		L. J. Institute of Engineering & Techno	ology, Ah	me	dabad					
		DM Practice Book_202								
		Note: The Practice Book is for reference only, LJU Test pap							1	
	Sr. No.	Question_text	Answer_ text	M a r k s	Option1	Optio n2	Option 3	Option 4	Option5	Option 6
1	1	If $A = \{1,2,3,4,6\}$ amd $B = \{2,3,4\}$ then which one of the following is correct?	B is a subset of A	1	A is a univer sal set	B is a subset of A	B is a supers et of A	A is a null set		
1	2	What is value of $(A - B) \cup (B - A) \cup (A \cap B)$?	$A \cup B$	1	$A \cup B$	$A \cap B$	A	В		
1	3	What is the cardinality of the set of odd positive integers less than 10?	5	1	10	5	3	20		
1	4	The set O of odd positive integers less than 10 can be expressed by ————	{1, 3, 5, 7, 9}	1	{1, 2, 3}	{1, 3, 5, 7, 9}	{1, 2, 5, 9}	{1, 5, 7, 9, 11}		
1	5	If X and Y are two sets, such that $X \cup Y$ has 40 elements, X has 28 elements and Y has 22 elements. How many elements does $X \cap Y$ have?	10	1	30	20	10	5		
1	6	If set A contains 3 elements and another set B contains 6 elements then what is minimum number of elements that $(A \cup B)$ can have?	6	1	3	6	8	9		
1	7	The cardinality of the set of even positive integers less than 20 is?	9	1	8	10	9	12		
1	8	Let the players who play cricket be 12, the ones who play football 10, those who play only cricket are 6, then the number of players who play only football are, assuming there is a total of 16 players.	4	1	16	8	4	10		

		L. J. Institute of Engineering & Techno	ology Ab	mo	dahad					
		DM Practice Book 202		Ше	uabau					
		Note: The Practice Book is for reference only, LJU Test pap		ot b	e compi	llsory set	from thi	S.		
	Sr. No.	Question_text	Answer_ text	M a r k s	Option		Option 3	Option 4	Option5	Option 6
1	9	In the given figure the if $n(A)=20, n(U)=50, n(C)=10$ and $n(A\cap B)=5$ then $n(B)=7$	35	1	35	20	30	10		
1	10	Let the students who likes table tennis be 12, the ones who like lawn tennis 10, those who like only table tennis are 6, then number of students who likes only lawn tennis are, assuming there are total of 16 students.	4	1	16	8	4	10		
1	11	The shaded area of figure is best described by?	A U B − (A ∩ B)	1	A' (Com pleme nt of A)	A U B - (A ∩ B)	A-B	В		
1	12	If A is $\{\{\Phi\}, \{\Phi, \{\Phi\}\}\}\$, then the power set of A has how many element?	4	1	2	4	6	8		
1	13	If the number of subsets of a set are 4 then the number of elements in that sets are	2	1	1	2	3	4		
1	14	Which of these sets are equal: $A = \{x,y,z\}, B = \{z,y,z,x\}, C = \{y,x,y,z\}, D = \{y,z,x,y\}, E = \{z,y,x\}$?	All of these	1	B and C	C and D	A and E	A and B		
1	15	If a set A={x: x is a prime number less than 4} then n[P(P(A))] is	16	1	8	16	32	64		
1	16	If $A = \{x: x \text{ is square of natural numbers} \le 8\}$ and $B = \{2x + 1: x \in N\}$, What is $A \cap B$?	{9,25, 49}	1	{0,1,4 ,9,25, 49,12 1}	{1,4,1 6,36,6 4}	{9,25, 49}	{1,9, 25,49 }		

L. J. Institute of Engineering & Technology, Ahmedabad **DM Practice Book 2025** Note: The Practice Book is for reference only, LJU Test paper may not be compulsory set from this. U Sr. Ouestion text Answer Option1 Optio Option Option Option5 Option No. text n2 3 4 6 If M and B are two sets such that $M \cap B$ has 15%, M has 35%, B has 25%, how 45% 30% 50% 45% 40% many percentages does $M \cup B$? 18 If $A = \{x : x \in N : x \le 5\}$. {1,3,5 {1,2,3, {1,2,3, {2,3,4, {1,2, $B = \{x: x \text{ is prime}, x < 6\}$ and 4,5} ,7,9} 3,4,5, 4,5} 5,7} $C = \{x : x \in N, x \text{ is odd and } x < 9\}.$ 6,7,8 Find $(A \cup B) \cap (A \cup C)$? In a survey of 60 people it was found that 30 22 30 25 None 25 people read newspapers H, of26 read newspaper I, these 26 read newspapers T, 9 read both H and I, 11 read both H and T. 8 read both T and I, 3 read all three newspapers. Find the numbers of students who read exactly one newspaper? Let A denote the set of quadrilaterals having two diagonals equal and bisecting The The The set The The The set None each other. Let B denotes the set of quadrilaterals having diagonals bisecting set of set of set of of set of of of each other at 90°. The $A \cap B$ is Parall Rectangl Squar Rhomb Squar Recta these ngles es and es elogra uses es Rhombu ms ses Which of the following is/are not partitions of a set $S = \{e, q, u, a, t, i, o, n\}$ (ii), (ii), (iii), (ii), (ii), (v)(ii) & (i), (iii) & (iii) & (iii) & (iii) (iv) & & (vi) (iii) $\{\{e, q, a\}, \{o, u\}, \{t, n, i\}\}$ (i) & (v) (v) (vi) (v) (v) $\{\{x: x \text{ is vowel}\}, \{n, t, q, u\}\}$ (ii) $\{\{\}, \{t, q\}, \{s: s \text{ is vowel}\}\}$ (iii) $\{\{a, e, i, o, u\}, \emptyset, \{t, n, q\}\}$ (iv) $\{\{i, u, a\}, \{e, t, n\}, \{\emptyset\}, \{q, o\}\}$ (v) $\{\emptyset, S\}$ (vi)

		L. J. Institute of Engineering & Techno	ology, Ah	med	dabad					
		DM Practice Book_202								
		Note: The Practice Book is for reference only, LJU Test paper	er may no	ot b		sory set	from thi	S.		
	Sr.	Question_text		M	Option1		Option 3	Option	Option5	Option
n i	No.		text	a r		n2	3	4		6
t				k						
N				S						
О										
٠										
1	22	Given $A = \{\{a, b\}, \{c\}, \{d, e, f\}\}$		3						
		(a) List of elements of A.								
		(b) Find $n(A)$								
		(c) Find power set of A.								
1	23			2						
		(b) Find the power set of the set: $A = \{x, \{y, z\}, w, p\}$								
1	24			2						
		$Find(a)(A \cup B) \cap (A \cup C)(b)(A \cap B) \cup (A \cap C)$								
1	25	Write True or False:		3						
		(a) $1 \subset \{1,2,3\}$								
		(b) $\{1,2\} \subseteq \{1,2,3\}$								
		$(c) \phi \subseteq \{\{\phi\}\}$								
		$(d) \phi \subseteq \{\phi, \{1\}, \{a\}\}$								
1	26	(e) $\{a, \{b\}, c, d\} \subset \{a, b, \{c\}, d\}$ If $A = \{x^2 - 2x - 3 = 0\}$ and $B = \{y^2 - 4y - 5 = 0\}$ then find $A \cup (A \cap B)$?		2						
1	27	Let U be the set of Real numbers; $A = \{x \mid x \text{ is a solution of } x^2 - 1 =$		3						
		0) and $B = \{-1, 4\}$. Compute:- (a) \overline{A} (b) \overline{B} (c) $\overline{(A \cup B)}$ (d) $\overline{(A \cap B)}$								
1	28	If $A = \{4,5,7,8,10\}$, $B = \{4,5,9\}$ and $C = \{1,4,6,9\}$ then verify that $A \cup A$		3						
		$(B \cap C) = (A \cup B) \cap (A \cup C).$								
1	29	Using Venn Diagram, prove or disprove:		3						
		$A \cap B \cap C = [(A - B) \cup (A - C)]$								
1	30	Using Venn Diagram show that: $A \cup (\overline{B} \cap C) = (A \cup \overline{B}) \cap (A \cup C)$		3						
1	31	Using Venn Diagram show that: $A \oplus (B \oplus C) = (A \oplus B) \oplus C$		3						
1	32	Prove the following using Venn diagram: $A \cap (B \oplus C) = (A \cap B) \oplus (A \cap C)$		3						

		L. J. Institute of Engineering & Techn		med	labad					
		DM Practice Book_20		4.1			P 41 •			
U	Sr.	Note: The Practice Book is for reference only, LJU Test pap Question_text	Answer_	ot b M	e compuls Option1	Optio	Option	S. Option	Option5	Option
	No.	Question_text	text	a	Option1	n2	3	4	Options	6
i				r						
t N				k						
0				8						
1	33			3						
		by using Venn diagram.								
1	34			3						
		by using Venn diagram								
1	35			3						
	_	Graphically.								
1	36	If A, B and C are sets, prove both analytically and graphically, that $A -$		3						
		$(B \cap C) = (A - B) \cup (A - C).$								
1	37	,		3						
		(a) $A - B = \{1, 3, 7, 11\}, B - A = \{2, 6, 8\} $ and $A \cap B = \{4, 9\}$								
1	20	(b) $A - B = \{1, 2, 4\}, B - A = \{7, 8\} \text{ and } A \cup B = \{1, 2, 4, 5, 7, 8, 9\}$		2						
1	38	Let U = {1,2,3,4,5,6,7,8,9,10}, A = {1,2,4,5,6,7}, B = {1,3,5,6,9} & C = {2,5,6,7,8}. 1) Draw the venn diagram		3						
		2) Compute, $(A \cup B) \cap C$, $A - (B - A)$, $(A \cap C) \times (A \cap B)$								
1	39	Prove that $(A \cup B)' \equiv A' \cap B'$		3						
1	37	There that $(H \cup B) = H \cap B$		3						
1	40	If $U = \{a, b, c, d, e\}, P = \{a, b, c\} \text{ and } Q = \{b, c, e\}.$		3						
		Prove the De Morgan's law.								
	41	Prove $(A \cap B) \cup (A \cap B') = A$		3						
1	42	Prove the following identities using Venn diagram.		3						
		$(a) (A \cup B) - (A \cap B) = (A - B) \cup (B - A),$								
1	43	(b) $A - B = A - (A \cap B)$ Prove that following: $(A - B) \cup (B - A) = (A \cup B) - (A \cap B)$		3						

	L. J. Institute of Engineering & Techno	ology, Ah	<u>me</u> d	labad					
	DM Practice Book_20%	25							
	Note: The Practice Book is for reference only, LJU Test pap	er may no	ot b		ory set	from thi			
U Sr. n No. i t N o	Question_text	Answer_ text	M a r k s	Option1	Optio n2	Option 3	Option 4	Option5	Option 6
1 44	Let $S = \{1,2,3,4,5,6,7,8,9\}$. Determine whether or not each of the following is a partition of S. (a) $\{\{1,3,5\},\{2,6\},\{4,8,9\}\}$ (b) $\{\{1,3,5\},\{2,4,6,8\},\{5,7,9\}\}$ (c) $\{\{1,3,5\},\{2,4,6,8\},\{7,9\}\}$ (d) $\{S\}$		3						
1 45			3						
1 46			4						
1 47	·		3						
1 48	If A , B , C are three sets, prove that $A - (B - C) = (A - B) \cup (A \cap B \cap C)$ both analytically and using Venn Diagram.		3						
1 49	X is the set of all three digit integers. $X = \{a \text{ is an integer}: 100 \le a \le 999\}$. Let A_i denote the set of integers in X whose i^{th} digit is i , then evaluate $ A_1 \cup A_2 \cup A_3 $. Find the cardinality of the set $A_1 \cup A_2 \cup A_3$.		3						

		L. J. Institute of Engineering & Techno	ology, Ah	med	dabad					
		DM Practice Book_202								
		Note: The Practice Book is for reference only, LJU Test paper	er may no	ot b	e compuls	ory set	from thi	s.		
US		Question_text	Answer_	M	Option1	Optio	Option	Option	Option5	Option
n N	lo.		text	a		n2	3	4		6
t				k						
N				s						
О										
•										
			1		<u> </u>			T T		
1	50			4						
		$\{h,p,q,r\}.$								
		Find $X \cup Y, Y \cap Z \cap X, X - (Y \cup Z), (X \cup Y)', X', \cup X' \cap Y', X\Delta Y \text{ using Venn}$								
		Diagram.								
1	51	In a class of 120 students numbered 1 to 120, all even numbered students opt for		3						
		Physics, those whose numbers are divisible by 5 opt for Chemistry and those								
		whose numbers are divisible by 7 opt for Math. How many opt for none of the								
		three subjects?								
1	52	Each student in Liberal Arts at some college has a mathematics requirement A		4						
		and a science requirement B.								
		A poll of 140 sophomore students shows that:								
		60 completed A,								
		45 completed B,								
		20 completed both A and B.								
		Use a Venn diagram to find the number of students who have completed:								
		(a) At least one of A and B;								
		(b) exactly one of A or B;								
		(c) neither A nor B.								
1	53	In a survey of 120 people, it was found that:		4						
		65 read Newsweek magazine,								
		45 read Time,								
		42 read Fortune,								
		20 read both Newsweek and Time								
		25 read both Newsweek and Fortune,								
		15 read both Time and Fortune,								
		8 read all three magazines.								
		(a) Find the number of people who read at least one of the three magazines.								
		(b) Find Venn diagram								
		(c) Find the number of people who read exactly one magazine.								

		L. J. Institute of Engineering & Techn		med	dabad					
		DM Practice Book_20					0 (1.0			
* *	~	Note: The Practice Book is for reference only, LJU Test page		ot b					<u> </u>	
U n i t N o	Sr. No.	Question_text	Answer_ text	M a r k s	Option1	Optio n2	Option 3	Option 4	Option5	Option 6
	54	A survey of a sample of 25 new cars being sold at a local auto dealer was conducted to see which of three popular options air-conditioning (A), radio (R) and power windows (W), were already installed. The survey found: 15 had air-conditioning, 12 had radio, 11 had power windows, 5 had air conditioning and power windows, 9 had air-conditioning and radio, 4 had radio and power windows, 3 had all three options, 2 had no options. Find the number of cars that had: (a) Only power windows. (b) Only air conditioning. (c) Only radio. (d) Radio and power windows but not air conditioning. (e) Air-conditioning and radio but not power windows. (f) Only one of the options.		5						
1	55	A survey of 500 television watchers produced the following information: 285 watch football games,195 watch hockey games,115 watch basketball games,45 watch football and basketball games,70 watch football and hockey games,50 watch hockey and basketball games and 50 do not watch any of the 3 kinds of games. (i) How many people in the survey watch all 3 kinds of games? (ii) How many people watch exactly one of the sports? (iii) Draw the Venn diagram.		3						
1	56	Find the number of ways in which all letters of the word "MUNMUN" be arranged such that no two letters of same type are together. Use Principle of Inclusion and Exclusion.		4						

		L. J. Institute of Engineering & Techno	ology, Ah	med	labad					
		DM Practice Book_202								
		Note: The Practice Book is for reference only, LJU Test paper	er may no	ot b	e compuls	ory set	from thi	S.		
U n i t N o	Sr. No.	Question_text	Answer_ text	M a r k s	Option1	Optio n2	Option 3	Option 4	Option5	Option 6
1	57	Words are formed by using all the letters of the word "HONOLULU" exactly once so that no two alikes are together. How many ways are there? Use Principle of Inclusion and Exclusion.		4						
1	58	of the word: "EXAMINATION" if alike letters are never adjacent. Use Principle of Inclusion and Exclusion.		4						
1	59	In a class students undergoing a computer course the following were observed Out of a total 50 students: 30 know Web Designing, 18 know Tally 26 know Networking, 9 know both Web Designing and Tally, 16 know both Web Designing and Networking, 8 know both Tally and Networking, 47 know at least one of the three courses. From this we have to determine (a) How many students know none of these courses? (b) How many students know all three courses? (c) How many students know exactly one course?		4						
1	60	Consider a set of integers from 1 to 250. Find how many of these numbers are divisible by 3 or 5 or 7? Also, indicate how many are divisible by 3 or 5 but not 7?		3						
1	61	How many integers between 1 to 2000 are divisible by 2, 3, 5 or 7?		3						
1	62	Among 100 students, 32 study Maths, 20 study Physics, 45 study Biology, 15 study Maths and Biology, 7 study Maths and Physics, 10 study Physics and Biology and 30 do not study any of the three subjects. (a) Find the number of students studying all the three subjects? (b) Find the number of students studying exactly one of the three subjects?		4						

			1 41							
		L. J. Institute of Engineering & Techno DM Practice Book 202		med	labad					
		Note: The Practice Book is for reference only, LJU Test pap		ot b	o compula	onv. got	fnom thi	<u> </u>		
U	Sr.	Question_text	Answer_	M	Option1	Optio	Option	Option	Option5	Option
n		Question_text	text	a	Option1	n2	3	4	Options	6
i				r						
t				k						
IN O				S						
	<u> </u>	l		<u> </u>						
1	63	The 60,000 fans who attended the home coming football game bought up all the		5						
		paraphernalia for their cars. Altogether 20,000 bumpers stickers, 36,000 window								
		decals and 12000 key rings were sold. We know that 52,000 fans bought at least								
		one item and no one bought more than one of a given item. Also 6000 fans								
		bought both decals and key rings, 9000 bought both decals and bumpers stickers								
		and 5000 bought both key rings and bumper stickers.								
		a) How many fans bought all three items?								
		b) How many fans bought exactly one item? (Only using Venn diagram)								
		c) Someone questioned the accuracy of the total number of purchasers:								
		52000(given that all the other numbers have been confirmed to be correct.) This								
		person claimed the total number of Purchasers to be either 60,000 or 44,000.								
		How do you dispel the claim?								
1	64	There are 350 farmers in a large region.		3						
		260 farm beetroot,								
		100 farm yams,								
		70 farm radish,								
		40 farm beetroot and radish,								
		40 farm yams and radish,								
		30 farm beetroot and yams.								
1		Determine the number of farmers that farm beetroot, yams and radish.		4						
1	65	Among 200 students in a class, 104 students got an "A" in first exam and 84		4						
		students got "A" in second exam. If 68 students did not get an "A" in both exam.								
		(a) How many students got "A" in both the exam.								
		(b) If number of students who got an "A" in the first exam is equal to that who								
		got an "A" in second exam. If the total number of students who got "A" in								
		exactly one exam is 160 and if 16 students did not get "A" in either exam. Determine the number of students who got "A" in first exam, those who got "A"								
		in second exam and number of students who got "A" in both exams?								
		in second exam and number of students who got A in both exams?								

