

MEMORANDUM REPORT ARBRL-MR-02990

THE CONVERGENCE OF TWO SERIES REPRESENTATIONS FOR ASSOCIATED LEGENDRE FUNCTIONS OF THE FIRST AND SECOND KIND

> James N. Walbert Kathleen L Zimmerman

B

February 1980

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND BALLISTIC RESEARCH LABORATORY ABERDEEN PROVING GROUND, MARYLAND

Approved for public release; distribution unlimited.

80 4 4 006

Destroy this report when it is no longer needed. Do not return it to the originator.

Secondary distribution of this report by originating or sponsoring activity is prohibited.

Additional copies of this report may be obtained from the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia 22151.

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement of any commercial product.

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
	3. RECIPIENT'S CATALOG NUMBER
MEMORANDUM REPORT ARBRL-MR-02990 AD-A08329	3
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED
THE CONVERGENCE OF TWO SERIES REPRESENTATIONS FOR ASSOCIATED LEGENDRE FUNCTIONS OF THE FIRST	Final
AND SECOND KIND	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(e)	8. CONTRACT OR GRANT NUMBER(s)
James N. Walbert	
Kathleen L. Zimmerman	
9. PERFORMING ORGANIZATION NAME AND ADDRESS US Army Rellistic Desearch Laboratory	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
US Army Ballistic Research Laboratory ATTN: DRDAR-BLP	1L161102AH43
Aberdeen Proving Ground, MD 21005	1L1011U2AH43
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
US Army Armament Research & Development Command	FEBRUARY 1980
US Army Ballistic Research Laboratory (DRDAR-BL)	13. NUMBER OF PAGES
Aberdeen Proving Ground, MD 21005 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	15. SECURITY CLASS. (of this report)
MONITORING AGENCY NAME & AGENCIAN STATES TO STATES TO STATE STATES TO STAT	UNCLASSIFIED
	15. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)	
Approved for public release; distribution unlimite	ed.
17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from	m Report)
18. SUPPLEMENTARY NOTES	
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)	
Stresses in a Pressurized Cone Papkovich-Neuler solution	
Associated Legendre functions	
Asympototic expansions	
Gaussian Quadratures	
20. ABSTRACT (Continue as reverse side if necessary and identify by block number)	jmk .
The regions of convergence and divergence of two associated Legendre functions of the first and secon	series representations for and kind, degree v and order u.
lare investigated. The series are shown to be absolu	itely convergent when the real
hart of the complex order u is less than zero, condi	tionally convergent when the
real part of μ is greater than or equal to zero and gent when the real part of μ is greater than or equal	less than one-half, and diver
calculations for several real values of v and u are	used to demonstrate the be-
havior of the partial sums of the series in the regi	ons of convergence and

divergence.

TABLE OF CONTENTS

																						Page
	LIST OF SYMBO	DLS	•		٠	•	•	•		•	•	•	•	•	•	٠	•	•	•	•	٠	5
I.	INTRODUCTION										•	•								•		7
II.	ANALYSIS OF C	CONVERG	GEN	ICE.			•	•								•						8
111.	NUMERICAL ASE	PECTS (OF	CON	VER	RGE	NC	E					•							•		12
IV.	CONCLUSIONS	9 1 2	•		ú-			•								•					•	13
ν.	SUMMARY						•															14
VI.	ACKNOWLEDGMEN	NTS																			•	14
	REFERENCES .							•														15
	APPENDIX A.	NUMER	ICA	L A	SPE	CT	S	OF	C	ON	IVE	RC	EN	ICE	A	NE)					
		DIVER	GEN	ICE.	•	•	•	•		•	٠	٠	•	•		•	•	•		•	٠	17
	APPENDIX B.																					
		z =	1		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	43
	APPENDIX C.	AN ORI																				
		LARGE	Z		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	47
	DISTRIBUTION	LIST.																				49

		off Se	ection	-
DDC UNANNOUN) 3c		0
JUSTIFICATI				
DISTRIBUTI	ON/AVA	ILABILI and/o	Y COD	ES
Dist. A.	AIL.	anu/ u	1	
A				

LIST OF SYMBOLS

- θ Apex angle of a cone, in radians
- $\Gamma(x)$ The Gamma function
- $(x)_k = \Gamma(x+k)/\Gamma(x)$, the Pochhammer notation
- $k! = \Gamma(k+1)$, factorial notation
- a,b,c arbitrary complex numbers
- P_{ν}^{μ} Associated Legendre function of the first kind, of degree ν and order $\mu.$
- Q_{ν}^{μ} Associated Legendre function of the second kind, of degree ν and order $\mu.$
- Re {a} the real part of the complex number a.
- Im {a} the imaginary part of the complex number a.
- $\sinh x$, $\cosh x$ the hyperbolic sine and $\cosh x$, respectively, of x.
- $i^2 = -1$
- O(k) Landau symbol

Other terms are defined as they occur in the text.

I. INTRODUCTION

For stresses in a pressurized cone, the method of Papkovich-Neuber leads to displacements and strains expressed in terms of Legendre functions. In spherical coordinates, the argument at which these Legendre functions are evaluated is the cosine of the apex angle θ of the cone. Computation of Legendre functions using Gaussian quadratures on certain integral representations 2 is required in the stress analysis for the minihat gage, a strain-type pressure transducer. 3

For the purpose of verification of the quadrature results, use was made of the series representations

$$P_{\nu}^{\mu} (\cos \theta) = \pi^{-\frac{1}{2}} 2^{\mu+1} (\sin \theta)^{\mu} \frac{\Gamma(\nu+\mu+1)}{\Gamma(\nu+\frac{3}{2})}$$

$$\times \sum_{k=0}^{\infty} \frac{(\mu+\frac{1}{2})_{k} (\nu+\mu+1)_{k}}{k! (\nu+\frac{3}{2})_{k}} \sin[(2k+\mu+\nu+1)\theta]$$

$$Q_{\nu}^{\mu} (\cos \theta) = \pi^{\frac{1}{2}} 2^{\mu} (\sin \theta)^{\mu} \frac{\Gamma(\nu+\mu+1)}{\Gamma(\nu+\frac{3}{2})}$$

$$\times \sum_{k=0}^{\infty} \frac{(\mu+\frac{1}{2})_{k} (\mu+\nu+1)_{k}}{k! (\nu+\frac{3}{2})_{k}} \cos[(2k+\mu+\nu+1)\theta],$$
(2)

where $0 < \theta < \pi$. In at least two references^{4,5} there

¹A. I. Lure', Three Dimensional Problems of the Theory of Elasticity, 1964, paragraph 1.10.

²W. Magnus, and F. Oberhettinger, <u>Formulas and Theorems for the Special</u> Functions of Mathematical Physics, 1949, p67.

³H. Gay, "The Evolution of Gages for Measuring Pressures in Guns and Pockets at the Ballistic Research Laboratories", BRL Memorandum Report No. 1402, 1962. (AD #283309)

⁴Handbook of Mathematical Functions, National Bureau of Standards, U.S. Department of Commerce, 1964, 8.7.1, 8.7.2.

⁵A. Erdelyi, et al, <u>Higher Transcendental Functions</u>, Vol. I, Bateman Manuscript Project, 1953, 3.5(2), 3.5(3).

are no stated restrictions on μ or ν for the convergence of these series. However, calculation of the first 50 partial sums of the series in equation (1) with $\theta = \frac{\pi}{6}$, $\mu = 1$, and $\nu = .05$ indicated that these partial sums were increasing without bound (see Appendix A).

Indeed, since

$$\frac{(\mu + \frac{1}{2})_{k}(\mu + \nu + 1)_{k}}{k! (\nu + \frac{3}{2})_{k}} = \frac{\Gamma(\nu + \frac{3}{2})}{\Gamma(\mu + \frac{1}{2}) \Gamma(\mu + \nu + 1)} \frac{\Gamma(\mu + \frac{1}{2} + k)\Gamma(\mu + \nu + 1 + k)}{\Gamma(1 + k)\Gamma(\nu + \frac{3}{2} + k)},$$
 (3)

one sees at a glance that for real μ and ν with $\mu \geq \frac{1}{2}$, the term in brackets is greater than or equal to 1 for every positive integral k, giving scant hope for the convergence of the series in Eqs. (1) and (2) in this case.

It is the purpose of this report to identify the region of convergence of these series, and to indicate by numerical computation the behavior of the partial sums for various values of the parameters μ and ν .

In reference 4, for example, the convergence criteria for series representations of the Legendre functions are not complete, and should be supplemented by the more general convergence criteria for the hypergeometric function.

II. ANALYSIS OF CONVERGENCE

To simplify our notation, we write

$$a=\mu+\frac{3}{2}$$

 $b=\mu+\nu+1$

$$c = v + \frac{3}{2}$$
. (4)

The series in Eqs. (1) and (2) are then

$$S = \sum_{k=0}^{\infty} \frac{(a)_k (b)_k}{k! (c)_k} \sin [(2k+b)\theta] , \qquad (5)$$

and

$$C = \sum_{k=0}^{\infty} \frac{(a)_{k}(b)_{k}}{k!(c)_{k}} \cos[(2k+b)\theta] , \qquad (6)$$

respectively.

Since

$$\sin \left[(2k+b)\theta \right] = \frac{1}{2i} \left(e^{i(2k+b)\theta} - e^{-i(2k+b)\theta} \right) ,$$

and

$$\cos [(2k+b)\theta] = \frac{1}{2} \left(e^{i(2k+b)\theta} + e^{-i(2k+b)\theta} \right) ,$$

we can write

$$2iS = \sum_{k=0}^{\infty} \frac{(a)_{k}(b)_{k}}{k!(c)_{k}} \left[e^{ib\theta} (e^{i2\theta})^{k} - e^{-ib\theta} (e^{-i2\theta})^{k} \right]$$

$$= e^{ib\theta} \sum_{k=0}^{\infty} \frac{(a)_{k}(b)_{k}}{k!(c)_{k}} (e^{i2\theta})^{k} - e^{-ib\theta} \sum_{k=0}^{\infty} \frac{(a)_{k}(b)_{k}}{k!(c)_{k}} (e^{-i2\theta})^{k}$$

$$= e^{ib\theta} F(a,b;c;e^{i2\theta}) - e^{-ib\theta} F(a,b;c;e^{-i2\theta});$$

similarly,

$$2C=e^{ib\theta}F(a,b;c;e^{i2\theta})+e^{-ib\theta}F(a,b;c;e^{-i2\theta})$$
,

where

$$F(a,b;c;z) = \sum_{k=0}^{\infty} \frac{(a)_k (b)_k}{k! (c)_k} z^k$$
 (7)

is the hypergeometric function. These representations for S and C as

linear combinations of hypergeometric functions are valid only on the intersections of the regions of convergence of the various forms in which the series in Eq. (7) appears.

It is known (see Appendix B) that on |z|=1, the series in Eq. (7) exhibits the following behavior:

- I) Absolute convergence if Re{a+b-c}< 0;</p>
- II) Conditional convergence if $z \neq 1$ and $0 < Re\{a+b-c\} < 1$;
- III) Divergence if Re{a+b-c} > 1.

Since a finite linear combination of convergent series is convergent, we have immediately that the series in Eqs. (5) and (6) are convergent for Re{a+b-c}< 1 and 0< 0< π . Moreover, use of the triangle inequality shows that these series converge absolutely for Re{a+b-c}< 0.

By Eq. (4), one sees that

Re{a+b-c}=Re{
$$(\mu + \frac{1}{2}) + (\mu + \nu + 1) - (\nu + \frac{3}{2})$$
}
=Re{2\mu}
=2Re{\mu}.

Therefore, the series in Eqs. (5) and (6) converge absolutely for $\text{Re}\{\mu\}<0$ and at least conditionally for $\text{Re}\{\mu\}<\frac{1}{2}$ if $0<\theta<\pi$. It should be noted that we have assumed that a,b, and c are not negative integers, so that the expressions involving the gamma function are meaningful; this assumption of course imposes additional discrete restrictions on the values of μ and ν .

Continuing the analysis, we will develop an asymptotic expansion for large k of

$$w(a,b,c,k) = \frac{\Gamma(a+k)\Gamma(b+k)}{\Gamma(1+k)\Gamma(c+k)}.$$
 (8)

To this end (see Appendix C), we observe that

$$\log \Gamma(k+x) = \log \Gamma((k) + x \log k + O(\frac{1}{k}), \qquad (9)$$

for large k. Using Eq. (9) in Eq. (8), we have

log w(a,b,c,k) = log
$$\Gamma(k+a) + \log \Gamma(k+b) - \log \Gamma(k+c) - \log \Gamma(k+1)$$

= $[\log \Gamma(k) + a \log k + O(\frac{1}{k})]$
+ $[\log \Gamma(k) + b \log k + O(\frac{1}{k})]$
- $[\log \Gamma(k) + c \log k + O(\frac{1}{k})]$
- $[\log \Gamma(k) + \log k + O(\frac{1}{k})]$
= $(a+b-c-1) \log k + O(\frac{1}{k})$.

Thus

$$w(a,b,c,k) = k^{a+b-c-1} [1 + O(\frac{1}{k})],$$
 (10)

and so

$$w(a,b,c,k) \sim k^{a+b-c-1} \text{ as } k \to \infty^{6}.$$
 (11)

For real values of x and y,

$$|\sin(x+iy)| = (\sin^2 x + \sinh^2 y)^{\frac{1}{2}},$$
 (12)

and

$$|\cos(x+iy)| = (\cos^2 x + \sinh^2 y)^{\frac{1}{2}}$$
 (13)

Since $\sin^2 x \le \text{ and } \cos^2 x \le 1 \text{ and } 1 + \sinh^2 y = \cosh^2 y$,

$$(\sin^2 x + \sinh^2 y)^{\frac{t}{2}} \leq \cosh y$$
,

and
$$(\cos^2 x + \sinh^2 y)^{\frac{1}{2}} \le \cosh y$$
.

Also, $\sin^2 x \ge 0$ and $\cos^2 x \ge 0$, so that

$$(\sin^2 x + \sinh^2 y)^{\frac{1}{2}} \ge |\sinh y|$$

and
$$(\cos^2 x + \sinh^2 y)^{\frac{1}{2}} \ge |\sinh y|$$

This shows that

$$|\sinh(\theta \cdot Im\{b\})| \le |\sin[(2k+b)\theta]| \le \cosh(\theta \cdot Im\{b\})$$
, (14)

⁶F. W. J. Olver, Asymptotics and Special Functions, 1974, pg. 301.

and

$$|\sinh(\theta \cdot \operatorname{Im}\{b\})| \leq |\cos[(2k+b)\theta]| \leq \cosh(\theta \cdot \operatorname{Im}\{b\}).$$
 (15)

For fixed θ and b, the upper bound, $\cosh(\theta \cdot \text{Im } \{b\})$, is finite and independent of k. If $0 < \theta < \pi$ and Im $\{b\} \neq 0$,

$$|\sinh(\theta \cdot Im \{b\})| = \rho > 0$$
. If $0 < \theta < \pi$ and $Im \{b\} = 0$,

 $\left|\sin[(2k+b)\theta]\right|$ and $\left|\cos[(2k+b)\theta]\right|$ can be neither constantly zero nor remain arbitrarily close to zero as k varies. Therefore, the expressions

$$|\mathbf{k}|^{\text{Re}\{\mathbf{a}+\mathbf{b}-\mathbf{c}-1\}}|\sin[(2\mathbf{k}+\mathbf{b})\theta]|, \tag{16}$$

and

$$|\mathbf{k}|^{\text{Re}\{\mathbf{a}+\mathbf{b}-\mathbf{c}-1\}}|\cos[(2\mathbf{k}+\mathbf{b})\theta]| \tag{17}$$

will tend to zero as $k\rightarrow\infty$ only if $Re\{a+b-c-1\}<0$.

