Тема IV: Векторные пространства

§ 2. Базис векторного пространства

Б.М.Верников М.В.Волков

Уральский федеральный университет Институт естественных наук и математики кафедра алгебры и фундаментальной информатики

2021/2022 учебный год

Системы образующих

Определение

Система векторов Σ векторного пространства V называется *системой образующих* этого пространства, если любой вектор из V линейно выражается через какие-то вектора из системы Σ .

Лемма о прополке

Если Σ – система образующих векторного пространства V и вектор $\mathbf{a} \in \Sigma$ линейно выражается через другие вектора системы Σ , то и система $\Sigma \setminus \{\mathbf{a}\}$ является системой образующих пространства V.

Доказательство. Нужно показать, что любой вектор $\mathbf{x} \in V$ линейно выражается через какие-то вектора из $\Sigma \setminus \{\mathbf{a}\}$. По условию леммы

$$\mathbf{x} = t_1 \mathbf{a}_1 + t_2 \mathbf{a}_2 + \dots + t_k \mathbf{a}_k \tag{*}$$

для некоторых $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k \in \Sigma$ и $t_1, t_2, \dots, t_k \in F$. Если среди векторов $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$ нет \mathbf{a} , доказывать нечего. Если же $\mathbf{a}_i = \mathbf{a}$ для некоторого i, подставим в (\star) вместо \mathbf{a} его выражение через другие вектора системы Σ и получим выражение для \mathbf{x} через вектора из $\Sigma \setminus \{\mathbf{a}\}$.

Базис векторного пространства

Определение

Базисом векторного пространства называется линейно независимая система образующих.

В случаях плоскости и обычного трёхмерного пространства введённое сейчас понятие базиса совпадает с теми понятиями базиса, которые были введены в этих случаях ранее.

Замечание о базисе плоскости и трёхмерного пространства

- а) Базисом плоскости является произвольная пара неколлинеарных векторов, лежащих в этой плоскости.
- 6) Базисом обычного трёхмерного пространства является произвольная тройка некомпланарных векторов этого пространства.

Доказательство. a) Пара неколлинеарных векторов плоскости линейно независима в силу замечания о линейной зависимости на плоскости (см. предыдущую лекцию) и является системой образующих плоскости в силу теоремы о разложении вектора по базису на плоскости.

6) Это утверждение доказывается вполне аналогично предыдущему.

Пример базиса в пространстве F^n

Приведем пример базиса в пространстве строк ${\cal F}^n$. Мы вводили вектора

$$\mathbf{e}_1 = (1, 0, \dots, 0), \mathbf{e}_2 = (0, 1, 0, \dots, 0), \dots, \mathbf{e}_n = (0, \dots, 0, 1).$$

3-е замечание о векторах $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n$

Вектора $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n$ образуют базис пространства F^n .

Доказательство. В силу 1-го и 2-го замечаний о векторах $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n$ эти вектора линейно независимы и являются системой образующих пространства F^n .

Определение

Система векторов e_1, e_2, \dots, e_n называется *стандартным базисом* пространства F^n .

Базисы в других векторных пространствах

Как обсуждалось, в пространстве многочленов F[x] для любого целого неотрицательного n многочлены $1,x,x^2,\ldots,x^n$ линейно независимы. Естественно назвать *бесконечную* последовательность векторов линейно независимой, если линейно независима любая ее конечная подсистема. Тогда система $\{x^n\}_{n\geq 0}$ линейно независима.

По определению многочлена $\{x^n\}_{n\geq 0}$ является системой образующих для пространства F[x]. Итак, $\{x^n\}_{n\geq 0}$ — базис пространства F[x].

В пространстве функций из $\mathbb R$ в $\mathbb R$ тоже есть бесконечные линейно независимые системы, например, $\{\sin nx,\cos nx\}_{n>0}$. На самом деле, в этом пространстве есть бесконечный базис, но явно выписать его трудно.

В пространстве $F^{k \times n}$ всех матриц размера $k \times n$ базис образуют всевозможные матричные единицы E_{ij} , где $1 \leqslant i \leqslant k$ и $1 \leqslant j \leqslant n$.

В поле комплексных чисел $\mathbb C$, рассматриваемом как векторное пространство над полем $\mathbb R$, базис составляют числа 1 и i.

У нулевого пространства базиса нет, поскольку в этом пространстве нет линейно независимых систем.

Существование конечного базиса

Что можно сказать о существовании базиса в общем случае? В этом курсе мы ограничимся следующим результатом.

Теорема о существовании конечного базиса

Если в ненулевом векторном пространстве V есть конечная система образующих, то в V есть и конечный базис.

