UNIVERSITY OF TWENTE.

Soft RTOS Design for Simulated Sensor Network Coordination

Muhammad Arief Kurniawan

April 2025

Contents

1	Introduction	1
	1.1 Objectives	1
	1.2 Problem Statement	1
	1.3 Purpose	1
2	Requirement Analysis	2
	2.1 System Components	2
	2.2 Task Classification	2
	2.3 Functional Requirements	3
	2.4 Non-Functional Requirements	3
	2.5 Initial Simulation Parameters	3
3	System Architecture	4
	3.1 Distributed Sensor Network	4
	3.2 RTOS Architecture	5
4	Timeline	6

Introduction

This document presents the project objectives and roadmap. This project combines several theoretical fundamentals that revolve around real-time operating systems. It consists of the application of scheduling theory, real-time system design, and distributed system simulation and implementation.

1.1 Objectives

The table below showcases the high-level objectives of the project.

No.	Objective	Description
1	Design and implement soft RTOS	Designing an RTOS in user space
2	Simulate a dynamic sensor network	Create "virtual" sensors that replicate a network of sensors with diverse task priorities and deadlines
3	System analysis	Perform analysis of system performance, timing constraints, and message latency
4	Load handling	Demonstrate how system performs under load

Table 1.1: Table of Project objectives

1.2 Problem Statement

Design and simulate a soft real-time operating system that manages a dynamic set of sensor nodes. Each sensor periodically generates and sends data to the central node. A **Real-Time Operating System (RTOS)** ensures tasks are scheduled and completed as close to deadlines.

1.3 Purpose

The purpose of this project is to design and simulate a soft real-time operating system tailored for managing distributed sensor networks under timing constraints. Such systems are deployed in applications like environmental monitoring and industrial automation where tasks must be completed within a certain time bounds. With simulating sensor nodes, real-time task scheduling, and inter-task communication, this project enables exploration of RTOS design principles and the trade-off between system responsiveness, resource allocation, and deadline adherence.

Requirement Analysis

This section presents the analysis of required system components and tasks. Additionally, it presents the analysis of functional and non-functional requirements.

2.1 System Components

No.	Component	Description
1	Sensor Nodes (simulated)	Virtual processes generating data peridocially
2	RTOS Kernel Simulator	Core layer managing task scheduling, queues, clocks, and logging
3	Scheduler	Handles task prioritisation and execution
4	Inter-Process Communication (IPC)	Message queues for parsing sensor data
5	Logger	Tracks execution statistics, deadlines, and timing behaviour
6	Visualisation Module	Graphically show Gantt charts or task timelines

Table 2.1: Table of System Components

2.2 Task Classification

No.	Туре	Characteristic	Example
1	Periodic	Fixed intervals	Sensor data read
2	Sporadic	Irregular, but with known minimum interval	Motion detection alert
3	Aperiodic	Unpredictable, triggered externally	Network diagnostic task

Table 2.2: Table of Task Classification

2.3 Functional Requirements

No.	Requirement	
1	Create and manage simulated sensor nodes with deadlines	
	Implement soft real-time scheduler supporting:	
2	- Round-robin (baseline)	
	- Optional: EDF or Rate Monotonic	
3	Handle task creation, execution, and inter-task communication	
4	4 Log metrics	
5	Support dynamic addition/removal of sensor nodes	

Table 2.3: Table of Functional Requirements

2.4 Non-Functional Requirements

No	Requirement	
1	Modular and extensible code structure using C++	
2	Runtime configurability of task frequencies and deadlines	
3	Deterministic task handling for reproducibility in experiment	
4	Lightweight simulation suitable for academic environments	

Table 2.4: Table of Non-Functional Requirements

2.5 Initial Simulation Parameters

No.	Parameter	Value
1	Number of sensors	3 (scalable)
2	Sensor period range	50ms to 100ms
3	Simulation duration	60 seconds (dynamic)
4	Soft deadline tolerance	10% margin

Table 2.5: Table of Simulation Parameters

System Architecture

This section showcases an overview of the distributed sensor network and the proposed system architecture.

3.1 Distributed Sensor Network

Figure 3.1: Distributed Sensor Network

3.2 RTOS Architecture

Figure 3.2: System Architecture Diagram

Timeline

Figure 4.1: Gantt Chart for Project Timeline