Fruit-fly Inspired Neighborhood Encoding for Classification

Kaushik Sinha (Wichita State University & IFML) Parikshit Ram (IBM Research AI)

Neurobiological Inspiration

- → Biological systems have served as inspiration to modern deep learning
 - neural networks, convolutions, dropout, attention mechanisms
 - amazing empirical performance in computer vision, NLP and reinforcement learning tasks
- → Modern SOTA intelligent systems are not biologically viable anymore
 - however, the biological inspiration was critical
- → This has motivated a lot of research into identifying other biological systems
 - that can inspire development of new and powerful learning mechanisms
 - provide novel critical insights into the workings of intelligent systems

What is FlyHash?

 \rightarrow A mapping from \mathbb{R}^d to $\{0,1\}^m$ defined as:

$$h(x) = \Gamma_{\rho}(M_m^s x)$$

- ♦ $M_m^s \in \{0,1\}^{m \times d}$ is a randomized sparse binary lifting matrix with $s \ll d$ non-zero entries per row
- $\Gamma_{\rho} : \mathbb{R}^m \to \{0,1\}^m$ is the winner-take-all function that sets the $\rho \ll m$ largest entries of a vector in \mathbb{R}^m to 1 and the rest to 0

What is Fly Bloom Filter?

- \rightarrow A Fly Bloom Filter (FBF) $w \in \{0, 1\}^m$ succinctly summarizes data
- \rightarrow Start with $w = 1_m$ (the vector of all ones)
 - lackloss for an inlier point x_{in} : w is updated by zeroing the elements of w corresponding to the non-zero indices $h(x_{\mathrm{in}})$ which can be compactly represented as

$$w \leftarrow w \land (w \oplus h(x_{\text{in}})) = w \land \overline{h(x_{\text{in}})}$$

→ The above construction ensures

- Element-wise XOR operation
- lacktriangle any $x = x_{\rm in}$ or similar to $x_{\rm in}$ yields low novelty score $w^{\rm T} h(x)$
- lack any novel point x_{nov} with FlyHash $h(x_{nov})$, which is not similar to any of the inliers yields high novelty score

Fruit-fly inspiration

- → Recently, neurobiological mechanisms have been identified in the olfactory circuit of the brain in a common fruit-fly, where
 - ◆ an odor activates a small set of Kenyon Cells (KC) which represent a "tag" for the odor
 - the tag generation process can be viewed as a natural hashing scheme, termed FlyHash
 - a very sparse high-dimensional representation (2000 dimensions with 95% sparsity) and the tag/hash creates a response in a specific mushroom body output neuron (MBON) corresponding to the perceived novelty of the odor
 - Dasgupta et al. interpret the KC-MBON synapses as a Bloom Filter that creates a "memory" of all the odors encountered by the fruit-fly
 - reprogrammed this Fly Bloom Filter (FBF) as a novelty detection mechanism that performs better than other locality sensitive Bloom Filter-based novelty detectors for neural activity and vision datasets
 - ◆ FBFs have also been used for similarity search and word embedding tasks

Motivating questions

- → Can we reprogram FBF to the supervised learning setting and devise a classifier based on the simple learning dynamics of the FBF?
- → Will such a supervised classification scheme be useful and competitive when learning needs to happen with a single pass?
- → What generalization guarantees would such a learner have?

Contributions

- → Design of a novel FBF based classifier, FBFC
 - ◆ **Learning:** additions only operations, single-pass, no loss-minimizing optimization
 - ♦ *Inference:* an efficient FlyHash followed by a sparse binary additions-only dot-product
- → A thorough empirical comparison of FBFC to standard classifiers
 - on over 71 datasets demonstrating significant gains over other single-pass schemes
- → A theoretical examination of the proposed scheme
 - establish conditions under which FBFC agrees with the nearest-neighbor classifier, thereby inheriting its generalization guarantees
- → How the FBFC can provide insights into the problem structure
 - in terms of a class hierarchy in classification problem

