Data Science com Python

Módulo 5 - Modelagem Clustering

Professor: Lucas Roberto Correa

LEMBRETE: Fazer o import dos datasets usados no ambiente do colab antes de executar os comandos.

Import dos pacotes

```
# Manipulação dados
import pandas as pd
# Visualização de dados
import seaborn as sns
import matplotlib.pyplot as plt
# Pre processamento
from sklearn.preprocessing import StandardScaler
# Modelos de agrupamento
from sklearn.cluster import KMeans
from sklearn.cluster import AgglomerativeClustering
from sklearn.cluster import DBSCAN
#Métricas
from sklearn.metrics import silhouette_score
# Limpeza de memória
import gc
pd.set_option('display.max_rows', None)
pd.set_option('display.max_columns', None)
pd.set_option('display.width', None)
pd.set option('display.max colwidth', None)
```

Import dos metadados

link da base: https://www.kaggle.com/rashmiranu/banking-dataset-classification?select=new_train.csv

meta = pd.read_excel('metadata.xlsx')

meta

	Feature_Type	Feature	
	numeric	age	0
type of job ('admin.','blue-collar','entrepreneur' employed','services','stud	Categorical,nominal	job	1
marital status ('divorced','married','single','unknown'; note	categorical,nominal	marital	2
('basic.4y','basic.6y','basic.9y','high.school','illiterate','professio	categorical,nominal	education	3
h	categorical,nominal	default	4
	categorical,nominal	housing	5
	categorical,nominal	loan	6
contact c	categorical,nominal	contact	7
last contact month	categorical,ordinal	month	8
last contact of	categorical,ordinal	dayofweek	9
last contact duration, in seconds . Important note: this attribu	numeric	duration	10
number of contacts performed during this campaigr	numeric	campaign	11
number of days that passed by after the client was last o	numeric	pdays	12
number of contacts performe	numeric	previous	13
• • • • • • • • • • • • • • • • • • •			4

▼ Import da base

```
df = pd.read_csv('new_train.csv', sep=',')
df.head()
```

	age	job	marital	education	default	housing	loan	contact	month
0	49	blue-collar	married	basic.9y	unknown	no	no	cellular	nov
1	37	entrepreneur	married	university.degree	no	no	no	telephone	nov
2	78	retired	married	basic.4y	no	no	no	cellular	jul
3	36	admin.	married	university.degree	no	yes	no	telephone	may
4	59	retired	divorced	university.degree	no	no	no	cellular	jun
4									•

Retirando a target, pois o conjunto de dados será usado para uma análise não supervionada

	age	job	marital	education	default	housing	loan	contact	month
0	49	blue-collar	married	basic.9y	unknown	no	no	cellular	nov
1	37	entrepreneur	married	university.degree	no	no	no	telephone	nov
2	78	retired	married	basic.4y	no	no	no	cellular	jul
3	36	admin.	married	university.degree	no	yes	no	telephone	may
4	59	retired	divorced	university.degree	no	no	no	cellular	jun
4									•

Resultado a ser considerado na modelagem

expl_num.head()

	duration	campaign	pdays	previous
0	227	4	999	0
1	202	2	999	1
2	1148	1	999	0
3	120	2	999	0
4	368	2	999	0

Checagem de nulos

expl_num.isnull().sum()

duration 0
campaign 0
pdays 0
previous 0
dtype: int64

Transformação dos dados com Padronização

→ O algoritmo

```
db = DBSCAN(eps=0.2)
db

DBSCAN(eps=0.2)
```

Aplicando no conjunto de dados

```
expl['DB'] = db.fit_predict(expl_num_scale)
gc.collect()
74
```

▼ Avaliação de métrica

```
# DBSCAN eps = [0.2,0.3,1]
```

```
for ep in eps:
    clusters = DBSCAN(eps=ep)
    predicao = clusters.fit_predict(expl_num_scale)

score = silhouette_score(expl_num_scale, predicao)

print('0 valor de silhouette_score é {}, para n_clusters igual a {}'.format(score, ep)

    0 valor de silhouette_score é 0.1299856350955824, para n_clusters igual a 0.2
    0 valor de silhouette_score é 0.1282766845593569, para n_clusters igual a 0.3
    0 valor de silhouette_score é 0.46496986207161534, para n_clusters igual a 1
```

Avaliação dos resultados considerando os dados de explicativas categóricas

expl.head()

month	contact	loan	housing	default	education	marital	job	age	
nov	cellular	no	no	unknown	basic.9y	married	blue-collar	49	0
nov	telephone	no	no	no	university.degree	married	entrepreneur	37	1
jul	cellular	no	no	no	basic.4y	married	retired	78	2
may	telephone	no	yes	no	university.degree	married	admin.	36	3
jun	cellular	no	no	no	university.degree	divorced	retired	59	4
•									4

sns.scatterplot(data=expl, x="age", y="campaign", hue=db.labels_)

<matplotlib.axes._subplots.AxesSubplot at 0x7fa37a9bb850>

sns.scatterplot(x="age", y="DB", hue="poutcome", data=expl)

<matplotlib.axes._subplots.AxesSubplot at 0x7fa37a8a0f90>

sns.scatterplot(x="DB", y="marital", hue="poutcome", data=expl)

<matplotlib.axes._subplots.AxesSubplot at 0x7fa37a847910>

