DS n°6 (le 10/02/2018)

SUJET n°1 (1 exercice et 1 problème)

EXERCICE (extrait de E3A PC 2017)

On rappelle que $\mathcal{M}_{p,q}(\mathbb{R})$ où $(p, q) \in \mathbb{N}^* \times \mathbb{N}^*$ désigne le \mathbb{R} -espace vectoriel des matrices à p lignes et q colonnes. On note $\mathcal{M}_p(\mathbb{R})$ au lieu de $\mathcal{M}_{p,p}(\mathbb{R})$.

Soient
$$U_0 = \begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix}$$
 et $V_0 = \begin{pmatrix} -1 \\ -1 \\ 1 \\ -1 \end{pmatrix}$ et $A_0 = U_0^t V_0$.

- 1. Calculer A_0 . Quel est le rang de A_0 ?
- 2. Justifier que 0 est valeur propre de A_0 puis déterminer une base du sous-espace propre associé.
- **3.** a) Calculer A_0U_0 .
 - **b)** Montrer que A_0 est diagonalisable dans $\mathcal{M}_4(\mathbb{R})$.
 - c) Déterminer une matrice diagonale D de $\mathcal{M}_4(\mathbb{R})$ et une matrice inversible P de $\mathcal{M}_4(\mathbb{R})$ telles que $A_0 = PDP^{-1}$.

PROBLÈME (E3A PC 2017, 3 heures)

Partie I

- **I.1)** a) Calculer $f(t) = \int_0^1 e^{-ts} ds$ pour $t \in \mathbb{R}$, si t = 0 puis $t \neq 0$.
 - b) Montrer que f est une application continue sur $\mathbb R$ et établit une bijection de $\mathbb R$ sur un intervalle à préciser.
 - c) Montrer que f est développable en série entière, et donner son développement.
- **I.2)** Pour $x \in \mathbb{R}$, soit $S(x) = \int_0^x f(t) dt$.
 - a) Montrer que S est développable en série entière, et donner son développement.
 - b) Justifier l'égalité:

$$\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n(n!)} = \int_0^1 \frac{1 - e^{-t}}{t} dt.$$

- **I.3) a)** Pour tout x > 0, justifier l'existence de $R(x) = \int_{x}^{+\infty} \frac{e^{-t}}{t} dt$.
 - **b)** On pose $\gamma = S(1) R(1) = \int_0^1 \frac{1 e^{-t}}{t} dt \int_1^{+\infty} \frac{e^{-t}}{t} dt$. Justifier l'égalité :

$$\gamma = -\int_0^{+\infty} \ln(t) e^{-t} dt.$$

c) Montrer que R est de classe \mathscr{C}^1 sur \mathbb{R}_+^* , donner une relation entre R'(x) et R(x) pour x > 0, et justifier que :

$$S(x) = R(x) + \ln(x) + \gamma.$$

I.4) a) Pour x > 0 et $n \in \mathbb{N}^*$, soit : $g_n(x) = \sum_{k=1}^n \frac{x^k}{k} - \int_1^n \frac{x^t}{t} dt$.

Pour tout $x \in]0; 1[$, justifier l'existence de $g(x) = \sum_{k=1}^{+\infty} \frac{x^k}{k} - \int_1^{+\infty} \frac{x^t}{t} dt$, et prouver que, pour tout $n \in \mathbb{N}^*$:

$$0 \leqslant g_n(x) - g(x) \leqslant \frac{x^n}{n}$$
.

- b) Prouver que la suite de fonctions $(g_n)_{n\in\mathbb{N}^*}$ converge uniformément vers g sur]0;1[.
- c) Montrer que les fonctions g_n $(n \in \mathbb{N}^*)$ sont continues sur \mathbb{R}_+^* .
- d) En remarquant, après l'avoir justifié, que $\lim_{n\to +\infty}g_n(1)=\lim_{x\to 1^-}g(x)$, montrer que :

$$\gamma = S(1) - R(1) = \lim_{n \to +\infty} \left(\sum_{k=1}^{n} \frac{1}{k} - \ln(n) \right).$$

