# Sensitivity analysis of stochastic reserving models using bootstrap simulations

Othman El Hammouchi

June 20, 2024

## Overview

The claims reserving problem

The bootstrap method

Mack's model

The ODP model

The claims reserving problem

## Insurance industry

- ► Inverted production cycle
- ► Future liabilities not known today
- Prudential and regulatory requirement to make provisions

## The actuarial reserving problem

- Claims reserving: forecast future funds needed to settle outstanding contracts
- Not just point estimate, but also variability and shape of distribution
- ▶ Traditional approach based on *claims*, *loss* or *run-off triangles*

## Claims triangle example

| Origin | Dev  |      |       |       |       |       |       |
|--------|------|------|-------|-------|-------|-------|-------|
|        | 1    | 2    | 3     | 4     | 5     | 6     | 7     |
| 2007   | 3511 | 6726 | 8992  | 10704 | 11763 | 12350 | 12690 |
| 2008   | 4001 | 7703 | 9981  | 11161 | 12117 | 12746 |       |
| 2009   | 4355 | 8287 | 10233 | 11755 | 12993 |       |       |
| 2010   | 4295 | 7750 | 9773  | 11093 |       |       |       |
| 2011   | 4150 | 7897 | 10217 |       |       |       |       |
| 2012   | 5102 | 9650 |       |       |       |       |       |
| 2013   | 6283 |      |       |       |       |       |       |

Table: Cumulative payments triangle for a motor insurance account from the UK

# Claims triangles in general

| Cumulative                                                                                                                                                                                            | Incremental                                        |                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------|
| $egin{array}{ccccccc} C_{11} & C_{12} & C_{13} & C_{14} & C_{15} \\ C_{21} & C_{22} & C_{23} & C_{24} \\ C_{31} & C_{32} & C_{33} \\ C_{41} & C_{42} \\ C_{51} & & & & & & & & & & & & & & & & & & &$ | $egin{array}{cccccccccccccccccccccccccccccccccccc$ | Origin<br>period |

Development period

# Claims triangles in general



Development period

# Forecasting using claims triangles

| $C_{11}$ | $C_{12}$           | $C_{13}$           | $C_{14}$           | $C_{15}$           | $X_{11}$ | $X_{12}$           | $X_{13}$           | $X_{14}$           | $X_{15}$           |
|----------|--------------------|--------------------|--------------------|--------------------|----------|--------------------|--------------------|--------------------|--------------------|
| $C_{21}$ | $C_{22}$           | $C_{23}$           | $C_{24}$           | $\widehat{C}_{25}$ | $X_{21}$ | $X_{22}$           | $X_{23}$           | $X_{24}$           | $\widehat{X}_{25}$ |
| $C_{31}$ | $C_{32}$           | $C_{33}$           | $\widehat{C}_{34}$ | $\widehat{C}_{35}$ | $X_{31}$ | $X_{32}$           | $X_{33}$           | $\widehat{X}_{34}$ | $\widehat{X}_{35}$ |
| $C_{41}$ | $C_{42}$           | $\widehat{C}_{43}$ | $\widehat{C}_{44}$ | $\widehat{C}_{45}$ | $X_{41}$ | $X_{42}$           | $\widehat{X}_{43}$ | $\widehat{X}_{44}$ | $\widehat{X}_{45}$ |
| $C_{51}$ | $\widehat{C}_{52}$ | $\widehat{C}_{53}$ | $\widehat{C}_{54}$ | $\widehat{C}_{55}$ | $X_{51}$ | $\widehat{X}_{52}$ | $\widehat{X}_{53}$ | $\widehat{X}_{54}$ | $\widehat{X}_{55}$ |

## Forecasting using claims triangles

**Ultimates** 

# Forecasting using claims triangles



#### More nomenclature

- ightharpoonup I origin periods, J development periods
- We assume I = J (square triangles)
- ▶ Reserve  $R = \sum_{i=2}^{I} (C_{i,I} C_{i,I+1-i}) = \sum_{j=2}^{I} \sum_{i=I+2-j}^{I} X_{ij}$

