CHAPTER

3

METAL, NON-METAL & ALLOYS

धातु (Metal)

- धातु के बाह्यतम कक्ष में 1,2,3 इलेक्ट्रॉन होते हैं जिसे त्याग कर धातु
 धन आयन बनाने की प्रवृत्ति रखता है।
- हाइड्रोजन के बाह्यतम कक्ष में 1 इलेक्ट्रॉन होते हुए भी यह अधातु है।
- मनुष्य द्वारा सर्वप्रथम उपयोग की जाने वाली धातु ताम्बा है।
- मनुष्य द्वारा सबसे अधिक उपयोग की जाने वाली धात लोहा (Fe) है।
- मानव शरीर में सबसे अधिक पायी जाने वाली धातु कैल्सियम है।
- भू-पर्पटी पर तत्त्वों का क्रम \Rightarrow O > Si > Al > Fe
- भू-पर्पटी में धातुओं का क्रम Al > Fe > Ca > Na
- सबसे हल्की धातु लीथियम
- सबसे भारी धातु ओसमियम
- सबसे कठोर धातु प्लेटिनम तथा तत्व हीरा

Note: प्लेटिनम को सफेद सोना या एडम उत्प्रेरक कहते हैं।

 द्रव अवस्था में पायी जाने वाली धातु पारा (Hg) है। पारा का दूसरा नाम quick silver, पारद, रस द्रव, धातु आदि है।

Note (i) अमलगम में पारे का होना आवश्यक है।

- (ii) अमलगम तब बनता है जब पारा किसी अन्य को अपने में घुलाता है।
- मिट्टी तेल में रखी जाने वाली धातु सोडियम (Na), लीथियम (Li), K
 (पोटैशियम), रूबीडियम (Rb), सीजियम (Cs), फ्रेनशीयम (Fr)।
- सोडियम पानी में तैरता है तथा जल से क्रिया करके H₂ गैस मुक्त करता है।
- सोडियम मुलायम होता है इसिलए इसे चाकू से काटा जाता है और सोडियम बेंजीन तथा ईथर में विलय होता है।
- धातुओं का घनत्व उच्च होता है और विद्युत का सुचालक होता है।
- अपवाद—शीशा विद्युत का क्चालक होता है।
- धातु के ऑक्साइड क्षारीय होते हैं लेकिन Al और Zn के ऑक्साइड $Al_{9}O_{3}$ तथा ZnO उभयधर्मी (अम्लीय तथा क्षारीय) होते हैं।
- ZnO का दूसरा नाम Philospher wool (दार्शनिक पुष्प) या यशद पुष्प है।
- इस्पात को बेसमर विधि द्वारा बनाया जाता है।
- िकसी को भी बहुत अधिक गर्म करके धीरे-धीरे ठंडा करने की प्रक्रिया
 को तापानुशीतलन (Annealing) कहते हैं।
- Steel को अधिक कठोर बनाने के लिए उसमें क्रोमियम तथा निकेल मिलाया जाता है। जिससे वह जंगरोधी बन जाता है।
- Steel में क्रोमियम की मात्रा 11 से 15% होती है।

धातु के गुण

- (i) भौतिक गुण (ii) यांत्रिक गुण (iii) रासायनिक गुण
- (i) भौतिक गुण : वैसा गुण जिसे छू कर, देखकर पता किया जा सकता है, भौतिक गुण कहलाता है। जैसे – रंग, घनत्व, चालकता इत्यादि।
- (ii) यांत्रिक गुण: वह गुण जिसमें बल लगाकर उसके आकार में परिवर्तन किया जा सके, यांत्रिक गुण कहलाता है।

यांत्रिक गुण निम्न प्रकार के होते हैं—

(a) तन्यता : खींच कर तार बनाये जाने का गुण तन्यता कहलाता है। Ex - Au > Ag

- (b) आघातवर्धनीयता (Malleability) : चोट करने पर चादर के रूप में फैल जाना आघातवर्धनीयता कहलाता है। Au > Ag
- (c) कठोरता (Hardness) : घिसने, कटने, खुरचने का विरोध करने का गुण कठोरता कहलाता है। धातु में काटने की क्षमता पैदा करने वाला गुण कठोरता कहलाता है।
- (d) चिमड़ता (Toughness): चोट सहन करने की क्षमता चिमड़ता
- कहलाता है। या जिससे चाकू से काटा जाएं या खुरचा जा सके।
- (e) भंगुरता (Brittleness) : चोट लगने पर आसानी से टुकड़ों में विभक्त हो जाना भंगुरता कहलाता है।
- (f) प्रत्यास्था (Elasticity) : यह पदार्थ का वह गुण है जहाँ कोई भी पदार्थ खींचने पर पुन: अपने आकार में आ जाता है।

प्रत्यास्था : ठोस > द्रव > गैस

- Spring प्रत्यास्था गुण पर ही कार्य करता है।
- प्रत्यास्था गुण होने के कारण ही मशीनेबिलिटी हो सकता है।
- (g) प्लास्टिसिटी (Plasticity) : यह धातु का वह गुण है जिसके कारण इस पर दाब, ताप अथवा दोनों का ही प्रभाव डालकर इसे निश्चित आकारों में बदला जा सकता है।
- (h) फेटींग रैजिस्टैंस (Fatigue Resistance) : यह धातु का वह गुण है जो उसे लगातार दबाव व झटके लगने पर उसे अचानक टूटने से बचाता है।
- (i) इम्पैक्ट रैजिस्टैंस (Impact Resistance) : धातु का यह गुण धातु पर अचानक चोट लगने से उसे टूटने से रोकता है।
- (j) रासायनिक गुण : रासायनिक गुण की सहायता से किसी भी धातु का अंतरिक गुण जाना जा सकता है।

रासायनिक गुण के आधार पर धातुओं को दो भागों में बाँटा गया है:

- (i) लौह धातु (Ferrous Metal)
- (ii) अलौह धातु (Non-ferrous Metal)

