This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

MAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

WELTORGANISATION FÜR GEISTIGES EIGENTUM

Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation ⁶ :

C07B 37/10 // C07D 245/02, 313/00, 321/00, 323/00, 327/10, 491/056

(11) Internationale Veröffentlichungsnummer:

WO 99/40047

(43) Internationales Veröffentlichungsdatum:

12. August 1999 (12.08.99)

(21) Internationales Aktenzeichen:

PCT/EP99/00674

A1

(22) Internationales Anmeldedatum: 2. Februar 1999 (02.02.99)

(30) Prioritätsdaten:

198 04 673.1

Februar 1998 (06.02.98)

DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US): STU-DIENGESELLSCHAFT KOHLE MBH [DE/DE]; Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr

(72) Erfinder: und

(75) Erfinder/Anmelder (nur für US): FÜRSTNER, Alois [DE/DE]; Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr (DE). SEIDEL, Günter [DE/DE]; Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr (DE). RUMBO, Antonio [DE/DE]; Kaiser-Wilhelm-Platz 1, D-45470 Mülhelm an der Ruhr (DE). MATHES, Christian [DE/DE]; Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr (DE).

(74) Anwälte: VON KREISLER, Alek usw.; Deichmannhaus am Hauptbahnhof, Bahnhofsvorplatz, D-50667 Köln (DE).

(81) Bestimmungsstaaten: CA, JP, US, europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Veröffentlicht

Mit internationalem Recherchenbericht. Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist; Veröffentlichung wird wiederholt falls Änderungen

eintreffen.

(54) Title: METHODS FOR PREPARING MACROCYCLIC PRODUCTS BY RING-CLOSING DIINE METATHESIS

(54) Bezeichnung: VERFAHREN ZUR DARSTELLUNG MAKROCYCLISCHER PRODUKTE DURCH RINGSCHLIESSENDE DIIN-METATHESE

(57) Abstract

The invention relates to methods for preparing macrocyclic products with 9 or more ring atoms by ring-closing diine metathesis of suitable diine substrates. The diine substrates can be converted into cycloakynes or into cycloalkadiines by cyclodimerisation, depending on the particular reaction conditions. Any alkyne metathesis catalyst can be used as the catalyst, regardless of whether they are heterogeneously or homogeneously present in the reaction medium. The preferred catalysts or pre-catalysts are transition metal alkylidine complexes, transition metal compounds which form alkylidine complexes under the reaction conditions, and transition metal compounds with metal=metal triple bonds. The method can be carried out with numerous functional groups, solvents and additives. The macrocyclic cycloalkynes or cycloalkadiines formed can be converted into numerous secondary products using known methods, especially macrocyclic cycloalkenes with a uniform configuration of the double bond, and used e.g. for synthesising epothilone or epothilone analogues.

(57) Zusammenfassung

Die vorliegende Erfindung betrifft Verfahren zur Darstellung von makrocyclischen Produkten mit 9 oder mehr Ringatomen durch ringschliessende Metathese von geeigneten Diin-Substraten. Die Diin-Substrate können je nach den Reaktionsbedigungen zu Cycloalkinen, oder durch Cyclodimerisierung zu Cycloalkadiinen umgesetzt werden. Als Katalysatoren einen sich dafür alle Alkin-Metathesekatalysatoren, unabhängig davon, ob diese im Reaktionsmedium heterogen oder homogen vorliegen. Bevorzugte Katalysatoren oder Prä-Katalysatoren sind Übergangsmetall-Alkylidinkomplexe, Übergangsmetallverbindungen, die unter Reaktionsbedingungen Alkylidinkomplexe ausbilden, und Übergangsmetallverbindungen mit Metall≡Metall Dreifachbindungen. Das Verfahren ist mit zahlreichen funktionellen Gruppen, Lösungsmittel und Additiva durchführbar. Die gebildeten makrocyclischen Cycloalkine oder Cycloalkadiine lassen sich durch bekannte Methoden in zahlreiche Folgeprodukte, insbesondere in makrocyclische Cycloalkene mit einheitlicher Konfiguration der Doppelbindung überführen, wie sie unter anderem zur Synthese von Epothilon oder Epothilon-Analoga genutzt werden können.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL Albanien ES Spanien LS Lesotho SI Slowenien AM Armenien FI Finnland LT Litauen SK Slowakei AT Österreich FR Frankreich LU Luxemburg SN Senegal AU Australien GA Gabun LV Lettland SZ Swasiland AZ Aserbaidschan GB Vereinigtes Königreich MC Monaco TD Tschad BA Bosnien-Herzegowina GE Georgien MD Republik Moldau TG Togo BB Barbados GH Ghana MG Madagaskar TJ Tadschikist	
AT Österreich FR Frankreich LU Luxemburg SN Senegal AU Australien GA Gabun LV Lettland SZ Swasiland AZ Aserbaidschan GB Vereinigtes Königreich MC Monaco TD Tschad BA Bosnien-Herzegowina GE Georgien MD Republik Moldau TG Togo BB Barbados GH Ghana MG Madagaskar TJ Tadschikist	
AU Australien GA Gabun LV Lettland SZ Swasiland AZ Aserbaidschan GB Vereinigtes Königreich MC Monaco TD Tschad BA Bosnien-Herzegowina GE Georgien MD Republik Moldau TG Togo BB Barbados GH Ghana MG Madagaskar TJ Tadschikist	
AZ Aserbaidschan GB Vereinigtes Königreich MC Monaco TD Tschad BA Bosnien-Herzegowina GE Georgien MD Republik Moldau TG Togo BB Barbados GH Ghana MG Madagaskar TJ Tadschikist	
BA Bosnien-Herzegowina GE Georgien MD Republik Moldau TG Togo BB Barbados GH Ghana MG Madagaskar TJ Tadschikist	
BB Barbados GH Ghana MG Madagaskar TJ Tadschikist	
10 1 movement	
	an
BE Belgien GN Guinea MK Die ehemalige jugoslawische TM Turkmenist	an
BF Burkina Faso GR Griechenland Republik Mazedonien TR Türkei	
BG Bulgarien HU Ungarn ML Mali TT Trinidad ur	nd Tobago
BJ Benin IE Irland MN Mongolei UA Ukraine	ŭ
BR Brasilien IL Israel MR Mauretanien UG Uganda	
BY Belarus IS Island MW Malawi US Vereinigte	Staaten von
CA Kanada IT Italien MX Mexiko Amerika	
CF Zentralafrikanische Republik JP Japan NE Niger UZ Usbekistan	
CG Kongo KE Kenia NL Niederlande VN Vietnam	
CH Schweiz KG Kirgisistan NO Norwegen YU Jugoslawie:	n
CI Côte d'Ivoire KP Demokratische Volksrepublik NZ Neuseeland ZW Zimbabwe	
CM Kamerun Korea PL Polen	
CN China KR Republik Korea PT Portugal .	
CU Kuba KZ Kasachstan RO Rumanien	
CZ Tschechische Republik LC St. Lucia RU Russische Föderation	
DE Deutschland LI Liechtenstein SD Sudan	
DK Dänemark LK Sri Lanka SE Schweden	
EE Estland LR Liberia SG Singapur	

WO 99/40047 PCT/EP99/00674

VERFAHREN ZUR DARSTELLUNG MAKROCYCLISCHER PRODUKTE DURCH RINGSCHLIESSENDE DIIN-METATHESE

Die vorliegende Erfindung betrifft Verfahren zur Darstellung von makrocyclischen Produkten mit 9 oder mehr Ringatomen durch ringschließende Metathese von Diin-Substraten.

