Алгоритм Евклида

Рассмотрим задачу поиска наибольшего общего делителя g для двух натуральных чисел a и b. Алгоритм Евклида для решения этой задачи основан на наблюдении, что d – общий делитель чисел (a,b) тогда и только тогда, когда d – общий делитель чисел (a-b,b). Действительно, пусть d – общий делитель (a,b). Следовательно, $a=dn,\,b=dm$ для некоторых целых n,m и a-b=d(n-m). Значит, d – общий делитель для (a-b,b). В обратную сторону доказательство аналогично. Таким образом, переход от пары чисел (a,b) к паре (a-b,b) сохраняет множество общих делителей, а следовательно, и наибольший общий делитель. Применяя этот переход несколько раз, получаем, что пара (a-kb,b), где k – некоторое натуральное число, имеет те же общие делители, что и пара (a,b).

Пусть, не ограничивая общности, a>b. Поделим a на b с остатком, т.е. найдем $q,r:a=qb+r,\ 0\le r< b$. Теперь можно перейти от пары (a,b) к паре (b,a-qb)=(b,r) с сохранением множества общих делителей. Далее этот процесс можно повторить, переходя от пары (b,r) к паре (r,r_2) , где $b=q_2r+r_2$. При каждом таком переходе числа в паре уменьшаются, но остаются неотрицательными. Следовательно, за конечное число шагов образуется пара вида $(r_n,0)$, для которой наибольший общий делитель $g=r_n$. В результате общая схема алгоритма Евклида выглядит следующим образом:

$$\begin{split} r_{-2} &= a, \\ r_{-1} &= b, \\ r_{-2} &= r_{-1}q_0 + r_0, \ r_0 < r_{-1}, \ // \ Делим \ r_{-2} \ \text{на} \ r_{-1} \ \text{с остатком} \\ r_{-1} &= r_0q_1 + r_1, \ r_1 < r_0, \ // \ Делим \ r_{-1} \ \text{на} \ r_0 \ \text{с остатком} \\ & \dots \\ r_{n-2} &= r_{n-1}q_n + r_n, \ // \ Делим \ r_{n-2} \ \text{на} \ r_{n-1} \ \text{с остатком} \\ r_{n-1} &= r_nq_{n+1}. \end{split} \tag{1}$$

Наибольший общий делитель $g = r_n$.

Пример. Найдём g = HOД(252, 105). Применяя схему (1), получаем:

$$252 = 105 \cdot 2 + 42,$$

$$105 = 42 \cdot 2 + 21,$$

$$42 = 21 \cdot 2.$$

Отсюда q = 21.

Для поиска наибольшего общего делителя трех и более чисел можно воспользоваться свойством

$$HOД(a, b, c) = HOД(a, HOД(b, c))$$

и запускать алгоритм Евклида несколько раз. Для поиска наименьшего общего кратного двух чисел можно воспользоваться свойством

$$HOK(a, b)HOД(a, b) = ab.$$

Для g = HOД(a,b) справедлива теорема Безу: найдутся $x,y \in \mathbb{Z}$ такие, что g = ax + by. Это утверждение легко доказать, «раскручивая» схему (1) в обратную сторону. Действительно, $g = r_{n-2} - r_{n-1}q_n$. Подставляя в это равенство значение $r_{n-1} = r_{n-3} - r_{n-2}q_{n-1}$, получаем, что $g = -q_nr_{n-3} + (1+q_nq_{n-1})r_{n-2} = \alpha r_{n-3} + \beta r_{n-2}$ для некоторых $\alpha, \beta \in \mathbb{Z}$. Продолжая эти рассуждения, получим утверждение теоремы. Модификация схемы (1), позволяющая вместе с наибольшим общим делителем найти числа x, y из теоремы Безу, получила название расширенного алгоритма Евклида.

Будем искать $x_i, y_i \in \mathbb{Z}$, для которых справедливо $r_i = ax_i + by_i$, где $r_i, i = -2, \ldots, n$ – остатки из алгоритма Евклида (1). Для i = -2, -1 решение записывается как

$$x_{-2} = 1, \ x_{-1} = 0,$$

 $y_{-2} = 0, \ y_{-1} = 1.$

Пусть верно $r_{i-2} = ax_{i-2} + by_{i-2}$, $r_{i-1} = ax_{i-1} + by_{i-1}$. Тогда найдем x_i, y_i :

$$r_i = r_{i-2} - q_i r_{i-1} = (ax_{i-2} + by_{i-2}) - q_i (ax_{i-1} + by_{i-1}) = a(x_{i-2} - q_i x_{i-1}) + b(y_{i-2} - q_i y_{i-1}) = ax_i + by_i.$$

Следовательно, $x_i = x_{i-2} - q_i x_{i-1}, y_i = y_{i-2} - q_i y_{i-1}$. В итоге расширенный алгоритм Евклида повторяет схему (1), в которой на каждом шаге дополнительно вычисляются x_i, y_i по приведённым формулам.

