ATR: Out-of-Order Register Release Exploiting Atomic Regions

Yinyuan Zhao, Surim Oh, Mingsheng Xu, and Heiner Litz University of California, Santa Cruz

Scaling RF Size is Important

With 64 physical registers, the average IPC reaches only 37.7% of the ideal case

A larger RF is crucial for sustaining high IPC

Scaling RF Size is Challenging

10-wide u-Arch

- 20 read RF ports
- 10 write RF ports

512-entry RF

- 512:1 multiplexers
- 64-bit flip-flops

2M transistors

Introduce challenges in area, power, and clock frequency

Conventional Renaming

 $\mathbf{R} \leftarrow \mathbf{r}_1, \mathbf{r}_2$ I1 Renamed

Register R is renamed by allocating a ptag

 $r_2 \leftarrow \mathbf{R}, r_3$ 12 Consumed

 $\mathbf{R} \leftarrow \mathbf{r}_4, \mathbf{r}_5$ 13 Redefined

13 Committed

Conventional Renaming

 $\mathbf{R} \leftarrow \mathbf{r}_1, \mathbf{r}_2$ I1 Renamed

Register R is renamed by allocating a ptag

 $r_2 \leftarrow \mathbf{R}, r_3$ **I2 Consumed** \longleftarrow The ptag is not used in the future

 $\mathbf{R} \leftarrow \mathbf{r}_4, \mathbf{r}_5$ I3 Redefined

13 Committed

Conventional Renaming

 $\mathbf{R} \leftarrow \mathbf{r}_1, \mathbf{r}_2$ I1 Renamed

Register R is renamed by allocating a ptag

 $r_2 \leftarrow \mathbf{R}, r_3$ | 12 Consumed \leftarrow

The *ptag* is not used in the future

 $\mathbf{R} \leftarrow \mathbf{r}_4, \mathbf{r}_5$ 13 Redefined

13 Committed

The ptag of register R is released

Conventional Renaming holds physical registers much longer than needed!

 $\mathbf{R} \leftarrow \mathbf{r}_1, \mathbf{r}_2$ I1 Renamed

Register R is renamed by allocating a ptag

 $r_2 \leftarrow \mathbf{R}, r_3$ 12 Consumed

The ptag of register R is early released

Branch

 $\mathbf{R} \leftarrow \mathbf{r_4}, \mathbf{r_5}$ 13 Redefined

 $\mathbf{R} \leftarrow \mathbf{r}_1, \mathbf{r}_2$ I1 Renamed

Register R is renamed by allocating a ptag

 $r_2 \leftarrow \mathbf{R}, r_3$ 12 Consumed

The ptag of register R is early released

Branch

 $\mathbf{R} \leftarrow \mathbf{r_4}, \mathbf{r_5}$ | **13 Redefined** \longleftarrow The redefined instruction is mispredicted

 $\mathbf{R} \leftarrow \mathbf{r}_1, \mathbf{r}_2$ I1 Renamed Register R is renamed by allocating a ptag $r_2 \leftarrow R$, r_3 | I2 Consumed \leftarrow The ptag of register R is early released Branch $\mathbf{R} \leftarrow \mathbf{r_4}, \mathbf{r_5}$ | **13 Redefined** \longleftarrow The redefined instruction is mispredicted $r_2 \leftarrow \mathbf{R}, r_3$ **14 Consumed** \leftarrow The released *ptag* is consumed!!!

