1 需求分析

1.1 问题阐述

扫雷游戏的游戏界面是由m x n个方格组成的雷区, 雷区大小可以由用户设置的游戏难度决定。

雷区中的方块下随机布下若干个地雷。玩家可以通过鼠标来决定方块的状态,地雷所在方块称为雷方块,而其他邻近的非雷方块则会被填充一些数字来表示邻近的8个方块中有多少雷方块,如"1"表示这个方块相邻的8个方块中一定有一个雷方块。

玩家可以根据这些非雷块数字提示判断是否打开某些方块,并把认为是地雷的方块打上标识。当玩家把所有地雷找出来后,其余非雷方块都已打开,则代表游戏胜利,一旦错误地打开雷方块则立即失败。

1.2 功能需求

(1) 设置游戏难度

根据玩家设置,生成大小为m x n, 地雷数量为k的雷区;

- (2) 鼠标响应
 - 1) 鼠标左键(挖雷)

在雷区中, 当玩家左击未知方块, 打开该方块;

- a. 如果该未知方块是雷,游戏失败,打开所有地雷;
- b. 如果该未知方块是非雷块,则显示该方块周围雷的数目,当该方块周围没有雷 (也即雷的数目为0)时,则再继续显示相邻的方块;
- 2) 鼠标右键(标记旗子)

当玩家右击未知方块时,标记当前方块为雷方块(插旗),再次右击已标记的雷区则取消当前标记状态;

- (3) 计数器
 - 1) 时间计数器,记录这轮游戏所用时间;
 - 2) 地雷计数器,记录剩下的地雷数量;
- (4) 随机布雷

随机在雷区中埋入地雷;

(5) 递归挖雷

当被显示的方块没有地雷(空白区)时,自动显示周围的未知方块,直至显示带有数字的区域。

2 总体设计

2.1 总体功能图

图2-1

2.2 程序总体流程图

2.3 开发环境

操作系统: Windows10 开发使用语言: C++

开发使用软件: Qt Creator 4.2.0 (4.2.0)

2.4 主要涉及的数据结构

数组,图的深度优先遍历

3 核心算法设计

3.1 递归挖雷(拓展空白区域)

如图3-1所示,当打开红色标记的方块是空白方块时,程序会自动打开相邻的空白 方块和数字方块,结果如图3-2所示。

这里主要应用了数据结构中图的深度优先遍历,把扩展的区域抽象成图结构,如图 3-3所示, (标红的表示出发点空白方块,标黄表示空白方块,表灰表示数字方块)。

V19	V27	V4				
V10	V16	V12	V15	V11	V14	V18
V3	V6	V1	V5	V2	V25	V23
	V9	V7	V13	VO	V22	V24
		V28	V26	V8	V21	V17
					V26	V20
		· 	图 3-3			
		·	图 3-3			
V19 3	V27	V4	7			
V10	V27 V16		图 3-3 V15	V11 2	V14	V18
N. N. O. S.	C CONTROL CO	V4	7	V11 2 V2	V14 V25	V18 V23
V10	V16	V4 V12	V15	The state of the s		170000000
V10	V16 V6	V4 V12 V1	V15 V5	V2	V25	V23

从顶点方块VO出发进行深度优先遍历,在访问VO后,将VO入栈,然后选择未曾访问

的邻接方块V5,访问V5之后,将V5入栈,然后选择未曾访问的邻接方块V12,访问V12后,将V12入栈,由于V12是数字方块而非空白方块,所以将V12出栈;取栈顶方块V5的未曾访问的邻接方块V15,访问V15之后,将V15入栈,但是V15是数字方块而非空白方块,所以将V15出栈;取栈顶方块V5的未曾访问的邻接方块V11,以此类推,直到栈空,其中栈的变化如图3-5所示。