Unter Alkinmetathese versteht man die wechselseitige Umalkylidinierung von Alkinen gemäß Schema 1.

$$R_1$$
 R_2 R_3 R_4 R_3 R_4 R_3 R_4

Schema 1. Prinzip der Alkinmetathese

Reaktionen dieser Art werden in der Regel durch Metallverbindungen katalysiert (Übersichten: Schrock, R. R. Polyhedron 1995, 14, 3177; Ivin, K. J.; Mol, J. C. Olefin Metathesis and Metathesis Polymerization, Academic Press, New York, 1997, S. 192-223). Im Gegensatz zur Metathese von Alkenen, die heute ein gut etabliertes Forschungsgebiet darstellt und zahlreiche Anwendungen auf die Darstellung technisch bedeutsamer Produkte gefunden hat (Übersichten: Ivin, K. J.; Mol, J. C. Olefin Metathesis and Metathesis Polymerization, Academic Press, New York, 1997; Schuster, M. et al., Angew. Chem. 1997, 109, 2125), beschränkt sich die Anwendung der Alkinmetathese in der organischen Chemie auf die Darstellung spezieller Polymere (Weiss, K. et al., Angew. Chem. 1997, 109, 522), die ring-öffnende Polymerisation von Cycloalkinen (Krouse, S. A. et al., Macromolecules 1989, 22, 2569; Zhang, X-P. et al., Macromolecules 1994, 27, 4627), sowie auf die Dimerisierung bzw. die Kreuzmetathese acyclischer Alkine (Kaneta, N. et al., Chem. Lett. 1995, 1055; Sancho, J. et al., J. Mol. Cat. 1982, 15, 75; Villemin, D. et al., Tetrahedron Lett. 1982, 5139). Metathesen von Diinen führen zu polymeren Produkten durch acyclische Diinmetathese (Krouse, S. A. et al., Macromolecules 1989, 22, 2569) oder durch Cyclopolymerisation

(Fox, H. H. et al. *J. Am. Chem. Soc.* **1994**, *116*, 2827; Koo, K.-M. et al., *Macromolecules* **1993**, *26*, 2485).

Als Katalysatoren oder Prä-Katalysatoren für Alkinmetathesen können sowohl heterogene als auch homogene Übergangsmetallverbindungen eingesetzt werden. Als katalytisch aktive Spezies werden Übergangsmetall-Alkylidin Komplexe bzw. Übergangsmetall-Carbin Komplexe angesehen (Katz, T. J. et al., J. Am. Chem. Soc. 1975, 97, 1592), die entweder in isolierter Form den Reaktionsmischungen zugesetzt oder in situ aus geeigneten Prä-Katalysatoren gebildet werden können. Die katalytische Aktivität von Übergangsmetallverbindungen in Alkinmetathesen kann durch Zugabe geeigneter Additiva wie z.B. Phenolderivate (Mortreux, A. et al., J. Chem. Soc. Chem. Commun. 1974, 786; Mortreux, A. et al., J. Mol. Cat. 1977, 2, 73; Villemin, D. et al., Tetrahedron Lett. 1982, 5139), Aluminiumalkyle (Petit, M. et al., J. Chem. Soc. Chim. Fr. 1972, 1641; Mortreux, M. et al. J. Mol. Cat. 1980, 8, 97) erhöht werden.

Bevorzugte Katalysatoren oder Prä-Katalysatoren für Alkinmetathesen sind Mo(CO), (Mortreux, A. et al., J. Chem. Soc. Chem. Commun. 1974, 786; Mortreux, A. et al., J. Mol. Cat. 1977, 2, 73; Villemin, D. et al Tetrahedron Lett. 1982, 5139; Tsonis, C. React. Kinet. Catal. Lett. 1992, 46, 359), MoO,(acac),/Et,Al (Petit, M. et al., J. Chem. Soc. Chem. Commun. 1982, 1385), MoO₃/SiO₂ (Mortreux, A. et al., Bull. Soc. Chim. Fr. 1972, 1641; Mortreux, M. et al. J. Mol. Cat. 1980, 8, 97), WO₃/SiO₂ (Pennella, F. et al., Chem. Commun 1968, 1548), $W(\equiv CCMe_3)(OR)_3$ oder $Mo(\equiv CCMe_3)(OR)_3$ [R = CMe₃, CH(CF₃)₂, CMe₂CF₃, $CMe(CF_3)_2$, $C(CF_3)_3$, $C_6H_3Me_2$, $C_6H_3i-Pr_2$, $C_6H_3t-Bu_2$] (Übersicht: Schrock, R. R. Polyhedron 1995, 14, 3177; Sancho, J. et al., J. Mol. Cat. 1982, 15, 75; Weiss, K. in Carbyne Complexes [Fischer, H. et al., Eds.], Verlag Chemie, Weinheim, 1988, S. 220), Re(≡CCMe₃)(=NAr)[OCMe(CF₃)₂]₂ (Schrock, R. R. et al., *J. Am.* Chem. Soc. 1988, 110, 2686; Weinstock, I. A. et al., J. Am. Chem. Soc. 1991, 113, 135), (Me₃CO)₃W≡W(OCMe₃) oder (Me₃CO)₃Mo≡Mo(OCMe₃) (Schrock, R. R. Polyhedron 1995, 14, 3177; Krouse, S. A. et al., Macromolecules 1989, 22, 2569; Zhang, X-P. et al., Macromolecules 1994, 27, 4627), und Komplexe die

eine Re≡Re Dreifachbindung enthalten (Diefenbach S. P. **US** 4,698,451, 06. Okt. 1987; *Chem. Abstr.* 1988, *108*, 40092m).

In der Literatur sind sowohl Diine als auch Cycloalkine bisher nur als Ausgangsmaterialien für Polymerisationsreaktionen via Alkinmetathese eingesetzt worden. Überraschenderweise fanden wir jedoch, daß sich Diine entsprechender Kettenlänge als Substrate in Gegenwart geeigneter Katalysatoren mit hoher Selektivität zu Cycloalkinen schließen lassen, sofern die gebildeten Cycloalkine 12 oder mehr Ringatome aufweisen (Schema 2).

Ferner hat sich herausgestellt, daß sich Diine entsprechender Kettenlänge als Substrate in Gegenwart geeigneter Katalysatoren mit hoher Selektivität auch zu Cycloalkinen mit 9-11 Ringatomen schließen lassen, sofern die Diin-Substrate durch ein oder mehrere strukturelle Elemente konformativ für den Ringschluß prä-organisiert sind. Die genannten strukturellen Elemente umfassen rigide Rückgrade, anellierte Ringe, prä-existierende Doppelbindungen, Wasserstoffbrückenbindungen, geminale Dialkylgruppen, Koordination an Metallzentren, chirale Zentren, supramolekulare Strukturen.

Dieser gegenüber den bisher verwendeten Verfahren zur Darstellung von Cycloalkinen verbesserte und verkürzte Zugang zu dieser Substanzklasse ist von Bedeutung, da diverse Cycloalkine selbst als Antibiotika von Interesse sind (cf. Nicolaou K. C. *Angew. Chem.* 1991, 103, 1453), und sich durch bestehende Methoden in andere makrocyclische Produkte von wirtschaftlicher Relevanz wie z. B. Pharmaka, Pheromone, Agrochemikalien, Kronenether, Geruchsstoffe, Parfuminhaltsstoffe oder Geschmacksstoffe umsetzen lassen.

Schema 2. Prinzip der Darstellung von makrocyclischen Cycloalkinen durch Metathese geeigneter Diin-Substrate.

Die Selektivität dieser Reaktion hängt im einzelnen von der Struktur der Substrate, dem verwendeten Katalysator, den Reaktionsbedingungen, sowie der Ringspannung im erzeugten Cycloalkin ab. Die Bildung der Cycloalkine wird bei Durchführung der Reaktion bei hoher Verdünnung in einem organischem Lösungsmittel, das den Katalysator nicht desaktiviert, begünstigt. Bei der Wahl der Konzentration des Substrates im Reaktionsmedium ist dessen "effective molarity parameter" zu berücksichtigen (Mandolini, L. *Adv. Phys. Org. Chem.* 1986, 22, 1). Bei höherer Konzentration können mit Hilfe der vorliegenden Erfindung durch Cyclodimerisierung der Diin-Substrate gemäß Schema 3 auch Cycloalkadiin Produkte erhalten werden.

Schema 3. Prinzip der Darstellung von makrocyclischen Cycloalkadiinen durch Cyclodimerisierung geeigneter Diin-Substrate.

Als Katalysatoren oder Prä-Katalysatoren kommen in der vorliegenden Erfindung alle in Alkin-Metathesen aktiven Metallverbindungen in Betracht, unabhängig davon, ob sie im Reaktionsmedium homogen oder heterogen vorliegen. Die Katalysatoren können in isolierter Form eingesetzt oder in situ im Reaktionsmedium aus geeigneten Vorläufern erzeugt werden. Die eingesetzte Katalysatormenge ist nicht kritisch, wobei bevorzugte Katalysatormengen im Bereich von 0.01 - 10% bezogen auf das eingesetzte Substrat liegen.

