UFRGS - INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Departamento de Matemática Pura e Aplicada MAT01168 - Turma D - 2023/2Prova da área IIa

2	4	Total

Nome:	Cartão:	

Regras Gerais:

- $\bullet\,$ Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.
- Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- Devolva o caderno de questões preenchido ao final da prova.

Regras para as questões abertas:

- Seja sucinto, completo e claro.
- $\bullet\,$ Justifique to do procedimento usado.
- Indique identidades matemáticas usadas, em especial, itens da tabela.
- Use notação matemática consistente.

Cartao:				
Identidades:				
$\operatorname{sen}(x) = \frac{e^{ix} - e^{-ix}}{2i}$	$\cos(x) = \frac{e^{ix} + e^{-ix}}{2}$			
$\operatorname{senh}(x) = \frac{e^x - e^{-x}}{2}$	$\cosh(x) = \frac{e^x + e^{-x}}{2}$			
$(a+b)^n = \sum_{j=0}^{\infty} {n \choose j} a^{n-j} b^j, {n \choose j} = \frac{n!}{j!(n-j)!}$				
$\operatorname{sen}(x+y) = \operatorname{sen}(x)\cos(y) + \operatorname{sen}(y)\cos(x)$				
$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$				

Propriedades:

1	Linearidade	$\mathcal{L}\left\{\alpha f(t) + \beta g(t)\right\} = \alpha \mathcal{L}\left\{f(t)\right\} + \beta \mathcal{L}\left\{g(t)\right\}$
2	Transformada da derivada	$\mathcal{L}\left\{f'(t)\right\} = s\mathcal{L}\left\{f(t)\right\} - f(0)$ $\mathcal{L}\left\{f''(t)\right\} = s^2\mathcal{L}\left\{f(t)\right\} - sf(0) - f'(0)$
3	Deslocamento no eixo s	$\mathcal{L}\left\{e^{at}f(t)\right\} = F(s-a)$
4	Deslocamento no eixo t	$\mathcal{L}\left\{u(t-a)f(t-a)\right\} = e^{-as}F(s)$ $\mathcal{L}\left\{u(t-a)\right\} = \frac{e^{-as}}{s}$
5	Transformada da integral	$\mathcal{L}\left\{\int_0^t f(\tau)d\tau\right\} = \frac{F(s)}{s}$
6	Filtragem da Delta de Dirac	$\int_{-\infty}^{\infty} f(t)\delta(t-a)dt = f(a)$
7	Transformada da Delta de Dirac	$\mathcal{L}\left\{\delta(t-a)\right\} = e^{-as}$
8	Teorema da Convolução	$\mathcal{L}\left\{(f*g)(t)\right\} = F(s)G(s),$ onde $(f*g)(t) = \int_0^t f(\tau)g(t-\tau)d\tau$
9	Transformada de funções periódicas	$\mathcal{L}\left\{f(t)\right\} = \frac{1}{1 - e^{-sT}} \int_0^T e^{-s\tau} f(\tau) d\tau$
10	Derivada da transformada	$\mathcal{L}\left\{tf(t)\right\} = -\frac{dF(s)}{ds}$
11	Integral da transformada	$\mathcal{L}\left\{\frac{f(t)}{t}\right\} = \int_{s}^{\infty} F(\hat{s})d\hat{s}$

Séries:
$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 \cdots, -1 < x < 1$
$\frac{x}{(1-x)^2} = \sum_{n=1}^{\infty} nx^n = x + 2x^2 + 3x^3 + \dots, -1 < x < 1$
$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots, -\infty < x < \infty$
$\ln(1+x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1}, -1 < x < 1$
$\arctan(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}, -1 < x < 1$
$\operatorname{sen}(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}, -\infty < x < \infty$
$\cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}, -\infty < x < \infty$
$senh(x) = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}, -\infty < x < \infty$
$\cosh(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}, -\infty < x < \infty$
$(1+x)^m = 1 + \sum_{n=1}^{\infty} \frac{m(m-1)\cdots(m-n+1)}{n!} x^n,$
$-1 < x < 1, m \neq 0, 1, 2, \dots$

Funções especiais:

Função Gamma	$\Gamma(k) = \int_0^\infty x^{k-1} e^{-x} dx$
Propriedade da Função Gamma	$\Gamma(k+1) = k\Gamma(k), k > 0$ $\Gamma(n+1) = n!, n \in \mathbb{N}$
Função de Bessel modificada de ordem ν	$I_{\nu}(x) = \sum_{m=0}^{\infty} \frac{1}{m!\Gamma(m+\nu+1)} \left(\frac{x}{2}\right)^{2m+\nu}$
Função de Bessel de ordem 0	$J_0(x) = \sum_{m=0}^{\infty} \frac{(-1)^m}{m!^2} \left(\frac{x}{2}\right)^{2m}$
Integral seno	$\operatorname{Si}(t) = \int_0^t \frac{\operatorname{sen}(x)}{x} dx$

Integrais:

Integrais:
$\int xe^{\lambda x} dx = \frac{e^{\lambda x}}{\lambda^2}(\lambda x - 1) + C$
$\int x^2 e^{\lambda x} dx = e^{\lambda x} \left(\frac{x^2}{\lambda} - \frac{2x}{\lambda^2} + \frac{2}{\lambda^3} \right) + C$
$\int x^n e^{\lambda x} dx = \frac{1}{\lambda} x^n e^{\lambda x} - \frac{n}{\lambda} \int x^{n-1} e^{\lambda x} dx + C$
$\int x \cos(\lambda x) dx = \frac{\cos(\lambda x) + \lambda x \sin(\lambda x)}{\lambda^2} + C$
$\int x \operatorname{sen}(\lambda x) dx = \frac{\operatorname{sen}(\lambda x) - \lambda x \cos(\lambda x)}{\lambda^2} + C$
$\int e^{\lambda x} \operatorname{sen}(w x) dx = \frac{e^{\lambda x} (\lambda \operatorname{sen}(w x) - w \cos(w x))}{\lambda^2 + w^2}$

Tabela de transformadas de Laplace	Tabela d	e trans	formadas	de	Laplace
------------------------------------	----------	---------	----------	----	---------

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Tabel	a de transformadas de Lapiace:	$f(t) = \mathcal{L}^{-1}\{F(s)\}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$F(s) = \mathcal{L}\{f(t)\}$	$J(t) = \mathcal{L} - \{F(s)\}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1		1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	$\frac{1}{s^n}$, $(n = 1, 2, 3,)$	·
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	$\frac{1}{\sqrt{s}}$,	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	$\frac{1}{s^{\frac{3}{2}}},$	$2\sqrt{\frac{t}{\pi}}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6		$\frac{t^{k-1}}{\Gamma(k)}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	$\frac{1}{s-a}$	e^{at}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8		te^{at}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	$\frac{1}{(s-a)^n}$, $(n=1,2,3)$	$\frac{1}{(n-1)!}t^{n-1}e^{at}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	$\frac{1}{(s-a)^k}, \qquad (k>0)$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	$\frac{s}{(s-a)(s-b)}, \qquad (a \neq b)$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13		$\frac{1}{w}\operatorname{sen}(wt)$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	$\frac{s}{s^2 + w^2}$	$\cos(wt)$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15		$\frac{1}{a}\operatorname{senh}(at)$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	$\frac{s}{s^2 - a^2}$	$\cosh(at)$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	17	$\frac{1}{(s-a)^2 + w^2}$	$\frac{1}{w}e^{at}\operatorname{sen}(wt)$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	18	$\frac{s-a}{(s-a)^2 + w^2}$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	19	1	$\frac{1}{w^2}(1-\cos(wt))$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	1	$\frac{1}{w^3}(wt - \operatorname{sen}(wt))$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	21	$\frac{1}{(s^2+w^2)^2}$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	22		$\frac{t}{2w}\operatorname{sen}(wt)$
$(a^{2} \neq b^{2})$ $\frac{1}{(s^{4} + 4a^{4})}$ $\frac{1}{(s^{4} + 4a^{4})}$ $\frac{1}{4a^{3}}[\operatorname{sen}(at) \operatorname{cosh}(at) - \operatorname{cos}(at) \operatorname{senh}(at)]$ 26 $\frac{s}{(s^{4} + 4a^{4})}$ $\frac{1}{2a^{2}} \operatorname{sen}(at) \operatorname{senh}(at))$ 27 $\frac{1}{(s^{4} - a^{4})}$ $\frac{1}{2a^{3}}(\operatorname{senh}(at) - \operatorname{sen}(at))$	23	$\frac{s^2}{(s^2+w^2)^2}$	$\frac{1}{2w}(\operatorname{sen}(wt) + wt \cos(wt))$
$-\cos(at) \operatorname{senh}(at)]$ $26 \qquad \frac{s}{(s^4 + 4a^4)} \qquad \frac{1}{2a^2} \operatorname{sen}(at) \operatorname{senh}(at))$ $27 \qquad \frac{1}{(s^4 - a^4)} \qquad \frac{1}{2a^3} (\operatorname{senh}(at) - \operatorname{sen}(at))$	24		$\frac{1}{b^2 - a^2}(\cos(at) - \cos(bt))$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	25	$\frac{1}{(s^4 + 4a^4)}$	100
$\frac{1}{(s^4 - a^4)} \qquad \frac{1}{2a^3} (\operatorname{senh}(at) - \operatorname{sen}(at))$	26	$\frac{s}{(s^4 + 4a^4)}$	1
	27	1	
	28	$\frac{s}{(s^4 - a^4)}$	$\frac{1}{2a^2}(\cosh(at) - \cos(at))$

