Data Mining

2017. 3. 24.

김영철

모델평가방법과수치

Notes on Overfitting

- Model overfitting
 - 트레이닝 데이터에 딱 맞는 분 류 방법을 택하여 일반 데이터 에 대한 에러율이 증가

Estimating Generalization Errors

- Optimistic approach
 Generalization error = training error rate
- Pessimistic approach

 Generalization error = $\frac{e(T)+N*penalty\ terms}{N}$ ex) 30 leaf nodes, 10 error on 1000 instances
 generalization error = (10+30*0.5)/1000 = 2.5%
- Reduced error pruning (REP) validation data set을 사용하여 측정

Occam's Razor

• 모델의 복잡도가 클수록 Overfitting의 확률이 증가한다.

• generalization error가 비슷한 두 모델이 주어졌을 때, 복잡도가 작은 분류 모델을 선택하는 것이 더 좋다.

• 모델을 평가할 때 모델의 복잡도를 포함해야 한다.

Minimum Description Length (MDL)

X	у	Yes No	V	
X ₁	1	0 B?	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	у Э
X ₂	0	B_1 B_2	^ 1	?
X ₃	0	C? 1	X ₂	
X_4	1	$A \qquad c_1 \qquad c_2 \qquad B$	X ₃	?
			X ₄	?
Χ.,	1			
Λn	'		X _n	?

- Cost(Model, Data) = Cost(Model) + Cost(Data|Model)
 - Cost(Model): 모델을 인코딩하는 비용
 - Cost(Data|Model): 레이블이 잘못된 레코드들을 인코딩하는 비용

Methods of Estimation

- Holdout
 샘플 데이터에서 일부는 테스트 나머지는 트레이닝
- Random subsampling Holdout을 반복
- Cross validation
 샘플 데이터를 k개의 파티션으로 분할
 k-fold : k-1개 training, 1개 test
- .632 bootstrap

Metrics for Performance Evaluation

• 분류 모델의 새로운 데이터에 대한 예측 능력에 집중

		PREDICTED CLASS		
		Class=Yes	Class=No	
ACTUAL	Class=Yes	а	b	
CLASS	Class=No	С	d	

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

$$Accuracy = \frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

$$Error\ rate = \frac{b+c}{a+b+c+d}$$

Limitation of Accuracy

- OpenSSL 두 개의 버전 간에 대한 함수 유사도 분석
 - 이름이 같은 함수 쌍의 수(Class 0) = 약 2,000개
 - 이름이 다른 함수 쌍의 수(Class 1) = 약 3,000,000개
- 분류 모델이 모든 함수 쌍에 대하여 Class 1로 판정한다고 하면, accuracy = 3000000/3002000 = 99.93%
 - 상황에 따라 Accuracy의 수치가 쓸모가 없다.
 - Class 0에 대해서는 탐지할 수가 없다.

Computing Cost of Classification

Cost Matrix	PREDICTED CLASS		
	C(i j)	+	-
ACTUAL CLASS	+	-1	100
CLAGG	-	1	0

C(i|j) : class i를 class j로 잘못 분류하 는 비용

Model M ₁	PREDICTED CLASS		
		+	-
ACTUAL CLASS	+	150	40
OLAGO	-	60	250

Model M ₂	PREDICTED CLASS		
		+	•
ACTUAL CLASS	+	250	45
OLAGO	-	5	200

 M_2 모델이 Accuracy가 높지만 Cost 는 M_1 모델이 더 좋음

Accuracy = 80%

Cost = 3910

Accuracy = 90%

Cost = 4255

Cost-Sensitive Measures

$$Precision(p) = \frac{TP}{TP + FP}$$
 $Recall(r) = \frac{TP}{TP + FN}$

$$F - measure = \frac{2rp}{r+p} = \frac{2TP}{2*TP + FP + FN}$$

- Precision : positive 판별 중에 올바른 판별의 비율
- Recall : 실제의 positive 중에서 positive로 판별한 비율
- F-measure : Precision과 Recall의 조화 평균

ROC (Receiver Operating Characteristic)

- 신호 탐지 분야에서 개발됨
- ROC curve : TPR과 FPR의 관계에 대한 커브
 - $TPR(True\ Positive\ Rate) = \frac{TP}{TP+FN}$: 민감도
 - $FPR(Flase\ Positive\ Rate) = \frac{FP}{TN+FP}$: \\ \bullet 0 \subseteq 1
- 분류기의 성능이 ROC curve의 점으로 표현됨
 - 임계값이 바뀌면 점의 위치가 바뀜.

