UNIVERSIDADE FEDERAL DO PARÁ FACULDADE DE ENGENHARIA DE COMPUTAÇÃO E TELECOMUNICAÇÕES

Técnicas de Otimização

Programação Linear (PL)

Professor Dr. Lamartine Vilar de Souza lvsouza@ufpa.br www.lvsouza.ufpa.br

Belém - 2015

Avisos Iniciais

• Os conceitos e textos abordados neste capítulo foram retirados integralmente e textualmente da bibliografia contida no plano de ensino desta disciplina.

• Estes *slides* não substituem nem suprem uma leitura detalhada e completa dos assuntos que serão estudados e dos relacionados existentes nas bibliografias sugeridas e em outras referências bibliográficas eventualmente encontradas pelos estudantes.

• Utilize estes *slides* **APENAS** como um direcionador para os seus estudos em livros ou materiais da área.

Técnicas de Otimização Tópicos

1. Introdução a pesquisa operacional;

2. Programação linear (PL);

3. Forma padrão de um problema de PL;

4. Solução ótima.

Técnicas de Otimização

INTRODUÇÃO A PESQUISA OPERACIONAL

ATIVIDADE EM GRUPOS – ESTIMATIVA

Grupo 1 e Grupo 2

Sem calculadora!! Tempo = 05 s

Sem calculadora!! Tempo = 05 s

Cálculos!

8 x 7 x 6 x 5 x 4 x 3 x 2 x 1

2.250 (média dos valores estimados)

1 x 2 x 3 x 4 x 5 x 6 x 7 x 8

512 (média dos valores estimados)

8 x 7 x 6 x 5 x 4 x 3 x 2 x 1

$$=40.320$$

1 x 2 x 3 x 4 x 5 x 6 x 7 x 8

$$=40.320$$

Ancoragem

Os efeitos de ancoragem surgem quando um fator aparentemente trivial serve como ponto inicial (ou âncora) para estimativas em um problema de análise de decisão.

ATIVIDADE INDIVIDUAL – TOMADA DE DECISÕES

SITUAÇÃO 1:

Você acaba de ganhar R\$ 1.000,00 e precisa escolher uma das seguintes alternativas:

- a) Ganhar R\$ 500,00 adicionais com certeza;
- b) Jogar uma moeda e receber R\$ 1.000,00 adicionais se sair cara e receber nada se sair coroa.

SITUAÇÃO 2:

Você acaba de ganhar R\$ 2.000,00 e precisa escolher uma das seguintes alternativas:

- a) Perder R\$ 500,00 imediatamente;
- b) Jogar uma moeda e não devolver nada se sair cara ou devolver R\$ 1.000,00 se sair coroa.

Árvore de decisão para as Situações Apresentadas

Estruturação

Os efeitos de estruturação se referem à maneira como um tomador de decisão vê ou percebe as alternativas de um problema de decisão, normalmente envolvendo a perspectiva ganhar/perder.

Técnicas de Otimização

PROGRAMAÇÃO LINEAR (PL)

Programação Matemática...

• (PM) [Mathematical Programming (MP)] é um campo da ciência de gerenciamento que encontra a maneira ideal ou mais eficiente de usar recursos limitados para atingir os objetivos de um indivíduo ou de uma empresa.

• Geralmente chamada de otimização.

Algumas aplicações da Otimização ou Pesquisa Operacional

• Determinação da melhor combinação de produtos;

• Fabricação;

• Roteamento e logística;

• Planejamento financeiro.

Técnicas de Otimização

FORMA PADRÃO DE UM PROBLEMA DE PL

Características dos Problemas de Otimização

• Decisões (variáveis de decisão)

• Restrições (= , >= , <=)

• Objetivos (maximizar ou minimizar)

Formulação Geral de um Problema de Otimização

•MAX (ou MIN): $f_0(X_1, X_2, ..., X_n)$

Sujeito a:
$$f_1(X_1, X_2, ..., X_n) \le b_1$$

 $f_k(X_1, X_2, ..., X_n) \ge b_k$
 $f_m(X_1, X_2, ..., X_n) = b_m$

• Nota: Se todas as funções numa otimização são lineares, trata-se de uma **Programação Linear** (PL) [*Linear Programming – LP*]

Um Exemplo de Problema de PL

A Tabajara Banheiras fabrica e vende dois modelos de banheiras: a Aqua-Spa e a Hydro-Lux.

