Exercise Sheet 5 – Data Wrangling

INF161 Autumn Semester 2020

Exercise 1 (Down the rabbit hole on Prosecco) For this exercise, you will evaluate a hypothesis of mine, which is that manufacturers of poor wines try to compensate for the poor taste of their wines by choosing long and fancy names. In particular, you will evaluate the hypothesis for Prosecco wines, since Prosecco is considered by many to be a cheaper version of Champagne, which could mean that Prosecco manufacturers have more to prove than those of other wines. You will be working with the winemag-data-130k-v2.csv dataset.

Step 1: Load the winemag-data-130k-v2.csv file as a pandas dataframe. Create a new dataframe composed only of the rows corresponding to reviews of Prosecco wines.

 $\it Tip:\ Use\ {\it DataFrame.loc}\ to\ filter\ rows,\ and\ {\it DataFrame.reset_index}\ to\ reindex\ the\ rows.$

You should end up with a dataframe that looks like this:

	index	Unnamed: 0 d	country	 title	variety	winery
Θ	315	315	Italy	Bellussi NV Extra Dry (Prosecco di Valdobbiad	Prosecco	Bellussi
1	319	319	Italy	Paladin 2007 Millesimato Brut Prosecco (Veneto)	Prosecco	Paladin
2	320	320	Italy	Perlage 2008 Col di Manza Extra Dry Millesimat	Prosecco	Perlage
3	321	321	Italy	Sant Eurosia 2007 Brut (Prosecco di Valdobbia	Prosecco	Sant Eurosia
4	322	322	Italy	Sant Eurosia 2007 Millesimato Dry (Prosecco d	Prosecco	Sant Eurosia
231	129399	129399	Italy	Mionetto NV Brut (Prosecco del Veneto)	Prosecco	Mionetto
232	129400	129400	Italy	Moletto NV Frizzante Prosecco (Marca Trevigiana)	Prosecco	Moletto
233	129401	129401	Italy	Perlage NV Canah Brut (Prosecco di Valdobbiad	Prosecco	Perlage
234	129404	129404	Italy	Valdo NV Extra Dry (Prosecco del Veneto)	Prosecco	Valdo
235	129929	129929	Italy	Col Vetoraz Spumanti NV Prosecco Superiore di	Prosecco	Col Vetoraz Spumanti

Step 2: From the Prosecco dataframe you created in the previous step, create two new dataframes that are composed of the rows with more than 89 points and less than 85 points, respectively. These two new dataframes should only have the columns "title," "price," and "points." Sort both dataframes by price in descending order.

 $\label{thm:continuous} \textit{Tip: You just need two functions for this; DataFrame.loc and DataFrame.sort_values.} \\ \textit{It should looks like this:}$

	-		
Good	Prosecco:		
1.110	title	price	points
143	Bisol 2007 Cartizze (Prosecco Superiore di Ca	48	90
216	Bisol NV Cartizze (Prosecco Superiore di Cart	41	90
235	Col Vetoraz Spumanti NV Prosecco Superiore di	38	91
123	Ruggeri & C. 2007 Giustino B. Extra Dry (Pros	36	91
154	Bortolomiol 2006 Cartizze (Prosecco Superiore	35	90
180	Bortolomiol 2006 Cartizze (Prosecco Superiore	35	90
144	Adami NV Cartizze Dry (Prosecco Superiore di	32	90
162	Adami NV Prosecco Superiore di Cartizze	32	90
103	Bortolomiol 2008 Cartizze Dry (Prosecco Super	30	90
104	Nino Franco 2007 Rive di San Floriano Brut (P	30	90
124	Ruggeri & C. NV Prosecco Superiore di Cartizze	30	90
215	Bortolomiol NV Prosecco Superiore di Cartizze	30	90
163	Bisol NV Crede (Prosecco di Valdobbiadene)	25	90
145	Sorelle Bronca NV Particella 68 Extra Dry (Pr	24	90
179	Astoria NV Cartizze (Prosecco Superiore di Ca	21	90
178	Astoria 2006 Millesimato Extra Dry (Prosecco	20	90
39	Sorelle Bronca NV Extra Dry Particella 68 (Pr	<na></na>	90
Bad	Prosecco:		
400	title	price	points
133	Varaschin NV Prosecco Superiore di Cartizze	29	84
217	Viszlay Vineyards 2009 Estate Bottled Prosecco	28	82
146	Perlage NV Col di Manza Extra Dry (Prosecco d	22	84
129	Maschio dei Cavalieri NV Maschio dei Cavalieri	20	82
147	Varaschin NV Brut (Prosecco di Valdobbiadene)	19	83
134	Bellenda NV San Fermo Brut (Prosecco di Coneg	19	84
148	Toffoli NV Brut (Prosecco di Conegliano e Val	18	84
213	Canella NV Extra Dry (Prosecco di Conegliano)	18	84
95	Mionetto NV Certified Organic Extra Dry Prosec	16	84
164	Carmina NV Brut (Prosecco di Conegliano e Val	16	82
214	Collabrigo NV Extra Dry (Prosecco di Conegli	16	84
132	Col Saliz NV Extra Dry (Prosecco di Valdobbia	15	84
93	Cantina San Martino NV Pittaro Extra Dry (Pro	15	84
161	Carmina NV Brut (Prosecco di Conegliano e Val	15	83
32	Tosti NV Prosecco (Italy)	15	83
117	Tiamo NV Extra Dry Prosecco (Veneto)	14	84
131	Terra Serena NV Extra Dry (Prosecco di Conegl	12	84
94	Lisabella NV Gran Resèe Prosecco (Colli Trevig	12	84
149	Zonin NV Prosecco (Italy)	12	84
49	Le Vigne di Alice 2007 Millesimato Doro Brut	<na></na>	81
130	Le Vigne di Alice NV Tajad Brut (Prosecco del	<na></na>	81
211	Villa Granda NV Frizzante Prosecco (Colli Trev	<na></na>	84
212	Tenuta Santomè NV Extra Dry (Prosecco del Ven	<na></na>	84

