Eric

Motivation: Complex analytic maps - "holomorphic".

Recall this means that of preserves angles. this follows from the Cauchy-Riemann equations.

In fact, we can take alesson from this:

Lesson: Complex analytic maps require a notion of angle in order the to define them.

So, what's an angle?

Angles in a 2d vectorspace. Let (V, \langle , \rangle) be an inner product space, define define: $0 = \cos^{-1}\left(\frac{\langle x, y \rangle}{\|x\|} \|y\|\right)$

So, "angle on V" is an equivalence class of inner products on V:
of inner products on V:
$g_1 \sim g_2 \iff g_1 = \lambda_1 g_2 \text{ for some } \lambda > \emptyset$.
This is usually called "conformally equivalent"
This is usually called "conformally equivalent" but we reserve this terminology for a later concept.
concept.
In fact, rotation by 90° is enough to specify all angles: Given linear $T: V \rightarrow V$, $T^2 = -T$ (so it's a candidate for rotation by 90°). Then $V \times V = V = V = V = V = V = V = V = V = $
Given linear J: V->V, J2 = -I (50 t's
a candidate for rotation by 20°) Then YXEVIEO?
the set
{X, JX} of a basis. (exercise).
Define an inner product g by $g(JX,X) = 0$ g(X,JX) = 0, $g(X,X) = 1$, $g(JX,JX) = 1$,
and just extend linearly This gives an inner
and just extend linearly. This gives an inner product relative to which I is 90° rotation!
Remark: In fact, ed is retation by & for Ock.
Def: A surface Is a 2-dimensional connected
smooth manifold.
· An almost complex structure on a suface R: 15:
Def: A surface is a 2-dimensional connected smooth manifold. An almost complex structure on a surface R: is: a smoothly varying linear map
Jp: TpR - TpR VpER

s.t. $J_p^2 = -I_p \forall p \in \mathbb{R}$.

A Riemannian metric on \mathbb{R} is a smoothly varying $g_p: T_p \mathbb{R} \times T_p \mathbb{R} \longrightarrow \mathbb{R}$. which is an inner product.

Two metrics g''(ie) inner products at each point are conformally equivalent if $J \lambda: \mathbb{R} \longrightarrow \mathbb{R}$. $\lambda > 0$ s.t. $g = \lambda h$. · A conformal structure on R 15 an equivalence class of Riemannian metrics on R. + orientation. Theorem: A conformal structure uniquely determines an almost structure, and an almost complex structure uniquely determines a conformal structure. (The "determination" is from doing what we did before on V, using I to define g, but we do it on each tangent space TpR.) Proof sketch: Pick p and fix Xp. Starting from a conformal structure, we want to get angles. Define J. X, to be the unique vector, up to spe scale, such that $\{X_p, J_p X_p\}$ is positively oriented, and $g_p(X_p, J_p X_p) = 0$. Fix a g on the equivalence class and an orthonormal basis {Xp, Yp}, and assume it's positively oriented. Define JpXp = Yp, JpYp = -Xp

and extend complex linearly. Conversely, given I, fix a smooth non-vanishing vector field X on R, and define go using I Xp, Ip Xp to be orthonormal on each tangent space. Examples: R = unct sphere in R, centered at (0,0,0). Under spherical coordinates, an open set V = R2 $V=(0,\pi)\times(0,2\pi)$ can be identified with part of R.

The Euclidean inner product on R has the form $g = \sin^2 \phi d\theta^2 + d\phi^2$ (\$,0) + > (coso cos of sin Osin of cos of) 2) R = unitsphere again, and let V= C, the Image under stereographic projection $g_s = \frac{2}{(1+x^2+y^2)^2} = \frac{2}{(1+|Z|^2)^2}$

(3) R = disk $= \{(x,y) \mid x^2 + y^2 \leq 1\}$ Then $g_h = 2 \frac{dx^2 + dy^2}{(1-x^2-y^2)^2}$ $= \frac{2 \left| dz \right|^2}{(1-|z|^2)^2}$ $= \mathbb{C} = \mathbb{R}^2 \text{ with Euclidean metric } g = dx^2 + dy^2 = |dz|^2.$ Exercise: Given $g_k = \lambda_k (dx^2 + dy^2)$, if a differ $f: V_1 \longrightarrow V_2$ Satisfies $f^*g_2 = g_1$, then f is holomorphic. Definition: Let R be a surface, with R i emannion metric g. We say coordinates $g: U \rightarrow V = R^2$ are toothermal if $g = \lambda (dx^2 + dy^2)$ in these coordinates. Definition: A Richard surface RIJ a surface with an atlas of charts { (Pa, Ua) } acq where • Pa: Ua -> Va = PRP IJ a homeomorphism • Ua's cover R · Pp. Pa 15 a biholomogshism.

A Riemann surface défines an almost complex structure.
structure.
Conversely: Given a J. J a Riemann surface
Conversely: Given a J, J a Riemann surface that induces J.
Sketch: I determines a conformal structure.
Sketch: I determines a conformal structure. Choose a g in the equivalence class locally $g = E dx^2 + F dx dy + G dy^2$
$g = F dx^2 + F dx d + G dx^2$
= p² dZ + µ dZ ² for some µ,
we solve $W_Z = \mu W_Z$ (Beltrami equation, $w a$ $= \rho^2 \left dZ + \frac{w_Z}{w_Z} dZ \right ^2$
diffeomorphism)
$= \rho^2 \left dz + \frac{wz}{2} dz \right ^2$
Wz
= 2 11.12 C 17.0 th com of (
= \frac{1}{ w ^2} dw ^2, is isothermal!
So now we have
La bound of withernal
a bunch of nothermal charts.
Oners.
By exercise: The transition functions are holomorphic.