Relatório da Atividade T4B

Nuno Duarte Parente

Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto

25 de Março de 2023

(tulo)

1

Sumano

1 Introdução Teórica

-> suprimir , referencier de du cos

1.1 Barra Encastrada

Figura 1: Barra a ser flexionada

Tendo uma barra a ser flexionada como mostrado na figura acima, existe uma superfície neutra (NS) que não sofre qualquer alteração e uma outra superfície EF, que é deformada.

NS tem um comprimento $R\theta$. Antes da flexão, EF tinha o mesmo comprimento que NS, pelo que agora tem um comprimento $(R+y)\theta$ (y é a distância de NS a EF no eixo perpendicular à barra).

Assim, para uma pequena secção da barra, de área ΔS , teríamos que a variação de comprimento é y/R. Se nessa secção for aplicada uma força f, então o módulo de Young é dado por:

$$E = \frac{f/\Delta S}{y/R}$$

Para uma secção de barra em que se aplica forças, o momento das forças elásticas é dado por:

$$C = \sum fy = \frac{E}{R}I \longrightarrow \frac{1}{R} = \frac{C}{EI}$$

sendo $I=\sum \Delta Sy^2$ o momento de inércia geométrico dessa secção em relação ao plano das fibras neutras.

Temos uma barra encastrada com massa M e comprimento ℓ . Teremos que:

$$C(x) = EI \frac{d^2y}{dx^2}$$

Para um certo ponto na posição x temos que a componente de C causada pelo peso da secção de comprimento $(\ell - x)$ da barra é dado por:

$$C = \frac{1}{2}\mu g(\ell - x)^2$$

Podemos considerar que, neste exemplo, é como se tivessesmos uma massa m na extremidade da barra. Essa massa causaria uma outra componente de C:

$$C_m = mg(\ell - x)$$

Ora, se a barra estiver em equilíbrio estático temos:

$$EI\frac{d^2y}{dx^2} = mg(\ell - x) + \frac{1}{2}\mu g(\ell - x)^2$$

De onde temos que y_1 , a posição de equilíbrio do extremo da barra, é dado por:

$$y_1 = \frac{\ell^3 g}{EI} \left(\frac{m}{3} + \frac{M}{8}\right)$$

Sendo que podemos reescrever a posição de equilíbrio como

$$\frac{EI}{\ell^3}(y_1+y) = \frac{mg}{3} + \frac{Mg}{8}$$

Consideremos agora que é aplicada uma força F no extremo livre de uma barra encastrada, que cause um pequeno deslocamento y no extremo da barra. Temos:

$$\frac{EI}{\ell^3}(y_1 + y) = \frac{mg + F}{3} + \frac{Mg}{8}$$

De onde se tira:

$$F = \frac{3EI}{\ell^3} y$$

A variação total de energia potencial relativamente ao equilíbrio é igual ao trabalho realizado pela força F:

$$U_p = \int_0^y F(y) dy = \frac{3}{2} \frac{EI}{\ell^3} y^2$$

Tendo um certo ponto da barra, que apresente um deslocamento z em relação ao equilíbrio, a sua velocidade é dada por

$$\dot{z} = \frac{3}{\ell^3} (\ell \frac{x^2}{2} - \frac{x^3}{6}) \dot{y}$$

(em que \dot{y} é a velocidade do extremo) Temos

$$dU_c = \frac{1}{2}(\mu dx)\dot{z}$$

Que, ao integrar, nos dá a energia cinética da barra:

$$U_{c_b} = \frac{33}{280} M \dot{y}^2$$

e temos a energia cinética da massa no extremo da barra:

$$E_{c_m} = \frac{1}{2}m\dot{y}^2$$

Assim, a energia total da barra é

$$U_C + U_P = \frac{1}{2}(m + \frac{33}{140}M)\dot{y}^2 + \frac{3EI}{2\ell^3}y^2$$

Ao derivar e dividir por \dot{y} , obtemos uma solução do tipo $\ddot{y}+\omega^2 y=0$, de onde se tem:

$$\omega^2 = \frac{3EI}{\ell^3 (m + \frac{33}{140}M)} = \left(\frac{2\pi}{T}\right)^2$$

Assim, presumindo m=0 e sabendo que, para uma barra circular de diâmetro D temos que $I=\frac{\pi}{64}D^4$, então:

$$\bar{T}^2 = 5,029 \frac{\pi^2 \rho}{ED^2} \ell^4 \tag{1}$$

O que podemos também escrevem assim:

$$\bar{T} = \sqrt{5,029 \frac{\pi^2 \rho}{ED^2}} \ \ell^2 \tag{2}$$

1.2 Pêndulo de Torção

Figura 2: Deformação do fio de suspensão num pêndulo de torção.

Para um pêndulo de torção temos:

$$C = \int_0^R r \cdot df = \frac{\mu I_0}{\ell} \theta$$

O momento resistente do fio é dado por

$$W_e = \int_0^\theta C \ d\theta$$

Essa energia é convertida em energia cinética de rotação. Sendo I o momento de inércia do corpo suspenso, temos:

$$W_c = \frac{1}{2} \int_M v^2 \ dm = \frac{\theta'^2 \cdot I}{2} = \frac{\left(\theta_0 \cdot \frac{2\pi}{T}\right)^2 \cdot I}{2}$$

Se não houver dissipação de energia temos $W_e=W_c$. Sendo $I=I_0=\frac{\pi D^4}{32},$ o momento de inércia do fio, temos:

$$I = \frac{D^4 \mu}{128\pi L} T^2 \tag{3}$$

Recordemos ainda algumas fórmulas de momentos de inércia.

Momento de Inércia do Disco

$$I_d = \frac{MD^2}{8} \tag{4}$$

Momento de Inércia da Coroa Cilíndrica

$$I_{cc} = \frac{M}{8}(D_1^2 + D_2^2) \tag{5}$$

Momento de Inércia do Prisma com o eixo maior Vertical

$$I_{P_{vertical}} = \frac{Mb^2}{12} \tag{6}$$

Momento de Inércia do Prisma com o eixo maior Horizontal

$$I_{P_{horizontal}} = \frac{M(2h^2 + b^2)}{24} \tag{7}$$

Sendo que o momento de inércia de um sistema A que consiste de acoplar um objeto com momento de inércia I_1 com um objeto com momento de inércia I_2 é dado por

$$I_A = I_1 + I_2 (8)$$

Determinação dos Pontos da Gama Experimental

Idemania do bárilo 7 I clocar L 1 Temos N pontos uniformemente distribuídos numa certa escala em que d_{min} é o valor mais baixo do conjunto de pontos em estudo. A distância entre 2 pontos consecutivos pode ser determinada usando um ponto n, tendo-se:

$$\frac{d_n - d_{min}}{n}$$

Podemos também obter essa distância usando o maior e menor ponto do conjunto:

$$\frac{d_{max} - d_{min}}{N - 1}$$

Pelo que podemos igualar as 2 frações acima.

