CSC236 Tutorial 10

Sample Solutions

- 1. Let $\Sigma = \{0, 1\}$. Let $L = \{x : x \in \Sigma^*, 11 \text{ is a substring of } x, |x| \ge 2 \text{ and the second to last symbol of } x \text{ is } 1\}$.
 - (a) Give a DFSA that accepts L. It is possible to give a correct DFSA with 6 states. One mark will be deducted for each extra state that your DFSA uses.
 - (b) Provide an appropriate state invariant for your DFSA in part (a). Do not use regular expressions in your state invariant.

Solution:

- (a)
- (b) Here are the state invariants

$$\delta^*(q_0,x) = \begin{cases} q_0 \text{ iff } x \text{ is empty or (11 is not a substring of } x \text{ and } x \text{ ends with 0)}; \\ q_1 \text{ iff 11 is not a substring of } x \text{ and } x \text{ ends with 1}; \\ q_2 \text{ iff 11 is a substring of } x \text{ and } x \text{ ends with 11}; \\ q_3 \text{ iff 11 is a substring of } x \text{ and } x \text{ ends with 10}; \\ q_4 \text{ iff 11 is a substring of } x \text{ and } x \text{ ends with 00}; \\ q_5 \text{ iff 11 is a substring of } x \text{ and } x \text{ ends with 01}. \end{cases}$$

The initial state is q_0 . The only accepting states are q_2 and q_3 .

2. Prove that $L_1 = \{w \in \{a,b\}^* : w \text{ has the same number of } a$'s and b's $\}$ is not regular.

Solution:

Note that $L_1 \cap a^*b^* = \{a^ib^i|i \in \mathbb{N}\}$. Now assume towards contradiction that L_1 is regular. Since ab is regular, and regular languages are closed under intersection, then the intersection is also regular. But we know that $\{a^ib^i|i \in \mathbb{N}\}$ is not regular. Contradiction. L_1 is therefore not regular.

Note: L_1 could also be proved non-regular using the pumping lemma.

3. Prove that $L_2 = \{w \in \{a,b\}^* | w = a^i b^j, i \neq j\}$ is not regular.

Solution:

Note that $\overline{L_2} \cap a^*b^* = \{a^ib^i|i \geq 0\}$. Assume towards contradiction that L_2 is regular. Then $\overline{L_2}$ is also regular, because regular languages are closed under complement. But then, since regular languages are closed under intersection and a^*b^* is regular, we get that $\{a^ib^i|i \in N\}$ is also regular. Contradiction. L_2 is therefore not regular.

4. The set of non-palindromes, i.e. the language $\{a,b\}^* - PAL$, where $PAL = \{w \in \{a,b\}^* | w = w^R\}$. (You can use the fact that PAL is known to be non-regular.)

Solution:

Suppose to the contrary that $\{a,b\}^* - PAL$ is regular. Then $\overline{\{a,b\}^* - PAL} = PAL$ is regular, due to closure under complement. But this contradicts the non-regularity of P AL.