Learning

- → Learns separate FBFs for each class
- → The learning scheme is online
 - an example can be used in isolation to update the model
 - an example does not need to be seen more than once

$$w_l = \mathbf{1}_m \bigwedge_{(x,y) \in S \colon y=l} \overline{(h(x))}$$

Inference

- \rightarrow Construction of w_l , $l \in [L]$ ensures
 - lack any point x with class label l is treated as inlier for class l and does not affect class encoding $w_{l'}, l' \neq l, l' \in [L]$
- \rightarrow For a test point x
 - compute per-class novelty score $f_l(x) \in [0, 1], l \in [L]$ and predict the class label to be the one with lowest novelty score

$$f_{l}(x) = (1/\rho)w_{l}^{\top}h(x), \quad \hat{y} = \arg\min_{l \in [L]} f_{l}(x)$$

$$InferFBFC: (x, M_{m}^{s}, \rho, \{w_{l}, l \in [L]\}) \rightarrow \hat{y}$$

$$\mid h(x) \leftarrow \Gamma_{\rho} (M_{m}^{s} x)$$

$$\hat{y} \leftarrow \arg\min_{l \in [L]} (1/\rho) w_{l}^{\top}h(x)$$

$$return \ \hat{y}$$
end

Theoretical analysis

- → Computational complexities
 - ◆ FBFC Training
 - Running time: $O(nm \cdot \max\{s, \log \rho\})$
 - Memory overhead: $O(m \cdot \max\{s, L\})$
 - ◆ FBFC Inference
 - Running time: $O(m \cdot \max\{s, \log \rho, (\rho L/m)\})$
 - Memory overhead: $O(\max\{m, L\})$
 - ◆ For multi-class classification problem with large number of of labels (large *L*), inference can be made in time sub-linear in *L* using maximum inner product search (MIPS)

 η : size of the training set

m: lifting dimensionality

s : # of non-zeros in each row of the lifting matrix

 ρ : # of largest non-zero entries in FlyHash

Learning theoretic properties

- → Intuition for connection to 1-NNC
 - lacktriangle novelty score of any test point corresponds to how "far" the point is from the distribution encoded by w
 - in FBFC, using minimum novelty score to label X is equivalent to labeling X with the class whose distribution/encoding is "closest" to X
 - motivates to study how the FBFC is related to the well-studied nearest-neighbor classifier

→ Basic idea

- we establish conditions under which the expected novelty score of the class associated with the nearest neighbor of a test point is the smallest among all expected novelty scores
- we then use standard concentration argument to derive a high probability statement

Learning theoretic properties

→ Main theorem

- in the binary classification setting, let $S = \{(x_i, y_i)\}_{i=1}^n \subset \mathcal{X} \times \{0, 1\}$ be a training set of size n
- lack under mild structural and/or distributional assumption on χ we prove

Theorem 4. Fix any $\delta \in (0,1)$, $s \ll d$, and $\rho \ll m$. Given a training set S as described above and a test example $x \in \mathcal{X}$, let x_{NN} be its closest point from S measured using ℓ_p metric for an appropriate choice of p. If (i) $\rho = \Omega(\log(1/\delta))$, (ii) $||x - x_{NN}||_p = O(1/s)$, and (iii) $m = \Omega(n\rho)$, then under mild conditions, with probability at least $1 - \delta$ (over the random choice of lifting matrix M), prediction of FBFC on x agrees with the prediction of 1NNC on x.

