

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Addease COMMISSIONER FOR PATENTS PO Box 1430 Alexandra, Virginia 22313-1450 www.webjo.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/621,060	07/16/2003	Ronald van Haalen	LCNT/Van Haalen	8826
46363 WALL & TON	7590 02/11/200 NG. L.L.P/	EXAMINER		
ALCATEL-LUCENT USA INC. 595 SHREWSBURY AVENUE SHREWSBURY, NJ 07702			MOORE, IAN N	
			ART UNIT	PAPER NUMBER
,			2416	
			MAIL DATE	DELIVERY MODE
			02/11/2009	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Office Action Summary

Application No.	Applicant(s)	
10/621,060	HAALEN ET AL.	
Examiner	Art Unit	
IAN N. MOORE	2416	

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS,

- WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.
- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed
- after SIX (6) MONTHS from the mailing date of this communication. - If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133).

 Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any
- ad natent term adjustment. See 37 CED 1 70M/h)

Status	··· /	
2a)☐ This ac 3)☐ Since t	·—	is non-final. cept for formal matters, prosecution as to the merits is
Disposition of C	laims	
4a) Of t 5) ☐ Claim(s 6) ☑ Claim(s 7) ☐ Claim(s	s) 1-16 is/are pending in the application. he above claim(s) is/are withdrawn from s) is/are allowed. s) 1-16 is/are allowed. s) 1-16 is/are objected to. s) are subject to restriction and/or electio	
Application Pap	ers	
10) ☐ The dra Applican Replace	h or declaration is objected to by the Examiner.	
a) All 1. (2. (3. (6	ledgment is made of a claim for foreign priority b) Some * c) None of: 2-ertified copies of the priority documents have b 2-ertified copies of the priority documents have b 2-opies of the certified copies of the priority docu 2-pplication from the International Bureau (PCT F attached detailed Office action for a list of the ce	been received. been received in Application No uments have been received in this National Stage Rule 17.2(a)).
Attachment(s)		
	rences Cited (PTO-892)	4) Interview Summary (PTO-413)
Notice of Draft Information Die Paper No(s)/M	sperson's Patent Drawing Review (PTO-948) colosure-Statement(s) (PTO/SE/08) ail Date	Paper No(s)/Mail Date. 5] Notice of Informal Patent Application 6) Other:
S. Patent and Trademark Off PTOL-326 (Rev. 08-06		mmary Part of Paper No./Mail Date 20090125

Art Unit: 2416

DETAILED ACTION

Continued Examination Under 37 CFR 1.114

 A request for continued examination under 37 CFR 1.114, including the fee set forth in 37 CFR 1.17(e), was filed in this application after final rejection. Since this application is eligible for continued examination under 37 CFR 1.114, and the fee set forth in 37 CFR 1.17(e) has been timely paid, the finality of the previous Office action has been withdrawn pursuant to 37 CFR 1.114. Applicant's submission filed on 12/02/08 has been entered.

Response to Arguments

Applicant's arguments with respect to claims 1-16 have been considered but are moot in view of the new ground(s) of rejection.

Regarding claims 1-16 on double patenting rejections, the applicant stated that,

"...applicants thank the examiner for deferring the double patenting rejection until all other
grounds of rejection are overcome ..." on page 6.

In response, examiner acknowledges the applicant remarks accordingly the double patenting rejection is sustained.

Regarding claims 1, 6, 11, the applicant argued that, "...Boduch fails to teach or suggest ... "wherein in response to a data packet being received out of order at a first of the plurality input ports, data packets received at the first input port are discarded for a period of time while data packets received at the other input ports are processed, such that the data packets forwarded on the output are in correct packet order"...by "sequential order", Boduch is

Art Unit: 2416

not referring to packets being in the same order as they were originally transmitted..." in pages 7-8

In response to applicant's argument, the examiner respectfully disagrees with the argument above.

Boduch discloses wherein in response to a data packet being received out of order at a first of the plurality input ports (see FIG. 1,2, after receiving cells/packets out of sequence at the first receive/input interface 111; see col. 5, line 60 to col. 6, line 7), data packets received at the first input port are discarded for a period of time (see FIG. 2, sequence manager of AISC 110 drops the packet/cell, (e.g. by not writing into FIFO 204, or determining as bad cell), for that period of time; see col. 2, line 18-32; see col. 3, line 14-19; see col. 5, line 60 67; see col. 6, line 30-41,45-56; see col. 7, line 7-15, 33-44; see col. 8, line 35-40) while data packets received at the other input ports are processed (see FIG. 1,2, while/when receiving packets/cells at the second receive/input interface 112 by writing them into FIFO 204 for transmission; see col. 6, line 20-29,60 to col. 7, line 5, see col. 7, line 20-30; see col. 10, line 32 to col. 11, line 6) such that the data packets forwarded on the output are in correct order (see FIG. 1,2, so that packets/cells transmitted from the cell selector 206 at output/transmit interface of ASIC 100 is sequential order; see col. 10, line 32 to col. 11, line 6),

and further allow less of a number of bits to be forwarded than were transmitted (see col. 2, line 18-32; see col. 3, line 14-19; see col. 5, line 60 67; see col. 6, line 30-41,45-56; see col. 7, line 7-15, 33-44; see col. 8, line 35-40; allowing/selecting best copy of cell bits (note that ATM cell is 53 bytes/424 bits) for forwarding at the output/transmit interface than transmitted from input interface by discarding/dropping "not receiving" bad/out-of-

Art Unit: 2416

sequence/copied cell bits thereby allowing/selecting the less number of cell bits to be transmitted).

In response to argument on "discarding" and "packets being in the same order as they were originally transmitted", Boduch clearly discloses, *inter alia*, the claimed invention as set forth below.

The present invention relates to methods and apparatus for selecting the better of two or more copies of any given cell from the received cell streams, dropping the least number of cells, while maintaining the ordered nature of the cell stream. The two or more copies of a cell presented for selection originate from multiple redundant switch network copies. These cell copies move through a redundant switch network, where the best cell copy selection is made, and the selected cell copy is inserted into the data stream.

(Emphasis added) (see col. 2, line 26-35)

A switching system in a communication network is often designed with a redundant switch network. This redundancy provides an alternate route over which traffic may be redirected in the event that the primary route is unavailable. This redundancy scheme also provides a vehicle where the "best" data may be selected for insertion into the outgoing data stream, thus ensuring data integrity and minimizing the amount of data that may be dropped as bad. When a communication network is cell-oriented, as it is in the case of an Asynchronous Transfer Mode (ATM) communication network, for example, data travels through the communication network as cells. These cells reside in cell streams. When the best cell can be selected from redundant cell streams and can be inserted into the outgoing data stream and sent on to a customer network, data integrity is ensured while the ordered nature of the cell stream is maintained.

