Introduction to Machine Learning

Gaussian Processes Training of a Gaussian Process

Learning goals

- Training of GPs via Maximum Likelihood estimation of its hyperparameters
- Computational complexity is governed by matrix inversion of the covariance matrix

TRAINING OF A GAUSSIAN PROCESS

× 0 0 × × ×

- All we need for GP predictions (in regression): matrix computations
- Implicit assumption: fully specified cov function, incl. hyperparams
- Nice GP property: numerical hyperparams of given cov function can be learned during training

TRAINING VIA MARGINAL LIKELIHOOD

Let

$$y = f(\mathbf{x}) + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \sigma^2)$$
 with $f \sim \mathcal{GP}(\mathbf{0}, k(\cdot, \cdot | \boldsymbol{\theta}))$ for hyperparam config $\boldsymbol{\theta}$

• This yields $\mathbf{v} \sim \mathcal{N}(\mathbf{0}, \mathbf{K}_{\nu})$ with $\mathbf{K}_{\nu} = \mathbf{K} + \sigma^2 \mathbf{I}$

× × ×

• We get the negative marginal log-likelihood / evidence

$$-\log p(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta}) = -\log \left[(2\pi)^{-n/2} |\mathbf{K}_y|^{-1/2} \exp(-\frac{1}{2} \mathbf{y}^T \mathbf{K}_y^{-1} \mathbf{y}) \right]$$
$$= \frac{1}{2} \mathbf{y}^T \mathbf{K}_y^{-1} \mathbf{y} + \frac{1}{2} \log |\mathbf{K}_y| + \frac{n}{2} \log 2\pi$$

- ullet $-\log p(\mathbf{y}|\mathbf{X}, oldsymbol{ heta})$ depends on $oldsymbol{ heta}$ via $\mathbf{K}_{oldsymbol{y}} \Rightarrow$ optimize for $oldsymbol{ heta}$
- GP training optimizes kernel hyperparams by minimizing the neg. marginal likelihood, balancing data fit $(\frac{1}{2}\mathbf{y}^{\top}\mathbf{K}_{y}^{-1}\mathbf{y})$ and model complexity $(\frac{1}{2}\log|\mathbf{K}_{y}|)$

NEGATIVE LOG-LIKELIHOOD COMPONENTS

- ullet Consider common cov type parameterized by length-scale: ullet (for simplicity: assume univariate rather than different for each dim)
- E.g., squared exponential kernel

$$k(\mathbf{x}, \tilde{\mathbf{x}}) = \exp(-\frac{1}{2\ell^2} \|\mathbf{x} - \tilde{\mathbf{x}}\|^2)$$

- For small ℓ , cov decays quickly \Rightarrow local model, \mathbf{K}_{γ} approaches $\sigma^2 \mathbf{I}$
- Data fit: small $\ell \Rightarrow$ small $\mathbf{K}_{y}^{-1}\mathbf{y}$ (cov structure aligns well with observed data; small residuals) \Rightarrow small $\frac{1}{2}\mathbf{y}^{T}\mathbf{K}_{y}^{-1}\mathbf{y}$
- Complexity penalty: small $\ell \Rightarrow \text{large } \frac{1}{2} \log |\mathbf{K}_y|$
- Normalization constant $\frac{n}{2} \log 2\pi$

• Let $f \sim \mathcal{GP}(\mathbf{0}, k(\cdot, \cdot))$ with squared exp kernel

$$k(\mathbf{x}, \tilde{\mathbf{x}}) = \exp(-\frac{1}{2\ell^2} \|\mathbf{x} - \tilde{\mathbf{x}}\|^2)$$

Minimize NLL by trading off data fit & complexity

• Let $f \sim \mathcal{GP}(\mathbf{0}, k(\cdot, \cdot))$ with squared exp kernel

$$k(\mathbf{x}, \tilde{\mathbf{x}}) = \exp(-\frac{1}{2\ell^2} \|\mathbf{x} - \tilde{\mathbf{x}}\|^2)$$

