Syntax Analysis

- Introduction to parsing

Where We Are

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

Machine Code

Overview of Syntax Analysis

- Input: stream of tokens from the lexer
- Output: Abstract Syntax Tree (AST)

Source code: if (b==0) a = "Hi";

 Report errors if the tokens do not properly encode a structure

What Parsing Doesn't Do

 Doesn't check: type agreement, variable declaration, variables initialization, etc.

```
int x = true;
int y;
z = f(y);
```

Deferred until semantic analysis

Outline

- Today: Formalism for syntax analysis
 - Grammars
 - Derivation
 - Ambiguity

Specify Language Syntax

- First problem: how to describe language syntax?
 - Lexer: can describe tokens using ____?
 - Regular expressions: easy to implement, efficient (DFA)
 - Can we use regular expressions to specify programming language syntax?

To answer this...

 Consider: language of all strings that contain balanced parentheses

```
() (()) ()()(()(()()))
```

```
• (( )( ()) (()()
```

Construct a Finite Automaton for this...?

- Limits of regular language: DFA has only finite number of states; cannot perform unbounded counting
- Need a More Powerful Representation

Context Free Grammar (CFG)

• Example: A specification of the balanced-parenthesis language:

$$\bullet$$
 S \rightarrow (S)S

$$\circ$$
 $S \rightarrow \varepsilon$

The definition is recursive

 If a grammar accepts a string, there is a derivation of that string using the productions of the grammar

•
$$S => (S) \varepsilon => ((S) S) \varepsilon => ((\varepsilon) \varepsilon) \varepsilon => (())$$

CFG Terminology

- Terminals
 - Token or ε
- Non-terminals
 - variables
- Start symbol
 - Begins the derivation
- Productions
 - replacement rules: Specify how non-terminals may be expanded to form strings
 - LHS: single non-terminal, RHS: string of terminals (including E) or non-terminals

Another Example...

Arithmetic Expressions

- Suppose we want to describe all legal arithmetic expressions using addition, subtraction, multiplication, and division.
- Here is one possible CFG:

```
E \rightarrow int
E \rightarrow E Op E
E \rightarrow (E)
Op \rightarrow +
Op \rightarrow -
Op \rightarrow *
Op \rightarrow /
```

Non-terminal Symbols
Terminal Symbols
Production Rules
Start Symbols

A Notational Shorthand

```
\begin{array}{lll} E \rightarrow \text{int} \\ E \rightarrow E \ \text{Op} \ E & E \rightarrow \text{int} \ | \ E \ \text{Op} \ E \ | \ (E) \\ E \rightarrow (E) & \text{Op} \rightarrow + \ | \ - \ | \ * \ | \ / \\ \text{Op} \rightarrow + & \text{Op} \rightarrow - \\ \text{Op} \rightarrow * & \text{Op} \rightarrow / \end{array}
```

Vertical bar | is shorthand for multiple productions

CFGs for Programming Languages

```
BLOCK \rightarrow STMT
           { STMTS }
STMTS
           STMT STMTS
STMT \rightarrow EXPR;
          if (EXPR) BLOCK
          while (EXPR) BLOCK
           do BLOCK while (EXPR);
           BLOCK
EXPR
        → identifier
           constant
          EXPR + EXPR
           EXPR - EXPR
           EXPR * EXPR
```

Scanner vs. Parser

Language is a set of strings

 each string is a finite sequence of symbols taken from a finite alphabet

Scanning:

- the **strings** are ___?
 - source programs
- the **alphabet** is ___?
 - the ASCII
- Formal Language is ___?
 - Regular expression
- Machine to recognize the language?
 - Finite Automata

Parsing:

- The strings are__?
 - Sequence of token
- the **alphabet** is ____?
 - set of token-types returned by the lexical analyzer
- Formal Language is ___?
 - Context Free Gramma
- Machine to recognize the language?
 - Pushdown automata => parsing algorithms for approximation

