A) Write a Python program for Handling Missing Value. Replace missing value of salary, age column with mean of that column.(Use Data.csv file).

In [3]:

```
# import libraries
import pandas as pd
```

In [4]:

```
# read Iris dataset
df=pd.read_csv("D://Datasets/Datascale.csv")
df
```

Out[4]:

	Country	Age	Salary	Purchased
0	France	44.0	72000.0	No
1	Spain	27.0	48000.0	Yes
2	Germany	30.0	54000.0	No
3	Spain	38.0	61000.0	No
4	Germany	40.0	NaN	Yes
5	France	35.0	58000.0	Yes
6	Spain	NaN	52000.0	No
7	France	48.0	79000.0	Yes
8	Germany	50.0	83000.0	No
9	France	37.0	67000.0	Yes

In [5]:

```
#finding missing values
df.isnull().sum()
```

Out[5]:

Country	0
Age	1
Salary	1
Purchased	0
dtype: int64	ŀ

In [6]:

```
# Replacing null values of salary by its mean values
smean=round(df['Salary'].mean(),2)
print("mean of Salary=",end="")
print(smean)
print("Data after filling null value of Salary column")
df['Salary']=df['Salary'].fillna(smean)
df
```

mean of Salary=63777.78

Data after filling null value of Salary column

Out[6]:

	Country	Age	Salary	Purchased
0	France	44.0	72000.00	No
1	Spain	27.0	48000.00	Yes
2	Germany	30.0	54000.00	No
3	Spain	38.0	61000.00	No
4	Germany	40.0	63777.78	Yes
5	France	35.0	58000.00	Yes
6	Spain	NaN	52000.00	No
7	France	48.0	79000.00	Yes
8	Germany	50.0	83000.00	No
9	France	37.0	67000.00	Yes

In [7]:

```
# Replacing null values of salary by its mean values
agemean=round(df['Age'].mean(),2)
print("mean of column Age=",end="")
print(agemean)

print("Data after filling null value of Age column")
df['Age']=df['Age'].fillna(agemean)
df
```

mean of column Age=38.78

Data after filling null value of Age column

Out[7]:

	Country	Age	Salary	Purchased
0	France	44.00	72000.00	No
1	Spain	27.00	48000.00	Yes
2	Germany	30.00	54000.00	No
3	Spain	38.00	61000.00	No
4	Germany	40.00	63777.78	Yes
5	France	35.00	58000.00	Yes
6	Spain	38.78	52000.00	No
7	France	48.00	79000.00	Yes
8	Germany	50.00	83000.00	No
9	France	37.00	67000.00	Yes

B) Write a Python program to generate a line plot of Age Vs salary

In [10]:

```
import matplotlib.pyplot as plt
plt.plot(df['Age'],df['Salary'])
```

Out[10]:

[<matplotlib.lines.Line2D at 0xb1d7aaa070>]

C) Download the heights and weights dataset and load the dataset from given csv file into a dataframe. Print the first, last 10 rows and random 20 rows also display shape of the dataset

In [16]:

```
df1=pd.read_csv("D://Datasets/HeightWeight.csv")
df1
```

Out[16]:

	Index	Height(Inches)	Weight(Pounds)
0	1	65.78331	112.9925
1	2	71.51521	136.4873
2	3	69.39874	153.0269
3	4	68.21660	142.3354
4	5	67.78781	144.2971
24995	24996	69.50215	118.0312
24996	24997	64.54826	120.1932
24997	24998	64.69855	118.2655
24998	24999	67.52918	132.2682
24999	25000	68.87761	124.8742

25000 rows × 3 columns

In [17]:

```
#first 10 records
df1.head(10)
```

Out[17]:

	Index	Height(Inches)	Weight(Pounds)
0	1	65.78331	112.9925
1	2	71.51521	136.4873
2	3	69.39874	153.0269
3	4	68.21660	142.3354
4	5	67.78781	144.2971
5	6	68.69784	123.3024
6	7	69.80204	141.4947
7	8	70.01472	136.4623
8	9	67.90265	112.3723
9	10	66.78236	120.6672

In [18]:

#Last 10 records
df1.tail(10)

Out[18]:

	Index	Height(Inches)	Weight(Pounds)
24990	24991	69.97767	125.3672
24991	24992	71.91656	128.2840
24992	24993	70.96218	146.1936
24993	24994	66.19462	118.7974
24994	24995	67.21126	127.6603
24995	24996	69.50215	118.0312
24996	24997	64.54826	120.1932
24997	24998	64.69855	118.2655
24998	24999	67.52918	132.2682
24999	25000	68.87761	124.8742

In [19]:

```
# Random 20 records
df1.sample(20)
```

Out[19]:

	Index	Height(Inches)	Weight(Pounds)
5548	5549	67.53327	120.1058
6493	6494	70.09165	152.4262
16466	16467	67.84324	144.1374
3525	3526	67.15633	112.9380
910	911	66.46981	141.4417
22854	22855	73.28207	137.8167
19535	19536	67.93550	133.4828
2449	2450	64.65154	124.8094
8982	8983	67.74427	124.1332
24897	24898	66.99191	142.8088
1511	1512	65.40895	110.5741
11814	11815	68.32665	139.0646
6279	6280	68.39180	123.9172
8267	8268	68.61117	129.6617
1858	1859	72.48112	146.3046
14567	14568	66.53695	122.4950
12115	12116	67.45327	124.3866
10462	10463	66.11571	136.9935
9544	9545	69.19418	122.8981
18903	18904	72.84287	142.1741

In [20]:

```
#shape of dataset
df1.shape
```

Out[20]:

(25000, 3)

In []:

```
agemean=df['age'].mean()
df['age']=df.['age'].fillna(agemean)
```