Доказательство. Пусть Σ – конечная система образующих пространства V. Поскольку V – ненулевое пространство, в Σ есть ненулевые вектора. Выкинем из Σ нулевой вектор, если он там был; получившаяся система ненулевых векторов $\Sigma_1 := \Sigma \setminus \{0\}$ тоже будет системой образующих. Если система Σ_1 линейно независима, то она является базисом и всё доказано. Если система Σ_1 линейно зависима, то по лемме о правом крайнем в ней найдется вектор a_1 , который линейно выражается через какие-то вектора из $\Sigma_2 := \Sigma_1 \setminus \{\mathbf{a}_1\}$. По лемме о прополке Σ_2 – система образующих. Понятно, что тот же самый аргумент применим к Σ_2 : если Σ_2 линейно независима, то всё доказано, а если линейно зависима, то из Σ_2 можно удалить вектор так, чтобы осталась система образующих. Этот процесс остановится, лишь достигнув линейно независимой системы образующих, т.е. базиса. Число векторов в текущей системе уменьшается на каждом шаге процесса, а потому остановка неизбежна.

Комментарии

- 1. Очевидно, что верно и обратное к теореме утверждение.
- 2. Доказательство довольно поучительно, и мы будем использовать похожие механизмы и в некоторых других доказательствах.
- 3. Альтернативное оформление доказательства может быть таким: возьмём в качестве Σ систему образующих пространства V с наименьшим возможным числом векторов. Тогда в Σ нет нулевого вектора и нет вектора, линейно выражающегося через другие вектора системы Σ (иначе его можно было бы выкинуть по лемме о прополке и придти к противоречию с минимальностью Σ). По лемме о правом крайнем система Σ линейно независима, т.е. является базисом.
- 4. В общем случае можно доказать, что в любом ненулевом векторном пространстве есть базис, но доказательство использует один нетривиальный факт из теории множеств (лемма Цорна).

Равномощность базисов

Теорема о равномощности базисов

Если в векторном пространстве есть базис из n векторов, то и любой базис этого пространства содержит ровно n векторов.

Доказательство. Пусть $A:=({\bf a}_1,{\bf a}_2,\dots,{\bf a}_n)$ — базис пространства, а $B:=({\bf b}_1,{\bf b}_2,\dots,{\bf b}_k)$ — другой его базис. Чтобы доказать, что n=k, в силу симметрии достаточно проверить, что $k\leq n$. Пусть k>n. Рассмотрим систему

$$\mathbf{b}_1, \mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n. \tag{1}$$

Это линейно зависимая система ненулевых векторов, так как вектор \mathbf{b}_1 выражается через систему образующих A. По лемме о правом крайнем в (1) есть вектор, который линейно выражается через предыдущие. Это не может быть вектор \mathbf{b}_1 – у него нет предыдущих. Значит, это какой-то вектор \mathbf{a}_i . Выкинув его из (1), получим систему

$$\mathbf{b}_1, \mathbf{a}_1, \dots, \mathbf{a}_{i-1}, \mathbf{a}_{i+1}, \dots, \mathbf{a}_n, \tag{2}$$

которая останется системой образующих согласно лемме о прополке.

Равномощность базисов (2)

Теперь рассмотрим

$$\mathbf{b}_2, \mathbf{b}_1, \mathbf{a}_1, \dots, \mathbf{a}_{i-1}, \mathbf{a}_{i+1}, \dots, \mathbf{a}_n.$$
 (3)

Это линейно зависимая система ненулевых векторов, так как вектор \mathbf{b}_2 выражается через систему образующих (2). По лемме о правом крайнем в (3) есть вектор, выражающийся через предыдущие. Это не может быть ни \mathbf{b}_2 , ни \mathbf{b}_1 (у \mathbf{b}_2 нет предыдущих, а \mathbf{b}_1 не выражается через \mathbf{b}_2 , так как система B линейно независима). Значит, это какой-то вектор \mathbf{a}_j при $j\neq i$. Выкинув его из (3), получим систему

$$\mathbf{b}_2, \mathbf{b}_1, \mathbf{a}_1, \dots, \mathbf{a}_{i-1}, \mathbf{a}_{i+1}, \dots, \mathbf{a}_{j-1}, \mathbf{a}_{j+1}, \dots, \mathbf{a}_n,$$
 (4)

которая останется системой образующих согласно лемме о прополке. Теперь рассмотрим

$$\mathbf{b}_3, \mathbf{b}_2, \mathbf{b}_1, \mathbf{a}_1, \dots, \mathbf{a}_{i-1}, \mathbf{a}_{i+1}, \dots, \mathbf{a}_{j-1}, \mathbf{a}_{j+1}, \dots, \mathbf{a}_n,$$
 (5)

и т.д. Продолжая добавлять вектора из B и удалять вектора из A, будем получать системы из n образующих, в которых всё больше векторов из B и всё меньше — из A. Поскольку k>n, через n шагов придем к системе образующих $\mathbf{b}_n,\ldots,\mathbf{b}_2,\mathbf{b}_1$. Но тогда вектор \mathbf{b}_{n+1} выражается через эту систему образующих, что противоречит линейной независимости B.

