MATH 538 - Lie Algebra

ARessegetes Stery

August 30, 2024

Contents

1 Lie Algebra

2	Solvable and Nilpotent Lie Algebra

2

4

1 Lie Algebra

Definition 1.1 (Lie Algebra). Let \mathbb{F} be a field. A **Lie Algebra** is a vector space L over \mathbb{F} equipped with a bilinear map $[\cdot,\cdot]:L\times L\to L$ (the **Lie Bracket**) satisfying the following properties:

- Alternating Property: [x, x] = 0 for all $x \in L$. (For char $\mathbb{F} \neq 2$, this is equivalent to <u>antisymmetry</u>: [x, y] = -[y, x] for all $x, y \in L$.)
- Jacobi Identity: [x,[y,z]]+[y,[z,x]]+[z,[x,y]]=0 for all $x,y,z\in L$.

Remark 1.2. Throughout this note, for simplicity we will assume that char $\mathbb{F} = 0$. Nevertheless, the limitations on field characteristics will be pointed out when it is clear that the result will fall in certain cases.

Example 1.3. Consider $V = \mathbb{F}^n$. Notice that $\dim_{\mathbb{F}}(\operatorname{End}(V)) = \dim_{\mathbb{F}}(\operatorname{Mat}_n(\mathbb{F})) = n^2$ as vector spaces over \mathbb{F} ; and they are further isomorphic. We can further show that they are isomorphic as Lie algebras.

Proposition 1.4. Define the Lie bracket on End(V) by [f,g]=fg-gf (with the product the composition of functions). Then End(V) is a Lie Algebra.

Proof. It suffices to verify that Lie bracket satisfies the alternating property and the Jacobi identity.

- Alternating Property: [f, f] = ff ff = 0.
- Jacobi Identity:

$$\begin{split} [f,[g,h]] + [g,[h,f]] + [h,[f,g]] &= [f,gh-hg] + [g,hf-fh] + [h,fg-gf] \\ &= f(gh-hg) - (gh-hg)f + g(hf-fh) - (hf-fh)g + h(fg-gf) - (fg-gf)h \\ &= fgh-fgh-ghf+hgf+ghf-hfg-hfg+fhg+fhg-fgh-gfh+gfh \\ &= 0. \end{split}$$

Bi-linearity results directly from the linearity of functions.

Notation. The Lie algebra $(\text{End}(V), [\cdot, \cdot])$ is denoted by $\mathfrak{gl}(V)$.

Example 1.5. Let $V = \mathbb{R}^n$. Then as vector spaces $\operatorname{End}(V) \simeq \operatorname{Mat}_n(\mathbb{R}) \simeq \mathfrak{gl}(V)$ where [A, B] = AB - BA for $A, B \in \operatorname{Mat}_n(\mathbb{R})$.

The Lie Algebra $\operatorname{End}(V) \simeq \operatorname{Mat}_n(V) \simeq \mathfrak{gl}(V)$ has a basis $\{e_{ij}\}_{i,j=1}^n$, where $\{e_{ij}\}$ represents the matrix with all zero entries except for 1 in the (i,j)-th entry.

Definition 1.6 (Lie Subalgebra). A **Lie Subalgebra** $K \subseteq L$ is a subspace of s.t. for all $x, y \in K$, $[x, y] \in K$.

Definition 1.7 (Linear Lie Algebra). Any subalgebra of $\mathfrak{gl}(V)$ is called a **linear Lie algebra**.

Theorem 1.8 (Ado-Iwasawa). Every finite dimensional Lie algebra is isomorphic to a linear Lie algebra.

The proof of this statement requires more structure and will be deferred; for now we will use this results without proof as this theorem is really powerful.

TODO: search for proof

Example 1.9 (Classical Lie Algebra). The following examples of Lie algebra constitute the **classical Lie algebra** which are the bulk of existing Lie algebras. As expected, they are closely related to matrices.

1. Let $V = \mathbb{F}^{n+1}$. The special linear algebra A_n is

$$A_n = \mathfrak{sl}_{n+1}(V) = \{ g \in \mathfrak{gl}_{n+1}(V) \mid \operatorname{Tr} g = 0 \}$$

As a vector space over \mathbb{F} it has dimension $(n^2 + 2n)$.

