Appendix 3

Kolmogorov-Smirnov Tables

Critical values, $d_{alpha}(n)^a$, of the maximum absolute difference between sample $\Gamma_n(x)$ and population $\Gamma(x)$ cumulative distribution.

Number of trials, n	Level of significance, α				
	0.10	0.05	0.02	0.01	
. 1	0.95000	0.97500	0.99000		
· · 2	0.77639	0.84189	0.90000	0.99500	
3	0.63604	0.70760	0.78456	0.92929	
4	0.56522	0.62394	0.68887	0.82900	
5	0.50945	0.56328	0.62718	0.73424	
6	0.46799	0.51926	0.57741	0.66853	
7	0.43607	0.48342	0.53844	0.61661	
8	0.40962	0.45427	0.50654	0.57581	
9	0.38746	0.43001	0.47960	0.54179	
10	0.36866	0.40925	0.45662	0.51332	
11	0.35242		0.43002	0.48893	
12		0.39122	0.43670	0.46770	
13	0.33815	0.37543	0.41918	0.44905	
14	0.32549	0.36143	0.40362	0.43247	
15	0.31417	0.34890	0.38970	0.41762	
16	0.30397	0.33760	0.37713	0.40420	
17	0.29472	0.32733	0.36571	0.39201	
	0.28627	0.31796	0.35528	0.38086	
18	0.27851	0.30936	0.34569	0.37062	
19	0.27136	0.30143	0.33685	0.36117	
20	0.26473	0.29408	0.32866	0.35241	
21	0.25858	0.20724		0.33241	
22	0.25283	0.28724	0.32104	0.34427	
23	0.24746	. 0.28087	0.31394	0.33666	
24	0.24242	0.27490	0.30728	0.32954	
	0.24242	0.26931	0.30104	0.32286	

Practical Reliability Engineering, Fifth Edition. Patrick D. T. O'Connor and Andre Kleyner. © 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.

Critical values, $d_{alpha}(n)^{t}$, of the maximum absolute difference between sample $F_{n}(x)$ and population F(x)cumulative distribution.

Number of trials, n	Level of significance, α				
	0.10	0.05	0.02	0.01	
25	0.23768	0.26404	0.29516	0.31657	
26	0.23320	0.25907	0.28962	0.31064	
27	0.22898	0.25438	0.28438	0.30502	
28	0.22497	0.24993	0.27942	0.29971	
29	0.22117	0.24571	0.27471	0.29466	
30	0.21756	0.24170	0.27023	0.28987	
31	0.21412	0.23788	0.26596	0.28530	
32	0.21085	0.23424	0.26189	0.28094	
3.3	0.20771	0.23076	0.25801	0.27677	
34	0.20472	0.22743	0.25429	0.27279	
35	0.20185	0.22425	0.26073	0.26897	
36	0.19910	0.22119	0.24732	0.26532	
37	0.19646	0.21826	0.24404	0.26180	
38	0.19392	0.21544	0.24089	0.25843	
39	0.19148	0.21273	0.23786	0.25518	
40 ^h	0.18913	0.21012	0.23494	0.25205	

⁴Values of $d_a(n)$ such that $p(\max)(f^n(x) - F(x))d^n(n) = \alpha$. ⁶ $N > 40 \approx \frac{1.22}{N^{1/2}}, \frac{1.36}{N^{1/2}}, \frac{1.51}{N^{1/2}}$ and $\frac{1.63}{N^{1/2}}$ for the four levels of significance.