Topología del plano complejo

2015-01-23 7:00

1 Definiciones básicas

2 Sucesiones

3 Puntos de acumulación y sucesiones

Discos

Definición (Disco)

Sean $z_0 \in \mathbb{C}$ y r un real positivo. Definimos el disco con centro en z_0 y radio r, denotado $D(z_0, r)$, como el conjunto:

$$D(z_0, r) = \{ z \in \mathbb{C} \mid |z - z_0| < r \}.$$

Discos

Definición (Disco)

Sean $z_0 \in \mathbb{C}$ y r un real positivo. Definimos el disco con centro en z_0 y radio r, denotado $D(z_0, r)$, como el conjunto:

$$D(z_0, r) = \{ z \in \mathbb{C} \mid |z - z_0| < r \}.$$

Definición (Disco cerrado)

Sean $z_0 \in \mathbb{C}$ y r un real positivo. Definimos el disco cerrado con centro en z_0 y radio r, denotado $\overline{D}(z_0, r)$, como el conjunto:

$$\overline{D}(z_0, r) = \{ z \in \mathbb{C} \mid |z - z_0| \le r \}.$$

Definición (Punto interior)

Sean $A \subseteq \mathbb{C}$ y $z \in \mathbb{C}$. Decimos que z es punto interior de A si existe r > 0 tal que $D(z, r) \subseteq A$.

Definición (Punto interior)

Sean $A \subseteq \mathbb{C}$ y $z \in \mathbb{C}$. Decimos que z es punto interior de A si existe r > 0 tal que $D(z, r) \subseteq A$.

Definición (Conjunto abierto)

Sea $A \subseteq \mathbb{C}$. Decimos que A es un conjunto abierto si todo punto de A es punto interior de A.

Definición (Punto interior)

Sean $A \subseteq \mathbb{C}$ y $z \in \mathbb{C}$. Decimos que z es punto interior de A si existe r > 0 tal que $D(z, r) \subseteq A$.

Definición (Conjunto abierto)

Sea $A\subseteq\mathbb{C}$. Decimos que A es un conjunto abierto si todo punto de A es punto interior de A.

Teorema (Propiedades de conjuntos abiertos)

Definición (Punto interior)

Sean $A\subseteq\mathbb{C}$ y $z\in\mathbb{C}$. Decimos que z es punto interior de A si existe r>0 tal que $D(z,r)\subseteq A$.

Definición (Conjunto abierto)

Sea $A\subseteq\mathbb{C}$. Decimos que A es un conjunto abierto si todo punto de A es punto interior de A.

Teorema (Propiedades de conjuntos abiertos)

• Si $\{U_{\alpha}\}_{{\alpha}\in I}$ es una colección de conjuntos abiertos, entonces $\cup_{{\alpha}\in I}U_{\alpha}$ es un conjunto abierto.

Definición (Punto interior)

Sean $A\subseteq\mathbb{C}$ y $z\in\mathbb{C}$. Decimos que z es punto interior de A si existe r>0 tal que $D(z,r)\subseteq A$.

Definición (Conjunto abierto)

Sea $A\subseteq\mathbb{C}$. Decimos que A es un conjunto abierto si todo punto de A es punto interior de A.

Teorema (Propiedades de conjuntos abiertos)

- Si $\{U_{\alpha}\}_{{\alpha}\in I}$ es una colección de conjuntos abiertos, entonces $\bigcup_{{\alpha}\in I}U_{\alpha}$ es un conjunto abierto.
- Si U_1 , U_2 son abiertos, entonces $U_1 \cap U_2$ es abierto.

• C es abierto.

- C es abierto.
- Ø es abierto.

- C es abierto.
- Ø es abierto.
- Para todo $z \in \mathbb{C}$, r > 0, se tiene que D(z, r) es abierto.

Definición (Conjunto cerrado)

Sea $A\subseteq\mathbb{C}$. Decimos que A es cerrado si su complemento en \mathbb{C} , es decir, $\mathbb{C}-A$, es un conjunto abierto.

Definición (Conjunto cerrado)

Sea $A \subseteq \mathbb{C}$. Decimos que A es cerrado si su complemento en \mathbb{C} , es decir, $\mathbb{C} - A$, es un conjunto abierto.

Definición (Conjunto cerrado)

Sea $A\subseteq\mathbb{C}$. Decimos que A es cerrado si su complemento en \mathbb{C} , es decir, $\mathbb{C}-A$, es un conjunto abierto.

C y ∅ son cerrados.

Definición (Conjunto cerrado)

Sea $A \subseteq \mathbb{C}$. Decimos que A es cerrado si su complemento en \mathbb{C} , es decir, $\mathbb{C} - A$, es un conjunto abierto.

