- Evolution along allometric lines of least resistance: Morphological
- differentiation in *Pristurus* geckos
- ⁴ Héctor Tejero-Cicuéndez^{1,2,*}, Iris Menéndez³, Adrián Talavera², Gabriel Riaño²,
- ⁵ Bernat Burriel-Carranza², Marc Simó-Riudalbas², Salvador Carranza², and Dean C.
- \mathbf{Adams}^4

11 August, 2023

- ⁸ Evolution and Conservation Biology research Group, Department of Biodiversity, Ecology and
- 9 Evolution. Faculty of Biology. Universidad Complutense de Madrid, 28040, Madrid, Spain
- ¹⁰ Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la
- Barceloneta 37-49, Barcelona 08003, Spain
- ³Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Ger-
- 13 many

3

7

- ⁴Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa,
- 15 50010 USA
- *Correspondence: Héctor Tejero-Cicuéndez cicuendez93@gmail.com

17 Abstract

Species living in distinct habitats often experience unique ecological selective pressures, which 18 can drive phenotypic divergence. However, how ecophenotypic patterns are affected by allometric 19 trends and trait integration levels is less well understood. Here we evaluate the role of allometry in shaping body size and body form diversity in *Pristurus* geckos utilizing differing habitats. We 21 found that patterns of allometry and integration in body form were distinct in species with differ-22 ent habitat preferences, with ground-dwelling Pristurus displaying the most divergent allometric 23 trend and high levels of integration. There was also strong concordance between static allometry across individuals and evolutionary allometry among species, revealing that differences in body form among individuals were predictive of evolutionary changes across the phylogeny at macroevolutionary scales. This suggested that phenotypic evolution occurred along allometric lines of least resistance, with allometric trajectories imposing a strong influence on the magnitude and direction of size and shape changes across the phylogeny. When viewed in phylomorphospace, the largest rock-dwelling species were most similar to the smallest ground-dwelling species, and vice versa. Thus, in *Pristurus*, phenotypic evolution along the differing habitat-based allometric trajectories 31 resulted in similar body forms at differing body sizes in distinct ecological habitats.

3 1. Introduction

Understanding how phenotypic diversity evolves, and elucidating the forces that generate and maintain this diversity, are major goals in evolutionary biology. Because adaptive evolution is the product of natural selection, changes in ecological selection pressures are expected to affect the evolutionary trajectory of phenotypic traits that facilitate an organism's survival and reproduction in their habitat. The theory of natural selection predicts that differing habitats will exert unique ecological selection pressures on organisms, resulting in associations between ecological and phenotypic traits. Indeed, species inhabiting differing habitats often display functional, behavioral, or phenotypic differences, that have presumably been the result of adaptive diversification in their respective ecological contexts (Collar et al. 2010; Kaliontzopoulou et al. 2015; Price et al. 2015; Martinez et al. 2021; Kolmann et al. 2022).

44

One possible evolutionary outcome of ecological specialization is that organisms inhabiting similar environments display common phenotypic characteristics. When such patterns occur repeatedly 46 (Losos 1992; Schluter and McPhail 1992), this convergent evolution is treated as strong evidence of adaptation. Indeed the ecomorphological paradigm (Arnold 1983) is predicated, in part, on such cases, which emphasize the strong association between the phenotypic traits that organisms display (morphological, behavioral, or physiological) and the ecological characteristics of their habitat that mediate organismal performance. In vertebrates, ecomorphological trends have been well studied 51 in numerous taxonomic groups, and include the emblematic 'ecomorphs' of Caribbean Anolis lizards that exploit different microhabitats (Losos 1992, 2009; Mahler et al. 2013), differential beak morphology in species of Darwin's finches (Schluter and Grant 1984; Grant and Grant 2006; Reaney et al. 2020), the recurring phenotypes of African lake cichlids across ecological regimes (Albertson and Kocher 2001; Urban et al. 2022), and the distinct body forms of freshwater fishes in benthic and limnetic habitats (Jastrebski and Robinson 2004; Berner et al. 2008; Stuart et al. 2017), among others.

59

While the patterns of morphological differences in distinct ecological contexts have been well

documented, less-well understood is how ecomorphological differentiation has been influenced by trait covariation associated with body size differences (i.e., allometry). The study of size-related changes in anatomical traits has a long history in evolutionary biology (Huxley 1932; Jolicoeur 1963: Gould 1966: Klingenberg 1996: Zelditch and Swiderski 2022). One reason for this is that nearly all traits covary strongly with overall body size (Jolicoeur 1963; Gould 1966; Bookstein 2022), and as such, the effects of allometry on patterns of phenotypic diversity are expected to be considerable. Further, allometric patterns manifest widely across differing levels of biological organization: from variation across individuals at differing stages or ages (i.e., ontogenetic allometry), to variation across individuals in a single ontogenetic stage within a population or species (i.e., static allometry), to variation across species of differing sizes, as described by evolutionary allometry (see Cock 1966; Klingenberg and Zimmermann 1992). Indeed, across vertebrates, 71 numerous studies have shown that a sizeable proportion of overall phenotypic variation is related to interspecific differences in body size (Pyron and Burbrink 2009; Piras et al. 2010; Cardini and Polly 2013; e.g., Sherratt et al. 2014; Cardini et al. 2015; Bright et al. 2016; Bardua et al. 2021; Felice et al. 2021; Zelditch and Swiderski 2022). When viewed from this perspective, patterns of ontogenetic and evolutionary allometry are thought to play a decisive role in shaping patterns of phenotypic diversification across the tree of life. 77

However, allometry can also act as a restraining force on evolution by limiting the breadth of phenotypes that can be realized (Bright et al. 2019). This occurs because trait correlations influence the degree to which phenotypic variation is exposed to selection (Wagner and Altenberg 1996). Thus, the integration among traits can constrain phenotypic change in certain directions, or enhance variation along other phenotypic axes (Schluter 1996; Wagner and Altenberg 1996; Wagner and Zhang 2011; Klingenberg and Marugán-Lobón 2013; Goswami et al. 2014, 2016; Felice et al. 2018; Navalón et al. 2020). Further, because nearly all linear traits covary strongly with overall body size, allometric trends could be considered the quintessential expression of phenotypic integration (Zelditch and Swiderski 2022; Bookstein 2022). Thus, when evaluating ecophenotypic differences among taxa, it is important to consider how allometric trends of trait covariation influence such patterns (e.g., Esquerré et al. 2017; Patterson et al. 2022; Chatterji et al. 2022).

78

The Afro-Arabian geckos in the genus *Pristurus* afford the opportunity to elucidate the interdigitating effects of allometry and habitat specialization on clade-level patterns of phenotypic diversity. From an evolutionary perspective, Pristurus geckos are an ideal system to investigate the role of different factors in evolutionary history. They are found in both insular and continental settings, which are known to impose differential ecological selection pressures resulting in distinct evolutionary trajectories of species and clades (Losos and Ricklefs 2009). They are also distributed in the contact zone between Africa and Eurasia, a region of high biogeographic interest which has been the epicenter of major faunal interchanges and complex geologic and environmental processes (Kappelman et al. 2003; Tejero-Cicuéndez et al. 2022). The study of evolutionary dynamics in *Pristurus* and other Afro-Arabian taxa is also important biologically, as our understanding of the dynamics of biological systems in remote arid regions is generally 101 neglected and understudied (Durant et al. 2012). Furthermore, prior work on this system 102 (Tejero-Cicuéndez et al. 2021a) has revealed that the colonization of ground habitats has been 103 a trigger of morphological change, specifically reflected in an increase in body size and shape 104 disparity. Interestingly, some ground-dwelling species are among the largest of the genus and 105 also show increased relative head sizes and limb proportions, while some other species with 106 this ecological specialization have evolved to be among the smallest of the group. Additionally, 107 among the species exploiting rocky habitats (the most common ecological feature in *Pristurus*), 108 there are also species with both considerably large and small body sizes (Tejero-Cicuéndez et al. 109 2021a). What remains unexplored, however, is how the evolution of body form is related to differ-110 ences in body size and whether habitat specialization has an impact in this shape-size relationship. 111

112

In this study, we employed a combination of multivariate morphometric and phylogenetic comparative analyses to interrogate macroevolutionary patterns of evolutionary allometry in *Pristurus*geckos of Afro-Arabia. Using phenotypic, phylogenetic, and ecological data, we first characterized
allometric trends in body form in the group, to discern the extent to which evolutionary allometric
ric trends across the phylogeny aligned with habitat-based static allometry for species occupying
distinct ecological regimes. We then examined changes in allometric trends across the phylogeny,

and linked these patterns to overall phenotypic integration, diversification in morphospace, and
habitat utilization among taxa. Our analyses reveal that patterns of evolutionary allometry across
species align with allometric trends among individuals, and that differing habitat-based allometric trajectories have resulted in similar body forms at differing body sizes in distinct ecological
regimes. Thus, patterns of phenotypic diversification in *Pristurus* are the outcome of an interplay
between ecological specialization and size-form changes evolving along habitat-specific allometric
trajectories in the group.

