Prof. Dr. Goran Glavaš

Lecture 12: Multilinguality and Cross-Lingual Transfer

Learning outcomes

- After today's lecture, you'll...
 - 1. Understand what is multilingual NLP and why we need it
 - 2. Know the mechanisms for inducing multilingual representations spaces
 - Cross-lingual word embeddings (CLWEs)
 - Massively multilingual transformers (MMTs)
 - 3. Understand how to use multilingual representations spaces for CL transfer

Outline

- 1. Why Multilingual NLP?
- 2. Cross-lingual word embeddings
- 3. Multilingual transformers

Why Multilingual NLP?

Because we want to understand and model the meaning of texts in...

[Image from: epthinktank.eu]

- ...without manual (i.e., human) input and without perfect MT!
- How many different languages are there in the world?
 - How many have more than 10M speakers?

Why Multilingual NLP?

According to Ethnologue (2020) there are 7,117 living languages

70	Hejazi Arabic	14.5	0.188%	Afroasiatic	Semitic
71	Nigerian Fulfulde	14.5	0.188%	Niger-Congo	Senegambian
72	Bavarian	14.1	0.183%	Indo-European	Germanic
73	South Azerbaijani	13.8	0.179%	Turkic	Oghuz
74	Greek	13.1	0.170%	Indo-European	Hellenic
75	Chittagonian	13.0	0.169%	Indo-European	Indo-Aryan
76	Kazakh	12.9	0.168%	Turkic	Kipchak
77	Deccan	12.8	0.166%	Indo-European	Indo-Aryan
78	Hungarian	12.6	0.164%	Uralic	Ugric
79	Kinyarwanda	12.1	0.157%	Niger-Congo	Bantu
80	Zulu	12.1	0.157%	Niger-Congo	Bantu
81	South Levantine Arabic	11.6	0.151%	Afroasiatic	Semitic
82	Tunisian Arabic	11.6	0.151%	Afroasiatic	Semitic
83	Sanaani Spoken Arabic	11.4	0.148%	Afroasiatic	Semitic
84	Min Bei Chinese	11.0	0.143%	Sino-Tibetan	Sinitic
85	Southern Pashto	10.9	0.142%	Indo-European	Iranian
86	Rundi	10.8	0.140%	Niger-Congo	Bantu
87	Czech	10.7	0.139%	Indo-European	Balto-Slavic
88	Ta'izzi-Adeni Arabic	10.5	0.136%	Afroasiatic	Semitic
89	Uyghur	10.4	0.135%	Turkic	Karluk
90	Min Dong Chinese	10.3	0.134%	Sino-Tibetan	Sinitic
91	Sylheti	10.3	0.134%	Indo-European	Indo-Aryan

Language variety

 Language family: group of languages that originate from the same ancestral/parental language (proto-language)

[Image from: Wikipedia]

- Language isolates: no known/demonstrable genealogical relationship with any other language:
 - Basque, Korean
 - Indo-European language isolates: Albanian, Armenian, Greek

Why Cross-Lingual NLP?

- Because we want to transfer supervised models for NLP tasks...
 - Trained on annotated datasets we have in resource-rich languages
 - Make predictions in resource-lean target languages

Language Transfer

Image from [Ruder, 2019]

Crossing the Language Chasm

Old paradigm:

- Language-specific NLP models
- Language-specific feature computation (i.e., preprocessing)

- Representation learning: semantic vectors (embeddings)
- Multilingual / cross-lingual representation learning

Crossing the Language Chasm: symbolic approaches

1. Full-Blown MT (SMT or NMT)

- Parallel data needed, critical for under-resourced languages
- Translate everything from the target language to the source language

2. Multilingual KBs

- Texts represented using entities from a multilingual KB
- Same entity ID for same concepts across languages
- Issues: coverage, entity linking

Crossing the Language Chasm: representation learning

3. Multilingual / Cross-lingual representations of meaning

Word-level

- Cross-lingual word embeddings
- Words with similar meaning across languages have similar vectors

Text encoding

- Multilingual unsupervised pretraining
 - Multilingual BERT [Devlin et al., '19]
 - XLM(-R) [Conneau & Lample, '19, Conneau et al., 2020]
 - mT5 [Xue et al., 2020]

Outline

- 1. Why Multilingual NLP?
- 2. Cross-lingual word embeddings
- 3. Multilingual transformers

Cross-Lingual (Word) Embeddings (CLWE)

Different methodologies but the same end goal:

Induce a semantic vector space in which words with similar meaning end up with similar vectors, regardless of whether they come from the same language or from different languages.

