Věta 0.1 (Minkowského nerovnost)

$$\left(\int_{\Omega} |f(x) + g(x)|^p dx\right)^{\frac{1}{p}} \le \left(\int_{\Omega} |f(x)|^p dx\right)^{\frac{1}{p}} + \left(\int_{\Omega} |g(x)|^p dx\right)^{\frac{1}{p}} \tag{1}$$

Věta 0.2 (Holderova nerovnost)

 $Nech\check{t}\left(\frac{1}{p} + \frac{1}{q} = 1\right), f \in \mathbb{L}_p(\Omega), g \in \mathbb{L}_q(\Omega)$

$$\int_{\Omega} |f(x)g(x)| dx \le \left(\int_{\Omega} |f(x)|^p dx\right)^{\frac{1}{p}} * \left(\int_{\Omega} |g(x)|^q dx\right)^{\frac{1}{q}} \tag{2}$$

Věta 0.3 (Vnoření L_p prostorů)

$$p_2 > p_1 \ge 1 \implies \mathbb{L}_{p_2}(\Omega) \subset \mathbb{L}_{p_1}(\Omega)$$

Věta 0.4 (Věta o stopách)

 Ω - omezená oblast, $\partial\Omega$ - Liepschitzovská

 $\exists_1 T : \mathbb{W}_2^{(1)}(\Omega) \mapsto \mathbb{L}_p(\partial\Omega)$, omezený lineární operátor tak, že $\forall f \in C(\bar{\Omega}), Tf = f/\partial\Omega$

Věta 0.5 (Lax-Milgramova věta)

Nechť V je Hilbertův prostor, $a(\cdot,\cdot)$ je bilineární forma, F je spojitý lineární funkcionál na V a platí:

1.
$$a(\cdot, \cdot)$$
 je omezená: $(\exists K > 0)(\forall u, v \in V)(|a(u, v)| \leq K||u||||v||)$

2.
$$a(\cdot,\cdot)$$
 je V-eliptická: $(\exists \alpha > 0)(\forall v \in V)(a(u,u) \geq \alpha ||u||^2)$

$$Pak (\exists_1 z \in V)(\forall v \in V)(a(z, v) = F(v))$$

Věta 0.6 (Céova)

Nechť pro a(.,.) a F platí výše uvedené předpoklady a z řeší slabou formulaci úlohy . Pak pro řešení z_h úlohy Galerkinovou metodou platí

$$||z_h - z||_V \le \frac{K}{\alpha} \min\{||z - v||_V | v \in V_h\}$$
(3)

Věta 0.7 (MKP1)

Množina $\bar{\Omega}$ (z okrajové úlohy) je rozdělena triangulací \mathcal{T}_h na konečný počet podmmnožin K (oblastí konečných prvků) tak, že

1.
$$\bar{\Omega} = \bigcup_{K \in \mathcal{T}_h} \bar{K}$$

2.
$$(\forall K \in \mathcal{T}_h)(K \neq \emptyset \ a \ K \ je \ oblast)$$

3.
$$(\forall K_1, K_2 \in \mathcal{T}_h)(K_1 \neq K_2 \implies K_1 \cap K_2 = \emptyset)$$

4. $(\forall K \in \mathcal{T}_h)(\partial K \text{ je Lipschitzovská})$

Věta 0.8 (MKP2)

Na každé množině $K \in \mathcal{T}_h$ definujeme vhodné funkce sloužící k aproximaci řešení variační úlohy (slabé formulace) . Tyto funkce jsou polynomy, nebo "blízké" polynomům

Věta 0.9 (MKP3)

Aproximaci řešení variační úlohy (slabé formulace) hledáme pomocí bazických funkcí, jejichž nosič je co nejmenší při zachování shodného popisu tvaru těchto funckí.

Lemma 0.10 (O redukci)

Nechť \mathcal{P} je polynom stupně $\mathcal{D} \geq 1$ v n proměnných, který je roven 0 v nadrovině V, která je popsána funkcionálem $L \in (\mathbb{R}^n)^{\#}$ (tj. $V \equiv \{x \in \mathbb{R}^n | L(x) = 0\}$). Pak existuje polynom Q stupně $\mathcal{D} - 1$ tak, že $(\forall x \in \mathbb{R}^n)(P(x) = L(x) * Q(x))$