	2.			2
		V12		V15
	V5	V5	V5	V5
V0	VO	VO	VO	VO
1)	2)	3)	4)	5)
				V16
	V11		V1	V1
V5	V5	V5	V5	V5
V0	V0	VO VO	VO	V0
6)	7)	8)	9)	10)
V19		V27		
V16	V16	V16		
V1	V1	V1		
V5	V5	V5		
V0	VO	VO		
11)	12)	13)		
V8				
V13	V13			
V5	V5	V5		
V0	VO	VO	V0	
i)	i+1)	i+2)	i+3)	遍历结束

图 3-5

3.1.1 算法流程图

- 1. 访问(打开)顶点方块v; v. blockState=BS_OPEN(修改顶点方块v的状态为打开);
- 2. 若v. value>0, 即v是数字方块
 - 2.1 处理下一顶点方块;
- 3. 若v. value=0, 即v是空白方块
 - 3.1w=顶点方块v的相邻方块;
 - 3.2While(w存在(边界检测))
 - 3.2.1 if(w未被访问(打开)) 从方块w出发递归执行该算法;
 - 3.2.2w=顶点方块v的下一个邻接点;

3.1.3 时间复杂度

关于数据结构中图的深度优先遍历,由于矩阵元素个数为 n^2 ,最坏情况要遍历整个矩阵,因此时间复杂度为 $0(n^2)$ 。

3.1.4 具体代码实现

```
//in file:Block.cpp
//打开方块
void Block::OpenBlock(int row, int col)
 //游戏结束或已经打开、已标记的方块,禁止继续点击方块
 if(gameState==GS DEAD
     || gameState==GS WIN
     | map[row][col].blockState==BS OPEN
     | map[row][col].blockState==BS MARKED
     | map[row][col].blockState==BS MARKED ERROR)
   return;
 //下面均是未打开、未标记方块的情况
 //打开的是数字方块
 else if(map[row][col].value>0)
   audioClick->play();
                             //播放打开数字音效
   map[row][col].blockState=BS OPEN; //修改方块为翻开状态
   return;
 //打开的是空白方块,自动翻开周围非雷方块(空白方块周围没有雷)
 else if(map[row][col].value==0)
                               //播放打开空白方块音效
   audioOpenzero->play();
   map[row][col].blockState=BS OPEN;
                                   //修改方块为翻开状态
   for(int rowBlock=row-1;rowBlock<=row+1;rowBlock++) //遍历相邻的方块
     for(int colBlock=col-1;colBlock<=col+1;colBlock++)</pre>
       if(rowBlock>=0
                               //越界检测
           && rowBlock<mRow
           && colBlock>=0
           && colBlock<mCol)
         OpenBlock(rowBlock,colBlock);
                                    //递归挖雷
 }
```

3.2 随机布雷算法

随机获取一个方块坐标,并判断这个方块是否是雷,若不是则修改它的状态为雷,重复此步骤,直至埋下所有雷。 3.2.1 算法流程图

图 3-7

- 1. 循环执行下述操作,直到布下所有地雷
 - 1.1 随机生成坐标(x,y)
 - 1.2 若坐标为(x,y)的方块不是地雷,则
 - 1.2.1 修改坐标为(x,y)的方块状态
 - 1.2.2 已经埋下的地雷数目加一

3.2.3 时间复杂度

地雷的数目为n,由于需要布下所有地雷,所以随机布雷算法的时间复杂度为0(n)。

3.2.4 具体代码实现

```
//in file:Block.cpp
//随机布雷
srand((unsigned)time(NULL)); //设置随机种子
for(int n=0;n<totalBombNum;) //直至埋下所有雷
{
    int rowBlock = rand()%mRow; //随机行 0~mRow-1
    int colBlock = rand()%mCol; //随机列 0~mCol-1
    if(map[rowBlock][colBlock].value != -1) //该方块不是地雷
    {
        map[rowBlock][colBlock].value = -1; //修改方块的状态为雷
        n++; //成功埋下一颗雷
    }
}
```

3.3 获取相邻区域的雷数

雷。

如图3-8所示,数字方块的数字为"2"表示这个方块相邻的八个方块中埋有2个地

为了初始化所有数字方块,程序在完成埋雷工作后,遍历整个雷图,计算每个方块的数字,计算的前提是该方块是非雷方块,然后根据相邻的八个方块(在地图范围内)的雷数量进行数目叠加。

