On rendra chacun sa copie

EXERCICE 1

Soit $z \in \mathbb{C}$. On pose $x = \operatorname{Re} z$ et $y = \operatorname{Im} z$ et on note :

$$\cos(z) = \frac{e^{iz} + e^{-iz}}{2}$$
 et $\sin(z) = \frac{e^{iz} - e^{-iz}}{2i}$

- 1. Calculer $\cos^2 z + \sin^2 z$
- **2.** Comparer $\cos(\overline{z})$ et $\overline{\cos(z)}$
- 3. Calculer les parties réelles puis imaginaires de $\cos(z)$ et $\sin(z)$ en fonction de x et y. On pourra utiliser les fonctions hyperboliques.
- **4.** Calculer les modules de $\cos(z)$ et $\sin(z)$ en fonction de x et y.
- **5.** Si $(z, z') \in \mathbb{C}^2$, a-t-on $\cos(z + z') = \cos(z)\cos(z') \sin(z)\sin(z')$?
- **6.** Déterminer tous les nombres complexes z tels que $\cos(z) \in \mathbb{R}$.
- 7. Résoudre dans \mathbb{C} l'équation $\sin(z) = -2$

EXERCICE 2

Pour tout réel t, on considère l'équation complexe

$$(E_t)$$
 $z^2 - 2(1 + 2e^{it})z - 3 = 0$

On notera z_t et z_t' ses solutions (qui dépendent de t).

- **1.** a) Montrer que pour tout réel t, le point P d'affixe $\frac{z_t + z_t'}{2}$ est sur un cercle dont on donnera centre et rayon.
 - b) On suppose que z_t et z_t' sont réels : montrer que t=0 $[\pi]$.
 - c) Réciproquement, montrer qu'à ces valeurs de t correspondent deux équations distinctes qui admettent chacune effectivement deux solutions réelles que l'on calculera.
- **2.** Montrer que le discriminant de (E_t) s'écrit $\Delta_t = 16u(t)e^{it}$, où u(t) est un réel à déterminer.
- **3.** Pour quelles valeurs de t a-t-on $z_t = z'_t$?
- **4.** On suppose dans cette question que $1 + 2\cos t > 0$.
 - a) Pour quelles valeurs de t cette condition est-elle remplie ?
 - b) Déterminer un complexe δ_t tel que $\delta_t^2 = \Delta_t$ et en déduire les solutions de (E_t) .
 - c) Montrer que $z_t 3$ et $z'_t 3$ peuvent s'écrire $2a(t)e^{it/2}$ et $2b(t)e^{it/2}$, où a(t) et b(t) sont des complexes dont on donnera une expression (éventuellement à l'aide de u(t)).
 - d) En déduire que $z_t 3$ et $z'_t 3$ ont même module.
- **5.** On suppose dans cette question que $1 + 2\cos t < 0$.
 - a) Pour quelles valeurs de t cette condition est-elle remplie?
 - b) Déterminer un complexe δ_t tel que $\delta_t^2 = \Delta_t$ et en déduire les solutions de (E_t) .
 - c) Montrer que $z_t 3$ et $z'_t 3$ peuvent s'écrire $2ic(t)e^{it/2}$ et $2id(t)e^{it/2}$, où c(t) et d(t) sont des réels dont on donnera une expression (éventuellement à l'aide de u(t)).
 - d) En déduire que $z_t 3$ et $z_t' 3$ ont même argument (on commencera par calculer $c\left(t\right)d\left(t\right)$)

PCSI 1 2019/2020