$$\frac{d_n - d_{min}}{n} = \frac{d_{max} - d_{min}}{N - 1}$$
$$d_n = d_{min} + \frac{n}{N - 1}(d_{max} - d_{min})$$

Assim, para uma amostra de valores elevados a quatro temos:

$$d_n^4 = d_{min}^4 + \frac{n}{N-1}(d_{max}^4 - d_{min}^4)$$

$$d_n = \sqrt[4]{d_{min}^4 + \frac{n}{N-1}(d_{max}^4 - d_{min}^4)} \quad ; \quad n = 0, 1, 2, \dots$$
 (9)

Assim, podemos usar a Equação 9 para determinar cada ponto n de um conjunto X com N dados. Se depois elevarmos os dados a 4 iremos obter um novo conjunto, Y, em que os pontos estão uniformemente distribuídos.

Jan 1 Jan 1

2 Atividade Experimental

2.1 Execução Experimental

2.1.1 Montagem Experimental

Figura 3: Montagem a realizar na parte 1 da atividade experimental. Garantir que a barra está perpendicular ao feixe luminoso no sensor.

Figura 4: Montagem a realizar na parte 2 da atividade experimental. Garantir que o disco não realiza movimentos de oscilação nem do pâr labo companto gira.

2.1.2 Parte 1 - Barra Encastrada

1. Executar a montagem na Figura 3. Selecionamos a maior barra disponível, de forma a ter acesso a uma gama maior de comprimentos em vibração, ℓ .

- 2. Selecionamos o número de intervalos desejados, como i=51, sendo que o contador de impulsos parava ao chegar à oscilação i-1, de forma que i=51 corresponde a 25 oscilações da barra. Variou-se i=51, i=101, i=151. Fez-se 2 ensaios para cada valor de i.
- Imprimimos oscilações na barra. Para isso, levantamos a barra usando uma barra auxiliar e cuidadosamente retiramos a barra auxiliar, sem gerar forças na barra em estudo.
- 4. Repetir os pontos 2 e 3 para diferentes comprimentos em vibração, ℓ . Como prevíamos utilizar a Equação 1 para determinar o Módulo de Young para a barra, determinamos previamente os valores de ℓ a obter, de forma que o gráfico de $\bar{T}^2(\ell^4)$ tivesse pontos distribuídos uniformemente. Para isso, segui a Subseção 1.3.
- 5. Elaboramos uma tabela onde registamos todos os dados (ℓ,t,\bar{T}) relevantes para a análise.

2.1.3 Parte 2 - Pêndulo de Torção

- 1. Medimos as dimensões do fio e dos objetos que nele suspendemos (disco, prisma e coroa cilindríca)
- 2. Suspendemos no fio, pela seguinte ordem:
 - Sistema A Disco + Prisma, com o eixo maior vertical
 - Sistema B Disco + Prisma, com o eixo maior horizontal
 - \bullet Sistema C Disco + Coroa Cilindríca
 - Sistema D Disco + Coroa Cilindríca + Prisma com o eixo maior horizontal
- 3. Para cada sistema fizemos 3 ensaios, com 3 amplitudes de oscilação: $\theta = 90^{\circ}, 180^{\circ}, 270^{\circ}$. Por razões técnicas, não registamos o tempo que o sistema demorava a fazer 10 oscilações com um sensor, mas sim "a olho" com o cronómetro de um telemóvel, o que faz com que haja incertezas relativamente altas nos valores medidos.
- 4. Elaboramos uma tabela onde registamos todos os dados (θ,t,\bar{T}) relevantes para a análise.

2.2 Análise de Dados

2.2.1 Parte 1 - Barra Encastrada

Todas as medições do diâmetro, comprimento e massa da barra selecionada encontram-se na Tabela 23. Temos que

- ullet comprimento em vibração da barra
- $\bullet\,$ t tempo que a barra demora a fazer 10 oscilações
- \bullet T tempo de 1 oscilação
- \bar{T} tempo médio de 1 oscilação (média dos valores de T de 2 ensaios)

in consequentes

De notar que para obter T, como o contador de impulsos conta i-1 impulsos, fizemos $T=t\frac{2}{i-1}$. Ou seja, por exemplo, para $i=101,\,T=t/50$.

Para calcular o módulo de Young precisamos da densidade da barra, pelo que foi preciso calcular o volume da barra:

$$V=\pi\frac{\bar{D}^2}{4}\bar{L} \qquad ; \qquad u(V)=\sqrt{\left(\frac{\bar{L}}{2}\pi\bar{D}\ u(\bar{D})\right)^2+\left(\frac{\pi}{4}\bar{D}^2\ u(\bar{L})\right)^2}$$

Consegui então obter a densidade da barra:

$$\rho = \frac{\bar{m}}{V} \qquad ; \qquad u(\rho) = \sqrt{\left(\frac{1}{V} \ u(\bar{m})\right)^2 + \left(\frac{\bar{m}}{V^2} \ u(V)\right)^2}$$

Tal como feito com o volume e com a densidade, utilizei propagação de incertezas para determinar as incertezas de cada variável, tendo-se então:

 $u(\log u)$

$$u(\ell^4) = |4L^3 \ u(L)| \quad ; \quad u(T) = \left| \frac{2}{i-1} \ u(t) \right|$$
$$u(\bar{T}) = \frac{\sigma}{\sqrt{2}} \quad ; \quad u(\bar{T}^2) = |2\bar{T} \ u(\bar{T})|$$
$$u(\log(X)) = \left| \frac{1}{X} \ u(X) \right|$$

2.2.1.1 Gama 1

Inicialmente, decidimos estudar as oscilações da barra encastrada para uma vaga menor, pois é mais fácil garantir que não ocorre o efeito de "oscilações eliptícas". Este efeito consiste em, especialmente para valores de ℓ elevados, após algum tempo a oscilar a barra começa a oscilar na horizontal e na vertical simultaneamente. Ora, isto resulta numa oscilação que, quando vista de frente, tem formato eliptíco e afeta o período de oscilação medido. Felizmente, para reduzir este efeito basta rodar a barra no suporte, mas ele nunca desaparece completamente.

Todos os valores de E e regressões lineares feitas nesta subsecção sobre a $1^{\underline{a}}$ gama de estudo foram obtidos utilizando a fórmula 1

Com os valores registados (Tabela 24), foi possível obter os seguintes gráficos:

i = 51

Para i = 51 (50 oscilações) obtive os seguintes gráficos:

19m2 D

Gráfico 1: Regressão linear obtida para i=51 utilizando a fórmula 1.