		L. J. Institute of Engineering & Techno	ology, Ah	med	labad					
		DM Practice Book_202	25							
		Note: The Practice Book is for reference only, LJU Test paper								
U n i	Sr. No.	Question_text	Answer_ text	M a r	Option1	Optio n2	Option 3	Option 4	Option5	Option 6
t N o				k s						
1	66	It was found that in the first-year computer science class of 80 students, 50 knew COBOL, 55 'C' and 46 PASCAL. It was also known that 37 knew 'C' and COBOL, 28 'C' and PASCAL and 25 PASCAL and COBOL. 7 students however knew none of the languages. Find (i)How many knew all the three languages? (ii)How many knew exactly two languages? (iii)How many knew exactly one language? (iv) Fill in the correct number of languages in each region of Venn diagram.		4						
1	67	Suppose that 200 out of 220 mathematics students at a college take atleast one of the languages French, German and Russian. Also, suppose 165 study French, 145 study German, 142 study Russian, 120 study French and German, 125 study French and Russian, 115 study German and Russian. (a) Find the number of students who study all the three languages. (b) Draw Venn diagram. (c) Determine number of students who study (i) Exactly one language, (ii) Exactly two language.		3						
1	68	Find the number of ways in which all letters of the word "KUTKUT" be arranged such that no two letters of same type are together. Use Principle of Inclusion and Exclusion.		3						
1	69	Find the number of ways in which all letters of the word "INDEPENDENCE" be arranged such that no two letters of same type are together using Principle of Inclusion and Exclusion.		4						
2	70	Let $A = \{1,2,3,4,5\}$. A map f from A to A is defined as $f(1) = 2$, $f(2) = 3$, $f(3) = 3$ is	Not a functi on	1	One- one only	Onto only	Many- one	biject ive	Not a function	None
2	71	Let $A = \{1,2,3,4,5\}$. A map f from A to A is defined as $f(1) = 1, f(1) = 3, f(2) = 2, f(3) = 3, f(4) = 3$ and $f(5) = 3$ is	Not a functi on	1	One- one only	Onto only	Many- one	biject ive	Not a function	None

		L. J. Institute of Engineering & Techno		me	dabad					
		DM Practice Book_202 Note: The Practice Book is for reference only, LJU Test paper		ot b	e compu	lsorv set	from this	S.		
	Sr. No.	Question_text	Answer_ text	M a r k s	Option1	Optio n2	Option 3	Option 4	Option5	Option 6
2	72	Let $X = \{1,2,3,4\}$. Determine which of the relation on X is a function from X into X . $f = \{(2,3), (1,4), (2,1), (3,2), (4,4)\}, g = \{(3,1), (4,2), (1,1)\}, h = \{(2,1), (3,4), (1,4), (2,1), (4,4)\}.$	h	1	f	g	h	F and g	All of these	None of these
2	73		\begin{cases} 4, \ 6, \ 9 \end{cases}	1	{1,2,3}	(4,) (6,) (9)	1, 2, 3, 4, 6, 9	{1,4, 6,9}	{1}	All real numbe rs
2	74	In a get to gather function, everybody handshakes with everybody else. The total number of handshakes is 105. The number of the person in hall is	15	1	12	11	14	18	16	15
2	75	Let $f: \mathbb{Z} \to \mathbb{Z}$ defined as $f(x) = x^2 - 5$ is	Many- one only	1	One- one only	Onto only	Many- one	biject ive	Not a function	None
2	76	(i) $5x - 3$ (ii) $x^2 + 4$. (iii) $x^3 - 3x^2 + 7$ (iv) $x^4 + 3x - 1$ (v) $x^4 - x^2 + 4$	(ii),(iii) & (v)	1	(ii) & (iv)	(ii), (iii) & (v)	(ii), (iii) & (iv)	(ii) & (iv)	(iii) & (v)	(iii), (iv) & (v)
2	77	Let $f: \mathbb{Z} \to \mathbb{Z}$ defined $asf(x) = 4x - 3$ is	One- one only	1	One- one only	Onto only	Many- one	biject ive	Not a function	None
2	78	Let $f: \mathbb{N} \to \mathbb{N}$ defined $asf(x) = x $ is	bijecti ve	1	One- one only	Onto only	Many- one	biject ive	Not a function	None

L. J. Institute of Engineering & Technology, Ahmedabad **DM Practice Book 2025** Note: The Practice Book is for reference only, LJU Test paper may not be compulsory set from this. U Sr. Ouestion text Answer Option1 Optio Option Option Option5 Option No. text n2 3 4 6 Let $f: A \to A$ defined as f(x) = x is known as _____. (2)&(Bijecti Many (1)&(4)(2)&(Const Identit 3) 3) ant ve -one 2 Let $f, g, h: R \to R$ be defined by f(x) = x, g(x) = 2x, h(x) = 3x then find the -6 6 -6 2 -2 None 80 0 of composition of the function $[f \cdot (g \cdot h)](x)$ at x = -1. these If set P consists of 4 elements and set O consists of 5 elements, then how many 120 20 15 Not 81 144 120 16 injective functions can we define from P to Q? possib le A function $f: \mathbb{R} \to \mathbb{R}$ defined as f(x) = 3x + 5 is Bijecti Many-Bijec Neither Not One-Onto ve one one only tive one-one well define only only nor ont2o 8! 8! 8! 8! - 3!8 8! How many distinct permutations of the letters in the word 'ELEMENTS' are 8! 3! 3! <u>3!</u> 3 33 there? Five boys and five girls are to be seated in a row then how many ways John and $2 \times 9!$ $8! \times$ 10! $2 \times 9!$ 5! $5! \times 5!$ Mary Must be seated together? \times 6! 18 How many distinct even numbers can be formed from digits 3, 5, 7, 8 without 16 3 16 12 13 23 24 repetition? 6! 4! 4! How many distinct permutations can be formed from a word 'BANANA' with 4! $3! \cdot 3!$ 6! $4! \cdot 3!$ 2! 3! 3! 2! all vowels together? A box contains 8 blue balls and 6 red balls. Find the number of ways two balls 48 8 6 14 48 36 87 64 can be drawn from the box if they must be different color. Find *n* if P(n, 4) = 42 P(n, 2). 7 9 6 8 9 10 12

		L. J. Institute of Engineering & Techno	ology, Ah	med	dabad					
		DM Practice Book_202								
		Note: The Practice Book is for reference only, LJU Test paper								
	Sr. No.	Question_text	Answer_ text	M a r k s	Option1	Optio n2	Option 3	Option 4	Option5	Option 6
2	89	Find the number of ways 3 elements a, b, c, can be assigned to 3 cells, so exactly 1 cell is empty.	18	1	3	6	9	12	18	24
2	90	How many 4 letter words can be formed of a word 'SOCIOLOGICAL' as all letters are different.	P(7, 4)	1	4!	7!	P(12,4	P(10, 4)	P(7,4)	12! 3! 2! 2!
2	91	In how many ways letter 'ORGANISE' can be arranged in such a way that all vowels always come together?	5! · 4!	1	8!	8! 3!	5! + 4!	5! · 4!	6!	None
2	92	The number of three English letter words, having at least one consonant, but not having two consecutive consonants, is	3780	1	2205	3780	2730	3360	3500	None
2	93	In how many ways can three examinations be scheduled within a five days period so that no two examinations are scheduled on the same day?	60	1	15	50	20	60	40	None
2	94	What would be the number of permutations of letters a, b, c, d, e, f, g taken all together if neither 'cab' nor 'fed' pattern appear?	4806	1	4500	4800	4806	4808	4506	None
2	95	In how many ways can you take 3 cards with at least 2 aces out of well stuffed 52 cards?	292	1	48	132	288	292	300	306
2	96	There are 12 points in a plane of which 5 are colinear then the what is the number of triangles that can be formed with vertices at these points are	210	1	210	35	70	105	792	175
2	97	In a course, a professor gives five grades {A, B, C, D, F}. What is the minimum number of students required so that four of them are guaranteed to get same grade?	16	1	15	16	14	12	18	25

	L. J. Institute of Engineering & Technology, Ahmedabad DM Practice Book_2025										
		Note: The Practice Book is for reference only, LJU Test paper		ot b	e compu	lsory set	from thi	S.			
	Sr. No.	Question_text	Answer_ text	M a r k s	Option1	Optio n2	Option 3	Option 4	Option5	Option 6	
2	98	If 7 colors are used to paint 50 bicycles then at least how many bicycles will be of same color?	8	1	6	7	8	9	10	11	
2	99	At least how many people among 200000 people are born at same day? (In a year)	548	1	547	548	549	550	551	None	
2	100	Six friends discover that they have total 2161 Rs with them on trip then one or more of them must have at least Rs?	361	1	360	361	362	365	369	370	
2	101	Let $f: \mathbb{Z} \to \mathbb{Z}$ defined as $f(x) = x$, if x is even $\& x + 1$, if x is odd is	Many one and Onto		One- one and Into	Many one and Into	One- one and Onto	Many one and Onto	Not a function	Not define d for some numbe	
2	102	Let there are 10 points $a_1, a_2,, a_{10}$ on a plane such that no three points lies on a same line then how many triangles can be drawn through these points?	120		45	60	90	120	110	None	
2	103	Represent the given function in (i) Graphical (ii) Tabular & (iii) Matrix form $f = \{(1,2), (4,3), (3,2), (6,5), (2,4), (5,1)\}$		3							
2	104	Let $f, g : Z \to Z$ be two functions defined as $f(x) = x^2 + 3$ and $g(x) = x^2 + 2x - 5$. Find $g \circ f$ and $f \circ g$. Are they equal?		3							
2	105	Let $f, g, h : R \to R$ be functions defined as $f(x) = x^3 - 1$, $g(x) = \log x$, $h(x) = \cos x$. Find $hogof$, fog , hof and hog .		4							
2	106	Show that $f: R - \left\{-\frac{5}{3}\right\} \to R - \left\{-\frac{2}{3}\right\}$ defined as $f(x) = \frac{1-2x}{3x+5}$, $x \neq -\frac{5}{3}$ is bijective. Find f^{-1} .		4							
2	107	Show that $f: R - \left\{\frac{7}{3}\right\} \to R - \left\{\frac{4}{3}\right\}$ defined as $f(x) = \frac{4x-5}{3x-7}$, is bijective. Find f^{-1} .		4							

	L. J. Institute of Engineering & Techno	ology, Ah	med	labad					
	DM Practice Book_202								
	Note: The Practice Book is for reference only, LJU Test pap	er may no	ot b						
U Sr. n No. i t N o	Question_text	Answer_ text	M a r k s	Option1	Optio n2	Option 3	Option 4	Option5	Option 6
2 108	Find an inverse of function $f: R - \{3\} \to R - \{1\}$ defined as $f(x) = \frac{x-2}{x-3}$ if it exists.		3						
2 109	Find an inverse of function $f: Z \to Z$ defined as $f(x) = 4x + 7$ if it exists.		3						
2 110	Let $X = \{1,2,3\}$ and p,q,r,s be functions from X to X given by $p = \{(1,2),(3,1),(2,3)\}$ $q = \{(1,3),(2,1),(3,3)\}$ $r = \{(1,2),(2,2),(3,1)\}$ $s = \{(1,3),(2,3),(3,3)\}$ Find $p \circ q, r \circ q, q \circ s$ and $p \circ q \circ s$.		4						
2 111			3						
2 112	Let $f, g: R^+ \to R^+$ be two functions defined as $f(x) = x^2 + 4x + 4$ and $g(x) = \sqrt{x}$. Check $g \circ f$ and $f \circ g$ are One-one or not.		3						
2 113	Find the number of times the digits 3 will be written when listing the integers from 1 to 1000.		3						
2 114	3 cards are chosen from a pack of 52 cards. (1) In how many ways can this be done? (2) In how many ways can you select three cards so that all of them are face cards? (3) In how many of the selections, all cards are of the same colour? (4) In how many of them all cards are of the same suit?		3						
2 115	bowlers. In how many ways can cricket eleven be selected if we have select1 wicket keeper and at least 4 bowlers?		2						
2 116	-		2						

			1 41		1 1					
		L. J. Institute of Engineering & Technol DM Practice Book 202		med	<u>abad</u>					
		Note: The Practice Book is for reference only, LJU Test papers		ot he	compuls	orv set	from this	<u> </u>		
U n i t N o		Question_text	Answer_ text	M a r k s	Option1	Optio n2		Option 4	Option5	Option 6
2	117	A man, a woman, a boy,a girl, a dog and a cat are walking down a long and winding road one after the other. (i) In how many ways can this happen? (ii) In how many ways can this happen if dog and only the dog is between the man and boy?		3						
2	118	Suppose repetitions are not permitted. (a) Find the number of three-digit numbers that can be formed from the six digits 2, 3, 5, 6, 7, and 9. (b) How many of them are less than 400? (c) How many of them are even?		3						
2	119	How many permutations can be made by the letters of the word, "SERIES"? How many of these will start from S and end with S? In how many of these words, the vowels and the constants will be situated in alternative order?		3						
2	120	How many rectangles are there in 8×8 chess board?		3						
2	121	A class contains 9 men and 3 women. Find the number of ways a teacher can select a committee of 4 from the class where there is (i) no restrictions, (ii) 2 men and 2 women, (iii) exactly one woman, (iv) at least one woman.		4						
	122	In a box there are 5 black pens, 3 white pens and 4 red pens. In how many ways can 2 black pens, 2 white pens and 2 red pens can be chosen?		3						
2	123	Find the number m of ways 10 students can be divided into three teams where one team has 4 students and the other teams have 3 students		3						
2	124	How many distinct numbers can be formed of 5 digits such that number is (i) odd, (ii) multiple of 5, (iii) divisible by 10.		3						

		L. J. Institute of Engineering & Techno		med	dabad					
		DM Practice Book_202								
T.T.	C	Note: The Practice Book is for reference only, LJU Test pap		ot b					0	
U n i t N o	Sr. No.	Question_text	Answer_ text	a r k s	Option1	Optio n2	Option 3	Option 4	Option5	Option 6
2	125	A committee of 12 students consist of 3 representatives from first year, 4 from second year and 5 from third year. Out of these 12 students, 3 are to be excluded from the committee by drawing lots. What is the chance that: (i) 3 students belong to 3 different years, (ii) 2 belong to first year and 1 belong to other years, (iii) Three belong to same year.		3						
2	126	How many 6 lettered palindromes are there which can be formed using the letters from alphabets?		4						
2	127	A man has 7 relatives, 4 of them are ladies and 3 gentlemen, his wife has 7 relatives and 3 of them are ladies and 4 gentlemen. In how many ways can they invite a dinner party of 3 ladies and 3 gentlemen so that there are 3 of man's relatives and 3 of wife's relatives?		5						
2	128	Suppose repetitions are not permittable, (1) How many four-digit numbers can be formed from six digits 1, 2, 3, 5, 7, 8? (2) How many of such numbers are less than 4000? (3) How many in (1) are even? (4) How many in (2) are odd? (5) How many in (1) contain both 3 and 5. (6) How many in (1) are divisible by 10.		4						
2	129	Suppose 7 students are staying in a hall in a hostel and they are allotted 7 beds. Among them, Pravin does not want to bed next to Minesh because Minesh snores. Then, in how many ways can you allot the beds?		4						
2	130	How many numbers greater than a one million can be formed by using the digits 4,6,0,6,8,4,6?		3						
2	131	Find the minimum number of students needed to guarantee that 4 of them were born: (a) on the same day of the week; (b) in the same month.		2						

		L. J. Institute of Engineering & Techn		me	dabad					
		DM Practice Book_20								
		Note: The Practice Book is for reference only, LJU Test papers		ot b						_
	Sr. No.	Question_text	Answer_ text	M a r k s	Option1	Optio n2	Option 3	Option 4	Option5	Option 6
2	132	Minimum how many cards must be picked from adeck of 52 cards so as to guarantee that at least 3 cards of (i) same suit, (ii) same color, (iii) non face.		3						
2	133	How many minimum numbers of students in a class that at least 3 student's names start with same letter?		3						
2	134	How many 7-digit numbers greater than 1000000 can be formed by using only digits 1, 2, 0, 2, 4, 2, 4?		3						
2	135	A research team of 6 people is to formed from 10 Chemists, 5 Politicians, 8 Economists and 15 Biologists. How many teams have (a) At least 5 Chemists? (b) Exactly 3 Economists? (c) 4 Chemists but no Economist?		4						
3	136		statem ents	1	conju nction s	disjunc tions	statem ents	conn ectiv es		
3	137	Which of the following is not a statement?	"This statem ent is true."	1	"Cana da is a countr y."	"Mosc ow is the capital of Spain."	"This statem ent is true."	"Tor onto is an old city."		
3	138	If truth value of statement P is T, then the truth value of $\neg P$ is	F	1	T	F	T or F	T and F		

