

Homeostasis & Concept of Control System

Its importance and the principle of feedback mechanism

Enrichment Course in Biology

Dr Denny CW Ma

Body Compartments

Claude Bernard (1813-1878) – French physiologist

Introduced the notion that man exists in 2 environments

1. External environment

- Always changing
- Often hostile

2. Internal environment (liquid)

- Relatively stable
- Actively maintained by cells & organs which live in it

First to recognize that the internal environment is under sophisticated physiological regulation

Body Compartments

Overall Plan of Human Body

Respiratory, gastrointestinal, & renal systems

Communicate with external environment

Cardiovascular system

Transports nutrients & wastes

Flows of materials are indicated by arrows

Body Fluid Compartments

(a) Total body water (TBW)

(b) Intracellular fluid (ICF)

(e) Interstitial fluid (ISF)

Body fluid	Volur	me (L)
TBW	42	
ICF	28	
ECF	14	
Plasma	3	Ĭ.
ISF	11	

(f) Distribution of TBW

Body Fluid Compartments

ECF

- Fluid surrounding cells
- Vehicles through which materials pass to & from cells
- Constantly changing to attain & maintain optimal conditions & concentrations

Body Fluid Compartments

Homeostasis

Claude Bernard (1813-1878) – French physiologist

"The constancy of the internal environment is the condition for the free and independent life."

Concept of homeostasis

Homeostasis

Walter Bradford Cannon (1871-1945) – American physiologist

Expanded on Claude Bernard's concept of homeostasis

1. Homeostasis

Uniform conditions that prevail in the body in face of all the disturbances that tend to change them

2. A homeostatic mechanism -

for preservation of dynamic constancy of internal environment in which the cells of the body bathe

Recognize that the key to maintaining a stable internal environment is the presence of regulatory mechanism

Homeostatic Regulation

 The maintenance of a stable internal environment requires constant monitoring & adjustments as condition changes

Homeostasis

Normal range of important constituents & physical characteristics of ECF

	Normalrange	units
Oxygen	35-40	mmHg
Carbon dioxide	35-45	mmHg
Sodiumions	138-146	mmol/L
Potassiumions	3.8-5.0	mmol/L
Calciumions	1.0-1.4	mmol/L
Chloride ions	103-112	mmol/L
Bicarbonate ions	24-32	mmol/L
Glucose	75-95	Mg/dl
Body temperature	98-98.8(37.0)	°F (°C)
Acid-base	7.3-7.5	рН

- Homeostatic control cannot maintain complete constancy
- Regulated variables have a range of normal values (depending on the conditions)

Homeostasis

Acid-base

Normal range of important constituents & physical characteristics of <u>ECF</u>

7.3-7.5

рН

	Normalrange	units	Homeostatic control		
Oxyge How is homeostasis maintained?					
Sodiumions	138-146	mmol/L	Regulated variables have		
Potassiumions	3.8-5.0	mmol/L	a range of normal values		
Calcium ions	1.0-1.4	mmol/L	(depending on the		
Chloride ions	103-112	mmol/L	conditions)		
Bicarbonate ions	24-32	mmol/L			
Glucose	75-95	Mg/dl			
Body temperature	98-98.8(37.0)	°F (°C)			

Homeostatic Control Systems

Control Mechanisms in the Body

1. Negative Feedback Control

- Adopted by most control systems
- Involved in homeostatic control

2. Positive Feedback Control

- For a <u>transient</u> physiological change
- NOT for homeostatic control

3. Feedforward Control

 <u>Proactive</u> – prompt the system to act before the changes begin to affect it

Negative Feedback

Negative Feedback

Output shuts off the original stimulus

→ Physiological event returns to optimal status

Example 1: Body temperature

Example 1: Body temperature

Example 2: Blood glucose level

Example 2: Blood glucose level

Example 3: Water level in blood

Example 3: Water level in blood

Example 4: Blood gas level

Example 5: Blood pressure

Example 5: Blood pressure

Example 6: Endocrine gland secretions (hormones)

Hypothalamic-pituitary-adrenal axis

Negative Feedback

The variable is restored toward a pre-determined set-point

Negative Feedback

The variable is restored toward a pre-determined set-point

Normal range units Currrent state of variable Oxygen 35-40 mmHg Carbon dioxide Set-point 35-45 mmHg Sodium ions mmol/L 138-146 Potassium ions 3.8-5.0 mmol/L Calcium ions 1.0-1.4 mmol/L Chloride ions 103-112 mmol/L Bicarbonate ions 24-32 mmol/L Glucose Mg/dl 75-95 ⁰F (⁰C) ◆ Body temperature 98-98.8(37.0) Acid-base 7.3 - 7.5pH

Control Mechanisms in the Body

1. Negative Feedback Control

- Adopted by most control systems
- Involved in homeostatic control

2. Positive Feedback Control

- For a <u>transient</u> physiological change
- NOT for homeostatic control

3. Feedforward Control

 <u>Proactive</u> – prompt the system to act before the changes begin to affect it

Positive Feedback

- The response enhances the change that set it in motion.
- The output exaggerates the original stimulus.

Example: Parturition

Example 2: Ovulation

Example 3: Blood clotting

Example 4: Heat stroke

Breakdown of thermoregulatory centre

Body temperature increases sharply

Positive Feedback

The variable is moved farther away from the initial set-point

Control Mechanisms in the Body

1. Negative Feedback Control

- Adopted by most control systems
- Involved in homeostatic control

2. Positive Feedback Control

- For a transient physiological change
- NOT for homeostatic control

3. Feedforward Control

<u>Proactive</u> – prompt the system to act before the changes begin to affect it

Feedforward Control

• Variation of "other variable" directly compensates the **anticipated** changes in the controlled variable (independent of a sensor for the controlled variable)

Feedforward

Negative feedback

Example: Blood potassium level

Dietary potassium is sensed by potassium sensors in the **gastrointestinal tract** in the <u>absence of changes in **plasma** potassium</u>

New therapeutic strategy for hyperkalaemia?

Feedforward Control

Sensor anticipates changes → prompt the system to act in advance

Local Homeostatic Responses

- Some homeostatic responses are highly localized
- Stimulus-response sequences occur only in area of stimulus
- Neither nerves nor hormones are involved

Chemical Messengers in Homeostatic Regulation

Health & Illness

Health

- Body in homeostasis
 - Normal functioning of homeostatic components

Illness

- Body in homeostatic imbalance
 - Failure of normal functioning of homeostatic components
 - Receptors fail to respond adequately to changes
 - Homeostatic control centers
 - fail to analyze sensory information
 - fail to analyze sensory information correctly
 - fail to send correct information to effectors
 - Effectors fail to respond to corrective directions from control enters

Healthcare intervention aims to re-establish patient's homeostasis

HKU LKS Faculty of Medicine The University of Hong Kong 香港大學李嘉誠醫學院