Евгений Борисов

методы ML

- метрические измеряем расстояния, определить ближайших
- логические построить правило (комбинацию предикатов)
- статистические восстановить плотность, определить вероятность
- линейные построить разделяющую поверхность
- *композиции* собрать несколько классификаторов в один

```
Х - объекты у - метки
```

a(x)=C(b(x)) - классификатор

b : X → R - базовый алгоритм

C : R → y - решающее правило

R - множество оценок (существенно шире чем у)

примеры оценок и решающих правил

```
a(x) = sign(b(x)) - классификация на 2 класса y = \{-1,1\} - метки b: X \to \mathbb{R} - базовый алгоритм C(b) = sign(b) - решающее правило
```

примеры оценок и решающих правил

```
a(x) = sign(b(x)) - классификация на 2 класса y = \{-1,1\} - метки b: X \to \mathbb{R} - базовый алгоритм C(b) = sign(b) - решающее правило a(x) = argmax\ b_t(x) - классификация на т классов y = \{1,...,m\} - метки R = \mathbb{R}^m - оценки b: X \to \mathbb{R}^m - базовый алгоритм C(b_1,...b_m) = argmax\ b_t - оценки
```

примеры оценок и решающих правил

```
a(x) = sign(b(x)) - классификация на 2 класса
  y = \{-1,1\} - метки
   b: X \to \mathbb{R} - базовый алгоритм
C(b) = sign(b) - решающее правило
a(x)=argmax b_{\iota}(x) - классификация на m классов
y = \{1,..,m\} - метки
R=ℝ<sup>m</sup> - оценки
b:X \to \mathbb{R}^m - базовый алгоритм
C(b_1,...b_m)=argmax b_t - оценки
a(x)=b(x) - регрессия
  y=R=\mathbb{R} - метки / оценки
b:X\to\mathbb{R} - базовый алгоритм
  C(b)=b - решающее правило (вырождено)
```

Идея: из нескольких «плохих» классификаторов собрать один «хороший»

Идея: из нескольких «плохих» классификаторов собрать один «хороший»

Х - объекты у - метки

b₊: X → R - базовый алгоритм

С: R → y - решающее правило

R - множество оценок

композиция базовых алгоритмов b₊(x)

$$a(x) = C(F(b_1(x),...,b_T(x)))$$

 $F: R^T \to R$ - корректирующая операция

$$a(x) = Cigl(Figl(b_1(x), ... b_T(x) igr) igr)$$
 композиция из классификаторов $\mathbf{b_t}$

примеры корректирующих операций

$$F\left(b_{1}(x),...b_{T}(x)\right) = \frac{1}{T}\sum_{t=1}^{T}b_{t}(x)$$
 простое голосование

$$a(x) = Cigl(Figl(b_1(x), ... b_T(x) igr) igr)$$
 композиция из классификаторов $\mathbf{b_t}$

примеры корректирующих операций

$$F(b_1(x),...b_T(x)) = \frac{1}{T} \sum_{t=1}^{T} b_t(x)$$

простое голосование

$$F(b_1(x),...b_T(x)) = \sum_{t=1}^{T} a_t \cdot b_t(x); a_t \in \mathbb{R}$$

взвешенное голосование

$$a(x) = Cigl(Figl(b_1(x), ... b_T(x) igr) igr)$$
 композиция из классификаторов $\mathbf{b_t}$

примеры корректирующих операций

$$F(b_1(x),...b_T(x)) = \frac{1}{T} \sum_{i=1}^{T} b_i(x)$$

простое голосование

$$F(b_1(x),...b_T(x)) = \sum_{i=1}^{T} a_i \cdot b_i(x); a_i \in \mathbb{R}$$

взвешенное голосование

$$F(b_1(x),...b_T(x)) = \sum_{t=1}^{T} g_t(x) \cdot b_t(x); g_t: X \rightarrow \mathbb{R}$$

смесь алгоритмов

бустинг

$$X \subset \mathbb{R}^n$$
 - объекты ; $y = \{-1; +1\}$ - метки

$$b_{t}(x): X \to \{-1, 0, +1\}$$
 классификатор с отказами

взвешенное голосование

$$a(x) = sign\left(\sum_{t=1}^{T} a_t \cdot b_t(x)\right)$$

функционал качества - количество ошибок

$$Q_T = \sum_{i} \left[\left(y_i \cdot \sum_{t=1}^{T} a_t \cdot b_t(x_i) \right) < 0 \right]$$

