TD de topologie et analyse ENSAE Paris

François-Pierre Paty

1 TD du jeudi 12 novembre

1.1 Exercice II.9

Soit f une fonction uniformément continue sur $D \subset \mathbb{R}$.

Question 1. Soient (x_n) , (y_n) deux suites de D telles que $\lim_{n\to+\infty} x_n - y_n = 0$. Montrer que : $\lim_{n\to\infty} f(x_n) - f(y_n) = 0$.

Démonstration. f est uniformément continue. Donc soit $\epsilon > 0$. On dispose d'un $\delta > 0$ tel que pour tout $x, y \in D$ tels que $|x - y| < \delta$, alors $|f(x) - f(y)| < \epsilon$. Comme $x_n - y_n \to 0$, on dispose d'un rang $N \in \mathbb{N}$ tel que pour tout $n \geq N$, $|x_n - y_n| < \delta$. Donc par uniforme continuité de f, $|f(x_n) - f(y_n)| < \epsilon$. Finalement, on a prouvé que pour tout $\epsilon > 0$, on dispose d'un $N \in \mathbb{N}$ tel que pour tout $n \geq N$, $|f(x_n) - f(y_n)| < \epsilon$, i.e. $|f(x_n) - f(y_n)| \to 0$.

Question 2. f(x) = 1/x est-elle uniformément continue sur $[1, +\infty[$?

Démonstration. Soit $\epsilon > 0$. On veut trouver un $\delta > 0$ tel que que si $|x-y| < \delta$, alors $|f(x)-f(y)| < \epsilon$, i.e. $|\frac{1}{x}-\frac{1}{y}| < \epsilon$ i.e. $|\frac{x-y}{xy}| < \epsilon$. Or $\frac{1}{xy} \le 1$ et donc $|f(x)-f(y)| \le |x-y|$. Donc on choisit $\delta = \epsilon$ et on a bien que $|x-y| < \delta \Rightarrow |f(x)-f(y)| < \epsilon$. Donc f est uniformément continue sur $[1, +\infty[$.

Question 3. f(x) = 1/x est-elle uniformément continue sur [0,1]?

Démonstration. Soient $x_n = 1/n$ et $y_n = 1/(n^2)$. Alors $x_n - y_n \to 0$ mais $f(x_n) - f(y_n) = n - n^2$ ne tend pas vers 0. Donc d'après la question 1, f n'est pas uniformément continue.

Question 4. $f(x) = \sin(x^2)$ est-elle uniformément continue sur \mathbb{R} ?

Démonstration. On pose $x_n = \sqrt{\frac{\pi}{2} + 2n\pi}$ et $y_n = \sqrt{\frac{3\pi}{2} + 2n\pi}$. Donc $x_n - y_n \to 0$ mais $f(x_n) - f(y_n) = \sin(\frac{\pi}{2}) - \sin(\frac{3\pi}{2}) = 2$ ne tend pas vers 0. Donc f n'est pas uniformément continue sur \mathbb{R} .

1.2 Exercice II.8

Soit f une fonction uniformément continue sur]0,1[. Montrer que f est bornée.

Démonstration. Soit $\epsilon > 0$. On dispose d'un $\delta > 0$ tel que pour tous $x, y \in]0, 1[$, si $|x-y| < \delta$ alors $|f(x) - f(y)| < \epsilon$. Posons $N = [\frac{1}{\delta}]$ (partie entière supérieure), et on considère les intervalles $I_0 =]0, \delta]$, $I_1 =]\delta, 2\delta]$ etc. jusqu'à $I_{N-1} =](N-1)\delta, 1[$. Chaque intervalle est de taille inférieure à δ , donc sur chaque intervalle $I_i, |f(x)| \le \epsilon + f(i \times \delta + \frac{\delta}{2}) =: M_i$. Donc finalement sur $]0, 1[, |f(x)| \le \max_{0 \le i \le N-1} M_i$. Donc f est bornée.

1.3 Exercice II.11

Soit l'application définie par $\Phi:(M,N)\mapsto \operatorname{trace}(M^\top N)$ de $\mathfrak{M}_n(\mathbb{R})\times\mathfrak{M}_n(\mathbb{R})\to\mathbb{R}$.

Question 1. Montrer que Φ est bilinéaire, symétrique et telle que $\Phi(M, M) \geq 0$ pour tout $M \in \mathfrak{M}_n(\mathbb{R})$, avec égalité si et seulement si M = 0.

Démonstration. — Bilinéaire : évident.

- Symétrique : $\Phi(M, N) = \operatorname{trace}(M^{\top}N) = \operatorname{trace}((M^{\top}N)^{\top}) = \operatorname{trace}(N^{\top}M) = \Phi(N, M)$.
- **Séparation** : soit $M \in \mathfrak{M}_n(\mathbb{R})$. Alors

$$\Phi(M, M) = \operatorname{trace}(M^{\top}M)$$

$$= \sum_{i=1}^{n} (M^{\top}M)_{ii}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} (M^{\top})_{ij} M_{ji}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} M_{ij}^{2} \ge 0$$

avec égalité si et seulement si $\forall 1 \leq i, j \leq n, M_{ij}^2 = 0$ i.e. $\mathbf{M} = 0$. Donc par définition, Φ est un produit scalaire sur $\mathfrak{M}_n(\mathbb{R})$.

Question 2. On a déjà prouvé en cours l'inégalité de Cauchy-Schwarz :

$$|\operatorname{trace}(M^{\top}N)| \le \sqrt{\operatorname{trace}(M^{\top}M)} \sqrt{\operatorname{trace}(N^{\top}N)}.$$

Question 3. En déduire que $N_H : \mathfrak{M}_n(\mathbb{R}) \to R_+$ définie par $N_H(M) = \sqrt{\Phi(M, M)} = \sqrt{\operatorname{trace}(M^\top M)}$ définit une norme sur $\mathfrak{M}_n(\mathbb{R})$.

Démonstration. — Positivité et séparation : $N_H(M) \ge 0$ car $\Phi(M, M) \ge 0$ et $N_H(M) = 0$ si et seulement si $\Phi(M, M) = 0$, i.e. M = 0.

— Multiplication par un scalaire : soit $\lambda \in \mathbb{R}$ et $M \in \mathfrak{M}_n(\mathbb{R})$. Alors

$$N_H(\lambda M) = \sqrt{\operatorname{trace}(\lambda M^\top \lambda M)} = \sqrt{\lambda^2} \sqrt{\operatorname{trace}(M^\top M)} = |\lambda| N_H(M).$$

— Inégalité triangulaire : soient $M, N \in \mathfrak{M}_n(\mathbb{R})$. Alors

$$N_{H}(M+N) = \sqrt{\operatorname{trace}\left((M+N)^{\top}(M+N)\right)}$$

$$= \sqrt{\operatorname{trace}\left(M^{\top}M + M^{\top}N + N^{\top}M + N^{\top}N\right)}$$

$$= \sqrt{\operatorname{trace}(M^{\top}M) + \operatorname{trace}(M^{\top}N + N^{\top}M) + \operatorname{trace}(N^{\top}N)}$$

$$= \sqrt{\operatorname{trace}(M^{\top}M) + 2\operatorname{trace}(M^{\top}N) + \operatorname{trace}(N^{\top}N)}$$

$$\leq \sqrt{\operatorname{trace}(M^{\top}M) + 2\sqrt{\operatorname{trace}(M^{\top}M)}\sqrt{\operatorname{trace}(N^{\top}N)} + \operatorname{trace}(N^{\top}N)}$$

$$= \sqrt{\left(\sqrt{\operatorname{trace}(M^{\top}M)} + \sqrt{\operatorname{trace}(N^{\top}N)}\right)^{2}}$$

$$= \sqrt{\operatorname{trace}(M^{\top}M) + \sqrt{\operatorname{trace}(N^{\top}N)}}$$

$$= N_{H}(M) + N_{H}(M)$$

Donc N_H est bien une norme.

Question 4. En déduire que l'ensemble des matrices orthogonales $\mathcal{O}_n(\mathbb{R}) = \{M \in \mathfrak{M}_n(\mathbb{R}) \mid M^\top M = Id\}$ est compact.

Démonstration. — **Fermé** : Soit $F: \mathfrak{M}_n(\mathbb{R}) \to \mathfrak{M}_n(\mathbb{R})$ définie par $F(M) = M^\top M$. F est application continue (car polynomiale en les coefficients) et $\mathcal{O}_n(\mathbb{R}) = F^{-1}(\{Id\})$. Or $\{Id\}$ est fermé, donc $\mathcal{O}_n(\mathbb{R})$ est fermé comme image réciproque d'un fermé par une application continue.

— Borné: soit $M \in \mathcal{O}_n(\mathbb{R})$, alors $N_H(M) = \sqrt{\operatorname{trace}(M^\top M)} = \sqrt{\operatorname{trace}(Id)}$ car $M^\top M = Id$ et donc $N_H(M) = \sqrt{n}$. Donc $\mathcal{O}_n(\mathbb{R}) \subset \bar{B}_{N_H}(0, \sqrt{n})$, donc $\mathcal{O}_n(\mathbb{R})$ est bornée.

Finalement, $\mathcal{O}_n(\mathbb{R})$ est fermée et bornée dans l'espace vectoriel normé $(\mathfrak{M}_n(\mathbb{R}), N_H)$ qui est de dimension finie $(dim(\mathfrak{M}_n(\mathbb{R})) = n^2)$, donc $\mathcal{O}_n(\mathbb{R})$ est compacte.

1.4 Exercice III.1

Soient

$$\ell^{2}(\mathbb{N}) = \left\{ x \in \mathbb{R}^{\mathbb{N}} \left| \sum_{n=0}^{\infty} |x_{n}|^{2} < \infty \right. \right\}$$

et $d_2: \ell^2(\mathbb{N}) \times \ell^2(\mathbb{N}) \to \mathbb{R}$ définie par

$$d_2(x,y) = \sqrt{\sum_{n=0}^{\infty} |x_n - y_n|^2}.$$

Pour les suites suivantes, dire si elles convergent dans $\ell^2(\mathbb{N})$, et si oui, calculer leur limite. Notation : pour $(x_n) \in \ell^2(\mathbb{N})^{\mathbb{N}}$, on note x_n^k le k-ème élément de la suite x_n , qui est elle-même le n-ème élément de la suite (x_n) .

Question 1. Soit (x_n) définie par $x_n^k = \frac{1}{n}$ si k = 1 et $x_n^k = 0$ si k > 1.

Démonstration. On a : $d_2(x_n,0) = \sqrt{\sum_{k=1}^{\infty} |x_n^k|^2} = \sqrt{1/n^2} = 1/n \to 0$ donc (x_n) converge vers la suite nulle $0 = (0,0,\ldots)$ dans $\ell^2(\mathbb{N})$.

Question 2. Soit (x_n) définie par $x_n^k = 1/k$ si $k \le n$ et $x_n^k = 0$ sinon.

Démonstration. Soit $y \in \mathbb{R}^{\mathbb{N}}$ telle que $y_k = 1/k$. Alors :

$$d_2(x_n, y) = \sqrt{\sum_{k=1}^{\infty} |x_n^k - y_k|^2} = \sqrt{\sum_{k=n+1}^{\infty} |1/k|^2} \to 0$$

car $R_n = \sum_{k=n+1}^{\infty} |1/k|^2$ est le reste de la série de Riemann $(\sum_k 1/k^2)$ qui converge. Donc $R_n \to 0$. \square

Question 3. Soit (x_n) définie par $x_n^k = 1/\sqrt{k}$ si $k \le n$ et $x_n^k = 0$ sinon.

Démonstration. Si (x_n) convergeait dans $\ell^2(\mathbb{N})$ vers une certaine suite y. Alors nécessairement, $y_k = 1/\sqrt{k}$ pour tout $k \in \mathbb{N}$. En effet, s'il existe un $k \in \mathbb{N}$ tel que $y_k \neq 1/\sqrt{k}$, alors pour $n \geq k$, $d_2(x_n, y) \geq |x_n^k - y_k| = |\frac{1}{\sqrt{k}} - y_k| > 0$. Donc $d_2(x_n, y) \geq |\frac{1}{\sqrt{k}} - y_k|$ et donc $d_2(x_n, y)$ ne tend pas vers 0, ce qui est absurde car (x_n) convergeait vers y. Or la suite $y = (1/\sqrt{k})_k \notin \ell^2(\mathbb{N})$ puisque la série de terme général 1/k n'est pas sommable. Donc (x_n) ne converge pas dans $\ell^2(\mathbb{N})$.

