Chapitre

Nombres rationnels

3

3.1 Écriture fractionnaires et opérations

On parle **écritures fractionnaires** lorsque les numérateurs et dénominateurs sont des expressions $(\frac{x}{x-1} \text{ avec } x \neq 1)$ ou ne sont pas entiers $(\frac{\pi}{2} \text{ ou } \frac{3,2}{1,2})$.

3.2 Nombres rationnels

Définition 3.1 — nombres rationnels. L'ensemble des nombres réels qui peuvent s'écrire comme une fraction irréductible d'entiers sont dit rationnels.

$$\mathbb{Q} = \left\{ \frac{a}{b} \mid a \in \mathbb{Z}, b \in \mathbb{Z}^*, \text{ sans diviseurs communs} \right\}$$

R Les nombres décimaux sont aussi rationnels.

$$13,2 = \frac{132}{10} = \frac{66 \times 2}{5 \times 2} = \frac{66}{5} \in \mathbb{Q}$$

$$9,75 = \frac{975}{100} = \frac{195 \times 5}{20 \times 5} = \frac{195}{20} = \frac{39 \times 5}{4 \times 5} = \frac{39}{4} \in \mathbb{Q}$$

$$-13 = \frac{-13}{1} \in \mathbb{Q}$$

À l'inverse, un rationnel peut ne pas être un nombre décimal.

lacktriangle Exemple 3.1 — Écriture décimale de nombres rationnels.

$$251 \div 25 = 10,04$$
;
 $150 \div 7 = 21,\underline{428571}...$;
 $1 \div 49 = 0,020408163265306122448979591836734693877551...$

Définition 3.2 On appelle irrationnels les nombres réels qui n'appartiennent pas à \mathbb{Q} .

Faire un poster A4, (figure 3) avec rappel des règles d'opérations vues au collège.

Faire un bilan après l'exemple 3.5, avant de poursuivre et donner la définition de rationnels. 2 3 Nombres rationnels

Figure 3.1 – Illustration du principe des tiroirs avec les divisions décimales des quotients $\frac{251}{25}$ et $\frac{150}{7}$

Théorème 3.2 $\sqrt{2} \notin \mathbb{Q}$.

Figure 3.2 – $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{D} \subset \mathbb{Q} \subset \mathbb{R}$.

Les nombres réels sont classés dans les catégories suivantes :

- \mathbb{N} nombres entiers positifs (partie fractionnaire est nulle).
- Z nombres entiers positifs ou négatifs
- D nombre décimaux, s'écrivent comme fraction décimale. Leur écriture décimale est finie.
- $\mathbb{Q}\setminus\mathbb{D}$ rationnels mais pas décimaux : s'écrivent comme fraction d'entiers, et leur écriture décimale est périodique.

Les nombres rationnels ont une représentation finie en fraction continue.

 $\mathbb{R}\setminus\mathbb{Q}$ nombres irrationnels. Leur écriture décimale est infinie et non périodique (exemple avec π et exploration de son écriture décimale).

Les nombres irrationnels ont une représentation infinie en fraction continue .

3.2 Nombres rationnels

3

3.2.1 Exercices: fractions, nombres rationnels et irrationnels

Exercice 1 — **E**. Exprimer les expressions suivantes sous forme d'une fraction irréductible

$$A = \frac{3}{2} \times 13$$

$$B = \frac{12}{5} \times \frac{1}{9}$$

$$C = \frac{1}{3} \times \frac{1}{6}$$

$$D = \frac{\frac{16}{7}}{5}$$

$$E = \frac{35}{4} \times \frac{3}{35}$$

$$F = \frac{11}{11} \times \frac{1}{6}$$

$$G = \frac{\frac{4}{5}}{12}$$

$$H = \frac{9}{\frac{35}{2}}$$

$$K = \frac{1}{32} - \frac{3}{4}$$

$$I = 5 - \frac{4}{9}$$

$$J = \frac{7}{4} + \frac{2}{5}$$

$$K = \frac{1}{32} - \frac{3}{4}$$

$$N = \frac{7}{6} - \frac{3}{10}$$

■ Exemple 3.3 Écrire sous forme d'une fraction irréductible. Montrer les calculs.