- Minimize NLL by trading off data fit & complexity
- $\ell = 0.2$: good fit but high complexity

• Let $f \sim \mathcal{GP}(\mathbf{0}, k(\cdot, \cdot))$ with squared exp kernel

$$k(\mathbf{x}, \tilde{\mathbf{x}}) = \exp(-\frac{1}{2\ell^2} \|\mathbf{x} - \tilde{\mathbf{x}}\|^2)$$

- Minimize NLL by trading off data fit & complexity
- $\ell = 2$: smooth but poor fit

• Let $f \sim \mathcal{GP}(\mathbf{0}, k(\cdot, \cdot))$ with squared exp kernel

$$k(\mathbf{x}, \tilde{\mathbf{x}}) = \exp(-\frac{1}{2\ell^2} \|\mathbf{x} - \tilde{\mathbf{x}}\|^2)$$

- Minimize NLL by trading off data fit & complexity
- $\ell = 0.5$: balancing data fit and smoothness

OPTIMIZING KERNEL HYPERPARAMETERS

• Set partial derivatives wrt hyperparams to 0

$$\frac{\partial}{\partial \theta_{j}} \log p(\mathbf{y} \mid \mathbf{X}, \boldsymbol{\theta}) = \frac{\partial}{\partial \theta_{j}} \left(-\frac{1}{2} \mathbf{y}^{T} \mathbf{K}_{y}^{-1} \mathbf{y} - \frac{1}{2} \log |\mathbf{K}_{y}| - \frac{n}{2} \log 2\pi \right)
= \frac{1}{2} \mathbf{y}^{T} \mathbf{K}^{-1} \frac{\partial \mathbf{K}}{\partial \theta_{j}} \mathbf{K}^{-1} \mathbf{y} - \frac{1}{2} \operatorname{tr} \left(\mathbf{K}^{-1} \frac{\partial \mathbf{K}}{\partial \boldsymbol{\theta}} \right)
= \frac{1}{2} \operatorname{tr} \left((\mathbf{K}^{-1} \mathbf{y} \mathbf{y}^{T} \mathbf{K}^{-1} - \mathbf{K}^{-1}) \frac{\partial \mathbf{K}}{\partial \theta_{j}} \right)$$

using $\frac{\partial}{\partial \theta_i} \mathbf{K}^{-1} = -\mathbf{K}^{-1} \frac{\partial \mathbf{K}}{\partial \theta_i} \mathbf{K}^{-1}$ and $\frac{\partial}{\partial \theta} \log |\mathbf{K}| = \operatorname{tr} \left(\mathbf{K}^{-1} \frac{\partial \mathbf{K}}{\partial \theta} \right)$

- Bottleneck: inverting (or rather, decomposing) K
 ⇒ O(n³) for standard methods
- Only $\mathcal{O}(n^2)$ per hyperparam / partial derivative once \mathbf{K}^{-1} is known \Rightarrow small overhead, so use gradient-based optim

STRATEGIES FOR BIG DATA

- ullet Kernels that yield sparse ${f K} \Rightarrow$ cheaper to invert
- ullet Subsample data $\Rightarrow \mathcal{O}(\mathit{m}^3)$ with $\mathit{m}^3 \ll \mathit{n}^3$
- Bayesian committee: combine estimates on different size-m estimates $\Rightarrow \mathcal{O}(nm^2)$
- **Nyström approx**: low-rank approx from representative subset ("inducing points"): $\mathbf{K} \approx \mathbf{K}_{nm} \mathbf{K}_{mm}^{-1} \mathbf{K}_{mn} \Rightarrow \mathcal{O}(nmk + m^3)$ for rank-k-approx inverse of \mathbf{K}_{mm}
- Exploit structure in K induced by kernels ⇒ exact but complicated solutions; kernel-specific
- Still active research area

