Optimization of vehicle routing problem using artificial bee colony algorithm

Advisor

Zack Butler

Author

Nikhil Keswaney

Problem Statement

Capacitated vehicle routing problem(CVRP) is a combinatorial optimization problem which states as follows:

"Find the optimal delivery routes for a set of vehicles to supply the set of customers with given demands minimizing the total cost of all the routes."

Example

Number of vehicles: 4

Vehicle Capacity: 45

Computation complexity

Problem Size (Number of Nodes)	Approximate Solution Time
10	3 milli-seconds
20	77 years
25	490 million years
30	8.4*10 ¹⁵ years
50	9.6*10 ⁴⁷ years

Software & Hardware

- Software:
 - Java
- Hardware:
 - Processor: Intel® Core™ i7-7500U CPU @ 2.70GHz × 4
 - o RAM: 8 GB

Milestone 1

- 1. Finding dataset
- 2. Implementation of an exact algorithm

Milestone 1 (Optimized Exact algorithm)

Customers	Time taken(s)
10	5.0
11	12.0
12	29.0
13	51.0
14	146.0
15	209.0
16	238.0
17	273.0
18	5026.0
19	8447.0

Milestone 1 - Result

Noc	des	Exact algorithm	(Time Taken)	
Number of Nodes	Optimal Answer	Brute Force	Optimized	
10	100	3 ms	5s	
20	216	77 Years	4 Days	
25	569	490 Million Years	122 Days	
30 534		8.4xE15 Years	2 Years	
50	741	9.7xE47 Years	136 Years	

Milestone 2

- 1. Implement an approximate algorithm (Artificial bee colony algorithm)
- 2. Improve the performance of artificial bee colony algorithm

Artificial Bee Colony algorithm

- Artificial bee colony algorithm is based on the foraging behaviour of honey bees.
- Swarm intelligence algorithm.
- It's a self organizing network.

Problem statement

There are 4 customers numbered from 1 to 4 and let depot be Node 0.

Distance Matrix

	0	1	2	3	4
0	0	2	31	4	12
1	3	0	12	4	5
2	5	9	0	10	11
3	3	2	12	0	4
4	13	7	10	8	0

Truck Capacity: 28

No. of trucks: 2

Demand

0	-1
1	12
2	8
3	20
4	9

Search Space

- Any combination of the nodes would be a potential food source.
- Possible food sources(states) in the above example with 2 trucks would be
 - 1. Truck1: 0 -> 1-> 2 -> 0; Truck2: 0 -> 3 -> 4 -> 0
 - 2. Truck1: 0 -> 1 -> 0; Truck2: 0 -> 2 -> 3 -> 4 -> 0

Etc.

Phases

It is divided into 3 phases (3 types of bees):

- 1. Scout bees.
- 2. Employed Bees.
- 3. Onlooker Bees.

Scout Bee Phase

- 1. Scout bees are utilized to find the initial solutions
- 2. Scout bees go out and find FEASIBLE food sources. So according to the example:
 - 1. Truck1: 0 -> 3-> 4 -> 0; Truck2: 0 -> 1 -> 2 -> 0
 - 2. Truck1: 0 -> 1-> 4 -> 0; Truck2: 0 -> 2 -> 3 -> 0 ✓
- 3. The scout bee will find all solutions and save it in a queue.

Problem statement

There are 4 customers numbered from 1 to 4 and let depot be Node 0.

Distance Matrix

	0	1	2	3	4
0	0	2	31	4	12
1	3	0	12	4	5
2	5	9	0	10	11
3	3	2	12	0	4
4	13	7	10	8	0

Truck Capacity: 28

No. of trucks: 2

Demand

0	-1
1	12
2	8
3	20
4	9

Employed Bee Phase

- 1. In this phase the employed bees go out and explore the food source's neighbourhood found by the scout bee.
- 2. Take candidate set found by scout bee
- 3. Explore the neighbourhood of that set for better solutions
- 4. Two ways to do that
 - a. Swap operator
 - b. BMX operator

Swap Operator

	Truck1			Truck2				Truck3					
Before Swap	0	1	2	3	0	4	5	6	0	7	8	9	0
After Swap	0	1	7	3	0	4	5	6	0	2	8	9	0

BMX Operator

	Truck1			Truck2				Truck3					
Solution	0	1	2	3	0	4	5	6	0	7	8	9	0
shuffled	0	5	2	3	0	1	4	9	0	6	8	7	0
ВМХ	0	2	3	1	0	4	5	6	0	9	8	7	0

Employed Bee Phase

- 1. How do we know that the new solution found is better than the previous one?
- 2. We use a fitness function that determines

Fitness Function

$$f(x) = c(x) + \beta * p(x)$$

where,
$$p(x) = \sum_{i=1}^{N} d_i y_{ik} - q_k$$

$$C(x) = \sum_{i=1}^{N} c_{i,i+1}$$

$$\beta = iteration_index \times no_of_iterations$$

Onlooker Bee Phase

- The onlooker bees monitor the work that is performed by the employed bees
- After the employed bee phase all the employed bees come back
- And dance in front of the onlooker bees

Algorithm

Time taken

No	des	Exact algorithm	(Time Taken)		Algorithm (Swar erations = 1500	m Size = 70)
Number of Nodes	Optimal Answer	Brute Force	Optimized	Approximate Answer	Avg. ans	Time Taken
10	100	3 ms	5s	111	123	1000ms
20	216	77 Years	4 Days	224	231	1062 ms
25	569	490 Million Years	122 Days	654	671	1048 ms
30	534	8.4xE15 Years	2 Years	575	603	1125 ms
50	741	9.7xE47 Years	136 Years	884	925	1551 ms

Milestones

- 1. Milestone 1 🇸
 - a. Finding dataset
 - b. Implementation of an exact algorithm
- 2. Milestone 2 🗸
 - Implement an approximate algorithm(Artificial bee colony algorithm)
 - b. Improve the performance of artificial bee colony algorithm
- 3. Milestone 3
 - a. Parallelize the artificial bee colony algorithm using GPU and CUDA
 - b. Compare and contrast the run-time of all the implementations

