- 1. (CO 3) Consider the basis $b_1 = [\frac{1}{3}, \frac{3}{2}]^T$ and $b_2 = [\frac{2}{3}, \frac{1}{3}]^T$ of \mathbb{R}^2 . Suppose a vector has coordinates $[2, 1]^T$ with respect to the basis b_1, b_2 , what are its coordinates with respect to the standard basis of \mathbb{R}^2 ? Soln: Solve for x, y such that $2b_1 + 1b_2 = xe_1 + ye_2$.
- 3
- 2. (CO 2) Let A be an $n \times n$ matrix. Let \vec{x} and \vec{y} be Eigen vectors of A with Eigen values a and b respectively, $a \neq b$. Show that \vec{x} and \vec{y} are linearly independent.
- 3

Soln: From the definition Eigen vectors, x, y are non-zero vectors. Given Ax = ax and Ay = by. Suppose $\alpha x + \beta y = 0$, where α , β are non-zero scalars. then $A(\alpha x + \beta y) = 0$ as well. This gives another equation $a\alpha x + b\beta y = 0$. Multiplying $\alpha x + \beta y = 0$ with α , we get $\alpha x + \alpha x +$

3. (CO 2) Let A be an $n \times n$ symmetric matrix. Let \vec{x} and \vec{y} be Eigen vectors of A with Eigen values a and b respectively, $a \neq b$. Show that \vec{x} and \vec{y} are orthogonal (with respect to the standard inner product).

Soln: By symmetry, the two inner products (Ax, y) (x, Ay). are equal, where () is the standard inner product. Note that a symmetric matrix has real Eigen vectors and values. Hence, we have: a(x, y) = (ax, y) = (Ax, y) = (x, Ay) = (x, by) = b(x, y), or (a - b)(x, y) = 0. Since $a \neq b$, (x, y) = 0.

 $a(x,y) = (ax,y) = (Ax,y) = (x,Ay) = (x,by) = b(x,y), \text{ or } (a-b)(x,y) = 0. \text{ Since } a \neq b, (x,y) = 0.$

4. (CO 2) In \mathbb{R}^3 , consider the vector $v = [3,2,1]^T$. Find a vector u plane x + y + z = 0 such that v - u is perpendicular to the plane.

Soln: This was solved in the class.

5. Let *B* be an orthogonal real matrix. Show that $det(B) = \pm 1$.

Soln: By definition (Bx, By) = (x, y) for all vectors x, y. That is, $x^T B^T By = x^T y$, or $B^T B = I$, where I is the identity matrix. Consequently, $det(B^T B) = det(B^T) det(B) = det(I) = 1$. Noting that $det(B^T) = det(B)$, we get $det(B)^2 = 1$. That is, $det(B) = \pm 1$.

- 6. (CO 3) Let *A* be the matrix $\begin{bmatrix} 3 & 1 \\ 1 & 1 \end{bmatrix}$ Suppose we attempt to define an inner product on \mathbf{R}^2 by $(\vec{x}, \vec{y}) = \vec{x}^T A \vec{y}$.
 - 1. Show that the inner product satisfies $(\vec{x}, \vec{x}) > 0$ for every $\vec{x} \neq 0$.
 - 2. Starting with the standard basis e_1 , e_2 , use Gram Schmidt process to find an orthonormal basis for \mathbb{R}^2 with respect to the inner product.

Soln:

- 1. For the first part, linearity and symmetry follows from the fact that A is a symmetric matrix. To show positivity, $(x,y)A(x,y)^T = [3x+y,x+y][x,y]^T = 3x^2 + 2xy + y^2 = 2x^2 + (x+y)^2 \ge 0$.
- 2. Note that $e_1 = [1,0]^T$ and $e_2 = [0,1]^T$ are not orthogonal with respect to this inner product as $[1,0]A[0,1]^T \neq 0$. We can normalize e_1 and find $b_1 = \frac{e_1}{||e_1||}$, where $||e_1|| = e_1Ae_1^T$. Now, let $\tilde{b}_2 = e_2 e_2^T Ab_1$. Note that \tilde{b}_2 will be orthogonal to b_1 . Now normalize the length of \tilde{b}_2 to get b_2 .