Lec13 Note of Abstract Algebra

Xuxuayame

日期: 2023年4月26日

我们回忆, 对于 $|G| = p^r m$, (p, m) = 1, G 的 Sylow p-子群指的是满足 $P \leq G$, $|P| = p^r$ 的子群 P。

记 N(p) 为 Sylow p-子群的数目,那么我们还知道, $N(p) \equiv 1 \mod p$,任意两个 Sylow p- 子群相互共轭,于是 G 可迁地作用在 Sylow p= 子群的集合上,而 $N(p) \mid |G| \Rightarrow N(p) \mid m$ 。

例 3.1. p,q 素数, $p \neq q$, 则 pq 阶群非单, p^2q 阶群非单。

证明. (1) 对于 pq 阶群,不妨设 p < q。

由 $N(q) \equiv 1 \mod p$, $N(q) \mid p \Rightarrow N(q) = 1$ 。于是 G 共轭作用在 Sylow q-子群集合上,且可迁 $\Rightarrow Q \triangleleft G$,这里 Q 为 Sylow q-子群。

(2) 对于 p^2q 阶群,若 q < p,那么 $N(p) \equiv 1 \mod p$, $N(p) \mid q \Rightarrow N(p) = 1$,于是结论成立。

若 p < q,则 $N(q) \equiv 1 \mod q$, $N(q) \mid p^2 \Rightarrow N(q) = 1$ 或 p^2 。而 p^2 个互不相同的 q 阶子群元素共有 $p^2(q-1)+1$ 个 \Rightarrow G 中 q 阶元共有 $p^2(q-1)$ \Rightarrow 剩下的 p^2 个元素组成唯一的一个 Sylow p-子群。于是结论成立。

定理 3.5. 1 素数阶循环群的有限单群阶最小为 60, 且 60 阶单群同构于 A_5 。

证明. 也就是说, $|G| < 59 \Rightarrow G$ 为素数阶群或 G 为非单群。于是我们根据以下原则:

- 素数阶群为单群。
- pq, p²q 阶群非单。
- *pⁿ* 阶群非单。

来缩小我们要进一步验证的范围。进一步验证的阶数为 24,30,36,40,42,48,54,56。

当阶数为 $24=3\times 8$ 时,N(2)=1 或 3,N(2)=1 时显然成立,若 N(2)=3,设 $S=\mathrm{Syl}_2(G)$,令 G 共轭作用于 S 上,得表示 $\rho\colon G\to S_3$,那么 $\mathrm{Ker}\rho\neq G$, $\mathrm{Ker}\rho\neq \{1\}$,从而 $\mathrm{Ker}\rho$ 为非平凡正规子群。

¹在这断句。

当阶数为 $30 = 2 \times 3 \times 5$ 时,N(5) = 1 或 6,N(3) = 1 或 10。若 N(5) = 6,则 G 中 5 阶元有 $4 \times 6 = 24$ 个,而 N(3) = 10 ⇒ G 中含 20 个 3 阶元,矛盾。故必然有 N(5) = 1 或 N(3) = 1。

当阶数为 $36 = 4 \times 9$ 时,N(3) = 1 或 4。若 N(3) = 4,则 $\rho: G \to S_4$, $\operatorname{Ker} \rho \neq G$, $\{1\}$ 。

当阶数为 $40 = 5 \times 8$ 时,N(5) = 1。

当阶数为 $42 = 2 \times 3 \times 7$ 时,N(7) = 1。

当阶数为 $48 = 3 \times 2^4$ 时,N(2) = 1 或 3。若 N(2) = 3,则 $\rho: G \to S_3$,同理。

当阶数为 $54 = 2 \times 3^3$ 时,N(3) = 1。

当阶数为 $56 = 7 \times 2^3$ 时,N(7) = 1 或 8。若 N(7) = 8,则有 48 个 7 阶元,剩余 8 个元素组成唯一的 Sylow 2-子群。

评论. p^n 阶群非单的缘故在于,根据共轭类方程

$$|G| = |Z(G)| + \sum_{x \in I, |c_x| > 2} |c_x|,$$

|Z(G)| 为 p 的倍数,进一步若 G 不交换,那么 Z(G) 必然为非平凡中心,从而为非平凡 正规子群。另一方面,如果 G 交换,那么 p-群的存在性指出存在非平凡子群,从而非平凡正规子群。

至于 $\rho: G \to S_n$ 的相关问题, $\operatorname{Ker} \rho \neq \{1\}$ 是因为元素个数对不上, ρ 不可能是单同态。另一方面,由于 $|\operatorname{Syl}_p(G)| > 1$,考虑 g 使得一个 $\operatorname{Sylow} p$ -子群被共轭到另一个 $\operatorname{Sylow} p$ -子群,那么 g 相应的 $\rho_g \neq \operatorname{Id}_{S_n}$,从而 $\operatorname{Ker} \rho \neq G$ 。