2. Materials and Methods

127 (a) Data

We used a combination of phenotypic, phylogenetic, and ecological data to characterize and evaluate intra- and interspecific allometric trends in *Pristurus*. The data utilized here were obtained from 129 our prior work on this system (Tejero-Cicuéndez et al. 2021a, 2022), and are briefly described 130 here. First, we used a time-calibrated molecular phylogeny of squamates that included all members 131 of the genus *Pristurus*, including several currently undescribed taxa. The tree was estimated in 132 a Bayesian framework, using five mitochondrial markers, six nuclear markers, and 21 calibration 133 points (Tejero-Cicuéndez et al. 2022). Next, we categorized each species as belonging to one of three 134 ecological habitat groups (ground-dwelling, rock-dwelling, or tree-dwelling). Habitat designations 135 were based on substrate preferences and habitat use as found through extensive field observations 136 described in the primary literature (Arnold 1993; Arnold 2009, and references therein). Finally, 137 we obtained a phenotypic dataset containing body size (snout-vent length: SVL) and eight linear 138 measurements (Figure 1) that described overall body form: trunk length (TL), head length (HL), 139 head width (HW), head height (HH), humerus length (Lhu), ulna length (Lun), femur length (Lfe), 140 and tibia length (Ltb) (Tejero-Cicuéndez et al. 2021a). We restricted our study to those species 141 represented by nine or more individuals; resulting in a dataset of 687 individuals from 25 species 142 (invidivuals per species: mean = 27; min = 9, max = 56). All specimens used in this study 143 were adults, and thus patterns of ontogenetic allometry could not be explored. Species in the phenotypic dataset were then matched to the phylogeny, which was subsequently pruned to the 145

final topology. All measurements were log-transformed prior to statistical analyses. Additional details regarding data collection and formal descriptions of each linear measurement may be found in the original sources (Tejero-Cicuéndez et al. 2021a, 2022). The data are available on DRYAD:

https://doi.org/10.5061/dryad.xwdbrv1f6 (Tejero-Cicuéndez et al. 2021b).

(b) Statistical and Comparative Analyses

We conducted a series of analyses to interrogate allometric trends, patterns of integration, and 151 macroevolutionary changes in allometry, relative to differentiation in body form. First, we charac-152 terized evolutionary allometry in the genus by performing a phylogenetic multivariate regression of 153 body form on body size (i.e., SVL), using the species means as data. We then evaluated patterns 154 of static allometry among individuals using a pooled within-species regression (sensu Klingenberg 155 2016). Here a pooled within-species dataset was generated by obtaining residuals for all individuals relative to their respective species means, which were then pooled across species. This dataset 157 was then used in a multivariate regression to obtain an overall estimate of static allometry among 158 individuals. By first removing species-specific differences, this procedure partials out trends of 159 evolutionary allometry from the data, enabling patterns of static and evolutionary allometry to be 160 disentangled. From both the species-level and the individual-level analyses, we obtained the set 161 of regression coefficients, which respectively described the trajectories of evolutionary and static 162 allometry in morphospace. We then calculated the difference in their direction in morphospace to discern the extent to which patterns of static allometry at the individual level were concordant 164 with evolutionary allometric trends across species. 165

166

Next, we used the pooled within-species dataset to determine whether trends in static allometry differed across habitat groups. This was accomplished by performing a multivariate analysis of covariance, with body size (SVL), habitat, and $SVL \times habitat$ as model effects. Significance of model effects was evaluated using 999 iterations of a permutation procedure, where residuals from a reduced model were randomly permuted in each permutation (RRPP), model statistics were recalculated, and used to generate empirical null sampling distributions to evaluate the observed test statistics (following Freedman and Lane 1983; Collyer and Adams 2007; Collyer et

al. 2015). In this analysis, no variation was attributable to the habitat effect, as the pooled-within species data are mean-centered for both the dependent and independent variables. However, any differences in multivariate allometric slopes among habitats will be discernable, and revealed by a significant $SVL \times habitat$ interaction. To evaluate this possibility, we compared the direction of multivariate allometric vectors for each habitat group to one another, and to a vector representing multivariate isometry, by calculating pairwise angular differences in their direction in morphospace, and evaluating these relative to empirical sampling distributions obtained through RRPP (Collyer and Adams 2007; Adams and Collyer 2009; Collyer and Adams 2013). Here, residuals were obtained from a common isometry reduced model, whose common slope component described a pattern of multivariate isometry, and whose intercepts allowed for differences in least-squares means among groups. Patterns of multivariate allometry relative to body size were visualized via regression scores (Drake and Klingenberg 2008) and predicted lines (Adams and Nistri 2010), based on the coefficients and fitted values from the linear model described above.

Additionally, because allometry describes the extent to which traits covary with body size and with each other (i.e., integration), we conducted an analysis of integration. Here we characterized the extent of morphological integration in body form for individuals within each habitat group using the pooled within-species dataset, and by summarizing the dispersion of eigenvalues of their respective trait covariance matrix (Pavlicev et al. 2009). This measure (V_{rel}) was subsequently converted to an effect size (a Z-score), which quantified the strength of morphological integration (Conaway and Adams 2022). We then performed a series of two-sample tests to compare the strength of morphological integration across habitat groups, following the procedures of Conaway and Adams (2022). Additionally and for comparison, we repeated these analyses on the set of size-standardized trait data, found as a set of shape ratios (Mosimann 1970) where each trait was divided by body size (Supplementary Material).

To determine the extent to which static and evolutionary allometry were concordant, we evaluated
the directions in morphospace of both the evolutionary (species-level) and static (habitat-based)
allometric trends. Specifically, we obtained the set of regression coefficients from both the

phylogenetic multivariate regression and the multivariate analysis of covariance analyses above, 203 and calculated the angular difference in direction between the evolutionary allometry trajectory and the static allometry trend for each habitat group. The observed angles were then statistically 205 evaluated relative to empirical sampling distributions obtained through permutation (RRPP), 206 based on the common isometry model described above. 207

208

Next, to discern how allometric trends resulted in the evolution of distinct body forms, we examined 209 changes in relative body form across the phylogeny. Here we treated the head dimensions and limb 210 dimensions separately, as allometric trends could potentially differ between these body regions due 211 to differential functional or selective constraints (Kaliontzopoulou et al. 2010). Because both the 212 head and limb data were multivariate, we used regression scores (sensu Drake and Klingenberg 2008) of a multivariate regression of head traits versus SVL and limb traits versus SVL to represent 214 the allometric trends in each dataset. We then measured the mean residuals of each species to 215 the inferred allometric trend, which described the extent to which head and limb proportions 216 of species were greater or smaller than expected for their body size. The species residuals were 217 then mapped on the phylogeny of *Pristurus* using a Brownian motion model of evolution, to 218 qualitatively evaluate shifts in head and limb proportionality across the phylogeny for the group. 219 Similarly, within-species patterns of static allometry were visualized by plotting regression scores 220 versus SVL for both head and limb traits separately. 221

222

223

227

229

Finally, to relate within-species allometric trends with patterns of phenotypic diversification in the group, we generated a phylomorphospace (sensu Sidlauskas 2008), based on a principal component 224 analyses (PCA) of the size-standardized species means (i.e., relative body proportions) obtained 225 from a non-phylogenetic regression. Here, phenotypic similarities among species, relative to their 226 phylogenetic relationships and habitat affiliations, were observed. A similar phylomorphospace was constructed with size-standardized species means obtained from a phylogenetic regression. 228 and another one for species means not corrected for body size. The phenotypic disparity among species means in each habitat was calculated and subsequently compared (Supplementary Mate-230 rial). Additionally, anatomical changes associated with allometric trends across taxa were visually 231

depicted via representative specimens from the largest and smallest ground-dwelling species (scaled to unit size), and specimens from a large and small rock-dwelling species, to aid in describing these allometric trends. All analyses were conducted in R 4.2.1 (R Core Team 2022), using RRPP version 1.3.2 (Collyer and Adams 2018; Collyer and Adams 2022) and geomorph 4.0.5 (Baken et al. 2021a) for statistical analyses and the tidyverse version 1.3.0 (Wickham et al. 2019), phytools version 0.7-77 (Revell 2012), and a modified version of the function ggphylomorpho [https://github.com/wabarr/ggphylomorpho] for data manipulation and visualization, as well as scripts written by the authors (Supplementary Material).

