Self-supervised Learning (SSL)

Aapo Hyvärinen

for the NNDL course, 9 April 2025 (latter half)

- Motivation and diversity of unsupervised learning
- Self-supervised learning as a method of unsupervised learning
- Two main approaches in SSL:
- 1. Classification (contrastive learning)
- 2. Regression (autoencoders)

[Just a short introduction to SSL; they are central in the subsequent lectures]

- Supervised learning: we have
 - "input" **x**, e.g. images / medical measurements
 - ▶ "output" **y**, e.g. content (cat or dog) / diagnosis

- Supervised learning: we have
 - "input" **x**, e.g. images / medical measurements
 - "output" **y**, e.g. content (cat or dog) / diagnosis
- Unsupervised learning: we have
 - only "input" x

- Supervised learning: we have
 - "input" x, e.g. images / medical measurements
 - "output" y, e.g. content (cat or dog) / diagnosis
- Unsupervised learning: we have
 - only "input" x
- Reinforcement learning: we have
 - An agent that acts in a world
 - based on input x, takes actions a, obtaining reward r

- Supervised learning: we have
 - "input" x, e.g. images / medical measurements
 - "output" y, e.g. content (cat or dog) / diagnosis
- Unsupervised learning: we have
 - only "input" x
- ► Reinforcement learning: we have
 - An agent that acts in a world
 - based on input x, takes actions a, obtaining reward r

► The rest of this course will be on unsupervised learning

Importance unsupervised learning

- Early success stories in deep learning based on supervised learning
 - ImageNet competition (recognition of objects in images)
 - ► Google Neural Machine Translation in its original version
- Supervised learning needs category labels or targets
 - Is the object in the photograph a cat or a dog?
 - ▶ What is the French translation of the English sentence?
 - Is there a medical pathology in this patient or not?

Importance unsupervised learning

- Early success stories in deep learning based on supervised learning
 - ImageNet competition (recognition of objects in images)
 - Google Neural Machine Translation in its original version
- Supervised learning needs category labels or targets
 - Is the object in the photograph a cat or a dog?
 - ▶ What is the French translation of the English sentence?
 - Is there a medical pathology in this patient or not?
- Problem: labels may be
 - Expensive
 - Need work by human expert (translator, doctor)
 - Difficult /impossible to obtain
 - e.g. true medical condition may not be known
- ► Also: Generative AI is very different from such early deep learning: perhaps inherently unsupervised !

- 1) Useful features for supervised learning?
 - contrastive learning, autoencoders many kinds of SSL

- 1) Useful features for supervised learning?
 - contrastive learning, autoencoders many kinds of SSL
- 2) Reveal underlying structure in data, find latent quantities?
 - autoencoders (+ clustering, PCA)
 - ▶ independent component analysis, "disentanglement"

- 1) Useful features for supervised learning?
 - contrastive learning, autoencoders many kinds of SSL
- 2) Reveal underlying structure in data, find latent quantities?
 - autoencoders (+ clustering, PCA)
 - ▶ independent component analysis, "disentanglement"
- 3) Accurate model of data distribution
 - Energy-based models (EBM)
 - (Variational Autoencoders)

- 1) Useful features for supervised learning?
 - contrastive learning, autoencoders many kinds of SSL
- 2) Reveal underlying structure in data, find latent quantities?
 - autoencoders (+ clustering, PCA)
 - independent component analysis, "disentanglement"
- 3) Accurate model of data distribution
 - Energy-based models (EBM)
 - (Variational Autoencoders)
- 4) Sampling points from data distribution
 - Generative Adversarial Networks
 - EBM + Monte Carlo methods (e.g. diffusion)

- 1) Useful features for supervised learning?
 - contrastive learning, autoencoders many kinds of SSL
- 2) Reveal underlying structure in data, find latent quantities?
 - autoencoders (+ clustering, PCA)
 - independent component analysis, "disentanglement"
- 3) Accurate model of data distribution
 - Energy-based models (EBM)
 - (Variational Autoencoders)
- 4) Sampling points from data distribution
 - Generative Adversarial Networks
 - EBM + Monte Carlo methods (e.g. diffusion)
- These goals are orthogonal, even contradictory!
 - Probably, no method can accomplish all
- Unsupervised learning needs a variety of methods
- ▶ All cases above (not in parentheses) treated in this course

What is self-supervised learning (SSL) then?

- Supervised learning:
 - ► We have "input" **x** and "output" **y**
 - ► Goal: Find input-output mapping (regression)
- Unsupervised learning:
 - ▶ We have only "input" x
 - ► Goal: Solve one of the many problems listed above

What is self-supervised learning (SSL) then?

- Supervised learning:
 - We have "input" x and "output" y
 - Goal: Find input-output mapping (regression)
- Unsupervised learning:
 - We have only "input" x
 - Goal: Solve one of the many problems listed above
- ► **Self**-supervised learning (SSL): we have
 - only "input" x
 - but we invent **y** somehow and use supervised algorithms
 - "pretext task": supervised task not interesting in itself
 - ▶ (or: use **x** as output of regression, invent new input somehow)
- ► Goal of SSL: NN trained on pretext task learns something about **x**, solving one of the unsupervised problems above
- Main categories
 - contrastive learning: uses classification (but terminology varies)
 - autoencoders: uses regression

Contrastive learning 1: Noise-Contrastive Estimation

- Train a nonlinear classifier to discriminate observed data from some artificial noise
- ► For example, compare natural images with Gaussian noise

Real image windows

Gaussian noise

- To be successful in this pretext task: the classifier (NN) must "discover structure" in the data
- In particular, the NN should *learn features* from the data, a useful representation in the (last) hidden layer
- ▶ (maybe it learns something else too.... more on this later...)

