Convolution Neural Networks

Facial Detection & Recognition

Impact: Medicine, Healthcare

Impact: Self-driving cars

What Computers See?

☐ Images as Numbers: an image is just a matrix of numbers [0, 255]

_				_	_		_		_		_
157	153	174	168	150	152	129	151	172	161	155	356
155	182	163	74	75	62	39	17	110	210	180	154
180	180	50	14	34	- 6	10	33	48	106	159	181
206	109	6	124	131	111	120	204	166	15	56	180
194	68	197	251	297	299	229	228	227	87	75	201
172	105	207	233	233	214	220	239	228	38	74	206
186		179	209	185	215	211	158	139	75	20	165
189	97	166		10	168	124	11	31	62	22	148
199	168	191	193	158	227	178	143	182	106	36	190
205	174	156	252	236	231	149	178	228	43	95	234
190	216	116	149	236	187	85	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	94	50	2	109	249	215
187	196	236	75	١	81	47	0		217	255	211
183	202	237	145		0	12	108	200	126	243	234
196	206	123	207	177	121	122	200	175	13	95	216

157	153	174	168	150	152	129	151	172	161	156	156
156	182	163	74	75	62	33	17	110	210	180	154
180	180	50	14	34	6	10	33	48	106	159	181
206	109	5	124	131	111	120	204	166	16	56	180
194	68	137	251	237	239	239	228	227	87	n	201
172	106	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	216	211	158	139	75	20	169
189	97	165	84	10	168	134	11	31	62	22	148
199	168	191	199	158	227	178	143	182	106	36	190
205	174	155	252	236	231	149	178	228	43	95	234
190	216	116	149	236	187	86	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	96	50	2	109	249	215
187	196	235	76	1	81	47	0	6	217	256	211
183	202	237	145	0	0	12	108	200	138	243	236
196	206	123	207	177	121	123	200	175	13	96	218

Higher level Feature detection

Let's identify key features in each image category

Nose, Eye, Mouth

Wheels, Headlight, Number plate

Door, Windows, Steps

Manual Feature Extraction

Domain knowledge

Define features

Detect features to classify

☐ What are Problems?

Manual Feature Extraction

Domain knowledge

Define features

Scale variation

Detect features to classify

Viewpoint variation

Illumination conditions

Deformation

Occlusion

Intra-class variation

Manual Feature Extraction

Domain knowledge

Define features

Detect features to classify

Deformation

Learning Feature Representation

☐ Can we learn **hierarchy of features** directly from the data instead of hand engineering?

Low level features

Edges, dark spots

Mid level features

Eyes, ears, nose

High level features

Facial structure

Learning Visual Features

Deep Learning on large Images

64x64

Fully connected Neural Network

Input:

- 2D image
- Vector of pixel values

Fully Connected:

- Connect neuron in hidden layer to all neurons in input layer
- · No spatial information!
- · And many, many parameters!

How can we use spatial structure in the input to inform the architecture of the network?

Using Spatial Structure

Input: 2D image.
Array of pixel values

Idea: connect patches of input to neurons in hidden layer:
Neuron connected to region of input. Only "sees" these values.

Using Spatial Structure

Connect patch in input layer to a single neuron in subsequent layer.

Use a sliding window to define connections.

How can we weight the patch to detect particular features?

Applying Filters to extract Features

- 1) Apply a set of weights a filter to extract local features
 - 2) Use multiple filters to extract different features

3) Spatially **share** parameters of each filter (features that matter in one part of the input should matter elsewhere)

Feature Extraction with Convolution

- Filter of size 4x4 : 16 different weights
- Apply this same filter to 4x4 patches in input
- Shift by 2 pixels for next patch

This "patchy" operation is **convolution**

- 1) Apply a set of weights a filter to extract local features
 - 2) Use multiple filters to extract different features
 - 3) Spatially share parameters of each filter

Edge Detection Example

Vertical Edge Detection

*

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

1	0	-1
1	0	-1
1	0	-1

-5	-4	0	8
-10	-2	2	3
0	-2	-4	-7
-3	-2	-3	-16

Vertical Edge Detection

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

1	0	-1
1	0	-1
1	0	-1

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

More Edge Detection examples

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

More Edge Detection examples

0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10

1	0	-1
1	0	-1
1	0	-1
	П	

0	-30	-30	0
0	-30	-30	0
0	-30	-30	0
0	-30	-30	0

Vertical and Horizontal Edge Detection

1	0	-1
1	0	-1
1	0	-1

1	1	1
0	0	0
-1	-1	-1

Horizontal

Vertical

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10

1 1 1 0 0 0 -1 -1 -1
 0
 0
 0

 30
 10
 -10
 -30

 30
 10
 -10
 -30

 0
 0
 0
 0

Learning to detect Edges

- Simple vertical Edge detector filter
- Sobel Filter
- Schorr Filter

1	0	-1
2	0	-2
1	0	-1

3	0	-3
10	0	-10
3	0	-3

With the rise of Deep Learning era:
 Instead of hand engineered,
 we can learn the weights of filters

w1	w2	W3
W4	w5	W6
w7	w8	W9

Feature extraction and Convolution: a case study X or X?