3.3.2 伪代码

1. 遍历整个雷图,每个遍历到的方块坐标表示v 1. 1 if (v不是雷方块)

1.1.1w=方块v的相邻方块

1.1.2while(w存在)

1.1.2.1if(w不是雷方块)

1.1.2.1.1方块v的地雷数加一

3.3.3 时间复杂度

由于要遍历整个雷图(二维数组),所以总时间复杂度为0(n²);而内两层循环是访问相邻的3⁸个方块,循环次数是固定的。

3.3.4 具体代码实现

```
//in file:Block.cpp
//计算数字方块的数字
  for(int rowBlock=0;rowBlock<mRow;rowBlock++)//遍历整个雷区
  {
    for(int colBlock=0;colBlock<mCol;colBlock++)</pre>
     // 根据相邻的八个方块(在地图范围内)的雷数量进行数目叠加
     // y为行偏移量, x为列偏移量
     // 前提条件是本方块不是雷
     if(map[rowBlock][colBlock].value != -1)
       for(int y=-1;y<=1;y++) //岁|
         for(int x=-1;x<=1;x++) //行
           if(colBlock+x>=0
                                 //越界处理
               && colBlock+x<mCol
               && rowBlock+y>=0
               && rowBlock+y<mRow
               &&!(x==0&&y==0)
                                      //排除自身
               && map[rowBlock+y][colBlock+x].value == -1) //非雷块
             map[rowBlock][colBlock].value++;
```

4 UML图

全局变量 block.h

GameState:enum 游戏状态 BlockState:enum 方块状态 BombBlock:struct 方块属性

Block block.h

mRow:int 雷图行数 mCol:int 雷图列数 totalBombNum:int 地雷总数
restBombNum:int 剩余地雷数
mTime:int 当局用时
gameState:GameState 当前游戏状态
map:BombBlock ** 雷图指针
audioClick:QSound * 点击声效指针
audioBomb:QSound * 雷爆炸声效指针
audioOpenzero:QSound * 打开空白方块声效
指针

Create(int row=9, int col=9, int bombNum=10):void 创建指定大小的雷图 OpenBlock(int, int):void 打开方块 MarkBomb(int, int):void 标记方块 CheckGame():void 根据当前游戏状态进行相应 处理

Restart():void 重新开始当局游戏

Dialog dialog.h

ROW: int 自定义雷图行数 COL: int 自定义雷图雷数 BOMBNUM: int 自定义雷图地雷总数 isRight: bool 输入合法标志

getSize():void 获取并检测对话框中用户输入 的参数

MainWindow mainwindow.h

mBlock:Block * 扫雷游戏对象指针mTimer:QTimer * 计时器对象指针

mousePressEvent (QMouseEvent *event):void 鼠标按下事件响应

paintEvent (QPaintEvent *event):void 绘图 事件响应

on_actionRestart_triggered():void 重新开始当局游戏按键响应(菜单栏)信号槽on_actionPrimary_triggered():void 创建初级难度雷图按键响应(菜单栏)信号槽

on_actionInternediate_triggered():void 创建中级难度雷图按键响应(菜单栏)信号槽 on actionHigh triggered():void 创建高

级难度雷图按键响应(菜单栏)信号槽on_actionUser_Define_triggered():void 创建自定义雷图按键响应(菜单栏)信号槽on_updateTimer():void 更新计时信号槽on_actionExit_triggered(): 退出程序按键响应(菜单栏)信号槽

on_actionHow_to_play_triggered():void 游戏帮助按键响应(菜单栏)信号槽

绘图相关常量参数 mainnwindow.h

BLOCK_WIDTH 格子像素宽
BLOCK_HEIGHT 格子像素高
BLOCK_HEIGHT AP 化表高
MENU_HEIGHT 菜单栏像素高
BOARD_HEIGHT 记分板与菜单栏总像素高
ELENUM_WIDTH 计数用数字像素宽
ELENUM_HEIGHT 计数用数字像素高
EXPRESSION_WIDTH 表情像素宽
EXPRESSION_HEIGHT 表情像素高