Contrastive learning 2: Shuffling real data

- Take patches of real images, shuffle them
- Train NN to discriminate between real data and shuffled data Data points like in (b) are one class, points like (c) another class

- (Norrozi and Favaro, 2016)
- ► The NN should learn useful features
- Easy to figure out a lot of similar tasks in computer vision
 - Corrupt real image data in some way

Autoencoders: SSL by regression

- Learn regression where
 - inputs are real data points, possibly corrupted
 - outputs are the same real data points
- ▶ A regression problem, as opposed to classification
- ► Basic case: predict **x** by **x** ! (Sounds absurd?)
- Somehow must make exact reconstruction impossible: NN should not learn identity mapping $\mathbf{g}(\mathbf{x}) = \mathbf{x}$
- Case 1: Restrict the architecture of the NN
 - Create a "bottleneck": a hidden layer with few units
- Case 2: Penalize hidden layer
 - Force hidden units to be mostly zero ("sparse")
- Case 3: Corrupt the input
 - Case 3a: Add Gaussian noise to the input
 - ► Case 3b: Remove some variables (pixels) from the input
 - Case 3c: Remove color from input images (make gray-scale)
 - Learn to colorize images
- ► (Examples above will be treated in the next lecture, except 3c)

Classic method: Principal component analysis (PCA)

- Consider a linear function instead of neural network
- ▶ Dimension reduction as: $\mathbf{s} = \mathbf{W}\mathbf{x}$, with $\mathbf{W} \in \mathbb{R}^{m \times n}$, $m = \dim(\mathbf{s}) < \dim(\mathbf{x}) = n$.
- ▶ Reconstruct as: $\hat{\mathbf{x}} = \mathbf{A}\mathbf{s}$, with $\mathbf{A} \in \mathbb{R}^{n \times m}$
- Least-squares criterion above simplies to

$$\mathsf{E}\|\mathbf{x} - \hat{\mathbf{x}}\|^2 = \mathsf{E}\|\mathbf{x} - \mathbf{AWx}\|^2 \tag{1}$$

- One definition of linear PCA, can be interpreted as SSL
- Equivalent definition: Find direction that maximizes variance

$$\max_{\|\mathbf{w}\|=1} \mathsf{E}(\mathbf{w}^T \mathbf{x})^2 \tag{2}$$

and repeat, constraining new \boldsymbol{w} to be orthogonal to those already found

 Example where same goal can be achieved by SSL or other unsupervised learning

SSL by prediction of future: autoregressive models

- ▶ The most classical time-series task is prediction
- Say, predict $\mathbf{x}(t)$ from $\mathbf{x}(t-1), \mathbf{x}(t-2), \ldots$; t is time index
- You may want to predict the weather, the stock market, ecological variables, etc. etc.
- Widely used in natural language processing (with variations)
 - Train a NN to predict the next word
 - as just seen in Arto's lecture
- Useful in itself for generating new data, especially text
 - ... and of course is predicting future weather etc.
- ► Could be called SSL (?)
 - ▶ Justification: the predicting NN learns a useful representation in the hidden layer(s)

Typical application of SSL in (image) classification

- Goal: train a NN to classify photographs, say, cats vs. dogs
- Problem: We do not have a lot of labelled data
 - i.e. not many photographs where we know it is a cat or a dog
- ▶ But: We have a lot of unlabelled data
 - e.g. easy to download a lot of photographs from the internet
- Solution:
 - 1. Train NN by SSL to learn features using big unlabelled dataset
 - 2. Use learned features as input to a simple classifier (even linear), trained with small labelled dataset
- Supervised problem in SSL is called pretext task
 - E.g. discriminate between noise and real data
 - Pretext task is pointless in itself; not our actual goal
- Actually discriminating cats vs. dogs is called downstream task
- ► The final measure of performance of this kind of SSL: classification accuracy in downstream task
- ► (Foundation model ≈ big pretext task already trained by somebody else, and publicly (?) distributed)

Typical application of SSL in image generation

- ► A state-of-the-art framework for generating images
- 1. Learn model of data distribution by SSL (an autoencoder)
- 2. Generate data by a sampling method (e.g. MCMC)
- Some examples with dynamics:

Iterative image generation, final results in right-most column. From (Yang and Ermon, 2019)

Connection between SSL and unsupervised learning?

- Different viewpoints exist in the literature:
- 1 Hype viewpoint: SSL is something completely new and does things that nobody has been able to do earlier
- 2 My viewpoint: SSL is one technique for unsupervised learning
 - SSL uses supervised learning algorithms to achieve unsupervised learning
- 3 Another viewpoint: SSL is something between supervised and unsupervised; it is not unsupervised since the algorithms are supervised
- ▶ Difference between #2 and #3 partly a question of whether we consider *goal* of learning or *algorithm* used
- lacktriangle A lot of confusion in the literature due to hype in #1
- Remember: Not all unsupervised learning is SSL
 - ► E.g.: maximum likelihood estimation of generative model
 - ► E.g.: PCA example above
 - SSL often computationally efficient, but statistically inferior

Conclusion

- Unsupervised learning has many utilities, especially:
 - ► Feature extraction: helping "downstream" supervised learning
 - Generative AI: model data distribution for generating new data
- Self-supervised learning is a framework for performing unsupervised learning
 - goal is unsupervised learning; but algorithms are supervised
- In this course, we will mainly do unsupervised learning by SSL
 - simple algorithmically: no new algorithms needed (?)
 - very fashionable ;)
 - but other kinds of unsupervised learning do exist
- Many of, the following lectures show how SSL performs probabilistic modelling
 - ► Modelling data distribution ("energy-based modelling")
 - Learning generative models ("generative adversarial networks")
 - ... but sometimes purely heuristic ("basic autoencoders")

