

Energy Conversion I

alexis.martin@ensea.fr Desk D216

Layout

- Non isolated choppers
- Switch mode power supplies
 - Introduction
 - Flyback
 - Forward
 - Push-Pull
- Power components

Flyback

Forward

Push-Pull

Linear isolated power supply principle

Flyback

Forward

Push-Pull

Isolated switched-mode power supply principle

Flyback

Forward

Push-Pull

Element	LINEAR	Switching
Transformer	Large (50 Hz)	Small (H.F.)
Transistor	Linear (losses)	Switching
Output filter	Large (50 Hz)	Simple (H.F.)
Command	autonomous, simple	control, complex
Efficiency	40 % < < 50 %	70 % < < 90 %
Control	0,1 %	0,5 %

Introduction Flyback **Forward** Push-Pull

Switched-mode power supply nomenclature

- > Flyback : energy storage converter
- Forward: direct converter
- ➤ Push-Pull: symmetric converter (full bridge or half bridge)

Flyback

Forward

Push-Pull

Flyback principle

Easiness, low power, few components

Flyback

Forward

Push-Pull

Forward principle

Magnetic component optimized, more components

Flyback

Forward

Push-Pull

Symmetric converter

High power, 2 transistors or more

Flyback

Flyback

Forward

Push-Pull

Flyback Transformer

Continuous mode
Discontinuous mode
Sizing

Forward

Push-Pull

FLYBACK converter study

 $\textit{Hypothesis}: E \ constant, \ V_s \ constant, \ perfect \ semi-conductors$

2 magnetic modes

Partial demagnetization (continuous mode) Full demagnetization (discontinuous mode)

Flyback Transformer

Continuous mode
Discontinuous mode
Sizing

Forward

Push-Pull

Transformer model: convention!

L: magnetizing inductance (at the primary)
R: Reluctance of the magnetic circuit

$$m = \frac{n_2}{n_1} = \frac{v_2}{v_1} = \frac{i_1}{i_2}'$$

$$\oint H.dl = R.\varphi = N_1.i_1 - N_2.i_2 = N_1.i_{10}$$

Hopkinson's law

Flyback Transformer

Continuous mode
Discontinuous mode
Sizing

Forward

Push-Pull

Transformer model: convention!

$$v_1 = +n_1 \frac{d\varphi}{dt} \qquad v_2 = +n_2 \frac{d\varphi}{dt}$$

Flyback Transformer

Continuous mode
Discontinuous mode
Sizing

Forward

Push-Pull

FLYBACK transformer model

$$m = \frac{N_2}{N_1} = \frac{V_2}{V_1} = -\frac{i'_1}{i_2}$$

$$v_2 = -\eta_2 \frac{d\varphi}{dt}$$

$$\oint H.dl = R.\varphi = N_1.i_1 + N_2.i_2 = N_1.i_{10}$$

Flyback Transformer

Continuous mode
Discontinuous mode
Sizing

Forward

Push-Pull

Magnetizing current

Magnetizing current ⇔ flux in the magnetic circuit

Flyback Transformer

Continuous mode
Discontinuous mode
Sizing

Forward

Push-Pull

FLYBACK equivalent scheme

Flyback

Transformer

Continuous mode

Discontinuous mode Sizing

Forward

Push-Pull

Partial demagnetization mode: continuous conduction

$$0 < t < \alpha T : T_p \text{ closed}$$

=> $v_1 = E => v_2 = \text{m.E}$
 $v_D =-\text{mE-V}_s < 0 => D \text{ reverse}$

$$i_2 = 0 \Rightarrow i'_1 = 0 \Rightarrow i_1 = i_{10}$$

Energy storing

$$\alpha T < t < T : T_p \text{ opened}$$

=> $i_1 = 0$ => $i'_1 = -i_{10} < 0$
=> $i_2 < 0$ => *D forward*

 $v_2 = -V_S \Rightarrow v_1 = -V_S /m \Rightarrow \phi$ decreases Energy restitution

$$\oint H.dl = R.\varphi = N_1.i_1 - N_2.i_2 = N_1.i_{10}$$

Flyback

Transformer

Continuous mode

Discontinuous mode

Sizing

Forward

Push-Pull

Flyback

Transformer

Continuous mode

Discontinuous mode Sizing

Forward

Push-Pull

Demagnetization issue

Charge infinie du condensateur de sortie

Warning:

If no load connected: $i_2=0$

-> No demagnetization

Flyback

Transformer

Continuous mode

Discontinuous mode

Sizing

Forward

Push-Pull

Discontinuous mode: behavior

$$\alpha T < t < \alpha' T : T_p \text{ opened}$$

=> $i_1 = 0$ => $i'_1 = -i_{10} < 0$
=> $i_2 < 0$ => D forward
and then reverse naturally

$$v_2 = -V_S \Rightarrow v_1 = -V_S/m \Rightarrow \phi$$
 decreases
Energy restitution

