STIR1 • v1.0

Permutationen mit Zyklen

Berechne die Anzahl an Permutationen der Zahlen von 1 bis N mit genau K Zyklen, modulo 10^9+7 . Z.B. hat die Permutation 2 1 3 zwei Zyklen, da $2\to 1$ (und umgekehrt) getauscht wird (also ein Zyklus der Länge 2) und 3 auf sich selbst abgebildet wird (ein Zyklus der Länge 1). Insgesamt gibt es für N=3 genau 3 Permutationen mit zwei Zyklen, nämlich 1 3 2, 2 1 3 und 3 2 1.

Eingabe

N und K. Es gilt: $1 \le K \le N \le 1000$

Ausgabe

Die Anzahl an Permutation mit genau K Zyklen, modulo $10^9 + 7$.

Beispiel

Eingabe	Ausgabe
3 2	3

Eingabe	Ausgabe
4 1	6

Eingabe	Ausgabe
8 3	13132

Bonus

Kannst du diese Werte z.B. auch für $n \leq 10^5$ noch effizient berechnen? Unter welchen Voraussetzungen?

Beschränkungen

Zeitlimit: 1 s **Speicherlimit:** 256 MB