笔记一, 线性分类器

2023年10月30日 20:34

監督学习:使用标记数据训练模型,来预测出正确答案。 每一个样本都有正确的答案。

回归: 输出是连续的

分类:輸出是离散的

无监督学习: 使用的是未标记的数据集, 让机器自己来分类。 事先并不知道有几类

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

x^rg

代价函数:均方误差 (MSE)

Parameters:

 θ_0, θ_1

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal: minimize $J(\theta_0, \theta_1)$

Gradient descent algorithm

repeat until convergence {
$$\Rightarrow \quad \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \quad \text{ (for } j=0 \text{ and } j=1)$$
 }

梯度下降: 使得代价函数更快的变小:

环顾四周,向哪个方向走下山会更快

Correct: Simultaneous update

emp0 :=
$$\theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

emp1 := $\theta_1 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$

$$\begin{split} & \operatorname{temp0} := \theta_0 - \alpha \tfrac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) \\ & \operatorname{temp1} := \theta_1 - \alpha \tfrac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) \\ & \theta_0 := \operatorname{temp0} \end{split}$$

Gradient descent can converge to a local minimum, even with the learning rate α fixed.

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

As we approach a local minimum, gradient descent will automatically take smaller steps. So, no need to decrease α over time.

梯度下降推导:

$$\frac{\partial}{\partial \theta_{j}} \underline{J(\theta_{0}, \theta_{1})} = \frac{\partial}{\partial \theta_{0}} \bullet \underbrace{\frac{1}{2m} \underbrace{\sum_{i=1}^{m} \left(\underbrace{h_{0}(x^{(i)})}_{i} - y^{(i)} \right)^{2}}}_{\underbrace{2m} \underbrace{\sum_{i=1}^{m} \left(\underbrace{h_{0}(x^{(i)})}_{i} - y^{(i)} \right)^{2}}_{\underbrace{i}}}$$

$$\Theta \circ j = 0 : \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \underbrace{\stackrel{m}{\leq}}_{i=1} \left(k_{\bullet}(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)} \right)$$

$$\Theta_{i} j = 1 : \frac{\partial}{\partial \theta_{i}} J(\theta_{0}, \theta_{1}) = \lim_{m \to \infty} \frac{m}{\xi_{i}} \left(\log \left(\chi^{(i)} \right) - \chi^{(i)} \right) \cdot \chi^{(i)}$$

Gradient Descent

Feature Scaling

特征缩放: 梯度下降得更快

Idea: Make sure features are on a similar scale.

$$X_{i} = \frac{X_{i} - A_{V}g}{M_{AX} - Min}$$

梯度下降与正規方程:

Gradient Descent

- Need to choose α .
- · Needs many iterations.
- Works well even when n is large.

$$\underbrace{\theta_0 := \theta_0 - \alpha_m^{\perp} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_0^{(i)}}_{i=1} x_0^{(i)}$$

$$\theta_1 := \theta_1 - \alpha_m^{\perp} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_1^{(i)}$$

$$\theta_0 := \theta_0 - \alpha_0^{\perp} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_1^{(i)}$$

m大,大于10^4 大多数模型

Normal Equation

- No need to choose α .
- · Don't need to iterate.
- Need to compute $(X^TX)^{-1}$
- Slow if n is very large.

$$X = egin{bmatrix} x_0^{(1)} & \cdots & x_n^{(1)} \ dots & \ddots & dots \ x_0^{(m)} & \cdots & x_n^{(m)} \end{bmatrix}$$

$$\theta = (X^T X)^{-1} X^T y$$

Logistic regression

二分类问题:

$$\Rightarrow h_{\theta}(x) = g(\theta^T x) = \rho(y^{\epsilon_1}) \times \theta$$

$$\Rightarrow g(z) = \frac{1}{z^{\epsilon_1}}$$

Suppose predict "y=1" if $\underline{h_{\theta}(x)\geq0.5}$ \emptyset " χ

Non-

 $\Rightarrow h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$ $\Rightarrow h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$

Predict "y=1" if $-3+x_1+x_2\geq 0$

predict "y = 0" if $h_{\theta}(x) < 0.5 \ \Theta' \chi < 0$

代价函数为什么不用上述的均方误差呢?:

二分类的代价函数

线性回归的代价函数是平滑的凸函数,能找到最优的theta 而现在变得很复杂,若适用梯度下降,则找不到全局最优

Logistic regression cost function

y=1时,说明h应该是大于0.5的, 所以当h趋于0时,差距很大,代价很大 当h趋于1时,差距很小,代价很小 我们的目标就是调整theta,让h收敛于1。

$$\begin{split} J(\theta) &= -\frac{1}{m} [\sum_{i=1}^m y^{(i)} \log h_\theta(x^{(i)}) + (1-y^{(i)}) \log \left(1-h_\theta(x^{(i)})\right)] \\ \text{Want } \min_\theta J(\theta) &: \\ \text{Repeat } \{ \\ \theta_j &:= \theta_j - \alpha \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} \\ &: \quad \text{is simultaneously update all } \theta_j) \end{split}$$

用二分类表示多分类:

算出来的h,表示的是属于第一个类别的概率

表示的是属于第二个类别的概率

哪个数值大,说明属于哪个

表示的是属于第三个类别的概率

多分类(softmax):

$$P\left(y=i\right) = \frac{e^{zi}}{\sum_{i=0}^{K-1}\,e^{z_i}}, i \in \{0,...,K-1\}$$

为什么用指数函数: 求导简单, 爆炸式增长, 一点x就会有很大变化,有利于区分

$$\operatorname{loss}(x, class) = -\log \left(\frac{\exp(x[class])}{\sum_{j} \exp(x[j])} \right) = -x[class] + \log \left(\sum_{j} \exp(x[j]) \right)$$

多分类代价函数: 交叉熵:

Loss(x, class) = -0.2 + log(exp(0.1) + exp(0.2) + exp(0.3))

概率越大。

目标值的概率, 不能让所有预测的概率都很大,

loss越小

比如是0.8, 0.9,0.8, 区分度不好

欠拟合与过拟合

欠拟合: 高偏差

过拟合: 高方差

为了解决过拟合,使用正则化

通过引入正则化参数,减小theta

比如右侧如果用三次方来回归, 那么会过拟合,减小三次方的系数 就能够既保留样本,又减小影响

怎么减小系数呢? 在代价函数中加入正则项 因为目标是让J(theta)小, 所以只有减小系数才能让J(theta)小

本质就是比原来缩小一些

Suppose $m \le n$,

(Mexamples) (Meatures) $\theta = (X^TX)^{-1}X^Ty$

梯度下降引入正则化

正规方程引入正则化,而且引入后,只要lamda>0,就是一定可逆的了。

分类问题的正则化:

线性回归的正则化

$$\mathbf{jVal} = \underbrace{\left[\text{ code to compute } J(\theta) \right];}_{J(\theta) = \left[-\frac{1}{m} \sum\limits_{i=1}^{m} y^{(i)} \log \left(h_{\theta}(x^{(i)}) + (1-y^{(i)}) \log 1 - h_{\theta}(x^{(i)}) \right] + \left[\frac{\lambda}{2m} \sum\limits_{j=1}^{n} \theta_{j}^{2} \right] \right]}_{J(\theta)}$$

2023年11月13日 16:10

由于实际问题中,特征量很大 采用之前的办法很费时间 因此采用神经网络

基本模型:

If network has s_j units in layer j, s_{j+1} units in layer j+1, then $\Theta^{(j)}$ will be of dimension $s_{j+1}\times(s_j+1)$.

Cost function

Logistic regression:

代价函数

Neural network:

$$\Rightarrow h_{\Theta}(x) \in \mathbb{R}^K \quad \underline{(h_{\Theta}(x))_i} = i^{th} \text{ output}$$

$$\Rightarrow J(\Theta) = -\frac{1}{m} \left[\sum_{i=1}^m \sum_{k=1}^K y_k^{(i)} \log(\underline{h_{\Theta}(x^{(i)})})_k + (1-y_k^{(i)}) \log(1-(h_{\Theta}(x^{(i)}))_k) \right]$$

$$\qquad \qquad \frac{\lambda}{2m} \sum_{l=1}^{L-1} \sum_{i=1}^{s_l} \sum_{j=1}^{s_{l+1}} (\Theta_{ji}^{(l)})^2$$

反向传播: 代价函数是什么? 代价函数就是所有预测值和目标值的偏差,所以我们定义:

$$L(\theta) = \sum_{n=1}^{N} C^{n}(\theta)$$

要让代价函数最小,那么需要求导数,到时候就用梯度下降来学习参数:

$$\frac{\theta^{1} = \theta^{0} - \eta \nabla L(\theta^{0})}{\theta^{2} = \theta^{1} - \eta \nabla L(\theta^{1})} \qquad \frac{\partial L(\theta)}{\partial w} = \sum_{n=1}^{N} \frac{\partial C^{n}(\theta)}{\partial w}$$

