Boris Andrews CV

G | □ | □ | □ | □ | wboris.andrews@maths.ox.ac.uk borisandrews.github.io

EDUCATION

2021 – 2025 **University of Oxford**, *PhD* (*DPhil*) in Mathematics (*Numerical Analysis*)

- (predicted) Thesis: Structure-preserving finite element methods via auxiliary variables: conservative and accurately dissipative integrators, and energy estimates for inhomogeneous boundary-value problems
 - Supervisors: Patrick Farrell, Wayne Arter
- 2017 2021 **University of Oxford**, *Integrated Masters in Mathematics (MMath)*, First (Distinction)
 - Thesis: Computation and approximation properties of near orthogonal matrices for tall random matrices
 - O Supervisor: Yuji Nakatsukasa

RESEARCH INTERESTS

Structure-preserving numerical methods for PDEs/ODEs, Conservation and dissipation structures/Global & local energy estimates

Finite element theory, Finite element exterior calculus (FEEC)/Domain decomposition/Parallel in time

Plasma modelling, Magnetohydrodynamics (MHD)/Hybrid fluid-particle models Turbulent systems, Stabilisation/Preconditioning

PUBLICATIONS & PREPRINTS

Preprints High-order conservative and accurately dissipative numerical integrators via auxiliary variables, with Patrick Farrell, 16 July 2024

Submitted to Foundations of Computational Mathematics

(Draft on request)

Upcoming High-order structure-preserving discretisation for ideal MHD arising in the Parker problem, with Mingdong He, Kaibo Hu, Patrick Farrell

> Structure-preserving finite-element methods for inhomogeneous boundary-value problems via auxiliary variables

High-order conservative-dissipative integrators for reversible-irreversible systems

An augmented Lagrangian preconditioner for natural convection at high Reynolds number, with Alexei Gazca, Patrick Farrell, Benjamin Castellaz

High-order fully conservative integrators for integrable ODE systems

High-order asymptotic-preserving integrators for charged particles in arbitrary magnetic fields

Upcoming

Conservative integrators exhibit greater stability than symplectic integrators on the Toda lattice, with Sebastian Ohlig, Patrick Farrell

PRIZES, AWARDS AND SCHOLARSHIPS

2021 – 2025 **DPhil studentship**, Engineering and Physical Sciences Research Council (EPSRC)

DPhil studentship, United Kingdom Atomic Energy Authority (UKAEA)

2017 – 2021 Foundation scholarship, Worcester College, University of Oxford

Collection prizes, Worcester College, University of Oxford

SEMINAR, WORKSHOP AND CONFERENCE PRESENTATIONS (*scheduled/provisional)

- 2025 EMS school on Mathematical Modelling, Numerical Analysis and Scientific Computing* (Kácov, Czechia) | Invited talk* (Brown University) | Firedrake User Meeting USA* (Fort Worth, Texas) | Numerical Mathematics & Scientific Computing seminar* (Rice University)
- 2024 External seminar (Rice University) | Computing Division technical meeting (UKAEA) | Firedrake User Meeting (University of Oxford) | PDEsoft (University of Cambridge) | European Finite Element Fair (University College London) | Exploiting Algebraic and Geometric Structure in Time-integration Methods workshop (University of Pisa) | UKAEA PhD student engagement day (UKAEA) | Junior Applied Mathematical Seminar (University of Warwick)
- 2023 ICIAM 2023 (Waseda University) | Numerical analysis group internal seminar (University of Oxford) | Junior Applied Mathematics Seminar (University of Oxford) | Met Office presentation (University of Oxford) | Internal presentation (Tokamak Energy)
- 2022 PRISM workshop (Missenden Abbey, UK)

Professional Experience

- Sep Oct University of Oxford, Supervision of summer internship, Sebastian Ohlig 2024 Project: Stability study of conservative vs. symplectic integrators on the Toda lattice
- 2024 0 1 10ject. Studing study of conservative vs. symplectic integrators on the 10dd tattic
- Aug Oct **Tokamak Energy**, *Internship*, Physics: theory and modelling 2022 o Project: *Implementation of non-Maxwellian backgrounds in the GENE gyrokinetic code*
 - Project: Implementation of non-Maxwellian backgrounds in the GENE gyrokinetic code
 Supervisor: Salomon Janhunen
- Jul Aug Perm State University, *Internship*, Computational fluid dynamics 2019

TEACHING EXPERIENCE

- 2024 2025 **Tutor**, *University of Oxford*, Computational Mathematics
- 2023 2024 Tutor, University of Oxford, Prelims corner
 - Teaching assistant, University of Oxford, Numerical Linear Algebra
- 2021 2022 **Teaching assistant**, *University of Oxford*, Random Matrix Theory **Tutor**, *Oriel College*, *University of Oxford*, Analysis I

PROGRAMMING LANGUAGES

Experienced: Python (*Firedrake*), MATLAB, LaTeX | **Limited:** Julia, C, Fortran, HTML

LANGUAGES

Fluent: English | Intermediate: Dutch | Beginner: Japanese, German

REFERENCES

Prof. Patrick Farrell
Mathematical Institute
University of Oxford
patrick.farrell@maths.ox.ac.uk

Dr Kaibo Hu School of Mathematics University of Edinburgh kaibo.hu@ed.ac.uk

Dr Wayne Arter UK Atomic Energy Authority (UKAEA) wayne.arter@ukaea.uk

Prof. Brendan Keith
Department of Mathematics
Brown University
brendan_keith@brown.edu

Prof. Endre Süli FRS
Mathematical Institute
University of Oxford
endre.suli@maths.ox.ac.uk