5 主体功能实现

5.1 创建雷图

5.1.1 程序流程图


```
//创建雷图
void Block::Create(int row,int col,int bombNum)
 //先清空原来的游戏图
 if(map!=NULL)//雷图指针map不为空
   for(int i=0;i<mRow;i++)
     delete map[i];//释放雷图指针map[i]所指向的堆空间
   delete map;//释放雷图指针map所指向的堆空间
   map=NULL;//把雷图指针map设置成空指针
 //设置游戏参数
 mRow=row;
 mCol=col;
 totalBombNum=bombNum;
 restBombNum=bombNum;
 mTime=0;
 gameState = GS PLAYING;
 //初始化雷图
 map = new BombBlock *[mRow];//开辟一个数量为mRow、存放结构体BlombBlock指针的空间
 for(int rowBlock=0;rowBlock<mRow;rowBlock++)</pre>
   map[rowBlock]=new BombBlock[mCol];//开辟一个数量为mCol、存放结构体BlombBlock的
空间
   for(int colBlock=0;colBlock<mCol;colBlock++)</pre>
     BombBlock bombBlock;
                             //声明一个方块
     bombBlock.blockState = BS CLOSE; //方块默认未打开
     bombBlock.value = 0; //方块默认是空白方块
     map[rowBlock][colBlock]=bombBlock; //把方块放入雷图中
 //随机布雷
 srand((unsigned)time(NULL)); //设置随机种子
 for(int n=0;n<totalBombNum;) //直至埋下所有雷
   int rowBlock = rand()%mRow; //随机行 0~mRow-1
   int colBlock = rand()%mCol; //随机列 0~mCol-1
   if(map[rowBlock][colBlock].value!=-1)//该方块不是地雷
     map[rowBlock][colBlock].value = -1; //修改方块的状态为雷
                   //成功埋下一颗雷
 //计算数字方块的数字
 for(int rowBlock=0;rowBlock<mRow;rowBlock++)//遍历整个雷区
   for(int colBlock=0;colBlock<mCol;colBlock++)</pre>
     // 根据相邻的八个方块(在地图范围内)的雷数量进行数目叠加
     // y为行偏移量, x为列偏移量
     // 前提条件是本方块不是雷
     if(map[rowBlock][colBlock].value != -1)
       for(int y=-1;y<=1;y++)
         for(int x=-1;x<=1;x++) //行
```

