Chapter 8

Proposition 1.1

Proposition 2.1

Proposition 3.1

If $f \in C^{\infty}$, then $f \in \mathcal{S}$ if and only if $x^{\beta} \partial^{\alpha} f$ is bounded for all multi-indices α , β

Proposition 4.1

Proposition 5.1

Proposition 6.1

Proposition 7.1

Proposition 8.1

Proposition 9.1

Proposition 10.1

Proposition 11.1

Proposition 12.1

Proposition 13.1

Proposition 14.1

Suppose $\phi \in L^1$, and $\int \phi(x)dx = a$.

- (a) If $f \in L^p$, $p \in [1, +\infty]$, then $f * \phi_t \to af$ in the L^p norm as $t \to 0$.
- (b) If f is bounded and uniformly continuous, then $f * \phi_t \to af$ uniformly as $t \to 0$.
- (c) If $f \in L^{\infty}$ and f is continuous on an open set U, then $f * \phi_t \to af$ uniformly on compact subsets of U as $t \to 0$

Proof of Part A. First, the convolution $f * \phi_t$ is in L^p by Young's Inequality (Theorem 8.7). Furthermore,

$$f * \phi_t - af = \int_{y \in \mathbb{R}^n} f(x - y) t^{-n} \phi(t^{-1}y) dy - \int_{y \in \mathbb{R}^n} f(x) \phi(y) dy$$
 (1)

Now apply Theorem 2.44, with $y \mapsto y/t$, and denote this invertible map by $T \in GL(n,\mathbb{R})$, so that $|\det(T)| = t^{-n}$, then y = T(y)t for every t > 0. It follows that

$$(f * \phi_t)(x) = |\det(T)| \cdot \int_{y \in \mathbb{R}^n} f(x - t \cdot Ty) \phi(T(y)) dy$$

$$= \int_{z \in \mathbb{R}^n} f(x - tz) \phi(z) dz$$

$$= \int_{z \in \mathbb{R}^n} \tau_{tz} f(x) \phi(z) dz$$
(2)

Next, $a = \int \phi$ so $af = \int f(x)\phi(z)dz$. Using Equations (1) and (2) we get

$$(f * \phi_t - af)(x) = \int_{z \in \mathbb{R}^n} (\tau_{tz} f - f)\phi(z) dz$$
 (3)

We wish to apply Minkowski's Inequality for integrals, which states, roughly speaking:

The norm of an integral is less than the integral of the norm.

to Equation (3), and

$$||f * \phi_t - af||_p \le \int_{z \in \mathbb{R}^n} ||(\tau_{tz}f - f)\phi(z)||_p dz$$
 (4)

The assumptions for Theorem 6.19 are satisfied by

1. Notice for every $z \in \mathbb{R}^{n'}$,

$$\|(\tau_{tz}f-f)\phi(z)\|_p = \left(\int\limits_{x\in\mathbb{R}^n} |(\tau_{tz}f(x)-f(x))\phi(z)|^p dx\right)^{1/p} \leq |\phi(z)| \left(2\|f\|_p\right) < +\infty$$

Since $\|\phi\|_1 < +\infty$, $|\phi(z)| < +\infty$ almost everywhere.

2. Next, to show $z \mapsto \|\phi(z)(\tau_{tz}f - f)\|_p$ is in $L^1\mathbb{R}^n, z$. Reuse the last estimate in the previous bullet point, and

$$\|\phi(z)(\tau_{tz}f - f)\|_{p} \le |\phi(z)| \left(2\|f\|_{p}\right)$$

Taking the integral in L^+ with respect to z, we get

$$\left\| \left(\left\| \phi(z)(\tau_{tz}f - f) \right\|_p \right) \right\|_1 < +\infty$$

so both assumptions are satisfied.

