R20

Code No: R203104Q

SET - 1

III B. Tech I Semester Regular/Supplementary Examinations, December -2023 DIGITAL LOGIC DESIGN

(Com to CSE,IT)

Tim	e: 3 h	ours Max. Marl	ks: 70
		Answer any FIVE Questions ONE Question from Each unit	
		All Questions Carry Equal Marks *****	
		<u>UNIT-I</u>	
1.	a)	Perform the binary subtraction using2's complement method and 1's	[7M]
	1. \	complement method. $(1001)_2 - (1010)_2$.	[/7]], / []
	b)	Convert the following i)AB ₁₆ =() ₁₀ ii)1234 ₈ =() ₁₀ iii)772 ₁₀ =() ₁₆ . (OR)	[7M]
2.	a)	Convert the given expressions in standard SOP form	[7M]
	/	i)f(A,B,C)=A+AB+CB $ii)f(P,Q,R)=PQ+R+PR$	[,]
	b)	State and prove the following laws of Boolean algebra.	[7M]
		i)Commutative ii) associative iii)distributive	
3.	۵)	<u>UNIT-II</u> Simplify the following function using K-	[7M]
٥.	a)	Map: $F(A,B,C,D)=\Sigma(0,2,3,8,10,11,12,14)$	[/1 V1]
	b)	Implement Carry look-a-head adder circuit and explain its operation briefly.	[7M]
		(OR)	
4.	a)	Design a full adder by using two half adders.	[7M]
	b)	Simplify the following function using K-	[7M]
		Map: $F(A,B,C,D,E)=\Pi(0,1,6,7,8,9,21,22,23,29,31)$	
~	,	<u>UNIT-III</u>	[7] (1)
5.	a)	Design a 4:16decoder with basic gates.	[7M]
	b)	Draw the pin diagram and obtain the truth table of IC7485?	[7M]
		(OR)	
6.	a)	Design a combinational circuit for a 2-bit magnitude comparator.	[7M]
	b)	Design a 4 to 2 priority encoder.	[7M]
7.	a)	<u>UNIT-IV</u> Classify Shift Registers? Design and Explain any one of the Shift Registers.	[7M]
<i>,</i> .	b)	Design mod-10 counter with JK flip-flops.	[7M]
	,	(OR)	. ,
8.	a)		[7M]
	1- \	flop.	[7] (1)
	b)	Convert the JK Flip-flop in to RS flip-flop. UNIT-V	[7M]
9.	a)	Design a finite state machine which can detect the sequence 0010 by using JK	[7M]
		flip-flop.	
	b)	Explain the designing steps to convert Mealy machine to Moore	[7M]
		machine. (OR)	
10.	a)	Explain the differences between Mealy and Moore Machine.	[7M]
10.	b)	What is a Finite State Machine? Explain the capabilities and	[7M]
		limitations of Finite State Machine.	
		1 of 1	

Code No: R203104Q (R20) (SET - 2)

III B. Tech I Semester Regular/Supplementary Examinations, December -2023 DIGITAL LOGIC DESIGN

(Com to CSE,IT)