		L. J. Institute of Engineering & Techn	ology, Ah	me	dabad					
		DM Practice Book_20	25							
T.	G	Note: The Practice Book is for reference only, LJU Test papers							- · · · ·	
	Sr. No.	Question_text	Answer_ text	M a r k s	Option1	Optio n2	Option 3	Option 4	Option5	Option 6
3	139	The statement $(\sim p) \rightarrow (\sim q)$ is logically equivalent to which of the statements below? i) $(p \rightarrow q)$ ii) $q \rightarrow p$ iii) $(\sim q) \lor p$ iv) $(\sim p) \lor q$	II and III only	1	I only	II only	II and III only	II and IV only	I and II only	
3	140	If truth values of statement P is true and Q is false, then the truth value of PAQ (conjunction of P and Q) is	F	1	Т	F	T or F	T and F		
3	141	If truth values of statement P is true and Q is false, then the truth value of PVQ (disjunction of P and Q) is	Т	1	Т	F	T or F	T and F		
3	142	If truth value of statement P is T and statement Q is F then the truth value of $(PVQ)\Lambda P$ is	Т	1	T	F	T or F	T and F		
3	143	Consider the statements P: mark is rich. and Q: Mark if happy. Then the symbolic form of the statement "Mark is poor but happy" is	lP∧Q	1	PΛQ	ΊР∧Q	1PVQ	PVQ		
3	144	A statement P is equivalent to	ALL OF ABO VE	1	11P	РЛР	PVP	ALL OF ABO VE		
3	145	If P:product is good. and Q:service is good. then the symbolic form of "either product is good or service is good but not both." is	(PVQ) A1(PAQ)	1	(PVQ) ^1(PAQ)	(PAQ) A 1 (PAQ)	(PAQ) V1(PAQ)	(PAQ) V1(PV Q)		

		L. J. Institute of Engineering & Technology, Ahmedabad DM Practice Book, 2025											
		DM Practice Book_202	25										
		Note: The Practice Book is for reference only, LJU Test paper							1				
	Sr. No.	Question_text	Answer_ text	M a r k s	Option1	Optio n2	Option 3	Option 4	Option5	Option 6			
3	146	Which of the following is not a well-formed formula?	$((\neg P \rightarrow Q) \rightarrow (Q \rightarrow P)))$	1	(P→(P∨Q))	((¬Q∧ P)∧Q)	$((\neg P \rightarrow Q) \rightarrow (Q \rightarrow P)))$	((¬Q ∨P)∧ Q)					
3	147	If $p \to q$ is false then determine the truth value of $(\neg (p \land q)) \to q$	False	1	True	False	True or False	True and False					
3	148	p is proposition "Indian army moves back", q is proposition "Chinese army moves back", r is proposition "There is no war" Then what is the contrapositive of the statement "If Indian army moves back and Chinese army moves back, then there is no war"	$ \begin{array}{c} \sim r \\ \rightarrow \sim (p \\ \land q) \end{array} $	1	$ \begin{array}{l} \sim r \\ \rightarrow (\sim p \\ \rightarrow \sim q) \end{array} $	$r \\ \to (p \\ \land q)$	$ \begin{array}{l} \sim (p \\ \wedge q) \\ \rightarrow \sim r \end{array} $	$\begin{array}{c} \sim r \\ \rightarrow (p \\ \land q) \end{array}$	$ \begin{array}{l} \sim r \\ \to \sim (p \\ \land q) \end{array} $	None of the above			
3	149	Let p: it is raining outside. & q: I have an umbrella. & r: it is sunny. & s: I have sunglasses. & t: I will go for a walk. Then the symbolic form of the following statement would be: "if it is raining outside and I do not have an umbrella or if it is sunny and I have sunglasses, then I will go for a walk."	$(p \land \\ \sim q) \lor \\ (r \\ \land s) \\ \rightarrow t$	1	(p ∨ ~q) ∧ (r ∨s) → ~t	$(p \\ \land \sim q) \\ \land \\ (r \lor s) \\ \rightarrow \\ \sim t$	$(p \rightarrow q) \land (\sim r \rightarrow \sim s) \rightarrow t$	$ \begin{array}{c} (p \land \\ \sim q) \\ \lor \\ (r \\ \land s) \\ \rightarrow t \end{array} $	$(p \rightarrow q) \land (r \rightarrow s) \rightarrow t$				
3		What is the proposition form of "If the parcel is not properly addressed or is too large, then the post office will not accept it but the parcel is not too large and if Ram wrote the address on the parcel, then it is properly addressed."	$((\sim p \ \ \forall q) \ \ \rightarrow \ \ \sim r) \ \ \wedge (\ \ (\sim q \ \ \Lambda s) \ \ \rightarrow p)$	1	$((\sim p \ \ \forall q)$ $\rightarrow \qquad \qquad$	$((\sim p \lor q) \rightarrow \\ \sim r) \\ \equiv \\ ((\sim q \\ \land s) \\ \rightarrow p)$	$((p \ \forall q \) \rightarrow \\ \sim r) \equiv \\ ((\ \sim q \ \land s) \\ \rightarrow \\ p)$	$((\begin{tabular}{ccc} \propto (plane) & \prop$					

		L. J. Institute of Engineering & Technology		med	dabad					
		Note: The Practice Book is for reference only, LJU Test papers.		ot b	e compu	lsory set	from this	2		
	Sr. No.	Question_text	Answer_ text	M a r k s	Option1		Option 3	Option 4	Option5	Option 6
3	151	Consider the following expressions: i) False ii) Q iii) True iv) $p \lor q$ v) $\sim q \lor p$ The number of expressing given above that are logically implied by $p \land (p \rightarrow q)$ is	4	1	1	2	3	4	5	None of these
3	152	$(P \lor Q) \land (P \to R) \land (Q \to S)$ is equivalent to	None of these	1	$S \wedge R$	$S \to R$	$S \vee R$	All of the abov e	None of these	
3	153	If $p = a$ number from $\{8,9,10,11,12\}$ q = not a composite number r = a square number s = a prime number then what is the value of $\sim ((p \rightarrow \sim q) \land (\sim r \lor \sim s))$	11	1	8,9,10 , 11, 12	8,9,10	11,12	11	12	
3	154		IV only	1	II and III only	IV only	II and IV only	I an d III only	II only	
3	155	$\sim (p \land (\sim q)) \equiv \underline{\hspace{1cm}}$	~p ∨ q	1	~p \	~ <i>p</i> ∧ <i>q</i>	~p ∨ q	~p ∨ ~q		

		L. J. Institute of Engineering & Techno	ology, Ah	me	dabad					
		DM Practice Book_202		4.1		•				
TI	Sr.	Note: The Practice Book is for reference only, LJU Test pap Question text		ot b	e compu Option1			S. Option	Option5	Option
	No.	Question_text	Answer_ text	a r k s	Орионт	n2	Option 3	4	Options	6
<u></u>										
3	156	The statement $(\sim p) \rightarrow (\sim q)$ is logically equivalent to which of the statements below? iv) $(p \rightarrow q)$ v) $q \rightarrow p$ vi) $(\sim q) \lor p$ vii) $(\sim p) \lor q$	II and III only	1	I only	II only	II and III only	II and IV only	I and II only	I an d III only
3	157	$\sim (p \land q) \rightarrow (\sim p \lor (\sim p \lor q)) \equiv \underline{\hspace{1cm}}$	~ p ∨ q	1	Tauto logy	Contra diction	Contin gency	~ p V q	~ (p V q)	~ p ^ q
3	158	Show the following equivalences. $(P \to Q) \to Q \equiv (P \lor Q)$		3						
3	159	Show the following equivalences: $ (\neg P \land (\neg Q \land R)) \lor (Q \land R) \lor (P \land R) \equiv R $		4						
3	160	Show the following equivalences: $\neg (P \land Q) \rightarrow (\neg P \lor (\neg P \lor Q)) \equiv (\neg P \lor Q)$		5						
3	161	Construct the truth table for the following formula. \sim (p \vee q) \Leftrightarrow (\sim p \wedge \sim q)		3						
3	162	Construct the truth table for given statement formulas.(i) $(p \lor q) \leftrightarrow (q \to r)$ (ii)($\sim p \lor q$) $\land p$		3						

	L. J. Institute of Engineering & Techno	ology, Ah	med	dabad					
	DM Practice Book_202								
** ~	Note: The Practice Book is for reference only, LJU Test pap		ot b						
U Sr. No. i t N o .	Question_text	Answer_ text	M a r k s	Option1	Optio n2	Option 3	Option 4	Option5	Option 6
3 163	Construct a truth table for each of these compound propositions. (i) $P \land \forall p$ (ii) $P \lor \forall p$ (iii) $(p \lor \forall p) \rightarrow q$ (iv) $(p \lor q) \rightarrow (p \land q)$ (v) $(p \rightarrow q) \leftrightarrow (\forall p \rightarrow \forall q)$ (vi) $(p \rightarrow q) \rightarrow (q \rightarrow p)$ (vi) $P \land (p \lor q)$		5						
3 164			3						
3 165	Prove that: $\sim (p \lor q) \equiv \sim p \land \sim q$ using truth table.		3						
3 166	Show that $p \leftrightarrow q$ is logically equivalent to $((p \to q) \land (q \to p))$ also $((p \to q) \land (q \to p))$ is logically equivalent to $(\sim p \lor q) \land (\sim q \lor p)$.		3						
3 167	Consider the statements P: Mark is rich. and Q: Mark is happy. Write the following statements into symbolic form. a) Mark is poor but happy. b) Mark is rich or unhappy. c) Mark is neither rich nor happy. d) Mark is poor or he is both rich and unhappy.		4						

		L. J. Institute of Engineering & Techn		med	labad					
		Note: The Practice Book is for reference only, LJU Test pap		ot b	e compul	sorv set	from thi	S.		
	Sr. No.	Question_text	Answer_ text	M a r k s	Option1	Optio n2	Option 3	Option 4	Option5	Option 6
3	168	Using the following propositions: p: I am bored q: I am waiting for one hour r: There is no bus translate the following into English. $(I) \ (q \lor r) \to p$ $(III) \neg q \to \neg p$ $(III) (q \to p) \lor (r \to p)$		3						
3	169	Given the truth values of P and Q as T and those of R and S as F, find the truth values of the following. a) $(7(P \land Q) \lor (7R)) \lor ((Q \rightleftarrows 7P) \rightarrow (R \lor 7S))$ b) $(P \rightleftarrows R) \land (7Q \rightarrow S)$ c) $(P \lor (Q \rightarrow (R \land 7P))) \rightleftarrows (Q \lor 7S)$		5						
3	170			4						
3	171	Show that the following statement is tautological $(p \land (p \rightarrow q)) \rightarrow q$		3						
3	172	Use the law of logic to show that $[(p \rightarrow q) \land \sim q] \rightarrow \sim p$ is a tautology.		4						
3	173	Check whether the statements are tautology or not. (using truth table) $(P \rightarrow (Q \rightarrow R)) \rightarrow ((P \rightarrow Q) \rightarrow (P \rightarrow R))$		4						
3	174	Prove that $P \to (P \lor Q)$ is Tautology.		3			_			

		L. J. Institute of Engineering & Techn	ology, Ah	med	labad					
		DM Practice Book_20	25							
T T	l a	Note: The Practice Book is for reference only, LJU Test pap							0	
	Sr. No.	Question_text	Answer_ text	M a	Option1	Optio n2	Option 3	Option 4	Option5	Option 6
i				r						
N				K S						
0										
•										
3	175	Find if the following is a tautology, contradiction or contingency.		4						
		$((p \lor q) \land \sim p) \to q$								
3	176	Find if the following is a tautology, contradiction or contingency.		5						
		$[(p \to q) \land (q \to r)] \to (p \to r)$								
3	177	Find if the following is a tautology, contradiction or contingency.		3						
		$(p \land q) \land \sim (p \lor q)$								
3	178	Check whether $((\sim p \land q) \lor (q \land r)) \rightarrow r$ is a tautology, contradiction or		5						
		contingency.								
3	179	Check whether the statement $((p \to \sim q) \land (r \to q) \land r) \to p$ is a tautology,		4						
		contradiction or contingency.								
3	180	Check whether the following is Tautology, Contradiction or Contingency.		4						
		$[(p \land q) \lor \{q \land (\sim r)\}] \leftrightarrow [\{(\sim p) \land r\} \lor \{(\sim q) \land (\sim r)\}]$								
3	181	Prove that: $(p \to (q \to r)) \equiv ((p \to q) \to (p \to r))$		5						
3	182	Prove that: $\sim (p \lor q) \equiv \sim p \land \sim q$		3						
3	183	Show the following equivalence: $(P \to ((P \to (Q \to P)) \to P)) \equiv (P \lor (\sim P))$		4						
3	184	Show that propositions $\sim (p \land q)$ and $\sim p \lor q$ are logically equivalent.		5						

		L. J. Institute of Engineering & Techno	ology, Ah	med	lahad					
		DM Practice Book_202								
		Note: The Practice Book is for reference only, LJU Test paper	er may no	ot b	e compuls	ory set	from thi	S.		
U n i t N	Sr. No.	Question_text	Answer_ text	M a r k s	Option1	Optio n2	Option 3	Option 4	Option5	Option 6
0										
3	185	Show the following equivalence: $(Q \to ((P \to P) \to Q)) \equiv Q \lor \sim Q$		2						
3	186	Write Converse, Contrapositive, Inverse and Negation for the given conditional statement: A family becomes literate if the women in it are literate.		3						
3	187	Express the Contrapositive, Converse, Inverse and Negation form of the conditional statement: "I will Pass the DM exam if the marks are greater than 9".		3						
3	188	Express the Contrapositive, Converse, Inverse and Negation forms of the conditional statement given below: I will wash the car if the weather is nice.		3						
3	189	Express the contrapositive and inverse forms of the conditional statement: "I will watch cartoon or cricket match if I turn on TV".		3						
3	190	Express the cards, Converse, Inverse and Negation form of the conditional statement: "If $2x > 0$ is even number and x is rational number, then $x + 1$ is whole number."		3						
3	191	Construct Converse, Inverse and Contra positive of direct statement "If $4x - 2 = 10$, then $x = 3$."		3						
3	192	Check whether $(\sim p \rightarrow r) \land (p \leftrightarrow q)$ is a tautology, contradiction or contingency.		3						
3	193	Express the contrapositive, converse and inverse form of the following statement. if $3 < b$ and $1 + 1 = 2$, then $\sin \frac{\pi}{3} = \frac{1}{2}$.		3						

		L. J. Institute of Engineering & Techno	ology, Ah	me	dabad					
		DM Practice Book_202								
		Note: The Practice Book is for reference only, LJU Test paper								
U n i t N o	Sr. No.	Question_text	Answer_ text	M a r k s	Option1	Optio n2	Option 3	Option 4	Option5	Option 6
3	194	Express the contrapositive and Negation forms of the conditional statement: If it is weekend ,it means there is no work to do.		2						
4	195	"The product of two negative real numbers is not negative." Is given by?	$\forall x \ \forall y$ $((x < 0) \land (y < 0)$ $\rightarrow (xy > 0))$	1	$\exists x \ \forall y \\ ((x < 0) \land (y < 0) \rightarrow (xy > 0))$	3x 3y ((x < 0) \(\lambda\) (y < 0) \(\lambda\) (xy > 0))	∀x ∃y ((x < 0) ∧ (y < 0) ∧ (xy > 0))	((x <		
4	196	P(x) denotes x is a periodic function and C(x) denotes x is a continuous function then the statement "it is not the case that some trigonometric function are not periodic" can be 1 logically represent as I) $\sim \exists x (T(X) \lor \sim P(X))$ II) $\sim \exists x (\sim T(X) \land \sim P(X))$ III) $\sim \exists x (T(X) \land \sim P(X))$ IV) $\sim \exists x (T(X) \land P(X))$	III only	1	Ionly	III only	II only	IV only		
4	197	What is the logical translation of the following statement? "None of my friends are perfect" I) $\exists x(f(x) \land \sim p(x))$ II) $\sim \exists x(f(x) \land p(x))$ III) $\exists x(\sim f(x) \land p(x))$ IV) $\exists x(\sim f(x) \land \sim p(x))$	II only	1	II only	II and III only	III only	I and IV only		

	L. J. Institute of Engineering & Techno	ology, Ah	me	dabad					
	DM Practice Book_202	25							
** 0	Note: The Practice Book is for reference only, LJU Test paper		1 1						
U Sr. n No. i t N	Question_text	Answer_ text	M a r k s	Option1	Optio n2	Option 3	Option 4	Option5	Option 6
4 198	The correct formula for the sentence,	IV	1	II and	II only	IV	I		
	"not all rainy day are cold" is	only	1	III	ii omy	only	only		
	I) $\forall d(Rainy(d) \land \sim cold(d))$			only		om y			
	II) $\forall d(\sim Rainy(d) \rightarrow cold(d))$,					
	III) $\exists d(\sim Rainy(d) \rightarrow cold(d))$								
	IV) $\exists d(Rainy(d) \land \sim cold(d))$								
4 199	Negation of the proposition $\exists x H(x)$ is	II only	1	I only	III	II only	IV		
	I) $\exists x \sim H(x)$				only	-	only		
	II) $\forall x \sim H(x)$								
	III) $\forall x H(x)$								
	IV) $\sim xH(x)$								
4 200	If $A = \{1,2,3,4\}$ and $x \in A$ then which of the following is true?	4)	1	1)	2)	3)	4)	2) & 3)	1) & 2)
	$1) \exists x (x^2 = 5)$								
	$2) \forall x (x^2 > 5)$								
	3) $\forall x \ (x^2 \text{ is odd})$								
	4) $\forall x (x^2 + x \text{ is even})$								

