AAE 334: Aerodynamics

Homework 3: Flat Plate Theory and Effects of Flaps and Slats

Tomoki Koike Friday February 7, 2020

1. [15 pts] Starting from the definition of the moment about the leading edge:

$$M'_{LE} = -\rho_{\infty}V_{\infty} \int_{0}^{c} \xi \gamma(\xi)d\xi$$

$$M_{LE}' = -\rho_{\infty}V_{\infty}\int_{0}^{c}\xi\;\gamma(\xi)d\xi$$
 and the series solution for the circulation density:
$$\gamma(\theta) = 2V_{\infty}\bigg(A_{0}\frac{1+\cos\theta}{\sin\theta} + \sum_{n=1}^{\infty}A_{n}\sin n\theta\bigg)$$

$$c_{m,LE} = -\frac{\pi}{2} \left(A_0 + A_1 - \frac{A_2}{2} \right)$$

derive the equation for the moment coefficient about the leading $c_{m,LE}=-\frac{\pi}{2}\Big(A_0+A_1-\frac{A_2}{2}\Big)$ Recall that our standard change of variables is $\xi=\frac{c}{2}\left(1-\cos\theta\right)$.

plug in	the substitutions
} & 2 } / (A	$\frac{C}{2}(1-\cos\theta) \implies d\mathcal{R} = \frac{C}{2}\sin\theta d\theta$ $1 = 2V_{\infty}\left(A_{0} \frac{1+\cos\theta}{\sin\theta} + \sum_{n=1}^{\infty}A_{n}\sin n\theta\right)$
0.00	n=1
M/4 = -	Poo Voo Jo 2 (1-cost) [2 Voo (Ao sint) + & An sin nt)] de
	$- \int_{0}^{2} V_{00}^{2} C \int_{0}^{\pi} \left[A_{0} \frac{\left(1 - \cos^{2}\theta\right)}{\sin \theta} + \left(\left(-\cos\theta\right) \sum_{n=1}^{\infty} A_{n} \sin n\theta \right) \frac{C}{2} \sin \theta d\theta \right]$
	Poo Vo2 C2 Jo [Ao sin 0 + (1-coso) & An sin n 0] sin 0 d0
= =	$\frac{\log V_{\infty}^{2}}{2} \int_{0}^{\pi} \left[A_{0} \sin \theta + \sin \theta (1 - \cos \theta) \sum_{n=1}^{\infty} A_{n} \sin n \theta \right] d\theta$
= -	$\frac{\ell_{\omega} V_{\omega}^{2} c^{2}}{2} A_{0} \int_{0}^{\pi} \sin^{2} \theta d\theta$
	[0 Vo2 C2 20 An Jo sin 0 (1-coso) sin no do
= -	Povo c2 Ao Jo sin2 Odo + 5 An Jo sind cinuddo
	- Sin Ocos Osinhodo

Az	6 6	2 h 0 1 TCX1 1 TCX1	1 5 sin 2 0	sin 20.	- 70 0	2h 7c/cm in 201	-)-	L Sind	$0 \int_{0}^{\pi}$ $0 \left(\frac{1}{x_1} \right)$	· (-*)	
From	we the	vant Qu X =	t0 도	find	ø1		mahi	Ipulate			$\frac{1}{C-x_1}$. $\sin\theta_1(1-\cos\theta_1)$ from the place assumption $c \approx 1$ $x_1 \approx (1-E)c \Rightarrow \frac{x_1}{c} \approx 1-E$ $c - x_1 \approx Ec$
			27	1-4E	CO 5 2 0	=	:)	-√F((-E)		
	tan) Nuw	r ≈ sil	h c-x	? ?	γ = β+	smu	all an	igle (\$SSUM1	otion	

- (b) Plot c_{mac}/η as a function of flap-chord ratio, E.
- (c) Determine the value of E for which the magnitude $|c_{mac}/\eta|$ is a maximum. Typical flaps have E=0.20. Is this value near where the maximum occurs? For an airplane taking off, flaps are needed to generate a large lift force at low velocity. Does the moment generated make it easy or difficult for the airplane to take off? (Hint:

review your answer to part (a).) (This question is not for credit: can you think of a reason unrelated to aerodynamics for why a typical wing flap would have E = 0.20? Consider how a wing is constructed.)

(d) [part (d) is no longer required. The ideal angle of attack is found by setting the Fourier coefficient $A_0 = 0$. For the geometry given, this results in

$$\alpha_{ideal} = -\eta \left(1 - E - \frac{\theta_1}{\pi}\right)$$

where $\theta_1=\cos^{-1}(2E-1)$. The ideal angle of attack relative to the main element of the airfoil is $\tilde{\alpha}_{ideal}=\alpha_{ideal}-\beta\approx\alpha_{ideal}-E\eta$. For E = 0.20 and $\eta=20^\circ=0.34907$ radians, $\alpha_{ideal}=-0.03322$ radians = -1.90° and $\tilde{\alpha}_{ideal}=-0.10303$ radians = -5.9° .]

For E = 0.20 and $\eta = -20^\circ$, determine the ideal (design) angle of attack and determine the lift coefficient at the ideal angle of attack.

now does moment make it easier to lift-off

from the answers of (a) & (b) we can tell that

Com is negative making the plane to mose-down

thus, makes it difficult to take off.

(e) At the ideal angle of attack found in part (d), determine the vortex sheet strength distribution, $\gamma(x)/V_{\infty}$, and plot it. Do this by writing a Matlab program (or use another language if you wish, e.g., Python). Include enough Fourier coefficients in your computation that the results are accurate (i.e., if you use more Fourier coefficients, you do not make a significant difference in the results). Turn in the formulation of how $\gamma(x)/V_{\infty}$ is computed, a listing of you program, and the plot of the vortex sheet strength. Tell how many Fourier coefficients you used. The vortex sheet strength gives a picture of the local contribution to the lift. Discuss how the lift distribution along the chord of the airfoil is related to the geometry of the airfoil.

$$|Q_{ideal}| = -\eta \left((-E - \frac{\theta_1}{\pi}) \right)$$

= -0.03322 = -1.90°

from problem l

$$\gamma(\theta) = 2 V_{00} \left(A_0 \frac{1 + \cos \theta}{\sin \theta} + \sum_{n=1}^{\infty} A_n \sin n \theta \right)$$

$$\gamma(\theta) = 2 A_0 \frac{1 + \cos \theta}{\sin \theta} + 2 \sum_{n=1}^{\infty} A_n \sin n \theta$$

$$\frac{1(0)}{V_{00}} = 2A_0 \frac{1+\cos\theta}{\sinh\theta} + 2\frac{9}{h-1}A_h \sinh\theta$$

a ideal
$$\varphi$$
 Ao \rightarrow 0
$$\frac{\partial(\theta)}{\partial \varphi} = 2 \sum_{n=1}^{\infty} A_n \sinh \theta$$

