תכנון וניתוח אלגוריתמים תרגיל

הגדרות ומושגי יסוד בגרפים

- בכל סעיף בחר את התשובות הנכונות מבין התשובות הבאות:
 - ב. מסלול פשוט
- א. מסלול ג. מעגל
 - ד. מעגל פשוט
- (b,b).א
- ב. (e,d,c,b)
- (d,c,b,e,d). τ (a,d,c,d,e). λ
 - (b,c,d,a,b,e,d,c,b).ה
- (a,d,c,b,e).r (b,c,d,e,b,b).ı

פתרון שאלה 1

מעגל פשוט	מעגל	מסלול פשוט	מסלול	
לא	ΙΣ	לא	Cl	א.
לא	לא	Cl	Cl	ב.
לא	לא	לא	Cl	.λ
ΙΣ	ΙΣ	Cl	Cl	т.
לא	ΙΣ	לא	Cl	ה.
לא	ΙΣ	לא	Cl	.1
לא	לא	ΙΟ	Cl	٦.

- 2. בכל סעיף נסה לבנות גרף בהתאם לתכונה שמצויינת. **•** אם אי אפשר לבנות את הגרף, הסבר את הסיבה.
 - א. 6 קודקודים ולכל קודקוד דרגה 3.
 - ב. 4 קודקודים ולכל קודקוד דרגה 3.
 - ג. 6 קודקודים ולכל קודקוד דרגה 1.
 - ד. 6 קודקודים ו- 4 קשתות.
 - 🙃 4 קשתות, 4 קודקודים שיש להם דרגות 1,2,3,4.
 - ו. 4 קודקודים בעלי דרגות 1,2,3,4.
 - ז. גרף פשוט, 5 קודקודים בעלי דרגות 2,3,3,4,4
 - ח. גרף פשוט, 4 קודקודים בעלי דרגות 2,2,4,4,4

2 פתרון שאלה

. א. גרף עם 6 קודקודים ולכל קודקוד דרגה 3.

• ב. גרף עם 4 קודקודים ולכל קודקוד דרגה 3.

<u>המשך פתרון שאלה 2</u>

.1 ג. גרף עם 6 קודקודים ולכל קודקוד דרגה 1.

. ד. גרף עם 6 קודקודים ו4 קשתות.

• ה. 4 קשתות, 4 קודקודים שיש להם דרגות 1,2,3,4

– לא קיים גרף כזה.

ד"ר ראובן חוטובלי, נכתב ע"י לאון נתן

<u>המשך פתרון שאלה 2</u>

ו. 4 קודקודים בעלי דרגות 1,2,3,4.

ז. גרף פשוט עם 5 קודקודים בעלי דרגות2,3,3,4,4

<u>המשך פתרון שאלה 2</u>

- ח. גרף פשוט עם 4 קודקודים בעלי דרגות2,2,4,4,4
 - לא קיים גרף כזה, מכיוון שסכומי הדרגות

$$\sum d(V) = 2 + 2 + 4 + 4 + 4 = 16$$
 $\sum d(V) = 2|E|$ — אך לפי המשפט

 $|E| = \frac{\sum d(V)}{2} = \frac{16}{2} = 8$ בלומר מספר הקשתות צריך –

להיות 8, אך בגרף עם 4 קודקודים, מס' הקשתות – המירבי שיכול להיות הוא:

ר"ר ראובן חוטובלי, נכתב ע"י לאון נתן

שאלה 3

- מצא את כל תתי-הגרפים הקשירים המכילים
 את כל הקודקודים של הגרף שמתואר בהמשך
 ומספר קשתות אפשריות.
 - אילו מהם מסלולים? אילו מהם מסלוליםפשוטים?
 - אילו מהם מעגלים? אילו מהם מעגליםפשוטים?

• כמו כן כל גרף הוא תת גרף של עצמו.

- 1,2,3 מתארים מסלולים פשוטים מכל קודקוד לכל קודקוד אחר בגרף ואף אחד מהם לא מעגלי.
- 4 מתאר מסלולים פשוטים וגם מסלולים שאינם פשוטים וחלקם גם מעגליים פשוטים וחלקם מעגליים לא פשוטים.

