Notebook - Competitive Programming

Anões do TLE

Contents		5 Grap		16	6.12 Is prime	
1 Data structures 1.1 Matrix	2 2 3 4 4 4 5 5	5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10	Articulation Points Bellman Ford BFS 0/1 Binary Lifting Bridges Negative Cycle Bellman Ford Negative Cycle Floyd Warshall Dijkstra Floyd Warshall Graph TopSort - Kahn	16 16 17 17 17 17 18 18 18 18	6.15 Sieve	24 24 24 25 25 25
1.10 Union Find Disjoint Set (UFDS)	7 7	5.12 5.13 5.14	Kosaraju	19 19 19	8.1 Aho-Corasick	26 26 27
2 Dynamic programming 2.1 Kadane	8 8 8	5.16 5.17 5.18	MSF	20 20 20 21	8.4 Manacher	27 27 27 28
3 Extras 3.1 cin/coutint128_t	8 8	5.20	Retrieve Path	21 21 21	8.8 Suffix Automaton	28 29 30
4 Geometry 4.1 Circle	8 8	6 Mat	h Binomial	21 21	, ,	30
4.4 Convex Hull Trick 4.5 Point in Polygon 4.6 Point To Segment 4.7 Point Vector 4.8 Polygon	9 10 10 11 11 11 12	6.2 6.3 6.4 6.5 6.6 6.7 6.8	Count Divisors Range Count Divisors Factorization With Sieve Factorization Fast Doubling - Fibonacci Fast Exp Iterative Fast Exp Fast Exp Fast Exp	22 22 22 22 22 22 23 23	9.1 LCA Binary Lifting (CP Algo)	30 31 31 32 32
4.9 Polynominoes	14 14		Fast Fourier Transform (FFT)	23 23	10 Settings and macros 10.1 short-macro.cpp	32 32
	16		Integer Mod	23		33

11 Theoretical guide	33	11.3 Exponent With Module	33	11.5 Pick's Theorem	34
11.1 Notable Series	33	11.4 String Matching with FFT	34		
11.2 Number of Different Substrings	33	11.4.1 Wildcards	34	11.6 Modular Multiplicative Inverse	34

1 Data structures

1.1 Matrix

```
template <typename T>
struct Matrix {
 vector < vector < T>> d:
 Matrix() : Matrix(0) {}
 Matrix(int n) : Matrix(n, n) {}
 Matrix(int n, int m) : Matrix(vector<vector<T>>(n, vector<T>(m))) {}
 Matrix(const vector<vector<T>> &v) : d(v) {}
 constexpr int n() const { return (int)d.size(); }
  constexpr int m() const { return n() ? (int)d[0].size() : 0; }
  void rotate() { *this = rotated(); }
 Matrix<T> rotated() const {
    Matrix < T > res(m(), n());
    for (int i = 0; i < m(); i++) {</pre>
      for (int j = 0; j < n(); j++) {
        res[i][j] = d[n() - j - 1][i];
    return res;
 Matrix <T> pow(int power) const {
    assert(n() == m());
    auto res = Matrix <T>::identity(n());
    auto b = *this;
    while (power) {
    if (power & 1) res *= b;
     b *= b;
      power >>= 1;
    return res;
 Matrix <T > submatrix(int start_i, int start_j, int rows = INT_MAX,
                      int cols = INT MAX) const {
    rows = min(rows, n() - start_i);
    cols = min(cols, m() - start_j);
    if (rows <= 0 or cols <= 0) return {};</pre>
    Matrix <T> res(rows, cols);
    for (int i = 0; i < rows; i++)</pre>
      for (int j = 0; j < cols; j++) res[i][j] = d[i + start_i][j + start_j];</pre>
    return res:
 }
 Matrix <T> translated(int x, int y) const {
    Matrix < T > res(n(), m());
    for (int i = 0; i < n(); i++) {
      for (int j = 0; j < m(); j++) {
        if (i + x < 0 \text{ or } i + x >= n() \text{ or } j + y < 0 \text{ or } j + y >= m()) \text{ continue};
```

```
res[i + x][j + y] = d[i][j];
 return res:
static Matrix<T> identity(int n) {
  Matrix<T> res(n);
 for (int i = 0: i < n: i++) res[i][i] = 1:
 return res:
}
vector <T> &operator[](int i) { return d[i]; }
const vector<T> &operator[](int i) const { return d[i]; }
Matrix<T> &operator+=(T value) {
  for (auto &row : d) {
    for (auto &x : row) x += value:
  return *this;
}
Matrix<T> operator+(T value) const {
  auto res = *this:
 for (auto &row : res) {
    for (auto &x : row) x = x + value;
 return res:
Matrix <T> &operator -= (T value) {
 for (auto &row : d) {
   for (auto &x : row) x -= value;
  return *this;
}
Matrix<T> operator-(T value) const {
  auto res = *this:
 for (auto &row : res) {
    for (auto &x : row) x = x - value;
 return res:
Matrix <T> &operator *= (T value) {
 for (auto &row : d) {
   for (auto &x : row) x *= value;
  return *this;
Matrix<T> operator*(T value) const {
  auto res = *this:
  for (auto &row : res) {
    for (auto &x : row) x = x * value:
 return res:
Matrix <T> &operator/=(T value) {
  for (auto &row : d) {
   for (auto &x : row) x /= value;
  return *this:
```

```
Matrix<T> operator/(T value) const {
  auto res = *this;
  for (auto &row : res) {
    for (auto &x : row) x = x / value;
  return res;
Matrix <T> & operator += (const Matrix <T> &o) {
  assert(n() == o.n() and m() == o.m()):
  for (int i = 0; i < n(); i++) {</pre>
    for (int j = 0; j < m(); j++) {</pre>
      d[i][i] += o[i][i];
  }
  return *this;
Matrix <T > operator + (const Matrix <T > &o) const {
  assert(n() == o.n() and m() == o.m());
  auto res = *this:
  for (int i = 0; i < n(); i++) {</pre>
    for (int j = 0; j < m(); j++) {
      res[i][i] = res[i][i] + o[i][i]:
  }
  return res:
Matrix <T > & operator -= (const Matrix <T > &o) {
  assert(n() == o.n() and m() == o.m());
  for (int i = 0; i < n(); i++) {</pre>
    for (int j = 0; j < m(); j++) {</pre>
      d[i][i] -= o[i][i];
    }
  return *this;
Matrix <T > operator - (const Matrix <T > &o) const {
  assert(n() == o.n() and m() == o.m());
  auto res = *this:
  for (int i = 0; i < n(); i++) {</pre>
    for (int j = 0; j < m(); j++) {</pre>
      res[i][j] = res[i][j] - o[i][j];
   }
  return res;
Matrix <T> &operator *= (const Matrix <T> &o) {
  *this = *this * o:
  return *this;
Matrix <T> operator*(const Matrix <T> &o) const {
  assert(m() == o.n()):
  Matrix < T > res(n(), o.m());
  for (int i = 0; i < res.n(); i++) {</pre>
    for (int j = 0; j < res.m(); j++) {</pre>
      auto &x = res[i][j];
      for (int k = 0: k < m(): k++) {
        x += (d[i][k] * o[k][i]);
```

```
return res:
  friend istream &operator>>(istream &is, Matrix<T> &mat) {
    for (auto &row : mat)
      for (auto &x : row) is >> x:
    return is;
  friend ostream &operator << (ostream &os, const Matrix <T> &mat) {
    bool frow = 1:
    for (auto &row : mat) {
      if (not frow) os << '\n':
      bool first = 1;
      for (auto &x : row) {
        if (not first) os << '';</pre>
        os << x;
        first = 0;
      frow = 0:
    return os;
  auto begin() { return d.begin(); }
  auto end() { return d.end(); }
  auto rbegin() { return d.rbegin(); }
  auto rend() { return d.rend(); }
  auto begin() const { return d.begin(); }
  auto end() const { return d.end(): }
  auto rbegin() const { return d.rbegin(); }
  auto rend() const { return d.rend(); }
};
1.2 Merge Sort Tree
Like a segment tree but each node st_i stores a sorted subarray
   • inrange(l, r, a, b): counts the number of elements x \in [l, r] such that a < x < b.
Memory: O(N \log N)
Build: O(N \log N)
inrange: O(\log^2 N)
template <class T>
struct MergeSortTree {
  int n;
  vector < vector < T >> st:
  MergeSortTree(vector<T>& xs) : n(len(xs)), st(n << 1) {
    for (int i = 0; i < n; i++) st[i + n] = vector<T>({xs[i]});
    for (int i = n - 1; i > 0; i--) {
      st[i].resize(len(st[i << 1]) + len(st[i << 1 | 1]));
      merge(all(st[i << 1]), all(st[i << 1 | 1]), st[i].begin());
  }
```

```
int count(int i, T a, T b) {
    return upper_bound(all(st[i]), b) - lower_bound(all(st[i]), a);
}
int inrange(int l, int r, T a, T b) {
    int ans = 0;

    for (l += n, r += n + 1; l < r; l >>= 1, r >>= 1) {
        if (l & 1) ans += count(l++, a, b);
        if (r & 1) ans += count(--r, a, b);
    }

    return ans;
}
```

1.3 Minimal Excluded With Updates (MEX-U)

In the problem you need to change individual numbers in the array, and compute the new MEX of the array after each such update.

```
Pre-compute: O(N \log N)
Update: O(\log N)
Query: O(1)
class Mex {
 private:
  map < 11, 11 > frequency;
  set < ll> missing_numbers;
  vl A:
 public:
  Mex(vl const& A) : A(A) {
    for (11 i = 0; i <= A.size(); i++) missing_numbers.insert(i);</pre>
    for (11 x : A) {
      ++frequency[x];
      missing_numbers.erase(x);
   }
 11 mex() { return *missing_numbers.begin(); }
  void update(ll idx, ll new_value) {
    if (--frequency[A[idx]] == 0) missing_numbers.insert(A[idx]);
    A[idx] = new value:
    ++frequency[new_value];
    missing numbers.erase(new value):
};
```

1.4 Minimal Excluded (MEX)

Given an array A of size N. You have to find the minimal non-negative element that is not present in the array. That number is commonly called the MEX (minimal excluded).

```
Time: O(N)
```

```
11 mex(vl const& A) {
  static bool used[MAX + 111] = {0}:
  for (11 x : A) {
   if (x <= MAX) used[x] = true;</pre>
  11 result = 0;
  while (used[result]) ++result:
  for (11 x : A) {
   if (x <= MAX) used[x] = false;</pre>
  return result;
     Range Min Query (RMQ)
Build: O(N)
Query: O(1)
// @brunomaletta
template <typename T>
struct rmq {
 vector <T> v:
  static const int b = 30:
  vector < int > mask, t;
  int op(int x, int y) { return v[x] \leftarrow v[y] ? x : y; }
  int msb(int x) { return __builtin_clz(1) - __builtin_clz(x); }
  int small(int r, int sz = b) { return r - msb(mask[r] & ((1 << sz) - 1)); }
  rmq(const vector < T > \& v_) : v(v_), n(v.size()), mask(n), t(n) {
   for (int i = 0, at = 0; i < n; \max \{i++\} = at |= 1) {
      at = (at << 1) & ((1 << b) - 1);
      while (at and op(i - msb(at & -at), i) == i) at ^= at & -at;
    for (int i = 0; i < n / b; i++) t[i] = small(b * i + b - 1);
   for (int j = 1; (1 << j) <= n / b; j++)
     for (int i = 0; i + (1 << j) <= n / b; i++)
        t[n / b * j + i] =
          op(t[n / b * (j - 1) + i], t[n / b * (j - 1) + i + (1 << (j - 1))]);
  int index_query(int 1, int r) {
   if (r - l + 1 <= b) return small(r, r - l + 1);</pre>
    int x = 1 / b + 1, y = r / b - 1;
   if (x > y) return op(small(1 + b - 1), small(r));
    int j = msb(y - x + 1);
    int ans = op(small(1 + b - 1),
                 op(t[n / b * j + x], t[n / b * j + y - (1 << j) + 1]));
    return op(ans, small(r));
 T query(int 1, int r) { return v[index_query(1, r)]; }
};
```

1.6 Segment Tree (Parameterized OP)

```
Query: O(\log N)
Update: O(\log N)
template <typename T, auto op>
class SegTree {
 private:
 Te;
  11 N;
  vector <T> seg;
 public:
  SegTree(ll N, T e) : e(e), N(N), seg(N + N, e) {}
  void assign(ll i, T v) {
   i += N:
    seg[i] = v;
   for (i >>= 1; i; i >>= 1) seg[i] = op(seg[2 * i], seg[2 * i + 1]);
  T query(ll 1, ll r) {
   T la = e, ra = e;
   1 += N;
    r += N;
    while (1 <= r) {</pre>
      if (1 & 1) la = op(la, seg[l++]);
      if (~r & 1) ra = op(seg[r--], ra);
     1 >>= 1:
     r >>= 1;
    return op(la, ra);
};
```