#### The chain ladder

- ► Most popular reserving method <sup>1</sup>
- Originally deterministic algorithm
- Various attempts to frame it as a stochastic model
- Main assumption: there exist development factors  $f_1, \ldots, f_{I-1}$  such that

$$\mathbb{E}\left[C_{ij} \middle| C_{i,j-1}, \dots, C_{i1}\right] = f_{j-1}C_{i,j-1}$$





\_Column sum average\_

$$\hat{f}_j = \frac{\sum_{i=1}^{I-j} C_{i,j+1}}{\sum_{i=1}^{I-j} C_{ij}}$$

$$\widehat{C}_{ij} = C_{i,I+1-i} \prod_{k=I+1-i}^{j-1} \widehat{f}_k$$

$$C_{11}$$
  $C_{12}$   $C_{13}$   $C_{14}$   $C_{15}$ 
 $C_{21}$   $C_{22}$   $C_{23}$   $C_{24}$ 
 $C_{31}$   $C_{32}$   $C_{33}$ 
 $C_{41}$   $C_{42}$ 
 $C_{51}$   $\hat{C}_{52}$ 
 $\hat{f}_{1}$   $\hat{f}_{2}$   $\hat{f}_{3}$   $\hat{f}_{4}$ 

Column sum average -

$$\hat{f}_j = \frac{\sum_{i=1}^{I-j} C_{i,j+1}}{\sum_{i=1}^{I-j} C_{ij}}$$

$$\widehat{C}_{ij} = C_{i,I+1-i} \prod_{k=I+1-i}^{j-1} \widehat{f}_k$$

$$C_{11}$$
  $C_{12}$   $C_{13}$   $C_{14}$   $C_{15}$ 
 $C_{21}$   $C_{22}$   $C_{23}$   $C_{24}$ 
 $C_{31}$   $C_{32}$   $C_{33}$ 
 $C_{41}$   $C_{42}$   $\hat{C}_{43}$ 
 $\hat{C}_{51}$   $\hat{C}_{52}$   $\hat{C}_{53}$ 
 $\hat{f}_{1}$   $\hat{f}_{2}$   $\hat{f}_{2}$   $\hat{f}_{4}$ 

Column sum average.

$$\widehat{f}_{j} = \frac{\sum_{i=1}^{I-j} C_{i,j+1}}{\sum_{i=1}^{I-j} C_{ij}}$$

$$\widehat{C}_{ij} = C_{i,I+1-i} \prod_{k=I+1-i}^{j-1} \widehat{f}_k$$

$$C_{11} \quad C_{12} \quad C_{13} \quad C_{14} \quad C_{15}$$

$$C_{21} \quad C_{22} \quad C_{23} \quad C_{24}$$

$$C_{31} \quad C_{32} \quad C_{33} \quad \widehat{C}_{34}$$

$$C_{41} \quad C_{42} \quad \widehat{C}_{43} \quad \widehat{C}_{44}$$

$$C_{51} \quad \widehat{C}_{52} \quad \widehat{C}_{53} \quad \widehat{C}_{54}$$

$$\widehat{f}_{1} \quad \widehat{f}_{2} \quad \widehat{f}_{3} \quad \widehat{f}_{4}$$

Column sum average

$$\hat{f}_j = \frac{\sum_{i=1}^{I-j} C_{i,j+1}}{\sum_{i=1}^{I-j} C_{ij}}$$

$$\widehat{C}_{ij} = C_{i,I+1-i} \prod_{k=I+1-i}^{j-1} \widehat{f}_k$$

Column sum average.

$$\widehat{f}_{j} = \frac{\sum_{i=1}^{I-j} C_{i,j+1}}{\sum_{i=1}^{I-j} C_{ij}}$$

$$\widehat{C}_{ij} = C_{i,I+1-i} \prod_{k=I+1-i}^{j-1} \widehat{f}_k$$

#### Stochastic chain ladder

- Many different variants
- Reproduce chain ladder point estimates
- Make different assumptions
- Difficult to verify with small data sizes
- ▶ Idea: detect violations by excluding points and gauging effect on bootstrapped reserve



