	Gold Prediction Model Workflow: 1. Finding data set for gold's prices 2. Preprocessing of the data 3. Analyse the data to understand which factos are important and what is not 4. Spliting our data set into Training Set and Test Set 5. Using Random Forest Regressor Model we will prefict the price 6. Evalutation of our model on the basis of the Test Set
In [114	Importing all the necessary libraries import numpy as np import pandas as pd import seaborn as sb import matplotlib.pyplot as plt # As we are using two data sets one for testing and another for training we are using the train_test_split function from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestRegressor # It is used to find things like the error score, accuracy of model etc
In [19]: Out[19]:	gold_dataset = pd.read_csv(r"C:\Users\Yash Rajput\Desktop\Gold Price Prediction\Data Set\gld_price_data.csv") gold_dataset.head() Date SPX GLD USO SLV EUR/USD 1 1/3/2008 1447.160034 84.860001 78.470001 15.180 1.471692 1 1/3/2008 1447.160034 85.570000 78.370003 15.285 1.474491
	2 1/4/2008 1411.630005 85.12997 77.309998 15.167 1.475492 3 1/7/2008 1416.180054 84.76997 75.50000 15.053 1.468299 4 1/8/2008 1390.189941 86.779999 76.059998 15.590 1.557099 Understanding the Data 1. Data: It is the date on which the values are noted in the format of MM/DD/YYYY 2. SPX: SPX indicates the S&P 500 index, it is the captilisation for top 500 companies in US (basically it is a stock) 3. GLD: It is the prices of gold on the corresponding dates 4. USO: It indicates the United States Oil prices
In [25]: Out[25]:	5. SLV: It is the prices of silver on the corresponding dates 6. EUR/USD: It is the currency pair of euro and dollar gold_dataset.tail() the prices of silver on the corresponding dates gold_dataset.tail() the prices of silver on the corresponding dates gold_dataset.tail() the prices of silver on the corresponding dates gold_dataset.tail() the prices of silver on the corresponding dates for all pairs of euro and dollar gold_dataset.tail() the prices of silver on the corresponding dates for all pairs of euro and dollar gold_dataset.tail() the prices of silver on the corresponding dates for all pairs of euro and dollar gold_dataset.tail() the prices of silver on the corresponding dates for all pairs of euro and dollar gold_dataset.tail() the prices of silver on the corresponding dates for all pairs of euro and dollar gold_dataset.tail() the price of euro and dollar the price of euro and dollar gold_dataset.tail() the price of euro and dollar the price of euro and euro and euro and euro and euro and euro and eur
In [26]: Out[26]:	gold_dataset.shape
In [27]:	Basic Information About the Data gold_dataset.info() <class 'pandas.core.frame.dataframe'=""> RangeIndex: 2290 entries, 0 to 2289 Data columns (total 6 columns): # Column Non-Null Count Dtype </class>
In [28]: Out[28]:	dtypes: float64(5), object(1) memory usage: 107.5+ KB We see that there aren't any null values
In [29]: Out[29]:	Gathering Statistical Measures of the Data gold_dataset.describe()
	25% 1239.874969 109.725000 14.380000 15.570000 1.1.71313 50% 1551.434998 120.580002 33.869999 17.268500 1.303297 75% 2073.010070 132.840004 37.827501 22.882500 1.369971 max 2872.870117 184.589996 117.480003 47.259998 1.598798 Analysing the data to find correlation Identifying whether its a positive correlation or a negative correlation understanding correlation in a very simple and crude way:
In [33]: In [66]:	C:\Users\Yash Rajput\AppData\Local\Temp\ipykernel_26444\4191627151.py:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future version, it will default to False. Select only valid columns or specify the value of numeric_only to silence this warning. correlation = gold_dataset.corr() Constructing A Heat Map to understand the correlation