Speculative early release is unsafe or not feasible

 $\mathbf{R} \leftarrow \mathbf{r}_1, \mathbf{r}_2$ I1 Renamed

Register R is renamed by allocating a ptag

 $r_2 \leftarrow \mathbf{R}, r_3$ 12 Consumed

The *ptag* is not used in the future

Branch

 $\mathbf{R} \leftarrow \mathbf{r}_4, \mathbf{r}_5$ | 13 Redefined

 $\mathbf{R} \leftarrow \mathbf{r}_1, \mathbf{r}_2$ I1 Renamed

Register R is renamed by allocating a ptag

 $r_2 \leftarrow \mathbf{R}, r_3$

12 Consumed

The ptag is not used in the future

Branch

 $\mathbf{R} \leftarrow \mathbf{r}_4, \mathbf{r}_5$

13 Redefined

All the older branches or exception-causing instructions are executed

13 Precommitted

 $\mathbf{R} \leftarrow \mathbf{r}_1, \mathbf{r}_2$ I1 Renamed

Register R is renamed by allocating a ptag

 $r_2 \leftarrow \mathbf{R}, r_3$

12 Consumed

The ptag is not used in the future

Branch

 $\mathbf{R} \leftarrow \mathbf{r}_4, \mathbf{r}_5$

13 Redefined

All the older branches or exception-causing instructions are executed

13 Precommitted

The ptag is safely early released

 $\mathbf{R} \leftarrow \mathbf{r}_1, \mathbf{r}_2$

| I1 Renamed

•

Register R is renamed by allocating a ptag

 $r_2 \leftarrow \mathbf{R}, r_3$

12 Consumed

The ptag is not used in the future

Unused

Branch

 $\mathbf{R} \leftarrow \mathbf{r}_4, \mathbf{r}_5$

13 Redefined

All the older branches or exception-causing instructions are executed

13 Precommitted

The *ptag* is safely early released

Verified-Unused

13 Committed

Conv.

Gap between Non-Spec and Spec ER

Opportunity of early releasing unused register

Our Proposal

I3 Committed ← In-order release

Our Proposal

Atomic Commit Region

Branches/Exceptions-free

• Either entirely off-path or on-path

13 Committed ← In-order release

Our Proposal

Atomic Commit Region

Branches/Exceptions-free

• Either entirely off-path or on-path

Does not violate precise exceptions nor suffers from mispredictions

Analysis

			Re	<u>Ex</u>	<u>Cm</u>	<u>Pr</u>	
I1	MOVE	RAX ← RAX	510	675	839	675	← I1 is a high-latency load
<i>12</i>	TEST + JNZ	$ZPS \leftarrow RAX$	510	841	841	841	
<i>I3</i>	LEA	RAX ← RDI	709	716	716	841	
<i>I4</i>	LEA	$RBX \leftarrow RAX$	729	737	737	842	
<i>I5</i>	SHR	$RBX \leftarrow RBX, ZPS$	729	738	738	842	

An example segment of instructions from SPEC2017int omnetpp

Analysis

			<u>Re</u>	<u>Ex</u>	<u>Cm</u>	<u>Pr</u>		
<i>I1</i>	MOVE	RAX ← RAX	510	675	839	675	—	I1 is a high-latency load
<i>I2</i>	TEST + JNZ	$ZPS \leftarrow RAX$	510	841	841	841		I2 needs to wait until wake-up
<i>I3</i>	LEA	$RAX \leftarrow RDI$	709	716	716	841		
<i>I4</i>	LEA	$RBX \leftarrow RAX$	729	737	737	842		
<i>I5</i>	SHR	$RBX \leftarrow RBX, ZPS$	729	738	738	842		

An example segment of instructions from SPEC2017int omnetpp

Analysis

An example segment of instructions from SPEC2017int omnetpp

Lots of cycles are wasted in waiting for precommitting

Atomic Ratio

From the atomic register to the redefined one:

- no branch/jump
- no exception-causing instructions (ld/st/div)

Over 17% of all allocated registers are located within atomic commit regions

ATR Algorithm

1. Atomic

 No br/jmp/ld/st/div between the renaming and redefining instruction

$$\mathbf{R} \leftarrow \mathbf{r}_1, \mathbf{r}_2$$

$$r_2 \leftarrow \mathbf{R}, r_3$$

$$\mathbf{R} \leftarrow \mathbf{r}_4, \mathbf{r}_5$$

2. Consumed

 All consumers have consumed R

3. Redefined

 R has been redefined by a later instruction

No need to wait for commit or pre-commit of any instruction!

Design

3-bit consumer count for each ptag

BR/JMP/LD/ST/DIV Renaming

Consumer Count = MAX

Evaluation

Configuration

- Arch: Golden_Cove
- Dataset: SPEC2017int

Results

- @64
 - atomic: + 5.70% over baseline
 - combine: + 3.23% over nonspec
- @224
 - atomic: + 1.48% over baseline + 0.37% over nonspec

Evaluation

Configuration

- Arch: Golden_Cove
- Dataset: SPEC2017int

Results

• The speedup decreases as the register size increases

Thank you!