	लौह धातु		अलौह धातु
•	इसमें लौह एक अवयव होता	•	इसमें लोहा नहीं होता है।
	ही है।		
•	इसमें प्रमुख रूप से कार्बन		
	होता है; तथा फास्फोरस,		
	मैगनीज भी होता है।		
•	Steel (इस्पात) लौह धातु	•	Ex : ताँबा, टिन, शीशा, सोना
	के उदाहरण हैं।		
•	इसका रंग काला या स्लेटी	•	इसका रंग पीला, ग्रे, लाल होता है।
	(Gray) होता है।		
•	इसका सामर्थ्य अधिक होता है	•	इसका सामर्थ्य कम होता है।
•	इसका क्वथनांक अधिक होता है	•	इसका क्वथनांक कम होता है।
•	इसका प्रसार गुणांक कम होता	•	इसका प्रसार गुणांक अधिक होता
	है अर्थात इसको गर्म करने पर		है अर्थात इसे गर्म करने पर अधिक
	यह कम फैलता है।		फैलता है।

■ लौह अयस्क (Iron Ore) :

- लोहा बहुत सी अशुद्धियाँ लिए हुए खानों से खिनज के रूप में प्राप्त होता
 है। इस अशुद्ध लोहे को लौह अयस्क (Iron ore) कहते हैं।
- साधारणत: आयरन ओर में 40% से 65% लौह-कण पाए जाते हैं तथा
 बाकी अशुद्धियाँ होती हैं।
- लौह अयस्क को लौह की मात्रा के अनुसार छ: भागों में बाँटा गया है—
- (1) हेमाटाइट (Hematite) :
- इस खनिज को दो भागों में बाँटा गया है—
 - (a) रैड हेमाटाइट (Red Hematite) : इस लौह खनिज में लोहे की मात्रा साधारणत: 70% होती है।
 - (b) ब्राउन हेमाटाइट (Brown Hematite) : साधारणत: इसमें लौह कण 50% से 90% तक पाये जाते हैं।

(2) लिमोनाइट (Limonite) :

- इस खिनिज को हाइड्रा हेमाटाइट (Hydra Hematite) के नाम से भी जाना जाता है। यह भूरे रंग का होता है। इसमें लौह मात्रा 60% के लगभग होती है।
- (3) सिडेराइट (Siderite) :
- इसे स्पेथिक आयरन खनिज ओर (spathic iron ore) भी कहते हैं।
 इसमें लगभग 48% लोहा पाया जाता है।
- (4) मैग्नेटाइट (Magnetite) :
- इसे लोड स्टोन (load stone) के नाम से भी जाना जाता है। स्वयं ही चुम्बकीय होती है। यह काले रंग का ऑक्साइड है। इसमें 72% तक लोहे की मात्रा पाई जाती है।
- (5) पाईराइट्स (Pyrites):
- इसमें 40% से भी कम लोहे की मात्रा होती है। इसी कारण इसका प्रयोग बहुत कम किया जाता है।
- (6) क्ले आयरन स्टोन (Clay Iron stone):
- यह लोहे का बहुत अशुद्ध रूप होता है। साधारणत: इसमें लोहे की मात्रा 40% होती है।
- वात्या भट्टी (Blast furnace):

- यह लौह अयस्क को पिघलाने वाली भट्टी होती है। यह एक गोलाकार शंकु रूप की होती है। इसकी ऊँचाई 25 से 40 मीटर व व्यास 6 से 9 मीटर होता है। इस भट्टी के बाहर लोहे की मोटी चादर लगी होती
 - है व अंदर चारों ओर $1\frac{1}{4}$ मी. से $1\frac{1}{2}$ मीटर मोटी फायर ब्रिक्स की दीवार बनी होती है या लाइनिंग की होती है। इसके निचले भाग में चारों ओर से 16 नोजल लगे होते हैं जिनके द्वारा गर्म हवा (Air blast) भट्टी को दी जाती है व इन्हीं के नाम पर इसका नाम ब्लास्ट फरनेस रखा गया है।
- इस भट्टी में 800 टन से 1200 टन तक लोहा गलाया जा सकता है।
 इसमें पिघले लोहे को पिग नामक सांचों में भरकर ठंडा कर लिया जाता है इसलिए कच्चे लोहे को पिग आयरन कहते हैं।

■ पिग आयरन (Pig Iron) :

- यह बहुत ही निम्न कोटि का लोहा होता है जिसे सीधे कार्य के लिए प्रयोग नहीं किया जाता है। इसमें कार्बन की मात्रा अधिक होती है तथा भंगुर होता है।
- इसका प्रयोग कई प्रकार के आयरन और स्टील बनाने के लिए प्रयोग किया जाता है। जैसे—कास्ट आयरन, रॉट आयरन, स्टील आदि।
- पिग आयरन को निम्नलिखित श्रेणियों में बाँटा गया है—
- मार्केट में साधारणत: यह 1 से 6 नम्बर तक मिलता है। नम्बर 6 का पिग आयरन सबसे सस्ता होता है।
- इसमें नम्बर की पहचान इसके रंग तथा इसकी टूटी सतह से की जाती है।
- 1 से 4 नम्बर का पिग आयन Grey पिग आयरन के नाम से जाना जाता है और अधिकतर ढलाई या स्टील बनाने के लिए इसका प्रयोग किया जाता है।
- (2) प्रयोग के अनुसार (According to use) :
 - (i) बेसिमर पिग (Bessemer pig)
 - (ii) मैलिएबल पिग (Malleable pig)
 - (iii) फाउन्डरी पिंग (Fondary pig)

■ क्यूपोला फरनेस (Cupola furnace):

- पिग आयरन को दुबारा क्रूसिबल (crucible) या कुपोला (cupola)
 फरनेस में पिघलाकर कास्ट आयरन बनाया जाता है।
- इसके अन्दर का व्यास 1 मी. से 2 मी. होता है तथा ऊँचाई व्यास से पाँच से छ: गुना होती है।
- इसमें दो से चार टन तक कास्ट आयरन तैयार किया जा सकता है।
- इस भट्टी का ताप 1260°C से 1340°C तक होता है व इसी तापक्रम पर पिंग आयरन पिघलता है।
- फरनेस चार्ज करने के बाद पिग आयरन नीचे बैठ जाता है व अशुद्धियाँ ऊपर आ जाती है।
- पिघले हुए लोहे को लैडल्स में भरकर सांचों में ढाल दिया जाता है जिसे कास्ट आयरन कहते हैं।

■ कास्ट आयरन (Cast Iron) :

