Sketch 2 Photo

팀: GAN 때문이야

팀장 신여명 홍세영, 박은지, 오수연

GAN 때문이야

팀원 소개

아이디어 구현기술 결과 및 시연

아이디어

- GAN를 이용한 이미지 이미지 번역
- 모델이 유저가 그린 스케치를 보고 실제 사진처럼 변환한 이미지를 출력할 수 있을까?

개발환경

- 프로젝트 일정

참조

관련 논문

- Sketch to Image Translation using GANs by Lisa Fan
- Image-to-Image Translation with Conditional Adversarial
 Networks by Berkeley AI Research (BAIR) Laboratory

Tensorflow 공식 문서의 Pix2Pix

데이터: Georgia Tech의 sketchy 예제

- 스케치/사진 데이터 쌍

데이터 수집

- Georgia Tech의 스케치-사진 페어(쌍) 데이터
- 125개의 카테고리
- 12,500개의 사진
- 75,471개의 사진의 스케치

Image segmentation

default 배경 O

● 입력 사진을 주요 객체만 포함하도 록 자르면 높은 품질의 출력 이미지 가 생성되지 않을까 추측

훈련 데이터 셋

● 4개의 카테고리 선정

○ 곰인형, 딸기, 찻주전자,자동차

● 최종 training set

- 스케치 : 9148장 (256*256*3)
- 사진 : 9148장 (256*256*3)

구현기술

- Pix2Pix
 - O Image-to-Image Translation with Conditional Adversarial Networks (Pix2Pix), Phillip Isola 등, 2017
 - Conditional GAN에 기반을 둔 image-to-image translation model
 - 기본적으로 DCGAN의 모델을 사용

Generative Adversarial Networks (GAN, 생성적 적대 신경망)

Deep **Convolutional** Generative Adversarial Networks

(DCGAN)

Conditional Generative Adversarial Nets (cGAN)

Image-to-Image Translation with

Conditional Adversarial Networks

(Pix2Pix)

구현기술

DCGAN : 기존의 GAN에 CNN을 적용하여 네트워크 구조를 발전시 켜 최초로 고화질 영상을 생성

------*구현기술*

In an (Unconditioned) Generative Model, there is *no control* on *modes of the data* being generated

Generative Adversarial Networks (GAN, 생성적 적대 신경망) Deep Convolutional Generative Adversarial Networks (DCGAN) **Conditional** Generative Adversarial Nets (cGAN) Image-to-Image Translation with **Conditional** Adversarial Networks (Pix2Pix)

cGAN : 클래스 라벨이나 문장 특징으로 조건을 달아서 해당 이미지를 생성

구현기술

Generative Adversarial Networks (GAN, 생성적 적대 신경망)

Deep **Convolutional** Generative
Adversarial Networks
(DCGAN)

Conditional Generative Adversarial Nets (cGAN)

Image-to-Image Translation with

Conditional Adversarial Networks

(Pix2Pix)

구현기술

Both the Generator and Discriminator are conditioned on some extra information **y**

where y: label or "data from other modalities"

→ Pix2Pix 로 발전

Generative Adversarial Networks (GAN, 생성적 적대 신경망)

Deep **Convolutional** Generative
Adversarial Networks
(DCGAN)

Conditional Generative Adversarial Nets (cGAN)

Image-to-Image Translation with

Conditional Adversarial Networks

(Pix2Pix)

Pix2Pix 네트워크 구조

결국 cGAN에서 Discriminator는 (data x, condition data y) pair가 (data G(z), condition data y) pair와 matching이 되는지를 판단

Pix2Pix 네트워크 구조

Generative network G 생성자

생성자 (Generator)

- input과 output이 전부 이미지
 - 사이즈가 줄어들었다가 다시 커지는 구조 (Encoder Decoder)
 - 중앙의 Feature Dimension이 input보다 작기 때문에 정보의 손실이 발생
- U Net 구조 (skip-connection 추가된 Encoder Decoder 형태의 네트워크)
 - Decoder의 Layer들에게 정보가 손실 되기 전 Encoder Layer의 Feature들을 제공하여 참고하게 함
 - i 번째 레이어와 n-i 번째 레이어를 연결 (concatenate)
 - encoder -> decoder 직접 정보를 넘기기 때문에 훨씬 선명한 결과

