PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7:
C12N 15/12, 15/19, 15/57, 15/62, C07K
16/18, 16/28, 16/24, 16/40, C12Q 1/68,
G01N 33/566, 33/68, A61K 38/17, 38/19,
38/48

(11) International Publication Number:

WO 00/01817

(43) International Publication Date:

13 January 2000 (13.01.00)

(21) International Application Number:

PCT/US99/12366

A2

(22) International Filing Date:

6 July 1999 (06.07.99)

(30) Priority Data:

AULIU AUGUS		
09/110,938	6 July 1998 (06.07.98)	US
09/114,466	13 July 1998 (13.07.98)	US
60/093,897	23 July 1998 (23.07.98)	US
09/132,968	12 August 1998 (12.08.98)	US
09/136,214	18 August 1998 (18,08.98)	US
60/099,999	11 September 1998 (11.09.98)	US

- (71) Applicant: SCHERING CORPORATION [US/US]; 2000 Galloping Hill Road, Kenilworth, NJ 07033-0530 (US).
- (72) Inventors: BATES, Elizabeth, Esther, Mary; 4, place Gabriel Rambaud, F-69001 Lyon (FR). LEBECQUE, Serge, J., E.; 514, Chemin du Marand, F-69380 Civrieux d'Azergue (FR). MURPHY, Erin, E.; 180 Emerson Street, Palo Alto, CA 94301 (US). MATTSON, Jeanine, D.; 559 Alvarado Street, San Francisco, CA 94114 (US). GORMAN, Daniel, M.; 6371 Central Avenue, Newark, CA 94560 (US). HEDRICK, Joseph, A.; 52-08 Quail Ridge Drive, Plainsboro, NJ 08536 (US). WANG, Luquan; 21 Hollis Road, East Brunswick,

NJ 08816 (US). ZLOTNIK, Albert; 507 Alger Drive, Palo Alto, CA 94306 (US). MURGOLO, Nicholas, J.; 99 Rolling Hill Drive, Millington, NJ 07946 (US). GREENE, Jonathan, R.; 457 Tillou Road, South Orange, NJ 07079 (US). JOHNSTON, James, A.; 205 Mary Alice Drive, Los Gatos, CA 95032 (US). BAZAN, Jose, Fernando; 775 University Drive, Menlo Park, CA 94025 (US). MAHONY, Daniel; 330 East 39th Street #21–A, New York, NY 10016 (US). LEES, Emma, M.; 3107 Washington Street, San Francisco, CA 94115 (US).

- (74) Agents: THAMPOE, Immac, J. et al.; Schering-Plough Corporation, Patent Dept., K-6-1 1990, 2000 Galloping Hill Road, Kenilworth, NJ 07033-0530 (US).
- (81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GD, GE, HR, HU, ID, IL, IN, IS, JP, KG, KR, KZ, LC, LK, LR, LT, LU, LV, MD, MG, MK, MN, MX, NO, NZ, PL, PT, RO, RU, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UZ, VN, YU, ZA, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: MAMMALIAN GENES; DENDRITIC CELL PROSTAGLANDIN-LIKE TRANSPONDER (DC-PGT), HDTEA84, HSLJD37R AND RANKL, HCC5 CHEMOKINE, DEUBIQUITINATING 11 AND 12 (DUB11, DUB12), MD-1, MD2 AND CYCLIN E2, RELATED REAGENTS AND METHODS

(57) Abstract

Purified genes from a mammal, reagents related thereto including purified proteins, specific antibodies, and nucleic acids encoding the polypeptides are provided. Methods of using said reagents and diagnostic kits are also provided. Characterization of genes and products relating to DC-PGT (Dendritic cell prostaglandin-like transporter), HDTEA84, HSLJD37R and RANKL (related to TNF receptor family), HCC5 chemokine, Dub 11 and Dub 12 (Deubiquitinating 11 and 12), MD-1 and MD-2 (proteins which exhibit properties of ligands for proteins exhibiting a leucine-rich protein motif (LRR)) and cyclin E2.

provides compositions which will be important in the control of cell division and transcription.