Out[66]:	sb.heatmap(correlation, square= True , cbar = True , fmt= '.1f',annot= True , annot_kws={'size':8}, cmap='Reds')
	05 - 4.6
	Understanding the parameters used above 1. cbar = True: It shows the color bar on right which acts like a scale 2. square = True: We wanted the map in square format, otherwise it would have been in rectangle format 3. fmt = '.1f': It it for the number of decimals we want 4. annot = True: It is for the values we see on the small squares 5. cmap = 'Reds': It is for the color theme of the map
In [60]:	# Correlation values of Gold print(correlation['GLD']) SPX 0.049345 GLD 1.000000 USO -0.186360 SLV 0.866632 EUR/USD -0.024375 Name: GLD, dtype: float64 Our Understanding 1. Gold and SP 500 are slightly positively correlated
In [70]: Out[70]:	# Note: .distplot() was used in older versions, now we use .histplot()
	250 - 200 - 100 -
	We can conlcude that majority of these values lie between 100 and 140 Splitting Of The Data Set
In [85]: In [86]: Out[86]:	We use the values of SPX, USO, SLV, EUR/USD to train our model to predict the price of GLD. In this process we will drop the date column X = gold_dataset.drop(['GLD', 'Date'], axis=1) # For droping columns axis = 1 and for rows axis = 0 Y = gold_dataset['GLD'] X
	3 1416.180054 75.50000 15.0530 1.468299 4 1390.189941 76.05998 15.590 1.55709 2285 2671.919922 14.06000 15.5100 1.186789 2286 2697.790039 14.370000 15.7400 1.5900 1.184722 2287 2723.070068 14.410000 15.7400 1.191753 2288 2730.129883 14.38000 15.5600 1.193118 2290 (rows × 4 columns
In [87]: Out[87]:	Y 0 84.860001 1 85.570000 2 85.12997 3 84.769997 4 86.77999 2285 124.58996 2286 124.330002 2287 125.180000 2288 124.489998 2289 122.543800
In [88]:	Splitting into Training Data and Test Data X_train, X_test, Y_train, Y_test = train_test_split(X,Y, test_size = 0.2, random_state = 2) Understanding the parameters used above 1. test_size = 0.2: This means that 20% of the data available will be used for tesing 2. random_state = 2: It tells us about the order of randomness used while sorting test set and training set
	Understanding Random Forest Algorithm Training Set Training Sample Sam
In [92]: In [93]: Out[93]:	#is a hyperparameter that determines the number of decision trees to be used in the random forest ensemble. Training The Model regressor.fit(X_train,Y_train)
In [94]: In [95]: Out[95]:	Model Evaluation test_data_prediction = regressor.predict(X_test) test_data_prediction array([168.59779942, 81.94749999, 115.97200043, 127.64660075,
	119.10879939, 167.4877997, 88.39940066, 125.30700029, 91.32460104, 117.54200064, 121.01279913, 136.62060095, 115.36720137, 115.14500059, 147.94910002, 107.35880093, 104.39280232, 87.27009791, 126.4887005, 118.09130018, 153.33169955, 119.76990013, 108.43290014, 108.08469806, 93.11150013, 127.00449903, 74.64160048, 113.69479908, 121.33710016, 111.26739879, 118.80469878, 120.62919929, 159.92640113, 167.75630113, 146.76969697, 85.71479853, 94.18380064, 86.68229887, 90.61720038, 119.0535006, 126.523005, 127.4849002, 169.79329881, 122.27609966, 117.45259905, 98.5311005, 167.74000143, 142.7704986, 131.43360258, 121.19970194, 121.2431995, 119.94870053, 114.4855014, 118.50760047, 107.23300059, 127.97200082, 113.85849979, 107.34359982, 117.01050113, 119.70439834, 88.83120042, 88.23399888, 146.32610217, 127.13319997,
