

Jason Park

jason_park@korea.ac.kr

Data Science and Business Analytics lab

GloVe Review

- $X \in \mathbb{R}^{V \times V}$: Co-occurrence matrix
- X_{ij} : Frequency of word i co-occurring with word j
- $X_i = \sum_{k=1}^{V} X_{ik}$: total number of occurring
- $P_{ij} = P(j|i) = \frac{X_{ij}}{X_i}$: Probability of word j occurring within the context of word i
- $w \in \mathbb{R}^d$: a word embedding of dimension d
- $\widetilde{w} \in \mathbb{R}^d$: a context word embedding of dimension d

GloVe Review

Probability and Ratio	k = solid	k = gas	k = water	k = fashion
P(k ice)	1.9×10^{-4}	6.6×10^{-5}	3.0×10^{-3}	1.7×10^{-5}
P(k steam)	2.2×10^{-5}	7.8×10^{-4}	2.2×10^{-3}	1.8×10^{-5}
P(k ice)/P(k steam)	8.9	8.5×10^{-2}	1.36	0.96

• Want to preserve $\frac{P(k|ice)}{P(k|steam)}!$

GloVe Review

단어 3개의 관계를 F라는 함수를 이용하여 P의 관계로 표현

$$F(w_i, w_j, \widetilde{w}_k) = \frac{P_{ik}}{P_{jk}}$$
 w_i 와 w_j 의 관계를 차로 표현
 $F(w_i - w_j, \widetilde{w}_k) = \frac{P_{ik}}{P_{ik}}$

 w_i 와 w_j 의 관계에 \widetilde{w}_k 를 내적으로 엮고 싶음

$$F\left(\left(w_{i}-w_{j}\right)^{T}\widetilde{w}_{k}\right)=\frac{P_{ik}}{P_{jk}}$$

Issue

• w와 \widetilde{w} 를 바꾸어서도 쓰고 싶음

- 저자의 주장
 - 이런 Symmetry를 유지하기 위해 다음 2가지 trick 사용
 - $F: \mathbb{R} \to \mathbb{R}_{>0}$, homomorphism Why?
 - $w_i^T \widetilde{w}_k = \log(P_{ik}) = \log(X_{ik}) \log(X_i)$ $w_i^T \widetilde{w}_k = \log(P_{ik}) = \log(X_{ik}) - b_i - \widetilde{b}_k$

which prevents F from mixing the vector dimensions in undesirable ways. Next, note that for word-word co-occurrence matrices, the distinction between a word and a context word is arbitrary and that we are free to exchange the two roles. To do so consistently, we must not only exchange $w \leftrightarrow \tilde{w}$ but also $X \leftrightarrow X^T$. Our final model should be invariant under this relabeling, but Eqn. (3) is not. However, the symmetry can be restored in two steps. First, we require that F be a homomorphism between the groups $(\mathbb{R}, +)$ and $(\mathbb{R}_{>0}, \times)$, i.e.,

$$F\left((w_i - w_j)^T \tilde{w}_k\right) = \frac{F(w_i^T \tilde{w}_k)}{F(w_j^T \tilde{w}_k)}, \qquad (4)$$

which, by Eqn. (3), is solved by,

$$F(w_i^T \tilde{w}_k) = P_{ik} = \frac{X_{ik}}{X_i}. \tag{5}$$

$$w_i^T \tilde{w}_k = \log(P_{ik}) = \log(X_{ik}) - \log(X_i). \tag{6}$$

Homomorphism

- 수학 Abstract Algebra의 Group theory에서 다룸
- Group에서 정의하는 함수 homomorphism

- Group(군)
 - 다음 group axiom을 만족하는 set G와 operation \circ 의 쌍 (G, \circ)
 - Closure
 - Associativity
 - Identity element
 - Inverse element
 - 쉽게 말하면 공간과 연산을 하나로 묶었다고 생각
 - Ex) $(\mathbb{R}_{>0}, \times)$, $(\mathbb{R}, +)$ 등

Homomorphism

- Homomorphism F between (G, \circ) and (H, \diamond)
 - $F: G \rightarrow H$ such that

$$\forall g_1, g_2 \in G$$

$$F(g_1 \circ g_2) = F(g_1) \diamond F(g_2)$$

- 즉, 연산을 보존하는 함수
- $\operatorname{Ex} \log(x) : (\mathbb{R}_{>0}, \times) \to (\mathbb{R}, +)$

consistently, we must not only exchange $w \leftrightarrow \tilde{w}$ but also $X \leftrightarrow X^T$. Our final model should be invariant under this relabeling, but Eqn. (3) is not. However, the symmetry can be restored in two steps. First, we require that F be a homomorphism between the groups $(\mathbb{R},+)$ and $(\mathbb{R}_{>0},\times)$, i.e.,

$$F\left((w_i - w_j)^T \tilde{w}_k\right) = \frac{F(w_i^T \tilde{w}_k)}{F(w_i^T \tilde{w}_k)}, \qquad (4)$$

which, by Eqn. (3), is solved by,

Probability and Ratio

$$k = solid$$
 $k = gas$
 $k = water$
 $k = fashion$
 $P(k|ice)$
 1.9×10^{-4}
 6.6×10^{-5}
 3.0×10^{-3}
 1.7×10^{-5}
 $P(k|steam)$
 2.2×10^{-5}
 7.8×10^{-4}
 2.2×10^{-3}
 1.8×10^{-5}
 $P(k|ice)/P(k|steam)$
 8.9
 8.5×10^{-2}
 1.36
 0.96

