

General description

The HM6116P is a 16,384-bit static random access memory organized as 2,048 by 8 bits and operates from a single 5 volt supply. It is built with performance COMS process. full CMOS memory cell provides low stand by current and high-reliability Inputs and three-state outputs are TTL compatible and allow for direct interfacing with common system bus structures.

Features

- Operation voltage: 4.5 ~ 5.5V
- Ultra low power consumption:
- ➤ High speed access time: 55~70ns.
- > Automatic power down when chip is deselected.
- Three state outputs and TTL compatible.
- Data retention supplies voltage as low as 2.0V.
- Easy expansion with /CS and /OE options.

■ Pin configurations

■ Functional block diagram

■ PIN DESCRIPTION

SYMBOL	DESCRIPTION
A0-A10	Address Inputs
I/O0–I/O7	Data Inputs/Outputs
CS	Chip Select Input
WE	Write Enable Input
ŌĒ	Output Enable Input
Vcc	Power Supply
Vss	Ground

TRUTH TABLE

CS	OE	WE	MODE	I/O	Vcc CURRENT
Н	X	Х	Not Selected	High Z	ISB, ISB1
L	Н	Н	Output Disable	High Z	Icc
L	L	Н	Read	Data Out	Icc
L	Х	L	Write	Data In	Icc

■ Absolute maximum ratings⁽¹⁾

Symbol	Parameter	Rating	Unit
V _{TERM}	Terminal Voltage with Respect to GND	-0.5 to Vcc+0.5	V
T _{BIAS}	Temperature Under Bias	-40 to +125	°С
T _{STG}	Storage Temperature	-65 to +150	°С
P _T	Power Dissipation	1.0	W
I _{OUT}	DC Output Current	50	mA

^{1.} Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

■ Operating range

Range	Ambient Temperature	Vcc
Commercial	0~70°C	4.5 ~ 5.5V
Industrial	-40~85°C	4.5 ~ 5.5V

■ Cpacitance⁽¹⁾(TA=25°C,f=1.0MHz)

Symbol	Parameter	Conduction	MAX.	Unit
C _{IN}	Input Capacitance	Vin=0V	8	pF
C _{DQ}	Input/Output Capacitance	Vout=0V	10	pF

■ Dc electrical characteristics(Over Operating Range)

Name	Parameter	Test Condition	MIN	TYP ⁽¹⁾	MAX	Unit
V _{IL}	Guaranteed Input Low Voltage ⁽²⁾		-0.5		0.6	٧
V _{IH}	Guaranteed Input High Voltage (2)		3.5		Vcc+0.5	V
I _{IL}	Input Leakage Current	V _{CC} =Max, V _{IN} =0 to V _{CC}	-1		1	uA
l _{OL}	Output Leakage Current	V_{CC} =Max, $/CS$ = V_{lh} , or $/OE$ = V_{lh} ,or $/WE$ = V_{lL} $Vout$ = $0V$ to V_{CC}	-1		1	u A
V _{OL}	Output Low Voltage	V _{CC} =Max, I _{OL} = 1mA			0.4	٧
V _{OH}	Output High Voltage	V _{CC} =Min, I _{OH} = -1mA	2.4			٧
I _{cc}	Operating Power Supply Current	/CS=V _{IL} , I_{DQ} =0mA, F=F _{MAX} =1/ t_{RC}		20	30	mA
I _{SB}	TTL Standby Supply	/CS=V _{IH} , I _{DQ} =0mA,			3	mA
I _{SB1}	CMOS Standby Current	/CS \geq V _{CC} -0.2V, or $V_{IN} \geq$ V _{CC} -0.2V or $V_{IN} \leq$ 0.2V,			1	uA

^{1.} Typical characteristics are at Ta = 25° C.

^{2.} These are absolute values with respect to device ground and all overshoots due to system or tester notice are included.