Using Eqs. (8), (11), (16), and (17), we see that the kth term of the series in Eqs. (5) and (6) cannot tend to zero in absolute value as $k\rightarrow\infty$ when $Re\{a+b-c-1\}\geq 0$. Since

$$a+b-c-1 = 2\mu-1$$
,

we conclude that the series in Eqs. (5) and (6) diverge for $Re\{\mu\}_{\geq \frac{1}{2}}$.

III. NUMERICAL ASPECTS OF CONVERGENCE

To illustrate numerically the convergence and divergence properties obtained, use was made of the following formulae 2 , 4

$$P_{\nu}^{1}(\cos\theta) = -\frac{\Gamma(\nu+2)}{\Gamma(\nu)} \sqrt{\frac{2}{\pi}} \frac{(\sin\theta)^{-1}}{\Gamma(\frac{3}{2})} \int_{0}^{\theta} \cos[(\nu+\frac{1}{2})\phi](\cos\phi-\cos\theta)^{\frac{1}{2}} d\phi; (18)$$

$$P_{\nu}^{\frac{1}{2}}(\cos\theta) = \left(\frac{\pi}{2}\right)^{-\frac{1}{2}}(\sin\theta)^{-\frac{1}{2}}\cos(\nu + \frac{1}{2})\theta; \tag{19}$$

$$Q_{\nu}^{\frac{1}{2}}(\cos\theta) = -\frac{\pi}{2} e^{-\frac{1}{2}}(\sin\theta)^{-\frac{1}{2}}\sin(\nu + \frac{1}{2})\theta;$$
 (20)

$$P_{\nu}^{-\frac{1}{2}}(\cos\theta) = \frac{\pi}{2}^{-\frac{1}{2}}(\nu + \frac{1}{2})^{-1}(\sin\theta)^{-\frac{1}{2}}\sin(\nu + \frac{1}{2})\theta; \tag{21}$$

$$Q_{\nu}^{-\frac{1}{2}}(\cos\theta) = (2\pi)^{\frac{1}{2}}(2\nu+1)^{-1}(\sin\theta)^{-\frac{1}{2}}\cos(\nu+\frac{1}{2})\theta.$$
 (22)

These associated Legendre functions were computed for

 $\nu=-.4,.05,-1.5$, and 1.5, with $\theta=\frac{\pi}{6}$. From the recurrence formula⁵

$$T_{\nu}^{\mu+2}(\cos\theta) + 2(\mu+1)(\cos\theta)(1-\cos^{2}\theta)^{-\frac{1}{2}}T_{\nu}^{\mu+1}(\cos\theta) + (\nu-\mu)(\nu+\mu+1)T_{\nu}^{\mu}(\cos\theta) = 0,$$
(23)

where T stands for either P or Q, one obtains values for $P_{\nu}^{\frac{3}{2}}(\cos\theta)$ from Eqs. (19) and (21), and values for $Q_{\nu}^{\frac{3}{2}}$ (cos θ) from Eqs. (20) and (22).

With ν and θ as above, the sums of the first fifty terms of the series in Eqs. (1) and (2) were computed for $\mu=\pm\frac{1}{2},\pm1,0$, and $\frac{3}{2}$. The values of $P_{\nu}^{-\frac{1}{2}}$ and $Q_{\nu}^{-\frac{1}{2}}$ thus computed agree quite well with those obtained from Eqs. (21) and (22), while the values for $P_{\nu}^{\frac{1}{2}}$, $Q_{\nu}^{\frac{1}{2}}$, and P_{ν}^{1} do not agree with the values obtained from Eqs. (13) - (20), as expected, since these values of μ are outside the region of convergence of the series. Indeed, one sees that the terms of the sequence of partial sums increase quite rapidly for $\mu=\frac{1}{2}$ and 1. This growth behavior is again exhibited in the partial sums when $\mu=\frac{3}{2}$. Using the series approximations for the values $\mu=-1$ and 0 in the recurrence relation (23), the value of P_{ν}^{1} obtained agrees well with that computed from Eq. (18). The results are tabulated in Appendix A.

IV. CONCLUSIONS

At θ =0 or π , the term (sin θ) $^{\mu}$ is meaningless, so the series representations in Eqs. (1) and (2) are not valid there. Indeed, ± 1 are singular points of the associated Legendre functions. The series in Eqs. (5) and (6) do converge absolutely for $0 \le \theta < \pi$ when $Re\{\psi\} < 0$, however.

V. SUMMARY

It is shown that the series representations

$$P_{\nu}^{\mu}(\cos\theta) = \pi^{-\frac{1}{2}}2^{\mu+1}(\sin\theta)^{\mu} \frac{\Gamma(\nu+\mu+1)}{\Gamma(\nu+\frac{3}{2})} \sum_{k=0}^{\infty} \frac{(\mu+\frac{1}{2})_{k}(\mu+\nu+1)_{k}}{k! (\nu+\frac{3}{2})_{k}} \sin[(2k+\mu+\nu+1)\theta]$$

and

$$Q_{\nu}^{\mu}(\cos\theta) = \pi^{-\frac{1}{2}} 2^{\mu} (\sin\theta)^{\mu} \frac{\Gamma(\nu + \mu + 1)}{\Gamma(\nu + \frac{3}{2})} \sum_{k=0}^{\infty} \frac{(\mu + \frac{1}{2})_{k} (\mu + \nu + 1)_{k}}{k! (\nu + \frac{3}{2})_{k}} \cos[(2k + \mu + \nu + 1)\theta],$$

for the associated Legendre functions of the first and second kind, respectively, of complex order μ and degree ν with $0<\theta<\pi$, converge absolutely for $Re\{\mu\}<0$, converge at least conditionally for $0\le Re\{\mu\}<\frac{1}{2}$, and diverge for $Re\{\mu\}>\frac{1}{2}$.

Numerical computations for real μ and ν are presented to illustrate the behavior of the partial sums in the regions of convergence and divergence. A method is indicated whereby these series representations may be used to compute the values of $P^{\mu}_{\nu}(\cos\theta)$ for arbitrary complex μ and $\nu.$

VI. ACKNOWLEDGMENTS

Mr. A. S. Elder verified a large portion of the analysis, and provided the authors with a great deal of insight to the problem.

REFERENCES

- A. I. Lure', <u>Three Dimensional Problems of the Theory of Elasticity</u>,
 J. Wiley and <u>Sons</u>, Inc., New York, 1964.
- W. Magnus and F. Oberhettinger, Formulas and Theorems for the Special Functions of Mathematical Physics, Chelsea Publishing Co., New York, 1949.
- 3. H. Gay, "The Evolution of Gages for Measuring Pressures in Guns and Rockets at the Ballistic Research Laboratories", BRL Memorandum Report No. 1402, 1962. (AD #283309)
- 4. M. Abramowitz and I. A. Stegnum, <u>Handbook of Mathematical Functions</u> with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Washington, D.C., No. 55, Applied Mathematics Series, June 1964.
- 5. A. Erdelyi et. al., <u>Higher Transcendental Functions</u>, Vol. I, Bateman Manuscript Project, McGraw Hill Book Co., Inc., New York, 1953.
- 6. F. W. J. Olver, <u>Asymptotics and Special Functions</u>, Academic Press, New York, 1974.
- 7. K. Knopp, Theory and Application of Infinite Series, Hafner Publishing Co., New York, 1947.
- 8. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge Press, London, 1927.

APPENDIX A

NUMERICAL ASPECTS OF CONVERGENCE AND DIVERGENCE

Tables of the first 50 partial sums (PSP) of $P_{\nu}^{\mu}(\cos\theta)$ and the partial sums (QSP) of $Q_{\nu}^{\mu}(\cos\theta)$ for ν =-1.5, -.4, .05, 1.5; μ =± 1.0, ± .5, 0, 1.5; and θ = $\pi/6$ are given in this appendix. The functional values PUV (COS THETA) = $P_{\nu}^{\mu}(\cos\theta)$ and QUV (COS THETA) = $Q_{\nu}^{\mu}(\cos\theta)$, are listed at the bottom of each table. A discussion of these equations begins on page 12 of the text.

PRECEDING PAGE BLANK - NOT FILMED

```
THETA = 30.0 DEGREES
     MU = -1.00
                    NU =-1.50
              PSP
                                         USP
                                 .167108551642066592E-99
    -.167108551642066592E-99
     .4587448131796507H0E+00
                                 .171205895049514944E+01
 5
                                 .165471584884769308E+01
 3
     .244737444367757088E+00
     .225154410972202421E+00
                                 .167429888224324775E+01
 5
     .227394375880306184E+00
                                 .168265854508746235E+01
     .231051728374650071E+00
                                 .168363852973475775E+01
 6
 7
     .232457346494350528E+00
                                 .168223291161505729E+01
                                 .168110141818711965E+01
 8
     .232154163744093515E+00
 9
     .231431826421794039E+00
                                 .168090786848494665E+U1
10
      .231073793137333407E+00
                                 .168126590176940728E+01
                                 .168161233525080525E+01
11
      .231166619708905096E+00
      .231420933378204059E+00
                                 .168168047839311810E+01
12
                                 .168153979271079337E+01
13
      .231561619060528790E+00
                                 .168139103783205925E+01
     .231521760310901793E+00
14
                                 .168135955598997748E+01
15
     .231404268476736794E+00
                                 .168142867116218723E+01
16
     .231335153304527050E+00
17
     .231355786911404857E+00
                                 .168150567683139861E+01
     .231419415676681539E+00
                                 .168152272610766988E+01
18
19
     .231458346082933606E+00
                                 .168148379570141782E+01
     .231446315240165748E+00
                                 .168143889598495030E+01
50
21
     .231408061863306907E+00
                                 .168142864602351321E+01
                                 .168145269895711653E+01
     .231384008929703581E+00
55
                                 .168148112872574313E+01
23
     .231391626663248082E+00
                                 .168148776413297582E+01
24
     .231416390340169374E+00
25
     .2314322772U6948112E+00
                                 .168147187726619708E+01
     .231427152740993827E+00
                                 .168145275249889403E+01
26
                                 .168144821340462760E+01
27
     .231410212610571166E+00
28
     .231399176218350930E+00
                                 .168145924979684784E+01
29
     .231402787011532260E+00
                                 .168147272546045618E+01
                                 .168147596605840063E+01
30
     .231414881087707854E+00
     .231422856850424702E+00
                                 .168146799029568378E+01
31
                                 .168145814077881399E+01
32
     .231420217680333603E+00
33
     .231411284108959005E+00
                                 .168145574703557864E+01
     .231405334165886294E+00
                                 .168146169697865135E+01
34
     .231407321290472462E+00
                                 .168146911302856790E+01
35
     .231414106352948634E+00
                                 .168147093108057898E+01
36
37
     .231418662402428811E+00
                                 .168146637503109881E+01
38
     .231417129046828524E+00
                                 .168146065247009248E+01
39
     .231411855214379066E+00
                                 .168145923935094663E+01
40
     .231408289525219607E+00
                                 .168146280504010609E+01
41
     .231409497400540590E+00
                                 .168146731289217321E+01
42
     .231413677471291242E+00
                                 .168146843293875515E+01
     .231416520255068183E+00
43
                                 .168146559015497821E+01
44
     .231415551867065736E+00
                                 .168146197615639265E+01
     .231412182864864217E+00
45
                                 .168146107342961447E+01
                                 .168146337623954573E+01
46
     .231409880054932955E+00
47
                                 .168146631792201372E+01
     .231410668276374641E+00
48
     .231413423212349226E+00
                                 .168146705610488331E+01
49
     .231415314588848292E+00
                                 .168146516472838424E+01
50
     .231414664461460293E+00
                                 .168146273841994084E+01
```

PUV (COS THETA) = .261123486338710080E+00
QUV (COS THETA) = .298031510586655852E+01

```
MU =-1.00
                    NU = -.40
                                   THETA = 30.0 DEGREES
              PSP
     .813633856749546232E+00
                                -.382784634055499464E+01
     .284871085053336490E+00
                                -. 430394647866439731E+U1
     .236535642182184539E+00
                                -.428824134124941962E+01
 3
     .233808758707531680E+00
                                -.427541236314952855E+01
     .237671811439941889E+00
 5
                                -.427193405484593058E+U1
     .240114644948309452E+00
                                -.427272777956741693E+01
 6
     .240416678864225650E+00
 7
                                --427414873742231996E+01
     .239747650409969615E+00
                                -.427475113334828242E+01
 8
                                -.427456695618430531E+01
 9
     .239180811384473643E+00
     .239094568498430055E+00
                                -.427416121530589633E+01
10
     .239317675825103320E+00
                                -. 427396032856664725E+01
11
     .239530943912509137E+00
                                -.427402962356882332E+01
12
     .239566681646089349E+00
13
                                -.427419775638626930E+01
     .239466621130497154E+00
                                -.427428785127918304E+01
14
     .239364449808307819E+00
15
                                -.427425465380421357E+01
     .239346344493988721E+00
                                -.427416947499732637E+01
16
     .239399527834941158E+00
                                -.427412158850204352E+01
17
                                -.427413998333238955E+01
     .239456141301466267E+00
18
                                -.427418893401686653E+01
     .239466546090650086E+00
19
                                -.427421735434045360E+01
20
     .239434982123598783E+00
     .2394004054613n1019E+00
                                -.427420611970184307E+01
21
                                -.427417544572612532E+01
22
     .239393885506489706E+00
     .239414127126163610E+00
                                -.427415722008990780E+01
23
     .239436769946629256E+00
                                -.427416457718825536E+01
24
                                -.427418505064920611E+01
25
     .239441121715094434E+00
                               -.427419742903176908E+01
     .239427374128506652E+00
26
27
     .239411748169980640E+00
                                -.427419235185007146E+01
     .239408700511189855E+00
                                -.427417801374276092E+01
28
     .239418459932122391E+00
29
                                -.427416922632068326E+01
     .239429693241146503E+00
                                -.427417287624403906E+01
30
     .239431909923346422E+00
                                -.427418330491385995E+01
31
     .239424733804445244E+00
                               -.427418976632034093E+01
32
     .239416389526758239E+00
                                -.427418705510016959E+01
33
     .239414727197549519E+00
                                -.427417923445612238E+01
34
35
     .239420156940233186E+00
                                -.427417434549385051E+01
     .239426523737773247E+00
36
                               -.427417641419177320E+01
     .239427802174138609E+00
                               -.427418242876199073E+01
37
     .239423595136660236E+00
                               -.427418621679555077E+01
38
                               -.427418460262037355E+01
39
     .239418627216291188E+00
40
     .239417623005326797E+00
                               -.427417987H17923421E+01
41
     .239420948552991952E+00
                               -.427417688384266700E+01
42
     .239424899149243493E+00
                                -.427417816746920099E+01
43
     .239425702277493777E+00
                               -.427418194589054905E+01
     .239423028192837342E+00
                               -.427418435364718850E+01
44
     .239419835072523379E+00
                               -.427418331613950605E+01
45
     .239419182731699194E+00
                               -.427418024711722295E+01
46
     .239421364985298508E+00
                                -.427417828220725644E+01
47
     .239423982538757361E+00
48
                               -.427417913270193117E+01
     .239424519596152021E+00
49
                               -.427418165935832060E+01
                                -.427418328369359554E+01
     .239422715589067396E+00
50
                           .270159604400137663E+00
      PUV (COS THETA) =
```

