

SEQUENCE LISTING

7: 45:14 B								
<110>	Ingha	am et al.						
<120>	SCREE	ENING ASSAY	S FOR HEDGE	HOG AGONIST	S AND ANTAG	ONISTS		
<130>	HMSU-	-P14-006				•	%	
<140> <141>	09/71 2000-	11724 -11-13				En. May	CALL	
<150> <151>	08/67 1996-	74509 -07 - 07				ONISTS RCHCENER	12003	
<160>	55					*//	Olon	
<170>	Pater	ntIn versio	n 3.1				TO	
<210> <211> <212> <213>	1 1277 DNA Gall	us gallus					,	
<400>	1 gaaa	tactactatt	gacaagaatt	ctcttggtgg	gcttcatctg	cgctctttta	60	
				aggggcattg			120	
				attcccaatg			180	
				agaaactccg			240	
				gatgaagaga			300	
				gccctggcga			360	
				tgggacgagg			420	
				atcaccacgt			480	
				gccggcttcg			540	
							600	
				gaaaactcag			660	
				gagcatggag			720	
				gacgcggacg			780	
				tcccgaaagc			840	
				geggeeeace			900	
				agtggccagg			960	
				gagggcgggc				
gtcca	cagcg	tctcattgcg	ggaggaggcg	tccggagcct	acgccccact	caccgcccag	1020	

				_		
ggcaccatcc	tcatcaaccg	ggtgttggcc	tcctgctacg	ccgtcatcga	ggagcacagt	1080
tgggcccatt	gggccttcgc	accattccgc	ttggctcagg	ggctgctggc	cgccctctgc	1140
ccagatgggg	ccatccctac	tgccgccacc	accaccactg	gcatccattg	gtactcacgg	1200
ctcctctacc	gcateggeag	ctgggtgctg	gatggtgacg	cgctgcatcc	gctgggcatg	1260
gtggcaccgg	ccagctg					1277
<210> 2 <211> 119 <212> DNA <213> Mus	0 musculus					
<400> 2 atggctctgc	cggccagtct	gttgcccctg	tgctgcttgg	cactcttggc	actatctgcc	60
cagagctgcg	ggccgggccg	aggaccggtt	ggccggcggc	gttatgtgcg	caagcaactt	120
gtgcctctgc	tatacaagca	gtttgtgccc	agtatgcccg	agcggaccct	gggcgcgagt	180
gggccagcgg	aggggagggt	aacaaggggg	tcggagcgct	tccgggacct	cgtacccaac	240
tacaaccccg	acataatctt	caaggatgag	gagaacagcg	gcgcagaccg	cctgatgaca	300
gagcgttgca	aagagcgggt	gaacgctcta	gccatcgcgg	tgatgaacat	gtggcccgga	360
gtacgcctac	: gtgtgactga	aggctgggac	: gaggacggcc	: accacgcaca	ggattcactc	420
cactacgaag	gccgtgcctt	ggacatcaco	acgtctgaco	gtgaccgtaa	taagtatggt	480
ttgttggcgd	gcctagctgt	ggaagccgga	ttcgactgg	, tctactacga	gtcccgcaac	540
					g aggctgcttt	600
ccgggaaatq	g ccacggtgc	g cttgcggag	c ggcgaacgga	a aggggctgag	g ggaactacat	660
cgtggtgact	gggtactgg	c cgctgatgc	a gcgggccga	g tggtaccca	c gccagtgctg	720
ctcttcctg	g accgggatc	t gcagcgccg	c geetegtte	g tggctgtgg	a gaccgagcgg	780
cctccgcgc	a aactgttgc	t cacaccctg	g catctggtg	t tegetgete	g cgggccagcg	840
					g cgactcggtg	900
ctggctccc	g gcggggacg	c gctccagcc	g gcgcgcgta	g cccgcgtgg	c gcgcgaggaa	960
					a cgacgtcctc	1020
gcctcctgc	t acgcggttc	t agagagtca	c cagtgggcc	c accgcgcct	t cgcccctttg	1080
					c gactggcatg	1140
			g gccgaggag			1190
<210> 3 <211> 12 <212> DN	81					

<400> 3 atgtctcccg cctggctccg gccccgactg	cggttctgtc	tgttcctgct	gctgctgctt	60
ctggtgccgg cggcgcgggg ctgcgggccg	ggccgggtgg	tgggcagccg	ccggaggccg	120
cctcgcaagc tcgtgcctct tgcctacaag	cagttcagcc	ccaacgtgcc	ggagaagacc	180
ctgggcgcca gcgggcgcta cgaaggcaag	atcgcgcgca	gctctgagcg	cttcaaagag	240
ctcaccccca actacaatcc cgacatcatc	ttcaaggacg	aggagaacac	gggtgccgac	300
cgcctcatga cccagcgctg caaggaccgt	ctgaactcac	tggccatctc	tgtcatgaac	360
cagtggcctg gtgtgaaact gcgggtgacc	gaaggccggg	atgaagatgg	ccatcactca	420
gaggagtett tacactatga gggeegegeg	gtggatatca	ccacctcaga	ccgtgaccga	480
aataagtatg gactgctggc gcgcttagca	gtggaggccg	gcttcgactg	ggtgtattac	540
gagtccaagg cccacgtgca ttgctctgtc	aagtctgagc	attcggccgc	tgccaagaca	600
ggtggctgct ttcctgccgg agcccaggtg	cgcctagaga	acggggagcg	tgtggccctg	660
tcagctgtaa agccaggaga ccgggtgctg	gccatggggg	aggatgggac	ccccaccttc	720
agtgatgtgc ttattttcct ggaccgcgag	g ccaaaccggc	tgagagcttt	ccaggtcatc	780
gagactcagg atcctccgcg tcggctggcg	g ctcacgcctg	cccacctgct	cttcattgcg	840
gacaatcata cagaaccagc agcccactto	c cgggccacat	ttgccagcca	tgtgcaacca	900
ggccaatatg tgctggtatc aggggtacca	a ggcctccagc	: ctgctcgggt	ggcagctgtc	960
tccacccacg tggcccttgg gtcctatgct	cctctcacaa	ggcatgggac	acttgtggtg	1020
gaggatgtgg tggcctcctg ctttgcagc	t gtggctgaco	accatctgg(c tcagttggcc	1080
ttctggcccc tgcgactgtt tcccagttt	g gcatggggca	a gctggaccc	aagtgagggt	1140
gttcactcct accctcagat gctctaccg	c ctggggcgtd	c tcttgctaga	a agagagcacc	1200
ttccatccac tgggcatgtc tggggcagg	a agctgaagg	g actctaacca	a ctgccctcct	1260
ggaactgctg tgcgtggatc c				1281
<210> 4 <211> 1313 <212> DNA <213> Mus musculus				
<400> 4 atgctgctgc tgctggccag atgttttct	g gtgatcctt	g cttcctcgc	t gctggtgtgc	60
cccgggctgg cctgtgggcc cggcagggg				120
acceptitag cetacaagea gtttattee				180
ggcagatatg aagggaagat cacaagaaa				240
J. J				

tacaaccccg	acatcatatt	taaggatgag	gaaaacacgg	gagcagaccg	gctgatgact	300
cagaggtgca	aagacaagtt	aaatgccttg	gccatctctg	tgatgaacca	gtggcctgga	360
gtgaggctgc	gagtgaccga	gggctgggat	gaggacggcc	atcattcaga	ggagtctcta	420
cactatgagg	gtcgagcagt	ggacatcacc	acgtccgacc	gggaccgcag	caagtacggc	480
atgctggctc	gcctggctgt	ggaagcaggt	ttcgactggg	tctactatga	atccaaagct	540
cacatccact	gttctgtgaa	agcagagaac	tccgtggcgg	ccaaatccgg	cggctgtttc	600
ccgggatccg	ccaccgtgca	cctggagcag	ggcggcacca	agctggtgaa	ggacttacgt	660
cccggagacc	gcgtgctggc	ggctgacgac	cagggccggc	tgctgtacag	cgacttcctc	720
accttcctgg	accgcgacga	aggcgccaag	aaggtcttct	acgtgatcga	gacgctggag	780
ccgcgcgagc	gcctgctgct	caccgccgcg	cacctgctct	tegtggegee	gcacaacgac	840
tcggggccca	cgcccgggcc	aagcgcgctc	tttgccagcc	gcgtgcgccc	cgggcagcgc	900
gtgtacgtgg	tggctgaacg	cggcggggac	cgccggctgc	tgcccgccgc	ggtgcacagc	960
gtgacgctgc	gagaggagga	ggcgggcgcg	tacgcgccgc	tcacggcgca	cggcaccatt	1020
ctcatcaacc	gggtgctcgc	ctcgtgctac	gctgtcatcg	aggagcacag	ctgggcacac	1080
cgggccttcg	cgcctttccg	cctggcgcac	gcgctgctgg	ccgcgctggc	acccgcccgc	1140
acggacggcg	ggggcggggg	cagcatccct	gcagcgcaat	ctgcaacgga	agcgaggggc	1200
gcggagccga	ctgcgggcat	ccactggtac	tcgcagctgc	tctaccacat	tggcacctgg	1260
ctgttggaca	gcgagaccat	gcatcccttg	ggaatggcgg	tcaagtccag	ctg	1313
<210> 5 <211> 125 <212> DNA <213> Dar	7					
<400> 5 atgcggcttt	tgacgagagt	gctgctggtg	tctcttctca	ctctgtcctt	ggtggtgtcc	60
ggactggcct	geggteetgg	cagaggctac	ggcagaagaa	gacatccgaa	gaagctgaca	120
cctctcgcct	t acaagcagtt	catacctaat	gtcgcggaga	ı agacettagç	ggccagcggc	180
agatacgag	g gcaagataac	gcgcaattcg	gagagattta	a aagaacttac	c tccaaattac	240
aatcccgac	a ttatcttaa	ı ggatgaggag	aacacgggag	g cggacaggct	: catgacacag	300
agatgcaaa	g acaagctgaa	ctcgctggcc	atctctgtaa	a tgaaccacto	g gccaggggtt	360
aagctgcgt	g tgacagaggg	g ctgggatgag	gacggtcaco	c attttgaaga	a atcactccac	420
tacgaggga	a gagctgttga	a tattaccaco	: tctgaccgaq	g acaagagcaa	a atacgggaca	480
ctgtctcgc	c tagctgtgga	a ggctggattt	gactgggtct	t attacgagto	c caaagcccac	540

