6.2 Right triangle trigonometry

Do Now (PreQuiz)

- 1. Calculate each value. Round to the nearest thousandth.
 - (a) $\sin 19^{\circ}$

(c) $\tan 39^{\circ}$

(b) $\cos 53^{\circ}$

- (d) $\sin 30^{\circ}$
- 2. Find θ . Round to the nearest whole degree.

(a)
$$\theta = \sin^{-1}(\frac{3}{10})$$

(c)
$$\theta = \cos^{-1}(0.707)$$

(b)
$$\theta = \tan^{-1}(1.50)$$

(d)
$$\tan \theta = \frac{2.6}{4.9}$$

3. Solve each equation for x, rounding to the nearest tenth.

(a)
$$\cos 33^\circ = \frac{x}{21}$$

(b)
$$\tan 16^{\circ} = \frac{3.7}{x}$$

4. Given right $\triangle ABC$ with AC = 10, $m \angle A = 40^{\circ}$. Find the value of BC = x.

5. Graph and label $\triangle ABC$ with A(0,0), B(5,3), and C(5,0). Calculate the length of each side of the triangle.

(a)
$$AC =$$

(b)
$$BC =$$

(c) For the hypotenuse express the length as a radical.

(hint: use the Pythagorean theorem $a^2 + b^2 = c^2$

$$AB =$$

- (d) Find the measure of angle \hat{A} .
- 6. Given $\triangle ABC$ with AC = 9 centimeters, altitude h = 7 cm, and the base $AB = 13\frac{1}{2}$ cm. (diagram not to scale)
 - (a) Write down $\sin A$.
 - (b) Find the measure of angle \hat{A} .
 - (c) Find the area of $\triangle ABC$.

7. $\triangle ABC$ is shown with $m \angle C = 90^{\circ}$ and the lengths of the triangle's sides are AC = 6, BC = 9. (not drawn to scale)

8. From the top of a hill a dog is visible at an angle of depression of 34° . If the hill is 11 meters tall, determine the distance from the dog to the base of the hill, x, to the nearest meter.

9. The right $\triangle ABC$ has a base of AC=6 units. The area of the triangle is 15 square units. Find the lengths of all three sides and measures of all angles of the triangle. ("solve the triangle")