- कास्ट आयरन में 2% से 5% तक कार्बन रहती है व दूसरी अशुद्धियाँ जैसे सिलिकन 0.8% से 3%, फास्फोरस 0.5%, गंधक 0.1% से 0.15% तथा मैंगनीज 0.5% से 1% तक होती है।
- यह धातु कड़ी (Hard) तथा बहुत भंगुर (Brittle) होती है।
- यह मैलिएबल और डक्टाइल नहीं होता।

- कम्प्रैसिव स्ट्रैंथ अधिक होने के कारण इसके मशीन बैड, ऑटोमोबाइल सिलैंडर ब्लॉक्स, वाटर पाइप, मशीन इंजन आदि तैयार किये जाते हैं।
- कास्ट आयरन में कार्बन संयुक्त और स्वतंत्र रूप में पाई जाती है जिसे ग्रेफाइट कहते हैं।
- इससे बने पार्ट सेल्फ लुब्रिकेटिंग का गुण रखते हैं। कास्ट आयरन निम्नलिखित प्रकार का गुण रखते हैं—
- (1) ग्रे कास्ट आयरन (Grey Cast Iron) :
- कास्ट आयरन की ये किस्म ढलाई कार्यों में सबसे अधिक प्रयोग की जाती है।
- इसमें मुख्य कार्बन 2% से 3% और मिश्रित कार्बन 1% होती है जिनकी वजह से इसका रंग भूरा दिखाई देता है।
- इसमें सिलिकन की मात्रा मिलाने पर धातु नर्म हो जाती है।
- इसका पिघलाव बिन्दु 1150°C से 1200°C है।
- (2) सफेद कास्ट आयरन (White Cast Iron):
- इसमें कार्बन की मात्रा 2.5% से 3.5%, सल्फर 0.15% से 0.25%, मैंगनीज 0.15% से 0.5%, फास्फोरस 0.2% से 0.6% व सिलिकन 0.8% से 1.2% होती है।
- यह धातु बहुत ही कठोर व भंगुर होती है।
- इसका प्रयोग मेनहोल के ढक्कन, पानी के पाइप, बिजली का सामान इत्यादि बनाने के लिए किया जाता है।
- यह ग्रे कास्ट आयरन की अपेक्षा जल्दी गल जाता है।
- (3) मॉटल्ड कास्ट आयरन (Mottled Cast Iron) :
- यह Gray Cast आयरन का मिश्रित रूप है।
- इसका रंग सफेद तथा भरा दोनों रंगों में होता है।
- इसमें मुक्त तथा संयुक्त रूप में पाई जाने वाली कार्बन की मात्रा लगभग बराबर होती है।
- (4) मैलिएबल कास्ट आयरन (Malleable Cast Iron) :
- यह मशीनएबल, मुलायम, टफ होता है।
- कास्टिंग करते समय इसमें 15% से 40% तक स्टील स्क्रैप मिलाया जाता है।
- यह अधिकतर हल्की कास्टिंग हब्स, ब्रेक पैड्स, ट्रैक्टर पार्ट्स या फोर्ज स्टील अथवा रॉट आयरन बनाने के लिए किया जाता है।
- (5) नाडुलर कास्ट आयरन (Nodular Cast Iron) :
- इसमें हीट टीटमेन्ट की आवश्यकता नहीं होती।
- यह अच्छा वीयर रेजिस्टेन्टस, मशीनएबल होता है। इसका गलनांक बिन्दु कम होता है।
- इसे नाडुलर आयरन, डक्टाइल आयरन तथा स्फिराइडल ग्रेफाइट आयरन के नाम से भी जाना जाता है।
- (6) एलॉय कास्ट आयरन (Alloy Cast Iron):
- पिघले आयरन में निम्निलिखित धातुएँ मिलाकर ये किस्म तैयार की जाती है—िनिकल, क्रोमियम, सिलिकन, वेनेडियम, मौलीबिडनम इत्यादि। इससे कास्ट आयरन की टेंसाइल शिक्त अधिक हो जाती है।
- पिटवां लोहा (Wrought Iron):
- यह लोहे की सबसे शुद्ध किस्म है।
- इसमें लगभग 99.8 प्रतिशत लोहा होता है।
- इसे आसानी से मोडा, फोर्ज अथवा फोर्ज वैल्ड भी किया जा सकता है।
- इसे हाई टैम्पर नहीं किया जा सकता है।

FITTER ➤ CHAPTER - 3: METAL, NON-METAL & ALLOYS

- इसका प्रयोग डायनामों, जंजीरें एवं हुक, कृषि औजार और जलयान का बाहरी भाग, भाप व पानी के पाइप, कीलें, नट व बोल्ट, ब्यॉयलर व ब्लैकस्मिथ के आयरन इत्यादि बनाने में किया जाता है।
- 🗘 रॉट आयरन में निम्नलिखित गुण पाये जाते हैं—
- इसका पिघलाव बिन्दु 1600°C है।
- इसको सुगमतापूर्वक वैल्ड किया जा सकता है।
- इसे केस हार्ड किया जा सकता है।
- यह दूसरी धातुओं की अपेक्षा अधिक चुम्बकीय होता है।
- इसकी बनावट रेशेदार होती है।
- इसका प्रयोग रिवट, बोल्ट, डायनेमो, कोर्स, चूड़ी, पानी तथा भाप की नालियाँ, कीलों तथा बिजली के सामान आदि के लिए किया जाता है।
- इस्पात (Steel) :
- इस्पात लोहे व कार्बन का मिश्रण होता है।
- इसमें मुख्य तत्व कार्बन ही होता है।
- इस्पात में कार्बन की मात्रा जितनी अधिक होगी उनता वह कठोर व चिमड़ा होगा।
- इसमें कार्बन का प्रतिशत 0.15% से 1.5% तक होती है।
- 🗘 इस्पात निम्नलिखित प्रकार का होता है—
- (1) प्लेन कार्बन स्टील (Plain Carbon Steel):
- यह केवल आयरन और कार्बन को मिलाकर बनाया जाता है।
- इसकी कठोरता कार्बन की मात्रा पर निर्भर करता है।
- निम्न वर्गों में बाँटा गया है—
- (i) अतिमृदु इस्पात (Dead mild or Low Carbon Steel) :
- इसमें कार्बन की मात्रा 0.15% तक होती है।
- यह पतली चादरें, तार, छड़ें, स्टील पाइप इत्यादि बनाने के लिए प्रयोग किया जाता है।
- (ii) मृदु इस्पात (Mild Steel):
- इसमें 0.15% से 0.3% तक कार्बन होती है।
- इसमें कठोरता बहुत कम होती है इसिलए इसे आसानी से फोर्ज, वैल्ड व मशीन कर सकते हैं।
- इसका प्रयोग फोर्जिंग, स्टेम्पिंग, ब्वायलर प्लेट, मशीन पार्ट्स इत्यादि बनाने के लिए किया जाता है।
- (iii) मध्यम कार्बन इस्पात (Medium Carbon Steel) :
- इसमें कार्बन की मात्रा 0.3% से 0.75% तक होती है।
- यह कठोर व चिमडा होता है।
- इसे निम्नलिखित कार्यों के लिए प्रयोग किया जाता है—ड्रॉप फोर्जिंग, ऐक्सल, खेती संबंधी औजार, तारें, क्लच प्लेटें, कमानियाँ, स्प्रिंग, तार के रस्से इत्यादि।
- (iv) उच्च कार्बन स्टील (High Carbon Steel) :
- इस इस्पात में कार्बन की मात्रा 0.75% से 1.5% तक होती है।
- यह मध्यम कार्बन इस्पात की अपेक्षा अधिक भंगुर है।
- (2) एलॉय स्टील (Alloy Steel) :
- कार्बन व आयरन के अलावा एक अथवा अधिक एलिमेंट वाली स्टील एलॉय स्टील कहलाती है।
- (3) कास्ट स्टील (Cast Steel):
- इसमें सिलिकन व मैंगनीज की निश्चित मात्रा सिहत 0.2 से 0.5% तक कार्बन होती है।
- यह स्टील कास्टिंग्स के लिए प्रयोग की जाती है।
- प्रमुख एलॉय स्टील :
- (1) हाई स्पीड स्टील (High Speed Steel) :
- हाई स्पीड स्टील को हार्ड करने के लिए 500° C से 600° C तक गर्म किया जाता है।