attcattgct	ctgtcaaagc	agaaaattcg	gttgctgcga	aatctggggg	ctgtttccca	600
ggttcggctc	tggtctcgct	ccaggacgga	ggacagaagg	ccgtgaagga	cctgaacccc	660
ggagacaagg	tgctggcggc	agacagcgcg	ggaaacctgg	tgttcagcga	cttcatcatg	720
ttcacagacc	gagactccac	gacgcgacgt	gtgttttacg	tcatagaaac	gcaagaaccc	780
gttgaaaaga	tcaccctcac	cgccgctcac	ctcctttttg	tcctcgacaa	ctcaacggaa	840
gatctccaca	ccatgaccgc	cgcgtatgcc	agcagtgtca	gagccggaca	aaaggtgatg	900
gttgttgatg	atagcggtca	gcttaaatct	gtcatcgtgc	agcggatata	cacggaggag	960
cagcggggct	cgttcgcacc	agtgactgca	catgggacca	ttgtggtcga	cagaatactg	1020
gcgtcctgtt	acgccgtaat	agaggaccag	gggcttgcgc	atttggcctt	cgcgcccgcc	1080
aggctctatt	attacgtgtc	atcattcctg	tccccaaaa	ctccagcagt	cggtccaatg	1140
cgactttaca	acaggagggg	gtccactggt	actccaggct	cctgtcatca	aatgggaacg	1200
tggcttttgg	acagcaacat	gcttcatcct	ttggggatgt	cagtaaactc	aagctg	1256
<220> <221> mis <222> (13		t				
<400> 6 atgctgctgc	: tggcgagatg	tctgctgcta	gtcctcgtct	cctcgctgct	ggtatgctcg	60
ggactggcgt	geggaeeggg	cagggggttc	gggaagagga	ggcaccccaa	aaagctgacc	120
cctttagcct	acaagcagtt	tatccccaat	gtggccgaga	agaccctagg	cgccagcgga	180
aggtatgaag	ggaagatctc	cagaaactcc	gagcgattta	aggaactcac	ccccaattac	240
aaccccgaca	tcatatttaa	ggatgaagaa	aạcaccggag	cggacaggct	gatgactcag	300
aggtgtaag	g acaagttgaa	cgctttggcc	atctcggtga	tgaaccagtg	gccaggagtg	360
aaactgcgg	g tgaccgaggg	ctgggacgaa	gatggccacc	actcagagga	gtctctgcac	420
tacgagggc	c gcgcagtgga	catcaccacg	tctgaccgcg	accgcagcaa	gtacggcatg	480
ctggcccgc	c tggcggtgga	ggccggcttc	gactgggtgt	actacgagtc	caaggcacat	540
atccactgc	cggtgaaagc	agagaactcg	gtggcggcca	aatcgggagg	ctgcttcccg	600
ggctcggcc	a cggtgcacct	ggagcagggc	ggcaccaagc	tggtgaagga	cctgagcccc	660
ggggaccgc	g tgctggcggc	ggacgaccag	ggccggctgc	: tctacagcga	cttcctcact	720
ttcctggac	c gcgacgacgg	cgccaagaag	gtcttctacg	tgatcgagac	gcgggagccg	780

cgcgagcgcc	tgctgctcac	cgccgcgcac	ctgctctttg	tggcgccgca	caacgactcg	840
gccaccgggg	agcccgaggc	gtcctcgggc	tcggggccgc	cttccggggg	cgcactgggg	900
cctcgggcgc	tgttcgccag	ccgcgtgcgc	ccgggccagc	gcgtgtacgt	ggtggccgag	960
cgtgacgggg	accgccggct	cctgcccgcc	gctgtgcaca	gcgtgaccct	aagcgaggag	1020
gccgcgggcg	cctacgcgcc	gctcacggcc	cagggcacca	ttctcatcaa	ccgggtgctg	1080
gcctcgtgct	acgcggtcat	cgaggagcac	agctgggcgc	accgggcctt	cgcgcccttc	1140
cgcctggcgc	acgcgctcct	ggctgcactg	gcgcccgcgc	gcacggaccg	cggcggggac	1200
agcggcggcg	gggaccgcgg	gggcggcggc	ggcagagtag	ccctaaccgc	tccaggtgct	1260
gccgacgctc	cgggtgcggg	ggccaccgcg	ggcatccact	ggtactcgca	gctgctctac	1320
caaataggca	cctggctcct	ggacagcgag	gccctgcacc	cgctgggcat	ggcggtcaag	1380
tccagcnnna	gccggggggc	cgggggaggg	gcgcgggagg	gggcc		1425
<210> 7 <211> 939 <212> DNA <213> Homo	o sapiens					
<400> 7	tgacccagcg	ctgcaaggac	cgcctgaact	cgctggctat	ctcggtgatg	60
		gctgcgggtg				120
		tgagggccgc				180
		ggcgcgcttg				240
		gcattgctcc				300
		cggagcccag				360
		agaccgtgtg				420
		cctggaccgc				480
					gctctttacg	540
		ggcagcccgc				600
		ggctggggtg				660
					gacactggtg	720
				·	ggctcagttg:	780
					cccgggggag	840
					agaagagggc	900
		gtccggggca		·		939
agestocact		J 5 5 5 5	,,,,			

<210> 8

<211> 425

<212> PRT

<213> Gallus gallus

<400> 8

Met Val Glu Met Leu Leu Leu Thr Arg Ile Leu Leu Val Gly Phe Ile 1 5 10 15

Cys Ala Leu Leu Val Ser Ser Gly Leu Thr Cys Gly Pro Gly Arg Gly 20 25 30

Ile Gly Lys Arg Arg His Pro Lys Lys Leu Thr Pro Leu Ala Tyr Lys 35 40

Gln Phe Ile Pro Asn Val Ala Glu Lys Thr Leu Gly Ala Ser Gly Arg 50 55 60

Tyr Glu Gly Lys Ile Thr Arg Asn Ser Glu Arg Phe Lys Glu Leu Thr 65 70 75 80

Pro Asn Tyr Asn Pro Asp Ile Ile Phe Lys Asp Glu Glu Asn Thr Gly 85 90 95

Ala Asp Arg Leu Met Thr Gln Arg Cys Lys Asp Lys Leu Asn Ala Leu 100 105 110

Ala Ile Ser Val Met Asn Gln Trp Pro Gly Val Lys Leu Arg Val Thr 115 120 125

Glu Gly Trp Asp Glu Asp Gly His His Ser Glu Glu Ser Leu His Tyr 130 135 140

Glu Gly Arg Ala Val Asp Ile Thr Thr Ser Asp Arg Asp Arg Ser Lys 145 150 155

Tyr Gly Met Leu Ala Arg Leu Ala Val Glu Ala Gly Phe Asp Trp Val 165 170 175

Tyr Tyr Glu Ser Lys Ala His Ile His Cys Ser Val Lys Ala Glu Asn 180 185 190

Ser Val Ala Ala Lys Ser Gly Gly Cys Phe Pro Gly Ser Ala Thr Val 195 200 205 His Leu Glu His Gly Gly Thr Lys Leu Val Lys Asp Leu Ser Pro Gly 210 215 220