Als bevorzugte Katalysatoren oder Prä-Katalysatoren dienen Übergangsmetall-Alkylidinkomplexe, Übergangsmetallverbindungen, die unter Reaktionsbedingungen Alkylidinkomplexe ausbilden, und Übergangsmetallverbindungen mit Metall=Metall Dreifachbindungen.

Die im folgenden Text verwendeten Abkürzungen bedeuten: i-Pr = Isopropyl; t-Bu = tertiär Butyl; Ph = Phenyl; acac = Acetylacetonat; Ar = Aryl; gem = geminal; Me = Methyl.

Besonders bevorzugte Katalysatoren oder Prä-Katalysatoren sind Komplexe des allgemeinen Typs M(≡CR¹)(OR²)₃, mit

M = Mo, W

 $R^1 = C1-C20$ Alkyl, Aryl, Alkenyl, Alkylthio, Dialkylamino, bevorzugt CMe₃, Ph $R^2 = C1-C20$ Alkyl, Aryl, bevorzugt CMe₃, CH(CF₃)₂, CMe₂CF₃, CMe(CF₃)₂,

 $C(CF_3)_3$, $C_6H_3Me_2$, $C_6H_3i-Pr_2$, $C_6H_3t-Bu_2$

Besonders bevorzugte Katalysatoren oder Prä-Katalysatoren sind ebenfalls Komplexe des allgemeinen Typs Re(=CR¹)(=NAr)(OR²), mit

R1 = C1-C20 Alkyl, Aryl, Alkenyl, bevorzugt CMe, Ph

Ar = C6-C20 Arvl

 $R^2 = C1-C20$ Alkyl, Aryl, bevorzugt CMe_3 , $CH(CF_3)_2$, CMe_2CF_3 , $CMe(CF_3)_2$, $C(CF_3)_3$, $C_6H_3Me_2$, $C_6H_3i-Pr_2$, $C_6H_3t-Bu_2$

Besonders bevorzugte Katalysatoren oder Prä-Katalysatoren sind ebenfalls Komplexe des allgemeinen Typs (RO)₃M≡M(OR)₃, mit

M = Mo, W

R = C1-C20 Alkyl, bevorzugt CMe₃, CH(CF₃)₂, CMe₂CF₃, CMe(CF₃)₂, C(CF₃)₃

Bevorzugte Katalysatoren, die in situ im Reaktionsmedium erzeugt werden, entstehen aus Gemischen von Mo(CO)₆ und Phenolen. Besonders bevorzugte Katalysatoren entstehen bei Verwendung elektronenarmer Phenole wie Trifluormethylphenol, Bis(trifluormethyl)phenol, Fluorphenol, Difluorphenol, Pentafluorphenol, Chlorphenol, Dichlorphenol, Pentachlorphenol. Das Verhältnis Mo(CO)₆: Phenol ist nicht kritisch; bevorzugte Verhältnisse Mo(CO)₆: Phenol liegen im Bereich von 1:1 bis 1:1000.

Bevorzugte Katalysatoren, die in situ im Reaktionsmedium erzeugt werden, entstehen ferner aus Gemischen von $M[N(R^1)Ar]_3$ und Halogenverbindungen vom Typ $R^2_2EX_2$ oder R^3_3SiX , wobei

M = Mo, W

R¹ = C1-C20 Alkyl, sekundär-Alkyl (sec-Alkyl), tertiär-Alkyl (t-Alkyl), Cycloalkyl, bevorzugt t-Bu

 $Ar = C6-C20 \text{ Aryl, bevorzugt } C_6H_5, C_6H_4Me, C_6H_3Me_2, C_6H_3(i-Pr)_2, C_6H_3(t-Pr)_2, C_6H_3Me_3$ $Bu)_2, C_6H_2Me_3$

 $R^2 = H$, F, Cl, Br, I, C1-C20 Alkyl, Aryl

E = C, Si

R³ = C1-C20 Alkyl, Aryl, bevorzugt Methyl

X = F, CI, Br, I

Für die Darstellung von Verbindungen des Typs M[N(R¹)Ar]₃ siehe: C. E. Laplaza et al., *J. Am. Chem. Soc.* **1996**, *118*, 8623.

Die in der vorliegenden Erfindung als Substrate verwendeten Diine können eine oder mehrere funktionelle Gruppen in Form von Substituenten an der Kette oder Heteroatomen innerhalb der Kette enthalten. Dies umfaßt unter anderem verzweigte oder unverzweigte Alkylreste, aromatische oder nicht aromatische carbocyclische Ringe, aromatische oder nicht aromatische Stickstoff-, Sauerstoff-, Schwefel- oder Phosphorhaltige heterocyclische Ringe, Carbonsäuren, Ester, Ether, Epoxide, Silylether, Thioether, Thioacetale, Disulfide, Alkohole, Anhydride, Imine, Silylether, Silylenolether, Ammoniumsalze, Amine, Amide, Nitrile, Perfluoralkyl-Gruppen, gem-Dialkylgruppen, Alkene, Halogene, Ketone, Ketale, Aldehyde, Acetale, Carbamate, Carbonate, Urethane, Harnstoffe, Sulfonate, Sulfone, Sulfonamide, Sulfoxide, Phosphate, Phosphonate, Nitro-Gruppen, Organosilan-Einheiten oder Metallzentren. Die Anwesenheit der genannten funktionellen Gruppen in den Substraten kann die Bildung der makrocyclischen Cycloalkinprodukte begünstigen. Repräsentative Beispiele sind in Tabelle 1 und in den Beispielen zusammengefaßt.

Die als Substrate verwendeten Diine können durch strukturelle Elemente wie z.B. chirale Zentren, Wasserstoffbrückenbindungen, supramolekulare Strukturen,

rigide Rückgrade, Koordination an Metallzentren konformativ für den Ringschluß prä-organisiert sein. Es können auch Substrate verwendet werden, die keines dieser strukturellen Elemente aufweisen und daher konformativ flexibel sind. Die Substrate können in trägergebundener Form vorliegen.

Bevorzugte Substrate sind Diine mit R_1 , $R_2 \neq H$. Besonders bevorzuge Substrate sind solche Diine, bei denen die Reste R_1 und R_2 in Schemata 2 und 3 so gewählt werden, daß ein niedrigmolekulares und damit leicht flüchtiges Alkin $R_1C\equiv CR_2$ (z. B. 2-Butin, 2-Hexin, 3-Hexin) als Nebenprodukt der Bildung des makrocyclischen Cycloalkins entsteht.

Die Reaktionen werden so durchgeführt, daß die jeweiligen Substrate mit dem homogenen oder heterogenen Katalysator in Kontakt gebracht werden. In der Regel geschieht dies durch Vermischen einer Lösung oder Suspension des Substrates mit einer Lösung oder Suspension des Katalysators. Je nach verwendetem Katalysator und Substrat kann die Reaktionstemperatur schwanken, wobei bevorzugt bei -30°C bis +200°C gearbeitet wird. Die Reaktionszeit ist nicht kritisch und kann zwischen wenigen Minuten und einigen Tagen liegen. Die Reaktionen werden bevorzugt unter Schutzgasatmosphäre (z. B. Argon, Stickstoff, Helium) durchgeführt.

Im allgemeinen werden für ringschließende Diinmetathesen zu makrocyclischen Cycloalkinen Kohlenwasserstoffe (z. B. Hexan, Octan, Petrolether, Toluol, Xylole, Cumol, Decalin) oder halogenierte Kohlenwasserstoffe (z. B. Chlorbenzol, Brombenzol, Fluorbenzol, Trifluormethylbenzol, Dichlorbenzol, Trichlorbenzol, Tetrachlorkohlenstoff, 1,2-Dichlorethan) als Lösungsmittel bevorzugt. Bei Wahl geeigneter Katalysatoren sind auch andere Lösungsmittel wie z. B. Acetonitril, Tetrahydrofuran, 1,4-Dioxan, Dimethoxyethan, Dimethylformamid, Dimethylsulfoxid, Phenol einsetzbar. Auch Mischungen dieser Lösungsmittel können verwendet werden.

