A Core Calculus for Equational Proofs of Distributed Cryptographic Protocols: Technical Report

September 10, 2022

1 Soundness for Reactions

Definition 1 (Reaction bisimulation). A reaction bisimulation \sim is a binary relation on distributions on reactions Δ ; $\cdot \vdash R : I \to A$ satisfying the following conditions:

• Closure under joint convex combinations: We have

$$\sum_{i:=1,\dots,k} c_i \eta_i \sim \sum_{i:=1,\dots,k} c_i \varepsilon_i$$

for any coefficients $\sum_{i:=1,\ldots,k} c_i = 1$ and distributions $\eta_i \sim \varepsilon_i$ for $i:=1,\ldots,k$.

- Closure under input assignment: For any distributions $\eta \sim \varepsilon$, channel $i : \tau \in \Delta$, and value $v \in \{0,1\}^{\llbracket \tau \rrbracket}$, we have $\eta[\text{read } i := \text{val } v] \sim \varepsilon[\text{read } i := \text{val } v]$.
- Closure under evaluation: For any distributions $\eta \sim \varepsilon$, if $\eta \Downarrow \eta'$ and $\varepsilon \Downarrow \varepsilon'$, then $\eta' \sim \mu'$.
- Valuation property: For any distributions $\eta \sim \varepsilon$, there exists a joint convex combination

$$\eta = \sum_{i=1,\dots,k} c_i \eta_i \sim \sum_{i=1,\dots,k} c_i \varepsilon_i = \varepsilon$$

such that for each i := 1, ..., k, the distributions $\eta_i \sim \varepsilon_i$ have the same value v, or lack thereof.

Lemma 1. We have the following:

- The identity relation is a reaction bisimulation.
- The inverse of a reaction bisimulation is a reaction bisimulation.
- The composition of two reaction bisimulations is a reaction bisimulation.

We now describe one canonical way to construct bisimulations:

Definition 2. Let \sim be an arbitrary binary relation on distributions on reactions Δ ; $\cdot \vdash R : I \to \tau$. The lifting $\sim_{\mathcal{L}}$ is the closure of \sim under joint convex combinations. Explicitly, $\sim_{\mathcal{L}}$ is defined by

$$\sum_{i:=1,\dots,k} c_i \eta_i \sim_{\mathcal{L}} \sum_{i:=1,\dots,k} c_i \varepsilon_i$$

for any coefficients $\sum_{i:=1,...,k} c_i = 1$ and distributions $\eta_i \sim \varepsilon_i$ for i:=1,...,k.

Lemma 2. Let \sim be a binary relation on distributions on reactions Δ ; $\cdot \vdash R : I \rightarrow \tau$ satisfying the following conditions:

• Closure under input assignment: For any distributions $\eta \sim \varepsilon$, channel $i : \tau \in \Delta$, and value $v \in \{0,1\}^{\llbracket \tau \rrbracket}$, we have $\eta[\mathsf{read}\ i := \mathsf{val}\ v] \sim \varepsilon[\mathsf{read}\ i := \mathsf{val}\ v]$.

- Lifting closure under evaluation: For any distributions $\eta \sim \varepsilon$, if $\eta \Downarrow \eta'$ and $\varepsilon \Downarrow \varepsilon'$, then $\eta' \sim_{\mathcal{L}} \mu'$.
- Valuation property: For any distributions $\eta \sim \varepsilon$, there exists a joint convex combination

$$\eta = \sum_{i:=1,\dots,k} c_i \eta_i \sim \sum_{i:=1,\dots,k} c_i \varepsilon_i = \varepsilon$$

such that for each i := 1, ..., k, the distributions $\eta_i \sim \varepsilon_i$ have the same value v, or lack thereof.

Then the lifting $\sim_{\mathcal{L}}$ is a reaction bisimulation.

Lemma 3 (Soundness of equality of reactions). If Δ ; $\Gamma \vdash R_1 = R_2 : I \to \tau$, then there is a reaction bisimulation \sim such that for any valued substitution $\theta : \cdot \to \Gamma$, we have $1[\theta^*(R_1)] \sim 1[\theta^*(R_2)]$.

Proof. We first replace the exchange rule EXCH by the three rules EXCH-SAMP-SAMP, EXCH-SAMP-READ, and EXCH-READ-READ in Figure ??; it is easy to see that this new set of rules is equivalent to the original one. We now proceed by induction on the alternative set of rules for reaction equality.

