\mathcal{T} iempo: 2 horas \mathcal{P} untaje \mathcal{T} otal: 33 puntos \mathcal{J} unio de 2013

III Examen Parcial (Solución)

Instrucciones: Esta es una prueba de desarrollo; por lo tanto, debe presentar **todos** los pasos necesarios que le permitieron obtener cada una de las respuestas. Trabaje en forma clara, ordenada y utilice bolígrafo para resolver el examen. No son procedentes apelaciones sobre exámenes resueltos con lápiz o que presenten algún tipo de alteración. No se permite el uso de calculadora programable ni de teléfono celular.

- 1. Sea $\mathcal{T}: \mathcal{P}_2(\mathbb{R}) \to \mathbb{R}^3$, tal que $\mathcal{T}(a+bx+cx^2) = (2b-c, a, c-2a-2b)$
 - (a) Verifique que \mathcal{T} es una transformación lineal.

Solución

Sean $a + bx + cx^2$, $a_1 + b_1x + c_1x^2 \in P_2(\mathbb{R})$ y $\alpha \in \mathbb{R}$

$$\mathcal{T}(\alpha(a+bx+cx^{2})+a_{1}+b_{1}x+c_{1}x^{2})$$

$$= \mathcal{T}(\alpha a + \alpha bx + \alpha cx^{2} + a_{1} + b_{1}x + c_{1}x^{2})$$

$$= \mathcal{T}((\alpha a + a_{1}) + (\alpha b + b_{1})x + (\alpha c + c_{1})x^{2})$$

$$= (2(\alpha b + b_{1}) - (\alpha c + c_{1}), \alpha a + a_{1}, (\alpha c + c_{1}) - 2(\alpha a + a_{1}) - 2(\alpha b + b_{1}))$$

$$= (2\alpha b + 2b_{1} - \alpha c - c_{1}, \alpha a + a_{1}, \alpha c + c_{1} - 2\alpha a - 2a_{1} - 2\alpha b - 2b_{1})$$

$$= (2\alpha b - \alpha c, \alpha a, \alpha c - 2\alpha a - 2\alpha b) + (2b_{1} - c_{1}, a_{1}, c_{1} - 2a_{1} - 2b_{1})$$

$$= \alpha(2b - c, a, c - 2a - 2b) + (2b_{1} - c_{1}, a_{1}, c_{1} - 2a_{1} - 2b_{1})$$

$$= \alpha \mathcal{T}(a + bx + cx^{2}) + \mathcal{T}(a_{1} + b_{1}x + c_{1}x^{2})$$

(b) Obtenga el núcleo de \mathcal{T} v la nulidad de \mathcal{T} .

(4 pts)

(3 pts)

Solución

Sea $a + bx + cx^2 \in Nucl(\mathcal{T})$ Como $a + bx + cx^2 \in Nucl(\mathcal{T}) \Rightarrow \mathcal{T}(a + bx + cx^2) = (0, 0, 0)$

$$\mathcal{T}(a+bx+cx^2) = 0$$

$$\Rightarrow (2b-c, a, c-2a-2b) = (0,0,0)$$

$$\Rightarrow \begin{cases} 2b-c = 0 \\ a = 0 \\ c-2a-2b = 0 \end{cases}$$

$$\Rightarrow c = 2b$$

De esta manera, $Nucl(\mathcal{T}) = \{bx + 2bx^2/b \in \mathbb{R}\}$ Una base de $Nucl(\mathcal{T})$ es el conjunto $\mathcal{B} = \{x + 2x^2\}$; así, nulidad de \mathcal{T} es 1.

(c) Obtenga el rango de \mathcal{T} y una base de la imagen de \mathcal{T} . (4 pts)

Solución

Como la nulidad de \mathcal{T} es 1, se tiene que el rango de \mathcal{T} es igual a 2 (note que la dimensión del dominio es 3).

Dado que una base del núcleo de \mathcal{T} es $\mathcal{B} = \{x + 2x^2\}$, a partir de esta se puede obtener una base para el dominio.

El conjunt $\mathcal{B}_1 = \{x + 2x^2, 1, x\}$ es una base del domio (fueron agregados los vectores 1 y x). El conjunto $\mathcal{B}_2 = \{\mathcal{T}(1), \mathcal{T}(x)\} = \{(0, 1, -2), (2, 0, -2)\}$ es una base de la imagen de \mathcal{T} .

