KANGZE ZHENG

 \blacksquare zhengkz@mail2.sysu.edu.cn \cdot \bullet (+86) 132-428-12212 \cdot \bullet https://konzem.github.io

EDUCATION

Sun Yat-sen University, Guangzhou, China

Jun. 2024 (Expected)

Master in Computer Science and Technology; GPA: 4.0/4.0 (2/59)

Advisor: Prof. Yunong Zhang

Sun Yat-sen University, Guangzhou, China

Jun. 2021

Bachelor of Engineering in Computer Science and Technology; GPA: 3.9/4.0 (22/187)

RESEARCH EXPERIENCE AND PUBLICATIONS

Robust Model for Dynamic Convex Optimization

Dec. 2022 -- Jun. 2023

- Presented a model based on the augmented Lagrange method for dynamic convex optimization, which incorporated an integral term and nonlinear technique for better robustness.
- Proved that the presented model is able to completely adapt to an important kind of noises called errorrelated noise in this work.
- Proposed a model-free framework based on the presented model for a surgical manipulator (a UR5 manipulator equipped with a trocar as its end-effector) with the remote-center-of-motion constraint.

"Nonlinear Integral-Augmented Model for Dynamic Convex Optimization with Perturbance Considered" by **K. Zheng** and Y. Zhang, submitted to *IEEE Transactions on Cybernetics*.

Improvement on Existing Models for Solving Dynamic Nonlinear Equation Systems

Mar. 2022 -- Nov. 2022

- Reduced computational complexity from $O(mn^2)$ to O(mn), where m and n denote the numbers of equations and variables respectively.
- Accelerated the convergence rate of the proposed model by introducing nonlinear technique, leading to finite-time convergence.
- Derived a pseudoinverse-free controller from the proposed model for a UR5 manipulator to online solve the inverse kinematics problem.

"Low-Computational-Complexity Zeroing Neural Network Model for Solving Systems of Dynamic Nonlinear Equations" by **K. Zheng**, S. Li, and Y. Zhang, conditionally accepted by *IEEE Transactions on Automatic Control* as regular paper.

Design of Control Input for Multiple-Integrator System

Sept. 2021 -- Jan. 2022

- Designed control input for the triple-integrator system and generalized it for the multiple-integrator system.
- Proved that the control input could force the output of the noise-free integrator system to converge towards a reference trajectory globally and exponentially, and force the tracking error to converge within an error bound, under bounded-noise interference.

"Disturbed Zhang Dynamics Control for Triple-Integrator to Multiple-Integrator Systems: Design Formula Collection, Error Dynamics Equivalence, and Theoretical Analyses" by **K. Zheng**, C. Hu, Y. Zhang, and X. Kang, published in Proceedings of *Chinese Control Conference*, paper.

Online Solution to Dynamic Matrix Inversion

Jan. 2021 -- Jun. 2021

- Used the zeroing dynamics to easily acquire the Getz-Marsden dynamic system whose derivation had been relatively complicated initially.
- Derived two other effective continuous-time model for dynamic matrix inversion, through the combination of the zeroing dynamics and conventional gradient-based method.

"Three Different Continuous-Time GMDS-ZNN Models and Multiple-Instant Discrete-Time Ones for Time-Varying Matrix Inversion with Comparisons" by **K. Zheng** and Y. Zhang, published in Proceedings of *China Automation Congress*, paper.

Exploration of Time Discretization Formulas with Higher Precision Jul. 2019 -- Mar. 2020

• Proved the highest precision of 8-instant discretization formulas by both the Routh-Hurwitz stability criterion and Jury stability criterion.

"No 8-Instant ZTD (Zhang Time Discretization) Formula with Quintic Precision or Higher as Proved" by Y. Zhang, **K. Zheng**, and J. Guo, published in Proceedings of *China Automation Congress*, paper.

★ SCHOLARSHIP

• First-Prize Postgraduate Scholarship, Sun Yat-sen University (Top 30%)	2022
• Second-Prize undergraduate Scholarship, Sun Yat-sen University (Top 15%)	2020 & 2019
• Third-Prize Undergraduate Scholarship, Sun Yat-sen University (Top 30%)	2018

19 Honors and Awards

Outstanding Graduate of Sun Yat-sen University	2021
Second Prize of SYSU Collegiate Programming Contest	2018

♥ ACADEMIC SERVICE

Reviewer for International Conference on Information Science and Technology	2023
Teaching Assistant for Numerical Methods	Spring 2023
 Teaching Assistant for MATLAB Computation and Simulation 	Fall 2022

SKILLS

• Programming Languages: C, C++, Python, MATLAB

• Tools: LATEX, CMake, Git

TEST OF ENGLISH

• IELTS: 7.0/9.0 Aug. 2023