(Emphasis added) (see col. 3, line 18-32)

If the sequence manager 203 begins in the sequence error state 303 and the conditions at block 305 exist, then the sequence manager 203 transitions the sequence state of that cell stream to the out of sequence state 301. In particular, if the sequence manager 203 determines that the sequence number is not equal to the previous sequence number+1, or the initialization bit in the cell overhead is set, or initialization has been commanded by software, or composite cell stream errors have occurred, then the sequence manager 203 transitions the sequence status to the out of sequence state 301, reports a loss of sequence, does not write the cell into the CDV FIFO, and updates the previous sequence number with the value of the sequence number of the current cell.

(Emphasis added) (see col. 7, line 32-43)

Art Unit: 2416

Cells may be received at non-regular intervals from the redundant switch network copies, or one or more cells may be dropped entirely.

(emphasis added) (see col. 8, line 35-45)

Thus, in view of the above it is clear that Boduch's sequence manager of AISC 110 drops the packet/cell, (e.g. by not writing into FIFO 204, or determining as bad cell), for that period of time after receiving cells/packets out of sequence at the first receiver/input interface 111. Thus, applicant argument of "discarding" and "packets being in the same order as they were originally transmitted" is clearly an error.

Regarding claims 1-16, the applicant argued that, "... the office action failed to establish a prima facie case of obviousness because the combination of Almay and Soirinsuo fails to teach or suggest all the claim elements... Even though Soirinsuo mention the word "discard", the respectfully maintain that the art distinctly teach away from "discard"... Soirinsuo does not mention any provision for actually detecting if packets are cells are being received out of order or not... it is not even possible for Soirinsuo to specifically respond "to a commonly sourced data packet being received out of order" by any means... Soirinsuo in fact teaches away form the claim element..." in pages 9-11.

In response to applicant's argument, the examiner respectfully disagrees with the argument above since the combined system of Almay and Soirinsuo as detailed below.

Almay discloses wherein in response to a data packet being received at a first of the plurality input ports (see FIG. 1,2, after receiving cells/packets from source node A at the first input interface a-b; see col. 2, line 35-66; see col. 3, line 30 to col. 4, line 20), data

Art Unit: 2416

packets received at the first input port are wait/hold for a period of time (see FIG. 2, col. 2, line 56 to col. 3, line 10; deactivating/ceasing/holding packets/cells from Node A at the first interface a-b for predetermined period) while data packets received at the other input ports are processed (see FIG. 2, while/when receiving packets/cells from Node A at the second interface A-B; see col. 3, line 1-60) such that the data packets forwarded on the output are in correct order (see FIG. 1, routing the received packet in a correct/proper order (i.e. note that a correct/proper order of packets is formed when nodes A and B deactivating the route a-b for a predetermined time then activating the route A-B) via an output interface of node B; see col. 1, line 31-36; col. 2, line 56 to col. 3, line 50), thereby allowing less of a number of bits to be forwarded than were transmitted (see col. 9, line 20-45; see col. 10, line 10-30; allowing/enabling the less number of cell bits (i.e. ATM cell is 53 bytes/424 bits) to forward to the output port than cell bits transmitted by the input port by discarding all cells received at the first/normal/old channel port 1104 during switch-over interval/time).

Soirinsuo discloses wherein in response to a data packet being received out of order at a first of the plurality input ports (see FIG. 8,11, upon receiving changed cells/packets which are "not" received in the same order in which they are transmitted due to network change path/routing (e.g. failure/congestion) at the first normal input port of 1104; see col. 9, line 20-35), data packets received at the first input port are discarded for a period of time (see col. 9, line 40-45; see col. 10, line 10-30; all cells received at the first/normal/old channel port 1104 are discarded during switch-over interval/time).

Examiner acknowledges the applicant admission of Soirinsuo reciting the text and invention of "discarding". Since Soirinsuo clearly and precisely discloses the text for utilizing

Page 7

Application/Control Number: 10/621.060

Art Unit: 2416

"discarding" in the invention as admitted by the applicant, Soirinsuo does not teach away from
"discard". Moreover, since the exact claimed limitation "discarding" is being disclosed in
Soirinsuo, one skilled in the ordinary would clearly see that Soirinsuo clearly does not teach
away.

In response to applicant's arguments against the references individually, one cannot show nonobviousness by attacking references individually where the rejections are based on combinations of references. See *In re Keller*, 642 F.2d 413, 208 USPQ 871 (CCPA 1981); *In re Merck & Co.*, 800 F.2d 1091, 231 USPQ 375 (Fed. Cir. 1986). In this case, the rejection is based on the combined system of Almay and Soirinsuo clearly teach the broadly claimed invention.

In view of the above, it is clear that the cited prior arts still disclose the applicant broadly claimed invention as detail in the rejection below.

Claim Rejections - 35 USC § 112

- 3. The following is a quotation of the first paragraph of 35 U.S.C. 112:
 - The specification shall contain a written description of the invention, and of the manner and process of making and using it, in such full, clear, concise, and exact terms as to enable any person skilled in the art to which it pertains, or with which it is most nearly connected, to make and use the same and shall set forth the best mode contemplated by the inventor of carrying out his invention.
- 4. Claims 1-16 are rejected under 35 U.S.C. 112, first paragraph, as failing to comply with the written description requirement. The claim(s) contains subject matter which was not described in the specification in such a way as to reasonably convey to one skilled in the relevant art that the inventor(s), at the time the application was filed, had possession of the claimed invention

Application/Control Number:

10/621,060 Art Unit; 2416 Page 8

Amended claim 1 recites, "allow less of a number of bits to be forwarded than were

transmitted" in lines 9-10.

Regarding this amended, the applicants stated a follows:

This application discloses "discarding," wherein cells are irrevocably prevented from being forwarded, as exemplified among other places in the **Applicants' Fig. 10**, wherein cells 1,

3 and 4 are forwarded, and cell 2 is "discarded" with Destination B not receiving a "copy" of

a cell; thereby allowing less of a number of bits to be forwarded than were transmitted, in

contrast to less bits than were transmitted clearly being forwarded resultant from the claimed

"discarding."

In general, nowhere in the original disclosure discloses the newly added limitation

discloses the newly added limitation as set forth above. In particular, neither FIG. 10 nor

corresponding recitation discloses this newly added limitation either. First, by only disclosing

"discarding out of order packets" in the original specification is not sufficient to provide enabling

support for "allow less of a number of bits to be forwarded than were transmitted". One skilled

in the ordinary art would not know how to use of such invention without enabling description.

Second, if less of a number of bits are forwarded than were transmitted, then transmission of

such partial bits would be erroneous and incomplete since the number of originally transmitted

bits and the number forwarded of bits will no longer being the same. Clearly, such scenario is

not disclosed in the original specification either.

Claims 6 and 11 are also rejected for the same reason as set forth above in claim 1.

Claims 1-5, 7-10, and 12-16 are also rejected since they are depended upon rejected

claims as set forth above.

