第四章 Gibbs 抽样和马尔可夫链

Gibbs 抽样

- Gibbs 抽样是一种迭代抽样算法,随着样本数增加,样本的分布会收敛到目标分布,首先以一个 Bayesian 模型的估计为例介绍如何使用 Gibbs 抽样
- 使用 Bayesian 方法分析数据三要素:
 - ① 模型设定:为数据的抽样分布设定具体形式 $p(\mathbf{y} \mid \boldsymbol{\theta})$,通常需要引入一些参数 $\boldsymbol{\theta}$
 - ② 设定参数的先验分布 $p(\theta)$: 一般是主观设定,可以加入参数的先验信息,其样本空间应覆盖参数所有可能的取值
 - ③ 计算参数的后验分布 $p(\theta \mid y)$ 并做统计推断:估计参数的后验期望 $E(\theta \mid y)$ 、后验方差 $Var(\theta \mid y)$ 、置信区间等。参数的后验分布可如下计算:

$$p(\theta \mid \mathbf{y}) = \frac{p(\theta)p(\mathbf{y} \mid \theta)}{p(\mathbf{y})} \propto p(\theta)p(\mathbf{y} \mid \theta)$$
 (1)

但 $p(\theta \mid y)$ 对应的分布一般很难识别或很难直接对其抽样

假设数据独立地服从正态分布:

$$Y_i \stackrel{iid}{\sim} N(\mu, \phi^{-1}), \quad i = 1, \dots, n$$
 (2)

参数的 (共轭) 先验分布:

$$\phi \sim \mathsf{Gam}(rac{
u_0}{2},rac{
u_0\sigma_0^2}{2}) \ \mu \mid \phi \sim \textit{N}(\mu_0,rac{1}{\kappa_0\phi})$$

其中 ν_0 , σ_0^2 , μ_0 , κ_0^2 都是确定的常数

参数 (μ, ϕ) 的联合后验分布仍是一个 normal-gamma 分布:

$$\phi \mid y_1, \dots, y_n \sim \mathsf{Gam}(rac{
u_n}{2}, rac{S_n}{2})$$
 $\mu \mid \phi, y_1, \dots, y_n \sim \mathit{N}(\mu_n, rac{1}{\kappa_n \phi})$

其中

$$\begin{split} \nu_n &= \nu_0 + n \\ S_n &= \nu_0 \sigma_0^2 + \frac{n\kappa_0}{\kappa_0 + n} (\mu_0 - \bar{y})^2 + \sum_{i=1}^n (y_i - \bar{y})^2 \\ \mu_n &= \frac{\kappa_0 \mu_0 + n\bar{y}}{\kappa_0 + n} \\ \kappa_n &= \kappa_0 + n \end{split}$$

- 计算 E(μ | y1,...,yn), 可以采用如下的 Monte Carlo 方法:
 - (1) 独立抽取 $\phi^{(s)} \sim \text{Gam}(\nu_n/2, S_n/2), s = 1, \ldots, T$
 - (2) 对每个 $\phi^{(s)}$, 抽取 $\mu^{(s)} \mid \phi^{(s)} \sim N(\mu_n, (\kappa_n \phi^{(s)})^{-1}), s = 1, \ldots, T$

则 $E(\mu \mid y_1, \dots, y_n) \approx \sum_{s=1}^{T} \mu^{(s)} / T$

如果为模型(2)选取如下的先验分布:

$$\begin{split} & \mu \sim \textit{N}(\mu_0, \tau_0^2) \\ & \phi \sim \text{Gam}(\nu_0/2, \nu_0 \sigma_0^2/2) \end{split} \tag{3}$$

- ullet 此时 ϕ 的边际后验分布既不是 Gamma 分布,也不是任何常见的分布
- 方法一: 使用数值方法得到 (μ,ϕ) 的近似联合后验分布
 - ▶ 首先为各参数选取足够大的取值范围 $\mu \in [\mu_L, \mu_H]$, $\phi \in [\phi_L, \phi_H] \subseteq (0, \infty)$
 - ▶ 然后对区域 $[\mu_L, \mu_H] \times [\phi_L, \phi_H]$ 做网格离散
 - ▶ 根据(1), 点 (μ_i, ϕ_j) 处的后验概率密度为

$$p(\mu_i, \phi_j \mid y_1, \ldots, y_n) \propto p(\mu_i, \phi_j) p(y_1, \ldots, y_n \mid \mu_i, \phi_j)$$

