Introduction
Theoretical Description
Implementation Description
Practical Demonstration
Conclusion

Implementing the FV FHE Scheme

Mark Schultz

University of California San Diego

10 May 2022

Contents

- 1 Introduction
- 2 Theoretical Description
- 3 Implementation Description
- 4 Practical Demonstration
- 6 Conclusion

Introduction
Theoretical Description
Implementation Description
Practical Demonstration
Conclusion

Who am I?

■ 4th year PhD Student at U.C.S.D

Who am I?

- 4th year PhD Student at U.C.S.D
 - Working with Daniele Micciancio in Lattice-based Cryptography

Who am I?

- 4th year PhD Student at U.C.S.D
 - Working with Daniele Micciancio in Lattice-based Cryptography
- Want to get industry experience this summer

Who am I?

- 4th year PhD Student at U.C.S.D
 - Working with Daniele Micciancio in Lattice-based Cryptography
- Want to get industry experience this summer
 - Especially on implementations

Introduction
Theoretical Description
Implementation Description
Practical Demonstration
Conclusion

The Challenge

■ Implement a Fully Homomorphic Encryption Scheme!

Introduction
Theoretical Description
Implementation Description
Practical Demonstration
Conclusion

The Challenge

- Implement a Fully Homomorphic Encryption Scheme!
 - The Fan-Vercauteren Scheme (FV) in particular

The Challenge

- Implement a Fully Homomorphic Encryption Scheme!
 - The Fan-Vercauteren Scheme (FV) in particular
- Implemented everything but Bootstrapping

Contents

- 1 Introduction
- 2 Theoretical Description
- 3 Implementation Description
- 4 Practical Demonstration
- 6 Conclusion

■ PKE that supports *privacy homomorphism*.

- PKE that supports *privacy homomorphism*.
 - Method to compute

$$(f, \mathsf{Enc}_{pk}(m_0), \mathsf{Enc}_{pk}(m_1)) \mapsto \mathsf{Enc}_{pk}(f(m_0, m_1))$$

- PKE that supports *privacy homomorphism*.
 - Method to compute

$$(f, \mathsf{Enc}_{pk}(m_0), \mathsf{Enc}_{pk}(m_1)) \mapsto \mathsf{Enc}_{pk}(f(m_0, m_1))$$

 $f \in \{+, \times\}$ is enough

- PKE that supports *privacy homomorphism*.
 - Method to compute

$$(f, \mathsf{Enc}_{pk}(m_0), \mathsf{Enc}_{pk}(m_1)) \mapsto \mathsf{Enc}_{pk}(f(m_0, m_1))$$

- $f \in \{+, \times\}$ is enough.
- Many early cryptosystems are Partially Homomorphic

- PKE that supports *privacy homomorphism*.
 - Method to compute

$$(f, \mathsf{Enc}_{pk}(m_0), \mathsf{Enc}_{pk}(m_1)) \mapsto \mathsf{Enc}_{pk}(f(m_0, m_1))$$

- $f \in \{+, \times\}$ is enough.
- Many early cryptosystems are Partially Homomorphic
- First FHE: Gentry 2009

- PKE that supports *privacy homomorphism*.
 - Method to compute

$$(f, \mathsf{Enc}_{pk}(m_0), \mathsf{Enc}_{pk}(m_1)) \mapsto \mathsf{Enc}_{pk}(f(m_0, m_1))$$

- $f \in \{+, \times\}$ is enough.
- Many early cryptosystems are Partially Homomorphic
- First FHE: Gentry 2009
 - Combines Somewhat Homomorphic Encryption and Bootstrapping.

- PKE that supports *privacy homomorphism*.
 - Method to compute

$$(f, \mathsf{Enc}_{pk}(m_0), \mathsf{Enc}_{pk}(m_1)) \mapsto \mathsf{Enc}_{pk}(f(m_0, m_1))$$

- $f \in \{+, \times\}$ is enough.
- Many early cryptosystems are Partially Homomorphic
- First FHE: Gentry 2009
 - Combines *Somewhat Homomorphic Encryption* and Bootstrapping.
- Also Leveled FHE.