Backpropagation – Forward pass

Compute $\partial z/\partial w$ for all parameters

 ∂z_2

 ∂z_4

026 Created with EverCam.

Parameter vector
$$\theta$$

$$\Rightarrow \theta \in \mathbb{R}^n \quad \text{(E.g. } \theta \text{ is "unrolled" version of } \Theta^{(1)}, \Theta^{(2)}, \Theta^{(3)}$$

$$\Rightarrow \theta = \left[\theta_1, \theta_2, \theta_3, \dots, \theta_n\right]$$

$$\Rightarrow \frac{\partial}{\partial \theta_1} J(\theta) \approx \frac{J(\theta_1 + \epsilon, \theta_2, \theta_3, \dots, \theta_n) - J(\theta_1 - \epsilon, \theta_2, \theta_3, \dots, \theta_n)}{2\epsilon}$$
樣度检验: 验证算法是否正确
$$\frac{\partial}{\partial \theta_2} J(\theta) \approx \frac{J(\theta_1, \theta_2 + \epsilon, \theta_3, \dots, \theta_n) - J(\theta_1, \theta_2 - \epsilon, \theta_3, \dots, \theta_n)}{2\epsilon}$$

$$\vdots$$

$$\frac{\partial}{\partial \theta_n} J(\theta) \approx \frac{J(\theta_1, \theta_2, \theta_3, \dots, \theta_n) - J(\theta_1, \theta_2, \theta_3, \dots, \theta_n)}{2\epsilon}$$

$$\vdots$$

$$\frac{\partial}{\partial \theta_n} J(\theta) \approx \frac{J(\theta_1, \theta_2, \theta_3, \dots, \theta_n) - J(\theta_1, \theta_2, \theta_3, \dots, \theta_n)}{2\epsilon}$$

$$\vdots$$

$$\frac{\partial}{\partial \theta_n} J(\theta) \approx \frac{J(\theta_1, \theta_2, \theta_3, \dots, \theta_n + \epsilon) - J(\theta_1, \theta_2, \theta_3, \dots, \theta_n - \epsilon)}{2\epsilon}$$

$$\frac{\partial}{\partial \theta_n} J(\theta) \approx \frac{J(\theta_1, \theta_2, \theta_3, \dots, \theta_n + \epsilon) - J(\theta_1, \theta_2, \theta_3, \dots, \theta_n - \epsilon)}{2\epsilon}$$

$$\frac{\partial}{\partial \theta_n} J(\theta) \approx \frac{J(\theta_1, \theta_2, \theta_3, \dots, \theta_n + \epsilon) - J(\theta_1, \theta_2, \theta_3, \dots, \theta_n - \epsilon)}{2\epsilon}$$

Random initialization: Symmetry breaking

参数随机初始化:

如果相同的话,

那么后续步骤都一样, 算出来的权重也一样

Initialize each $\Theta_{ij}^{(l)}$ to a random value in $\underbrace{[-\epsilon,\epsilon]}_{\pi}$

E.g.

神经网络步骤: 1: 随机初始化权重

2: 前向传播算法计算预测值

3: 计算代价函数

4: 使用后向传播算法计算代价函数梯度

5: 使用梯度检验来检验反向传播代码写得是否正确

6: 使用梯度下降或者高级算法加上反向传播完成预测

分为训练集、交叉验证集和测试集:

	et:		$(x^{(2)}, y^{(2)})$
_	Size	Price	
	2104	400	$(x^{(m)}, y^{(m)})$
	1600	330	(x(1) y(1))
60%	2400	369 Trany	(x_{cv}, y_{cv}) $M_{cv} = nc$ $(x_{cv}^{(2)}, y_{cv}^{(2)})$
0 -	1416	232	00 00
	3000	540	ecople
	1985	300 /	$(x_{cv}^{(m_{cv})}, y_{cv}^{(m_{cv})})$ $(x_{cv}^{(i)}, y_{cv}^{(i)})$
20%	1534	315 7 Cross vake	Lation $(x^{(1)}, u^{(1)})$
104.	1427	199 Set (C)	$(x_{test}^{(2)}, y_{test}^{(2)})$ $M_{+e,4}$
20.1.	1380	212 } test set -	(Ttest: Hest)
20 414	1494	243	$(x_{test}^{(m_{test})}, y_{test}^{(m_{test})})$

Train/validation/test error

Training error:

$$J_{train}(\theta) = \frac{1}{2m}\sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$$
 Cross Validation error:
$$J_{cv}(\theta) = \frac{1}{2m_{cv}}\sum_{i=1}^{m_{cv}} (h_\theta(x^{(i)}_{cv}) - y^{(i)}_{cv})^2$$