▶ 网格中大部分点的后验概率都很接近 0,造成计算的浪费,且该方法 只适用于参数较少的情况

- 方法二: Gibbs 抽样
 - ▶ 模型(2) (3) 中 μ 的完全条件分布为: $\mu \mid \phi, y_1, \dots, y_n \sim N(\mu_n, \tau_n^2)$, 其中 $\mu_n = (\tau_0^{-2}\mu_0 + \phi\sum_{i=1}^n y_i)/(\tau_0^{-2} + n\phi)$, $\tau_n^2 = (\tau_0^{-2} + n\phi)^{-1}$
 - ▶ 模型(2) (3) 中 ϕ 的完全条件分布为: $\phi \mid \mu, y_1, \dots, y_n \sim \text{Gam}(\nu_n/2, S_n/2)$, 其中 $\nu_n = \nu_0 + n$, $S_n = \nu_0 \sigma_0^2 + \sum_{i=1}^n (y_i \mu)^2$
 - ▶ 如何利用 μ 和 ϕ 的完全条件分布得到 (μ,ϕ) 的联合后验分布的样本?
 - ★ 假设 $\phi^{(1)}$ 是边际后验分布 $p(\phi \mid y_1, ..., y_n)$ 的一个样本, 给定 $\phi^{(1)}$, 从 μ 的完全条件分布抽样:

$$\mu^{(1)} \sim p(\mu \mid \phi^{(1)}, y_1, \dots, y_n)$$

则 $(\mu^{(1)},\phi^{(1)})$ 可以看作联合后验分布 $p(\mu,\phi\mid y_1,\ldots,y_n)$ 的一个样本

▶ 只要给定 μ 或 ϕ 的一个初始值,然后轮流从 μ 和 ϕ 的完全条件分布抽样,就可以得到一列来自联合后验分布 $p(\mu, \phi \mid y_1, \dots, y_n)$ 的样本 $\{(\mu^{(s)}, \phi^{(s)}) : s = 1, \dots, T\}$

样本在参数空间中"移动"的很快,表明样本之间的相关性较小,此时 样本均值可以很好地近似后验分布的期望

- 样本之间的相关性如何影响样本均值对目标期望的近似?
 - ▶ 假设 $\{\theta^{(s)}: s=1,\ldots,T\}$ 是由 Gibbs 抽样得到的一列服从目标分布 $p(\theta)$ 的样本,样本均值 $\bar{\theta}$ 的方差为

$$\begin{aligned} Var_{G}(\bar{\theta}) &= E\left[\left(\bar{\theta} - E(\theta)\right)^{2}\right] \\ &= Var_{MC}(\bar{\theta}) + \frac{1}{T^{2}} \sum_{s=1}^{T} \sum_{t \neq s} E\left[\left(\theta^{(s)} - E(\theta)\right) \left(\theta^{(t)} - E(\theta)\right)\right] \end{aligned}$$

- ▶ $Var_G(\bar{\theta}) > Var_{MC}(\bar{\theta})$, 且 Gibbs 样本之间的相关性越高, $Var_G(\bar{\theta})$ 就越大,均值的近似效果越差
- 一个衡量 Gibbs 样本相关性的指标是有效样本数 (ESS):

$$ESS = \frac{Var(\theta)}{Var_G(\bar{\theta})}$$

为达到与 Gibbs 样本估计量相同精度所需的独立样本个数

Gibbs 抽样

• 假设模型的参数向量为 $\theta = (\theta_1, ..., \theta_p)$, 抽样的目标分布为 $p(\theta)$, 如果知道每个分量 θ_j 的完全条件分布 $p(\theta_j | \{\theta_k\}_{k \neq j})$, j = 1, ..., p, 给定初始值 $\theta^{(0)} = (\theta_1^{(0)}, ..., \theta_p^{(0)})$, Gibbs 抽样可以如下从当前样本 $\theta^{(s-1)}$ 产生新的样本 $\theta^{(s)}$:

1. 抽取
$$\theta_1^{(s)} \sim p(\theta_1 \mid \theta_2^{(s-1)}, \theta_3^{(s-1)}, \dots, \theta_p^{(s-1)})$$

2. 抽取
$$\theta_2^{(s)} \sim p(\theta_2 \mid \theta_1^{(s)}, \theta_3^{(s-1)}, \dots, \theta_p^{(s-1)})$$

3. 抽取
$$\theta_3^{(s)} \sim p(\theta_3 \mid \theta_1^{(s)}, \theta_2^{(s)}, \theta_4^{(s-1)}, \dots, \theta_p^{(s-1)})$$

