



# ЧЕТВРТИ МЕМОРИЈАЛЕН МАТЕМАТИЧКИ НАТПРЕВАР

# Александар Блажевски - Цане

Категорија: ЈУНИОРИ

### Решенија и распределба на поени

**Задача 1.** Низ дадена точка O во рамнината се повлечени n прави. Одредете ја најголемата можна вредност k (зависно од n) за која секогаш можеме некои k од тие n прави да обоиме црвено без притоа да формираме пар заемно нормални црвени прави.

**Решение.** Ќе докажеме дека одговорот е:  $k=\frac{n}{2}$  ако n е парен и  $k=\frac{n+1}{2}$  ако n е непарен. Да разгледаме najzonemo можно подмножество A од тие n прави така што никои две прави од A не се заемно нормални ( $1\pi$ ). Нека A се состои од точно a прави, т.е. |A|=a. Со  $\bar{A}$  го означуваме множеството од преостанатите n-a прави. Да забележиме дека секоја права од  $\bar{A}$  е нормална на некоја права од A. Имено, во спротивно би можеле да префрлиме од  $\bar{A}$  во A некоја права што не го исполнува споменатиот услов - со тоа би добиле поголемо подмножество прави од кои никои две не се заемно нормални, што противречи на претпоставената максималност на A. За секоја права  $\ell \in A$ , најмногу една права од  $\bar{A}$  е нормална на  $\ell$ . Следствено,  $n-a \le a$ . Еквивалентно,  $a \ge \frac{n}{2}$ . Да забележиме дека ако ги обоиме во црвено токму правите од A добиваме едно посакувано боење. Значи, бидејќи a е природен број, секогаш можеме да обоиме  $k=\frac{n}{2}$  прави на посакуваниот начин кога n е парен и  $k=\frac{n+1}{2}$  кога n е непарен ( $2\pi$ ). Останува да докажеме дека постои конфигурација од n прави низ точката O која не дозволува

Останува да докажеме дека постои конфигурација од n прави низ точката O која не дозволува да се обојат во црвено повеќе од  $\frac{n}{2}$  прави за парно n односно  $\frac{n+1}{2}$  прави за непарно n. Без губење на општоста, да претпоставиме дека O е координатниот почеток на рамнината. За n=2m, избираме m различни прави низ O такви што секоја има позитивен коефициент на правец, и кон нив придодаваме уште m прави низ O секоја од кои е нормална на една од првите m прави. Вторите m прави имаат различни негативни коефициенти на правец, што значи дека имаме вкупно n различни прави кои можеме да ги поделиме во m парови од заемно нормални прави. Да разгледуваме произволно посакувано боење. Во секој пар може да постои најмногу една црвена права, и оттука  $k \le m = \frac{n}{2}$  (2n). Ако n = 2m + 1, ја користиме претходната

конструкција со m прави со позитивни коефициенти на правец и m прави нормални на нив. Ја додаваме правата x=0. Така имаме m парови кои можат да содржат најмногу една црвена права и уште ја имаме правата x=0. Затоа, за непарно n, не постојат повеќе од  $m+1=\frac{n+1}{2}$  црвени прави така што никои две не се заеамно нормални  $(2\pi)$ .

**Задача 2.** Нека a,b,c,d се цели броеви. Докажете дека за секој позитивен цел број n, постојат барем  $\left\lfloor \frac{n}{4} \right\rfloor$  позитивни цели броеви  $m \leq n$  такви што  $m^5 + dm^4 + cm^3 + bm^2 + 2021m + a$  не е полн квадрат. (За секој реален број x, со  $\lfloor x \rfloor$  се означува најголемиот цел број  $\leq x$ .)

