Anchor Koxes

only one object in each gridcell in each gridcell cif there multiple objects whose centers rely on the same cell, then we have a problem!

Anchor box 2:

In one cell

anchor count

is an hyper possoure

is an hyper possoure Anchor box 1:

Les Each obj in training ing is assigned to a grid cell containing objects midpoint and an anchor box w/ max lou.

-7 what it 200% appears in same gridgell: -) How to choose anchor boxes?: Ly YOLO uses k-means algo.

-> We need our net's predictors to be able to tell whethe it is their job to predict apple or pear.

- 1. Create thousands of "anchor boxes" or "prior boxes" for each predictor that represent the ideal location, shape and size of the object it specializes in predicting.
- 2. For each anchor box, calculate which object's bounding box has the highest overlap divided by non-overlap. This is called Intersection Over Union or IOU.
- 3. If the highest IOU is greater than 50%, tell the anchor box that it should detect the object that gave the highest IOU.
- 4. Otherwise if the IOU is greater than 40%, tell the neural network that the true detection is ambiguous and not to learn from that example. 5. If the highest IOU is less than 40%, then the anchor box should predict that there is
- no object.

> In Refinal Vet, smallest anchor box size; 32x32.

As a general rule, you should ask yourself the following questions about your dataset before diving into training your model:

- 1. What is the smallest size box I want to be able to detect?
- 2. What is the largest size box I want to be able to detect?
- 3. What are the shapes the box can take? For example, a car detector might have short and wide anchor boxes as long as there is no chance of the car or the camera being turned on its side.

You can get a rough estimate of these by actually calculating the most extreme sizes and aspect ratios in the dataset. YOLO v3, another object detector, uses K-means to estimate the ideal bounding boxes. Another option is to <u>learn the anchor box configuration</u>.

Labeling Training Set Anchor Boxes Lineed to assign class 2 bbox to each Loffset of gt archos box bbox relative to anchor box. How do we assign ground-truth bounding boxes to anchor boxes similar to them?

Assume that the anchor boxes in the image are A_1,A_2,\ldots,A_{n_a} and the ground-truth bounding boxes are

 B_1,B_2,\dots,B_{n_b} and $n_a\geq n_b$. Define matrix $\mathbf{X}\in\mathbb{R}^{n_a imes n_b}$, where element x_{ij} in the $i^{ ext{th}}$ row and $j^{ ext{th}}$ column is the IoU of the anchor box A_i to the ground-truth bounding box B_j . First, we find the largest element in the matrix ${f X}$ and record the row index and column index of the element as i_1,j_1 . We assign the ground-truth bounding box B_{j_1} to the anchor box A_{i_1} . Obviously, anchor box A_{i_1} and ground-truth bounding box B_{i_1} have the highest similarity among all the "anchor box-ground-truth bounding box" pairings. Next, discard all elements in the i_1 th row and the j_1 th column in the matrix ${f X}$. Find the largest remaining element in the matrix ${f X}$ and record the row index and column index of the element as i_2,j_2 . We assign ground-truth bounding box B_{j_2} to anchor box A_{i_2} and then discard all elements in the i_2 th row and the j_2 th column in the matrix ${f X}$. At this point, elements in two rows and two columns in the matrix ${f X}$ have been discarded.

We proceed until all elements in the n_b column in the matrix ${f X}$ are discarded. At this time, we have assigned a ground-truth bounding box to each of the n_b anchor boxes. Next, we only traverse the remaining n_a-n_b

greater than the predetermined threshold. Sackground category for classification

anchor boxes. Given anchor box A_i , find the bounding box B_j with the largest IoU with A_i according to the $i^{
m th}$ row of the matrix ${f X}$, and only assign ground-truth bounding box B_j to anchor box A_i when the IoU is