Problem Set 9

Consider a particle of mass m in a 1-dimensional square well potential:

$$V(x) = \begin{cases} 0, & |x| \le a \\ V_0, & |x| \ge a \end{cases}$$

for $V_0 > 0$ positive. We are interested in the bound state energy eigenvalues and eigenstates, i.e., those with energy eigenvalues $0 \le E \le V_0$. As in the infinite square well potential, the eigenstate wave functions $\phi(x)$ will be either even: $\phi(-x) = \phi(x)$, or odd: $\phi(-x) = -\phi(x)$.

Problem 1: Show that the energy eigenvalues satisfy the equations

$$k \tan(ka) = +\kappa$$
 for even eigenstates
 $k \cot(ka) = -\kappa$ for odd eigenstates (1)

where k and $i\kappa$ are the real and complex wave numbers inside and outside the well, respectively. Show also that k and κ are related by

$$k^2 + \kappa^2 = 2mV_0/\hbar^2. (2)$$

Solution: Call x<-a region I, -a< x< a region II, and x>a region III. Then solving for the energy eigenstates, $-\hbar^2\psi''=2m(E-V(x))\psi$, of energy $E\leq V_0$ in each region gives $\psi_I=Ae^{-\kappa x}+Be^{\kappa x}$, $\psi_{II}=Ce^{ikx}+De^{-ikx}$, and $\psi_{III}=Ee^{-\kappa x}+Fe^{\kappa x}$, with $\hbar\kappa=\sqrt{2m(V_0-E)}$ and $\hbar k=\sqrt{2mE}$. We must have A=F=0 so that the wave function does not grow exponentially as $x\to\pm\infty$. The boundary conditions at $x=\pm a$ are that ψ and ψ' are continuous, implying

$$Be^{-\kappa a} = Ce^{-ika} + De^{ika},$$

$$\kappa Be^{-\kappa a} = ikCe^{-ika} - ikDe^{ika},$$

$$Ee^{-\kappa a} = Ce^{ika} + De^{-ika},$$

$$-\kappa Ee^{-\kappa a} = ikCe^{ika} - ikDe^{-ika}.$$

Taking the suggestion of the problem, let's look for even and odd solutions, that is, those satisfying $\psi(-x)=\psi(x)$ and $\psi(-x)=-\psi(x)$, respectively.

Even solutions: For ψ to be even, we need B=E and C=D. The above boundary conditions then become

$$Be^{-\kappa a} = Ce^{-ika} + Ce^{ika},$$

$$\kappa Be^{-\kappa a} = ikCe^{-ika} - ikCe^{ika},$$

which can be rewritten as

$$\begin{pmatrix} e^{-\kappa a} & -2\cos(ka) \\ \kappa e^{-\kappa a} & -2k\sin(ka) \end{pmatrix} \begin{pmatrix} B \\ C \end{pmatrix} = 0,$$

which has a solution for nonzero $(B\ C)$ only if the determinant of the matrix vansihes, implying $k\sin(ka)=\kappa\cos(ka)$, which is the result we wanted.

Odd solutions: For ψ to be even, we need B=-E and C=-D. The above boundary conditions then become just two independent equations which can be rewritten as

$$\begin{pmatrix} e^{-\kappa a} & 2i\sin(ka) \\ \kappa e^{-\kappa a} & -2ik\cos(ka) \end{pmatrix} \begin{pmatrix} B \\ C \end{pmatrix} = 0.$$

The determinant of the matrix vansihes when $-k\cos(ka)=\kappa\sin(ka)$, which is the result we wanted.

Finally, from the definitions of k and κ , the relation (2) follows immediately.

Problem 2: Equations (1) must be solved graphically. In the $(\alpha = ka, \beta = \kappa a)$ -plane, imagine a circle that obeys equation (2). The bound states are then given by the curve $\alpha \tan \alpha = \beta$ or $\alpha \cot \alpha = -\beta$ with the circle. (Remember α and β are positive.) Plot these functions to solve for α and β (or, k and κ) graphically.

