TTS Data A HDPE Resins 5 temperatures

Osamu Katagiri-Tanaka A01212611@itesm.mx (mailto:A01212611@itesm.mx)

```
In [1]: # PYTHON LIBRARIES
        %matplotlib inline
        import pandas as pd
        import numpy as np
        import datetime
        import matplotlib as mpl
        import matplotlib.dates as mdates
        import matplotlib.pyplot as plt
        import warnings
        warnings.filterwarnings('ignore')
        from adjustText import adjust text
        from sklearn.preprocessing import LabelEncoder
        number = LabelEncoder()
        from pandas.plotting import register matplotlib converters
        register_matplotlib_converters()
        from matplotlib.axes._axes import _log as matplotlib_axes_logger
        matplotlib axes logger.setLevel('ERROR')
        from sklearn.linear model import LinearRegression
```

function to plot a pandas dataframe

```
In [2]: def plot(df, pltname, plotGs=True):
            # PLOT SETUP
            scale = 6:
            fig = plt.figure(figsize=(3*scale, 2*scale));
            plt.rc('xtick', labelsize=15)
            plt.rc('ytick', labelsize=15)
            plt.tight_layout();
            for i in range(0,len(df.columns),3):
                # Define x axis as the date axis
                x_str = df.columns[i]; x_units = r'$[\frac{rad}{s}]$';
                y1_str = df.columns[i+1]; y_units = r'$[Pa \cdot s]$';
                y2 str = df.columns[i+2];
                # Remove NANs from interesting x,y data
                df fil = pd.DataFrame(df);
                df_fil = df_fil.dropna(subset=[x_str, y1_str, y2_str]);
                # Stablish the plot area
                ax0 = plt.gca()
                # Extract data from a specific country
                x = df fil.iloc[:][x str];
                y1 = df_fil.iloc[:][y1_str];
                y2 = df_fil.iloc[:][y2_str];
                # Plot a curve to join the data points
                #plt.plot(x, y) #, label="B")
                if plotGs:
                    plt.scatter(x, y1, s=45, marker='o', label=r'$G^\prime(\omega)$' + ' ' + df.columns[i+1].split('_')[1])
                    plt.scatter(x, y2, s=45, marker='s', label=r'$G^{\prime\prime}(\omega)$' + ' ' + df.columns[i+2].split('_'
        )[1])
                    plt.plot(x, y1, linewidth=1, linestyle='-.')
                    plt.plot(x, y2, linewidth=1, linestyle='-.')
                else:
                    plt.scatter(x, y2/y1, s=45, marker='^', label=df.columns[i+1].split(' ')[1])
                    plt.plot(x, y2/y1, linewidth=1, linestyle=':')
            # Show the plot lengend to link colors and polymer names
            handles, labels = ax0.get_legend_handles_labels();
            lgd = dict(zip(labels, handles));
```

```
# fig.autofmt xdate();
   ax0.set_xlabel(r'$\omega$' + ' ' + x_units, fontsize=24);
   if plotGs:
       ax0.set ylabel(r'G^{prime}(\omega) + ' and ' + r'G^{prime}(\omega) ' + ' ' + y units, fontsize=
24);
   else:
       ax0.set_ylabel(r'$tan \delta$' + ' ' + y_units, fontsize=24);
   for tick in ax0.xaxis.get major ticks():
       tick.label.set fontsize(18)
   for tick in ax0.yaxis.get major ticks():
       tick.label.set_fontsize(18)
   ax0.tick params(which='both', direction='in', length=5, width=2, bottom=True, top=True, left=True, right=True)
   # Display main plot
   plt.yscale('log');
   plt.xscale('log');
   plt.legend(lgd.values(), lgd.keys(), prop={'size': 18}, loc="best");
   plt.title(pltname, size=24);
   plt.savefig(pltname + '.png', dpi=200, bbox inches='tight');
   plt.show();
   mpl.rcParams.update(mpl.rcParamsDefault); # Recover matplotlib defaults
```

WLF (Williams Landel Ferry)

$$loga_T = rac{-c_1\left(T-T_0
ight)}{c_2+\left(T-T_0
ight)}$$

where:

 c_1 and c_2 are empirical constants

T is the temperature of interest

 T_0 is the reference temperature

 a_T is the amount by which the time has to be shifted to get the same result at T as in T_0

```
In [3]: def _a_T(T, T_0, c_1, c_2):
    if T != T_0:
        nume = - c_1 * (T - T_0);
        deno = c_2 + (T - T_0);
        exp = nume / deno;
        a_T = 10**exp;
    else:
        a_T = 1;
    return a_T;

def _invTninvT0(T,T_0):
    return (1/T)-(1/T_0)
```

