Quahon No.2.

Refer the Linear programming problem from Question No.1. Solve this LP problem using the Table 1. If a variable $a_6 \ge 0$ is added to the problem with:

a) A6- [2,1] , wefficient of 26 in 2=-1.

$$A^{(6)} = B^{-1}A^{6}$$

$$B^{-1} = \frac{1}{12} \begin{bmatrix} -3 & 6 \\ -3 & 2 \end{bmatrix}$$

$$A^{(6)} = \frac{1}{12} \begin{bmatrix} -3 & 1 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$= \frac{1}{12} \begin{bmatrix} -3 & 1 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$= -1 - \begin{bmatrix} -2 + 5 - \end{bmatrix} \begin{bmatrix} 0 \\ -\frac{1}{2} \end{bmatrix}$$

$$= -1 - (0 - \frac{9}{3})$$

$$= -1 + \frac{9}{3}$$

$$= \begin{bmatrix} 0 \\ -\frac{1}{3} \end{bmatrix}$$

$$= \begin{bmatrix} 0 \\ -\frac{1}{3} \end{bmatrix}$$

(b)
$$A^{6} = [2, 1]^{7}$$
, coefficient of $24 \text{ in } 2 = -2$.

 $A^{(6)} = [0]$
 $= -2 - (0 - \frac{1}{3})$
 $= -2 + \frac{1}{3}$

$$A^{(6)*} = 8^{-1}A^{6}$$

$$= \frac{1}{12} \begin{bmatrix} -3 & 6 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} 8 \\ 8 \end{bmatrix}$$

$$= \frac{1}{12} \begin{bmatrix} 12 \\ -12 \end{bmatrix}$$

$$= -9 - (-2 - 5)$$

$$= -9 - (-3)$$

$$= -9 + 1$$

$$= -9 + 1$$

(d)
$$A^{(6)} = [8,6]^T$$
, coefficient of $26 \text{ in } t = -11$

$$A^{(6)} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$G^{\sharp} = G - G_8 R^{\sharp 6}$$

$$A^{(3)} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

$$= -11 - (-2 - 5)$$

$$= -11 - (-7)$$

$$= -11 + 7$$

$$= -4$$

_	71	2/2	213	214	25	$\mathcal{U}_{\mathcal{L}}$	1
45	0	1/2	4	7/2 3/2	1	1	\$
9(1	l	1/6	-14	3/2	1 0	-1	1
	0	YL	3/4	.			

Zmin = 10 at (7,0,0,0,0,6).

Querhon No. 2.

Bhutan furniture thank company maker tabler, chain, and book shelver, along with other items. The information is tabulated as follows.

Product

Tables Word 10 Labour (hm) 5 Propt (No). 200	Chain 3 5 150	Book shelves 10 5 150	Availability iro (.
--	------------------------	--------------------------------	---------------------------

Maximize. 2002, +150 1/2 + 150 1/3

$$5.7 \quad |021 + 222 + |021 \le |00| 521 + 522 + 523 \le 6. 21, 22 - 25 \ge 0.$$

(a) solve the given LP model to obtain the optimal procluct mix.

ST
$$10\lambda_1 + 3\lambda_2 + 10\lambda_3 + 24 = 100$$

 $5\lambda_1 + 5\lambda_2 + 5\lambda_3 + 20 = 6$
 $\lambda_1, \lambda_2 \dots \lambda_5 \ge 0$

(3) Determine the sensitivity limits for the following. within which the product mix remain ophimal.

(1) Available word.

Throulable word.

$$C_{B} = \begin{bmatrix} -200 & -150 \end{bmatrix} \quad B^{-1} = \frac{1}{1B1} \quad AdJ B.$$

$$B = \begin{bmatrix} 100 & 3 \\ 5 & 5 \end{bmatrix} \quad |B| = 50 - 15 = 35$$

$$B^{+1} = \frac{1}{35} \begin{bmatrix} 5 & -3 \\ -5 & 10 \end{bmatrix}$$

$$b^{\dagger} = B^{-1}b$$

$$= \frac{1}{35} \begin{bmatrix} 5 & -3 \\ -5 & 10 \end{bmatrix} \begin{bmatrix} 100+\lambda \\ 160 \end{bmatrix}$$

$$= \frac{1}{35} \begin{bmatrix} 320+5\lambda \\ 100-5\lambda \end{bmatrix}$$

$$= \frac{1}{35} \begin{bmatrix} 320+5\lambda \\ 100-5\lambda \end{bmatrix} = \begin{bmatrix} 4/7+\sqrt{7}\lambda \\ 2/7+4-\sqrt{7}\lambda \end{bmatrix} \ge 0$$

