BEST AVAILABLE COPY

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

A61K 39/00, 39/29, C07K 7/00, 14/02, 14/82 (21) International Application Number: PCT/US98/05039 (22) International Filing Date: 13 March 1998 (13.03.98) (22) International Filing Date: 13 March 1998 (13.03.98) (23) International Filing Date: 14 March 1998 (13.03.98) (24) International Publication Date: 16 September 1999 (19.05) (25) International Filing Date: 16 September 1999 (19.05) (26) International Publication Date: 16 September 1999 (19.05) (27) International Publication Date: 16 September 1999 (19.05) (28) International Publication Date: 16 September 1999 (19.05) (28) International Publication Date: 16 September 1999 (19.05) (29) International Publication Date: 16 September 1999 (19.05) (21) International Application Number: PCT/US98/05039 (22) International Filing Date: 13 March 1998 (13.03.98) (23) International Publication Date: 16 September 1999 (19.05) (24) International Publication Date: 16 September 1999 (19.05) (27) International Application Number: PCT/US98/05039 (28) International Publication Date: 16 September 1999 (19.05) (28) International Publication Date: 16 September 1999 (19.05) (29) International Application Number: PCT/US98/05039 (29) International Publication Date: 16 September 1999 (19.05) (20) International Publication Date: 16 September 1999 (19.05) (21) International Application Number: PCT/US98/05039 (22) International Filing Date: 13 March 1998 (13.03.98) (21) International Publication Date: 16 September 1999 (19.05) (22) International Filing Date: 13 March 1998 (13.03.98) (23) International Publication Date: 16 September 1999 (19.05) (24) International Publication Date: 16 September 1999 (19.05) (25) International Publication Date: 16 September 1999 (19.05) (27) International Publication Date: 16 September 1999 (19.05) (28) International Publication Date: 1998 (19.05) (28) International Publication Date: 1999 (19.05) (28) International Publication Date: 1999 (19.05) (28) International Publication Date: 1999 (19.05) (28) International Publicati		eri	41 4 7 4 4 6 6 and	7710 0044F0FA
(21) International Application Number: PCT/US98/05039 (22) International Filing Date: 13 March 1998 (13.03.98) (23) International Filing Date: 13 March 1998 (13.03.98) (24) International Filing Date: 13 March 1998 (13.03.98) (27) Inventors: EPIMMUNE, INC. [US/US]; Suite 200, 655 Nancy Ridge Drive, San Diego, CA 92121 (US). (27) Inventors: SETTE, Alessandro; 5551 Linda Rosa Avenue, La Jolla, CA 92037 (US). KUBO, Ralph, T.; 12635 Fattura Street, San Diego, CA 92130 (US). SIDNEY, John; 8544 D. Villa La Jolla Drive, La Jolla, CA 92037 (US). SEDNEY, John; 8544 D. Villa La Jolla Drive, La Jolla, CA 92037 (US). CELLS, Esteban; 13644 Landfair Road, San Diego, CA 92130 (US). GREY, Howard, M.; 9066 La Jolla Street, La Jolla, CA 92037 (US). SOUTHWOOD, Scott; 10679 Strathmore Drive, Santee, CA 92071 (US). (74) Agents: BASTIAN, Kevin, L. et al.; Townsend and Townsend and Crew LLP, 8th floor, Two embarcadero Center, San Francisco, CA 94111–3834 (US). (54) Title: HLA-BINDING PEPTIDES AND THEIR USES (57) Abstract The present invention provides the means and methods for selecting Immunogenic peptides and the immunogenic peptide of enecifically binding glycoproteins encoded by HLA allele and inducing T cell activation in T cells restricted by the	ik 39/00, 39/29, C07K 7/00, 14/02,		,	11) International Publication Number: WO 99/45954
(22) International Filing Date: 13 March 1998 (13.03.98) (71) Applicant: EPIMMUNE, INC. [US/US]; Suite 200, 655 Nancy Ridge Drive, San Diego, CA 92121 (US). (72) Inventors: SETTE, Alessandro; 5551 Linda Rosa Avenue, La Jolla, CA 92037 (US). KUBO, Ratph, T.; 12635 Fattura Street, San Diego, CA 92130 (US). SIDNEY, John; 6541 D. Villa La Jolla Drive, La Jolla, CA 92037 (US). CRISY, Howard, M.; 9066 La Jolla Street, La Jolla, CA 92037 (US). SOUTHWOOD, Scott; 10679 Strathmore Drive, Santee, CA 92071 (US). (74) Agents: BASTIAN, Kevin, L. et al.; Townsend and Townsend and Crew LLP, 8th floor, Two embarcadero Center, San Prancisco, CA 94111–3834 (US). (34) Title: HLA-BINDING PEPTIDES AND THEIR USES (57) Abstract The present invention provides the means and methods for selecting Immunogenic peptides and the immunogenic peptide of exception of meetifically binding glycoproteins encoded by HLA allele and inducing T cell activation in T cells restricted by the				43) International Publication Date: 16 September 1999 (16.09.99)
(57) Abstract The present invention provides the means and methods for selecting immunogenic peptides and the immunogenic peptide of capable of specifically binding glycoproteins encoded by HLA allele and inducing T cell activation in T cells restricted by the	plicant: EPIMMUNE, INC. [US/US]; Suite 200, Ridge Drive, San Diego, CA 92121 (US). ventors: SETTE, Alessandru; 5551 Linda Rosa A Jolla, CA 92037 (US). KUBO, Ralph, T.; 12 Street, San Diego, CA 92130 (US). SIDNEY, D. Villa La Jolla Drive, La Jolla, CA 92037 (U Esteban; 13644 Landfair Road, San Diego, CA 92037 (US). SOUTHWOOD, Scott; 10679 Drive, Santee, CA 92071 (US). gents: BASTIAN, Kevin, L. et al.; Townsend and one of the property of the	PER VER SUDE OF SER	Applicant: EPIMMUNE, INC. [US/US]; Suite 200, 655 Nancy Ridge Drive, San Diego, CA 92121 (US). Inventors: SETTE, Alessandro; 5551 Linda Rosa Avenue, L. Jolla, CA 92037 (US). KUBO, Ralph, T.; 12635 Futurest, San Diego, CA 92130 (US). SIDNEY, John; 854 D. Villa La Jolla Drive, La Jolla, CA 92037 (US). CELIS Esteban; 13644 Landfair Road, San Diego, CA 92130 (US). GREY, Howard, M.; 9066 La Jolla Street, La Jolla, C. 92037 (US). SOUTHWOOD, Scott; 10679 Strathmord Drive, Santee, CA 92071 (US). Agents: BASTIAN, Kevin, L. et al.; Townsend and Townsen and Crew LLP, 8th floor, Two embarcadero Center, Sa	BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, D, IL, IS, IP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MY, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SI, TI, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TI, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG). Published With international search report.
	bstract The present invention provides the means and metion of specifically binding glycoproteins encoded by	bs Th	Abstract The present invention provides the means and methods for seable of specifically binding glycoproteins encoded by HLA all	de and inducing T cell activation in T cells restricted by the altere. The

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL.	Athenia	RS.	Spain	L6	Lesotho	61	Slovenia
AM	Ameria	er	Finland	LT	Lithuania	63%	Slovakia
AT	Apstria	FR	Prence	EU)	Lexensbourg	an	Scacga)
AU	Australia	GA	Gabon	LV	Latvia	6 Z	Swazikend
ΑZ	Azorbeijan	GB	United Kingdom	MC	Mosaco	TD	Chad
BA	Bossia and Herzegovine	GB.	Georgia	MD	Resubtic of Moldova	TG	Tago
BB	Barbados	GH	Ghasa	MG	Madagascur	TJ	Tejikistan
BB	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Terkmenistan
RF	Burkine Paso	GR	Greece		Republic of Macedonia	TR	Tukey
BG	Bulenta	eru .	Hungary	MIL	Mali	TT	Trinided and Tobago
BJ	Besto	Œ	freland	MIN	Mungotia	UA	Ukraine
BR	Brazil	n.	Exrect	MR	Mauritania	UG	Uganda
BY	Belarus	18	tocked	MW	Malawi	us	United States of America
CA	Canada	•	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	IP	Ispan	NB	Niger	VN	Vict Nam
CG	Congo	KR	Kenya	NL	Nethedands	¥U	Yugoslavia
CE	Switzerland	K.G	Kyrgyzstan	10	Norwey	2W	Zimbabwe
ā	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM.	Cameroon		Republic of Kores	er.	Poland		
CN	China	KR	Republic of Korea	PT	Portografi		
Œυ	Cuba	602	Kezakatan	RO	Romania.		
CZ	Creek Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	ü	Liechtenstein	6D	Sodan		
OK	Downers	LK	Sri Lenka	SE.	Sweden		
EB.	Batonia .	LR	Liberia	6G	Singapore		

PCT/US98/05039

HLA BINDING PEPTIDES AND THEIR USES

BACKGROUND OF THE INVENTION

The present invention relates to compositions and methods for preventing, treating or diagnosing a number of pathological states such as viral diseases and cancers. In particular, it provides novel peptides capable of binding selected major histocompatibility complex (MHC) molecules and inducing an immune response.

MHC molecules are classified as either Class I or Class II molecules. Class II MHC molecules are expressed primarily on cells involved in initiating and sustaining immune responses, such as T lymphocytes, B lymphocytes, macrophages, etc. Class II MHC molecules are recognized by helper T lymphocytes and induce proliferation of helper T lymphocytes and amplification of the immune response to the particular immunogenic peptide that is displayed. Class I MHC molecules are expressed on almost all nucleated cells and are recognized by cytotoxic T lymphocytes (CTLs), which then destroy the antigen-bearing cells. CTLs are particularly important in tumor rejection and in fighting viral infections.

The CTL recognizes the antigen in the form of a peptide fragment bound to the MHC class I molecules rather than the intact foreign antigen itself. The antigen must normally be endogenously synthesized by the cell, and a portion of the protein antigen is degraded into small peptide fragments in the cytoplasm. Some of these small peptides translocate into a pre-Golgi compartment and interact with class I heavy chains to facilitate proper folding and association with the subunit $\beta 2$ microglobulin. The peptide-MHC class I complex is then routed to the cell surface for expression and potential recognition by specific CTLs.

Investigations of the crystal structure of the human MHC class I molecule, HLA-A2.1, indicate that a peptide binding groove is created by the folding of the α 1 and α 2 domains of the class I heavy chain (Bjorkman et al., Nature 329:506 (1987). In these investigations, however, the identity of peptides bound to the groove was not determined.

Buus et al., <u>Science</u> 242:1065 (1988) first described a method for acid elution of bound peptides from MHC. Subsequently, Rammensee and his coworkers (Falk

20

15

5

10

10

15

20

25

30

et al., Nature 351:290 (1991) have developed an approach to characterize naturally processed peptides bound to class I molecules. Other investigators have successfully achieved direct amino acid sequencing of the more abundant peptides in various HPLC fractions by conventional automated sequencing of peptides eluted from class I molecules of the B type (Jardetzky, et al., Nature 353:326 (1991) and of the A2.1 type by mass spectrometry (Hunt, et al., Science 225:1261 (1992). A review of the characterization of naturally processed peptides in MHC Class I has been presented by Rötzschke and Falk (Rötzschke and Falk, Immunol, Today 12:447 (1991).

Sette et al., Proc. Natl. Acad. Sci. USA 86:3296 (1989) showed that MHC allele specific motifs could be used to predict MHC binding capacity. Schaeffer et al., Proc. Natl. Acad. Sci. USA 86:4649 (1989) showed that MHC binding was related to immunogenicity. Several authors (De Bruijn et al., Eur. J. Immunol., 21:2963-2970 (1991); Pamer et al., 991 Nature 353:852-955 (1991)) have provided preliminary evidence that class I binding motifs can be applied to the identification of potential immunogenic peptides in animal models. Class I motifs specific for a number of human alleles of a given class I isotype have yet to be described. It is desirable that the combined frequencies of these different alleles should be high enough to cover a large fraction or perhaps the majority of the human outbred population.

Despite the developments in the art, the prior art has yet to provide a useful human peptide-based vaccine or therapeutic agent based on this work. The present invention provides these and other advantages.

SUMMARY OF THE INVENTION

The present invention provides compositions comprising immunogenic peptides having binding motifs for HLA molecules. The immunogenic peptides, which bind to the appropriate MHC allele, comprise conserved residues at certain positions which allow the peptides to bind desired HLA molecules.

Epitopes on a number of immunogenic target proteins can be identified using the peptides of the invention. Examples of suitable antigens include prostate cancer specific antigen (PSA), hepatitis B core and surface antigens (HBVc, HBVs) hepatitis C antigens, Epstein-Barr virus antigens, human immunodeficiency type-1 virus (HIV1), Kaposi's sarcoma herpes virus (KSHV), human papilloma virus (HPV) antigens, Lassa

virus, mycobacterium tuberculosis (MT), p53, CEA, trypanosome surface antigen (TSA) and Her2/neu. The peptides are thus useful in pharmaceutical compositions for both therapeutic and diagnostic applications.

In particular, the invention provides compositions comprising an immunogenic peptide having an HLA binding motif, which immunogenic peptide is a peptide shown in Tables 3-14. Also provided are peptides comprising a conservative substitution of a residue in a peptide shown in Table 3-14. The immunogenic peptide of the invention can be further linked to a second oligopeptide. In some embodiments, the second oligopeptide is a peptide that induces a helper T response.

10

5

The invention further provides nucleic acid molecules encoding immunogenic peptides as shown in Tables 3-14, or peptides comprising a conservative substitution of a residue of a peptide shown in Table 3-14. The nucleic acid may further comprise a sequence encoding a second immunogenic peptide or peptide that induces a helper T response.

15

The peptides provided here can be used to induce a cytotoxic T cell response either in vivo or in vitro. The methods comprise contacting a cytotoxic T cell with a peptide of the invention.

Definitions

20

The term "peptide" is used interchangeably with "oligopeptide" in the present specification to designate a series of residues, typically L-amino acids, connected one to the other typically by peptide bonds between the alpha-amino and carbonyl groups of adjacent amino acids. The oligopeptides of the invention are less than about 15 residues in length and usually consist of between about 8 and about 11 residues, preferably 9 or 10 residues.

25

An "immunogenic peptide" is a peptide which comprises an allele-specific motif such that the peptide will bind an MHC molecule and induce a CTL response. Immunogenic peptides of the invention are capable of binding to an appropriate HLA molecule and inducing a cytotoxic T cell response against the antigen from which the immunogenic peptide is derived.

30

Immunogenic peptides are conveniently identified using the algorithms of the invention. The algorithms are mathematical procedures that produce a score which

10

15

20

25

30

enables the selection of immunogenic peptides. Typically one uses the algorithmic score with a "binding threshold" to enable selection of peptides that have a high probability of binding at a certain affinity and will in turn be immunogenic. The algorithm is based upon either the effects on MHC binding of a particular amino acid at a particular position of a peptide or the effects on binding of a particular substitution in a motif containing peptide.

A "conserved residue" is an amino acid which occurs in a significantly higher frequency than would be expected by random distribution at a particular position in a peptide. Typically a conserved residue is one where the MHC structure may provide a contact point with the immunogenic peptide. At least one to three or more, preferably two, conserved residues within a peptide of defined length defines a motif for an immunogenic peptide. These residues are typically in close contact with the peptide binding groove, with their side chains buried in specific pockets of the groove itself. Typically, an immunogenic peptide will comprise up to three conserved residues, more usually two conserved residues.

As used herein, "negative binding residues" are amino acids which if present at certain positions will result in a peptide being a nonbinder or poor binder and in turn fail to be immunogenic i.e. induce a CTL response.

The term "motif" refers to the pattern of residues in a peptide of defined length, usually about 8 to about 11 amino acids, which is recognized by a particular MHC allele. The peptide motifs are typically different for each human MHC allele and differ in the pattern of the highly conserved residues and negative residues.

The binding motif for an allele can be defined with increasing degrees of precision. In one case, all of the conserved residues are present in the correct positions in a peptide and there are no negative residues in positions 1,3 and/or 7.

The phrases "isolated" or "biologically pure" refer to material which is substantially or essentially free from components which normally accompany it as found in its native state. Thus, the peptides of this invention do not contain materials normally associated with their in sim environment, e.g., MHC I molecules on antigen presenting cells. Even where a protein has been isolated to a homogenous or dominant band, there are trace contaminants in the range of 5-10% of native protein which co-purify with the desired protein. Isolated peptides of this invention do not contain such endogenous co-purified protein.

10

15

20

25

30

The term "residue" refers to an amino acid or amino acid mimetic incorporated in an oligopeptide by an amide bond or amide bond mimetic.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention relates to the determination of allele-specific peptide motifs for human Class I MHC (sometimes referred to as HLA) allele subtypes, in particular, peptide motifs recognized by HLA alleles.

For HLA-A2.1 alleles a peptide of 9 amino acids preferrably has the following motif: a first conserved residue at the second position from the N-terminus selected from the group consisting of I, V, A and T and a second conserved residue at the C-terminal position selected from the group consisting of V, L, I, A and M. An alternate motif is one in which the first conserved residue at the second position from the N-terminus selected is from the group consisting of L, M, I, V, A and T and the second conserved residue at the C-terminal position selected from the group consisting of A and M. The amino acid at position 1 is preferrably not an amino acid selected from the group consisting of D, and P. The amino acid at position 3 from the N-terminus is not an amino acid selected from the group consisting of R, K and H. The amino acid at position 6 from the N-terminus is not an amino acid selected from the group consisting of R, K and H. The amino acid at at position 7 from the N-terminus is not an amino acid selected from the group consisting of R, K, H, D and E.

The HLA-A2.1 binding motif for peptide of 10 residues is as follows: a first conserved residue at the second position from the N-terminus selected from the group consisting of L, M, I, V, A, and T, and a second conserved residue at the C-terminal position selected from the group consisting of V, I, L, A and M. The first and second conserved residues are separated by 7 residues. Preferrably, the amino acid at position 1 is not an amino acid selected from the group consisting of D, E and P. The N-terminal residue is not an amino acid selected from the group consisting of D and E. The residue at position 4 from the N-terminus is not an amino acid selected from the group consisting of A, K, R and H. The amino acid at position 5 from the N-terminus is not P. The amino acid at position 7 from the N-terminus is not an amino acid selected from the group consisting of R, K and H. The amino acid at position 8 from the N-terminus is not amino acid selected from the group consisting of D, E, R, K and H. The amino acid at position

10

15

20

25

30

9 from the N-terminus is not an amino acid selected from the group consisting of R, K and H.

Te motif for HLA-A3.2 comprises from the N-terminus to C-terminus a first conserved residue of L, M, I, V, S, A, T and F at position 2 and a second conserved residue of K, R or Y at the C-terminal end. Other first conserved residues are C, G or D and alternatively E. Other second conserved residues are H or F. The first and second conserved residues are preferably separated by 6 to 7 residues.

The motif for HLA-A1 comprises from the N-terminus to the C-terminus a first conserved residue of T, S or M, a second conserved residue of D or E, and a third conserved residue of Y. Other second conserved residues are A, S or T. The first and second conserved residues are adjacent and are preferably separated from the third conserved residue by 6 to 7 residues. A second motif consists of a first conserved residue of E or D and a second conserved residue of Y where the first and second conserved residues are separated by 5 to 6 residues.

The motif for HLA-A11 comprises from the N-terminus to the C-terminus a first conserved residue of T, V, M, L, I, S, A, G, N, C D, or F at position 2 and a C-terminal conserved residue of K, R, Y or H. The first and second conserved residues are preferably separated by 6 or 7 residues.

The motif for HLA-A24.1 comprises from the N-terminus to the C-terminus a first conserved residue of Y, F or W at position 2 and a C terminal conserved residue of F, I, W, M or L. The first and second conserved residues are preferably separated by 6 to 7 residues.

These motifs are then used to define T cell epitopes from any desired antigen, particularly those associated with human viral diseases, cancers or autoiummune diseases, for which the amino acid sequence of the potential antigen or autoantigen targets is known.

Epitopes on a number of potential target proteins can be identified in this manner. Examples of suitable antigens include prostate specific antigen (PSA), hepatitis B core and surface antigens (HBVc, HBVs) hepatitis C antigens, Epstein-Barr virus antigens, melanoma antigens (e.g., MAGE-1), human immunodeficiency virus (HIV) antigens, human papilloma virus (HPV) antigens, Lassa virus, mycobacterium tuberculosis (MT), p53, CEA, trypanosome surface antigen (TSA) and Her2/neu.

10

15

20

Peptides comprising the epitopes from these antigens are synthesized and then tested for their ability to bind to the appropriate MHC molecules in assays using, for example, purified class I molecules and radioiodonated peptides and/or cells expressing empty class I molecules by, for instance, immunofluorescent staining and flow microfluorometry, peptide-dependent class I assembly assays, and inhibition of CTL recognition by peptide competition. Those peptides that bind to the class I molecule are further evaluated for their ability to serve as targets for CTLs derived from infected or immunized individuals, as well as for their capacity to induce primary in vitro or in vivo CTL responses that can give rise to CTL populations capable of reacting with virally infected target cells or tumor cells as potential therapeutic agents.

The MHC class I antigens are encoded by the HLA-A, B, and C loci. HLA-A and B antigens are expressed at the cell surface at approximately equal densities, whereas the expression of HLA-C is significantly lower (perhaps as much as 10-fold lower). Each of these loci have a number of alleles. The peptide binding motifs of the invention are relatively specific for each allelic subtype.

For peptide-based vaccines, the peptides of the present invention preferably comprise a motif recognized by an MHC I molecule having a wide distribution in the human population. Since the MHC alleles occur at different frequencies within different ethnic groups and races, the choice of target MHC allele may depend upon the target population. Table I shows the frequency of various alleles at the HLA-A locus products among different races. For instance, the majority of the Caucasoid population can be covered by peptides which bind to four HLA-A allele subtypes, specifically HLA-A2.1, A1, A3.2, and A24.1. Similarly, the majority of the Asian population is encompassed with the addition of peptides binding to a fifth allele HLA-A11.2.

TABLE 1

	A Allele/Subtype	N(69)*	A(54)	C(502)
	Aī	10.1(7)	1.8(1)	27.4(138)
	A2.1	11.5(8)	37.0(20)	39.8(199)
5	A2.2	10.1(7)	0	3.3(17)
	A2.3	1.4(1)	5.5(3)	0.8(4)
	A2.4	-	-	•
	A2.5		•	-
	A3.1	1.4(1)	0	0.2(0)
10	A3.2	5.7(4)	5.5(3)	21.5(108)
	A11.1	0	5.5(3)	0
	A11.2	5.7(4)	31.4(17)	8.7(44)
	A11.3	0	3.7(2)	0
	A23	4.3(3)	-	3.9(20)
15	A24	2.9(2)	27.7(15)	15.3(77)
	A24.2	-	-	•
	A24.3	•	-	-
	A25	1.4(1)	-	6.9(35)
	A26.1	4.3(3)	9.2(5)	5.9(30)
20	A26.2	7.2(5)	-	1.0(5)
	A26V	•	3.7(2)	-
	A28.1	10.1(7)	-	1.6(8)
	A28.2	1.4(1)	-	7.5(38)
	A29.1	1.4(1)	•	1.4(7)
25	A29.2	10.1(7)	1.8(1)	5.3(27)
	A30.1	8.6(6)	-	4.9(25)
	A30.2	1.4(1)	-	0.2(1)
	A30.3	7.2(5)	•	3.9(20)
	A31	4.3(3)	7.4(4)	6.9(35)
30	A32	2.8(2)	-	7.1(36)
	Aw33.1	8.6(6)	-	2.5(13)
	Aw33.2	2.8(2)	16.6(9)	1.2(6)
	Aw34.1	1.4(1)	-	-
	Aw34.2	14.5(10)	-	0.8(4)
35	Aw36	5.9(4)	-	-

Table compiled from B. DuPont, <u>Immunobiology of HLA</u>, Vol. I, Histocompatibility Testing 1987, Springer-Verlag, New York 1989.

The nomenclature used to describe peptide compounds follows the conventional practice wherein the amino group is presented to the left (the N-terminus)

^{*} N - negroid; A = Asian; C = caucasoid. Numbers in parenthesis represent the number of individuals included in the analysis.

and the carboxyl group to the right (the C-terminus) of each amino acid residue. In the formulae representing selected specific embodiments of the present invention, the amino-and carboxyl-terminal groups, although not specifically shown, are in the form they would assume at physiologic pH values, unless otherwise specified. In the amino acid structure formulae, each residue is generally represented by standard three letter or single letter designations. The L-form of an amino acid residue is represented by a capital single letter or a capital first letter of a three-letter symbol, and the D-form for those amino acids having D-forms is represented by a lower case single letter or a lower case three letter symbol. Glycine has no asymmetric carbon atom and is simply referred to as "Gly" or G.

10

15

5

The procedures used to identify peptides of the present invention generally follow the methods disclosed in Falk et al., Nature 351:290 (1991), which is incorporated herein by reference. Briefly, the methods involve large-scale isolation of MHC class I molecules, typically by immunoprecipitation or affinity chromatography, from the appropriate cell or cell line. Examples of other methods for isolation of the desired MHC molecule equally well known to the artisan include ion exchange chromatography, lectin chromatography, size exclusion, high performance ligand chromatography, and a combination of all of the above techniques.

20

In the typical case, immunoprecipitation is used to isolate the desired allele. A number of protocols can be used, depending upon the specificity of the antibodies used. For example, allele-specific mAb reagents can be used for the affinity purification of the HLA-A, HLA-B₁, and HLA-C molecules. Several mAb reagents for the isolation of HLA-A molecules are available. The monoclonal BB7.2 is suitable for isolating HLA-A2 molecules. Affinity columns prepared with these mAbs using standard techniques are successfully used to purify the respective HLA-A allele products.

25

30

In addition to allele-specific mAbs, broadly reactive anti-HLA-A, B, C mAbs, such as W6/32 and B9.12.1, and one anti-HLA-B, C mAb, B1.23.2, could be used in alternative affinity purification protocols as described in previous applications.

The peptides bound to the peptide binding groove of the isolated MHC molecules are eluted typically using acid treatment. Peptides can also be dissociated from class I molecules by a variety of standard denaturing means, such as heat, pH, detergents, salts, chaotropic agents, or a combination thereof.

10

15

20

25

30

Peptide fractions are further separated from the MHC molecules by reversed-phase high performance liquid chromatography (HPLC) and sequenced. Peptides can be separated by a variety of other standard means well known to the artisan, including filtration, ultrafiltration, electrophoresis, size chromatography, precipitation with specific antibodies, ion exchange chromatography, isoelectrofocusing, and the like.

Sequencing of the isolated peptides can be performed according to standard techniques such as Edman degradation (Hunkapiller, M.W., et al., Methods Enzymol. 21, 399 [1983]). Other methods suitable for sequencing include mass spectrometry sequencing of individual peptides as previously described (Hunt, et al., Science 225:1261 (1992), which is incorporated herein by reference). Amino acid sequencing of bulk heterogenous peptides (e.g., pooled HPLC fractions) from different class I molecules typically reveals a characteristic sequence motif for each class I allele.

Definition of motifs specific for different class I alleles allows the identification of potential peptide epitopes from an antigenic protein whose amino acid sequence is known. Typically, identification of potential peptide epitopes is initially carried out using a computer to scan the amino acid sequence of a desired antigen for the presence of motifs. The epitopic sequences are then synthesized. The capacity to bind MHC Class molecules is measured in a variety of different ways. One means is a Class I molecule binding assay as described in the related applications, noted above. Other alternatives described in the literature include inhibition of antigen presentation (Sette, et al., I Immunol. 141:3893 (1991), in vitro assembly assays (Townsend, et al., Cell 62:285 (1990), and FACS based assays using mutated ells, such as RMA.S (Melief, et al., Eur. I. Immunol. 21:2963 (1991)).

Next, peptides that test positive in the MHC class I binding assay are assayed for the ability of the peptides to induce specific CTL responses in vitro. For instance, Antigen-presenting cells that have been incubated with a peptide can be assayed for the ability to induce CTL responses in responder cell populations. Antigen-presenting cells can be normal cells such as peripheral blood mononuclear cells or dendritic cells (Inaba, et al., J. Ekp. Med. 166:182 (1987); Boog, Eur. J. Immunol. 18:219 [1988]).

Alternatively, mutant mammalian cell lines that are deficient in their ability to load class I molecules with internally processed peptides, such as the mouse cell lines RMA-S (Kärre, et al., Nature, 319:675 (1986); Ljunggren, et al., Eur. J. Immunol.

10

15

20

25

30

21:2963-2970 (1991)), and the human somatic T cell hybrid, T-2 (Cerundolo, et al., Nature 345:449-452 (1990)) and which have been transfected with the appropriate human class I genes are conveniently used, when peptide is added to them, to test for the capacity of the peptide to induce in vitro primary CTL responses. Other eukaryotic cell lines which could be used include various insect cell lines such as mosquito larvae (ATCC cell lines CCL 125, 126, 1660, 1591, 6585, 6586), silkworm (ATTC CRL 8851), armyworm (ATCC CRL 1711), moth (ATCC CCL 80) and Drosophila cell lines such as a Schneider cell line (see Schneider J. Embryol, Exp. Morphol. 27:353-365 [1927]).

Peripheral blood lymphocytes are conveniently isolated following simple venipuncture or leukapheresis of normal donors or patients and used as the responder cell sources of CTL precursors. In one embodiment, the appropriate antigen-presenting cells are incubated with 10-100 μ M of peptide in serum-free media for 4 hours under appropriate culture conditions. The peptide-loaded antigen-presenting cells are then incubated with the responder cell populations in vitro for 7 to 10 days under optimized culture conditions. Positive CTL activation can be determined by assaying the cultures for the presence of CTLs that kill radiolabeled target cells, both specific peptide-pulsed targets as well as target cells expressing endogenously processed form of the relevant virus or tumor antigen from which the peptide sequence was derived.

Specificity and MHC restriction of the CTL is determined by testing against different peptide target cells expressing appropriate or inappropriate human MHC class I. The peptides that test positive in the MHC binding assays and give rise to specific CTL responses are referred to herein as immunogenic peptides.

The immunogenic peptides can be prepared synthetically, or by recombinant DNA technology or from natural sources such as whole viruses or tumors. Although the peptide will preferably be substantially free of other naturally occurring host cell proteins and fragments thereof, in some embodiments the peptides can be synthetically conjugated to native fragments or particles.

The polypeptides or peptides can be a variety of lengths, either in their neutral (uncharged) forms or in forms which are salts, and either free of modifications such as glycosylation, side chain oxidation, or phosphorylation or containing these modifications, subject to the condition that the modification not destroy the biological activity of the polypeptides as herein described.

10

15

20

25

30

Desirably, the peptide will be as small as possible while still maintaining substantially all of the biological activity of the large peptide. When possible, it may be desirable to optimize peptides of the invention to a length of 9 or 10 amino acid residues, commensurate in size with endogenously processed viral peptides or tumor cell peptides that are bound to MHC class I molecules on the cell surface.

Peptides having the desired activity may be modified as necessary to provide certain desired attributes, e.g., improved pharmacological characteristics, while increasing or at least retaining substantially all of the biological activity of the unmodified pertide to bind the desired MHC molecule and activate the appropriate T cell. For instance, the peptides may be subject to various changes, such as substitutions, either conservative or non-conservative, where such changes might provide for certain advantages in their use, such as improved MHC binding. By conservative substitutions is meant replacing an amino acid residue with another which is biologically and/or chemically similar, e.g., one hydrophobic residue for another, or one polar residue for another. The substitutions include combinations such as Gly, Ala; Val, Ile, Leu, Met; Asp, Glu; Asn, Gln; Ser, Thr; Lys, Arg; and Phe, Tyr. The effect of single amino acid substitutions may also be probed using D-amino acids. Such modifications may be made using well known peptide synthesis procedures, as described in e.g., Merrifield, Science 232:341-347 (1986), Barany and Merrifield, The Peptides, Gross and Meienhofer, eds. (N.Y., Academic Press), pp. 1-284 (1979); and Stewart and Young, Solid Phase Pertide Synthesis, (Rockford, Ill., Pierce), 2d Ed. (1984), incorporated by reference herein.

The peptides can also be modified by extending or decreasing the compound's amino acid sequence, e.g., by the addition or deletion of amino acids. The peptides or analogs of the invention can also be modified by altering the order or composition of certain residues, it being readily appreciated that certain amino acid residues essential for biological activity, e.g., those at critical contact sites or conserved residues, may generally not be altered without an adverse effect on biological activity. The non-critical amino acids need not be limited to those naturally occurring in proteins, such as L- α -amino acids, or their D-isomers, but may include non-natural amino acids as well, such as β - γ - δ -amino acids, as well as many derivatives of L- α -amino acids.

Typically, a series of peptides with single amino acid substitutions are employed to determine the effect of electrostatic charge, hydrophobicity, etc. on binding.

10

15

For instance, a series of positively charged (e.g., Lys or Arg) or negatively charged (e.g., Glu) amino acid substitutions are made along the length of the peptide revealing different patterns of sensitivity towards various MHC molecules and T cell receptors. In addition, multiple substitutions using small, relatively neutral moieties such as Ala, Gly, Pro, or similar residues may be employed. The substitutions may be homo-oligomers or hetero-oligomers. The number and types of residues which are substituted or added depend on the spacing necessary between essential contact points and certain functional attributes which are sought (e.g., hydrophobicity versus hydrophilicity). Increased binding affinity for an MHC molecule or T cell receptor may also be achieved by such substitutions, compared to the affinity of the parent peptide. In any event, such substitutions should employ amino acid residues or other molecular fragments chosen to avoid, for example, steric and charge interference which might disrupt binding.

Amino acid substitutions are typically of single residues. Substitutions, deletions, insertions or any combination thereof may be combined to arrive at a final peptide. Substitutional variants are those in which at least one residue of a peptide has been removed and a different residue inserted in its place. Such substitutions generally are made in accordance with the following Table 2 when it is desired to finely modulate the characteristics of the peptide.

TABLE 2

Original Residue	Exemplary Substitution
Ala	Ser
Arg	Lys, His
Asp	Gln
Asp	Glu
Cys	Ser
Gln	Asn
Glu	Asp
Gly	Pro
His	Lys; Arg
Ile	Leu; Val
Leu	Ile; Val
Lys	Arg; His
Met	Leu; Ile
Phe	Туг; Тгр
Ser	Thr
Thr	Ser
Тгр	Tyr; Phe
Туг	Trp; Phe
Val	fle; Leu
Pro	Gly

10

15

20

25

30

Substantial changes in function (e.g., affinity for MHC molecules or T cell receptors) are made by selecting substitutions that are less conservative than those in Table 2, i.e., selecting residues that differ more significantly in their effect on maintaining (a) the structure of the peptide backbone in the area of the substitution, for example as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site or (c) the bulk of the side chain. The substitutions which in general are expected to produce the greatest changes in peptide properties will be those in which (a) hydrophilic residue, e.g. seryl, is substituted for (or by) a hydrophobic residue, e.g. leucyl, isoleucyl, phenylalanyl, valyl or alanyl; (b) a residue having an electropositive side chain, e.g., lysl, arginyl, or histidyl, is substituted for (or by) an electronegative residue, e.g. glutamyl or aspartyl; or (c) a residue having a bulky side chain, e.g. phenylalanine, is substituted for (or by) one not having a side chain, e.g., glycine.

The peptides may also comprise isosteres of two or more residues in the immunogenic peptide. An isostere as defined here is a sequence of two or more residues that can be substituted for a second sequence because the steric conformation of the first sequence fits a binding site specific for the second sequence. The term specifically includes peptide backbone modifications well known to those skilled in the art. Such modifications include modifications of the amide nitrogen, the α-carbon, amide carbonyl, complete replacement of the amide bond, extensions, deletions or backbone crosslinks. See, generally, Spatola, Chemistry and Biochemistry of Amino Acids, peptides and Proteins, Vol. VII (Weinstein ed., 1983).

Modifications of peptides with various amino acid mimetics or unnatural amino acids are particularly useful in increasing the stability of the peptide in vivo. Stability can be assayed in a number of ways. For instance, peptidases and various biological media, such as human plasma and serum, have been used to test stability. See, e.g., Verhoef et al., Eur. J. Drug Metab. Pharmacokin. 11:291-302 (1986). Half life of the peptides of the present invention is conveniently determined using a 25% human serum (v/v) assay. The protocol is generally as follows. Pooled human serum (Type AB, non-heat inactivated) is delipidated by centrifugation before use. The serum is then diluted to 25% with RPMI tissue culture media and used to test peptide stability. At predetermined time intervals a small amount of reaction solution is removed and added to either 6% aqueous trichloracetic acid or ethanol. The cloudy reaction sample is cooled

10

15

20

25

30

(4°C) for 15 minutes and then spun to pellet the precipitated serum proteins. The presence of the peptides is then determined by reversed-phase HPLC using stability-specific chromatography conditions.

The peptides of the present invention or analogs thereof which have CTL stimulating activity may be modified to provide desired attributes other than improved serum half life. For instance, the ability of the peptides to induce CTL activity can be enhanced by linkage to a sequence which contains at least one epitope that is capable of inducing a T helper cell response. Particularly preferred immunogenic peptides/T helper conjugates are linked by a spacer molecule. The spacer is typically comprised of relatively small, neutral molecules, such as amino acids or amino acid mimetics, which are substantially uncharged under physiological conditions. The spacers are typically selected from, e.g., Ala, Gly, or other neutral spacers of nonpolar amino acids or neutral polar amino acids. It will be understood that the optionally present spacer need not be comprised of the same residues and thus may be a hetero- or homo-oligomer. When present, the spacer will usually be at least one or two residues, more usually three to six residues. Alternatively, the CTL peptide may be linked to the T helper peptide without a spacer.

The immunogenic peptide may be linked to the T helper peptide either directly or via a spacer either at the amino or carboxy terminus of the CTL peptide. The amino terminus of either the immunogenic peptide or the T helper peptide may be acylated. Exemplary T helper peptides include tetamus toxoid 830-843, influenza 307-319, malaria circumsporozoite 382-398 and 378-389.