Arrhenius

$$a_T=e^{\left[rac{E_H}{R}\left(rac{1}{T+273}-rac{1}{T_0+273}
ight)
ight]}$$

```
In [4]: def _Arrhenius(EH, T, T0):
    frac = EH / 8.314;
    paren = (1/(T+273.15)) - (1/(T0+273.15));
    exp = frac * paren;
    return np.exp(exp);
```

read .csv with the provided frequency, G^{\prime} , and $G^{\prime\prime}$ data

```
In [5]: df_raw = pd.read_csv("./data.csv", delimiter=",");
    plot(df_raw, "raw Gs data", True)
    plot(df_raw, "raw tand data", False)
    print("./data.csv"); display(df_raw.head(10));
```


	frecuencia_Sh170oC	G1_Sh170oC	G2_Sh170oC	frecuencia_Sh190oC	G1_Sh190oC	G2_Sh190oC	frecuencia_Sh210oC_ref	G1_Sh210oC_ref	G2
0	500.00	343000.0	175000.0	500.00	298000.0	163000.0	500.00000	288545.0	
1	281.00	279000.0	155000.0	281.00	241000.0	142000.0	281.17200	231412.0	
2	158.00	226000.0	136000.0	158.00	192000.0	123000.0	158.11700	182623.0	
3	88.90	179000.0	118000.0	88.90	151000.0	105000.0	88.91600	141545.0	
4	50.00	139000.0	101000.0	50.00	116000.0	88500.0	50.00200	108073.0	
5	28.10	107000.0	83700.0	28.10	87900.0	72700.0	28.11870	81183.4	
6	15.80	80300.0	68100.0	15.80	65500.0	58500.0	15.81250	60144.9	
7	8.89	59600.0	54500.0	8.89	48100.0	46200.0	8.89209	43975.3	
8	5.00	43600.0	42700.0	5.00	34800.0	35800.0	5.00049	31760.0	
9	2.81	31500.0	33000.0	2.81	24900.0	27400.0	2.81201	22724.8	
4									•

calculate WLF for each temperature and plot shifted data

master curve with $T_{ref}=210\degree C$

```
In [6]: | df shifted = pd.read csv("./data.csv", delimiter=",");
        # Temperature of interest
        T = [170, 190, 210, 230, 250];
        # Reference temperature
        T_0 = 210;
        # k was manually tuned TTS
        k = [1.7, 1.15, 1, 0.725, 0.45];
        \# k = [2.1, 1.3, 1, 0.9, 0.45];
        # 1st empiric constant used by WLF
        c 1 = 10;
        for col in range(0,len(df shifted.columns),3):
            index = int(col/3); # index with +3 increments
            # 2nd empiric constant used by WLF
            c_2 = -((c_1 * (T[index] - T_0))/(np.log10(k[index]))) - T[index] + T_0;
            # Amount of horizontal shift by WLF
            a_T = a_T(T[index], T_0, c_1, c_2);
            # Apply a T to the original data
            df shifted.iloc[: , col] = df shifted.iloc[: , col] * a T;
        # Plot and print calculated data
        plot(df shifted, 'Gs ' + r'$T {ref} = 210 °C$', True)
        plot(df_shifted, 'tand ' + r'$T_{ref} = 210 °C$', False)
        print("df_shifted"); display(df_shifted.head(10));
```


	frecuencia_Sh170oC	G1_Sh170oC	G2_Sh170oC	frecuencia_Sh190oC	G1_Sh190oC	G2_Sh190oC	frecuencia_Sh210oC_ref	G1_Sh210oC_ref	Gź
0	850.000	343000.0	175000.0	575.0000	298000.0	163000.0	500.00000	288545.0	
1	477.700	279000.0	155000.0	323.1500	241000.0	142000.0	281.17200	231412.0	
2	268.600	226000.0	136000.0	181.7000	192000.0	123000.0	158.11700	182623.0	
3	151.130	179000.0	118000.0	102.2350	151000.0	105000.0	88.91600	141545.0	
4	85.000	139000.0	101000.0	57.5000	116000.0	88500.0	50.00200	108073.0	
5	47.770	107000.0	83700.0	32.3150	87900.0	72700.0	28.11870	81183.4	
6	26.860	80300.0	68100.0	18.1700	65500.0	58500.0	15.81250	60144.9	
7	15.113	59600.0	54500.0	10.2235	48100.0	46200.0	8.89209	43975.3	
8	8.500	43600.0	42700.0	5.7500	34800.0	35800.0	5.00049	31760.0	
9	4.777	31500.0	33000.0	3.2315	24900.0	27400.0	2.81201	22724.8	
4									•

Calculate the activation energy $E_a\,$

```
In [7]: invTninvT0 = invTninvT0(pd.Series(T)+273.15,T 0+273.15)
        # PLOT SETUP
        scale = 6;
        fig = plt.figure(figsize=(3*scale, 2*scale));
        plt.rc('xtick', labelsize=15)
        plt.rc('ytick', labelsize=15)
        plt.tight layout();
        ax0 = plt.gca()
        b = [];
        x = invTninvT0;
        y = np.log(k);
        model = LinearRegression().fit(np.array(x).reshape((-1, 1)), np.array(y));
        plt.scatter(x, y, s=25, label=r'E a$' + " = " + str(round(model.coef_[0], 2)) + r'\frac{\pi}{mol}');
        plt.plot(x, model.predict(np.array(x).reshape((-1, 1))), linewidth=1);
        b = b + model.coef;
        ax0.tick params(which='both', direction='in', width=2, bottom=True, top=True, left=True, right=True);
        # Display plots
        plt.yscale('linear');
        plt.xscale('linear');
        plt.xlabel(r'\frac{1}{T} - \frac{1}{T_0}, fontsize=24);
        plt.ylabel(r'$Log(a T)$', fontsize=24);
        # plt.title(plotname, size=24);
        plt.legend(prop={'size': 18});
        plt.savefig('plt ' + "Capillary rheometer correction" + '.png', dpi=300, bbox inches='tight');
        display(plt);
        mpl.rcParams.update(mpl.rcParamsDefault); # Recover matplotlib defaults
```