$$1 + \frac{1}{2 + \frac{1}{3 + \frac{1}{4}}} =$$

Exercice 2 — fractions continues. Donner l'écriture en fractions d'entiers des expressions suivantes. Montrer les étapes de calculs.

$$A = 3 + \frac{1}{2 + \frac{1}{1 + \frac{1}{4}}} \left| B = 4 + \frac{1}{2 + \frac{1}{1 + \frac{1}{3}}} \right| C = 1 + \frac{1}{3 + \frac{1}{5 + \frac{1}{7}}} \left| D = 0 + \frac{1}{6 + \frac{1}{5 + \frac{1}{3}}} \right|$$

■ Exemple 3.4 — Transformer une fraction en fraction continue.

$$\frac{55}{17} = 3 + \frac{4}{17} = 3 + \frac{1}{\frac{17}{4}} = 3 + \frac{1}{4 + \frac{1}{4}} \qquad \frac{649}{200} = 55 = 3 \times 17 + 4 \qquad 649 = \dots \times 200 + \dots$$

$$17 = 4 \times 4 + 1$$

$$4 = 4 \times 1 + 0$$

Exercice 3 — À vous. Écrire les nombres suivants sous forme d'une fraction continue.

$$A = \frac{13}{10}$$
 $B = \frac{49}{13}$ $C = \frac{8}{11}$ $D = 3.15$ $E = 2.8125$ $F = 0.65$

- Exemple 3.5 Point analyse et bilan.
- a) Dans les exemples précédents, l'algorithme utilisé pour obtenir des écritures en fractions continues s'arrète. Pouvez vous expliquer la raison?
- b) Montrer que $\frac{1}{1+\sqrt{2}} = \sqrt{2}-1$. En déduire que $\sqrt{2} = 1 + \frac{1}{1+\sqrt{2}}$
- c) En déduire l'écriture en fraction continue de $\sqrt{2}$.

3 Nombres rationnels

	Exemple	3.	6
--	---------	----	---

a)
$$\frac{3\pi}{5\pi} =$$

b)
$$\frac{2}{7} =$$

c)
$$3 \times \left(\frac{1}{3} - \frac{3}{4}\right) - \frac{5}{6} =$$

Exercice 4 Cochez les cases correspondants aux ensembles auxquels chaque nombre appartient :

	N	Z	D	Q	R
1/ 2,25					
$2/\frac{7}{4}$					
$3/\frac{19}{25}$					
$4/-\frac{4}{3}$					
$\frac{2}{7} \frac{7}{4}$ $3 / \frac{19}{25}$ $4 / -\frac{4}{3}$ $5 / \frac{6 - (-5) + 1}{(-8)/2}$					
6 / $1 + 2\sqrt{3}$					
$7/1+2\sqrt{4}$					
$8/3 - \sqrt{-4 + 5 \times 8}$					
$9/2.3 \times 10^{-12}$					
$11/\frac{5\sqrt{2}}{12\sqrt{2}}$					
$12/\left(\sqrt{5}\right)^2$					

Exercice 5 — Vrai ou Faux?. Si faux, donner un contre-exemple à l'aide de <u>l'exercice4</u>.

	Vrai	Faux
1/ Un nombre décimal ne peut pas être un nombre entier.		
2/ Un nombre décimal est un rationnel.		
3/ Un nombre irrationnel peut être un entier.		
4/ Un nombre entier relatif est un décimal.		
5/ Le produit de deux nombres décimaux est un décimal.		
6/ Le quotient de deux nombres décimaux est toujours un décimal.		
7/ Le quotient de deux nombres décimaux peut être un décimal.		
8/ Le produit de deux nombres rationnels est toujours un rationnel.		
9/ Le produit de deux nombres irrationnels est toujours un irrationnel.		
10/ Le quotient de deux nombres irrationnels peut être un entier.		