Therefore Equation (4) holds. Next, fix any sequence of $t_n > 0$ with $t_n \to 0$. The Dominated Convergence Theorem gives, since $|\phi(z)| \|\tau_{t_n z} f - f\|_p$ is dominated by $|\phi(z)| \cdot 2\|f\|_p \in L^1 \cap L^+$

$$\lim_{n \to \infty} \int_{z \in \mathbb{R}^n} \|\tau_{t_n z} f - f\|_p |\phi(z)| dz = \int_{z \in \mathbb{R}^n} \lim_{n \to \infty} \|\tau_{t_n z} f - f\|_p |\phi(z)| dz$$
$$= \int_{z \in \mathbb{R}^n} 0 dz$$
$$= 0$$

The second last equality is from Lemma 8.4, as translation is continuous in the L^p norm for $p \in [1, +\infty)$. So almost every $z \in \mathbb{R}^n$ (since again, $|\phi(z)|$ can be infinite on a null set),

$$\|\tau_{t_nz}f-f\|_p\to 0 \implies \|\tau_{t_nz}f-f\|_p|\phi(z)|\to 0$$

as $n \to +\infty$. It follows that

$$\lim_{n \to \infty} \left\| f * \phi_{t_n} - af \right\|_p = \lim_{n \to \infty} \left\| \int_{z \in \mathbb{R}^n} \left[\tau_{t_n z} f(x) - f(x) \right] \phi(z) dz \right\|_p = 0$$

Since the sequence $t_n \to 0$ is arbitrary, we conclude that the function $t \mapsto ||f * \phi_t - af||_p$ has a limit of 0 as $t \to 0$.

Proof of Part B. Suppose $f \in \mathrm{UBC}(\mathbb{R}^n)$, so that f is uniformly continuous and bounded. We wish to show $f * \phi_t \to af$ uniformly as $t \to 0$. In symbols,

$$g: t \mapsto ||f * \phi_t - af||_u, g \to 0$$
, as $t \to 0$

The convolution between f and ϕ_t makes sense at every $x \in \mathbb{R}^n$, as

$$\int |\tau_y f(x)| |\phi(y)| dy \le ||f||_u \cdot ||\phi||_1 < +\infty$$

Taking the supremum norm on both sides of Equation (3), we get

$$\|f * \phi_{t} - af\|_{u} = \sup_{x \in \mathbb{R}^{n}} \left| \int_{z \in \mathbb{R}^{n}} (\tau_{tz} f - f) \cdot \phi(z) dz \right|$$

$$\leq \sup_{x \in \mathbb{R}^{n}} \int_{z \in \mathbb{R}^{n}} |\tau_{tz} f - f| \cdot |\phi(z)| dz$$

$$\leq \int_{z \in \mathbb{R}^{n}} \sup_{x \in \mathbb{R}^{n}} |\tau_{tz} f - f| \cdot |\phi(z)| dz$$

$$= \int_{z \in \mathbb{R}^{n}} \|\tau_{tz} f - f\|_{u} \cdot |\phi(z)| dz$$

$$(5)$$

the last equality is a simple consequence of the monotonicity of the integral in L^+ , indeed. For every $x \in \mathbb{R}^n$, the following holds pointwise for almost every z

$$|\tau_{tz}f - f| \le \|\tau_{tz}f - f\|_u \implies \sup_{x \in \mathbb{R}^n} |\tau_{tz}f - f| \le \|\tau_{tz}f - f\|_u$$

Apply the Dominated Theorem to the right member of (5), noting that it is dominated by $|\phi(z)| \cdot 2||f||_u \in L^1 \cap L^+$ as we have done for Part A of the proof. Since this holds for every sequence $t_n \to 0$, the proof is complete.

Proof of Part C. Next, suppose that $f \in L^{\infty}$, and $f \in C(U)$, where U is open in \mathbb{R}^n . We claim that

$$f * \phi_t \to af$$

within the topology of uniform convergence on compact subsets of U. So that for every $K \in \mathcal{I}$, $K \subseteq U$

$$\sup_{x \in K} \left| f * \phi_t - af \right| \to 0, \text{ as } t \to 0$$

First, a small technical Lemma.

