FUNCIONES TRASCENDENTALES

ECUACIONES EXPONENCIALES Ý LOGARITMICAS

I. Transforma los siguientes logaritmos a notación exponencial.

1.
$$\log_3 81 = 4$$
 2. $\log_9 2 = 0.3155$ 3. $\log_{\frac{1}{2}} \frac{1}{32} = 5$ 4. $\ln 20.09 = 3$. 5. $\log_{\frac{1}{2}} \frac{1}{9} = 2$.

3.
$$\log_{\frac{1}{2}} \frac{1}{32} = 5$$

5.
$$\log_{\frac{1}{3}} \frac{1}{9} = 2$$
.

7.
$$\log_8 \frac{1}{4} = \frac{2}{3}$$

8.
$$\log_{\frac{1}{81}} \frac{1}{3} = \frac{1}{4}$$

9.
$$\log_{32} 8 = \frac{3}{5}$$
.

6.
$$\log 1000 = 3$$
. 7. $\log_8 \frac{1}{4} = \frac{2}{3}$. 8. $\log_{\frac{1}{2}} \frac{1}{3} = \frac{1}{4}$. 9. $\log_{32} 8 = \frac{3}{5}$. 10. $\log_{16} 4 = \frac{1}{2}$.

11.
$$\log_{\frac{1}{2}} \frac{1}{32} = 5$$
. 12. $\log_{b} 25 = 2$. 13. $\log_{\frac{1}{49}} P = \frac{1}{2}$. 14. $\log_{t} \frac{1}{9} = 2$. 15. $\log_{\frac{1}{2}} \frac{1}{8} = L$

12.
$$log_b 25 = 2$$

13.
$$\log_{\frac{1}{40}} P = \frac{1}{2}$$

14.
$$\log_t \frac{1}{9} = 2$$

15.
$$\log_{\frac{1}{2}} \frac{1}{8} = L$$

II. Transforma las siguientes potencias a notación logarítmica.

1.
$$e^{-5} = 0.0067$$

2.
$$5^{-2} = \frac{1}{25}$$
.

1.
$$e^{-5} = 0.0067$$
. 2. $5^{-2} = \frac{1}{25}$. 3. $10^{-2} = 0.01$. 4. $5^{0} = 1$.

4.
$$5^0 = 1$$
.

5.
$$4^3 = 64$$
.

6.
$$6^4 = 1296$$

7.
$$e^{\frac{3}{5}} = 1.8221$$

8.
$$16^{\frac{1}{2}} = 4$$
.

9.
$$4^{\frac{5}{2}} = 32$$
.

10.
$$z^{-w} = y$$
.

11.
$$x^y = z$$

12.
$$t^u = v$$

13.
$$e^w = 32$$
.

14.
$$5^{\frac{1}{2}} = x$$
.

6.
$$6^{4} = 1296$$
. 7. $e^{\frac{3}{5}} = 1.8221$. 8. $16^{\frac{1}{2}} = 4$. 9. $4^{\frac{5}{2}} = 32$. 10. $z^{-w} = y$. 11. $x^{y} = z$. 12. $t^{u} = v$ 13. $e^{w} = 32$. 14. $5^{\frac{1}{2}} = x$. 15. $7^{-x} = \frac{1}{16807}$

III. Desagrupa en varios logaritmos las siguientes expresiones.

1.
$$log_4(xz)$$

2.
$$\log_2 \frac{y}{x}$$

5.
$$\log_3 \frac{xz}{y}$$

6.
$$\log_5 \sqrt[5]{y^2}$$

7.
$$\log \frac{x^3w}{y^2z^4}$$

8.
$$ln\left(\frac{y^5w^2}{x^4z^3}\right)^3$$

9.
$$\log_6 \frac{\sqrt{x}}{y\sqrt[3]{z^2}}$$

10.
$$\log_7 \left(\frac{\sqrt[3]{z}}{x\sqrt{y}} \right)^5$$

11.
$$\log \sqrt{\frac{x^7y}{\sqrt[3]{z}}}$$

12.
$$\ln \sqrt[3]{\left(\frac{y^2\sqrt{x}}{z^5w}\right)^2}$$

IV. Agrupa en un solo logarit<mark>mos, las sum</mark>as y restas de logaritmos.

1.
$$log_{x} + log_{5} + log_{y}$$

$$2. \ln 2 + \ln z - \ln x \qquad \qquad 3. \frac{1}{5} \log_5 y$$

3.
$$\frac{1}{5}log_5 y$$

4.
$$\frac{1}{2}log_2x + 3log_2y$$

6.
$$\frac{3}{4}$$
lnw

7.
$$2\log_{5}x + \frac{1}{2}\log_{5}w - \log_{5}z$$
 8. $2\log x + \frac{1}{3}\log w + \frac{1}{2}\log z$ 9. $\ln x - \ln w - \ln z$