Application/Control Number: 10/621,060 Art Unit: 2416

5):

Double Patenting

The nonstatutory double patenting rejection is based on a judicially created doctrine grounded in public policy (a policy reflected in the statute) so as to prevent the unjustified or improper timewise extension of the "right to exclude" granted by a patent and to prevent possible harassment by multiple assignees. A nonstatutory obviousness-type double patenting rejection is appropriate where the conflicting claims are not identical, but at least one examined application claim is not patentably distinct from the reference claim(s) because the examined application claim is either anticipated by, or would have been obvious over, the reference claim(s). See, e.g., In re Berg, 140 F.3d 1428, 46 USPQ2d 1226 (Fed. Cir. 1998); In re Goodman, 11 F.3d 1046, 29 USPQ2d 2010 (Fed. Cir. 1993); In re Longi, 759 F.2d 887, 225 USPQ 645 (Fed. Cir. 1985); In re Van Ornum, 686 F.2d 937, 214 USPQ 761 (CCPA 1982); In re Vogel, 422 F.2d 438, 164 USPQ 619 (CCPA 1970); and In re Thorington, 418 F.2d 528, 163 USPO 644 (CCPA 1962).

A timely filed terminal disclaimer in compliance with 37 CFR 1.321(c) or 1.321(d) may be used to overcome an actual or provisional rejection based on a nonstatutory double patenting ground provided the conflicting application or patent either is shown to be commonly owned with this application, or claims an invention made as a result of activities undertaken within the scope of a joint research agreement.

Effective January 1, 1994, a registered attorney or agent of record may sign a terminal disclaimer. A terminal disclaimer signed by the assignee must fully comply with 37 CFR 3,73(b).

5. Claims 1-4,6-9, and 11-16 are rejected on the ground of nonstatutory obviousness-type double patenting as being unpatentable over claims 1-4 of U.S. Patent No. 6,370,112 (hereinafter refers to as Voelker) in view of Almay (US 5,809,011).

Regarding claim 1, a communication network comprising (see Voelker claim 1, lines 1-

at least two mutually different routing paths for commonly sourcing data packets (see Voelker claim 1, step a-c);

Art Unit: 2416

the switch having a plurality of inputs respectively coupled to the routing paths for receiving the data packets, and an output for forwarding the data packets (see Voelker, claim 1, step a-d);

wherein in response to a data packet being received out of order at a first of the plurality inputs, data packets received at the first input are discarded for a period of time while commonly sourced data packets received at the other inputs are processed such that the data packets forwarded on the output are in correct packet order (see Voelker claim 1, steps e-g).

Voelker does not explicitly disclose "ports" and "allow less of a number of bits to be forwarded than were transmitted".

However, Almay teaches at least two mutually different routing paths for commonly sourcing data packets (see FIG. 1, first path 105-111 and second path 106-112 for common source cells 103; see col. 3, line 36-67);

a switch (see FIG. 1, 2, Cell stream alignment best cell copy selection ASIC 100) having a plurality of inputs (see FIG. 1, received/input interfaces for paths 105-111 and 106-112) respectively coupled to the routing paths for receiving the data packets (see FIG. 1, coupling to paths 105-111 and 106-112 for receiving packets/cells; see col. 4, line 1-40,44-53), and an output for forwarding the data packets (see FIG. 1, transmit/output interface of ASIC 100 for transmitting/forwarding the packets/cells; see col. 4, line 1-40,44-53);

wherein in response to a data packet being received out of order at a first of the plurality input ports (see FIG. 1,2, after receiving cells/packets out of sequence at the first receive/input interface 111; see col. 5, line 60 to col. 6, line 7), data packets received at the first input port are discarded for a period of time (see FIG. 2, sequence manager of AISC 110 drops the packet/cell,

Application/Control Number: Page 11

10/621,060

Art Unit: 2416

during switch-over interval/time).

(e.g. by not writing into FIFO 204, or determining as bad cell), for that period of time; see col. 2, line 18-32; see col. 3, line 14-19; see col. 5, line 60 67; see col. 6, line 30-41,45-56; see col. 7, line 7-15, 33-44; see col. 8, line 35-40) while data packets received at the other input ports are processed (see FIG. 1,2, while/when receiving packets/cells at the second receive/input interface 112 by writing them into FIFO 204 for transmission; see col. 6, line 20-29,60 to col. 7, line 5, see col. 7, line 20-30; see col. 10, line 32 to col. 11, line 6) such that the data packets forwarded on the output are in correct order (see FIG. 1,2, so that packets/cells transmitted from the cell selector 206 at output/transmit interface of ASIC 100 is sequential order; see col. 10, line 32 to col. 11, line 6), and further allow less of a number of bits to be forwarded than were transmitted (see col. 9, line 20-45; see col. 10, line 10-30; allowing/enabling the less number of cell bits (i.e. ATM cell is 53 bytes/424 bits) to forward to the output port than cell bits transmitted

Therefore, it would have been obvious to one having ordinary skill in the art at the time the invention was made to provide "ports" and "allow less of a number of bits to be forwarded than were transmitted", as taught by Almay in the system of Voelker, so that it would minimum loss of data; see Almay col. 1, line 45-50.

by the input port by discarding all cells received at the first/normal/old channel port 1104

Regarding Claim 2, Voelker discloses response to a commonly sourced data packet being received out of order at a second of the plurality inputs, commonly sourced data packets received at all of the inputs are discarded for a period of time (see Voelker claim 1, step e-g). Almay discloses in response to a commonly sourced data packet being received at a second of the plurality input ports (see FIG. 2, when receiving packets/cells at the second interface A-B;

Art Unit: 2416

see col. 3, line 1-60), commonly sourced data packets received at all of the input ports are hold/wait for a period of time (see FIG. 2, col. 2, line 56 to col. 3, line 10; deactivating/ceasing packets/cells at the first interface a-b or other interfaces (since ATM node can have more than two interfaces, see Almay col. 5, line 1-16; see col. 2, line 35-66; see col. 3, line 30 to col. 4, line 20).

Regarding Claim 3, Voelker discloses the period of time lasts until fill-the switch is informed that re-ordering of the commonly sourced data packets is no longer possible (see Voelker claim 1, 4). Almay discloses the period of time lasts until the switch is informed that re-ordering of the commonly sourced data packets is no longer possible (see col. 3, line 1-50; predefined period is defined such that ordering of packets at the new route connection that transmit cells/packets from possible and not disrupted. Since the predefined time last until the "ordering" of packet is "possible/not-disrupted", and thus "re-ordering" of packets are "not possible/disrupted").

Regarding Claim 4, Voelker discloses the period of time has a predetermined length of time (see Voelker, claim 1-4). Almay discloses the period of time has a predetermined length of time (see FIG. 2, col. 2, line 56 to col. 3, line 10; deactivating/ceasing packets/cells from subscriber A at the first interface a-b for predetermined period).

Therefore, it would have been obvious to one having ordinary skill in the art at the time the invention was made to provide ports, as taught by Almay in the system of Voelker, so that it would minimum loss of data; see Almay col. 1, line 45-50.

Regarding claim 6, a switch for use in a communication network the switch receiving data packets having a packet order, determining whether the received data packets are in correct

Art Unit: 2416

order, and forwarding the received data packets in correct packet order, the switch comprising (see Voelker, claim 1, lines 1-4, steps a-c):

at least two incoming/inputs for receiving the data packets via respective routing paths and an output for forwarding data packets (see Voelker, claim 1, steps a-d);

originating from the source, wherein in response to a commonly sourced data packet being received out of order at a first of the plurality inputs, commonly sourced data packets received at the first input port are discarded for a period of time while commonly sourced data packets received at the other inputs are processed (see Voelker, claim 1, steps e-g).

