BA476 Final Presentation

Predicting Fraudulent Job Postings

John Antony, Rawin Bunajinda, Neeraja Mehta, Arnav Misra, Theodore Phua

PRESENTATION AGENDA

PROJECT SIGNIFICANCE

ML model will help identify Fake Job Posting based on a jobs meta information

April 21, 2021

FBI Warns Cyber Criminals Are Using Fake Job Listings to Target Applicants' Personally Identifiable Information

Americans lost \$68 million to job scams this year—here's what to look out for

PURPOSE OF MODELS

Determine whether a job is fake or real through specific parameters

COMPOSITION OF ORIGINAL DATASET

18,000 total job posting prediction dataset from Kaggle

BOOLEAN PREDICTORS

- Telecommuting
- Company Logo
- Questions

TEXT PREDICTORS

- Title
- Location
- Department
- Salary Range
- Company Profile Industry
- Description

Function

Required Education

NUMERICAL PREDICTORS

Job ID

TESTING OUTCOME

Fraudulent

DATA CLEANING

Processing of acquired dataset of real and fake job posting predictors

m

Cleaned dataset

- 9868 data points
- 722 fraudulent job postings

Dropped null values in existing parameters

 Drop any null values existing in remaining dataset (for any parameter)

Check for insignificant data points

 Parameters that are unique but do not affect ML model were dropped i.e. "Job ID"

Identify parameters with null values

 Created list of parameters and calculated number of null values; dropped "Department" and "Salary Range"

US-based model

Dropped non-US jobs; foreign language increases complexity of model

CORRELATION MATRIX FOR NUMERICAL

FEATURES

Numerical features consist of all non-textual features including boolean features

OBSERVATIONS FROM TEXTUAL FEATURES

Plots to visualize and analyze trends within textual features of the dataset

Most fraudulent jobs present in entry level

No fraudulent jobs present in education levels higher than associate degrees

Fraudulent jobs are targeted at full time positions

FEATURE ENGINEERING FOR LOCATION PARAMETER

Using Location parameter to visualize distribution of fake jobs

- States with lowest amount of fake postings are Maryland, New York
- States with highest amount of fake job postings are California and Texas
- Utilized to create "Ratio" parameter applying different
 probabilistic weights to features

FEATURE ENGINEERING FOR LOCATION

PARAMETER

Using Location parameter to visualize distribution of fake jobs

FEATURE ENGINEERING FOR TEXT PARAMETERS

Combine text parameters into new two parameters Text and Character Count

				•
	telecommuting	fraudulent	ratio	text
0	0	0	0.03	Marketing Intern US, NY, New York We're Food52
1	0	0	0.03	Visual Designer US, NY, New York Kettle is an
2	0	0	0.03	Payroll Tax Specialist US, NY, New York Namely
3	0	0	0.03	Marketing Manager US, NY, New York Super Socce
4	0	0	0.03	English Teacher Abroad US, NY, New York We hel
10588	1	1	0.00	Military Benefits Counselor US, , chicago Anth
10589	0	0	0.00	Sr.Business Intelligence Technical Architect U
10590	0	0	0.00	Licensed Practical Nurse (LPN)- Private Duty U
10591	0	0	0.00	SAS Grid Developer US, NJ, Berkeley Heights
10592	0	0	0.00	Sr. Scm Web Development Technical Lead US, CA,
10593 rc	ws × 4 columns			

- Amalgamated all text datatype predictors into Text predictor which will be used for further text analysis
- Tokenization, removal of stopwords and lemmatization created a word-cloud
- Transform text into vector matrix based on frequency of words in the text through a countvectorizer

WORD CLOUD FROM TEXT PARAMETER

Utilizing word_net lemmatizer to create word clouds to identify frequently used words for real and fake jobs

10 high frequency words for fake jobs

10 high frequency words for genuine jobs

FEATURE ENGINEERING FOR TEXT PARAMETERS

Summarizing shift of parameters from previously Text to now Character Count

	telecommuting	fraudulent	ratio	text
0			0.03	Marketing Intern US, NY, New York We're Food52
1		0	0.03	Visual Designer US, NY, New York Kettle is an
2			0.03	Payroll Tax Specialist US, NY, New York Namely
3			0.03	Marketing Manager US, NY, New York Super Socce
4			0.03	English Teacher Abroad US, NY, New York We hel
10588			0.00	Military Benefits Counselor US, , chicago Anth
10589		0	0.00	Sr.Business Intelligence Technical Architect U
10590			0.00	Licensed Practical Nurse (LPN)- Private Duty U
10591	0	0	0.00	SAS Grid Developer US, NJ, Berkeley Heights
10592			0.00	Sr. Scm Web Development Technical Lead US, CA,
0593 rc	ws × 4 columns			