## Detecting assumption violations



## Detecting assumption violations

- Generate triangles which follow assumptions perfectly
- Apply perturbation
- ▶ Remove one point at a time and study impact on reserve
- ▶ Significant impact ⇒ reverse-engineer

## **Perturbations**

## Single observation



## **Perturbations**

## Calendar period



#### **Perturbations**

## Origin period



# The bootstrap method

#### Main idea

- Classical inference often intractible
- Relies on approximations and asymptotics
- Solution: resampling to produce pseudo-replicates

#### Main idea

- Classical inference often intractible
- Relies on approximations and asymptotics
- Solution: resampling to produce pseudo-replicates



#### Classical estimator

- ▶ Independent identically distributed sample  $X_1, \ldots, X_n$
- ▶ Parameter  $\theta$  estimated by  $\widehat{\theta} \coloneqq g(X_1, \dots, X_n)$
- $\blacktriangleright \text{ For } b=1,\ldots,B$ 
  - ightharpoonup Resample to obtain  $X_1^{(b)},\ldots,X_n^{(b)}$
  - $lackbox{\ }$  Compute  $\widehat{\theta}^{(b)}\coloneqq g(X_1^{(b)},\ldots,X_n^{(b)})$
  - $\{\widehat{\theta}^{(b)} \mid b=1,\ldots,B\}$  used for inference, e.g. variance estimation:

$$\widehat{\operatorname{Var}}(\theta) := \frac{1}{B-1} \sum_{b=1}^{B} (\widehat{\theta}^{(b)} - \overline{\theta}^{B})^{2}$$

with 
$$\overline{\theta}^B \coloneqq \frac{1}{B} \sum_{b=1}^B \widehat{\theta}^{(b)}$$

## Parametric vs. nonparametric

- How to do bootstrap resampling?
- Nonparametric: resample with replacement directly from data
- ▶ Parametric: fit model first, use this to simulate from RNG
- Can be extended to regression models

## Regression

- ▶ Covariates  $X_1, ..., X_p$  and response Y
- ▶ Parametrised function  $f(X_1, ..., X_p; \beta)$  modelling their relation
- Classic example: linear regression
  - $Y_i = \mathbf{x}_i^T \boldsymbol{\beta} + \varepsilon_i$
  - $ightharpoonup \mathbb{E}\left[\varepsilon_{i}\right]=0,\ \mathrm{Var}(\varepsilon_{i})=\sigma^{2}$
  - $\mathbb{E}\left[\varepsilon_{i}\varepsilon_{j}\right]=0$
  - ▶ LS estimator:  $\widehat{\beta} := (X^T X)^{-1} X^T \mathbf{y}$

## Regression bootstrap

- Independent sample of predictor-response pairs  $(\mathbf{x_1}, Y_1), \dots, (\mathbf{x_n}, Y_n)$
- ightharpoonup For  $b = 1, \dots, B$ 
  - ightharpoonup Resample to obtain  $(\mathbf{x_1}^{(b)}, Y_1^{(b)}), \dots, (\mathbf{x_n}^{(b)}, Y_n^{(b)})$
  - ightharpoonup Compute  $\widehat{m{eta}}^{(b)}$
  - $\{\widehat{\boldsymbol{\beta}}^{(b)} \mid b=1,\ldots,B\}$  used for inference
- Parametric vs. nonparametric?

## Nonparametric regression bootstrap

- ► Fundamental unit of resampling?
- ► Residuals ⇒ semiparametric
- ▶ Pairs ⇒ fully nonparametric

## Semiparametric regression bootstrap

Resample residuals, e.g.

