COMP 3225

Natural Language Processing

Lexical and Vector Semantics

Stuart E. Middleton

sem03@soton.ac.uk

University of Southampton

Overview

- Lexical Semantics
- Vector Semantics
- Words and Vectors
- <break discussion point>
- Cosine for Measuring Similarity
- TF-IDF
- Pointwise Mutual Information
- Evaluating Vector Models of Similarity

Lexical Semantics

- Semantics is the linguistic or logical study of meaning
- Lexical semantics is the linguistic study of word meaning
- Lemma (or citation form) of a word is the 'dictionary form'
 - A lemma can have many word senses each representing a different meaning or concept

```
<mouse> = small rodent
<mouse> = hand operated device to move a cursor
```

- Often there is a need for word sense disambiguation to understand the meaning of a word in a specific context
- Wordform is a specific form of a lemma
 - <sing> is a lemma
 - <sing> <sung> <sang> are wordforms resulting from applying an inflection to the lemma (so remain the same word sense)

Lexical Semantics

- Synonym is a word whose sense is identical, or nearly identical
 - <dog> and <hound> are synonyms
- Word Similarity is where two or more words have similar relationships, but are not necessarily synonyms
 - <cat> and <dog> are similar, they are animals and often pets
- Word Relatedness or Word Association is where words share a connection such as common context, but are not similar
 - <tea> and <cup> are related, as you need one to drink the other
 - Semantic field is a set of related words from a domain
 - Topic models can learn automatically associations between words

Lexical Semantics

- Semantic frame is a set of words indicating perspectives or participants of a particular event
 - Frames have a semantic role
 - WordNet verb frame for <buy>

```
<somebody> buy
<somebody> buy <something>
<somebody> buy <something> from <somebody>
Sam bought the book from Ling
```

• Semantic frames change based on perspective, and if we can recognize a semantic frame we can perform paraphrasing

```
Sam <u>bought</u> the book <u>from</u> Ling
Ling <u>sold</u> the book <u>to</u> Sam
```

- Words can have affective meaning (mood, feeling or attitude)
- Sentiment analysis labels positive or negative meaning to words and sentences

```
I was given a replica medal >> neutral
I was given a forged medal >> negative (suggests criminality)
```

Vector Semantics

- Representational learning is the automated learning of useful representations of text (as opposed to hand-crafted features)
- Vector semantics is the use of embeddings to represent word meaning
 - Embeddings are vectors represent words in a multidimensional space
 - Embeddings can be sparse (TF-IDF) or dense (word2vec)

- Term-document matrix
 - Row = word
 - Column = document
- Vector space model
 - Vector = array of numbers (word frequencies)
 - Vector space = collection of vectors (term-document matrix)
 - Dimension = size of vector (number of words in model vocabulary)

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

- Term-document matrix
 - Row = word
 - Column = document
- Vector space model
 - Vector = array of numbers (word frequencies)
 - Vector space = collection of vectors (term-document matrix)
 - Dimension = size of vector (number of words in model vocabulary)

	As You Like It	Twelfth Night	Julius Caesar	Henry V	
battle	\Box	0	7	13	
good	114	80	62	89	
fool	36	58	1	4	
wit	20	15	2	3	

Column vector = Document 'fool' appears 58 times in document 'Twelfth Night'

- Term-document matrix
 - Row = word
 - Column = document
- Vector space model
 - Vector = array of numbers (word frequencies)
 - Vector space = collection of vectors (term-document matrix)
 - Dimension = size of vector (number of words in model vocabulary)

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13)
good	114	80	62	89
good fool	36	58	1	4
wit	20	15	2	3

Row vector = Word freq vector 'fool' appears in 4 documents a total of 36+58+1+4 = 99 times

- Information Retrieval is finding a document that matches a set of query terms
 - Document vectors
 - Query vector
 - For each document vector, compute similarity to query vector, returning best match as the answer

- Term-term matrix
 - Row = word
 - Column = word occurring in same context
 - Context = document; N word window around word (left and/or right)

is traditionally followed by **cherry** often mixed, such as **strawberry** computer peripherals and personal **digital** a computer. This includes **information** available on the internet

pie, a traditional dessert rhubarb pie. Apple pie assistants. These devices usually

4 word window (left)

4 word window (right)

	aardvark	 computer	data	result	pie	sugar	
cherry	0	 2	8	9	442	25	
strawberry	0	 0	0	1	60	19	
digital	0	 1670	1683	85	5	4	
information	0	 3325	3982	378	5	13	

Break

- Discussion point
- What is the missing value in the term-term matrix? ± 6 word context window

Airbus started with the **A300**, the world's first twin-aisle twin-engined **jet**. Building on the **A300's success**, **Airbus** launched the **A320**. The **A320** has been a major commercial **success**. The A318 and A319 are shorter derivatives with some of the latter under construction for the corporate business **jet** market.

	Airbus	A300	A320	jet	success
Airbus		2	1	0	1
A300	XXX		1	0	1
A320	1	1		0	2
jet	0	0	0		
success	1	1	2	0	

Break

- Discussion point
- What is the missing value in the term-term matrix? ± 6 word context window

Airbus started with the **A300**, the world's first twin-aisle twin-engined **jet**. Building on the **A300's success**, **Airbus** launched the **A320**. The **A320** has been a major commercial **success**. The A318 and A319 are shorter derivatives with some of the latter under construction for the corporate business **jet** market.