SUMMARY OF THE INVENTION

5

10

15

20

25

30

35

The present invention is based, in part, upon the characterization of the genes and products relating to the DC-PGT, HDTEA84, HSLJD37R, RANKL, HCC5 chemokine, Dubl1, Dubl2, MD-1, MD-2, and cyclin E2. It provides nucleic acids, polypeptides, antibodies, and methods for making and using such compositions.

In the DC-PGT embodiments, the invention provides an isolated or recombinant antigenic polypeptide comprising: a plurality of distinct segments, wherein each segment has identity to at least 12 contiguous amino acids from the mature SEQ ID NO: 2; or at least 17 contiguous amino acids from the mature SEQ ID NO: 2. certain embodiments, the plurality of segments includes one of at least 19 contiguous amino acids; or two of at least 15 contiguous amino acids. Other polypeptides include those wherein the polypeptide: comprises the mature SEQ ID NO: 2; binds with specificity to a polyclonal antibody which specifically binds to SEQ ID NO: 2; or the polypeptide: is a natural allelic variant of SEQ ID NO: 2; is at least 30 amino acids in length; exhibits at least two non-overlapping epitopes specific for SEQ (ID NO: 2; is a synthetic polypeptide; is attached to a solid substrate; or is a 5-fold or less conservative substitution from SEQ ID NO: 2. Fusion polypeptides are also provided, e.g., comprising first and second portions, the first portion comprising a sequence as described and the second portion comprising a detectable marker. Pharmaceutical compositions are made available, e.g., comprising a sterile polypeptide, as described, in a pharmaceutically acceptable carrier.

Polynucleotide embodiments include an isolated or recombinant polynucleotide encoding a described polypeptide. Preferred forms will be such a polynucleotide which: comprises the mature polypeptide coding portion of SEQ ID NO: 1; or encodes the mature SEQ ID NO: 2. Preferred embodiments include wherein the polynucleotide is: a PCR product; a hybridization probe; a

10

15

20

25

30

35

binds to a described polypeptide, comprising: incubating components comprising the compound and the polypeptide under conditions sufficient to allow the components to interact; and measuring the binding of the compound to the polypeptide.

In TNF receptor-like embodiments, the invention further provides an isolated or recombinant polynucleotide encoding an antigenic polypeptide comprising at least 17 contiguous amino acids from: the mature polypeptide from SEQ ID NO: 6; the mature polypeptide from SEQ ID NO: 8; the mature polypeptide from SEQ ID NO: 10; the mature polypeptide from SEQ ID NO: 12; the mature polypeptide from SEQ ID NO: 17; the mature polypeptide from SEQ ID NO: 19; the mature polypeptide from SEQ ID NO: 21; or the mature polypeptide from SEQ ID NO: 23. In preferred embodiments, such polynucleotide will encode all of the polypeptide of: signal processed SEQ ID NO: 6; signal processed SEQ ID NO: 8; signal processed SEQ ID NO: 10; signal processed SEQ ID NO: 12; signal processed SEQ ID NO: 17; SEQ ID NO: 19; SEQ ID NO: 21; or SEQ ID NO: 23. Other embodiments include such a polynucleotide, which hybridizes at 55°C, less than 500 mM salt, and 50% formamide to the: mature protein coding portion of SEQ ID NO: 5; signal processed coding portion of SEQ ID NO: 7; signal processed coding portion of SEQ ID NO: 9; signal processed coding portion of SEQ ID NO: 11; mature protein coding portion of SEQ ID NO: 16; polypeptide coding portion of SEQ ID NO: 18; polypeptide coding portion of SEQ ID NO: 20; or polypeptide coding portion of SEO ID NO: 22. Other forms include those polynucleotides, comprising at least 35 contiguous nucleotides of: mature protein coding portion of SEQ ID NO: 5; signal processed coding portion of SEQ ID NO: 7; signal processed coding portion of SEQ ID NO: 9; signal processed coding portion of SEQ ID NO: 11; mature protein coding portion of SEQ ID NO: 16; polypeptide coding portion of SEQ ID NO: 18; polypeptide coding portion of SEQ ID NO: 20; or polypeptide coding portion of SEQ ID NO: 22. Various expression vectors are provided comprising such a polynucleotide. The invention also provides a host cell containing the expression vector, including a eukaryotic cell.