• Want to preserve
$$\frac{P(k|ice)}{P(k|steam)}$$
 using $F\left(\left(w_i-w_j\right)^T\widetilde{w}_k\right)=\frac{P_{ik}}{P_{jk}}$

$$\frac{P(solid|ice)}{P(solid|steam)} \approx F((ice - steam)solid)$$

$$\frac{P(solid|steam)}{P(solid|ice)} \approx F((steam - ice)solid)$$

$$\frac{P(solid|ice)}{P(solid|steam)} \approx F((ice - steam)solid)$$

$$\frac{P(solid|steam)}{P(solid|ice)} \approx F((steam - ice)solid)$$

$$F((ice - steam)solid) = \frac{P(solid|ice)}{P(solid|steam)}$$
$$= \frac{1}{F((steam - ice)solid)}$$

- (ice steam)solid = -(steam ice)solid : 덧셈의 역원 관계
- $F((ice steam)solid) = \frac{1}{F((steam ice)solid)}$: 곱셈의 역원 관계

- (ice steam)solid = -(steam ice)solid : 덧셈의 역원 관계
- $F((ice steam)solid) = \frac{1}{F((steam ice)solid)}$: 곱셈의 역원 관계

- Homomorphism은 연산을 보존하고, 이에 따라 역원을 보존함에 착안
- (ℝ, +)를 (ℝ>0,×)로 사상하는 homomorphism 고려

Equation (4) 유도

• *F* : (ℝ, +)를 (ℝ_{>0},×)로 사상하는 homomorphism

$$w_i^T \widetilde{w}_k = \left(w_i - w_j \right)^T \widetilde{w}_k + w_j^T \widetilde{w}_k$$

$$F(w_i^T \widetilde{w}_k) = F\left(\left(w_i - w_j\right)^T \widetilde{w}_k + w_j^T \widetilde{w}_k\right)$$
$$= F\left(\left(w_i - w_j\right)^T \widetilde{w}_k\right) \times F\left(w_j^T \widetilde{w}_k\right)$$

$$F\left(\left(w_{i}-w_{j}\right)^{T}\widetilde{w}_{k}\right)=\frac{F\left(w_{i}^{T}\widetilde{w}_{k}\right)}{F\left(w_{j}^{T}\widetilde{w}_{k}\right)}$$

consistently, we must not only exchange $w \leftrightarrow \tilde{w}$ but also $X \leftrightarrow X^T$. Our final model should be invariant under this relabeling, but Eqn. (3) is not. However, the symmetry can be restored in two steps. First, we require that F be a homomorphism between the groups $(\mathbb{R},+)$ and $(\mathbb{R}_{>0},\times)$, i.e.,

$$F\left((w_i - w_j)^T \tilde{w}_k\right) = \frac{F(w_i^T \tilde{w}_k)}{F(w_j^T \tilde{w}_k)}, \qquad (4)$$

which, by Eqn. (3), is solved by,

$$F(w_i^T \tilde{w}_k) = P_{ik} = \frac{X_{ik}}{X_i}. \tag{5}$$

$$F\left(\left(w_{i}-w_{j}\right)^{T}\widetilde{w}_{k}\right) = F\left(w_{i}^{T}\widetilde{w}_{k}-w_{j}^{T}\widetilde{w}_{k}\right)$$

$$= \frac{F\left(w_{i}^{T}\widetilde{w}_{k}\right)}{F\left(w_{j}^{T}\widetilde{w}_{k}\right)}$$

$$= \frac{P_{ik}}{P_{jk}}$$

• 이 식으로부터 F = exp 유도

consistently, we must not only exchange $w \leftrightarrow \tilde{w}$ but also $X \leftrightarrow X^T$. Our final model should be invariant under this relabeling, but Eqn. (3) is not. However, the symmetry can be restored in two steps. First, we require that F be a homomorphism between the groups $(\mathbb{R},+)$ and $(\mathbb{R}_{>0},\times)$, i.e.,

$$F\left((w_i - w_j)^T \tilde{w}_k\right) = \frac{F(w_i^T \tilde{w}_k)}{F(w_j^T \tilde{w}_k)}, \tag{4}$$

which, by Eqn. (3), is solved by,

$$F(w_i^T \tilde{w}_k) = P_{ik} = \frac{X_{ik}}{X_i}. \tag{5}$$

- 저자의 주장
 - 이런 Symmetry를 유지하기 위해 다음 2가지 trick 사용
 - $F: \mathbb{R} \to \mathbb{R}_{>0}$, homomorphism Why?
 - $w_i^T \widetilde{w}_k = \log(P_{ik}) = \log(X_{ik}) \log(X_i)$ $w_i^T \widetilde{w}_k = \log(P_{ik}) = \log(X_{ik}) - b_i - \widetilde{b}_k$