3.2 Nombres rationnels 5

solution de l'exercice 2.
$$A = \frac{113}{33}$$
; $B = \frac{48}{11}$; $C = \frac{151}{115}$; $D = \frac{16}{99}$;

solution de l'exercice 4.

	N	Z	D	Q	R
1/ 2,25				\boxtimes	
$2/\frac{7}{4}$					
$3/\frac{19}{25}$				\boxtimes	
$4/-\frac{4}{3}$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		\boxtimes	\boxtimes	\boxtimes	\boxtimes
$6/1+2\sqrt{3}$					
$7/1+2\sqrt{4}$	\boxtimes	\boxtimes		\boxtimes	
$8/3 - \sqrt{-4 + 5 \times 8}$	\boxtimes			\boxtimes	
$9/2.3 \times 10^{-12}$				\boxtimes	
$10/\frac{\sqrt{100}}{100}$			\boxtimes	\boxtimes	\boxtimes
$ \begin{array}{c c} $					
$12/\left(\sqrt{5}\right)^2$	\boxtimes		\boxtimes	\boxtimes	\boxtimes

solution de l'exercice 5.

nullon de l'exercice 5.	Vrai	Faux
1/ Un nombre décimal ne peut pas être un nombre entier.	\boxtimes	
2/ Un nombre décimal est un rationnel.		
3/ Un nombre irrationnel peut être un entier.		
4/ Un nombre entier relatif est un décimal.		
5/ Le produit de deux nombres décimaux est un décimal.		
6/ Le quotient de deux nombres décimaux est toujours un décimal.		
7/ Le quotient de deux nombres décimaux peut être un décimal.		
8/ Le produit de deux nombres rationnels est toujours un rationnel.		
9/ Le produit de deux nombres irrationnels est toujours un irrationnel.		
10/ Le quotient de deux nombres irrationnels peut être un entier.	\boxtimes	

LG Jeanne d'Arc, 2nd
Année 2021/2022

6 3 Nombres rationnels

3.3 TP Approximation de racines carrées par des rationnels

Prélminaires Exprimer les epxresions suivantes sous forme d'une fraction irréductible. Montrer les étapes de calcul.

$$A = 1 + \frac{1}{1 + \frac{1}{1}}$$
 $B = 1 + \frac{1}{1 + \frac{3}{2}}$ $C = 1 + \frac{1}{1 + \frac{7}{5}}$ $=$ $=$ $=$ $=$

Compléter les pointillés par < ou > :

$$\left|\sqrt{2}-A\right|\dots 10^{-3}$$
 $\left|\sqrt{2}-B\right|\dots 10^{-3}$ $\left|\sqrt{2}-C\right|\dots 10^{-3}$

Exercice 1 — Rappel.

a) Simplifier
$$\frac{1}{\sqrt{2}+1}$$

b) En déduire que
$$\sqrt{2} = 1 + \frac{1}{1 + \sqrt{2}}$$
.

Algorithme L'algorithme suivant vise à obtenir des nombres rationnels $\frac{a}{b}$ (a et $b \in \mathbb{N}$), de plus en plus proches de $\sqrt{2}$.

Si à l'étape on a l'approximation $\sqrt{2} \approx \frac{a}{b}$. À l'étape suivante on calcule $1 + \frac{1}{1 + \frac{a}{b}} = \frac{a'}{b'}$.

Exercice 2 Mettre sous forme d'une unique fraction simplifiée :

$$1 + \frac{a}{b} =$$

$$1 + \frac{1}{1 + \frac{a}{b}} =$$

Si
$$\sqrt{2} \approx \frac{a}{b}$$
, à l'étape suivante $\sqrt{2} \approx \frac{a'}{b'}$ avec
$$\begin{cases} a' = a + 2b \\ b' = a + b \end{cases}$$
.

