

Sistemas Digitais (SD)

Circuitos Sequenciais Básicos: Caracterização Temporal

Aula Anterior

Na aula anterior:

- ► Flip-Flops
 - Flip-flop master-slave
 - Flip-flop JK
 - Flip-flop edge-triggered
- ▶ Simbologia

Planeamento

SEMANA	TEÓRICA 1	TEÓRICA 2	PROBLEMAS/LABORATÓRIO
17/Fev a 21/Fev	Introdução	Sistemas de Numeração	
24/Fev a 28/Fev	CARNAVAL	Álgebra de Boole	P0
02/Mar a 06/Mar	Elementos de Tecnologia	Funções Lógicas	VHDL
9/Mar a 13/Mar	Minimização de Funções	Minimização de Funções	LO
16/Mar a 20/Mar	Def. Circuito Combinatório; Análise Temporal	Circuitos Combinatórios	P1
23/Mar a 27/Mar	Circuitos Combinatórios	Circuitos Combinatórios	L1
30/Mar a 03/Abr	Circuitos Sequenciais: Latches	Circuitos Sequenciais: Flip-Flops	P2
06/Abr a 10/Abr	FÉRIAS DA PÁSCOA	FÉRIAS DA PÁSCOA	FÉRIAS DA PÁSCOA
13/Abr a 17/Abr	Caracterização Temporal	Registos	L2
20/Abr a 24/Abr	Contadores	Circuitos Sequenciais Síncronos	P3
27/Abr a 01/Mai	Síntese de Circuitos Sequenciais Síncronos	Síntese de Circuitos Sequenciais Síncronos	L3
04/Mai a 08/Mai	Exercícios Tes	Memórias ste 1	P4
11/Mai a 15/Mai	Máq. Estado Microprogramadas: Circuito de Dados e Circuito de Controlo	Máq. Estado Microprogramadas: Microprograma	L4
18/Mai a 22/Mai	Circuitos de Controlo, Transferência e Processamento de Dados de um Processador	Lógica Programável	P5
25/Mai a 29/Mai	P6	P6	L5

Sumário

■ Tema da aula de hoje:

- ▶ Caracterização temporal
- ▶ Metodologia de sincronização temporal

Bibliografia:

- M. Mano, C. Kime: Secções 5.3 e 5.6
- G. Arroz, J. Monteiro, A. Oliveira: Secção 6.4

Latches e Flip-Flops

Latches e Flip-flops (revisão)

- ▶ Os circuitos básicos de memória podem ser classificados em:
 - Latches
 - Flip-flops.
- ▶ Os latches mudam as saídas <u>imediatamente</u> após uma variação nas entradas (diz-se que as saídas são transparentes).
- ▶ Os flip-flops mudam as saídas apenas quando há uma <u>variação do</u> <u>relógio</u>.

Latches e Flip-Flops

Latches e Flip-flops

➤ Se as entradas de um latch mudam enquanto o relógio está a 1, o seu estado muda imediatamente. Esta mudança pode implicar novas mudanças de estado noutros latches, o que pode originar uma sequência imprevisível de mudanças de estado no circuito.

Exemplo: $(S1=0, R1=0) \rightarrow (S1=1, R1=0)$:

A ordem de SET (S1=1, R1=0) propaga-se no mesmo ciclo de relógio ao 2º latch!

Caracterização Temporal

► Tempo de atraso ou de propagação (t_{pLH}, t_{pHL})

 Duração mínima de um pulso de relógio (t_W)

Tempos de Preparação e de Manutenção

- ▶ O tempo de preparação (t_s SETUP) é a duração mínima do intervalo de tempo, <u>antes</u> da transição ativa de relógio, durante o qual as entradas de dados não podem variar.
- ▶ O tempo de manutenção (t_H HOLD) é a duração mínima do intervalo de tempo, <u>após</u> a transição ativa de relógio, durante o qual as entradas de dados não podem variar.

Caracterização dos t_s, t_w e t_h para os diversos FFs

Pulse-Triggered (Master-Slave) Negativo CP $tw \equiv ts$ t_H t_{H} t_{H}

Metodologia de Sincronização Temporal

► Em sistemas síncronos, o funcionamento adequado significa que, para cada evento de relógio, todos os FFs examinam as suas entradas e determinam os seus novos estados.

Isto obriga a que:

- Os valores de entrada correctos têm de ser disponibilizados, a tempo, aos FFs que vão mudar de estado.
- Nenhum flip-flop pode mudar de estado mais do que uma vez durante o mesmo evento de relógio.