→ We consider two special cases

- binary feature vectors with fixed number of ones
- lacktriangle test point comes from a permutation invariant distribution in \mathbb{R}^d

Robust Learning

- → Problem with mislabeled examples
 - lacktriangle a single mislabelled example $(x_{\rm mis}, y_{\rm mis})$ modifies the FBF $w_l, y_{\rm mis} = l$
 - lacktriangle test point x similar to $x_{
 m mis}$ may get misclassified since it receives low novelty score with respect to FBF w_l
 - this lack of robustness can not be corrected due to single pass nature of FBFC
- → Remedy
 - ◆ use non-binary FBF called FBF* to captures neighborhood and distribution more effectively
 - lacktriangle coordinates of FBF* w_l are decayed at a rate controlled by a parameter c based on neighborhood and distributional information of class l and takes values in [0,1]

$$w_{lj} = (1 - c)^{\left|\left\{(x, y) \in S : y = l \text{ and } (h(x))_j = 1\right\}\right|}, l \in [L], j \in [m]$$

Robust Learning

- Incorporating the FBF* learning dynamics give rise to robust classifier FBFC*
 - training of FBFC* is slightly modified
 - inference is still exactly the same asFBFC
 - simplicity and interpretability of FBF is
 not completely lost in FBF*
 - empirical performance of FBFC* is superior compared to FBFC

```
TrainNBFBFC: (S, m, \rho, s, c) \rightarrow (M_m^s, \{w_l, l \in [L]\})

Sample M_m^s \in \{0, 1\}^{m \times d} with s NNZ/row

Initialize z_1, \ldots, z_L \leftarrow \mathbf{0}_m \in \mathbb{R}^m

for (x, y) \in S do

h(x) \leftarrow \Gamma_{\rho}(M_m^s x)

z_y \leftarrow z_y + h(x)

end

w_l \leftarrow (1 - c)^{\odot z_l}, l \in [L]

return (M_m^s, \{w_l, l \in [L]\})
```

Robustness to noise: Synthetic data

- → Setting
 - lack synthetic 5-class classification problem in \mathbb{R}^d
 - add increasing levels of noise to the labels
 - ♦ for FBFC*, c=0.9, for FBFC, c is implicitly set to 1
- → FBFC* is more robust to labeling noise

Label noise level	1.0%	5.0%	10%	25%
FBFC ACCURACY (%) FBFC* ACCURACY (%)	56.6±0.8 60.1±0.7	54.5±0.9 58.9±0.9	52.0±1.3 57.1±1.2	44.0±1.0 50.3±1.2
REL. IMPROVEMENT (%)	6.1±0.7	8.1±0.9	9.8±1.2	14.2±1.8

Data sets and Baselines

- → Data sets
 - Synthetic binary and continuous data (see paper)
 - ◆ 71 binary and multiclass classification data from OpenML
- → Baselines
 - ◆ K-nearest neighbor classifier (kNNC), nearest neighbor classifier (1NNC)
 - Prototype based classifiers (CC1, CC)
 - ◆ Locality sensitive bloom filter classifier using SimHash (SBFC)
 - Linear classifier (LR)
 - Multi-layered perceptron (MLPC)

Comparison to baselines: Binary synthetic data

- → Setting

 - generated 30 datasets for 5 classes with 3 clusters per class, d=100, b=20
 - points in the same cluster belonged to the same class
- → All results are aggregated over 30 datasets and are relative to k-NNC (lower

the better)

Comparison to baselines: Real synthetic data

- → Setting
 - $lack point x \in \mathbb{R}^d$, d=100
 - generated 30 datasets for 5 classes with 3 clusters per class
 - points in the same cluster belonged to the same class
- → All results are aggregated over 30 datasets and are relative to k-NNC (lower

the better)

- → Three groups of data sets for comparisons:
 - All: over all 71 data sets
 - ◆ Group A: 37 data sets where kNNC performs best among baselines
 - Group B: 34 data sets where LR performs best among baselines
- → All numbers relative to the FBFC* performance
 - ◆ Fraction of data sets where FBFC* beats baselines
 - ♦ Median margin of improvements aggregated over all data sets in the group in %
 - Statistical significance in terms of whether or not we can reject the null hypothesis H₀ of the paired t-test that the performance of FBFC* and the baseline are similar at significance level
 0.01 -- denotes we can reject; denotes we cannot reject

