# Folheações com feixe tangente livre.

João Pedro dos Santos

Palestra na Unicamp, Campinas

15 Abril 2024

Definição  $X/\mathbb{C}$  lisa.

Definição

 $X/\mathbb{C}$  lisa.

(1) Distribuição lisa  ${\cal V}$ 

#### Definição

 $X/\mathbb{C}$  lisa.

(1) Distribuição lisa  $V \Leftrightarrow T_{\mathcal{V}}$  sub-fibrado de  $T_X$ .

### Definição

- (1) Distribuição lisa  $\mathcal{V} \Leftrightarrow T_{\mathcal{V}}$  sub-fibrado de  $T_{\mathcal{X}}$ .
- (2) Distribuição singular  ${\cal V}$

#### Definição

- (1) Distribuição lisa  $\mathcal{V} \Leftrightarrow T_{\mathcal{V}}$  sub-fibrado de  $T_{\mathcal{X}}$ .
- (2) Distribuição singular  $V \Leftrightarrow \text{sub-m\'odulo } T_V \subset T_X \text{ saturado.}$

### Definição

- (1) Distribuição lisa  $V \Leftrightarrow T_V$  sub-fibrado de  $T_X$ .
- (2) Distribuição singular  $V \Leftrightarrow \text{sub-m\'odulo } T_{V} \subset T_{X}$  saturado.
- (3) Distribuição fechada por  $[\cdot,\cdot]$

#### Definição

- (1) Distribuição lisa  $V \Leftrightarrow T_{\mathcal{V}}$  sub-fibrado de  $T_X$ .
- (2) Distribuição singular  $V \Leftrightarrow \text{sub-m\'odulo } T_{V} \subset T_{X}$  saturado.
- (3) Distribuição fechada por  $[\cdot,\cdot] \rightsquigarrow$  folheação.

### Definição

 $X/\mathbb{C}$  lisa.

- (1) Distribuição lisa  $\mathcal{V} \Leftrightarrow T_{\mathcal{V}}$  sub-fibrado de  $T_{\mathcal{X}}$ .
- (2) Distribuição singular  $V \Leftrightarrow \text{sub-m\'odulo } T_{V} \subset T_{X}$  saturado.
- (3) Distribuição fechada por  $[\cdot,\cdot] \rightsquigarrow$  folheação.

#### Exemplo

G grupo algébrico e Lie  $G = \mathfrak{g}$ .

## Definição

 $X/\mathbb{C}$  lisa.

- (1) Distribuição lisa  $\mathcal{V} \Leftrightarrow T_{\mathcal{V}}$  sub-fibrado de  $T_{\mathcal{X}}$ .
- (2) Distribuição singular  $V \Leftrightarrow \text{sub-m\'odulo } T_{V} \subset T_{X}$  saturado.
- (3) Distribuição fechada por  $[\cdot,\cdot] \rightsquigarrow$  folheação.

#### Exemplo

G grupo algébrico e Lie  $G = \mathfrak{g}$ .  $G \circlearrowleft X$ .

### Definição

 $X/\mathbb{C}$  lisa.

- (1) Distribuição lisa  $V \Leftrightarrow T_V$  sub-fibrado de  $T_X$ .
- (2) Distribuição singular  $V \Leftrightarrow \text{sub-m\'odulo } T_{V} \subset T_{X}$  saturado.
- (3) Distribuição fechada por  $[\cdot,\cdot] \rightsquigarrow$  folheação.

#### Exemplo

G grupo algébrico e Lie  $G = \mathfrak{g}$ .  $G \circlearrowleft X$ . Dado  $v \in \mathfrak{g} \leadsto$ 

#### Definição

 $X/\mathbb{C}$  lisa.

- (1) Distribuição lisa  $V \Leftrightarrow T_{\mathcal{V}}$  sub-fibrado de  $T_X$ .
- (2) Distribuição singular  $V \Leftrightarrow \text{sub-m\'odulo } T_{V} \subset T_{X}$  saturado.
- (3) Distribuição fechada por  $[\cdot,\cdot] \rightsquigarrow$  folheação.

#### Exemplo

G grupo algébrico e Lie  $G = \mathfrak{g}$ .  $G \circlearrowleft X$ . Dado  $v \in \mathfrak{g} \leadsto$ 

$$v^{\natural}(x) = \left. \frac{d}{dt} \right|_{t=0} \exp(tv) \cdot x$$

#### Definição

 $X/\mathbb{C}$  lisa.

- (1) Distribuição lisa  $V \Leftrightarrow T_{\mathcal{V}}$  sub-fibrado de  $T_X$ .
- (2) Distribuição singular  $\mathcal{V} \Leftrightarrow \text{sub-m\'odulo } T_{\mathcal{V}} \subset T_X$  saturado.
- (3) Distribuição fechada por  $[\cdot,\cdot] \rightsquigarrow$  folheação.

#### Exemplo

G grupo algébrico e Lie  $G = \mathfrak{g}$ .  $G \circlearrowleft X$ . Dado  $v \in \mathfrak{g} \leadsto$ 

$$v^{\natural}(x) = \left. \frac{d}{dt} \right|_{t=0} \exp(tv) \cdot x$$

= campo "fundamental" = "gerador infinitesimal".

#### Definição

 $X/\mathbb{C}$  lisa.

- (1) Distribuição lisa  $V \Leftrightarrow T_V$  sub-fibrado de  $T_X$ .
- (2) Distribuição singular  $\mathcal{V} \Leftrightarrow \text{sub-m\'odulo } T_{\mathcal{V}} \subset T_X$  saturado.
- (3) Distribuição fechada por  $[\cdot,\cdot] \rightsquigarrow$  folheação.

#### Exemplo

G grupo algébrico e Lie  $G = \mathfrak{g}$ .  $G \circlearrowleft X$ . Dado  $v \in \mathfrak{g} \leadsto$ 

$$v^{\natural}(x) = \left. \frac{d}{dt} \right|_{t=0} \exp(tv) \cdot x$$

= campo "fundamental" = "gerador infinitesimal".  $\leadsto$   $\mathfrak{g} \to \Gamma(X, T_X)$ .



#### Definição

 $X/\mathbb{C}$  lisa.

- (1) Distribuição lisa  $V \Leftrightarrow T_V$  sub-fibrado de  $T_X$ .
- (2) Distribuição singular  $V \Leftrightarrow \text{sub-m\'odulo } T_{V} \subset T_{X}$  saturado.
- (3) Distribuição fechada por  $[\cdot, \cdot] \rightsquigarrow$  folheação.

#### Exemplo

G grupo algébrico e Lie  $G = \mathfrak{g}$ .  $G \circlearrowleft X$ . Dado  $v \in \mathfrak{g} \leadsto$ 

$$v^{\natural}(x) = \left. \frac{d}{dt} \right|_{t=0} \exp(tv) \cdot x$$

= campo "fundamental" = "gerador infinitesimal".  $\leadsto$   $\mathfrak{g} \to \Gamma(X, T_X)$ . Dada  $\mathfrak{h} < \mathfrak{g} \leadsto \mathfrak{h} \otimes \mathcal{O}_X \to T_X$ .

#### Definição

 $X/\mathbb{C}$  lisa.

- (1) Distribuição lisa  $V \Leftrightarrow T_V$  sub-fibrado de  $T_X$ .
- (2) Distribuição singular  $\mathcal{V} \Leftrightarrow \text{sub-m\'odulo } T_{\mathcal{V}} \subset T_X$  saturado.
- (3) Distribuição fechada por  $[\cdot,\cdot] \rightsquigarrow$  folheação.

#### Exemplo

G grupo algébrico e Lie  $G = \mathfrak{g}$ .  $G \circlearrowleft X$ . Dado  $v \in \mathfrak{g} \leadsto$ 

$$v^{\natural}(x) = \left. \frac{d}{dt} \right|_{t=0} \exp(tv) \cdot x$$

= campo "fundamental" = "gerador infinitesimal".  $\leadsto$   $\mathfrak{g} \to \Gamma(X, T_X)$ . Dada  $\mathfrak{h} < \mathfrak{g} \leadsto \mathfrak{h} \otimes \mathcal{O}_X \to T_X$ .  $\leadsto$  Folheação de "ação"  $\mathcal{A}(\mathfrak{h})$ :  $\boxed{T_{\mathcal{A}(\mathfrak{h})} = \mathfrak{h} \otimes \mathcal{O}_X}$ .

#### Pergunta

"Quantas" folheações são por ação?

#### Pergunta

"Quantas" folheações são por ação? Qual "tamanho" destas no espaço de todas as folheações?

#### Pergunta

"Quantas" folheações são por ação? Qual "tamanho" destas no espaço de todas as folheações?

#### Exemplo

 $\mathrm{GL}_n \circlearrowleft \mathbb{P}^{n-1}$ .

#### Pergunta

"Quantas" folheações são por ação? Qual "tamanho" destas no espaço de todas as folheações?

#### Exemplo

$$\mathrm{GL}_n\circlearrowleft\mathbb{P}^{n-1}$$
. Seja  $E_{ij}\in\mathfrak{gl}_n$ 

#### Pergunta

"Quantas" folheações são por ação? Qual "tamanho" destas no espaço de todas as folheações?

#### Exemplo

 $\mathrm{GL}_n\circlearrowleft\mathbb{P}^{n-1}$ . Seja  $E_{ij}\in\mathfrak{gl}_n$  dada por

$$E_{ij}(\vec{e_k}) = \left\{ egin{array}{ll} 0 & ext{se } j 
eq k, \ \vec{e_i} & ext{se } j = k. \end{array} 
ight.$$

#### Pergunta

"Quantas" folheações são por ação? Qual "tamanho" destas no espaço de todas as folheações?

#### Exemplo

 $\mathrm{GL}_n\circlearrowleft\mathbb{P}^{n-1}$ . Seja  $E_{ij}\in\mathfrak{gl}_n$  dada por

$$E_{ij}(\vec{e_k}) = \left\{ egin{array}{ll} 0 & ext{se } j 
eq k, \ \vec{e_i} & ext{se } j = k. \end{array} 
ight.$$

$$\leadsto E_{ij}^{\natural} = x_j \frac{\partial}{\partial x_i}$$

#### Pergunta

"Quantas" folheações são por ação? Qual "tamanho" destas no espaço de todas as folheações?

#### Exemplo

 $\mathrm{GL}_n\circlearrowleft\mathbb{P}^{n-1}$ . Seja  $E_{ij}\in\mathfrak{gl}_n$  dada por

$$E_{ij}(\vec{e_k}) = \left\{ egin{array}{ll} 0 & ext{se } j 
eq k, \ \vec{e_i} & ext{se } j = k. \end{array} 
ight.$$

 $\leadsto E_{ij}^{\sharp} = x_j \frac{\partial}{\partial x_i}$  age nos aberto principais  $\{f \neq 0\}$  via

$$x_j \frac{\partial}{\partial x_i} \left( \frac{a}{f^m} \right) = \text{fórmula de sempre.}$$



### Exemplo

Sejam

$$D = E_{11} - \frac{1}{n} \sum_{i} E_{ii}$$
 e  $N = E_{12}$ .

#### Exemplo

Sejam

$$D = E_{11} - \frac{1}{n} \sum_{i} E_{ii}$$
 e  $N = E_{12}$ .

 $\Rightarrow$ 

$$D^{\natural} = x_1 \frac{\partial}{\partial x_1} \quad \text{e} \quad N^{\natural} = x_2 \frac{\partial}{\partial x_1}.$$

#### Exemplo

Sejam

$$D = E_{11} - \frac{1}{n} \sum_{i} E_{ii}$$
 e  $N = E_{12}$ .

 $\Rightarrow$ 

$$D^{\natural} = x_1 \frac{\partial}{\partial x_1}$$
 e  $N^{\natural} = x_2 \frac{\partial}{\partial x_1}$ .