3. Results

249

Using phylogenetic regression, we found significant evolutionary allometry in body form across species ($N_{sp}=25;\ F=217.9;\ Z=5.53;\ P<0.001$). Likewise, when static allometry in body form was examined across individuals, a similar pattern was observed ($N_{ind}=687;\ F=1176.9;\ Z=8.24;\ P<0.001$). Further, the vectors of regression coefficients between the two analyses were oriented in a similar direction and were nearly parallel in morphospace ($\theta=5.64^\circ;\ Table\ 1$). This revealed that the pattern of multivariate allometry across individuals was largely concordant with macroevolutionary trends of interspecific static allometry among species of *Pristurus* across the phylogeny.

Our analyses also exposed significant differences in the allometry of body form among Pristurus Further, pairwise comparisons of multivariate utilizing distinct habitats (Tables 1 and 2). 251 allometric vectors revealed that patterns of static allometry in each habitat differed significantly 252 from isometry, indicating the presence of multivariate allometry in each (Table 3). Additionally, 253 comparisons identified that ground-dwelling Pristurus displayed the most distinct allometric 254 trend as compared with *Pristurus* occupying both the rock and tree habitats (Table 3; Figure 255 2). Here, regression coefficients of each trait versus size (Supplementary Material) revealed 256 that ground-dwelling *Pristurus* exhibited higher coefficients for head traits as compared with 257 rock-dwelling and tree-dwelling taxa ($\beta_{ground} > \beta_{rock}$; $\beta_{ground} > \beta_{tree}$). By contrast, coefficients 258

for limb traits were somewhat smaller for ground-dwelling Pristurus as compared with other taxa ($\beta_{ground} < \beta_{rock}$; $\beta_{ground} < \beta_{tree}$). Thus, these findings implied that within species, larger individuals of ground-dwelling Pristurus displayed proportionately larger heads and slightly smaller limbs as compared with large individuals in taxa utilizing other habitat types. Visualizations of the allometric trends (Figure 2) confirmed these statistical findings, and indicated that the allometric trajectory in ground-dwelling Pristurus was more extreme as compared with either rock- or tree-dwelling Pristurus.

266

Examination of patterns of trait covariation for the pooled within-species data revealed strong 267 levels of morphological integration in the ground and tree ecotypes, with lower levels of inte-268 gration displayed in the rock habitat. Subsequent two-sample tests revealed that the strength of morphological integration was significantly greater in both ground-dwelling and tree-dwelling 270 Pristurus than in those utilizing rock ($Z_{ground-rock} = 6.05$; $P \ll 0.001$; $Z_{tree-rock} = 4.07$; 271 $P \ll 0.001$). Levels of morphological integration did not differ between ground and tree-dwelling 272 Pristurus ($Z_{tree-rock} = 0.38$; P = 0.702). Finally, when body size was taken into account, levels of 273 integration dropped considerably, though the overall pattern and differences among habitat groups 274 remained the same (Supplementary Material). 275

276

Comparisons of evolutionary allometry with static allometry in each habitat revealed substantial 277 concordance between allometric trends across these levels. Here, vectors of regression coefficients 278 representing static allometry within habitat groups were oriented in very similar directions with 279 the regression vector representing evolutionary allometry, with small pairwise angles between them 280 $(\theta:5.8^{\circ}\rightarrow7.2^{\circ})$. Subsequent permutation tests indicated no differences in direction between the 281 regression vector representing evolutionary allometry and the static allometry vectors for *Pristurus* 282 in both the ground or tree habitats, indicating strong congruence between them (Table 4). By 283 contrast, rock-dwelling *Pristurus* differed most in their static allometry trend relative to patterns 284 of evolutionary allometry. Notably, static allometry in ground-dwelling *Pristurus* was most similar 285 to trends of evolutionary allometry, displaying the smallest angular difference in direction when 286 compared to evolutionary allometry. Overall, these findings implied that phenotypic evolution 287

across species aligned closely with directions of allometric variation within habitat groups at the individual level, describing a trend where larger individuals – and larger ground-dwelling species – exhibited disproportionately larger heads and limbs, while smaller individuals – and smaller ground-dwelling species – displayed disproportionately smaller heads and limbs.

292

Mapping the residuals of phylogenetic regression onto the phylogeny showed that large ground-293 dwelling species displayed greater head proportions than large rock-dwelling species, who exhibited 294 smaller heads relative to body size (Figure 3A). Conversely, the opposite pattern was observed 295 when comparing small species utilizing these habitats: ground-dwelling species showed small 296 relative head proportions while rock-dwelling species displayed generally larger head proportions. 297 In contrast, limb shape showed more variable patterns. Although all large ground-dwelling species consistently displayed large relative limb proportions, large rock-dwelling species were more variable 299 in this trait, with P. insignis exhibiting large and P. insignoides small limb proportions. For small 300 species, shifts in relative limb proportions seemed more independent of habitat utilization, since 301 there were differences in limb residuals both within rock- and ground-dwelling species (Figure 3B). 302 Likeweise, static allometry trends within species revealed that ground-dwelling species generally 303 displayed steeper allometric patterns in head proportions as compared with rock-dwelling species 304 (Figure 4). Overall, there was general concordance across taxa in terms of trends of multivariate 305 allometry, affirming that the association between evolutionary allometry and habitat-based static 306 allometry was robust. 307

308

Viewing differentiation in *Pristurus*' relative body proportions in the phylomorphospace based 300 on the size-standardized species means obtained from a non-phylogenetic regression (Figure 5) 310 revealed a broad overlap among habitat groups in the first few dimensions, though arboreal 311 (tree-dwelling) species were somewhat more constrained in morphospace. Rock-dwelling species 312 occupied a slightly larger region of morphospace as compared with the other groups, though this 313 pattern was not statistically significant (Supplementary Material). Intriguingly, when viewed 314 in relation to body size, large Pristurus species were not localized to a particular region of 315 morphospace, nor were smaller species. Instead, the largest rock-dwelling species were found 316

in close proximity to the smallest ground-dwelling species, indicating that they were similar in relative body proportions. Likewise, the smallest rock-dwelling species were found close to large ground-dwelling species in morphospace, indicating they displayed similar body proportions as well. These results did not change when we generated the phylomorphospace based on the size-standardized species means obtained from a phylogenetic regression instead (Supplementary Material).

323

Finally, when representative specimens were scaled to a similar body size (Figure 6), the anatomical consequences of differences in allometric trends on body form became apparent. Here, larger 325 ground-dwelling *Pristurus* species displayed disproportionately larger heads and limbs as compared 326 with large *Pristurus* species utilizing other habitat types. Conversely, smaller rock-dwelling species were found to have disproportionately larger heads and limbs than smaller ground-dwelling species. 328 These patterns corresponded closely with those identified in morphospace (Figure 5), where large 320 ground-dwelling species were similar in body form to small rock-dwelling species, while small 330 ground-dwelling species were similar in body form to large rock-dwelling species (Figure 6). Thus, 331 synthesizing the patterns revealed in the phylomorphospace with those from the other analyses 332 revealed that the same body proportions could be obtained in different ways, as determined by 333 subtle differences in allometric slope across habitats, combined with body size differences. As 334 such, species with similar body proportions displayed differing overall size, were found in distinct 335 habitats, and exhibited different allometric trends. 336

337

38 4. Discussion

Elucidating the selective forces that generate patterns of phenotypic diversity is a major goal in evolutionary biology. For species that utilize distinct habitats, disentangling the causes of phenotypic differentiation across those habitats is essential for our understanding of how natural selection operates and how evolution proceeds. In this study, we evaluated the role of potential drivers of body form differentiation in the geckos of the genus *Pristurus*. To this end, we compared allometric trends and levels of integration among *Pristurus* occupying distinct habitats, interrogated allometric patterns at both the static and evolutionary levels, and related these trends to diversification in body form. Our findings have several important implications for how ecological specialization, phenotypic integration, and body form evolution along allometric trajectories relate to patterns of phenotypic diversity generally, and the evolution of phenotypic diversification in *Pristurus* in particular.