	113.24750037, 110.16599863, 108.16759895, 77.46519914, 169.88780162, 113.97629909, 121.67539915, 127.99920196, 155.00499776, 91.70439951, 135.88540068, 159.10090371, 124.62930092, 125.41870016, 130.38240206, 114.81290109, 119.77919987, 92.0121998, 110.1818989, 167.70189821, 156.89179901, 114.0702928, 106.7375014, 79.40979961, 113.31900036, 125.87760083, 107.26729937, 119.50720087, 156.29030366, 159.94459889, 119.81379987, 135.23460264, 101.283, 117.3830983, 119.24190066, 112.91870086, 102.78019907, 160.29479794, 98.77640035, 147.25949922, 125.59630108, 170.09739905, 125.77099897, 127.35639742, 127.50390219, 113.90879903, 112.87300058, 123.5970992, 102.15289902, 89.44110004, 124.44589946, 102.55319945, 107.0219927, 113.88270045, 117.34870053, 99.01739927, 121.60060059, 163.2575985, 87.35629883, 106.7312997, 121.60060050, 163.2575985, 87.35629883, 106.7312997, 121.60060059, 163.2575985, 87.35629883, 106.07312997, 121.60060050, 163.2575985, 87.35629883, 106.07312997, 121.60060050, 163.2575985, 87.35629883, 106.07312997, 121.60060050, 163.2575985, 87.35629883, 106.07312997, 121.60060050, 163.2575985, 87.35629883, 106.07312997, 121.60060050, 163.2575985, 87.35629883, 106.07312997, 121.60060050, 163.2575985, 87.35629883, 106.07312997, 121.60060050, 163.2575985, 87.35629883, 106.07312997, 121.60060050, 163.2575985, 87.35629883, 106.07312997, 121.60060050, 163.2575985, 87.35629883, 106.07312997, 121.60060050, 163.2575985, 87.35629883, 106.07312997, 121.60060050, 163.2575985, 87.35629883, 106.07312997, 121.60060050, 163.2575985, 87.35629883, 106.07312997, 121.60060050, 163.2575985, 87.35629883, 106.07312997, 121.60060050, 163.2575985, 87.35629883, 106.07312997, 121.60060050, 163.2575985, 87.35629883, 106.07312997, 121.60060050, 163.2575985, 87.35629883, 106.07312997, 121.60060050, 163.2575985, 87.35629883, 106.07312997, 121.60060050, 163.2575985, 87.35629883, 106.7312997, 121.60060050, 163.2575985, 163.2575985, 163.2575985, 163.2575985, 163.2575985, 163.2575985, 163.2575985, 163.2575985, 163.2575985, 163.2575985, 163.25
	117.15390069, 127.77100157, 124.05590081, 80.48079917, 120.28140068, 158.17949765, 88.22829977, 110.2 118.81519905, 173.27239812, 102.9202908, 105.59110019, 122.38490034, 158.36569728, 87.68309828, 93.1258005, 112.79020026, 176.49789982, 114.16029994, 119.1817007, 94.58130093, 125.44919972, 166.1195013, 114.71770088, 116.67330141, 88.27409881, 148.75770096, 120.32279974, 89.64409972, 111.55580013, 117.45190051, 118.72310122, 88.18299941, 94.0663001, 117.22040018, 118.570519, 120.11930048, 126.93449793, 121.8594998, 148.67860001, 165.9817007, 118.46369965, 120.16360146, 150.48710085, 118.49019895, 173.14809885, 105.33889912, 105.18000083, 148.98620087, 113.92650063, 124.83600108, 147.17910022, 119.70370085, 115.3999069, 112.33080022, 113.55690175, 141.83620154, 117.7263979, 102.95140056, 15.81800115, 103.49970167, 98.65670049, 117.42530051, 90.48170015,
	91.49590069, 153.26529932, 102.67199968, 155.2979011, 114.40740138, 138.26870131, 90.25079813, 115.52399954, 114.93789946, 122.57260064, 121.73980018, 165.40900169, 92.93279948, 135.75100159, 121.39289908, 120.84420017, 104.53320008, 142.48690283, 121.70179908, 116.76890055, 113.4543009, 126.9689978, 122.52639974, 125.8922995, 121.23870058, 86.85889876, 132.25760171, 143.601602, 92.75529909, 158.25299921, 158.81030251, 126.19819881, 165.09559922, 108.95799955, 110.28320093, 103.63509826, 94.32780093, 128.0423032, 107.05160065, 162.37179954, 121.58450054, 132.0514998, 130.37580157, 160.44479992, 90.03529822, 175.14410177, 127.11890059, 126.74469836, 86.48949903, 124.49739941, 150.533979729, 88.6980999, 107.00279976, 109.0172998, 83.6954992, 135.96559943, 155.07800279, 140.25480304, 74.1399001, 151.39770127,
