Digital Electronics Paper 2 Question 2 2005 No for Diploma & Part II (gen) Paper 11 Question 1

(a) The state table for the 0 > 5 counter is:

current state			, next state			
C	B	A	C	,	/A/	
0	0	0	0	0	1	
0	0	1	0	l	0	
0	1	0	0	1	/	
0	1	1	1	0	0	
1	O	0	1	0	/	
,	0	1	0	\mathcal{D}	0	
ĺ	1	0	х	X	X	
1	1	1	X	X	X	
,		- 1				

Computer Science Tripos Part II (General) 2005

Paper 11 Question 1

SWM — Digital Electronics

by ripu	hon,	A'	'= A	B
for B'	0	0	0	0
c	0	0	X	X

so
$$B' = (A \oplus B) \cdot \overline{C}$$

nin. sum of products for B' :
 $B' = A \cdot B \cdot \overline{C} + \overline{A} \cdot B$

(b) This is basically from the nots but many will have to derive the circuit.

This question covers before 3 (logic minumisation), 5 (flip-flops) and 6&7 (state machines).