Regressão de T²(e⁴) para i=51				
m 0,495 0,00005 b				
s(m)	0,003	0,00002	s(b)	
r ²	0,99980	0,00002	s(y)	

Tabela 1: Matriz de ajuste correspondente ao gráfico 1.

Ao qual corresponde o gráfico de resíduos:

Gráfico 2: Gráfico de Resíduos da regresão linear no gráfico Gráfico 1

Como temos $r^2 \approx 1$, resíduos aleatórios e muito próximos de 0, podemos estimar que a regressão linear é apropriada.

Para reforçar essa declaração, fiz o gráfico $\log(T)[\log(\ell)]$ que deverá ter declive 2, pois:

$$T^{2} = 5,029 \frac{\pi^{2} \rho}{ED^{2}} \ell^{4} \longleftrightarrow \log(T^{2}) = \log\left(5,029 \frac{\pi^{2} \rho}{ED^{2}}\right) + \log(\ell^{4})$$
$$\log(T) = 2\log(\ell) + \log\left(5,029 \frac{\pi^{2} \rho}{ED^{2}}\right)$$

Assim, obtive o gráfico 23 (em apêndice) e a respetiva matriz de ajuste:

Regressão de log(T)[log(ℓ)] para i=51					
m 1,93 -0,19 b					
s(m)	0,02	0,01	s(b)		
r ²	0,999	0,003	s(y)		

Tabela 2: Matriz de ajuste da linearização da fórmula 1 para i = 51

Para o declive desta linearização temos um erro percentual de 3% por defeito, com uma incerteza relativa de 1%. Vemos ainda, no gráfico 24, que os resíduos desta linearização são aleatórios.

Assim, e tendo em conta aquilo que vimos acima, podemos considerar que a regressão linear na Tabela 1 estará feita corretamente. Assim, para i=51 obtivemos:

$$E = (2,62\pm0,04)\cdot10^{11}Nm^{-2} = (2,62\cdot10^{11}\pm1\%)Nm^{-2}$$

$$Erro\% = 31\%\;(por\;\;excesso)$$

i = 101

1

Para i = 101 (100 oscilações) obtive os seguintes gráficos:

Gráfico 3: Regressão linear obtida para i = 101 utilizando a fórmula 1.

Regressão de T²(ℓ⁴) para i=101				
m 0,501 0,00005 b				
s(m)	0,005	0,00004	s(b)	
r ²	0,9992	0,00005	s(y)	

Tabela 3: Matriz de ajuste correspondente ao gráfico 3.

Ao qual corresponde o gráfico de resíduos:

 ${\bf Gráfico}$ 4: Gráfico de Resíduos da regresão linear no gráfico Gráfico 3

Como temos $r^2 \approx 1$, resíduos aleatórios e muito próximos de 0, podemos estimar que a regressão linear é apropriada. No entanto, podemos verificar melhor essa declaração, pelo que fiz o gráfico $\log(T)[\log(\ell)]$ que, como vimos acima, deverá ter declive 2.

Assim, obtive o gráfico 25 (em apêndice) e a respetiva matriz de ajuste:

Regressão de log(T)[log(ℓ)] para i=101				
m 1,931 -0,184 b				
s(m)	0,024	0,014	s(b)	
r ²	0,99905	0,004	s(y)	

Tabela 4: Matriz de ajuste da linearização da fórmula 1 para i=51

Para o declive desta linearização temos um erro percentual de 4% por defeito, com uma incerteza relativa de 1%. No gráfico 26, vemos que os resíduos desta linearização são aleatórios.

Assim, e tendo em conta aquilo que vimos acima, podemos considerar que a regressão linear na Tabela 3 estará feita corretamente. Assim, para i = 101

ae ajuste:

Sald. mymil. production

temos que:

$$\begin{split} E &= (2,5856318 \pm 0,0000002) \cdot 10^{11} Nm^{-2} \\ &= (2,5856318 \cdot 10^{11} \pm 0,000007\%) Nm^{-2} \\ Erro\% &= 29\% \; (por \;\; excesso) \end{split}$$

i = 151

Para $i=151~(150~{\rm oscilações})$ obtive os seguintes gráficos:

Gráfico 5: Regressão linear obtida para i=151 utilizando a fórmula 1.

Regressão de T²(ℓ⁴) para i=151				
m 0,504 0,00006 b				
s(m)	0,004	0,00003	s(b)	
r ²	0,9996	0,00004	s(y)	

 ${\bf Tabela~5:~Matriz~de~ajuste~correspondente~ao~gráfico~5.}$

Ao qual corresponde o gráfico de resíduos:

Gráfico 6: Gráfico de Resíduos da regresão linear no gráfico Gráfico 5

Como temos $r^2 \approx 1$, resíduos aleatórios e muito próximos de 0, podemos estimar que a regressão linear é apropriada. No entanto, podemos verificar melhor essa declaração, pelo que fiz o gráfico $\log(T)[\log(\ell)]$ que, como vimos acima, deverá ter declive 2.

Assim, obtive o gráfico 27 (em apêndice) e a respetiva matriz de ajuste:

Regressão de log(T)[log(ℓ)] para i=151				
m 1,931 -0,181 b				
s(m)	0,013	0,008	s(b)	
r ²	0,99976	0,002	s(y)	

Edy. whif wadr

Tabela 6: Matriz de ajuste da linearização da fórmula 1 para i=51

Para o declive desta linearização temos um erro percentual de 3% por defeito, com uma incerteza relativa de 1%. No gráfico 28 podemos ver que os resíduos desta linearização são aleatórios.

Assim, e tendo em conta aquilo que vimos acima, podemos considerar que a regressão linear na Tabela 5 estará feita corretamente. Assim, para i=151 temos que:

$$E = (2,5704160 \pm 0,0000002) \cdot 10^{11} Nm^{-2}$$
$$= (2,5856318 \cdot 10^{11} \pm 0,000006\%)Nm^{-2}$$
$$Erro\% = 29\% (por excesso)$$

Média dos valores para os 3 i

Se juntarmos os gráficos das regressões lineares para i = 51, 101, 151 temos:

Gráfico 7: Sobreposição dos ajustes para os 3 valores de i

Podemos ainda fazer o mesmo para os resíduos:

 ${\bf Gráfico~8:~}$ Sobreposição dos resíduos correspondentes a cada um dos ajustes no gráfico 7

Assim, facilmente vemos que os valores de \bar{T}^2 obtidos para cada valor de ℓ variado na execução, são bastante aproximados. Isto acontece de tal forma que as retas no gráfico 7 são dificilmente distinguidas e até os resíduos no gráfico 8 apresentam um formato bastante semalhante para todos os i testados.