5.2 鼠标响应

5.2.1 程序流程图

5.2.2 具体代码实现

```
//in file:mainwindow.cpp
//鼠标事件
//用户鼠标点击,判断左右键,确定落点,修改块信息,确定是否结束
void MainWindow::mousePressEvent(QMouseEvent *event)
{
    int click_x = event->x();
    int click_y = event->y();
    //先判断是否左键点击了笑脸
    if(event->buttons()==(Qt::LeftButton)
        && click_x>(mBlock->mCol*BLOCK_WIDTH/2-EXPRESSION_WIDTH/2)
        && click_x<(mBlock->mCol*BLOCK_WIDTH/2+EXPRESSION_WIDTH/2)
```

```
&& click y<(7+MENU HEIGHT+EXPRESSION HEIGHT)
     && click y>(7+MENU HEIGHT))
   mBlock->Restart();//重新开始游戏
   if(mTimer->isActive())
     mTimer->stop();//停止计时
   update();//更新界面
   return;
 //落点在雷图
 else if(click y<(BLOCK HEIGHT*mBlock->mRow+BOARD HEIGHT)
     &&click y>(BOARD HEIGHT))
   //游戏结束的情况下,禁止点击方块
    if(mBlock->gameState != GS WIN && mBlock->gameState != GS DEAD)
     //开始计时
     if(!(mTimer->isActive()))
       mTimer->start(1000);
     //确定落点(行列)
     int colBlock = click x/BLOCK WIDTH;//确定落点所在行
     int rowBlock = (click y-BOARD HEIGHT)/BLOCK HEIGHT;//确定落点所在列
     if(event->button()==(Qt::LeftButton))//若按下的是鼠标左键
       mBlock->OpenBlock(rowBlock,colBlock);//进行打开方块处理
     else if(event->button()==(Qt::RightButton))//若按下的是鼠标右键
       mBlock->MarkBomb(rowBlock,colBlock);//进行标记方块处理
 //落点在菜单栏
 else if(click y<=MENU HEIGHT) return;
 mBlock->CheckGame();
 //游戏结束时,停止计时
 if(mBlock->gameState==GS WIN || mBlock->gameState==GS DEAD)
    if(mTimer->isActive())
     mTimer->stop();
 update();//更新界面
//in file:Block.cpp
//打开方块
void Block::OpenBlock(int row, int col)
 //若游戏结束或已经打开、已标记的方块,则禁止继续点击方块
  if(gameState==GS DEAD
     || gameState==GS_WIN
     | map[row][col].blockState==BS OPEN
     | map[row][col].blockState==BS MARKED
     || map[row][col].blockState==BS MARKED ERROR)
   return;
 //下面均是未打开、未标记方块的情况
 //打开的是雷方块
 else if(map[row][col].value==-1)
                               //播放雷爆炸音效
   audioBomb->play();
   map[row][col].blockState=BS BOMB BLAST; //修改方块为雷爆炸状态
```

```
//修改游戏状态为失败
   gameState=GS DEAD;
   return;
 //打开的是数字方块
 else if(map[row][col].value>0)
   audioClick->play();
                           //播放打开数字音效
   map[row][col].blockState=BS OPEN; //修改方块为打开状态
   return:
 //打开的是空白方块,自动打开周围非雷方块(空白方块周围没有雷)
 else if(map[row][col].value==0)
                              //播放打开空白方块音效
   audioOpenzero->play();
   map[row][col].blockState=BS OPEN;
                                  //修改方块为打开状态
   for(int rowBlock=row-1;rowBlock<=row+1;rowBlock++) //遍历相邻的方块
     for(int colBlock=col-1;colBlock<=col+1;colBlock++)</pre>
       if(rowBlock>=0
                             //越界检测
          && rowBlock<mRow
          && colBlock>=0
          && colBlock<mCol)
        OpenBlock(rowBlock,colBlock);
                                  //递归挖雷
 }
//in file:Block.cpp
//标记方块
void Block::MarkBomb(int row, int col)
 //若游戏结束或已经打开的方块,则禁止继续点击方块
 if(gameState==GS DEAD
     || gameState==GS WIN
     | map[row][col].blockState==BS OPEN)
 //标记
 if(map[row][col].blockState==BS CLOSE) //若当前方块未打开
   if(map[row][col].value!=-1) //若当前方块是雷方块
     map[row][col].blockState=BS MARKED ERROR; //修改当前方块的状态为错误标记
     gameState=GS FAULT;
                                //修改当前游戏状态为错误标记
                        //若当前不是雷方块
   else
     map[row][col].blockState=BS MARKED; //修改当前方块的状态为已标记
                          //当前剩余雷数减一
   restBombNum--;
 //取消标记
 else if(map[row][col].blockState==BS MARKED //若当前方块处于已标记或错误标记状态
     | map[row][col].blockState==BS MARKED ERROR)
                                     //修改当前方块的状态为未打开
   map[row][col].blockState=BS CLOSE;
   gameState=GS_PLAYING;
                                  //修改当前游戏状态为游戏进行中
                              //当前剩余雷数加一
   restBombNum++;
 }
```

5.3 绘制雷图

这里主要调用了Qt的绘图函数,这个函数从用户的位图中截取一部分贴到程序指定的位置中去。

```
void drawPixmap(int x, int y, const QPixmap & pixmap, int sx, int sy, int sw, int sh)
/*
x 程序的横坐标
y 程序的纵坐标
pixmap 要截取的位图对象
sx 要截取位图的横坐标
sy 要截取位图的纵坐标
sw 要截取位图的宽度
sh 要截取位图的高度
*/
```

