TEMA 5: Zeros de funcions

Problema 27 Considerem l'equació $e^x + \sqrt{x+1} - 4 = 0$.

- (a) Mostreu que aquesta equació només té una solució α i observeu que és positiva. Doneu un interval [a,b] tal que b-a<1 on es pugui garantir que $\alpha\in[a,b]$.
- (b) Considereu el punt mig x_0 de l'interval [a,b] i calculeu $x_1, \ldots x_5$ fent servir el mètode de Newton.
- (c) Proveu que α és un punt fix de cadascuna de les funcions següents :

$$g_1(x) = \ln(4 - \sqrt{x+1}),$$
 $g_2(x) = (e^x - 4)^2 - 1,$

(d) Quina de les funcions de l'apartat anterior usaríeu per trobar α fent servir el mètode de punt fix $x_{k+1} = g(x_k)$? (Justifiqueu la resposta.)

Problema 28 Considereu l'equació $x^2 + 2\ln(x) = 0$.

- (a) Mostreu que l'equació té com a molt una solució.
- (b) Proveu que efectivament té una solució $\alpha \in [1/2, 1]$.
- (c) Trobeu una funció g per a la qual α sigui un punt fix, és a dir, $g(\alpha) = \alpha$.
- (d) Per a la funció g trobada a l'apartat anterior, si triem x_0 prou aprop de α , la successió obtinguda usant $x_{k+1} = g(x_k)$ convergeix cap a la solució? (Justifica la teva resposta.)
- (e) Si la resposta de l'apartat anterior és negativa, troba una funció g per a la qual sigui afirmativa.

Problema 29 Donada la funció $f(x) = \cos x + 1 - x$, trobeu dos punts a i b tals que f(a)f(b) < 0. Useu llavors el mètode de la bisecció per trobar un interval d'amplada 0.1 que contingui una solució de f(x) = 0. A partir d'aquest interval, useu el mètode de la secant fent els càlculs amb cinc decimals arrodonits per trobar-ne una solució aproximada.

Problema 30 Comproveu que la funció $f(x) = \frac{1}{x^2} \ln(x) + 1$ té un màxim local i un punt d'inflexió. Calculeu-los analíticament, i numèricament usant els mètodes de la secant i de Newton a partir d'aproximacions amb un sol decimal fraccionari correcte.

Problema 31 Es volen aproximar les solucions de l'equació $e^x - 3x^2 = 0$ usant mètodes iteratius $x_{k+1} = g(x_k)$.

Se sap que hi ha 3 solucions: una prop de -0.5, l'altra prop de 1.0, i la darrera prop de 4.0.

Per a cadascuna d'aquestes solucions, feu servir una expressió de g(x) amb la qual el mètode sigui convergent per trobar-la.

Problema 32 Se sap que l'equació $x + \ln(x) = 0$ té una solució prop de 0.5 i es vol trobar mitjanccant un métode de punt fix. Quin dels mètodes iteratius següents triaries?

$$x_{k+1} = -\ln(x_k)$$
, $x_{k+1} = e^{-x_k}$, $x_{k+1} = \frac{x_k + e^{-x_k}}{2}$

Troba la solució amb els mètodes que siguin convergents.

Problema 33 Aplicant mètodes de punt fix adequats, trobeu aproximacions de les arrels properes a 0 i 4 de l'equació $2^x - 5x + 2 = 0$. Itereu fins que es verifiqui la condició de convergència $|x_k - x_{k-1}| \le 0.0005$.)

Problema 34 Troba totes les solucions dels sistemes d'equacions no lineals:

a)
$$\begin{pmatrix} x^2 + y^2 & = & 9 \\ (x-2)^2 + (y+3)^2 & = & 9 \end{pmatrix}$$
 b) $\begin{pmatrix} \frac{x^2}{25} + \frac{y^2}{4} & = & 1 \\ \frac{x^2}{9} + \frac{y^2}{16} & = & 1 \end{pmatrix}$

