Conditional Independence in DAGs

INFO/STSCI/ILRST 3900: Causal Inference

26 Sep 2024

Learning goals for today

At the end of class, you will be able to:

- Identify whether paths in a causal diagram are open or blocked given a conditioning set
- 2. Understand why conditioning on colliders differs from conditioning on non-colliders

Logistics

- ► Ed discussion
- ► Ch 6.4 of Hernan and Robins

Causal Graphs

- ► Causal Directed Acyclic Graphs (DAG) help communicate modeling assumptions and implications
- ► Check (marginal) independence by looking at paths in graph

Checking Marginal Independence

$$A \rightarrow Z_1 \rightarrow Z_2 \leftarrow Z_3 \rightarrow Y$$

- ► Two types of nodes on a path:
 - ▶ Collider: \rightarrow *Z* \leftarrow
 - Non-colliders: $\underbrace{\rightarrow Z \rightarrow}_{\text{mediator}}$ or $\underbrace{\leftarrow Z \rightarrow}_{\text{common cause}}$
- ▶ Path is unblocked if it does **not** contain a collider
- ► Two variables are statistically dependant if there is an unblocked path between them

Exchangeability and DAGs

- ▶ (Marginal) Exchangeability: $Y^a \perp A$
- ► Causal path path in which all arrows point away from the treatment toward the outcome
- Exchangeability holds if all unblocked paths are causal paths

DAGs help us reason about exchangeability

Procedure

- 1) List all paths between A to Y
- 2) Cross out the blocked paths
- 3) Exchangeability holds if all remaining paths are causal

DAG 1	DAG 2	DAG 3	DAG 4	DAG 5
U	U	U	U	U_1 U_2
	\downarrow	$/ \setminus$	$\nearrow \uparrow$	\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow
$A \longrightarrow Y$				

Open or blocked?

How do we check if a path in the DAG is open or blocked when conditioning on a set of variables L?

$$A \rightarrow Z_1 \rightarrow Z_2 \leftarrow Z_3 \rightarrow Y$$

- ► Check each node on the path
- ► If any node on the path is blocked, then the entire path is blocked
- ▶ If all nodes on the path are open, then the entire path is open

Two variables are dependent conditional on L if there is an unblocked path (when conditioning on L) between them

Conditional Exchangeability holds given L if all unblocked paths between A and Y are causal paths

Common cause

If Z has a causal effect on both A and Y, the path is blocked when we condition on Z

Mediation

If A effects Y through Z, the path is blocked when we condition on Z

Types of paths

For non-colliders

- ▶ Mediators: \rightarrow Z \rightarrow or \leftarrow Z \leftarrow
- ► Common causes: $\leftarrow Z \rightarrow$

- ▶ If Z is in the conditioning set, then Z is blocked
- ightharpoonup Otherwise, Z is open

$$A \rightarrow Z_1 \rightarrow Z_2 \leftarrow Z_3 \rightarrow Y$$

Collider

Mathematically,

$$Z = X + Y$$

If we keep Z fixed, but increase X, then to preserve the equation, Y must decrease

Collider

▶ If there is a causal path $X \to ... \to Z$, then Z is a descendant of X

Colliders

For Colliders \rightarrow *Z* \leftarrow

- ▶ If Z (or any descendant of Z) is in the conditioning set, then Z is open
- ► Otherwise *Z* is blocked

$$A
ightarrow Z_1
ightarrow Z_2 \leftarrow Z_3
ightarrow Y$$

Open or blocked?

How to check if a path is open or blocked:

- 1. Traverse the path node by node
- 2. If any node is blocked, the entire path is blocked
- 3. If all nodes are open, then entire path is open

How to check if a node is open or blocked:

- ► If non-collider:
 - Open if it is not in the conditioning set
 - Blocked if it is in the conditioning set
- ► If collider:
 - ▶ Open if it or any of its descendants are in the conditioning set
 - Otherwise it is blocked

Exercise

- ► What are the paths from *A* to *Y*?
- ▶ When conditioning on $L = \{Z_1\}$ are those paths open or blocked?
- ▶ When conditioning on $L = \{Z_2\}$ are those paths open or blocked?
- ▶ When conditioning $L = \{Z_1, Z_2\}$ are those paths open or blocked?

Exercise

- ▶ What are the paths from *A* to *Y*?
- ▶ When conditioning on $L = \{Z_2\}$ are those paths open or blocked?
- ▶ When conditioning $L = \{Z_1, Z_2\}$ are those paths open or blocked?

Learning goals for today

At the end of class, you will be able to:

- Identify whether paths in a causal diagram are open or blocked given a conditioning set
- 2. Understand why conditioning on colliders differs from conditioning on non-colliders