-.757579262065869710E+01

```
THETA = 30.0 DEGREES
     MU =-1.00
                    NU =
                          . 05
             PSP
                                         QSP
                                 .218968460823165902E+02
     .573389094124100302E+00
 1
     .262906521267552242E+00
                                 .217282677997457212E+02
 5
     .231897101684802442E+00
                                 .217472703965057921E+02
 3
 4
                                 .217577676217403527E+02
     .232171981201488736E+00
 5
                                 .217598668261245825E+02
     .236038234720196846E+00
     .237954332598154616E+00
                                 .217586926398348167E+02
 6
 7
                                 .217573936241425466E+02
     .237920316675119689E+00
 8
     .237201306854259488E+00
                                 .217570032336622145E+02
     .236733950151301496E+00
 9
                                 .217572896302181297E+02
     .236744029047381258E+00
                                 .217576745277308306E+02
10
                                 .217578084867314195E+02
     .236990750834588045E+00
11
                                 .217576982543736424E+02
     .237170633693602696E+00
12
                                 .217575357736843683E+02
13
     .237166378987016857E+00
                                 .217574747616169581E+02
14
     .237054008737564049E+00
                                 .217575282632991627E+02
15
     .236966701927194290E+00
     .236968881592398611E+00
                                 .217576115013550991E+02
16
     .237029186936843972E+00
                                 .217576442444855843E+02
17
18
     .237077973899013188E+00
                                 .217576143477967161E+02
19
     .237076711929352986E+00
                                 .217575661551197134E+02
     .237040683668720124E+00
                                 .217575465933702547E+02
50
                                 .217575649610703241E+02
     .237010710306373188E+00
21
     .237011505313664511E+00
                                 .217575953211739097E+02
55
     .237034721310486339E+00
                                 .217576079264317069E+02
23
                                 ·217575958454496696E+02
     .237054435681406054E+00
24
     .237053902927230996E+00
                                 .217575755003885401E+02
25
     .237038077392936756E+00
                                 .217575669078244952E+02
56
                                 .217575752731129158E+02
     .237024426482914202E+00
27
28
     .237024800746327102E+00
                                 .217575895656560257E+02
29
     .237036067683244332E+00
                                 .217575956831036424E+02
     .237045907414126316E+00
                                 .217575896533088028E+02
30
31
     .237045634519504451E+00
                                 .217575792318836434E+02
32
     .237037330661744143E+00
                                 .217575747232567434E+02
33
     .237030005661296723E+00
                                 .217575792120227907E+02
34
     .237030210726988579E+00
                                 .217575870431656174E+02
                                 .217575904611080975E+02
35
     .237036505793938648E+00
                                 .217575870299460939E+02
     .237042104941443016E+00
36
     .237041946964984809E+00
                                 .217575809970685498E+02
37
     .237037061635952892E+00
                                 .217575783445513073E+02
38
     .237032686070360965E+00
                                 .217575810259013506E+02
39
40
     .237032810339205796E+00
                                 .217575857715370733E+02
     .237036677325820593E+00
                                 .217575878711394962E+02
41
42
     .237040161378247798E+00
                                 .217575857361094229E+02
43
     .237040061870421318E+00
                                 .217575819360588416E+02
     .237036948762247186E+00
                                 .217575802457790149E+02
44
45
     .237034129579724903E+00
                                 .217575819733762865E+02
     .237034210491307840E+00
                                 .217575850632649781E+02
46
     .237036753614958012E+00
47
                                 .217575864440684588E+02
     .237039066890734780E+00
                                 .217575850264912397E+02
48
     .237039000215777207E+00
                                 .217575824802773362E+02
49
     .237036896003740911E+00
                                 .217575813377834179E+02
50
```

PUV (COS THETA) = .267467495283606802E+00 QUV (COS THETA) = .385643088285442081E+02

```
MU =-1.00
                    NU = 1.50
                                   THETA =
                                            30.0 DEGREES
                                         050
              PSP
                                 .313328534328874664E+00
     .313328534328874664E+00
 1
     .206324849922927818E+00
                                 .342000085152602839E+00
 5
     .201844920106720291E+00
 3
                                 .358719410841032034E+00
 4
     .206128708661997875E+00
                                 .363003199396309617E+00
 5
                                 .362268210910838070E+00
     .208871723032755789E+00
     .209275966699765140E+00
                                 .360759553006921217E+00
 6
 7
                                 .360086550581305708E+00
     .208602964274149631E+00
 A
     .208001016505566735E+00
                                 .360247841999783211E+00
 9
     .207889624619680709E+00
                                 .360663562177460774E+00
10
     .208108648769076134E+00
                                 .360882586326856198E+00
     .208331173229712727E+00
                                 .360822961077332452E+00
11
12
     .208376726086429295E+00
                                 .360652955501636313E+00
13
     .208279497399726506E+00
                                 ·360555726814933524E+00
     .208173754748978007E+00
                                 .360584060472807111E+00
14
     .208150828519113776E+00
15
                                 .360669622327486422E+00
     .208202226575947327E+00
                                 .360721020384319973E+00
16
     .208260552944117619E+00
                                 .360705391881071303E+00
17
     .208273677499864374E+00
18
                                 .360656410372197644E+00
     .208243273791692187E+00
                                 .360626006664025457E+00
19
     .208207752798894691E+00
                                 .360635524485359898E+00
20
     .208199549085846767E+00
                                 .360666141159265466E+00
51
25
     .208219003814293076E+00
                                 .360685595887711775E+00
     .208242219761406788E+00
23
                                 .360679375193431133E+00
     .208247685858424691E+00
24
                                 .360658975441641216E+00
     .208234493266769126E+00
25
                                 .360645782849985651E+U0
     .208218494254703280E+00
                                 .360650069772348390E+00
26
27
     .208214671061923048E+00
                                 .360664338122051344E+00
     .208224025680431426E+00
                                 .36067369274U559722E+00
28
                                 .360670614172512493E+00
29
     .208235515052798240E+00
     .208238293126578344E+00
                                 .36066024626U017969E+0U
30
     .208231420764804896E+00
                                 .360653373898244521E+00
31
     .208222893264856416E+00
                                 .360655658834969172E+00
32
33
     .208220811515289954E+00
                                 .360663428030119844E+00
     .208226007772391891E+00
                                 .360668624287221781E+00
34
     .208232510123931555E+00
                                 .360666881987377825E+00
35
     .208234110147166632E+00
                                 .360660910619371225E+00
36
37
     .208230086305131882E+00
                                 .360656886777336475E+00
38
     .208225015312392014E+00
                                 .360658245545745947E+00
     .208223759122058191E+00
                                 .360662933711895749E+00
39
     .208226938367947760E+00
                                 .360666112957785317E+00
40
                                 .360665032912867016E+00
     .208230969150457317E+00
41
     .208231973383941336E+00
                                 .360661285062481995E+00
42
     .208229417945309924E+00
                                 .360658729623850583E+00
43
                                 .360659602259736157E+0U
44
     .208226161223848456E+00
45
     .208225345822357057E+00
                                 .360662645379530624E+00
46
     .208227430555903794E+00
                                 .360664730113077361E+00
     .208230099400129173E+00
47
                                 .360664014998422446E+00
     .208230770499368398E+00
48
                                 .360661510421964739E+00
                                 .360659787526340995E+00
     .208229047603744655E+00
49
                                 .360660380865140676E+00
50
     .208226833233198145E+00
```

PUV (COS THETA) = .234958820650612321E+00
QUV (COS THETA) = .639253880933468677E+00

```
THETA = 30.0 DEGREES
     MU = -.50
                    NU =-1.50
                                         OSP
             PSP
                                 .86602540378443753HE+00
 1
    -.4999999999999360E+00
                                 .173205080756887508E+01
 5
    0.
     .4999999999999701-100
                                 .173205080756887508E+01
 3
                                 .173205080756887508E+01
 4
     .583333333333332984-100
 5
                                 .173205080756887508E+01
     .54166666666666342-100
 6
     .49166666666666372-100
                                 .173205080756887508E+01
 7
     .47499999999999716-100
                                 .173205080756887508E+01
 8
     .486904761904761613-100
                                 .173205080756887508E+01
     .504761904761904460-100
 9
                                 .173205080756887508E+01
10
                                 .173205080756887508E+01
     .511706349206348900-100
                                 .173205080756887508E+01
11
     .506150793650793348-100
     .497059884559884262-100
                                 .173205080756887508E+U1
15
     .493272005772005476-100
                                 .173205080756887508E+01
13
     .496477133977133679-100
                                 .173205080756887508E+U1
14
     .501971639471639171-100
                                 .173205090756887508E+01
15
     .504352591852591550-100
                                 •173205080756887508E+01
16
     .502269258519258218-100
                                 .173205080756887508E+01
17
     .498592787931022926-100
                                 .173205080756887508E+01
18
                                 .173205080756887508E+01
19
     .496958801002918352-100
                                 .173205080756887508E+U1
50
     .498420789307011918-100
                                 .173205080756887508E+01
51
     .501052368254380338-100
                                 .173205080756887508E+01
22
     .502242844444856528-100
                                 .173205080756887508E+01
23
     .501160593362605446-100
     .499184308777625210-100
                                 .173205080756887508E+01
24
                                 .173205080756887508E+01
25
     .498278511676175935-100
     .499111845009509268-100
                                 .173205080756887508E+01
26
     .500650306547970806-100
                                 .173205080756887508E+01
27
28
     .501362557260221517-100
                                 .173205080756887508E+01
     .500701181598845856-100
29
                                 .173205080756887508E+01
30
     .499469654505249798-100
                                 .173205080756887508E+01
     .498894941861571638-100
31
                                 .173205080756887508E+01
32
     .499432576270173788-100
                                 .173205080756887508E+U1
     .500440640786302819-100
33
                                 .173205080756887508E+01
     .500914125634787668-100
                                 .173205080756887508E+01
34
     .500468492836213693-100
                                 .173205080756887508E+U1
35
36
     .499628156701759912-100
                                 .173205080756887508E+01
37
     .499231331304934515-100
                                 .173205080756887508E+01
                                 .173205080756887508E+U1
38
     .499606706680309890-100
     .500317944233652706-100
39
                                 .173205080756887508E+01
     .500655326149981991-100
40
                                 .173205080756887508E+01
     .500334813329469171-100
                                 .173205080756887508E+01
41
     .499725057231908195-100
                                 .173205080756887508E+01
42
     .499434697185450588-100
43
                                 .173205080756887508E+01
     .499711552113468307-100
                                 .173205080756887508E+01
44
45
     .500240093339683951-100
                                 .173205080756887508E+01
     .500492618592209204-100
                                 .173205080756887508E+U1
46
47
     .500251072698489397-100
                                .173205080756887508E+01
48
     .499788538008387640-100
                                .173205080756887508E+01
49
     .499566906802713881-100
                                 .173205080756887508E+01
50
     .499779491836727486-100
                                 .173205080756887508E+01
      PUV (COS THETA) =
                           .563940766730145087-100
```

.306998012383946154E+01

```
THETA = 30.0 DEGREES
     MU = -.50
                    NU = -.40
                                         QSP
              PSP
 K
                                 .998629534754572595E+01
 1
     .523359562429437657E+00
     .523359562429437657E+00
 2
                                 .998629534754572595E+01
                                 .998629534754572595E+01
     .523359562429437657E+00
 3
 4
                                 .998629534754572595E+01
     .523359562429437657E+00
 5
     .523359562429437657E+00
                                 .998629534754572595E+01
     .523359562429437657E+00
                                 .998629534754572595E+01
 6
     .523359562429437657E+00
 7
                                 .998629534754572595E+01
 8
     .523359562429437657E+00
                                 .998629534754572595E+01
     .523359562429437657E+00
                                 .998629534754572595E+01
 9
10
     .523359562429437657E+00
                                 .998629534754572595E+01
     .523359562429437657E+00
                                 .998629534754572595E+01
11
                                 .998629534754572595E+01
     .523359562429437657E+00
12
                                 .998629534754572595E+01
13
     .523359562429437657E+00
                                 .998629534754572595E+01
14
     .523359562429437657E+00
      ,523359562429437657E+00
                                 .998629534754572595E+01
15
     .523359562429437657E+00
                                 .998629534754572595E+01
16
     .523359562429437657E+00
                                 .998629534754572595E+01
17
19
     .523359562429437657E+00
                                 .998629534754572595E+01
     .523359562429437657E+00
                                 .998629534754572595E+01
19
     .523359562429437657E+00
                                 .998629534754572595E+01
20
     .523359562429437657E+00
                                 .998629534754572595E+01
21
     .523359562429437657E+00
                                 .998629534754572595E+01
55
     .523359562429437657E+00
23
                                 .998629534754572595E+01
     .523359562429437657E+00
                                 .998629534754572595E+01
24
     .523359562429437657E+00
25
                                 .998629534754572595E+01
     .523359562429437657E+00
                                 .998629534754572595E+01
26
     .523359562429437657E+00
                                 .998629534754572595E+01
27
28
     .523359562429437657E+00
                                 .998629534754572595E+01
29
     .523359562429437657E+0n
                                 .998629534754572595E+Ul
30
     .523359562429437657E+00
                                 .998629534754572595E+01
31
     .523359562429437657E+00
                                 .998629534754572595E+01
32
     .523359562429437657E+00
                                 .998629534754572595E+Ul
     .523359562429437657E+00
33
                                 .998629534754572595£+01
34
     .523359562429437657E+00
                                 .998629534754572595E+01
     .523359562429437657E+00
35
                                 .998629534754572595E+01
     .523359562429437657E+00
                                 .998629534754572595E+01
36
     .523359562429437657E+00
                                 .998629534754572595E+01
37
     .523359562429437657E+00
                                 .998629534754572595E+01
38
     .523359562429437657E+00
                                 .998629534754572595E+01
39
     .523359562429437657E+00
40
                                 .998629534754572595E+01
41
     .523359562429437657E+00
                                 .998629534754572595E+01
42
     .523359562429437657E+00
                                 .998629534754572595E+01
     .523359562429437657E+00
                                 .998629534754572595E+01
43
44
     .523359562429437657E+00
                                 .998629534754572595E+Ul
45
     .523359562429437657E+00
                                 .998629534754572595E+01
     .523359562429437657E+00
                                 .998629534754572595E+01
46
     .523359562429437657E+00
                                 .998629534754572595E+01
47
     .523359562429437657E+00
                                 .998629534754572595E+01
48
                                 .998629534754572595E+01
49
     .523359562429437657E+00
50
     .523359562429437657E+00
                                 .998629534754572595E+01
```