Die Reaktionen können bei Drücken kleiner als Atmosphärendruck durchgeführt werden. Das Anlegen von Unterdruck kann zum Entfernen flüchtiger Nebenprodukte R₁C≡CR₂ führen und so die erreichte Ausbeute an Cycloalkin ver-

bessern. Der jeweils anwendbare Unterdruck richtet sich nach den spezifischen Eigenschaften des Substrats, des gebildeten Cycloalkins, des als Nebenprodukt gemäß Schemata 2 und 3 anfallenden Alkins $R_1C\equiv CR_2$, des verwendeten Lösungsmittels, sowie etwaiger Additiva. Auch durch das Durchleiten eines inerten Gasstromes durch die Reaktionslösung kann das niedermolekulare Nebenprodukt $R_1C\equiv CR_2$ aus dem Reaktionsgemisch ausgetrieben und so die Ausbeute an Cycloalkin verbessert werden.

Die Aufarbeitung der Reaktionsgemische und die Reinigung der Produkte ist nicht kritisch und richtet sich nach den jeweiligen physikalischen Eigenschaften der erzeugten Produkte und/oder der unumgesetzten Substrate. Bevorzugte Aufarbeitungs- und Reinigungsmethoden sind Destillation, Sublimation, Kristallisation, Chromatographie, Filtration, und Extraktion.

Die gemäß der vorliegenden Erfindung zugänglichen makrocyclischen Cycloalkine können für die Synthese zahlreicher Folgeprodukte genutzt werden, z. B.
durch Reduktion, Oxidation, oder Cycloaddition der Dreifachbindung, sowie
durch Additionen an die Dreifachbindung. Von besonderer Bedeutung ist die
Möglichkeit, daß die durch die vorliegende Erfindung zugänglichen makrocyclischen Cycloalkine durch geeignete Reaktionen (z.B. Halbhydrierung, Hydrometallierung, Carbometallierung) zu makrocyclischen Cycloalkenen mit
einheitlicher Konfiguration der Doppelbindung umgesetzt werden können.

Makrocyclische Cycloalkene mit einheitlicher Konfiguration der Doppelbindung sind in der Regel durch Ringschluß-Metathese von Dienen (RCM) nicht direkt zugänglich. RCM liefert meist Gemische der jeweiligen (E)- und (Z)-Isomere, wobei häufig das (E)-Isomere bevorzugt entsteht (Schuster M. al. *Angew. Chem.* 1997, 109, 2125; Fürstner, A. *Topics in Catalysis* 1997, 4, 285; Fürstner, A. et al. *Synthesis* 1997, 792). Die vorliegende Erfindung ermöglicht es jedoch, makrocyclische, (Z)-konfigurierte Cycloalkene selektiv darzustellen, indem die durch ringschließende Metathese von Diinen erhaltenen Cycloalkine mit Hilfe geeigneter Reaktionen wie z. B. Halbhydrierung oder Hydrometallierung/Protonierung (Übersichten: March, J. *Advanced Organic Chemistry*, 4th Ed., Wiley, New York, 1992, S. 771ff; Marvell, E. N. et al. *Synthesis* 1973, 457;

Fürstner, A. et al. *J. Org. Chem.* **1997**, *62*, 2332) umgesetzt werden. Dabei können die durch die vorliegende Erfindung zugänglichen Cycloalkine zunächst isoliert und im Anschluß nach einer geeigneten Methode in das (Z)-konfigurierte Cycloalken überführt werden. Alternativ können die Bildung des makrocyclischen Cycloalkins durch ringschließende Alkinmetathese eines Diin-Substrats sowie dessen Überführung in ein makrocyclisches, (Z)-konfiguriertes Cycloalken in einem einzigen Reaktionsansatz im Sinn eines integrierten chemischen Verfahrens sukzessive durchgeführt werden.

Makrocyclische Cycloalkene mit (Z)-konfigurierter Doppelbindung werden vielfach als Antibiotika, Pharmaka für die Human- oder Veterinärmedizin, Pheromone, Geruchsstoffe, Parfuminhaltsstoffe etc. eingesetzt. Ein repräsentatives Beispiel für die Synthese eines pharmazeutisch relevanten makrocyclischen Produkts durch Oxidation eines makrocyclischen Cycloalkens sind Epothilon bzw. Analoga dieser Verbindung. Wird das zur Synthese von Epothilon bzw. dessen Analoga benötigte makrocyclische, (Z)-konfigurierte Cycloalken durch RCM dargestellt, so fallen in der Regel (E)/(Z)-Gemische an, von denen jedoch nur das jeweilige (Z)-Alken durch Epoxidierung der Doppelbindung in Epothilon bzw. in Analoga dieses Naturstoffs mit korrekter Konfiguration der stereogenen Zentren des gebildeten Epoxids überführt werden kann (Nicolaou, K. C. et al. Angew. Chem. 1996, 108, 2554; Meng, D. J. Am. Chem. Soc. 1997, 119, 2733; Taylor, R. E. Tetrahedron Lett. 1997, 2061; Schinzer, D. et al. Angew. Chem. 1997, 109, 543; Yang, Z. Angew. Chem. 1997, 109, 170; Bertinato, P. J. Org. Chem. 1996, 61, 8000; Nicolaou, K. C. et al. J. Am. Chem. Soc. 1997, 119, 7960; Nicolaou K. C. et al. Nature 1997, 387, 268; Nicolaou, K. C. et al. Chem. Eur. J. 1997, 3, 1957; Nicolaou K. C. et al., Angew. Chem. 1997, 109, 2181). Diese und verwandte Synthesen lassen sich mit Hilfe der vorliegenden Erfindung durch Bildung des makrocyclischen Cycloalkins und dessen anschließende Halbreduktion zum (Z)-Cycloalken stereoselektiv gestalten und damit erheblich verbessern.

Die im folgenden angeführten Beispiele beschreiben prototypische Ringschlußreaktionen von Diinen zu makrocyclischen Produkten mit Hilfe von Alkin-Metathese Katalysatoren unter bevorzugten Bedingungen, sollen jedoch in keiner Weise den Umfang, die Anwendungsbreite oder die Vorteile der vorliegenden Erfindung einschränken.

BEISPIEL 1

Cyclisierung von Hexandicarbonsäure bis(3-pentinyl)ester

In einer Apparatur bestehend aus einem Zweihalskolben mit aufgesetzter Destillationsbrücke und einer auf -78°C gekühlten Vorlage wird eine Lösung von Hexandicarbonsäure bis(3-pentinyl)ester (155 mg, 0.56 mmol) in 1,2,4-Trichlorbenzol (30 mL) mit W(\equiv CCMe₃)(OCMe₃)₃ (8 mg) versetzt. Man evakuiert die Apparatur auf 20 mbar und erhitzt das Reaktionsgemisch auf 80°C. Nach 4h wird weiteres W(\equiv CCMe₃)(OCMe₃)₃ (8 mg) nachgegeben und die Lösung anschließend 13h bei 80°C/20 mbar gerührt. Abdestillieren des Lösungsmittels im Hochvakuum und säulenchromatographische Reinigung des Rückstandes (Eluationsmittel Hexan/Ethylacetat 4:1) ergibt das Cycloalkin als farblose Kristalle (100 mg, 79%). Mp = 106-107°C. ¹H-NMR: δ = 4.14 (t, 4H, J = 5.5), 2.53 (t, 4H, J = 5.6), 2.40 (m, 4H), 1.76 (m, 4H). ¹³C-NMR: δ = 173.0, 77.8, 62.4, 34.8, 24.9, 19.0. MS, m/z (rel Intensität): 224 (< 1), [M¹], 179 (< 1), 166 (1), 152 (1), 137 (1), 129 (3), 111 (7), 101 (4), 78 (100), 66 (21), 55 (10), 41 (8). C₁₂H₁₆O₄ (224.3) ber.: C 64.24. H 7.18; gefunden: C 64.14. H 7.15.

BEISPIEL 2

Cyclisierung von Hexandicarbonsäure bis(3-pentinyl)ester

Eine Lösung von Hexandicarbonsäure bis(3-pentinyl)ester (105 mg) und W(≡CCMe₃)(OCMe₃)₃ (11 mg) in Toluol (20 mL) wird 1h bei 80°C unter Ar gerührt. Man destilliert das Lösungsmittel im Vakuum ab, reinigt den

verbleibenden Rückstand säulenchromatographisch (Hexan/Ethylacetat 4/1), und erhält das gewünschte Cycloalkin als farblose Kristalle (59 mg, 69 %). Analytische Daten wie unter Beispiel 1 angeführt.

