EE25BTECH11021 - Dhanush sagar

1) Even though I had planned to	go skiing with my friends, I had to	at the last moment
because of an injury. Select the	he most appropriate option to complete the a	bove sentence.
		[GATE XE 2025]
a) back up	c) back on	
, 1	,	
b) back of	d) back out	
,	Council of Ministers, to viso complete the above sentence.	sit India next week. Select
	1	[GATE XE 2025]
a) wish	c) will wish	
b) wishes	d) is wishing	
on for 10 hours each night for	y charges ₹ 7 per kWh (kilo watt-hour). If a r 180 days, what would be the cost of energy each night for the 180 days, what would be ton?	consumption? If the desk
		[GATE XE 2025]

4) In the context of the given figure, which one of the following options correctly represents the entries in the blocks labelled (i), (ii), (iii), and (iv), respectively?

c) ₹ 604.8; 12%

d) ₹ 720; 15%

N	U	F	(i)
21	14	9	6
Н	L	(ii)	О
12	(iv)	15	(iii)

Fig. 4.

a) ₹ 604.8; 10%

b) ₹ 504; 20%

- a) Q, M, 12, and 8
- b) K, L, 10, and 14

- c) I, J, 10, and 8
- d) L, K, 12, and 8
- 5) A bag contains Violet (V), Yellow (Y), Red (R), and Green (G) balls. On counting them, the following results are obtained:
 - (i) The sum of Yellow balls and twice the number of Violet balls is 50.
 - (ii) The sum of Violet and Green balls is 50.
 - (iii) The sum of Yellow and Red balls is 50.
 - (iv) The sum of Violet and twice the number of Red balls is 50.

Which one of the following Pie charts correctly represents the balls in the bag?

[GATE XE 2025]

Fig. 5.

Fig. 5.

6) "His life was divided between the books, his friends, and long walks. A solitary man, he worked at all hours without much method, and probably courted his fatal illness in this way. To his own name there is not much to show; but such was his liberality that he was continually helping others, and

fruits of his erudition are widely scattered, and have gone to increase many a comparative stranger's reputation." (From E.V. Lucas's "A Funeral")

Based only on the information provided in the above passage, which one of the following statements is true?

[GATE XE 2025]

- a) The solitary man described in the passage is c) The solitary man described in the passage dead.
 - found joy in scattering fruits.
- b) Strangers helped create a grand reputation for d) The solitary man worked in a court where he the solitary man.
 - fell ill.
- 7) For the clock shown in the figure, if $O^* = OQSZPRT$ and $X^* = XZPWYOQ$, then which one among the given options is most appropriate for P^* ?

Fig. 7.

[GATE XE 2025]

a) *P U W R T V X*

c) PTVQSUW

b) PRTOQSU

- d) PSUPRTV
- 8) Consider a five-digit number PQRST that has distinct digits P, Q, R, S, and T, and satisfies the following conditions: P < Q, S > P > T, R < T.

If integers 1 through 5 are used to construct such a number, the value of P is:

[GATE XE 2025]

a) 1

c) 3

b) 2

- d) 4
- 9) A business person buys potatoes of two different varieties P and Q, mixes them in a certain ratio and sells them at ₹192 per kg. The cost of the variety P is ₹800 for 5 kg. The cost of the variety Q is ₹800 for 4 kg. If the person gets 8% profit, what is the P:Q ratio (by weight)?

- a) 5:4 b) 3:4 c) 3:2 d) 1:1
- 10) Three villages P, Q, and R are located in such a way that the distance PQ = 13 km, QR = 14 km, and RP = 15 km, as shown in the figure. A straight road joins Q and R. It is proposed to connect P to this road QR by constructing another road. What is the minimum possible length (in km) of this connecting road?

Fig. 10.

a) 10.5b) 11.0

- c) 12.0
- d) 12.5
- 11) Let X and Y be two random variables with mean 0, variance 1, and correlation coefficient $\frac{1}{3}$. Then the value of Var(X + 3Y) is equal to

[GATE XE 2025]

a) 9

c) 11

b) 10

- d) 12
- 12) Consider the second order Partial Differential Equation (PDE)

$$4x^2 \frac{\partial^2 u}{\partial x^2} + 4(x+y) \frac{\partial^2 u}{\partial x \partial y} + (x^2 + y^2) \frac{\partial^2 u}{\partial y^2} - u = 0$$
 (1)

Then which one of the following statements is correct?

[GATE XE 2025]

- a) The PDE is hyperbolic in the region $\{(x, y) \in c\}$ The PDE is elliptic in the region $\{(x, y) \in \mathbb{R}^2 : 0 < x < 1, y > 0\}$
- b) The PDE is hyperbolic in the region $\{(x,y) \in d\}$ The PDE is parabolic in the region $\{(x,y) \in \mathbb{R}^2 : 1 < x < \infty, \ y < 0\}$
- 13) Consider the infinite series

$$(P): \sum_{n=2}^{\infty} \frac{1}{(n\log n)^{1/n}}, (Q): \sum_{n=1}^{\infty} \frac{n^n}{(2n)!}$$
 (2)

Then which one of the following statements is correct?

- a) Series (P) and (Q) both converge
- c) Series (P) and (Q) both diverge
- b) Series (P) converges and series (Q) diverges (P) diverges and series (Q) converges
- 14) Suppose the polynomial $a+bx+cx^2+dx^3$ interpolates the data (-1,1),(0,3),(1,2),(2,4). Then which one of the following statements is correct?

a)
$$a = -2c$$
, $d = -2b$

c)
$$b = 3c$$
, $a = 2d$

b)
$$a = 2c, d = 2b$$

d)
$$b = 2c$$
, $a = 3d$

15) Let C be the positively oriented boundary of the domain bounded by the curves $y = 2x^2$ and $y^2 = 4x$. Then the value of the line integral

$$\oint_C (2y^2 + 2xy + 4y) \, dx + (x^2 + 4xy + 8x) \, dy \tag{3}$$

is equal to

[GATE XE 2025]

a)
$$\frac{8}{3}$$
 b) $\frac{2}{3}$

c)
$$\frac{4}{3}$$
 d) $\frac{1}{2}$

16) Let y(x) be the solution of the initial value problem

$$x^2y'' + xy' - y = 0, x > 0, y(1) = 0, y'(1) = 2.$$
 (4)

Then the value of $y'(\frac{1}{2})$ is equal to (Answer in integer)

[GATE XE 2025]

17) Suppose that 2 is an eigenvalue of the matrix

$$\begin{pmatrix} 0 & 3 & -\alpha \\ 0 & 1 & 0 \\ 1 & -1 & 3 \end{pmatrix} \tag{5}$$

Then the value of α is equal to (Answer in integer) _____

[GATE XE 2025]

18) Let f(z) be an analytic function such that $\Re(f'(z)) = 3x^2 - 4y - 3y^2$, f(i) = 0, f'(0) = 0, where $i = \sqrt{-1}$. Then the value of f(1) is equal to

[GATE XE 2025]

a)
$$4 + 2i$$

c)
$$1 - i$$

b)
$$1 + 5i$$

d)
$$4 - 2$$

19) Consider the function $f(x, y) = x^2y + 2xy^2 - 2x^2y^2$. Then which one of the following statements is correct?

[GATE XE 2025]

- a) $\left(\frac{3}{2},0\right)$ is a point of local maxima of f c) $\left(\frac{3}{2},\frac{3}{4}\right)$ is a point of local maxima of f b) $\left(0,\frac{3}{4}\right)$ is a point of local minima of f d) $\left(\frac{3}{2},\frac{3}{4}\right)$ is a saddle point of f

- 20) For $a, b \in \mathbb{R}$, consider the system of linear equations:

$$x + y + az = 2, 2y + 2z = 1, ax + 2z = b$$
 (6)

If the system has infinitely many solutions, then which of the following statements is/are correct? [GATE XE 2025]

(7)

(8)

a)
$$a = 2$$
, $b = 3$
b) $a = 2$, $b = 5$

c) $a = -1$, $b = -\frac{3}{2}$
d) $a = 3$, $b = 5$

21) Let $u(x,t)$ be the solution of the initial boundary value problem
$$\frac{\partial u}{\partial t} - \frac{\partial^2 u}{\partial x^2} - u = 0, 0 < x < \pi, \ t > 0$$

$$u(x,0) = 2\sin\left(\frac{3x}{2}\right)\cos\left(\frac{x}{2}\right), u(0,t) = u(\pi,t) = 0, \ t > 0$$
(7)
$$u(x,0) = 2\sin\left(\frac{3\pi}{4},t\right) \text{ is equal to (rounded off to two decimal places)}$$
[GATE XE 2025]
22) Fluid at a constant flow rate passes through a long, straight, cylindrical pipe that has an axisymmetric convergent section at the end. Which one of the following options correctly represents the velocity field in the converging section in cylindrical (r, θ, z) coordinates?

[GATE XE 2025]

a) Two-dimensional function of r and z

b) One-dimensional function of r

field in the converging section in cylindrical (r, θ, z) coordinates?

[GATE XE 2025]

[GATE XE 2025]

- c) Two-dimensional function of r and θ
- d) One-dimensional function of z
- 23) A sharp flat plate of length L and infinite width is immersed parallel to a fluid stream having velocity u_{∞} . At a point on the plate, far away from the leading edge and not near the trailing edge, the boundary layer thickness, the displacement thickness, and the momentum thickness are denoted as δ , δ^* , and θ , respectively. Which one of the following options correctly represents the relation between these thicknesses?

