ESEIAAT

Trajectòries interplanetàries Sense integració numèrica

Informe

Curs: Màster en Enginyeria Aeronàutica

Assignatura: Aerodinàmica, Mecànica de Vol i Orbital

Data d'entrega: 22-01-2018

Estudiants:

González García, Sílvia Kaloyanov Naydenov, Boyan Pla Olea, Laura Serra Moncunill, Josep Maria

Professor: Calaf Zayas, Jaume

Llista de continguts

LI	ista d	e taules	iii
LI	ista d	e figures	iv
1	Intro	oducció	1
2	Òrbi	ita el·líptica heliocèntrica	2
	2.1	Plantejament d'equacions	2
		2.1.1 Trajectòria el · líptica	3
		2.1.2 Trajectòria hiperbòlica	4
	2.2	Mètode de resolució	5
3	Sort	ida del planeta origen	6
	3.1	Velocitats a la sortida	6
	3.2	Òrbita planetocèntrica hiperbòlica	7
	3.3	DeltaV	8
4	Cod	i	9
	4.1	Programa principal	9
	4.2	Transfer Orbit	11
		4.2.1 Hyperbolic transfer orbit	13
	4.3	Hipèrbola de sortida	14
	4.4	Posició i velocitat	15
	4.5	Data Juliana	17
	4.6	Correcció d'angles	18
5	Resu	ultats	19
	5.1	Cas de la Terra a Mart	19
	5.2	Cas de Mart a Júpiter	20
	5.3	Cas de la Terra a Mart	20
	5.4	Cas 1 de Mart a Júpiter	21
	5.5	Cas 2 de la Terra a Mart	21
	5.6	Cas 3 de la Terra a Mart	22
	5.7	Cas 4 de la Terra a Mart	23

Trajectòries Interplanetàries

7	Bibliografia	29
6	Conclusions	28
	5.12 Cas 9 de la Terra a Mart	26
	5.11 Cas 8 de la Terra a Mart	25
	5.10 Cas 7 de Mart a la Terra	24
	5.9 Cas 6 de Mart a la Terra	24
	5.8 Cas 5 de la Terra a Venus	23

Llista de taules

5.1	Elements orbitals del primer cas resolt
5.1	Elements orbitals del segon cas resolt
5.1	Elements orbitals del tercer cas resolt
5.1	Elements orbitals del cas 1
5.1	Elements orbitals del cas 2
5.1	Elements orbitals del cas 3
5.1	Elements orbitals del cas 4
5.1	Elements orbitals del cas $5 \ldots 2^{i}$
5.1	Elements orbitals del cas 6
5.1	Elements orbitals del cas 7
5.1	Elements orbitals del cas 8
5.1	Elements orbitals del cas 9

Llista de figures

2.1	Òrbita interplanetària heliocèntrica del planeta d'origen al planeta de destí 2
2.1	Triangle esfèric de l'òrbita interplanetària heliocèntrica
3.1	Òrbita hiperbòlica de sortida de l'esfera d'influència del planeta
5.1	Òrbita interplanetària del primer cas resolt
5.1	Òrbita interplanetària del tercer cas resolt
5.1	Òrbita interplanetària del cas 2
5.1	Òrbita interplanetària del cas 3
5.1	Òrbita interplanetària del cas 7
5.1	Òrbita interplanetària del cas 8
5.1	Òrbita interplanetària del cas 9

1 Introducció

El problema a resoldre escollit consisteix en trobar un ΔV inicial que porti la nau d'un planeta a un altre, donats els instants de sortida t_1 i d'arribada t_2 .

Per fer això, primer s'han de trobar els elements orbitals eclíptics de l'òrbita de transferència així com les velocitats heliocèntriques de sortida i d'arribada de la respectiva sonda. A partir d'aquestes es podrà obtenir també el ΔV i determinar així la viabilitat del viatge.

La metodologia matemàtica consistirà en el mètode del *Patched Conics* [5]. Segons aquest, la trajectòria es divideix per zones d'influència. Així, inicialment la sonda estarà dins de l'esfera d'influència del planeta de sortida. Un cop surti d'aquesta, estarà dins de l'esfera d'influència (EdI) del Sol. I a l'arribar al planeta de destí estarà dins de la seva EdI. El mètode es basa en el supòsit de que sempre s'aplica el problema dels dos cosos, variant el cos central segons l'EdI, bé sigui un dels planetes o bé sigui el Sol. Això fa simplificar força el problema. És per aquest motiu que va molt bé per càlculs inicials, que s'hauran de refinar numèricament a posteriori.

Així doncs, es tracta d'un projecte complex que toca gran part del contingut donat a la part de mecànica orbital de l'assignatura *Aerodinàmica*, *Mecànica de Vol i Mecànica Orbital* del màster d'Enginyeria Aeronàutica de l'UPC. Per aquest motiu, ha despertat l'interès de l'equip i ha sigut l'escollit.

2 Drbita el·líptica heliocèntrica

El primer pas en la resolució de la trajectòria interplanetària és l'obtenció dels elements de l'òrbita que porta la nau d'un planeta a l'altre. Per tal de conèixer aquests elements és necessari saber quins són els punts d'origen i de destí de la nau. És a dir, cal saber la posició dels planetes en l'instant en què la sonda surt del planeta d'origen i en l'instant en què arriba al planeta de destí. Coneixent aquestes dues posicions ja és possible projectar una òrbita com la que es veu en la figura 2.1.