$$320+5\lambda \ge 0$$

$$5\lambda \ge -320$$

$$\lambda \ge -64$$

$$\lambda \le 20$$

$$320+5\lambda \ge 0$$

$$5\lambda \ge -320$$

$$\lambda \ge -64$$

$$\lambda \le 20$$

$$-64 \leq \lambda \leq 20$$

$$= 0 - \left[-200 + 150 \right] \left[\frac{64}{7} + \frac{1}{7} \lambda \right]$$

$$= 0 - \left[-200 + 150 \right] \left[\frac{320 + 5\lambda}{100 - 5\lambda} \right]$$

$$= -\frac{1}{35} \left[-200 - 150 \right] \left[\frac{320 + 5\lambda}{100 - 5\lambda} \right]$$

$$= -\frac{1}{35} \left(-64000 + 1000\lambda + 15000 + 750\lambda \right)$$

$$= -\frac{1}{35} \left(-79000 - 250\lambda \right)$$

$$= \frac{79000}{35} + \frac{200}{35} \lambda$$

$$= \frac{15800}{7} + \frac{50}{7} \lambda \quad \text{at } -64 \leq \lambda \leq 20.$$
(ii) Available labour (hm).

$$b^{2} = \frac{8^{-1}b}{35} \begin{bmatrix} 5 & -3 \\ -5 & 10 \end{bmatrix} \begin{bmatrix} 100 \\ 60 + \lambda \end{bmatrix}$$

$$= \frac{1}{35} \begin{bmatrix} 500 - 180 - 3\lambda \\ -500 + 600 + 60\lambda \end{bmatrix}$$

$$= \frac{1}{35} \begin{bmatrix} 320 - 3\lambda \\ 100 - 16\lambda \end{bmatrix} \ge 0$$

$$320 - 3\lambda \ge 0$$

$$-3\lambda \ge -320$$

$$\lambda \le 320/3$$

$$\lambda \leq 106^{2/3}$$

$$3. \lambda \leq 10_{2}$$

$$\begin{aligned}
&= 0 - \frac{1}{37} \left[-200 - 150 \right] \left[\frac{320 - 3\lambda}{100 - 16\lambda} \right] \\
&= -\frac{1}{35} \left(-64000 + 600\lambda + -150000 + 1500\lambda \right) \\
&= -\frac{1}{35} \left(-79000 + 2100\lambda \right) \\
&= \frac{15800}{7} - \frac{420}{7}\lambda \\
&= \frac{15800}{7} - 60\lambda
\end{aligned}$$

© Determine the new optimal solution with the following alterations: (1) Wood availability is decreased to 90 locard feet.

$$b = \begin{bmatrix} 90 \\ 60 \end{bmatrix}$$

$$b'' = B^{-1}b$$

$$= \frac{1}{35} \begin{bmatrix} 5 & -3 \\ -5 & 10 \end{bmatrix} \begin{bmatrix} 90 \\ 60 \end{bmatrix}$$

$$= \frac{1}{35} \begin{bmatrix} 40 - 180 \\ 40 + 600 \end{bmatrix}$$

$$= \frac{1}{35} \begin{bmatrix} 270 \\ 150 \end{bmatrix}$$

$$= \begin{bmatrix} 54/257 \\ 30/3 \end{bmatrix}$$

$$23^{4} = 23 - C_{R}b^{*}$$

$$= 0 - \left[-200 - 150\right] \left[\frac{54}{7}\right]$$

$$= -\left(-\frac{10800}{7} - \frac{4500}{7}\right)$$

$$= \frac{15300}{7} \quad \text{at} \left(\frac{54}{7}, \frac{30}{7}\right)$$

(ii) Available labour is increased to lib hour.

$$b^* = B^{-1}b$$

$$= \frac{1}{35} \left[5 - 3 \right] \left[100 \right]$$

$$= \frac{1}{35} \begin{bmatrix} 500 - 300 \\ -500 + 1000 \end{bmatrix}$$

$$= \frac{1}{35} \begin{bmatrix} 200 \\ 500 \end{bmatrix}$$

$$= \begin{bmatrix} 40/7 \\ 100/7 \end{bmatrix}$$

$$E_0' = 2_0 - C_0 b^*$$

$$= 0 - \left[-200 - 150 \right] \left[\frac{49}{4} \right]$$

$$= 0 - \left[-200 - 150 \right] \left[\frac{49}{4} \right]$$

$$= -\left(-\frac{8000}{7} - \frac{15000}{7}\right)$$

$$= 23000 \text{ hn.}$$

(d) betermine the total profit the company makes a profit of Nu. 180 per table and Nu. 100 per chair.