U - Net (skip-connection)

U - Net (skip-connection)

Layer (type)	Output Shape	Param #	Connected to	conv2d_transpose (Conv2DTranspo	(None, 2, 2, 512) 419	94816 activation_1[0][0]
input_3 (InputLayer)	[(None 256, 256, 3) 0				
conv2d_6 (Conv2D)	(None, 128, 128, 64)) 3136	input_3[0][0]			
leaky_re_lu_5 (LeakyReLU)	(None, 128, 128, 64) 0	conv2d_6[0][0]	activation_6 (Activation)	(None, 32, 32, 512) 0	concatenate_5[0][0]
conv2d_7 (Conv2D)	(None, 64, 64, 128)	131200	leaky_re_lu_5[0][0]	conv2d_transpose_5 (Conv2DTrans	(None, 64, 64, 128) 104	activation_6[0][0]
batch_normalization_4 (BatchNor	(None, 64, 64, 128)	512	conv2d_7[0][0]	batch_normalization_15 (BatchNo	(None, 64, 64, 128) 512	conv2d_transpose_5[0][0]
leaky_re_lu_6 (LeakyReLU)	(None, 64, 64, 128)	0	batch_normalization_4[0][0]	concatenate_6 (Concatenate)	(None, 64, 64, 256) 0	batch_normalization_15[0][0] leaky_re_lu_6[0][0]
conv2d_8 (Conv2D)	(None, 32, 32, 256)	524544	leaky_re_lu_6[0][0]			
				activation_7 (Activation)	(None, 64, 64, 256) 0	concatenate_6[0][0]
				conv2d_transpose_6 (Conv2DTrans	(None, 128, 128, 64) 262	2208 activation_7[0][0]
leaky_re_lu_10 (LeakyReLU)	(None, 4, 4, 512)	0	batch_normalization_8[0][0]	batch_normalization_16 (BatchNo	(None, 128, 128, 64) 256	conv2d_transpose_6[0][0]
conv2d_12 (Conv2D)	(None, 2, 2, 512)	4194816	leaky_re_lu_10[0][0]	concatenate_7 (Concatenate)		
batch_normalization_9 (BatchNor	(None, 2, 2, 512)	2048	conv2d_12[0][0]			leaky_re_lu_5[0][0]
leaky_re_lu_11 (LeakyReLU)	(None, 2, 2, 512)	0	batch_normalization_9[0][0]	activation_8 (Activation)	(None, 128, 128, 128 0	concatenate_7[0][0]
conv2d_13 (Conv2D)	(None, 1, 1, 512)	4194816	leaky_re_lu_11[0][0]	conv2d_transpose_7 (Conv2DTrans	(None, 256, 256, 3) 614	47 activation_8[0][0]
activation_1 (Activation)	(None, 1, 1, 512)	0	conv2d_13[0][0]	activation_9 (Activation)	(None 256, 256, 3) 0	conv2d_transpose_7[0][0]

판별자 (Discriminator)

- patchGAN의 구조를 사용
- 기존의 DCGAN과는 다르게 이미지의 작은 patch에 대해서 판단하여 각 patch 별로의 real/fake 여부 를 판단
- 이미지 전체를 연산하는 것보다 연산의 수가 적고 빠름
- generator가 각각의 이미지 patch 조각들의 진위여부를 속이기 위해서 학습
 - output image가 더 high resolution (고해상도) 을 가지게 됨

patchGAN

Discriminator receptive field	Per-pixel acc.	Per-class acc.	Class IOU
1×1	0.44	0.14	0.10
16×16	0.62	0.20	0.16
70×70	0.63	0.21	0.16
256×256	0.47	0.18	0.13

- 70x70의 patch size로 나누어 진위여부를 판단한 경우,
- 기존의 1x1의 pixelGAN / 286x286의 imageGAN 구조보다 더 선명한 이미지를 만들어낸다

Code Summary

- DCGAN 연구진들이 다양한 실험을 통해 알아낸 최적의 결과를 내는 Generator 네트워크 구조
- 1. Max pooling layer를 없애고 strided convolution을 통해 feature map의 크기를 조절한다.
- 2. Batch Normalization을 적용한다.
- 3. Fully connected hidden layer를 제거한다.
- 4. Generator의 마지막 활성함수로 Tanh를 사용하고, 나머지는 ReLU를 사용한다.
- 5. Discriminator의 활성함수로 LeakyReLU를 사용한다.

