Lav et Huffman-træ for en fil, hvis tegn har nedenstående hyppigheder:

Tegn	a	b	С	d	е
Hyppighed	5	25	10	30	15

Hvor mange bits fylder filen, hvis den kodes ved hjælp af dette træ?

Selected Answer:	3	[None Given	1]
Answers:		160	
		175	
	9	185	
		190	
		205	

Med følgende Huffman-træ

hvad bliver kodningen af strengen abbed?

Selected Answer: 😢 [None Given]

Answers:

0 10101010011

101100100110

1010101010

101010100

10101001011

Med følgende Huffman-træ

hvad bliver dekodningen af strengen 111011001010100?

Køretid	en for DFS er $O(n+m)$.	1 point
Selected Answer Answers:	Sandt Falsk	
stion 9	T disk	
Selected Answer	en for BFS kan være $\Theta(n^2)$.	1 point
Answers:	Sandt Falsk	

Hvor mange stærke sammenhængskomponenter har nedenstående graf?

For hvor mange knuder i nedenstående graf er den korteste afstand fra knuden a lig med 3?

[Da grafen ikke er vægtet, er længden af en sti lig med antal kanter på den.]

Udfør dybde-først søgning (DFS) på grafen nedenfor, med start i knuden a. For DFS afhænger resultatet af ordningen af knuders nabolister. Du skal her antage, at en knudes naboliste er sorteret i alfabetisk orden efter naboknudernes navne.

Hvilken knude opdages sidst (dvs. har den højeste discovery time)?

