COM1006 Devices and Networks (Autumn) COM1090 Computer Architectures

Lecture #3

Computer arithmetic: Floating point numbers

Dr Dirk Sudholt Department of Computer Science University of Sheffield

d.sudholt@sheffield.ac.uk
http://staffwww.dcs.shef.ac.uk/~dirk/campus_only/com1006/
Based on Section 4.9 in Clements, Principles of Computer Hardware

Aims of this lecture

- To contrast fixed point and floating point arithmetic.
- To explain the terms range, precision and accuracy in relation to floating point numbers.
- To explain binary floating point representation.
- To show how floating point numbers can be represented in IEEE 754 floating point format.
- To briefly review floating point arithmetic.
- To discuss the implications of overflow and underflow in binary floating point calculations.

Dealing with fractional values

- In principle dealing with a decimal (or binary) fraction presents no problems.
- Consider the following calculations in decimal arithmetic:

$$7632135$$
 integer $+1794821$ arithmetic 9426956 7632.135 fractional $+1794.821$ arithmetic 9426.956

- Note that the calculations are identical apart from the position of the decimal point.
- We can do the same with computer arithmetic; the programmer remembers where the decimal point lies and all inputs and outputs are scaled accordingly.

Fixed point arithmetic

 This approach is called fixed point arithmetic; the binary point is assumed to remain in the same position.

Example:

 Assume 8-bit fixed point numbers in which the 4 MSBs represent the integer part and the 4 LSBs represent the fractional part. Compute 3.625+6.5:

```
3.625_{10} \rightarrow 0011.1010_2 (fractional part is 1/2+1/8 = 5/8)
```

$$6.5_{10} \rightarrow 0110.1000_2$$
 (fractional part is 1/2)

Adding the binary numbers we get 10100010_2 which we interpret as 1010.0010_2 = 10.125 (fractional part is 1/8).

Limitations of fixed point

- Fixed point arithmetic is used in certain applications:
 - Financial applications where control over rounding is required (e.g., ensure that smallest fractional part is 0.1p)
 - 3D graphics where speed is paramount or no special hardware is available. Sony Playstation uses fixed point.
- For many other applications fixed point arithmetic is unsuitable, because a large number of bits is required to represent numbers in a large range.
- **Example**: physicists need to handle numbers ranging from the mass of the sun $(1.98892 \times 10^{30} \text{ kg})$ to the mass of an electron $(9.10938188 \times 10^{-31} \text{ kg})$ which would require fixed point numbers hundreds of bits long.

Representing floating point numbers

- More generally, we represent floating point numbers in the form a \times r^e where
 - a is the mantissa (or argument)
 - e is the exponent
 - r is the radix (or base)
- Computers store such numbers by splitting the mantissa and exponent into two fields. The radix is not explicitly
 - stored (and from hereon is assumed to be 2).

Graphical representation of FP number

Floating point number a x 2^e

- Must choose the following for a floating point representation:
 - the total number of bits used by the number
 - the number of bits allocated to the mantissa and exponent
 - representation of mantissa (two's complement etc.)
 - representation of exponent (biased etc. see later)

Range and precision

- The **range** of a number determines how big or small it can be, e.g. in the example we had numbers between 2×10^{30} and 9×10^{-31} , a range of 10^{61} .
 - The more bits allocated to the exponent, the larger the range.
- The precision of a number is a measure of its exactness, and corresponds to the number of significant figures.
- Example: Pi may be written as 3.142 or 3.141592. The latter is more precise (it represents Pi to one part in 10⁷, whereas the first is to one part in 10⁴).
 - The more bits allocated to the **mantissa**, the larger the **precision**.
- ANSI/IEEE 754 standard offers good range and precision.

► A word about accuracy

- The term accuracy is often used interchangeably with precision, but they have different meanings.
- Accuracy is a measure of correctness (how close an estimated value is to its true value).
- For example, 3.241592 is more **precise** than 3.141 because it has more significant digits, but it is less **accurate** because there is an error in the second digit.

Normalisation of IEEE FP numbers

A floating point mantissa is normalised to the form 1.F where F
is the fractional part, unless the mantissa is zero.

