Tópicos de Matemática Discreta				
	— 2.º teste — 11 de janeiro de 2023 — duração: 11	145min ——		
Nome: _	Ni	Número		
	Grupo I			
(V) ou valores	upo é constituído por 6 questões. Em cada questão, deve dizer se a afirmação i falsa (F), assinalando o respetivo quadrado. Em cada questão, a cotação atribuío ou <i>0 valores</i> , consoante a resposta esteja certa, errada, ou não seja assinalada respo ão total neste grupo é no mínimo <i>0 valores</i> .	da será 1 v	alor, -0,25	
		V	F	
1.	Se $A=\{\{1\},\{\{1\}\},\mathbb{Z}\}$ e $B=\{1,\varnothing,\{1\}\}$, então $B\setminus A=\{\varnothing\}$.			
2.	Para qualquer natural n e qualquer conjunto A , $\mathcal{P}(A^n)=(\mathcal{P}(A))^n$.			
3.	Dado $A=\mathbb{Z}$, os conjuntos $\{x\in A: x+1\in A\}$ e $\{x+1: x\in A\}$ são iguais.			
4.	A família de conjuntos $\left\{[-r,r]:r\in\mathbb{R}^+ ight\}$ não é uma partição de \mathbb{R} .			
5.	Se (A,\leq) é um cpo e $X\subseteq A$ tem elemento máximo, então X tem um só elemento maximal.	nto 🗆		
6.	Se uma relação binária R , num conjunto não vazio A , é simétrica e distinta relação identidade, então garantidamente R não é antissimétrica.	da 🗆		
	Grupo II			

Este grupo é constituído por 4 questões. Responda, sem justificar, no espaço disponibilizado a seguir à questão.

1. Considere os conjuntos $A=\{a\in\mathbb{Z}:3a \text{ \'e divis\'ivel por }6\}$ e $B=\{b\in\mathbb{Z}:b-3\leq 5\}$. Indique $\mathbb{N} \cap (B \setminus A)$.

Resposta:

2. Considere os conjuntos $A=\{1,2,3,4\}$ e $B=\{2,3,4\}$ e considere a relação binária R de A em Bformada pelos pares (a,b) tais que a+b>4 e a relação binária $S=\{(3,1),(3,3),(4,2)\}$ de B em A. Indique $R \circ S^{-1}$.

Resposta:

3. Seja $A = \{1, 2, 3, 4\}$. Indique a menor relação binária R em A que contém os pares (1, 4), (3, 2) e (4, 3) e tal que R é antissimétrica e transitiva.

Resposta:

4. Considere o conjunto $A=\{a,b,c,d\}$. Indique a relação de equivalência R em A associada à partição $\Pi=\{\{a,d\},\{b,c\}\}$ de A.

Resposta:

Grupo III

Este grupo é constituído por 3 questões. Responda na folha de exame.

- 1. Mostre que, se A, B e C são conjuntos não vazios, então $(A \times C) \setminus (B \times C) = (A \setminus B) \times C$.
- 2. Seja R a relação de equivalência definida no conjunto $A=\{5,10,50,100,500,1000,1500\}$ por $x\,R\,y$ se e só se existe $n\in\mathbb{Z}$ tal que $y=x\times 10^n$.
 - (a) Mostre que a relação R é, efetivamente, reflexiva.
 - (b) Indique $a \in A$ tal que $[a]_R \cap [10]_R = \emptyset$. Justifique.
 - (c) Indique, justificando, o conjunto quociente A/R.
- 3. Considere o c.p.o. (A, \leq) com o seguinte diagrama de Hasse associado:

- (a) Indique os elementos minimais e os elementos maximais do subconjunto $X=\{2,3,5,8\}$ de A.
- (b) Indique o conjunto dos majorantes do subconjunto $Y=\{1,2,6\}$ de A.
- (c) O subconjunto $Z=\{1,4,5,6,8\}$ de A admite supremo? Justifique a sua resposta.
- (d) Verifique que o c.p.o. dado não é um reticulado.

Grupo I

$$B \setminus A = \{ x : x \in B \land x \notin A \}$$

$$=$$
 $\{1,\emptyset\}$

Note-si que 1¢A « Ø¢A , m>s {1} EA.

2. F

Temos que

$$A^2 = A \times A = \{(1,1)\},$$

plo que
$$\mathcal{P}(A^2) = \{\emptyset, \{(1,1)\}\}$$
.

Por outro loda,
$$(\mathcal{P}(A))^2 = \mathcal{P}(A) \times \mathcal{P}(A)$$

$$= \{\emptyset, \{i\}\} \times \{\emptyset, \{i\}\}$$

$$= \{ (\emptyset,\emptyset), (\emptyset,\{1\}),(\{1\},\emptyset), (\emptyset,\{1\},\emptyset) \}$$

3. V

Se xEZ, i claro que x+1 EZ. Logo,

$$\{x \in A : x + i \in A\} = \mathbb{Z}$$
.

Por outro lado,
$$\{x+1: x \in \mathbb{Z}\} = \mathbb{Z}$$

Portanto,
$${x \in A : x + 1 \in A} = {x + 1 : x \in A}$$

goondo A = ZL.

