AEEM 3042 – Integrated Aircraft Engineering

Aircraft Performance Equations of Motion Range & Endurance

$$L = W$$

Range = How <u>FAR</u> can an aircraft fly?

Fuel Consumed per Mile Flown (lb_{fuel} / NM)

Jet Aircraft

$$\frac{lb_{fuel}}{NM} \propto c_t \frac{T_{req}}{V}$$

$$L = W$$

Endurance = How LONG can an aircraft fly?

Fuel Consumed per Hour (lb_{fuel} / hr)

Jet Aircraft

$$\frac{lb_{fuel}}{hr} \propto c_t T_{req}$$

$$L = W$$

Thrust Required
Minimum Drag
Velocity for D_{min}
Velocity for (L/D)_{max}

$$R = \frac{Zero Lift Drag}{Drag Due to Lift}$$

$$R = 1 C_{D_0} = C_{D_L} = K C_L^2 Max \frac{C_L}{C_D}$$

$$\operatorname{Max} \frac{\mathsf{C}_{\mathsf{L}}}{\mathsf{C}_{\mathsf{D}}}$$

$$R = 3$$
 $C_{D_0} = 3 C_{D_L} = 3 K C_L^2$ Max

$$R = \frac{Zero Lift Drag}{Drag Due to Lift}$$

$$R = 1$$
 $C_{D_0} = C_{D_L} = K C_L^2$

$$\text{Max } \frac{C_{L}}{C_{D}} = \sqrt{\frac{1}{4 C_{D_0} K}}$$

$$R = 3$$
 $C_{D_0} = 3 C_{D_L} = 3 K C_L^2$

Max
$$\frac{C_L^{1/2}}{C_D} = \frac{3}{4} \left(\frac{1}{3 \text{ K } C_{D_0}^{3}} \right)^{1/4}$$

 $\frac{Thrust\,Required}{Minimum\,Drag}$ $\frac{C_L}{C_D}$

<u>Jet Aircraft – Maximum Endurance</u>

$$\frac{lb_{fuel}}{hr} \propto c_t T_{req} \propto c_t D$$

 $\frac{Thrust\ Required}{Minimum\ D\ /\ V}$ Velocity for max $\frac{{C_L}^{-1/2}}{{C_D}}$

<u>Jet Aircraft – Maximum Range</u>

$$\frac{lb_{fuel}}{NM} \propto c_t \frac{T_{req}}{V}$$

		Jet Aircraft				
R = 1/3	$\text{Max } \frac{C_L^{3/2}}{C_D}$					
R = 1	$\mathbf{Max} \; \frac{\mathbf{C_L}}{\mathbf{C_D}}$	Minimum D	Maximum Endurance			
R = 3	$\text{Max } \frac{C_L^{-1/2}}{C_D}$	Minimum D/V	Maximum Range			

$$V_{L/D_{max}} = V_{(HP/V)_{min}} = \left(\frac{2}{\rho} \sqrt{\frac{K}{C_{D_0}}} \frac{W}{S}\right)^{1/2}$$

$$V_{(D/V)_{min}} = \left(\frac{2}{\rho} \sqrt{\frac{3 \text{ K}}{C_{D_0}}} \frac{\text{W}}{\text{S}}\right)^{1/2} = 1.32 \text{ V}_{L/D_{max}}$$

$$V_{L/D_{max}} = V_{(HP/V)_{min}} = \left(\frac{2}{\rho} \sqrt{\frac{K}{C_{D_0}}} \frac{W}{S}\right)^{1/2}$$

$$V_{(D/V)_{min}} = \left(\frac{2}{\rho} \sqrt{\frac{3 \text{ K}}{C_{D_0}}} \frac{\text{W}}{\text{S}}\right)^{1/2} = 1.3161 \text{ V}_{L/D_{max}}$$

Gulfstream IV twin-turbofan biz jet: $C_{D_0} = 0.0150 \text{ K} = 0.08$ W = 73,000 lbh = 30,000 ft

$$V_{L/D_{max}} = \left(\frac{2}{\rho} \sqrt{\frac{K}{C_{D_0}}} \frac{W}{S}\right)^{1/2} = 632 \text{ ft/sec}$$
 Velocity for max endurance

$$V_{(D/V)_{min}} = 1.3161 V_{L/D_{max}}$$

Velocity for max range

Range & Endurance

Factors to consider:

Velocity / Altitude— fly at optimal conditions

Aerodynamics – maximize aero efficiency

Propulsion System – minimize fuel flow

Fuel Quantity – burn fuel efficiently

Aircraft Weights

Weight Definitions:

W = aircraft weight at any time during flight

 $WGTO = W_{TO} = Gross Takeoff Weight$

 W_{fuel} = total fuel quantity available

 W_0 = initial weight for range calculation

 W_1 = final weight for range calculation

W_f = weight of fuel remaining

 \dot{W}_f = fuel flow rate

Range

$$L = W$$

Range = How <u>FAR</u> can an aircraft fly? Fuel Consumed per Mile Flown (Ib_{fuel} / NM)

Jet Aircraft

$$\frac{\mathbf{lb}_{\mathrm{fuel}}}{\mathbf{NM}} \propto \mathbf{c_t} \frac{\mathbf{T}_{\mathrm{req}}}{\mathbf{V}}$$

Range for Jet Aircraft

$$c_{t} = \frac{Fuel\ Flow}{Thrust} = -\frac{\dot{W}_{f}}{T} \qquad \dot{W}_{f} = \frac{dW}{dt} \qquad \frac{L}{D} = \frac{W}{T} \qquad V = \frac{ds}{dt}$$

$$\dot{W}_f = \frac{dW}{dt}$$

$$\frac{L}{D} = \frac{W}{T}$$

$$V = \frac{ds}{dt}$$

$$c_t = -\frac{\dot{W}_f}{T} \longrightarrow c_t T = -\frac{dW}{dt} \longrightarrow dt = -\frac{dW}{c_t T}$$

$$V = \frac{ds}{dt} \longrightarrow ds = V dt \longrightarrow ds = -\frac{V dW}{c_t T}$$

$$ds = -\frac{V}{c_t} \frac{W}{T} \frac{dW}{W} \longrightarrow ds = -\frac{V}{c_t} \frac{L}{D} \frac{dW}{W}$$

$$R = -\frac{V}{c_t} \frac{L}{D} \int_{W_0}^{W_1} \frac{dW}{W} \longrightarrow R = \frac{V}{c_t} \frac{L}{D} \int_{W_1}^{W_0} \frac{dW}{W}$$
UNIVERSITY OF

Range for Jet Aircraft

$$R = \frac{V}{c_t} \frac{L}{D} \int_{W_1}^{W_0} \frac{dW}{W} \longrightarrow R = \frac{V}{c_t} \frac{L}{D} \ln \frac{W_0}{W_1}$$

Breguet Range Equation

Range Factor =
$$\frac{V}{c_t} \frac{L}{D}$$
 (in units of NM)

Maximize Range Factor = Maximize Range

Fly at maximum V (L / D)

Minimize C_t

Carry a lot of fuel

Range for Jet Aircraft

$$R = \frac{V}{c_t} \frac{L}{D} \int_{W_1}^{W_0} \frac{dW}{W}$$

$$C_L = \frac{W}{1/2 \rho V^2 S}$$

$$C_{L} = \frac{W}{1/2 \rho V^{2} S}$$

$$C_{L} = \frac{W}{1/2 \rho V^{2}S} \longrightarrow V = \sqrt{\frac{2 W}{\rho S C_{L}}}$$

$$R = \frac{V}{c_t} \frac{L}{D} \int_{W_1}^{W_0} \frac{dW}{W} \longrightarrow R = \frac{1}{c_t} \frac{L}{D} \sqrt{\frac{2W}{\rho S C_L}} \int_{W_1}^{W_0} \frac{dW}{W}$$

$$R = \frac{2}{c_t} \sqrt{\frac{2}{\rho \, S}} \left(\frac{C_L^{1/2}}{C_D} \right) \left(W_0^{1/2} - W_1^{1/2} \right)$$

Fly at maximum $C_L^{1/2} / C_D$

Endurance for Jet Aircraft

$$c_{t} = \frac{Fuel\ Flow}{Thrust} = -\frac{\dot{W}_{f}}{T} \qquad \qquad \dot{W}_{f} = \frac{dW}{dt} \qquad \frac{L}{D} = \frac{W}{T} \qquad V = \frac{ds}{dt}$$

$$\dot{W}_{f} = \frac{dW}{dt}$$

$$\frac{L}{D} = \frac{W}{T}$$

$$V = \frac{ds}{dt}$$

$$\bullet \bullet \bullet \longrightarrow E = \frac{1}{c_t} \frac{L}{D} \int_{W_1}^{W_0} \frac{dW}{W} \longrightarrow E = \frac{1}{c_t} \frac{L}{D} \ln \frac{W_0}{W_1}$$