	$F(s) = \mathcal{L}\{f(t)\}\$	$f(t) = \mathcal{L}^{-1}\{F(s)\}$
29	$\sqrt{s-a} - \sqrt{s-b}$	$f(t) = \mathcal{L}^{-1}\{F(s)\}$ $\frac{1}{2\sqrt{\pi t^3}}(e^{bt} - e^{at})$
30	$\frac{1}{\sqrt{s+a}\sqrt{s+b}}$	$e^{\frac{-(a+b)t}{2}}I_0\left(\frac{a-b}{2}t\right)$
31	$\frac{1}{\sqrt{s^2 + a^2}}$	$J_0(at)$
32	$\frac{s}{(s-a)^{\frac{3}{2}}}$	$\frac{1}{\sqrt{\pi t}}e^{at}(1+2at)$
33	$\frac{1}{(s^2 - a^2)^k}, \qquad (k > 0)$	$\frac{\sqrt{\pi}}{\Gamma(k)} \left(\frac{t}{2a}\right)^{k-\frac{1}{2}} I_{k-\frac{1}{2}}(at)$
34	$\frac{1}{s}e^{-\frac{k}{s}}, \qquad (k>0)$	$J_0(2\sqrt{kt})$
35	$\frac{1}{\sqrt{s}}e^{-rac{k}{s}}$	$\frac{1}{\sqrt{\pi t}}\cos(2\sqrt{kt})$
36	$\frac{1}{s^{\frac{3}{2}}}e^{\frac{k}{s}}$	$\frac{1}{\sqrt{\pi t}} \operatorname{senh}(2\sqrt{kt})$
37	$e^{-k\sqrt{s}}, \qquad (k>0)$	$\frac{k}{2\sqrt{\pi t^3}}e^{-\frac{k^2}{4t}}$
38	$\frac{1}{s}\ln(s)$	$-\ln(t) - \gamma, \qquad (\gamma \approx 0, 5772)$
39	$\ln\left(\frac{s-a}{s-b}\right)$	$\frac{1}{t}\left(e^{bt} - e^{at}\right)$
40	$\ln\left(\frac{s^2+w^2}{s^2}\right)$	$\frac{2}{t}\left(1-\cos(wt)\right)$
41	$\ln\left(\frac{s^2 - a^2}{s^2}\right)$	$\frac{2}{t}\left(1-\cosh(at)\right)$
42	$\tan^{-1}\left(\frac{w}{s}\right)$	$\frac{1}{t}\operatorname{sen}(wt)$
43	$\frac{1}{s}\cot^{-1}(s)$	$\mathrm{Si}\left(t ight)$
44	$\frac{1}{s} \tanh\left(\frac{as}{2}\right)$	Onda quadrada $f(t) = \begin{cases} 1, & 0 < t < a \\ -1, & a < t < 2a \end{cases}$ $f(t+2a) = f(t), t > 0$
45	$\frac{1}{as^2}\tanh\left(\frac{as}{2}\right)$	Onda triangular $f(t) = \begin{cases} \frac{t}{a}, & 0 < t < a \\ -\frac{t}{a} + 2, & a < t < 2a \end{cases}$ $f(t+2a) = f(t), t > 0$
46	$\frac{w}{(s^2+w^2)\left(1-e^{-\frac{\pi}{w}s}\right)}$	Retificador de meia onda $f(t) = \begin{cases} sen(wt), & 0 < t < \frac{\pi}{w} \\ 0, & \frac{\pi}{w} < t < \frac{2\pi}{w} \end{cases}$ $f\left(t + \frac{2\pi}{w}\right) = f(t), t > 0$
47	$\frac{w}{s^2 + w^2} \coth\left(\frac{\pi s}{2w}\right)$	Retificador de onda completa $f(t) = \operatorname{sen}(wt) $
48	$\frac{1}{as^2} - \frac{e^{-as}}{s(1 - e^{-as})}$	Onda dente de serra $f(t) = \frac{t}{a}, \qquad 0 < t < a$ $f(t) = f(t-a), t > a$