4 自由群与群的表现

4.1 自由群

定义 4.1. 对 $\emptyset \neq S$ 集合, $x, y, z \in S$ 称为字母, $x_1x_2 \cdots x_n, x_i \in S$ 称为单词或文字。

定义空文字为空集 \varnothing ,记为 1。如果文字 w 由 n 个字母组成,那么就说文字 w 的长 **度**为 n,记作 l(w)。

评论. 更严谨的说法应当是,称 $\{1, \dots, n\} \to S$ 的映射为长度为 n 的文字。相应的,空文字就是 \varnothing 到 S 的映射,也是空集。

记W(S)为S上的文字的全体,定义两段文字的运算为:

$$x_1 \cdots x_m \cdot y_1 \cdots y_n = x_1 \cdots x_m y_1 \cdots y_n.$$

那么按定义显然有

$$(x_1 \cdots x_m \cdot y_1 \cdots y_n) \cdot z_1 \cdots z_l$$

$$= x_1 \cdots x_m \cdot (y_1 \cdots y_n \cdot z_1 \cdots z_l)$$

$$= x_1 \cdots x_m y_1 \cdots y_n z_1 \cdots z_l.$$

命题 4.1. W(S) 在上述运算下形成一个含幺半群, 称为集合 S 生成的自由含幺半群。

进一步可以让 W(S) 诱导出一个群。我们现在找一个和 S 等势的集合,记为 S^{-1} ,对应地为每个 $s \in S$ 配对一个 $s^{-1} \in S^{-1}$,并规定 $s \cdot s^{-1} = s^{-1} \cdot s = 1$ 。那么可以验证, $W(S \cup S^{-1})$ 是一个群。

定义 4.2. 称 $w \in W(S \cup S^{-1})$ 为一个既约文字,若 w 不含 aa^{-1} 或 $a^{-1}a$,其中 $a \in S$ 。将 $w = \overline{X}aa^{-1}\overline{Y}$ (或 $\overline{X}a^{-1}a\overline{Y}$) 消去 aa^{-1} (或 $a^{-1}a$) 得到一个新文字 \overline{XY} 这一过程称为对 w 的一次约化。若既约文字 w' 可由文字 w 经过若干次约化得到,则称 w' 为 w 的一个既约形式。

例 4.1. 考虑一段文字 $aa^{-1}acbb^{-1}c^{-1}$ 。有 aa^{-1} , $a^{-1}a$, bb^{-1} 三处可以约化,依次记为 1, 2, 3。 我们现在采用不同的约化顺序,观察最后的既约形式是否一致。

若我们先约化 1 或 2 ,得到 $acbb^{-1}c^{-1}$,进一步约化 3 ,得到 acc^{-1} ,再得到 a 。

若我们先约化 3,得到 $aa^{-1}acc^{-1}$,于是约化 1 或 2 得到 acc^{-1} ,再得到 a,或者约化 cc^{-1} 得到 $aa^{-1}a$,从而得到 a。

最后既约形式的一致性并非某种偶然。

引理 **4.2.** $w \in W(S \cup S^{-1})$ 具有唯一的既约形式。

证明. 对 w 的长度归纳。设命题对长度 < l(w) 的文字成立。我们对 w 可约化处的数量进行讨论。

- (1) 若 w 可约化处的数量在两处及以上,我们不妨设 $w = \overline{X}aa^{-1}\overline{Y}bb^{-1}\overline{Z}$,分别约化 aa^{-1} 与 bb^{-1} ,得到两个结果 $w_1 = \overline{XY}bb^{-1}\overline{Z}$, $w_2 = \overline{X}aa^{-1}\overline{Y}\overline{Z}$ 。
 - w_1 进一步约化为 \overline{XYZ} ,而 $l(w_1) < l(w)$,所以 w_1 具有唯一的约化形式,从而 w_1 的约化形式 w' 与 \overline{XYZ} 的约化形式 w'' 相同,w' = w''。同理, w_2 约化为 \overline{XYZ} ,故 w'' = w''',w''' 是 w_2 的约化形式。于是 w' = w'''。

从而w的约化形式唯一,为w'。

- (2) 若 w 可约化的数量仅一处,不妨设 w 具有 $\overline{X}aa^{-1}a\overline{Y}$ 的形式,否则平凡。那么分别约化 aa^{-1} 与 $a^{-1}a$ 得到 $w_1 = \overline{X}a\overline{Y}$, $w_2 = \overline{X}a\overline{Y}$, 从而结果显然一致。
- (3) 若w既约,平凡。

于是我们可以定义一个等价关系。在 $W(S\cup S^{-1})$ 上定义 \sim 为: $w_1\sim w_2:\Leftrightarrow w_1,w_2$ 具有相同的既约形式. 于是考虑 $W(S\cup S^{-1})/\sim$,其完全代表元系即为既约文字。