1.7 Segment Tree 2D

```
Query: O(\log N \cdot \log M)
Update: O(\log N \cdot \log M)
template <typename T, auto op>
class SegTree {
 private:
  T e:
  11 n, m;
  vector < vector < T >> seg;
 public:
  SegTree(ll n, ll m, T e)
    : e(e), n(n), m(m), seg(2 * n, vector < T > (2 * m, e)) {}
  void assign(ll x, ll y, T v) {
    11 \text{ ny} = y += m;
    for (x += n; x; x >>= 1, y = ny) {
      if (x >= n)
         seg[x][y] = v;
       else
```

```
seg[x][y] = op(seg[2 * x][y], seg[2 * x + 1][y]);
      }
  T query(ll lx, ll rx, ll ly, ll ry) {
   ll ans = e, nx = rx + n, my = ry + m;
   for (1x += n, 1y += m; 1x <= 1y; ++1x >>= 1, --1y >>= 1)
     for (rx = nx, ry = my; rx <= ry; ++rx >>= 1, --ry >>= 1) {
        if (lx & 1 \text{ and } rx & 1) ans = op(ans, seg[lx][rx]);
       if (lx & 1 and !(ry & 1)) ans = op(ans, seg[lx][ry]);
       if (!(ly & 1) and rx & 1) ans = op(ans, seg[ly][rx]);
       if (!(ly & 1) and !(ry & 1)) ans = op(ans, seg[ly][ry]);
   return ans;
 }
};
    Segment Tree Lazy
Query (Range Sum): O(\log N)
Update (Sum Value): O(\log N)
template <typename T>
class SegTreeLazy {
private:
 int N;
  vector <T> seg, lzv;
  void down(int k, int 1, int r) {
    seg[k] += (r - l + 1) * lzv[k]:
   if (1 < r) {</pre>
     lzv[k \ll 1] += lzv[k];
      lzy[k << 1 | 1] += lzy[k];
   lzy[k] = 0;
  void update(int i, int j, int k, int l, int r, T v) {
   if (lzy[k]) down(k, 1, r);
   if (i > r \text{ or } j < 1) \text{ return};
   if (i <= l and j >= r) {
      seg[k] += (r - l + 1) * v;
     if (1 < r) {
       lzy[k << 1] += v;
       lzv[k << 1 | 1] += v;
     return:
    update(i, j, k << 1, 1, (1 + r) / 2, v);
   update(i, j, k << 1 | 1, (1 + r) / 2 + 1, r, v);
   seg[k] = seg[k << 1] + seg[k << 1 | 1];
  }
```

```
T query(int i, int j, int k, int l, int r) {
    if (lzy[k]) down(k, 1, r);
    if (i > r \text{ or } j < 1) \text{ return } 0;
    if (i <= l and j >= r) return seg[k];
   T = query(i, j, k << 1, l, (l + r) / 2);
   T rgt = query(i, j, k << 1 | 1, (1 + r) / 2 + 1, r);
    return lft + rgt;
 public:
  SegTreeLazy(int N): N(N), seg(N << 2, 0), lzy(N << 2, 0) {}
  void update(int i, int j, T v) { update(i, j, 1, 0, N - 1, v); }
 T query(int i, int j) { return query(i, j, 1, 0, N - 1); }
}:
     Segtreelazy Generic
using SegT = 11;
struct QuervT {
  SegT mx, mn;
  QueryT() : mx(numeric_limits < SegT >::min()), mn(numeric_limits < SegT >::max())
  QueryT(SegT _v) : mx(_v), mn(_v) {}
};
inline QueryT combine(QueryT ln, QueryT rn, ii lr1, ii lr2) {
  ln.mx = max(ln.mx. rn.mx):
 ln.mn = min(ln.mn, rn.mn);
  return ln:
using LazyT = SegT;
inline QueryT applyLazyInQuery(QueryT q, LazyT l, ii lr) {
  if (q.mx == QueryT().mx) q.mx = SegT();
  if (q.mn == QueryT().mn) q.mn = SegT();
  q.mx += 1, q.mn += 1;
 return q;
}
inline LazyT applyLazyInLazy(LazyT a, LazyT b) { return a + b; }
using UpdateT = SegT;
inline QueryT applyUpdateInQuery(QueryT q, UpdateT u, ii lr) {
  if (a.mx == QuervT().mx) a.mx = SegT();
  if (q.mn == QueryT().mn) q.mn = SegT();
  q.mx += u, q.mn += u;
  return q;
inline LazyT applyUpdateInLazy(LazyT 1, UpdateT u, ii lr) { return 1 + u; }
```

```
template <typename Qt = QueryT, typename Lt = LazyT, typename Ut = UpdateT,
          auto C = combine, auto ALQ = applyLazyInQuery,
          auto ALL = applyLazyInLazy, auto AUQ = applyUpdateInQuery,
          auto AUL = applyUpdateInLazy>
struct LazySegmentTree {
 int n, h;
  vector <Qt> ts:
  vector < Lt > ds;
  vector < ii> lrs:
  LazySegmentTree(int _n)
   : n(_n),
     h(sizeof(int) * 8 - __builtin_clz(n)),
      ts(n \ll 1),
      ds(n).
      lrs(n << 1) {
    for (int i = 0; i < n; i++) lrs[i + n] = {i. i};
    for (int i = n - 1; i > 0; i--) {
      lrs[i] = {lrs[i << 1].first, lrs[i << 1 | 1].second};</pre>
  }
  LazvSegmentTree(const vector < Qt > &xs) : LazvSegmentTree(xs.size()) {
    copy(all(xs), ts.begin() + n);
    for (int i = 0; i < n; i++) lrs[i + n] = {i, i};</pre>
   for (int i = n - 1; i > 0; i--) {
      ts[i] = C(ts[i << 1], ts[i << 1 | 1], lrs[i << 1], lrs[i << 1 | 1]);
 }
  void set(int p, Qt v) {
   ts[p + n] = v;
   build(p + n);
  void upd(int 1, int r, Ut v) {
   1 += n, r += n + 1;
   int 10 = 1, r0 = r;
   for (; 1 < r; 1 >>= 1, r >>= 1) {
     if (1 & 1) apply(1++, v);
      if (r & 1) apply(--r, v);
    build(10), build(r0 - 1);
  Qt qry(int 1, int r) {
   1 += n, r += n + 1;
   push(1), push(r - 1);
    Qt resl = Qt(), resr = Qt();
   ii 1r1 = \{1, 1\}, 1r2 = \{r, r\};
    for (; 1 < r; 1 >>= 1, r >>= 1) {
     if (1 & 1) resl = C(resl, ts[1], lr1, lrs[1]), l++;
     if (r \& 1) r--, resr = C(ts[r], resr, lrs[r], lr2);
    return C(resl, resr, lr1, lr2);
  void build(int p) {
```

```
while (p > 1) {
      p >>= 1:
      ts[p] = ALQ(C(ts[p << 1], ts[p << 1 | 1], lrs[p << 1], lrs[p << 1 | 1]),
                   ds[p]. lrs[p]):
  }
  void push(int p) {
    for (int s = h; s > 0; s -- ) {
      int i = p >> s:
      if (ds[i] != Lt()) {
        apply(i << 1, ds[i]), apply(i << 1 | 1, ds[i]);
        ds[i] = Lt();
    }
  inline void apply(int p, Ut v) {
    ts[p] = AUQ(ts[p], v, lrs[p]);
    if (p < n) ds[p] = AUL(ds[p], v, lrs[p]);
};
       Union Find Disjoint Set (UFDS)
Uncomment the lines to recover which element belong to each set.
Time: \approx O(1) for everything.
```

```
class UFDS {
 public:
  vi ps, size;
  // vector < unordered_set < int >> sts;
  UFDS(int N) : size(N + 1, 1), ps(N + 1), sts(N) {
    iota(ps.begin(), ps.end(), 0);
    // for (int i = 0; i < N; i++) sts[i].insert(i);
  int find_set(int x) { return x == ps[x] ? x : (ps[x] = find_set(ps[x])); }
  bool same_set(int x, int y) { return find_set(x) == find_set(y); }
  void union_set(int x, int y) {
    if (same_set(x, y)) return;
    int px = find_set(x);
    int py = find_set(y);
    if (size[px] < size[py]) swap(px, py);</pre>
    ps[py] = px;
    size[px] += size[py];
    // sts[px].merge(sts[py]);
};
```

1.11 Wavelet Tree

```
Build: O(N \cdot \log \sigma).
Queries: O(\log \sigma).
\sigma = \text{alphabet length}
typedef vector < int > :: iterator iter;
class WaveletTree {
public:
  int L. H:
  WaveletTree *1, *r;
  vector<int> frq;
  WaveletTree(iter fr, iter to, int x, int y) {
   L = x, H = y;
    if (fr >= to) return:
    int M = L + ((H - L) >> 1);
    auto F = [M](int x) { return x <= M; };</pre>
    frq.reserve(to - fr + 1);
    frq.push_back(0);
    for (auto it = fr; it != to; it++) frq.push_back(frq.back() + F(*it));
    if (H == L) return;
    auto pv = stable_partition(fr, to, F);
    l = new WaveletTree(fr, pv, L, M);
    r = new WaveletTree(pv, to, M + 1, H);
  // Find the k-th smallest element in positions [i,j)
  int quantile(int 1, int r, int k) {
    if (1 > r) return 0;
    if (L == H) return L:
    int inLeft = frq[r] - frq[l - 1];
    int lb = frq[l - 1], rb = frq[r];
    if (k <= inLeft) return this->l->quantile(lb + 1, rb, k);
    return this->r->quantile(1 - lb, r - rb, k - inLeft);
  }
  // Count occurrences of number c until position i -> [0, i].
  int rank(int c, int i) { return until(c, min(i + 1, (int)frq.size() - 1)); }
  int until(int c, int i) {
   if (c > H or c < L) return 0;
    if (L == H) return i;
    int M = L + ((H - L) >> 1);
    int r = frq[i];
    if (c <= M)
     return this->l->until(c, r):
      return this->r->until(c, i - r);
 }
  // Count number of occurrences of numbers in the range [a, b]
  int range(int i, int j, int a, int b) const {
    if (b < a or j < i) return 0;
```

```
return range(i, j + 1, L, H, a, b);
 int range(int i, int j, int a, int b, int L, int U) const {
    if (b < L or U < a) return 0;
    if (L <= a and b <= U) return j - i;
    int M = a + ((b - a) >> 1);
    int ri = frq[i], rj = frq[j];
    return this->l->range(ri, rj, a, M, L, U) +
           this->r->range(i - ri, j - rj, M + 1, b, L, U);
 // Number of elements greater than or equal to k in [1, r];
 // Can count distinct in a range with aux vector of next pos
 int greater(int 1, int r, int k) { return _greater(1 + 1, r + 1, k); }
 int _greater(int 1, int r, int k) {
    if (1 > r \text{ or } k > H) return 0:
    if (L >= k) return r - l + 1;
    int ri = frq[l - 1], rj = frq[r];
    return this->l->_greater(ri + 1, rj, k) +
           this->r->_greater(1 - ri, r - rj, k);
};
```

2 Dynamic programming

2.1 Kadane

```
int kadane(const vi& xs) {
  vi s(xs.size());
  s[0] = xs[0];
  for (size_t i = 1; i < xs.size(); ++i) s[i] = max(xs[i], s[i - 1] + xs[i]);
  return *max_element(all(s));
}</pre>
```

2.2 Longest Increasing Subsequence (LIS)

```
Time: O(N · log N).
int lis(vi const& a) {
  int n = a.size();
  const int INF = 1e9;
  vi d(n + 1, INF);
  d[0] = -INF;

for (int i = 0; i < n; i++) {
   int l = upper_bound(d.begin(), d.end(), a[i]) - d.begin();
   if (d[l - 1] < a[i] && a[i] < d[l]) d[l] = a[i];
}

int ans = 0;
for (int l = 0; l <= n; l++) {
   if (d[l] < INF) ans = l;</pre>
```

```
return ans;
```

3 Extras

$3.1 \quad \text{cin/cout} \quad \text{int128} \quad \text{t}$

```
Allows standard reading and writing with cin/cout for 128-bit integers using \_\_int128\_t type.
```

```
ostream& operator << (ostream& dest, __int128_t value) {
  ostream::sentry s(dest);
  if (s) {
    __uint128_t tmp = value < 0 ? -value : value;
    char buffer[128];
    char* d = end(buffer);
    do {
      *d = "0123456789"[tmp % 10];
      tmp /= 10;
    } while (tmp != 0);
    if (value < 0) {
      --d;
      *d = , -, :
    int len = end(buffer) - d;
    if (dest.rdbuf()->sputn(d, len) != len) dest.setstate(ios_base::badbit);
  return dest;
istream& operator >> (istream& is, __int128_t& value) {
  string s;
  is >> s;
  _{\rm lint128\_t} res = 0;
  size_t i = 0;
  bool neg = false;
  if (s[i] == '-') neg = 1, i++;
  for (; i < s.size(); ++i) (res *= 10) += (s[i] - '0');
  value = neg ? -res : res;
  return is:
```