^{3.} Vcc operating range at 5V: 4.5v ~ 5.5v

■ Data retention characteristics(Over Operating Range)

Name	Parameter	Test Condition	MIN	TYP ⁽¹⁾	MAX	Unit
V_{DR}	V _{CC} for Data Retention	/CS \geq V _{CC} -0.2V, V _{IN} \geq V _{CC} -0.2V or V _{IN} \leq 0.2V	2.0			٧
I _{CCDR}	Data Retention Current	/CS \ge V _{CC} -0.2V, V _{IN} \ge V _{CC} -0.2V or V _{IN} \le 0.2V		0.5	20	uA
T _{CDR}	Chip Deselect to Data Retention Time	Refer to Retention Waveform	0			ns
t_R	Operation Recovery Time	Neterition wavelonii	t _{RC} (2)			ns

- 1. $Ta = 25^{\circ}C$
- 2. t_{RC=.}Read Cycle Time
- 3. Vcc operating range at 5V: 4.5v ~ 5.5v

Low Vcc Data Retention Waveform

AC TEST CONDITIONS

PARAMETER	CONDITIONS
Input Pulse Levels	0V to 3V
Input Rise and Fall Times	5 nS
Input and Output Timing Reference Level	1.5V
Output Load	CL = 30 pF + 1 TTL, IOH/IOL = -1 mA/2.1 mA

■ Ac test loads and waveforms

AC CHARACTERISTICS

(Vcc = 5V \pm 10%, Vss = 0V, TA = 0 to 70° C)

Read Cycle

PARAMETER	SYM.	HM6116-70L/LL		UNIT
		MIN.	MAX.	
Read Cycle Time	TRC	70	-	nS
Address Access Time	Таа	-	70	nS
Chip Select Access Time	TACS	-	70	nS
Output Enable to Output Valid	TAOE	-	30	nS
Chip Selection to Output in Low Z	Tclz*	5	-	nS
Output Enable to Output in Low Z	Tolz*	5	-	nS
Chip Deselection to Output in High Z	Тснz*	-	20	nS
Output Disable to Output in High Z	Тонz*	-	20	nS
Output Hold from Address Change	Тон	3	-	nS

^{*} These parameters are sampled but not 100% tested.

■ Write Cycle

PARAMETER		SYM.	HM6116-70L/LL		UNIT
			MIN.	MAX.	
Write Cycle Time		Twc	70	-	nS
Chip Selection to End of	Write	Tcw	70	-	nS
Address Valid to End of	Write	Taw	70	-	nS
Address Setup Time		TAS	0	-	nS
Write Pulse Width		TWP	50	-	nS
Write Recovery Time	CS, WE	Twr	0	-	nS
Data Valid to End of Writ	e	Tow	30	-	nS
Data Hold from End of Write		Трн	0	-	nS
Write to Output in High Z		TWHZ*	-	25	nS
Output Disable to Output in High Z		Тонz*	-	30	nS
Output Active from End	of Write	Tow	5	-	nS

^{*} These parameters are sampled but not 100% tested.

TIMING WAVEFORMS

Read Cycle 1

(Address Controlled)

Read Cycle 2

(Chip Select Controlled)

Read Cycle 3

(Output Enable Controlled)

Timing Waveforms, continued

Write Cycle 1

(OE Clock)

Write Cycle 2

(OE = VIL Fixed)

Notes:

- 1. During this period, I/O pins are in the output state, so input signals of opposite phase to the outputs should not be applied.
- 2. The data output from Dout are the same as the data written to Din during the write cycle.
- 3. Dout provides the read data for the next address.
- 4. Transition is measured ± 500 mV from steady state with CL = 5 pF. This parameter is guaranteed but not 100% tested.

ORDER INFORMATION

① : Manufacturing tracking code

2 -: Normal package

R : Lead free package

G : Green (RoHS compatible) package

GET-TEAM TECH CORPORATION

Report No. : CE/2005/B4965B

NO.122-8, CHUNG HUA RD., HSIN CHU INDUSTRIAL

: 2005/11/29

PARK, HSINCHU HSIEN, TAIWAN, R. O. C.

Page : 1 of 4

Date

The following merchandise was (were) submitted and identified by the client as:

Type of Product : GET-TEAM LEAD-FREE PLATING PRODUCT #3

Style/Item No : P-DIP

<u>PART NAME NO.</u> : PLEASE REFER TO THE PHOTO ATTACHED

(MIXED ALL PARTS)

Sample Received : 2005/11/22

<u>Testing Date</u> : 2005/11/22 TO 2005/11/29

Test Result : - Please see the next page -

Daniel Yeh, M.R. / Operation Mana Signed for and on behalf of SGS TAIWAN LTD.