		(Com to CSE,IT)		
Tim	Γime: 3 hours Max. Ma		rks: 70	
		Answer any FIVE Questions ONE Question from Each unit		
		All Questions Carry Equal Marks *****		
		<u>UNIT-I</u>		
1.	a)	Converthefollowing numbersi) $(53)_{10} = ()_2 ii)(231)_4 = ()_{10} iii)(1101101)_2 = ($	[7M]	
	L)) ₈ iv)(4D.56) ₁₆ =() ₂	[7] [7]	
	b)	Perform the following arithmetic operation using 1's and 2's complement methods: (1101110) ₂ –(10101) ₂ .	[7M]	
		(OR)		
2.	a)	Simplify the following	[7M]	
	• .	(i)AB+BC+AIC=AB+AIC (ii)(X+Y).(YI+Z)=X	553.63	
	b)	Draw the pin Diagram and truth table of 7400	[7M]	
2	`	<u>UNIT-II</u>	[7] (]	
3.	a)	Simplify the following function using K-Map: $F(A,B,C,D)=\Pi(0,1,2,3,5,7,11)$	[7M]	
	b)	Implement a 4 bit Binary to Gray code converter.	[7M]	
	U)	(OR)	[/1/1]	
4.	a)	Simplify the following function usingK-	[7M]	
	/	Map: $F(A,B,C,D,E)=\Sigma(0,2,4,7,8,10,12,16,18,20,23,24,25,26,27,28)$	[]	
	b)	Design a full subtract or by using two half sub tractors.	[7M]	
		<u>UNIT-III</u>		
5.	a)	What is a decoder? Explain a $\frac{4.16 \text{ decoder}}{4.16 \text{ decoder}}$ with a truth table and logic diagram.	[7M]	
	b)	Implement the following Boolean function using	[7M]	
		4:1Mux: $F(A,B,C,D)=\Sigma(0,2,3,6,11,13,15)$		
		(OR)		
6.	a)	Design a priority encoder of 4-bit.	[7M]	
	b)	Draw the pin diagram and obtain the truth table of IC74154.	[7M]	
7.	a)	<u>UNIT-IV</u> Design a 4bit shift left register using flip flops.	[7M]	
/.	b)	Discuss in detail about sequential circuits with examples.	[7M]	
	0)	(OR)	[/1/1]	
8.	a)	Explain universal shift registers with truth tables.	[7M]	
	b)	Design a Mod-10 counter with T flip-flops.	[7M]	
		<u>ÛNIT-V</u>		
9.	a)	Define Finite State Machine. Explain the State diagram representation in	[7M]	
	b)	Mealy and Moore Models with suitable example. Explain the capabilities and limitations of Finite State Machine.	[7M]	
	U)	(OR)	[/1/1]	
10.	a)	Explain the designing steps to convert Mealy machine to Moore machine.	[7M]	
	b)	Design a finite state machine which can detect 0011.	[7M]	
	٥,	1 of 1	[,1,1]	

1 of 1

R20

Code No: R203104Q

SET - 3

III B. Tech I Semester Regular/Supplementary Examinations, December -2023 DIGITAL LOGIC DESIGN

(Com to CSE,IT)

Tim	e: 3	hours (Colli to CSE,11) Max. Marks:	: 70
	-	Answer any FIVE Questions ONE Question from Each unit	
		All Questions Carry Equal Marks *****	
1.	a)	Convert the following to required form $i)(163.789)_{10}=()_8$	[7M]
	b)	ii) $(101101110001.00101)_2=()_{10.}$ iii) $(292)_{16}=()_{2.}$ Perform the given subtraction using 1's and 2's complement methods: $(10110)_2$ - $(1101101)_2$.	[7M]
		(OR)	
2.	a)	Reduce the following Boolean expressions. i)AB+A(B+C)+B(B+C). ii)ABEF+AB(EF)'+(AB)'EF. iii)A'B'+A'BC'+A'BCD+A'BC'D'E.	[7M]
	b)	Write the Postulates and theorems of Boolean Algebra.	[7M]
3.	a)	$\frac{\text{UNIT-II}}{\text{Simplify the following 6 Variable function using K-}}$ Simplify the following 6 Variable function using K-Map:F= $\Sigma(0,5,7,8,9,12,13,23,24,25,28,29,37,40,42,44,46,55,56,57,60,61)$	[7M]
	b)	Implement a 4 bit BCD to Binary code converter.	[7M]
		(OR)	
4.	a)	Simplify the following function using Tabular method: $F(A,B,C,D)=\Pi(2,4,5,9,12,13)$	[7M]
	b)	Implement a 4 bit Binary to BCD code converter.	[7M]
		UNIT-III	
5.	a)	Explain 16x1 multiplexer with the help of truth table and logic diagram.	[7M]
	b)	Draw the circuit diagram of a full subtract or using NOR gates.	[7M]
		(OR)	
6.	a)	What is decoder? Construct a 4:16 decoder with two 3:8 decoders.	[7M]
	b)	Implement the following Boolean function	[7M]
		using4:1Mux: $F(A,B,C,D)=\Sigma(1,2,5,8,9,12,14)$	
_		<u>UNIT-IV</u>	
7.	a)	Convert the JK flip-flop to T flip-flop.	[7M]
	b)	What is race around condition? Explain how is it eliminated in master-slave flip-flops with diagram?	[7M]
		(OR)	
8.	a)	Draw an eat circuit diagram of an egative edge triggered JK flip-flop and explain its	[7M]
	,	operation.	
	b)	Draw the circuit diagram of 4-bit Johnson counter using D flip-flop and explain	[7M]
		<u>UNIT-V</u>	
9.	a)	What is a Finite State Machine? Explain the capabilities and limitations of Finite State Machine.	[7M]
	b)	Design a finite state machine which can detect 0111.	[7M]
	0)	(OR)	[,141]
10.	a)	List out the designing steps to convert Moore machine to Mealy machine?	[7M]
	b)	Explain the differences between Mealy and Moore Machine?	[7M]
		1 of 1	

