Support Vector Machines (Contd.), Classification Loss Functions and Regularizers

Piyush Rai

CS5350/6350: Machine Learning

September 13, 2011

1 / 18

SVM (Recap)

SVM finds the maximum margin hyperplane that separates the classes

- Margin $\gamma = \frac{1}{||\mathbf{w}||} \Rightarrow$ maximizing the margin $\gamma \equiv$ minimizing $||\mathbf{w}||$ (the norm)
- The optimization problem for the separable case (no misclassified training example)

Minimize
$$f(\mathbf{w}, b) = \frac{||\mathbf{w}||^2}{2}$$

subject to $y_n(\mathbf{w}^T \mathbf{x}_n + b) \ge 1$, $n = 1, ..., N$

• This is a Quadratic Program (QP) with N linear inequality constraints

2 / 18

SVM: The Optimization Problem

Our optimization problem is:

Minimize
$$f(\mathbf{w}, b) = \frac{||\mathbf{w}||^2}{2}$$

subject to $1 \le y_n(\mathbf{w}^T \mathbf{x}_n + b), \qquad n = 1, ..., N$

• Introducing Lagrange Multipliers α_n ($n = \{1, ..., N\}$), one for each constraint, leads to the Primal Lagrangian:

Minimize
$$L_P(\mathbf{w}, b, \alpha) = \frac{||\mathbf{w}||^2}{2} + \sum_{n=1}^{N} \alpha_n \{1 - y_n(\mathbf{w}^T \mathbf{x}_n + b)\}$$

subject to $\alpha_n \ge 0$; $n = 1, ..., N$

- We can now solve this Lagrangian
 - i.e., optimize $L(\mathbf{w}, b, \alpha)$ w.r.t. \mathbf{w} , b, and α
 - .. making use of the Lagrangian Duality theory..

SVM: The Optimization Problem

• Take (partial) derivatives of L_P w.r.t. \mathbf{w} , b and set them to zero

$$\frac{\partial L_P}{\partial \mathbf{w}} = 0 \Rightarrow \mathbf{w} = \sum_{n=1}^N \alpha_n y_n \mathbf{x}_n, \quad \frac{\partial L_P}{\partial b} = 0 \Rightarrow \sum_{n=1}^N \alpha_n y_n = 0$$

ullet Substituting these in the Primal Lagrangian L_P gives the Dual Lagrangian

Maximize
$$L_D(\mathbf{w}, b, \alpha) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{m,n=1}^{N} \alpha_m \alpha_n y_m y_n (\mathbf{x}_m^T \mathbf{x}_n)$$

subject to $\sum_{n=1}^{N} \alpha_n y_n = 0$, $\alpha_n \ge 0$; $n = 1, \dots, N$

- ullet It's a Quadratic Programming problem in lpha
 - Several off-the-shelf solvers exist to solve such QPs
 - Some examples: quadprog (MATLAB), CVXOPT, CPLEX, IPOPT, etc.

SVM: The Solution

• Once we have the α_n 's, **w** and b can be computed as:

$$\mathbf{w} = \sum_{n=1}^{N} \alpha_n y_n \mathbf{x}_n$$
$$b = -\frac{1}{2} \left(\min_{n:y_n = +1} \mathbf{w}^T \mathbf{x}_n + \max_{n:y_n = -1} \mathbf{w}^T \mathbf{x}_n \right)$$

- **Note:** Most α_n 's in the solution are zero (sparse solution)
 - Reason: Karush-Kuhn-Tucker (KKT) conditions
 - ullet For the optimal α_n 's

$$\alpha_n\{1-y_n(\mathbf{w}^T\mathbf{x}_n+b)\}=0$$

- These examples are called support vectors
- Support vectors "support" the margin boundaries

SVM - Non-separable case

- Non-separable case: No hyperplane can separate the classes perfectly
- Still want to find the maximum margin hyperplane but this time:
 - We will allow some training examples to be misclassified
 - We will allow some training examples to fall within the margin region

ullet Recall: For the separable case (training loss = 0), the constraints were:

$$y_n(\mathbf{w}^T\mathbf{x}_n+b)\geq 1 \quad \forall n$$

• For the non-separable case, we relax the above constraints as:

$$y_n(\mathbf{w}^T\mathbf{x}_n+b)\geq 1-\xi_n \quad \forall n$$

- ξ_n is called slack variable (distance \mathbf{x}_n goes past the margin boundary)
- $\xi_n > 0, \forall n$, misclassification when $\xi_n > 1$

6 / 18

SVM - Non-separable case

- Non-separable case: We will allow misclassified training examples
 - .. but we want their number to be minimized \Rightarrow by minimizing the sum of slack variables $(\sum_{n=1}^{N} \xi_n)$
- The optimization problem for the non-separable case

Minimize
$$f(\mathbf{w}, b) = \frac{||\mathbf{w}||^2}{2} + C \sum_{n=1}^{N} \xi_n$$

subject to $y_n(\mathbf{w}^T \mathbf{x}_n + b) \ge 1 - \xi_n, \quad \xi_n \ge 0 \qquad n = 1, \dots, N$