- PKE that supports *privacy homomorphism*.
 - Method to compute

$$(f, \mathsf{Enc}_{pk}(m_0), \mathsf{Enc}_{pk}(m_1)) \mapsto \mathsf{Enc}_{pk}(f(m_0, m_1))$$

- $f \in \{+, \times\}$ is enough.
- Many early cryptosystems are Partially Homomorphic
- First FHE: Gentry 2009
 - Combines Somewhat Homomorphic Encryption and Bootstrapping.
- Also Leveled FHE.
 - FV is Leveled FHE.

Introduction
Theoretical Description
Implementation Description
Practical Demonstration
Conclusion

What is FV?

RLWE-based version of Brakerski's "Scale-Invariant" FHE scheme

What is FV?

- RLWE-based version of Brakerski's "Scale-Invariant" FHE scheme
- Alternatively, variant of the LPR Cryptosystem that uses relinearization-based multiplication

What is FV?

- RLWE-based version of Brakerski's "Scale-Invariant" FHE scheme
- Alternatively, variant of the LPR Cryptosystem that uses relinearization-based multiplication
 - I will explain things from this perspective.

Ring LWE

■ Throughout, fix $R_q = \mathbb{Z}_q[x]/(2^d + 1)$ for $d = 2^n$, and $q \in \mathbb{N}$.

Ring LWE Assumption

For random $s \in R_q$, and a distribution χ supported on R_q , the RLWE assumption is that for $a(x) \leftarrow R_q$, $u(x) \leftarrow R_q$, $e(x) \leftarrow \chi$:

$$(a(x), a(x)s(x) + e(x)) \approx_c (a(x), u(x)).$$

Ring LWE

■ Throughout, fix $R_q = \mathbb{Z}_q[x]/(2^d + 1)$ for $d = 2^n$, and $q \in \mathbb{N}$.

Ring LWE Assumption

For random $s \in R_q$, and a distribution χ supported on R_q , the RLWE assumption is that for $a(x) \leftarrow R_q$, $u(x) \leftarrow R_q$, $e(x) \leftarrow \chi$:

$$(a(x), a(x)s(x) + e(x)) \approx_c (a(x), u(x)).$$

lacksquare χ a discrete Gaussian of parameter σ .

■ KeyGen: $sk \leftarrow \chi$, and pk = (a(x), a(x)s(x) + b(x)) is an RLWE sample

- KeyGen: $sk \leftarrow \chi$, and pk = (a(x), a(x)s(x) + b(x)) is an RLWE sample
- Encryption: Sample $u(x) \leftarrow R_q$, $e_0(x)$, $e_1(x) \leftarrow \chi$, and outputs

$$u(x)\begin{pmatrix} a(x)s(x)+e(x)\\ -a(x) \end{pmatrix} + \begin{pmatrix} e_0(x)\\ e_1(x) \end{pmatrix} + \begin{pmatrix} \Delta m(x)\\ 0 \end{pmatrix}.$$

- KeyGen: $sk \leftarrow \chi$, and pk = (a(x), a(x)s(x) + b(x)) is an RLWE sample
- Encryption: Sample $u(x) \leftarrow R_q$, $e_0(x)$, $e_1(x) \leftarrow \chi$, and outputs

$$u(x)\begin{pmatrix} a(x)s(x)+e(x)\\ -a(x) \end{pmatrix} + \begin{pmatrix} e_0(x)\\ e_1(x) \end{pmatrix} + \begin{pmatrix} \Delta m(x)\\ 0 \end{pmatrix}.$$

Easily supports additive homomorphism

- KeyGen: $sk \leftarrow \chi$, and pk = (a(x), a(x)s(x) + b(x)) is an RLWE sample
- Encryption: Sample $u(x) \leftarrow R_q$, $e_0(x)$, $e_1(x) \leftarrow \chi$, and outputs

$$u(x)\begin{pmatrix} a(x)s(x)+e(x)\\ -a(x) \end{pmatrix} + \begin{pmatrix} e_0(x)\\ e_1(x) \end{pmatrix} + \begin{pmatrix} \Delta m(x)\\ 0 \end{pmatrix}.$$

- Easily supports additive homomorphism
- Decryption: For a ciphertext $\begin{pmatrix} c_0(x) \\ c_1(x) \end{pmatrix}$, compute $c_0(x) + s(x)c_1(x)$, and perform simple error-correction procedure.