Voelker does not explicitly disclose "ports" and "allow less of a number of bits to be forwarded than were transmitted".

However, Almay discloses at least two incoming ports for receiving the data packets (see FIG. 1, two input interfaces to Node B receiving packets) via respective routing paths (see FIG. 1, via different/separate paths a-b and A-B; see col. 2, line 33-67; see col. 4, line 20-35) and an output port for forwarding data packets (see FIG. 1, 3, and output interface of Node B for routing packets; col. 2, line 56 to col. 3, line 50);

wherein in response to a commonly sourced data packet being received at a first of the plurality input ports (see FIG. 1,2, after receiving cells/packets from source node A at the first input interface a-b; see col. 2, line 35-66; see col. 3, line 30 to col. 4, line 20), commonly sourced data packets received at the first input port are wait/hold for a period of time (see FIG. 2, col. 2, line 56 to col. 3, line 10; deactivating/ceasing/holding packets/cells from Node A at the first interface a-b for predetermined period) while commonly sourced data packets received at the other input ports are processed (see FIG. 2, while/when receiving packets/cells from Node A at

Art Unit: 2416

the second interface A-B; see col. 3, line 1-60), thereby allowing less of a number of bits to be forwarded than were transmitted (see col. 9, line 20-45; see col. 10, line 10-30; allowing/enabling the less number of cell bits (i.e. ATM cell is 53 bytes/424 bits) to forward to the output port than cell bits transmitted by the input port by discarding all cells received at the first/normal/old channel port 1104 during switch-over interval/time).

Therefore, it would have been obvious to one having ordinary skill in the art at the time the invention was made to provide "ports and allowing less of a number of bits to be forwarded than were transmitted", as taught by Almay in the system of Voelker, so that it would minimum loss of data; see Almay col. 1, line 45-50.

Regarding Claim 7, the claim, which has disclosed all the limitations of the respective claim 2. Therefore, it is subjected to the same rejection as set forth above in claim 2.

Regarding Claim 8, the claim, which has disclosed all the limitations of the respective claim 3. Therefore, it is subjected to the same rejection as set forth above in claim 3.

Regarding Claim 9, the claim, which has disclosed all the limitations of the respective claim 4. Therefore, it is subjected to the same rejection as set forth above in claim 4.

Regarding claim 11, a switch configured for receiving data packets having a packet order, determining whether the received data packets are in correct order, and forwarding the received data packets in correct packet order, comprising (see Voelker, claim 1, lines 1-5):

a plurality of inputs for successively receiving said data packets from a respective plurality of routing paths (see Voelker claim 1, steps a-d); and

an output for forwarding data packets (see Voelker claim 1, steps a-d);

Art Unit: 2416

wherein in response to a data packet being received out of order at a first of any one of the plurality inputs, data packets are discarded for a period of time at the first input while being allowed at the other inputs (see Voelker claim 1, steps e-g).

Voelker does not explicitly disclose "ports and allow less of a number of bits to be forwarded than were transmitted".

However, Almay discloses a plurality of input ports for successively receiving said data packets (see FIG. 1, two input interfaces to Node B receiving packets) from a respective plurality of routing paths (see FIG. 1, from different/separate paths a-b and A-B; see col. 2, line 33-67; see col. 4, line 20-35); and

an output port for forwarding data packets (see FIG. 1, 3, and output interface of Node B for routing packets; col. 2, line 56 to col. 3, line 50);

wherein in response to a data packet being received at a first of any one of the plurality input ports (see FIG. 1,2, after receiving cells/packets from source node A at the first input interface a-b; see col. 2, line 35-66; see col. 3, line 30 to col. 4, line 20), data packets are wait/hold for a period of time at the first input port (see FIG. 2, col. 2, line 56 to col. 3, line 10; deactivating/ceasing/holding packets/cells from Node A at the first interface a-b for predetermined period) while being allowed at the other input ports (see FIG. 2, while/when receiving packets/cells from Node A at the second interface A-B; see col. 3, line 1-60), thereby allowing less of a number of bits to be forwarded than were transmitted (see col. 9, line 20-45; see col. 10, line 10-30; allowing/enabling the less number of cell bits (i.e. ATM cell is 53 bytes/424 bits) to forward to the output port than cell bits transmitted by the input port by

Application/Control Number:

10/621,060

Art Unit: 2416

discarding all cells received at the first/normal/old channel port 1104 during switch-over

interval/time).

Therefore, it would have been obvious to one having ordinary skill in the art at the time

Page 16

the invention was made to provide "ports and allow less of a number of bits to be forwarded than

were transmitted", as taught by Almay in the system of Voelker, so that it would minimum loss

of data; see Almay col. 1, line 45-50.

Regarding Claim 12, Voelker discloses wherein the data packets are forwarded without

the discarded data packets received at the first of the inputs (see Voelker claim 1,4). Almay also

discloses ports as set forth above in claim 11.

Therefore, it would have been obvious to one having ordinary skill in the art at the time

the invention was made to provide ports, as taught by Almay in the system of Voelker, so that it

would minimum loss of data; see Almay col. 1, line 45-50.

Regarding Claim 13, Voelker discloses the period of time has a predetermined length of

time (see Voelker, claim 1-4). Almay discloses wherein the period of time is a predetermined

period of time (see FIG. 2, a time is a predefined period of time; see col. 3, line 1-15).

Regarding Claim 14. Voelker discloses wherein the period of time is terminated in

response to a determination that a data packet condition is no longer possible (see Voelker claim

1, 4). Almay discloses wherein the period of time is terminated in response to a determination

that a data packet condition is no longer possible (see FIG. 2, predetermined time period has

elapsed/terminated when determining that receiving packet state/condition impossible since the

a-b line/path is deactivated; see col. 3, line 10--30

Page 17

Application/Control Number:

10/621,060

Art Unit: 2416

Regarding Claim 15, Voelker discloses discard data packets for a period of time at all input ports apart from a single input where data packets are determined to be arriving in the correct order (see claim 1-4).

Regarding Claim 16, Voelker discloses wherein only data packets the single input where data packets are determined to be arriving in the correct order are forwarded (see claim 1-4).

6. Claims 5 and 10 are rejected on the ground of nonstatutory obviousness-type double patenting as being unpatentable over claim 1-4 of U.S. Patent No. 6,370,112 (hereinafter refers to as Voelker) in view of Almay (US 5,809,011) and further in view of Merchant (US006535489B1).

Regarding Claims 5 and 10, the combined system of Voelker and Almay discloses the communication network as set forth above in claims 1 and 6.

Neither Voelker nor Almay explicitly disclose an Ethernet Network.

However, utilizing Ethernet 802.3 network is well known in the art in order to provide a standard connection for interoperability. In particular, Merchant discloses an Ethernet network (see FIG. 1, Ethernet 802.3 network; see col. 3, line 45-65).

