Applied (Financial) Econometrics

Time series

Monique de Haan (monique.dehaan@uva.nl)

- The data file USMacro_Quarterly.dta contains quarterly data on several macroeconomic variables.
- Data are from the first quarter of 1957 to the fourth quarter of 2013.
- All data series are from the Federal Reserve Economic Data (FRED) database maintained by the Federal Reserve Bank of St. Louis.
- We will construct forecasting models for the rate of inflation.
- In the exercise we only consider the time period 1963:Q1-2012:Q4, but we use data from before 1963 to create lagged values.

Variable	Description
Name	
GDPC96	Real Gross Domestic Product
JAPAN_IP	Production of Total Industry in Japan (FRED series name is JPNPROINDQISMEI)
PCECTPI	Personal Consumption Expenditures: Chain-type Price Index
GS10	10-Year Treasury Constant Maturity Rate (Quarterly Average of Monthly Values)
GS1	1-Year Treasury Constant Maturity Rate (Quarterly Average of Monthly Values)
TB3MS	3-Month Treasury Bill: Secondary Market Rate (Quarterly Average of Monthly Values)
UNRATE	Civilian Unemployment Rate (Quarterly Average of Monthly Values)
EXUSUK	U.S. / U.K. Foreign Exchange Rate (Quarterly Average of Daily Values)
CPIAUCSL	Consumer Price Index for All Urban Consumers: All Items (Quarterly Average of
	Monthly Values)

Part 1 and part 2

We have to.....

open the datafile and tell stata that we are using time series data

create the dependent variable

```
. *Part 2
. gen infl=400*(ln(PCECTPI)-ln(L1.PCECTPI))
(1 missing value generated)
```

What are the units of infl?

- Inflation increased over the 20-year period 1960-1980, then declined for a decade and has been reasonably stable since then.
- It appears to have a stochastic trend.

•

The j^{th} autocorrelation= $\rho_j = \frac{Cov(infl_t,iflt-j)}{Var(ifl_t)}$ can be estimated by

$$\widehat{\rho}_{j} = \frac{Cov(\widehat{infl_{t}}, \widehat{infl_{t-j}})}{\widehat{Var(infl_{t})}}$$

6

. corrgram infl if tin(1963q1,2012q4), noplot lags(4)

LAG	AC	PAC	Q	Prob>Q
1	0.8260	0.8284	138.51	0.0000
2	0.7373	0.1824	249.43	0.0000
3	0.7124	0.2199	353.5	0.0000
4	0.6432	-0.0451	438.79	0.0000

The first 4 autocorrelations are positive, reflecting positive serial correlation.

If inflation is high in one quarter it tends to be high in the next (four) quarter(s).

The j^{th} autocorrelation= $ho_j = rac{Cov(riangle inft_t, riangle inft_t)}{Var(riangle inft_t)}$ can be estimated by

$$\widehat{\rho}_{j} = \frac{Cov(\triangle \widehat{infl_{t}}, \triangle infl_{t-j})}{\widehat{Var}(\triangle infl_{t})}$$

. corrgram D.infl if tin(1963q1,2012q4), noplot lags(4)

LAG	AC	PAC	Q	Prob>Q
1 2	-0.2531 -0.1829	-0.2531 -0.2640	13.005 19.827	0.0000
3	0.1326	0.0094	23.435	0.0000
4	-0.0924	-0.1110	25.194	0.0000

 The change in inflation is slightly negatively serially correlated (the first autocorrelation is -0.25) so that values above the mean tend to be followed by values below the mean.

$$AR(1)$$
: $\triangle infl_t = \beta_0 + \beta_1 \triangle infl_{t-1} + u_t$

. regress D.infl L1.D.infl if tin(1963q1, 2012q4), robust

Linear regression

Number of obs = 200 F(1, 198) = 12.67 Prob > F = 0.0005 R-squared = 0.641 Root MSE = 1.4549

D.infl	. Coef.	Robust Std. Err.	t	P> t	[95% Conf	. Interval]
inf] LD.	1	.0710979	-3.56	0.000	3933145	1129019
_cons	.0028786	.1028678	0.03	0.978	1999785	.2057357

$$AR(1)$$
: $\triangle infl_t = \beta_0 + \beta_1 \triangle infl_{t-1} + u_t$

. regress D.infl L1.D.infl if tin(1963q1, 2012q4), robust

Linear regression Number of obs = 200 F(1, 198) = 12.67 Prob > F = 0.0005 R-squared = 0.0641 Root MSE = 1.4549

D.infl	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	. Interval]
infl LD.	2531082	.0710979	-3.56	0.000	3933145	1129019
_cons	.0028786	.1028678	0.03	0.978	1999785	.2057357

 The coefficient on △ifl_{t-1} is statistically significant at a 1% level, so that the lagged change in inflation helps predict the current change in inflation.

