

ID y nombre de la actividad

Lenguajes y autómatas

2024.C3.07 L&A

P R E S E N T A :

221189 Luis Alberto Batalla González

Docente:

Carlos Alberto Díaz Hernández

Índice general

1.	1.1. 1.2. 1.3.	puesta de aplicativo de autómata finito determinista RepuIDValidator Descripción Cadenas válidas e inválidas 1.3.1. Cadenas válidas 1.3.2. Cadenas inválidas Restricciones	3 3 3 3 4 4
2.	\mathbf{AF}	D para analizar y extraer patrones de cadenas en el cuerpo de un texto	5
		Descripción de la actividad	
	2.2.	plimiento del formato establecido	Į.
	2.3.	Descripción	Į.
		2.3.1. Cadenas válidas	6
		2.3.2. Cadenas inválidas	6
	0.4	2.3.3. Restricciones	6
	2.4.	Diseño	6
		2.4.2. Diagrama	7
3.	Imp	olementación de AFD para analizar y extraer patrones de cadenas en el cuerpo de un texto	Ę
	3.1.	Descripción de la actividad	Ć
		RepuIDValidator:	ć
	3.3.	Descripción	10
		3.3.1. Cadenas válidas	10
		3.3.3. Restricciones	
		3.3.4. Diseño	
	3.4.	Implementación	10
			11
		3.4.2. Función de transición	
	2 5	3.4.3. Pruebas realizadas	
	5.5.	Comentarios	Τ¢
Í	nc	lice de figuras	

3.2. 3.3. 3.4.	Diagrama del AFD D . Interfaz gráfica del sistema que implementa al AFD D . Captura de ejecución 1 D . Captura de ejecución 2 D . Captura de ejecución 3 D .	11 14 14
Índ	lice de tablas	
2.1.	Matriz de transición del autómata finito determinista RepUIDValidator	7
Lis	tings	
3.1. 3.2.	Ejemplo de código insertado	11 13

Lista de ecuaciones

Capítulo 1

Propuesta de aplicativo de autómata finito determinista

Periodo:	2024.C3 Septiembre - diciembre de 2024
Grupo:	7A/B
Asignatura:	Lenguajes y autómatas
Corte:	1
Actividad:	2024.C3.07X.L&A.C1.A2
Título:	Propuesta de aplicativo de autómata finito determinista
Fecha de entrega:	2024.09.24
221189	Luis Alberto Batalla González

1.1. RepuIDValidator

,RepuIDValidator Validador de identificadores del Reclusorio Preventivo (REPU) que asegura el cumplimiento del formato establecido.

1.2. Descripción

El sistema implementará un autómata finito determinista que hará: Indicar en las viñetas lo que hará

El autómata recibirá una cadena de entrada y analizará si la cadena corresponde a un identificador del Reclusorio Preventivo, que debe seguir las siguientes reglas: El identificador comenzará con el prefijo REPU", seguido de un guion. Luego debe contener el año de ingreso, representado por 4 dígitos. A continuación, debe haber un guion seguido de un número secuencial de 5 dígitos. Finalmente, debe terminar con un guion y un dígito verificador (0-9). Si la cadena no es válida, el autómata se reiniciará tomando como entrada la cadena a partir de la posición siguiente a donde comenzó. Si encuentra un identificador válido, registrará la posición y la longitud del identificador válido y se reiniciará a partir de la posición siguiente al final del identificador válido.

1.3. Cadenas válidas e inválidas

1.3.1. Cadenas válidas

Ejemplo de cadenas válidas que debe aceptar el autómata:

- REPU-2023-12345-7
- REPU-2022-67890-3
- REPU-2021-00001-5

1.3.2. Cadenas inválidas

Ejemplo de cadenas no válidas para autómata:

- APU-1999-12345-7
- REPU-1999-12345-1
- REPU-2023-12345-43t

1.4. Restricciones

Prefijo: Debe iniciar con las letras REPU", que son las siglas del Reclusorio Público.

Año: Después del prefijo, debe incluir cuatro dígitos representando un año.

Sección: A continuación, debe tener una secuencia de cinco dígitos que identifica la sección del recluso.

Identificador de recluso: Por último, el identificador termina con un solo dígito que corresponde al recluso en parti-

cular.

Separación: Cada sección está delimitada por un guion (").