4 Geometry

4.1 Circle

```
// çãDefinio da classe Point e da çãfuno equals()
template <typename T>
```

```
struct Circle {
 Point <T> C:
 Tr;
  enum { IN, ON, OUT } PointPosition;
 PointPosition position(const Point& P) const {
    auto d = dist(P, C);
   return equals(d, r) ? ON : (d < r ? IN : OUT):
 static std::optional < Circle > from_2_points_and_r(const Point < T > & P,
                                                     const Point < T > & Q, T r) {
    double d2 = (P.x - Q.x) * (P.x - Q.x) + (P.y - Q.y) * (P.y - Q.y);
    double det = r * r / d2 - 0.25;
    if (det < 0.0) return {}:</pre>
    double h = sqrt(det);
    auto x = (P.x + Q.x) * 0.5 + (P.y - Q.y) * h;
    auto v = (P.v + Q.v) * 0.5 + (Q.x - P.x) * h:
    return Circle < T > { Point < T > (x, y), r };
 static std::experimental::optional<Circle> from_3_points(const Point<T>& P,
                                                             const Point < T > & Q,
                                                             const Point <T>& R)
    auto a = 2 * (Q.x - P.x);
    auto b = 2 * (Q.y - P.y);
    auto c = 2 * (R.x - P.x):
    auto d = 2 * (R.v - P.v);
    auto det = a * d - b * c;
    // Pontos colineares
    if (equals(det, 0)) return {};
    auto k1 = (Q.x * Q.x + Q.y * Q.y) - (P.x * P.x + P.y * P.y);
    auto k2 = (R.x * R.x + R.y * R.y) - (P.x * P.x + P.y * P.y);
    // çãSoluo do sistema por Regra de Cramer
    auto cx = (k1 * d - k2 * b) / det;
    auto cy = (a * k2 - c * k1) / det;
    Point <T > C{cx, cy};
    auto r = distance(P, C):
    return Circle <T>(C, r):
 // çãInterseo entre o ícrculo c e a reta que passa por P e Q
  template <typename T>
  std::vector<Point<T>> intersection(const Circle<T>& c. const Point<T>& P.
                                      const Point < T > & Q) {
```

```
auto b = 2 * ((Q.x - P.x) * (P.x - c.C.x) + (Q.y - P.y) * (P.y - c.C.y));
    auto d = pow(c.C.x, 2.0) + pow(c.C.y, 2.0) + pow(P.x, 2.0) + pow(P.y, 2.0)
             2 * (c.C.x * P.x + c.C.y * P.y);
    auto D = b * b - 4 * a * d;
    if (D < 0)
     return {}:
    else if (equals(D, 0)) {
      auto u = -b / (2 * a);
      auto x = P.x + u * (Q.x - P.x);
      auto y = P.y + u * (Q.y - P.y);
      return {Point{x, y}};
    auto u = (-b + sqrt(D)) / (2 * a):
    auto x = P.x + u * (Q.x - P.x);
    auto y = P.y + u * (Q.y - P.y);
    auto P1 = Point{x, y};
    u = (-b - sqrt(D)) / (2 * a);
    x = P.x + u * (Q.x - P.x):
    y = P.y + u * (Q.y - P.y);
    auto P2 = Point{x, y};
    return {P1, P2}:
 }
};
     Convex Hull Trick
Add lines of the form y = ax + b to a set and query the maximum value of y at a given x, add(a, b); add
line y = ax + b query(x): find the maximum value of y at x
Time: O(\log n) amortized for add(a, b) and O(\log n) for query(x).
template <tvpename T = 11>
struct ConvexHullTrick {
  static constexpr T inf = numeric_limits<T>::max();
  struct Line {
   T a. b:
    mutable T x_inter;
    T eval(T x) const { return a * x + b; }
    bool operator < (const Line& rhs) const { return a < rhs.a; }</pre>
    bool operator<(T x) const { return x_inter < x; }</pre>
  multiset <Line. less <>> ln:
  T query(T x) const {
    auto it = ln.lower_bound(x);
   if (it == ln.end()) return inf;
    return it->eval(x):
  }
```

auto a = pow(Q.x - P.x, 2.0) + pow(Q.y - P.y, 2.0);

```
void add(T a, T b) {
    auto it = ln.insert({a, b, 0});
    while (overlap(it)) ln.erase(next(it)), update(it);
    if (it != ln.begin() and !overlap(prev(it))) it = prev(it), update(it);
    while (it != ln.begin() and overlap(prev(it)))
      it = prev(it), ln.erase(next(it)), update(it);
 private:
 void update(auto it) const {
   if (next(it) == ln.end())
     it->x inter = inf:
    else if (it->a == next(it)->a)
      (it->x_inter = it->b >= next(it)->b ? inf : -inf);
      auto h = (it->b - next(it)->b);
      auto l = (next(it) -> a - it -> a):
      it -> x inter = h / 1 - ((h ^ 1) < 0 && h % 1):
   }
 }
 bool overlap(auto it) const {
    update(it):
    if (next(it) == ln.end()) return false;
    if (it->a == next(it)->a) return it->b >= next(it)->b;
    return it->x inter >= next(it)->x inter:
 }
};
     Convex Hull
```

Given a set of points find the smallest convex polygon that contains all the given points. Time: $O(N \cdot \log N)$

By default it removes the collinear points, set the boolean to true if you don't want that

```
struct pt {
  double x, y;
};
int orientation(pt a, pt b, pt c) {
  double v = a.x * (b.y - c.y) + b.x * (c.y - a.y) + c.x * (a.y - b.y);
  if (v < 0) return -1; // clockwise
  if (v > 0) return +1: // counter-clockwise
  return 0;
bool cw(pt a, pt b, pt c, bool include_collinear) {
 int o = orientation(a, b, c);
  return o < 0 || (include_collinear && o == 0);</pre>
bool collinear(pt a, pt b, pt c) { return orientation(a, b, c) == 0; }
void convex_hull(vector<pt>& a, bool include_collinear = false) {
  pt p0 = *min_element(a.begin(), a.end(), [](pt a, pt b) {
    return make_pair(a.v, a.x) < make_pair(b.v, b.x);</pre>
  sort(a.begin(), a.end(), [&p0](const pt& a, const pt& b) {
    int o = orientation(p0, a, b):
```

```
if (o == 0)
    return (p0.x - a.x) * (p0.x - a.x) + (p0.y - a.y) * (p0.y - a.y) <
           (p0.x - b.x) * (p0.x - b.x) + (p0.y - b.y) * (p0.y - b.y);
  return o < 0:
});
if (include_collinear) {
 int i = (int)a.size() - 1;
 while (i >= 0 && collinear(p0, a[i], a.back())) i--;
 reverse(a.begin() + i + 1, a.end());
vector <pt> st;
for (int i = 0; i < (int)a.size(); i++) {</pre>
 while (st.size() > 1 &&
         !cw(st[st.size() - 2], st.back(), a[i], include_collinear))
    st.pop_back();
 st.push back(a[i]):
a = st;
```

4.4 Convex Hull Trick

Add lines ax + b and query maximum value at x. If you want to get minimum value, set inf = numeric_limits<T>::max(). In case of overflow, try to compress x values. Time: $O(\log(\text{HI} - \text{LO}))$ for query, $O(\log(\text{HI} - \text{LO}))$ for add, $O(\log^2(\text{HI} - \text{LO}))$ for add segment.

```
template <typename T = 11, T LO = T(-1e9), T HI = T(1e9)>
struct LiChaoTree {
  // get max value at x by default
  // to get min value, set inf = numeric_limits<T>::max()
  static constexpr T inf = numeric_limits<T>::min();
  static constexpr bool compare(T a, T b) {
    if constexpr (inf == numeric_limits<T>::max()) {
      return a < b;</pre>
    } else {
      return a > b;
  static constexpr T best(T a, T b) { return (compare(a, b) ? a : b); }
  struct Line {
   T a. b:
    array < int, 2> ch;
    Line(T a_{-} = 0, T b_{-} = \inf) : a(a_{-}), b(b_{-}), ch(\{-1, -1\}) {}
    constexpr T eval(T x) const { return a * x + b; }
    constexpr bool is_leaf() const { return ch[0] == -1 and ch[1] == -1; }
  vector < Line > ln;
  LiChaoTree() { ln.emplace_back(); }
  T \text{ query}(T x, int v = 0, T 1 = L0, T r = HI) {
    auto m = 1 + (r - 1) / 2, val = ln[v].eval(x);
    if (ln[v].is_leaf()) return val;
      return best(val, query(x, ch(v, 0), 1, m));
      return best(val, query(x, ch(v, 1), m + 1, r));
```

```
}
  void add(T a, T b) { add({a, b}, 0, L0, HI); }
  void add(Line s. int v. T l. T r) {
    auto m = 1 + (r - 1) / 2;
    bool L = compare(s.eval(1), ln[v].eval(1));
    bool M = compare(s.eval(m), ln[v].eval(m));
    bool R = compare(s.eval(r), ln[v].eval(r));
    if (M) swap(ln[v], s), swap(ln[v].ch, s.ch);
    if (s.b == inf) return;
    if (L != M)
      add(s, ch(v, 0), 1, m);
    else if (R != M)
      add(s, ch(v, 1), m + 1, r);
  void add_segment(T a, T b, T 1, T r) { add_segment({a, b}, 1, r, 0, L0, HI);
  void add_segment(Line s, T 1, T r, int v, T L, T R) {
    if (1 <= L and R <= r) return add(s, v, L, R);</pre>
    auto m = L + (R - L) / 2;
    if (1 <= m) add_segment(s, 1, r, ch(v, 0), L, m);</pre>
    if (r > m) add_segment(s, 1, r, ch(v, 1), m + 1, R);
 private:
  int ch(int v, bool b) {
    if (\ln \lceil v \rceil, \cosh \lceil b \rceil == -1) {
      ln[v].ch[b] = (int)ln.size();
      ln.emplace_back();
    return ln[v].ch[b];
  }
};
      Point in Polygon
Given the vertices of a polygon, we want to determine if a point lies inside the polygon.
Time: O(num \ vertices)
Note: The points must be sorted in increasing order of x-coordinates.
const double EPS = 1e-9;
template <tvpename T>
bool point_in_polygon(Point<T> point, vector<Point<T>> polygon) {
  int num_vertices = polygon.size();
  T x = point.x, y = point.y;
  bool inside = false:
  Point<T> p1 = polygon[0], p2; // p1 is the first vertex
  for (int i = 1; i <= num_vertices; i++) {</pre>
    p2 = polygon[i % num_vertices]; // next vertex
    if (abs((p2.y - p1.y) * (x - p1.x) - (p2.x - p1.x) * (y - p1.y)) < EPS &&
        (x - p1.x) * (x - p2.x) \le 0 && (y - p1.y) * (y - p2.y) \le 0) {
      return true; // point is on the boundary
```

if (y > min(p1.y, p2.y)) {

if (y <= max(p1.y, p2.y)) {</pre>

```
if (p1.x == p2.x) {
          if (x <= p1.x) {</pre>
            inside = !inside;
        } else if (x <= max(p1.x, p2.x) &&</pre>
                   x \le (y - p1.y) * (p2.x - p1.x) / (p2.y - p1.y) + p1.x) {
          inside = !inside;
      }
   p1 = p2;
  return inside;
     Point To Segment
typedef pair < double, double > pdb;
double pt2segment(pdb A, pdb B, pdb E) {
  pdb AB = {B.fst - A.fst, B.snd - A.snd}:
  pdb BE = {E.fst - B.fst, E.snd - B.snd};
  pdb AE = {E.fst - A.fst, E.snd - A.snd};
  double AB_BE = AB.fst * BE.fst + AB.snd * BE.snd;
  double AB AE = AB.fst * AE.fst + AB.snd * AE.snd:
  double ans:
  if (AB BE > 0) {
   double y = E.snd - B.snd;
   double x = E.fst - B.fst;
    ans = hypot(x, y);
 } else if (AB_AE < 0) {</pre>
    double y = E.snd - A.snd;
    double x = E.fst - A.fst;
    ans = hypot(x, y);
 } else {
    auto [x1, y1] = AB;
    auto [x2, y2] = AE;
    double mod = hypot(x1, y1);
    ans = abs(x1 * y2 - y1 * x2) / mod;
  return ans:
     Point Vector
template <tvpename T>
struct Point {
 Тх, у;
  Point (T x = 0, T y = 0) : x(x), y(y) {}
  inline Point operator+(const Point &p) const {
    return Point(x + p.x, y + p.y);
```

```
inline Point operator-(const Point &p) const {
  return Point(x - p.x, y - p.y);
inline Point operator+(const T &k) const { return Point(x + k, y + k); }
inline Point operator-(const T &k) const { return Point(x - k, y - k); }
inline Point operator*(const T &k) const { return Point(x * k, y * k); }
inline Point operator/(const T &k) const { return Point(x / k, y / k); }
inline Point &operator+=(const Point &p) {
  x += p.x, y += p.y;
  return *this:
inline Point & operator -= (const Point &p) {
  x \rightarrow p.x, y \rightarrow p.y;
  return *this;
inline Point &operator+=(const T &k) {
 x += k, y += k;
  return *this:
inline Point &operator -=(const T &k) {
  x -= k, v -= k:
  return *this;
inline Point &operator*=(const T &k) {
 x *= k, y *= k;
 return *this:
inline Point &operator/=(const T &k) {
 x /= k, v /= k:
  return *this;
inline bool operator == (const Point &p) const {
  return eq(x, p.x) and eq(y, p.y);
inline bool operator < (const Point &p) const {</pre>
  return eq(x, p.x) ? y < p.y : x < p.x;
inline bool operator > (const Point &p) const {
  return eq(x, p.x) ? y > p.y : x > p.x;
inline bool operator <= (const Point &p) const {</pre>
  return *this == p or *this < p;
inline bool operator>=(const Point &p) const {
  return *this == p or *this > p;
}
friend ostream & operator << (ostream & os, const Point &p) {
  return os << p.x << ' ' << p.y;
friend istream & operator >> (istream & is, Point & p) { return is >> p.x >> p.y;
template <tvpename U>
void rotate(U rad) {
```

```
tie(x, y) =
      make_pair(x * cos(rad) - y * sin(rad), x * sin(rad) + y * cos(rad));
  template <tvpename U>
  Point <U> rotated(U rad) const {
    return Point < U > (x * cos(rad) - y * sin(rad), x * sin(rad) + y * cos(rad));
  inline T dot(const Point &p) const { return x * p.x + y * p.y; }
  inline T cross(const Point &p) const { return x * p.y - y * p.x; }
  inline T cross(const Point &a, const Point &b) const {
    return (a - *this).cross(b - *this):
  inline T dist2() const { return x * x + y * y; }
  inline double dist() const { return hypot(x, y); }
  inline double angle() const { return atan2(y, x); }
  inline double norm() const { return sqrt(dot(*this)); }
 inline Point rot90() const { return Point(-y, x); }
 inline Point to(const Point &p) const { return p - *this; }
};
template <typename T>
struct Vector {
T x = 0, v = 0:
 Vector(const Point<T> &A, const Point<T> &B) : x(B.x - A.x), y(B.y - A.y) {}
 T length() const { return hypot(x, y); }
}:
template <typename T>
struct Line {
 T a, b, c;
  Line(T av, T bv, T cv) : a(av), b(bv), c(cv) {}
  Line(const Point<T> &P, const Point<T> &Q)
    : a(P.v - Q.v), b(Q.x - P.x), c(P.x * Q.v - Q.x * P.v) {}
};
4.8 Polygon
template <typename T>
class Polygon {
private:
 vector < Point < T >> vs:
 int n;
 public:
  // O âparmetro deve conter os n évrtices do ípolgono
  Polygon(const vector < Point < T >> & ps) : vs(ps), n(vs.size()) {
    vs.push back(vs.front());
  }
 T D(const Point < T > & P, const Point < T > & Q, const Point < T > & R) const {
    return (P.x * Q.y + P.y * R.x + Q.x * R.y) -
           (R.x * Q.y + R.y * P.x + Q.x * P.y);
  }
```

```
public:
bool convex() const {
  // Um ípolgono deve ter, no minimo, 3 évrtices
  if (n < 3) return false;
  int P = 0, N = 0, Z = 0:
  for (int i = 0: i < n: ++i) {
    auto d = D(vs[i], vs[(i + 1) \% n], vs[(i + 2) \% n]):
    d ? (d > 0 ? ++P : ++N) : ++Z;
  return P == n or N == n;
double distance(const Point<T>& P, const Point<T>& Q) {
  return hypot(P.x - Q.x, P.y - Q.y);
public:
double perimeter() const {
  auto p = 0.0;
  for (int i = 0: i < n: ++i) p += distance(vs[i], vs[i + 1]):
  return p;
double area() const {
  auto a = 0.0;
  for (int i = 0: i < n: ++i) {
    a += vs[i].x * vs[i + 1].v;
    a = vs[i + 1].x * vs[i].y;
  return 0.5 * fabs(a):
private:
// Ângulo APB, em radianos
double angle(const Point<T>& P, const Point<T>& A, const Point<T>& B) {
  auto ux = P.x - A.x;
  auto uy = P.y - A.y;
  auto vx = P.x - B.x:
  auto vy = P.y - B.y;
  auto num = ux * vx + uy * vy;
  auto den = hypot(ux, uy) * hypot(vx, vy);
  // Caso especial: se den == 0, algum dos vetores é degenerado: os
  // dois pontos ãso iguais. Neste caso, o ângulo ãno áest definido
  return acos(num / den);
```

```
bool equals(double x, double y) {
  static const double EPS{1e-6};
  return fabs(x - v) < EPS:
public:
bool contains(const Point < T > & P) const {
  if (n < 3) return false:
  auto sum = 0.0;
  for (int i = 0; i < n - 1; ++i) {</pre>
     auto d = D(P, vs[i], vs[i + 1]);
    auto a = angle(P, vs[i], vs[i + 1]);
    sum += d > 0 ? a : (d < 0 ? -a : 0);
   static const double PI = acos(-1.0);
  return equals(fabs(sum), 2 * PI);
private:
 // calnterseo entre a reta AB e o segmento de reta PQ
 Point <T > intersection(const Point <T > & P, const Point <T > & Q, const Point <T > &
                       const Point < T > & B) {
  auto a = B.y - A.y;
   auto b = A.x - B.x;
   auto c = B.x * A.y - A.x * B.y;
   auto u = fabs(a * P.x + b * P.v + c):
   auto v = fabs(a * Q.x + b * Q.y + c);
  // éMdia ponderada pelas âdistncias de P e Q éat a reta AB
  return \{(P.x * v + Q.x * u) / (u + v), (P.v * v + Q.v * u) / (u + v)\};
}
public:
 // Corta o ípolgono com a reta r que passa por A e B
 Polygon cut_polygon(const Point<T>& A, const Point<T>& B) const {
   vector < Point < T >> points:
   const double EPS{1e-6};
  for (int i = 0: i < n: ++i) {
     auto d1 = D(A, B, vs[i]);
     auto d2 = D(A, B, vs[i + 1]);
     // éVrtice à esquerda da reta
     if (d1 > -EPS) points.push_back(vs[i]);
     // A aresta cruza a reta
     if (d1 * d2 < -EPS)
       points.push_back(intersection(vs[i], vs[i + 1], A, B));
  return Polygon(points);
```

```
double circumradius() const {
   auto s = distance(vs[0], vs[1]);
   const double PI{acos(-1.0)};

   return (s / 2.0) * (1.0 / sin(PI / n));
}

double apothem() const {
   auto s = distance(vs[0], vs[1]);
   const double PI{acos(-1.0)};

   return (s / 2.0) * (1.0 / tan(PI / n));
};
};
```