- इसका प्रयोग हैक्सा ब्लेड, ड्रिल, रीमर, डाई व टेप, कटिंग ट्रल्स और मिलिंग कटर आदि बनाने के लिए किया जाता है।
- यह तीन प्रकार का होता है—
- (i) लो हाई स्पीड स्टील (Low High Speed Steel) :
- इसमें टंग्स्टन 14%, क्रोमियम 4%, कार्बन 0.6% होता है।
- इससे बने ट्रल्स को तेल में हार्ड किया जाता है।
- (ii) हाई स्पीड स्टील (High Speed Steel) :
- इसमें 18% टंग्स्टन, 4% क्रोमियम, 1% वैनेडियम, 0.6% कार्बन होता है।
- इसे हवा में हार्ड किया जाता है इसलिए इसे हवा स्टील भी कहते हैं।
- (iii) सुपर हाई स्पीड स्टील (Super High Speed Steel) :
- इसमें 21% टंग्स्टन, 4% क्रोमियम, 1.5% वैनेडियम, 2%-4% कोबाल्ट, 0.7% कार्बन होता है।
- (3) स्टैनलेस स्टील (Stainless Steel) :
- इस एलॉय में 8% निकल तथा 18% क्रोमियम और 0.2% से 1% तक कार्बन होती है।
- इस धातु को जंग नहीं लगता और चुम्बक अपनी ओर नहीं खींचता।
- इसका प्रयोग कटिंग टूल्स, सर्जिकल इन्स्ट्र्मेंट, घरेलू बर्तनों, ऑटोमोबाइल पार्ट, हवाई जहाजों और घडियों के पुर्जे आदि बनाने में किया जाता है।
- (4) मैंगनीज स्टील (Magnese Steel):
- इसमें 11% से 15% तक मैंगनीज और 1% कार्बन होता है।
- यह एलॉय बहुत ही कठोर होता है जिस वजह से इसको फोर्ज और मशीनिंग करना काफी कठिन होता है।
- इसका प्रयोग कनैक्टिंग रॉड, रेलवे क्रॉसिंग के प्वाइंट्स, रेलवे की पटरी और क्रशर आदि बनाने में किया जाता है।

अलौह धातु

- (1) ताँबा :
 - ताँबा को पायराइट अयस्क से निकाला जाता है।
 - इसका क्वथनांक 1100°C होता है।
 - यह टिन के साथ मिलाकर काँसा बनाने में प्रयोग किया जाता है।
 - इसका उपयोग बिजली के तार बनाने में किया जाता है।
 - लोहे पर जिंक की परत का चढ़ाना जस्तीकरण (Galvanization)
 कहलाता है जो लोहे को जंग से बचाता है।
 - यह जस्ता के साथ मिलकर पीतल बनाता है।
- (2) ऐल्युमिनियम:
 - इसे मुख्यत: बॉक्साइट अयस्क से निकाला जाता है।
 उपयोग: बर्तन, कुकर, हवाई जहाज की Body, Bus की बॉडी,
 बिजली का तार इत्यादि
 - Al का गलनांक 660°C है।

अधातु (Non-Metal)

- यह Electron ग्रहण करके ऋणायन बनाता है।
- इसकी बाह्यतम कक्षा में 5, 6, 7 Electron होते हैं।
- यह प्राय: ठोस और गैस अवस्था में पाया जाता है।
- अपवाद ब्रोमिन (द्रव अवस्था में पाया जाता है।)
- अधातुएँ विद्युत का कुचालक होते हैं।
 अपवाद : ग्रेफाइट
- अधातुएं भंगुर होते हैं।
 - अपवाद : ग्रेफाइट और आयोडीन
- श्वेत फॉस्फोरस हवा में लगभग 40°C तापमान पर स्वत: जल उठता है इसलिए इसे जल में डुबा कर रखते हैं।
- फॉस्फोरस की गंध लहसुन के जैसी होती है।
- फास्फोरस जब कास्टिक सोडा से अभिक्रिया करता है तो फॉस्फीन नामक गैस का निर्माण करती है जो जहरीली होती है।

- लाल फास्फोरस (P₂) का उपयोग माचिस की तिल्ली तथा बारूद बनाने में किया जाता है और यह फॉस्फोरस का स्थायी अपरूप है।
- सल्फर को रबर में मिलाने की प्रक्रिया वल्कनीकरण (Volcanization)
- रबर में सल्फर मिलाने से उसकी प्रत्यास्थता बढ जाती है।
- सल्फर का उपयोग औषधि जगत में मलहम या गोली बनाने में किया
- महिलाएं अपना बाल सीधा करने के लिए सल्फर का उपयोग करती है जिससे बालों को खास आकार दिया जा सकता है।

