

Resumen-Tema-3.pdf

ferluque

ESTADÍSTICA DESCRIPTIVA E INTROD A LA PROBABILIDAD

1º Doble Grado en Ingeniería Informática y Matemáticas

Facultad de Ciencias
Universidad de Granada

Tema 3

Experimentos aleatorios:

- Mismas condiciones ⇒ mismos resultados.
- Se puede repetir indefinidamente bajo las mismas condiciones ideales
- Si se modifican las condiciones se puede modificar por completo el resultado
- Se pueden determinar el conjunto de posibles resultados pero no se puede predecir un resultado particular
- Si el experimento se repite muchas veces, aparece un modelo de regularidad estadística en los resultados

Álgebra de sucesos

Espacio muestral (Ω):

- Conjunto de sucesos elementales: sucesos indescomponibles en otros más simples
- *Ej*: Lanzar un dado: $\Omega = \{1, 2, 3, 4, 5, 6\}$
- El espacio muestral asociado a un experimento puede ser: **finito, infinito numerable** o **continuo**

Suceso:

- Característica, hecho o proposición lógica cuya ocurrencia o no pueda observarse tras la realización del experimento
- Todo suceso se identifica con un subconjunto de Ω , es por eso que se hace posible el uso de la *Teoría de Conjuntos* para explicar relaciones y operaciones entre sucesos
- Existen cuatro tipos:
 - $\circ~$ Suceso elemental: Un sólo elemento de Ω
 - $\circ~$ Suceso compuesto: Dos o más elementos de Ω
 - $\circ~$ Suceso seguro: Aquel que ocurre siempre. Consta de todos los sucesos elementales de Ω
 - \circ **Suceso imposible**: No ocurre nunca. Se identifica con ϕ

Operaciones y relaciones

Contenido, igualdad, complementario, unión, intersección, diferencia (simétrica)

- **Diferencia simétrica**: $A\Delta B=(A-B)\cup(B-A)$. Los sucesos de A que no están en B, y los sucesos de B que no están en A. Es decir, ocurre cuando ocurre **uno y sólo uno** de los dos
- Sucesos incompatibles: A_1,A_2,\ldots,A_n sucesos son incompatibles dos a dos si $A_i\cap A_j=\phi \ \ \forall i\neq j\ (i,j=1,2,\ldots,n)$
- Sistema exhaustivo de sucesos: A_1,A_2,\ldots,A_n verifican que $A_1\cup A_2\cup\ldots A_n=\Omega$
- **Sistema completo de sucesos (o partición de** Ω): Si son un sistema exhaustivo y además, son incompatibles.

Estructuras de álgebra y σ -álgebra

- Álgebra de Boole (Campo): Una clase no vacía A de conjuntos de Ω tiene estructura de Álgebra de Boole si:
 - 1. $\forall B \in A$ se verifica que $\bar{B} \in A$ 2. $\forall B_1, B_2 \in A$ se verifica que $B_1 \cup B_2 \in A$

tú puedes

sin ánimo de lucro,

equea esto:

Se deducen:

a)
$$\Omega\in A$$
. Dado $B\in A$, por 1 $ar B\in A$, y por 2 $B\cup ar B=\Omega\in A$ b) $\phi\in A$, de a) y 1 $ar\Omega=\phi\in A$

• σ - álgebra: Una clase no vacía de sucesos $A\subseteq P(\Omega)$ tiene estructura de σ -álgebra si:

1.
$$\forall B \in A$$
 se verifica que $ar{B} \in A$

2.
$$\forall B_1, B_2, \ldots \in A$$
 se verifica que $\bigcup_{i=1}^{\infty} B_i \in A$

También se deducen los a) y b) anteriores

Concepciones de probabilidad

Concepción clásica: A es un suceso arbitrario que se puede presentar en m de los n posibles resultados **igualmente factibles** del experimento. Entonces la **probabilidad de** A:

$$P(A) = rac{m}{n} = rac{n_{\dot{u}} mero\ de\ resultados\ favorables}{n_{\dot{u}} mero\ de\ casos\ posibles}$$
 (Regla de Laplace)

Concepción frecuentista: Si se realizan N repeticiones de un experimento y un suceso A se ha presentado en N_A ocasiones, la **frecuencia relativa de** A **en las** N **pruebas**:

$$f_N(A)=rac{N_A}{N}$$

y la **probabilidad de** A como:

$$P(A) = \lim_{N \to \infty} f_n(A)$$

Definición axiomática de Kolmogorov: Sea (Ω, A) (A un σ -álgebra) un espacio medible asociado a un experimento aleatorio, se define una **probabilidad** como una función de conjunto:

$$P:A\longrightarrow [0,1]$$

que verifica:

- 1. Axioma de no negatividad: $P(B) \geq 0, \ \forall B \in A$
- 2. Axioma del suceso seguro: $P(\Omega) = 1$
- 3. Axioma de σ -aditividad: B_1, B_2, B_3, \ldots sucesos incompatibles, entonces:

$$P\left(\cup_{i=1}^{\infty} A_i\right) = \left(\cup_{i=1}^{\infty} P(A_i)\right)$$

Consecuencias:

- 1. $P(\phi) = 0$
- 2. $\forall B \in A, \ P(\overline{A}) = 1 P(A)$
- 3. La probabilidad P es monótona y no decreciente:

$$orall C,D\in A$$
, con $B\subset C\Rightarrow P(B)\leq P(C)$ y además $P(C-D)=P(C)-P(D)$

- 4. $\forall B \in A, \ P(A) \leq 1$
- 5. $\forall B, C \in A \ P(B C) = P(B) P(B \cap C)$
- 6. $\forall B, C \in A \ P(B \cup C) = P(B) + P(C) P(B \cap C)$
- 7. Subatividad finita: $P\left(\bigcup_{i=1}^{n} A_i\right) \leq \sum_{i=1}^{n} P(A_i)$
- 8. Subatividad numerable: $P\left(\bigcup_{i=1}^{\infty} A_i\right) \leq \sum_{i=1}^{\infty} P(A_i)$
- 9. Principio de inclusión-exclusión:

$$P(\cup_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i) - \sum_{i < j}^{n} P(A_i \cap A_j) + \sum_{i < j < k}^{n} P(A_i \cap A_j \cap A_k) + \ldots + (-1)^{n-1} P(\cap_{i=1}^{n} A_i)$$

- 10. Desigualdad de Bonferroni:
- 11. Designaldad de Boole: $P(A\cap B)\geq 1-P(ar{A})-P(ar{B})$