Asp Arg Val Leu Ala Ala Asp Ala Asp Gly Arg Leu Leu Tyr Ser Asp 225 230 235 240

Phe Leu Thr Phe Leu Asp Arg Met Asp Ser Ser Arg Lys Leu Phe Tyr 245 250 255

Val Ile Glu Thr Arg Gln Pro Arg Ala Arg Leu Leu Thr Ala Ala 260 265 270

His Leu Leu Phe Val Ala Pro Gln His Asn Gln Ser Glu Ala Thr Gly 275 280 285

Ser Thr Ser Gly Gln Ala Leu Phe Ala Ser Asn Val Lys Pro Gly Gln 290 295 300

Arg Val Tyr Val Leu Gly Glu Gly Gly Gln Gln Leu Leu Pro Ala Ser 305 310 315 320

Val His Ser Val Ser Leu Arg Glu Glu Ala Ser Gly Ala Tyr Ala Pro 325 330 335

Leu Thr Ala Gln Gly Thr Ile Leu Ile Asn Arg Val Leu Ala Ser Cys 340 345 350

Tyr Ala Val Ile Glu Glu His Ser Trp Ala His Trp Ala Phe Ala Pro 355 360 365

Phe Arg Leu Ala Gln Gly Leu Leu Ala Ala Leu Cys Pro Asp Gly Ala 370 375 380

Ile Pro Thr Ala Ala Thr Thr Thr Gly Ile His Trp Tyr Ser Arg 385 390 395 400

Leu Leu Tyr Arg Ile Gly Ser Trp Val Leu Asp Gly Asp Ala Leu His 405 410 415

Pro Leu Gly Met Val Ala Pro Ala Ser 420 425

<210> 9

<211> 396

<212> PRT

<213> Mus musculus

<400> 9

Met Ala Leu Pro Ala Ser Leu Leu Pro Leu Cys Cys Leu Ala Leu Leu 1 5 10 15

Ala Leu Ser Ala Gln Ser Cys Gly Pro Gly Arg Gly Pro Val Gly Arg 20 25 30

Arg Arg Tyr Val Arg Lys Gln Leu Val Pro Leu Leu Tyr Lys Gln Phe 35 40 45

Val Pro Ser Met Pro Glu Arg Thr Leu Gly Ala Ser Gly Pro Ala Glu 50 55 60

Gly Arg Val Thr Arg Gly Ser Glu Arg Phe Arg Asp Leu Val Pro Asn 65 70 75 80

Tyr Asn Pro Asp Ile Ile Phe Lys Asp Glu Glu Asn Ser Gly Ala Asp 85 90 95

Arg Leu Met Thr Glu Arg Cys Lys Glu Arg Val Asn Ala Leu Ala Ile 100 105 110

Ala Val Met Asn Met Trp Pro Gly Val Arg Leu Arg Val Thr Glu Gly
115 120 125

Trp Asp Glu Asp Gly His His Ala Gln Asp Ser Leu His Tyr Glu Gly 130 135 140

Arg Ala Leu Asp Ile Thr Thr Ser Asp Arg Asp Arg Asn Lys Tyr Gly
145 150 155 160

Leu Leu Ala Arg Leu Ala Val Glu Ala Gly Phe Asp Trp Val Tyr Tyr 165 170 175

Glu Ser Arg Asn His Ile His Val Ser Val Lys Ala Asp Asn Ser Leu 180 185 190

Ala Val Arg Ala Gly Gly Cys Phe Pro Gly Asn Ala Thr Val Arg Leu 195 200 205

Arg Ser Gly Glu Arg Lys Gly Leu Arg Glu Leu His Arg Gly Asp Trp 210 215 220

Val Leu Ala Ala Asp Ala Ala Gly Arg Val Val Pro Thr Pro Val Leu 225 230 235 240 Leu Phe Leu Asp Arg Asp Leu Gln Arg Arg Ala Ser Phe Val Ala Val 245 250 255

Glu Thr Glu Arg Pro Pro Arg Lys Leu Leu Leu Thr Pro Trp His Leu 260 265 270

Val Phe Ala Ala Arg Gly Pro Ala Pro Ala Pro Gly Asp Phe Ala Pro 275 280 285

Val Phe Ala Arg Arg Leu Arg Ala Gly Asp Ser Val Leu Ala Pro Gly 290 295 300

Gly Asp Ala Leu Gln Pro Ala Arg Val Ala Arg Val Ala Arg Glu Glu 305 310 315 320

Ala Val Gly Val Phe Ala Pro Leu Thr Ala His Gly Thr Leu Leu Val 325 330 335

Asn Asp Val Leu Ala Ser Cys Tyr Ala Val Leu Glu Ser His Gln Trp 340 345 350

Ala His Arg Ala Phe Ala Pro Leu Arg Leu Leu His Ala Leu Gly Ala 355 360 365

Leu Leu Pro Gly Gly Ala Val Gln Pro Thr Gly Met His Trp Tyr Ser 370 375 380

Arg Leu Leu Tyr Arg Leu Ala Glu Glu Leu Met Gly 385 390 395

<210> 10

<211> 336

<212> PRT

<213> Mus musculus

<400> 10

Glu Arg Phe Lys Glu Leu Thr Pro Asn Tyr Asn Pro Asp Ile Ile Phe $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$

Lys Asp Glu Glu Asn Thr Gly Ala Asp Arg Leu Met Thr Gln Arg Cys 20 25 30

Lys Asp Arg Leu Asn Ser Leu Ala Ile Ser Val Met Asn Gln Trp Pro 35 40 45

Phe Ala Ala Val Ala Asp His His Leu Ala Gln Leu Ala Phe Trp Pro 280 285

Leu Thr Arg His Gly Thr Leu Val Val Glu Asp Val Val Ala Ser Cys

245

260

270

Gly Val His Trp Tyr Pro Gln Met Leu Tyr Arg Leu Gly Arg Leu Leu 305 310 315 320

Leu Glu Glu Ser Thr Phe His Pro Leu Gly Met Ser Gly Ala Gly Ser 325 330 335

<210> 11

<211> 437

<212> PRT

<213> Mus musculus

<400> 11

Met Leu Leu Leu Ala Arg Cys Phe Leu Val Ile Leu Ala Ser Ser 1 5 10 15

Leu Leu Val Cys Pro Gly Leu Ala Cys Gly Pro Gly Arg Gly Phe Gly 20 25 30

Lys Arg Arg His Pro Lys Lys Leu Thr Pro Leu Ala Tyr Lys Gln Phe 35 40

Ile Pro Asn Val Ala Glu Lys Thr Leu Gly Ala Ser Gly Arg Tyr Glu
50 55 60

Gly Lys Ile Thr Arg Asn Ser Glu Arg Phe Lys Glu Leu Thr Pro Asn 65 70 75 80

Tyr Asn Pro Asp Ile Ile Phe Lys Asp Glu Glu Asn Thr Gly Ala Asp 85 90 95

Arg Leu Met Thr Gln Arg Cys Lys Asp Lys Leu Asn Ala Leu Ala Ile 100 105 110

Ser Val Met Asn Gln Trp Pro Gly Val Arg Leu Arg Val Thr Glu Gly 115 120 125

Trp Asp Glu Asp Gly His His Ser Glu Glu Ser Leu His Tyr Glu Gly 130 135 140

Arg Ala Val Asp Ile Thr Thr Ser Asp Arg Asp Arg Ser Lys Tyr Gly 145 150 155 160

Met Leu Ala Arg Leu Ala Val Glu Ala Gly Phe Asp Trp Val Tyr Tyr 165 170 175

- Glu Ser Lys Ala His Ile His Cys Ser Val Lys Ala Glu As
n Ser Val 180 185 190
- Ala Ala Lys Ser Gly Gly Cys Phe Pro Gly Ser Ala Thr Val His Leu 195 200 205
- Glu Gln Gly Gly Thr Lys Leu Val Lys Asp Leu Arg Pro Gly Asp Arg 210 215 220
- Val Leu Ala Ala Asp Asp Gln Gly Arg Leu Leu Tyr Ser Asp Phe Leu 225 230 235 240
- Thr Phe Leu Asp Arg Asp Glu Gly Ala Lys Lys Val Phe Tyr Val Ile 245 . 250 . 255
- Glu Thr Leu Glu Pro Arg Glu Arg Leu Leu Leu Thr Ala Ala His Leu 260 265 270
- Leu Phe Val Ala Pro His Asn Asp Ser Gly Pro Thr Pro Gly Pro Ser 275 280 285
- Ala Leu Phe Ala Ser Arg Val Arg Pro Gly Gln Arg Val Tyr Val Val 290 295 300
- Ala Glu Arg Gly Gly Asp Arg Arg Leu Leu Pro Ala Ala Val His Ser 305 310 315 320
- Val Thr Leu Arg Glu Glu Glu Ala Gly Ala Tyr Ala Pro Leu Thr Ala 325 330 335
- His Gly Thr Ile Leu Ile Asn Arg Val Leu Ala Ser Cys Tyr Ala Val 340 345 350 .
- Ile Glu Glu His Ser Trp Ala His Arg Ala Phe Ala Pro Phe Arg Leu 355 360 365
- Ala His Ala Leu Leu Ala Ala Leu Ala Pro Ala Arg Thr Asp Gly Gly 370 375 380
- Gly Gly Gly Ser Ile Pro Ala Ala Gln Ser Ala Thr Glu Ala Arg Gly 385 390 395 400
- Ala Glu Pro Thr Ala Gly Ile His Trp Tyr Ser Gln Leu Leu Tyr His 405 410 415