350

First, our analyses revealed that patterns of allometry in body form and morphological integration are relatively distinct in ground-dwelling *Pristurus* lizards, as compared with *Pristurus* occupying 352 other habitats. Specifically, we found that multivariate vectors of regression coefficients differed 353 significantly from what was expected under isometry (Table 3) for taxa utilizing all habitat types (ground, rock, tree), indicating that in *Pristurus*, allometric scaling patterns predominate. 355 Further, our interrogation of allometric trends revealed differences between habitat types, where 356 ground-dwelling Pristurus displayed steeper allometric slopes for head traits as compared with 357 rock and tree-dwelling taxa. Biologically, these patterns revealed that not only does shape differ 358 between large and small *Pristurus*, but this pattern also differs across habitat types. Specifically, 359 large ground-dwelling *Pristurus* present disproportionately larger heads relative to large individ-360 uals in other habitats, while small ground-dwelling *Pristurus* exhibit disproportionately smaller 361 heads (Figure 3). These findings are consistent with previous work at the macroevolutionary 362 level (Teiero-Cicuéndez et al. 2021a), where large ground species were also found to display 363 disproportionately large heads.

365

Second, our findings revealed that, within species, rock-dwelling *Pristurus* show a converse pattern, where smaller individuals displayed relatively larger heads, while larger individuals have smaller heads relative to their body size. These allometric patterns also corresponded with findings at macroevolutionary scales (Tejero-Cicuéndez et al. 2021a), where similar patterns at the species level were observed. Regarding relative limb proportions, we found a high variability among small rock-dwelling species rather than a common pattern (Figure 3B). Indeed, earlier work in the subclade comprising several of these species (the *P. rupestris* species complex)

found two well-differentiated phenotypes in populations of these lineages segregated by elevation (Garcia-Porta et al. 2017). These two ecotypes, defined as 'slender' and 'robust', differed in 374 their head and limb characteristics. Our work is consistent with this, and extends these patterns 375 to the allometric realm. Tejero-Cicuéndez et al. (2021a) also performed habitat ancestral 376 estimation, finding that the rock habitat was the most likely ancestral condition in the group, 377 with subsequent colonization by *Pristurus* of ground habitats. When patterns of allometry 378 are viewed through this lens, it suggests the hypothesis that habitat shifts from rock-dwelling 379 to ground-dwelling incurred a concomitant evolutionary shift in allometric trajectories as well 380 (Adams and Nistri 2010). Indeed, our analyses are consistent with this hypothesis, as allometric 381 trends are inferred to be more rock-like towards the root of the *Pristurus* phylogeny (Figure 3), 382 with subsequent shifts along branches leading to ground-dwelling species. This further suggests 383 that the segregation in body size and shape through differential allometric relationships across 384 habitats responds to adaptive dynamics concerning the colonization of new habitats. Thus, in 385 Pristurus, there is support for the hypothesis that colonization of ground habitats has been a 386 trigger for morphological change (Tejero-Cicuéndez et al. 2021a), as there appears to be a link 387 between shifts in allometric trajectories as a result of habitat-induced selection, and differential 388 patterns of body form observed across taxa. Similar patterns have been observed in other taxa, 389 where differences in allometric trajectories are associated with ecological differences across species 390 (Esquerré et al. 2017; Patterson et al. 2022; Chatterji et al. 2022). More broadly, these findings 391 are consistent with prior discoveries in other lizards, where the differential selective pressures 392 imposed by rocky and ground habitats have resulted in the differentiation of head and limb 393 morphology (Goodman et al. 2008; Kaliontzopoulou et al. 2010; Garcia-Porta et al. 2017; Foster 394 2018). Indeed, such phenotypic differences resulting from the effects of habitat-based 395 ecological selection have been extensively documented in reptiles as well as in other vertebrates 396 (Losos 2009; Reynolds et al. 2016; Hipsley and Müller 2017; Samuels and Hopkins 2017; Watanabe 397 et al. 2019; Busschau and Boissinot 2022; Navalón et al. 2022; Friedman et al. 2022), and 398 our work in *Pristurus* thus contributes to this growing body of literature. Nonetheless, because 390 the ecological shift to ground-dwelling habitats occurred only once on the phylogeny, it is also 400 possible that some unmeasured feature that evolved on the same branch could have affected the ob-401 served patterns. Thus, some caution in interpreting the causal direction of this trend is warranted. 402

However, considering the habitat-driven morphology perspective, the findings revealed here may 404 reflect ecological and behavioral changes linked to the adoption of a new lifestyle. For lizards, the 405 transition to utilizing ground habitats implies adopting an existence in more open environments than in rocky substrates. As such, numerous aspects of daily existence (including activity patterns, 407 climatic factors, prev availability, abundance of predators, etc.) are expected to exert a differential 408 influence on an organism's phenotype when compared with life in their ancestral environment 400 (Fuentes and Cancino 1979). Indeed, the largest ground-dwelling Pristurus species (P. carteri, 410 P. ornitocephalus, and P. collaris) differ from the rest of the genus in having developed partially 411 nocturnal habits, which would presumably have major ecological consequences for their survival 412 and reproduction. In this sense, these species might have been subjected to evolutionary processes selecting for larger relative head proportions, which would allow them to accommodate larger or 414 modified eyes, a clear advantage in animals with nocturnal and semi-nocturnal habits (Hall and 415 Ross 2006; Ross et al. 2007; Hall et al. 2012). Likewise, the large relative proportions found in the 416 limbs of large ground-dwelling species (Figure 3B) might be related to selective processes favoring 417 longer limbs in large species present in this new ecological context. Longer limbs in open habitats – 418 particularly for large species – might be advantageous for rapidly running and hiding in the sparse 419 vegetation (Arnold 2009) and, in hyper-arid areas such as the Arabian Peninsula, this morphology 420 might contribute to thermoregulation separating the body from the ground (Huev 1974; Arnold 421 1980: Avery et al. 1982). A more detailed examination of behavioral and morphological traits (e.g., 422 eye shape, limb insertion) might shed light on the factors driving this pattern and serve to establish 423 a stronger adaptive link between habitat use and morphological and allometric trends in *Pristurus*. 424

425

Another important finding of our study was the strong concordance between static allometry
across individuals and evolutionary allometry among *Pristurus* species. Our analyses revealed
small pairwise angles between static and evolutionary allometry vectors, indicating that allometric
trends at these two levels were oriented in similar directions and were largely concordant. As such,
size-associated changes in body form among individuals were predictive of evolutionary shifts
across taxa at higher macroevolutionary scales. This in turn, suggests that body form evolution in

Pristurus may follow an allometric line of least resistance (Marroig and Cheverud 2005). In other 432 empirical systems, a similarly tight correspondence between static and evolutionary allometry has 433 also been observed (Marroig and Cheverud 2005; Firmat et al. 2014; Voje et al. 2014; Brombacher 434 et al. 2017; Marcy et al. 2020), though the trend is not universal across all taxa or traits (see 435 Klingenberg and Zimmermann 1992; Voje et al. 2022). Nonetheless, when such trends are present, 436 they imply that allometric trajectories impose a prevailing influence on the magnitude, direction, 437 and rate of phenotypic change across the phylogeny. Our work in *Pristurus* contributes to the 438 growing literature on this topic, and suggests that perhaps such patterns may be more widespread. 439

440

Given the observation that static and evolutionary allometry in *Pristurus* are largely concordant, 441 an obvious question is: why might this be the case? One possible explanation is that when genetic covariation remains relatively constant, selection on body size will generate an evolutionary 443 allometric trajectory along the trend described by static allometry (Lande 1979, 1985). Here, 444 allometry effectively acts as a constraint on evolutionary change, as size-associated shape changes 445 at one hierarchical level are linked to changes at another level (Voje et al. 2014, 2022; Pélabon et 446 al. 2014). Further, when this is the case, one may also expect high levels of phenotypic integration 447 in traits associated with body size changes. Indeed, our analyses reveal precisely this pattern 448 in Pristurus, with the highest levels of integration in the group (ground-dwelling) whose static 449 allometry is most similar to that of evolutionary allometry. Thus, our results reveal that patterns 450 of trait covariation are more constrained in ground-dwelling species, such that their differences in 451 body form are most likely found along the primary allometric axis. When viewed in this light, 452 integration and allometry may thus be interpreted as potential drivers that facilitate morphological 453 change, as they provide a phenotypic pathway through adaptive lines of least resistance that 454 enable rapid evolutionary changes in particular phenotypic directions but not in others (Felice et al. 2018; Navalón et al. 2020). The fact that ground-dwelling species in *Pristurus* have been 456 found to have the widest phenotypic disparity, greatest range of body sizes, and highest rates of 457 morphological evolution (Tejero-Cicuéndez et al. 2021a) are all consistent with this hypothesis, 458 and suggest that in this group, integration describes the path of morphological evolution along 459 allometric lines of least resistance.

