# Conjugate (dual) sets and functions Mathematical Optimization

Georgiy Kormakov

CMC MSU

13 March 2024





## **Definitions**

#### Conjugate set

Let  $X \subseteq \mathbb{R}^n$  be an arbitrary nonempty set. Then the set

$$X^* = \{ y \in \mathbb{R}^n \mid \langle y, x \rangle \geqslant -1 \quad \forall x \in X \}$$

is called *conjugate* (dual) to X.



#### **Definitions**

#### Conjugate set

Let  $X \subseteq \mathbb{R}^n$  be an arbitrary nonempty set. Then the set

$$X^* = \{ y \in \mathbb{R}^n \mid \langle y, x \rangle \geqslant -1 \quad \forall x \in X \}$$

is called *conjugate* (dual) to X.

- ① The sets  $X_1$  and  $X_2$  are called mutually conjugate (взаимносопряжёнными) if  $X_1^*=X_2$  and  $X_2^*=X_1$
- 2 A set X is called self-conjugate if  $X^* = X$
- **3** Set  $X^{**} = \{x \in \mathbb{R}^n \mid \langle y, x \rangle \geqslant -1 \quad \forall y \in X^* \}$  is called *the second conjugate* to X.

•  $X^*$  is always closed, convex and contains a point  $0_n$ 



Georgiy Kormakov

Seminar 4

13 March 2024

- $X^*$  is always closed, convex and contains a point  $0_n$
- For an arbitrary set  $X \subset \mathbb{R}^n$

$$X^{**} = cl(conv(X \cup \{0_n\}))$$

Georgiy Kormakov

Seminar 4

- $X^*$  is always closed, convex and contains a point  $0_n$
- For an arbitrary set  $X \subset \mathbb{R}^n$

$$X^{**} = cl(conv(X \cup \{0_n\}))$$

• If the set  $X \subset \mathbb{R}^n$  is convex and closed, and also contains the point  $0_n$ , then  $X^{**} = X$ 

- $X^*$  is always closed, convex and contains a point  $0_n$
- For an arbitrary set  $X \subset \mathbb{R}^n$

$$X^{**} = cl(conv(X \cup \{0_n\}))$$

- If the set  $X \subset \mathbb{R}^n$  is convex and closed, and also contains the point  $0_n$ , then  $X^{**} = X$
- $\left(\bigcup_{i=1}^m X_i\right)^* = \bigcap_{i=1}^m X_i^*$

3/16

Georgiy Kormakov Seminar 4

- $X^*$  is always closed, convex and contains a point  $0_n$
- For an arbitrary set  $X \subset \mathbb{R}^n$

$$X^{**} = cl(conv(X \cup \{0_n\}))$$

- If the set  $X \subset \mathbb{R}^n$  is convex and closed, and also contains the point  $0_n$ , then  $X^{**} = X$
- $\left(\bigcup_{i=1}^m X_i\right)^* = \bigcap_{i=1}^m X_i^*$
- $X^* = (cIX)^*$



# Example on conjugate ball. Dual norm

#### Definition

Let  $\|\cdot\|$  be the norm in direct space. Then the *Dual norm* is:

$$||y||_* = \sup_{||x|| \le 1} \langle x, y \rangle.$$

Q: Do you remember any properties?



Georgiy Kormakov

Seminar 4

# Example on conjugate ball. Dual norm

#### **Definition**

Let  $\|\cdot\|$  be the norm in direct space. Then the *Dual norm* is:

$$||y||_* = \sup_{||x|| \le 1} \langle x, y \rangle.$$

Q: Do you remember any properties? The Hoelder inequality (or also CBS)

$$|\langle x, y \rangle| \leq ||x||_p ||y||_q$$

Let  $B_{\|\cdot\|}(0,r) = \{x \in \mathbb{R}^n : \|x\| \leqslant r\}$  be a closed ball with center 0 and radius r according to the norm  $\|\cdot\|$ . Prove that  $(B_{\|\cdot\|}(0,r))^* = B_{\|\cdot\|_*}(0,1/r)$ .

$$\subset$$
 CBS for  $x : -\langle x, y \rangle \leq ||x|| ||y||_* \geq r ||y||_*$ 

## Definition

## Proposition

Let K be a cone in  $\mathbb{R}^n$ . Then

$$K^* = \{ y \in \mathbb{R}^n \mid \langle y, x \rangle \geqslant 0 \quad \forall x \in K \}$$

Q: What is the difference?