Ile Gly Thr Trp Leu Leu Asp Ser Glu Thr Met His Pro Leu Gly Met 420 425 430

Ala Val Lys Ser Ser 435

<210> 12

<211> 418

<212> PRT

<213> Danio rerio

<400> 12

Met Arg Leu Leu Thr Arg Val Leu Leu Val Ser Leu Leu Thr Leu Ser 1 5 10 15

Leu Val Val Ser Gly Leu Ala Cys Gly Pro Gly Arg Gly Tyr Gly Arg 20 25 30

Arg Arg His Pro Lys Lys Leu Thr Pro Leu Ala Tyr Lys Gln Phe Ile 35 40 45

Pro Asn Val Ala Glu Lys Thr Leu Gly Ala Ser Gly Arg Tyr Glu Gly 50 55 60

Lys Ile Thr Arg Asn Ser Glu Arg Phe Lys Glu Leu Thr Pro Asn Tyr 65 70 75 80

Asn Pro Asp Ile Ile Phe Lys Asp Glu Glu Asn Thr Gly Ala Asp Arg 85 90 95

Leu Met Thr Gln Arg Cys Lys Asp Lys Leu Asn Ser Leu Ala Ile Ser 100 105 110

Val Met Asn His Trp Pro Gly Val Lys Leu Arg Val Thr Glu Gly Trp 115 120 125

Asp Glu Asp Gly His His Phe Glu Glu Ser Leu His Tyr Glu Gly Arg 130 135 140

Ala Val Asp Ile Thr Thr Ser Asp Arg Asp Lys Ser Lys Tyr Gly Thr 145 150 155 160

Leu Ser Arg Leu Ala Val Glu Ala Gly Phe Asp Trp Val Tyr Tyr Glu 165 170 175

Ser Lys Ala His Ile His Cys Ser Val Lys Ala Glu Asn Ser Val Ala 180 185 190

Ala Lys Ser Gly Gly Cys Phe Pro Gly Ser Ala Leu Val Ser Leu Gln
195 200 205

Asp Gly Gly Gln Lys Ala Val Lys Asp Leu Asn Pro Gly Asp Lys Val 210 215 220

Leu Ala Ala Asp Ser Ala Gly Asn Leu Val Phe Ser Asp Phe Ile Met 225 230 230 235

Phe Thr Asp Arg Asp Ser Thr Thr Arg Arg Val Phe Tyr Val Ile Glu 245 250 255

Thr Gln Glu Pro Val Glu Lys Ile Thr Leu Thr Ala Ala His Leu Leu 260 265 270

Phe Val Leu Asp Asn Ser Thr Glu Asp Leu His Thr Met Thr Ala Ala 275 280 285

Tyr Ala Ser Ser Val Arg Ala Gly Gln Lys Val Met Val Val Asp Asp 290 295 300

Ser Gly Gln Leu Lys Ser Val Ile Val Gln Arg Ile Tyr Thr Glu Glu 305 310 315 320

Gln Arg Gly Ser Phe Ala Pro Val Thr Ala His Gly Thr Ile Val Val 325 330 335

Asp Arg Ile Leu Ala Ser Cys Tyr Ala Val Ile Glu Asp Gln Gly Leu 340 345 350

Ala His Leu Ala Phe Ala Pro Ala Arg Leu Tyr Tyr Tyr Val Ser Ser 355 360 365

Phe Leu Phe Pro Gln Asn Ser Ser Ser Arg Ser Asn Ala Thr Leu Gln 370 375 380

Gln Glu Gly Val His Trp Tyr Ser Arg Leu Leu Tyr Gln Met Gly Thr 385 390 395 400

Trp Leu Leu Asp Ser Asn Met Leu His Pro Leu Gly Met Ser Val Asn 405 410 415

Ser Ser

<210> 13

<211> 462

<212> PRT

<213> Homo sapiens

<400> 13

Met Leu Leu Leu Ala Arg Cys Leu Leu Leu Val Leu Val Ser Ser Leu 1 5 10 15

Leu Val Cys Ser Gly Leu Ala Cys Gly Pro Gly Arg Gly Phe Gly Lys 20 25 30

Arg Arg His Pro Lys Lys Leu Thr Pro Leu Ala Tyr Lys Gln Phe Ile 35 40

Pro Asn Val Ala Glu Lys Thr Leu Gly Ala Ser Gly Arg Tyr Glu Gly 50 55 60

Lys Ile Ser Arg Asn Ser Glu Arg Phe Lys Glu Leu Thr Pro Asn Tyr 65 70 75 80

Asn Pro Asp Ile Ile Phe Lys Asp Glu Glu Asn Thr Gly Ala Asp Arg 85 90 95

Leu Met Thr Gln Arg Cys Lys Asp Lys Leu Asn Ala Leu Ala Ile Ser 100 105 110

Val Met Asn Gln Trp Pro Gly Val Lys Leu Arg Val Thr Glu Gly Trp 115 120 125

Asp Glu Asp Gly His His Ser Glu Glu Ser Leu His Tyr Glu Gly Arg 130 135 140

Ala Val Asp Ile Thr Thr Ser Asp Arg Asp Arg Ser Lys Tyr Gly Met 145 150 155 160

Leu Ala Arg Leu Ala Val Glu Ala Gly Phe Asp Trp Val Tyr Tyr Glu 165 170 175

Ser Lys Ala His Ile His Cys Ser Val Lys Ala Glu Asn Ser Val Ala 180 185 190

Ala Lys Ser Gly Gly Cys Phe Pro Gly Ser Ala Thr Val His Leu Glu 195 200 205

- Gln Gly Gly Thr Lys Leu Val Lys Asp Leu Ser Pro Gly Asp Arg Val 210 215 220
- Leu Ala Ala Asp Asp Gln Gly Arg Leu Leu Tyr Ser Asp Phe Leu Thr 225 230 230 235 235
- Phe Leu Asp Arg Asp Asp Gly Ala Lys Lys Val Phe Tyr Val Ile Glu 245 250 250
- Thr Arg Glu Pro Arg Glu Arg Leu Leu Leu Thr Ala Ala His Leu Leu 260 265 270
- Phe Val Ala Pro His Asn Asp Ser Ala Thr Gly Glu Pro Glu Ala Ser 275 280 285
- Ser Gly Ser Gly Pro Pro Ser Gly Gly Ala Leu Gly Pro Arg Ala Leu 290 295 300
- Phe Ala Ser Arg Val Arg Pro Gly Gln Arg Val Tyr Val Val Ala Glu 305 310 315 320
- Arg Asp Gly Asp Arg Arg Leu Leu Pro Ala Ala Val His Ser Val Thr 325 330 335
- Leu Ser Glu Glu Ala Ala Gly Ala Tyr Ala Pro Leu Thr Ala Gln Gly 340 345 350
- Thr Ile Leu Ile Asn Arg Val Leu Ala Ser Cys Tyr Ala Val Ile Glu 355 360 365
- Glu His Ser Trp Ala His Arg Ala Phe Ala Pro Phe Arg Leu Ala His 370 375 380 .
- Ala Leu Leu Ala Ala Leu Ala Pro Ala Arg Thr Asp Arg Gly Gly Asp 385 390 395 400
- Ser Gly Gly Gly Asp Arg Gly Gly Gly Gly Gly Arg Val Ala Leu Thr 405 410 415
- Ala Pro Gly Ala Ala Asp Ala Pro Gly Ala Gly Ala Thr Ala Gly Ile 420 425 430
- His Trp Tyr Ser Gln Leu Leu Tyr Gln Ile Gly Thr Trp Leu Leu Asp 435 445

Ser Glu Ala Leu His Pro Leu Gly Met Ala Val Lys Ser Ser 450 455 460

<210> 14

<211> 312

<212> PRT

<213> Homo sapiens

<400> 14

Arg Arg Leu Met Thr Gln Arg Cys Lys Asp Arg Leu Asn Ser Leu Ala 1 5 10 15

Ile Ser Val Met Asn Gln Trp Pro Gly Val Lys Leu Arg Val Thr Glu 20 25 30

Gly Trp Asp Glu Asp Gly His His Ser Glu Glu Ser Leu His Tyr Glu 35 40 45

Gly Arg Ala Val Asp Ile Thr Thr Ser Asp Arg Asp Arg Asn Lys Tyr 50 55 60

Gly Leu Leu Ala Arg Leu Ala Val Glu Ala Gly Phe Asp Trp Val Tyr 65 70 75 80

Tyr Glu Ser Lys Ala His Val His Cys Ser Val Lys Ser Glu His Ser 85 90 95

Ala Ala Lys Thr Gly Gly Cys Phe Pro Ala Gly Ala Gln Val Arg
100 105 110

Leu Glu Ser Gly Ala Arg Val Ala Leu Ser Ala Val Arg Pro Gly Asp 115 120 125

Arg Val Leu Ala Met Gly Glu Asp Gly Ser Pro Thr Phe Ser Asp Val 130 135 140

Ile Glu Thr Gln Asp Pro Pro Arg Arg Leu Ala Leu Thr Pro Ala His
165 170 175

Leu Leu Phe Thr Ala Asp Asn His Thr Glu Pro Ala Ala Arg Phe Arg 180 185 190 Ala Thr Phe Ala Ser His Val Gln Pro Gly Gln Tyr Val Leu Val Ala 195 200 205

Gly Ala Pro Gly Leu Gln Pro Ala Arg Val Ala Ala Val Ser Thr His 210 215 220

Val Ala Leu Gly Ala Tyr Ala Pro Leu Thr Lys His Gly Thr Leu Val 225 230 235 240

Val Glu Asp Val Val Ala Ser Cys Phe Ala Ala Val Ala Asp His His 245 250 255 .

Leu Ala Gln Leu Ala Phe Trp Pro Leu Arg Leu Phe His Ser Leu Ala 260 265 270

Trp Gly Ser Trp Thr Pro Gly Glu Gly Val His Trp Tyr Pro Gln Leu 275 280 285

Leu Tyr Arg Leu Gly Arg Leu Leu Leu Glu Glu Gly Ser Phe His Pro 290 295 300

Leu Gly Met Ser Gly Ala Gly Ser 305 310

<210> 15

<211> 64

<212> PRT

<213> Danio rerio

<400> 15

His Trp Pro Gly Val Lys Leu Arg Val Thr Glu Gly Trp Asp Glu Asp 20 25 30

Gly His His Phe Glu Glu Ser Leu His Tyr Glu Gly Arg Ala Val Asp 35 40 45

Ile Thr Thr Ser Asp Arg Asp Lys Ser Lys Tyr Gly Thr Leu Ser Arg 50 55 60

<210> 16

<211> 64

<212> PRT

<213> Danio rerio

<400> 16

```
Gln Arg Cys Lys Glu Lys Leu Asn Ser Leu Ala Ile Ser Val Met Asn
Met Trp Pro Gly Val Lys Leu Arg Val Thr Glu Gly Trp Asp Glu Asp
                                25
Gly Asn His Phe Glu Asp Ser Leu His Tyr Glu Gly Arg Ala Val Asp
Ile Thr Thr Ser Asp Arg Asp Arg Asn Lys Tyr Gly Met Phe Ala Arg
                        55
<210> 17
<211> 64
<212> PRT
<213> Danio rerio
<220>
<221> MISC FEATURE
<222> (1)..(221)
<223> Xaa=unknown amino acid
<400> 17
Gln Arg Cys Lys Asp Lys Leu Asn Ser Leu Ala Ile Ser Val Met Asn
                5
Leu Trp Pro Gly Val Lys Leu Arg Val Thr Glu Gly Trp Asp Glu Asp
                                25
            20
Gly Leu His Ser Glu Glu Ser Leu His Tyr Glu Gly Arg Ala Val Asp
        35
                            40
Ile Thr Thr Ser Asp Arg Asp Arg Asn Lys Tyr Arg Met Leu Ala Arg
                        55
    50
<210> 18
<211> 38
<212> DNA
<213> Artificial Sequence
<220>
<223> Degenerate oligonucleotide
<220>
<220>
<221> misc feature
<222> (1)..(36)
<223> n=inosine
 <400> 18
```

ggaattccca gcagntgcta aaggaagcaa gngctnaa

<210>	19	
<211>	33	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Degenerate oligonucleotide	
12207	50g0n01400 011g0n401001	
<220>		
	misc feature	
	(1)(33)	
<223>	n=inosine	
	19	33
tcatcg	atgg acccagatcg aaanccngct ctc	55
<210×	20	
<210> <211>		
<212>	Artificial Sequence	
<213/	Arcificial Sequence	
<220>		
<223>	Degenerate oligonucleotide	
<220>		
	misc_feature	
<222>	(1)(27)	
<223>	n=inosine	
	20	29
gctcta	gage tenaengena ganegtnge	29
4010x	01	
<210>	21	
<211>	50 -	
<212> <213>		
<213>	Altilital Sequence	
<220>		
<223>	Annealed oligonucleotide lac1	
<400>	21	5 0
agctgt	cgac gcggccgcta cgtaggttac cgacgtcaag cttagatctc	50
0.4.0		
<210>	22	
<211>	50	
<212>		
<213>	Artificial Sequence	
<220>		
12207		
<223>	Annealed oligonucleotide lac2	
<400>		EΛ
agctga	agatc taagettgae gteggtaace taegtagegg eegegtegae	50
<210>	23	
<211>		
<211>		
	Artificial Sequence	

