Math 134, Spring 2022

Lecture #23: Stability

May 18^{th}

Last few lectures:

Today we will discuss:

• We considered the fixed point $x^* = 0$ of the linear system

$$\dot{\mathbf{x}} = A\mathbf{x}$$

- We classified the possible behaviors into:
 - Stable and unstable nodes. $0 < \lambda_1 < \lambda_2$
 - Saddle points. $\lambda_1 \angle \circ \langle \lambda_2 \rangle$
 - Non-isolated fixed point(s). $\lambda_1 = 0$
 - Stable and unstable star nodes. $\lambda_1 = \lambda_2 > 0$
 - Stable and unstable degenerate nodes.
 - Centers. ±ip

Learning objectives

Today we will discuss:

- Classification of fixed points using the trace and determinant
- What it means to say a fixed point is Lyapunov stable, neutrally stable, asymptotically stable, and unstable
- What it means to say a fixed point is hyperbolic.

Linear systems

 $\frac{1}{4} = \frac{1}{4} = \frac{1}$

$$\lambda = \frac{1}{2} \left[\tau \pm \sqrt{\tau^2 - 4\Delta} \right]$$
 where $\tau = \operatorname{tr} A$ and $\Delta = \det A$

was es energe rade T2240

saddle point, mustable spirals centers

suddle point, stable suddle point, spirals

Stability

We now want to understand the stability of fixed points x^* of the 2d system

$$\dot{x} = f(x)$$

To do this, we require some definitions...

• Define the **open ball** of radius $\delta > 0$ about \mathbf{x}^* to be

$$B(\mathbf{x}^*, \delta) = \{\mathbf{x} \in \mathbb{R}^2 : |\mathbf{x} - \mathbf{x}^*| < \delta\}$$

• We say that \mathbf{x}^* is **attracting** if there exists $\delta > 0$ so that given any $\mathbf{x}(0) \in B(\mathbf{x}^*, \delta)$ we have

$$extbf{ extit{x}}(t)
ightarrow extbf{ extit{x}}^* \quad ext{as} \quad t
ightarrow \infty$$

• We say \mathbf{x}^* is **globally attracting** if we can replace $B(\mathbf{x}^*, \delta)$ by \mathbb{R}^2 .

In which of the following phase portraits is $x^* = 0$ not attracting?

• We say that \mathbf{x}^* is **Lyapunov stable** if given any $\varepsilon > 0$ there exists $\delta > 0$ so that for every $\mathbf{x}(0) \in B(\mathbf{x}^*, \delta)$ we have

- If a fixed point is Lyapunov stable but not attracting, we say it is **neutrally stable**.
- If a fixed point is Lyapunov stable and attracting, we sat it is asymptotically stable.

 **Control of the control of the con
- A fixed point that it neither attracting nor Lyapunov stable is unstable. Nestrally stable

In which of the following phase portraits is $x^* = 0$ not neutrally stable?

Fixed points of nonlinear systems

Recall that for 1d systems

$$\dot{x} = f(x)$$

the linearization

$$\dot{\eta} = f'(x^*)\eta$$

determines the stability of a fixed point x^* whenever $f'(x^*) \neq 0$.

Question: For the 2*d* system

$$\dot{x} = f(x)$$

when does the linearization

$$\dot{\boldsymbol{\eta}} = \nabla f(\boldsymbol{x}^*) \boldsymbol{\eta},$$

determine the stability of the fixed point x^* ?

A cautionary tale

System
$$\begin{cases}
\dot{x} = -y + ax(x^2 + y^2) & \text{aelllis a given} \\
\dot{y} = x + ay(x^2 + y^2)
\end{cases}$$

$$(x^{\dagger}, y^{\dagger}) = (0,0) \text{ is a critical point}$$

$$\text{Linearization} \quad f(x,y) = \begin{bmatrix} -y + ax(x^1 + y^1) \\ x + ay(x^1 + y^1) \end{bmatrix}$$

$$\nabla f(x,y) = \begin{bmatrix} a(x^1 + y^1) + 2ax^1 & -1 + 2axy \\ 1 + 2axy & c(x^1 + y^1) + 2ay^1 \end{bmatrix}$$
So
$$\nabla f(0,0) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
So the line at $(0,-1)$ is
$$\dot{y} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
So we get that the origin is a center

When can we neglect higher order terms?

Hyperbolic fixed points

We say a fixed point ${m x}^*$ is **hyperbolic** if <u>all</u> eigenvalues of $abla {m f}({m x}^*)$ satisfy ${\rm Re}\, \lambda \neq 0$

For which of the following systems is the fixed point at $\mathbf{x}^* = (1,1)$ not hyperbolic?

A)
$$\begin{cases} \dot{x} = x^2 - 1 \\ \dot{y} = 1 - xy \end{cases}$$
B)
$$\begin{cases} \dot{x} = x - 1 \\ \dot{y} = y^2 - 1 \end{cases}$$
C)
$$\begin{cases} \dot{x} = y^2 - 1 \\ \dot{y} = 1 - x \end{cases}$$
D)
$$\begin{cases} \dot{x} = 1 - x^2 \\ \dot{y} = 2 - y - x \end{cases}$$

Continuous changes of variable

Which of the following phase portraits is **not** topologically equivalent to the other three?

The Hartman-Grobman Theorem

Theorem: Let f be smooth and x^* be a hyperbolic fixed point of

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}).$$

Then there is a continuous change of variables from a neighborhood of the fixed point x^* to a neighborhood of the fixed point $\eta^*=0$ of the linearized flow

$$\dot{\boldsymbol{\eta}} = \nabla f(\boldsymbol{x}^*) \boldsymbol{\eta}.$$

Consider the system

$$\begin{cases} \dot{x} = x^2 - 4y \\ \dot{y} = y - 1 \end{cases}$$

Is the fixed point at (2,1) asymptotically stable?

The (improved) Hartman–Grobman Theorem

Theorem: Let f be smooth and x^* be a hyperbolic fixed point of

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}).$$

Then there is a **continuously differentiable** change of variables from a neighborhood of the fixed point x^* to a neighborhood of the fixed point $\eta^*=0$ of the linearized flow

$$\dot{\boldsymbol{\eta}} = \nabla f(\boldsymbol{x}^*) \boldsymbol{\eta}.$$

Moreover, the derivative of the change of variables at the fixed point is the identity.

The Lotka-Volterra model

$$\begin{cases} \dot{x} = x(3 - x - 2y) \\ \dot{y} = y(2 - x - y) \end{cases}$$