Architecture guidelines for stable Deep Convolutional GANs

- Replace any pooling layers with strided convolutions (discriminator) and fractional-strided convolutions (generator).
- Use batchnorm in both the generator and the discriminator.
- Remove fully connected hidden layers for deeper architectures.
- Use ReLU activation in generator for all layers except for the output, which uses Tanh.
- Use LeakyReLU activation in the discriminator for all layers.

```
# 생성자 모델
def define generator(image shape=(256,256,3)):
    init = RandomNormal(stddev=0.02)
    in image = Input(shape=image shape)
    # encoder model
    e1 = define encoder_block(in_image, 64, batchnorm=False)
    e2 = define encoder block(e1, 128)
    e3 = define encoder block(e2, 256)
    e4 = define encoder block(e3, 512)
    e5 = define encoder block(e4, 512)
    e6 = define encoder block(e5, 512)
    e7 = define encoder block(e6, 512)
    # 병목현상방지
    b = Conv2D(512, (4,4), strides=(2,2), padding='same', kernel initializer=init)(e7)
    b = Activation('relu')(b)
    # decoder model
    d1 = decoder block(b, e7, 512)
    d2 = decoder block(d1, e6, 512)
    d3 = decoder block(d2, e5 512)
    d4 = decoder block(d3, e4, 512, dropout=False)
    d5 = decoder block(d4, e3, 256, dropout=False)
    d6 = decoder block(d5, e2, 128, dropout=False)
    d7 = decoder block(d6, e1, 64, dropout=False)
    # output
    g = Conv2DTranspose(3, (4,4), strides=(2,2), padding='same', kernel initializer=init)(d7)
    out image = Activation('tanh')(g)
    # define model
    model = Model(in image, out image)
    return model
```

```
# 생성자 모델
def define generator(image shape=(256,256,3)):
    init = RandomNormal(stddev=0.02)
    in image = Input(shape=image shape)
    # encoder model
    e1 = define_encoder_block(in_image, 64, batchnorm=False)
    e2 = define encoder block(e1, 128)
    e3 = define encoder block(e2, 256)
    e4 = define_encoder_block(e3, 512)
    e5 = define encoder block(e4, 512)
    e6 = define encoder block(e5, 512)
    e7 = define encoder block(e6, 512)
    # 병목현상방지
    b = Conv2D(512, (4,4), strides=(2,2), padding='same', kernel_initializer=init)(e7)
    b = Activation('relu')(b)
    # decoder model
    d1 = decoder block(b, e7, 512)
    d2 = decoder block(d1, e6, 512)
    d3 = decoder block(d2, e5, 512)
    d4 = decoder block(d3, e4, 512, dropout=False)
    d5 = decoder block(d4, e3, 256, dropout=False)
    d6 = decoder block(d5, e2, 128, dropout=False)
    d7 = decoder block(d6, e1, 64, dropout=False)
    # output
    g = Conv2DTranspose(3, (4,4), strides=(2,2), padding='same', kernel initializer=init)(d7)
    out image = Activation('tanh')(g)
    # define model
    model = Model(in image, out image)
    return model
```

```
# Encoder (downsampling)
def encoder layer(layer in, n filters, batchnorm=True):
    # 가중치 초기화
    init = RandomNormal(stddev=0.02)
    # layer 추가
    g = Conv2D(n_filters, (4,4), strides=(2,2), padding='same',
               kernel initializer=init)(layer in)
    # BatchNormalization이 True일 경우에만 추가
    if batchnorm:
        g = BatchNormalization()(g, training=True)
    g = LeakyReLU(alpha=0.2)(g)
    return g
# Decoder (upsampling)
def decoder_layer(layer_in, skip_in, n_filters, dropout=True):
   # 가중치 초기화
   init = RandomNormal(stddev=0.02)
   # layer 추가
   g = Conv2DTranspose(n filters, (4,4), strides=(2,2), padding='same',
                     kernel initializer=init)(layer in)
   g = BatchNormalization()(g, training=True)
   # Dropout이 True일 경우에만 추가
   if dropout:
       g = Dropout(0.5)(g, training=True)
   # Encoder layer에서 Activation 거치기 전의 output 복사 & merge
   g = Concatenate()([g, skip_in])
   g = Activation('relu')(g)
   return g
```

```
# 생성자 모델
def define_generator(image_shape=(256,256
                                     input data를 normalize 해주는 것처럼
   init = RandomNormal(stddev=0.02)
                                     은닉층에서도 학습이 잘되게
   in image = Input(shape=image shape)
   # encoder model
                                     |입력값을 normalize해 입력 분포를 조정|
   e1 = define encoder block(in image, 64, batchnorm=False)
   e2 = define encoder block(e1, 128)
   e3 = define encoder block(e2, 256)
                                     학습 편의성이 개선되어 수렴 속도가 빨라지고,
   e4 = define_encoder_block(e3, 512)
                                     Local Optima를 피할 가능성이 높아진다
   e5 = define encoder block(e4, 512)
   e6 = define encoder block(e5, 512)
                                     => 학습과정 안정화
