1 point

TOTAL POINTS 10

 $T_x > T_y$

sentiment)

 $T_x = 1$

- to the j^{th} word in the i^{th} training example?

- 1. Suppose your training examples are sentences (sequences of words). Which of the following refers

- **Recurrent Neural Networks**

- 1 point

 χ < T_{χ} >

 $< T_y - 1 >$

- anasifia tuma af avabitaatuva is annuanviata urban.
- $T_x < T_y$

3. To which of these tasks would you apply a many-to-one RNN architecture? (Check all that apply).

 $x^{<1>} x^{<2>}$

Sentiment classification (input a piece of text and output a 0/1 to denote positive or negative

Gender recognition from speech (input an audio clip and output a label indicating the speaker's

You have finished training a language model RNN and are using it to sample random sentences, as

(i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as

(i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as

(i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as

(i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as

6. You are training an RNN, and find that your weights and activations are all taking on the value of

7. Suppose you are training a LSTM. You have a 10000 word vocabulary, and are using an LSTM with

NaN ("Not a Number"). Which of these is the most likely cause of this problem?

ReLU activation function g(.) used to compute g(z), where z is too large.

Sigmoid activation function g(.) used to compute g(z), where z is too large.

100-dimensional activations $a^{< t>}$. What is the dimension of Γ_u at each time step?

 $\hat{y}^{< t>}$. (ii) Then pass the ground-truth word from the training set to the next time-step.

 $\mathring{y}^{< t>}$. (ii) Then pass the ground-truth word from the training set to the next time-step.

 $\hat{y}^{< l>}$. (ii) Then pass this selected word to the next time-step.

 $\overset{\wedge^{< t>}}{y}$. (ii) Then pass this selected word to the next time-step.

Speech recognition (input an audio clip and output a transcript)

At the t^{th} time step, what is the RNN doing? Choose the best answer.

Image classification (input an image and output a label)

You are training this RNN language model.

Estimating $P(y^{<1>}, y^{<2>}, \dots, y^{<t-1>})$

Estimating $P(y^{< t>} \mid y^{< 1>}, y^{< 2>}, \dots, y^{< t-1>})$

Estimating $P(y^{< t>} | y^{< 1>}, y^{< 2>}, \dots, y^{< t>})$

What are you doing at each time step t?

Vanishing gradient problem.

Exploding gradient problem.

Here're the update equations for the GRU.

 $\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u)$

 $\Gamma_r = \sigma(W_r[\,c^{< t-1>},x^{< t>}] + b_r)$

 $a^{<t>} = c^{<t>}$

 $c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t - 1>}$

through that timestep without much decay.

through that timestep without much decay.

through that timestep without much decay.

through that timesten without much decay

 $\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c)$

300

10000

Estimating $P(y^{< t>})$

follows:

LSTM

 $\Gamma_r = \sigma(W_r[\,c^{< t-1>},x^{< t>}] + b_r)$ $\Gamma_{\!f} = \sigma(W_{\!f}[\,a^{< t-1>},x^{< t>}]+b_f)$ $c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t-1>}$ $\Gamma_o = \sigma(W_o[\ a^{< t-1>}, x^{< t>}] + b_o)$ $a^{<t>} = c^{<t>}$ $c^{<t>} = \Gamma_u * \tilde{c}^{<t>} + \Gamma_f * c^{<t-1>}$

Alice proposes to simplify the GRU by always removing the Γ_u . I.e., setting Γ_u = 1. Betty proposes to simplify the GRU by removing the Γ_r . I. e., setting Γ_r = 1 always. Which of these models is more likely to work without vanishing gradient problems even when trained on very long input sequences?

Alice's model (removing Γ_u), because if $\Gamma_r \approx 0$ for a timestep, the gradient can propagate back

Alice's model (removing Γ_u), because if $\Gamma_r \approx 1$ for a timestep, the gradient can propagate back

📵 Betty's model (removing Γ_r), because if $\Gamma_upprox 0$ for a timestep, the gradient can propagate back

 \bigcap Betty's model (removing Γ_r), because if $\Gamma_u pprox 1$ for a timestep, the gradient can propagate back

- $\bigcap \Gamma_r$ and Γ_u 10. You have a pet dog whose mood is heavily dependent on the current and past few days' weather. You've collected data for the past 365 days on the weather, which you represent as a sequence as
- O Unidirectional RNN, because the value of $y^{< t>}$ depends only on $x^{< 1>}, \dots, x^{< t>}$, but not on $x^{<t+1>}, \dots, x^{<365>}$ Unidirectional RNN, because the value of $y^{< t>}$ depends only on $x^{< t>}$, and not other days' weather.
- I, Bhishan Poudel, understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account.
- Bidirectional RNN, because this allows the prediction of mood on day t to take into account more
 - - Save Submit

i point

- From these, we can see that the Update Gate and Forget Gate in the LSTM play a role similar to
- $x^{<1>}, \dots, x^{<365>}$. You've also collected data on your dog's mood, which you represent as

RNN or Bidirectional RNN for this problem?

- Learn more about Coursera's Honor Code

are the equations for the one and the Lo GRU $\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c)$ $\tilde{c}^{< t>} = \tanh(W_c[a^{< t-1>}, x^{< t>}] + b_c)$ $\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u)$ $\Gamma_u = \sigma(W_u[\ a^{< t-1>}, x^{< t>}] + b_u)$

and ____ in the GRU. What should go in the the blanks?

- $y^{<1>},\ldots,y^{<365>}$. You'd like to build a model to map from x o y . Should you use a Unidirectional

 \bigcap 1 – Γ_u and Γ_u

 $\bigcap \Gamma_u$ and Γ_r

- information. Bidirectional RNN, because this allows backpropagation to compute more accurate gradients.