उपधातु (Metalloids) : वह पदार्थ जिसमें धातु और अधातु दोनों का गुण मौजूद होता है उपधात् कहलाता है।

Ex: जर्मेनियम, सिलिकन, पोलिनियम, Antimony, आर्सेनिक।

मिश्रधातु (Alloy)

- किसी धातु का किसी अन्य धातु में या अधातु में मिलना या मिलने के बाद का मिश्रधात कहलाता है।
- मिश्रण में धात का होना अनिवार्य है।
- मिश्रण में उनके अवयवी तत्वों का गुण मौजूद रहता है। Composition
- पीतल or मंजु-मेटल (Brass) Cu + Zn (i)
- कांसा (Bronze) or बेल मेटल Cu + Sn (ii)
- (iii)
- (iv)
- (v)
- (vi)
- रोल गोल्ड ——— Cu + Al
- (viii) टाँका or रांगा or सोल्डर — Pb+Sn
- मैग्नेलियम ————
- Al+mg
- मोनल मेटल ---(x) Ni+Cu

खनिज (Minerals)

- धातु तथा उनके यौगिकों से निकाला गया वह पदार्थ जो पृथ्वी तल के नीचे पाया जाता है, खनिज कहलाता है।
- वैसा खनिज जिससे कम खर्च पर धातु निकाला जाता है अयस्क कहलाता है।
- सभी अयस्क खनिज है लेकिन सभी खनिज अयस्क नहीं है।
- सीसा तथा जस्ता को जुडवा खनिज के नाम से जाना जाता है।
- राजस्थान स्थित जवार खान शीशा और जस्ता खनन के लिए प्रसिद्ध है।

(1)	सोडियम	(Na)	NaCl (So
			Na_2CO_3 1

dium Chloride) $m Na_2CO_3$ 10 $\rm H_2O$ (Washing Soda) $\rm NaNO_3$ (Chilli Saltpeter) $\rm Na_2SO_4$ 10 $\rm H_2O$ (Globular Salt) $\rm Na_2B_4O_7.10H_2O$ (Borax

or सुहागा

पोटैशियम (K) (2)**KC1**

> K₂CO₃ (Purl Ash) $\overline{\mathrm{KNO_3}}$ (नाइटर or शोरा)

मैग्नेशियम (Mg) MgSO₄ 7H₂O (एप्सम साल्ट) (3)कैल्सियम (Ca) CaSO₄.2H₂O (जिप्सम) (4)

 $Al_{9}O_{3}.\dot{2}H_{9}\ddot{O}$ (बॉक्साइट) (5)Αl

Na₃AIF₆ (क्रायोलाइट) Al₂O₃ (कोरंडम या रूबी या नीलम)

Pb (लेड) PbS (गैलेना) (6)Ag₂S (सिल्वर ग्लास) (7)Aσ

ZnŠ (जिंक ब्लेड) (8)Zn (जिंक)

> ZnO (जिंकाइट or यशद पुष्प or दार्शनिक पृष्प)

(9) Hg HgS (सिनेबार) (10) Fe Fe_3O_4 (Magnetite)

 Fe_2O_3 (Hemetite) $FeCO_3$ (Sedarite)

FeS₂ (Iron Pyrite or झूठा सोना)

Note:

- पिंच ब्लेड यूरेनियम का अयस्क है।
- मोनोजाइट थोरियम का अयस्क है।
- आशा धातु यूरेनियम को कहा जाता है जबकि भविष्य का ईंधन हाइडोजन है।

कुछ महत्त्वपूर्ण प्वाइंट्स

- धातु का वह गुण जिसमें यदि धातु पर खिंचाव शक्ति लगाई जाए, तो वह ट्रटने नहीं पाती है, टेनासिटी कहलाती है।
- पिग आयरन के उत्पादन के लिए ब्लास्ट फरनेस का प्रयोग किया
- धातुओं में प्लास्टिसिटी होने के कारण, बर्त्तन बनाने में प्रयोग किया जाता है।
- स्प्रिंग इलास्टिसिटी गण पर कार्य करता है।
- विद्युत की सुचालकता सबसे अधिक चाँदी में होती है।
- सबसे अधिक कठोरता टंग्स्टन धातु में प्राप्त होती है।
- टूल बनाने के लिए हाई कार्बन स्टील का प्रयोग किया जाता है।
- गैल्वेनाइज करने के लिए जिंक धातु का प्रयोग किया जाता है।
- अच्छी गुणवत्ता के बिजली के तार बनाने के लिए सिल्वर का प्रयोग किया जाता है।
- रिले आदि में बिजली कंडक्टर बनाने के लिए भी सिल्वर का ही प्रयोग
- स्टेनलेस स्टील के मुख्य अलॉयिंग तत्व क्रोमियम तथा निकेल होता है।
- ह्वाइट मेटल कॉपर, लेड, टिन तथा एंटीमनी धातुओं का अलॉय है।
- हाई स्पीड स्टील का मुख्य मिश्रण तत्व टंग्स्टन होता है।
- हाई स्पीड स्टील के मुख्य अलॉय तत्व निम्न अनुपात में होते हैं— टंगस्टन-18%, क्रोमियम-4%, वेनेडियम-1%
- 18-8 स्टेनलेस स्टील का मतलब 18%, क्रोमियम 8% निकेल है।
- हाई स्पीड स्टील से बने टुल में कार्बन की मात्रा 0.75%-1.0% होती है।
- पिग आयरन में 3 से 5% के रेंज में कार्बन पाया जाता है।
- एल्युमीनियम का मुख्य रासायनिक गुण सॉफ्ट होना है।
- धातु में टफनेस होने के कारण बेंडिंग या ट्विस्टिंग करने पर वह नहीं
- ड्यूरेलूमिन और हिंडोलियम में 95% एल्युमीनियम होता है।
- कार्बन स्टील की फोर्जेबिलिटी को प्रभावित करता है।
- ग्रे कास्ट आयरन में हाई कंप्रेसिव स्टेंथ होती है।
- शुद्ध अवस्था में एल्यमीनियम में स्टेंथ की कमी होती है इसलिए इसका प्रयोग इंजीनियरिंग कार्य के लिए नहीं किया जाता है।
- धातु में प्लास्टिसिटी गुण होने के कारण बाहरी फोर्सों के अंतर्गत धातु बिना टूटे अपना आकार बदल लेते हैं।
- क्रेन हुक्स रॉट आयरन की बनी होती है।
- जिंक एलॉय नमकीन पानी के कोरोजन को रोक सकता है।
- ग्रे कास्ट आयरन सुदृढ़ होता है।