Relinearization

■ Idea: view decryption $Dec_s(c_0, c_1) = c_0 + c_1 s = f_{c_0, c_1}(s)$ as a degree-1 polynomial in s, where

$$c_0+c_1s=\Delta m+e(x).$$

Relinearization

■ Idea: view decryption $Dec_s(c_0, c_1) = c_0 + c_1 s = f_{c_0, c_1}(s)$ as a degree-1 polynomial in s, where

$$c_0 + c_1 s = \Delta m + e(x).$$

■ For two ciphertexts, one can multiply these polynomials

$$\mathsf{Dec}_s(c_0,c_1)\mathsf{Dec}_s(c_0',c_1') = \Delta^2 mm' + \Delta \times E$$

Relinearization

■ Idea: view decryption $Dec_s(c_0, c_1) = c_0 + c_1s = f_{c_0, c_1}(s)$ as a degree-1 polynomial in s, where

$$c_0 + c_1 s = \Delta m + e(x).$$

■ For two ciphertexts, one can multiply these polynomials

$$\mathsf{Dec}_s(c_0,c_1)\mathsf{Dec}_s(c_0',c_1') = \Delta^2 mm' + \Delta \times E$$

■ After scaling down by Δ , one obtains an encryption of mm'

Introduction
Theoretical Description
Implementation Description
Practical Demonstration
Conclusion

Relinearization Difficulties

1 The polynomial is now of degree two in s

Relinearization Difficulties

- 1 The polynomial is now of degree two in s
 - additionally, *E* may be large.

Relinearization Difficulties

- 1 The polynomial is now of degree two in s
 - additionally, E may be large.
- 2 Relinearization is a technique to address both of these issues

Relinearization Difficulties

- 1 The polynomial is now of degree two in s
 - additionally, *E* may be large.
- 2 Relinearization is a technique to address both of these issues
 - I will focus on discussing the first issue

Reducing Degrees

■ The goal is to linearize the degree 2 polynomial, i.e. find c'_0 , c'_1 such that

$$c_0 + c_1 s + c_2 s^2 = c_0' + c_1' s$$

Reducing Degrees

■ The goal is to linearize the degree 2 polynomial, i.e. find c'_0, c'_1 such that

$$c_0 + c_1 s + c_2 s^2 = c_0' + c_1' s$$

lacksquare Done by utilizing certain encrypted forms of s^2

■ The goal is to linearize the degree 2 polynomial, i.e. find c'_0, c'_1 such that

$$c_0 + c_1 s + c_2 s^2 = c_0' + c_1' s$$

- Done by utilizing certain encrypted forms of s^2
 - Called the *relinearization key rk*

■ The goal is to linearize the degree 2 polynomial, i.e. find c_0', c_1' such that

$$c_0 + c_1 s + c_2 s^2 = c_0' + c_1' s$$

- Done by utilizing certain encrypted forms of s^2
 - Called the *relinearization key rk*
 - In particular, it satisfies $rk_0 + rk_1s = s^2 + e$

■ The goal is to linearize the degree 2 polynomial, i.e. find c'_0 , c'_1 such that

$$c_0 + c_1 s + c_2 s^2 = c_0' + c_1' s$$

- Done by utilizing certain encrypted forms of s^2
 - Called the relinearization key rk
 - In particular, it satisfies $rk_0 + rk_1s = s^2 + e$
 - Can multiply by c₂ and subtract

■ The goal is to linearize the degree 2 polynomial, i.e. find c_0', c_1' such that

$$c_0 + c_1 s + c_2 s^2 = c_0' + c_1' s$$

- Done by utilizing certain encrypted forms of s^2
 - Called the relinearization key rk
 - In particular, it satisfies $rk_0 + rk_1s = s^2 + e$
 - Can multiply by c₂ and subtract
 - Issue: c_2e may be large