[GATE XE 2025]

a) $\delta > \delta^* > \theta$

c) $\delta^* > \delta > \theta$

b) $\delta > \theta > \delta^*$

d) $\theta > \delta^* > \delta$

24) Consider the following Statements [1] and [2].

Statement [1]: The Eulerian study focusses attention on individual particle and its motion is observed as a function of time.

Statement [2]: The Lagrangian study focusses attention on the motion of the particles passing through an identified point.

Which one of the following options identifies the correctness of the given statements?

[GATE XE 2025]

a) Both [1] and [2] are correct.

1 is correct, but [2] is NOT correct.

b) Both [1] and [2] are NOT correct.

1 is NOT correct, but [2] is correct.

25) Statement of Reynolds Transport Theorem is given below with three blanks.

The rate of change of _ _____ extensive property can be calculated by summing the rate of change of the amount of same property in the _____ and the rate at which the property _ the surface of the control volume.

Which one of the following options correctly fills the blanks by using its comma-separated phrases in sequence?

- a) system, control volume, exiting
- b) control volume, system, exiting
- c) system, control volume, entering
- d) control volume, control volume, entering
- 26) For a steady and incompressible flow, the velocity field (V) in Cartesian (x, y, z) coordinate system is given as: $\mathbf{V} = 5x\,\hat{\imath} - Py\,\hat{\jmath} + 3\,\hat{k}$. Here, $\hat{\imath}$, $\hat{\jmath}$, and \hat{k} are unit vectors along x, y, and z directions, respectively and P is a constant. Which one of the following options is the correct value of P that satisfies the conservation of mass for the given velocity field?

a) 5

c) 8

b) -5

- d) 2
- 27) Conservation of mass for a steady axisymmetric flow field in the cylindrical (r, z) coordinates is:

$$\frac{1}{r}\frac{\partial(rV_r)}{\partial r} + \frac{\partial V_z}{\partial z} = 0 \tag{9}$$

Here, V_r and V_z are radial and axial components of velocity, respectively. Which one of the following options is correct if ψ is the stream function?

[GATE XE 2025]

a) $V_r = \frac{\partial \psi}{\partial z}$ and $V_z = -\frac{1}{r} \frac{\partial \psi}{\partial r}$ b) $V_r = \frac{1}{r} \frac{\partial \psi}{\partial z}$ and $V_z = -\frac{1}{r} \frac{\partial \psi}{\partial r}$

c) $V_r = \frac{1}{r} \frac{\partial \psi}{\partial z}$ and $V_z = \frac{1}{r} \frac{\partial \psi}{\partial r}$ d) $V_r = \frac{1}{r} \frac{\partial \psi}{\partial z}$ and $V_z = -\frac{\partial \psi}{\partial r}$

- 28) Group-I indicates different properties of fluid and Group-II defines their basic dimensions in terms of Force (F), Length (L), and Time (T).

Group-I		Group-II	
P	Dynamic viscosity	1	$FL^{-4}T^2$
Q	Surface tension	2	$FL^{-2}T$
R	Density	3	FL^{-1}

[GATE XE 2025]

- a) P-1, Q-3, R-2
- b) P-2, Q-1, R-3

- c) P-3, Q-2, R-1
- d) P-2, O-3, R-1
- 29) Consider the steady, incompressible, and fully developed laminar flow of a fluid through a circular pipe. Here, ΔP is the pressure drop in the direction of the flow and V is the average axial velocity of the fluid at any cross-section. The relation between ΔP and V is: $\Delta P = KV^n$ where K and n are constants. Which one of the following options is the correct value of n?

[GATE XE 2025]

a) 1

c) 1.75

b) 2

- d) 0.5
- 30) A doublet is the resulting flow pattern when a sink and a source of equal strength are brought together. Which one of the following options correctly represents the nature of the product of the strength and the distance between them during approach?

- a) Remains always constant
- b) Continuously decreases
- c) Continuously increases

- d) First increases and then continuously decreases after reaching a maximum
- 31) Figure shows two parallel plates (upper plate at x = b and lower one at x = -b) of length L (aligned in z direction) and infinite width (in y direction, normal to the plane of the figure). Two immiscible, incompressible liquids are flowing steadily in the z direction through the thin passage between the plates under the influence of horizontal pressure gradient $(P_0 P_L)/L$. During the flow, the passage is always half-filled with denser fluid I (viscosity μ_I) at the bottom and rest is occupied by lighter fluid II (viscosity μ_{II} ; $\mu_{II} < \mu_{I}$). Considering exactly planar interface between the fluids and no instabilities in the flow, the shear stress, τ_{xz} is expressed as:

$$\tau_{xz} = \frac{(P_0 - P_L)b}{L} \left[\left(\frac{x}{b} \right) - \frac{1}{2} \left(\frac{\mu_I - \mu_{II}}{\mu_I + \mu_{II}} \right) \right] \tag{10}$$

Which one of the following options correctly identifies the location of the point having maximum velocity of the flow?

Fig. 31.

- a) Above the interface
- b) Below the interface

- c) At the interface
- d) At the top plate
- 32) Group-I shows different two-dimensional bodies and Group-II mentions their total drag coefficient (C_D) based on frontal area while facing parallel flow of fluid having Reynolds number $Re \ge 10^4$ along the direction of arrow. The bodies are placed symmetrically with respect to the flow direction.

	Group-I		Group-II
P	Flow Square Cylinder	1	1.2
Q	Flow Square Cylinder	2	1.6
R	Flow Half Tube	3	2.1
S	Flow Half Tube	4	2.3

Fig. 32.

Which one of the following options identifies the correct match between Group-I and Group-II, as per the concept of degree of streamlining?

[GATE XE 2025]

33) A solid body of uniform specific gravity floats in a deep liquid pool. Take B, G, and M as the centre of buoyancy, centre of gravity, and metacentre of the body, respectively. Which one of the following options is correct for the stable floatation of the body in the pool when the body is given a small tilt angle?

[GATE XE 2025]

- a) \overline{MG} is the metacentric height and G should lie c) \overline{MB} is the metacentric height and B should lie
- below M
- above M
- b) \overline{MG} is the metacentric height and B should lie d) \overline{MB} is the metacentric height and G should lie above M

34) Figure shows the steady and incompressible flow of a fluid in the direction of arrow from section A to section D. Three pipe connectors are to be placed between sections at A and D having Total Energy Line (TEL) and Hydraulic Grade Line (HGL) as depicted in the figure. Consider, g, P, Q, V, γ , and Z denote gravitational acceleration, pressure, volume flow rate, velocity, specific weight, and elevation of centerline of the pipe connectors from the datum, respectively. Which one of the following options, in sequence, indicates the correct nature of connectors between sections A and B, B and C, and C and D in the direction of flow?

Fig. 34.

- a) Converging, Constant area, Diverging
- c) Constant area, Constant area, Constant area
- b) Diverging, Constant area, Converging
- d) Constant area, Converging, Diverging
- 35) A liquid flows under steady and incompressible flow conditions from station 1 to station 4 through pipe sections P, Q, R, and S as shown in figure. Consider, d, V, and h represent the diameter, velocity, and head loss, respectively, in each pipe section with subscripts 'P', 'Q', 'R', and 'S'. Δh represents the head difference between the inlet (station 1) and outlet (station 4). All the pipe sections are placed on the same horizontal plane for which the figure shows the top view. Which one of the following options is correct for the given flow loop?

Fig. 35.

[GATE XE 2025]

a)
$$\Delta h = h_P + h_Q + h_R + h_S$$
 and $V_P d_P^2 = V_Q d_Q^2 = V_R d_R^2 = V_S d_S^2$

b)
$$\Delta h = h_P + h_Q + h_R$$
 and $V_P d_P^2 = V_Q d_Q^2 = V_R d_R^2 = V_S d_S^2$

c)
$$\Delta h = h_P + h_Q + h_R$$
 and $V_P d_P^2 = V_Q d_Q^2 = V_R d_R^2 + V_S d_S^2$

a)
$$\Delta h = h_P + h_Q + h_R + h_S$$
 and $V_P d_P^2 = V_Q d_Q^2 = V_R d_R^2 = V_S d_S^2$
b) $\Delta h = h_P + h_Q + h_R$ and $V_P d_P^2 = V_Q d_Q^2 = V_R d_R^2 = V_S d_S^2$
c) $\Delta h = h_P + h_Q + h_R$ and $V_P d_P^2 = V_Q d_Q^2 = V_R d_R^2 + V_S d_S^2$
d) $\Delta h = h_P + h_Q + h_R + h_S$ and $V_P d_P^2 = V_Q d_Q^2 = V_R d_R^2 + V_S d_S^2$

36) Consider, \hat{i} and \hat{j} are unit vectors along x and y directions of a Cartesian (x, y) coordinate system, respectively and t is time. Temperature (T) and fluid velocity (V) are given for a flow field as:

$$T = x^2 + yt + 35, (11)$$

$$\mathbf{V} = (4xy)\,\hat{\imath} + (xt - 2y^2)\,\hat{\jmath}.\tag{12}$$

The total rate of change of temperature in the flow field (in integer) for time t = 2 at a point (2, 3) is .

