Содержание

1	Теория групп	2
	Простейшие св-ва групп	2
	Теорема Лагранжа	
	Циклическая группа	
	Изоморфные группы	
	Нормальная подгруппа	8
	Гомоморфизм	11
	1.1 Действие группы на множестве	14
2	Евклиловы и унитарные пр-ва	17

1 Теория групп

2019-09-17

Опр

G - мн-во,
$$*: G*G \to G, \ (g_1,g_2) \to (g_1*g_2) \ (g_1g_2)$$

- 1. $(g_1g_2)g_3 = g_1(g_2g_3) \quad \forall g_1, g_2, g_3 \in G$
- 2. $\exists e \in G : eg = ge = g \quad \forall g \in G$
- 3. $\forall g \in G \quad \exists \widetilde{g} \in G : g\widetilde{g} = g\widetilde{g} = e$
- 4. $g_1g_2 = g_2g_1 \quad \forall g_1, g_2 \in G$

Примеры

- 1. $(\mathbb{Z}, +)$ группа
- 2. (ℤ, •) не группа
- 3. (R, +) группа кольца
- 4. (R^*, \bullet)
- 5. Группа самосовмещения D_n , например D_4 квадрат, композиция группа, $|D_n| = 2n$
- 6. $GL_n(K) = \{A \in M_n(K) : |A| \neq 0\}$, умножение группа
- 7. $\mathbb{Z}n\mathbb{Z}$ частный случай п.3,4

Теорема (простейшие св-ва групп)

- 1. е единственный, e,e^\prime нейтральные: $e=ee^\prime=e^\prime$
- 2. \widetilde{g} единственный Пусть \widetilde{g} , \widehat{g} - обратные, тогда $\widetilde{g}g = g\widetilde{g} = e = \widehat{g}g = g\widehat{g}$ $\widehat{g} = e = \widehat{g}g = g\widehat{g}$ $\widehat{g} = e = \widehat{g}g = g\widehat{g}$ $\widehat{g} = e = \widehat{g}g = g\widehat{g}$
- 3. $(ab)^{-1}=b^{-1}a^{-1}$ Это верно, если $(ab)(b^{-1}a^{-1})=(b^{-1}a^{-1})(ab)=e$, докажем первое: $(ab)(b^{-1}a^{-1})=((ab)b^{-1})a^{-1}=(a(bb^{-1}))a^{-1}=(ae)a^{-1}=aa^{-1}=e$
- 4. $(g^{-1})^{-1} = g$

$$g\in G\quad n\in\mathbb{Z},$$
 тогда $g=egin{bmatrix} \overbrace{g...g}^n, & n>0 \\ e, & n=0 \\ \underbrace{g^{-1}...g^{-1}}_n, & n<0 \\ \end{bmatrix}$

Теорема (св-ва)

$$1. \ g^{n+m} = g^n g^m$$

2.
$$(g^n)^m = g^{nm}$$

Опр

$$g \in G, n \in N$$
 - порядок g $(ordg = n)$, если:

1.
$$q^n = e$$

2.
$$a^m = e \rightarrow m \geqslant n$$

Примеры

1.
$$D_4$$
 ord(поворот 90°) = 4 D_4 ord(поворот 180°) = 2

2.
$$(\mathbb{Z}/6\mathbb{Z}, +)$$
 $ord(\overline{1}) = 6$ $ord(\overline{2}) = 3$

y_{TB}

$$g^m = e \quad ord(g) = n \rightarrow m : n \text{ (n>0)}$$

Док-во

$$m = nq + r, \ 0 \leqslant r < n \ e = g^m = g^{nq+r} = (g^n)^q g^r = g^r \to r = 0$$

Опр

 $H \subset G$ называется подгруппой G (H < G) (и сама является группой), если:

1.
$$g_1, g_2 \in H \to g_1 g_2 \in H$$

$$2. e \in H$$

3.
$$g \in H \to g^{-1} \in H$$

Примеры

1.
$$n\mathbb{Z} < \mathbb{Z}$$

 $2. D_4$

3.
$$SL_n(K) = \{A \in M_n(K) : |A| = 1\}, SL_n(K) < GL_n(K)$$

Мультипликативная запись	Аддитивная запись
g_1g_2	$g_1 + g_2$
e	0
g^{-1}	-g
g^n	ng

Опр

 $H < G, g_1, g_2 \in G$, тогда $g_1 \sim g_2$, если:

- 1. $g_1 = g_2 h, h \in H$ (левое)
- 2. $q_2 = hq_1, h \in H$ (правое)

Док-во (эквивалентность)

- 1. (симметричность) $g_1 = g_2 h \stackrel{*h^{-1}}{\to} g_2 = g_1 h^{-1}$
- 2. (рефлексивность) g = ge
- 3. (транзитивнось) $g_1 = g_2 h, g_2 = g_3 h \rightarrow g_1 = g_3 (h_2 h_1),$ где $h_2 h_1 \in H$

Опр

$$[a] = \{b : ab\}$$
классы эквивалентности

Опр

$$[g]=gH=\{gh,h\in H\}$$
 (левый класс смежности)
$$gh\sim g\to gh\in [g]$$
 $q_1\in [q]\to q_1\sim q\to q_1=gh$

$\mathbf{y}_{\mathbf{TB}}$

$$[e] = H$$
 Установим биекцию: $[a] - ab \leftarrow H$

$$[g] = gh \leftarrow H$$
$$gh \leftarrow h$$

Очевидно, сюръекция, почему инъекция? $gh_1 = gh_2 \stackrel{*g^{-1}}{\rightarrow} h_1 = h$

Теорема (Лагранжа)

$$H < G, |G| < \infty$$
, тогда $|G| : |H|$ (уже доказали!)

2019-09-10

Следствие (теорема Эйлера)

Напоминание

$$n, a \in \mathbb{N}, (a, n) = 1$$
, тогда $a^{\varphi(n)} \equiv 1 (mod n)$

Док-во

Рассмотрим
$$G=(\mathbb{Z}/n\mathbb{Z})*\ |G|=\varphi(n)$$
 $\overline{a}\in G,\ ord\overline{a}=k$ $\varphi(n)$: $k\Rightarrow \varphi(n)=kl$ $\overline{a}=\overline{1}$ $\overline{a}^{\varphi(n)}=\overline{1}$

Опр

G - циклическая группа, если $\exists g \in G : \forall g' \in G : \exists k \in \mathbb{Z} : g' = g^k$ Такой g называется образующим

Опр

ℤ (образующий - единица и минус единица)

Замечание

Любая циклическая группа - коммунитативна

Док-во

$$q'q'' = q''q' = q^kq^l = q^lq^k$$

Пусть G,H - группы, рассмотрим $G \times H = \{(g,h) : g \in G, h \in H\}$

Введем операцию $(g,h)*(g',h') \stackrel{def}{=} (g*_{G}g',h*_{H}h')$

Докажем, что это группа.

