AG 3.1 - 1 Energiesparlampen - OA - BIFIE

- Ein Händler handelt mit 7 verschiedenen Typen von Energiesparlampen. In der Buchhaltung verwendet er folgende 7-dimensionale Vektoren (die Werte in den AG 3.1 Vektoren beziehen sich auf einen bestimmten Tag):
 - \bullet Lagerhaltungsvektor L_1 für Lager 1 zu Beginn des Tages
 - \bullet Lagerhaltungsvektor L_2 für Lager 2 zu Beginn des Tages
 - $\bullet\,$ Vektor Pder Verkaufspreise
 - ullet Vektor B, der die Anzahl der an diesem Tag ausgelieferten Lampen angibt

Gib die Bedeutung des Ausdrucks $(L_1 + L_2 - B) \cdot P$ in diesem Zusammenhang an!

Die Zahl $(L_1 + L_2 - B) \cdot P$ gibt den Lagerwert der am Ende des Tages in den beiden Lagern noch vorhandenen Lampen an.

AG 3.1 - 2 Perlensterne - OA - BIFIE

- 2. Für einen Adventmarkt sollen Perlensteine hergestellt werden. Den Materialbedarf für die verschiedenen Modelle kann man der nachstehenden Tabelle entnehmen. Den Spalten der Tabelle entsprechen Vektoren im \mathbb{R}^4
 - Materialbedarfsvektor S_1 für den Stern 1
 - \bullet Materialbedarfsvektor S_2 für den Stern 2
 - Kostenvektor K pro Packung zu 10 Stück
 - Lagerbestand L

	Material Stern 1	Material Stern 2	Kosten pro Packung Perlen	Lagerbestand der Perlen- Packungen
Wachsperlen 6mm	1	0	€ 0,20	8
Wachsperlen 3mm	72	84	€ 0,04	100
Glasperlen 6mm	0	6	€ 0,90	12
Glasperlen oval	8	0	€ 1,50	9

Gib die Bedeutung des Ausdrucks $10 \cdot L - (5 \cdot S_1 + 8 \cdot S_2)$ in diesem Zusammenhang an!

 $10 \cdot L - (5 \cdot S_1 + 8 \cdot S_2)$ gibt die verschiedenen noch vorhanden Perlen nach der Fertigung von 5 Sternen nach Modell 1 und 8 Sternen nach Modell 2 an.

AG 3.1 - 3 Torten - OA - BIFIE

3. Eine Konditorei stellt 3 verschiedene Torten her: Malakofftorte M, Sachertorte S und Obsttorte S. Die Konditorei beliefert damit 5 Wiederverkäufer.

AG 3.1

Die Liefermengen pro Tortenstück an die Wiederverkäufer W werden durch die Vektoren L_M für die Malakofftorte, L_S für die Sachertorte und L_O für die Obsttorte ausgedrückt.

$$W = \begin{pmatrix} W_1 \\ W_2 \\ W_3 \\ W_4 \\ W_5 \end{pmatrix}, L_M = \begin{pmatrix} 20 \\ 45 \\ 60 \\ 30 \\ 10 \end{pmatrix}, L_S = \begin{pmatrix} 15 \\ 20 \\ 30 \\ 0 \\ 20 \end{pmatrix}, L_O = \begin{pmatrix} 10 \\ 35 \\ 40 \\ 10 \\ 25 \end{pmatrix}$$

Ein Stück Malakofftorte kostet beim Konditor € 1,80, ein Stück Sachertorte € 2,10 und ein Stück Obsttorte € 1,50.

Gib an, wie viele Tortenstücke der Konditor insgesamt an den Wiederverkäufer W_3 liefert! Berechne, wie viele Stück Sachertorte der Konditor insgesamt ausgeliefert hat!

An den dritten Wiederverkäufer hat der Konditor 60+30+40=130 Tortenstücke geliefert. Der Konditor hat insgesamt 15+20+30+0+20=85 Stück Sachertorte ausgeliefert.

AG 3.1 - 4 Vektoren als Zahlentupel - MC - BIFIE

4. Gegeben sind zwei Vektoren: \overrightarrow{a} , $\overrightarrow{b} \in \mathbb{R}^2$.

____/1 AG 3.1

 \boxtimes

Welche der nachstehenden Aussagen über Vektoren sind korrekt? Kreuze die beiden zutreffenden Aussagen an!

beiden Zutrenenden Pussagen an.				
Der Vektor $3 \cdot \overrightarrow{a}$ ist dreimal so lang wie der Vektor \overrightarrow{a} .	X			

Das Produkt $\overrightarrow{a} \cdot \overrightarrow{b}$ ergibt einen Vektor.

Die Vektoren \overrightarrow{a} und $-0.5 \cdot \overrightarrow{a}$ besitzen die gleiche Richtung und sind gleich orientiert.

Die Vektoren \overrightarrow{a} und $-2 \cdot \overrightarrow{a}$ sind parallel.

Wenn \overrightarrow{a} und \overrightarrow{b} einen rechten Winkel einschließen, so ist deren Skalarprodukt größer als null.

AG 3.1 - 5 Betriebsgewinn - OA - BIFIE

5. Ein Betrieb produziert und verkauft die Produkte $P_1, ..., P_5$. In der vorangegangenen Woche wurden x_i Stück des Produktes P_i produziert und auch verkauft. AG 3.1 Das Produkt P_i wird zu einem Stückpreis v_i verkauft, k_i sind die Herstellungskosten pro Stück P_i .

Die Vektoren X, V und K sind folgendermaßen festgelegt:

$$X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix}, V = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \\ v_5 \end{pmatrix}, K = \begin{pmatrix} k_1 \\ k_2 \\ k_3 \\ k_4 \\ k_5 \end{pmatrix}$$

Gib mithilfe der gegebenen Vektoren einen Term an, der für diesen Betrieb den Gewinn G der letzten Woche beschreibt!

$$G = X \cdot V - X \cdot K$$