Desta forma, decidi gerar um "novo ensaio", em que para cada valor de ℓ é usado a média dos valores de \bar{T}^2 para i=51,101,151. De notar que os pontos duvidosos obtidos para i=51 e i=151 não foram incluídos nestas médias. Os valores usados encontram-se na Tabela 25, no apêndice.

Foi então obtido o gráfico e a regressão linear abaixo:

T3B - Estudo da indução magnética

TA: os ralores que obtem para u(E)

Mas exractos

Gráfico 9: Gráfico $T^2(\ell^4)$ obtido para o "ensaio" dos valores médios para a $1^{\underline{a}}$ gama de estudo.

Regressão de T²(&⁴) médio				
m 0,500 0,00005 b				
s(m)	0,004	0,00003	s(b)	
r ²	0,9995	0,00004	s(y)	

Tabela 7: Matriz de ajuste correspondente à regressão linear presente no gráfico 9

Regressão de log(T)[log(ℓ)] para média				
m 1,92 -0,19 b				
s(m)	0,02	0,01	s(b)	
r ²	0,9991	0,004	s(y)	

Tabela 8: Matriz de ajuste da linearização deste ensaio

Assim, obtivemos uma linearização cujo declive apresenta um erro de 4% e uma incerteza de 1%. Além disso, como se tem no gráfico 30, o ajuste da linearização apresenta resíduos aleatórios. Vimos ainda, na Tabela 7 e no gráfico 10, que temos $r^2 \approx 1$ e resíduos aleatórios. Assim, a regressão linear é correta.

Desta forma, para o "ensaio" dos valores médios temos:

$$E = (2,5894697 \pm 0.0000002) \cdot 10^{11} Nm^{-2}$$
$$= (2,5894697 \cdot 10^{11} \pm 0,000006\%)Nm^{-2}$$
$$Erro\% = 29\% (por excesso)$$

2.2.1.2 Gama 2

Ao longo da análise dos valores da Secção 2.2.1.1 verificamos que:

- Pontos duvidosos facilmente influenciavam os resultados obtidos
- Os erros ao determinar E foram relativamente elevados
- \bullet Os erros e incertezas do declive ao verificar a relação entre T e ℓ foram elevados.

Assir, decidimos estudar uma segunda gama de estudo, com valores de ℓ mais elevados. Ou seja, pretendíamos ver se o maior número de dados iria aumentar a incerteza e diminuir o erro, além de verificar se o efeito de "oscilações eliptícas" mencionado acima de facto causava algum efeito nos resultados obtidos (apesar de termos rodado a barra para reduzir as oscilações horizontais).

Os valores obtidos encontram-se na Tabela 26. Com eles, pudemos fazer os seguintes gráficos:

i=51 - Fórmula 1

Para i = 51 (50 oscilações) obtivemos:

o to the service of t

Gráfico 11: Regressão Linear obtida utilizando a fórmula 1 para i=51

Regressão de T²(ℓ⁴) para i=51				
m 0,494 0,0001 b				
s(m)	0,002	0,0001	s(b)	
r ²	0,99986	0,0001	s(y)	

Tabela 9: Matriz de ajuste do gráfico 11

Para a qual correspondem os resíduos:

 ${\bf Gráfico~12:~}$ Resíduos associados à regressão linear presente no gráfico 11

Temos $r^2 \approx 1$ e resíduos aleatórios.

Novamente, decidi usar os dados para verificar a relação $\bar{T}^2 \propto \ell^4$. Assim obtive o gráfico 31, para o qual temos a seguinte matriz de ajuste:

Regressão de log(T)[log(ℓ)] para i=51				
m 1,99 -0,155 b				
s(m)	0,01	0,002	s(b)	
r ²	0,99992	0,002	s(y)	

Tabela 10: Linearização dos dados para i=51 na Gama 2

Temos então um declive com um erro de 0,4% e uma incerteza de 0,3%. Vemos ainda no gráfico 32 que os resíduos desta regressão são aleatórios.

Desta forma, podemos estimar que o ajuste feito no gráfico 11 está correto e temos:

$$\begin{split} E &= (2,62 \pm 0,03) \cdot 10^{11} Nm^{-2} \\ &= (2,62 \cdot 10^{11} \pm 1\%) Nm^{-2} \\ Erro\% &= 31\% \; (por \;\; excesso) \end{split}$$

$\underline{i=101}$ - Fórmula 1

Para i = 101 (100 oscilações) obtive os seguintes gráficos:

Gráfico 13: Regressão Linear obtida utilizando a fórmula 1 para i=101, na gama 2

Regressão de T²(ℓ⁴) para i=101				
m 0,503 0,0001 b				
s(m)	0,002	0,0001	s(b)	
r ²	0,99986	0,0001	s(y)	

Tabela 11: Matriz de ajuste do gráfico 11

Para a qual correspondem os resíduos:

Gráfico 14: Resíduos associados à regressão linear do gráfico 13

Podemos ver que se tem $r^2 \approx 1$ e os resíduos são aleatórios. Novamente, decidi decidi linearizar os dados do gráfico 13. Assim obtive o gráfico 33, para o qual temos a seguinte matriz de ajuste:

Regressão de log(T)[log(ℓ)] para i=101			
m 1,989 -0,152 b			
s(m)	0,006	0,002	s(b)
r ²	0,99991	0,002	s(y)

Tabela 12: Linearização dos dados para i=101na Gama 2

Esta regressão um declive com um erro de 0,5% e uma incerteza de 0,3%. Vemos ainda no gráfico 34 que os resíduos desta regressão são aleatórios.

Desta forma, podemos estimar que o ajuste feito no gráfico 13 está correto e temos:

$$E = (2,5755948 \pm 0,0000001) \cdot 10^{11} Nm^{-2}$$
$$= (2,5755948 \cdot 10^{11} \pm 0,000005\%)Nm^{-2}$$
$$Erro\% = 29\% \ (por \ excesso)$$

i=151 - Fórmula 1

Para os dados obit
dos com $i=151~(150~{\rm oscilações})$ consegui fazer a seguinte análise:

Gráfico 15: Regressão Linear obtida utilizando a fórmula 1 para i=151

Regressão de T²(ℓ⁴) para i=151										
m	0,506	0,0001	b							
s(m)	0,002	0,0001	s(b)							
r ²	0,99990	0,0001	s(y)							

Tabela 13: Matriz de ajuste do gráfico 15

Para a qual correspondem os resíduos:

Gráfico 16: Resíduos associados à regressão linear presente no gráfico 15

Temos $r^2 \approx 1$ e resíduos que aparentam ser aleatórios.

