Лабораторная работа №7

Дисциплина: Компьютерный практикум по статистическому моделированию

Манаева Варвара Евгеньевна

Содержание

1	Техническое оснащение:	5				
2	Цели и задачи работы 2.1 Цель					
3	Выполнение лабораторной работы 3.1 Повторение примеров	7 7 16				
4	Выводы по проделанной работе 4.1 Вывод	21 21				
Сп	писок литературы	22				

Список иллюстраций

3.1	Повторение примеров (1) .		•		•	•		•		•		•	•	•	•	7
3.2	Повторение примеров (2) .															8
3.3	Повторение примеров (3) .															8
3.4	Повторение примеров (4) .															9
3.5	Повторение примеров (5) .															9
3.6	Повторение примеров (6) .															10
3.7	Повторение примеров (7) .															10
3.8	Повторение примеров (8) .															11
3.9	Повторение примеров (9) .															11
3.10	Повторение примеров (10)															12
3.11	Повторение примеров (11)															12
3.12	Повторение примеров (12)															13
3.13	Повторение примеров (13)															13
3.14	Повторение примеров (14)															14
3.15	Повторение примеров (15)															14
3.16	Повторение примеров (16)															15
3.17	Повторение примеров (17)															15
3.18	Повторение примеров (18)															16
3.19	Повторение примеров (19)															16
3.20	Самостоятельная работа (1)															17
3.21	Самостоятельная работа (2)															17
3.22	Самостоятельная работа (3)															18
3.23	Самостоятельная работа (4)															18
3.24	Самостоятельная работа (5)															19
3.25	Самостоятельная работа (6)															19
3 26	Самостоятельная работа (7)															20

Список таблиц

1 Техническое оснащение:

- Персональный компьютер с операционной системой Windows 10;
- Планшет для записи видеосопровождения и голосовых комментариев;
- Microsoft Teams, использующийся для записи скринкаста лабораторной работы;
- Приложение Pycharm для редактирования файлов формата *md*;
- pandoc для конвертации файлов отчётов и презентаций.

2 Цели и задачи работы

2.1 Цель

Основной целью работы является освоение специализированных пакетов Julia для обработки данных.

2.2 Задачи [1]

- 1. Повторить примеры из раздела 7.2
- 2. Выполнить задания для самостоятельной работы из раздела 7.4

3 Выполнение лабораторной работы

3.1 Повторение примеров

Повторение примеров (3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, 3.11, 3.12, 3.13, 3.14, 3.15, 3.16, 3.17, 3.18, 3.19)

Рис. 3.1: Повторение примеров (1)

Рис. 3.2: Повторение примеров (2)

Рис. 3.3: Повторение примеров (3)

```
[11] # Sumannenue condage dominenus
for 1 = 1:112(7)
year_lang = f[1:1]
if year is keys(dict)
dict[pear] = punh(dict[year],lang)
else
end
dict
end
dict

[11] Dict[Integer, Vector(String)] with 45 entries:
1050 = f[2:1f=1]
1052 = f[2:1f=1]
1053 = f[2:1f=1]
1054 = f[2:1f=1]
1055 = f[2:1f=1]
1055
```

Рис. 3.4: Повторение примеров (4)

Рис. 3.5: Повторение примеров (5)

Рис. 3.6: Повторение примеров (6)

Рис. 3.7: Повторение примеров (7)

Рис. 3.8: Повторение примеров (8)

Рис. 3.9: Повторение примеров (9)

Рис. 3.10: Повторение примеров (10)

Рис. 3.11: Повторение примеров (11)

```
[33] 8 Konfigenous Annex d'Ausproval dud;

X = Matrix(X[1, 1:12])

[33] 8 La Yartir[r]costed]:
3 4.079 - 121.433
3 4.079 - 121.433
3 4.079 - 121.439
3 5.079 - 121.439
3 5.079 - 121.439
3 5.080 - 121.439
3 5.080 - 121.439
3 5.080 - 121.439
3 5.080 - 121.439
3 5.080 - 121.439
3 5.080 - 121.439
3 5.090 - 121.433
3 5.090 - 121.433
3 5.097 - 121.452
3 3.407 - 121.452
3 3.407 - 121.459
3 5.097 - 121.459
3 5.097 - 121.459
3 5.099 - 121.438
3 5.097 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099 - 121.459
3 5.099
```