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} (h_{\theta}(x_{cv}^{(i)}) - y_{cv}^{(i)})^2$$

Test error:

$$J_{test}(\theta) = \frac{1}{2m_{test}} \sum_{i=1}^{m_{test}} (h_{\theta}(x_{test}^{(i)}) - y_{test}^{(i)})^2$$

1.
$$h_{\theta}(x) = \theta_{0} + \theta_{1}x \implies \min_{\alpha} \mathcal{I}(\alpha) \implies \mathcal{I}_{\alpha}(\alpha) = \theta_{0} + \theta_{0}x + \theta_{0}x^{2} \implies \mathcal{I}_{\alpha}(\alpha) = \theta_{0}x + \theta_{0}x + \theta_{0}x^{2} \implies \mathcal{I}_{\alpha}(\alpha) = \theta_{0}x + \theta_{0}x + \theta_{0}x^{2} \implies \mathcal{I}_{\alpha}(\alpha) = \theta_{0}x + \theta_{0$$

1.
$$h_{\theta}(x) = \theta_{0} + \theta_{1}x$$
 \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \theta_{2}x^{2}$ \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \cdots + \theta_{3}x^{3}$ \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \cdots + \theta_{3}x^{3}$ \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \cdots + \theta_{3}x^{3}$ \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \cdots + \theta_{3}x^{3}$ \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \cdots + \theta_{3}x^{3}$ \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \cdots + \theta_{3}x^{3}$ \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \cdots + \theta_{3}x^{3}$ \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \cdots + \theta_{3}x^{3}$ \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \cdots + \theta_{3}x^{3}$ \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \cdots + \theta_{3}x^{3}$

:
$$10. \ h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10} \quad \Longrightarrow \quad \varsigma^{(\omega)} \quad \Longrightarrow \quad \varsigma_{\varepsilon_{\nu}}(\varsigma^{\omega})$$

训练集: 算出多个模型的theta 交叉验证集:选择出最好的模型

测试集:评价选出的模型

Bias/variance as a function of the regularization parameter $\,\lambda\,$

学习曲线:

If a learning algorithm is suffering from high bias, getting more training data will not (by itself) help much.

High variance

If a learning algorithm is suffering from high variance, getting more training data is likely to help.

选择正则化参数

- Get more training examples - fixe high variance

- Try smaller sets of features - fixe high voices - Try getting additional features - fixe high bios

决定接下来做什么:

- Try adding polynomial features $(x_1^2, x_2^2, x_1x_2, {\rm etc}) \to {\rm fine} \ {\rm high} \ {\rm bias}$.
- Try decreasing $\lambda \rightarrow fixes$ high lies Try increasing $\lambda \rightarrow fixes$ high vorionce

笔记三,刘老师学习笔记(知识的补充)

2023年12月3日 16:11

随机梯度下降:

Stochastic Gradient Descent ∂loss

 $2 \cdot x_n \cdot (x_n \cdot \omega - y_n)$

 $\frac{\partial loss_n}{\partial \cdot \cdot \cdot} = 2 \cdot x_n \cdot (x_n \cdot \omega - y_n)$

损失不是所有样本的损失,而是随机一个样本的 损失,这样可以防止停在鞍点局部最优

为什么要加激活函数:

A two layer neural network $\hat{y} = W_2(W_1 \cdot X + b_1) + b_2$ $= W_2 \cdot W_1 \cdot X + (W_2b_1 + b_2)$ $= W \cdot X + b$

如果不加激活函数,那么无论多少层都相当于一层,都可以化简 而加入了非线性, 使得多层有意义, 表达式更复杂

二分类与多分类: 二分类:

激活函数: 之前是ReLu(),

最后是sigmoid,因为在0到1之间,就可以正好把他当做概率,把他当做成是=1的概率,大于0.5是一类,小于0.5是另一类 损失函数: BCE, (Binary Cross Entropy), LOSS=-(ylog(p(x)+(1-y)log(1-p(x))

多分类:

激活函数: 之前是ReLu(), 最后是softmax

损失函数: 交叉熵

分类器:为了把輸出结果变为概率,在激活后加入一个softmax分类器 $Softmax(z_i) = \frac{e^q}{\sum_{j=1}^G e^{z_j}}$,使用指数是为了更大的区分(爆炸式)

三、引入ReLu的原因

第一,采用sigmoid等函数,算激活函数时(指数运算),计算量大,反向传播求误差梯度时,求 导涉及除法,计算量相对大,而采用Relu激活函数,整个过程的计算量节省很多。

第二,对于深层网络,sigmoid函数反向传播时,很容易就会出现 梯度消失 的情况(在sigmoid 接近饱和区时,变换太缓慢,导数趋于0,这种情况会造成信息丢失),从而无法完成深层网络的

第三,ReLu会使一部分神经元的输出为0,这样就造成了 网络的稀疏性,并且减少了参数的相互 依存关系,缓解了过拟合问题的发生。

训练误差	验证误差	情况		
/]\	/]\	正常		
/]\	大	过拟合		
大	大	欠拟合		

EDMANNIAME.

