Chapitre 34

Espaces préhilbertiens réels

34	Espaces préhilbertiens réels
	34.4 Produit scalaire canonique sur \mathbb{R}^n
	34.5 Exemple
	34.14Identités remarquables
	34.15Proposition 34.15 bis
	34.16Inégalité de Cauchy-Schwarz, inégalité triangulaire
	34.17Exemple
	34.18Exemple
	34.20 Vecteur orthogonal à tout vecteur
	34.21 Exemple
	34.23Exemple
	34.24Exemple
	34.25Propriétés des familles orthogonales

34.4 Produit scalaire canonique sur \mathbb{R}^n

Théorème 34.4

L'application

$$\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}; (X, Y) \mapsto {}^{\mathrm{t}}XY = \sum_{k=1}^n x_k y_k$$

est un produit scalaire sur \mathbb{R}^n , appelé produit scalaire canonique.

Pour $X, Y \in \mathbb{R}^n$:

$$-tXY \in \mathbb{R} \text{ donc } ^tYX = ^t(^tXY) = ^tXY$$

— bilinéarité : RAF

-
$${}^t XX = \sum_{k=1}^n x_k^2 \ge 0$$
 et $\sum_{k=1}^n x_k^2 = 0 \Leftrightarrow \forall k \in [1, n], x_k = 0 \Leftrightarrow x = 0$

34.5 Exemple

Exemple

Montrer que

$$(X,Y) \mapsto {}^t X \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} Y$$

est un exemple de produit scalaire sur \mathbb{R}^2 distinct du produit scalaire usuel.

— bilinéarité : RAF

— Pour
$$X, Y \in \mathbb{R}^2$$
, ${}^tX \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} Y \in \mathbb{R}$, donc:

$${}^{t}X\begin{pmatrix} 2 & 1\\ 1 & 2 \end{pmatrix}Y = {}^{t}\begin{pmatrix} {}^{t}X\begin{pmatrix} 2 & 1\\ 1 & 2 \end{pmatrix}Y \end{pmatrix}$$
$$= {}^{t}Y^{t}\begin{pmatrix} 2 & 1\\ 1 & 2 \end{pmatrix}X$$
$$= {}^{t}Y\begin{pmatrix} 2 & 1\\ 1 & 2 \end{pmatrix}X$$

On a:

$${}^{t}X\begin{pmatrix} 2 & 1\\ 1 & 2 \end{pmatrix}X = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} 2x+y\\ x+2y \end{pmatrix}$$
$$= 2x^{2} + 2xy + 2y^{2}$$
$$= \underbrace{2(x^{2} + xy + y^{2})}_{\geq 0 \text{ car } x^{2} + xy + y^{2} \geq |xy|}$$

En particulier, si ${}^tX\begin{pmatrix}2&1\\1&2\end{pmatrix}X=0$ alors |xy|=0, puis x=y=0. La forme est définie positive.

34.14 Identités remarquables

Propostion 34.14

Pour tout $(x, y) \in E^2$, on a:

$$||x + y||^2 = ||x||^2 + 2\langle x, y \rangle + ||y||^2$$

 et

$$\langle x + y, x - y \rangle = ||x||^2 - ||y||^2$$

$$||x + y||^2 = \langle x + y, x + y \rangle$$

$$= \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle \text{ (bilinéarité)}$$

$$= ||x||^2 + 2\langle x, y \rangle + ||y||^2 \text{ (symétrie)}$$

Idem pour la seconde identité.

34.15 Proposition **34.15** bis

Propostion 34.15 bis

Soit $\|.\|$ une norme euclidienne. Soit $x \in E, \lambda \in \mathbb{R}$.

$$- \|\lambda x\| = |\lambda| \|x\|$$

$$- ||xx|| = |x|||x||$$
$$- ||x|| = 0 \Leftrightarrow x = 0$$

$$\|\lambda x\|^2 = \langle \lambda x, \lambda x \rangle$$
$$= \lambda^2 \|x\|^2$$

34.16 Inégalité de Cauchy-Schwarz, inégalité triangulaire

Théorème 34.16

Soit E un espace préhilbertien réel et x et y dans E.

— Inégalité de Cauchy-Schwarz :

$$|\langle x, y \rangle| \le ||x|| \times ||y||$$

avec égalité si et seulement si x et y sont colinéaires.

— Inégalité triangulaire :

$$||||x|| - ||y||| \le ||x + y|| \le ||x|| + ||y||$$

l'inégalité de droite est une égalité si et seulement si x et y sont positivement colinéaires.

