SHENGYUN PENG

Homepage: https://shengyun-peng.github.io/ shengyun@gatech.edu ⋄ Mobile: (+1) 404-422-6327

EDUCATION

Georgia Institute of Technology

Jan. 2022 - May 2026

Ph.D. in Computer Science

Georgia Institute of Technology

Jan. 2021 - Dec. 2022

M.S. in Computational Science & Engineering | GPA: 4.0/4.0

Tongji University Sept. 2015 - June 2020

B.Eng. in Civil Engineering | Minor: French | GPA: 92.37/100 | Rank: 1/32 Graduation with honor: Outstanding Graduates Award of Shanghai, 2020

University of California, Los Angeles

July - Sept. 2019

Cross-disciplinary Scholars in Science and Technology (CSST) Program | GPA: 4.0/4.0

PUBLICATIONS

- [1] **Shengyun Peng**, Lingfeng Yan, Bin He and Ying Zhou, "A Novel DNN tracking algorithm for structural system identification," *Smart Structures and Systems*, vol. 27(5), pp. 803-818, May 2021.
- [2] **Shengyun Peng**, Yunxuan Yu, Kun Wang and Lei He, "Accurate Anchor Free Tracking," arXiv, 2006.07560
- [3] Xingchen Zhang, Ping Ye, **Shengyun Peng**, Jun Liu and Gang Xiao, "DSiamMFT: An RGB-T fusion tracking method via dynamic Siamese networks using multi-layer feature fusion," *Signal Processing: Image Communication*, vol. 84, pp. 115756, 2020.
- [4] Xingchen Zhang, Ping Ye, **Shengyun Peng**, Jun Liu, Ke Gong and Gang Xiao, "SiamFT: An RGB-infrared Fusion Tracking Method via Fully Convolutional Siamese Networks," *IEEE Access*, vol. 7, pp. 122122-122133, 2019.
- [5] Xingchen Zhang, Ping Ye, Dan Qiao, Junhao Zhao, **Shengyun Peng** and Gang Xiao, "Object Fusion Tracking Based on Visible and Infrared Images Using Fully Convolutional Siamese Networks," 22th International Conference on Information Fusion (FUSION), Ottawa, ON, Canada, 2019, pp. 1-8.
- [6] Jun Liu, Gang Xiao, Xingchen Zhang, Ping Ye, Xingzhong Xiong and **Shengyun Peng**, "Anti-occlusion object tracking based on correlation filter," Signal, Image and Video Processing, Nov. 2019.

COURSE PROJECT

Computational Science & Engineering Algorithms

Aug. 2021 - Dec. 2021

• Implement 4 algorithms to solve the Traveling Salesman Problem: Branch-and-Bound algorithm, Minimum Spanning Tree approximation, 2-opt exchange local search, and Tabu search.

Modeling & Simulation: Foundation & Implementation

Jan. 2021 - May 2021

• Image segmentation via Cellular Automata (CA): Devise three different CA models and test the segmentation intersection-over-union (IoU).

Special Topics: Database System Implementation

Jan. 2021 - May 2021

- Logging and Recovery: Implement a write ahead logging (WAL) under No-Force/Steal policy in BuzzDB.
- Concurrency Control: Implement a two-phase locking to ensure isolation and atomicity of the transactions.
- Query Optimizer: Implementing a selectivity estimation framework and a Selinger cost-based optimizer.

INDUSTRIAL EXPERIENCE

Shanghai FOREGOER, LLC

Sep. 2020 - Dec. 2020

Software Engineer Intern

Supervisor: Prof. Weidong Yang | Computer Science | Fudan University

• Develop a vision monitoring software to check the layout in cockpit, and automatically verify the correctness of parameters in airspeed indicator, vertical speed indicator, and attitude indicator.

RESEARCH EXPERIENCE

Graduate Research Assistant

May 2021 - Present

Prof. Duen Horng Chau | Polo Club of Data Science, CS | Georgia Institute of Technology, Atlanta

- Guaranteeing AI Robustness Against Deception (GARD) project, DARPA
- Working on generating benign and adversarial image pairs from CARLA: an open-source simulator for autonomous driving research
- Improving the robustness of video object tracking: perform the adversarial patch attack on GOTURN tracker and then defend the attack via background subtraction

FPGA-based Processor for Video Object Tracking

July 2019 - Dec. 2019

Prof. Lei He | Design Automation Lab, ECE | University of California, Los Angeles

- Proposed a novel anchor free tracker, which represented an object by a single point at bounding box center, and other properties such as object size and local offsets were regressed directly from image features at the center location.
- Simulated operation fusion, network slicing, and data quantization for tracking network in PyTorch.
- Worked on the deployment of trackers on FPGA boards with the assistance of an RTL based hand-coded FPGA overlay domain-specific processor unit (OPU) with software programmability and fast compilation time, targeting at general CNN accelerations.

Object Tracking Algorithms with the Fusion of Infrared Images July 2018 - Jan. 2020 Prof. Gang Xiao | Advanced Avionics and Intelligent Information Lab | Shanghai Jiao Tong University

- Developed both pixel-level and feature-level visible and infrared fusion methods based on Siamese networks, which solved tracking challenges like partial occlusion, low illumination. The tracker ranked first on large-scale RGBT234 dataset.
- Detailed analyzed four types of occlusion, and built an anti-occlusion correlation filter-based tracker with re-detection mechanism.

Computer Vision-based Structural System Identification

Oct. 2017 - Aug. 2020

Prof. Ying Zhou | State Key Laboratory of Disaster Reduction in Civil Engineering | Tongji University

- Proposed a novel and complete framework which obtained the natural frequency and modes of vibration with a non-contact measurement method based on optical flow, correlation filter and Siamese network with single UAV.
- Measured the displacements of a five-storey structure and the errors of first order and the second order natural frequency were 0.09% and 1.01%, respectively.
- Verified the accuracy through the first shaking table test of a full scale low-damage concrete wall building in the world at International Joint Research Laboratory of Earthquake Engineering, and the mean squared error of UAV camera and linear variable differential transformers was below 4%.

Simulation of Vertical Launching Missile and Aircraft Based on PID Control June - Aug. 2017 Associate Prof. Chao Liu | Institute of Computing Technology | Chinese Academy of Sciences

• Built a Simulink model to simulate missile vertical launch and six-freedom system for aircraft flight control.

• Illustrated the changes in pitch angle and posture adjustment with the involvement of PID control system when disturbed by atmosphere, aiming to realize assistive and full-automatic flight path control.

3D Printing of Concrete Structures and Sample Strength Tests

Apr. 2017 - Apr. 2018

Prof. Qianrong Yang | School of Materials Science and Engineering | Tongji University

- Finished the mechanical design and manufacture of the 3D printer with automatic pulp feeding systems, assisted by BIM to visualize construction process and cost.
- Performed sample rupture strength and tensile strength tests to modify the working path in order to achieve the desired physical properties.

AWARDS

National Scholarship (top 2%)	2017 - 2018
Tongji University Excellent Student (top 5%)	2017 - 2018
First Prize of Tongji University Scholarship of Excellence	2016 - 2017
Excellent Worker in the ASCE-Tongji-ISG of the Instructional Innovation	2016 - 2017
National Undergraduate Innovative Programs Certificate	2017
3rd Prize in Contemporary Undergraduate Mathematical Contest in Modeling	Dec. 2017
3rd prize in Tongji Undergraduate Mathematical Contest in Modeling	May 2017
1st Prize in Mathematics Competition of Chinese College Students	Nov. 2016
Championship of SAGE Global Contest, SRB Category	2012 - 2013
The Team 5th Place in Princeton University Math Competition(PUMaC)	Nov. 2013
High School Mathematical Contest in Modelling (HiMCM) Meritorious	2013

CONFERENCE PRESENTATION

International Workshop on Data Science in Civil Engineering

June 2019

Theme A new Siamese-based tracking for structural health monitoring

TECHNICAL SKILLS

Programming Java, Python, C, C++, HTML, JavaScript, C#, OpenMPI, PyTorch, SQL, MATLAB