2526-MA140: Week 03, Lecture 2 (L05)

Inroduction to Limits Dr Niall Madden

University of Galway

Wednesday, 24 September, 2025

Slides by Niall Madden, with some material adapted from textbooks, and original notes by Dr Kirsten Pfeiffer.

Outline

- 1 Reminders
- 2 Towards Limits
- 3 Definition of a Limit
- 4 Properties of Limits
 - Evaluating limits
- 5 Limits of rational functions
- 6 More limits
- 7 Exercises

For more, see Chapter 2 (Limits) of Strang and Herman's Calculus, especially Sections 2.2 (Limit of a Function) and 2.3 (Limit Laws).

Slides are on canvas, and at niallmadden.ie/2526-MA140

2/24

Reminders

- Tutorials started this week.
- Current assignment (for this week's tutorials) is PS-0. Just for practice. See https://universityofgalway. instructure.com/courses/46734/assignments/128373
- ▶ Assignment 1 (PS-1) due 5pm, Monday 5 October. Will be covered in tutorials next week.
- ► Two class tests planned for this module, each worth 10% of the final grade.
 - ► Test 1: Tuesday, 14 October (Week 5)
 - ► Test 2: **Tuesday, 18 November** (Week 9)
 - Contact Niall if you have any concerns, or wish to avail of alternative arrangements, as provided by LENS reports.

MA140 — W02-2: Limits 3/24

Towards Limits

When we were considering the domain of a function, we looked at those *x*-values for which the function was not defined.

Example

$$f(x) = \frac{x^2 - 2}{x - 1}$$

$$g(x) = \frac{x^2 - 1}{x - 1}$$

Neither f nor g are defined at x = 1.

But what happens if x gets very closed to 1?

X	0.900	0.990	0.999	1	1.001	1.010	1.100
f(x)							
g(x)							

Let's look at the graphs of f and g.

Towards Limits

Example

$$f(x) = \frac{x^2 - 2}{x - 1}$$

$$g(x) = \frac{x^2 - 1}{x - 1}$$

Towards Limits

In the previous example, we saw that, although neither f nor g was defined at x = 1, they behaved very differently as x approaches 1.

To discuss this we'll need the concept of a **limit** which, roughly, relates to the value of function as it **approaches** a point (but not actually at that point).

$$\lim_{x \to a} f(x) = L$$

The concept of a limit is a prerequisite for a proper understanding of calculus, and numerical methods.

Some conventions and terminology we'll use:

- x is a variable.
- a is a fixed number.
- \triangleright ϵ is a small positive number (that we get to choose).
- \triangleright δ is another **small** positive number (determined by ϵ).
- ▶ $|x a| < \delta$ means that the distance between x and a is less than δ , i.e. very small.
- As x approaches a, so f(x) approaches a number L.

When we write

$$\lim_{x\to a} f(x) = L,$$

we read

"The limit of f, as x goes to a, is L".

MA140 — W02-2: Limits 7/24

LIMIT: formal definition

$$\lim_{x\to a} f(x) = L,$$

means that, for every number $\epsilon>0$, it is possible to find a number $\delta>0$, such that

$$|f(x) - L| < \epsilon$$
 whenever $|x - a| < \delta$.

LIMIT: Informal explanation

$$\lim_{x\to a} f(x) = L,$$

means that we can make f(x) as close to L as we like, by taking x as close to a as needed.

Example

Prove formally that $\lim_{x\to 3} (4x-5) = 7$.

That is, for arbitrary ϵ , find a δ such that

$$|(4x-5)-7| < \epsilon$$
 whenever $|x-3| < \delta$.

The approach we just used is technically correct, but not very practical in many cases.

Fortunately, there are other methods that can be used

- to show that a limit exists;
- ▶ find the limit of a function, f(x) as $x \to a$.

See also...

... Section 2.3 of the textbook: Limit Laws

Suppose that $\lim_{x\to a}f_1(x)=L_1$, and $\lim_{x\to a}f_2(x)=L_2$ and $c\in\mathbb{R}$ is any constant. Then,

(1)
$$\lim_{x\to a} c = c, \ c\in\mathbb{R}$$

$$(2) \lim_{x \to a} x = a$$

$$(3) \lim_{x \to a} [cf_1(x)] = cL_1$$

(4)
$$\lim_{\substack{x \to a \\ \lim_{x \to a}}} [f_1(x) + f_2(x)] = L_1 + L_2$$
 and $\lim_{\substack{x \to a \\ x \to a}} [f_1(x) - f_2(x)] = L_1 - L_2$

(5)
$$\lim_{x \to a} (f_1(x)f_2(x)) = L_1L_2$$

(6)
$$\lim_{x \to a} ((f_1(x))^n) = (L_1)^n$$

(7)
$$\lim_{x\to a} \left(\frac{f_1(x)}{f_2(x)}\right) = \frac{L_1}{L_2}$$
, providing $L_2 \neq 0$.

(8)
$$\lim_{x \to a} \sqrt[n]{f_1(x)} = \sqrt[n]{L_1}$$

Note: we can combine these properties as needed. For example, (5) and (8) together give that

$$\lim_{x \to a} x^n = a^n$$

Example

Evaluate the limit $\lim_{x\to 1} (x^3 + 4x^2 - 3)$

Example

Evaluate $\lim_{x\to 1} \frac{x^4 + x^2 - 1}{x^2 + 5}$ using the Properties of Limits.

In many cases it's more complicated. In particular, we'll consider numerous examples where we want to evaluate $\lim_{x\to a} f(x)$ where a is not in the domain of f.

A typical example of this is when we evaluate a rational function:

$$\left[\lim_{x\to a}\frac{p(x)}{q(x)}\right]$$

where **both** p(a) = 0 and q(a) = 0.

Idea: Since we care about the value of p and q near x = a, but not actually at x = a, it is safe to factor out an (x - a) term from both.

MA140 — W02-2: Limits

Three examples

Evaluate the limits:

(a)
$$\lim_{x \to 0} \frac{x}{x}$$
 (b) $\lim_{x \to 0} \frac{x^2}{x}$ (c) $\lim_{x \to 0} \frac{x}{x^2}$

Example $\lim_{x \to 1} \frac{x^2 + x - 2}{x^2 - x}$

In that last example, we found that

$$\lim_{x \to 1} \frac{x^2 + x - 2}{x^2 - x} = \lim_{x \to 1} \frac{x + 2}{x}$$

But these are different functions:

Evaluate the limit

$$\lim_{x \to 2} \left(\frac{\frac{1}{2} - \frac{1}{x}}{x - 2} \right)$$

More limits

Very often, we'll evaluate limits of the form:

$$\lim_{x \to a} \frac{f(x)}{g(x)}$$

where f and g are not polynomials. Some of the same ideas still apply.

Evaluate $\lim_{x\to 0} \frac{\sqrt{1+x^2}-1}{x^2}$

Exercises

Exercise 2.2.1

Evaluate the following limits

(a)
$$\lim_{x \to \frac{1}{2}} \frac{x - \frac{1}{2}}{x^2 - \frac{1}{4}}$$

(b)
$$\lim_{x \to -4} \frac{x^2 + 3x - 4}{x^2 + x - 12}$$

Exercise 2.2.2 (from 2425-MA140 exam)

Let $f(x) = \frac{x^2 - 2x - 15}{3x^3 - 6x^2 - 45x}$. For each of the following, evaluate the limit, or determine that it does not exist.

(i)
$$\lim_{x \to -3} f(x)$$

(ii)
$$\lim_{x \to 0} f(x)$$

(iii) $\lim_{x \to 5} f(x)$