2. Sea $\mathcal{T}: \mathcal{V} \to \mathcal{W}$ una transformación lineal. Demuestre que si el núcleo de \mathcal{T} es $\left\{\mathbf{0}_{\mathcal{V}}\right\}$ entonces \mathcal{T} es inyectiva. (3 pts)

Solución

Para probar que \mathcal{T} es inyectiva, hay que demostrar que si $\mathcal{T}(x) = \mathcal{T}(y)$, entonces x = y. Se tiene como hipótesis que la única preimagen de $0_{\mathcal{W}}$ es $0_{\mathcal{V}}$

Veamos: sean $x, y \in \mathcal{V}$, tales que $\mathcal{T}(x) = \mathcal{T}(y)$

$$\mathcal{T}(x) = \mathcal{T}(y)$$

$$\Rightarrow \mathcal{T}(x) - \mathcal{T}(y) = 0_{\mathcal{W}}$$

$$\Rightarrow \mathcal{T}(x - y) = 0_{\mathcal{W}}$$

$$\Rightarrow x - y = 0_{\mathcal{V}}$$

$$\Rightarrow x = y$$

- 3. Sea $\mathcal{T}: \mathcal{P}_2(\mathbb{R}) \to \mathcal{P}_2(\mathbb{R})$, tal que $\mathcal{T}(a+bx+cx^2) = (3b+a) + (a+b-c)x + (c+2b)x^2$ una transformación lineal.
 - (a) Determine si \mathcal{T} es inyectiva o no lo es. Justifique. (2 pts)

Solución

Hay que recordar que \mathcal{T} es inyectiva si, y solo si, su núcleo está conformado únicamente por el vector nulo.

Sea
$$a + bx + cx^2 \in Nucl(\mathcal{T})$$

Como $a + bx + cx^2 \in Nucl(\mathcal{T}) \Rightarrow \mathcal{T}(a + bx + cx^2) = 0$

$$\mathcal{T}(a + bx + cx^2) = 0$$

 $\Rightarrow (3b+a) + (a+b-c)x + (c+2b)x^2 = 0$

Si x = 0 se tiene que 3b + a = 0

Al derivar en ambos miembros de la igualdad $(3b + a) + (a + b - c) x + (c + 2b) x^2 = 0$, se obtiene a + b - c + 2 (c + 2b) x = 0

Evaluando nuevamente en x = 0 se tiene a + b - c = 0

Al derivar en ambos miembros de la igualdad a+b-c+2(c+2b)x=0, se obtiene 2(c+2b)=0

Así, debe cumplirse que $\begin{cases} 3b + a = 0 \\ a + b - c = 0 \\ 2(c + 2b) = 0 \end{cases}$

Utilizando el método de Gauss-Jordan, se tiene que

$$\begin{pmatrix} 1 & 3 & 0 & 0 \\ 1 & 1 & -1 & 0 \\ 0 & 4 & 2 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & \frac{-3}{2} & 0 \\ 0 & 1 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \Rightarrow \begin{cases} a = \frac{3c}{2} \\ b = \frac{-c}{2} \end{cases}$$

De esta manera, $Nucl(\mathcal{T}) = \left\{ \frac{3c}{2} - \frac{c}{2}x + cx^2/c \in \mathbb{R} \right\}$ y se concluye que \mathcal{T} no es inyectiva.

(b) Calcule todas las preimágenes de $p(x) = 2 + 2x^2$ (3 pts) Sea $a + bx + cx^2 \in \mathcal{P}_2(\mathbb{R})$, tal que $\mathcal{T}(a + bx + cx^2) = 2 + 2x^2$

$$\mathcal{T}(a + bx + cx^{2}) = 2 + 2x^{2}$$

$$\Rightarrow (3b + a) + (a + b - c) x + (c + 2b) x^{2} = 2 + 2x^{2}$$

$$\Rightarrow \begin{cases} 3b + a = 2 \\ a + b - c = 0 \\ c + 2b = 2 \end{cases}$$

Utilizando el método de Gauss-Jordan, se tiene que

$$\begin{pmatrix} 1 & 3 & 0 & 2 \\ 1 & 1 & -1 & 0 \\ 0 & 2 & 1 & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & \frac{-3}{2} & -1 \\ 0 & 1 & \frac{1}{2} & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \Rightarrow \begin{cases} a = -1 + \frac{3c}{2} \\ b = 1 + \frac{-c}{2} \end{cases}$$

Luego, todas las preimágenes del vector $2+2x^2$ son los polinomios de la forma $-1+\frac{3c}{2}+\left(1+\frac{-c}{2}\right)x+cx^2$, con $c\in\mathbb{R}$.

