MATH 325 Q1: LINEAR ALGEBRA III, PART 5

Full cycles of generalized eigenvectors

We continue with above notation, i.e. $\alpha: V \to V$ is a \mathbb{C} -linear map, where V is a finite dimensional \mathbb{C} -vector space, and

$$P_{\alpha}(T) = \prod_{i=1}^{l} (T - \lambda_i)^{n_i}$$

is the characteristic polynomial of α , where $\lambda_1, \ldots, \lambda_l$ are all different eigenvalues of α . Our next aim is to show that every generalized eigenspace K_{λ_i} of α has a basis consisting of the so-called full cycles of generalized eigenvectors.

For brevity, we denote $\lambda := \lambda_i$ where $1 \le i \le l$. Let $v \ne 0$ be an arbitrary generalized eigenvector for λ . Then there exists a positive integer m > 1, such that

$$(\alpha - \lambda \cdot id_V)^m(v) = 0$$
 and $(\alpha - \lambda \cdot id_V)^{m-1}(v) \neq 0$.

Note that this implies in particular that the vector

$$w = (\alpha - \lambda \cdot id_V)^{m-1}(v)$$

is an eigenvector of α for λ .

Definition. The ordered set of vectors

$$\Delta = \left\{ w = (\alpha - \lambda \cdot \mathrm{id}_V)^{m-1}(v), (\alpha - \lambda \cdot \mathrm{id}_V)^{m-2}(v), \dots, (\alpha - \lambda \cdot \mathrm{id}_V)(v), v \right\}$$

is called a full cycle of generalized eigenvectors for the eigenvalue λ . The vector w is called the initial vector and v is called the end vector of the cycle. The number

$$m = |\Delta|$$
,

which is equal to the number of elements in Δ , is called the length of the cycle.

Remark. Note that if v is an eigenvector for λ then m=1, hence the single vector v is a full cycle of generalized eigenvectors of length 1 with initial and end vector v.

Remark. Note also that the initial vector of a full cycle of generalized eigenvectors is always an eigenvector.

Definition. If $V = \mathbb{C}^n$ and $\alpha = \alpha_A$ for a complex $n \times n$ -matrix A, then we say also that Δ is a full cycle of generalized eigenvectors for the eigenvalue λ of the matrix A.

Example. Consider the \mathbb{C} -linear map $\alpha_A : \mathbb{C}^2 \longrightarrow \mathbb{C}^2$, $v \mapsto A \cdot v$, where

$$A = \left(\begin{array}{cc} 4 & -1 \\ 1 & 6 \end{array}\right).$$

The characteristic polynomial of A is

$$P_A(T) = (T-4) \cdot (T-6) + 1 = T^2 - 10T + 25 = (T-5)^2.$$

Therefore A has only one eigenvalue $\lambda=5$. By Cayley- Hamilton Theorem $(A-5I_2)^2=0$ and this implies that every vector in \mathbb{C}^2 is a generalized eigenvector for $\lambda=5$. Thus, the generalized eigenspace K_5 is equal the whole space \mathbb{C}^2 .

Let $v = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$. This is not an eigenvector of A but

$$w = (A - 5 \cdot I_2) \cdot v = \begin{pmatrix} -1 & -1 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 4 \end{pmatrix} = \begin{pmatrix} -7 \\ 7 \end{pmatrix}$$

is an eigenvector because

$$A \cdot w = \begin{pmatrix} 4 & -1 \\ 1 & 6 \end{pmatrix} \cdot \begin{pmatrix} -7 \\ 7 \end{pmatrix} = 5 \begin{pmatrix} -7 \\ 7 \end{pmatrix}.$$

The set

$$\Delta = \left\{ w = \begin{pmatrix} -7 \\ 7 \end{pmatrix}, v = \begin{pmatrix} 3 \\ 4 \end{pmatrix} \right\}$$

is a full cycle of generalized eigenvectors for $\lambda = 5$ of length 2. Note that the vectors in this set are linear independent. This is a general fact, as the following lemma shows.

