Virtual large cardinals

European Set Theory Conference, Vienna

Dan Saattrup Nielsen University of Bristol July 2019

What are they?

Rough definition

A large cardinal κ defined via *set-sized* elementary embeddings is **virtual** if the elementary embeddings exist in a generic extension.

What are they?

Rough definition

A large cardinal κ defined via *set-sized* elementary embeddings is **generic** if the elementary embeddings and the target model exist in a generic extension.

Why should we care?

Theorem (Schindler '00)

A virtually strong cardinal is equiconsistent with $\mathsf{Th}(L(\mathbb{R}))$ being unchangeable by proper forcing.

Why should we care?

Theorem (Schindler '00)

A virtually strong cardinal is equiconsistent with $\mathsf{Th}(L(\mathbb{R}))$ being unchangeable by proper forcing.

Theorem (Schindler-Wilson '18)

A virtually Shelah cardinal is equiconsistent with every universally Baire set of reals having the perfect set property.

Why should we care?

Theorem (Schindler '00)

A virtually strong cardinal is equiconsistent with $\mathsf{Th}(L(\mathbb{R}))$ being unchangeable by proper forcing.

Theorem (Schindler-Wilson '18)

A virtually Shelah cardinal is equiconsistent with every universally Baire set of reals having the perfect set property.

Theorem (Wilson '19)

A virtually Vopěnka cardinal is equiconsistent with $\Theta=\omega_2$ and $\mathbf{\Sigma}_2^1$ being the class of all ω_1 -Suslin sets.

Where are they?

How do they behave?

Theorem (Gitman)

Virtually strongs are equivalent to virtually supercompacts.

How do they behave?

Theorem (Gitman)

Virtually strongs are equivalent to virtually supercompacts.

Theorem (N.)

Virtually measurables are equiconsistent with virtually strongs.

$$I \quad \mathcal{M}_0$$

1. $\mathcal{M}_{\alpha} \prec H_{\theta}$ is a κ -sized model of ZFC⁻ containing $\kappa+1$

I
$$\mathcal{M}_0$$
 II μ_0

- 1. $\mathcal{M}_{\alpha} \prec \mathcal{H}_{\theta}$ is a κ -sized model of ZFC⁻ containing $\kappa+1$
- 2. μ_{α} is an \mathcal{M}_{α} -normal \mathcal{M}_{α} -measure on κ such that $\text{Ult}(\mathcal{M}_{\alpha}, \mu_{\alpha})$ is wellfounded

$$\begin{array}{ccc} \mathrm{I} & \mathcal{M}_0 & & \mathcal{M}_1 \\ \mathrm{II} & & \mu_0 \end{array}$$

- 1. $\mathcal{M}_{\alpha} \prec \mathcal{H}_{\theta}$ is a κ -sized model of ZFC⁻ containing $\kappa+1$
- 2. μ_{α} is an \mathcal{M}_{α} -normal \mathcal{M}_{α} -measure on κ such that $\mathrm{Ult}(\mathcal{M}_{\alpha},\mu_{\alpha})$ is wellfounded
- 3. The \mathcal{M}_{α} 's and μ_{α} 's are \subseteq -increasing

- 1. $\mathcal{M}_{\alpha} \prec \mathcal{H}_{\theta}$ is a κ -sized model of ZFC⁻ containing $\kappa+1$
- 2. μ_{α} is an \mathcal{M}_{α} -normal \mathcal{M}_{α} -measure on κ such that $\mathrm{Ult}(\mathcal{M}_{\alpha},\mu_{\alpha})$ is wellfounded
- 3. The \mathcal{M}_{α} 's and μ_{α} 's are \subseteq -increasing
- 4. We take unions at limit rounds

- 1. $\mathcal{M}_{\alpha} \prec \mathcal{H}_{\theta}$ is a κ -sized model of ZFC⁻ containing $\kappa+1$
- 2. μ_{α} is an \mathcal{M}_{α} -normal \mathcal{M}_{α} -measure on κ such that $\mathrm{Ult}(\mathcal{M}_{\alpha},\mu_{\alpha})$ is wellfounded
- 3. The \mathcal{M}_{α} 's and μ_{α} 's are \subseteq -increasing
- 4. We take unions at limit rounds

- 1. $\mathcal{M}_{\alpha} \prec \mathcal{H}_{\theta}$ is a κ -sized model of ZFC⁻ containing $\kappa+1$
- 2. μ_{α} is an \mathcal{M}_{α} -normal \mathcal{M}_{α} -measure on κ such that $\mathrm{Ult}(\mathcal{M}_{\alpha},\mu_{\alpha})$ is wellfounded
- 3. The \mathcal{M}_{α} 's and μ_{α} 's are \subseteq -increasing
- 4. We take unions at limit rounds
- 5. The game lasts for $\gamma+1$ rounds