PUV (COS THETA) = .590548027145600779E+00 QUV (COS THETA) = .177002476450372605E+02

```
.05
                                            30.0 DEGREES
     MU = -.50
                    NU =
                                   THETA =
              PSP
                                 .174330860885125786E+01
     .516391535825313189E+00
 1
                                 .174330860885125786E+01
 2
     .516391535825313189E+00
                                 .174330860885125786E+01
     .516391535825313189E+00
 3
     .516391535825313189E+00
                                 .174330860885125786E+01
                                 .174330H608B5125786E+01
 5
      .516391535825313189E+00
     .516391535825313189E+00
                                 .174330860885125786E+01
 6
 7
      516391535825313189E+00
                                 .174330860885125786E+U1
                                 .174330860885125786E+01
 8
     .516391535825313189E+00
                                 .174330860885125786E+01
 9
      .516391535825313189E+00
      .516391535825313189E+00
                                 .174330860885125786E+01
10
                                 .174330860885125786E+01
     .516391535825313189E+00
11
                                 .174330860885125786E+01
     .516391535825313189E+00
12
                                 .174330860885125786E+01
     .516391535825313189E+00
13
     .516391535825313189E+00
                                 .174330860885125786E+01
14
                                 .174330860885125786E+01
15
      516391535825313189E+00
     .516391535825313189E+00
                                 .174330860885125786E+01
16
                                 .174330860885125786E+01
17
     .516391535825313189E+00
                                 .174330860885125786E+01
18
     .516391535825313189E+00
19
      516391535825313189E+00
                                 .174330860865125786E+01
                                 .174330860885125786E+01
     .516391535825313189E+00
20
                                 .174330860885125786E+01
      516391535825313189E+00
21
                                 .174330860885125786E+01
22
     .516391535825313189E+00
                                 .174330860885125786E+01
23
      .516391535825313189E+00
24
     .516391535825313189E+00
                                 .174330860885125786E+01
25
      516391535825313189E+00
                                 .174330860885125786E+01
26
     .516391535825313189E+00
                                 .174330860885125786E+01
                                 .174330860885125786E+01
27
      516391535825313189E+00
                                 .174330860885125786E+01
     .516391535825313189E+00
28
29
                                 .174330860885125786E+01
     .516391535825313189E+00
     .516391535825313189E+00
                                 .174330860885125786E+01
30
     .516391535825313189E+00
                                 .174330860885125786E+01
31
     .516391535825313189E+00
                                 .174330860885125786E+01
32
33
     .516391535825313189E+00
                                 .174330860885125786E+01
     .516391535825313189E+00
                                 .174330860885125786E+01
34
     .516391535825313189E+00
35
                                 .174330860885125786E+01
     .516391535825313189E+00
                                 .174330860885125786E+01
36
     .516391535825313189E+00
                                 .174330860885125786E+01
37
     .516391535825313189E+00
                                 .174330860885125786E+01
38
39
     .516391535825313189E+00
                                 .174330860885125786E+01
40
     .516391535825313189E+00
                                 .174330860885125786E+01
     .516391535825313189E+00
                                 .174330860885125786E+01
41
42
     .516391535825313189E+00
                                 .174330860885125786E+01
     .516391535825313189E+00
                                 .174330860885125786E+01
43
     .516391535825313189E+00
                                 .174330860885125786E+01
44
45
     .516391535825313189E+00
                                 .174330860885125786E+01
     .516391535825313189E+00
                                 .174330860885125786E+01
46
47
     .516391535825313189E+00
                                 .174330860885125786E+01
     .516391535825313189E+00
                                 .174330860885125786E+01
48
     .516391535825313189E+00
49
                                 .174330860885125786E+01
     .516391535825313189E+00
                                 .174330860885125786E+01
50
```

PUV (COS THETA) = QUV (COS THETA) =

.582685451089739438E+00

.308993405707514995E+01

```
MU = -.50
                    NU = 1.50
                                           30.0 DEGREES
                                  THETA =
             PSP
                                        QSP
                                .2499999999999680E+00
     .433012701892218769E+00
 1
                                .2499999999999680E+00
 5
     .433012701892218769E+00
 3
     .433012701892218769E+00
                                .24999999999999680E+00
     .433012701892218769E+00
                                .24999999999999680E+00
 4
     .433012701892218769E+00
                                .24999999999999680E+00
 5
                                .24999999999999680E+00
     .433012701892218769E+00
 6
     .433012701892218769E+00
                                .2499999999999680E+00
 7
                                .24999999999999680E+00
 8
     .433012701892218769E+00
                                .2499999999999680E+0U
 9
     .433012701892218769E+00
                                .24999999999999680E+00
10
     .433012701892218769E+00
                                .2499999999999680E+00
     .433012701892218769E+00
11
15
     .433012701892218769E+00
                                .2499999999999680E+00
     .433012701892218769E+00
13
                                .2499999999999680E+00
     .433012701892218769E+00
                                .24999999999999680E+00
14
                                .2499999999999680E+0U
     .433012701892218769E+00
15
                                .24999999999999680E+0U
     .433012701892218769E+00
16
                                .2499999999999680E+00
     .433012701892218769E+00
17
                                .24999999999999680E+00
     .433012701892218769E+00
18
19
     .433012701892218769E+00
                                .24999999999999680E+0U
     .433012701892218769E+00
20
                                .24999999999999680E+00
15
     .433012701892218769E+00
                                .2499999999999680E+00
55
     .433012701892218769E+00
                                .24999999999999680E+00
     .433012701892218769E+00
                                .2499999999999680E+00
23
                                .2499999999999680E+00
24
     .433012701892218769E+00
                                .2499999999999680E+00
25
     .433012701892218769E+00
                                .2499999999999680E+00
     .433012701892218769E+00
26
27
                                .24999999999999680E+00
     .433012701892218769E+00
28
     .433012701892218769E+00
                                .24999999999999680E+00
29
     .433012701892218769E+00
                                .24999999999999680E+00
                                .24999999999999680E+00
30
     .433012701892218769E+00
31
     .433012701892218769E+00
                                .24999999999999680E+00
     .433012701892218769E+00
                                .24999999999999680E+00
32
     .433012701892218769E+00
                                .24999999999999680E+00
33
                                .24999999999999680E+UU
34
     .433012701892218769E+00
35
     .433012701892218769E+00
                                .24999999999999680E+00
     .433012701892218769E+00
36
                                .2499999999999680E+00
     .433012701892218769E+00
37
                                .24999999999999680E+00
     .433012701892218769E+00
                                .24999999999999680E+00
38
     .433012701892218769E+00
                                .24999999999999690E+00
39
     .433012701892218769E+00
40
                                .2499999999999680E+00
                                .2499999999999680E+00
41
     .433012701892218769E+00
     .433012701892218769E+00
42
                                .24999999999999680E+00
     .433012701892218769E+00
43
                                .24999999999999680E+00
     .433012701892218769E+00
44
                                .2499999999999680E+00
45
     .433012701892218769E+00
                                .24999999999999680E+00
     .433012701892218769E+00
                                .24999999999999680E+00
46
     .433012701892218769E+00
                                .2499999999999680E+00
47
     .433012701892218769E+00
48
                                .24999999999999680E+00
49
     .433012701892218769E+00
                                .2499999999999680E+00
50
                                .2499999999999680E+00
     .433012701892218769E+00
      PUV (COS THETA) =
                           .488602511902919296E+00
```

.443113462726378440E+00

```
THETA = 30.0 DEGREES
     MU = 0.00
                    NU =-1.50
                                         USP
              PSP
                                -.342411790099030102E-99
     .917489626359302134-100
 1
                                 .626657068657749328E+00
     .626657068657749328E+00
 2
     .947668121875589847E+00
                                 .540642416186564807E+00
 3
     .100142727967008017E+01
                                 .340010507925414482E+00
     .894332565788140590E+00
                                 .232915794043474900E+00
 5
     .779125962216308178E+00
                                 .263785310433279892E+00
 6
 7
     .753658611194719059E+00
                                 .358830758380041632E+00
     .812882824648883851E+00
 8
                                 .418054971834206424E+00
     .883310713573082701E+00
 9
                                 .399183875872338531E+00
                                 .336825849220704133E+00
10
     .900019496455986565E+00
                                 .295868333283759793E+00
     .859061980519042225E+00
11
                                 .309462890175173943E+00
     .808326403493899003E+00
15
                                 .355874412340219731E+00
     .795890473610275832E+00
13
                                 .387182049458517815E+00
14
     .827198110728573917E+00
                                 .376556927755922800E+00
15
     .866851604759261251E+00
     .876755736060608748E+00
                                 .339594206534460678E+00
16
                                 .314254964515520003E+00
17
     .851416494041668073E+00
     .818870380602645191E+00
                                 .322975669328277894E+00
18
     .810641284149430024E+00
                                 .353687075392061741E+00
19
                                 .374969671112592765E+00
     .831923879869961048E+00
50
                                 .367574323935732393E+00
     .859523691273615018E+00
21
     .866562477068733908E+00
                                 .341305217724754597E+00
55
     .848216668143864184E+00
                                 .322959408799884872E+00
23
     .824257810722514346E+00
                                 .329379165297507972E+00
24
25
     .818108451577372654E+00
                                 .352328886061165086E+00
26
     .834229798580473077E+00
                                 .368450233064265509E+00
     .855396491543588001E+00
27
                                 .362778634778361337E+00
     .860856010833758577E+00
                                 .342403431402542377E+00
28
     .846477962186382571E+00
                                 .328025382755166371E+00
29
                                 .333105020033093005E+00
     .827520497781139502E+00
30
     .822611641411694885E+00
                                 .351425121410918418E+00
31
     .835586660439964369E+00
                                 .364400140439187903E+00
35
     .852752517836254587E+00
                                 .359800562812464124E+00
33
34
     .857211625407616772E+00
                                 .343158946799725384E+00
35
     .845390140500710601E+00
                                 .331337461892819213E+00
     .829706468587040199E+00
                                 .335539889116441878E+00
36
37
     .825621609267887930E+00
                                 .350784791637289358E+00
     .836477935077645114E+00
                                 .361641117447046543E+00
38
     .850915051408049128E+00
                                 .357772703785280614E+00
39
     .854683622409516442E+00
                                 .343708205335873870E+00
40
                                 .333671326062505994E+00
     .844646743136148566E+00
41
     .831272606769438022E+00
                                 .337254915101429794E+00
42
                                 .350308677992456940E+00
     .827774861544599941E+00
43
                                 .359641139874373310E+00
44
     .837107323426516310E+00
                                 .356303307612054517E+00
45
     .849564283016632612E+00
                                 .344124742194596117E+00
46
     .852827519785210189E+00
47
     .844107079359209491E+00
                                 .335404301768595419E+00
     .832449567782752861E+00
                                 .338527922581263437E+00
48
     .829391368549605483E+00
                                 .349941277499037630E+00
49
     .837575122762385681E+00
                                 .358125031711817828E+00
50
```

```
THETA = 30.0 DEGREES
     MU = 0.00
                    NU = -.40
             PSP
                                         OSP
                                 .148873164043148002E+01
     .483718232381312815E+00
 1
                                 .157749169753143057E+01
 5
     .901301469532766985E+00
                                 .139620160437844438E+01
     .106453580259884789E+01
 3
     .101184759965827758E+01
                                 .123404398958490236E+01
 5
                                 .120680840951489393E+01
     .883714269611804624E+00
                                 .128583283411624536E+01
     .812560358102438076E+00
 6
                                 .137093955168973297E+01
 7
     .840213206923795422E+00
                                 .138699924801884325E+01
     .915768137822808203E+00
 8
                                 .133650618384624197E+01
      961232297012808759E+00
 9
                                 .127882979391867008E+01
      .942492101917731445E+00
10
                                 .126744450335937297E+01
      .888928521147301482E+00
11
                                 .130453974178421445E+01
     .855527818445381587E+00
12
      .869699333613550190E+00
                                 .134815518071411635E+01
13
     .911185587999326050E+00
                                 .135697335630292474E+01
14
                                 .132765775418155200E+01
15
      937581474710436404E+00
      926187890244118656E+00
                                 .129259190684015017E+01
16
                                 .128539630108705116E+01
17
      .892335226762152656E+00
                                 .130962939741732848E+01
18
      .870515648820511814E+00
19
      .880041799598826729E+00
                                 .133894787484039752E+01
                                 .134502518920309204E+01
20
     .908633315734325235E+00
                                 .132437277249646751E+01
21
     .927228835261494243E+00
                                 .129918306769192849E+01
     .919044204028206846E+00
55
23
     .894298580405261981E+00
                                 .129392322301825486E+01
24
     .878097049796891709E+00
                                 •131191684567129911E+01
                                 .133399704842054089E+01
25
     .885271342566936333E+00
     .907082995908354304E+00
                                 .133863325845913115E+01
26
     .921436613722193855E+00
                                 .132269195088200570E+01
27
     .915050637417194301E+00
                                 .130303793673931732E+01
28
     .895550990063378119E+00
                                 .129889315874401221E+01
29
30
     .882666917421488119E+00
                                 .131320237106206366E+01
     .888420662420054386E+00
                                 .133091057732125551E+01
31
     .906051454477467708E+00
                                 .133465811786049843E+01
32
                                 .132167785423058111E+01
     .917738936345897421E+00
33
     .912503517325865415E+00
                                 .130556489130241440E+01
34
                                 .130214510647595650E+01
     .896414694663373998E+00
35
     .885720433174596434E+00
                                 .131402228712224873E+01
36
     .890523193520703898E+00
37
                                 .132880366357246180E+01
     .905318067229576274E+00
                                 .133194841105836192E+01
38
39
     .915174693816573956E+00
                                 .132100151821684414E+01
     .910738541569839300E+00
                                 .130734844547866588E+01
40
     .897044980908125618E+00
                                 .130443778930739214E+01
41
                                 .131458953739590730E+01
     .887904305872533706E+00
42
                                 .132727434080602928E+01
     .892025848343324674E+00
43
                                 .132998334157950375E+01
     .904770694948813094E+00
44
45
     .913292382254860403E+00
                                 .132051904900994654E+01
     .909443781354262153E+00
                                 .130867427337701745E+01
46
     .897524710834378241E+00
                                 .130614079672900841E+01
47
48
     .889543496111838489E+00
                                 .131500483368340006E+01
49
     .893153059828920310E+00
                                 .132611392851184789E+01
50
     .904346850422454578E+00
                                 .132849324215246377E+01
```

