TP0 – Mesures et incertitudes

De nombreux capteurs reposent sur la variation de leur résistance électrique en fonction d'un paramètre comme la température, le flux lumineux, la pression, etc. Pour fixer les idées, on peut dire que la résistance étudiée ici (à l'exception des questions 11 et 12) est celle d'un thermomètre.

On s'intéresse à la même résistance que celle utilisée dans le polycopié Mesures et incertitudes (M&I). On supposera que la valeur obtenue par la méthode quatre fils est exempte d'erreur systématique :

$$R = (82,529 \pm 0,005) \Omega.$$

On mesure à nouveau cette résistance avec deux autres ohmmètres :

- un ohmmètre numérique, de la marque Fluke, modèle 175, dont on a la notice (Doc. 2);
- un ohmmètre analogique, dont le cadrant est gradué tous les $1\,\Omega$.

Avec l'ohmmètre analogique, l'expérimentateur lit toujours la même valeur : $84\,\Omega$. Avec l'ohmmètre numérique, on réalise une série de mesures et on obtient (toutes les valeurs sont en ohm) :

81,9 82,5 82,3 82,4 82,6 82,6 83,2 82,3 82,9 82,1.

Incertitude de type A

- 1. Calculer la moyenne R_{num} , puis l'écart-type expérimental $s(R_{\text{num}})$ pour cette série de donnée.
- 2. Proposer une estimation de type A de l'incertitude-type $u_A(R_{\text{num}})$ pour cette mesure.
- 3. Comparer la fidélité et la justesse des deux instruments.

Incertitude de type B

- 4. Proposer une estimation de type B de l'incertitude $u_B(R_{\text{ana}})$ de la mesure réalisée avec l'ohmmètre analogique.
- 5. De même, proposer une estimation de l'incertitude $u_B(R_{\text{num}})$.

Incertitude-type totale

- 6. Calculer l'incertitude totale u_{tot} dans le cas de la mesure réalisée avec l'ohmmètre numérique.
- 7. Finalement, écrire le résultat de cette mesure.

APPEL PROF 1

8. Comparer ce résultat à la valeur obtenue avec la méthode quatre fils.

Choix du calibre

Pour améliorer la précision de la mesure, on se procure un multimètre disposant d'une meilleure résolution (Doc. 4) fabriqué par Keysight. L'appareil est placé sur le calibre $100\,\Omega$ Lors d'une mesure, il affiche $82{,}534\,\Omega$.

9. Reproduire et compléter le tableau ci-dessous, en supposant que le multimètre affiche la même valeur quelque soit le calibre (ce qui n'est pas systématique!). On utilisera les valeurs de la colonne 1 year de la notice.

Calibre	Incertitude-type (Ω)	Précision (%)
100Ω		
$10\mathrm{k}\Omega$	0,1	~ 0.1
$1\mathrm{M}\Omega$		

10. Conclure quant à l'importance du choix adapté du calibre de l'appareil de mesure.

APPEL PROF 2

Loi d'ohm

On mesure simultanément la tension aux bornes d'une résistance portant les couleurs orange, orange, marron et or et le courant la traversant avec deux multimètres Fluke modèle 175 (Doc. 2). Le voltmètre affiche $U = 12,1 \,\mathrm{V}$ et l'ampèremètre indique $I = 35,8 \,\mathrm{mA}$.

- 11. Écrire le résultat de la mesure de la valeur de la résistance obtenue à partir des mesures de U et I.
 - 12. Comparer ce résultat à la valeur indiquée par le fabricant (Doc. 1).

APPEL PROF 3

python Simuler des mesures

- 13. Écrire un programme Python qui reproduit les données représentées sur la figure 1 dans le poly M&I pour la méthode quatre fils et qui les représente sous la forme d'un histogramme (Doc. 3).
 - 14. Écrire le résultat de cette mesure simulée en ne prenant en compte que l'incertitude-type de type A.

Attention à la manière dont Python calcule l'écart-type!

- 15. Modifier le programme pour simuler :
 - une erreur systématique;
 - un appareil moins fidèle.

Indiquer le paramètre modifié dans chaque cas.

APPEL PROF 4

Documents

Document 1 - Code couleur des résistances

Document 2 - Extrait de la notice du multimètre numérique Fluke

Specifications

(Check the Fluke web for detailed specifications)

Functions	Maximum	Max. resolution		
Voltage DC	1000V	0.1 mV		
Voltage AC	1000V	0.1 mV		
Current DC	10A	0.01 mA		
Current AC	10A	0.01 mA		
Resistance	50ΜΩ 0.1Ω			
Capacitance	10000μF	1nF		
Frequency	100kHz	0.01Hz		
Temperature	-40°C/+400°C	0.1°C		

175	177	179	
±(0.15%+2)	±(0.09%+2)	±(0.09%+2)	
±(1.0%+3)	±(1.0%+3)	±(1.0%+3)	
±(1.0%+3)	±(1.0%+3)	±(1.0%+3)	
±(1.5%+3)	±(1.5%+3)	±(1.5%+3)	
±(0.9%+1)	±(0.9%+1)	±(0.9%+1)	
±(1.2%+2)	±(1.2%+2)	±(1.2%+2)	
±(0.1%+1)	±(0.1%+1)	±(0.1%+1)	
		±(1.0%+10)	

Document 3 – Quelques fonctions Python

numpy.random.normal(x0, sigma, n): crée un tableau de n valeurs aléatoires obéissant à une loi normale centrée en x0 et d'écart-type sigma.

numpy.mean(tab): calcule la moyenne des valeurs du tableau tab.

numpy.std(tab) : calcule l'écart-type s(x) des valeurs du tableau tab selon la formule :

$$s(x) = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2}.$$

matplotlib.pyplot.hist(tab, bins=n) : trace un histogramme à partir des valeurs du tableau (ou de la liste) tab en les répartissant dans n intervalles.