Finally, interpreting the observed patterns of phenotypic integration and allometry relative to 462 habitat-specific differences helps to shed light on the possible pathways by which phenotypic di-463 versity in *Pristurus* has evolved. For instance, prior work on this system (Tejero-Cicuéndez et al. 2021a) revealed that the colonization of new ecological habitats elicited strong ecological selection 465 and phenotypic responses. This was particularly true of the invasion of ground habitats, where 466 ground-dwelling species displayed the largest variation in body size in the genus. This observation 467 implies some level of ecological selection on body size. In lizards, the ecological context in which species exist is known to play a pervasive role in body size evolution (James and M'closkey 2004; 469 Meiri 2008; Tamar et al. 2019), as it does in other animal groups (Bergmann 1847; Calder 1983; 470 Peters 1983; LaBarbera 1989; Olson et al. 2009). While to date this has not been thoroughly explored in *Pristurus*, the evolutionary patterns revealed by our analyses suggest that the body size 472 diversity in this clade conforms, at least in part, with patterns expected under ecological selection 473 on body size. Intriguingly, such patterns are not only observed in ground- and rock-dwelling taxa, 474 but also in arboreal species, whose restricted phenotypic diversity in both size and shape (Figures 3) 475 & 5) is consistent with strong ecological selection in the arboreal habitat (Baken and Adams 2019: 476 Baken et al. 2021b). Furthermore, our study identified the presence of strong integration and 477 allometric trajectories, such that evolutionary changes in body size elicit corresponding changes in 478 body form. However, these trends differed significantly across habitats, implying that, at evolution-479 ary scales, they serve to channel phenotypic responses to selection, but do so in differing directions 480 for the different habitat groups. This, in turn, suggests that *Pristurus* species occupying different 481 habitats display differing combinations of body size with body form. The evolutionary consequence 482 of ecological selection is that species have evolved similar shapes (Figure 6), but do so in differing 483 habitats, and at different body sizes (Figure 5). Therefore, the phenotypic diversity observed in Pristurus is best explained as the result of a complex interplay between ecological selection, body 485 size differentiation, and differing allometric trajectories across ecological habitats.

487 References

- Adams, D. C., and M. L. Collyer. 2009. A general framework for the analysis of phenotypic trajectories in evolutionary studies. Evolution 63:1143–1154.
- Adams, D. C., and A. Nistri. 2010. Ontogenetic convergence and evolution of foot morphology in European cave salamanders (Family: Plethodontidae). BMC Evolutionary Biology 10:1– 10. BioMed Central.
- Albertson, R. C., and T. D. Kocher. 2001. Assessing morphological differences in an adaptive trait: A landmark-based morphometric approach. Journal of Experimental Zoology 289:385–403.
- Arnold, E. N. 1993. Historical changes in the ecology and behaviour of semaphore geckos (*Pristurus*, Gekkonidae) and their relatives. Journal of Zoology 229:353–384.
- Arnold, E. N. 2009. Relationships, evolution and biogeography of semaphore geckos, *Pristurus*(Squamata, Sphaerodactylidae) based on morphology. Zootaxa 2060:1–21.
- Arnold, E. N. 1980. The reptiles and amphibians of Dhofar, Soutern Arabia. Journal of Oman Studies Special Report:273–332.
- Arnold, S. J. 1983. Morphology, performance, fitness. American Zoologist 23:347–361.
- Avery, R. A., Bedford J. D., and C. P. Newcombe. 1982. The role of thermoregulation in lizard biology: Predatory efficiency in a temperate basker. Behavioral Ecology and Sociobiology 11:261–267.
- Baken, E. K., and D. C. Adams. 2019. Macroevolution of arboreality in salamanders. Ecology and Evolution 9:7005–7016.
- Baken, E. K., M. L. Collyer, A. Kaliontzopoulou, and D. C. Adams. 2021a. Geomorph 4.0 and gmShiny: Enhanced analytics and a new graphical interface for a comprehensive morphometric experience. Methods in Ecology and Evolution 12:2355–2363.
- Baken, E. K., L. E. Mellenthin, and D. C. Adams. 2021b. Is salamander arboreality limited by broad-scale climatic conditions? PLoS ONE 16:e0255393.
- Bardua, C., A.-C. Fabre, J. Clavel, M. Bon, K. Das, E. L. Stanley, D. C. Blackburn, and A. Goswami. 2021. Size, microhabitat, and loss of larval feeding drive cranial diversification in frogs. Nature Communications 12. Springer Science; Business Media LLC.

- Bergmann, C. 1847. Über die verhaltnisse der warmeokonomie der thiere zu ihrer grosse.
- Göttinger Studien 1:595–708.
- Berner, D., D. C. Adams, A.-C. Grandchamp, and A. P. Hendry. 2008. Natural selection
- drives patterns of lake-stream divergence in stickleback foraging morphology. Journal of
- Evolutionary Biology 21:1653–1665.
- Bookstein, F. L. 2022. Dimensions of morphological integration. Evolutionary Biology 49:342–
- 522 372.
- Bright, J. A., J. Marugán-Lobón, S. N. Cobb, and E. J. Rayfield. 2016. The shapes of bird
- beaks are highly controlled by nondietary factors. Proceedings of the National Academy of
- Sciences 113:5352–5357.
- Bright, J. A., J. Marugán-Lobón, E. J. Rayfield, and S. N. Cobb. 2019. The multifactorial
- nature of beak and skull shape evolution in parrots and cockatoos (psittaciformes). BMC
- Evolutionary Biology 19. Springer Science; Business Media LLC.
- Brombacher, A., P. A. Wilson, I. Bailey, and T. H. G. Ezard. 2017. The breakdown of static and
- evolutionary allometries during climatic upheaval. The American Naturalist 190:350–362.
- Busschau, T., and S. Boissinot. 2022. Habitat determines convergent evolution of cephalic
- horns in vipers. Biological Journal of the Linnean Society 135:652–664.
- 533 Calder, W. A. 1983. Ecological scaling: Mammals and birds. Annual Review of Ecology and
- Systematics 14:213–230.
- cardini, A., D. Polly, R. Dawson, and N. Milne. 2015. Why the long face? Kangaroos and
- wallabies follow the same "rule" of cranial evolutionary allometry (CREA) as placentals.
- Evolutionary Biology 42:169–176.
- ⁵³⁸ Cardini, A., and P. D. Polly. 2013. Larger mammals have longer faces because of size-related
- constraints on skull form. Nature Communications 4.
- Chatterji, R. M., C. A. Hipsley, E. Sherratt, M. N. Hutchinson, and M. E. H. Jones. 2022.
- Ontogenetic allometry underlies trophic diversity in sea turtles (chelonioidea). Evolutionary
- Ecology 36:511–540.
- cock, A. G. 1966. Genetical aspects of metrical growth and form in animals. The Quarterly
- Review of Biology 41:131–190.
- Collar, D. C., J. A. Schulte, B. C. O'Meara, and J. B. Losos. 2010. Habitat use affects

- morphological diversification in dragon lizards. Journal of Evolutionary Biology 23:1033— 546 1049. 547
- Collyer, M. L., and D. C. Adams. 2007. Analysis of two-state multivariate phenotypic change 548 in ecological studies. Ecology 88:683–692. 549
- Collyer, M. L., and D. C. Adams. 2013. Phenotypic trajectory analysis: Comparison of shape 550 change patterns in evolution and ecology. Hystrix 24:75–83. 551
- Collyer, M. L., and D. C. Adams. 2022. R: RRPP: Linear model evaluation with randomized 552 residuals in a permutation procedure. Vsn. 1.3.2. R Foundation for Statistical Computing, 553 Vienna, Austria. 554
- Collyer, M. L., and D. C. Adams. 2018. RRPP: An R package for fitting linear models to 555 high-dimensional data using residual randomization. Methods in Ecology and Evolution 556 9:1772-1779.557
- Collyer, M. L., D. J. Sekora, and D. C. Adams. 2015. A method for analysis of phenotypic 558 change for phenotypes described by high-dimensional data. Heredity 115:357–365. 559
- Conaway, M. A., and D. C. Adams. 2022. An effect size for comparing the strength of mor-560 phological integration across studies. Evolution 76:2244–2259. 561
- Drake, A. G., and C. P. Klingenberg. 2008. The pace of morphological change: Historical 562 transformation of skull shape in St Bernard dogs. Proceedings of the Royal Society B: 563 Biological Sciences 275:71–76. 564
- Durant, S. M., N. Pettorelli, S. Bashir, R. Woodroffe, T. Wacher, P. De Ornellas, C. Ransom, 565
- T. Abáigar, M. Abdelgadir, H. El Algamy, M. Beddiaf, F. Belbachir, A. Belbachir-Bazi, A. 566
- A. Berbash, R. Beudels-Jamar, L. Boitani, C. Breitenmoser, M. Cano, P. Chardonnet, B. 567
- Collen, W. A. Cornforth, F. Cuzin, P. Gerngross, B. Haddane, M. Hadjeloum, A. Jacobson, 568
- A. Jebali, F. Lamarque, D. Mallon, K. Minkowski, S. Monfort, B. Ndoassal, J. Newby, B. 569
- E. Ngakoutou, B. Niagate, G. Purchase, S. Samaïla, A. K. Samna, C. Sillero-Zubiri, A. E. 570
- Soultan, M. R. Stanley Price, and J. E. M. Baillie. 2012. Forgotten biodiversity in desert 571
- ecosystems. Science 336:1379–1380. 572

Esquerré, D., E. Sherratt, and J. S. Keogh. 2017. Evolution of extreme ontogenetic allometric 573 diversity and heterochrony in pythons, a clade of giant and dwarf snakes. Evolution 71:2829– 574 2844.