Доказательство ассоциативности: $((g,h)(g',h'))(g'',h'') \stackrel{?}{=} (g,h)((g',h')(g'',h'')$

 $(gg', hh')(g'', h'') \stackrel{?}{=} (g, h)(g'g'', h'h'')$

 $((gg')g'',(hh')h'')\stackrel{?}{=}(g(g',g''),h(h'h'')$ - очевидно

Нейтральный элемент:

Рассмотрим $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} = \{(\overline{0}, \overline{0}), (\overline{0}, \overline{1}), (\overline{1}, \overline{0}), (\overline{1}, \overline{1})\}$

Опр

Конечная группа порядка
 п является циклической тогда и только тогда, когда она содержит элемент порядка
п $(|G|=n,\, {\rm G}$ - циклическая $\equiv \exists g \in G : ordg=n)$

Рассмотрим $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ - циклическая $((\overline{1},\overline{1}),(\overline{0},\overline{2}),(\overline{1},\overline{0}),(\overline{0},\overline{1}),(\overline{1},\overline{2}))$ Рассмотрим $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$ - не циклическая

Опр

 $\varphi:G\to H$ - биекция и $\varphi(g_1,g_2)=\varphi(g_1)\varphi(g_2)$ $\ \, \forall g_1,g_2\in G,$ тогда φ - изоморфизм

Примеры

- 1. $D_3 \rightarrow S_3$
- 2. $U_n = \{z \in \mathbb{C} : z^n = 1\} \leftarrow \mathbb{Z}/n\mathbb{Z}$ $(\frac{2\pi a}{n} + i\sin\frac{2\pi a}{n} = \varphi \overline{a}\overline{a})$ $\overline{a} = \overline{b} \rightarrow \varphi(\overline{a}) = \varphi(\overline{b})$ $\varphi(\overline{a} + \overline{b}) \stackrel{?}{=} \varphi(\overline{a})\varphi(\overline{b})$ $\cos\frac{2\pi(a+b)}{n} + i\sin\frac{2\pi(a+b)}{n} = (\cos\frac{2\pi a}{n} + i\sin\frac{2\pi a}{n})$

Опр

Две группы называются изоморфными, если между ними существует изоморфизм

y_{TB}

Изоморфизм - отношение эквивалентности

Док-во

т.к. композиция изоморфизмов - изоморфизм $G \stackrel{e}{\to} H \stackrel{\psi}{\to} H$ $(\psi \circ \varphi)(g_1g_2) = \psi(\varphi(g_1g_2) = \psi(\varphi(g_1)\varphi(g_2)) = \psi(\varphi(g_1))\psi(\varphi(g_2)) = (\psi \circ \varphi)(g_1) \circ (\psi \circ \varphi)(g_2)$

Рефлексивность - тождественное отображение - изоморфизм

Транзитивность: $G \underset{\varphi}{\rightarrow} H, H \underset{\varphi^{-1}}{\rightarrow} G$

Теорема

G - циклическая группа

- 1) $|G| = n \Rightarrow G \cong \mathbb{Z}/n\mathbb{Z}$
- 2) $|G| = \infty \Rightarrow G \cong \mathbb{Z}$

Док-во

1) g - обр. G, значит $G = \{e, g, g^2, ..., g^{n-1}\}$ (среди них нет одинаковых), построим изоморфизм в $\mathbb{Z}/n\mathbb{Z}$: $\varphi(g^k) = \overline{k}$ Проверим, что $\varphi(g^kg^l) = \varphi(g^k) + \varphi(g^l) = \overline{k} + \overline{l}$

1 ТЕОРИЯ ГРУПП

Левая часть: $\varphi(g^{k+l} = \overline{(k+l) \mod n} = \overline{k} + \overline{l}$

2) $G = \{..., g^{-1}, e, g, g^2, ...\}$ (тоже нет совпадающих элементов, иначе $g^k = g^l$, при k > l, тогда $g^{k-l} = e$, но тогда конечное число элементов, потому что оно зацикливается через каждые k-l элементов), построим отображение в \mathbb{Z} .

 $arphi(g^n)=n$ -, очевидно, биекция. И нужно доказать, что $arphi(g^ng^k)=arphi(g^n)-arphi(g^k)=n+k$

2019-09-17

y_{TB}

$$|G|=p,$$
 простое
$$\Rightarrow G\simeq \mathbb{Z}_{/p\mathbb{Z}} \qquad g\in G, g\neq e$$
 ord $g=p$
$$\Rightarrow G=\{e=g^0,g^1,...,g^{p-1}\}$$

y_{TB}

$$H,G$$
 - группы, $g \in G$ $\varphi:G \to H$ - изоморфизм \Rightarrow ord $g=$ ord $\varphi(g)$ ord $g=n$ $g^n=e$ $\varphi(g)^n=\varphi(g^n)=\varphi(e)=e$ $\varphi(e)^2=\varphi(e^2)=\varphi(e)$ $\varphi(g)^n\overset{?}{\Rightarrow}e\Rightarrow m\geqslant n$ $m\in\mathbb{N}$ $\varphi(g^m)=\varphi(g)^m=e=\varphi(e)$ $\Rightarrow g^m=e\Rightarrow m\geqslant n$

Опр

H - нормальная подгруппа, если $\forall h \in H, g \in G$ $g^{-1}hg \in H$ - сопряжение элемента h с помощью элемента g рисунок 1

 $H \triangleleft G$

y_{TB}

 $H \lhd G \Leftrightarrow$ - разбиение на л. и п. классы смежности по H совпадают $\forall g \quad gH = Hg$

Док-во

$$\Rightarrow h \in H \qquad gh \in gH$$

$$gh = \underbrace{(g^{-1})^{-1}hg^{-1}}_{\in H}g = h_1g$$

$$\Leftarrow g \in G, h \in H$$

$$g^{-1}hg = h_1$$

$$hg \in Hg = gH \Rightarrow gh_1, h_1 \in H$$

$$H \triangleleft G$$

$$g_1 H * g_2 H \stackrel{def}{=} g_1 g_2 H$$

$$\widetilde{g}_1 H = g_1 H$$

$$\widetilde{g}_2 H = g_2 H \stackrel{?}{\Rightarrow} \widetilde{g}_1 \widetilde{g}_2 H = g_1 g_2 H$$

$$g_2^{-1} h_1 g_2 = h_3 \in H$$

$$\widetilde{g}_1\widetilde{g}_2h = g_1h_1g_2h_2h = g_1g_2(g_2^{-1}h_1g_2)h_2h$$

$$\widetilde{g}_1 H = g_1 H \Rightarrow \widetilde{g}_1 = g_1 h_1$$

 $\widetilde{g}_2 H = g_2 H \Rightarrow \widetilde{g}_2 = g_2 h_2$

$$eH=H$$

$$1) \quad eH * gH = (eg)H = gH$$

2)
$$(g_1H * g_2H) * g_3H \stackrel{?}{=} g_1H * (g_2H * g_3H)$$

$$(g_1g_2)H * g_3H = (g_1g_2)g_3H$$

3)
$$gH * g^{-1}H = (gg^{-1})H = eH$$

$$G_{/H}$$

$$a \sim b \Leftrightarrow a - b \stackrel{.}{:} h$$

$$G = \mathbb{Z}$$

$$H = h\mathbb{Z} \quad g_1 - g_2 \in n\mathbb{Z}$$

$$[a] + [b] = [a+b]$$

Пример

$$[g,h] = ghg^{-1}h^{-1}$$
 - коммутатор $g,h \in G$ $K(G) = \{[q_1,h_1],...,[q_n,h_n],q_i,h_i \in G\}$ - коммутант