Some CFG Notation

- Capital letters at the beginning of the alphabet will represent nonterminals.
 - i.e. **A**, **B**, **C**, **D**
- Lowercase letters at the end of the alphabet will represent terminals.
 - i.e. t, u, v, w
- Lowercase Greek letters will represent arbitrary strings of terminals and nonterminals.
 - i.e. α, γ, ω

Examples

We might write an arbitrary production as

$$\mathbf{A} \rightarrow \boldsymbol{\omega}$$

 We might write a string of a nonterminal followed by a terminal as

At

 We might write an arbitrary production containing a nonterminal followed by a terminal as

$$\mathbf{B} \rightarrow \alpha \mathbf{A} \mathbf{t} \boldsymbol{\omega}$$

Derivation

```
E

⇒ E Op E

⇒ E Op (E)

⇒ E Op (E Op E)

⇒ E * (E Op E)

⇒ int * (E Op E)

⇒ int * (int Op E)

⇒ int * (int Op int)

⇒ int * (int + int)
```

- This sequence of steps is called a derivation.
- A string $\alpha A \omega$ yields string $\alpha \gamma \omega$ iff $A \rightarrow \gamma$ is a production.
- If α yields β , we write $\alpha \Rightarrow \beta$.
- We say that α derives β iff there is a sequence of strings where

$$\alpha \Rightarrow \alpha_1 \Rightarrow \alpha_2 \Rightarrow \dots \Rightarrow \beta$$

- If α derives β , we write $\alpha \Rightarrow *\beta$.
- Terminals: no replacement rules for them
- Terminals: tokens from the lexer

• Which of the strings are in the language of the given CFG?

- abcba
- acca
- aba
- abcbcba

•
$$S \rightarrow aXa$$

• $X \rightarrow \epsilon \mid bY$
• $Y \rightarrow \epsilon \mid cXc$

Leftmost Derivations

Productions

Leftmost Derivations

- A leftmost derivation is a derivation in which each step expands the leftmost nonterminal.
- A **rightmost derivation** is a derivation in which each step expands the rightmost nonterminal.

$$\mathbf{E} \rightarrow \mathbf{int} \mid \mathbf{E} \mid \mathbf{Op} \mid \mathbf{E} \mid \mathbf{E}$$

Related Derivations

Derivations Revisited

- A derivation encodes two pieces of information:
 - What productions were applied produce the resulting string from the start symbol?
 - In what order were they applied?
- Multiple derivations might use the same productions, but apply them in a different order.

Derivation: also a process of constructing a parse tree

$$\mathbf{E} \rightarrow \mathbf{int} \mid \mathbf{E} \mid \mathbf{Op} \mid \mathbf{E} \mid \mathbf$$

 \mathbf{E}

$$\mathbf{E} \rightarrow \mathbf{int} \mid \mathbf{E} \mid \mathbf{Op} \mid \mathbf{E} \mid \mathbf$$

 \mathbf{E}

$$\mathbf{E} \rightarrow \mathbf{int} \mid \mathbf{E} \mid \mathbf{Op} \mid \mathbf{E} \mid \mathbf$$

