Introduction to Robot Operating System (ROS) Application to mobile robots

Amr Elhussein Advisor: Dr. Suruz Miah

Department of Electrical and Computer Engineering Bradley University 1501 W. Bradley Avenue Peoria, IL, 61625, USA

Friday, May 31, 2019

Outline

- Introduction
 - Historical Background
 - Robot Programming Before ROS
 - ROS is ...
 - ROS Equation
 - Applications
- ROS Concepts
 - Filesystem
 - Computation Graph
 - Community level
- ROS installation
- Future of ROS

History and Legacy

- Started in 2007 by researches from Stanford AI Robot (Stair) and the Personal Robots (PR) Program and was sponsored by Willow Garage a visionary robotics incubator.
- Used Worlwide in Research and Industry.
- Currently supported by the Open Source Robotics Foundation.

Figure: Stair

Robot Programming Before ROS

- No common platform for developing robotics
- Build every thing from scratch
- Algorithm implementation

ROS is ..

A flexible framework for writing robot software. It is a collection of tools, libraries, and conventions that aim to simplify the task of creating complex and robust robot behavior across a wide variety of robotic platforms.

Ros Equation

Applications

Filesystem

Computation Graph

Computation Graph: Master

Computation Graph: Master

Community level

Installation

- Debian-based distributions such as Ubuntu.
- Many robots.
- Current supported distributions
 - ROS Kinetic Kame, Released May, 2016.
 - ROS Melodic Morenia, Released May, 2018

Installation

After choosing the distribution follow the instruction on ROS Wiki which start by:

- Configure your Ubuntu repositories.
- Setup your sources.list.
- Set keys.
- Install with "sudo apt-get install ros-kinetic-desktop-full".

Future of ROS

- Security
- Critical Missions
- Distributed Processing

Thanks!

Matlab Robotics Systems Toolbox Application to mobile robots

Amr Elhussein Advisor: Dr. Suruz Miah

Department of Electrical and Computer Engineering Bradley University 1501 W. Bradley Avenue Peoria, IL, 61625, USA

Friday, June 4, 2019

Outline

Introduction

- Workflow
 - Desktop prototyping
 - Standalone ROS Nodes

Examples

According to mathworks.com

Robotics System Toolbox provides algorithms and hardware connectivity for developing autonomous robotics applications for aerial and ground vehicles, manipulators, and humanoid robots. Toolbox algorithms include path planning and path following for differential drive robots, scan matching, obstacle avoidance, and state estimation. For manipulator robots, the system toolbox includes algorithms for inverse kinematics, kinematic constraints, and dynamics using a rigid body tree representation.

Figure: Matlab robotics tool box and ROS workflow. courtesy of mathworks.com

June 4, 2019

Figure: Matlab and ROS integration, courtsey of mathworks.com

Desktop prototyping

Figure: Matlab ROS desktop prototyping, mathworks.com

Desktop prototyping


```
rosinit('ipAddress')
mySub = rossubscriber('/sub topic');
[myPub,pubMsg] = rospublisher('/pub topic');
currentTime = 0;
tic
while(currentTime < 10)</pre>
  recvMsg = mySub.LatestMessage;
  ctrlOut = myAlgorithm(recvMsq);
  pubMsg.FieldName = ctrlOut;
  send (myPub, pubMsg);
  currentTime = toc;
 plot(currentTime,ctrlOut)
end
```

Figure: Desktop prototyping code template, courtsey of mathworks.com

Worflow Standalone Node

Figure: Generation of ROS standalone node, courtsey of mathworks.com

Workflow Standalone Node

Figure: Access to ROS standalone node, courtsey of mathworks.com

Examples

Figure: Turtle bot example, courtsey of mathworks.com

Area Coverage Optimization Progress Report

Amr Elhussein Advisor: Dr. Suruz Miah

Department of Electrical and Computer Engineering Bradley University 1501 W. Bradley Avenue Peoria, IL, 61625, USA

Friday, June 21, 2019

Outline

- Introduction to V-REP
- Interfacing Matlab and ROS on the same Machine
- Line following simulation
- Leader follower simulation
- Area Coverage simulation
- Future Work

V-REP

General purpose robot simulator with integrated development environment "coppeliarobotics.com".

Interfacing

Figure: ROS, Matlab and V-REP interface

Line Following

Figure: Line Following Scene

Leader Following

Figure: Leader Follower Scene

Area Coverage

Figure: Area Coverage Scence

Future Work

- Expiremental Validation.
- Refining simulation results.

June 21, 2019

Questions?

Area Coverage Optimization Progress Report

Amr Elhussein Advisor: Dr. Suruz Miah

Department of Electrical and Computer Engineering Bradley University 1501 W. Bradley Avenue Peoria, IL, 61625, USA

Friday, July 5, 2019

Outline

Objectives

Refining Simulation

July 5, 2019

Objectives

- Refining Simulation
- Expiremental Validation

Refining Simulation

Modeling

Figure: eduMOD Solidworks model

Refining Simulation

importing to V-rep

- Universal Robotic Description Format
- From Solidworks to URDF

Questions?

July 5, 2019

Area Coverage Optimization Progress Report

Amr Elhussein Advisor: Dr. Suruz Miah

Department of Electrical and Computer Engineering Bradley University 1501 W. Bradley Avenue Peoria, IL, 61625, USA

Friday, July 19, 2019

Outline

V-rep simulation

Implementation

Solidworks to URDF plugin

Tested with simpler models but kept getting the same error

```
rospack find Assem1 rospack find Assem1' exited with status 1.
```

- the error is related to rospack find
- testing the urdf file with gazebo and rviz along with windows version of vrep

- successfully interfacing matlab robotics toolbox with the eduMOD robot through cable and wifi.
- implemented the line following and leader follower trials and waiting for the recent version of area coverage code to be implemented.
- looking deeply into results.

Questions?

Area Coverage Optimization Progress Report

Amr Elhussein Advisor: Dr. Suruz Miah

Department of Electrical and Computer Engineering Bradley University 1501 W. Bradley Avenue Peoria, IL, 61625, USA

Friday, August 02, 2019

Outline

Milestones

Refining simulation

Implementation

Milestones

- Understand ROS, Matlab robotics Tool box, Vrep, and their interfacing
- Run the simulation demos using pioneer robot and then refining the simulation to get better results
- Understand how to navigate beaglboneblue through ssh
- Implement the area coverage algorithm with eduMIP robot

eduMIP urdf

Figure: eduMIP rviz

line following

July 19, 2019

leader follower

area coverage

• error in orientation calculation.

Questions?

