

民用建筑室内颗粒物 控制策略与问题

同济大学机械与能源工程学院 林忠平 2015年3月20日

zplin99@tongji.edu.cn

内容

> 民用建筑室内外颗粒物污染实测

2 室内颗粒物浓度平衡模型与影响因素

3 相关控制策略

存在问题

民用建筑室内颗粒物浓度实测 ——对象概述

TSI 8532型DUSTTRAK 粉尘监测仪

生活娱乐区:

XX打印店1

XX打印店2

XX打印店3

XX健身房

XX食堂

XX理发店

XX麦当劳

XX游戏厅

XX超市

办公区:

同济大学XX楼

XX广场17楼F

XX综合楼1F

XX联合广场B楼17F

XX建筑设计院3F

民用建筑室内颗粒物浓度实测 ——相关标准对比

中国二类环境(日常生活区) 相当于过渡时期目标1 中国一类环境(环境保护区) 相当于过渡时期目标3 美国处于过渡时期目标3

GB3095-2012规定:对未达标 规定,要求限期实现达标规划 美国标准:对于24h均值-三年 平均达标率不低于98%

中、美均未对室内PM2.5颗粒 物浓度作规定-沿用环境空气质 量标准 台湾《室内空气质量标准》规 定24h均值不超过35µg/m³

民用建筑室内颗粒物浓度实测一一生活娱乐区实测结果

- 室内PM2.5浓度监测值
- 室外PM2.5浓度监测值
- WHO过渡时期目标-1
- ---- WHO过渡时期目标-2
- ----WHO过渡时期目标-3
- -----《空气质量准则》准则值

民用建筑室内颗粒物浓度实测 ——生活娱乐区实测结果

民用建筑室内颗粒物浓度实测 ——办公区监测结果

- 室内PM2.5浓度监测值
- 室外PM2.5浓度监测值
- ——《空气质量准则》过渡期1目标值
- ----《空气质量准则》过渡期2目标值
- ----《空气质量准则》过渡期3目标值
- -----《空气质量准则》准则值

民用建筑室内颗粒物浓度实测

----办公建筑A、B室内、外PM2.5/PM10

注:

- ➤ A为普通办公室
- > B为甲级办公室

民用建筑室内颗粒物浓度实测 ——PM2.5与PM10的1/0比

民用建筑室内颗粒物浓度实测

——甲级办公楼其他区域的测试结果

民用建筑室内颗粒物浓度实测一结论

- > 游戏厅、麦当劳等人员密集生活娱乐区, PM2.5污染严重;
- > 办公区室内PM2.5不容乐观。门窗开启将弱化室内外颗粒物浓度差;
- ➤ PM2.5/PM10: 室内比室外大;
- ► I/O比: PM2.5比PM10大;
- > 室内剧烈活动、吸烟等将产生大量颗粒物,造成严重室内颗粒物污染

室内颗粒物浓度平衡模型及控制措施 ——浓度平衡模型

- C_o 室外颗粒物浓度, C_i 室内颗粒物浓度, $\mu g/m^3$;
- Q_f 空调系統新风, Q_e 室内排风, Q_r 空调系统回风, Q_n 室内自然风,
- Q_p 围护结构渗透风, $m^3/\mathrm{h}; M_s$ 室内颗粒物沉降量,
- M_r 室内表面颗粒物扬尘量,M室内人、物产尘量, μg ; η_f 新风过滤效率, η_r 回风过滤效率;p渗透系数;V室内体积, m^3

- ◆ 室内颗粒物浓度影响因素:
 - > 室内自然风和渗透风量
 - > 颗粒物沉降量和建筑表面扬尘量
 - > 人员和设备运行的产尘量
 - > 空调系统新风、回风、排风量
 - > 空调系统过滤器过滤效率
 - > 室外颗粒物浓度

室内颗粒物浓度平衡模型与控制措施——浓度平衡模型

◆ 所有工况均可由以下公式表示

$$n_f C_o (1 - \eta_f) + n_r C_i (1 - \eta_r) + n_n C_o + n_p C_o p + M_i$$
$$= (n_r + n_e) C_i$$

——分体机+空气净化器模型

$$C_i = \frac{n_p C_o p + G_i}{n_p + n_j \eta_j}$$

式中: n_j 为净化器换气次数; η_j 为净化器对颗粒物的过滤效率

◆模型简化

- > 无新风系统
- > 回风过滤效率为0
- > 门窗关闭

一般集中式空调系统空气过滤器设置方式

方式1为常用过滤器设置方式,此时 η_m = η_r

效率一室内颗粒物浓度曲线(不同换气次数)

室外颗粒物浓度一室内颗粒物浓度曲线

——分体机+空气净化器模型计算条件

- ◆ 计算条件(考虑不同渗透风换气次数、净化器换气次数、过滤效率)
- > 颗粒物穿透系数最不利为1
- 单位面积产尘量: 考虑4*5*3m³ 的房间每小时吸一支烟(10mg/支烟)即为167μ g/(m³.h)
- ➤ 室外颗粒物浓度取200µ g/m³

——分体机+空气净化器

◆ 条件: 效率=0.9;

- 净化器换气次数=1
- 净化器换气次数=2
- 净化器换气次数=3
- 净化器换气次数=4
- 净化器换气次数=5

> 注:

空气净化器标 准评价指标为 输出洁净空气

量 (CADR)

——分体机+空气净化器

◆ 条件: 效率=0.5;

