Esame 13/07/22

Quesito 1. Quando il modello di regressione lineare semplice è corretto, i residui standar-dizzati:					
⊠ hanno media nulla					
\Box devono mostrare una forte regolarità prima crescente e poi decrescente all'aumentare del _livello di ingresso					
\Box hanno media diversa da zero					
Quesito 2. La mediana campionaria di un insieme di dati					
⊠dipende direttamente solo da uno o due valori in centro alla distribuzione e non risente dei dati estremi					
\Box fa uso di tutti i valori ed è influenzata in maniera sensibile da valori eccezionalmente alti $_$ o bassi					
\square ne descrive la variabilità					
Quesito 3. Si estraggono a caso due palline da un'urna che ne contiene 6 di bianche e 5 di nere. Qual è la probabilità che le due estratte siano una bianca e una nera?					
$igtriangledown_{33}^{6}$					
$\square \frac{33}{55}$ $\square \frac{3}{11}$					
+ 					
6B 5N Zestrozioni					
6.5 30 30 6					
$P(1B1N) = \frac{6.5}{(11)} = \frac{30}{11!} = \frac{30}{17.10} = \frac{30}{55} = \frac{6}{11}$					
$\begin{pmatrix} 11 \\ 2 \end{pmatrix} \qquad \frac{11}{2} \qquad \frac{1}{2}$					
(2) 21. 21.					
Quesito 4. Data una popolazione normale di media incognita μ e varianza nota σ^2 e					
definiti con n il numero di campioni estratti dalla popolazione e \bar{x} la media campionaria,					
quando affermiamo che, con il 95% di confidenza, la media vera della distribuzione appartiene all'intervallo $(\bar{x} - 1.96 \frac{\sigma}{\sqrt{n}}, \bar{x} + 1.96 \frac{\sigma}{\sqrt{n}})$, stiamo parlando di					
\boxtimes intervallo di confidenza al 95% per μ					
\square intervallo di confidenza al 99% per μ					
\square probabilità che μ appartenga a quell'intervallo					
Quesito 5. Se in un box-plot il rettangolo ha area nulla					
⊠ la differenza interquartile (IQR) è pari a zero					
\Box la distribuzione dei valori dei campioni è asimmetrica					
\square questa situazione non si può verificare					
Quesito 6. La distribuzione di probabilità di una variabile aleatoria binomiale (dove $p =$					
probabilità di successo in una prova, $n =$ numero di prove) è asimmetrica se:					
\square il parametro p è uguale a 0.5 \square					

Quesito 7. La resa di un certo investimento (in migliaia di dollari) è una variabile aleatoria X con distribuzione di probabilità $P\{X=-1\}=0.7,\ P\{X=4\}=0.2,\ P\{X=8\}=0.1.$ Quanto vale la varianza della resa dell'investimento?					
$\boxtimes 9.49$					
\square 0.849					
$\times = -1.0.7 + 4.0, 2 + 8.0, 1 = 0, 9$					
$\sigma^2 = E\left[x^2\right] - \overline{x}^2$					
$[[\times^2] = (-1)^2 \cdot 0.7 + 7^2 \cdot 0.2 + 8^2 \cdot 0.7 = 10.3$					
$6^2 = 10,3-0,9^2 = 9,49$					
Quesito 8. Due eventi E e F si dicono indipendenti se vale					
$\boxtimes P(E \cap F) = P(E)P(F)$					
$\square \ P(E \mid F) \neq P(E)$					
$\square \ E \cap F = \emptyset$					
Quesito 9. Quale delle seguenti proprietà riguardanti la distribuzione t di Student con n gradi di libertà (t_n) è vera?					
\boxtimes Ciascuna curva t_n è caratterizzata da "code" più spesse (più pesanti), ad indicare una variabilità maggiore rispetto alla gaussiana					
\square Al crescere di n, la densità di t_n non convergerà mai a quella della normale standard					
\square La densità delle distribuzioni t , a differenza di quella normale, non è simmetrica rispetto all'asse di ascissa 0					
Overite 10. Le ctime numbuele di un nemerote di interesse à					
Quesito 10. La stima puntuale di un parametro di interesse è					
⊠il valore assunto dallo stimatore in corrispondenza di un particolare campione □ una statistica					
□ una variabile aleatoria					
Li una variabne aleatoria					

Esercizio 1 [5 punti]

La probabilità che un soggetto abbia un'infezione virale è pari a 0.001. La diagnosi dell'infezione è effettuata mediante un test clinico che ha le seguenti caratteristiche: la probabilità che un soggetto infetto risulti positivo al test è 0.8, mentre la probabilità che un soggetto non infetto non risulti positivo al test è 0.84.

- a) Qual è la probabilità che il test risulti positivo? (usare QUATTRO cifre decimali dopo la virgola)
- b) Qual è la probabilità che un soggetto sia infetto dato che è risultato positivo al test? (usare TRE cifre decimali dopo la virgola)

Indichiamo con I l'evento "soggetto infetto" e con T l'evento "test positivo".

$$P(I) = 0,007$$
 $P(T|I) = 0,8$
 $P(S) = 7 - P(I)$ $P(T|S) = 1 - 0,84$
a)
 $P(T) = P(T|I) \cdot P(I) + P(T|S) \cdot P(S) = 0$

b)
$$P(T|T) = P(T|T) \cdot P(T) = 0.8 \cdot 0.001 = 0.005$$

Esercizio 2 [4 punti]

Un'indagine effettuata su un campione di 50 famiglie ha dato il seguente risultato:

IV	f_{ass}	Frequenza cumulativa
0	5	5
1	13	18
2	15	33
3	10	43
4	4	47
5	2	49
6	1	50

N = numero figli per famiglia; $f_{ass} =$ frequenza assoluta

Con queste informazioni a tua disposizione, calcolare:

- a) il numero medio di figli per famiglia (usare UNA cifra decimale dopo la virgola)
- b) la distanza interquartile
- c) la moda campionaria
- d) la deviazione standard campionaria (usare TRE cifre decimali dopo la virgola)

a)
$$0.5+1.13+2.15+3.10+4.4+5.2+6.1$$

 $M = 5+13+15+10+4+2+1$
b) $Q_1 = \frac{h+1}{4} = \frac{51}{4} = 12,75$ $Q_3 = \frac{3(h+1)}{4} = 38,25$
 $\sqrt{1} = \frac{1}{4} = \frac{1}{4} = 12,75$ $\sqrt{1} = \frac{3}{4} = \frac$

d)
$$\sigma^2 = \frac{1}{n-1} \ge ((N-\bar{x})^2 \cdot C_{ass}) =$$

$$=\frac{1}{49}\cdot\left((0-2,1)^{2}\cdot5+\left(1-2,1\right)^{2}\cdot13+\left(z-2,1\right)^{2}\cdot15+\left(3-2,1\right)^{2}\cdot10+\left(4-2,1\right)\cdot4+\left(5-2,1\right)\cdot2+\left(6-2,1\right)\cdot1\right)=$$

$$0 = 51,888 = 1,374$$