PUV (COS THETA) = .102044614584513939E+01 QUV (COS THETA) = .235469296295508863E+01

```
MU = 0.00
                                   THETA =
                                            30.0 DEGREES
                    NU = .05
             PSP
                                         OSP
                                 .93382652114909391AE+00
     .572249628146135628E+00
 1
                                 .924115899393766413E+00
     .943083311798271430E+00
 5
     .104980823921997599E+01
                                 .727553035254437101E+00
 3
     .966136593978889083E+00
                                 .591013319802927867E+U0
 5
     .841456810603975845E+00
                                 .594278174831646561E+00
 6
     .792720944061401262E+00
                                 .684038474935372513E+0U
 7
     .837906164610877192E+00
                                 .757774053322321263E+00
     .912864500982501054E+00
 A
                                 .755811200205137189E+00
                                 .697645316086848724E+00
     .944445999289034612E+00
 9
                                 .647137657148087749E+00
     .913494866084259005E+00
10
                                 .648540947939601095E+00
     .859905352810660753E+00
11
                                 .691564282997605580E+00
12
     .936545587823463039E+00
                                 .729973129949564509E+00
13
     .860082559507169495E+00
     .901784331829888204E+00
                                 .728881130610225706E+00
14
     .920319021779897419E+00
15
                                 .694744478278641805E+00
                                 .663758082738804572E+00
16
     .901330534171469489E+00
     .867199835350840669E+00
                                 .664651826541223099E+00
17
                                 .692944554144815117E+00
     .851838137640152650E+00
18
                                 .718912699636135296E+00
     .867751437663766077E+00
19
                                 .718156283978244476E+00
20
     .896637786226762521E+00
21
                                 .693999052191680853E+00
      .909754092912764059E+00
     .896058742299643486E+00
                                 .671650271187839741E+00
55
     .871019739278238919E+00
                                 .672305940557128876E+00
53
     .859576117861378387E+00
                                 .693382469313491555E+00
24
25
     .871596157141802618E+00
                                 .712997390692606159E+00
     .893692217072239281E+00
                                 .712418785000279690E+00
26
     .903841529525588778E+00
27
                                 .693726076810443777E+00
     .893131600345619522E+00
28
                                 .676249060809081091E+00
     .873359442659461530E+00
29
                                 .676766812979504421E+00
     .864241406127252448E+00
                                 .693560147202316581E+00
30
     .873898746784743626E+00
                                 .709319494847421014E+00
31
     .891789308994330719E+00
                                 .708951013988572107E+00
32
                                 .693606662373690460E+00
     .900066316590923118E+00
33
     .891273178076470877E+00
                                 .679257564453724432E+00
34
     .87493720835346089UE+00
                                 .679685336875647783E+00
35
36
     .867359181555885449E+00
                                 ·693642326005003592E+00
                                 .706812841142385055E+00
37
     .875430083612281714E+00
     .890460033729010288E+00
                                 .706419268047439609E+00
38
     .897447942683905395E+00
39
                                 .693549140780061311E+00
                                 .681378293977736189E+00
     .889989638171110189E+00
40
                                 .681742731252897301E+00
     .876072340122301150E+00
41
                                 .693683040649376771E+00
     .869589281080036237E+00
42
                                 .704995267453364286E+00
     .876521422581137450E+00
43
                                 .704655949527531193E+00
     .889479451380565674E+00
44
45
     .895525692668211642E+00
                                 .693520158354011402E+00
46
     .889050367440208341E+00
                                 .682953387955986601E+00
     .876927896517358808E+00
47
                                 .683270826028797088E+00
48
     .871263324515495587E+00
                                 .693703669823669032E+00
49
     .877338318212939158E+00
                                 .703617158538139037E+00
                                 .703318949531016679E+00
50
     .888726460743439680E+00
                           .100282042354942522E+01
      PUV (COS THETA) =
```

.124660n38051107279E+01

```
THETA = 30.0 DEGREES
     MU = 0.00
                    NU = 1.50
                                         QSP
             PSP
                                 .172029304942369042E+00
     .642022106435681038E+00
                                -.238010290131776227E-01
 5
     .837852440391227703E+00
     .790813177321048668E+00
                               -.199353948741684157E+00
 3
                                -.234633396044318433E+00
     -659148487524668768E+00
 5
                                -.157324399460793297E+00
     .581839490941143632E+00
 6
     .605487745461190670E+00
                                -.690679120816573948E-01
 7
                                -. 487451933534919712E-U1
     .681333164302635586E+00
                                -.974377200401378740E-01
 8
     .730025690989281489E+00
                                -.156677845359190553E+00
 9
     .714152347250522818E+00
                                -.170987905244889657E+00
10
     .660746476697740480E+00
                                -.135394427616732629E+00
11
     .625152999069583452E+00
                                -.907679639964962945E-01
     .637110623957682655E+00
12
     .678350257749597482E+00
                                -.797178374257974779E-01
13
                                -.107778597342953385E+00
14
     .706411017666753389E+00
     .696816390468573001E+00
                                -.143586233526244815E+00
15
     .663220402402484865E+00
                                -.152588251397478767E+00
16
     .640056810682505013E+00
                                -.129424659677498915E+UU
17
                                -.995214485101304327E-01
18
     .648069351965898728E+00
                                -. 919262270852468070E-01
     .676415104218300102E+00
19
                               -.111649632639973890E+00
     .696138509773027185E+00
20
21
                               -.137321713709793100E+00
     .689259696382342815E+00
     .664743656230263911E+00
                                -.143890766870151621E+00
22
     .647569953242448147E+00
                                -.126717063882335857E+00
23
24
                                -.104226337533951885E+00
     .653596325204687006E+00
25
     .675194991493579786E+00
                                -.984389923442537508E-01
     .690403139973064413E+00
                                -.113647140823738378E+00
26
27
     .685041112098789741E+00
                                -.133658501282132000E+00
                               -.138830495601475482E+00
28
     .665738966522542253E+00
                               -.125183965592947655E+00
29
     .652092436514014426E+00
     .656922117780726066E+00
                                -.107159349721216200E+UU
30
     .674369382675316123E+00
                                -.102484369182578917E+00
31
     .686745264266555798E+00
                               -.114860250773818592E+00
35
33
     .682351731806537174E+00
                               -.131257137139311174E+00
     .666433975237438855E+00
                               -.135522287157316267E+00
34
35
     .655112192279197336E+00
                               -.124200504199074749E+00
     .659141850796739440E+00
                               -.109161613874454937E+00
36
     .673776735843998303E+00
                               -.105240208244719612E+00
37
38
     .684209942324576924E+00
                               -.115673414725298233E+00
     .680488478460627951E+00
39
                               -.129562106944087393E+00
                               -.133191057869579848E+00
40
     .666945049228516008E+00
     .657271056035583868E+00
                               -.123517064676647708E+00
41
     .660728129804319181E+00
                               -.110615089726213901E+00
42
                               -.107237988849044299E+0u
     .673331641860201558E+00
43
                               -.116255792539866281E+00
     .682349445551023539E+00
44
                               -.128301982246265350E+00
45
     .679121678747321806E+00
                               -.131459928562369280E+00
46
     .667336062648046971E+00
47
     .658891066579714491E+00
                               -.123014932494036800E+00
48
     .661918059698237916E+00
                               -.111718040381546017E+00
                               -.108752533060742599E+00
49
     .672985483689693731E+00
     .680926107701536620E+00
                               -.116693157072585489E+00
50
```

```
MU =
           .50
                    NU =-1.50
                                  THETA = 30.0 DEGREES
                                        QSP
             PSP
                                .9999999999998720E+00
 1
    0.
                                .14999999999999808E+01
 2
     .866025403784437538E+00
     .173205080756887508E+01
                                .99999999999998720E+00
 3
                                .252435489670723778E-28
     .173205080756887508E+01
                               -.4999999999999360E+00
 5
     .866025403784437538E+00
                               -.353409685539013289E-27
     .252435489670723778E-28
                                .9999999999998720E+00
 7
    -.277679038637795768E-27
                                .14999999999999808E+01
 8
     .866025403784437538E+00
 9
     .173205080756887508E+01
                                .99999999999998720E+00
10
     .173205080756887508E+01
                               -.100974195868289511E-27
                               -.49999999999999360E+U0
     .866025403784437538E+00
11
     .113595970351825700E-27
                               -.833037115913388467E-27
12
                                .99999999999998720E+00
    -.492249204857910591E-27
13
                                .1499999999999808E+01
     .866025403784437538E+00
14
                                .9999999999998720E+00
     .173205080756887508E+01
15
                                .227191940703651400E-27
     .173205080756887508E+01
16
                               -.4999999999999360E+U0
     .866025403784437538E+00
17
    -.126217744835361889E-27
                               -.492249204857911367E-27
18
                                .9999999999998720E+00
19
    -. 934011311781676943E-27
                                .14999999999999808E+01
20
     .866025403784437538E+00
                                .9999999999998720E+00
     .173205080756887508E+01
21
55
     .173205080756887508E+01
                                .833037115913388467E-27
                               -.4999999999999360E+0u
     .866025403784437538E+00
23
     .277679038637796156E-27
                               -.567979851759128500E-27
24
                                .99999999999998720E+00
25
    -.934011311781676426E-27
                                .14999999999999808E+01
     .866025403784437538E+00
26
     .173205080756887508E+01
                                .99999999999998720E+00
27
28
     .173205080756887508E+01
                                .118644680145240176E-26
     .866025403784437538E+00
                               -.4999999999999360E+00
29
    -.126217744835361889E-27
                               -.593223400726200878E-27
30
                                .9999999999998720E+00
    -.133790809525483447E-26
31
                                .14999999999999808E+01
     .866025403784437538E+00
32
                                .9999999999998720E+UU
     .173205080756887508E+01
33
                                .156510003595848742E-26
34
     .173205080756887508E+01
35
     .866025403784437538E+00
                               -.4999999999999360E+00
                                .164083068285970456E-27
36
    -.169131778079384931E-26
37
    -.330690491468647942E-26
                                .99999999999998720E+00
                                .14999999999999808E+01
38
     .866025403784437538E+00
                                .9999999999998720E+00
39
     .173205080756887508E+01
                                .292825168018039582E-26
     .173205080756887508E+01
40
                               -.4999999999999360E+00
41
     .8660254u3784437538E+00
42
    -.171656132976092169E-26
                               -.130004277180422746E-26
43
    -.413994203059986685E-26
                                .99999999999998720E+00
                                .14999999999999808E+01
44
     .866025403784437538E+00
                                .99999999999998720E+00
45
     .173205080756887508E+01
     .173205080756887508E+01
                                .757306469012171333E-28
46
                               -.49999999999999360E+00
47
     .866025403784437538E+00
48
    -.257484199464138253E-26
                               -.275154643741088918E-26
49
    -.499822269548032770E-26
                                .99999999999998720E+00
                                .14999999999999808E+01
50
     .866025403784437538E+00
```

```
MU =
            .50
                    NU = -.40
                                   THETA = 30.0 DEGREES
             PSP
                                         OSP
 K
     .544639035015026385E+00
 1
                                 .838670567945422956E+00
 5
     .154326856976959898E+01
                                 .786334611702479190E+00
 3
     .199725906950914519E+01
                                -.104671912485887531E+00
 4
     .145262003449411881E+01
                                -.943342480431310487E+00
 5
     .453990499739546210E+00
                                -.891006524188366722E+00
 6
    -.126217744835361889E-28
                                -.391275008989621855E-27
     .544639035015026385E+00
 7
                                 .838670567945422956E+00
     .154326856976959898E+01
 8
                                 .786334611702479190E+00
                                -.104671912485887531E+00
 9
     .199725906950914519E+01
10
     .145262003449411881E+01
                                -.943342480431310487E+00
     .453990499739546210E+00
11
                                -.891006524188366722E+00
     .252435489670723778E-27
12
                                -.164083068285970456E-26
     .544639035015026385E+00
                                 .838670567945422956E+00
13
     .154326856976959898E+01
                                 .786334611702479190E+U0
14
     .199725906950914519E+01
                                -.104671912485887531E+00
15
     .145262003449411881E+01
                                -.943342480431310487E+00
16
     .453990499739546210E+00
                                -.891006524188366722E+00
17
     .555358077275592311E-27
                                -.209521456426700736E-26
18
19
     .544639035015026385E+00
                                 .838670567945422956E+00
20
     .154326856976959898E+01
                                 .786334611702479190E+00
     .199725906950914519E+01
                                -.104671912485887531E+00
21
     .145262003449411881E+01
                                -.943342480431310487E+00
22
     .453990499739546210E+00
23
                                -.891006524188366722E+00
     .908767762814605600E-27
                                -.315544362088404722E-26
24
     .544639035015026385E+00
                                 .838670567945422956E+00
25
     .154326856976959898E+01
                                 .786334611702479190E+00
26
     .199725906950914519E+01
                                -.104671912485887531E+00
27
28
     .145262003449411881E+01
                                -.943342480431310487E+00
29
     .453990499739546210E+00
                                -.891006524188366722E+00
     .164083068285970456E-26
                                -.283989925879564250E-26
30
     .544639035015026385E+00
31
                                 .838670567945422956E+00
     .154326856976959898E+01
                                 .786334611702479190E+0U
32
     .199725906950914519E+01
                                -.104671912485887531E+00
33
     .145262003449411881E+01
                                -.943342480431310487E+00
34
     .453990499739546210E+00
                                -.891006524188366722E+00
35
     .194375327046457309E-26
                                -.386226299196207380E-26
36
37
     .544639035015026385E+00
                                 .838670567945422956E+00
38
     .154326856976959898E+01
                                 .786334611702479190E+00
     .199725906950914519E+01
39
                                -.104671912485887531E+00
     .145262003449411881E+01
                                -.943342480431310487E+00
40
     .453990499739546210E+00
                               -.891006524188366722E+00
41
     .132528632077129983E-26
                               -.959254860748750355E-27
42
     .544639035015026385E+00
                                 .838670567945422956E+00
43
     .154326856976959898E+01
                                 .786334611702479190E+00
44
45
     .199725906950914519E+01
                                -.104671912485887531E+00
     .145262003449411881E+01
                                -.943342480431310487E+00
46
     .453990499739546210E+00
47
                                -.891006524188366722E+00
     .116120325248532938E-26
48
                               -.260008554360845491E-26
49
     .544639035015026385E+00
                                 .838670567945422956E+00
50
     .154326856976959898E+01
                                 .786334611702479190E+00
      PUV (COS THETA) =
                           .174139210336130303E+01
```

