Examples on Mathematical induction: Trigonometry

Created by Mr. Francis Hung

Last updated: September 1, 202

- 1. (a) Prove the identity: $\sin(k+1)\theta \sin\frac{\theta}{2} + \sin\frac{k\theta}{2}\sin\frac{(k+1)\theta}{2} = \sin\frac{(k+1)\theta}{2}\sin\frac{(k+2)\theta}{2}$.
 - (b) Prove that $\sin x + \sin 2x + \dots + \sin nx = \frac{\sin \frac{1}{2}(n+1)x \sin \frac{1}{2}nx}{\sin \frac{1}{2}x}$ for all positive integer n.

(a) L.H.S. =
$$\sin(k+1)\theta \sin\frac{\theta}{2} + \sin\frac{k\theta}{2}\sin\frac{(k+1)\theta}{2}$$

= $-\frac{1}{2}\left[\cos\left(k+\frac{3}{2}\right)\theta - \cos\left(k+\frac{1}{2}\right)\theta\right] - \frac{1}{2}\left[\cos\left(k+\frac{1}{2}\right)\theta - \cos\left(-\frac{\theta}{2}\right)\right]$
= $-\frac{1}{2}\left[\cos\left(k+\frac{3}{2}\right)\theta - \cos\left(\frac{1}{2}\right)\theta\right]$
= $\sin\frac{(k+1)\theta}{2}\sin\frac{(k+2)\theta}{2} = \text{R.H.S.}$

(b)
$$n = 1$$
, L.H.S. $= \sin x$, R.H.S. $= \frac{\sin \frac{1}{2}(1+1)x \sin \frac{1}{2}x}{\sin \frac{1}{2}x} = \sin x$

 \therefore L.H.S. = R.H.S., it is true for n = 1.

Suppose
$$\sin x + \sin 2x + \dots + \sin kx = \frac{\sin \frac{1}{2}(k+1)x \sin \frac{1}{2}kx}{\sin \frac{1}{2}x}$$

Add $\sin (k+1)x$ to both sides,

L.H.S. =
$$\sin x + \sin 2x + \dots + \sin kx + \sin (k+1)x$$

= $\sin (k+1)x + \frac{\sin \frac{1}{2}(k+1)x \sin \frac{1}{2}kx}{\sin \frac{1}{2}x}$
= $\frac{\sin(k+1)x \sin \frac{1}{2}x + \sin \frac{1}{2}(k+1)x \sin \frac{1}{2}kx}{\sin \frac{1}{2}x}$
= $\frac{\sin \frac{1}{2}(k+1)x \sin \frac{1}{2}(k+2)x}{\sin \frac{1}{2}x}$ (by (a))
= R.H.S.

 \therefore If it is true for n = k then it is also true for n = k + 1.

By the principle of mathematical induction, it is true for all positive integer n.

2. Prove that
$$\frac{1}{2} + \cos x + \cos 2x + \dots + \cos nx = \frac{\sin(n + \frac{1}{2})x}{2\sin\frac{1}{2}x}$$
 for all positive integer n .

$$n = 1, \text{ L.H.S.} = \frac{1}{2} + \cos x$$

$$R.H.S. = \frac{\sin(1 + \frac{1}{2})x}{2\sin\frac{1}{2}x} = \frac{\sin(\frac{3}{2})x}{2\sin\frac{1}{2}x}$$

$$= \frac{3\sin\frac{1}{2}x - 4\sin^{3}\frac{1}{2}x}{2\sin\frac{1}{2}x}$$

$$= \frac{3 - 4\sin^{2}\frac{1}{2}x}{2}$$

$$= \frac{3 - 2(1 - \cos x)}{2}$$

$$= \frac{1 + 2\cos x}{2} = \text{ L.H.S.}$$

It is true for n = 1.

Suppose
$$\frac{1}{2} + \cos x + \cos 2x + \dots + \cos kx = \frac{\sin(k + \frac{1}{2})x}{2\sin\frac{1}{2}x}$$
 for some positive integer k .

When n = k + 1,

 \therefore If it is true for n = k then it is also true for n = k + 1.

By the principle of mathematical induction, it is true for all positive integer n.

3. 1999 Paper 2 Q12

- (a) Prove, by mathematical induction, that $\cos \theta + \cos 3\theta + \cos 5\theta + \dots + \cos(2n-1) \theta = \frac{\sin 2n\theta}{2\sin \theta}.$ where $\sin \theta \neq 0$, for all positive integers n.
- (b) Using (a) and the substitution $\theta = \frac{\pi}{2} x$, or otherwise, show that $\sin x - \sin 3x + \sin 5x = \frac{\sin 6x}{2\cos x}$, where $\cos x \neq 0$.
- (a) For n = 1, L.H.S. $= \cos \theta$ R.H.S. $= \frac{\sin 2\theta}{2\sin \theta} = \frac{2\sin \theta \cos \theta}{2\sin \theta} = \cos \theta = \text{L.H.S.}$

 \therefore The statement is true for n = 1.

Assume
$$\cos \theta + \cos 3\theta + \cos 5\theta + \dots + \cos(2k-1)\theta = \frac{\sin 2k\theta}{2\sin \theta}$$
.
 $\cos \theta + \cos 3\theta + \cos 5\theta + \dots + \cos(2k-1)\theta + \cos(2k+1)\theta$

$$= \frac{\sin 2k\theta}{2\sin \theta} + \cos(2k+1)\theta$$

$$= \frac{\sin 2k\theta + \sin(2k+2)\theta - \sin 2k\theta}{2\sin \theta}$$

$$=\frac{\sin 2(k+1)\theta}{2\sin \theta}$$

The statement is also true for n = k + 1 if it is true for n = k. By the principle of induction, the statement is true for all positive integer n.