Objective Questions —

18-8 स्टेनलेस स्टील का अभिप्राय है— निम्नलिखित में किसके मिश्रण से ब्रांज बनता है ? 14. 1 (A) 18% क्रोमियम + 8% निकेल (A) कॉपर व जिंक (B) कॉपर व टिन (B) 18% निकेल + 8% क्रोमियम (C) कॉपर, टिन व जिंक (D) इनमें से कोई नहीं (C) 18% क्रोमियम + 8% कार्बन ब्रॉस निम्न में से है— 2. (D) 18% कार्बन + 8% क्रोमियम (A) फेरस मेटल (B) नॉन फेरस मेटल निम्न में से धात के किस गुण के कारण बर्तन बनाए जाते हैं? **15**. (C) फेरस एलाय (D) नॉन फेरस एलाय (A) इलास्टिसिटी (B) प्लास्टिसिटी क्रोमियम स्टील है— 3. (C) टफनेस (D) टेंसाइल स्टेंथ (A) फेरस एलाय (B) फेरस मेटल निम्न में से धात के किस गुण पर स्प्रिंग कार्य करता है ? 16. (C) नॉन फेरस एलाय (D) नॉन फेरस मेटल (A) इलास्टिसिटी (B) प्लास्टिसटी 4. निम्न में से किसके मिश्रण से ब्रॉस बनता है? (D) टफनेस (C) स्टिफनेस (A) कॉपर और टिन (B) कॉपर व निकेल निम्नलिखित में से आयरन का सबसे शुद्ध रूप है-**17**. (C) कॉपर और जिंक (D) कॉपर और एल्युमीनियम (B) रॉट आयरन (A) कास्ट आयरन फॉस्फर ब्रांज मिश्रण होता है— 5. (C) पिग आयरन (D) स्टील (A) ब्रॉस और फॉस्फोरस निम्न में से किसमें कार्बन की मात्रा सबसे अधिक होती है ? 18. (B) ब्रांज और फॉस्फोरस (A) कास्ट आयरन (B) रॉट आयरन (C) ब्रांज और सिलिकन (C) हाई कार्बन स्टील (D) पिग आयरन (D) ब्रांज, सिलिकन और फॉस्फोरस निम्न में से किस धातु में विद्युत की सुचालकता सबसे अधिक होती है ? 19. निम्न में से नॉन-फेरस मेटल है-6. (A) कास्ट आयरन (B) एल्यमीनियम (A) ताँबा (B) टिन (C) ताँबा (D) पीतल (C) एल्युमीनियम (D) सभी 20. निम्न में से किस धातु में सबसे अधिक कठोरता पाई जाती है? निम्न में से धातु का वह कौन सा गुण है जिसमें धातु को खींचने पर 7. (B) हाई कार्बन स्टील (A) काँसा उसके तार बनाए जा सकते हैं और वह टूटने नहीं पाती है? (C) कास्ट आयरन (D) रॉट आयरन (A) इलास्टिसिटी (B) टफनेस अलौह धात का उदाहरण है-21. (D) टेनासिटी (C) डिक्टिलटी (A) हाई कार्बन स्टील (B) रॉट आयरन धातु का वह गुण जिसमें धातु को यदि बार-बार मोडा जाए या टविस्ट 8. (C) माइल्ड स्टील (D) एल्युमीनियम अलॉय किया जाए तो वह उसे सहन कर लेती है और नहीं टुटती है, कहलाता है— **22**. निम्न में से किस धातु पर वातावरण का दुष्प्रभाव सबसे कम होता है ? (A) टफनेस (B) ब्रिटलनेस (A) एल्युमीनियम (B) पीतल (C) डिक्टिलिटी (D) हार्डनेस (C) आयरन (D) ताँबा निम्न में से किस धातु में सबसे अधिक मैलिएबिलिटी पाई जाती है ? मशीनों की बॉडी बनाई जाती है— **23**. (A) चाँदी (B) सोना (A) पिग आयरन (B) कास्ट आयरन (C) ताँबा (D) लोहा (C) ताँबा (D) एल्युमीनियम निम्न में से वह कौन-सा गुण है जिसमें धात पर खिंचाव शक्ति लगाई निम्न में से किस धात का पतला तार नहीं खींचा जा सकता है? 24. जाती है तो वह नहीं टूटती है ? (A) एल्युमीनियम (B) पीतल (A) ब्रिटलनेस (B) टफनेस (C) हाई कार्बन स्टील (D) कास्ट आयरन (C) टेनासिटी (D) हार्डनेस 25. किस धातु की कास्टिंग नहीं की जा सकती है? निम्न में से किसके उत्पादन के लिए ब्लास्ट फरनेस का प्रयोग किया (B) रॉट आयरन (A) कास्ट आयरन जाता है ? (C) गन मेटल (D) इनमें से कोई नहीं (A) पिग आयरन (B) कास्ट आयरन निम्न में से किस धातु को फोर्ज नहीं किया जा सकता है? **26**. (C) रॉट आयरन (D) किसी के लिए नहीं (A) कास्ट आयरन (B) रॉट आयरन निम्न में से किस धातु के उत्पादन में कुपोला फरनेस इस्तेमाल किया **12**. (D) इनमें से कोई नहीं (C) कॉपर जाता है ? निम्न में से किस धातु का प्रयोग करके ट्रल बनाया जाता है ? **27**. (A) पिग आयरन (B) कास्ट आयरन (B) रॉट आयरन (A) कास्ट आयरन (C) रॉट आयरन (D) किसी के लिए नहीं (C) हाई कार्बन स्टील (D) इनमें से कोई नहीं कार्बन की मात्रा बढ़ा देने से स्टील की हार्डनेस पर क्या प्रभाव पड़ता है ? गैल्वेनाइज करने के लिए किस धातु का प्रयोग किया जाता है? 28.

