Show all necessary work neatly.

1–6 Use the difference $a_{n+1} - a_n$ to show that the given sequence $\{a_n\}$ is strictly increasing or strictly decreasing.

3.	$\begin{bmatrix} n \end{bmatrix}$	+∞
	$\left[\frac{2n+1}{2}\right]$	$\Big _{n=1}$

5. $\{n-2^n\}_{n=1}^{+\infty}$

7–12 Use the ratio a_{n+1}/a_n to show that the given sequence $\{a_n\}$ is strictly increasing or strictly decreasing.

9.
$$\{ne^{-n}\}_{n=1}^{+\infty}$$

11. $\left\{\frac{n^n}{n!}\right\}_{n=1}^{+\infty}$

13-18 Use differentiation to show that the given sequence is strictly increasing or strictly decreasing.

$$\left\{\frac{1}{n+\ln n}\right\}_{n=1}^{\infty}$$

 $\left\{\frac{\ln(n+2)}{n+2}\right\}_{n=1}^{+\infty}$

Show that the given sequence is eventually strictly increasing or eventually strictly decreasing.

23.	[n!]	+∞
23.	$\overline{3^n}$	$\Big _{n=1}$

25.

Suppose that $\{a_n\}$ is a monotone sequence such that $1 \le a_n \le 2$ for all n. Must the sequence converge? If so, what can you say about the limit?

Suppose that $\{a_n\}$ is a monotone sequence such that $a_n \le 2$ for all n. Must the sequence converge? If so, what can you say about the limit?

27.

The goal of this exercise is to establish Formula (5), namely,

$$\lim_{n \to +\infty} \frac{x^n}{n!} = 0$$

Let $a_n = |x|^n/n!$ and observe that the case where x = 0 is obvious, so we will focus on the case where $x \neq 0$.

(a) Show that

$$a_{n+1} = \frac{|x|}{n+1} a_n$$

(c) Show that the sequence $\{a_n\}$ converges.

(d) Use the results in parts (a) and (c) to show that $a_n \to 0$ as $n \to \infty$

(e) Obtain Formula (5) from the result in part (d).

(b) Show that the sequence $\{a_n\}$ is eventually strictly decreasing.