	Aqua-Spa	Hydro-Lux
Bomba	1	1
Produção	9 horas	6 horas
Tubulação	12 m	16 m
Lucro	\$ 350	\$ 300

O proprietário espera ter **1.566 horas** de trabalho de produção e **2.880 metros** de tubulação disponíveis durante o próximo ciclo de produção. Também terá, para o próximo ciclo de produção, apenas **200 bombas**.

Como ele pode maximizar o seu lucro, dadas as condições existentes?

5 Passos na Formulação de Modelos de PL:

- 1. Entenda o problema
- 2. Identifique as variáveis de decisão

 X_1 = número de Aqua-Spas que serão fabricadas X_2 = número de Hydro-Luxes que serão fabricadas

3. Coloque o objetivo (ou função objetivo) como uma combinação linear das variáveis de decisão

MAX: $350X_1 + 300X_2$

5 Passos na Formulação de Modelos de PL:

4. Coloque as restrições como combinações lineares das variáveis de decisão

$$1X_1 + 1X_2 \le 200$$
 } bombas
 $9X_1 + 6X_2 \le 1566$ } produção
 $12X_1 + 16X_2 \le 2880$ } tubulação

5. Identifique quaisquer vínculos nas variáveis de decisão

$$X_1 >= 0$$

 $X_2 >= 0$

Modelo de PL para a Tabajara Banheiras

MAX:
$$350X_1 + 300X_2$$

Sujeito a:
$$1X_1 + 1X_2 \le 200$$

$$9X_1 + 6X_2 \le 1566$$

$$12X_1 + 16X_2 \le 2880$$

$$X_1 >= 0$$

$$X_2 >= 0$$

Resolução de Problemas de PL: uma Abordagem Intuitiva

- Ideia: Cada Aqua-Spa precisa produzir o maior número de unidades de X₁ possível, pois cada uma delas gera um lucro de \$ 350 enquanto cada unidade de X₂ (Hydro-Luxes) gera um lucro de apenas \$ 300.
- Quanto seria isso?
 - $-X_2=0$
 - 1^a restrição: 1X₁ <= 200
 - 2^a restrição: $9X_1 \le 1566$ ou $X_1 \le 174$
 - 3^a restrição: $12X_1 \le 2880$ ou $X_1 \le 240$

Resolução de Problemas de PL: uma Abordagem Intuitiva

$$-X_2 = 0$$

- 1^a restrição: 1X₁ <= 200
- 2^a restrição: $9X_1 \le 1566$ ou $X_1 \le 174$
- 3^a restrição: $12X_1 \le 2880$ ou $X_1 \le 240$
- Se $X_2 = 0$, o maior valor de X_1 é 174 e seu total de lucro será:
 - \$350*174 + \$300*0 = \$60.900
- Essa solução é viável, mas é a *solução ótima*?
- Não! Logo, nem toda solução viável é uma solução ótima!

Técnicas de Otimização

SOLUÇÃO ÓTIMA

Resolução de problemas de PL: uma Abordagem Gráfica

- As restrições de um modelo de PL definem o conjunto de soluções viáveis.
- A dificuldade em PL é determinar qual ponto ou pontos na região viável correspondem ao melhor valor possível da função.
- Para problemas de PL com duas variáveis, é fácil rascunhar a região viável para o modelo de PL e localizar o ponto viável ideal graficamente.

