Constrast mean var

Qing Yu(Sabrina) February 5, 2017

Goal of the study

load("eModel 2 5.RData")

In this report, our goal is to check the distribution of contrasts and check the correctness of covariance matrix generated by fixed root model.

simulation parameters

We used the lizard tree from the phylolm package and associated trait data on these lizard species (just the first trait, which is the first PC axis from a PCA), to find parameter values that are realistic. This trait was analyzed to estimate the shifts in trait evolution using the function estimate_shift_configuration from the 11ou package. The analysis takes about 2 minutes, so the results were saved in an R data file:

```
eModel <- estimate_shift_configuration(lizard$tree, lizard$Y)
save(eModel, file = "eModel_2_5.RData")</pre>
```

Next, variables are set up to prepare the simulation.

n_tips=length(eModel\$tree\$tip.label) # Total number of tips

sigma2=eModel\$sigma2
shiftnode= eModel\$tree\$edge[eModel\$shift.configuration,1]-n_tips # internal nodes with shift
othernode=(1:(n_tips-1))[-shiftnode] # Other nodes: those without a true shift

The tree has 100 tips and 8 nodes with a shift at one of its child edges, numbered 72, 51, 41, 63, 93, 61, 84, 18 (shiftnode). At these shifts, the optimal value changed by: -2.91, -2.97, -5.5, -2.39, -2.61, -1.91, -3.7, -3.49 (shift values). The other parameters were estimated to be $\alpha=0.606898$ (truealpha) and $\sigma^2=0.0625187$ and an "intercept" yo of 0.2488096. Together with the changes, this intercept gives the following optimal values truetheta, one for each edge: $\theta=0.25,\,0.2$

 $0.25,\ 0.25,\$

We used this model to simulate new data using the rTraitCont function from the phylolm package. Below, RE is the result of the function $sqrt_0U_covariance$, which calculates the square-root of the phylogenetic covariance matrix with a recursive algorithm, which traverses the tree once. C.IH is the inverse square root of the phylogenetic covariance matrix, and C.H is the square-root of the phylogenetic covariance matrix. Finally, YY contains the contrasts at all nodes. These matrices and contrasts were obtained using the true value of α , the same value used to simulate the data. This is an ideal situation when α is known without error.

Simulation of Y using rtraitCont

The covariance matrix generated by Y is the same as the covariance matrix generated by fixed root from the definition.

Checking whether mu from eModel and mean of tips from Y are significant different

```
load("Y_table_2_5.RData")
truemu=as.matrix(apply(Y_table,2,mean))
#cbind(eModel$mu, truemu)
head(eModel$mu)
##
             [,1]
## [1,] 0.2488096
## [2,] 0.2488096
## [3,] 0.2488096
## [4,] 0.2488096
## [5,] 0.2488096
## [6,] 0.2488096
head(truemu)
##
             [,1]
## [1,] 0.2485854
## [2,] 0.2478851
## [3,] 0.2483680
## [4,] 0.2493011
## [5,] 0.2482424
## [6,] 0.2481869
2*sqrt(eModel$sigma2/n sim) ## 2*standard error
```

[1] 0.001581375

```
all.equal(eModel$mu,truemu, scale=1)

## [1] "Mean absolute difference: 0.0004177774"

all.equal(eModel$mu,truemu,tolerance= 2*sqrt(eModel$sigma2/n_sim), scale=1)

## [1] TRUE

mu from eModel and mean of tips from Y are not significant different
```

Compute the observed covariance matrix of Y

```
cov_table=matrix(nrow=n_tips,ncol=n_tips,data=NA)
for (noderow in 1:n_tips){
   for(nodecol in 1:n_tips){
      sum=0
      for(sim in 1:n_sim){
        sum=(Y_table[sim,noderow]-eModel$mu[noderow])*(Y_table[sim,(nodecol)]-eModel$mu[nodecol])+sum
      }
      cov_table[noderow,nodecol]=sum/n_sim
   }
}
save(cov_table,file="Cov_table_2_5.RData")
```

Calculate the true covariance matrix with fixed root model

```
tij=vcv(lizard.tree) # the time spent on each edge
treeheight=max(tij)
dij=2*(treeheight-tij)
##vrandom=1/(2*truealpha)*exp(-truealpha*dij) # Sigma generated by OUrandomRoot model
vfix=1/(2*truealpha)*exp(-truealpha*dij)*(1-exp(-2*truealpha*tij))
```