In some embodiments it may be desirable to include in the pharmaceutical compositions of the invention at least one component which primes CTL. Lipids have been identified as agents capable of priming CTL in vivo against viral antigens. For example, palmitic acid residues can be attached to the alpha and epsilon amino groups of a Lys residue and then linked, e.g., via one or more linking residues such as Gly, Gly-Gly-, Ser, Ser-Ser, or the like, to an immunogenic peptide. The lipidated peptide can then be injected directly in a micellar form, incorporated into a liposome or emulsified in an adjuvant, e.g., incomplete Freund's adjuvant. In a preferred embodiment a particularly effective immunogen comprises palmitic acid attached to alpha and epsilon amino groups

10

15

20

25

30

of Lys, which is attached via linkage, e.g., Ser-Ser, to the amino terminus of the immunogenic peptide.

As another example of lipid priming of CTL responses, E. coli lipoproteins, such as tripalmitoyl-S-glycerylcysteinlyseryl-serine (P₃CSS) can be used to prime virus specific CTL when covalently attached to an appropriate peptide. See, Deres et al., Nature 342:561-564 (1989), incorporated herein by reference. Peptides of the invention can be coupled to P₃CSS, for example, and the lipopeptide administered to an individual to specifically prime a CTL response to the target antigen. Further, as the induction of neutralizing antibodies can also be primed with P₃CSS conjugated to a peptide which displays an appropriate epitope, the two compositions can be combined to more effectively elicit both humoral and cell-mediated responses to infection.

In addition, additional amino acids can be added to the termini of a peptide to provide for ease of linking peptides one to another, for coupling to a carrier support, or larger peptide, for modifying the physical or chemical properties of the peptide or oligopeptide, or the like. Amino acids such as tyrosine, cysteine, lysine, glutamic or aspartic acid, or the like, can be introduced at the C- or N-terminus of the peptide or oligopeptide. Modification at the C terminus in some cases may alter binding characteristics of the peptide. In addition, the peptide or oligopeptide sequences can differ from the natural sequence by being modified by terminal-NH₂ acylation, e.g., by alkanoyl (C₁-C₂₀) or thioglycolyl acetylation, terminal-carboxyl amidation, e.g., ammonia, methylamine, etc. In some instances these modifications may provide sites for linking to a support or other molecule.

The peptides of the invention can be prepared in a wide variety of ways. Because of their relatively short size, the peptides can be synthesized in solution or on a solid support in accordance with conventional techniques. Various automatic synthesizers are commercially available and can be used in accordance with known protocols. See, for example, Stewart and Young, Solid Phase Peptide Synthesis, 2d. ed., Pierce Chemical Co. (1984), supra.

Alternatively, recombinant DNA technology may be employed wherein a nucleotide sequence which encodes an immunogenic peptide of interest is inserted into an expression vector, transformed or transfected into an appropriate host cell and cultivated under conditions suitable for expression. These procedures are generally known in the art,

as described generally in Sambrook et al., <u>Molecular Cloning</u>. A <u>Laboratory Manual</u>, Cold Spring Harbor Press, Cold Spring Harbor, New York (1982), which is incorporated herein by reference. Thus, fusion proteins which comprise one or more peptide sequences of the invention can be used to present the appropriate T cell epitope.

5

10

As the coding sequence for peptides of the length contemplated herein can be synthesized by chemical techniques, for example, the phosphotriester method of Matteucci et al., <u>L. Am. Chem. Soc.</u> 103:3185 (1981), modification can be made simply by substituting the appropriate base(s) for those encoding the native peptide sequence. The coding sequence can then be provided with appropriate linkers and ligated into expression vectors commonly available in the art, and the vectors used to transform suitable hosts to produce the desired fusion protein. A number of such vectors and suitable host systems are now available. For expression of the fusion proteins, the coding sequence will be provided with operably linked start and stop codons, promoter and terminator regions and usually a replication system to provide an expression vector for expression in the desired cellular host. For example, promoter sequences compatible with bacterial hosts are provided in plasmids containing convenient restriction sites for insertion of the desired coding sequence. The resulting expression vectors are transformed into suitable bacterial hosts. Of course, yeast or mammalian cell hosts may also be used, employing suitable vectors and control sequences.

20

15

The peptides of the present invention and pharmaceutical and vaccine compositions thereof are useful for administration to mammals, particularly humans, to treat and/or prevent viral infection and cancer. Examples of diseases which can be treated using the immunogenic peptides of the invention include prostate cancer, hepatitis B, hepatitis C, AIDS, renal carcinoma, cervical carcinoma, lymphoma, CMV and condlytoma acuminatum.

25

30

For pharmaceutical compositions, the immunogenic peptides of the invention are administered to an individual already suffering from cancer or infected with the virus of interest. Those in the incubation phase or the acute phase of infection can be treated with the immunogenic peptides separately or in conjunction with other treatments, as appropriate. In therapeutic applications, compositions are administered to a patient in an amount sufficient to elicit an effective CTL response to the virus or tumor antigen and to cure or at least partially arrest symptoms and/or complications. An amount adequate to

10

15

20

25

30

accomplish this is defined as "therapeutically effective dose." Amounts effective for this use will depend on, e.g., the peptide composition, the manner of administration, the stage and severity of the disease being treated, the weight and general state of health of the patient, and the judgment of the prescribing physician, but generally range for the initial immunization (that is for therapeutic or prophylactic administration) from about $1.0 \mu g$ to about $5000 \mu g$ of peptide for a 70 kg patient, followed by boosting dosages of from about $1.0 \mu g$ to about $1000 \mu g$ of peptide pursuant to a boosting regimen over weeks to months depending upon the patient's response and condition by measuring specific CTL activity in the patient's blood. It must be kept in mind that the peptides and compositions of the present invention may generally be employed in serious disease states, that is, life-threatening or potentially life threatening situations. In such cases, in view of the minimization of extraneous substances and the relative nontoxic nature of the peptides, it is possible and may be felt desirable by the treating physician to administer substantial excesses of these peptide compositions.

For therapeutic use, administration should begin at the first sign of viral infection or the detection or surgical removal of tumors or shortly after diagnosis in the case of acute infection. This is followed by boosting doses until at least symptoms are substantially abated and for a period thereafter. In chronic infection, loading doses followed by boosting doses may be required.

Treatment of an infected individual with the compositions of the invention may hasten resolution of the infection in acutely infected individuals. For those individuals susceptible (or predisposed) to developing chronic infection the compositions are particularly useful in methods for preventing the evolution from acute to chronic infection. Where the susceptible individuals are identified prior to or during infection, for instance, as described herein, the composition can be targeted to them, minimizing need for administration to a larger population.

The peptide compositions can also be used for the treatment of chronic infection and to stimulate the immune system to eliminate virus-infected cells in carriers. It is important to provide an amount of immuno-potentiating peptide in a formulation and mode of administration sufficient to effectively stimulate a cytotoxic T cell response. Thus, for treatment of chronic infection, a representative dose is in the range of about 1.0 μ g to about 5000 μ g, preferably about 5 μ g to 1000 μ g for a 70 kg patient per dose.

10

15

20

25

30

Immunizing doses followed by boosting doses at established intervals, e.g., from one to four weeks, may be required, possibly for a prolonged period of time to effectively immunize an individual. In the case of chronic infection, administration should continue until at least clinical symptoms or laboratory tests indicate that the viral infection has been eliminated or substantially abated and for a period thereafter.

The pharmaceutical compositions for therapeutic treatment are intended for parenteral, topical, oral or local administration. Preferably, the pharmaceutical compositions are administered parenterally, e.g., intravenously, subcutaneously, intradermally, or intramuscularly. Thus, the invention provides compositions for parenteral administration which comprise a solution of the immunogenic peptides dissolved or suspended in an acceptable carrier, preferably an aqueous carrier. A variety of aqueous carriers may be used, e.g., water, buffered water, 0.8% saline, 0.3% glycine, hyaluronic acid and the like. These compositions may be sterilized by conventional, well known sterilization techniques, or may be sterile filtered. The resulting aqueous solutions may be packaged for use as is, or lyophilized, the lyophilized preparation being combined with a sterile solution prior to administration. The compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions, such as pH adjusting and buffering agents, tonicity adjusting agents, wetting agents and the like, for example, sodium acetate, sodium lactate, sodium chloride, potassium chloride, calcium chloride, sorbitan monolaurate, triethanolamine oleate, etc.

The concentration of CTL stimulatory peptides of the invention in the pharmaceutical formulations can vary widely, i.e., from less than about 0.1%, usually at or at least about 2% to as much as 20% to 50% or more by weight, and will be selected primarily by fluid volumes, viscosities, etc., in accordance with the particular mode of administration selected.

The peptides of the invention may also be administered via liposomes, which serve to target the peptides to a particular tissue, such as lymphoid tissue, or targeted selectively to infected cells, as well as increase the half-life of the peptide composition. Liposomes include emulsions, foams, micelles, insoluble monolayers, liquid crystals, phospholipid dispersions, lamellar layers and the like. In these preparations the peptide to be delivered is incorporated as part of a liposome, alone or in conjunction with a molecule which binds to, e.g., a receptor prevalent among lymphoid cells, such as monoclonal

10

15

20

25

30

antibodies which bind to the CD45 antigen, or with other therapeutic or immunogenic compositions. Thus, liposomes either filled or decorated with a desired peptide of the invention can be directed to the site of lymphoid cells, where the liposomes then deliver the selected therapeutic/immunogenic peptide compositions. Liposomes for use in the invention are formed from standard vesicle-forming lipids, which generally include neutral and negatively charged phospholipids and a sterol, such as cholesterol. The selection of lipids is generally guided by consideration of, e.g., liposome size, acid lability and stability of the liposomes in the blood stream. A variety of methods are available for preparing liposomes, as described in, e.g., Szoka et al., Ann. Rev. Biophys. Bioeng. 9:467 (1980), U.S. Patent Nos. 4,235,871, 4,501,728, 4,837,028, and 5,019,369, incorporated herein by reference.

For targeting to the immune cells, a ligand to be incorporated into the liposome can include, e.g., antibodies or fragments thereof specific for cell surface determinants of the desired immune system cells. A liposome suspension containing a peptide may be administered intravenously, locally, topically, etc. in a dose which varies according to, inter alia, the manner of administration, the peptide being delivered, and the stage of the disease being treated.

For solid compositions, conventional nontoxic solid carriers may be used which include, for example, pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharin, talcum, cellulose, glucose, sucrose, magnesium carbonate, and the like. For oral administration, a pharmaceutically acceptable nontoxic composition is formed by incorporating any of the normally employed excipients, such as those carriers previously listed, and generally 10-95% of active ingredient, that is, one or more peptides of the invention, and more preferably at a concentration of 25%-75%.

For aerosol administration, the immunogenic peptides are preferably supplied in finely divided form along with a surfactant and propellant. Typical percentages of peptides are 0.01%-20% by weight, preferably 1%-10%. The surfactant must, of course, be nontoxic, and preferably soluble in the propellant. Representative of such agents are the esters or partial esters of fatty acids containing from 6 to 22 carbon atoms, such as caproic, octanoic, lauric, palmitic, stearic, linoleic, linolenic, olesteric and oleic acids with an aliphatic polyhydric alcohol or its cyclic anhydride. Mixed esters, such as mixed or natural glycerides may be employed. The surfactant may constitute 0.1%-20% by weight

of the composition, preferably 0.25-5%. The balance of the composition is ordinarily propellant. A carrier can also be included, as desired, as with, e.g., lecithin for intranasal delivery.

5

10

15

20

25

30

In another aspect the present invention is directed to vaccines which contain as an active ingredient an immunogenically effective amount of an immunogenic peptide as described herein. The peptide(s) may be introduced into a host, including humans, linked to its own carrier or as a homopolymer or heteropolymer of active peptide units. Such a polymer has the advantage of increased immunological reaction and, where different peptides are used to make up the polymer, the additional ability to induce antibodies and/or CTLs that react with different antigenic determinants of the virus or tumor cells. Useful carriers are well known in the art, and include, e.g., thyroglobulin, albumins such as human serum albumin, tetanus toxoid, polyamino acids such as poly(lysine:glutamic acid), influenza, hepatitis B virus core protein, hepatitis B virus recombinant vaccine and the like. The vaccines can also contain a physiologically tolerable (acceptable) diluent such as water, phosphate buffered saline, or saline, and further typically include an adjuvant. Adjuvants such as incomplete Freund's adjuvant, aluminum phosphate, aluminum hydroxide, or alum are materials well known in the art. And, as mentioned above, CTL responses can be primed by conjugating peptides of the invention to lipids, such as P₃CSS. Upon immunization with a peptide composition as described herein, via injection, aerosol, oral, transdermal or other route, the immune system of the host responds to the vaccine by producing large amounts of CTLs specific for the desired antigen, and the host becomes at least partially immune to later infection, or resistant to developing chronic infection.

Vaccine compositions containing the peptides of the invention are administered to a patient susceptible to or otherwise at risk of viral infection or cancer to elicit an immune response against the antigen and thus enhance the patient's own immune response capabilities. Such an amount is defined to be an "immunogenically effective dose." In this use, the precise amounts again depend on the patient's state of health and weight, the mode of administration, the nature of the formulation, etc., but generally range from about $1.0~\mu g$ to about $5000~\mu g$ per 70~kilogram patient, more commonly from about $10~\mu g$ to about $500~\mu g$ mg per 70~kilogram patient, more commonly from about $10~\mu g$ to about $500~\mu g$ mg per 70~kilogram patient.

10

15

20

25

30

In some instances it may be desirable to combine the peptide vaccines of the invention with vaccines which induce neutralizing antibody responses to the virus of interest, particularly to viral envelope antigens.

For therapeutic or immunization purposes, nucleic acids encoding one or more of the peptides of the invention can also be admisitered to the patient. A number of methods are conveniently used to deliver the nucleic acids to the patient. For instance, the nulceic acid can be delivered directly, as "naked DNA". This approach is described, for instance, in Wolff et. al., Science 247: 1465-1468 (1990) as well as U.S. Patent Nos. 5,580,859 and 5,589,466. The nucleic acids can also be administered using ballistic delivery as described, for instance, in U.S. Patent No. 5,204,253. Particles comprised solely of DNA can be administered. Alternatively, DNA can be adhered to particles, such as gold particles. The nucleci acids can also be delivered complexed to cationic compounds, such as cationic lipids. Lipid-mediated gene delivery methods are described, for instance, in WO 96/18372; WO 93/24640; Mannino and Gould-Fogerite (1988) BioTechniques 6(7): 682-691; Rose U.S. Pat No. 5,279,833; WO 91/06309; and Felgner et al. (1987) Proc. Natl. Acad. Sci. USA 84: 7413-7414. The peptides of the invention can also be expressed by attenuated viral hosts, such as vaccinia or fowlpox. This approach involves the use of vaccinia virus as a vector to express nucleotide sequences that encode the peptides of the invention. Upon introduction into an acutely or chronically infected host or into a noninfected host, the recombinant vaccinia virus expresses the immunogenic peptide, and thereby elicits a host CTL response. Vaccinia vectors and methods useful in immunization protocols are described in, e.g., U.S. Patent No. 4,722,848, incorporated herein by reference. Another vector is BCG (Bacille Calmette Guerin). BCG vectors are described in Stover et al. (Nature 351:456-460 (1991)) which is incorporated herein by reference. A wide variety of other vectors useful for therapeutic administration or immunization of the peptides of the invention, e.g., Salmonella typhi vectors and the like, will be apparent to those skilled in the art from the description herein.

A preferred means of administering nucleic acids encoding the peptides of the invention uses minigene constructs encoding multiple epitopes of the invention. To create a DNA sequence encoding the selected CTL epitopes (minigene) for expression in human cells, the amino acid sequences of the epitopes are reverse translated. A human codon usage table is used to guide the codon choice for each amino acid. These epitope-encoding

10

15

20

25

30

DNA sequences are directly adjoined, creating a continuous polypeptide sequence. To optimize expression and/or immunogenicity, additional elements can be incorporated into the minigene design. Examples of amino acid sequence that could be reverse translated and included in the minigene sequence include: helper T lymphocyte epitopes, a leader (signal) sequence, and an endoplasmic reticulum retention signal. In addition, MHC presentation of CTL epitopes may be improved by including synthetic (e.g. poly-alanine) or naturally-occurring flanking sequences adjacent to the CTL epitopes.

The minigene sequence is converted to DNA by assembling oligonucleotides that encode the plus and minus strands of the minigene. Overlapping oligonucleotides (30-100 bases long) are synthesized, phosphorylated, purified and annealed under appropriate conditions using well known techniques. he ends of the oligonucleotides are joined using T4 DNA ligase. This synthetic minigene, encoding the CTL epitope polypeptide, can then cloned into a desired expression vector.

Standard regulatory sequences well known to those of skill in the art are included in the vector to ensure expression in the target cells. Several vector elements are required: a promoter with a down-stream cloning site for minigene insertion; a polyadenylation signal for efficient transcription termination; an *E. coli* origin of replication; and an *E. coli* selectable marker (e.g. ampicillin or kanamycin resistance). Numerous promoters can be used for this purpose, e.g., the human cytomegalovirus (hCMV) promoter. See, U.S. Patent Nos. 5,580,859 and 5,589,466 for other suitable promoter sequences,

Additional vector modifications may be desired to optimize minigene expression and immunogenicity. In some cases, introns are required for efficient gene expression, and one or more synthetic or naturally-occurring introns could be incorporated into the transcribed region of the minigene. The inclusion of mRNA stabilization sequences can also be considered for increasing minigene expression. It has recently been proposed that immunostimulatory sequences (ISSs or CpGs) play a role in the immunogenicity of DNA vaccines. These sequences could be included in the vector, outside the minigene coding sequence, if found to enhance immunogenicity.

In some embodiments, a bicistronic expression vector, to allow production of the minigene-encoded epitopes and a second protein included to enhance or decrease immunogenicity can be used. Examples of proteins or polypeptides that could beneficially

10

15

20

25

30

enhance the immune response if co-expressed include cytokines (e.g., IL2, IL12, GM-CSF), cytokine-inducing molecules (e.g. LeIF) or costimulatory molecules. Helper (HTL) epitopes could be joined to intracellular targeting signals and expressed separately from the CTL epitopes. This would allow direction of the HTL epitopes to a cell compartment different than the CTL epitopes. If required, this could facilitate more efficient entry of HTL epitopes into the MHC class II pathway, thereby improving CTL induction. In contrast to CTL induction, specifically decreasing the immune response by co-expression of immunosuppressive molecules (e.g. TGF-β) may be beneficial in certain diseases.

Once an expression vector is selected, the minigene is cloned into the polylinker region downstream of the promoter. This plasmid is transformed into an appropriate *E. coli* strain, and DNA is prepared using standard techniques. The orientation and DNA sequence of the minigene, as well as all other elements included in the vector, are confirmed using restriction mapping and DNA sequence analysis. Bacterial cells harboring the correct plasmid can be stored as a master cell bank and a working cell bank.

Therapeutic quantities of plasmid DNA are produced by fermentation in *E. coli*, followed by purification. Aliquots from the working cell bank are used to inoculate fermentation medium (such as Terrific Broth), and grown to saturation in shaker flasks or a bioreactor according to well known techniques. Plasmid DNA can be purified using standard bioseparation technologies such as solid phase anion-exchange resins supplied by Quiagen. If required, supercoiled DNA can be isolated from the open circular and linear forms using gel electrophoresis or other methods.

Purified plasmid DNA can be prepared for injection using a variety of formulations. The simplest of these is reconstitution of lyophilized DNA in sterile phosphate-buffer saline (PBS). A variety of methods have been described, and new techniques may become available. As noted above, nucleic acids are conveniently formulated with cationic tipids. In addition, glycolipids, fusogenic liposomes, peptides and compounds referred to collectively as protective, interactive, non-condensing (PINC) could also be complexed to purified plasmid DNA to influence variables such as stability, intramuscular dispersion, or trafficking to specific organs or cell types.

Target cell sensitization can be used as a functional assay for expression and MHC class I presentation of minigene-encoded CTL epitopes. The plasmid DNA is

10

15

20

25

30

introduced into a mammalian cell line that is suitable as a target for standard CTL chromium release assays. The transfection method used will be dependent on the final formulation. Electroporation can be used for "naked" DNA, whereas cationic lipids allow direct in vitro transfection. A plasmid expressing green fluorescent protein (GFP) can be co-transfected to allow enrichment of transfected cells using fluorescence activated cell sorting (FACS). These cells are then chromium-51 labeled and used as target cells for epitope-specific CTL lines. Cytolysis, detected by 51Cr release, indicates production of MHC presentation of minigene-encoded CTL epitopes.

In vivo immunogenicity is a second approach for functional testing of minigene DNA formulations. Transgenic mice expressing appropriate human MHC molecules are immunized with the DNA product. The dose and route of administration are formulation dependent (e.g. IM for DNA in PBS, IP for lipid-complexed DNA). Twenty-one days after immunization, splenocytes are harvested and restimulated for 1 week in the presence of peptides encoding each epitope being tested. These effector cells (CTLs) are assayed for cytolysis of peptide-loaded, chromium-51 labeled target cells using standard techniques. Lysis of target cells sensitized by MHC loading of peptides corresponding to minigene-encoded epitopes demonstrates DNA vaccine function for in vivo induction of CTLs.

Antigenic peptides may be used to elicit CTL ex vivo, as well. The resulting CTL, can be used to treat chronic infections (viral or bacterial) or tumors in patients that do not respond to other conventional forms of therapy, or will not respond to a peptide vaccine approach of therapy. Ex vivo CTL responses to a particular pathogen (infectious agent or tumor antigen) are induced by incubating in tissue culture the patient's CTL precursor cells (CTLp) together with a source of antigen-presenting cells (APC) and the appropriate immunogenic peptide. After an appropriate incubation time (typically 1-4 weeks), in which the CTLp are activated and mature and expand into effector CTL, the cells are infused back into the patient, where they will destroy their specific target cell (an infected cell or a tumor cell).

The peptides may also find use as diagnostic reagents. For example, a peptide of the invention may be used to determine the susceptibility of a particular individual to a treatment regimen which employs the peptide or related peptides, and thus may be helpful in modifying an existing treatment protocol or in determining a prognosis for an affected

individual. In addition, the peptides may also be used to predict which individuals will be at substantial risk for developing chronic infection.

The following example is offered by way of illustration, not by way of limitation.

5

10

15

Example 1

Class I antigen isolation was carried out as described in the related applications, noted above. Naturally processed peptides were then isolated and sequenced as described there. An allele-specific motif and algorithms were determined and quantitative binding assays were carried out.

Using the motifs identified above for various HLA alleles, amino acid sequences from a number of antigens were analyzed for the presence of these motifs. Tables 3- ** provide the results of these searches.

The above examples are provided to illustrate the invention but not to limit its scope. Other variants of the invention will be readily apparent to one of ordinary skill in the art and are encompassed by the appended claims. All publications, patents, and patent applications cited herein are bereby incorporated by reference.

Table 3

20

25

Sequence	Antigen	Molecula
PTPSPTYKAFLSK	HBV	POL
GTLPQEHIVLKLK	HBV	POL
PTFSPTYKAPLCK	HBV	POL
GTLPQBHIVLKIK	HBV	POL
LVVSYVNTNMGLK	HBV	POL
STTDLEAYFEDCLFK	HBV	x
LVVSYVNVNKGLK	HBV	NUC
GTLPQDHIVQKIK	HBV	POL
STSSCLHQSAVRK	HBV	POL
TTVNAHQILPKVLHK	KBV	ж
RTPARVTGGVFLVDK	HBV	POL

Molecule Seguence Antigen HTTNFASK HBV ayw FTPSPTYK HBV ayw PTYKAPLCKQY HBVayw CTTPAQGTSMY **HBVayw** PTSCPPTCPGY HBVayw PSQFSRGNY HBVayw LMPLYACIOSK HBVayw RVTGGVFLVDK HBVayw POL HBVayw HTLWKAGILYK **QTRHYLHTLWK HBVayw GTDNSVVLSRK** HBVayw SYVNTNMGLKF HBVayw LYSILSPF HBVayw WYWGPSLYSIL **HBVayw** LYSILSPFLPL HBVayw PYKEFGATVEL HBVayw CTWMNSTGFTK HCV MYVGDLCGSVF HCV VYLLPRRGPRL HCV **ITKIQNPRVYY** HIV KVYLAWVPAHK HIV KMIGGIGGFIK HIV IVASCDRCQLK HIV KVKQWPLTBBK HIV TVNDIQKLVGK HIV DVKQLTBAVQK HIV AVVIQUESDIK HIV MINGINGREEK HIV VTVYYGVPVWK HIV LTEDRWNKPQK HIV ATDIQTKBLQK HIV OTKELOKOITK HIV

5

10

15

20

25

Sequence	Antigen	Molecule
WTVQPIVLPBK	HIV	
QVPLRPMTYK	HIV nef	
	73-82	
QVPLYPMTPK	HIV nef	
	73-82	
VPLRPMTYK	HIV nef	
	74-82	
AVDLYHPLK	HIV nef	
	84-94	
AVDLSHFLK	HIV nef	
	84-94	
ATLYCVHQR	HIV, p17,	
	82-90	
RLRDLLLIV	HIV-1 NL43	
	768-776	
RLRDLLLIVTR	HIV-1 NL43	
THE PERSON IN THE PERSON	768-778	
RLRDYLLIVTR	HIV-1 NL43	
LRDLLLIVTR	HIV-1 NL43	
IKDAMI VIK	769-778	
OIYOBPFKNLK	HIV-1 RT	
	507-517	
AVPIHNFK	HIVcon	
RTIMAWVK	HIVcon	
BTAYFILK	HIVcon	
RLRPGGKKK	HIVgag	
	p17/2	
KIRLRPGGKK	HIVgag	1
	p17/2	
KIRLRPGGK	HIVgag]
	p17/2	
ETTDLYCY	HPV16	E7
GTLGIVCPICSOK	нруз6	B7

Sequence	Antigen	Molecule
LMGTLGIVCPICSQK	HPV16	E7
AVCDKCLK	HPV16	E 6
PYAVCDKCLKP	HPV16	E6
HYCYSLYGTTL	HPV16	E6
FYSRIREL	HPV16	B6
TLEKLTNTGLY	HPV18	E6
KTVLELTEVFEFAFK	HPV18	R6
TMLCMCCK ·	HPV18	E7
NTSLQDIEITCVYCK	HPV18	E6
EVFEFAFK	HPV18	E6
KOSSKALOR	Leukemia	b3A2 CMI
atgfkossk	Leukemia	рзаг смі
HSATGFKOSSK	Leukemia	p3A2 CMI
FKQSSKALQR	Leukemia	þ3A2 CMI
VTCLGLSY	MAGE1	
ITKKVA DLVGF LLL K	MAGE1	
LVGFLLLK	MAGE1	<u> </u>
VTKABMLESVIKNYK	MAGE1	
TSCILESLFR	MAGE1	
NYKHCFPEI	MAGE1	
SYVLVICL	MAGEL	
ETOPISHTY	MAGEL (a)	
ETDPTSHLY	MAGE1 (a)	ļ
BTDPTSNTY	MAGE1 (a)	
BTDPTSHVY	MAGR1 (a)	
ETOPTSHSY	MAGE1 (a)	ļ
ETOPASHTY	MAGEL (a)	<u> </u>
BVDPTSHTY	MAGEL (a)	ļ
ETDPTGHTY	MAGE1 (a)	
ETDRTSHTY	MAGE1(a)	
RADPTSHTY	MAGEL (a)	<u> </u>
ETVPTSHTY	MAGE1 (a)	1
	LMGTLGIVCPICSQK AVCDKCLK PYAVCDKCLKF HYCYSLYGTTL FYSRIREL TLEKLTNIGLY KTVLELTEVFEFAFK TMLCMCCK NTSLQDIEITCVYCK EVFEFAFK KQSSKALQR ATGFKQSSK HSATGFKQSSK FKQSSKALQR VTCLGLSY ITKKVADLVGFLLLK LVGFLLLK VTKAEMLESVIKNYK TSCILESLFR NYKHCFPEI SYVLVTCL ETDPISHTY ETDPISHTY ETDPTSHLY ETDPTSHLY ETDPTSHTY ETDPTSHTY	IMGTLGIVCPICSQK HPV16 AVCDKCLK HPV16 PYAVCDKCLKF HPV16 HYCYSLYGTTL HPV16 FYSRIREL HPV16 TLEKLTNIGLY HPV18 KTVLELTEVFEFAFK HPV18 TMLCMCCK HPV18 EVFEFAFK HPV18 KOSSKALOR Leukemia ATGFKQSSK Leukemia FKQSSKALOR Leukemia MAGE1 FTDFSSKALOR Leukemia HAGE1 WAGE1 WAGE1 BYDFILLK MAGE1 BYDFILLK MAGE1 BYDFISHTY MAGE1 BYDFISHTY MAGE1 BYDFTSHTY

Sequence	Antigen	Molecule
ETDPTSHTY	mage1	
	consensus	
RIDPIGHSY	MAGE1 T(a)	
MFPDLESEF	MAGE2	
TTINYTLWR	MAGE2	
Vipskasey	MAGE2	
LVHPLLLKY	MAGE2	
LVHFLLLKY	MAGE2	
LVHPLLLKYR	MAGE2	
PVIFSKASBY	MAGE2	
STTINYTLMR	MAGE2	
VVEVVPISH	MAGE2	
eylqlvfg1	MAGE2	
IFSKASEYL	MAGB2	
SPSTTINYTL	MAGE2	
LYILVTCLGL	MAGE2	<u> </u>
PATCLGLSY	MAGE3	
VVGNWQYFFPVIFSK	MAGE3	
LIIVLAIIAR	MAGE3	
YPPPVIPSK	MAGES	
NMOALLA	MAGE3	
NWQYFFPVIF	MAGE3	
IFEKASSSL	MAGR3	
EVDPTSNTY	MAGB41	
RYPLTPGWCY	nef/182	
RYPLTFGWC	nef/182	
ATOIPSYK	PAP	ļ
LTELYPEK	PAP	ļ
HSPPHPLY	PSA	
TORPALGITCY	PSA	
VTKFMLCAGRWTGGK	PSA	
HVIENDVCAQVHPOK	PSA	<u> </u>

0

Sequence	Antigen	Molecule
LYDMSLLKNRF	PSA	
ETDPTGHSY	T2 analog o	f MAGE-3

1,00722	1,0741	1.1142	1.07	1.07%	1.0712	igi		 	Ē	Ē	Ē	::	Į.	5	ië	1201	199	- E		- ieg	- 2	ig		ă	1,0724	100	EZD.	SLED!	1.0217	1,024	1000	10317	1000	ā	Ē	Ē	Pepilde
TOVYMENT	TENMONOTAL	RLVHRDLAAR	OF INSTITETITY	KVLRBATSPK	CRORCEXCEX	TILWKDIFHK	DISYMPHAK	+	H	1	H	H	╁	CAVACILIX		t	┢	H	LYNGRAM	WANTED		-	Н	LOBRADICA	MATCHARA	CIPTABARK	TANTACACAL	Н	A313GRGTTR /	PTHQSDWWSY	H	Н	-	CTQLFEDNY	Maradiam		
5	Б	9	15	8	5	8	•	•	•	9	9	•	•	9	•	•	•	9	9	•	•	5	B	Ħ	ಕ	5	Б	5	5	5	•	•	9	J	•	9	A
c-ERB2	c-ER82	¢-E2822	c-E1182	cers2	c-63882	c-Errez	c-ERB2	2000	~ERB2	0-ER#2	e-ER12	c-ERB2	≎£RB2	c-8202	c-83192	e-23882	e-ERB2	≎€RB2	c-EXB2	0-83R812	≎EX82	⇔ER#2	€882	◆88.812	o-22832	' cers:	c-ERB2	≎EXB2	÷8882	CE182	CERES?	e-ERB2	~ £ R H2	e ERB2	≎EMB2	C28.82	Virus
																																					Strain
																																					Molecule
8	Ð	E :	<u>=</u>	Ę	Ħ	5	8	22	71	218	83	8	¥	Ē	3	163	S	¥	Z	8	Ē	Ē	뚕	Ē	£	Ē	3	8	g	2	3	\$	Ξ	5	E	2	Pas.
3,11	Ξ	<u></u>	=	<u>:</u>	3.11	<u></u>	3,11	3,11	3,11	<u></u>	111	1.1	111	3,11	1.11	311	3,11	3,11	3.11	11,6	11,6	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	Matif
	_																					9 20 20 20		ĝ	A 0035	ĝ	=	=		2.7	8	2	0.5	0	7.	16	∆ 1
	! ·																										٥							i			A2.1
2003	2	اه ع	ş	5	120	0,043	CODE	AD000	0019	000	2 2 2 3 3 3		00007	0007	ΩĐ	023	2	6	ē	2	ş	A.000	0000	00012		ABB	0000	•	989		B	A	۰	•	8	600	A32
012	5	-	8	£	190	36	8	1100	8	ĝ	ğ	ADB	5	2	2	Ē	2000	g	ĝ	22		A	<u>g</u>	A	8	ŝ	ğ	•	٥			â	8	00g	-	2002	AII
	i																										•										757

Table 4

1.1139	E11.1	1.1129 R	1,0725	\dashv	1,0726	-	1.1143	1.1127	וו נצווו		1.0745 V	1.0731	Pepiide
ELWAIKWIN	CLACHQUEAR	RTVCACCCAR	CILLICAROOK	VVPCILIDGR	CAVBCSCAK	CVVPCILIKE	LVSEFSRMAR	ILKCCVLIQR	TYPWDQLFR	SVEQNLQVIR	LVKSPNIVK	SILVETEURK	Sequence
5	Б	5	8	5	10	10	10	5	16	5	5	5	*
≎883 ≎	⇔E383 2	· c-EXB2	~ERB2	c-ERB2	c-ERB2	cEKB2	c-ERB2	c-ERB2	c-ERB2	C-ERB2	CERR2	C-EMH2	Virus
													Strain
								!		:	:		Molecule
747	8	217	83	669	*	8	22	¥	Ş	23	3	. 213	Pos.
3,11	3,11	3,11	3,11	3,11	<u>.</u>	3,5	3.	311	:-	 	<u></u>	3.11	Motif
								!		:		;	A1
									:	:	:	!!!	A2.1
0.0009	2011	5	See	600	8	Store	2007	200	0.003	0.017	2	83	A332
0.0099	•	0.013	2004	9197	20062	a E	000	gans	933	3	0007	2	ΑIJ
										•			AZA

1,0257	ğ		-	1.0293	1.0683	19901	- CE 95	8	Pepiide
ł	4	Н	\dashv	-	Н	Н			de .
	CHARACTURE	VIKOTAMIK	KELYNLER	CVPVYCCSK	CHWVACUPY	PYCEADYFEN	PLRESIVCY	ACEVDALE	Sequence
	N.	XIX	URR	X	YVEV	YFEY	Ş	VEY	nce
;	5	•	•	9	5	5	9	9	*
	IBNA	IVNEE	EBNAI	EBNAI	EBNAI	EBNAI	EBNAI		Virus
								1	Strain
									Molecule
3	5	878	514	8	S01		553	ĝ	Pos.
=	3,11	3,11	3,11	3.11	_	-	_		Motif
					910.0	0015	0,010	910.0	A1
									A2.1
	OLOLO		0.31	030					2.07
200	22	0.034	0.12	0.61					IIV
									HEV

AA Virus Strain Molecule Pos. A 9 FILL A N.					2	82	Z.P	٨	яIJ	8	REVIONCIEL	5.0112
AA Virus Strain Molecule Pos. Molif A1 A2.1 9 FLU A NP 44 1 1.06 9 FLU A NP 255 3 20 9 FLU A NP 265 3 20 9 FLU A NP 265 3 20 10 FLU A NP 265 3 20					24	21.6	Ą	>	Ē	•	THOMESAY	2000
AA Virus Strain Molecule Pos. Molif A1 A2.1 9 FLU A NI 265 3	L				24	39	Z	٨	EU.	•	PYCHCTEL	19005
AA Virus Strain Molecule Pos. Molif A1 A2.1 9 FILU A NI 265 3 10 FILU A NI 250 3	—	20024			ı	65	Ę	•	Æ	5	BUANTAMORIE	LOTOS
AA Virus Strain Molecule Pos. Molif A1 A2.1 9 FILU A NI 265 3 10 FILU A NI 266 3	-	2002			Ų,	25	폱	^	P.U	5	RSRYWARTR	EDIOS
AA Virus Strain Molecule Pos. Molif A1 A2.1 9 FILU A NP 265 3 9 FILU A NP 266 3 10 FILU A NP 266 3	-				3	gg.	Ž	*		5	ANSTITUSS A	20102
AA Virus Strain Molecule Pos. Molif A1 A2.1 9 FLU A NI 221 3 10 FLU A NI 220 3 10 FLU A NI 256 3 10 FLU A NI 256 3	-	0.019			3	23	Ą	*		5	BSCAACAAVK	SOICE
AA Virus Strain Molecule Pos. Molif A1 A2.1 9 FLU A NI 20 1 0020 9 FLU A NI 21 3 9 FLU A NI 221 3 9 FLU A NI 32 3 9 FLU A NI 66 3 9 FLU A NI 220 3 10 FLU A NI 200 3 10 FLU A NI 165 3	•	23			3	Œ	Ą	*		8	MHVASDETIFT	3,0096
AA Virus Strain Molecule Pos. Molif A1 A2.1 9 FLU A NI 36 3 9 FLU A NI 221 3 9 FLU A NI 166 3 9 FLU A NI 66 3		0.50			3	2	Ę	>	, Am	5	KMIDGIGRPY	5,0095
AA Virus Strain Molecule Pos. Molif A1 A2.1 9 FLU A NI 37 1 0020 9 FLU A NP 265 3 9 FLU A NP 213 3 9 FLU A NP 166 3 9 FLU A NP 66 3 9 FLU A NP 66 3 9 FLU A NP 66 3		0.12			3	165	Ę	>	ยบ	10	STHOOGSLINE	5.0104
AA Virus Strain Molecule Pos. Molif A1 A2.1 9 FLU A Ni 37 1 0020 9 FLU A Ni 265 3 9 FLU A Ni 21 3 9 FLU A Ni 221 3 9 FLU A Ni 266 3 9 FLU A Ni 266 3 9 FLU A Ni 266 3		9,0028			3	25	Z,	>	P.U	9	CINDRAFWE	5.0012
AA Virus Strain Molecule Pos. Molif A1 A2.1 9 FLU A NP 37 1 0020 9 FLU A NP 265 3 9 FLU A NP 213 3 9 FLU A NP 166 3 9 FLU A NP 66 3	. '	1800			u	8	Ę	٨	FLU	9	MOMOTELK	5.0054
AA Virus Strain Molecule Pos. Molif A1 A2.1 9 FLU A NP 37 1 0.029 9 FLU A NP 21 3 9 FLU A NP 22 3 9 FLU A NP 22 3		9000			3	8	Z	*	FW	9	MYLSAFDER	\$,0019
AA Virus Strain Molecule Pos. Molif A1 A2.1 9 FLU A Ni 265 3 9 FLU A Np 221 3 9 FLU A Np 166 3		2099				Ħ	Z	>	EU.	9	MIDGIGRPY	5.0048
AA Virus Strain Molecule Pos. Molif A1 A2.1 9 FLU A NP 37 1 0020 9 FLU A NP 265 3 9 FLU A NP 721 3		ğ			u	5	ξ	>	FLU	9	LINGCSTLPR	5.0046
AA Virus Strain Molecule Pos. Motif At A2.1 9 FLU A NP 377 1 0020 9 FLU A NP 265 3	1	0.23			 	2	Z	×	FW	9	RMCNILKCK	5.0051
AA Virus Strain Molecule Pos. Motif At A2.1 9 FW A NP 44 1 1.0021		15			u	8	Z,	>	FLU	9	ILROSVAHK	3,004
AA Virus Strain Molecule Pos. Motif At A2.1 9 Ftt A Ni 44 1 3.6			!	0.020	_	A	Z,	>	FW.	٠	STLELESRY	5.0TUS
AA Virus Strain Molecule Pos. Motif A1 A2.1				3.6	_	2	Ž.	^	F	9	CTELKLSDY	S.OXXX
		A3.2	A2.1	ΑI	Moiif	8	Molecule	Strain	Virus	*	Sequence	Peptide