Seja  $\mathfrak{h} = \mathbb{C}D \oplus \mathbb{C}N$  (subálgebra).

#### Exemplo

Sejam

$$D = E_{11} - \frac{1}{n} \sum_{i} E_{ii}$$
 e  $N = E_{12}$ .

 $\Rightarrow$ 

$$D^{\natural} = x_1 \frac{\partial}{\partial x_1} \quad \text{e} \quad N^{\natural} = x_2 \frac{\partial}{\partial x_1}.$$

Seja  $\mathfrak{h}=\mathbb{C}D\oplus\mathbb{C}N$  (subálgebra). Seja  $\gamma:\mathfrak{h}\otimes\mathcal{O}_{\mathbb{P}}\to\mathcal{T}_{\mathbb{P}}.$ 

#### Exemplo

Sejam

$$D = E_{11} - \frac{1}{n} \sum_{i} E_{ii}$$
 e  $N = E_{12}$ .

 $\Rightarrow$ 

$$D^{\natural} = x_1 \frac{\partial}{\partial x_1} \quad \text{e} \quad N^{\natural} = x_2 \frac{\partial}{\partial x_1}.$$

Seja  $\mathfrak{h}=\mathbb{C}D\oplus\mathbb{C}N$  (subálgebra). Seja  $\gamma:\mathfrak{h}\otimes\mathcal{O}_{\mathbb{P}}\to\mathcal{T}_{\mathbb{P}}$ . A aplicação  $\gamma(P):\mathfrak{h}\to\mathcal{T}_{\mathbb{P}}(P)$  nunca é injetiva

#### Exemplo

Sejam

$$D = E_{11} - \frac{1}{n} \sum_{i} E_{ii}$$
 e  $N = E_{12}$ .

 $\Rightarrow$ 

$$D^{\natural} = x_1 \frac{\partial}{\partial x_1} \quad \text{e} \quad N^{\natural} = x_2 \frac{\partial}{\partial x_1}.$$

Seja  $\mathfrak{h}=\mathbb{C}D\oplus\mathbb{C}N$  (subálgebra). Seja  $\gamma:\mathfrak{h}\otimes\mathcal{O}_{\mathbb{P}}\to\mathcal{T}_{\mathbb{P}}$ . A aplicação  $\gamma(P):\mathfrak{h}\to\mathcal{T}_{\mathbb{P}}(P)$  nunca é injetiva já que

$$\bigcup_{(s:t)\in\mathbb{P}^1}\operatorname{Sing}(sD^{\natural}+tN^{\natural})=\mathbb{P}.$$

 $X \stackrel{f}{\rightarrow} S$  liso. S qualquer.

 $X \stackrel{f}{\rightarrow} S$  liso. S qualquer.

### Definição

(1) Distribuição  $\mathcal V$  em X/S:

 $X \xrightarrow{f} S$  liso. S qualquer.

#### Definição

(1) Distribuição  $\mathcal V$  em X/S:  $\mathcal O_X$ -submódulo  $\mathcal T_{\mathcal V}\subset \mathcal T_f$  t.q.

 $X \xrightarrow{f} S$  liso. S qualquer.

#### Definição

(1) Distribuição  $\mathcal V$  em X/S:  $\mathcal O_X$ -submódulo  $\mathcal T_{\mathcal V}\subset \mathcal T_f$  t.q.

$$Q_{\mathcal{V}} = T_f/T_{\mathcal{V}}$$

é sem torção.

 $X \stackrel{f}{\rightarrow} S$  liso. S qualquer.

#### Definição

(1) Distribuição  $\mathcal V$  em X/S:  $\mathcal O_X$ -submódulo  $\mathcal T_{\mathcal V}\subset \mathcal T_f$  t.q.

$$Q_{\mathcal{V}} = T_f/T_{\mathcal{V}}$$

é sem torção.

(2)  $\operatorname{Sing} \mathcal{V} = \operatorname{Sing}(Q_{\mathcal{V}}) = \{x \in X : Q_{\mathcal{V},x} \text{ não é livre}\}.$ 

 $X \stackrel{f}{\rightarrow} S$  liso. S qualquer.

## Definição

(1) Distribuição  $\mathcal V$  em X/S:  $\mathcal O_X$ -submódulo  $\mathcal T_{\mathcal V}\subset \mathcal T_f$  t.q.

$$Q_{\mathcal{V}} = T_f/T_{\mathcal{V}}$$

é sem torção.

(2) Sing  $V = \text{Sing}(Q_V) = \{x \in X : Q_{V,x} \text{ não \'e livre}\}.$ =  $\{x \in X : T_V(x) \to T_f(x) \text{ não injetivo}\}.$ 

 $X \stackrel{f}{\rightarrow} S$  liso. S qualquer.

## Definição

(1) Distribuição  $\mathcal V$  em X/S:  $\mathcal O_X$ -submódulo  $\mathcal T_{\mathcal V}\subset \mathcal T_f$  t.q.

$$Q_{\mathcal{V}} = T_f/T_{\mathcal{V}}$$

é sem torção.

(2)  $\operatorname{Sing} \mathcal{V} = \operatorname{Sing}(Q_{\mathcal{V}}) = \{x \in X : Q_{\mathcal{V},x} \text{ não é livre}\}.$ =  $\{x \in X : T_{\mathcal{V}}(x) \to T_f(x) \text{ não injetivo}\}.$ 

## Observação

(1) X integral  $\rightsquigarrow$ 



 $X \stackrel{f}{\rightarrow} S$  liso. S qualquer.

## Definição

(1) Distribuição  $\mathcal V$  em X/S:  $\mathcal O_X$ -submódulo  $\mathcal T_{\mathcal V}\subset \mathcal T_f$  t.q.

$$Q_{\mathcal{V}} = T_f/T_{\mathcal{V}}$$

é sem torção.

(2) Sing  $V = \text{Sing}(Q_V) = \{x \in X : Q_{V,x} \text{ não é livre}\}.$ =  $\{x \in X : T_V(x) \to T_f(x) \text{ não injetivo}\}.$ 

## Observação

(1) X integral  $\rightsquigarrow$  "sem-torção" conceito básico.

 $X \stackrel{f}{\rightarrow} S$  liso. S qualquer.

## Definição

(1) Distribuição  $\mathcal V$  em X/S:  $\mathcal O_X$ -submódulo  $\mathcal T_{\mathcal V}\subset \mathcal T_f$  t.q.

$$Q_{\mathcal{V}} = T_f/T_{\mathcal{V}}$$

é sem torção.

(2)  $\operatorname{Sing} \mathcal{V} = \operatorname{Sing}(Q_{\mathcal{V}}) = \{x \in X : Q_{\mathcal{V},x} \text{ não é livre}\}.$ =  $\{x \in X : T_{\mathcal{V}}(x) \to T_f(x) \text{ não injetivo}\}.$ 

#### Observação

- (1) X integral  $\rightsquigarrow$  "sem-torção" conceito básico.
- (2) Em geral:  $\mathcal{M}$  fortemente sem torção (Torsion<u>less</u>)



 $X \stackrel{f}{\rightarrow} S$  liso. S qualquer.

## Definição

(1) Distribuição  $\mathcal V$  em X/S:  $\mathcal O_X$ —submódulo  $\mathcal T_{\mathcal V}\subset \mathcal T_f$  t.q.

$$Q_{\mathcal{V}} = T_f/T_{\mathcal{V}}$$

é sem torção.

(2)  $\operatorname{Sing} \mathcal{V} = \operatorname{Sing}(Q_{\mathcal{V}}) = \{x \in X : Q_{\mathcal{V},x} \text{ não é livre}\}.$ =  $\{x \in X : T_{\mathcal{V}}(x) \to T_f(x) \text{ não injetivo}\}.$ 

#### Observação

- (1) X integral  $\rightsquigarrow$  "sem-torção" conceito básico.
- (2) Em geral:  $\mathcal{M}$  fortemente sem torção (Torsion<u>less</u>) quando  $\mathcal{M} \to \mathcal{M}^{\vee\vee}$  injetivo.



 $X \stackrel{f}{\rightarrow} S$  liso. S qualquer.

## Definição

(1) Distribuição  $\mathcal V$  em X/S:  $\mathcal O_X$ —submódulo  $\mathcal T_{\mathcal V}\subset \mathcal T_f$  t.q.

$$Q_{\mathcal{V}} = T_f/T_{\mathcal{V}}$$

é sem torção.

(2)  $\operatorname{Sing} \mathcal{V} = \operatorname{Sing}(Q_{\mathcal{V}}) = \{x \in X : Q_{\mathcal{V},x} \text{ não é livre}\}.$ =  $\{x \in X : T_{\mathcal{V}}(x) \to T_f(x) \text{ não injetivo}\}.$ 

## Observação

- (1) X integral  $\rightsquigarrow$  "sem-torção" conceito básico.
- (2) Em geral:  $\mathcal{M}$  fortemente sem torção (Torsion<u>less</u>) quando  $\mathcal{M} \to \mathcal{M}^{\vee\vee}$  injetivo.
- (3) EGA  $\leadsto$  "estritamente sem-torção" usando  $\mathcal{K}_X$ .



Definição

Definição

 $\mathcal{M} \subset \mathcal{F}$  fortemente saturado

Definição

 $\mathcal{M} \subset \mathcal{F}$  fortemente saturado  $\Leftrightarrow \mathcal{F}/\mathcal{M}$  fortemente sem torção.

Definição ("Pull-back")

## Definição

 $\mathcal{M} \subset \mathcal{F}$  fortemente saturado  $\Leftrightarrow \mathcal{F}/\mathcal{M}$  fortemente sem torção.

Definição ("Pull-back")

$$\begin{array}{c|c}
\tilde{X} & \xrightarrow{h} & X \\
\tilde{f} & & \downarrow f \\
\tilde{S} & \xrightarrow{g} & S
\end{array}$$

## Definição

 $\mathcal{M} \subset \mathcal{F}$  fortemente saturado  $\Leftrightarrow \mathcal{F}/\mathcal{M}$  fortemente sem torção.

Definição ("Pull-back")

$$\tilde{X} \xrightarrow{h} X$$

$$\tilde{f} \downarrow \qquad \qquad \downarrow f$$

$$\tilde{S} \xrightarrow{g} S$$

 $\mathcal V$  distribuição em X/S.

#### Definição

 $\mathcal{M} \subset \mathcal{F}$  fortemente saturado  $\Leftrightarrow \mathcal{F}/\mathcal{M}$  fortemente sem torção.

Definição ("Pull-back")

$$\tilde{X} \xrightarrow{h} X$$

$$\tilde{f} \downarrow \qquad \qquad \downarrow f$$

$$\tilde{S} \xrightarrow{g} S$$

 ${\mathcal V}$  distribuição em X/S. Defini-se:  ${\mathcal V}_{\tilde{S}}$  por



#### Exemplo

$$R = k[\![t]\!]$$
,  $X = \operatorname{Spec} R[x,y,z]$ . Fibra central  $X_0$ .

#### Exemplo

$$R = k[t]$$
,  $X = \operatorname{Spec} R[x, y, z]$ . Fibra central  $X_0$ . Seja

$$T_{\mathcal{V}} = \mathcal{O}(x\partial_x - y\partial_y) + \mathcal{O}(t\partial_x - y\partial_z) + \mathcal{O}(t\partial_y - x\partial_z).$$

#### Exemplo

$$R = k[t], X = \operatorname{Spec} R[x, y, z]$$
. Fibra central  $X_0$ . Seja
$$T_{\mathcal{V}} = \mathcal{O}(x\partial_x - y\partial_y) + \mathcal{O}(t\partial_x - y\partial_z) + \mathcal{O}(t\partial_y - x\partial_z).$$

$$\operatorname{Im}(T_{\mathcal{V}} \otimes k \to T_{X_0}) = \mathcal{O}(x\partial_x - y\partial_y) + \mathcal{O} \cdot y\partial_z + \mathcal{O} \cdot x\partial_z.$$

 $\rightsquigarrow$ 

$$T_{\mathcal{V}_0} = \mathcal{O}_{X_0}(x\partial_x - y\partial_y) + \mathcal{O}_{X_0}\partial_z.$$

## Pergunta

Que tipo de feixe é o saturado forte?

