

# BREAST CANCER CLASSIFICATION USING ML



## Objective &

- Build a model to classify breast cancer as malignant or benign.
- Improve early detection and patient outcomes.

### MLOP workflow

**Problem Definition** 

Data Management

Data collection and preprocessing pipeline.

#### **Model Development**

Train models

#### **Model Validation**

Evaluate performance using metrics (Accuracy, Precision, AUC).

Automate evaluation pipelines.

#### **Model Deployment**

Deploy the best model to production Use Docker or Kubernetes for scalability.

#### **Monitoring & Maintenance**

Monitor model performance (e.g., concept drift).

Automate retraining with new data.

#### Continuous Integration & Delivery (CI/CD)

Integrate updates seamlessly.

Automate testing and deployment.

### Methodology

- Data Preprocessing: Handle missing values, scale features.
- Exploratory Data Analysis: Visualizations, correlation analysis.
- Model Selection: Logistic Regression, Random Forest, SVM, etc.
- Evaluation Metrics: Accuracy, Precision, Recall, F1-Score, ROC-AUC.

### Conclusion

- Machine learning aids in efficient breast cancer classification.
- Future scope: Larger datasets, advanced techniques.



- Source:
  - https://www.kaggle.com/datasets/yasserh/breastcancer-dataset
- Features: Tumor characteristics (e.g., radius, texture, smoothness).
- Target: Malignant or benign classification.

#### **GROUP MEMBERS:**

SHREENIVAS DUDHATE: 202201070041 ADITI KULKARNI: 202201070046

NIKITA SHELAR: 202201070047