2.0231	1.0542	202	1.074	7000	1,5093	2023	1.05.1	2006	1.0006	1.0766	2.0241	1.03%	20042	16/201	1407	3.0216	1,0911	20239	10515	Ster!	20121	20124	20115	1.0378	1.0174	20119	20113	20120	2.0127	1.0166	1,0397	1.0208	2.0126	2.0125	1.0186	1.0155	Pepiide
15CPPICPGY	Н	THEADCLEMY		BSASRCCSPY			PLDKGIGPY	MINDELSET	TTPAQGTSHY	LIVEARABOOT	KINGEKLALY			KTRGREDALX	H	Н	ATHRADOOM	Н	LIDPRYBCLY	DILDYASALY	ANDVISTES	PSINCHUCLY	ASPOLUTION	ALMITTER	PLDKCIKPY	Н	PSSWAFAKY	PSQPSBCNY	MEPTOLEAY	KNCHFICLY	LIKOMNILY	PTICRISLY	MSTTDLEAY	PETGRISLY	SLDWSAAPY	HASATOLI	Sequence
10	5	150	ಶ	8	5	15	10	10	10	16	10	10	15	10	10	10	10	10	5	16	9	9	•	9] 9	9	9	9	9	9	9	9	9	9	9	9	*
A8H	KBY	HBV	ASH	A8H	ASH	AEH	ABH	ARH	ABY	ABH	ABH	ABH	HBV	ABH	HBV	HBV	ABH	AB-	ABH	HBY	HBV	HBV	HBV	HBY	HBY	, HBA	HBV	ABH	ASH	MBH	A841	ABH	HBV	¥IBV	ABI	ASP !	Virus
edr	act;	wee	wbs	adr/adw	wbs	mhe	act _r	5	2	adw.	ad.	ac.	syrur	adw	adav	Byru	a	AIT.	8	ē.	R.	adr/adw	974	R.L.W	8	adw	ardw.	mka	adw	ads	adw	9.CF	adr	λL	Ę	e.i.	Strain
	ğ		CORE		POL		ع		EZV	2		POL		Z		Z	ğ		₽¥9	CORR				ğ	ğ					PQL	Ą	ğ			POP.	SCARE	Malecule
226	8	2	=	Z	123	767	88	題	2	120	28	Ē	1,080	1098	1,068	8	1250	5	128	419	1,036	1364	\$	<u>5</u>	\$	88	316	蹇	1,550	629	1280	iğ B	1,521	<u>۔</u>	2	Ş	ş.
-	_	-	<u> </u>	-	_	-	-	-	Ĺ	-	-	-	_	-	-	-	-	-	-	-	-	-	_	-	-	<u> </u> _	-	_	_	-	_	<u> </u>	-	i _	<u> </u>	-	Motif
0018	000	-0.5	S	2	22	935	ê	200	2	2	8	ŝ	S S	S.	ŝ	=	Ξ	۵	2	Ξ	0.0097	ē	E	2017	0019	ខ្លួ	8	9	200	200	S	67	28	ㅁ	172	2	<u>}</u>
	i :	-	į	0		0					6	e E E		0.000	B		0.025														ŀ			İ			A2.1
			200	200	•	egge	-	AME		201	0.15	200	PB T	E	G	200	2014	A009	5						4002					6		•	A000	0,000	2007	S S S S S S S S S S S S S S S S S S S	E
		İ	4000	8	-	0.017		•	0	•	8	200	Ē	23	o Z	200	200	6	•						ALOUIZ TITOLO					2024	2003		°	٥	2000	٥	à
	:			0					Ī					B	٥		2007																				724

Virus Sirain Molecule Pos. Molecule Pos. Molecule Pos. Molecule Pos. Molecule Pos. Molecule Pos. Molecule Inn.	i	-	:		2	Ş		ada / ada		5	SACHERINE	
Virus Sirain Molecule Pos. Molif A1 A2.1 A1.2				į	2	B		¥		5	TTIBBSIRONS	200
Virus Sirain Molecule Pos. Molif A1 A2.1 A3.2 A3.2 A3.2 A3.2 A3.2 A3.2 A3.3 A3.4 A3.4 A3.4 A3.5 A	i				2	5		B	ABA	Б	4475Thd8A7	20188
Virus Strain Molecule Pos. Molif. A1 A2.1 A3.2 11BV adv FOL. 1164 1 0.016 — — 11BV adv FOL. 1264 1 0.016 — </td <td>_</td> <td></td> <td></td> <td>i</td> <td>24</td> <td>- - -</td> <td></td> <td>adw.</td> <td>ABIT</td> <td>10</td> <td>TANAMARIT</td> <td>20182</td>	_			i	24	- - -		adw.	ABIT	10	TANAMARIT	20182
Virus Sirain Molecule Pos. Molf A1 A2.1 A3.2 11BV ada rol. 11.60 1 0.015 — — — 11BV appu rol. 1180 1 0.015 — <td></td> <td></td> <td></td> <td>İ</td> <td>2</td> <td>į</td> <td></td> <td>ALL</td> <td>HBV</td> <td>10</td> <td>LYSHIBITOF</td> <td>2.0181</td>				İ	2	į		ALL	HBV	10	LYSHIBITOF	2.0181
Virus Sirain Molecule Pos. Molif A1 A2.1 A3.2 11BV ada FOL 1569 1 0.015 ————————————————————————————————————	Г				2	3		ayw	нви	6	SYCHERELL	2.0003
Virus Sirain Molecule Pos. Molf A1 A2.1 A3.2 11BV adw	Г				2	1,085		wye	HBV	6	LYQTRGRKL	2.00%
Virus Sirain Molecule Pos. Molif A1 A2.1 A3.2 1 IBV ada FOL. 1065 1 0.016 — — 1 IBV ayw FOL. 1064 3 — 0.016 — — 1 IBV ayw FOL. 1004 3 — 0.99 — 0.00 — 0.00 — 0.00 — 0.00 — 0.00 — 0.00 — 0.00 — 0.00 — 0.00 — 0.00 — 0.00 — 0.00 — 0.00 — 0.00 — 0.00 — 0.00 0.00 — 0.00 — 0.00 0.00 0.00 0.00 — 0.00	Г		Ī		2	_	NUC XNUCFU		HBV	6	AYRPRAM	5,0062
Virus Sirain Molecule Pos. Molif A1 A2.1 A3.2 I IBV adx FOL. 104 1 0.016 —<	Г		Ī		22	1224		ΔL	HBV	6	CYPALLAPLY	2,006
Virus Sirain Molecule Pos. Molif A1 A2.1 A3.2 I IBV adr POL 1266 1 0.016 1 0.016 1 1 0.016 1 1 0.016 1 1 0.016 1 0.016 1 0.016 1 0.016 1 0.016 1 0.016 1 0.016 1 0.016 1 0.016 1 0.016 1 0.02	Γ		Ī		2	12		edr	HBV	9	HYFKTRHYL	2.0047
Virus Sirain Molecule Pos. Molf A1 A21 A3.2 I IBV adx FOL 1050 1 0.016 1 0.015 1 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.1 0.015 1.8 1.8 1.1 0.015 1.8 1.8 1.1 0.015 1.8 1.8 1.1 0.015 1.8 1.1 0.015 1.1 0.015 1.1 0.015 1.1 0.015 1.1 0.015 1.1 0.015 1.1 0.015 1.1 0.016 1.1 0.015 1.1 0.000	Г				2	743		adw/syw	Æ	•	HYPOTRHYL	2.0050
Virus Sirain Molecule Pos. Molif A1 A21 A32 I IBV adx FOL 1060 1 0005 1 0005 1 1 0005 1 1 0005 1 1 0005 1 0005 1 0005 1 0005 1 0005 1 0005 1 0005 1 0005 1 0005 1 0005 1 0005 1 0005 1 0005 1 0005 1 0005 1 0005 0005 1 0005 0007<	Г				×	3		ayru	ABA	9	MARYSWPKF	2.0051
Virus Sirain Molecule Pos. Molif A1 A21 A32 1 IIV adx FOL 10% 1 00% 1 00% 1 1 00% 1 1 00% 1 1 00% 1 00% 1 00% 1 00% 1 00% 1 00% 1 00% 1 00% 1 00% 1 00% 1 00% 1 00% 1 00% 1 00% 00% 1 00% 00% 1 00% <td< td=""><td>Г</td><td></td><td></td><td></td><td>2</td><td>8</td><td></td><td>ā.</td><td>HBY</td><td>9</td><td>LYNILSPFL</td><td>2.0038</td></td<>	Г				2	8		ā.	HBY	9	LYNILSPFL	2.0038
Virus Sirain Molecule Pos. Molif A1 A2.1 A3.2 1 IBV adx FOL 1050 1 0.016 —<	Т				22	E		B.	HBV	•	LYSSTVPVL	2.004
Virus Sirain Molecule Pos. Molif A1 A2.1 A3.2 I IBV adx FOL 10% 1 0.016 — — — I IBV ayw FOL 10% 3 —	T				2	K		27.4	ABA	•	LYSILSPE	2,0039
Virus Sirain Molecule Pos. Molif A1 A2.1 A3.2 I IBV adx FOL 1056 1 0.016 — — — I IBV ayw FOL 1094 3 — 0.035 —	Г				2	25		act w	ASH	-	PYPAVTSYL	20019
Virus Sirain Molecule Pos. Molif A1 A2.1 A3.2 I IBV adx POL 1056 1 0.016 1 1.0	Т				22	228		and a	ABY	•	PYPKYTKYL	20048
Virus Sirain Molecule Pos. Molf A1 A21 A32 I IBV adw POL 1069 1 0.016 — I IBV syw POL 1069 1 0.015 — I IBV syw POL 1071 3 — 0.99 I IBV syw POL 686 3 — 0.00 I IBV syw POL 686 3 — 0.00 I IBV syw POL 1197 3 — 0.00 I IBV syw POL 686 3 — 0.00 I IBV syw POL 295 3 — 0.03 I IBV syw POL 1083 3 — 0.03 I IBV syw POL 1083 3 — 0.03 I IBV syw POL 1323 3 — 0.03 I IBV six	Г				2	8		adw/ayw	Hav	۰	LYSTVPW	20015
Virus Sirain Molecule Pos. Molf A1 A2.1 A3.2 I IBV adw POL 10.0 1 0.016 — I IBV syw POL 10.0 1 0.015 — 1.9 I IBV syw POL 10.0 3 — 0.93 0.93 0.00 1.9 0.00 0.00 1.9 0.00	ī				2	8		84	HBV	•	PYPALIKYL	20046
Virus Sirain Molecule Pos. Molf A1 A21 A32 I IBV adw POL 1000 1 0.016 — I IBV ayw POL 1000 — 1.9 — I IBV ayw POL 437 — — 0.99 I IBV ayw POL 486 3 — 0.000 I IBV ayw POL 686 3 — 0.001 I IBV ayw POL 1197 3 — 0.001 I IBV ayw POL 686 3 — 0.001 I IBV ayw POL 686 3 — 0.03 I IBV ayw POL 685 3 — 0.03 I IBV ayw POL 1083 3 — 0.03 I IBV ayw POL 1,123 3 — 0.03 I IBV ayw	Г				×	1,169		R.J.W	HBV	9	LYAAVTNIPL	20059
Virus Sirain Molecule Pos. Molf of the control of th	Г		Ī		*	סבגו		ΛĽ	HBV	•	KYTSFWLL	20061
Virus Sirain Molecule Pos. Molf A1 A21 A32 IBV adw FOL 1060 1 0.016 — IBV ayw FOL 1044 3 — 1.8 IBV ayw FOL 431 3 — 0.00 IBV ayw FOL 487 3 — 0.000 IBV ayw FOL 685 3 — 0.000 IBV ayw FOL 1197 3 — 0.35 HBV ayw FOL 295 3 — 0.35 HBV ayw FOL 665 3 — 0.43 HBV ayw FOL 665 3 — 0.43 HBV ayw FOL 1023 3 — 0.43 HBV ayw FOL 1023 3 — 0.05 HBV ayw FOL		2000			=	1532	×	adar	HBV	•	XXXVBTCLL	2006
Virus Sirain Molecule Pos. Molf A1 A21 A32 I IBV adw FOL 1060 1 0.016 ————————————————————————————————————		200			Ξ	1263	Ą	ayw	HBV	6	PHYKAPLCK	20094
Virus Sirain Molecule Pos. Molif A1 A2.1 A3.2 I IIIV adx FOL 1056 1 0.016 ————————————————————————————————————		COOK			3	g	δ		HBV	ಕ	TSASCSVVRR	3.0108
Virus Sirain Molecule Pos. Molif A1 A2.1 A3.2 I IBV adw FOL 1059 1 0.016 — — — I IBV ayw FOL 1094 3 —	6	910			u	1,123		ALL	ABH	ŭ	AVSTANDONA	20045
Virus Sirain Molecule Pos. Molif A1 A2.1 A3.2 I IIIV adw rol 1050 1 0.016 ————————————————————————————————————		8			5	1083	ş	9978	HBV	5	LLYQTFGRK	20214
Virus Sirain Molecule Pos. Molff A1 A2.1 A3.2 IBV adw rol. 10% 1 0.016 — IBV syw rol. 10% 3 — 1.9 IBV syw rol. 86 3 — 0.09 IBV syw rol. 86 3 — 0.041 IBV syw rol. 486 3 — 0.041 IBV syw rol. 1197 3 — 0.041 HBV syw rol. 1197 3 — 0.035 HBV syw rol. 1197 3 — 0.035 HBV syw rol. 295 3 0.03 0.03 HBV syw rol. 295 3 0.03 0.03	Γ	e E			۳	8	ğ		' HBV	16	QAPTRIPTYK	SOID
Virus Strain Molecule Pos. Molff A1 A2.1 A3.2 IBV adw rol. 10% 1 0.016 — IBV syw rol. 10% 3 — 1.9 IBV syw rol. 867 3 — 0.99 IBV syw rol. 85 3 — 0.04 IBV syw rol. 66 3 — 0.04 IBV syw rol. 1197 3 — 0.04 HBV syw rol. 1197 3 — 0.03 HBV	Г	Ξ			-	3		ayeu	HBV	10	SMYPSCCCTK	2.0235
Virus Strain Molecule Pos. Molif A1 A2.1 A3.2 IBV adw rOL 1000 1 0.016 — IBV syw rOL 1004 3 0.015 — IBV syw rOL 847 3 — 0.99 IBV syw rOL 867 3 — 0.041 IBV syw rOL 686 3 — 0.041 HBV syw rOL 1197 3 — 0.035	Г	263			u	295		adr/adw	HBV	10	SMFFSCCCTK	2.0234
Virus Strain Molecule Pos. Molff A1 A2.1 A3.2 IBV adw POL 1000 1 0.016 — — — IBV syw POL 1004 3 — 0.99 — — — — 0.99 — — 0.00 — — 0.00 — 0.00 — <td< td=""><td>Γ</td><td>S.</td><td></td><td></td><td>۳</td><td>1197</td><td>Z,</td><td>ayw</td><td>HBV</td><td>10</td><td>SUPQEHBOX</td><td>20219</td></td<>	Γ	S.			۳	1197	Z,	ayw	HBV	10	SUPQEHBOX	20219
Virus Sirain Molecule Pos. Molff A1 A21 A3.2 IBV adw POL 1000 1 0.016 — — IBV syw POL 1004 3 — 1.9 IBV syw POL 167 3 — 0.93 IBV syw POL 167 3 — 0.14 IBV syw POL 53 3 — 0.000	_	eg.			٥	8	Z	ayrur	+18V	6	ниновикк	2,0077
Virus Sirain Molecule Pos. Molif A1 A21 A3.2 IBV adw rol. 1,161 1 0.016 IBV ayw rol. 1064 3 1.8 IBV ayw rol. 713 3 0.99 IBV ayw rol. 167 3 0.14	L	0000			u	123	Ę		VELE	. 9	SAICSVVER	5.0056
Virus Sirain Molecule Pos. Molf A1 A21 A3.2 I IBV adw rOL 1050 1 0016 — <td>1_</td> <td>0 24</td> <td>; </td> <td> </td> <td></td> <td>. E7</td> <td>Ę</td> <td>a y</td> <td>AB1 §</td> <td>9</td> <td>CLHQSPVRK</td> <td>2,0090</td>	1_	0 24	; 	 		. E7	Ę	a y	AB1 §	9	CLHQSPVRK	2,0090
Virus Sirain Molecule Pos. Molif A1 A21 A3.2 I IBV adw rol. 1569 1 0.015 — — I IBV adw rol. 1084 3 0.015 — — I IBV adw rol. 1084 3 0.015 — 1.8	Ī	98			5	52.		ayw	1.87	6	IMPARFYPK	2.0116
Virus Strain Molecule Pos. Motif A1 A2.1 A3.2 18V adv rot. 1059 1 0.015		1.6	: !		<u></u>	ē	POL	ayes	187	6	LLYOTFCRK	2.0089
Virus Strain Molecule Pos. Motif A1 A2.1 A3.2			 	0.015	-	DES.	ğ	R.	- lav	5	MITARITIES	3.0910
Virus Strain Molecule Pos. Motif A1 A2.1 A3.2	Π			2016	-	1,161		ed to	ABIT	10	KSWQ11LESLY	2026
		A3.2	A2.1	A1	Motif	Pas.	Molecule	Strain	Virus	AA	Sequence	Peptide

Sequence AA Virus Sirain Molecule Pos. Molif A1 A21		0.0002	0.034			3,11	7#	POL	wite	¥18¥	9	RLVLQTSTR	1 1012
Sequence AA Virus Sirain Molerale Pos. Molif A1 A21 A22 A11	İ	5	8		:	- -	1555	×		HBV	•	PALCCCBHIK	6100
Sequence AA Virus Sirain Molerule Pes. Molif A1 A21 A21 A21 A78		2	8			<u>.</u> =	Ķ	3	2	ABH	9	RIVEQUETR	0973
Sequence AA Virus Sirain Molecule Pea, Molif AI A2.1 A1.2 A1.1	Ī	0.0015	9	i		=	Š	- : <u>5</u>	Ę	ABH	9	THAKINGS	29601
Sequence AA Virus Sirain Molerule Pea, Molif A1 A21 A21 A22 A71		0.0%	ŝ	İ	:	<u></u>	2	2	act	A8H	•	NVSIPWTHK	5910'1
Sequence AA Virus Sirain Molerate Pos. Molif A1 A21 A22 A11		ê	200			2=	ž	×	adr	ABA	9	KVFVLGCCR	1,0993
Sequence AA Virus Sirain Molecule Pos. Molif A1 A21 A22 A11		200	203			=	ğ	<u>a</u>	e.	МВМ	•	ILYXXETTR	1.0977
Sequence AA Virus Sirain Molecule Pos. Molif A1 A2.1 A3.2 A11		2002	2095			Г	B	<u>P</u>	404	HBV	•	RLKLIMPAR	1.0975
Sequence AA Vivus Sirain Molecule Pos. Molif AI A2.1 A1.2 A1.1 AYSEMALPIR 10 118V Oyu AIL 23.1 24.1 ————————————————————————————————————		ŝ	0.007			Г	12	PQI	R.	HBV	•	AVNHYFKTR	1,0976
Sequence AA Virus Sirain Molecule Pos. Molif AI AII AII AYBERIJAPIL 10 1887 AIL 231 23 32 32 31 AYBERIJAPIL 10 1887 AIL 173 23 32		ŝ	g	İ		<u>.</u>	5	Ž	actir	ABH	9	RLADEGLNR	1.0872
Sequence AA Virus Sirain Molecule Pos. Molif AI A21 A12 A11 CYPENIAPIL 10 1887 ALL 52 3 4		0015	2		:	-	122	ğ	ed.	ASH.	9	PLYACIQSIK	1.0199
Sequence AA Virus Sirain Molecule Pos. Molif A1 A21 A12 A17 A78 A78 A78 A78 A78 A79 A11		200	20,00		İ	_	19	CORE	ayw	ASH	9	TVNTNIACLE	10001
Sequence AA Virus Sirain Molecule Pos. Molif AI A2.1 A2.2 A11 AYBIRHAIPIL 10 118V -ALL 575 24 -AL -AL<	Γ	ğ	0.13			3.5	133	3	wbs.	HBV	9	PLYACIQAK	1030
Sequence AA Virus Sirain Molecule Pos. Molif A1 A21 A32 A11	Ī	g	8			Ĺ	8	ZQ.	eds	нву	•	WDFSQF5R	1.0980
Sequence AA Virus Strain Molecule Pos. Molif A1 A2.1 A3.2 A11 AYBERNAPIL 10 1897 A1L 21 24 22 24 24 21 24 </th <th>Ī</th> <th>0.017</th> <th>0.22</th> <th>ŀ</th> <th></th> <th>1</th> <th>828</th> <th>چ</th> <th>ndw</th> <th>HBV</th> <th>9</th> <th>CLHQSAVEK</th> <th>1.0304</th>	Ī	0.017	0.22	ŀ		1	828	چ	ndw	HBV	9	CLHQSAVEK	1.0304
Sequence AA Virus Sirain Molecule Pos. Molif A1 A2.1 A3.2 A11		£	20099			2	9	ğ	actr	HBV	9	LIKYUPLDK	12121
Sequence AA Virus Sirain Molecule Pos. Molif A1 A2.1 A3.2 A11 TYPERILIVAHY 10 1897 Ayu 77 24		E3	919			3,11	1505	×	8 .	HBV	•	CALLACTHER	EKATI
Sequence AA Virus Strain Molecule Pos. Molif A1 A2.1 A1.2 A11 AYESPILIAMIY 10 118V Oyu A1 23 24		0.39	8			3,11	77	DAY	adr	HBV	•	STISTURCK	13101
Sequence AA Virus Sirain Molecule Pos. Molif A1 A2.1 A1.2 A1.1		E	202			3,11	740	2 2	wbe	HBV	9	VANHYRQTR	1.1011
Sequence AA Virus Sirain Molecule Pos. Molif A1 A2.1 A1.2 A1.1		0.65	9100			3.11	35	POL	wbs	HBV	9	TYNENEKIK	1.03
Sequence AA Virus Sirain Molecule Pos. Molif A1 A21 A12 A11		0.41	0800			3,11	1197	Ž	adr	HBV	9	XMCMENAL	200
Sequence AA Virus Strain Molecule Pos. Molif A1 A2.1 A1.2 A11 YPFEHLVAHY 10 11BV Oyw 775 24 22 24 22 24<		-0.0005	24			3,11	1488	×	a.dr	ABY.	•	ALRIPISARR	.039 1
Sequence AA Virus Strain Molecule Pos. Molif A1 A2.1 A1.2 A11 AYREHILINGHY 10 118V Oyu 735 24 22 2		234	0.51			3,11	85	ANG	wbs	HBV	•	STANDLERK	ě
Sequence AA Virus Sirain Molecule Pos. Molif A1 A2.1 A1.2 A1.1		2000	£			3,11	1257	202	adr	HBV	•	HLYPVAROR	1,0987
Sequence AA Virus Sirain Molecule Pos. Molif A1 A2.1 A1.2 A1.1		2	017			3,11	121	JOE JOE	wbe	нви	•	PTYKAFLTK	
Sequence AA Virus Sirain Molecule Pos. Molif A1 A2.1 A1.2 A1.1		23	0.38			12.	区	B	adr	HBV	9	XXTTTSAL	grepri
Sequence AA Virus Sirain Molecule Pos. Molif A1 A2.1 A1.2 A1.1		0.92	0.0006			3,11	1523	ж.	adr	HBY	9	XAVETOLL	1,0215
Sequence AA Virus Sirain Molecule Pos. Molif A1 A21 A12 A11		283	2023			3,11	668	701	wbs	HBV	•	STVPSFMPK	1,0067
Sequence AA Virus Sirain Molecule Pos. Molif A1 A2.1 A1.2 A1.1		0.010	1.2			3.11	719	101	adı,	ABH	9	RHYLHTLWK	92107.1
Sequence AA Virus Sirain Molecule Pos. Molif A1 A2.1 A1.2 A1.1		1.3	0.014			3,11	772	10T	adw/	HBV	9	VTKYLPLDX	OKSOVI
Sequence AA Virus Sirain Molecule Pos. Molif A1 A2.1 A1.2 A1.1		0.40	2.5			3,11	1095	101	wba	HBV	9	TAXTACEK	1,000
Sequence AA Virus Sirain Molecule Pos. Molif Al A21 A32 A11		0%0	5.0			3.11	10%	10	8 4	H8V	9	LLYKTFGRK	1.0139
Sequence AA Virus Sirain Molecule Pos. Molif Al A21 A32 A11		2.4	0.31			3.11		20	a de	1184	9	YVSLMLLYK	1.0377
Sequence AA Virus Sirain Molecule Pos. Molif Al A21 A32 A11	0.0799					24	ន	JCP		VBH	6	NATISTOLIT	5.0115
Sequence AA Virus Strain Molecule Pos. Molif At A21 A32 A11 TYPESILVANY 10 ILEV oyw 775 24 AYEPPAAPIL 10 ILEV ALL 521 24	1100				i :	2	M		ALL	1884	ō	CYRWMCLRRF	20171
Sequence AA Virus Strain Molecule Pos. Motif At A2.1 A3.2 A11	9				!	2	z		¥.	781	5	AYRPPMAPIL	20172
Sequence AA Virus Strain Molecule Pos. Motif At A2.1 A3.2 A11	900			;		12	75		oyw .	1184	ö		2.0176
	A24	A11	A3.2	A2.1	A1	Molif	Pos.	Molecule	Strain	Virus	\$		Pepside

1.0979	1.0733	1.1092	1.0781	1.0935	1.114	2,0210	- 19	1.109	1.1072	1.1091	1.0561	1.1150	1.0547	1.1153	1.006	1.0546	1.02	1.1081	1.0386	1.0395	1.0554	10584	1.1153	1.0807	10563	2,0205	1,000	1.0989	1.1047	1.0967	1.0961	1,0845	1.1046	1.1045	1.0170	1.1013	Peptide
H	Н		NALKATEATOR	٦			STLPETTON	CIDNEMAIS	Н	Н	TANCHOVUE	RIKTPRTPAR		BICIABAICE	STORTHON	Н	MLYKTYGEK	ISADSAGAA1	MANAMA	Н	Н	MANTELLIS	Н	Н	Н	_	TLPQEHIVLK	SAPSHIPOR	MOLTHEARS	HECLTFOR	LNCSSCLPR	LYSICVWIR	LPYRPTICE	NLYPVARQS	TVALEKERLK	MILTERTOR	
5	5	5	8	B	ĕ	8	Œ	5	5	5	5	15	5	5	5	15	5	15	ă	5	10	5	5	16	5	15	10	9	9	9	9	•	9	9	۰	٩	*
VBII	1194) IBV	ABH	ABH	ABH	ABA	ABH	WHH.	ABH	ИВИ	A8H	WBV	HBV	HBV	MBV	ABH	ABH	ABH	ABA	HBV .	HBV	ABH	ABH	ABH	ABH	ABH	ABH	ABH	ARH	ABH	AGH	ABH	HBV	HBV	ABH	ABH	Virus
gu.tr	80. #	E.	g .	wbs	wbs	whe	adr	ıbe t	adr	ed-	Ē	adw	edir	ed e	ē	ads	R.W	ade	e.d.	adw.	adr	84	P. C.	ayw	edr	ayrus	act;	B	actur.	ade	adır	KL,	ad*	edw	ğ.	w.pr	Strain
CUME		×	ğ	වී	701	ē	CORE	3	CORE	۶	×	ğ	P _D	ğ	ğ	10	ğ	POL	×	*	Ą	×	ğ	2	ğ	Z	β	PQL	ZG.	CORE	æ	CORE	ş	ğ	3	101	Molecule
* 7.	Ę.	1422	2	3	¥	721	153	ᇙ	ä	3	158	K	8	133	18	2	<u>ş</u>	E	ij	1539	Ē,	ES SE	150	35	2	8	178	1395	1424	\$	麗	Ê	Ē	1286	3	. <u>Ş</u>	Pos.
3,11	<u></u>	. <u></u>	مر:	3.	3.1	<u>.</u> =	3,11	3	3,1	t	<u></u>	3,1	T	÷	i	Н	Η-	3.=	22.5	Н	3,11	3.1	3,1	3,11	11,1	3.12	3,11	3,11	3,11	3,11	3,11		<u>.</u> =	3. =	3.5	12	Modif
	:	!	:	!	Ī																																۸1
	:	:		İ	Ī				Ī		<u> </u>					İ							Ī														A2.1
0.015	8	9	ê	B	0.0057	583	8	e e	A	ą	8	27	8	613	5	ę	8	a	6	S	25	2006	=	=	3.5	OBS;	2002	600	0,000	0.013	0.0008	0.0003	<u>6</u>	9002	800	55	ASI2
00027	0014	9	ê	8	ê	65	5	2023	ş	9063	S	S	25	0,000	8	5	6	0.63	22	E	g	27	68	2.0	5	2	5.6	0.010	0.010	g	2015	9	•	000	0.037	0.0032	A11
	i	!	Ī											Ī	Ī																						A24

	0.0095	2,0025			3,11	ğ		adw	1184	10	LTVNENSRLK	1.0778
	0.000	-0.0003			314 3,11	314	ENV	actur	HBV	5	PIPSSWAFAK	1.0773
	0.0034	0.013			3,11	185		adr) (BV	5	IVLKUKQCFR	- -
	Dance	0.013			3,11	3		\$ -	Affi	5	BLADEGLARE	<u>:</u>
	2004	0.005				3		au);	ARH	ಕ	THE PLIT YEEK	1.0515
		0.0057	i		11.6	3	П	máe	¥IB¥	5	FUCHLIVNEX	2,020
A24	A11	A3.2	A2.1	Α1	Motif	Pos.	Molecule	Strain	Virus	>	Sequence	Peptide
									-			

IECY
Strain Molecule Pos. N LORF 1123 NSI/ENV2 647 1.ORF 2558 LORF 2568 LORF 2568 LORF 2569 LORF 2569 LORF 2569 LORF 2569 LORF 1991 LORF 1991 LORF 1991 LORF 1991 LORF 1991 LORF 1991 LORF 1991 LORF 1991 LORF 1992 LORF 1992 LORF 1993
Strain Molecule Pos. LUNF 1127 NSI/ENV2 697 1.08F 2558 LORF 2665 LORF 1617 108F 2568 LORF 1617 719 LORF 2569 LORF 269 LORF 269 LORF 269 LORF 199 LORF 199 LORF 199 LORF 199 LORF 199 LORF 199 LORF 263 LORF 198 LORF 288 LORF 19
Strain Molecule Pos. LUNF 1127 NSI/ENV2 697 1.ORF 2558 LORF 2665 LORF 2666 LORF 2666 LORF 2666 1.ORF 2666 1.ORF 2666 1.ORF 2666 1.ORF 2666 1.ORF 1991 LORF 1991 LORF 1991 LORF 1993 LORF 1993 LORF 1993 LORF 1993 LORF 1993 LORF 1993 LORF 1993 LORF 1993 LORF 1993 LORF 1993 LORF 1993 LORF 1993 LORF 1993
Strain Molecule Pos. LUNF 1123 NSI/ENV2 697 1.08F 2558 LORF 2665 LORF 1617 108F 2569 LORF 269 LORF 269 LORF 269 LORF 269 LORF 269 LORF 199 CORE 3 LORF 199 LORF 1
Strain Molecule Pos. LUNF 1127 NSI/ENV2 697 1.08F 2558 LORF 2665 LORF 1617 108F 2569 LORF 2699 LORF 2699 LORF 2699 LORF 2699 LORF 2699 LORF 2699 LORF 1990 CORE 3 LORF 1990 LORF 1983 LORF 1983 LORF 2699 LORF 2699 LORF 2699 LORF 2699 LORF 2699 LORF 2699 LORF 2699 LORF 2699 LORF 2699 LORF 2699
Strain Molecule Pos. LUNF 1127 NSI/ENV2 697 1.0RF 2558 LORF 2665 LORF 2665 LORF 2666 LORF 2666 1.0RF 2666 1.0RF 2666 1.0RF 2666 1.0RF 2666 1.0RF 2666 1.0RF 1990 CORE 31 LORF 1990 CORE 31 LORF 1990 LORF 2661 LORF 2661 LORF 2661 LORF 1990 LORF 2661 LORF 2661
Strain Molecule Pos. LUNF 1123 1124 1124 1124 1125 1
Strain Molecule Pos. LUMP 1123 1124 1124 1124 1125 1127 1224 1
Strain Molecule Pos. LUMF 1127 NSI/ENV2 697 1.ORF 2558 LORF 2568 LORF 2588 LORF 2588 LORF 2588 CORF 2599 LORF 2599 LORF 2599 LORF 2599 LORF 391 LORF 391 LORF 391 LORF 391
Strain Molecule Pos.
Strain Molecule Pos. LCHF 1123 NSI/ENV2 697 1028 2588 LORF 2588 LORF 2888 LORF 2888 LORF 2888 LORF 2888 633
Strain Molecule Pos. LCHF 1123 NS1/ENV2 697 310 675 1.02F 2588 LORF 2588 LORF 2888 LORF 2888 LORF 2888 LORF 2888
Strain Molecule Pos. LCHF 1123 NS1/ENV2 697 310 675 1.ORF 2588 LORF 2588 LORF 2888 LORF 2888
Strain Molecule Pos. LUMF 1123 NS1/ENV2 697 312 615 1.02F 2588 LORF 2588
Strain Molecule Pos. LUMF 1123 NS1/ENV2 497 312 405 1.028F 2588 LORF 2416
Strain Molecule Pos. LCHF 1123 NS1/ENV2 697 312 615 1.02F 2588 LORF 2416
Strain Molecule Pos. LCHF 1123 NS1/ENV2 697 307 605 1.0287 2588
Strain Molecule Pos. LUMF 1123 NS1/ENV2 697 405
Strain Molecule Pos. LCHF 1123 NS1/ENV2 697
Strain Molecule Pos. LCHF 1123 NS1/ENV2 697
Strain Molecule Pos.
Strain Molecule Pos.
-

1.0003	Ē	1.0024	1.0017	1,099,6	1.0062	900	1,0072	1,0939	69001	1007	ij	1006	1,0032	110944	1.00%	20249	2.0190	2000	2,00%	20132	20063	2.0131	2,0065	FEED .2	2,004	2,0255	24251	1.04/2	1.0441	1.0/31	2.0252	1.0415	1.0412	1.0026	2.0129	1.0014	Peptide	
ILDIRQGPK	MOTHER	NTPVFAIKK	AAJAAINA	KIWPSHKGR	XHYAAMYJA	XCAETTEADY	MORGIAN	KUWPSYKGR	OHEQUIKK	CIPHPACIX	XI.TEDEWAK	MWCKTPK	VINGSOUV	AVFINDECKR	KLACKWPVK	LYPLASLESI	LAKKMINCT.	LAKEMETER	ATOGWADAL	INCERBOAL	TINDRIGIDAL	TONOET	THOMOGE	MIXDOOL	MUDDOUT	QMAVEHOUS	EKICPENPY	PAETCOETAY	LAVAHAVECA	ENNIVIDEQY	ALACOACOVA	ATOCIMADAIA	AVODACOVA	AVDACDVA	MOMMODLY	FRDW/DRFY	Sequence	
٥	•	9	9	•	9	9	9	9	•	9	•	9	•	•	•	ŭ	10	10	9	,	9	9	•	•	•	10	15	10	10	10	10	10	10	•	9	9	AA	
HIIV	HUV	AFF	Alt	HIV	AH	HIV	HIV	HTV	HΨ	HJV	ΛtH	AGH	ATH	MM	AtH	HIV	Æ	HZ.	HIV	AIR	AH.	ΑΉ	AH.	AH	£	, F2	H.	HV	HIV	HIV	HIV	HUV	HIV	HIV	HIV	I IV	Virus	
																																					Strato	
CAG	ENV	١٥	ğ	CAG	ğ	٥	ş	CAG	PQL	POL	VIP	POL	PQL	P	ΡQL													ρį	POL P	JOL		20	ğ	줟		26	Molecule	
ä	ڇ	12	Ē	8	Ē	8	Ē	8	1215	当	1712	Ī	2	ē	1358	ğ	K	8	3	1,03g	Ē	I ARE	Ē	2778	2,778	1	ž	1345	Eg	189	3	2	3	ä	3	2	ş	1
3:1	12	بر =	31	2=	<u>ا</u> يا =	2	┢	3,11	3,11	3,11	3,11	3,11	311	31	311	22	22	2	22	22	Τ	┢	Г	Г	Τ	Г	_	-	-	-	_	_	_ -	-	-	_	Motif	
				Ī	Ī			Ī																			200	2013	ã	0.053	0.088	025	0.28	202	18	0.03	≥	,
				Ī																																	Ĕ	
0.042	0.0021	agg	002	007	007	8	2	0.12	200	ê	2013	S	Ξ	0.77	2											g						0.000	•	2002			E	
0.0000	000	6	8	Access	QQ.	0.09	0.038	2000	Ę	6	8	2	2	5	8											0.64						888	200	E S			À	
																0.014	9100	817	0.013	202	0.052	29	9	0.32	0.78												A24	