Check agreement between observed and true covariance matrix of Y

```
load("Cov_table_02_05.RData")
# matrix to be compared with
true_cov=vfix*eModel$sigma2
matequal <- function(x, y)
    all(abs(x-y)<=4*sqrt(1/n_sim)*eModel$sigma2*max(diag(vfix)))
matequal(true_cov,cov_table)
## [1] FALSE
sqrt(1/n_sim)*eModel$sigma2*max(diag(vfix))
## [1] 0.0001144927
all.equal(true_cov,cov_table,scale=1)
## [1] "Attributes: < Length mismatch: comparison on first 1 components >"
## [2] "Mean absolute difference: 9.341627e-05"
```

```
all.equal(true_cov,cov_table,scale=1,tolerance=4*sqrt(1/n_sim)*eModel$sigma2*max(diag(vfix)))
## [1] "Attributes: < Length mismatch: comparison on first 1 components >"
true_cov[1:6,1:6]
##
                                allogus rubribarbus
                      ahli
                                                          imias
               0.036205756\ 0.028639694\ 0.023190653\ 0.009937628\ 0.00630642
## ahli
               0.028639694\ 0.036205756\ 0.023190653\ 0.009937628\ 0.00630642
## allogus
## rubribarbus 0.023190653 0.023190653 0.036205756 0.009937628 0.00630642
               0.009937628\ 0.009937628\ 0.009937628\ 0.036205756\ 0.00630642
## imias
               0.006306420\ 0.006306420\ 0.006306420\ 0.006306420\ 0.03620576
## sagrei
## bremeri
               0.006306420 0.006306420 0.006306420 0.006306420 0.02237467
##
                  bremeri
               0.00630642
## ahli
               0.00630642
## allogus
## rubribarbus 0.00630642
## imias
               0.00630642
## sagrei
               0.02237467
## bremeri
               0.03620576
cov_table[1:6,1:6]
               [,1]
                            [,2]
                                        [,3]
                                                    Γ.47
                                                                 [.5]
## [1,] 0.036729559 0.028899400 0.023311163 0.010051731 0.006421107
## [2,] 0.028899400 0.036206617 0.023221863 0.010086038 0.006436202
## [3,] 0.023311163 0.023221863 0.036095669 0.009966072 0.006466176
## [4,] 0.010051731 0.010086038 0.009966072 0.036252477 0.006567512
## [5,] 0.006421107 0.006436202 0.006466176 0.006567512 0.036003414
## [6,] 0.006327824 0.006347724 0.006456822 0.006468972 0.022192240
               [,6]
## [1,] 0.006327824
## [2,] 0.006347724
## [3,] 0.006456822
## [4,] 0.006468972
## [5,] 0.022192240
## [6,] 0.035968925
layout(matrix(1:2,1,2))
plot(cov_table,true_cov); abline(a=0, b=1)
hist(cov_table-true_cov)
```

Histogram of cov_table - true_cc

The covariance matrix generated by Y is not significantly different from true covariance matrix of fixed root.

square root of covariance matrix

We first calculate it with sqrt_OU_covariance, then check that it is in agreement with the true covariance vfix calculated earlier.

[1] TRUE

"sqrt_OU_covariance" function caculates the square root of covariance matrix correctly.

Calculate Contrasts

```
contrast_table=matrix(nrow=n_sim, ncol=n_tips, data=NA)
for (i in 1:nrow(Y_table)) {
   contrast_table[i,]=Dtf%*%(Y_table[i,] - eModel$mu)
}
save(contrast_table, file="contrast_table_2_5.RData")
```

