- I. Write programs in ARM assembly language to perform 32-bit addition and subtraction using:
- a. direct addressing mode
- b. indirect addressing mode
- b. barrel shifter

Program Ia: Direct addressing mode

Addition:

```
area program,code,readonly
entry
main

LDR R1,value1

LDR R2,value2

ADD R3,R1,R2

SWI &11

area program,data,readonly
value1 DCD &00000005
value2 DCD &00000030
```

Subtraction:

END

```
area program,code,readonly
entry
main

LDR R1,value1

LDR R2,value2

SUB R3,R1,R2

SWI &11

area program,data,readonly
value1 DCD &00000005
value2 DCD &00000003

END
```

Program Ib: Indirect addressing mode

Addition:

```
area program,code,readonly
entry
main

LDR R0,value1

LDR R1,value2

LDR R2,[R0]

LDR R3,[R1]

ADD R4,R2,R3

SWI &11

area program,data,readonly
value1 DCD 0x00003000
value2 DCD 0x00003003

END
```

Subtraction:

```
area program,code,readonly
entry
main

LDR R0,value1

LDR R1,value2

LDR R2,[R0]

LDR R3,[R1]

SUB R4,R2,R3

SWI &11

area program,data,readonly
value1 DCD 0x00003006
value2 DCD 0x00003009

END
```

Program Ic: Barrel Shifter

Addition:

```
area program,code,readonly
entry
main

LDR R1,value

MOV R2,R1,LSL#0x02

ADD R3,R1,R2

SWI &11

area program,data,readonly
value DCD &00000003

END
```

Subtraction:

```
area program,code,readonly
entry
main

LDR R1,value

MOV R2,R1,LSL#0x04

ADD R3,R2,R1

SWI &11

area program,data,readonly
value DCD &0000005

END
```

II. Write a program in ARM assembly language to perform left and right shifts on a number.

Program II

```
area program,code,readonly
entry
main

LDR R1,value

MOV R2,R1,LSL#0x02

MOV R3,R1,LSR#0x05

MOV R4,R1,ASR#0x04

MOV R5,R1,ROR#0x03

SWI &11

area program,data,readonly
value DCD &00000003

END
```

III. Write a program in ARM assembly language to compute one's complement of a number.

Program III

```
area program,code,readonly
entry
main

LDR R1,value

MVN R1,R1

SWI &11

area program,data,readonly
value DCD &00000043

END
```

IV. Write a program in ARM assembly language to find whether a number is even or odd.

Program IV

```
area program,code,readonly
entry
main

LDR R1,value

MOV R2,#0x01

AND R3,R1,R2

SWI &11

area program,data,readonly
value DCD &00000043

END
```

V. Write a program in ARM assembly language to perform multiplication using addition.

Program V

```
area program, code, readonly
entry
main
      LDR R0, value1
      LDR R1,value2
      MOV R2,R0
      MOV R3,#0x01
LOOP
      ADD R3,R3,#0x01
      ADD R0,R0,R2
      CMP R1,R3
      BNE LOOP
      SWI &11
      area program, data, readonly
value1 DCD &00000002
value2 DCD &00000006
     END
```

NOTE: How does CMP, R1,R2 differ from SUB R1,R2?

CMP updates a flag, which BNE then checks.

VI. Write a program in ARM assembly language to store multiplication table of a number.

Program VI

```
area program, code, readonly
entry
main
      LDR R0, value1
      LDR R1,value2
      MOV R2,#0x0A
      MOV R3,R0
LOOP
      STR R0,[R1]
      ADD R0,R0,R3
      SUB R2,R2,#0x01
      ADD R1,R1,#0x04
      CMP R2,#0x00
      BNE LOOP
      SWI &11
      area program, data, readonly
value1 DCD &00000003
value2 DCD &00000080
      END
```

NOTE: Multiplication table of 3 in hexadecimal?