0.000 0.000										
0.052 0.11 0.011 0.17 0.055 0.053 0.055 0.051 0.055 0.051 0.055 0.051 0.055 0.051 0.055 0.051 0.055 0.051			1.11	8	ğ		7	91		1.0405
- - - - - - - 	+		3,11	8	ğ		H.V	5	PTPOKKHOK	1,017
- - - - - - - - - - 			3,11	2741	BNV		AH	5	MOONNEL	 158
			11,6	\$ 6	GAG		AH.	8	FLCKIWPSHK	i
-1-1-1-1			3,11	1504	POL		HPV	5	MOSMODIA	ESSO
			3,11	839	FQ.		Æ	5	MIKELEPERK	1500
			2,11	642	βÇ		ACH	ᡖ	MICGICGRIX	100
			3,11	1117	POL		AIH	ō	LYKLWYCLEK	1,00%
\dashv			3,11	788	POL		Ą	ä	CIPHPACIXX	i Dig
			3,11	1474	PO!		¥	Б	KIQNFRYYYR	Ē
4			3,11	85	GAG		1	5	FLCKIMPSYK	1000
92010			3.11	705	10		AH	ಕ	KLKPGMDGPK	1000
0.51 0.090			3,11	265	70 4		AH.	5	KLYDFREUNK	1.0405
0.76			3,11	1253	ğ		AH.	10	KYUPLDCIDK	1,0437
286	\dashv			101	J OT		ATH	10	AVFIHBUFKIK	1.0407
+			11,6	200	ğ		NH.	10	TVQPIVLPEK	BING
3.8 7.8			3,11	2185	ANG.		MIV	5	TVYYGVPVWK	10463
9100 90000			3,11	859	Ą		HIV	9	MICHEPER	1.0962
6220 6220			3,11	1513	SQI		NH	-	KVVPRRXAX	1,007
0000			<u>.</u>	25	JO.		AH	. 9	LVDFRELNK	
ī	<u>i</u>		2	1254	TOF.		HIW	9	VLFLDCIDK	1.00%
900 600 P			<u>,,</u>	25	Ę		VIII	9	CHQAQPDK	<u>2</u>
0.0007			3,11	20	CAC		7	9	MANDANAN	1005
A2.1 A3.2 A11		A1	Motif	ş	Molecule	Strain	Vieus	AA	Sequence	Peptide

1 0.25 1 0.17 1 0.087 1 0.0887 1 0.008 1 0.008 1 0.008 1 0.018				SVYGDTLEK 9 SVYGDTLEK 9 SVYGDTLEK 9 SIPHAAACHK 9 SIPHAAACHK 9 ILECYPCK 9 LIRCLECYPC 9 LIRCLECYPC 9 LIRCLECYPC 9 LIRCLECYPC 10 LI	10029 CUB 10029
0.25 0.17 0.017 0.027 0.033 0.0088 0.	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	* * * * * * * * * * * * * * * * * * * *		┍╏╏╏╏ ╫╫	╌╏┇╏╒╬╏╏╏╏┩┋╏╏╏╏╏╏╏╏╏
0.25 0.17 0.017 0.027 0.023 0.0088 0.	- =	* * * * * * * * * * * * * * * * * * * *		╶╏╏╒╏╏╏╏	╶╏╏ ╇╅╃╃╃╃╃╃╃╃╃
1 0.25 1 0.07 1 0.033 1 0.0088	E: 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			╶╏╸╏╶╏╶╏╶╏╶╏╶╏	
	- <u> </u>			╼╊╼╉╶╂╌╂╌╂╌╂╼╂╾╂╶╂╏╂╶╂╌╂╌╂	╼╅╌╃╌╃╌╃╌╃╌╃╌╃
	5 5 5 2 8 8 5 5 5 5 8 8 8 8 5 5 7 2 8 8 8 6 7 B 8 6 7 B 8 6 7 B 8 6 7 B 8 6 7 B 8 6 7 B 8 6 7 B 8 6 7 B 8 6 7 B	* * * * * * * * * * * * * * * * * * * *		┍╉╫╫╬╬╬	┈┼┤┼┼┼┼┼┼┼┼┼┼┼┼┼
	\$ 5 2 6 6 5 5 5 5 8 8 8 8 8 8 5 5 7 2 8 8 8 6 7 B 8 6			╶╏╏╏ ┩	····································
	5 2 6 6 3 5 7 8 5 5 2 2 2 2 3 6 5 7 3 2 2 2	* * * * * * * * * * * * * * * * * * * *		┍╏┋┋ ╋╂╫	
	2883778552222585755725	* * * * * * * * * * * * * * * * * * * *	AAH AAH AAH AAH AAH AAH AAH AAH AAH AAH	╒╏┍┋┋	┍╃┋╏╏╏╏╏╏╏
	& & & & & & & & & & & & & & & & & & &	* * * * * * * * * * * * * * * * * * * *	AR AR AR AR AR AR AR AR AR AR AR AR AR A		
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		AH AH AH AH AH AH AH AH AH AH AH AH AH A		
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 2 3 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3		AH AH AH AH AH AH AH AH AH AH AH AH AH A		
<u> </u>	55 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		WH WH WH WH WH WH WH WH WH WH WH WH WH W		
	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		WH WH WH WH WH WH WH WH WH WH WH WH WH W		
' 	8 2 2 2 2 2 2 3 3 2 2 2 3 3 3 3 3 3 3 3	5 2 2 5 2 2 2 2 2 5 5 5 5 5	WH WH WH WH WH WH WH WH WH WH WH WH WH W		
	8 5 6 5 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	WH HH WH HH		
	8 2 2 2 2 3 8 8 7 13 8 7 13 13 13 13 13 13 13 13 13 13 13 13 13	2 5 2 2 2 2 2 5 5 5 5	AH AH AH AH		
╏┇╏┫┩┩┩╃╬╬╬╬╬╬╬	8 2 2 2 3 8 5 7 13 8 7 13 13 13 13 13 13 13 13 13 13 13 13 13	5 2 2 2 2 5 5 5 5	HW HW HW		
╏╏╏╏╏╏╏╏╏╏╏╏╏	2 2 2 3 8 5 7 11 8 5 2 2 2 2	2 2 2 2 2 2 2 2 2 2	AH WHA		+ + + +
	2 2 3 8 5 7 5 8 2 2 3	= = = = = = = = = =	HH HH H		
╒┪┩┩╏┩┩╃╬╬╬╬╬╬	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		AH AH	Н	+
╒┩╏╏┩╏┩╏╏╏╏╏ ┾	8 8 8 8 8 8 8 8 8 8 8	2 2 2 2 2 2	HPV HPV		۲
 	8 6 8 8 8 8 8 8 8	= 5 5 5 5	AAH AAH	ANCOUNTED 9	
	\$ 5 5 2 2 2 8	* * * * *	HPV	CANTTRUCT 6	
	9 tt \$ 15 7 7 8	£ 5 5		ALDRAMOT 8	20024 VYD
	t \$ 55 2 2 8	15 5	AGH	CHETACLLIT 6	Н
		E =	AH.	VICKTVLEL 9	-
		55	HPV	-	
1 0.032 1 0.032 1 0.033 1 0.033 1 0.008			MA	ITTRCTRCOX 10	2016] LTTR
0.25 0.17 0.087 0.083 1 0.033 1 0.033 1 0.098		18	HPV	YSRUKELIKHY 10	1
0.17 0.11 0.087 1 0.033 1 0.033	L	16	AGH	OI AUTHORISEA	DESA CPRIOR
0.25 0.17 0.087 1 0.033		16	MPH	AVCDISCLERY 10	Н
0.17 0.11 0.087 1 0.033	Eb 30	16	MH.	IHDILLECVY 10	Н
0.17	E7 16	ጜ	Mali	QPETIOLICY 10	DE COR
0.25	5 6	16	Adii	HICOTPTILMEY 10	\dashv
0.25	66 77	26	MATI	YSKEEVED IY 10	2.0162 YSKI
0.25	E4 77	16	IPV	YSKISEYRHY 10	Η
	25	=	A.D.I	LODIETICNY 10	10610 TOD
1 0,023	2	. F	ABI	QAEPORAITY 9	1.0230 QAE
7.8	E26	91	A-CH	ISEYRHWCY 9	1.0225 ISEN
Molif A1 A2.1	Molecule Pos. M	Strain M	Virus	Sequence AA	Peptide Ser

1000	1044	1046	Ē	i de	Ē	Ē	Ē	Ë	4,012,4	72.02	20165	2,0010	2003	50 E	1016	200	6778	6	300	S	1,0122	ŝ	5	t tra	ŝ	S E	200	Ē	20162	4101	2010	2010		1000	2001	20009	633	1029		1017	ē	3077	2000	Peptide
STEGESTHON	mcovonox.	MLESMKUNK	HIPODLYQEK	SUFFAMILIE	ENDOLUGEX	SORTEGER	SWEWDCE	SUPPLYETS	MATANAS	TOTOLVEAN	STATISTICS OF THE PERSON	ASDEM'NGAN	XAAGLEVIVE	MASTINGIVE	EDGINDER	ENTWENTER	┢	-	H	Manage	MANAGE	MAYCONIX	ATAMBAT	THOOLY	PASSLETIV	THE CHILD	H		┢╼	ATMINACIS	ANDAROPAT	MOULTES	APCEMENTER	ANGLISES.	ADMINDAMSD	MOULTER	ASTANAASL	ATIAXBONT	ASHELLEDVE	EVERIGARY	MOLVERY	┝	H	
ĕ	Ħ	30	8	5	•	•	•	•	g	8	5	•	5	5	110	10	10	10	75	15		•	•	•	•	•	-	10	Н	Н	Н	ฮ	9	•	•	9	•	•	9	•	9	۰	•	*
KACE	MAGE	MAGE	HACE	HACE	HACE	EDVIK	MACE	MAGE	MACE	MAGE	MAGE	MAGE	MACE	MAGE	MAGE	MACE	MACE	MACE	MAGE	MACE	MAGE	MAGE	MAGE	MAG	MAGE	MAGE	MAGE	MACE	MAGE	EDVIK	SOVIE	NACE	BOVIN	EDVIN	MACE	EDVIN	MAGE	MACE	ANACE	MAGE	HACE	MAGE	MACK	Visus
-	1/3	-	-	-	_	-	-	_	-		_	-	-	1	1	1	1		•	1	1	1	. 1	1		1	1	-	2	1	1	1		2	٥	ũ		-		•	•	5/51	L C	Strain
									į				7874			n-per	3			P			-		3		1000			•	1						1							Molecule
~	E	ž	. ¥	8	¥	8	3	8	77	15	듄	=	ä	ĸ	ž	3	343	8	100	790	Ø	229	243	239	3	£	25	242	-	77	230	ı	128	•	я	-	3	ž	181	ы	36	Ē	E	3
1	=	=	12	3.1	<u> </u>	1	=	=	×	2	2	2	=	3	ľ	3	3	1	3	1	3	1	3	3		3	u	1 1	-		-	9	-	-	-	-	-		-	1	-	-	-	Motif
																							Ī					0.044	0.17	2	1.1	24	1100	500.0	ĝ	ĝ	68	0.0	1.1	1.9	2.1	3	2	A 1
				!		T		İ		ĺ		<u>-</u>																							j	j	Ì							A2.1
925	ê	2	B	=	8	200	8	٤				Ī	2	8	4000	0010	0.002	M.0	£	0.03	1:00	100	9,000	4000	eg:	9,043	Ş		A) (000)		COODS	2000					i	0823	0	40000		0.000	6.0002	34
0015	2	9037	9	ů.	E	5	12	٤	Γ				2	0.0007	100	0,000	0.0051	900	0.38		2008		9	N.O.	92.0	25	0.000		9		6	200						B	٥	2000	20022	0.0006	0.000	ΔII
							Γ		B	E	E	Ę								Ĭ			·																	0		0		Č.

	0.000	0.013			3,11	187			p£3	10	CLAPPOHILE	1.1116
卜	<u>6</u>	ğ			3,11	773			p£3	ğ	RVCACIGRDR	1.1121
T	Ş	2003			3,11	311			p\$3	5	NTSSPQPKK	1.0539
r	0.0017	25			3,11	3			psa	10	VARECHHER	1.1118
T	2.83	26			3,31	ij			p£3	5	KTYQGSYGFK	1.1113
	0008	23			3,11	283			tôq	5	RTEEDHLAKK	1,0578
	0.0052	0,000			3.11	343			p53	9	STRIVANTE	. 0267
T	683	20015			3,11	283			p£3	9	RTEEBALRK	1.0284
	200	2009			3,11	311			ρώ	9	NTSSSPQPK	1,0285
T	11	26			311	124			tšą	9	CTYSPALNK	92201
T	0.73	1.5			211	156			pX3	9	RVRAMATYK	1.0278
T	2500	0000		8	_	\$		-	pS3	Б	RVECHLRVEY	1.0672
T	2	S		20	-	17			634	ō	CTAISVICTY	1.0467
T	2039	Otto		562		226			F&q	9	CSDCTTHY	18201
A24	A11	AL .	A2.1	A1	Molif	Pos.	Molecule	Strain	Virus	*	Sequence	Peptide
_			_									

٦	٦	w			ان	<u>د</u>	دع	ىد	ر د	Į.	w	ون	س	درو	مرا	7
	3.0162	3.0459	09to:c	19101	3,0231	3.0459	3,0230	3,0234	3.0236	3.0235	3,0237	3.0163	3.0166	3.0174	2002	Peplide
3	ş	74	נאַם	נאז	BILK	ATO	LYNE	KCEY	ווטר	اعقا	ISEL	ESYK	ASC	an L	KCE	Seq
PYSOUTHI.	WACTER	PYKDPIATL	LACERMANA	LYFEKGEYF	MOKEESYLTE	AXYSTUPE	TAMEITAHMX	KCEYFYEMYY	AHOSMOTOLI	ATSTISTIST	ATSTREET	LANCIBITALISE	ASCHILTELY	LCEYIRXRY	KCEYPYEMY	Sequence
5	9	9	9	9	8	9	ಕ	5	10	10	10	9	9	9 :	9	*
PAP	PAP	PAP	PAP	PAP	PAP	PAP	PAP	PAP	PAP	PAP	PAP	PAP	PAP	PAP	PAP	Virus
																Strain
																Molecule
2	303	183	213	316	13	72	K	323	占	8	23	8	122	20	22	Pos.
24	24	24	24	24	=	=	ű	-	-	_	_	_	-	-	- 1	Matif
								2018	8	ī	=	0.008	0.77	0.78	3.4	A1
									0.0005				â			A2.1
					A0004	0.10	2006	6057	g	8	20026	A000	A	A 653	A0002	A3.2
					0.014	ī	0.12	2.099	1000	2000	0.0004	2000	285	0.0002	20002	AII
0.024	200	221	2	22					20022	0			٥	٥	•	A24

<u> </u>		1 1			1	1			1		
Poptidol	Sequence		Vires	Grain	Molecule	-	Made	Al	ASS	A11	! A24
1,5000	ALPERTELY	• •	TEA		-	1 123		0.011		L	
- 23637	VINETTIELY	· 15 1	PLA		1			68			
1000	PLYCHELLK		FSA		1				PN		
1200	VVIIVILLANIK	0 1	FEA		1	100	LII		6,000	0.000	
TO STATE OF THE PARTY OF THE PA	YTRVVIVER	1.6.1.	HA	,					SAME .	0.00	
L'Silbe I	ALIDONE!	-1.1	FIA			140	TIL		NAME OF		
I dept.	IVERDIVICES.		PEA		T	, 14	LUL		B.Bet	6,011	
1220	CHARTERAIX	. • 1	PEA			140	LII				
1333	ELYTEVYHYR	101	FIA		1					6,5	
12563 1	LIAMEDER	1 10 1	HA				111		ik.le	9.40	
(Libert)	STATE OF THE STATE	. 10	PEA		<u> </u>		1,11			0.067	
12003	KAMMARKINK	19	MEA			261				0.545	
1.3311 ;	VIISHULALE	· 10	TRA.		1	1 100	1 771		Line	b.bij	
JAINTS I	MLLRLEPA	7 1	FEA		1	i LLB	السينيساز ا				

Table 5

Г	1	Antel con	Strate	Polecule	Pred	ě	Notif	104	803	A11	A24
								Bind.	Bind.	Bind.	Blad.
EDTPIGHLY	6	MAGE 3 a	-	analog		191	A01	12.5000			
AVDPIGHLY	6	WCB3a	-	analog		191	A01	8.0000	-		
EVOPTABLE	•	FMCB3a	-	analog		161	104	5.5000			
PSPAPDNLTT	2	KBR-2/meu				1213	A01	5.5000	0.0005	0.0010	
EVDATORLY	6	PDCE34	3	analog		161	A01	5.3500			
EVDPICALY	6	. MAGE3a	3	analog		161	A01	5.0000			
EVDPICERT	9	MAGEJa	3	analog		161	701	4.6500			
ENDPIGHLY	6	HACE 3a	3	analog		161	A01	3.4500			
EVDPTOHLT	6	FOCE 3&	3	analog		161	A01	2.9500			
EVDPIGHST	6	MCE3a	3	analog		161	A01	2.6667			
EVDPACHLE	6	KAGB3a	3	analog		161	A01	2.4000			
EVDPASKTY	6	MAGE	4			161	A01	1.5000			
PLSEDGLLT	6	PAP				147	A01	1.2000	0.0005	0.0001	
LSAFELHET	6	HCV				2889	707	0.8100	0.0002	0.0002	
IPSTECTHY	01	PAP		-		277	N 01	0.5650			
TASCHLTELT	01	PAP				310	AO1	0.5467	0.0003	0.0002	
EVDPIGHTA	6	HAGE3a	г	analog		161	A01	0.3300			
CHOINGHST	압	HER-2/neu				826	A01	0.2967	0.0003	0.0001	
VGSDCITIHI	ot	p53				225	A01	0.2600	0.0003	0.0003	
RVAPTGHLY	6	19023a	-	enalog		191	701	0.1800			

v
ø
-
Д.
at a
\vdash

Г	1		60 00 CB	an larrate	Pres	Pos.	Motif	701	303	A11	A24
			1					Blad.	Biod.	Bisd.	biod.
ESHPREBRY	2	HEA-2/neu				280	104	0.1800	0.0003	0.0003	
ASCUTACPT	6	HER-2/neu				293	104	0.0552	0.0008	0.0074	
FSPAPBILL	0	HER-2/neu				1213	¥01	0.0425	0.0002	0.0002	
ASPLDSTFF	٥	HER-2/neu				166	104	0.0290	0.0002	0.0004	
HGTQLFENDT	2	KER-2/neu				103	A01	0.0205	0.0003	0.0015	
PASPLOSTFT	10	HER-2/neu				966	104	0.0148	0.0003	0.0001	
PSQKITGGST	10	553				86	NO1	0.0140	0.0003	0.0003	
RSTRVPAAT	6	RCV				1236	X01	0.0134	0.0009	0.0001	
DSSVLCBCT	6	HCV				1513	A01	0.0110	0.0002	0.0003	
RISEYRHYCY	01	HPV	16	B 6		79	A01	0.0000	0.0043	0.0038	·
RLYVSLALL?	10	HBV	sq.s	POL	20	1088	104	0.0000			
CTRVRAMAIR	10	553				154	A01/03	0.0027	0.0365	0.0002	
LTCOPADLAGE	11	RCV				126	A01/11	2.4500	0.0003	0.0120	0.0001
VRACVOSPI	6	HER-2/neu				773	A01/A03	0.0400	0.0575	0.0079	
THEORIE	6	REV	2 9 8	701	100	724	703	0.0017	0.2667	0.0016	
KLAWASQIT	6	RIV		POL		958	A03	0.0070	0.1160	0.0008	
LVGFLLLKY	6	MAGE1	1			109	A03	0.0033	0.0563	0.0012	
LERGTSPVI	6	HBV	edt	POL	g	1345	203	0.0017	0.0440	0.0002	
RVLCGIL PRET	10	RCR-2/000				545	A03	0.0018	0.0380	0.0050	

Table 5

Section 1		batten	Strain	Polecule	Pres	ě	Rotif	10¥	A03	114	A24
								Bind.	Bind.	Blad.	Blad.
OLVIOLARPY	6	HER-2/neu				795	A03	0.0024	0.0112	0.0039	
GLERKIVERT	6	HIV		GAG		274	A03	0.0017	0.0103	0.0002	
ггаридунрк	01	HAGE2	2			182	A03		0.0093	0.0014	
QVRDQAEHLE	91	HIV		POL		1419	A03		0.0089	0.0093	
LVSAGIRK	8	AIR	con			1246	A03		0.0091	0.0054	
VIDRORGE	8	HIV	Con			1153	A03		0.0000	0.0065	
TVPDACRETOR	11	ELA-Aw68 endogenous peptide	ad shouabo	ptide seq	sednences		₹03/11		0.1050	1.3000	
KTGGPITKR	6	H.A.Aw68 endogenous peptide	ed sacueba	ptide seq	seguences		11/60%		0.0340	0.8200	
SLYTRVVRY	6	PSA				237	A03/11	0.0017	0.6750	0.0140	
AVAAVAARA	6	HLA-Aw68 end	ogenous pe	endogenous peptida saquences	rences		A03/11		0.1600	0.0825	
RIGHFRUTY	6			POL		1474	N03/11	0.0056	0.1190	0.1350	
ENLESVIKNTE	11	MAGE1				127	203/11		0.0087	0.0099	
EVAPPETHER	10	HLA-Aw68 endogenous peptide sequences	d enquebo	sptide seq	dences		A11	•	0.0008	0.0575	
STATFLER	8	HIV	consensus			1351	A11		0.0037	0.0425	
RECEIPTE	6	KER-2/nee				8	A24				1.2567
PIVERLLGI	6	HER-2/neu				780	A24				0.1650
VYHINVECH	6	HER-2/neu				951	A24				0.1640
AYSLFLOGL	6	HER-2/neu				440	A24				0.1250
STOVTVNBL	6	HER-2/neu				907	A24				0.1200
LIISAMPOSL	10	HER-2/neu				410	A24				0.0835
VASTOVIVE	6	HER-2/neu				908	A24				0.0800

Table 5

facusace.	8489	Antions	Strate	Polecule	PE.	ĕ	Not1f	104	203	A11	A24
i		I						Bied.	Bind.	Bind.	Bind.
STGUTURELA	20	HER-2/neu				406	A24				0.0630
greater	6	BCV				1777	A24				0.0475
TTLPTRASL	6	HER-2/neu				63	A24			·	0.0375
ETLYBFOWI	10	ABH		NUC	90	117	A24				0.0335
KFILCAGRW	9	PSA				190	A24				0.0305
WPHISCLTP	6	HBV		RUC	90	102	A24				0.0300
TYSTYGKFL	6	HCV				1296	A24				0.0225
VYHINVXCHA	10	HER-2/neu				951	A24				0.0218
RFRELVSEF	6	HER-2/neu				968	A24				0.0180
CTGLANEHL.	9	HER-2/neu				342	A24				0.0176
grspogrybe	97	HCV				2614	A24				0.0175
KWMALESIL	6	HER-2/neu				887	A24				0.0149
etly poor?	21	RER-2/neu				1022	A24				0.0120
RYSEDPTVPL.	9	RER-2/neu				1111	A24				0.0117
RPTHOSDVW	•	HER-2/neu				888	A24				0.0107

Table

	2	Rage Strats	No.	Pos.	Hotif	A1	A2.1	A3.2	A11	N26
DLVGFLLLK	~	-		108	3,11			0.0040	0.0014	
OLVPGIDVR	•	-		152	3,11			0.0019	0.0051	
SLEGHSLHUK	2	-		~	3,11			0.015	0.015	
SLFRAVITKE	ន	-		96	3,11			1.2	0.98	
DLVGFLLLKY	2	-		80 t	1	0.0068	•	0.0069	0.0009	
KLESVIRHYR	2	-		128	3,11			0.14	. 0.027	
WEELSVARVY	2	-		215	1	<0.0009		<0.0002	<0.0002 <0.0002	
VYDGREHBAY	2	-		223	1	<0.0009				
LVGFLLLKY	6	-		109	1	0.0033		0.056	0.0012	
Letelolsk	6	1		171	1	0.0084		0.0014	0.0014 <0.0002	
ALVTCLOLST	10	1		170	1	0.0048	0	0.0013	0.0007	
PLLLRYRAR	6	1/2/3		112	3,11			0.0007	<0.000\$	
PTTIKFTROR	10	1		99	3,11			<0.0002	0.0033	
LVOFLLLKYR	20	1		109	3,11			0.0034	0.0023	
EKTLEYORCR	10	1		246	3,11			<0.0002	0	
ELVHPLLLR	6	2/3		108	3			0.0045	0.0011	
AYGEPRALL	6	1		231	34					0.0001
TOTALATAIS	10	1		168	24		0.0006			0.0051
aths 1 gaas	6	2		161	1	0.0028		<0.0002	<0.0002 <0.0002	
EVVRIGHLT	9	21		161	1	0.0002				
EVDPASNTY	9	4		161	-	0.0005				
EADPTSHIT	6	15/5		161	1	9.9		9000.0	0.0006	0

•	١
9	
40	į
Ě	ä

eagenbeg	1	Rage Strafa	No1.	708.	Hotif	14	A2.1	A3.2	A11	A24
EVDPIGHVY	6	9		161	1	1.9		<0.0002	<0.0002	0
EMLESVIR	80	1		127	3			<0.0003	0	
LYPCIDVR	8	1		153	3			0.0035	0.0037	
CVPCPSLA	8	1		266	3			<0.0003	0.0063	
WEVYDGR	8	1		220	3			<0.0003	0.0007	
VQERYLEY	8	1		244	1	0.0018				
ATCEPRIL	8	1		231	24					0.0017
VKEADPTGHST	11	1		159	1	<0.0003				
Imbelsame	11	1		214	1	<0.0003				
EMLESVIKNYK	11	1		127	3		0.0087	0.0039		
ENDPTSHTY	6	enalog		161	1	99.0				
EVDPTSHTY	6	analog		161	1	1.8				
ENLENGGEN	6	1		14	2.1		0	<0.0002	O	
HSLEGRSLH	9	1		1	3			0.0025	0.0003	
gepgensar	. Q	1		95	3			0.0004	0	
SAPPTTINE	9	1		62	3			<0.0003	0	0.0003
TBCITEBILE	9	1		8	3			<0.0003	0	
SCILESLFR	9	1		91	3			<0.0003	0.0026	
LFRAVITER	9	1		97	3			0.011	0.0005	
VOFLLLKTR	9	. #4		110	3			0.0044	0.0051	
ESVIRNYKH	6	1		130	3			<0.0003	0	
VIKNYRBCF	9	1		132	3			<0.0003	0	

Table 5

	1	Rage	1891	į	801.18	řě	A2.1	A3.2	A11	A24
ASESTOTAL	•	1,2		147	3			<0.0003	0	
LODINGINPR	•	-		183	3			0.0007	0.0048	
VAINARCCH	•	-		200	3			<0.000	0	
YDGREHSAY	•	1		224	3			<0.0003	0	
LTQDLVQER	۵	1		239	3			<0.0003	0.14	
CGVQGPSLK	6	1		592	3			<0.0003	0.0037	
EMLESVIKAT	10	1		127	1	0.0006		<0.0002	<0.0002	٥
KEADPTGHST	10	1		160	1	<0.0005		<0.0002	<0.0002	
ASAPPTEINP	10	1		61	3			<0.0003 <0.0002	<0.0002	
APPTTIRFTR	20	1		63	3			<0.0003	0.0003	
PTTIMPTROR	10	1		68	3			<0.0003	0.0002	
STSCILEST	10	1		83	3			<0.0003	<0.0002	
CPLLLKTRAR	10	1		111	3			0.0019	0.0008	
KAEMLESVIR	10	1		125	3			<0.000	0.0097	
SVIRHYKHCP	10	1		131	3			<0.0003 <0.0002	<0.0002	
KASESLOLVP	10	1		146	3			<0.0003	<0.0003 <0.0002	0.0012
DVKENOPTOR	01	1		158	3			<0.0003	<0.0003 <0.0002	
LVKIAMBOOH	Oξ	1		199	3			0.0008	0.0005	
LSVABVIDGR	01	1		218	3			<0.0003	0.012	
VMEVYDORER	10	1		220	m			<0.0003	0.0002	٥
TGRCRTVIPH	10	1		251	m			<0.0003	<0.0003 <0.0002	
SCONDOBER	ot	1		264	Э			0.0005	0.0089	

W)
•
Ä
a
Ē

Carrospera	1	Strate Strate	108	Pos.	Not 1.8	A	A2.1	A3.2	A11	A24
VPDSDPART	6	-	MAU	254	1	0.0038				
OVPDSDPAR	٥	-	nev	254	3			<0.0003	0.0002	
VIKVSARVR	•	-	Neu	284	3			0.0016	0	
PSLREALR	-	-	nev	296	3			<0.0003	٥	
EFLWOPRAL	6	7	nev	264	24					0.0006
ETSTVKVLEY	2	1	nev	274	1	0.56				
LVOEKYLEYR	ន	1	trew	243	3			0.0008	0.0043	
OVPDSDPART	20	1	new	254	3			0.0014	0.0003	
YVKVLETVIK	2	1	MEW	112	3			0.0029	0.0015	
TVIKVSARVR	2	1	nen	283	3			0.019	0.000	
RALAETSTVK	2	7	nev	270	11			0.18	0.24	
STVRVLETVI	2	7	new	276	24					0.036
PPSLREAL	2	1	NBW	294	24					0.0044
SVIKNYK	٠	1 8	POL	121	3,11			0.0006	0.0028	
PUTRABALESVIR	13	1 n	92	122	3,11			<0.0003	0	
ETSYVKVLETVIR	13	U T	26	273	3,11			0.0044	0.0003	
ITKKVADLVOFLLLK	15	1 D	POL	102	3,11			0.40	1.0	
VTKARHLESVIKNTR	15	1 n	704	123	3,11			0.024	0.053	
VVCHWQTFFPVIFSK	15	C	POL	79	3,11			1.6	0.34	
PRALAETST	6	1	MON	268	1	<0.0019		<0.0003	<0.0002	
PATCLGLST	6	C		171	1	0.038		<0.0003	0.0004	
LEGRSLHCK	6	1	neu	3	3			<0.0002	٥	

ø
ñ
م.
ø
H

	-	200	198	8	Notif	¥1	A2.1	A3.2	A11	A26
acmanhag	_			136	-			<0.0002	0.0011	
AEMLESVIR	٦,	1.	A D	1 5	-			<0.0002	0.0018	
LESVINIE	1	1.	200	316	9			<0.0002	0	
Seles Visit I		-	ě	221	6			<0.0002	0	
nerosover			ě	256	3			<0.0002	0	
KVSARVRP	. 0	-	MON	285	3			0.0005	0	
VSARVRPP	6	-	ABU	286	3			0.0003	0.0026	
HSPOGRSE	•	2		95	е			<0.0002	O	
THE EMPTEMB	•	2		25	3			0.089	1.1	
OFFEOPRICE	•	2		83	3			<0.0002	0	
MFPDLESEF	•	2		26	3			<0.0002	0	0.014
SEPONAISE	•	2		96	3			<0.0002	0.0001	
EPORAISRX	•	2		46	3			<0.0002	0.0002	
LVHFLLLKY	6	2,3		601	3			0.043	0.010	
AZMESSVLR	٥	2		126	3			<0.0002	0	
SVLANCOOF	6	2		131	3			<0.0002	٥	
VLARCOBFF	6	2		132	3			<0.0002	٥	
DPPVIPSK	٥	2		138	3			<0.0002	0.0022	
VIPSEASEY	6	2		142	3			0.081	0.033	
VVEVVPISH	6	2		159	3			0.0001	0.010	
LCDNOVNPR	6	2		183	3			<0.0002	0.0061	
BOOCAPEER	6	2,3		205	3			<0.0002	0	

•	•	
(v	
	ě	
ı	o	
•	4	
ľ	-1	

Sequence	. 2	Rege Strain	No1.	Pos.	Notif	A1	A2.1	A3.2	A11	724
GESEGPSTF	9	3		83	3			<0.0002	0	-
TPPDL8887	6	3		80	3			<0.0002	0	0.0049
SEPONALSR	9	3		96	3			<0.0002	0	
EPGALSRK	9	3		97	3			<0.0002	0.0001	
SVVGHNQYP	9	3		131	3			<0.0002	0	
VVGNNQIFF	9	3		132	3			0.0022	0.0021	
TPPPV1PSK	9	3		138	3			0.0020	0.027	
ASSELQLVF	9	, 3		147	3			0.0011	0.0089	
LABVOPICH	9	3		159	3			<0.0002	0	
ITVLALLAR	6	3		196	3			0.0069	0.0011	
VÇEKTLÊTR	9	1		244	11			<0.0002	0	
SNOESECPR	9	2		81	11			<0.0002	0	
NYKHCPPEI	9	1	new	135	24					4.8
1 PORASESL	9	1	nev	143	24					0.0013
CFLITULUR	9	1	new	193	24					<0.0002
IPSRASETL	9	2		143	24					0.023
FTLQLVFGI	9	2		149	24					3.8
NACEPPE	9	3		135	24					0.53
IPSEASSSE	9	3		143	24					0.016
Lesvichtot	10	3		129	1	<0.0020		<0.0003	0.0012	
IPATCLOLSY	10	3		170	1	c0.0005		0.0005	0.0004	
TSCILESLER	20	1	DBW	8	3			<0.0002	0.015	

			Table	e 5						
Secuences	2	Mage Streta	#01.	908.	Notif	A1	A2.1	A3.2	A11	A24
LESVICATOR	2	-	Meu	129	3			<0.0002	<0.0002	
REHSATGEPR	2	-4	NBU	227	3			<0.0002	<0.0002	
POSDPARYEP	97	7	TIEW	255	3			<0.0002	<0.0002 <0.0002	
LETVIKVSAR	10	1	new	280	3			<0.0002	<0.0002	
VIKVSARVR	97	1	new	283	3			<0.0002	<0.0002 <0.0002	
KVSARVRPP	10	1	TIBW	285	3			0.0013	0.0020	
STTINITIONS	2	2		69	3			0.0014	0.091	
SSNOBBEOFR	10	2		8	3			<0.0002	<0.0002 <0.0002	
RHFPDLESEF	10	2		68	3			<0.0002	<0.0002 <0.0002	0.0016
ESEPÇAAISR	10	2		86	3			<0.0002	<0.0002	
SEPORALBRA	10	2		96	3			0.0012	0.0028	
ISRINGELUH	01	2		102	3			<0.0002	<0.0002	
VELVHPLLLR	10	2		101	3			0.0009	0.0003	
ELVHPLLLKY	10	2,3		108	3			0.0066	0.0003	
LVHTLLLKYR	97	2		109	3			0.026	0.0022	
HFLLLKYRAR	10	2,3		111	3			0.0014	0.0002	
RABIGLESVLR	10	2		125	3			<0.0002	0.0009	
ESVLANCOOF	10	2		130	3			<0.0002	<0.0002	
SATSHCODE	10	2		131	3			<0.0002	<0.0002	
NCODPREVIE	10	2		135	3			<0.0002	<0.0002	
GDPPPVIPSK	10	2		137	3			<0.0002	0.0083	
PV1PSICISET	10	2		141	3			0.016	0.0033	

Ś
]
å E
ü

7.		a Dage	 						:	724
Sequebos	Æ	Strafe	Fol:	į	Motif	1	1:22	2:5		
CHSETLQLVP	10	8		146	Э			<0.0002	<0.0002	0.0030
EVVEVVPISH	3.0	2		158	3			<0.0002	<0.0002	
VEVVPISHLY	2	~		360	3			<0.0002 <0.0002	<0.0002	
ILVICIALST	30	2		170	3			0.0036	0.0002	
LLCDNOVNPR	97	2		182	3			0.0093	0.0014	
1 EGDCAPEER	2	2		204	3			<0.0002	<0.0002	
STPPDLESEP	10	3		68	3			<0.0002 <0.0002	<0.0002	
ESEPONALSR	2	. 3		56	3			<0.0002 <0.0002	<0.0002	
SEFORALSER	2	3		96	3			0,0010	0.0010	
LSRKVAELVH	2	3		102	3			<0.0002	<0.0002	
ABLUHBLILK	2	ſ		101	3			0.0008	<0.0002	
LVHPLLLKTR	20	3		109	3			0.040	0.0014	
GSVVGNWQYF	10	3		130	3			0.0020	0.0008	
SVVGNWQYFF	10	3		131	3			0.0085	0.0067	
Kasselglyf	10	3		146	3			0.0003	0.0008	0.0021
ELMEVOP I GR	10	3		158	3			<0.0003	<0.0002	
KEVDP TOHLY	20	3		160	3			0.0004	0.0004	
VDPICHLILE	유	3		162	3			<0.0003	<0.0002	
LIIVLAIIAR	10	. 3		195	3			0.028	0.0021	
RESDEAPEER	70	Ē.		204	E			<0.0003	<0.0002	
ROPSECSSSR	97	1	ABU	74	11			0.0009	0.0009	
LQLVPGIDVR	10	1	WBU	151	11			0.0050	0.0018	

