Flow of Newtonian Fluid through a Tesla Valve Final project for Computer Solutions of Continuum Physics Problems

Matěj Vais

August 28, 2024

Contents

- Short Introduction to the Project
- Coding
- 3 Results
- Onclusion and References

 Matěj Vais
 Tesla Valve
 August 28, 2024
 2 / 18

Short Introduction to the Project

What Is a Tesla Valve?

- passive fixed geometry check valve
- suppresses the flow of fluid in the reverse direction (\rightarrow)
- pressure drop in reverse (→) direction higher than in the forward direction (←)

Figure: Cross-section of the valve [1].

Aims of the Project

- \checkmark creation of mesh in the shape of the valve
- \checkmark simulating a steady flow through the valve
- ✓ simulating a time-dependent flow
- \checkmark computing the diodicity of the valve [2]
- × automatic generation of the mesh from an image [3]

$$Di = \left(\frac{\Delta p_r}{\Delta p_f}\right)_Q$$

Stationary Navier-Stokes Equation

• Steady flow of an incompressible fluid

$$\rho \operatorname{div}(\boldsymbol{v} \otimes \boldsymbol{v}) = -\nabla p + \operatorname{div}(2\nu \mathbb{D}) \quad \text{in } \Omega,$$
$$\operatorname{div} \boldsymbol{v} = 0 \quad \text{in } \Omega,$$

 $\Omega \subset \mathbb{R}^2$ is an open connected set representing a canal ρ given constant density μ given constant dynamic viscosity $\mathbb{S} = 2\mu \mathbb{D}$ shear stress \mathbb{D} symmetric part of the velocity gradient

• Unknowns: pressure, velocity (p, v) or pressure, velocity, stress (p, v, \mathbb{S}) .

Navier-Stokes equation

• Unsteady flow of an incompressible fluid

$$\frac{\partial \vec{v}}{\partial t} + (\nabla \vec{v})\vec{v} - \operatorname{div}(2\nu \mathbb{D}) + \nabla p = 0 \quad \text{in } \Omega,$$
$$\operatorname{div} \vec{v} = 0 \quad \text{in } \Omega.$$

• Unknowns: pressure p and velocity v.

Initial and Boundary Conditions

- The boundary is partitioned as $\partial \Omega = \Gamma_{in} \cup \Gamma_{out} \cup \Gamma_{wall}$.
- We impose the following boundary conditions on v:

• As an initial condition of the time-dependent problem we use the steady solution.

Matěj Vais Tesla Valve August 28, 2024 8 / 18

Coding

How Did I Progress?

- \rightarrow automatic mesh generation from an image unsuccessful
- \rightarrow Netgen proved to be a better option
- \rightarrow solving the steady flow using mixed formulation but no pressure drop
- \rightarrow moving to Navier-Stokes which showed the expected pressure drop
- \rightarrow solving the steady flow using velocity-pressure formulation, again no pressure drop
- \rightarrow increased the Reynolds number \Rightarrow difference in pressure drops between forward and reverse mode

Note: ChatGPT very useful for code translation from FEniCS to Firedrake and for debugging.

 Matěj Vais
 Tesla Valve
 August 28, 2024
 10 / 18

netgen_mesh() - The Most Challenging Part

Results

Velocity

Figure: The top picture shows the forward mode (\leftarrow), the bottom picture shows the reverse mode (\rightarrow), both at t=20 and Re = 685.9.

Matěj Vais Tesla Valve August 28, 2024 13 / 18

Pressure

Figure: The top picture shows the reverse mode (\rightarrow) , the bottom picture shows the forward mode (\leftarrow) , again at t=20 and Re = 685.9.

Matěj Vais Tesla Valve August 28, 2024 14 / 18

Pressure Drop

Lobes	Mode	Pressure Drop	Diodicity
2	reverse	722	0.95
	forward	763	
4	reverse	2141	1.40
	forward	1530	
6	reverse	3123	1.48
	forward	2116	
8	reverse	5600	2.08
	forward	2686	2.00

Table: Pressure drop for valves of different length at t=20 and Re = 685.9. Note that t was chosen arbitrarily and different choice would produce slightly different results.

Matěj Vais Tesla Valve August 28, 2024 15 / 18

Possible Problems

- pressure may have a singularity in the corners of the domain
- solution oscillations visible for higher Reynolds number

Figure: Velocity at t = 20, Re = 685.9, reverse mode (\rightarrow). We can see the velocity spike and produce "ripples" around sharp corners.

Conclusion

Solved problems:

- \checkmark mesh generation using Netgen
- \checkmark computing the steady flow
- ✓ computing the time-dependent flow
- \checkmark the valve shows diodicity greater than 1

Unsolved problems:

× automatic mesh generation from an image

References

- [1] Nikola Tesla. <u>Tesla valve cross-section</u>. https://patents.google.com/patent/US1329559. 1920.
- [2] Tesla valve diodicity. https://en.wikipedia.org/wiki/Tesla_valve#Diodicity.
- [3] Nanomesh documentation.
 https://nanomesh.readthedocs.io/en/latest/.