Metodologia de Sincronização Temporal

► Exemplo:

$$E=1$$
, $Q0(0)=Q1(0)=1$

Diagrama temporal considerando os tempos de atraso desprezáveis:

Comportamento Temporal

- ► As entradas dos FFs têm de estar estáveis um <u>Tempo de Setup</u> antes do flanco de relógio, e um <u>Tempo de Hold</u> depois do flanco de relógio.
 - O tempo de propagação de um FF é habitualmente muito maior que o tempo de hold, portanto a verificação da condição de hold nunca é problema.
- ▶ Para garantir a condição de setup é necessário que a variação provocada pelo 1º evento de relógio, chegue à entrada do FF um tempo de setup antes do 2º flanco de relógio.

Metodologia de Sincronização Temporal

► Exemplo:

$$E=1$$
, $Q0(0)=Q1(0)=1$

Diagrama temporal considerando os tempos de atraso <u>não</u> desprezáveis:

Comportamento Temporal (cont.)

- ▶ Para uma frequência de relógio demasiado elevada, o circuito deixa de funcionar correctamente.
- ▶ O funcionamento correcto exige:

$$t_{P_{FF}} + t_{P_{L\acute{O}GICA}} \leq T_{CLK} - t_{SU}$$

$$T_{CLK} \geq t_{P_{FF}} + t_{P_{L\acute{O}GICA}} + t_{SU}$$

$$f_{CLK} \leq \frac{1}{t_{P_{FF}} + t_{P_{L\acute{O}GICA}} + t_{SU}}$$

▶ O caso limite é:

$$T_{\min_{CLK}} = t_{P_{FF}} + t_{P_{L\acute{O}GICA}} + t_{SU}$$

$$f_{\text{max}_{CLK}} = \frac{1}{t_{P_{FF}} + t_{P_{L\acute{O}GICA}} + t_{SU}}$$

Exemplo: contador up/down

- ► <u>Especificações</u>:
 - Contagem entre 0h e Fh → 4 bits
 - Dois modos de funcionamento:
 - o Incremento
 - o Decremento
 - Dois botões:
 - Selecção do modo de funcionamento (inc/dec)
 - Avanço da contagem

► Requisitos:

- Display de 7 segmentos
- Elemento de memória (4 bits)
- Incrementador/Decrementador
- 2 Botões

Exemplo: contador up/down

- ► Requisitos:
 - Display de 7 segmentos
 - Elemento de memória (4 bits)
 - Incrementador/Decrementador
 - 2 Botões

- Exemplo: contador up/down
 - ► Elemento de memória: conjunto de 4 flip-flops tipo D

Exemplo: contador up/down

► <u>Incrementador/Decrementador</u>: somador de 4 bits

Р	Q	Cin	S		
'0000'	Α	1	A+1		
'1111'	Α	0	A-1		

- Exemplo: contador up/down
 - ► <u>Tabela de transição de estados</u>:

Entradas		Estado Presente			Estado Seguinte				
Avançar	Inc/Dec	Q ₃ (n-1)	Q ₂ (n-1)	Q ₁ (n-1)	Q ₀ (n-1)	$Q_3(n)$	$Q_2(n)$	Q ₁ (n)	$Q_0(n)$
		()							
1	1	0	1	1	0	0	1	1	1
1	1	0	1	1	1	1	0	0	0
1	1	1	0	0	0	1	0	0	1
1	1	1	0	0	1	1	0	1	0
1	0	1	0	1	0	1	0	0	1
1	0	1	0	0	1	1	0	0	0
1	0	1	0	0	0	0	1	1	1
1	0	0	1	1	1	0	1	1	0
0	Χ	1	0	0	0	1	0	0	0
0	Χ	1	0	0	1	1	0	0	1
				()				

Exemplo: contador up/down

▶ <u>Diagrama temporal</u>:

Exemplo: contador up/down

Cálculo da máxima frequência de funcionamento:

$$t_{PFF} = 30 \text{ns}$$

 $t_{SU} = 5 \text{ns}$
 $t_{PADDER} = 65 \text{ns}$

- $T_{\text{minCLK}} = (30\text{ns} + 65\text{ns} + 5\text{ns}) = 100\text{ns}$
- $ightharpoonup f_{\text{maxCLK}} = 1/100 \text{ns} = 10 \text{ MHz}$

Próxima Aula

Tema da Próxima Aula:

- ▶ Registos
 - Registos simples
 - Registos de deslocamento
 - Registos multimodo

Agradecimentos

Algumas páginas desta apresentação resultam da compilação de várias contribuições produzidas por:

- Nuno Roma
- Guilherme Arroz
- Horácio Neto
- Nuno Horta
- Pedro Tomás