ד"ר ראובן חוטובלי, נכתב ע"י לאון נתן

שאלה 4

- : נתון הגרף הבא
- א. מצא את כל הקודקודים בעלי דרגה אי זוגית.
 - ב. מצא שני מסלולים המכילים את כל קשתות הגרף כך שכל קשת של הגרף שייכת לאחד

פתרון שאלה 4

- b,i,c,e :א. הקודקודים בעלי דרגה איזוגית
- ב. שני מסלולים זרים בקשתות, כך שכל קשת של הגרף שייכת לאחד המסלולים בלבד.
 - b,g,f,a,b,c,d,g,i :1 מסלול
 - c,h,e :2 מסלול •

ד"ר ראובן חוטובלי, נכתב ע"י לאון נתן

שאלה 5

 תן דוגמא לגרף קשיר כך שהסרת קשת אחת מקשתות הגרף תגרום לכך שהגרף לא יהיה קשיר.

פתרון שאלה 5

• הגרף הבא, שהינו קשיר, הסרת קשת אחת תגרום שהגרף לא יהיה קשיר.

או •

ד"ר ראובן חוטובלי, נכתב ע"י לאון נתן

<u>שאלה 6</u>

- ? האם המסלול שאינו פשוט חייב להכיל מעגל
 - <u>7 שאלה</u>
- להלן גרפים המיוצגים על ידי מטריצות סמיכות.
- מצא עבור כל אחד מהם את הרכיבים הקשירים
 ואת מספרם.

• א.

ב.

פתרון שאלה 7

.א •

- {a,c,f} {b,d,e} רואים שבגרף זה יש 2 רכיבי קשירות
 - ב. רואים שבגרף זה יש רק רכיב קשיר אחד.

- יש n קודקודים וכל זוג קודקודים שונים
 מחוברים על ידי צלע אחת בלבד.
- עבור n=4 צייר את הגרף ומנה את מספר הצלעות שבו.
- עבור n=5 צייר את הגרף ומנה את מספר הצלעות שבו.
 - n(n-1) הוכח כי מספר הצלעות בגרף עם n(n-1) הודקודים הוא:

•

שאלה 8

 $\binom{4}{2} = 6$ א. הגרף הוא: K_4 , מס' הקשתות בו הוא: •

 $\binom{5}{2} = \frac{5!}{3!2!} = 10$ ב. הגרף הוא: K_5 , מס' הקשתות בו הוא: •

ג. הגרף הוא: K_n , מס' הקשתות בו הוא:

$$\binom{n}{2} = \frac{n!}{(n-2)!2!} = \frac{n(n-1)}{2}$$

ד"ר ראובן חוטובלי, נכתב ע"י לאון נתן

<u>שאלה 9</u>

- על ידי צלע לכל קודקוד ב- $K_{\scriptscriptstyle 2}$ -א.חבר כל קודקוד ב- א.חבר ב-
- ב- K_3 מה נתקבל? K_3 -ב. חבר כל קודקוד ב K_n על ידי צלע לכל קודקוד • ב. חבר K_m מה נתקבל?
 - <u>פתרון</u>
 - K₂₃ א. מתקבל •
 - K_{nm} ב. מתקבל

מצא גרף G בעל G קודקודים כך שלגרף G מצא המשלים (\overline{G}) ולגרף G צלעות.

• הוכח כי בכל גרף G מספר הקודקודים בעלי דרגה אי-זוגית הוא מספר זוגי.

פתרון שאלה 11

- בכל גרף מס' הקודקודים בעלי דרגה אי זוגית הוא תמיד מס' זוגי.
 - <u>הוכחה</u>
 - $\sum d(V) = 2|E|$ לפי משפט
 - זוגי d(V) ישנם קודקודים שעבורם \bullet
 - איזוגי. d(V) וישנם קודקודים שעבורם •

$$\sum_{\substack{v \in V \\ d(V) \text{ even} \\ A}} d(V) + \sum_{\substack{v \in V \\ d(V) \text{ odd} \\ B}} d(V) = 2|E|$$

$$B = 2|E| - A = even$$

- הוא סכום של מספרים אי זוגיים ומאידך הואזוגי. זה יתכן רק אם מס' המחוברים בו הוא זוגי.
 - <u>מש"ל</u>

ד"ר ראובן חוטובלי, נכתב ע"י לאון נתן

- משחקי ספורט המתקיימים ביום מסויים
 מיוצגים על ידי "מפת מקטעים" באופן הזה:
- כל משחק מיוצג על ידי מקטע אחד שמציג את מועד תחילת המשחק ומועד סיומו.
 - נגדיר מקטעים "חופפים חלקית", כאשר הם מייצגים משחקים שונים המתקיימים בזמן משותף (חלקי או מלא).