Док-во

Коммутант - подгруппа

$$\begin{split} K(G) &< G \\ [e,e] &= e \\ [g_1,h_1]...[g_n,h_n] \\ [g,h]^{-1} &= (ghg^{-1}h^{-1})^{-1} = hgh^{-1}g^{-1} = [h,g] \\ ([g_1,h_1]...[g_n,h_n])^{-1} &= [h_1,g_1]...[g_n,h_n] \\ g^{-1}[g_1,h_1]...[g_n,h_n]g &= \\ &= (g^{-1}[g_1,h_1]g)(g^{-1}[g_2,h_2]g)...(g^{-1}[g_n,h_n]g) \\ g^{-1}g_1h_1g_1^{-1}h_1^{-1}g &= \\ &= (g^{-1}g_1h_1g_1^{-1}(gh_1^{-1})h_1g^{-1})h_1^{-1}g \\ [g^{-1}g_1,h_1] & [h_1,g^{-1}] \end{split}$$

$\underline{\mathbf{y}_{\mathbf{TB}}}$

$$G_{/K(G)}$$
 - Komm

Док-во

$$g_1, g_2 \in G$$
 $g_1K(G)g_2K(G) \stackrel{?}{=} g_2K(G)g_1K(G)$
 $g_1g_2K(G) = g_1g_2K(G)$ $g_2K(G)g_1K(G) = g_2g_1K(G)$
 $[g_1, g_2] = g_1g_2(g_2g_1)^{-1} \in K(G)$

y_{TB}

$$\mathbb{Z}_n \times \mathbb{Z}_m \simeq \mathbb{Z}_{mn}$$
, если $(m,n) = 1$
 $[a]_{nm} \to ([a]_n, [a]_m)$
 $[a]_{nm} = [a']_{mn} \Rightarrow [a]_n = [a']_n, [a']_m = [a']_m$
 $\forall b, c \in \mathbb{Z} \exists x \in \mathbb{Z} : \begin{cases} [x]_n = [b]_n \\ [x]_m = [c]_m \end{cases}$
 $[a]_n = [b]_n$
 $[a]_n = [b]_m \Rightarrow [a]_{mn} = [b]_{mn}$
 $a \equiv b(n)$
 $a \equiv b(m) \Rightarrow a \equiv b(mn)$

Опр

$$arphi:G o H$$
 - гомоморфизм
$$arphi(g_1g_2)=arphi(g_1)arphi(g_2)$$
 изоморфизм = гомоморфизм + биективность
$$arphi\in \mathrm{Hom}(G,H)$$
 - множество гомоморфизмов

Примеры

1)
$$\mathbb{C}^* \to \mathbb{R}^*$$
 $z \to |z|$
2) $GL_n(K) \to K^*$
 $A \to \det A$
3) $S_n \to \{\pm 1\}$
 $\sigma \to \begin{cases} +1, & \text{если } \sigma \text{ - четн.} \\ -1, & \text{если } \sigma \text{ - неч.} \end{cases}$
4) $a \in G \quad G \to G$
 $g \to a^{-1}ga$
 $(a^{-1}ga)(a^{-1}g_1a) = a^{-1}g_g1a$

 $../../template/template \\ 2019-09-24$

Напоминание

$$G/K(G)$$
 - коммпутативна

y_{TB}

$$H \triangleleft G \quad G/_H$$
 - комм
$$\forall g_1, g_2 \in G \quad (g_1 H)(g_2 H) = (g_2 H)(g_1 H)$$

$$[g_1, g_2] = g_1^{-1} g_2^{-1} g_1 g_2 \in H \Rightarrow K(G) \subset H$$

Свойства (гомоморфизма)

$$f \in \text{Hom}(G, H)$$

1.
$$f(e_G) = e_H$$
 $f(e) = f(e \cdot e) = f(e) \cdot f(e)$

2.
$$f(a^{-1}) = f(a)^{-1}$$

$$f(a)f(a^{-1}) = f(aa^{-1}) = f(e) = e$$

3. Композиция гомоморфизмов

Опр

$$f \in \text{Hom}(G, H)$$

$$Ker f = \{g \in G : f(g) = e\} \subset G$$

$$Im f = \{f(g) : g \in G\} \subset H$$

y_{TB}

Ker и Im - подгруппы G

Док-во

1.
$$f(g_1) = f(g_2) = e \Rightarrow f(g_1g_2) = f(g_1)f(g_2) = e \cdot e = e$$

2.
$$f(e) = e$$

3.
$$f(g) = e \Rightarrow f(g^{-1}) = f(g)^{-1} = e^{-1} = e$$

1.
$$f(g_1) \cdot f(g_2) = f(g_1g_2)$$

2.
$$e = f(e)$$

3.
$$f(g)^{-1} = f(g^{-1})$$

y_{TB}

Ker - нормальная подгруппа G

Док-во

$$Kerf \triangleleft G?$$

$$g \in G \qquad a \in Kerf$$

$$f(g^{-1}ag) = f(g)^{-1} f(a) f(g) = e$$

Утв (основная теорема о гомоморфизме)

$$G/_{Kerf} \cong \operatorname{Im} f$$

Док-во

Докажем, что это корректное отображение:

$$\begin{aligned} Kerf &= K \\ \varphi(gK) &\stackrel{def}{=} f(g) \qquad \varphi : G/_{Kerf} \to \operatorname{Im} f \\ gK &= g'K \stackrel{?}{\Rightarrow} f(g) = f(g') \\ g' &= g \cdot a, \quad a \in K \qquad f(g') = f(g) \cdot \underbrace{f(a)}_{=e} = f(g) \end{aligned}$$

Докажем, что φ - гомоморфизм:

$$f(g_1)f(g_2) = \varphi(g_1K)\varphi(g_2K) \stackrel{?}{=} \varphi(g_1Kg_2K) = \varphi((g_1g_2)K) = f(g_1g_2)$$
$$\varphi(g_1K) = \varphi(g_2K) \stackrel{?}{\Rightarrow} g_1K = g_2K$$

