- 1. Consider the veracity or falsehood of each of the following statements. For bonus, argue for those that you believe are true while providing a counterexample for those that you believe are false.
 - (1) Every non-constant complex polynomial has a complex root.
 - (2) Conjugation of complex numbers is a field automorphism of the complex numbers.
 - (3) Let $x, y \in R$, a finite ring. If x * y = 1, then y * x = 1 also.
 - (4) There are exactly four quadratics in $\mathbb{Z}_2[x]$.
 - (5) If p(x) is a real polynomial, then it either has a real root or there is a quadratic polynomial with real coefficients that divides it.

Solution.

(1) True.

This follows from the Fundamental Theorem of Algebra.

Proof. We want to show that

$$f: \mathbb{C} \to \mathbb{C}, \ a+bi \mapsto a-bi$$

is an isomorphism. So we have that

$$f((a+bi)(c+di)) = f(ac-bd+(ad+bc)i)$$

$$= ac-bd-(ad+bc)i$$

$$= ac-adi-bci-bd$$

$$= a(c-di)-bi(c-di)$$

$$= (a-bi)(c-di)$$

$$= f(a+bi)f(c+di), and$$

$$f((a+bi) + (c+di)) = f((a+c) + (b+d)i)$$

$$= (a+c) - (b+d)i$$

$$= a - bi + c - di$$

$$= f(a+bi) + f(c+di).$$

Thus conjugation of complex numbers is a field automorphism.

(3) True.

Proof. Let R be a finite ring, and consider $x, y \in R$ such that x * y = 1. The map $f: R \to R, r \mapsto r * x$ is bijective because for $r_1, r_2 \in R$ with $f(r_1) = f(r_2)$, we have that $r_1 * x = r_2 * x$. We then cancel x on both sides by multiplying each side on the right by y to get $r_1 = r_2$; thus f is injective, and since R is finite, we can conclude that f is also bijective. Thus there exists $r_3 \in R$ such that $r_3 * x = 1$. Mutltiply the preceding equality on the right by y to get $r_3 = y$.

4 False.

There are exactly 8 quadratics in $\mathbb{Z}_2[x]$, and they are

$$0, 1, x, x + 1, x^2, x^2 + 1, x^2 + x, x^2 + x + 1.$$