Métodos No Lineales

Arboles de Decisión

1

Árboles de Decisión

- Muy utilizado y popular
- Aproxima funciones que toman valores discretos.
- La función aprendida se representa como un árbol
- · Robusto ante datos con ruido
- Aprende expresiones disyuntivas: los árboles aprendidos se pueden también representar como reglas if-then (intuitivas)
- Numerosas aplicaciones: diagnósticos médicos, causas de fallo en equipos, evaluación de riesgos de créditos en la concesión de préstamos...
- Árbol de clasificación

3

Representación como árboles

- Cada nodo (no terminal) especifica un test de algún atributo de la instancia
- Cada rama corresponde a un posible valor del atributo
- Cada nodo terminal indica la clase en la que se clasifica
- Instancias no vistas se clasifican recorriendo el árbol: pasándoles el test en cada nodo, por orden desde el nodo raíz hasta algún nodo hoja, que da su clasificación

Ejemplo: ¿Vamos a jugar al tenis?

- Tarea: decidir si se va a jugar al tenis.
- Criterio: se va a jugar al tenis ...
 - si va a llover, sólo si no hay mucho viento.
 - si va a estar soleado pero no muy húmedo.
 - si va a estar nublado.
 - no en cualquier otro caso.

5

¿Vamos a jugar al tenis?

SI (Viento == FUERTE) **DEVOLVER** NO;

SINO SI (Viento == SUAVE)

DEVOLVER SI;

}

6

Ejemplo: JugarTennis

 Clasificar las mañanas de sábado en si son o no adecuadas para jugar al tenis – supongamos que hemos creado (¿?) el siguiente árbol de decisión:

- Instancia: EstadoDelTiempo=SOLEADO, Temperatura=CALUROSO, Humedad=ALTA, Viento=FUERTE
- Entra por el camino izquierdo y se predice JugarTennis=No

Ejemplo: JugarTennis

- El árbol representa una disyunción de conjunciones de restricciones sobre los valores de los atributos de las instancias
- Un camino = una conjunción de tests de atributos
- Todo el árbol = disyunción de estas conjunciones
- Este árbol es:

(EstadoDelTiempo=SOLEADO ^ Humedad=Normal) v (EstadoDelTiempo=CUBIERTO) v (EstadoDelTiempo=LLUVIOSO ^ Viento=SUAVE)

8

Tipos de árboles

- Arboles de clasificación: valores de salida discretos
 - CLS, ID3, C4.5, ID4, ID5, C4.8, C5.0
- Arboles de regresión: valores de salida continuos
 - CART, M5, M5'

9

Algoritmo básico: ID3 "Iterative dicotomiser "[Quinlan, 1986]

- Basado en el algoritmo CLS (Concept Learning Systems)
 [Hunt et al., 1966], que usaba sólo atributos binarios
- Búsqueda ávida
- Construir el árbol de arriba a abajo, preguntando: ¿Qué atributo seleccionar como nodo raíz?
- Se evalúa cada atributo para determinar cuán bien clasifica los ejemplos por sí mismo
- Se selecciona el *mejor* como nodo
- Repetir usando los *ejemplos* asociados con el nodo
- Parar cuando el árbol clasifica correctamente todos los ejemplos o cuando se han usado todos los atributos
- Etiquetar el nodo hoja con la clase de los ejemplos

10

Algoritmo haci	\boldsymbol{r}
Algoritmo bási	LL

Funcion APRENDER_ARBOL_DECISION (ejemplos, atributos, valor_defecto): REPORT | ARBOL_DECISION

si ejemplos está vacío entonces devolver valor_defecto

si no

si todos los elementos de *ejemplos* tienen la misma clasificación entonces devolver la clasificación

si no si atributos esta vacío entonces devolver VALOR_MAYORIA (ejemplos)

mejor = ELEGIR_ATRIBUTO (atributos, ejemplos)

arbol <- un nuevo árbol de decisión, cuya raíz es mejor m <- VALOR MAYORIA(eiemplos)

para cada valor v_i de mejor hacer

ejemplos(i) <- {elementos de ejemplos con *mejor* = v_i}

 $subarbol = APRENDER_ARBOL_DECISION(ejemplos(i), atributos - mejor, m)$ añadir una rama a arbol con la etiqueta v_i y el subárbol subarbol