Novamente, estudei a relaçãolog $(\bar{T})[\log(\ell)]$. Assim obtive o gráfico 35, para o qual temos a seguinte matriz de ajuste:

Regressão de log(T)[log(ℓ)] para i=151								
m	1,987	-0,151	b					
s(m)	0,005	0,002	s(b)					
r ²	0,99994	0,001	s(y)					

Tabela 14: Linearização dos dados para i=151 na Gama 2

Temos então um declive com um erro de 0,6% e uma incerteza de 0,3%. Vemos ainda no gráfico 36 que os resíduos desta regressão são aleatórios.

Desta forma, podemos estimar que o ajuste feito no gráfico 15 está correto e temos:

$$\begin{split} E &= (2,55578231 \pm 0,0000001) \cdot 10^{11} Nm^{-2} \\ &= (2,55578231 \cdot 10^{11} \pm 0,000005\%) Nm^{-2} \\ Erro\% &= 28\% \; (por \;\; excesso) \end{split}$$

Média dos valores para os 3 i

Tal como com a gama 1, decidi sobrepor os gráficos dos ajuste e dos resíduos feitos para os 3 valores de i:

Figura 5: Sobreposição dos ajustes feitos na secção 2.2.1.2

Resíduos da sobreposição dos gráficos de ajuste usando a Fórmula 1 0.0005 Resíduos para i=51 0,0004 Resíduos para i=101 0,0003 Resíduos para i=151 0,0002 0,0001 0,0000 -0,0001 -0.0002 -0,0003 -0,0004 0,00 0,01 0,03 0,04 0,05 0,07 ₆4 (m⁴)

Figura 6: Sobreposição dos resíduos correspondentes aos 3 ajustes no gráfico 5

Mais uma vez, vemos que os resíduos são idênticos e as retas dos ajustes estão próximas. Assim, decidi voltar a fazer um "ensaio" de médias. Tal como na secção 2.2.1.1, a cada valor de ℓ associei a média dos 3 valores de \bar{T} obtidos. Não incluí o ponto duvidoso de i=51 nessa média. Todos os valores usados neste "ensaio" estão na Tabela 27.

Obtive então:

Gráfico 17: Regressão Linear obtida utilizando a fórmula 1 para i=151

Regressão de T²(ℓ⁴) médio									
m	0,501	9E-05	b						
s(m)	0,002	8E-05	s(b)						
r ²	0,99987	0,0001	s(y)						

Tabela 15: Matriz de ajuste da regressão linear do gráfico 17.

Resíduos para a média dos 3 i - Fórmula 1 0,0005 0.0004 0,0003 (s^2) 0,0002 0,0001 0,0000 -0,0001 -0,0002 -0.0003 -0,0004 0,04 0.00 0.01 0.02 0.03 0.05 0.06 0.07 0.08

Para a qual correspondem os resíduos:

Gráfico 18: Resíduos associados à regressão linear presente no gráfico 17

ይ⁴ (m⁴)

Temos $r^2 \approx 1$ e resíduos que aparentam ser aleatórios. Ao fazer o gráfico de $\log(\bar{T})[\log(\ell)]$ obtive o gráfico 37, para o qual temos a seguinte matriz de ajuste:

Regressão de log(T)[log(ℓ)] para média									
m	1,988	-0,153	b						
s(m)	0,006	0,002	s(b)						
r ²	0,99991	0,002	s(y)						

Tabela 16: Linearização dos dados o ensaio dos valores médios dos 3 i na Gama 2

Temos então um declive com um erro de 0,6% e uma incerteza de 0,3%. Vemos ainda no gráfico 38 que os resíduos desta regressão são aleatórios.

Desta forma, podemos estimar que o ajuste feito no gráfico 15 terá sido realizado corretamente e tem-se:

$$E = (2,5860090 \pm 0,0000001) \cdot 10^{11} Nm^{-2}$$
$$= (2,5860090 \cdot 10^{11} \pm 0,000005\%)Nm^{-2}$$
$$Erro\% = 29\% (por excesso)$$

2.2.1.3 Verificação da Fórmula 2 com a Gama 2

Conseguimos verificar pelos dos valores de E e dos declives de linearização, que a gama 2, tal como esperado, nos dá incertezas menores.

Assim, para verificar os valores obtidos com a fórmula 2 decidi usar esta gama. De notar que na fórmula 2 temos $\bar{T} \propto \ell^2$, pelo que o declive da linearização seria 2 novamente. Deste modo, optei por não verificar novamente a linearização, até porque para a determinar usei \bar{T} e ℓ , valores que serão os mesmos a usar no estudo da fórmula 2.

Assim, obtive:

Gráfico 19: Sobreposição das retas de ajuste obtida para os 3 valores de i, com a fórmula 2.

Gráfico 20: Sobreposição dos resíduos dos 3 ajustes no gráfico 19

Desta vez, como os gráficos obtidos têm traçados muito semelhantes àqueles obtidos na análise feita com a Fórmula 1, inclui apenas os gráficos de sobreposição na análise de dados. Os gráficos do ajuste e resíduos para i=51,101,151 encontram-se no Apêndice (gráficos 39 a 44). Para as regressões lineares presentes no gráfico 19 temos as seguintes matrizes de ajuste:

Regressão de T(ℓ²) para i=51									
m	0,700	0,0009	b						
s(m)	0,002	0,0004	s(b)						
r ²	0,99992	0,0005	s(y)						

Tabela 17: Matriz de ajuste para i = 51, no estudo da Fórmula 2.

Regressão de T(ℓ²) para i=101									
m	0,707	0,0007	b						
s(m)	0,002	0,0004	s(b)						
r ²	0,99992	0,0005	s(y)						

Tabela 18: Matriz de ajuste para i=101, no estudo da Fórmula 2.

Regressão de T(ℓ²) para i=151									
m	0,709	0,0007	b						
s(m)	0,002	0,0003	s(b)						
r ²	0,99994	0,0004	s(y)						

Tabela 19: Matriz de ajuste para i=151, no estudo da Fórmula 2.