Lemma. Let

$$\Delta = \left\{ w = (\alpha - \lambda \cdot \mathrm{id}_V)^{m-1}(v), (\alpha - \lambda \cdot \mathrm{id}_V)^{m-2}(v), \dots, (\alpha - \lambda \cdot \mathrm{id}_V)(v), v \right\}$$

be a full cycle of generalized eigenvectors for the eigenvalue λ . Then Δ is a set of linear independent vectors.

Proof. Assume that for some scalars a_0, \ldots, a_{m-1} one has

$$\sum_{i=0}^{m-1} a_i \cdot (\alpha - \lambda \cdot id_V)^i(v) = 0.$$
 (1)

We prove by induction on $j \ge 0$ that $a_j = 0$. To see this for j = 0 we apply the linear map $(\alpha - \lambda \cdot id_V)^{m-1}$ to the equation (1):

$$\sum_{i=0}^{m-1} a_i \cdot (\alpha - \lambda \cdot id_V)^{i+m-1}(v) = 0.$$

But $(\alpha - \mathrm{id}_V)^m(v) = 0$ and so $(\alpha - \mathrm{id}_V)^{i+m-1}(v) = 0$ for $i \ge 1$. We get therefore

$$0 = a_0 \cdot (\alpha - \lambda \cdot id_V)^{m-1}(v) = a_0 \cdot w$$

and so $a_0 = 0$. Assume now we have shown $a_0 = a_1 = \dots a_{j-1} = 0$ for some $j \ge 1$. Then the relation (1) becomes

$$\sum_{i=j}^{m-1} a_i \cdot (\alpha - \lambda \cdot id_V)^i(v) = 0,$$

and applying to this equation the linear map $(\alpha - \lambda \cdot id_v)^{m-1-j}$ we get

$$\sum_{i=j}^{m-1} a_i \cdot (\alpha - \lambda \cdot id_V)^{i+m-1-j}(v) = 0.$$

Since $(\alpha - \lambda \cdot id_V)^{i+m-1-j}(v) = 0$ for $i \ge j+1$ this implies

$$0 = a_j \cdot (\alpha - \lambda \cdot id_V)^{m-1}(v) = a_j \cdot v,$$

and so $a_j = 0$ as claimed. We are done.

Jordan blocks

Let

$$\Delta = \left\{ w = (\alpha - \lambda \cdot \mathrm{id}_V)^{m-1}(v), (\alpha - \lambda \cdot \mathrm{id}_V)^{m-2}(v), \dots, (\alpha - \lambda \cdot \mathrm{id}_V)(v), v \right\}$$

be a full cycle of generalized eigenvalues for the eigenvalue λ of the linear map $\alpha: V \longrightarrow V$. Let $W = W(\Delta) \subseteq K_{\lambda}$ be the span of these vectors, *i.e.* the subspace generated by the vectors in Δ . By the lemma above the full cycle of generalized eigenvalues Δ is linear independent and so Δ is a basis of W.

Lemma. The vector subspace W is α -invariant, i.e. $\alpha(u) \in W$ for all $u \in W$.

Proof. To check this let u be an arbitrary vector in W. Then there are $a_i \in \mathbb{C}$, such that

$$u = \sum_{i=0}^{m-1} a_i \cdot (\alpha - \lambda \cdot \mathrm{id}_V)^i(v),$$

and so since α is \mathbb{C} -linear

$$\alpha(u) = \sum_{i=0}^{m} a_i \cdot \alpha((\alpha - \lambda \cdot id_V)^i(v)).$$

Hence it is enough to show that

$$\alpha((\alpha - \lambda \cdot id_V)^i(v)) \in W$$

for all $0 \le i \le m-1$. But this is the case since

$$(\alpha - \lambda \cdot \mathrm{id}_V)^{i+1}(v) = (\alpha - \lambda \cdot \mathrm{id}_V) ((\alpha - \lambda \cdot \mathrm{id}_V)^i(v))$$
$$= \alpha ((\alpha - \lambda \cdot \mathrm{id}_V)^i(v)) - \lambda \cdot ((\alpha - \lambda \cdot \mathrm{id}_V)^i(v)),$$

and so

$$\alpha \left((\alpha - \lambda \cdot \mathrm{id}_V)^i(v) \right) = (\alpha - \lambda \cdot \mathrm{id}_V)^{i+1}(v) + \lambda \cdot \left((\alpha - \lambda \cdot \mathrm{id}_V)^i(v) \right) \in W.$$