WO 00/01817

10

15

20

25

30

35

sample is from a human, and the binding compound is an antibody. Such also allow for production of a detection kit comprising the binding compound, and: instructional material for the use of the binding compound for the detection; or a compartment providing segregation of the binding compound.

Polypeptides are also made available, e.g., a substantially pure or isolated antigenic polypeptide, which binds to the described binding composition, and further comprises at least 17 contiguous amino acids from: signal processed SEQ ID NO: 6; signal processed SEQ ID NO: 8; signal processed SEQ ID NO: 10; signal processed SEQ ID NO: 12; signal processed SEQ ID NO: 17; SEQ ID NO: 19; SEQ ID NO: 21; or SEQ ID NO: 23. Preferred polypeptides include those which: comprise at least a fragment of at least 25 contiguous amino acid residues from: a primate HDTEA84 protein: a primate HSLJD37R protein; or a rodent or primate RANKL protein; or are soluble polypeptides; are detectably labeled; are in a sterile composition; are in a buffered composition; bind to an sialic acid residue; are recombinantly produced; or have a naturally occurring polypeptide sequence. In other embodiments, the polypeptide comprises at least 17 contiguous amino acids from the: signal processed SEQ ID NO: 6; signal processed SEQ ID NO: 8; signal processed SEQ ID NO: 12; signal processed SEQ ID NO: 17; SEQ ID NO: 19; SEQ ID NO: 21; or SEQ ID NO: 23.

Methods are provided, including a method of modulating a precursor cell physiology or function comprising a step of contacting the cell with: a binding compound which binds to a described polypeptide; an HDTEA84 polypeptide; an HSLJD37R polypeptide; or a RANKL polypeptide. The method may be one wherein the contacting is in combination with a TNF family ligand, or an antagonist of the TNF family ligand.

In other embodiments, the present invention provides compositions related to other chemokine, Dub, or surface protein genes. Polypeptide embodiments include: a substantially pure or recombinant HCC5 polypeptide exhibiting identity over a length of at least 12 amino acids to SEQ ID NO: 25; an isolated natural sequence HCC5 of mature SEQ ID NO: 25; a fusion protein comprising HCC5 sequence; a substantially pure or recombinant Dub11

10

20

25

30

35

- 21. A method of detecting the presence of a complementary polynucleotide in a sample, comprising contacting a polynucleotide of Claim 6 that selectively hybridizes with said complementary polynucleotide in said sample to form a detectable duplex; thereby indicating the presence of said polynucleotide in said sample.
- 22. A method for identifying a compound that binds to a polypeptide of Claim 1, comprising:
 - a) incubating components comprising said compound and said polypeptide under conditions sufficient to allow the components to interact; and
 - b) measuring the binding of the compound to said polypeptide.
- 23. An isolated or recombinant polynucleotide encoding an antigenic polypeptide comprising:
 - a) at least 17 contiguous amino acids from the mature polypeptide from SEQ ID NO: 6;
 - b) at least 17 contiguous amino acids from the mature polypeptide from SEQ ID NO: 8;
 - c) at least 17 contiguous amino acids from the mature polypeptide from SEQ ID NO: 10;
 - d) at least 17 contiguous amino acids from the mature polypeptide from SEQ ID NO: 12;
 - e) at least 17 contiguous amino acids from the mature polypeptide from SEQ ID NO: 17;
 - f) at least 17 contiguous amino acids from the mature polypeptide from SEQ ID NO: 19;
 - g) at least 17 contiguous amino acids from the mature polypeptide from SEQ ID NO: 21; or
 - h) at least 17 contiguous amino acids from the mature polypeptide from SEQ ID NO: 23.
 - 24. The polynucleotide of Claim 23, encoding all of the polypeptide of:
 - a) signal processed SEQ ID NO: 6;
 - b) signal processed SEQ ID NO: 8;
 - c) signal processed SEQ ID NO: 10;

