

Computer Science Fundamentals

Source Coding – Fano- & Huffman-Algorithms

Technische Hochschule Rosenheim Winter 2021/22 Prof. Dr. Jochen Schmidt

Overview

- Code trees
- Fano algorithm
- Huffman algorithm

Code Trees

- Objective: Creation of a code with variable word length
 - for a given alphabet of symbols
 - with known probabilities of occurrence
- Example for a simple procedure
 - Determine the word length from the symbol information contents rounded up to nearest integer
 - Arrange code words as end nodes (leaves) of a code tree
 - Note: This is in general suboptimal and NOT how we'll do it!

- 6 letters {c, v, w, u, r, z} are to be binary encoded with as little redundancy as possible
- Probabilities of occurrence

$$p(c) = 0.1643$$
 $p(v) = 0.0455$
 $p(w) = 0.0874$
 $p(u) = 0.1963$
 $p(r) = 0.4191$
 $p(z) = 0.0874$

• Calculation of the information content of the respective letters

$$I(x) = \operatorname{Id} \frac{1}{p(x)} [Bit]$$
 $p(c) = 0.1643$ $I(c) = 2.6056 \operatorname{Bit}$
 $p(v) = 0.0455$ $I(v) = 4.4580 \operatorname{Bit}$
 $p(w) = 0.0874$ $I(w) = 3.5162 \operatorname{Bit}$
 $p(u) = 0.1963$ $I(u) = 2.3489 \operatorname{Bit}$
 $p(r) = 0.4191$ $I(r) = 1.2546 \operatorname{Bit}$
 $p(z) = 0.0874$ $I(z) = 3.5162 \operatorname{Bit}$

Calculation of the information content of the respective letters and derivation of the word length

$$I(c) = 2.6056 \, \text{Bit} \longrightarrow l(c) = 3 \, \text{Bit}$$
 $I(v) = 4.4580 \, \text{Bit} \longrightarrow l(v) = 5 \, \text{Bit}$
 $I(w) = 3.5162 \, \text{Bit} \longrightarrow l(w) = 4 \, \text{Bit}$
 $I(u) = 2.3489 \, \text{Bit} \longrightarrow l(u) = 3 \, \text{Bit}$
 $I(r) = 1.2546 \, \text{Bit} \longrightarrow l(r) = 2 \, \text{Bit}$
 $I(z) = 3.5162 \, \text{Bit} \longrightarrow l(z) = 4 \, \text{Bit}$

 Calculation of the information content of the respective letters and derivation of the word length with encoding

$$I(c) = 2.6056 \, \text{Bit} \longrightarrow l(c) = 3 \, \text{Bit}$$
 001
 $I(v) = 4.4580 \, \text{Bit} \longrightarrow l(v) = 5 \, \text{Bit}$ 10111
 $I(w) = 3.5162 \, \text{Bit} \longrightarrow l(w) = 4 \, \text{Bit}$ 0001
 $I(u) = 2.3489 \, \text{Bit} \longrightarrow l(u) = 3 \, \text{Bit}$ 011
 $I(r) = 1.2546 \, \text{Bit} \longrightarrow l(r) = 2 \, \text{Bit}$ 11
 $I(z) = 3.5162 \, \text{Bit} \longrightarrow l(z) = 4 \, \text{Bit}$ 0000

• Entropy of this data source

$$\begin{array}{ll} H &= p(c)I(c) + p(v)I(v) + p(w)I(w) + p(u)I(u) + p(r)I(r) + p(z)I(z) \\ &\approx 0.4282 + 0.2028 + 0.3073 + 0.4611 + 0.5260 + 0.3073 \\ &= 2.2327 \text{ bits/symbol} \end{array}$$

maximum entropy possible with 6 symbols

$$H_0 = 1d 6 = 2.5850$$

Symbol	p(c)	I(c)	l(c)
С	0.1643	2.6056	3
ν	0.0455	4.4580	5
w	0.0874	3.5162	4
u	0.1963	2.3489	3
r	0.4191	1.2546	2
Z	0.0874	3.5162	4

Average word length

$$\begin{array}{l} L &= p(c)l(c) + p(v)l(v) + p(w)l(w) + p(u)l(u) + p(r)l(r) + p(z)l(z) \\ &= 0.4929 \ + 0.2275 \ + 0.3496 \ \ + 0.5889 \ \ + 0.8382 \ \ + 0.3496 \\ &= 2.8467 \ \text{bits/symbol} \end{array}$$

Redundancy

Code
$$R = L - H$$
 $\approx 2.8467 - 2.2327$ $= 0.6140 \text{ bits/symbol}$

Source
$$R_S = H_0 - H$$
 $\approx 2.5850 - 2.2327$ $= 0.3523$ bits/symbol

10111

Code visualization

Zeichen	Code	Länge
С	001	3
v	10111	5
w	0001	4
и	011	3
r	11	2
Z	0000	4

Code visualization

- Unoccupied leaves (end nodes) are present that are closer to the root
- Not an optimal code: shorter code words would be possible

