

TEST REPORT

FCC ID: 2AFCBLY-95S

On Behalf of

Shenzhen Longzhiyuan Technology Co., Ltd. Video Doorbell Model No.: LY-95S

Prepared for : Shenzhen Longzhiyuan Technology Co., Ltd.

Address 5F Building B, Zhuangbian 2nd Industrial Park, Hezhou Industrial

District, Xixiang Town, Bao' an District, Shenzhen, China

Prepared By : Shenzhen Alpha Product Testing Co., Ltd.

Address : Building i, No.2, Lixin Road, Fuyong Street, Bao'an District, 518103,

Shenzhen, Guangdong, China

Report Number : T1871572 05 Date of Receipt : June 24,2017

Date of Test : June 24,2017- July 11,2017

Date of Report : July 11,2017

Version Number : REV0

TABLE OF CONTENT

Des	cripti	on	Page
1 G	enera	l Information	6
	1.1	Description of Device (EUT)	
	1.2	Accessories of device (EUT)	7
	1.3	Test Lab information	7
2 E	MC E	quipment List	8
	est P	rocedure	9
4	Sumi	mary of Measurement	10
	4.1	Summary of test result	
	4.2	Test connection	10
	4.3	Assistant equipment used for test	11
	4.4	Test mode	
	4.5	Channel list	
	4.6	Test Conditions	12
	4.7	Measurement Uncertainty (95% confidence levels, k=2)	
5	Spur	ious Emission	
	5.1	Radiation Emission	
	5.1.1	Radiation Emission Limits(15.209)	
	5.1.2	1	
		Test Procedure	
	5.1.4	Test Equipment Setting For emission test Result	16
	5.1.5	Test Condition	16
		Test Result	_
6	POW	/ER LINE CONDUCTED EMISSION	
	6.1	Conducted Emission Limits(15.207)	
	6.2	Test Setup	
	6.3	Test Procedure	
	6.4	Test Results	
7	Cond	ducted Maximum Output Power	29
	7.1	Test limit	_
	7.2	Test Procedure	
	7.3	Test Setup	—
	7.4	Test Results	
8	PEA	K POWER SPECTRAL DENSITY	
	8.1	Test limit	
	8.2	Method of measurement	
	8.3	Test Setup	
	8.4	Test Results	_
9	Band	dwidth	
	9.1	Test limit	
	9.2	Method of measurement	
	9.3	Test Setup	
_	9.4	Test Results	
10	Band	d Edge Check	47

	10.1	Test limit	47
	10.2	Test Procedure	47
	10.3	Test Setup	47
	10.4	Test Result	47
11	Ante	nna Requirement	68
	11.1	Standard Requirement	68
	11.2	Antenna Connected Construction	68
	11.3	Result	68
12	Test	setup photo	69
	12.1	Photos of Radiated emission	69
	12.2	Photos of Conducted Emission test	70
13	Phot	ographs of EUT	71

Keak Yang

TEST REPORT DECLARATION

Applicant : Shenzhen Longzhiyuan Technology Co., Ltd.

Address 5F Building B, Zhuangbian 2nd Industrial Park, Hezhou Industrial District, Xixiang

Town, Bao' an District, Shenzhen, China

Manufacturer : Shenzhen Longzhiyuan Technology Co., Ltd.

Address 5F Building B, Zhuangbian 2nd Industrial Park, Hezhou Industrial District, Xixiang

Town, Bao' an District, Shenzhen, China

EUT Description : Video Doorbell

(A) Model No. : LY-95S(B) Trademark : N/A

Measurement Standard Used:

FCC Rules and Regulations Part 15 Subpart C 2016, ANSI C63.4:2014, ANSI C63.10:2013

The device described above is tested by Shenzhen Alpha Product Testing Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C limits both conducted and radiated emissions. The test results are contained in this test report and Shenzhen Alpha Product Testing Co., Ltd. is assumed of full responsibility for the accuracy and completeness of these tests.

