Aprendizaje No Supervisado

Analítica de Datos, Universidad de San Andrés

Introducción al Aprendizaje No Supervisado

 Rama del machine learning enfocada en encontrar patrones en datos no etiquetados

Introducción al Aprendizaje No Supervisado

- Rama del machine learning enfocada en encontrar patrones en datos no etiquetados
- A diferencia del aprendizaje supervisado, no hay variable objetivo

Introducción al Aprendizaje No Supervisado

- Rama del machine learning enfocada en encontrar patrones en datos no etiquetados
- A diferencia del aprendizaje supervisado, no hay variable objetivo
- Principales objetivos:
 - Descubrir grupos naturales (clustering)
 - Reducir la dimensionalidad
 - Detectar anomalías
 - Encontrar reglas de asociación

Clustering

• Técnica que agrupa observaciones similares en clusters

Clustering

- Técnica que agrupa observaciones similares en clusters
- Los puntos parecidos se agrupan por características similares

Clustering

- Técnica que agrupa observaciones similares en clusters
- Los puntos parecidos se agrupan por características similares
- Aplicaciones:
 - Agrupar clientes según comportamiento
 - Agrupar documentos según contenido

¿Cómo funciona?

• Se especifica el número K de clusters deseados

¿Cómo funciona?

- Se especifica el número K de clusters deseados
- Inicialización de K centroides aleatorios

¿Cómo funciona?

- Se especifica el número K de clusters deseados
- Inicialización de K centroides aleatorios
- Proceso iterativo:
 - Asignar cada punto al centroide más cercano
 - Recalcular centroides como promedio de puntos asignados

¿Cómo funciona?

- Se especifica el número K de clusters deseados
- Inicialización de K centroides aleatorios
- Proceso iterativo:
 - Asignar cada punto al centroide más cercano
 - Recalcular centroides como promedio de puntos asignados
- Continúa hasta la convergencia

Implementación de K-Means

```
from sklearn.cluster import KMeans

# Crear y entrenar el modelo
kmeans = KMeans(n_clusters=3, random_state=42)
clusters = kmeans.fit_predict(X)

# Obtener centroides
centroids = kmeans.cluster_centers_
```

Reducción de Dimensionalidad

• Útil cuando tenemos datasets con muchas variables

- Útil cuando tenemos datasets con muchas variables
- Ayuda a:
 - Simplificar el análisis
 - Mejorar la visualización
 - Facilitar el entrenamiento de modelos

- Útil cuando tenemos datasets con muchas variables
- Ayuda a:
 - Simplificar el análisis
 - Mejorar la visualización
 - Facilitar el entrenamiento de modelos
- Mantiene la información más importante

¿Qué hace PCA?

• Combina variables de manera especial

¿Qué hace PCA?

- Combina variables de manera especial
- Crea componentes principales que:
 - Capturan la mayor variación posible
 - Son independientes entre sí

¿Qué hace PCA?

- Combina variables de manera especial
- Crea componentes principales que:
 - Capturan la mayor variación posible
 - Son independientes entre sí
- El primer componente captura la mayor variación

¿Qué hace PCA?

- Combina variables de manera especial
- Crea componentes principales que:
 - Capturan la mayor variación posible
 - Son independientes entre sí
- El primer componente captura la mayor variación
- Estándar: conservar 95

Implementación de PCA

```
from sklearn.decomposition import PCA

treat y aplicar PCA

pca = PCA(n_components=2)  # Reducimos a 2 dimensiones

X_reduced = pca.fit_transform(X)

treat variance = pca.explica cada componente
expl_variance = pca.explained_variance_ratio_
print(f"var. explicada por cada componente: {expl_variance}")
print(f"var. total explicada: {sum(expl_variance):.2f}")
```

 Visualización: Para ver patrones en datos con muchas variables

- Visualización: Para ver patrones en datos con muchas variables
- Ruido: Limpiar datos eliminando variaciones no importantes

- Visualización: Para ver patrones en datos con muchas variables
- Ruido: Limpiar datos eliminando variaciones no importantes
- Colinealidad: Con variables muy correlacionadas

- Visualización: Para ver patrones en datos con muchas variables
- Ruido: Limpiar datos eliminando variaciones no importantes
- Colinealidad: Con variables muy correlacionadas
- Curse of Dimensionality: Evitar problemas con muchas variables

Clustering:

Silhouette Score

Clustering:

- Silhouette Score
- Calinski-Harabasz Index

Clustering:

- Silhouette Score
- Calinski-Harabasz Index
- Davies-Bouldin Index

Clustering:

- Silhouette Score
- Calinski-Harabasz Index
- Davies-Bouldin Index

Reducción de Dimensionalidad:

• Varianza explicada

Clustering:

- Silhouette Score
- Calinski-Harabasz Index
- Davies-Bouldin Index

- Varianza explicada
- Reconstrucción del error

Clustering:

- Silhouette Score
- Calinski-Harabasz Index
- Davies-Bouldin Index

- Varianza explicada
- Reconstrucción del error
- Preservación de distancias

Evaluación de Clustering

```
from sklearn.metrics import silhouette_score, calinski_harabasz_score

# Evaluar clustering
silhouette_avg = silhouette_score(X, clusters)
calinski_score = calinski_harabasz_score(X, clusters)
```