PROBLEM SOLVING 5

- 1. Consider a multilayer feedforward network, all the neurons of which operate in their linear regions. Show that such a network is equivalent to a single-layer feedforward network.
- 2. Consider a neural network with two inputs, x_1 and x_2 , and one output, y. Suppose the error for one training pattern is given by:

$$e = d \log y + (1 - d) \log(1 - y)$$

Where d is a constant and θ is the bias. There are two neurons in the network: one hidden neuron and one output neuron. The hidden neuron receives signals from x_1 and x_2 , while the output neuron receives signals from the hidden neuron and also directly from the two inputs. The activation function, φ , used for the two neurons is differentiable. Derive expressions that yield the derivatives of e with respect to x_1 and x_2 , i.e., derive expressions for $\frac{\partial e}{\partial x_1}$ and $\frac{\partial e}{\partial x_2}$.