Question 4. Soit (x_n) définie par $x_n^k = 1$ si k = n et 0 sinon.

Démonstration. Si (x_n) converge dans $\ell^2(\mathbb{N})$, c'est forcément vers la suite nulle (d'après le même raisonnement qu'à la question 3.). La suite nulle est bien dans $\ell^2(\mathbb{N})$. On a :

$$d_2(x_n, 0) = \sqrt{\sum_{k=1}^{\infty} (x_n^k - 0)^2} = \sqrt{1} = 1$$

ce qui ne tend pas vers 0. Donc (x_n) ne converge pas dans $\ell^2(\mathbb{N})$.

Question 5. Converge.

Question 6. Ne converge pas.

1.5 Rappel sur la complétude

Soit (E,d) un espace métrique. Une suite (x_n) sur (E,d) est dite de Cauchy si :

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall p, q \ge N, d(x_p, x_q) < \epsilon.$$

On dira que (E, d) est **complet** si toutes les suites de Cauchy de (E, d) convergent. Remarque (et exo) : toute suite convergente est de Cauchy.

L'espace $(\mathbb{R}, |\cdot|)$ est complet.

1.6 Exercice sur la complétude

Soient

$$\ell^{1}(\mathbb{N}) = \left\{ x \in \mathbb{R}^{\mathbb{N}} \left| \sum_{n=0}^{\infty} |x_{n}| < \infty \right. \right\}$$

et $d_1:\ell^1(\mathbb{N})\times\ell^1(\mathbb{N})\to\mathbb{R}$ définie par

$$d_1(x,y) = \sum_{n=0}^{\infty} |x_n - y_n|.$$

Question 1. Montrer que d_1 définit une distance sur $\ell^1(\mathbb{N})$.

 $D\acute{e}monstration.$ OK.

Question 2. Montrer que l'espace $(\ell^1(\mathbb{N}), d_1)$ est un espace métrique complet.

Démonstration. Soit $(x_n) \in \ell^1(\mathbb{N})^{\mathbb{N}}$ de Cauchy. Il faut montrer qu'elle converge dans $(\ell^1(\mathbb{N}), d_1)$. On va procéder en trois étapes :

- 1. Construction d'une suite y qui soit un bon candidat pour être la limite de (x_n) .
- 2. Montrer que $y \in \ell^1(\mathbb{N})$.
- 3. Montrer que $d_1(x_n, y) \to 0$.

Etape 1. Pour $k \in \mathbb{N}$, on va construire y_k . On voudrait définir $y_k = \lim_{n \to +\infty} x_n^k$. Mais il faut montrer que la suite $(x_n^k)_n$ converge! Pour cela, on va montrer que la suite $(x_n^k)_n$ est de Cauchy dans $(\mathbb{R}, |\cdot|)$.

Soit $\epsilon > 0$. Comme (x_n) est de Cauchy dans $(\ell^1(\mathbb{N}), d_1)$, on dispose d'un rang $N \in \mathbb{N}$ tel que pour tous $p, q \geq N, d_1(x_p, x_q) < \epsilon$. Soient $p, q \geq N$. Alors :

$$|x_p^k - x_q^k| \le \sum_{l=0}^{\infty} |x_p^l - x_q^l| = d_1(x_p, x_q) < \epsilon.$$

Donc pour tout $\epsilon > 0$, on a trouvé un $N \in \mathbb{N}$ tel que $\forall p,q \geq N, |x_p^k - x_q^k| < \epsilon$. Donc $(x_n^k)_n$ est de Cauchy dans $(\mathbb{R}, |\cdot|)$. Or $(\mathbb{R}, |\cdot|)$ est complet, donc $(x_n^k)_n$ converge dans \mathbb{R} et on peut définir notre candidat :

$$y_k = \lim_{n \to \infty} x_n^k$$
.

Etape 2. Montrons que notre candidat y appartient bien à $\ell^1(\mathbb{N})$. Comme (x_n) est de Cauchy de $(\ell^1(\mathbb{N}), d_1)$ donc (en posant $\epsilon = 1$ dans la définition) on dispose d'un rang $N \in \mathbb{N}$ tel que pour tout $n \geq N$, on ait $d_1(x_n, x_N) < 1$, *i.e.*

$$\sum_{k=0}^{\infty} |x_n^k - x_N^k| < 1.$$

On veut passer à la limite (sous le signe \sum) en $n \to +\infty$ pour transformer les x_n^k en y_k . Soit $K \in \mathbb{N}$. On a donc en particulier :

$$\sum_{k=0}^{K} |x_n^k - x_N^k| < 1.$$

C'est une somme d'un nombre fini de termes, donc on peut passer à la limite en $n \to +\infty$:

$$\lim_{n \to \infty} \sum_{k=0}^K |x_n^k - x_N^k| = \sum_{k=0}^K \lim_{n \to \infty} |x_n^k - x_N^k| = \sum_{k=0}^K |y_k - x_N^k| < 1.$$

Par l'inégalité triangulaire inversée, prise terme à terme :

$$\sum_{k=0}^{K} |y_k| - |x_N^k| \le \sum_{k=0}^{K} ||y_k| - |x_N^k|| \le \sum_{k=0}^{K} |y_k - x_N^k| < 1$$

Et donc:

$$\sum_{k=0}^{K} |y_k| < 1 + \sum_{k=0}^{K} |x_N^k| \le 1 + \sum_{k=0}^{\infty} |x_N^k|.$$

Ceci est vrai quel que soit K, donc en prenant $K \to \infty$:

$$\sum_{k=0}^{\infty} |y_k| < 1 + \sum_{k=0}^{\infty} |x_N^k|$$

or $x_N \in \ell^1(\mathbb{N})$ donc $\sum_{k=0}^{\infty} |x_N^k| < \infty$ et donc $y \in \ell^1(\mathbb{N})$.

Etape 3. Il reste à montrer que $d_1(x_n, y) \to 0$. Soit $\epsilon > 0$. Comme (x_n) de Cauchy, on dispose d'un rang $N \in \mathbb{N}$ tel que pour tout $p, q \geq N$, on ait

$$d_1(x_p, x_q) = \sum_{k=0}^{\infty} |x_p^k - x_q^k| < \epsilon.$$

Comme à l'étape 2, on fixe $K \in \mathbb{N}$ et on obtient

$$\sum_{k=0}^{K} |x_p^k - x_q^k| < \epsilon.$$

Cela nous permet de passer à la limite en $q \to \infty$ pour faire apparaître y:

$$\forall p \ge N, \sum_{k=0}^{K} |x_p^k - y_k| < \epsilon.$$

Ceci est vrai est pour tout K, donc en faisant $K \to \infty$:

$$\forall p \ge N, \sum_{k=0}^{\infty} |x_p^k - y_k| < \epsilon,$$

c'est-à-dire que pour tout $p \ge N$, $d_1(x_p, y) < \epsilon$. Si on résume, on a montré :

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall p > N, d_1(x_n, y) < \epsilon.$$

On a donc montré que la suite (x_n) converge vers y dans $(\ell^1(\mathbb{N}), d_1)$.

Conclusion On a montré que toute suite de Cauchy de $(\ell^1(\mathbb{N}), d_1)$ converge, *i.e.* que $(\ell^1(\mathbb{N}), d_1)$ est complet.

2 TD du jeudi 19 novembre

2.1 Exercice II.5

Soit E un ensemble et d, δ deux distances sur E. On dit que d et δ dont équivalentes s'il existe des constantes $0 < c \le C$ telles que

$$\forall x, y \in E, c\delta(x, y) \le d(x, y) \le C\delta(x, y).$$

On dira par ailleurs que d et δ sont presque équivalentes (p-e) si tout suite $(x_n) \in E^{\mathbb{N}}$ qui converge pour d et aussi pour δ ont les mêmes limites.

Question 1. On suppose que (E, d) et (E, δ) sont complets. Montrer que : $(E, d + \delta)$ est complet si et seulement si d et δ sont presque équivalentes.

 $D\acute{e}monstration$. \Longrightarrow On suppose que $(E,d+\delta)$ est complet. Soit $(x_n) \in E^{\mathbb{N}}$ qui converge vers x dans (E,d) et vers y dans (E,δ) . Il faut montrer que x=y. (x_n) converge pour d et pour δ , donc elle est de Cauchy dans (E,d) et dans (E,δ) , c'est-à-dire que pour $\epsilon>0$, on dispose de $N_d,N_\delta\in\mathbb{N}$ tels que :

$$\forall p, q \ge N_d, d(x_p, x_q) < \epsilon$$

 $\forall p, q \ge N_\delta, \delta(x_p, x_q) < \epsilon$

Donc pour tous $p, q \ge \max\{N_d, N_\delta\}$, on a:

$$d(x_p, x_q) + \delta(x_p, x_q) < 2\epsilon.$$

Donc on a montré que (x_n) est de Cauchy dans $(E, d+\delta)$. Comme $(E, d+\delta)$ est complet, (x_n) converge dans $(E, d+\delta)$. Notons $l \in E$ sa limite dans $(E, d+\delta)$. On a :

$$\lim_{n \to \infty} (d+\delta)(x_n, l) = \lim_{n \to \infty} d(x_n, l) + \delta(x_n, l) = 0,$$

si bien que $d(x_n, l) \to 0$ et $\delta(x_n, l) \to 0$. Donc (x_n) tend vers l = x = y dans (E, d) et dans (E, δ) . Donc d et δ sont p-e.

 \sqsubseteq On suppose que d et δ sont p-e. Montrons que $(E, d+\delta)$ est complet. Soit $(x_n) \in E^{\mathbb{N}}$ de Cauchy pour $(E, d+\delta)$, montrons qu'elle converge pour $d+\delta$. C'est-à-dire : posons $\epsilon > 0$, on dispose de $N \in \mathbb{N}$ tel que pour tous $p, q \geq N$:

$$d(x_p, x_q) + \delta(x_p, x_q) < \epsilon.$$

En particulier, pour tous $p, q \ge N$, $d(x_p, x_q) < \epsilon$ et $\delta(x_p, x_q) < \epsilon$. Donc on a montré que (x_n) est de Cauchy dans (E, d) et aussi dans (E, δ) . Ces espaces sont complets par hypothèse, donc (x_n) converge dans (E, d) et aussi dans (E, δ) .

Comme d et δ sont p-e, on dispose de $l \in E$ tel que $d(x_n, l) \to 0$ et $\delta(x_n, l) \to 0$. Donc on déduit que

$$d(x_n, l) + \delta(x_n, l) \to 0$$

i.e. (x_n) converge vers l dans $(E, d + \delta)$. Donc $(E, d + \delta)$ est complet.

Question 2. On suppose dans la suite que d et δ sont p-e et on prend (x_n) qui converge vers $x \in E$ dans (E, d). Montrer que (x_n) ne peut avoir d'autres points d'accumulation que x dans (E, δ) .

Démonstration. Soit $y \in E$ un point d'accumulation de (x_n) pour δ . Montrons que nécessairement, y = x.

Par définition, on dispose d'une extraction ϕ telle que $(x_{\phi(n)})$ converge vers y dans (E, δ) .

Comme (x_n) converge vers x dans (E,d), $(x_{\phi(n)})$ converge vers x dans (E,d).

Comme d et δ sont p-e, forcément y = x.

Question 3. En déduire que si (E, δ) est compact, alors (x_n) converge dans (E, δ) .

Démonstration. Comme (E, δ) est compact, (x_n) possède une valeur d'adhérence dans (E, δ) . D'après la question précédente, cette valeur d'adhérence est nécessairement égale à x. Donc (x_n) possède une unique valeur d'adhérence (qui est x) dans (E, δ) .

Il reste à prouver que (x_n) converge (vers x) dans (E, δ) . Supposons que ce ne soit pas le cas. Alors il existerait un $\epsilon > 0$, tel que pour tout $N \in \mathbb{N}$, on dispose d'un entier $\psi(N) \geq N$ tel que $\delta(x_{\psi(N)}, x) > \epsilon$. Comme (E, δ) est compact, la suite $(x_{\psi(N)})$ admet une valeur d'adhérence $y \in E$ dans (E, δ) . Cette valeur d'adhérence est aussi une valeur d'adhérence de (x_n) dans (E, δ) , donc d'après la remarque précédente y = x. Ceci est impossible puisque par construction de $(x_{\psi(N)})$, pour tout $N \in \mathbb{N}$, $\delta(x_{\psi(N)}, x) > \epsilon$. On en déduit donc que (x_n) converge vers x dans (E, δ) .