Lemma 14.1

If $\phi \in L^1(\mathbb{R}^n)$, then for every $\varepsilon > 0$, there exists $E \in \mathcal{I}$, with

$$\int_{E^c} |\phi| = \|\phi\chi_{E^c}\|_1 < +arepsilon$$

Proof. Assume that $\phi \geq 0$, if not, replace ϕ by $|\phi|$. Since $C_c(\mathbb{R}^n)$ is dense in L^1 for every $\varepsilon 2^{-1} > 0$ there exists some $\psi \in C_c(\mathbb{R}^n)$ with $\|\psi - \phi\|_1 < \varepsilon^{-1}$, and denote $E = \text{supp}(\psi) \in \mathcal{I}$, then

$$\||\psi| - |\phi|\|_1 \le \|\psi - \phi\|_1 < \varepsilon 2^{-1}$$

So we can assume $\psi \geq 0$ as well, perhaps by relabelling ψ by $|\psi|$. Then,

$$\|\psi - \chi_E \phi\|_1 = \|\chi_E(\psi - \phi)\|_1 \le \|\psi - \phi\|_1 < \varepsilon 2^{-1}$$

by monotonicity in L^+ . The Triangle Inequality in L^1 gives

$$\|\chi_{E^c}\phi\|_1 = \|\phi - \chi_E\phi\|_1 = \|\phi(1-\chi_E)\|_1 \le \|\phi - \psi\|_1 + \|\psi - \chi_E\phi\|_1 < \varepsilon$$

Back to the main proof of Part C, fix any $\varepsilon > 0$, then by Lemma 14.1, ϕ induces some $E \in \mathcal{I}$ with $\|\chi_{E^c}\phi\|_1 < +\varepsilon$. By Lemma 8.4, $\chi_K f \in C_c(\mathbb{R}^n) \subseteq \mathrm{UBC}(\mathbb{R}^n)$. Uniform continuity of $\chi_K f$ gives us the continuity of translations. Now for the same $\varepsilon > 0$, there exists r > 0, for every $w \in \mathbb{R}^n$,

$$|w| < r \implies ||\tau_w \chi_K f - \chi_K f||_{u} < +\varepsilon \tag{6}$$

Since $E \in \mathcal{I}$, it is bounded, and let t be a small positive number such that for every $z \in E$,

$$|tz| < t \cdot (1 + \sup_{z \in E} |z|) < r$$

There exists such a a t, namely $t = r2^{-1}(1 + \sup_{z \in E} |z|)^{-1}$. And for this t > 0, it follows that for every $z \in E$,

$$\sup_{x \in K} |\tau_{tz} f - f| < +\varepsilon$$

Since this holds for every $z \in E$, we write

$$\sup_{x \in K, z \in E} |\tau_{tz} f - f| < +\varepsilon$$

And

$$|\phi(z)| \left[\sup_{x \in K, z \in E} |\tau_{tz} f - f| \right] < |\phi(z)| \varepsilon$$

Monotonicity in $L^+(E,z)$ reads, for every $x \in K$,

$$\int\limits_{z\in E}|\phi(z)(\tau_{tz}f-f)|dz\leq\int\limits_{z\in E}|\phi|\varepsilon dz=\varepsilon\|\chi_{E}\phi\|_{1}\leq\varepsilon\|\phi\|_{1}$$

Since this holds for every $x \in \mathbb{R}^n$,

$$\sup_{x \in K} \left\{ \int_{z \in E} |\phi(z)| \cdot |\tau_{tz} f - f| dz \right\} \le \varepsilon \|\phi\|_1 \tag{7}$$

Next, notice for every t, z, we have

$$|\tau_{tz}f - f| \le ||\tau_{tz}f||_u + ||f||_u \le 2 \cdot ||f||_u$$

And the following holds $z \in E^c$ a.e,

$$|\phi(z)| \cdot |\tau_{tz}f - f| \le |\phi(z)| \cdot 2||f||_u$$

Taking the integral, and applying the condition we imposed on E from Lemma (14.1), so that

$$\int_{z \in E^c} |\phi(z)| \cdot |\tau_{tz}f - f| dz \le 2 ||f||_u \int_{z \in E^c} |\phi(z)| dz \le 2 ||f||_u \varepsilon$$