- d) signal processed SEQ ID NO: 12;
- e) signal processed SEQ ID NO: 17;
- SEQ ID NO: 19;
- g) SEQ ID NO: 21; or
- 5 h) SEQ ID NO: 23.
 - 25. The polynucleotide of Claim 23, which hybridizes at 55° C, less than 500 mM salt, and 50% formamide to the:
 - mature protein coding portion of SEO ID NO: 5;
- signal processed coding portion of SEQ ID NO: 7; 10 b)
 - c) signal processed coding portion of SEQ ID NO: 9;
 - a) signal processed coding portion of SEQ ID NO: 11;
 - e) mature protein coding portion of SEQ ID NO: 16;
 - polypeptide coding portion of SEQ ID NO: 18;
 - polypeptide coding portion of SEQ ID NO: 20; or g)
 - polypeptide coding portion of SEQ ID NO: 22. h)
 - The polynucleotide of Claim 25, comprising at least 35 26. contiguous nucleotides of:
- 20 mature protein coding portion of SEQ ID NO: 5;
 - b) signal processed coding portion of SEQ ID NO: 7;
 - signal processed coding portion of SEQ ID NO: 9; C)
 - signal processed coding portion of SEQ ID NO: 11; đ)
 - mature protein coding portion of SEQ ID NO: 16; e)
 - polypeptide coding portion of SEQ ID NO: 18; f)
 - polypeptide coding portion of SEQ ID NO: 20; or g)
 - polypeptide coding portion of SEQ ID NO: 22.
- 27. An expression vector comprising the polynucleotide of 30 Claim 23.
 - A host cell containing the expression vector of Claim 27, including a eukaryotic cell.
- 29. A method of making an antigenic polypeptide comprising 35 expressing a recombinant polynucleotide of Claim 23.

SUBSTITUTE SHEET (rule 26)

15

25

- A method for detecting a polynucleotide of Claim 23, comprising contacting said polynucleotide with a probe that hybridizes, under stringent conditions, to at least 25 contiguous nucleotides of the:
 - mature protein coding portion of SEO ID NO: 5:
 - signal processed coding portion of SEQ ID NO: 7;
 - C) signal processed coding portion of SEQ ID NO: 9;
 - d) signal processed coding portion of SEQ ID NO: 11;
 - mature protein coding portion of SEQ ID NO: 16; e)
 - f) polypeptide coding portion of SEQ ID NO: 18;
 - polypeptide coding portion of SEQ ID NO: 20; or g)
- polypeptide coding portion of SEO ID NO: 22; to form a duplex, wherein detection of said duplex indicates the presence of said polynucleotide.

15

5

10

A kit for the detection of a polynucleotide of Claim 23, 31. comprising a compartment containing a probe that hybridizes, under stringent hybridization conditions, to at least 17 contiguous nucleotides of a polynucleotide of Claim b1 to form a duplex.

20

- The kit of Claim 31, wherein said probe is detectably 32. labeled.
- A binding compound comprising an antibody binding site which specifically binds to a polypeptide comprising at least 17 25 contiguous amino acids from:
 - a) signal processed SEQ ID NO: 6;
 - b) signal processed SEQ ID NO: 8;
 - signal processed SEQ ID NO: 10; C)
 - signal processed SEQ ID NO: 12; d)
 - e) signal processed SEQ ID NO: 17;
 - f) SEQ ID NO: 19;
 - SEQ ID NO: 21; or g)
 - h) SEQ ID NO: 23.

35

30

- 34. The binding compound of Claim 33, wherein:
- a) said antibody binding site is:

	1)	selectively immunoreactive with the:
		a) signal processed SEQ ID NO: 6;
		b) signal processed SEQ ID NO: 8;
		c) signal processed SEQ ID NO: 10;
5		d) signal processed SEQ ID NO: 12;
		e) signal processed SEQ ID NO: 17;
		f) SEQ ID NO: 19;
		g) SEQ ID NO: 21; or
		h) SEQ ID NO: 23;
10	2)	raised against a purified or recombinantly produced
		human HDTEA84 protein;
	3)	raised against a purified or recombinantly produced
		human HSLJD37R protein; or
	4)	in a monoclonal antibody, Fab, or F(ab)2; or
15	b) said	binding compound is:
	1)	an antibody molecule;
	2)	a polyclonal antiserum;
	3)	detectably labeled;
	4)	sterile; or
20	5)	in a buffered composition.
		thod using the binding compound of Claim 33,
		tacting said binding compound with a biological
		ing an antigen, thereby forming a binding
25	compound:antig	en complex.
	36. The	method of Claim 35, wherein said biological sample

- 36. The method of Claim 35, wherein said biological sample is from a human, and wherein said binding compound is an antibody.
- 37. A detection kit comprising said binding compound of 30 Claim 34, and:
 - a) instructional material for the use of said binding compound for said detection; or
 - b) a compartment providing segregation of said binding compound.