Question 4. Dans $\mathbb{R}[X]$ l'espace des polynômes, on définit pour $P \in \mathbb{R}[X]$,

$$N_{\infty}(P) = \sup_{x \in [0,1]} |P(x)|$$
$$N_a(P) = N_{\infty}(P) + |P(a)|$$

où a > 1. Pour 1 < a < b, N_a et N_b sont p-e mais pas équivalentes.

Démonstration. Presque équivalence Soit $(P_n) \in \mathbb{R}[X]^{\mathbb{N}}$ qui converge pour N_a vers $P \in \mathbb{R}[X]$ et pour aussi pour N_b vers $Q \in \mathbb{R}[X]$. On veut montrer que P = Q. Donc $N_a(P_n - P) \to 0$, c'est-à-dire :

$$N_{\infty}(P_n - P) + |P_n(a) - P(a)| \to 0.$$

En particulier, $N_{\infty}(P_n - P) \to 0$, *i.e.* (P_n) converge uniformément sur [0,1] vers P. Pour la même raison, (P_n) converge uniformément sur [0,1] vers Q. Donc P = Q sur [0,1]. Donc P = Q.

Pas d'équivalence On va montrer que (P_n) de l'énoncé converge vers 0 pour N_a mais que $N_b(P_n)$ est minoré par une constante c strictement positive. En particulier, on aura à partir d'un certain rang que

$$N_a(P_n) \not\geq CN_b(P_n)$$

Prouvons que $N_a(P_n) \to 0$. On peut prouver (par exemple en dérivant) que pour $Q_n(X) = X^n(1-X)$, on a :

$$N_{\infty}(Q_n) = \left(\frac{n}{n+1}\right)^n \frac{1}{n+1} \le \frac{1}{n+1} \to 0$$

et donc (Q_n) converge uniformément vers 0 sur [0,1] et donc sur \mathbb{R} . En particulier $Q_n(a) \to 0$ et donc $N_a(Q_n) \to 0$. Or pour $P_n(X) = Q_n(X)(X-a)$:

$$N_a(P_n) = N_{\infty}(P_n) + |P_n(a)|$$

$$= N_{\infty}(P_n)$$

$$\leq aN_{\infty}(Q_n)$$

$$\leq \frac{a}{n+1} \to 0$$

Donc on a bien prouvé que $N_a(P_n) \to 0$.

Montrons désormais que $N_b(P_n)$ est minoré par une constante strictement positive. Calculons :

$$N_b(P_n) = N_\infty(P_n) + |P_n(b)| \ge |P_n(b)| = |Q_n(b)(b-a)| = b^n(b-1)(b-a) \ge b(b-1)(b-a) > 0$$

car b > a > 1. Donc N_a et N_b ne peuvent pas être équivalentes.

2.2 Rappel sur les applications linéaires continues

Soient $(E, ||\cdot||)$ et $(F, ||\cdot||)$ deux evn. Si $\phi : E \to F$ est une application linéaire, alors elle continue si et seulement si il existe une constante C > 0 telle que

$$\forall x \in E, \|\phi(x)\| \le C\|x\|.$$

En dimension finie, c'est toujours vrai.

Si ϕ est continue, on définit sa norme comme :

$$|||\phi||| = \sup_{x \in E \setminus \{0\}} \frac{\|\phi(x)\|}{\|x\|}.$$

2.3 Exercice III.3

 $E=\mathcal{C}([0,1],\mathbb{R})$ muni de la norme suivante :

$$\forall f \in E, \|f\|_1 = \int_0^1 |f(t)| dt.$$

Question 1. Soit $\phi: E \to E$ définie par

$$\forall f \in E, \, \phi(f)(x) = \int_0^x f(t) \, dt.$$

Montrer que ϕ est continue.

 $D\acute{e}monstration.$ ϕ est linéaire. Soit $f \in E$. Majorons :

$$\begin{aligned} \|\phi(f)\|_1 &= \int_0^1 |\phi(f)(t)| \, dt \\ &= \int_0^1 \left| \int_0^t f(u) \, du \right| \, dt \\ &\leq \int_0^1 \int_0^t |f(u)| \, du \, dt \\ &\leq \int_0^1 \int_0^1 |f(u)| \, du \, dt \\ &\leq \left(\int_0^1 dt \right) \int_0^1 |f(u)| \, du \\ &= \int_0^1 |f(u)| \, du \\ &= \|f\|_1. \end{aligned}$$

Ceci est valable pour tout $f \in E$ donc ϕ est continue.

Question 2. Soit $f_n(x) = ne^{-nx}$. Calculer $||f_n||_1$ et $||\phi(f_n)||_1$.

 $D\'{e}monstration$. On a :

$$||f_n||_1 = \int_0^1 |f_n(t)| dt = \int_0^1 ne^{-nt} dt = \left[-e^{-nt} \right]_0^1 = 1 - e^{-n}.$$

Puis:

$$\|\phi(f_n)\|_1 = \int_0^1 |\phi(f_n)(t)| dt$$

$$= \int_0^1 \left| \int_0^t f_n(u) du \right| dt$$

$$= \int_0^1 \left| 1 - e^{-nt} \right| dt$$

$$= \int_0^1 1 - e^{-nt} dt$$

$$= 1 - \int_0^1 e^{-nt} dt$$

$$= 1 + \frac{1}{n} \left(e^{-n} - 1 \right).$$

Question 3. Calculer la norme de ϕ .

Démonstration. À la question 1, on a prouvé que pour tout $f \in E$, on a $\|\phi(f)\|_1 \leq \|f\|_1$. On en déduit que pour tout $f \in E$ non nul, on a

$$\frac{\|\phi(f)\|_1}{\|f\|_1} \le 1$$

donc en passant au sup sur les $f \in E \setminus \{0\}$, on obtient

$$|||\phi||| = \sup_{f \in E \setminus \{0\}} \frac{\|\phi(f)\|_1}{\|f\|_1} \le 1.$$

Montrons que $|||\phi||| \ge 1$. On a, pour tout $n \in \mathbb{N}$:

$$|||\phi||| = \sup_{f \in E \setminus \{0\}} \frac{\|\phi(f)\|_1}{\|f\|_1}$$
$$\geq \frac{\|\phi(f_n)\|_1}{\|f_n\|_1}$$
$$= \frac{1 + \frac{1}{n} (e^{-n} - 1)}{1 - e^{-n}}$$

Ceci est vrai pour tout $n \in \mathbb{N}$, donc en passant à la limite quand $n \to \infty$:

$$|||\phi||| \ge \lim_{n \to \infty} \frac{1 + \frac{1}{n} (e^{-n} - 1)}{1 - e^{-n}} = 1.$$

Conclusion : $|||\phi||| = 1$.

2.4 Exercice III.4

 $E = \mathbb{R}[X]$, muni de sa norme $\|\sum_i a_i X^i\| = \sum_i |a_i|$.

Question 1. On définit $\phi(P) = P(X+1)$. Est-ce continu?

Démonstration. Posons $P_n(X) = X^n$. Alors $||P_n|| = 1$. Calculons $||\phi(P_n)||$:

$$\|\phi(P_n)\| = \|(X+1)^n\|$$

$$= \|\sum_{i=0}^n \binom{n}{i} X^i\|$$

$$= \sum_{i=0}^n \binom{n}{i}$$

$$= 2^n.$$

Si ϕ était continue, on disposerait d'une constante C>0 telle que pour tout $n\in N$, $\|\phi(P_n)\|\leq C\|P_n\|$, c'est-à-dire $2^n\leq C$. Ceci est impossible donc ϕ n'est pas continue.

3 TD du jeudi 24 novembre

3.1 Rappel sur la convergence simple et uniforme des fonctions

- Convergence uniforme: c'est la convergence pour la norme $\|\cdot\|_{\infty}$, c'est-à-dire que une suite de fonctions (f_n) converge uniformément vers f si $\sup_x |f_n(x) f(x)| \to 0$. C'est une notion de convergence qui est très forte, mais cela permet d'obtenir de bonnes propriétés. Par exemple, si les f_n sont toutes continues et que (f_n) converge uniformément vers f, alors f est obligatoirement continue.
- Convergence simple: c'est la convergence point par point, c'est-à-dire que (f_n) converge simplement vers f si pour tout x, $f_n(x) \to f(x)$. C'est beaucoup plus faible: il existe de nombreuses suites de fonctions qui convergent simplement mais pas uniformément. Notamment, si une suite de fonctions continues (f_n) converge simplement vers f, alors f n'est pas forcément continue. Ce n'est pas une notion de convergence issue d'une norme.

Si (f_n) converge uniformément (vers f), alors (f_n) converge simplement vers f. En effet, par convergence uniforme, on a que $||f_n - f||_{\infty} \to 0$. Soit x, on a que $||f_n(x) - f(x)| \le \sup_y |f_n(y) - f(y)| = ||f_n - f||_{\infty} \to 0$ donc $|f_n(x) - f(x)| \to 0$ pour tout x, i.e. (f_n) converge simplement vers f.

Soit (f_n) une suite de fonctions qui converge simplement vers f. Si (f_n) converge uniformément (mais ce n'est toujours le cas), c'est forcément vers f. Si ce n'est pas le cas, que peut-il se passer pour que (f_n) ne converge pas uniformément?

- Bosse : les fonctions f_n se "replient" sur elles-mêmes et créent ainsi une "bosse".
- **Perte de masse à l'infini :** les fonctions f_n partent à l'infini. Par exemple, on peut prendre $f_n(x) = 1$ si $x \ge n$ et 0 sinon. Ici, (f_n) converge simplement vers 0. Mais $\sup_{x \in \mathbb{R}} |f_n(x) 0| = 1 \not\to 0$!

3.2 Exercice III.1

Pour $x \ge 0$ et $n \ge 1$, on définit $f_n(x) = \frac{n}{1 + n(1 + x)}$.

Question 1. Montrer que (f_n) converge simplement sur $[0, +\infty[$.

Démonstration. Soit $x \ge 0$. On a :

$$f_n(x) = \frac{n}{1 + n(1+x)} = \frac{1}{\frac{1}{n} + (1+x)} \to \frac{1}{1+x}.$$

Donc (f_n) converge simplement vers la fonction $f(x) = \frac{1}{1+x}$.

Question 2. Montrer que (f_n) converge uniformément.

Démonstration. Si (f_n) converge uniformément, c'est forcément vers sa limite simple f. On regarde donc :

$$||f_n - f||_{\infty} = \sup_{x \ge 0} |f_n(x) - f(x)|$$

$$= \sup_{x \ge 0} \left| \frac{n}{1 + n(1+x)} - \frac{1}{1+x} \right|$$

$$= \sup_{x \ge 0} \left| \frac{n(1+x) - (1 + n(1+x))}{(1 + n(1+x))(1+x)} \right|$$

$$= \sup_{x \ge 0} \frac{1}{(1 + n(1+x))(1+x)}$$

$$= \frac{1}{1+n} \to 0$$

où on a utilisé le fait que $x \mapsto \frac{1}{(1+n(1+x))(1+x)}$ est décroissante sur $[0, +\infty[$. Donc $||f_n - f||_{\infty} \to 0$, *i.e.* (f_n) converge uniformément vers f.

3.3 Exercice III.2

Étudier la convergence simple et uniforme des suites de fonction suivantes.

Question 1. $f_n(x) = e^{-nx} \sin(2nx) \text{ sur } \mathbb{R}_+ \text{ puis sur } [a, +\infty[\text{ où } a > 0.$

Démonstration. Sur \mathbb{R}_+ Convergence simple. Soit $x \in \mathbb{R}_+$, on a :

$$f_n(x) = e^{-nx}\sin(2nx) \to 0$$

car pour x > 0, $e^{-nx} \to 0$ et $\sin(2nx)$ est borné, et pour x = 0, $f_n(0) = 0$.

Convergence uniforme. On va prouver que (f_n) ne converge pas uniformément. Il suffit de prouver que (f_n) ne converge pas uniformément vers la limite simple qui est 0, *i.e.* que $||f_n||_{\infty} \not\to 0$. Deux méthodes possibles :

- 1. la méthode bourrine qui consiste à calculer explicitement $||f_n||_{\infty}$ et à montrer qu'elle ne tend pas vers 0.
- 2. la méthode intelligente qui consiste à remarquer que $||f_n||_{\infty} \ge |f_n(x_n)|$ où x_n est un point bien choisi tel que $|f_n(x_n)| \ge c > 0$ pour un certain c > 0. Dans ce cas, $||f_n||_{\infty} > c$ donc $||f_n||_{\infty} \ne 0$.