Para todas as regressões temos $r^2\approx 1$ e resíduos aleatórios. Assim, no estudo da Fórmula 2 temos:

i=51 - Fórmula 2

$$\begin{split} E &= (2,64 \pm 0,02) \cdot 10^{11} Nm^{-2} \\ &= (2,64 \cdot 10^{11} \pm 0,7\%) Nm^{-2} \\ Erro\% &= 32\% \; (por \;\; excesso) \end{split}$$

$\underline{i=101}$ - Fórmula 2

$$\begin{split} E &= (2,589 \pm 0,001) \cdot 10^{11} Nm^{-2} \\ &= (2,589 \cdot 10^{11} \pm 0,04\%) Nm^{-2} \\ Erro\% &= 29\% \; (por \;\; excesso) \end{split}$$

$\underline{i=151}$ - Fórmula 2

$$\begin{split} E &= (2,573 \pm 0,001) \cdot 10^{11} Nm^{-2} \\ &= (2,573 \cdot 10^{11} \pm 0,04\%) Nm^{-2} \\ Erro\% &= 29\% \; (por \;\; excesso) \end{split}$$

Para este estudo decidi não fazer estudo de um "ensaio" de valores médios. O benefício destes estudos feitos anteriormente era o de obter um resultado mais uniforme, com erro e incerteza mais baixa que a dos valores medidos. No entanto, neste estudo queríamos apenas comparar e tirar conclusões acerca dos valores de E obtidos com a fórmula 2, assim como a respetiva incerteza, o que conseguimos fazer com os valores de E para cada i.

2.3 Parte 2 - Pêndulo de Torção

Começamos a atividade por medir as dimensões de cada sólido e do fio, cujos valores estão indicados na Tabela 28. Usando estes valores e as equações 4 a 7 foi possível determinar os momentos de inércia dos sistemas A, B, C, D:

$$I_A = (4,04 \pm 0,01) \cdot 10^{-3} \ kg \ m^2$$

$$I_B = (6,28 \pm 0,01) \cdot 10^{-3} \ kg \ m^2$$

$$I_C = (8,36 \pm 0,02) \cdot 10^{-3} \ kg \ m^2$$

$$I_D = (10,64 \pm 0,02) \cdot 10^{-3} \ kg \ m^2$$

Para cada sistema, foi feita a média dos tempos de 1 oscilação determinado para cada amplitude de oscilação testada (90°, 180°, 270°), tendo-se obtido a Tabela 29, que contém todos os valores registados nesta parte da atividade.

Com estes dados, foi possível fazer uma regressão linear de I em função de T^2 :

Gráfico 21: Regressão linear $I(T^2)$ feita na segunda parte da atividade.

I(T ²)										
m	8,15E-05	-0,0001	b							
s(m)	4E-07	0,00004	s(b)							
r ²	0,99995	0,00002	s(y)							

Tabela 20: Matriz de ajuste da regressão no gráfico 21

Gráfico 22: Resíduos do gráfico 21.

Mais uma vez, decidi fazer a linearização destes dados, sendo que o declive esperado seria 2, pois:

$$I = \frac{D^4 \mu}{128\pi L} T^2 \longrightarrow \log(I) = 2\log(T) + \log\left(\frac{D^4 \mu}{128\pi L}\right)$$

Assim, temos:

Log(I) [Log(T)]									
m	2,02	-4,12	b						
s(m)	0,01	0,01	s(b)						
r ²	0,99997	0,001	s(y)						

Tabela 21: Matriz de ajuste da linearização dos dados da segunda parte da atividade.

Temos então um declive com um erro de 1% e uma incerteza percentual de 0,4%. A representação gráfica de $\log(I)[\log(T)]$ e os seus resíduos encontram-se nos gráficos 45 e 46. Como, além disso, vimos que a regressão linear presente no gráfico 21 apresenta $r^2 \approx 1$ e resíduos muito próximos de zero e possivelmente aleatórios (apesar de não termos pontos suficientes para tirar essa conclusão

com certeza). Assim, na segunda parte da atividade (sendo $\mu = 79,3GPa$ o valor de referência) determinou-se:

$$\mu = (105 \pm 3)~GPa = (105 \pm 3\%)~GPa$$

$$Erro\% = 32\%~(por~excesso)$$

Resultados Finais 2.4

ibela 22: Resultados obtidos na atividade experimental.

oma vez que foi determinado com a gama mais apropriada e, como tal, apresenta menor incertezas, o valor final do módulo de Young da barra encastrada é aquele obtido no "ensaio" dos valores médios feito com a segunda gama: $E=(2,5860090\pm0,0000000)\cdot10^{11}Nm^{-2}=(2,5860090\cdot10^{11}\pm0,000005\%)Nm^{-2}$ $Erro\%=29\% \ (por\ excesso)$

$$E = (2,5860090 \pm 0,0000001) \cdot 10^{11} Nm^{-2} = (2,5860090 \cdot 10^{11} \pm 0,000005\%)Nm^{-2}$$

$$Exro\% = 29\% \text{ (now. excess)}$$

Para o módylo de rigidez do fio do pêndulo de torção, o valor final obtido foi

$$\mu = (105 \pm 3) \ GPa = (105 \pm 3\%) \ GPa$$

$$Erro\% = 32\% \ (por \ excesso)$$

Conclusões

Nesta atividade foi possível determinar o módulo de Young de uma barra metálica a menos de um erro de 29%, com uma incerteza de 0,00005%. Apesar de muito elevado, este erro não se deverá a erros na execução, pois o erro obtido mantevesse perto de 30% em todos os ensaios estudados. Deve-se ainda realçar que todos os valores obtidos foram erros por excesso. Assim, conclui-se que ou o método experimental não é o mais adequado e, portanto, está sujeito a erros sistemáticos que não são considerados; ou o valor de módulo de Young considerado como valor de referência não é o mais apropriado.

Ao usar 2 gamas bastante diferentes, consegui verificar que, nesta atividade, ao ter pontos mais dispersos na gama total apenas a incerteza dos valores obtidos é reduzida, pelo que o erro não foi afetado. Foi ainda claro que, em ambas as gamas, 50 oscilações resultavam em valores com elevadas incertezas.

Com a gama 2 testei a aplicabilidade da Fórmula 2 nesta atividade. Apesar de esta fórmula dar valores do módulo de Young muito próximos aos da Fórmula 1, esses valores estavam associados a incertezas muito maiores do que aquelas obtidas com a fórmula 1.

emanich kinga

T3B - Estudo da indução magnética

Equação de propagação de ineertesas

Consegui ainda verificar a relação $\bar{T}^2 \propto \ell^4$ com uma incerteza de 0,3% e com um erro de 0,4%. De notar que estes valores foram obtidos para i=51 na segunda gama.

Na segunda parte da atividade, conseguiu-se determinar o módulo de rigidez do fio, com uma incerteza percentual de 3% e um erro de 32%. Nesta parte deve-se notar que o cronómetro usado para contar o tempo de 10 oscilações foi parado manualmente e que apenas se obteve 4 pontos. Assim, é compreensível obter uma incerteza e erro baixos.