Докажем, что это биекция. Что сюръекция - очевидно

$$f(g_1) = f(g_2)$$
 $\Rightarrow g_1 g_2^{-1} \in K$

$$\underbrace{f(g_1) f(g_2)^{-1}}_{=f(g_1) f(g_1^{-1})} = e$$

Напоминание

$$SL_N(K)$$
 - квадратные матрицы с $\det = 1$

Опр

$$\det: GL_n(K) \to K^*$$

Но это отображение - сюръекция, а значит:

$$GL_n(K)/_{SL_n(K)} \cong K^*$$

$$SL_n(K) = \{ A \in M_n(K) : |A| = 1 \}$$

Пример (1)

$$S_n \to \{\pm 1\}$$

 $S_n/_{A_n} \cong \{\pm 1\} (\cong \mathbb{Z}/_{2\mathbb{Z}})$

Пример (2)

$$G \times H \to G$$

 $(g_1 h) \to g$
 $G \times H/_{e \times H} \cong G$

1.1 Действие группы на множестве

Опр

$$M$$
 - множество

$$G$$
 - группа

$$G \times M \to M$$

$$(g,m) \to gm$$

1.
$$g_1(g_2m) = (g_1g_2)m \quad \forall g_1g_2 \in G, \quad m \in M$$

2.
$$em = m \quad \forall m \in M$$

Если задано такое отображение, то говорим, что группа G действует на множестве M

Пример (1)

$$A = k^{n} (A, v) \to A_{v}$$

$$G = GL_{n}(K)$$

$$A(B_{v}) = (AB)_{v}$$

$$E_{v} = v$$

Пример (2)

М = {количество раскрасок вершин квадрата в два цвета}

$$G = D_4$$

$$gm = gm$$

Опр

$$m \in M$$

$$Stab\ m=\{g\in G:gm=m\}$$
 - стабилизация
$$Orb\ m=\{gm,\ g\in G\} \ \hbox{- орбита}$$

y_{TB}

$$Stab \ m < G$$

Док-во

Доказательство того, что стабилизатор - подгруппа:

1.
$$g_1, g_2 \in Stab \ m$$

$$(g_1g_2)m = g_1(g_2m) = g_1m = m$$

$$2. e \cdot m = m$$

$$3. \ gm = m \stackrel{?}{\Rightarrow} g^{-1}m = m$$

$$gm = m$$

$$g^{-1}gm = g^{-1}m$$
=(g^{-1}g)m=em=m

$\mathbf{y}_{\mathbf{T}\mathbf{B}}$

$$m_1,m_2\in M$$
 $m_1\sim m_2,$ если $\exists g\in G:gm_1=m_2$ $\Rightarrow\sim$ - отношение эквив

Док-во

(рефл.)
$$gm_1 = m_2 \Rightarrow g^{-1}m_2 = m_1 \quad g^{-1} \in G$$

(симм.) $em = m, \quad e \in G$
(тран.) $\begin{vmatrix} gm_1 = m_2 \\ g'm_2 = m_3 \end{vmatrix} \Rightarrow (g'g)m_1 = g'(gm_1) = g'm_2 = m_3$

$\mathbf{y}_{\mathbf{TB}}$

$$|Orb \ m| \cdot |Stab \ m| = |G|$$

Док-во

$$Stab m = H$$

$$\{gH, g \in G\} \to Orb m$$

$$gH \to gm$$

Хотим доказать, что это корректно

$$gH = g'H \stackrel{?}{\Rightarrow} gm = g'm$$

 $g' = ga, \quad g \in H$
 $g'm = (ga)m = g(am) = gm$

Хотим доказать биективность. Сюръективность - очев. Инъективность:

$$gm = g'm \Rightarrow gH = g'H$$

 $m = em = (g^{-1}g')m = g^{-1}(gm) = g^{-1}(g'm) = (g^{-1}g')m$
 $\Rightarrow g^{-1}g' \in H \Rightarrow gH = g'H$

<u>Лемма</u> (Бернсайда)

Кол-во орбит
$$= \frac{1}{|G|} \sum_{g \in G} |M^g|$$
 $M^g = \{m \in M : qm = m\}$

 $../../template/template \\ 2019-10-01$

Напоминание

Кол-во орбит
$$= \frac{1}{|G|} \sum_{g \in G} |M^g|$$

$$M^g = \{ m \in M : gm = m^2 \}$$

Док-во

$$\sum_{g\in G}|M^g|=|\{(g,m)\in G\times M:gm=m\}|=$$

$$=\sum_{m\in M}|Stab\ m|=|G|\sum_{m\in M}\frac{1}{|Orb\ m|}=|G|\cdot$$
 Кол-во орбит

2 Евклидовы и унитарные пр-ва

Опр

$$V$$
 - в.п. над $\mathbb R$

Введем отображение

$$V \times V \to \mathbb{R}$$

(u, v)

Свойства этого отображения

1. Симметричность

$$(u,v) = (v,u) \quad \forall u,v \in V$$

2. Линейность

$$(\lambda u, v) = \lambda(u, v) \qquad \lambda \in \mathbb{R} \quad u, v \in V$$
$$(u + u', v) = (u, v) + (u', v) \qquad u, u', v \in V$$

3.
$$(u, v) \geqslant 0$$
 $\forall u \in V$ $(u, u) = 0 \Leftrightarrow u = 0$

Такое пр-во V с введенным на нем таким отображением мы называем Евклидовым пр-вом, а отображение скалярным.

Напоминание

$$C = \{c_{ij}\}_{i,j=1}^n$$
 - квадр. матрица

$$Tr \ C = \sum_{i=1}^{n} c_{ii}$$
 - след (Trace)

(Сумма элементов главной диагонали)

Примеры

- 1. Школьные вектора
- $2. \mathbb{R}^n$

$$((a_1,...,a_n),(b_1,...,b_n)) = \sum_{i=1}^n a_i b_i$$

3. $V = \mathbb{R}[x]_n$ конечномерное пр-во

$$(f,g) = \int_{a}^{b} fg dx$$

4.
$$V = M_n(\mathbb{R})$$

$$(A,B) = Tr AB^T$$

(См. след в напоминании)

Опр

$$e = \{e_1, ..., e_n\}$$
 - базис V

$$a_{ij} = (e_i, e_j)$$

$$\Gamma_e = \{a_{ij}{}_{i,j=1}^n\}$$
 - матрица Грама

Свойства (матрицы Грама)

- 1. Матрица невырожд
- $2. \ e, f$ базисы

$$\Gamma_f = M_{e \to f}^T \Gamma_e M_{e \to f}$$

3.
$$\Gamma_e = \{a_i j\}$$

$$u = \sum \lambda_i e_i$$

$$v = \sum \mu_j e_j$$

$$(u, v) = (\sum \lambda_i e_i, \sum \mu_j e_j) = \sum_{i,j} \lambda_i \mu_j (e_i, e_j)$$

$$(u, v) = [u]_e^T \Gamma_e [v]_e$$

Док-во

1.
$$\exists |\Gamma_e| = 0 \Rightarrow \exists \lambda_i \in \mathbb{R} \text{ не все } 0$$
:

$$\sum \lambda_i(e_i, e_j) = 0 \quad \forall j$$

$$\left(\sum \lambda_i e_i, \ e_j\right) = 0 \quad \forall j$$

$$\left(\sum_i \lambda_i e_i, \ \sum_i \lambda_j e_j\right) = 0 \Leftrightarrow \sum \lambda_i e_i = 0$$