$$\mathbf{E}$$

$$\Rightarrow \mathbf{E} \mathbf{Op} \mathbf{E}$$

$$\mathbf{E} \rightarrow \mathbf{int} \mid \mathbf{E} \mid \mathbf{Op} \mid \mathbf{E} \mid \mathbf{E}$$


```
E

⇒ E Op E

⇒ int Op E

⇒ int * E

⇒ int * (E)
```



```
E

⇒ E Op E

⇒ int Op E

⇒ int * E

⇒ int * (E)

⇒ int * (E Op E)
```



```
\mathbf{E} \rightarrow \mathbf{int} \mid \mathbf{E} \mid \mathbf{Op} \mid \mathbf{E} \mid \mathbf{E} \mid \mathbf{E} \mid \mathbf{Op} \mid \mathbf{E} \mid
```

```
E

⇒ E Op E

⇒ int Op E

⇒ int * E

⇒ int * (E)

⇒ int * (E Op E)
```



```
\mathbf{E} \rightarrow \mathbf{int} \mid \mathbf{E} \mid \mathbf{Op} \mid \mathbf{E} \mid \mathbf
```

```
E

⇒ E Op E

⇒ int Op E

⇒ int * E

⇒ int * (E)

⇒ int * (E Op E)

⇒ int * (int Op E)
```



```
\mathbf{E} \rightarrow \mathbf{int} \mid \mathbf{E} \mid \mathbf{Op} \mid \mathbf{E} \mid \mathbf{E} \mid \mathbf{E} \mid \mathbf{Op} \mid \mathbf{E} \mid
```

```
E

⇒ E Op E

⇒ int Op E

⇒ int * E

⇒ int * (E)

⇒ int * (E Op E)

⇒ int * (int Op E)
```



```
\mathbf{E} \rightarrow \mathbf{int} \mid \mathbf{E} \mid \mathbf{Op} \mid \mathbf{E} \mid \mathbf{E} \mid \mathbf{E} \mid \mathbf{Op} \mid \mathbf{E} \mid
```

```
E

⇒ E Op E

⇒ int Op E

⇒ int * E

⇒ int * (E)

⇒ int * (E Op E)

⇒ int * (int Op E)

⇒ int * (int + E)
```



```
\mathbf{E} \rightarrow \mathbf{int} \mid \mathbf{E} \mid \mathbf{Op} \mid \mathbf{E} \mid \mathbf{E} \mid \mathbf{E} \mid \mathbf{Op} \mid \mathbf{E} \mid
```

```
E

⇒ E Op E

⇒ int Op E

⇒ int * E

⇒ int * (E)

⇒ int * (E Op E)

⇒ int * (int Op E)

⇒ int * (int + E)
```



```
E

⇒ E Op E

⇒ int Op E

⇒ int * E

⇒ int * (E)

⇒ int * (E Op E)

⇒ int * (int Op E)

⇒ int * (int + E)

⇒ int * (int + E)
```


 $\mathbf{E} \rightarrow \mathbf{int} \mid \mathbf{E} \mid \mathbf{Op} \mid \mathbf{E} \mid \mathbf{E} \mid \mathbf{E} \mid \mathbf{Op} \mid \mathbf{E} \mid$

Start symbol is the root Non-leaf nodes are non-terminals

Leaf nodes are terminals Inorder walk of the leaves is the generated string

$$\mathbf{E} \rightarrow \mathbf{int} \mid \mathbf{E} \mid \mathbf{Op} \mid \mathbf{E} \mid \mathbf{E} \mid \mathbf{E} \mid \mathbf{Op} \mid \mathbf{E} \mid$$

 \mathbf{E}

$$\mathbf{E} \rightarrow \mathbf{int} \mid \mathbf{E} \mid \mathbf{Op} \mid \mathbf{E} \mid \mathbf$$

 \mathbf{E}

$$\mathbf{E} \rightarrow \mathbf{int} \mid \mathbf{E} \mid \mathbf{Op} \mid \mathbf{E} \mid \mathbf$$

$$\mathbf{E}$$

$$\Rightarrow \mathbf{E} \mathbf{Op} \mathbf{E}$$


```
E

⇒ E Op E

⇒ E Op (E)

⇒ E Op (E Op E)

⇒ E Op (E Op int)
```



```
E

⇒ E Op E

⇒ E Op (E)

⇒ E Op (E Op E)

⇒ E Op (E Op int)

⇒ E Op (E + int)
```



```
E

⇒ E Op E

⇒ E Op (E)

⇒ E Op (E Op E)

⇒ E Op (E Op int)

⇒ E Op (E + int)

⇒ E Op (int + int)
```


