Integer Linear Programs

Sometimes, we need variables to take integer values:

- ▶ The optimal solution of an LP can be fractional.
- In some cases, we can simply round.
- Rounding can be infeasible or suboptimal.
- ► An Integer Linear Program is an LP with the additional constraint that the solution should be integral.

McDonald's Example I

McDonald's menu:

	Hamburger	Big Mac	McChicken	Caesar Salad	French Fries
Total Cals	250	770	360	190	230
Fat Cals	81	360	144	45	99
Protein (g)	31	44	14	27	3
Sodium (mg)	480	1170	800	580	160
Cost	\$1.00	\$3.00	\$2.50	\$3.00	\$1.00

McDonald's Example II

Our goal will be to minimize the cost of a meal, with the following constraints:

- ► Calories are between 600 and 900
- Less than 1150 mg of sodium.
- Less than 40% of calories are from fat.
- At least 30 grams of protein.

McDonald's Example III

Decision Variables:

- \triangleright x_1 : number of hamburgers purchased
- ▶ x₂: number of big macs purchased
- \triangleright x_3 : number of McChickens purchased
- \triangleright x_4 : number of caesar salads purchased.
- \triangleright x_5 : number of french fries purchased.

Objective:

$$\min_{x \in \mathbb{R}^n} x_1 + 3x_2 + 2.5x_3 + 3x_4 + x_5$$

McDonald's Example IV

Constraints:

Calories between 600 and 900

$$250x_1 + 770x_2 + 360x_3 + 190x_4 + 230x_5 \ge 600$$
$$250x_1 + 770x_2 + 360x_3 + 190x_4 + 230x_5 \le 900$$

Less than 1150 mg of sodium

$$480x_1 + 1170x_2 + 800x_3 + 580x_4 + 160x_5 \le 1150$$

Less than 40% of calories are from fat

$$81x_1 + 360x_2 + 144x_3 + 45x_4 + 99x_5 \le$$

$$0.4 (250x_1 + 770x_2 + 360x_3 + 190x_4 + 230x_5)$$

At least 30 grams of protein:

$$31x_1 + 44x_2 + 14x_3 + 27x_4 + 3x_5 \ge 30$$

McDonald's Example V

Constraints:

Order quantities are non-negative and integral:

$$x \in \mathbb{Z}^5$$

$$x \ge 0$$

McDonald's Example VI

The LP solution:

Menu Item	Quantity	
Hamburger	1.129207	
Big Mac	0.412595	
McChicken	0.0	
Caesar Salad	0.0	
French Fries	0.0	

But no feasible integral solution that uses only hamburgers and Big Macs! Actual optimal solution:

Menu Item	Quantity	
Hamburger	1	
Big Mac	0	
McChicken	0	
Caesar Salad	0	
French Fries	2	

MILPs I

Mixed Integer Linear Programs:

- Affine constraints.
- Linear objective function.
- Restrictions that some (or all) variables are integer.
- ► NP-Hard in general
- Currently, algorithms require exponential amount of time in worst-case.
- Very good commercial software
- Many instances tractable in practice.

Yes/no decisions can be represented by binary variables.

▶ Binary variables take values of 0 or 1

MILPs II

Wide applications:

- Production scheduling
- Airline crew scheduling
- Sports scheduling
- Portfolio selection
- Telecommunication network design
- Design of radiation treatments
- Molecular biology

MILPs III

In Gurobi:

Creating an MILPs is almost the same as creating an LP; only difference is variable type.

```
my_var = my_model.addVar(lb=0.0,
   ub=gurobipy.GRB.INFINITY,
   vtype=gurobipy.GRB.INTEGER,
   name="myvariable")
```

▶ If variable should take values 0 or 1, then use BINARY type:

```
my_var = my_model.addVar(name="myvar",
    vtype=gurobipy.GRB.BINARY)
```

Valid Formulations

- In an integer linear program, constraints describe a polyhedron.
- However, we are only interested in the integer points.
- ▶ A formulation describing a polyhedron P is valid for a set of integral points S if the integral points of P are exactly equal to S
- ► There may be multiple valid formulations

Selecting from a set I

Setting:

- \triangleright There is a set S
- ▶ We want to choose at least one item from this set

Variables:

$$x_i = \begin{cases} 1 & \text{if element } i \text{ is chosen} \\ 0 & \text{otherwise.} \end{cases}$$

Selecting from a set II

Feasible points (in 2 dimensions): (0,1), (1,0) and (1,1).