- REFL: Our desired bisimulation is the identity relation.
- SYM: Our desired bisimulation is the inverse of the bisimulation obtained inductively from the premise Δ ; $\Gamma \vdash R_1 = R_2 : \tau$.
- TRANS: Our desired bisimulation is the composition of the two bisimulations obtained inductively from the two premises Δ ; $\Gamma \vdash R_1 = R_2 : \tau$ and Δ ; $\Gamma \vdash R_2 = R_3 : \tau$.
- CONG-RET: Our desired bisimulation is the lifting of the relation \sim defined by
 - $-1[\text{ret }(e)] \sim 1[\text{ret }(e')]$ for any expressions e, e' evaluating to the same value
 - $-1[\mathsf{val}\ v] \sim 1[\mathsf{val}\ v]$
- CONG-SAMP: Our desired bisimulation is the lifting of the relation \sim defined by
 - $-1[\mathsf{samp}\ (d)] \sim 1[\mathsf{samp}\ (d')]$ for any distributions d, d' evaluating to the same distribution
 - $-1[\mathsf{val}\ v] \sim 1[\mathsf{val}\ v]$
- CONG-BRANCH: Let \sim_1 and \sim_2 be the two bisimulations obtained inductively from the two premises Δ ; $\Gamma \vdash R_1 = R'_1 : \tau$ and Δ ; $\Gamma \vdash R_2 = R'_2 : \tau$. Our desired bisimulation is the lifting of the relation \sim defined by
 - 1[if e then R_1 else R_2] \sim 1[if e' then R'_1 else R'_2] for any messages e, e' such that $\cdot \vdash e = e'$: Bool, and any reactions R_1, R'_1 and R_2, R'_2 such that $1[R_1] \sim_1 1[R'_1]$ and $1[R_2] \sim_2 1[R'_2]$
 - $-\eta \sim \eta'$ for $\eta \sim_1 \eta'$
 - $-\eta \sim \eta'$ for $\eta \sim_2 \eta'$
- CONG-BIND: Let \sim_1 and \sim_2 be the two bisimulations obtained inductively from the two premises Δ ; $\Gamma \vdash R = R' : \tau_1$ and Δ ; $\Gamma, x : \tau_1 \vdash S = S' : \tau_2$. Our desired bisimulation is the lifting of the relation \sim defined by
 - $-(x \leftarrow \eta; S) \sim (x \leftarrow \eta'; S')$ for any $\eta \sim_1 \eta'$, and any reactions $\Delta; x : \tau_1 \vdash S : \tau_2$ and $\Delta; x : \tau_1 \vdash S' : \tau_2$ such that for any e we have $1[S(x := e)] \sim_2 1[S'(x := e)]$
- BRANCH-LEFT: Our desired bisimulation is the lifting of the relation \sim defined by
 - 1[if true then R_1 else R_2] \sim 1[R_1] for any reactions R_1, R_2
 - $-\eta \sim \eta$ for any η
- BRANCH-RIGHT: Our desired bisimulation is the lifting of the relation \sim defined by

Figure 1: Alternative formulation of the EXCH rule.

- 1[if false then R_1 else R_2] $\sim 1[R_2]$ for any reactions R_1, R_2
- $-\eta \sim \eta$ for any η
- BRANCH-EXT: Our desired bisimulation is the lifting of the relation \sim defined by
 - $-1[R(x:=e)] \sim 1[\text{if } e \text{ then } R(x:=\text{true}) \text{ else } R(x:=\text{false})] \text{ for any expression } e \text{ and reaction } \Delta; \ x:=\text{Bool} \vdash R:\tau$
 - $-\eta \sim \eta'$ if $\eta \sim_{\mathsf{val}} \eta'$
- RET-BIND: Our desired bisimulation is the lifting of the relation \sim defined by
 - $-1[x \leftarrow \text{ret } (e); R] \sim 1[R(x := e)] \text{ for any expression } e \text{ and reaction } \Delta; x : \tau_1 \vdash R : \tau_2$
 - $-\eta \sim \eta'$ if $\eta \sim_{\text{val}} \eta'$
- BIND-RET: Our desired bisimulation is the lifting of the relation \sim defined by
 - $-1[x \leftarrow R; \text{ ret } (x)] \sim 1[R] \text{ for any reaction } R$
 - $-1[\mathsf{val}\ v] \sim 1[\mathsf{val}\ v]$
- BIND-BIND: Our desired bisimulation is the lifting of the relation \sim defined by
 - $-1[x_2 \leftarrow (x_1 \leftarrow R_1; R_2); R_3] = 1[x_1 \leftarrow R_1; (x_2 \leftarrow R_2; R_3)]$ for any reactions R_1, R_2, R_3
 - $-\eta \sim \eta$ for any η

Definition 3 (Protocol bisimulation). A protocol bisimulation \sim is a binary relation on distributions on protocols $\Delta \vdash P : I \to O$ satisfying the following conditions:

• Closure under joint convex combinations: We have

$$\sum_{i:=1,\dots,k} c_i \eta_i \sim \sum_{i:=1,\dots,k} c_i \varepsilon_i$$

for any coefficients $\sum_{i:=1,...,k} c_i = 1$ and distributions $\eta_i \sim \varepsilon_i$ for i:=1,...,k.