"Endurance Factor" (in units of hrs)

To Maximize Endurance:

Fly at maximum L / D or maximum C₁ / C_n

Minimize C_t

Carry a lot of fuel

Steady Flight for Jet Aircraft

Range & Endurance – Jet Aircraft

	Maximize	Calculate	Performance Equation				
R = 1/3	$\operatorname{Max} \frac{\operatorname{C_L}^{3/2}}{\operatorname{C_D}}$						
R = 1	$\mathbf{Max} \; \frac{\mathbf{C_L}}{\mathbf{C_D}}$	Maximum Endurance	$E(hr) = \frac{1}{c_t} \frac{L}{D} \ln \frac{W_0}{W_1}$				
R = 3	$\text{Max } \frac{C_L^{-1/2}}{C_D}$	Maximum Range	$R(NM) = \frac{V}{c_t} \frac{L}{D} \ln \frac{W_0}{W_1}$				

Range is the total distance traversed by an airplane (measured with respect to the ground)

Endurance is the amount of time that an airplane can stay in the air

Thrust Required

$$\begin{split} &C_D = C_{D_0} + K \, C_L \\ &\text{Gulfstream IV} \\ &\text{twin-turbofan biz jet:} \\ &C_{D_0} = 0.0150 \quad K = 0.08 \\ &W = 73,000 \text{ lb} \\ &h = 30,000 \text{ ft} \\ \end{split}$$

lb	73,000	Wt	0.0150	CD0
ft	30,000	Alt	0.08	K
	439.9	QMS		
ft/sec	994.67	а		
sq ft	950	S		
	D (lb)	CD	CL	Vel (fps)
	11785	0.3100	1.9203	300
	9015	0.1742	1.4108	350
	7322	0.1083	1.0801	400
	6267	0.0733	0.8535	450
	5621	0.0532	0.6913	500
	5253	0.0411	0.5713	550
	5085	0.0334	0.4801	600
	5066	0.0284	0.4091	650
	5164	0.0250	0.3527	700
	5358	0.0226	0.3072	750
	0.0208 5632		0.2700	800
	5975	0.0196	0.2392	850
	6378	0.0186	0.2134	900
	6837	0.0179	0.1915	950
	7345	0.0174	0.1728	1000
	7901	0.0170	0.1568	1050
	8501	0.0166	0.1428	1100
	9142	0.0164	0.1307	1150
	9825	0.0162	0.1200	1200
UNIVERS	10546	0.0160	0.1106	1250
Ci	11305	0.0158	0.1023	1300
	0.1020 0.0100			

Range & Endurance

$$C_{D} = C_{D_0} + K C_{L}^{2}$$

Gulfstream IV twin-turbofan biz jet:

$$C_{D_0} = 0.0150 \text{ K} = 0.08$$

W = 73.000 lb

$$W = 73,000 \text{ lb}$$

$$h = 20,000 ft$$

$$c (20k) = 0.720 lb_{fuel}/hr/lb_{t}$$

c @ altitude = c (SL) *
$$a_{alt}/a_{SL}$$

Range Factor(NM) =
$$\frac{V}{c_t} \frac{L}{D}$$

$$Endurance \ Factor(hr) = \frac{1}{c_t} \ \frac{L}{D}$$

Range & Endurance

$$\begin{split} &C_D = C_{D_0} + K\,C_L \\ &\text{Gulfstream IV} \\ &\text{twin-turbofan biz jet:} \\ &C_{D_0} = 0.0150 \quad K = 0.08 \\ &W = 73,000 \text{ lb} \\ &h = 20,000 \text{ ft} \\ &c (20k) = 0.720 \text{ lb}_{\text{fuel}}/\text{hr/lb}_{\text{t}} \end{split}$$