$$r_i \coloneqq Y_i - \mathbf{x}_i^T \widehat{\boldsymbol{\beta}}$$

Produce bootstrap replicates via

$$Y_i^{(b)} \coloneqq \mathbf{x}_i^T \widehat{\boldsymbol{\beta}} + r_i^{(b)}$$

Only relies on parametrisation of first two moments

## Fully nonparametric regression bootstrap

- ▶ Resample pairs to produce  $(\mathbf{x_1}^{(b)}, Y_1^{(b)}), \dots, (\mathbf{x_n}^{(b)}, Y_n^{(b)})$
- ▶ Approximates multivariate distribution of  $(X_1, ..., X_n, Y)$
- lacktriangle Model refitted to pseudo-replicates to obtain  $\widehat{oldsymbol{eta}}^{(b)}$
- Does not assume anything about data (except i.i.d.-ness of sample)

## Parametric regression bootstrap

- lacktriangle Additional assumption about distribution of the  $arepsilon_i$
- ▶ Classic choice:  $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$
- lacksquare Fit model to obtain  $\widehat{oldsymbol{eta}}$  and  $\widehat{\sigma}$
- Produce  $Y_i^{(b)}$  by drawing from the estimated distribution  $\mathcal{N}(\mathbf{x}_i^T\widehat{\boldsymbol{\beta}},\widehat{\sigma}^2)$
- Relies on correct specification of parametric model

#### Process error

- lacktriangle Methods mentioned so far produce replicates of parameter vector eta
- Can be used to simulate the fitted or predicted response

$$\widehat{Y}_{+}^{(b)} = \mathbf{x}_{+}^{T} \widehat{\boldsymbol{\beta}}^{(b)}$$

at new value  $\mathbf{x}_+$  of the regressors

- Incorporates estimation uncertainty or parameter error
- ▶ What about simulating  $Y_+$  itself?
- Incorporate intrinsic variation or process error

#### Process error visualised



#### Predictive distribution

- Bayesian concept
- Incorporates both parameter and process error
- Semiparametric: resample residuals a second time and compute

$$Y_{+}^{(b,s)} \coloneqq \mathbf{x}_{+}^{T} \widehat{\boldsymbol{\beta}}^{(b)} + r^{(s)}$$

Parametric: generate pseudo-response according to

$$Y_{+}^{(b,s)} \sim \mathcal{N}(\mathbf{x}_{+}^{T}\widehat{\boldsymbol{\beta}}^{(b)}, \widehat{\sigma}^{2})$$

Nonparametric: borrow one of the other approaches

# Mack's model

#### **Formulation**

### Model 1 (Mack chain ladder)

1. There exist development factors  $f_1, \ldots, f_{I-1}$  such that

$$\mathbb{E}[C_{ij} \parallel C_{i,j-1}, \dots, C_{i1}] = \mathbb{E}[C_{ij} \parallel C_{i,j-1}] = f_{j-1}C_{i,j-1}$$

for  $1 \leq i \leq I$ 

2. There exist variance parameters  $\sigma_1, \ldots, \sigma_{I-1}$  such that

$$\operatorname{Var}[C_{ij} \parallel C_{i,j-1}, \dots, C_{i1}] = \operatorname{Var}[C_{ij} \parallel C_{i,j-1}] = \sigma_{j-1}^2 C_{i,j-1}$$

$$\textit{for } 1 \leq i \leq I$$

3. The cumulative claims processes  $(C_{ij})_j, (C_{i'j})_j$  are independent for  $i \neq i'$ 

# **Properties**

- Cumulative triangle
- Distribution-free
- Recursive
- For any pair of consecutive columns: equivalent to

$$\mathbf{c}_{j+1} = f_j \mathbf{c}_j + \boldsymbol{\varepsilon}$$

with

$$\mathbb{E}\left[\boldsymbol{\varepsilon}\middle|C_{1,j},\ldots,C_{I-j,j}\right] = \mathbf{0}$$

$$\operatorname{Var}\left[\boldsymbol{\varepsilon}\middle|C_{1,j},\ldots,C_{I-j,j}\right] = \sigma_j^2 \begin{bmatrix} C_{1j} & & \\ & \ddots & \\ & & C_{I-j,j} \end{bmatrix}$$

## **Properties**

- Model assumptions correspond to Gauss-Markov
- Optimal estimator: weighted least squares with

$$\mathbf{W} = \begin{bmatrix} 1/C_{1j} & & & \\ & \ddots & & \\ & & 1/C_{I-j,j} \end{bmatrix}$$

Same as column sum estimator!

$$\widehat{f}_{j}^{\text{WLS}} = (\mathbf{c}_{j}^{T} \mathbf{W} \mathbf{c}_{j})^{-1} \mathbf{c}_{j}^{T} \mathbf{W} = \frac{\sum_{i=1}^{I-j} C_{i,j+1}}{\sum_{i=1}^{I-j} C_{i,j}}$$

We can adapt the regression bootstrap!