11

ID3

- · Paso clave: ¿cómo seleccionar el atributo?
- Nos gustaría el más útil para clasificar ejemplos; el que los separa bien
- ID3 escoge la variable más efectiva usando la ganancia de información (maximizarla)
- Mide cuán bien un atributo separa los ejemplos de entrenamiento de acuerdo a su clasificación objetivo, y selecciona el mejor.
- Reducción esperada en entropía (incertidumbre), causada al particionar los ejemplos de acuerdo a este atributo

12

Entropía o cantidad esperada de información

- · Medida de la homogeneidad de un conjunto de muestras.
- En teoría de la información: medida de la incertidumbre sobre una fuente de mensajes.
- Sea una fuente S que puede producir n mensajes diferentes {m₁, m₂,..., m_n}. Los mensajes son independientes, y la probabilidad de producir el mensaje m, es p,
- Para tal fuente S con distribución de probabilidades de los mensajes P= (p1,p2,...pn), la entropía E(P) es:

$$E(P) = -\sum_{i=1}^{n} p_i * \log_2(p_i)$$

Entropía

Si un conjunto T de registros de una base de datos se particiona en k clases {C₁, C₂, ..., C_k} sobre la base de un cierto atributo, entonces la cantidad media de información necesaria para identificar la clase de un registro es E(P_T), donde P_T es la distribución de probabilidades de las clases:

$$P_T = \left(\frac{|C_1|}{|T|}, \frac{|C_2|}{|T|}, \dots, \frac{|C_k|}{|T|}\right)$$

14

14

Entropía

 Dado un conjunto S con ejemplos positivos y negativos de un concepto objetivo, (problema de 2 clases) la entropía del conjunto S con respecto a esta clasificación binaria es

$$E(S) = -p(P)\log_2 p(P) - p(N)\log_2 p(N)$$

 La clase C₁ corresponde a P – positivos- y la clase C₂ corresponde a N – negativos - .

15

Pregunta: ¿cuál es la entropía del conjunto completo de Jugar Tenis?

ESTADO DEL TIEMPO	TEMPERATUR A	HUMEDAD	VIENTO	¿JUGAR?
Cubierto	Caluroso	Alta	suave	SI
Cubierto	Caluroso	Normal	suave	SI
Soleado	Caluroso	Alta	suave	No
Soleado	Caluroso	Alta	fuerte	No
Cubierto	Frio	Normal	fuerte	SI
Lluvioso	Frio	Normal	suave	SI
Lluvioso	Frio	Normal	fuerte	No
Soleado	Frio	Normal	suave	SI
Cubierto	Templado	Alta	fuerte	SI
Lluvioso	Templado	Alta	suave	SI
Lluvioso	Templado	Normal	suave	SI
Lluvioso	Templado	Alta	fuerte	No
Soleado	Templado	Alta	suave	No
Soleado	Templado	Normal	fuerte	SI

a)0.	.991
b)0.	.940
c) 0.	.494
d/h	302

Ejemplo

 Para los datos de "Jugar Tenis", donde jugar es el atributo de salida, tenemos para el conjunto de datos completo:

$$P_T = \left(\frac{9}{14}, \frac{5}{14}\right)$$

Usando la ecuación de la entropía tenemos:

$$E(T) = E(P_T) = -\left(\frac{9}{14}\log\left(\frac{9}{14}\right) + \frac{5}{14}\log\left(\frac{5}{14}\right)\right) = 0.94$$

17

17

Entropía

- La entropía es 0 si la salida es ya conocida o el mensaje es invariante.
- La entropía es máxima si no tenemos conocimiento alguno sobre el sistema (o si cualquier resultado es igualmente posible)

Entropía de un sistema de clase 2

18

Ganancia de Información

- Particionamos el conjunto sobre la base de un atributo de entrada X, en subconjuntos T₁, T₂,..., T_n.
- La información necesaria para identificar la clase de un elemento de T es la media ponderada de la información necesaria para identificar la clase de un elemento de cada subconjunto:

$$E(X,T) = \sum_{i=1}^{n} \frac{|T_i|}{|T|} E(T_i)$$

- Ganancia de Información = E(T) E(X,T)
- ID3 calcula la ganancia de información para cada atributo y selecciona el que tenga mayor ganancia

Ganancia de Información

 La ganancia de información mide la reducción esperada de la entropía, o incertidumbre.