- ullet $\mathbb C$ y \emptyset son cerrados.
- Para todo $z \in \mathbb{C}$, r > 0, se tiene que $\overline{D}(z, r)$ es cerrado.

Definición (Conjunto cerrado)

Sea $A \subseteq \mathbb{C}$. Decimos que A es cerrado si su complemento en \mathbb{C} , es decir, $\mathbb{C} - A$, es un conjunto abierto.

- • C y ∅ son cerrados.
- Para todo $z \in \mathbb{C}$, r > 0, se tiene que $\overline{D}(z, r)$ es cerrado.
- La circunferencia unitaria $\{z \in \mathbb{C} \mid |z|=1\}$ es cerrada.

Definición (Conjunto cerrado)

Sea $A \subseteq \mathbb{C}$. Decimos que A es cerrado si su complemento en \mathbb{C} , es decir, $\mathbb{C} - A$, es un conjunto abierto.

- C y ∅ son cerrados.
- Para todo $z \in \mathbb{C}$, r > 0, se tiene que $\overline{D}(z,r)$ es cerrado.
- La circunferencia unitaria $\{z \in \mathbb{C} \mid |z| = 1\}$ es cerrada.

Teorema

Definición (Conjunto cerrado)

Sea $A \subseteq \mathbb{C}$. Decimos que A es cerrado si su complemento en \mathbb{C} , es decir, $\mathbb{C} - A$, es un conjunto abierto.

- C y ∅ son cerrados.
- Para todo $z \in \mathbb{C}$, r > 0, se tiene que $\overline{D}(z, r)$ es cerrado.
- La circunferencia unitaria $\{z \in \mathbb{C} \mid |z| = 1\}$ es cerrada.

Teorema

• Si $\{F_{\alpha}\}_{{\alpha}\in I}$ es una colección de conjuntos cerrados, entonces $\cap_{{\alpha}\in I}F_{\alpha}$ es un conjunto cerrado.

Definición (Conjunto cerrado)

Sea $A \subseteq \mathbb{C}$. Decimos que A es cerrado si su complemento en \mathbb{C} , es decir, $\mathbb{C} - A$, es un conjunto abierto.

- C y ∅ son cerrados.
- Para todo $z \in \mathbb{C}$, r > 0, se tiene que $\overline{D}(z, r)$ es cerrado.
- La circunferencia unitaria $\{z \in \mathbb{C} \mid |z| = 1\}$ es cerrada.

Teorema

- Si $\{F_{\alpha}\}_{{\alpha}\in I}$ es una colección de conjuntos cerrados, entonces $\cap_{{\alpha}\in I}F_{\alpha}$ es un conjunto cerrado.
- Si F_1 , F_2 son cerrados, entonces $F_1 \cap F_2$ es cerrado.

Frontera

Definición (Punto frontera)

Sean $A \subseteq \mathbb{C}$ y $z \in \mathbb{C}$. Decimos que z es un punto frontera de A si para todo r > 0 se tiene que $A \cap D(z, r) \neq \emptyset$ y $(\mathbb{C} - A) \cap D(z, r) \neq \emptyset$.

Frontera

Definición (Punto frontera)

Sean $A\subseteq\mathbb{C}$ y $z\in\mathbb{C}$. Decimos que z es un punto frontera de A si para todo r>0 se tiene que $A\cap D(z,r)\neq\emptyset$ y $(\mathbb{C}-A)\cap D(z,r)\neq\emptyset$.

El conjunto de puntos frontera de A se denota con ∂A .

Frontera

Definición (Punto frontera)

Sean $A\subseteq\mathbb{C}$ y $z\in\mathbb{C}$. Decimos que z es un punto frontera de A si para todo r>0 se tiene que $A\cap D(z,r)\neq\emptyset$ y $(\mathbb{C}-A)\cap D(z,r)\neq\emptyset$.

El conjunto de puntos frontera de A se denota con ∂A .

Ejemplo

$$\partial D(z,r) = \partial \overline{D}(z,r) = \{z \in \mathbb{C} \mid |z| = 1\}$$

Ejercicios

• Demuestra que $A \subseteq \mathbb{C}$ es abierto si y solo si $\partial A \cap A = \emptyset$.

Ejercicios

- Demuestra que $A \subseteq \mathbb{C}$ es abierto si y solo si $\partial A \cap A = \emptyset$.
- Demuestra que $A \subseteq \mathbb{C}$ es cerrado si y solo si $\partial A \subseteq A$.