4.9 Polynominoes

Geometric figure made by equal squares, connected between themselves in a way that at least one side of each square coincide with a side of another square.

Watch out: the number of polynominoes increases fastly (size 12 has 63.600 figures)

```
// We consider the rotations
// as distinct (0, 10, 10+9, 10+9+8...)
vi pos = \{0, 10, 19, 27, 34, 40, 45, 49, 52, 54, 55\};
const int MAXP = 10;
struct Polv {
  ii v[MAXP];
  int64_t id;
  int n;
  Poly() {
    n = 1;
    v[0] = \{0, 0\};
    normalize();
  Poly(vii &vp) {
    n = vp.size();
   for (int i = 0; i < n; i++) v[i] = vp[i];</pre>
    normalize();
  ii &operator[](int i) { return v[i]; }
  bool add(int a, int b) {
    for (int i = 0: i < n: i++) {
      auto [f. s] = v[i]:
      if (f == a and s == b) return false;
    v[n++] = ii\{a, b\};
    normalize();
    return true;
  void normalize() {
    int mx = 100, my = 100;
```

```
for (int i = 0; i < n; i++) {</pre>
      auto [f. s] = v[i]:
      mx = min(mx, f), my = min(my, s);
    id = 0:
    for (int i = 0; i < n; i++) {</pre>
      auto &[f, s] = v[i];
     f = mx, s = my;
      id \mid = (1LL \ll (pos[f] + s)):
 }
  bool operator < (Poly oth) { return id < oth.id; }</pre>
}:
vector < Poly > poly [MAXP + 1];
void buildPoly(int mxN) {
  for (int i = 0; i <= mxN; i++) poly[i].clear();</pre>
  Poly init;
  aueue < Polv > a:
  unordered_set < int64_t > used;
  q.push(init);
  used.insert(init.id):
  while (not q.empty()) {
    Poly u = q.front();
    q.pop();
    poly[u.n].emplace_back(u);
    if (u.n == mxN) continue;
    for (int i = 0: i < u.n: i++) {</pre>
      for (auto [dx, dy] : dir4) {
        Poly to = u;
        auto [f, s] = to[i];
        bool ok = to.add(f + dx, s + dy);
        if (ok and not used.count(to.id)) {
          q.push(to);
          used.insert(to.id);
   }
  }
       Sweep Line
4.10
struct Segment {
 double a, b, c;
 Point A, B;
  size_t idx;
  Segment(const Point& P, const Point& Q, size_t i)
    : a(P.y - Q.y),
```

```
b(Q.x - P.x).
      c(P.x * Q.y - Q.x * P.y),
      A(P),
      B(Q).
      idx(i) {}
  bool operator < (const Segment& s) const {</pre>
    return (-a * sweep_x - c) * s.b < (-s.a * sweep_x - s.c) * b;
  optional < Point > intersection(const Segment& s) const {
    auto det = a * s.b - b * s.a;
    if (not equals(det, 0.0)) // Concorrentes
      auto x = (-c * s.b + s.c * b) / det;
      auto v = (-s.c * a + c * s.a) / det:
      if (\min(A.x, B.x) \le x \text{ and } x \le \max(A.x, B.x) and
          min(s.A.x, s.B.x) \le x  and x \le max(s.A.x, s.B.x)) {
        return Point{x, y};
      }
    }
    return {};
  static double sweep_x;
};
double Segment::sweep_x;
struct Event {
  enum Type { OPEN, INTERSECTION, CLOSE }:
  Point P;
  Type type;
  size_t i;
  bool operator < (const Event& e) const {</pre>
    if (P != e.P) return e.P < P:</pre>
    if (type != e.type) return type > e.type;
    return i > e.i;
  }
};
void add_neighbor_intersections(const Segment& s, const set<Segment>& s1,
                                  set < Point > & ans.
                                  priority_queue < Event > & events) {
  // TODO: garantir que a busca identifique unicamente o elemento s.
  // éatravs do ajuste fino da ávarivel Segment::sweep_x
  auto it = sl.find(s);
  if (it != sl.begin()) {
    auto L = *prev(it);
    auto P = s.intersection(L):
```

```
if (P and ans.count(P.value()) == 0) {
      events.push(Event{P.value(), Event::INTERSECTION, s.idx});
      ans.insert(P.value()):
 }
 if (next(it) != sl.end()) {
    auto U = *next(it):
    auto P = s.intersection(U):
   if (P and ans.count(P.value()) == 0) {
      events.push(Event{P.value(), Event::INTERSECTION, s.idx});
      ans.insert(P.value());
 }
}
set < Point > bentley_ottman(vector < Segment > & segments) {
  set < Point > ans:
 priority_queue < Event > events;
  for (size t i = 0: i < segments.size(): ++i) {</pre>
    events.push(Event{segments[i].A, Event::OPEN, i});
    events.push(Event{segments[i].B, Event::CLOSE, i});
  set < Segment > s1;
  while (not events.empty()) {
   auto e = events.top();
    events.pop();
    Segment::sweep_x = e.P.x;
    switch (e.type) {
      case Event::OPEN: {
        auto s = segments[e.i];
        sl.insert(s):
        add neighbor intersections(s. sl. ans. events):
      } break:
      case Event::CLOSE: {
        auto s = segments[e.i];
        auto it = sl.find(s); // TODO: aqui étambm
        if (it != sl.begin() and it != sl.end()) {
          auto L = *prev(it);
          auto U = *next(it);
          auto P = L.intersection(U);
          if (P and ans.count(P.value()) == 0)
            events.push(Event{P.value(), Event::INTERSECTION, L.idx});
        sl.erase(it):
      } break:
```

```
default:
        auto r = segments[e.i];
        auto p = sl.equal_range(r);
        vector < Segment > range(p.first, p.second);
        // Remove os segmentos que se interceptam
        sl.erase(p.first, p.second);
        // Reinsere os segmentos
        Segment::sweep_x += 0.1;
        sl.insert(range.begin(), range.end());
        // Procura çõintersees com os novos vizinhos
        for (const auto& s : range)
          add_neighbor_intersections(s, sl, ans, events);
   }
 return ans;
      Triangulo
4.11
template <tvpename T>
struct Triangle {
 Point <T > A, B, C;
 // cãDefinio do émtodo area()
 // circulo inscrito no triangulo
 double circumradius() const {
   auto a = dist(B, C);
   auto b = dist(A, C);
   auto c = dist(A, B):
   return (a * b * c) / (4 * area());
 Point <T> circumcenter() const {
   auto D = 2 * (A.x * (B.y - C.y) + B.x * (C.y - A.y) + C.x * (A.y - B.y));
   auto A2 = A.x * A.x + A.y * A.y;
   auto B2 = B.x * B.x + B.y * B.y;
   auto C2 = C.x * C.x + C.y * C.y;
   auto x = (A2 * (B.y - C.y) + B2 * (C.y - A.y) + C2 * (A.y - B.y)) / D;
   auto v = (A2 * (C.x - B.x) + B2 * (A.x - C.x) + C2 * (B.x - A.x)) / D:
   return {x, y};
 // ortocentro do triangulo
 Point <T > orthocenter() const {
   Line \langle T \rangle r(A, B), s(A, C);
```

```
Line<T> u{r.b, -r.a, -(C.x * r.b - C.y * r.a)};
Line<T> v{s.b, -s.a, -(B.x * s.b - B.y * s.a)};

auto det = u.a * v.b - u.b * v.a;
auto x = (-u.c * v.b + v.c * u.b) / det;
auto y = (-v.c * u.a + u.c * v.a) / det;

return {x, y};
};
};
```

5 Graphs

5.1 Articulation Points

```
int dfs_num[MAX], dfs_low[MAX];
vi adj[MAX];
int dfs_articulation_points(int u, int p, int& next, set<int>& points) {
 int children = 0:
  dfs low[u] = dfs num[u] = next++:
 for (auto v : adj[u])
   if (not dfs_num[v]) {
      ++children;
      dfs_articulation_points(v, u, next, points);
      if (dfs_low[v] >= dfs_num[u]) points.insert(u);
      dfs_low[u] = min(dfs_low[u], dfs_low[v]);
   } else if (v != p)
      dfs_low[u] = min(dfs_low[u], dfs_num[v]);
 return children;
set < int > articulation_points(int N) {
  memset(dfs_num, 0, (N + 1) * sizeof(int));
  memset(dfs_low, 0, (N + 1) * sizeof(int));
  set < int > points;
  for (int u = 1, next = 1; u \le N; ++u)
   if (not dfs_num[u]) {
      auto children = dfs_articulation_points(u, u, next, points);
      if (children == 1) points.erase(u);
  return points;
```

5.2 Bellman Ford

Time: $O(V \cdot E)$. Returns the shortest path from s to all other nodes.

```
using edge = tuple<int, int, int>;
```

```
pair < vi , vi > bellman_ford(int s, int N, const vector < edge > & edges) {
  vi dist(N + 1, oo), pred(N + 1, oo);
  dist[s] = 0;
  pred[s] = s;
  for (int i = 1; i <= N - 1; i++)
    for (auto [u. v. w] : edges)
      if (dist[u] < oo and dist[v] > dist[u] + w) {
        dist[v] = dist[u] + w;
        pred[v] = u;
  return {dist, pred};
    BFS 0/1
Time: O(V+E).
vii adj[MAX];
vi bfs_01(int s, int N) {
  vi dist(N + 1, oo);
  dist[s] = 0;
  deque < int > q;
  q.emplace_back(s);
  while (not q.empty()) {
    auto u = q.front();
    q.pop_front();
    for (auto [v. w] : adi[u])
      if (dist[v] > dist[u] + w) {
        dist[v] = dist[u] + w;
        w == 0 ? q.emplace_front(v) : q.emplace_back(v);
  return dist;
5.4 Binary Lifting
Time: O(N \cdot \log_2 K)
const int MAXN = 2e5. MAXLOG2 = 60:
int bl[MAXN][MAXLOG2 + 1];
int jump(int u, ll k) {
  for (int i = 0; i <= MAXLOG2; i++)</pre>
    if (k & (1LL << i)) u = bl[u][i];</pre>
  return u;
```

```
void build(int N) {
 for (int i = 1; i <= MAXLOG2; i++)</pre>
    for (int j = 0; j < N; j++) bl[j][i] = bl[bl[j][i - 1]][i - 1];</pre>
5.5 Bridges
int dfs num[MAX], dfs low[MAX];
vi adj[MAX];
void dfs_bridge(int u, int p, int& next, vii& bridges) {
  dfs_low[u] = dfs_num[u] = next++;
  for (auto v : adj[u])
   if (not dfs_num[v]) {
      dfs_bridge(v, u, next, bridges);
      if (dfs_low[v] > dfs_num[u]) bridges.emplace_back(u, v);
      dfs_low[u] = min(dfs_low[u], dfs_low[v]);
   } else if (v != p)
      dfs_low[u] = min(dfs_low[u], dfs_num[v]);
}
vii bridges(int N) {
  memset(dfs_num, 0, (N + 1) * sizeof(int));
  memset(dfs low, 0, (N + 1) * sizeof(int));
  vii bridges;
  for (int u = 1, next = 1; u \le N; ++u)
   if (not dfs num[u]) dfs bridge(u, u, next, bridges):
  return bridges;
5.6 Negative Cycle Bellman Ford
Time: O(V \cdot E). Detects whether there is a negative cycle in the graph using Bellman Ford.
using edge = tuple<int, int, int>;
bool has_negative_cycle(int s, int N, const vector<edge>& edges) {
 vi dist(N + 1, oo):
  dist[s] = 0:
  for (int i = 1; i <= N - 1; i++)</pre>
   for (auto [u, v, w] : edges)
      if (dist[u] < oo and dist[v] > dist[u] + w) dist[v] = dist[u] + w;
  for (auto [u, v, w] : edges)
    if (dist[u] < oo and dist[v] > dist[u] + w) return true;
 return false:
}
```