<220> <223>	Sf-1 oligonucleotide	
<400> gatcggo	23 ccag gcaggceteg egatategte acegeggtat tegaa	45
	24 30 DNA Artificial Sequence	
<220> <223>	Sf-2 oligonucleotide	
<400> agtgcca	24 agtc ggggeececa gggeegee	30
<210><211><212><212><213>	25 20 DNA Artificial Sequence	
<220> <223>	Oligonucleotide 137	
<400> taccac	25 agcg gatggttcgg	20
<210><211><211><212><213>	DNA	
<220> <223>	Oligonucleotide 138	
<400> gtggtg	26 gtta tgccgatcgc	20
<210> <211> <212> <213>	DNA	
<220> <223>	Oligonucleotide WPR2	
<400> taagag	27 ggcct ataagaggcg g	21
<210> <211> <212> <213>	20	
<220> <223>		
<400>	28	

aagtca	gccc agaggagact	20
<210> <211> <212> <213>	29 6 PRT Mus musculus	
<400>	29	
Cys Gl	y Pro Gly Arg Gly 5	
<210> <211> <212> <213>		
<220> <223>	Degenerate oligonucleotide hh5.1	
<222>	<pre>misc_feature (1)(29) n=inosine</pre>	
	30 tgct aaaggaagca agngctnaa	29
<210> <211> <212> <213>		
<220> <223>	Degenerate oligonucleotide hh3.3	
<220> <221> <222> <223>	(1)(23)	
<400> ctcnac	31 ngcn aganckgtng cna	23
<210><211><211><212><213>	32	
<220> <223>	Oligonucleotide to amplify Shh ORF	
<400> ctgcag	32 ggat ccaccatgeg gettttgaeg ag	32
<210><211><211><212><213>		

31

<220> <223> Oligonucleotide to amplify Shh ORF <400> 33 ctgcagggat ccttattcca cacgagggat t <210> 34 <211> 471 <212> PRT <213> Drosophila melanogaster <400> 34 Met Asp Asn His Ser Ser Val Pro Trp Ala Ser Ala Ala Ser Val Thr 5 10 Cys Leu Ser Leu Gly Cys Gln Met Pro Gln Phe Gln Phe Gln Phe Gln Leu Gln Ile Arg Ser Glu Leu His Leu Arg Lys Pro Ala Arg Arg Thr Gln Thr Met Arg His Ile Ala His Thr Gln Arg Cys Leu Ser Arg Leu 55 Thr Ser Leu Val Ala Leu Leu Leu Ile Val Leu Pro Met Val Phe Ser 70 75 Pro Ala His Ser Cys Gly Pro Gly Arg Gly Leu Gly Arg His Arg Ala 90 Arg Asn Leu Tyr Pro Leu Val Leu Lys Gln Thr Ile Pro Asn Leu Ser 100 105 110 Glu Tyr Thr Asn Ser Ala Ser Gly Pro Leu Glu Gly Val Ile Arg Arg 115 120 125 Asp Ser Pro Lys Phe Lys Asp Leu Val Pro Asn Tyr Asn Arg Asp Ile 130 135 Leu Phe Arg Asp Glu Glu Gly Thr Gly Ala Asp Gly Leu Met Ser Lys Arg Cys Lys Glu Lys Leu Asn Val Leu Ala Tyr Ser Val Met Asn Glu 165 170

Trp Pro Gly Ile Arg Leu Leu Val Thr Glu Ser Trp Asp Glu Asp Tyr

' 185

180

His His Gly Gln Glu Ser Leu His Tyr Glu Gly Arg Ala Val Thr Ile Ala Thr Ser Asp Arg Asp Gln Ser Lys Tyr Gly Met Leu Ala Arg Leu Ala Val Glu Ala Gly Phe Asp Trp Val Ser Tyr Val Ser Arg Arg His Ile Tyr Cys Ser Val Lys Ser Asp Ser Ser Ile Ser Ser His Val His Gly Cys Phe Thr Pro Glu Ser Thr Ala Leu Leu Glu Ser Gly Val Arg Lys Pro Leu Gly Glu Leu Ser Ile Gly Asp Arg Val Leu Ser Met Thr Ala Asn Gly Gln Ala Val Tyr Ser Glu Val Ile Leu Phe Met Asp Arg Asn Leu Glu Gln Met Gln Asn Phe Val Gln Leu His Thr Asp Gly Gly Ala Val Leu Thr Val Thr Pro Ala His Leu Val Ser Val Trp Gln Pro Glu Ser Gln Lys Leu Thr Phe Val Phe Ala His Arg Ile Glu Glu Lys Asn Gln Val Leu Val Arg Asp Val Glu Thr Gly Glu Leu Arg Pro Gln Arg Val Val Lys Leu Gly Ser Val Arg Ser Lys Gly Val Val Ala Pro Leu Thr Arg Glu Gly Thr Ile Val Val Asn Ser Val Ala Ala Ser Cys Tyr Ala Val Ile Asn Ser Gln Ser Leu Ala His Trp Gly Leu Ala Pro Met Arg Leu Leu Ser Thr Leu Glu Ala Trp Leu Pro Ala Lys Glu Gln

Leu His Ser Ser Pro Lys Val Val Ser Ser Ala Gln Gln Asn Gly 435 $$ 440 $$ $$ 445

Ile His Trp Tyr Ala Asn Ala Leu Tyr Lys Val Lys Asp Tyr Val Leu 450 455 460

Pro Gln Ser Trp Arg His Asp 465 470

<210> 35

<211> 73 <212> PRT

<213> Gallus gallus

<400> 35

Arg Cys Lys Glu Arg Val Asn Ser Leu Ala Ile Ala Val Met His Met 1 5 10 15

Trp Pro Gly Val Arg Leu Arg Val Thr Glu Gly Trp Asp Glu Asp Gly 20 25 30

His His Leu Pro Asp Ser Leu His Tyr Glu Gly Arg Ala Leu Asp Ile 35 40 45

Thr Thr Ser Asp Arg Asp Arg His Lys Tyr Gly Met Leu Ala Arg Leu 50 55 60

Ala Val Glu Ala Gly Phe Asp Trp Val 65 70

<210> 36

<211> 73

<212> PRT

<213> Gallus gallus

<400> 36

Arg Cys Lys Asp Lys Leu Asn Ala Leu Ala Ile Ser Val Met Asn Gln 1 5 10 15

Trp Pro Gly Val Lys Leu Arg Val Thr Glu Gly Trp Asp Glu Asp Gly 20 25 30

His His Ser Glu Glu Ser Leu His Tyr Glu Gly Arg Ala Val Asp Ile 35 40 45

Thr Thr Ser Asp Arg Asp Arg Ser Lys Tyr Gly Met Leu Ala Arg Leu 50 55 60

```
Ala Val Glu Ala Gly Phe Asp Trp Val
<210> 37
<211> 64
<212> PRT
<213> Danio rerio
<400> 37
Lys Arg Cys Lys Glu Lys Leu Asn Val Leu Ala Tyr Ser Val Met Asn
                5
                                   10
Glu Trp Pro Gly Ile Arg Leu Val Val Thr Glu Ser Trp Asp Glu Asp
            20
Tyr His His Gly Gln Glu Ser Leu His Tyr Glu Gly Arg Ala Val Thr
Ile Ala Thr Ser Asp Arg Asp Gln Ser Lys Tyr Gly Met Leu Ala Arg
<210> 38
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> Degenerate primer
<220>
<221> misc feature
<222> (1)..(28)
<223> n=inosine
<400> 38
                                                                      28
aaaagcttta ytgytaygtn ggnathgg
<210> 39
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> Degenerate primer
<220>
<221> misc_feature
<222> (1)..(28)
 <223> n=inosine
<400> 39
                                                                       28
aagaattcta ngcrttrtar ttrttngg
```