## Definition

#### Proposition

Let K be a cone in  $\mathbb{R}^n$ . Then

$$K^* = \{ y \in \mathbb{R}^n \mid \langle y, x \rangle \geqslant 0 \quad \forall x \in K \}$$

Q: What is the difference?

$$K^* = \{ y \in \mathbb{R}^n \mid \langle y, x \rangle \geqslant -1 \quad \forall x \in K \} \text{ VS}$$

$$\tilde{K} = \{ y \in \mathbb{R}^n \mid \langle y, x \rangle \geqslant 0 \quad \forall x \in K \}$$

# Geometrical interpretation

#### Properties of dual cones:

K\* convex and closed

#### Properties of dual cones:

- K\* convex and closed
- if  $K_1 \subseteq K_2$ , then  $K_2^* \subseteq K_1^*$

#### Properties of dual cones:

- K\* convex and closed
- if  $K_1 \subseteq K_2$ , then  $K_2^* \subseteq K_1^*$
- If K has non-empty interior, then  $K^*$  is a pointed cone
- If cl(K) is a pointed cone, then  $K^*$  has non-empty interior

#### Properties of dual cones:

- K\* convex and closed
- if  $K_1 \subseteq K_2$ , then  $K_2^* \subseteq K_1^*$
- If K has non-empty interior, then K\* is a pointed cone
- If cl(K) is a pointed cone, then  $K^*$  has non-empty interior
- If K is a convex and closed cone, then  $K^{**} = K$

• A non-negative orthant  $K = \mathbb{R}^n_+$  is a self-conjugate cone.

- A non-negative orthant  $K = \mathbb{R}^n_+$  is a self-conjugate cone.
- The set of symmetric positive semidefinite matrices  $\mathbb{S}^n_+$  is a self-conjugate cone in the space  $\mathbb{S}^n$ .

- A non-negative orthant  $K = \mathbb{R}^n_+$  is a self-conjugate cone.
- The set of symmetric positive semidefinite matrices  $\mathbb{S}^n_+$  is a self-conjugate cone in the space  $\mathbb{S}^n$ .

$$K^* = \{ Y \in \mathbb{S}^n \mid \langle X, Y \rangle \geqslant 0 \quad \forall X \in \mathbb{S}^n_+ \}.$$

- A non-negative orthant  $K = \mathbb{R}^n_+$  is a self-conjugate cone.
- The set of symmetric positive semidefinite matrices  $\mathbb{S}^n_+$  is a self-conjugate cone in the space  $\mathbb{S}^n$ .

$$K^* = \{ Y \in \mathbb{S}^n \mid \langle X, Y \rangle \geqslant 0 \quad \forall X \in \mathbb{S}^n_+ \}.$$

$$\operatorname{Tr}(YX) = \operatorname{Tr}\left(\left(Y\sum_{i=1}^{n} \lambda_{i}q_{i}q_{i}^{\top}\right)\right) = \sum_{i=1}^{n} \lambda_{i}q_{i}^{\top}Yq_{i} \geqslant 0.$$

## Semidefinite matrix in real space

What if

$$\hat{K} = \left\{ Y \in \mathbb{R}^{n \times n} \mid \langle X, Y \rangle \geq 0 \quad \forall X \in \mathbb{S}^n_+ \right\} ?$$

## Semidefinite matrix in real space

What if

$$\hat{K} = \{ Y \in \mathbb{R}^{n \times n} \mid \langle X, Y \rangle \geqslant 0 \quad \forall X \in \mathbb{S}_+^n \} ?$$

$$\mathcal{P}_{+} = \{ Y \in \mathbb{R}^{n \times n} \mid \langle Yv, v \rangle \geqslant 0 \quad \forall v \in \mathbb{R}^{n} \}.$$

## Semidefinite matrix in real space

What if

$$\hat{K} = \{ Y \in \mathbb{R}^{n \times n} \mid \langle X, Y \rangle \geqslant 0 \quad \forall X \in \mathbb{S}^n_+ \} ?$$

$$\mathcal{P}_{+} = \{ Y \in \mathbb{R}^{n \times n} \mid \langle Yv, v \rangle \geqslant 0 \quad \forall v \in \mathbb{R}^{n} \}.$$

$$\operatorname{Tr}(YX) = \operatorname{Tr}\left(Y\sum_{i=1}^{n} \lambda_{i}q_{i}q_{i}^{\top}\right) = \sum_{i=1}^{n} \lambda_{i}q_{i}^{\top}Yq_{i} \geqslant 0.$$

## Lorentz cone

#### Lorentz cone

For 
$$K = \{(x, t) \in \mathbb{R}^{n+1} \mid ||x|| \leqslant t\}$$
 the dual cone is  $K^* = \{(u, v) \in \mathbb{R}^{n+1} \mid ||u||_* \leqslant v\}.$ 

#### Lorentz cone

#### Lorentz cone

For  $K = \{(x, t) \in \mathbb{R}^{n+1} \mid ||x|| \le t\}$  the dual cone is  $K^* = \{(u, v) \in \mathbb{R}^{n+1} \mid ||u||_* \le v\}.$ 

$$K^* = \{(u, v) \in \mathbb{R}^{n+1} \mid \langle x, u \rangle + tv \geqslant 0 \quad \forall x : ||x|| \leqslant t\}.$$

## Definition

#### **Dual function**

Let  $f: \mathbb{R}^n \to \mathbb{R}$ . Function  $f^*: \mathbb{R}^n \to R$  defined as

$$f^*(y) = \sup_{x \in \mathbb{R}^n} \{ \langle x, y \rangle - f(x) \}$$

is called the dual (conjugate) function of f.

