

King Saud University

Business Administration

College Management Information Systems Department

MIS419

ADIDAS US SALES DATASETS

Section: 54771

Instructor: Dr. Amani Khalaf Samha

Team Members

Student Name	Student ID
Fatimah Almutairy	439201242
Taif Alotaibi	441201843
Aldanah alshubaili	441204296
Reema Alangari	441925239
Deema Almohaya	441202443

Table of content

Introduction	2
The Dataset	3
Data exploration and description	4
Preprocessing techniques	5-13
Dataset after Preprocessing	13
Data Visualization	14-16
Pattern Discovery	16-20
Performance Measurement	20-21
Conclusion	22
References	23

Introduction

Sales management may better understand where salespeople can improve by using sales analytics to detect, model, comprehend, and predict sales trends and results. The functionality that sales analytic systems offer specifically supports discovery, diagnostic, and predictive exercises that allow the manipulation of parameters, measures, dimensions, or numbers as part of an analytical or planning activity.

A collection of data that contains details on the sales of Adidas products is known as an Adidas sales dataset. This kind of dataset may contain information on the quantity of units sold, the overall revenue from sales, the location of the sales, the kind of product sold, and any other pertinent data.

Adidas sales data can be helpful for several things, including trend analysis, identifying successful items, or marketing initiatives, and formulating sales strategy. Additionally, it can be used to evaluate the efficiency of various marketing or sales channels or to compare Adidas sales to those of rival brands.

Our dataset "Adidas Sales Database" which is collected from the "Kaggle" website. The dataset contains sales information such as number of products sold, city, price per unit, retailer, invoice date, and sales method...etc.

Microsoft Excel for preprocessing data, Power BI for data visualization, and RapidMiner for pattern discovery are the software that will be used.

The Dataset

The dataset has 9653 rows and 13 columns. This data contains 6 columns of categorical (nominal) type, 6 columns of numerical type, and 1 column of Date-Time type.

The columns are: 'Retailer', 'Retailer ID', 'Invoice Date', 'Region', 'State', City', 'Product', 'Price per Unit', 'Units Sold', 'Total Sales', 'Operating Profit', 'Operating Margin', 'Sales Method'.

To view the entire, excel sheet <u>click here</u>

Data exploration and description

Attribute	Type	Description
Retailer	Nominal	Retailer name
Retailer ID	Numerical	The unique number ID
		of each retailer
Invoice Date	Date-Time	Dates tamp of each
		instance
Region	Nominal	Retailer Region
State	Nominal	Retailer State
City	Nominal	Retailer City
Product	Nominal	Types of products
Price per Unit	Numerical	The price by each
		product
Units Sold	Numerical	The units sold of product
		by each retailer
Total Sales	Numerical	Total sales of each
		retailer
Operating Profit	Numerical	Operating profit by
		retailer
Operating Margin	Numerical	Operating margin by
		retailer
Sales Method	Nominal	The path that adidas take
		to reach its end
		customers in order to sell
		them the products

Preprocessing techniques

Data preprocessing is the process of transforming raw data into an understandable format and is *the process of gathering, combining, structuring, and organizing data so it can* be used in business intelligence (BI). The quality of the data should be checked before applying machine learning or data mining algorithms. In the preprocessing techniques we used RapidMiner.

1. discretization using rapid miner the first step after we downloaded our data we have did cleans for everything

2. We add the number of bins we want, and then we choose equal ranges (equal width)

discretization using rapid miner

3. We change the values of the bins will show as (ranges) they are unclear, from TRANSFORM

values have been successfully replaced.

Data preparation

• product

We observed that this attribute contains six values (men's athletics footwear, men's street footwear, men's apparel, women's athletics footwear, women's street footwear and women's apparel). This attribute does not have any missing values, and after checking, we were able to confirm that there are no Null or NA or blank values. Therefore, we determine that this attribute does not contain any missing values and does not require preprocessing.

• price per unit

We decided to present the price per unit attribute in order manner(ordinal), in order to make it easier and simpler for us. After checking, we were able to confirm that there are no Null or NA or blank values. Therefore, we determine that this attribute does not contain any missing values and does not require preprocessing.

sale method

This attribute consists of values of three categories (online, outlet and in-store). After checking, we were able to confirm that there are no Null or NA or blank values. Therefore, we determine that this attribute does not contain any missing values and does not require preprocessing.

• unit sold.

The attribute consists of a range from (0 to 1275). We decide to convert it from numeric type sections to 3 categorical (discretization), making it easier and simpler for us.

-After the discretization, the categories will be:

(low): 70.81%

(moderate): 17.96%

(high): 2.23%

We discretized based on equal depth.

total sales

the values are the amounts of total sales. The values are from 0 to 825,000, we decided to convert it from numerical to categorical, so we discretize the Price per unit attribute into 3 equal ranges: low sales, moderate, and high sales.

here after we change the data into an equal depth

operating profit

the values are the amounts of operating profit. The values are from 0 to 390,000. After checking, we were able to confirm that there are no Null or NA or blank values. Therefore, we determine that this attribute does not contain any missing values and does not require preprocessing.

operating margin

the values are the operating margin. The values are from 0.1 to 0.8. After checking, we were able to confirm that there are no Null or NA or blank values. Therefore we

determine that this attribute does not contain any missing values and does not require preprocessing.

invoice date

the values are dates. The values are from 1 January 2020 to 31 December 2021. After checking, we were able to confirm that there are no Null or NA or blank values. Therefore we determine that this attribute does not contain any missing values and does not require preprocessing.