 $Gain(S, A) = Entropy(S) - \sum_{v \in Volume(A)} \frac{|S_v|}{|S|} Entropy(S_v)$

- Values(A) es el conjunto de todos los posibles valores del atributo
 A, y S_v el subconjunto de S para el cual el atributo A tiene valor v
 S_v = {s in S | A(s) = v}.
- El primer término es entonces solamente la entropía del conjunto **S** original.
- El segundo término es el valor esperado de la entropía luego de particionar S utilizando el atributo A

20

Ejemplo:

- Calcular la ganancia de información debida a particionar el conjunto de acuerdo al atributo Temperatura
- · Temperatura tiene tres valores
 - Frio
 - Templado
 - Caluroso
 - |T_{Frio}| = 4, |T_{Templado}| = 6, |T_{Caluroso}| = 4

 $\text{E(temperatura,T)} = \frac{4}{14} E\left(\mathsf{T}_{\mathsf{Frio}}\right) + \frac{6}{14} E\left(\mathsf{T}_{\mathsf{Templado}}\right) + \frac{4}{14} E\left(\mathsf{T}_{\mathsf{Caluroso}}\right)$

Ganancia (temperatura, T) = 0.940 - 0.911= 0.029 bits

21

Criterios de "impureza" usados para el split

Cada split trata de hacer el nodo hijo más puro

Gini

Ganancia de información 🛴 (Entropía)

Error de clasificación

Pre-Pruning – criterios para detener el algoritmo

En datasets reales, no es muy probable que obtengamos nodos terminales 100% homogéneos. Necesitamos indicar al algoritmo cuándo parar:

- Ningún atributo satisface un umbral de ganancia de información mínimo
- Se ha alcanzado una profundidad máxima
- Hay menos ejemplos que un cierto mínimo en el subárbol actual

23

Pruning - poda

- Permitir al árbol crecer hasta el máximo, y después podar las ramas que no cambien efectivamente el error de clasificación – postpruning
- A veces puede ser una mejor opción
- Requiere cómputos adicionales

24

Árboles de decisión - CART

- CART: Classification And Regression Tree
- El modelo de predicción se representa mediante un árbol binario (predictores continuos o discretos)

Ejemplo: predicción del salario de un bateador Predictores: Años de jugador y hits de la temporada anterior (salario transformado mediante logaritmo, en miles)

Árholes	de	decisión	nara	regresión
AI DOICS	uc	accision	para	I CEI COIOII

 Segmentación producida en el espacio de predictores:

26

Árboles de decisión para regresión

- En regresión, el valor definido para cada región es el promedio de todos los elementos del entrenamiento que caen en la hoja.
- Ventajas:
 - son sencillos de interpretar
 - provee información intrínseca de cuáles son los predictores más informativos
- Desventajas
 - rendimiento inferior a otros clasificadores
 - muy dependiente de los datos que se usan en el entrenamiento

27

CART - Árbol de regresión-Construcción

- ¿Cómo determinar las variables y los valores de decisión para los nodos internos?
- Dado el conjunto de datos S, para <u>cada</u> predictor considerar todos los valores de decisión que divida a los datos en S1 y S2 y que minimiza:

valor medio de los elementos que caen en S1 y S2 respectivamente se busca que los valores en S1 y S2 sean lo más homogéneos posible

CART - Árbol de regresión Construcción

- El mismo procedimiento es aplicado recursivamente con S1 y S2 hasta que cada subconjunto tenga un tamaño definido (ej: 20 elementos o menos). Este procedimiento es tedioso de aplicar en forma exhaustiva.
- Enfoque tradicional:
 - top-down (comienza por el tope del árbol-todos los elementos pertenecen a la misma región)
 - greedy: el mejor particionamiento se realiza en cada paso (en lugar de ver hacia adelante y elegir un split que mejore el modelo pero en una instancia futura)

