Raport

Andrzej Swatowski (as386085)

Zastosowane optymalizacje

• sortowanie list sąsiedztwa:

Po wczytaniu grafu z pliku program sortuje listy sąsiedztwa dla każdego z wierzchołków, malejąco względem wag krawędzi prowadzących do kolejnych sąsiadów. Nie jest to najbardziej optymalne rozwiązanie (w pracy opisującej algorytm przedstawione było szybsze - sortowanie tylko kilku pierwszych, największych sąsiadów), ale wciąż wystarczająco szybkie (a przy okazji łatwiejsze w implementacji). Dzięki temu każdy wierzchołek szuka sąsiada do adorowania najpierw spośród tych o najcięższych krawędziach (czyli tych najbardziej opłacalnych).

• ustalenie kolejności przeglądania wierzchołków w grafie:

Po wczytaniu grafu, przed wykonaniem algorytmu program sortuje wszystkie wierzchołki malejąco względem wag ich najcięższych krawędzi. Dzięki temu algorytm najpierw poszukuje sąsiadów do adorowania dla wierzchołków o najcięższych możliwych krawędziach, co skutkuje szybszym działaniem (propozycje "ciężkich" wierzchołków rzadziej są anulowane)

Przyspieszenie

Wybrałem do testów graf loc-Gowalla (loc-Gowalla na stronie SNAP). Posiada on 196591 wierzchołków oraz 950327 krawędzi. Liczyłem czasy działania programu w sekundach za pomocą UNIXowego polecenia *time*, odejmując od ich średnich średni czas wczytywania danych.

Podczas liczenia dla bmethod = $\{0 \dots 20\}$ przyspieszenie między 1 a 8 wątkami było ponad 4-krotne (z 2 minut 45 sekund do 35 sekund).

ilość wątków	czas działania	speed-up
1	2 minuty 45 sekund	1
2	1 minuta 33 sekund	1.77
3	1 minuta 5 sekund	2.53
4	52 sekund	3.17
5	45 sekund	3.66
6	41 sekund	4.02
7	38 sekund	4.34
8	35 sekund	4.71