<210> 40

```
<211> 221
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Degenerate Shh
      polypeptide general formula
<220>
<221> SITE
<222> (7)
<223> Xaa=Gly, Ala, Val, Leu, Ile, Phe, Tyr, or Trp
<220>
<221> SITE
<222> (9)
<223> Xaa=Arg, His or Lys
<220>
<221> SITE
<222> (44)
<223> Xaa=Gly, Ala, Val, Leu, Ile, Ser. or Thr
<220>
<221> SITE
<222> (85)
<223> Xaa=Gly, Ala, Val, Leu, Ile, Ser, or Thr
<220>
<221> SITE
<222> (93)
<223> Xaa=Lys, Arg, His, Asn, or Gln
<220>
<221> SITE
<222> (98)
<223> Xaa=Lys, Arg or His
<220>
<221> SITE
 <222> (112)
 <223> Xaa=Ser, Thr, Tyr, Trp, or Phe
 <220>
 <221> SITE
 <222> (132)
 <223> Xaa=Lys, Arg or His
 <220>
 <221> SITE
 <222> (137)
 <223> Xaa=Met, Cys, Ser, or Thr
 <220>
 <221> SITE
 <222> (139)
 <223> Xaa=Gly, Ala, Val, Leu, Ile, Ser, or Thr
 <220>
 <221> SITE
```

```
<222> (181)
<223> Xaa=Leu, Val, Met, Thr, or Ser
<220>
<221> SITE
<222> (183)
<223> Xaa=His, Phe, Tyr, Ser, Thr, Met, or Cys
<220>
<221> SITE
<222> (185)
<223> Xaa=Gln, Asn, Glu, or Asp
<220>
<221> SITE
<222> (186)
<223> Xaa=His, Phe, Tyr, Thr, Gln, Asn, Glu, or Asp
<220>
<221> SITE
<222> (189)
<223> Xaa=Gln, Asn, Glu, Asp, Thr, Ser, Met, or Cys
<220>
<221> SITE
<222> (191)
<223> Xaa=Ala, Gly, Cys, Leu, Val, or Met
<220>
<221> SITE
<222> (196)
<223> Xaa=Arg, Lys, Met, Ile, Asn, Asp, Glu, Gln, Ser,
      Thr, or Cys
<220>
<221> SITE
<222> (200)
<223> Xaa=Arg, Lys, Met, or Ile
<220>
<221> SITE
<222> (206)
<223> Xaa=Ala, Gly, Cys, Asp, Glu, Gln, Asn, Ser, Thr,
      or Met
<220>
<221> SITE
<222> (207)
<223> Xaa=Ala, Gly, Cys, Asp, Asn, Glu, or Gln
<220>
<221> SITE
<222> (209)
<223> Xaa=Arg, Lys, Met, Ile, Asn, Asp, or Glu
<220>
<221> SITE
<222> (211)
<223> Xaa=Leu, Val, Met, or Ile
```

```
<220>
<221> SITE
<222> (212)
<223> Xaa=Phe, Tyr, Thr, His, or Trp
<220>
<221> SITE
<222> (216)
<223> Xaa=Ile, Val, Leu, or Met
<220>
<221> SITE
<222> (217)
<223> Xaa=Met, Cys, Ile, Leu, Val, Thr, or Ser
<220>
<221> SITE
<222> (219)
<223> Xaa=Leu, Val, Met, Thr, or Ser
<400> 40
Cys Gly Pro Gly Arg Gly Xaa Gly Xaa Arg Arg His Pro Lys Lys Leu
Thr Pro Leu Ala Tyr Lys Gln Phe Ile Pro Asn Val Ala Glu Lys Thr
Leu Gly Ala Ser Gly Arg Tyr Glu Gly Lys Ile Xaa Arg Asn Ser Glu
Arg Phe Lys Glu Leu Thr Pro Asn Tyr Asn Pro Asp Ile Ile Phe Lys
     50
                         55
Asp Glu Glu Asn Thr Gly Ala Asp Arg Leu Met Thr Gln Arg Cys Lys
Asp Lys Leu Asn Xaa Leu Ala Ile Ser Val Met Asn Xaa Trp Pro Gly
Val Xaa Leu Arg Val Thr Glu Gly Trp Asp Glu Asp Gly His His Xaa
            100
                                 105
Glu Glu Ser Leu His Tyr Glu Gly Arg Ala Val Asp Ile Thr Thr Ser
                             120
Asp Arg Asp Xaa Ser Lys Tyr Gly Xaa Leu Xaa Arg Leu Ala Val Glu
    130
                         135
Ala Gly Phe Asp Trp Val Tyr Tyr Glu Ser Lys Ala His Ile His Cys
Ser Val Lys Ala Glu Asn Ser Val Ala Ala Lys Ser Gly Gly Cys Phe
Pro Gly Ser Ala Xaa Val Xaa Leu Xaa Xaa Gly Gly Xaa Lys Xaa Val
            180
                                 185
Lys Asp Leu Xaa Pro Gly Asp Xaa Val Leu Ala Ala Asp Xaa Xaa Gly
                             200
                                                  205
        195
```

```
Xaa Leu Xaa Xaa Ser Asp Phe Xaa Xaa Phe Xaa Asp Arg
                         215
    210
<210> 41
<211> 167
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Degenerate
      hedgehog polypeptide general formula
<220>
<221> SITE
<222> (7)
<223> Xaa=Gly, Ala, Val, Leu, Ile, Pro, Phe, or Tyr
<220>
<221> SITE
<222> (8)
<223> Xaa=Gly, Ala, Val, Leu, or Ile
<220>
<221> SITE
<222> (9)
<223> Xaa=Gly, Ala, Val, Leu, Ile, Lys, His, or Arg
<220>
<221> SITE
<222> (12)
<223> Xaa=Lys, Arg or His
<220>
<221> SITE
<222> (13)
<223> Xaa=Phe, Trp or Tyr or an amino acid gap
<220>
<221> SITE
<222> (14)
<223> Xaa=Gly, Ala, Val, Leu, or Ile or an amino acid
      gap
<220>
<221> SITE
<222> (17)
<223> Xaa=Asn, Gln, His, Arg, or Lys
<220>
<221> SITE
<222> (19)
<223> Xaa=Gly, Ala, Val, Leu, Ile, Ser, or Thr
<220>
<221> SITE
<222> (22)
<223> Xaa=Gly, Ala, Val, Leu, Ile, Ser, or Thr
<220>
<221> SITE
```

```
<222> (27)
<223> Xaa=Gly, Ala, Val, Leu, Ile, Ser, or Thr
<220>
<221> SITE
<222> (29)
<223> Xaa=Ser, Thr, Gln, or Asn
<220>
<221> SITE
<222> (30)
<223> Xaa=Met, Cys, Gly, Ala, Val, Leu, Ile, Ser, or Thr
<220>
<221> SITE
<222> (31)
<223> Xaa=Gly, Alka, Val, Leu, Ile, or Pro
<220>
<221> SITE
<222> (33)
<223> Xaa=Arg, His or Lys
<220>
<221> SITE
<222> (40)
<223> Xaa=Gly, Ala, Val, Leu, Ile, Pro Arg, His, or Lys
<220>
<221> SITE
<222> (41)
<223> Xaa=Gly, Ala, Val, Leu, Ile, Phe, or Tyr
<220>
<221> SITE
<222> (44)
<223> Xaa=Arg, His or Lys
<220>
<221> SITE
<222> (45)
<223> Xaa=Gly, Ala, Val, Leu, Ile, Ser, or Thr
<220>
<221> SITE
<222> (46)
<223> Xaa=Thr or Ser
<220>
<221> SITE
<222> (48)
<223> Xaa=Gly, Ala, Val, Leu, Ile, Asn, or Gln
<220>
<221> SITE
 <222> (53)
 <223> Xaa=Arg, His or Lys
<220>
 <221> SITE
```

```
<222> (54)
<223> Xaa=Asp or Glu
<220>
<221> SITE
<222> (71)
<223> Xaa=Ser or Thr
<220>
<221> SITE
<222> (79)
<223> Xaa=Glu, Asp, Gln, or Asn
<220>
<221> SITE
<222> (83)
<223> Xaa=Glu or Asp
<220>
<221> SITE
<222> (84)
<223> Xaa=Arg, His or Lys
<220>
<221> SITE
<222> (85)
<223> Xaa=Gly, Ala, Val, Leu, or Ile
<220>
<221> SITE
<222> (87)
<223> Xaa=Gly, Ala, Val, Leu, Ile, Thr, or Ser
<220>
<221> SITE
<222> (95)
<223> Xaa=Met, Cys, Gln, Asn, Arg, Lys, or His
<220>
<221> SITE
<222> (100)
<223> Xaa=Arg, His or Lys
<220>
<221> SITE
<222> (107)
<223> Xaa=Trp, Phe, Tyr, Arg, His, or Lys
 <220>
 <221> SITE
 <222> (114)
 <223> Xaa=Gly, Ala, Val, Leu, Ile, Ser, Thr, Tyr, or Phe
 <220>
 <221> SITE
 <222> (115)
 <223> Xaa=Gln, Asn, Asp, or Glu
 <220>
 <221> SITE
```

```
<222> (116)
<223> Xaa=Asp or Glu
<220>
<221> SITE
<222> (125)
<223> Xaa=Gly, Ala, Val, Leu, or Ile
<220>
<221> SITE
<222> (134)
<223> Xaa=Arg, His or Lys
<220>
<221> SITE
<222> (135)
<223> Xaa=Asn, Gln, Thr, or Ser
<220>
<221> SITE
<222> (139)
<223> Xaa=Gly, Ala, Val, Leu, Ile, Ser, Thr, Met, or Cys
<220>
<221> SITE
<222> (141)
<223> Xaa=Gly, Ala, Val, Leu, Ile, Thr, or Ser
<220>
<221> SITE
<222> (157)
<223> Xaa=Arg, His or Lys
<220>
<221> SITE
<222> (158)
<223> Xaa=Asn, Gln, Gly, Ala, Val, Leu, or Ile
<220>
<221> SITE
<222> (160)
<223> Xaa=Gly, Ala, Val, Leu, or Ile
<220>
<221> SITE
<222> (162)..(162)
<223> Xaa=Gly, Ala, Val, Leu, Ile, Ser, Thr, or Cys
<220>
<221> SITE
<222> (166)
<223> Xaa=Gly, Ala, Val, Leu, Ile, Thr, or Ser
<220>
<221> SITE
<222> (167)
<223> Xaa=Asp or Glu
<400> 41
Cys Gly Pro Gly Arg Gly Xaa Xaa Xaa Arg Arg Xaa Xaa Yaa Pro Lys
```