Image is represented as matrix of pixel values... and computers are literal! We want to be able to classify an X as an X even if it's shifted, shrunk, rotated, deformed.

Features of X

Filters to detect X Features

The Convolution Operation

The Convolution Operation

1x1	1x0	1x1	0	0
0x0	1x1	1x0	1	0
0x1	0 x 0	1x1	1	1
0	0	1	1	0
0	1	1	0	0

0	0	0	0	0	0	0
0	60	113	56	139	85	0
0	73	121	54	84	128	0
0	131	99	70	129	127	0
0	80	57	115	69	134	0
0	104	126	123	95	130	0
0	0	0	0	0	0	0

114		

•Let us take a kernel of size (7x7x3) for understanding. Each of the kernels is considered to be a feature identifier, hence say that our filter will be a curve detector.

0	0	0	0	0	30	0
0	0	0	0	30	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	0	0	0	0

Pixel representation of filter

Visualization of a curve detector filter

• The original image and the visualization of the kernel on the image.

Visualization of the receptive field

0	0	0	0	0	0	30
0	0	0	0	50	50	50
0	0	0	20	50	0	0
0	0	0	50	50	0	0
0	0	0	50	50	0	0
0	0	0	50	50	0	0
0	0	0	50	50	0	0

Pixel representation of the receptive field

0	0	0	0	0	30	0
0	0	0	0	30	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	0	0	0	0

Pixel representation of filter

The sum of the multiplication value that is generated is = 4*(50*30) + (20*30) = 6600 (large number)

Now when the kernel moves to the other part of the image.

0	0	0	0	0	0	0
0	40	0	0	0	0	0
40	0	40	0	0	0	0
40	20	0	0	0	0	0
0	50	0	0	0	0	0
0	0	50	0	0	0	0
25	25	0	50	0	0	0

0 0 0 0 30 0 0 0 0 0 30 0 0 0 0 0 30 0 0 0 0 0 0 30 0 0 0 0 0 0 30 0 0 0 0 0 0 30 0 0 0							
0 0 0 30 0 0 0 0 0 0 30 0 0 0 0 0 0 30 0 0 0	0	0	0	0	0	30	0
0 0 0 30 0 0 0 0 0 0 30 0 0 0	0	0	0	0	30	0	0
0 0 0 30 0 0 0	0	0	0	30	0	0	0
	0	0	0	30	0	0	0
0 0 0 30 0 0 0	0	0	0	30	0	0	0
	0	0	0	30	0	0	0
0 0 0 0 0 0 0	0	0	0	0	0	0	0

Visualization of the filter on the image

Pixel representation of receptive field

Pixel representation of filter

The sum of the multiplication value that is generated is = 0 (small number).

Example Visualization of Filters: 1st con layer of trained network

Visualizations of filters

Convolution Neural Networks (CNNs)

CNN for Classification

- 1. Convolution: Apply filters to generate feature maps.
- 2. Non-linearity: Often ReLU.
- 3. Pooling: Downsampling operation on each feature map.

Train model with image data.

Learn weights of filters in convolutional layers.

Convolution Layers: Local connectivity

For a neuron in hidden layer:

- Take inputs from patch
- Compute weighted sum
- Apply bias

- 1) applying a window of weights
- 2) computing linear combinations
- 3) activating with non-linear function

Convolution for RGB Images

*

*

Convolution for RGB images

Applying one filter to an RGB image using Conv2D in Keras

<u>Input</u>	
1	1

1	1	1
1	1	1
1	1	1

100	100	100
100	100	100
100	100	100

10000	10000
10000	10000
10000	10000
	10000

<u>Filter</u>

<u>Output</u>

4	4		
4	4		
_			

40404	40404
40404	40404

40000	40000
40000	40000

CNN: Spatial arrangement of output volume

Layer Dimensions:

h x w x d

where h and w are spatial dimensions d (depth) = number of filters

Stride:

Filter step size

Receptive Field:

Locations in input image that a node is path connected to

Normal Neural Network vs CNN

Left: A regular 3-layer Neural Network. Right: A ConvNet arranges its neurons in three dimensions (width, height, depth), as visualized in one of the layers. Every layer of a ConvNet transforms the 3D input volume to a 3D output volume of neuron activations. In this example, the red input layer holds the image, so its width and height would be the dimensions of the image, and the depth would be 3 (Red, Green, Blue channels).