- **I.5)** Soient a > 0 et b > 0. En utilisant R(ax) R(bx), calculer $\int_0^{+\infty} \frac{e^{-at} e^{-bt}}{t} dt$.
- **I.6) a)** Montrer que, pour tout x > 0 on a : $R(x) \leqslant \frac{e^{-x}}{x}$, puis que $\lim_{x \to +\infty} xR(x) = 0$.
 - b) Au moyen d'une intégration par parties, prouver que R est intégrable sur \mathbb{R}_+^* et que

$$\int_0^{+\infty} R(x) \, \mathrm{d}x = 1.$$

Partie II

- II.1) a) Pour $n \in \mathbb{N}$, montrer l'existence de $I_n = \int_0^{+\infty} t^n e^{-t} dt$.
 - b) Trouver une relation entre I_n et I_{n+1} et en déduire la valeur de I_n .
- II. 2) On considère l'espace vectoriel $\mathbb{R}_2[X]$ des polynômes réels de degré ≤ 2 . À tout $P \in \mathbb{R}_2[X]$ on associe T(P) tel que :

$$\forall x \in \mathbb{R}, \ T(P)(x) = \int_0^{+\infty} e^{-t} P(x+t) dt.$$

- a) Montrer que T est un endomorphisme de $\mathbb{R}_2[X]$ et écrire sa matrice M dans la base $\mathscr{B} = (1, X, X^2)$.
- b) Étudier si M est diagonalisable dans $\mathcal{M}_3(\mathbb{R})$.
- II.3) Soit $n \in \mathbb{N}$ et $\mathbb{R}_n[X]$ l'espace vectoriel des polynômes réels de degré $\leq n$. On note D l'endomorphisme de $\mathbb{R}_n[X]$ associant à tout polynôme P son polynôme dérivé P'.
 - a) Soit $P \in \mathbb{R}_n[X]$ et $(x,t) \in \mathbb{R}^2$.

Déterminer les réels $b_0(x), \ldots, b_n(x)$ tels que $P(x+t) = \sum_{k=0}^{n} t^k b_k(x)$.

Indication: on pourra citer et utiliser une formule de Taylor.

b) À tout $P \in \mathbb{R}_n[X]$ on associe T(P) tel que :

$$\forall x \in \mathbb{R}, \ T(P)(x) = \int_0^{+\infty} e^{-t} P(x+t) dt.$$

Montrer que T est un endomorphisme de $\mathbb{R}_n[X]$ et déterminer des réels a_0, \ldots, a_n tels que pour tout $P \in \mathbb{R}_n[X]$ on ait : $T(P) = \sum_{k=0}^n a_k D^k(P)$.

c) Déterminer les éléments propres de T (valeurs propres et vecteurs propres).

II.4) Soit $g: \mathbb{R} \to \mathbb{R}$ une fonction continue et bornée. On considère l'équation différentielle sur $\mathbb{R}: y'-y+g=0$.

Justifier que la solution générale est de la forme $y \colon x \mapsto k e^x + e^x \int_x^{+\infty} e^{-t} g(t) dt$, $k \in \mathbb{R}$.

- **II.5)** Soit $g: \mathbb{R} \to \mathbb{R}$ continue et bornée, et soit $N_{\infty}(g) = \sup\{|g(t)|, t \in \mathbb{R}\}.$
 - a) On définit $T_g : \mathbb{R} \to \mathbb{R}$ par :

$$\forall x \in \mathbb{R}, \ T_g(x) = \int_0^{+\infty} e^{-t} g(x+t) dt.$$

Justifier qu'alors $T_g(x) = e^x \int_x^{+\infty} e^{-u} g(u) du$, et que T_g est de classe \mathscr{C}^1 sur \mathbb{R} en précisant $(T_g)'$ en fonction de T_g et de g.