$$\mathbf{E} \rightarrow \mathbf{int} \mid \mathbf{E} \mid \mathbf{Op} \mid \mathbf{E} \mid \mathbf{E} \mid \mathbf{E} \mid \mathbf{Op} \mid \mathbf{E} \mid$$

```
E

⇒ E Op E

⇒ E Op (E)

⇒ E Op (E Op E)

⇒ E Op (E Op int)

⇒ E Op (E + int)

⇒ E Op (int + int)
```



```
E

⇒ E Op E

⇒ E Op (E)

⇒ E Op (E Op E)

⇒ E Op (E Op int)

⇒ E Op (E + int)

⇒ E Op (int + int)

⇒ E * (int + int)
```



```
E

⇒ E Op E

⇒ E Op (E)

⇒ E Op (E Op E)

⇒ E Op (E Op int)

⇒ E Op (E + int)

⇒ E Op (int + int)

⇒ E * (int + int)
```



```
E

⇒ E Op E

⇒ E Op (E)

⇒ E Op (E Op E)

⇒ E Op (E Op int)

⇒ E Op (E + int)

⇒ E Op (int + int)

⇒ E * (int + int)

⇒ int * (int + int)
```



```
E

⇒ E Op E

⇒ E Op (E)

⇒ E Op (E Op E)

⇒ E Op (E Op int)

⇒ E Op (E + int)

⇒ E Op (int + int)

⇒ E * (int + int)

⇒ int * (int + int)
```


For Comparison

Left-most derivation and right-most derivation generate the same parse tree!

But the order of the construction is different

- A **parse tree** is a tree encoding the steps in a derivation.
- Internal nodes represent nonterminal symbols used in the production.
- Inorder walk of the leaves contains the generated string.
- Encodes what productions are used, not the order in which those productions are applied.

The Goal of Parsing

- Goal of syntax analysis: Recover the **structure** described by a series of tokens.
- If language is described as a CFG, goal is to recover a parse tree for the the input string.
 - Usually we do some simplifications on the tree; more on that later.
- We will discuss how to do this more next class ...

Challenges in Parsing

A Serious Problem

Ambiguity

- A CFG is said to be **ambiguous** if there is at least one string with two or more parse trees.
- Note that ambiguity is a property of *grammars*, not *languages*.

$$\mathbf{E} \rightarrow \mathbf{int} \mid \mathbf{E} + \mathbf{E}$$

$$\mathbf{E} \rightarrow \mathbf{int} \mid \mathbf{E} + \mathbf{E}$$

$$E \rightarrow int \mid E + E \mid E - E$$

Different Parse Trees

$$S \rightarrow S + S \mid S * S \mid \text{number}$$

- Consider expression 1 + 2 * 3
- Derivation 1: $S \rightarrow S + S \rightarrow 1 + S \rightarrow 1 + S * S \rightarrow 1 + 2 * S \rightarrow 1 + 2$ * 3
- Derivation 2: $S \rightarrow S * S \rightarrow S * 3 \rightarrow S + S * 3 \rightarrow S + 2 * 3 \rightarrow 1 + 2 * 3$

Eliminating Ambiguity

• Often can eliminate ambiguity by adding non-terminals & allowing recursion only on right or left

•
$$S \rightarrow S + T \mid T$$

- $T \rightarrow T$ * num | num
- • T non-terminal enforces precedence
- Left-recursion : left-associativity

If-Then-Else

- How do we write a grammar for if statements?
- $S \rightarrow if(E) S$
- $S \rightarrow \text{if } (E) S \text{ else } S$
- $S \rightarrow X = E$
- Is this grammar OK?

No! Ambiguous

- if (*E*1) if (*E*2) *S*1 else *S*2
- $S \rightarrow if(E) S$
- \rightarrow if (E) if (E) S else S
- $S \rightarrow \text{if } (E) S \text{ else } S$
- \rightarrow if (E) if (E) S else S

 $S \rightarrow \text{if } (E) S$ $S \rightarrow \text{if } (E) S \text{ else } S$ $S \rightarrow \text{other}$

• Which "if" is the "else" attached to?