On va choisir la méthode 2. On remarque que :

$$||f_n||_{\infty} \ge |f_n(1/n)| = |e^{-1}\sin(2)| > 0$$

donc $||f_n||_{\infty}$ ne peut pas tendre vers 0.

Sur $[a, +\infty[$ Convergence simple. Comme $[a, +\infty[\subset \mathbb{R}_+, (f_n) \text{ converge simplement vers } 0 \text{ sur } [a, +\infty[$.

Convergence uniforme. Montrons que (f_n) converge uniformément vers 0 sur $[a, +\infty[$. On a :

$$||f_n||_{\infty} = \sup_{x \ge a} |f_n(x)| = \sup_{x \ge a} |e^{-nx} \sin(2nx)| \le \sup_{x \ge a} e^{-nx} \le e^{-na} \to 0$$

où on a utilisé que $|\sin(t)| \le 1$ pour tout $t \in \mathbb{R}$ et que $x \mapsto e^{-nx}$ est décroissante. Donc (f_n) converge uniformément vers 0 sur $[a, +\infty[$.

Question 2. $f_n(x) = \frac{1}{(1+x^2)^n} \text{ sur } \mathbb{R} \text{ puis sur } [a, +\infty[\text{ où } a > 0.$

Démonstration. Sur \mathbb{R} Convergence simple. Soit $x \in \mathbb{R}$. On a :

$$f_n(x) = \frac{1}{(1+x^2)^n} \to \begin{cases} 0 & \text{si } x \neq 0 \\ 1 & \text{si } x = 0 \end{cases}$$

Notons f la limite simple de (f_n) , i.e. f(x) = 0 si $x \neq 0$ et f(0) = 1.

Convergence uniforme. Si (f_n) convergeait uniformément, ce serait vers la limite simple f. Pour tout $n \geq 1$, f_n est continue. Comme f n'est pas continue, ce n'est pas possible (puisque la limite uniforme de fonctions continues est continue).

Sur $[a, +\infty[$ Convergence simple. D'après ce qu'on vient de faire, (f_n) converge simplement vers 0 sur $[a, +\infty[$.

Convergence uniforme. Si (f_n) converge uniformément sur $[a, +\infty[$, c'est nécessairement vers la limite simple qui est 0. On a :

$$||f_n||_{\infty} = \sup_{x>a} \left| \frac{1}{(1+x^2)^n} \right| = \frac{1}{(1+a^2)^n} \to 0$$

où on a utilisé le fait que $x \mapsto \frac{1}{(1+x^2)^n}$ est décroissante sur $[a, +\infty[$ et que $1+a^2>1$ car a>0. Donc (f_n) converge uniformément sur $[a, +\infty[$ vers 0.

3.4 Rappel sur les espaces de Hilbert

L'intérêt des espaces de Hilbert est de disposer d'un produit scalaire $\langle \cdot, \cdot \rangle$. Cela permet de définir une norme associée, dite norme Hilbertienne, définie par $||x|| = \sqrt{\langle x, x \rangle}$.

3.5 Exercice III.13

Dans $\ell^2(\mathbb{N}, \mathbb{R})$ (l'ensemble des suites réelles de carré sommable), muni de son produit scalaire canonique : $\langle x, y \rangle = \sum_{k=0}^{\infty} x_k y_k$. On considère l'ensemble $C = \{x \in \ell^2(\mathbb{N}, \mathbb{R}), \forall k \in \mathbb{N}, x_k \geq 0\}$.

Question 1. Montrer que C est convexe et fermé.

Démonstration. Convexité. Soient $x, y \in C$ et $t \in [0, 1]$. Montrons que $z = (1 - t)x + ty \in C$. Pour tout $k \in \mathbb{N}$, $z_k = (1 - t)x_k + ty_k \ge 0$ car $x_k \ge 0$ et $y_k \ge 0$ (puisque $x, y \in C$).

Fermeture. Il suffit de montrer que n'importe quelle suite $(x_n) \in C^{\mathbb{N}}$ qui converge a sa limite dans C. Soit $(x_n) \in C^{\mathbb{N}}$ qui converge vers un certain $x \in \ell^2(\mathbb{N}, \mathbb{R})$. Montrons que $x \in C$. Comme (x_n) converge vers x, $||x_n - x||_{\ell^2} \to 0$. C'est-à-dire :

$$\sum_{k=0}^{\infty} (x_n^k - x_k)^2 \to 0$$

où x_n^k est le k-eme terme de la suite $x_n \in \ell^2(\mathbb{N}, \mathbb{R})$. Soit $i \in \mathbb{N}$, montrons que $x_i \geq 0$. Comme $\sum_{k=0}^{\infty} (x_n^k - x_k)^2 \to 0$, chaque terme de la somme tend vers 0 et en particulier $x_n^i \to x_i$ quand $n \to +\infty$. Or comme $x_n \in C$ pour tout $n \in \mathbb{N}$, $x_n^i \geq 0$ pour tout $n \in \mathbb{N}$. Donc x_i est la limite d'une suite d'éléments positifs, donc il est positif. Ceci étant vrai quel que soit $i \in \mathbb{N}$, $x \in C$. Donc C est fermé.

Question 2. Déterminer la projection sur C.

Démonstration. Soit $x \in \ell^2(\mathbb{N}, \mathbb{R})$. Comme C est convexe est fermé, on sait qu'il existe un unique point $p(x) \in C$ et qui minimise la distance à C, c'est-à-dire que p(x) est l'unique minimiseur dans le problème

$$\min_{y \in C} \|x - y\|_{\ell^2}.$$

Soit $y \in C$. On a:

$$||x-y||_{\ell^2}^2 = \sum_{n=0}^{\infty} (x_n - y_n)^2 \ge \sum_{n=0}^{\infty} (x_n - (x_n)_+)^2 = ||x-x^+||_{\ell^2}^2$$

où $(t)_+ = \max(0,t)$ est la partie positive de $t \in \mathbb{R}$. En notant x^+ la suite définie par $x_n^+ = (x_n)_+$, alors $x^+ \in \ell^2(\mathbb{N}, \mathbb{R})$ car pour tout $n \in \mathbb{N}$, $(x_n^+)^2 \le x_n^2$ et donc $\sum_{n=0}^{\infty} (x_n^+)^2 \le \sum_{n=0}^{\infty} x_n^2 < +\infty$ car $x \in \ell^2(\mathbb{N}, \mathbb{R})$. Par construction, $x^+ \in C$. Donc x^+ est la projection de x sur C.

3.6 Exercice III.14

Calculer la projection sur la boule unité fermée dans un espace de Hilbert réel H.

 $D\acute{e}monstration$. Soit $x \in H$. Comme la boule unité fermée est convexe et fermée, il existe une unique projection de x sur cette boule. Définissons $p: H \to \bar{B}(0,1)$ par :

$$p(x) = \begin{cases} x & \text{si } ||x|| \le 1\\ \frac{x}{||x||} & \text{si } ||x|| > 1. \end{cases}$$

Si $||x|| \le 1$ Dans ce cas, $p(x) = x \in \bar{B}(0,1)$ et donc p(x) est bien la projection de x sur la boule. Si ||x|| > 1 $p(x) \in \bar{B}(0,1)$ est la projection de x sur $\bar{B}(0,1)$ si et seulement si :

$$\forall y \in \bar{B}(0,1), \langle y - p(x), x - p(x) \rangle \le 0.$$

Vérifions cela. Soit $y \in \bar{B}(0,1)$, on a :

$$\langle y - p(x), x - p(x) \rangle = \left\langle y - \frac{x}{\|x\|}, x - \frac{x}{\|x\|} \right\rangle$$

$$= \langle y, x \rangle - \left\langle y, \frac{x}{\|x\|} \right\rangle - \left\langle x, \frac{x}{\|x\|} \right\rangle + \left\langle \frac{x}{\|x\|}, \frac{x}{\|x\|} \right\rangle$$

$$= \langle y, x \rangle - \frac{1}{\|x\|} \langle y, x \rangle - \frac{1}{\|x\|} \langle x, x \rangle + \frac{1}{\|x\|^2} \langle x, x \rangle$$

$$= \langle y, x \rangle - \frac{1}{\|x\|} \langle y, x \rangle - \frac{1}{\|x\|} \|x\|^2 + \frac{1}{\|x\|^2} \|x\|^2$$

$$= \langle y, x \rangle \left(1 - \frac{1}{\|x\|} \right) - \|x\| + 1$$

$$= \langle y, x \rangle \frac{\|x\| - 1}{\|x\|} - (\|x\| - 1)$$

$$= (\|x\| - 1) \left(\left\langle y, \frac{x}{\|x\|} \right\rangle - 1 \right).$$

Comme on est dans le cas $\|x\|>1,$ $\|x\|-1>0.$ Par ailleurs, en utilisant l'inégalité de Cauchy-Schwarz,

$$\left\langle y, \frac{x}{\|x\|} \right\rangle \le \|y\| \left\| \frac{x}{\|x\|} \right\| = \|y\| \le 1$$

car $y \in \bar{B}(0,1)$. Finalement, $\left(\left\langle y, \frac{x}{\|x\|} \right\rangle - 1\right) \leq 0$ et donc on obtient que

$$\langle y - p(x), x - p(x) \rangle \le 0$$

et ce pour tout $y \in \bar{B}(0,1)$. Donc p(x) est bien la projection de x sur la boule unité fermée de H. \square

4 Séance du 1er décembre

4.1 Retour sur le MIP et quelques corrections

- Notes : de 7,5 à 17,5 sur 20, la moyenne est de 11,8
- Cours : en général bien su
- Rédaction : en général c'est catastrophique, alors que c'est hyper important
- Tous les ensembles ne sont pas ouverts ou fermés!
- $-- \max\{1, 2\} = 2 \text{ et non } 1$
- Il faut aller gratter des points

Question 3. Soit $P \in \mathbb{R}_k[X]$. On veut majorer la norme de P':

$$N_{\infty}(P') = \sup_{0 \le n \le \deg(P)} |na_n|$$

$$\le \deg(P) \sup_{0 \le n \le \deg(P)} |a_n|$$

$$\le kN_{\infty}(P)$$

 $car \deg(P) \le k$.

Question 7. $P \in \mathbb{R}_k[X]$ si et seulement si tous ses coefficients a_{k+1}, a_{k+2}, \ldots sont nuls, *i.e.* si et seulement si $E_l(P) = 0$ pour tout $l \geq k+1$, c'est-à-dire si et seulement $\forall l \geq k+1, P \in E_l^{-1}(\{0\})$. C'est-à-dire que

$$\mathbb{R}_k[X] = \bigcap_{l > k+1} E_l^{-1}(\{0\}).$$

Or pour tout $l \ge k+1$, E_l est continue et donc $E_l^{-1}(\{0\})$ est fermée comme image réciproque d'un fermé par une application continue. Finalement, $\mathbb{R}_k[X]$ est fermé comme intersection de fermés.

Question 8. Soit $\epsilon > 0$. Comme (P_n) est de Cauchy, il existe $N \in \mathbb{N}$ tel que pour tous $p, q \geq N$, $\|P_p - P_q\|_{\infty} \leq \epsilon/c$. Soient $p, q \geq N$. Alors comme on a supposé que la dérivation ∂ était continue :

$$\|P'_p - P'_q\|_{\infty} = \|(P_p - P_q)'\|_{\infty} = \|\partial(P_p - P_q)\|_{\infty} \le c\|P_p - P_q\|_{\infty} \le c\frac{\epsilon}{c} = \epsilon.$$

On a donc prouvé que

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall p, q \geq N, ||P'_p - P'_q||_{\infty} \leq \epsilon,$$

i.e. on a montré que (P'_n) est de Cauchy.

Question 9. Soit $t \in [0, 1]$. On a :

$$\left| \int_0^t g_n(s) \, ds - \int_0^t g(s) \, ds \right| = \left| \int_0^t g_n(s) - g(s) \, ds \right|$$

$$\leq \int_0^t |g_n(s) - g(s)| \, ds$$

$$\leq \int_0^t ||g_n - g||_{\infty} \, ds$$

$$= t||g_n - g||_{\infty}$$

$$\to 0$$

car on a supposé que $g_n \to g$ dans $(\mathcal{C}, \|\cdot\|_{\infty})$ (convergence uniforme).