Figura 2.1: Òrbita interplanetària heliocèntrica del planeta d'origen al planeta de destí

2.1 Plantejament d'equacions

Com es dedueix de la figura, és possible calcular la inclinació de l'òrbita sabent la posició dels dos planetes. A partir dels vectors de posició, es pot calcular la desviació respecte de l'eclíptica dels planetes d'origen (en blau) i de destí (en groc), β_1 i β_2 respectivament. També

es pot obtenir la longitud eclíptica dels dos planetes, λ_1 i λ_2 . A partir d'aquestes variables, el problema es resol aplicant trigonometria esfèrica:

$$\cos \Delta \theta = \sin \beta_1 \sin \beta_2 + \cos \beta_1 \cos \beta_2 \cos \Delta \lambda \tag{2.1}$$

Del triangle groc s'obté:

$$\sin A = \cos \beta_2 \frac{\sin \Delta \lambda}{\sin \Delta \theta} \tag{2.2}$$

Figura 2.1: Triangle esfèric de l'òrbita interplanetària heliocèntrica

D'altra banda, del triangle esfèric de la figura 2.1 s'obtenen les següents expressions:

$$\tan \sigma = \frac{\cos \beta_1}{\tan \beta_1} \tag{2.3}$$

$$\cos i = \sin A \cos \beta_1 \tag{2.4}$$

$$\sin l = \frac{\tan \beta_1}{\tan i} \tag{2.5}$$

De la figura 2.1 també es poden deduir l'ascensió recta del node ascendent i l'argument del perigeu:

$$\Omega = \lambda_1 - l \tag{2.6}$$

$$\omega = 2\pi - (\theta_1 - \sigma) \tag{2.7}$$

2.1.1 Trajectòria el · líptica

Finalment, a partir dels vectors de posició també s'obtenen els tres elements orbitals que falten. Assumint que la trajectòria és el · líptica, els mòduls dels vectors de posició vénen donats per les expressions:

$$r_1 = \frac{a(1 - e^2)}{1 + e\cos\theta_1} \tag{2.8}$$

$$r_2 = \frac{a(1 - e^2)}{1 + e\cos(\theta_1 + \Delta\theta)}$$
 (2.9)

D'altra banda, també es pot relacionar el temps amb la posició de la sonda en l'òrbita mitjançant l'equació:

$$\frac{2\pi t}{T} = 2\arctan\left(\sqrt{\frac{1-e}{1+e}}\tan\frac{\theta_1}{2}\right) - \frac{e\sqrt{1-e^2}\sin\theta_1}{1+e\cos\theta_1}$$
 (2.10)

on T és el període en dies del planeta d'origen.

Per tant, es pot plantejar un sistema de tres equacions amb tres incògnites:

$$e = \frac{r_2 - r_1}{r_1 \cos \theta_1 - r_2 \cos (\theta_1 + \Delta \theta)}$$
 (2.11)

$$a = \frac{r_1 \left(1 + e \cos \theta_1\right)}{1 - e^2} \tag{2.12}$$

$$t_{2} - t_{1} = \frac{365.25}{2\pi} a^{3/2}.$$

$$\cdot \left[2 \arctan\left(\sqrt{\frac{1 - e}{1 + e}} \tan\frac{(\theta_{1} + \Delta \theta)}{2}\right) - \frac{e\sqrt{1 - e^{2}} \sin(\theta_{1} + \Delta \theta)}{1 + e \cos(\theta_{1} + \Delta \theta)} \right] -$$

$$- 2 \arctan\left(\sqrt{\frac{1 - e}{1 + e}} \tan\frac{\theta_{1}}{2}\right) - \frac{e\sqrt{1 - e^{2}} \sin\theta_{1}}{1 + e \cos\theta_{1}} \quad (2.13)$$

en què tant els vectors $\vec{r_1}$ i $\vec{r_2}$ com el semieix major a estan expressats en AU, per tal de treballar amb valors més simples.

2.1.2 Trajectòria hiperbòlica

En el cas que la trajectòria sigui hiperbòlica, les equacions varien lleugerament. Les posicions vénen donades per les expressions:

$$r_1 = \frac{a(e^2 - 1)}{1 + e\cos\theta_1} \tag{2.14}$$

$$r_2 = \frac{a(e^2 - 1)}{1 + e\cos(\theta_1 + \Delta\theta)}$$
 (2.15)

I la relació entre el temps i la posició de la sonda s'expressa amb l'equació:

$$\frac{2\pi t}{T} = \sqrt{e^2 - 1} \left[\frac{e \sin \theta}{1 + e \cos \theta} - \frac{1}{\sqrt{e^2 - 1}} \ln \left\| \frac{\tan \frac{\theta}{2} + \sqrt{\frac{e + 1}{e - 1}}}{\tan \frac{\theta}{2} - \sqrt{\frac{e + 1}{e - 1}}} \right\| \right]$$
(2.16)

Per tant, el sistema de tres equacions i tres incògnites és el següent:

$$e = \frac{r_2 - r_1}{r_1 \cos \theta_1 - r_2 \cos (\theta_1 + \Delta \theta)}$$
 (2.17)

$$a = \frac{r_1 \left(1 + e \cos \theta_1\right)}{e^2 - 1} \tag{2.18}$$

$$t_{2} - t_{1} = \frac{365.25}{2\pi} a^{3/2}.$$

$$\cdot \left[\frac{e\sqrt{e^{2} - 1}\sin(\theta_{1} + \Delta\theta)}{1 + e\cos(\theta_{1} + \Delta\theta)} - \ln \left\| \frac{\tan\frac{(\theta_{1} + \Delta\theta)}{2} + \sqrt{\frac{e+1}{e-1}}}{\tan\frac{(\theta_{1} + \Delta\theta)}{2} - \sqrt{\frac{e+1}{e-1}}} \right\| - \frac{e\sqrt{e^{2} - 1}\sin\theta_{1}}{1 + e\cos\theta_{1}} - \ln \left\| \frac{\tan\frac{\theta_{1}}{2} + \sqrt{\frac{e+1}{e-1}}}{\tan\frac{\theta_{1}}{2} - \sqrt{\frac{e+1}{e-1}}} \right\| \right]$$
(2.19)