Grammar for closest-if rule

- Want to rule out: if (E) if (E) S else S
- Problem: unmatched "if" may not occur as the "then" (consequent) clause of a containing "if"

```
statement →matched | unmatched

matched →if (E) matched else matched | other

unmatched →if (E) statement |

if (E) matched else unmatched
```

Another example:

Context-Free Grammars

- A regular expression can be
 - Any letter
 - 3 •
 - The concatenation of regular expressions.
 - The union of regular expressions.
 - The Kleene closure of a regular expression.
 - A parenthesized regular expression.

Context-Free Grammars

• This gives us the following CFG:

$$egin{array}{lll} \mathbf{R}
ightarrow \mathbf{a} & \mathbf{b} & \mathbf{c} & \dots \\ \mathbf{R}
ightarrow "\epsilon" \\ \mathbf{R}
ightarrow \mathbf{R} \mathbf{R} \\ \mathbf{R}
ightarrow \mathbf{R} " \mid " \mathbf{R} \\ \mathbf{R}
ightarrow \mathbf{R}
ightarr$$

An Ambiguous Grammar

$$egin{array}{ll} \mathbf{R}
ightarrow \mathbf{a} & \mathbf{b} & \mathbf{c} & \mathbf{c} \\ \mathbf{R}
ightarrow "\epsilon" \\ \mathbf{R}
ightarrow \mathbf{R} \mathbf{R} \\ \mathbf{R}
ightarrow \mathbf{R} " \mid " \mathbf{R} \\ \mathbf{R}
ightarrow \mathbf{R} \star \\ \mathbf{R}
ightarrow (\mathbf{R}) \end{array}$$

Resolving Ambiguity

 We can try to resolve the ambiguity via layering:

R

$$\mathbf{R} \rightarrow \mathbf{S} \mid \mathbf{R} \parallel \parallel \parallel \mathbf{S}$$
 $\mathbf{S} \rightarrow \mathbf{T} \mid \mathbf{S}\mathbf{T}$
 $\mathbf{T} \rightarrow \mathbf{U} \mid \mathbf{T}^*$
 $\mathbf{U} \rightarrow \mathbf{a} \mid \mathbf{b} \mid \mathbf{c} \mid \dots$
 $\mathbf{U} \rightarrow \parallel \mathbf{e} \parallel$
 $\mathbf{U} \rightarrow \parallel \mathbf{e} \parallel$
 $\mathbf{U} \rightarrow \parallel \mathbf{e} \parallel$

	-			.1.
a	b	С	a	*

$$\mathbf{R} \rightarrow \mathbf{S} \mid \mathbf{R} \parallel \parallel \parallel \mathbf{S}$$
 $\mathbf{S} \rightarrow \mathbf{T} \mid \mathbf{S}\mathbf{T}$
 $\mathbf{T} \rightarrow \mathbf{U} \mid \mathbf{T}^*$
 $\mathbf{U} \rightarrow \mathbf{a} \mid \mathbf{b} \mid \mathbf{c} \mid \dots$
 $\mathbf{U} \rightarrow \parallel \mathbf{\epsilon} \parallel$
 $\mathbf{U} \rightarrow \parallel \mathbf{\epsilon} \parallel$
 $\mathbf{U} \rightarrow \parallel \mathbf{\epsilon} \parallel$

$$\mathbf{R} \rightarrow \mathbf{S} \mid \mathbf{R} \parallel \parallel \parallel \mathbf{S}$$
 $\mathbf{S} \rightarrow \mathbf{T} \mid \mathbf{S}\mathbf{T}$
 $\mathbf{T} \rightarrow \mathbf{U} \mid \mathbf{T}^*$
 $\mathbf{U} \rightarrow \mathbf{a} \mid \mathbf{b} \mid \mathbf{c} \mid \dots$
 $\mathbf{U} \rightarrow \parallel \mathbf{\epsilon} \parallel$
 $\mathbf{U} \rightarrow \parallel \mathbf{\epsilon} \parallel$
 $\mathbf{U} \rightarrow \parallel \mathbf{\epsilon} \parallel$