Solution: This part of the problem is just a plot. In the variables α and β defined in the problem, (2) becomes the curve of the circle $\alpha^2+\beta^2=2ma^2V_0/\hbar^2$. Plotting the circle and the $\beta=\alpha\tan\alpha$ (even states) or $\beta=-\alpha\cot\alpha$ (odd states) then gives the plot shown below. The red (darker) curves are the odd states and the green (lighter) ones are the even ones, and the quarter-circle is plotted for the value $2ma^2V_0^2/\hbar^2=49$. (The dotted lines just indicate the asymptotes to the red and green curves.) Each intersection of the circle with a red or green line is a solution, and therefore an energy eigenstate. For the value plotted in the figure, we thus see that there are five eigenstates.

Problem 3: Verify from the above graphical solution that as $V_0 \to \infty$ we regain the energy levels of the infinite well potential.

Solution: As $V_0 \to \infty$, the radius of the circle in the figure goes to infinity, so it intersects the colored curves at their asymptotes (the dashed lines), which are at $\alpha = n\pi/2$ for $n=1,2,3,\ldots$ From the definition of α this means that $k=n\pi/(2a)$, and from

the definition of k, this means that $E=(\hbar k)^2/(2m)=(\hbar n\pi)^2/(8a^2m)$, which are the energy eigenvalues of an infinite square well of width 2a.

Problem 4: Show that there is always one even solution and that there is no odd solution unless $V_0 \geq \hbar^2 \pi^2 / 8ma^2$. What is E when V_0 just meets this requirement? **Solution:** As $V_0 \to 0$, the radius of the circle decreases. When it gets less than $\pi/2$ it can only intersect the leftmost green curve. Since that curve goes to the origin, no matter how small V_0 , the circle will always intersect it, and so there will always be at least one even solution.

When the radius equals $\pi/2$, then $V_0=\hbar^2\pi^2/8ma^2$, and the circle intersects the $\alpha\tan(\alpha)$ curve at $\alpha\approx 0.934014$ (found numerically). Since $\alpha:=ka$ and $\hbar k=\sqrt{2mE}$, this implies $E=\hbar^2\alpha^2/2ma^2\approx 0.46191\,\hbar^2/ma^2$.

Consider the case of a particle of mass m moving in one dimension in a *complex* potential $V(x) = V_r(x) + iV_i$, where the imaginary part V_i is a constant.

Problem 5: What is the Hamiltonian? Is the Hamiltonian hermitian? Solution: The Hamiltonian is

$$H = \frac{1}{2m}P^2 + V_r(X) - iV_i$$

where V_r is a real function and V_i a real constant. Therefore

$$H^{\dagger} = \frac{1}{2m} (P^{\dagger})^2 + V_r(X^{\dagger}) - (i)^* V_i = \frac{1}{2m} P^2 + V_r(X) + i V_i \neq H,$$

so H is not Hermitian.

Problem 6: Repeat the derivation of the probability conservation equation (6.123) of the text in this case. Show that the total probability for finding the particle decreases exponentially as $\exp\{-2V_it/\hbar\}$. Such complex potentials are used to described processes in which particle number is not conserved, e.g., when the particles can leave the system or decay in some way.

Solution: Schrodinger's equation and its complex conjugate in this case read

$$i\hbar \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \psi + V_r \psi - iV_i \psi,$$

$$-i\hbar \frac{\partial \psi^*}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \psi^* + V_r \psi^* + iV_i \psi^*.$$

Multiplying the first by ψ^* and the second by ψ and taking the difference, then dividing by $i\hbar$ gives

$$\frac{\partial \rho}{\partial t} = -\frac{\partial}{\partial x} j_x - \frac{2}{\hbar} V_i P,$$

where $\rho:=|\psi|^2$ and $j_x:=\hbar(\psi^*\frac{\partial}{\partial x}\psi-\psi\frac{\partial}{\partial x}\psi^*)/(2mi)$ are the probability density and current, respectively. Integrating this over all space, the $\frac{\partial}{\partial x}j_x$ term vanishes since we assume $j_x\to 0$ at infinity, giving