4 Apêndice

	Medições							
	(m ± 0,1) (g)	(L ± 0,5) (mm)	(d ± 0,01) (mm)					
	21,6	895,0	1,85					
	21,6	895,2	1,83					
	21,6	21,6 894,8						
	21,5	895,1	1,88					
	21,6	895,0	1,88					
Média	0,02158	0,89502	0,00185					
u(média)	0,00002	0,00006	0,00001					

Tabela 23: Medições do comprimento (L), massa (m) e diâmetro (D) da barra escolhida.

Tabela 24: Valores registados ao longo da primeira parte da atividade, com a primeira Gama Experimental.

Gráfico 23: Gráfico obtido na linearização dos dados para i=51 na primeira gama de estudo

Gráfico 24: Resíduos correspondentes à regressão linear presente no gráfico Gráfico 23

Gráfico 25: Gráfico obtido na linearização dos dados para i=101 na primeira gama de estudo

Gráfico 26: Resíduos correspondentes à regressão linear presente no gráfico Gráfico $25\,$

Gráfico 27: Gráfico obtido na linearização dos dados para i=151 na primeira gama de estudo

Gráfico 28: Resíduos correspondentes à regressão linear presente no gráfico Gráfico 27

0 ()	04.1		Média dos 3 i								
€ (cm)	€4 (m)	u(ℓ⁴) (m)	T _{médio} (s)	u(T _{médio}) (s)	$(T_{médio})^2 (s^2)$	$u((T_{médio})^2)(s^2)$	Ajuste	Resíduos			
18,00	1,049760000E-03	2E-12	0,0237	0,0001	0,000560	0,000003	0,000574	-0,000014			
21,70	2,2173739E-03	2E-11	0,0343	0,0001	0,00117	0,00001	0,00116	0,00002			
24,10	3,3734026E-03	8E-11	0,0421	0,0001	0,00177	0,00001	0,00174	0,00003			
26,00	4,569760E-03	2E-10	0,0495	0,0011	0,00228	0,00001	0,00233	-0,00005			
27,50	5,719141E-03	4E-10	0,0542	0,0002	0,0029	0,0000	0,0029	0,0000			
28,80	6,87971E-03	7E-10	0,0591	0,0002	0,0035	0,0000	0,0035	0,0000			
30,00	8,10000E-03	1E-09	0,0636	0,0002	0,0040	0,0000	0,0041	-0,0001			
31,00	9,23521E-03	2E-09	0,0685	0,0002	0,0047	0,0000	0,0047	0,0000			
31,90	1,03553E-02	2E-09	0,0724	0,0002	0,0052	0,0000	0,0052	0,0000			

Tabela 25: "Ensaio" dos valores médios na segunda Gama Experimental da primeira parte da atividade.

Linearização a média dos 3 i - Fórmula 1

Gráfico 29: Relação entre $\log(T)$ e $\log(\ell)$ neste ensaio de valores médios.

Linearização a média dos 3 i - Fórmula 1

Gráfico 30: Resíduos correspondentes à regressão linear presente no gráfico Gráfico 29

Valores	(£±0.05)(cm)	£1 (m)	u(8°) (m)				1=51				=101										
Pretendidos	(C T O/OS/(CIT)	6 (40)	ole) (m)	(t±0,01)(s)	(T±0,001)(s)	T _{modiu} (s)	0[T _{modu}] (1)	(Tnose)2 (52)	UI(Tracca)21 (S2)	(t±0,01)(s)	(T±0,001)(s)	T _{modu} (1)	U(T _{matu})(x)	(Trussal ² (s ²)	Ulfrace) (S2)	(t±0,01)(s)	(T ± 0,001) (s)	T _{mbdu} (1)	U(Tentu) (x)	(Trace)2 (52)	u(Truss)*) (s²)
18,000	18,0000	1,0497600006-03	28-12	0,59	0,024	0,0258	0,0003	0,00057	0,00001	1,17	0,023	0,0235	0,0001	0,00055	0,00001	1,77	0,024	0,0257	0,0001	0,000560	0,000004
29,465	29,5000	7,5783506E-08	96-10	1,58	0,061	0,0614	0,0008	0,00877	0,00003	8,10 5,10	0,062	0,062	0,0001	0,00384	0,00002	4,68 4,67	0,062	0,0623	0,0001	0,00389	0,00001
34,414	54,4000	1,40034091-02	58-09	2,09	0,084	0,0836	0,0003	0,00699	0,00005	4,22	0,084	0,0844	0,0001	0,00712	0,00002	6,35	0,085	0,0847	0,0001	0,00717	0,00002
37,845	37,9000	2,063274E-02	2E-08	2,80	0,112	0,1068	0,0003	0,0114	0,0001	5,12 5,12	0,102	0,1024	0,0001	0,01049	0,00003	7,70 7,70	0,103 0,103	0,1027	0,0001	0,01054	0,00002
40,537	40,0000	2,560000E-02	35-08	2,83	0,118	0,1132	0,0003	0,0128	0,0001	5,72 5,72	0,114	0,1144	0,0001	0,01509	0,00003	8,61 8,60	0,115	0,1147	0,0001	0,01316	0,00002
42,779	42,8000	3,355638E-02	85-08	5,25 8,24	0,129	0,1294	0,0003	0,0167	0,0001	6,53	0,151	0,1506	0,0001	0,01706	0,00004	9,81 9.81	0,151	0,1508	0,0001	0,01711	0,00002
44,715	44,6000	8,95676E-02	16-07	5,48 5,48	0,139	0,1892	0,0008	0,0194	0,0001	7,02	0,140	0,1405	0,0001	0,01974	0,00004	10,59 10,58	0,141	0,1411	0,0001	0,01992	0,00003
46,428	46,3000	4,595416-02	28-07	3,76 8,77	0,150	0,1506	0,0005	0,0227	0,0001	7,59 7,60	0,152	0,1519	0,0001	0,02307	0,00004	11,43	0,152	0,1523	0,0001	0,02321	0,00003
47,970	48,1000	5,352796-02	3E-07	4,08	0,163	0,1630	0,0008	0,0266	0,0001	8,22 8,21	0,164	0,1643	0,0001	0,02699	0,00005	12,37 12,36	0,165	0,1649	0,0001	0,02718	0,00003
49,577	49,5000	6,003736-02	48-07	4,33 4,33	0,173	0,1752	0,0003	0,0300	0,0001	8,74 8,74	0,175	0,1748	0,0001	0,03056	0,00005	13,15	0,175	0,1753	0,0001	0,05072	0,00003
50,672	50,5000	6,50378E-02	6E-07	4,48	0,179	0,1790	0,0003	0,0320	0,0001	9,03	0,181	0,1806	0,0001	0,0826	0,0001	13,60 13,60	0,181 0,181	0,1813	0,0001	0,03288	0,00003
51,875	52,0000	7,311626-02	88-07	4,75 4,75	0,190	0,1900	0,0003	0,0361	0,0001	9,59	0,192	0,1918	0,0001	0,0568	0,0001	14,45	0,192	0,1925	0,0001	0,03704	0,00004

Tabela 26: Valores registados ao longo da primeira parte da atividade, com a segunda Gama Experimental.