:

p. 抽取
$$\theta_p^{(s)} \sim p(\theta_p \mid \theta_1^{(s)}, \theta_2^{(s)}, \dots, \theta_{p-1}^{(s)})$$

Gibbs 抽样

- 不断重复上述过程,Gibbs 抽样可以产生一列不独立的样本 $\theta^{(1)}, \theta^{(2)}, \dots, \theta^{(T)}$,且每个样本 $\theta^{(s)}$ 与之前的样本 $\theta^{(0)}, \dots, \theta^{(s-1)}$ 的相关性只取决于 $\theta^{(s-1)}$,因此这一列样本是一条马尔可夫链
- 在满足一些条件后,从任何初始值 $\theta^{(0)}$ 出发,Gibbs 抽样产生的样本 $\theta^{(s)}$ 的分布在 $s \to \infty$ 时收敛到目标分布 $p(\theta)$,即

$$P(\boldsymbol{\theta}^{(s)} \in A) \to \int_A p(\boldsymbol{\theta}) d\boldsymbol{\theta}$$

• 此时对任意可积函数 g 有

$$\frac{1}{T}\sum_{s=1}^{T}g(\boldsymbol{\theta}^{(s)})\to E[g(\boldsymbol{\theta})]=\int g(\boldsymbol{\theta})p(\boldsymbol{\theta})d\boldsymbol{\theta},\quad T\to\infty$$

上述过程被称为Markov chain Monte Carlo (MCMC) 方法

• 给定初始值 $\mathbf{x}^{(0)} \in \mathcal{X}$, 按照某个条件分布 $p(\mathbf{x} \mid \mathbf{x}')$ 依次抽取

$$\mathbf{x}^{(t)} \sim p(\mathbf{x} \mid \mathbf{x}^{(t-1)})$$
 $\mathbf{\Xi}$ $\mathbf{x}^{(t)} \perp \mathbf{x}^{(t-k)} \mid \mathbf{x}^{(t-1)}, \ k > 1$

称这样得到的序列 $\{x^{(t)}\}$ 为状态空间 \mathcal{X} 上的一条马尔可夫链

- 在马尔可夫链中,对任意正整数 k,定义如下的k 步转移密度函数:
 - $p^{1}(\mathbf{x}^{(t+1)} \mid \mathbf{x}^{(t)}) = p(\mathbf{x}^{(t+1)} \mid \mathbf{x}^{(t)})$
 - $p^{2}(\mathbf{x}^{(t+2)} \mid \mathbf{x}^{(t)}) = \int_{\mathcal{X}} p(\mathbf{x}^{(t+2)} \mid \mathbf{x}^{(t+1)}) p(\mathbf{x}^{(t+1)} \mid \mathbf{x}^{(t)}) d\mathbf{x}^{(t+1)}$
 - $p^{3}(\mathbf{x}^{(t+3)} \mid \mathbf{x}^{(t)}) = \int_{\mathcal{X}} p(\mathbf{x}^{(t+3)} \mid \mathbf{x}^{(t+2)}) p^{2}(\mathbf{x}^{(t+2)} \mid \mathbf{x}^{(t)}) d\mathbf{x}^{(t+2)}$ \vdots
 - $p^{k}(\mathbf{x}^{(t+k)} \mid \mathbf{x}^{(t)}) = \int_{\mathcal{X}} p(\mathbf{x}^{(t+k)} \mid \mathbf{x}^{(t+k-1)}) p^{k-1}(\mathbf{x}^{(t+k-1)} \mid \mathbf{x}^{(t)}) d\mathbf{x}^{(t+k-1)}$

如果 $p(\mathbf{x} \mid \mathbf{x}') > 0$, $\forall \mathbf{x}, \mathbf{x}' \in \mathcal{X}$, 那么对任意正整数 k, k 步转移密度函数 $p^k(\mathbf{x} \mid \mathbf{x}') > 0$, $\forall \mathbf{x}, \mathbf{x}' \in \mathcal{X}$

• 如果存在一个分布 $\pi(x)$ 使马尔可夫链满足

$$\pi(\mathbf{x}) = \int_{\mathcal{X}} p(\mathbf{x} \mid \mathbf{x}') \pi(\mathbf{x}') d\mathbf{x}'$$