• Questão 1 (2.5 pontos) Resolva o seguinte problema de valor inicial:

$$\begin{cases} y''(t) + 16y(t) = \cos(4t) - 4\sin(4t) \\ y(0) = 1 \\ y'(0) = -4 \end{cases}$$

Solução: —Aplicamos a Transformada de Laplace para obter

$$s^{2}Y(s) - sy(0) - y'(0) + 16Y(s) = \frac{s - 16}{s^{2} + 16},$$

Impomos as condições iniciais para obter

$$(s^{2} + 16)Y(s) - s + 4 = \frac{s - 16}{s^{2} + 16}.$$

Logo,

$$Y(s) = \frac{s-4}{s^2+16} + \frac{s-16}{(s^2+16)^2}.$$

Calculamos a transformada inversa usando os itens 13, 14, 21 e 22 da tabela:

$$y(t) = \cos(4t) - \sin(4t) + \frac{t}{8}\sin(4t) - \frac{16}{128}\left(\sin(4t) - 4t\cos(4t)\right)$$

$$= \cos(4t) - \sin(4t) + \frac{t}{8}\sin(4t) - \frac{1}{8}\sin(4t) + \frac{t}{2}\cos(4t)$$

$$= \cos(4t) - \frac{9}{8}\sin(4t) + \frac{t\sin(4t)}{8} + \frac{t\cos(4t)}{2}$$

• Questão 2 (3.0 pontos) Considere o oscilador harmônico abaixo

$$\begin{cases} y''(t) + \gamma y'(t) + 25y(t) = \delta(t) \\ y(0) = 0 \\ y'(0) = 0 \end{cases}$$

- a) (1.0 ponto) Resolva o problema para $\gamma = 6$.
- b) (0.5 ponto) Calcule o valor de γ para que o oscilador fique criticamente amortecido.
- c) (1.0 ponto) Resolva o problema para γ do item b).
- d) (0.5 ponto) Calcule y(0) e y'(0) para as soluções dos itens a) e c) e verifique que aparentemente as soluções não satisfazem as condições iniciais. Explique o motivo.

Solução:

a) O problema com $\gamma = 6$ fica

$$\begin{cases} y''(t) + 6y'(t) + 25y(t) = \delta(t) \\ y(0) = 0 \\ y'(0) = 0 \end{cases}$$

Resolvemos por transformada de Laplace:

onde usamos o item 17 da tabela.

- b) $\Delta = \gamma^2 100 = 0$ implica em $\gamma = 10$.
- c) O problema com $\gamma = 10$ fica

$$\begin{cases} y''(t) + 10y'(t) + 25y(t) = \delta(t) \\ y(0) = 0 \\ y'(0) = 0 \end{cases}$$

Resolvemos por transformada de Laplace:

onde usamos o item 9 da tabela.

d) Observemos que, em ambos os itens, temos y(0) = 0 e $y'(0) \neq 0$. Parece que as soluções não satisfazem as condições iniciais. Mas, na verdade, o termo forçante ser $\delta(t)$ provoca uma descontinuidade na origem. Para representar essas descontinuidades, podemos escrever as duas soluções da forma:

$$y(t) = u(t)\frac{e^{-3t}}{4}\operatorname{sen}(4t)$$

е

$$y(t) = u(t)te^{-5t},$$

respectivamente.