.139374181061235289E+01

```
.50
                                   THETA = 30.0 DEGREES
     MU =
                    NU =
                          .05
              PSP
     .725374371012286709E+00
                                 .688354575693753103E+00
 1
 2
     .168419410588047853E+01
                                 .404339230989830849E+00
 3
     .191763946973638364E+01
                                -.568030689407844508E+00
                                -.125638526510159761E+01
 4
     .119226509872409694E+01
                                -.972369920397675357E+00
 5
     .233445363855905113E+00
    -. 435451219681998517E-27
                                -.504870979341447555E-27
 6
                                 .688354575693753103E+00
 7
     .725374371012286709E+00
 A
                                 .404339230989830849E+00
      .168419410588047853E+01
                                -.568030689407844508E+00
 9
     .191763946973638364E+01
                                -.125638526510159761E+01
10
     .119226509872409694E+01
     .233445363855905113E+00
                                -.972369920397675357E+00
11
    -.580601626242664689E-27
                                -.757306469012171333E-27
15
                                 .688354575693753103E+00
13
      .725374371012286709E+00
     .168419410588047853E+01
                                 .404339230989830849E+00
14
     .191763946973638364E+01
15
                                -.5680306894U7844508E+U0
     .119226509872409694E+01
                                -.125638526510159761E+01
16
                                -.972369920397675357E+00
17
     .233445363855905113E+00
                                -.143888229112312553E-26
18
    -.176704842769506644E-26
     .725374371012286709E+00
                                 .688354575693753103E+00
19
                                 .404339230989830849E+00
     .168419410588047853E+01
20
21
     .191763946973638364E+01
                                -.568030689407844508E+00
22
     .119226509872409694E+01
                                -.125638526510159761E+01
     .233445363855905113E+00
                                -.972369920397675357E+0U
23
    -.277047949913619346E-26
                                -.229716295600358638E-26
24
     .725374371012286709E+00
                                 .688354575693753103E+00
25
                                 .404339230989830849E+00
     .168419410588047853E+01
26
     .191763946973638364E+01
                                -.5680306894U7844508E+00
27
                                -.125638526510159761E+01
28
     .119226509872409694E+01
29
     .233445363855905113E+00
                                -.972369920397675357E+00
    -.283989925879564250E-26
                                -.381177589402792904E-26
30
     .725374371012286709E+00
                                 .688354575693753103E+00
31
     .168419410588047853E+01
                                 .404339230989830849E+00
35
                                -.568030689407844508E+00
     .191763946973638364E+01
33
     .119226509872409694E+01
                                -.125638526510159761E+01
34
                                -.972369920397675357E+00
     .233445363855905113E+00
35
    -.381808678126969714E-26
                                -.482151785271082415E-26
36
                                 .688354575693753103E+00
     .725374371012286709E+00
37
                                 .404339230989830849E+00
38
     .168419410588047853E+01
     .191763946973638364E+01
                                -.5680306894U7844508E+00
39
     .119226509872409694E+01
                                -.125638526510159761E+01
40
     .233445363855905113E+00
                                -.972369920397675357E+00
41
    -. 425353800095169565E-26
                                -.633613079073516682E-26
42
     .725374371012286709E+00
                                 .688354575693753103E+00
43
44
     .168419410588047853E+01
                                 .404339230989830849E+00
45
     .191763946973638364E+01
                                -.568030689407844508E+00
46
     .119226509872409694E+01
                                -.125638526510159761E+01
     .233445363855905113E+00
                                -.972369920397675357E+00
47
    -.320593071881819198E-26
                                -.744684694528635144E-26
48
                                 .688354575693753103E+00
49
     .725374371012286709E+00
50
     .168419410588047853E+01
                                 .404339230989830849E+00
      PUV (COS THETA) =
                           .190040954242058588E+01
```

.716672627040100654E+00

```
MU =
           .50
                   MU = 1.50
                                  THETA = 30.0 DEGREES
             PSP
     .9999999999998720E+00
                                .757306469012170364E-28
     .14999999999999808E+01
                               -.866025403784437538E+00
 2
     .9999999999998720E+00
                               -.173205080756887508E+01
 3
     .201948391736579022E-27
                               -.173205080756887508E+01
    -.4999999999999360E+00
                               -.866025403784437538F+00
 5
    -.315544362088404722E-27
                                .252435489670723778E-28
 6
     .9999999999998720E+00
                                .328166136571940523E-27
 7
     .1499999999999808E+01
                               -.866025403784437538E+00
      9999999999998720E+00
                               -.173205080756887508E+01
 9
                               -.173205080756887508E+01
     .403896783473158044E-27
10
    -.4999999999999360E+00
                               -.866025403784437538E+00
11
                               -.25243548967U723778E-27
    -.643710498660345633E-27
12
                                .151461293802433750E-27
     .99999999999998720E+00
13
     .14999999999999808E+01
                               -.866025403784437538E+00
14
      9999999999998720E+00
                               -.173205080756887508E+01
15
     .201948391736579022E-27
                               -.173205080756887508E+01
16
    -.4999999999999360E+00
17
                               -.866025403784437538E+00
18
    -.122431212490301032E-26
                                .328166136571940911E-27
     .9999999999998720E+00
                                .113595970351825597E-26
19
     .14999999999999808E+01
                               -.866025403784437538E+00
20
                               -.173205080756887508E+01
     .9999999999998720E+00
21
     .201948391736579022E-27
                               -.173205080756887508E+01
22
    -,4999999999999360E+00
                               -.866025403784437538E+00
23
    -.193113149598103690E-26
                                .68157582211U954200E-27
24
     .9999999999998720E+00
                                .148936938905726925E-26
25
     .14999999999999808E+01
                               -.866025403784437538E+00
26
27
     .99999999999998720E+00
                               -.173205080756887508E+01
     .126217744835361889E-27
                               -.173205080756887508E+01
28
    -.4999999999999360E+00
                               -.866025403784437538E+00
29
                                .111071615455118462E-26
    -.200686214288225403E-26
30
     .99999999999998720E+00
                                -272630328844381473E-26
31
     -14999999999999808E+01
                               -.866025403784437538E+00
32
      .99999999999998720E+00
                               -.173205080756887508E+01
33
    -.555358077275592311E-27
                               -.173205080756887508E+U1
34
    -.4999999999999360E+00
                               -.866025403764437538E+00
35
                                .272630328844381680E-26
    -.338263556158769862E-26
36
     .9999999999998720E+00
                                .434189042233644691E-26
37
     .14999999999999808E+01
                               -.866025403784437538E+00
38
     .9999999999998720E+00
                               -.173205080756887508E+01
39
    -.555358077275592311E-27
                               -.173205080756887508E+01
40
    -.4999999999999360E+00
                               -.866025403784437538E+00
41
                                .277679038637796156E-26
    -.478365252926021559E-26
42
     .9999999999998720E+00
                                .358458395332427661E-26
43
     .14999999999999808E+01
                               -.866025403784437538E+00
44
                               -.173205080756887508E+01
      9999999999998720E+00
45
    -.191850972149750071E-26
                               -.173205080756887508E+01
46
    -.49949999999999360E+00
                               -.866025403784437538E+00
47
48
    -.613418239899858780E-26
                                .206997101529993498E-26
     .9999999999998720E+00
49
                                .368555814919256509E-26
     .14999999999999808E+01
50
                               -.866025403764437538E+00
      PUV (COS THETA) =
                           .169256875064326669E+01
```

-.153499006191973077E+01

```
30.0 DEGREES
     MU = 1.00
                    NU =-1.50
                                   THETA =
              PSP
                                         QSP
     .458744813179651092-100
                                 .171205895049515060E-99
 1
                                 .344058609884738085E+00
 2
     .128404421287136208E+01
 3
     .304651721847128206E+01
                                -.141841439571518190E+01
     .210573195706770136E+01
                                -.492947279028531258E+01
 5
    -.250253218580559515E+01
                                -.616425344587751225E+01
 6
    -.667721800131595250E+01
                                -.198956763036715490E+01
 7
    -.485630240327233055E+01
                                 .480618189782630955E+01
     .303162115623794069E+01
                                 .691974464555551360E+01
 8
     .960511225893513772E+01
 9
                                 .346253542858316574E+00
                                -.972456776138063860E+01
10
     .690664382334616377E+01
                                -.127153702774917514E+02
    -.425518312218534476E+01
11
                                -.374581391519618043E+01
    -.132247394844809157E+02
15
                                 959749870725448356E+U1
    -.964940964293925416E+01
13
14
     .478446218423093526E+01
                                 .134650430069990693E+02
     .161490699506790776E+02
                                 .210043524055092697E+01
15
     .116971629307233777E+02
                                -.145143079484962967E+02
16
    -.600792278010507000E+01
                                -.192583713666365894E+02
17
    -.197670962617731023E+02
                                -.549919788496855717E+01
18
    -.144387563083162818E+02
                                 .143864375413314837E+02
19
     .653710035846073500E+01
                                 .200069013957453667E+02
50
     .226905695077822159E+02
21
                                 .385343224642388580E+01
                                -.193027848785530413E+02
     .164858798293849142E+02
22
23
    -.776048388102112145E+01
                                -.257995784541476185E+U2
    -.263080831078621465E+02
                                -.725197922730659346E+01
24
25
    -.192270960522314879E+02
                                 .191746242320445727E+02
     .828960479981791393E+01
                                 .265477020037199960E+02
26
     .292312252560682462E+02
27
                                 .56060A154746966378E+U1
     .212739758906446323E+02
                                -.240907773727864710E+U2
28
                               -.323401083121393248E+02
29
    -.951294630347011067E+01
                               -.900454199755674062E+01
    -.328485126180526948E+02
30
    -.240150255812371049E+02
                                 .239624804318400908E+U2
31
     .100420354930026864E+02
                                 .330880424432600672E+02
32
33
     .357714933211899700E+02
                                 .735858461507278359E+01
     .260617865845488105E+02
34
                                -.288785342526658239E+02
35
    -.112653525699867471E+02
                               -.388803110448877670E+02
    -.393886614382586794E+02
                               -.107570021766158347E+U2
36
    -.288027485126755739E+02
37
                                 .287501627061604107E+02
38
     .117944226084205117E+02
                                 .396281419230462033E+02
39
     .423115515641129800E+02
                                .911101296735373496E+01
     .3084944286315C1429E+02
                               -.336661590665168762E+02
40
    -.130177244196604406E+02
                               -.454203311141869394E+02
41
    -.459286492620155805E+02
                               -.125094062718317995E+02
42
    -.335903529813992478E+02
                                 .335377423262664600E+02
43
                                 .461680996068807707E+02
     .135467821076008393E+02
44
45
                                .108633981573127122E+02
     .488514835571688979E+02
     .356370062628139997E+02
                               -.384537025006850782E+02
46
47
    -.147700737937844664E+02
                               -.519602388946615882E+02
    -.524685362428206577E+02
                               -.142617764456253969E+02
48
49
    -.383778832760941133E+02
                                .383252563380191995E+02
     .152991230824665860E+02
                                .527079668439157774E+02
50
      PUV (COS THETA) =
                           .172632117610853773E+02
```

.934224388058987776E+02

```
THETA = 30.0 DEGREES
     MU = 1.00
                    NU = -.40
                                         QSP
              PSP
     .697966858638996821E+00
                                 .628452182304411485E+00
 1
     .264685191520384340E+01
                                -.477895826748892819E-02
 5
     .330621233937490457E+01
 3
                                -.310682586282114848E+01
     .113167472873922047E+00
                                -.598185637424308958E+01
 5
    -.504463119669334992E+01
                                -.430598599729680318E+01
                                 .210128348540353387E+01
 6
    -.640653836762939488E+01
                                 .723882918789294411E+01
 7
    -.700715814937718649E+00
                                 .451772209642955912E+01
     .767399068334997784E+01
 8
     .973929737145194587E+01
                                -.519878193372218645E+01
 9
     .151895254164084976E+01
                                -.126004136640069362E+02
10
    -.100740703602049736E+02
                                -.883361218431806506E+01
11
    -.128429842137007813E+02
                                 .419310330139032513E+01
12
    -.210759155632982071E+01
                                 .138592942672124732E+02
13
     .127042422373985747E+02
                                 .904663773030194484E+01
14
     .161768451448643877E+02
                                -.729067446642411825E+01
15
                                -.192216292444217389E+02
16
     .242617745455907570E+01
    -.151046975834117967E+02
                                -.133630428042707498E+02
17
    -.192810301328327556E+02
                                 .628505705493000789E+01
18
                                 .204808825004384981E+02
    -.351496873472032399E+01
19
     .177350733962494942E+02
                                 •135763252663073233E+02
50
                                -.938267072527891218E+01
     .226151586436168846E+02
21
     .433363378184129352E+01
                                -.258434296467531638E+02
25
                                -.178928768466724881E+02
23
    -. 201356516824096159E+02
    -.257195039759758281E+02
                                 .837708278051943836E+01
24
    -.492247118047054962E+01
25
                                 .271028152189872032E+02
     .227661072895875395E+02
                                 .181062507133749387E+02
26
     .290537361637662649E+02
                                -.114747174053124079E+02
27
     .574116534857742675E+01
                                -.324654504502882291E+02
28
                                -.224228631390790310E+02
    -.251667402897762156E+02
29
    -.321581524016316397E+02
                                 .104691447901283438E+02
30
                                 .337248976209089156E+02
31
    -.633002226599230782E+01
     .277972350408346169E+02
                                 .226362795435124783E+02
32
     .354924352219128022E+02
                                -.135667909268520052E+02
33
34
     .714873013361451158E+01
                                -.390875776187410508E+02
35
    -.301978970090111233E+02
                                -.269529228722355151E+02
    -.385968888768366575E+02
                                 .125612271584011747E+02
36
    -.773759702494758409E+01
                                 .403470583460094752E+02
37
                                 .271663624322998591E+02
     .328284137971896357E+02
38
     .419312001305265578E+02
                                -.156588802316660016E+02
39
                               -.457097641457587982E+02
40
     .855631237385581825E+01
    -.352290929189087573E+02
                                -.314830235585990435E+02
41
    -.450356758984390048E+02
                                 .146533219979978908E+02
42
    -.914518501734778537E+01
43
                                 .469692651391671698E+02
                                 .316964770925368949E+02
     .378596233205332080E+02
44
     .483700046889919775E+02
                                -.177509795556155915E+02
45
                                -.523319871474247411E+02
     .996390488212540711E+01
46
                                -. 360131493909243446E+02
47
    -. 402603134268898098E+02
    -.514744945989714737E+02
                                 .167454250043974343E+U2
48
    -.105527811346181843E+02
                                 .535915013072985069E+02
49
                                 .362266119971256837E+02
     .428908528201712561E+02
50
```