Taking the supremum of the above estimate, so

$$\sup_{x \in K} \left\{ \int_{z \in E^c} |\phi(z)(\tau_{tz}f - f)| dz \right\} \le 2 \|f\|_u \varepsilon \tag{8}$$

Combining Equations (7) and (8). Applying the additivity of the supremum (of $x \in K$), since both members are finite,

$$\sup_{x \in K} \left\{ \int_{E} |\phi(z)| (\tau_{tz}f - f) dz + \int_{E^{c}} |\phi(z)| (\tau_{tz}f - f) dz \right\} < \varepsilon (2\|f\|_{u} + \|\phi\|_{1})$$

The left member above is equal to $\sup_{x \in K} |f * \phi_t - af|$. Since $\varepsilon > 0$ is arbitrary, this completes the proof of Part C.

Proposition 15.1

If $|\phi(x)| \leq C(1+|x|)^{-n-\varepsilon}$, where $\varepsilon > 0$, and if $f \in L^p$, for $p \in [1, +\infty)$, then

$$f * \phi_t \rightarrow af$$

pointwise for every x in the Lebesgue set of f,

$$\mathcal{L}_f = \left\{x \in \mathbb{R}^n, \quad \lim_{r o 0} rac{1}{m(B(r,x))} \int_{y \in B(r,x)} |f(x) - f(y)| dy = 0
ight\}$$

We also claim that $m(\mathcal{L}_f^c) = 0$, and $x \in \mathcal{L}_f$ at every continuous f(x).

The proof is long, and will be divided into several parts. Let us start with a couple of Lemmas about the Lebesgue Set of f, and several pointwise estimates that will be of use.

Lemma 15.1

If $\phi : \mathbb{R}^n \to \mathbb{C}$, and

$$|\phi(x)| \le C(1+|x|)^{n-\varepsilon}, \, \varepsilon > 0 \tag{9}$$

then $\phi \in L^1$. Furthermore, $\phi_t \in L^1$ for every t > 0.

Proof of 15.1. If $x \neq 0$, then

$$|\phi| \le C \cdot (1+|x|)^{-(n+\varepsilon)} \le C \cdot |x|^{-(n+\varepsilon)}$$

on some B^c as defined in Theorem 2.52, so $\phi \in L^1(B^c)$. Next,

$$n+\varepsilon > n > n/2 = a$$

and by monotonicity,

$$|\phi| \le C \cdot (1+|x|)^{-(n+\varepsilon)} \le C \cdot (1+|x|)^{-(n/2)}$$

so $\phi \in L^1(\mathbb{R}^n)$. Next, if $\phi \in L^1$, then

$$|\phi_t(x)| = t^{-n} |\phi(t^{-1}x)|$$

taking the integral in L^+ , and applying Theorem 2.44, with $T: x \mapsto t^{-1}$, and $\det(T) = t^{-n}$, so that

$$\int |\phi_t|(x)dx = |\det(T)| \int |\phi| \circ T(x)dx = \int |\phi|(x)dx < +\infty$$

This completes the Lemma.

Lemma 15.2

If $f: \mathbb{R}^n \to \mathbb{C}$, and if $f \in C(\mathbb{R}^n)$, then $\mathcal{L}_f = \mathbb{R}^n$.

Proof of 15.2. Let $x \notin \mathcal{L}_f$, and there exists a sequence $r_k \to 0$ and $\varepsilon_0 > 0$ but

$$\frac{1}{m(B(r_k,x))}\int_{y\in B(r_k,x)}|f(x)-f(y)|dy\geq \varepsilon_0$$

We claim that for every $k \geq 1$, we can find a $y_k \in B(r_k, x) \setminus \{x\}$ with

$$|f(x) - f(y)| \ge \varepsilon_0$$

Indeed, suppose by contradiction that no such y_k exists, and by monotonicity,

$$\frac{1}{m(B(r_k,x))}\int\limits_{y\in B(r_k,x)}|f(x)-f(y)|dy<\frac{1}{m(B(r_k,x))}\int\limits_{y\in B(r_k,x)}\varepsilon_0dy=\varepsilon_0$$

So choose y_k as above, and it is clear that $y_k \to x$ as $k \to \infty$, but $f(y_k) \not\to f(x)$. Therefore f is not continuous at x.