Improvements

Move symbols such that we get rid of unoccupied leaves

- Caution
 - A code for a symbol with a lower probability of occurrence must be longer than the code for a symbol with a higher probability of occurrence

Symbol	Code	Length
С	001	3
V	10111	5
W	0001	4
u	011	3
r	11	2
Z	0000	4

improved

10111

Symbol	Code	Length
С	10	2
V	0001	4
W	001	3
u	01	2
r	11	2
Z	0000	4

Results of optimization

Average word length of the improved code

$$L =$$

= 2.3532 bits/symbol

Symbol	p(c)	I(c)	l(c)
С	0.1643	2.6056	2
v	0.0455	4.4580	4
w	0.0874	3.5162	3
и	0.1963	2.3489	2
r	0.4191	1.2546	2
z	0.0874	3.5162	4

Redundancy

$$R \approx$$

= 0.1205 bits/symbol

- Redundancy was reduced from 0.6140 bits/symbol to 0.1205 bits/symbol
- However:
 - This was tedious it has to be done automatically by a computer. How would we implement this?
 - Is this the best we can do? Or can we get an even better code by re-arranging the code words?

Fano Algorithm

- 1949 by Robert Fano
- general method for generating codes with variable word length
- Objective: Redundancy minimization
- works recursively, by recurring division of the code table (top-down)

Starting point: 6 letters {c, v, w, u, r, z} with the probabilities of occurrence

$$p(c) = 0.1643$$

$$p(v) = 0.0455$$

$$p(w) = 0.0874$$

$$p(u) = 0.1963$$

$$p(r) = 0.4191$$

$$p(z) = 0.0874$$

Step 1

Arrange symbols c to be encoded and the associated probabilities of occurrence p(c) in a table, sorted by descending probability values

Symbol c	p(c)
r	0.4191
u	0.1963
С	0.1643
Z	0.0874
W	0.0874
V	0.0455

Step 2

Enter the subtotals of the probabilities (starting with the smallest one) in a third column

Symbol <i>c</i>	p(c)	$\sum p(c)$
r	0.4191	1.0000
u	0.1963	0.5809
С	0.1643	0.3847
Z	0.0874	0.2203
W	0.0874	0.1329
V	0.0455	0.0455

Step 3

Subdivide table into two parts, as close as possible to half of the respective interval

Symbol c	p(c)	$\sum p(c)$
r	0.4191	1.0000
u	0.1963	0.5809
С	0.1643	0.3847
Z	0.0874	0.2203
W	0.0874	0.1329
V	0.0455	0.0455

Step 4

Assign a 0 for all symbols above the division, and a 1 for all symbols below (or vice versa); this will form the code words from left to right

Symbol c	p(c)	$\sum p(c)$	Code
r	0.4191	1.0000	0
u	0.1963	0.5809	1
С	0.1643	0.3847	1
Z	0.0874	0.2203	1
W	0.0874	0.1329	1
V	0.0455	0.0455	1

Step 3, 4 (repeat)

Symbol c	p(c)	$\sum p(c)$	Code
r	0.4191	1.0000	0
u	0.1963	0.5809	10
С	0.1643	0.3847	10
Z	0.0874	0.2203	11
W	0.0874	0.1329	11
V	0.0455	0.0455	11

Step 3, 4 (repeat)

	Symbol c	p(c)	$\sum p(c)$	Code
	r	0.4191	1.0000	0
_	u	0.1963	0.5809	100
	С	0.1643	0.3847	101
	Z	0.0874	0.2203	11
	W	0.0874	0.1329	11
	V	0.0455	0.0455	11

Step 3, 4 (repeat)

Symbol c	p(c)	$\sum p(c)$	Code	
r	0.4191	1.0000	0	
u	0.1963	0.5809	100	
С	0.1643	0.3847	101	
Z	0.0874	0.2203	110	
W	0.0874	0.1329	111	
V	0.0455	0.0455	111	

Step 3, 4 (repeat)

Symbol c	<i>p(c)</i>	$\sum p(c)$	Code	
r	0.4191	1.0000	0	
u	0.1963	0.5809	100	
С	0.1643	0.3847	101	
Z	0.0874	0.2203	110	
W	0.0874	0.1329	1110	
 V	0.0455	0.0455	1111	

resulting code tree

Average code word length

$$L = 0.4191 \\ + (0.1963 + 0.1643 + 0.0874) \cdot 3 \\ + (0.0874 + 0.0455) \cdot 4 = 2.2947 \text{ bits/symbol}$$