•
$$BIC(p) = In\left[\frac{SSR(p)}{T}\right] + (p+1)\frac{In(T)}{T}$$

•
$$AIC(p) = In\left[\frac{SSR(p)}{T}\right] + (p+1)\frac{2}{T}$$

- . gen BIC_1=ln(e(rss)/e(N))+e(rank)*(ln(e(N))/e(N)) if tin(1963q1, 2012q4) (28 missing values generated)
- . gen AIC_1=ln(e(rss)/e(N))+e(rank)*(2/e(N)) if tin(1963q1, 2012q4) (28 missing values generated)
- . sum BIC_1 AIC_1

Variable	0bs	Mean	Std. Dev.	Min	Max
BIC_1	200	.7927663	0	.7927663	.7927663
AIC_1	200	.7597831	0	.7597831	.7597831

1.4068

$$AR(2)$$
: $\triangle infl_t = \beta_0 + \beta_1 \triangle infl_{t-1} + \beta_2 \triangle infl_{t-2} + u_t$

. regress D.infl L1.D.infl L2D.infl if tin(1963q1, 2012q4), robust

Linear regression Number of obs = 200 F(2, 197) = 12.65 Prob > F = 0.0000 R-squared = 0.1293

Root MSE

Robust D.infl Coef. Std. Err. t P>|t| [95% Conf. Interval] infl -4.79 LD. -.3199827 .0668392 0.000 -.4517949 -.1881704 L2D. -.2641477 .0825592 -3.20 0.002 -.426961 -.1013344 .0026297 .0994816 0.03 0.979 -.193556 .1988153 _cons

$$AR(2)$$
: $\triangle infl_t = \beta_0 + \beta_1 \triangle infl_{t-1} + \beta_2 \triangle infl_{t-2} + u_t$

. regress D.infl L1.D.infl L2D.infl if tin(1963q1, 2012q4), robust

[95% Conf. Inter	P> t	t	Robust Std. Err.	Coef.	D.infl
4517949188 426961101	0.000 0.002	-4.79 -3.20	.0668392 .0825592	3199827 2641477	infl LD. L2D.
193556 .198	0.979	0.03	.0994816	.0026297	_cons

• The estimated coefficient on $\triangle infl_{t-2}$ is statistically significant, so the AR(2) model seems to be preferred to the AR(1) model.

- . gen BIC_2=ln(e(rss)/e(N))+e(rank)*(ln(e(N))/e(N)) if tin(1963q1, 2012q4) (28 missing values generated)
- . gen AIC_2=ln(e(rss)/e(N))+e(rank)*(2/e(N)) if tin(1963q1, 2012q4) (28 missing values generated)
- . sum AIC* BIC*

Variable	0bs	Mean	Std. Dev.	Min	Max
AIC_1 AIC_2 BIC_1 BIC_2	200 200 200 200	.7597831 .6974945 .7927663 .7469693	0 0 0	.7597831 .6974945 .7927663 .7469693	.7597831 .6974945 .7927663 .7469693

Part 12 & part 13

Variable	0bs	Mean	Std. Dev.	Min	Max
BIC_1	200	.7927663	0	.7927663	.7927663
BIC_2	200	.7469693	0	.7469693	.7469693
BIC_3	200	.7733617	0	.7733617	.7733617
BIC_4	200	.7874006	0	.7874006	.7874006
BIC_5	200	.8005706	0	.8005706	.8005706
BIC_6	200	.818479	0	.818479	.818479
AIC_1	200	.7597831	0	.7597831	.7597831
AIC_2	200	.6974945	0	.6974945	.6974945
AIC_3	200	.7073953	0	.7073953	.7073953
AIC_4	200	.7049426	0	.7049426	.7049426
AIC 5	200	.7016211	1.11e-16	.7016211	.7016211
AIC_6	200	.7030379	0	.7030379	.7030379