## Definition

#### **Dual function**

Let  $f: \mathbb{R}^n \to \mathbb{R}$ . Function  $f^*: \mathbb{R}^n \to R$  defined as

$$f^*(y) = \sup_{x \in \mathbb{R}^n} \{ \langle x, y \rangle - f(x) \}$$

is called the dual (conjugate) function of f.

## Example

Find the conjugate function to the linear function  $f(x) = \langle a, x \rangle + b$ , where  $x \in \mathbb{R}^n$ .

- $f^*$  is always a convex and closed function, since it is the supremum of affine functions (they are convex and closed).
- **2** (Fenhel-Moreau theorem) If f(x) is a convex, closed, eigenfunction, then  $f^{**} = f$ .

- $f^*$  is always a convex and closed function, since it is the supremum of affine functions (they are convex and closed).
- **2** (Fenhel-Moreau theorem) If f(x) is a convex, closed, eigenfunction, then  $f^{**} = f$ .
- **3** For separable function  $f(x, y) = f_1(x) + f_2(y)$  and convex  $f_1, f_2, f^*(p, q) = f_1^*(p) + f_2^*(q)$

# One more simple example

#### Example

Find the conjugate function to the exponential  $f(x) = e^x$ , where  $x \in \mathbb{R}$ .

## Example

Find the conjugate function to  $f(x) = \log \left( \sum_{i=1}^{n} e^{x_i} \right)$ , where  $x \in \mathbb{R}^n$ .

## Example

Find the conjugate function to  $f(x) = \log \left( \sum_{i=1}^{n} e^{x_i} \right)$ , where  $x \in \mathbb{R}^n$ .

$$\nabla_{x}(x^{\top}y - f(x)) = 0 \Rightarrow y_{i} = \frac{e^{x_{i}}}{\sum_{i=1}^{n} e^{x_{i}}}, \quad i = 1, \dots, n.$$

## Example

Find the conjugate function to  $f(x) = \log \left( \sum_{i=1}^{n} e^{x_i} \right)$ , where  $x \in \mathbb{R}^n$ .

$$\nabla_{x}(x^{\top}y - f(x)) = 0 \Rightarrow y_{i} = \frac{e^{x_{i}}}{\sum_{j=1}^{n} e^{x_{j}}}, \quad i = 1, \dots, n.$$

$$\log y_i = x_i - \log \left( \sum_{i=1}^n e^{x_i} \right) = x_i - f(x).$$

## Example

Find the conjugate function to  $f(x) = \log \left( \sum_{i=1}^{n} e^{x_i} \right)$ , where  $x \in \mathbb{R}^n$ .

$$\nabla_{x}(x^{\top}y - f(x)) = 0 \Rightarrow y_{i} = \frac{e^{x_{i}}}{\sum_{j=1}^{n} e^{x_{j}}}, \quad i = 1, \dots, n.$$

$$\log y_{i} = x_{i} - \log \left(\sum_{j=1}^{n} e^{x_{j}}\right) = x_{i} - f(x).$$

$$f^{*}(y) = \sum_{i=1}^{n} y_{i}(\log y_{i} + f(x)) - f(x) = \sum_{i=1}^{n} y_{i}\log y_{i},$$

 Georgiy Kormakov
 Seminar 4
 13 March 2024
 15 / 16

## Dual function for norm

## Example

Let  $\|\cdot\|$  be the norm for  $\mathbb{R}^n$ , and  $\|\cdot\|_*$  be the dual norm. Prove that the conjugate function for  $f(x) = \|x\|$  is  $f^*(y) = 0$  with the domain of definition  $dom f^* = B_{\|\cdot\|_*}(0,1)$ .

## Dual function for norm

## Example

Let  $\|\cdot\|$  be the norm for  $\mathbb{R}^n$ , and  $\|\cdot\|_*$  be the dual norm. Prove that the conjugate function for  $f(x) = \|x\|$  is  $f^*(y) = 0$  with the domain of definition  $dom f^* = B_{\|\cdot\|_*}(0,1)$ .

$$||y||_* > 1$$
:

$$||y||_* \leq 1:$$