29

CART - Árbol de regresión Poda

- El procedimiento puede producir árboles que sobreajustan a los datos de entrenamiento
- Solución: dejar crecer el árbol (lo denominamos T₀) y "podarlo", obteniendo el mejor subárbol posible
 - se puede evaluar cada subárbol candidato mediante cross-validation
 - sin embargo encontrar el subárbol indicado puede ser computacionalmente costoso
 - propuesta: cost–complexity prunning

30

CART - Árbol de regresión Cost-complexity prunning

• Se define un parámetro α al cual corresponde un subárbol $T \subset T_0$ tal que:

promedio de los valores de la variable dependiente que caen en el nodo terminal asociado a la región Rm

• |T|: cantidad de nodos terminales de T

CART - Árbol de regresión Cost-complexity prunning - Algoritmo

- 1. Desarrollar en forma completa un árbol (To)
- 2. Generar los diferentes subárboles resultantes de podar T_0 a partir de distintos valores de α
- 3. Para determinar α óptimo usar CV. Para cada kfold k=1.. κ :
 - a. calcular el cost-complexity prunning sobre el entrenamiento de los k-1 folds
 - b. calcular el MSE sobre el k-fold

Elegir el α asociado al MSE más bajo

4. Retornar el subárbol correspondiente al lpha óptimo

32

CART - Árbol de regresión Ejemplo de Poda

• Ejemplo: árbol de bateadores desarrollado en forma completa (9 atributos en dataset original)

33

CART - Árbol de regresión Ejemplo de Poda

• el error mínimo en CV se da podando hasta tener 3 nodos terminales

CART - Árbol de regresión

- Un árbol de decisión indica como valor de predicción de una hoja a la media de los valores que caen en ella.
- · Cómo mejorarlo?
 - Modelo M5p (prime): en cada hoja realiza una regresión lineal ajustando los coeficientes con las tuplas que corresponden a la misma.

35

Árboles de decisión - Comparación

Ejemplo: modelos que se ajustan mejor a un problema particular.

36

CART - Árbol de regresión Poda

- El parámetro cp puede ser elegido mediante cross-validation (CV)
 - elegir el α_i que minimiza $CV(\alpha_i)$ (para diferentes valores de α_i)
- opción: one standard error rule (1SE Rule)
 - elige el subárbol tal que el error en CV está a una distancia de un error standard del árbol óptimo
 - http://www.stat.cmu.edu/~ryantibs/datamining /lectures/19-val2.pdf
 - mejora la generalización

TA1

- "CART-dataset.csv"
- problema de clasificación binaria simple.
- Tenemos solamente dos variables de entrada (X1 yX2) y una sóla variable de salida (Y).
- El ejemplo está diseñado para que el algoritmo encuentre al menos dos puntos de división para clasificar el conjunto de entrenamiento

38

38

39

Aprendizaje del modelo CART

- Dividir los datos en un punto de division involucra separar todos los datos en ese nodo, en dos grupos, a la izquierda o derecha del punto de división.
- Si estamos trabajando en el primer punto de split del árbol, entonces todo el dataset estará involucrado.
- No nos interesa la clase a que pertenece el punto de división, sino solamente la composición de los datos asignados al subárbol izquierdo y derecho.
- Usamos una función de costo para evaluar la combinación de clases de la información de entrenamiento asignada a cada lado de la división.
- "índice GINI".

40

Indice Gini

• Calculamos el indice Gini para un nodo hijo:

$$G = 1 - (p_1^2 + p_2^2)$$

- p1 es la proporcion de instancias en el nodo con clase 1 y p2 para la clase 2.
- Ej: si el grupo IZQ. tiene 3 instancias con clase 0 y 4 con clase 1, entonces la proporción de instancias con clase 0 será 3/7 y la proporción con clase 1 será 4/7
- Abrir el archivo "gini.xlsx" para observar varios escenarios con distintas proporciones de instancias de dos clases y los correspondientes valores del indice Gini.

