Name:			
Manne.			

D = = #1		
Reg#:		

Section:

National University of Computer and Emerging Sciences, Lahore Campus

Course: Program: **Duration:**

Paper Date: Section: Exam:

Natural Language Processing BS(Data Science) 30 Minutes

6-May-2024 A8 Quiz 4

CS 4063 Course Code: Semester:

Page(s):

Fall 2024 **Total Marks:** 10 Weight

2

Q1) Given the following weight matrices (Wq, Wk, Wv) and embedding vectors (x1, x2, x3), calculate output of self-attention layer (z1, z2, and z3). [5 Marks]

$$Wq = \begin{matrix} 0 & 0.7 & 1 \\ 1 & 2 & 0.3 \\ 0.5 & 1 & 1 \end{matrix}$$

$$Wk = \begin{matrix} 1.8 & 1 & 1 \\ 1 & 0.5 & 0.7 \\ 0.2 & 1.5 & 0.9 \end{matrix}$$

$$Wv = 2 \quad 1 \quad 2 \quad 1 \quad 2 \quad 1 \quad 5 \quad 0.2$$

$$x1 = [1 \ 0.3 \ 0.4]$$
 , $x2 = [1.5 \ 0.5 \ 1]$, $x3 = [0.3 \ 1 \ 0.8]$

ame:	Reg #:	Section:
2) What advantages do ecoder model? [3 Mark	es the transformer model offer o	ever the attention based (biLSTM) encoder
•		
		•
	•	•
	•	
٠,		
		•
		,
	•	e as st [2 Marks]
•		
•		
•		
· · · · · · · · · · · · · · · · · · ·		
*		

National University of Computer and Emerging Sciences, Lahore Campus

Course: Program: Duration:

Paper Date:

Natural Language Processing BS(Data Science)

20 Minutes 2 April-2024

Section: 8B

Exam: LSTM Quiz v2 Course Code: Semester:

CS 4063 Fall 2024 7

Total Marks: Weight Page(s):

2

We've thoroughly practiced employing LSTM (Long Short-Term Memory) in our previous assignment to forecast the oming work tasks. The current objective involves computing values for the below given tasks.

- 1. Compute embedding from the given target weight matrix based on One Hot vector: [0 1 0 0]
- Compute value for forget gate from the data given below.
- Compute $C_t \& h_t$ value from all supporting values given below.
- 4. Write Equations for finding $C_t \& h_t$.

Larget Weight Matrix:

Weight Matrix for Input Ciate:

Bias for Input Gate:

1		.5	4
3	3	3	4
4	1	1	()
•	()	2	. 4

	6	
	. 0	
	6	
	6	
_		

6	. 4	3	1	5	6	2	()
. 0	0	6	6	1	3	3	5
6	4	2	3	4	5	1	2
6	6	2	6	1	4	()	()

4	
4	
2	
1	

Ì	()[get C	at
		1	
	1	1	
		1	
		1	

I	nput Gate	
٠,'		

U	utput Ga	τ
	1	
	1	
	1	
	1	

n_{t-1}
0.76
0.76
0.76
0.76

c_{t-1}
1,
1
1
0.99

$c_{\tilde{t}}$	
1	_
1	
1	
1	

alution: (Show Steps)

Reg #:	Section:
--------	----------

National University of Computer and Emerging Sciences, Lahore Campus

Course: Program: **Duration:** Paper Date: Section:

Natural Language Processing BS(Data Science) 20 Minutes

1 April-2024 8A

Exam: LSTM Quiz v1

CS 4063 Course Code: Fall 2024 Semester: 7 **Total Marks:** Weight 2

Page(s):

• We've thoroughly practiced employing LSTM (Long Short-Term Memory) in our previous assignment to forecast to the coming work tasks. The current objective involves computing values for the candidate cell state (c_t^*) and hidden state (h_t) and cell unit (c_t) at the next timestamp, using the provided prior information. [10]

```
..eight Matrix Values:
eights and Bais for Forget Gate
[1600]
3 6 0]]
leights and Bais for Input Gate
 13 1 2 2]
 6 3 2 1]]
 eights and Bais for Update Gate '
 3 4 9 5]
2 6 2 5]]
 1]]
eights and Bais for Output Gate
 4 3 4 4]
 2 2 0 4]]
```

```
Time = 2
Privous Hidden State (ht):
 [[0.4165792]
 [0.32134238]]
Privous Cell State (ct):
 [[0.44354576]
 [1.99999732]] •
Input :
 [[0]]
 [2]]
Values for Forget Gate:
[[0.33209835]
 [0.9014788]]
Values for Input Gate: .
 [[0.99999057]
 [0.333263
            ]]
Values for Output Gate:
 [[0.33333224]
 [0.99998962]]
```

Solution:

- . 1