Cross-Lingual (Word) Embeddings (CLWE)

Typology of methods for inducing CLWEs

1. Type of bilingual / multilingual signal

Document-level, sentence-level, word-level, no signal (i.e., unsupervised)

2. Comparability

Parallel texts, comparable texts, not comparable (i.e., randomly aligned)

3. Point (time) of alignment

• Joint embedding models vs. Post-hoc alignment

4. Modality

Text only vs. using images for alignment (e.g., [Kiela et al., '15])

Joint Models vs. Post-hoc alignment

Regardless of the source of supervision, there are two main strategies for inducing a bilingual/multilingual word embedding space:

1. Joint embedding models

- Start from raw texts in two (or more) languages
- Induce a bilingual (multilingual) space from scratch

2. Post-hoc alignment models (aka projection models)

- Start from two independently pretrained monolingual embedding spaces
 - E.g., We apply word2vec on EN Wikipedia; then (independently) on ES Wikipedia
- Learn the alignment/projection between the two monolingual spaces

Joint CLWE induction

- A number of models
- Example: Bilingual Skip-Gram
 Luong, M. T., Pham, H., & Manning, C. D. (2015, June). Bilingual word representations with monolingual quality in mind. In Proceedings of the 1st Workshop on Vector Space Modeling for Natural Language Processing (pp. 151-159).
- Skip-Gram extended with cross-lingual context prediction
 - Parallel data (mutual sentence translations) needed!
 - Automatic word alignment

Joint CLWE alignment

Some shortcomings

- Expensive model training for every pair of languages
- Bilingual models not multilingual models
- Bilingual models not comparable, e.g., EN-DE vs. EN-ES
- Parallel sentences not so easily obtainable for all language pairs
 - Although there are extensions of Bilingual Skip-Gram that require only word-level supervision (i.e., word translations)

More elegant and less-resource demanding solution:

- Train monolingual vectors independently
- Light-weight post-hoc alignment between those spaces?
- Easy to induce truly multilingual spaces through post-hoc projections
- Projection-based CLWE models

Post-hoc embedding alignment

- Monolingual embeddings independently trained
 - Can be trained even with different embedding algorithms, e.g., GloVe vs.
 SkipGram
- Post-hoc aligning monolingual spaces

- X is dist. space of L1, Y of L2
 - In general, we are looking for functions f and g that produce a meaningful bilingual embedding space f(X) ∪ g(Y)

Projection-Based CLWE

- Post-hoc alignment of independently trained monolingual distributional word vector spaces
 - Alignment based on word translation pairs (dictionary D)
 - Supervised models use pre-obtained D, unsupervised automatically induce D

Image from [Glavaš et al., ACL '20]

Projection-Based CLWE

- Most models learn a single projection matrix \mathbf{W}_{L1} (i.e., $\mathbf{W}_{L2} = \mathbf{I}$)

- How do we find the "optimal" projection matrix $\mathbf{W}_{1,1}$?
 - We minimize the mean square distance

9

Minimizing Euclidean Distance

Minimize the Euclidean distances for translation pairs after projection

$$\mathbf{W}_{L1} = \underset{\mathbf{W}}{\operatorname{arg\,min}} \| \mathbf{X}_{\mathbf{S}} \mathbf{W} - \mathbf{X}_{\mathbf{T}} \|_{2}$$

- The optimization problem has no closed-form solution
 - SGD-based iterative optimization
- More complex mapping DFFN instead of linear projection matrix yields worse performance
- Better (word translation) results when W_{L1} is constrained to be orthogonal

Solving the Procrustes Problem

$$\mathbf{W}_{L1} = \operatorname*{arg\,min} \parallel \mathbf{X}_{\mathbf{S}} \; \mathbf{W} - \mathbf{X}_{\mathbf{T}} \parallel_2$$

 If W is orthogonal, the above optimization problem is the so-called Procrustes problem with a closed-form solution

$$\mathbf{W}_{L1} = \mathbf{U}\mathbf{V}^{\top}, ext{ with }$$
 $\mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\top} = SVD(\mathbf{X}_T\mathbf{X}_S^{\top})$

