Nombre del alumno:

Este examen tiene 5 ejercicios, para un total de 10 puntos y una duración de dos horas.

Ejercicio	1	2	3	4	5	Total
Puntos	2	2	2	2	2	10
Puntuación						

1. 2 puntos Probar que si m y n son números impares, entonces $m^2 - n^2$ es divisible por 8.

Solución:

Si m es un número impar, entonces $m\equiv 1\pmod 8$ ó $m\equiv 3\pmod 8$ ó $m\equiv 5\pmod 8$ ó $m\equiv 7\pmod 8$, de donde $m^2\equiv 1\pmod 8$. Análogamente, $n^2\equiv 1\pmod 8$. Así $m^2-n^2\equiv 1-1\equiv 0\pmod 8$. Por tanto $8|(m^2-n^2)$.

- 2. 2 puntos Sea $X = \{1, 2, 3, 4\}$ e $Y = \{1, 2\}$ y $f : \mathcal{P}(X) \to \mathcal{P}(X)$ la aplicación dada por $f(A) = A \cup Y$.
 - i) ¿Es f inyectiva, suprayectiva o biyectiva?
 - ii) Calcular la relación \mathcal{R}_f en $\mathcal{P}(X)$ asociada a f y el conjunto cociente $\mathcal{P}(X)/\mathcal{R}_f$.

Solución:

i) No es inyectiva, ya que para $A=\{1\}$ y $B=\{2\}$, tenemos que $A\cup Y=Y=B\cup Y$, pero $A\neq B$.

No es suprayectiva, ya que para $\emptyset \in \mathcal{P}(X)$ no existe $A \in \mathcal{P}(X)$ tal que $A \subseteq A \cup Y = \emptyset$.

ii)
$$[\emptyset] = {\emptyset, {1}, {2}, {1, 2}}.$$

$$[\{3\}] = \{\{3\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}.$$

$$[\{4\}] = \{\{4\}, \{1,4\}, \{2,4\}, \{1,2,4\}\}.$$

$$[{3,4}] = {{3,4}, {1,3,4}, {2,3,4}, {1,2,3,4}}$$

3. 2 puntos Para realizar este examen, que empieza a las 10 y acaba a las 12, disponemos de un aula con 13 filas de bancas de 8 asientos. Se sabe que si se colocan los alumnos, 4 por banca, sobran 2, si se colocan, 5 por banca, entonces sobran 3 y si se colocan, 6 por banca, sobran 2 (aunque en este caso las probabilidades de que se copien aumentan). Calcular el número de alumnos, teniendo en cuenta que son más de 50 y menos de 100.

Primer parcial

Página 2 de 3

Solución:

Tenemos que 50 < x < 100 y

$$x \equiv 2 \pmod{4}$$

$$x \equiv 3 \pmod{5}$$

$$x \equiv 2 \pmod{6}$$

que es equivalente a

$$x \equiv 2 \pmod{4}$$

$$x \equiv 3 \pmod{5}$$

$$x \equiv 2 \pmod{3}$$

i	a	m	С	d	b
1	2	4	15	3	30
2	3	5	12	3	18
3	2	3	20	2	38

Por tanto $x \equiv 38 \pmod{60}$. Por tanto x = 38 + 60k. Así para k = 1, x = 98.

Otra forma: Sea $x=2+4k_1$, entonces $4k_1\equiv 1\pmod 5$, de donde $k_1\equiv 4\pmod 5$ y así $k_1=4+5k_2$. Por tanto $x=2+4(4+5k_2)=18+20k_2$.

Ahora tenemos $18 + 20k_2 \equiv 2 \pmod{3}$, de donde $k_2 \equiv 1 \pmod{3}$ y así $k_2 = 1 + 3k_3$ y por tanto $x = 18 + 20(1 + 3k_3) = 38 + 60k_3$. Por consiguiente x = 38 + 60 = 98.

4. 2 puntos Calcular el resto de dividir 233⁴⁶ entre 22.

Solución:

 $233^{46}\equiv 13^{46}\pmod{22}.$ Ya que $\varphi(22)=10,\ 13^{10}\equiv 1\pmod{22}.$ Así $233^{46}\equiv 13^{46}\equiv 13^{6}\pmod{22}.$

Así $13^2 \equiv 169 \equiv 15 \pmod{22}$, $13^4 \equiv 225 \equiv 5 \pmod{22}$, $13^6 \equiv 75 \equiv 9 \pmod{22}$.

5. 2 puntos La fábrica de cervezas Alhambra dispone de cajas de 24 y 10 latas de cerveza. Sabiendo que quiere usar el mínimo de cajas de 10 latas, ¿cuántas cajas de cada tipo debe usar para empaquetar 1696 latas?

Solución:

24x + 10y = 1696 o equivalentemente 12x + 5y = 848.

i	q	r	S	t
0	-	12	1	0
1	2	5	0	1
2	2	2	1	-2
3	2	1	-2	5

Entonces $d=1,\,s=-2$ y t=5. Por tanto, e=848/1=848 y una solución particular es $x_0=es=-1696$ e $y_0=et=4240.$

La ecuación general es $\overline{x} = -1696 + (5/1)k = -1696 + 5k$ e $\overline{y} = 4240 - (12/1)k = 4240 - 12k$. Ya que \overline{y} debe ser mínimo, de $4240 - 12k \ge 0$, deducimos que k = 353 y por tanto $\overline{y} = 4240 - 4236 = 4$ e $\overline{x} = -1696 + 1765 = 69$.

Otra forma: $12x \equiv 848 \mod 5$, equivalentemente $2x \equiv 3 \pmod 5$, esto es $x \equiv 4 \pmod 5$, de donde x = 4 + 5k. Sustituyendo obtenemos, 12(4+5k) + 5y = 848. Así y = 160 - 12k. Como $160 - 12k \ge 0$, tomamos k = 13, de donde y = 160 - 156 = 4 y x = 4 + 65 = 69.