Комментарии

Анализ показывает, что доказано *больше*, чем утверждает теорема. Хотя в начале доказательства было сказано, что A и B — базисы, в ключевом рассуждении использовалось только то, что A — система ненулевых образующих, а B — линейно независимая система. Именно исходя из этого доказывалось, что число векторов в A не может быть меньше числа векторов в B. Поэтому справедливы такие:

Следствия доказательства теоремы о равномощности

- 1. Если у векторного пространства V есть система из n образующих, то любая линейно независимая система в V содержит не больше n векторов.
- 2. Если в V есть линейно независимая система из n векторов, то любая система образующих пространства V содержит не менее n векторов.

Теорема о продолжении

Пусть теперь $(\mathbf{a}_1,\mathbf{a}_2,\dots,\mathbf{a}_n)$ – базис векторного пространства V, а $(\mathbf{b}_1,\mathbf{b}_2,\dots,\mathbf{b}_k)$ – линейно независимая система векторов из V. Как только что отмечено, $k\leq n$. Если «прополоть» систему образующих

$$\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_k, \mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n,$$

последовательно удаляя вектора, выражающиеся через предыдущие, до тех пор, пока это возможно, то ни один из векторов $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_k$ не будет удалён — ведь ни один из них не выражается через предыдущие. При этом система останется системой образующих и станет линейно независимой, т.е. базисом в точности после k удалений по теореме о равномощности базисов. В результате получим базис, содержащий вектора $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_k$.

Итак, установлена

Теорема о продолжении

В пространстве с конечным базисом каждая линейно независимая система может быть дополнена до базиса.

В действительности, теорема о продолжении верна для любых векторных пространств, но доказательство этого опирается на средства, выходящие за рамки данного курса (лемму Цорна).

Размерность пространства

Теорема о равномощности базисов делает корректным следующее

Определение

Если у векторного пространства есть конечный базис, то число векторов в базисе называется размерностью этого пространства. Размерность пространства V обозначается через $\dim V$.

Размерность нулевого пространства по определению есть 0. Если $\dim V = n$, пространство V называют n-мерным.

Конечномерным называют пространство, которое n-мерно для какого-то $n \geq 0$; бесконечномерным — пространство, в котором есть бесконечные линейно независимые системы.

В нашем курсе рассматриваются конечномерные пространства (за исключением отдельных примеров). По умолчанию слово «пространство» далее означает «конечномерное пространство».

Примеры

Обычное трёхмерное пространство аналитической геометрии трёхмерно и в нашем смысле. Плоскость двумерна, а прямая одномерна.

Поскольку стандартный базис пространства строк F^n состоит из n векторов, $\dim F^n=n.$ В частности, пространство F^4 четырёхмерно.

Пространство многочленов F[x] и пространство функций из $\mathbb R$ в $\mathbb R$ бесконечномерны. Пространство $F_n[x]$ всех многочленов степени не выше n имеет размерность n+1 (базис $F_n[x]$ состоит из многочленов $1,x,x^2,\ldots,x^n$).

Поскольку kn матричных единиц E_{ij} , где $1\leqslant i\leqslant k$ и $1\leqslant j\leqslant n$, образуют базис пространства $F^{k\times n}$ всех $k\times n$ -матриц, $\dim F^{k\times n}=kn$. В частности, пространство всех 2×2 -матриц четырёхмерно.

Поле комплексных чисел $\mathbb C$, рассматриваемое как векторное пространство над полем $\mathbb R$, двумерно.

Разложение вектора по базису

Теорема о разложении вектора по базису

Пусть V — ненулевое векторное пространство, $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ — базис этого пространства. Тогда для любого вектора $\mathbf{x} \in V$ существуют, и притом единственные, скаляры t_1, t_2, \dots, t_n такие, что

$$\mathbf{x} = t_1 \mathbf{a}_1 + t_2 \mathbf{a}_2 + \dots + t_n \mathbf{a}_n. \tag{*}$$

Доказательство. Существование t_1,t_2,\ldots,t_n ясно, поскольку базис — это система образующих. Предположим, что наравне с равенством (*) выполнено равенство $\mathbf{x}=s_1\mathbf{a}_1+s_2\mathbf{a}_2+\cdots+s_n\mathbf{a}_n$ для некоторых скаляров s_1,s_2,\ldots,s_n . Вычтем последнее равенство из (*). Получим

$$(t_1-s_1)\mathbf{a}_1+(t_2-s_2)\mathbf{a}_2+\cdots+(t_n-s_n)\mathbf{a}_n=\mathbf{0}.$$

Поскольку вектора ${f a}_1,{f a}_2,\ldots,{f a}_n$ линейно независимы, получаем $t_i-s_i=0$, т. е. $t_i=s_i$ для всех $i=1,2,\ldots,n$.