(A) कम हो जाता है।

(C) बढ जाता है।

(A) टिन

(C) लेड

(B) बहुत कम हो जाता है।

(D) कोई प्रभाव नहीं पडता।

(D) इनमें से कोई नहीं

(B) जिंक

निम्न में से किस धात का प्रयोग कर उच्च गणवत्ता के बिजली के **29**. **43**. क्यपोला फरनेस भटटी का ताप कितना होता है? तार बनाए जाते हैं ? (A) 1000°C (B) 1500°C-1800°C (A) एल्युमीनियम (B) टिन (C) 1260°C-1340°C (D) इनमें से कोई नहीं (D) इनमें से कोई नहीं (C) कॉपर निम्न में से किस रेंज में पिग आयरन में कार्बन की मात्रा होती हैं? 44. निम्न में से किस धातू का प्रयोग करके रिले आदि में बिजली कंडक्टर **30**. (A) 0.05 से 1.4% (B) 0.9 电 1% बनाने में प्रयोग किया जाता है ? (C) 1.7 से 2.2% (D) 3 से 5% (A) कॉपर (B) एल्यमीनियम निम्न में से एल्यमीनियम का मुख्य रासायनिक गुण है— 45. (C) सिल्वर (D) इनमें से कोई नहीं (A) साफ्ट (B) ब्रिटल निम्न में से कौन लौह अयस्क को साफ करने की विधि है? 31. (C) स्ट्रांग (D) **टफ** (A) भारात्मक पृथ्कीकरण (B) चुम्बकीय पृथ्कीकरण धातु के किस गुण के कारण धातु को बार-बार मोड़ने पर वह नहीं 46. (C) दबाव पृथ्कीकरण (D) उपर्युक्त सभी टटती है? निम्न में से स्टेनलेस स्टील के मुख्य अलॉयिंग तत्व हैं— 32. (B) स्टिफनेस (A) ब्रिटलनेस (B) निकेल तथा वेनेडियम (A) क्रोमियम तथा निकल (C) टफनेस (D) मैलिएबिलिटी (C) वेनेडियम तथा टंगस्टन (D) टंगस्टन तथा क्रोमियम खुरचन को रोकने वाला गुण कहलाता है-47. **33**. निम्न में किस धातुओं का एलॉय मंजु धातु होता है ? (A) हार्डनेस (B) टफनेस (B) कॉपर तथा टिन (A) कॉपर तथा जिंक (D) मैलिएबिलिटी (C) डिक्टिलटी (C) कॉपर तथा एल्युमीनियम (D) कॉपर तथा निकेल 48. निम्न में ड्यूरेलुमिन और हिंडोलियम एलॉयज में 95% क्या होता है? निम्न में किन धातुओं के मिश्रण से मोनल धातू बनता है? 34. (A) कॉपर (B) जिंक (A) निकेल तथा एल्युमीनियम (B) निकेल तथा जिंक (C) लेड (D) एल्युमीनियम (D) निकेल तथा आयरन (C) निकेल तथा कॉपर 49. स्टील में कार्बन की मात्रा बढने से क्या परिणाम होता है? 35. साधारणत: आयरन ओर में कितना प्रतिशत लौह-कण पाए जाते हैं ? (A) हार्डनेस में वृद्धि होती है। (A) 40% \(\psi\) 65% (B) 30% से 35% (B) मैलिएबिलिटी में वृद्धि होती है। (C) 0% (D) 100% (C) डक्टिलिटी में वृद्धि होती है। ह्राइट मेटल अलॉय है-36. (D) स्ट्रेंग्थ में वृद्धि होती है। (A) कॉपर तथा टिन (B) कॉपर, लेड, टिन तथा एंटीमनी **50**. निम्न में किसका प्रयोग किया जाता है पिग आयरन के उत्पादन में? (C) कॉपर, जिंक तथा निकेल (D) कॉपर, जिंक तथा एंटीमनी (B) ब्लास्ट फरनेस (A) क्पोला फरनेस निम्न में से हाई स्पीड स्टील का मुख्य मिश्रण तत्व होता है— **37**. (C) ओपन हर्थ फरनेस (D) इलेक्ट्रिक ऑर्क फरनेस (A) क्रोमियम (B) वेनेडियम लोहे और कार्बन का मिश्रण निम्न में से कौन है? 51. (D) टंगस्टन (C) निकेल (A) पिग आयरन (B) कास्ट आयरन निम्न में किस कारण से कास्ट आयरण का उपयोग मशीनों के बेड 38. (C) रॉट आयरन (D) स्टील बनाने के लिए किया जाता है? निम्न में से टिन के संबंध में सही कथन है— (A) इसका भार अधिक होता है। (A) टिन उच्च तापमान को सहन कर लेती है। (B) यह एक सस्ती धातु है। (B) अधिकतर सोल्डरों का टिन एक मुख्य मिश्रण तत्व है। (C) अधिक कंप्रेसिव लोड सहन कर लेता है। (C) टिन बिजली का अच्छा सुचालक है। (D) यह एक भंगुर धातु है। (D) टिन एक कोरोजन रेजिस्टेंट धातु है। **39**. निम्न में से टिन के संबंध में सही कथन है-स्टील की फोर्जेबिलिटी को प्रभावित करने वाला तत्व होता है— **53**. (A) टिन उच्च ताप सहन करने वाली धातु है। (A) सिलिकन (B) मैंगनीज (B) टिन कोरोजन रेसिस्टेंट धात है। (D) नाइट्रोजन (C) कार्बन (C) टिन, सोल्डर की ऐलॉय धातु है। **54**. ग्रे-कास्ट आयरन का पिघलाव बिन्दु होता है— (D) विद्युत् का सर्वश्रेष्ठ सुचालक है। (A) 1150°C-1200°C (B) 1200°C-1250°C **40**. HSS से बने ट्रल में कार्बन की मात्रा होती है— (D) 1250°C-1300°C (C) 1000°C-1050°C (A) 0.6%-0.75% (B) 1.0%-2.0% 55. निम्न में से ग्रे-कास्ट आयरन का गृण है— (C) 0.1%-0.2% (D) 0.75%-1.0% (A) हाई कंप्रेसिव स्ट्रेंग्थ (B) लो कंप्रेसिव स्ट्रेंग्थ HSS में निम्न में से किस अनुपात में मुख्य अलॉय तत्व होते हैं? 41. (D) लो टेंसाइल स्ट्रेंग्थ (C) हाई टेंसाइल स्ट्रेंग्थ (A) क्रोमियम-18%, टंगस्टन-4%, वेनेडियम-1% निम्न में से किस कारण से शुद्ध अवस्था में एल्युमीनियम का प्रयोग **56**. (B) टंगस्टन-18%, क्रोमियम-4%, वेनेडियम-1% इंजीनियरिंग कार्य में नहीं किया जाता है? (C) कोबाल्ट-18%, टंगस्टन-4%, वेनेडियम-1%(A) यह ब्रिटल होता है। (D) वेनेडियम-18%, क्रोमियम-4%, टंगस्टन-1% (B) यह बहुत हल्का होता है। 42. निम्न में किस यौगिक में सबसे कम कार्बन की मात्रा होती हैं? (C) यह महंगा होता है। (A) कार्बन स्टील (B) कास्ट आयरन

