1 Pumping lemma

Let L be a regular language. Then there exists some positive integer n such that for every w in L with length at least N we can decompose w into 3 strings, w = xyz, such that :

- $y \neq \lambda$
- $|xy| \leq n$
- for every $k \ge 0$ the string xy^kz is also in L

1.1 Example

Consider: $L_{eq} = w \in 0, 1 * | w \text{ has an equal number of } 0s \text{ and } 1s$

Claim: L_{eq} is not regular

Proof: The proof is by contradiction. Assume that L_{eq} is regular and let n be the positive integer that exists according to the pumping lemma.

We pick a string w in L_{eq} , namely $w = 0^n 1^n$. Clearly $|w| \ge n$ so by the pumping lemma w=xyz such that $|xy| \le n$ and $y \ne \lambda$

We can deduce from this that xy is made up entirely of 0s, and hence y consists of one or more 0s.

By the pumping lemma xy^2 must be in the language but this equals 0^p1^n , where p > n so there are more 0s than 1s and therefore it isnt in the language and our assumption that L_{eq} is regular must be incorrect.

1.2 Boilerplate

Proof: The proof is by contradiction. Assume that L_{ww} is regular and let n be the positive integer that exists according to the pumping lemma.

We pick a string w in L_{ww} , namely w = . Clearly $|w| \ge n$ so by the pumping lemma w = xyz, such that $|xy| \le n$ and $y \ne \lambda$

We can deduce from this that xy is , and hence that y consists of

By the pumping lemma, xyz must be in the language but this quals and therefore isnt in the language.

Hence we have a contradiction and our assumption that L_{ww} is regular must be wrong.