Capítulo 2

AFD para analizar y extraer patrones de cadenas en el cuerpo de un texto

Fecha de entrega: 221189	2024.09.24 Luis Albertoberto Batalla
Título:	AFD para analizar y extraer patrones de cadenas en el cuerpo de un texto
Actividad:	2024.C3.07X.L&A.C1.A3
Corte:	1
Asignatura:	Lenguajes y autómatas
Grupo:	7A/B
Periodo:	2024.C3 Septiembre - diciembre de 2024

2.1. Descripción de la actividad

Diseñar un AFD para analizar y extraer patrones de cadenas en el cuerpo de un texto.

- 1. Usar como problema a resolver, el propuesto en [1].
- 2. Presentar el AFD en la especificación formal de grafos indicada en clase.
- 3. Presentar el AFD en forma gráfica.

2.2. RepuIDValidator: Validador de identificadores del Reclusorio Preventivo (REPU) que asegura el cumplimiento del formato establecido.

2.3. Descripción

El sistema implementará un autómata finito determinista que hará: Indicar en las viñetas lo que hará

El autómata recibirá una cadena de entrada y analizará si la cadena corresponde a un identificador del Reclusorio Preventivo, que debe seguir las siguientes reglas: El identificador comenzará con el prefijo REPU", seguido de un guion. Luego debe contener el año de ingreso, representado por 4 dígitos. A continuación, debe haber un guion seguido de un número secuencial de 5 dígitos. Finalmente, debe terminar con un guion y un dígito verificador (0-9). Si la cadena no es válida, el autómata se reiniciará tomando como entrada la cadena a partir de la posición siguiente a donde comenzó. Si encuentra un identificador válido, registrará la posición y la longitud del identificador válido y se reiniciará a partir de la posición siguiente al final del identificador válido.

2.3.1. Cadenas válidas

Ejemplo de cadenas válidas que debe aceptar el autómata:

- REPU-2023-12345-7
- REPU-2022-67890-3
- REPU-2021-00001-5

2.3.2. Cadenas inválidas

Ejemplo de cadenas no válidas para autómata:

- APU-1999-12345-7
- REPU-1999-12345-1
- REPU-2023-12345-43t

2.3.3. Restricciones

Prefijo: Debe iniciar con las letras REPU", que son las siglas del Reclusorio Público.

Año: Después del prefijo, debe incluir cuatro dígitos representando un año.

Sección: A continuación, debe tener una secuencia de cinco dígitos que identifica la sección del recluso.

Identificador de recluso: Por último, el identificador termina con un solo dígito que corresponde al recluso en particular.

Separación: Cada sección está delimitada por un guion (").

2.4. Diseño

2.4.1. Especificación formal

Para resolver el problema se diseñó el autómata finito determinista $D = (Q, \Sigma, q_0, \delta, F)$, donde:

- $Q = \{qe, q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7, q_8, q_9, q_{10}, q_{11}, q_{12}, q_{13}, q_{14}, q_{15}, q_{16}, q_f\},$
- $\Sigma = \{R, E, P, U, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -\},\$
- $q_0 = q_0,$

```
\bullet \delta = \{(q_0, R) \to q_1, (q_0, \sigma \neq R) \to q_e, \}
            (q_1, E) \rightarrow q_2, (q_1, \sigma \neq E) \rightarrow q_e,
             (q_2, P) \rightarrow q_3, (q_2, \sigma \neq P) \rightarrow qe,
            (q_3, U) \rightarrow q_4, (q_3, \sigma \neq U) \rightarrow qe,
            (q_4, -) \rightarrow q_5, (q_4, \sigma \neq -) \rightarrow qe,
             (q_5,2) \rightarrow q_6, (q_5, \sigma \neq 2) \rightarrow q_6,
             (q_6, 0) \to q_7, (q_6, \sigma \neq 0) \to q_6,
             (q_7, d \in \{0, \dots, 9\}) \to q_8, (q_7, \sigma \notin \{0, \dots, 9\}) \to q_8,
             (q_8, d \in \{0, \dots, 9\}) \to q_9, (q_8, \sigma \notin \{0, \dots, 9\}) \to q_9,
             (q_9, -) \to q_{10}, (q_9, \sigma \neq -) \to q_{10}, (q_{10}, \sigma \neq -) \to q_{10}, 
             (q_{10}, d \in \{0, \dots, 9\}) \to q_{11}, (q_{10}, \sigma \notin \{0, \dots, 9\}) \to qe,
             (q_{11}, d \in \{0, \dots, 9\}) \to q_{12}, (q_{11}, \sigma \notin \{0, \dots, 9\}) \to qe,
             (q_{12}, d \in \{0, \dots, 9\}) \to q_{13}, (q_{12}, \sigma \notin \{0, \dots, 9\}) \to qe,
             (q_{13}, d \in \{0, \dots, 9\}) \to q_{14}, (q_{13}, \sigma \notin \{0, \dots, 9\}) \to qe,
             (q_{14}, d \in \{0, \dots, 9\}) \to q_{15}, (q_{14}, \sigma \notin \{0, \dots, 9\}) \to qe,
            (q_{15}, -) \to q_{16}, (q_{15}, \sigma \neq -) \to qe,
            (q_{16}, d \in \{0, \dots, 9\}) \to q_f, (q_{16}, \sigma \notin \{0, \dots, 9\}) \to qe\}, y
```

• $F = \{q_f\}.$

También pueden optar por presentar δ a través de una matriz de transición como se indica en la Tabla 2.4.1.