5.3.1 程序流程图

5.3.2 具体代码实现

```
//in file:mainwindow.cpp
//绘图事件
void MainWindow::paintEvent(QPaintEvent *event)
{
    QPainter *painter = new QPainter(this);//创建画笔对象
    //加载位图
```

```
QPixmap bmpblocks(":/res/blocks.bmp");//方块
 QPixmap bmpblast(":/res/boomblast.bmp");//雷爆炸
 QPixmap bmpnumber(":/res/number.bmp");//计数用红色数字
 QPixmap bmpfaces(":/res/faces.bmp");//表情
 QPixmap bmpflagerror(":/res/flagerror.bmp");//错误标记
 //绘制雷区
 for(int rowBlock=0;rowBlock<mBlock->mRow;rowBlock++)
   for(int colBlock=0;colBlock<mBlock->mCol;colBlock++)
     //根据方块的状态绘制
     switch (mBlock->map[rowBlock][colBlock].blockState) {
     case BS CLOSE://未打开 10 第十个
       painter-
>drawPixmap(colBlock*BLOCK WIDTH,rowBlock*BLOCK HEIGHT+BOARD HEIGHT,bmpblo
cks,BLOCK WIDTH*10,0,BLOCK WIDTH,BLOCK HEIGHT);;
       break:
     case BS MARKED://标记
       painter-
>drawPixmap(colBlock*BLOCK WIDTH,rowBlock*BLOCK HEIGHT+BOARD HEIGHT,bmpblo
cks,BLOCK WIDTH*11,0,BLOCK WIDTH,BLOCK HEIGHT);
       break;
     case BS OPEN://已打开的数字格子
       painter-
>drawPixmap(colBlock*BLOCK WIDTH,rowBlock*BLOCK HEIGHT+BOARD HEIGHT,bmpblo
cks,BLOCK WIDTH*mBlock-
>map[rowBlock][colBlock].value,0,BLOCK WIDTH,BLOCK HEIGHT);
       break;
     case BS BOMB BLAST://中雷
       painter-
>drawPixmap(colBlock*BLOCK WIDTH,rowBlock*BLOCK HEIGHT+BOARD HEIGHT,bmpblas
t,0,0,BLOCK WIDTH,BLOCK HEIGHT);
       break;
     case BS MARKED ERROR://错误标记
       //若是游戏未结束则显示旗子
       if(mBlock->gameState==GS FAULT||mBlock->gameState==GS PLAYING)
         painter-
>drawPixmap(colBlock*BLOCK WIDTH,rowBlock*BLOCK HEIGHT+BOARD HEIGHT,bmpblo
cks,BLOCK WIDTH*11,0,BLOCK WIDTH,BLOCK HEIGHT);
       //若是游戏已结束则显示错误标记
       else if(mBlock->gameState==GS DEAD)
         painter-
>drawPixmap(colBlock*BLOCK WIDTH,rowBlock*BLOCK HEIGHT+BOARD HEIGHT,bmpflag
error,0,0,BLOCK WIDTH,BLOCK HEIGHT);
       break;
     case BS BOMB LIVE://未挖的雷
       painter-
>drawPixmap(colBlock*BLOCK WIDTH,rowBlock*BLOCK HEIGHT+BOARD HEIGHT,bmpblo
cks,BLOCK WIDTH*9,0,BLOCK WIDTH,BLOCK HEIGHT);
       break;
     default:
       break;
 //绘制表情
 switch (mBlock->gameState) {
```

```
case GS PLAYING://12是表情宽度的一半
   painter->drawPixmap(mBlock->mCol * BLOCK WIDTH / 2 - EXPRESSION WIDTH / 2,
MENU HEIGHT + 7, bmpfaces, 1 * EXPRESSION WIDTH, 0, EXPRESSION WIDTH,
EXPRESSION HEIGHT);
   break;
 case GS WIN:
   painter->drawPixmap(mBlock->mCol * BLOCK WIDTH / 2 - EXPRESSION WIDTH / 2,
MENU HEIGHT + 7, bmpfaces, 2 * EXPRESSION WIDTH, 0, EXPRESSION WIDTH,
EXPRESSION HEIGHT);
   break;
 case GS DEAD:
   painter->drawPixmap(mBlock->mCol * BLOCK WIDTH / 2 - EXPRESSION WIDTH / 2,
MENU HEIGHT + 7, bmpfaces, 0 * EXPRESSION WIDTH, 0, EXPRESSION WIDTH,
EXPRESSION HEIGHT); // 24是笑脸的边长,锚点在左上,因为工具栏占了些,所以看起来不在
中间
   break;
 default:
   painter->drawPixmap(mBlock->mCol * BLOCK WIDTH / 2 - EXPRESSION WIDTH / 2,
MENU HEIGHT + 7, bmpfaces, 1 * EXPRESSION WIDTH, 0, EXPRESSION WIDTH,
EXPRESSION HEIGHT);
   break;
 //绘制剩余的雷数
 int rBombNum=mBlock->restBombNum;
 if(rBombNum<0) rBombNum=0;
   painter-
>drawPixmap(6,5+MENU HEIGHT,bmpnumber,rBombNum/100*ELENUM WIDTH,0,ELENUM
WIDTH, ELENUM HEIGHT);
 if(rBombNum>=100) rBombNum%=100;
   painter->drawPixmap(6+ELENUM WIDTH,5+MENU HEIGHT,bmpnumber,
rBombNum/10*ELENUM WIDTH,0,ELENUM WIDTH,ELENUM HEIGHT);
>drawPixmap(6+ELENUM WIDTH*2,5+MENU HEIGHT,bmpnumber,rBombNum%10*ELENUM
_WIDTH,0,ELENUM_WIDTH,ELENUM_HEIGHT);
 //绘制当局游戏用时
 int rTime=mBlock->mTime;
 if(rTime>=1000)rTime%=1000;
   painter->drawPixmap(mBlock->mCol*ELENUM WIDTH-
66,5+MENU HEIGHT,bmpnumber,rTime/100*ELENUM WIDTH,0,ELENUM WIDTH,ELENUM
HEIGHT);
 if(rTime>=100) rTime%=100;
  painter->drawPixmap(mBlock->mCol*ELENUM WIDTH-6-
ELENUM WIDTH*2,5+MENU HEIGHT,bmpnumber,rTime/10*ELENUM WIDTH,0,ELENUM
WIDTH, ELENUM HEIGHT);
  painter->drawPixmap(mBlock->mCol*ELENUM WIDTH-6-
ELENUM WIDTH,5+MENU HEIGHT,bmpnumber,rTime%10*ELENUM WIDTH,0,ELENUM WI
DTH, ELENUM HEIGHT);
```