$$\mathbf{R} \rightarrow \mathbf{S} \mid \mathbf{R} \parallel \parallel \parallel \mathbf{S}$$
 $\mathbf{S} \rightarrow \mathbf{T} \mid \mathbf{S}\mathbf{T}$
 $\mathbf{T} \rightarrow \mathbf{U} \mid \mathbf{T}^*$
 $\mathbf{U} \rightarrow \mathbf{a} \mid \mathbf{b} \mid \mathbf{c} \mid \dots$
 $\mathbf{U} \rightarrow \parallel \mathbf{\epsilon} \parallel$
 $\mathbf{U} \rightarrow \parallel \mathbf{\epsilon} \parallel$
 $\mathbf{U} \rightarrow \parallel \mathbf{\epsilon} \parallel$

$$\mathbf{R} \rightarrow \mathbf{S} \mid \mathbf{R} \parallel \parallel \parallel \mathbf{S}$$
 $\mathbf{S} \rightarrow \mathbf{T} \mid \mathbf{S}\mathbf{T}$
 $\mathbf{T} \rightarrow \mathbf{U} \mid \mathbf{T}^*$
 $\mathbf{U} \rightarrow \mathbf{a} \mid \mathbf{b} \mid \mathbf{c} \mid \dots$
 $\mathbf{U} \rightarrow \parallel \mathbf{e} \parallel$
 $\mathbf{U} \rightarrow \parallel \mathbf{e} \parallel$
 $\mathbf{U} \rightarrow \parallel \mathbf{e} \parallel$

$$\mathbf{R} \rightarrow \mathbf{S} \mid \mathbf{R} \parallel \parallel \parallel \mathbf{S}$$
 $\mathbf{S} \rightarrow \mathbf{T} \mid \mathbf{S}\mathbf{T}$
 $\mathbf{T} \rightarrow \mathbf{U} \mid \mathbf{T}^*$
 $\mathbf{U} \rightarrow \mathbf{a} \mid \mathbf{b} \mid \mathbf{c} \mid \dots$
 $\mathbf{U} \rightarrow \parallel \mathbf{\epsilon} \parallel$
 $\mathbf{U} \rightarrow \parallel \mathbf{\epsilon} \parallel$
 $\mathbf{U} \rightarrow \parallel \mathbf{\epsilon} \parallel$

$$\mathbf{R} \rightarrow \mathbf{S} \mid \mathbf{R} \parallel \parallel \parallel \mathbf{S}$$
 $\mathbf{S} \rightarrow \mathbf{T} \mid \mathbf{S}\mathbf{T}$
 $\mathbf{T} \rightarrow \mathbf{U} \mid \mathbf{T}^*$
 $\mathbf{U} \rightarrow \mathbf{a} \mid \mathbf{b} \mid \mathbf{c} \mid \dots$
 $\mathbf{U} \rightarrow \parallel \mathbf{\epsilon} \parallel$
 $\mathbf{U} \rightarrow \parallel \mathbf{\epsilon} \parallel$
 $\mathbf{U} \rightarrow \parallel \mathbf{\epsilon} \parallel$

$$\mathbf{R} \rightarrow \mathbf{S} \mid \mathbf{R} \parallel \parallel \parallel \mathbf{S}$$
 $\mathbf{S} \rightarrow \mathbf{T} \mid \mathbf{S}\mathbf{T}$
 $\mathbf{T} \rightarrow \mathbf{U} \mid \mathbf{T}^*$
 $\mathbf{U} \rightarrow \mathbf{a} \mid \mathbf{b} \mid \mathbf{c} \mid \dots$
 $\mathbf{U} \rightarrow \parallel \mathbf{\epsilon} \parallel$
 $\mathbf{U} \rightarrow \parallel \mathbf{\epsilon} \parallel$
 $\mathbf{U} \rightarrow \parallel \mathbf{\epsilon} \parallel$