Tabla 2.1: Matriz de transición del autómata finito determinista RepUIDValidator.

Estado	Símbolo válido	Transición
$\longrightarrow q_0$	R	q_1
q_0	$\sigma \neq R$	qe
q_1	Е	q_2
q_1	$\sigma \neq E$	qe
q_2	P	q_3
q_2	$\sigma \neq P$	qe
q_3	U	q_4
q_3	$\sigma \neq U$	qe
q_4	-	q_5
q_4	$\sigma \neq -$	qe
q_5	2	q_6
q_5	$\sigma \neq 2$	qe
q_6	0	q_7
q_6	$\sigma \neq 0$	qe
q_7	$d \in \{0, \dots, 9\}$	q_8
q_7	$\sigma \notin \{0, \dots, 9\}$	qe
q_8	$d \in \{0, \dots, 9\}$	q_9
q_8	$\sigma \notin \{0, \dots, 9\}$	qe
q_9	-	q_{10}
q_9	$\sigma \neq -$	qe
q_{10}	$d \in \{0, \dots, 9\}$	q_{11}
q_{10}	$\sigma \notin \{0,\ldots,9\}$	qe
q_{11}	$d \in \{0, \dots, 9\}$	q_{12}
q_{11}	$\sigma \notin \{0, \dots, 9\}$	qe
q_{12}	$d \in \{0, \dots, 9\}$	q_{13}
q_{12}	$\sigma \notin \{0, \dots, 9\}$	qe
q_{13}	$d \in \{0, \dots, 9\}$	q_{14}
q_{13}	$\sigma \notin \{0, \dots, 9\}$	qe
q_{14}	$d \in \{0, \dots, 9\}$	q_{15}
q_{14}	$\sigma \notin \{0, \dots, 9\}$	qe
q_{15}	-	q_{16}
q_{15}	$\sigma \neq -$	qe
q_{16}	$d \in \{0, \dots, 9\}$	q_f
q_{16}	$\sigma \notin \{0, \dots, 9\}$	qe

2.4.2. Diagrama

En la Figura 2.4.2, se presenta el diagrama del autómata finito D diseñado para resolver el problema.

Figura 2.1: Diagrama del AFD ${\cal D}.$

Capítulo 3

Implementación de AFD para analizar y extraer patrones de cadenas en el cuerpo de un texto

Periodo:	2024.C3 Septiembre - diciembre de 2024
Grupo:	7A/B
Asignatura:	Lenguajes y autómatas
Corte:	1
Actividad:	2024.C3.07X.L&A.C1.A4
Título:	Implementación de AFD para analizar y extraer patrones de cadenas en el cuerpo de un texto
Fecha de entrega:	2024.09.24
221189	Luis Alberto Batalla Gonzales

3.1. Descripción de la actividad

Implementar el AFD diseñado, la implementación debe permitir:

- 1. Leer la especificación del AFD en la notación formal.
- 2. Leer un archivo que contiene los patrones de texto a buscar, se permite: xlsx, csv, docx o html.
- 3. Reportar las ocurrencias, incluir fila-columna/posición y el texto de la ocurrencia.
- 4. Reportar la salida en un archivo txt.

3.2. RepuIDValidator:

 Validador de identificadores del Reclusorio Preventivo (REPU) que asegura el cumplimiento del formato establecido.

3.3. Descripción

Autómata que valida los identificadores del reclusorio preventivo, para asegurar que complan con el formato establecido: *Indicar en las viñetas lo que hará*

3.3.1. Cadenas válidas

Ejemplo de cadenas válidas que debe aceptar el autómata:

- REPU-2025-12345-0
- REPU-2023-12345-7
- REPU-2023-55555-9

3.3.2. Cadenas inválidas

Ejemplo de cadenas no válidas para autómata:

- APU-1234-99-1212
- REPU-987-98765-2
- REPU-12345-12345-12345

3.3.3. Restricciones

Indicar con viñetas las restricciones que se consideren.

