CSCI-UA.0480-003 Parallel Computing Midterm Exam Spring 2015 (60 minutes)

NAME:	ID:
• The exam is open book/notes.	ns with a total of 20 points in 4 pages. ons to continue solving a problem, state your assumptions clearly.
1. a) [2 points] State two advar	ntages of multicore processors.
b) [2 points] State two advan	atages of single core processors.
c) [2 points] State two disadv	vantages of multicore processors.
d) [2 points] State two disadv	vantages of single core processors.

2. [2 points] We have seen that a multicore processor is MIMD in Flynn classification. Can a single core processor be anything else but SISD? If yes, give examples. If not, why not?	
3. [3 points] Describe 3 different scenarios where an MPI program can have a deadlock.	

4. Suppose that MPI COMM WORLD consists of the three processes 0,1, and 2, and suppose the following code is executed (my_rank contains the rank of the executing process):

```
int x, y, z;
switch(my_rank) {
     case 0:
           x=0; y=1; z=2;
           MPI_Bcast(&x, 1, MPI_INT, 0, MPI_COMM_WORLD);
           MPI_Send(&y, 1, MPI_INT, 2, 43, MPI_COMM_WORLD);
           MPI_Bcast(&z, 1, MPI_INT, 1, MPI_COMM_WORLD);
           break;
     case 1:
           x=3; y=8; z=5;
           MPI_Bcast(&x, 1, MPI_INT, 0, MPI_COMM_WORLD);
           MPI_Bcast(&y, 1, MPI_INT, 1, MPI_COMM_WORLD);
           break;
     case 2:
           x=6; y=7; z=8;
           MPI_Bcast(&z, 1, MPI_INT, 0, MPI_COMM_WORLD);
           MPI Recv(&x, 1, MPI INT, 0, 43, MPI COMM WORLD, &status);
           MPI_Bcast(&y, 1, MPI_INT, 1, MPI_COMM_WORLD);
           break;
     }
```

a. [4 points] What will be the values of x, y, and z for each of the 3 processes after executing the above code?

	Po	P1	P2
X			
Y			
$\overline{\mathbf{Z}}$			

b. [2 points] Is there a possibility that the communication among the 3 processes be executed out of order? If yes, explain the reason. If not, why not?

c. [1 point] What will happen if we execute the above code with: mpiexec –n 4 (and MPI_COMM_WORLD will then contain 4 processes)?