Table

. Granda	1	Rage	g 01.	ě	Rotif	A1	N2.1	N3.2	A11	A24
ROVPDSDPAR	2	-	New	252	11			<0.0003	<0.0002	
HWY PLWSOST	30	9	NBU	89	11			<0.0003	<0.0003 <0.0002	
OFLITTEM	27	-	TIBW	193	24					0.0008
SPSTTIRITE	2	2		63	24					0.015
RPQAA1SRUR	10	2		97	24					<0.0002
LYILWTCLGL	10	2		168	24					0.014
HWGIFFFULF	01	3		135	24					0.017
AVDPIGHLE	6	, 3	ene log	161	1	8.0				
EASP ICHLY	6	3	analog	161	1	3.5				
EVDPASHTY	6	•		191	1	1.5				
EDTPICKLY	6	3	analog	161	1	13				
EVDPTGHLY	6	3	analog	161	. 1	3.0				
ADSPSPH	6	2		55	A11					
VPISHLYIL	6	2		170	P1					
HPRTGLLII	6	2		196	P1					
SPELEVFEOR	6	2		226	A11	·				
DSVTAHPRA	6	2		236	A11					
VPARPRILL	6	2		238	A24					
HODEVORHY	6	2		247	AO1					
DPACTEFLR	6	2		265	P2					
PLWGPRALI	6	2		271	A02					
ALISTSTVR	6	2		277	A03/A11					

Table 5

	Sequence	2	Mage Strain	Жо1.	Pos.	Rot 1.1	A1	A2.1	A3.2	A11	A24
	TSTVKVLHH	6	2		281	A11					
	144 I ST PPL	٥	2		296	P1					
	ISTPPLHER	٥	2		299	A03/A11					
-	YPPLHERAL	6	2		301	P1					
	EPVTKARRG	6	5/3		128	P.1					
	VPGSDPACY	6	8/3		261	P2					
	ECLBARGEA	6	3		14	203					
	CLEARGEAL	6	. 3		15	A02					
	EARGEALGE	6	3		1.7	A02					
	ALGLVONGA	6	3		22	A02/A03					
	CLVGAGAPA	6	3		24	A02/R03					
	LVGAGAPAT	6	3		25	A02					
	PATEEGEAA	6	6		31	A02/A03					
	EAASSSTL	6	3		37	A02					
	AASSSSTLV	9	3		38	N 02					
	LVEVTLOSY	9	3		45	A02					
	EVTLOBVPA	9	3		47	A02/A03					
	VTLGEVPAA	6	3		48	NO2/NO3					
	LPTTMNTPL	9	3		71	7					
	POLESERGA	6	3		66	303					
	HPLLEKTRA	6	3		118	A03					
	FFFVIFBEA	6	6		146	203					

Table 5

Bedueses	Į	Hage Strain	Ro1.	Pos.	Hot 1.f	A1	A2.1	A3.2	A11	724
DPICHLYIP	٥	2		170	P2					
CONCINERA	6	-		161	A03					
MPRAGLLII	6	3		196	P1					
AGLLITVIA	6	-		199	A03					
KIWEELSVL	٥	3		220	A02					
SVLEVPEGR	6	3		226	A03/A11					
EDSILODPR	6	3		235	A03/A11					
SILOSPEKE	6	. 3		237	A02					
ILEDPRELL	٥	3		238	A02					
FLWCPRALV	•	3		271	N 02					
PRALVETSY	6	3		275	AO1					
RALVETSTV	6	3		276	A02					
ALVETSYVK	6	3		277	A03/A11					
LVETSYVKV	6	3		278	A02			·		
YVKYLHHRV	•	3		283	A02					
KVLEHHVKI	6	3		285	A02 ·					
MVK.1 SOOPH	6	3		290	A03/A11					
ISCOPHIST	6	3		293	A01/A03/A11					
GPHISTPPL	6	3		296	P1					
Y PPLHENVL	6	3		301	P1					
VPISHLTILV	10	2		170	P1					
MPKTGLLITV	10	2		196	P1					

Table 5

Bequeboe	\$	Hage Strain	Rol.	Pos.	Motif	A1.	A2.1	A3.2	A11	A24
VFEDREDSVF	_	2		230	N24					
HPRELLACDL	S	~		241	9.1					
THEODY ACENT	93	2		246	A01					
EPLHOPRALI	97	2		270	A24					
OPPALIETST	10	2		274	24					
RALIETSYVR	10	2		276	A11					
SYVKYLAHTL	10	2		282	A24					
STPPLHERAL	10	. 2		300	A24					
APEEKIWEEL	10	2/3		216	P1					
PLEQRSQRCK	01	3		2	A03/A11					
HCKPEBGLEA	10	3		6	A03					
EARGEALGLY	10	3		17	202					
RCENTGLVOA	10	3		19	203					
EALGLYGAGA	10	3		21	A02/A03					
LOLVGADAPA	10	3		23	A 03					
CLVGAQAPAT	10	3		24	202					
CAPATERORA	10	9		29	A02/A03					
EAMSSSTLY	10	3		37	A02					
TLVEVILOBV	10	3		44	A02					
SVTLGEVPAA	10	3		47	A02/A03					
PDPPGSPGGA	10	3		59	A03					
LPTTRUNTPLW	10	3		7.1	22					

Table 5

		Bros								,
Sequence	¥	Strata	No1.	Pos.	Rotif	TV.	A2.1	23.2	A11	724
PDLESEPORA	10	3		99	A03					
PPPVIPSKA	10	ε		145	A03					
LCDNQIMPRA	10	3		190	203					
MPRACILLIV	10	6		196	P1					3
EVFECREDS1	10	3		229	A02			·		
EDSILGDPKK	10	3		235	R03/A11					
SILODPICE	10	3		237	X 02		•		-	
ILOPPICLI	10	€ 1		238	202					
GDPICELINGH	10			240	A03/A11					
ABÖLTTANAG	10	ε		241	P2					
LTQHEVORHY	10	3		246	A01/A03/A11					
PVQBNYLEYR	10	3		250	A03/A11					
ACTERCHAPR	10	3		267	A03/A11					
CPRALVETST	10	Ē		274	72					
RALVETSTVR	10	E		276	A03/A11					
ALVETSTVKV	20	Е		277	A02					
LVETSYVKVL	10	e		278	A02					
TVKVLAHHVR	10	3		283	A03/A11					
HVRISCOPRI	10	3		290	A02					
KISCOPHIST	10	3		292	201					
SPPRSPQCA	9	2		9	P2A					
APATEBOEA	6	3		30	P2A					

~

Table 5

	1	Serato Serato	7. E	98.	ROLLE	A1	A2.1	A3.2	A11	A24
ASSOS BOS OF		-		ŝ	P2A					
APATEROOTA	2	2		8	P2A					
PPOLESETON	2	2/3		98	P2A					
APATERORA	2			30	F2A					
DPIGHTAIN	2	3	·	170	P2A					
ENOPTORST	6	1		191	1	0.56	0	٥	0.0003	<0.0003
KVADLVGFLL	2			105		0.0005	0.041	0.0039	0.0030	0.0070
ASSLPTTAGE	2	8		8	1	2.3			0.043	
TODITAGEKE	۰	-		240	*	0.57	0.0001	0	0	٥
LVOZKYLEY	٥	1		243	3	016	0	0.0016	0.0098	٥
Adiadatii	6	3				<0.0007	1.4	0.0048	0.0048	0
EVDPIGHTE	•	9				3.7			0.0022	
ASSFETTINE	2	2		8	1	0.016	0	0.0016	0.0054	٥
VICLOLST	•	1		172	1	0.022	0	0.0001	0.0007	0
SSLPTTIME	Ŀ	3		6	1.	0.037	0	0.013	0.12	٥
GSVVCHWOT	۵	3		11	1	0.0059	0	0.000	0.025	0
DLVOERYLET	ន	1	CIEW	242	3	0	0	0.0010	0	0
SSPETTINE	•	2		9	1	0.016	0	0.0095	0.056	0
KLESVIKIT	6	7		128	1	0.0016	0.0002	0.0006	0	0
KHVBLVHFL	6	2				<0.0007	0.13	0.0001	0	0.0043
KAVELVHPLL	20	2		105		c0.0008	0.071	0.0004	0.0001	0.0008
PAPOTETREA	20	3				0.0030	0.065	0.0007	0	٥

Sequence	2	Maye Strain	Rol.	Pos.	Notif	A1	A2.1	33.2	A11	A24
SLPRAVITK	Ĝ	1		28	3,11	<0.0007	0.0001	3.9	2.6	٥
ADLVOPILLE	2	_		191	3	0.0012	0.0003	0.0081	0.022	0
ESLPRAVITE	2	-		ž	3	<0.0008	0	0.0000	0.0052	0
MLESVIKHYR	2	1				0	0	0.034	0.0045	0
LVOFLLLA	80	-		601	3	0.0029	0.0002	0.027	0.034	0
TTINFTROR	6	-		99	3,11	0	0	0.051	0.40	٥
LLGDNOINPR	2	1/3		182	3,11	<0.000	0.0001	0.022	0.016	0
SVASVIDGR	6	, 1		219	3,11	<0.0006	0	0.059	0.32	0
HSAYOEPRA	6	7		229	3	0.0001	0	0.0010	0.0015	0
LLTODLVOER	2	7		238	3,11	<0.000	0	0.0014	0.011	0
LICHTAGER	٥	1		239	3,11	0.0011	0	0.0002	0.16	٥
NYKROPPET	10	1		135	24	0	0	0	0	0.26
LYIFATCHOL	9.	3		115	24	<0.0007	0	9000.0	0	0.0035
RYPLABOSY	6	3		91	24	<0.0006	0	0	1000.0	0.016
SYVLVTCL	8	1		168	24	0.0029	0.00025	0.0020	0.0002	0.0026
ETSTVKVLET	10	1				0.075	0	0.0009	0.0004	0
LEYVKVLST	6	1		275	3	0.082	0	0.23	0.013	0
FLHOPRALA	6	1				<0.0006	0.027	0.0015	D	o
ALAETBTVKV	10	1		271		<0.0001	0.017	0.0011	0.0029	0
RVRFFFSLR	10	1		290	3	<0.0007	0	0.25	0.0035	0
ALACTSTVK	6	1				<0.0006	0.0002	0.17	0.39	0
LTODLVQERY	10	1		239	1	0.041	0	0	0.0002	0
		l								ĺ

Table 5

			H	Table 5					
	\$	Strain	8 01.	Pos.	Not12	A1	A2.1	A3.2	
GTLLLATER	6							0.0004	
CPPRIFURA	6	-						0	
FFFBLACA	6	-						0	1
FFFSLREAM	٥	1						0	
HCFPEIFOR	6	1		138	3,11			0.0017	
RSLHCKPEEA	2	1						0.0001	
EFLHOPRALA	2	1						O	
RFFFFEREA	20	, 1						0.0004	
PPEDSIL STAN	10	1						0	

Seguence	Aminen	Strats	Niolecule	Position	Mode	I	A2	A 1	114	A 24	Mar
						Binding	Binding	Binding	m	Binding	Similar
FSPAFDNLYY	c-ErhB2			1213	AUI	5.5000		O.CRXDS	<u> </u>		S.SIKKI
CHOIAKGMSY	c-ErhB2			826	AUI	0.2967		0.0003	O.CHOO!		0.2967
ESMPNPEGRY	c-ErbB2			280	AOI	1) 8CK	<u>i</u>	D.CHRIS	0.0003	:	0.1810
ASCVTACFY	c-ErhB2			-	AOI	0.0552	! !	CUXIS	0.(R)74		0.0552
FSPAFONLY				1213	AUI	0.0425		O.CHRIZ	D.CH.X12	:	0.0425
ASPLDSTFY	c-ErhB2			709	AGII	0.0290	<u>.</u>	0.00012	COUNT		0.0290
RCTOLFEDNY	.112			Ξ	AGI	0.0205	!	O.CHRIS	0.00115	İ	0.0205
PASPLOSTFY	c-FilhB2			525	AUI	0.0148	:	CHEN	CONT	:	
LSAFSLHSY	IC			2889	ABI	0.8103		O.CH.FIZ	CHINAIS -	:	200
KSTKVPAAY	ICA			12.16	Adii	0.0124	:	O CHAND	0.000	:	100
DSSALCECY	ICV			1513	Aul	0.01		i) (XXX)2	U.(RRI)3		0.00
ETDPIGHLY	MAGE-38	е. ,	analog	192	AOI	12.50xx0					12.5000
AVDPIGHLY	Ç	3	ematog	191	AOI	S.CHEN				!	S (NNN)
EVDPIAHLY		3	anatog	19	AGI	S.Sum	: :				S.SONN)
EVDAIGHLY]	analog	<u>ड</u>	AOI	5.35(11)	; !	İ		<u> </u>	5.35(m)
EVDPIGALY		~	analog	191	AOI	SUCKE	: : !			<u>:</u>	S.(NXR)
EVDPIGITAY		~ 	analog	191		4.65(X)	<u> </u>			· -	4.65fR)
EADPIGII,Y	MAGE: 3a	3	analog	19		3.45180	<u>-</u> 			-	3.45(8)
EVDPTGHLY	MAGE-3a	~	analog	161	AOI	2.9500	 			:	2.95(H)
EVDPIGHSY	MAGE-3a	3	analog	161	ADI	2.6667	:			-	2,6667
EVDPAGIILY	MAGE-3	3	Bolomo	161	AGI	2.4(KB)	<u> </u>		-	<u> </u>	2 478.8
EVDPIGHLA	MAGE-3a	3	analog	191	Ani	0.3300	İ			İ	0.33(8)
EVAPIGHLY	MAGE-32	3	arralog	191	AGII	0.1830	<u> </u>			:	0 181K
EVDPASNTY	MAGE-4	4		191	AGII	1.50873	: !	!			S(NN)
VGSDCTTIHY	p53			225	AGE	0.2600		0.0003	0.000	Ī	0.2600
PSOKTYOCSY	153			90	AOI	0.0140		0.0003	0.0003		0.01411
PLSEDQLLY	PAP			T	AUI	1.20001		O CHAIS	0.03301	İ	I ZCIA)
IPSYKKLIMY	PAP			277	A01	0.5650		•		:	0.5650
YASCHLTELY	PAP			310	AOI	0.5467		0.0003	0.0002		0.5467

Table 5

EY C-ERB2 545 A03 U(N)15 Binding Binding Binding Binding Y C-ERB2 773 A13 U(N)12 0.0350 Y C-ERB2 773 A13 U(N)12 0.0350 Y C-ERB2 773 A13 U(N)17 0.0367 Y IIIV A11 U(N)17 0.0103 Y IIIV A03 U(N)17 0.0104 Y IIIV A04 A03 U(N)17 0.0104 Y IIIV A04 A03 U(N)17 0.0104 Y IIIV A04 A03 U(N)17 0.0104 Y IIIV A04 A03 U(N)17 0.0104 Y IIIV FOL 474 A10 A10 A10 Y IIIV FOL A10 A24 A24 A24 Y IIIV A04 A24 A24 A24 A24 <t< th=""><th>Sequence</th><th>Aminen</th><th>Strain</th><th>Moterule</th><th>Position</th><th>Modif</th><th>A1</th><th>A2</th><th>A3</th><th>AII</th><th>A24</th><th>Nax.</th><th></th></t<>	Sequence	Aminen	Strain	Moterule	Position	Modif	A1	A2	A3	AII	A24	Nax.	
C. ERB2) ! !			!		Binding	Binding	Binding	Binding	Błnding	Binding	
Fig. Fig.	RVLOGLPREY	C-ERIS2			\$45	A03	\$1000		0.0350	0.000		0.0350	
18	OLVTOLMPY	C-ERB2			795	A03	0.0024		0.0112	0.08139		0.0112	
IIBV auf POL 124 AII3 0.00170 0.1640 111V 201 274 AII3 0.00170 0.11640 111V 201 274 AII3 0.00170 0.11640 111V 201 274 AII3 0.00170 0.11640 274 AII3 0.00170 0.01653 274 AII3 0.00170 0.001653 274 AII3 2.4500 0.11910 2.4500 2	VMAGVGSFY	c-ErhB2	!	1	77.3	A0.3	0.04(3)		0.0575	0,000,0		0.0575	
III IIII IIIII IIII IIII IIII IIII IIII IIII IIII IIII IIII IIII IIII IIIII IIIIII	TIWEAGILY	Yatı	<u> </u>	201	724	All3	0.0017		0.2667	0,00016		0.2667	
IIIV FVJL 958 A03 0.18170 0.11641 IIV A03 0.1817 0.01653 IV A04 A05 0.1817 0.01653 IV FVJL IV A05 0.1817 0.01653 IV FSA FVJL IV A07 IV IV A01 IV FSA FVJL IV A01 IV A01 IV FSA FVJL IV A01 IV A01 IV FSA FVJL IV A01 IV A01 IV FSA FVJL IV A01 IV A01 IV FSA FVJL IV A01 IV A01 IV FSA FVJL IV A01 IV A01 IV FSA FVJL IV A01 IV A01 IV FSA FVJL IV A01 IV A01 IV FVJL IV IV IV IV IV IV FVJL IV IV IV IV IV FVJL IV IV IV IV IV FVJL IV IV IV IV IV FVJL IV IV IV IV IV FVJL IV IV IV IV FVJL IV IV IV IV FVJL IV IV IV IV FVJL IV IV IV FVJL IV IV IV FVJL IV IV IV FVJL IV IV IV FVJL IV IV IV FVJL IV IV IV FVJL IV IV IV FVJL IV IV	1 LRGTSFVY	IIII	ī	FOIL .	1345	- A013	O.CRII7	 	0.0.140	0.0002		077-010	
IIIV GAG 274 A03 0.0017 0.01673 0.0563 1 1 1 1 1 1 1 1 1	KLIMASOIY			POL	958	A03	0.08170	 	3	U.IRRIG		3	
MAGE:	CLINKIVRMY	iii viii	l i	GAG	27.1	A03	0.0017		0.0103	0.000	! ! ! ! !	0000	
IIV FOL	I,VGFLLLRY		-	:	3	A03	0.0033	: : :	0.0563	G.(N) 12		0.0563	
III	GTRVRAHALY		 	!		Airi	(1.CX12.7	İ	0.0365	CHAND.	!	0.0365	
PSA 126 A11 2.4500 0.00033 110 V 126 A11 2.4500 0.00033 110 V 126 A11 2.4500 0.00033 110 V 126 A11 2.4500 0.00033 110 V 126 A11 2.4500 0.00033 126 V 1	K J ONFRVYY		!	Ę		AUVAII	(I.(X)56	İ	55	0.1350		0.1350	
Figy Con 1351 A11 2.4500 0.00037 1.10 A24	SLYTKVVHY	PSA		:		AUVAII	0.0017		0.6750	0.0140	•	0.6750	
C. ErhB2 C.	LTCGFADIMGY	IRV			126	AII	2.4500		0.0003	0.0120		2.45(N)	
C-ErhB2 C-ErhB	ETAYFLLK		ş		1321	AII		İ	0.0037	0.0425	:	0.0425	
C. ErhB2 C. ErhB3 C.	RWGLLLALL	c-ErtB2		! ! !	ioc	A24					1.2567	1.2567	
C-ErhB2 C-ErhB	PYVSRLLGI	c-ErbB2	•		780	A24			i		0.1650	0.1650	
C-ErhB2 C-ErhB3 C-ErhB	VYMINVKCW	c-ErhB2		· 	951	A24		<u> </u>	:	;	979	- 1648 - 1648	
C-ErhB2 C-ErhB	AYSI, TLOGI.	c-ErbB2		!		A24			:		0.1250	0.1250	
C-ErhB2 C-ErhB	SYGVTVWEL	c-ErthB2		-	2116	A24			İ		0.1203	0.1200	
C-Erbiz C-E	LY I SAWPDSI,	c-ErhB2			=	A24					0.0835	0.0835	
C-Erbis 63 C-Erbis 63 C-Erbis 63 C-Erbis 951 C-Erbis 342 C-Erbis 887 C-Erbis 887 C-Erbis 887	WHSYGVI'VW	c-Erhis			SES	10					0.0800	0.0800	
C-ErbB2 C-ErbB2 C-ErbB2 C-ErbB2 C-ErbB2 C-ErbB2 C-ErbB2 C-ErbB2 C-ErbB2 C-ErbB2 C-ErbB2 C-ErbB2 R87	SYCHTYMELM	c-ErhB2		i !	717	A24					0.0630	0.06.30	
C-GrhB2 951 C-GrhB2 968 C-GrhB2 887 C-GrhB2 887 C-GrhB2 1022 C-GrbB2 1022	TYI,PTNASL	c-ErbB2			63	~					11.0375	0.0375	
C-Erbis 342 C-Erbis 342 C-Erbis 887 C-Erbis 1022 C-Erbis 2 1012	VYMIMVRCWM	c-ErhB2			951	~					0.0218	0.0218	
C-ErhB2 887 887 887 6-ErhB2 6-ErhB2 1022 6-ErhB2 1111 898	RFRELVSEF	c-ErhB2			906	A24					=	0810.0	
C-Erh02 R87 C-Erh02 1022 C-Erh02 898	CYGLGMEHL	c-ErhB2			342	A24					0.0176	0.0176	
C-Erbis 1112 1112 1111	KWMALESIL	c-ErbB2			500	A24					0.0149	0.0149	
C-ErbB2	EYLVPOOGFF	c-Erho2		<u> </u>	1022	A24			,	:	0.0120	0.0120	
C-ErbB2 898	RYSEDPTVPL	c-ErbB2	 		Ξ	A24					0.0117	0.0117	
	RETHOSDVW	c-ErbB2			898	A24		i			0.0107	0.0107	

Table 5

						•		4.3	A 11	P 6 P	2
0000000	Anthon	Figure	Strain Nobernie Position Motil	Position	E S	2	78	A	711		
and delice	1			!		Pleading	The House He was no Rei	Rinding	Rhadhne	Binding	5
						Dilliants	911121118	9	9	٥	
	Agii		J. 12	117	A24					0.0335	≦ :
_	_						-			AZV.	Ξ
TT COLITE	781		SC SC SC SC SC SC SC SC SC SC SC SC SC S	102	A24					UNCUL.	= :
	1			199	1					= 172 - 175	Ë
OYLAGLSTI	<u>د</u>	,			75.		:: !				
		1		1206	A23					C77M'()	3
TESTIGRE	֝֡֝֝֝֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓						:			1111175	Ξ
OVSPGORVEF	<u>></u>			*197	A44				1		
	1490	!		5	A24		0.08803			0.0305	=
											١.

Table 5

Table 6

AA	SEQUENCE	SOURCE
9	GLNKIVRMY	HIV GAG 274
9	KLNWASQIY	HIV POL 958
9	KIQNFRVYY	HIV POL 1474
9	TLWKAGILY	HBV adr POL 724
9	ILRGTSFVY	HBV adr POL 1345
9	SLYTKVVHY	PSA 237
9	NTSSSPQPK	p53 311
9	nvkipvaik	c-ERB2 745
10	TLGPGAYMSK	HCV LORF 1261
10	GTRVRAMAIY	p53 154
10	EAYSPVSTSK	HBV adw POL 887
9	QTTKJQNFR	HIV POL 1471
9	NITGLILTR	HIV ENV 2633
9	FLWEWASVR	HBV adr ENV 324
9	RTPSPRRRR	HBV adr CORE 549
9	SLARGNQGR	HBV adr POL 805
10	VAYQATVCAR	HCV LORF 1587
10	KTYQGSYGFR	p53 101
9	WMCLRRFII	HBV ayw 237
9	WMCLRRFII	HBV ayw 237-245
9	KFMLCAGRW	PSA 190
10	OMPKTGFLEE	MAGE I 188
8	ETAYFLLK	HIV con (35)
11	LTCGFADIMGY	HCV 126
9	CSPHHTALR	HBV
<u></u>		NUC;XNUCFUS 48
9	VMPKTGLLI	MAGE 2 188
9	VMPETGLLI	MAGE2 188-196
9	VAELVHFLL	MAGE 3 106
0	DAPKAGLLI	MAGE 3 188
10	VMPKTGLLII	MAGE 2 188
10	VMPKTGLLII	MAGE2 188-197

		
AA	SEQUENCE	SOURCE
9	ASCVTACPY	c-ErbB2 293
9	VMAGVGSPY	c-ErbB2 773
9	ASPLDSTFY	c-ErbB2 997
9	FSPAFDNLY	c-ErbB2 1213
9	KSTKVPAAY	HCV 1236
9	DSSVLCECY	BCV 1513
9	LSAPSLHSY	HCV 2889
9	PLSEDQLLY	PAP 147
9	YAVCDKCLK	HPV 16 E6 67
9	CMSCCRSSR	HPV 16 E6 143
9	RWGLLALL	c-Erb82 8
9	TYLPTNASL	c-ErbB2 63
9	CYGLGMEHL	c-ErbB2 342
9	AYSLTLQGL	c-ErbB2 440
9	PYVSRLLGI	c-E-6B2 780
9	RWMALES(IL	c-ErbB2 887
9	RFTHQSDVW	c-Ert.B2 898
9	VWSYGVTVW	c-ErbB2 905
9	SYGVTVWEL	c-ErhB2 907
9	VYMIMVKCW	c-ErbB2 951
9	RFRELVSEF	c-ErbB2 968
9	WFHISCLTF	HBV NUC 102
9	TYSTYGKFL	HCV 1296
9	QYLAGLSTL	HCV 1717
10	IPSYKKLIMY	PAP 277
10	RGTQLFEDNY	c-ErbB2 103 .
10	ESMPNPEGRY	c-ExbB2 280
10	CMQIAKGMSY	c-Exts2 626
10	PASPLOSTFY	c-ErbB2 996
10	FSPAFDNLYY	c-BrbB2 1213
10	PSQKTYQGSY	p53 98
10	VOSDCTTIHY	pS3 225
10	YASCHILTELY	PAP 310
10	LYISAWPDSL	c-ErbB2 410

AA	SEQUENCE	SOURCE
10	SYGVTVWELM	c-ErbB2 907
10	VYMIMVKCWM	c-ErbB2 951
10	EYLVPQQGFF	c-ErbB2 1022
t0	RYSEDPTVPL	c-ErbB2 1111
10	EYLVSPGVWI	HBV NUC 117
10	QYSPGQRVEF	HCV 2614
9	VYNFATCGI	LCMV glyco 35
9	GYCLTKWMI	LCMV glyco 283
9	MFEALPHII	LCMV glyco 7
9	IFALISFLL	LCMV glyco 43
9	LFKTTVNSL	LCMV glyco 342
9	LYTVKYPNL	LCMV micleo 204
9	PYIACRTSI	LCMV micieo 314
10	GYCLTKWMIL	LCMV glyco 283
10	AYLVSIFLHL	LCMV glyco 446
9	RWCIPWQRL	CEA 10
9	TYPNASLLI	CEA 101
9	LWWVNNQSL	CEA 177
9	LYGPDAPTI	CEA 234
9	VYAEPPKPF	CEA 318
9	LWWVNNQSL	CEA 355
9	LYGPDDPTI	CEA 412
9	TYYRPGVNL	CEA 425
9	LYGPDTPII	CEA 590
9	QYSWRINGI	CEA 624
9	TYACFVSNL	CEA 652
9	VWKTWGQYW	gp100 152
9	TWOQYWQFL	gp100 155
9	RYGSPSVTL	gp100 479
9	LMAVVLASI.	gp100 606
9	HWLRLPRIF	gp100 636
9	SYKHEQVYI	PAP 96
0	AMTNLAALF	PAP 116
9	VFLTLSVTW	PSA 2
-		

AA	SEQUENCE	SOURCE
9	TWIGAAPLI	PSA 9
9	CYASGWGSI	PSA 148
10	YMIMVKCWMI	c-ErbB2 952
10	RWCIPWQRLL	CEA 10
10	FWNPPTTAKL	CEA 27
10	QYSWFVNGTF	CEA 268
10	TFQQSTQELF	CEA 276
10	VYAEPPKPFI	CEA 318
10	YYRPGVNLSL	CEA 426
ιo	QYSWLIDGNI	CEA 446
10	SYLSGANLNL	CEA 604
10	HFLRNQPLTF	gp100 231
10	LFPPEGVSTW	PAP 123
10	TWIGAAPLIL	PSA 9
10	HYRKWIKDTI	PSA 244
9	KLRKPKHKK	P. falciparum CSP 104
9	KILSVFFLA	P. falciparum EXP-1 2
9	ALFFUFNK	P. falciparum EXP-1
9	GTGSGVSSK	P. falciparum EXP-1 28
9	VLYNTEKGR	P. falciparum EXP-1 99
9	KYKLATSVL	P. falciparum EXP-1 73
9	PSENERGYY	P. futciparum LSA1 1664
9	FLKENKLNK	P. faiciparum LSA1 111
0	GVSENIFLK	P. falciparum LSAI 105
9	ilvnllifh	P. falciparum LSAt 12
9	KSLYDEHIK	P. falciparum LSA1 1854

AA	SEQUENCE	SOURCE
9	LLIFKINGK	P. falciparum LSA1 16
9	QSSLPQDNR	P. falciparum LSA1 1676
9	QTNFKSLLR	P. falciparum LSA1 94
9	RINEEKHEK	P. falciparum LSA1 49
9	SLYDEHIKK	P. falciparum LSA1 1855
9	VLAEDLYGR	P. falcipanun LSA1 1647
9	VLSHNSYEK	P. falciparum LSA1 60
9	FYFILVNLL	P. falciparum LSA! 9
9	YYIPHQSSL	P. faiciparum LSA1 1671
9	PSDGKCNLY	P. falciparum TRAP 207
9	LACAGLAYK	P. falciparum TRAP 511
9	LLACAGLAY	P. falciparum TRAP 510
9	LSTNLPYGR	P. falciparum TRAP 122
9	QGINVAFNR	P. falciparum TRAP 192
9	RGDNFAVEK	P. falciparum TRAP 307
9	RSRENEILH	P. fulciparum TRAP 262
9	SILSTNLPY	P. falciparum TRAP 120
p	KYLVIVFLI	P. fatciparum TRAP
9	PYAGEPAPF	P. falciparum TRAP 528

AA	SEQUENCE	SOURCE
10	VTCGNGIQVR	P. falctparum CSP
10	Treditorio	375
10	GTGSGVSSKK	P. falciparum EXP-1 28
10	LALITHIFNK	P. falciparum EXP-1 9
10	FQDEENIGIY	P. falciparum LSA1 1794
10	FILVNLLIFH	P. fatciparum LSA1 11
10	HVLSHNSYEK	P. falciparum LSA1 59
10	KSLYDEHIKK	P. falciparum LSA1 1854
10	ALLACAGLAY	P. falciparum TRAP 509
10	IIRLHSDASK	P. falciparum TRAP
10	LLACAGLAYK	P. falciparum TRAP 510
10	RLHSDASKNK	P. falciparum TRAP 102
9	ILGFVFTLT-NH2	Flu Matrix 59-67
10	KGILGFVFTL- NH2	Flu Matrix 57-66
9	KLQCVPLHV	PSA 166-174 P/D
9	KLQCVPLHV	PSA 166-174 P/D
9	KLQCVPLHV	PSA 166-174 P/D
11	KQVPLRPMTYK	940.03 N-terminal extension
9	KLYEIVAKV	A2.1 consensus
9	KLAEYVAKV	A2.1 consensus
9	KLAEIVYKV	A2.1 consensus
9	KVFEYLINK	A3.2 consensus
10	KVFPYALINK	A3.2 consensus
9	AVFAYAAAK	A3.2 consensus
9	ALEPAIAKY	A) consensus

AA	SEQUENCE	SOURCE
9	YLEPAIAKY	A1 consensus
9	ALEPYIAKY	A1 consensus
9	YLEQYIEKY	Al consensus
9	GTEKLLAKY	A1 consensus
9	ATEPALAKY	Al consensus
9	ATNYPAIQK	All consensus
9	ATNVPAIQK	A11 consensus
9	ATNAPYIQK	A11 consensus
9	ATNAVYIQK	All consensus
9	ATNAAYAQK	All consensus
9	AVNAAYAQK	All consensus
9	AVNAPYIQK	All consensus
9	AVNAVYJQK	All consensus
9	PTDPKLINY	A1 consensus
9	GTDPKLINY	Al consensus
9	YTDPKLINF	Al consensus
9	PTDPKLINY	Al consensus
9	FTDQAVIKY	Al consensus
9	YTDQAVIKF	Al consensus
9	YTDQKLINF	Al consensus
9	STNPKPQKK	HCV-core 2-10
11	STNPKPQKKNK	HCV-core 2-12
9	SPFPEITYI	self peptide of P815 analog: Y2 to F.
9	ATDPNFLLY	Al consensus
9	ATDKNFLLY	Al consensus
9	AŁMEKTYQV	A2.1 consensus peptide
9	ALSEKTYQV	A2.1 consensus peptide
9	AVYDPEQK	A3.2 consensus peptide
9	AVYDKEQK	A3.2 consensus peptide
9	AVMNPMIQK	All consensus peptide

9	SEQUENCE AVMNEMIQK	SOURCE
9	AVMNEMIOR	1
	The following is	All consensus peptide
9	AYMDMVNSF	A24 consensus peptide
9	AYIDNVNSF	A24 consensus pepuide
9	KLAAAAAAK	A3.2/A11 poly-A
9	DVFRDPALK	Aw68 endogenous
9	GYKDGNEYI	Lm listeriolysin 91- 99
10	MMWYWGPSLY	нву
21	WMMWYWGPSL Y	HBV
9	RYLRDQQLL	HJV env
8	FLLLKYRA	MAGE-1
9	IMPKTGFLI	MAGE-I
9	VADLVGFLL	MAGE-I
10	IMPKTGFLII	MAGE-1
11	FLIIVLVMIAM	MAGE-I
11	CILESCFRAVI	MAGE-L
9	MYRPDAIQL	P. Yodii SSP2 143
10	NYSPNGNTNL	P. Yorlii SSP2 119
9	KFNPMKTHI	Kd consensus peptide
9	AMIKNLDFI	Db consensus
9	AMIKNLYFI	Db consensus analog
11	STLPETYVVRR	HCV 141-151 enalog
9	QYDDAVYKL	Cw4 consensus
10	FQDPQERPRK	HPV16 G6
10	VPEFAFKDLF	HPV18 B6
9	VVYRDSIPH	HPV18 E6
9	IFEANONLI	Fh: HA 240-248
0	IYATVAGS1.	HA 529-537

м	SEQUENCE	SOURCE
9	SYIPSAEKI	P. bergali CS 252- 260
P	KYQAVTTTL	Tumour P198 14-22
tO	MYPHFMPTNL	MCMV pp89 167- 176
9	AYPNVSAKI	Lm listeriolysin 196- 204
9	AYTGGKINI	Lm listeriolysin 413- 421
9	SAISSILSK	HBV ENV 159
9	QAGFFLLTK	HBV ENV 190
9	SALYREALK	HBV NUC 64
9	RAKWNNTLK	HIV cav 370
9	RATQIPSYK	PAP 273
9	TAAHCIRNK	PSA S8
9	MAVFIHNFK	HEV pol 909
9	TAGILELLK	HPV 6b El 192
9	RAALLGKFK	HPV 66 E1 205
9	CATMCRHYK	HPV 65 E1 406
9	TAACSHEGK	Flu HA-1 132
9	NANANSAVK	P. fat csp 304
9	GAFKVPGVK	LCMV glyco 484
9	RARVHPITR	RBV POL 244
9	CALPFTSAR	HBV X 69
9	NMLESILIK	LCMV nuc 259
9	WMILAAELK	LCMV glyco 289
9	EMNLPGRWK	HIV pol 107
9	SSLQSKHRK	HBV POL 201
9	OSTHVSWPK	HBV POL 398
9	TSDLEAYFK	HBV K NUC FUS 105
9	ASQIYAGIK	HIV pot 438
9	ASCORCQLK	HIV pol 769
9	MSLAADLEK	LCMV nuc 100
0	VSSKNILMEK	Mel. tyro 25

AA	SEQUENCE	SOURCE
9	LSTNLPYGK	P. fal ssp2 122
9	STDHIPILY	Al Nat. Processed
9	STAPPAHGV	Breast macin 9-17
9	LMAVVLASL	ஓ100
9	WSQKRSFVY	gp100
9	PLDCVLYRY	gp100
10	PSSVGSRSEY	gp100
9	YTAVVPLVY	Hu J chain 102-110

Table 7

-			
	AA	SEQUENCE	SOURCE
İ	8	LTELYFEK	PAP 315
	9	TISPSYTYY	CEA 419
5	9	GTGCNGWFY	HPV 16/18 E1 11
	9	LTEMVQWAY	HPV 65/11 E1 358
	9	TTVNNSGSY	CEA 289
	9	CTGWFMVEA	HPV 65/11 EL 14
	9	ATVQDLKRK	HPV 66/11 E1 77
0	9	AVESEISPR	HPV 66/11 E1 101
	9	FLNSNMQAK	HPV 6b/11 E1 393
·	9	TRQTVIEH	HPV 65/11 E1 341
	9	IVGPPOTGK	HPV 65/11 E1 476
	9	KLEPLSLY	HPV 66/11 EL 254
5	9	KLWLHGTPK	HPV 6b/11 E1 462
	9	KWSIKQWIK	HPV 6b/11 E1 420
	9	VVAGFGIRH	HPV 6b/11 E1 238
	9	HLFGYSWYK	CEA 61
	9	ISPSYTYYR	CEA 420
20	9	HTQVLFIAK	CEA 636
	9	ITVYAEPPK	CEA 316
	9	ITVSAELPK	CEA 494
	9	RLQLSNGNR	CEA 190
	9	RLQLSNGNR	CEA 546
25	9	RINGIPQQH	CEA 628
	9	SNMQAKYVK	HPV 6b/11 E1 396
	9	EWITRQTVI	HPV 6b/11 E1 339
	9	FFERLSSSL	HPV 66/11 E1 613
	9	NWKPIVQFL	HPV 6b/11 E1 439
30	10	PTISPSYTYY	CEA 418
	10	PTISPLNTSY	CEA 240
	10	HSASNPSPQY	CEA 616
	16	KLIEPLSLYA	HPV 66/11 E1 254
	10	AIVGPPDTGK	HPV 66/11 E1 475
35	10	DCATMCRHYK	HPV 6b/16 E1 405
	10	KLWLHGTPKK	HPV 6b/11 E1 462
	10	WVVAGFGIHH	HPV 6b/11 E1 237