[GATE XE 2025]

37) Driven by a pressure gradient of 100 kPa/m, a fluid of dynamic viscosity 0.1 Pa.s flows between two fixed infinitely large parallel plates under steady, incompressible, and fully developed laminar

conditions.	The av	erage	velocity	of th	e flov	is	2 m/s.	The	gap	between	the	parallel	plates	in	mm
(rounded of	f to 2 g	decima	l places)	is _											
												[GA	TE XE	E 20	025]

38) An incompressible fluid is flowing between two infinitely large parallel plates separated by 5 mm distance. The bottom plate is stationary and the top plate is moving at a constant velocity of 5 mm/s in the direction parallel to the bottom plate. The flow of the fluid between the plates is steady, two-dimensional, laminar, and the variation of fluid velocity is linear between the plates. A square fluid element of 1 mm side is considered at equal distance from both the plates in the flow field such that one of its sides is parallel to the plates. The magnitude of circulation in mm²/s (in integer) along the edges of the square fluid element is _______

[GATE XE 2025]

39) Consider, a kite weighing 100 grams as essentially a rigid flat plate making an angle 8° with the horizontal and having a planform area of 0.045 m^2 when exposed to horizontal parallel wind of 60 km/h. The thread string of the kite makes an angle 45° with the horizontal. A tension of 450 grams in the thread is necessary to float the kite steadily. Take air density as 1.2 kg/m^3 and gravitational acceleration as 9.81 m/s^2 . The lift coefficient (C_L) associated with the air flow around steadily floating kite (rounded off to 2 decimal places) is _______

[GATE XE 2025]

40) A fixed control volume has four one-dimensional boundary sections (1, 2, 3, and 4). For a steady flow inside the control volume, the flow properties at each section are tabulated below:

[GATE XE 2025]

Boundary Section	Type	Density (kg/m ³)	Surface Normal Velocity (m/s)	Cross-sectional Area (m ²)
1	Inlet	1000	10	0.5
2	Inlet	1000	2	3.0
3	Outlet	1000	5	1.0
4	Outlet	1000	4	1.5

The rate of change of energy of the system which occupies the control volume at this instant is $E \times 10^6$ J/s. The value of E (rounded off to 2 decimal places) is _____

[GATE XE 2025]

41) A ship is to be operated in a fluid medium with kinematic viscosity 0.032×10^{-3} m²/s. A one-tenth scale model of the ship is built for testing. Consider, inertia, viscous and gravity forces are dominant for the ship and its model during the operation. The required kinematic viscosity of the liquid for testing the model is $P \times 10^{-6}$ m²/s. The value of P (rounded off to 2 decimal places) is

[GATE XE 2025]

42) Water flows through a pipe of diameter 20 cm at a flow rate of $0.025 \text{ m}^3/\text{s}$. A pitot-static tube is placed at the centre of the pipe and indicates the pressure difference of 5 cm of water column. Theoretical velocity measured through pitot-static tube when multiplied with velocity coefficient C_V gives the actual velocity of the flow. If the mean velocity in the pipe is 90% of the actual velocity at the centre of the pipe and the gravitational acceleration is 10 m/s^2 , the value of C_V (rounded off to 2 decimal places) is ______

[GATE XE 2025]

43) An oil of density 870 kg/m³ and viscosity 0.036 Pa.s flows through a straight pipe of 10 cm diameter and 1.5 km length at the flow rate of 250 liters per minute under the steady and incompressible flow conditions. To control the flow rate of oil, a valve is fixed at the middle of the pipe causing no change in the total length of the pipe. The total head loss measured across the two ends of the pipe is 11.60 m. Using gravitational acceleration as 10 m/s², the minor head loss contributed by the presence of the valve in m (rounded off to 2 decimal places) is ______

[GATE XE 2025]

44) The figure below shows a plane PQR in a unit cell. The Miller indices of the plane PQR is

Fig. 44.

c)
$$(23\bar{4})$$

b)
$$(43\bar{2})$$

d)
$$(\bar{2}\,\bar{3}\,4)$$

45) The unit of measurement for magnetic dipole moment of a body is

[GATE XE 2025]

a)
$$A m^2$$

c)
$$\text{Wb m}^{-2}$$

$$\dot{b}$$
 A m⁻¹

46) B is the magnetic flux density and T_c is the critical temperature. The Meissner effect is represented by

[GATE XE 2025]

a)
$$B = 0$$
 at $T \le T_c$

c)
$$B \neq 0$$
 at $T \leq T_c$

b)
$$B = 0$$
 at $T > T_c$

c)
$$B \neq 0$$
 at $T \leq T_c$
d) $\nabla B = 0$ at $T = T_c$

47) For Al-4.5 wt% Cu alloy, the correct sequence of precipitation during age hardening at room temperature is

[GATE XE 2025]

a) GP zone
$$\rightarrow \theta'' \rightarrow \theta' \rightarrow \theta$$

c) GP zone
$$\rightarrow \theta'' \rightarrow \theta \rightarrow \theta'$$

b) GP zone
$$\rightarrow \theta' \rightarrow \theta'' \rightarrow \theta$$

d) GP zone
$$\rightarrow \theta \rightarrow \theta' \rightarrow \theta''$$

48) There is NO base-centered cubic lattice among the list of 14 Bravais lattices because of one or more of the following reasons

- a) It does NOT have translational symmetry
- b) It is only compatible with the symmetry of d) It does NOT have 3-fold rotation axes along orthorhombic crystal system
- c) It is only compatible with the symmetry of
- tetragonal crystal system
- the body diagonals
- 49) For a conventional optical microscope, which of the following options regarding the resolution limit and the depth of field is/are correct?

- a) Resolution limit decreases with decreasing wavelength of light
- b) Resolution limit decreases with decreasing refractive index of the medium
- c) Depth of field decreases with increasing value
- of numerical aperture of the objective lens
- d) Resolution limit decreases with increasing value of numerical aperture of the objective lens
- 50) Which of the following phenomenon/phenomena contribute to intensity loss of electromagnetic radiation during transmission through a medium?

[GATE XE 2025]

- a) Electronic absorption
- b) Rayleigh scattering

- c) Photon-phonon interaction
- d) Stimulated emission
- 51) If solid tin is in equilibrium with its vapor, the degree of freedom is (answer in integer).

[GATE XE 2025]

52) A GaP-GaAs semiconductor LED display has a band gap of 1.9 eV. The wavelength of emitted light in μ m is (rounded off to two decimal places)

Given: Planck's constant = 6.63×10^{-34} J s

Velocity of light = 3×10^8 m s⁻¹

 $1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$

[GATE XE 2025]

53) In an FCC crystal with lattice parameter a, consider the reaction of two leading partial dislocations, AB and CD, at the line of intersection of their slip planes (111) and (1111), respectively, as shown in the figure below. Dislocations, AB and CD, have Burgers vectors \mathbf{b}_1 and \mathbf{b}_2 , respectively, as given in the figure. Which one of the following options for the slip plane and the Burgers vector of the resulting dislocation is correct?

- a) Slip plane is (001) and Burgers vector is c) Slip plane is (001) and Burgers vector is $\frac{a}{6}[110]$
- b) Slip plane is $(11\overline{1})$ and Burgers vector is d) Slip plane is $(\overline{1}11)$ and Burgers vector is $\frac{a}{6}[110]$
- 54) Match the detector for a scanning electron microscope (SEM) in Column I with the resulting output in Column II.

SE: Secondary electrons; BSE: Backscattered electrons;

EDS: Energy Dispersive Spectroscopy; EBSD: Electron Backscatter Diffraction

[GATE XE 2025]

Column I	Column II
(P) SE Detector	(1) Elemental composition analysis
(Q) BSE Detector	(2) Kikuchi lines
(R) EDS Detector	(3) Topographic image
(S) EBSD Detector	(4) Compositional contrast image

a) P-4; Q-3; R-1; S-2

c) P-3; Q-4; R-2; S-1

b) P-2; Q-4; R-1; S-3

- d) P-3; Q-4; R-1; S-2
- 55) The triple point (T_I, P_I) is shown in a schematic phase diagram (pressure (P) temperature (T) plot) for one component system. G_S , G_L and G_V are the free energies of solid, liquid and vapor, respectively. At a constant pressure, P_I , the correct free energy (G) versus temperature (T) plot is

Fig. 55.

Fig. 55.

56) The TTT diagram for eutectoid steel is shown below. The steel after complete austenitization at 1073 K is rapidly cooled to different temperatures and held for varying times (as indicated in Column I) followed by quenching to 300 K. Assuming isothermal transformation, match the heat treatment conditions in Column I with the corresponding microstructure in Column II.