which prevents F from mixing the vector dimensions in undesirable ways. Next, note that for word-word co-occurrence matrices, the distinction between a word and a context word is arbitrary and that we are free to exchange the two roles. To do so consistently, we must not only exchange $w \leftrightarrow \tilde{w}$ but also $X \leftrightarrow X^T$. Our final model should be invariant under this relabeling, but Eqn. (3) is not. However, the symmetry can be restored in two steps. First, we require that F be a homomorphism between the groups $(\mathbb{R}, +)$ and $(\mathbb{R}_{>0}, \times)$, i.e.,

$$F\left((w_i - w_j)^T \tilde{w}_k\right) = \frac{F(w_i^T \tilde{w}_k)}{F(w_j^T \tilde{w}_k)}, \qquad (4)$$

which, by Eqn. (3), is solved by,

$$F(w_i^T \tilde{w}_k) = P_{ik} = \frac{X_{ik}}{X_i}. \tag{5}$$

$$w_i^T \tilde{w}_k = \log(P_{ik}) = \log(X_{ik}) - \log(X_i). \tag{6}$$

- 저자의 주장
 - 이런 Symmetry를 유지하기 위해 다음 2가지 trick 사용
 - $F: \mathbb{R} \to \mathbb{R}_{>0}$, homomorphism Why?
 - $w_i^T \widetilde{w}_k = \log(P_{ik}) = \log(X_{ik}) \log(X_i)$ $w_i^T \widetilde{w}_k = \log(P_{ik}) = \log(X_{ik}) - b_i - \widetilde{b}_k$

$$\frac{P(solid|ice)}{P(solid|steam)} \approx F((ice - steam)solid)$$

$$\frac{P(solid|steam)}{P(solid|ice)} \approx F((steam - ice)solid)$$

• 위 식의 필요로 Homomorphism 고려

which prevents F from mixing the vector dimensions in undesirable ways. Next, note that for word-word co-occurrence matrices, the distinction between a word and a context word is arbitrary and that we are free to exchange the two roles. To do so consistently, we must not only exchange $w \leftrightarrow \tilde{w}$ but also $X \leftrightarrow X^T$. Our final model should be invariant under this relabeling, but Eqn. (3) is not. However, the symmetry can be restored in two steps. First, we require that F be a homomorphism between the groups $(\mathbb{R}, +)$ and $(\mathbb{R}_{>0}, \times)$, i.e.,

$$F\left(\left(w_i - w_j\right)^T \tilde{w}_k\right) = \frac{F(w_i^T \tilde{w}_k)}{F(w_j^T \tilde{w}_k)},\qquad(4)$$

which, by Eqn. (3), is solved by,

$$F(w_i^T \tilde{w}_k) = P_{ik} = \frac{X_{ik}}{X_i}. \tag{5}$$

$$w_i^T \tilde{w}_k = \log(P_{ik}) = \log(X_{ik}) - \log(X_i). \tag{6}$$

- 저자의 주장
 - 이런 Symmetry를 유지하기 위해 다음 2가지 trick 사용
 - $F: \mathbb{R} \to \mathbb{R}_{>0}$, homomorphism Why?
 - $w_i^T \widetilde{w}_k = \log(P_{ik}) = \log(X_{ik}) \log(X_i)$ $w_i^T \widetilde{w}_k = \log(P_{ik}) = \log(X_{ik}) - b_i - \widetilde{b}_k$

$$\frac{P(solid|ice)}{P(solid|steam)} \approx F((ice - steam)solid)$$

$$\frac{P(solid|steam)}{P(solid|ice)} \approx F((steam - ice)solid)$$

• Homomorphism의 필요와 Symmetry의 필요를 분리하여 서술했으면 읽기 더 편하지 않았을까.. which prevents F from mixing the vector dimensions in undesirable ways. Next, note that for word-word co-occurrence matrices, the distinction between a word and a context word is arbitrary and that we are free to exchange the two roles. To do so consistently, we must not only exchange $w \leftrightarrow \tilde{w}$ but also $X \leftrightarrow X^T$. Our final model should be invariant under this relabeling, but Eqn. (3) is not. However, the symmetry can be restored in two steps. First, we require that F be a homomorphism between the groups $(\mathbb{R}, +)$ and $(\mathbb{R}_{>0}, \times)$, i.e.,

$$F\left((w_i - w_j)^T \tilde{w}_k\right) = \frac{F(w_i^T \tilde{w}_k)}{F(w_j^T \tilde{w}_k)}, \qquad (4)$$

which, by Eqn. (3), is solved by,

$$F(w_i^T \tilde{w}_k) = P_{ik} = \frac{X_{ik}}{X_i}. \tag{5}$$

$$w_i^T \tilde{w}_k = \log(P_{ik}) = \log(X_{ik}) - \log(X_i). \tag{6}$$

Q&A