Proposition 1.

- 1. A prime p can be written as a sum of two integer squares, $a^2 + b^2$, if and only if p = 2 or $p \equiv 1 \mod 4$. Except for changing the signs of a and b or switching a and b, the representation of p as a sum of integer squares is unique.
- 2. Recall that the units in $\mathbb{Z}[i]$ are

$$\pm \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
 and $\pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

Now we have that the irreducibles, up to units, in $\mathbb{Z}[i]$ are:

Cal State Long Beach

- (a) $\begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$ (with determinant 2),
- (b) $\begin{pmatrix} p & 0 \\ 0 & p \end{pmatrix}$ (with determinant p^2), where p is a prime in \mathbb{Z} such that $p \equiv 3 \mod 4$,
- (c) Distinct (i.e., not associates) irreducibles $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$, $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$, where $a^2 + b^2 = p$ is a prime in $\mathbb Z$ such that $p \equiv 1 \mod 4$. We shall call these pair of irreducibles conjugates.

Theorem 1. A positive integer n can be written as a sum of two integer squares if and only if it has an even number of factors of primes q, where $q \equiv 3 \mod 4$. Moreover if we factor n into primes:

$$n = 2^k p_1^{c_1} \cdots p_r^{c_r} q_1^{d_1} \cdots q_s^{d_s},$$

where the p_is are distinct odd primes with $p_i \equiv 1 \mod 4$ and the q_js are distinct odd primes with $q_j \equiv 3 \mod 4$, then the number of representations of n as a sum of squares is

$$4(c_1+1)\cdots(c_r+1).$$

Proof. Let n be a positive integer. Since \mathbb{Z} is a UFD, we can write

$$n = 2^k p_1^{c_1} \cdots p_r^{c_r} q_1^{d_1} \cdots q_s^{d_s}$$

where p_1, \ldots, p_r are distinct primes congruent to 1 modulo 4 and q_1, \ldots, q_s are distinct primes congruent to 3 modulo 4. Suppose first that n has an even number of factors of primes q, where $q \equiv 3 \mod 4$. That is, d_1, \ldots, d_s are even. By Proposition 1, there exist integers a_i and b_i such that $a_i^2 + b_i^2 = p_i$ for $i = 1, \ldots, r$. Let

$$X = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}^k \begin{pmatrix} a_1 & b_1 \\ -b_1 & a_1 \end{pmatrix}^{c_1} \cdots \begin{pmatrix} a_r & b_r \\ -b_r & a_r \end{pmatrix}^{c_r} \begin{pmatrix} q_1 & 0 \\ 0 & q_1 \end{pmatrix}^{d_1/2} \cdots \begin{pmatrix} q_s & 0 \\ 0 & q_s \end{pmatrix}^{d_s/2}.$$

Notice that $X \in \mathbb{Z}[i]$ so that $X = \begin{pmatrix} x & y \\ -y & x \end{pmatrix}$ and $x^2 + y^2 = \det(X) = n$, so that n is the sum of two integer squares. Conversely suppose that $n = a^2 + b^2$. Let $B = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$. Since

 $\mathbb{Z}[i]$ is a UFD we have the following factorization of B (up to units) into irreducibles from Proposition 1:

$$B = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}^u A_1^{\ e_1} A_1'^{\ e_1'} \cdots A_m^{\ e_m} A_m^{\ e_m'} C_1^{\ f_1} \cdots C_t^{\ f_t},$$

where the A_i and A'_i are conjugate irreducibles, the determinant of A_i (which is equal to the determinant of A'_i) is a prime congruent to 1 modulo 4, and the determinant of C_j is the square of a prime such that this prime is congruent to 3 modulo 4. Let

$$\det(A_i) = \pi_i$$
 and $\det(C_j) = \alpha_j^2$.

Thus it follows that

$$n = a^2 + b^2 = \det(B) = 2^u \pi_1^{e_1 + e'_1} \cdots \pi_m^{e_m + e'_m} \alpha_1^{2f_1} \cdots \alpha_t^{2f_t}.$$

The above equality

$$n = 2^u \pi_1^{e_1} \cdots \pi_m^{e_m} \alpha_1^{2f_1} \cdots \alpha_t^{2f_t}$$

gives us a factorization of n into primes and it is clear that there are an even number of prime factors q of n such that $q \equiv 3 \mod 4$. To complete the proof, observe the prime factorizations of n:

$$2^k p_1^{c_1} \cdots p_r^{c_r} q_1^{d_1} \cdots q_s^{d_s}$$
 and $2^u \pi_1^{e_1 + e_1'} \cdots \pi_m^{e_m + e_m'} \alpha_1^{2f_1} \cdots \alpha_t^{2f_t}$.

Since prime factorizations are unique (up to order and units) in \mathbb{Z} , it follows that r=m, s=t, and u=k. Also we can assume without loss that $p_i=\pi_i$, $q_j=\alpha_j$, and $c_i=e_i+e'_i$, $\alpha_j=q_j$, so that $f_j=d_j/2$. To complete the proof, notice from the equation

$$c_i = e_i + e'_i$$

that since e_i can take on values $0, \ldots, c_i$ it follows that there are $c_i + 1$ nonnegative pair of solutions for (e_i, e'_i) . Thus there are at least $(c_1 + 1) \cdots (c_r + 1)$ choices for B. Since there are four units in $\mathbb{Z}[i]$, it follows that there are $4(c_1 + 1) \cdots (c_r + 1)$ choices for B.