- All projection-based CLWE models, supervised and unsupervised, solve the Procrustes problem in the final step
 - Supervised: clean, prepared word-translation dictionary (e.g., 5K entries)
 - Unsupervised: initial translation dictionary automatically induced

2

Unsupervised CLWE induction framework

The **same general framework** for all unsupervised CLWE models

1. Induce (automatically) initial word alignment dictionary **D**⁽¹⁾

Repeat:

- 2. Learn the projection(s) using $\mathbf{D}^{(k)}$
- 3. Induce new dictionary $\mathbf{D}^{(k+1)}$ from the shared space $\mathbf{Y}^{(k)}$

Unsupervised CLWE induction

- The same general framework for all unsupervised CLWE models
- Different approaches for step C1, i.e., inducing the initial dictionary D⁽¹⁾:
 - Adversarial learning [Conneau et al., '18]
 - Similarities of similarity distributions
 [Artetxe et al., 2018]
 - PCA [Hoshen & Wolf, '18]
 - Solving optimal transport problem [Alvarez-Melis & Jaakkola, '18]
 - •
- All assume (approximate)
 isomorphism of monolingual spaces!

Unsupervised CLWE: Example

- VecMap [Artetxe et al., 2018]
 - Heuristic induction of the initial word translation dictionary D⁽¹⁾
 - Word with similar meanings will have similar monolingual similarity distributions (i.e., distributions of similarity across all words of the same lang.)

Why Unsupervised CLWE induction?

Original motivation:

 Does not require any bilingual/multilingual supervision, thus suitable for under-resourced languages

However...

- 1. Assumptions on which the automatic induction of an initial dictionary is based (approximate isomorphism of monolingual spaces) do not hold for
 - Pairs of etymologically and typologically distant languages
- Assumption that we "cannot find" clean word translations for low-resource languages is simply false
 - PanLex a lexico-semantic resource covering 9000+ languages and dialects
 - For all languages some lexical alignment with other langs (for most with EN)
- 3. Language "X" no word translations to any other language
 - Then you probably don't have enough digital texts in X to induce reliable monolingual X embeddings in the first place

CLWEs – Evaluation

- Common evaluation: Bilingual Lexicon Induction (BLI)
 - Word translation task
 - Given a translation pair (w_s, w_t) , rank all the words in the target language according to vector similarity with w_s and find where w_t is in the ranking
- Supervised vs. unsupervised CLWEs for low-resource setups
 - Vulić, I., Glavaš, G., Reichart, R., & Korhonen, A. (2019, November). Do We Really Need Fully Unsupervised Cross-Lingual Embeddings? In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) (pp. 4398-4409).

Cross-Lingual Transfer with CLWEs

Use CLWEs for cross-lingual transfer of supervised NLP tasks?

Assumption: zero-shot transfer

 Only task- annotated data for the source language L_S, no annotated data in target language L_T

Steps:

- Induce the bilingual shared word embedding space X_{TS}
 - E.g., by projecting the target lang. space X_s to the source lang. Space X_T
- 2. Train the (neural) model using the task-specific data in Ls
 - E.g., for *Named Entity Recognition*, train a *Bi-LSTM+classifier* using embeddings of source language words from the shared space X_{TS} as input
- At prediction time, for texts in target language L_T, feed as input the embeddings of target language words from the same shared space X_{TS}

Outline

- 1. Why Multilingual NLP?
- 2. Cross-lingual word embeddings
- 3. (Massively) Multilingual transformers

Massively Multilingual Transformers

- Deep Transformer nets pretrained on large multilingual corpora via (masked) language modeling objectives
 - Multilingual BERT, XLM-R, mT5
- Automatically induces shared (subword) vocabulary across all languages
- Unsupervised from the perspective of explicit cross-lingual signal
 - Deemed very effective for zero-shot CL transfer

"Suprising cross-lingual effectiveness of BERT" "mBERT surprisingly good at zero-shot CL model transfer"

Massively Multilingual Transformers

- Assumption: after multilingual MLM pretraining mBERT can encode text from any of the languages seen in pretraining
- Automatically lends itself to zero-shot language transfer for downstream NLP tasks
- mBERT has its own tokenizer that can tokenize input texts from all languages seen in pre-training
 - Caveat: words from larger languages mostly have their own tokens
 - Words from smaller languages broken down into subwords which can be found across languages
 - Worst case scenario: input broken into characters

Cross-Lingual Transfer with MMTs

Zero-shot language transfer for downstream NLP tasks with mBERT:

- Couple the mBERT Transformer with the taskspecific classifier ("head")
- 2. Train the mBERT+classifier model jointly on source language data
 - Classifier parameters trained from scratch
 - mBERT's Transformer parameters fine-tuned
- 3. Predict by feeding the target language text (tokenized with mBERT's tokenizer) into the fine-tuned mBERT+classifier model

So...has mBERT solved zero-shot CL transfer?