[GATE XE 2025]

Column I

(P) Held at 300 K indefinitely

(Q) Held at 873 K for 4 minutes

- (R) Held at 673 K for 20 minutes
- (S) Held at 623 K for 2 minutes

Column II

- (1) Bainite
- (2) Martensite
- (3) Pearlite
- (4) Bainite + Martensite

Fig. 56.

a)
$$P - 3$$
; $Q - 2$; $R - 1$; $S - 4$
b) $P - 2$; $Q - 3$; $R - 1$; $S - 4$

c)
$$P - 2$$
; $Q - 1$; $R - 3$; $S - 4$

b)
$$P - 2$$
; $Q - 3$; $R - 1$; $S - 4$

57) A diffraction pattern is obtained from a powdered sample of a pure element, which has FCC crystal structure. If x and y are the Bragg angles of the first and the third peaks, respectively, then the ratio, $\frac{\sin y}{\sin x}$, is (rounded off to one decimal place)

[GATE XE 2025]

58) For a pure element with a BCC crystal structure, the surface energies per unit area of {100} and {110} free surfaces are S_{100} and S_{110} , respectively. The ratio, $\frac{S_{100}}{S_{110}}$, is (rounded off to one decimal place)_

[GATE XE 2025]

59) On applying 10 V across the two ends of a 100 cm long copper wire, the average drift velocity (in cm s⁻¹) in the wire is (rounded off to two decimal places) Given: Electron density of copper = 8.43×10^{22} cm⁻³;

Copper resistivity = $1.67 \times 10^{-6} \Omega$ cm;

Electron charge = 1.6×10^{-19} C

[GATE XE 2025]

60) An aluminum transmission line of 7 km length is designed to carry 100 A current with no more than 2 MW power loss. The required minimum diameter (in mm) of the transmission line is (rounded to the two decimal places) _ Given: Aluminum conductivity = $3.77 \times 10^5 \ \Omega^{-1} \ cm^{-1}$

[GATE XE 2025]

61) An electric field is applied on a copper plate such that the electrons are displaced by 1.1×10^{-18} m relative to the nucleus. The electronic polarization (in μ C m⁻²) is (rounded off to two decimal places)

Given: Atomic number of copper = 29; Copper has FCC crystal structure with lattice parameter = 0.362 nm; Electron charge = 1.6×10^{-19} C

[GATE XE 2025]

62) The standard free energy change for the reaction, $SO_2 + \frac{1}{2}O_2 \rightleftharpoons SO_3$ at equilibrium is given by $\Delta G^{\circ} = -94600 + 89.37 \, T$, where T is in Kelvin and ΔG° is in Joule. The equilibrium constant (K_P)

[GATE XE 2025]

63) The slopes of reduction potential versus pH plots for the two reactions, $NiO + 2H^+ + 2e^- \rightleftharpoons Ni + H_2O$ and $2H^+ + 2e^- \rightleftharpoons H_2$, at 298 K and one atmospheric pressure are S_1 and S_2 , respectively. The ratio $\frac{S_1}{S_2}$ is (rounded off to one decimal place) ______

[GATE XE 2025]

64) At 873 K, hydrogen diffuses under steady state condition through a 5 mm thick palladium sheet with a cross-sectional area of 0.3 m². The concentrations of hydrogen at high and low pressure ends of the sheet are 3 kg m⁻³ and 0.5 kg m⁻³, respectively. The amount of hydrogen (in kg per day) passing through the sheet is (rounded off to two decimal places) ______ Given: At 873 K, diffusivity of hydrogen = 1.8×10^{-8} m² s⁻¹

[GATE XE 2025]

Corrosion of pure iron takes place in an acidic electrolyte by forming Fe^{2+} ions at ambient condition. The corrosion current density is measured to be 2×10^{-4} A cm⁻². The corrosion rate (in mm per year) of iron is (rounded off to one decimal place) ______ Given: Atomic weight of iron = 55.85; Density of iron = 7.86 g cm⁻³; Consider 365 days in a year; 1 Faraday = 96500 C mol⁻¹

[GATE XE 2025]

66) Consider a spring-mass system with mass m and spring stiffness k as shown in the illustration. At time t = 0, the mass is displaced by P units and the velocity of the mass is zero. The displacement of the mass, x(t), is measured from the equilibrium position. Which one of the following functions represent x(t)?

Fig. 66.

[GATE XE 2025]

a)
$$P \sin(\sqrt{k/m} t)$$

b) $\frac{P}{2} \cos(\sqrt{k/m} t) + \frac{P}{2} \sin(\sqrt{k/m} t)$

c)
$$P\cos(\sqrt{k/m}t)$$

d)
$$P\cos(\sqrt{k/m}t) + P\sin(\sqrt{k/m}t)$$

67) A ball of mass 5m approaches a stationary ball of mass m with a horizontal velocity of 2 m/s from left to right. After a perfectly elastic central collision, the horizontal velocity of the heavier ball is 1 m/s from left to right.

Which one of the following statements, regarding the velocity (in m/s) of the lighter ball after impact, is TRUE?

- a) Comes to rest
- b) Moves from left to right at 5 m/s
- c) Moves from right to left at 5 m/s
- d) Moves from left to right at 1 m/s
- 68) The Mohr's circle corresponding to an infinitesimal element is shown in the figure. The plane PQ in the infinitesimal element, at an angle of θ from the x-axis, is in a state of pure shear. Which one of the following values of θ (in degrees) is CORRECT?

Fig. 68.

- a) 90
- b) 60

- c) 45
- d) 120
- 69) The two-dimensional state of stress, in an infinitesimal element, is given by $\sigma_{xx} = 800$ MPa, $\sigma_{xy} = 300$ MPa and $\sigma_{yy} = 0$ MPa.

Which one of the following options is the maximum shear stress (in MPa) in the element?

[GATE XE 2025]

- a) 500
- b) 400

- c) 800
- d) 300
- 70) Two cars *P* and *Q* are travelling on a straight path and are 60 m apart as shown in the figure; Car *P* is moving with a constant velocity of 36 kmph, while car *Q* is moving at a constant velocity of 18 kmph. At this instant, the driver in car *P* applies the brake and collision occurs with car *Q* after 30 seconds.

Assuming uniform deceleration due to braking, which one of the following is the CORRECT velocity (in m/s) of the car P just before the collision?

Fig. 70.

- a) 1 c) 5 b) 16 d) 4
- 71) The natural frequency of a spring-mass system is 10 rad/s. Which of the following statements is/are CORRECT?

- a) The mass is 100 kg and the stiffness is 1 N/m. c) The stiffness is 620 N/m and the mass is 6.2 kg.
- b) The mass is 1.25 kg and the stiffness is d) The stiffness is 62 N/m and the mass is 620 kg. 125 N/m.
- 72) Consider a beam with a square box cross-section as shown in the figure. The outer square has a length of 10 mm. The thickness of the section is 1 mm.

The area moment of inertia about the x-axis is $____ mm^4$ (in integer).

Fig. 72.

[GATE XE 2025]

73) For a certain linear elastic isotropic material, the Young's modulus is 140 GPa and the shear modulus is 50 GPa.

The Poisson's ratio for the material is ______ (rounded off up to two decimal places).

[GATE XE 2025]

74) A force of P = 100 N is applied at the ends of the pliers as shown in the figure. Neglecting friction, the force exerted by the upper jaw on the workpiece is ______ N (in integer).

Fig. 74.

75) Consider two blocks, P of mass 100 kg and Q of mass 150 kg, resting as shown in the figure. The angle $\theta = 30^{\circ}$. The coefficient of friction between the two blocks is 0.2. Assume no friction exists at all other interfaces. The minimum force required to move the block P upward is W. Which one of the following options is closest to the CORRECT magnitude of W (in N)?

Fig. 75.

[GATE XE 2025]

- a) 862.2
- b) 1116.6

- c) 2900.0
- d) 406.2
- 76) Which one of the following vertical columns, of circular cross-section, sustains the highest load without buckling?

- a) Cantilever column with a length L and cross- c) Cantilever column with a length L and crosssection diameter d
- b) Column with hinge at one end and roller at the d) Column with hinge at one end and roller at other end with a length 2L and cross-section diameter d
- section diameter 2d
- the other end with a length L and cross-section diameter d
- 77) The figure shows a rod PQ, hinged at P, rotating counter-clockwise with a uniform angular speed of 15 rad/s. A block R translates along a slot cut out in rod PQ. At the instant shown the distance PR = 0.5 m and $\theta = 60^{\circ}$. The relative velocity of R with respect to the rod PQ is 5 m/s at the instant shown. The relative acceleration of R with respect to the rod PQ is zero at the instant shown. Which one of the following is the CORRECT magnitude of the absolute acceleration (in m/s²) of block R?

Fig. 77.

- a) 135.2
- b) 187.5

- c) 112.5
- d) 150.0
- 78) The frame shown in the figure is loaded at S with a force of 2000 N. The reactions at T are denoted by T_x and T_y , while the reaction at W is W_y . Neglect the weight of the members. Which one of the following options for the magnitudes of the forces (in N), T_x , T_y and W_y , is CORRECT?

Fig. 78.

a)
$$T_v = 0$$
, $T_v = 1000$ and $W_v = 1000$

c)
$$T_x = 0$$
, $T_y = 800$ and $W_y = 1200$

a)
$$T_x = 0$$
, $T_y = 1000$ and $W_y = 1000$
b) $T_x = 0$, $T_y = 1500$ and $W_y = 500$

d)
$$T_x = 0$$
, $T_y = 500$ and $W_y = 1500$

79) A closed thin cylindrical tank with a mean diameter d = 300 mm and thickness t = 2 mm, is subjected to a uniform internal gas pressure p. The allowable shear stress on the curved wall of the tank is 70 MPa.

Based on the Tresca criteria, which one of the following options for the maximum safe value of p (in MPa) is CORRECT?

[GATE XE 2025]

80) An infinitesimal square element *PQRS* is shown in the figure. The x and y axes are also marked in the figure. The strains on the element are given by

$$\varepsilon_{xx} = 500 \times 10^{-6}$$
, $\varepsilon_{yy} = 100 \times 10^{-6}$ and $\varepsilon_{xy} = 0$.

Which of the following statements is/are CORRECT?

Fig. 80.

[GATE XE 2025]

- a) Percentage change in length of the diagonal PR c) Change in angle between PR and QS is $2 \times$
 - 10^{-4} rad.
- 10^{-4} rad.
- b) Change in angle between PR and QS is $4 \times d$) Percentage change in length of the diagonal *OS* is 0.03.
- 81) The figure shows the stress distribution across an internal surface of a rectangular beam of height 30 mm and depth 10 mm. The normal stress distribution is given by the expression $\sigma_{xx} = 200y +$ 500 N/mm²; y is the distance in mm from the centroidal axis of the beam. Assume that there is no variation in the stress distribution along the z-direction.

