Komputerowa Analiza Danych Doświadczalnych

Laboratorium 9. (04.05.2020) - mgr inż. Paweł Szymański (kontakt: pawel.szymanski.dokt@pw.edu.pl)

Zadanie 9 (0-5 pkt)

Część 1: **Rozkłady** χ^2 (2.5 pkt)

Napisać skrypt rysujący wykresy rozkładu χ^2 oraz jego dystrybuantę (polecam metodę DrawIntegral) dla liczby swobody: n = 5-50:

$$\chi_n^2(x) = \frac{1}{2^{\frac{n}{2}} \cdot \Gamma(\frac{n}{2})} x^{\frac{n}{2} - 1} e^{-\frac{x}{2}}$$

Część 2: Dopasowanie funkcji Gaussa (2.5 pkt)

Napisać skrypt dokonujący splotu n rozkładów jednorodnych U(0, 1). Liczbę n należy wyznaczyć jako najmniejszą liczbę dodanych rozkładów dla której wartość χ^2/NDF , obliczona na podstawie dopasowania funkcji Gaussa, jest mniejsza od 1.

Przetestować splot od 2 do 11 rozkładów jednorodnych, generując N=10000 punktów dla każdego splotu.

*przydatne będą metody *Fit* i *GetFunction* klasy TH1D oraz *GetChisquare* i *GetNDF* klasy TF1

For n=2	chi2/ndf: 85.7269 / 17 5.04276
For n=3	chi2/ndf: 177.297 / 27 6.56657
For n=4 20	chi2/ndf:493.67115/034 2.75503 70
For n=5	chi2/ndf: 45.4621 / 40 1.13655
For n=6	chi2/ndf: 63.3923 / 44 1.44073
For n=7	chi2/ndf: 45.2887 / 48 0.943515
For n=8	chi2/ndf: 68.8612 / 55 1.25202
For n=9	chi2/ndf: 60.9901 / 57 1.07
For n=10	chi2/ndf: 63.5562 / 61 1.04191
For n=11	chi2/ndf: 57.5357 / 66 0.871753