INFO-F408: Computability & complexity

Rémy Detobel

9 Octobre, 2017

1 Cantor's Diagonal

Corollary 4.18 dans le livre :

Certain langages ne sont pas reconnaissable par une machine de Turing (Turing-recognizable). **Idée :**

L'ensemble des machines des turing est dénombrable.

Exemple:

Tous les mots possibles dans l'alphabet : $\{0, 1\}$:

	ε	0	1	00	01	10	11	000	001
$\overline{M_1}$	0	1	1	0	1	1	1	0 1	0
M_2	1	1	1	1	0	1	0	1	1
M_3	0	1	0	1	1	0	1	1	1
\mathcal{M}_4									
M_5									

On construit donc ici un table qui définit un langage.

2 Halting Problem (problème de l'arrêt)

 $A_{TM} = \{\langle M, w \rangle | M \text{ est une machine de Turing qui accepte } w \}$

M = Une machine de Turing

w = un mot en entrée (input)

Voir le livre, théorème 4.11 : le problème A_{TM} est indécidable.

2.1 Preuves

Par contradiction : supposons que A_{TM} est décidable. Cela signifie qu'il existe une machine $H(\langle M, w \rangle) = \{Accepte \ si \ M \ accepte \ w \ et \ rejette \ dans les autres cas\}$ On définit ensuite une machine D telle que pour l'entrée $M(une \ machine \ de \ turing)$:

- 1. Exécuter H sur l'entrée $\langle M, \langle M \rangle \rangle$
- 2. On renvoie l'inverse de H : accepte si M n'accepte pas $\langle M \rangle$ et rejette si M accepte $\langle M \rangle$.

Enfin, on exécute D sur lui-même : $D(\langle D \rangle)$.

Cela signifie que D s'accepte uniquement s'il ne s'accepte pas, ce qui est une contradiction, et donc une telle machine M ne peut exister.

Pour un langage A, on définit \bar{A} comme étant son complément : $\bar{A} = \{w | w \notin A\}$

Supposons que A et \bar{A} sont ("recognizable") reconnaissables. Donc A et \bar{A} sont aussi décidables.

Preuve : Posons M et M' reconnaissant respectivement A et \bar{A} . Construisons un "décideur" D pour A en exécutant M et M' en "parallèle" (en alternant étape par étape

sur M et sur M').

Posons maintenant A_{TM} comme étant indécidable. Est-il pour autant reconnaissable ("recognizable")?

 A_{TM} est reconnaissable (preuve : simuler M sur w).

On peut également écrire :

A est décidable \Leftrightarrow A et \bar{A} sont reconnaissables

 $\Rightarrow \overline{A_{TM}}$ n'est pas reconnaissable.

$$\overline{A_{TM}} = \{\langle M, w \rangle | w \text{ n'est pas accepté par M} \}$$

3 Reductibility (Réduction)

Pour une machine de Turing M, L(M) décrit le langage reconnu par M.

$$L(M) = \{w | M \text{ accepte } w\} \subset \Sigma^*$$

 $REGULAR_{TM} = \{\langle M \rangle | M \text{ est une machine de Turing et } L(M) \text{ est régulier} \}$

Rappel d'un langage régulier : qui peut être reconnu par un automate fini. Ce langage est indécidable.

Voir **livre**, théorème 5.3

Preuve

Définissons une Machine de Turing M_2 comme une fonction de M (une machine de Turing) et w ($\in \Sigma^*$)

 M_2 = pour une certaine entrée x :

- 1. si x a la forme 0^n1^n , on accepte
- 2. sinon, on exécute M sur w et on accepte si M accepte w.

 M_2 n'est pas spécialement un "décideur". Cela va déprendre de M. Notons également que M_2 est une "fonction" de M et w.

Quel est le langage de $L(M_2)$?

- 1. Si M accepte w: alors $L(M_2) = \Sigma^*$ accepte tout. \Rightarrow régulier
- 2. Si M n'accepte pas w, $L(M_2) = \{0^n 1^n | n \ge 0\}$ \Rightarrow pas régulier

On a donc réussi à réduire le problème de l'arrêt à ce problème.

Par contradiction, supposons que REGULAR $_{TM}$ est décidable et qu'il existe R, un "décideur" pour REGULAR $_{TM}$.

Soit la machine de Turing S telle que $S = \text{en entrée } \langle M, w \rangle$:

- 1. Construire M_2 pour M et w
- 2. Exécuter R sur M_2 et on accepte si et seulement si R accepte.

En faisant cela, on montre que S décide $A_{TM} \rightarrow contradiction$

4 Rice's Theorem

Chapitre 5 exercice 28

Posons P comme étant n'importe quelle propriété de langage NON-TRIVIAL (NON-TRIVIAL).

Théorème : Déterminer si le langage d'une machine de Turing a comme propriété P, est indécidable.

 $\{\langle M \rangle | M \text{ est une machine de Turing et L}(M) \text{ a une propriété P} \}$

Une propriété triviale est une propriété sans importance, par exemple une propriété est triviale si tous les langages ou aucun langage ne l'a.

4.1 Démonstration

Par contradiction:

Posons R_P un "décideur" pour L_P.

- Posons T_{\varnothing} comme une machine de Turing qui rejette toutes les possibilités $(L(T_{\varnothing}) = \varnothing)$, supposons que $\varnothing \notin P$ (sans perte de généralité).
- Posons T comme une machine de turing tel que $L(T) \in P$.

Prenons, M, w, construit tel que M_w : pour l'entrée x:

- 1. Simuler M sur w. Si c'est accepté, aller en étape 2. Si c'est rejeté, on rejette.
- 2. Simuler T sur x, si c'est accepté on accepte, sinon on rejette.

M accepte w est équivalent à dire que $L(M_w) \in P$.

Maintenant nous pouvons donc créer un "décideur" pour A_{TM} tel que :

S = pour une entrée M, w :

- 1. Construire M_w
- 2. Exécuter R_p sur M_w et donner la même réponse.

On a donc un "décideur" pour le problème de l'arrêt. Ce qui n'est pas possible. On a donc une contradiction.