1 5 10 15 Xaa Leu Xaa Pro Leu Xaa Tyr Lys Gln Phe Xaa Pro Xaa Xaa Xaa Glu 20 Xaa Thr Leu Gly Ala Ser Gly Xaa Xaa Glu Gly Xaa Xaa Xaa Arg Xaa Ser Glu Arg Phe Xaa Xaa Leu Thr Pro Asn Tyr Asn Pro Asp Ile Ile 55 Phe Lys Asp Glu Glu Asn Xaa Gly Ala Asp Arg Leu Met Thr Xaa Arg 65 75 Cys Lys Xaa Xaa Xaa Asn Xaa Leu Ala Ile Ser Val Met Asn Xaa Trp Pro Gly Val Xaa Leu Arg Val Thr Glu Gly Xaa Asp Glu Asp Gly His 100 His Xaa Xaa Xaa Ser Leu His Tyr Glu Gly Arg Ala Xaa Asp Ile Thr 120 Thr Ser Asp Arg Asp Xaa Xaa Lys Tyr Gly Xaa Leu Xaa Arg Leu Ala 135 Val Glu Ala Gly Phe Asp Trp Val Tyr Tyr Glu Ser Xaa Xaa His Xaa 145 150 His Xaa Ser Val Lys Xaa Xaa 165 <210> 42 <211> 3900 <212> DNA <213> Homo sapiens <400> 42 atggaccgcg acagcetece acgegttecg gacacacacg gegatgtggt egatgagaaa 60 ttattctcgg atctttacat acgcaccagc tgggtggacg cccaagtggc gctcgatcag 120 atagataagg gcaaagcgcg tggcagccgc acggcgatct atctgcgatc agtattccag 180 teccaceteg aaaccetegg cageteegtg caaaagcaeg egggcaaggt getattegtg 240 gctatcctgg tgctgagcac cttctgcgtc ggcctgaaga gcgcccagat ccactccaag 300 gtgcaccagc tgtggatcca ggagggcggc gggctggagg cggaactggc ctacacacag 360 aagacgatcg gcgaggacga gtcqgccacg catcagctgc tcattcagac gacccacgac 420 cegaacgeet cegteetgea teegeaggeg etgettgeec acetggaggt cetggteaag 480 gccacegeeg teaaggtgca cetetacgae accgaatggg ggetgegega catgtgcaac 540 atgeegagea egeeeteett egagggeate taetacateg ageagateet gegeeaeete 600 attccgtgct cgatcatcac gccgctggac tgtttctggg agggaagcca gctgttgggt 660

ccggaatcag (cggtcgttat	accaggcctc	aaccaacgac	tcctgtggac	cacactgaat	720
cccgcctctg	tgatgcagta	tatgaagcag	aagatgtccg	aggaaaagat	cagcttcgac	780
ttcgagaccg	tggagcagta	catgaagcgt	gcggccattg	cgagtggcta	catggagaag	840
ccctgcctga	acccactgaa	tcccaattgc	ccggacacgg	caccgaacaa	gaacagcacc	900
cagccgccgg	atgtgggagc	catcctgtcc	ggaggctgct	acggttatgc	cgcgaagcac	960
atgcactggc	cggaggagct	gattgtgggc	ggagcgaaga	ggaaccgcag	cggacacttg	1020
aggaaggccc	aggccctgca	gtcggtggtg	cagctgatga	ccgagaagga	aatgtacgac	1080
cagtggcagg	acaactacaa	ggtgcaccat	cttggatgga	cgcaggagaa	ggcagcggag	1140
gttttgaacg	cctggcagcg	caacttttcg	cgggaggtgg	aacagctgct	acgtaaacag	1200
tcgagaattg	ccaccaacta	cgatatctac	gtgttcagct	cggctgcact	ggatgacatc	1260
ctggccaagt	tctcccatcc	cagcgccttg	tccattgtca	tcggcgtggc	cgtcaccgtt	1320
ttgtatgcct	tctgcacgct	cctccgctgg	agggaccccg	tccgtggaca	gagcagtgtc	1380
ggcgtggccg	gagttctgct	catgtgcttt	agtaccgccg	ccggattggg	attgtcagcc	1440
ctgctcggta	tcgttttcaa	tgccgccagc	acccaggtgg	ttccgttttt	ggcccttggt	1500
ctgggcgtcg	atcacatctt	catgctgacc	gctgcctatg	cggagagcaa	tcggcgggag	1560
cagaccaagc	tgattctcaa	gaaagtggga	ccgagcatcc	tgttcagtgc	ctgcagcacc	1620
gcaggatcct	tctttgcggc	cgcctttatt	ccggtgccgg	ctttgaaggt	attctgtctg	1680
caggctgcca	tcgtaatgtg	ctccaatttg	gcagcggctc	tattggtttt	tccggccatg	1740
atttcgttgg	atctacggag	acgtaccgcc	ggcagggcgg	acatcttctg	ctgctgtttt	1800
ccggtgtgga	aggaacagcc	gaaggtggca	ccaccggtgc	tgccgctgaa	caacaacaac	1860
gggcgcgggg	cccggcatcc	gaagagctgc	aacaacaaca	gggtggcgct	gcccgcccag	1920
aatcctctgc	tggaacagag	ggcagacatc	cctgggagca	gtcactcact	ggcgtccttc	1980
tctctggcaa	cattcgcctt	tcagcactac	actcccttcc	tcatgcgcag	ctgggtgaag	2040
ttcctgaccg	ttatgggttt	cctggcggcc	ctcatatcca	gcttgtatgc	ctccacgcgc	2100
cttcaggatg	gcctggacat	tattgatctg	gtgcccaagg	acagcaacga	gcacaagttc	2160
ctggatgctc	aaactcggct	ctttggcttc	tacagcatgt	atgcggttac	ccagggcaac	2220
tttgaatatc	ccacccagca	gcagttgctc	agggactacc	atgattcctt	tgtgcgggtg	2280
ccacatgtga	tcaagaatga	taatggtgga	ctgccggact	tctggctgct	gctcttcagc	2340
gagtggctgg	gtaatctgca	aaagatattc	gacgaggaat	accgcgacgg	acggctgacc	2400
aaggagtgct	ggttcccaaa	cgccagcagc	gatgccatcc	tggcctacaa	gctaatcgtg	2460

	•					
caaaccggcc	atgtggacaa	ccccgtggac	aaggaactgg	tgctcaccaa	tegeetggte	2520
aacagcgatg	gcatcatcaa	ccaacgcgcc	ttctacaact	atctgtcggc	atgggccacc	2580
aacgcgtctt	cgcctacgga	gcttctcagg	gcaaattgta	tccggaaccg	cgccaacgga	2640
gcttctcagg	gcaaattgta	tccggaaccg	cgccagtatt	ttcaccaacc	caacgagtac	2700
gatcttaaga	tacccaagag	tctgccattg	gtctacgctc	agatgccctt	ttacctccac	2760
ggactaacag	atacctcgca	gatcaagacc	ctgataggtc	atattcgcga	cctgagcgtc	2820
aagtacgagg	gcttcggcct	gcccaactat	ccatcgggca	ttcccttcat	cttctgggag	2880
cagtacatga	ccctgcgctc	ctcactggcc	atgatcctgg	cctgcgtgct	actcgccgcc	2940
ctggtgctgg	tctccctgct	cctgctctcc	gtttgggccg	ccgttctcgt	gatcctcagc	3000
gttctggcct	cgctggccca	gatctttggg	gccatgactc	tgctgggcat	caaactctcg	3060
gccattccgg	cagtcatact	catcctcagc	gtgggcatga	tgctgtgctt	caatgtgctg	3120
atatcactgg	gcttcatgac	atccgttggc	aaccgacagc	gccgcgtcca	gctgagcatg	3180
cagatgtccc	tgggaccact	tgtccacggc	atgctgacct	ccggagtggc	cgtgttcatg	3240
ctctccacgt	cgccctttga	gtttgtgatc	cggcacttct	gctggcttct	gctggtggtc	3300
ttatgcgttg	gcgcctgcaa	cagccttttg	gtgttcccca	tcctactgag	catggtggga	3360
ccggaggcgg	agctggtgcc	gctggagcat	ccagaccgca	tatccacgcc	ctctccgctg	3420
cccgtgcgca	gcagcaagag	atcgggcaaa	tcctatgtgg	tgcagggatc	gcgatcctcg	3480
cgaggcagct	gccagaagtc	gcatcaccac	caccacaaag	accttaatga	tccatcgctg	3540
acgacgatca	ccgaggagcc	gcagtcgtgg	aagtccagca	actcgtccat	ccagatgccc	3600
aatgattgga	. cctaccagcc	gcgggaacag	cgacccgcct	cctacgcggc	cccgccccc	3660
gcctatcaca	aggeegeege	ccagcagcac	caccagcatc	agggcccgcc	cacaacgccc	3720
ccgccgccct	tecegaegge	ctatccgccg	gagctgcaga	gcatcgtggt	gcagccggag	3780
gtgacggtgg	agacgacgca	ctcggacagc	aacaccacca	aggtgacggc	cacggccaac	3840
atcaaggtgg	g agctggccat	gcccggcagg	geggtgegea	gctataactt	tacgagttag	3900
<210> 43 <211> 24 <212> DNA <213> Art	A cificial Seg	quence				
<220>						