Gráfico 31: Gráfico de $\log(T)[\log(\ell)]$ para 50 oscilações, na segunda gama.

Gráfico 32: Resíduos da regressão linear do gráfico 31

Linearização para i=101 -0,5 -0,6 -0,7 Log(T) (s.u.) -0,8 -1,0 -1,1 log(T)[log(ℓ)] -1,2 Ajuste Linear -1,3 -0,40 -0,50 -0,45 -0,35 -0,55 -0,30 Log(ℓ) (s.u.)

Gráfico 33: Gráfico de $\log(T)[\log(\ell)]$ para 50 oscilações, na segunda gama.

 ${\bf Gráfico~34:~Resíduos~da~regress\~ao}$ linear do gráfico10

Gráfico 35: Gráfico de $\log(T)[\log(\ell)]$ para 50 oscilações, na segunda gama.

 ${\bf Gráfico~36:~Res\'iduos~da~regress\~ao}$ linear do gráfico35

ℓ (cm)	04.4	u(୧⁴) (m)	Média dos 3 i							
& (CIII)	€⁴ (m)		T _{médio} (s)	u(T _{médio}) (s)	$(T_{médio})^2 (s^2)$	$u((T_{médio})^2) (s^2)$	Ajuste	Resíduos		
18,00	1,049760000E-03	2E-12	0,0237	0,0001	0,000560	0,000003	0,000612	-0,000053		
29,50	7,5733506E-03	9E-10	0,0619	0,0002	0,00383	0,00003	0,00388	-0,00005		
34,40	1,4003409E-02	5E-09	0,0842	0,0003	0,00709	0,00004	0,00710	0,00000		
37,90	2,063274E-02	2E-08	0,1025	0,0001	0,01051	0,00002	0,01042	0,00010		
40,00	2,560000E-02	3E-08	0,1141	0,0004	0,0130	0,0001	0,0129	0,0001		
42,80	3,35564E-02	8E-08	0,1303	0,0004	0,0170	0,0001	0,0169	0,0001		
44,60	3,95676E-02	1E-07	0,1403	0,0005	0,0197	0,0001	0,0199	-0,0002		
46,30	4,59541E-02	2E-07	0,1516	0,0004	0,0230	0,0001	0,0231	-0,0001		
48,10	5,35279E-02	3E-07	0,1641	0,0005	0,0269	0,0001	0,0269	0,0000		
49,50	6,00373E-02	4E-07	0,1744	0,0005	0,0304	0,0002	0,0301	0,0003		
50,50	6,50378E-02	6E-07	0,1803	0,0006	0,0325	0,0002	0,0326	-0,0001		
52,00	7,31162E-02	8E-07	0,1914	0,0006	0,0366	0,0002	0,0367	0,0000		

Tabela 27: Valores usados no estudo do "ensaio" dos valores médios para a gama 2.

Linearização da média dos 3 i - Fórmula 1

Gráfico 37: Gráfico de $\log(T)[\log(\ell)]$ para o "ensaio" dos valores médios da segunda gama.

Resíduos da Linearização da média dos 3 i -

 ${\bf Gráfico~38:~Resíduos da regressão linear do gráfico 37$

Gráfico 39: Regressão linear obtida para $i=51, \ {\rm com\ a}$ fórmula 2 e com dados da gama 1.

Gráfico 40: Resíduos da regressão linear presente no gráfico 39.

Gráfico 41: Regressão linear obtida para $i=101,\,\mathrm{com}$ a fórmula 2 e com dados da gama 1.

 ${\bf Gráfico~42:}~{\bf Resíduos da regressão linear presente no gráfico 41.$

Gráfico 43: Regressão linear obtida para $i=151,\,\mathrm{com}$ a fórmula 2 e com dados da gama 1.

Gráfico 44: Resíduos da regressão linear presente no gráfico 43.

	Disco		Coroa			Prisma			Fio	
	$(M \pm 0,1)(g)$	(D ± 0,5) (mm)	(M ± 0,1) (g)	(D1 ± 0,5) (mm)	(D2 ± 0,5) (mm)	(M ± 0,1) (g)	(h ± 0,5) (mm)	(b ± 0,5) (mm)	(ℓ ± 0,5) (mm)	(D ± 0,01) (mm)
1	807,3	200,0	487,1	197,0	179,0	683,5	199,0	28,0	1093,5	0,75
2	807,4	201,0	487,2	199,0	181,0	683,7	199,0	29,0	1098,0	0,78
3	807,4	200,5	487,1	200,0	180,0	683,6	200,0	28,0	1096,5	0,75
4	807,2	201,0	487,2	198,0	180,0	683,5	198,0	28,7	1097,5	0,77
5	807,2	200,0	487,1	197,0	179,0	683,5	199,0	28,3	1096,4	0,77
Média (SI)	0,80730	0,1990	0,48714	0,1982	0,1798	0,68356	0,1990	0,0284	1,0964	0,000765
u (SI)	0,00004	0,0003	0,00002	0,0005	0,0003	0,00004	0,0003	0,0002	0,0007	0,000005

Tabela 28: Valores medidos na segunda parte da atividade.

	I sistema	θ _{máx} (°)	(t ± 0,1) (s)	(T ± 0,01) (s)	T médio (s)	u(T médio)	T ² (s ²)	u(T ²) (s ²)
А	0,00404	90	71,1	7,11		0,004	7 ² (s ²) 50,62 78,0 104,013	0,06
		180	71,2	7,12	7,115			
		270	71,2	7,12				
	0,00628	90	88,1	8,81		0,01	78,0	0,2
В		180	88,6	8,86	8,83			
		270	88,3	8,83				
С	0,00836	90	101,9	10,19	10,199	0,004	104,013	0,07
		180	102,0	10,20				
		270	102,1	10,21				
	0,01064	90	114,8	11,48		0,007	131,4	0,2
D		180	114,5	11,45	11,464			
		270	114,6	11,46				

Tabela 29: Valores registados na segunda parte da atividade.

Gráfico 45: Gráfico de $\log(I)[\log(T)]$ obtido na segunda parte da atividade.

Gráfico 46: Resíduos da regressão linear no gráfico 45.