$$c = [-180 + 000 + 500 + 00]$$

$$= [-180. -100 -150 0 0] - [-180 -100] =$$

$$= \begin{bmatrix} 0 & 0 & 50 & 5\% & 180/7 \end{bmatrix} + \begin{bmatrix} 20 & 50 & 0 & 0 & 0 \end{bmatrix} - \begin{bmatrix} 20 & 50 \end{bmatrix} \begin{bmatrix} 69/7 \\ 20/7 \end{bmatrix}$$

$$\begin{aligned}
&= \begin{bmatrix} 0 & 0 & 50 & 51 \\ 0 & 0 & 50 \end{bmatrix} & \begin{bmatrix} 180/7 \\ 180/7 \end{bmatrix} + \begin{bmatrix} 20 & 50 & 0 & 0 & 0 \end{bmatrix} & - & | 2200 \\ 0 & 10 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 1 &$$

 $= -\left(-13520\right)$

 $=\frac{13520}{7}$

20

Queihan 4.

A company sells two products A and B. The selling price and incremental cost information is as follows:

Product A Product B selling price (Nu) 60 40
Incremental cost (Nu.) 30 10
Incremental propet (Nu.) 30 30

The two product are produced in a common procluction process and are sold in two diff. Markets. The production process has a community of 30,000 labour hours. It takes three hours to produce a unit of A and one hour to produce a unit 8. The market has been surveyed and the company openals feel that the maximum number of units of A that can be rold a 8000; and that of B 11 12000 units.

(a) Determine the ophmal product mx.

Maximize 3041 + 3042Sit $\begin{cases} 821 + 22 \le 30000 \\ 91 \le 8000 \\ 22 \le 12000 \\ 21, 22 \ge 0. \end{cases}$

Minimize
$$-302_142 - 302_2$$

St $\begin{cases} 32_1 + 2_2 + 23 & = 20000 \\ 21 & + 24 & = 8000 \\ 22 & + 24_5 = 12000 \end{cases}$
 $21_12_2 - 2_5 \ge 0$.

		50 50 50 50 50 50 50 50 50 50 50 50 50 5				
	21	212	213	719	32	1
214	3	t	1	0	0	3000
215	l	O	D	1	0	8000
75	0	1	O	O	l	1200
3	-30	-30	O	0	0	0
913	0		1	-3	0	6000
24	l	0	0	J	U	8000
15	0	1	0	D	1	12000
	0	-30	٥	30	O	240010
2/2	0	1	1	-3	0	6000
211	1	O	O	1	0	8-WD
25	0	Ó	-1	3	1	6000
,	0	0	30	-60	0	420000
72	0	1	O	U	1,	12010
2/2	1	0	1/3	O	3	e OND
214	0	0	-1/3	1	-1/3 1/3	Sau
	0	0	10	U	20	54000

Zmin = -57 0000 => Zmax = 540,000 at (6000,12000)

(b) Perform the senithvity analytis if the following changes are incorporated in the original problem:

0) Maximum no. of unit of A can be sold is actually 9000

$$b = \begin{bmatrix} 30000 \\ 9000 \end{bmatrix}$$

$$\begin{array}{lll}
C_{B} = \begin{bmatrix} -30 & -30 & D \end{bmatrix} & Adj B \\
B = \begin{bmatrix} 1 & 3 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} & B^{-1} = \frac{1}{18} Adj B \\
&= \frac{1}{3} \begin{bmatrix} 0 & 0 & 3 \\ 1 & 0 & -1 \\ -1 & 3 & 1 \end{bmatrix} & = \begin{bmatrix} 0 & 10 & -1 \\ 0 & 0 & 3 \\ 3 & -10 & 1 \end{bmatrix} \\
&= \begin{bmatrix} 30000 \\ 9000 \\ 12000 \end{bmatrix} \\
B^{\pm} = B^{-1}b \\
&= \frac{1}{3} \begin{bmatrix} 0 & 0 & 3 \\ 1 & 0 & -1 \\ -1 & 3 & 1 \end{bmatrix} \begin{bmatrix} 30000 \\ 9000 \\ 12000 \end{bmatrix} \\
&= \begin{bmatrix} 12000 \\ 9000 \end{bmatrix} \\
&= \begin{bmatrix} 12000 \\ 9000 \end{bmatrix} \\
&= 0 - \begin{bmatrix} -30 & -20 & 0 \end{bmatrix} \begin{bmatrix} 12000 \\ 6000 \\ 3000 \end{bmatrix}$$

= 0-(-360000-100000 +0)