Étape 0 Valeurs de départ :
$$\begin{cases} a_0 &= 1 \\ b_0 &= 1 \end{cases}$$
 On a $\left| \sqrt{2} - \frac{1}{1} \right| \approx 0.41 < \frac{1}{2b_0^2}$. Étape 1
$$\begin{cases} a_1 &= a_0 + 2b_0 = 1 + 2 = 3 \\ b_1 &= a_0 + b_0 = 1 + 1 = 2 \end{cases}$$
 On a $\left| \sqrt{2} - \frac{3}{2} \right| \approx$
$$\begin{cases} a_2 &= a_1 + 2b_1 = \\ b_2 &= a_1 + b_1 = \end{cases}$$
 On a $\left| \sqrt{2} - \frac{3}{2} \right| \approx$

Étape 3
$$\begin{cases} a_3 = a_2 + 2b_2 = \\ b_3 = a_2 + b_2 = \end{cases}$$
 On a $\left| \sqrt{2} - \cdots \right| \approx$ Étape 4
$$\begin{cases} a_4 = a_3 + 2b_3 = \\ b_4 = a_3 + b_3 = \end{cases}$$
 On a $\left| \sqrt{2} - \cdots \right| \approx$

L'algorithme en Python

```
def approximation(n) : # n est le nombre d'étapes à faire
a , b = 1 , 1 # démarrage : double affectation

for i in range(n) : # i prend les valeurs ...

a = a + 2*b
b = a + b
return a, b
```

a) Montrer que l'instruction approximation(1) retourne a=3 et b=4. Quelle est l'erreur de cet algorithme?

- b) Tester la version modifiée sur votre pythonette et vérifier que l'instruction approximation (5)
- retourne a=99 et b=70.
 c) Que retourne approximation(6)?
 a= et b=

```
def approximation(n) : # n est le nombre d'étapes à faire
a , b = 1 , 1 # démarrage : double affectation
for i in range(n) :
a , b = a + 2*b , a + b
return a, b
```

```
\frac{99}{70} est une approximation rationnelle de \sqrt{2} à 10^{-4} près.
Pour faire mieux, il faut un dénominateur au moins égal à 169: il s'agit du rationnel \frac{239}{169}.
```

LG Jeanne d'Arc, 2nd
Année 2021/2022

$$\frac{a}{b} + \frac{c}{d} = \frac{a \times d}{b \times d} + \frac{c \times b}{d \times b} = \frac{ad + bc}{bd}$$

Fra

Sommes de fractions:

Ramener au même

dénominateur

$$a,b \in \mathbb{R}$$

Inverse de
$$\frac{a}{b} = \frac{1}{\frac{a}{b}} = \frac{b}{a}$$

Inverse de $b \neq 0$ se note $\frac{1}{b}$ $b \times \frac{1}{b} = 1$

L'inverse de 0 n'existe pas $\frac{1}{b}$

Fract

 $\frac{a}{b}$

Figure 3.3 – Règles opératoires des écritures fractionnaires

Diviser revient à multiplier par l'inverse :

$$\frac{a}{b} \div \frac{c}{d} = \frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \times \frac{d}{c}$$

ction comme quotient:

$$\frac{a}{b} = a \div b$$

Simplification/Amplification:

$$\frac{a}{b} = \frac{a}{b} \times \frac{c}{c} = \frac{a \times c}{b \times c}$$

$$a, b \neq 0$$

Multiplication de fractions :

$$\frac{a}{b} \times \frac{c}{d} = \frac{a \times c}{b \times d}$$

Règles des signes :

$$\frac{-a}{b} = -\frac{a}{b} = \frac{a}{-b}$$

$$\frac{-a}{-b} = \frac{a}{b}$$

L'unité :

$$\frac{b}{b} = b \times \frac{1}{b} = 1$$

on comme multiplication:

$$\frac{a}{b} = a \times \frac{1}{b}$$

Fractions de fractions :

$$\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \times \frac{1}{\frac{c}{d}} = \frac{a}{b} \times \frac{d}{c}$$

$$\times c = \frac{a \times c}{b} = a \times \frac{c}{b}$$