高代选讲课程报告

林元莘

2022年7月17日

摘要

在暑期的高等代数选讲中,李吉有老师介绍了对称多项式相关的 理论以及有理标准型相关理论,受益匪浅,感受到了代数之美。课后 在回顾以前做过的题目时,利用相关的工具,更有融汇贯通之感。后 在查阅书籍以及互联网相关资料的过程中,深化、加强了这方面的知 识。

关键词: Newton 恒等式;Jordan 标准型; 有理标准型; 可交换矩阵; 循环子空间

目录

目录

Ι

1 牛顿恒等式与特征值			1
	1.1	背景引入	1
	1.2	例题应用	1
	1.3	有趣的定理	2
2	Jord	dan 标准型与有理标准型	4
	2.1	例题应用	4
	2.2	类比拓展	4
	2.3	漂亮的定理	5

1 牛顿恒等式与特征值

1.1 背景引入

在《高等代数》选讲的课堂上, 我们学习到了有关**牛顿恒等式**的相关知识。自然地, 将其应用到**特征值与特征多项式**问题上。

定理 1.1. 设 n 阶矩阵 A, 其特征值为 $\{\lambda_1, \lambda_2, ..., \lambda_n\}$, 其特征多项式为

$$P(x) = (x - \lambda_1)(x - \lambda_2)...(x - \lambda_n) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$$

记 $P_k = \lambda_1^k + \lambda_2^k + ... + \lambda_n^k, k = 0, 1, ..., n$, 则有如下公式:

$$\sum_{i=0}^{k-1} a_{n-i} P_{k-i} + a_{n-k} k = 0, k \le n$$

$$\sum_{i=0}^{n} a_{n-i} P_{k-i} = 0, k > n$$

由 $tr(A^k) = \lambda_1^k + \lambda_2^k + ... + \lambda_n^k$, 可以代入其中, 得到如下推论:

推论 1.2.

$$\sum_{i=0}^{k-1} a_{n-i} \operatorname{tr}(A^{k-i}) + a_{n-k} k = 0, k \le n$$

$$\sum_{i=0}^{n} a_{n-i} \operatorname{tr}(A^{k-i}) = 0, k > n$$

1.2 例题应用

学到这里的时候, 我想起了当时做的一道较为困难的题目, 但是以牛顿恒等式的观点去看, 却是较为简单的。另一种观点的方法将在下一章节给出。

例 1.3. A, B, C 均为 n 阶复方阵, 且

$$C = AB - BA, AC = CA, BC = CB$$

求证: C 为幂零矩阵

2

证明.

$$tr(C) = tr(AB) - tr(BA) = 0$$

$$\operatorname{tr}(C^k) = \operatorname{tr}(C^{k-1}AB) - \operatorname{tr}(C^{k-1}BA) = \operatorname{tr}((C^{k-1}A)B) - \operatorname{tr}(B(C^{k-1}A)) = 0$$

即 C 任意次数的所有特征值之和均为 0

由**推论 1.2** 的公式知, $a_i = 0$ i = 0, 1, ..., n - 1,

则特征多项式为
$$p(x) = x^n$$
, 特征值均为 0, C 为幂零矩阵。

本题的做法其实也可以再进行一个推广来考虑。

推论 1.4. 若 R 是包含 \mathbb{Q} 的交换环, A 为环 R 上的 n 阶矩阵, 对每个正整数 i, $\operatorname{tr}(A^i) = 0$, 则 $A^n = 0$ 。

这个推论将在下面的定理证明中起到关键作用。

1.3 有趣的定理

定理 1.5. (Amitsur-Levitski 恒等式) 设 $A_1, A_2, ..., A_{2n}$ 为 n 阶复矩阵, 那么有:

$$\sum_{\sigma \in S_{2n}} \operatorname{sgn}(\sigma) A_{\sigma(1)} A_{\sigma(2)} \dots A_{\sigma(2n)} = 0$$

证明. 对于 n 阶矩阵 $B_1, B_2, ..., B_n$, 定义:

$$H_r = H_r(B_1, ..., B_r) = \sum_{\sigma \in S_r} sgn(\sigma) B_{\sigma(1)} B_{\sigma(2)} ... B_{\sigma(r)}$$

