EEE109 Assignment 1 Chapter 1, 2, 3 and 5

- 1. A silicon semiconductor material is to be designed such that the majority carrier electron concentration is $n_o = 7 \times 10^{15} \text{ cm}^{-3}$.
 - (a) Should donor or acceptor impurity atoms be added to intrinsic silicon to achieve this electron concentration?
 - (b) What concentration of dopant impurity atoms is required?

In this silicon material, the minority carrier hole concentration is to be no larger than $p_o=10^6~{\rm cm}^{-3}$.

(c) Determine the maximum allowable temperature.

Hints: Try to use MATLAB to solve the equation, here are two useful functions in MATLAB:

https://ww2.mathworks.cn/help/symbolic/solve.html https://ww2.mathworks.cn/help/symbolic/vpa.html

2. Consider the Zener diode circuit shown in Figure 1. The Zener break-down voltage is $V_Z=5.6\,\mathrm{V}$ at $I_Z=0.1\,\mathrm{mA}$, and the incremental Zener resistance is $r_Z=10\,\Omega$.

Figure 1

- (a) Determine V_O with no load ($R_L=\infty$);
- (b) Find the change in the output voltage if V_{PS} changes by $\pm 1~\mathrm{V}$;
- (c) Find V_O if $V_{PS}=10~\mathrm{V}$ and $R_L=2~\mathrm{k}\Omega.$
- 3. For the input shown in Figure 2.1. Assume $V_{\gamma}=0.6~{
 m V}.$

- (a) Plot $v_{\it O}$ for Figure 2.2
- (b) Plot $v_{\it O}$ for Figure 2.3

4. In the circuit in Figure 3 the diodes have the piecewise linear parameters of $V_{\gamma}=0.6$ V and $r_{\gamma}=0$.

Figure 3

Calculate the output $V_{\mathcal{O}}$ and the diode currents $I_{\mathcal{D}1}$ and $I_{\mathcal{D}2}$ for the following input conditions:

(a)
$$V_1 = V_2 = 10 \text{ V};$$

(b)
$$V_1 = 10 \text{ V}, V_2 = 0;$$

(c)
$$V_1 = 10 \text{ V}, V_2 = 5$$
;

(d)
$$V_1 = 0, V_2 = 0;$$

- 5. The threshold voltage of each transistor in Figure 4.1-4.3 is $V_{TN}=0.4~{\rm V}$. Determine the region of operation of the transistor in
- (a) Figure 4.1;
- (b) Figure 4.2
- (c) Figure 4.3

- 6. Calculate the drain current in a PMOS transistor with parameters $V_{TP}=-0.5~{\rm V}, k_p'=50~\mu{\rm A/V^2}, W=12~\mu{\rm m}, L=0.8~\mu{\rm m},$ ($K_p=\frac{k_p'}{2}\cdot\frac{W}{L}$, this equation can be found from the textbook page 136, Equation (3.5(b))) and with applied voltages $V_{SG}=2~{\rm V}$ and
 - (a) $V_{SD} = 0.2 \text{ V}$;
 - (b) $V_{SD} = 0.8 \text{ V}$;
 - (c) $V_{SD} = 2.2 \text{ V}$;
 - (d) $V_{SD} = 3.2 \text{ V};$

7. An npn transistor with $\beta=80$ is connected in a common-base configuration as shown in Figure 5.

i igui e 3

- (a) The emitter is driven by a constant-current source with $I_E=1.2~{\rm mA}$. Determine I_B , I_C , α , and V_C .
- (b) Repeat part (a) for $I_E=0.80~\mathrm{mA}.$
- (c) Repeat parts (a) and for $\beta=120$.

8. Consider the circuit shown in Figure 6. $V_{EB}(\text{on}) = 0.7 \text{ V}$.

- (a) Determine R_{TH} , V_{TH} , I_{BQ} , I_{CQ} , and V_{ECQ} for $\beta=90$.
- (b) Determine the percent change in I_{CQ} and V_{ECQ} if β is changed to $\beta=150$.