Ejercicios

- Demuestra que $A \subseteq \mathbb{C}$ es abierto si y solo si $\partial A \cap A = \emptyset$.
- Demuestra que $A \subseteq \mathbb{C}$ es cerrado si y solo si $\partial A \subseteq A$.
- Demuestra que para todo $A\subseteq \mathbb{C}$ se tiene que ∂A es un conjunto cerrado.

Definición (Cerradura)

Sea $A \subseteq \mathbb{C}$. La cerradura de A, denotada \overline{A} , se define como:

$$\overline{A} = A \cup \partial A$$
.

Definición (Cerradura)

Sea $A \subseteq \mathbb{C}$. La cerradura de A, denotada \overline{A} , se define como:

$$\overline{A} = A \cup \partial A$$
.

Por ejemplo, $\overline{D(z,r)} = \overline{D}(z,r)$.

Definición (Cerradura)

Sea $A\subseteq \mathbb{C}$. La cerradura de A, denotada \overline{A} , se define como:

$$\overline{A} = A \cup \partial A$$
.

Por ejemplo,
$$\overline{D(z,r)} = \overline{D}(z,r)$$
.

Ejercicios

Definición (Cerradura)

Sea $A\subseteq \mathbb{C}$. La cerradura de A, denotada \overline{A} , se define como:

$$\overline{A} = A \cup \partial A$$
.

Por ejemplo, $\overline{D(z,r)} = \overline{D}(z,r)$.

Ejercicios

• Demuestra que $z \in \overline{A}$ si y solo si $D(z,r) \cap A \neq \emptyset$ para todo r > 0.

Definición (Cerradura)

Sea $A \subseteq \mathbb{C}$. La cerradura de A, denotada \overline{A} , se define como:

$$\overline{A} = A \cup \partial A$$
.

Por ejemplo, $\overline{D(z,r)} = \overline{D}(z,r)$.

Ejercicios

- Demuestra que $z \in \overline{A}$ si y solo si $D(z,r) \cap A \neq \emptyset$ para todo r > 0.
- Demuestra que \overline{A} es cerrado para todo $A \subseteq \mathbb{C}$.

Definición (Cerradura)

Sea $A\subseteq \mathbb{C}$. La cerradura de A, denotada \overline{A} , se define como:

$$\overline{A} = A \cup \partial A$$
.

Por ejemplo, $\overline{D(z,r)}=\overline{D}(z,r).$

Ejercicios

- Demuestra que $z \in \overline{A}$ si y solo si $D(z,r) \cap A \neq \emptyset$ para todo r > 0.
- Demuestra que \overline{A} es cerrado para todo $A \subseteq \mathbb{C}$.
- Demuestra que $A \subseteq \mathbb{C}$ es cerrado si y solo si $A = \overline{A}$.

Definición y notación

Definición (Sucesión)

Una sucesión en un conjunto A es una función $a: \mathbb{N} \to A$. Denotaremos a(n) como a_n y a a como $\{a_n\}$.

Definición y notación

Definición (Sucesión)

Una sucesión en un conjunto A es una función $a: \mathbb{N} \to A$. Denotaremos a(n) como a_n y a a como $\{a_n\}$.

Definición (Convergencia)

Decimos que la sucesión $\{a_n\}\subseteq \mathbb{C}$ converge a $z\in \mathbb{C}$ si para todo $\epsilon>0$ existe N tal que $a_n\in D(z,\epsilon)$ para todo $n\geq N$. Escribimos $\lim_{n\to\infty}a_n=z$.

Definición y notación

Definición (Sucesión)

Una sucesión en un conjunto A es una función $a: \mathbb{N} \to A$. Denotaremos a(n) como a_n y a a como $\{a_n\}$.

Definición (Convergencia)

Decimos que la sucesión $\{a_n\}\subseteq \mathbb{C}$ converge a $z\in \mathbb{C}$ si para todo $\epsilon>0$ existe N tal que $a_n\in D(z,\epsilon)$ para todo $n\geq N$. Escribimos $\lim_{n\to\infty}a_n=z$.

Observación

 $\lim_{n\to\infty} a_n = z$ si y solo si $\lim_{n\to\infty} |a_n - z| = 0$.