After the test, our opinion is that EUT compliance with the requirement of the above standards.

This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Shenzhen Alpha Product Testing Co., Ltd.

Approved by (name + signature).....: Simple Guan Project Manager

Date of issue...... July 11,2017

Revision History

Revision	Issue Date	Revisions	Revised By
00	July 11,2017	Initial released Issue	Simple Guan

Report No.: T1871572 05

1 General Information

1.1 Description of Device (EUT)

EUT Name : Video Doorbell

 $Trade\ Name \qquad \qquad : \ \ N/A$

Model No. : LY-95S

Power supply : AC 18V from adapter input AC 120V/60Hz

IEEE 802.11b/g: 2412MHz-2462MHz

Operation frequency: IEEE 802.11n HT20: 2412MHz-2462MHz

IEEE 802.11n HT40: 2422MHz-2452MHz

IEEE 802.11b: DSSS(CCK,DQPSK,DBPSK)

Modulation : IEEE 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK)

IEEE 802.11n: OFDM (64QAM, 16QAM, QPSK,BPSK)

Antenna Type : PIFA Antenna, Maximum Gain is 3.55dBi for WIFI

Software version : V2.1 Hardware version : V2.0

1.2 Accessories of device (EUT)

Accessories 1 : N/A Model : N/A

1.3 Test Lab information

Shenzhen Alpha Product Testing Co., Ltd Building i, No.2, Lixin Road, Fuyong Street, Bao'an District, 518103, Shenzhen, Guangdong, China

August 11, 2014 File on Federal Communication Commission Registration Number: 203110

July 26, 2017 Certificated by IC Registration Number: 12135A

Equipment	Manufacture	Model No.	Serial No.	Last cal.	Cal Interval
3m Semi-Anechoic	CHENYU	N/A	N/A	2018.01.18	2Year
Spectrum analyzer	Agilent	E4407B	MY46185649	2017.01.16	1Year
Receiver	R&S	ESPI	101873	2017.01.16	1Year
Receiver	R&S	ESCI	101165	2017.01.16	1Year
Bilog Antenna	SCHWARZBECK	VULB 9168	VULB9168-438	2018.01.18	2Year
Horn Antenna	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D(1201)	2017.01.20	2Year
Cable	Resenberger	N/A	No.1	2017.01.16	1Year
Cable	SCHWARZBECK	N/A	No.2	2017.01.16	1Year
Cable	SCHWARZBECK	N/A	No.3	2017.01.16	1Year
Pre-amplifier	НР	HP8347A	2834A00455	2017.01.18	1Year
Pre-amplifier	Agilent	8449B	3008A02664	2017.01.18	1Year
vector Signal Generator	Agilent	N5182A	MY49060042	2016.11.16	1 Year
vector Signal Generator	Agilent	E4438C	US44271917	2016.11.16	1 Year
X-series USB Peak and Average Power Sensor	Agilent	U2021XA	MY54080020	2016.11.16	1 Year
X-series USB Peak and Average Power Sensor	Agilent	U2021XA	MY54110001	2016.11.16	1 Year
Signal Analyzer	Agilent	N9020A	MY48030494	2016.11.16	1 Year
L.I.S.N.#1	Schwarzbeck	NSLK8126	8126466	2017.01.16	1 Year
L.I.S.N.#2	ROHDE&SCHWA RZ	ENV216	101043	2017.01.16	1 Year

Page 8 of 81

Report No.: T1871572 05

3 Test Procedure

POWER LINE CONDUCTED INTERFERENCE: The test procedure used was ANSI Standard ANSI C63.4:2014 using a 50 u H LISN. Both Lines were observed. The bandwidth of the receiver was 10kHz with an appropriate sweep speed. The ambient temperature of the EUT was 25°C with a humidity of 58%.