- Closure under input assignment: For any distributions $\eta \sim \varepsilon$, channel $i : \tau \in \Delta$, and value $v \in \{0,1\}^{\llbracket \tau \rrbracket}$, we have $\eta[\mathsf{read}\ i := \mathsf{val}\ v] \sim \varepsilon[\mathsf{read}\ i := \mathsf{val}\ v]$.
- Closure under evaluation: For any distributions $\eta \sim \varepsilon$, if $\eta \downarrow \eta'$ and $\varepsilon \downarrow \varepsilon'$, then $\eta' \sim \mu'$.

$$\frac{o: \tau \in \Delta \quad o \notin I \quad b: \mathsf{Bool} \in \Delta \quad \Delta; \ \cdot \vdash S_1: I \cup \{o\} \to \tau \quad \Delta; \ \cdot \vdash S_2: I \cup \{o\} \to \tau}{\Delta \vdash \left(\mathsf{new}\ l: \tau \ \mathsf{in}\ o:= x \leftarrow \mathsf{read}\ b; \ \mathsf{if}\ x \ \mathsf{then}\ \mathsf{read}\ l \ \mathsf{else}\ S_2 \ ||\ l:= x \leftarrow \mathsf{read}\ b; \ S_1\right) = \\ \left(o:= x \leftarrow \mathsf{read}\ b; \ \mathsf{if}\ x \ \mathsf{then}\ S_1 \ \mathsf{else}\ S_2\right): I \to \{o\}$$

$$\frac{o: \tau \in \Delta \quad o \notin I \quad b: \mathsf{Bool} \in \Delta \quad \Delta; \ \cdot \vdash S_1: I \cup \{o\} \to \tau \quad \Delta; \ \cdot \vdash S_2: I \cup \{o\} \to \tau}{\Delta \vdash (\mathsf{new} \ r: \tau \ \mathsf{in} \ o: = x \leftarrow \mathsf{read} \ b; \ \mathsf{if} \ x \ \mathsf{then} \ S_1 \ \mathsf{else} \ \mathsf{read} \ r \ || \ r: = x \leftarrow \mathsf{read} \ b; \ S_2) = \\ (o: = x: \leftarrow \mathsf{read} \ b; \ \mathsf{if} \ x \ \mathsf{then} \ S_1 \ \mathsf{else} \ S_2): I \to \{o\}$$

Figure 2: Alternative formulation of the FOLD-IF-LEFT and FOLD-IF-RIGHT rules.

• Valuation property: For any output channel o and any distributions $\eta \sim \varepsilon$, there exists a joint convex combination

$$\eta = \sum_{i:=1,\dots,k} c_i \eta_i \sim \sum_{i:=1,\dots,k} c_i \varepsilon_i = \varepsilon$$

such that for each i := 1, ..., k, the distributions $\eta_i \sim \varepsilon_i$ have the same value v, or lack thereof on the channel o.

Lemma 4. We have the following:

- The identity relation is a protocol bisimulation.
- The inverse of a protocol bisimulation is a protocol bisimulation.
- The composition of two protocol bisimulations is a protocol bisimulation.

We now describe one canonical way to construct protocol bisimulations:

Definition 4. Let \sim be an arbitrary binary relation on distributions on protocols $\Delta \vdash P : I \to O$. The lifting $\sim_{\mathcal{L}}$ is the closure of \sim under joint convex combinations. Explicitly, $\sim_{\mathcal{L}}$ is defined by

$$\sum_{i:=1,\dots,k} c_i \eta_i \sim_{\mathcal{L}} \sum_{i:=1,\dots,k} c_i \varepsilon_i$$

for any coefficients $\sum_{i:=1,...,k} c_i = 1$ and distributions $\eta_i \sim \varepsilon_i$ for i:=1,...,k.

Lemma 5. Let \sim be a binary relation on distributions on protocols $\Delta \vdash P : I \rightarrow O$ satisfying the following conditions:

- Closure under input assignment: For any distributions $\eta \sim \varepsilon$, channel $i : \tau \in \Delta$, and value $v \in \{0,1\}^{\llbracket \tau \rrbracket}$, we have $\eta[\mathsf{read}\ i := \mathsf{val}\ v] \sim \varepsilon[\mathsf{read}\ i := \mathsf{val}\ v]$.
- Lifting closure under evaluation: For any distributions $\eta \sim \varepsilon$, if $\eta \downarrow \eta'$ and $\varepsilon \downarrow \varepsilon'$, then $\eta' \sim_{\mathcal{L}} \mu'$.
- Valuation property: For any output channel o and any distributions $\eta \sim \varepsilon$, there exists a joint convex combination

$$\eta = \sum_{i:=1,\dots,k} c_i \eta_i \sim \sum_{i:=1,\dots,k} c_i \varepsilon_i = \varepsilon$$

such that for each i := 1, ..., k, the distributions $\eta_i \sim \varepsilon_i$ have the same value v, or lack thereof, on the channel o.

