

Interactive Deep Learning in Cloud via MMLSpark

Tong Wen, Microsoft

#DL3SAIS

Overview

 Toward a single environment for fast experimentation with big data and big compute

- Spark + Accelerators (GPU, FPGA, TPU, ...) + MPI
- High performance with:
 - Cost effectiveness
 - Ease of use
 - Extensibility and openness

MMLSpark

https://github.com/Azure/mmlspark/

- Tong Wen @microsoft.com
- Akshaya Annavajhala
- Roope Astala
- Eli Barzilay
- Maureen Busch
- Mark Hamilton
- Danil Kirsanov

- Eduardo de Leon
- Ilya Matiach
- Miruna Oprescu
- Young Park
- Sudarshan Raghunathan
- Ratan Sur

Key Advantages

- Fast experimentation with Deep Learning
 - GPU vs CPU: ~40x speedup
 - Single interactive environment with easy setup
- Trained an accurate model on NIH chest X-ray dataset in days
 - Data size: 45 GB compressed on disk; O(1) TB in memory
 - Model size: 46 million parameters
- Cost to train the above model: < \$9.54
 - Spark cluster (10 nodes): \$2.48/hour
 - **4** GPUs: \$2.29/hour
 - Training time: 54 mins

Implementation

Setup the System

https://github.com/Azure/mmlspark/blob/master/
docs/gpu-setup.md

- 1. Deploy an ARM template within the Azure Portal
- Click here to open the above main template in the Azure portal.

(If needed, you click the Edit template button to view and edit the template.)

Attach a New VM

Set up passwordless SSH login to the GPU VM

./setup-ssh-access.sh <vm-name> [<username>]

GPU Type	Peak FLOPS/s (FP32)	Price
Tesla K80	8.7 teraflops	\$0.574 /hour
Tesla P40	12 teraflops	1.319 /hour
Tesla P100	10.6 teraflops	1.319 /hour
Tesla V100	15.7 teraflops	\$1.95 /hour
Earth Simulator (2003)	41 teraflops	>> \$ <mark>832</mark> /hour

Programming API

```
In [9]: # Specify the working directory and GPU node name and GPU count
workingDir = "file:/tmp/gpuwork08/"
gpum = ["mygpuvm6,1", "mygpuvm5,1"]
print("Working in " + workingDir)
```

Working in file:/tmp/gpuwork08/

```
In [11]: # Evaluate the model
    scoredImages = learner.setOutputNodeName("z").setInputCol("images").setOutputCol("scored").transform(testSet)
    scoredImages.show(10)
```

images	labels	
+	[0.0,1.0,0.0,0.0,] [0.0,1.0,0.0,0.0,] [0.0,0.0,0.0,1.0,] [0.0,0.0,0.0,0.0,]	[-1.6580553054809 [2.34054183959960 [2.14736747741699 [-3.2394561767578 [-1.3545703887939
[12.0,15.0,27.0,3 [13.0,12.0,13.0,1 [14.0,44.0,110.0, [16.0,21.0,21.0,1	[0.0,0.0,0.0,1.0,] [0.0,0.0,0.0,0.0,]	[0.20799629390239 [-1.5866813659667 [-0.1906604766845

only showing top 10 rows

GPU	Epochs	Minibatch size	Wall clock time
Yes	30	32	1m 53 s
No	30	32	73 m 8 s

Test Case: NIH Chest X-ray Dataset

- 112,120 X-ray images (1024 by 1024)
- 14 pathology labels
- **30,805** unique patients

- AlexNet with 46 million parameters
- Half of the dataset for training
- Downsized to 224 by 224
- Binary model
- Data Parallel 1-Bit SGD

Configuration	Epochs	Minibatch size	Wall clock time
4 GPUs, 2 VMs	55	512	55m47s
4 GPUs, 4 VMs	55	512	53 m 40 s

Conclusion & Future Work

- A dynamically configurable hybrid architecture to support more big data + big compute scenarios with cost effectiveness
 - Data exchange (Parquet adaptor)
 - Model exchange (ONNX)
 - Single environment (Resource management)
 - Openness (More frameworks)

Thank You!

https://github.com/Azure/mmlspark/

Test System Configuration

Node Type	Number	Size	Price
Spark Cluster Node	10	2.4 GHz Intel Xeon® E5-2673 v3 processor; 8 cores; 28Gib	\$0.248 /hour
GPU VM	2	1 NVIDIA Tesla K80 GPU; 6 cores; 56 Gib	\$ 0.574 /hour
GPU VM	2	2 NVIDIA Tesla K80 GPU; 12 cores; 112Gib	\$1.147/hour