BEISPIEL 3

Cyclisierung von Hexandicarbonsäure bis(3-pentinyl)ester

Eine Lösung von Hexandicarbonsäure bis(3-pentinyl)ester (121 mg) und W(≡CCMe₃)₃(12 mg) in Chlorbenzol (20 mL) wird 2 h bei 80°C unter Ar gerührt. Man destilliert das Lösungsmittel im Vakuum ab, reinigt den verbleibenden Rückstand säulenchromatographisch (Hexan/Ethylacetat 4/1), und erhält das gewünschte Cycloalkin als farblose Kristalle (70 mg, 73 %). Analytische Daten wie unter Beispiel 1 angeführt.

BEISPIEL 4

Cyclisierung und Cyclodimerisierung von 10-Dodecin-1-yl 10-dodecinoat

Eine Lösung von 10-Dodecin-1-yl 10-dodecinoat (139 mg, 0.39 mmol) und W(≡CCMe₃)(OCMe₃)₃ (9 mg) in Chlorbenzol (50 mL) wird 10h auf 80°C erhitzt. Nach Abdestillieren des Lösungsmittels und Säulenchromatographie des Rückstandes (Hexan/Ethylacetat 20/1) erhält man das Cycloalkin als farblose Kristalle (62 mg, 52%), sowie das Cycloalkadiin (Cyclodimerisierungsprodukt) als farbloses, kristallines Produkt.

Daten des Cycloalkins: ${}^{1}\text{H-NMR}$: $\delta = 4.12$ (t, 2H, J = 5.8), 2.32 (t, 2H, J = 6.8), 2.16 (m, 4H), 1.64 (m, 4H), [1.46 (m), 1.32 (m); 18H].- ${}^{13}\text{C-NMR}$: $\delta = 173.8$,

80.7, 80.5, 63.9, 34.6, 29.39,29.36, 29.2, 28.8 (2C), 28.6 (2C), 28.4 (2C), 28.3, 28.1, 25.9, 25.3, 18.5, 18.4.- MS, m/z (rel. Intensität): 306 (35) [M $^+$], 277 (4), 264 (5), 250 (3), 209 (6), 192 (19), 178 (34), 164 (40), 149 (24), 135 (54), 121 (61), 107 (43), 95 (71), 81 (97), 67 (98), 55 (100), 41 (82), 29 (25). $C_{20}H_{34}O_{2}$ (306.5) ber.: C 78.37. H 11.19; gefunden: C 77.55. H 11.07.

Daten des Cycloalkadiins: 1 H-NMR: δ = 4.07 (t, 4H, J = 6.6), 2.29 (t, 4H, J = 7.4), 2.14 (m, 8H), 1.62 (m, 8H), 1.47 (m, 8H), 1.4-1.2 (36H).- 13 C-NMR: δ = 173.9, 80.27, 80.25, 64.3, 34.4, 29.3, 29.1, 29.06, 28.98, 28.96, 28.88, 28.62, 28.57, 25.9, 25.0, 18.7.- MS, m/z (rel. Intensität): 612 (99) [M 4], 584 (7), 557 (5), 515 (6), 469 (5), 401 (8), 387 (11), 373 (13), 359 (18), 345 (19), 147 (16), 135 (26), 121 (32), 107 (33), 95 (65), 81 (88), 67 (87), 55 (100).

BEISPIEL 5

Cyclisierung von N,N-Bis(10-dodecinoyl)ethan-1,2-diamin

Eine Suspension von N,N-Bis(10-dodecinoyl)ethan-1,2-diamin (142 mg, 0.34 mmol) und W(≡CCMe₃)(OCMe₃)₃ (8 mg) in Chlorbenzol (20 mL) wird 3h bei 80°C gerührt. Durch Abdestillieren des Lösungsmittels erhält man das Cycloalkin. Eine analytisch reine Probe wird durch Extraktion des Katalysators aus dem Produkt erhalten. MS m/z (rel. Intensität): 362 (82) [M⁺], 334 (17), 319 (9), 303 (8), 279 (7), 265 (7), 249 (9), 237 (16), 221 (22), 206 (14), 178 (13), 168 (13), 154 (10), 135 (14), 126 (10), 95 (40), 81 (51), 67 (67), 55 (91), 44 (79), 41 (73), 30 (100).

BEISPIEL 6

Cyclisierung von Hexandicarbonsäure bis(3-pentinyl)ester in THF

Eine Lösung von Hexandicarbonsäure bis(3-pentinyl)ester (89 mg) und W(≡CCMe₃)(OCMe₃)₃ (18 mg) in Tetrahydrofuran (15 mL) wird 22 h unter Ar zum Rückfluß erhitzt. Man destilliert das Lösungsmittel im Vakuum ab, reinigt den verbleibenden Rückstand säulenchromatographisch (Hexan/Ethylacetat 4/1), und erhält das gewünschte Cycloalkin als farblose Kristalle (46 mg, 64 %). Analytische Daten wie unter Beispiel 1 angeführt.

BEISPIEL 7

Cyclisierung von Hexandicarbonsäure bis(3-pentinyl)ester mit W(≡CPh)(OCMe₃)₃

Eine Lösung von Hexandicarbonsäure bis(3-pentinyl)ester (271 mg) und W(≡CPh)(OCMe₃)₃ (25 mg) in Toluol (30 mL) wird 1 h unter Ar auf 80°C erwärmt. Man destilliert das Lösungsmittel im Vakuum ab, reinigt den verbleibenden Rückstand säulenchromatographisch (Hexan/Ethylacetat 4/1), und erhält das gewünschte Cycloalkin als farblose Kristalle (134 mg, 61 %). Analytische Daten wie unter Beispiel 1 angeführt.

BEISPIEL 8

Cyclisierung mit Hilfe von Mo(CO)_e/p-Chlorphenol als Alkinmetathese-Katalysator

Eine Lösung des Diin Substrats 1 (200 mg), Mo(CO)₆ (5 mg) und p-Chlorphenol (55 mg) in Chlorbenzol (75 mL) wird 3 h auf 120°C erhitzt. Während der Reaktion wird ein leichter Argon-Strom durch das Reaktionsgemisch durchgeleitet. Zur Aufarbeitung werden flüchtige Bestandteile im Vakuum abkondensiert und der verbleibende Rückstand säulenchromatographisch gereinigt (Eluationsmittel Hexan/t-Butylmethylether 20/1). Man erhält das 30-gliedrige Cycloalkin 2 als farblosen Feststoff (126 mg, 70%). 1 H-NMR: δ = 5.63 (dt, 2H), 4.01 (t, 4H), 3.00 (dd, 4H, J = 4, 1.6), 2.08 (t, 4H, J = 6.5), 1.36 (m, 8H), 1.23 (m, 18H). 13 C-NMR: δ = 171.8, 126.3, 80.8, 65.2, 38.6, 29.7, 29.6, 29.5, 29.4, 29.1, 28.9, 28.8, 26.2, 19.0.

BEISPIEL 9

Darstellung von Ambrettolid durch Diin-Metathese und anschließende Halbhydrierung

Eine Lösung des Diins 3 (1.0 g), Mo(CO)₆ (42 mg) und p-Chlorphenol (425 mg) in Chlorbenzol (150 mL) wird 19 h auf 120°C erhitzt. Während der Reaktionszeit wird ein leichter Argonstrom über eine Gaseinleitung durch das Reaktionsgemisch geleitet. Zur Aufarbeitung werden flüchtige Bestandteile im Vakuum abkondensiert und der verbleibende Rückstand säulenchromatographisch gereinigt (Eluationsmittel Hexan/t-Butylmethylether 20/1). Man erhält das Cycloalkin 4 als farblosen Syrup (568 mg, 69%), welcher

die folgenden analytischen Daten aufweist: ¹H-NMR: δ = 4.10 (t, 2H, J = 5.2), 2.28 (t, 2H, J = 7), 2.13 (m, 4H), 1.60 (m, 4H), 1.15 (m, 14H). ¹³C-NMR: δ = 174.4, 80.7, 80.6, 64.3, 35.0, 28.8, 28.7, 28.5, 28.46, 28.40, 27.4, 25.3, 19.1, 18.9.