FEATURE ENGINEERING FOR TEXT PARAMETERS

Combine text parameters into new two parameters Text and Character Count

Character count is relatively similar distributed in both fake and real jobs

Word frequency is higher among real jobs as compared to fake jobs

FEATURE PROCESSING

Utilized Tokenization, Stopword Removal and Lemmatization to create 4 main concluding parameters: Telecommuting, Fraudulent, Ratio, Text

job_id	title	locati	depar	salar	comp	descr	requir	bene	telec	 has_	empl	requir	requir	indus	functi	fraud	state	city	state
		on	tment	y_ra	any_	iption	emen	fits	omm	q	oyme	ed_ex	ed_ed	try	on	ulent			_city
				n ge	р		ts		uting	uesti	nt_ty	perie	ucati						
					rofile					ons	pe	nce	on						

telecommuting	fraudulent	ratio	text	character_count
---------------	------------	-------	------	-----------------

P VALUE SIGNIFICANCE TEST

Determining which features are important

```
Optimization terminated successfully.
         Current function value: 0.258066
         Iterations 8
                          Logit Regression Results
Dep. Variable:
                          fraudulent
                                      No. Observations:
                                                                         7097
Model:
                               Logit Df Residuals:
                                                                        7094
Method:
                                     Df Model:
Date:
                    Thu, 01 Dec 2022 Pseudo R-squ.:
                                                                     -0.02155
                            19:59:47 Log-Likelihood:
Time:
                                                                     -1831.5
                                      LL-Null:
converged:
                                                                     -1792.9
                                True
Covariance Type:
                                       LLR p-value:
                                                                        1.000
                           nonrobust
                                                     P>|z|
                                                                [0.025
                             std err
                                                                           0.9751
                      coef
telecommuting
                   0.1272 0.188
                                          0.676
                                                     0.499
                                                                -0.241
                                                                            0.496
ratio
                  2.4433 0.225
                                     10.840
                                                     0.000
                                                                 2.002
                                                                            2.885
character count
                  -0.0012
                            2.77e-05
                                        -42.908
                                                     0.000
                                                                0.001
                                                                           -0.001
```

Telecommuting has a p value > 0.05 and is statistically insignificant; this feature is dropped from the model

MEASURING ACCURACY QUANTITATIVELY

Below are the following quantitative methods used to determine the best model for classifying fraudulent jobs

ACCURACY SCORES:

Measures the number of correct predictions from the model

F1 VALUES:

Weighted average of precision and recall

Separate dataset into training (k-1) and testing (k) and run both datasets k-times

BASELINE MODEL: NAIVE BAYES MODEL

Model has an accuracy rate of 97.1% and F1 value of 0.7435

Model with lowest number of false positives

MODEL: K-NEAREST NEIGHBORS

Determining the best K for the KNN model

Accuracy: 96.25%

F1: 0.7171

Accuracy: 93.54%

F1: 0.1630

MODEL: DECISION TREES (Depth)

Tree with depth of 2 has highest accuracies = 93.48%

Tree with depth of 21 has highest accuracies = 96.91%

NEXT STEP: STACKING TREES

Numerical features

Accuracy: 93.79%

F1: 0.1423

Combined features

Accuracy: 96.97%

F1: 0.7239

MODEL: RANDOM FORESTS

• 100 trees in Random Forest.

Legend
feature 0 = ratio
feature 1 = character_count

LOGISTIC REGRESSION MODEL COMPARISON

	Lasso	Ridge	Elastic Net		
Accuracy Rate (%)	97.78	95.62	97.11		
False Positives (%)	0.60	2.83	1.12		
False Negatives (%)	1.63	1.86	1.77		
F1 Value	0.8169	.6693	.7897		

MODEL COMPARISON

	NAIVE BAYES	Lasso	KNN	Decision Tree	Random Forest
Accuracy Rate (%)	97.12	97.78	96.25	96.97	93.79
False Positives (%)	0.40	0.60	1.89	0.40	0.11
False Negatives (%)	2.46	1.63	1.86	3.98	6.99
F1 Value	0.7435	0.8169	0.7910	0.7180	0.1422

PROJECT CONCLUSION

ML

MODEL
Tradeoff between F1
and accuracy

SGD with log loss and lasso penalty balances both

Used as baseline for future model evaluation

APPLICATION

A high accuracy ML model can be integrated at the back end of job posting websites

A 0.4% FN implies 996 out of 1000 fraudulent jobs get classified as fraudulent; significant prevention of fraud

DATA VISUALIZATION

Ratio and employment type have significant influence on predicting fraudulent jobs

Extra scrutiny in locations with high fake-to-real job ratios, or at entry level; help reduce number of fraudulent job posts

PROJECT CHALLENGES

- Large number of null values
- Unbalanced dataset (5% fraudulent)
- Some text stored included miscellaneous characters (translated from different languages) potentially causes loss of information
- Interpreting models from text data
- Simultaneously using Colab is difficult to follow new changes.

POTENTIAL IMPROVEMENTS

How can we make the model predict better?

Distribution of Target Variables

The dataset is unbalanced with a significantly large number of real jobs as compared to the number of fraudulent job postings

Feature selection using PCA

Generate synthetic instances through synthetic minority oversampling technique

Find a more balanced dataset

Impute null values and predictors with median or mean

A&P