— Inégalité triangulaire, version distance :

$$|d(x,y) - d(y,z)| \le d(y,z) \le d(x,y) + d(y,z)$$

— Si x=0, l'inégalité est vérifiée pour tout $y\in E.$

On suppose $x \neq 0$. On considère, pour $y \in E$ fixé :

$$\varphi : \mathbb{R} \to \mathbb{R}; t \mapsto ||tx + y||^2$$
$$= \langle tx + y, tx + y \rangle$$
$$= t^2 ||x||^2 + 2t \langle x, y \rangle + ||y||^2$$

f est une fonction polynomiale de degré 2 ($||x| \neq 0$) positive donc de discriminant $\Delta \leq 0$.

Or $\Delta = 4\langle x, y \rangle^2 - 4||x||^2||y||^2$. D'où le résultat.

Si $\Delta = 0$, alors f s'annule une unique fois en t_0 . On a alors $||t_0x + y||^2 = 0$.

Donc $t_0 x + y = 0$.

Donc (x, y) est liée.

Réciproquement, si (x,y) est liée, alors $y=t_0x$ $(x\neq 0)$ et on a encore $f(t_0)=0$.

— Pour $(x,y) \in E^2$:

$$||x + y|| \le ||x|| + ||y|| \Leftrightarrow ||x + y||^2 \le (||x|| + ||y||)^2$$

$$\Leftrightarrow ||x||^2 + 2\langle x, y \rangle + ||y||^2 \le ||x||^2 + 2||x|| ||y|| + ||y||^2$$

$$\Leftrightarrow \langle x, y \rangle \le ||x|| ||y||$$

La dernière assertion est vraie d'après l'inégalité de Cauchy-Schwarz, la première l'est tout autant. RAS pour l'inégalité généralisée.

Si ||x+y|| = ||x|| + ||y||, le cas d'égalité de Cauchy-Schwarz affirme que (par ex) :

$$y = \alpha x, \alpha \in \mathbb{R}$$

Mais alors (en supposant $x \neq 0$):

$$||1 + \alpha|| ||x|| = ||x + y|| = (1 + |\alpha|) ||x||$$

Donc $|1 + \alpha| = 1 + |\alpha|$. Nécessairement, $\alpha \ge 0$

34.17 Exemple

Exemple 34.17

Pour tout $(x_1, \ldots, x_n) \in \mathbb{R}^n$,

$$\left(\sum_{k=1}^{n} x_k\right)^2 \le n \sum_{k=1}^{n} x_k^2$$

avec égalité si et seulement si $x_1 = \cdots = x_n$.

On munit $E = \mathbb{R}^n$ de son produit scalaire canonique.

On applique l'inégalité de Cauchy-Schwarz aux vecteurs $\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ et $\begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$.

$$\left| \left\langle \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \right\rangle \right| \leq \left\| \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \right\| \left\| \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \right\|$$
$$\left| \sum_{k=1}^n 1 \times x_k \right| \leq \sqrt{\sum_{k=1}^n x_k^2} \sqrt{\sum_{k=1}^n 1^2}$$
$$= \sqrt{n} \sqrt{\sum_{k=1}^n x_k^2}$$

34.18 Exemple

Exemple 34.18

Soit a et b deux réels tels que a < b. Pour tout $f \in \mathcal{C}^1([a;b],\mathbb{R})$, on a

$$f(b)^2 - f(a)^2 \le 2\sqrt{\int_a^b f(t)^2 dt} \sqrt{\int_a^b f'(t)^2 dt}$$

On munit $C^0([a, b], \mathbb{R})$ du produit scalaire usuel :

$$\forall (f,g) \in \mathcal{C}^0([a,b],\mathbb{R}), \langle f,g \rangle = \int_a^b f(t)g(t) dt$$

On applique l'inégalité de Cauchy-Schwarz aux vecteurs f et f' :

$$||f|| \times ||f'|| \ge |\langle f, f' \rangle|$$

$$= \left| \int_a^b f(t)f'(t) dt \right|$$

$$= \left| \left[\frac{f^2(t)}{2} \right]_a^b \right|$$

$$= \left| \frac{f(b)^2 - f(a)^2}{2} \right|$$

34.20 Vecteur orthogonal à tout vecteur

Théorème 34 20

Dans un espace préhilbertien réel, le vecteur nul est le seul vecteur orthogonal à tout vecteur.