Ein Reaktionsgemisch bestehend aus Cycloalkin 4 (154 mg), Chinolin (60 μL) und Lindlar Katalysator (= 5% Pd auf Calciumcarbonat, vergiftet mit Blei) (60 mg) in Hexan (3 mL) wird 1.5 h unter einer Atmosphäre von Wasserstoff (1 atm) gerührt. Man filtriert den Katalysator ab, wäscht das Filtrat mit wässiger HCl (5%), trocknet die organische Phase über Na_2SO_4 und entfernt das Lösungsmittel im Vakuum. Anschließende Säulenchromatographie (Eluationsmittel Hexan/t-Butylmethylether 20/1) ergibt Ambrettolid 5 (138 mg, 92%). ¹³C-NMR: δ = 174.3, 130.5, 130.4, 64.1, 34.9, 29.8, 29.1, 29.0, 28.9, 28.8, 28.7, 28.0, 27.3, 27.1, 25.7, 25.6.

BEISPIEL 10

Cyclisierung von Hexandicarbonsäure bis(3-pentinyl)ester mit Hilfe von Mo[N(t-Bu)(3,5-C₆H₃Me₂)]₃/CH₂Cl₂ als Diin-Metathesekatalysator

Ein Reaktionsgemisch bestehend aus Hexandicarbonsäure bis(3-pentinyl)ester (60 mg) und Mo[N(t-Bu)(3,5-C₈H₃Me₂)]₃ (13.5 mg) (dargestellt gemäß der Literatur: C. E. Laplaza et al. *J. Am. Chem. Soc.* 1996, 118, 8623) in Toluol (15 mL) und CH₂Cl₂ (50 μL) wird 19 h unter Argon auf Rückfluß erhitzt. Man destilliert das Lösungsmittel im Vakuum ab, reinigt den verbleibenden Rückstand säulenchromatographisch (Hexan/Ethylacetat 4/1), und erhält das gewünschte Cycloalkin als farblose Kristalle (38.8 mg, 80 %). Analytische Daten wie unter Beispiel 1 angeführt.

Anstelle von CH₂Cl₂ können zur Aktivierung der Molybdänkomponente auch CHCl₃, CCl₄, CH₂Br₂, CH₂l₂, α,α-Dichlortoluol oder Trimethylchlorsilan verwendet werden. Die Reaktion kann analog in Dichlormethan als Lösungsmittel durchgeführt werden.

Diin-Metathese mit Hilfe von Mo[N(t-Bu)(3,5-C₆H₃Me₂)] $_{2}$ /CH₂Cl₂

Ein Reaktionsgemisch bestehend aus Diin 6 (91.5 mg) und Mo[N(t-Bu)(3,5- $C_6H_3Me_2$)]₃ (20.2 mg) (dargestellt gemäß der Literatur: C. E. Laplaza et al. *J. Am. Chem. Soc.* **1996**, *118*, 8623) in Toluol (15 mL) und CH_2Cl_2 (50 µL) wird 22 h unter Argon auf 80°C erhitzt. Man destilliert das Lösungsmittel im Vakuum ab, reinigt den verbleibenden Rückstand säulenchromatographisch (Hexan/Ethylacetat 8/1) und erhält das gewünschte Cycloalkin **7** als farblosen Syrup (62 mg, 84 %). Analytische Daten: ¹H-NMR: δ = 4.28 (t, 4H, J = 5.4), 3.43 (s, 4H), 2.49 (t, 4H). ¹³C-NMR: δ = 169.4, 78.1, 62.9, 34.6 (2x), 19.6. MS: m/z (rel. Intensität): 228 (56, [M¹]), 78 (100).

BEISPIEL 12

Diin-Metathese mit Hilfe von Mo[N(t-Bu)(3,5-C,H,Me,)],/CH,Cl,

Ein Reaktionsgemisch bestehend aus Diin **8** (511 mg) und Mo[N(t-Bu)(3,5- $C_6H_3Me_2$)] $_3$ (104.4 mg) (dargestellt gemäß der Literatur: C. E. Laplaza et al. *J. Am. Chem. Soc.* **1996**, *118*, 8623) in Toluol (82 mL) und CH_2Cl_2 (160 μ L) wird 20 h unter Argon auf 80°C erhitzt. Man destilliert das Lösungsmittel im Vakuum ab, reinigt den verbleibenden Rückstand säulenchromatographisch (Hexan/Ethylacetat 4/1) und erhält das gewünschte Cycloalkin **9** als farblosen Syrup (369 mg, 88 %). Analytische Daten: 1 H-NMR: δ = 8.76 (dd, 1H, J = 4.9,

1.9), 8.12 (dd, 1H, J = 7.9, 1.5), 7.52 (dd, 1H, J = 4.9), 4.63 (t, 2H, J = 5.5), 4.42 (t, 2H, J = 5.6), 2.57 (m, 4H). ¹³C-NMR: δ = 166.1, 165.8, 151.1, 151.0, 137.1, 128.7, 125.1, 79.2, 78.8, 63.4, 63.1, 20.0, 19.4). MS: m/z (rel. Intensität): 245 (2, [M*]), 78 (100).

BEISPIEL 13

Darstellung eines 11-gliedrigen Cycloalkins: Cyclisierung und Cyclodimerisierung von Dimethylmalonsäure bis(3-pentinyl)ester

Eine Lösung von Dimethylmalonsäure bis(3-pentinyl)ester 10 (262 mg) und W(\equiv CCMe₃)(OCMe₃)₃ (28 mg) in Chlorbenzol (60 mL) rührt man 1 h bei 80°C unter Argon. Nach Abdestillieren des Lösungsmittels bei 12 mbar und säulenchromatographischer Reinigung des Rückstandes isoliert man wachsartig kristallines Cycloalkin 11 (97 mg, 47 %) sowie kristallines Cycloalkadiin 12 (87 mg, 42 %) und gewinnt wenig Diin 10 zurück (37 mg, 14 %). Daten des Cycloalkins 11: ¹H-NMR: δ = 4.29 (t, 4H, J = 5.8), 2.43 (t, 4H), 1.43 (s, 6H).- ¹³C-NMR: δ = 172.0, 79.8, 61.8, 50.0, 22.1, 19.7,.- MS, m/z (rel. Intensität): 152 (2) [M-58], 137 (3), 111 (5), 87 (5), 78 (100), 70 (49), 66 (17), 65 (18), 41 (16).-C₁₁H₁₄O₄ (210.2) ber.:C 62.85. H 6.71; gef.: C 63.01. H 6 67. Daten des Cycloalkadiins 12: ¹H-NMR: δ = 4.15 (t, 8H, J = 6.8), 2.53 (t, 8H), 1.43 (s, 12H).- ¹³C-NMR: δ = 172.4, 77.3, 63.5, 49.4, 22.5, 18.8.- MS, m/z (rel. Intensität): 420 (5) [M¹], 174 (8), 156 (48), 141 (14), 115 (7), 87 (10), 78 (100), 70 (34), 69 (31), 66 (13), 65 (11), 41 (19).

Tabelle 1. Synthese funktionalisierter, makrocyclischer Cycloalkine durch ringschließende Metathese von Diinen unter Nutzung von W(≡CCMe₃)(OCMe₃)₃ als Katalysator.

