System management mode

Sommaire

- Les différents modes du processeur
- SMM : en détails
- Et on peut en faire quoi ?
- Comment mettre son code en SMRAM?

Real mode

- Utilisé lors du boot et du shutdown.
- Instructions 16bits
- Ram: 1MB
- Présent sur architecture 32 et 64 bits.

Legacy mode

- Gère les niveaux de privilèges mémoire (les rings)
- Instructions 32 bits
- Ram: 4GB max
- Gère le multitâche.
- Présent sur architecture 32 et 64 bits.

Virtual mode

- Est un attribut du legacy mode.
- Instructions : 16bits.
- Gère les niveaux de privilèges.
- Implémente le même environnement que le processeur 8086 d'Intel.

Compatibility mode

- Présent uniquement sur architecture 64bits (X86_64)
- Permet d'éxécuter des programmes 32 bit sans les recompiler.
- Reprend les caractéristiques du legacy mode.

64 bit mode

- Instructions: 64 bits
- Ram: 2^64 1 max.
- Reprend les autres caractéristique du legacy mode.

System management mode

- Introduit en 1993 par Intel (copié en 1994 par AMD)
- Instructions: 16bits.
- RAM: 4GB max accessible.
- Gère les opérations sur 32 bits
- Créé pour gérer l'alimentation, la sécurité ou autres.

SMM en détails

Accéder au SMM

- L'interruption SMI (system management interupt) fait rentrer en SMM.
- L'instruction RSM sort du SMM et remet le processeur dans son mode précédent.

SMRAM

- Le SMM a son environement d'éxécution dans une zone de la ram inaccessible depuis un autre mode: la SMRAM.
- Size: 131071(0x1FFFF) octets.

Sauvegarde du contexte

- Lors de l'entrée en SMM le contexte actuel de l'exécution (tout les registres) sont sauvegardé dans la SMRAM
- Lors de l'éxécution de l'instruction RSM le contexte précédement stocké est réstauré et l'éxécution reprend sont cours.

I/O opérations

 Le SMM peut exécuter tout les opérations I/O du Legacy mode.

Exemples d'utilisations

- Emuler de l'hardware.
- Gestion de l'alimentation (laptop).
- Sécurité (detection de malware ...).

Et on peut en faire quoi ?

Entrer en SMM

 Il est possible de provoquer une interruption SMI (par exemple esseyant d'accéder à une adresse mémoire particulière).

Modifier le contexte

- Le contexte étant sauvegardé en SMRAM et le SMM ayant tout les droits d'écriture/lecture on peut modifier le contenu des registres sauvegarder (qui seras restauré en sortant de lue SMM).
- Par exemple on peut changer la valeur de RIP.

Modifier des données

• En suivant le même principe que précédement on peut modifier des données aussi bien en ram (même les adresse kernel) que des fichiers

Comment mettre son code en SMRAM?

Les protections du SMM

- Le bit D_OPEN définie si la SMRAM est accessible en écriture ou pas.
- Le bit D_LCK empêche de modifier le bit D_OPEN.

Le rôle du bios

- Normalement le code dans la SMRAM est écrit par le bios (voir par l'OS pendant le boot).
- Le bit D_LCK doit être activé juste après avoir écrit en SMRAM
- Certains BIOS n'active le bit D_LCK, on peut donc écrire dans la SMRAM puis la vérouiller.

Contourner le BIOS

- Si le bios active bien le bit D_LCK on peut essayer de le contourner.
- Par exemple en flashant une version modifié du BIOS.

Source

- Phrack
- Doc Intel
- Rapport Duflot

Questions?