首先有一个引理。

引理 1.6. 若 r 为偶数, 则 $trH_r = 0$ 。

这是显然的, 因为例如

$$tr(B_1B_2...B_r) = tr(B_2...B_rB_1)$$

3

并且有 sgn(1,2,...,r) = -sgn(2,...,r,1)。 考虑一个 2n 维向量空间 T,令 E 为其外代数。

令 $e_1, e_2, ..., e_{2n}$ 为 T 的一组基,

最后令:

$$A = e_1 A_1 + e_2 A_2 + \dots + e_{2n} A_{2n} \in M_n(E)$$

此时, $e_1, e_2, ..., e_{2n}$ 可以视为 E 中的元素, 而 $A_1, A_2, ..., A_{2n}$ 可以视作 E 上的 n 阶矩阵。

对于 $k \ge 1$,

$$A^{k} = \sum_{i_{1} < \dots < i_{k}} e_{i_{1}} \wedge \dots \wedge e_{i_{k}} H_{k}(A_{i_{1}}, \dots, A_{i_{k}})$$

特别地,

$$A^{2n} = e_1 \wedge ... \wedge e_{2n} H_{2n}(A_1, ..., A_{2n})$$

由引理 1.6, 任意正整数 k, $\operatorname{tr}(A^{2k})=0$ 。即任意正整数 k, $\operatorname{tr}((A^2)^k)=0$ 。 由推论 1.4, $A^{2n}=0$,即 $H_{2n}(A_1,...,A_{2n})=0$,即原命题成立。[1]

2 Jordan 标准型与有理标准型

2.1 例题应用

例 2.1. 设 A, B, C 为 n 阶复方阵, 满足:

$$C = AB - BA$$
, $AC = CA$, $BC = CB$

求证: C 为幂零矩阵

证明. 依题意,它们可以同时相似化

$$\Rightarrow P^{-1}CP = J = \operatorname{diag}(J_1, ..., J_k)$$

则不妨令 J_i 特征值都各不相同,

$$J = AB - BA$$
, $AJ = JA$, $BJ = JB$

令 A, B 按照 J 写为分块阵 $(A_{ij}), (B_{ij})$

由
$$AJ = JA, JB = BJ$$
, 即 $J_iA_{ij} = A_{ij}J_j$

由于 J_i 与 J_j 没有相同特征值, 易证 $A_{ij} = O, i \neq j$

即:

$$A = \operatorname{diag}(A_{11}, A_{22}, ..., A_{kk}), \quad B = \operatorname{diag}(B_{11}, B_{22}, ..., B_{kk})$$

即:

$$J_i = A_{ii}B_{ii} - B_{ii}A_{ii}$$

得到:

$$tr(J_i) = 0, \forall i = 1, 2, ..., k$$

即 J 所有特征值为 0。

那么 C 必为幂零矩阵。[2]

2.2 类比拓展

设W是域F上的m维线性空间,A是W上的线性变换,并且其最小多项式为 $m(\lambda)$ 。

若 $m(\lambda)$ 可以分解为一次因式乘积, $W_j = \operatorname{Ker}(A - \lambda_j I)^{l_j}$ 对于标准型可以直接考虑: $A|W_i = B_i + \lambda_i I$ 。只要研究 B_i 即可。

若 $m(\lambda)$ 无法分解成一次因式乘积, $W_j = \operatorname{Ker} p_j^{l_j}(A)$, 则直接研究 $A|W_j$, 将其记作 C_j , 其最小多项式是 $p_i^{l_j}(\lambda)$, 它在 F 上不可约。则研究 C_j 即可。

若 $B \in W$ 上的幂零变换,则 W 可以分解成 $\dim W_0$ 个 B-强循环子空间的 直和, W_0 是 B 特征值为 0 的特征子空间。

推广至有理标准型的情况的话

定理 2.2. 设 C 是 W 上的线性变换, C 的最小多项式 $m(\lambda) = p^l(\lambda)$, 其中 $p^l(\lambda)$ 在域 F 上不可约, 则 W 能分解成 $\frac{1}{r} \text{dim} W_0$ 个 C-循环子空间的直和, 其中 $r = \text{deg} p(\lambda)$, W_0 是 p(C) 的属于特征值 0 的特征子空间。