8.
$$2\log x + \frac{1}{3}\log w + \frac{1}{2}\log z$$

10.
$$-log_5x + 5log_5w + 3log_5z$$

10.
$$-log_5x + 5log_5w + 3log_5z$$
 11. $2log_5x + 4log_5w - 6log_5z - 6log_5w - 6log_5$

12.
$$2\ln x - \frac{1}{3}\ln(x-2) - 5\ln(2x+3)$$

V. Calcula el valor aproximado de los siguientes logaritmos empleando la fórmula de cambio de base, utilizando 4 decimales.

2.
$$\log_2 \frac{2}{3}$$

3.
$$\log_{\frac{1}{5}} 7$$

2.
$$\log_2 \frac{2}{3}$$
 3. $\log_{\frac{1}{5}} 7$ 4. $\log_{\frac{2}{3}} \frac{1}{4}$ 7. $\log_{\frac{1}{2}} 25$ 8. $\log_{15} 25$ 9. $\log_5 2$

VI. Obtén el conjunto solución de cada una de las ecuaciones exponenciales.

1)
$$3^{x+2} = 81$$

3)
$$\left(\frac{3}{8}\right)^a = 27$$

5)
$$12^{w^2-2w-5} = 1728$$

7)
$$e^{3y} = 21$$

9)
$$1000 = \frac{2000}{1 + 1999e^{-\frac{179}{200}b}}$$

11) $5^w = 3(2^w)$

11)
$$5^w = 3(2^w)$$

13)
$$\left(\frac{3}{7}\right)^{3\nu-7} = \left(\frac{7}{3}\right)^{7\nu-3}$$

15)
$$5^{2x-3} = 3^{5x-1}$$

17)
$$7^{2y-1} = 5^{y+1}$$

19)
$$9^{-3a} - \left(\frac{1}{27}\right)^{x+3} = 0$$

23)
$$\frac{1}{4}e^{7w-4} = \frac{1}{5}e^{2w+5}$$

25)
$$\frac{1}{2}(e^{a}-e^{-a})=3$$

27)
$$\frac{1}{2}(e^{-h} + e^{h}) = 4$$

29)
$$2^{x+2} + 2^{x+3} + 2^{x+1} + 2^x = 60$$

31)
$$e^{2x} - e^x - 6 = 0$$

33)
$$3^{x+2} + 9^{x+1} = 810$$

35)
$$2^{1994} + 4^{997} + 8^{665} = 16^x$$

$$37) \ \frac{8^{x+1} + 8^{x-1}}{8} = 65$$

39)
$$3^{1-x} - 3^x = 2$$

$$2) \left(\frac{3}{4}\right)^{r-1} = \sqrt[4]{\frac{9}{16}}$$

4)
$$4^{2y^2+y} = \left(\frac{1}{16}\right)^{-3}$$

6)
$$e^{\frac{x}{3}} = 14.8$$

8)
$$3^t = 4(5^t)$$

10)
$$60 = 80 \left(1 - e^{-\frac{2}{25}t} \right)$$

12)
$$3^{x+1} = 4^{x+1}$$

14)
$$15^{2r-4} = 72^{r+6}$$

16)
$$8^{2b^2-4} = 64^b$$

18)
$$3^{d^2} = 243^d$$

$$22) \left(\frac{3}{4}\right)^{h-1} \left(\frac{4}{3}\right)^{\frac{1}{2}} = \frac{9}{16}$$

