Práctica de Redes de Convolución

Juliana Quirós, Alberto

1.

2.1. Estas fueron las tasas probadas:

tasa	exactitud
1e-05	36.76
1e-04	83.88
1e-03	96.08
1e-02	10.00
1e-01	10.00

La em es de 96.08%, con una tm=0.001.

nombre	tasa	exactitud
tm_div20	5.0e-05	74.04
tm_div15	6.7e-05	79.28
tm_div10	1.0e-04	83.92

nombre	tasa	exactitud
$\overline{\mathrm{tm_div5}}$	2.0e-04	91.36
tm	1.0e-03	96.08
tm_5	5.0e-03	41.16
tm_10	1.0e-02	10.00
tm_15	1.5e-02	10.00
tm_20	2.0e-02	10.00

 $2.2\,$ Tabla en formato long de exactitud por épocas a diferentes tasas:

nombre	tasa	época	exactitud
tm_15	5.0e-05	1	74.04
tm_10	6.7e-05	1	79.28
tm_5	1.0e-04	1	83.92
tm_20	2.0e-04	1	91.36
tm_div20	1.0e-03	1	96.08
tm	5.0e-03	1	41.16
tm_div15	1.0e-02	1	10.00
tm_div10	1.5e-02	1	10.00

nombre	tasa	época	exactitud
${\text{tm div}5}$	2.0e-02	1	10.00
tm 15	5.0e-05	2	88.72
tm 10	6.7e-05	2	90.20
tm 5	1.0e-04	2	93.68
tm_20	2.0e-04	2	96.68
tm div20	1.0e-03	2	97.08
tm^-	5.0e-03	2	43.92
tm div15	1.0e-02	2	10.00
tm div10	1.5e-02	2	10.00
$\operatorname{tm}^{-}\operatorname{div}5$	2.0e-02	2	10.00
tm 15	5.0e-05	3	93.20
tm 10	6.7e-05	3	94.04
tm 5	1.0e-04	3	96.32
tm 20	2.0e-04	3	97.24
tm_{div}^{-}	1.0e-03	3	97.52
${ m tm}$	5.0e-03	3	39.32
tm_div15	1.0e-02	3	10.00
tm_div10	1.5e-02	3	10.00
tm_div5	2.0e-02	3	10.00
tm_15	5.0e-05	4	95.48
tm_10	6.7e-05	4	96.24
${ m tm}_5$	1.0e-04	4	97.28
tm_20	2.0e-04	4	97.48
tm_div20	1.0e-03	4	97.40
tm	5.0e-03	4	24.36
tm_div15	1.0e-02	4	10.00
tm_div10	1.5e-02	4	10.00
tm_div5	2.0e-02	4	10.00
tm_15	5.0e-05	5	96.36
tm_10	6.7e-05	5	97.28
tm_5	1.0e-04	5	97.72
tm_20	2.0e-04	5	97.64
tm_div20	1.0e-03	5	97.48
${ m tm}$	5.0e-03	5	40.12
tm_div15	1.0e-02	5	10.00
tm_div10	1.5e-02	5	10.00
tm_div5	2.0e-02	5	10.00

Medias de exactitud por épocas:

exactitud_10	exactitud_20	exactitud_30	exactitud_40	exactitud_50
55.09333	60.03111	60.84889	59.80444	61.84444

2.3

Como podemos observar, obtenemos una mayor exactitud con tasas de aprendizaje más pequeñas que con múltiplos de la máxima. Esto puede deberse a que el algoritmo converge en una solución subóptima (mínimo local) en los primeros casos, frente a la omisión directa de dichos mínimos en los segundos casos, que inducen errores de detección y clasificación.

Observamos a su vez, que la tasa que da lugar a la exactitud máxima se mantiene hasta llegar a 30 épocas. A partir de las 40, $\rm tm/5$ supera ligeramente a $\rm tm$. Este fenómeno se debe a que el algoritmo ha dispuesto de mayor tiempo de entrenamiento.

La media de exactitud más alta (61.8444) se produce con 50 iteraciones, lo cual confirma lo anteriormente expuesto.

3.1