4.
$$V$$
 $f = \{ [-r, r] : n \in \mathbb{R}^+ \}$

Logo, os Alocos de familie {[-r, z]: LEIR+} mass son disjuntos e, portanto, Fraço e uma particus de IR.

5. V

Sijs m = mex(x). Entañ, $m \in X$ $x \neq x \in M$. Logo, m i um elemento meximal de x. Suponhamos que existe um (outro) elemento y que e meximal de x. Entañ, $y \in x \in Y$. Mas, Como m = mex(x), $y \leq m$, $y \leq y \in M$.

Consideremos, por exemplo, $A = \{1,2\}$ e $R = \{(1,1)\}$ Temos que id $_A = \{(1,1), (2,2)\}$. Logo, $R \neq simétrico$, antissimétrico e distinta de id $_A$.

Gropo II A = {a ∈ Z : 3a é divisive por 6} = {aEZ: 3a=6k pare algum KEZ} = {a ∈ Z: a = 2K pare algum K ∈ Z} = {a ∈ Z : a e fai} B= {b= 2 : b-3 < 5} = {beZ: b < 8} BIA = {beZ: b < 8} \ {atZ: a = pu} = {bEZ: b 68 e b mis é pon} = {b ∈ Z: b ≤ 8 2 b € imper} INN(BIA) = {b \in IN: b \le 8 \cdot b \in \infty} = {1,3,5,7} 2. $S^{-1} = \{(1,3), (3,3), (2,4)\}$ $R = \left\{ (1,4), (2,3), (2,4), (3,2), (3,3), (3,4), (4,2), (4,3), (4,4) \right\}$ (1, b) ER (=) 1+b>y (e) b>3 (2,b) ER => 2+b>4 @) b>2 (3,b) ER (=) 3+b>4 (=) b>1 $RoS^{-L} = \{(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,2),(3,3),(3,4)\}$ 3.

$$(1,4),(3,2),(4,3) \in R.$$

Sigo
$$R = \{(1,4), (3,2), (4,3), (1,3), (1,2), (4,2)\}$$

Temos que $R \cap R^{-1} = \emptyset$ ($R \circ R = \{(1,2), (1,3), (4,2)\}$
 $\subseteq R$

loso, Ri tramitiva e antissimétrice.

$$A/R = \{(a,a), (b,b), (c,c), (d,d), (a,d), (d,a), (b,c), (c,b)\}$$
 $\Rightarrow R = \{(a,a), (b,b), (c,c), (d,d), (a,d), (d,a), (b,c), (c,b)\}$

$$[a] = [d]_{R}$$

$$[b]_{R} = [c]_{R}$$

Gropo III

1. Sij $(x,y) \in (A \times C) \setminus (B \times C)$. Tumos que

1. $(x,y) \in A \times C \wedge (x,y) \notin B \times C$.

١, دي ()

(my) EAx(1 (my) & Bx(=> (n EA 1 y EC) 1 (n & Bv y & C) => (x EA ny E C n x &B) V (NEANYECNHEC) XEANYECANEB ⇒ x ∈ A \ B ∧ y ∈ C => (n,y) ((A)B)x (.

Portanti, (AxC)\(BxC) = (A\B)x (.

2.
(a) Sija a EA

ala =>]meZ: a=a×10m, o que e rendode: basta considerar M=0 a= ax 10°

Portante, aka, fore todo a EA, donde Ritarrikas. reflexiva.

(b) Sabemos que [a] R \ [10] R = \ ne e no ne allo, i.e. sse mot visite me Z tol jue $a = 10 \times 10^{M}$

Logo, all10 sse no existe nell tal que a=102+1

Baska isolher a que mos sejs umo potincis de 10. Considere- se

```
OBS :
          [5] = {5,50,500}
           [10] R = {10,100, 1000}
   A/R = { [a]R: a E A}
  [5] R = { b ∈ A : Fre & b = 5×10 m}
       = \{5, 50, 500\} = [50]_R = [500]_R
      5 = 5×10° (N=0)
      50 = 5×10 (n=1)
       500 = 5x102 (n=2)
  [10] R = { beA: Incil: b= 10×10n}
         = {beA: ]neZ: b=1041}
      = \{10, 100, 1000\} = [100]_{R} = [1000]_{R}
= [0 = 10 \times 10^{\circ}; 100 = 10 \times 10^{\circ}; 1000 = 10 \times 10^{\circ}]
   [1500]R = { beA: INETL: b= 1500 × 10m}
           = {1500}
            1500 = 1500×10°
A/R = { {10,100,1000}, {5,50,500}, {1500}}
```

3. $\times = \{2,3,5,8\}$

elementes minimais: 2,3,8 elementes maximais: 2,5,8

$$Y = \{1,2,6\}$$

Maj $(Y) = \{4,9\}$

$$Z = \{1,4,5,6,8\}$$

Maj $(Z) = \{4,9\}$

Logo, sup $(Z) = 4$

menos dos

majorantes
 $(4 \le 9)$

(d)
6//2

inf {2,6} pois Min ({2,6}) = Ø

logo, o c.p.o. (A,R) nas i' um reticulado.

(OBS: Num reticulado, pore quaisquer 2,y, existe

sup {11,y} a existe inf {11,y}.)