5.4 游戏输赢判断与处理

图 5-4

5.4.2 具体代码实现

```
//in file:Block.cpp
//检查当前游戏状态
void Block::CheckGame()
 switch (gameState) {//判断游戏状态
 case GS DEAD://游戏失败
   for(int rowBlock=0;rowBlock<mRow;rowBlock++)</pre>
                                   //显示所有雷
     for(int colBlock=0;colBlock<mCol;colBlock++)</pre>
       if(map[rowBlock][colBlock].value == -1
                                                   //该方块是雷
           && map[rowBlock][colBlock].blockState != BS BOMB BLAST //非爆炸状态的雷
           && map[rowBlock][colBlock].blockState!= BS MARKED) //非正确标记的雷
         map[rowBlock][colBlock].blockState = BS BOMB LIVE; //修改方块的状态为未标记
的雷
   break;
                  //有标记错误,继续游戏
 case GS FAULT:
 case GS WIN:
                //游戏胜利
   break;
             //当没有标记错误的情况下,检测所有的雷,若都已经打开或标记,则游戏胜
 default:
利
   for(int rowBlock=0;rowBlock<mRow;rowBlock++)</pre>
     for(int colBlock=0;colBlock<mCol;colBlock++)</pre>
```

```
if(map[rowBlock][colBlock].blockState==BS_CLOSE)
return;
}
gameState=GS_WIN;//改变游戏状态为游戏胜利
break;
}
}
```