Substrat	Produkt	Aus- beute
		52%
		79%
		69%
		52%
		97%
		>90%
		52%
O Ph	S Ph	55%
		20%

PATENTANSPRÜCHE

- 1. Verfahren zur Darstellung von carbo- oder heterocyclischen Produkten mit 9 oder mehr Ringatomen durch ringschließende Metathesereaktionen, dadurch gekennzeichnet, daß Diin-Substrate in Gegenwart von einem oder mehreren homogen oder heterogen im Reaktionsmedium vorliegenden Alkinmetathese-Katalysatoren umgesetzt werden.
- 2. Verfahren nach Anspruch 1 zur Darstellung von carbo- oder heterocyclischen Produkten mit 12 oder mehr Ringatomen.
- 3. Verfahren nach Anspruch 1-2, wobei die Diin-Substrate eine oder mehrere funktionelle Gruppen in Form von Substituenten an der Kette oder Heteroatomen innerhalb der Kette enthalten; die genannten funktionellen Gruppen umfassen verzweigte oder unverzweigte Alkylreste, aromatische oder nicht aromatische carbocyclische Ringe, aromatische oder nicht aromatische Stickstoff-, Sauerstoff-, Schwefel- oder Phosphorhaltige heterocyclische Ringe, Carbonsäuren, Ester, Ether, Epoxide, Silylether, Thioether, Thioacetale, Disulfide, Alkohole, Anhydride, Imine, Silylether, Silylenolether, Ammoniumsalze, Amine, Amide, Nitrile, Perfluoralkyl-Gruppen, gem-Dialkylgruppen, Alkene, Halogene, Ketone, Ketale, Aldehyde, Acetale, Carbamate, Carbonate, Urethane, Harnstoffe, Sulfonate, Sulfone, Sulfonamide, Sulfoxide, Phosphate, Phosphonate, Nitro-Gruppen, Organosilan-Einheiten oder Metallzentren.
- Verfahren nach Anspruch 1-3, wobei der verwendete Alkin-Metathesekatalysator ein Übergangsmetall-Alkylidin Komplex ist.
- 5. Verfahren nach Anspruch 4, wobei der Übergangsmetall-Alkylidinkomplex in situ im Reaktionsmedium gebildet wird.
- Verfahren nach Anspruch 4, wobei der als Katalysator verwendete Übergangsmetall-Alkylidin Komplex eine Verbindung vom Typ M(≡ CR¹)(OR²)₃ ist, mit

$$M = Mo, W$$
 $R^1 = C1-C20$ Alkyl, Aryl, Alkenyl, Alkylthio, Dialkylamino $R^2 = C1-C20$ Alkyl, Aryl

7. Verfahren nach Anspruch 6 mit

$$\begin{split} \mathbf{M} &= \mathbf{W} \\ \mathbf{R}^1 &= \mathbf{CMe_3}, \ \mathbf{Ph} \\ \mathbf{R}^2 &= \mathbf{CMe_3}, \ \mathbf{CH(CF_3)_2}, \ \mathbf{CMe_2CF_3}, \ \mathbf{CMe(CF_3)_2}, \ \mathbf{C(CF_3)_3}, \ \mathbf{C_6H_3Me_2}, \ \mathbf{C_6H_3i-Pr_2}, \\ \mathbf{C_6H_3t-Bu_2} \end{split}$$

8. Verfahren nach Anspruch 4, wobei der als Katalysator verwendete Übergangsmetall-Alkylidin Komplex eine Verbindung vom Typ Re(= CR¹)(=NAr)(OR²)₂ ist, mit

R¹ = C1-C20 Alkyl, Aryl, Alkenyl Ar = C6-C20 Aryl

 $R^2 = C1-C20$ Alkyl, Aryl

9. Verfahren nach Anspruch 8 mit

$$\begin{split} &\mathsf{R}^1 = \mathsf{CMe_3},\, \mathsf{Ph} \\ &\mathsf{Ar} = \mathsf{C6}\text{-}\mathsf{C20}\, \mathsf{Aryl} \\ &\mathsf{R}^2 = \mathsf{CMe_3},\, \mathsf{CH}(\mathsf{CF_3})_2,\, \mathsf{CMe_2CF_3},\, \mathsf{CMe}(\mathsf{CF_3})_2,\, \mathsf{C}(\mathsf{CF_3})_3,\, \mathsf{C_6H_3Me_2},\, \mathsf{C_6H_3i\text{-}Pr_2},\\ &\mathsf{C_6H_3t\text{-}Bu_2} \end{split}$$

- Verfahren nach Anspruch 1-3, wobei der verwendete Alkin-Metathesekatalysator ein Komplex mit Metall≡Metall Dreifachbindung ist.
- Verfahren nach Anspruch 10, wobei der verwendete Alkin-Metathesekatalysator ein Komplex vom Typ (RO)₃M≡M(OR)₃ ist, mit

M = Mo, WR = C1-C20 Alkyl

12. Verfahren nach Anspruch 10 mit

$$R = CMe_3$$
, $CH(CF_3)_2$, CMe_2CF_3 , $CMe(CF_3)_2$, $C(CF_3)_3$

13. Verfahren nach Anspruch 1-3, wobei der Alkinmetathesekatalysator aus M[N(R¹)Ar]₃ und einer Halogenverbindung vom Typ R²₂EX₂ oder R³₃SiX gebildet wird, mit

M = Mo, W $R^1 = C1-C20$ Alkyl, sec-Alkyl, t-Alkyl, Cycloalkyl Ar = C6-C20 Aryl $R^2 = H$, F, Cl, Br, I, C1-C20 Alkyl, Aryl E = C, Si $R^3 = C1-C20$ Alkyl, Aryl X = F, Cl, Br, I

14. Verfahren nach Anspruch 13 mit

$$\begin{split} &\mathsf{M} = \mathsf{Mo} \\ &\mathsf{R}^1 = \mathsf{t\text{-}Bu}, \, \mathsf{i\text{-}Pr} \\ &\mathsf{Ar} = \mathsf{C_6H_5}, \, \mathsf{C_6H_4Me}, \, \mathsf{C_6H_3Me_2}, \, \mathsf{C_6H_3(iPr)_2}, \, \mathsf{C_6H_3(t\text{-}Bu)_2}, \, \mathsf{C_6H_2Me_3} \\ &\mathsf{R}^2 = \mathsf{H}, \, \mathsf{F}, \, \mathsf{CI}, \, \mathsf{Br}, \, \mathsf{I}, \, \mathsf{C_6H_5} \\ &\mathsf{R}^3 = \mathsf{Me}, \, \mathsf{t\text{-}Bu}, \, \mathsf{Ph}, \, \mathsf{i\text{-}Pr} \end{split}$$

- 15. Verfahren nach Anspruch 1-14, wobei die Diin-Substrate durch ein oder mehrere strukturelle Elemente konformativ für den Ringschluß präorganisiert sind; die genannten strukturellen Elemente umfassen chirale Zentren, Wasserstoffbrückenbindungen, supramolekulare Strukturen, rigide Rückgrade, Koordination an Metallzentren.
- 16. Verfahren nach Anspruch 1-14, wobei die Diin-Substrate konformativ flexibel sind.
- 17. Verfahren nach Anspruch 1-16, wobei die Diin-Substrate in trägergebundener Form eingesetzt werden.
- 18. Verfahren nach Anspruch 1-17, wobei durch Wahl der Konzentration der Diin-Substrate in Lösung die Bildung des makrocyclischen Cycloalkins begünstigt ist.

- 19. Verfahren nach Anspruch 1-18, wobei die Reaktion bei Drücken kleiner als Atmosphärendruck durchgeführt wird.
- 20. Verfahren nach Anspruch 1-18, wobei durch das Durchleiten eines inerten Gasstroms durch das Reaktionsmedium Nebenprodukte abgeführt werden.
- 21. Verfahren nach Anspruch 1-20, wobei durch Additiva die Aktiviät der verwendeten Katalysatoren erhöht wird.
- 22. Verfahren nach Anspruch 21, wobei als Additiva Phenole, geminal-Dihalogenalkane (gem-Dihalogenalkane) oder Halogensilane eingesetzt werden.
- 23. Verfahren nach Anspruch 22, wobei als Additiva Phenol, Trifluormethylphenol, Bis(trifluormethyl)phenol, Fluorphenol, Difluorphenol, Pentafluorphenol, Chlorphenol, Dichlorphenol, Pentachlorphenol, Dichlormethan, Dibrommethan, Diiodmethan, Chloroform, Bromoform, Iodoform, Tetrachlorkohlenstoff, Tetrabromkohlenstoff, Tetraiodkohlenstoff, α,α-Dichlortoluol, Trimethylchlorsilan, Dimethyldichlorsilan, Trimethylbromsilan, Dimethyl(t-butyl)chlorsilan, Dimethylphenylchlorsilan eingesetzt werden.
- 24. Verfahren nach Anspruch 1-23, wobei die Diin-Substrate cyclodimerisiert werden.
- 25. Verfahren zur Darstellung von carbo- oder heterocyclischen Cycloalkenen mit 9 oder mehr Ringatomen, dadurch gekennzeichnet, daß nach Anspruch 1-24 dargestellte Cycloalkine selektiv in Cycloalkene mit einheitlicher Konfiguration der Doppelbindung überführt werden.
- 26. Verfahren nach Anspruch 25 zur Herstellung von Cycloalkenen mit (Z)-konfigurierter Doppelbindung.
- 27. Verfahren zur Darstellung von Epothilon oder Epothilon-Analoga, dadurch gekennzeichnet, daß ein funktionalisiertes Cycloalkin nach Anspruch 2

- hergestellt und im Anschluß nach bekannten Verfahren in Epothilon oder Epothilon-Analoga umgesetzt wird.
- 28. Verfahren nach Anspruch 1-27, wobei die carbo- oder heterocyclischen Produkte Antibiotika, Pharmaka für die Human- oder Veterinärmedizin, Agrochemikalien, Pheromone, Kronenether, Geruchsstoffe, Parfuminhaltsstoffe, oder Geschmacksstoffe sind.