- Prefijo: Debe iniciar con las letras REPU", que son las siglas del Reclusorio Público.
- Año: Después del prefijo, debe incluir cuatro dígitos representando un año.
- Sección: A continuación, debe tener una secuencia de cinco dígitos que identifica la sección del recluso.
- Identificador de recluso: Por último, el identificador termina con un solo dígito que corresponde al recluso en particular.
- Separación: Cada sección está delimitada por un guion (").

3.3.4. Diseño

Especificación formal

Para resolver el problema se diseñó el autómata finito determinista $D = (Q, \Sigma, q_0, \delta, F)$, donde:

- $Q = \{q_e, q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7, q_8, q_9, q_{10}, q_{11}, q_{12}, q_{13}, q_{14}, q_{15}, q_{16}, q_f\},$
- $\Sigma = \{R, E, P, U, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -\},\$
- $q_0 = q_0,$
- $$\begin{split} \bullet & = \{(q_0, R, q_1), (q_0, \sigma \neq R, q_e), (q_1, E, q_2), (q_1, \sigma \neq E, q_e), (q_2, P, q_3), (q_2, \sigma \neq P, q_e), (q_3, U, q_4), (q_3, \sigma \neq U, q_e), (q_4, -, q_5), (q_4, -, q_e), (q_5, 2, q_6), (q_5, \sigma \neq 2, q_e), (q_6, \sigma \neq 0, q_e), (q_7, d \in \{0 9\}, q_8), (q_7, \sigma \notin \{0 9\}, q_e), (q_8, d \in \{0 9\}, q_9), (q_8, \sigma \notin \{0 9\}, q_e), (q_9, -, q_{10}), (q_9, \sigma \neq -, q_e), (q_{10}, d \in \{0 9\}, q_{11}), (q_{10}, \sigma \notin \{0 9\}, q_e), (q_{11}, d \in \{0 9\}, q_{12}), (q_{11}, \sigma \notin \{0 9\}, q_e), (q_{12}, d \in \{0 9\}, q_{13}), (q_{12}, \sigma \notin \{0 9\}, q_e), (q_{13}, d \in \{0 9\}, q_{14}), (q_{13}, \sigma \notin \{0 9\}, q_e), (q_{14}, d \in \{0 9\}, q_{15}), (q_{14}, \sigma \notin \{0 9\}, q_e), (q_{15}, -, q_{16}), (q_{15}, \sigma \neq -, q_e), (q_{16}, d \in \{0 9\}, q_f), (q_{16}, \sigma \notin \{0 9\}, q_e) \}, y \end{split}$$
- $F = \{q_f\}.$

También pueden optar por presentar δ a través de una matriz de transición como se indica en la Tabla ??.

Diagrama

En la Figura 3.3.4, se presenta el diagrama del autómata finito D diseñado para resolver el problema.

3.4. Implementación

La implementación del AFD se realizó en Python.

Figura 3.1: Diagrama del AFD D.

3.4.1. Interfaz

La Figura 3.4.1 muestra la interfaz gráfica diseñada para mostrar el funcionamiento del sistema. Describir de manera muy resumida los elementos de la interfaz y las interacciones.