Therefore, it would have been obvious to one having ordinary skill in the art at the time the invention was made to provide Ethernet network, as taught by Merchant, in the combined system of Voelker and Soirinsuo, so that it would enable selectively forwarding data packets to appropriate destination based on Ethernet protocol; see Merchant col. 3, line 60-65. Art Unit: 2416

Claim Rejections - 35 USC § 102

7. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless -

(e) the invention was described in (1) an application for patent, published under section 122(b), by another filed in the United States before the invention by the applicant for patent or (2) a patent granted on an application for patent by another filed in the United States before the invention by the applicant for patent, except that an international application filed under the treaty defined in section 351(a) shall have the effects for purposes of this subsection of an application filed in the United States only if the international application designated the United States and was published under Article 21(2) of such treaty in the English language.

 Claims 1, 6 and 11 are rejected under 35 U.S.C. 102(e) as being anticipated by Boduch (US006667954B1).

Regarding Claim 1, Boduch discloses a communication network (see FIG. 1, redundant switching system 100), comprising:

at least two mutually different routing paths for commonly sourcing data packets (see FIG. 1, first path 105-111 and second path 106-112 for common source cells 103; see col. 3, line 36-67);

a switch (see FIG. 1, 2, Cell stream alignment best cell copy selection ASIC 100) having a plurality of inputs (see FIG. 1, received/input interfaces for paths 105-111 and 106-112) respectively coupled to the routing paths for receiving the data packets (see FIG. 1, coupling to paths 105-111 and 106-112 for receiving packets/cells; see col. 4, line 1-40,44-53), and an output for forwarding the data packets (see FIG. 1, transmit/output interface of ASIC 100 for transmitting/forwarding the packets/cells; see col. 4, line 1-40,44-53);

Art Unit: 2416

wherein in response to a data packet being received out of order at a first of the plurality input ports (see FIG. 1,2, after receiving cells/packets out of sequence at the first receive/input interface 111; see col. 5, line 60 to col. 6, line 7), data packets received at the first input port are discarded for a period of time (see FIG. 2, sequence manager of AISC 110 drops the packet/cell, (e.g. by not writing into FIFO 204, or determining as bad cell), for that period of time; see col. 2. line 18-32; see col. 3, line 14-19; see col. 5, line 60 67; see col. 6, line 30-41,45-56; see col. 7, line 7-15, 33-44; see col. 8, line 35-40) while data packets received at the other input ports are processed (see FIG. 1.2, while/when receiving packets/cells at the second receive/input interface 112 by writing them into FIFO 204 for transmission; see col. 6, line 20-29,60 to col. 7, line 5, see col. 7, line 20-30; see col. 10, line 32 to col. 11, line 6) such that the data packets forwarded on the output are in correct order (see FIG. 1.2, so that packets/cells transmitted from the cell selector 206 at output/transmit interface of ASIC 100 is sequential order; see col. 10, line 32 to col. 11, line 6) and further allow less of a number of bits to be forwarded than were transmitted (see col. 2, line 18-32; see col. 3, line 14-19; see col. 5, line 60 67; see col. 6, line 30-41,45-56; see col. 7, line 7-15, 33-44; see col. 8, line 35-40; allowing/selecting best copy of cell bits (note that ATM cell is 53 bytes/424 bits) for forwarding at the output/transmit interface than transmitted from input interface by discarding/dropping "not receiving" bad/out-ofsequence/copied cell bits thereby allowing/selecting the less number of cell bits to be transmitted).

Regarding Claim 6, Boduch discloses a switch (see FIG. 1, 2, Cell stream alignment best cell copy selection ASIC 100) for use in a communication network (see FIG. 1, redundant switching system 100), the switch receiving data packets having a packet order (see FIG. 1,2.

10/621,060

Art Unit: 2416

receiving packets/cells in a sequential order; see col. 4, line 1-40,44-53), determining whether the received data packets are in correct order (see FIG. 1, 2, determine/checking whether the received packets/cells are in a sequential order), and forwarding the received data packets in correct packet order (see FIG. 1, 2, transmitting/forward the received packet/cell in a proper sequential order; see col. 10, line 32 to col. 11, line 6), the switch comprising:

at least two incoming ports for receiving data packets (see FIG. 1, received/input interfaces/ports for paths 105-111 and 106-112 for receiving packets/cells) via respective routing paths (see FIG. 1, via paths 105-111 and 106-112; see col. 4, line 1-40,44-53) and an output port for forwarding data packets (see FIG. 1, transmit/output interface of ASIC 100 for transmitting/forwarding the packets/cells; see col. 4, line 1-40,44-53);

wherein in response to a commonly sourced data packet being received out of order at a first of the plurality input ports (see FIG. 1,2, after receiving cells/packets out of sequence at the first receive/input interface 111; see col. 5, line 60 to col. 6, line 7), commonly sourced data packets received at the first input port are discarded for a period of time (see FIG. 2, sequence manager of AISC 110 drops the packet/cell, (e.g. by not writing into FIFO 204, or determining as bad cell) while commonly sourced data packets received at the other input ports are processed (see FIG. 1,2, while/when receiving packets/cells at the second receive/input interface 112 by writing them into FIFO 204 for transmission; see col. 6, line 20-29,60 to col. 7, line 5, see col. 7, line 20-30; see col. 10, line 32 to col. 11, line 6) thereby allow less of a number of bits to be forwarded than were transmitted (see col. 2, line 18-32; see col. 3, line 14-19; see col. 5, line 60 67; see col. 6, line 30-41,45-56; see col. 7, line 7-15, 33-44; see col. 8, line 35-40; allowing/selecting best copy of cell bits (note that ATM cell is 53 bytes/424 bits) for

Art Unit: 2416

forwarding at the output/transmit interface than transmitted from input interface by discarding/dropping "not receiving" bad/out-of-sequence/copied cell bits thereby allowing/selecting the less number of cell bits to be transmitted).

Regarding Claim 11, Boduch discloses a switch (see FIG. 1, 2, Cell stream alignment best cell copy selection ASIC 100) for use in a communication network (see FIG. 1, redundant switching system 100), the switch receiving data packets having a packet order (see FIG. 1,2, receiving packets/cells in a sequential order; see col. 4, line 1-40,44-53), determining whether the received data packets are in correct order (see FIG. 1, 2, determine/checking whether the received packets/cells are in a sequential order), and forwarding the received data packets in correct packet order (see FIG. 1, 2, transmitting/forward the received packet/cell in a proper sequential order; see col. 10, line 32 to col. 11, line 6), comprising:

a plurality of input ports for successively receiving said data packets (see FIG. 1, received/input interfaces/ports for paths 105-111 and 106-112 for receiving packets/cells) from a respective plurality of routing paths (see FIG. 1, via paths 105-111 and 106-112; see col. 4, line 1-40,44-53); and

an output port for forwarding data packets (see FIG. 1, transmit/output interface of ASIC 100 for transmitting/forwarding the packets/cells; see col. 4, line 1-40,44-53);

wherein in response to a data packet being received out of order at a first of any one of the plurality input ports (see FIG. 1,2, after receiving cells/packets out of sequence at the first receive/input interface 111; see col. 5, line 60 to col. 6, line 7), data packets are discarded for a period of time at the first input port (see FIG. 2, sequence manager of AISC 110 drops the packet/cell, (e.g. by not writing into FIFO 204, or determining as bad cell)) while being allowed

