Esercizio 3) * Determinare il dominio delle seguenti funzioni:

$$A.\frac{x}{2-x} \qquad B.\sqrt{x+1} \qquad C.\sqrt{\frac{x}{2x-3}} \qquad D.\sqrt{x+1}-x+\sqrt{2-x}$$
$$E.\sqrt{\sin x} \qquad F.\log(x^2+2x+1) \qquad G.\log\left(\frac{1-3x}{7x+2}\right)$$

Soluzione. A.
$$\mathbb{R} - \{2\}$$
; B. $\{x > -1\}$; C. $\{x < 0 \lor x > \frac{3}{2}\}$; D. $\{-1 \le x \le 2\}$; E. $\bigcup_{k \in \mathbb{Z}} [2k\pi, (2k+1)\pi]$; F. $\mathbb{R} - \{-1\}$; G. $\{-\frac{2}{7} < x < \frac{1}{3}\}$. □

Esercizio 4) ** Determinare dominio e immagine delle seguenti funzioni:

$$A. \frac{\sqrt{x^2 - 3x - 4}}{x + 5}$$

$$B. \begin{cases} \frac{1}{2x + 1} & \text{se } x \ge 0 \\ e^{\sqrt{x + 1}} & \text{se } x < 0 \end{cases}$$

$$C. \sqrt{\cos x - 1}$$

$$D. \frac{1}{4 \arcsin x - \pi}$$

Soluzione. A.
$$Dom =]-\infty, -5[\ \cup\]-5, -1]\ \cup\ [4, +\infty[;$$

- B. $Dom = [-1, +\infty[;$
- C. $Dom = \{x = 2k\pi \mid k \in \mathbb{Z}\}, Imm = 0;$
- D. $Dom = [-1, \frac{\sqrt{2}}{2}[\cup]\frac{\sqrt{2}}{2}, 1], Imm =]-\infty, -\frac{1}{3\pi}] \cup [\frac{1}{\pi}, +\infty[$

Esercizio 5) ** Data la funzione $f: \mathbb{R} \to \mathbb{R}$, definita da $f(x) = x^2 - 2x - 3$ calcolare $f^{-1}(]0,5]$) e f([-2,2[). Dire poi se f è iniettiva e se è suriettiva e calcolare ove possibile (eventualmente restringendo e corestringendo) la funzione inversa f^{-1} .

Soluzione. Il calcolo della antiimmagine $f^{-1}(]0,5]$) equivale a risolvere il sistema $0 < f(x) \le 5$, che dà $-2 \le x < -1$ oppure $3 < x \le 4$, dunque $f^{-1}(]0,5]$) = $[-2,0[\cup]3,4]$. Usiamo per le altre domande il metodo della fibra: fissando y nel codominio si ha che l'equazione $y = x^2 - 2x - 3$ ha soluzione se e solo se $y \ge 4$, dunque se y < 4 f^{-1} è vuoto e dunque la funzione non è suriettiva. Se invece y = -4 l'unica soluzione è x = 1, mentre per $y \ge -4$ otteniamo due distinte soluzioni x_1 e x_2 , dunque f non è neppure iniettiva. Per renderla biiettiva occorre corestringere ai soli $y \ge -4$ e restringere, per esempio, ai soli x > 1 (si nota infatti che $x_1 < 1 < x_2$; si potrebbe anche restringere a x < 2 con uguale risultato), ottenendo f': $[1, +\infty] \to [-4, +\infty[$.

Esercizio 7) *** Sia $A = \mathbb{R}_{>0} =]0, +\infty[$, e sia $g: A \to \mathbb{R}$ la funzione $g(x) = \sqrt{\frac{x+2}{x}}$. Discutere iniettività e suriettività, calcolare $g^{-1}(]-2,\frac{7}{2}]$) e calcolare la funzione inversa dopo averla resa biiettiva.

Stesse domande per $h: A \to \mathbb{R}$ data da $h(x) = 2\sqrt{x} - x + 3$.

Soluzione. a) Iniettività: sia $g(x_1)=g(x_2)$, dunque $\sqrt{\frac{x_1+2}{x_1}}=\sqrt{\frac{x_1+2}{x_1}}$ si ottiene $x_1x_2+2x_2=x_1x_1+2x_1$ da cui $x_1=x_2$, dunque g è iniettiva. Suriettività: poichè $g(x)>0 \,\forall\, x$, g non è suriettiva. $g^{-1}(-2,\frac{7}{2})=[\frac{8}{45},+\infty[$.

b) Iniettività: sia $h(x_1) = h(x_2)$, si ottiene allora $2(\sqrt{x_1} - \sqrt{x_2}) = x_1 - x_2$ da cui si ottengono due possibilità, $x_1 = x_2$, oppure anche $\sqrt{x_1} + \sqrt{x_2} = 2$, dunque h non è iniettiva. Suriettività: cerchiamo di invertire la funzione: ponendo $t = \sqrt{x}$ si ottiene $t^2 - 2t + y - 3 = 0$, che ammette soluzioni solo quando $y \le 4$, dunque non è suriettiva. Inversione: per rendere h biiettiva si può per esempio restringere il dominio a $]4, +\infty[$ e il codominio a $]-\infty, 3[$. Si ottiene quindi la inversa $h^{-1}(y) = (1 + \sqrt{4-y})^2$. Immagine: l'immagine $h([\frac{1}{4}, 3])$ è data dalla soluzione di due sistemi (le due soluzioni della quadratica in t sono entrambe positive), che danno $]2\sqrt{3}, 4] \cup [\frac{15}{4}, 4] =]2\sqrt{3}, 4]$. L'immagine $h^{-1}(]-2, \frac{7}{2}]) = [0, \frac{3}{2} - \sqrt{2}] \cup [\frac{3}{2} + \sqrt{2}, 7 + 2\sqrt{6}[$.

Esercizio 8) * Risolvere le seguenti disequazioni:

$$A. |2x + 3| < 2$$
 $B. |-5x + 1| \le 1$ $C. |x| = x + 5$ $D. |2x + 1| \le |x + 2|$ $E. |x^2 - 7x + 12| > x^2 - 7x + 12$ $F. \frac{|x - 1|}{|x + 1|} = 1$

$$Soluzione. \ \, \text{A.} \,\,]-\frac{5}{2},-\frac{1}{2}[; \,\, \text{B.} \,\,]0,\frac{2}{5}[; \,\, \text{C.} \,\,x=-\frac{5}{2}; \,\, \text{D.} \,\,[-\frac{1}{2},1]; \,\, \text{E.} \,\,]3,4[; \,\, \text{F.} \,\,x=0. \label{eq:soluzione}$$