}$$