Art Unit: 2416

at the other input ports (see FIG. 1,2, while/when receiving packets/cells at the second receive/input interface 112 by writing them into FIFO 204 for transmission; see col. 6, line 20-29,60 to col. 7, line 5, see col. 7, line 20-30; see col. 10, line 32 to col. 11, line 6) and thereby allowing less of a number of bits to be forwarded than were transmitted (see col. 2, line 18-32; see col. 3, line 14-19; see col. 5, line 60 67; see col. 6, line 30-41,45-56; see col. 7, line 7-15, 33-44; see col. 8, line 35-40; allowing/selecting best copy of cell bits (note that ATM cell is 53 bytes/424 bits) for forwarding at the output/transmit interface than transmitted from input interface by discarding/dropping "not receiving" bad/out-of-sequence/copied cell bits thereby allowing/selecting the less number of cell bits to be transmitted).

Claim Rejections - 35 USC § 103

- The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all
 obviousness rejections set forth in this Office action:
 - (a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.
- Claims 1-4, 6-9, and 11-16 are rejected under 35 U.S.C. 103(a) as being unpatentable over Almay (US005809011A) in view of Soirinsuo (US006028861A).

Regarding Claim 1, Almay discloses a communication network (see FIG. 1, packet switch communication network), comprising:

at least two mutually different routing paths for commonly sourcing data packets (see FIG. 1, different/separate paths a-b and A-B for transmission of packets from common source Application/Control Number:

10/621,060 Art Unit; 2416

node A (i.e. common souring data packets) since both paths a-b and A-B have common source Node A; see col. 2, line 33-50, see col. 3, line 10-26); and

a switch (see FIG. 1, Node B) having a plurality of inputs (see FIG. 1, received/input interfaces a-b and A-B) respectively coupled to the routing paths for receiving the data packets (see FIG. 1, coupling to a-b path and another interface from A-B path for receiving packets; see col. 2, line 38-67; see col. 4, line 20-35), and an output for forwarding the data packets (see FIG. 1, transmit/output interface of Node B for transmitting/forwarding the packets; see col. 1, line 31-36; col. 2, line 56 to col. 3, line 50);

wherein in response to a data packet being received at a first of the plurality input ports (see FIG. 1,2, after receiving cells/packets from source node A at the first input interface a-b; see col. 2, line 35-66; see col. 3, line 30 to col. 4, line 20), data packets received at the first input port are wait/hold for a period of time (see FIG. 2, col. 2, line 56 to col. 3, line 10; deactivating/ceasing/holding packets/cells from Node A at the first interface a-b for predetermined period) while data packets received at the other input ports are processed (see FIG. 2, while/when receiving packets/cells from Node A at the second interface A-B; see col. 3, line 1-60) such that the data packets forwarded on the output are in correct order (see FIG. 1, routing the received packet in a correct/proper order (i.e. note that a correct/proper order of packets is formed when nodes A and B deactivating the route a-b for a predetermined time then activating the route A-B) via an output interface of node B; see col. 1, line 31-36; col. 2, line 56 to col. 3, line 50).

Almay does not explicitly disclose "out of order", "discard" and "allow less of a number of bits to be forwarded than were transmitted".

10/621,060

Art Unit: 2416

However, receiving packets/cells/frames out of order due to changing network condition such as unavailable/fail/congested path and discarding the discarding out of order cells packets/cells/frames received at the port/interface in order to maintain network integrity is so well know in the art. In particular, Soirinsuo teaches a switch (see FIG. 8, 11, Switch) having a plurality of inputs for receiving the data packets (see FIG. 8, 11, input channels ports 1104 for receiving cells/packets), and an output for forwarding the data packet (see FIG. 8, 11, output channel port 1106 for route/forward the packets/cells; see col. 9, line 20-35; see col. 10, line 29-46);

wherein in response to a data packet being received out of order at a first of the plurality input ports (see FIG. 8,11, upon receiving changed cells/packets which are "not" received in the same order in which they are transmitted due to network change path/routing (e.g. failure/congestion) at the first normal input port of 1104; see col. 9, line 20-35), data packets received at the first input port are discarded for a period of time (see col. 9, line 40-45; see col. 10, line 10-30; all cells received at the first/normal/old channel port 1104 are discarded during switch-over interval/time) while data packets received at the other input ports are processed (see col. 10, line 10-30, while/during receiving (and transmitting to the output port) from the new channel port), such that the data packets forwarded on the output are in correct packet order (see FIG. 8, 11, the packets/cells are transmitted/forwarded on the output channel port 1106 in the same proper/accurate order (i.e. the order as if the packets/cells are not lost due to failure/congestion); see col. 9, line 20-35; see col. 10, line 29-46) and further allow less of a number of bits to be forwarded than were transmitted (see col. 9, line 20-45; see col. 10, line 10-30; allowing/enabling the less number of cell bits (i.e. ATM cell is 53 bytes/424 bits) to

Application/Control Number:

10/621,060

Art Unit: 2416

forward to the output port than cell bits transmitted by the input port by discarding all cells received at the first/normal/old channel port 1104 during switch-over interval/time).

Therefore, it would have been obvious to one having ordinary skill in the art at the time the invention was made to provide "discarding, out of order and allow less of a number of bits to be forwarded than were transmitted", as taught by Soirinsuo in the system of Almay, so that it would provide synchronize switchover and prevent frame integrity; see Soirinsuo col. 3, line 65 to col. 4, line 65.

Regarding Claim 2, the combined system of Almay and Soirinsuo discloses all claimed limitations. In particular, Almay discloses in response to a commonly sourced data packet being received at a second of the plurality input ports (see FIG. 2, when receiving packets/cells at the second interface A-B; see col. 3, line 1-60), commonly sourced data packets received at all of the input ports are hold/wait for a period of time (see FIG. 2, col. 2, line 56 to col. 3, line 10; deactivating/ceasing packets/cells at the first interface a-b or other interfaces (since ATM node can have more than two interfaces, see Almay col. 5, line 1-16; see col. 2, line 35-66; see col. 3, line 30 to col. 4, line 20).

Soirinsuo teaches in response to a commonly sourced data packet being received out of order at a second of the plurality input ports (see FIG. 8,11, upon receiving changed cells/packets which are "not" received in the same order in which they are transmitted due to network change path/routing (e.g. failure/congestion) at the second normal input port of 1104; see col. 9, line 20-35), commonly sourced data packets received at all of the input ports are discarded for a period of time (see col. 9, line 40-45; see col. 10, line 10-30; all cells received at the second/normal/old channel port 1104 are discarded during switch-over interval/time) while commonly sourced data

Application/Control Number:

10/621,060 Art Unit; 2416

packets received at the other input ports are processed (see col. 10, line 10-30, while/during receiving (and transmitting to the output port) from the new/first channel port).