**Решение.** Нека  $P(m) = m^5 + dm^4 + cm^3 + bm^2 + 2021m + a$ . Прво да претпоставиме дека  $m \equiv 0 \pmod 4$ . Тогаш  $P(m) \equiv a \pmod 4$ . (1п) Затоа, ако за такво m, P(m) е полн квадрат, мора да важи или  $a \equiv 0 \pmod 4$  или  $a \equiv 1 \pmod 4$ . (1п)

Да претпоставиме сега дека  $m \equiv 2 \pmod 4$ . Тогаш  $P(m) \equiv m+a \equiv 2+a \pmod 4$ . (1п) Затоа, ако за такво m, P(m) е полн квадрат, тогаш мора да важи или  $a+2 \equiv 0 \pmod 4$  или  $a+2 \equiv 1 \pmod 4$ , односно, или  $a \equiv 2 \pmod 4$  или  $a \equiv 3 \pmod 4$ . (1п)

Оттука, ако  $a \equiv 2 \pmod 4$ ) или  $a \equiv 3 \pmod 4$ , тогаш P(m) не е полн квадрат ни за едно m такво што  $m \equiv 0 \pmod 4$ . (1 $\pi$ ) Од друга страна, ако  $a \equiv 0 \pmod 4$  или  $a \equiv 1 \pmod 4$ , тогаш P(m) не е полн квадрат ниту за едно m такво што  $m \equiv 2 \pmod 4$ . (1 $\pi$ ) Сега е јасно дека за секој природен број n, имаме барем  $\left\lfloor \frac{n}{4} \right\rfloor$  природни броеви  $m \leq n$  такви што P(m) не е полн квадрат. (1 $\pi$ )

**Задача 3.** Нека  $\mathbb{R}^+$  е множеството позитивни реални броеви. Најдете ги сите функции  $f:\mathbb{R}^+ \to \mathbb{R}^+$  такви што за сите x,y>0 важи

$$f(xy + f(x)) = yf(x) + x.$$

Решение. Ќе дадеме три начини на решавање.

**Прв начин.** Да докажеме прво дека f е инјективна. Претпоставувајќи го спротивното, постојат 0 така што <math>f(p) = f(q) = r. Земаме x = p и  $y = \frac{1}{p}$  и добиваме

$$f(1 + f(p)) = \frac{f(p)}{p} + p.$$

Слично, земајќи x=q и  $y=\frac{1}{q}$ , добиваме

$$f(1+f(q)) = \frac{f(q)}{q} + q.$$

Оттука

$$p + \frac{f(p)}{p} = f(1 + f(p)) = f(1 + f(q)) = q + \frac{f(q)}{q}.$$

Со други зборови, имаме  $p^2q + qr = pq^2 + pr$ . Ова е еквивалентно со pq(p-q) + (q-p)r = 0 односно со (q-p)(r-pq) = 0. Бидејќи претпоставивме дека q > p, следува pq = r. (1п) Но земајќи x = p добиваме дека: f(py + pq) = pqy + p за секое y > 0. Слично, x = q ни дава дека: f(qy + pq) = pqy + q за секое y > 0. Значи  $f(2pq) = pq^2 + p$  и  $f(2pq) = p^2q + q$ , па така

$$pq^{2} + p = p^{2}q + q \implies (pq - 1)(q - p) = 0 \implies pq = 1.$$

Но, тогаш би важело f(py+1)=y+p и f(qy+1)=y+q за секое y>0. Следствено,

$$\frac{q}{p} + p = f(q+1) = 1 + q \implies \frac{1}{p} + p^2 = 1 + p \iff p^3 - p^2 - p + 1 = 0$$
$$\iff (p^2 - 1)(p - 1) = 0 \iff p = 1.$$

Од pq = 1 добиваме q = p = 1. Оваа противречност докажува дека f е инјективна.  $(1\pi)$ 

Сега да земеме  $x=\frac{1}{2}$  и  $y=\frac{1}{2\cdot f\left(\frac{1}{2}\right)}$ . Тогаш за  $t=\frac{1}{2}\cdot \frac{1}{2\cdot f\left(\frac{1}{2}\right)}+f\left(\frac{1}{2}\right)$  имаме

$$f(t) = \frac{1}{2 \cdot f\left(\frac{1}{2}\right)} \cdot f\left(\frac{1}{2}\right) + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = 1.$$

Фиксираме произволно a > 1. Ако земеме x = t и  $y = \frac{a-1}{t} > 0$  добиваме

$$f\left(t\cdot\frac{a-1}{t}+f(t)\right) = \frac{a-1}{t}\cdot f(t) + t \iff f(a) = \frac{1}{t}\cdot a + t - \frac{1}{t}.$$