VII. Write a program in ARM assembly language to perform division using subtraction.

Program VII

```
area program, code, readonly
entry
main
      LDR R0, dividend
      LDR R1, divisor
      MOV R2,#0x00
      MOV R3,R0
LOOP
      SUB R3,R3,R1
      ADD R2,R2,#0x01
      CMP R3,R1
      BGE LOOP
      SWI &11
      area program, data, readonly
dividend DCD &0000000A
divisor DCD &00000002
      END
```

VIII. Write a program in ARM assembly language to count the number of characters in a string.

Program VIII

```
area program,code,readonly
entry
main

LDR R0,=string
MOV R2,#0x00

LOOP

LDRB R1,[R0],#0x01

CMP R1,#0x00

ADDNE R2,R2,#0x01

BNE LOOP

SWI &11

area program,data,readonly
string DCB "ABCDEF"

END
```

IX. Write a program in ARM assembly language to count the number of occurrences of a particular character in a string.

Program IX

```
area program,code,readonly
entry
main

LDR R0,=string
MOV R2,#0x00

LOOP

LDRB R1,[R0],#0x01

CMP R1,#"S"

ADDEQ R2,R2,#0x01

CMP R1,#0x00

BNE LOOP

SWI &11

area program,data,readonly
string DCB "MISSISSIPPI"
END
```

X. Write a program in ARM assembly language to add two integer strings.

Program X

```
area program, code, readonly
entry
main
      LDR R0,=val1
      LDR R1,=val2
      LDR R2,=val3
      LDR R3,count
LOOP
      LDRB R4,[R0],#0x01
      LDRB R5,[R1],#0x01
      ADD R6,R4,R5
      STRB R6,[R2],#0x01
      SUB R3,#0x01
      CMP R3,#0x00
      BNE LOOP
      SWI &11
      area program, data, readonly
count DCD &00000004
val1 DCB 1,2,3,4
val2 DCB 5,6,7,8
val3 DCD &00000000
      END
```

XI. Write a program in ARM assembly language to find the factorial of a number.

Program XI

```
entry
main

LDR R0,value1

MOV R1,#0x01

LOOP

MUL R2,R1,R0

MOV R1,R2

SUB R0,R0,#0x01

CMP R0,#0x01

BGT LOOP

area program,data,readonly

value1 DCD &00000004

END
```

XII. Write a program in ARM assembly language to perform addition of two 64-bit numbers.

Program XII

```
area program, code, readonly
entry
main
       LDR R0,=value1
       LDR R1,[R0]
       LDR R2,[R0,#0x04]
      LDR R0,=value2
      LDR R3,[R0]
      LDR R4,[R0,#0x04]
      ADDS R5,R2,R4
      ADC R6,R1,R3
      LDR R1,=result
      STR R6,result
      STR R5,[R1,#0x04]
      area program, data, readonly
value1 DCD &12A2E640,&F2100123
value2 DCD &001019BF,&40023F51
result DCD &00000000
END
```

XIII. Write a program in ARM assembly language to find the largest number in an array.

Program XIII

```
area program, code, readonly
entry
main
      LDR R0,=val1
      LDRB R1,[R0]
      LDR R2,count
LOOP
      LDRB R3,[R0],#0x01
      CMP R3,R1
      MOVGT R1,R3
      SUB R2,#0x01
      CMP R2,#0x00
      BNE LOOP
      SWI &11
      area program, data, readonly
count DCD &00000006
val1 DCB 1,2,4,7,5,6
      END
```

XIV. Write a program in ARM assembly language to copy an array.

Program XIV

```
area program, code, readonly
entry
main
      LDR R0,=array
      MOV R4,#0x04
      LDR R5, value
LOOP
      LDRB R2,[R0],#0x01
      STRB R2,[R5],#0x01
      SUB R4,R4,#0x01
      CMP R4,#0x00
      BNE LOOP
      SWI &11
      area program, data, readonly
array DCB 1,2,3,4
value DCD &10000080
      END
```

XV. Write a program in ARM assembly language to implement the following equations:

b.
$$6(x+y)+2z+4$$

Program XVa

area program, code, readonly

entry

main

LDR R0,value1

LDR R1,value2

LDR R2,value3

LDR R3,value4

MUL R4,R2,R2

MUL R5,R4,R0

MUL R6,R3,R3

MUL R7,R6,R1

ADD R8,R5,R7

area program, data, readonly

value1 DCD &0000001

value2 DCD &00000002

value3 DCD &00000003

value4 DCD &00000004

END

NOTE: a = 1, b = 2, x = 3, y = 4

Program XVb

```
area program,code,readonly
entry
main

LDR R0,value1

LDR R1,value2

LDR R2,value3

ADD R3,R0,R1

MUL R3, #0x06

MUL R2, #0x02

ADD R5,R3,R2,#0x04

area program,data,readonly
value1 DCD &00000001

value2 DCD &00000002
```

NOTE: x = 1, y = 2, z = 3

value3 DCD &00000003

END