Module 4

Submitted by: Anirban Nath

Register number: 20242019

ODE PART

Question 1 to 4.

Question 5.

```
PS E:\computational_physics\Module_4> cd "e:\computational_physics\Module_4\"; if ($?) { gfortran
question_5_7.f90 -o question_5_7 }; if ($?) { .\question_5_7 }
The value of x after 5000 iterations is = -1.4308465704154238
x 0, v 0 and dt are 0.100000000000000001
                                                1.899999999999999
                                                                          1.0000000000000000E-002
The value of x after 5000 iterations is = 2.8762724441638219
                      0.00000000000000000
x 0, v 0 and dt are
                                                1.99900000000000001
                                                                          1.0000000000000000E-002
The value of x after 5000 iterations is = -3.0196973541066394
                      0.000000000000000000
x 0, v 0 and dt are
                                                1.99900000000000001
                                                                          1.0000000000000000E-003
 The value of x after 5000 iterations is =
                                            82.917683063967161
x 0, v 0 and dt are
                      0.00000000000000000
                                                 2,29999999999998
                                                                          1.0000000000000000E-002
```


Question 6.

Question 7.

The solution looks very different because the initial velocity is more than the critical velocity, thus the bob of the pendulum goes past the extremum point.

Question 8.

```
PS E:\computational_physics\Module_4> cd "e:\computational_physics\Mo
dule_4\" ; if ($?) { gfortran question_8.f90 -o question_8 } ; if ($?
) { .\question_8 }

Number of iterations required = 2001
Position of particle 1 at the end of t=40 is -0.12529609342239922
```

Question 9.

```
PS E:\computational_physics\Module_4> cd "e:\computational_physics\Module_4\"; if (\$?) { gfortran question_9.f90 -o question_9 }; if (\$?) { .\question_9 }

Number of iterations required = 4051

y(0.8) = 0.28147010284959123
```


PDE PART

Question 3.

```
PS E:\computational_physics\Module_4> cd "e:\computational_physics\Module_4\"; if ($?) { gfortran pde_question_3_extra.f90 -o pde_question_3_extra }; if ($?) { .\pde_question_3_extra }

Number of iterations required (68 X 68 lattice) = 1944

Temperature(40,40) = 1.7372231464403809

PS E:\computational_physics\Module_4> cd "e:\computational_physics\Module_4\"; if ($?) { gfortran pde_question_3.f90 -o pde_question_3 }

if ($?) { .\pde_question_3 }

Number of iterations required (34 X 34 lattice)= 626

Temperature(20,20) = 1.7899564249866708
```


T(x,y) in a 34 x 34 lattice with Dirichlet b.c.

T(x,y) in a 68 x 68 lattice with Dirichlet b.c.

Question 4.

```
PS E:\computational_physics\Module_4> cd "e:\computational_physics\Module_4\"; if ($?) { gfortran pde_question_4.f90 -o pde_question_4 }; if ($?) { .\pde_question_4 }

Number of iterations required (34 X 34 lattice) = 2368

Temperature(10,10) = 1550.0072081540266

PS E:\computational_physics\Module_4> cd "e:\computational_physics\Module_4\"; if ($?) { gfortran pde_question_4_extra.f90 -o pde_question_4_extra }; if ($?) { .\pde_question_4_extra }

Number of iterations required (68 X 68 lattice) = 9005

Temperature(20,20) = 1050.0299314744286
```


T(x,y) in a 34 x 34 lattice with Cauchy/Neumann b.c.

T(x,y) in a 68 x 68 lattice with Cauchy/Neumann b.c.