 α 'T < t < T : T and D both reverse All currents are zero => $v_1 = 0$; $v_2 = 0 => \phi = 0$

Flyback

Transformer

Continuous mode

Discontinuous mode

Sizing

Forward

Push-Pull

Output voltage calculation: Transferred energy

$$W_L = \frac{1}{2} . L . I_{1 \text{max}}^2 = \frac{1}{2} . L . \left(\frac{\alpha . E . T}{L} \right)^2$$

$$P_S = V_S . I_S = f . W_L$$

$$V_S = \frac{\alpha^2.E^2.T}{2.L.I_S}$$

Flyback

Transformer Continuous mode

Discontinuous mode

Sizing

Forward

Push-Pull

Discontinuous mode: output characteristics

Flyback

Transformer
Continuous mode
Discontinuous mode
Sizing

Forward

Push-Pull

Boundary mode: Output filtering

Flyback

Transformer Continuous mode Discontinuous mode Sizing

Forward

Push-Pull

Boundary mode: capacitor calculation

$$\int_{\mathbf{S}} \Delta \mathbf{v} \qquad \Delta v_S = \frac{1}{C_S} \int_{t_1}^{t_2} i_C(t) dt = k_v . V_S$$

$$t_1 = \alpha T$$

$$I_{D \max} = \frac{n_1}{n_2} \cdot \frac{\alpha \cdot ET}{L}$$

$$i_{D \max} = \frac{n_1}{n_2} \cdot \frac{\alpha \cdot ET}{L}$$

 C_S calculation

Flyback

Transformer
Continuous mode
Discontinuous mode
Sizing

Forward

Push-Pull

ENSEA Beyond Engineering

Boundary mode: sizing components

Flyback

Transformer Continuous mode Discontinuous mode Sizing

Forward

Push-Pull

Boundary mode: transformer sizing

$$I_{1eff} = \sqrt{\frac{\alpha}{3}} \cdot I_{1 \text{max}}$$

$$I_{2eff} = \sqrt{\frac{1-\alpha}{3}} \cdot I_{2 \text{max}}$$

$$I_{2 \text{max}} = \frac{N_1}{N_2} \cdot I_{1 \text{max}}$$

$$I_{2eff} = \sqrt{\frac{1-\alpha}{3}} \cdot I_{2\max}$$

$$I_{2\max} = \frac{N_1}{N_2} I_{1\max}$$

$$\delta = \frac{I_{1eff}}{s_{sp1}} = \frac{I_{2eff}}{s_{sp2}}$$
 < max current density: δ_{max}

$$S_{Tcu} = N_1.s_{sp1} + N_2.s_{sp2} < k_B$$
. Window area S_B
$$k_B = winding \ coefficient$$

$$k_B.S_B > N_1.\frac{I_{1eff}}{\delta_{\text{max}}} + N_2.\frac{I_{2eff}}{\delta_{\text{max}}}$$

$$I_{1\max} < \frac{k_B.S_B.\delta_{\max}}{N_1} \cdot \frac{\sqrt{3}}{\sqrt{\alpha} + \sqrt{1-\alpha}}$$

Flyback

Transformer
Continuous mode
Discontinuous mode
Sizing

Forward

Push-Pull

ENSEA Beyond Engineering

Boundary mode: transformer sizing

$$P_{S} = f.W_{L} = f.\frac{1}{2}.L.I_{1 \max}^{2} < \frac{R.B_{sat}.A_{e}}{N_{1}}$$

$$I_{1 \max} < \frac{k_{B}.S_{B}.\delta_{\max}}{N_{1}}.\frac{\sqrt{3}}{\sqrt{\alpha} + \sqrt{1-\alpha}}$$

$$P_{S} < f.\frac{L}{2}.\frac{R.B_{sat}.A_{e}}{N_{1}}.\frac{k_{B}.S_{B}.\delta_{\max}}{N_{1}}.\frac{\sqrt{3}}{\sqrt{\alpha} + \sqrt{1-\alpha}}$$

$$A_e.S_B > 2.\frac{\sqrt{\alpha} + \sqrt{1-\alpha}}{\sqrt{3}}.\frac{P_S}{f.k_B.B_{sat}.\delta_{max}}$$