המשך שאלה 13

• לפניך דוגמא של "מפת מקטעים" המתארת זמנים של 8 משחקים :

המשך שאלה 13

- אפשר לייצג "מפת מקטעים" על ידי גרף באופן הזה:
 - . כל מקטע מיוצג על ידי צומת בגרף
- בין שני צמתים תהיה קשת, אם שני המקטעים המתאימים "חופפים חלקית".
- שרטט את הגרף המייצג את "מפת המקטעים" שלפניך:

המשך שאלה 13

_____a ____b ____d

המשך שאלה 13

- בדוק <u>לכל אחד</u> מהגרפים (1)-(3) אם אפשר לבנות מפת מקטעים" שתתאים לו.
 - . אם כן שרטט אותה, אם לא הסבר מדוע.
 - ג. האם אפשר לבנות "מפת מקטעים" לגרף לא קשיר? הסבר.

: G=(V,E) נתון גרף לא מכוון הבא . •

- . א. מהי מטריצת סמיכות המייצגת את הגרף
- ב. הראה את הייצוג של הגרף באמצעות רשימת סמיכות.

- א. הראה את הייצוג של הגרף באמצעות מטריצת סמיכות.
- ב. הראה את הייצוג של הגרף באמצעות רשימת סמיכות.

: G = (V, E) א. נתון גרף לא מכוון הבא •

המשך שאלה 16

- 1. הראה את הייצוג של הגרף באמצעות רשימות סמיכות
- 2. חשב את הסכום של אורכי כל רשימות o.2. הסמיכות.
- 3. מהו הקשר בין התוצאה שקיבלת בסעיף הקודם לבין מספר הקשתות שבגרף?

המשך שאלה 16

ב. נתון גרף מכוון

המשך שאלה 16

- 1. הראה את הייצוג של הגרף באמצעות רשימותסמיכות.
- 2. חשב את הסכום של אורכי כל רשימות הסמיכות.
 - 3. מהו הקשר בין התוצאה שקיבלת בסעיף הקודם לבין מספר הקשתות שבגרף?
 - ג. הראה כי כמות הזיכרון הדרושה לייצוג גרףבאמצעות רשימות סמיכות היא:

$$O(\max(|V|,|E|)) = O(|V| + |E|)$$

פתרון שאלה 16

- א. 1. הפתרון זהה לשאלה 14 סעיף ב'.
- 2. סכום אורכי הרשימות, בגרף <u>הלא מכוון,</u> הוא:
- 2+3+2+3+2=12
 - 3. בגרף הנתון יש 6 קשתות ולכן סכום אורכי הרשימות בגרף הלא מכוון הוא |2|E.
 - ב. 1. הפתרון זהה לשאלה 2 סעיף ב'.
 - 2. סכום אורכי הרשימות, בגרף המכוון, הוא:
- 2+1+1+1+6

ד"ר ראובן חוטובלי, נכתב ע"י לאון נתן

- 3. בגרף הנתון יש 6 קשתות מכוונות ולכן סכום אורכי הרשימות בגרף המכוון הוא |E|.
- לאור זאת ניתן להסיק כי בגרף מכוון G, סכום אורכי הרשימות שווה למס' הקשתות בגרף ואילו בגרף לא מכוון G, סכום אורכי הרשימות הינו כפולה של מס' הקשתות בגרף.
- ג. כמות הזיכרון הדרושה לייצור גרף G באמצעות
 רשימות סמיכות היא (|V|+|E|).

- מהי כמות הזיכרון הדרושה לייצוג גרף באמצעות מטריצת סמיכות ?
 - פתרון
 - כמות הזיכרון הדרושה לייצור גרף G באמצעות מטריצת סמיכות היא (O(|V|²).

שאלה 18

- נתון גרף מכוון G = (V, E) המיוצג באמצעות רשימות סמיכות.
- Oig(|E|+|V|ig)א. כתוב אלגוריתם, בעל סיבוכיות זמן הריצה • המחשב את דרגת היציאה של כל קודקוד.
 - ב. כתוב אלגוריתם המחשב את דרגת הכניסהשל כל קודקוד.
 - ג. מהי סיבוכיות זמן הריצה של האלגוריתם שהצעת בסעיף ב'. נמק את תשובתך.

פתרון שאלה 18

- א. עבור כל קודקוד ∨ בצע:
 - Sum ← 0 (1 •
- יצביע בראש רשימת הקודקודים list (2 ראש רשימת הסמוכים ל-v.