   e7 = define encoder block(e6, 512)
   # 병목현상방지
   b = Conv2D(512, (4,4), strides=(2,2),
                                     Generator의 Output Layer와 Discriminator의 Input
   b = Activation('relu')(b)
   # decoder model
                                     Layer에는 BN을 적용X => 실제 이미지와는 값의 범
   d1 = decoder block(b, e7, 512)
                                     위가 다름 (정확한 값으로 학습)
   d2 = decoder block(d1, e6, 512)
   d3 = decoder block(d2, e5, 512)
   d4 = decoder block(d3, e4, 512, dropout=False)
   d5 = decoder block(d4, e3, 256, dropout=False)
   d6 = decoder block(d5, e2, 128, dropout=False)
   d7 = decoder block(d6, e1, 64, dropout=False)
   # output
   g = Conv2DTranspose(3, (4,4), strides=(2,2), padding='same', kernel initializer=init)(d7)
   out image = Activation('tanh')(g)
                                                     Dropout은 학습시 노이즈가 되어
   # define model
                                                     고정의 이미지만 생성하는 것을 방
   model = Model(in image, out image)
   return model
                                                     지하는 역할을 함
```

```
# Encoder (downsampling)
def encoder layer(layer in, n filters, batchnorm=True):
    # 가중치 초기화
    init = RandomNormal(stddev=0.02)
    # layer 추가
    g = Conv2D(n_filters, (4,4), strides=(2,2), padding='same',
               kernel initializer=init)(layer in)
    # BatchNormalization에 True의 견유에만 추가
    if batchnorm:
        g = BatchNormalization()(g, training=True)
    g = LeakyReLU(alpha=0.2)(g)
    return g
# Decoder (upsampling)
def decoder_layer(layer_in, skip_in, n_filters, dropout=True):
   # 가중치 초기화
   init = RandomNormal(stddev=0.02)
   # layer 추가
   g = Conv2DTranspose(n_filters, (4,4), strides=(2,2), padding='same',
                     kernel initializer=init)(layer in)
   g = BatchNormalization()(g, training=True)
   # Dropout이 True일 경우에만 추가
   if dropout:
       g = Dropout(0.5)(g, training=True)
   # Encoder layer에서 Activation 거치기 전의 output 복사 & merge
   g = Concatenate()([g, skip_in])
   g = Activation('relu')(g)
   return g
```

```
# 생성자 모델
def define generator(image shape=(256,256,3)):
   init = RandomNormal(stddev=0.02)
   in image = Input(shape=image shape)
   # encoder model
   e1 = define encoder block(in_image, 64, batchnorm=False)
   e2 = define encoder block(e1, 128)
   e3 = define encoder block(e2, 256)
   e4 = define_encoder_block(e3, 512)
                                        ReLU는 generate 부분에서만 권장되고
   e5 = define encoder block(e4, 512)
   e6 = define encoder block(e5, 512)
                                        나머지에서는 ReLU의 변형체인 Leaky ReLU가 권장
   e7 = define encoder block(e6, 512)
   # 병목현상방지
   b = Conv2D(512, (4,4), strides=(2,2), padding='same', kernel initializer=init)(e7)
   b = Activation('relu')(b)
   # decoder model
   d1 = decoder block(b, e7, 512)
   d2 = decoder block(d1, e6, 512)
   d3 = decoder block(d2, e5, 512)
   d4 = decoder block(d3, e4, 512, dropout=False)
   d5 = decoder block(d4, e3, 256, dropout=False)
   d6 = decoder block(d5, e2, 128, dropout=False)
   d7 = decoder block(d6, e1, 64, dropout=False)
   # output
   g = Conv2DTranspose(3, (4,4), strides=(2,2), padding='same', kernel initializer=init)(d7)
   out image = Activation('tanh')(g)
   # define model
                                                            깊은 CNN에서
   model = Model(in_image, out_image)
   return model
                                                            gradient vanishing 문제를 해결
```

```
# Encoder (downsampling)
def encoder layer(layer in, n filters, batchnorm=True):
    # 가중치 초기화
    init = RandomNormal(stddev=0.02)
    # layer 추가
    g = Conv2D(n_filters, (4,4), strides=(2,2), padding='same',
               kernel initializer=init)(layer in)
    # BatchNormalization이 True일 경우에만 추가
    if batchnorm:
        g = BatchNormalization()(g, training=True)
    g = LeakyReLU(alpha=0.2)(g)
    return g
# Decoder (upsampling)
def decoder_layer(layer_in, skip_in, n_filters, dropout=True):
   # 가중치 초기화
   init = RandomNormal(stddev=0.02)
   # layer 추가
   g = Conv2DTranspose(n filters, (4,4), strides=(2,2), padding='same',
                     kernel initializer=init)(layer_in)
   g = BatchNormalization()(g, training=True)
   # Dropout이 True일 경우에만 추가
   if dropout:
       g = Dropout(0.5)(g, training=True)
   # Encoder layer에서 Activation 거치기 전의 output 복사 & merge
   g = Concatenate()([g, skip_in])
   g = Activation('relu')(g)
   return g
```

