Is Transfer Learning Possible in Reinforcement Learning?

Scaling Difficulty on a Trained Agent in Super Smash

The What and the Why

Super Smash RL Agent

 Deep Q Learning in a complex environment

- Transfer learning applied to Reinforcement Learning
 - Increased difficulty against trained networks

Server-Client Model

- Django Server
 - Trains model

- Client
 - Runs the environment
 - Any Local Computer
 - Scalable

State Representation and Reward

- Reward Structure
 - +200 for kill, -200 for death, +1 per damage percent, -1 per damage percent
- State Representation
 - o Knows for the 2 bots the following:
 - Lives, percentages, on the ground, off the stage, shield strength, x and y position, which direction it is facing, and its speeds in the x and y positions
 - 26 elements in total
 - Then adds previous move to the end of the state representation as recommended by Chris
 - 56 total elements in each state (30 different actions)

Learning Algorithm

Deep Q Learning

```
for state, action, reward, next_state, done in minibatch:
    target = reward

if not done:
    next_state = np.array(next_state)
    next_state = next_state.reshape(1, -1)
    target = reward + float(agentHyperparameters.gamma) * np.max(model.predict(next_state))

state = np.array(state)
    state = state.reshape(1, -1)
    target_f = model.predict(np.array(state))[0]
    target_f[action] = target
    target_f = target_f.reshape(1, -1)
    model.fit(state, target_f, epochs=1, verbose=1)
```

- Trains against Level One Al
 - Trains against more difficult AI afterwards
 - "Transfer Learning"

- First Trained to beat a Level One Al
 - Required about 3500 epochs to begin to beat the AI

- Even after 2000 epochs didn't beat a Level Three Al using the weights from Level One
 - Ran again, with deeper network

- Deeper Network Used
 - o 5 Dense Layers instead of 3
- Had to train much quicker because of time constraints
 - Quick improvement, but not much from there

 Does well then turns around and kills itself everytime after

Summary

- Hardly a difference in training agent to play against Level One/Level Three bot
 - At least, so far
- Does train enough to kill sometimes
 - Tends to kill itself a lot
- Uses same move over and over
 - Good for level one bot, level three easily beat it
- Potentially, slower scaling of difficulty
 - Level one to Level three is a big jump
 - Train against level two first might yield better results

Limitations and Future Work

- Takes a really long time to train
 - Complicated state space and large action space
- Reward for particular moves used
- Watch games of professionals and learn from them for a baseline
- Implement an Actor Critic network or PPO instead of DeepQ for faster training
- Scale Clients, have more running environments
 - Parallel Training