Lemma 15.3

If $x \in \mathcal{L}_f$, then for every $\delta > 0$ there exists a $\eta > 0$, with

$$r \leq \eta \implies \int_{|y| < r} |f(x - y) - f(x)| dy \leq \delta \cdot r^n$$

Proof of 15.3. We will start with something trivial.

$$m(B(r)) = r^n m(B(1)) \tag{10}$$

where $B(r) = \{x \in \mathbb{R}^n, |x| < r\}$. By Theorem 2.44,

$$m(B(r)) = \int \chi_B(x/r)dx$$

= $|\det(T)|^{-1} \int \chi_B(x)dx$
= $r^n m(B(1))$

where $T: x \mapsto x/r$ and $\det(T) = r^{-n}$. Fix $x \in \mathcal{L}_f$, and take $\varepsilon = \delta/m(B(1)) > 0$, and by definition this induces some $\eta > 0$, and for every $r \leq \eta$

$$\frac{1}{m(B(r,x))}\int\limits_{y\in B(r,x)}|f(x)-f(y)|dy\leq \varepsilon$$

By translation invariance of m,

$$m(B(r,x)) = m(B(r)) = r^n \cdot m(B(1))$$

and apply the map $y \mapsto x - y$, which is a composition a rotation by |-1| and a translation by $x \in \mathbb{R}^n$. By Theorems 2.44 and 2.42,

$$\int\limits_{|y|\in B(r)}|f(x)-f(x-y)|dy=\int\limits_{y\in B(r,x)}|f(x)-f(y)|dy<\varepsilon m(B(1))\cdot r^n=\delta r^n$$

where we used the fact that

$$\begin{aligned} d(x-y,x) < r &\iff d(-y,0) < r \\ &\iff d(y,0) < r \end{aligned}$$

hence

$$\chi_{B(r,x)}(x-y)=\chi_{B(r,0)}(y)$$

Lemma 15.4

Let $A_j = \left\{ |y| \in [2^{-j}\eta, 2^{1-j}\eta) \right\}$, and if Equation (9) holds for ϕ then ϕ_t satisfies

$$|\phi_t| \le C \cdot t^{-n} (2^{-j}\alpha)^{-(n+\varepsilon)} \tag{11}$$

on A_j for every t > 0, where $\alpha = t^{-1}\eta$ for some $\eta > 0$.

Moreover, if $A_0 = \left\{ |y| < 2^{-K} \eta \right\}$, where $K \ge 0$, then

$$|\phi_t(y)| \le C \cdot t^{-n} \tag{12}$$

on A_0

Proof of 15.4. Notice that

$$t^{-1}y \in [2^{-j} \cdot \eta/t, \, 2^{1-j} \cdot \eta/t) = [2^{-j} \cdot \alpha, \, 2^{1-j} \cdot \alpha)$$

And

$$1 + |t^{-1}y| \ge |t^{-1}y| \ge 2^{-j}\alpha$$

Therefore

$$C \cdot t^{-n} (1 + |t^{-1}y|)^{-(n+\varepsilon)} \le C \cdot t^{-n} (2^{-j}\alpha)^{-(n+\varepsilon)}$$

and applying Equation (9) establishes the first claim.

The second claim follows from Equation (9),

$$|\phi_t(y)| \le C \cdot t^{-n} (1 + |t^{-1}y|)^{-(n+\varepsilon)} \le C \cdot t^{-n}$$

Updated 2023-05-24 at 04:40

Main Proof of Theorem 8.15. The outline of the proof is as follows,

- 1. $|\phi| \leq C \cdot (1+|x|)^{-(n+\varepsilon)}$ for $\varepsilon > 0$ and
- 2. $f \in L^p$ for $p \in [1, +\infty)$,
- 3. for any $x \in \mathcal{L}_f$, we wish to show

$$|f * \phi_t - af|(x) \to 0$$
, as $t \to 0$

4. To prove this, we fix some $\beta > 0$ and show that

$$|f * \phi_t - af|(x) < \beta$$

since β is arbitrary, the proof will be complete.

