Name, group no:

- 1. [10 points] Let (X_t) be independent identically distributed random variables with $\mathbb{P}(X_i=-1)=0.4$ and $\mathbb{P}(X_i=+1)=0.6$. Consider the sum $S_t=X_1+X_2+\ldots+X_t$.
 - (a) [3] Is S_t a martingale?
 - (b) [7] Find all constants c such that $M_t=c^{S_t}$ is a martingale.

Jame, group no:	
	• • • • •

- 2. [10 points] Let a(t) be a deterministic function, $M_t = a(t)\cos(3W_t)$ and (W_t) is a Wiener process.
 - (a) [4] Find dM_t .
 - (b) [6] Find a non-zero function a(t) such that (M_t) is a martingale.

Name, group no:

3. [10 points] You have two correlated Wiener processes, (A_t) and (B_t) , with $Corr(A_t - A_s, B_t - B_s) = \rho$ for all t > s.

Split the time interval [0;t] into n small segments of equal length. Let Δ_i^A be the increment of the Wiener process (A_t) on the i-th small segment, i.e. $\Delta_i^A = A(it/n) - A((i-1)t/n)$. Let Δ_i^B be the increment of the Wiener process (B_t) on the i-th small segment.

Consider the sum of cross-products, $S_n = \sum_{i=1}^n \Delta_i^A \Delta_i^B$.

- (a) [3] Find $\mathbb{E}(S_n)$.
- (b) [4] Does $Var(S_n)$ tend to 0 when $n \to \infty$?
- (c) [2] Find the mean square limit of S_n .
- (d) [1] How would you write this limit in a short hand notation with dA_t and dB_t ?

Name, group no:

- 4. [10 points] The process (X_t) has $X_0=2024$, $dX_t=W_t^2dW_t+W_tdt$, where (W_t) is a Wiener process.
 - (a) [2] Is (X_t) a martingale?
 - (b) [4] Find $d(X_tW_t)$.
 - (c) [4] Find $Cov(X_t, W_t)$.

Jame, group no:	

5. [10 points] Consider two-period binomial model with initial share price $S_0 = 600$. Up and down share price multipliers are u = 1.2, d = 0.9, risk-free interest rate is r = 0.05 per period.

The option pays you the maximal share price $X_2 = \max\{S_0, S_1, S_2\}$ at t = 2.

- (a) [4] Find the risk neutral probabilities.
- (b) [6] Find the current price X_0 of this option.

Name, group no:	

6. [10 points] Consider the framework of Black and Scholes model with riskless rate r, volatility σ and initial share price S_0 .

Find the current price X_0 of an option that pays you $X_T = 1$ at fixed time T if $S_T \ge 2S_0$.

Hint: you may use the standard normal cumulative distribution function in your answer.