Lecture 4a. Iterative Optimisation.

COMP90051 Statistical Machine Learning

Semester 2, 2020 Lecturer: Ben Rubinstein

This lecture

- Iterative optimisation for extremum estimators
 - First-order method: Gradient descent
 - * Second-order: Newton-Raphson method
 - ★ Later: Lagrangian duality
- Logistic regression: workhorse linear classifier
 - * Possibly familiar derivation: frequentist
 - Decision-theoretic derivation
 - * Training with Newton-Raphson looks like repeated, weighted linear regression

Gradient Descent

Brief review of most basic optimisation approach in ML

Optimisation formulations in ML

- Training = Fitting = Parameter estimation
- Typical formulation

$$\widehat{\boldsymbol{\theta}} \in \operatorname*{argmin} L(data, \boldsymbol{\theta})$$
 $\boldsymbol{\theta} \in \Theta$

- argmin because we want a minimiser not the minimum
 - Note: argmin can return a set (minimiser not always unique!)
- ★ Θ denotes a model family (including constraints)
- * L denotes some objective function to be optimised
 - E.g. MLE: (conditional) likelihood
 - E.g. Decision theory: (regularised) empirical risk

One we've seen: Log trick

- Instead of optimising $L(\theta)$, try convenient $\log L(\theta)$
- Why are we allowed to do this?
- Strictly monotonic function: $a > b \implies f(a) > f(b)$
 - * Example: log function!
- **Lemma**: Consider any objective function $L(\theta)$ and any strictly monotonic f. θ^* is an optimiser of $L(\theta)$ if and only if it is an optimiser of $f(L(\theta))$.
 - * Proof: Try it at home for fun!

Two solution approaches

- Analytic (aka closed form) solution
 - * Known only in limited number of cases
 - Use 1st-order necessary condition for optimality*:

$$\frac{\partial L}{\partial \theta_1} = \dots = \frac{\partial L}{\partial \theta_p} = 0$$

Assuming unconstrained, differentiable *L*

- Approximate iterative solution
 - 1. Initialisation: choose starting guess $\theta^{(1)}$, set i=1
 - 2. Update: $\boldsymbol{\theta}^{(i+1)} \leftarrow SomeRule[\boldsymbol{\theta}^{(i)}]$, set $i \leftarrow i+1$
 - 3. <u>Termination</u>: decide whether to Stop
 - 4. Go to Step 2
 - 5. Stop: return $\widehat{\boldsymbol{\theta}} \approx \boldsymbol{\theta}^{(i)}$

^{*} Note: to check for local minimum, need positive 2nd derivative (or Hessian positive definite); this assumes unconstrained – in general need to also check boundaries. See also Lagrangian techniques later in subject.

Reminder: The gradient

- Gradient at $\boldsymbol{\theta}$ defined as $\left[\frac{\partial L}{\partial \theta_1}, \dots, \frac{\partial L}{\partial \theta_p}\right]'$ evaluated at $\boldsymbol{\theta}$
- The gradient points to the direction of maximal change of $L(\theta)$ when departing from point θ
- Shorthand notation

*
$$\nabla L \stackrel{\text{def}}{=} \left[\frac{\partial L}{\partial \theta_1}, \dots, \frac{\partial L}{\partial \theta_p} \right]'$$
 computed at point $\boldsymbol{\theta}$

- * Here ▼ is the "nabla" symbol
- Hessian matrix at $\boldsymbol{\theta}$: $\nabla L_{ij} = \frac{\partial^2 L}{\partial \theta_i \partial \theta_j}$

Gradient descent and SGD

- 1. Choose $\boldsymbol{\theta}^{(1)}$ and some T
- 2. For i from 1 to T^* 1. $\boldsymbol{\theta}^{(i+1)} = \boldsymbol{\theta}^{(i)} \eta \nabla L(\boldsymbol{\theta}^{(i)})$
- 3. Return $\widehat{\boldsymbol{\theta}} \approx \boldsymbol{\theta}^{(i)}$
- Note: η dynamically updated per step
- Variants: Momentum, AdaGrad, ...
- Stochastic gradient descent: two loops
 - Outer for loop: each loop (called epoch) sweeps through all training data
 - Within each epoch, randomly shuffle training data; then for loop: do gradient steps only on batches of data. Batch size might be 1 or few

Assuming *L* is differentiable

*Other stopping criteria can be used

Wikimedia Commons. Authors: Olegalexandrov, Zerodamage

Convex objective functions

- 'Bowl shaped' functions
- Informally: if line segment between any two points on graph of function lies above or on graph
- Formally* $f: D \to \mathbf{R}$ is convex if $\forall \boldsymbol{a}, \boldsymbol{b} \in D, t \in [0,1]$: $f(t\boldsymbol{a} + (1-t)\boldsymbol{b}) \leq tf(\boldsymbol{a}) + (1-t)f(\boldsymbol{b})$ Strictly convex if inequality is strict (<)

^{*} Aside: Equivalently we can look to the second derivative. For f defined on scalars, it should be non-negative; for multivariate f, the Hessian matrix should be positive semi-definite (see linear algebra supplemental deck).

Newton-Raphson

A second-order method; Successive root finding in the objective's derivative.

Newton-Raphson: Derivation (1D)

- Critical points of $L(\theta) = \text{Zero-crossings of } L'(\theta)$
- Consider case of scalar θ . Starting at given/random θ_0 , iteratively:
 - 1. Fit tangent line to $L'(\theta)$ at θ_t
 - 2. Need to find $\theta_{t+1} = \theta_t + \Delta$ using linear approximation's zero crossing
 - 3. Tangent line given by derivative: rise/run = $-L''(\theta_t) = L'(\theta_t)/\Delta$
 - 4. Therefore iterate is $\theta_{t+1} = \theta_t L'(\theta_t)/L''(\theta_t)$

Newton-Raphson: General case

- Newton-Raphson summary
 - * Finds $L'(\theta)$ zero-crossings
 - * By successive linear approximations to $L'(\theta)$
 - * Linear approximations involve derivative of $L'(\theta)$, ie. $L''(\theta)$
- Vector-valued θ :

How to fix scalar $\theta_{t+1} = \theta_t - L'(\theta_t)/L''(\theta_t)$???

- * $L'(\theta)$ is $\nabla L(\theta)$
- * $L''(\theta)$ is $\nabla_2 L(\theta)$
- Matrix division is matrix inversion
- General case: $\theta_{t+1} = \theta_t (\nabla_2 L(\theta_t))^{-1} \nabla L(\theta_t)$

- public domain wikipedia
- Pro: May converge faster; fitting a quadratic with curvature information
- Con: Sometimes computationally expensive, unless approximating Hessian

...And much much more

- What if you have constraints?
 - See Lagrangian multipliers (let's you bring constraints into objective)
 - Or, projected gradient descent (you iterate between GD on objective, and GD on each constraints)
- What about speed of convergence?
- Do you really need differentiable objectives? (no, subgradients)
- Are there more tricks? (Hell yeah!
 But outside scope here)

Free at http://web.stanford.edu/~boyd/cvxbook/

Summary

- Iterative optimisation for ML
 - First-order: Gradient Descent and Stochastic GD
 - Convex objectives: Convergence to global optima
 - Second-order: Newton-Raphson can be faster, can be expensive to build/invert full Hessian

Next time: Logistic regression for binary classification