5. By Lemma 15.3, for every $\delta > 0$ there exists a $\eta > 0$ where $r \leq \eta$ implies

$$\int_{|y| < r} |f(x) - f(x - y)| dy \le \delta \cdot r^n$$

and using the L^1 inequality,

$$\begin{split} |f*\phi_t - af|(x) &= \left| \int [f(x-y) - f(x)] \cdot \phi_t(y) dy \right| \\ &\leq \int |f(x-y) - f(x)| \cdot |\phi_t(y)| dy \\ &= \int_{|y| < \eta} |f(x-y) - f(y)| \cdot |\phi_t(y)| dy + \int_{|y| \ge \eta} |f(x-y) - f(y)| \cdot |\phi_t(y)| dy \\ &= I_1 + I_2 \end{split}$$

6. Let $\delta = \beta(2A)^{-1}$, where

$$A = 2^n \cdot C \left[\frac{2^{\varepsilon}}{2^{\varepsilon} - 1} + 1 \right]$$

we make the claim that this choice of δ will give us $I_1 < \beta/2$

7. After choosing $\delta > 0$, (which induces $\eta > 0$), we will show that $I_2 < \beta/2$ (for a fixed $\eta > 0$) for t sufficiently small, and applying the Triangle Inequality finishes the proof.

Let η be as above, and for t>0 and suppose we can find a $K\in\mathbb{N}^+$ with

$$2^K \le \eta/t \le 2^{K+1} \tag{13}$$

and define $\alpha = \eta/t$ for convenience.

Notice for any $K \geq 1$, the interval [0,1) can be partitioned in the following manner

$$[0,1) = [0,2^{-K}) \cup \left(\bigcup_{j=1}^{K} [2^{-j}, 2^{1-j})\right)$$

and let us define

$$A_j = \left\{ |y| \in [2^{-j}\eta, 2^{1-j}\eta) \right\}, \quad A_0 = \left\{ |y| \in [0, 2^{-K}\eta) \right\}$$

If no such K exists, then let $A_j = \emptyset$ and set $A_0 = \{|y| \in [0, \eta)\}$. The disjoint union of all $A_{j\geq 0}$ is the open ball $\{|y| \in [0, \eta)\}$. By Lemma 15.4 and Lemma 15.3 each $j \geq 0$,

$$egin{aligned} I_1 &= \sum_{j=0}^K \int_{y\in A_j} |f(x-y) - f(y)| |\phi_t(y)| dy \ &\leq C t^{-n} \delta(2^{-K}\eta)^n + \sum_{j=1}^K \int_{y\in A_j} |f(x-y) - f(y)| |\phi_t(y)| dy \ &\leq C t^{-n} \delta(2^{-K}\eta)^n + \sum_{j=1}^K C t^{-n} (2^{-j}lpha)^{-(n+arepsilon)} \delta(2^{1-j}\eta)^n \end{aligned}$$

The left member reads,

$$\begin{split} Ct^{-n}\delta(2^{-K}\eta)^n &\leq C\delta\alpha^n 2^{-Kn} \\ &\leq C\delta2^{n(K+1)}2^{-Kn} \\ &= C\delta2^n \end{split}$$

and termwise for the right,

$$Ct^{-n}(2^{-j}\alpha)^{-(n+\varepsilon)}\delta(2^{1-j}\eta)^n = C\delta \cdot t^{\varepsilon} \cdot 2^{j\varepsilon+n}\eta^{-\varepsilon}$$
$$= (C\delta 2^n\alpha^{-\varepsilon}) \cdot 2^{j\varepsilon}$$