2.2 Mètode de resolució

- 1. Es calcula la posició del planeta d'origen en l'instant de temps de sortida i la posició del planeta de destí en l'instant de temps d'arribada.
- 2. A partir dels vectors de posició es calculen les longituds i latituds eclíptiques dels planetes.
- 3. A partir del sistema d'equacions donat per 2.11, 2.12 i 2.13 s'obtenen l'excentricitat e i el semieix major a de l'òrbita, i l'anomalia vertadera de la sonda θ_1 en l'instant de sortida. Aquest sistema es resol mitjançant la funció solve de MATLAB. Si no s'obté cap solució (o les solucions no són coherents), s'assumeix que una trajectòria el·líptica no és possible i, per tant, l'òrbita ha de ser hiperbòlica. En aquest cas, es resol el sistema donat per 2.17, 2.18 i 2.19 mitjançant un mètode iteratiu.
- 4. Es calcula la inclinació a partir de les equacions donades pels triangles esfèrics 2.4.
- 5. Càlcul de la longitud eclíptica del node ascendent donat per 2.6.
- 6. Es calcula l'argument del periheli amb 2.7.

3 | Sortida del planeta origen

Un cop es disposa dels elements keplerians eclíptics de l'òrbita de transferència, és possible trobar tant la trajectòria hiperbòlica que la sonda haurà de prosseguir des de la seva òrbita d'aparcament fins la sortida de l'EdI, com el ΔV que se li haurà d'aplicar per a que sigui capaç se sortir de l'òrbita d'aparcament i arribar al planeta en el temps marcat.

Figura 3.1: Òrbita hiperbòlica de sortida de l'esfera d'influència del planeta.

A la figura 3.1 es veuen els elements rellevants que s'han d'obtenir.

3.1 Velocitats a la sortida

Per tal de determinar la hipèrbola de sortida, el primer pas és trobar les velocitats les velocitats planetocèntrica i heliocèntrica de la sonda V_{∞} i V_{1} respectivament, en el moment de sortida de l'esfera d'influència del planeta. La velocitat planetocèntrica, V_{∞} , s'obté a partir de la velocitat heliocèntrica de la sonda, V_{1} , i de la velocitat heliocèntrica del planeta d'origen, V_{P0} ,

de la següent manera:

$$\vec{V}_{\infty} = \vec{V}_1 - \vec{V}_{P0} \tag{3.1}$$

Per tal d'obtenir tant \vec{V}_1 com \vec{V}_{P0} de manera senzilla i genèrica, s'ha elaborat una funció que a partir d'uns elements orbitals i una anomalia mitjana en un temps de referència, calcula la posició i la velocitat d'un cos en òrbita en un instant determinat de temps 4.4.

D'aquesta manera, s'utilitzen els elements orbitals del planeta d'origen en J2000 per a obtenir la seva posició i velocitat en l'instant determinat, i s'utilitzen els elements orbitals i l'anomalia mitjana de l'òrbita interplanetària, calculats en una altra funció 4.2, utilitzant com a temps de referència el propi instant en que surt de l'Edl.

3.2 Òrbita planetocèntrica hiperbòlica

A les classes de l'assignatura s'ha arribat a les següents relacions [5]:

$$a = \frac{\mu}{V_{\infty}^2} \tag{3.1}$$

$$e = 1 + \left(\frac{V_{\infty}}{V_o}\right)^2 \tag{3.2}$$

$$\cos(\beta) = \frac{1}{e} \tag{3.3}$$

$$b = a\sqrt{e^2 - 1} \tag{3.4}$$

$$V_o = \sqrt{\frac{\mu}{r_o}} \tag{3.5}$$

On:

- a és el semieix major.
- e és l'excentricitat.
- β és l'angle de l'asímptota. Veure fig.3.1.
- b és el paràmetre de sortida. Veure fig.3.1.
- V_o és la velocitat que porta la sonda en l'òrbita d'aparcament de radi r_o .
- μ és el paràmetre de gravitació estàndard del planeta. (GM)
- V_{∞} representa el mòdul de la velocitat planetocèntrica que porta la sonda al sortir del planeta.

Aquests càlculs s'han portat a terme mitjançant el codi de la secció 4.3.

3.3 DeltaV

Per trobar l'impuls que s'ha de subministrar s'aplica conservació d'energia cinètica:

$$\frac{1}{2}V_{\infty}^{2} = \frac{1}{2}(V_{o} + \Delta V)^{2} - \frac{\mu}{r_{o}}$$

Arribant així a:

$$\Delta V = \sqrt{V_{\infty}^2 + 2V_o^2} - V_o \tag{3.1}$$

4 Codi

Per tal de poder resoldre les equacions definides en els apartats anteriors de forma ràpida i eficient, s'ha elaborat un codi *MATLAB*. A fi de simplificar el seu ús i la seva comprensió, el codi està dividit en diferentes funcions amb una tasca definida i clara. Aquestes es detallen a continuació.