$$\frac{\partial(\theta)}{v_{\infty}} = 2 \sum_{h=1}^{\infty} A_h \sinh \theta$$

	N=1 N=1
neve	$\frac{1}{2}$
	$A_{n} = \frac{2}{\pi} \int_{0}^{\pi} \frac{23}{20} \cosh \theta d\theta$
	$= \frac{2}{\pi} \int_{0}^{\theta_{1}} \frac{h}{\pi} \cos h \theta d\theta - \frac{2}{\pi} \int_{\theta}^{\pi} \frac{h}{c \pi} \cos h d\theta$
	26 T 7θ1 26 T 7T
	$= \frac{2h}{\pi x_1} \left[\frac{1}{h} \sin m\theta \right]_0^{\theta_1} - \frac{2h}{\pi (c-x_1)} \left[\frac{1}{h} \sinh \theta \right]_{\theta_1}^{\pi}$
	10/1 1 10/
	$= \frac{2}{h\pi} \frac{h}{x_1} \sin h\theta_1 + \frac{2}{h\pi} \frac{h}{c-x_1} \sinh \theta_1$
	NTC X, The N/V C-XI
	$\frac{2}{h\pi} \sin h \theta_1 \left(\frac{h}{x_1} + \frac{h}{c - x_1} \right)$
	ht the state of th
	= 2 no no sinn fi
	N(C)
	0 -
	cos 0 = 2E-1 => 0 = arccos (2E-1)
	$A_{n} = \frac{2 \eta}{\pi} \frac{\sin[n \arccos(2\xi - 1)]}{n}$
	$A_n = \pi^{\ell}$
then	$\frac{J(\theta)}{V_{\infty}} = 2 \frac{2}{\pi n} \frac{2}{\pi n} \frac{1}{\pi n} \frac{1}{$
	(a) 2 2 m Sin [harcos(2=-1)] sinn
	10 = 2 I TU
	V ₀ h=1
	Y601
	$\frac{f(0)}{2(1-1)} = \frac{4}{7} \sum_{n=1}^{\infty} \frac{\sin[n \arccos(2E-1)]}{\sin[n \arccos(2E-1)]} = \frac{\sin[n]}{\sin[n]}$
	$\frac{1(0)}{V_{00}} = \frac{4}{\pi} \eta \sum_{n=1}^{\infty} \frac{\sin[n \operatorname{arccos}(4E-1)]}{\ln n} \sin n \theta$

(code in Apendix, section "problem2")

I used 10=50, 100, and 500

By the change of geometry the lift distribution also

changes. For example, with a flap and slat the

pressure distribution becomes stronger in that the lift

overall increases, likewise, cambered airfoils with

optimal camber allows to increase the lift coefficient

let alone the lift distribution, Besides that the

thickness of the airfoil also changes the

behavior of lift change after stall angle by

preventing to full abraptly.

Π. Ι	
NOV	$A_0 = Q - \frac{1}{\pi} \int_0^{\pi} \frac{dz}{dx} d\theta$
	$= \alpha - \frac{1}{\pi} \int_{0}^{0} \left[(1+\beta) \delta + \beta \right] d\theta - \frac{1}{\pi} \int_{0}^{0} \left(\beta 2 - \beta \delta \right) d\theta - \frac{1}{\pi} \int_{0}^{\pi} \left[-(1+\beta) 2 - \beta \delta \right] d\theta$
	$= q - \frac{1}{\pi} [(1+)\delta + \epsilon n] \theta_1 - \frac{1}{\pi} [\epsilon n - \epsilon \delta] (\theta_2 - \theta_1) - \frac{1}{\pi} [-(1+\epsilon)n - \epsilon \delta] (\pi - \theta_2)$
	= 9 - To \ SO1 - ESO1 + ETO2 - ETO1 - FSO2 + ESO1
	$+(-n+Eq-+\delta)(\tau-\theta_2)$
	= 9 - 1 [801 + E 202 - F 502 - TN + TET - TF 8 + 702 - E70, + F50-]
	= 9 - = [101 - Th + TEN - TH 1 + N 82]
and	$A_1 = \frac{2}{\pi} \int_0^{\pi} \frac{dz}{dx} \cos \theta d\theta$
	$=\frac{2}{\pi}\left[\int_{0}^{\theta_{1}}\left[(1-F)\delta+F\eta\right]\cos\theta d\theta+\int_{\theta_{1}}^{\theta_{2}}\left(F\eta-F\delta\right)\cos\theta d\theta+\int_{\theta_{2}}^{\eta_{2}}\left[-(1F)\eta-F\delta\right]\cos\theta d\theta\right]$
	$=\frac{2}{\pi}\left[\left(\int_{-}^{2}+f\delta+\xi^{2}\right)\sin\theta_{1}+\left(\xi\eta-f\delta\right)\left(\sin\theta_{2}-\sin\theta_{1}\right)+\left(-\eta+\xi\eta-f\delta\right)\left(-\sin\theta_{2}\right)\right]$
	= 1 (SsinO1 - ESSINO1 + EPSINO2 - EPSINO2 - EPSINO1
	- F SSIND2+ FSSIND1 + 751002- E751002+ FSSIND2)
	$=\frac{2}{\pi}\left(\sin\theta_1+\eta\sin\theta_2\right)$
	now from the equ. $C_{\alpha} = 2\tau \left(A_0 + \frac{1}{2}A_1\right)$