Which of the following statements is/are CORRECT?

Fig. 81.

- a) The net force in the x direction is 150 kN.
- c) The net moment about the z axis is 4500 Nm.
- b) The net force in the x direction is 75 kN.
- d) The net moment about the z axis is 2250 Nm.
- 82) A vertical column fixed at one end is subjected to a compressive axial load at the free end. The column's section modulus, EI, is 9.82×10^5 Nm² and the cross-section area is 7.85×10^{-3} m². The length of the column is 2 m. The yield stress of the material is 145 MPa. If the column can fail either in buckling or by Tresca's criterion, the maximum load that the structure can safely sustain is ______ kN (rounded off to one decimal place).

[GATE XE 2025]

83) A simply-supported beam, with a point load P = 150 kN at a distance of L/3 from the left end, is shown in the figure. The elastic-strain energy (U) of the beam is given by the following expression:

$$U = \frac{2}{243} \frac{P^2 L^3}{EI} \tag{13}$$

where the section modulus, EI, is 16.66×10^5 Nm² and the length of the beam L is 1 m. The deflection at the loading point is _____ mm (rounded off to two decimal places).

Fig. 83.

[GATE XE 2025]

84) A simply-supported beam has a circular cross-section with a diameter of 20 mm, area of 314.2 mm², area moment of inertia of 7854 mm⁴ and a length L of 4 m. A point load P = 100 N acts at the center and an axial load Q = 20 kN acts through the centroidal axis as shown in the figure.

The magnitude of the offset between the neutral axis and the centroidal axis, at L/2 from the left, is ______ mm (rounded off to one decimal place).

Fig. 84.

85) A massless cantilever beam, with a tip mass m of 10 kg, is modeled as an equivalent spring-mass system as shown in the figure. The beam is of length L=1 m, with a circular cross-section of diameter d=20 mm. The Young's modulus of the beam material is 200 GPa. The natural frequency of the spring-mass system is ______ Hz (rounded off to two decimal places).

Fig. 85.

[GATE XE 2025]

86) An electric motor's rotor is spinning at 1500 rpm when its load and power are cut-off. The rotor which has a mass of 50 kg and a radius of gyration of 200 mm, then coasts down to rest. Due to kinetic friction, a constant torque of 10 Nm acts on the rotor as it coasts down.

The number of revolutions executed by the rotor before it comes to rest is _______ (in

The number of revolutions executed by the rotor before it comes to rest is ______ (integer).

[GATE XE 2025]

87) A bar of length L=1 m is fixed at one end. Before heating its free end has a gap of $\delta=0.1$ mm from a rigid wall as shown in the figure. Now the bar is heated resulting in a uniform temperature rise of 10 °C. The coefficient of linear thermal expansion of the material is 20×10^{-6} /°C and the Young's modulus of elasticity is 100 GPa. Assume that the material properties do not change with temperature.

The magnitude of the resulting axial stress on the bar is _____ MPa (in integer).

Fig. 87.

88)	A tank is divided into two compartments with one compartment containing a gas at a given pressure,
	while the second is completely evacuated. If the partition is removed, the gas occupies the entire
	compartment. Which one of the following statements is CORRECT?

- a) Work done is equal to the area under the curve c) The entire process is reversible of a p-V diagram
 - d) The overall change in volume is zero for the
- b) Expansion of gas is not restrained by external force
- entire system
- 89) A cylinder of volume 0.1 m³ is filled with nitrogen at 10 MPa and 300 K. Consider nitrogen to be an ideal gas. The cylinder develops a leak and nitrogen escapes to atmosphere which is at 0.1 MPa. After sometime, the pressure in the cylinder reduces to 5 MPa. Assuming the cylinder and the leaked gas temperature remains constant at 300 K, the work done (in MJ) by nitrogen gas is 2025]
 - a) 0.1

c) 0.5

b) 1

- d) 10
- 90) A closed system undergoes a process 1–2 in which it absorbs 150 kJ of energy as heat and does 90 kJ of work. Then it follows another process 2-3 in which 80 kJ of work is done on it while it rejects 60 kJ as heat. If it is desired to restore the system to the initial state (state 1) by an adiabatic path, the work interaction (in kJ) in this process will be [GATE XE 2025]
 - a) 80

c) 50

b) 100

- d) 70
- 91) The inlet and outlet temperatures of the flowing fluid during a steady state flow process are the same as that of the surroundings. If the changes in kinetic and potential energies are neglected, the maximum power that can be obtained is equal to [GATE XE 2025]
 - a) the rate of increase in enthalpy of the flowing c) the rate of decrease in Gibbs free energy of the fluid
 - flowing fluid
 - flowing fluid
 - b) the rate of decrease in Helmholtz energy of the d) the rate of decrease in internal energy of the flowing fluid
- 92) If γ refers to the ratio of specific heats, the air-standard efficiency of an Otto cycle is **IGATE XE**
 - a) $1 \frac{1}{(\text{Compression ratio})^{\gamma}}$ b) $1 \frac{1}{(\text{Pressure ratio})^{(\frac{\gamma-1}{\gamma})}}$

c) $1 - \frac{1}{\text{(Compression ratio)}^{(\gamma-1)}}$ d) $1 - \frac{1}{\text{(Pressure ratio)}^{(\gamma-1)}}$

- 93) Let T_H and T_L denote the absolute temperatures of high and low temperature reservoirs, respectively. The coefficient of performance of a reversible refrigerator operating between these two reservoirs is [GATE XE 2025]
 - a) $\frac{1}{\frac{T_H}{T_L} 1}$

b) $\frac{1}{1 - \frac{T_H}{T_I}}$

c)
$$\frac{1}{\frac{T_L}{T_H} - 1}$$
 d) $\frac{1}{\frac{T_L}{T_H} + 1}$

- 94) A tank of 4 m³ contains an ideal gas mixture of 60% hydrogen and 40% nitrogen by volume at 100 kPa and 300 K. Nitrogen is added to the tank such that the composition changes to 50% nitrogen by volume, with a final temperature of 300 K. The amount of nitrogen (in kmol) to be added is ______ (rounded off to three decimal places). Use: Universal gas constant (R_u) = 8.314 kJ/(kmol-K). [GATE XE 2025]
- 95) A heat engine having thermal efficiency of 40% receives heat from a source at 600 K and rejects heat to a sink at 300 K. The second-law efficiency (in %) of this engine is ______ (answer in integer). [GATE XE 2025]
- 96) A rigid tank of 300 litre capacity contains 3 kg of oxygen (molar mass = 32 kg/kmol) at 25 °C. If oxygen behaves as an ideal gas, the pressure (in kPa) inside the tank is ______ (rounded off to two decimal places). Use: Universal gas constant $(R_u) = 8.314 \text{ kJ/(kmol-K)}$. [GATE XE 2025]
- 97) For an ideal gas turbine cycle, T_1 and T_3 are the compressor inlet temperature and turbine inlet temperature respectively. The ratio $\frac{T_3}{T_1}$ is denoted by t and the ratio of specific heats is denoted by γ . For any given t, the optimum pressure ratio for the maximum specific work output is [GATE XE 2025]
 - a) $\frac{t^{\frac{1}{2(\gamma-1)}}}{t^{\frac{\gamma}{2(\gamma-1)}}}$ b) $t^{\frac{\gamma}{2(\gamma-1)}}$
- 98) For a pure substance that expands on freezing, which of the following statement(s) is/are CORRECT? [GATE XE 2025]
 - a) Temperature of the liquid phase can be lower than the temperature at the triple point
 - b) Critical pressure is equal to the pressure at the triple point
 - c) Highest pressure at which the vapour phase can
- exist is the pressure at the triple point
- d) Highest temperature at which solid-liquid phase change can happen is the temperature at the triple point
- 99) Consider a gas obeying the relation (P)(v b) = RT, where b and R are constants. Which of the following statement(s) is/are CORRECT about the specific heat capacity at constant pressure? [GATE XE 2025]
 - a) It is independent of temperature
 - b) It is a function of pressure
 - c) It is a function of temperature

- d) It is independent of both specific volume and pressure
- 100) A piston-cylinder arrangement contains an ideal gas mixture of 4 kg of hydrogen and 13 kg of nitrogen at 250 K and atmospheric pressure. On heat addition, the mixture expands at constant pressure until the temperature rises to 350 K. The change in entropy (in kJ/K) of the mixture is ______ (rounded off to three decimal places). Take the constant-pressure specific heats as: Hydrogen $c_{p,H_2} = 14.43 \text{ kJ/(kmol-K)}$; Nitrogen $c_{p,N_2} = 29.10 \text{ kJ/(kmol-K)}$; Universal gas constant $R_u = 8.314 \text{ kJ/(kmol-K)}$.