- Suppose we have sequence with below properties:
 - batchSize batch的大小,每次处理几组
 - seqLen 序列的长度,一组中有几个样本,比如天气预测中,每组有三天
 - inputSize, hiddenSize,
 - numLayers RNN的层数
- The shape of *input* and *h 0* of RNN:
 - input.shape = (seqLen, batchSize, inputSize)
 - h_0. shape = (numLayers, batchSize, hiddenSize)
- The shape of output and h n of RNN:
 - $\bullet\ output. shape = (seqLen, batchSize, hiddenSize)$
 - h_n . shape = (numLayers, batchSize, hiddenSize)

• The inputs of RNN Cell should be vectors of numbers.

笔记四: YOLO

2023年12月18日 16:51

假设有20个女生,80个男生,

目标是选出所有女生,结果选出了15个女生,15个男生

TP: (女变女): 15, FP:(男变女): 15

FN:(女变男): 5,

FP TP

准确率/精度(Precision): $\frac{TP}{TP+FP}$ =15/30(结果中选对的有多少) 查全率: (Recall): $\frac{TP}{TP+FN}$ =15/20(结果中是否都选出来了) 标准:准确率与查全率:

笔记五、Faster R-CNN

2024年1月4日 20:44

一、FFN: 采用卷积网络提取图片特征: 可以用vgg,resnet······

二、RPN:

2.1 对特征图(feature map)先采用像素分割,然后每个像素点设置N个anchor

在FasterRCNN的RPN网络部分, anchor为三个尺度{128, 256, 512}, 三个比例{1:1, 1:2, 2:1}, 所以一共9组anchor。

- 2.2 为IOU大的anchor分配正样本标签,说明有物体为IOU小的anchor分配负样本标签,说明没有物体
- 2.3 对这些正样本的anchor, 进行回归, 原来9个anchor, 现在选出1个有物体的iou最大的
- 了,告诉网

络,现在着重调整这个anchor的大小

三、Region of Interst Pooling (RoI):

不同的建议框的大小是不同的、无法

0.88	0.44	0.14	0.16	0.37	0.77	0.96	0.27
0.19	0.45	0.57	0.16	0.63	0.29	0.71	0.70
0.66	0.26	0.82	0.64	0.54	0.73	0.59	0.26
0.85	0.34	0.76	0.84	0.29	0.75	0.62	0.25
0.32	0.74	0.21	0.39	0.34	0.03	0.33	0.48
0.20	0.14	0.16	0.13	0.73	0.65	0.96	0.32
0.19	0.69	0.09	0.86	0.88	0.07	0.01	0.48
0.83	0.24	0.97	0.04	0.24	0.35	0.50	0.91

		р	ooling	sectio	ns		
0.88	0.44	0.14	0.16	0.37	0.77	0.96	0.27
0.19	0.45	0.57	0.16	0.63	0.29	0.71	0.70
0.66	0.26	0.82	0.64	0.54	0.73	0.59	0.26
0.85	0.34	0.76	0.84	0.29	0.75	0.62	0.25
0.32	0.74	0.21	0.39	0.34	0.03	0.33	0.48
0.20	0.14	0.16	0.13	0.73	0.65	0.96	0.32
0.19	0.69	0.09	0.86	0.88	0,07	0.01	0.48
0.83	0.24	0.97	0.04	0.24	0.35	0.50	0.91

output

四、Region-based Convolutional Neural Network (R-CNN):

- R-CNN是Faster R-CNN里的最后一步。从图像获得卷积特征图后,我们通过RPN获取建议框并通过Rol池为每一个建议框提取特征,我们最终需要使用这些特征进行分类,最后通过全连接层来为每个可能的类别输出分数。
- R-CNN有两个不同目标:
- 1. 将建议框的物体进行具体分类 (这里要加上一个"背景"类, 用于删除错误的建议框)
- 2. 根据预测的类别更好地调整我们的边界框
- R-CNN把每个建议框提取的特征展平,并且使用两个具有ReLU激活层的4096大小的全连接层进行分类(对应两个不同的目标):
- 1. 第一个全连接层有N+1个单元,其中N是物体的类别,加的1是背景类。
- 2. 另一个全连接层有4N个单元,对应我们边界框的4个偏移量 (x_center,y_center,width,height) ,其中N是类别数

