

Ministério da Educação

Universidade Federal dos Vales do Jequitinhonha e Mucuri Faculdade de Ciências Sociais, Aplicadas e Exatas - FACSAE Departamento de Ciências Exatas - DCEX

Trabalho

1. Considere o problema do circuito hidráulico mostrado na Figura 1. Este sistema está alimentado por um reservatório cuja a pressão é mantida constante e igual a $P_r = 10$. As saídas das tubulações desembocam na atmosfera, onde a pressão é considerada nula (isto é, $P_a = 0$). Deste modo, a vazão Q_i da *i*-ésima tubulação depende da diferença de pressão ΔP_i de tal modo que

$$Q_i = K_i L_i \Delta P_i$$

onde K_i é a resistência hidráulica e L_i o comprimento da tubulação. Por exemplo, para a tubulação 8 temos que $Q_8 = K_8L_8\Delta P_8$, sendo que $\Delta P_8 = P_1 - P_4$ (ou seja, a pressão que "entra" na tubulação pela bifurcação 1 menos a pressão que "sai" da tubulação pela bifurcação 4). Por outro lado, sabese que em cada bifurcação a soma das vazões deve ser nula. Por exemplo, na bifurcação 4 temos que $Q_8 - Q_6 - Q_7 = 0$ (aqui note que a vazão que "entra" na bifurcação é considerada positiva, enquanto que a que "sai" é considerada negativa). Considerando essas informações e os dados da Tabela 1, escreva um algoritmo em Python para resolver o sistema de equações lineares de modo a determinar as vazões em cada tubulação e as pressões em cada bifurcação.

Figura 1: Esquema do circuito hidráulico.

Tubulação i	K_i	L_i
1	0,02	1,0
2	0,005	2,0
3	0,085	0,5
4	0,02	1,0
5	0,075	0,5
6	0,085	0,5
7	0,015	2,0
8	0,01	1,0

Tabela 1: Resistência hidráulica e comprimento das tubulações.