2. Let $V = \mathbb{F}^{2n}$. The symplectic algebra C_n is

$$C_n = \mathfrak{sp}_{2n}(V) = \{g \in \mathfrak{gl}_{2n}(V) \mid sg + g^T s = 0\}, \text{ where } s = \begin{pmatrix} 0 & \mathrm{Id}_n \\ -\mathrm{Id}_n & 0 \end{pmatrix}$$

Considering its dimension, writing also $g \in \mathfrak{gl}_{2n}(V)$ as n-by-n blocks, we have

$$g = \begin{pmatrix} g_1 & g_2 \\ g_3 & g_4 \end{pmatrix} \implies sg + g^T s = \begin{pmatrix} g_3 - g_3^T & g_4 + g_1^T \\ g_1 + g_4^T & g_2 - g_2^T \end{pmatrix} = 0$$

Further notice that $(g_4 + g_1^T) = (g_1 + g_4^T)^T$. Then the condition of matrix vanishing becomes equivalent to $g_3 = g_3^T$, $g_2 = -g_2^T$ and $g_1 = -g_4^T$. For a symmetric matrix its dimension is $\frac{1}{2}n(n+1)$, and arbitrary g_1 fixes g_4 , giving dimension n. Summing together gives the $\dim_{\mathbb{F}} C_n = 2n^2 + n$.

3. Let $V = \mathbb{F}^{2n+1}$. The **(odd) orthogonal algebra** B_n is

$$B_n = \mathfrak{o}_{2n+1}(V) = \{ g \in \mathfrak{gl}_{2n+1}(V) \mid sg + g^T s = 0 \}, \quad \text{where } s = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & \mathrm{Id}_n \\ 0 & \mathrm{Id}_n & 0 \end{pmatrix}$$

Considering its dimension, write also $g \in \mathfrak{gl}_{2n+1}(V)$ in block form:

$$g = \begin{pmatrix} x & a_{1 \times n} & b_{1 \times n} \\ c_{n \times 1} & m_{n \times n} & n_{n \times n} \\ d_{n \times 1} & p_{n \times n} & q_{n \times n} \end{pmatrix} \implies sg + g^T s = \begin{pmatrix} 2x & a + d^T & b + c^T \\ a^T + d & p + p^T & q + m^T \\ b^T + c & m + q^T & n + n^T \end{pmatrix} = 0$$

This translates to equalities

$$2x = 0, \quad a + d^T = (a^T + d)^T = 0, \quad b + c^T = (b^T + c)^T = 0, \quad q + m^T = (m + q^T)^T = 0, \quad p + p^T = 0, \quad n + n^T = 0$$

This gives x=0. Fixing a and b fixes d and c, of which there are 2n choices. Fixing m fixes q, of which there are n^2 choices. It is also required that both n and p are anti-symmetric matrices, i.e. they have zeros on the diagonal, and fixing upper triangle elements fixes the whole matrix, of which there are $\frac{1}{2}n(n-1)$ choices. Then

$$\dim_{\mathbb{F}} B_n = 2n + n^2 + 2 \cdot \frac{1}{2}n(n-1) = 2n^2 + n$$

4. Let $V = \mathbb{F}^{2n}$. The **(even) orthogonal algebra** D_n is

$$D_n = \mathfrak{o}_{2n}(V) = \{ g \in \mathfrak{gl}_{2n}(V) \mid sg + g^T s = 0 \}, \text{ where } s = \begin{pmatrix} 0 & \mathrm{Id}_n \\ \mathrm{Id}_n & 0 \end{pmatrix}$$

Considering its dimension, use the similar strategy as above. Write $g \in \mathfrak{gl}_{2n}(V)$ in block form:

$$g = \begin{pmatrix} m & n \\ p & q \end{pmatrix} \implies sg + g^T s = \begin{pmatrix} p + p^T & q + m^T \\ m + q^T & n + n^T \end{pmatrix} = 0$$

The equality translates to the following conditions

$$p + p^T = 0$$
, $q + m^T = (m + q^T)^T = 0$, $n + n^T = 0$

Fixing p fixes m, and both p and n are anti-symmetric matrices, which have dimension $\frac{1}{2}n(n-1)$ over \mathbb{F} . This gives

$$\dim_{\mathbb{F}} D_n = n^2 + 2 \cdot \frac{1}{2} n(n-1) = 2n^2 - n$$

2 Solvable and Nilpotent Lie Algebra