Investigating Machine Learning Methods for Survival Prediction with an Application to TCGA Breast Cancer Data

Ziyu Wang

Supervisor: Dr. Y. Gu, Department of Statistics & Actuarial Science

Introduction

Motivation: 2,3

Most Prevalent Cancer in Women

Leading Cause of Cancer Mortality

0-54% Rates of Overdiagnosis

Objectives:

- To compare ML models for predicting survival in breast cancer cases
- To explore adjusting therapeutic interventions based on survival predictions

Pipeline $S(t) = P(T \geq t) = e^{-\int_0^t \lambda(u) du}$ **Historical Patients** A1BG Event Output&Convert 259 **Best-Performed** Prediction Model 203.7 **New Patient Adjust for Over-Treatment**

Data & Methods

Breast invasive carcinoma data sourced from TCGA (The Cancer Genome Atlas)

Feature Engineering

Remove pariwise correlation

Data Stratification

Polynomial, spline, and interaction terms

Dimension Reduction (PCA)

1. Deep Survival Analysis (DeepSurv)

• Log Partial Likelihood⁵:

2. Survival Support Vector Regression (Survival SVR)

• Objective function⁶:

$$f(w,b) = rac{1}{2}\mathbf{w}^T\mathbf{w} + rac{\gamma}{2}\sum_{i=0}^n(\zeta_{\mathbf{w},b}(y_i,x_i,\delta_i))^2 \ \zeta_{w,b}\left(y_i,x_i,\delta_i
ight) = egin{cases} max\left(0,y_i-(w^Tx_i+b)
ight) & if\delta_i=0, \ y_i-(w^Tx_i+b) & if\delta_i=1, \end{cases}$$

3. Random Survival Forest (RSF) ⁴

- Bootstrap B samples, each excluding 37% as out-of-bag (OOB) data.
- Grow survival trees to the full size:
 - Randomly select p variables at each node.
 - Perform log-rank splits.
 - Constraint:
 - Terminal nodes must have at least d₀ unique deaths
- Predict terminal node CHF values.
- Average cumulative hazard function (CHF) from all trees.
- Evaluate prediction error using OOB data.

Evaluation & Results

Train-Test Split (at 4 to 1 rate)

Hyperparameter Tuning (5 repeats of 5-fold cross-validation) Repeated Evaluation (20 times)

• Evaluation Metrics:

- Concordance index (C-index):
 - Measures the ability to rank individuals by survival times correctly.
 - **Higher** values (closer to 1) indicate **better** predictive performance⁷.

$$ext{C-index} = rac{\sum_{i,j} I(T_j < T_i) \cdot I(r_j > r_i) \cdot \delta_j}{\sum_{i,j} I(T_j < T_i) \cdot \delta_j}$$

- Integrated Brier Score (IBS):
 - Reflects overall model accuracy and calibration.
 - Lower values (closer to 0) signify better performance⁷.

$$IBS(au) = rac{1}{ au} \int_0^ au rac{1}{n} \sum_{i=1}^n \left(rac{\left(0 - \hat{S}(t|x_i)
ight)^2 \cdot I(Y_i \leq t, \delta_i = 1)}{\hat{G}(Y_i)} + rac{\left(1 - \hat{S}(t|x_i)
ight)^2 \cdot I(Y_i > t)}{\hat{G}(t)}
ight) dt$$

Models\Metrics	C-index (95% C.I.)	IBS (95% C.I.)
CPH (as baseline)	0.261 (0.261, 0.261)	0.336 (0.336, 0.336)
DeepSurv	0.831 (0.826, 0.837)	0.122 (0.118, 0.126)
Survival SVM	0.611 (0.611, 0.611)	NA
RSF	0.450 (0.447, 0.454)	0.213 (0.212, 0.214)

Conclusion & Discussion

• Clinical Insights:

- Low-risk Group: employ watchful waiting or less aggressive treatments.
- High-risk Group: optimize treatment plans and ensure timely interventions.

• Overall Implications:

- All ML models outperformed the baseline model, CPH
- DeepSurv demonstrated superior predictive performance

• Future Directions:

- Alternative dimension reduction methods ¹
- Unique challenges of subtypes like TNBC
- Additional Multi-omics data for refined predictive models

References and Acknowledgement

- 1. Bartenhagen, C., Klein, H.-U., Ruckert, C., Jiang, X., & Dugas, M. (2010). Comparative study of unsupervised dimension reduction techniques for the visualization of microarray gene expression data. BMC Bioinformatics, 11(1). https://doi.org/10.1186/1471-2105-11-567
- 2. Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R. L., Soerjomataram, I., & Jemal, A. (2024). Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians. https://doi.org/10.3322/caac.21834
- 3. Dunn, B. K., Woloshin, S., Xie, H., & Kramer, B. S. (2022). Cancer overdiagnosis: A challenge in the era of screening. Journal of the National Cancer Center, 2(4), 235–242. https://doi.org/10.1016/j.jncc.2022.08.005 4. Ishwaran, H., Kogalur, U. B., Blackstone, E. H., & Lauer, M. S. (2008). Random survival forests. The Annals of Applied Statistics, 2(3), 841–860. https://doi.org/10.1214/08-aoas169
- 5. Katzman, J., Shaham, U., Bates, J., Cloninger, A., Jiang, T., & Kluger, Y. (2016). DeepSurv: Personalized treatment recommender system using A Cox proportional hazards deep neural network. https://doi.org/10.48550/ARXIV.1606.00931 6. Pölsterl, S., Navab, N., & Katouzian, A. (2015). Fast training of support vector machines for survival analysis. In Machine Learning and Knowledge Discovery in Databases (pp. 243–259). Springer International Publishing.
- 7. Steyerberg, E. W., Vickers, A. J., Cook, N. R., Gerds, T., Gonen, M., Obuchowski, N., Pencina, M. U. (2010). Assessing the performance of prediction models: A framework for traditional and novel measures. Epidemiology (Cambridge, Mass.), 21(1), 128–138. https://doi.org/10.1097/ede.0b013e3181c30fb2

I want to express my sincere gratitude to Dr. Y. Gu, my supervisor, for her invaluable guidance and unwavering support throughout this endeavor. I also appreciate the researchers and contributors involved in the TCGA breast cancer dataset for their efforts in generating and sharing this valuable data, which formed the foundation of my research.