称分布 $\pi(x)$ 为该马尔可夫链的一个平稳分布

如果马尔可夫链的初始值服从平稳分布,整个过程的边际分布会永远 "保持"平稳分布

$$\pi(\mathbf{x}) = \int_{\mathcal{X}} \rho^{k}(\mathbf{x} \mid \mathbf{x}') \pi(\mathbf{x}') d\mathbf{x}', \quad \forall k \in \mathbb{N}^{+}$$

▶ Gibbs 抽样产生的马尔可夫链的转移密度函数是

$$\textit{p}(\boldsymbol{\theta}^{(\textit{s})} \mid \boldsymbol{\theta}^{(\textit{s}-1)}) = \textit{p}(\boldsymbol{\theta}_1^{(\textit{s})} \mid \boldsymbol{\theta}_2^{(\textit{s}-1)}, \dots, \boldsymbol{\theta}_{\textit{p}}^{(\textit{s}-1)}) \cdots \textit{p}(\boldsymbol{\theta}_{\textit{p}}^{(\textit{s})} \mid \boldsymbol{\theta}_1^{(\textit{s})}, \dots, \boldsymbol{\theta}_{\textit{p}-1}^{(\textit{s})})$$

如果 $\forall \theta^{(s-1)}, \theta^{(s)}, p(\theta^{(s)} | \theta^{(s-1)}) > 0$, 该过程会收敛到唯一的平稳分布 (参数的后验分布)

• 如果从任意初始状态 $x \in \mathcal{X}$ 出发,马尔可夫链可以在有限步到达任意其它状态 $x \in \mathcal{X}$,称马尔可夫链是不可约的 (irreducible)

定义 (不可约性)

如果 $\forall x, x' \in \mathcal{X}$, $\exists k < \infty$ 使得 k 步转移密度 $p^k(x \mid x') > 0$, 称该马尔可夫链是不可约的.

- ▶ 如果 $p(\mathbf{x} \mid \mathbf{x}') > 0$, $\forall \mathbf{x}, \mathbf{x}' \in \mathcal{X}$, 那么该马尔可夫链是不可约的
- ▶ **一个可约的马尔可夫过程**. 令状态空间 $\mathcal{X} = (-1,1)$ 上的一个马尔可夫链有如下的转移分布:

$$p(x \mid x') = \begin{cases} x \sim U(0, 1), & \text{if } x' \ge 0\\ x \sim U(-1, 0), & \text{if } x' < 0 \end{cases}$$

- 如果 $\forall x, x' \in \mathcal{X}$, $gcd\{k : p^k(x \mid x') > 0\} = 1$, 称该过程具有非周期性
 - ▶ 当 $p(\mathbf{x} \mid \mathbf{x}') > 0$, $\forall \mathbf{x}, \mathbf{x}' \in \mathcal{X}$, 马尔可夫链是非周期的
 - ▶ **一个周期性的马尔可夫链**. 令状态空间 $\mathcal{X} = (-1,1)$ 上的一个马尔可夫链有如下的转移分布:

$$p(x \mid x') = \begin{cases} x \sim U(0, 1), & \text{if } x' < 0 \\ x \sim U(-1, 0), & \text{if } x' \ge 0 \end{cases}$$

- 称一个不可约旦非周期的马尔可夫链具有遍历性(Ergodicity), 具有 遍历性的马尔可夫链有以下重要性质:
 - ① 存在唯一的平稳分布 $\pi(x)$
 - ② 从任意初始值出发,该过程都会收敛到平稳分布 $\pi(\mathbf{x})$,即对 $\forall \mathbf{x}' \in \mathcal{X}$, 当 $k \to \infty$,

$$p^k(\mathbf{x} \mid \mathbf{x}') \to \pi(\mathbf{x})$$

- 对遍历的马尔可夫链,当 $k \to \infty$,该过程产生的 $\mathbf{x}^{(k)} \sim \pi(\mathbf{x})$
- 此时样本均值会 (almost surely) 收敛到平稳分布的期望,且对任何可积函数 $g(\cdot)$,当 $T \to \infty$,

$$\frac{1}{T} \sum_{t=1}^{T} g(\mathbf{x}^{(t)}) \to \int g(\mathbf{x}) \pi(\mathbf{x}) d\mathbf{x}$$

- 在 Bayesian 分析中通过 Gibbs 抽样产生的马尔可夫链一般是遍历的,通过产生一条很长的马尔可夫链,该过程的样本可以近似描述后验分布(平稳分布)
- 如果初始值选取得不好,马尔可夫链可能会移动很长时间才收敛到 平稳分布概率密度较高的区域,称这段时间为burn-in,用样本均值 估计目标期望时通常舍弃 burn-in 阶段的样本