

Limite d'une suite

Exercice 1

Soit (u_n) la suite définie par : $u_0 = 0$ et $u_{n+1} = \sqrt{1 + \frac{1}{2}u_n^2}$ pour tout n de \mathbb{N}

- 1. Montrer que : $(\forall n \in \mathbb{N})$ $u_n < \sqrt{2}$
- 2. Étudier la monotonie de (u_n) et en déduire qu'elle est convergente .
- $x_n = u_n^2 2 \qquad (\forall n \in \mathbb{N}).$ 3. On pose
 - (a) Montrer que (x_n) est géométrique , et exprimer x_n en fonction de n .
 - (b) Exprimer u_n en fonction de n, et calculer $\lim u_n$.
 - (c) Calculer $\sum_{k=0}^{\kappa-n} u_k^2$ en fonction de n.

Exercice 2

Soit (u_n) la suite définie par : $u_1 = 1$ et $u_n = \sqrt{n + u_{n-1}}$ pour tout n de \mathbb{N}^*

- 1. Montrer que : $(\forall n \in \mathbb{N}^*)$ $u_n < \sqrt{2n+1}$
- 2. (a) Montrer que : $(\forall n \in \mathbb{N}^* \{1\})$ $\frac{u_{n-1}}{n} < \sqrt{\frac{2}{n} \frac{1}{n^2}}$, et calculer $\lim \frac{u_{n-1}}{n}$.
 - (b) En déduire $\lim \frac{u_n}{\sqrt{n}}$.
 - (c) Montrer que $\lim u_n \sqrt{n} = \frac{1}{2}$

Exercice 3

Récurrence double :

- 1. Soit (u_n) la suite définie par : $\begin{cases} u_0 = 1, & u_1 = -5 \\ u_{n+2} = 5u_{n+1} 6u_n & (\forall n \in \mathbb{N}) \end{cases}$ Montrer que : $(\forall n \in \mathbb{N})$ $u_n = 8 \times 2^n 7 \times 3^n$.

 2. Soit (u_n) la suite définie par : $\begin{cases} u_0 = 1, & u_1 = 1 \\ u_{n+2} = u_{n+1} + u_n & (\forall n \in \mathbb{N}) \end{cases}$ Montrer que : $(\forall n \in \mathbb{N})$ $u_n = \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2}\right)^n \frac{1}{\sqrt{5}} \left(\frac{1 \sqrt{5}}{2}\right)^n$.

Récurrence forte :

- 1. Soit (u_n) la suite définie par : $\begin{cases} u_0 = 1 \\ u_{n+1} = \frac{1}{n+1} \sum_{k=0}^{k=n} u_k^2 & (\forall n \in \mathbb{N}) \end{cases}$ Montrer que : $(\forall n \in \mathbb{N})$ $u_n = 1$.
- 2. Soit (u_n) la suite définie par : $\begin{cases} u_0 = 1 \\ u_{n+1} = \sum_{k=0}^{k=n} u_k & (\forall n \in \mathbb{N}) \end{cases}$ Montrer que : $(\forall n \in \mathbb{N}^*)$

Exercice 4

Soit (u_n) la suite définie par : $u_0 = 3$ et $u_{n+1} = 2 + \frac{1}{u_n} - \frac{2}{u_n^2}$ $(\forall n \in \mathbb{N})$

- $(\forall n \in \mathbb{N}) \quad u_n > \sqrt{2}$ 1. Montrer que :
- 2. Étudier la monotonie de (u_n) et en déduire que $\sqrt{2} < u_n \le 3 \quad (\forall n \in \mathbb{N})$
- 3. (a) Montrer que $(\forall n \in \mathbb{N})$ $0 < u_{n+1} 2 \le \frac{1}{4}(u_n 2)$
 - (b) En déduire que $(\forall n \in \mathbb{N})$ $0 < u_n 2 \le (\frac{1}{4})^n$.
 - (c) En déduire que (u_n) est convergente et calculer sa limite

Exercice 5

Soit f la fonction définie par $f(x) = \arctan(\sqrt{x+2})$. Partie I:

- 1. Étudier les variations de f.
- 2. Montrer que : $(\exists!\alpha\in]0.2[)$ tel que $f(\alpha)=\alpha$.
- 3. Montrer que $(\forall x \in]0,2[)$ $|f'(x)| \leq \frac{1}{6\sqrt{2}}$

Soit (u_n) la fonction définie par $u_0 = 2$, $u_{n+1} = f(u_n)$ $(\forall n \in \mathbb{N})$. Partie II:

- 1. Montrer que $(\forall x \in \mathbb{R}^+)$ $\arctan(x) \leq x$
- 2. Montrer que $0 < u_n \le 2 \quad (\forall n \in \mathbb{N})$
- 3. Montrer que $(\forall n \in \mathbb{N})$ $|u_{n+1} \alpha| \le \frac{1}{6\sqrt{2}}|u_n \alpha|$.
- 4. En déduire que (u_n) est convergente et calculer sa limite.

Exercice 6

Soit $n \in \mathbb{N}^*$ et f_n la fonction définie sur]0,1[par $f_n(x) = \tan(\frac{\pi x}{2}) - \frac{\pi}{2nx}$.

- 1. Montrer que : $(\exists!\alpha_n \in]0.1[)$ tel que $f_n(\alpha_n) = 0$.
- 2. Montrer que (α_n) est décroissante, et déduire qu'elle est convergente.
- 3. Montrer que $\lim \alpha_n = 0$ et calculer $\lim \alpha_n \sqrt{n}$

Exercice 7

- $(\exists! \alpha \in]0.1[) \text{ tel que } 2\alpha^3 + \alpha 1 = 0.1[]$ 1. Montrer que :
- 1. Montrer que . (2.2) $(u_n) \text{ et } (v_n) \text{ deux suites définies par : } \begin{cases} u_0 = 0 & et \quad v_0 = 1 \\ u_{n+1} = u_n et \, v_{n+1} = \frac{u_n + v_n}{2} & si \quad f(\frac{u_n + v_n}{2}) > 0 \\ v_{n+1} = v_n et \, u_{n+1} = \frac{u_n + v_n}{2} & si \quad f(\frac{u_n + v_n}{2}) < 0 \end{cases}$
 - (a) Calculer u_1, v_1, u_2 et v_2 .
 - (b) Montrer que $0 \le u_n \le 1$ et $0 \le v_n \le 1$ $(\forall n \in \mathbb{N})$.
 - (c) Montrer que $u_n \leq \alpha \leq v_n \quad (\forall n \in \mathbb{N})$.
 - (d) Montrer que (u_n) et (v_n) sont adjacentes et calculer leur limite commune.