

Perception for Autonomous Systems 31392:

Edge Detection

Lecturer: Evangelos Boukas—PhD

- What is an Edge?
- Image Derivative
- Gradient
- Sobel
- Laplacian
- Canny

• What is and edge?

• What is and edge?

Edge Detection

- What is and edge?
- Derivative of an Image:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

extrema of derivative

• The gradient is a vector which points in the direction of most rapid change in intensity:

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$$

$$\nabla f = \left[\frac{\partial f}{\partial x}, 0 \right]$$

$$abla f = \left[0, rac{\partial f}{\partial y}\right]$$

$$\nabla f = \left[\frac{\partial f}{\partial x}, 0\right]$$
 $\nabla f = \left[0, \frac{\partial f}{\partial y}\right]$ $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
 \longrightarrow $\frac{\partial f}{\partial x} = f(x+1,y) - f(x,y)$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \longrightarrow \frac{\partial f}{\partial x} = f(x+1, y) - f(x, y)$$

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

• How would you define the 1D filter of the gradient:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \longrightarrow \frac{\partial f}{\partial x} = f(x+1, y) - f(x, y)$$

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

• How would you define the 1D filter of the gradient:

• The gradient is defined by its orientation:

$$\theta = \tan^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)$$

• and magnitude:

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

• Practically:

• Magnitude:

$$g = \sqrt{g_x^2 + g_y^2}$$

• Orientation:

$$\Theta = \tan^{-1} \left(\frac{g_y}{g_x} \right)$$

Sobel

I	2	1
0	0	0
-1	-2	-1

Scharr

3	0	-3
10	0	-10
3	0	-3

3	10	3
0	0	0
-3	-10	-3

Prewitt

Roberts

0	Ι	
-1	0	

Preprocessing to Edge Detection

 In reality derivatives are very prone to noise Consider the following example:

 To overcome this issue we can smooth the signal beforehand

Preprocessing to Edge Detection

 In reality derivatives are very prone to noise Consider the following example:

 To overcome this issue we can smooth the signal beforehand

Laplacian of Gaussian

•
$$\frac{\partial^2}{\partial x^2}(h \star f)$$

Canny Edge Detection

Example of a Complex system:

- Noise reduction
- Gradient calculation
- Non-maximum suppression
- Double threshold
- Edge Tracking by Hysteresis.

Perception for Autonomous Systems 31392:

Edge Detection

Lecturer: Evangelos Boukas—PhD