

Week 6, March 21th: Power series

Instructor: Cécile Huneau (cecile.huneau@polytechnique.edu) Tutorial Assistants:

- Allen Fang (groups?, allen.fang@sorbonne-universite.fr)
- Yuan Xu (groups?, xu.yuan@polytechnique.edu)

1 Important exercises

$\mathcal{E}_{xercise 1.}$

- 1. Show that the power series $\sum z^n$ and $\sum n^2 z^n$ have the same radius of convergence, that we call R.
- 2. We note $f:]-R, R[\to \mathbb{R}, \quad x \mapsto \sum_{n=0}^{\infty} x^n.$ Calculate f, f' and f''. Deduce a formula for $\sum n^2 x^n$, for $x \in]-R, R[$.

Exercise 2.

- 1. Show that the radius of convergence of the series $\sum \frac{z^n}{2n+1}$ is equal to 1. We note $f:]-1,1[\to \mathbb{R}, x\mapsto \sum_{n=0}^{\infty}\frac{z^n}{2n+1}$.
- 2. Let $g(x) = x f(x^2)$. Calculate g'. Deduce a formula for $\sum \frac{x^n}{2n+1}$ and x > 0.

Exercise 3. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by f = 0 for $x \le 0$ and $f(x) = e^{-\frac{1}{x^2}}$.

1. Show by recurrence that for all n, there exists a polynomial P_n such that for $n \ge 0$

$$f^{(n)}(x) = P_n(x)e^{-\frac{1}{x^2}}$$
.

2. Show that the function is C^{∞} , but can not be written as a power series in a neighbourhood of zero.

Exercise 4. Let $\alpha \in \mathbb{R} \setminus \mathbb{N}$. For all n, we set $a_n = \frac{\alpha(\alpha-1)..(\alpha-n+1)}{n!}$.

- 1. Show that the radius of convergence of the power series $\sum a_n z^n$ is equal to 1.
- 2. Show that for all |z| < 1 we have

$$(1+z)\sum_{n=0}^{\infty}(n+1)a_nz^n=\sum_{n=0}^{\infty}b_nz^n,$$

where $b_n = \alpha a_n$.

3. Show that the function $g(x) = \sum_{n=0}^{\infty} a_n x^n$, defined for $x \in]-1,1[$ satisfies the differential equation

1

$$y' = \frac{\alpha}{1+x}y.$$

4. Calculate $\sum a_n z^n$.

Exercise 5. Let $a, b \in \mathbb{C}$. We define the sequence (u_n) by $u_0 = 0$, $u_1 = 1$ and for $n \ge 0$, $u_{n+2} = au_{n+1} + bu_n$.

- 1. Let $M = \max(|a|, |b|, \frac{1}{2})$. Show by induction that $|u_n| \le (2M)^{n-1}$ for all $n \ge 1$.
- 2. Show that the radius of convergence of the power series $\sum u_n z^n$, R, is different from zero.
- 3. Show that for all $x \in]-R, R[$ we have

$$\sum_{n=0}^{\infty} u_n x^n = \frac{x}{1 - ax - bx^2}.$$

2 More involved exercises

Exercise 6. Let $\sum a_n x^n$ and $\sum b_n x^n$ be two power series with radius of convergence greater or equal to 1. Assume that $b_n > 0$ and that the series $\sum b_n$ is divergent. We note $A_N = \sum_{n=0}^N a_n$ and $B_N = \sum_{n=0}^N b_n$. In this exercise, we consider only $x \in \mathbb{R}$.

- 1. Show that $\sum_{n=0}^{\infty} b_n x^n \to +\infty$ as $x \to 1$ with x < 1.
- 2. We assume that there exists $l \in \mathbb{C}$ such that $\lim_{n \to \infty} \frac{a_n}{b_n} = l$. Show that $\frac{\sum_{n=0}^{\infty} a_n z^n}{\sum_{n=0}^{\infty} b_n z^n} \to l$ as $x \to 1$ with x < 1.
- 3. We assume that there exists $l \in \mathbb{C}$ such that $\lim_{n \to \infty} \frac{A_n}{B_n} = l$. Show that $\frac{\sum_{n=0}^{\infty} a_n z^n}{\sum_{n=0}^{\infty} b_n z^n} \to l$ as $x \to 1$ with x < 1.
- 4. We assume that there exists $l \in \mathbb{C}$ such that $\lim_{n \to \infty} \frac{A_0 + A_1 + ... + A_{n-1}}{n} = l$. Show that $\sum_{n=0}^{\infty} a_n x^n$ tend to l as $x \to 1$ with x < 1.
- 5. Show the following equivalence, as $x \to 1$

$$\sum_{n=0}^{\infty} x^{a^n} \sim -\frac{\ln(1-x)}{\ln(a)}, \text{ for } a \in \mathbb{N}, \quad a \ge 2, \qquad \sum_{n=0}^{\infty} (-1)^n x^{4n+1} \sim \frac{1}{2}.$$