- b) En supposant g non nulle, déterminer s'il existe $\lambda \in \mathbb{R}$ tel que $T_g = \lambda g$.
- c) Montrer que T_g est bornée sur \mathbb{R} et majorer $N_{\infty}(T_g)$ au moyen de $N_{\infty}(g)$.
- d) On note E l'espace vectoriel des applications continues et bornées de \mathbb{R} dans \mathbb{R} . Montrer que l'application $T \colon g \mapsto T_g$ est un endomorphisme continu de l'espace vectoriel normé (E, N_{∞}) .
- e) Montrer que si g tend vers 0 en $+\infty$, alors T_g aussi. Indication : on vérifiera que si $|g(t)| \le \varepsilon$ pour $t \ge A$, alors $|T_g(x)| \le \varepsilon$ pour $x \ge A$.
- II.6) a) Pour tout réel A justifier l'existence et calculer $\int_A^{+\infty} e^{(i-1)t} dt$.
 - b) Soient $c: t \mapsto \cos(t)$ et $s: t \mapsto \sin(t)$, et F le sous-espace vectoriel de $\mathscr{C}(\mathbb{R}, \mathbb{R})$ engendré par (c, s).

Montrer que $g \mapsto T_g$ (où T_g défini ci-dessus) définit un endomorphisme de F et écrire sa matrice N dans la base (c,s).

N est-elle diagonalisable dans $\mathcal{M}_2(\mathbb{R})$?

Partie II

On s'intéresse dans cette partie à l'équation différentielle : xy'' + y' - (x+1)y = 1.

- III. 1) On suppose qu'il existe une solution θ développable en série entière de cette équation différentielle. On note alors $\theta(x) = \sum_{n=0}^{+\infty} a_n x^n$ pour tout $x \in]-r; r[$ où r > 0 est le rayon de convergence et $(a_n)_{n \in \mathbb{N}}$ une suite réelle.
 - a) Déterminer alors une relation entre a_1 et a_0 ainsi qu'une relation entre a_{n+2} , a_{n+1} et a_n pour tout $n \in \mathbb{N}^*$.
 - b) Pour une telle suite $(a_n)_{n\in\mathbb{N}}$, montrer qu'il existe K>0 telle que :

$$\forall n \in \mathbb{N}, |a_n| \leqslant \frac{K}{n!}$$

En déduire qu'une telle solution θ existe et que de plus $r = +\infty$.

III. 2) On souhaite résoudre ici cette équation différentielle sur l'intervalle $I = \mathbb{R}_+^*$ et l'on note :

$$S = \left\{ y \in \mathcal{C}^2(I, \mathbb{R}) \mid \forall x > 0, \ xy''(x) + y'(x) - (x+1)y(x) = 1 \right\}.$$

a) Pour tout $y \in \mathcal{C}^2(I, \mathbb{R})$, on pose $z(x) = e^{-x}y(x)$ pour tout x > 0. Montrer que $y \in \mathcal{S}$ si et seulement si z vérifie :

$$\forall x > 0, \ xz''(x) + (2x+1)z'(x) = e^{-x}$$
 (*)

b) Déterminer les $Z \in \mathcal{C}^1(I,\mathbb{R})$ telles que :

$$\forall x > 0, \ xZ'(x) + (2x+1)Z(x) = 0.$$

c) Déterminer les $Z \in \mathscr{C}^1(I,\mathbb{R})$ telles que :

$$\forall x > 0, \ xZ'(x) + (2x+1)Z(x) = e^{-x}.$$

- d) En déduire l'expression des fonctions $z \in \mathscr{C}^2(I,\mathbb{R})$ vérifiant l'équation (*), en utilisant la fonction R définie pour x>0 par $R(x)=\int_x^{+\infty}\frac{\mathrm{e}^{-t}}{t}\,\mathrm{d}t$.

 On utilisera R(x) et R(2x).
- e) Donner alors l'expression de la solution générale $y \in \mathcal{S}$.
- III.3) a) Sachant que $R(x) = -\ln(x) + \gamma + o(1)$, déterminer les solutions $y \in \mathcal{S}$ ayant une limite finie en 0.

Exprimer alors ces solutions en utilisant la fonction S de la partie \mathbf{I} et reliée à R par : $S(x) = R(x) + \ln(x) + \gamma$ pour x > 0 (vu en $\mathbf{I.3}$)c)).

- b) Sachant que S est développable en série entière sur \mathbb{R} , donner l'expression des solutions θ de la question III.1) : on exprimera $\theta(x)$ en fonction de S(x) et de S(2x) pour tout $x \in \mathbb{R}$.
- c) En utilisant un produit de Cauchy, donner l'expression de a_n en fonction de n et de a_0 .