Making c₂ smaller

■ Idea is to take a base T decomposition $c_2 = \sum_i c_{2,i} T^i$

Making c₂ smaller

- Idea is to take a base T decomposition $c_2 = \sum_i c_{2,i} T^i$
- Each $c_{2,j}$ small now

Making c_2 smaller

- Idea is to take a base T decomposition $c_2 = \sum_i c_{2,i} T^i$
- Each $c_{2,i}$ small now
 - Downside: Relinearization key needs encryptions of $T^i s^2$ for each i

Contents

- 1 Introduction
- 2 Theoretical Description
- 3 Implementation Description
- 4 Practical Demonstration
- 6 Conclusion

■ Language: Rust

- Language: Rust
- Used crates for Big-Int arithmetic + a PRG

- Language: Rust
- Used crates for Big-Int arithmetic + a PRG
- Focused implementation on straightforward algorithms

- Language: Rust
- Used crates for Big-Int arithmetic + a PRG
- Focused implementation on straightforward algorithms
- All of FV implemented except Bootstrapping

- Language: Rust
- Used crates for Big-Int arithmetic + a PRG
- Focused implementation on straightforward algorithms
- All of FV implemented except Bootstrapping
 - Only implemented one of the two relinearization techniques.

- Language: Rust
- Used crates for Big-Int arithmetic + a PRG
- Focused implementation on straightforward algorithms
- All of FV implemented except Bootstrapping
 - Only implemented one of the two relinearization techniques.

■ Polynomial Arithmetic

- Polynomial Arithmetic
 - Power of Two Cyclotomics

- Polynomial Arithmetic
 - Power of Two Cyclotomics
 - Schoolbook Multiplication: $O(n^2)$

- Polynomial Arithmetic
 - Power of Two Cyclotomics
 - Schoolbook Multiplication: $O(n^2)$
 - lacktriangle Karatsuba $O(n^{1.6})$, Toom-Cook $O(n^{1+\epsilon})$

- Polynomial Arithmetic
 - Power of Two Cyclotomics
 - Schoolbook Multiplication: $O(n^2)$
 - Karatsuba $O(n^{1.6})$, Toom-Cook $O(n^{1+\epsilon})$
 - Number-Theoretic Transform: $O(n \log_2 n)$.
- Gaussian Sampling

- Polynomial Arithmetic
 - Power of Two Cyclotomics
 - Schoolbook Multiplication: $O(n^2)$
 - Karatsuba $O(n^{1.6})$, Toom-Cook $O(n^{1+\epsilon})$
 - Number-Theoretic Transform: $O(n \log_2 n)$.
- Gaussian Sampling
 - Inverse-CDT with f64's.

- Polynomial Arithmetic
 - Power of Two Cyclotomics
 - Schoolbook Multiplication: $O(n^2)$
 - Karatsuba $O(n^{1.6})$, Toom-Cook $O(n^{1+\epsilon})$
 - Number-Theoretic Transform: $O(n \log_2 n)$.
- Gaussian Sampling
 - Inverse-CDT with f64's.
 - Turns [0, 1] samples to samples of *any* distribution

- Polynomial Arithmetic
 - Power of Two Cyclotomics
 - Schoolbook Multiplication: $O(n^2)$
 - Karatsuba $O(n^{1.6})$, Toom-Cook $O(n^{1+\epsilon})$
 - Number-Theoretic Transform: $O(n \log_2 n)$.
- Gaussian Sampling
 - Inverse-CDT with f64's.
 - Turns [0, 1] samples to samples of *any* distribution
 - Precision a little low.