- C dictates which term $(\frac{||\mathbf{w}||^2}{2} \text{ or } C \sum_{n=1}^N \xi_n)$ will dominate the minimization
 - Small $C \Rightarrow \frac{||\mathbf{w}||^2}{2}$ dominates \Rightarrow prefer large margins
 - .. but allow potentially large # of misclassified training examples
 - Large $C \Rightarrow C \sum_{n=1}^{N} \xi_n$ dominates \Rightarrow prefer small # of misclassified examples
 - .. at the expense of having a small margin

SVM - Non-separable case: The Optimization Problem

Our optimization problem is:

Minimize
$$f(\mathbf{w}, b, \xi) = \frac{||\mathbf{w}||^2}{2} + C \sum_{n=1}^{N} \xi_n$$

subject to $1 \le y_n(\mathbf{w}^T \mathbf{x}_n + b) + \xi_n$, $0 \le \xi_n$ $n = 1, ..., N$

• Introducing Lagrange Multipliers α_n , β_n ($n = \{1, ..., N\}$), for the constraints, leads to the Primal Lagrangian:

Minimize
$$L_P(\mathbf{w}, b, \xi, \alpha, \beta) = \frac{||\mathbf{w}||^2}{2} + C\sum_{n=1}^N \xi_n + \sum_{n=1}^N \alpha_n \{1 - y_n(\mathbf{w}^T \mathbf{x}_n + b) - \xi_n\} - \sum_{n=1}^N \beta_n \xi_n$$
 subject to $\alpha_n, \beta_n \geq 0$; $n = 1, \dots, N$

• Comparison note: Terms in red font were not there in the separable case

SVM - Non-separable case: The Optimization Problem

• Take (partial) derivatives of L_P w.r.t. \mathbf{w} , b, ξ_n and set them to zero

$$\frac{\partial L_P}{\partial \mathbf{w}} = 0 \Rightarrow \mathbf{w} = \sum_{n=1}^N \alpha_n y_n \mathbf{x}_n, \quad \frac{\partial L_P}{\partial b} = 0 \Rightarrow \sum_{n=1}^N \alpha_n y_n = 0, \quad \frac{\partial L_P}{\partial \xi_n} = 0 \Rightarrow C - \alpha_n - \beta_n = 0$$

- Using $C \alpha_n \beta_n = 0$ and $\beta_n \ge 0 \Rightarrow \alpha_n \le C$
- ullet Substituting these in the Primal Lagrangian L_P gives the Dual Lagrangian

Maximize
$$L_D(\mathbf{w}, b, \boldsymbol{\xi}, \alpha, \boldsymbol{\beta}) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{m,n=1}^{N} \alpha_m \alpha_n y_m y_n (\mathbf{x}_m^T \mathbf{x}_n)$$

subject to $\sum_{n=1}^{N} \alpha_n y_n = 0$, $0 \le \alpha_n \le C$; $n = 1, ..., N$

- ullet Again a Quadratic Programming problem in lpha
- ullet Given lpha, the solution for ullet, b has the same form as the separable case
- **Note:** α is again sparse. Nonzero α_n 's correspond to the support vectors

Support Vectors in the non-separable case

- The separable case has only one type of support vectors
 - .. ones that lie on the margin boundaries $\mathbf{w}^T\mathbf{x} + b = -1$ and $\mathbf{w}^T\mathbf{x} + b = +1$
- The non-separable case has three types of support vectors

- **1** Lying on the margin boundaries $\mathbf{w}^T \mathbf{x} + b = -1$ and $\mathbf{w}^T \mathbf{x} + b = +1$ ($\xi_n = 0$)
- ② Lying within the margin region $(0 < \xi_n < 1)$ but still on the correct side
- **Solution** Suppose $(\xi_n \ge 1)$ Suppose $(\xi_n \ge 1)$

Support Vector Machines: some notes

- Training time of the standard SVM is $O(N^3)$ (have to solve the QP)
 - Can be prohibitive for large datasets
- Lots of research has gone into speeding up the SVMs
 - Many approximate QP solvers are used to speed up SVMs
 - Online training (e.g., using stochastic gradient descent)
- Several extensions exist
 - Nonlinear separation boundaries by applying the Kernel Trick (next class)
 - More than 2 classes (multiclass classification)
 - Structured outputs (structured prediction)
 - Real-valued outputs (support vector regression)
- Popular SVM implementations: libSVM, SVMLight, SVM-struct, etc.
 - Also http://www.kernel-machines.org/software

Loss Functions for Linear Classification

- We have seen two linear binary classification algorithms (Perceptron, SVM)
- Linear binary classification written as a general optimization problem:

$$\min_{\mathbf{w},b} L(\mathbf{w},b) = \min_{\mathbf{w},b} \sum_{n=1}^{N} \mathbb{I}(y_n(\mathbf{w}^T \mathbf{x}_n + b) < 0) + \lambda R(\mathbf{w},b)$$

- $\mathbb{I}(.)$ is the indicator function (1 if (.) is true, 0 otherwise)
- The objective is sum of two parts: the loss function and the regularizer
 - Want to fit training data well and also want to have simple solutions
- The above loss function called the 0-1 loss

- The 0-1 loss is NP-hard to optimize (exactly/approximately) in general
- Different loss function approximations and regularizers lead to specific algorithms (e.g., Perceptron, SVM, Logistic Regression, etc.).

