Ve270 Introduction to Logic Design

Homework 1

Assigned:	September	13, 2018
	1	,

Due: September 20, 2018, 4:00pm.

The homework should be submitted in hard copies.

1.	Fill out the blank spaces, assuming unsigned numbers. Show steps to earn partial credits. (8
	points)
	1101101.101 2 =16
	78.39 ₁₀ =
2.	Fill out the blank spaces, assuming 2's complement numbers. (16 points)
	-33 ₁₀ =16
	$33_{10} = $
	$10110100101_2 = \phantom{00000000000000000000000000000000000$
	$F358_{16} = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
3.	Perform the following arithmetic operations step by step, assuming signed numbers: (12
	points)
	$(6FE58C + A3DD)_{16} =$
	$(11100 - 10001111)_2 =$
	$(532 - 265)_8 =$
4.	Problem 2.14 (Boolean equation = logic equation) (4 points)

- 2.14 Evaluate the Boolean equation F = a AND (b OR (c AND d)) for the given values of variables a, b, c, and d:
 - (a) a=1, b=1, c=0, d=1
 - (b) a=0, b=0, c=0, d=1
 - (c) a=1, b=0, c=0, d=0
 - (d) a=1, b=0, c=1, d=1
- 5. Problem 2.15 (10 points)
 - 2.15 Show the conduction paths and output value of the OR gate transistor circuit in Figure 2.12 when: (a) x = 1 and y = 0, (b) x = 1 and y = 1.

Figure 2.12 OR gate conduction paths: (a)when one input is 1, and (b) when both inputs are 0.

- 6. Problem 2.18 (c) (10 points)
 - 2.18 Convert each of the following equations directly to gate-level circuits:
 - (a) F = a'b' + b'c
 - (b) F = ab + bc + cd + de
 - (c) F = ((ab)' + (c)) + (d + ef)'
- 7. Problem 2.22 (10 points)
 - 2.22 Concisely describe the following situation using a Boolean equation. We want to fire a football coach (by setting F=1) if he is mean (represented by M=1). If he is not mean but has a losing season (represented by the Boolean variable L=1), we want to fire him anyway. Write an equation that translates the situation directly to a Boolean equation for F, without any simplification.
- 8. Problem 2.35 (c) (d) (10 points)
 - 2.35 Convert each of the following Boolean equations to a truth table:
 - (a) F(a,b,c) = a' + bc'
 - (b) F(a,b,c) = (ab)' + ac' + bc
 - (c) F(a,b,c) = ab + ac + ab'c' + c'
 - (d) F(a,b,c,d) = a'bc + d'
- 9. Build a truth table for the following circuit. (10 points)

10. Given a logic equation F = a'c + b'c' + ab, draw an output waveform for F based on the given input waveforms. (10 points)