последовательно добавляем компоненты a_tb_t(x) при этом фиксируем параметры предыдущих компонент

AdaBoost

взвешенное голосование

$$a(x) = sign\left(\sum_{t=1}^{T} a_t \cdot b_t(x)\right)$$

функционал качества - количество ошибок

$$Q_T = \sum_{i} \left[\left(y_i \cdot \sum_{t=1}^{T} a_t \cdot b_t(x_i) \right) < 0 \right]$$

функционал качества - пороговая функция оптимизировать не удобно заменим его на гладкую аппроксимацию

$$Q_T \leq \widetilde{Q}_T = \sum_{i} \left[\exp \left(-y_i \cdot \sum_{t=1}^{T} a_t \cdot b_t(x_i) \right) \right]$$

AdaBoost обучение

взвешенное голосование

$$a(x) = sign\left(\sum_{t=1}^{T} a_t \cdot b_t(x)\right)$$

функционал качества

$$Q_T = \sum_{i} \left[\exp \left(-y_i \cdot \sum_{t=1}^{T} a_t \cdot b_t(x_i) \right) \right]$$

для каждого учебного примера Х введём вес w

AdaBoost обучение

взвешенное голосование

$$a(x) = sign\left(\sum_{t=1}^{T} a_t \cdot b_t(x)\right)$$

функционал качества

$$Q_T = \sum_{i} \left[\exp \left(-y_i \cdot \sum_{t=1}^{T} a_t \cdot b_t(x_i) \right) \right]$$

для каждого учебного примера Х введём вес w

сумма весов w примеров x, классифицированных b с ошибкой

$$N(b, W) = \sum_{i} w_{i} [b(x_{i}) = -y_{i}]$$

сумма весов w примеров x, классифицированных b верно

$$P(b,W) = \sum_{i} w_{i}[b(x_{i}) = y_{i}]$$

AdaBoost обучение сумма весов w примеров x, классифицированных b с ошибкой

$$N(b,W) = \sum_{i} w_{i}[b(x_{i}) = -y_{i}]$$

сумма весов w примеров x, классифицированных b верно

$$P(b,W) = \sum_{i} w_{i}[b(x_{i}) = y_{i}]$$

функционал качества

$$Q_T = \sum_{i} \left[\exp \left(-y_i \cdot \sum_{i=1}^{T} a_t \cdot b_t(x_i) \right) \right]$$

Теорема Freund, Schapire (1996)

пусть для вектора весов примеров W существует классификатор b, который классифицирует выборку X лучше чем наугад (P>N) тогда минимум функционала Q, достигается при следующих параметрах.

$$a_{T} = \frac{1}{2} \ln \left(\frac{P(b_{t}, W)}{N(b_{t}, W)} \right) \qquad b_{T} = \underset{b}{\operatorname{argmax}} \sqrt{P(b, W)} - \sqrt{N(b, W)}$$

Yoav Freund, Robert E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting // Second European Conference on Computational Learning Theory. - 1995.

AdaBoost обучение

$$w_i = \frac{1}{n}$$
 начальные значения весов примеров, n - количество примеров

последовательно обучаем и добавляем компоненты композиции с учётом весов примеров w

AdaBoost обучение

$$w_i = \frac{1}{n}$$
 начальные значения весов примеров, $n - \kappa$ оличество примеров

последовательно обучаем и добавляем компоненты композиции с учётом весов примеров w

вес классификатора

в композиции

$$a_{t} = \frac{1}{2} \ln \left(\frac{P(b_{t}, W)}{N(b_{t}, W)} \right)$$

AdaBoost обучение

$$w_i = \frac{1}{n}$$
 начальные значения весов примеров, $n - \kappa$ оличество примеров

последовательно обучаем и добавляем компоненты композиции с учётом весов примеров w