	L. J. Institute of Engineering & Technology DM Practice Book_202 Note: The Practice Book is for reference only, LJU Test paper Ouestion text	25		- Lander					
		er may no							
	Overtion tout		ot b						
	Question_text	Answer_ text	M a r k s	Option1	Optio n2	Option 3	Option 4	Option5	Option 6
Tranclata	$\forall x \exists y (x < y)$ in statement, considering domain as a real number for	Lonly	1	Lonly	IV	II only	Ш		
		Tomy	1	Tomy	only	II Omy	only		
I)	For all real numbers x there exists a real number y such that x is less than y.								
II)	For every real numbers y there exists a real number x such that x is less than y.								
III)	For some real number x there exist a real number y such that x is less than y.								
IV)	For each and every real number x and y such that x is less than y.								
I)	$p \wedge (p \vee q)$	IV only	1	I only	IV only	II only	III only		
III)	$p \wedge (q \vee p)$								
5	I) II) IV) The cnf of I) II)	than y. II) For every real numbers y there exists a real number x such that x is less than y. III) For some real number x there exist a real number y such that x is less than y. IV) For each and every real number x and y such that x is less than y. The cnf of $p \land (p \rightarrow q)$ is, I) $p \land (p \lor q)$ II) $p \lor (p \land q)$ III) $p \lor (p \land q)$ III) $p \land (q \lor p)$	 I) For all real numbers x there exists a real number y such that x is less than y. II) For every real numbers y there exists a real number x such that x is less than y. III) For some real number x there exist a real number y such that x is less than y. IV) For each and every real number x and y such that x is less than y. The cnf of p ∧ (p → q) is, IV only II) p ∧ (p ∨ q) III) p ∧ (p ∨ q) III) III 	 I) For all real numbers x there exists a real number y such that x is less than y. II) For every real numbers y there exists a real number x such that x is less than y. III) For some real number x there exist a real number y such that x is less than y. IV) For each and every real number x and y such that x is less than y. The cnf of p ∧ (p → q) is, I) p ∧ (p ∨ q) II) p ∧ (p ∨ q) III) p ∧ (p ∨ q) III) p ∧ (q ∨ p) 	I) For all real numbers x there exists a real number y such that x is less than y. II) For every real numbers y there exists a real number x such that x is less than y. III) For some real number x there exist a real number y such that x is less than y. IV) For each and every real number x and y such that x is less than y. The cnf of p ∧ (p → q) is, I) p ∧ (p ∨ q) II) p ∧ (p ∨ q) III) p ∧ (q ∨ p)	oth the variable. I) For all real numbers x there exists a real number y such that x is less than y. II) For every real numbers y there exists a real number x such that x is less than y. III) For some real number x there exist a real number y such that x is less than y. IV) For each and every real number x and y such that x is less than y. The cnf of $p \land (p \rightarrow q)$ is, I) $p \land (p \lor q)$ II) $p \land (p \lor q)$ III) $p \land (p \lor q)$ III) $p \land (p \lor q)$ III) $p \land (p \lor q)$	oth the variable. I) For all real numbers x there exists a real number y such that x is less than y. II) For every real numbers y there exists a real number x such that x is less than y. III) For some real number x there exist a real number y such that x is less than y. IV) For each and every real number x and y such that x is less than y. The cnf of $p \land (p \rightarrow q)$ is, I) $p \land (p \lor q)$ II) $p \land (p \lor q)$ III) $p \lor (p \land q)$	only I) For all real numbers x there exists a real number y such that x is less than y. II) For every real numbers y there exists a real number x such that x is less than y. III) For some real number x there exist a real number y such that x is less than y. IV) For each and every real number x and y such that x is less than y. The cnf of $p \land (p \rightarrow q)$ is, I) $p \land (p \lor q)$ II) $p \land (p \lor q)$ III) $p \land (p \lor q)$	oth the variable. I) For all real numbers x there exists a real number y such that x is less than y. II) For every real numbers y there exists a real number x such that x is less than y. III) For some real number x there exist a real number y such that x is less than y. IV) For each and every real number x and y such that x is less than y. The cnf of $p \land (p \rightarrow q)$ is, I) $p \land (p \lor q)$ II) $p \land (p \lor q)$ III) $p \land (p \lor q)$ III) $p \land (p \lor q)$ III) $p \land (p \lor q)$

		L. J. Institute of Engineering & Techno		med	dabad					
		DM Practice Book_202								
		Note: The Practice Book is for reference only, LJU Test paper								
	Sr.	Question_text	Answer_	M	Option1	-	Option	Option	Option5	Option
n i	No.		text	a		n2	3	4		6
t				k						
N				S						
О										
٠										
1	• • •	XX		1 . 1						
4	203	Use quantifiers and predicates with more than one variable to express, "There is	I only	1	I only	II only	III	IV		
		a pupil in this lecture who has taken at least one course in Discrete Maths."					only	only		
		I) $\exists x \exists y P(x, y)$, where $P(x, y)$ is "x has taken y," the domain for x								
		consists of all pupil in this class, and the domain for y consists of all Discrete Maths lectures.								
		II) $\exists x \exists y P (x, y)$, where $P (x, y)$ is "x has taken y," the domain for x								
		consists of all Discrete Maths lectures, and the domain for y consists								
		of all pupil in this class								
		III) $\forall x \forall y P(x, y)$, where $P(x, y)$ is "x has taken y," the domain for x								
		consists of all pupil in this class, and the domain for y consists of all								
		Discrete Maths lectures								
		IV) $\exists x \forall y P(x, y)$, where P (x, y) is "x has taken y," the domain for x								
		consists of all pupil in this class, and the domain for y consists of all								
		Discrete Maths lectures								
4	204	Find a counterexample of the statement	III	1	I only	II only	III	IV		
		$\forall x \forall y (xy > y)$, when it is false. where the domain for all variables consist of all	only				only	only		
		integers.								
		I) $X = -1, y = 24$								
		II) $X = -5, y = 7$								
		III) Both $X = -1, y = 24$ and $X = -5, y = 7$								
		IV) Does not have any counter example.								
4	205	The negation of the statement: "All math majors are male"	I and	1	I and	III and	II only	None		
		I) It is not the case that all math majors are male	II only		II	IV		of		
		II) There exists at least one math major who is female (not male).			only	only		these		
		III) Every math majors are male.								
		IV) Every male are math majors.								

		L. J. Institute of Engineering & Technology, Ahmedabad									
		DM Practice Book_202									
		Note: The Practice Book is for reference only, LJU Test paper							1	1	
n i t N		Question_text	Answer_ text	M a r k s	Option1	Optio n2	Option 3	Option 4	Option5	Option 6	
0											
•											
4	206	Let $T(x,y)$ mean that students x likes dish y, where the domain for x consists of all students at your school and the domain for y consist of all dishes. express $\sim T(Amit, South\ indian)$ by a simple English sentence.	III only	1	I only	II only	III only	IV only			
		 I) All the students does not like south Indian dishes. II) Amit does not like south Indian people. III) Amit does not like south Indian dishes. 									
4	207	IV) Amit does not like some dishes. "Parul is out for a trip or it is not	Parul	1	Parul	Raju is	Parul	Parul			
4	207	snowing" and "It is snowing or Raju is	is out	1	is out	playin	is out	is out			
		playing chess" then which argument is valid for these primes?	for a		for	g chess	for a	for a			
			trip or		trip	6	trip	trip			
			Raju		1		and	or			
			is				Raju	Raju			
			playin				is	is			
			g				playin	playi			
			chess				g	ng			
							chess	chess			
4	208	What would be the conclusion to the following premises in the argument?	I and	1	I and	III and	III	None			
		If it rains, Erik will be sick.	II only		II	IV	only	of			
		Erik was not sick.			only	only		these			
		I) It did not rain.									
		II) If Erick is sick, it rains									
		III) Erick is sick and it rains									
1	200	IV) Erick is sick or it rains.	TTT	1	T a1	13.7	II a 1-	111			
4	209	The CNF of $(\sim p \rightarrow q) \land (p \rightarrow q)$ is,	III	1	I only	IV only	II only	III			
		I) $(\sim p \land q) \land (p \rightarrow q)$	only			only		only			
		II) $(\sim p \lor q) \land (p \to q)$									
		III) $(p \lor q) \land (\sim p \lor q)$ IV) $(p \land q) \lor (\sim p \land q)$									
		$IV) \qquad (p \land q) \lor (\sim p \land q)$	1								

	L. J. Institute of Engineering & Techn		med	labad					
	DM Practice Book_20 Note: The Practice Book is for reference only, LJU Test particles.		ot h	o compu	sory sot	from this	<u> </u>		
U Sr. n No. i t N o o .	Question_text	Answer_ text	M a r k s	Option1	Optio n2		Option 4	Option5	Option 6
4 210	Obtain cnf of i) $(\sim p \rightarrow r) \land (p \rightarrow q)$ ii) $(p \land q) \lor (\sim p \land q \land r)$		5						
4 21	Find cnf & dnf without using truth table $ (p \to q) \land (q \to p) $		5						
4 212	Obtain CNF of following without using truth table: $\mathbf{q}\mathbf{v}(\mathbf{p}\wedge\mathbf{r})\wedge\sim((\mathbf{p}\mathbf{v}\mathbf{r})\wedge\mathbf{q})$		4						
4 213	Find dnf of i) $(p \to q) \land (\sim p \land q)$ ii) $(p \land (p \to q)) \to q$		5						
4 214	Find cnf of i) $p \land (p \rightarrow q)$ ii) $\sim (p \lor q) \longleftrightarrow (p \land q)$		5						

		L. J. Institute of Engineering & Techn	ology, Ab	med	labad					
		DM Practice Book_20)25							
		Note: The Practice Book is for reference only, LJU Test papers								
u n i t N o	1	Question_text	Answer_ text	M a r k s	Option1	Optio n2	Option 3	Option 4	Option5	Option 6
4	215	Find dnf of $(p \to (q \land r)) \land (\sim p \to (\sim p \land \sim r))$ by truth table method.		5						
4	216	Find cnf&dnf of $(p \leftrightarrow (q \lor r)) \rightarrow \sim p$ by truth table method.		7						
4	217	Obtain dnf of the form $\sim (p \to (q \land r))$		4						
4				3						
4	219	Obtain CNF and DNF of the form $(\sim p \rightarrow r) \land (p \leftrightarrow q)$		3						

		L. J. Institute of Engineering & Techn		med	dabad					
		DM Practice Book_20 Note: The Practice Book is for reference only, LJU Test paper.		ot h	e compul	corv set	from this	<u> </u>		
	J Sr. No.	Question_text	Answer_ text	M a r k s	Option1	Optio n2	Option 3	Option 4	Option5	Option 6
4	220	Use the laws of logic to show that $[(p \rightarrow q) \land \sim q] \rightarrow \sim p$ is a tautology		3						
4	221	Obtain CNF and DNF of [(\sim p V r) \land (p V q)] \leftrightarrow (q V \sim r).		3						
4	222	Find DNF with and without using truth table for $p \Rightarrow ((p \Rightarrow q) \land \sim (\sim q \lor \sim p))$		3						
4	223	Obtain CNF and DNF for the following using truth table: $ (p \to q) \land (q \lor (p \land r)) $		5						
4	224	Obtain the Disjunctive Normal Form without using truth table. $[(p \to q) \land (q \to r)] \to (p \to r)$		5						

	L. J. Institute of Engineering & Techn	ology, Ah	med	labad					
	DM Practice Book_20								
_	Note: The Practice Book is for reference only, LJU Test pap	er may no	ot b						
U Sr. n No. i t N	Question_text	Answer_ text	M a r k s	Option1	Optio n2	Option 3	Option 4	Option5	Option 6
4 225	Obtain conjunctive normal forms of $(p \rightarrow q) \rightarrow (\neg r \land q)$.		3						
4 226	q: I have an umbrella. & r: it is sunny. Then the symbolic form of the following statement would be: "if it is raining outside and I do not have an umbrella or if it is sunny and I have an umbrella, then it is not raining outside." And Compute CNF and DNF with using truth table.		3						
4 221	S1: If I like Maths then I will study S2: Either I will study or I will fail		3						
4 228	If I study, then I will not fail mathematics. Either I do not play basketball or I will study, but not both. But I failed mathematics.		4						
4 229	Therefore, I must have played basketball Determine the validity of argument given: S1: If a man is a bachelor, he is unhappy. S2: If a man is unhappy, he dies young. S: Bachelors die young.		5						

	L. J. Institute of Engineering & Tec	hnology, Ah	med	labad					
	DM Practice Book								
	Note: The Practice Book is for reference only, LJU Test 1	paper may n	ot b	e compul	sory set	from thi	S.		
U Sr. n No. i t N o	Question_text	Answer_ text	M a r k s	Option1	Optio n2	Option 3	Option 4	Option5	Option 6
4 230	If 7 is less than 4, then 7 is not a prime number. 7 is not less than 4.		5						
	7 is a prime number								
4 231	Test the validity of the argument: If 8 is even number, then 2 does not divide 9. Either 7 is not prime number or 2 divides 9. But 7 is prime number. Therefore, 8 is odd number.		3						
4 232	Determine the validity of argument given: If two sides of a triangle are equal, then the opposite angles are equal. Two sides of a triangle are not equal. The opposite angles are not equal.		5						
4 233			5						
4 234			5						

	L. J. Institute of Engineering & Tech	nology, Ah	med	dabad					
	DM Practice Book_								
	Note: The Practice Book is for reference only, LJU Test p	aper may n	ot b						
U Sr. n No. i t N	Question_text	Answer_ text	M a r k s	Option1	Optio n2	Option 3	Option 4	Option5	Option 6
4 235	Test the validity of the following argument: If I drive to work, then I will arrive tired. I arrive at work tired. I drive to work.	_	4						
4 236	Determine the validity of argument given: If I don't pay my income taxes, then I file for an extension or I am a felon. I'm not afelon and I didn't file for an extension. Therefore, I paid my income taxes.		3						
4 237	Consider the argument "If you have a current password, then you can log onto the network" "You have a current password" Therefore, "You can log onto the network" Determine the validity of the argument.		5						
4 238	Write the following statements in symbolic form, using quantifiers. (i) All students have taken a course in communication skills. (ii) There is a girl student in the class who is also a sports person. (iii) Some students are intelligent, but not hard working.		3						
4 239	Rewrite the following statements using quantifiers and predicate symbols: i) All birds can fly ii) Not all birds can fly iii) Some men are genius iv) Some numbers are not rational v) Each integer is either even or odd		5						

		L. J. Institute of Engineering & Techno		med	dabad					
		DM Practice Book_202								
		Note: The Practice Book is for reference only, LJU Test pap								
U n i t N o	Sr. No.	Question_text	Answer_ text	M a r k s	Option1	Optio n2	Option 3	Option 4	Option5	Option 6
4	240	Write the following two proposition in symbols. (i) 'for every number x there is a number y such that y = x+1.' (ii) 'There is a number y such that, for every number x, y = x+1.'		3						
4	241	Negate each of the statement. i) $\forall x, x = x$ ii) $\exists x, x^2 = x$ iii) If there is a riot, then someone is killed. iv) It is day light and all the people are arisen.		4						
5	242	What is the recurrence relation for 1, 7, 31, 127, 499?	$b_n = 4$ $b_{n-1} + 3$	1	b_{n+1} = 5 b_{n-1} +3	$b_n = 4$ $b_{n-1} + 3$	$b_{n+1} = 4$ $b_n + 3$			
5	243	The recurrence $T(n) = 2T(n-1) + n$, $n \ge 2$ and $T(1) = 1$ evaluates to	2^{n+1} $-n$ -2	1	2 ⁿ – n	$ \begin{array}{c} 2^{n+1} \\ -n \\ -2 \end{array} $	2 ⁿ + n	$ \begin{array}{c c} 2^{n+1} \\ - \\ 2n \\ - 2 \end{array} $		
5	244	Solution to recurrence relation $T(n)=T(n-1)+2$, is given by where $n>0$ and $T(0)=5$	T(n)= 2n+5	1	T(n)= 2n-5	T(n)=n -5	T(n)= 2n+5	T(n) =n-3		

		I I Institute of Engineering & Techno	logy Ab	772.04	dahad					
		L. J. Institute of Engineering & Technology DM Practice Book 202		niec	aabaa					
		Note: The Practice Book is for reference only, LJU Test paper		ot b	e compu	lsory set	from this	S.		
	Sr. No.	Question_text	Answer_ text	M a r k s	Option1			Option 4	Option5	Option 6
5	245	If the degree of a Recurrence Relation is, then it is called a linear Recurrence Relation?	One	1	One	Zero	Infinit e	Two		
5	246	If $R(n) = $ _ and it is of order n , the equation is a linear homogeneous difference equation?	0	1	0	1	2	Infini te		
5	247	What is the order of the equation $a_{t+20} - a_t = a_{t-19} - a_{t+18}$	39	1	39	17	19	21	18	32
5	248	If R (n) \neq 0, then the equation is a difference equation?	Linear nonho mogen eous	1	Biline ar Homo geneo us	Linear Homo geneou s	Biline ar nonho mogen eous	Linea r non homo gene ous		
5	249	What is the order of the equation $a_{r+2} - 8a_{r+1} + 5a_r = 7r + 2^r ?$	2	1	0	1	2	3		