——分体机+空气净化器

◆ 条件: 净化器换气次数=5 350 300 室内颗粒物浓度 (µg/m³) • 净化效率=0.1 250 • 净化效率=0.2 200 • 净化效率=0.4 150 ● 净化效率=0.6 100 • 净化效率=0.8 50 • 净化效率=0.95 0 0.5 1 1.5 2 2.5 3 0 渗透风换气次数

——分体机+空气净化器

- > 吸烟产生颗粒物污染量大;
- 需保证净化效率与净化器换气次数的乘积(洁净换气次数)大于室内产尘量与室外颗粒物浓度之比;否则开窗有利于降低室内颗粒物浓度。

室内颗粒物浓度平衡模型与控制措施 ——FCU+FA

> 新风过滤;新风量(1次/h);室内控制目标: 35μg/m³

——FCU + Air Cleaner

- ➤ 新风过滤G4+F7;
- 新风量(1次/h);室内控制目标: 35μg/m³

-All-air AC system

- ▶ 送风量(10次/h);
- 新风量(1次/h);室内控制目标:35μg/m³

Outdoor PM concentration (µg/m³)

具体应用存在(应注意)的问题

- 过滤方式
 - > 纤维过滤
 - 纤维不带静电
 - 纤维带静电
 - > 静电过滤器
 - > "离子"过滤

◆效率、阻力、容尘、尺寸、

副作用

具体应用存在(应注意)的问题

——不同过滤方式优、缺点

过滤方式	效率	阻力	容尘 (清洗)	尺寸 (厚度)	其它
纤维过滤(玻纤) 纤维不带静电	效率高,且效率随使 用时间提高	大	不可清洗日常更换	较大	无副作用
纤维过滤(化纤) 纤维带静电	初始效率高,但效率 随使用时间逐渐降低	较大	清洗次数有限	较大	无副作用
传统静电过滤器	可高可低 (效率保持?)	1,	可清洗	较大	二次污染、脱尘
驻电极静电过滤	可高可低 (效率保持?)	1,	可清洗	1,	脱尘

具体应用存在 (应注意) 的问题

- ■过滤效率保持
- 实际使用效率与实验室效率(密封)
- HEPA使用?
- 更换问题(某研发中心弃用F9)
- PM效率

具体应用存在(应注意)的问题

空气净化器A

空气净化器B

具体应用存在(应注意)的问题——过滤器PM2.5效率

具体应用存在(应注意)的问题——过滤器PM2.5效率

- ■气溶胶粒径谱仪
- DUSTTRAK

具体应用存在(应注意)的问题——过滤器PM2.5效率

◆ GB/T 14295-2008标准C2-GZ级空气过滤器对PM2.5的过滤效率

过滤级别	C2	C1	Z 3	Z 2	Z 1	GZ
PM2.5过滤效率 (%)	12.2	30.9	49.5	68.0	75.2	82.6

◆ EN779标准 G4-F8级空气过滤器对PM2.5的过滤效率

过滤级别	G4	M5	M6	F7	F8
PM2.5过滤效率 (%)	10.8	37.7	55.30	64.3	70.1

IS016890 -1: Air filters for general ventilation — Part 1: Efficiency classification system based upon Particulate Matter (PM)

一般通风用过滤器按PM效率分级(2015年3月11日)

- > 总体思想: 将分级效率按各粒径档对应的对数粒度分布概率进行加权平均
- \triangleright 对受试过滤器进行容尘与效率检测、获得初始分级效率 E_i 和去除静电后效率 $E_{D,i}$
- \triangleright 过滤器平均分级效率 $E_{A,i}=0.5(E_i+E_{D,i})$
- > 确定测试效率用气溶胶粒度分布

计算PM效率

$$E(PM_x) = \sum_{i=1}^n E_{A,i} \cdot q_3(\overline{d_i}) \cdot \Delta \ln d_i / \sum_{i=1}^n q_3(\overline{d_i}) \cdot \Delta \ln d_i$$

 $\Delta \ln d_i = \ln d_{i+1} - \ln d_i$

i为粒子技术器通道编号,n为所计算PM效率包含的粒子通道数量。

IS016890 -1: 一般通风用过滤器按PM效率分级

具体应用存在(应注意)的问题

——某厂家PM2.5空气过滤器

3250m³/h风量时阻力92Pa

具体应用存在(应注意)的问题

——某驻电极静电空气过滤器

3400m³/h风量时阻力49Pa

民用建筑室内PM2.5控制策略

- ▶ 源头控制 (减少室内发尘量)
- ▶ 合理配置过滤系统(根据系统方式)
 - 全空气系统: AHU设置
 - FCU+FA: 净化器(相当于增加回风量及其过滤效率)
- ▶ 现有AC系统应注意过滤器阻力、容尘等
- ➤ 多种AC方式,根据具体项目具体分析

结论

- ➤ 民用建筑室内PM2.5状况并不令人满意
- > 办公建筑室内颗粒物污染以细颗粒物为主
- ➤ 室内PM2.5浓度受多种因素影响,如室外浓度、风量(总风量、新风量)、室内发尘量(活动、吸烟)、过滤器效率等
- ▶ 控制策略根据具体项目(新建、改造、系统方式及控制要求等) 具体分析
- ➤ 全空气系统AHU采用较高效率空气过滤器(F7)
- ➤ FCU+AHU、VRV等:选择合适的室内空气净化器
- > 过滤器生命周期的效率

谢谢!