- Felice, R. N., D. Pol, and A. Goswami. 2021. Complex macroevolutionary dynamics underly
 the evolution of the crocodyliform skull. Proceedings of the Royal Society B: Biological
 Sciences 288:20210919.
- Felice, R. N., M. Randau, and A. Goswami. 2018. A fly in a tube: Macroevolutionary expectations for integrated phenotypes. Evolution 72:2580–2594.
- Firmat, C., I. Lozano-Fernández, J. Agustí, G. H. Bolstad, G. Cuenca-Bescós, T. F. Hansen, and C. Pélabon. 2014. Walk the line: 600000 years of molar evolution constrained by allometry in the fossil rodent *Mimomys savini*. Philosophical Transactions of the Royal Society B: Biological Sciences 369:20140057.
- Foster, K. L., T. Garland, L. Schmitz, and T. E. Higham. 2018. Skink ecomorphology: Forelimb and hind limb lengths, but not static stability, correlate with habitat use and demonstrate multiple solutions. Biological Journal of the Linnean Society 125:673–692.
- Freedman, D., and D. Lane. 1983. A nonstochastic interpretation of reported significance levels. Journal of Business & Economic Statistics 1:292–298.
- Friedman, S. T., M. L. Collyer, S. A. Price, and P. C. Wainwright. 2022. Divergent Processes
 Drive Parallel Evolution in Marine and Freshwater Fishes. Systematic biology 71:1319–1330.
- Fuentes, E. R., and J. Cancino. 1979. Rock-ground patchiness in a simple liolaemus lizard community (reptilia, lacertilia, iguanidae). Journal of Herpetology 13:343.
- Garcia-Porta, J., M. Simó-Riudalbas, M. Robinson, and S. Carranza. 2017. Diversification in arid mountains: Biogeography and cryptic diversity of *Pristurus rupestris rupestris* in Arabia. Journal of Biogeography 44:1694–1704.
- Goodman, B. A., D. B. Miles, and L. Schwarzkopf. 2008. Life on the rocks: Habitat use drives morphological and performance evolution in lizards. Ecology 89:3462–3471.
- Goswami, A., M. Randau, P. D. Polly, V. Weisbecker, C. Verity Bennett, L. Hautier, and M. R. Sánchez-Villagra. 2016. Do developmental constraints and high integration limit the evolution of the marsupial oral apparatus? Integrative and Comparative Biology 56:404–415.
- Goswami, A., J. B. Smaers, C. Soligo, and P. D. Polly. 2014. The macroevolutionary consequences of phenotypic integration: From development to deep time. Philosophical Transactions of the Royal Society B: Biological Sciences 369:20130254.

- Gould, S. J. 1966. Allometry and size in ontogeny and phylogeny. Biological Reviews 41:587– 606 638. 607
- Grant, P. R., and B. R. Grant. 2006. Evolution of character displacement in darwin's finches. 608 Science 313:224–226. 609
- Hall, M. I., J. M. Kamilar, and E. C. Kirk. 2012. Eye shape and the nocturnal bottleneck of 610 mammals. Proceedings of the Royal Society B: Biological Sciences 279:4962–4968. 611
- Hall, M. I., and C. F. Ross. 2006. Eye shape and activity pattern in birds. Journal of Zoology 612 271:437-444. 613
- Hipsley, C. A., and J. Müller. 2017. Developmental dynamics of ecomorphological convergence 614 in a transcontinental lizard radiation. Evolution 71:936–948. 615
- Huey, R. B. 1974. Behavioral thermoregulation in lizards: Importance of associated costs. 616 Science 184:1001-1003. 617
- Huxley, J. S. 1932. The problems of relative growth. Johns Hopkins University Pres. 618
- James, S. E., and R. T. M'closkey. 2004. Patterns of body size and habitat use in a lizard 619 assemblage. Ecoscience 11:160–167. 620
- Jastrebski, C. J., and B. W. Robinson. 2004. Natural selection and the evolution of replicated 621 trophic polymorphisms in pumpkinseed sunfish (Lepomis qibbosus). Evolutionary Ecology 622 Research 6:285–305. 623
- Jolicoeur, P. 1963. The multivariate generalization of the allometry equation. Biometrics 624 19:497-499. 625
- Kaliontzopoulou, A., M. A. Carretero, and D. C. Adams. 2015. Ecomorphological variation in 626 male and female wall lizards and the macroevolution of sexual dimorphism in relation to 627 habitat use. Journal of Evolutionary Biology 28:80–94. 628
- Kaliontzopoulou, A., M. A. Carretero, and G. A. Llorente. 2010. Intraspecific ecomorpholog-629 ical variation: Linear and geometric morphometrics reveal habitat-related patterns within 630 Podarcis bocaqei wall lizards. Journal of Evolutionary Biology 23:1234–1244. 631
- Kappelman, J., D. T. Rasmussen, W. J. Sanders, M. Feseha, T. Bown, P. Copeland, J. 632 Crabaugh, J. Fleagle, M. Glantz, A. Gordon, B. Jacobs, M. Maga, K. Muldoon, A. Pan, L. 633 Pyne, B. Richmond, T. Ryan, E. R. Seiffert, S. Sen, L. Todd, M. C. Wiemann, and A. Win-634 kler. 2003. Oligocene mammals from Ethiopia and faunal exchange between Afro-Arabia

- and Eurasia. Nature 426:549–552.
- Klingenberg, C. P. 1996. Advances in morphometrics. Pp. 23–49 in L. F. Marcus, M. Corti,
- A. Loy, and G. J. P. N. D. E. Slice, eds. Plenum Press.
- Klingenberg, C. P. 2016. Size, shape, and form: Concepts of allometry in geometric morpho-
- metrics. Development Genes and Evolution 226:113–137.
- Klingenberg, C. P., and J. Marugán-Lobón. 2013. Evolutionary covariation in geometric mor-
- phometric data: Analyzing integration, modularity, and allometry in a phylogenetic context.
- 643 Systematic Biology 62:591–610.
- Klingenberg, C. P., and M. Zimmermann. 1992. Static, ontogenetic, and evolutionary allom-
- etry: A multivariate comparison in nine species of water striders. American Naturalist
- 140:601-620.
- Kolmann, M. A., F. P. L. Marques, J. C. Weaver, M. N. Dean, J. P. Fontenelle, and N. R.
- Lovejoy. 2022. Ecological and phenotypic diversification after a continental invasion in
- neotropical freshwater stingrays. Integrative and Comparative Biology 62:424–440.
- LaBarbera, M. 1989. Analyzing body size as a factor in ecology and evolution. Annual Review
- of Ecology and Systematics 20:97–117.
- Lande, R. 1979. Quantitative genetic analysis of multivariate evolution, applied to brain-body
- size allometry. Evolution 33:402–416.
- Lande, R. 1985. Size and scaling in primate biology. Pp. 21–32 in W. L. Jungers, ed. Plenum
- Press.
- Losos, J. B. 2009. Lizards in an evolutionary tree: Ecology and adaptive radiation of anoles.
- University of California Press.
- Losos, J. B. 1992. The evolution of convergent structure in Caribbean Anolis communities.
- Systematic Biology 41:403–420.
- Losos, J. B., and R. E. Ricklefs. 2009. Adaptation and diversification on islands. Nature
- 457:830-836.
- Mahler, D. L., T. Ingram, L. J. Revell, and J. B. Losos. 2013. Exceptional convergence on the
- macroevolutionary landscape in island lizard radiations. Science 341:292–295.
- Marcy, A. E., T. Guillerme, E. Sherratt, K. C. Rowe, M. J. Phillips, and V. Weisbecker. 2020.
- Australian rodents reveal conserved cranial evolutionary allometry across 10 million years

