ANALYSIS OF STRUCTURAL ACOUSTIC DESIGN VARIABLES FOR A PERIODICALLY STIFFENED PLATE USING THE FINITE ELEMENT METHOD

Joseph Blochberger Advisor: Dr. Alok Sinha (PSU)

Motivation

Automobile* Aerospace*

Marine*

Designing quieter engineering systems requires insight into *how* stiffened structures radiate sound

Modeling & Simulation

Clamped Boundary Conditions

Geometric dimensions of the finite element model.			
Design Variable	Value Varied in Case Studies		
Plate Thickness			
Plate Length/Width	1.2 m		
Stiffener Thickness	Varied in Case Studies		
Stiffener Height	10 cm		

Material	Density, ρ	Young's Modulus, E	Poisson's Ratio, ν	Loss Factor,
Aluminum (Plate)	$2700\frac{kg}{m^3}$	71 <i>GPa</i>	0.33	0.02
Steel (Stiffeners)	$7700 \frac{kg}{m^3}$	195 <i>GPa</i>	0.28	0.02

Technical Approach

Forced vibration analysis performed in Abaqus CAE

$$[M]{a} + [C]{v} + [K]{u} = {F}$$

Surface averaged mobility

$$\Upsilon = 20 \log_{10} \left(\frac{\langle |v| \rangle}{F} \right)$$

Wavenumber space

$$V = \iint v e^{-jk_x x} e^{-jk_y y} dx dy$$

Radiated sound power

$$P = \frac{1}{2} \iint \text{Real}[pv^*] dx dy$$

Frequency, Hz

^{*}pictures of stiffened structures in industry are taken from google images for "car liner," "aircraft liner," and "ship hull," respectively.