GET-TEAM TECH CORPORATION Report No. : CE/2005/B4965B

NO.122-8, CHUNG HUA RD., HSIN CHU INDUSTRIAL Date : 2005/11/29

PARK, HSINCHU HSIEN, TAIWAN, R. O. C. Page : 2 of 4

Test Result

PART NAME NO.1 : SILVER-WHITE COLORED METAL (PLEASE REFER TO THE PHOTO ATTACHED(MIXED ALL PARTS))

				Result
Test Item (s):	Unit	Method	MDL	No.1
Monobromobiphenyl	%		0.0005	N.D.
Dibromobiphenyl	%		0.0005	N.D.
Tribromobiphenyl	%		0.0005	N.D.
Tetrabromobiphenyl	%	With reference to	0.0005	N.D.
Pentabromobiphenyl	%	USEPA3540C or	0.0005	N.D.
Hexabromobiphenyl	%	USEPA3550C. Analysis was	0.0005	N.D.
Heptabromobiphenyl	%	performed by HPLC/DAD, LC/MS or GC/MS.	0.0005	N.D.
Octabromobiphenyl	%	(prohibited by 2002/95/EC	0.0005	N.D.
Nonabromobiphenyl	%	(RoHS), 83/264/EEC, and	0.0005	N.D.
Decabromobiphenyl	%	76/769/EEC)	0.0005	N.D.
Total PBBs	%		-	N.D.
(Polybrominated				
biphenyls)/Sum of above				
Monobromobiphenyl ether	%		0.0005	N.D.
Dibromobiphenyl ether	%		0.0005	N.D.
Tribromobiphenyl ether	%		0.0005	N.D.
Tetrabromobiphenyl ether	%		0.0005	N.D.
Pentabromobiphenyl ether	%	With reference to	0.0005	N.D.
Hexabromobiphenyl ether	%	USEPA3540C or	0.0005	N.D.
Heptabromobiphenyl ether	%	USEPA3550C. Analysis was	0.0005	N.D.
Octabromobiphenyl ether	%	performed by HPLC/DAD,	0.0005	N.D.
Nonabromobiphenyl ether	%	LC/MS or GC/MS.	0.0005	N.D.
Decabromobiphenyl ether	%	(prohibited by 2002/95/EC	0.0005	N.D.
Total PBBEs(PBDEs)	%	(RoHS), 83/264/EEC, and 76/769/EEC)	-	N.D.
(Polybrominated biphenyl ethers)/Sum of above				
Total of Mono to Nona- brominated biphenyl ether. (Note 4)	%		-	N.D.

The content of this PDF file is in accordance with the original issued reports for reference only. This Test Report cannot be reproduced, except in full, without prior written permission of the Company

GET-TEAM TECH CORPORATION

NO.122-8, CHUNG HUA RD., HSIN CHU INDUSTRIAL Da

PARK, HSINCHU HSIEN, TAIWAN, R. O. C.

Report No. : CE/2005/B4965B

Date : 2005/11/29

Page : 3 of 4

Track Thomas (a)	TImid	Broth od	MDL	Result
Test Item (s):	Unit	Method	MDL	No.1
Chromium VI (Cr+6)	ppm	UV-VIS after reference to US EPA 3060A.	2	N.D.
Cadmium (Cd)	ppm	ICP-AES after reference to EN 1122, method B:2001 or other acid digestion.	2	N.D.
Mercury (Hg)	ppm	ICP-AES after reference to US EPA 3052 or other acid digestion.	2	N.D.
Lead (Pb)	ppm	ICP-AES after reference to US EPA 3050B or other acid digestion.	2	N.D.

NOTE: (1) N.D. = Not detected (<MDL)

- (2) ppm = mg/kg
- (3) MDL = Method Detection Limit
- (4) Decabromodiphenyl ether (DecaBDE) in polymeric applications is exempted by Commission Decision of 13 Oct 2005 amending Directive 2002/95/EC notified under document 2005/717/EC.
- (5) PBBEs=PBDEs=Polybrominated Diphenyl Ethers=PBDOs=PBBOs.
- (6) " " = Not Regulation

GET-TEAM TECH CORPORATION NO.122-8, CHUNG HUA RD., HSIN CHU INDUSTRIAL

PARK, HSINCHU HSIEN, TAIWAN, R. O. C.

Report No. : CE/2005/B4965B

Date : 2005/11/29

Page : 4 of 4

