

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA CAMPUS CAMPINA GRANDE UNIDADE ACADÊMICA DE INFORMÁTICA ENGENHARIA DE COMPUTAÇÃO

SISTEMAS EMBARCADOS

SISTEMA DE HIDROPONIA

ALUNO: HARRISON WENDEL RODRIGUES SANTOS

CAMPINA GRANDE, 25/08/2022

Objetivos

Objetivos gerais

- Monitoramento do funcionamento dos sistemas de resfriamento e temperatura da água (enviar estado do driver, temperatura da água);
- Gera alarmes e enviar pelo Telegram quando estiverem fora do range ideal de funcionamento;
- Controle de acionamento remoto do sistema de resfriamento (driver).

Requisitos:

- Controle e driver para sistemas de resfriamento da água
- Sensor de temperatura água (DS18B20);
- IHM (Display e key).

Etapas de desenvolvimento

Leitura de temperatura

A leitura da temperatura ambiente é realizada através de um sensor DHT11, capaz de ler temperaturas de 0 a 50 °C, com resolução de 1°C. Lida a temperatura do ambiente, foi possível identificar se a temperatura está no intervalo ideal (definido manualmente durante o desenvolvimento dessa etapa) ou não. Quando não está, um led verde se mantêm aceso, indicando visualmente o bom estado da temperatura. Caso contrário, um led vermelho pisca em uma frequência de 10Hz, indicando visualmente o mau estado da temperatura.

Impressão da temperatura em display 16x2 e controle do intervalo ideal

Nesta etapa, foi necessário conectar o Display 16x2 ao módulo I2C, e o módulo I2C ao ESP32. A ligação entre o módulo e o ESP32 é intermediada por um conversor de nível lógico bidirecional, uma vez que o ESP32 tem nível lógico alto em 3.3V e o módulo I2C em 5V. Feita essa ligação, foi utilizada uma biblioteca externa que faz a comunicação com o módulo I2C, restando apenas controlar o cursor do display e os caracteres impressos em cada espaço disponível. Assim, foi possível imprimir em tempo real no display 16x2 as temperaturas lidas e o intervalo de operação ideal.

Após isso, foram instalados 4 botões, a fim de realizar o controle do intervalo de operação ideal em tempo de funcionamento. Um par de botões é responsável por aumentar e diminuir o limite inferior do intervalo, e o outro par por aumentar e diminuir o limite superior do intervalo. Quando não pressionado, o pino de cada botão que está ligado a uma porta do ESP se mantém em nível lógico alto, devido a porta do ESP estar com o PULL_UP ativo. Quando pressionado, o pino do botão é ligado ao GND do sistema, fazendo o sinal ir para o nível lógico baixo. Uma interrupção ligada a porta do ESP identifica a existência de uma borda de descida e aciona a função que fará o incremento ou decremento do limite associado ao botão.

Controle ativo da temperatura

Nesta etapa, foi implementado um sistema de controle ativo da temperatura. Caso a temperatura se torne maior que o limite superior, um led azul ficará piscando em 10Hz e um relê conectado ao ESP é acionado, permitindo que um sistema de resfriamento externo possa ser ativado para diminuir a temperatura. Caso a temperatura se torne menor que o limite inferior, um led vermelho ficará piscando em 10Hz e um relê conectado ao ESP é

acionado, permitindo que um sistema de aquecimento externo possa ser ativado para aumentar a temperatura. Trinta segundos após o acionamento do sistema externo de aquecimento ou resfriamento, uma nova comparação é feita verificando se a temperatura voltou ao intervalo ideal de funcionamento. Se sim, o sistema que foi ativado é desativado, assim como seu led indicador. Caso contrário, uma nova comparação é feita após novos 30 segundos. Esse ciclo se repete até que a temperatura retorne ao intervalo ideal de funcionamento.

Também foram adicionados dois botões que permitem o acionamento manual dos sistemas externos de aquecimento ou resfriamento. Observe que, mesmo que acionados manualmente, caso a temperatura esteja dentro do intervalo ideal 30 segundos após o acionamento, eles serão desativados da mesma forma que seriam desativados caso tivessem sido ativados automaticamente.

Comunicação com o Telegram

Nesta etapa, foi desenvolvida a comunicação do ESP32 com a API do Telegram. Inicialmente, foi necessário criar um bot no aplicativo do Telegram. O nome escolhido para o bot foi "Hidroponia", e o nome de usuário "hidroponia_hw_bot". Criado o bot, o Telegram disponibilizou o TOKEN que deve ser utilizado nos métodos da API para controlar esse bot. Após isso, foi enviado uma mensagem para o bot através de um Telegram pessoal, e assim foi possível obter o ID da conversa entre o bot e esse Telegram pessoal. Obtidas todas essas informações, foi possível montar uma requisição para qualquer método da API do Telegram.

Mas para que qualquer requisição partisse do ESP, foi necessário conectá-lo a uma rede WiFi com acesso à internet, montar a requisição com todos os campos necessários e enviá-la através de um POST HTTP. A partir de então, a cada ativação ou desativação dos sistemas externos de aquecimento ou resfriamento, o código envia uma requisição para a API do Telegram, que por sua vez a recebe e comanda o bot a enviar na conversa com o Telegram pessoal utilizado a ação tomada pelo ESP e o horário, informação a qual é passada a requisição. Os acionamentos manuais também são comunicados.

Adicionalmente, a cada minuto, o ESP envia para o bot a temperatura lida e o intervalo ideal de funcionamento, independentemente se a temperatura está no intervalo ideal de funcionamento ou não.

Material utilizado

- 1 Sensor DTH11
- 4 LEDs 3mm
- 4 Resistores 300 ohms
- 6 Push bottons
- 1 Circuito conversor de nível lógico bidirecional de 4 canais
- 1 ESP32
- 1 Display 16x2
- 1 Módulo I2C para display 16x2
- 1 Módulo com 4 relés
- 2 Protoboards 830 pontos
- Jumpers diversos

Bibliotecas externas

- https://github.com/DavidAntliff/esp32-i2c-lcd1602
- https://github.com/DavidAntliff/esp32-smbus
- https://github.com/Anacron-mb/esp32-DHT11

Resultados

Temperatura lida e intervalo ideal de operação impressos no display 16x2.

Temperatura lida e intervalo ideal de operação a cada minuto pelo Telegram

Comunicação de eventos pelo Telegram

Temperatura dentro do intervalo ideal de funcionamento

Sistema de aquecimento externo ativado

Sistema de resfriamento externo ativado

Conclusão

Tendo em vista os resultados obtidos, pode-se considerar que o projeto foi um sucesso, uma vez que satisfez todos os requisitos necessários com robustez e ainda adicionou uma funcionalidade de grande valia, que foi a adição do controle de acionamento de um sistema de aquecimento externo.

Quanto aos conhecimentos adquiridos, pude colocar em prática vários conceitos adquiridos essa disciplina, sendo eles: Tasks, semáforos, debounce, escalonamento e interrupções.

Durante o desenvolvimento desse projeto enfrentei muitas dificuldades, sendo essas as mais relevantes:

- Configuração do ambiente
- Sincronização do relógio do ESP32
- Comunicação do ESP32 com o Telegram como um todo

Para o futuro, deixo como sugestão a implementação das seguintes features:

- Controle do intervalo ideal de funcionamento pelo Telegram
- Controle do tempo mínimo de ativação dos sistemas de aquecimento ou resfriamento
- Botão para encerrar imediatamente a atuação dos sistemas de aquecimento ou resfriamento