ד"ר ראובן חוטובלי, נכתב ע"י לאון נתן

המשך פתרון שאלה 18

- לומר כל עוד לא NULL פונה מ-list ליומר כל עוד לא (3 הגענו לסוף הרשימה בצע:
 - Sum \leftarrow Sum + 1 (3.1 •
 - .3.2 התקדם על פני הרשימה.
 - $out[v] \leftarrow Sum (4 \cdot$
 - מאחר שאנו סורקים את כל רשימות הסמיכות
 פעם אחת בלבד אזי סיבוכיות זמן הריצה של
 האלגוריתם הינה כסכום אורכי הרשימות.
- אך לפי תרגיל 16 הדבר שווה ל-(|E|) אך אם מס' הקודקודים, |V|, יותר גדול מ-|E| אז סופית זמן הריצה הינו (|V|+|E|).

המשך פתרון שאלה 18

- .in ב. נשתמש במערך
- $in[v] \leftarrow 0$ עבור כל קודקוד (1–
 - 2− עבור כל קודקוד ∨ בצע:
- list (2.1 יצביע בראש רשימת הקודקודים הסמוכים ל-v.
 - :2.2 כל עוד לא הגענו לסוף הרשימה בצע
 - $w \leftarrow info(list) (2.2.1-$
 - $in[w] \leftarrow in[w]+1 (2.2.2-$
- -2.2.3) היתקדם על פני הרשימה באמצעות
 - סוף לולאה (3–

ד"ר ראובן חוטובלי, נכתב ע"י לאון נתן

<u>המשך פתרון שאלה 18</u>

 ג. גם הפעם אנו סורקים את כל רשימות הסמיכות פעם אחת בלבד ולכן סיבוכיות זמן הריצה של האלגוריתם היא (|V|+|E|).

- של (Transpose) של נגדיר: המטריצה המוחלפת (A^T מסומנת כך: מטריצה A השורה הראשונה של A תהיה העמודה
- . A^T הראשונה של A^T תהיה העמודה השניה $oldsymbol{\cdot}$
 - השורה השלישית של A תהיה העמודה . A^T השלישית של . A^T

המשך שאלה 19

 $A = \begin{pmatrix} 5 & 0 & 7 \\ 8 & 3 & 5 \\ 4 & 2 & 1 \end{pmatrix}$:- בר המטריצה המטריצה המוחלפת הינה:

$$A^{T} = \begin{pmatrix} 5 & 8 & 4 \\ 0 & 3 & 2 \\ 7 & 5 & 1 \end{pmatrix}$$

המשך שאלה 19

א. נתון גרף G לא מכוון המיוצג באמצעות $oldsymbol{\cdot}$ מטריצת סמיכות A

מטריצת סמיכות A. מטריצת סמיכות פמיד אם תמיד $A^T=A$ נמק.

- ב. נתון גרף G <mark>מכוון</mark> המיוצג באמצעות מטריצת סמיכות A
 - . ממק: $A^T = A$ נמק: •

פתרון שאלה 19

- א. בגרף לא מכוון G, המיוצג באמצעות מטריצת א. בגרף לא מכוון G, תמיד יתקיים:
- a מכיוון שאם יש קשת מקודקוד כלשהו, A=A^T b-אזי גם קיימת קשת מ-b b.
- ב. בגרף <u>מכוון</u> G, המיוצג באמצעות מטריצת G ב. בגרף <u>מכוון</u> A, <u>לא תמיד</u> יתקיים ש-A=A, מכיוון שאם קיימת קשת מקודקוד כלשהו b ל-b אז לא בהכרח קיימת קשת מקודקוד b אל קודקוד a.

- . G = (V,E) נתון גרף מכוון G^T מסומן G של G מסומן ומוגדר כי $G^T = (V,E^T)$ כאשר בקבוצת הקשתות נמצאות אותן קשתות שב-תוך כדי היפוך כיווניהן.
- $(v,u) \in E^T$ כלומר אם $(u,v) \in E$ אזי

20 המשך שאלה

- - י. ב. אם הגרף מיוצג באמצעות רשימות סמיכות $oldsymbol{G}^T$. תאר אלגוריתם לחישוב . . .
- 2. מהי סיבוכיות זמן הריצה של האלגוריתם שהצעת ב-1?
- ג. אם הגרף מיוצג באמצעות מבנה רב מקושר . $m{G}^T$. תאר אלגוריתם לחישוב . $m{G}^T$. מהי סיבוכיות זמן הריצה של האלגוריתם שהצעת ב-??