생성자 활성화 함수 비교 d_loss1 2.0 — d_loss1 d_loss2 d_loss2 1.75 1.75 d_loss1 d_loss2 1.50 1.50 1.5 1.25 1.25 **ELU** encoder - LReLU swish SS 1.0 S 1.00 1.00 decoder - ReLU S 0.75 0.75 0.50 0.50 0.5 0.25 0.25 0.00 0.00 0.0 100 120 80 100 120 20 40 60 80 20 40 60 0 20 100 40 60 80 120 Iteration Iteration g_loss g_loss 80 80 g_loss 70 70 70 encoder - LReLU swish 60 **ELU** 60 60 decoder - ReLU SSO 50 50 50 40 40 40 30 100 120 20 40 60 80 20 60 80 100 120 0 0 40 0 20 40 60 80 100 120 Iteration Iteration Iteration

```
# 생성자 모델
def define generator(image shape=(256,256,3)):
    init = RandomNormal(stddev=0.02)
    in image = Input(shape=image shape)
    # encoder model
    e1 = define encoder block(in image, 64, batchnorm=False)
    e2 = define encoder block(e1, 128)
    e3 = define encoder block(e2, 256)
    e4 = define encoder block(e3, 512)
    e5 = define encoder block(e4, 512)
    e6 = define encoder block(e5, 512)
    e7 = define encoder block(e6, 512)
    # 병목현상방지
    b = Conv2D(512, (4,4), strides=(2,2), padding='same', kernel initializer=init)(e7)
    b = Activation('relu')(b)
    # decoder model
     g = Reshape((256, 256, 32))(d7)
                                                                                        1, 2
                                                                                 2 \text{ Input} = (3, 4)
     g = UpSampling2D()(g)
                                                                                  Output = (1, 1, 2, 2)
     g = Conv2D(3, (4,4), strides=(2,2), padding='same', kernel initializer=init)(g)
                                                                                         3, 3, 4, 4
    # output
        Conv2DTranspose(3, (4,4), strides=(2,2), padding='same', kernel initializer=init)(d7)
    out image = Activation('tanh')(g)
    # define model
    model = Model(in image, out image)
    return model
```