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C07B37/10 //C07D245/02,C07D313/00,C07D321/00,C07D323/00, C07D327/10,C07D491/056			
According to	International Patent Classification (IPC) or to both national classification	ation and IPC	
·	SEARCHED		
IPC 6	ocumentation searched (classification system followed by classification CO7B CO7D	on symbols)	
Documentat	tion searched other than minimum documentation to the extent that s	uch documents are included in the fields se	parched
Electronic d	ata base consulted during the international search (name of data bas	se and, where practical, search terms used)
			•
0.000	PATE ADMINISTRATION TO BE DELEVANT	The second secon	
Category °	ENTS CONSIDERED TO BE RELEVANT		
Category	Citation of document, with indication, where appropriate, of the rele	avani passages	Relevant to claim No.
A	A. FÜRSTNER: "Conformationally u macrocyclization reactions by rin metathesis"		1,25
	JOURNAL OF ORGANIC CHEMISTRY, vol. 61, no. 12, 1996, pages 3942 XP002077144 EASTON US	-3943,	
, ⁽	P. BERTINATO: "Studies toward a		27
; ., :	of epothilone A: stereocontrolled of the acyl region and models for macrocyclization" JOURNAL OF ORGANIC CHEMISTRY,		
i.	vol. 61, no. 23, 1996, pages 8000 XP002077143 EASTON US	-8001,	
	see the whole document		
		/	
χ Furti	her documents are listed in the continuation of box C.	Patent family members are listed	in annex.
° Special ca	tegories of cited documents :	"T" later document published after the inte	
consid	ent defining the general state of the art which is not lered to be of particular relevance document but published on or after the international	or priority date and not in conflict with cited to understand the principle or the invention	eory underlying the
filing d "L" docume which	late ont which may throw doubts on priority claim(s) or is cited to establish the publication date of another	"X" document of particular relevance; the c cannot be considered novel or cannot involve an inventive step when the do "Y" document of particular relevance; the c	be considered to cument is taken alone
"O" docume other i	ent referring to an oral disclosure, use, exhibition or means	cannot be considered to involve an inv document is combined with one or mo ments, such combination being obviou	rentive step when the re other such docu-
	ent published prior to the international filing date but nan the priority date claimed	in the art. "&" document member of the same patent	/amily
Date of the	actual completion of the international search	Date of mailing of the international sea	rch report
	7 May 1999	10/06/1999	
Name and r	nalling address of the ISA European Patent Office, P.B. 5818 Patentlaan 2	Authorized officer	
	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Wright, M	

1

0.40	AL-A DOMINISTRO CONOTICIOS DO DE DEL TRADO	PUTTER 9	7/000/4
C.(Continue	cition) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
J-1,	The state of the s		Harami to Galli No.
A	J. BOIVIN: "An efficient synthesis of large ring acetylenes" TETRAHEDRON LETTERS, vol. 36, no. 32, 1995, pages 5737-5740, XP002103896 OXFORD GB see page 5737 ~ page 5738		1
P,X	A. FÜRSTNER: "Ring-closing metathesis of functionalized acetylene derivatives: a new entry into cycloalkynes" ANGEWANDTE CHEMIE INTERNATIONAL EDITION., vol. 37, no. 12, 3 July 1998, pages 1734-1736, XP002103897 WEINHEIM DE see the whole document		1-4,6,7, 16,18-20
		·	
	•		
	,	:	
	,		
		•	
ĺ			
			1

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 6 C07B37/10 //C07D245/02,C07D313/00,C07D321/00,C07D323/00, C07D327/10,C07D491/056			
Nach der Ir	nternationalen Patentklassifikation (IPK) oder nach der nationalen Kla	assifikation und der IPK	
B. RECHE	RCHIERTE GEBIETE		
Recherchie IPK 6	nter Mindestprüfstoff (Klassiflikationssystem und Klassiflikationssymb CO7B CO7D	oole)	
Recherchie	rte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, s	oweit diese unter die recherchierten Gebiete	fallen
Während de	er internationalen Recherche konsultierte elektronische Datenbank (I	Name der Datenbank und evtl. verwendete	Suchbegriffe)
		•	
	ESENTLICH ANGESEHENE UNTERLAGEN	:	·
Kategorie®	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angab	pe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	A. FÜRSTNER: "Conformationally umacrocyclization reactions by rimetathesis"	unbiased ng closing	1,25
	JOURNAL OF ORGANIC CHEMISTRY, Bd. 61, Nr. 12, 1996, Seiten 3942 XP002077144 EASTON US	2-3943,	
Α	P. BERTINATO: "Studies toward a of epothilone A: stereocontrolled of the acyl region and models for macrocyclization". JOURNAL OF ORGANIC CHEMISTRY, Bd. 61, Nr. 23, 1996, Seiten 8000 XP002077143 EASTON US siehe das ganze Dokument	d assembly	27
		-/	
entn	ere Veröffentlichungen sind der Fortsetzung von Feld C zu ehmen	Siehe Anhang Patentfamilie	·
"A" Veröffer aber n "E" älteres Anmel "L" Veröffer schein andere soll od ausgel "O" Veröffe eine B "P" Veröffel	nttlichung, die den allgemeinen Stand der Technik definiert, icht als besonders bedeutsam anzusehen ist. Dokument, das jedoch erst am oder nach dem internationalen dedatum veröffentlicht worden ist ntlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er- en zu lassen, oder durch die das Veröffentlichungsdatum einer en zu lassen, oder durch die das Veröffentlichung belegt werden er die aus einem anderen besonderen Grund angegeben ist (wie lührt) ntlichung, die sich auf eine mündliche Offenbarung, enutzung, eine Ausstellung oder andere Maßnahmen bezieht mitlichung, die vor dem internationalen Anmeldedatum aber noch	"T" Spätere Veröffentlichung, die nach dem oder dem Prioritätsdatum veröffentlicht Anmeldung nicht kollidlert, sondern nur Erfindung zugrundeliegenden Prinzips (Theorie angegeben ist "X" Veröffentlichung von besonderer Bedeur kann allein aufgrund dieser Veröffentlicher Tätigkeit beruhend betrau "Y" Veröffentlichung von besonderer Bedeur kann nicht als auf erfinderischer Tätigkeit kann nicht als auf erfinderischer Tätigke werden, wenn die Veröffentlichung mit veröffentlichungen dieser Kategorie in diese Verbindung für einen Fachmann "&" Veröffentlichung, die Mitglied derselben	worden ist und mit der zum Verständnis des der oder der ihr zugrundeliegenden tung; die beanspruchte Erfindung hung nicht als neu oder auf chtet werden tung; die beanspruchte Erfindung eit beruhend betrachtet einer oder mehreren anderen verbindung gebracht wird und naheliegend ist
Datum des	Abschlusses der internationalen Recherche	Absendedatum des internationalen Rec	herchenberichts
2	7. Mai 1999	10/06/1999	
Name und F	Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Bevollmächtigter Bediensteter Wright, M	

1

	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN	Date Assessed No.
Categorie®	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Telle	Betr. Anspruch Nr.
Α .	J. BOIVIN: "An efficient synthesis of large ring acetylenes" TETRAHEDRON LETTERS, Bd. 36, Nr. 32, 1995, Seiten 5737-5740, XP002103896 OXFORD GB siehe Seite 5737 - Seite 5738	1
P,X	A. FÜRSTNER: "Ring-closing metathesis of functionalized acetylene derivatives: a new entry into cycloalkynes" ANGEWANDTE CHEMIE INTERNATIONAL EDITION., Bd. 37, Nr. 12, 3. Juli 1998, Seiten 1734-1736, XP002103897 WEINHEIM DE siehe das ganze Dokument	1-4,6,7, 16,18-20
. •	·	

1

THIS PAGE BLANK (USPTO)