III B. Tech I Semester Regular/Supplementary Examinations, December -2023 DIGITAL LOGIC DESIGN

(Com to CSE,IT)

Tim	e: 31	hours (Colli to CSE,11) Max. Marl	ks: 70
11111	ic. 5 i		X3. 70
		Answer any FIVE Questions ONE Question from Each unit All Questions Carry Equal Marks *****	
		<u>UNIT-I</u>	
1.	a)	Convert the following numbers. i)(10101100111.0101) ₂ toBase10. ii)(153.513) ₁₀ to base8.	[7M]
	b)	Represent the decimal numbers 0 to 7,-7 to-1insigned magnitude, 1's complement, 2's complement forms using 4-bits. (OR)	[7M]
2.	a)	Obtain the canonical sum of product form of f=A'BC+B'C'(A+D) and f=A(C+D')+BC'	[7M]
	b)	Express the following function is sum of minterms and product of maxterms. F(A,B,C,D)= B'D+A'D+BD UNIT-II	[7M]
3.	a)	Simplify the following 5 Variable function using K-Map: $F=\Sigma(0,2,3,5,7,8,10,11,14,15,16,18,24,26,27,29,30,31)$	[7M]
	b)	Design a 4 bit adder-subtract or circuit and explain its operation.	[7M]
		(OR)	
4.	a)	Simplify the following function using Tabular method: $F(A,B,C,D)=\Sigma(0,2,3,6,7,8,10,12,13)$	[7M]
	b)	Implementa4 bit Gray to Binary code converter.	[7M]
		<u>UNIT-III</u>	
5.	a)	Implementa4-bitdigitalcomparatorand explainitsoperation.	[7M]
	b)	Distinguish between PROM, PLA and PAL. (OR)	[7M]
6.	a)	Implement aseven segment decoderandexplain its operation.	[7M]
	b)	What is ade-multiplexer? Constructa1:8de-multiplexerwithtwo1:4 demultiplexers.	[7M]
_		<u>UNIT-IV</u>	
7.	a)	Distinguish between combinational logic and sequential logic.	[7M]
	b)	Design a 4-bitripplecounter using T-flip-flop. Explain using waveforms. (OR)	[7M]
8.	a)	Explain the working of a 4-bitregister which uses parallel load with alogic diagram.	[7M]
	b)	Design a 4-bit Johnson counter using T-flop flops and draw the circuit diagram and timing diagrams. UNIT-V	[7M]
9.	a)	What is a Finite State Machine? Explain the capabilities and limitations of Finite State Machine.	[7M]
	b)	Design a finite state machine which can detect 0011 (OR)	[7M]
10.	a)	Differentiate the mealy machine and Moore machine.	[7M]
	b)	Discuss the process to convert Moore machine to Mealy machine?	[7M]
	•	1 of 1	_