5.7 Negative Cycle Floyd Warshall

Time: $O(n^3)$. Detects whether there is a negative cycle in the graph using Floyd Warshall.

```
int dist[MAX][MAX];
vii adj[MAX];
bool has_negative_cycle(int N) {
  for (int u = 1; u <= N; ++u)</pre>
    for (int v = 1; v <= N; ++v) dist[u][v] = u == v ? 0 : oo;</pre>
  for (int u = 1; u <= N; ++u)
    for (auto [v, w] : adj[u]) dist[u][v] = w;
  for (int k = 1; k \le N; ++k)
    for (int u = 1; u <= N; ++u)
      for (int v = 1; v \le N; ++v)
        if (dist[u][k] < oo and dist[k][v] < oo)</pre>
          dist[u][v] = min(dist[u][v], dist[u][k] + dist[k][v]);
  for (int i = 1; i <= N; ++i)
    if (dist[i][i] < 0) return true;</pre>
  return false;
      Dijkstra
pair < vl, vl > Graph::dijkstra(ll src) {
  vl pd(this->N, LLONG_MAX), ds(this->N, LLONG_MAX);
  pd[src] = src;
  ds[src] = 0;
  set <pll> st;
  st.emplace(0, src);
  while (!st.empty()) {
    11 u = st.begin()->snd;
    11 wu = st.begin()->fst;
    st.erase(st.begin());
    if (wu != ds[u]) continue;
    for (auto& [v, w] : adj[u]) {
      if (ds[v] > ds[u] + w) {
        ds[v] = ds[u] + w;
        pd[v] = u;
        st.emplace(ds[v], v);
```

Floyd Warshall

return {ds, pd};

```
vii adj[MAX];
```

}

```
pair < vector < vi > , vector < vi >> floyd_warshall(int N) {
  vector < vi > dist(N + 1, vi(N + 1, oo));
  vector < vi > pred(N + 1, vi(N + 1, oo));
  for (int u = 1; u <= N; ++u) {
    dist[u][u] = 0;
    pred[u][u] = u;
  for (int u = 1; u <= N; ++u)</pre>
    for (auto [v, w] : adj[u]) {
      dist[u][v] = w;
      pred[u][v] = u;
  for (int k = 1: k \le N: ++k) {
    for (int u = 1; u <= N; ++u) {</pre>
      for (int v = 1; v \le N; ++v) {
        if (dist[u][k] < oo and dist[k][v] < oo and</pre>
            dist[u][v] > dist[u][k] + dist[k][v]) {
          dist[u][v] = dist[u][k] + dist[k][v];
          pred[u][v] = pred[k][v];
    }
  }
  return {dist, pred};
5.10 Graph
class Graph {
private:
 11 N;
 bool undirected;
  vector < vll > adj;
  Graph(ll N, bool is_undirected = true) {
   this -> N = N:
    adj.resize(N);
    undirected = is_undirected;
  void add(ll u, ll v, ll w) {
    adj[u].emplace_back(v, w);
    if (undirected) adj[v].emplace_back(u, w);
 }
};
```

5.11 TopSort - Kahn

Works only on Directed Acyclic Graphs (DAGs). For each edge (u,v), u comes before v in the ordering. If the task A is a prerequisite for task B, then A comes before B in the ordering. Time: $O(E \cdot log(v))$

```
unordered_set < int > in [MAX], out [MAX];
```

```
vi topological_sort(int N) {
  vi o:
  queue < int > q;
  for (int u = 1; u <= N; ++u)
    if (in[u].empty()) q.push(u);
  while (not q.empty()) {
    auto u = q.front();
    q.pop();
    o.emplace_back(u);
    for (auto v : out[u]) {
      in[v].erase(u);
      if (in[v].empty()) q.push(v);
    }
  }
  return (int)o.size() == N ? o : vi{};
5.12 Kosaraju
Time: O(V+E). Returns a vector of vectors indicating the directed strongly connected nodes.
vi adj[MAX], rev[MAX];
bitset < MAX > visited:
void dfs(int u, vi& order) {
  if (visited[u]) return:
  visited[u] = true:
  for (auto v : adj[u]) dfs(v, order);
  order.emplace_back(u);
vi dfs_order(int N) {
  vi order;
  for (int u = 1; u \le N; ++u) dfs(u, order);
  return order;
void dfs_cc(int u, vi& cc) {
  if (visited[u]) return:
  visited[u] = true;
  cc.emplace_back(u);
  for (auto v : rev[u]) dfs_cc(v, cc);
vector < vi > kosaraju(int N) {
```

```
auto order = dfs_order(N);
  reverse(order.begin(), order.end());
  for (int u = 1: u \le N: ++u)
    for (auto v : adj[u]) rev[v].emplace_back(u);
  vector < vi > cs:
  visited.reset();
  for (auto u : order) {
    if (visited[u]) continue;
    cs.emplace_back(vi());
    dfs_cc(u, cs.back());
 return cs;
5.13 Kruskal
Time: O(e \cdot log(v))
using edge = tuple <int, int, int>;
int kruskal(int N, vector<edge>& es) {
  sort(es.begin(), es.end());
  int cost = 0;
  UnionFind ufds(N);
  for (auto [w. u. v] : es) {
   if (not ufds.same_set(u, v)) {
      cost += w;
      ufds.union_set(u, v);
  }
  return cost;
5.14 Minimax
A MST minimizes the maximum weight between the edges in any spanning tree. Time: O(e \cdot log(v))
vii adj[MAX];
int minimax(int u, int N) {
  set < int > C:
 C.insert(u):
  priority_queue < ii, vii, greater < ii >> pq;
  for (auto [v, w] : adj[u]) pq.push(ii(w, v));
  int minmax = -oo;
```

```
while ((int)C.size() < N) {
  int v, w;

do {
    w = pq.top().first, v = pq.top().second;
    pq.pop();
} while (C.count(v));

minmax = max(minmax, w);
C.insert(v);

for (auto [s, p] : adj[v]) pq.push(ii(p, s));
}

return minmax;</pre>
```

5.15 MSF

Minimum Spanning Forest - a forest of trees of length k that connects all vertices in a graph with minimum total weight. Time: $O(e \cdot log(v))$

```
using edge = tuple<int, int, int>;
int msf(int k, int N, vector<edge>& es) {
  sort(es.begin(), es.end());

int cost = 0, cc = N;
  UnionFind ufds(N);

for (auto [w, u, v] : es) {
   if (not ufds.same_set(u, v)) {
     cost += w;
     ufds.union_set(u, v);

   if (--cc == k) return cost;
  }
}

return cost;
}
```

5.16 Minimum Spanning Graph (MSG)

```
Given some obligatory edges es, find a minimum spanning graph that contains them. Time: O(e \cdot \log(v))
```

```
using edge = tuple<int, int, int>;
const int MAX{100010};
vector<ii> adj[MAX];
int msg(int N, const vector<edge>& es) {
   set<int> C;
   priority_queue<ii, vii, greater<ii>>> pq;
   int cost = 0;
```

```
for (auto [u, v, w] : es) {
    cost += w:
    C.insert(u):
    C.insert(v);
    for (auto [r, s] : adj[u]) pq.push(ii(s, r));
    for (auto [r, s] : adj[v]) pq.push(ii(s, r));
  while ((int)C.size() < N) {</pre>
    int v, w;
    do {
      w = pq.top().first, v = pq.top().second;
      pq.pop();
    } while (C.count(v));
    cost += w:
    C.insert(v);
    for (auto [s, p] : adj[v]) pq.push(ii(p, s));
  return cost:
5.17 Prim
A node u is chosen to start a connected component. Time: O(e \cdot log(v))
const int MAX{100010};
vector < ii > adj[MAX];
int prim(int u, int N) {
  set < int > C;
 C.insert(u);
  priority_queue < ii, vector < ii >, greater < ii >> pq;
  for (auto [v, w] : adj[u]) pq.push(ii(w, v));
  int mst = 0:
  while ((int)C.size() < N) {
    int v, w;
      w = pq.top().first, v = pq.top().second;
      pq.pop();
    } while (C.count(v));
    mst += w:
    C.insert(v):
    for (auto [s, p] : adj[v]) pq.push(ii(p, s));
```

```
return mst;
      Retrieve Path 2d
vll Graph::retrieve_path_2d(11 src, 11 trg, const vector<vl>& pred) {
  vll p;
  do {
    p.emplace_back(pred[src][trg], trg);
    trg = pred[src][trg];
  } while (trg != src);
  reverse(all(p));
  return p;
      Retrieve Path
vll Graph::retrieve_path(ll src, ll trg, const vl& pred) {
 vll p;
  do {
    p.emplace_back(pred[trg], trg);
    trg = pred[trg];
  } while (trg != src);
  reverse(all(p));
  return p;
       Second Best MST
Time: O(v \cdot e)
using edge = tuple<int, int, int>;
pair<int, vi> kruskal(int N, vector<edge>& es, int blocked = -1) {
  vi mst;
  UnionFind ufds(N):
  int cost = 0;
  for (int i = 0; i < (int)es.size(); ++i) {</pre>
    auto [w, u, v] = es[i];
    if (i != blocked and not ufds.same set(u, v)) {
      cost += w;
      ufds.union_set(u, v);
      mst.emplace_back(i);
    }
  }
  return {(int)mst.size() == N - 1 ? cost : oo. mst};
```

```
}
int second_best(int N, vector<edge>& es) {
  sort(es.begin(), es.end());
  auto [_, mst] = kruskal(N, es);
  int best = oo:
  for (auto blocked : mst) {
    auto [cost, __] = kruskal(N, es, blocked);
    best = min(best, cost);
  return best;
       TopSort - Tarjan
5.21
Works only on Directed Acyclic Graphs (DAGs). For each edge (u,v), u comes before v in the ordering. If
the task A is a prerequisite for task B, then A comes before B in the ordering. Time: O(V+E)
enum State { NOT_FOUND, FOUND, PROCESSED };
vi adj[MAX];
bool dfs(int u. vi& o. vi& state) {
  if (state[u] == PROCESSED) return true;
  if (state[u] == FOUND) return false;
  state[u] = FOUND;
  for (auto v : adj[u])
    if (not dfs(v, o, state)) return false;
  state[u] = PROCESSED;
  o.emplace_back(u);
  return true;
vi topological_sort(int N) {
  vi o, state(N + 1, NOT_FOUND);
  for (int u = 1; u <= N; ++u)</pre>
    if (state[u] == NOT_FOUND and not dfs(u, o, state)) return {};
  reverse(o.begin(), o.end());
  return o;
```

6 Math

6.1 Binomial

```
11 binom(ll n, ll k) {
   if (k > n) return 0;
   vll dp(k + 1, 0);
   dp[0] = 1;
   for (ll i = 1; i <= n; i++)
      for (ll j = k; j > 0; j--) dp[j] = dp[j] + dp[j - 1];
   return dp[k];
}
```

6.2 Count Divisors Range

```
vl divisors(MAX, 0);
void count_divisors_range() {
  for (11 i = 1; i <= MAX; i++) {
    for (11 j = 1; j * i <= MAX; j++) divisors[i * j]++;
  }
}</pre>
```

6.3 Count Divisors

```
11 count_divisors(ll num) {
    ll count = 1;
    for (int i = 2; (ll)i * i <= num; i++) {
        if (num % i == 0) {
            int e = 0;
            do {
                e++;
                num /= i;
            } while (num % i == 0);
            count *= e + 1;
        }
    }
    if (num > 1) {
        count *= 2;
    }
    return count;
}
```

6.4 Factorization With Sieve

```
map<ll, ll> factorization_with_sieve(ll n, const vl& primes) {
    map<ll, ll> fact;

    for (ll d : primes) {
        if (d * d > n) break;

        ll k = 0;
        while (n % d == 0) {
            k++;
            n /= d;
        }

        if (k) fact[d] = k;
    }

    if (n > 1) fact[n] = 1;
    return fact;
}
```

6.5 Factorization

```
map<11, 11> factorization(11 n) {
   map<11, 11> ans;
   for (11 i = 2; i * i <= n; i++) {
        11 count = 0;
        for (; n % i == 0; count++, n /= i)
        ;
        if (count) ans[i] = count;
    }
   if (n > 1) ans[n]++;
   return ans;
}
```

6.6 Fast Doubling - Fibonacci

The Doubling Method can be seen as an improvement to the matrix exponentiation method to find the N-th Fibonacci number.