		L. J. Institute of Engineering & Techno		med	labad					
		DM Practice Book_202		ot b	0.00 mn u	laawy aat	fuom thi	g		
Un i t N o	Sr. No.	Note: The Practice Book is for reference only, LJU Test pap Question_text	Answer_ text	M a r k s	Option1			Option 4	Option5	Option 6
5	250	The solution to the recurrence relation $a_n = a_{n-1} + 2n$, with initial term $a_0 = 2$ are	2+n $+n^2$	1	4n+7	$2+n + n^2$	$3n^2$	5(n+ 1)/2		
5	251	Find the value of a_4 for the recurrence relation $a_n = 2a_{n-1} + 3$, with $a_0 = 6$	141	1	320	221	141	65		
5	252	To determine the unique solution of the recurrence relation $a_n = 2a_{n-1}$ for $n \ge 1$, we require how many initial conditions?	1	1	0	1	2	3	n-1	
5	253	Determine the value of a_2 for the recurrence relation $a_n = 17a_{n-1} + 30n$ with $a_0 = 3$.	1437	1	4387	5484	238	1437		
5	254	Suppose f_n is defined recursively by $f_{n+1}=2f_n+3$ with $f_1=9$ then the value of f_5 is, (a) 185 (b) 195 (c) 198 (d) 21 (e) 45 (f) 0 (g) None of these.	None of these	1	185	195	198	21	45	None of these

		L. J. Institute of Engineering & Techno	ology, Ah	med	labad					
		DM Practice Book_20)25							
		Note: The Practice Book is for reference only, LJU Test pap		ot be					2	
	Sr. No.	Question_text	Answer_ text	M a r k s	Option1	Optio n2	Option 3	Option 4	Option5	Option 6
5	255	Let $a_n = 2a_{n-1} - a_{n-2} + 4$ with $a_0 = 2$, $a_1 = 5$. $a_{25} =$	1277	1	125	1250	1255	1277	1297	None of these
5	256	Solve the recurrence relation $a_r - 7a_{r-1} + 10a_{r-2} = 0 \text{ given that } a_0 = 0, a_1 = 3$		3						
5	257	Solve the recurrence relation $a_n = 2a_{n-1}, a_0 = 1$		3						
5	258	Solve the recurrence relation $a_n - 3a_{n-1} + 2a_{n-2} = 0$		3						
5	259	Solve the recurrence relation $a_k - 5a_{k-1} + 6a_{k-2} = 0$, $a_0 = 2$ and $a_1 = 5$		3						

		L. J. Institute of Engineering & Techno		med	labad					
		DM Practice Book_202		of h	o compule	owy cot	from this			
U	Sr.	Note: The Practice Book is for reference only, LJU Test pap Question_text	Answer_	M M	Option1	Optio	Option	S. Option	Option5	Option
n i t N o	No.		text	a r k s		n2	3	4	•	6
5	260	Solve the recurrence relation $a_n + 6a_{n-1} + 12a_{n-2} + 8a_{n-3} = 0$		3						
5	261	Solve the recurrence relation $S_k = S_{k-1} + S_{k-2}, \qquad k \ge 2; \ S_0 = 1, S_1 = 1$		3						
5	262	Solve the recurrence relation $a_r - 7a_{r-1} + 16a_{r-2} - 12a_{r-3} = 0;$ $a_0 = 1, a_1 = 4, a_2 = 8$		4						
5	263	Find the particular solution of the recurrence relation $a_{n+2} - 3a_{n+1} + 2a_n = 5^n$		4						
5	264	Solve the recurrence relation $a_n = 5a_{n-1} - 6a_{n-2} + 7^n$.		5						

	L. J. Institute of Engineering & Technology, Ahmedabad									
		DM Practice Book_20		meu	labau					
		Note: The Practice Book is for reference only, LJU Test pap		ot b	e compuls	orv set	from thi	S.		
U n i t N		Question_text	Answer_ text	M a r k s	Option1	Optio n2	Option 3	Option 4	Option5	Option 6
٠										
5	265	Solve the recurrence relation $a_n - 4a_{n-1} + 4a_{n-2} = n + 3^n$		4						
5	266	Solve the recurrence relation $a_n + 5a_{n-1} + 6a_{n-2} = 3n^2$		3						
5	267	Solve the recurrence relation $a_{n+2} - 2a_{n+1} + a_n = 3n + 5$		3						
5	268	Solve the recurrence relation $a_n - 5a_{n-1} + 6a_{n-2} = 9; \ a_0 = 0, a_1 = 1$		3						
5	269	Solve the recurrence relation $a_n - 6a_{n-1} + 9a_{n-2} = (n+1)3^n$		4						

	L. J. Institute of Engineering & Techno		med	labad					
	DM Practice Book_202								
II C.	Note: The Practice Book is for reference only, LJU Test pap							Ontinu F	Ontina
U Sr. n No. i t N	Question_text	Answer_ text	M a r k s	Option1	n2	Option 3	Option 4	Option5	Option 6
5 270	Solve the recurrence relation $a_r - 7a_{r-1} + 12a_{r-2} = r.4^r$		4						
5 271	Solve the recurrence relation $a_{n+1} - 2a_n = 7$		3						
5 272	Solve the recurrence relation $a_n=6a_{n-1}-12a_{n-2}+8a_{n-3}; \forall n\geq 3$, given that $a_0=1, a_1=4$ & $a_2=28$.		3						
5 273	Solve the recurrence relation $a_{n+2} - 5a_{n+1} + 6a_n = 4^n$		3						
5 274	Solve the recurrence relation $a_{n+1} - a_n = n^2$		3						

	L. J. Institute of Engineering & Technology, Ahmedabad								
	DM Practice Book_20								
** ~	Note: The Practice Book is for reference only, LJU Test page		ot b						
U Sr. n No. i t N o	Question_text	Answer_ text	M a r k s	Option1	Optio n2	Option 3	Option 4	Option5	Option 6
5 275	Solve the recurrence relation $a_n - 3a_{n-1} + 2a_{n-2} = 2^n$		3						
5 276	Solve the recurrence relation $a_{n+2} - 2a_{n+1} + a_n = n^2 \cdot 2^n$		4						
5 277	$a_r - 10a_{r-1} + 9a_{r-2} = 0 \text{ with}$ $a_0 = 3 \text{ and } a_1 = 11.$ Find homogeneous solution.		4						
5 278	Consider $a_r - 8a_{r-1} + 16a_{r-2} = 0$ where $a_2 = 16$ and $a_3 = 80$, Find solution.		4						
5 279	Solve the recurrence relation: $d_n = 4(d_{n-1} - d_{n-2})$. Subject to initial conditions $d_0 = 1 = d_1$		3						

	L. J. Institute of Engineering & Technology, Ahmedabad									
	DM Practice Book		4.7			0 (1.0				
II Ca	Note: The Practice Book is for reference only, LJU Test							Option5	Ontion	
U Sr. n No. i t N o	Question_text	Answer_ text	M a r k s	Option1	n2	Option 3	Option 4	Options	Option 6	
5 280	Find the solution to the recurrence relation $a_n=-3a_{n-1}-3a_{n-2}-a_{n-3}$, with initial conditions $a_0=1$, $a_1=-2$ and $a_2=-1$.		4							
5 281	Find total solution of $a_{r+2} + 2a_{r+1} - 3a_r = 4$		4							
5 282	Solve the recurrence relation $a_r - 4 a_{r-1} + 4 a_{r-2} = 3r + 2^r$		4							
5 283	Find total solution of $a_r + 5a_{r-1} + 6a_{r-2} = 3r^2 - 2r + 1$		5							
5 284	Solve $a_r - 7a_{r-1} + 10a_{r-2} = 6 + 8r$ with $a_0 = 1, a_1 = 2$		4							

				med	labad					L. J. Institute of Engineering & Technology, Ahmedabad									
		DM Practice Book_20																	
U	Ca	Note: The Practice Book is for reference only, LJU Test pap							Ontinut	- Onting									
n i t N o		Question_text	Answer_ text	M a r k s	Option1	Optio n2	Option 3	Option 4	Option5	Option 6									
5	285	Find the general solution of $a_r + 5a_{r-1} + 6a_{r-2} = 42.4^r$		5															
5	286	Solve: $a_r - 4a_{r-1} + 4a_{r-2} = (r+1)2^r$		5															
5	287	Solve the recurrence relation $a_n = 3a_{n-1} - 2a_{n-2} + 2^n + 3n$.		4															
5	288	Solve: $a_r - a_{r-1} - 6a_{r-2} = -30$ given $a_0 = 20, a_1 = -5$		4															
5	289	Solve the equation with given boundary conditions. $a_r - 5a_{r-1} + 6a_{r-2} = 2^r + r, \qquad r \ge 2,$ $a_0 = 1, \ a_1 = 1$		5															

	L. J. Institute of Engineering & Techn		med	dabad					
	DM Practice Book_20		ot h	o compu	laamy aat	fnom thi	g		
U Sr.	Note: The Practice Book is for reference only, LJU Test par Question_text	Answer	M	Option1		Option		Option5	Option
n No. i t N o	Question_text	text	a r k s	Орион 1	n2	3	4	Орионэ	6
5 290	Solve the recurrence relation $a_n + 6a_{n-1} + 12a_{n-2} + 8a_{n-3} = 2^n, r \ge 3,$ $a_0 = 0, \ a_1 = 0, a_2 = 2$		5						
5 291	Solve the recurrence relation $a_n = 2a_{n-1} + 3a_{n-2} + 5^n, n \ge 2,$ $a_0 = -2, a_1 = 1$		4						
5 292	Solve the recurrence relation $a_r - 4a_{r-1} + 4a_{r-2} = 0, given \ that$ $a_0 = 1, \ a_1 = 6$		4						
5 293	Solve the recurrence relation: $d_n = 3d_{n-1} - 2d_{n-2}$. Subject to initial conditions $d_1 = -2, d_2 = 4$		4						
5 294	Solve the recurrence relation $a_n=-3a_{n-1}-3a_{n-2}-a_{n-3} \ , given \ that \ a_0=5, \ a_1=-9, \ a_2=15$		4						

L. J. Institute of Engineering & Technology, Ahmedabad **DM Practice Book 2025** Note: The Practice Book is for reference only, LJU Test paper may not be compulsory set from this. U Sr. Option1 Optio Option Option Option5 Ouestion text Answer_ Option No. 3 text n2 4 6 295 The binary relation $\{(1,1), (2,1), (2,2), (2,3), (2,4), (3,1), (3,2), (3,3)\}$ on the set reflect irreflex irrefl no no ive, reflexi ive, reflexi exive $\{1, 2, 3, 4\}$ is _____. symme ve, no symm ve, no and tric etric irrefle irrefle antis and and xive. xive, ymm transit transiti no etric no transit ive ve transit ive ive Consider the relation: R'(x, y) if and only if x, y > 0 over the set of non-zero 296 transit reflex an not an rational numbers, then R' is . equival equiva equiv ive ive alence ence and lence and relatio relatio asym relatio antis n n metry ymm n relatio etric n relati on What is the Cartesian product of set A and set B, if the set $A = \{1, 2\}$ and set $B = \{1, 2\}$ 297 $\{(1,a),$ $\{(1,a)\}$ $\{(1,1),$ $\{(1,a),$ {(1,1 (2,a),(2,2),(2,a), ${a,b}$? (1,b),(1,b),(a,a), (1,b),(a,a), (2,b)(2,a),(2,b)(b,b)(2,a),(b,b)(1,b)

		L. J. Institute of Engineering & Techno		me	dabad					
		DM Practice Book_20		o		laowr as4	fuons 4h:	2		
T	Sr.	Note: The Practice Book is for reference only, LJU Test pap Question_text	Answer_	ot b M	Option 1		Option	S. Option	Option5	Option
n i t N	No.	Question_text	text	a r k s	Орионт	n2	3	4	Options	6
	200	The transitive elegand of the relation	((0.1)	1	((0.1)	(0,0)	((0.1)	(/O 1		
0	298	The transitive closure of the relation $R = ((0.1), (1.2), (2.2), (2.4), (5.2), (5.4)) \text{ where } A = (0.1, 2.2, 4.5) \text{ is}$	{(0,1),	1	{(0,1)	(0,0),	$\{(0,1),$	{(0,1		
		$R = \{(0,1), (1,2), (2,2), (3,4), (5,3), (5,4)\}$ where $A = \{0,1,2,3,4,5\}$ is	(0,2),		, (0,2),	(4,4), (5,5),	(1,2), $(2,2),$), (5,3),		
		·	(1,2),		(0,2), $(1,2),$	(3,3), $(1,1),$	$(2,2),$ $(3,4)$ }	(5,3), $(5,4),$		
			(2,2),		(2,2),	(2,2),	(3,1)	(1,1),		
			(3,4),		(3,4),	(3,3)		(2,2)		
			(5,3),		(5,3),	, , , ,		} ` `		
			(5,4)}		(5,4)}					
6	299	The transitive closure of a relation $R = \{(a, b), (c, b)\}$, where $A = \{a, b, c\}$ is,	{(a,b),	1	{(a,b)	{(a,b),({(a,b),	{(a,b	{(a,b),(c	{(a,b),
	2))	The transfer e closure of a relation $H = \{(u, v), (v, v)\}, \text{ where } H = \{u, v, v\}$ is,	(c,b)	1	(c,b),	c,b),(a,	(c,b)),(b,c	,b),(b,c),	(b,c),(
			1		(a,a)}	a),(b,b)	(-,-,))}	(a,c),(c,c)	a,c),(a,
			,			})}	a) }
6	300	For two distinct sets, A and B , having cardinalities m and n respectively, the	mn	1	m+n	mn	m^n	None		
	300	maximum cardinality of a relation R from A to B is?	Title .	1	110 1 10	11010	110	of the		
		maximum caramanty of a foliation it from it to b is.						abov		
								e		
6	301	$R = \{(2,4), (2,6), (3,6), (3,9)\}$ domain of R is	{2,3}	1	{2, 3}	{4, 6,	{2, 3,	None		
						9}	4, 6,	of the		
							9}	abov		
								e		
6	302	Let $A = \{1,2,3\}$ and $R = \{(1,1), (1,2), (2,3)\}$. Which of the following is true?	None	1	Ris	R is	R is	None		
			of the		reflex	symme	transit	of the		
			above		ive	tric	ive	abov		
								e		
1	1		1		1	1	Ī	1		

		L. J. Institute of Engineering & Techn	ology, Ah	me	dabad					
		DM Practice Book_20								
	-l ~	Note: The Practice Book is for reference only, LJU Test page								Ι
n i t N o	1	Question_text	Answer_ text	M a r k s	Option1	Optio n2	Option 3	Option 4	Option5	Option 6
6	303	Let R be a relation on the set N be defined by $\{(x,y)/x, y \in N, 2x + y = 41\}$. Then R is	None of these	1	Refle xive	Symm etric	Transi tive	None of these		
6	304	Let $A = \{1,2,3\}$ and $R = \{(1,1), (1,2), (2,1), (2,2), (3,3)\}$. Which of the following is true?	R is reflexi ve, symm etric and transit ive	1	R is reflex ive and symm etric but not transit ive	R is reflexi ve and transiti ve but not symme tric	R is symm etric and transit ive but not reflexi ve	R is reflex ive, sym metri c and transi tive		
6	305	Which of the following is an equivalence relation?	{(1,1), (2,2)(3,3)}	1	{(1,2) ,(2,3), (3,4)}	{(1,1), (2,2),(3,3)}	{(1,2), (2,1),(3,4)}	{(1,2),(2,3),(3,2)}		
6	306	 Which of below are compatible relations but not equivalence relations: I. ∀x, y ∈ Z, xRy iff x ≡ y(mod m) where m ∈ N. II. ∀x, y ∈ Z, xRy iff x > y. III. Blood relation in family set = {father, mother, elder son, younger son, elder daughter, younger daughter}. IV. ∀a, b, c, d ∈ Z, (a, b)R(c, d) iff a² + c = d + b². V. ∀A, B, C ⊆ R, A is relation with B iff A ∩ B ≠ Ø. 	Any	1	Any one	Any	Any three	Any four	All of them	None of above

		L. J. Institute of Engineering & Techno	logy Ab	mo	dahad					
		DM Practice Book 202		IIIC	uavau					
		Note: The Practice Book is for reference only, LJU Test paper		ot b	e compu	lsory set	from this	S.		
	Sr. No.	Question_text	Answer_ text	M a r k s	Option1	Optio n2	Option 3	Option 4	Option5	Option 6
6	307	How many ordered pairs are there in the smallest equivalence relation on a set with 8 elements?	8	1	10 ²	108	32	16	32	8
6	308	Which of the following is not an antisymmetric relation?	{(1,2), (2,1)(3,4)}	1	{(1,2) ,(2,3), (3,4)}	{(1,1), (2,2),(3,3)}	{(1,2), (2,1),(3,4)}	None of these		
6	309	"From set of all straight lines in 2D plane, lines are in relation iff they are not parallel to each other" is, I. Reflexive II. Irreflexive III. Symmetric IV. Anti symmetric V. Transitive	Any two	1	Any one	Any	Any	Any four	All of above	None of them
6	310	Let T be the set of all triangles in the Euclidean plane and let a relation R on T be defined as aRb if a congruent to b , for all $a, b \in T$. Then R is	(c) and (d)bot h	1	reflex ive but not transit ive	Transit ive but not symme tric	equiva lence	Com patibl e Relat ion	(c) and (d) both	
6	311	Let <i>R</i> be the relation in the set N given by $R = \{(a, b) : a = b - 2, b > 6\}$. Choose the correct answer.	(6,8)∈ R	1	(2,4) ∈R	(3,8)∈ R	(6,8)∈ R	(8,7) ∈R		