Figura 3.2: Interfaz gráfica del sistema que implementa al AFD ${\cal D}.$

3.4.2. Función de transición

La funcionalidad principal del AFD está en la función de transición, la cual se muestra en el Listado 3.1.

```
tabla = {
        (0, 'R'): 1,
(1, 'E'): 2,
        (2, 'P'): 3,
        (3, 'U'): 4,
        (4, , , -, ): 5,
        (5, '2'): 6,
10
        (6, '0'): 7,
12
        (7, '0'): 8,
13
        (7, '1'): 8,
14
        (7, '2'): 8,
15
        (7, '3'): 8,
16
        (7, '4'): 8,
17
        (7, '5'): 8,
18
        (7, '6'): 8,
19
        (7, '7'): 8,
20
        (7, '8'): 8,
21
        (7, '9'): 8,
22
23
        (8, '0'): 9,
```

```
(8, '1'): 9,
25
           (8, '2'): 9,
26
           (8, '3'): 9,
(8, '4'): 9,
(8, '5'): 9,
27
28
29
           (8, '6'): 9,
30
           (8, '7'): 9,
31
           (8, '8'): 9,
(8, '9'): 9,
32
33
34
           (9, '-'): 10,
35
36
           (10, '0'): 11,
37
           (10, '1'): 11,
(10, '2'): 11,
38
39
           (10, '3'): 11,
40
           (10, '4'): 11,
(10, '5'): 11,
(10, '6'): 11,
41
42
43
           (10, '7'): 11,
44
           (10, '8'): 11,
45
           (10, '9'): 11,
46
47
           (11, '0'): 12,
48
           (11, '1'): 12,
49
           (11, '2'): 12,
50
           (11, '3'): 12,
(11, '4'): 12,
(11, '5'): 12,
51
52
53
           (11, '6'): 12,
54
           (11, '7'): 12,
(11, '8'): 12,
(11, '9'): 12,
55
56
57
58
           (12, '0'): 13,
59
           (12, '1'): 13,
(12, '2'): 13,
(12, '3'): 13,
(12, '4'): 13,
60
61
62
63
           (12, '5'): 13,
64
           (12, '6'): 13,
(12, '7'): 13,
(12, '8'): 13,
(12, '9'): 13,
65
66
67
68
69
           (13, '0'): 14,
(13, '1'): 14,
(13, '2'): 14,
70
71
72
           (13, '3'): 14,
73
           (13, '4'): 14,
74
           (13, '5'): 14,
(13, '6'): 14,
(13, '7'): 14,
75
76
77
           (13, '8'): 14,
78
           (13, '9'): 14,
79
80
           (14, '0'): 15,
(14, '1'): 15,
81
82
           (14, '2'): 15,
83
           (14, '3'): 15,
(14, '4'): 15,
(14, '5'): 15,
(14, '6'): 15,
84
85
86
87
           (14, '7'): 15,
88
           (14, '8'): 15,
(14, '9'): 15,
89
90
91
           (15, '-'): 16,
92
93
           (16, '0'): 17,
94
           (16, '1'): 17,
(16, '2'): 17,
95
96
```

```
97 (16, '3'): 17,

98 (16, '4'): 17,

99 (16, '5'): 17,

100 (16, '6'): 17,

101 (16, '7'): 17,

102 (16, '8'): 17,

103 (16, '9'): 17,

104 }
```

Listing 3.1: Ejemplo de código insertado

Otra funcionalidad interesante es el llamado repetitivo del AFD, desde el principio y hasta el final del texto como se muestra en el Listado 3.2.

```
from tabla_transiciones import tabla
2
  import ui as ui
  4
  def Automata(cadena):
      estado = 0
                                                   #
6
      for character in cadena:
          if (estado, character) in tabla:
             estado = tabla[(estado, character)]
9
10
             return False # qe
11
      return estado == 17 # qf
  13
14
  def procesar_archivo(archivo):
15
      with open(archivo, 'r') as f:
16
          cadenas = f.read().splitlines()
17
18
      cadenas_validas = []
19
      for cadena in cadenas:
20
         if Automata(cadena):
21
             cadenas_validas.append(cadena)
22
23
      if cadenas_validas:
         resultado = "\n".join(cadenas_validas)
25
      else:
26
         resultado = "No se encontraron cadenas v lidas."
27
28
29
      with open("report.txt", "a") as report_file:
30
31
         for cadena in cadenas_validas:
             report\_file.write(cadena + "\n")
32
33
      # imprimir
      mostrar_resultado_callback(resultado)
35
36
  root, mostrar_resultado_callback = ui.crear_interfaz(procesar_archivo)
37
38
  root.mainloop()
```

Listing 3.2: Ejemplo de código insertado

3.4.3. Pruebas realizadas

Agregar figuras donde se evidencie la carga del archivo, el resultado de la ejecución y la exportación. Reportar al menos tres conjuntos de imágenes.

3.5. Comentarios

Este proyecto ha permitido entender cómo los autómatas finitos deterministas (AFD) se pueden aplicar en la validación de cadenas, como en el análisis de datos o validación de formatos. A través del diseño de la tabla de transiciones y la ejecución del AFD, se pudo verificar su efectividad. Este conocimiento es útil para proyectos futuros en los que se necesite procesar datos o crear validadores, especialmente cuando se busca garantizar que las entradas sigan una estructura predefinida.

Figura 3.3: Captura de ejecución 1 ${\cal D}.$

```
    Papel Lacifore Places System
    Papel Lacifore Places System
```

Figura 3.4: Captura de ejecución 2 D.

Figura 3.5: Captura de ejecución 3 ${\cal D}.$

Bibliografía

[1] Clase LA. Listado de propuestas de aplicativos de autómatas finitos deterministas, 2024. https://docs.google.com/spreadsheets/d/1kUtUhhcjtfIzn2-osH2RwJ9zC-gWwRV4wcR9Xu6v9kw/. Última consulta 2024.10.04.