противоречие

2.
$$\exists M_{e \to f} = \{a_{ik}\} \qquad f_k = \sum a_{ik} e_i$$
$$f_l = \sum a_{jl} e_j$$

$$(f_k, f_l) = \sum_{i,j} a_{ik} a_{jl}(e_i, e_j)$$

$$a_{ik}(e_i, e_j)a_{je}$$

Напоминание: X, Y- матр $X \times Y = Z$ $z_{ij} = \sum x_{is}y_{sj}$

Опр

$$V$$
 - в.п. над $\mathbb R$

$$V o \mathbb{R}_{\geqslant 0}$$
 $v o \|v\|$ - норма

1.
$$\|\lambda v\| = |\lambda| \|v\| \quad \forall \lambda \in \mathbb{R} \quad v \in V$$

2. Нер-во треугольника

$$||u + v|| \le ||u|| + ||v||$$

3.
$$||u|| = 0 \Leftrightarrow u = 0$$

Если такое отобр. существует, то оно называется нормой

y_{TB}

$$(u,v)$$
 - ск. пр-ве
$$\Rightarrow \|u\| = \sqrt{(u,u)}$$

Пример

 \mathbb{R}^n

$$||x|| = \max |x_i|$$
$$||x|| = \sum_{i} |x_i|$$

Теорема (Нер-во Коши - Буняковского)

$$|(u,v)| \leqslant ||u|| \cdot ||v||$$

Док-во

$$\varphi(t) = \|u + rv\|^2 = (u + tv, u + tv) = \|u\|^2 + 2(u, v)t + t^2\|v\|^2$$

$$D = 4(u, v)^2 - 4\|u\|^2\|v\|^2 \le 0$$

$$\|u + v\| \le \|u\| + \|v\|$$

$$(u + v, u + v) \le \|u\|^2 + \|v\|^2 + 2\|u\|\|v\|$$

$$(u + v, u + v) = \|u\|^2 + \|v\|^2 + 2(u, v)$$

$$2(u, v) \le 2\|u\|\|v\|$$

Утв (Теорема Пифагора)

Если
$$u \perp v \Rightarrow ||u + v||^2 = ||u||^2 + ||v||^2$$

Док-во

$$||u + v||^2 = ||u||^2 + ||v||^2 + 2(u, v)$$

Опр (Ортогональное дополнение)

$$V$$
 - евкл. пр-во

$$U \subset V \qquad U^{\perp} = \{ v \in V : (v, u) = 0 \quad \forall u \in U \}$$

Множество всех векторов, которые ортогональны всем векторам из U Такое мн-во называется ортогональным дополнением

y_{TB}

$$U^{\perp}$$
 - под-пр V

Док-во

$$(v, u) = 0 \quad \forall u$$

 $(v', u) = 0 \quad \forall u \Rightarrow (v + v', u) = 0 \quad \forall u$

$$(v, u) = 0 \quad \forall u$$

$$\lambda \in \mathbb{R}$$

$$(\lambda v, u) = 0 \quad \forall u$$

Тогда U^{\perp} дей-во линейное под-прво V

Свойства

$$V = U \oplus U^{\perp}$$
$$u \in U \cap U^{\perp}$$
$$u \in U \quad u \in U^{\perp}$$

(u, u) = 0

Док-во

$$e_1,...,e_n$$
 - базис U дополняем до базиса ${\mathcal V}$

$$e_1,...,e_n,f_1,...,f_n$$
 - базис V
$$v\in U^\perp\quad v=\sum \lambda_i e_i + \sum \mu_j f_j$$

$$v\in U^\perp \Leftrightarrow (v,e_k)=0 \quad \forall 1\leqslant k\leqslant n$$

$$(v,e_k)=\sum \lambda_i (e_i,e_k) + \sum \mu_j (f_j,e_k)=0 \quad \forall 1\leqslant k\leqslant n$$

это матрица

$$\begin{array}{c|c} & n & m \\ \hline n & \Gamma_e & C \\ \hline \end{array} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \end{pmatrix}$$

$$\Gamma_e x + C_y = 0$$

$$\{(x,y) \in \mathbb{R}^n \times \mathbb{R}^m : \Gamma_e x + C_y = 0\} \text{ - размерность этого } m$$

$$(x,y) \to y$$

$$\Gamma_e x + C_y = 0$$

$$x = -\Gamma_e^{-1} e_y$$

$$\dim U + \dim U^\perp = \dim V$$

 $../../template/template \\ 2019-10-15$

Свойство

$$(U^{\perp})^{\perp} = U$$

Док-во

$$\left| \dim U^{\perp} + \dim U = \dim V \right|
\dim(U^{\perp})^{\perp} + \dim U^{\perp} = \dim V \right| \Rightarrow \dim(U^{\perp})^{\perp} = \dim U
U \subset (U^{\perp})^{\perp}
(U^{\perp})^{\perp} = \{v \in V\}$$

Опр

$$\begin{split} &U < V, \quad v \in V \\ &U \oplus U^\perp = V \\ &\Rightarrow \exists ! u \in U, \ w \in U^\perp : v = u + w \end{split}$$

и называется ортогональной проекцией

Обозначение:
$$\operatorname{pr}_{U} v \stackrel{\text{def}}{=} u$$

$$v = \operatorname{pr}_{U} v + w \Rightarrow (v, u) = (\operatorname{pr}_{U} v, u)$$

Свойства (орт. проекции)

1.
$$\operatorname{pr}_{U}(v + v') = \operatorname{pr}_{U} v + \operatorname{pr}_{U} v'$$

$$v = u + w, \ u \in U, w \in U^{\perp}$$

$$v' = u' + w', \ u \in U, \ w' \in U^{\perp}$$

$$v + v' = (u + u') + (w + w')$$

$$\in U$$

$$\begin{split} 2. \ \|v - \mathrm{pr}_U \, v\| &\leqslant \|v - u\| \quad \forall u \in U \\ \|v - u\|^2 &= \|v - \mathrm{pr}_U \, v\|^2 + \|\mathrm{pr}_U \, \underset{\in U}{v} - u\|^2 \end{split}$$

Опр

 $e_1,...,e_n$ - базис V

Базис называется ортогональным, есди $(e_i,e_j)=0 \quad \forall i \neq j$ - ортогональный баз

$$(e_i, e_j) = \delta_{i,j} = \begin{bmatrix} 0, i \neq j \\ 1, i = j \end{bmatrix}$$

Процесс ортоганализации Грамма-Шмидта:

$$e_1, ..., e_n$$
 - базис

Хотим ортонормированный $f_1,...,f_n:< f_1,...,f_k>=< e_1,...e_k> \quad \forall 1\leqslant k\leqslant n$:

Строим по индуции:

Б.И. k=1:

$$f_1 = \frac{1}{\|e_1\|} e_1$$

 $И.\Pi. k-1 \rightarrow k$:

$$f_k = e_k + \sum_{i=0}^{k-1} \lambda_i f_i$$

$$(f_k, f_j) \stackrel{?}{=} 0 \quad 1 \leqslant j \leqslant k - 1$$

$$(f_k, f_j) = (e_k, f_j) + \sum_{i=1}^{k-1} \lambda_i (f_i, f_j)$$

$$\lambda_j = -(e_k, f_j) \quad \forall 1 \leqslant j \leqslant k - 1$$

Ортонормируем f_k , чтобы $(f_k, f_k) = 1$

y_{TB}

Если $e_1, ..., e_n$ - ОНБ U

$$\operatorname{pr}_{U} v = \sum_{i=1}^{n} (v, e_{i}) e_{i}$$

Док-во

Хотим доказать $v - \sum_{i=1}^{n} (v, e_i) e_i \in U^{\perp}$

Достаточно доказать, что вектор ортогонален любому

$$(v - \sum_{\substack{i=1\\1 \le j \le n}}^{n} (v, e_i)e_i)e_j = (v, e_i) - \sum_{i=1}^{n} (v, e_i)(e_i, e_j)$$