• Questão 3 (2.5 pontos) Resolva a seguinte equação integro-diferencial:

$$\begin{cases} x'(t) - 6x(t) + 11 \int_0^t x(\tau)d\tau - 6 \int_0^t (t - \tau)x(\tau)d\tau = 2u(t) \\ x(0) = 0 \end{cases}$$

 $[Dica: (s-1)(s-2)(s-3) = s^3 - 6s^2 + 11s - 6]$

Solução: Aplicamos a transformada de Laplace nas duas equações para obter

$$sX(s) - x(0) - 6X(s) + 11\frac{X(s)}{s} - 6\frac{X(s)}{s} = \frac{2}{s}$$

$$\left(s - 6 + \frac{11}{s} - \frac{6}{s^2}\right)X(s) = \frac{2}{s}$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$\left(s^3 - 6s^2 + 11s - 6\right)X(s) = \frac{2s^2}{s}.$$

Assim, usamos o método de frações parciais para obter:

$$X(s) = \frac{2s}{(s-1)(s-2)(s-3)}$$

$$= \frac{A}{s-1} + \frac{B}{s-2} + \frac{C}{s-3}$$

$$= \frac{A(s-2)(s-3) + B(s-1)(s-3) + C(s-1)(s-2)}{(s-1)(s-2)(s-3)}$$

$$= \frac{(A+B+C)s^2 + (-5A-4B-3C)s + 6A+3B+2C}{(s-1)(s-2)(s-3)}$$

Logo

$$\begin{cases} A+B+C=0\\ -5A-4B-3C=2\\ 6A+3B+2C=0 \end{cases}$$

Somando as três equações, temos 2A = 2, ou seja, A = 1. A primeira equação nos dá B = -C - 1 e a segunda nos dá -5 - 4(-C - 1) - 3C = 2, ou seja, C = 3. Finalmente, B = -4. Portanto,

$$X(s) = \frac{1}{s-1} - \frac{4}{s-2} + \frac{3}{s-3},$$

e, pelo item 7 da tabela,

$$x(t) = e^t - 4e^{2t} + 3e^{3t}.$$

• Questão 4 (2.0 pontos) Considere a função

$$f(t) = tu(t) + (at^2 + t + b)u(t - 2) + (t^2 - 2t - 2)u(t - 3).$$

Sabendo que f(t) é contínua no ponto t=2 e que f(t) vale 0 para todo t maior ou igual a 3, responda os itens abaixo.

- a) (1.0 ponto) Calcule os valores de a e b e esboce o gráfico de f(t).
- b) (1.0 ponto) Calcule $F(s) = \mathcal{L}\{f(t)\}\$ e $G(s) = \mathcal{L}\{f'(t)\}\$.

Solução:

a) Como f(t) é contínua em t=2, temos 2=2+4a+2+b. Também, como f(t)=0 quando t>3, temos 3+9a+3+b+9-6-2=0. Assim,

$$\begin{cases} 4a+b=-2\\ 9a+b=-7 \end{cases}$$

Temos a = -1 e b = 2;

b) Observe que

$$f(t) = tu(t) + (-t^2 + t + 2)u(t - 2) + (t^2 - 2t - 2)u(t - 3),$$

implica em

$$f'(t) = t\delta(t) + u(t) + (-t^2 + t + 2)\delta(t - 2) + (-2t + 1)u(t - 2) + (t^2 - 2t - 2)\delta(t - 3) + (2t - 2)u(t - 3) = u(t) + (-2t + 1)u(t - 2) + \delta(t - 3) + (2t - 2)u(t - 3) = u(t) - 2(t - 2)u(t - 2) - 3u(t - 2) + 2(t - 3)u(t - 3) + 4u(t - 3) + \delta(t - 3)$$

Assim,

$$G(s) = \frac{s - (2+3s)e^{-2s} + (2+4s+s^2)e^{-3s}}{s^2}$$

e, pela Propriedade da transformada da derivada,

$$F(s) = \frac{s - (2+3s)e^{-2s} + (2+4s+s^2)e^{-3s}}{s^3}$$