电子科技大学

2003年硕士学位研究生人学试题参考答案 科目名称: 429计算机专业基础

第一部分操作系统

单项选择题(在每小题1分,共20分)

- 1. 若有一进程拥有100个线程,这些线程属于用户级线程,则在系统调度执行时间上占用(1)时间片。
 - ①1 ②100 ③1 / 100 ④0
- 2. 能从一种状态转变为3种状态的是(4)。
 - ①就绪 ②阻塞 ③完成 ④执行
- 3. 不是信号量能实现的功能(4)。
 - ①进程同步 ②进程互斥 ③执行的前趋关系 ④进程的并发执行
- 4. 作业的周转时间与响应时间的时序关系是(2)。
 - ①重叠的 ②相邻接的 ③有间隔的 ④不存在的
- 5. 下面哪一个不会引起进程创建(3)。
 - ①用户登录 ②作业调度 ③设备分配 ④应用请求
- 6. 不是同步机制应遵循的准则(4)。
 - ①让权等待 ②空闲让进 ③忙则等待 ④AND条件
- 7. 死锁定理是用于处理死锁的那一种方法(3)。
 - ①预防死锁 ②避免死锁 ③检测死锁 ④解除死锁
- 8. 当分配一通道给进程,由该进程传送完数据之后才能给别的进程占用,这种情况是属哪一种通道类型。(2)。
 - ①字节多通道 ②数组选择通道 ③数组多路通道 ④PIPE
- 9. 段式存储管理中,处理零头问题可采用(2)方法。
 - ①重定位 ②拼接 ③spooling技术 ④覆盖技术
- 10. 适合多道程序运行的存储管理中,存储保护是为了(4)。
 - ①防止一个作业占用同一个分区 ②防止非法访问磁盘文件
 - ③防止非法访问磁带文件
- ④防止各道作业相互干扰
- 11. 分页存储管理中,主存的分配是(1)。

- ①以块为单位进行 ②以作业的大小分配
 - ③以物理段进行分配 ④以逻辑记录大小进行分配
- 12. 请求页式存储管理系统可能出现(1)问题。
 - ①抖动 ②不能共享 ③外零头 ④动态链接
- 13. 缓冲池管理中着重考虑的问题是(3)。
 - ①选择缓冲区的大小
- ②决定缓冲区的数量
- ③实现进程访问缓冲池的同步 ④限制进程的数量
- 14. 设置当前目录的主要原因是(2)。
 - ① 节省主存空间
- ②加快文件查找速度
- ③节省辅存空间 ④便于打开文件
- 15. 建立多级目录(3)。
 - ①便于文件的保护 ②便于关闭文件
 - ③解决文件的重名与共享 ④提高系统的效率
- 16. 各站点既可以作为客户去访问其它站点,又可以为其它站点服务,这种方式 称为(3)。
 - ①服务器模式

②客户模式

③对等模式

- ④客户/服务器模式
- 17. 文件的顺序存取是(2)。
 - ①按终端号依次存取
 - ③按物理块号依次存取
- 18. AND信号量机制是为了(3)。
 - ①信号量的集中使用

 - ③防止系统的不安全性
- ②解决结果的不可再现性问题

④按文件逻辑记录的大小逐一存取

②按文件的逻辑号逐一存取

- ④实现进程的相互制约
- 19. 使用修改位的目的是: (4)。
 - ①实现LRU页面置换算法
- 20. 通道程序是(2)。
 - ①由一系列机器指令组成
 - ③可以由高级语言编写
- ②实现NRU页面置换算法
- ③在快表中检查页面是否进入 ④检查页面是否最近被写过
 - ②由一系列通道指令组成
 - ④就是通道控制器
- 二、判断改错题(将正确的划上"√"、错误的划上"×"、每小题1.5分,共15分)
- 1. (×) 可变式分区采用紧凑技术,可构成大的空白存储区。
- 2. (×) 多级反馈队列调度算法是属静态优先权调度算法。
- 3. (√) 静态链接需要共享目标模块的拷贝,而动态链接不需要共享目标模块 的拷贝。

