CS & IT ENGINERING

Theory of Computation

Regular Languages

Mallesham Devasane Sir

Lecture No.- 12

Recap of Previous Lecture

Regular Language Vs Regular Expression

Topics to be Covered

Topic

Practice on Regular Expressions

Let $L = \{ w \in (0 + 1)^* \mid w \text{ has even number of 1s} \}$, i.e., L is the set of all bit strings with even number of 1s. Which one of the regular expressions below represents L? [2010: 2 Marks]

Let P be a regular language and Q be a context- free language such that $Q \subseteq P$. (For example, let P be the language represented by the regular expression $p^* q^*$ and Q be $\{p^n q^n | n \in a\}$ N). Then which of the following is ALWAYS regular?

$$A P \cap Q$$

B
$$\Sigma^* - P$$

D
$$\Sigma^* - Q$$

Given the language $L = \{ab, aa, baa\}$, which of the following

- strings are in L*? abaabaaabaae 2. aaaabaaaa
- 3.
- baaaaabaae L [2012: 1 Mark]
- 1, 2 and 3
- 2, 3 and 4
- 1, 2 and 4
 - 1, 3 and 4

Q

Consider the languages $L_1 = \phi$ and $L_2 = \{a\}$. Which one of the following represents $L_1L_2^* \cup L_1^*$? [2013: 1 Mark]

Вф

D (ε, a)

$$\phi.a^*+\phi^*$$

The length of the shortest string NOT in the language (over $\Sigma = \{a, b\}$) of the following regular expression is

$$E = ab(ba)a$$
 $a = ab(ba)a$
 $b = ab(ba)a$
 $a = ab(ba)a$
 $aa = ab(ba)a$
 $ab = ab(ba)a$
 $ab = ab(ba)a$
 $ba = ab(ba)a$
 $bb = ab(ba)a$

[2014-Set3: 1 Mark]

Consider alphabet $\Sigma = \{0, 1\}$, the null/empty string λ and the sets of strings X_0 , X_1 and X_2 generated by the corresponding non-terminals of a regular grammar. X₀, X₁ and X₂ are related as follows: [2015-Set2: 2 Marks]

$$X_0 = 1X_1$$

 $X_1 = 0X_1 + 1X_2$
 $X_2 = 0X_1 + {\lambda}$

Which one of the following choices precisely represents the strings in X_0 ?

A $10(0^* + (10)^*)1$

- 10(0* + (10)*)*1
- 1(0+10)*1
- 10(0+10)*1+110(0+10)*1

Q

Which one of the following regular expressions represents the language: the set of all binary strings having two consecutive 0s and two consecutive 1s?

[2016-Set1: 1 Mark]

- A $(0+1)*0011(0+1)* + (0+1)* 1100(0+1)* \longrightarrow contains only or 1100$ B <math>(0+1)*(00(0+1)*11+11(0+1)*00)(0+1)*
- C (0+1)*00(0+1)* + (0+1)*11(0+1)*Contain or of Contain 11
- D 00(0+1)*11+11(0+1)*00

starts wilk oo and end, wilt 11

OR

starm wilt: 1
and ends wilt oo

$$\sum_{k=0}^{\infty} \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j$$

$$\Sigma^{*}(00\Sigma^{*}+11\Sigma^{*}00)\Sigma^{*}$$

Which one of the following regular expression represents the set of all binary strings with an odd number of 1's?

$$= \delta \left(\delta \right) \left(\delta \right)$$

TOPIC:

(61) If
$$L = \alpha(a+b)^*$$
 [kern starting with α'
 $T = \delta \xi$, $\alpha \xi'$, $b \xi'$

Not starting with α'

$$L = 7$$

$$= \xi + b \Sigma^*$$

$$= (b \Sigma^*)^*$$

universal

LUL = Z

TOPIC:

TOPIC:

$$L = b(a+b)^*$$

$$\bar{L} = \sum_{b}^{x} b + \epsilon$$

$$L = (a+b)^{*} a (a+b)^{*}$$
Contains a

Not contains a

(67) L=
$$(a+b)^*a(a+b)^*$$

Containing a' as substainy

I)
$$L = \sum_{i=1}^{\infty} L_{i}$$

II) $L = \sum_{i=1}^{\infty} L_{i}$

III) $L = \sum_{i=1}^{\infty} L_{i}$

$$L = (aa)^{*} \stackrel{\text{rad}}{=} L = a(aa)^{*} = (aa)^{*} a$$

$$L = \alpha(\alpha\alpha)^{*} \Rightarrow L = \alpha(\alpha\alpha)^{*} = \alpha(\alpha\alpha)^{*}$$

$$L = \alpha(\alpha\alpha)^{*} \Rightarrow \alpha(\alpha\alpha)^{*} = \alpha(\alpha)^{*} = \alpha(\alpha)^{*}$$

2 mins Summary

Topic

Regular Languages

Topic

Regular Expressions

THANK - YOU