	L. J. Institute of Engineering & Techno		me	dabad					
	DM Practice Book_20								
	Note: The Practice Book is for reference only, LJU Test pap		ot b					1	
U Sr. n No. i t N o	Question_text	Answer_ text	M a r k s	Option	Optio n2	Option 3	Option 4	Option5	Option 6
6 312	Let $A = \{1,2,3,4\}$ and R be a relation on A defined by $(a,b) \in R$ if $a+b$ is odd. Which of the following is true about R ?	R is symm etric	1	R is reflex ive	R is symme tric	R is transit ive	R is an equiv alenc e relati on		
6 313	Let R be the relation in the set $\{1, 2, 3, 4\}$ given by $R = \{(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)\}$. Choose the correct answer.	R is reflexi ve and transit ive but not symm etric	1	R is reflex ive and symm etric but not transit ive.	R is reflexi ve and transiti ve but not symme tric	R is symm etric and transit ive but not reflexi ve.	R is an equiv alenc e relati on		
6 314	Let $A = \{1, 2, 3\}$. Then number of relations containing $(1, 2)$ and $(1, 3)$ which are reflexive and symmetric but not transitive is	1	1	1	2	3	4		
6 315	Let $A = \{1, 2, 3\}$. Then number of equivalence relations containing $(1, 2)$ is	2	1	1	2	3	4		

	L. J. Institute of Engineering & Techno		me	dabad					
	DM Practice Book_20 Note: The Practice Book is for reference only, LJU Test pap		ot h	a compu	laony ant	from thi	n		
U Sr. n No. i t N	Question_text	Answer_ text	M a r k s	Option1			Option 4	Option5	Option 6
6 316	Let $A = \{1, 2, 3\}$. Then the number of relations containing $(1, 2)$ and $(2, 3)$ which are reflexive and transitive but not symmetric is	3	1	1	2	3	4		
6 317	The number of equivalence relation in the set $\{1, 2, 3\}$ containing $(1, 2)$ and $(2, 1)$ is	2	1	1	2	3	4		
6 318	Let R be a relation on the set N of natural numbers defined by nRm if n divides m . Then R is	Reflex ive, transit ive but not symm etric	1	Refle xive and symm etric	Transit ive and symme tric	Equiv alence	Reflex ive, transi tive but not symm etric		
6 319	The maximum number of equivalence relations on the set $A = \{1, 2, 3\}$ are	5	1	1	2	3	5		

		L. J. Institute of Engineering & Techn	ology, Ah	me	dabad					
		DM Practice Book_20	25							
T 1	C.,	Note: The Practice Book is for reference only, LJU Test pap							Ortion5	Ortion
n i t N o	Sr. No.	Question_text	Answer_ text	M a r k s	Option1	Optio n2	Option 3	Option 4	Option5	Option 6
6	320	Let us define a relation R in R as aRb if $a \ge b$. Then R is	reflexi ve, transit ive but not symm etric	1	an equiv alence relatio n	reflexi ve, transiti ve but not symme tric	symm etric, transit ive but not reflexi ve	neith er transi tive nor reflex ive but sym metri c		
6		The relation R is defined on the set of natural numbers as $\{(a, b) : a = 2b\}$. Then, R^{-1} is given by	{(1, 2), (2, 4), (3, 6), 	1	1), (4, 2), (6, 3),	{(1, 2), (2, 4), (3, 6),	R ⁻¹ is not defien d	None of these		
6	322	What type of relation is 'less than' in the set of real numbers?	only transit ive	1	only symm etric	only transiti ve	only reflexi ve	equiv alenc e		

		L. J. Institute of Engineering & Techn	ology, Ah	me	dabad					
		DM Practice Book_20	25							
	_	Note: The Practice Book is for reference only, LJU Test pap								
	Sr. No.	Question_text	Answer_ text	M a r k s	Option1	Optio n2	Option 3	Option 4	Option5	Option 6
6	323	Let <i>R</i> be an equivalence relation on a finite set <i>A</i> having <i>n</i> elements. Then the number of ordered pairs in <i>R</i> is	greate r than or equal to n	1	less than n	greater than or equal to n	Less than or equal to n	None of these		
6	324	Which one of the following relations on <i>R</i> is an equivalence relation?	$aR_1b \Leftrightarrow a = b $	1	$ \begin{array}{c} aR_1b\\ \Leftrightarrow a = \\ b \end{array} $	$aR_2b \Leftrightarrow a \ge b$	aR_3b $\Leftrightarrow a \text{ di}$ $vides$ b	a <i>R</i> ₃ b ⇔a< b		
6	325	Let $P = \{(x, y): x^2 + y^2 = 1, x, y \in R\}$. Then, P is	Symm etric	1	Refle xive	Symm etric	Transi tive	Anti- sym metri c		
6	326	If $A = \{1,2,3\}$, $B = \{4,6,9\}$ and R is a relation from A to B defined by ' x is smaller than y '. The range of R is	{4,6,9}	1	{4,6,9 }	{1,2,3 }	{1,4,6, 9}	{1}		
6	327	The range of the relation $R = \{(x, x^2) \mid x \text{ is a prime number less than 13} \}$ is	{4,9,2 5,49,1 21}	1	{2,3,5 ,7}	{2,3,5,7,11}	{4,9,2 5,49,1 21}	{1,4, 9,25, 49,12 1}		

	L. J. Institute of Engineering & Techno		med	labad					
	DM Practice Book_202 Note: The Practice Book is for reference only, LJU Test pap		ot b	e compuls	orv set	from thi	S.		
U Sr. n No. i t N	Question_text	Answer_ text	M a r k s	Option1	Optio n2	Option 3	Option 4	Option5	Option 6
6 328	If $A = \{x, y, z\}$, $B = \{X, Y, Z\}$, $C = \{x, y\}$, $D = \{Y, Z\}$, R is a relation from A to B defined by $R = \{(x, X), (x, Y), (y, Z)\}$ and S is a relation from C to D defined by $S = \{(x, Y), (y, Z)\}$. Find R' , $R \cup S$, $R \cap S$ and $R - S$.		3						
6 329	Let $A = \{2,3,5\}$ and $B = \{6,8,10\}$ and define a binary relation R from A to B as follows: For all $(x,y) \in A \times B$, $(x,y) \in R \iff x/y(x \text{ divides } y)$ Write each R and R^{-1} as a set of ordered pairs.		2						
6 330	Let R be the relation on the set $\{1,2,3,4,5\}$ defined by the rule $(x,y) \in R$ if $x + y \le 6$. Find the followings: (a) List the elements of R (b) List the elements of R^{-1} (c) Domain of R (d) Range of R (e) Range of R^{-1} (f) Domain of R^{-1} Also, check the domain of R is equal to range of R^{-1} and range of R is equal to domain of R^{-1} .		4						

	L. J. Institute of Engineering & Techno	ology, Ah	med	labad					
	DM Practice Book_202		4 h			C., 41. !	-		
U Sr. n No. i t N	Note: The Practice Book is for reference only, LJU Test pap Question_text	Answer_ text	M a r k s	Option1	Optio n2	Option 3	Option 4	Option5	Option 6
6 331	Given $A = \{1,2,3,4\}$, $B = \{a,b,c\}$ and $C = \{x,y,z\}$. Let R and S are the following relations from A to B and B to C , respectively $R = \{(1,b),(2,a),(2,c)\}$ and $S = \{(a,y),(b,x),(c,y),(c,z)\}$ (i) Determine the matrix and graph of the relation R , S , R^{-1} , S^{-1} , and $R \cdot S$. (ii) Determine inverse R^{-1} and S^{-1} . (iii) Find the range and domain of R^{-1} and S^{-1} .		4						
6 332	Let $A = \{1,2,3,4,6\}$ and let R be the relation on A defined by ' x divides y '. Find R and draw the digraph of R . Find matrix of R . Find inverse relation of R .		3						
6 333	For each of these relations on the set {1,2,3,4}, decide whether it is symmetric, whether it is reflexive, whether it is transitive and whether it is anti-symmetric. (a) {(1,1), (1,2), (2,1), (2,2), (3,3), (4,4)} (b) {(1,1), (2,2), (3,3), (4,4)} (c) {(1,3), (1,4), (2,3), (2,4), (3,1), (3,4)}		3						

	L. J. Institute of Engineering & Techn		me	dabad					
	DM Practice Book_20					0			
U Sr.	Note: The Practice Book is for reference only, LJU Test par							Ontinus	Onting
n No. i t N	Question_text	Answer_ text	M a r k s	Option1	Optio n2	Option 3	Option 4	Option5	Option 6
6 334	Let $A = \{1, 2, 3, 4\}$, which of the following relations are antisymmetric?		3						
	$R_1 = \{(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)\},\$								
	$R_2 = \{(1,1), (1,2), (2,1)\},\$								
	$R_3 = \{(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (4,1), (4,4)\},\$								
	$R_4 = \{(2,1), (3,1), (3,2), (4,1), (4,2), (4,3)\},\$								
	$R_5 = \{1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\},$								
	$R_6 = \{(3,4)\}.$								
6 335	Consider the following relations on $\{1, 2, 3, 4\}$: $R_1 = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)\},$ $R_2 = \{(1, 1), (1, 2), (2, 1)\},$ $R_3 = \{(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (3, 3), (4, 1), (4, 4)\},$ $R_4 = \{(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)\},$ $R_5 = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)\},$ $R_6 = \{(3, 4)\}.$ Which of these relations are reflexive, symmetric, transitive?		4						
6 336	Give an example of a relation which is: (1) reflexive and transitive but not symmetric; (2) symmetric and transitive but not reflexive; (3) reflexive and symmetric but not transitive; (4) reflexive and transitive but neither symmetric nor antisymmetric.		4						

	L. J. Institute of Engineering & Technology, Ahmedabad								
	DM Practice Book_20		ot h	o oomnul	gawy gat	fuana thi	<u> </u>		
U Sr.	Note: The Practice Book is for reference only, LJU Test pap Question_text	Answer	M	Option1	Optio	Option	S. Option	Option5	Option
n No. i t N o	Question_tent	text	a r k s	Option	n2	3	4	opuone	6
6 337	Show that the relation "Equality" defined in any set A, is an Equivalence relation.		3						
6 338	If R be a relation in the set of integers Z defined by $R = \{(x, y) : x \in Z, y \in Z, (x - y) \text{ is divisible by 6} \}$ then prove that R is an equivalence relation.		3						
6 339	Let Z denote the set of integers and the relation R in Z be defined by " aRb " iff $a-b$ is an even integer". Then show that R is an equivalence relation.		3						
6 340	Let R be the relation on the set of order pairs of positive integers such that $(a,b)R(c,d)$ if and only if $ad=bc$. Show that R is equivalence relation.		4						
6 341	$A = \{1,2,3,4\}$ If $R = \{(a,b)/(a-b)$ is an integral multiple of 2} then find the digraph of relation and find the relation matrix M_R .		3						

		L. J. Institute of Engineering & Techno	ology Ab	mod	ahad					
		DM Practice Book 202		meu	avau					
		Note: The Practice Book is for reference only, LJU Test paper		ot be	e compuls	orv set i	from this	S.		
U n i t N		Question_text	Answer_ text	M a r k s	Option1	Optio n2	Option 3	Option 4	Option5	Option 6
٠										
6	342	Show that the relation $x \equiv y \pmod{5}$ defined on the set of integers I is an equivalence relation.		3						
6	343	If <i>R</i> be a relation in the set of integers <i>z</i> defined by $R = \{(x, y) : x \in z, y \in z, x - y \text{ is divisible by 3}\}$ Show that the relation <i>R</i> is an equivalence relation.		3						
6	344	Show that the relation 'is divisor of' in the set of $+ve$ integers is reflexive and transitive but not symmetric.		3						
6	345	Let $X = \{1,2,3,4\}$ and $R = \{(x,y) \mid x > y\}$. Draw the graph of R and also give its matrix. Check whether the given relation an equivalence relation?		4						
6	346	Let <i>N</i> be the set of natural numbers. Let <i>R</i> be a relation in <i>N</i> defined by xRy if and only if $x + 3y = 12$ Examine the relation for (i) reflexive (ii) symmetric (iii) transitive.		3						

		L. J. Institute of Engineering & Techno	ology, Ah	med	labad					
		DM Practice Book_202	25							
		Note: The Practice Book is for reference only, LJU Test pap		ot be						
U n i t N o	Sr. No.	Question_text	Answer_ text	M a r k s	Option1	Optio n2	Option 3	Option 4	Option5	Option 6
6	347	Given $S = \{1,2,3,\dots,10\}$ and a relation R on S . Where, $R = \{(x,y)/x + y = 10\}$. What are the properties of relation R ?		3						
6	348	Let A be a set of integers, let R be the relation on $A \times A$ defined by $(a, b) R (c, d)$ if and only if $a + d = b + c$. Prove that R is an equivalence relation.		4						
6	349	Let R be the relation on the set of order pairs of integers such that $(a, b)R(c, d)$ if and only if $a - d = c - b$. Is R equivalence relation?		4						
6	350	Consider the following relation on $\{1,2,3,4,5,6\}$. $R = \{(i,j)/ i-j =2\}$ Is R' transitive? Is R' reflexive? Is R' symmetric?		4						
6	351	Let R be a binary relation defines as $R = \{(a, b) \in R^2 : (a - b) \le 3\}$, determine whether R is reflexive, symmetric, antisymmetric and transitive.		4						

		L. J. Institute of Engineering & Techn	ology, Ah	me	dabad					
		DM Practice Book_20	25							
		Note: The Practice Book is for reference only, LJU Test paper							T	
	Sr. No.	Question_text	Answer_ text	M a r k s	Option 1	Optio n2	Option 3	Option 4	Option5	Option 6
6	352	Show that the relation $ (x,y)R(a,b) \iff x^2 + y^2 = a^2 + b^2 $ is an equivalence relation. The relation R on \mathbb{N} .		3						
6	353	Determine whether the relation for the directed graph shown in figure are reflexive, symmetric, antisymmetric and or transitive.		3						
6	354	If R and S are two equivalence relations on a set A , show that $R \cap S$ is also an equivalence relation on A .		3						
6	355	Union of two equivalence relation R and S , i.e., $R \cup S$ on set A is always reflexive and symmetric.		3						

	L. J. Institute of Engineering & Techno	ology, Ah	med	dabad					
	DM Practice Book_20								
	Note: The Practice Book is for reference only, LJU Test pap								
U Sr. n No. i t N o	Question_text	Answer_ text	M a r k s	Option1	Optio n2	Option 3	Option 4	Option5	Option 6
6 356	If R is equivalence relation on set A then prove that R^{-1} is also equivalence relation on set A .		4						
6 357	Determine whether the relation R on set of all integers is reflexive, symmetric and transitive. Where $(x, y) \in R$ if and only if (i) $xy \ge 1$ (ii) $x \equiv y \pmod{7}$		3						
6 358	Let m be the positive integer greater than 1 show that the relation $R = \{(a,b)/a \equiv b \pmod{m}\}$ i.e. aRb iff m divides a-b in equivalence relation on the set of integers.		3						
6 359	Prove that the relation R is an equivalence relation, for the set of complex numbers is defined by $z_1Rz_2 \Leftrightarrow \left[\frac{z_1-z_2}{z_1+z_2}\right]$ is real.		4						
6 360	If $A = \{1,2,3,4,5\}$ and $R = \{(1,2), (3,4), (4,5), (4,1), (1,1)\}$ find its transitive closure without using Warshall's Algorithm.		4						

		L. J. Institute of Engineering & Techno	ology Ah	mer	lahad					
		DM Practice Book_20		IIICC	iavau					
		Note: The Practice Book is for reference only, LJU Test pap		ot b	e compuls	ory set	from thi	S.		
U n i t N o	Sr. No.	Question_text	Answer_ text	M a r k s	Option1	Optio n2	Option 3	Option 4	Option5	Option 6
6	361	Find the transitive closure without using Warshall's Algorithm of the relation R on $A = \{1,2,3,4\}$ defined by the directed graph as shown in the figure.		4						
6	362	Find the transitive closure of the relation R represented by the given digraph without using Warshall's algorithm.		3						
6	363	Let $A = \{1,2,3,4\}$ and let $R = \{(1,1), (1,2), (1,4), (2,4), (3,1), (3,2), (4,2), (4,3), (4,4)\}$. Find transitive closure by using Warshall's algorithm.		4						

		L. J. Institute of Engineering & Techn	nology, Ahi	med	labad					
		DM Practice Book_2								
		Note: The Practice Book is for reference only, LJU Test pa								
U n i t N o		Question_text	Answer_ text	M a r k s	Option1	Optio n2	Option 3	Option 4	Option5	Option 6
6	364	By using Warshall's algorithm, find the transitive closure of the relation $R = \{(2,1), (2,3), (3,1), (3,4), (4,1), (4,3)\}$ on set $A = \{1,2,3,4\}$.		4						
6	365	Find the transitive closure of R using Warshall's algorithm for $A = \{1, 2, 3, 4, 5, 6\}$ and $R = \{(x, y)/ x - y = 2\}$.		4						
6	366	Let $A = \{11, 12, 13, 14\}$ and let $R = \{(11, 12), (12, 13), (13, 14), (12, 11)\}$. Find transitive closure of R using Warshall's algorithm.		4						
6	367	Let <i>R</i> be a relation with given directed graph. Find the matrix of transitive closure of <i>R</i> using Warshall's algorithm.		4						

