SPI

Формат транзакций

С 1 по 0 биты отведены на режим работы:

Значение	Режим
00	Чтение
01	Чтение с инкрементом
1X	Запись

Режим записи:

При записи первые два бита отведены на режим (10 или 11). С 6 по 2-й биты отвечают за адрес, по которому будет записана информация в память. 8 старших бит содержат байт передаваемых данных.

14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Data									P	Addres	<u> </u>		1	Χ

Режим чтения:

При чтении первые два бита также отведены на режим. С 6 по 2-й биты отвечают за адрес, по которому будет считана информация из памяти. Содержимое остальных бит не используется.

14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								ļ	Addres			0	0	

Режим чтения с инкрементом:

При чтении с инкрементом отличие от обычного чтения лишь в том, что с 11 по 7 биты отведены на количество байт, которые будут считаны из памяти.

14		13	12	11	10	9	8	7	6	5	4	3	2	1	0
					ımber	of bite	s to re	ad		P	Addres			0	1

Пример: Если в переданном слове указан адрес 5 и количество байт 3, то последовательно будут считаны данные по адресам 5, 6, 7.

Примеры работы

Пример: запись и чтение по одному адресу

На вход поступает транзакция о записи 0'h88 по адресу 3. Как можно наблюдать на симуляции, данные были записаны по нужному адресу. Далее по адресу три корректно были считаны данные, о чем свидетельствует изменение выхода Data out на 0'h88.

Пример: чтение с инкрементом.

На вход поступает транзакция о чтении с инкрементом 5 байт данных начиная с адреса 1. Как можно наблюдать на симуляции, данные последовательно считываются и выгружаются на выход Data_out.

Общая схема подключения

Условная схема ведущего (master):

Условная схема ведомого (slave):

Ресурсы:

Resource	Utilization	Available	Utilization %
LUT	130	17600	0.74
LUTRAM	16	6000	0.27
FF	120	35200	0.34
IO	28	100	28.00

1. Slice Logic

4			L	
Site Type	Used	Fixed	Available	Util%
Slice LUTs*	130	0	17600	0.74
LUT as Logic	114	0	17600	0.65
LUT as Memory	16	0	6000	0.27
LUT as Distributed RAM	16	0		i i
LUT as Shift Register	0	0		į į
Slice Registers	120	0	35200	0.34
Register as Flip Flop	120	0	35200	0.34
Register as Latch	0	0	35200	0.00
F7 Muxes	0	0	8800	0.00
F8 Muxes	0	0	4400	0.00
+			<u> </u>	+

2. Memory

4		L	+		Ļ
Site Type		-			•
Block RAM Tile RAMB36/FIFO* RAMB18		0	60	0.00 0.00 0.00	

3. DSP

+		+		++
Site Type	Used	Fixed	Available	Util%
DSPs	0	0	80	0.00

Тайминги

Setup		Hold		Pulse Width				
Worst Negative Slack (WNS):	6.340 ns	Worst Hold Slack (WHS):	0.084 ns	Worst Pulse Width Slack (WPWS):	3.750 ns			
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns			
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0			
Total Number of Endpoints:	327	Total Number of Endpoints:	327	Total Number of Endpoints:	137			

WNS = 6.340 ns > 0

Заданная тактовая частота F = 100 МГц

Следовательно, рабочая частота
$$F_{\text{max}} = \frac{1 \, s}{10 \, ns - 6.34 \, ns} \approx$$
 273.2 МГц

При данной частоте WNS = 0

Setup

Worst Negative Slack (WNS): 0.000 ns