Flyback

Transformer
Continuous mode
Discontinuous mode
Sizing

Forward

Push-Pull

Flyback

Transformer
Continuous mode
Discontinuous mode
Sizing

Forward

Push-Pull

Boundary mode holding

Flyback

Transformer
Continuous mode
Discontinuous mode
Sizing

Forward

Push-Pull

Example: LT8302

Efficiency vs Load Current

Flyback

Transformer
Continuous mode
Discontinuous mode
Sizing

Forward

Push-Pull

Example: LT8302 (internal scheme)

Flyback

Transformer
Continuous mode
Discontinuous mode
Sizing

Forward

Push-Pull

Example: LT8302

Boundary Mode Waveforms

FRONT PAGE APPLICATION V_{IN} = 12V I_{OUT} = 2A

Discontinuous Mode Waveforms

FRONT PAGE APPLICATION
V_{IN} = 12V
I_{OUT} = 0.5A

Flyback

Transformer
Continuous mode
Discontinuous mode
Sizing

Forward

Push-Pull

Flyback examples

Forward

Flyback

Forward

Principle

Continuous mode Sizing

Push-Pull

Flyback principle

Easiness, low power, few components

Limited for high power due to energy storage limitations

Flyback

Forward

Principle

Continuous mode Sizing

Push-Pull

Forward principle

Magnetic component optimized, more components

Flyback

Forward

Principle

Continuous mode Sizing

Push-Pull

Hopkinson's law

$$\oint H.dl = R.\phi = n_1.i_1 + n_3.i_3 - n_2.i_2$$

Flyback

Forward

Principle

Continuous mode
Sizing

Push-Pull

Continuous mode study: $i_1 > 0$

At least one of the two diodes D_1 and D_2 forwards.

$$v_1 = E = n_1 \cdot \frac{d\varphi}{dt}$$
 magnetization

$$v_2 = n_2 \cdot \frac{d\varphi}{dt}$$
 $v_3 = n_3 \cdot \frac{d\varphi}{dt}$

$0 < t < \alpha T$

T_p forward.

$$v_1 = E \implies v_2 = \frac{n_2}{n_1} \cdot E$$

$$v_1 = E \implies v_3 = \frac{n_3}{n_1} \cdot E$$

 \rightarrow D₃ reverse

$$n_1.i_1-n_2.i_2=R.\varphi$$

Flyback

Forward

Principle

Continuous mode
Sizing

Push-Pull

Continuous mode study

$$T_p opened \Rightarrow i_1 = 0$$

$$n_3.i_3-n_2.i_2=R.\varphi>0$$

$$i_3 > 0 \Rightarrow D_3$$
 forward

$$v_3 = -E = n_3 \cdot \frac{d\varphi}{dt}$$
 demagnetization

$$v_2 = -\frac{n_2}{n_3}E$$
 D_1 reverse, D_2 forward $\Rightarrow i_2 = 0$

$$L.\frac{di_L}{dt} = -V_S$$

Flyback

Forward

Principle

Continuous mode

Sizing

Push-Pull

Flyback

Forward

Principle

Continuous mode

Sizing

Push-Pull

ENSEA Beyond Engineering

Continuous mode study: voltage transfer

$$\Delta i_L = \frac{mE - V_S}{L} \cdot \alpha T = \frac{V_S}{L} (1 - \alpha)T$$

$$V_S = \alpha.m.E$$

Introduction Flyback **Forward** Principle Continuous mode Sizing Push-Pull

Continuous mode study: Components sizing

- \succ Filtering capacitor: C_S
- > Transformer => Ae.SB
- > Output inductance => Ae.SB

Flyback

Forward

Principle
Continuous mode
Sizing

Push-Pull

Continuous mode study: Filtering capacitor

$$\Delta V = \frac{1}{C_{S}} \cdot \int_{\frac{\alpha T}{2}}^{\frac{T + \alpha T}{2}} i_{C}(t) dt = \frac{1}{C_{S}} \cdot \frac{1}{2} \cdot i_{C \max} \cdot \frac{T}{2}$$

$$i_{\text{Cmax}} = \frac{\Delta I_{\text{L}}}{2} = \frac{1}{2} \cdot \frac{V_{\text{S}}}{L} (1 - \alpha) \cdot T$$

Max ripple for $\alpha = 0.5$

$$C_{S} = \frac{\text{m.E.T}^{2}}{32.\text{L.}\Delta V}$$

Flyback

Forward

Principle
Continuous mode
Sizing

Push-Pull

Continuous mode study: transformer sizing

$$A_e.S_B > \frac{2.\sqrt{\alpha}.P_S}{f.k_B.B_{sat}.\delta_{max}}$$

$$\varphi_{\text{max}} = \frac{E}{n_1} \cdot \alpha \cdot T < A_e \cdot B_{\text{sat}}$$

$$k_B.S_B.A_e.B_{sat} > \frac{2.\sqrt{\alpha}.n_2.I_S.\alpha.E.T}{\delta_{max}.n_1}$$