Step 3: Add a new column to both dataframes, where each element is the number of characters in the title of the corresponding wine (this is where my theory comes in!). Finally, for both dataframes (coresponding to good and bad Prosecco, respectively), print the average number of characters for both dataframes.

Tip: Use DataFrame.map to compute title length for each wine.

Spoiler: It seems my hypothesis was wrong, and that the data indicates that the opposite is true, i.e., better Prosecco, on average, have longer names:)
It should look like this:

Good	Prosecco:			
	title			title_length
143	Bisol 2007 Cartizze (Prosecco Superiore di Ca	48	90	53
216	Bisol NV Cartizze (Prosecco Superiore di Cart	41	90	51
235	Col Vetoraz Spumanti NV Prosecco Superiore di	38	91	55
123	Ruggeri & C. 2007 Giustino B. Extra Dry (Pros	36	91	68
154	Bortolomiol 2006 Cartizze (Prosecco Superiore	35	90	59
180	Bortolomiol 2006 Cartizze (Prosecco Superiore	35	90	59
144	Adami NV Cartizze Dry (Prosecco Superiore di	32	90	55
162	Adami NV Prosecco Superiore di Cartizze	32	90	40
103	Bortolomiol 2008 Cartizze Dry (Prosecco Super	30	90	63
104	Nino Franco 2007 Rive di San Floriano Brut (P	30	90	71
124	Ruggeri & C. NV Prosecco Superiore di Cartizze	30	90	47
215	Bortolomiol NV Prosecco Superiore di Cartizze	30	90	46
163	Bisol NV Crede (Prosecco di Valdobbiadene)	25	90	43
145	Sorelle Bronca NV Particella 68 Extra Dry (Pr	24	90	79
179	Astoria NV Cartizze (Prosecco Superiore di Ca	21	90	53
178	Astoria 2006 Millesimato Extra Dry (Prosecco	20	90	76
39	Sorelle Bronca NV Extra Dry Particella 68 (Pr	<na></na>	90	70
Good	Prosecco mean title length 57.588235294117645			
Bad I	Prosecco:			
	title	price	points	title_length
133	Varaschin NV Prosecco Superiore di Cartizze	29	84	44
217	Viszlay Vineyards 2009 Estate Bottled Prosecco	28	82	69
146	Perlage NV Col di Manza Extra Dry (Prosecco d	22	84	62
129	Maschio dei Cavalieri NV Maschio dei Cavalieri	20	82	75
147	Varaschin NV Brut (Prosecco di Valdobbiadene)	19	83	46
134	Bellenda NV San Fermo Brut (Prosecco di Coneg	19	84	68
148	Toffoli NV Brut (Prosecco di Conegliano e Val	18	84	57
213	Canella NV Extra Dry (Prosecco di Conegliano)	18	84	46
95	Mionetto NV Certified Organic Extra Dry Prosec	16	84	57
164	Carmina NV Brut (Prosecco di Conegliano e Val	16	82	57
214	Collabrigo NV Extra Dry (Prosecco di Conegli	16	84	50
132	Col Saliz NV Extra Dry (Prosecco di Valdobbia	15	84	51
93	Cantina San Martino NV Pittaro Extra Dry (Pro	15	84	63
161	Carmina NV Brut (Prosecco di Conegliano e Val	15	83	57
32	Tosti NV Prosecco (Italy)	15	83	25
117	Tiamo NV Extra Dry Prosecco (Veneto)	14	84	36
131	Terra Serena NV Extra Dry (Prosecco di Conegl	12	84	67
94	Lisabella NV Gran Resèe Prosecco (Colli Trevig	12	84	51
149	Zonin NV Prosecco (Italy)	12	84	25
49	Le Vigne di Alice 2007 Millesimato Doro Brut	<na></na>	81	73
130	Le Vigne di Alice NV Tajad Brut (Prosecco del	<na></na>	81	54
211	Villa Granda NV Frizzante Prosecco (Colli Trev	<na></na>	84	53
212	Tenuta Santomè NV Extra Dry (Prosecco del Ven	<na></na>	84	50
Bad	Prosecco mean title length 53.73913043478261			