$C_{e} = 2\pi \left(q - \frac{\delta \theta_{1}}{\pi} + n - E_{1} + F_{1} - \frac{n\theta_{1}}{\pi} + \frac{\delta \sin \theta_{1}}{\pi} + \frac{n\sin \theta_{2}}{\pi} \right)$
from small angle assumption & flor plane assumption
$tan \beta_1 = \frac{h}{\chi_1} \approx \beta_1, \qquad \chi_1 \approx \beta_2 \approx \beta_2 \Leftrightarrow \frac{\chi_1}{C} = \beta_2$ $tan \beta_2 = \frac{h_2 - h_1}{\chi_2 - \chi_1} \approx \beta_2 \qquad \chi_2 - \chi_1 \approx (1 - \beta_1 - \beta_2) = \chi_2 \approx (1 + \beta_2) + \beta_2 \approx (1 - \beta_1) = \chi_2 \approx \beta_2$ $tan \beta_2 = \frac{h_2}{C - \eta_2} \approx \beta_1 \qquad C \approx \ell$ $C \approx \ell$ $C \approx \ell$
and $\alpha = \frac{C}{2}(1-\cos\theta) \iff \cos\theta_1 = 1-\frac{2x_1}{C} = 1-2F$
$\sin \theta_1 = \sqrt{ - +4f-qf^2 } = 2\sqrt{f(-f)}, \theta_1 = \arccos(-2f)$ $\cos \theta_2 = -2(-f) = 2f - 1$
$5 \ln \theta_{2} = \sqrt{1 - (2E-1)^{2}} = \sqrt{1 - 4E^{2} + 4E - 1} = 2 \sqrt{E(1-E)}$, $\theta_{2} = \arccos(2E-1)$
$C_{\ell} = 2\pi \left(\frac{2}{4} + \beta_{2} - \frac{\delta}{\pi} \arccos(-2F) + \eta - -F + F \delta \right)$ $-\frac{\eta}{\pi} \arccos(2F - 1) + \frac{\delta}{\pi} 2\sqrt{F(1+)} + \frac{\eta}{\pi} 2\sqrt{E(1-E)} \right)$
from the relations of AABE, ACDF, and ABCG
$h_1 = \frac{1}{5} \frac{1}{5} \frac{1}{5} \frac{1}{5} \approx \frac{1}{5} \frac{1}$

(b) Assume
$$F = 0$$
 and show you recover the formula found for the example worked in class. Plot the flap effectiveness, $-\alpha_{ZL}/\eta$, as a function of E for $0 \le E \le 1$.

if $F = 0$

$$Q_{ZL} = -\frac{1}{T^{2}} \left[-\alpha_{CCOS}(2F - 1) + 2F(1F) \right] \eta$$

$$Q_{ZL} = -\frac{\eta}{T^{2}} \left[-\alpha_{VCCOS}(2F - 1) + 2F(1F) \right] \eta$$

$$\alpha_{ZL} = -\eta - \frac{\eta}{T^{2}} \left(-\alpha_{VCCOS}(2F - 1) + 2F(1F) \right)$$

$$\alpha_{ZC} = -\eta - \frac{\eta}{T^{2}} \left(-\alpha_{VCCOS}(2F - 1) + 2F(1F) \right)$$

$$\alpha_{ZC} = -\eta - \frac{\eta}{T^{2}} \left(-\alpha_{VCCOS}(2F - 1) + 2F(1F) \right)$$

$$\alpha_{ZC} = -\eta - \frac{\eta}{T^{2}} \left(-\alpha_{VCCOS}(2F - 1) + 2F(1F) \right)$$
The plot is the following the Matlob code

is in the appendix in section problem $3 \le i > 1$

from this, we can say that for a fixed E value

the larger the deflection when flut is deployed 921 moves to the left in the negative direction.