PUV (COS THETA) = .483971447812410585E+02 QUV (COS THETA) = .642099979395653848E+02

```
THETA = 30.0 DEGREES
                    NU =
     MU = 1.00
                          .05
              PSP
                                         OSP
 K
     .101062077464806388E+01
                                 .548722309768178576E+00
 1
     .295584166507395871E+01
                                -.643310584991070075E+00
 5
                                -. 405307177180721581E+01
     .286655392606633338E+01
 3
    -.112318773002931388E+01
                                -.621932474406924379E+01
 5
                                -.325746918279232646E+U1
    -.595649672473083955E+01
                                 .353746107080482009E+01
    -.577856521404204922E+01
 7
     .118677411960816040E+01
                                 .731933176192599338E+01
 8
     .890685255309004541E+01
                                 .258846161338620268E+01
     .864029785306437685E+01
 9
                                -.759085169897491206E+U1
    -.130023397830134701E+01
                                -.129881201142522409E+02
10
    -.119068297883696148E+02
                                -.648838984236070596E+01
11
                                 .707510489497352517E+01
    -.115516571789737009E+02
15
                                 .140877022724580950E+02
     .136394050635195950E+01
13
                                 .581916762746850694E+01
     .148569627168610664E+02
14
                                -.111284272705446441E+U2
15
     .144131743260753414E+02
    -.147743349253152553E+01
                                -.197563233563763508E+02
16
17
    -.178568391031640979E+02
                                -.971901068891708632E+01
    -.173244359986984570E+02
                                 .106126435955791169E+02
18
19
                                 .208558224213852506E+UZ
      .154115254310566210E+01
     .208069178479732331E+02
                                 .904974625844344581E+01
20
                                -.146659440668456133E+02
     .201859006411560886E+02
51
                                -.265243961808529518E+02
55
    -.165465121584454078E+01
                                -.129495653777860805E+02
23
    -.238067617643170768E+02
                                 .141501463788141362E+02
    -.230971308377111706E+02
24
25
     .171837318103011282E+01
                                 .276238657251902518E+02
26
     .267568195153772446E+02
                                 .122802860777029381E+02
27
     .259585751242462555E+02
                                -.182034373620818315E+02
28
    -.183187348192884735E+01
                                -.332924198283136574E+02
29
    -.297566490750111378E+02
                                -.161800953362420929E+U2
                                 .176876329587193282E+02
30
    -.288697913981527450E+02
                                 .343918756245714737E+02
     .189559641705165414E+01
31
     .327066965750283302E+02
32
                                 .155108091643049834E+02
33
      .317312257425396089E+02
                                -.217409190176262368E+U2
34
    -.200909732524161302E+01
                                -.400604197349202811E+U2
                               -.194106134440732626E+02
    -.357065185598430135E+02
35
    -.346424346693334104E+02
                                .212251108972733698E+02
36
37
     .207282065591027520E+01
                                 .411598680397949005E+02
                                 .187413235502324169E+02
38
     .386565603041746437E+02
39
     .375038634307509794E+02
                                -.252783940823158676E+U2
40
    -.218632183008823777E+01
                               -.468284063893940001E+02
41
    --416563778130589862E+02
                                -.226411249751022872E+U2
                                .247625836944945531E+02
42
    -.404150680157483369E+02
                                 .479278501690884677E+02
     .225004534436565807E+01
43
                                .219718328436869662E+02
     .446064160079661919E+02
44
     .432764933339999403E+02
                                -.288158650592646937E+02
45
    -.236354664806108261E+01
                                -.535963848992508685E+02
46
47
    -.476062306547070046E+02
                               -.258716324824123512E+02
48
    -.461876951424673313E+02
                                .283000531881377852E+02
49
     .242727025535972589E+01
                                 .546958257386133749E+02
     .505562665080598222E+02
                                 .252023389025749222E+02
50
```

```
THETA = 30.0 DEGREES
     MU = 1.00
                    NU = 1.50
             PSP
     .1605055266U8920260E+01
                                -.430073262355922606E+U0
                                -.323891997801202715E+01
     .235768347521206716E+01
 5
                                -.613047725282439587E+01
    -.533873799600301569E+00
 3
    -.560296435676092774E+01
                                -.477221853167297624E+U1
 4
 5
    -.725834217316422042E+01
                                 .140573558486653690E+01
    -.192816296228938916E+01
                                 .673591479574136816E+01
 6
     .645275581969027403E+01
 7
                                 .449025437627908886E+01
 8
     .899249081789166128E+01
                                -.498816567476933954E+01
                                -.127291361868518199E+02
 9
     .125152030580918091E+01
                                -.960238810182656566E+01
10
    -.104176624099737599E+02
                                 .316078049356102596E+01
11
    -.138375431279701317E+02
                                 .133044549198896054E+02
15
    -.369386870164155226E+01
     .112554985479275725E+02
                                 .929878403801128444E+01
13
                                -.674303697210327637E+01
     .155538915327123862E+02
14
     .301096673333675227E+01
                                -. 192859617714789103E+02
15
    -.152148567925160616E+02
                                -.144023670763344913E+02
16
                                 .491510733778554835E+U1
17
    -.203909584615884015E+02
    -.545057626577562264E+01
                                 .198554895335983272E+02
18
                                 .140945140828240971E+02
19
     .160496768176708196E+02
                               -.849691725861680738E+01
     .221030326014730651E+02
20
21
                                -.258337066926186971E+02
     .476624316747117537E+01
                                -.191956784740764117E+02
    -.200072154062045568E+02
22
    -. 269375431627792439E+02
                                 .666865682656515525E+01
23
                                 .264011855583600730E+02
24
    -.720501443098432621E+01
25
     .208408537451429487E+02
                                 .188863178295370454E+02
     .286479663300868718E+02
                                -.102502229978840680E+02
26
     .652014946177519881E+01
                                -.323780398661957410E+U2
27
                               -.239864790830609415E+02
28
    -.247975817356863500E+02
                                 .842178025431221480E+01
29
    -.334813486532338791E+02
    -.895856268980455312E+01
                                 .329445662177415408E+02
30
     .256306399637202348E+02
31
                                 .236764172998931273E+02
     .351909665967207611E+02
                                -.120032074314187324E+02
32
     .827344546369540946E+01
                                -.389207265644440841E+02
33
    -.295869385359049418E+02
                               -.287760692466189704E+02
34
    -. 400237540963389895E+02
                                 .101746566941463420E+02
35
    -.107116744099945910E+02
                                 .394867363804907405E+02
36
     .304196700153264430E+02
                                 .284656258581196086E+02
37
     .417329201617313212E+02
38
                                -.137559984869994362E+02
     .100264185371621999E+02
                               -.454625001115685575E+02
39
40
    -.343757142003168053E+02
                               -.335649845023415423E+02
                                 .119273791728880635E+02
    -.465653563088775195E+02
41
                                 .460281948894104779E+02
    -.124645405923551052E+02
42
     .352082437590199829E+02
                                 .332543108215164591E+02
43
     .482742437804046013E+02
                               -.155086651099869740E+U2
44
     .117792005975916777E+02
                               -.520037082927998976E+02
45
                               -.383534853414406587E+02
    -.391641249915237934E+02
46
    -.531064552954426899E+02
                                 .136799997286918894E+U2
47
    -.142172552763111882E+02
                                 .525691997478233910E+02
49
                                 .380426621368678473E+02
49
     .399965211458351181E+02
                                -.172612472445473074E+02
50
     .548151590028692997E+02
```

PUV (COS THETA) = .618522834598657480E+02 QUV (COS THETA) = -.305947641500301026E+02

```
30.0 DEGREES
     MU = 1.50
                   NU =-1.50
                                  THETA =
             PSP
                                        QSP
     .4999999999999701-100
                                .866025403784438128-100
 1
 2
     .1999999999999744E+01
                                .151461293802434073E-27
                               -.519615242270662523E+01
      4999999999999360E+01
 3
    -.9999999999998720E+00
                                -.155884572681198757E+02
    -.2099999999999731E+02
 5
                                -.155884572681198757E+02
    -.35999999999999539E+02
                                .103923048454132505E+02
 6
 7
    -.14999999999999808E+02
                                .467653718043596271E+U2
     .4099999999999475E+02
 8
                                .467653718043596271E+U2
 9
      .76999999999999022E+02
                               -.155884572681198771E+02
     .31999999999999598E+02
10
                               -.935307436087192555E+U2
      77999999999998962E+02
11
                               -.935307436087192555E+02
    -.14399999999999811E+03
                                .207846096908264986E+02
12
    -.6599999999999113E+02
                                .155884572681198754E+03
13
     .11599999999999855E+03
                                .155884572681198754E+03
14
     .22099999999999721E+03
                               -.259807621135331287E+02
15
     .10099999999999875E+03
                               -.233826859021798138E+03
16
17
    -.17099999999999777E+03
                               -.233826859021798138E+03
    -.32399999999999581E+03
                                .311769145362397488E+02
18
    -.15299999999999800E+03
19
                                .327357602630517387E+03
     .22699999999999713E+03
                                .327357602630517387E+03
20
     .43699999999999444E+03
21
                               -.363730669589463791E+U2
     .20599999999999740E+03
                               -.436476803507356521E+03
22
                               -. 436476803507356521E+03
    -.2999999999999612E+03
23
                                .415692193816529993E+02
    -.575999999999999258E+03
24
    -.27599999999999643E+03
                                .561184461652315522E+03
25
     .37399999999999525E+03
                                .561184461652315522E+03
26
      .724999999999999076E+03
                               -.467653718043596296E+02
27
28
     .34699999999999560E+03
                               -.701480577065394408E+03
    -.46499999999999401E+03
29
                               -.701480577065394408E+03
    -. 89999999999998844E+03
                                .519615242270662498E+02
30
    -. 43499999999999439E+03
                                .857365149746593160E+03
31
     .556999999999999291E+03
                                .857365149746593160E+03
32
     .10849999999999861E+04
                               -.571576766497728800E+02
33
     .52399999999999333E+03
                               -.102883817969591180E+04
34
    -.66599999999999143E+n3
                               -.102883817969591180E+04
35
36
    -.12959999999999834E+04
                                .623538290724795002E+02
37
    -.62999999999999189E+03
                                .121589966691335030E+04
38
     .77599999999999010E+03
                                .121589966691335030E+04
39
     .151699999999999806E+04
                               -.675499814951861305E+02
     .73699999999999060E+03
40
                               -.141854961139890869E+04
    -.90299999999998840E+03
41
                               -.141854961139890869E+04
    -- 17639999999999774E+04
                                .727461339178927507E+02
42
    -_86099999999998894E+03
                                .163678801315258694E+04
43
     .10309999999999868E+04
                                .163678801315258694E+04
44
                               -.779422863405993810E+02
     .20209999999999742E+04
45
     .98599999999998742E+03
                               -.187061487217438508E+04
46
    -.11759999999999849E+04
                               -.187061487217438508E+04
47
    -.23039999999999705E+04
48
                                .831384387633060011E+02
    -.11279999999999855E+04
49
                                .212003018846430309E+04
     .132199999999999831E+04
                                .212003018846430309E+04
50
      PUV (COS THETA) =
                           .149171725890026572E+04
      QUV (COS THETA) =
                           .375765567157950091E+04
```

```
THETA = 30.0 DEGREES
                    NU = -.40
     MU = 1.50
                                         OSP
             PSP
     .980107176607203394E+00
                                 .499389549713500831E+00
 1
 5
     .450252356197797981E+01
                                -.178809439734960999E+01
     .401579916891860279E+01
 3
                                -.1107534907U5671351E+02
    -.105967078277706114E+02
                                -.185207932662956930E+U2
 5
                                -.463249787341252016E+01
    -.319828073103788968E+02
    -.300673113118871550E+02
                                 .319173430986048368E+02
 6
 7
     .142157129402746711E+02
                                 .544806709356602835E+02
 8
     .685615657431380786E+02
                                 .191880614666865737E+02
     .642752509268409841E+02
 9
                               -.625996974297129237E+U2
                               -.108452737903407089E+03
    -.257164080161840510E+02
10
    -.128118084362320193E+03
                               -.419523117280723681E+02
11
    -.120518903515844758E+03
                                 .103048696718291572E+03
12
13
     .312195075534340943E+02
                                 .180363278823936292E+03
14
     .196773077665860586E+03
                                 .728515333119700833E+02
     .184918983576833823E+03
15
                                -.153338056309940609E+03
    -.446042970540894446E+02
                               -.270286009042847713E+03
16
17
    -.288405831155823898E+03
                               -.111959441563979543E+03
                                 .213394060859060208E+03
    -.271354776611872819E+03
18
19
     .519914910160854642E+02
                                 .378147213214541528E+03
     .389137059330145492E+03
                                 .159202321138500921E+03
50
                               -.283290425711250195E+03
     .365946997118897110E+03
21
    -.672603749414867901E+02
                               -.504020606684617563E+03
22
    -.512846047690890006E+03
                               -.214653887381134045E+03
23
    -.482574930599971332E+03
                                 .362953435520910744E+03
24
25
     .765316633282287853E+02
                                 .647832474107475991E+03
     .645653510735992803E+03
                                 .278240424946279087E+03
26
     .607359291553030850E+03
27
                               -. 452456805633641681E+03
85
    -.936846416783760867E+02
                               -.809656530828716639E+03
29
    -.801438733967518519E+03
                               -.350035649179535873E+03
30
    -.754179365480140299E+03
                                 .551726820703843180E+03
31
     .104840024489864058E+03
                                 .989419061502739681E+03
32
     .966322431883402518E+03
                                .429965844735304579E+03
     .909155866879235042E+03
                               -.660837196077115067E+03
33
34
    -.123877097264757335E+03
                               -.118719378147514494E+04
35
    -- 115418388998570944E+04
                                -.518104726959185029E+03
    -.108616808125237972E+04
                                .779714216407857515E+03
36
     .136916574500991281E+03
                                .140290697540033260E+04
37
     .135114382277237464E+04
                                .614378580505577398E+03
38
     .127133672309750969E+04
39
                               -.908431597041670352E+03
    -.157837741700630533E+03
40
                               -.163663235862390247E+04
    -.157108151574546276E+04
                               -.718861120720081512E+03
41
42
    -.147854107791668959E+04
                                .104691562263295375E+04
43
     .172761313361610455E+03
                                 .188829621580025474E+04
     .180011768340290916E+04
                                 .831478632257097545E+03
44
45
     .169390186020785479E+04
                               -.119524000852730754E+04
                               -.215797226227498923E+04
    -.195566574985995683E+03
46
47
    -.205213161124677848E+04
                               -.952304830462225322E+03
    -.193129835547306991E+04
                                .135333103937913189E+04
48
     .212374241071721581E+03
                                .244558678270250611E+04
49
     .231324401377500609E+04
                                .108126599998986502E+04
50
      PUV (COS THETA) =
                           .261021635355212178E+04
```

