5. Etude des systèmes linéaires

1. Représentation des lieux de transfert (Cf. chap. 4)

2. Performance des systèmes asservis

Pour caractériser un système, on utilise trois paramètres :

- sa **stabilité** : c'est à dire son aptitude à évoluer vers une sortie constante lorsqu'on lui applique une entrée constante,
- sa **précision** : c'est à dire sa capacité à suivre les variations de l'entrée,
- sa **rapidité** : c'est à dire la vitesse à laquelle il évolue vers un état stable.

3. Stabilité d'un système

Définition:

Un système est stable si et seulement si la réponse **libre ou transitoire*** du système tend vers 0 lorsque t tend vers l'infini (c'est à dire la réponse à une entrée finie est finie)

*: solution de l'équation différentielle sans second membre dépendant des conditions initiales et s'annule au bout d'un certain temps par opposition à la réponse forcée ou régime permanent qui est la solution particulière de l'équation différentielle avec second membre

Un système stable a les pôles de sa fonction de transfert à partie réelle négative

Exemple:

Soit le système suivant dont la transmittance en boucle ouverte est :

Pour savoir si ce système est stable en boucle fermée, il faut déterminer sa transmittance en boucle fermée :

$$\frac{Y(p)}{X(p)} = \frac{H(p)}{1 + H(p)} = \frac{1}{p^2 + p + 1}$$

Recherche des pôles : $p^2 + p + 1 = 0$ $p_{1/2} = -\frac{1}{2} \pm \frac{\sqrt{3}}{2} j$

⇒ la partie réelle est négative : le système est stable

3.1 Critère algébrique de stabilité : Critère de Routh

Soit un système possédant une fonction de transfert du type H(p) = N(p) / D(p). On met D(p) sous la forme : $D(p) = a_n \cdot p^n + a_{n-1} \cdot p^{n-1} + ... + a_0$ avec $a_n > 0$.

On dresse alors le tableau suivant :

p ⁿ	a_n	a_{n-2}	a _{n-4}	 a_0
P^{n-1}	a_{n-1}	a_{n-3}	a_{n-5}	
P ⁿ⁻²	$b_n = \frac{a_{n-1}.a_{n-2} - a_{n-3}.a_n}{a_{n-1}}$	$b_{n-1} = \frac{a_{n-1}.a_{n-4} - a_{n-5}.a_n}{a_{n-1}}$		
P ⁿ⁻³	$\frac{b_{n}.a_{n-3}-a_{n-1}.b_{n-1}}{b_{n}}$	$\frac{b_n.a_{n-5} - a_{n-1}.b_{n-2}}{b_n}$		
	•••	•••		
p^0				

Critère:

Un système est stable si tous les termes de la 1er colonne sont de même signe. Le nombre de changement de signe est égal au nombre de pôles à partie réelle positive.

Exemple:

Soit le système suivant dont la transmittance en boucle ouverte est : $H(p) = \frac{2.K}{p.(p+2)(p+3)}$

$$H(p) = \frac{2.K}{p.(p+2)(p+3)}$$

Pour savoir si ce système est stable en boucle fermée, il faut déterminer sa fonction de transfert en boucle fermée :

$$\frac{H(p)}{1+H(p)} = \frac{2K}{p^3 + 5 \cdot p^2 + 6 \cdot p + 2K}$$

On dresse le tableau suivant :

p ³	1	6	0
p ²	5	2K	0
p ¹	$\frac{30-2K}{5}$	0	0
p^0	2K	0	0

Le système est stable si :

$$\begin{cases} \frac{30-2K}{5} > 0, \\ 2K > 0, \end{cases}$$

C'est à dire si 0 < K < 15

3.2 Critère géométrique de stabilité : Critère du revers

Ces critères géométriques permettent par **l'étude de la représentation** de la fonction de transfert en **boucle ouverte** dans l'un des plans de Bode, Nyquist ou Black, de déterminer la stabilité d'un système en boucle fermée.

□ Plan de Nyquist :

Un système sera stable si, en parcourant le lieu de transfert dans le sens des ω croissants, on laisse le point critique (-1,0) sur la gauche

Remarque : Ce critère est valable si le système ne possède aucun pôle à partie réelle positive

□ Plan de Black :

Un système sera stable si, en parcourant le lieu de transfert dans le sens des ω croissants, on laisse le point critique (-180°, 0 dB) sur la droite

□ Plan de Bode :

Un système sera stable si, lorsque la courbe de phase passe par -180°, la courbe de gain passe en dessous de 0 dB

4. Précision

On souhaite que la sortie du système soit la plus proche possible de l'entrée. Pour cela, il suffit que l'écart ε_0 soit le plus faible possible.

$$\varepsilon_0 = \lim_{t \to \infty} \varepsilon(t) = \lim_{p \to 0} p.\varepsilon(p)$$

(en pourcentage)

Or
$$\varepsilon(p) = X(p) - Y(p) = \frac{X(p)}{1 + H(p)}$$

Si l'entrée en un échelon, on obtient l'erreur de position ou l'erreur statique, pour une entrée rampe, on parle d'erreur de traînage ou de vitesse.

Dilemme : Plus l'erreur diminue (plus la précision augmente), plus l'instabilité augmente.

Cette erreur peut se mesurer en temps en faisant le rapport :

$$\varepsilon_0 = \lim_{t \to \infty} \frac{x(t) - y(t)}{y(t)}$$

5. Rapidité

Pour définir la rapidité d'un système, on étudie le temps de réponse à 5%, c'est à dire le temps mis par la sortie pour ne plus varier de plus de 5% par rapport à sa valeur finale. Cette valeur ne peut qu'être estimée dans la grande majorité des cas.

6. Marge de gain – Marge de phase

C'est l'écart entre le tracé de la représentation fréquentielle de la fonction de transfert et le point « -1 » (0 dB, -180°), c'est à dire le degré de stabilité du système bouclé. On a:

□ Marge de phase :

$$M\phi = \phi(\omega_1) + 180^{\circ}$$
 avec $G(\omega_1) = 0$

□ Marge de gain :

$$M_G = -G(\omega_2)$$
 avec $\varphi(\omega_2) = -180^\circ$

Dans Black:

Dans Bode:

