Semester One of Academic Year (2015---2016) of BJUT

 $\langle\!\langle$ Probability and Statistics $\rangle\!\rangle$

Module Code:	BDIC2005J
Dogit Evor	m Donor

	Resit Exam Paper	
Exam Instructions: _	Answer ALL Questions	
Honesty Pledge:		
I have read and	clearly understand the Examination Rules of Beijing University	of
Technology and Unive	ersity College Dublin and am aware of the Punishment for Violating	the
Rules of Beijing Unive	ersity of Technology and University College Dublin. I hereby promise	to:
abide by the relevant ru	ales and regulations by not giving or receiving any help during the exam	ı. If
caught violating the rule	es, I would accept the punishment thereof.	
Pledger:	Class No:	
BJUT Student ID:	UCD Student ID	
		00
	2 parts on 4 pages, with a full score of 100 points. You are iven Examination Book only.	
Instructions for Ca	ndidates	

Full marks will be awarded for complete answer to **All** questions.

Instructions for Invigilators

Candidates are allowed to use non-programmable calculators during this examination.

Semester One of Academic Year (2015---2016) of BDIC Resit Exam Paper

Obtained score

Part 1: Vacancy (Each blank 3 marks)

- (1) There are two events A,B. Let P(A) = 0.7, P(B) = 0.4, $P(A\overline{B}) = 0.6$, then $P(A \mid B) = \underline{\hspace{1cm}}$.
- (2) Suppose the discrete random variable X takes values -3, 0 and 1. It is also known that P(X = -3) = 0.2, P(X = 0) = 0.3, P(X = 1) = 0.5. Thus $E(X^2) =$ ______, and Var(X) =______.
- (3) Suppose the random variable $X \sim B(n, p)$, E(X) = 2.4, Var(X) = 1.44, then $n = \underline{\hspace{1cm}}$, $p = \underline{\hspace{1cm}}$.
- (4) Let $X_1, X_2, \dots, X_n (n > 2)$ be a sample from $N(\mu, \sigma^2)$.

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}, \quad S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}.$$

$$\overline{X} \sim \underline{\hspace{1cm}}, \quad \sqrt{n} (\overline{X} - \mu) / \sqrt{S^{2}} \sim \underline{\hspace{1cm}}, \quad E(S^{2}) = \underline{\hspace{1cm}}.$$

(5) Let X_1, \dots, X_{10} be the sample from a normal population $X \sim N(\mu, \sigma^2)$, with $\overline{X} = 5$ and $S^2 = 1.96$, Thus a 95 percent confidence interval estimate of μ is $[\underline{\hspace{1cm}},\underline{\hspace{1cm}}]$.

The *t* distribution table and the χ^2 distribution table

$t_9(0.025) = 2.2622$	$t_9(0.05) = 1.8331$	$t_{10}(0.025) = 2.2281$	$t_{10}(0.05) = 1.8125$
$\chi_9^2(0.025) = 19.023$	$\chi_9^2(0.05) = 16.919$	$\chi_9^2(0.975) = 2.700$	$\chi_9^2(0.95) = 3.325$
$\chi_{10}^2(0.025) = 20.483$	$\chi_{10}^2(0.05) = 18.307$	$\chi_{10}^2(0.975) = 3.247$	$\chi_{10}^2(0.95) = 3.940$

Obtained
score

Part 2: Calculation (Show all your answer in detail)

- (1) You ask your neighbor to water a sickly plant while you are on vacation. Without water it will die with probability 0.9; with water it will die with probability 0.2. You are 90 percent certain that your neighbor will remember to water the plant.
- (a) What is the probability that the plant will be alive when you return?
- (b) If it is dead, what is the probability your neighbor forgot to water it?

(2) Suppose that the probability density function of the continuous random variable X is

$$f(x) = \begin{cases} 2(x-1), & x \in [1, 2] \\ 0, & elsewhere. \end{cases}$$

Let
$$Y = e^X$$
.

Find: (a) the probability density function of $Y f_{Y}(y)$; (b) $P(1 < Y < e^{1.5})$; (c) E(Y).

(3) Suppose that the joint probability density of two random variables X and Y are given by

$$f(x,y) = \begin{cases} c, & -1 \le x \le 1, \ x+y \le 1, \ 0 \le y \le x+1 \\ 0, & elsewhere. \end{cases}$$

Find: (a) the value of constant c;

- (b) the marginal densities $f_X(x)$, $f_Y(y)$;
- (c) whether the two random variables X and Y are independent or not. (Please give your reason).

Semester One of Academic Year (2015---2016) of BDIC Resit Exam Paper

(4) Suppose $X_1, X_2 \cdots X_n$ is a sample from X, the probability density function is

$$f(x,\theta) = \begin{cases} \frac{\theta}{x^{\theta+1}}, & x > 1\\ 0, & x \le 1 \end{cases}$$

where $\theta > 1$. Find:

- (a) the moment estimator of θ ;
- (b) the maximum likelihood estimator of θ .

(5) The life of a batch of bulbs is to be studied. Suppose the life of a bulb X (in hours) is normal distributed as $N(\mu, \sigma^2)$. A sample of 10 bulbs are drawn, from which we know the sample mean and sample variance are $\bar{X}=153$, $S^2=64$.

Question: at level of significance 0.05,

- (a) test $H_0: \mu = 150 \leftrightarrow H_1: \mu \neq 150$
- (b) test $H_0: \sigma = 8 \leftrightarrow H_1: \sigma \neq 8$