$$\mathbf{R} \rightarrow \mathbf{S} \mid \mathbf{R} \parallel \parallel \parallel \mathbf{S}$$
 $\mathbf{S} \rightarrow \mathbf{T} \mid \mathbf{S}\mathbf{T}$
 $\mathbf{T} \rightarrow \mathbf{U} \mid \mathbf{T}^*$
 $\mathbf{U} \rightarrow \mathbf{a} \mid \mathbf{b} \mid \mathbf{c} \mid \dots$
 $\mathbf{U} \rightarrow \parallel \mathbf{\epsilon} \parallel$
 $\mathbf{U} \rightarrow \parallel \mathbf{\epsilon} \parallel$
 $\mathbf{U} \rightarrow \parallel \mathbf{\epsilon} \parallel$

$$\mathbf{R} \rightarrow \mathbf{S} \mid \mathbf{R} \parallel \parallel \parallel \mathbf{S}$$
 $\mathbf{S} \rightarrow \mathbf{T} \mid \mathbf{S}\mathbf{T}$
 $\mathbf{T} \rightarrow \mathbf{U} \mid \mathbf{T}^*$
 $\mathbf{U} \rightarrow \mathbf{a} \mid \mathbf{b} \mid \mathbf{c} \mid \dots$
 $\mathbf{U} \rightarrow \parallel \mathbf{\epsilon} \parallel$
 $\mathbf{U} \rightarrow \parallel \mathbf{\epsilon} \parallel$
 $\mathbf{U} \rightarrow \parallel \mathbf{\epsilon} \parallel$

$$\mathbf{R} \rightarrow \mathbf{S} \mid \mathbf{R} \parallel \parallel \parallel \mathbf{S}$$
 $\mathbf{S} \rightarrow \mathbf{T} \mid \mathbf{S}\mathbf{T}$
 $\mathbf{T} \rightarrow \mathbf{U} \mid \mathbf{T}^*$
 $\mathbf{U} \rightarrow \mathbf{a} \mid \mathbf{b} \mid \mathbf{c} \mid \dots$
 $\mathbf{U} \rightarrow \parallel \mathbf{\epsilon} \parallel$
 $\mathbf{U} \rightarrow \parallel \mathbf{\epsilon} \parallel$
 $\mathbf{U} \rightarrow \parallel \mathbf{\epsilon} \parallel$

$$\mathbf{R} \rightarrow \mathbf{S} \mid \mathbf{R} \parallel \parallel \parallel \mathbf{S}$$
 $\mathbf{S} \rightarrow \mathbf{T} \mid \mathbf{S}\mathbf{T}$
 $\mathbf{T} \rightarrow \mathbf{U} \mid \mathbf{T}^*$
 $\mathbf{U} \rightarrow \mathbf{a} \mid \mathbf{b} \mid \mathbf{c} \mid \dots$
 $\mathbf{U} \rightarrow \parallel \mathbf{\epsilon} \parallel$
 $\mathbf{U} \rightarrow \parallel \mathbf{\epsilon} \parallel$
 $\mathbf{U} \rightarrow \parallel \mathbf{\epsilon} \parallel$