		L. J. Institute of Engineering & Technology	ology, Ah	med	labad					
		DM Practice Book_20								
		Note: The Practice Book is for reference only, LJU Test pap								1
	U Sr. No.	Question_text	Answer_ text	M a r k s	Option1	Optio n2	Option 3	Option 4	Option5	Option 6
(5 368	Find the transitive closure of R by Warshall's algorithm,		4						
•	5 369	Let <i>R</i> be a relation on set $A = \{1,2,3,4,5\}$ and $R = \{(1,1), (1,2), (1,3), (1,4), (3,1), (3,2), (5,1), (5,2), (5,3), (5,4), (5,5)\}$. Find transitive closure for <i>R</i> using Warshall's algorithm.		5						
(5 370	$M_R = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}$ Find transitive closure of R using Warshall'salgorithm.		5						
(371	Let R be a relation on set $A = \{1,2,3,4\}$ and $R = \{(1,1), (1,4), (2,1), (2,2), (3,3), (4,4)\}$. Find transitive closure for R using Warshall's algorithm.		5						

		L. J. Institute of Engineering & Techno		med	dabad					
		DM Practice Book_202 Note: The Practice Book is for reference only, LJU Test paper		ot h	o compu	lcory set	from this	a .		
U n i t N o		Question_text	Answer_ text	M a r k s	Option1		Option 3	Option 4	Option5	Option 6
6	372	Find the transitive closure of R by Warshall's algorithm, $A = \{p, q, r, s, t\}$ and $R = \{(p, p), (p, s), (s, t), (s, q), (q, t), (r, r), (r, p), (t, s)\}.$		4						
6	373	Find the transitive closure of R by Warshall's algorithm where $A = \{1,2,3,4,5,6\}$ and $R = \{(1,3), (3,1), (2,4), (4,2), (4,6), (6,4), (3,5), (5,3)\}$		4						
6	374	Let R be a relation with directed graph shown in the figure, using Warshall's algorithm find the transitive closure of R.		4						
7	375	Let a set $S = \{2, 4, 8, 16, 32\}$ and \leq be the partial order defined by a \leq b if a divides b. Number of edges in the Hasse diagram of S	4	1	5	6	3	4		

L. J. Institute of Engineering & Technology, Ahmedabad **DM Practice Book_2025** Note: The Practice Book is for reference only, LJU Test paper may not be compulsory set from this. U Sr. Question_text Answer_ Option1 Optio Option Option Option5 Option 3 No. text n2 4 6 376 The less-than relation, <, on a set of real numbers is _____ Not a Not a A A None partial partial partial partial of orderi orderi orderin orderi these g since ng ng ng becaus becau it is since e it is antisy it is se it is mmetri not not symm reflexi reflex c and etric reflexi ve ive and reflexi ve ve ≤ is The relation a partial order if it is_ reflexi 377 reflexi reflex irrefl asymm ve, ive, etric, ve, exive and antisy transiti antisy symm etric transi mmetr ve mmetr ic and ic and tive transit transit ive ive 378 Which of the following is NOT necessary for a relation to be called a partially Asym Refle Anti-Transi Asy metric xive tive symme ordered relation? mmet tric relatio relatio relatio ric relatio n relati n n n on

		L. J. Institute of Engineering & Techno	ology, Ah	med	dabad					
		DM Practice Book_20:								
		Note: The Practice Book is for reference only, LJU Test pap								
U n i t N o	Sr. No.	Question_text	Answer_ text	M a r k s	Option1	Optio n2	Option 3	Option 4	Option5	Option 6
7	379	If $P = \{1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60\}$, then number of edges in the poset diagram of poset $(P;)$ is	20	1	17	20	18	19	20	22
7	380	A Poset in which every pair of elements has both a least upper bound and a greatest lower bound is termed as	lattice	1	sublat tice	lattice	Compl ement ed	None of these		
7	381	The graph given below is an example of	non- lattice poset	1	partial lattice	semilat tice	non- lattice poset	boun ded lattic e		
7	382	Consider the lattice, the divisor of 42 ordered by divisibility then the complement of 6 is	7	1	7	1	14	2		

i t N r k s 7 383 Consider the lattice the divisors of 60 ordered by divisibility. The compliment of None 1 4 5 10 No		Option 6
Note: The Practice Book is for reference only, LJU Test paper may not be compulsory set from this. U Sr. Question_text Answer_ text a r k s s s s s s s s s s s s s s s s s s		
U Sr. Question_text Question_text Answer_ text R Option 1 Option n2 3 Option n2 3		
n No. i text a r k s s s s s s s s s s s s s s s s s s		
7 383 Consider the lattice the divisors of 60 ordered by divisibility. The compliment of None 1 4 5 10 No	ne	
7 383 Consider the lattice the divisors of 60 ordered by divisibility. The compliment of None 1 4 5 10 No	ne l	
7 383 Consider the lattice the divisors of 60 ordered by divisibility. The compliment of None 1 4 5 10 No	1e	
	ne l	
	ne	1
of of		
these	se	
7 384 Which element is 'minimal' in the following diagram? p 1 q s t p		
p 1 q s t p		
7 385 What is the sum of maximal elements of the given Hasse Diagram? None 1 10 11 0 1	9	None
of these		of these
these		these
7 386 Which element of the poset {{1,2,3,4,5,6,7,8,9,10,11,12}; } are maximal? {7,8,9, 1 {1} {7} {7,8} {7}		None
10,11, 9}	0,11,12}	of those
		these

		I I Institute of Engineering & Techno	ology Ab	m 04	dahad					
		L. J. Institute of Engineering & Technology DM Practice Book_202		med	<u>iabau</u>					
		Note: The Practice Book is for reference only, LJU Test paper		ot b	e compu	llsory set	from thi	S.		
U n i t N o	Sr. No.	Question_text	Answer_ text	M a r k s	Option1		Option 3	Option 4	Option5	Option 6
7	387	Consider the partially ordered set $S = \{A, B, C, D, E, F, G, H, I, J, K, L, M, N, O\}$	II, III	1	I, II,	I, II,	II, III	I, IV	I, II are	III, IV
		described by the Hasse diagram in the following figure	are		III, IV	III are	are	are	correct	are
			correc		are	correct	correc	corre		correc
		С	t		correc		t	ct		· ·
		A F G K L			t					
		(I) The upper bound is B (II) Minimal element is O								
		(III) Maximal elements are A, B, C (IV) Minimal elements are M, O, N								
7	388	Let $D_{30} = \{1, 2, 3, 5, 6, 10, 15, 30\}$ and relation 'divides' be partial ordering on D_{30} . The all lower bounds of 10 and 15 respectively are	1,5	1	1,3	1,5	1, 3, 5	None of these		
7	389	Let $D_{30} = \{1, 2, 3, 5, 6, 10, 15, 30\}$ and relation 'divides' be partial ordering	30	1	30	15	10	6		
		on D_{30} . The lub of 10 and 15 respectively is								

		I I I A'A A	-1 Al-		J-1-J								
		L. J. Institute of Engineering & Technology DM Practice Book 202		med	aabaa								
	Note: The Practice Book is for reference only, LJU Test paper may not be compulsory set from this.												
U n i t N o	Sr. No.	Question_text	Answer_ text	M a r k s	Option1		Option 3	Option 4	Option5	Option 6			
7	390	Consider the Poset $(Z^+,)$, where Z^+ is the set of all positive integers and $ $ is the divisibility relation. Greatest lower bound and least upper bound of the set $\{2, 6, 15, 21\}$ in the given Poset respectively are:	1, 210	1	2, 21	1, 21	2, 210	1, 210	2, 15	1, 15			
7	391	Let $A = \{1, 2, 3, 4, 6, 24, 36, 72\}$. Let \leq be the partial order defined by $a \leq b$ if a divides b. Number of edges in the Hasse diagram of (A, \leq) is	11	1	12	14	13	11					
7	392	If $A = \{1,2,3,6,9,18,20\}$ then the number of edges in the Hasse Diagram of POSET $(A,)$ is,	None of these	1	1	2	3	4	5	None of these			
7	393	If $L = \{1, 2, 3, 4, 6, 9, 36\}$ is the lattice find the number of complements 9 is having in the below given Hasse diagram?	2	1	3	4	6	2					

	L. J. Institute of Engineering & Techno		med	labad					
	DM Practice Book_202 Note: The Practice Book is for reference only, LJU Test paper		ot b	o compu	corr cot	from thi	9		
U Sr.	Question_text	Answer_	M	Option1	Optio	Option	Option	Option5	Option
n No. i t N		text	a r k s	o _F	n2	3	4	op	6
7 394	Show that the relation ≥ is a partial ordering on the set of integers.		3						
7 395	Show that the set Z^+ of all positive integers under divisibility forms a poset.		3						
7 396	Define the relation R on the set Z by aRb if $a - b$ is non-negative even integer. Verify that R defines a partial order for Z.		3						
7 397	In set of natural number $N = \{1, 2, 3,\}$ show that the relation R defined as $aRb \iff a = b^k$ for a, b, k \in N is a partial order relation.		3						
7 398	Draw the digraph for the following relation and determine whether the relation is reflexive, symmetric, transitive and antisymmetric. $A = \{1,2,3,4,5,6,7,8\}$ and let xRy whenever y is divisible by x.		3						

	L. J. Institute of Engineering & Techn		med	labad					
	DM Practice Book_20		. 4 1			C			
U Sr.	Note: The Practice Book is for reference only, LJU Test par Question_text	Answer	ot b	e compul Option1	Optio	Option	S. Option	Option5	Option
n No. i t N o	Question_text	text	a r k s	Option1	n2	3	4	Орионз	6 6
7 399	Let R be the relation on the set A. $A = \{5, 6, 8, 10, 28, 36, 48\}$. Let $R = \{(a, b), a \text{ is a divisor of } b\}$. Draw the Hasse Diagram.		3						
7 400	Let $A = \{1,2,3,4,5,6,7,8,9,12,18,24\}$ be ordered by the relation x divides y. Show that the relations is partial ordering and draw the Hasse diagram.		3						
7 401	Draw the Hasse diagram of D_{24} with the relation divisibility.		3						
7 402	Draw the Hasse diagram for the partial ordering $\{(A, B) / A \subseteq B\}$ on the power set P(S) where $S = \{a, b, c\}$.		3						
7 403	Let $A = \{2, 3, 4, 6, 8, 24, 48\}$ be the partially ordered set with the relation R. 'x divides y'. Draw the Hasse diagram.		3						

	L. J. Institute of Engineering & Techn	ology, Ah	med	labad					
	DM Practice Book_20		- 4 l-			C 41			
U Sr. n No. i t N	Note: The Practice Book is for reference only, LJU Test pap Question_text	Answer_ text	M a r k s	Option1	Optio n2	Option 3	Option 4	Option5	Option 6
7 404	Draw Hasse diagram for the following relations on set $A = \{1,2,3,4,12\}$. $R = \{(1,1), (2,2), (3,3), (4,4), (12,12), (1,2), (4,12), (1,3), (1,4), (1,12), (2,4), (2,12), (3,12)\}$		3						
7 405	Let $A = \{a, b, c, d\}$ and x be a relation on A whose matrix is $M_R = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$. (i) Prove that R is partial order. (ii) Draw Hasse diagram of R.		4						
7 406	Let $A = \{1, 2, 3, 4\}$ and consider the relation $R = \{(1,1), (2,1), (2,2), (3,1), (3,3), (3,4), (4,4)\}$. Show that R is a partial ordering, and draw the Hasse diagram.		4						
7 407	Determine the Hasse diagram of the relation R. $A = \{1,2,3,4,5\}$. $R = \{(1,1), (1,2), (1,3), (1,4), (1,5), (2,4), (3,5), (2,2), (3,3), (4,4), (5,5)\}$		3						

		L. J. Institute of Engineering & Techno	ology, Ahi	med	dabad					
		DM Practice Book_202	25							
_	rl a	Note: The Practice Book is for reference only, LJU Test paper								
i t N	J Sr. No.	Question_text	Answer_ text	M a r k s	Option1	Optio n2	Option 3	Option 4	Option5	Option 6
7	7 408	Determine the Hasse diagram of the relation on $A = \{1,2,3,4,5\}$. Whose matrix is shown. $M_R = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$		3						
7		Determine the matrix of the partial order whose Hasse diagram is given in the figure:		3						
7	7 410	Draw the Hasse diagram of the following sets under partial ordering relation "divides" and indicate those which are chains. (a) {1, 3, 9, 18} (b) {1, 2, 5, 10, 20}		4						

		L. J. Institute of Engineering & Techno	ology, Ah	med	dabad					
		DM Practice Book_202								
т,	C.	Note: The Practice Book is for reference only, LJU Test pap		ot b	e compuls Option1				Ontion 5	Ontion
U n i t N o		Question_text	Answer_ text	a r k s	Орион	Optio n2	Option 3	Option 4	Option5	Option 6
	1									
7	411	Draw Hasse diagram for the lattice (S_{30}, D) where S_{30} is the set of divisors of 30 and D is the divides relation.		3						
7	412	Let $A = \{a, b, c, d, e, f, g, h\}$ be the poset whose Hasse diagram is shown in figure. Find GLB and LUB of $B = \{c, d, e\}$.		4						

	L. J. Institute of Engineering & Technology DM Practice Book_20		med	labad					
	Note: The Practice Book is for reference only, LJU Test pap		ot b	e compul	sorv set f	from this	c		
U Sr. n No. i t N o	Question_text	Answer_ text	M a r k s	Option1	Optio n2	Option 3	Option 4	Option5	Option 6
7 413	Let A be poset whose Hasse diagram is shown in figure. $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$. Find GLB, LUB of set $B = \{3, 4, 6\}$.		4						
7 414	Which elements of the poset{{1,2,3,4,5,6,7,8,9,10,11,12}} are maximal and which are minimal?		3						

	L. J. Institute of Engineering & Technology DM Practice Book		med	labad					
	Note: The Practice Book is for reference only, LJU Test p		ot b	e compuls	ory set	from thi	S.		
U Sr. n No i t N o		Answer_text	M a r k s	Option1	Optio n2	Option 3	Option 4	Option5	Option 6
7 41	5 6 11 11 11 11 11 11 11 11 11 11 11 11 1		1 4 1						
7 41	Consider the divides relation on $S = \{2, 3, 5, 30, 60, 120, 180, 360\}$. Draw the Hasse diagram and find (a) all minimal and maximal element. (b) Greatest and least element		4						
7 41	6 Draw the Hasse diagram for the Poset		3						
	$\{\{1\}, \{2\}, \{4\}, \{1, 2\}, \{1, 4\}, \{2, 4\}, \{3, 4\}, \{1, 3, 4\}, \}, \subseteq\}$. (a) Find the maximal elements. (b) Find the minimal elements. (c) Find all the upper bounds of $\{\{2\}, \{4\}\}\}$. (d) Find the least upper bound of $\{\{2\}, \{4\}\}\}$, if it exists. (e) Find all the lower bounds of $\{\{1, 3, 4\}, \{2, 3, 4\}\}\}$. (f) Find the greates lower bound of $\{\{1, 3, 4\}, \{2, 3, 4\}\}$, if it exists.	t							

			1 41							
		L. J. Institute of Engineering & Techn DM Practice Book_20		med	labad					
		Note: The Practice Book is for reference only, LJU Test pap		ot h	e compuls	orv set i	from thi	<u> </u>		
U n i t N	Sr. No.	Question_text	Answer_ text	M a r k s	Option1	Optio n2	Option 3	Option 4	Option5	Option 6
0										
7	417	Consider the poset $A = \{1, 2, 3, 4, 5, 6, 7, 8\}$ under the partial order whose hasse diagram is as shown below. Consider the subsets $B = \{1,2\}$ and $C = \{3,4,5\}$ of A . Find (i) All the lower and upper bound of B and C . (ii) $glb(B)$, $glb(C)$ and $glb(C)$.		4						
7	418	Find the greatest lower bound and least upper bound of the set $(3, 9, 12)$ and $(1, 2, 4, 5, 10)$ if they exists in the poset $(Z^+,)$. Where $ $ is relation of divisibility.		4						
7	419	Draw Hasse diagram for partial ordering that the set of all subset of $\{1, 2, 3, 4\}$ having at most two numbers partially devoted by \supseteq . Also find maximal, minimal, greatest and least elements.		4						

	L. J. Institute of Engineering & Techn	ology, Ah	med	dabad					
	DM Practice Book_20)25							
	Note: The Practice Book is for reference only, LJU Test papers.								
U Sr n No i t N	Question_text	Answer_ text	M a r k s	Option1	Optio n2	Option 3	Option 4	Option5	Option 6
7 42			3						
7 42	Find the complement of each element in D_{42} with the relation divisibility.		2						

		L. J. Institute of Engineering & Techno	ology, Ah	me	dabad					
		DM Practice Book_202	25			004	۰ 4 ۱.			
U	Sr.	Note: The Practice Book is for reference only, LJU Test pape Question_text	Answer_	ot b		Optio	Option	S. Option	Option5	Option
n i t N	No.	Questien_join	text	a r k s	Ориси	n2	3	4	Ориоле	6
7	422	Determine whether the poset represents by the following Hasse diagram is lattice or not. Justify your answer.		3						
7	423	Which of the following diagram in the figure represents a lattice? Justify.		3						

	L. J. Institute of Engineering & Techn DM Practice Book_20	iology, Ahi 025	med	labad					
	Note: The Practice Book is for reference only, LJU Test pa		ot b	e compuls	ory set	from thi	S.		
U Sr. n No. i t N	Question_text	Answer_ text	M a r k s	Option1	Optio n2	Option 3	Option 4	Option5	Option 6
7 424	Which of the following diagram in the figure represents a lattice? Justify.		3						
7 425	Check whether the following Hasse diagram represents a lattice?		3						