Метнор	All (71 sets)	Group A (37/71)	Group B (34/71)
<u>k</u> NNC	0.51 (▲0.05%) ∘	0.24 (▼1.08%) ∘	0.79 (▲3.98%) ●
1NNC	0.62 (▲2.21%) •	0.38 (▼0.24%) ∘	0.88 (▲12.1%) •
CC1	0.87 (▲7.64%) ●	0.95 (▲11.8%) ●	0.79 (▲4.96%) ●
CC	0.38 (▼0.48%) ∘	0.38 (▼0.31%) ∘	0.38 (▼0.50%) ∘
SBFC	0.99 (24.9%) •	0.97 (▲24.7%) ●	1.00 (▲25.2%) •
LR	0.58 (▲1.34%) ∘	0.78 (▲3.39%) ●	0.35 (▼0.68%) ∘
MLPC	0.73 (▲4.36%) ●	0.81 (▲6.57%) •	0.65 (▲3.80%) ●
FBFC	0.82 (▲5.87%) ●	0.68 (▲0.73%) ●	0.97 (▲9.13%) ●

→ Robustness in FBFC* leads to significant gains on real data sets

Метнор	All (71 sets)	Group A (37/71)	Group B (34/71)
<u>knnc</u>	0.51 (▲0.05%) ∘	0.24 (▼1.08%) ∘	0.79 (▲3.98%) ●
1NNC	0.62 (▲2.21%) •	0.38 (▼0.24%) ∘	0.88 (▲12.1%) •
CC1	0.87 (▲7.64%) ●	0.95 (▲11.8%) ●	0.79 (▲4.96%) ●
CC	0.38 (▼0.48%) ∘	0.38 (▼0.31%) ∘	0.38 (▼0.50%) ∘
SBFC	0.99 (24.9%) •	0.97 (▲24.7%) ●	1.00 (▲25.2%) ●
LR	0.58 (▲1.34%) ∘	0.78 (▲3.39%) ●	0.35 (▼0.68%) ∘
MLPC	0.73 (▲4.36%) ●	0.81 (▲6.57%) ●	0.65 (▲3.80%) ●
FBFC	0.82 (▲5.87%) •	0.68 (▲0.73%) •	0.97 (▲9.13%) ●

- → FBFC* significantly outperforms SBFC, indicating locality sensitivity is not sufficient for classification
- → High dimensional sparse hash is critical

Метнор	All (71 sets)	Group A (37/71)	Group B (34/71)
<u>knnc</u>	0.51 (▲0.05%) ∘	0.24 (▼1.08%) ∘	0.79 (▲3.98%) ●
1NNC	0.62 (▲2.21%) •	0.38 (▼0.24%) ∘	0.88 (▲12.1%) ●
CC1	0.87 (▲7.64%) ●	0.95 (▲11.8%) ●	0.79 (▲4.96%) ●
CC	0.38 (▼0.48%) ∘	0.38 (▼0.31%) ∘	0.38 (▼0.50%) ∘
SBFC	0.99 (▲24.9%) ●	0.97 (▲24.7%) ●	1.00 (▲25.2%) ●
LR	0.58 (▲1.34%) ∘	0.78 (▲3.39%) ●	0.35 (▼0.68%) ∘
MLPC	0.73 (▲4.36%) ●	0.81 (▲6.57%) ●	0.65 (▲3.80%) ●
FBFC	0.82 (▲5.87%) ●	0.68 (▲0.73%) •	0.97 (▲9.13%) •

- → Overall matches kNNC and outperforms 1NNC
- → In Group A, FBFC* underperforms but not significantly (cannot reject **H**₀)
- → In Group B, FBFC* significantly improves upon kNNC and 1NNC