- of murid evolution. The American Naturalist 196:755–768.
- Marroig, G., and J. M. Cheverud. 2005. Size as a line of least evolutionary resistance: Diet and adaptive morphological radiation in New World monkeys. Evolution 59:1128–1142.
- Martinez, C. M., S. T. Friedman, K. A. Corn, O. Larouche, S. A. Price, and P. C. Wainwright.
- 2021. The deep sea is a hot spot of fish body shape evolution. Ecology Letters 24:1788–1799.
- Meiri, S. 2008. Evolution and ecology of lizard body sizes. Global Ecology and Biogeography
 17:724–734.
- Mosimann, J. E. 1970. Size allometry: Size and shape variables with characterizations of the lognormal and generalized gamma distributions. Journal of the American Statistical Association 65:930–945.
- Navalón, G., A. Bjarnason, E. Griffiths, and R. B. J. Benson. 2022. Environmental signal in the evolutionary diversification of bird skeletons. Nature 611:306–311.
- Navalón, G., J. Marugán-Lobón, J. A. Bright, C. R. Cooney, and E. J. Rayfield. 2020. The consequences of craniofacial integration for the adaptive radiations of Darwin's finches and Hawaiian honeycreepers. Nature Ecology & Evolution 4:270–278. Nature Publishing Group.
- Olson, V. A., R. G. Davies, C. D. L. Orme, G. H. Thomas, S. Meiri, T. M. Blackburn, K. J. Gaston, I. P. F. Owens, and P. M. Bennett. 2009. Global biogeography and ecology of body size in birds. Ecology Letters 12:249–259.
- Patterson, M., A. K. Wolfe, P. A. Fleming, P. W. Bateman, M. L. Martin, E. Sherratt, and
 N. M. Warburton. 2022. Ontogenetic shift in diet of a large elapid snake is facilitated by
 allometric change in skull morphology. Evolutionary Ecology 36:489–509.
- Pavlicev, M., J. M. Cheverud, and G. P. Wagner. 2009. Measuring morphological integration using eigenvalue variance. Evolutionary Biology 36:157–170.
- Pélabon, C., G. H. Bolstad, C. K. Egset, J. M. Cheverud, M. Pavlicev, and G. Rosenqvist. 2014.
 On the relationship between ontogenetic and static allometry. The American Naturalist
 181:195–212.
- Peters, R. H. 1983. The ecological implications of body size. Cambridge University Press.
- Piras, P., P. Colangelo, D. C. Adams, A. Buscalioni, J. Cubo, T. Kotsakis, C. Meloro, and P. Raia. 2010. The gavialis-tomistoma debate: The contribution of skull ontogenetic allometry and growth trajectories to the study of crocodylian relationships. Evolution and

- 696 Development 12:568–579.
- Price, S. A., S. T. Friedman, and P. C. Wainwright. 2015. How predation shaped fish: The
- impact of fin spines on body form evolution across teleosts. Proceedings of the Royal Society
- B: Biological Sciences 282:20151428.
- Pyron, R. A., and F. T. Burbrink. 2009. Body size as a primary determinant of ecomorpholog-
- ical diversification and the evolution of mimicry in the lampropeltinine snakes (serpentes:
- colubridae). Journal of Evolutionary Biology 22:2057–2067. Wiley.
- R Core Team. 2022. R: A language and environment for statistical computing. Version 4.2.1.
- R Foundation for Statistical Computing, Vienna, Austria.
- Reaney, A. M., Y. Bouchenak-Khelladi, J. A. Tobias, and A. Abzhanov. 2020. Ecological and
- morphological determinants of evolutionary diversification in Darwin's finches and their
- relatives. Ecology and Evolution 10:14020–14032.
- Revell, L. J. 2012. Phytools: An R package for phylogenetic comparative biology (and other
- things). Methods in Ecology and Evolution 3:217–223.
- Reynolds, R. G., D. C. Collar, S. A. Pasachnik, M. L. Niemiller, A. R. Puente-Rolón, and
- L. J. Revell. 2016. Ecological specialization and morphological diversification in Greater
- Antillean boas. Evolution 70:1882–1895.
- Ross, C. F., M. I. Hall, and C. P. Heesy. 2007. Were basal primates nocturnal? Evidence from
- eye and orbit shape. Pp. 233–256 in PRIMATE ORIGINS: Adaptations and evolution.
- 715 Springer.
- Samuels, J. X., and S. S. B. Hopkins. 2017. The impacts of Cenozoic climate and habitat
- changes on small mammal diversity of North America. Global and Planetary Change 149:36—
- 718 52.
- Schluter, D. 1996. Adaptive radiation along genetic lines of least resistance. Evolution 50:1766–
- 720 1774.
- Schluter, D., and P. R. Grant. 1984. Determinants of morphological patterns in communities
- of Darwin's finches. The American Naturalist 123:175–196.
- Schluter, D., and J. D. McPhail. 1992. Ecological character displacement and speciation in
- sticklebacks. The American Naturalist 140:85–108.
- Sherratt, E., D. J. Gower, C. P. Klingenberg, and M. Wilkinson. 2014. Evolution of cranial

- shape in caecilians (amphibia: gymnophiona). Evolutionary Biology 41:528–545.
- Sidlauskas, B. 2008. Continuous and arrested morphological diversification in sister clades of characiform fishes: A phylomorphospace approach. Evolution 62:3135–3156.
- Stuart, Y. E., T. Veen, J. N. Weber, D. Hanson, M. Ravinet, B. K. Lohman, C. J. Thompson, T.
- Tasneem, A. Doggett, R. Izen, N. Ahmed, R. D. H. Barrett, A. P. Hendry, C. L. Peichel, and
- D. I. Bolnick. 2017. Contrasting effects of environment and genetics generate a continuum
- of parallel evolution. Nature Ecology and Evolution 1:158.
- Tamar, K., P. Mitsi, M. Simó-Riudalbas, H. Tejero-Cicuéndez, T. Al-Sariri, and S. Carranza.
- 2019. Systematics, biogeography, and evolution of *Pristurus minimus* (Squamata, Sphaero-
- dactylidae) with the discovery of the smallest Arabian vertebrate. Systematics and Biodi-
- versity 17:349–366.
- Tejero-Cicuéndez, H., A. H. Patton, D. S. Caetano, J. Šmíd, L. J. Harmon, and S. Carranza.
- 738 2022. Reconstructing squamate biogeography in Afro-Arabia reveals the influence of a
- complex and dynamic geologic past. Systematic Biology 71:261–272.
- Tejero-Cicuéndez, H., M. Simó-Riudalbas, I. Menéndez, and S. Carranza. 2021a. Ecologi-
- cal specialization, rather than the island effect, explains morphological diversification in
- an ancient radiation of geckos. Proceedings of the Royal Society B: Biological Sciences
- 743 288:20211821.
- Tejero-Cicuéndez, H., M. Simó-Riudalbas, I. Menéndez, and S. Carranza. 2021b. Ecological
- specialization, rather than the island effect, explains morphological diversification in an
- ancient radiation of geckos. Dryad digital repository. (Doi:10.5061/dryad.xwdbrv1f6).
- Urban, S., J. Gerwin, C. D. Hulsey, A. Meyer, and C. F. Kratochwil. 2022. The repeated
- evolution of stripe patterns is correlated with body morphology in the adaptive radiations
- of East African cichlid fishes. Ecology and Evolution 12:e8568.
- Voje, K. L., M. A. Bell, and Y. E. Stuart. 2022. Evolution of static allometry and constraint on
- evolutionary allometry in a fossil stickleback. Journal of Evolutionary Biology 35:423–438.
- Voje, K. L., T. F. Hansen, C. K. Egset, G. H. Bolstad, and C. Pélabon. 2014. Allometric
- constraints and the evolution of allometry. Evolution 68:866–885.
- Wagner, G. P., and J. Zhang. 2011. The pleiotropic structure of the genotype–phenotype map:
- The evolvability of complex organisms. Nature Reviews Genetics 12:204–213.

- Wagner, G., and L. Altenberg. 1996. Perspective: Complex adaptations and the evolution of evolvability. Evolution 50:967–976.
- Watanabe, A., A. C. Fabre, R. N. Felice, J. A. Maisano, J. Müller, A. Herrel, and A. Goswami.
- ⁷⁵⁹ 2019. Ecomorphological diversification in squamates from conserved pattern of cranial inte-
- gration. Proceedings of the National Academy of Sciences of the United States of America
- 761 116:14688–14697.
- Wickham, H., M. Averick, J. Bryan, W. Chang, L. D. McGowan, R. François, G. Grolemund,
- A. Hayes, L. Henry, J. Hester, M. Kuhn, T. L. Pedersen, E. Miller, S. M. Bache, K. Müller,
- J. Ooms, D. Robinson, D. P. Seidel, V. Spinu, K. Takahashi, D. Vaughan, C. Wilke, K.
- Woo, and H. Yutani. 2019. Welcome to the tidyverse. Journal of Open Source Software
- 766 4:1686.
- Zelditch, M. L., and D. L. Swiderski. 2022. The predictable complexity of evolutionary allometry. Evolutionary Biology 50:56–77.