4.1 Programa principal main.m

```
1 %% Patched Conics. Interplanetary Trajectories.
2 % Authors:
     - Silvia Gonzalez
4 % - Laura Pla
5 % - Josep Maria Serra Moncunill
6 % - Boyan Naydenov
7 % Subject: Aerodynamics, Flight and Orbital Mechanics.
8 % Date: January 20th, 2018
10 응응
11 clear
12 clc
13
14 %% Data
mu = 1.3271741784e20;
16 \text{ dST} = 149597870700;
17
18 %Earth data
19 a_E = 149598023000;
20 e_E = 0.0167086;
21 I_E = 0.00005;
22 \text{ RAAN\_E} = -11.26064;
AP_E = 114.20783;
M0_E = 358.617;
26 %Mars data
```



```
a_M = 227939200000;
28 e_M = 0.0934;
29 I_M = 1.850;
30 RAAN_M = 49.558;
31 AP_M = 286.502;
M0_M = 19.3564;
33
34 %Jupiter data
a_J = 7.7830e+11;
36 e_J = 0.048498;
I_J = 1.3033;
38 RAAN_J = 100.46;
39 AP_J = 273.866;
40 M0_J = 20.021;
41
42 % Time data
43 t0 = JulianDate(2000, 1, 1);
44 t1 = JulianDate(2020, 7, 19);
45 t2 = JulianDate(2021, 1, 25);
46 deltat = t2-t1;
48 % Distances, velocities and true anomalies
49 [r1_E,v1_E,theta1_E] = OrbitalVectors (t1,mu,a_E,e_E,I_E,RAAN_E,AP_E,...
      MO_E, t0);
so r1_E = r1_E/dST;
51 [r2_M, v2_M, theta2_M] = Orbital Vectors (t2, mu, a_M, e_M, I_M, RAAN_M, AP_M, ...
      M0_M, t0);
r2_M = r2_M/dST;
54 %% Part 1: Heliocentric elliptic trajectory
55 [a_S, e_S, theta1, AP_S, I_S, RAAN_S] = orbita_interplanetaria(r1_E,r2_M...
       ,deltat);
56 E_S=acosd((e_S+cosd(theta1))/(1+e_S*cosd(theta1)));
57 M_S=E_S-e_S*sin(E_S);
58 a_S = a_S*dST;
60 %% Part 2: Exit. Geocentric Parking orbit and hyperbolic trajectory and ...
       deltaV
61 [r1,v1,theta1] = OrbitalVectors (t1,mu,a_S,e_S,I_S,RAAN_S,AP_S,M_S,t1);
62 v_inf1=v1-v1_E;
63 [hyperbolaExit, deltaV] = outHyperbola (v_inf1);
65 %% Part 3: Arrival. Geocentric hyperbolic trajectory and Parking orbit ...
 \begin{tabular}{ll} \bf 66 & [r2,v2,theta2] = Orbital Vectors & (t2,mu,a\_S,e\_S,I\_S,RAAN\_S,AP\_S,M\_S,t1); \\ \end{tabular} 
67 v_inf2=v2-v2_M;
69 %% Part 4: Results Presentation
70 N=100;
71 A=2;
```



```
72 t=linspace(t1-A*deltat,t2+A*deltat,(2*A+1)*N);
73 r_E = zeros(1, (2*A+1)*N, 3);
74 r_{M=zeros}(1, (2*A+1)*N, 3);
75 r_S=zeros(1,N,3);
76 for i=1:(2*A+1)*N
       [r_E(1,i,:),v1_E,theta1_E] = OrbitalVectors (t(i),mu,a_E,e_E,I_E,...
77
           RAAN_E, AP_E, MO_E, t0);
       [r_M(1,i,:),v1_M,theta1_M] = OrbitalVectors (t(i),mu,a_M,e_M,I_M,...
78
           RAAN_M, AP_M, MO_M, t0);
       if t(i)>=t1 && t(i)<=t2</pre>
79
           [r_S(1,i-A*N,:),v1_S,theta1_S] = OrbitalVectors (t(i),mu,a_S,e_S...
                , I_S, RAAN_S, AP_S, M_S, t1);
       end
82 end
83 plot3 (r_E(1,:,1), r_E(1,:,2), r_E(1,:,3), ':b');
85 plot3 (r_E(1, A*N: (A+1)*N, 1), r_E(1, A*N: (A+1)*N, 2), r_E(1, A*N: (A+1)*N, 3), '-b...
       ','LineWidth',2);
86 hold on
87 plot3(r_M(1,:,1),r_M(1,:,2),r_M(1,:,3),':r');
88 hold on
89 plot3 (r_M(1, A*N: (A+1)*N, 1), r_M(1, A*N: (A+1)*N, 2), r_M(1, A*N: (A+1)*N, 3), '-r...
       ','LineWidth',2);
90 hold on
91 plot3(r_S(1,:,1),r_S(1,:,2),r_S(1,:,3),'-g','LineWidth',2);
92 axis equal;
93 ax.XAxisLocation = 'origin';
94 ax.YAxisLocation = 'origin';
95 ax.ZAxisLocation = 'origin';
```