Метнор	All (71 sets)	Group A (37/71)	Group B (34/71)
<u>k</u> NNC	0.51 (▲0.05%) ∘	0.24 (▼1.08%) ∘	0.79 (▲3.98%) ●
1NNC	0.62 (▲2.21%) •	0.38 (▼0.24%) ∘	0.88 (▲12.1%) •
CC1	0.87 (▲7.64%) ●	0.95 (▲11.8%) ●	0.79 (▲4.96%) ●
<u>CC</u>	0.38 (▼0.48%) ∘	0.38 (▼0.31%) ∘	0.38 (▼0.50%) ∘
SBFC	0.99 (▲24.9%) ●	0.97 (▲24.7%) ●	1.00 (▲25.2%) ●
LR	0.58 (▲1.34%) ∘	0.78 (▲3.39%) ●	0.35 (▼0.68%) ∘
MLPC	0.73 (▲4.36%) ●	0.81 (▲6.57%) ●	0.65 (▲3.80%) ●
FBFC	0.82 (▲5.87%) •	0.68 (▲0.73%) ●	0.97 (▲9.13%) •

- → Overall FBFC* matches parametric LR and outperforms MLPC
- → In Group A, FBFC* significantly outperforms LR and MLPC
- → In Group B, FBFC* underperforms LR but not significantly (cannot reject H_n)

Problem insights: MNIST

- → Similarity between two classes is defined as $s(l, l') = \frac{\langle w_l, w_{l'} \rangle}{\|w_l\| \|w_{l'}\|}$
- → Constructed dendrogram based on class similarity
- → Observed meaningful semantic hierarchy without additional supervision

Problem insights: Letters

- → Similarity between two classes is defined as $s(l, l') = \frac{\langle w_l, w_{l'} \rangle}{\|w_l\| \|w_{l'}\|}$
- → Constructed dendrogram based on class similarity
- → Observed meaningful semantic hierarchy without additional supervision

Conclusions

- → We proposed a novel neuroscience inspired Fly Bloom Filter based classifier FBFC that can be trained in single pass over the training set
- → Inference requires an efficient FlyHash followed by a very sparse dot product
- → On the theoretical side, we established conditioned under which FBFC agrees with the well studied nearest neighbor classifier
- → Empirically, we validated our proposed scheme with 71 datasets of varied data dimensionality and demonstrated effectiveness of our proposed classifier

Future Work

- ightharpoonup Extend theoretical guarantee of FBFC and FBFC* for general \mathbb{R}^d exploring various data dependent assumptions
- → Extend theoretical results that connects FBFC to 1-NNC to the setting where FBFC connects to k-NNC
- → Utilize sparse and randomized nature of FBFC to investigate differential privacy properties of FBFC

Positioning against existing ML models

Table 1: Properties of FBFC contrasted against standard machine learning models, namely, k-nearest-neighbor classifier (kNNC), prototype-based classifiers (CC, CC1), locality sensitive hashing based bloom filters (SBFC), linear models (LR), multi-layer perceptrons (MLPC), decision tree models (DT) and kernel machines (KM).

Classifiers	kNNC	CC1	CC	SBFC	LR	MLPC	DT	KM	FBFC
SINGLE PASS		1	X	1	√a	√a	X	1 b	1
Infer w/o training data	X	1	1	1	1	1	1	10	1
Online/streaming	X	1	\sqrt{d}	1	1	1	X	1 b	1
PARALLEL TRAIN		1	1	1	1e	1e	1º	/ e	1
GRADIENT FREE LEARNING	1	1	1	/	X	X	\sqrt{f}	X	1
Addition only training		X	X	X	X	X	X	X	1
BIOLOGICALLY INSPIRED	X	X	X	X	X	1	X	X	1

^aA single pass generates a model that can be used. ^bFor RBF & Polynomial kernels, randomized embeddings allow for approximate kernel learning to generate a model with a single pass. But it is not possible in general. ^cFor RBF & Polynomial kernels, approximate kernel learning with randomized embeddings remove the need for the training data at inference. But it is not possible in general. ^d Approximate clustering with more than a single cluster is possible with streaming data. ^e Data-parallel training is possible but the optimization is either approximated or the objective is modified. ^f Decision trees perform a gradient-free combinatorial optimization;

f Decision trees perform a gradient-free combinatorial optimization; gradients are needed for gradient boosted decision trees.