计算机专业基础试题

77-70	The state of the s
4.	(×) 在页面置换算法中,最近最久不用页面置换算法LRU与简单的Clock置换算法是相同的。
5.	(√)设备控制器是可编址设备。当用于控制多台设备时,则具有多地址。
6.	(√)缓冲技术是以空间换取时间,而且只能在设备使用不均衡时起到平滑作用。
	711 6
08	
7.	(√) 由系统通过逻辑设备表实现逻辑设备到物理设备的映射。当更换物理设
	备时,用户的程序不用改,仅修改逻辑设备表。
Q	(×) 采用多级目录不能实现不同用户可使用不同名字,来访问系统中的同一
٥.	THE RESIDENCE WAS ARE AS TO SECURE STREET AS TO SECURE T
	个共享文件。
9.	(√)用户对文件的访问:将由用户访问表、目录访问权限及文件属性三者的
	权限所确定。
1.0	///连术五十篇四天依由 四百四对小从意义 刀可以游吟中意义
IU.	(×)请求页式管理系统中,既可以减少外零头,又可以消除内零头。
\equiv	填空题(每小题1分,共10分)
6	
1.	系统调用有五大类,它们是进程控制类、文件操作类、设备管理类、通信
	类信息维护。
2.	在引入线程的操作系统中,把进程作为
	而把线程作为分派和调度的基本单位。
	THE STATE OF THE S
3.	分布式操作系统的特征有:分布性、并行性、共享性、透明性和
	键状性。
1	在I/0系统中引入缓冲的原因有:减少中断次数、提高并行性
4.	
	和缓解CPU与I/O速度不匹配的矛盾。
5.	并发执行程序有三个特征,它们是:间断性、失去封闭

_不可再现性

	外存的分配方法有:连续分配、连接分配和索引分配。
7.	产生死锁的原因:竞争资源和进程推进顺序不挡。
8.	多处理机操作系统的类型有:主从式和对称多处理机模式。
	告有两个进程P1利P2能并发执行,则Bernstein条件为: R(P1)∩W(P2)∪R(P2)∩W(P1)∪W(P1)∩W(P2)={ .};。
10.	引起进程相互制约的2类原因是:互斥使用资源和_进程间相互合作。
PU.	简答题(每小题6分,共30分)

1. 在分页系统中地址结构长度为16位,页面大小为2K,作业地址空间为6K,该作业的各页依次存放在2,3,6号物理块中,相对地址2500处有一条指令Store 1,4500,请给出该作业的页表,该指令的物理单元和数据存放的物理单元。

答: 指令的物理单元: 6596

数据的物理单元: 10644

作业页表如下:

0	2
1	3
2	6

2. 若有磁盘共有200个柱面,其编号为0~199, 假定磁头刚完成56号磁道的访问, 磁头正在98号磁道上, 现有一个请求队列在等待访问磁盘, 访问的磁道号分别为190, 97, 90, 45, 150, 32, 162, 108, 112, 80。请写出分别采用最短寻找时间优先调度算法和电梯调度算法处理上述服务请求的次序和移动的总磁道数。

答: 最短寻找时间优先调度算法的次序:

89, 97, 90, 80, 108, 112, 150, 162, 45, 32

最短寻找时间优先调度算法移动的总磁道数: 230

电梯调度算法的次序:

98, 108, 112, 150, 162, 97, 90, 80, 45, 32

电梯调度算法移动的总磁道数: 194

3. 若程序Pa、Pb和Pc单独执行时间分别为: Ta、Tb和T c,Ta=1小时,Tb=1.5小时,Tc=2小时,其中处理机的工作时间分别为: Ta=10分钟、Tb=15分钟和Tc=35分钟,如果采用多道程序设计方法,让Pa、Pb和Pc并行工作,假定处理机利用率达到60%,另加系统开销20分钟,请问系统效率能提高百分之几?