Check whether contrast mean is equal to 0

```
load('contrast_table_2_5.RData')
head(colMeans(contrast_table))
## [1] 0.0002936259 0.0005437081 -0.0011580854 -0.0014622974 0.0013248416
## [6] -0.0001489877
max(abs(colMeans(contrast_table)))
## [1] 0.001822459
colMeans(contrast_table)
##
     [1] 2.936259e-04 5.437081e-04 -1.158085e-03 -1.462297e-03 1.324842e-03
##
     [6] -1.489877e-04 -1.082437e-04 3.153187e-04 1.092892e-03 -3.949626e-04
##
   [11] \ -6.906195e-04 \ -3.593490e-04 \ -4.397628e-04 \ 1.502403e-03 \ 6.004795e-04
   [16] 1.532167e-04 -4.803428e-04 1.086476e-03 -1.124537e-03 3.234783e-04
##
   [21] -2.055787e-04 1.240912e-03 5.511492e-04 1.923877e-04 -1.438383e-04
        1.655792e-03 -6.682487e-04 -1.707682e-03 -1.133258e-03 3.482009e-04
##
    [26]
   [31] 3.939282e-04 -4.521101e-05 7.937092e-04 -7.300490e-04 -5.816772e-04
##
   [36] 2.410313e-04 1.580529e-04 7.753134e-04 1.357171e-03 -3.434553e-04
   [41] -1.062812e-03 -8.143168e-04 9.046964e-04 3.582746e-04 -1.822459e-03
##
##
   [46] -7.308433e-04 -1.134198e-03 1.404343e-05 7.893330e-04 -3.609898e-04
##
  [51] 9.241683e-04 -8.765625e-04 -4.132106e-04 -3.312742e-04 3.813810e-04
  [56] -3.807294e-04 -7.968394e-04 -7.978669e-05 1.270336e-04 -4.466186e-04
   [61] 7.032605e-04 -4.764006e-04 6.274901e-04 -1.207996e-03 -9.376294e-04
##
##
   [66] 2.209574e-04 -2.858502e-04 -1.292109e-03 -5.827875e-04 1.752016e-04
##
  [71] 2.847665e-04 -1.321285e-03 -8.194454e-04 6.150952e-05 -7.989488e-04
   [76] -1.200301e-03 4.047343e-04 5.518316e-05 4.542254e-04 4.538062e-04
##
   [81] -3.905190e-04 4.750033e-05 5.819572e-04 1.007289e-03 3.284101e-04
   [86] 4.645462e-05 8.556082e-04 3.988658e-04 -2.834460e-04 3.224534e-04
##
   [91] -4.945792e-04 1.423454e-03 -2.226035e-04 -1.192475e-03 7.468512e-04
   [96] 2.900539e-04 -3.529061e-04 -1.232649e-03 -4.025506e-04 -2.648512e-04
```

The mean of all contrasts are all very close to zeros.

Check whether contrast variance is equal to sigma2

```
ss=function(x){
  sum(x^2)/length(x)
}
convar=apply(contrast_table,2,ss)
convar
```

```
##
     [1] 0.06226439 0.06258969 0.06228206 0.06185538 0.06231495 0.06242140
##
     [7] 0.06256224 0.06219234 0.06216682 0.06240147 0.06222383 0.06200548
##
    [13] 0.06282155 0.06245075 0.06279975 0.06258275 0.06251883 0.06247997
    [19] 0.06232777 0.06258758 0.06236507 0.06259616 0.06267557 0.06242355
##
##
    [25] 0.06229275 0.06260808 0.06221274 0.06243247 0.06235870 0.06259370
   [31] 0.06246769 0.06242847 0.06288057 0.06255914 0.06274826 0.06257278
##
    [37] 0.06292527 0.06257065 0.06299845 0.06257913 0.06272465 0.06208273
    [43] 0.06248409 0.06191161 0.06240520 0.06221114 0.06242529 0.06244330
##
##
    [49] 0.06259906 0.06223723 0.06279803 0.06269686 0.06249820 0.06199016
    [55] 0.06256578 0.06227071 0.06227814 0.06239336 0.06227895 0.06250814
##
    [61] 0.06252155 0.06262676 0.06236870 0.06257509 0.06268641 0.06331554
    [67] 0.06237474 0.06266784 0.06249402 0.06252180 0.06290999 0.06252153
##
    [73] 0.06268941 0.06249738 0.06239644 0.06212852 0.06292058 0.06233895
##
   [79] 0.06295462 0.06280390 0.06239385 0.06251193 0.06269901 0.06250260
##
##
   [85] 0.06262733 0.06293786 0.06249215 0.06245859 0.06262924 0.06207798
##
    [91] 0.06244999 0.06254036 0.06251645 0.06248630 0.06202160 0.06285781
   [97] 0.06236344 0.06288143 0.06249279 0.06212581
```

mean(convar)

[1] 0.06249321

eModel\$sigma2

[1] 0.06251866

The variance of contrasts is the same as sigma square.