Определение

Равенство (*) называется разложением вектора ${\bf x}$ по базису ${\bf a}_1, {\bf a}_2, \ldots, {\bf a}_n.$ Скаляры t_1, t_2, \ldots, t_n называются координатами вектора ${\bf x}$ в базисе ${\bf a}_1, {\bf a}_2, \ldots, {\bf a}_n.$ Тот факт, что вектор ${\bf x}$ имеет в некотором базисе координаты t_1, t_2, \ldots, t_n записывается так: ${\bf x}=(t_1, t_2, \ldots, t_n).$

Координаты суммы векторов и произведения вектора на скаляр

Следующее утверждение является аналогом замечания о координатах векторов $\vec{x} + \vec{y}$ и $t\vec{x}$ из первой темы курса.

Координаты суммы векторов и произведения вектора на скаляр

Пусть V — векторное пространство, $\mathbf{x}, \mathbf{y} \in V$, а t — произвольный скаляр. Если в некотором базисе $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n$ вектор \mathbf{x} имеет координаты (x_1, x_2, \ldots, x_n) , а вектор \mathbf{y} — координаты (y_1, y_2, \ldots, y_n) , то вектор $\mathbf{x} + \mathbf{y}$ имеет в том же базисе координаты $(x_1 + y_1, x_2 + y_2, \ldots, x_n + y_n)$, а вектор $t\mathbf{x}$ — координаты $(tx_1, tx_2, \ldots, tx_n)$.

Доказательство. По определению координат имеем

$$\mathbf{x} = x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + \dots + x_n \mathbf{a}_n$$
 $\mathbf{y} = y_1 \mathbf{a}_1 + y_2 \mathbf{y}_2 + \dots + y_n \mathbf{a}_n$.

Складывая эти два равенства, получаем, что

$$\mathbf{x} + \mathbf{y} = (x_1 + y_1)\mathbf{a}_1 + (x_2 + y_2)\mathbf{a}_2 + \dots + (x_n + y_n)\mathbf{a}_n$$

а умножая первое из них на скаляр t – что

$$t\mathbf{x} = t(x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \dots + x_n\mathbf{a}_n) = tx_1\mathbf{a}_1 + tx_2\mathbf{a}_2 + \dots + tx_n\mathbf{a}_n.$$

Изоморфизм векторных пространств

Определение

Векторные пространства V_1 и V_2 над одним и тем же полем F изоморфны, если существует биекция f из V_1 на V_2 (называемая изоморфизмом) такая, что f сохраняет операции, т.е.

$$\forall \mathbf{x}_1, \mathbf{x}_2 \in V_1 \ \forall t \in F \quad f(\mathbf{x}_1 + \mathbf{x}_2) = f(\mathbf{x}_1) + f(\mathbf{x}_2) \quad \& \quad f(t\mathbf{x}) = t \cdot f(\mathbf{x}).$$

Теорема об изоморфизме векторных пространств

Любое n-мерное векторное пространство V над полем F изоморфно пространству F^n .

Доказательство. Пусть ${\bf a}_1,{\bf a}_2,\dots,{\bf a}_n$ — базис пространства $V,\,{\bf b}\in V,\,$ а (t_1,t_2,\dots,t_n) — координаты вектора ${\bf b}$ в этом базисе. Определим отображение $f\colon V\to F^n$ правилом: $f({\bf b}):=(t_1,t_2,\dots,t_n).$ Поскольку координаты определяют вектор однозначно, отображение f инъективно. Сюръективность этого отображения очевидна: если ${\bf y}=(s_1,s_2,\dots,s_n)\in F^n,\,$ то ${\bf y}=f({\bf x}),\,$ где ${\bf x}=s_1{\bf a}_1+s_2{\bf a}_2+\dots+s_n{\bf a}_n.$ Наконец, сохранение операций вытекает из замечания о координатах суммы векторов и произведения вектора на скаляр. Таким образом, f — изоморфизм из V на $F^n.$

Комментарий

Теорема об изоморфизме векторных пространств показывает, насколько важной характеристикой векторного пространства является его размерность. С точки зрения действия алгебраических операций размерность конечномерного векторного пространства однозначно определяет это пространство: для всякого n существует (с точностью до изоморфизма) лишь одно n-мерное векторное пространство над данным полем F – пространство F^n . Этим и объясняется особая роль пространства F^n в линейной алгебре.