RADIATION INTERFERENCE: The test procedure used was ANSI Standard ANSI C63.4:2014 using a ANRITSU spectrum analyzer with a pre-selector. The analyzer was calibrated in dB above a micro volt at the output of the antenna. The resolution bandwidth was 100kHz and the video bandwidth was 300 kHz up to 1 GHz and 1 MHz with a video BW of 3MHz above 1 GHz. The ambient temperature of the EUT was 25°C with a humidity of 58%.

FORMULA OF CONVERSION FACTORS: The Field Strength at 3m was established by adding the meter reading of the spectrum analyzer (which is set to read in units of dBuV) to the antenna correction factor supplied by the antenna manufacturer and cable loss. The antenna correction factors and cable loss are stated in terms of dB. The gain of the Pre-selector was accounted for in the Spectrum Analyzer Meter Reading. Example:

Freq (MHz) METER READING + ACF + CABLE = FS 33.20 dBuV + 10.36 dB + 0.9 dB = 44.46 dBuV/m @ 3m

ANSI STANDARD ANSI C63.4:2014 10.1.7 MEASUREMENT PROCEDURES: The EUT was placed on a table 80 cm high and with dimensions of 1m by 1.5m. The EUT was placed in the center of the table (1.5m side). The table used for radiated measurements is capable of continuous rotation. When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from 1m to 4m. The antenna was placed in both the horizontal and vertical planes. The situation was similar for the conducted measurement except that the table did not rotate. The EUT was setup as described in ANSI Standard ANSI C63.4:2014 10.1.7 with the EUT 40 cm from the vertical ground wall.

4 Summary of Measurement

4.1 Summary of test result

Note: The EUT has been tested as an independent unit. And Continual Transmitting in

Test Item	Test Requirement	Standards Paragraph	Result
Spurious Emission	FCC PART 15 : 2014 & IC RSS-247	Section 15.247&15.209 & RSS-247 Section 5.5	Compliance
Conduction Emission	FCC PART 15 : 2015 & IC RSS Gen	Section 15.207&7.2.4	Compliance
Bandwidth Test	FCC PART 15 : 2015 & IC RSS-247	Section 15.247& RSS-247 5.1(2)	Compliance
Peak Power	FCC PART 15 : 2015 & IC RSS-247	Section 15.247 & RSS-247 5.4(2)	Compliance
Power Density	FCC PART 15 : 2015 & IC RSS-247	Section 15.247 & Section 5.2(2)	Compliance
Band Edge	FCC PART 15 : 2015 & IC RSS-247	Section 15.247 & Section 5.5	Compliance
Antenna Requirement	FCC PART 15 : 2015 & IC RSS Gen	Section 15.203&7.1.4	Compliance

maximum power (The adapter be used during Test)

4.2 Test connection

4.3 Assistant equipment used for test

Description		Adapter
Manufacturer		CAIXING
Model No.	:	AC-AC18V

4.4 Test mode

Duty cycle :100%			
Keeping TX			
Mode	data rate	Channel	Frequency
	(Mbps)(see Note)		(MHz)
	1	Low:CH1	2412
IEEE 802.11b	1	Middle: CH6	2437
	1	High: CH11	2462
	6	Low:CH1	2412
IEEE 802.11g	6	Middle: CH6	2437
	6	High: CH11	2462
IEEE 802.11	6.5	Low:CH1	2412
n/HT20 with 2.4G	6.5	Middle: CH6	2437
II/H120 WIUI 2.40	6.5	High: CH11	2462
IEEE 900 11	13.5	Low:CH3	2422
IEEE 802.11 n/HT40 with 2.4G	13.5	Middle:CH6	2437
11/11/40 WIUI 2.4G	13.5	High:CH9	2452

Note: According exploratory test, EUT will have maximum output power in those data rate. so those data rate were used for all test.