 \Rightarrow RAF

 \sqsubseteq Si x est orthogonal à tout vecteur de E, alors $x \perp x$, donc $||x||^2 = 0$, donc x = 0.

34.21 Exemple

Exemple 34.21

Exemple 34.21 Montrer que pour le produit scalaire

$$(X,Y)\mapsto^t X\begin{pmatrix}2&1\\1&2\end{pmatrix}Y$$

sur \mathbb{R}^2 , la base canonique n'est pas orthormale, mais la famille $\left(\frac{1}{\sqrt{2}}(1,0),\frac{1}{\sqrt{6}}(1,-2)\right)$ l'est.

 $\|(1,0)\| = \sqrt{2} = \|(0,1)\|$

 $\langle (1,0), (0,1) \rangle = 1$

 ${\rm Donc}$

 $\left|\frac{1}{\sqrt{2}}(1,0)\right| = 1$

On a $||(1,-2)|| = \sqrt{6}$

Et $\langle (1,0), (1,-2) \rangle = 0$.

34.23 Exemple

Exemple 34.23

La famille des fonctions $t \mapsto \sin(nt)$, où $n \in \mathbb{N}$ est orthonormale dans $\mathcal{C}([0; 2\pi], \mathbb{R})$ pour le produit scalaire

$$(f,g)\mapsto \frac{1}{\pi}\int_0^{2\pi}f(t)g(t)\,dt$$

On note pour $n \in \mathbb{N}$, $f_n : [0; 2\pi] \to \mathbb{R}$; $x \mapsto \sin(nx)$. Soit $p \neq n$.

$$\langle f_p, f_n \rangle = \frac{1}{\pi} \int_0^{2\pi} f_n(t) f_p(t) dt$$

$$= \frac{1}{\pi} \int_0^{2\pi} \sin(nt) \sin(pt) dt$$

$$= \frac{1}{2\pi} \int_0^{2\pi} (\cos((n-m)t) - \cos((n+m)t) dt$$

$$= \frac{1}{2\pi} \left[\frac{1}{n-p} \sin((n-p)t) - \frac{1}{n+p} \sin((n+p)t) \right]_0^{2\pi} \quad (n \neq p)$$

$$= 0$$

Si n = p alors :

$$||f_n|| = \frac{1}{2\pi} \int_0^{2\pi} (1 - \cos(2nt)) dt$$

= 1

Donc (f_n) est bien une famille orthonormée.

34.24 Exemple

Exemple 34.24

Dans $\mathcal{C}([-1;1],\mathbb{R})$, l'ensemble des fonctions paires et l'ensemble des fonctions impaires sont deux sousespaces vectoriels orthogonaux pour le produit scalaire

$$(f,g)\mapsto \int_{-1}^1 f(t)g(t)\,dt$$

D'après le chapitre 4, si f est impaire :

$$\int_{-1}^{1} f(t) dt = 0$$

Si f est paire et g impaire, alors fg est impaire et ainsi $\langle f, g \rangle = 0$.

34.25 Propriétés des familles orthogonales

Théorème 34 25

Soit E un espace préhilbertien réel.

1. Théorème de Pythagore : pour tout $(x,y) \in E^2$, x et y sont orthogonaux ssi $||x+y||^2 = ||x||^2 + ||y||^2$. De surcro $^$ it, si (x_1, \ldots, x_n) est une famille orthogonale de vecteurs de E, alors

$$\left\| \sum_{k=1}^{n} x_k \right\|^2 = \sum_{k=1}^{n} \|x_k\|^2$$

- 2. Toute famille orthogonale de vecteurs non nuls de E est libre. En particulier, si E est de dimension finie n non nulle, toute famille orthogonale de n vecteurs est une base orthogonale.
- 1. RAF
- 2. Soit $(e_i)_{i \in I}$ une famille orthogonale. Soit $(\lambda_i)_{i \in I}$ une famille de scalaires à support fini. On suppose en outre que :

$$\forall i \in I, e_i \neq 0$$

On suppose que $\sum_{i \in I} \lambda_i e_i = 0$.

Soit $j \in I$.

$$\begin{split} \langle \sum_{i \in I} \lambda_i e_i, e_j \rangle &= 0 \\ &= \sum_{i \in I} \lambda_i \underbrace{\langle e_i, e_j \rangle}_{=0 \text{ pour } i \neq j} \\ \text{donc } \lambda_j \|e_j\|^2 &= 0 \\ \text{donc } \lambda_j &= 0 \end{split}$$

Donc la famille est libre.