Paths

Matteo Paz, Dylan Rupel

February 27th, 2024

Definition 1 A path in a topological space Y is a continuous mapping from $[0,1] \rightarrow Y$.

Intuitively, a path is just a line or curve in your topological space. We define it to be homeomorphic to the real interval [0,1]. If we have two paths p_1 and p_2 , we can also concatenate or merge them naturally, given that the endpoint $p_1(1) = p_2(0)$:

$$p_1 * p_2 = \begin{cases} p_1(2t) & \text{if} \quad 0 \le t \le \frac{1}{2} \\ p_2(2t) & \text{if} \quad \frac{1}{2} \le t \le 1 \end{cases}$$

Using this we can define a natural equivalence relation, in which all points which are path-connected are considered as a group:

Proposition 1 $x_1 \sim x_2$ if there exists a path $p:[0,1] \to X$ with $p(0) = x_1$ and $p(1) = x_2$ gives an equivalence relation

Proof.

- 1. Reflexive: For $x \in X$, the path p(t) = x for all $t \in [0, 1]$ satisfies.
- 2. Symmetric: If $x \sim x'$ then there is a path $p: x \to x'$. If we define p'(t) = 1 p, then p'(0) = x' and p'(1) = x
- 3. Transitive: If $x \sim x'$ and $x' \sim x''$, then simply concatenate the respective paths with the aforementioned construction so that $p * p' : x \to x''$

Thus, path-connectedness is an equivalence relation.