#### Pergunta

Que tipo de feixe é o saturado forte?

#### Lema

Seja  $\mathcal{F} \in coh(X)$  loc. livre.

#### Pergunta

Que tipo de feixe é o saturado forte?

#### Lema

Seja  $\mathcal{F} \in \text{coh}(X)$  loc. livre. Seja  $\mathcal{M} \subset \mathcal{F}$  qualquer.

#### Pergunta

Que tipo de feixe é o saturado forte?

#### Lema

Seja  $\mathcal{F} \in \mathsf{coh}(X)$  loc. livre. Seja  $\mathcal{M} \subset \mathcal{F}$  qualquer.  $X \notin G_1 + S_2$  e  $\mathcal{F}/\mathcal{M} \notin \ell\ell$  aberto "grande"

#### Pergunta

Que tipo de feixe é o saturado forte?

#### Lema

Seja  $\mathcal{F} \in \mathsf{coh}(X)$  loc. livre. Seja  $\mathcal{M} \subset \mathcal{F}$  qualquer.  $X \notin G_1 + S_2$  e  $\mathcal{F}/\mathcal{M} \notin \ell\ell$  aberto "grande"  $\Rightarrow \mathcal{M}^{\mathrm{ssat}} \simeq \mathcal{M}^{\vee\vee}$ .

Seja  $f: X \rightarrow S$  liso e *próprio*.

Seja  $f: X \rightarrow S$  liso e *próprio*.

Teorema

Suponha

$$\operatorname{codim}(\operatorname{Sing}(\mathcal{V}) \cap X_s, X_s) \geq 3, \quad \forall s \in S.$$

Seja  $f: X \rightarrow S$  liso e *próprio*.

#### Teorema

Suponha

$$\operatorname{codim}(\operatorname{Sing}(\mathcal{V}) \cap X_s, X_s) \geq 3, \quad \forall s \in S.$$

$$\Longrightarrow \{s \in S : T_{\mathcal{V}_s} \not \in \ell\ell\}$$
 aberto.

Seja  $f: X \to S$  liso e *próprio*.

#### **Teorema**

Suponha

$$\operatorname{codim}(\operatorname{Sing}(\mathcal{V}) \cap X_s, X_s) \geq 3, \quad \forall s \in S.$$

$$\Longrightarrow \{s \in S : T_{\mathcal{V}_s} \not\in \ell\ell\}$$
 aberto.

Segue de

Teorema (Álgebra comutativa)

Seja  $f: X \to S$  liso e *próprio*.

#### **Teorema**

Suponha

$$\operatorname{codim}(\operatorname{Sing}(\mathcal{V}) \cap X_s, X_s) \geq 3, \quad \forall s \in S.$$

 $\Longrightarrow \{s \in S : T_{\mathcal{V}_s} \not\in \ell\ell\}$  aberto.

Segue de

Teorema (Álgebra comutativa)

 $X = \operatorname{Spec} A \ e \ S = \operatorname{Spec} R$ , com R um AVD.

Seja  $f: X \to S$  liso e *próprio*.

#### **Teorema**

Suponha

$$\operatorname{codim}(\operatorname{Sing}(\mathcal{V})\cap X_s,X_s)\geq 3, \qquad \forall\, s\in S.$$

 $\Longrightarrow \{s \in S : T_{\mathcal{V}_s} \not\in \ell\ell\}$  aberto.

Segue de

# Teorema (Álgebra comutativa)

 $X=\operatorname{Spec} A$  e  $S=\operatorname{Spec} R$ , com R um AVD. Seja  $\mathcal F$  um  $\mathcal O_X$ -mód. Seja  $Z=\operatorname{Sing}(\mathcal F)$ .

Seja  $f: X \to S$  liso e *próprio*.

#### **Teorema**

Suponha

$$\operatorname{codim}(\operatorname{Sing}(\mathcal{V}) \cap X_s, X_s) \geq 3, \quad \forall s \in S.$$

 $\Longrightarrow \{s \in S : T_{\mathcal{V}_s} \notin \ell\ell\}$  aberto.

Segue de

# Teorema (Álgebra comutativa)

 $X = \operatorname{Spec} A$  e  $S = \operatorname{Spec} R$ , com R um AVD. Seja  $\mathcal{F}$  um  $\mathcal{O}_X$ -mód. Seja  $Z = \operatorname{Sing}(\mathcal{F})$ . Suponhamos:

a) 
$$\mathcal{F} = \mathcal{F}^{\vee\vee}$$
.



Seja  $f: X \to S$  liso e *próprio*.

#### **Teorema**

Suponha

$$\operatorname{codim}(\operatorname{Sing}(\mathcal{V}) \cap X_s, X_s) \geq 3, \quad \forall s \in S.$$

 $\Longrightarrow \{s \in S : T_{\mathcal{V}_s} \not\in \ell\ell\}$  aberto.

Segue de

# Teorema (Álgebra comutativa)

 $X = \operatorname{Spec} A$  e  $S = \operatorname{Spec} R$ , com R um AVD. Seja  $\mathcal F$  um  $\mathcal O_X$ -mód. Seja  $Z = \operatorname{Sing}(\mathcal F)$ . Suponhamos:

- a)  $\mathcal{F} = \mathcal{F}^{\vee\vee}$ .
- b)  $(\mathcal{F}|_{X_0})^{\vee\vee}$   $\acute{e}$   $\ell\ell$ .



Seja  $f: X \to S$  liso e *próprio*.

#### **Teorema**

Suponha

$$\operatorname{codim}(\operatorname{Sing}(\mathcal{V}) \cap X_s, X_s) \geq 3, \quad \forall s \in S.$$

 $\Longrightarrow \{s \in S : T_{\mathcal{V}_s} \not\in \ell\ell\}$  aberto.

Segue de

# Teorema (Álgebra comutativa)

 $X = \operatorname{Spec} A$  e  $S = \operatorname{Spec} R$ , com R um AVD. Seja  $\mathcal F$  um  $\mathcal O_X$ -mód. Seja  $Z = \operatorname{Sing}(\mathcal F)$ . Suponhamos:

- a)  $\mathcal{F} = \mathcal{F}^{\vee\vee}$ .
- b)  $(\mathcal{F}|_{X_0})^{\vee\vee}$   $\acute{e}$   $\ell\ell$ .
- c)  $\operatorname{codim}(Z_s, X_s) \geq 3$  para cada  $s \in S$ .



Seja  $f: X \to S$  liso e *próprio*.

#### **Teorema**

Suponha

$$\operatorname{codim}(\operatorname{Sing}(\mathcal{V}) \cap X_s, X_s) \geq 3, \quad \forall s \in S.$$

 $\Longrightarrow \{s \in S : T_{\mathcal{V}_s} \notin \ell\ell\}$  aberto.

Segue de

# Teorema (Álgebra comutativa)

 $X=\operatorname{Spec} A$  e  $S=\operatorname{Spec} R$ , com R um AVD. Seja  $\mathcal F$  um  $\mathcal O_X$ -mód. Seja  $Z=\operatorname{Sing}(\mathcal F)$ . Suponhamos:

- a)  $\mathcal{F} = \mathcal{F}^{\vee\vee}$ .
- b)  $(\mathcal{F}|_{X_0})^{\vee\vee}$   $\acute{e}$   $\ell\ell$ .
- c)  $\operatorname{codim}(Z_s, X_s) \geq 3$  para cada  $s \in S$ .  $\Rightarrow \mathcal{F} \notin \ell\ell$  viz. de  $X_0$ .



Ideia da prova.

## Ideia da prova.

ullet Basta:  $\mathcal{F}_0:=\mathcal{F}|_{X_0}$  reflexivo.

## Ideia da prova.

- Basta:  $\mathcal{F}_0 := \mathcal{F}|_{X_0}$  reflexivo.
- Basta:  $\operatorname{prof} \mathcal{F}_{0,x_0} \geq 2$  para todo  $x_0 \in X_0$  de codim 2. (Hartshorne)

- Basta:  $\mathcal{F}_0 := \mathcal{F}|_{X_0}$  reflexivo.
- Basta:  $\operatorname{prof} \mathcal{F}_{0,x_0} \geq 2$  para todo  $x_0 \in X_0$  de codim 2. (Hartshorne)
- Seja U = X Z. Basta que  $H^1_{Z_0}(\mathcal{F}_0) = 0$ .

- Basta:  $\mathcal{F}_0 := \mathcal{F}|_{X_0}$  reflexivo.
- Basta:  $\operatorname{prof} \mathcal{F}_{0,x_0} \geq 2$  para todo  $x_0 \in X_0$  de codim 2. (Hartshorne)
- Seja U = X Z. Basta que  $H^1_{Z_0}(\mathcal{F}_0) = 0$ .
- De  $H^1(X_0, \mathcal{F}_0) = 0$ , basta

- Basta:  $\mathcal{F}_0 := \mathcal{F}|_{X_0}$  reflexivo.
- Basta:  $\operatorname{prof} \mathcal{F}_{0,x_0} \geq 2$  para todo  $x_0 \in X_0$  de codim 2. (Hartshorne)
- Seja U = X Z. Basta que  $H^1_{Z_0}(\mathcal{F}_0) = 0$ .
- De  $H^1(X_0, \mathcal{F}_0) = 0$ , basta  $\mathcal{F}_0(X_0) \twoheadrightarrow \mathcal{F}_0(U_0)$ .

- Basta:  $\mathcal{F}_0 := \mathcal{F}|_{X_0}$  reflexivo.
- Basta:  $\operatorname{prof} \mathcal{F}_{0,x_0} \geq 2$  para todo  $x_0 \in X_0$  de codim 2. (Hartshorne)
- Seja U = X Z. Basta que  $H^1_{Z_0}(\mathcal{F}_0) = 0$ .
- De  $H^1(X_0, \mathcal{F}_0) = 0$ , basta  $\mathcal{F}_0(X_0) \twoheadrightarrow \mathcal{F}_0(U_0)$ . Segue de:

- Basta:  $\mathcal{F}_0 := \mathcal{F}|_{X_0}$  reflexivo.
- Basta:  $\operatorname{prof} \mathcal{F}_{0,x_0} \geq 2$  para todo  $x_0 \in X_0$  de codim 2. (Hartshorne)
- Seja U = X Z. Basta que  $H^1_{Z_0}(\mathcal{F}_0) = 0$ .
- De  $H^1(X_0, \mathcal{F}_0) = 0$ , basta  $\mathcal{F}_0(X_0) \twoheadrightarrow \mathcal{F}_0(U_0)$ . Segue de: (a).  $\widehat{H}^0(U, \mathcal{F}) \twoheadrightarrow H^0(U_0, \mathcal{F}_0)$

- Basta:  $\mathcal{F}_0 := \mathcal{F}|_{X_0}$  reflexivo.
- Basta:  $\operatorname{prof} \mathcal{F}_{0,x_0} \geq 2$  para todo  $x_0 \in X_0$  de codim 2. (Hartshorne)
- Seja U = X Z. Basta que  $H^1_{Z_0}(\mathcal{F}_0) = 0$ .
- De  $H^1(X_0, \mathcal{F}_0) = 0$ , basta  $\mathcal{F}_0(X_0) \twoheadrightarrow \mathcal{F}_0(U_0)$ . Segue de:
- (a).  $\widehat{H}^0(U,\mathcal{F}) \rightarrow H^0(U_0,\mathcal{F}_0)$
- (b).  $\widehat{H}^0(X,\mathcal{F})\simeq \widehat{H}^0(U,\mathcal{F}).$

- Basta:  $\mathcal{F}_0 := \mathcal{F}|_{X_0}$  reflexivo.
- Basta:  $\operatorname{prof} \mathcal{F}_{0,x_0} \geq 2$  para todo  $x_0 \in X_0$  de codim 2. (Hartshorne)
- Seja U = X Z. Basta que  $H^1_{Z_0}(\mathcal{F}_0) = 0$ .
- De  $H^1(X_0, \mathcal{F}_0) = 0$ , basta  $\mathcal{F}_0(X_0) \twoheadrightarrow \mathcal{F}_0(U_0)$ . Segue de:
- (a).  $\widehat{H}^0(U,\mathcal{F}) \twoheadrightarrow H^0(U_0,\mathcal{F}_0)$
- (b).  $\widehat{H}^0(X,\mathcal{F})\simeq \widehat{H}^0(U,\mathcal{F})$ .
- (a) usa  $H^1(U_0, \mathcal{F}_0) = H^1(U_0, (\mathcal{F}_0)^{\vee\vee}) = H^2_{Z_0}(X_0, (\mathcal{F}_0)^{\vee\vee}) = 0$  por  $\operatorname{codim}(Z_0, X_0) \geq 3$ .

