EXERCICE A 5 points

Principaux domaines abordés

Logarithme

Dérivation, convexité, limites

Sur le graphique ci-dessous, on a représenté dans un repère orthonormé:

- la courbe représentative \mathscr{C}_f d'une fonction f définie et dérivable sur]0; $+\infty$ [;
- la tangente \mathcal{T}_A à la courbe \mathscr{C}_f au point A de coordonnées $\left(\frac{1}{\mathrm{e}}\;;\;\mathrm{e}\right)$;
- la tangente \mathcal{T}_B à la courbe \mathscr{C}_f au point B de coordonnées (1; 2).

La droite \mathcal{T}_A est parallèle à l'axe des abscisses. La droite \mathcal{T}_B coupe l'axe des abscisses au point de coordonnées (3; 0) et l'axe des ordonnées au point de coordonnées (0; 3).

On note f' la fonction dérivée de f.

PARTIE I

- 1) Déterminer graphiquement les valeurs de $f'\left(\frac{1}{e}\right)$ et de f'(1).
- **2)** En déduire une équation de la droite \mathcal{T}_B .

PARTIE II

On suppose maintenant que la fonction f est définie sur]0; $+\infty[$ par :

$$f(x) = \frac{2 + \ln(x)}{x}.$$

- 1) Par le calcul, montrer que la courbe \mathscr{C}_f passe par les points A et B et qu'elle coupe l'axe des abscisses en un point unique que l'on précisera.
- 2) Déterminer la limite de f(x) quand x tend vers 0 par valeurs supérieures, et la limite de f(x) quand x tend vers
- **3)** Montrer que, pour tout $x \in]0$; $\infty[$,

$$f'(x) = \frac{-1 - \ln(x)}{x^2}.$$

4) Dresser le tableau de variations de f sur]0; $+\infty[$.

5) On note f'' la fonction dérivée seconde de f On admet que, pour tout $x \in]0$; $+\infty[$

$$f''(x) = \frac{1 + 2\ln(x)}{x^3}.$$

Déterminer le plus grand intervalle sur lequel f est convexe.

EXERCICE A exercice au choix 5 points

Principaux domaines abordés

Logarithme

Dérivation, convexité, limites

Sur le graphique ci-dessous, on a représenté dans un repère orthonormé :

- la courbe représentative \mathscr{C}_f d'une fonction f définie et dérivable sur]0; $+\infty[$;
- la tangente \mathcal{T}_A à la courbe \mathscr{C}_f au point A de coordonnées $\left(\frac{1}{\mathrm{e}}\;;\;\mathrm{e}\right);$
- la tangente \mathcal{T}_B à la courbe \mathcal{C}_f au point B de coordonnées (1; 2).

La droite \mathcal{T}_A est parallèle à l'axe des abscisses. La droite \mathcal{T}_B coupe l'axe des abscisses au point de coordonnées (3; 0) et l'axe des ordonnées au point de coordonnées (0; 3).

On note f' la fonction dérivée de f.

PARTIE I

1) • La droite \mathscr{T}_A est tangente à la courbe \mathscr{C}_f au point A de coordonnées $\left(\frac{1}{e}; e\right)$; elle a donc comme coefficient directeur $f'\left(\frac{1}{e}\right)$.

La droite \mathcal{T}_A est parallèle à l'axe des abscisses donc son coefficient directeur est nul.

On peut donc déduire que $f'\left(\frac{1}{e}\right) = 0$.

• La droite \mathcal{T}_B est tangente à la courbe \mathcal{C}_f au point B de coordonnées (1; 2), donc elle a pour coefficient directeur f'(1).

La droite \mathcal{T}_B coupe l'axe des abscisses au point de coordonnées (3; 0) et l'axe des ordonnées au point de coordonnées (0; 3), donc on peut en déduire que son coefficient directeur est $\frac{3-0}{0-3} = -1$.

On a donc f'(1) = -1.

2) La droite \mathcal{T}_B a pour coefficient directeur -1 et 3 pour ordonnée à l'origine, donc elle a pour équation : y = -x + 3.

PARTIE II

On suppose maintenant que la fonction f est définie sur]0; $+\infty[$ par : $f(x) = \frac{2 + \ln(x)}{x}$.

1) •
$$f\left(\frac{1}{e}\right) = \frac{2 + \ln\left(\frac{1}{e}\right)}{\frac{1}{e}} = e (2 - \ln(e)) = = e (2 - 1) = e \text{ donc } A \in \mathcal{C}_f.$$

•
$$f(1) = \frac{2 + \ln(1)}{1} = 2 \text{ donc } B \in \mathscr{C}_f$$
.

• La courbe \mathscr{C}_f coupe l'axe des abscisses en un point dont l'abscisse est solution de l'équation f(x) = 0. On résout dans]0; $+\infty[$ cette équation.

$$f(x) = 0 \iff \frac{2 + \ln(x)}{x} = 0 \iff 2 + \ln(x) = 0 \iff \ln(x) = -2 \iff x = e^{-2}$$

Donc la courbe \mathscr{C}_f coupe l'axe des abscisses en un point unique de coordonnées (e⁻²; 0).

2) Calculs des limites.

$$\lim_{\substack{x \to 0 \\ x > 0}} (2 + \ln(x)) = -\infty$$

$$\lim_{\substack{x \to 0 \\ x > 0}} \frac{1}{x} = +\infty$$

$$\lim_{\substack{x \to 0 \\ x > 0}} \frac{1}{x} = +\infty$$

$$\lim_{\substack{x \to 0 \\ x > 0}} \frac{1}{x} = +\infty$$

$$\lim_{\substack{x \to 0 \\ x > 0}} \frac{1}{x} = -\infty \operatorname{donc} \lim_{\substack{x \to 0 \\ x > 0}} f(x) = -\infty$$

$$\lim_{\substack{x \to 0 \\ x > 0}} \frac{1}{x} = 0$$

$$\lim_{\substack{x \to +\infty \\ x \to 0}} \frac{1}{x} = 0$$

$$\lim_{\substack{x \to +\infty \\ x \to 0}} \frac{1}{x} = 0$$

$$\lim_{\substack{x \to +\infty \\ x \to 0}} \frac{1}{x} = 0$$

$$\lim_{\substack{x \to +\infty \\ x \to 0}} \frac{1}{x} = 0$$

$$\lim_{\substack{x \to +\infty \\ x \to 0}} \frac{1}{x} = 0$$

3) Pour
$$x \in]0$$
; $\infty[$, $f'(x) = \frac{\frac{1}{x} \times x - (2 + \ln(x)) \times 1}{x^2} = \frac{1 - 2 - \ln(x)}{x^2} = \frac{-1 - \ln(x)}{x^2}$.

4) f'(x) est du signe de $-1 - \ln(x)$; $-1 - \ln(x) > 0 \iff -1 > \ln(x) \iff x < e^{-1}$

On dresse le tableau de variations de f sur]0; $+\infty$ [:

5) On admet que, pour tout $x \in]0$; $+\infty[$, $f''(x) = \frac{1 + 2\ln(x)}{x^3}$.

La fonction f est convexe sur les intervalles sur lesquels f'' est positive.

Sur]0; $+\infty$, $x^3 > 0$ donc

$$f''(x) \ge 0 \iff \frac{1 + 2\ln(x)}{x^3} \ge 0 \iff 1 + 2\ln(x) \ge 0 \iff \ln(x) \ge -\frac{1}{2} \iff x \ge e^{-\frac{1}{2}}$$

Donc le plus grand intervalle sur lequel la fonction f est convexe est $\left[e^{-\frac{1}{2}} ; +\infty \right[$.