Пример

$$\mathbb{R}^n$$

$$(x; y) = \sum x_i y_i$$

 $e_i = (0, 0, ..., \frac{1}{i}, ..., 0)$

Пример

$$T_{n} = \{a_{0} + \sum_{k=1}^{n} a_{k} \cos kx + \sum_{k=1}^{n} b_{k} \sin kx\}$$

$$(f;g) = \int_{0}^{2\pi} fg dx$$

$$\left\{ \frac{1}{\sqrt{2\pi}}, \frac{1}{\sqrt{\pi}} \cos kx_{k=1,\dots,n}, \frac{1}{\sqrt{\pi}} \sin kx_{k=1,\dots,n} \right\}$$

$$\operatorname{pr}_{T_{n}} f = \frac{1}{2\pi} \int_{0}^{2\pi} f(x) dx + \frac{1}{\pi} \sum_{k=1}^{n} \left(\int_{0}^{2\pi} f(x) \cos(kx) dx \right) \cdot \cos kx + \frac{1}{\pi} \sum_{k=1}^{n} \left(\int_{0}^{2\pi} f(x) \sin(kx) dx \right) \cdot \sin kx$$

Опр

$$A \in M_n(K)$$
 назыв. ортогональной, если

$$A^T A = E$$

 $O_n(K)$ - множество орт. матриц

$\underline{\mathbf{y}_{\mathbf{TB}}}$

 $O_n(K)$ - группа по умножению

Док-во

$$\begin{vmatrix} A^T A = E \\ B^T B = E \end{vmatrix} \Rightarrow (AB)^T AB = B^T \underbrace{A^T A}_E B = B^T B = E$$

$$A^T A = E \Rightarrow A^{-1} = A^T$$

$$(A^{-1})^T A^{-1} \stackrel{?}{=} E$$

$$(A^T)^T A^{-1} = AA^{-1} = E$$

y_{TB}

$$L \in L(V)$$

1.
$$(L_v, L_{v'}) = (v, v') \quad \forall v, v' \in V$$

$$2. ||L_v|| = ||v|| \quad \forall v \in V$$

3. $[L]_e \in O_n(\mathbb{R})$, если e - отронорм. базис

Док-во

 $2 \rightarrow 1$

$$(v, v') = \frac{1}{2}(\|v + v'\| - \|v\|^2 - \|v'\|^2)$$

$$3 \rightarrow 2$$

$$\begin{split} [L_v]_e &= [L]_e[v]_e \\ \|L_v\|^2 &= (L_v, L_v) = [L_v]_e^T \Gamma_e[L_v]_e = [L_v]_e^T [L_v]_e = \\ &= [v]_e^T \underbrace{[L]_e^t [L]_e}_{=E} [v]_e = [v]_e^T [v]_e = [v]_e^T \Gamma_e[v]_e = (v, v) = \|v\|^2 \end{split}$$

$$1 \rightarrow 3$$

$$\mathcal{E}_{i}^{T}[L]_{e}^{T}[L]_{e}\mathcal{E}_{j}$$

$$\mathcal{E}_{i} = (0, ..., \frac{1}{i}, ..., 0)$$

$$\mathcal{E}_{i}^{T}A\mathcal{E}_{j} = a_{ij}$$

$$\mathcal{E}_{i} = [e_{i}]_{e}$$

$$\mathcal{E}_{j} = [e_{j}]_{e}$$

$$[e_{i}]^{T}[L]_{e}^{T}[L]_{e}[e_{j}]_{e} = [L_{e_{i}}]_{j}^{T}[L_{e_{j}}]_{e} = [L_{e_{i}}]_{e}^{T}\Gamma_{e}[L_{e_{j}}]_{e} = (L_{e_{i}}, L_{e_{j}}) = (e_{i}, e_{j}) = \delta_{ij}$$

../../template/template

2019-10-22

Опр (унитарного пространства)

U - в.п. над $\mathbb C$

$$U \times U \rightarrow ()$$

1.
$$(u+v, w) = (u, w) + (v, w) \quad \forall u, v, w \in U$$

 $(\lambda v, w) = \lambda(v, w) \quad \forall \lambda \in C, \quad v, w \in U$

$$2. (u, v) = \overline{(v, u)}$$

3.
$$(u, u) \ge 0$$

Доказали КБШ

4.
$$(u, u) = 0 \Rightarrow u = 0$$

Пример

$$\begin{aligned} & \mathbf{R}^n & \mathbf{C}^n \\ & (\mathbf{x}, \mathbf{y}) = \sum x_i y_i \ \middle| \ & (\mathbf{x}, \mathbf{y}) = \sum x_i \overline{y_i} \end{aligned}$$

$$e_1, ..., e_n \text{ - базис}$$

$$& \Gamma_e = \{(e_i, \ e_j)\}_{i,j} \text{ - матрица грамма}$$

$$& (u, v) = [u]_e^T \Gamma_e \overline{[v]}_e \\ & \Gamma_f = M_{e \to f}^T \Gamma_e \overline{M}_{e \to f} \end{aligned}$$

$$& |(u, v)| < \|u\| \cdot \|v\|, \quad \|u\| = \sqrt{(u, \ u)} \\ & \|tu + v\|^2 = t^2 \|u\| + t((u, \ v) + (v, \ u)) + \|v\|^2 \\ & = 2\operatorname{Re}(u, v) \end{aligned}$$

$$& \operatorname{Re}(u, v) \leqslant \|u\|^2 \|v\|^2 \\ & (u, \ v) = |(u, \ v)| \cdot z| \Rightarrow |z| = 0 \\ & \operatorname{Re}(\frac{1}{z}u, \ v) \leqslant \|\frac{1}{z}u\|^2 \|v\|^2 = \|u\| \|v\| \end{aligned}$$

$$& \operatorname{Hahomhahhe:} \|\lambda u\| = \sqrt{(\lambda u, \ \lambda u)} = \sqrt{\lambda \overline{\lambda}(u, u)} = |\lambda| \|u\|$$

$$& \operatorname{Re}(\frac{1}{z}(u, \ v)) = \operatorname{Re}|(u, v)| = |(u, \ v)|$$

27

Опр

$$V^* = L(V, k)$$

Пример

$$v \in V$$
 - евклидово пр-во (унитарное)

$$\varphi_v(w) = (w, v) \quad \varphi_v : V \to \mathbb{R}(\mathbb{C})$$

Хотим доказать: $\varphi \in V^* \Rightarrow \exists! v \in V : \varphi = \varphi_v$