Exercise 2 (The ramen king) For this exercise, you will figure out which country has the best ramen, as judged by reviews in that country.

Step 1: Load the ramen-ratings.csv file as a pandas dataframe. Next, group the rows of the dataframe by country (using DataFrame.groupby) and compute the average number of stars for each country. Also compute the 10-th and 90-th quantiles. Save these as columns ine a new dataframe indexed by country. Who has the best ramen? Since Norway is not part of the data set we have not eliminated the possibility that Norway is the ramen king, although I think we can agree on that the chance of that being true is quite slim.

Tip: Stars is not given as a float; you need to convert it. Kaggle has a great tutorial on how to use DataFrame.groupby at https://www.kaggle.com/residentmario/grouping-and-sorting.

It should look like this:

	Mean	q10	q90
Country			
Australia	3.138636	2.025	4.000
Bangladesh	3.714286	3.250	4.000
Brazil	4.350000	4.000	4.800
Cambodia	4.200000	3.500	5.000
Canada	2.243902	0.250	3.500
China	3.421893	1.750	4.500
Colombia	3.291667	2.875	3.625
Dubai	3.583333	3.350	3.750
Estonia	3.500000	3.300	3.700
Fiji	3.875000	3.475	4.175
Finland	3.583333	3.500	3.700
Germany	3.638889	3.000	4.350
Ghana	3.500000	3.500	3.500
Holland	3.562500	3.500	3.675
Hong Kong	3.801825	2.750	5.000
Hungary	3.611111	2.950	4.150
India	3.395161	2.000	4.250
Indonesia	4.067460	3.250	5.000
Japan	3.981605	3.000	5.000
Malaysia	4.154194	3.250	5.000
Mexico	3.730000	3.000	4.000
Myanmar	3.946429	2.975	5.000
Nepal	3.553571	3.325	4.175
Netherlands	2.483333	0.500	3.500
Nigeria	1.500000	1.500	1.500
Pakistan	3.000000	2.400	3.600
Philippines	3.329787	1.900	4.500
Poland	3.625000	3.250	4.000
Sarawak	4.333333	4.000	4.800
Singapore	4.126147	3.200	5.000
South Korea	3.790554	2.750	5.000
Sweden	3.250000	3.050	3.450
Taiwan	3.665402	2.000	5.000
Thailand	3.384817	2.000	4.750
UK	2.997101	1.500	4.050
USA	3.457043	2.000	4.750
United States	3.750000	3.750	3.750
Vietnam	3.187963	2.000	4.000

Step 2: Since we are anyway looking at this data set we may as well squeeze some more information out of it. Let us next answer the question of which style of ramen is most popular by country. In particular, you should, separately for each country, compute the fraction of reviews of each style of ramen.

Start by creating a new clean dataframe by loading the .csv file from disk again. Next, group the rows by both country and style. Then, compute the total number of rewviews for each country and style. Finally, normalize each entry by the total number of reviews from that country.

Tip: You just need DataFrame.groupby and division and only a few lines of code (around 6). The challenge is to use groups correctly.

It should look like this (where the rightmost column is the fraction computed; note how the entries for each column sum to 1):

Country	Style	
Australia	Cup	0.772727
	Pack	0.227273
Bangladesh	Pack	1.000000
Brazil	Cup	0.400000
	Pack	0.600000
United States	Pack	1.000000
Vietnam	Bowl	0.185185
	Cup	0.074074
	Pack	0.722222
	Tray	0.018519
Name: Stars, L	ength:	87, dtype: float64

Exercise 3 (Restaurants; more items is more good) For this exercise, you will analyze who orders more items at restaurants, men or women. You will be working with the order.csv and customers.csv datasets.