- 101) Air in an ideal Diesel cycle is compressed from 3 litre to 0.15 litre. It then expands during a constant pressure heat addition process to 0.3 litre. If the ratio of specific heats, $\gamma = 1.4$, the thermal efficiency (in %) of the cycle is ______ (rounded to one decimal place).
- 102) Air at 101 kPa, 15 °C and 50% relative humidity is first heated to 20 °C in a heating coil, and then humidified by spraying water on it. In the final state, the air has temperature of 25 °C and relative humidity of 85%. The amount of water sprayed (in gm per kg of dry air) is ______(rounded off to two decimal places). Use the following data: The saturation pressure of water at 15 °C = 1.7057 kPa The saturation pressure of water at 25 °C = 3.1698 kPa.
- 103) Superheated steam at 2 MPa, 350 °C is mixed adiabatically with superheated steam at 2 MPa, 400 °C. The mass flow rates of the streams are 3 kg/min and 2 kg/min, respectively. This mixture then expands in an adiabatic nozzle to a saturated mixture with quality of 0.77 and 1 kPa. Neglect the velocity at the nozzle entrance and the change in potential energies. The velocity at the nozzle exit (in m/s) is ______ (rounded off to two decimal places). Use: At 2 MPa, 300 °C: h = 3024.2 kJ/kg; At 2 MPa, 400 °C: h = 3248.4 kJ/kg; At 1 kPa: $h_f = 29.3$ kJ/kg, $h_g = 2513.7$ kJ/kg. [GATE XE 2025]
- 104) A piston-cylinder assembly having 250 mm diameter contains 0.01 kg of water vapor at 1 MPa and 200 °C. The specific volume of the vapor is $0.20602 \text{ m}^3/\text{kg}$. The system expands as per the relation pV^n = constant, where p is pressure and V is volume. The expansion of water vapour displaces the piston by 50 mm. If the final pressure is 0.35 MPa, the value of the exponent (n) is ______ (rounded off to two decimal places).
- 105) Air enters a hair dryer at 22 °C and 100 kPa with a velocity of 3.7 m/s, and leaves the dryer at 83 °C and 100 kPa with a velocity of 9.1 m/s. The exit area of the dryer is 18.7 cm², and the ambient temperature is 22 °C. The air is an ideal gas with gas constant R = 0.287 kJ/(kg-K) and isobaric specific heat $c_p = 1.005$ kJ/(kg-K). If the change in potential energy is neglected, the second-law efficiency (in %) of the dryer is ______ (rounded off to one decimal place). [GATE XE 2025]
- 106) A steam boiler contains saturated water vapour at 200 °C. After a certain period, the temperature of the boiler drops to 110 °C. Assume that all the valves of the boiler are closed and the energy is lost as heat to the surroundings. The ratio of mass of liquid to the mass of vapour is _____ (rounded off to two decimal places). Saturated volume of vapour phase at 200 °C = 0.127 m³/kg; at 110 °C = 1.210 m³/kg; saturated volume of liquid phase at 110 °C = 0.001 m³/kg. [GATE XE 2025]
- 107) Two Carnot heat engines (E_1 and E_2) are operating in series. Engine E_1 receives heat from a reservoir at $T_H = 1600$ K and does work W_1 . Engine E_2 receives heat from an intermediate reservoir at T, does work W_2 and rejects the rest to a reservoir at $T_L = 400$ K. Both the engines have identical thermal efficiencies. The temperature T (in K) of the intermediate reservoir is ______ (answer in integer).

Fig. 107.

- 108) A particular temperature scale is obtained according to the relation: $t = ae^{b\alpha}$ where a and b are constants, and t is in °C. The thermometric property as measured by the thermometer is α . The values of α at ice point and steam point are 6 and 9, respectively. The temperature (in °C) which gives $\alpha = 7$ is ______ (rounded off to two decimal places). [GATE XE 2025]
- 109) In a piston cylinder assembly, one kmol of an ideal gas is compressed from an initial state of 200 kPa and 400 K to a final state of 1 MPa and 400 K. If the surroundings are at 400 K, the minimum amount of work (in kJ/kmol) required for the compression process is ______ (rounded off to two decimal places). Use: Universal gas constant $(R_u) = 8.314 \text{ kJ/(kmol-K)}$. [GATE XE 2025]
- 110) Which one of the following measures of viscosity is dimensionless?

[GATE XE 2025]

- a) Inherent viscosity
- b) Reduced viscosity

- c) Zero-shear viscosity
- d) Specific viscosity
- 111) Which one of the following permits the direct determination of intrinsic viscosity of a polymer solution for known molecular weight of the polymer?

[GATE XE 2025]

- a) Flory-Huggins equation
- b) Newton's law of viscosity

- c) Williams-Landel-Ferry equation
- d) Mark-Houwink equation
- 112) Under which combination of conditions does the glass transition of a polymer increase?

- a) Increase in molecular weight and increase in c) Increase in branching and decrease in interplasticizer content
 - chain interactions
- b) Increase in plasticizer content and decrease in d) Increase in chain length and decrease in plascross-linking
 - ticizer content
- 113) In a polymer recycling plant, polymer "X" was depolymerized by glycolysis in the presence of ethylene glycol and a suitable catalyst. The glycolysis reaction yielded the following compound:

Fig. 113.

Identify the polymer "X" from the following options.

[GATE XE 2025]

a) Poly(ethylene terephthalate)

c) Acrylonitrile butadiene styrene

b) Polystyrene

- d) Poly(vinyl chloride)
- 114) Polymer "Z" has a high melting point and it decomposes even before it melts. Hence, it is usually dissolved and subsequently regenerated. Rayon is one such regenerated form. Identify the polymer "Z" from the following options.

[GATE XE 2025]

a) Urea formaldehyde

c) Cellulose

b) Poly(vinyl carbazole)

- d) Poly(vinyl acetate)
- 115) Match the **Product** with the most appropriate **Processing Technique** employed.

[GATE XE 2025]

	Product	Processing Technique
	P. Rainboots	3. Rotational molding
	Q. Disposable plastic cups	4. Thermoforming
	R. Soft drink bottles	1. Blow molding
	S. Flexible films	2. Calendering
a) P-3; Q-1; R-2; S-4	c) P-1; Q-2; R-4; S-3
b) P-3; Q-4; R-1; S-2	ď) P-1; Q-3; R-4; S-2

- 116) Crystallization is favored in polymer melts when the chain entanglement is _____ only polymers with _____ molecular arrangement can crystallize.

[GATE XE 2025]

a) maximum, ordered

c) maximum, random

b) minimum, random

- d) minimum, ordered
- 117) Match the **Polymer** with the most suitable **Monomer combinations** from which it is synthesized.

Polymer

Monomer combinations

- P. Polyurethane
- 4. Hexamethylene diisocyanate and tetramethylene glycol
- Q. Epoxy
- 3. Epichlorohydrin and bisphenol A
- R. Polyimide
- 2. Pyromellitic anhydride and p,p'-diamino diphenyl ether
- S. Polyester 1. Maleic acid and propylene glycol
- a) P-4; Q-3; R-2; S-1

c) P-2; Q-1; R-4; S-3

b) P-4; Q-2; R-3; S-1

- d) P-2; Q-3; R-1; S-4
- 118) Thermoplastic Polyurethane and Polyamide 6 both contain amide linkages, but when compared to Polyurethane, Polyamide 6 shows higher melting point due to ______.

[GATE XE 2025]

a) Higher molecular rigidity

c) Lower molecular rigidity

b) Higher degree of branching

- d) Lower degree of crosslinking
- 119) Injection molding is typically used to make plastic parts. If the pressure at the gate is monitored as a function of time during the injection of a thermoplastic polymer, identify the profile that best describes this event. (Profiles P, Q, R, S are given.)

Fig. 119.

[GATE XE 2025]

a) Qb) R

c) P

d) S

120) The 'unperturbed dimension' of the polymer chain is represented as,

$$(\overline{r_0^2})^{1/2} \propto \bar{l}\,\bar{n}^{1/2}$$
 (14)

where $(\overline{r_0^2})^{1/2}$ is the root-mean-square end-to-end distance, \overline{l} is the average length of a segment and n is the number of segments in the chain. Using the above, the root-mean-square end-to-end distance of a branched polyethylene would be ______ when compared with that of the linear polyethylene of the same molecular weight and the same number of segments.

- a) Same
- b) Higher

- c) Lower
- d) Exactly $\sqrt{2}$ times

121) Choose the option(s) that correctly match(es) the **Zones** with their typical **Functions** in an industrial extruder. (Tables/figure for Zones P, Q, R, S and Functions 1, 2, 3 are given.)

	Zones	Functions		
P	Feed zone	1	The melt acquires a constant flow rate	
Q	Compression zone	2	No heating takes place	
R	Metering zone	3	Polymer melts due to heat transferred from the heating element	
		4	The helical flight of the screw imparts constant flow of the melt	
		5	Polymer melts due to shear forces imparted by the screw	

[GATE XE 2025]

- a) P-3; Q-1; R-4; S-2
- b) P-2; Q-4; R-3; S-1

- c) P-4; Q-1; R-2; S-3
- d) P-1; Q-3; R-2; S-4
- 122) During material testing, stress is applied from time t_i to t_f as shown below.

Fig. 122.

The corresponding strain responses for three different materials are shown in plots P, Q and R.

Fig. 122.

Choose the option(s) where the strain response is correctly mapped to its material class.

- a) P- purely elastic; Q- purely viscous; R- vis- c) P- purely viscous; Q- purely elastic; R- vis- coelastic coelastic
- b) P- purely elastic; Q- viscoelastic; R- purely d) P- purely viscous; Q- viscoelastic; R- purely viscous
- 123) Which option(s) correctly match(es) the *Polymer property* with its appropriate *Units*?