$$R \rightarrow S \mid R "\mid " S$$

$$S \rightarrow T \mid ST$$

$$T \rightarrow U \mid T^*$$

$$U \rightarrow a \mid b \mid c \mid ...$$

$$U \rightarrow "\epsilon"$$

$$U \rightarrow (R)$$

$$\mathbf{R} \rightarrow \mathbf{S} \mid \mathbf{R} \parallel \parallel \parallel \mathbf{S}$$
 $\mathbf{S} \rightarrow \mathbf{T} \mid \mathbf{S}\mathbf{T}$
 $\mathbf{T} \rightarrow \mathbf{U} \mid \mathbf{T}^*$
 $\mathbf{U} \rightarrow \mathbf{a} \mid \mathbf{b} \mid \mathbf{c} \mid \dots$
 $\mathbf{U} \rightarrow \parallel \mathbf{\epsilon} \parallel$
 $\mathbf{U} \rightarrow \parallel \mathbf{\epsilon} \parallel$
 $\mathbf{U} \rightarrow \parallel \mathbf{\epsilon} \parallel$

$$\mathbf{R} \rightarrow \mathbf{S} \mid \mathbf{R} \parallel \parallel \parallel \mathbf{S}$$
 $\mathbf{S} \rightarrow \mathbf{T} \mid \mathbf{S}\mathbf{T}$
 $\mathbf{T} \rightarrow \mathbf{U} \mid \mathbf{T}^*$
 $\mathbf{U} \rightarrow \mathbf{a} \mid \mathbf{b} \mid \mathbf{c} \mid \dots$
 $\mathbf{U} \rightarrow \parallel \mathbf{\epsilon} \parallel$
 $\mathbf{U} \rightarrow \parallel \mathbf{\epsilon} \parallel$
 $\mathbf{U} \rightarrow \parallel \mathbf{\epsilon} \parallel$

$$\mathbf{R} \rightarrow \mathbf{S} \mid \mathbf{R} \parallel \parallel \parallel \mathbf{S}$$
 $\mathbf{S} \rightarrow \mathbf{T} \mid \mathbf{S}\mathbf{T}$
 $\mathbf{T} \rightarrow \mathbf{U} \mid \mathbf{T}^*$
 $\mathbf{U} \rightarrow \mathbf{a} \mid \mathbf{b} \mid \mathbf{c} \mid \dots$
 $\mathbf{U} \rightarrow \parallel \mathbf{\epsilon} \parallel$
 $\mathbf{U} \rightarrow \parallel \mathbf{\epsilon} \parallel$
 $\mathbf{U} \rightarrow \parallel \mathbf{\epsilon} \parallel$

Precedence Declarations

- If we leave the world of pure CFGs, we can often resolve ambiguities through **precedence declarations**.
 - e.g. multiplication has higher precedence than addition, but lower precedence than exponentiation.
- Allows for unambiguous parsing of ambiguous grammars.
- We'll see how this is implemented later on.

Abstract Syntax Trees (ASTs)

- A parse tree is a concrete syntax tree; it shows exactly how the text was derived.
- A more useful structure is an **abstract syntax tree**, which retains only the essential structure of the input.

Parse Tree vs. AST

 Parse Tree, aka concrete syntax

Abstract Syntax Tree

Discards/abstracts unneeded information

The Structure of a Parse Tree

$$R \rightarrow S \mid R "\mid " S$$
 $S \rightarrow T \mid ST$
 $T \rightarrow U \mid T^*$
 $U \rightarrow a \mid b \mid ...$
 $U \rightarrow "\epsilon"$
 $U \rightarrow (R)$

The Structure of a Parse Tree

The Structure of a Parse Tree

$$R \rightarrow S \mid R "\mid " S$$
 $S \rightarrow T \mid ST$
 $T \rightarrow U \mid T^*$
 $U \rightarrow a \mid b \mid ...$
 $U \rightarrow "\epsilon"$
 $U \rightarrow (R)$

Summary

- Syntax analysis (**parsing**) extracts the structure from the tokens produced by the scanner.
- Languages are usually specified by context-free grammars (CFGs).
- A parse tree shows how a string can be derived from a grammar.
- A grammar is **ambiguous** if it can derive the same string multiple ways.
- There is no algorithm for eliminating ambiguity; it must be done by hand.
- **Abstract syntax trees** (**AST**s) contain an abstract representation of a program's syntax.
- **Semantic actions** associated with productions can be used to build ASTs.