2023年12月16日 19:50

CV领域:

	图像分类	语义分割	目标检测	实例分割
干什么的?	是什么东西(一张图片只有一个物体)	在像素级别进行的目标检测,每个像素点是属于那种物体?	是什么东西?在哪里(画个框圈起来)	对同一类别的不同个体也要分出来
普遍用的模型	ResNet		YOLO	
我做了什么?	天气识别,准确率已达到95.3%			

1、图像分类: ➤ LeNet(1998):

LeNet又叫LeNet-5,这个5是指它的网络结构中有5个表示层,具体结构如下图所示:

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

LeNet5包含Input、卷积层1、池化层1、卷积层2、池化层2、全连接层、输出层。

➤ AlexNet(2012):

我们言归正传,AlexNet为8层深度的CNN网络,其中包括5个卷积层和3个全连接层(不包括LRN层和池化层),如下图所示:

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–1000.

AlexNet的特点和贡献:

- (1) 使用ReLU作为激活函数,由于ReLU是非饱和函数,也就是说它的导数在大于0时,一直是1,因此解决了Sigmoid激活函数在网络比较深时的梯度消失问题,提高SGD(随机梯度下降)的收敛速度。
- (2) 使用Dropout方法避免模型过拟合,该方法通过让全连接层的神经元(该模型在前两个全连接层引入Dropout)以一定的概率失去活性(比如0.5),失活的神经元不再参与前向和反向传播,相当于约有一半的神经元不再起作用。在预测的时候,让所有神经元的输出乘Dropout值(比如0.5)。这一机制有效缓解了模型的过拟合。
- (3) 重叠的最大池化, 之前的CNN中普遍使用平均池化, 而AlexNet全部使用最大池化, 避免平均池化的模糊化效果。并且, 池化的步长小于核尺寸, 这样使得池化层的输出之间会有重叠和覆盖, 提升了特征的丰富性。

> VGG(2014):

			onfiguration		
A	A-LRN	В	C	D	E
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight
layers	layers	layers	layers	layers	layers
	1	nput (224×2	24 RGB imag	e)	
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64
	LRN	conv3-64	conv3-64	conv3-64	conv3-64
		max	pool		
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128
		conv3-128	conv3-128	conv3-128	conv3-128
		max	pool		
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
			conv1-256	conv3-256	conv3-256
					conv3-256
		max	pool		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
		max	pool		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
	Ä.		pool		
			4096		
			4096		
			1000		
		soft	-max		

VGG的特点:

- (1) VGGNet拥有5段卷积,每段卷积内有2-3个卷积层,同时每段尾部都会连接一个最大池化层(用来缩小图片)。
- (2) 每段内的卷积核数量一样, 越后边的段内卷积核数量越多, 依次为: 64-128-256-512-512。
- (3) 越深的网络效果越好。
- (4) LRN层作用不大 (作者结论)。
- (5) 1x1的卷积也是很有效的,但是没有3*3的卷积好,大一些的卷积核可以学习更大的空间特征。不过1x1的卷积核可以用于增加模型的非线性变化,并可用于升维和降维。

VGG的突出贡献在于,证明了使用小的卷积核,增加网络深度可以有效的提高模型效果,而且VGGNet对其他数据集具有很好的泛化能力。到目前为止,VGGNet依然经常被用来提取图像特征。

为什么说小的卷积核堆积能够提高模型效果呢?比如3x3的卷积核堆叠两层,则"感受野"就会变为5x5,堆叠三层,"感受野"就会变成7x7,而多层小的卷积核参数更少(3*3*3=27<1*7*7=49),且增加了更多的非线性变化(三层卷积有三次ReLU),这样增加了模型的表达能力。

➤ GoogleNet(2014):

卷积核尺寸也是固定大小的。但是,在实际情况下,在不同尺度的图片里,需要不同大小的卷积核,这样才能使性能最好,或者或,对于同一张图片,不同尺寸的卷积核的表现效果是不一样的,因为他们的感受野不同。所以,我们希望让网络自己去选择,Inception便能够满足这样的需求,一个Inception模块中并列提供多种卷积核的操作,网络在训练的过程中通过调节参数自己去选择使用,同时,由于网络中都需要池化操作,所以此处也把池化层并列加入网络中。