With P_S

With f

Flyback

Forward

Principle
Continuous mode
Sizing

Push-Pull

Continuous mode study: inductor sizing

Hold the continuous mode

$$L > \frac{\alpha . V_S}{2I_S.f}$$

Example

Manufacturer reference: CI Design Y0-2040AA

Input: 100 à 240 Vac

Output: 12 Vdc (2 A) 5 Vdc (3 A)

Introduction Flyback **Forward** Principle Continuous mode Sizing Push-Pull

Example

NuForce

Push-Pull

Push-Pull

Flyback

Forward

Push-Pull No laod study

Continuous mode
Other structures

 $0 < t < \alpha T$: T₁ "closed", T2 "open"

•
$$v_2 = n_1 \cdot \frac{d\varphi}{dt} = E > 0$$

Magnetization

•
$$v_1 = v_2 = E > 0$$

D₂ « reverse »

$$-n_1$$
. $i_1 = \mathcal{R}$. φ

 $\alpha T < t < T/2$: $T_1 \& T_2$ "open"

•
$$\mathcal{R}. \varphi = -n_1. i_1 + n_1. i_2 > 0$$

D₂ « forward », D₁ « reverse »

•
$$\mathcal{R}. \varphi = n_1. i_2 > 0$$

•
$$v_1 = n_1 \cdot \frac{d\varphi}{dt} = -E < 0$$

Demagnetization

Flyback

Forward

Push-Pull No laod study

Continuous mode
Other structures

 $T/2 < t < T/2 + \alpha T$: T₁ "open", T2 "closed"

•
$$v_1 = n_1 \cdot \frac{d\varphi}{dt} = -E < 0$$

Magnetization

•
$$v_1 = v_2 = -E < 0$$

D₁ « reverse »

$$n_1.i_2 = \mathcal{R}.\varphi$$

 $T/2+\alpha T < t < T$: $T_1 & T_2$ "open"

•
$$\mathcal{R}. \varphi = -n_1. i_1 + n_1. i_2 < 0$$

D₁ « forward », D₂ « reverse »

•
$${}^{\prime}\mathcal{R}.\,\varphi=-n_1.\,i_1<0$$

•
$$v_2 = n_1 \cdot \frac{d\varphi}{dt} = E > 0$$

Demagnetization

Flyback

Forward

Push-Pull

No laod study

Continuous mode

Other structures

$$\oint H. dl = \mathcal{R}. \varphi = -n_1. i_1 + n_1. i_2 - n_2. i_3 + n_2. i_4$$

Flyback

Forward

Push-Pull

No laod study

Continuous mode

Other structures

ENSEA Beyond Engineering

Continuous mode study: magnetization

Magnetization

$$-n_1$$
. i_1-n_2 . $i_3=\mathcal{R}$. $arphi$ $i_1=-rac{\mathcal{R}}{n_1}$. $arphi-rac{n_2}{n_1}$. $i_3=-i_0-rac{n_2}{n_1}$. i_L

Flyback

Forward

Push-Pull

No laod study

Continuous mode

Other structures

ENSEA eyond Engineering

Continuous mode study: second phase

$$\mathcal{R}. \varphi = -n_1. i_1 + n_1. i_2 - n_2. i_3 + n_2. i_4 > 0$$

• If D₂ « forward »

D₂ "reverse",

$$\mathcal{R}. \, \varphi = -n_2. \, i_3 + n_2. \, i_4 > 0$$

D₃ & D₄ "forward"

$$v_2 = v_3 = v_4 = 0$$

$$\varphi = cst$$

Flyback

Forward

Push-Pull

No laod study

Continuous mode

Other structures

6

Continuous mode study: demagnetization

$T/2 < t < T/2 + \alpha T$:

 T_1 "open", T_2 "closed" D_4 "forward", $D_1 \& D_3$ "reverse" I_3

•
$$v_1 = n_1 \cdot \frac{d\varphi}{dt} = -E < 0$$

Demagnetization

$$n_1$$
. $i_2 - n_2$. $i_4 = \mathcal{R}$. φ

Flyback

Forward

Push-Pull

No laod study

Continuous mode

Other structures

Flyback

Forward

Push-Pull

No laod study

Continuous mode

Other structures

ENSEA Beyond Engineering

Continuous mode study: chronograms

Flyback

Forward

Push-Pull

No laod study Continuous mode Other structures

Other symmetrical structures: Half Bridge Forward

- ➤ Same behavior as Push-Pull
- > Only on primary and secondary winding
- > Transformer simpler (so cheaper)

Flyback

Forward

Push-Pull

No laod study Continuous mode Other structures