Time: $O(\log N)$.

```
template <typename T>
class FastDoubling {
public:
 vector <T> sts;
 T a, b, c, d;
 int mod;
  FastDoubling(int mod = 1e9 + 7) : sts(2), mod(mod) {}
 T fib(T x) {
   fill(all(sts), 0);
   a = 0, b = 0, c = 0, d = 0;
   fast_doubling(x, sts);
   return sts[0];
  }
  void fast_doubling(T n, vector<T>& res) {
   if (n == 0) {
     res[0] = 0;
     res[1] = 1;
      return:
    fast_doubling(n >> 1, res);
    a = res[0];
   b = res[1]:
    c = (b << 1) - a;
   if (c < 0) c += mod;
    c = (a * c) \% mod:
    d = (a * a + b * b) \% mod:
   if (n & 1) {
     res[0] = d;
     res[1] = c + d;
   } else {
     res[0] = c:
      res[1] = d;
```

```
}
};
```

6.7 Fast Exp Iterative

```
11 fast_exp_it(ll a, ll n, ll mod = LLONG_MAX) {
   a %= mod;
   ll res = 1;

while (n) {
   if (n & 1) (res *= a) %= mod;

      (a *= a) %= mod;
      n >>= 1;
   }

return res;
}
```

6.8 Fast Exp

```
11 fast_exp(11 a, 11 n, 11 mod = LLONG_MAX) {
   if (n == 0) return 1;
   if (n == 1) return a;

11 x = fast_exp(a, n / 2, mod) % mod;
   return ((x * x) % mod * (n & 1 ? a : 111)) % mod;
}
```

6.9 Fast Fourier Transform (FFT)

```
Time: O(N \cdot \log N)
using cd = complex <double >;
const double PI = acos(-1):
void fft(vector < cd > & a, bool invert) {
  int n = a.size():
  for (int i = 1, j = 0; i < n; i++) {
    int bit = n >> 1:
    for (; j & bit; bit >>= 1) j ^= bit;
    j ^= bit;
    if (i < j) swap(a[i], a[i]);</pre>
  for (int len = 2; len <= n; len <<= 1) {
    double ang = 2 * PI / len * (invert ? -1 : 1);
    cd wlen(cos(ang), sin(ang));
    for (int i = 0; i < n; i += len) {</pre>
      cd w(1):
      for (int j = 0; j < len / 2; j++) {
        cd u = a[i + j], v = a[i + j + len / 2] * w;
        a[i + j] = u + v;
        a[i + j + len / 2] = u - v;
```

```
w *= wlen;
}
}
if (invert) {
  for (cd& x : a) x /= n;
}

void fft_2d(vector<vector<cd>>& V, bool invert) {
  for (int i = 0; i < V.size(); i++) fft(V[i], invert);
  for (int i = 0; i < V.front().size(); i++) {
    vector<cd> col(V.size());
    for (int k = 0; k < V.size(); k++) col[k] = V[k][i];
    fft(col, invert);
    for (int k = 0; k < V.size(); k++) V[k][i] = col[k];
}
</pre>
```

6.10 GCD

The Euclidean algorithm allows to find the greatest common divisor of two numbers a and b in $O(\log \cdot \min(a, b))$.

11 gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; }

6.11 Integer Mod

```
const ll INF = 1e18:
const 11 mod = 998244353;
template <11 MOD = mod>
struct Modular {
  ll value:
  static const 11 MOD_value = MOD;
  Modular(11 v = 0) {
    value = v % MOD:
    if (value < 0) value += MOD;</pre>
  Modular(ll a, ll b) : value(0) {
    *this += a:
    *this /= b;
  Modular& operator+=(Modular const& b) {
    value += b.value:
    if (value >= MOD) value -= MOD:
    return *this;
  Modular& operator -= (Modular const& b) {
    value -= b.value;
    if (value < 0) value += MOD:</pre>
    return *this;
```

```
Modular& operator*=(Modular const& b) {
    value = (11)value * b.value % MOD:
    return *this;
  friend Modular mexp(Modular a, ll e) {
    Modular res = 1:
    while (e) {
      if (e & 1) res *= a:
      a *= a:
      e >>= 1;
    return res;
  friend Modular inverse(Modular a) { return mexp(a. MOD - 2); }
  Modular& operator/=(Modular const& b) { return *this *= inverse(b): }
  friend Modular operator+(Modular a, Modular const b) { return a += b; }
  Modular operator++(int) { return this->value = (this->value + 1) % MOD; }
  Modular operator++() { return this->value = (this->value + 1) % MOD; }
  friend Modular operator-(Modular a, Modular const b) { return a -= b; }
  friend Modular operator - (Modular const a) { return 0 - a; }
  Modular operator -- (int) {
    return this->value = (this->value - 1 + MOD) % MOD;
  Modular operator -- () { return this -> value = (this -> value - 1 + MOD) % MOD; }
  friend Modular operator*(Modular a. Modular const b) { return a *= b: }
  friend Modular operator/(Modular a, Modular const b) { return a /= b; }
  friend std::ostream& operator << (std::ostream& os, Modular const& a) {
    return os << a.value:
  friend bool operator == (Modular const& a, Modular const& b) {
    return a.value == b.value:
  friend bool operator!=(Modular const& a, Modular const& b) {
    return a.value != b.value:
  }
};
       Is prime
6.12
O(\sqrt{N})
bool isprime(ll n) {
  if (n < 2) return false;
  if (n == 2) return true:
  if (n % 2 == 0) return false:
  for (11 i = 3; i * i <= n; i += 2)
    if (n % i == 0) return false:
  return true;
```

6.13 LCM

Calculating the least common multiple (commonly denoted LCM) can be reduced to calculating the GCD with the following simple formula: $lcm(a, b) = (a \cdot b)/gcd(a, b)$

Thus, LCM can be calculated using the Euclidean algorithm with the same time complexity:

```
11 lcm(ll a, ll b) { return a / gcd(a, b) * b; }
6.14 Euler phi \varphi(n)
Computes the number of positive integers less than n that are co-primes with n, in O(\sqrt{N}).
11 phi(11 n) {
  if (n == 1) return 1;
  auto fs = factorization(n);
  auto res = n:
  for (auto [p, k] : fs) {
   res /= p;
    res *= (p - 1);
  return res;
6.15 Sieve
vl sieve(ll N) {
  bitset < MAX + 1> sieve:
  vl ps{2, 3};
  sieve.set():
  for (11 i = 5, step = 2; i <= N; i += step, step = 6 - step) {
    if (sieve[i]) {
      ps.push back(i):
      for (ll i = i * i; i \le N; i += 2 * i) sieve[i] = false;
  }
  return ps;
6.16 Sum Divisors
11 sum_divisors(11 num) {
  11 result = 1:
  for (int i = 2; (11)i * i <= num; i++) {
    if (num % i == 0) {
      int e = 0:
      do {
        e++:
        num /= i;
      } while (num % i == 0):
      11 \text{ sum} = 0, \text{ pow} = 1;
      do {
        sum += pow;
        pow *= i;
      } while (e-- > 0):
```

result *= sum;

```
}
if (num > 1) {
   result *= (1 + num);
}
return result;
```

6.17 Sum of difference

```
Function to calculate sum of absolute difference of all pairs in array: \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} |A_i - A_j| ll sum_of_diference(vl& arr, ll n) { sort(all(arr));} ll sum = 0; for (ll i = 0; i < n; i++) { sum += i * arr[i] - (n - 1 - i) * arr[i]; } return sum;}
```

7 Problems

7.1 Kth Digit String (CSES)

```
Time: O(\log_{10} K).
Space: O(1).
ll kth_digit_string(ll k) {
  if (k < 10) return k;</pre>
  11 c = 180, i = 2, u = 10, r = 0, ans = -1, m:
  for (k -= 9; k > c; i++, u *= 10) {
   k -= c:
    c /= i:
    c *= 10 * (i + 1);
  if ((m = k \% i))
    r++:
  else
   m = i;
  11 \text{ tmp} = (k / i) + r + u - 1;
  for (m = i + 1 - m; m--; tmp /= 10) ans = tmp % 10;
  return ans;
```

7.2 Longest Common Substring (LONGCS - SPOJ)

```
Time: N = \sum_{i=1}^k |S_i|; O(N \cdot \log N) int lcs_ks_strings(vector<string>& sts, int k) { vector<int> fml; string t;
```

```
for (int i = 0; i < k; i++) {</pre>
    t += sts[i]:
    for (int j = 0; j < sts[i].size(); j++) fml.push_back(i);</pre>
  suffix_array sf(t);
  sf.lcp.insert(sf.lcp.begin(), 0);
  int 1 = 0, r = 0, cnt = 0, lcs = 0, n = sf.sa.size();
  vector < int > fr(k + 1):
  multiset < int > mst;
  while (1 < n) {
    while (r < n and cnt < k) {</pre>
      mst.insert(sf.lcp[r]);
      if (!fr[fml[sf.sa[r]]]++) cnt++;
      r++;
    mst.erase(mst.find(sf.lcp[1]));
    if (mst.size() and cnt == k) lcs = max(lcs, *mst.begin());
    fr[fml[sf.sa[1]]]--;
    if (!fr[fml[sf.sa[1]]) cnt--;
    1++:
  }
  return lcs;
      Substring Order II (CSES)
Time: O(M)
M = 2 \cdot N - 1
N = |S|
// ALLOWS REPETITIONS
string kth_smallest_substring(const string& s, 11 k) {
 /* uses /strings/suffix-automaton.cpp
  add 'cnt' and 'nmb' to state struct with (0. -1):
      => for new states 'not cloned': cnt = 1
  create 'order' vector to iterate by length in decreasing
  vector < pair < int , int >>: {len , id}
      => for each new state add to 'order' vector
  to do not allow repetitions:
      => remove: kth+=s.size, sort(order) for(1, p : order)
      => add: st[clone].cnt = 1 (sa_extend)
  string ans;
  k += s.size();
  SuffixAutomaton sa(s):
  sort(all(order), greater<pair<int, int>>());
  // count and mark how many times a substring of a state occurs
  for (auto& [1, p] : order) sa.st[sa.st[p].link].cnt += sa.st[p].cnt;
  auto dfs = [&](auto&& self. int u) {
    if (sa.st[u].nmb != -1) return;
```

```
sa.st[u].nmb = sa.st[u].cnt;
  for (int i = 0: i < 26: ++i) {
    if (sa.st[u].next[i]) {
      self(self. sa.st[u].next[i]):
      sa.st[u].cnt += sa.st[sa.st[u].next[i]].cnt;
  }
};
dfs(dfs, 0);
int u = 0;
while (sa.st[u].nmb < k) {</pre>
  k -= sa.st[u].nmb:
  for (int i = 0; i < 26; i++) {</pre>
    if (sa.st[u].next[i]) {
      int v = sa.st[u].next[i];
      if (sa.st[v].cnt < k)</pre>
        k -= sa.st[v].cnt;
      else {
        ans.push_back(i + 'a');
        u = v;
        break;
      }
return ans:
```

8 Strings

8.1 Aho-Corasick

The Aho-Corasick algorithm allows us to quickly search for multiple patterns in a text. The set of pattern strings is also called a *dictionary*. We will denote the total length of its constituent strings by m and the size of the alphabet by k.

```
build: O(m \cdot k)
occurrences: O(|s| + ans)
const int K = 26:
struct Vertex {
  char pch;
  int next[K]:
  bool check = false;
  int p = -1, lnk = -1, out = -1, ps = -1, d = 0;
  Vertex(int p = -1, char ch = '\$') : p(p), pch(ch) {
    fill(begin(next), end(next), -1);
  }
};
class AhoCorasick {
 public:
  int sz = 0; // number of strings added
  vector < Vertex > t;
```

```
AhoCorasick(): t(1) {}
void add_string(string const& s) {
  int v = 0. ds = 0:
  for (char ch : s) {
    int c = ch - 'a';
    if (t[v].next[c] == -1) {
      t[v].next[c] = t.size();
      t.emplace_back(v, ch);
    v = t[v].next[c];
    t[v].d = ++ds;
  t[v].check = true;
  t[v].ps = sz++;
void build() {
  queue < int > qs;
  qs.push(0);
  while (qs.size()) {
    auto u = qs.front();
    qs.pop();
    if (!t[u].p or t[u].p == -1)
      t[u].lnk = 0:
    else {
      int k = t[t[u].p].lnk;
      int c = t[u].pch - 'a';
      while (t[k].next[c] == -1 \text{ and } k) k = t[k].lnk;
      int ts = t[k].next[c]:
      if (ts == -1)
        t[u].lnk = 0;
      else
        t[u].lnk = ts;
    if (t[t[u].lnk].check)
      t[u].out = t[u].lnk;
      t[u].out = t[t[u].lnk].out:
    for (auto v : t[u].next)
      if (v != -1) qs.push(v);
}
void occurrences(string const& s, vector<vector<int>>& res) {
  // to just "count" replace 'res' vector with an int
  res.resize(sz):
  for (int i = 0, v = 0; i < s.size(); i++) {</pre>
    int c = s[i] - a':
    while (t[v].next[c] == -1 \text{ and } v) v = t[v].lnk;
    int ts = t[v].next[c];
    if (ts == -1)
      continue;
      v = t[v].next[c]:
```

```
int k = v;
while (t[k].out != -1) {
    k = t[k].out;
    res[t[k].ps].emplace_back(i - t[k].d + 1);
}
if (t[v].check) res[t[v].ps].emplace_back(i - t[v].d + 1);
}
};
```

8.2 Edit Distance

Returns the minimum number of operations (insert, delete, replace) to transform string a into string b. Time: O(M*N)

```
int min_value(int x, int y, int z) { return min(min(x, y), z); }
int edit_distance(string str1, string str2) {
   int n = (int)str1.size(), m = (int)str2.size();
   int dp[m + 1][n + 1];

for (int i = 0; i <= m; i++)
   for (int j = 0; j <= n; j++)
      if (i == 0)
        dp[i][j] = j;
   else if (j == 0)
        dp[i][j] = i;
   else if (str1[i - 1] == str2[j - 1])
        dp[i][j] = dp[i - 1][j - 1];
   else
        dp[i][j] = 1 + min_value(dp[i][j - 1], dp[i - 1][j], dp[i - 1][j - 1])
   ;

   return dp[m][n];
}</pre>
```