41

Gini

- Cuando el grupo tiene una mezcla 50-50 el Gini es 0.5, peor scenario possible
- En el ultimo ejemplo, vemos que todas las instancias caen en una sóla clase: el Gini es 0, un ejemplo de división perfecta

42

42

Calculo de indice Gini

 El cálculo del índice Gini para un punto de división: calcular el Gini para cada nodo hijo y ponderar los valores por la cantidad de instancias en el nodo padre

$$G = ((1 - (g{1_1}^2 + g{1_2}^2)) \times \frac{{n_{g1}}}{n}) + ((1 - (g{2_1}^2 + g{2_2}^2)) \times \frac{{n_{g2}}}{n})$$

- ${\rm g1_1}\,{\rm es}$ la proporción de instancias en el grupo 1 para la clase 1, ${\rm g1_2}\,{\rm para}$ la clase 2
- g2₁ es la proporción de instancias en el grupo 2 y clase 1, g2₂ grupo 2 y clase 2,
- n_{g1} y n_{g2} son los números totales de instancias en los grupos 1 y 2
- n es el numero total que queremos agrupar, del nodo padre

Primer punto candidato	de divis	ión (hidiana hidiana)
• X1 = 2.7712 - Si X1 < 2.77 - Si X1 >= 2. Service = 8		•
Gini(X1 = 2.7)	7 008 1 048 2 088	$+\frac{9^2}{1}))\times\frac{1}{10})+\{(1-(\frac{4^2}{9}+\frac{5^2}{9}))\times\frac{9}{10})$

	120		DER	PACRE			
D≪Y		- 1	5		5		
Y=1		- 0	5 9				
CUENTAS		_1	. 9	-	10		
Gini							
	IZQ		DER	Gini IZQ		Gini DER	Gini izq
Y=0		_ 1	0.44444444		0	0.44444444	0.4444444
Y=1		0	0.55555556				
Pesa		0.1	0.9				

Mejor	punto	de	divisiór
candid	ato		

- Un valor possible de X1 sería entonces el del ultimo ejemplo, X1 = 6.6422.
 - Si X1 < 6.6422 entonces IZQ
 - Si X1 >= 6.6422 entonces DER
- Aplica el procedimiento anterior para agrupar las instancias y calcular el índice Gini correspondiente.

47

47

CART - Árbol de clasificación

- Un árbol de decisión indica como valor de predicción de una hoja a la media de los valores que caen en ella.
- · Cómo mejorarlo?

48

Revisión de parámetros – criterios de división ("split")

- Para variables objetivo categóricas:
 - Ganancia de información (1 entropía)
 - Tasa o relación de ganancia
 - Impureza Gini (1 índice Gini)
 - Chi-cuadrado
- Para variables objetivo continuas:
 - Exactitud, varianza
- ¿Cuáles son los operadores de RapidMiner que implementan estas variaciones?
- Ver buen tutorial resumen en https://www.analyticsvidhya.com/blog/2020/06/4-ways-split-decision-tree/

TA3 – EJ2 – Arbol de decisión de regresión en

- Utilizar el dataset "housing" de predicción de mediana de valor de casas
- Analizar los atributos, estadísticas, variable objetivo
- Crear un proceso con cross validation para entrenar un árbol de decision
- Agregar el DT, apply model y performance (regression).
- Seleccionar los parámetros apropiados para el DT y los indicadores del performance
- Ejecutar y estudiar el modelo generado

50

Revisión de parámetros que podemos optimizar

- · Criterios para "split"
- Ganancia de información (entropía)
 - Tasa o relación de ganancia
 - Índice Gini
- Exactitud
- · Profundidad máxima del árbol
- · Ganancia minima para split
- · Tamaño mínimo para split
- · Tamaño mínimo de hoja

51

TA3 – EJ3 – Optimización de parámetros del Arbol de Decisión

- Utilizar el proceso RM desarrollado en el TA3- EJ1
- Revisar el context, los atributos, estadísticas, variable objetivo
- Agregar un operador (subproceso) "Optimize parameters"
- Dentro de éste, agregar un operador cross validation para entrenar el árbol de decision, mover los bloques que correspondan al mismo,, apply model y performance (classification).
- Agregar un operador "log" y configurar para que tenga al menos iteraciones, performance, y los parámetros objeto de optimización
- Seleccionar los parámetros a optimizar y los intervalos de evaluación (estimar la cantidad de iteraciones totales que se harán!!!!)
- Registrar los resultados, modelo y rendimiento final alcanzado. https://academy.rapidminer.com/learn/video/optimization-of-the-model-parameters

Demo AutoModel para observar la optimización	C Programmed Programme		
---	--	--	--