The above equation implies that the matrix of the restriction of α to W with respect to the basis Δ is of the form (note that the initial vector w is an eigenvalue)

$$J(\lambda, m) := \left(egin{array}{ccccc} \lambda & 1 & 0 & & \dots & 0 \\ 0 & \lambda & 1 & 0 & \dots & 0 \\ 0 & 0 & \lambda & 1 & \dots & 0 \\ \vdots & & \ddots & \ddots & \vdots \\ 0 & \dots & & \lambda & 1 \\ 0 & \dots & & \lambda \end{array} \right).$$

Definition. The above matrix is called a Jordan block of size m for the eigenvalue λ . This is a $m \times m$ -matrix with the eigenvalue λ on the diagonal, 1's above the diagonal, and 0's elsewhere.

Examples. The Jordan blocks of sizes 1, 2, 3, and 4 for the eigenvalue λ are:

$$(\lambda), \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}, \begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix}, \text{ and } \begin{pmatrix} \lambda & 1 & 0 & 0 \\ 0 & \lambda & 1 & 0 \\ 0 & 0 & \lambda & 1 \\ 0 & 0 & 0 & \lambda \end{pmatrix}.$$

Jordan bases

Our next goal is to prove that there exists full cycles $\Delta_1, \ldots, \Delta_s$ of generalized eigenvectors in K_{λ} , say

$$\Delta_j = \left\{ w_j = (\alpha - \lambda \cdot \mathrm{id}_V)^{m_j - 1}(v_j), (\alpha - \lambda \cdot \mathrm{id}_V)^{m_j - 2}(v_j) \dots, (\alpha - \lambda \cdot \mathrm{id}_V)(v_j), v_j \right\}$$
 such that

(i)
$$\Delta_j \cap \Delta_k = \emptyset$$
 for all $j \neq k$ in $\{1, \dots, s\}$, and

(ii) the ordered set of vectors $\Delta := \bigcup_{j=1}^{s} \Delta_{j}$ is a basis of K_{λ} .

We call such a basis $\Delta = \bigcup_{j=1}^{s} \Delta_j$ a *Jordan basis* for K_{λ} .

Assuming that Jordan basis exists we first prove the following property.

Lemma. Let $\Delta = \bigcup_{j=1}^{s} \Delta_j$ (with Δ_j as above) be a Jordan basis for K_{λ} . Then w_1, \ldots, w_s is a basis of the eigenspace E_{λ} and so in particular we have $s = \dim_{\mathbb{C}} E_{\lambda}$.

Proof. By assumption Δ is a basis for K_{λ} and so the vectors in Δ are linear independent. In particular the vectors $w_1, \ldots, w_s \in E_{\lambda}$ are linear independent. (Note that these vectors are the only vectors of Δ which are in E_{λ} , i.e. $E_{\lambda} \cap \Delta = \{w_1, \ldots, w_s\}$.)

It is therefore enough to show that w_1, \ldots, w_s span E_{λ} . Take an arbitrary $y \in E_{\lambda}$. Since Δ is a basis of $K_{\lambda} \supseteq E_{\lambda}$ there are complex numbers $a_k^{(j)}$ such that

$$y = \sum_{j=1}^{s} \sum_{k=0}^{m_j - 1} a_k^{(j)} \cdot (\alpha - \lambda \cdot \mathrm{id}_V)^k(v_j).$$

Applying to this equation the linear map $\alpha - \lambda \cdot \mathrm{id}_V$ we get since y and $w_j = (\alpha - \lambda \cdot \mathrm{id}_V)^{m_j - 1}(v_j), j = 1, \ldots, s$, are eigenvectors

$$0 = \sum_{j=1}^{s} \sum_{k=0}^{m_j - 2} a_k^{(j)} \cdot (\alpha - \lambda \cdot id_V)^{k+1}(v_j),$$

and so $a_k^{(j)} = 0$ for all $k \leq m_j - 2$, $1 \leq j \leq s$. Hence

$$y = \sum_{j=1}^{s} a_{m_{j}-1}^{(j)} \cdot (\alpha - \lambda \cdot id_{V})^{m_{j}-1}(v_{j}) = \sum_{j=1}^{s} a_{m_{j}-1}^{(j)} \cdot w_{j}$$

is in the span of the vectors w_1, \ldots, w_s .

