

General Description

These N-Channel enhancement mode power field effect transistors are using trench DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency fast switching applications.

TSSOP8	Dual	Pin	Confid	uration
100010	Daai		COLLING	Jai a tioi i

BVDSS	RDSON	ID
20V	12m Ω	7.5A

Features

- 20V, 7.5A, RDS(ON)=12mΩ@VGS=4.5V
- Improved dv/dt capability
- Fast switching
- Green Device Available
- Suit for 1.8V Gate Drive Applications
- G-S ESD protection diode embedded

D2 Applications

- Notebook
- Load Switch
- LED applications

Absolute Maximum Ratings Tc=25℃ unless otherwise noted

Symbol	Parameter	Rating	Units
V_{DS}	Drain-Source Voltage	20	V
V_{GS}	Gate-Source Voltage	±10	V
ı	Drain Current – Continuous (T _C =25°C)	7.5	А
ID	Drain Current – Continuous (T _C =100°C)	4.7	А
I _{DM}	Drain Current – Pulsed ¹	30	А
D	Power Dissipation (T _C =25°C)	1.25	W
P_{D}	Power Dissipation – Derate above 25°C	0.01	W/°C
T _{STG}	Storage Temperature Range	-55 to 150	°C
TJ	Operating Junction Temperature Range	-55 to 150	°C

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Unit
$R_{\theta JA}$	Thermal Resistance Junction to ambient		100	°C/W

Potens semiconductor corp. Ver.1.01

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Off Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V_{GS} =0V , I_D =250uA	20			V
$\triangle BV_{DSS}/\triangle T_{J}$	BV _{DSS} Temperature Coefficient	Reference to 25°C , I _D =1mA		0.02		V/°C
	Drain-Source Leakage Current	V_{DS} =20V , V_{GS} =0V , T_J =25 $^{\circ}$ C			1	uA
I _{DSS}	Dialii-Source Leakage Current	V _{DS} =16V , V _{GS} =0V , T _J =125°C			10	uA
I _{GSS}	Gate-Source Leakage Current	$V_{GS}=\pm 10V$, $V_{DS}=0V$			±10	uA

On Characteristics

R _{DS(ON)}	R _{DS(ON)} Static Drain-Source On-Resistance	V _{GS} =4.5V , I _D =5A		10	12	
		V _{GS} =2.5V , I _D =3A		11	14	mΩ
		V _{GS} =1.8V , I _D =2A		13	20	
V _{GS(th)}	Gate Threshold Voltage	V V 1 252 A	0.3	0.6	1	V
$\triangle V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	$-V_{GS}=V_{DS}$, $I_D=250uA$		2		mV/°C
gfs	Forward Transconductance	V _{DS} =10V , I _S =5A		11		S

Dynamic and switching Characteristics

, ,			_		
Q_g	Total Gate Charge ^{2, 3}		 16.9	26	
Q_{gs}	Gate-Source Charge ^{2,3}	V_{DS} =10V , V_{GS} =4.5V , I_{D} =5A	 1.1	3	nC
Q_{gd}	Gate-Drain Charge ^{2, 3}		 4	7	
T _{d(on)}	Turn-On Delay Time ^{2, 3}		 6.8	13	
Tr	Rise Time ^{2, 3}	V_{DD} =10V , V_{GS} =4.5V , R_{G} =25 Ω	 20	38	nS
$T_{d(off)}$	Turn-Off Delay Time ^{2, 3}	I _D =1A	 41.8	79	113
T _f	Fall Time ^{2, 3}		 13.2	25	
C _{iss}	Input Capacitance		 1020	1480	
Coss	Output Capacitance	V_{DS} =10V , V_{GS} =0V , F=1MHz	 160	240	pF
C _{rss}	Reverse Transfer Capacitance		 110	160	

Drain-Source Diode Characteristics and Maximum Ratings

	Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
	Is	Continuous Source Current	V _G =V _D =0V , Force Current			7.5	Α
ſ	I _{SM}	Pulsed Source Current	VG-VD-UV , FOICE Cullent			30	Α
	V_{SD}	Diode Forward Voltage	V _{GS} =0V , I _S =1A , T _J =25°C			1	V

Note:

- 1. Repetitive Rating: Pulsed width limited by maximum junction temperature.
- 2. The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%.
- Essentially independent of operating temperature.

Potens semiconductor corp. Ver.1.01

Fig.1 Continuous Drain Current vs. T_C

Fig.3 Normalized V_{th} vs. T_J

Fig.5 Normalized Transient Impedance

Fig. 2 Normalized RDSON vs. T_J

Fig.4 Gate Charge Waveform

Fig.6 Maximum Safe Operation Area

Fig.7 Switching Time Waveform

Fig.8 Gate Charge Waveform

TSSOP8 PACKAGE INFORMATION

Crymbal	Dimensions 1	In Millimeters	Dimension	s In Inches
Symbol	Min	Max	Min	Max
A	1.100	1.200	0.044	0.047
A1	0.050	0.150	0.002	0.006
A2	0.900	1.050	0.036	0.041
A3	0.390	0.490	0.016	0.019
b	0.210	0.300	0.009	0.011
c	0.130	0.190	0.006	0.007
D	0.120	0.140	0.004	0.006
E	6.200	6.600	0.244	0.260
E1	4.300	4.500	0.169	0.177
e	0.650	(BSC)	0.025	(BSC)
L	0.450	0.750	0.018	0.029
L1	1.000	(BSC)	0.039(BSC)	
θ	0°	8°	0°	8°

Potens semiconductor corp. Ver.1.01