Retailer

This attribute consists of values of sex categories (Foot locker - west gear - sports direct -kohl's-Amazon-Walmart). After checking through the sort and filter tools,

we were able to confirm that there are no Null or NA or blank values. Therefore, we determine that this attribute does not contain any missing values and does not require preprocessing.

State

Her in this attribute we have 8 cities (California- Texas- Florida- New York-Alabama - Arizona-Arkansas-Connecticut). After checking through the sort and filter tools, we were able to confirm that there are no Null or NA or blank values. Therefore we determine that this attribute does not contain any missing values and does not require preprocessing.

• City

Her in this attribute we have 8 cities (California- Texas- Florida- New York-Alabama -Arizona-Arkansas-Connecticut). After checking through the sort and filter tools, we were able to confirm that there are no Null or NA or blank values. Therefore, we determine that this attribute does not contain any missing values and does not require preprocessing.

Dataset after Preprocessing:

Price per U	Total Sales	Operating	lOperating	Units Sold	Product	Region	Retailer	Sales Me	thiState	cluster	id
7.0	low sales	737.0	0.5	low	Men's Stree	South	Sports Dire	Outlet	Alabama	cluster 0	8373.0
7.0	low sales	308.7	0.4	low	Women's S	tiWest	West Gear	Outlet	Utah	cluster 0	8610.0
7.0	low sales	357.4	0.5	low	Women's A	tWest	West Gear	Outlet	Utah	cluster_0	8611.0
7.0	low sales	261.5	0.4	low	Women's S	t:South	West Gear	Outlet	Oklahoma	cluster_0	9222.0
8.0	low sales	403.2	0.4	low	Women's S	tSouth	Walmart	Outlet	Arkansas	cluster_0	9150.0
9.0	low sales	1077.9	0.6	low	Men's Stree	South	Sports Dire	Online	Alabama	cluster_0	4989.0
9.0	low sales	409.5	0.5	low	Women's S	tiWest	West Gear	Online	Utah	cluster 0	5730.0
9.0	low sales	360.0	0.5	low	Women's S	tSouth	West Gear	Online	Oklahoma	cluster 0	6630.0
9.0	low sales	310.5	0.5	low	Women's S	tMidwest	Kohl's	Online	Kansas	cluster 0	6702.0
9.0	low sales	234.0	0.4	low	Women's S	t:Midwest	Foot Locke	Online	Iowa	cluster_0	6918.0
9.0	low sales	233.6	0.4	low	Women's S	tMidwest	West Gear	Online	Wisconsin	cluster_0	6990.0
9.0	low sales	158.7	0.4	low	Women's S	tMidwest	West Gear	Online	Wisconsin	cluster_0	6996.0
10.0	low sales	31500.0	0.4	moderate	Men's Stree	South	Sports Dire	Outlet	Alabama	cluster 0	1101.0
10.0	low sales	12250.0	0.4	low	Women's S	tiWest	West Gear	In-store	Utah	cluster 0	1842.0
10.0	low sales	13000.0	0.4	low	Women's A	tWest	West Gear	In-store	Utah	cluster 0	1843.0
10.0	low sales	14000.0	0.4	low	Women's S	tSouth	Walmart	Online	Arkansas	cluster 0	2670.0
10.0	low sales	11000.0	0.4	low	Women's S	t:South	West Gear	Online	Oklahoma	cluster_0	2742.0
10.0	low sales	8750.0	0.4	low	Women's S	tMidwest	Kohl's	Online	Kansas	cluster_0	2814.0
10.0	low sales	448.8	0.5	low	Women's A	tWest	West Gear	Online	Utah	cluster_0	5731.0
10.0	low sales	475.2	0.5	low	Women's S	South	Walmart	Online	Arkansas	cluster_0	6558.0
10.0	low sales	233.2	0.4	low	Women's S	Midwest	Foot Locke	Online	Iowa	cluster_0	6924.0
10.0	low sales	438.7	0.4	low	Women's S	tiWest	West Gear	Outlet	Utah	cluster 0	8580.0

Data Visualization

We've cleaned and formatted the data. Now we want to see the presentation of this data using Power BI to visualize the data and answer the questions we discussed in the introduction.

The chart shows top seller is west Gear followed by footlocker; and the lower retailer is Walmart, So Adidas need to work on sales through Walmart.

Product	First Total Sales
Men's Apparel	high sales
Men's Athletic Footwear	high sales
Men's Street Footwear	high sales
Women's Apparel	high sales
Women's Athletic Footwear	low sales
Women's Street Footwear	high sales
Total	high sales

After we divided total sales to the three ranges, The chart shows Woman's Athletic Footwear is the lower selling product, so Adidas need to improve or stop selling it.

The graph shows Adidas sells more through online and outlet than in-store.

The graph shows the sales in west is the highest than other and contributes highest to the total sales, therefore the Region can make impact on the total sales amount.

The graph shows the Operating Men's Street footwear earns the highest operating margin and the Online sale has higher operating margin.

Pattern Discovery

We build the model by using the feature (Auto model) in Rapid miner this feature split the dataset by the Cross-validation method.

- 1-Import the dataset
- 2-Choose the class label

3-Prepare the class label

4-Select inputs (attributes)

5-Choosing model

6-Implementing models

Performance Measurement

Because our confusion matrix became very large, we decide to divide it into three matrixes as shown below.

As it's shown the percentages of the accuracy, precision and recall are very high.

Conclusion

Finally, the project was an enriching journey rich in knowledge and pleasure that refined our skills and opened wide horizons for us.

This has improved our ability to work with datasets, understand them, analyze them, and extract insightful patterns from process known as data mining.

References and resources:

- https://www.kaggle.com
- Rapid Miner
- Microsoft Excel