Notre Dame du MUR Le PORSMEUR Général Technologique & Professionnel

Sciences de l'ingénieur

FC__: Cas d'études dynamiques

Mouvement Rectiligne

1) Paramétrage du modèle glissière et équation horaire du mouvement (cinématique) :

Uniforme Uniformément varié

2) Principe fondamentale de la dynamique :

Théorème de la résultante dynamique :

La somme vectorielle des actions mécaniques extérieures appliquées à un solide S en mouvement de translation par rapport à un repère **absolu** R est égale au produit de la masse de ce solide par l'accélération de son centre de gravité G.

 Unités :

Théorème du moment dynamique :

La somme vectorielle des moments des actions mécaniques extérieures appliquées à un solide S en mouvement de translation par rapport à un repère **absolu** R, par rapport à son centre de gravité G est nulle.

 Unités :

Remarques:

- le théorème du moment implique que la résultante des actions mécaniques extérieures passe par G, sinon son moment par rapport à G n'est pas nul.
- Les cas de l'équilibre statique ou lorsque le mouvement est uniforme sont des cas particulier de la dynamique (cas où l'accélération est nulle).

Sciences de l'ingénieur

FC___: Cas d'études dynamiques

Mouvement Circulaire

1) Paramétrage du modèle pivot et équation horaire du mouvement (cinématique) :

Uniforme Uniformément varié

2) Principe Fondamental de la Dynamique :

Théorème de la résultante dynamique :

La somme vectorielle des actions mécaniques extérieures appliquées à un solide S en mouvement de rotation autour d'un axe fixe par rapport à un repère absolu R est nulle.

 Unité :

Théorème du moment dynamique :

La somme vectorielle des moments des actions mécaniques extérieures appliquées à un solide S en mouvement de rotation autour d'un axe fixe par rapport à un repère absolu R, par rapport à son centre de gravité G est égale au produit du moment d'inertie de ce solide par son accélération angulaire.

 Unités :

Moment d'inertie J:

Le moment d'inertie exprime la répartition des masses autour de l'axe de rotation. Unité : m².ka

« Un patineur sur glace tourne plus vite sur lui-même quand il serre ses bras contre son corps que quand il les écarte. »

Explication: Isolons le patineur.

Bilan des forces extérieures : - poids du patineur

- action de la glace sur les patins

Théorème du moment dynamique : $0 = J \cdot \alpha$

> \Leftrightarrow J. ω = constante

 \Leftrightarrow si ω augmente alors J diminue (bras serrés)

si ω diminue alors J augmente (bras écartés)