- Basta:  $\mathcal{F}_0 := \mathcal{F}|_{X_0}$  reflexivo.
- Basta:  $\operatorname{prof} \mathcal{F}_{0,x_0} \geq 2$  para todo  $x_0 \in X_0$  de codim 2. (Hartshorne)
- Seja U = X Z. Basta que  $H^1_{Z_0}(\mathcal{F}_0) = 0$ .
- De  $H^1(X_0, \mathcal{F}_0) = 0$ , basta  $\mathcal{F}_0(X_0) \twoheadrightarrow \mathcal{F}_0(U_0)$ . Segue de:
- (a).  $\widehat{H}^0(U,\mathcal{F}) \twoheadrightarrow H^0(U_0,\mathcal{F}_0)$
- (b).  $\widehat{H}^0(X,\mathcal{F})\simeq \widehat{H}^0(U,\mathcal{F})$ .
- (a) usa  $H^1(U_0, \mathcal{F}_0) = H^1(U_0, (\mathcal{F}_0)^{\vee \vee}) = H^2_{Z_0}(X_0, (\mathcal{F}_0)^{\vee \vee}) = 0$  por  $\operatorname{codim}(Z_0, X_0) \geq 3$ .  $\Rightarrow$  levantar seções.

- Basta:  $\mathcal{F}_0 := \mathcal{F}|_{X_0}$  reflexivo.
- Basta:  $\operatorname{prof} \mathcal{F}_{0,x_0} \geq 2$  para todo  $x_0 \in X_0$  de codim 2. (Hartshorne)
- ullet Seja U=X-Z. Basta que  $H^1_{Z_0}(\mathcal{F}_0)=0$ .
- De  $H^1(X_0, \mathcal{F}_0) = 0$ , basta  $\mathcal{F}_0(X_0) \twoheadrightarrow \mathcal{F}_0(U_0)$ . Segue de:
- (a).  $\widehat{H}^0(U,\mathcal{F}) \twoheadrightarrow \widehat{H}^0(U_0,\mathcal{F}_0)$
- (b).  $\widehat{H}^0(X,\mathcal{F})\simeq \widehat{H}^0(U,\mathcal{F}).$
- (a) usa  $H^1(U_0, \mathcal{F}_0) = H^1(U_0, (\mathcal{F}_0)^{\vee\vee}) = H^2_{Z_0}(X_0, (\mathcal{F}_0)^{\vee\vee}) = 0$  por  $\operatorname{codim}(Z_0, X_0) \geq 3$ .  $\Rightarrow$  levantar seções.
- (b) usa SGA2.



### Exemplo

$$R = k[t], X = \operatorname{Spec} R[x, y, z]$$
. Fibra central  $X_0$ . Define-se

$$T_{\mathcal{V}} = \mathcal{O}(x\partial_x - y\partial_y) + \mathcal{O}(t\partial_x - y\partial_z) + \mathcal{O}(t\partial_y - x\partial_z).$$

### Exemplo

$$R = k[t], X = \operatorname{Spec} R[x, y, z]$$
. Fibra central  $X_0$ . Define-se

$$T_{\mathcal{V}} = \mathcal{O}(x\partial_x - y\partial_y) + \mathcal{O}(t\partial_x - y\partial_z) + \mathcal{O}(t\partial_y - x\partial_z).$$

**~**→

$$T_{\mathcal{V}_0} = \mathcal{O}_{X_0}(x\partial_x - y\partial_y) + \mathcal{O}_{X_0}\partial_z.$$

#### Exemplo

 $R = k[t], X = \operatorname{Spec} R[x, y, z]$ . Fibra central  $X_0$ . Define-se

$$T_{\mathcal{V}} = \mathcal{O}(x\partial_{x} - y\partial_{y}) + \mathcal{O}(t\partial_{x} - y\partial_{z}) + \mathcal{O}(t\partial_{y} - x\partial_{z}).$$

**~**→

$$T_{\mathcal{V}_0} = \mathcal{O}_{X_0}(x\partial_x - y\partial_y) + \mathcal{O}_{X_0}\partial_z.$$

Temos Sing(V)  $\cap X_0 = \{x = y = 0\}$ 

#### Exemplo

 $R = k[t], X = \operatorname{Spec} R[x, y, z]$ . Fibra central  $X_0$ . Define-se

$$T_{\mathcal{V}} = \mathcal{O}(x\partial_{x} - y\partial_{y}) + \mathcal{O}(t\partial_{x} - y\partial_{z}) + \mathcal{O}(t\partial_{y} - x\partial_{z}).$$

**~**→

$$T_{\mathcal{V}_0} = \mathcal{O}_{X_0}(x\partial_x - y\partial_y) + \mathcal{O}_{X_0}\partial_z.$$

Temos  $\operatorname{Sing}(\mathcal{V}) \cap X_0 = \{x = y = 0\} \Rightarrow \operatorname{\mathsf{codim}} \operatorname{Sing}(\mathcal{V}) \cap X_0 = 2.$ 

#### Exemplo

 $R = k[t], X = \operatorname{Spec} R[x, y, z]$ . Fibra central  $X_0$ . Define-se

$$T_{\mathcal{V}} = \mathcal{O}(x\partial_{x} - y\partial_{y}) + \mathcal{O}(t\partial_{x} - y\partial_{z}) + \mathcal{O}(t\partial_{y} - x\partial_{z}).$$

**~**→

$$T_{\mathcal{V}_0} = \mathcal{O}_{X_0}(x\partial_x - y\partial_y) + \mathcal{O}_{X_0}\partial_z.$$

Temos  $\operatorname{Sing}(\mathcal{V}) \cap X_0 = \{x = y = 0\} \Rightarrow \operatorname{codim} \operatorname{Sing}(\mathcal{V}) \cap X_0 = 2.$   $\rightsquigarrow T_{\mathcal{V}} \text{ n\~ao} \'e \ell\ell \text{ mas } T_{\mathcal{V}_0} \'e \ell\ell.$ 

Definição

Fibrado é rígido  $\Leftrightarrow H^1 = 0$ .

Definição

Fibrado é rígido  $\Leftrightarrow H^1 = 0$ .

Corolário

Seja  $\Bbbk = \overline{\Bbbk}$  corpo,

# Definição

Fibrado é rígido  $\Leftrightarrow H^1 = 0$ .

#### Corolário

Seja  $\mathbb{k} = \overline{\mathbb{k}}$  corpo,  $X = X_0 \times_{\mathbb{k}} S$ .

# Definição

Fibrado é rígido  $\Leftrightarrow H^1 = 0$ .

#### Corolário

Seja  $\Bbbk = \overline{\Bbbk}$  corpo,  $X = X_0 \times_{\Bbbk} S$ . Seja  $E \to X_0$  fibrado rígido.

# Definição

Fibrado é rígido  $\Leftrightarrow H^1 = 0$ .

#### Corolário

Seja 
$$\mathbb{k} = \overline{\mathbb{k}}$$
 corpo,  $X = X_0 \times_{\mathbb{k}} S$ . Seja  $E \to X_0$  fibrado rígido.  $\Rightarrow \{s \in S : T_{\mathcal{V}_s} \simeq E\}$  aberto.

# Definição

Fibrado é rígido  $\Leftrightarrow H^1 = 0$ .

#### Corolário

Seja 
$$\mathbb{k} = \overline{\mathbb{k}}$$
 corpo,  $X = X_0 \times_{\mathbb{k}} S$ . Seja  $E \to X_0$  fibrado rígido.  $\Rightarrow \{s \in S : T_{\mathcal{V}_s} \simeq E\}$  aberto.

Casos interessantes:

# Definição

Fibrado é rígido  $\Leftrightarrow H^1 = 0$ .

#### Corolário

Seja 
$$\mathbb{k} = \overline{\mathbb{k}}$$
 corpo,  $X = X_0 \times_{\mathbb{k}} S$ . Seja  $E \to X_0$  fibrado rígido.  $\Rightarrow \{s \in S : T_{\mathcal{V}_s} \simeq E\}$  aberto.

<u>Casos interessantes</u>:  $\rightsquigarrow X_0$  racional  $+ E = \mathcal{O}^r$ .

# Definição

Fibrado é rígido  $\Leftrightarrow H^1 = 0$ .

#### Corolário

Seja 
$$\mathbb{k} = \overline{\mathbb{k}}$$
 corpo,  $X = X_0 \times_{\mathbb{k}} S$ . Seja  $E \to X_0$  fibrado rígido.  $\Rightarrow \{s \in S : T_{\mathcal{V}_s} \simeq E\}$  aberto.

 $\underline{Casos\ interessantes} \colon \rightsquigarrow X_0\ racional\ +\ E = \mathcal{O}^r.$ 

Por exemplo:

# Definição

Fibrado é rígido  $\Leftrightarrow H^1 = 0$ .

#### Corolário

Seja  $\mathbb{k} = \overline{\mathbb{k}}$  corpo,  $X = X_0 \times_{\mathbb{k}} S$ . Seja  $E \to X_0$  fibrado rígido.  $\Rightarrow \{s \in S : T_{\mathcal{V}_s} \simeq E\}$  aberto.

<u>Casos interessantes</u>:  $\rightsquigarrow X_0$  racional  $+ E = \mathcal{O}^r$ .

Por exemplo: Seja  $G/\mathbb{C}$  adjunto e semisimples;  $\mathfrak{g} = \text{Lie } G$ .

# Definição

Fibrado é rígido  $\Leftrightarrow H^1 = 0$ .

#### Corolário

Seja  $\mathbb{k} = \overline{\mathbb{k}}$  corpo,  $X = X_0 \times_{\mathbb{k}} S$ . Seja  $E \to X_0$  fibrado rígido.  $\Rightarrow \{s \in S : T_{\mathcal{V}_s} \simeq E\}$  aberto.

Casos interessantes:  $\rightsquigarrow X_0$  racional  $+ E = \mathcal{O}^r$ .

Por exemplo: Seja  $G/\mathbb{C}$  adjunto e semisimples;  $\mathfrak{g}=\mathrm{Lie}\,G$ . Seja  $X/\mathbb{C}$  proj. lisa,  $G\circlearrowleft X$  com  $\mathfrak{g}\simeq H^0(T_X)$ .

## Definição

Fibrado é rígido  $\Leftrightarrow H^1 = 0$ .

#### Corolário

Seja 
$$\mathbb{k} = \overline{\mathbb{k}}$$
 corpo,  $X = X_0 \times_{\mathbb{k}} S$ . Seja  $E \to X_0$  fibrado rígido.  $\Rightarrow \{s \in S : T_{\mathcal{V}_s} \simeq E\}$  aberto.