Examples:

```
11.010...<sub>2</sub>×2<sup>e</sup> is normalised to 1.1010...<sub>2</sub>×2<sup>e+1</sup>
0.1001...<sub>2</sub>×2<sup>e</sup> is normalised to 1.001...<sub>2</sub>×2<sup>e-1</sup>
```

What do we gain by this normalisation process?

- IEEE floating point uses a sign and magnitude format; a sign bit indicates the sign of the mantissa.
- Positive mantissa is in the range $1.00..._2$ to $1.11..._2$, negative mantissa is in the range $-1.11..._2$ to $-1.00..._2$, i.e., the normalised mantissa x is limited to one of three ranges:

$$-2 < x < = -1$$
 or $x = 0$ or $1 < x < 2$

Range of valid normalised mantissas

Representing the exponent

- We need to represent positive and negative exponents.
- In IEEE format the mantissa is represented in sign and magnitude form, but the exponent is in biased form.
- An m-bit exponent has 2^m unsigned values from 0 .. 2^m -1.
- We shift these values into the range $-2^{m-1}+1$ to $+2^{m-1}$ by subtracting a constant value (bias) $B = 2^{m-1}-1$ from each number.
- In other words: we start counting from –B.
- Example: Consider 3-bit biased exponent with B=2²-1=3, the biased forms 0, 1, 2, 3, 4, 5, 6, 7 represent the true values -3, -2, -1, 0, 1, 2, 3, 4.
- A further example for m=4 and $B=2^3-1=7$ is shown next.

Example: biased exponents

- Consider the number 1010.1111
- Normalized form is +1.0101111 × 2³
- True value is +3
- The value is actually stored in biased form which is 3+7 = 10₁₀ or 1010₂ in binary form.

Binary value	True value	Biased form
0000	-7	0
0001	-6	1
0010	- 5	2
0011	-4	3
0100	-3	4
0101	-2	5
0110	-1	6
0111	0	7
1000	1	8
1001	2	9
1010	3	10
1011	4	11
1100	5	12
1101	6	13
1110	7	14
1111	8	15

►IEEE 754 floating point format

An IEEE floating point number X is defined as

$$X = (-1)^{S} \times 2^{E-B} \times 1.F$$

where S = sign bit (0 = +ve mantissa, 1 = -ve mantissa),E = exponent biased by B, F = fractional mantissa.

Note that mantissa is 1.F but only F is stored; the leading 1
is implicit ('imaginary leading bit'). By not storing it, the
precision of the mantissa can be extended by one bit.

Format of IEEE 32-bit floating point

Bias for 8-bit exponent is $B=2^7-1=127$.

Decimal to IEEE FP: Example 1

- What is the representation of the decimal number -2345.125 in IEEE 32-bit format?
- The equivalent binary number is -100100101001.001₂
- In normalised form this is $-1.00100101001001 \times 2^{11}$
- The mantissa is negative so the sign bit is 1.
- The bias for an IEEE 8-bit exponent is 127, so the biased exponent is given by $11 + 127 = 138 = 10001010_2$
- The fractional part of the mantissa stored in 23 bits is 00100101001001000000000
- Hence -2345.125 is represented in IEEE 32-bit format as
 - 1 10001010 00100101001001000000000

Decimal to IEEE FP: Example 2

- What is the representation of the decimal number 0.1875 in IEEE 32-bit format?
- The fractional part of the equivalent binary number is $0 \times 1/2 + 0 \times 1/4 + 1 \times 1/8 + 1 \times 1/16 = 0011_2$
- Equivalent binary number is 0.0011₂, sign bit is 0 (+ve)
- Normalised binary number is 1.1×2^{-3}
- Biased exponent is -3 + 127 = 124 = 011111100_2
- Hence 0.1875 is represented in IEEE 32-bit format as
 - 0 01111100 100000000000000000000000

Converting IEEE FP to decimal

To convert IEEE 754 number to decimal, use the formula

$$(-1)^S \times (1+F) \times 2^{E-B}$$

• Example:

- Sign bit S = 0
- Fractional part of mantissa $F = 1000..._2 = 1/2$
- Exponent $E = 011111100_2 = 124$
- So decimal form is $1 \times (1+0.5) \times 2^{124-127} = 1.5 \times 2^{-3} = 0.1875$

Summary of Integer representations

Word read as	Unsigned integer	Sign & magnitude	Two's complement	Biased (B=7)
0000	0	0	0	-7
0001	1	1	1	-6
0010	2	2	2	- 5
0011	3	3	3	-4
0100	4	4	4	-3
0101	5	5	5	-2
0110	6	6	6	-1
0111	7	7	7	0
1000	8	-0	-8	1
1001	9	-1	- 7	2
1010	10	-2	-6	3
1011	11	-3	- 5	4
1100	12	-4	-4	5
1101	13	- 5	-3	6
1110	14	-6	-2	7
1111	15	-7	-1	8

►IEEE floating point formats

- To cater for different applications, the IEEE 754 standard specifies three basic formats, called single, double and quad.
- For the assessment you only need to know the single precision format.

