### **Definitions:**

- $\bullet$  x: process model states
- $\bullet$   $\phi$ : state-transition matrix
- $\bullet$  H: measurement matrix
- $\bullet$  z: measurement matrix
- $\bullet$   $\hat{x}_0^-$ : initial conditions of states

### **Notations:**

- ^: estimate
- $\hat{x}_k^-$ : a prior estimate of  $x_k$

# Discrete Kalman Filter:

- 1. Guess initial values of  $P_0^-$  and  $\hat{x}_0^-$
- 2. Calculate the gain:

• 
$$K_k = P_k^- H^T (H P_k^- H^T + R)^{-1}$$

- 3. Update estimate:
  - $\bullet \hat{x}_k^+ = \hat{x}_k^- + K_k \left( z_k H \hat{x}_k^- \right)$
- 4. Update error:

$$\bullet P_k^+ = (I - K_k H) P_k^-$$

- 5. Project ahead:
  - $\bullet \ \hat{x}_{k+1}^- = \phi \hat{x}_k^+$
  - $\bullet \ P_{k+1}^- = \phi P_k^+ \phi^T + Q$
  - $P_{k+1}^- = \frac{P_{k+1}^- + P_{k+1}^{-T}}{2}$

# Discrete Kalman Filter with Forgetting Factor $\lambda$ :

- 1. Guess initial values of  $P_0^-$  and  $\hat{x}_0^-$
- 2. Calculate the gain:

• 
$$K_k = P_k^- H^T \left( H P_k^- H^T + R \lambda \right)^{-1}$$

- 3. Update estimate:
  - $\hat{x}_k^+ = \hat{x}_k^- + K_k (z_k H\hat{x}_k^-)$
- 4. Update error:
  - $\bullet P_k^+ = (I K_k H) \frac{P_k^-}{\lambda}$
- 5. Project ahead:
  - $\bullet \ \hat{x}_{k+1}^- = \phi \hat{x}_k^+$
  - $\bullet P_{k+1}^- = \phi P_k^+ \phi^T + Q$
  - $\bullet \ P_{k+1}^- = \frac{P_{k+1}^- + P_{k+1}^{-T}}{2}$

- $P_o^-$ : initial error covariance matrix
- ullet R: variance of measurement error matrix
- ullet Q: variance of process model noise
- ullet  $\lambda$  : forgetting factor  $0<\lambda<2$
- $\lambda^*$ : initial forgetting factor
- $\hat{x}_k^+$ : a posterior estimate of  $x_k$

### Discrete Kalman Filter with Varying Forgetting Factor $\lambda$ :

- 1. Guess initial values of  $P_0^-$  ,  $\hat{x}_0^-$  and  $\lambda^*$
- 2. Calculate the gain:

$$\bullet K_k = P_k^- H^T \left( H P_k^- H^T + R \lambda_k \right)^{-1}$$

3. Update estimate:

$$\bullet \hat{x}_k^+ = \hat{x}_k^- + K_k \left( z_k - H \hat{x}_k^- \right)$$

4. Update error :

$$\bullet P_k^+ = (I - K_k H) \frac{P_k^-}{\lambda_k}$$

5. Project ahead:

$$\bullet \ \hat{x}_{k+1}^- = \phi \hat{x}_k^+$$

$$\bullet P_{k+1}^- = \phi P_k^+ \phi^T + Q$$

$$P_{k+1}^- = \frac{P_{k+1}^- + P_{k+1}^{-T}}{2}$$

6. Forgetting factor  $\lambda$ :

$$\bullet \ \epsilon = \left( z_k - H \hat{x}_k^+ \right)$$

• 
$$\lambda_{k+1} = 1 - \frac{\left(1 - \hat{x}_k^{+^T} K_k\right) \epsilon^2}{\sigma^2(\epsilon) \mu(\epsilon)}$$

• 
$$\lambda_{k+1} = \begin{cases} > 0.95 & \lambda_{k+1} = 0.95 \\ < 0.3 & \lambda_{k+1} = 0.3 \\ else & \lambda_{k+1} = \lambda_{k+1} \end{cases}$$

## Example:

- $\bullet \phi = 1$
- $\bullet$  H=1
- R = 100
- $extbf{Q} = 1$
- $\hat{x}_0^- = 1$
- $P_0^- = 0$
- $\Delta t = 1.0256$
- x(1) = 1
- $x(k+1) = \phi x(k) + \Delta t + normrnd(0, \sqrt{Q})$
- $z(k) = Hx(k) + normrnd(0, \sqrt{R})$
- $\lambda = 0.9$
- $\lambda^* = 0.9$

# Results:

### Discrete Kalman Filter:











### Discrete Kalman Filter with Forgetting Factor $\lambda$ :











### Discrete Kalman Filter with Varying Forgetting Factor $\lambda$ :











#### Comments:

From results we see that the error% have the data,

|          | DKF     | DKF with $\lambda$ | DKF with varying $\lambda$ |
|----------|---------|--------------------|----------------------------|
| $\mu$    | 38.3429 | 26.5472            | 22.7235                    |
| $\sigma$ | 20.224  | 21.2737            | 17.5789                    |

It's seems that DKF with varying  $\lambda$  has the min.  $\mu$  and  $\sigma$