Security in Hybrid ITS Networks

Ricardo Filipe Quelhas Severino

Orientadores: Doutor José Manuel de Campos Lages Garcia Simão

Doutor Nuno Miguel Soares Datia

Presidente: Doutor Nuno Miguel Machado Cruz

Vogais: Doutor João Carlos Ferreira

Doutor José Manuel de Campos Lages Garcia Simão

Mestrado em Engenharia Informática e de Computadores Instituto Superior de Engenharia de Lisboa

Master Thesis Presentation
Lisboa, Portugal
December 15th, 2023

Introduction

- > Intelligent transport systems (ITS) aims to improve transportation
 - safety
 - efficiency

- Cooperative ITS
 - subset of standards for ITS
 - services based on the exchange of data
 - V2V, V2I, V2P, V2X

Source: https://doi.org/10.3390/fi11030070

Introduction – ITS Security

- > The major threats are against
 - privacy
 - authenticity and integrity
 - non-repudiation

- > Standard approach PKI (Public Key Infrastructure)
 - C-ITS trust model architecture
 - achieves high-security level
 - has limitations given the nature of V2X communications

Problem

> Example: sybil attack

Problem

Vulnerable modes of transportation

Goals

- Introduce security guarantees within a C-ITS ecosystem, while including vulnerable modes of transportation and legacy vehicles
- > Implement, evaluate and compare security protocols using real equipment
- Assess how security affects performance
- Determine the performance cost of incorporating soft-mobility users and legacy vehicles

Approach

- Develop proof-of-concept applications that employ a security protocol in a C-ITS hybrid environment
- Combining intelligent transport systems operating at 5.9 GHz (ITS-G5) and cellular networks
- Implement two security protocols, DLAPP and MFSPV
 - using OBUs, RSUs and smartphones
- Measure computational, transmission and end-to-end latencies to assess the performance

Non-standard ITS security protocols

DLAPP

MFSPV

DLAPP and MFSPV

- > Authentication and privacy-preserving solutions
 - essential security requirements
- Lightweight security schemes
- ➤ Symmetric cryptography mechanism
- > Certification Authority (CA) decentralization
 - reduce the communication burden
- Minimise communication overhead

Proposed Approach

Proposed Approach

Experimental Environment

Experimental Evaluation and Results Analysis

1. Computation

- 2. Network
- 3. End-to-End (E2E)

1. Computation – Evaluation and Results

- MFSPV outperforms DLAPP (due to the exclusive use of hashes)
 - Decrease in processing time ranging from 13.9% to 54.4%
- > The results do not match the ones claimed by the protocols' authors
- SEL > Both protocols are light enough to manage high-node density scenarios

1. Computation – Evaluation and Results

- Security impact on performance
 - DLAPP has more impact on computing time than MFSPV
 - greater relative increases can be seen in reception
 - magnitude of the times involved is minimal, tenths of milliseconds
 - both presented a low impact on local computing time

Experimental Evaluation and Results Analysis

1. Computation

2. Network

3. End-to-End (E2E)

2. Network – Evaluation and Results

> Measurements of the **cellular** network segment

Communication Flow			No security [ms] DLAPP [1		MFSPV [ms]
M_RSU	\rightarrow	Smartphone X	23.08	25.23	24.66
Smartphone X			29.74	31.90	32.32
Smartphone X	\rightarrow	Smartphone Y	31.78	33.22	33.97

- Lower latency is observed in flows involving M_RSU
- DLAPP exhibits slightly lower latency on two occasions
- > Measurements of the **G5** network segment

No security [ms]	DLAPP [ms]	MFSPV [ms]	
10.196	10.792	11.251	

2. Network – Evaluation and Results

- Cellular and G5's latency measurements comparison
 - G5 network attains 63.6% lower latency
 - transmission in G5 is ad-hoc
 - the impact of security protocols on latency:7.1% on the cellular and8.0% on the G5 network

Experimental Evaluation and Results Analysis

- 1. Computation
- 2. Network
- 3. End-to-End (E2E)

3. E2E — Evaluation and Results

> E2E time for each flow, with different security approaches

Network Segment	Commu	nicati	ion Flow	No Security [ms]	DLAPP [ms]	MFSPV [ms]
G5	OBU	\rightarrow	RSU	11.63	13.24	13.55
	RSU	\rightarrow	OBU	12.24	13.61	13.97
Cellular	RSU	\rightarrow	Smartphone X	24.59	27.71	27.19
	Smartphone X	\rightarrow	RSU	31.72	34.99	34.98
	Smartphone X	\rightarrow	Smartphone Y	32.76	34.77	35.16
Hybrid	Smartphone X	\rightarrow	OBU	42.18	46.46	46.75
	OBU	\rightarrow	Smartphone X	34.94	38.81	38.53

> Analysis per network segment

- Hybrid network segment flows have the highest E2E latencies (\sim 41.3 ms on average)
- G5 network segment flows have the lowest E2E latencies (~13.0 ms on average)
- Hybrid communication flows impose an extra 28.3 ms of E2E time

3. E2E — Evaluation and Results

> Analysis per security approach

3. E2E — Evaluation and Results

> Applicability considerations

- Various use cases have defined specific requirements for maximum latencies
- the median E2E latencies do not surpass \sim 47 ms Smartphone X \rightarrow OBU with MFSPV
- the highest E2E latency reached ~190 ms
 Smartphone X → OBU with DLAPP
- excluding outliers, the highest E2E latency was 86 ms
 Smartphone X → OBU with MFSPV
- the results obtained in this study remain 14% below the maximum latency requirements for many use cases

Conclusions

- > The developed approach allowed to:
 - introduce security guarantees within a C-ITS ecosystem
 - include vulnerable modes of transportation
- > The used experimental setup:
 - Avoids modification of equipment software
 - DLAPP and MFSPV have shown a similar and low performance impact
 - Smartphones outperforms Unex OBU (resource-constrained device)
 - Incorporating users through mobile networks imposes, on average, an extra 28.29 ms of E2E latency
- ➤ The obtained results align well with the latency requirements for many C-ITS use cases

Future Work

- CA should be developed
- > Acquire greater proficiency in interacting with ITS equipment
- > Experiments with more OBUs and RSUs from different manufacturers
- > Carry out evaluations under more stress/overload conditions

Contributions

- Development and assessment of a novel approach that employs a security protocol in a C-ITS hybrid environment by combining ITS-G5 and radio-mobile networks
- Extend the literature by going beyond the traditional focus on connected vehicles to include soft mobility users and legacy vehicles in C-ITS
- Assessing the effectiveness of security protocols, thus filling the gap between theory/simulation and real-world implementations
- Enrichment of the literature regarding the implementation of security protocols in real ITS equipment

 Public GitHub repository for the developed code

Ricardo Severino; José Simão; Nuno Datia; António Serrador, Protecting Hybrid ITS Networks: A Comprehensive Security Approach, Future Internet journal, 2023