10

15

20

25

3(

5			
10			
15			
20			
25			
30			

		,
AA	SEQUENCE	SOURCE
10	TTTVSAELPK	CEA 493
10	TEWNPPTTAK	CEA 26
10	TISPSYTYYR	CEA 419
10	TISPLNTSYR	CEA 241
10	KTLTLFNVTR	CEA 198
10	RTLTLENVTR	CEA \$54
10	RTLTLLSVTR	CEA 376
10	ATPGPAYSGR	CEA 89
10	ASGHSRTTVK	CEA 483
10	QFLRHQNIEF	HPV 66/11 E1 445
10	TFTFPNPFPF	HPV 6b/11 E1 586
9	RVDCTPLMY	Prost.Ca PSM 463
9	LLSLYGIHK	Prost.Ca PAP 243
9	STVLPFDCR	Prost.Ca PSM 590
9	KSLYESWTK	Prost.Ca PSM 491
9	SMKHPQEMK	Prost.Ca PSM 615
9	SLYESWTKK	Prost.Ce PSM 492
9	YSLVHNLTK	Prost.Ca PSM 471
9	HLTELYFEK	Prost.Ca PAP 314
9	RATQIPSYK	Prost.Ca PAP 273
9	ASGRARYTK	Prost.Cn PSM 531
9	SLYGIHKQK	Prost.Ca PAP 245
9	RDYAVVLRK	Prost.Ca PSM 598
9	SSHDLMLLR	Prost.Ca PSA 113
9	GAAPLILSR	Prost.Ca PSA 12
9	KIVIARYGK	Prost.Ce PSM 199
9	RAAPLLAR	Prost.Co PAP 2
9	VVLRKYADE	Prost.Ca PSM 602
9	GLPDRPFYR	Prost.Ca PSM 680
9	WLDRSVLAK	Prost.Ca PAP 25
9	KVFRGNKVK	Prost.Ca PSM 207
9	IVRSPGTLK	Prost.Ca PSM 398
٥	KTYSISMKH	Prast.Ca PSM 610
9	RSVLAKELK	Prost.Ca PAP 28
9	STNEVTRIY	Prost.Ca PSM 348
9	GFFLLGFLF	Prost.Ce PSM 31

5			
10			
15			
20			
25			
30			
35			

AA	SEQUENCE	SOURCE
9	LYSDPADYF	Prost.Ca PSM 227
9	KYADKIYS1	Prost.Ca PSM 606
9	NYARTEDFF	Prost.Ca PSM 178
9	AYINADSSI	Prost.Ca PSM 448
9	SASPOGSPY	HBV POL 165
9	AFTFSPTYK	HBV POL 655
9	SVVRRAFPH	HBV POL 524
9	RWMCLRRFI	HBV ENV 236
9	SWLSLLVPF	HBV ENV 334
9	SWWTSLNFL	HBV ENV 197
9	PWTHKVGNF	HBV POL 51
9	SFCGSPYSW	HBV POL 167
10	NADSSIEGNY	Prost.Ca PSM 451
10	GLDSVELAHY	Prost.Ca PSM ±04
10	RATQIPSYKK	Prosi.Cs PAP 273
10	LGFLFGWFIK	Prost.Ca PSM 35
10	SSIEGNYTLR	Prost.Ca PSM 454
10	KSLYESWTKK	Prost.Ca PSM 491
10	SLLSLYGIHK	Prost.Ca PAP 242
10	PLYNFTQIPH	Prost.Ca PSM 73
10	VIYAPSSHNK	Prost.Ca PSM 690
10	AVVLRKYADK	Prost.Ca PSM 601
10	KSPDEGFEGK	Prost.Ca PSM 482
10	IVRSFGTLKK	Prost.Ca PSM 398
10	RIYNVIGTLR	Prost.Ca PSM 354
10	LSLYGIHKQK	Prost.Ca PAP 244
10	MSLLKNRFLR	Prost.Cn PSA 99
10	ISMKHPQEMK	Prost.Ca PSM 614
E0	RAVCOGVLVH	Prost.Ca PSA 43
10	GSAPPDSSWR	Prost.Ca PSM 311
10	SIPVHPIGYY	Prost.Cn PSM 291
10	CSGKIVIARY	Prost.Ca PSM 196
10	ETYELVEKFY	Prost.Ca PSM 557
10	RLLQERGVAY	Prost.Cn PSM 440
10	FYDPMFKYHL	Prost.Ca PSM 565
10	TYSVSFDSLF	Prost.Ca PSM 624

٨٨	SEQUENCE	SOURCE
10	LYNFTQIPHI.	Prost.Ca PSM 74
10	GWRPRRTILF	Prost-Ca PSM 409
10	FAAPPTQCGY	HBV POL 631
10	RWMCLRRFU	HBV ENV 236
10	WFVGLSPTVW	HBV ENV 345
10	SWIKEAVPNL	HBV POL 392
10	VFADATPTGW	HBV POL 686
9	FIFHKPQTK	HTLV-1 tax 276
9	FLTNVPYKR	HTLV-I tax 182
9	ITWDPIDGR	HTLV-1 ax 54
9	SALQFLIPR	HTLV-1 tax 66
9	LSFPDPGLR	HTLV-1 tax 831
9	QSSSFIFHK	HTLV-1 tax 272
9	GLCSARLHR	HTLV-I tax 34
9	RLPSFPTQR	HTLV-1 tax 74
9	AMRKYSPFR	HTLV-J tax 108
9	ISGGLCSAR	HTLV-I tax 31
9	ALFTAQEAK	HPV 16 E1 69
9	ATMCRHYKR	HPV 16 EJ 406
9	FMSFLTALK	HPV 16 EI 453
9	GVSFSELVR	HPV 16 Et 216
9	KAAMLAKFK	HPV 16 E1 204
9	LTNILNVLK	HPV 16 E1 191
9	LVRPFKSNK	HPV 16 Et 222
٥	MSFLTALKR	HPV 16 E1 454
9	nsnasaflk	HPV 16 E1 \$86
9	QMSMSQWIK	HPV 16 E1 419
9	RLKARCIEK	HPV 16 E1 109
9	SLPOMSLMK	HPV 16 E1 484
٥	SMSQWIKYR	HPV 16 E1 421
,	TAAALYWYK	HPV 16 BL 315
9	VVLLLVRYK	HPV 16 E1 274
9	ALLRYKOGK	HPV 18 E1 284
9	ATMCKHYRR	HPV 18 E1 413
٥	CATMOKHYR	HPV 18 E1 412
,	PITFLGALK	HPV 18 E1 460

5			
10			
15			
20			
25			
30	-		

AA	SEQUENCE	SOURCE
9	GVLILALIR	HPV 18 E1 279
9	KLRAGQNHR	HPV 18 E1 647
9	LILALLRYK	HPV 18 E1 281
9	LTTNIHPAK	HPV 18 E1 571
9	NMSQWIRFR	HPV 18 E1 428
9	nsnaaaflk	HPV 18 E1 393
9	SVAALYWYR	HPV 18 E1 322
9	WTYFDTYMR	HPV 18 E1 536
9	YVQAIVDKK	HPV 18 Et 19
9	IIKNFDIPK	GCDFP-15 36
9	VLAVQTELK	GCDFP-15 55
10	UNKNFDIPK	GCDFP-15 35
10	TACLCODNPK	GCDFP-15 87
10	AVLAVQTELK	GCDFP-15 54
10	TFYWDFYTNR	GCDFP-15 97
9	ASCHILTELY	PAP 311
ιo	KGEYFVEMYY	PAP 322
10	LTAAHCIRNK	PSA 57
9	PLYDMSLLK	PSA 95
9	QVHPQKVTK	PSA 182
9	SLLKNRFLR	PSA 100
9	YTKVVHYRK	PSA 239
9	TLWKAGILY	HBV pol 150
9	STALKAAHA	PSA 237
9	PVNRPIDWK	HBV POL 612
9	RHYLHTLWK	HBV POL 719
13	HTLWKAGILYK	HBV POL 149
. 11	GTDNSVVLSRK	HBV POL 735
11	RVTOGVFLVDK	HBV POL 357
В	ATQIPSYK	PAP 274
9	WMNSTGFTK	HCV consensus
9	RVLEDGVNY	HCV consensus
9	RLLAPITAY	HCV consensus
9	GVLAALAAY	HCV consensus
9	RVCEKMALY	HCV consensus

TABLE 8

	PEPTIDE	AA	SEQUENCE
	1235.01	10	AVFDRKSDAK
5	26.0149	9	CALRFTSAR
	26.0153	9	SSAGPCALR
	F104.02	9	SLTPPHSAK
	F105.01	9	AIFQSSMTK
	F105.02	9	GIFQSSMTK
10	F105.03	9	AAFQSSMTK
	F105.04	9	AIAQSSMTK
•	F105.05	9	AIFASSMTK
	F105.06	9	AIFQASMTK
	F105.07	9	AIFQSAMTK
.	F105.08	9	AIFQSSATK
	F105.09	9	AIPQSSMAK
!	F105.10	9	AIPOSSMTA
	F105.11	9	FIFQSSMTK
	F105.12	9	SIFQSSMTK
20	F105.14	9	ANFOSSMTK
	F105.16	9	AIPQCSMTK
	F105.17	9	AIFQSSMTR
	F105.19	9	AIPQSSMTY
	F105.20	9	AILQSSMTR
25	F105.21	9	ATFORSMTR
	F105.24	10	PAIFQSSMTK
	F105.25	10	AIFQSSMTKI
	27.0103	9	АШНОООК
	27.0104	0	YGFRLGFLH
30	27.0108	0	SSCMGUMNR
	27.0235	10	TCTYSPALNK
	27.0239	10	NSSCMGGMNR
	27.0240	10	SSCMGGMNRR
	27.0250	10	KSKKGQSTSR
35	27.0252	10	TSRHKKLMFK
	28.6062	В	FMFSPTYK
	29.0063	8	FVFSPTYK
	D	 `-	1

10

15

20

25

3(

5			
10			
15			
20			
25			
30		-	
35			

PEPTIDE	AA	SEQUENCE
28.0322	9	SMICSVVRR
28.0323	9	SVICSVVRR
28.0324	9	KVGNFTGLK
28.0325	9	KVGNFTGLR
28.0326	9	VVFFSQFSR
28.0327	9	SVNRPIDWK
28.032R	9	TLWKAGILK
28.0329	9	TLWKAGILR
28.0330	,	TMWKAGILY
28.0331	9	TVWKAGILY
28.0332	9	RMYLHTLWK
28.0333	9	RVYLHTLWK
28.0334	9	AMTESPTYK
28.0335	9	AVTESPLYK
28.0336	9	SVVRRAFPR
28.0337	9	SVVRRAFPK
28.0338	9	ISEYRHYXY
28.0339	9	GTGXNGWFY
28.0340	9	ASXHLTELY
28.0341	9	ASKDKXQLK
28.0371	9	RVXEKMALY
28.0372	9	KTGWFMVEA
28.0374	9	HISXLTPGR
28.0375	9	AVXTRGVAK
28.0377	9_	HILIFXHSKK
28.0378	9	HTMLXMXXX
28.0381	9	RLKADKIEK
28.0383	9_	TLFKASDAK
28.0384	9	ALLRYKKGK
28.0387	9	ATMXRHYKR
28.0388	9_	XATMKRHYK
28.0390	9	ATMXKHYRR
28.0391	9	LLAXAGLAY
28.0392	9	LAXAGLAYK
28.0393	9	STVLPFDXR
28.0394	0	AAXWWAGIK
28.0628	10	OMFTPSPTYK

5

0

PEPTIDE	AA	SEQUENCE
28.0629	10	QVFTPSPTYK
28.0630	10	TMWKAGILYK
28.0631	10	TVWKAGILYK
28.0632	10	VMGGVFLVDK
28.0633	10	VVGGVFLVDK
28.0635	10	SVLPETTVVR
28.0638	10	HTLWKAGILK
28.0640	10_	HMLWKAGILY
28.0395	9	SAIXSVVRR
28.0644	10	GTFNSVVLSR
28.0645	10	YMFDVVLGAK
28.0646	10	MMWYWGPSLK
28.0647	10	MMWYWGPSLR
28.0665	10	IVGGWEXEK
28.0667	10	ELEXVYXK
28.0668	10	SIPHAAXHK
28.0670	10_	IVXPIXSQK
28.0671	10	LIRXLRKOK
28.0672	10	XTYSPALNK
28.0675	10	TVXAGGXAR
28.0676	10	HISKLTFGR
28.0677	10	XVNXSQFLR
28.0678	. 10	LIFXHSKKK
28.0679	10	FVLGGXRHK
28.0713	10	TSADXSVVRR
28.0714	10	HLIFXHSKKK
28.0715	10	LLIRKINKQK
28.0716	10	GIVXPIKSQK
28.0717	10	LLIRXLRXQK
28.0718	10	SLEORSLHXX
28.0720	10	RIVGGWEKEK
28.0721	10	DILEKVYKK
28.0722	10	XVYXKQQLLR
28.0723	10	RAVXGGVLVH
28.0725	10	LTAAHXIRNK
28.0728	10	KAAKWWAGIK
28.0730	10	VVRRXPHHER

28.0731 10 LLGIWGKSGK 28.0732 10 TTLFXASDAK 28.0734 10 RTVKAGGKAR 28.0736 10 GTQRXEKKSK 28.0737 10 LVQNANPDXK 28.0738 10 VTKGNGIQVR 28.0739 10 DXATMKRHYK 28.0740 10 GLAXHQLKAR 28.0741 10 ALLAKAGLAY 28.0742 10 KLAXAGLAYK 28.0743 10 KVARKPSGVK 28.0745 10 LVEIXTEMEK 28.0745 10 LVEIXTEMEK 28.0746 10 LLNWXMQIAK 28.0826 11 HWLWKAGILYK 28.0826 11 SMLPETTVVRR 28.0827 11 GVDNSVVLSRK 28.0829 11 GVDNSVVLSRK 28.0829 11 GVDNSVVLSRK 28.0829 9 GLAXHQLKA 1259.10 9 PVTIGECPK 1259.14 10 FTAVGKEFNK 1259.21 11 KTRPILSPLTK 1259.26 11 GTHPSSSAGLK 1259.28 11 GTHPSSSAGLK 1259.29 9 WILDRLFFK 1259.29 1 CTYRRFKYGLK 1259.30 11 CTYRRFKYGLK 1259.31 9 WILDRLFFK 1259.33 9 YIQMCTELK 1259.33 9 YIQMCTELK		· Contraction	and the second s
28.0732 10 TTLFXASDAK 28.0734 10 RTVKAGGXAR 28.0736 10 GTQRXEKKSK 28.0737 10 LVQNANPDXK 28.0738 10 VTKGNGIQVR 28.0739 10 DXATMXRHYK 28.0740 10 GLAXHQLXAR 28.0741 10 ALLAXAGLAY 28.0742 10 ELAXAGLAYK 28.0742 10 ELAXAGLAYK 28.0745 10 LVEIXTEMEK 28.0745 10 LVEIXTEMEK 28.0746 10 ELNWXMQIAK 28.0824 11 HMLWKAGILYK 28.0825 11 HVLWKAGILYK 28.0825 11 SMLPETTVVRR 28.0826 11 SMLPETTVVRR 28.0827 11 SVLPETTVVRR 28.0829 11 GVDNSVVLSRK 28.0829 11 GVDNSVVLSRK 28.0829 9 GLAXHQLXA 28.0829 1 GTFNSVVLSRK 28.0829 1 GTFNSVLSRK 28.0829 1 GTFNSVLSRK 28.0829 1 GTFNSVLSRK 28.0829 1 GTFNSVLSRK 28.0829 1 GTFNSVLSRK	PEPTIDE		-
28.0734 10 RTVKAGGKAR 28.0736 10 GTQRXEKKSK 28.0737 10 LVQNANPDXK 28.0738 10 VTXGNGIQVR 28.0739 10 DXATMXRHYK 28.0740 10 GLAXHQLXAR 28.0741 10 ALLAXAGLAY 28.0742 10 LLAXAGLAYK 28.0743 10 XVARKPSQVK 28.0745 10 LVEIXTEMEK 28.0746 10 LLNWXMQIAK 28.0824 11 HMLWKAGILYK 28.0825 11 HVLWKAGILYK 28.0826 11 SMLPETTVVRR 28.0827 11 SVLPETTVVRR 28.0828 11 GMDNSVVLSRK 28.0829 11 GVDNSVVLSRK 28.0829 11 GVDNSVVLSRK 28.0829 9 GLAXHQLXA 1259.02 9 DTVDTVLEK 1259.10 9 PVTIGECPK 1259.14 10 FTAVGKEFNK 1259.21 11 KTRPLSPLTK 1259.25 11 GVDRSSAGLK 11259.26 11 GTHPSSSAGLK 11259.28 11 ILWILDRLFFK 11259.29 9 WILDRLFFK 11259.30 11 CTYRRFKYGLK 11259.31 9 KSMRREEYRK 11259.33 9 YIQMCTELK 11259.31 9 KSMRREEYRK 11259.37 10 MVMELVRMIK	28.0731	10	LLGIWGXSGK
28.0736 10 GTQRXEKSK 28.0737 10 LVQNANPDXK 28.0738 10 VTXGNGIQVR 28.0739 10 DXATMXRHYK 28.0740 10 GLAXHQLXAR 28.0741 10 ALLAXAGLAY 28.0742 10 ELAXAGLAYK 28.0745 10 LVEIXTEMEK 28.0745 10 LVEIXTEMEK 28.0746 10 ELNWXMQIAK 28.0824 11 HMLWKAGILYK 28.0825 11 HVLWKAGILYK 28.0825 11 SWLPETTVVRR 28.0826 11 SWLPETTVVRR 28.0827 11 SVLPETTVVRR 28.0829 11 GVDNSVVLSRK 28.0829 11 GVDNSVVLSRK 28.0829 9 DTVDTVLEK 1259.10 9 PVTIGECPK 1259.14 10 FTAVGKEFNK 1259.15 11 RTLDFHDSNVK 1259.21 11 KTRPLSPLTK 1259.26 11 GTHFSSSAGLK 11259.28 11 ILWILDRLFFK 11259.29 9 WILDRLFFK 11259.30 11 CTYRRFKYGLK 11259.31 9 KSMRREEYRK 11259.33 9 YIQMCTELK 11259.33 9 YIQMCTELK	28.0732	10	TTLFXASDAK
28.0737 10 LVQNANPDXK 28.0738 10 VTXGNGIQVR 28.0739 10 DXATMXRHYK 28.0740 10 GLAXHQLKAR 28.0741 10 ALLAKAGLAY 28.0742 10 ELAXAGLAYK 28.0745 10 LVEIXTEMEK 28.0745 10 LVEIXTEMEK 28.0746 10 ELNWXMQIAK 28.0824 11 HMLWKAGILYK 28.0825 11 HVLWKAGILYK 28.0825 11 SWLPETTVVRR 28.0826 11 SMLPETTVVRR 28.0828 11 GWDNSVVLSRK 28.0829 11 GVDNSVVLSRK 28.0829 11 GTFNSVVLSRK 28.0830 11 GTFNSVVLSRK 28.0369 9 GLAXHQLXA 1259.02 9 DTVDTVLEK 1259.14 10 FTAVGKEFNK 1259.15 11 KTRPLSPLTK 1259.26 11 KTRPLSPLTK 1259.28 11 ILWILDRLFFK 1259.30 11 CTYRRFKYGLK 1259.31 9 WILDRLFFK 1259.33 9 YIQMCTELK 1259.33 9 YIQMCTELK 1259.33 9 YIQMCTELK 1259.37 10 MVMELVRMIK	28.0734	10	RTVXAGGXAR
28.0738 10 VTXGNGIQVR 28.0739 10 DXATMXRHYK 28.0740 10 GLAXHQLKAR 28.0741 10 ALLAKAGLAY 28.0742 10 ELAXAGLAYK 28.0745 10 LVEIXTEMEK 28.0745 10 LVEIXTEMEK 28.0746 10 ELNWXMQIAK 28.0824 11 HMLWKAGILYK 28.0825 11 HVLWKAGILYK 28.0826 11 SMLPETTVVRR 28.0827 11 SVLPETTVVRR 28.0828 11 GMDNSVVLSRK 28.0829 11 GVDNSVVLSRK 28.0829 11 GTFNSVVLSRK 28.0830 11 GTFNSVVLSRK 28.0840 9 GLAXHQLKA 1259.10 9 PVTIGECPK 1259.14 10 FTAVGKEFNK 1259.21 11 KTRPILSPLTK 1259.26 11 GTHPSSSAGLK 1259.28 11 ILWILDRLFFK 1259.29 9 WILDRLFFK 1259.20 11 CTYRRFKYGLK 1259.30 11 CTYRRFKYGLK 1259.31 9 KSMREEYRK 1259.33 9 YIQMCTELK	28.0736	10	GTQRXEKKSK
28.0739 10 DXATMXRHYK 28.0740 10 GLAXHQLXAR 28.0741 10 ALLAXAGLAY 28.0742 10 ELAXAGLAYK 28.0743 10 XVARXPSGVK 28.0745 10 LVEIXTEMEK 28.0746 10 ELNWXMQIAK 28.0824 11 HMLWKAGILYK 28.0825 11 HVLWKAGILYK 28.0825 11 SMLPETTVVRR 28.0826 11 SMLPETTVVRR 28.0828 11 GWDNSVVLSRK 28.0829 11 GVDNSVVLSRK 28.0829 11 GTFNSVVLSRK 28.0829 9 GLAXHQLXA 1259.02 9 DTVDTVLEK 1259.10 9 PVTIGECPK 1259.14 10 FTAVGKEFNK 1259.16 11 RTLDFHDSNVK 1259.21 11 KTRPLSPLTK 1259.26 11 GTHPSSSAGLK 11259.28 11 ILWILDRLFFK 11259.29 9 WILDRLFFK 11259.30 11 CTYRRFKYGLK 11259.31 9 KSMRRERYRK 11259.33 9 YIQMCTELK 11259.33 9 YIQMCTELK	28.0737	10	LVQNANPDXK
28.0740 10 GLAXHQLXAR 28.0741 10 ALLAKAGLAY 28.0742 10 ELAXAGLAYK 28.0743 10 XVARKPSQVK 28.0745 10 LVEIXTEMEK 28.0746 10 LLNWXMQIAK 28.0824 11 HMLWKAGILYK 28.0825 11 HVLWKAGILYK 28.0826 11 SWLPETTVVRR 28.0827 11 SVLPETTVVRR 28.0828 11 GMDNSVVLSRK 28.0829 11 GVDNSVVLSRK 28.0829 11 GVDNSVVLSRK 28.0830 11 GTFNSVVLSRK 28.0809 9 GLAXHQLXA 1259.02 9 DTVDTVLEK 1259.10 9 PVTIGECPK 1259.14 10 FTAVGKEFNK 1259.16 11 KTRPLSPLTK 1259.26 11 GTHPSSSAGLK 1259.28 11 ILWILDRLFFK 1259.29 9 WILDRLFFK 1259.30 11 CTYRRFKYGLK 1259.31 9 KSMREEYRK 1259.33 9 YIQMCTELK 1259.37 10 MVMELVRMIK	28.0738	10	VTXGNGIQVR
28.0741 10 ALLAKAGLAY 28.0742 10 ELAKAGLAYK 28.0743 10 XVARXPSGVK 28.0745 10 LVEIXTEMEK 28.0746 10 ELNWXMQIAK 28.0824 11 HMLWKAGILYK 28.0825 11 HVLWKAGILYK 28.0826 11 SMLPETTVVRR 28.0827 11 SVLPETTVVRR 28.0828 11 GWDNSVVLSRK 28.0829 11 GVDNSVVLSRK 28.0829 11 GYDNSVVLSRK 28.0830 11 GTFNSVVLSRK 28.0369 9 GLAXHQLKA 1259.02 9 DTVDTVLEK 1259.10 9 PVTIGECPK 1259.14 10 FTAVGKEFNK 1259.15 11 RTLDFHDSNVK 1259.21 11 KTRPLSPLTK 1259.26 11 GTHFSSSAGLK 1259.28 11 ILWILDRLFFK 1259.29 9 WILDRLFFK 1259.30 11 CTYRRFKYGLK 1259.31 9 KSMREEVRK 1259.33 9 YIQMCTELK	28.0739	10	DXATMXRHYK
28.0742 10 ŁLAXAGLAYK 28.0743 10 XVARKPSQVK 28.0745 10 LVEIXTEMEK 28.0746 10 ŁLNWXMQIAK 28.0824 11 HMLWKAGILYK 28.0825 11 HVLWKAGILYK 28.0826 11 SMLPETTVVRR 28.0827 11 GVDNSVVLSRK 28.0829 11 GVDNSVVLSRK 28.0829 11 GVDNSVVLSRK 28.0829 1 GTFNSVVLSRK 28.0829 1 GTFNSVVLSRK 28.0830 1 GTFNSVVLSRK 28.0369 9 GLAXHQLXA 1259.02 9 DTVDTVLEK 1259.10 9 PVTIGECPK 1259.14 10 FTAVGKEFNK 1259.15 11 KTRPLSPLTK 1259.26 11 GTHPSSSAGLK 1259.28 11 ILWILDRLFFK 1259.29 9 WILDRLFFK 1259.30 11 CTYRRFKYGLK 1259.31 9 KSMREEYRK 1259.33 9 YIQMCTELK 1259.33 9 YIQMCTELK	28.0740	10	GLAXHQLXAR
28.0743 10 XVARXPSGVK 28.0745 10 LVEIXTEMEK 28.0746 10 LLNWXMQIAK 28.0824 11 HMLWKAGILYK 28.0825 11 HVLWKAGILYK 28.0826 11 SMLPETTVVRR 28.0827 11 SVLPETTVVRR 28.0828 11 GMDNSVVLSRK 28.0829 11 GVDNSVVLSRK 28.0830 11 GTFNSVVLSRK 28.0369 9 GLAXHQLXA 1259.02 9 DTVDTVLEK 1259.10 9 PVTIGECPK 1259.14 10 FTAVGKEFNK 1259.14 10 FTAVGKEFNK 1259.21 11 KTRPLSPLTK 1259.26 11 GTHPSSSAGLK 1259.28 11 ILWILDRLFFK 1259.29 9 WILDRLFFK 1259.30 11 CTYRRFKYGLK 1259.31 9 KSMREEYRK 1259.33 9 YIQMCTELK	28.0741	10	ALLAXAGLAY
28.0745 10 LVEIXTEMEK 28.0746 10 LLNWXMQIAK 28.0824 11 HMLWKAGILYK 28.0825 11 HVLWKAGILYK 28.0826 11 SMLPETTVVRR 28.0827 11 SVLPETTVVRR 28.0828 11 GWDNSVVLSRK 28.0829 11 GVDNSVVLSRK 28.0829 11 GTFNSVVLSRK 28.0369 9 GLAXHQLXA 1259.02 9 DTVDTVLEK 1259.10 9 PVTIGECPK 1259.14 10 FTAVGKEFNK 1259.16 11 RTLDFHDSNVK 1259.21 11 KTRPLSPLTK 1259.26 11 GTHPSSSAGLK 1259.28 11 ILWILDRLFFK 1259.29 9 WILDRLFFK 1259.30 11 CTYRRFKYGLK 1259.31 9 KSMREEYRK 1259.33 9 YIQMCTELK	28.0742	10	ELAXAGLAYK
28.0746 10	28.0743	10	XVARXPSGVK
28.0824 11 HMLWKAGILYK 28.0825 11 HVLWKAGILYK 28.0826 11 SMLPETTVVRR 28.0827 11 SVLPETTVVRR 28.0828 11 GMDNSVVLSRK 28.0829 11 GVDNSVVLSRK 28.0829 11 GTFNSVVLSRK 28.0369 9 GLAXHQLKA 1259.02 9 DTVDTVLEK 1259.10 9 PVTIGECPK 1259.14 10 FTAVGKEFNK 1259.15 11 RTLDFHDSNVK 1259.21 11 KTRPLSPLTK 1259.26 11 GTHFSSSAGLK 1259.28 11 ILWILDRLFFK 1259.29 9 WILDRLFFK 1259.30 11 CTYRRFKYGLK 1259.31 9 KSMREEYRK 1259.33 9 YIQMCTELK 1259.37 10 MVMELVRMIK	28.0745	10	LVEIXTEMEK
28.0825 11 HVLWKAGILYK 28.0826 11 SMLPETTVVRR 28.0827 11 SVLPETTVVRR 28.0828 11 GMDNSVVLSRK 28.0829 11 GVDNSVVLSRK 28.0830 11 GTFNSVVLSRK 28.0369 9 GLAXHQLXA 1259.02 9 DTVDTVLEK 1259.10 9 PVTIGECPK 1259.14 10 FTAVGKEFNK 1259.15 11 KTLDFHDSNVK 1259.21 11 KTRPLSPLTK 1259.26 11 GTHPSSSAGLK 1259.28 11 ILWILDRLFFK 1259.29 9 WILDRLFFK 1259.30 11 CTYRRFKYGLK 1259.31 9 KSMREEYRK 1259.33 9 YIQMCTELK 1259.37 10 MVMELVRMIK	28.0746	10	LLNWXMQIAK
28.0826 11 SMLPETTVVRR 28.0827 11 SVLPETTVVRR 28.0828 11 GMDNSVVLSRK 28.0829 11 GVDNSVVLSRK 28.0829 11 GTFNSVVLSRK 28.0830 11 GTFNSVVLSRK 28.0369 9 GLAXHQLXA 1259.02 9 DTVDTVLEK 1259.10 9 PVTIGECPK 1259.14 10 FTAVGKEFNK 1259.16 11 RTLDFHDSNVK 1259.21 11 KTRPLSPLTK 1259.26 11 GTHPSSSAGLK 1259.28 11 ILWILDRLFFK 1259.29 9 WILDRLFFK 1259.30 11 CTYRRFKYGLK 1259.31 9 KSMREEYRK 1259.33 9 YIQMCTELK 1259.37 80 MVMELVRMIK	28.0224	11	HMLWKAGILYK
28.0827 11 SVLPETTVVRR 28.0828 11 GMDNSVVLSRK 28.0829 11 GVDNSVVLSRK 28.0830 11 GTFNSVVLSRK 28.0369 9 GLAXHQLXA 1259.02 9 DTVDTVLEK 1259.10 9 PVTIGECPK 1259.14 10 FTAVGKEFNK 1259.16 11 RTLDFHDSNVK 1259.21 11 KTRPLSPLTK 1259.26 11 GTHPSSSAGLK 1259.28 11 ILWILDRLFFK 1259.29 9 WILDRLFFK 1259.30 11 CTYRRFKYGLK 1259.31 9 KSMREEYRK 1259.33 9 YIQMCTELK 1259.37 10 MVMELVRMIK	28.0825	- 11	HVLWKAGILYK
28.0828 11 GMDNSVVLSRK 28.0829 11 GVDNSVVLSRK 28.0830 11 GTFNSVVLSRK 28.0369 9 GLAXHQLKA 1259.02 9 DTVDTVLEK 1259.10 9 PVTIGECPK 1259.14 10 FTAVGKEFNK 1259.15 11 RTLDFHDSNVK 1259.26 11 GTHPSSSAGLK 1259.28 11 ILWILDRLFFK 1259.29 9 WILDRLFFK 1259.30 11 CTYRRFKYGLK 1259.31 9 KSMREHYRK 1259.33 9 YIQMCTELK 1259.37 10 MVMELVRMIK	28.0826	11	SMLPETTVVRR
28.0829 11 GVDNSVVLSRK 28.0830 11 GTFNSVVLSRK 28.0369 9 GLAXHQLKA 1259.02 9 DTVDTVLEK 1259.10 9 PVTIGECPK 1259.14 10 FTAVGKEFNK 1259.16 11 RTLDFHDSNVK 1259.21 11 KTRPLSPLTK 1259.26 11 GTHFSSSAGLK 1259.28 11 ILWILDRLFFK 1259.29 9 WILDRLFFK 1259.30 11 CTYRRFKYGLK 1259.31 9 KSMREEYRK 1259.33 9 YIQMCTELK 1259.37 10 MVMELVRMIK	28.0827	11	SVLPETTVVRR
28.0830 11 GTFNSVVLSRK 28.0369 9 GLAXHQLKA 1259.02 9 DTVDTVLEK 1259.10 9 PVTIGECPK 1259.14 10 FTAVGKEFNK 1259.16 11 RTLDFHDSNVK 1259.21 11 KTRPLSPLTK 1259.26 11 GTHPSSSAGLK 1259.28 11 ILWILDRLFFK 1259.29 9 WILDRLFFK 1259.30 11 CTYRRFKYGLK 1259.31 9 KSMREEYRK 1259.33 9 YIQMCTELK 1259.37 10 MVMELVRMIK	28.0828	_11	GMDNSVVLSRK
28.0369 9 GLAXHQLXA 1259.02 9 DTVDTVLEK 1259.10 9 PVTIGECPK 1259.14 10 FTAVGKEFNK 1259.16 11 RTLDFHDSNVK 1259.21 11 KTRPLSPLTK 1259.26 11 GTHPSSSAGLK 1259.28 11 ILWILDRLFFK 1259.29 9 WILDRLFFK 1259.39 11 CTYRRFKYGLK 1259.31 9 KSAREEYRK 1259.33 9 YIQMCTELK 1259.37 10 MVMELVRMIK	28.0829	- 11	GVDNSVVLSRK
1259.02 9 DTVDTVLEK 1259.10 9 PVTIGECPK 1259.14 10 FTAVGKEFNK 1259.16 11 RTLDFHDSNVK 1259.21 11 KTRPLSPLTK 1259.26 11 GTHPSSSAGLK 1259.28 11 ILWILDRLFFK 1259.29 9 WILDRLFFK 1259.30 11 CTYRRFKYGLK 1259.31 9 KSMREEYRK 1259.33 9 YIQMCTELK 1259.37 10 MVMELVRMIK	28.0830	11	GTFNSVVLSRK
1259.10 9 PVTIGECPK 1259.14 10 FTAVGKEFNK 1259.16 11 RTLDFHDSNVK 1259.21 11 KTRPLSPLTK 1259.26 11 GTHPSSSAGLK 1259.28 11 ILWILDRLFFK 1259.29 9 WILDRLFFK 1259.30 11 CTYRRFKYGLK 1259.31 9 KSMREEYRK 1259.33 9 YIQMCTELK 1259.37 10 MVMELVRMIK	28.0369	9	GLAXHQLXA
1259.14 10 FTAVGKEFNK 1259.16 11 RTLDFHDSNVK 1259.21 11 KTRPLSPLTK 1259.26 11 GTHFSSSAGLK 1259.28 11 ILWILDRLFFK 1259.39 9 WILDRLFFK 1259.30 11 CIYRRFKYGLK 1259.31 9 KSMREBYRK 1259.33 9 YIQMCTELK 1259.57 10 MVMELVRMIK	1259.02	9	DTVDTVLEK
1259.16 11 RTLDFHDSNVK 1259.21 11 KTRPILSPLTK 1259.26 11 GTHPSSSAGLK 1259.28 11 ILWILDRLFFK 1259.29 9 WILDRLFFK 1259.30 11 CIVRRFKYGLK 1259.31 9 KSMREEYRK 1259.33 9 YIQMCTELK 1259.37 40 MVMELVRMIK	1259.10	9	PVTIGECPK
1259.21 11 KTRPILSPLTK 1259.26 11 GTHPSSSAGLK 1259.28 11 ILWILDRLFFK 1259.29 9 WILDRLFFK 1259.30 11 CTYRRFKYGLK 1259.31 9 KSMREEYRK 1259.33 9 YIQMCTELK 1259.37 40 MVMELVRMIK	1259.14	10	FTAVGKEFNK
1259.26 11 GTHPSSSAGLK 1259.28 11 ILWILDRLFFK 1259.29 9 WILDRLFFK 1259.30 11 CTYRRFKYGLK 1259.31 9 KSMREHYRK 1259.33 9 YIQMCTELK 1259.37 40 MVMELVRMIK	1259.16	11	RTLDFHDSNVK
1259.28	1259.21	11	KTRPILSPLTK
1259.39 9 WILDRLFFK 1259.30 11 CIYRRFKYGLK 1259.31 9 KSMREBYRK 1259.33 9 YIQMCTELK 1259.37 10 MVMELVRMIK	1259.26	11	GTHPSSSAGLK
1259.30 11 CTYRRFKYGLK 1259.31 9 KSMREEYRK 1259.33 9 YIQMCTELK 1259.37 10 MVMELVRMIK	1259.28	14	ILWILDRLFFK
1259.31 9 KSMREEYRK 1259.33 9 YIQMCTELK 1259.37 10 MVMELVRMIK	1259.29	9	WILDRLFFK
1259.33 9 YIQMCTELK 1259.37 40 MVMELVRMIK	1259.30	11	CIYRREKYGLK
1259.37 10 MVMELVRMIK	1259.31	9	KSMREEYRK
	1259.33	9	YIOMCTELK
Lamas VMEI VRMIK	1259.37	10	MVMELVRMIK
1239.36	1259.38	9	VMELVRMIK
1259.41 11 LIRPNENPAHK	1259.41	111	LIRPNENPAHK
26.0023 8 VSPGVWIR	26.0023	8	VSPGVWIR
26.0024 6 VSIPWIHK	26.0024	1 8	VSIPWIHK