Part 12 & part 13

Variable	Obs	Mean	Std. Dev.	Min	Max
BIC_1	200	.7927663	0	.7927663	.7927663
BIC_2	200	.7469693	0	.7469693	.7469693
BIC_3	200	.7733617	0	.7733617	.7733617
BIC_4	200	.7874006	0	.7874006	.7874006
BIC_5	200	.8005706	0	.8005706	.8005706
BIC 6	200	.818479	0	.818479	.818479
AIC_1	200	.7597831	0	.7597831	.7597831
AIC_2	200	.6974945	0	.6974945	.6974945
AIC_3	200	.7073953	0	.7073953	.7073953
AIC_4	200	.7049426	0	.7049426	.7049426
AIC 5	200	.7016211	1.11e-16	.7016211	.7016211
AIC_6	200	.7030379	0	.7030379	.7030379

- Lag length on basis of BIC: 2
- Lag length on basis of AIC: 2

$$\begin{split} \triangle \textit{infl}_t &= \beta_0 + \delta \textit{infl}_{t-1} + \gamma_1 \triangle \textit{infl}_{t-1} + \gamma_1 \triangle \textit{infl}_{t-2} + u_t \\ & H_0: \ \delta = 0 \qquad \textit{vs} \quad H_1: \ \delta < 0 \end{split}$$

. regress D.infl L1.infl L1.D.infl L2.D.infl if tin(1963q1, 2012q4)

Source	SS	df	MS		ber of obs	=	200
Model Residual	71.4633738 376.321249	3 196	23.8211246 1.92000637	Pro R-s	, 196) b > F quared	=	12.41 0.0000 0.1596
Total	447.784622	199	2.25017398		R-squared t MSE	=	0.1467 1.3856
D.infl	Coef.	Std. Err.	t	P> t	[95% Co	onf.	Interval]
infl L1. LD. L2D.	109079 2547434 2205139	.0410631 .0720035 .0696671	-2.66 -3.54 -3.17	0.009 0.001 0.002	19006: 396744 35790	45	0280967 1127422 0831204
_cons	.3901379	.1757289	2.22	0.028	.04357	57	.7367002

$$\triangle \textit{infl}_t = \beta_0 + \delta \textit{infl}_{t-1} + \gamma_1 \triangle \textit{infl}_{t-1} + \gamma_1 \triangle \textit{infl}_{t-2} + u_t$$

$$H_0: \ \delta = 0 \qquad \textit{vs} \quad H_1: \ \delta < 0$$

. regress D.infl L1.infl L1.D.infl L2.D.infl if tin(1963q1, 2012q4)

Source	SS	df	MS	Numb	er of obs	=	200
				F(3,	196)	=	12.41
Model	71.4633738	3	23.8211246	Prob	> F	=	0.0000
Residual	376.321249	196	1.92000637	R-sq	uared	=	0.1596
				Adj	R-squared	=	0.1467
Total	447.784622	199	2.25017398	Root	MSE	=	1.3856
D.infl	Coef.	Std. Err.	t	P> t	[95% Cor	ıf.	Interval]
infl							
L1.	109079	.0410631	-2.66	0.009	1900612	2	0280967
LD.	2547434	.0720035	-3.54	0.001	3967445	5	1127422
L2D.	2205139	.0696671	-3.17	0.002	3579073	3	0831204
·							
_cons	.3901379	.1757289	2.22	0.028	.0435757	7	.7367002

DF-statistic = -2.66 The 10% critical value is -2.57 and the 5% critical value is -2.86; thus the unit root null hypothesis can be rejected at the 10% but not the 5% significance level.

The Dickey-Fuller regression with a deterministic trend

$$\triangle Y_t = \beta_0 + \alpha t + \delta Y_{t-1} + \gamma_1 \triangle Y_{t-1} + u_t$$

The inflation rate does not exhibit a linear trend, so that the specification that includes an intercept, but no time trend is appropriate.

Both the AIC and the BIC choose two lags, so the specification with 2 lags is appropriate.

- Inflation is highly persistent.
- The null hypothesis of a unit root cannot be rejected at the 5% significance level, and given the precision of the estimate, this suggests that inflation indeed has a unit root.
- However we can never accept a null hypothesis!