판별자

```
# 판별자 모델
def define discriminator(image shape):
    init = RandomNormal(stddev=0.02)
                                               모든 weight는 0을 중심으로 표준편차 0.02의
    in src image = Input(shape=image shape)
    in_target_image = Input(shape=image shape)normal distribution으로 초기화
    merged = Concatenate()([in src image, in target image])
    d = Conv2D(64, (4,4), strides=(2,2), padding='same', kernel initializer=init)(merged)
    d = LeakyReLU(alpha=0.2)(d)
    d = LeakyReLU(alpha=0.2)(d) alpha값 0.2로 통일
d = Conv2D(128, (4,4), strides=(2,2), padding='same', kernel_initializer=init)(d)
    d = BatchNormalization()(d)
    d = LeakyReLU(alpha=0.2)(d)
    d = Conv2D(256, (4,4), strides=(2,2), padding='same', kernel initializer=init)(d)
    d = BatchNormalization()(d)
    d = LeakyReLU(alpha=0.2)(d)
    d = Conv2D(512, (4,4), strides=(2,2), padding='same', kernel initializer=init)(d)
    d = BatchNormalization()(d)
    d = LeakyReLU(alpha=0.2)(d)
    d = Conv2D(512, (4,4), padding='same', kernel initializer=init)(d)
    d = BatchNormalization()(d)
    d = LeakyReLU(alpha=0.2)(d)
    d = Conv2D(1, (4,4), padding='same', kernel initializer=init)(d)
    patch out = Activation('sigmoid')(d)
    model = Model([in src image, in target image], patch out)
    # compile model
    opt = Adam(lr=0.0002, beta 1=0.5)
    model.compile(loss='binary crossentropy', optimizer=opt, loss weights=[0.5])
    return model
```

LeakyReLU(alpha)

- alpha : 새는(leaky) 정도, 즉 x<0 일때 함수의 기울기
- 일반적으로 alpha = 0.01 ~ 0.1 0.2
- a = 0.2 (huge leak) 가 a = 0.01 (small leak) 보다 나은 성능을 낸다고 알려져 있음
 - O Empirical Evaluation of Rectified Activations in Convolutional Network. CoRR, 2015
 - ReLU, Leaky ReLU (or parametric ReLU,PReLU), Randomized ReLU (RReLU)을 실험적으로 비교

한 논문

f(y) *		$f(y) \uparrow$	
f(y) = 0	f(y) = y y	f(y) = ay	f(y) = y y

Activation	Training Error	Test Error
ReLU	0.00318	0.1245
Leaky ReLU, $a = 100$	0.0031	0.1266
Leaky ReLU, $a = 5.5$	0.00362	0.1120
PReLU	0.00178	0.1179
RReLU $(y_{ji} = x_{ji}/\frac{l+u}{2})$	0.00550	0.1119

Table 3. Error rate of CIFAR-10 Network in Network with different activation function

Activation	Training Error	Test Error
ReLU	0.1356	0.429
Leaky ReLU, $a = 100$	0.11552	0.4205
Leaky ReLU, $a = 5.5$	0.08536	0.4042
PReLU	0.0633	0.4163
RReLU $(y_{ji} = x_{ji}/\frac{l+u}{2})$	0.1141	0.4025

Table 4. Error rate of CIFAR-100 Network in Network with different activation function

LeakyReLU 알파값 비교

- kernel_initializer 비교

논문에서 쓴 표준편차를 0.02로 하는 정규분포 형태로 가중치를 초기와 했을 때, gan loss가 더 낮음

판별자 최적화 함수

```
# compile model
opt = Adam(lr=0.0002, beta_1=0.5)
model.compile(loss='binary_crossentropy', optimizer=opt, loss_weights=[0.5])|
return model
```

- generator에 비해 discriminator의 변경을 늦추기 위해 일반적인 효과의절반(0.5)을 갖도록 가중치 사용
- beta: momentum
 경사 하강법 + 관성
 계산된 기울기에 한 시점 전의 기울기 값
 을 일정한 비율만큼 반영
- 언덕에서 공이 내려올 때 중간의 작은 웅 덩이에 빠지더라도 관성의 힘으로 넘어서 는 효과