24)
$$5^{b+1} + 5^b = 750$$

26)
$$9^x + 6^x = 2^{2x+1}$$

28)
$$7(3^{d+1}) - 5^{x+2} = 3^{d+4} - 5^{d+3}$$

30)
$$e^{u} - 5e^{-u} + 4e^{-3u} = 0$$

32)
$$2^{4x} - 2^{2x} - 12 = 60$$

34)
$$5^{x+2} - 105(5^{x-1}) = 100$$

36)
$$5^{x-3} + 5^{x-2} + 5^{x-1} = 31$$

38)
$$\frac{2^{2(x-1)}}{2^{x-2}} = 186$$

VII. Ejercicios: Resuelve las siguientes ecuaciones logarítmicas:

1.
$$\log_2(x^2+4x+7)=2$$

3.
$$log_5(3x+5) + log_5(2x+5) = 1$$

5.
$$log_2(3+x) - log_2(7-x) = 2$$

7.
$$log_4(x-2) - log_4(x-1) = 2log_4\sqrt{6}$$

9.
$$log(x-15) = 2 - log x$$

2.
$$log_7(x+5) + log_7(x-1) = 1$$

4.
$$log_5(x^2+3x+5)-log_5(x+4)=1$$

6.
$$\ln(x+10) - \ln(x+4) = 3$$

8.
$$log_6(x-1) = log_64$$

10.
$$\ln \sqrt{x} = \sqrt{\ln x}$$

11.
$$\log^3 x = \log x^4$$

13.
$$ln(x^2+4x+3)=3$$

15.
$$ln(log_3 x) = 2$$

17.
$$\log_{16}(\log_{5}x) = \frac{1}{2}$$

19.
$$log_3(x+11) - log_3(x+3) = 2$$

21.
$$log_5(3x+5) + log_5(2x+5) = 2$$

23.
$$log_7(3x+1) + log_7(2x+3) = 2$$

25.
$$\log_2(x^2+3x+2)-\log_2(x+1)=4$$

27.
$$\log_2(3+x) - \log_2(7-x) = 2$$

29.
$$\ln 5x = \ln 5 - \ln 9$$

31.
$$log_2(x+2) + log_2(x+6) = 5$$

33.
$$ln(x+2)+ln(x-3)=2ln\sqrt{2}$$

35.
$$\log_4 4^3 + \log_4 (x^2 + 12) = 4 + \log_4 (6 + 5x)$$

37.
$$\log_{7}(x+1) + \log_{7}(x-5) = 1$$

39.
$$\log(x^2-4)-\log(x-2)=1$$

41.
$$\log_3(11+x) = 2 + \log_3(3+x)$$

43.
$$log(p^2+8p+16) = log(p+4) + log 3$$

45.
$$log(x-2)-log 4 = 1-log(x+1)$$

47.
$$log_2(x+6) = \frac{2 + log_2(x-3)}{2}$$

49.
$$ln(x+2) - ln(4x+3) = ln \frac{1}{x}$$

51.
$$\log_2(x^2+4x+4)=3+\log_2(x+2)-\log_2x$$

53.
$$log_2(6+x) = 2 + log_2(x-3)$$

55.
$$\log_3 \sqrt{81} = \log_3(x+2) + 0.02\log_3 \sqrt{x+2}$$

12.
$$\log_2(x^2+4x+7)=2$$

14.
$$\log \sqrt{x^2 + 36} = 1$$

16.
$$\log_{7}(\ln x) = 1$$

18.
$$log_7(x+5) + log_7(x+1) = 1$$

20.
$$\log_{7}(2x+1) - \log_{7}(3x-1) = 0$$

22.
$$\log_2(x^2-3x-2)-\log_2(x-4)=3$$

24.
$$ln(x^2+5x+4)-ln(x+4)=0$$

26.
$$\log_3(x-1) - \log_3(x-3) = 1$$

28.
$$\log_{5} 3x = \log_{5} 3 - \log_{5} 7$$

30.
$$\log_6(x+1) = \log_6 42$$

32.
$$ln(x+10)+ln(x+4)=3$$

34.
$$\log_4(x-2) + \log_4(x+1) = 2\log_4\sqrt{6}$$

36.
$$\log_5(2x-4) - \log_5(x-1) = 1$$

38.
$$\log_2(2x-4) - \log_2(x^2-4x+4) = -1$$

40.
$$log_2(x+4) + log_2(x+2) = 3$$

42.
$$ln(x+3)+lnx=1+ln(x+1)$$

44.
$$\log_5(2x+4) = 1 + \log_5(x-1)$$

46.
$$\log (x+1) + \log (x-1) = 1 + \log x + 1$$

48.
$$log(x+3) = 1 + log(3x-10)$$

50.
$$lnx + ln(x+1) = ln(3x+3)$$

52.
$$\log_2(x+3) - \log_2(x+1) + \log_2 x = 1$$

$$54. \log \sqrt{x^2 + 75} = 1$$

56.
$$\ln \sqrt{x^2 - 4} = 1$$