Со тоа имаме формула за f(a) кога a>1. (2п) Земајќи x=y=2>1 и применувајќи ја горенаведената формула го добиваме следново:

$$f(4+f(2)) = 2f(2) + 2 \iff f(4+\frac{2}{t}+t-\frac{1}{t}) = 2 \cdot \left(\frac{2}{t}+t-\frac{1}{t}\right) + 2$$

$$\iff f\left(4+t+\frac{1}{t}\right) = \frac{2}{t} + 2t + 2 \iff \frac{1}{t} \cdot \left(4+t+\frac{1}{t}\right) + t - \frac{1}{t} = \frac{2}{t} + 2t + 2$$

$$\iff \frac{1}{t} + \frac{1}{t^2} = t + 1 \iff t^3 + t^2 - t - 1 = 0 \iff (t^2 - 1)(t + 1) = 0 \iff t = 1.$$

Ако користиме t=1 во формулата за f(a) кога a>1, добиваме дека f(a)=a за секој a>1. Исто така имаме f(1)=f(t)=1.  $(1\pi)$ 

Нека a<1. Земаме x=a и  $y=\frac{1}{f(a)}$ , и добиваме

$$f\left(\frac{a}{f(a)} + f(a)\right) = \frac{1}{f(a)} \cdot f(a) + a = a + 1.$$

Заради a+1>1 имаме f(a+1)=a+1. Но f е инјективна, што значи дека  $\frac{a}{f(a)}+f(a)=a+1$ . Еквивалентно,

$$a + f(a)^2 = (a+1)f(a) \iff f(a)^2 - (a+1)f(a) + a = 0 \iff (f(a)-1)(f(a)-a) = 0.$$

Кога a < 1, од инјективноста добиваме  $f(a) \neq 1$ , па оттука f(a) = a за секој a < 1. (1п) Заклучуваме дека f(a) = a за секое a > 0. Лесно се проверува дека оваа функција е навистина решение. (1п)

**Втор начин.** Нека смената во дадената функција е P(x,y).

Да претпоставиме дека постојат  $a,b\in\mathbb{R}^+$  за кои f(a)=f(b). Смените  $P(a,\frac{1}{af(a)})$  и  $P(b,\frac{1}{bf(b)})$  ни даваат

$$\frac{1}{b} + b = f\left(\frac{1}{f(b)} + f(b)\right) = f\left(\frac{1}{f(a)} + f(a)\right) = \frac{1}{a} + a,$$

што е еквивалентно со (ab-1)(a-b)=0. Значи равенството f(a)=f(b) имплицира a=b или  $a=\frac{1}{b}$  (1). (2 $\pi$ )



Смената  $P(\frac{x}{2}, \frac{x}{2f(\frac{x}{2})})$  ни дава:

$$f\left(\frac{x^2}{4 \cdot f(\frac{x}{2})} + f\left(\frac{x}{2}\right)\right) = x,$$

што повлекува дека функцијата f е сурјективна. Понатаму, ова имплицира дека постои  $k \in \mathbb{R}^+$  таков што f(k) = 1. Сега, смената P(k, x) ни дава f(kx + 1) = x + k (2). (1п) Разгледуваме три случаи:

## $1^{\circ} k > 1$

Заменувајќи  $\frac{k-1}{k}$  за x (2) имплицира  $1=f(k)=f(k\cdot\frac{k-1}{k}+1)=\frac{k-1}{k}+k$ , т.е.  $k^2=1$ , што е контрадикција со претпоставката k>1. (1 $\pi$ )

# $2^{\circ} \ k = 1$

Равенството (2) е сега еквивалентно со f(x+1)=x+1, т.е. f(x)=x за  $x\in(1,+\infty)$ . Земајќи доволно големо y така што y>1 и xy+f(x)>1 и заменувајќи го во почетната функционална равенка имаме xy+f(x)=yf(x)+x, односно (y-1)(f(x)-x)=0. Со оглед на тоа дека y>1, добиваме дека f(x)=x за сите  $x\in\mathbb{R}^+$ . (1п)

#### $3^{\circ} k < 1$

Заменувајќи 1-k за x во (2) имаме  $f(k-k^2+1)=1=f(k)$ , што според (1) имплицира  $k-k^2+1=k$  т.е.  $k^2=1$  (што противречи на 0< k<1) или пак  $k-k^2+1=\frac{1}{k}$ , што е еквивалентно со  $(k-1)^2(k+1)=0$  (но ова повторно противречи на 0< k<1).  $(1\pi)$ 