Selecting from a set III

A possible formulation:

$$x_1 + x_2 \ge 1$$
 $x_1 \le 1$
 $x_2 \le 1$
 $x_1, x_2 ext{ integral}$

Selecting from a set IV

Another possible formulation:

$$x_1 + x_2 \ge 0.5$$

$$x_1 \le 1.5$$

$$x_2 \le 1.5$$

$$x_1, x_2 \text{ integral}$$

Selecting from a set V

Usually, we don't list every feasible point. However, we do need to check:

- Every desired integral solution satisfies the constraints
- Every undesired integral solution does not satisfy the constraints

Selecting from a set VI

If we have a set S of size k:

$$\sum_{i=1}^k x_i \ge 1$$
 $x_i \le 1$ for $i \in \{1, \dots k\}$ x integral.

is a formulation for selecting at least one element of S. Similar constructions can be used to select at most one element of S or exactly one element of S.

Selecting from a set VII

Notation: we would usually write this formulation as

$$\sum_{i=1}^{k} x_i \ge 1$$
x binary.

or

$$\sum_{i=1}^{k} x_i \ge 1$$

$$x \in \{0, 1\}^k.$$

Assignment Problem I

Problem:

- ► There are *n* people.
- ▶ There are m jobs $(n \ge m)$
- Each job must be done by exactly one person
- Each person can do at most one job.
- ► Cost of person i to do job j is c_{ii} .

Goal: complete all jobs with minimal total cost.

Assignment Problem II

Decision variables:

$$x_{ij} = \begin{cases} 1 & \text{if person } i \text{ assigned to job } j \\ 0 & \text{otherwise.} \end{cases}$$

Objective:

$$\sum_{i=1}^n \sum_{j=1}^m c_{ij} x_{ij}$$

Assignment Problem III

Constraints:

Every job is assigned to some person:

$$\sum_{i=1}^{n} x_{ij} = 1 \qquad \text{for } j = 1, \dots, m$$

Every person is assigned to at most one job:

$$\sum_{j=1}^m x_{ij} \le 1 \qquad \qquad \text{for } i = 1, \dots, n$$

Variables are binary:

$$x_i \in \{0, 1\}$$

Logical conditions.

Binary variables can enforce "if-then" relations between decisions.

▶ Suppose x_1 and x_2 are binary variables, with

$$x_i = \begin{cases} 1 & \text{if action } i \text{ is taken} \\ 0 & \text{otherwise.} \end{cases}$$

- ▶ The constraint $x_1 \le x_2$ can be interpreted as "if action 1 is taken then action 2 must also be taken."
- Note that (1-x) takes a value of 1 if and only if action x not taken.
- So, $(1-x) \le y$ enforces "if action x is not taken, then action y is taken".

Portfolio design I

Stockco is considering four investments:

Cost	NPV
\$5000	\$16000
\$7000	\$22000
\$4000	\$12000
\$3000	\$8000
	\$5000 \$7000 \$4000

Portfolio design II

There are some restrictions:

- Stockco only wants to invest in at most two opportunities.
- ► If Stockco invests in investment 2, they must also invest in investment 1.
- ► If Stockco invests in investment 2, they cannot invest in investment 4.

Stockco has \$14000 to invest. How should they invest this money?

Portfolio design III

Variables:

$$x_i = \begin{cases} 1 & \text{if Stockco invests in } i. \\ 0 & \text{otherwise.} \end{cases}$$

Objective:

$$\max 16000x_1 + 22000x_2 + 12000x_3 + 8000x_4$$

Portfolio design IV

Constraints:

► At most two opportunities:

$$\sum_{j=1}^4 x_j \le 2$$

► If Stockco invests in investment 2, they must also invest in investment 1:

$$x_2 \leq x_1$$

► If Stockco invests in investment 2, they cannot invest in investment 4:

$$x_2 \le 1 - x_4$$

Portfolio design V

Stockco has \$14000 to invest:

$$5000x_1 + 7000x_2 + 4000 + x_3 + 3000x_4 \le 14000$$

► Variables are binary:

$$x_i \in \{0,1\}$$

Modeling fixed costs.