35

A substantially pure or isolated antigenic polypeptide, which binds to said binding composition of Claim 33, and further comprises at least 17 contiguous amino acids from: signal processed SEQ ID NO: 6; 5 b) signal processed SEO ID NO: 8; C) signal processed SEQ ID NO: 10; đ) signal processed SEQ ID NO: 12; signal processed SEQ ID NO: 17; e) f) SEQ ID NO: 19; 10 g) SEQ ID NO: 21; or h) SEQ ID NO: 23. The polypeptide of Claim 38, which: 39. comprises at least a fragment of at least 25 contiguous 15 amino acid residues from a primate HDTEA84 protein: comprises at least a fragment of at least 25 contiquous b) amino acid residues from a primate HSLJD37R protein; comprises at least a fragment of at least 25 contiquous C) amino acid residues from a rodent or primate RANKI. 20 protein; is a soluble polypeptide; d) is detectably labeled; e) is in a sterile composition; f) is in a buffered composition: a) 25 binds to an sialic acid residue; h) is recombinantly produced, or i) has a naturally occurring polypeptide sequence. i) The polypeptide of Claim 39, which comprises at least 17 40. contiguous amino acids from the: 30 signal processed SEQ ID NO: 6; b) signal processed SEQ ID NO: 8; signal processed SEQ ID NO: 10; c) signal processed SEQ ID NO: 12; d) signal processed SEQ ID NO: 17; e) 35 £) SEQ ID NO: 19; q) SEQ ID NO: 21; or

SUBSTITUTE SHEET (rule 26)

h)

SEO ID NO: 23.

5															aac Asn		302
10	aca Thr	gct Ala	acc Thr	tct Ser	aat Asn 80	gct Ala	gtc Val	tgt Cys	ggg Gly	gac Asp 85	tgt Cys	ttg Leu	ccc Pro	agg Arg	ttc Phe 90	tac Tyr	350
15	cga Arg	aag Lys	aca Thr	ege Arg 95	att Ile	gga Gly	ggc Gly	ctg Leu	cag Gln 100	gac Asp	caa Gln	gag Glu	tgc Cys	atc Ile 105	ccg Pro	tgc Cys	398
	acg Thr	aag Lys	cag Gln 110	acc Thr	ccc Pro	acc Thr	tct Ser	gag Glu 115	gtt Val	caa Gln	tgt Cys	gcc Ala	ttc Phe 120	cag Gln	ttg Leu	agc Ser	446
20	tta Leu	gtg Val 125	gag Glu	gca Ala	gat Asp	gca Ala	ccc Pro 130	aca Thr	gtg Val	ccc Pro	cct Pro	cag Gln 135	gag Glu	gcc Ala	aca Thr	ctt Leu	494
25	gtt Val 140	gca Ala	ctg Leu	gtg .Val ,·	agc Ser	agc Ser 145	ctg Leu	cta Leu	gtg Val	gtg Val	ttt Phe 150	acc Thr	ctg Leu	gcç Ala	ttc Phe	ctg Leu 155	542
30	Gly aaa	ctc Leu	ttc Phe	ttc Phe	ctc Leu 160	tac Tyr	tgc Cys	aag Lys	cag Gln	ttc Phe 165	ttc Phe	aac Asn	aga Arg	cat His	tgc Cys 170	cag Gln	590
3 E	cgt Arg	gga Gly	ggt Gly	ttg Leu 175	ctg Leu	cag Gln	ttt Phe	gag Glu	gct Ala 180	gat Asp	aaa Lys	aca Thr	gca Ala	aag Lys 185	gag Glu	gaa Glu	638
35															tcc Ser		686
40															gac Asp		734
4 5	gtt Val 220	cct Pro	ata Ile	cca Pro	caa Gln	cag Gln 225	cag Gln	cag Gln	GJA aaa	cct Pro	gaa Glu 230	atg Met	tgat	gte	cac		780
	anga	igota	aat a	accct	acag	ga to	igaad	catat	. cct	atec	cat	ccca	ıccaç	iga č	jatto	gattct	840
50	ccat	ttca	aca a	aggad	etgat	ic to	gago	catt	ctt	gett	ccc	tgtt	gtag	rtc t	.gggg	gagcca	900
		ccac															932
55	<211 <212)> 23 l> 23 l> PE l> Ur	31 ?T	٧n													
60	<400)> 23	3														

