PRÁCTICA 4 FFI

Memoria explicativa

Luis Ortiz Fernandez

Ejercicio 1:

Valor nominal	Valor experimental
$R_1 = 300 \Omega$	$R_1 = 326.8 \pm 3 \Omega$
$R_2 = 2 \text{ k}\Omega$	$R_2 = 2,205 \pm 0,02 \text{ k}\Omega$
$R_3 = 10 \text{ k}\Omega$	$R_3 = 9.90 \pm 0.13 \text{ k}\Omega$
$R_4 = 47 \text{ k}\Omega$	$R_4 = 47 \pm 0.4 \text{ k}\Omega$
$R_5 = 47 \text{ k}\Omega$	$R_5 = 47 \pm 0.4 \text{ k}\Omega$
$V_1 = 4.5 \text{ V}$	$V_1 = 4,755 \pm 0,05 \text{ V}$
$V_2 = 4.5 \text{ V}$	$V_2 = 4,755 \pm 0.05 \text{ V}$
$V_3 = 4.5 \text{ V}$	$V_3 = 4,755 \pm 0,05 \text{ V}$

Ejercicio 2:

Ejercicio 2.1:

- 1)Colector
- 2)Base
- 3)Emisor

Ejercicio 2.2:

Magnitud Máxima tensión permitida entre el colector y la base con el emisor sin conectar	Símbolo V _{CBO}	Valor nominal 50 V	Tipo de valor MAX
Máxima tensión permitida entre en el colector y el emisor con la base sin conectar	V _{CEO}	45 V	MAX

Máxima tensión entre el emisor y la base con el colector sin conectar	V _{EBO}	6 V	MAX
Máxima corriente del colector (corriente continua)	I _c	100 mA	MAX
Máxima potencia	P _c	500 mW	MAX
Tensión de saturación entre colector y emisor	V _{CE} (sat)	90 mV / 250 mV	TIP/MAX
Tensión umbral entre base y emisor	V _{BE} (on)	660 mV	MAX
Factor de ganancia	h _{FE}	200 - 450	MIN - MAX

Ejercicio 2.3:

$I_{B}(\mu A)$	V _{CE} (V)	$I_c(mA)$
400	4	80
250	6	60
100	14	29
50	4	12

V _{BE} (V)	I _c (mA)
0,40	0,1
0,60	0,2
0,65	1
0,70	4
0,75	20
0,80	100

Ejercicio 3:

Ejercicio 3.1:

V _{BE} =	0,716 V
V _{BC} =	0,711 V

El multímetro no da una incertidumbre concreta, en su manual pone que "La pantalla muestra una aproximación de la caída de voltaje directa del diodo".

Los valores son muy similares con una diferencia casi imperceptible que se debe a que la corriente del emisor es mayor (suma de la de del colector y la de la base), por lo tanto, con la ley de Ohm se verifica que la tensión V_{BE} sea ligeramente mayor.

Ejercicio 3.2:

No tiene unidades y en el manual del multímetro no concreta nada de la incertidumbre

El valor es correcto ya que se encuentra dentro de los indicados en la hoja de características (200-450).

Ejercicio 4:

 $V_{CC} = 9,36 V$

CIRCUITO A:

$$I_B = 0 \text{ mA}$$

$$I_c=0 \text{ mA}$$

$$V_{CE}$$
=9,34 \pm 0,1 V

Se encuentra en corte ya que no circula corriente siendo $I_C = I_E = I_B = 0$ A CIRCUITO B:

$$I_B = 0.03 \pm 0.05 \text{ mA}$$

$$I_c$$
=17,56 \pm 0,3 mA

$$V_{CE}$$
=4,48 \pm 0,04 V

Se encuentra en activa, ya que $V_{CE} = 4,48 >> 0 V$

CIRCUITO C:

 I_B = 0,37 \pm 0,05 mA

 I_c =27,75 \pm 0,09mA

 V_{CE} = 0,148 \pm 0,01 V

Se encuentra en saturación puesto que $V_{\text{CE}} \cong 0$

Ejercicio 5:

Ejercicio 5.1:

- 1)Drenador
- 2)Puerta
- 3)Surtidor

Ejercicio 5.2:

Magnitud	Símbolo	Valor nominal	Tipo de valor
Máxima tensión permitida entre drenador y surtidor	V _{DSS}	60 V	MAX
Máxima tensión permitida entre drenador y puerta	V_{DGR}	60 V	MAX
Máxima tensión permitida entre puerta y surtidor	V _{GSS}	± 20 V	MAX
Máxima corriente de drenador	I _D	500 – 1200 mA	MAX
Tensión umbral entre puerta y surtidor	V _{GS(th)}	0.8 - 2.1 – 3 V	MIN – TIP - MAX
Resistencia entre drenador y surtidor en zona óhmica	R _{DS(ON)}	1,2 – 5 Ω	TIP - MAX

Ejercicio 5.3:

V _{Gs} (V)	V _{DS} (V)	I _□ (A)
3,0	2	0,1
5,0	1	0,5
6	3	1,25
10	2	1,5

V _{GS} (V)	I₀ <i>(A)</i>
1	0
3	0.1
4	0.35
5	0.8

6	1.1
8	1.8

Ejercicio 6:

Primera experiencia:

Tensión umbral del diodo interno: 0,632 V

Segunda experiencia:

El multímetro suena dando el valor de 006 debido a que pasa corriente por el diodo.

No ocurre nada puesto que hemos cortocircuitado al transistor.

Ejercicio 7:

Interruptor	$V_{in} = V_{GS}$	I_{D}	$V_{out} = V_{DS}$	Puntos de trabajo
Cerrado (ON)	9,17 ± 0,09V	4,15 ± 0,1 mA	0,004 ± 0,001V	Zona Óhmica
Abierto (OFF)	0,004 ± 0,001V	0 mA	9,27 ± 0,09 V	Corte

Valores teóricos de la hoja de características:

Interruptor	$V_{in} = V_{GS}$	I _D	$V_{out} = V_{DS}$
Cerrado (ON)	9,34 V	4,23 mA	0,018 V
Abierto (OFF)	0 V	0 mA	9,34 V

Calculando la resistencia equivalente en la zona óhmica (cuando el circuito está cerrado), su valor da $5.8~\Omega$ que es parecido al valor de RDS (on) de la hoja de características.

El circuito implementado corresponde a una puerta NOT, puesto que cuando emitimos un valor de entrada alto este transmite un valor bajo y viceversa.

Multímetro: LOMVUM Model T28C

Luis Ortiz Fernández