1x1卷积作用, 减少参数和运算 量,减少通道数

> ResNet(2015):

> DenseNet(2017):

DenseNet的特点是: **密集连接,来缓解梯度消失问题,加强特征传播,鼓励特征复用,极大的减少了参数量。** DenseNet 是一种具有密集连接的卷积神经网络。在该网络中,任何两层之间都有直接的连接,也就是说,网络每一层的输入都是前面所有层输出的并集,而该层所学习的特征图也会被直接传给其后面所有层作为输入。

下图是 DenseNet 的一个dense block示意图:

Figure 1: A 5-layer dense block with a growth rate of k=4. Each layer takes all preceding feature-maps as input.

$$\begin{array}{l}
A_1 = W_1 & Q_1 + W_2 & Q_2 + b \\
&= W_1 \cdot (D_1 \cdot X_1) + W_2 \cdot (D_1 \cdot X_1 + b \\
&= W_1 \cdot (D_1 \cdot X_1 + D_2 \cdot X_2 + D_2) + \\
&= W_2 \cdot (D_4 \cdot X_1 + D_3 \cdot X_1 + D_4) + b \\
&= (W_1 \cdot B_1 + W_2 \cdot D_4 + X_1 + D_4) + b \\
&= (W_1 \cdot B_1 + W_2 \cdot D_4 + D_4) + b \\
&= (W_1 \cdot B_1 + W_2 \cdot D_4 + D_4) + b \\
&= (W_1 \cdot B_1 + W_2 \cdot D_4 + D_4) + b \\
&= (W_1 \cdot B_1 + W_2 \cdot D_4 + D_4) + b \\
&= (W_1 \cdot B_1 + W_2 \cdot D_4 + D_4) + b \\
&= (W_1 \cdot B_1 + W_2 \cdot D_4 + D_4) + b \\
&= (W_1 \cdot B_1 + W_2 \cdot D_4 + D_4) + b \\
&= (W_1 \cdot B_1 + W_2 \cdot D_4 + D_4) + b \\
&= (W_1 \cdot B_1 + W_2 \cdot D_4 + D_4) + b \\
&= (W_1 \cdot B_1 + W_2 \cdot D_4 + D_4) + b \\
&= (W_1 \cdot B_1 + W_2 \cdot D_4 + D_4) + b \\
&= (W_1 \cdot B_1 + W_2 \cdot D_4 + D_4) + b \\
&= (W_1 \cdot B_1 + W_2 \cdot D_4 + D_4) + b \\
&= (W_1 \cdot B_1 + W_2 \cdot D_4 + D_4) + b \\
&= (W_1 \cdot B_1 + W_2 \cdot D_4 + D_4) + b \\
&= (W_1 \cdot B_1 + W_2 \cdot D_4 + D_4) + b \\
&= (W_1 \cdot B_1 + W_2 \cdot D_4 + D_4) + b \\
&= (W_1 \cdot B_1 + W_2 \cdot D_4 + D_4) + b \\
&= (W_1 \cdot B_1 + W_2 \cdot D_4 + D_4) + b \\
&= (W_1 \cdot B_1 + W_2 \cdot D_4 + D_4) + b \\
&= (W_1 \cdot B_1 + W_2 \cdot D_4 + D_4) + b \\
&= (W_1 \cdot B_1 + W_2 \cdot D_4 + D_4) + b \\
&= (W_1 \cdot B_1 + W_2 \cdot D_4 + D_4) + b \\
&= (W_1 \cdot B_1 + W_2 \cdot D_4 + D_4) + b \\
&= (W_1 \cdot B_1 + W_2 \cdot D_4 + D_4) + b \\
&= (W_1 \cdot B_1 + W_2 \cdot D_4 + D_4) + b \\
&= (W_1 \cdot B_1 + W_2 \cdot D_4 + D_4) + b \\
&= (W_1 \cdot B_1 + W_2 \cdot D_4 + D_4) + b \\
&= (W_1 \cdot B_1 + W_2 \cdot D_4 + D_4) + b \\
&= (W_1 \cdot B_1 + W_2 \cdot D_4 + D_4) + b \\
&= (W_1 \cdot B_1 + W_2 \cdot D_4 + D_4) + b \\
&= (W_1 \cdot B_1 + W_2 \cdot D_4 + D_4) + b \\
&= (W_1 \cdot B_1 + W_2 \cdot D_4 + D_4) + b \\
&= (W_1 \cdot B_1 + W_2 \cdot D_4 + D_4) + b \\
&= (W_1 \cdot B_1 + W_2 \cdot D_4 + D_4) + b \\
&= (W_1 \cdot B_1 + W_2 \cdot D_4 + D_4) + b \\
&= (W_1 \cdot B_1 + W_2 \cdot D_4 + D_4) + b \\
&= (W_1 \cdot B_1 + W_2 \cdot D_4 + D_4) + b \\
&= (W_1 \cdot B_1 + W_2 \cdot D_4 + D_4) + b \\
&= (W_1 \cdot B_1 + W_2 \cdot D_4 + D_4) + b \\
&= (W_1 \cdot B_1 + W_2 \cdot D_4 + D_4) + b \\
&= (W_1 \cdot B_1 + W_2 \cdot D_4 + D_4) + b \\
&= (W_1 \cdot B_1 + W_2 \cdot D_4 + D_4) + b \\
&= (W_1 \cdot B_1 + W_2 \cdot D_4 + D_4) + b \\
&= (W_1 \cdot B_1 + W_2 \cdot D_4 + D_4) + b \\
&= (W_1 \cdot B_1 + W_2 \cdot D_4 + D_4) + b \\
&= (W_1 \cdot B_1 + W_2 \cdot D_4 + D_4$$