Question 10. Soit $f \in \mathcal{C}$. D'après le théorème de Stone-Weierstrass, il existe une suite (P_n) de fonctions polynomiales qui converge uniformément vers f sur [0,1], *i.e.* telle que $P_n \to f$ dans $(\mathcal{C}, \|\cdot\|_{\infty})$. Comme (P_n) converge, elle est de Cauchy (rappel : converger \Rightarrow de Cauchy). Donc d'après la question 8, la suite (P'_n) est aussi de Cauchy dans $(\mathcal{C}, \|\cdot\|_{\infty})$. Or $(\mathcal{C}, \|\cdot\|_{\infty})$ est complet, si bien que (P'_n) converge dans $(\mathcal{C}, \|\cdot\|_{\infty})$, c'est-à-dire uniformément. Notons $g \in \mathcal{C}$ la limite (uniforme) de la suite (P'_n) .

Par ailleurs, comme une fonction polynomiale est de classe \mathcal{C}^{∞} , on a pour tout $n \in \mathbb{N}$ et tout $t \in [0,1]$:

$$P_n(t) - P_n(0) = \int_0^t P_n'(s) \, ds. \tag{1}$$

Or comme (P_n) converge uniformément vers f, (P_n) converge simplement vers f. En particulier, pour tout $t \in [0,1]$, quand $n \to +\infty$

$$P_n(t) - P_n(0) \to f(t) - f(0).$$

Par ailleurs, d'après la question 9, comme (P'_n) converge uniformément vers g, pour tout $t \in [0,1]$, on obtient quand $n \to +\infty$

$$\int_0^t P_n'(s) \, ds \to \int_0^t g(s) \, ds.$$

Finalement, en passant à la limite quand $n \to +\infty$ dans l'équation (1), on a bien construit une fonction continue $g \in \mathcal{C}$ telle que pour tout $t \in [0,1]$ on ait :

$$f(t) - f(0) = \int_0^t g(s) \, ds.$$

4.2 Preuve de la propriété de projection sur un convexe fermé dans un Hilbert

Soit H un espace de Hilbert et $C \subset H$ un convexe fermé. Soit $x \in H$. On sait qu'il existe un unique $p \in C$ qui minimise la distance de x à C: c'est la projection de x sur C. Alors p est caractérisé par la propriété suivante :

$$\forall y \in C, \langle x - p, y - p \rangle < 0.$$

Démonstration. \sqsubseteq Supposons que $\forall y \in C, \langle x-p, y-p \rangle \leq 0$ et montrons que p est la projection de x sur C. Soit $y \in C$. On a :

$$||x - y||^2 = ||x - p - (y - p)||^2 = ||x - p||^2 - 2\langle x - p, y - p \rangle + ||y - p||^2 \ge ||x - p||^2 + ||y - p||^2 \ge ||x - p||^2$$

donc p est bien la projection de x sur C (car $||x-p||^2 \le ||x-y||^2$ pour tout $y \in C$).

 \Longrightarrow Supposons que $p \in C$ est la projection de x sur C, et soit $y \in C$. Montrons que $\langle x-p,y-p\rangle \leq 0$. Soit $t \in [0,1]$, notons z=(1-t)p+ty. Alors $z \in C$ car C est convexe. On a donc :

$$||x - p||^2 \le ||x - z||^2 = ||x - (1 - t)p - ty||^2 = ||x - p - t(y - p)||^2$$

Or

$$||x - p + t(y - p)||^2 = ||x - p||^2 - 2t\langle x - p, y - p\rangle + t^2||y - p||^2$$

On en déduit :

$$2t\langle x - p, y - p \rangle \le t^2 ||y - p||^2.$$

Ceci est vrai pour tout $t \in [0,1]$. Donc pour t > 0, on divise par t pour obtenir

$$\langle x - p, y - p \rangle \le \frac{t}{2} ||y - p||^2.$$

Ceci est vrai pour tout $t \in]0,1]$ donc en prenant $t \to 0$:

$$\langle x - p, y - p \rangle \le 0.$$

4.3 Exercice III.16

Dans $L^2([0,1])$, on considère l'opérateur T défini par :

$$\forall f \in L^2([0,1]), Tf(x) = \int_0^x f(t) dt.$$

Question 1. Montrer que T est bien défini, linéaire et continu.

Démonstration. T est bien définie car pour tout $f \in L^2$, $Tf \in L^2$ car Tf est continue (car c'est une primitive de f), et Tf est continue sur le compact [0,1], elle est donc bornée donc de carré intégrable. T est bien linéaire. Montrons que T est continue. Soit $f \in L^2$, on a :

$$||Tf||_{L^{2}}^{2} = \int_{0}^{1} [Tf(x)]^{2} dx$$

$$= \int_{0}^{1} \left(\int_{0}^{x} f(t) dt \right)^{2} dx$$

$$\leq \int_{0}^{1} \left(\int_{0}^{x} f(t)^{2} dt \right) \left(\int_{0}^{x} 1^{2} dt \right) dx$$

$$= \int_{0}^{1} \left(\int_{0}^{x} f(t)^{2} dt \right) x dx$$

$$\leq \int_{0}^{1} \left(\int_{0}^{1} f(t)^{2} dt \right) x dx$$

$$= ||f||_{L^{2}}^{2} \int_{0}^{1} x dx$$

$$= \frac{1}{2} ||f||_{L^{2}}^{2}$$

où on a utilisé l'inégalité de Cauchy-Schwarz. Donc $||Tf||_{L^2} \leq \frac{\sqrt{2}}{2} ||f||_{L^2}$ et donc T est bien continue. \square

Question 2. Calculer l'adjoint T^* de T.

Démonstration. Soient $f, g \in L^2$. On calcule :

$$\langle Tf, g \rangle = \int_0^1 Tf(x)g(x) dx$$

$$= \int_0^1 \left(\int_0^x f(t) dt \right) g(x) dx$$

$$= \int_0^1 \int_0^1 f(t) 1_{(t \le x)} g(x) dt dx$$

$$= \int_0^1 f(t) \left(\int_0^1 1_{(t \le x)} g(x) dx \right) dt$$

$$= \int_0^1 f(t) \left(\int_t^1 g(x) dx \right) dt$$

$$= \langle f, T^*g \rangle.$$

Donc par identification, $T^*g(x) = \int_x^1 g(t) dt$.

4.4 Exercice III.17

Question 1. Soit (α_n) une suite de $\mathbb{C}^{\mathbb{N}}$ bornée. On se place dans l'espace de Hilbert $\ell^2 = \ell^2(\mathbb{N}, \mathbb{C})$ muni de son produit hermitien canonique :

$$\langle x, y \rangle = \sum_{n=0}^{\infty} x_n \overline{y_n}.$$

On définit T un p-opérateur linéaire par : $T(x) = (\alpha_n x_n)_{n \in \mathbb{N}}$. Montrer que T est continu et calculer son adjoint.

Démonstration. Continuité Soit $x \in \ell^2$. On a :

$$||T(x)||_{\ell^2}^2 = \sum_{n=0}^{\infty} |T(x)_n|^2$$

$$= \sum_{n=0}^{\infty} |\alpha_n x_n|^2$$

$$\leq ||\alpha||_{\infty}^2 \sum_{n=0}^{\infty} |x_n|^2$$

$$= ||\alpha||_{\infty}^2 ||x||_{\ell^2}^2$$

où $\|\alpha\|_{\infty} = \sup_{n \in \mathbb{N}} |\alpha_n| < +\infty$. Donc $\forall x \in \ell^2$, $\|T(x)\|_{\ell^2} \le \|\alpha\|_{\infty} \|x\|_{\ell^2}$ donc T est bien définie et est continue. D'ailleurs, $\||T|\| \le \|\alpha\|_{\infty}$.

Adjoint Soient $x, y \in \ell^2$. On a :

$$\begin{split} \langle T(x),y\rangle &= \sum_{n=0}^{\infty} T(x)_n \overline{y_n} \\ &= \sum_{n=0}^{\infty} \alpha_n x_n \overline{y_n} \\ &= \sum_{n=0}^{\infty} x_n \overline{\alpha_n} \overline{y_n} \\ &= \langle x, (\overline{\alpha_n} y_n)_{n \in \mathbb{N}} \rangle. \end{split}$$

Donc $T^*(y) = (\overline{\alpha_n}y_n)_{n \in \mathbb{N}}$.

4.5 Rappels sur les séries de Fourier

Soit $f: \mathbb{R} \to \mathbb{R}$ qui est τ -périodique, *i.e.* telle que $f(x+\tau) = f(x)$ quel que soit $x \in \mathbb{R}$. Pour $n \in \mathbb{Z}$, on définit les coefficients de Fourier exponentiels de f par :

$$c_n(f) = \frac{1}{\tau} \int_{-\tau/2}^{\tau/2} f(t) e^{-in\frac{2\pi}{\tau}t} dt.$$

Identité de Parseval Si f, restreinte à une période, est de carré intégrable, *i.e.* si $\int_{-\tau/2}^{\tau/2} f(t)^2 dt < +\infty$, alors la série numérique $\sum_{n\in\mathbb{Z}} |c_n(f)|^2$ converge et la somme vaut :

$$\sum_{n \in \mathbb{Z}} |c_n(f)|^2 = \frac{1}{\tau} \int_{-\tau/2}^{\tau/2} f(t)^2 dt.$$

Théorème de Dirichlet Soit $x \in \mathbb{R}$. Si f admet une limite à gauche et à droite au point x, notées respectivement $f(x^-)$ et $f(x^+)$, et si f admet des dérivées à gauche et à droite au point x, alors la série de Fourier de f converge simplement vers $\frac{f(x^-)+f(x^+)}{2}$, c'est-à-dire :

$$\sum_{n \in \mathbb{Z}} c_n(f) e^{in\frac{2\pi}{\tau}x} = \frac{f(x^-) + f(x^+)}{2}.$$

En particulier, les hypothèses du théorème sont vérifiées si f est de classe C^1 par morceaux.

Calcul de sommes Dans les exercices, on demande souvent de calculer des sommes. Il suffit d'appliquer l'identité de Parseval, et/ou le théorème de Dirichlet (au point x = 0).

4.6 Exercice

Soit f la fonction 2π -périodique définie par :

$$f(x) = \begin{cases} -1 & \text{si } x \in [0, \pi[\\ 1 & \text{si } x \in [\pi, 2\pi[. \end{cases}$$

Question 1. Calculer les coefficients exponentiels de Fourier de f.

Démonstration. Soit $n \in \mathbb{Z}^*$, calculons :

$$c_n(f) = \frac{1}{2\pi} \int_0^{2\pi} f(t) e^{-int} dt$$

$$= -\frac{1}{2\pi} \int_0^{\pi} e^{-int} dt + \frac{1}{2\pi} \int_{\pi}^{2\pi} e^{-int} dt$$

$$= -\frac{1}{2\pi} \left[\frac{e^{-int}}{-in} \right]_0^{\pi} + \frac{1}{2\pi} \left[\frac{e^{-int}}{-in} \right]_{\pi}^{2\pi}$$

$$= \frac{1}{2\pi ni} \left(e^{-in\pi} - 1 - e^{-in2\pi} + e^{-in\pi} \right)$$

$$= \frac{1}{2\pi ni} \left(2(-1)^n - 2 \right)$$

$$= \frac{(-1)^n - 1}{\pi ni}.$$

Pour n = 0, on a:

$$c_0(f) = \frac{1}{2\pi} \int_0^{2\pi} f(t) dt = 0.$$

Question 2. En déduire la valeur de $\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2}$. On a que

$$\frac{1}{2\pi} \int_0^{2\pi} f(t)^2 dt = \frac{1}{2\pi} \int_0^{2\pi} 1 dt = 1.$$

Donc f est de carré intégrable sur une période. On peut donc appliquer l'identité de Parseval :

$$\sum_{n \in \mathbb{Z}} |c_n(f)|^2 = \frac{1}{2\pi} \int_0^{2\pi} f(t)^2 dt = 1.$$

Calculons $|c_n(f)|^2$ pour $n \in \mathbb{Z}$: si n = 0, $c_n(f) = 0$ donc $|c_n(f)|^2 = 0$. Sinon, on a :

$$|c_n(f)|^2 = \left| \frac{(-1)^n - 1}{\pi n i} \right|^2$$

$$= \frac{|(-1)^n - 1|^2}{|\pi n i|^2}$$

$$= \frac{|(-1)^n - 1|^2}{\pi^2 n^2}$$

$$= \begin{cases} 0 & \text{si } n \text{ pair} \\ \frac{4}{\pi^2 n^2} & \text{si } n \text{ impair} \end{cases}$$

On obtient donc que

$$\sum_{p \in \mathbb{Z}} \frac{4}{\pi^2 (2p+1)^2} = 1$$

i.e.

$$\sum_{p \in \mathbb{Z}} \frac{1}{(2p+1)^2} = \frac{\pi^2}{4}.$$

Or

$$\sum_{p \in \mathbb{Z}} \frac{1}{(2p+1)^2} = 2 \sum_{n \in \mathbb{N}} \frac{1}{(2n+1)^2}$$

et donc

$$\sum_{n \in \mathbb{N}} \frac{1}{(2n+1)^2} = \frac{\pi^2}{8}.$$

4.7 Exercice III.8

Soit f la fonction 2π -périodique définie par $f(x) = e^x$ si $x \in [-\pi, \pi[$.