<220>

<223> primer <400> 43

accgaggct gggacgaaga tggc

<210> 44

```
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 44
                                                                      25
cgctcggtcg tacggcatga acgac
<210> 45
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 45
                                                                      25
atggggatgt gtgtggtcaa gtgta
<210> 46
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 46
                                                                      25
ttcacagact ctcaaagtgt atttt
<210> 47
<211> 73
<212> PRT
<213> Drosophila melanogaster
<400> 47
Arg Cys Lys Glu Lys Leu Asn Val Leu Ala Tyr Ser Val Met Asn Glu
                5
Trp Pro Gly Ile Arg Leu Leu Val Thr Glu Ser Trp Asp Glu Asp Tyr
            20
His His Gly Gln Glu Ser Leu His Tyr Glu Gly Arg Ala Val Thr Ile
        35
Ala Thr Ser Asp Arg Asp Gln Ser Lys Tyr Gly Met Leu Ala Arg Leu
Ala Val Glu Ala Gly Phe Asp Trp Val
 65
 <210> 48
 <211> 167
```

<212> PRT

<213> Mus musculus

<400> 48

Cys Gly Pro Gly Arg Gly Pro Val Gly Arg Arg Arg Tyr Val Arg Lys
1 5 10 15

Gln Leu Val Pro Leu Leu Tyr Lys Gln Phe Val Pro Ser Met Pro Glu 20 25 30

Arg Thr Leu Gly Ala Ser Gly Pro Ala Glu Gly Arg Val Thr Arg Gly 35 40 45

Ser Glu Arg Phe Arg Asp Leu Val Pro Asn Tyr Asn Pro Asp Ile Ile 50 55 60

Phe Lys Asp Glu Glu Asn Ser Gly Ala Asp Arg Leu Met Thr Glu Arg 65 70 75 80

Cys Lys Glu Arg Val Asn Ala Leu Ala Ile Ala Val Met Asn Met Trp 85 90 95

Pro Gly Val Arg Leu Arg Val Thr Glu Gly Trp Asp Glu Asp Gly His
100 105 110

His Ala Gln Asp Ser Leu His Tyr Glu Gly Arg Ala Leu Asp Ile Thr 115 120 125

Thr Ser Asp Arg Asp Arg Asn Lys Tyr Gly Leu Leu Ala Arg Leu Ala 130 135 140

Val Glu Ala Gly Phe Asp Trp Val Tyr Tyr Glu Ser Arg Asn His Ile 145 150 155 160

His Val Ser Val Lys Ala Asp 165

<210> 49

<211> 118

<212> PRT

<213> Mus musculus

<400> 49

Glu Arg Phe Lys Glu Leu Thr Pro Asn Tyr Asn Pro Asp Ile Ile Phe 1 5 10 15

Lys Asp Glu Glu Asn Thr Gly Ala Asp Arg Leu Met Thr Gln Arg Cys

20

25

30

Lys Asp Arg Leu Asn Ser Leu Ala Ile Ser Val Met Asn Gln Trp Pro 35 40 45

Gly Val Lys Leu Arg Val Thr Glu Gly Trp Asp Glu Asp Gly His His 50 55 60

Ser Glu Glu Ser Leu His Tyr Glu Gly Arg Ala Val Asp Ile Thr Thr 65 70 75 80

Ser Asp Arg Asp Arg Asn Lys Tyr Gly Leu Leu Ala Arg Leu Ala Val 85 90 95

Glu Ala Gly Phe Asp Trp Val Tyr Tyr Glu Ser Lys Ala His Val His
100 105 110

Cys Ser Val Lys Ser Glu 115

<210> 50

<211> 94

<212> PRT

<213> Homo sapiens

<400> 50

Arg Arg Leu Met Thr Gln Arg Cys Lys Asp Arg Leu Asn Ser Leu Ala 1 5 10 15

Ile Ser Val Met Asn Gln Trp Pro Gly Val Lys Leu Arg Val Thr Glu
20 25 30

Gly Trp Asp Glu Asp Gly His His Ser Glu Glu Ser Leu His Tyr Glu
35 40 45

Gly Arg Ala Val Asp Ile Thr Thr Ser Asp Arg Asp Arg Asn Lys Tyr 50 55 60

Gly Leu Leu Ala Arg Leu Ala Val Glu Ala Gly Phe Asp Trp Val Tyr 65 70 75 80

Tyr Glu Ser Lys Ala His Val His Cys Ser Val Lys Ser Glu 85 90

<210> 51

<211> 165

<212> PRT

<213> Homo sapiens

<400> 51

Cys Gly Pro Gly Arg Gly Phe Gly Lys Arg Arg His Pro Lys Lys Leu 1 5 10 15

Thr Pro Leu Ala Tyr Lys Gln Phe Ile Pro Asn Val Ala Glu Lys Thr 20 25 30

Leu Gly Ala Ser Gly Arg Tyr Glu Gly Lys Ile Ser Arg Asn Ser Glu
35 40 45

Arg Phe Lys Glu Leu Thr Pro Asn Tyr Asn Pro Asp Ile Ile Phe Lys 50 55 60

Asp Glu Glu Asn Thr Gly Ala Asp Arg Leu Met Thr Gln Arg Cys Lys 70 75 80

Asp Lys Leu Asn Ala Leu Ala Ile Ser Val Met Asn Gln Trp Pro Gly 85 90 95

Val Lys Leu Arg Val Thr Glu Gly Trp Asp Glu Asp Gly His His Ser 100 105 110

Glu Glu Ser Leu His Tyr Glu Gly Arg Ala Val Asp Ile Thr Thr Ser 115 120 125

Asp Arg Asp Arg Ser Lys Tyr Gly Met Leu Ala Arg Leu Ala Val Glu 130 135 140

Ala Gly Phe Asp Trp Val Tyr Tyr Glu Ser Lys Ala His Ile His Cys 145 150 155 160

Ser Val Lys Ala Glu 165

<210> 52

<211> 165

<212> PRT

<213> Gallus gallus

<400> 52

Cys Gly Pro Gly Arg Gly Ile Gly Lys Arg Arg His Pro Lys Leu
1 10 15

Thr Pro Leu Ala Tyr Lys Gln Phe Ile Pro Asn Val Ala Glu Lys Thr
20 25 30

Arg Phe Lys Glu Leu Thr Pro Asn Tyr Asn Pro Asp Ile Ile Phe Lys 50 55 60

Asp Glu Glu Asn Thr Gly Ala Asp Arg Leu Met Thr Gln Arg Cys Lys 70 75 80

Asp Lys Leu Asn Ala Leu Ala Ile Ser Val Met Asn Gln Trp Pro Gly 85 90 95

Val Lys Leu Arg Val Thr Glu Gly Trp Asp Glu Asp Gly His His Ser 100 105 110

Glu Glu Ser Leu His Tyr Glu Gly Arg Ala Val Asp Ile Thr Thr Ser 115 120 125

Asp Arg Asp Arg Ser Lys Tyr Gly Met Leu Ala Arg Leu Ala Val Glu 130 135 140

Ala Gly Phe Asp Trp Val Tyr Tyr Glu Ser Lys Ala His Ile His Cys 145 150 155 160

Ser Val Lys Ala Glu 165

<210> 53

<211> 165

<212> PRT

<213> Mus musculus

<400> 53

Cys Gly Pro Gly Arg Gly Phe Gly Lys Arg Arg His Pro Lys Lys Leu 1 5 10 15

Thr Pro Leu Ala Tyr Lys Gln Phe Ile Pro Asn Val Ala Glu Lys Thr 20 25 30

Leu Gly Ala Ser Gly Arg Tyr Glu Gly Lys Ile Thr Arg Asn Ser Glu 35 40 45

Arg Phe Lys Glu Leu Thr Pro Asn Tyr Asn Pro Asp Ile Ile Phe Lys 50 55 60

Asp Glu Glu Asn Thr Gly Ala Asp Arg Leu Met Thr Gln Arg Cys Lys 65 70 75 80

Asp Lys Leu Asn Ala Leu Ala Ile Ser Val Met Asn Gln Trp Pro Gly
85 90 95

Val Arg Leu Arg Val Thr Glu Gly Trp Asp Glu Asp Gly His His Ser 100 105 110

Glu Glu Ser Leu His Tyr Glu Gly Arg Ala Val Asp Ile Thr Thr Ser 115 120 125

Asp Arg Asp Arg Ser Lys Tyr Gly Met Leu Ala Arg Leu Ala Val Glu 130 135 140

Ala Gly Phe Asp Trp Val Tyr Tyr Glu Ser Lys Ala His Ile His Cys 145 150 155 160

Ser Val Lys Ala Glu 165

<210> 54

<211> 165

<212> PRT

<213> Danio rerio

<400> 54

Cys Gly Pro Gly Arg Gly Tyr Gly Arg Arg Arg His Pro Lys Leu
1 10 15

Thr Pro Leu Ala Tyr Lys Gln Phe Ile Pro Asn Val Ala Glu Lys Thr 20 25 30

Leu Gly Ala Ser Gly Arg Tyr Glu Gly Lys Ile Thr Arg Asn Ser Glu 35 40 45

Arg Phe Lys Glu Leu Thr Pro Asn Tyr Asn Pro Asp Ile Ile Phe Lys 50 55 60

Asp Glu Glu Asn Thr Gly Ala Asp Arg Leu Met Thr Gln Arg Cys Lys 65 70 75 80

Asp Lys Leu Asn Ser Leu Ala Ile Ser Val Met Asn His Trp Pro Gly 85 90 95

Val Lys Leu Arg Val Thr Glu Gly Trp Asp Glu Asp Gly His His Phe
100 105 110

Glu Glu Ser Leu His Tyr Glu Gly Arg Ala Val Asp Ile Thr Thr Ser 115 120 125

Asp Arg Asp Lys Ser Lys Tyr Gly Thr Leu Ser Arg Leu Ala Val Glu 130 135 140

Ala Gly Phe Asp Trp Val Tyr Tyr Glu Ser Lys Ala His Ile His Cys 145 150 155 160

Ser Val Lys Ala Glu 165

<210> 55

<211> 18

<212> PRT

<213> Artificial Sequence

<220>

<223> N-terminal exogenous leader

<400> 55

Met Gly Ser Ser His His His His His Leu Val Pro Arg Gly Ser 1 5 10 1.5

His Met