c @ altitude = c (SL) * a_{alt}/a_{SL} G-IV: c (SL) =0.775

CE	0.0150	Wt	73,000	lb		
	K 0.08	Alt	20,000	ft		
c(S	L) 0.775	rho	0.00126642			
c(20	k) 0.720	QMS	680.7			
		а	1036.85	ft/sec		
		S	950	sq ft		
Vel (fps)	CL	CD	D (lb)	Vel (kts)	RF (NM)	EF (hr)
200	3.0340	0.7514	18079	118.5	664.5	5.61
250	1.9418	0.3166	11904	148.1	1261.6	8.52
300	1.3484	0.1605	8687	177.7	2074.6	11.67
350	0.9907	0.0935	6891	207.4	3051.2	14.71
400	0.7585	0.0610	5873	237.0	4091.3	17.26
450	0.5993	0.0437	5327	266.6	5074.6	19.03
500	0.4854	0.0339	5091	296.2	5900.3	19.92
550	0.4012	0.0279	5072	325.9	6513.8	19.99
600	0.3371	0.0241	5217	355.5	6909.0	19.44
650	0.2872	0.0216	5490	385.1	7113.0	18.47
700	0.2477	0.0199	5868	414.7	7166.7	17.28
750	0.2158	0.0187	6335	444.3	7111.7	16.01
800	0.1896	0.0179	6882	474.0	6983.2	14.73
850	0.1680	0.0173	7500	503.6	6808.4	13.52
900	0.1498	0.0168	8183	533.2	6606.8	12.39
950	0.1345	0.0164	8928	562.8	6391.9	11.36
1000	0.1214	0.0162	9731	592.5	6173.1	10.42
1050	0.1101	0.0160	10590	622.1	5956.0	9.57
1100	0.1003	0.0158	11503	651.7	5744.5	8.81
1150	0.0918	0.0157	12468	681.3	5540.7	8.13
1200	0.0843	0.0156	13485	710.9	5345.8	7.52
1250	0.0777	0.0155	14552	740.6	5160.3	6.97
1300	0.0718	0.0154	15668	770.2	4984.4	6.47

Maximum Endurance Calculations

$$V_{L/D_{max}} = \left(\frac{2}{\rho} \sqrt{\frac{K}{C_{D_0}}} \frac{W}{S}\right)^{1/2}$$
 = 529.4 ft/sec

Max
$$\frac{C_L}{C_D} = \sqrt{\frac{1}{4 C_{D_0} K}} = 14.43$$

$$EF = \frac{1}{c_t} \frac{L}{D} = 20.0 \text{ hr}$$

$$E = EF \, ln \frac{W_0}{W_1} \quad \mbox{= 0.84 hr} \\ \mbox{burning 3,000 lb} \label{eq:equation:w0}$$

Maximum Range Calculations

Calculate V:

$$V_{L/D_{max}} = \left(\frac{2}{\rho} \sqrt{\frac{K}{C_{D_0}}} \frac{W}{S}\right)^{1/2} = 529.4 \text{ ft/sec}$$

= 696.7 ft/sec

for Max R

$$V_{(D/V)_{min}} = 1.3161 V_{L/D_{max}}$$

Calculate C₁:

$$C_L = \frac{W n}{\frac{1}{2} \rho V^2 S} = \frac{W n}{(q/M^2) M^2 S} = 0.2500$$

Calculate C_D:

$$C_D = C_{D_0} + K C_L^2 = 0.0200$$

Calculate RF:

$$RF = \frac{V}{c_t} \frac{L}{D} = 7167.0 \text{ NM}$$

Calculate R:

$$R = RF \ln \frac{W_0}{W_1} = 831.9 \text{ NM}$$
burning 8,000 lb Cine

Homework Assignment

HW #8 – Thrust Required; Range and Endurance (due by 11:59 pm ET on Monday)
Reading – Chapters 5.1 - 5.4, 5.13 - 5.15

HW Help Session

Monday 1:00 – 2:00 pm ET

Posted on Canvas

HW #8 Assignment with instructions, tips, and checklist
HW #8 Template for data table in Excel

Homework

Plotting Charts

Weight	900	lb		QMS	1481.4	lb/ft^2				
Altitude	0	ft		a	1116.45	ft/sec				
				rho	0.00237688	slugs/ft^3				
Mach	Vel	CL	CD0	CDL	CD	D	CL/CD	EF	CL0.5/CD	RF
	(ft/sec)					(lb)	-	(hr)		(NM)
0.05	55.82	6.4291	0.0200	2.5627	2.5827	361.5	2.4893	1.91	0.9818	63.33
0.06	66.99	4.4647	0.0200	1.2359	1.2559	253.2	3.5551	2.73	1.6825	108.53
0.07	78.15	3.2802	0.0200	0.6671	0.6871	188.5	4.7740	3.67	2.6359	170.03

x axis y axis

Questions?