Рис. 3.12: Повторение примеров (12)

Рис. 3.13: Повторение примеров (13)

Рис. 3.14: Повторение примеров (14)

Рис. 3.15: Повторение примеров (15)

Рис. 3.16: Повторение примеров (16)

Рис. 3.17: Повторение примеров (17)

```
[43]: function find_bast_fit(voals,yvals)
memor = memo(voals)
memor = memo
```

Рис. 3.18: Повторение примеров (18)

Рис. 3.19: Повторение примеров (19)

3.2 Самостоятельная работа [2]

Самостоятельная работа (3.20, 3.21, 3.22, 3.23, 3.24, 3.25, 3.26)

Самостоятельная работа

⁻ Кластеризация

Используйте Clustering.]] для кластеризации на основе k-средних. Сделайте точечную диаграмму полученных кластеров. Подсказка: вам нужно будет проиндексировать фрейм данных, преобразовать его в массив и транспонировать.

Рис. 3.20: Самостоятельная работа (1)

Perpeccus (Метод наименьших квадратов в случае линейной регрессии) Часть 1. Для самостоятельного решения необходимо добавить колонку единиц и решить СЛАУ, где матрица X с добавленной колонкой единиц веляется матрицей коэффициентов. в вектор у --- вектором ответов. Колонка единиц теля по тобы решение ограничивалось, исключительно линейными случавии (так как производная линейной функции равна 1). [40] 1 (м) - гамби (1800) 80 - гамб (1800) [47] 1 (м) - гамби (1800) 9 - гамби (1800) [48] 1 (м) - гамби (1800) 9 - гамби (1800) [49] 1 (м) - гамби (1800) 9 - гамби (1800) [49] 1 (м) - гамби (1800) 9 - гамби (1800) [49] 2 (м) - гамби (1800) 9 - гамби (1800) [40] 3 (м) - гамби (1800) 9 - гамби (1800) [40] 4 (м) - гамби (1800) 9 - гамби (1800) [40] 5 (м) - гамби (1800) 9 - гамби (1800) [40] 6 (м) - гамби (1800) 9 - гамби (1800) [40] 7 (м) - гамби (1800) 9 - гамби (1800) [40] 8 (м) - гамби (1800) 9 - гамби (1800) [40] 8 (м) - гамби (1800) 9 - гамби (1800) [40] 9 (м) - гамби (1800) 9 - гамби (1800) [40] 1 (м) - гамби (1800) 9 - гамби (1800) [40] 1 (м) - гамби (1800) 9 - гамби (1800)

Рис. 3.21: Самостоятельная работа (2)

```
| State | Stat
```

Рис. 3.22: Самостоятельная работа (3)

Рис. 3.23: Самостоятельная работа (4)

Рис. 3.24: Самостоятельная работа (5)

Рис. 3.25: Самостоятельная работа (6)

Рис. 3.26: Самостоятельная работа (7)

4 Выводы по проделанной работе

4.1 Вывод

В результате выполнения работы мы освоили специальные пакеты Julia для обработки данных.

Были записаны скринкасты выполнения и защиты лабораторной работы.

Ссылки на скринкасты:

- Выполнение, Youtube
- Выполнение, Rutube
- Защита презентации, Youtube
- Защита презентации, Rutube

Список литературы

- 1. Лабораторная работа № 7 [Электронный ресурс]. Российский Университет Дружбы Народов имени Патрису Лумумбы, 2023. URL: https://esystem.rudn.ru/mod/resource/view.php?id=1069851.
- 2. Julia official documentation [Электронный ресурс]. 2023. URL: https://docs.j ulialang.org/en/v1/.