- 1. $\mathcal{M}_{\alpha} \prec \mathcal{H}_{\theta}$ is a κ -sized model of ZFC⁻ containing $\kappa+1$
- 2. μ_{α} is an \mathcal{M}_{α} -normal \mathcal{M}_{α} -measure on κ such that $\mathrm{Ult}(\mathcal{M}_{\alpha},\mu_{\alpha})$ is wellfounded
- 3. The \mathcal{M}_{α} 's and μ_{α} 's are \subseteq -increasing
- 4. We take unions at limit rounds
- 5. The game lasts for $\gamma+1$ rounds
- 6. Player II wins iff they can continue playing all rounds

- 1. $\mathcal{M}_{\alpha} \prec \mathcal{H}_{\theta}$ is a κ -sized model of ZFC⁻ containing $\kappa+1$
- 2. μ_{α} is an \mathcal{M}_{α} -normal \mathcal{M}_{α} -measure on κ such that $\mathrm{Ult}(\mathcal{M}_{\alpha},\mu_{\alpha})$ is wellfounded
- 3. The \mathcal{M}_{α} 's and μ_{α} 's are \subseteq -increasing
- 4. We take unions at limit rounds
- 5. The game lasts for $\gamma+1$ rounds
- 6. Player II wins iff they can continue playing all rounds
- 7. IMPORTANT REMARK: The \mathcal{M}_{α} 's are **not** necessarily transitive!

- 1. $\mathcal{M}_{\alpha} \prec \mathcal{H}_{\theta}$ is a κ -sized model of ZFC⁻ containing $\kappa+1$
- 2. μ_{α} is an \mathcal{M}_{α} -normal \mathcal{M}_{α} -measure on κ such that $\text{Ult}(\mathcal{M}_{\alpha}, \mu_{\alpha})$ is wellfounded
- 3. The \mathcal{M}_{α} 's and μ_{α} 's are \subseteq -increasing
- 4. We take unions at limit rounds
- 5. The game lasts for $\gamma+1$ rounds
- 6. Player II wins iff they can continue playing all rounds
- 7. IMPORTANT REMARK: The \mathcal{M}_{α} 's are **not** necessarily transitive!
- 8. This game is called $\mathcal{G}_{\gamma}^{\theta}(\kappa)$. If we restrict I to only add $<|\gamma|$ sets at a time then we call the game $\mathcal{C}_{\gamma}^{\theta}(\kappa)$.

How do they behave level by level?

Theorem (Schindler-N.)

 κ is generically θ -measurable iff II wins $\mathcal{C}^{\theta}_{\omega}(\kappa)$.

How do they behave level by level?

Theorem (Schindler-N.)

 κ is generically θ -measurable iff II wins $\mathcal{C}^{\theta}_{\omega}(\kappa)$.

Theorem (Schindler-N.)

If κ is virtually θ -prestrong then II wins $\mathcal{G}^{\theta}_{\omega}(\kappa)$, and if II wins $\mathcal{G}^{\theta}_{\omega}(\kappa)$ then κ is generically θ -power-measurable.

How do they behave level by level?

1. Are virtually θ -strongs equivalent to virtually θ -supercompacts?

- 1. Are virtually θ -strongs equivalent to virtually θ -supercompacts?
- 2. Level-by-level behaviour in larger core models?

- 1. Are virtually θ -strongs equivalent to virtually θ -supercompacts?
- 2. Level-by-level behaviour in larger core models?
- 3. Game characterisations of other generic large cardinals?

- 1. Are virtually θ -strongs equivalent to virtually θ -supercompacts?
- 2. Level-by-level behaviour in larger core models?
- 3. Game characterisations of other generic large cardinals?
- 4. How do virtually Woodin cardinals behave?

- 1. Are virtually θ -strongs equivalent to virtually θ -supercompacts?
- 2. Level-by-level behaviour in larger core models?
- 3. Game characterisations of other generic large cardinals?
- 4. How do virtually Woodin cardinals behave? Vopěnka cardinals?

- 1. Are virtually θ -strongs equivalent to virtually θ -supercompacts?
- 2. Level-by-level behaviour in larger core models?
- 3. Game characterisations of other generic large cardinals?
- 4. How do virtually Woodin cardinals behave? Vopěnka cardinals?
- 5. Virtualising small embedding cardinals like Ramsey cardinals and below?

- 1. Are virtually θ -strongs equivalent to virtually θ -supercompacts?
- 2. Level-by-level behaviour in larger core models?
- 3. Game characterisations of other generic large cardinals?
- 4. How do virtually Woodin cardinals behave? Vopěnka cardinals?
- 5. Virtualising small embedding cardinals like Ramsey cardinals and below?
- 6. Indestructibility properties?