进而可以推出有理标准型的具体内容,就不在此展开了。

2.3 漂亮的定理

定理 2.3. 设 A 是域 F 上线性空间 V 上的线性变换.

$$C(A) = \{B \in \operatorname{Hom}(V,V) | AB = BA\}$$

$$C^{2}(A) = \{ H \in \operatorname{Hom}(V, V) | HB = BH, \forall B \in C(A) \}$$

设 A 的最小多项式 $m(\lambda) = p^l(\lambda)$, 其中 $p(\lambda)$ 在域 F 上不可约。则有:

$$C^2(A) = F[A]$$

这个定理看着美妙, 实则证明是十分困难的, 充满了构造性思想的巧思。 以下仅记录整个证明的思维过程。

证明. 首先, 任取 $f(A) \in F[A]$, $\forall B \in C(A)$, 由于 BA = AB 必然 Bf(A) = f(A)B。从而 $f(A) \in C^2(A)$, 于是 $F[A] \subseteq C^2(A)$

则任取 $H \in C^2(A)$, 要存在 $g(A) \subseteq F[A]$, 使得 H = g(A)。

由此, 要和 A 的多项式挂钩, 则考虑 A-循环子空间。即将 V 分解成 A-循环子空间的直和: $V = U_1 \bigoplus ... \bigoplus U_s$ 。

考虑 P_j 表示平行于 $\bigoplus U_i$ 在 U_j 上的投影。

易有 $P_i \in C(A)$, 则必有 $HP_i = P_iH$ 。得到 U_i 是 H 的不变子空间。

令 ξ_i 是 U_i 的生成元, 可以有 $H\xi_i = g_i(A)\xi_i$ 。

进而得到 $H_i = g_i(A)$ 。

不妨令 $m_1(\lambda) = m(\lambda), m(\lambda) = h_i(\lambda)m_i(\lambda), i = 1, 2, ..., s$ 进而猜测 $H = g_1(A)$

要使 $H = g_1(A)$ 成立, 当且仅当 $Hh_i(A)\xi_1 = g_i(A)h_i(A)\xi_1$ 。

为证明此公式, 我们去构造线性变换 G_i :

对于 $i \in \{1, 2, ..., s\}$, 定义 V 上的一个变换 G_i , 满足如下条件:

$$G_{i}(\alpha_{j}) = \alpha_{j}, \quad \alpha_{j} \in U_{j}, \quad j \neq i;$$

$$G_{i}(q(A)\xi_{i}) = q(A)h_{i}(A)\xi_{1}, \quad \forall q(\lambda) \in F[\lambda];$$

$$G_{i}(\sum_{k=1}^{s} b_{k}\alpha_{k}) = \sum_{k=1}^{s} b_{k}G_{i}(\alpha_{k}).$$

可以发现的是 $AG_i = G_i A$, 从而得到 $HG_i = G_i H$ 。于是就有

$$HG_i\xi_i = G_iH\xi_i = g_i(A)h_i(A)\xi_1$$

就有:

$$Hh_i(A)\xi_1 = g_i(A)h_i(A)\xi_1$$

那么就有了 $H = g_1(A)$ 。因此, $C^2(A) \subseteq F[A]$ 。

则
$$C^2(A) = F[A]$$
 成立。[3]

参考文献

- [1] Shmuel Rosset. A NEW PROOF OF THE AMITSUR-LEVITSKI IDENTITY[J], ISRAEL JOURNAL OF MATHEMATICS,1976,VOL.23,NO.2.
- [2] 谢启鸿. 复旦大学谢启鸿高等代数习题课 [Z/OL].: 哔哩哔哩视频 网,2021.05.10
- [3] 丘维生. 高等代数 (下册) ———大学高等代数课程创新教材 [M]. 北京: 清华大学出版社,2010