ROC Curve

- Diagonal line:
 Random Guessing
- Area Under the ROC curve (AUC)
 - Ideal : Area = 1
 - Random : Area = 0.5

Using ROC for Model Comparison

- 모델 M₁은 낮은 FPR에 대해서
 좋은 성능을 나타냄
- 모델 M₂는 높은 FPR에 대해서 좋은 성능을 나타냄

Class Imbalance Problem

- precision, recall 등을 사용
- Cost-sensitive learning
- Sampling-based approaches
 - Undersampling
 - Oversampling
 - Generating artificial positive examples

Rule-Based Classifier

Rule-Based Classifier

• Rule: A -> B : A이면 B이다.

• A : 조건

• B : 결과

ex) (Status=Single) -> No

- Rule Coverage 전체 10개 인스턴스 중 4개가 해당 : 40%
- Rule Accuracy
 Single로 분류되는 것 중 No가 50%

Tio	d	Refund	Marital Status	Taxable Income	Class
1		Yes	Single	125K	No
2		No	Married	100K	No
3		No	Single	70K	No
4		Yes	Married	120K	No
5		No	Divorced	95K	Yes
6		No	Married	60K	No
7		Yes	Divorced	220K	No
8		No	Single	85K	Yes
9		No	Married	75K	No
10)	No	Single	90K	Yes

Characteristics of Rule-Based Classifier

- Mutually exclusive rules
 - 하나의 샘플은 하나의 rule로만 커버됨.
- Exhaustive rules
 - 샘플은 적어도 하나의 rule에 매칭 되어야 함.

Characteristics of Rule-Based Classifier

- Mutually exclusive rules을 위반하는 경우
 - Ordered rule set
 - Unordered rule set 더 많이 분류하는 rule에 맞춤.
- Exhaustive rules을 위반하는 경우
 - default class 사용

Ordered Rule Set

- Rule 우선순위에 의해 먼저 매칭된 룰 선택
- Rule ordering 방법
 - rule-ordering
 - class-ordering

Rule-based Ordering

(Refund=Yes) ==> No

(Refund=No, Marital Status={Single,Divorced}, Taxable Income<80K) ==> No

(Refund=No, Marital Status={Single,Divorced}, Taxable Income>80K) ==> Yes

(Refund=No, Marital Status={Married}) ==> No

Class-based Ordering

(Refund=Yes) ==> No

(Refund=No, Marital Status={Single,Divorced}, Taxable Income<80K) ==> No

(Refund=No, Marital Status={Married}) ==> No

(Refund=No, Marital Status={Single,Divorced}, Taxable Income>80K) ==> Yes

Building Classification Rules

Direct Method
 data로부터 직접 rule을 뽑아냄.
 RIPPER, CN2, Holte's 1R: Direct Method 방법을 사용

Indirect Method

Decision Tree 같은 분류 모델로부터 rule을 뽑아냄 C4.5 rules가 indirect method 방법을 사용

Direct Method: Sequential Covering

- empty rule로 시작
- 룰을 만들고 커버되는 샘플 삭제하는 과정 반복

Indirect Methods: From Decision Trees

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Rules are mutually exclusive and exhaustive

Advantages of Rule-Based Classifiers

- 표현력이 좋다
- 해석하기 쉽다
- 만들기 쉽다
- 새로운 인스턴스를 빠르게 분류할 수 있다
- Decision tree와 성능을 비교할만 하다