	126.12920009, 126.74600019, 127.5664985, 108.54149929, 156.41829993, 114.49170093, 116.77670118, 125.33369964, 154.00140127, 121.03890008, 156.42119878, 92.95370064, 125.49850132, 125.35850058, 87.895903, 92.2635933, 126.3530992, 128.32490393, 113.2928005, 17.54299754, 120.96049983, 127.28449795, 119.47930106, 136.35370054, 94.05039953, 119.74520051, 113.2532011, 94.39799956, 108.894979906, 87.23389926, 108.8909949, 89.91959968, 92.39920011, 131.77830277, 162.306308061, 89.46510004, 119.6453008, 133.50470188, 123.9997001, 128.45870199, 101.91369863, 88.97839881, 131.70680071, 119.84030063, 108.9002993, 168.05180073, 115.2575004, 86.7158989, 118.6883007, 91.08399981, 162.34449986, 116.33420023, 121.50100008, 160.19569832, 120.05079929, 112.84689916, 108.55029866, 126.79679985, 76.12010048, 102.99169992, 127.83120314, 121.69669951, 92.61270028, 131.81100028,
	117. 931301 , 115. 6868997 , 154. 82110242, 159. 53660067, 110. 17969925, 153. 3335978 , 119. 37480083, 160. 55470074, 118. 54860049, 157. 68909981, 115. 11469901, 116. 57790027, 148. 5680991 , 114. 80010066, 125. 62859927, 165. 85159973, 117. 78549997, 125. 10679951, 153. 50900333, 153. 57070184, 132. 0899987, 114. 63560031, 121. 12870236, 124. 83360069, 89. 9409005 , 123. 15969954, 155. 05890241, 111. 65020028, 106. 70040015, 161. 50400136, 118. 36139953, 165. 71959913, 133. 95410113, 114. 9148996 , 152. 97439817, 168. 59549941, 115. 48390032, 114. 0941014 , 157. 7225985 , 85. 39429888, 127. 12160093, 127. 9934005 , 128. 8899939, 124. 06690073, 123. 95770057, 90. 67560082, 153. 25520096, 96. 98929982, 138. 02110002, 89. 29929915, 107. 22899991, 115. 04290049, 112. 75000069, 124. 15249923, 91. 46789874, 125. 35130079, 162. 29669965, 119. 88589886, 165. 13470179, 126. 82899786,
	112.21850018, 127.55569907, 94.98039943, 90.89539971, 103.97719931, 120.85199999, 83.20229976, 126.25039984, 159.62110452, 117.20110104, 118.36729978, 119.91680006, 122.71389961, 120.0998011, 121.31760036, 118.20190081, 107.0984 , 148.26949991, 126.43239851, 115.7475009 , 74.13349984, 127.8619015 , 154.29390018, 122.13260027, 125.62060116, 88.95189954, 103.03959852, 124.6219003 , 120.23520004, 73.33580082, 151.7817992, 121.24340011, 104.9882 , 86.46629777, 115.05889917, 172.188983 , 119.86150021, 159.5119988 , 113.23729954, 121.35839995, 118.67080126, 95.96769989, 118.88350072, 125.74020035, 118.48309954, 96.23820093, 153.83170188, 122.01310024, 147.73829998, 159.35470221, 113.570500515, 122.4499937, 150.27499840, 127.3366004 , 165.98180015, 136.08310089, 119.9712993 , 167.31469858, 108.36799996, 121.57919868, 119.9712993 , 167.31469858, 108.36799996, 121.57919868, 119.9712993 , 167.31469858, 108.36799996, 121.57919868, 119.9712993 , 167.31469858, 108.36799996, 121.57919868, 119.9712993 , 167.31469858, 108.36799996, 121.57919868, 119.9712993 , 167.31469858, 108.36799996, 121.57919868, 119.9712993 , 167.31469858, 108.36799996, 121.57919868, 119.9712993 , 167.31469858, 108.36799996, 121.57919868, 119.9712993 , 167.31469858, 108.36799996, 121.57919868, 119.9712993 , 167.31469858, 108.36799996, 121.57919868, 119.9712993 , 167.31469858, 108.36799996, 121.57919868, 119.9712993 , 167.31469858, 108.36799996, 121.57919868, 119.9712993 , 167.31469858, 108.36799996, 121.57919868, 119.9712993 , 167.31469858, 108.36799996, 121.57919868, 119.9712993 , 167.31469858, 108.3679996, 121.57919868, 119.9712993 , 167.31469858, 108.3679996, 121.57919868, 119.9712993 , 167.31469858, 108.3679996, 121.57919868, 119.9712993 , 167.31469858, 108.3679996, 121.57919868, 119.9712986, 119
In [96]: Out[96]:	error_score
In [109	# Y_test is data frame we need to convert it into list Y_test = list(Y_test, color='red', label='Actual Data') plt.plot(Y_test_data_prediction, color='black', label='Predicted Data') plt.title('Comparison between Actual and Predicted Data') plt.ylabel('Number of Values') plt.ylabel('Gold Price') plt.legend() plt.show() Comparison between Actual and Predicted Data 180
	160 - 140 - 9 120 -
	As we see the the Acutal Data and Predicted Data are almost overlapping Finding the Accuracy of our model
In [118	
In []:	Our Model is 98.92% Accurate By Yash Rajput