 $\underline{\mathsf{Casos}\ \mathsf{interessantes}} \colon \rightsquigarrow X_0\ \mathsf{racional} + E = \mathcal{O}^r.$ 

Por exemplo: Seja  $G/\mathbb{C}$  adjunto e semisimples;  $\mathfrak{g}=\mathrm{Lie}\,G$ . Seja  $X/\mathbb{C}$  proj. Iisa,  $G\circlearrowleft X$  com  $\mathfrak{g}\simeq H^0(T_X)$ .  $\leadsto$  estudar

$$\left\{\begin{array}{c} \mathsf{sub\'algebras}\ \mathsf{de}\\ \mathsf{dim}.\ m\ \mathsf{de}\ \mathfrak{g} \end{array}\right\} \longrightarrow \left\{\begin{array}{c} \mathsf{Folhea\~{c}\~{o}es}\ \mathsf{em}\ X\\ \mathsf{de}\ \mathsf{posto}\ m \end{array}\right\}$$
 
$$\mathfrak{h}\longmapsto \mathcal{A}(\mathfrak{h})$$

## Definição

Fibrado é rígido  $\Leftrightarrow H^1 = 0$ .

#### Corolário

Seja 
$$\mathbb{k} = \overline{\mathbb{k}}$$
 corpo,  $X = X_0 \times_{\mathbb{k}} S$ . Seja  $E \to X_0$  fibrado rígido.  $\Rightarrow \{s \in S : T_{\mathcal{V}_s} \simeq E\}$  aberto.

 $\underline{Casos\ interessantes} \colon \rightsquigarrow X_0\ racional\ +\ E = \mathcal{O}^r.$ 

Por exemplo: Seja  $G/\mathbb{C}$  adjunto e semisimples;  $\mathfrak{g}=\mathrm{Lie}\,G$ . Seja  $X/\mathbb{C}$  proj. lisa,  $G\circlearrowleft X$  com  $\mathfrak{g}\simeq H^0(T_X)$ .  $\leadsto$  estudar

$$\left\{\begin{array}{c} \mathsf{sub\'algebras}\ \mathsf{de}\\ \mathsf{dim}.\ m\ \mathsf{de}\ \mathfrak{g} \end{array}\right\} \longrightarrow \left\{\begin{array}{c} \mathsf{Folhea\~{c}\~{o}es}\ \mathsf{em}\ X\\ \mathsf{de}\ \mathsf{posto}\ m \end{array}\right\}$$
 
$$\mathfrak{h}\longmapsto \mathcal{A}(\mathfrak{h})$$

# Pergunta

Quando  $\operatorname{codim}(\operatorname{Sing} \mathcal{A}(\mathfrak{h}), X) \geq 3$ ?



 $\underline{\text{Objetivo}}: \mathsf{Construir} \ \mathsf{a} \\ \mathsf{c} \\ \mathsf{o} \mathsf{e} \mathsf{tais} \ \mathsf{que} \ \mathsf{codim} \ \{v^{\natural} = 0\} \ \text{``grande.''}$ 

Objetivo : Construir ações tais que codim  $\{v^{\natural}=0\}$  "grande."

Seja A < G Borel (=Triangular superior).

 $\underline{\text{Objetivo}}: \mathsf{Construir} \ \mathsf{a} \hat{\mathsf{coes}} \ \mathsf{tais} \ \mathsf{que} \ \mathsf{codim} \ \{v^{\natural} = 0\} \ \text{``grande.''}$ 

Seja A < G Borel (=Triangular superior). Seja X = G/A variedade de Borel:

 $X(\mathbb{C}) = \{ \text{subgrupos Borel de } G \}.$ 

Objetivo : Construir ações tais que codim  $\{v^{\natural}=0\}$  "grande."

Seja A < G Borel (=Triangular superior). Seja X = G/A variedade de Borel:

$$X(\mathbb{C}) = \{ \text{subgrupos Borel de } G \}.$$

## Exemplo

Se 
$$G = SL_n$$
 e  $A = \{ triangulares sup. \}$ 

Objetivo : Construir ações tais que codim  $\{v^{\natural}=0\}$  "grande."

Seja A < G Borel (=Triangular superior). Seja X = G/A variedade de Borel:

$$X(\mathbb{C}) = \{ \text{subgrupos Borel de } G \}.$$

## Exemplo

Se 
$$G = \operatorname{SL}_n$$
 e  $A = \{ \text{triangulares sup.} \} \Rightarrow$ 

 $X = \{ \text{bandeiras completas} \}.$ 

 $\underline{\text{Objetivo}}$ : Construir ações tais que codim  $\{v^{\natural}=0\}$  "grande."

Seja A < G Borel (=Triangular superior). Seja X = G/A variedade de Borel:

$$X(\mathbb{C}) = \{ \text{subgrupos Borel de } G \}.$$

## Exemplo

Se 
$$G = \mathrm{SL}_n$$
 e  $A = \{ \mathsf{triangulares} \ \mathsf{sup.} \} \Rightarrow$ 

$$X = \{ \text{bandeiras completas} \}.$$

### Observação

Decomposição Bruhat  $\Rightarrow X$  racional.



 $\underline{\text{Objetivo}}: \mathsf{Construir} \ \mathsf{a} \\ \mathsf{c} \\ \mathsf{o} \mathsf{es} \ \mathsf{tais} \ \mathsf{que} \ \mathsf{codim} \ \{ v^{\natural} = 0 \} \ \text{``grande.''}$ 

Seja A < G Borel (=Triangular superior). Seja X = G/A variedade de Borel:

$$X(\mathbb{C}) = \{ \text{subgrupos Borel de } G \}.$$

## Exemplo

Se 
$$G = \mathrm{SL}_n$$
 e  $A = \{ \mathsf{triangulares} \ \mathsf{sup.} \} \Rightarrow$ 

$$X = \{ \text{bandeiras completas} \}.$$

### Observação

Decomposição Bruhat  $\Rightarrow X$  racional.  $\Rightarrow H^1(\mathcal{O}) = 0$ .



Dado  $v \in \mathfrak{g}$ ,

$$X_v:=\{v^{\natural}=0\}=\{B\in X\,:\,v\in\operatorname{Lie}B\}.$$

Dado  $v \in \mathfrak{g}$ ,

$$X_{v} := \{v^{\natural} = 0\} = \{B \in X : v \in \text{Lie } B\}.$$

Variedades aparecem na teoria da resolução de Springer.

Dado  $v \in \mathfrak{g}$ ,

$$X_{v} := \{v^{\natural} = 0\} = \{B \in X : v \in \text{Lie } B\}.$$

Variedades aparecem na teoria da resolução de Springer.

Teorema (Steinberg, Spaltenstein)

$$\operatorname{codim} X_v = \frac{1}{2} \mathrm{codim} \, Z_{\mathfrak{g}}(v).$$

Dado  $v \in \mathfrak{g}$ ,

$$X_{v} := \{v^{\natural} = 0\} = \{B \in X : v \in \text{Lie } B\}.$$

Variedades aparecem na teoria da resolução de Springer.

Teorema (Steinberg, Spaltenstein)

$$\operatorname{codim} X_v = \frac{1}{2} \operatorname{codim} Z_{\mathfrak{g}}(v).$$

 $\rightsquigarrow$  possível minorar codim  $X_v$  através de teoria dos grupos.



Fixamos T toro maximal de A,  $\mathfrak{t}=\operatorname{Lie} T$ , e  $\Phi\subset\mathfrak{t}^*$  systema de raízes.

Fixamos T toro maximal de A,  $\mathfrak{t}=\operatorname{Lie} T$ , e  $\Phi\subset\mathfrak{t}^*$  systema de raízes.

### Proposição

•  $v \in \mathfrak{t} - \{0\}$ 

Fixamos T toro maximal de A,  $\mathfrak{t} = \operatorname{Lie} T$ , e  $\Phi \subset \mathfrak{t}^*$  systema de raízes.

### Proposição

- $v \in \mathfrak{t} \{0\}$
- $(1) \ \ Z_{\mathfrak{g}}(v) = \mathfrak{t} \oplus \bigoplus_{\alpha \in \Phi \cap v^{\perp}} \mathfrak{g}_{\alpha}.$
- (2)  $\operatorname{codim} Z_{\mathfrak{g}}(v) = \#(\Phi \setminus \Phi \cap v^{\perp}).$

Fixamos T toro maximal de A,  $\mathfrak{t} = \operatorname{Lie} T$ , e  $\Phi \subset \mathfrak{t}^*$  systema de raízes.

### Proposição

- $v \in \mathfrak{t} \{0\}$
- $(1) \ \ Z_{\mathfrak{g}}(v) = \mathfrak{t} \oplus \bigoplus_{\alpha \in \Phi \cap v^{\perp}} \mathfrak{g}_{\alpha}.$
- (2)  $\operatorname{codim} Z_{\mathfrak{g}}(v) = \#(\Phi \setminus \Phi \cap v^{\perp}).$
- (3)  $Φ ∩ v^{\bot}$  é sub-sistema de raízes de Φ.

Fixamos T toro maximal de A,  $\mathfrak{t} = \operatorname{Lie} T$ , e  $\Phi \subset \mathfrak{t}^*$  systema de raízes.

### Proposição

- $v \in \mathfrak{t} \{0\}$
- $(1) \ \ Z_{\mathfrak{g}}(v) = \mathfrak{t} \oplus \bigoplus_{\alpha \in \Phi \cap v^{\perp}} \mathfrak{g}_{\alpha}.$
- (2)  $\operatorname{codim} Z_{\mathfrak{g}}(v) = \#(\Phi \setminus \Phi \cap v^{\perp}).$
- (3)  $\Phi \cap v^{\perp}$  é sub-sistema de raízes de  $\Phi$ .
- $\rightsquigarrow$  Minorar codim  $Z(v) \Leftarrow$  majorar  $\Phi \cap v^{\perp}$ .

Fixamos T toro maximal de A,  $\mathfrak{t} = \operatorname{Lie} T$ , e  $\Phi \subset \mathfrak{t}^*$  systema de raízes.

### Proposição

- $v \in \mathfrak{t} \{0\}$
- $(1) \ \ Z_{\mathfrak{g}}(v) = \mathfrak{t} \oplus \bigoplus_{\alpha \in \Phi \cap v^{\perp}} \mathfrak{g}_{\alpha}.$
- (2)  $\operatorname{codim} Z_{\mathfrak{g}}(v) = \#(\Phi \setminus \Phi \cap v^{\perp}).$
- (3)  $\Phi \cap v^{\perp}$  é sub-sistema de raízes de  $\Phi$ .
- $\rightsquigarrow$  Minorar codim  $Z(v) \Leftarrow$  majorar  $\Phi \cap v^{\perp}$ .

### Proposição (Bourbaki)

diagrama Dynkin  $\Phi \cap v^{\perp} = Remover$  arestas e vértices do diagrama de  $\Phi$ .



Fixamos T toro maximal de A,  $\mathfrak{t} = \operatorname{Lie} T$ , e  $\Phi \subset \mathfrak{t}^*$  systema de raízes.

### Proposição

- $v \in \mathfrak{t} \{0\}$
- $(1) \ \ Z_{\mathfrak{g}}(v) = \mathfrak{t} \oplus \bigoplus_{\alpha \in \Phi \cap v^{\perp}} \mathfrak{g}_{\alpha}.$
- (2) codim  $Z_{\mathfrak{g}}(v) = \#(\Phi \setminus \Phi \cap v^{\perp}).$
- (3)  $\Phi \cap v^{\perp}$  é sub-sistema de raízes de  $\Phi$ .
- $\rightsquigarrow$  Minorar codim  $Z(v) \Leftarrow$  majorar  $\Phi \cap v^{\perp}$ .