вес классификатора

в композиции

$$a_{t} = \frac{1}{2} \ln \left(\frac{P(b_{t}, W)}{N(b_{t}, W)} \right)$$

изменение весов примеров

при добавлении классификатора b,

$$w_i := w_i \cdot \exp(-y_i \cdot a_t \cdot b_t(x_i))$$

$$w_{i} := \frac{w_{i}}{\sum_{i} w_{i}}$$
 нормируем веса после коррекции

$$Q_{T} = \sum_{i} \left[\underbrace{\exp\left(-y_{i} \cdot \sum_{i=1}^{T-1} a_{t} \cdot b_{t}(x_{i})\right)}_{w_{i}} \cdot \exp\left(-y_{i} \cdot a_{T} \cdot b_{T}(x_{i})\right) \right]$$

AdaBoost обучение

$$w_i = \frac{1}{n}$$
 начальные значения весов примеров, n - количество примеров

последовательно обучаем и добавляем компоненты композиции с учётом весов примеров w

вес классификатора

в композиции

$$a_{t} = \frac{1}{2} \ln \left(\frac{P(b_{t}, W)}{N(b_{t}, W)} \right)$$

изменение весов примеров

при добавлении классификатора b,

$$w_i := w_i \cdot \exp(-y_i \cdot a_t \cdot b_t(x_i))$$

$$w_{i} := \frac{w_{i}}{\sum_{i} w_{i}}$$
 нормируем веса после коррекции

$$Q_{T} = \sum_{i} \left[\underbrace{\exp\left(-y_{i} \cdot \sum_{i=1}^{T-1} a_{t} \cdot b_{t}(x_{i})\right)}_{w_{i}} \cdot \exp\left(-y_{i} \cdot a_{T} \cdot b_{T}(x_{i})\right) \right]$$

примеры базовых классификаторов для AdaBoost

решающие деревья

пороговый классификатор

примеры базовых классификаторов для AdaBoost

решающие деревья

пороговый классификатор

AdaBoost строит длинные композиции из простых классификаторов

для коротких композиции из сложных классификаторов (SVM) результаты AdaBoost хуже

другие методы построения композиций

bagging

обучение по случайным подвыборкам набора примеров, подвыборки могут пересекаться, применяем на больших наборах

другие методы построения композиций

bagging

обучение по случайным подвыборкам набора примеров, подвыборки могут пересекаться, применяем на больших наборах

rsm (random subspace method) обучение на случайном подмножестве признаков, применяем если много признаков

другие методы построения композиций

bagging

обучение по случайным подвыборкам набора примеров, подвыборки могут пересекаться, применяем на больших наборах

rsm (random subspace method) обучение на случайном подмножестве признаков, применяем если много признаков

bagging и rsm можно комбинировать

схема построения композиции bagging/rsm

выделяем случайное подмножество примеров/признаков

обучаем классификатор

если результат классификатора хороший то добавляем в композицию

если ошибка композиции уменьшилась то повторяем иначе завершение работы

$$a(x) = sign \left(\sum_{i=1}^{T} b_t(x) \right)$$
 композиция - простое голосование

 $b_{t}(x): X \to \{-1, 0, +1\}$ классификатор с отказами

медод RandomForest (случайный лес)

bagging над решающими деревьями без pruning (без оптимизации)

признак в каждой вершине выбираем из случайного подмножества размера k всех признаков учебного набора размера n

$$k = \sqrt{n}$$
 для задач классификации

подбираем количество деревьев Т по критерию out-of-bag

$$\mathsf{out\text{-}of\text{-}bag}(a) = \sum_{i=1}^\ell \left[\mathsf{sign} \Big(\sum_{t=1}^T \big[x_i \!\notin\! U_t \big] b_t(x_i) \Big) \neq y_i \right] \to \mathsf{min}$$

т.е. проверяем количество ошибок на учебных наборах других деревьев

Литература

Борисов E.C. Методы машинного обучения. 2024 https://github.com/mechanoid5/ml_lectorium_2024_I

Константин Воронцов Машинное обучение. ШАД Яндекс https://www.youtube.com/playlist?list=PLJOzdkh8T5kp99tGTEFjH_b9zqEQiiBtC

Константин Воронцов Машинное_обучение. курс_лекций. http://www.machinelearning.ru/wiki/index.php?title=Машинное_обучение_(курс_лекций,_К.В.Воронцов)

Константин Воронцов Алгоритмические композиции. http://www.machinelearning.ru/wiki/images/0/0d/Voron-ML-Compositions.pdf