Department of Computer Science University of Bristol

COMS30121 - Image Processing and Computer Vision

www.cs.bris.ac.uk/Teaching/Resources/COMS30121

Lecture 06

Object Detection Basics I

Andrew Calway | andrew@cs.bris.ac.uk Tilo Burghardt | tilo@cs.bris.ac.uk

What is 'Object Recognition'?

- Object Recognition aims at bridging the 'semantic gap' between...
 - given pixel values, and
 - meaningful objects (grouping of pixels + classification of groups)
- > image regions need to be found and assigned with semantic labels from a space of object classes
- Why do shape detection and segmentation rarely work for real-world object detection?

Variable visual appearance

- high intra-class, low inter-class variance
- classes are rarely well defined
- change of illumination, scale, pose + deformation, occlusion...
- → object recognition is a difficult task

First Real-time Detection Method: Viola & Jones' (2001) (base line standard for off-the-shelf method for almost a decade)

Selected Example Algorithm: Viola & Jones' Real-time Method (2001)

Our Agenda:

- Viola Jones technique overview
- Sliding Window Detectors
- Haar-like Features
- Feature Extraction and Integral Images
- Weak Classifiers
- Boosting and Classifier Evaluation
- Cascades of Boosted Classifiers

Best description of full details available in consolidated paper by Viola and Jones, International Journal of Computer Vision, 2004

Shift and Scale Invariance: Sliding Window Detectors

- image is tested for object presence window-by-window
- the window is `slided' and `scaled' throughout the image
- each resulting window is judged w.r.t. an object model giving a response indicating object presence or absence

Basic Object Model Idea: Characteristic Set of Block Features

Viola & Jones' (2001)

Integral Images & Integration Rule

(INTEGRATION RULE OF CONVOLUTION)

$$(\mathbf{S_k} * \mathbf{I})^{[n]} = \mathbf{S_k}^{[q]} * \mathbf{I}^{[p]}$$
 given $n = p + q$

(IMAGE INTEGRATION)
$$\mathbf{II}(-1,y) = 0; \qquad \mathbf{II}(x,y) = \mathbf{II}(x-1,y) + A(x,y);$$

$$A(x,-1) = 0;$$
 $A(x,y) = A(x,y-1) + \mathbf{I}(x,y).$

Fast 'BlockImage' Convolution

(FAST BLOCK IMAGE CONVOLUTION)

$$I * S_k = II(t_1 - 1, t_2 - 1) + II(s_1 + t_1 - 1, s_2 + t_2 - 1)$$

$$- II(s_1 + t_1 - 1, t_2 - 1) - II(t_1 - 1, s_2 + t_2 - 1)$$

where $\mathbf{k} = ((\mathbf{s}_1, \mathbf{s}_2), (\mathbf{t}_1, \mathbf{t}_2), b)$ holds the scale and translation parameters

Modelling Objects by Boosting

AdaBoost Algorithm

(see paper by Viola and Jones 2004)

Error Reduction as Boosting adds Classifiers

Concept of Attentional Cascading

On Window Resolution