		L. J. Institute of Engineering & Techn		med	dabad					
		DM Practice Book_20		4.1			e 41 •			
U	Sr.	Note: The Practice Book is for reference only, LJU Test par Question_text	Answer_	ot b	e compuls Option1	Optio		S. Option	Option5	Ontion
n i t N o	No.	Question_text	text	a r k s	Option1	n2	Option 3	4	Орионз	Option 6
7	426	Check whether the following Hasse diagram represents a lattice?		3						
7	427	Let (D ₃₀ ,) denote the Poset of all divisors of 30. (a) Is D ₃₀ a lattice? Explain. (b) Is D ₃₀ a complemented lattice? Explain. (c) Is D ₃₀ a distributive lattice? Explain. (d) Is D ₃₀ a Boolean Algebra? Explain.		4						
7	428	Determine whether D_{66} under the relation 'division' is a distributive lattice or not.		5						
7	429	Show that the set of all divisors of 70 under the relation 'divides' is a lattice.		4						

		L. J. Institute of Engineering & Techno	ology, Ah	med	labad					
		DM Practice Book_20: Note: The Practice Book is for reference only, LJU Test pap		ot h	o compul	corv sot	from this	2		
	Sr. No.	Question_text	Answer_ text	M a r k s	Option1	Optio n2	Option 3	Option 4	Option5	Option 6
7	430	Let $A = \{1, 2, 3, 4, 6, 9, 12, 18, 36\}$ and the relation is divisibility on A. (i)Prove that R is a Partial Order relation. (ii)Draw Hasse Diagram of R (iii) Also prove that it is a Lattice or not.		4						
7	431	Consider the lattice L in figure. Determine whether or not each of the following is a sublattice of L. $L_1 = \{x, a, b, y\}$, $L_2 = \{x, a, e, y\}$		4						

		L. J. Institute of Engineering & Technology		med	dabad					
		Note: The Practice Book is for reference only, LJU Test pap		ot h	o compuls	ory sot	from thi	<u> </u>		
U	Sr.	Question_text	Answer_	M	Option1	Optio	Option Option	Option	Option5	Option
n i t N o	No.		text	a r k s		n2	3	4		6
7	432	Determine whether the posets with Hasse diagrams given below are lattice or		4						
	.52	not. If it is lattice then any of them is bounded lattice or not?								
		(i) 9 (ii) h								
		f P								
		d d e								
		0								
		b b c								
		0								
		a								
7	433	Find the complement of each element in D_{20} under the relation 'divides'.		3						
'	433	Find the complement of each element in D_{20} under the relation divides.		3						
7	434	Consider the lattice L find (a) Find complement of a and b, if they exists. (b) Is		4						
		L distributive? Complemented?								
		d o								
		b)								
		a								

_										
		L. J. Institute of Engineering & Techn		med	dabad					
		DM Practice Book_20 Note: The Practice Book is for reference only, LJU Test pap		ot h	a compuls	ory sat	from this	<u> </u>		
U	Sr.	Question_text	Answer_	M	Option1	Optio	Option	Option	Option5	Option
n	No.		text	a	•	n2	3	4	•	6
1 t				r k						
N				s						
0										
7	435	Check whether the lattice is distributive, complemented or both. Justify your		4						
		answer.								
		e = 7.								
		(1)								
		d d								
		a ·								
7	436	Determine whether the following posets is Boolean algebras. Justify your		4						
		answer. $A = \{1, 2, 3, 6\}$ with divisibility.								
7	437	Determine whether the following Hasse Diagram represent Boolean Algebra.		4						
	157	g								
		P								
		·								

		L. J. Institute of Engineering & Techn	ology Ah	med	lahad					
		DM Practice Book_20			iabau					
		Note: The Practice Book is for reference only, LJU Test pap		ot b	e compuls	ory set	from this	S.		
n i t N	Sr. No.	Question_text	Answer_ text	M a r k s	Option1	Optio n2	Option 3	Option 4	Option5	Option 6
7	438	Is D_{75} with the relation "divisibility" a Boolean algebra? Justify your answers.		4						
7	439	Is D_{70} with the relation "divisibility" a Boolean algebra? Justify your answers.		4						
7	440	Determine whether the following Hasse Diagram represent Boolean Algebra.		4						

	L. J. Institute of Engineering & Te	echnology, Ahm	<u>1eda</u>	bad					
	DM Practice Book					0 (1.1			
TT C	Note: The Practice Book is for reference only, LJU Test		t be	compuls	ory set	from this	S.	0 5	
U Sr. n No. i t N	Question_text	text	M a r k s	Option1	Optio n2	Option 3	Option 4	Option5	Option 6
7 441	Determine whether the following posets represents Boolean algebra.		4						
7 442	Determine whether the following posets represents Boolean algebra.		4						

		L. J. Institute of Engineering & Techno	ology Ah	mod	lahad					
		DM Practice Book_202		inec	iavau					
		Note: The Practice Book is for reference only, LJU Test paper		ot b	e compuls	ory set i	from this	S.		
	Sr. No.	Question_text	Answer_ text	M a r k s	Option1	Optio n2	Option 3	Option 4	Option5	Option 6
7	443	Check whether the following is Distributive, Complemented and Bounded Lattice or not. Is it a Boolean Algebra?		3						
7	444	Determine whether the following Hasse diagram represent Lattice or not.		5						
7	445	Let A lattice (A, \leq) , where $A = \{1, 2, 4, 5, 8, 9\}$ and \leq denotes the usual "less than or equality" relation. Find $4 \land (5 \lor 9)$ and $(2 \lor (2 \land 8)) \land 4$. Is this lattice a Boolean Algebra?		4						

		L. J. Institute of Engineering & Techno		me	dabad					
		DM Practice Book_202		4 1		1 .	e 41 •			
TT	Sr.	Note: The Practice Book is for reference only, LJU Test pap Question_text	er may no Answer_	ot b M	Option 1		Option	S. Option	Option5	Option
	No.	Question_text	text	a r k s	Орионт	n2	3	4 4	Options	6
7	446	Prove that $(S_{66},)$ is a Boolean Algebra. Where, S_{66} is the set of all divisors of 66.		4						
7	447	Is D_{42} with the relation "divisibility" a Boolean algebra? Justify your answers.		5						
8	448	is not a binary operation on the set of natural numbers.	diffe renc e	1	addi tion	produ ct	diffe renc e	non e		
8	449	(G,*)=?	{- 1,1}	1	{0,1}	{- 1,1}	{0,- 1}	{1}		
8	450	is not a binary operation on \mathbb{Z} .	/	1	+	-	*	/		
8	451	For any set S if a*b=b*a, ∀a,b∈S then * is said to be on S.	com muta tive	1	clos ed	assoc iative	distri butiv e	com mut ativ e		

		L. J. Institute of Engineering & Techno	ology, Ah	me	dabad					
		DM Practice Book_202	25							
		Note: The Practice Book is for reference only, LJU Test pap							1	
	Sr. No.	Question_text	Answer_ text	M a r k s	Option1	Optio n2	Option 3	Option 4	Option5	Option 6
8	452	If $a^*(b^*c) = (a^*b) *c \forall a,b,c \in S$ then * is said to be on S.	asso ciati ve	1	clos ed	com mutat ive	asso ciati ve	dist ribu tive		
8	453	For any set S there exist $b \in S$ such that $a*b=e$ for some $a \in S$ then b is called which element of a? Where, e is an identity element on S.	an inver se	1	an inve rse	an identi ty	a unit	a pro per		
8	454	Let G={1, -1,i,-i} is group under multiplication then how many elements are self-invertible in G?	2	1	1	2	3	4		
8	455	What is the identity element in the group $G = \{2, 4, 6, 8\}$ under multiplication modulo 10?	6	1	3	2	1	6	5	4
8	456	Let G= {1, -1, i,-i} is group under multiplication then the inverse of i is	-i	1	1	-1	i	-i		
8	457	Which of the following is/are Monoid but not Group? Sr. No. Sets Binary Operation 1) \mathbb{Z} $a*b=a\cdot b$ 2) \mathbb{N} $a*b=a^b$ 3) \mathbb{N} $a*b=lcm\{a,b\}$ 4) \mathbb{Z}_n $a*b=a+_n b$ 5) $\{1,-1,i,-i\}$ $a*b=a\cdot b$	Any two	1	Any one	Any two	Any three	Any	All of above	none

		L. J. Institute of Engineering & Techn	ology, Ah	me	dabad					
		DM Practice Book_20								
TT	C.,	Note: The Practice Book is for reference only, LJU Test pa							Oution 5	Ortion
U n i t N o		Question_text	Answer_ text	M a r k s	Option	Optio n2	Option 3	Option 4	Option5	Option 6
8	458	Let $G=(\mathbb{Z}6, +6)$ is an Abelian group then the inverse element of 4 is	2	1	0	1	2	3		
8	459	This is an abelian group $\{-3n: n \in Z\}$ under? (I). Division (II) Subtraction (III) Addition (IV) Multiplication	ONL Y III	1	ON LY I	ONL Y II	ONL Y III	ON LY IV	I AND II ONLY	II AND III ONL Y
8	460	The number of elements in the symmetric group S_3 is	6	1	4	6	24	9		
8	461	How many elements are self-invertible in S_3 (the set of all permutations on three symbols 1, 2 & 3)?	4	1	4	1	2	3	All elemen ts	none
8	462	Let S3= {I, (1 2), (1 3), (2 3), (1 2 3), (1 3 2)} be a group with respect to composition of function. The inverse of (1 2 3) is	(1 3 2)	1	(1 2)	(2 3)	(1 3 2)	(1 2 3)		
8	463	Which of the following is group under multiplication?	Q- {0}	1	Q	Q- {0}	Q- {1}	Q- {0,1 }		

	L. J. Institute of Engineering & Techn		me	dabad					
	DM Practice Book_20								
TT C	Note: The Practice Book is for reference only, LJU Test papers.		_						
U Sr. n No. i t N	Question_text	Answer_ text	M a r k s	Option 1	Optio n2	Option 3	Option 4	Option5	Option 6
					1		<u> </u>	l	
8 464	Let $A = \{a,b\}$. The composition table of A is defined as	Grou poid	1	Gro upoi d	Semi group	Mon oid	Gro up	Abelia n group	None of these
8 465	Let $(Z,*)$ be a group with the binary operation $a*b=a+b+1, \ \forall \ a,b\in Z$ then inverse of a is	-a -2	1	-a -4	-a -2	-a -1	-a +1	-a -3	a + 2
8 466	Let A be the set of all non-singular matrices over real numbers and let * be the matrix multiplication operator. Then	< A, *> is a grou p but not an abeli an grou p	1	A is close d unde r * but < A, *> is not a semi grou p	< A, * > is a semi group but not a monoi d	< A, *> is a grou p but not an abeli an grou p	< A, *> is a sem i grou p but not a grou p	< A, * > is a monoid but not a group	< A, * > is not a group

	L. J. Institute of Engineering & Technology, Ahmedabad									
	DM Practice Book_2025 Note: The Practice Book is for reference only, LJU Test paper may not be compulsory set from this.									
U n i t N o	Sr. No.		Answer_ text	M a r k s	Option1	Optio n2	Option 3	Option 4	Option5	Option 6
8	467	Consider the binary operation * defined on a set of ordered pairs of real numbers as $(a,b)*(c,d) = (ad+bc,bd)$. Moreover it is Associative, then $(1,2)*(3,4)*(3,5)$ is equal to	(74,4	1	(59, 30)	(110,1 05)	(40,7 4)	(74, 40)		
8	468	Let G be the set of the form $G = \{\begin{bmatrix} a & b \\ c & d \end{bmatrix} / ad - cb \neq 0 \& a, b, c, d \in R\}$ is a group under matrix multiplication, then what is the identity element for the given set?	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	1	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$	
8	469	The set of all positive rational number forms an abelian group under the composition defined by a * b = $\frac{ab}{3}$, then what is the inverse element of this group?	9 a	1	$\frac{3}{ab}$	$\frac{a}{b}$	<u>a</u> 9	$\frac{9}{a}$		
8		Let S_3 (the set of all permutations on three symbols 1, 2 & 3) is a finitenon-Abelian group with respect to composition of permutation and $f_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$, $f_2 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$, $f_3 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$, $f_4 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$, $f_5 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$, $I = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$ then what is the value of $f_1(f_4f_5) = \underline{\qquad}$ and $(f_2f_3)f_5 = \underline{\qquad}$	I,I	1	f_2 , I	f_2 , f_3	I ,I	I,f_2		
8	471	Show that $(Z_5 - \{0\}, X_5)$ is group.		4						

	L. J. Institute of Engineering & Techno		med	labad						
	DM Practice Book_2025									
TT G	Note: The Practice Book is for reference only, LJU Test papers.		ot b					0 5		
U Sr. n No. i t N o	Question_text	Answer_ text	a r k s	Option1	Optio n2	Option 3	Option 4	Option5	Option 6	
8 472	Show that the set of square roots of unity forms a group under multiplication.		4							
8 473	Show that the set of fourth roots of unity forms an Abelian group under multiplication.		4							
8 474	The algebraic structure $(G,*)$ is $G = \{(a,b)/a,b \in R\}$ and $*$ is a binary operation defined as $(a,b)*(c,d)=(ac,bc+d)$ for all $(a,b),(c,d)\in G$. Determine whether $(G,*)$ is a Monoid or not. If yes then clearly specify the identity element.		3							
8 475			3							
8 476			4							
8 477	Check whether $(Z_8, +_8)$ is a group or not.		4							
8 478	Check whether the set of non-zero complex numbers C_0 form an infinite abelian group or not with respect to multiplication composition.		4							
8 479	Prove that the set {0,1,2,3,4} is a finite abelian group under addition modulo 5 as binary operation.		3							

	L. J. Institute of Engineering & Techno	ology, Ah	med	labad						
	DM Practice Book_2025									
	Note: The Practice Book is for reference only, LJU Test pap									
U Sr. n No. i t N	Question_text	Answer_ text	M a r k s	Option1	Optio n2	Option 3	Option 4	Option5	Option 6	
8 480	Show that the set of cube roots of unity forms a group under multiplication.		4							
8 481	find all the subgroups of $(Z_4, +_4)$		3							
8 482	Show that $H = \{loga : a \in Q, a > 0\}$ is a subgroup of $G = (R, +)$.		3							
8 483	Consider the group $\langle Z_4, +_4 \rangle$. Check whether the following are subgroup of		4							
	$< Z_4, +_4 >$ or not with valid reason. If yes, then prove that it is a subgroup of									
	$< Z_4, +_4>.$									
	(a) $H_1 = \{0, 1\}$									
	(b) $H_2 = \{0, 2\}$									
0 404	(c) $H_3 = \{0, 3\}$									
8 484	Show that $(3Z, +)$ is a subgroup of $(Z, +)$.		3							
8 485	Show that (Z_5, X_5) is a monoid but not group.		3							
8 486	Show that the set of all positive rational number forms an abelian group under the composition defined by		5							
	a * b = ab/2.									

	L. J. Institute of Engineering & Techno	ology, Ah	med	labad						
	DM Practice Book_2025 Note: The Practice Book is for reference only, LJU Test paper may not be compulsory set from this.									
U Sr. n No. i t N	Note: The Practice Book is for reference only, LJU Test pape Question_text	Answer_ text	M a r k s	Option1	Optio n2		Option 4	Option5	Option 6	
8 487	Show that S_2 (the set of all permutations on two symbols 1 & 2) is a group of order 2 with respect to composition of permutation.		3							
8 488	Show that S_3 (the set of all permutations on three symbols 1, 2 & 3) is a finitenon-Abelian group of order 6 with respect to composition of permutation.		3							
8 489	Show that the set of rational numbers excluding zero is an Abelian group under multiplication. i.e., (Q^*, \times) is an Abelian group.		3							
8 490	Show that $G = \{\begin{bmatrix} a & b \\ c & d \end{bmatrix} / ad - cb \neq 0 \& a, b, c, d \in R \}$ is a group under matrixmultiplication.		5							
8 491	Show that $G = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \right\}$		5							
8 492	is an Abelian group under matrix multiplication. Show that integral multiplies of 5 generates a subgroup of additive group of integers.		5							

		L. J. Institute of Engineering & Techno	ology, Ah	med	abad							
	DM Practice Book_2025 Note: The Practice Book is for reference only, LJU Test paper may not be compulsory set from this.											
U n i t N o		Question_text	Answer_ text	M a r k s	Option1	Optio n2	Option 3	Option 4	Option5	Option 6		
8	493	If <i>G</i> is the set of four special bilinear functions f_1, f_2, f_3, f_4 on the set of complex numbers defined by $f_1(z) = z, \qquad f_2(z) = -z, \qquad f_3(z) = \frac{1}{z}, \qquad f_4(z) = -\frac{1}{z}$ then <i>G</i> forms a finite abelian group of order 4 with respect to composition known as composite of two functions.		3								
8	494	Let $G=\{1,2,3,4,5,6\}$ then show that (G,X_7) is an abelian group.		5								
8	495	Show that the set $G = \{a + b\sqrt{2} / a, b \in Q\}$ is a group with respect to addition.		4								
8	496	Show that $G = \{\begin{bmatrix} \cos a & -\sin a \\ \sin a & \cos a \end{bmatrix} / a \in R \}$ is a group under matrix multiplication.		5								
8	497	R={0°, 60°, 120°, 180°, 240°, 300°}. a*b= overall angular rotation corresponding to successive rotation a and then by b. Show that (R, *) is group.		5								

	L. J. Institute of Engineering & Technology, Ahmedabad										
	DM Practice Book_2025										
	Note: The Practice Book is for reference only, LJU Test paper may not be compulsory set from this.										
	Sr. No.	Question_text	Answer_ text	M a	Option1	Optio n2	Option 3	Option 4	Option5	Option 6	
i				r							
N				S							
0											
•											
8	498										
		The set Q_1 of all rational numbers other than 1 with operation $*$ defined by a $*$		5							
		b = a + b - ab is an abelian group.									
Ш			1								