.191649408553523991E+04

QUV (COS THETA) =

```
MU = 1.50
                                   THETA =
                                           30.0 DEGREES
                    NU =
                          . 05
             PSP
                                         OSP
     .150717337661639680E+01
                                 .361840313976652925E+00
 1
                                -.333756897818600929E+U1
 2
     .501778171265453763E+01
                                -.135489991545322522E+U2
     .199301829155776563E+01
 3
    -.157041142596799259E+02
                                -.177977047767097253E+02
 4
                                 .233143401888123093E+01
 5
    -.348059537351815745E+02
                                 .400130495992011695E+02
 6
    -.236441506883174299E+02
                                 .523506370789857548E+02
 7
     .277455996046997127E+02
                                 .273503010174534384E+01
 9
     .748290525821524250E+02
                                -.796755261101757451E+02
 9
     .504179337048503067E+02
                                -.104304011996973734E+03
10
    -.521670928971044401E+02
    -.139622541738995771E+03
                                -. 121451981598627082E+02
11
    -.968498308265850797E+02
                                 .132253053911286980E+03
15
                                 .173374454754504665E+03
     .744331306514654340E+02
13
                                 .256156953793018628E+02
     .214650957720282941E+03
14
     .148404378568093075E+03
                                -.198029007778703879E+03
15
    -.109079176353211359E+03
                                -.259845340127747553E+03
16
17
    -.314449764011442597E+03
                                -.434298965362318138E+02
    -.219617040414802957E+03
                                 .276720012936257435E+03
18
19
     .141569766516913554E+03
                                 .363433293340533390E+03
                                 .653044258544835522E+02
20
     .424483497127046080E+03
                                -.368609444160116657E+03
     .295952352881286064E+03
21
                                -.484421689169031183E+03
    -.186440364628n00681E+03
55
                                -.915226611102260872E+02
    -.559287620552522049E+03
23
                                 .473413926674112534E+03
    -.391945779452971057E+03
24
25
     .229155507201044077E+03
                                 .622527152837071925E+03
26
     .704326670802441844E+03
                                 .121801224527290410E+03
     .493061856644429276E+03
                                -.591416835254414077E+03
27
28
    -.284250657721472404E+03
                                -.778033059120824624E+03
29
                                -.156423491881845529E+03
    -.874136111362234126E+03
    -.613836047941089380E+03
                                 .722334795124852276E+03
30
                                 .950656033244120272E+03
     .337190352703857002E+03
31
                                 .195106088397722435E+03
     .105418047874647023E+04
32
     .739732889857522711E+03
                               -.866451181061596140E+03
33
34
    -.402510055633626531E+03
                               -.114067944998312788E+04
35
    -. 125899523644057883E+04
                               -.238132388851090139E+03
    -.885287845879157927E+03
                                 .102348261828847666E+04
36
     .465674303025352329E+03
37
                                 .134781993456167843E+04
                                 .285219018465779629E+03
38
     -147404492095913125E+04
39
     .103596545252056637E+04
                                -.119371248158166285E+04
                               -.157236086175594094E+04
    -.541218558364463059E+03
40
                                -.336649352017959916E+03
    -.171386499578755616E+04
41
    -.120630117326717670E+04
                                 .137685739616498569E+04
42
     .514607358165530059E+03
                                 .181401865678974640E+04
43
44
     -196391999744042489E+04
                                 .392140014731461991E+03
45
     .138175954463356025E+04
                                -.157320073681461420E+04
    -.700376165913981990E+03
                               -.207307729443926381E+04
46
47
    -.223874538940316611E+04
                               --451974381382454862E+03
    -.157687603010514569E+04
                                 .178245912875437936E+04
48
     .783989518124390191E+03
                                 .234925279992832418E+04
49
                                 .515869077194769521E+03
50
     .252380570819035116E+04
                           .284780978291872870E+04
      PUV (COS THETA) =
```

.914354132436944155E+03

QUV (COS THETA) =

```
30.0 DEGREES
     MU = 1.50
                   NU = 1.50
                                  THETA =
                                        QSP
             PSP
     .259807621135331261E+01
                               -.14999999999999808E+U1
                               -.94999999999998784E+01
     .259807621135331261E+01
                               -.1699999999999782E+02
 3
    -.103923048454132505E+02
    -.311769145362397514E+02
                               -.49999999999999360E+U1
 5
    -.311769145362397514E+02
                                .2999999999999616E+02
     .103923048454132505E+02
 6
                                .53999999999999309E+02
     .649519052838328166E+02
                                .22499999999999705E+02
 7
     .649519052838328166E+02
 8
                               -.57499999999999253E+02
                               -.10699999999999863E+03
 9
    -.207846096908265011E+02
                               -.46999999999999410E+02
    -.124707658144959003E+03
10
                                .95999999999998749E+02
    -.124707658144959003E+03
11
     .207846096908265029E+02
                                •17999999999999767E+03
12
     .189659563428791822E+03
                                .824999999999998921E+02
13
     .189659563428791822E+03
                               -.141499999999999821E+03
14
15
    -.311769145362397495E+02
                               -.26899999999999657E+03
                               -.12499999999999842E+03
16
     -.280592230826157760E+03
                                .1979999999999744E+03
    -.280592230826157760E+03
17
     .311769145362397533E+02
                                .37799999999999514E+03
18
     .376721050646230331E+03
                                .17849999999999769E+03
19
                               -.26149999999999667E+03
     .376721050646230331E+03
50
                               -.50299999999999358E+03
    -.415692193816529999E+02
21
22
    -.498830632579836020E+03
                               -.23899999999999696E+03
    -.498830632579836020E+03
                                .33599999999999568E+03
23
24
     .415692193816530037E+02
                                .64799999999999168E+03
                                .31049999999999600E+03
25
     .626136366936148342E+03
                               -.417499999999999468E+03
26
     .626136366936148342E+03
                               -.808999999999998966E+03
27
    -.519615242270662504E+02
                               -.38899999999999504E+03
28
    -.779422863405993782E+03
    -.779422863405993782E+03
29
                                .50999999999999345E+03
     .519615242270662542E+02
                                .98999999999998730E+03
30
     .937905512298545855E+03
31
                                .47849999999999385E+03
     .937905512298545855E+03
                               -.60949999999999222E+03
32
33
    -.623538290724795009E+02
                               -.118699999999999848E+04
     -.112236892330463105E+04
                               -.57499999999999266E+03
34
    -.112236892330463105E+04
                                .71999999999999076E+03
35
     .623538290724795046E+02
                                .14039999999999820E+04
36
                                .68249999999999124E+03
37
     .131202848673342287E+04
     .131202848673342287E+04
                               -.8374999999999998930E+03
38
    -.727461339178927513E+02
                               -.16369999999999791E+04
39
    -.152766881227574782E+04
                               -.79699999999998982E+03
40
    -.152766881227574782E+04
                                .96599999999998761E+03
41
     .727461339178927551E+02
                                .18899999999999758E+04
42
     .174850529024077939E+04
                                .92249999999998817E+03
43
     .174850529024077939E+04
                               -.110149999999999859E+04
44
45
    -.831384387633060018E+02
                               -.21589999999999724E+04
46
    -.199532253031934409E+04
                               -.10549999999999865E+04
47
    -.199532253031934409E+04
                                .12479999999999840E+04
     .831384387633060055E+02
                                .24479999999999686E+04
48
                                .11984999999999846E+04
49
     .224733592282061541E+04
                               -.14014999999999821E+04
50
     .224733592282061541E+04
```

CONVERGENCE OF THE HYPERGEOMETRIC SERIES ON |z|=1

We consider the series

$$\sum_{n=0}^{\infty} d_n z^n,$$

where

$$d_{n} = \frac{(a)_{n}(b)_{n}}{n!(c)_{n}}$$

and

$$|Z|=1$$
.

By an extension of a Weierstrass test for convergence (see, e.g., reference 7, page 401), if

$$\frac{d_{n+1}}{d_n} = 1 - \frac{\alpha}{n} - \frac{A_n}{n^{\lambda}},$$

where α is complex and arbitrary, $\lambda\!>\!1$, and where the \boldsymbol{A}_n are bounded, then the series

$$\sum_{n=0}^{\infty} d_n Z^n, |Z|=1,$$

- I) converges absolutely for $Re\{\alpha\}>1$,
- II) converges conditionally if Z#1 and $0<Re\{\alpha\}\le 1$,
- III) diverges for $Re\{\alpha\} \le 0$.

To use this test in the present case, choose $\alpha=c+1-a-b$, $\lambda=2$, and

$$A_{n} = -\alpha \left[\frac{c+1+\frac{c}{n} + \frac{ab-c}{\alpha}}{1+\frac{1}{n}(c+1) + \frac{c}{n^{2}}} \right].$$

The An are clearly bounded, and one has

$$n \begin{bmatrix} \frac{d}{d_{n+1}} - 1 \end{bmatrix} = n \begin{bmatrix} \frac{(a)_{n+1}(b)_{n+1}}{(n+1)!(c)_{n+1}} \\ \frac{(a)_{n}(b)_{n}}{n!(c)_{n}} - 1 \end{bmatrix}$$

$$= \frac{\frac{ab-c}{n} - \alpha}{\frac{c}{n^2} + \frac{(c+1)}{n} + 1}$$

Thus

$$\frac{d_{n+1}}{d_n} = 1 - \frac{1}{n} \left(\frac{\alpha - \frac{ab-c}{n}}{1 + \frac{1}{n}(c+1) + \frac{c}{n^2}} \right)$$

$$= 1 - \frac{\alpha}{n} + \left[\frac{\alpha}{n} - \frac{\frac{\alpha}{n} - \frac{ab - c}{2}}{1 + \frac{1}{n}(c + 1) + \frac{c}{n^2}} \right]$$

$$= 1 - \frac{\alpha}{n} + \left[\frac{\frac{\alpha(c+1)}{n^2} + \frac{\alpha c}{n^3} + \frac{ab-c}{n^2}}{1 + \frac{1}{n}(c+1) + \frac{c}{n^2}} \right]$$

$$= 1 - \frac{\alpha}{n} - \frac{1}{n^2} \left(-\alpha\right) \left[\frac{c+1 + \frac{c}{n} + \frac{ab-c}{\alpha}}{1 + \frac{1}{n} (c+1) + \frac{c}{n^2}} \right]$$

$$= 1 - \frac{\alpha}{n} - \frac{A_n}{n^2},$$

as required.

Then since Re $\{\alpha\}$ = Re $\{c+1-a-b\}$ = - 2 Re $\{\mu\}$ +1, we have the desired results.

APPENDIX C

AN ORDER RELATION FOR LOG $\Gamma(z+a)$ FOR LARGE Z

From Stirling's formula (see, e.g. references 2, 5, and 8), we have

$$\log \Gamma(z) = (z-\frac{1}{2}) \log z - z+\frac{1}{2}\log(2\pi)+O(\frac{1}{z}).$$

Then

$$\log \Gamma(z+a) = (z+a-\frac{1}{2})\log(z+a) - (z+a) + \frac{1}{2}\log(2\pi) + O(\frac{1}{z+a})$$

$$= (z+a-\frac{1}{2})\log(z+a) - (z+a) + \frac{1}{2}\log(2\pi) + O(\frac{1}{z}),$$
since $\frac{1}{z+a} = \frac{1}{z} - \frac{a^2}{z^2} + \frac{a^2}{z^3} - \dots$

It follows that

log
$$\Gamma(z+a)$$
-log $\Gamma(z) = (z+a-\frac{1}{z})\log(z+a) - (z+a)$
$$-(z-\frac{1}{z})\log z + z + O(\frac{1}{z}).$$

Writing $z+a = z(1+\frac{a}{z})$, we have

log
$$\Gamma(z+a)$$
-log $\Gamma(z) = (z+a-\frac{1}{2}) (\log z + \log(1+\frac{a}{z})) - z - a$

$$-(z-\frac{1}{2}) \log z + z + O(\frac{1}{z})$$

$$= a \log z + (z+a-\frac{1}{2}) \log(1+\frac{a}{z}) - a + O(\frac{1}{z}).$$

Now if |z| is large enough so that $|\frac{a}{z}| < 1$,

$$\log(1+\frac{a}{z}) = \frac{a}{z} - \frac{1}{2}(\frac{a}{z})^2 + \dots$$
, and then
$$(z+a-\frac{1}{2})\log(1+\frac{a}{z}) = a + O(\frac{1}{z}).$$

It follows that when |z| > |a|,

$$\log \Gamma(z+a) = \log \Gamma(z) + a \log z + O(\frac{1}{z}).$$

DISTRIBUTION LIST

Nø. of Copies		No. of Copies	
12	Commander Defense Technical Info ATTN: DDC-DDA Cameron Station Alexandria, VA 22314	1	Commander US Army Communications Research and Development Command ATTN: DRDCO-PPA-SA Fort Monmouth, NJ 07703
1	Commander US Army Materiel Development and Readiness Command ATTN: DRCDMD-ST 5001 Eisenhower Avenue Alexandria, VA 22333	1	Commander US Army Electronics Research and Development Command Technical Support Activity ATTN: DELSD-L Fort Monmouth, NJ 07703
2	Commander US Army Armament Research and Development Command ATTN: DRDAR-TSS (2 cys) Dover, NJ 07801	2	Commander US Army Harry Diamond Labs ATTN: DRXDO-TI Arthur Hausner, 0025 2800 Powder Mill Road Adelphi, MD 20783
1	Director US Army ARRADCOM Benet Weapons Laboratory ATTN: DRDAR-LCB-TL Watervliet, NY 12189	3	Commander US Army Missile Command ATTN: DRDMI-R DRDMI-YDL DRDMI-HRA, Helen Boyd
1	Commander US Army Armament Materiel Readiness Command ATTN: DRSAR-LEP-L, Tech Lib Rock Island, IL 61299	2	Redstone Arsenal, AL 35809 Commander US Army Mobility Equipment Research & Development Command ATTN: DRDME-WC
1	Commander US Army Aviation Research and Development Command ATTN: DRSAV-E P.O. Box 209 St. Louis, MO 63166	1	DRSME-RZT Fort Belvoir, VA 22060 Commander US Army Tank Automotive Research and Development Command ATTN: DRDTA-UL
1	Director US Army Air Mobility Research and Development Laboratory Ames Research Center Moffett Field, CA 94035	1	Warren, MI 48090 Director US Army TRADOC Systems Analysis Activity ATTN: ATAA-SL, Tech Lib White Sands Missile Range NM 88002

DISTRIBUTION LIST

No. of		No. o	of
Copies	Organization	Copie	organization Organization
1	Stanford University Stanford Linear Accelerator Center ATTN: Eric Grosse Numerical Analysis Consultant SLAC, P.O. Box 4349	1	Department of Computer Science ATTN: Professor Henry C. Thacher, Jr. 915 Patterson Office Tower Lexington, KY 40506
	Stanford, CA 94305	•	University of Wisconsin-Madison Mathematics Research Center ATTN: Prof. J. Barkley Rosser
1	Towson State University Department of Mathematics ATTN: Miss Margaret Zipp		610 Walnut Street Madison, Wisconsin 53706
	Towson, MD 21204	Abe	erdeen Proving Ground
1	Virginia Commonwealth University Department of Math. Sciences ATTN: Mr. Vitalius Benokraiti 901 W. Franklin		Dir, USAMSAA ATTN: DRXSY-D DRXSY-MP, H. Cohen
	Richmond, VA 23284		Cdr, USATECOM ATTN: DRSTE-TO-F
2	University of Delaware Department of Mathematics Department of Mechanical Eng. Newark, DE 19711		Dir, Wpns Sys Concepts Team Bldg E3516, EA ATTN: DRDAR-ACW
1	University of Illinois Department of Mathematics ATTN: Dr. Evelyn Frank Urbana, IL 61801		

USER EVALUATION OF REPORT

Please take a few minutes to answer the questions below; tear out this sheet and return it to Director, US Army Ballistic Research Laboratory, ARRADCOM, ATTN: DRDAR-TSB, Aberdeen Proving Ground, Maryland 21005. Your comments will provide us with information for improving future reports.

1. BRL Report Number

1. BRL Report Number
2. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which report will be used.)
3. How, specifically, is the report being used? (Information source, design data or procedure, management procedure, source of ideas, etc.)
4. Has the information in this report led to any quantitative savings as far as man-hours/contract dollars saved, operating costs avoided, efficiencies achieved, etc.? If so, please elaborate.
5. General Comments (Indicate what you think should be changed to make this report and future reports of this type more responsive to your needs, more usable, improve readability, etc.)
6. If you would like to be contacted by the personnel who prepared this report to raise specific questions or discuss the topic, please fill in the following information.
Name:
Telephone Number:
Organization Address:

DATE ILMED