Hazard Rates, Survival Functions, Probability Density Functions, and Expected Lifetimes for Some Common Parametric Distributions

Distribution	Hazard Rate b(x)	Survival Function $S(x)$	Probability Density Function $f(x)$	Mean E(X)
Exponential $\lambda > 0, x \ge 0$	λ	$\exp[-\lambda x]$	$\lambda \exp(-\lambda x)$	$\frac{1}{\lambda}$
Weibull $\alpha, \lambda > 0,$ $x \ge 0$	$lpha\lambda x^{lpha-1}$	$\exp[-\lambda x^{\alpha}]$	$\alpha \lambda x^{\alpha-1} \exp(-\lambda x^{\alpha})$	$\frac{\Gamma(1+1/\alpha)}{\lambda^{1/\alpha}}$
Gamma $\beta, \lambda > 0,$ $x \ge 0$	$\frac{f(x)}{S(x)}$	$1 - I(\lambda x, \boldsymbol{\beta})^*$	$\frac{\lambda^{\beta} x^{\beta-1} \exp(-\lambda x)}{\Gamma(\beta)}$	$\frac{\beta}{\lambda}$
Log normal $\sigma > 0, x \ge 0$	$\frac{f(x)}{S(x)}$	$1 - \Phi\left[\frac{1n x - \mu}{\sigma}\right]$	$\frac{\exp\left[-\frac{1}{2}\left(\frac{\ln x - \mu}{\sigma}\right)^2\right]}{x(2\pi)^{1/2}\sigma}$	$\exp(\mu + 0.5\sigma^2)$
$\begin{aligned} & \text{Log} \\ & \text{logistic} \\ & \alpha, \lambda > 0, x \ge 0 \end{aligned}$	$\frac{\alpha x^{\alpha - 1} \lambda}{1 + \lambda x^{\alpha}}$	$\frac{1}{1+\lambda x^{\alpha}}$	$\frac{\alpha x^{\alpha-1} \lambda}{[1+\lambda x^{\alpha}]^2}$	$\frac{\pi \operatorname{Csc}(\pi/\alpha)}{\alpha \lambda^{1/\alpha}}$ if $\alpha > 1$
Normal $\sigma > 0,$ $-\infty < x < \infty$	$\frac{f(x)}{S(x)}$	$1 - \Phi\left[\frac{x - \mu}{\sigma}\right]$	$\frac{\exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]}{(2\pi)^{1/2}\sigma}$	μ
Exponential power $\alpha, \lambda > 0, x \ge 0$	$\alpha \lambda^{\alpha} x^{\alpha-1} \exp\{[\lambda x]^{\alpha}\}$	$\exp\{1-\exp[(\lambda x)^{\alpha}]\}$	$\alpha e \lambda^{\alpha} x^{\alpha-1} \exp[(\lambda x)^{\alpha}] - \exp\{\exp[(\lambda x)^{\alpha}]\}$	$\int_0^\infty S(x)dx$
Gompertz $\theta, \alpha > 0, x \ge 0$	$\theta e^{\alpha x}$	$\exp\left[\frac{\theta}{\alpha}(1-e^{\alpha x})\right]$	$\theta e^{\alpha x} \exp\left[\frac{\theta}{\alpha}(1-e^{\alpha x})\right]$	$\int_0^\infty S(x)dx$
Inverse Gaussian $\lambda \ge 0, x \ge 0$	$\frac{f(x)}{S(x)}$	$\Phi\left[\left(\frac{\lambda}{x}\right)^{1/2}\left(1-\frac{x}{\mu}\right)\right] - e^{2\lambda/\mu}\Phi\left\{-\left[\frac{\lambda}{x}\right]^{1/2}\left(1+\frac{x}{\mu}\right)\right\}$	$\left(\frac{\lambda}{2\pi x^3}\right)^{1/2} \exp\left[\frac{\lambda(x-\mu^2)}{2\mu^2 x}\right]$	μ
Pareto $\theta > 0, \lambda > 0$ $x \ge \lambda$	$\frac{\theta}{x}$	$\frac{\lambda^{\theta}}{x^{\theta}}$	$\frac{\theta \lambda^{\theta}}{x^{\theta+1}}$	$\frac{\theta\lambda}{\theta-1}$ if $\theta>1$
Generalized gamma $\lambda > 0, \alpha > 0,$ $\beta > 0, x \ge 0$	$\frac{f(x)}{S(x)}$	$1 - I[\lambda x^{\alpha}, \boldsymbol{\beta}]$	$\frac{\alpha\lambda^{\beta}x^{\alpha\beta-1}\exp(-\lambda x^{\alpha})}{\Gamma(\beta)}$	$\int_0^\infty S(x)dx$

^{*} $I(t, \boldsymbol{\beta}) = \int_0^t u^{\boldsymbol{\beta} - 1} \exp(-u) du / \Gamma(\boldsymbol{\beta}).$