4.5 Channel list

	For IEEE 802.11b/g and IEEE 802.11n/HT20 with 2.4G				
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
CH1	2412	CH5	2432	CH9	2452
CH2	2417	CH6	2437	CH10	2457
СНЗ	2422	CH7	2442	CH11	2462
CH4	2427	CH8	2447		

	F	or IEEE 802.111	n/HT40 with 2.40	G	
Channel	Frequency	Channel	Frequency	Channel	Frequency
	(MHz)		(MHz)		(MHz)
CH1	/	CH5	2432	CH9	2452
CH2	/	CH6	2437	/	/
CH3	2422	CH7	2442	/	/
CH4	2427	CH8	2447	/	/

4.6 Test Conditions

Temperature range	21-25℃
Humidity range	40-75%
Pressure range	86-106kPa

4.7 Measurement Uncertainty (95% confidence levels, k=2)

Item	MU	Remark
Uncertainty for Power point Conducted Emissions Test	2.42dB	
Uncertainty for Radiation Emission test in 3m	2.13 dB	Polarize: V
chamber (below 30MHz)	2.57dB	Polarize: H
Uncertainty for Radiation Emission test in 3m	3.54dB	Polarize: V
chamber (30MHz to 1GHz)	4.1dB	Polarize: H
Uncertainty for Radiation Emission test in 3m	2.08dB	Polarize: H
chamber (1GHz to 25GHz)	2.56dB	Polarize: V
Uncertainty for radio frequency	$1 \times 10-9$	
Uncertainty for conducted RF Power	0.65dB	
Uncertainty for temperature	0.2℃	
Uncertainty for humidity	1%	
Uncertainty for DC and low frequency voltages	0.06%	

5 Spurious Emission

5.1 Radiation Emission

5.1.1 Radiation Emission Limits(15.209)

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Harmonic emissions limits comply with below 54 dBuV/m at 3m. Other emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or comply with the radiated emissions limits specified in section 15.209(a) limit in the table below has to be followed.

NOTE:

- a) The tighter limit applies at the band edges.
- b) Emission Level(dB uV/m)=20log Emission Level(Uv/m)

5.1.2 Test Setup

See the next page

Below 30MHz Test Setup

Above 30MHz Test Setup

Above 1GHz Test Setup

5.1.3 Test Procedure

- a) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1GHz, The EUT was placed on a rotating 0.8 m high above ground, The table was rotated 360 degrees to determine the position of the highest radiation
- b) The Test antenna shall vary between 1m and 4m,Both Horizontal and Vertical antenna are set of make measurement.
- c) The initial step in collecting conducted emission data is a spectrum analyzer Peak detector mode pre-scanning the measurement frequency range.
 Significant Peaks are then marked. and then Qusia Peak Detector mode premeasured
- d) If Peak value comply with QP limit Below 1GHz. The EUT deemed to comply with QP limit. But the Peak value and average value both need to comply with applicable limit above 1GHz.
- e) For the actual test configuration, please see the test setup photo.

5.1.4 Test Equipment Setting For emission test Result

9KHz~150KHz	RBW 200Hz	VBW1KHz
150KHz~30MHz	RBW 9KHz	VBW 30KHz
30MHZ~1GHz	RBW 120KHz	VBW 300KHz
Above 1GHz	RBW 1MHz	VBW 3MHz

5.1.5 Test Condition

Continual Transmitting in maximum power.

5.1.6 Test Result

We have scanned the 9KHz from 25GHz to the EUT. Detailed information please see the following page.

From 9KHz to 30MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Site LAB

Limit: FCC Class B Radiation

EUT: Video Doorbell M/N: LY-95S Mode:WIFI Note:

Engineer Signature:

Polarization: Vertical

Power: AC 120V/60Hz

Humidity: 46 %

23.9

Temperature:

V/6UHZ Humidity

Radiated Emission Measurement

Distance: 3m

MHz dBuV dB dBuV/m dB uV/m dB Detector cm degree Comment 1 31.8427 9.30 13.38 22.68 40.00 -17.32 peak 2 57.7962 9.56 13.12 22.68 40.00 -17.32 peak 3 78.6888 11.55 9.64 21.19 40.00 -18.81 peak 4 144.8418 15.11 14.17 29.28 43.50 -14.22 peak 5 * 203.5228 28.19 10.46 38.65 43.50 -4.85 peak 6 366.8231 24.88 14.97 39.85 46.00 -6.15 peak	No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
2 57.7962 9.56 13.12 22.68 40.00 -17.32 peak 3 78.6888 11.55 9.64 21.19 40.00 -18.81 peak 4 144.8418 15.11 14.17 29.28 43.50 -14.22 peak 5 * 203.5228 28.19 10.46 38.65 43.50 -4.85 peak			MHz	dBu∀	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
3 78.6888 11.55 9.64 21.19 40.00 -18.81 peak 4 144.8418 15.11 14.17 29.28 43.50 -14.22 peak 5 * 203.5228 28.19 10.46 38.65 43.50 -4.85 peak	1		31.8427	9.30	13.38	22.68	40.00	-17.32	peak			
4 144.8418 15.11 14.17 29.28 43.50 -14.22 peak 5 * 203.5228 28.19 10.46 38.65 43.50 -4.85 peak	2		57.7962	9.56	13.12	22.68	40.00	-17.32	peak			
5 * 203.5228 28.19 10.46 38.65 43.50 -4.85 peak	3		78.6888	11.55	9.64	21.19	40.00	-18.81	peak			
	4		144.8418	15.11	14.17	29.28	43.50	-14.22	peak			
6 366.8231 24.88 14.97 39.85 46.00 -6.15 peak	5	*	203.5228	28.19	10.46	38.65	43.50	-4.85	peak			
	6		366.8231	24.88	14.97	39.85	46.00	-6.15	peak			

Site LAB Polarization: Horizontal Temperature: 23
Limit: FCC Class B Radiation Power: AC 120V/60Hz Humidity: 46 %

EUT: Video Doorbell

M/N: LY-95S Mode:WIFI Note:

Engineer Signature:

Radiated Emission Measurement

Distance: 3m

No.	Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBu∀	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		32.2925	7.64	13.40	21.04	40.00	-18.96	peak			
2		47.8260	7.50	13.69	21.19	40.00	-18.81	peak			
3		124.1330	8.66	12.86	21.52	43.50	-21.98	peak			
4		197.8928	20.85	10.46	31.31	43.50	-12.19	peak			
5	*	369.4047	19.25	15.15	34.40	46.00	-11.60	peak			
6		724.2611	12.33	21.25	33.58	46.00	-12.42	peak			

Remark: All modes and channels have been tested and only worst data of 802.11b, 2412MHz is listed in this report.

Note:1. *:Maximum data; x:Over limit; !:over margin.

^{2.}Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

From 1G-25GHz

IEEE 802.11b

IEEE 802.11 g:

IEEE 802.11n/HT20 with 2.4G

IEEE 802.11n/HT40 with 2.4G

6 POWER LINE CONDUCTED EMISSION

6.1 Conducted Emission Limits(15.207)

Frequency	Limits dB(μV)					
MHz	Quasi-peak Level	Average Level				
0.15 -0.50	66 -56*	56 - 46*				
0.50 -5.00	56	46				
5.00 -30.00	60	50				

- Notes: 1. *Decreasing linearly with logarithm of frequency.
 - 2. The lower limit shall apply at the transition frequencies.
 - 3. The limit decreases in line with the logarithm of the frequency in the rang of 0.15 to 0.50 MHz.

6.2 Test Setup

6.3 Test Procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.4:2014 on Conducted Emission Measurement. The bandwidth of test receiver is set at 9 kHz.

6.4 Test Results

Worse case is reported only

PASS

Detailed information please see the following page.