GAN

```
# GAN 모델
                                               • gan의 손실을 최소화하는 방향으로 모델 학
def define gan(g model, d model, image shape):
   d model.trainable = False #훈련 동결
                                               • discriminator가 모델의 학습 방향에 너무 큰
   in_src = Input(shape=image_shape) #input:photo
   gen_out = g_model(in_src) #생성자가 생성한 미미지
                                                  영향을 안 주도록 1로 설정
   dis_out = d_model([in_src, gen_out]) #판별자가 판열한 결과
   model = Model(in src, [dis out, gen out])
   opt = Adam(lr=0.0002, beta \1=0.5)
   # d_loss 1: binary_crossentropy // d_loss2 : mae
   # d loss 1 : 진짜 자진을 '진짜'라고 판별
   # d loss 2: 가짜 사진을 '가짜\라고 판별
   model.compile(loss=['binary_crossentropy', 'mae'], optimizer=opt, loss_weights=[1](100))
   return model
```

g loss, _, = gan model.train on batch(X realA, [y real, X realB])

sum(binary_crossentropy * 1, mae * 100), binary_crossentropy, mae

훈련

```
# 훈련
def train(d model, g model, gan model, dataset, n epochs=150, n batch=16):
   # 판별자의 output shape
   n patch = d model.output shape[1]
   trainA, trainB = dataset
   # epoch마다의 배치 숫자 계산
   bat per epo = int(len(trainA) / n batch)
   # 전체 epoch동안의 train data 분할 횟수(batch 횟수)
   n steps = bat per epo * n epochs
   for i in range(n steps):
       # batch 한 번 만큼의 sketch, photo
       [X realA, X realB], y real = generate real samples(dataset, n batch, n patch)
       # batch 한 번 만큼의 생성된 가짜 사진
       X fakeB, y fake = generate fake samples(g model, X realA, n patch)
       # 진짜 사진을 '진짜'라고 판별
       d loss1 = d model.train on batch([X realA, X realB], y real)
       # 가짜 사진을 '가짜'라고 판별
       d loss2 = d model.train on batch([X realA, X fakeB], y fake)
       # GAN
       g loss, _, _ = gan_model.train_on_batch(X_realA, [y_real, X_realB])
       print('>%d, d1[%.3f] d2[%.3f] g[%.3f]' % (i+1, d_loss1, d_loss2, g_loss))
       # 진행 상황 확인
       if (i+1) % (bat per epo * 10) == 0:
           summarize performance(i, g model, dataset)
```

훈련 결과

Epoch 10 Epoch 200

웹 프로토타입

label classification

```
# 모델
vgg16=VGG16(weights="imagenet", include top=False, input_shape=(256, 256, 3))
vgg16.trainable=False
model = Sequential()
model.add(vgg16)
model.add(Flatten())
model.add(Dense(256))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Dense(4, activation="softmax"))
# 컴파일
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['acc'])
```

Flask: visualization

```
vgg16=load model('./flask project/category 4.h5')
label=vgg16.predict(img)
label=np.argmax(label)
car=format(vgg16.predict(img)[0][0] * 100, '.1f')
strawberry=format(vgg16.predict(img)[0][1] * 100, '.1f')
teapot=format(vgg16.predict(img)[0][2] * 100, '.1f')
teddybear=format(vgg16.predict(img)[0][3] * 100, '.1f')
percentage='';
if label == 0:
   label='자동차'
    percentage=car
elif label == 1 :
   label='딸기'
    percentage=strawberry
elif label == 2 :
    label='차주전자'
    percentage=teapot
elif label == 3 :
    label='EICIHIOI'
    percentage=teddybear
model = load model('./flask project/model 061650.h5')
predict=model.predict(img)
predict = (predict + 1) / 2.0
plt.imshow(predict[0])
plt.axis('off')
plt.savefig('./flask_project/static/out.png')
return render template("index.html", fake img='out.png', percentage=percentage, label=label)
```

출력 결과

차주전자일 확률이 98.0 % 입니다.

시연 영상

-*프로젝트 링크*

• GitHub: https://github.com/ym0179/sketch2image

THANK YOU!