Teorema

$$\lim_{n \to \infty} a_n = z$$
 si y solo si $\lim_{n \to \infty} \Re a_n = \Re z$ y $\lim_{n \to \infty} \Im a_n = \Im z$

Teorema

$$\lim_{n \to \infty} a_n = z$$
 si y solo si $\lim_{n \to \infty} \Re a_n = \Re z$ y $\lim_{n \to \infty} \Im a_n = \Im z$

Teorema

Teorema

$$\lim_{n \to \infty} a_n = z$$
 si y solo si $\lim_{n \to \infty} \Re a_n = \Re z$ y $\lim_{n \to \infty} \Im a_n = \Im z$

Teorema

Sean $\{a_n\}$, $\{b_n\}$ dos sucesiones de números complejos tales que $a_n \to z$ y $b_n \to w$. Entonces:

• $ca_n \rightarrow cz$ para todo $c \in \mathbb{C}$,

Teorema

$$\lim_{n \to \infty} a_n = z$$
 si y solo si $\lim_{n \to \infty} \Re a_n = \Re z$ y $\lim_{n \to \infty} \Im a_n = \Im z$

Teorema

- $ca_n \rightarrow cz$ para todo $c \in \mathbb{C}$,
- $\overline{a_n} \to \overline{z}$, $|a_n| \to |z|$,

Teorema

$$\lim_{n \to \infty} a_n = z$$
 si y solo si $\lim_{n \to \infty} \Re a_n = \Re z$ y $\lim_{n \to \infty} \Im a_n = \Im z$

Teorema

- $ca_n \rightarrow cz$ para todo $c \in \mathbb{C}$,
- $\overline{a_n} \to \overline{z}$, $|a_n| \to |z|$,
- $a_n + b_n \rightarrow z + w$, $a_n b_n \rightarrow z w$.

Teorema

$$\lim_{n \to \infty} a_n = z$$
 si y solo si $\lim_{n \to \infty} \Re a_n = \Re z$ y $\lim_{n \to \infty} \Im a_n = \Im z$

Teorema

- $ca_n \rightarrow cz$ para todo $c \in \mathbb{C}$,
- $\overline{a_n} \to \overline{z}$, $|a_n| \to |z|$,
- $a_n + b_n \rightarrow z + w$, $a_n b_n \rightarrow z w$.
- Si $w \neq 0$, entonces $b_n = 0$ a lo más para una cantidad finita de valores de n, y $\frac{a_n}{b_n} \rightarrow \frac{z}{w}$.

Punto de acumulación

Definición (Punto de acumulación)

Sea $A \subseteq \mathbb{C}$. Decimos que $z \in \mathbb{C}$ es punto de acumulación de A si para todo $\epsilon > 0$ existe un punto en $D(z, \epsilon) \cap A$ distinto de z.

Punto de acumulación

Definición (Punto de acumulación)

Sea $A \subseteq \mathbb{C}$. Decimos que $z \in \mathbb{C}$ es punto de acumulación de A si para todo $\epsilon > 0$ existe un punto en $D(z, \epsilon) \cap A$ distinto de z.

Definición (Punto de acumulación de una sucesión)

Sea $\{a_n\}$ una sucesión en \mathbb{C} . Decimos que $z \in \mathbb{C}$ es punto de acumulación de a_n si para todo $\epsilon > 0$ existe una infinidad de valores de n tales que $a_n \in D(z, \epsilon)$.

Definición (Subsucesión)

Se dice que la sucesión $\{b_k\}$ es una subsucesión de $\{a_n\}$ si existe una sucesión creciente en $\mathbb N$

$$n_1 < n_2 < \cdots$$

tal que $a_{n_k} = b_k$ para $k = 1, 2, \ldots$

Definición (Subsucesión)

Se dice que la sucesión $\{b_k\}$ es una subsucesión de $\{a_n\}$ si existe una sucesión creciente en $\mathbb N$

$$n_1 < n_2 < \cdots$$

tal que $a_{n_k} = b_k$ para $k = 1, 2, \ldots$

Teorema

El complejo $z \in \mathbb{C}$ es punto de acumulación de la sucesión $a = \{a_n\}$ si y solo si existe una subsucesión $\{a_{n_k}\}$ de a tal que $\lim a_{n_k} = z$.

Teorema

Si una sucesión $a = \{a_n\}$ tiene límite z, entonces toda subsucesión de a tiene límite z.

Teorema

Si una sucesión $a = \{a_n\}$ tiene límite z, entonces toda subsucesión de a tiene límite z.

Teorema

Sean $A \subseteq \mathbb{C}$ y $z \in \mathbb{C}$. Entonces $z \in \overline{A}$ si y solo si existe una sucesión en A con límite z.

Teorema

Si una sucesión $a = \{a_n\}$ tiene límite z, entonces toda subsucesión de a tiene límite z.

Teorema

Sean $A \subseteq \mathbb{C}$ y $z \in \mathbb{C}$. Entonces $z \in \overline{A}$ si y solo si existe una sucesión en A con límite z.

Teorema

Sea $A \subseteq \mathbb{C}$. Entonces A es cerrado si y solo si A contiene todo punto de acumulación de toda sucesión en A.