Пример. Расширим предыдущий пример и найдем $g, x, y \in \mathbb{Z} : g = 252x + 105y$. Сведём все вычисления в таблицу:

i	r_{i-2}	r_{i-1}	$ q_i $	r_i	x_i	y_i
-2				252	1	0
-1				105	0	1
0	252	105	2	42	1	-2
1	105	42	2	21	-2	5
2	42	21	2	0	5	-12

Таким образом, g = 21, x = -2, y = 5.

Алгоритм Евклида (а также его расширенная версия) может быть применен не только для случая целых чисел. Он остаётся справедливым в любом евклидовом кольце R, т.е. таком целостном кольце, в котором для любых двух ненулевых элементов возможна процедура деления с остатком, причём норма остатка меньше нормы делителя:

$$\forall a, b \in R, b \neq 0 \quad a = bq + r, \ 0 \le \text{norm}(r) < \text{norm}(b).$$

Примером евклидова кольца является кольцо многочленов F[x] над произвольным полем F, где в качестве нормы выступает степень многочлена.

С помощью расширенного алгоритма Евклида легко находить обратные элементы в конечных полях. Пусть имеется поле $\mathbb{F}_p^n = \mathbb{F}_p[x]/(f(x))$, где f(x) – неприводимый полином степени n над \mathbb{F}_p . Тогда обратный элемент h для некоторого многочлена g из поля \mathbb{F}_p^n определяется условием:

$$g(x)h(x) \equiv 1 \mod f(x)$$
.

Данное уравнение эквивалентно следующему

$$f(x)a(x) + g(x)h(x) = 1.$$

Оно может быть решено путем применения расширенного алгоритма Евклида для пары многочленов (f,g). Заметим, что решение данного уравнения всегда существует, т.к. f – неприводимый полином, степень g всегда меньше, чем степень f, и поэтому $\mathrm{HOД}(f,g)=1$.

Пример. Найдём обратный элемент для $x^2 + x + 3$ в поле $\mathbb{F}_7[x]/(x^4 + x^3 + x^2 + 3)$. Для этого решим уравнение

$$(x^4 + x^3 + x^2 + 3)a(x) + (x^2 + x + 3)b(x) = 1$$
(2)

с помощью расширенного алгоритма Евклида:

HIAT 0.
$$r_{-2}(x) = x^4 + x^3 + x^2 + 3$$
, $r_{-1}(x) = x^2 + x + 3$, $y_{-2}(x) = 0$, $y_{-1}(x) = 1$.

HIAT 1. $r_{-2}(x) = r_{-1}(x)q_0(x) + r_0(x)$, $q_0(x) = x^2 + 5$, $r_0(x) = 2x + 2$, $y_0(x) = y_{-2}(x) - y_{-1}(x)q_0(x) = -q_0(x) = -x^2 - 5$.

HIAT 2. $r_{-1}(x) = r_0(x)q_1(x) + r_1(x)$, $q_1(x) = 4x$, $r_1(x) = 3$, $y_1(x) = y_{-1}(x) - y_0(x)q_1(x) = 1 + 4x(x^2 + 5) = 4x^3 + 6x + 1$.

Заметим, что в итерациях алгоритма нет необходимости вычислять $x_i(x)$, т.е. коэффициент при $x^4+x^3+x^2+3$, т.к. нас интересует только коэффициент при x^2+x+3 , т.е. $y_i(x)$. Алгоритм заканчивает свою работу на шаге 2, т.к. степень очередного остатка r_1 равна степени многочлена в правой части (2). Однако, сам остаток r_1 отличается от требуемого на константный множитель. Действительно, после шага 2 мы имеем

$$(x^4 + x^3 + x^2 + 3)x_1(x) + (x^2 + x + 3)y_1(x) = 3.$$

Чтобы получить решение уравнения (2), достаточно домножить последний результат на $3^{-1}=5$:

$$h(x) = 5y_1(x) = 5(4x^3 + 6x + 1) = 6x^3 + 2x + 5.$$

Если на последнем шаге алгоритма Евклида текущий остаток не является требуемым с точностью до константного множителя, то соответствующее уравнение не имеет решения.

Расширенный алгоритм Евклида также активно применяется для декодирования БЧХ кодов.