CLAIMS

1. A high-strength bolted connection structure with no fire protection, the high-strength bolted connection structure having the fire resistance of a steel structure comprising columns and/or beams, characterized in that ultra-high-strength bolts having a bolt tensile strength (TS) at room temperature of 1200 N/mm² or higher and excellent fire resistance with a bolt shear proof stress (btt) at 650°C satisfying the relation <1> below, are used:

btt $\geq \mu \times N_0/(\nu \times bAs)$ <1>

where btt : bolt shear proof stress at high temperature (N/mm^2)

btt = $TSt/\sqrt{3}$

5

10

25

TSt: tensile strength of the bolts at high temperature (N/mm^2)

 $\boldsymbol{\mu}$: coefficient of slip at room temperature

 N_0 : design bolt tension (N)

v : safety factor for long-term load

bAs: cross-sectional area of bolt shank (mm²).

2. A high-strength bolted connection structure with no fire protection according to claim 1, wherein, in said high-strength bolted connection structure, the long term allowable shear force (Qs) of said beam at room temperature satisfies the relation <2> below:

 $Qs \le \{ns \times b\tau + (nf - ns) \times b\tau t\} \times bAs <2>$

where Qs : long term allowable shear force of the beam at room temperature (N)

 $Qs = fs \times Ab$

30 fs: long term allowable shear proof stress of the beam (N/mm^2)

Ab : cross-sectional area (mm²)

ns : number of tension bolts in the floor slab on upper flange side of the beam bt : shear proof stress of bolt at room temperature (N/mm^2)

 $b\tau = TS/\sqrt{3}$

TS: tensile strength of bolt at room temperature (N/mm^2)

nf : number of tension bolts on the upper flange
 side of the beam

btt : shear proof stress of bolt at high temperature (N/mm^2)

10 brt = $TSt/\sqrt{3}$

5

25

TSt : tensile strength of bolt at high temperature (N/mm^2)

bAs: cross-sectional area of bolt shank (mm2).

- 3. A high-strength bolted connection structure
 with no fire protection according to claim 1 or 2,
 wherein said high-strength bolted connection structure is
 composed of sets of a high-strength bolt, a nut, and a
 washer, and joint metals, and wherein said nut and washer
 are a general structural hexagon nut and a structural
 high strength plain washer for which no fire resistance
 is provided.
 - 4. A high-strength bolted connection structure with no fire protection according to claim 1 or 2, wherein said high-strength bolted connection structure is composed of sets of high strength bolt, a nut, and a washer, and joint metals, and wherein a part or all of said joint metals are formed of steel material having an assured high-temperature strength.
- 5. A high-strength bolted connection structure
 with no fire protection according to claim 1 or 2,
 wherein, in said high-strength bolted connection
 structure, a part or all of said columns and/or beams
 used are formed of steel material having an assured high
 temperature strength.
- 6. A high-strength bolted connection structure with no fire protection according to claim 1 or 2,

wherein said high-strength bolt is a ultra-high-strength bolt which contains, in % by weight, C: 0.30 ~ 0.45%, Si: less than 0.10%, Mn: more than 0.40% ~ less than 1.00%, P: less than 0.010%, S: 0.010% or less, Cr: 0.5% or more ~ less than 1.5%, Mo: more than 0.35% ~ less than 1.5%, V: more than 0.3% ~ 1.0% or less, with the balance being Fe and unavoidable impurities, and which has excellent fire resistance and resistance to delayed fracture such that following relations <3>, <4> are satisfied:

10 $TS \le (1.1 \times T + 850)$ <3>

5

 $TS \le (550 \times Ceq + 1000)$ <4>

where TS : tensile strength of the high strength bolt at room temperature ($\rm N/mm^{2})$

T : tempering temperature (°C)

Ceq : carbon equivalent (%) Ceq = C + (Mn/6) + (Si/24) + (Ni/40) + (Cr/5) + (Mo/4) + (V/14).

7. A high-strength bolted connection structure with no fire protection according to claim 3, wherein said high-strength bolt is an ultra-high-strength bolt which contains, in % by weight, C: 0.30 ~ 0.45%, Si: less than 0.10%, Mn: more than 0.40% ~ less than 1.00%, P: less than 0.010%, S: 0.010% or less, Cr: 0.5% or more ~ less than 1.5%, Mo: more than 0.35% ~ less than 1.5%, V: more than 0.3% ~ 1.0% or less, with the balance being Fe and unavoidable impurities, and which has excellent fire resistance and resistance to delayed fracture such that following relations <3>, <4> are satisfied:

 $TS \le (1.1 \times T + 850)$ <3>

30 TS \leq (550 × Ceq + 1000) <4>

where TS : tensile strength of the high strength bolt at room temperature ($\mbox{N/mm}^{2}\mbox{)}$

T : tempering temperature (°C)

8. A high-strength bolted connection structure with no fire protection according to claim 4, wherein said high-strength bolt is an ultra-high-strength bolt which contains, in % by weight, C: 0.30 ~ 0.45%, Si: less than 0.10%, Mn: more than 0.40% ~ less than 1.00%, P: less than 0.010%, S: 0.010% or less, Cr: 0.5% or more ~

less than 1.5%, Mo: more than 0.35% ~ less than 1.5%, V: more than 0.3% ~ 1.0% or less, with the balance being Fe and unavoidable impurities, and which has excellent fire resistance and resistance to delayed fracture such that following relations <3>, <4> are satisfied:

15 $TS \le (1.1 \times T + 850)$ <3>

25

30

 $TS \le (550 \times Ceq + 1000)$ <4>

where TS : tensile strength of the high strength bolt at room temperature (N/mm^2)

T : tempering temperature (°C)

Ceq : carbon equivalent (%) Ceq = C + (Mn/6) + (Si/24) + (Ni/40) + (Cr/5) + (Mo/4) + (V/14).

9. A high-strength bolted connection structure with no fire protection according to claim 5, wherein said high-strength bolt is an ultra-high-strength bolt which contains, in % by weight, C: 0.30 ~ 0.45%, Si: less than 0.10%, Mn: more than 0.40% ~ less than 1.00%, P: less than 0.010%, S: 0.010% or less, Cr: 0.5% or more ~ less than 1.5%, Mo: more than 0.35% ~ less than 1.5%, V: more than 0.3% ~ 1.0% or less, with the balance being Fe and unavoidable impurities, and which has excellent fire resistance and resistance to delayed fracture such that following relations <3>, <4> are satisfied:

TS \leq (1.1 \times T + 850) <3>
TS \leq (550 \times Ceq + 1000) <4>
where TS: tensile strength of the high strength bolt at room temperature (N/mm²)

T: tempering temperature (°C)

5

Ceq : carbon equivalent (%) Ceq = C + (Mn/6) + (Si/24) + (Ni/40) + (Cr/5) + (Mo/4) + (V/14).