Probabilistic model of data

we learned how to fit a gaussian into a data point.

we can see, the use of a single gaussian random variable is quite limiting - we are modelling everything within one big circle.

It can't really account for multiple modes, and thus clusters.

Gaussian Mixture Model (GMM)

The density of each point is the weighted sum of the three gaussian densitieis.

This is the GMM. We use multiple gaussians, hence

$$p(x \mid \theta) = \pi_1 \mathcal{N}(x \mid \mu_1, \Sigma_1) + \pi_2 \mathcal{N}(x \mid \mu_2, \Sigma_2) + \pi_3 \mathcal{N}(x \mid \mu_3, \Sigma_3)$$

 $\theta = \{\pi_1, \pi_2, \pi_3, \mu_1, \mu_2, \mu_3, \Sigma_1, \Sigma_2, \Sigma_3\}$ pi are the normalization

constants that sum up to 1 to make an actual probability distribution.

When we succeed in fitting this model, we can ask for any data point: Which gaussian did it came from?

GMM vs Guassian

Gaussian **GMM Flexibility** # of parameters GMM has more parameters than Gaussian. $\{\pi_1, \pi_2, \pi_3\}$ $\{\mu_1, \mu_2, \mu_3\}$ μ, Σ **Parameters** $\{\Sigma_1, \Sigma_2, \Sigma_3\}$

Training GMM

Originally, it is: max \theta P(XIthet

max_\theta P(X|theta).
However, x_i x_j are independent.

So we can form it as product of likliehood of independent objects.

Remember that the theta is the hyperparameters.
$$N$$

$$\max_{\theta}$$

$$\prod_{i=1}^{N} p(x_i \mid \theta) = \prod_{i=1}^{N} (\pi_1 \mathcal{N}(x_i \mid \mu_1, \Sigma_1) + \ldots)$$

Maximise the likelihood of the density of the dataset, given the parameters.

subject to $\pi_1 + \pi_2 + \pi_3 = 1$; $\pi_k \ge 0$; k = 1, 2, 3.

$$\Sigma_k \succ 0;$$

^^ The covariance matrices cannot be arbitrary.
The set of valid covariance matrices is something called positive semi-definite matrices.

This isn't the important part right now. The important thing to take note is that it is a hard constraint to follow. So we can't really use gradient descent.

If you are curious, a matrix M is positive semidefinite IFF 1. M is symmetric (i.e. M^T = M)

2. $v^T Mv \ge 0$ for all v in V, where M in L(V).

Training GMM

$$\max_{\theta} \prod_{i=1}^{N} p(x_i \mid \theta) = \prod_{i=1}^{N} (\pi_1 \mathcal{N}(x_i \mid \mu_1, \Sigma_1) + \ldots)$$

subject to
$$\pi_1 + \pi_2 + \pi_3 = 1$$
; $\pi_k \ge 0$; $k = 1, 2, 3$.

If we use an easier constraint, e.g. that the covariance matrices have to be diagonal, this is still fine and gradient descent is performed below:

Training GMM

$$\max_{\theta} \prod_{i=1}^{N} p(x_i \mid \theta) = \prod_{i=1}^{N} (\pi_1 \mathcal{N}(x_i \mid \mu_1, \Sigma_1) + \ldots)$$

subject to $\pi_1 + \pi_2 + \pi_3 = 1$; $\pi_k \ge 0$; k = 1, 2, 3.

But, a better way is to use EM. More efficient. This is what we're going to explore now.

Summary

Gaussian Mixture Model is a flexible probability distribution

It is hard to fit (train) with SGD