Why is the 0-1 loss hard to optimize?

- It's a combinatorial optimization problem
- Can be shown to be NP-hard
 - .. using a reduction of a variant of the satisfiability problem
- No polynomial time algorithm
- Loss function is non-smooth, non-convex
- ullet Small changes in ullet, b can change the loss by a lot

Approximations to the 0-1 loss

- We use loss functions that are convex approximations to the 0-1 loss
 - These are called surrogate loss functions
- Examples of surrogate loss functions (assuming b = 0):
 - Hinge loss: $[1 y_n \mathbf{w}^T \mathbf{x}_n]_+ = \max\{0, 1 y_n \mathbf{w}^T \mathbf{x}_n\}$
 - Log loss: $\log[1 + \exp(-y_n \mathbf{w}^T \mathbf{x}_n)]$
 - Exponential loss: $\exp(-y_n \mathbf{w}^T \mathbf{x}_n)$
 - All are convex upper bounds on the 0-1 loss
 - Minimizing a convex upper bound also pushes down the original function
 - Unlike 0-1 loss, these loss functions depend on how far the examples are from the hyperplane

- Apart from convexity, smoothness is the other desirable for loss functions
 - Smoothness allows using gradient (or stochastic gradient) descent
 - Note: hinge loss is not smooth at (1,0) but subgradient descent can be used

Loss functions for specific algorithms

• Recall **SVM** non-separable case: we minimized the sum of slacks $\sum_{n=1}^{N} \xi_n$

- No penalty $(\xi_n = 0)$ if $y_n(\mathbf{w}^T\mathbf{x}_n + b) \ge 1$
- Linear penalty $(\xi_n = 1 y_n(\mathbf{w}^T\mathbf{x}_n + b))$ if $y_n(\mathbf{w}^T\mathbf{x}_n + b) < 1$
- It's precisely the hinge loss $\max\{0, 1 y_n(\mathbf{w}^T\mathbf{x}_n + b)\}$
- Note: Some SVMs minimize the sum of squared slacks $\sum_{n=1}^{N} \xi_n^2$
- **Perceptron** uses a variant of the hinge loss: $\max\{0, -y_n(\mathbf{w}^T\mathbf{x}_n + b)\}$
- Logistic Regression uses the log loss
 - Misnomer: Logistic Regression does classification, not regression!
- Boosting uses the exponential loss

Regularizers

• Recall: The optimization problem for regularized linear binary classification:

$$\min_{\mathbf{w},b} L(\mathbf{w},b) = \min_{\mathbf{w},b} \sum_{n=1}^{N} \mathbb{I}(y_n(\mathbf{w}^T \mathbf{x}_n + b) < 0) + \lambda R(\mathbf{w},b)$$

- We have already seen the approximation choices for the 0-1 loss function
- What about the regularizer term $R(\mathbf{w}, b)$ to ensure simple solutions?
- The regularizer $R(\mathbf{w}, b)$ determines what each entry w_d of \mathbf{w} looks like
- Ideally, we want most entries w_d of **w** be zero, so prediction depends only on a small number of features (for which $w_d \neq 0$). Desired minimization:

$$R^{cnt}(\mathbf{w},b) = \sum_{d=1}^{D} \mathbb{I}(w_d \neq 0)$$

- $R^{cnt}(\mathbf{w}, b)$ is NP-hard to minimize, so its approximations are used
 - A good approximation is to make the individual w_d 's small
 - Small $w_d \Rightarrow$ small changes in some feature x_d won't affect prediction by much
 - Small individual weights w_d is a notion of function simplicity

Norm based Regularizers

- Norm based regularizers are used as approximations to $R^{cnt}(\mathbf{w}, b)$
 - ℓ_2 squared norm: $||\mathbf{w}||_2^2 = \sum_{d=1}^D w_d^2$
 - ℓ_1 norm: $||\mathbf{w}||_1 = \sum_{d=1}^D |w_d|$
 - ℓ_p norm: $||\mathbf{w}||_p = (\sum_{d=1}^{D} w_d^p)^{1/p}$

Figure: Contour plots. Left: ℓ_2 norm, Center: ℓ_1 norm, Right: ℓ_p norm (for p < 1)

- Smaller p favors sparser vector \mathbf{w} (most entries of \mathbf{w} close/equal to 0)
 - ullet But the norm becomes non-convex for p < 1 and is hard to optimize
- ullet The ℓ_1 norm is the most preferred regularizer for sparse $oldsymbol{w}$ (many w_d 's zero)
 - Convex, but it's not smooth at the axis points
 - .. but several methods exists to deal with it, e.g., subgradient descent
- The ℓ_2 squared norm tries to keep the individual w_d 's small
 - Convex, smooth, and the easiest to deal with

Next class...

- Introduction to Kernels
- Nonlinear classification algorithms
 - Kernelized Perceptron
 - Kernelized Support Vector Machines