Then the lifting $\sim_{\mathcal{L}}$ is a reaction bisimulation.

Lemma 6 (Soundness of equality of protocols). If the ambient exact IPDL theory is sound, and $\Delta \vdash P_1 = P_2 : I \to O$, then there is a protocol bisimulation \sim such that $1[P_1] \sim 1[P_2]$.

Proof. We first replace the rules FOLD-IF-LEFT and FOLD-IF-RIGHT by the equivalent formulation in Figure 2. We subsequently proceed by induction on the derivation $\Delta \vdash P_1 = P_2 : I \to O$ using this alternative system of protocol equality rules.

- Refl: Our desired bisimulation is the identity relation.
- SYM: Our desired bisimulation is the inverse of the bisimulation obtained inductively from the premise $\Delta \vdash P_1 = P_2 : I \to O$.
- TRANS: Our desired bisimulation is the composition of the two bisimulations obtained inductively from the two premises $\Delta \vdash P_1 = P_2 : I \to O$ and $\Delta \vdash P_2 = P_3 : I \to O$.
- AXIOM: The desired bisimulation exists by assumption.
- EMBED: Let \sim be the bisimulation obtained inductively from the premise $\Delta \vdash P_1 = P_2 : I \to O$. The desired bisimulation \sim_{θ} is defined by
 - $-\theta^{\star}(\eta) \sim_{\theta} \theta^{\star}(\eta')$ if $\eta \sim \eta'$
- CONG-REACT: Let \sim be the reaction bisimulation obtained from the premise Δ ; $\cdot \vdash R = R' : I \cup \{o\} \to \tau$. The desired bisimulation is the lifting of the relation \sim := defined by
 - $(o := \eta) \sim_{:} = (o := \eta') \text{ for } \eta \sim \eta'$
 - $-1[o := v] \sim_{:} = 1[o := v]$
- CONG-COMP-LEFT: Let \sim be the bisimulation obtained inductively from the premise $\Delta \vdash P = P' : I \cup O_2 \rightarrow O_1$. The desired bisimulation is the lifting of the relation $\sim_{||}$ defined by
 - $\eta \mid\mid Q \sim_{\mid\mid} \eta' \mid\mid Q$ for $\eta \sim \eta'$ and a protocol Q
- CONG-NEW: Let \sim be the bisimulation obtained inductively from the premise $\Delta, o : \tau \vdash P = P' : I \to O \cup \{o\}$. The desired bisimulation \sim_{new} is defined by
 - new $o: \tau$ in $\eta \sim_{\mathsf{new}} \mathsf{new} \ o: \tau$ in η' for $\eta \sim \eta'$
- COMP-COMM: The desired bisimulation is the lifting of the relation \sim defined by
 - $-1[P_1 || P_2] = 1[P_2 || P_1]$ for protocols P_1, P_2
- COMP-ASSOC: The desired bisimulation is the lifting of the relation \sim defined by
 - $-1[(P_1 || P_2) || P_3] = 1[P_1 || (P_2 || P_3)]$ for protocols P_1, P_2, P_3
- NEW-EXCH: The desired bisimulation is the lifting of the relation \sim defined by
 - $-\ 1\big[\mathsf{new}\ o_1:\tau_1\ \mathsf{in}\ \mathsf{new}\ o_2:\tau_2\ \mathsf{in}\ P\big] = 1\big[\mathsf{new}\ o_2:\tau_2\ \mathsf{in}\ \mathsf{new}\ o_1:\tau_1\ \mathsf{in}\ P\big]\ \mathsf{for}\ \mathsf{a}\ \mathsf{protocol}\ P$
- COMP-NEW: The desired bisimulation is the lifting of the relation \sim defined by
 - $-1\big\lceil P\mid\mid (\mathsf{new}\ o:\tau\ \mathsf{in}\ Q)\big\rceil = 1\big\lceil \mathsf{new}\ o:\tau\ \mathsf{in}\ (P\mid\mid Q)\big]\ \mathsf{for}\ \mathsf{protocols}\ P\ \mathsf{and}\ Q$
- ABSORB-LEFT: The desired bisimulation is the lifting of the relation \sim defined by
 - $-1[P \mid\mid Q] = 1[P]$ for protocols P and Q
- DIVERGE: The desired bisimulation is the lifting of the relation \sim defined by
 - $-1[o := x : \tau \leftarrow \text{read } o; R] = 1[o := \text{read } o] \text{ for a reaction } R$