- 4. Sean $\mathcal{T}: \mathbb{R}^3 \to P_1(\mathbb{R})$ una transformación lineal, tal que $\mathcal{T}(a,b,c) = (b+c) + (a+b)x$, $\mathcal{B}_1 = \{(1,0,1), (1,1,0), (1,0,0)\}$ una base de \mathbb{R}^3 , $\mathcal{B}_2 = \{1-x,x\}$ una base de $\mathcal{P}_1(\mathbb{R})$ y w un vector de \mathbb{R}^3 , tal que $[w]_{\mathcal{B}_1} = \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix}$
 - (a) Obtenga la matriz para \mathcal{T} asociada a las bases \mathcal{B}_1 y \mathcal{B}_2 ; es decir, $[\mathcal{T}]_{\mathcal{B}_1}^{\mathcal{B}_2}$ (4 pts) Solución

$$\mathcal{T}(1,0,1) = 1 + x = 1 \cdot (1-x) + 2 \cdot x$$

$$\mathcal{T}(1,1,0) = 1 + 2x = 1 \cdot (1-x) + 3 \cdot x$$

$$\mathcal{T}(1,0,0) = x = 0 \cdot (1-x) + 1 \cdot x$$
Luego, se tiene que $[\mathcal{T}]_{\mathcal{B}_1}^{\mathcal{B}_2} = \begin{pmatrix} 1 & 1 & 0 \\ 2 & 3 & 1 \end{pmatrix}$

(b) Calcule $\mathcal{T}(w)$ sin utilizar la matriz $[\mathcal{T}]_{\mathcal{B}_1}^{\mathcal{B}_2}$ (2 pts) Solución

Como
$$[w]_{\mathcal{B}_1} = \begin{pmatrix} -1\\2\\3 \end{pmatrix}$$
 se tiene que $w = -1 \cdot (1,0,1) + 2 \cdot (1,1,0) + 3 \cdot (1,0,0)$; así, $w = (4,2,-1) \Rightarrow \mathcal{T}(w) = \mathcal{T}(4,2,-1) = 1 + 6x$.

(c) Calcule $\mathcal{T}(w)$ utilizando la matriz $[\mathcal{T}]_{\mathcal{B}_1}^{\mathcal{B}_2}$ (2 pts) Solución

Se tiene que
$$[\mathcal{T}(w)]_{B_2} = [\mathcal{T}]_{\mathcal{B}_1}^{\mathcal{B}_2} \cdot [w]_{B_1} = \begin{pmatrix} 1 & 1 & 0 \\ 2 & 3 & 1 \end{pmatrix} \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 7 \end{pmatrix}$$

Luego, $\mathcal{T}(w) = 1 \cdot (1 - x) + 7 \cdot x = 1 - x + 7x = 1 + 6x$.

- 5. Considere la matriz A dada por $A = \begin{pmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{pmatrix}$
 - (a) Compruebe que $\lambda=1$ y $\lambda=2$ son los únicos valores propios de A. (3 pts) Solución

Si λ es un valor propio de la matriz A se cumple que:

$$\begin{vmatrix} \begin{pmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \end{vmatrix} = 0$$

$$\Leftrightarrow \begin{vmatrix} -\lambda & 0 & -2 \\ 1 & 2 - \lambda & 1 \\ 1 & 0 & 3 - \lambda \end{vmatrix} = 0$$

$$\Leftrightarrow (2 - \lambda) \cdot \begin{vmatrix} -\lambda & -2 \\ 1 & 3 - \lambda \end{vmatrix} = 0$$

$$\Leftrightarrow (2 - \lambda) \cdot [-\lambda (3 - \lambda) - 1 \cdot -2] = 0$$

$$\Leftrightarrow (2 - \lambda) (\lambda^2 - 3\lambda + 2) = 0$$

$$\Leftrightarrow (2 - \lambda) (\lambda - 2) (\lambda - 1) = 0$$

De esta manera, los únicos valores propios de A son $\lambda=2$ y $\lambda=1$.

(b) Determine una base del espacio propio asociado al valor propio $\lambda=2.$ (3 pts) Solución

Sea $u = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ un vector propio asociado al valor propio $\lambda = 2$.

Se busca u de manera que se satisfaga $Au = \lambda u$

$$Au = \lambda u$$

$$\Rightarrow \begin{pmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = 2 \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} -2c \\ a + 2b + c \\ a + 3c \end{pmatrix} = \begin{pmatrix} 2a \\ 2b \\ 2c \end{pmatrix}$$

$$\Rightarrow \begin{cases} -2c = 2a \\ a + 2b + c = 2b \\ a + 3c = 2c \end{cases}$$

$$\Rightarrow \begin{cases} -2a - 2c = 0 \\ a + c = 0 \\ a + c = 0 \end{cases}$$

$$\Rightarrow a = -c$$

Así, E_2 (el espacio propio de A asociado al valor propio $\lambda=2$) está dado por $E_2 = \left\{ \begin{pmatrix} -c \\ b \end{pmatrix} / b, c \in \mathbb{R} \right\}$

Por lo tanto, el conjunto $\mathcal{B} = \left\{ \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\}$ es una base de E_2 (note que son dos vectores no múltiplos que generan a dicho espacio).