$$\frac{d\mathcal{P}}{dt} = -\frac{2}{\hbar}V_i\,\mathcal{P},$$

where $\mathcal{P}=\int_{-\infty}^{\infty}dx\,\rho$ is the total probability. (I can pull V_i out of the integral since it is assumed constant in the problem.) Integrating this differential equation gives

$$\mathcal{P}(t) = \mathcal{P}(0) e^{-2V_i t/\hbar}.$$

Consider a particle of mass m moving in two dimensions. Its position is then measured by two commuting hermitean operators \widehat{x} , \widehat{y} , so has position eigenstates $|x,y\rangle$ satisfying

$$\widehat{x}|x,y\rangle = x|x,y\rangle, \qquad \langle x,y|x',y'\rangle = \delta(x-x')\delta(y-y'),$$

$$\widehat{y}|x,y\rangle = y|x,y\rangle, \qquad 1 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dy |x,y\rangle\langle x,y|.$$

Likewise, its momentum is measured by two commuting hermitean operators \widehat{p}_x , \widehat{p}_y , so has momentum eigenstates $|p_x, p_y\rangle$ satisfying

$$\widehat{p}_{x}|p_{x},p_{y}\rangle = p_{x}|p_{x},p_{y}\rangle, \qquad \langle p_{x},p_{y}|p'_{x},p'_{y}\rangle = \delta(p_{x}-p'_{x})\delta(p_{y}-p'_{y}),
\widehat{p}_{y}|p_{x},p_{y}\rangle = p_{y}|p_{x},p_{y}\rangle, \qquad 1 = \int_{-\infty}^{\infty} dp_{x} \int_{-\infty}^{\infty} dp_{y} |p_{x},p_{y}\rangle\langle p_{x},p_{y}|.$$

Finally, these operators obey the commutation relations

$$[\widehat{x},\widehat{p}_x] = [\widehat{y},\widehat{p}_y] = i\hbar,$$

and all other commutators vanish.

Problem 7: What is the wave function, $\langle x, y | p_x, p_y \rangle$, of the momentum eigenstate $|p_x, p_y\rangle$ in the position basis?

Solution: The Hilbert space for a particle moving in 2 dimensions is the tensor product of two copies of that of a particle moving in one dimension: $\mathcal{H}_{(x,\,y)\text{-plane}} = \mathcal{H}_{x\text{-axis}} \otimes \mathcal{H}_{y\text{-axis}}$. This follows because the position eignebasis $|x,y\rangle = |x\rangle \otimes |y\rangle$ is simply the tensor product of two 1-dimensional position bases. It then follows that

$$\langle x, y | p_x, p_y \rangle = \langle x | p_x \rangle \cdot \langle y | p_y \rangle = (2\pi\hbar)^{-1/2} \exp\{ixp_x/\hbar\} \cdot (2\pi\hbar)^{-1/2} \exp\{iyp_y/\hbar\}$$
$$= (2\pi\hbar)^{-1} \exp\{i(xp_x + yp_y)/\hbar\},$$

where I have used the 1-dimensional results for $\langle x|p_x\rangle$, etc.

Problem 8: Write down the Hamiltonian, \widehat{H} , for this particle if it is moving in a potential V(x,y) in terms of the \widehat{x} , \widehat{y} , \widehat{p}_x , and \widehat{p}_y operators.

Solution: $\widehat{H} = (\widehat{p}_x^2 + \widehat{p}_y^2)/(2m) + V(\widehat{x}, \widehat{y}).$

Problem 9: In case $V(x,y) \equiv 0$ (i.e., the particle is free), what are the energy eigenvalues and eigenstates of \widehat{H} ?

Solution: If $V\equiv 0$, then $\widehat{H}=(2m)^{-1}(\widehat{p}_x^2+\widehat{p}_y^2)$, which commutes with both \widehat{p}_x and \widehat{p}_y . So the momentum eigenstates $|p_x,p_y\rangle$ are also the energy eigenstates. Indeed, $\widehat{H}|p_x,p_y\rangle=(2m)^{-1}(p_x^2+p_y^2)|p_x,p_y\rangle$, so the energy eigenvalues are simply $E=(2m)^{-1}(p_x^2+p_y^2)$ for all $-\infty < p_x,p_y < \infty$.