No! Settings in which they were evaluated were simply too favorable

"How multilingual is Multilingual BERT?" [Pires et al., ACL 19]

Tasks: NER, POS; Target languages: DE, NL, ES

"Cross-lingual Ability of mBert: Empirical Study" [Karthikeyan et al., ICLR 20]

- Tasks: NER, NLI; Target languages: ES, HI, RU
- In most studies, the selected target languages were:
 - (1) from the same language family,
 - (2) with large corpora in pretraining

Zero-shot transfer performance drops

Lauscher, A., Ravishankar, V., Vulić, I., & Glavaš, G. (2020). From Zero to Hero: On the Limitations of Zero-Shot Cross-Lingual Transfer with Multilingual Transformers. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), 4483-4499).

Task	Model	EN	${f z}_{f \Delta}$	TR ∆	RU Δ	AR Δ	$^{\rm HI}_{\Delta}$	EU Δ	FI Δ	$^{\rm HE}_\Delta$	$^{\rm IT}_\Delta$	JA Δ	κο Δ	$rac{\mathbf{sv}}{\Delta}$	VI Δ	$^{\rm TH}_{\Delta}$	ES Δ	$rac{\mathbf{EL}}{\Delta}$	DE Δ	FR △	BG Δ	sw ∆	UR Δ
DEP														-14.3 -16.3		-	-	-	-	-	-	-	- -
POS														-9.6 -10.7		-	-	-	-	-	-	-	-
NER							-11.1 -16.5								-	-	-	-	-	-	-	-	-
XNLI				-20.6 -11.3				-	-	-	-	-	-	-		-28.1 -12.3						-33.0 -20.2	
XQuAD	B X			-34.2 -18.7			-28.6 -22.8	-	-	-	-	-	-			-43.2 -14.8	10.0		1		-	-	-

- B = mBERT (Base), X = XLM-R (Base)
- Drops huge for:
 - 1. Distant target languages and
 - 2. Target languages with small pretraining corpora

Language-Specific Representation Subspaces

 In representation spaces produced by MMTs, one can still relatively easy discern language-specific subspaces

Better alignment between language subspaces...

- ...can be achieved with bilingual supervision (word translations of parallel data) [Wu & Conneau, ACL 20; Cao et al., ICLR 20; Hu et al., 2020]
- As with CLWEs: some bilingual/multilingual supervision → better bilingual/multilingual representation space

Image from [Cao et al., '20]

Choosing a Language Sample for CL Transfer Experiments

- Multilingual evaluation benchmarks should assess the expected performance of a model across languages
 - Sample of languages should be representative but of what exactly?
- Findings can critically depend on the selection of languages
 - Most studies sample languages with the largest digital footprint
 - Such languages tend to belong to the same families (e.g., Indo-European)
 - Expected transfer performance is overestimated!

Variety sampling of languages

Ponti, E. M., Glavaš, G., Majewska, O., Liu, Q., Vulić, I., & Korhonen, A. (2020). *XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning*. In *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing*, pp. 2362-2376.

Idea: selection according to the distribution of linguistic properties

- Variety sampling favors the inclusion of outlier languages
- 1. Typological diversity: entropy of distribution of linguistic properties
- 2. Family index: number of different families / sample size
- 3. Geography index: entropy of lang. distr. over 6 geographic macro-areas

	Range	XCOPA	TyDiQA	XNLI	XQUAD	MLQA	PAWS-X
Typology	[0, 1]	0.41	0.41	0.39	0.36	0.32	0.31
Family	[0, 1]	1	0.9	0.5	0.6	0.66	0.66
Geography	$[0, \ln 6]$	1.67	0.92	0.37	0	0	0

Learning outcomes

- Now you...
 - 1. Understand what multilingual NLP is and why we need it
 - 2. Know the mechanisms for inducing multilingual representations spaces
 - Cross-lingual word embeddings (CLWEs)
 - Massively multilingual transformers (MMTs)
 - 3. Understand how to use multilingual representations spaces for CL transfer