The matrix with respect to a Jordan basis

Assume we have such a Jordan basis $\Delta = \bigcup_{j=1}^s \Delta_j$ for K_λ as above. Since

$$\alpha((\alpha - \lambda \cdot \mathrm{id}_V)^r(v_j)) = \lambda \cdot (\alpha - \lambda \cdot \mathrm{id}_V)^r(v_j) + (\alpha - \lambda \cdot \mathrm{id}_V)^{r+1}(v_j)$$

the matrix of the linear map $K_{\lambda} \longrightarrow K_{\lambda}$, $v \mapsto \alpha(v)$ (i.e. the restriction of α to K_{λ}) with respect to the basis Δ is

$$\begin{pmatrix}
J(\lambda, m_1) & O_{m_1 \times m_2} & \dots & O_{m_1 \times m_s} \\
O_{m_2 \times m_1} & J(\lambda, m_2) & & O_{m_2 \times m_s} \\
\vdots & & & \ddots & \vdots \\
O_{m_s \times m_1} & & \dots & J(\lambda, m_s)
\end{pmatrix},$$

where $J(\lambda, m_i)$ is a Jordan block of size m_i for the eigenvalue λ .

Before we prove the existence of a Jordan basis we show the following uniqueness statement.

Theorem. Let $\alpha: V \longrightarrow V$ be a \mathbb{C} -linear map as above and λ an eigenvalue of α with corresponding generalized eigenspace K_{λ} . Assume we have two families

$$\Delta_1, \cdots, \Delta_s$$
 and $\Delta'_1, \ldots, \Delta'_s$

of full cycles of generalized eigenvalues where

$$\Delta_j = \left\{ w_j = (\alpha - \lambda \cdot \mathrm{id}_V)^{m_j - 1}(v_j), (\alpha - \lambda \cdot \mathrm{id}_V)^{m_j - 2}(v_j), \dots, (\alpha - \lambda \cdot \mathrm{id}_V)(v_j), v_j \right\}$$
and

$$\Delta'_{j} = \left\{ w'_{j} = (\alpha - \lambda \cdot \mathrm{id}_{V})^{m'_{j}-1}(v'_{j}), (\alpha - \lambda \cdot \mathrm{id}_{V})^{m'_{j}-2}(v'_{j}), \dots, (\alpha - \lambda \cdot \mathrm{id}_{V})(v'_{j}), v'_{j} \right\}$$

$$for \ j = 1, \dots, s = \dim_{\mathbb{C}} E_{\lambda}, \ such \ that$$

$$\Delta := \bigcup_{j=1}^{s} \Delta_{j}$$
 and $\Delta' := \bigcup_{j=1}^{s} \Delta'_{j}$

are Jordan bases for K_{λ} . By (if necessary) renumbering the indices we can assume that

$$m_1 \ge m_2 \ge \ldots \ge m_s$$
 and $m'_1 \ge m'_2 \ge \ldots \ge m'_s$.

Then

$$|\Delta_j| = m_j = m'_j = |\Delta'_j|$$

for all k = 1, ..., s. In particular, the matrices of the restriction of α to K_{λ} with respect to the bases $\Delta := \bigoplus_{j=1}^{s} \Delta_{j}$ and $\Delta' = \bigcup_{j=1}^{s'} \Delta'_{j}$ are the same.