4.2 Transfer Orbit orbitainterplanetaria.m

Funció que calcula els elements orbitals de l'òrbita de transferència. En cas que sigui el · líptica, els resultats s'obtenen gràcies a la funció *solve.m*. En canvi, si és hiperbòlica cal emprar una altra funció desenvolupada a continuació.


```
10 % i: inclination [deg]
11 % Omega: longitude of the ascending node [deg]
12
13 % INPUTS
14 % rl: heliocentric position of the probe in t2 [AU]
15 % r2: heliocentric position of the probe in t2 [AU]
16 % deltat: t2-t1 [days]
17
18 % Angle calculations
19 lambda1 = atan(r1(2)/r1(1)); % [rad]
20 lambda1 = checkTangent(lambda1, r1(2), r1(1));
21 lambda2 = atan(r2(2)/r2(1)); % [rad]
22 lambda2 = checkTangent(lambda2, r2(2), r2(1));
23 beta1 = asin(r1(3)/norm(r1)); % [rad]
24 beta2 = asin(r2(3)/norm(r2)); % [rad]
25
26 % Angle increments
27 deltalambda = wrapTo2Pi(lambda2-lambda1); % [rad]
28 deltatheta = acos(sin(beta1)*sin(beta2)+cos(beta1)*cos(beta2)*cos(...
       deltalambda)); % [rad]
29
30 % ELLIPTICAL ORBIT (Resolution of the system of equations)
31 syms e a thetal;
32 eqn1 = (norm(r2) - norm(r1)) / (norm(r1) * cos(theta1) - norm(r2) * cos(theta1+...
       deltatheta))-e == 0;
33 eqn2 = norm(r1) * (1+e*cos(theta1)) / (1-e^2) -a == 0;
34 eqn3 = 365.25 \times a^{(3/2)} \times (2 \times atan(sqrt((1-e)/(1+e)) \times tan((thetal+deltatheta)...
       /2))-e*sqrt(1-e^2)*sin(theta1+deltatheta)/(1+e*cos(theta1+deltatheta)...
       )-2*atan(sqrt((1-e)/(1+e)) *tan(theta1/2)) +e*sqrt(1-e^2) *sin(theta1)...
       /(1+e*cos(theta1)))/(2*pi)-deltat == 0;
35 S = solve(eqn1, eqn2, eqn3);
36
37 e = double(S.e); % eccentricity
38 a = double(S.a); % semi-major axis
39 theta1 = double(S.theta1); % true anomaly in t1 [rad]
41 % HYPERBOLIC ORBIT (Resolution of the system of equations)
42 if isreal(e) == 0 \mid \mid isreal(a) == 0 \mid \mid isreal(theta1) == 0 \mid \mid isempty(e) == 1 \mid \mid ...
       isempty(a) == 1 || isempty(theta1) == 1 || e>1 || e<-1</pre>
       [e,a,theta1] = hyperbolic_orbit(r1,r2,deltat,deltatheta);
43
44 end
46 % Correction for negative excentricities
47 if e<0
       e = -e;
48
       theta1 = theta1+pi;
50 end
51 theta1 = wrapTo2Pi(theta1);
52
53 % Inclination calculation using spherical trigonometry
```



```
54 A = asin(cos(beta2)*sin(deltalambda)/sin(deltatheta)); % [rad]
55 A = checkTangent(A, cos(beta2) *sin(deltalambda), sin(deltatheta));
i = acos(sin(A) * cos(beta1)); % [rad]
1 = asin(tan(beta1)/tan(i)); % [rad]
59 if i>pi/2
     i = i - pi;
61 end
62
63 if beta1==0 && beta2<0 && i>0
       i = -i;
65 end
66
67
  if beta1<0 && 1>0
       1 = -1;
68
69 end
70
71 sigma = atan(tan(beta1)/cos(A)); % [rad]
72 sigma = checkTangent(sigma, tan(beta1), cos(A));
73 Omega = lambda1-l; % [rad]
74 w = 2*pi-(theta1-sigma); % [rad]
75
76 if (i<0)
      i = abs(i);
77
      Omega = Omega+pi;
78
       w = w + pi;
79
80 end
81
82 theta1 = rad2deg(theta1); % [deg]
83 i = rad2deg(i); % [deg]
84 Omega = rad2deg(wrapTo2Pi(Omega)); % [deg]
85 w = rad2deg(wrapTo2Pi(w)); % [deg]
86
87 end
```

4.2.1 Hyperbolic transfer orbit hyperbolicorbit.m

Funció que implementa un mètode iteratiu per tal de calcular els elements orbitals d'una òrbita de transferència el · líptica. Cal destacar la importància d'escollir un valor inicial d'iteració adequat, ja que sinó no s'obtenen resultats correctes.

```
1 function [e,a,theta] = hyperbolic_orbit(r1,r2,deltat,deltatheta)
2 % Function that computes the excentricity, the semimajor axis and the
3 % true anomaly of an hyperbolic orbit using an iterative algorithm
4
5 % OUTPUTS
```



```
6 % e: eccentricity
7 % a: semi-major axis [AU]
8 % theta: true anomaly in t1 [rad]
10 % INPUTS
11 % r1: heliocentric position of the probe in t2 [AU]
12 % r2: heliocentric position of the probe in t2 [AU]
13 % deltat: t2-t1 [days]
14 % deltatheta: increment of the true anomaly between t1 and t2 [rad]
15
16 resta = 1000;
17 d = 1e-6; % error
18 theta = pi/2-acos(dot(r1,r2)/(norm(r1)*norm(r2))); % initial value
if theta>deg2rad(-50)
       theta = theta-deg2rad(10);
20
21 end
22 \text{ eant} = 1000;
23
24 while(resta>d)
25
       e = (norm(r2) - norm(r1)) / (norm(r1) * cos(theta) - norm(r2) * cos(theta+...
26
           deltatheta));
       a = norm(r1) * (1+e*cos(theta)) / (e^2-1);
27
       delta = 365.25*a^{(3/2)}*(e*sqrt(e^2-1)*sin(theta+deltatheta)/(1+e*cos...
28
           (theta+deltatheta)) - log(abs((tan((theta+deltatheta)/2)+sqrt((e+1)...
           /(e-1)))/(tan((theta+deltatheta)/2)-sqrt((e+1)/(e-1)))))-e*sqrt(e...
           ^2-1 * \sin (theta) / (1+e * \cos (theta)) + \log (abs ((tan(theta/2) + \sqrt{2}) + \sqrt{2})
           +1)/(e-1))/(tan(theta/2)-sqrt((e+1)/(e-1)))))/(2*pi);
29
30
       resta = abs(e-eant);
31
       eant = e;
32
       if resta>d
33
           theta = theta+(deltat-delta)/10000;
34
35
       end
37 end
```

