Probability distributions Lectures, questions only

Nicky van Foreest and Ruben van Beesten ${\bf February~4,\,2021}$

CONTENTS

Lecture	1	3
	Lecture	Lecture 1

2 Lecture 2 4

1 LECTURE 1

- **Ex 1.1.** Consider 12 football players on a football field. Eleven of them are players of FC Barcelone, the other one is an arbiter. We select a random player, uniform. This player must take a penalty. The probability that a player of Barcelone scores is 70%, for the arbiter it is 50%. Let $P \in \{A, B\}$ be r.v that corresponds to the selected player, and $S \in \{0, 1\}$ be the score.
 - 1. What is the PMF? In other words, determine $P\{P = B, S = 1\}$ and so on for all possibilities.
 - 2. What is $P\{S = 1\}$? What is $P\{P = B\}$?
 - 3. Show that S and P are dependent.

An insurance company receives on a certain day two claims $X, Y \ge 0$. We will find the PMF of the loss Z = X + Y under different assumptions.

The joint CDF $F_{X,Y}$ and joint PMF $p_{X,Y}$ are assumed known.

Ex 1.2. Why is it not interesting to consider the case $\{X = 0, Y = 0\}$?

Ex 1.3. Find an expression for the PMF of Z = X + Y.

Suppose $p_{X,Y}(i,j) = c I_{i=j} I_{1 \le i \le 4}$.

Ex 1.4. What is c?

Ex 1.5. What is $F_X(i)$? What is $F_Y(j)$?

Ex 1.6. Are *X* and *Y* dependent? If so, why, because $1 = F_{X,Y}(4,4) = F_X(4)F_Y(4)$?

Ex 1.7. What is $P\{Z = k\}$?

Ex 1.8. What is V[Z]?

Now take *X*, *Y* iid ~ Unif({1,2,3,4}) (so now no longer $p_{X,Y}(i,j) \neq I_{i=j}I_{1 \leq i \leq 4}$).

Ex 1.9. What is $P\{Z = 4\}$?

Remark 1.1. We can make lots of variations on this theme.

- 1. Let $X \in \{1,2,3\}$ and $Y \in \{1,2,3,4\}$.
- 2. Take $X \sim \text{Pois}(\lambda)$ and $Y \sim \text{Pois}(\mu)$. (Use the chicken-egg story)
- 3. We can make X and Y such that they are (both) continuous, i.e., have densities. The conceptual ideas¹ don't change much, except that the summations become integrals.
- 4. Why do people often/sometimes (?) model the claim sizes as iid $\sim \text{Norm}(\mu, \sigma^2)$? There is a slight problem with this model (can real claim sizes be negative?), but what is the way out?
- 5. The example is more versatile than you might think. Here is another interpretation.

A supermarket has 5 packets of rice on the shelf. Two customers buy rice, with amounts X and Y. What is the probability of a lost sale, i.e., $P\{X+Y>5\}$? What is the expected amount lost, i.e., $E[\max X+Y-5,0]$?

Here is yet another. Two patients arrive in to the first aid of a hospital. They need X and Y amounts of service, and there is one doctor. When both patients arrive at 2 pm, what is the probability that the doctor has work in overtime (after 5 pm), i.e., $P\{X + Y > 5 - 2\}$?

 $^{^{\,\,1}\,}$ Unless you start digging deeper. Then things change drastically, but we skip this technical stuff.

2 LECTURE 2

Read the problems of memoryless_excursions.pdf. All the problems in that document relate to topics discussed in Sections BH.7.1 and BH.7.2, and quite a lot of topics you have seen in the previous course on probability theory.