Therefore, it would have been obvious to one having ordinary skill in the art at the time the invention was made to provide discarding and out of order, as taught by Soirinsuo in the system of Almay, so that it would provide synchronize switchover and prevent frame integrity; see Soirinsuo col. 3, line 65 to col. 4, line 65.

Regarding Claim 3, Almay discloses the period of time lasts until the switch is informed that re-ordering of the commonly sourced data packets is no longer possible (see col. 3, line 1-50; predefined period is defined such that ordering of packets at the new route connection that transmit cells/packets from possible and not disrupted. Since the predefined time last until the "ordering" of packet is "possible/not-disrupted", and thus "re-ordering" of packets are "not possible/disrupted").

Regarding Claim 4, Almay discloses the period of time has a predetermined length of time (see FIG. 2, col. 2, line 56 to col. 3, line 10; deactivating/ceasing packets/cells from subscriber A at the first interface a-b for predetermined period). Soirinsuo also discloses the period of time has a predetermined length of time (see FIG. 8, 11, first/normal connection/port; see col. 9, line 40-45; see col. 10, line 10-30; discarding all cells received from first/normal connection/port from the input source during switch-over interval/time).

Regarding Claim 6, Almay discloses a switch (see FIG. 1, 3, Node B) for use in a communication network (see FIG. 1, packet switch communication network), the switch receiving data packets having a packet order (see FIG. 1,3, receiving packets in a correct/proper order of packets), determining whether the received data packets are in correct order (see FIG. 1,

Art Unit: 2416

3, determine/checking whether the received packets are in a correct/proper order), and forwarding the received data packets in correct packet order (see FIG. 1, 3, routing/forward the received packet from source node A in a correct/proper order (i.e. note that a correct/proper order of packets is formed when nodes A and B deactivating the route a-b for a predetermined time then activating the route A-B); see col. 1, line 31-36; col. 2, line 56 to col. 3, line 50), the switch comprising:

at least two incoming ports for receiving data packets (see FIG. 1, two input interfaces to Node B receiving packets) via respective routing paths (see FIG. 1, via different/separate paths ab and A-B; see col. 2, line 33-67; see col. 4, line 20-35) and an output port for forwarding data packets (see FIG. 1, 3, and output interface of Node B for routing packets; col. 2, line 56 to col. 3, line 50);

wherein in response to a commonly sourced data packet being received at a first of the plurality input ports (see FIG. 1,2, after receiving cells/packets from source node A at the first input interface a-b; see col. 2, line 35-66; see col. 3, line 30 to col. 4, line 20), commonly sourced data packets received at the first input port are wait/hold for a period of time (see FIG. 2, col. 2, line 56 to col. 3, line 10; deactivating/ceasing/holding packets/cells from Node A at the first interface a-b for predetermined period) while commonly sourced data packets received at the other input ports are processed (see FIG. 2, while/when receiving packets/cells from Node A at the second interface A-B; see col. 3, line 1-60).

Almay does not explicitly disclose "out of order", "discard", "allow less of a number of bits to be forwarded than were transmitted".

Art Unit: 2416

However, receiving packets/cells/frames out of order due to changing network condition such as unavailable/fail/congested path and discarding the discarding out of order cells packets/cells/frames received at the port/interface in order to maintain network integrity is so well know in the art. In particular, Soirinsuo teaches a switch (see FIG. 8, 11, Switch) comprising at least two incoming ports for receiving the data packets (see FIG. 8, 11, the input channels ports 1104 for receiving cells/packets) and an output port for forwarding data packets (see FIG. 8, 11, output channel port 1106 for routing cells/packets; see col. 9, line 20-35; see col. 10, line 29-46);

wherein in response to a commonly sourced data packet being received out of order at a first of the plurality input ports (see FIG. 8,11, upon receiving changed cells/packets which are "not" received in the same order in which they are transmitted due to network change path/routing (e.g. failure/congestion) at the first normal input port of 1104; see col. 9, line 20-35), commonly sourced data packets received at the first input port are discarded for a period of time (see col. 9, line 40-45; see col. 10, line 10-30; all cells received at the first/normal/old channel port 1104 are discarded during switch-over interval/time) while commonly sourced data packets received at the other input ports are processed (see col. 10, line 10-30, while/during receiving (and transmitting to the output port) from the new channel port), thereby allowing less of a number of bits to be forwarded than were transmitted (see col. 9, line 20-45; see col. 10, line 10-30; allowing/enabling the less number of cell bits (i.e. ATM cell is 53 bytes/424 bits) to forward to the output port than cell bits transmitted by the input port by discarding all cells received at the first/normal/old channel port 1104 during switch-over interval/time).

Art Unit: 2416

Therefore, it would have been obvious to one having ordinary skill in the art at the time the invention was made to provide "discarding, out of order, allow less of a number of bits to be forwarded than were transmitted", as taught by Soirinsuo in the system of Almay, so that it would provide synchronize switchover and prevent frame integrity; see Soirinsuo col. 3, line 65 to col. 4, line 65.

Regarding Claim 11, Almay discloses a switch (see FIG. 1, 3, Node B) configured for receiving data packets having a packet order (see FIG. 1,3, receiving packets in a correct/proper order of packets), determining whether the received data packets are in correct order (see FIG. 1, 3, determine/checking whether the received packets are in a correct/proper order), and forwarding the received data packets in correct packet order (see FIG. 1, 3, routing/forward the received packet from source node A in a correct/proper order (i.e. note that a correct/proper order of packets is formed when nodes A and B deactivating the route a-b for a predetermined time then activating the route A-B); see col. 1, line 31-36; col. 2, line 56 to col. 3, line 50), comprising:

a plurality of input ports for successively receiving said data packets (see FIG. 1, two input interfaces to Node B receiving packets) from a respective plurality of routing paths (see FIG. 1, from different/separate paths a-b and A-B; see col. 2, line 33-67; see col. 4, line 20-35); and

an output port for forwarding data packets (see FIG. 1, 3, and output interface of Node B for routing packets; col. 2, line 56 to col. 3, line 50);

wherein in response to a data packet being received at a first of any one of the plurality input ports (see FIG. 1,2, after receiving cells/packets from source node A at the first input

Art Unit: 2416

interface a-b; see col. 2, line 35-66; see col. 3, line 30 to col. 4, line 20), data packets are wait/hold for a period of time at the first input port (see FIG. 2, col. 2, line 56 to col. 3, line 10; deactivating/ceasing/holding packets/cells from Node A at the first interface a-b for predetermined period) while being allowed at the other input ports (see FIG. 2, while/when receiving packets/cells from Node A at the second interface A-B; see col. 3, line 1-60).

Almay does not explicitly disclose "out of order", "discard", "allow less of a number of bits to be forwarded than were transmitted".