Pol	lymer property	Units		
P	Hildebrand solubility parameter	1	Pa	
Q	Loss modulus	2	$J m^{-3}$	
R	Toughness	3	$(MPa)^{1/2}$	
S	Flexural strength	4	$Kg m^{-1} s^{-2}$	

a) P-2; Q-1; R-3; S-4 b) P-2; Q-4; R-3; S-1 c) P-3; Q-1; R-2; S-4 d) P-3; Q-4; R-2; S-1

124) Which option(s) correctly match(es) the *Class of additives* used during polymer compounding with the corresponding *Chemicals*?

Class of additives		Cł	nemicals
P	Antioxidant	1	Phthalocyanine
Q	Flame retardant	2	Di(2-ethylhexyl) phthalate
R	Plasticizer	3	Tricresyl phosphate
S	Colorant	4	Phenyl β -napthyl amine

[GATE XE 2025]

a) P-4; Q-3; R-2; S-1 b) P-4; Q-3; R-3; S-1 c) P-1; Q-2; R-4; S-2 d) P-2; Q-3; R-1; S-2

125) In a set of copolymerization reactions, the following monomer reactivity ratios $(r_1 \text{ and } r_2)$ were found for different cases.

Case	r_1	r_2
I	0.1	10
II	0.003	0.02
III	3.4	5.6
IV	51	0.01

Which option(s) correctly identify/identifies the type of copolymerization corresponding to each Case?

[GATE XE 2025]

a) I — Ideal copolymerization

c) III — Block copolymerization

b) II — Azeotropic copolymerization

d) IV — Alternating copolymerization

126) The crystallization of a polymer can only proceed in a temperature range limited to glass transition temperature (T_g) on the lower side, and the equilibrium melting point (T_m°) on the higher side. Around T_g , the mobility of the polymer chains is lower, while in the proximity of T_m° , crystal nucleation is inhibited. In a miscible polymer blend with only one component being crystalline, which option(s) correctly match(es) the *Temperature conditions* with *Events*?

Temperature conditions

- P T_g of the amorphous component is lower than the crystallizable one
- Q T_g of the amorphous component is higher than the crystallizable one
- R Blend T_g is higher than T_m° of the crystallizable one

Events

- 1 Temperature range over whic
- 2 Crystallization is inhibited
- 3 Crystallization envelope (T_m°
- 4 Crystallization is favored [GATE XE 2025]

- a) P-3; Q-2; R-4
- b) P-3; O-1; R-2

- c) P-4; Q-1; R-3
- d) P-4; O-1; R-2

127)	The heat of polymerization of ethylene is 25 K polymerization of 5.6 Kg polyethylene is		
128)	The density of an amorphous polymer is 0.77 g g cm ⁻³ . The density of a semi-crystalline sampl degree of crystallinity (on weight basis) of this so off to two decimal places)	e of this polyr	of its crystalline counterpart is 0.99 mer is found to be 0.88 g cm ⁻³ . The
			[GATE XE 2025]
129)	Titration was used to determine the molar mass of the polymers possess the same repeat unit and contitrated with 5 mL of a 0.1 M alkali solution. In a with 5 mL of a 0.1 M alkali solution. All of the present in both polymer A and polymer B. The B is (Round off to one decime	ntain acid end- separate expe le alkali soluti ratio of the mo	groups. First, 10 g of polymer A was riment, 5 g of polymer B was titrated on reacted with the acid end-groups
130)	A unidirectional composite of a resin is prepared	with continuou	
150)	of the fiber in the composite is 0.7. Assume that		
	a modulus of 90 GPa. A sample of this composite		
	1 mm, is subjected to a uniaxial tensile test along		
	of 0.5%, the force applied on the sample is		
			[GATE XE 2025]
131)	A rubber contains 70 wt% butadiene (molar mas	_	=
	g/mol), 5 wt% sulfur and 5 wt% carbon black. A		<u> -</u>
	each sulfide crosslink contains an average of two		
	that are joined by vulcanization is	%. (Kouiid	[GATE XE 2025]
132)	Which of the following contains the phytonutries	nt allicin?	[GAIL AL 2023]
132)	which of the following contains the phytonical		[GATE XE 2025]
	a) Grape	c) Garlic	
	b) Cauliflower	d) Chilli	
133)	Which mold is responsible for the characteristic	blue marbling	in blue-veined cheese? [GATE XE 2025]
			[GAIL AL 2023]
	a) Rhizopus oryzae	c) Aspergilli	ıs niger
	b) Penicillium roqueforti	d) Penicilliu	m camemberti
134)	Which genus of bacteria does NOT have cell wa	112	
134)	which genus of bacteria does from have een wa		[GATE XE 2025]
	a) Lactobacillus	c) Mycoplas	ma
	b) Staphylococcus	d) Escherich	
135)	Which of the following pigment does NOT have	pro-vitamin A	
			[GATE XE 2025]
	a) β -Carotene	c) Lycopene	
	b) β -Cryptoxanthin	d) α -Caroter	ne
136)	Identify the analysis that must be performed FIR	ST to judge 'o	<u> </u>
			[GATE XE 2025]

a) Acid-insoluble ash contentb) Pesticide residue levels	c) Volatile oil contentd) Mycotoxin levels
137) If there is a delay in oil extraction after bran i bran oil deteriorates. Identify the suitable CAUS	s separated from the brown rice, the quality of rice SE and EFFECT for the deterioration in oil quality. [GATE XE 2025]
a) Lipase activity; increase in FFAb) Oil hydrolysis; decrease in FFA	c) Lipase activity; decrease in FFAd) Bran stabilization; decrease in lipase activity
138) Among the following, which is/are the process(ones?	es) that lead to generation of new fats from existing
	[GATE XE 2025]
a) Transesterificationb) Degumming	c) Hydrogenationd) Winterization
139) The true density and bulk density of wheat grain porosity of the grains is (rou	
140) Potato slices weighing 50 kg is dried from 60% (dry basis). The amount of dried potato slices integer)	[GATE XE 2025] moisture content (wet basis) to 5% moisture content sobtained (in kg) is (Answer in
integer)	[GATE XE 2025]
141) Identify the gas composition (in percent) suitab	le for packaging cured meat under MAP conditions. [GATE XE 2025]
a) O2 = 0; CO2 = 50; N2 = 50 b) O2 = 50; CO2 = 0; N2 = 50	c) O2 = 0; CO2 = 0; N2 = 100 d) O2 = 50; CO2 = 50; N2 = 0
142) Which of the following sequence of events occurs Assume: P_N : Native protein; P_D : Denatured protein; P_D : Denatured protein; P_D : reversible reaction; P_D : P_D : Denatured protein P_D :	rotein; P_A : Aggregated protein; P_G : Protein gel \rightarrow :
Torward reaction, \(\gamma\). Reversible reaction, \(\Delta\).	[GATE XE 2025]
(A) $P_N \xrightarrow{\Delta} P_D \xrightarrow{\nabla} P_A \leftrightarrow P_G$ (B) $P_N \xrightarrow{\Delta} P_D \xrightarrow{\Delta} P_A \rightarrow P_G$	(C) $P_N \leftrightarrow P_D \rightarrow P_G$ (D) $P_N \leftrightarrow P_A \rightarrow P_G$

143) In canning and retorting of foods, which of the following is the correct expression of Ball process time (B)?

Assume: t_p = processor's process time; t_c = come-up time

[GATE XE 2025]

a)
$$B = t_p + 0.42 t_c$$

b) $B = t_p + 0.30 t_c$
c) $B = t_p + 0.50 t_c$
d) $B = t_p + 0.25 t_c$

144) Which of the following is the most suitable flexible packaging laminate for dry fruits?

- a) PET/LDPE
- b) PS/LDPE

- c) BOPP/LDPE
- d) Nylon/LDPE
- 145) Identify the CORRECT sequence of operations for dressing of poultry.

- a) Slaughtering and bleeding \rightarrow scalding \rightarrow de- c) Slaughtering and bleeding \rightarrow eviscerating \rightarrow feathering \rightarrow eviscerating \rightarrow chilling
- b) Slaughtering and bleeding \rightarrow defeathering \rightarrow d) Slaughtering and bleeding \rightarrow defeathering \rightarrow scalding \rightarrow eviscerating \rightarrow chilling
- defeathering \rightarrow scalding \rightarrow chilling
 - eviscerating \rightarrow scalding \rightarrow chilling
- 146) Which of the following statement(s) is/are TRUE for a package of gamma-irradiated (7.5 kGy) whole chicken?

[GATE XE 2025]

- a) Nutritional quality of the product deteriorates after irradiation.
- b) Spores of C. botulinum can survive in the irradiated product.
- c) 'Radura' symbol does not ensure safety of the
- irradiated product for consumption.
- d) Energy needed for the irradiation process is much higher than that required for freezing of the product.
- 147) Match the following food products in Column I with their corresponding processes in Column II. [GATE XE 2025]

Column I	Column II
P Idli	1 Baking
Q Parboiled rice	2 Fermentation
R Soda beverage	3 Gelatinization
S Cookies	4 Carbonation
	c) P-2;Q-4;R-1;S-

- a) P-2;Q-3;R-4;S-1
- b) P-3;Q-2;R-4;S-1

- d) P-2;O-3;R-1;S-4
- 148) Which of the following is/are inhibitor(s) of enzymatic browning in peeled potatoes?

[GATE XE 2025]

- a) Citric acid
- b) EDTA

- c) Mannitol
- d) Ascorbic acid
- 149) Match the following enzymes in Column I with their applications in Column II.