Actions may have fixed costs and variable costs. Binary variables can be used to model fixed costs.

Facility Location I

Problem:

- There are n possible facility locations
- ► There are *m* customers
- Cost c_j associated with opening facility at location j
- ► Cost d_{ij} to serve customer i from facility j.
- Facility must be open to serve customer.

Goal: serve all customers at minimum cost.

Variables:

$$y_j = \begin{cases} 1 & \text{if facility } j \text{ is opened.} \\ 0 & \text{otherwise.} \end{cases}$$

$$x_{ij} = \begin{cases} 1 & \text{if customer } i \text{ served by facility } j. \\ 0 & \text{otherwise.} \end{cases}$$

Facility Location II

Objective:

$$\sum_{j=1}^{n} c_{j} y_{j} + \sum_{i=1}^{m} \sum_{j=1}^{n} d_{ij} x_{ij}$$

Facility Location III

Constraints:

► All customers served by exactly one facility:

$$\sum_{j=1}^{n} x_{ij} = 1 \text{ for all } i, j$$

A customer can only be served by an open facility:

$$x_{ij} \le y_j$$
 for all i,j

Alternatively:

$$\sum_{i=1}^{m} x_{ij} \le m y_j \qquad \text{for all } j$$

Facility Location IV

▶ Variables are non-negative and integer:

$$x, y \ge 0$$
$$x_{ij} \in \mathbb{Z}$$
$$y_j \in \mathbb{Z}$$

Disjunctions I

Suppose we have n variables, each with some constant upper bound:

$$0 \le x_i \le u_i \quad i \in \{1, \dots, n\}$$

Suppose that we have k sets of constraints (Note: superscripts are indices, not exponents).

$$A^1 x \le b^1$$
, $A^2 x \le b^2$, ..., $A^k x \le b^k$

Suppose at least one of these sets of constraints must be satisfied:

$$A^1x \leq b^1$$
 or $A^2x \leq b^2$ or ... or $A^kx \leq b^k$

In other words, we want a feasible region that is the union

$$\cup_{i=1}^k \{x \mid A^i x \le b^i\}$$

Disjunctions II

We will add k binary variables y_1, \ldots, y_k . We will want:

$$y_i = \begin{cases} 1 & \text{if we select constraint set } i \\ 0 & \text{otherwise} \end{cases}$$

We will also add k vectors x^1, x^2, \dots, x^k each containing n variables. We will want:

- \triangleright $x = x^i$ and $A^i x^i \le b$ if we select constraint set i
- $x^i = 0$ otherwise.

Disjunctions III

The formulation:

$$\sum_{i=1}^k y_i = 1$$
 select exactly one constraint set
$$0 \le x_j^i \le u_j y_i$$
 if set i is not selected, then $x^i = 0$
$$A^i x^i \le b^i y_i$$
 if set i is selected, then $A^i x^i \le b^i$
$$\sum_{k=1}^k x^i = x$$
 if set i is selected, then $x = x^i$

Example: production planning I

Consider a variant of the production planning problem:

- ► We make three different products using two materials: plastic and metal.
- ▶ It requires the following quantities of each material to make one unit each product:

Product	Material 1	Material 2
1	3	2
2	4	5
3	2	2

- ➤ Suppose that the per-unit revenues for products 1, 2, and 3 are \$12, \$25 and \$10 respectively.
- ▶ Material 1 costs \$1 per unit and Material 2 costs \$2 per unit.
- Our current budget is \$10000

How can we maximize profit?

Example: production planning II

Decision variables:

- x_i: number of product i produced
- $ightharpoonup q_i$: quantity of material i purchased.

Objective:

$$\max_{x,q} 12x_1 + 25x_2 + 10x_3 - q_1 - 2q_2$$

Constraints:

$$3x_1 + 4x_2 + 2x_3 \le q_1$$

 $2x_1 + 5x_2 + 2x_3 \le q_2$
 $q_1 + 2q_2 \le 10000$
 $x, q \ge 0$

Example: production planning III

Now suppose that we can upgrade our factory.