Symbol c	p(c)	I(c)	l(c)
r	0.4191	2.6056	3
u	0.1963	4.4580	4
С	0.1643	3.5162	4
Z	0.0874	2.3489	3
W	0.0874	1.2546	1
V	0.0455	3.5162	3

Redundancy

$$R = 2.2947 - 2.2327$$

= 0.0620 bits/symbol

- Comparison to previous codes
 - First, redundancy was reduced from 0.6140 bits/symbol to 0.1205 bits/symbol
 - Now further reduction of redundancy to 0.062 bits/symbol
- Is this the best code we can get?
 - Not necessarily, Fano algorithm does not guarantee this

Fano Algorithm – Summary

- 1. Arrange symbols c to be encoded and the associated probabilities of occurrence p(c) in a table, sorted by descending probability values.
- 2. Enter the subtotals of the probabilities (starting with the smallest one) in a third column.
- 3. Subdivide table into two parts, as close as possible to half of the respective interval.
- 4. Assign a 0 for all symbols above the division, and a 1 for all symbols below (or vice versa); this will form the code words from left to right.
- 5. Continue this procedure recursively for all partitions.
- 6. End when division is no longer possible.

Huffman Algorithm

- 1952 by David A. Huffman
- Algorithm for
 - generating optimal codes
 - with regard to the criterion redundancy minimization considering single symbols
- works the opposite way to the Fano method: Start with individual symbols and combine them (bottom-up)

Step-by-step construction of the Huffman tree and Huffman code

Starting point: 6 letters {c, v, w, u, r, z} with the probabilities of occurrence

$$p(c) = 0.1643$$

$$p(v) = 0.0455$$

$$p(w) = 0.0874$$

$$p(u) = 0.1963$$

$$p(r) = 0.4191$$

$$p(z) = 0.0874$$

Step 1: Sort symbols by ascending probability

Step 2: Combine the two symbols with smallest probability

Step 3: Treat combination as new "symbol" and again combine the two smallest probabilities (in an algorithm: sort again)

... and so on...

... and so on...

... and so on...

Average code word length

$$L = 0.4191 + (0.1963 + 0.1643 + 0.0874) \cdot 3 + (0.0874 + 0.0455) \cdot 4 = 2.2947 \text{ bits/symbol}$$

Redundancy

$$R = 2.2947 - 2.2327$$

$$= 0.0620$$
 bits/symbol

Symbol	p(c)	I(c)	l(c)
C	0.1643	2.6056	3
v	0.0455	4.4580	4
w	0.0874	3.5162	4
и	0.1963	2.3489	3
r	0.4191	1.2546	1
Z	0.0874	3.5162	3

- Comparison to previous codes
 - Huffman code and Fano code are identical in this example
 - But this is not always the case!
 - Fano doesn't always result in the optimal code for redundancy minimization Huffman does

Huffman Algorithm – Summary

- 1. Sort all symbols ascending by to their probabilities of occurrence (leaves of the code tree)
- 2. Combine the two symbols with the lowest probabilities p_1 und p_2 to a node
 - Probability = $p_1 + p_2$
 - Result: New sequence of probabilities
- 3. Combine the two elements (single symbols and/or nodes) with the lowest probabilities to a new node
- 4. Repeat (3) until everything has been combined and probability 1 results (result: Huffman Tree)

Decoding – Prefix Code

- Essential requirement for a code: unique decoding
- block codes: easy, each code word has the same length
- variable-length codes: also easy, if the code is a prefix code
 - no code word is prefix of any other code word, i.e.,
 - code words can only be on the leaves of the code tree
- a better term would actually be prefix-free code
- Fano & Huffman automatically generate prefix codes

Decoding Process

- 1. The code words to be interpreted are collected bit by bit in a buffer and continuously compared with the tabulated code words.
 - Due to the prefix-condition, this is always unique.
- 2. Once the buffer content matches a tabulated code word, decoding is performed.
- 3. The buffer is cleared, and the decoding operation starts again for the next code word.

Decoding – Exercise

Decode the message 1011001011000100110 using the Fano code from before

Symbol	Code
С	101
V	1111
W	1110
u	100
r	0
Z	110

Solution:

Summary

- Huffman codes are proven to be optimal
 - in the sense of the shortest possible average word length for
 - separate encoding of single symbols,
 - an integral number of bits per symbol (i.e., no fractional bits for a symbol).
 - and therefore in the sense of obtaining the smallest possible redundancy
 - optimal means: there exists no better coding algorithm in the above sense!
 - they are widely used in compression algorithms
 - often as a final step (so-called entropy coding) after lossy compression
 - often combined with run-length encoding
- Fano codes are not guaranteed to be optimal
 - in practice, however, the difference to Huffman codes is usually small
 - they are hardly used because Huffman is similarly easy to implement