



PEP 559
Machine Learning in
Quantum Physics

Dr. Chunlei Qu

### Four Modules

- Module A: Machine Learning
- Module B: Deep Learning
- Module C: Quantum Information
- Module D: Machine Learning for Quantum Physics

## Three types of machine learning

> Labeled data Supervised learning Direct feedback Predict outcome/future No labels/targets Unsupervised learning No feedback Find hidden structure in data Decision process Reinforcement learning Reward system Learn series of actions

## Supervised learning

- Classification: labels are discrete, e.g., email spam detection is a binary classification task
- Regression: labels are continuous, e.g., house price vs. size





## Unsupervised learning

- Clustering: Discovering hidden structure of unlabeled data
- For example, the Hertzsprung-Russell diagram groups stars by temperature and luminosity





## Reinforcement learning

• To develop a system (agent) that improves its performance based on interactions with the environment





## Notation and Terminology



#### The Iris DataSet

- 4 Features: Sepal length, Sepal width, Petal length,
   Petal width
- 150 Samples or instances or observations, etc.
- Class labels: Setosa, Versicolor, Virginica.

### Data Matrix

- Superscript = **sample** index = row index
- Subscript = **feature** index = column index

$$X \in \mathbb{R}^{150 \times 4}$$



feature vector

## Terminology

- **Training example**: a row in the data matrix, also known as an observation, record, instance, or sample
- Feature: a column in the data matrix, also known as predictor, variable, input, attribute
- Target: also known as class label, ground truth, outcome, output, etc.
- Loss function: also known as cost function or error function.

## ML typical workflow

#### Feature scaling

The features should be on the same scale for optimal performance.

Normally, we transform it to a standard distribution with zero mean and unit variance.



# Preprocessing pipeline I:Missing data handlingInitial feature extraction

and selection

Preprocessing pipeline 2:

• Feature scaling
• Dimensionality reduction:
• Feature selection
• Feature extraction

Hyperparameter choice + training

Iterate and evaluate
via cross-validation



## McCulloch-Pitts (MCP) neuron model

Pre-determined weights, no learning capability



STEVENS INSTITUTE of TECHNOLOGY

## Rosenblatt's perceptron model

• Proposed an algorithm that would automatically **learn the optimal weight** coefficients



## Key idea to adjust the weight (and bias)

- If predicted label is 1, but the actual label is 0, we want to reduce the weight
- If predicted label is 0, but the actual label is 1, we want to enhance the weight



## The perceptron learning rule

- 1. Initialize the weights and bias unit to 0 or small random numbers
- 2. For each training example,  $x^{(i)}$ :
  - a. Compute the output value,  $\hat{y}^{(i)}$
  - b. Update the weights and bias unit

$$w_j \coloneqq w_j + \Delta w_j$$
  
and  $b \coloneqq b + \Delta b$ 

The update values ("deltas") are computed as follows:



## Applicable to linearly separable data only

• The algorithm finds the linear decision boundary after certain number of iterations (epochs)



## Python basics

See Jupyter Notebook: Python\_CheatSheet.ipyb

- > Virtual environment with conda
- Jupyter Notebook
- Essential packages: numpy, matplotlib, pandas, seaborn, scipy

♦ STEVENS INSTITUTE of TECHNOLOGY

### Demo: Iris flowers classification

• See jupyter notebook: **demo\_Iris.ipynb** 







• Iris Dataset: 4 feature variables, 3 classes, 150 samples

- Rosenblatt's model is specifically designed for binary classification tasks
- Need to remove the data for one class before we apply Rosenblatt Perceptron model



♦ STEVENS INSTITUTE of TECHNOLOGY

## Rosenblatt perceptron

- Single-layer NN
- The weights are updated based on a step function
- The weight update is calculated incrementally after **EACH** training example

- Sample 1
- Sample 2
- Sample 3
- •
- Sample 100





j: feature index

i: sample index

m=4 (features)