▶ Basic IEEE floating point formats

	Single precision	Double precision	Quad precision
Field width in bits			
S = sign	1	1	1
E = exponent	8	11	15
L = leading bit	1	1	1
F = fraction	23	52	112
Total width in bits	32	64	128
Exponent			
Maximum E	127 = 11110 ₂	1023 = 11110 ₂	16383 = 11110 ₂
Minimum E	-126 = 00001 ₂	-1022 = 00001 ₂	-16382 = 00001 ₂
Bias	127	1023	16383

Representing zero, infinity and NaN

- In 32-bit single precision IEEE format exponents E_{min} -1 = $127 = 0000000_2$ and E_{max} +1 = +128 = 11111111_2 have a special interpretation.
- The special value E_{min} -1 = -127 = 00...00₂ is used to encode zero:

sign	exponent	mantissa
0	000 0	000 0

- Fits in neatly as decreasing exponents yield numbers closer to 0.
- E_{max}+1 = 128 is used to encode plus or minus infinity, or a not a number (NaN) resulting from division by zero.

Floating point arithmetic

Consider the addition of two floating point numbers:

$$1.110100 \times 2^{5} + 1.010001 \times 2^{3}$$

- We can't add these numbers directly because the exponents are different. Instead we must:
 - Identify the number with the smaller exponent;
 - 2. Make the smaller exponent equal to the larger exponent by dividing the mantissa of the smaller number by the same factor by which its exponent must be increased;
 - 3. Add (or subtract) the mantissas;
 - 4. If necessary, normalise the result (post-normalisation)
 - 5. Truncate or round the mantissa.

Example: floating point addition

- Consider sum of A = 1.110100 \times 2⁵ and B = 1.010001 \times 2³ with 6-bit mantissas (and imaginary leading 1).
- The exponent of B is smaller than that of A, so divide B's mantissa by 2² (shift to the right by 2 bits) to give 0.01010001 x 2⁵

post-normalisation: 1.000100001×2^6

truncation/rounding: 1.000100 × 2⁶

Implications of floating point

- Every time a calculation is done, further accuracy may be lost from the result due to truncation or rounding.
- Not all numbers can be represented: the number 0.75 can be represented exactly in binary floating point format

$$0.75_{10} = 0.11_2$$

however this is generally not the case, e.g.

$$0.1_{10} = 0.000110011001..._{2}$$

(same problem in decimal: $1/3 = 0.3333333333..._{10}$)

• If X is much larger than Y and Y > 0, we might get X+Y=X.

Overflow and underflow

- During post-normalization the exponent is checked as follows:
- Exponent overflow: exponent is more than the maximum possible value. This is an error condition.
- **Exponent underflow**: exponent is less than the minimum possible value.
- A simple way of fixing underflow is to set the result to zero.
- IEEE 754 uses **gradual underflow**: very small numbers are represented as **denormalised** numbers without leading 1: if exponent is 00...00 numbers are $(-1)^S \times 2^{(-B+1)} \times 0.F$ so that the approach towards zero is more gradual.

smallest denormalised number: $2^{-23} \times 2^{-126} = 2^{-149}$

▶Summary

- Integers can be represented in different ways: unsigned integers, two's complement, sign & magnitude, biased representation.
- We can represent fractional values using fixed point or floating point binary representations. The latter is usually preferred, and the current standard is IEEE 754:
 - the mantissa is represented in normalised sign and magnitude form
 - the exponent is represented in biased form.
- Learned how to convert between decimal numbers and IEEE 754.
- Two floating point numbers are added by increasing the smaller exponent and adding, normalising, and truncating/rounding the mantissas.
- Underflow, overflow and rounding/truncation errors can affect the accuracy of floating point calculations.