However, receiving packets/cells/frames out of order due to changing network condition such as unavailable/fail/congested path and discarding the discarding out of order cells packets/cells/frames received at the port/interface in order to maintain network integrity is so well know in the art. In particular, Soirinsuo teaches a switch (see FIG. 8, 11, Switch) comprising a plurality of input ports for successively receiving said data packets (see FIG. 8, 11, the input channels ports 1104 for receiving cells/packets); and

an output port for forwarding data packets (see FIG. 8,11, output channel port 1106 for routing cells/packets; see col. 9, line 20-35; see col. 10, line 29-46);

wherein in response to a data packet being received out of order at a first of any one of the plurality input ports (see FIG. 8,11, upon receiving changed cells/packets which are "not" received in the same order in which they are transmitted due to network change path/routing (e.g. failure/congestion) at the first normal input port of 1104; see col. 9, line 20-35), data packets are discarded for a period of time at the first input port (see col. 9, line 40-45; see col. 10, line 10-30; all cells received at the first/normal/old channel port 1104 are discarded during switch-over interval/time) while being allowed at the other input ports (see col. 10, line 10-30, while/during

Art Unit: 2416

receiving (and transmitting to the output port) from the new channel port), thereby allowing less of a number of bits to be forwarded than were transmitted (see col. 9, line 20-45; see col. 10, line 10-30; allowing/enabling the less number of cell bits (i.e. ATM cell is 53 bytes/424 bits) to forward to the output port than cell bits transmitted by the input port by discarding all cells received at the first/normal/old channel port 1104 during switch-over interval/time).

Therefore, it would have been obvious to one having ordinary skill in the art at the time the invention was made to provide "discarding, out of order, allow less of a number of bits to be forwarded than were transmitted", as taught by Soirinsuo in the system of Almay, so that it would provide synchronize switchover and prevent frame integrity; see Soirinsuo col. 3, line 65 to col. 4, line 65.

Regarding Claim 7, the claim, which has disclosed all the limitations of the respective claim 2. Therefore, it is subjected to the same rejection as set forth above in claim 2.

Regarding Claim 8, the claim, which has disclosed all the limitations of the respective claim 3. Therefore, it is subjected to the same rejection as set forth above in claim 3.

Regarding Claim 9, the claim, which has disclosed all the limitations of the respective claim 4. Therefore, it is subjected to the same rejection as set forth above in claim 4.

Regarding Claim 12, Soirinsuo discloses wherein the data packets are forwarded without the discarded data packets received at the first of the input ports (see FIG. 8, 11, packets/cells are routed/forwarded without discarded cells/packets received at the first input channel port 1104; note that since the received packets/cells are discarded at the first input channel port 1104, and thus the discarded packets/cells are not forward/routed; see col. 10, line 25-45).

Art Unit: 2416

Therefore, it would have been obvious to one having ordinary skill in the art at the time the invention was made to provide the data packets are forwarded without the discarded data packets received at the first of the input ports, as taught by Soirinsuo in the system of Almay, so that it would provide synchronize switchover and prevent frame integrity; see Soirinsuo col. 3, line 65 to col. 4, line 65.

Regarding Claim 13, Almay discloses wherein the period of time is a predetermined period of time (see FIG. 2, a time is a predefined period of time; see col. 3, line 1-15).

Regarding Claim 14, Almay discloses wherein the period of time is terminated in response to a determination that a data packet condition is no longer possible (see FIG. 2, predetermined time period has elapsed/terminated when determining that receiving packet state/condition impossible since the a-b line/path is deactivated; see col. 3, line 10-30). Soirinsuo also discloses wherein the period of time is terminated in response to a determination that a data packet condition is no longer possible (see col. 10, line 25-30; the switch-over interval/time is terminated/ended after all packets/cells are discarded which causes the packet status/condition no longer possible).

Regarding Claim 15, Soirinsuo discloses discard data packets for a period of time at all input ports apart from a single input (see col. 9, line 40-45; see col. 10, line 10-30; discarding all cells for a switch-over interval/time at the first/normal/old channel port 1104 apart from the second/new input channel port 1104) where data packets are determined to be arriving in the correct order (see FIG. 8, where cells/packets are received in the same order in which they are transmitted (i.e. correct order); see col. 9, line 20-35, 40-45; see col. 10, line 10-30).

10/621,060 Art Unit; 2416

Therefore, it would have been obvious to one having ordinary skill in the art at the time the invention was made to provide discarding data packets for a period of time at all input ports apart from a single input where data packets are determined to be arriving in the correct order, as taught by Soirinsuo in the system of Almay, so that it would provide synchronize switchover and prevent frame integrity; see Soirinsuo col. 3. line 65 to col. 4. line 65.

Regarding Claim 16, Soirinsuo discloses wherein only data packets the single input where data packets are determined to be arriving in the correct order are forwarded (see col. 9, line 40-45; see col. 10, line 10-30; cell/packets in the new/second input channel where cells/packets are receiving/arriving in the same order in which they are transmitted (i.e. correct order) are forwarded/routed).

Therefore, it would have been obvious to one having ordinary skill in the art at the time the invention was made to provide only data packets the single input where data packets are determined to be arriving in the correct order are forwarded, as taught by Soirinsuo in the system of Almay, so that it would provide synchronize switchover and prevent frame integrity; see Soirinsuo col. 3, line 65 to col. 4, line 65.

 Claims 5 and 10 are rejected under 35 U.S.C. 103(a) as being unpatentable over Almay in view of Soirinsuo as applied to claims 1 and 6 above, and further in view of Merchant (US006535489B1).

Regarding Claims 5 and 10, the combined system of Almay and Soirinsuo discloses the communication network as set forth above in claims 1 and 6.

Neither Almay nor Soirinsuo explicitly disclose "an Ethernet Network".

Application/Control Number:

10/621,060 Art Unit; 2416 Page 34

However, utilizing Ethernet 802.3 network is well known in the art in order to provide a

standard connection for interoperability. In particular, Merchant discloses an Ethernet network

(see FIG. 1, Ethernet 802.3 network; see col. 3, line 45-65).

Therefore, it would have been obvious to one having ordinary skill in the art at the time

the invention was made to provide Ethernet network, as taught by Merchant, in the combined

system of Almay and Soirinsuo, so that it would enable selectively forwarding data packets to

appropriate destination based on Ethernet protocol; see Merchant col. 3, line 60-65.

Conclusion

12. Any inquiry concerning this communication or earlier communications from the

examiner should be directed to IAN N. MOORE whose telephone number is (571)272-3085.

The examiner can normally be reached on 9:00 AM- 6:00 PM.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's

supervisor, William Trost can be reached on 571-272-7872. The fax phone number for the

organization where this application or proceeding is assigned is 571-273-8300.

Application/Control Number:

10/621,060 Art Unit; 2416 Page 35

Information regarding the status of an application may be obtained from the Patent

Application Information Retrieval (PAIR) system. Status information for published applications

may be obtained from either Private PAIR or Public PAIR. Status information for unpublished

applications is available through Private PAIR only. For more information about the PAIR

system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR

system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would

like assistance from a USPTO Customer Service Representative or access to the automated

information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

Ian N. Moore Primary Examiner Art Unit 2416

/Ian N. Moore/

Primary Examiner, Art Unit 2416