Proof. We prove this by contradiction. Assume that there is some j, such that $m_j \neq m'_j$. Let $1 \leq j_0 \leq s$ be minimal with this property, i.e. $m_j = m'_j$ for all $1 \leq j < j_0$ and $m_{j_0} \neq m'_{j_0}$, say $m_{j_0} > m'_{j_0}$. We consider the subspace

$$U := \operatorname{Image}(\alpha - \lambda \cdot \operatorname{id}_{V})^{m_{j_0} - 1} = \left\{ (\alpha - \lambda \cdot \operatorname{id}_{V})^{m_{j_0} - 1}(v) \,|\, v \in K_{\lambda} \right\}$$

in K_{λ} . Since Δ and Δ' both generate K_{λ} their images

$$\Gamma := (\alpha - \lambda \cdot \mathrm{id}_V)^{m_{j_0} - 1}(\Delta) := \left\{ (\alpha - \lambda \cdot \mathrm{id}_V)^{m_{j_0} - 1}(v) \,|\, v \in \Delta \right\}$$

and

$$\Gamma' := (\alpha - \lambda \cdot id_V)^{m_{j_0} - 1}(\Delta') := \{ (\alpha - \lambda \cdot id_V)^{m_{j_0} - 1}(v') | v' \in \Delta' \}$$

generated both U. Moreover we have $\Gamma \setminus \{0\} \subset \Delta$ and $\Gamma' \setminus \{0\} \subset \Delta'$ and so $\Gamma \setminus \{0\}$ and $\Gamma' \setminus \{0\}$ are both sets of linear independent vectors and so bases of the subspace U.

We count the elements in $\Gamma \setminus \{0\}$ and $\Gamma' \setminus \{0\}$. We have $m_{j_0} > m'_{j_0} \ge m'_j$ for all $j \ge j_0$. Hence we have

$$(\alpha - \lambda \cdot \mathrm{id}_V)^{m_{j_0} - 1}(\Delta_j') \setminus \{0\} = \left\{ (\alpha - \lambda \cdot \mathrm{id}_V)^{m_{j_0} - 1}(v') \mid v' \in \Delta_j' \right\} \setminus \{0\} = \emptyset$$

for $j \geq j_0$, and for $j < j_0$ we have

$$(\alpha - \lambda \cdot \mathrm{id}_V)^{m_{j_0} - 1}(\Delta_j') \setminus \{0\} = \left\{ (\alpha - \lambda \cdot \mathrm{id}_V)^{m_j' - 1}(v_j'), \dots, (\alpha - \lambda \cdot \mathrm{id}_V)^{m_{j_0} - 1}(v_j') \right\}.$$

Therefore

$$\Gamma' \setminus \{0\} = \bigcup_{j=1}^{s} (\alpha - \lambda \cdot \mathrm{id}_{V})^{m_{j_0} - 1} (\Delta'_{j}) \setminus \{0\}$$

contains

$$\sum_{k=1}^{j_0-1} (m'_k - m_{j_0} + 1) = \sum_{k=1}^{j_0-1} (m_k - m_{j_0} + 1)$$

elements (the equation since by assumption $m'_k = m_k$ for $1 \le k < j_0$).

Similarly, we have

$$(\alpha - \lambda \cdot \mathrm{id}_V)^{m_{j_0} - 1}(\Delta_j) \setminus \{0\} = \{ (\alpha - \lambda \cdot \mathrm{id}_V)^{m_j - 1}(v_j), \dots, (\alpha - \lambda \cdot \mathrm{id}_V)^{m_{j_0} - 1}(v_j) \}.$$

for all $1 \le j < j_0$, and

$$(\alpha - \lambda \cdot \mathrm{id}_V)^{m_{j_0} - 1}(\Delta_{j_0}) \setminus \{0\} = \{(\alpha - \lambda \cdot \mathrm{id}_V)^{m_{j_0} - 1} \cdot v_{j_0}\}.$$

Therefore

$$\Gamma \setminus \{0\} = \bigcup_{j=1}^{s} (\alpha - \lambda \cdot \mathrm{id}_{V})^{m_{j_0} - 1} (\Delta_j) \setminus \{0\} \supseteq \bigcup_{j=1}^{j_0} (\alpha - \lambda \cdot \mathrm{id}_{V})^{m_{j_0} - 1} (\Delta_j) \setminus \{0\}$$

has at least $1 + \sum_{k=1}^{j_0-1} (m_k - m_{j_0} + 1)$ elements and so at least one element more than $\Gamma' \setminus \{0\}$, a contradiction.