Question 1. Calculer les coefficients de Fourier de f.

Démonstration. Pour $n \in \mathbb{Z}$, on a :

$$c_n(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^t e^{-int} dt$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{(1-in)t} dt$$

$$= \frac{1}{2\pi} \left[\frac{e^{(1-in)t}}{1-in} \right]_{-\pi}^{\pi}$$

$$= \frac{1}{2\pi (1-in)} \left(e^{(1-in)\pi} - e^{-(1-in)\pi} \right)$$

$$= \frac{1}{2\pi (1-in)} \left(e^{\pi} e^{-in\pi} - e^{-\pi} e^{in\pi} \right)$$

$$= \frac{(-1)^n}{2\pi (1-in)} \left(e^{\pi} - e^{-\pi} \right)$$

$$= \frac{(-1)^n}{\pi (1-in)} \sinh(\pi).$$

Question 2. En déduire la valeur de $\sum_{n=1}^{\infty} \frac{1}{n^2+1}$ et $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2+1}$.

Démonstration. $\left| \sum_{n=1}^{\infty} \frac{1}{n^2 + 1} \right| \text{ Calculons } |c_n(f)|^2, n \in \mathbb{Z} :$

$$|c_n(f)|^2 = \left| \frac{(-1)^n}{\pi (1 - in)} \sinh(\pi) \right|^2$$

$$= \frac{\sinh^2(\pi)}{\pi^2 |1 - in|^2}$$

$$= \frac{\sinh^2(\pi)}{\pi^2 (1 + n^2)}.$$

La fonction f est de carré intégrable sur une période. Donc par l'identité de Parseval, on a :

$$\sum_{n \in \mathbb{Z}} |c_n(f)|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)^2 dt$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{2t} dt$$

$$= \frac{1}{2\pi} \frac{e^{2\pi} - e^{-2\pi}}{2}$$

$$= \frac{1}{2\pi} \sinh(2\pi).$$

Finalement, on obtient:

$$\sum_{n\in\mathbb{Z}} \frac{\sinh^2(\pi)}{\pi^2(1+n^2)} = \frac{1}{2\pi} \sinh(2\pi),$$
$$\sum_{n\in\mathbb{Z}} \frac{1}{1+n^2} = \frac{\pi}{2} \frac{\sinh(2\pi)}{\sinh^2(\pi)}.$$

Or

$$\sum_{n \in \mathbb{Z}} \frac{1}{1 + n^2} = 1 + 2 \sum_{n=1}^{\infty} \frac{1}{1 + n^2}$$

et

$$\frac{\pi \sinh(2\pi)}{2 \sinh^2(\pi)} = \frac{\pi 2 \sinh(\pi) \cosh(\pi)}{2 \sinh^2(\pi)} = \frac{\pi \cosh(\pi)}{\sinh(\pi)} = \pi \coth(\pi).$$

On obtient ainsi:

$$\sum_{n=1}^{\infty} \frac{1}{1+n^2} = \frac{\pi \coth(\pi) - 1}{2}.$$

 $\left|\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2+1}\right|$ La fonction f est de classe C^1 par morceaux, donc on peut appliquer le théorème de

Dirichlet. Pour $x \in]-\pi,\pi[$, on a

$$\sum_{n \in \mathbb{Z}} c_n(f)e^{inx} = f(x),$$

i.e.

$$\sum_{n\in\mathbb{Z}} \frac{(-1)^n}{1-in} e^{inx} = \frac{\pi e^x}{\sinh(\pi)}.$$

En particulier, en prenant la partie réelle de chaque côté de l'équation, et en utilisant la linéarité de la partie réelle, on a :

$$\sum_{n \in \mathbb{Z}} \operatorname{Re} \left(\frac{(-1)^n}{1 - in} e^{inx} \right) = \frac{\pi e^x}{\sinh(\pi)}.$$

Calculons la partie réelle, pour $n \in \mathbb{Z}$:

$$\operatorname{Re}\left(\frac{(-1)^n}{1-in}e^{inx}\right) = (-1)^n \operatorname{Re}\left(\frac{e^{inx}}{1-in}\right)$$

$$= (-1)^n \frac{\operatorname{Re}(e^{inx}(1+in))}{|1-in|^2}$$

$$= (-1)^n \frac{\operatorname{Re}(e^{inx})\operatorname{Re}(1+in) - \operatorname{Im}(e^{inx})\operatorname{Im}(1+in)}{|1-in|^2}$$

$$= (-1)^n \frac{\cos(nx) - n\sin(nx)}{1+n^2}.$$

On obtient ainsi, pour $x \in]-\pi,\pi[$:

$$\sum_{n \in \mathbb{Z}} (-1)^n \frac{\cos(nx) - n\sin(nx)}{1 + n^2} = \frac{\pi e^x}{\sinh(\pi)}.$$

En particulier pour x=0, obtient

$$\sum_{n\in\mathbb{Z}} \frac{(-1)^n}{1+n^2} = \frac{\pi}{\sinh(\pi)}.$$

Or
$$\sum_{n\in\mathbb{Z}}\frac{(-1)^n}{1+n^2}=1+2\sum_{n=1}^{\infty}\frac{(-1)^n}{1+n^2},$$
 d'où :

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{1+n^2} = \frac{1}{2} \left(\frac{\pi}{\sinh(\pi)} - 1 \right).$$

5 Séance du 9 décembre

5.1 Exercice

Soit $\tau > 0$. Soit $f : \mathbb{R} \to \mathbb{R}$ τ -périodique définie par $f(x) = x/\tau$ pour $x \in [0, \tau[$.

Question 1. Calculer les coefficients de Fourier de f.

Démonstration. Soit $n \in \mathbb{Z}^*$. On a :

$$c_n(f) = \frac{1}{\tau} \int_0^{\tau} \frac{x}{\tau} e^{-in\frac{2\pi}{\tau}x} dx$$

$$= \frac{1}{\tau^2} \int_0^{\tau} x e^{-in\frac{2\pi}{\tau}x} dx$$

$$= \frac{1}{\tau^2} \left[\frac{x e^{-in\frac{2\pi}{\tau}x}}{-in\frac{2\pi}{\tau}} \right]_0^{\tau} - \frac{1}{\tau^2} \int_0^{\tau} \frac{e^{-in\frac{2\pi}{\tau}x}}{-in\frac{2\pi}{\tau}} dx$$

$$= \frac{1}{\tau^2} \frac{\tau^2 e^{-in2\pi}}{-in2\pi} - 0$$

$$= \frac{i}{2\pi n}.$$

Pour n = 0, on a:

$$c_0(f) = \frac{1}{\tau} \int_0^{\tau} \frac{x}{\tau} dx = \frac{1}{2}.$$

Question 2. En déduire les formules suivantes. On justifiera la convergence des séries.

— Problème de Bâle : $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6},$

— Formule de Leibniz : $\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} = \frac{\pi}{4}.$

 $D\'{e}monstration. \boxed{\sum_{n=1}^{\infty} \frac{1}{n^2}} \ \text{La s\'erie est convergente car c'est une s\'erie de Riemann d'exposant} > 1.$

La fonction f est de carré intégrable sur $[0, \tau[$, donc on peut appliquer l'identité de Parseval :

$$\sum_{n \in \mathbb{Z}} |c_n(f)|^2 = \frac{1}{\tau} \int_0^{\tau} f(x)^2 dx.$$

Calculons l'intégrale :

$$\frac{1}{\tau} \int_0^\tau f(x)^2 dx = \frac{1}{\tau^3} \int_0^\tau x^2 dx = \frac{1}{\tau^3} \frac{\tau^3}{3} = \frac{1}{3}.$$

Calculons $|c_n(f)|^2$, $n \in \mathbb{Z}^*$:

$$|c_n(f)|^2 = \left|\frac{i}{2\pi n}\right|^2 = \frac{1}{4\pi^2 n^2},$$

et pour n = 0, $|c_0(f)|^2 = (1/2)^2 = \frac{1}{4}$.

$$\sum_{n \in \mathbb{Z}} |c_n(f)|^2 = \frac{1}{4} + 2\sum_{n=1}^{\infty} \frac{1}{4\pi^2 n^2}$$

si bien qu'on obtient:

$$\frac{1}{4} + 2\sum_{n=1}^{\infty} \frac{1}{4\pi^2 n^2} = \frac{1}{3},$$

i.e.

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{4\pi^2}{2} \left(\frac{1}{3} - \frac{1}{4} \right) = \frac{\pi^2}{6}.$$

 $\left| \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} \right|$ Cette série est convergente d'après le critère des séries alternées (car $\frac{1}{2n+1}$ est de signe

constant et décroissant).

La fonction f est de classe C^1 par morceaux, donc on peut appliquer le théorème de Dirichlet. Pour $x \in]0,\tau[$,

$$\sum_{n\in\mathbb{Z}} c_n(f)e^{in\frac{2\pi}{\tau}x} = f(x),$$

c'est-à-dire

$$\frac{1}{2}e^{i0\frac{2\pi}{\tau}x}+\sum_{n\in\mathbb{Z}^*}\frac{i}{2\pi n}e^{in\frac{2\pi}{\tau}x}=\frac{x}{\tau}.$$

En particulier, en passant à la partie réelle de chaque côté de l'équation et par linéarité de la partie réelle :

$$\frac{1}{2} + \sum_{n \in \mathbb{Z}^*} \operatorname{Re}\left(\frac{i}{2\pi n} e^{in\frac{2\pi}{\tau}x}\right) = \frac{x}{\tau}.$$

Calculons Re $\left(\frac{i}{2\pi n}e^{in\frac{2\pi}{\tau}x}\right)$ pour $n \in \mathbb{Z}^*$:

$$\operatorname{Re}\left(\frac{i}{2\pi n}e^{in\frac{2\pi}{\tau}x}\right) = \frac{1}{2\pi n}\operatorname{Re}\left(ie^{in\frac{2\pi}{\tau}x}\right)$$

$$= \frac{1}{2\pi n}\operatorname{Re}\left(e^{i\frac{\pi}{2}}e^{in\frac{2\pi}{\tau}x}\right)$$

$$= \frac{1}{2\pi n}\operatorname{Re}\left(e^{i\pi\left(\frac{1}{2} + \frac{2n}{\tau}x\right)}\right)$$

$$= \frac{1}{2\pi n}\cos\left(\frac{\pi}{2} + \frac{2n\pi}{\tau}x\right)$$

$$= \frac{-1}{2\pi n}\sin\left(\frac{2n\pi}{\tau}x\right)$$

D'où, pour $x \in]0, \tau[$:

$$\sum_{n \in \mathbb{Z}^*} \frac{-1}{n} \sin \left(\frac{2n\pi}{\tau} x \right) = \frac{2\pi x}{\tau} - \pi$$

En particulier avec $x = \frac{\tau}{4}$,

$$\sum_{n \in \mathbb{Z}^*} \frac{1}{n} \sin\left(\frac{n\pi}{2}\right) = \frac{\pi}{2}$$

Or

$$\sin\left(\frac{n\pi}{2}\right) = \begin{cases} 0 & \text{si } n \text{ est pair} \\ (-1)^p & \text{si } n = 2p+1 \end{cases}$$

d'où

$$\sum_{p\in\mathbb{Z}}\frac{(-1)^p}{2p+1}=\frac{\pi}{2}.$$

Or pour $p \ge 0$, $\frac{(-1)^p}{2p+1} = \frac{(-1)^{-1-p}}{2(-p-1)+1}$ et donc

$$\sum_{p \in \mathbb{Z}} \frac{(-1)^p}{2p+1} = 2\sum_{p=0}^{\infty} \frac{(-1)^p}{2p+1}$$

et donc

$$\sum_{p \in \mathbb{Z}} \frac{(-1)^p}{2p+1} = \frac{\pi}{4}.$$

5.2 Exercice III.12

Soit $f: \mathbb{R} \to \mathbb{R}$ 2π -périodique et de classe C^1 et de moyenne nulle :

$$\frac{1}{2\pi} \int_0^{2\pi} f(t) \, dt = 0.$$

Question 1. Calculer $c_n(f')$, $n \in \mathbb{Z}$.