512*7*7 convx1(512,128,size(1*1)) => 128*5*5

- 1解决方案 (1) (1)
- 2感知体系白皮书 (2022)
- 3平台信息化
- 4顶层设计
- 5智慧灯杆项目
- 6智慧产业城市体项目
- 7唐山柳林水库
- 8数字城市公共基础设施建设
- 9智慧城市创新应用
- 10华为中国智慧城市发展研究
- 11数字孪生城市框架
- 12数字孪生赋能智慧城市
- 13新型智慧城市整体规划建设方案
- 14城市大脑首部建设标准
- 15智慧环卫
- 16:174页智慧系统
- 17城市规划GIS
- 18城市大脑案例集
- 19网通管建设方案
- 20城市大脑趋于治理
- 21智慧城市可行性研究报告

泰坦尼克号

2023年12月7日 9:0

天气

2023年12月8日 11:37

采用resnet18, 并且设置了dropout0.5, 学习率0.005,0.001,0.0005

判定: loss上升, 学习率过大

import shutil # import os

if __name__ == '__main__': # path = '/kaggle/working'

if os.path.exists(path):

shutil.rmtree(path)

print('删除完成')

else:

print('原本为空')

采用resnet50,设置dropout0.15,学习率从0.001递减

判定,训练集的损失高于测试集的损失,并且测试集 下降得逐渐变缓慢,所以应该是过拟合 而且下降呈直线,说明学习率过小

Resnet34-2relu-dropout0.2-lr0.00375

验证集准确率结果: 0.68,

x = self. fcl(x) x = self. relu(x)x = self. fc2(x)

x = self.output(x)
return x

对应上边学习率0.0011

好像并没有什么区别,看起来还是有些过拟合

对应上边学习率0.0011

好像并没有什么区别,看起来还是有些过拟合 0.712

把上边这个再从50训练到100轮

发现loss差别越来越大了,这是什么 这是过拟合

还是有些过拟合,而且呈直线, 学习率小了

啊, dropout0.85了, 还是过拟合

让我想想,可能是由于34的网络也不行? 再改成18吧。 Dropout0.15-lr0.0011

非常好,有些过拟合,

把dropout改成0.25,依然过拟合,改成0.45

啊,过拟合好严重

难道说,18也太复杂了? 不知道啊,把dropout改成0.65,

麻了,就这样吧,放弃了

应该是数据集不行,换数据集 这个达到0.81了,但是震荡太大,

说明学习率过高了

很好,换了数据集, 现在经过多次调试,终于达到了这样的情况

0.883

新想法:

2023年12月16日 19:09

1、12.16: 让计算机学习新知识,不是单纯的会做题、会计算,而是让他知道为什么?

以女孩和男孩为例,女孩为0,男孩为1 传统的神经网络,自动提取特征,比如提取到是头发, 通过卷积计算后,长头发计算得到的结果更接近于0,而短头发计算的结果更接近于1。 之前之前的方法,不管什么地方,反正就是都做一遍卷积 网络是如何知道要提取头发这一特征的呢? GooGlenet在每个神经元那,先设置了多种可能,比如,1*1卷积,3*3卷积,然后再

但是人类在识别时,人类会有自己的思考,会有自己的辨别, 比如当人类在看到这幅图片时,会