Оттука, единственото можно решение на дадената функционална равенка е f(x) = x. Лесно се проверува дека идентичната функција ја задоволува равенката. (1 $\pi$ )

**Трет начин.** Бирајќи y=1 добиваме f(x+f(x))=x+f(x). Оттука, постои  $u\in\mathbb{R}^+$  таков што f(u)=u. (2 $\pi$ ) Заменувајќи x=u во дадената равенка добиваме дека: f(u(y+1))=u(y+1) за секое  $y\in\mathbb{R}^+$ ; ова имплицира дека f(v)=v за секој v>u. (2 $\pi$ ) Сега за произволни x и  $y>\max\{1,\frac{u}{x}\}$ , бидејќи xy+f(x)>u, добиваме:

$$xy + f(x) = f(xy + f(x)) = yf(x) + x$$
.

Ова е еквивалентно со (y-1)(f(x)-x)=0, а како y>1, заклучуваме дека f(x)=x за секој  $x\in\mathbb{R}^+$ . (2п) Лесно се проверува дека идентичната функција ја задоволува дадената функционална равенка. (1п)

#### Задача 4. Дали равенката

$$z(y-x)(x+y) = x^3$$

има конечно или бесконечно многу решенија во множеството позитивни цели броеви x, y, z? (Образложете го одговорот.)

**Решение.** Одговорот е: равенката има бесконечно многу решенија во множеството позитивни цели броеви. Имено, таа е еквивалентна со

$$y^2z - x^2z = x^3.$$

Делејќи со  $z^3$ , ја добиваме еквивалентната равенка

$$\left(\frac{y}{z}\right)^2 - \left(\frac{x}{z}\right)^2 = \left(\frac{x}{z}\right)^3.$$

Нека  $X=\left(\frac{x}{z}\right)$  и  $Y=\left(\frac{y}{z}\right)$ . (2п) Со овие смени, горната равенка добива облик:

$$Y^2 - X^2 = X^3.$$

Со оглед на тоа дека парот X=0, Y=0 ја задоволува добиената равенка, ајде да побараме (позитивни рационални) решенија од обликот Y=tX. Заменувајќи го Y со tX добиваме ( $2\pi$ ):

$$(t^2 - 1)X^2 = t^2X^2 - X^2 = X^3.$$

Значи, имаме решенија од обликот  $\frac{x}{z}=t^2-1$  и  $\frac{y}{z}=t(t^2-1)$ , каде t е рационален број таков што  $t,t^2-1>0$ . (1 $\pi$ ) Оттука, една бесконечна фамилија решенија на почетната равенка е  $(x,y,z)=(t^2-1,t^3-t,1)$ , за целите броеви  $t\geq 2$ . (2 $\pi$ )

Забелешка за распределбата на поените: Последните два поена се доделуваат и доколку само се наведе низа од решенија (без доказ).

Задача 5. Нека ABCD е тетивен четириаголник таков што AB = AD + BC и CD < AB. Дијагоналите AC и BD се сечат во точка P, а правите AD и BC се сечат во точка Q. Симетралата на  $\angle APB$  ја сече страната AB во точка T. Докажете дека центарот на опишаната кружница на  $\triangle CTD$  лежи на опишаната кружница на  $\triangle CQD$ .

**Решение.** Нека T' е точка на отсечката AB така што важи AT' = AD. Тогаш условот AB = AD + BC, заедно со AB = AT' + BT' и AT' = AD, ни дава BT' = BC. (1 $\pi$ ) Триаголниците ADP и BCP се слични (1 $\pi$ ), бидејќи ABCD е тетивен. Следствено,

$$\frac{AT'}{BT'} = \frac{AD}{BC} = \frac{AP}{BP} = \frac{AT}{BT},$$

каде последното равенство се добива од теоремата за симетрала на агол. (1 $\pi$ ) Заклучуваме дека T'=T. (1 $\pi$ ) Значи, триаголникот TAD е A-рамнокрак, додека триаголникот TBC е B-рамнокрак. Нека  $\angle BAQ=2x$  и  $\angle ABQ=2y$ . Да го означиме со O центарот на опишаната кружница на триаголникот CTD.