- ► This costs \$5000
- ► After the upgrade, the products require the following material quantities:

Product	Material 1	Material 2
1	2	1
2	3	3
3	1	2

► How can we formulate an MILP that choose both whether to upgrade or not and how much of each product to produce?

Example: production planning IV

We can write the feasible region as a disjunction:

$$3x_1 + 4x_2 + 2x_3 \le q_1$$
 $2x_1 + 3x_2 + 1x_3 \le q_1$ $2x_1 + 5x_2 + 2x_3 \le q_2$ or $2x_1 + 3x_2 + 2x_3 \le q_2$ $q_1 + 2q_2 \le 10000$ or $q_1 + 2q_2 \le 5000$ $q_1 + 2q_2 \le 5000$

Hang on, don't we need upper bounds for x and q?

Example: production planning V

Upper bounds for x and q:

- Many formulations do not include explicit upper bounds for variables involved in a disjunction.
- We can often find an upper bound from the other constraints.
- E.g. in this problem

Either
$$q_1 + 2q_2 \le 10000$$
 or $q_1 + 2q_2 \le 5000$

- ► So, $q_1 \le 10000$ and $q_2 \le 5000$
- Using similar reasoning, we can figure out that $x_1 \le 5000$, $x_2 \le 5000/3$ and $x_3 \le 2500$
- It's not necessary to find the tightest possible upper bounds, but tighter upper bounds usually lead to faster solve times.

Example: production planning VI

Applying our recipe, we will add variables:

 y_1 : no upgrade

*y*₂ : upgrade

and the variables:

 x_i^1 : quantity of product *i* produced if no upgrade

 x_i^2 : quantity of product *i* produced if upgrade

 q_i^1 : quantity of material i purchased if no upgrade

 q_i^2 : quantity of material i purchased if upgrade

Example: production planning VII

Constraint: choose exactly one of the two options.

$$y_1 + y_2 = 1$$

Constraint: If we don't choose option, then corresponding solution is exactly zero:

$$0 \le x_i^1 \le My_1$$
$$0 \le x_i^2 \le My_2$$
$$0 \le q_i^1 \le My_1$$
$$0 < q_i^2 < My_2$$

The "Big-M"s are a shorthand for an constant or upper bound that needs to be calculated.

Example: production planning VIII

Constraints: the solutions correspond to each option must satisfy the corresponding constraints:

$$3x_1^1 + 4x_2^1 + 2x_3^1 \le q_1^1$$

$$2x_1^1 + 5x_2^1 + 2x_3^1 \le q_2^1$$

$$q_1^1 + 2q_2^1 \le 10000$$
 and
$$2x_1^2 + 3x_2^2 + 1x_3^2 \le q_1^2$$

$$1x_1^2 + 3x_2^2 + 2x_3^2 \le q_2^2$$

$$q_1^2 + 2q_2^2 \le 5000$$

$$x, y \ge 0$$

$$x, q \ge 0$$

Constraint: the production and purchase quantities must match one of the options:

$$x = x^1 + x^2$$
$$q = q^1 + q^2$$

Example: production planning IX

Objective:

$$\max_{\substack{x,q,y\\x,q,y}} 12x_1 + 25x_2 + 10x_3 - q_1 - 2q_2 - 5000y_2$$

Example: production planning X

Note: we could have written two separate MILPs and solved them separately.

- This is always an option with disjunctions.
- If you have only one disjunction, it is probably better to treat each option as its own IP.
- ▶ If you have many disjunctions, the total number of options is the product of the number of options in each disjunction.
- So, with many disjunctions, it is usually better to have one integrated MILP.

Example: production planning XI

Note: these formulations introduce a lot of variables.

- ► Try to formulate constraints using only the original variables first.
- Only use a disjunction formulation when necessary.
- ► E.g. consider the condition that at least one element in a set is chosen. This can be written as:

$$x_1 \ge 1$$
 or $x_2 \ge 1$ or ... or $x_n \ge 1$

but it is better to simply use the constraint

$$\sum_{i=1}^{n} x_i \ge 1$$