<module 'matplotlib.pyplot' from 'C:\\Users\\oskat\\AppData\\Roaming\\Python\\Python37\\site-packages\\matplotlib\\py
plot.py'>

Calculate E_{H}

$$E_H = rac{E_a}{R}$$

$$E_{H}=432.424rac{kj}{mol}$$

In [8]: 3595.18/8.314

Out[8]: 432.42482559538126

Merge the data into three columns (frequency, G1, G2).

```
In [9]: | frequency = [];
                  = [];
        G1
        G2
                  = [];
        for col in range(0,len(df shifted.columns),3):
            # Extract dataframe from shifted curves
            x str = df shifted.columns[col];
            y1 str = df shifted.columns[col+1];
            y2_str = df_shifted.columns[col+2];
            # Remove NANs from interesting x,y data
            df fil = pd.DataFrame(df shifted);
            df fil = df fil.dropna(subset=[x str, y1 str, y2 str]);
            # Extract data by column
            x = df_fil.iloc[:][x_str];
            y1 = df_fil.iloc[:][y1_str];
            y2 = df fil.iloc[:][y2 str];
            # Place the extracted data into lists
            frequency.extend(x.tolist())
            G1.extend(y1.tolist())
            G2.extend(y2.tolist())
        # Use the list to create a new dataframe with sorted values
        # (combine/merge columns with similar names)
        df mc = pd.DataFrame();
        df mc['frequency'] = frequency;
        df_mc['G1_'] = G1;
        df_mc['G2_'] = G2;
        df mc = df mc.sort values('frequency');
```

Plot the viscosity curve at 205 C.

```
In [10]: # Calculate the shifting factor to 205 C
EH = 432.424;
T = 205;
T0 = 210;
Arrhenius = _Arrhenius(EH, T, T_0);
print(Arrhenius)
```

1.0011263363392033

```
In [11]: # PLOT SETUP
         scale = 6;
         fig = plt.figure(figsize=(3*scale, 2*scale));
         plt.rc('xtick', labelsize=15)
         plt.rc('ytick', labelsize=15)
         plt.tight_layout();
         ax0 = plt.gca()
         b = [];
         x = df mc['frequency'];
         y = np.sqrt(df_mc['G2_']**2 + df_mc['G2_']**2)/df_mc['frequency'];
         plt.scatter(x, y, s=25, label="Complex Viscosity at " + r'$T_0 = 210 °C$');
         plt.scatter(x*(Arrhenius+0.1), y, s=25, label="Complex Viscosity at " + r'$T = 205 °C$');
         plt.plot(x, y, linewidth=1);
         plt.plot(x*(Arrhenius+0.1), y, linewidth=1);
         ax0.tick params(which='both', direction='in', width=2, bottom=True, top=True, left=True, right=True);
         # Display plots
         plt.yscale('log');
         plt.xscale('log');
         plt.xlabel(r'$\omega$', fontsize=24);
         plt.ylabel(r'\$\beta(0) = \frac{G^*(\omega)}{\omega} + "; where:" + r'\$G^*(\omega) = \sqrt{G^*(\omega)} + G^*(\omega)
         {\prime\prime}(\omega)}$', fontsize=24);
         # plt.title(plotname, size=24);
         plt.legend(prop={'size': 18});
         plt.savefig('plt ' + "Capillary rheometer correction" + '.png', dpi=300, bbox inches='tight');
         display(plt);
         mpl.rcParams.update(mpl.rcParamsDefault); # Recover matplotlib defaults
```


- J. Ahmed, Time—Temperature Superposition Principle and its Application to Biopolymer and Food Rheology, in: Adv. Food Rheol. Its Appl., Elsevier, 2017: pp. 209–241. https://doi.org/10.1016/B978-0-08-100431-9.00009-7 (https://doi.org/10.1016/B978-0-08-100431-9.00009-7).
- A. Oseli, A. Aulova, M. Gergesova, I. Emri, Time-Temperature Superposition in Linear and Non-linear Domain, Mater. Today Proc. 3 (2016) 1118–1123. https://doi.org/10.1016/j.matpr.2016.03.059 (https://doi.org/10.1016/j.matpr.2016.03.059).
- H. Mavridis, R.N. Shroff, Temperature dependence of polyolefin melt rheology, Polym. Eng. Sci. 32 (1992) 1778–1791. https://doi.org/10.1002/pen.760322307).