## Perceptron convergence theorem

- Rosenblatt proved mathematically that the perceptron learning rule **converges** if the two classes can be **separated by a linear hyperplane.**
- If two classes cannot be separated by a linear hyperplane, the weights will never stop updating unless we set a maximum number of iterations (or epochs)



STEVENS INSTITUTE of TECHNOLOGY

### Geometric intuition

The weight vector is perpendicular to the decision boundary.



$$\hat{y} = \begin{cases} 0, \ \mathbf{w}^T \mathbf{x} \le 0 \\ 1, \ \mathbf{w}^T \mathbf{x} > 0 \end{cases}$$

$$\mathbf{w}^T \mathbf{x} = ||\mathbf{w}|| \cdot ||\mathbf{x}|| \cdot \cos(\theta)$$

So this needs to be 0 at the boundary, and it is zero at  $90^{\circ}$ 

## Adaptive linear neuron (Adaline)

A generalized Rosenblatt's neuron model by Bernard Widrow and Tedd Hoff (1960)



## Key difference

#### Learning

$$\sigma(z) = z$$

- In the Adaline rule, the weights are updated based on a linear activation function rather than a step function
- The weight update is calculated based on **all samples** in the training dataset (instead of updating the parameters incrementally after each training sample)
- It is referred to as **full batch gradient descent**

#### **Prediction**

• While the linear activation function is used for learning the weights, we still use a **step function** to make the final prediction

## Adaline learning: Gradient descent

- To minimize the **objective function**, or loss or cost function
- Mean squared errors (MSE)

weighted sum of i-th feature vector



Sum over all samples



Advantages of this MSE loss function

- i) Differentiable
- ii) It is convex; thus a local or global minimum can be reached by climbing down the hill (along the negative direction of the gradient)

Adaline learning or updating rule

$$w:=w+\Delta w$$
,  $b:=b+\Delta b$ 

$$\Delta w_j = -\eta \frac{\partial L}{\partial w_j}$$
 and  $\Delta b = -\eta \frac{\partial L}{\partial b}$ 

$$\frac{\partial L}{\partial w_j} = -\frac{2}{n} \sum_{i} \left( y^{(i)} - \sigma(z^{(i)}) \right) x_j^{(i)}$$

$$\frac{\partial L}{\partial b} = -\frac{2}{n} \sum_{i} \left( y^{(i)} - \sigma(z^{(i)}) \right)$$

## Learning rate



- If we choose a learning rate that is too large --- we **overshoot** the global minimum
- If it is too small --- training will be slow and might get stuck in local minima (for complex loss function). However, MSE loss function is convex and there are no local minima.

## Python implementation of Adaline

• See Jupyter notebook: demo\_iris\_Adaline.ipynb

## Feature scaling

- Many ML algorithms require feature scaling for optimal performance
- Gradient descent is one of the them that benefit from feature scaling. Other algorithms, such as regularization
  and k-means, also strongly depend on feature scaling. While the decision trees and random forests don't need
  to worry about feature scaling.
- Standardization

Normalization



After feature scaling, it is easier to find a learning rate that works well for all weights (and bias).

## Stochastic gradient descent

- For very large dataset with millions of data points, full batch gradient descent can be computationally expensive
- Instead of updating the weights based on the sum of the accumulated errors over all training sample, we update the parameters incrementally for each training sample --- SDG
- Or use mini-batch gradient descent apply full batch gradient to smaller subset of the training data.
- Compared to SGD, we can replace the for loop over the training examples with vectorized operations, which can further improve the computational efficiency.

STEVENS INSTITUTE of TECHNOLOGY

## Adaptive learning rate

In SGD implementations, the fixed learning rate,  $\eta$ , is often replaced by an adaptive learning rate that decreases over time

 $\frac{c_1}{[\text{number of iterations}] + c_2}$ 

where c1 and c2 are constants.

SGD does not reach the global loss minimum but an area very close to it.



## Python demos

• See Jupyter notebook