Document 4 - Extrait de la notice du multimètre numérique Keysight

07 | Keysight | Digital Multimeters: 34460/61/65/70A - Data Sheet

Specifications 34460A

34460A accuracy specifications: \pm (% of reading + % of range) ¹ These specification are compliant to ISO/IEC 17025 for K = 2

Range ² /frequence	ey	24 hours ³ T _{CAL} ± 1 °C	90 days T _{CAL} ± 5 °C	1 year T _{CAL} ± 5 °C	2 years T _{CAL} ± 5 °C	Temperature coefficient/°C ⁴
DC voltage						
100 mV		0.0040 + 0.0060	0.0070 + 0.0065	0.0090 + 0.0065	0.0115 + 0.0065	0.0005 + 0.0005
1 V		0.0030 + 0.0009	0.0060 + 0.0010	0.0080 + 0.0010	0.0105 + 0.0010	0.0005 + 0.0001
10 V		0.0025 + 0.0004	0.0050 + 0.0005	0.0075 + 0.0005	0.0100 + 0.0005	0.0005 + 0.0001
100 V		0.0030 + 0.0006	0.0065 + 0.0006	0.0085 + 0.0006	0.0110 + 0.0006	0.0005 + 0.0001
1000 V		0.0030 + 0.0006	0.0065 + 0.0010	0.0085 + 0.0010	0.0110 + 0.0010	0.0005 + 0.0001
True RMS AC volt	age ^{2, 5, 6}					
100 mV, 1 V, 10 V	, 100 V, and 750 V ranges					
3 – 5 Hz		1.00 + 0.02	1.00 + 0.03	1.00 + 0.03	1.00 + 0.03	0.100 + 0.003
5 – 10 Hz		0.38 + 0.02	0.38 + 0.03	0.38 + 0.03	0.38 + 0.03	0.035 + 0.003
10 Hz – 20 kHz		0.07 + 0.02	0.08 + 0.03	0.09 + 0.03	0.10 + 0.03	0.005 + 0.003
20 – 50 kHz		0.13 + 0.04	0.14 + 0.05	0.15 + 0.05	0.16 + 0.05	0.011 + 0.005
50 – 100 kHz		0.58 + 0.08	0.63 + 0.08	0.63 + 0.08	0.63 + 0.08	0.060 + 0.008
100 – 300 kHz		4.00 + 0.50	4.00 + 0.50	4.00 + 0.50	4.00 + 0.50	0.200 + 0.020
Resistance 7	Test current					
100 Ω	1 mA	0.0040 + 0.0060	0.011 + 0.007	0.014 + 0.007	0.017 + 0.007	0.0006 + 0.0005
1 kΩ	1 mA	0.0030 + 0.0008	0.011 + 0.001	0.014 + 0.001	0.017 + 0.001	0.0006 + 0.0001
10 kΩ	100 μΑ	0.0030 + 0.0005	0.011 + 0.001	0.014 + 0.001	0.017 + 0.001	0.0006 + 0.0001
100 kΩ	10 μΑ	0.0030 + 0.0005	0.011 + 0.001	0.014 + 0.001	0.017 + 0.001	0.0006 + 0.0001
1 ΜΩ	5 μΑ	0.0030 + 0.0010	0.011 + 0.001	0.014 + 0.001	0.017 + 0.001	0.0010 + 0.0002
10 ΜΩ	500 nA	0.015 + 0.001	0.020 + 0.001	0.040 + 0.001	0.060 + 0.001	0.0030 + 0.0004
100 ΜΩ	500 nA 10 MΩ	0.300 + 0.010	0.800 + 0.010	0.800 + 0.010	0.800 + 0.010	0.1500 + 0.0002
DC current	Burden voltage					
100 μΑ	<0.011 V	0.010 + 0.020	0.040 + 0.025	0.050 + 0.025	0.060 + 0.025	0.0020 + 0.0030
1 mA	<0.11 V	0.007 + 0.006	0.030 + 0.006	0.050 + 0.006	0.060 + 0.006	0.0020 + 0.0005
10 mA	<0.05 V	0.007 + 0.020	0.030 + 0.020	0.050 + 0.020	0.060 + 0.020	0.0020 + 0.0020
100 mA	<0.5 V	0.010 + 0.004	0.030 + 0.005	0.050 + 0.005	0.060 + 0.005	0.0020 + 0.0005
1 A	<0.7 V	0.050 + 0.006	0.080 + 0.010	0.100 + 0.010	0.120 + 0.010	0.0050 + 0.0010
3 A	<2.0 V	0.180 + 0.020	0.200 + 0.020	0.200 + 0.020	0.230 + 0.020	0.0050 + 0.0020
Capacitance 15						
1.0000 nF		0.50 + 0.50	0.50 + 0.50	0.50 + 0.50	0.50 + 0.50	0.05 + 0.05
10.000 nF		0.40 + 0.10	0.40 + 0.10	0.40 + 0.10	0.40 + 0.10	0.05 + 0.01
100.00 nF		0.40 + 0.10	0.40 + 0.10	0.40 + 0.10	0.40 + 0.10	0.05 + 0.01
1.0000 μF		0.40 + 0.10	0.40 + 0.10	0.40 + 0.10	0.40 + 0.10	0.05 + 0.01
10.000 μF		0.40 + 0.10	0.40 + 0.10	0.40 + 0.10	0.40 + 0.10	0.05 + 0.01
100.00 μF		0.40 + 0.10	0.40 + 0.10	0.40 + 0.10	0.40 + 0.10	0.05 + 0.01