答: 系统提高的效率: 5/9*100%

4. 给定存储器的划分,依次为: 100K、450K、250K、300K和600K,现有4个进程分别依次为: 212K、417K、112K、426K。为了在给定的存储空间中安置进程,现有三种算法: 首次适应算法、最佳适应算法和下次适应算法。在这三种算法中,哪一种算法更能充分利用存储空间。

答: 最佳适应算法利用内存最充分。

5. 在下表中给出进程的到达时间、执行时间和优先级,请给出三种调度算法的进程执行次序和三种调度算法的平均周转时间。这三种调度算法是:短作业优先调度算法、优先级高者优先调度算法和简单轮转法调度算法(简单轮转法中的时间片为2个单位)。

进程	到达时间	执行时间	优先级
P1	0	10	3
P2	2	1 1	1
Р3	3	2	2
P4	5	ī	4
P5	5	5	3

答: 短作业优先调度算法: P1; P2, P3, P4, P5, P1

短作业优先调度算法的平均周转时间: 29/5

优先级高者优先调度算法: P1, P2, P3, P5, P1, P4

优先级高者优先调度算法的平均周转时间: 8

简单轮转法: P1, P2, P3, P4, P5, P1, P5, P1, P5, P1, P1

简单轮转法的平均周转时间: 33/5

电子科技大学

2003年攻读硕士学位研究生入学试题 科目名称: 429 计算机专业基础

第二部分 数据结构(共75分)答案

一、不定项	选择题()	人备选答案中	选出一个	或多个正确答	案,共20分)
 下列二 ①完全二叉 ④哈夫曼核 	人树		对	结点的度均为 ③平衡二叉		
平均时间复 最后一趟排 ①起泡排序	[杂度为O(n 序可能改变 (2)	log ₂ n)的排序	算法有: :置的排序。 . ③基数:		•	
3. 一个队3 ① d,c,b,a ③ a,b,c,d	2 2	,d,c,b	则它的所有	有可能的出队	序列是:(3	3)
4. 广义表(① () ③ (())	2	是 <u>①</u> , 表 NIL ((()))	足是①		元 湖底元 北 郷 東 東 東 東 東 東	
		正确的描述是 的lchild指向				

- . ② 从任意结点出发沿着指针可以遍历该棵二叉树;
 - ③ 线索二叉树中任意一结点均有指向其前趋和后继的线索;
 - ④ 线索二叉树头结点的ltag=0, rtag=1;
- 6. 图G是n个顶点的无向完全图,则下列说法正确的有___②③④
- ① G的邻接多重表需要n(n-1)个边结点和n个顶点结点;

- ② G的连通分量个数最少;
- ③ G为连通图;
- ④ G所有顶点的度的总和为n(n-1);
- ① 对二叉排序树中序遍历可以得到结点的有序序列;
- ②二叉排序树上插入的新结点总是作为叶结点:
- ③二叉排序树的查找性能与树的平衡度无关;
- ④若二叉树的左、右子树均为二叉排序树,且左子树根结点的值小于二叉树根结点的值,右子树根结点的值大于二叉树根结点的值,则该二叉树一定是二叉排序树;
- ⑤若中序遍历一棵二叉树得到结点的有序序列,则该二叉树一定是二叉排序树;
- 8. 下面关于折半查找的正确叙述有: __①__。
- ① 查找表中的元素必须有序;
- ② 查找表中的元素可以是分块有序;
- ③ 查找表中的元素不必有序;
- ④ 查找表可以用链式存储结构实现;

二、简答题(30分)

1. 回答满足后序序列和前序序列正好相同的二叉树的树型和正好相反的二叉树的树型各是什么? (5分)

相同:只有一个根结点的二叉树;或者任意结点均无右孩子的二叉树(仅有左孩子的二叉树);

相反: 任意结点均无左孩子的二叉树(仅有右孩子的二叉树);

- 2. 设哈希表的地址空间为0—15, 关键字序列为(68, 01, 84, 27, 19, 14, 55, 11, 10, 79, 23, 20), 哈希函数为H(key)=key Mod 13, 试用以下两种解决冲突的方法, 画出哈希表的最终存储结果, 并计算出查找成功的平均查找长度ASL。
 - (1) 采用开放定址法的线性探测再散列解决冲突;
 - (2) 用链地址法解决冲突;
 - (1) ASL=1/12(1+1+1+2+2+4+3+1+1+8+3+3)=2.5