### Proposição (Bourbaki)

diagrama Dynkin  $\Phi \cap v^{\perp} = Remover$  arestas e vértices do diagrama de  $\Phi$ .

#### Corolário

 $Tabelas \Rightarrow bom\ controle\ de\ min\ codim\ Z(v).$ 

Temos raízes positivas  $\Phi^+$  e raiz mais longa  $\varrho$ .

Temos raízes positivas  $\Phi^+$  e raiz mais longa  $\varrho$ .

Proposição (Collingwood-McGovern)

Seja  $v \in \mathfrak{g}_{\mathrm{nil}} - \{0\}$  com Gv minimal

Temos raízes positivas  $\Phi^+$  e raiz mais longa  $\varrho$ .

Seja 
$$v \in \mathfrak{g}_{\mathrm{nil}} - \{0\}$$
 com Gv minimal  $\Rightarrow$ 

$$\begin{aligned} \operatorname{\mathsf{codim}} Z(v) &= \operatorname{\mathsf{dim}} \mathsf{G} v \\ &= 1 + \#(\Phi^+ \setminus \varrho^\perp). \end{aligned}$$

Temos raízes positivas  $\Phi^+$  e raiz mais longa  $\varrho$ .

Proposição (Collingwood-McGovern)

Seja 
$$v \in \mathfrak{g}_{\mathrm{nil}} - \{0\}$$
 com Gv minimal  $\Rightarrow$ 

$$\operatorname{\mathsf{codim}} Z(v) = \operatorname{\mathsf{dim}} \mathsf{G} v$$
 
$$= 1 + \#(\Phi^+ \setminus \varrho^\perp).$$

Teorema (Suter, Wang)

$$\#(\Phi \setminus \widetilde{\alpha}^{\perp}) = 2h_{\Phi}^{\vee} - 3,$$

onde  $h_{\Phi}^{\vee}$  é o número de Coxeter dual.

Temos raízes positivas  $\Phi^+$  e raiz mais longa  $\varrho$ .

### Proposição (Collingwood-McGovern)

Seja 
$$v \in \mathfrak{g}_{\mathrm{nil}} - \{0\}$$
 com Gv minimal  $\Rightarrow$ 

$$\operatorname{\mathsf{codim}} Z(v) = \operatorname{\mathsf{dim}} Gv$$
 
$$= 1 + \#(\Phi^+ \setminus \varrho^\perp).$$

### Teorema (Suter, Wang)

$$\#(\Phi \setminus \widetilde{\alpha}^{\perp}) = 2h_{\Phi}^{\vee} - 3,$$

onde  $h_{\Phi}^{\vee}$  é o número de Coxeter dual.

#### Corolário

 $Tabelas \Rightarrow bom\ controle\ sobre\ min\ codim\ Z(v).$ 



Seja 
$$\mathfrak{h} = \mathbb{C} v + \mathbb{C} w < \mathfrak{g}$$
.

Seja 
$$\mathfrak{h}=\mathbb{C}v+\mathbb{C}w<\mathfrak{g}$$
. Temos 
$$\left\{x\in X:\begin{array}{c} (\mathcal{O}_X\otimes\mathfrak{h})|_x\to T_X|_x\\ \text{n\~ao injetiva}\end{array}\right\}=\underbrace{\bigcup_{(\lambda:\mu)\in\mathbb{P}^1}\mathrm{Sing}(\lambda v^{\natural}+\mu w^{\natural})}_{1+\dim\mathrm{Sing}}.$$

Seja 
$$\mathfrak{h} = \mathbb{C}v + \mathbb{C}w < \mathfrak{g}$$
. Temos 
$$\left\{x \in X : \begin{array}{c} (\mathcal{O}_X \otimes \mathfrak{h})|_x \to T_X|_x \\ \text{n\~ao injetiva} \end{array}\right\} = \underbrace{\bigcup_{(\lambda:\mu) \in \mathbb{P}^1} \operatorname{Sing}(\lambda v^{\natural} + \mu w^{\natural})}_{1 + \dim \operatorname{Sing}}.$$

#### Corolário

Se 
$$\mathfrak{g} \notin \{A_1, A_2, A_3, B_2, C_3, G_2\}$$

Seja 
$$\mathfrak{h} = \mathbb{C}v + \mathbb{C}w < \mathfrak{g}$$
. Temos 
$$\left\{x \in X : \begin{array}{c} (\mathcal{O}_X \otimes \mathfrak{h})|_X \to T_X|_X \\ \text{não injetiva} \end{array}\right\} = \underbrace{\bigcup_{(\lambda:\mu) \in \mathbb{P}^1} \operatorname{Sing}(\lambda v^{\natural} + \mu w^{\natural})}_{1 + \dim \operatorname{Sing}}.$$

#### Corolário

Se 
$$\mathfrak{g} \not\in \{A_1, A_2, A_3, B_2, C_3, G_2\} \Rightarrow$$

$$\operatorname{\mathsf{codim}}\operatorname{Sing}(\mathcal{A}(\mathfrak{h})) \geq 3$$

$$e \ \mathcal{O}_X \otimes \mathfrak{h} = \mathcal{T}_{\mathcal{A}(\mathfrak{h})}$$



### Caso $\mathbb{P}^n$

### Observação

Seja  $n \geq 4$ . Fácil construir  $\mathfrak{h} < \mathfrak{sl}_{n+1} = H^0(T_{\mathbb{P}^n})$  de dimensão 2 tais que

 $\operatorname{\mathsf{codim}}\operatorname{\mathsf{Sing}}\mathcal{A}(\mathfrak{h})\geq 3$ 

em  $\mathbb{P}^n$ .

#### Duas alternativas:

(1) Trabalhar com formas diferenciais "LDS".

#### Duas alternativas:

- (1) Trabalhar com formas diferenciais "LDS".
- (2) Trabalhar com  $\operatorname{Quot}(T_X)$ . (F. Qualbrunn, M. Corrêa, M. Jardim, A. Muniz, ...)

#### Duas alternativas:

- (1) Trabalhar com formas diferenciais "LDS".
- (2) Trabalhar com  $Quot(T_X)$ . (F. Qualbrunn, M. Corrêa, M. Jardim, A. Muniz, ...)

## Definição (A. Medeiros)

 $X \stackrel{f}{\rightarrow} S$  liso.

#### Duas alternativas:

- (1) Trabalhar com formas diferenciais "LDS".
- (2) Trabalhar com  $Quot(T_X)$ . (F. Qualbrunn, M. Corrêa, M. Jardim, A. Muniz, ...)

### Definição (A. Medeiros)

$$X \stackrel{f}{\to} S$$
 liso.  $L \in \text{Pic}(X)$ ,  $q \in \mathbb{N}_{>0}$ .

#### Duas alternativas:

- (1) Trabalhar com formas diferenciais "LDS".
- (2) Trabalhar com  $Quot(T_X)$ . (F. Qualbrunn, M. Corrêa, M. Jardim, A. Muniz, ...)

### Definição (A. Medeiros)

$$X \xrightarrow{f} S$$
 liso.  $L \in \operatorname{Pic}(X)$ ,  $q \in \mathbb{N}_{>0}$ . Uma  $q$ -forma LDS  $\omega \in \Gamma(X, \Omega_f^q \otimes L)$  com coef. em  $L$  é

#### Duas alternativas:

- (1) Trabalhar com formas diferenciais "LDS".
- (2) Trabalhar com  $Quot(T_X)$ . (F. Qualbrunn, M. Corrêa, M. Jardim, A. Muniz, ...)

### Definição (A. Medeiros)

$$X \stackrel{f}{ o} S$$
 liso.  $L \in \operatorname{Pic}(X)$ ,  $q \in \mathbb{N}_{>0}$ . Uma  $q$ -forma LDS  $\omega \in \Gamma(X, \Omega_f^q \otimes L)$  com coef. em  $L$  é (Sin.)  $\operatorname{codim}\{\omega = 0\} \geq 2$ .

#### Duas alternativas:

- (1) Trabalhar com formas diferenciais "LDS".
- (2) Trabalhar com  $Quot(T_X)$ . (F. Qualbrunn, M. Corrêa, M. Jardim, A. Muniz, ...)

### Definição (A. Medeiros)

$$X \xrightarrow{f} S$$
 liso.  $L \in \operatorname{Pic}(X)$ ,  $q \in \mathbb{N}_{>0}$ . Uma  $q$ -forma LDS  $\omega \in \Gamma(X, \Omega_f^q \otimes L)$  com coef. em  $L$  é

(Sin.) 
$$\operatorname{codim}\{\omega=0\}\geq 2$$
.

(Dec.) Para  $x \in \mathrm{Ass}(X)$ ,  $\mathcal{O}_x \omega_x = \alpha_1 \wedge \ldots \wedge \alpha_q$ , com  $\alpha_1, \ldots, \alpha_q$  parte de base em  $\Omega^1_{f,x}$ 

#### Duas alternativas:

- (1) Trabalhar com formas diferenciais "LDS".
- (2) Trabalhar com  $Quot(T_X)$ . (F. Qualbrunn, M. Corrêa, M. Jardim, A. Muniz, ...)

### Definição (A. Medeiros)

$$X \xrightarrow{f} S$$
 liso.  $L \in \operatorname{Pic}(X)$ ,  $q \in \mathbb{N}_{>0}$ . Uma  $q$ -forma LDS  $\omega \in \Gamma(X, \Omega_f^q \otimes L)$  com coef. em  $L$  é

(Sin.) 
$$\operatorname{codim}\{\omega=0\}\geq 2$$
.

(Dec.) Para 
$$x \in \mathrm{Ass}(X)$$
,  $\mathcal{O}_x \omega_x = \alpha_1 \wedge \ldots \wedge \alpha_q$ , com  $\alpha_1, \ldots, \alpha_q$  parte de base em  $\Omega^1_{f,x}$ 

### Definição

Define-se  $\mathcal{K}(\omega)$ 



#### Duas alternativas:

- (1) Trabalhar com formas diferenciais "LDS".
- (2) Trabalhar com  $Quot(T_X)$ . (F. Qualbrunn, M. Corrêa, M. Jardim, A. Muniz, ...)

### Definição (A. Medeiros)

$$X \xrightarrow{f} S$$
 liso.  $L \in \operatorname{Pic}(X)$ ,  $q \in \mathbb{N}_{>0}$ . Uma  $q$ -forma LDS  $\omega \in \Gamma(X, \Omega_f^q \otimes L)$  com coef. em  $L$  é

(Sin.) 
$$\operatorname{codim}\{\omega=0\}\geq 2$$
.

(Dec.) Para 
$$x \in \mathrm{Ass}(X)$$
,  $\mathcal{O}_x \omega_x = \alpha_1 \wedge \ldots \wedge \alpha_q$ , com  $\alpha_1, \ldots, \alpha_q$  parte de base em  $\Omega^1_{f,x}$ 

### Definição

Define-se  $\mathcal{K}(\omega)$  por

$$T_{\mathcal{K}(\omega)} = \{ v \in T_f : \omega(v, -) = 0 \} \subset T_f.$$



#### Lema

(1) 
$$\{\omega = 0\} = \operatorname{Sing} \mathcal{K}(\omega)$$
.

#### Lema

- (1)  $\{\omega = 0\} = \operatorname{Sing} \mathcal{K}(\omega)$ .
- (2) X loc. fatorial

#### Lema

- (1)  $\{\omega = 0\} = \operatorname{Sing} \mathcal{K}(\omega)$ .
- (2) X loc. fatorial  $\Rightarrow$  toda  $\mathcal V$  associada q-forma torcida LDS com coefs. em det  $Q_{\mathcal V} = \left( \wedge^{\operatorname{top}} Q_{\mathcal V} \right)^{\vee \vee}$ .