Step 1: Start by loading the order.csv and customers.csv files into separate dataframes. Now, you need to merge the two dataframes to compute the statistics we want. Do achieve this, note that there is a customer ID column in both of the dataframes. Use the DataFrames.join method to merge the two dataframes. Next, select the "item_count" and "gender" columns.

Tip: Kaggle has a good tutorial on how to use join; see https://www.kaggle.com/residentmario/renaming-and-combining.

You should end up with a dataframe that looks like this:

	item_	_cc	unt	: ge	nder
0			1		Male
1			1		<na></na>
2			2	2	<na></na>
3			1		Male
4			L	Ļ	Male
135298			1		<na></na>
135299			3	3	Male
135300			L	ļ.	Male
135301			3	3	<na></na>
135302			1		Male
[135502	rows	х	2 c	olu	ımns]

Step 2: Finally, use compute the average number of items separately for men and women. As it turns out, men and women order about the same number of items

Tip: The spelling of male and female is not consistent.

Step 2	
	item_count
gender	
female	2.381009
male	2.414087

Exercise 4 (Nostalgia?) 2020 has not been a great year. Hence, for the final assignment, we will go back to the glorious year 2000. In particular, you will be working with billboard data from the year 2000.

Step 1: Start by loading the billboard.csv file into a dataframe. Notice how there are separate columns for each week, which makes it hard to compute statistics over the entire period. Hence, the first step is to change the format of the dataframe such that

- there is a single column "week" that indicates which week a given row corresponds to and
- another column "rank" that contains the rank of each song and week.

You will have one row for each song and week in the resulting dataframe, i.e., there will be 72 rows for each song (one for each week).

Tip: Use the pandas.melt function. The entire conversion can be done in a single function call; see the section "Column headers are values, not variable names" of https://tidyr.tidyverse.org/articles/tidy-data.html (in the R language, but the idea is the same).

It should look like this:

```
| year | artist_inverted | track | time genre date_entered | date_peaked | week | rank | 2000 | Destiny's Child | Independent | Women Part I | 3:38 | Rock | 2000-09-23 | 2000-11-18 | x1st_week | 73.0 |
1 2000 | Santana | Maria, Maria | 4:18 | Rock | 2000-02-12 | 2000-04-08 | x1st_week | 73.0 |
2 2000 | Savage | Garden | I knew I Loved You | 4:07 | Rock | 2000-08-12 | 2000-04-09 | x1st_week | 71.0 |
3 2000 | Madonna | Music | 3:45 | Rock | 2000-08-12 | 2000-09-16 | x1st_week | 41.0 |
4 2000 | Aguilera, Christina | Come On Over Baby (All I Want Is You) | 3:38 | Rock | 2000-08-05 | 2000-08-11 | x1st_week | 41.0 |
4 2000 | Chostface | Killah | Cherchez | LaGhost | 3:04 | RSB | 2000-08-05 | 2000-08-05 | x76th_week | Nah |
24083 | 2000 | Smith, | Will | Freakin' | 1 3:58 | Rap | 2000-09-02 | 2000-09-02 | x76th_week | Nah |
24090 | 2000 | Eastsidaz, The | Gostella | Garden | Gard
```

Step 2: The weeks are given as strings, which could be a problem. Convert these to integers.

Tip: Use the map function (as you did with the Prosecco problem) and do something like what is suggested at this link to remove non-digit characters https://stackoverflow.com/questions/17336943/removing-non-numeric\-characters-from-a-string.

Step 3: Finally, group the rows by both "artist.inverted" and "track", and compute the average rank of the resulting group. Select the "rank" column, sort in ascending order, and print the first 10 rows, i.e., the 10 songs with lowest (best) average rank.

artist.inverted	track	
Santana	Maria, Maria	10.500000
Madonna	Music	13.458333
N'Sync	Bye Bye Bye	14.260870
Elliott, Missy "Misdemeanor"	Hot Boyz	14.333333
Destiny's Child	Independent Women Part I	14.821429
Iglesias, Enrique	Be With You	15.850000
Aaliyah	Try Again	16.656250
Savage Garden	I Knew I Loved You	17.363636
Houston, Whitney	My Love Is Your Love	17.857143
Pink	There U Go	18.625000
Name: rank, dtype: float64		

Now, just kick back with the music video of N'Sync's Bye Bye; you have deserved it https://www.youtube.com/watch?v=Eo-KmOd3i7s