4.3 Hipèrbola de sortida outHyperbola.m

```
1 function [hyperbolaExit, deltaV] = outHyperbola (v_inf)
2 % Function that gets Vinf and gives hyperbolic trajectory
3 % and the necessary deltaV
4
5 % OUTPUTS
```



```
6 % hyperbolaExit: orbital parameters of the hyperbola
7 % deltaV: Increment of velocity required to go from the parking orbit to
8 % the hyperbolic orbit [m/s]
10 % INPUT
11 % v_inf: planetocentric hyperbolic excess velocity [m/s]
13 %% DATA
14 R_e = 6.3782e+03; % [km]
mu_sun = 1.3271741784e20;
16 mu_e = 3.9820e+14; %SI
17
18 %% parkingOrbit
19 h = 800000; %height [m]
20 ro = R_e*1000 + h;
21 Vo = sqrt(mu_e/ro); % velocity in the parking orbit
22
23 %% deltaV
24 Vinf = norm(v_inf);
25 deltaV = sqrt(Vinf^2+2*Vo^2)-Vo;
27 %% hyperbolic path
28 hyperbolaExit.a = mu_e/(Vinf^2); % semi-major axis
29 hyperbolaExit.e = 1 + (Vinf/Vo)^2; % eccentricity
30 hyperbolaExit.beta = acosd(1/hyperbolaExit.e); % hyperbolic angle
31 hyperbolaExit.b = hyperbolaExit.a*sqrt(hyperbolaExit.e^2-1); % Impact ...
      parameter (semi-minor axis)
32 end
```

4.4 Posició i velocitat OrbitalVectors.m

Càlcul dels vectors de posició i velocitat en funció dels elements orbitals.

```
1 function [r,v,theta] = OrbitalVectors (t,mu,a,e,I,RAAN,AP,MO,t0)
2 % Function that computes the position vector (r), the velocity vector
3 % (v) and the true anomaly (theta) for a given orbital parameters
4
5 % OUTPUTS
6 % r: position vector of the orbiting object in the same system of
7 % reference as the orbital parameters [m]
8 % v: velocity vectorof the orbiting object in the same system of
9 % reference as the orbital parameters [m/s]
10 % theta: true anomaly [deg]
11
12 % INPUTS
13 % t: time at which to compute the outputs in JD [days]
```



```
14 % mu: gravitational constant multiplied by the mass of the central body
15 % (G*M) [N*m^2/kq^2]
16 % a: semi-major axis [m]
17 % e: eccentricity
18 % I: inclination [deg]
19 % RAAN: right ascension of the ascending node [deg]
20 % AP: argument of the perigee [deg]
21 % MO: mean anomaly at a reference time [deq]
22 % t0: reference time in JD [days]
23
24 I=deg2rad(I); %Inclination [rad]
25 RAAN=deg2rad(RAAN); %Right ascension of the ascending node [rad]
26 AP=deg2rad(AP); %Argument of the perigee [rad]
27 M0=deg2rad(M0); %Mean anomaly at reference time t0 [rad]
28 t=t*24*3600; %Time [s]
29 t0=t0*24*3600; %Reference time [s]
30
31 T=sqrt (4*pi^2*a^3/mu); %Period [s]
32 n=2*pi/T; %Mean motion [rad/s]
33 M=M0+n*(t-t0); %Mean anomaly [rad]
34 M=wrapTo2Pi(M); %Mean anomaly between 0 and 2pi
35 if M>pi
       M=M-2*pi; %Correction for the hyperbolic equations
36
37 end
38
39 E0=M+e*sin(M); %Initial eccentric anomaly
40 error=1e-8;
41 if e<1 %Elliptic case
       p=a*(1-e^2); %Conic parameter
42
43
       E=1;
       while abs(E-E0)>error %Newton-Rapson
44
         E=E0+(M-E0+e*sin(E0))/(1-e*sin(E0));
45
           E.0=E.
46
       theta=2*atan(sqrt((1+e)/(1-e))*tan(E/2)); %True anomaly
48
       r_{mod=a*(1-e*cos(E))}; %Modulus of the position vector
  else %Hyperbolic case
50
       p=a*(e^2-1); %Conic parameter
51
       if e<1.6
52
53
               F0=M+e; %Initial hyperbolic anomaly
54
55
               F0=M-e; %Initial hyperbolic anomaly
56
           end
57
       else
58
           if e<3.6 && M>pi
59
               F0=M-e; %Initial hyperbolic anomaly
60
           else
61
               F0=M/(e-1); %Initial hyperbolic anomaly
62
           end
63
```



```
64
       end
       F=1;
65
       while abs(F-F0)>error %Newton Rapson
           F=F0+(M-e*sinh(F0)+F0)/(e*cosh(F0)-1);
67
           F0=F;
       end
69
       theta=2*atan(sqrt((e+1)/(e-1))*tanh(F/2)); %True anomaly
70
       r_{mod}=a*(e*cosh(F)-1); %Modulus of the position vector
71
72 end
73
74 %Rotation coefficients
75 Px=cos(RAAN) *cos(AP) -sin(RAAN) *cos(I) *sin(AP);
76 Py=sin(RAAN)*cos(AP)+cos(RAAN)*cos(I)*sin(AP);
77 Pz=sin(I)*sin(AP);
78 Qx=-\cos(RAAN)*\sin(AP)-\sin(RAAN)*\cos(I)*\cos(AP);
79 Qy = -\sin(RAAN) * \sin(AP) + \cos(RAAN) * \cos(I) * \cos(AP);
80 Qz=sin(I)*cos(AP);
81 Wx=sin(RAAN)*sin(I);
82 Wy=-cos(RAAN)*sin(I);
83 Wz=cos(I);
84 P=[Px ; Py ; Pz]; %Rotation vector for x_orb
85 Q=[Qx; Qy; Qz]; %Rotation vector for y_orb
87 r=r_mod*(cos(theta)*P+sin(theta)*Q); %Distance vector
88 v=sqrt(mu/p)*(-sin(theta)*P+(e+cos(theta))*Q); %velocity vector
```