PEPTIDE	AA	SEQUENCE
26.0026	В	ASFCGSPY
26.0035	9	TSPYELSLY
26.9036	9	TSIPFLHEY
26.0041	9	FNDPGPGTY
26.0045	9	YVDLGALRY
26.0051	9	DADRSFIEY
26.0055	9	NMDKAVKLY
26.0056	9	TTDNFYRNY
26.0058	,	HSAEALQKY
26.0059	9	LTAGLDPAY
26.0061	9	LTYKYNOFY
26.0062	9	CSNDKSLVY
26.0063	9	RSARASSRY
26.0065	,	ASADKPYSY
26.0067	9	STTAGPNEY
26.0069	9	LSGNGHFHY
26.0073		NTFVQANLY
26.0074	9	GTATYLPPY
26.0081	9	RLDAFROTY
26.0082	9	KAEVHTFYY
26.0083	9	VABGDTVIY
26.0084	9	LTEIDIRDY
26.0085	9	HTEFEGQVY
26.0086	9	VSDGGPNLY
26.0092	,	MEDQYNRY
26.0093	9	FLDOWWTEY
26.0095	9	FVEDPNGKY
26.0096	-	ISDESYRVY
26.0156	9	YLAEADLSY
25.0197	9	ALLAVGATK
26.0198	9	ALNFPOSQK
26.0199	9_	AVGATEVPR
26.0203	9	PSVSVSQLR
26.0204	9	GTATLRLVK
26.0205		GVSRQLRTK
26.0207	9_	LIYRRRLMK
26.0211	9	OLVLHOTLK

5			
10			
15			
20			
25			
30			
35	٠		

PEPTIDE	AA	SEQUENCE
26.0212	9	SSHWLRLPR
26.0214	9	TMEVTVYHR
26.0216	9	VLASLIYRR
26.0217	9	VSCQGGLPK
26.0218	9	VVLASLIYR
26.0227	9	GTQCALTER
26.0251	9	FTIPYWDWR
26.0252	•	GTPEGPLER
26.0253	9	KSYLEQASR
26.0255	9	LVSLLCRHK
26.0256	9	MVPFIPLYR
26.0258	9	QTSAGHFPR
26.07259	9	SIFEQWLRR
26.0260	9	SLLCRHKRK
26.0261	9	SSWQIVCSR
26.0267	10	NMQIGGVLTY
26.0273	10	RMAQNFAMRY
26.0274	10	FTVQGSLSGY
26.0275	10	QTSPYELSLY
26.0276	10	SSNAILSLSY
26.0280	ιo	TSQPWWPADY
26.0284	10	VSDVSIIIPY
26.0285	10	ASDAQSANKY
26.0286	10	FTETNLAGEY
26.0287	10	YVDGFEPNGY
26.0291	10	FNDPGPGTYY
26.0296	10	FLDQWWTEYY
26.0299	LO	AAEFATBTAY
26.0309	10	NAEVVLNQLY
26.0311	10	FVDGDSLFEY
26.0316	80	PSEDAQVAVY
26.0317	10	MSDNIRTGLY
26.0318	10	ESELREILNY
26.0319	10	CMESVRNGTY
26.0320	10	KYENGITRLY
26.0321	10	LTEIDIRDYY
26.0397	10	LLVLMAVVLA
49.937 <i>i</i>	14	1 eq. / PTHI 1 LED

5		
10		
15		
20		
25		

PEPTIDE	AA	SEQUENCE
26.0424	10	AVVLASLIYR
26.0425	10	GALLAVGATK
26.0426	10_	GTATLRLVKR
26.0427	10	HTMEVTVYHR
26.0428	10	IALNFPGSQK
26.0432	10_	QLRALDGGNK
26.0433	10	QVPLDCVLYR
26.0434	10	SLIYRRRLMK
26.0435	10	SSSHWLRLPR
26.043B	10	TVSCQGGLPK
26.0442	10	VVLASLIYRR
26.0466	10_	YVKVLHHTLK
26.0473	10	LIGCWYCRRR
26.0474	10	LLIGCWYCRR
26.0485	10	SSMHNALHTY
26.0504	10	CVSSKNLMEK
26.0510	10	FSSWQIVCSR
26.0511	10	GLVSLLCRHK
26.051B	10	YMVPFIPLYR
26.0535	11	GVWIRTPPAYR
26.0539	11	RLVVDFSQFSR
26.0545	11	TLPETTVVRRR
26.0549	11	LLPIFPCLWVY
	11	STLPETTVVRR
26.0550	11	RAFPHOLAFSY

	1,2	17 mag	 Pos	Rotif	AI	A2.1	A3.2	A11	A24
ALENGGEAL		1	15	2.1		<0.0003			
TLESLETAV	6	1	93	2.1		0.0004			
VITERVADL	٥	-	101	2.1		<0.0003			
CLCLSYDGL	6	1/3	174	2.1		0.0004	·		
QIMPRICEL	6	1	181	2.1		0.0007			
SLHCKPERAL	01	1	,	2.1		0.0002			
PLVLOTLERV	10	1	37	2.1		0.0008			
CILEBLFRAV	10	1	92	2.1		0.0003			
AVITERANDE	10	1	100	2.1		0			
VITERVADLY	01	1	101	2.1		0			
LLEYBOURPY	10	1/3	114	2.1		0			
el porasesi.	10	1	142	2.1		0			
CLGLSTDGLL	10	1/3	174	2.1		0			
AISRUNTL	6	2	101	2.1		0.0003			
KRVELVHPL	6	2	105	2.1		0.16			
HVELVRFLL	6	2	106	2.1		0.0031			
DLAGSLAVL	6	2	143	2.1		0			
SLRVLANGL	6	2	147	2.1		0.0001			-
ALSRKVAST.	9	2	101	2.1		0.0050			
HLTIFATCL	9	C	167	2.1		0.0003			
TIPATELEE	9	3	169	2.1		0.018			
CINPERSOLL	6	3	187	2.1		٥			

Page 1 of 15

	1	80 00 00 00 00 00 00 00 00 00 00 00 00 0	ă		Rocae	N1	M2.1	A3.2	A11	A24
ATGORDORIA	_	~		101	2.1		0			
HVRLVHFLLL	2	2		106	2.1		0.0017			
FLEGILLSEDL	2	7		135	2.1		0			
TEOODE T	2	2		139	2.1		0.0007			
STEATHERINE	2	-		63	2.1		0.0035			
DLESEFOAAL	2			93	2.1		0.0001			
ALSEKVASLV	10	3		101	2.1		0.0001			
KVASLVHPLL	10	3		105	2.1		0.012			
VIPSENSSSE	20	3		142	2.1		0			
SLOLVFUEL	2	3		150	2.1		0.0049			
LAEVDPIGHT	10	3		159	2.1		0.0005			
PLIIVLVE	6	1		194	2.1		0.0005			
GLLGDWQIM	6	1		181	2.1		0.0051			
SLHCKORRA	8	1		7	2.1		0.013	<0.0002	0	
ALGLYCYDA	,6	1		22	2.1		0.015	<0.0002	<0.000	
CKPBBALBA	6	1		10	Random		<0.0002			
COSPITALVAC	9	1		19	Random		<0.0002			
VÇAATSSBS	6	1		28	Random		<0.0002			
BELLETATA	6	1		37	Random		<0.0002			
AGLEGATAV	6	1		46	Random		<0.0002			
невъссия	6	1		55	Random		<0.0002			
PPTTINFTR	6	1		64	Random		<0.0002			

QRQPSEGSS 9 1 SREERGPST 9 1 AVITKKVAD 9 1 EMLESVIKH 9 1 VFGIDVKRA 9 1 OFTGHSYL 9 1 VFGIDVKRA 9 1 VFGILGISTD 9 1 PKTGFLITY 9 1 HAPEZEIWE 9 1 GREHSAYGE 9 1 GREHSAYGE 9 1 FRKLLTQDL 9 1 FRKLLTQDL 9 1	28 82 00x	Random		2000 07			
0	100						
	300	Random		<0.000			
		Rendom		<0.0002			
	127	Rendom		<0.0002			0
	136	Random		<0.0002			
	145	Random	·	<0.0002			
0 0 0 0 0 0 0	154	Random		<0.0002 <0.0002	<0.0002	٥	
0 0 0 0 0 0 0	163	Random		<0.0002			
0 0 0 0 0	172	Random		<0.0002			
0 0 0 0 0	190	Random		<0.0002			
0 0 0 0	199	Random		<0.0002			
6 6 6	208	Random		<0.000			
6 6 6	217	Random		<0.000			
6 0	226	Random		<0.000			
•	235	Random		0.0002			
2	344	Random		<0.0002			
RCRIVIPHA 9 1	253	Random		<0.0002			
RESCOVÇAP 9 1	262	Random		<0.0002			
ILESLPRAVI 10 1	93	2.1		0.0002			
FLITTLANIA 10 1	194	2.1		0.0003	0.0093	0.0030	
LVFGIDVRBA 10 1	153	2.1		0.0002	<0.0002	0	
EVYDGREHSA 10 1	222	2.1		°	<0.0002	0	

Ведивась	2	Rage Strata	3 61.	Pos.	Rotif	A1	A2.1	13.2	A11	A24
GVQQPSLKPA	2	-		398	2.1	·	0.0001			
OLVEGIOV	-	1		152	2.1		0			
KLLTQDLV	8	1		237	2.1		0.0004			
CLLGDRQI	8	1		181	2.3		O			
TTTABATO	8	1		308	2.1		0			
GLSYDGLL	8	1		176	2.1		0.0001			
DEVOERTE	8	1		242	2.1		o			
LLGDNQIR	8	1		182	2,1		0			
FLITVLVR	8	1		194	2.1		0			
ALERCOER	8	1		15	2.1		0		_	
TLEEVPEA	8	1		42	2.1		0			
TABLUGAT	8	1		188	2.1		0.0001			
PVITCHERG	8	1		122	2.1		o	ì		
IVLVMIAN	8	1		197	2.1		0.0003			
AVITICKVA	8	1		100	2.1		٥			
RIVERLSV	8	1		213	2.1		٥			
LITVLVHI	8	1		195	2.1		0.0001			
IIVLVEIA	80	1		196	2.1		0.0002			·
SLPRAVITERV	11	1		96	2.1		0.0001			
LLLKYRDREPV	11	1		113	2.1		0.0001			
TLEYGRERTYI	11	1		248	2.1		0.0006			
ALENÇÇENIGE	11	1		15	2.1		0.0001			

		8			Sorte	*	X 3.1	13.2	N11	124
Sednence	1	SCTOR	A04:				0 0041			
PLITTAMEN	7	-		5.						
VLGTLEBUPTA	11	1		33	3.1		0.0002			
OLVPGIDVICEA	11	1		152	2.1		0.0001			
AUTTERABOLU	11	-		100	2.1		0			
OUTTAKHARAY	1	-		122	2.1		0			
EVADIL VOPILLE	11	-		105	2.1		0.020			
GVOOPSLEPAS	=			266	2.1		0			
LVGPLLLAKYRA	::	-		109	2.1		0.0004	·		
LVPCTATEGORDA	7			199	2.1		0.0005			
TILEST PRAVI	7			9.2	2.1		0.0030			
PALEBOORA.	6	_		14	2.1		0	<0.0002	0	
PROGRAMOL	_	_		1.7	2.1		0			<0.0002
AATSSSSPL.	•			30	2.1		0			<0.0002
ATSSSSPLV	0	-		31	2.1		0.0007	·		
GTLERVETA	_^	1		41	2.1		0.013	<0.0002	٥	
GASAPPITI	6	7		60	2.1		0			<0.0002
STSCILESE	L°	7		89	2.1		0.0002			
RAVITICAN	٥	-		66	2.1		٥	<0.0002	۰	
ITKKVADLV	•	1		102	2.1		٥			
RARBPVIKA	6	1		118	2.1		٥			
KABIGASVI	6	1		125	2.1		٥			<0.0002
KASESLOLV	6	1		146	2.1		0.000			

	T	66.00			9 7 4 CB	Y.	32.1	A3.2	A11	724
Sequence	2	Strata	No1.	Ē	- Lander					
PTCHSYVLV	0	п		164	2.1		2			
STATE A PUT.	6	1		191	2.1		0.0006			
A COLOR	1.	-		195	2.1		٥	0.0022	0.0006	
LITVENTA	1			386	2.1		0.0007			
ITVLVICTAM	~	-					2000	<0.0002	0.0003	
MI AMEGGHA	6	7		202	2:1					
MAD TEATHE	6	1		213	2.1		٩			
	Ţ.	,		230	2.1		0.0002			<0.0002
SATGEFRA				376	2.1		0			
TLETGRURT	٦	7			-		0 0005	<0.0002	0	
BALGLYCYDA	2	-					١			<0.0002
CAATSSSSPL	10	7		29	2.1		-			
VPER BOND RAV	10	1		123	2.1					
	٤	Ŀ		191	2.1		٥			
Name of the second	Ŀ			39	2.1		0.0004			
VIGILERAFI				23	2.1		0			
SAFPTTINET	1	•					۰			_
GIDVKEADPT	7	-		156	2.1		,			
PICHSYVLVI	10	7		164	2:1	1	•			
FLATOPRALA	6	1	THEM	265	2.3		0.85	0.0017	-	
LASTSTVKV	6	1	new	272	2.1		•			
VVKVL.RYVI	6	-	MBM	277	2.1		0.000			
avada de la	Ľ	-	ueu	290	2.1		0.0001	_		
NAME OF STREET	12		101	272	2.1		•			<0.0002
TANK TO THE TOTAL		L	į	280	2,1		0.0003	0.0003	٥	
VLEYVIKVSA	1	-								

	:	20.0	101	Pos.	Notif	Al	A2.1	N3.2	A11	A24
†	1	Reten		3	2.1		0			
†		•	a di				0.018		!	
SMHCKPERV	٦		new (A)	1						
MEGRACAGA	9	1	new (a)	22	2.1		0.012			
LANCERLERY	6	1	nev (a)	38	2.1		0.13			
VOLUENTO'		1	TIGN	151	2.1		0.0004			
GL SYDGLEG		-	nev	176	2.1		٥			
OL SYDOLLY	_	1	108 (B)	176	2.1		0.0047			
1.1/20TROTEGO	•	-	ABU	182	2.1		0.0001			
VIET CHICKLY !		-	Dev (a)	182	2.1		0.043			
appl comes	•	-	riev T	215	2.1		٥			
value, comp	•		DBW (a)	215	2.1		0.041			
DETT. ATTITUTE	9	-	lge.	236	2.1		٥			
VEGT WIDEA	•	_	nev	262	2.1		٥			
YNGPLAGPRY	6	-	18W (A)	262	2.1		0.22			
PATERSEPLA	=	-	жәи	30	2.1		٥			
ATSSSBPLVL	2	**	nev	31	2.1		8			
ROBDLVGFLV	2	1	116W (8.)	105	2.1		1.5			
VADLVGPLLL	2	-	18t	106	3.1		0.0008			0.0003
SESTOLVFGI	2	1	nen	148	2.1		٥			
VRVTCLGLSV	10	1	(8) MAI	130	2.2		0.30			
OIMPKTGFLI	2	7	new	187	2.1		0.000			
Cultification C	2	-	new (a)	187	2.1		0.050			

KTGFL11VLV 10	1	Strate	Š	ē	MOCLE	A1	A2.1	A3.2	A11	A24
T	+	-	ne«	191	2.1		0.0012			
	9	-	nev	195	2.1		0.0003			
T	١.	-	new (a)	200	2.1		0.053			
┢	-	-	A QUE	230	2.1		٥			0.0008
Ι.	+-	22		270	2.1		0.012			
1-	-	2		52	2.1		0.67			
	-	3		105	2.1		0.026			
	-	3		114	2.1		0.041			
t	7	8		09	2.1		0.0001			
	-	3		99	2.1		0.34			
T	-	9		13\$	2.1		0.013			
_		1 B	86	170	2.1		0.0017			
1	ы. П	2 0	38	237	2.1		0.0060			
╂	m	1	B 6	242	2.1		0			
SLFRAVITERVADLY 15	.r.	1 n	102	96	2.1		0.0004	·		
DLESEPORAISMMV 15	S	2	. POL	40	2.1		٥			
	15	3	POL	75	2.1		0.012			
L.	6	2		60	2.1		٥			0.0002
	16	2,3		93	2.1		٥			
	6	2		99	2.1		0			
\vdash	6	2		125	2.1		٥			٥
H	6	2		146	2.1		0.011			

				+						
Andread	1	Strato	#01 .	5	Motif	AI	A2.1	13.2	111	A24
AND THEIR IS	۰	,		152	2.1		0.0038			
VOD 1 SKLPT	6	2		162	2.1		0.0002			
DISHLYTLY	6	2		164	2.1		0.0005			
REVIEWEL	6	2		167	2.1		0.0034			
*ITALCTOF	6	2		169	2.1		0.0014			
BACHCOTTO	6	2		181	2.1		0.0038			
COMPANGLE	٥	~		187	2.1		٥			
VRDINTELLI	6	2		188	2.1		0.0010			0.230
KIRTINE	6	2		191	2.1		0.0002			
GLLITVAI	6	2,3		193	2.1		0.0002			
LLIMAII	6	2,3		194	2.1		0.0001			
LIVIALIA	6	2,3		195	2.1		0.0008			
IIVLAILAI	6	2		196	2.1		0.0009			
IIAIRGDCA	6	2		201	2.1		o			
CASSLPITM	6	3		60	2.1		0			0.0010
CAALSEKVA	6	3		99	2.1		O			
VARLVHPLL	6	3		106	2.1		٥			0.039
KAESELOSVV	9	3		125	2.1		°			
KASSSLQLV	6	3		146	2.1		0.000\$			
QLVFGIELE	6	3		152	2.1		0.0010			
PIGHLTIFA	6	3		164	2.1		0			
THEREGILL	·	•		188	2.1		0.0064			

Sacrushits		Strate	F 01.	Pos.	Rotif	A1	A2.1	A3.2	A11	A24
ERGELTTVL		-		ĕ	2.1		0.0002			٥
LIAREGECA	6	-		201	2.1		0			
EALERCOEAL	2	1	ABU	14	2.1		0			0
EMOCENICIA	3	1	nev	1.7	2.1		0			
DLESEFORAL	2	2		93	2.1		0			
AAISROWEL	10	2		100	2.1		0			٥
VIPBICASEYL	10	2.		142	2.1		0.0014			
YLQLVFGIRV	10	2		150	2.1		0.37			
LVBGIRVYEV	01	2		153	2.1		0.012			
GIEVVEVPI	10	2		156	2.1		<0.0002			
VVRVP18HL	30	2		159	2.1		<0.0002			
BVVPISHLYI	10	2		161	2.1		<0.0002			
VVPISHLYIL	10	2		162	2.1		0.0002			
PISHLILVT	10	2		164	2.1		0.0003			
QVRPKTGLLI	10	2		187	2.1		0.0002			
VEPRIGILLI	10	2		188	2.1		0.0009			0.058
KIGITIMA	10	2		191	2.1		<0.0002			
GLLITTAII	10	2,3		193	2.1		0.0005			
LLITVLAILA	10	2,3		194	2.1		<0.0002			
LIIVLAIIAI	10	2		195	2.1		0.0013			
AILAIBODCA	10	2		200	2.1		0.0023			
PALSRIVABL	10	3		100	2.1		0.0007			٥

		Mage	3	ğ	Rotal	Z.	A2.1	A3.2	A11	A24
andada.	1 5	7		106	2.1		0.0009			0.0018
VEDERAGE	2 2	•		123	2.1		<0.0002			
GIRLERVDPI	2	-		156	2.1		<0.0002			
RVDPTORLY	2	_		191	2.1		<0.0002			
PIGHTALFAT	2	3		164	2.1		0.0003			
OINTONDELLI	ន			187	2.1		0.0006			
IMPRAGIALI	20	-		188	2.1		0.0015			
KAGLLITULA	10	ε		191	2.1		<0.0002			
AIIARBODCA	10	E .		200	2.1		<0.0002			
PLWGPRALI	6	2		271	A02					
GLEARGEAL	6	3		15	202					
EARGEALGL	6	3		17	A02					
ALGLVGAQA	6	3		22	A02/A03					
GLVGRQAPA	6	3		24	A02/A03			·		
LVGAGAPAT	6	3		25	A02					
PATEBURA	6	3		31	A02/A03					
EDASSSTL	6	3		37	A02					
AASSSSTLV	6	3		38	A02					-
LVEVTLGEV	6	3		45	A02					
BVTLØEVPA	6	3		53	A02/A03					
VTLGBVPAA	6	3		48	A02/A03					
KIWBELSVL	6	3		220	A02					

									,	
Secretains	2	Strate Strate	Mol.	208 .	Potit	7	72:1	2.2	117	
	•	,		237	A02	_			1	
STRANS	·			ŝ	204					
ILCOPKELL	6	-								
PLATOPRALY	6	3		273	A02				1	
ONCORPAY	6	3		276	A02			1	†	
Minabeter:	•	3		278	A02					
VARIABILITY		3		283	A02					
EVA. STOROTET		-		285	202					
PASCENICIO	13	~		17	A02					
SALOT STREET	2	6		23	A02/A03					
TATA COURTS	٤	-		72	A02					
OLVENSON OF	1	ŀ		29	M2/M3					
San Charles	Ŀ			3.7	702					
KARSSS 1.6V	1	\\ _		٤	A02					
TANKA TANKA		丄		\$	A02/A03					
POPPER PROPERTY	1 2	L		229	A02					
STIGODERAL	2			237	A02					
THEOPICAL	3	L		238	202					
ALVETSYVKV	1 2	٣		277	A02					
LVETSYVKVL	2	_		278	A02					
SAVET SUBSIBILITY	2			290	A02					
LYCOTTERV	-			38	2.1	<0.0006	0.032	٥	0	0.0003
Table strong	٤	_		105		0.0005	0.041	0.0039	0.0030	0.0010
Natural Contract]								

		Mage		1	Mot 12	77	A2.1	N3.2	A11	A24
Sequence	1	SCENT	1001				0.17			
LVFOIRLARV	2			207				9 400	0 0048	•
Adiadatti	9	3				40.000 v	-			
* washing	٥	•				3.7			0.0022	
PAN TRUM	1	,				<0.000	0.13	0.0007	°	0.0043
CHARTANA	, S			105		<0.0008	0.071	0.0004	0.0001	0.0008
DIVELVANTAL	3 :					0.0030	0.065	0.0001	0	0
LVFGTELOEV	3 6	,		į	2.1	٥	0.073	0.011	0.0047	0.0005
KVASLVAFL	, ,			9.2	2.3	0.0001	0.073	0	0.0002	٥
CIESTERA	^ :			ž	2.1	<0.00008	0.0023	0	0	٥
VILLAGGGIA	3 :					٥	0	0.034	0.0045	0
MESVIKAIR	3 :	1.				0.075	0	0.0009	0.0004	0
STSIVEVER	:		į	276	2.1	<0.0005	260.0	0.022	0.015	0
KATEXATKA	\ \					<0.0006	0.027	0.0015	0	0
FLWOPICALA	٩			382	2.1	<0.0006	0.0056	0	٥	0
Actebracy	۽ ر	-		2		<0.0007	0.017	0.0011	0.0029	0
VOTEVERBY	•			283	2.1	0.0005	0.018	٥	0	٥
PALAGERAL	-	-		270	2.1	<0.0006	0.014	0.0003	0.0005	٥
AL AZTSVVR	9	-				<0.0006	0.0002	0.17	0.39	٥
VACEPLERY	1 "	_		39	2.1	<0.000	0.0088	٥	٥	٥
erol. vedt		-		150	2.1	<0.0001	1600.0	٥	0.0001	٥
TLESTER	L®	-		93	2.1	<0.0004	0.0017	0.0003	•	0.0001
FLLLEYER	_	-		112	2.1	0.0036	0.0007	0.0003	0.0001	٥
	1						!			

		8	Ş	į	Rocas	*	N 2.1	83.2	A11	A24
Sedgence		200		7	- 7	9100 0	8000 0	0.0009	0	0
GLVCVORA	1					2000	0,00	1000	ď	o
VLVICLGL		-		2	7:7	40.000 v	2.00.0			
KAMDENGER	6			105	2.1	<0.000	0.0091	0.0013	0.0005	٥
YALATELOL	5	7		169	2.1					
TREESFELT	-	-		188	2.1	<0.0008	0.0035	0	0	3.2
CLIADROTM	-	-			1.54	<0.0008	0.0054	٥	٥	0.0002
at Vintabil	0	-		7,5	2.1	0.0030	0.0007	0.0026	0	0.0001
VEDLUGBLL		-		106	2.1	0.032	0.0011	0.0054	0.0008	0.0007
PLRYGRORTY	2	-		248	2.1	0.0008	0.0097	0.0001	0	D
STOLVEGTOV	2	-		150	2.1	0.0028	0.0047	0.0013	0.0001	0.0001
EMPETIONEE	97	-		188	2.1	<0.0008	0.0001	0	0	0.050
PACOL VICADOR	92	-		22	1. CA	0.0011	0.0002	0.0003	0	0
RIVERLSVØRV	7	-		213	A2.1	0.0007	0.013	0.0001	0.0001	o
PLITY VILLE	=				1.24	0.023	0.0031	0.016	0.0014	0.0011
AI PHOMESCOY	=	-		257	2.1	<0.0009	1.4	0	o	0
CILESCPRAVI	11	-			1.24	0.079	0.0017	0.058	0.0005	0.0008
OIMPRIGELII	17	п		187	2.1	<0.0009	0.0003	٥	٥	0.0030
GFLLLKTPA	٥	-						0.0004	0.0003	
CFPRIFORA	٥	1						٥	٥	
PFFPSLREA	6	. 1						٥	٥	
PPBLREAA	6	7						٥	٥	
RSLACKPERA	1,0	1						0.0001	0.0008	

-		5	908	Rotte	Y.	A2.1	13.2	A11	x24
Sedmenas	1						•	0	
BFL#GPRALA	2	7							
A361804444	20						0.0004	٥	
	:						0	0	
	1	•							

		1	County Makemete Prefitme	Pretthm	Modif	IA	A2	A3	114	A24	Nax.
Sequence	Anugen	SILBIN	IVESTICE MILE	-		Rimitmo	Rimilino	Rinding	Binding	Birming	Bincling
							1000				05010
ALFLOFICAA	AIH	NIW	PPION	218	ANZ		20.00				11.7.15.11
10 F. P. D. T.	AIH	Z	RD 160	266	A(12		27.7				0.25.0
Section Con	212	•	80160	829	AIIZ		1961		:		
LA TEVENING		ı	S 160	ig.	A(12		(). IGH				
KLTPLCVIL	À		3	į	3:		05510	•			0.1550
LLIAARIVEL	HIV		OSI dă	9	712			;			0.10150
	HIV	Z	FP 160	814	Aliz		2	i	:		N. M. M.
1	AH	ZX	89163	518	Aliz		0.0945	:	i		
٦	È	Z	891da	\$65	A02		1.1677				7,000
1	 ≥	Z	25163	815	A(1)2		0.0607				Company of the control of the contro
	A	ZE	8	<u>E</u>	AIIZ		0.0762	•			794070
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	E	1	99 Cal	679	Aliz		0.0355		:		55,0,0
	<u>≥</u>	Z	99 08	288	A02		0.0350				0550
	È	Z	09108	200	Aliz		0.0265				0.0265
	N E	Z	39	683	Altz		0.0252	:	:		0.0252
LIVELDIVST	N N	Z	85108	<u>\$</u>	A02		0.0245				0.0245
	À	NE	ED 160	753	A02		0.0233			:	0.0233
L	AIE	Z	99160	415	AM		0.0200				(H)7(1'6)
	<u>}</u>	Z	891d8	269	A02		0.0195		:		56111
1	À	ZΣ	29 [cg	523	A02		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		<u> </u>	:	K
	HIV	NE NE	8p.160	107	A02		0.01	:	:		6.017
Æ	HIV	NE NE	gp 160	570			050.				2500
1	至	X.	091df	785	1		0.0142	:			761070
1	<u>}</u>	Ž	851g	107	A02		0.0132				27.11.00

					7	1	A2	A3	HY	A24	Max.
Sections				LOSINON	IVE			1			The state of the s
						Birding	Binding	Blacking	Birating	Bunning	Estimong
		1			1		10100				6033
FIMINGGEN	<u>></u>	Z	25 <u>25</u>	020	AUL		16.000		•		
SINAMUTAVA	HIV	Z	09102	815	A02		0.017		,)
	0		15	52	A02		0006				985
FLYGALLA	7			5					: !		THIE V
SLLTFMIAA	PLP	Homan		253	A02		USHR	:			
FMIAATYNFAV	PLP	Homan		257	A02		0.4950		:		0.4930
PMVCVI. PWT	10	Human		205	A02		0.1650				0.1650
TAATVNEAV	d la	Human		259	AM2		0.0540		;	:	0.0540
ATURATURA	<u> </u>	Homen		7	AM		0.0515	•			0.0515
VAL TEVELL	9.6	Human		151	AIR		0.0415	-			0.0415
ALTWOMELY	2	E		158	AUZ		0.0390	• •			0.0390
PLYGALLL	9.2	T		\$	A(12		0.0345	•		!	0.0345
SLCADARMYGV	2	HE		<u>86</u>	AIIZ		0.0140		. !	:	0.01
LLVPACSAV	PLP	Human		25	A02		0.0107				6.0107

Table 10

	٨٨	SEQUENCE	SOURCE
	9	YIFATCLGL	MAGE 3 169
5	9	DAPKTGFLI	MAGE 1 188
	10	IMPKTGFLII	MAGE I 188
	15 .	MLGSVVGNWQYFFPV	MAGE 3 POL 75
·	9	VMPKTGLLI	MAGE 2 188
	9	IMPKAGLLI	MAGE 3 188
10	10	IMPRAGLLII	MAGE 3 188
	9	RLWHYPCTV	HCV Env2 614
	9	RLWHYPCTI	HCV Env2 614
	9	FLLLADARI	HCV Env2
	9	GVWPLLLLL.	HCV Env2 792
15	9	GMWPLLLLL	HCV Env2 792
	9	YLNTPGLPV	HCV NS3/NS4 1542
	9	YMNTPGLPV	HCV NS3/NS4 1542
	9	VILDSFDPL	HCV NSS 2251
-	9	[LMTHFFS]	HCV NS5 2843
20	9_	ILMIHI42A	HCV NSS 2843
	9	LMAVVLASL	gp100 606
	9	SLSLGFLFL.	PAP 13
	10	YMIMVECWMI	c-ErbB2 952
	10	GLHGQDLFGI	PAP 196
25	9	AILSVSSFL	P. falciparum CSP 6
	9	GLIMVLSFL	P. falciparum CSP 425
	9	AFTEGAGEA	P. fatciparum EXP-1 91
	9	GLIGNVSTV	P. falciparum EXP-1 83
	9	LLGNVSTVL	P. falciparum EXP-1 84
30	9	VLAGLIGNV	P. falciparusa EXP-1 80

AA	S	EQUENCE	SOURCE
9	1	KILSVFFLA	P. falciparero EXP-1 2
9	ŀ	PLIFFDLFL	P. falciparum TRAP
9	,	LIFFDLFLV	P. falciparum TRAP
9		FMKAVCVEV	P. falciparum TRAP 230
9		LLMDCSGS1	P. falciparum TRAP 51
10	T	ILEVSSFLFV	P. falciparum CSP 7
10		VLLGGVGLVL	P. falciparum EXP-1 91
10		GLLGNVSTVL	P. falcipærem EXP-1 83
10		FLIFFDLFLV	P. falciparum TRAP
10	•	GLALLACAGL.	P. falciparum TRAP 507
6		KIWEELSML	MAGE2 220
,		TLMSAMTNL	Prost.Ca PAP 112
9		LLLARAASL	Prost.Ca PAP 6
9		ALDVYNGLL	Prost.Ca PAP 299
9		VTWIGAAPL	PSA 8
	0	ALIETSYVKV	MAGE2 277
	0	SLSLOFLFLL	Prost.Ca PAP 13
	0	RTLMSAMTNL	PAP 111
	0	FLPSDFFPSV(CONH2)	HBc 18-27
	0	FLPSDFFPSV-NH2	HBc 18-27
Ŀ	,	(LOPVPTLT-NH2	Phy Matrix 59-67
	10	KGBLGFVFTL-NH2	Plu Matrix 57-66
	11	PLPSDFFPSVR	HBc 18-28
	•	FLPSDFFPS	HBc 18-26
	Þ	GILOKVFTL.	Flu Matrix 58-66 analog
Ţ	9	FLSKQYLNL	HBV polymerase
	9	KLQCVPLHV	PSA 166-174 P/D
_			

MAGE3

YIFATCLGL

	AA	SEQUENCE	SOURCE
•	9	KLQCVPLHV	PSA 166-174 P/D
	,	KLQCVPLHV	PSA 166-174 P/D
	9	KLYEIVAKV	A2.1 consensus
	9	KLAEYVAKV	A2.1 consensus
5	9	KLAEIVYKV	A2.1 consensus
	9	TLTSCNTSV	HIV gp 120 env. RE trans. 197
	9	ALMEKIYQV	A2.1 consensus peptide
	9	ALSEKTYQV	A2.1 consensus peptide
	9	FLMSYFPSV	941.01 9-mer enalog
10	9	FLPSYFPSV	941.01 9-mer analog
	10	FLMSDYFPSV	941.01 M2 analog
	9	FLYCYFALV	Chiron consensus
	9	FMYCYFALV	Chiron consensus
	10	SLVGFŒILCV	Chiron consensus
15	10	SLMGCGLFWV	Chiron consensus
	8	GLLGPLLV	HBVadr-ENV
	9	AMAKAAAAI	A2.1 poly-A
	10	MMWYWGPSLY	нв∨
	9	FLPSYFPSA	analog of 994.02: chiron comb
20	9	FAPSYFPSV	anatog of 994.02: chiron comb
	9	FLPSYFTSS	anatog of 994.02: chiron comb
	9	PSPSYFPSV	analog of 994.02: chiron comb
	9	DMPKTGFLI	MAGE-1
	9	VADLVGFLL	MAGE-1
25	13	EIWEELSVMEV	MAGE-1
	11	FLUVLVMIAM	MAGE-1
	ıı	VIPHAMSSOGV	MAGE-1
	11	CILESCERAVI	MAGE-1
	-		

,	AA	SEQUENCE
	9	YIFATCLGL
'	11	KMVELVVHFLLL
	11	HLPIYATCLGL
	9	GLQDCTMLV
5	8	TLGIVSPI
	8	TLGIVKPI
	10	FLLAQFTSAI
	11	VLLDYQGMLPV
	11	CILLLCLIFLL
10	9	FLGGSPVCL
	11	TVIEYLVSPGV
	11	TVLEYLVSFGV
	10	FLLAQFTSAI
	9	GLYSSTVPI
15	9	GLYSSTAPI
	9	GLDVLTAKV
	9	RILGAVAKV
	•	LLFGYPVYV
	9	ALFGYPVYV
20	9	LLFGAPVYV
	9	LLFGYAVYV
	9	LLPGYPVAV
	9	AAGIGILTV
	9	GILTVILGV
25	9	ELTVILOVI.
	9	AITGAITTI
	9	ALMDKSLHV
	LO	TVILGVILLI
	10	LLDGTATLEL
30	10	ILSVSSFLFV
		_

SOURCE MAGE3 MAGE2 112-122 MAGE3 174-184 HCV NSS 2727-2735 HPV, amalog of 1088.01 HPV, enalog of 1088.01 HBV POL 513 HBV cov HBV env HBV env HBV core 114-124 HBV core 114-124 HBV pol HBV pot HBV pol HIV form VIN. HIV form VIN. HTLV, tax 11-19 tax 11-19, SAAS tax 11-19, SAAS tax 11-19, SAAS ux 11-19, 8AAS MARTI 27-35 **MARTI 31-39** MARTI 32-40 MART1 35-43 **MARTI 56-64** MARTI MARTI Plas. falcip. CSA-A 7-16 Plas. fatcip. CSA-A GLIMVLSFL 401-409

AA	SEQUENCE	SOURCE
9	DMVLSFLFL	Plas, falcip, CSA-A 403-411
10	FLIFFDLFLV	Plas. falcip. TRAP-A 14-23
9	FMIKAVCVEV	Plas. falcip. TRAP-A 200-207
9	IMPOQEAGL	gp100
9	GFGGALFTA	ер100
9	LMAVVLASL	gp100
9	RLMKQDFSV	gp100
9	HLAVIGALL	gp100
9	LLAVGATKV	gp100
9	MLGTHTMEV	gp100
10	LLDGTATLRL	gp100
10	VLYRYGSPSV	gpi00
10	VLPSPACQLV	gp100
10	SLADTNSLAV	gp100
10	VLMAVVLASI.	gp100
10	LMAVVLASLI	gp100
10	RLDCWRGGQV	gp100
10	AMLGTHTMEV	gp100
10	ALDGGNKHFL	gp100
9	YLEPGPVTA	gp100
10	LLNATAIAVA	
11	SLLNATAIAVA	
9	KTWGQYWQV	gp100
9	ITDQVPPSV	gp100
9	YLEPGPVTA	gp100
10	LLDGTATLEL	gp100
10	VLYRYGSPSV	gp100
10	ALDGGNEHFL	gp100
0	GILTVILGV	MART1 31-39
9	YMNGTMSQV	Human Tyrosinase
9	MLLAVLYBL.	Human Tyrosinase
9	LLWSFQTSA	Human Tyrosinase

	AA	SEQUENCE	SOURCE
	9	YLTLAKHTI	Human Tyrosinase
	9	FLPWHRLFL	Human Tyrosinase
	9	FLLRWEQEI	Human Tyrosinase
,	9	RIWSWLLGA	Homan Tyrosinase
5	9	LLGAAMVGA	Human Tyrosinase
	9	AMVGAVLTA	Human Tyrosinase
	9	VLTALLAGL	Haman Tyrosinase
	9	ALLAGLVSL	Haman Tyrosinase
	9	LLAGLVSLL	Human Tyrosinase
10	10	BLLWSFQTSA	Human Tyrosinase
	10	WMHYYVSMDA	Human Tyrosinase
	to	FLPWHRLFLL	Human Tyrosimase
	10	WILIGAAMVGA	Human Tyrosinase
	10	AMVGAVLTAL	Human Tyrosinase
15	10	VLTALLAGLV	Human Tyrosinasc
	10	TALLAGLVSL	Human Tyrosinase
	10	ALLAGLVSLL	Human Tyrosinase
	9	NLTDALLQV	P. falciparum SSP2
•			132
•	9	SAWENVKNV	P. falciparum SSP2 218
20	10	FLUFFDLFLV	P. falciparum SSP2
	9	NLNDNAIHL	P. falciparum SSP2 80
	10	YLLMDCSGSI	P. falciparum SSP2 51

TLQDVSLEV

controls

25

Table 11

5			
			-
10			
15			
	٠		
20			
25			

AA	SEQUENCE	SOURCE
9	ALYWFRTGI	HPV 66/11 E1
	LLDGNPMSI	KPV 6b/11 E1 540
9	NAWGMVLLV	HPV 6b/11 E1 270
9	SLYAHIQWL	HPV 66/11 BI 260
9	TLIKCPPLL	HPV 6b/11 E1 556
9	GIYDALFDI	PSMAg 707
9	YLSGANLNI.	CEA 605
9	VLYGPDTPi	CEA 589
9	DMIGVLVGV	CEA 691
9	lltfwnppt	CEA 24
9	KLTEMVQWA	HPV 66/11 E1 357
9	YMDTYMRNL	HPV 66/11 E1 \$32
10	NLLDGNPMSI	HPV 6b/11 EI 539
10	SLYAHIQWLT	HPV 6b/11 E1 260
£0	TLIKCPPLLV	HPV 6b/11 E1
10	MVFELANSIV	PSMAg 583
10	YLWWVNNQSL	CEA 176
10	YLWWYNNQSL	CEA 154
10	VLWWVNGQSL	CEA 532
10	GIMIGYLYGY	CEA 690
10	VLYGPDAPTI	CEA 233
10	KLIEPLSLYA	HPV 65/11 E1 254
10	WŁCAGALVLA	PSMAg 20
10	IMIGVLVGVA	CEA 69)

SEQUENCE SOURCE YLYQLSPPI HTLV-I tax 155 9 LLFEEYTNI HTLV-I tax 307 HTLV-I tax QLGAFLTNV 178 9 TLTAWQNGL HTLV-I tax 226 9 HTLV-I tax ALQFLIPRL 9 TLGQHLPTL HTLV-I tax 123 FAFKDLFVV HPV 18 E6 RLLQLLFRA GCDFP-15 2 CMVVKTYLI GCDFP-15 LLLVICIQL GCDFP-15 ILYAHIQCL HPVI8 EI 266 SLACSWGMV HPV16 EI 266 CLYLHIQSL HPV16 E1 259 YLVSPLSDI HPV16 E1 HPV16 EI VMFLRYQGV 443 KLLSKLLCV HPV16 E1 292 ALDONPISI HPVIS EL 546 AVFKDTYGL HPV18 E1 LLTTNIHPA HPV18 E1 570 HPV16 E1 LLQQYCLYL 254

5

10

15

A	A	SEQUENCE	SOURCE
9		AMLAKFKEL	HPV16 E1 206
9	,	ALDGNEVSM	HPV16 E1
9	,	FLGALKSFL	HPV18 EI 463
•	,	FIHFIQGAV	HPV18 E1
	10	TITTATCTÓT	GCDFP-15
	10	LLFRASPATL	GCDFP-15
	10	SLMKFLQGSV	HPV16 E3 489
	10	SLACSWGMVV	HPV16 E1 266
	10	FLQGSVICFV	HPV16 EI 493
	10	FRQGAVISFV	HPV18 E1
	10	KLLCVSPMCM	HPV16 E1 296
	10	FILYAHIQCL	HPV18 E1 265
	10	FVNSTSHFWL	HPV18 EI 508
	10	ILLTTNIHPA	HPV18 E1 \$69
	10	TLLQQYCLYL	HPV16 E1 253
	9	GLLGWSPQA	HBV ENV 62
	9	GLACHQLCA	HER2/ocu
	9	ILDEAYVMA	HER2/neu
	9	SDSAVVOI	RER2/neu
	9	VVLGVVPGI	HER2/nen
	9	YMIMVKCWM	HER2/neu
	10	ALCRWGLLLA	HER2/neu
	100	QLFEDNYALA	HER2/neu

AA	SEQUENCE	SOURCE
9	HMWNFISG)	HCV
		CORSCIUSIUS
9	VIYQYMDDL	HIV POL
	<u> </u>	358
9	SLYNTVATL	HIV GAG 77
10	TVWCIKQLQA	HIV ENV
		735
9	LLLEAGALV	MSH 99
9	VLETAVGLL	MSH 92
9	CLALSDLLV	MSH 79
9	FLSLGLVSL	MSH 45
9	SLVENALVV	MSH 52
9	AUDPLIYA	MSH 291
9	FLCWGPFFL	MSH 251
9	FLALDCNA	MSH 283
9	TILLGIFFL	MSH 244
9	RLLGSLNST	MSH 9
9	SLYNTVATL	HIV p17/5B
	1	77-8
9	VIYQYMDDL	HIV RT/50A
		346-
,	ILKEPVHGV	HIV KT/IV9
L		476-

Table 12

PEPTIDE LENGTH	SEQUENCE
9	FLWGPQALV
9	FLWGPNALV
9	FLWGPHALV
9	PLWGPKALV
9	FLWGPFALV
9	AVIGALLAV
9	LLHLAVIGA
9	SLADTNSLA
9	VMGTTLAEM
9	LLAVLYCLL
10	FLRNOPLTFA
10	HLAVIGALLA
10	LAVIGALLAV
10	TLAEMSTPEA
10	YLAEADLSYT
10	MLLAVLYCLL
10	VLYRYGSFSV
9	ILSSLGLPV
9	LLFLGVVFL
9	GLYGAQYDV
9	FVVALIPLV
9	GLMTAVYLV
,	ALVLLMLPV
9	ILLSIARVV
9	SLYPGGICV
9	QLIPCMDVV
9	VLOOSTYOL
,	AHVVVHIA
,	GLHGVGVSV
	GLVDFVKHI
	LLFRFMRPL
	LMILPGMNGI
	TVLRFVPPL
	MLGNAPSVV
	RMPEAAPPY
	9 9 9 9 9 9 10 10 10 10 10 10 9 9 9 9 9

- 10

15

20 -

25

30

PEPTIDE NO.	PEPTIDE LENGTH	SEQUENCE
27.0082	9	FLLPDAQSI
27.0083	,	MTYAAPLFV
27.0088	9	LLPLGYPFV
27,0089	. 9	GLYYLTTEV
27.0090	9	MALLRLPLV
27.0091	9	RLPLVLPAV
27.0093	9	RMFAANLGV
27.0095	9	RLLDDTPEV
27.0096	9	YLYVHSPAL
27.0100	9	GLYLSQIAV
27.0101	9	ylsqiavli.
27.0102	9	SLAGFVRML
27.0137	10	ATYDKGILTV
27.0146	10	KIFMLVTAVV
27.0151	10	FLLADERVRV
27.0153	10	MLATDLSLRV
27.0154	10	RLQPQVGWEV
27.0161	10	FLMPVEDVFI
27.0165	50	RMSRVTTFTV
27.0168	10	LALVILMIPV
27.0169	10	ALVLLMLPVV
27.0170	10	GIVSGILLSI
27.0171	10	SLYFGGICVI
27.0173	10	QLIPCMDVVL
27.0181	10	LLFRFMRPLI
27.0183	10	VLLEDGGVEV
27.0184	10	AMPAYNWMTV
27.0186	10	GLAGTVLREV
27.0188	to	VLIAFGRFPI
27.0189	10	FLTCDANLAV
27.0197	10	Alawgawgev
17.0204	10	LLLETSWEAT
27.0217	10	RMPEAAPPVA
27.0223	i0	WMAETTLGRV
27.0226	10	AMALLRLPLV
27.0229	10	FMSLAGFVRM
27,0266	11	SLITEVETYVL

0

PEPTIDE NO.	PEPTIDE LENGTH	SEQUENCE
27.0268	11	GILGEVETLTV
27.0269	11	VLDVGDAYFSV
27.0271	[1	KIWEELSMLEV
27.0272	. 11	STLVEVILGEV
27.0273	11	GLAPPQHLIRV
27.0274	11	HLIRVEGNLRV
27.0005	9	YLLALRYLA
27.0013	9	GLYROWALA
27.0017	9	LLWQDPVPA
27.0040	. 9	ALLSDWLPA
27.0045	9	WLLIDTSNA
27.0046	9	MLASTLTDA
27.0081	9	YLSEGDMAA
27.0094	9	LLACAVIHA
27.0144	10	LLCCSGVATA
27.0191	10	LLATVFKLTA
27.0192	10	KLTADGVLTA
27.0195	10	GLOGLGLFFA
28.0064	8	TLGIVXPI
28.0065	8	ALGTTXYA
28.0293	9	FLLTRILTV
28.0294	9	ALMPLYACV
28.0295	9	LLAQFTSAV
28.0296	9	LLPFVQWFV
28.0297	9	FLLAQFTSV
28.0298	9	KLHILYSHPV
28.0299	9	KLFLYSHPI
28.0300	9	LLSSNLEWY
28.0301	9	FLISLGINV
28.0302	9	MMWYWGPSV
28.0303	9	VLQAGFFLV
28.0304	9	PLLPIFFCV
28.0305	9	FLLPIFPCL
28.0306		VLLDYQGMV
28.0307	9	YMDDVVLGV
28.0308	9	YMFDVVLGA
28.0309	9	GLLGWSPOV
7 TURULAN TO SERVICE STREET		A. CECTOR IVER MY

5			
10			
15			
20			
25			
30			
35			

A_ A_ A_ A_ A_ A_ A_ A_ A_ A_ A_ A_ A_ A		
PEPTIDE NO. PEPTIDE LENGTH		SEQUENCE
28.0342	Ð	YMIMVKXWM
28.0343	9	YIFATXLGL
28.0345	9	SLHXKPEEA
28.0346	9	ALGLVXVQA
28.0348	9	LLMDXSGSI
28.0349	9	FAFRDLXIV
28.0352	9	GTLGIVXPi
28.0353	9	TLGIVKPIX
28.0354	9	LLWFHISKL
28.0355	9	KLTPLXVIL
28.0356	9	ALVEIXTEM
28.0357	9	LTPGWXFKL
28.0359	9	KLQXVDLHV
28.0360	9	FMKAVXVEV
28.0361	9	LLQQYXLYL
28.0362	9	KLYLHIQSL
28.0363	9	SLAXSWGMV
28.0364	9	ILYAHIQXIL
28.0365	9	KILSKILXV
28.0366	9	PLLPIFFXL
28.0367	9	TLIKXPPLL
28.0368	9	ALMPLYAKI
28.0370	9	XILESLFRA
28.0609	10	FLLAQFTSAV
28.0610	10	YLHTLWKAGV
28.0611	10	YLPTLWKAGI
28.0612	10	YLLTLWKAGI
28.0613	04	LLFYQGMLPV
28.0614	80	LLLYQGMLPV
28.0615	10	LLVLQAGFFV
28.0615 28.0616	10	ILLICLIFLY
28.0650	10	ALXRWGLLL
28.0651	10	KLPDLXTEL
28.0652	10	HLYQGXQVV
28.0653	10	KILESLFRA
28.0654	10	KLQXVDLHV
28.0655	10	YIFATXLGL.

PEPTIDE LENGTH PEPTIDE NO. SEQUENCE SLYNTVATL F111.01 9 F111.02 9 ALYNTVATL P111.04 9 SLANTVATL SLFNAVATL F111.06 9 5 F111.07 9 SLFNLLATL SLFNTIAVL F111.10 9 9 SLFNAVAVL F111.11 F111.09 9 SLFNTTVVL SLFNAIAVL 9 F111.12 10 F111.13 9 SLFNTVAVL F111.14 9 SLFNTVCVI F111.15 9 SLHNTVATL SLHNTVAVL F111.17 9 9 SLYATVATL F111.18 15 SLYNAVATL F111.19 9 SLYNTAATL F111.21 9 F111.22 9 SLYNTIAVL 9 SLYNTSATL F111.23 9 SLYNTVAYL F111.25 . 20 9 SLYNTVATA F111.26 F111.27 9 SLYNAIATL F111.28 9 SLYNLVAVL SLFNLLAVL Ft11.29 SLFNTVVTL. 9 F111.32 25 F111.34 9 SLYNTVAAL MMWYWOPSL 1039.031 9 10 SLLNATAIAV 1211.40 10 TIHDIILBCV 9 **FAFRDLCIV 30** 9 **GTLGIVCPI** TLGIVCPIC

Table 13

SOURCE SEQUENCE HBV ENV **IPQSLDSWW** 191 HBV ENV 9 **IPIPSSWAF** 313 HBV POL **TPARVTGGV** 9 365 HBV ENV LPIFFCLWV 9 379 HBV POL **HPAAMPHLL** 440 HBV POL **FPHCLAFSY** 541 HBV POL DPSRGRLGL 789 **HCV Core 57 QPRGRRQPI** HCV Core 99 SPRGSRPSW 9 **HCV** Core **DPRRRSRNL** 111 **HCV** Core LPGCSFSIF 9 168 HCV E2 622 9 **YPCTVNFTI** HCV E2 681 LPALSTGLI 9 HCV NS3 **HPNIEEVAL** 9 1358 HCV NS4 9 SPGALVVGV 1887

5

10

A	SEQUENCE	SOURCE
Α		
9	SPGQRVEFL	HCV NS5
		2615
9	APTLWARMI	HCV NS5
		2835
9	FPRIWLHIL	HIV VPR 34
9	SPTRRELQV	HIV POL 37
9	FPVRPQVPL	HIV NEF 84
9	RPQVPLRPM	HIV NEF 87
9	KPCVKLTPL	HIV ENV
		123
9	SPRTLNAWV	HIV GAG
		153
9	FPISPIETV	HIV POL 171
9	SPAIPQSSM	HIV POL 327
9	NPDIVIYQY	HIV POL 346
9	GPGHKARVL	HIV GAG
		360
9	LPEKDSWTV	HIV POL 417
9	YPLASLRSL	HIV GAG
		507
9	VPRRKAKII	HIV POL 991
9	TPTLHEYML	HPV16 E7 5
9	KPLNPAEKL	HPV18 E6
		110
9	NPAEKLRHL	HPV18 E6
		113
9	VPISHLYIL	MAGE2 170
9	MPKTGLLII	MAGE2 196

Α	SEQUENCE	SOURCE
Α		
9	DPACYEFLW	MAGE2 265
9	EPHISYPPL	MAGE2 296
9	YPPLHERAL	MAGE2 301
9	LPTTMNYPL	MAGE3 71
9	DPIGHLYIF	MAGE3 170
9	MPKAGLLII	MAGE3 196
9	GPHISYPPL	MAGE3 296
9	HPSDGKCNL	P. falciparum
		S
9	RPRGDNFAV	P. falciparum
<u> </u>		S
9	QPRPRGDNF	P. falciparum
		S
9	LPNDKSDRY	P. falciparum
		s
10	LPLDKGIKPY	HBV POL
		123
10	TPARVTGGVF	HBV POL
		365
10	FPHCLAFSYM	HBV POL
		541
10	LPRRGPRLGV.	HCV Core 37
10	APLGGAARAL	HCV Core
L		142
10	LPGCSFSIFL	HCV Core
		168
10	VPASQVCGPV	HCV E2 497
	VFASQVCGFV	IICV LZ 477

Α	SEQUENCE	SOURCE
A		
10	SPLLLSTTEW	HCV E2 663
10	RPSGMFDSSV	HCV NS3
	·	1506
10	LPVCQDHLEF	HCV NS3
		1547
10	KPTLHGPTPL	HCV NS3
		1614
10	TPLLYRLGAV	HCV NS3
		1621
10	NPAIASLMAF	HCV NS4
		1783
10	LPAILSPGAL	HCV NS4
	·	1882
10	SPGALVVGVV	HCV NS4
		1887
10	APTLWARMIL	HCV NS5
		2835
10	IPVGEIYKRW	HIV GAG
		261
10	YPLASLRSLF	HIV GAG
		507
10	APTKAKRRVV	HIV ENV
		547
10	VPISHLYILV	MAGE2 170
10	MPKTGLLIIV	MAGE2 196
10	HPRKLLMQDL	MAGE2 241
10	LPTTMNYPLW	MAGE3 71
10	MPKAGLLIIV	MAGE3 196
_		

A	SEQUENCE	SOURCE
Α		
10	IPYSPLSPKV	P. falciparum
		S
10	TPYAGEPAPF	P. falciparum
		S
9	FPDHQLDPA	HBV ENV 14
9	YPALMPLYA	HBV POL
		640
9	LPVCAFSSA	HBV X 58
9	APLGGAARA	HCV 142
9	DPTTPLARA	HCV 2806
9	FPYLVAYQA	HCV 1582
9	LPAILSPGA	HCV 1882
9	NPAIASLMA	HCV 1783
9	TPIDTTIMA	HCV 2551
9	TPLLYRLGA	HCV 1621
9	WPLLLLLA	HCV 793
9	NPYNTPVFA	HIV POL 225
9	APLLLARAA	PAP 4
9	HPQWVLTAA	PSA 52
10	IPIPSSWAFA	HBV ENV
		313
10	TPPAYRPPNA	HBV NUC
		128
10	APFTQCGYPA	HBV POL
		633
10	LPIHTAELLA	HBV POL
		712
10	GPCALRFTSA	HBV X 67

Α	SEQUENCE	SOURCE	
Α			
10	DPTTPLARAA	HCV 2806	
10-	IPQAVVDMVA	HCV 339	
10	LPCSFTTLPA	HCV 674	
10	QPEKGGRKPA	HCV 2567	
10	VPHPNIEEVA	HCV 1356	
10	IPAETGQETA	HIV POL 820	
10	LPQGWKGSPA	HIV POL 320	
10	FPDLESEFQA	MAGE2/3 98	
10	DPIGHLYIFA	MAGE3 170	
9	EPLSLYAHI	HPV 6b/11 EI	
		2	
9	PPLLVTSNI	HPV 6b/11 E1	
		5	
9	SPRLDAIKL	HPV 6b/11 E1	
		1	
9	TPKKNCIAI	HPV 6b/11 E1	
		4	
9	FPFDRNGNA	HPV 6b/11 E1	
		5	
10	CPPLLVTSNI	HPV 6b/11 E1	
		5	
10	FPFDRNGNAV	HPV 6b/11 E1	
		5	
8	GPLLVLQA	HBV ENV	
		173	
8	IPIPSSWA	HBV ENV	
	<u> </u>	313	

A	SEQUENCE	SOURCE
A	·	
8	VPFVQWFV	HBV ENV
		340
8	LPIFFCLW	HBV ENV
		379
8	RPPNAPIL	HBV NUC
		133
8	MPLSYQHF	HBV POL 1
8	HPAAMPHL	HBV POL
		429
8	SPFLLAQF	HBV POL
		511
8	YPALMPLY	HBV POL
		640
8	SPTYKAFL	HBV POL
·		659
8	VPSALNPA	HBV POL
		769
8	HPvhAGPI	HIV con.
		GAG
8	GPGvRyPL	HIV con.
		NEF
8	SPIETVPV	HIV con.
		POL
8	NPYNTPVF	HIV con.
	1	POL
8	LPIQKETW	HIV con.
		POL

A	SEQUENCE	SOURCE
A		
8	VPRRKaKi	HIV con.
	<u> </u>	POL
8	VpLQLPPi	HIV con.
		REV
8	VPLAMKLI	P. falciparum
8	LPYGRTNL	P. falciparum
8	RPRGDNFA	P. falciparum
8	IPQQEPNI	P. falciparum
8	TPFAGEPA	P. falciparum
9	SPINTIAEA	HPV 6b E1
		93
9	SPISNVANA	HPV 11 E1
	<u> </u>	93
9	SPRLDAIKL	HPV 6b/11 E1
]	1
9	EPLSLYAHI	HPV 6b/11 E1
		2
9	EPPKIQSGV	HPV 6b/11 E1
		3
9	IPFLTKFKL	HPV 6b E1
l		455
9	TPKKNCIAI	HPV 6b/11 E1
		4
9	QPLTDAKVA	HPV 11 E1
		512
9	PPLLVTSNI	HPV 6b/11 E1
	<u> </u>	5

A	SEQUENCE	SOURCE
A		
9	FPFDRNGNA	HPV 6b/11 E1
		5
9	APLILSRIV	PSA 14
9	HPEDTGQVF	PSA 78
9	HPLYDMSLL	PSA 94
9	HPQKVTKFM	PSA 184
9	GPLVCNGVL	PSA 211
9	RPSLYTKVV	PSA 235
9	FPPEGVSIW	PAP 124
9	NPILLWQPI	PAP 133
9	LPFRNCPRF	PAP 156
9	IPSYKKLIM	PAP 277
9	LPPYASCHL	PAP 307
9	SPSCPLERF	PAP 348
9	CPLERFAEL	PAP 351
9	GPTLIGANA	gp100 74
9	LPDGQVIWV	gp100 97
9	VPLAHSSSA	gp100 198
9	QPLTFALQL	gp100 236
9	DPSGYLAEA	gp100 246
9	EPGPVTAQV	gp100 282
9	MPTAESTGM	gp100 366
9	TPAEVSIVV	gp100 401
9	LPKEACMEI	gp100 520
9	LPSPACQLV	gp100 545
9	VPLIVGILL	gp100 596
9	LPHSSSHWL	gp100 630
<u> </u>		

0

A	SEQUENCE	SOURCE	
Α			
9	CPIGENSPL	gp100 647	
9	SPLLSGQQV	gp100 653	
9	MPREDAHFI	MARTI 1	
9	APLGPQFPF	Tyrosinase 6	
9	IPIGTYGQM	Tyrosinase 1	
9	TPMFNDINI	Tyrosinase 1	
9	LPWHRLFLL	Tyrosinase 2	
9	IPYWDWRDA	Tyrosinase 2	
9	SPASFFSSW	Tyrosinase 2	
9	LPSSADVEF	Tyrosinase 3	
9	SPLTGIADA	Tyrosinase 3	
9	DPIFLLHHA	Tyrosinase 3	
9	IPLYRNGDF	Tyrosinase 4	
9	YPELPKPSI	CEA 141	
9	LPVSPRLQL	CEA 185	
9	LPVSPRLQL	CEA 363	
9	NPPAQYSWL	CEA 442	
9	LPVSPRLQL	CEA 541	
9	IPQQHTQVL	CEA 632	
9	NPPAQYSWF	CEA 264	
9	LPSIPVHPI	Prost.Ca PSM	
9	IPVHPIGYY	Prost.Ca PSM	
9	RPFYRHVIY	Prost.Ca PSM	
9	TPKHNMKAF	Prost.Ca PSM	
9	FPGIYDALF	Prost.Ca PSM	
9	RPRWLCAGA	Prost.Ca PSM	
9	DPLTPGYPA	Prost.Ca PSM	
<u> </u>		<u></u>	

0

SEQUENCE	SOURCE
	1
RPRRTILFA	Prost.Ca PSM
LPFDCRDYA	Prost.Ca PSM
LPIHTAELL	HBV POL
	712
GPDAPTISPL	CEA 236
IPQQHTQVLF	CEA 632
QPIPVHTVPL	Prost.Ca PAP
HPYKDFIATL	Prost.Ca PAP
LPGCSPSCPL	Prost.Ca PAP
LPSWATEDTM	Prost.Ca PAP
VPLSEDQLLY	Prost.Ca PAP
FPHPLYDMSL	Prost.Ca PSA
RPGDDSSHDL	Prost.Ca PSA
HPQKVTKFML	Prost.Ca PSA
LPFDCRDYAV	Prost.Ca PSM
YPNKTHPNYI	Prost.Ca PSM
SPEFSGMPRI	Prost.Ca PSM
RPRWLCAGAL	Prost.Ca PSM
TPKHNMKAFL	Prost.Ca PSM
RPFYRHVIYA	Prost.Ca PSM
HPAAMPHLLV	HBV POL
	429
SPREGPLPA	HER2/neu
	1151
KPDLSYMPI	HER2/neu
	605
HPPPAFSPA	HER2/neu
	1208
	CPIHTAELL GPDAPTISPL IPQQHTQVLF QPIPVHTVPL HPYKDFIATL LPGCSPSCPL LPSWATEDTM VPLSEDQLLY FPHPLYDMSL RPGDDSSHDL HPQKVTKFML LPFDCRDYAV YPNKTHPNYI SPEFSGMPRI RPRWLCAGAL TPKHNMKAFL RPFYRHVIYA HPAAMPHLLV SPREGPLPA KPDLSYMPI

A	SEQUENCE	SOURCE
Α		
9	GPLPAARPA	HER2/neu
	·	1155
9	АРОРНРРРА	HER2/neu
		1204
9	EPLTPSGAM	HER2/neu
		698
9	LPTHDPSPL	HER2/neu
		1101
9	DPLNNTTPV	HER2/neu
		121
9	SPLTSIISA	HER2/neu
		649
9	SPKANKEIL	HER2/neu
		760
9	LPTNASLSF	HER2/neu 65
9	CPSGVKPDL	HER2/neu
		600
9	SPLAPSEGA	HER2/neu
		1073
9	MPNQAQMRI	HER2/neu
		706
9	LPAARPAGA	HER2/neu
		1157
9	LPQPPICTI	HER2/neu
		941
9	SPAFDNLYY	HER2/neu
		1214

A	SEQUENCE	SOURCE
A		
9	TPTAENPEY	HER2/neu
		1240
9	LPSETDGYV	HER2/neu
		1120
10	LPTNASLSFL	HER2/neu 65
10	CPAEQRASPL	HER2/neu
		642
10	KPCARVCYGL	HER2/neu
		336
10	АРОРНРРРАБ	HER2/neu
		1204
10	SPGGLRELQL	HER2/neu
		133
10	SPLTSIISAV	HER2/neu
		649
10	MPNQAQMRIL	HER2/neu
L_		706
10	SPYVSRLLGI	HER2/neu
		779
10	HPPPAFSPAF	HER2/neu
		1208
10	SPREGPLPAA	HER2/neu
		1151
10	NPHQALLHTA	HER2/neu
L		488
10	MPYGCLLDHV	HER2/neu
		801

A	SEQUENCE	SOURCE
A		
10	GPASPLDSTF	HER2/neu
		995
9	LPTTLFQPV	HTLV-1 tax
		21
9	IPPSFLQAM	HTLV-I tax
		10
9	FPGFGQSLL	HTLV-I tax
		4
9	WPLLPHVIF	HTLV-I tax
		16
9	SPPITWPLL	HTLV-I tax
		16
9	VPYKRIEEL	HTLV-1 tax
		18
9	RPQNLYTLW	HTLV-I tax
		13
9	CPKDGQPSL	HTLV-I tax
	}	26
9	RPNDEVTAV	GCDFP-15
		47
9	SPATLLLVL	GCDFP-15
		11
9	WPYLHNRLV	HPV16 E1
		576
9	QPFILYAHI	HPV18 E1
		263
9	SPRLKAICI	HPV16 E1
		107
L	<u> </u>	

A	SEQUENCE	SOURCE
A		
9	SPLGERLEV	HPV18 E1
		97
9	SPRLQEISL	HPV18 E1
		110
9	RPIVQFLRY	HPV18 E1
		447
10	WPYLHNRLVV	HPV16 E1
		576
10	WPYLESRITV	HPV18 E1
		583
10	QPPKLRSSVA	HPV18 E1
		315
10	EPPKLRSTAA	HPV16 E1
1		308
9	DPSRGRLGL	HBV POL
		778
9	HPAAMPHLL	HBV POL
		429
9	IPIPSSWAF	HBV ENV
		313
10	TPARVTGGVF	HBV POL
1	ļ	354
10	FPHCLAFSYM	HBV POL
		530
9	LPVCAPSSA	HBV X 58
9	YPALMPLYA	HBV POL
I		640
9	APLLLARAA	PAP 4
Ľ_	I'M ELEMINAN	1

A	SEQUENCE	SOURCE
A		
9	HPQWVLTAA	PSA 52
9	HPSDGKCNL	Pf SSP2 206
9	RPRGDNFAV	Pf SSP2 305
9	QPRPRGDNF	Pf SSP2 303
10	TPYAGEPAPF	Pf SSP2 539
9	GPHISYPPL	MAGE3 296
9	YPPLHERAL	MAGE2 301
9	VPISHLYIL	MAGE2 170
9	EPHISYPPL	MAGE2 296
9	LPTTMNYPL	MAGE3 71
9	MPKAGLLII	MAGE3 196
10	HPRKLLMQDL	MAGE2 241

Table 14

PEPTIDE	AA	SEQUENCE
25.0129	9	LPPLERLTL
26.0445	10	EPGPVTAQVV
26.0448	10	LPRIFCSCPI
26.0449	10	LPSPACQLVL
26.0455	10	VPLAHSSSAF
26.0458	10	VPRNQDWLGV
26.0476	10	APPAYEKLSA
26.0478	10	MPREDAHFIY
26.0519	10	APAFLPWHRL
26.0522	10	GPNCTERRLL
26.0523	10	IPLYRNGDFF
26.0529	10	TPRLPSSADV
19.0101	9	TPAEVSIVV
26.0554	11	APFTQCGYPA
26.0561	11	NPADDPSRGR
26.0564	11	RPPNAPILSTL
26.0566	11	SPFLLAQFTSA
26.0567	11	SPHHTALRQA
26.0568	11	TPARVTGGVF

15

25

WHAT IS CLAIMED IS:

- 1. A composition comprising an immunogenic peptide having an HLA binding motif, which immunogenic peptide is a peptide shown in Tables 3-14 or a peptide comprising a conservative substitution of a residue in a peptide shown in Table 3-14.
- 2. The composition of claim 1, wherein the immunogenic peptide is linked to a second oligopeptide.
- The composition of claim 2, wherein the second oligopeptide is a peptide that induces a helper T response.
 - 4. A composition comprising a nucleic acid molecule encoding an immunogenic peptide as shown in Tables 3-14, or a peptide comprising a conservative substitution of a residue of a peptide shown in Table 3-14.
 - 5. The composition of claim 4, wherein the nucleic acid further comprises a sequence encoding a second immunogenic peptide.
- 20 6. The composition of claim 4, wherein the nucleic acid further comprises a sequence encoding an oligopeptide that induces a helper T response.
 - 7. A method of inducing a cytotoxic T cell response comprising contacting a cytotoxic T cell with a peptide of claim 1.

Form PCT/ISA/210 (second sheet)(July 1992)*

International application No. PCT/US98/05039

A. CLASSIFICATION OF SUBJECT MATTER [PC(6) :A61K 39/00, 39/29; C07K 7/00, 14/92, 14/92					
US CL : 424/185.1; 530/300, 328, 350					
According to International Patent Classification (IPC) or to both national classification and IPC					
B. FIELDS SEARCHED					
Minimum d	ocumentation searched (classification system followed	by classification symbols)			
U.S. :	424/185.1; \$30/300, 328, 350				
Downsorts	ion searched other than minimum documentation to the	extent that such documents are included	in the fields rearched		
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched STN file=reg of first sequence in Table 3. Examiner's MHC/peptide files.					
Electronic d	ists base consulted during the international search (us	me of data hase and, where practicable	e, search terms used)		
STN file=reg sequence search of first sequence in Table 3. STN file=ca of hits on sequence search.					
C. DOCUMENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.		
T	BRUSS, V. A short linear sequence in t	the pre-S domain of the large	1-3 and 7		
	hepatitis B virus envelope protein requir	ed from virion formation. J.			
	Virology. December 1997, Vol. 71, N	o. 12, pages 9350-9357. See			
	entire document				
	PREISLER-ADAMS, S. et al. Compl	ete municipido seguence of a	1-3 and 7		
Y	hepatitis B virus, subtype adw2, and id		1-3 and 1		
	C open reading frame. Nucleic Acids				
	page 2258. See entire document.				
	Page 2220. 000 unuse uses mineral				
Y	RAMMENSEE, H. et al. Peptides n	aturally presented by MHC	1-3 and 7		
1	Class I molecules. Annu. Rev. Immunol. 1993, Vol. 11, pages				
	213-243, see entire article.				
}					
ļ					
X Further documents are listed in the continuation of Box C. See patent family annex.					
* Special connection of mind documents: "T" least document published after the international filing date or priority					
"A" document defining the general state of the err which is not considered to be of particular relevance date and not un conflict with the application but cried to understand the principle or discry underlying the investion.					
I.	refer document published on or after the international filing data	"X" document of particular relavance; of considered nevel or except be considered.			
·2· 6	parament which may throw doubts on practity claim(s) or which is	when the document is taken alone			
	ited to establish the publication date of another citation or other period reason (as epocalised)	"Y" document of particular relevance; a considered to involve an inventor			
	Commune referring to an oral disclaware, was exhibition to other nears	combined with one or more other to being obvious to a person skilled in	ch documents, such combination		
7 8	document published prior to the intermittonal filing date but later than "a." document member of the same patent family the priority date claused				
	Date of the actual completion of the international search Date of mailing of the international search report				
17 JUL 1998					
Name and mailing address of the ISA/US Authorized officer					
Commissioner of Patents and Trademarks Box PCT THOMAS CLINNIN			JOD .		
Washings	on, D.C. 20231	ļ	Jo-Co		
Facsimile No. (703) 305-3230		Telephone No. (703) 308-0196	40		

International application No. PCT/US98/05039

<u>l</u>			
nion). DOCUMENTS CONSIDERED TO BE RELEVANT			
Citation of document, with indication, where appropriate, of the relev	ant passages Relevant to c	Relevant to claim No.	
ENGELHARD, V. et al. Structure of peptides associate MHC Class I molecules. Curr. Opin. Immunol. 1994, pages 13-23, see entire document.	ed with I-3 and 7 Vol. 6,	1-3 and 7	
·			
	Citation of document, with indication, where appropriate, of the releving ENGELHARD, V. et al. Structure of peptides associate MHC Class I molecules. Curr. Opin. Immunol. 1994,	Citation of document, with indication, where appropriate, of the relevant passages Relevant to comment. ENGELHARD, V. et al. Structure of peptides associated with MHC Class I molecules. Curr. Opin. Immunol. 1994, Vol. 6,	

Form PCT/ISA/210 (continuation of second short)(July 1992) #

International application No. PCT/US98/05039

Box (Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)				
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:				
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:				
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:				
Chairms Nos.: because they are dependent claims and are not drafted in accordance with the accord and third sentences of Rule 6.4(a).				
Box II Observations where unity of invention is tacking (Continuation of item 2 of first sheet)				
This International Searching Authority found multiple inventions in this international application, as follows:				
See attached sheet.				
·				
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.				
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.				
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:				
4. X No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-3 and 7				
Remark on Protest The additional search fees were accompanied by the applicant's protest.				
No protest accompanied the payment of additional search fees.				

Form PCT/ISA/210 (continuation of first short(1))(July 1992)+

International application No. PCT/US98/05039

Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

1. This International Search Authority has found 3453 inventions claimed in the International Application covered by the claims indicated below:

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for all inventions to be searched, the appropriate additional search fees must be paid.

Group 1, claim(s) 1-3 and 7, drawn to compositions comprising peptides and methods of indexing CTL responses using such compositions. A review of Tables 3-14 indicates there are 2764 structurally different poptides recited.

Group II, claim(s) 4-6, drawn to nucleic acids encoding peptides. Claims 4-6 recite aucloic acids encoding the 2764 different peptides of Tables 3-14.

This application contains claims directed to more than one species of the generic invention. These species are deemed to lack Unity of Invention because they are not so linked as to form a single inventive concept under PCT Rule 13.1. The species are as follows:

Bach of the 2764 different poptides recited by Tables 3-14 and each of the 2764 different nucleis said sequences encoding the poptides of Tables 3-14. 2764 + 2764 = 5,528 total species.

The claims are deemed to correspond to the species listed above in the following manner:

The following claims are generic: claims 1-7 because they encompass all of the peptides or nucleic acid sequences encoding the peptides of Tables 3-14.

The first peptide species recited in Table 3 (FTF. . .LSK) will be examined. Each additional peptide species requires the payment of a separate fee. To have all the recited peptide species searched requires the payment of 2763 additional fees.

Upon payment for Group II, the Office will examine the first ten (or ten that the Applicant selects) nucleic acid species at no additional cost. Each four species of nucleic acids thereafter requires the payment of a separate fee. To have all the nucleic acid species scarched requires the payment of (2764-10)/4 = 639 additional fees.

and it considers that the International Application does not comply with the requirements of unity of invention (Rules 13.1, 13.2 and 13.3) for the reasons indicated below:

The inventions listed as Groups I and II do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: the peptides of Group I lack the corresponding technical structural and functional features of the nucleic soids of Group II.

The species listed above do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, the species lack the same or corresponding special technical features for the following reasons: the 5528 different species of peptides recited by Tables 3-14 (or the nucleic acid sequences encoding such peptides) lack the same or corresponding special technical features of common structure and function, source of isolation and amino acid or sucleic acid identity. Each separate species would require a separate prior art search.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:			
BLACK BORDERS			
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES			
☐ FADED TEXT OR DRAWING			
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING			
☐ SKEWED/SLANTED IMAGES			
COLOR OR BLACK AND WHITE PHOTOGRAPHS			
☐ GRAY SCALE DOCUMENTS			
☐ LINES OR MARKS ON ORIGINAL DOCUMENT			
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY			
□ other:			

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.