5.5 自定义游戏难度

5.5.1 程序流程图

图 5-5

```
//in file:mainwindow.cpp
//用户自定义难度
void MainWindow::on actionUser Define triggered()
 Dialog *dialog = new Dialog();
 dialog->exec();//显示模态对话框
 //检测输入合法标志是否合法
 if(true==dialog->isRight)
   mBlock->Create(dialog->ROW,dialog->COL,dialog->BOMBNUM);//按输入参数创建雷图
   setFixedSize(mBlock->mCol*BLOCK WIDTH,mBlock-
>mRow*BLOCK HEIGHT+BOARD HEIGHT);//固定程序窗体尺寸,使之不可拉伸
 }
//in file:dialog.cpp
//对话框输入检测
void Dialog::getSize()
 QString str;
 str = lineEdit row->text();//获取行输入框文本
 ROW = str.toInt();//从字符串转换为整数
 str = lineEdit col->text();//获取列输入框文本
 COL = str.toInt();
 str = lineEdit bombNum->text();//获取地雷数输入框文本
 BOMBNUM = str.toInt();
 //如果转换失败, int toInt()函数会自动赋值为0,以此来检测输入的是否是正整数
 if(ROW==0||COL==0||BOMBNUM==0)
   QMessageBox msg checkInt(QMessageBox::Warning, "输入错误","请输入正整数!");
   msg checkInt.exec();
 //检测输入的行列数是否小于简单难度的设定
 else if(ROW<9 || COL<9)
   QMessageBox message(QMessageBox::NoIcon, "too low", "你还想设置的比初级还要简单?不
改高点我就开枪了。");
   message.setIconPixmap(QPixmap("./res/low.png"));
   message.exec();
 //检测地雷数
 else if(BOMBNUM>ROW*COL || BOMBNUM>1000)
   //弹窗警告
   QMessageBox message(QMessageBox::Warning,"输入错误","请输入的雷数不要大于地图总格
子数或本游戏上限雷数1000! ");
   message.exec();
 //正确输入的情况
 else
   this->close();//关闭对话框窗口
   isRight=true;//修改输入合法标志为合法
   return;
```

6 程序运行效果图

6.1 游戏初始界面

图 6-1 游戏初始界面

6.2 不同难度的雷图

图 6-2 选择难度菜单

图 6-3 简单难度

图 6-4 中级难度

图 6-5 高级难度

图 6-6 自定义难度

6.3 打开方块

图 6-7 打开数字方块

图 6-8 打开空白方块

6.4 标记方块

图 6-9 标记方块

6.5 游戏胜利

图 6-10 游戏胜利

6.6 游戏失败

图 6-11 游戏失败

6.7 游戏规则说明

图 6-12 规则说明

7 总结

历经半个月,从选题、分析到实现,我一步一步地根据文档的思路构建起程序逻辑,所谓麻雀虽小,五脏俱全,看起来简简单单的扫雷游戏,背后也隐藏着复杂的逻辑,

在开发过程中,即使事先画好了程序流程图,大大小小的bug也层出不穷,此时只能耐心地一步步去调试,有时能坐在电脑前一整天,良好的注释习惯能提高开发效率。

此次我的选题为扫雷游戏,我运用了数据结构中数组与图的深度优先遍历,进一步深入了解了在线性表的总长度基本稳定,且很少进行插入和删除,但要求以最快的速度存取线性表中的元素时,数组比之链表更具有优越性,还有深度优先遍历运用栈先进先出的特性。好的数据结构决定了程序的运行效率,数据结构+算法=程序。

为了增加扫雷游戏的趣味性,我因此去学习了跨平台C++图形用户界面应用程序开发框架Qt,比之以前使用过的MFC,Qt更是封装性好,易上手,学习成本低。

程序设计中应贯彻面向对象编程的思维,把问题对象抽象成数据和动作的结合体——类,这是当今软件开发中主流的方法,面向对象编程是模块化的,抽象的,具有易扩展,易维护,可复用的优点。