Site LAB Phase: N Temperature: 24.2

Limit: FCC Part 15 CLASS B QP Power: AC 120V/60Hz Humidity: 53 %

EUT: Video Doorbell M/N: LY-95S Mode: WIFI Note:

Engineer Signature:

Conducted Emission Measurement File:LY-95S Data :#3 Date: 2017-6-29 Time: 10:39:21 80.0 dBuV 70 FCC Part 15 CLASS B QP 60 FCC Part 15 CLASS B AV 50 40 30 20 10 0.0 0.150 (MHz) 5 30.000 0.5

No. N	Иk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margir	n	
		MHz		dB	dBuV	dBu∀	dB	Detector	Comment
1		0.1500	35.28	9.73	45.01	66.00	-20.99	peak	
2 *	*	0.4470	27.11	9.78	36.89	56.93	-20.04	peak	
3		1.5405	9.27	9.88	19.15	56.00	-36.85	peak	
4		8.7405	7.71	10.31	18.02	60.00	-41.98	peak	
5		13.6605	11.73	10.33	22.06	60.00	-37.94	peak	
6		29.8205	13.94	11.21	25.15	60.00	-34.85	peak	

^{*:}Maximum data x:Over limit !:over margin

L1

Report No.: T1871572 05

24.2

53 %

Temperature:

Page 28 of 81

Phase:

Limit: FCC Part 15 CLASS B QP AC 120V/60Hz Humidity: Power:

EUT: Video Doorbell M/N: LY-95S Mode: WIFI

Note:

3

4

5

6

1.5405

7.2005

19.5405

29.8205

10.52

8.29

7.44

12.54

9.88

10.28

10.48

11.21

20.40

18.57

17.92

23.75

Site LAB

56.00 -35.60

60.00 -41.43

60.00 -42.08

60.00 -36.25

peak

peak

peak

peak

*:Maximum data	v:Over limit	Lover margin		

x:Over limit !:over margin

Note: Measurement=Reading Level+Correc Factor. Factor=(LISN or ISN or PLC or Current Probe)Factor+Cable

Remark: All modes and channels have been tested and only worst data of 802.11b, 2412MHz is listed in this report.

7 Conducted Maximum Output Power

7.1 Test limit

Please refer section 15.247.

Regulation 15.247(b) The limit of Maximum Peak Output Power Measurement is 1W(30dBm)

7.2 Test Procedure

Details see the KDB558074 Meas Guidance V03

- 7.2.1 Place the EUT on the table and set it in transmitting mode.
- 7.2.2 Connected the EUT's antenna port to peak power meter by 20dB attenuator.
- 7.2.3 Measure out each mode and each bands peak output power of EUT.

Note: The cable loss and attenuator loss were offset into measure device as amplitude offset. Details see the KDB558074 DTS Meas Guidance V03

7.3 Test Setup

7.4 Test Results

PASS

Detailed information please see the following page.

EUT: Video Doorbel	l M/N: LY-	95S				
Test date: 2017-06-3	0 Test s	ite: RF site	e Tes	ted by: S	imple Gua	n
Mode	Frequency (MHz)	Ant Port	PK Out power(d		Limit (dBm)	Margin (dB)
	CH1: 2412	0 1	7.81	7.81	30	22.19
IEEE 802.11 b	СН6: 2437	0	8.18	8.18	30	21.82
	CH11: 2462	0	7.81	7.81	30	22.19
	CH1: 2412	0	5.65	5.65	30	24.35
IEEE 802.11 g	СН6: 2437	0	4.77	4.77	30	25.23
	CH11: 2462	0	3.42	3.42	30	26.58
	CH1: 2412	0	3.72	3.72	30	26.28
IEEE 802.11 n/HT20 with 2.4G	СН6: 2437	0 1	4.08	4.08	30	25.92
	CH11: 2462	0	4.01	4.01	30	25.99
	CH1: 2422	0	1.43	1.43	30	28.57
IEEE 802.11 n/HT40 with 2.4G	CH4: 2437	0	-0.54 /	-0.54	30	30.54
	CH7: 2452	0 1	0.92	0.92	30	29.08
Conclusion: PASS						

8 PEAK POWER SPECTRAL DENSITY

8.1 Test limit

- 8.1.1 Please refer section 15.247.
- 8.1.2 For direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3kHz band during any time interval of continuous transmission.
- 8.1.3 The direct sequence operating of the hybrid system, with the frequency hopping operation turned off, shall comply with the power density requirements of paragraph (d) of this section.

