Homework 13 of Introduction to Analysis (I), Honor Class

AM15 黃琦翔 111652028

December 17, 2023

- 1. (a) Since $f(x) = \ln(x)$ is concave down, $\ln(uv) = \ln(u) + \ln(v) = \frac{1}{p}\ln(u^p) + \frac{1}{q}\ln(v^q) \le \ln(\frac{u^p}{p} + \frac{v^q}{q})$.

 And since $\ln(x)$ is strictly increasing, $uv \le \frac{u^p}{p} + \frac{v^q}{q}$.

 If $u^p = v^q$, $\frac{u^p}{p} + \frac{v^q}{q} = (\frac{1}{p} + \frac{1}{q})u^p = u^p = u^{p(\frac{1}{p} + \frac{1}{q})} = u \cdot u^{\frac{p}{q}} = uv$.
 - (b) $\int_a^b \frac{(f(x))^p}{p} dx = \frac{1}{p} \text{ and } \int_a^b \frac{(g(x))^q}{q} = \frac{1}{q}. \text{ Then, } \int_a^b \frac{(f(x))^p}{p} + \frac{(g(x))^q}{q} dx = \frac{1}{p} + \frac{1}{q} = 1.$ And since $f(x)g(x) \le \frac{(f(x)^p)}{p} + \frac{(g(x))^q}{q} \text{ for all } x \in [a,b] \text{ and } f,g \text{ are Reimann integral, } \int_a^b f(x)g(x) dx$ exists and $\int_a^b f(x)g(x) dx \le \int_a^b \frac{(f(x))^p}{p} + \frac{(g(x))^q}{q} dx = 1.$
 - (c) Take $F = \int_{a}^{b} |f(x)|^{p} dx$, $\int_{a}^{b} |g(x)|^{q} dx$.

Then,

$$\frac{\left|\int_{a}^{b} f(x)g(x)dx\right|}{F^{\frac{1}{p}}G^{\frac{1}{q}}} \leq \frac{\int_{a}^{b} |f(x)||g(x)|dx}{F^{\frac{1}{p}}G^{\frac{1}{q}}}$$

$$= \int_{a}^{b} \left(\frac{|f(x)|^{p}}{F}\right)^{\frac{1}{p}} \left(\frac{|g(x)|^{p}}{G}\right)^{\frac{1}{q}} dx$$

$$\leq \int_{a}^{b} \frac{1}{p} \left(\frac{|f(x)|^{p}}{F}\right) + \frac{1}{q} \left(\frac{|g(x)|^{q}}{G}\right) dx$$

$$= \frac{1}{p} \left(\frac{\int_{a}^{b} |f(x)|^{p} dx}{F}\right)^{\frac{1}{p}} + \frac{1}{q} \left(\frac{\int_{a}^{b} |g(x)|^{q} dx}{G}\right)^{\frac{1}{q}}$$

$$= \frac{1}{p} = \frac{1}{q} = 1$$

Thus,
$$\left| \int_{a}^{b} f(x)g(x)dx \right| \le \left(\int_{a}^{b} |f(x)|^{p} dx \right)^{\frac{1}{p}} \left(\int_{a}^{b} |g(x)|^{q} dx \right)^{\frac{1}{q}}$$
.

2. (a) Take
$$\delta = \frac{1}{2^{n+1}}$$
 and $P = \{0, \frac{1}{2^n}, \frac{1}{2^n}, \frac{1}{2^n} + \delta, \frac{1}{2^{n-1}}, \frac{1}{2^{n-1}} + \delta, \cdots, \frac{1}{2} + \delta, 1\}.$ Then,

$$U(f,P) - L(f,P) = \delta \cdots \left(1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{2^2} + \cdots + \frac{1}{2^{n-1}} - \frac{1}{2^n}\right) + \frac{1}{2^n} \left(\frac{1}{2^n} - 0\right)$$

$$= \frac{1}{2^{n+1}} \cdot \frac{1}{2^n} + \frac{1}{2^{2n}}$$

$$< \frac{1}{2^{2n-1}} \to 0 \text{ as } n \to \infty$$

(b)
$$F(x) = xA(x) - \frac{1}{3}A(x)^2$$
, then $F'(x) = (A(x) + xA'(x)) - \frac{2}{3}A(x)A'(x)$.
 $A'(x) =$

3. Since f is continuous on [a,b], f is uniform continuous and exists $c \in [a,b]$ s.t. f(c) = M. And let $I_n = (\int_a^b (|f(x)|)^n dx)^{\frac{1}{n}}$.

Then, for all $\varepsilon > 0$, there exists $\delta > 0$ s.t. if $x \in (c - \delta, c + \delta) \cap [a, b]$, $|f(x) - M| < \varepsilon \implies f(x) \ge M - \varepsilon$.

Thus,
$$I_n \geq (\frac{1}{2\delta})^{\frac{1}{n}}(M-\varepsilon)$$
. And since $f(x) \leq M$ for all $x, I_n \leq (\frac{1}{b-a})^{\frac{1}{n}}M$.

Then, we can get for all $\varepsilon > 0$ and some $\delta > 0$, $(\frac{1}{2\delta})^{\frac{1}{n}}(M - \varepsilon) \le I_n \le (\frac{1}{b-a})^{\frac{1}{n}}M$. And since $r^{\frac{1}{n}} \to 1$ as $n \to \infty$ for all r > 0, $\lim_{n \to \infty} (\frac{1}{2\delta})^{\frac{1}{n}}(M - \varepsilon) = M$ and $\lim_{n \to \infty} (\frac{1}{b-a})^{\frac{1}{n}}M = M$.

By squeeze theorem, $\lim_{n\to\infty} I_n = M$.