= 540,000

Adj B:
$$\begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & -3 \\ 3 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & 3 & -1 \\ 0 & 0 & 3 & -1 \\ -1 & 3 & 1 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 0 & 0 & 3 \\ 1 & 0 & 1 \\ -1 & 3 & 1 \end{bmatrix} \begin{bmatrix} 300000 \\ 8000 \\ 13000 \end{bmatrix}$$

$$=\frac{1}{3}\begin{bmatrix}0 & 0 & 3\\ 1 & 0 & -1\\ -1 & 3 & 1\end{bmatrix}\begin{bmatrix}3000\\ 8000\\ 12000\end{bmatrix} + \begin{bmatrix}0\\ 0\\ 1000\end{bmatrix}$$

$$=\frac{1}{3}\begin{bmatrix}0 & 0 & 3\\ 1 & 0 & -1\\ -1 & 3 & 1\end{bmatrix}\begin{bmatrix}30000\\ 8000\\ 12000\end{bmatrix}+\frac{1}{3}\begin{bmatrix}0 & 0 & 3\\ 1 & 0 & -1\\ -1 & 3 & 1\end{bmatrix}\begin{bmatrix}0\\ 0\\ 1000\end{bmatrix}$$

$$= \begin{bmatrix} 12000 \\ 6000 \\ 2000 \end{bmatrix} + \frac{1}{3} \begin{bmatrix} 3000 \\ -1000 \\ 1000 \end{bmatrix}$$

$$= \begin{bmatrix} 12000 \\ 6000 \\ 2000 \end{bmatrix} + \begin{bmatrix} 1000 \\ -1000/3 \\ 1000/3 \end{bmatrix}$$

(111) Labour hours available is 31000 instead of 30,000 hours as in the base can.

$$b^{\frac{1}{2}} = 8^{-1}b.$$

$$= \frac{1}{3} \begin{bmatrix} 0 & 0 & 3 & 3 & 3 & 0 & 0 \\ 1 & 0 & -1 & 3 & 1 & 3 & 0 & 0 \\ -1 & 3 & 1 & 3 & 1 & 3 & 0 & 0 \\ 1 & 0 & -1 & 3 & 1 & 3 & 1 & 0 & 0 \\ 1 & 2000 & 1 & 1 & 2000 & 1 & 1 & 0 \\ 3000 & 1 & 3 & 1 & 1 & 0 & 1 & 1 \\ 3000 & 1 & 3 & 1 & 1 & 0 & 1 \\ 3000 & 1 & 3 & 1 & 1 & 0 & 1 \\ 3000 & 1 & 3 & 1 & 1 & 0 & 1 \\ 3000 & 1 & 3 & 1 & 1 & 0 & 1 \\ 3000 & 1 & 3 & 1 & 1 & 0 & 1 \\ 3000 & 1 & 3 & 1 & 1 & 0 & 1 \\ 3000 & 1 & 3 & 1 & 1 & 0 & 1 \\ 3000 & 1 & 3 & 1 & 1 & 0 \\ 3000 & 1 & 3 & 1 & 1 & 1 \\ 3000 & 1 & 3 & 1 & 1 & 1 \\ 3000 & 1 & 3 & 1 & 1 & 1 \\ 3000 & 1 & 3 & 1 & 1 & 1 \\ 3000 & 1 & 3 & 1 & 1 & 1 \\ 3000 & 1 & 3 & 1 & 1 & 1 \\ 3000 & 1 & 3 & 1 & 1 & 1 \\ 3000 & 1 & 3 & 1 & 1 & 1 \\ 3000 & 1 & 3 &$$

Question Nos.

Max.
$$2 = 1191 + 4912 + 213 + 15214$$

s.t $391 + 212 + 2213 + 4214 \le 28$,
 $891 + 2212 - 213 + 7214 \le 50$,
 $211,2121 - 214 \ge 0$.

Table 2: Inihal & Final Tableau.

checking it soln pant. sahsper the new constraint.

Introduce the new slack n_4 in the new constraint. $-2n_1+n_2+5n_3+n_4=12$

Eliminate 22.

$$-2n_1 + (-1)n_1 + 18n_3 + 7n_5 - 4n_6) + 5n_3 + 2n_5 = -12 - 4$$

$$-13n_1 + 28n_3 + 7n_5 - 4n_6 + 2n_5 = -16.$$

	24	212	93	219	2/5	76	717	
24	-2	O	5	1	2	-1	0	6
212	11	1	-18	D	-7	4	0	4
247	-13	O	23	0	7	-4	l	-16
	+3	O	a	0	ą	1	D	106
24	0	Ö	19/13	1	12/13	-5/13	-2/13	110/13
212	0	1	19/13	O	-14/13	K/13	11/13	-124/13
21	1	D	-23/ ₁₃	0	- 7/13	4/13	1/3	16/13
	0	0	97/13	D	43/13	1/13	3/3	1330/13

New ophmal point as at (16/13, 124/1