SUBSTITUTE SHEET (rule 26)

Met Asp Cys Gln Glu Asn Glu Tyr Trp Asp Gln Trp Gly Arg Cys Val

5	Thr	Cys	Gln	Arg 20	Сув	Gly	Pro	Gly	Gln 25	Glu	Leu	Ser	Lys	Asp 30	Cys	Gly	
10	Tyr	Gly	Gl.u 35	Gly	Gly	Asp	Ala	Tyr 40	Cys	Thr	Ala	Cys	Pro 45	Pro	Arg	Arg	
10	Tyr	Lys 50	Ser	Ser	Trp	Gly	His 55	His	Lys	Cys	Gln	Ser 60	Cys	Ile	Thr	Cys	
15	Ala 65	Val	Ile	Asn	Arg	Val 70	Gln	Lys	Val	Asn	Cys 75	Thr	Ala	Thr	Ser	Asn 80	
	Ala	Val	Cys	Gly	Asp 85	Cys	Leu	Pro	Arg	Phe 90	Tyr	Arg	Lys	Thr	Arg 95	Ile	
20	Gly	Gly	Leu	Gln 100	Asp	Gln	Glu	Cys	Ile 105	Pro	Cys	Thr	Lys	Gln 110	Thr	Pro	
25	Thr	Ser	Glu 115	Val	Gln	Cys	Ala	Phe 120	Gln	Leu	Ser	Leu	Val 125	Glu	Ala	Asp	
23	Ala	Pro 130	Thr	Val	Pro	Pro	Gln 135	Glu	Ala	Thr	Leu	Val 140	Ala	Leu	Val	Ser	
30	Ser 145	Leu	Leu	Val	Val	Phe 150	Thr	Leu	Ala	Phe	Leu 155	Gly	Leu	Phe	Phe	Leu 160	
	Tyr	Cys	Lys	Gln	Phe 165	Phe	Asn	Arg	His	Cys 170	Gln	Arg	Gly	Gly	Leu 175	Leu	
35	Gln	Phe	Glu	Ala 180	Asp	Lys	Thr	Ala	Lys 185	Glu	Glu	Ser	Leu	Phe 190	Pro	Val	
40	Pro	Pro	Ser 195	Lys	Glu	Thr	Ser	Ala 200	Glu	Ser	Gln	Val	Ser 205	Trp	Ala	Pro	
40	Gly	Ser 210	Leu	Ala	Gln	Leu	Phe 215	Ser	Leu	Asp	Ser	Val 220	Pro	Ile	Pro	Gln	
4 5	Gln 225	Gln	Gln	Gly	Pro	Glu 230	Met										
50	<210> 24 <211> 232 <212> DNA <213> Unknown																
	<220> <223> Description of Unknown Organism:primate																
55		0> 24 geeti		ggac	caag	et t	ttat	catc	g ta	agtg	ggac	tta	acct	gtc	ttaa	aagtgc	60
C 0	tgc	ttata	ect	acac	tege	tc a	agat	cccg	a gt	cagc	tgta	tta	tggc	atc	ctati	tagtca	120
60	ggc	agcc	tgt	gctt	caag	cc c	gtag	ttgt	a tt	catc	ccct	aaa	gggg	cca	ttcc	gtttgt	180
	atc	atca	cat	gtcc	tcag	tg g	gtcc	atgt	g ta	tatc	aagg	aca	tgat	gca	ga		232