Démonstration. Notons que f' est 2π -périodique et continue. On a, pour $n \in \mathbb{Z}$:

$$c_n(f') = \frac{1}{2\pi} \int_0^{2\pi} f'(t)e^{-int} dt$$

$$= \frac{1}{2\pi} \left[f(t)e^{-int} \right]_0^{2\pi} - \frac{-in}{2\pi} \int_0^{2\pi} f(t)e^{-int} dt$$

$$= \frac{1}{2\pi} \left(f(2\pi) - f(0) \right) + inc_n(f)$$

$$= inc_n(f).$$

(Exo : si f est τ -périodique, alors $c_n(f') = in \frac{2\pi}{\tau} c_n(f)$).

Question 2. En déduire que pour tout $t \in \mathbb{R}$, on a

$$|f(t)| \le \sum_{n \in \mathbb{Z}^*} \frac{1}{|n|} |c_n(f')|.$$

Démonstration. Soit $t \in \mathbb{R}$. Comme f est de classe C^1 , le théorème de Dirichlet nous assure que f est égale à sa série de Fourier, donc :

$$|f(t)| = \left| \sum_{n \in \mathbb{Z}} c_n(f) e^{int} \right| = \left| c_0(f) + \sum_{n \in \mathbb{Z}^*} c_n(f) e^{int} \right| = \left| c_0(f) + \sum_{n \in \mathbb{Z}^*} \frac{c_n(f')}{in} e^{int} \right| = \left| \sum_{n \in \mathbb{Z}^*} \frac{c_n(f')}{in} e^{int} \right|$$

car $c_0(f)=\frac{1}{2\pi}\int_0^{2\pi}f(u)\,du=0$ par hypothèse. Puis on applique l'inégalité triangulaire :

$$|f(t)| \le \sum_{n \in \mathbb{Z}^*} \left| \frac{c_n(f')}{in} e^{int} \right| = \sum_{n \in \mathbb{Z}^*} \frac{1}{|n|} |c_n(f')|.$$

Montrons maintenant que

$$\sum_{n\in\mathbb{Z}^*} \frac{1}{|n|} |c_n(f')| < \infty.$$

Comme f est de classe C^1 , f' est continue sur \mathbb{R} , donc elle est bornée sur $[0, 2\pi]$ et donc f' est de carré intégrable sur $[0, 2\pi]$. Donc on peut appliquer le théorème de Parseval :

$$\sum_{n\in\mathbb{Z}} |c_n(f')|^2 = \frac{1}{2\pi} \int_0^{2\pi} (f'(t))^2 dt < +\infty.$$

Donc la série $\sum_{n\in\mathbb{Z}} |c_n(f')|^2$ est convergente, et donc nécessairement $|c_n(f')|^2 \to 0$ quand $n \to +\infty$. Donc $|c_n(f')| \to 0$. On en déduit que

$$\frac{1}{|n|}|c_n(f')| = o_{|n| \to +\infty} \left(\frac{1}{|n|}\right).$$

Donc d'après un critère de convergence pour les séries, la série $\sum_{n\in\mathbb{Z}^*} \frac{1}{|n|} |c_n(f')|$ converge.

Question 3. En déduire :

$$||f||_{\infty}^2 \le \frac{\pi}{6} \int_0^{2\pi} (f'(t))^2 dt.$$

 $D\acute{e}monstration.$ En passant au $\sup_{t\in\mathbb{R}}$ dans l'inégalité de la question 2, et on obtient :

$$||f||_{\infty} = \sup_{t \in \mathbb{R}} |f(t)| \le \sum_{n \in \mathbb{Z}^*} \frac{1}{|n|} |c_n(f')|.$$

D'après l'inégalité de Cauchy-Schwarz, on a :

$$||f||_{\infty}^{2} \leq \left(\sum_{n \in \mathbb{Z}^{*}} \frac{1}{n^{2}}\right) \left(\sum_{n \in \mathbb{Z}^{*}} |c_{n}(f')|^{2}\right)$$

$$= \left(2\sum_{n=1}^{\infty} \frac{1}{n^{2}}\right) \left(\frac{1}{2\pi} \int_{0}^{2\pi} (f'(t))^{2} dt\right)$$

$$= \frac{2\pi^{2}}{6} \frac{1}{2\pi} \int_{0}^{2\pi} (f'(t))^{2} dt$$

$$= \frac{\pi}{6} \int_{0}^{2\pi} (f'(t))^{2} dt$$

où on a utilisé l'identité de Parseval pour passer de la ligne 1 à la ligne 2 (justification du fait qu'on a le droit de l'appliquer : cf. question 2).

6 Séance du 16 décembre

6.1 Séries de Fourier à coefficients réels : rappels et propriétés

Soit f une fonction τ -périodique et de classe C^1 par morceaux. La série de Fourier de f s'écrit :

$$\begin{split} &\sum_{n\in\mathbb{Z}}c_n(f)e^{in\frac{2\pi}{\tau}t}=c_0(f)+\sum_{n=1}^\infty c_n(f)e^{in\frac{2\pi}{\tau}t}+c_{-n}(f)e^{-in\frac{2\pi}{\tau}t}\\ &=c_0(f)+\sum_{n=1}^\infty c_n(f)\left(\cos\left(n\frac{2\pi}{\tau}t\right)+i\sin\left(n\frac{2\pi}{\tau}t\right)\right)+c_{-n}(f)\left(\cos\left(-n\frac{2\pi}{\tau}t\right)+i\sin\left(-n\frac{2\pi}{\tau}t\right)\right)\\ &=c_0(f)+\sum_{n=1}^\infty c_n(f)\left(\cos\left(n\frac{2\pi}{\tau}t\right)+i\sin\left(n\frac{2\pi}{\tau}t\right)\right)+c_{-n}(f)\left(\cos\left(n\frac{2\pi}{\tau}t\right)-i\sin\left(n\frac{2\pi}{\tau}t\right)\right)\\ &=c_0(f)+\sum_{n=1}^\infty (c_n(f)+c_{-n}(f))\cos\left(n\frac{2\pi}{\tau}t\right)+i\left(c_n(f)-c_{-n}(f)\right)\sin\left(n\frac{2\pi}{\tau}t\right). \end{split}$$

On définit alors les coefficients de Fourier réels comme suit :

$$-a_0(f) = c_0(f) = \frac{1}{\tau} \int_0^{\tau} f(t) dt$$

- pour
$$n \ge 1$$
, $a_n(f) = c_n(f) + c_{-n}(f)$

- pour
$$n \ge 1$$
, $b_n(f) = i (c_n(f) - c_{-n}(f))$

Ainsi, la série de Fourier de f s'écrit :

$$a_0(f) + \sum_{n=1}^{\infty} a_n(f) \cos\left(n\frac{2\pi}{\tau}t\right) + b_n(f) \sin\left(n\frac{2\pi}{\tau}t\right).$$

Calculons $a_n(f), n \ge 1$:

$$a_n(f) = c_n(f) + c_{-n}(f)$$

$$= \frac{1}{\tau} \int_0^{\tau} f(t)e^{-in\frac{2\pi}{\tau}t} dt + \frac{1}{\tau} \int_0^{\tau} f(t)e^{in\frac{2\pi}{\tau}t} dt$$

$$= \frac{2}{\tau} \int_0^{\tau} f(t) \frac{e^{-in\frac{2\pi}{\tau}t} + e^{in\frac{2\pi}{\tau}t}}{2} dt$$

$$= \frac{2}{\tau} \int_0^{\tau} f(t) \cos\left(n\frac{2\pi}{\tau}t\right) dt.$$

En particulier, $a_n(f) \in \mathbb{R}$. De même, calculons $b_n(f)$, $n \ge 1$:

$$b_{n}(f) = i(c_{n}(f) - c_{-n}(f))$$

$$= i\frac{1}{\tau} \int_{0}^{\tau} f(t)e^{-in\frac{2\pi}{\tau}t} dt - i\frac{1}{\tau} \int_{0}^{\tau} f(t)e^{in\frac{2\pi}{\tau}t} dt$$

$$= \frac{2}{\tau} \int_{0}^{\tau} f(t)i\frac{e^{-in\frac{2\pi}{\tau}t} - e^{in\frac{2\pi}{\tau}t}}{2} dt$$

$$= \frac{2}{\tau} \int_{0}^{\tau} f(t)\frac{-e^{-in\frac{2\pi}{\tau}t} + e^{in\frac{2\pi}{\tau}t}}{2i} dt$$

$$= \frac{2}{\tau} \int_{0}^{\tau} f(t)\sin\left(n\frac{2\pi}{\tau}t\right) dt.$$

En particulier, $b_n(f) \in \mathbb{R}$. Attention à ne pas oublier le 2 devant la formule!

Dirichlet Aucun changement par rapport au cas exponentiel. Si f est de classe C^1 par morceaux, alors la série de Fourier de f en x est égale à $\frac{f(x^-)+f(x^+)}{2}$.

Parseval Exprimons $c_n(f)$ en fonction de $a_n(f)$ et $b_n(f)$. On a, pour $n \ge 1$:

$$\frac{a_n(f) - ib_n(f)}{2} = \frac{1}{2} \left[c_n(f) + c_{-n}(f) - i^2 \left(c_n(f) - c_{-n}(f) \right) \right] = c_n(f)$$

et de même, pour $n \ge 1$:

$$\frac{a_n(f) + ib_n(f)}{2} = \frac{1}{2} \left[c_n(f) + c_{-n}(f) + i^2 \left(c_n(f) - c_{-n}(f) \right) \right] = c_{-n}(f)$$

et finalement $c_0(f) = a_0(f)$.

En appliquant l'identité de Parseval pour les coefficients exponentiels :

$$\begin{split} \frac{1}{\tau} \int_0^\tau |f(t)|^2 \, dt &= \sum_{n \in \mathbb{Z}} |c_n(f)|^2 = |c_0(f)|^2 + \sum_{n=1}^\infty |c_n(f)|^2 + |c_{-n}(f)|^2 \\ &= |a_0(f)|^2 + \sum_{n=1}^\infty \left| \frac{a_n(f) - ib_n(f)}{2} \right|^2 + \left| \frac{a_n(f) + ib_n(f)}{2} \right|^2 \\ &= |a_0(f)|^2 + \frac{1}{4} \sum_{n=1}^\infty |a_n(f) - ib_n(f)|^2 + |a_n(f) + ib_n(f)|^2 \\ &= |a_0(f)|^2 + \frac{1}{4} \sum_{n=1}^\infty |a_n(f)|^2 + |b_n(f)|^2 + |a_n(f)|^2 + |b_n(f)|^2 \\ &= |a_0(f)|^2 + \frac{1}{2} \sum_{n=1}^\infty |a_n(f)|^2 + |b_n(f)|^2 \end{split}$$

Donc finalement, on obtient l'identité de Parseval pour les coefficients de Fourier réels :

$$|a_0(f)|^2 + \frac{1}{2} \sum_{n=1}^{\infty} |a_n(f)|^2 + |b_n(f)|^2 = \frac{1}{\tau} \int_0^{\tau} |f(t)|^2 dt.$$

Parité Soit f une fonction τ -périodique et **paire**. Pour $n \geq 1$, on a :

$$\begin{split} b_n(f) &= \frac{2}{\tau} \int_{-\tau/2}^{\tau/2} f(t) \sin \left(n \frac{2\pi}{\tau} t \right) \, dt \\ &= \frac{2}{\tau} \int_{-\tau/2}^{0} f(t) \sin \left(n \frac{2\pi}{\tau} t \right) \, dt + \frac{2}{\tau} \int_{0}^{\tau/2} f(t) \sin \left(n \frac{2\pi}{\tau} t \right) \, dt \\ &= \frac{2}{\tau} \int_{-\tau/2}^{0} f(-t) \sin \left(n \frac{2\pi}{\tau} t \right) \, dt + \frac{2}{\tau} \int_{0}^{\tau/2} f(t) \sin \left(n \frac{2\pi}{\tau} t \right) \, dt \\ &= -\frac{2}{\tau} \int_{\tau/2}^{0} f(u) \sin \left(-n \frac{2\pi}{\tau} u \right) \, du + \frac{2}{\tau} \int_{0}^{\tau/2} f(t) \sin \left(n \frac{2\pi}{\tau} t \right) \, dt \\ &= \frac{2}{\tau} \int_{0}^{\tau/2} f(u) \sin \left(-n \frac{2\pi}{\tau} u \right) \, du + \frac{2}{\tau} \int_{0}^{\tau/2} f(t) \sin \left(n \frac{2\pi}{\tau} t \right) \, dt \\ &= -\frac{2}{\tau} \int_{0}^{\tau/2} f(u) \sin \left(n \frac{2\pi}{\tau} u \right) \, du + \frac{2}{\tau} \int_{0}^{\tau/2} f(t) \sin \left(n \frac{2\pi}{\tau} t \right) \, dt \\ &= 0. \end{split}$$

Imparité Soit f une fonction τ -périodique et impaire. Pour $n \geq 0$, on a $a_n(f) = 0$. (Même calcul, à faire en exo).