Имаме:

$$\angle COD = 2 \cdot \angle CTD = 2 \cdot (180^{\circ} - \angle ATD - \angle BTC)$$
  
=  $2 \cdot (180^{\circ} - (90^{\circ} - x) - (90^{\circ} - y)) = 2x + 2y$ .

Да забележиме и дека  $\angle CQD = 180^{\circ} - 2x - 2y$ . Оттука,  $\angle COD + \angle CQD = 180^{\circ}$ . (2п) Ова кажува дека центарот O на опишана кружница на триаголникот CTD лежи на опишаната кружница на триаголникот CQD, што и се бараше да се докаже. (1п)

Забелешки за распределбата на поените:

- 1. Вториот поен може да се додели и само ако се констатира наведената сличност, без да се изведе пропорцијата меѓу страните на двата триаголници. Изведување на истата пропорција не носи екстра поени.
- 2. Третиот поен се доделува за користење или барем наведување на теоремата за симетрала на агол, независно од тоа дали е поврзана со дефинираната точка T'.
- 3. Наоѓање на било кој од аглите  $\angle COD$  и  $\angle CQD$  носи поен. Наоѓање на двата агла носи два поена, како што е наведено.
- 4. Заклучокот врз основа на збирот на агли носи еден поен. Заклучокот на било кој (точен) алтернативен начин го носи истиот поен.

**Задача 6.** Во едно училиште со 1000 ученици, секој ученик има точно четири пријатели. За група од три ученика велиме дека е *пријателска тројка* ако секои двајца од групата се пријатели. Одредете го најголемиот можен број на пријателски тројки во училиштето.

**Решение.** Ќе докажеме дека одговорот е 2000. Најпрво докажуваме дека овој број е достижен. Доколку во училиштето постојат 200 попарно дијсунктни групи од по 5 ученика, при што два ученика се пријатели ако и само ако се во иста група, тогаш бројот на пријателски тројки изнесува

$$\binom{5}{3} \cdot 200 = 2000.$$
 (1 $\pi$ )

Да докажеме дека не е можно да има повеќе од 2000 пријателски тројки во училиштето. Нека T е вкупниот број на пријателски тројки. Со N го означуваме бројот на парови (t,p), каде t е пријателска тројка и p е (неподреден) пар на пријатели во таква тројка.

Секоја пријателска тројка  $\{A, B, C\}$  допринесува со 3 во бројот N (бидејќи дава точно три пара пријатели:  $\{A, B\}$ ,  $\{B, C\}$  и  $\{A, C\}$ ). Оттука имаме дека N = 3T. (1 $\pi$ )

Да фиксираме еден пар пријатели  $p = \{A, B\}$ . Тврдиме дека p учествува во не повеќе од три пријателски тројки. Навистина, ако p учествува во барем 4 пријателски тројки, тогаш постојат (различни) ученици  $C_1, C_2, C_3, C_4 \neq B$  кои се пријатели со A. Меѓутоа, B е исто така пријател со A, па A би имал 5 пријатели, што не е можно. Затоа, секој пар на пријатели p е дел од најмногу 3 пријателски тројки. (1 $\pi$ )

Нека P е вкупниот број на парови p (од двајца пријатели). Ако го броиме N по втората компонента (т.е. по парови пријатели) и го искористиме фактот дека секој пар учествува во најмногу 3 пријателски тројки, добиваме  $N \leq P \cdot 3 = 3P$ . Заклучуваме дека

$$3T = N \le 3P$$
 и оттука  $T \le P$ . (2 $\pi$ )

Од друга страна, P може едноставно да се пресмета. Имено, означувајќи го со  $d_i$  бројот на пријатели на i-тиот ученик (i = 1, 2, ..., 1000), имаме  $d_i = 4$  за секое i. Оттаму

$$4 \cdot 1000 = d_1 + d_2 + \dots + d_{1000} = 2P,$$

бидејќи секој пар на пријатели го броиме точно два пати во збирот  $d_1 + d_2 + ... + d_{1000}$ . Ова ни дава P = 2000. Значи  $T \le P = 2000$ , што и сакавме да докажеме  $(2\pi)$ .