#### Lema

- (1)  $\{\omega = 0\} = \operatorname{Sing} \mathcal{K}(\omega)$ .
- (2) X loc. fatorial  $\Rightarrow$  toda  $\mathcal V$  associada q-forma torcida LDS com coefs. em det  $Q_{\mathcal V} = \left( \wedge^{\operatorname{top}} Q_{\mathcal V} \right)^{\vee \vee}$ .

### Exemplo

$$X$$
 liso,  $G \circlearrowleft X \in \mathfrak{g} = H^0(T_X)$ .

#### Lema

- (1)  $\{\omega = 0\} = \operatorname{Sing} \mathcal{K}(\omega)$ .
- (2) X loc. fatorial  $\Rightarrow$  toda  $\mathcal V$  associada q-forma torcida LDS com coefs. em det  $Q_{\mathcal V} = \left( \wedge^{\operatorname{top}} Q_{\mathcal V} \right)^{\vee \vee}$ .

#### Exemplo

X liso,  $G \circlearrowleft X \in \mathfrak{g} = H^0(T_X)$ . Seja  $\mathfrak{h} < \mathfrak{g}$  com codim  $\operatorname{Sing}(T_X/\mathcal{O}_X \otimes \mathfrak{h}) \geq 2$ .

#### Lema

- (1)  $\{\omega = 0\} = \operatorname{Sing} \mathcal{K}(\omega)$ .
- (2) X loc. fatorial  $\Rightarrow$  toda  $\mathcal V$  associada q-forma torcida LDS com coefs. em det  $Q_{\mathcal V} = \left( \wedge^{\operatorname{top}} Q_{\mathcal V} \right)^{\vee \vee}$ .

#### Exemplo

$$X$$
 liso,  $G \circlearrowleft X$  e  $\mathfrak{g} = H^0(T_X)$ . Seja  $\mathfrak{h} < \mathfrak{g}$  com codim  $\operatorname{Sing}(T_X/\mathcal{O}_X \otimes \mathfrak{h}) \geq 2$ . Se  $v_1^{\mathfrak{h}} \wedge \cdots \wedge v_m^{\mathfrak{h}} \in H^0(\wedge^m T_X)$ 

#### Lema

- (1)  $\{\omega = 0\} = \operatorname{Sing} \mathcal{K}(\omega)$ .
- (2) X loc. fatorial  $\Rightarrow$  toda  $\mathcal V$  associada q-forma torcida LDS com coefs. em det  $Q_{\mathcal V} = \left( \wedge^{\operatorname{top}} Q_{\mathcal V} \right)^{\vee \vee}$ .

#### Exemplo

X liso,  $G \circlearrowleft X$  e  $\mathfrak{g} = H^0(T_X)$ . Seja  $\mathfrak{h} < \mathfrak{g}$  com codim  $\mathrm{Sing}(T_X/\mathcal{O}_X \otimes \mathfrak{h}) \geq 2$ . Se  $v_1^{\sharp} \wedge \cdots \wedge v_m^{\sharp} \in H^0(\wedge^m T_X) \leadsto$  forma torcida em  $H^0(\wedge^m T_X) = H^0(\Omega^q \otimes \det T_X)$ .

#### Lema

- (1)  $\{\omega = 0\} = \operatorname{Sing} \mathcal{K}(\omega)$ .
- (2) X loc. fatorial  $\Rightarrow$  toda  $\mathcal V$  associada q-forma torcida LDS com coefs. em det  $Q_{\mathcal V} = \left( \wedge^{\operatorname{top}} Q_{\mathcal V} \right)^{\vee \vee}$ .

#### Exemplo

X liso,  $G \circlearrowleft X$  e  $\mathfrak{g} = H^0(T_X)$ . Seja  $\mathfrak{h} < \mathfrak{g}$  com codim  $\mathrm{Sing}(T_X/\mathcal{O}_X \otimes \mathfrak{h}) \geq 2$ . Se  $v_1^{\sharp} \wedge \cdots \wedge v_m^{\sharp} \in H^0(\wedge^m T_X) \leadsto$  forma torcida em  $H^0(\wedge^m T_X) = H^0(\Omega^q \otimes \det T_X)$ .

### Definição

$$D(q, L) = \{ \omega \in \mathbb{P}\Gamma(X, \Omega_X^q \otimes L) : \omega \in \mathsf{LDS} \}.$$

#### Lema

- (1)  $\{\omega = 0\} = \operatorname{Sing} \mathcal{K}(\omega)$ .
- (2) X loc. fatorial  $\Rightarrow$  toda  $\mathcal V$  associada q-forma torcida LDS com coefs. em det  $Q_{\mathcal V} = \left( \wedge^{\operatorname{top}} Q_{\mathcal V} \right)^{\vee \vee}$ .

#### Exemplo

X liso,  $G \circlearrowleft X$  e  $\mathfrak{g} = H^0(T_X)$ . Seja  $\mathfrak{h} < \mathfrak{g}$  com codim  $\mathrm{Sing}(T_X/\mathcal{O}_X \otimes \mathfrak{h}) \geq 2$ . Se  $v_1^{\sharp} \wedge \cdots \wedge v_m^{\sharp} \in H^0(\wedge^m T_X) \leadsto$  forma torcida em  $H^0(\wedge^m T_X) = H^0(\Omega^q \otimes \det T_X)$ .

### Definição

$$D(q, L) = \{ \omega \in \mathbb{P}\Gamma(X, \Omega_X^q \otimes L) : \omega \in LDS \}.$$

$$B(q, L) = \{\omega \in D(q, L) : \text{integrabilidade}\}.$$



#### Lema

- (1)  $\{\omega = 0\} = \operatorname{Sing} \mathcal{K}(\omega)$ .
- (2) X loc. fatorial  $\Rightarrow$  toda  $\mathcal V$  associada q-forma torcida LDS com coefs. em det  $Q_{\mathcal V} = \left( \wedge^{\operatorname{top}} Q_{\mathcal V} \right)^{\vee \vee}$ .

#### Exemplo

X liso,  $G \circlearrowleft X$  e  $\mathfrak{g} = H^0(T_X)$ . Seja  $\mathfrak{h} < \mathfrak{g}$  com codim  $\mathrm{Sing}(T_X/\mathcal{O}_X \otimes \mathfrak{h}) \geq 2$ . Se  $v_1^{\sharp} \wedge \cdots \wedge v_m^{\sharp} \in H^0(\wedge^m T_X) \leadsto$  forma torcida em  $H^0(\wedge^m T_X) = H^0(\Omega^q \otimes \det T_X)$ .

### Definição

$$D(q, L) = \{ \omega \in \mathbb{P}\Gamma(X, \Omega_X^q \otimes L) : \omega \in LDS \}.$$

$$B(q, L) = \{\omega \in D(q, L) : \text{integrabilidade}\}.$$



Seja  $\mathfrak{g}/\mathbb{C}$  semi-simples. Seja  $m < \dim \mathfrak{g}$ .

Seja  $\mathfrak{g}/\mathbb{C}$  semi-simples. Seja  $m < \dim \mathfrak{g}$ .

Definição (Richardson)

Existe esquema

 $\mathrm{SLie}_m(\mathfrak{g})\subset\mathrm{Grass}_m(\mathfrak{g})$ 

Seja  $\mathfrak{g}/\mathbb{C}$  semi-simples. Seja  $m < \dim \mathfrak{g}$ .

Definição (Richardson)

Existe esquema

$$\mathrm{SLie}_m(\mathfrak{g})\subset\mathrm{Grass}_m(\mathfrak{g})$$

cujos  $\mathbb{C}\text{-pontos}$  são as  $\mathbb{C}\text{-sub\'algebras}$  de  $\mathfrak{g}.$ 

Seja  $\mathfrak{g}/\mathbb{C}$  semi-simples. Seja  $m<\dim\mathfrak{g}$ .

Definição (Richardson)

Existe esquema

$$\mathrm{SLie}_m(\mathfrak{g})\subset\mathrm{Grass}_m(\mathfrak{g})$$

cujos  $\mathbb{C}$ -pontos são as  $\mathbb{C}$ -subálgebras de  $\mathfrak{g}$ .

#### Teorema

Existe bijeção

$$PN: \left\{ egin{array}{ll} comps \ irredutível \ de \ \mathrm{SLie}_2 \end{array} 
ight\} \stackrel{\sim}{\longrightarrow} \{ \emph{orbs. nilpotentes em } \mathfrak{g} \}.$$

Seja  $\mathfrak{g}/\mathbb{C}$  semi-simples. Seja  $m<\dim\mathfrak{g}$ .

Definição (Richardson)

Existe esquema

$$\mathrm{SLie}_m(\mathfrak{g})\subset\mathrm{Grass}_m(\mathfrak{g})$$

cujos  $\mathbb{C}$ -pontos são as  $\mathbb{C}$ -subálgebras de  $\mathfrak{g}$ .

#### Teorema

Existe bijeção

$$PN: \left\{ egin{array}{l} comps \ irredutível \\ de \ \mathrm{SLie}_2 \end{array} 
ight\} \stackrel{\sim}{\longrightarrow} \{ \emph{orbs. nilpotentes em } \mathfrak{g} \}.$$

Precisamente: Seja  $\mathfrak{h} \subset \mathfrak{g}$  de dim. 2.



Seja  $\mathfrak{g}/\mathbb{C}$  semi-simples. Seja  $m < \dim \mathfrak{g}$ .

Definição (Richardson)

Existe esquema

$$\mathrm{SLie}_m(\mathfrak{g})\subset\mathrm{Grass}_m(\mathfrak{g})$$

cujos  $\mathbb{C}$ -pontos são as  $\mathbb{C}$ -subálgebras de  $\mathfrak{g}$ .

#### **Teorema**

Existe bijeção

$$PN: \left\{ egin{array}{l} comps \ irredutível \\ de \ \mathrm{SLie}_2 \end{array} \right\} \stackrel{\sim}{\longrightarrow} \left\{ \emph{orbs. nilpotentes em } \mathfrak{g} \right\}.$$

Precisamente: Seja  $\mathfrak{h} \subset \mathfrak{g}$  de dim. 2.

(Ab) Ou bem 
$$[\mathfrak{h}\mathfrak{h}] = 0$$
,



Seja  $\mathfrak{g}/\mathbb{C}$  semi-simples. Seja  $m < \dim \mathfrak{g}$ .

Definição (Richardson)

Existe esquema

$$\mathrm{SLie}_m(\mathfrak{g})\subset\mathrm{Grass}_m(\mathfrak{g})$$

cujos  $\mathbb{C}$ -pontos são as  $\mathbb{C}$ -subálgebras de  $\mathfrak{g}$ .

#### **Teorema**

Existe bijeção

$$PN: \left\{ egin{array}{l} comps \ irredutível \\ de \ \mathrm{SLie}_2 \end{array} 
ight\} \stackrel{\sim}{\longrightarrow} \{ \emph{orbs. nilpotentes em } \mathfrak{g} \}.$$

Precisamente: Seja  $\mathfrak{h} \subset \mathfrak{g}$  de dim. 2.

(Ab) Ou bem 
$$[\mathfrak{h}\mathfrak{h}] = 0$$
,

(NAb) ou bem 
$$[\mathfrak{h}\mathfrak{h}] = \mathbb{C}X$$
 com  $X \in \mathfrak{g}_{nil}$ .

$$PN(\mathfrak{h})=G\cdot 0=0.$$

$$PN(\mathfrak{h})=G\cdot 0=0.$$

$$PN(\mathfrak{h}) = G \cdot X.$$

$$PN(\mathfrak{h})=G\cdot 0=0.$$

$$PN(\mathfrak{h}) = G \cdot X.$$

(Importante: As órbitas são cones!)

$$PN(\mathfrak{h})=G\cdot 0=0.$$

Se (NAb)

$$PN(\mathfrak{h}) = G \cdot X.$$

(Importante: As órbitas são cones!)