- Polynomial Arithmetic
 - Power of Two Cyclotomics
 - Schoolbook Multiplication: $O(n^2)$
 - Karatsuba $O(n^{1.6})$, Toom-Cook $O(n^{1+\epsilon})$
 - Number-Theoretic Transform: $O(n \log_2 n)$.
- Gaussian Sampling
 - Inverse-CDT with f64's.
 - Turns [0, 1] samples to samples of *any* distribution
 - Precision a little low.
 - Big hit to make side-channel resistant

- Polynomial Arithmetic
 - Power of Two Cyclotomics
 - Schoolbook Multiplication: $O(n^2)$
 - Karatsuba $O(n^{1.6})$, Toom-Cook $O(n^{1+\epsilon})$
 - Number-Theoretic Transform: $O(n \log_2 n)$.
- Gaussian Sampling
 - Inverse-CDT with f64's.
 - Turns [0, 1] samples to samples of *any* distribution
 - Precision a little low.
 - Big hit to make side-channel resistant
 - Space complexity that scales poorly with σ .
- Relinearization via Digit Decomposition

■ Everything but Bootstrapping!

- Everything but Bootstrapping!
 - (And potentially extremely large σ Gaussian sampling)

- Everything but Bootstrapping!
 - (And potentially extremely large σ Gaussian sampling)
- Concretely
 - All PKE algorithms supported

- Everything but Bootstrapping!
 - (And potentially extremely large σ Gaussian sampling)
- Concretely
 - All PKE algorithms supported
 - Addition and Multiplication work

- Everything but Bootstrapping!
 - (And potentially extremely large σ Gaussian sampling)
- Concretely
 - All PKE algorithms supported
 - Addition and Multiplication work
 - Relinearization works

■ Due to Rust implementation, *extremely* efficient.

- Due to Rust implementation, extremely efficient.
- Opt-level = 3 (and full-size parameters) leads to multiplications in ≈ 5 seconds

- Due to Rust implementation, extremely efficient.
- Opt-level = 3 (and full-size parameters) leads to multiplications in ≈ 5 seconds
- Funny story: Initial timing *much* worse

- Due to Rust implementation, extremely efficient.
- Opt-level = 3 (and full-size parameters) leads to multiplications in ≈ 5 seconds
- Funny story: Initial timing *much* worse
 - \blacksquare \approx 180s

- Due to Rust implementation, extremely efficient.
- Opt-level = 3 (and full-size parameters) leads to multiplications in \approx 5 seconds
- Funny story: Initial timing *much* worse
 - $\approx 180 s$
 - Due to choice of base T = 2 for relinearization

- Due to Rust implementation, *extremely* efficient.
- Opt-level = 3 (and full-size parameters) leads to multiplications in \approx 5 seconds
- Funny story: Initial timing *much* worse
 - $\approx 180 s$
 - Due to choice of base T = 2 for relinearization
 - Implementation was implicitly using big int arithmetic for binary computations

- Due to Rust implementation, *extremely* efficient.
- Opt-level = 3 (and full-size parameters) leads to multiplications in \approx 5 seconds
- Funny story: Initial timing *much* worse
 - $\approx 180 s$
 - Due to choice of base T = 2 for relinearization
 - Implementation was implicitly using big int arithmetic for binary computations

Contents

- 1 Introduction
- 2 Theoretical Description
- 3 Implementation Description
- 4 Practical Demonstration
- 6 Conclusion

Contents

- 1 Introduction
- 2 Theoretical Description
- 3 Implementation Description
- 4 Practical Demonstration
- **5** Conclusion

Introduction
Theoretical Description
Implementation Description
Practical Demonstration
Conclusion

Conclusion

■ Plenty that could still be done

- Plenty that could still be done
 - Bootstrapping

- Plenty that could still be done
 - Bootstrapping
 - Faster polynomial arithmetic

- Plenty that could still be done
 - Bootstrapping
 - Faster polynomial arithmetic
 - Better Gaussian sampling

- Plenty that could still be done
 - Bootstrapping
 - Faster polynomial arithmetic
 - Better Gaussian sampling
- Fun Implementation

- Plenty that could still be done
 - Bootstrapping
 - Faster polynomial arithmetic
 - Better Gaussian sampling
- Fun Implementation
 - The easy parts were hard, and the hard parts were easy