Plotando a Primeira Restrição

Plotando a Segunda Restrição

Plotando a Terceira Restrição

Plotando uma Curva de Nível de uma Função Objetivo

Segunda Curva de Nível de uma Função Objetivo

Encontrar a Solução Ótima Usando a Curva de Nível

Calculando a Solução Ótima

- A solução ótima para nosso problema do exemplo ocorre no ponto em que a maior curva de nível possível intercepta a região viável em um único ponto.
- Onde isso ocorre:

$$X_1 + X_2 = 200$$
 (1)
e $9X_1 + 6X_2 = 1566$ (2)

- Em (1) nós temos, $X_2 = 200 X_1$ (3)
- Substituindo (3) por X₂ in (2) nós temos,

$$9X_1 + 6 (200 - X_1) = 1566$$

o que reduz para $X_1 = 122$

Calculando a Solução Ótima

• Então, a solução ótima é:

$$X_1 = 122,$$

$$X_2 = 200 - X_1 = 78$$

Lucro total =
$$$350*122 + $300*78 = $66.100$$

Enumerando os Pontos Extremos

Resumo da Solução Gráfica para Problemas de PL

1. Plote a linha de contorno de cada restrição do modelo.

2. Identifique a região viável

- 3. Encontre a solução ótima por um dos seguintes métodos:
 - a. Plotando curvas de nível;
 - b. Enumerando os pontos extremos.

PL – Exercícios

1. Para a situação abaixo, estabeleça a função objetivo e as restrições existentes para um problema de otimização.

A refinaria Tabajara extrai minerais em dois locais diferentes do Pará. Cada tonelada de minério Tipo 1 contém 20% de cobre, 20% de zinco e 15% de magnésio. Cada tonelada de minério Tipo 2 contém 30% de cobre, 25% de zinco e 10% de magnésio. O minério Tipo 1 custa \$ 90 por tonelada e o minério Tipo 2 custa \$ 120 por tonelada. A Tabajara gostaria de comprar minério suficiente para extrair pelo menos 8 toneladas de cobre, 6 toneladas de zinco e 5 toneladas de magnésio com o menor custo possível.

5 Passos na Formulação de Modelos de PL:

1. Entenda o problema

2. Identifique as variáveis de decisões

3. Coloque a função objetivo como uma combinação linear das variáveis de decisão

5 Passos na Formulação de Modelos de PL:

4. Coloque as restrições como combinações lineares das variáveis de decisão

5. Identifique quaisquer vínculos nas variáveis de decisão

Passo 2: Identifique as variáveis de decisão

Pergunta principal: quantas toneladas de minério devemos comprar?

Toneladas do minério Tipo 1: X₁

Toneladas do minério Tipo 2: X₂

Passo 3: Coloque a função objetivo como uma combinação linear das variáveis de decisão

Objetivo principal: comprar minério com o menor custo possível.

Custo do minério Tipo 1: \$90

Custo do minério Tipo 2: \$120

 $MINIMIZAR: 90X_1 + 120X_2$

Passo 4: Coloque as restrições como combinações lineares das variáveis de decisão

Restrições:

Cada tonelada de minério Tipo 1 contém 20% de cobre, 20% de zinco e 15% de magnésio.

Cada tonelada de minério Tipo 2 contém 30% de cobre, 25% de zinco e 10% de magnésio.

A Tabajara gostaria de comprar minério suficiente para extrair pelo menos 8 toneladas de cobre, 6 toneladas de zinco e 5 toneladas de magnésio.

Passo 4: Coloque as restrições como combinações lineares das variáveis de decisão

Restrições:

 $0.2X_1 + 0.3X_2 >= 8$ } composição dos minérios para o cobre

 $0.2X_1 + 0.25X_2 >= 6$ } composição dos minérios para o zinco

 $0.15X_1 + 0.10X_2 >= 5$ } composição dos minérios para o magnésio

Passo 5: Identifique quaisquer vínculos nas variáveis de decisão

$$X_1 >= 0$$

$$X_2 >= 0$$

Função Objetivo: Minimizar $90X_1 + 120X_2$

Sujeito a:

$$0.2X_1 + 0.3X_2 >= 8$$

 $0.2X_1 + 0.25X_2 >= 6$
 $0.15X_1 + 0.10X_2 >= 5$
 $X_1 >= 0$
 $X_2 >= 0$