#### Conditional vs. unconditional

- Recursivity leads to different bootstrap types
- Simulate next development year based on original data vs. generated bootstrap replicate
- ► Parametric example:

$$C_{i,j+1}^{(b)} \sim \mathcal{N}(\widehat{f_j}C_{ij}, \widehat{\sigma}_j^2) \quad \text{vs.} \quad C_{i,j+1}^{(b)} \sim \mathcal{N}(\widehat{f_j}C_{ij}^{(b)}, \widehat{\sigma}_j^2)$$

# Wealth of configurations

- Conditional vs. unconditional
- Nonparametric: only conditional is possible!
- ▶ Parametric: which distribution?
  - Normal
  - ► Gamma
- Semiparametric: which residuals?
  - Standardised
  - Studentised
  - Log-normal
- Computationally very intensive!

## Implementation

- ► R package {trngl}
- Front-end in R
- Heavy-duty numerical code in Fortran
- ► Parallelised using OpenMP
- ► Glued together with Rcpp
- Available on Github

## The ODP model

#### Formulation

### Model 2 (overdispersed Poisson GLM)

- 1. The incremental claims are independent from each other
- 2. There exist parameters c,  $a_1, \ldots, a_I$  and  $b_1, \ldots, b_I$  such that

$$\log(\mu_{ij}) = c + a_i + b_j$$

with 
$$\mu_{ij} \coloneqq \mathbb{E}\left[X_{ij}\right]$$
 and  $a_1 = b_1 = 0$ 

3. There exists a parameter  $\phi$  such that

$$Var [X_{ij}] = \phi \mu_{ij}$$

### **Properties**

- Incremental triangle
- Belongs to family of generalised linear models
  - Extend normal linear model
  - Response can follow any distribution from the EDM family
  - Covariates related to response via link function
- Dispersion parameter allowing mean to differ from variance (cfr. Poisson)
- Fitted using quasi-maximum likelihood
- Equations solved iteratively using Fisher scoring

# Triangle to regression

- ► Flatten triangle to obtain regression model
- Development and origin year become the covariates
- Cfr. two-way ANOVA (without interaction)
- We can adapt the regression bootstrap!

## Triangle to regression

- Flatten triangle to obtain regression model
- Development and origin year become the covariates
- Cfr. two-way ANOVA (without interaction)
- We can adapt the regression bootstrap!

| Origin | Dev | Value |
|--------|-----|-------|
| 2007   | 1   | 3511  |
| 2008   | 1   | 4001  |
| 2009   | 1   | 4355  |
| 2010   | 1   | 4295  |
| 2011   | 1   | 4150  |
| 2012   | 1   | 5102  |
| 2013   | 1   | 6283  |
| 2007   | 2   | 3215  |
| 2008   | 2   | 3702  |
| 2009   | 2   | 3932  |
| 2010   | 2   | 3455  |
| 2011   | 2   | 3747  |
| 2012   | 2   | 4548  |
| 2007   | 3   | 2266  |
| 2008   | 3   | 2278  |

# Triangle to regression



## Configurations

- Parametric: which distribution?
  - Normal
  - Gamma
  - Poisson
- Semiparametric: which residuals?
  - ▶ Most popular ones for GLM: Pearson and deviance
  - Deviance suffer technical shortcoming which inhibits resampling
- ► Nonparametric: impossible
- Computationally very intensive!

## Implementation

- ► R package {trngl}
- Front-end in R
- Heavy-duty numerical code in Fortran
- ► Parallelised using OpenMP
- ► Glued together with Rcpp
- Available on Github

And now for a demo!