	Airbus	A300	A320	jet	success
Airbus		2	1	0	1
A300	2		1	0	1
A320	1	1		0	2
jet	0	0	0		0
success	1	1	2	0	

XXX = 2 >> " **Airbus** started with the **A300 ...", "... A300's success**, **Airbus** ..."

Notice jet has no co-occurring words with Airbus, A300 or A320. Long distant relations can be problematic for context window based approaches

Cosine for Measuring Similarity

Dot product to find similarity (distance) between two vectors

dot product(
$$\mathbf{v}, \mathbf{w}$$
) = $\mathbf{v} \cdot \mathbf{w} = \sum_{i=1}^{N} v_i w_i = v_1 w_1 + v_2 w_2 + ... + v_N w_N$

- Problem >> dot product favours longer vectors
- Normalized dot product by dividing by vector length (same as cosine of angle between vectors)

$$\frac{\mathbf{a} \cdot \mathbf{b}}{\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|} = \cos \theta} = \cos \theta$$

$$\cos (\mathbf{v}, \mathbf{w}) = \frac{\mathbf{v} \cdot \mathbf{w}}{|\mathbf{v}||\mathbf{w}|} = \frac{\sum_{i=1}^{N} v_i w_i}{\sqrt{\sum_{i=1}^{N} v_i^2 \sqrt{\sum_{i=1}^{N} w_i^2}}}$$

TF-IDF

- Term frequency (TF) is the number of times a term occurs in a corpus, but very skewed and not a good discriminator
- High freq co-occurring words are important
 ... but globally high freq stopwords are probably not (and, the ...)

$$tf_{t,d} = count(t,d)$$

Log avoids rewarding extreme cases so much

$$tf_{t,d} = log_{10}(count(t,d)+1)$$

 Document frequency (DF) is the number of documents a term appears in. Inverse DF (IDF) is the fraction of total documents N a term appears in

$$idf_t = log_{10} \left(\frac{N}{df_t} \right)$$

TF-IDF

- Term frequency inverse document frequency (TF-IDF) is a balance between TF (terms which occur often) and IDF (terms which discriminate between documents well).
 - TF alone does not discriminate well
 - IDF alone picks terms that hardly ever occur (so in practice are useless)

$$w_{t,d} = \mathrm{tf}_{t,d} \times \mathrm{idf}_t$$

TF-IDF

- Term frequency inverse document frequency (TF-IDF) is a balance between TF (terms which occur often) and IDF (terms which discriminate between documents well).
 - TF alone does not discriminate well
 - IDF alone picks terms that hardly ever occur (so in practice are useless)

$$w_{t,d} = \mathrm{tf}_{t,d} \times \mathrm{idf}_t$$

TF scores

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

TF-IDF scores

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	0.074	0	0.22	0.28
good	0	0	0	0
fool	0.019	0.021	0.0036	0.0083
wit	0.049	0.044	0.018	0.022

Pointwise Mutual Information

 Pointwise Mutual Information (PMI) compares how often words co-occur against what we would expect if they were independent

$$PMI(w,c) = \log_2 \frac{P(w,c)}{P(w)P(c)}$$

- A positive PMI means they occur more often than if independent
- A negative PMI means they occur less often than if independent, but is unreliable unless corpus is massive
- Positive PMI replaces negative values with zero

$$PPMI(w,c) = \max(\log_2 \frac{P(w,c)}{P(w)P(c)}, 0)$$

Pointwise Mutual Information

$$PPMI(w,c) = \max(\log_2 \frac{P(w,c)}{P(w)P(c)}, 0)$$

Worked example

	computer	data	result	pie	sugar	count(w)
cherry	2	8	9	442	25	486
strawberry	0	0	1	60	19	80
digital	1670	1683	85	5	4	3447
information	3325	3982	378	5	13	7703
count(context)	4997	5673	473	512	61	11716

$$P(\text{w=information,c=data}) = \frac{3982}{11716} = .3399$$

$$P(\text{w=information}) = \frac{7703}{11716} = .6575$$

$$P(\text{c=data}) = \frac{5673}{11716} = .4842$$

$$ppmi(\text{information,data}) = \log 2(.3399/(.6575 * .4842)) = .0944$$

Evaluating Vector Models of Similarity

- Vector models are best evaluated indirectly, using a task-specific performance metric (which will often have a better ground truth)
- Direct evaluation methods
 - Correlation of word similarity to human ratings (global)
 Annotated lists of words >> NLP datasets like TOEFL
 - Correlation of word similarity to human ratings (per scenario)
 Stanford Contextual Word Similarity (SCWS) dataset
 - Analogy task (if A is to B, C is to ?)
 SemEval-2012 Task 2 dataset
 - Average over multiple embeddings
 Embeddings (especially word2vec) vary each time they are trained, so take an average

Required Reading

- Vector Semantics and Embeddings
 - Jurafsky and Martin, Speech and Language Processing, 3rd edition (online)
 >> chapter 6

Questions

Panopto Quiz - 1 minute brainstorm for interactive questions

Please write down in Panopto quiz in **1 minute** two or three questions that you would like to have answered at the next interactive session.

Do it **right now** while its fresh.

Take a screen shot of your questions and **bring them with you** at the interactive session so you have something to ask.