(b) Put $\theta = \frac{\pi}{2} - x$, n = 3.

$$\cos\left(\frac{\pi}{2} - x\right) + \cos 3\left(\frac{\pi}{2} - x\right) + \cos 5\left(\frac{\pi}{2} - x\right) = \frac{\sin 2 \times 3\left(\frac{\pi}{2} - x\right)}{2\sin\left(\frac{\pi}{2} - x\right)}$$

$$\sin x - \sin 3x + \sin 5x = \frac{\sin 6x}{2\cos x}$$

4. Prove that
$$\frac{1}{2} \tan \frac{x}{2} + \frac{1}{2^2} \tan \frac{x}{2^2} + \dots + \frac{1}{2^n} \tan \frac{x}{2^n} = \frac{1}{2^n} \cot \frac{x}{2^n} - \cot x$$
 where $x \neq m\pi$ for $n = 1, 2, \dots$

Note that
$$\tan 2\theta = \frac{2\tan \theta}{1 - \tan^2 \theta} \to \cot x = \frac{1 - \tan^2 \frac{x}{2}}{2\tan \frac{x}{2}} = \frac{1}{2}\cot \frac{x}{2} - \frac{1}{2}\tan \frac{x}{2} + \cdots$$
 (*)

$$n = 1$$
, L.H.S. $= \frac{1}{2} \tan \frac{x}{2}$

R.H.S. =
$$\frac{1}{2} \cot \frac{x}{2} - \cot x$$

= L.H.S. by (*) It is true for n = 1.

Suppose
$$\frac{1}{2} \tan \frac{x}{2} + \frac{1}{2^2} \tan \frac{x}{2^2} + \dots + \frac{1}{2^k} \tan \frac{x}{2^k} = \frac{1}{2^k} \cot \frac{x}{2^k} - \cot x$$

When $n = k + 1$, L.H.S. $= \frac{1}{2} \tan \frac{x}{2} + \frac{1}{2^2} \tan \frac{x}{2^2} + \dots + \frac{1}{2^k} \tan \frac{x}{2^k} + \frac{1}{2^{k+1}} \tan \frac{x}{2^{k+1}}$

$$= \frac{1}{2^{k+1}} \tan \frac{x}{2^{k+1}} + \frac{1}{2^k} \cot \frac{x}{2^k} - \cot x$$

$$= \frac{1}{2^k} \cdot \left(\frac{1}{2} \tan \frac{x}{2^{k+1}} \right) + \frac{1}{2^k} \cot \frac{x}{2^k} - \cot x$$

$$= \frac{1}{2^k} \cdot \left(\frac{1}{2} \cot \frac{x}{2^{k+1}} - \cot \frac{x}{2^k} \right) + \frac{1}{2^k} \cot \frac{x}{2^k} - \cot x, \text{ by (*)}$$

$$= \frac{1}{2^{k+1}} \cot \frac{x}{2^{k+1}} - \cot x = \text{R.H.S.}$$

It is also true for n = k + 1

By the principle of mathematical induction, the formula is true for all positive integer n.

5. Prove that
$$\sum_{r=1}^{n} \cot^{-1}(2r^2) = \tan^{-1}(2n+1) - \frac{1}{4}\pi = \sum_{r=1}^{n} \tan^{-1}(\frac{1}{2r^2})$$
 for all positive integer n .

$$\cot \theta = \frac{1}{\tan \theta} \Rightarrow \cot^{-1} x = \tan^{-1} \left(\frac{1}{x}\right)$$

$$\therefore \sum_{r=1}^{n} \cot^{-1}(2r^{2}) = \sum_{r=1}^{n} \tan^{-1}(\frac{1}{2r^{2}})$$

$$\tan^{-1}(2n+1) - \frac{1}{4}\pi = \tan^{-1}(2n+1) - \tan^{-1}1 = \tan^{-1}\frac{2n+1-1}{1+2n+1} = \tan^{-1}\frac{n}{n+1}$$

Let
$$P(n) = \sum_{r=1}^{n} \tan^{-1} \left(\frac{1}{2r^2} \right) = \tan^{-1} \frac{n}{n+1}$$
." for all positive integers n .

$$n = 1$$
, $\sum_{r=1}^{1} \tan^{-1} \left(\frac{1}{2r^2} \right) = \tan^{-1} \left(\frac{1}{2} \right) = \text{R.H.S.}$

Suppose
$$\sum_{r=1}^{k} \tan^{-1} \left(\frac{1}{2r^2} \right) = \tan^{-1} \frac{k}{k+1}$$

$$n = k + 1, \quad \sum_{r=1}^{k+1} \tan^{-1} \left(\frac{1}{2r^2} \right) = \sum_{r=1}^{k} \tan^{-1} \left(\frac{1}{2r^2} \right) + \tan^{-1} \frac{1}{2(k+1)^2} = \tan^{-1} \frac{k}{k+1} + \tan^{-1} \frac{1}{2(k+1)^2}$$
$$= \tan^{-1} \left(\frac{\frac{k}{k+1} + \frac{1}{2(k+1)^2}}{1 - \frac{k}{(k+1)} \cdot \frac{1}{2(k+1)^2}} \right) = \tan^{-1} \frac{(k+1)(2k^2 + 2k + 1)}{2k^3 + 6k^2 + 5k + 2} = \tan^{-1} \frac{k+1}{k+2}$$

It is also true for n = k + 1. By M.I., the formula is true for all positive integer n.