(C) रॉट आयरन

(D) पिग आयरन

(D) इसमें स्ट्रेंग्थ की कमी होती है।

FITTER ➤ CHAPTER - 3: METAL, NON-METAL & ALLOYS

- **57.** सबसे हल्की धात है—
 - (A) लेड
- (B) ਟਿਜ
- (C) कॉपर
- (D) लीथियम
- 58. अतिमृद् इस्पात में कार्बन की मात्रा होती है—
 - (A) 0.1%
- (B) 0.2%
- (C) 0.3% (D) 0.15%
- 59. निम्न में किसका प्रयोग करके आयरन को गैल्वेनाइज्ड बनाया जाता है?
 - (A) टिन
- (B) जिंक
- (C) लेड
- (D) कॉपर
- 60. निम्न में से ब्रॉज किसका एलॉय है?
 - (A) कॉपर और टिन
- (B) लेड और टिन
- (C) कॉपर और जिंक
- (D) कॉपर और लेड
- 61. निम्न में से किस गुण के कारण धातु को रोल करके शीट बनाया जाता है?
 - (A) इलास्टिसिटी
- (B) मैलिएबिलिटी
- (C) डिक्टिलटी
- (D) टेनासिटी
- **62.** धातु का वह गुण जिसके कारण लोड को हटाने पर डिफॉर्मेशन के बाद वह अपने वास्तविक आकार में वापस आ जाता है, कहलाता है—
 - (A) डिक्टिलटी
- (B) मैलिएबिलिटी
- (C) स्टिफनेस
- (D) इलास्टिसिटी
- 63. धातु का वह गुण जिसके कारण बाहरी फोर्सों के प्रभाव के अंतर्गत धातु बिना टूटे अपना आकार बदल लेती है, कहलाती है—
 - (A) प्लास्टिसिटी
- (B) इलास्टिसटी
- (C) स्टिफनेस
- (D) मैलिएबिलिटी
- 64. निम्न में किस धात का प्रयोग कर क्रेन हक्स बनाया जाता है?
 - (A) रॉट आयरन
- (B) हाई कार्बन स्टील
- (C) कास्ट स्टील
- (D) कास्ट आयरन
- 65. वह कौन-सी धातु है जो कोरोजन-रेजिस्टेंट होती है?
 - (A) एल्युमीनियम (C) कॉपर
- (D) माइल्ड स्टील

(B) टिन

- **66.** वह कौन-सा एलॉय है जो नमकीन पानी के कोरोजन को रोक सकता है?
 - (A) ब्रॉस
- (B) गन मेटल
- (C) जिंक
- (D) निकेल क्रोम एलॉय
- 67. निम्न में से ग्रे-कास्ट आयरन का गुण है—
 - (A) मैलिएबल
- (B) डक्टाइल
- (C) टेंसाइल
- (D) सुदृढ
- 68. किस धातु में कार्बन की मात्रा कम होती है?
 - (A) प्लेन कार्बन स्टील
- (B) रॉट आयरन
- (C) पिग आयरन
- (D) कास्ट आयरन
- 69. मिश्रधातु होते हैं—
 - (A) शुद्ध धातु
 - (B) धातु का किसी भी अनुपात में मिश्रण
 - (C) धातु का निश्चित अनुपात में मिश्रण
 - (D) अधातु का मिश्रण
- 70. निम्न में कौन मिश्रधात नहीं है?
 - (A) स्टील
- (B) ताँबा
- (C) काँसा
- (D) पीतल
- 71. उच्च-कार्बन इस्पात में कार्बन की मात्रा होती है—
 - (A) 0.75% से 1.5%
- (B) 0.5% से 0.75%
- (C) 2%
- (D) 0.1% से 0.5%
- 72. हवाई जहाजों का बॉडी किस धातु से बनाया जाता है?
 - (A) Aluminium
- (B) Brass
- (C) Copper
- (D) Magnesium
- 73. सबसे अधिक प्रत्यास्थता किसकी होती है?
 - (A) द्रव
- (B) गैस
- (C) डोस
- (D) तीनों का बराबर होता है

ANSWERS KEY											
1. (B)	2 . (D)	3 . (A)	4. (C)	5 . (B)	6. (D)	7 . (C)	8. (A)	9 . (B)	10 . (C)		
11 . (A)	12 . (B)	13 . (C)	14 . (A)	15 . (B)	16 . (A)	17 . (B)	18. (A)	19 . (C)	20 . (B)		
21 . (D)	22 . (A)	23 . (B)	24 . (D)	25 . (B)	26 . (A)	27 . (C)	28 . (B)	29 . (C)	30 . (C)		
31 . (D)	32 . (A)	33 . (A)	34 . (C)	35 . (A)	36 . (B)	37 . (D)	38. (C)	39 . (C)	40 . (D)		
41 . (B)	42 . (C)	43 . (C)	44 . (D)	45 . (A)	46 . (C)	47 . (A)	48. (D)	49 . (A)	50 . (B)		
51 . (D)	52 . (B)	53 . (C)	54 . (A)	55 . (A)	56 . (D)	57 . (D)	58 . (D)	59 . (B)	60 . (A)		
61 . (B)	62 . (D)	63 . (A)	64 . (A)	65 . (A)	66 . (C)	67 . (D)	68 . (B)	69 . (C)	70 . (B)		
71 . (A)	72 . (A)	73 . (C)									

000

ALL JE/RLY SSE Electrical/Mechanical/Ecs/Civil

Branch Paper 6 Months

NON-TECH

Mathematics Reasoning GS (7 Paper) English

8 Months