= (n)= 1/2/3/49 han= 1-1-1) LC= N+N-1=4+2-1=5 (5(n)+25(n-1)+36(n-2)+45(n-3)) x Using Di 1-8(11)-8(11-1)6 USINGFFT - LIF X(K). H(K) Activate Window 日日日 日 日 日 140

4-bit carry-lookahead Adder

Multiplication of unsigned numbers

Product of 2 n-bit numbers is at most a 2n-bit number.

Unsigned multiplication can be viewed as addition of shifted versions of the multiplicand.

Multiplication of unsigned numbers (contd..)

- We added the partial products at end.
 - · Alternative would be to add the partial products at each stage.
- Rules to implement multiplication are:
 - If the ith bit of the multiplier is 1, shift the multiplicand and add the shifted multiplicand to the current value of the partial product.
 - · Hand over the partial product to the next stage
 - Value of the partial product at the start stage is 0.

Multiplication of unsigned numbers

Typical multiplication cell

Combinatorial array multiplier

Product is: p,p6...p0

Multiplicand is shifted by displacing it through an array of adders.

Sequential Circuit Multiplier

LSB OF Q-0 NO ADD SIGNAL IS GENERATED LSB OF Q-1 ADD SIGNAL IS GENERATED

Sequential multiplication (contd..)

Booth Algorithm

Since 0011110 = 0100000 - 0000010, if we use the expression to the right, what will happen?