8.3 LCP with Suffix Array

For a given string s we want to compute the longest common prefix (LCP) of two arbitrary suffixes with position i and j. In fact, let the request be to compute the LCP of the suffixes p[i] and p[j]. Then the answer to this query will be $\min(lcp[i], lcp[i+1], \ldots, lcp[j-1])$. Thus the problem is reduced to the RMQ. Time: O(N).

```
vector<int> lcp_suffix_array(string const& s, vector<int> const& p) {
  int n = s.size();
  vector<int> rank(n, 0);
  for (int i = 0; i < n; i++) rank[p[i]] = i;

int k = 0;
  vector<int> lcp(n - 1, 0);
  for (int i = 0; i < n; i++) {
    if (rank[i] == n - 1) {
        k = 0;
        continue;
    }
    int j = p[rank[i] + 1];</pre>
```

```
while (i + k < n && j + k < n && s[i + k] == s[j + k]) k++;
lcp[rank[i]] = k;
if (k) k--;
}
return lcp;
}</pre>
```

8.4 Manacher

Given string s with length n. Find all the pairs (i, j) such that substring $s[i \dots j]$ is a palindrome. String t is a palindrome when $t = t_{rev}$ (t_{rev} is a reversed string for t). Time: O(N)

```
vi manacher(string s) {
   string t;
   for (auto c : s) t += string("#") + c;
   t = t + '#';

int n = t.size();
   t = "$" + t + "^";

vi p(n + 2);
   int l = 1, r = 1;
   for (int i = 1; i <= n; i++) {
      p[i] = max(0, min(r - i, p[l + (r - i)]));
      while (t[i - p[i]] == t[i + p[i]]) p[i]++;
      if (i + p[i] > r) {
        l = i - p[i], r = i + p[i];
      }
      p[i]--;
   }

return vi(begin(p) + 1, end(p) - 1);
}
```

8.5 Rabin Karp

```
vector < int > rabin_karp(string const& s, string const& t) {
   const int p = 31;
   const int m = 1e9 + 9;
   int S = s.size(), T = t.size();

   vector < long long > p_pow(max(S, T));
   p_pow[0] = 1;
   for (int i = 1; i < (int)p_pow.size(); i++) p_pow[i] = (p_pow[i - 1] * p) %
        m;

   vector < long long > h(T + 1, 0);
   for (int i = 0; i < T; i++)
        h[i + 1] = (h[i] + (t[i] - 'a' + 1) * p_pow[i]) % m;
   long long h_s = 0;
   for (int i = 0; i < S; i++) h_s = (h_s + (s[i] - 'a' + 1) * p_pow[i]) % m;

   vector < int > occurrences;
   for (int i = 0; i + S - 1 < T; i++) {
        long long cur_h = (h[i + S] + m - h[i]) % m;
   }
}</pre>
```

```
if (cur_h == h_s * p_pow[i] % m) occurrences.push_back(i);
  return occurrences:
     Suffix Array Optimized - O(n)
Suffix Array: sa
Rank for LCP: rnk
LCP: lcp
Time: O(N).
// @brunomaletta
struct suffix_array {
  string s;
  int n:
  vector < int > sa, cnt, rnk, lcp;
  rmq<int> RMQ; // /data-structures/rmq.cpp
  bool cmp(int a1, int b1, int a2, int b2, int a3 = 0, int b3 = 0) {
    return a1 != b1 ? a1 < b1 : (a2 != b2 ? a2 < b2 : a3 < b3):
  template <typename T>
  void radix(int* fr, int* to, T* r, int N, int k) {
    cnt = vector < int > (k + 1, 0);
    for (int i = 0: i < N: i++) cnt[r[fr[i]]]++:</pre>
    for (int i = 1; i <= k; i++) cnt[i] += cnt[i - 1];
    for (int i = N - 1; i + 1; i--) to[--cnt[r[fr[i]]]] = fr[i];
  void rec(vector<int>& v. int k) {
    auto &tmp = rnk, &m0 = lcp;
    int N = v.size() - 3, sz = (N + 2) / 3, sz2 = sz + N / 3;
    vector < int > R(sz2 + 3):
    for (int i = 1, j = 0; j < sz2; i += i % 3) R[j++] = i;
    radix(&R[0], &tmp[0], &v[0] + 2, sz2, k);
    radix(\&tmp[0], \&R[0], \&v[0] + 1, sz2, k);
    radix(&R[0], &tmp[0], &v[0] + 0, sz2, k);
    int dif = 0:
    int 10 = -1, 11 = -1, 12 = -1;
    for (int i = 0; i < sz2; i++) {</pre>
      if (v[tmp[i]] != 10 or v[tmp[i] + 1] != 11 or v[tmp[i] + 2] != 12)
        10 = v[tmp[i]], 11 = v[tmp[i] + 1], 12 = v[tmp[i] + 2], dif++;
      if (tmp[i] \% 3 == 1)
        R[tmp[i] / 3] = dif;
      else
        R[tmp[i] / 3 + sz] = dif;
    }
    if (dif < sz2) {</pre>
      rec(R, dif);
      for (int i = 0; i < sz2; i++) R[sa[i]] = i + 1;</pre>
      for (int i = 0; i < sz2; i++) sa[R[i] - 1] = i;</pre>
```

```
for (int i = 0, j = 0; j < sz2; i++)
      if (sa[i] < sz) tmp[j++] = 3 * sa[i];
    radix(&tmp[0], &m0[0], &v[0], sz, k);
    for (int i = 0; i < sz2; i++)</pre>
      sa[i] = sa[i] < sz ? 3 * sa[i] + 1 : 3 * (sa[i] - sz) + 2;
    int at = sz2 + sz - 1, p = sz - 1, p2 = sz2 - 1;
    while (p \ge 0 \text{ and } p2 \ge 0) {
     if ((sa[p2] % 3 == 1 and
           cmp(v[m0[p]], v[sa[p2]], R[m0[p] / 3], R[sa[p2] / 3 + sz])) or
          (sa[p2] \% 3 == 2 and
           cmp(v[m0[p]], v[sa[p2]], v[m0[p] + 1], v[sa[p2] + 1],
               R[m0[p] / 3 + sz], R[sa[p2] / 3 + 1])))
        sa[at--] = sa[p2--];
      else
        sa[at--] = m0[p--];
    while (p >= 0) sa[at--] = m0[p--];
    if (N \% 3 == 1)
      for (int i = 0; i < N; i++) sa[i] = sa[i + 1];</pre>
  }
  suffix array(const string& s)
    s(s_{-}), n(s.size()), sa(n + 3), cnt(n + 1), rnk(n), lcp(n - 1) {
    vector < int > v(n + 3);
    for (int i = 0: i < n: i++) v[i] = i:
    radix(&v[0], &rnk[0], &s[0], n, 256);
    int dif = 1:
    for (int i = 0; i < n; i++)</pre>
     v[rnk[i]] = dif += (i and s[rnk[i]] != s[rnk[i - 1]]);
    if (n \ge 2) rec(v, dif);
    sa.resize(n);
    for (int i = 0; i < n; i++) rnk[sa[i]] = i;
    for (int i = 0, k = 0; i < n; i++, k -= !!k) {
     if (rnk[i] == n - 1) {
        k = 0:
        continue;
      int j = sa[rnk[i] + 1];
      while (i + k < n \text{ and } j + k < n \text{ and } s[i + k] == s[j + k]) k++;
      lcp[rnk[i]] = k;
    RMQ = rmq < int > (lcp);
  int query(int i, int j) {
   if (i == j) return n - i;
   i = rnk[i], j = rnk[j];
    return RMQ.query(min(i, j), max(i, j) - 1);
 }
};
```

8.7 Suffix Array

Let s be a string of length n. The i-th suffix of s is the substring $s[i \dots n-1]$. A suffix array will contain integers that represent the starting indexes of the all the suffixes of a given

```
string, after the aforementioned suffixes are sorted.
Time: O(N \log N).
vector<int> sort_cyclic_shifts(string const& s) {
  int n = s.size();
  const int alphabet = 128;
  vector < int > p(n), c(n), cnt(max(alphabet, n), 0);
  for (int i = 0; i < n; i++) cnt[s[i]]++;</pre>
  for (int i = 1; i < alphabet; i++) cnt[i] += cnt[i - 1];</pre>
  for (int i = 0; i < n; i++) p[--cnt[s[i]]] = i;</pre>
  c[p[0]] = 0;
  int classes = 1;
  for (int i = 1; i < n; i++) {</pre>
   if (s[p[i]] != s[p[i - 1]]) classes++;
    c[p[i]] = classes - 1;
  vector < int > pn(n), cn(n);
  for (int h = 0; (1 << h) < n; ++h) {
    for (int i = 0: i < n: i++) {
      pn[i] = p[i] - (1 << h);
      if (pn[i] < 0) pn[i] += n;</pre>
    fill(cnt.begin(), cnt.begin() + classes, 0);
    for (int i = 0; i < n; i++) cnt[c[pn[i]]]++;</pre>
    for (int i = 1; i < classes; i++) cnt[i] += cnt[i - 1];</pre>
    for (int i = n - 1; i >= 0; i--) p[--cnt[c[pn[i]]]] = pn[i];
    cn[p[0]] = 0:
    classes = 1;
    for (int i = 1; i < n; i++) {</pre>
      pair < int , int > cur = {c[p[i]], c[(p[i] + (1 << h)) % n]};</pre>
      pair < int, int > prev = \{c[p[i - 1]], c[(p[i - 1] + (1 << h)) % n]\};
      if (cur != prev) ++classes:
      cn[p[i]] = classes - 1;
    c.swap(cn);
  return p;
vector<int> suffix_array(string s) {
  s += "$";
  vector < int > p = sort_cyclic_shifts(s);
  p.erase(p.begin());
  return p;
      Suffix Automaton
class SuffixAutomaton {
 public:
  struct state {
   int len. link:
```

```
array < int, 26 > next;
};
```

```
vector < state > st:
int sz = 0, last;
SuffixAutomaton(const string& s) : st(s.size() << 1) {
  sa init():
 for (auto v : s) sa_extend((int)(v - 'a'));
void sa init() {
  st[0].len = 0;
 st[0].link = -1;
  sz++;
 last = 0;
}
void sa extend(int c) {
  int cur = sz++;
  st[cur].len = st[last].len + 1;
 int p = last;
  while (p != -1 && !st[p].next[c]) {
    st[p].next[c] = cur;
    p = st[p].link;
 if (p == -1)
    st[cur].link = 0:
    int q = st[p].next[c];
    if (st[p].len + 1 == st[q].len)
      st[cur].link = q;
    else {
      int clone = sz++;
      st[clone].len = st[p].len + 1;
      st[clone].link = st[a].link:
      st[clone].next = st[q].next;
      while (p != -1 && st[p].next[c] == q) {
        st[p].next[c] = clone;
       p = st[p].link;
      st[q].link = st[cur].link = clone;
 last = cur;
// longest common substring O(N)
int lcs(const string& T) {
 int v = 0, 1 = 0, best = 0;
 for (int i = 0; i < T.size(); i++) {</pre>
    while (v && !st[v].next[T[i] - 'a']) {
     v = st[v].link;
     1 = st[v].len:
    if (st[v].next[T[i] - 'a']) {
      v = st[v].next[T[i] - 'a'];
     1++;
    best = max(best. 1):
```

```
}
  return best;
}
```

8.9 Suffix Tree (CP Algo - freopen)

```
Build: O(N)
Memory: O(N \cdot k)
k = \text{alphabet length}
const int aph = 27; // add $ to final of string
const int N = 2e5 + 31;
class SuffixTree {
public:
    string a;
    vector < array < int , aph >> t;
    vector < int > 1, r, p, s, dst;
    int tv, tp, ts, la, b;
    SuffixTree(const string& str, char bs = 'a') : a(str), t(N), 1(N),
        r(N, str.size() - 1), p(N), s(N), dst(N), b(bs) {
        build();
    }
    void ukkadd(int c) {
    suff::
        if (r[tv] < tp) {</pre>
            if (t[tv][c] == -1) {
                t[tv][c] = ts; l[ts] = la;
                p[ts++] = tv; tv = s[tv]; tp = r[tv] + 1; goto suff;
            tv = t[tv][c]; tp = 1[tv];
        }
        if (tp == -1 || c == a[tp] - b) tp++; else {
            l[ts + 1] = la; p[ts + 1] = ts;
            l[ts] = l[tv]; r[ts] = tp - 1; p[ts] = p[tv];
            t[ts][c] = ts + 1; t[ts][a[tp] - b] = tv; l[tv] = tp;
            p[tv] = ts; t[p[ts]][a[l[ts]] - b] = ts; ts += 2;
            tv = s[p[ts - 2]]; tp = 1[ts - 2];
            while (tp <= r[ts - 2]) {</pre>
                tv = t[tv][a[tp] - b];
                 tp += r[tv] - l[tv] + 1;
            if (tp = r[ts - 2] + 1) s[ts - 2] = tv; else s[ts - 2] = ts;
            tp = r[tv] - (tp - r[ts - 2]) + 2; goto suff;
    }
    void build() {
        ts = 2; tv = 0; tp = 0;
        s[0] = 1; 1[0] = -1; r[0] = -1; 1[1] = -1; r[1] = -1;
        for (auto& arr : t) { arr.fill(-1); } t[1].fill(0);
        for (la = 0; la < (int)a.size(); ++la) ukkadd(a[la] - b);</pre>
    }
};
```

8.10 Z Function

Suppose we are given a string s of length n. The Z-function for this string is an array of length n where the i-th element is equal to the greatest number of characters starting from the position i that coincide with the first characters of s.