4.5 Data Juliana Julian Date.m

S'aplica l'algoritme de conversió de data Gregoriana a data Juliana vist a classe [2, pàg.48].

```
function JDN=JulianDate(year, month, day)
function that computes the Julian Date of a given Gregorian date

function that computes the Julian Date of a given Gregorian date

function that computes the Julian Date of a given Gregorian date

function JDN=Julian Date of a given Gregorian date

function JDN=JulianDate of a given Gregorian date

function JDN=Ju
```



```
16 JDN = day + floor((153*m + 2)/5) + 365*y + floor(y/4)

17 - floor(y/100) + floor(y/400) - 32045;

18 end
```

4.6 Correcció d'angles checkTangent.m

Aquesta funció simplement s'encarrega de rebre un quocient i, segons el signe, decidir en quin quadrant situar l'angle que s'obté en calcular l'arc tangent.

```
1 function angle = checkTangent(result, num, den)
\mathbf{2} % Function that rectifies the angle obtained with atan() as a function
3 % of the numerator and the denominator
5 % OUTPUT
6 % angle: rectified angle [rad]
8 % INPUTS
9 % result: angle obtained with atan() [rad]
10 % num: numerator
11 % den: denominator
12
      if den<0 && num>0
13
          % second quadrant
14
           angle = pi + result;
15
      elseif den<0 && num<0
16
          % third quadrant
17
           angle = result + pi;
18
19
      else
           angle = result;
20
       end
21
22 end
```


