

Необхідна інформація

Репозиторій з роботою: github.com/nndergunov/NMLab1

Мова програмування: Go v1.18.

За потреби можу надати бінарні файли для запуску на *майже* будьякій комбінації ОС та архітектур.

1. Знайти мінімальний розв'язок $x^3 - 4x^2 + x + 6 = 0$ методом ділення навпіл

Графік функції:

3 графіку очевидно, що найменший розв'язок знаходіться на проміжку [-2; -0.5]. Додана в програму перевірка на умови можливості використання цих меж (f(a)*f(b)) не провалилася, тому ці межі можна використовувати.

Програмно було виявлено, що для початкового є необхідно зробити 11 ітерацій.

Крок	Значення x _n	Значення функції
1	-1.25	-3.453125
2	-0.875	1.392578125
3	-1.0625	-0.777587890625
4	-0.96875	0.368194580078125
5	-1.0156265	-0.18921279907226562
6	-0.9921875	0.0933232307434082
7	-1.00390625	-0.046981871128082275
8	-0.998046875	0.023410804569721222

Крок	Значення x _n	Значення функції
9	-1.0009765625	-0.011725426651537418
10	-0.99951171875	0.005857706186361611
11	-1.000244	-0.002930104747065343

2. Знайти максимальний розв'язок x^3 - 7x - 6 = 0 модифікованим методом Ньютона

Графік функції:

3 графіку очевидно, що найбільший розв'язок знаходіться на проміжку [2.5; 3.5]. Додана в програму перевірка на можливість використання цих меж через умови теорем не провалилася, тому ці межі можна використовувати. За допомогою теореми 3 я обрав $x_0 = b = 3.5$.

Програмно було виявлено, що для початкового є необхідно зробити 7 ітерацій.

Крок	Значення х _п	Значення функції
1	3.0840336134453783	1.7448205184199281
2	3.0253841842547926	0.5134992528603846
3	3.0081237051670486	0.1630685907323013
4	3.002642407999576	0.05291101932198572
5	3.000863886341694	0.017284444175100333
6	3.0002828966215227	0.0056586527275825915
7	3.00009268980715	0.0018538734664019785

3. Знайти мінімальний розв'язок x^3 - $6x^2$ + 5x + 12 = 0 методом простої ітерації

Графік функції:

З графіку очевидно, що найменший розв'язок знаходіться на проміжку [-2; 0].

Розглянемо можливі ф'(х) на цьому проміжку (графічно):

1. Відносно х

2. Відносно x^2 (закриваюча дужка модулю не вмістилася на скріншоті, +- перед виразом було прибрано за ненадібністю через модуль):

3. Відносно х³:

Можна помітити, що в кожному з цих випадків максимальне значення $q = \varphi'(x)$ на обраному або ж на будь-якому іншому, в який входить найменший розв'язок таке, що q значно більший за 1. З цього слідує, що метод застосувати неможливо.