[GATE XE 2025]

	Column I P β -Glucanase Q α - and β -Amylases R Pectinase S Papain	Column II 1 Fruit juice clarification 2 Bread making 3 Meat tenderization 4 Brewing
a) P-3;Q-1;R-2;S-4 b) P-4;Q-2;R-1;S-3		c) P-2;Q-4;R-1;S-3 d) P-1;Q-2;R-3;S-4

150) The F_{121} value of a known microorganism with Z value of 11 °C is 2.4 min for 99.9999% inactivation. For a 12D inactivation of the said microorganism at 143 °C, the F value (in min) is _____ (rounded off to 3 decimal places)

		[GATE XE 2025]
and 1.0 kJ/(kg °C), respective vapour at 0 °C is 2000 kJ, the	vely. Assuming, the heat he enthalpy (in kJ/kg dry	vater vapour and air remains constant: 4.48, 1.88 energy required to convert 1 kg of water to water y air) of atmospheric air containing 0.05 kg water water (rounded off to 1 decimal place) [GATE XE 2025]
total solids (by weight) is in inside diameter and the pre-	ncreased to 20% total so essure difference across is 5×10^{-5} kg water/(m ²)	membrane. A feed stream at 10 kg/min with 6% blids (by weight). The membrane tube has 10 cm the membrane is 2000 kPa. If the permeability 2 kPa s), the length of membrane tube (in m) is (GATE XE 2025)
mm; whereas, 80% of the g	ground product passes the material is 3.8 kW, the	material passes through a sieve opening of 4.75 arough 0.5 mm opening. If the power required to work index of the material is
154) During which of the follow	ving times of the day is	[GATE XE 2025] the 2 m air temperature usually the lowest at a
tropical location?		[GATE XE 2025]
a) At sunriseb) At noon		c) At sunset d) At midnight
	ocations in the atmosphe	ere is the anvil of a towering cumulonimbus cloud
usually located?		[GATE XE 2025]
a) Top of the surface layerb) Top of the boundary layer		e) Tropopause d) Stratopause
156) Which one of the following Bengal during the summer		ny tropical cyclones rarely form over the Bay of
Bengai during the summer	monsoon season.	[GATE XE 2025]
a) Strong vertical wind sheab) Weak low-level relative v		c) Dry mid-troposphere. d) Stable atmosphere.
157) Large temperature difference	ees between land and the	e adjacent ocean commonly occur because: [GATE XE 2025]
a) The heat capacity of lan of the ocean.b) The heat capacity of the that of land.	d	c) Land surfaces are rougher than the ocean. d) Oceans revolve faster than the land around the Earth's axis.
	of the subtropical gyres, respective	s in the northern and southern hemispheres are

- a) clockwise and anticlockwise
- b) anticlockwise and clockwise

- c) clockwise and clockwise
- d) anticlockwise and anticlockwise
- 159) The time period of inertial oscillation of a surface water parcel moving at a speed of 0.5 m s-1 at a location S (87 °E, 45 °S) is:

a) 12 hours

c) 6 hours

b) 24 hours

d) 12 hours

160) Which of the following Period(s) correspond(s) to wind waves?

[GATE XE 2025]

a) 5 seconds

c) 5 minutes

b) 20 seconds

d) 2 minutes

161) Accumulated rainfall is often measured in mm. If the density of rain water is 1000 kg m-3 then, one mm of rain is equal to _____ kg m-2 of rain. (in integer).

[GATE XE 2025]

162) Acceleration due to Coriolis force of a water parcel at a location P (67 $^{\circ}$ E, 20 $^{\circ}$ N) moving with a speed of 0.35 m s-1 is ______ × 10-5 m s-2. (Round off to two decimal places) [Assume the angular velocity of the Earth is 7.3 × 10-5 s-1.]

[GATE XE 2025]

163) A rotating weather system has a tangential velocity of 100 m s-1, diameter of 1 km, and located at a latitude where the Coriolis parameter is 10-4 s-1. Which one of the following statements is true about this weather system?

[GATE XE 2025]

a) It is in geostrophic balance.

c) It is a high-pressure system.

b) It is in gradient wind balance.

- d) It is in cyclostrophic balance.
- 164) The sea surface height concentric isolines (L1 and L2 in cm) and the distance between them (dx in km) for three different eddies at the same latitude are given in the figure below. (The figures are not to scale.)

Fig. 164.

Which one of the following orders is correct about the magnitudes of the geostrophic currents within the isolines?

a)
$$(i) > (ii) > (iii)$$

c)
$$(iii) > (i) > (ii)$$

b)
$$(ii) > (iii) > (i)$$

d)
$$(iii) > (ii) > (i)$$

165) The vertical (depth) profiles for three parameters P1, P2, and P3 in the northern Indian Ocean are given in the figure below. The values along the x-axis are the normalized values of the parameters and y-axis is the depth (m). Identify the parameters P1, P2, and P3 from the options given below.

Fig. 165.

[GATE XE 2025]

- a) P1: Dissolved Oxygen; P2: Nitrate; P3: Chloro- c) P1: Dissolved Oxygen; P2: Chlorophyll; P3: phyll
 - **Nitrate**
- b) P1: Nitrate; P2: Chlorophyll; P3: Dissolved d) P1: Chlorophyll; P2: Nitrate; P3: Dissolved Oxygen
 - Oxygen
- 166) The zonal gradient of meridional current and the meridional gradient of zonal current is -0.3×10^{-3} s⁻¹ and 0.3×10^{-3} s⁻¹, respectively, at a location P (87 °E, 15 °N). Which one of the following best explains the nature of the flow?

[GATE XE 2025]

- a) The flow is non-divergent in nature.
- c) The flow is counter-clockwise in nature.
- b) The flow is non-rotational in nature.
- d) The flow is clockwise in nature.
- 167) The north-Atlantic deep-water is associated with _

[GATE XE 2025]

- a) low temperature and low salinity
- c) high temperature and low salinity
- b) high temperature and high salinity
- d) low temperature and high salinity
- 168) Which of the following is the correct form of the mass divergence form of the continuity equation for a compressible fluid? [In the given equations, ρ is the density and v the three dimensional velocity vector of the fluid.]

(i)
$$\frac{\partial \rho}{\partial t} + \nabla \times (\rho \mathbf{v}) = 0$$

(ii)
$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$$

(iii)
$$\frac{\partial \mathbf{v}}{\partial t} + \rho \cdot \nabla \mathbf{v} = 0$$

vector of the fidit.]
$$(i) \frac{\partial \rho}{\partial t} + \nabla \times (\rho \mathbf{v}) = 0$$

$$(ii) \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$$

$$(iii) \frac{\partial \mathbf{v}}{\partial t} + \rho \cdot \nabla \mathbf{v} = 0$$

$$(iv) \frac{\partial \rho}{\partial t} + \mathbf{v} \cdot \nabla \rho = 0$$

- a) (i) and (ii) b) (ii) c) (i) and (iv) d) (iii)
- 169) In the figures given below, L and H indicate low and high pressure centers, respectively; PGF, CoF and CeF indicate Pressure Gradient Force, Coriolis Force and Centrifugal Force, respectively; V is Velocity. [The arrows indicate only the directions but not the magnitudes of the forces and velocity.] Which of the following is/are the correct representation(s) of the directions of various forces and velocity in the gradient wind balance in the northern hemisphere?

Fig. 169.

- a) (i) c) (iii) b) (ii) d) (iv)
- 170) One kg of dry air at 15 °C is isothermally compressed to one-tenth of its initial volume. The work done on the system is _____ kJ. (Round off to the nearest integer.) [Assume that the gas constant for dry air is 287×10^5 J K-1 kg-1.]

[GATE XE 2025]

171) In hot weather, a human body cools by the evaporation of sweat from its skin. The amount of water that must evaporate to cool the body by 1 $^{\circ}$ C is ______ [Assume that latent heat of vaporization of water is 2.25×10^6 J kg-1 and specific heat capacities of both human body and liquid water is 4.2×10^3 J K-1 kg-1.]

[GATE XE 2025]

- 172) A floating hot air balloon with volume $1000m^3$ and gross mass (excluding the air in the balloon) 100 kg is in hydrostatic balance where the external air temperature is 10°C and density is 1 kg m-3. The temperature of the air inside the balloon is _______°C. (Round off to the nearest integer.)

 [GATE XE 2025]
- 173) The solar constant for the Earth is 1368 W m-2. Consider the planet Jupiter whose mass is 320 times that of the Earth and distance from the Sun is 5.2 times that of the Earth. The solar constant for Jupiter is ______ W m-2. (Round off to the nearest integer.)

[GATE XE 2025]

174) A column of air mass extending from surface to a height of 10 km moving eastward along 30 °N strikes a north-south oriented mountain range. While crossing the mountain range, the air mass

acquires a relative vorticity of -3.6510^-5s^-1 at the top. If the air mass maintains the same latitude and conserves potential vorticity, the height of the mountain range is ______ km. (Round off to the nearest integer.) [Assume the angular velocity of the Earth is 7.310^-5s^-1 and initial relative vorticity is zero.]

[GATE XE 2025]

175) The Sea Surface Temperature, Air Temperature and 10 m Wind Speed at the locations P and Q are given in the table below. [Assume the density of air, specific heat capacity, and sensible heat transfer constant are the same at both locations.]

Location	Sea Surface temperature (°C)	Air temperature (°C)	Wind Speed at 10m (m s ⁻¹)
P	28	35	4
Q	30	32	7

The sensible heat (SH) flux at the locations P and Q are SH_P and SH_Q, respectively. The value of (SH_P/SH_Q) is ______. (in integer)