6.2 Exercice sur Fourier

Soit $0 < a < \frac{\pi}{2}$. Soit $f : \mathbb{R} \to \mathbb{R}$ 2π -périodique définie par :

$$\forall x \in]-\pi, \pi], f(x) = \begin{cases} 0 & \text{si } x < -2a \\ -1 & \text{si } -2a \le x < 0 \\ 0 & \text{si } x = 0 \\ 1 & \text{si } 0 < x \le 2a \\ 0 & \text{si } x > 2a \end{cases}$$

Question 1. Calculer les coefficients de Fourier réels de f.

Démonstration. La fonction f est impaire, donc $a_n(f)=0$ pour tout $n\in\mathbb{N}$. Soit $n\geq 1$, calculons $b_n(f)$:

$$b_n(f) = \frac{2}{2\pi} \int_{-\pi}^{\pi} f(t) \sin(nt) dt$$

$$= \frac{1}{\pi} \int_{-2a}^{0} -\sin(nt) dt + \frac{1}{\pi} \int_{0}^{2a} \sin(nt) dt$$

$$= \frac{1}{\pi} \int_{-2a}^{0} \sin(-nt) dt + \frac{1}{\pi} \int_{0}^{2a} \sin(nt) dt$$

$$= -\frac{1}{\pi} \int_{2a}^{0} \sin(nu) du + \frac{1}{\pi} \int_{0}^{2a} \sin(nt) dt$$

$$= \frac{1}{\pi} \int_{0}^{2a} \sin(nu) du + \frac{1}{\pi} \int_{0}^{2a} \sin(nt) dt$$

$$= \frac{2}{\pi} \int_{0}^{2a} \sin(nt) dt$$

$$= \frac{2}{\pi} \left[\frac{-\cos(nt)}{n} \right]_{0}^{2a}$$

$$= \frac{2}{\pi} \frac{1 - \cos(2an)}{n}$$

$$= \frac{4}{\pi n} \sin^{2}(an).$$

Question 2. En déduire les valeurs des sommes suivantes, pour $0 < a < \frac{\pi}{2}$:

$$\sum_{n=1}^{\infty} \frac{\sin^3(an)}{n}$$
$$\sum_{n=1}^{\infty} \frac{\sin^4(an)}{n^2}$$

 $D\'{e}monstration.$ $\left[\sum_{n=1}^{\infty} \frac{\sin^3(an)}{n}\right] f$ est de classe C^1 par morceaux, donc on peut appliquer le théorème de Dirichlet au point x:

$$\frac{f(x^{-}) + f(x^{+})}{2} = a_0(f) + \sum_{n=1}^{\infty} a_n(f) \cos(nx) + b_n(f) \sin(nx)$$
$$= \sum_{n=1}^{\infty} \frac{4}{\pi n} \sin^2(an) \sin(nx).$$

Pour faire apparaître le terme en $\sin^3(an)$, on applique le théorème de Dirichlet en x=a. Ainsi, on obtient :

$$f(a) = \sum_{n=1}^{\infty} \frac{4}{\pi n} \sin^3(an)$$

c'est-à-dire que

$$\sum_{n=1}^{\infty} \frac{\sin^3(an)}{n} = \frac{\pi}{4} f(a) = \frac{\pi}{4}.$$

 $\left| \sum_{n=1}^{\infty} \frac{\sin^4(an)}{n^2} \right|$ f est bornée donc de carré intégrable sur $[-\pi, \pi]$, et

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)^2 dt = \frac{1}{2\pi} \int_{-2a}^{2a} 1 dt = \frac{2a}{\pi}.$$

Par ailleurs, on a:

$$|a_0(f)|^2 + \frac{1}{2} \sum_{n=1}^{\infty} |a_n(f)|^2 + |b_n(f)|^2 = \frac{1}{2} \sum_{n=1}^{\infty} |b_n(f)|^2$$
$$= \frac{1}{2} \sum_{n=1}^{\infty} \left| \frac{4}{\pi n} \sin^2(an) \right|^2$$
$$= \frac{8}{\pi^2} \sum_{n=1}^{\infty} \frac{\sin^4(an)}{n^2}.$$

Donc en appliquant l'identité de Parseval, on obtient :

$$\frac{8}{\pi^2} \sum_{n=1}^{\infty} \frac{\sin^4(an)}{n^2} = \frac{2a}{\pi},$$

c'est-à-dire

$$\sum_{n=1}^{\infty} \frac{\sin^4(an)}{n^2} = \frac{a\pi}{4}.$$

6.3 Exercice III.6

On se place dans l'espace $L^2([0,1])$. On considère $V = \text{Vect}(1,t,t^2)$.

Question 1. Trouver une base orthonormale de V en utilisant le procédé de Gram-Schmidt.

 $D\acute{e}monstration$. La famille $(1,t,t^2)$ est une famille libre, donc c'est une base de V. Notons $f_0(t)=1$, $f_1(t)=t$, $f_2(t)=t^2$. Orthonormalisons la famille (f_0,f_1,f_2) par Gram-Schmidt.

— On pose $e_0 = \frac{f_0}{\|f_0\|_{L^2}}$. Calculons

$$||f_0||_{L^2}^2 = \int_0^1 f_0(t)^2 dt = \int_0^1 1^2 dt = 1.$$

Donc $e_0(t) = 1$.

— Ensuite, on construit e_1 de la manière suivante :

$$v_1(t) = f_1(t) - \langle f_1, e_0 \rangle_{L^2} e_0(t)$$

puis on renormalise $e_1 = \frac{v_1}{\|v_1\|_{L^2}}$. On a :

$$v_1(t) = f_1(t) - \langle f_1, e_0 \rangle_{L^2} e_0(t) = t - \int_0^1 u \, du = t - \frac{1}{2}.$$

Alors

$$||v_1||_{L^2}^2 = \int_0^1 \left(t - \frac{1}{2}\right)^2 dt = \left[\frac{\left(t - \frac{1}{2}\right)^3}{3}\right]_0^1 = \frac{1}{12}$$

et donc

$$e_1(t) = \frac{v_1}{\|v_1\|_{L^2}} = \sqrt{3}(2t - 1).$$

— Ensuite, on construit e_2 de la manière suivante :

$$v_2(t) = f_2(t) - \langle f_2, e_0 \rangle_{L^2} e_0(t) - \langle f_2, e_1 \rangle_{L^2} e_1(t)$$

puis on renormalise $e_2 = \frac{v_2}{\|v_2\|_{r^2}}$. On a :

$$\begin{aligned} v_2(t) &= t^2 - \int_0^1 u^2 \, du - \left(\int_0^1 u^2 \sqrt{3} (2u - 1) \, du \right) \sqrt{3} (2t - 1) \\ &= t^2 - \frac{1}{3} - \left(\frac{1}{2} - \frac{1}{3} \right) 3 (2t - 1) \\ &= t^2 - \frac{1}{3} - (t - \frac{1}{2}) \\ &= t^2 - t + \frac{1}{6}. \end{aligned}$$

Puis on normalise v_2 :

$$||v_2||_{L^2}^2 = \int_0^1 v_2(t)^2 dt$$

$$= \int_0^1 \left(t^2 - t + \frac{1}{6}\right)^2 dt$$

$$= \int_0^1 t^4 - 2t^3 + \frac{4t^2}{3} - \frac{t}{3} + \frac{1}{36} dt$$

$$= \frac{1}{5} - \frac{1}{2} + \frac{4}{9} - \frac{1}{6} + \frac{1}{36}$$

$$= \frac{36 - 90 + 80 - 30 + 5}{180}$$

$$= \frac{1}{180}.$$

Et donc on pose (sans oublier de rajouter la racine!):

$$e_2(t) = \frac{v_2(t)}{\|v_2\|_{L^2}} = 6\sqrt{5}t^2 - 6\sqrt{5}t + \sqrt{5}.$$

Question 2. En déduire

$$\inf_{a,b,c\in\mathbb{R}} \int_0^1 |t^3 - a - bt - ct^2|^2 dt.$$

Démonstration. Le problème se réécrit de la manière suivante :

$$\inf_{a,b,c\in\mathbb{R}} \int_0^1 |t^3 - (a+bt+ct^2)|^2 dt = \inf_{a,b,c\in\mathbb{R}} \left\| (t\mapsto t^3) - (t\mapsto a+bt+ct^2) \right\|_{L^2}^2,$$

soit encore, puisque $V = \text{Vect}(1, t, t^2)$,

$$\inf_{t \in V} \|(t \mapsto t^3) - f\|_{L^2}^2.$$

Autrement dit, en notant $g(t) = t^3$, on cherche à calculer la projection orthogonale de g sur V. En effet, on sait que la projection orthogonale sur un sous-espace vectoriel correspond au minimiseur de la distance au sous-espace $d(g, V) = \inf_{f \in V} \|g - f\|_{L^2}$.

Calculons la projection orthogonale de g sur le sous-espace V. On a :

$$\operatorname{proj}_{V}(g) = \langle g, e_0 \rangle e_0 + \langle g, e_1 \rangle e_1 + \langle g, e_2 \rangle e_2.$$

On a:

 $\langle g, e_0 \rangle = \int_0^1 t^3 dt = \frac{1}{4},$

et

$$\langle g, e_1 \rangle = \int_0^1 t^3 \sqrt{3} (2t - 1) dt = \frac{2\sqrt{3}}{5} - \frac{\sqrt{3}}{4} = \frac{3\sqrt{3}}{20},$$

et

$$\langle g, e_2 \rangle = \int_0^1 t^3 \left(6\sqrt{5}t^2 - 6\sqrt{5}t + \sqrt{5} \right) dt$$
$$= \frac{6\sqrt{5}}{6} - \frac{6\sqrt{5}}{5} + \frac{\sqrt{5}}{4}$$
$$= \frac{\sqrt{5}}{20}.$$

On a ainsi:

$$\begin{split} \text{proj}_V(g)(t) &= \langle g, e_0 \rangle e_0(t) + \langle g, e_1 \rangle e_1(t) + \langle g, e_2 \rangle e_2(t) \\ &= \frac{1}{4} + \frac{3\sqrt{3}}{20} \sqrt{3}(2t-1) + \frac{\sqrt{5}}{20} \left(6\sqrt{5}t^2 - 6\sqrt{5}t + \sqrt{5} \right) \\ &= \frac{3}{2}t^2 - \frac{3}{5}t + \frac{1}{20}. \end{split}$$

On identifie ainsi les valeurs optimales de a, b, c:

$$a = \frac{1}{20}, b = -\frac{3}{5}, c = \frac{3}{2}.$$

Finalement, on calcule l'intégrale (en développant le carré et intégrant terme à terme) :

$$\int_0^1 |t^3 - a - bt - ct^2|^2 dt = \int_0^1 \left| t^3 - \left(\frac{3}{2} t^2 - \frac{3}{5} t + \frac{1}{20} \right) \right|^2 dt = \frac{1}{2800}.$$

FIGURE 1 – On a trouvé la meilleure approximation en moyenne quadratique de la fonction $g: t \mapsto t^3$ par une parabole, sur le segment [0,1]. Il s'agit de la fonction $t \mapsto \frac{3}{2}t^2 - \frac{3}{5}t + \frac{1}{20}$.