Parte da prova usa:

Teorema (Richardson)

$$PN(\mathfrak{h})=G\cdot 0=0.$$

Se (NAb)

$$PN(\mathfrak{h})=G\cdot X.$$

(Importante: As órbitas são cones!)

Parte da prova usa:

Teorema (Richardson)

O conjunto algébrico

$$\{(x,y)\in\mathfrak{g}^2:[xy]=0\}$$

é irredutível.



$$PN(\mathfrak{h})=G\cdot 0=0.$$

Se (NAb)

$$PN(\mathfrak{h}) = G \cdot X.$$

(Importante: As órbitas são cones!)

Parte da prova usa:

Teorema (Richardson)

O conjunto algébrico

$$\{(x,y)\in\mathfrak{g}^2:[xy]=0\}$$

é irredutível.

#### Corolário

O subconjunto "abeliano"  $\mathrm{SLie}_2^{\mathrm{abel}}(\mathfrak{g}) = \{ \textbf{PN} = 0 \}.$ 



$$PN(\mathfrak{h})=G\cdot 0=0.$$

Se (NAb)

$$PN(\mathfrak{h}) = G \cdot X.$$

(Importante: As órbitas são cones!)

Parte da prova usa:

Teorema (Richardson)

O conjunto algébrico

$$\{(x,y)\in\mathfrak{g}^2:[xy]=0\}$$

é irredutível.

#### Corolário

O subconjunto "abeliano"  ${
m SLie}_2^{
m abel}(\mathfrak{g})=\{\textit{PN}=0\}.$  é componente irredutível.

Ideia para resto da prova:

• N =órbitas nilpotentes não nulas.

- ullet N= órbitas nilpotentes não nulas.
- Dada  $n \in N \rightsquigarrow e_n \in n$ .

- *N* = órbitas nilpotentes não nulas.
- Dada  $n \in N \rightsquigarrow e_n \in n$ .
- Seja  $A_n = \{x \in \mathfrak{g} : [xe_n] = e_n\}.$

- N = órbitas nilpotentes não nulas.
- Dada  $n \in N \rightsquigarrow e_n \in n$ .
- Seja  $A_n = \{x \in \mathfrak{g} : [xe_n] = e_n\}. \rightsquigarrow$  subespaço linear  $\neq 0$  (Jacobson-Morozov).

- N = órbitas nilpotentes não nulas.
- Dada  $n \in N \rightsquigarrow e_n \in n$ .
- Seja  $A_n = \{x \in \mathfrak{g} : [xe_n] = e_n\}. \leadsto$  subespaço linear  $\neq 0$  (Jacobson-Morozov).
- Seja

$$\varphi_n: G \times A_n \longrightarrow \mathrm{SLie}^{\mathrm{n.abel}}, \qquad (g, x) \longmapsto \mathbb{C}g(e_n) + \mathbb{C}g(x).$$

Ideia para resto da prova:

- N = órbitas nilpotentes não nulas.
- Dada  $n \in N \rightsquigarrow e_n \in n$ .
- Seja  $A_n=\{x\in\mathfrak{g}:[xe_n]=e_n\}. \leadsto$  subespaço linear  $\neq 0$  (Jacobson-Morozov).
- Seja

$$\varphi_n: G \times A_n \longrightarrow \mathrm{SLie}^{\mathrm{n.abel}}, \qquad (g, x) \longmapsto \mathbb{C}g(e_n) + \mathbb{C}g(x).$$

 $\bullet \ \{ PN = n \} = \operatorname{Im}(\varphi_n).$ 



- N = órbitas nilpotentes não nulas.
- Dada  $n \in N \rightsquigarrow e_n \in n$ .
- Seja  $A_n=\{x\in\mathfrak{g}:[xe_n]=e_n\}. \leadsto$  subespaço linear  $\neq 0$  (Jacobson-Morozov).
- Seja

$$\varphi_n: G \times A_n \longrightarrow \mathrm{SLie}^{\mathrm{n.abel}}, \qquad (g, x) \longmapsto \mathbb{C}g(e_n) + \mathbb{C}g(x).$$

- $\{PN = n\} = \operatorname{Im}(\varphi_n)$
- $\bigsqcup_n \operatorname{Im}(\varphi_n) = \operatorname{SLie}_2^{\text{n.abel.}}$

- N = órbitas nilpotentes não nulas.
- Dada  $n \in N \rightsquigarrow e_n \in n$ .
- Seja  $A_n=\{x\in\mathfrak{g}:[xe_n]=e_n\}. \leadsto$  subespaço linear  $\neq 0$  (Jacobson-Morozov).
- Seja

$$\varphi_n: G \times A_n \longrightarrow \mathrm{SLie}^{\mathrm{n.abel}}, \qquad (g, x) \longmapsto \mathbb{C}g(e_n) + \mathbb{C}g(x).$$

- $\{PN = n\} = \operatorname{Im}(\varphi_n)$ .
- $\bigsqcup_n \operatorname{Im}(\varphi_n) = \operatorname{SLie}_2^{\text{n.abel.}}$
- ullet  $\Sigma$  componente irredutível  $\mathrm{SLie}_2^{\mathrm{n.abel}}$

- N = órbitas nilpotentes não nulas.
- Dada  $n \in N \rightsquigarrow e_n \in n$ .
- Seja  $A_n=\{x\in\mathfrak{g}:[xe_n]=e_n\}. \leadsto$  subespaço linear  $\neq 0$  (Jacobson-Morozov).
- Seja

$$\varphi_n: G \times A_n \longrightarrow \mathrm{SLie}^{\mathrm{n.abel}}, \qquad (g, x) \longmapsto \mathbb{C}g(e_n) + \mathbb{C}g(x).$$

- $\{PN = n\} = \operatorname{Im}(\varphi_n).$
- $\bigsqcup_n \operatorname{Im}(\varphi_n) = \operatorname{SLie}_2^{\text{n.abel.}}$
- $\Sigma$  componente irredutível  $\mathrm{SLie}_2^{\mathrm{n.abel}} \leadsto \Sigma = \overline{\mathrm{Im}(\varphi_n)}$  único n.



- N = órbitas nilpotentes não nulas.
- Dada  $n \in N \rightsquigarrow e_n \in n$ .
- Seja  $A_n=\{x\in\mathfrak{g}:[xe_n]=e_n\}. \leadsto$  subespaço linear  $\neq 0$  (Jacobson-Morozov).
- Seja

$$\varphi_n: G \times A_n \longrightarrow \mathrm{SLie}^{\mathrm{n.abel}}, \qquad (g, x) \longmapsto \mathbb{C}g(e_n) + \mathbb{C}g(x).$$

- $\{PN = n\} = \operatorname{Im}(\varphi_n).$
- $\bigsqcup_n \operatorname{Im}(\varphi_n) = \operatorname{SLie}_2^{\text{n.abel.}}$
- $\Sigma$  componente irredutível  $\mathrm{SLie}_2^{\mathrm{n.abel}} \leadsto \Sigma = \overline{\mathrm{Im}(\varphi_n)}$  único n.
- Temos

{Comps. Irredutíveis} 
$$\longrightarrow N$$
.



Ideia para resto da prova:

- N = órbitas nilpotentes não nulas.
- Dada  $n \in N \rightsquigarrow e_n \in n$ .
- Seja  $A_n=\{x\in\mathfrak{g}:[xe_n]=e_n\}. \leadsto$  subespaço linear  $\neq 0$  (Jacobson-Morozov).
- Seja

$$\varphi_n: G \times A_n \longrightarrow \mathrm{SLie}^{\mathrm{n.abel}}, \qquad (g, x) \longmapsto \mathbb{C}g(e_n) + \mathbb{C}g(x).$$

- $\{PN = n\} = \operatorname{Im}(\varphi_n).$
- $\bigsqcup_n \operatorname{Im}(\varphi_n) = \operatorname{SLie}_2^{\text{n.abel.}}$
- $\Sigma$  componente irredutível  $\mathrm{SLie}_2^{\mathrm{n.abel}} \leadsto \Sigma = \overline{\mathrm{Im}(\varphi_n)}$  único n.
- Temos

{Comps. Irredutíveis} 
$$\longrightarrow N$$
.

• Sobrejetividade:  $\mathrm{SLie}_2(\mathfrak{g})$  é lisa se  $\mathfrak{h}$  "algébrica".

- ightharpoonup g simples; dim g = n.

- ightharpoonup g simples; dim g = n.
- ▶  $\mathfrak{g} \notin \{A_1, A_2, A_3, B_2, C_3, G_2\}.$
- ightharpoonup G adjunto com Lie  $G = \mathfrak{g}$ .

- ightharpoonup g simples; dim g = n.
- ▶  $\mathfrak{g} \notin \{A_1, A_2, A_3, B_2, C_3, G_2\}.$
- ▶ *G* adjunto com Lie  $G = \mathfrak{g}$ .
- X variedade de Borel de G.

#### Teorema

- ightharpoonup g simples; dim g = n.
- ▶  $\mathfrak{g} \notin \{A_1, A_2, A_3, B_2, C_3, G_2\}.$
- ightharpoonup G adjunto com Lie  $G = \mathfrak{g}$ .
- X variedade de Borel de G.

#### **Teorema**

(1) Existe morfismo  $\psi : \mathrm{SLie}_2(\mathfrak{g}) \to B(n-2, \det T_X)$ 

- ightharpoonup g simples; dim g = n.
- ▶  $\mathfrak{g} \notin \{A_1, A_2, A_3, B_2, C_3, G_2\}.$
- ightharpoonup G adjunto com Lie  $G = \mathfrak{g}$ .
- X variedade de Borel de G.

#### **Teorema**

(1) Existe morfismo  $\psi : \mathrm{SLie}_2(\mathfrak{g}) \to B(n-2, \det T_X)$  tal que para cada  $\mathfrak{h}$ ,

- ightharpoonup g simples; dim g = n.
- ▶  $\mathfrak{g} \notin \{A_1, A_2, A_3, B_2, C_3, G_2\}.$
- ightharpoonup G adjunto com Lie  $G = \mathfrak{g}$ .
- X variedade de Borel de G.

#### **Teorema**

(1) Existe morfismo  $\psi : \mathrm{SLie}_2(\mathfrak{g}) \to B(n-2, \det T_X)$  tal que para cada  $\mathfrak{h}, \ \psi(\mathfrak{h})$  é a forma torcida associada à  $\mathcal{A}(\mathfrak{h})$ .

- ightharpoonup g simples; dim g = n.
- ▶  $\mathfrak{g} \notin \{A_1, A_2, A_3, B_2, C_3, G_2\}.$
- ightharpoonup G adjunto com Lie  $G = \mathfrak{g}$ .
- X variedade de Borel de G.

#### **Teorema**

- (1) Existe morfismo  $\psi : \mathrm{SLie}_2(\mathfrak{g}) \to B(n-2, \det T_X)$  tal que para cada  $\mathfrak{h}, \ \psi(\mathfrak{h})$  é a forma torcida associada à  $\mathcal{A}(\mathfrak{h})$ .
- (2)  $\operatorname{Im}(\psi)$  é aberta.

- ightharpoonup g simples; dim g = n.
- ▶  $\mathfrak{g} \notin \{A_1, A_2, A_3, B_2, C_3, G_2\}.$
- ightharpoonup G adjunto com Lie  $G = \mathfrak{g}$ .
- X variedade de Borel de G.

#### **Teorema**

- (1) Existe morfismo  $\psi : \mathrm{SLie}_2(\mathfrak{g}) \to B(n-2, \det T_X)$  tal que para cada  $\mathfrak{h}, \ \psi(\mathfrak{h})$  é a forma torcida associada à  $\mathcal{A}(\mathfrak{h})$ .
- (2)  $\operatorname{Im}(\psi)$  é aberta.
- (3)

# componentes irredutíveis de 
$$B(n-2, \det T_X)$$
  $\geq \#$  órbitas nilp.



Fim.

Obrigado pela atenção!