Acknowledgments: We are very grateful to J. Roca, M. Metallinou, K. Tamar, J. Šmíd, R. Vasconcelos, R. Sindaco, F. Amat, Ph. de Pous, L. Machado, J. Garcia-Porta, J. Els, T. Mazuch, T. Papenfuss, and all the people from the Environment Authority, Oman, for their help in different aspects of the work.

769

770

Funding Statement: This work was funded in part by PGC2018-098290-B-I00 (MCIU/AEI/FEDER, 775 UE) and PID2021-128901NB-I00 (MCIN/AEI/10.13039/501100011033 and by ERDF, A way 776 of making Europe), Spain to SC. HT-C is supported by a "Juan de la Cierva - Formación" 777 postdoctoral fellowship (FJC2021-046832-I). IM was funded by the Alexander von Humboldt 778 Foundation through a Humboldt Research Fellowship. AT is supported by the "la Caixa" 779 doctoral fellowship programme (LCF/BQ/DR20/11790007). GR was funded by an FPI grant 780 from the Ministerio de Ciencia, Innovación y Universidades, Spain (PRE2019-088729). BB-C 781 was funded by FPU grant from Ministerio de Ciencia, Innovación y Universidades, Spain 782 (FPU18/04742). DCA was funded in part by National Science Foundation Grant DBI-1902511. 783

Data availability statement: All the data used in this study are available on DRYAD from
a previous study: https://doi.org/10.5061/dryad.xwdbrv1f6 (Tejero-Cicuéndez et al. 2021b).
The scripts for implementing all analyses and generating the figures in this manuscript can
be found in the Supplementary Material and in a GitHub repository (and on DRYAD upon
acceptance).

Competing interests: The authors declare no competing interests.

Tables

Table 1: Regression coefficients showing, for each morphological variable, the comparison between evolutionary and intraspecific allometry, as well as between each habitat category. TrL: trunk length; HL: head length; HW: head width; HH: head height; Lhu: humerus length; Lun: ulna length; Lfe: femur length; Ltb: tibia length.

	TrL	$_{ m HL}$	$_{ m HW}$	НН	Lhu	Lun	Lfe	Ltb
Evolutionary	1.08	1.00	1.09	0.98	1.13	1.20	1.21	1.14
Intraspecific	1.10	0.77	0.81	0.76	0.97	0.95	0.96	0.95
ground	1.11	0.79	0.83	0.84	0.89	0.89	0.97	0.89
rock	1.10	0.76	0.79	0.64	1.01	0.98	0.95	1.01
tree	1.10	0.73	0.82	0.76	1.12	1.07	0.94	1.01

Table 2: Multivariate analysis of covariance describing variation in body form in *Pristurus*. Note that there is no variation explained by the 'habitat' term, as the pooled-within species data are mean-centered.

	Df	SS	MS	Rsq	F	Z	Pr(>F)
svl	1	36.04	36.04	0.63	1177.2	8.24	0.001
habitat	2	0.00	0.00	0.00	0.0		
svl:habitat	2	0.13	0.06	0.00	2.1	1.90	0.025
Residuals	681	20.85	0.03	0.37			
Total	686	57.02					

Table 3: Pairwise comparisons of multivariate static allometry for each habitat group. Comparisons with the vector of multivariate isometry are included. Displayed are: pairwise angular differences (θ_{12}) , their associated effect sizes $(Z_{\theta_{12}})$, and significance levels obtained via permutation (RRPP).

	Ground	Rock	Tree	Isometry
Angle				
Ground	0			
Rock	6.316	0		
Tree	6.549	3.37	0	
Isometry	5.87	9.319	8.774	0
Effect Size				
Ground	0			
Rock	3.112	0		
Tree	1.9	-0.454	0	
Isometry	4.461	6.567	3.727	0
P-value				
Ground	1			
Rock	0.003	1		
Tree	0.026	0.67	1	
Isometry	0.001	0.001	0.001	1

Table 4: Pairwise comparisons of multivariate evolutionary allometry versus static allometry for each habitat group. Pairwise angular differences between evolutionary and static allometry (θ_{ES}) , their associated effect sizes $(Z_{\theta_{ES}})$, and significance levels are displayed.

	θ_{ES}	$Z_{ heta_{ES}}$	P-value
Evol. vs. Ground	5.85	1.61	0.063
Evol. vs. Rock	7.23	2.54	0.009
Evol. vs. Tree	6.79	1.11	0.139

Figures

791

- Figure 1. Linear Measurements used in this study. SVL = snout-vent length, TL = trunk length, HL = head length, HW = head width, HH = head height, Lhu = humerus length, Lun = ulna length, Lfe = femur length, Ltb = tibia length (for details see Tejero-Cicuéndez et al. 2021a).
- Figure 2. Plot of regression scores and predicted lines representing the relationship between linear body measurements and size (SVL). Individuals are colored by habitat use: ground (beige), rock (dark purple), and tree (magenta). Isometric trend represented by the dashed line.
- Figure 3. Traitgrams showing the evolution of body size (SVL) through time based on the phylogenetic tree of *Pristurus*. Colors represent an evolutionary mapping of residuals from phylogenetic
 regressions describing the relationship of (A) head morphology *versus* body size, and (B) limb
 proportions *versus* body size (see text for descriptions). Species names are colored by habitat
 use: ground (beige), rock (dark purple), and tree (magenta).
- Figure 4. Patterns of static allometry for each species for head traits (upper panel) and limb traits
 (lower panel). Species are separated by their habitat groups and colored by the magnitude of
 their regression slope (purple: steeper slopes, yellow: shallower slopes).
- Figure 5. Phylomorphospace of *Pristurus*, based on residuals from a non-phylogenetic regression of body measurements on size (SVL). Species means are colored by habitat use: ground (beige), rock (dark purple), and tree (magenta). Large and small rock-dwelling and ground-dwelling are highlighted with darker colors to highlight their differentiation and relative positions in morphospace. Point size is proportional to mean species body size. 79% of the total variation is displayed in the first two PC axes (PC1 = 63%; PC2 = 16%).
- Figure 6. Representative specimens (based on real specimens) from large and small *Pristurus*species, colored by habitat use: ground (beige) and rock (dark purple). Specimens are scaled
 to a common body size (SVL, gray rectangles) to emphasize the relative differences in limb
 and head proportions. Relatively slender-headed and short-limbed species shown on the left.
 Original scale shown as the gray bar.

Figure 1: Linear Measurements used in this study. SVL = snout-vent length, TL = trunk length, HL = head length, HW = head width, HH = head height, Lhu = humerus length, Lun = ulna length, Lfe = femur length, Ltb = tibia length (for details see Tejero-Cicuéndez et al. 2021a).

Figure 2: Plot of regression scores and predicted lines representing the relationship between linear body measurements and size (SVL). Individuals are colored by habitat use: ground (beige), rock (dark purple), and tree (magenta). Isometric trend represented by the dashed line.

Figure 3: Traitgrams showing the evolution of body size (SVL) through time based on the phylogenetic tree of *Pristurus*. Colors represent an evolutionary mapping of residuals from phylogenetic regressions describing the relationship of (A) head morphology *versus* body size, and (B) limb proportions *versus* body size (see text for descriptions). Species names are colored by habitat use: ground (beige), rock (dark purple), and tree (magenta).

Figure 4: Patterns of static allometry for each species for head traits (upper panel) and limb traits (lower panel). Species are separated by their habitat groups and colored by the magnitude of their regression slope (purple: steeper slopes, yellow: shallower slopes).

Figure 5: Phylomorphospace of Pristurus, based on residuals from a non-phylogenetic regression of body measurements on size (SVL). Species means are colored by habitat use: ground (beige), rock (dark purple), and tree (magenta). Large and small rock-dwelling and ground-dwelling are highlighted with darker colors to highlight their differentiation and relative positions in morphospace. Point size is proportional to mean species body size. 79% of the total variation is displayed in the first two PC axes (PC1 = 63%; PC2 = 16%).

Figure 6: Representative specimens (based on real specimens) from large and small *Pristurus* species, colored by habitat use: ground (beige) and rock (dark purple). Specimens are scaled to a common body size (SVL, gray rectangles) to emphasize the relative differences in limb and head proportions. Relatively slender-headed and short-limbed species shown on the left. Original scale shown as the gray bar.