Summing over the geometric series,

$$\begin{split} \sum_{j=1}^{K} 2^{j\varepsilon} &= 2^{\varepsilon} \sum_{j=0}^{K-1} 2^{j\varepsilon} \\ &= \frac{2^{\varepsilon(K+1)} - 2^{\varepsilon}}{2^{\varepsilon} - 1} \end{split}$$

using the estimate for α in Equation (13)

$$\alpha \in [2^K, 2^K + 1) \implies \alpha^{-\varepsilon} \in [2^{-\varepsilon(K+1)}, 2^{-\varepsilon K})$$

and combining the last few equations, the right member becomes

$$\begin{split} (C\delta 2^n) \cdot \alpha^{-\varepsilon} \frac{2^{\varepsilon(K+1)} - 2^{\varepsilon}}{2^{\varepsilon} - 1} &\leq (C\delta 2^n) \cdot \alpha^{-\varepsilon} \frac{2^{\varepsilon(K+1)}}{2^{\varepsilon} - 1} \\ &\leq (C\delta 2^n) \cdot \frac{2^{\varepsilon}}{2^{\varepsilon} - 1} \end{split}$$

Finally, $I_1 \leq (C\delta 2^n) \left[\frac{2^{\varepsilon}}{2^{\varepsilon} - 1} + 1 \right]$, and by Step 6, $I_1 \leq \beta/2$.

Obtaining an estimate for I_2 is another laborious entreprise. Let us define $W = \{|y| \ge \eta\}$, and

• By Holder's Inequality,

$$I_2 \le \|f\|_p \|\chi_W \cdot \phi_t\|_q + |f(x)| \|\chi_W \cdot \phi_t\|_1$$

where q is the conjugate exponent to p. Since $p \in [1, +\infty)$, it suffices to show $\|\chi_W \cdot \phi_t\|_q \to 0$ as $t \to 0$ for $q \in [1, +\infty]$.

• Suppose $q = +\infty$,

$$y \in W \iff |y| \ge \eta \iff |t^{-1}y| \ge \alpha$$

then
$$\|\chi_W \cdot \phi_t\|_{\infty} \le Ct^{-n}(1+|t^{-1}y|)^{-(n+\varepsilon)} \le Ct^{\varepsilon}\eta^{-(n+\varepsilon)}$$

• Now suppose $q \in [1, +\infty)$, by polar integration and Theorems 2.51, 2.52 (brace yourselves):

$$\begin{split} \|\chi_W \cdot \phi_t\|_q^q &= t^{-nq} \cdot \int_{y \in W} C^q \cdot |t^{-1}y|^{-q \cdot (n+\varepsilon)} dy \\ &= C^q \cdot t^{\varepsilon q} \int_{|y| \ge \eta} |y|^{-q \cdot (n+\varepsilon)} dy \\ &= C^q \cdot t^{\varepsilon q} \sigma(S^{n-1}) \int_{r \ge \eta} r^{n-1} \cdot r^{-q \cdot (n+\varepsilon)} dr \\ &= \frac{C^q t^{\varepsilon q}}{n - q \cdot (n+\varepsilon)} r^{n-q \cdot (n+\varepsilon)} \Big]_{\eta}^{\infty} \\ &= \frac{C^q t^{\varepsilon q}}{q \cdot (n+\varepsilon) - n} \eta^{n-q \cdot (n+\varepsilon)} \\ \|\chi_W \cdot \phi_t\|_q &= \left[\frac{C}{(q \cdot (n+\varepsilon) - n)^{1/q}} \left(\eta^{n-q \cdot (n+\varepsilon)} \right)^{1/q} \right] t^{\varepsilon} \\ &= C_3(q) t^{\varepsilon} \end{split}$$

ullet Find a t sufficiently small so that

$$t^{\varepsilon} < \min \left\{ \beta (4C_3(1)|f(x)|)^{-1}, \ \beta (4C_3(q)||f||_p)^{-1}, \ \beta (4C \cdot \eta^{-(n+\varepsilon)})^{-1} \right\}$$

• Therefore $I_2 < \beta/2$, and the proof is complete upon sending $\beta \to 0$.

Proposition 16.1

See Theorem 8.15

Proposition 17.1

Proposition 18.1

Proposition 19.1

Proposition 20.1