Док-во

$$e_1,...,e_n$$
 - OHB V

$$v = \sum \lambda_i e_i$$

Нужно $\forall w \in V \quad (w, \ v) = \varphi(w),$ т.к. φ - линейный функционал

$$\Leftrightarrow \forall j \quad (e_j, \ v) = \varphi(e_j)$$

$$(e_j, \sum \lambda_i e_i) = \sum_i \overline{\lambda}_i (e_j, e_i)$$

Опр

$$A \in M_n(\mathbb{C})$$

$$A^* = \overline{A}^T$$
 - сопряженная матрица

Свойства

1.
$$A^{**} = A$$

$$2. \ (\lambda A)^* = \overline{\lambda} A^*$$

3.
$$(A+B)^* = A^* + B^*$$

4.
$$(AB)^* = B^*A^*$$

5.
$$(A^{-1})^* = (A^*)^{-1}$$

y_{TB}

V - унитарное пр-во,
$$L \in L(V)$$
, $u \in V$
$$\varphi_n(v) = (Lv, \ u) \in V^*$$

$$\Rightarrow (Lv, \ u) = (v, \ w_u)$$

$$\exists ! w_u \in V : \quad (v, \ u) = (v, \ w_u)$$

$$u \to w_u$$

Утверждается, что отображение линейно

Док-во

$$\begin{aligned} &(\mathrm{Lv},\,\mathrm{u}) = (\mathrm{v},\,\mathrm{w}_u) \ | \ &(\mathrm{Lv},\,\mathrm{u} + \mathrm{u}') = (\mathrm{Lv},\,\mathrm{u}) + (\mathrm{Lv},\,\mathrm{u}') = \\ &(\mathrm{Lv},\,\mathrm{u}') = (\mathrm{v},\,\mathrm{w}_{u'}) \ | = (\mathrm{u}\,\,\mathrm{w}_u) + (v,\,\,w_{u'}) = (v,\,\,w_u + w_{u'}) = (v,\,\,w_{u+u'}) \\ &(Lv,\,\,\lambda u) = \overline{\lambda}(Lv,\,\,u) = \overline{\lambda}(v,\,\,w_u) = (v,\,\,\lambda w_u) \\ &= w_{\lambda u} \\ &L^*u = w_u \quad (Lv,\,\,u) = (v,\,\,L^*u) \end{aligned}$$

Опр

 L^* - эрмитов сопряженный оператор

Свойства

1.
$$L^{**} = L$$

$$(L^*v, \ u) = (v, \ L^{**}u)$$

$$(L^*v, \ u) = \overline{(u, \ L * v)} = \overline{(Lu, \)} = (v, \ Lu)$$

$$\Rightarrow L^{**}u = Lu \quad \forall u \in V$$
Почему так? $(v, \ w) = (v, \ w') \quad \forall v \Rightarrow w = w'$

$$(v, \ w - w') = 0$$

$$v = w - w'$$

$$\|w - w'\|^2 = 0$$

$$\Rightarrow w - w' = 0$$
2. $(\lambda L)^* = \overline{\lambda}L^*$

$$(\lambda L)v, \ u) = (v, \ (\lambda L)^*u)$$

$$(\lambda L)v, \ u) = (\lambda \cdot Lv, \ u) = \lambda(Lv, \ u) = \lambda(v, \ L^*u) = (v, \ \overline{\lambda}L^*u)$$

3.
$$(L+L')^* = L^* + L'^*$$
 аналогично

4.
$$(LNv,\ u)=(v,\ (LN)^*u)$$

$$(LNv,\ u)=(v,\ N^*L^*u)\ \text{и то же, что делали раньше}$$

5.
$$[L]_e^* = [L^*]_e$$
, если е - ОНБ
$$Le_i = \sum a_{li}e_l \quad [L]_e = \{a_{ij}\}$$

$$Le_j = \sum b_{kj}e_k \quad [L]_e = \{b_{kj}\}$$

$$(Le_i, e_j) = (e_i, L^*e_j)$$

$$= a_{ij} = \bar{b}_{ij}$$

Опр

$$A\in M_n(\mathbb{C})$$
 A - унитаная, если $A^*A=E$ $U_n=\{A\in M_n(\mathbb{C}): (\text{то что сверху})\}$

Док-во (что это группа по умножению)

$$A^*A = R B^*B = E$$
 \Rightarrow $(AB)^*AB = B^*\underbrace{A^*A}_{=E}B = E$
$$(A^{-1})^*A^{-1} \stackrel{?}{=} E$$

$$\Leftrightarrow (A^{-1})^* = A$$

$$\Leftrightarrow (A^*)^{-1} = (A^{-1})^{-1}$$

Докажем, что любая унитарная матрица обратима и модуль определителя равен единице

$$A^*A = E$$

$$\overline{\det A} \cdot \det A = 1$$

$$|\det A|^2 = 1$$

$\mathbf{y}_{\mathbf{T}\mathbf{B}}$

$$L \in L(V)$$

Следующие условия равносильны:

2 ЕВКЛИДОВЫ И УНИТАРНЫЕ ПР-ВА

1.
$$||Lv|| = ||v|| \quad \forall v$$

2.
$$(Lv, Lu) = (v, u) \quad \forall v, u$$

3.
$$[L]_e \in U_n$$
, *e* - ортонорм.

4.
$$L^*L = id_V$$

И оператор, удовлетворяющий этим условиям называется "унитарным" (в евклидовом случае называется "ортогональным")

Док-во

 $(4 \Rightarrow 2)$:

$$(v, L^*Lu) = (Lv, Lu)$$

 $(2 \Rightarrow 4)$:

$$(v, L^*Lu) = (Lv, Lu) = (v, u)$$

По заклинанию $L^*L = \mathrm{id}_V$

y_{TB}

1.
$$|\det L| = 1$$

2. Если L - унитарный,
$$Lv = \lambda v \underset{v \neq 0}{\Rightarrow} |\lambda| = 1$$

3.
$$Lv = \lambda v$$
 $Lu = \mu u$ $\lambda \neq \mu \Rightarrow (u, v) = 0$

Док-во

1 и 2:

$$||v|| = ||Lv|| = ||\lambda v|| = |\lambda|||v||$$

3:

$$(u, L^*v) = (u, \overline{\lambda}v) = \lambda(u, v)$$

$$(u, L^*v) = (Lu, v) = (\mu u, v) = \mu(u, v)$$

Хотим доказать: $Lv = \lambda v \Rightarrow L^*v = \overline{\lambda}v$

$$v = L^*Lv = L^*(\lambda v) = \lambda L^*v$$

Делим на λ и туда переносится $\overline{\lambda}$

Опр

L - орт. оператор на плоскости, $\det L = 1$, тогда L - поворот

е - ортнорм. базис,
$$[L]_e = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$\begin{pmatrix} a & c \\ b & d \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\begin{cases} a^2 + c^2 = 1 \\ b^2 + d^2 = 1 \\ ab + cd = 0 \\ ad - bc = 1 \end{cases}$$

$$a = \cos \varphi, \quad c = \sin \varphi$$

$$b = \sin \varphi, \quad d = \cos \psi$$

$$\cos \varphi \sin \psi + \sin \varphi \cos \psi = 0$$

$$= \sin(\varphi + \psi)$$

$$\cos \varphi \cos \psi - \sin \varphi \sin \psi = 0$$

$$= \cos(\varphi + \psi)$$

$$\Rightarrow \varphi + \psi = 0$$

$$\begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$$

Опр

Если е - ортогональный оператор на пл-ти, $\det L = -1$ S - какая-то осевая симметрия Тогда:

1.
$$L = S \circ R_{\psi}$$

2.
$$L = R_{\varphi} \circ S$$

Рассмотрим $S^{-1}\circ L$ - ортогональный оператор с определителем 1, значит по предыдущему определению $S^{-1}\circ L=R_\omega$

y_{TB}

В трехмерном пространстве с определителем 1 является поворотом относительно некоторой оси (теорема Эйлера)

Следствие: берем две прямые. Поворачиваем сначала относительно одной, потом относительно другой. И их композицией будет поврот

Док-во (теоремы Эйлера)

L - орт. оператор в пр-ве

$$\det L = 1$$

$$\chi_L(t) \in \mathbb{R}[x], \quad \deg \chi_i = 3$$

 $\lambda_1, \lambda_2, \lambda_3$ - корни

$$|\lambda_1| = |\lambda_2| = |\lambda_3| = 1$$

Два варианта:

1.
$$\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$$

2.
$$\lambda_1 \in \mathbb{R}, \ \lambda_2 = \overline{\lambda_3}$$

В 1 случае одно из λ равно 1, пусть λ_1

Во 2 случае
$$\lambda_1=1$$
 т.к. $\lambda_1\lambda_2\lambda_3=\lambda_1\overline{\lambda_2}\lambda_3=\lambda_1|\lambda_3|^2=\lambda_1$

С.в. остается неподвижным при повороте. Ось тоже. Значит собственный вектор при повороте и есть ось

Осталось д-ть, что ортогональное дополнение есть вращение. Тогда докажем, что наш исходный оператор - вращение относительно оси

$$\exists Lv = v$$
$$v^{\perp}$$

Докажем, что эта плоскость - инвариантное подпространство. Нужно доказать:

$$(u,v) = 0 \to (Lu,v) = 0$$

То есть резульат будет тоже из ортогонального дополнения

$$(Lu,v)=(Lu,Lv)=(u,v)=0$$
 ч.т.д.

Так как инвариантное подпространство, можем сузить L. Оно является плоскостью. Т.к. L - орт. оператор, значит он сохраняет расстояние. Т.к. S тоже сохраняет расстояние, значит L является ортоганальным оператором на плоскости. Осталось убедиться, что модуль равен 1. Если исходный оператор сохраняет расстояние, то и его сужение сохраняет ориентацию. Другой способ: построим матрицу L в базисе: V, {два ортогональных вектора на плоскости}, матрица L будет такой:

$$[L] = \begin{pmatrix} 1 & 0 & 0 \\ 0 & ? & ? \\ 0 & ? & ? \end{pmatrix}$$

Вместо? будет матрица сужения. Мы должны доказать, что это матрица поворота. Определитель большой матрицы равен определителю маленькой, но т.к. большая 1, то и он 1.

По предыдущим рассуждениям - это поврот. То есть у нас есть пространство с осью, на которую оператор действует тождественно, а на другое он действует как поврот.

y_{TB}

Если L - ортогональный оператор в пре-ве с определитем -1 равен композиции поврота, относительно оси и симметрии, то это поворот.

Док-во

Аналогично

Теорема

Унитарный оператор имеет ортонормированный базис из с.в.

Док-во

Индукция по размерности пр-ва.

Пусть одномерное пр-во (n=1) - очевидно, т.к. оператор-вектор у

$$Lv = u$$
, $||u|| = ||v|| \Rightarrow u = \lambda v$, $|\lambda| = 1$

Значит $Lv=\lambda v$ - подходит, когда ортонормируем v - с.в. L с каким-то λ

$$Lv = \lambda v$$
$$< v >^{\perp}$$

Хотим доказать, что подпространство инвариантно относительно действия L:

$$(v, u) = 0 \Rightarrow (v, Lu) = 0$$

$$(v, Lu) = (L^*v, u) \stackrel{(*)}{=} (\overline{\lambda}v, u) = \overline{\lambda}(v, u) = 0$$

(*) т.к. мы доказывали, что у собственного оператора. Если v - вектор унитарного оператора с с.ч. λ

Раз исходный оператор унитарный, то сужение тоже унитарно. Значит мы можем применить индукционное предположение у сужению. На этом ортогональном дополнении у оператора есть базис ортогональных векторов. Добавим к нему отнонормированный вектор v. Очевидно, получим ортонормированный базис из собственных векторов всего пр-ва

Переформулируем на языке матриц

Теорема

U - унитарная матрица, тогда:

$$U=MDM^{-1},\quad D=egin{pmatrix} \lambda_1&\ldots&0\\0&\ldots&0\\0&\ldots&\lambda_k \end{pmatrix},\quad |\lambda_i|=1,\quad M$$
 - унитарная

Док-во

$$\mathbb{C}^n$$
 $Lz=Uz$ $[L]_e=U$ e - есть базис \mathbb{C}^n $[L^*L]_e=[L^*]_e[L]_e=[L]_e^*[L]_e=U^*U=E$

- (*) Из какого-то рассуждения получается
- ⇒ L унитарный оператор

По теореме, которую доказали ранее, f - ортонормированный базис \mathbb{C}^n из с.в. L

$$D = [L]_f = M_{e \to f}^{-1} [L]_e M_{e \to f}$$

(*) У D - на диагонали с.ч., по модулю равные 1 Хотим д-ть: у нас есть два ОНБ, тогда матрица перехода между ними будет унитарна

$$M_{e \to f} = \{a_{ij}\}$$

$$f_j = \sum a_{ij} e_i$$

$$\delta_{jk} = (f_j, f_k) = \left(\sum_i a_{ij} e_{ij}, \sum_l a_{ij} \overline{a}_{lk} e_l\right) = \sum_{i,l} a_{ij} \overline{a}_{lk} (e_i, e_l) \sum_i a_{ij} \overline{a}_{ik}$$

Опр

$$A\in M_n(\mathbb{C})$$
 - эрмитова, если $A^*=A$ $L\in \mathrm{L}(V)=$ самосопряженный, если $L^*=L$

Свойства

1. L - самосопряженный, тогда $[L]_e$ - эрмитова, если е - ортонормированный

$$[L]_e^* = [L^*]_e = [L]_e$$

2. L - самосопряженный, тогда с.ч. $\in \mathbb{R}$

$$\exists Lv = \lambda v, \quad v \neq 0$$

$$\lambda(u, v) = (Lv, v) = (v, Lv) = (v, \lambda v) = \overline{\lambda}(v, v)$$

3.
$$Lv = \lambda v$$
 $Lu = \mu u$ $\lambda \neq \mu \Rightarrow (u, v) = 0$
$$\lambda(v, u) = (Lv, u) = (v, Lu) = (v, \mu u) = \mu(v, u)$$