8.2 Method of measurement

Details see the KDB558074 DTS Meas Guidance V03

- 8.2.1 Place the EUT on the table and set it in transmitting mode.
- 8.2.2 Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 8.2.3 Set the spectrum analyzer as RBW = 3kHz, VBW = 10kHz, span=5-30%EBW, detail see the test plot.
- 8.2.4 Record the max reading.
- 8.2.5 Repeat the above procedure until the measurements for all frequencies are completed.

8.3 Test Setup

8.4 Test Results

PASS.
Detailed information please see the below.

EUT: Video Doorbel	1 M/N: LY-	95S				
Test date: 2017-06-3	0 Test s	ite: RF site	e Tes	sted by: Si	imple Gua	n
Mode	Frequency (MHz)	Ant Port		PK Output power(dBm)		Result
	CH1: 2412	0	-8.73	-8.73	8	PASS
IEEE 802.11 b	СН6: 2437	0	-8.85 /	-8.85	8	PASS
	CH11: 2462	0	-8.85 /	-8.85	8	PASS
	CH1: 2412	0	-14.80 /	-14.80	8	PASS
IEEE 802.11 g	СН6: 2437	0	-10.96 /	-10.96	8	PASS
	CH11: 2462	0	-12.89 /	-12.89	8	PASS
	CH1: 2412	0	-14.06 /	-14.06	8	PASS
IEEE 802.11 n/HT20 with 2.4G	СН6: 2437	0	-12.93 /	-12.93	8	PASS
	CH11: 2462	0	-12.16 /	-12.16	8	PASS
	CH1: 2422	0 1	-16.11 /	-16.11	8	PASS
IEEE 802.11 n/HT40 with 2.4G	CH4: 2437	0 1	-17.54 /	-17.54	8	PASS
	CH7: 2452	0	-15.85 /	-15.85	8	PASS
Conclusion: PASS				,		

IEEE 802.11b :

CH Low:

CH Mid:

CH Hig:

Page 34 of 81

IEEE 802.11g : CH Low

CH Mid:

CH Hig:

IEEE 802.11n HT20 :

CH Low:

CH Mid:

CH Hig:

IEEE 802.11n HT40 :

CH Low:

CH Mid:

CH Hig:

9 Bandwidth

9.1 Test limit

Please refer section 15.247

For direct sequence systems, the minimum 6dB bandwidth shall be at least 500 kHz.

9.2 Method of measurement

Details see the KDB558074 D01 Meas Guidance

- a) The bandwidth is measured at an amplitude level reduced 20dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst-case (i.e. the widest) bandwidth.
- b) The test receiver set RBW = 1-5 % EBW, VBW≥3RBW, Peak Detector, Sweep time set auto, detail see the test plot.

9.3 Test Setup

9.4 Test Results

PASS.

Detailed information please see the following page.

Channel	Frequency (MHz)	6dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Limit (MHz)	Result				
IEEE 802.	11b:			,					
Low	2412	9.56	12.318	0.5	PASS				
Mid	2437	10.06	12.540	0.5	PASS				
High	2462	9.59	12.610	0.5	PASS				
IEEE 802	2.11g								
Low	2412	15.34	16.374	0.5	PASS				
Mid	2437	15.39	16.416	0.5	PASS				
High	2462	15.75	16.433	0.5	PASS				
IEEE 802	2.11n/HT20:								
Low	2412	17.34	17.634	0.5	PASS				
Mid	2437	17.65	17.664	0.5	PASS				
High	2462	17.22	17.670	0.5	PASS				
IEEE 802	IEEE 802.11n/HT40:								
Low	2422	35.39	35.916	0.5	PASS				
Mid	2437	36.36	36.059	0.5	PASS				
High	2452	35.53	36.861	0.5	PASS				