5 Resultats

5.1 Cas de la Terra a Mart

• Sortida: $t_1 = 2020$ Juliol 19

• Arribada: $t_2 = 2021$ Gener 25

 $\Delta\lambda = 141.693^{\circ}~\Delta\theta = 141.684^{\circ}$

a	e	θ_1	ω	i	Ω
1.33073 AU	0.23629	359.613°	0.387°	1.434°	296.515°

Taula 5.1: Elements orbitals del primer cas resolt

Figura 5.1: Òrbita interplanetària del primer cas resolt

5.2 Cas de Mart a Júpiter

• Sortida: $t_1 = 2026$ Juny 05

• Arribada: $t_2 = 2029$ Abril 25

 $\Delta\lambda = 182.835^{\circ}~\Delta\theta = 177.141^{\circ}$

a	e	θ_1	ω	i	Ω
3.45405 AU	0.59043	356.872°	176.203°	7.508°	207.127°

Taula 5.1: Elements orbitals del segon cas resolt

5.3 Cas de la Terra a Mart

• Sortida: $t_1 = 2020$ Març 06

• Arribada: $t_2 = 2020$ Juny 09

 $\Delta\lambda = 135.697^{\circ}~\Delta\theta = 135.670^{\circ}$

a	e	θ_1	ω	i	Ω
71.33848 AU	1.01109	306.690°	233.310°	2.514°	345.607°

Taula 5.1: Elements orbitals del tercer cas resolt

Figura 5.1: Òrbita interplanetària del tercer cas resolt

5.4 Cas 1 de Mart a Júpiter

• Sortida: $t_1 = 2037$ Octubre 25

ullet Arribada: $t_2=$ 2039 Octubre 15

 $\Delta\lambda = 121.960^{\circ}~\Delta\theta = 121.957^{\circ}$

a	e	$ heta_1$	ω	i	Ω
$3.87684~{\rm AU}$	0.64755	32.516°	317.644°	1.267°	52.502°

Taula 5.1: Elements orbitals del cas 1

5.5 Cas 2 de la Terra a Mart

• Sortida: $t_1 = 2033$ Març 13

• Arribada: $t_2 = 2033$ Agost 05

 $\Delta \lambda = 126.666^{\circ} \ \Delta \theta = 126.647^{\circ}$

a	e	θ_1	ω	i	Ω
1.34585 AU	0.26502	347.845°	192.155°	2.154°	352.263°

Taula 5.1: Elements orbitals del cas 2

Figura 5.1: Òrbita interplanetària del cas 2

5.6 Cas 3 de la Terra a Mart

• Sortida: $t_1 = 2031$ Gener 23

• Arribada: $t_2 = 2031$ Agost 01

 $\Delta\lambda = 148.092^{\circ} \ \Delta\theta = 148.071^{\circ}$

a	e	θ_1	ω	i	Ω
1.24568 AU	0.20996	1.674°	358.471°	2.293°	122.188°

Taula 5.1: Elements orbitals del cas 3

Figura 5.1: Òrbita interplanetària del cas 3

5.7 Cas 4 de la Terra a Mart

 $\Delta\lambda = 308.176^{\circ}~\Delta\theta = 51.825^{\circ}$

• Sortida: $t_1 = 2025$ Juliol 18

• Arribada: $t_2 = 2025$ Octubre 21

a	e	θ_1	ω	i	Ω
1.07039 AU	0.46551	112.076°	67.350°	0.563°	115.868°

Taula 5.1: Elements orbitals del cas 4

5.8 Cas 5 de la Terra a Venus

• Sortida: $t_1 = 2023$ Maig 27

• Arribada: $t_2 = 2023$ Novembre 01

 $\Delta \lambda = 202.000^{\circ} \ \Delta \theta = 157.992^{\circ}$

a	e	θ_1	ω	i	Ω
0.86221 AU	0.23212	147.050°	32.951°	1.678°	65.165°

Taula 5.1: Elements orbitals del cas 5

5.9 Cas 6 de Mart a la Terra

• Sortida: $t_1 = 2033$ Gener 18

• Arribada: $t_2 = 2033$ Agost 28

 $\Delta \lambda = 140.675^{\circ} \ \Delta \theta = 140.663^{\circ}$

a	e	θ_1	ω	i	Ω
1.31415 AU	0.24918	191.345°	207.993°	1.696°	154.559°

Taula 5.1: Elements orbitals del cas 6

5.10 Cas 7 de Mart a la Terra

• Sortida: $t_1 = 2030$ Novembre 20

• Arribada: $t_2 = 2031$ Juliol 06

 $\Delta\lambda = 134.956^{\circ}~\Delta\theta = 134.927^{\circ}$

a	e	θ_1	ω	i	Ω
1.31613 AU	0.26617	184.700°	220.499°	2.572°	103.210°

Taula 5.1: Elements orbitals del cas 7

Figura 5.1: Òrbita interplanetària del cas 7

5.11 Cas 8 de la Terra a Mart

• Sortida: $t_1 = 2021$ Novembre 26

lacktriangledown Arribada: $t_2 = 2022$ Febrer 19

 $\Delta\lambda = 198.239^{\circ} \ \Delta\theta = 161.735^{\circ}$

a	e	θ_1	ω	i	Ω
1.34032 AU	1.44253	288.926°	251.074°	3.166°	243.635°

Taula 5.1: Elements orbitals del cas 8

Figura 5.1: Òrbita interplanetària del cas 8

5.12 Cas 9 de la Terra a Mart

• Sortida: $t_1 = 2022$ Gener 15

ullet Arribada: $t_2=$ 2022 Abril 20

 $\Delta\lambda = 182.508^{\circ} \ \Delta\theta = 176.966^{\circ}$

a	e	θ_1	ω	i	Ω
5.10048 AU	1.11071	280.991°	259.009°	34.288°	294.501°

Taula 5.1: Elements orbitals del cas 9

Figura 5.1: Òrbita interplanetària del cas 9

6 Conclusions

Ens vam decidir pel treball del càlcul de trajectòries interplanetaries des del primer moment degut a que és un tema que realment ens apassiona. Estem vivint una època en que l'arribada a Mart és imminent. Això ens anima a pensar que encara és pot anar més lluny.

El mètode del patched conics....molt útil per una primer approx...bla bla-....els resultats s'han de refinar amb un mètode numèric....blablabla....alguns valros poden diferir de la solució del professor pel fer que una petita variació en els vectors orbitals comporta una gran variació dels àngles d'euler...blabla

EL treball s'ha dividit en petites funcions que a continuació s'han repartit entre els membres de l'equip. Cada funció s'ha intentat validar de forma independent a la resta del codi, per així poder obtenir un programa global funcional i robust.

Per aspectes d'eficiència s'ha emprat un sistema de control de versions git, per així poder treballar simultàniament sobre els mateixos arxius sense perdre cap informació.

Així doncs, s'ha aconseguit combinar la nostra passió pel tema, amb una bona organització. Això ha ajudat a que poguem gaudir i aprendre molt amb el tema escollit..

7 Bibliografia

- [1] Battin, R. H. An Introduction to the Mathematics and Methods of Astrodynamics. 1999.
- [2] CALAF, J. 1. Sistemes de referència. Teoria de màster UPC (2017).
- [3] CALAF, J. 2. Moviment orbital keplerià. Teoria de màster UPC (2017).
- [4] CALAF, J. 4. Maniobres orbitals bàsiques. Teoria de màster UPC (2017).
- [5] CALAF, J. 5. Trajectòries interplanetàries i lunars. Teoria de màster UPC (2017).
- [6] CALAF, J. A. Repàs de Matemàtiques. Teoria de màster UPC (2017).
- [7] CALAF, J. A. Treballs de Mecànica Orbital. Teoria de màster UPC (2017).
- [8] Vallado, D. A. Fundamentals of Astrodynamics and Applications. 1998.