Appendix

HW 3 - matlab code

problem 1

problem 2

```
theta = linspace(0, pi, 2^10); % Define the angle theta
gamma_over_Vinf_50 = 0; % Initiate vortex sheet strength distribution
for n = 1:50
    A_n = \sin(n*a\cos(-0.6)).*\sin(n.*theta)/n; % n-th Fourier coefficient
    gamma_over_Vinf_50 = gamma_over_Vinf_50 + A_n; % Summation
end
gamma_over_Vinf_50 = 4/9 * gamma_over_Vinf_50;
gamma_over_Vinf_100 = 0; % Initiate vortex sheet strength distribution
for n = 1:100
    A n = \sin(n*a\cos(-0.6)).*\sin(n.*theta)/n; % n-th Fourier coefficient
    gamma_over_Vinf_100 = gamma_over_Vinf_100 + A_n; % Summation
end
gamma_over_Vinf_100 = 4/9 * gamma_over_Vinf_100;
gamma over Vinf 500 = 0; % Initiate vortex sheet strength distribution
for n = 1:500
   A_n = \sin(n*a\cos(-0.6)).*\sin(n.*theta)/n; % n-th Fourier coefficient
```

```
gamma_over_Vinf_500 = gamma_over_Vinf_500 + A_n; % Summation
end
gamma_over_Vinf_500 = 4/9 * gamma_over_Vinf_500;
% Plotting
fig2 = figure('Renderer', 'painters', 'Position', [10 10 900 600]);
plot(theta, gamma_over_Vinf_50)
xlabel('angle theta, [radians]')
ylabel('Vortex sheet strength distribution')
title({'Vortex Sheet Strength Dsitribution for Ideal Angle of Attack for a Flat
Plate with Flaps', ...
    '- By: Tomoki Koike'})
hold on
plot(theta, gamma_over_Vinf_100)
plot(theta, gamma_over_Vinf_500)
hold off
grid on
grid minor
box on
legend('n=50','n=100','n=500')
saveas(fig2, 'vortex_sheet_strength.png')
```

problem 3 <i>

<ii>>

```
F = linspace(0,1,2^11);
alpha_zl_F = (-acos(1-2.*F) + 2*sqrt(F.*(1-F)))/pi;
% Plotting
```

```
fig3 = figure('Renderer', 'painters', 'Position', [10 10 900 600]);
plot(F, alpha_zl_F)
xlabel('slat-chord ratio, E')
ylabel('slat effectiveness')
title({'Slat Effectiveness vs Slat-chord Ratio', ...
    '- By: Tomoki Koike'})
grid on
grid minor
box on
saveas(fig3, 'slat_effectiveness.png')
```

<iii>

```
eta = linspace(0,pi/2,2^8);
[X1, Y1] = meshgrid(E, eta);
alpha_zl_E = -Y1.*(1 + (-acos(2.*X1-1) + 2*sqrt(X1.*(1-X1)))/pi);
fig4 = figure('Renderer', 'painters', 'Position', [10 10 900 600]);
contour(X1,Y1, alpha_zl_E);
xlabel('flap-chord ratio, E')
ylabel('flap deflection')
title('When Flap is Deployed at some Flap-chord Ratio - By: Tomoki Koike')
colorbar
grid on
grid minor
box on
saveas(fig4, 'flap_deployed.png')
```

<iv>

```
delta = linspace(0,pi/2,2^8);
[X2, Y2] = meshgrid(F, delta);
alpha_zl_F = -Y2.*(-acos(1-2.*X2) + 2*sqrt(X2.*(1-X2)))/pi;
fig4 = figure('Renderer', 'painters', 'Position', [10 10 900 600]);
contour(X2,Y2, alpha_zl_F);
xlabel('slat-chord ratio, F')
ylabel('slat deflection')
title('When Slat is Deployed at some Slat-chord Ratio - By: Tomoki Koike')
colorbar
grid on
grid minor
box on
saveas(fig4, 'slat_deployed.png')
```