Time: O(N)

```
vector < int > z_function(string s) {
   int n = s.size();
   vector < int > z(n);
   int l = 0, r = 0;
   for (int i = 1; i < n; i++) {
      if (i < r) {
        z[i] = min(r - i, z[i - l]);
      }
      while (i + z[i] < n && s[z[i]] == s[i + z[i]]) {
        z[i]++;
      }
   if (i + z[i] > r) {
      l = i;
      r = i + z[i];
   }
}
return z;
}
```

9 Trees

9.1 LCA Binary Lifting (CP Algo)

The algorithm described will need $O(N \cdot \log N)$ for preprocessing the tree, and then $O(\log N)$ for each LCA query.

```
11 n. 1:
vector<ll> adj[MAX];
ll timer:
vector<ll> tin, tout;
vector < vector < ll >> up;
void dfs(ll v, ll p) {
 tin[v] = ++timer;
  up[v][0] = p;
  for (ll i = 1; i <= 1; ++i) up[v][i] = up[up[v][i - 1]][i - 1];
  for (ll u : adj[v]) {
   if (u != p) dfs(u, v);
  tout[v] = ++timer:
bool is_ancestor(ll u, ll v) { return tin[u] <= tin[v] && tout[u] >= tout[v];
   }
11 1ca(11 u. 11 v) {
 if (is_ancestor(u, v)) return u;
  if (is_ancestor(v, u)) return v;
```

```
for (11 i = 1; i >= 0; --i) {
    if (!is_ancestor(up[u][i], v)) u = up[u][i];
}
return up[u][0];
}

void preprocess(ll root) {
    tin.resize(n);
    tout.resize(n);
    timer = 0;
    l = ceil(log2(n));
    up.assign(n, vector<ll>(l + 1));
    dfs(root, root);
}
```

9.2 LCA SegTree (CP Algo)

The algorithm can answer each query in $O(\log N)$ with preprocessing in O(N) time.

```
vector<ll> height, euler, first, segtree;
vector < bool > visited;
11 n;
LCA(vector < vector < 11 >> & adj, ll root = 0) {
  n = adj.size();
  height.resize(n):
  first.resize(n);
  euler.reserve(n * 2):
  visited.assign(n, false);
  dfs(adj, root);
  11 m = euler.size();
  segtree.resize(m * 4);
  build(1, 0, m - 1):
void dfs(vector<vector<11>>& adi. 11 node. 11 h = 0) {
  visited[node] = true;
  height[node] = h;
  first[node] = euler.size():
  euler.push_back(node);
  for (auto to : adj[node]) {
    if (!visited[to]) {
      dfs(adj, to, h + 1);
      euler.push_back(node);
  }
void build(ll node. ll b. ll e) {
  if (b == e) {
    segtree[node] = euler[b];
  } else {
    11 \text{ mid} = (b + e) / 2;
    build(node << 1, b, mid);</pre>
    build(node << 1 | 1, mid + 1, e):
    11 1 = segtree[node << 1], r = segtree[node << 1 | 1];</pre>
    segtree[node] = (height[1] < height[r]) ? 1 : r;</pre>
```

```
11 query(11 node, 11 b, 11 e, 11 L, 11 R) {
    if (b > R || e < L) return -1;
    if (b >= L && e <= R) return segtree[node];</pre>
    11 \text{ mid} = (b + e) >> 1:
    11 left = querv(node << 1, b, mid, L, R):</pre>
    ll right = querv(node << 1 | 1, mid + 1, e, L, R);</pre>
    if (left == -1) return right;
    if (right == -1) return left;
    return height[left] < height[right] ? left : right;</pre>
  }
  11 lca(11 u, 11 v) {
    ll left = first[u], right = first[v];
    if (left > right) swap(left, right);
    return query(1, 0, euler.size() - 1, left, right);
 }
};
```

9.3 LCA Sparse Table

The algorithm described will need O(N) for preprocessing, and then O(1) for each LCA query. 0 indexed!

```
typedef vector < vl> vl2d;
#define all(a) a.begin(), a.end()
#define len(x) (int)x.size()
template <typename T>
struct SparseTable {
  vector <T> v:
  static const 11 b = 30;
  vl mask, t:
  11 op(11 x, 11 y) { return v[x] < v[y] ? x : y; }</pre>
  11 msb(11 x) { return builtin clz(1) - builtin clz(x): }
  SparseTable() {}
  SparseTable(const vectorT \ge v_1): v(v_1), v(v_2), v(v_3), v(v_3)
   for (ll i = 0, at = 0; i < n; mask[i++] = at |= 1) {
      at = (at << 1) & ((1 << b) - 1);
      while (at and op(i, i - msb(at & -at)) == i) at ^= at & -at;
    for (11 i = 0: i < n / b: i++)
     t[i] = b * i + b - 1 - msb(mask[b * i + b - 1]);
   for (ll j = 1; (1 << j) <= n / b; j++)
     for (ll i = 0; i + (1 << i) <= n / b; i++)
       t[n / b * i + i] =
          op(t[n / b * (j - 1) + i], t[n / b * (j - 1) + i + (1 << (j - 1))]);
  ll small(ll r, ll sz = b) { return r - msb(mask[r] & ((1 << sz) - 1)); }
 T query(11 1, 11 r) {
   if (r - l + 1 \le b) return small(r, r - l + 1):
   ll ans = op(small(l + b - 1), small(r));
   11 x = 1 / b + 1, y = r / b - 1;
```

```
if (x \le y) {
      11 j = msb(y - x + 1);
      ans = op(ans, op(t[n / b * j + x], t[n / b * j + y - (1 << j) + 1]));
    return ans;
 }
};
struct LCA {
  SparseTable <11> st:
  11 n;
  vl v, pos, dep;
  LCA(const v12d& g, ll root) : n(len(g)), pos(n) {
    dfs(root, 0, -1, g);
    st = SparseTable < 11 > (vector < 11 > (all (dep)));
  void dfs(ll i, ll d, ll p, const vl2d& g) {
    v.emplace_back(len(dep)) = i, pos[i] = len(dep), dep.emplace_back(d);
    for (auto j : g[i])
      if (j != p) {
        dfs(j, d + 1, i, g);
        v.emplace_back(len(dep)) = i, dep.emplace_back(d);
  }
  11 1ca(11 a. 11 b) {
    11 1 = min(pos[a], pos[b]);
    ll r = max(pos[a], pos[b]);
    return v[st.query(1, r)];
  11 dist(ll a, ll b) {
    return dep[pos[a]] + dep[pos[b]] - 2 * dep[pos[lca(a, b)]];
};
      Tree Flatten
vll tree_flatten(ll root) {
  vl pre;
  pre.reserve(N);
  vll flat(N):
  11 timer = -1;
  auto dfs = [&](auto&& self, ll u, ll p) -> void {
    pre.push_back(u);
    for (auto [v, w] : adj[u])
     if (v != p) {
        self(self, v, u);
    flat[u].second = timer;
```

dfs(dfs, root, -1);

return flat:

for (11 i = 0; i < (11)N; i++) flat[pre[i]].first = i;</pre>

9.5 Tree Isomorph

}

Checks whether two tree are isomorph. The function thash() returns the hash of the tree (using centroids as special vertices). Two trees are isomorph if their hash are the same.

```
map < vector < int > , int > mphash;
struct tree {
 int n:
  vector < vector < int >> g;
  vector < int > sz, cs;
  tree(int n_{-}): n(n_{-}), g(n_{-}), sz(n_{-}) {}
  void dfs_centroid(int v, int p) {
    sz[v] = 1:
    bool cent = true;
    for (int u : g[v])
     if (u != p) {
        dfs_centroid(u, v), sz[v] += sz[u];
        if (sz[u] > n / 2) cent = false;
    if (cent and n - sz[v] <= n / 2) cs.push_back(v);</pre>
  int fhash(int v, int p) {
    vector < int > h:
    for (int u : g[v])
      if (u != p) h.push_back(fhash(u, v));
    sort(h.begin(), h.end());
    if (!mphash.count(h)) mphash[h] = mphash.size();
    return mphash[h];
  ll thash() {
    cs.clear();
    dfs_centroid(0, -1);
    if (cs.size() == 1) return fhash(cs[0], -1);
    11 h1 = fhash(cs[0], cs[1]), h2 = fhash(cs[1], cs[0]);
    return (min(h1, h2) << 30) + max(h1, h2);
  void add(int a, int b) {
    g[a].emplace_back(b);
    g[b].emplace_back(a);
};
```

10 Settings and macros

10.1 short-macro.cpp

```
#include <bits/stdc++.h>
using namespace std;
#ifdef DEBUG
#include "./settings-and-macros/debug.cpp"
```

```
#else
#define dbg(...)
#endif
typedef long long 11;
typedef pair <int, int > ii;
#define all(x) x.begin(), x.end()
#define vin(vt) for (auto &e : vt) cin >> e
auto solve() { }
int main() {
    ios_base::sync_with_stdio(0);
   cin.tie(0);
   11 t = 1:
   //cin >> t;
   while (t--) solve();
   return 0;
10.2
       macro.cpp
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
#define ordered_set tree<int, null_type, less<int>, rb_tree_tag,
   tree_order_statistics_node_update>
using namespace std;
#ifdef DEBUG
#include "./settings-and-macros/debug.cpp"
#else
#define dbg(...)
#endif
typedef long long 11;
typedef pair<int, int> pii;
typedef pair<11, 11> pll;
typedef vector<int> vi;
typedef vector<11> v1;
typedef vector<pii> vii;
typedef vector<pll> vll;
#define fst first
#define snd second
#define all(x) x.begin(), x.end()
#define len(vt) (int)vt.size()
#define vin(vt) for (auto &e : vt) cin >> e
#define LSOne(S) ((S) & -(S))
#define MSOne(S) (1ull << (63 - __builtin_clzll(S)))</pre>
#define fastio ios_base::sync_with_stdio(0); \
```

```
cin.tie(0); \
    cout.tie(0)

const vii dir4 {{1,0},{-1,0},{0,1},{0,-1}};

auto solve() { }

int main() {
    fastio;

    ll t = 1;
    //cin >> t;

    while (t--) solve();

    return 0;
}
```

11 Theoretical guide

11.1 Notable Series

1. Sum of the first n naturals:

$$S_n = \sum_{i=1}^n i = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

2. Sum of the squares of the first n naturals:

$$S_n = \sum_{i=1}^n i^2 = 1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

3. Sum of the cubes of the first natural n:

$$S_n = \sum_{i=1}^n i^3 = 1^3 + 2^3 + 3^3 + \dots + n^3 = \left[\frac{n(n+1)}{2}\right]^2$$

4. Sum of the first n odd numbers:

$$S_n = \sum_{i=1}^n 2i - 1 = 1 + 3 + 5 + \dots + (2n-1) = n^2$$

11.2 Number of Different Substrings

$$\sum_{i=0}^{n-1} (n - p[i]) - \sum_{i=0}^{n-2} lcp[i] = \frac{n^2 + n}{2} - \sum_{i=0}^{n-2} lcp[i]$$

11.3 Exponent With Module

If a and m are coprime, then

$$a^n \equiv a^{n \mod \phi(m)} \mod m$$

Generally, if $n \geq \log_2 m$, then

$$a^n = a^{\phi(m) + [n \mod \phi(m)]} \mod m$$

11.4 String Matching with FFT

We are given two strings, a text T and a pattern P, consisting of lowercase letters. We have to compute all the occurrences of the pattern in the text.

We create a polynomial for each string (T[i] and P[i] are numbers between 0 and 25 corresponding to the 26 letters of the alphabet):

$$A(x) = a_0 x^0 + a_1 x^1 + \dots + a_{n-1} x^{n-1}, \quad n = |T|$$

with

$$a_i = \cos(\alpha_i) + i\sin(\alpha_i), \quad \alpha_i = \frac{2\pi T[i]}{26}$$

And

$$B(x) = b_0 x^0 + b_1 x^1 + \dots + b_{m-1} x^{m-1}, \quad m = |P|$$

with

$$b_i = \cos(\beta_i) - i\sin(\beta_i), \quad \beta_i = \frac{2\pi P[m - i - 1]}{26}$$

Notice that with the expression P[m-i-1] explicitly reverses the pattern.

The (m-1+i)th coefficients of the product of the two polynomials $C(x) = A(x) \cdot B(x)$ will tell us, if the pattern appears in the text at position i.

If there isn't a match, then at least a character is different, which leads that one of the products $a_{i+1} \cdot b_{m-1-i}$ is not equal to 1, which leads to the coefficient $c_{m-1+i} \neq m$.

11.4.1 Wildcards

This is an extension of the previous problem. This time we allow that the pattern contains the wildcard character *, which can match every possible letter.

We create the exact same polynomials, except that we set $b_i = 0$ if P[m-i-1] = *. If x is the number of wildcards in P, then we will have a match of P in T at index i if $c_{m-1+i} = m-x$.

11.5 Pick's Theorem

Pick's Theorem expresses the area of a polygon, all whose vertices are lattice (integers) points in a coordinate plane, in terms of the number of lattice points inside the polygon and the number of lattice points on the sides (boundaries) of the polygon.

$$A = I + \frac{B}{2} - 1$$

- A: area of the polygon
- I: points inside the polygon
- B: points on the sides (boundaries)

It is possible to easily calculate the number of points on the sides of a side AB. Consider $x = (x_1 - x_2)$ and $y = (y_1 - y_2)$. If x = 0 or y = 0, the answer is 1D and trivial (i.e. x + 1 or y + 1). Otherwise, the answer is gcd(a, b) + 1.

11.6 Modular Multiplicative Inverse

A modular multiplicative inverse of an integer a is an integer x such that $a \cdot x$ is congruent to 1 modular some modulus m. To write it in a formal way:

$$a \cdot x \equiv 1 \mod m$$
.

Euler's theorem, which states that the following congruence is true if a and m are co-primes:

$$a^{\phi(m)} \equiv 1 \mod m$$

Multiply both sides of the above equations by a^{-1} , and we get:

- For an arbitrary (but coprime) modulus $m: a^{\phi(m)-1} \equiv a^{-1} \mod m$
- For a prime modulus m: $a^{m-2} \equiv a^{-1} \mod m$

From these results, we can easily find the modular inverse using the binary exponentiation algorithm, which works in $O(\log m)$ time.