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
at Shirt	01	27	68	14	55	84	19	79	20	10	11	23			

(2) ASL=I / 12(1*6+2*4+3+4)=1.75

3. 下图既可以看成是一棵二叉树,右可以看成是一个无向图,试回答两者有何差异。

二叉树	无向图
有根、叶和层次概念	无
有左右子树之分	无
度的概念不同: 子树个数	与顶点连接的边数

- ① (A(B(D, E), C(F)))
- 2 (A(B(D, E), C))
- ③ (A)
- 4 (A(B(C, D(E))))
- ⑤ ()

唯一对应的条件是:空表、只有一个元素的表、或每个子表个数是0或2的表。

5. 无向图G如下图所示,给出G的邻接矩阵,若对邻接矩阵中每行的访问顺序是从右到左,写出该图从顶点V2开始的深度优先搜索遍历的顶点序列。

等:从顶点V2开始的深度优先搜索遍历的顶点序列为: V2 V4 V5 V3 V1 G的邻接矩阵为:

	V1	V 2	V3 .	V4	V 5
٧1	0	1 -	1	0	1
V2	1	0	- 0	1	0
V3	1	0	0	1	1
V4	0	1	1	0	1
V 5	1	0	1	. 1	0

- 5. 以权值分别为3、4、7、9、20的a,b,c,d,e五个元素作为叶结点构造二叉树,回答:
- (1)如何构造路径长度最短的二叉树,图示出一棵路径长度最短的二叉树,并计算出路径长度;
- (2)如何构造带权路径长度最短的二叉树,图示出一棵带权路径长度最短的二叉树,并计算出带权路径长度。
- (1)9个结点的完全二叉树,一定是路径长度最短的二叉树;或前三层占满,第四层只有两个结点的二叉树其路径长度也为最短。路径长度为: 1+1+2+2+2+2+3+3=16
- (2)哈夫曼树一定是带权路径长度最短的二叉树,其带权路径长度为:20+9*2+7*3+(3+4)*4=87
- 7. 试画出满足下列条件的所有可能的二叉树。
- (1)树的高度为3, 中序访问第一个结点为C, 先序序列为A、B、C、D、E;
- (2)中序和先序序列均为A、B、C、D、E:
- (3)树的高度为5, 先序序列为A、B、C、D、E。
- 答: (1)有三棵二叉树满足条件:

- (2) A、B、C、D、E为序的右单枝树;
- (3) A、B、C、D、E为序的右单枝树和 A、B、C、D、E为序的左单枝树。

七、算法题(共20分)

1. 假设以不带头结点的循环链表Q表示队列,并且只设一个rear指针指向队尾元素结点,队列空时Q. rear=nil, 试编写相应的出队函数FUNC delq(Q): elem和入队列操作addq(Q, elem)的算法。(10分)

PROC addq(Q, elem);

New(p); p^{\wedge} . data: =elem; (1分)

IF Q. rear=nilTHENp^. link: =p (1分)

ELSE[p^link: =Q. rear^. link; Q. rear^. link: =p;] (2分)

Q. rear: =p (1分)

ENDP;

FUNCdelq(Q): elem;

IFQ. rear=nilTHENRETURN(NULL) (1分)

ELSE[p:=Q. rear^. link; (1分)

IFp=Q.rear THENQ.rear: =nilELSEQ. rear[^]. link: =p[^]. link; (2分) RETURN(p[^]. data)] (1分)

ENDF:

2. 从先序、中序、后序和层次遍历算法中,选择一种合适的算法,修改使其用dispose()操作完成释放二叉树中的所有结点的功能。设二叉树用二叉链表表示,其结点结构为: lchild、data、rchild, 头指针为bt。

PROC releaseBT (bt);

解:选择后序遍历算法。

IF bt<>nil THEN

[releaseBT (bt[^]. lchild); releaseBT (bt[^]. rchild); dispose (bt)] ENDP;