Due: Friday, March 21, 2003

1. A n^+ -p Si junction with a long p-region has the following properties: $N_a = 1.5 \times 10^{16} / \text{cm}^3$; $\mu_n = 1020 \text{ cm}^2 / \text{V}$ -s; $\mu_p = 380 \text{ cm}^2 / \text{V}$ s; $t_n = 1 \mu s$. If we apply 0.7 V forward bias to the junction at 300 K, what is the electric field in the p-region far from the junction? Draw a band diagram in the p-region far from the junction assuming that the junction is at x=0 and the p-side is in

Solutions:

$$n_p = \frac{n_i^2}{p_p} = 1.5 \times 10^4 cm^{-3}$$
,

$$D_n = \mathbf{m}_n kT / q = 0.0259 \times 1020 = 26.42 cm^2 / s$$

$$L_n = \sqrt{26.42 \times 10^{-6}} = 0.00514 cm$$

since it's an n⁺-p Si junction,

$$J = q \frac{D_n}{L_n} n_p (e^{qV/kT} - 1) = 1.6 \times 10^{-19} \times \frac{26.42}{0.00514} 15000 \times (e^{0.7/0.0259} - 1) = 6.74 A/cm^2$$

Far away from junction, the diffusion current goes to zero, the current composed of drift current:

$$J(x = \infty) = J_p^{drift} = J(x = 0) = q \mathbf{m}_p N_a \mathbf{E}$$

$$E = \frac{6.74}{1.6 \times 10^{-19} \times 380 \times 1.5 \times 10^{16}} = 7.39V/cm$$
, E is toward –x direction since p is on x>0

Band diagram:

- 2. Consider the following Si p-n junctions operating $\frac{E_v}{at}$ 300 K.
 - (a) Using Eq. (5-8), calculate the contact potential V_o for $N_a = 5x10^{14}$ and $5x10^{18}$ /cm³, with $N_d = 10^{15}$, 10^{17} , 10^{19} /cm³ in each case and plot V_o vs. N_d .
 - (b) Plot the maximum electric field E_o vs. N_d for the junctions described in (a).

 - (c) Plot the width of the depletion region W vs. N_d for the junctions described in (a). (d) Given that $N_a = 10^{14}$ (and repeat for 10^{19} /cm³) and $N_d = 10^{19}$ /cm³, determine the reverse bias needed to yield a maximum electric field \mathbf{E}_0 in the junction which exceeds $5x10^5$ V/cm. and what is the depletion width under the reverse biasing?

Solutions

The relevant equations used in part (a), (b), (c) are:

$$V_{0} = \frac{kT}{q} \ln \frac{N_{a} N_{d}}{n_{i}^{2}}, \quad E_{0} = -\frac{q N_{d} x_{n0}}{\mathbf{e}} = -\sqrt{\frac{2q V_{0}}{\mathbf{e}} \left(\frac{N_{a} N_{d}}{N_{a} + N_{d}}\right)}, \quad W = \sqrt{\frac{2\mathbf{e} V_{0}}{q} \left(\frac{1}{N_{a}} + \frac{1}{N_{d}}\right)}$$

$N_a (cm^{-3})$	5×10 ¹⁴	5×10 ¹⁴	5×10 ¹⁴	5×10 ¹⁸	5×10^{18}	5×10 ¹⁸
N_d (cm ⁻³)	1×10 ¹⁵	1×10 ¹⁷	1×10 ¹⁹	1×10 ¹⁵	1×10 ¹⁷	1×10 ¹⁹
V ₀ (volts)	0.5574	0.6767	0.7960	0.7960	0.9152	1.0345

$$V_r > (5 \times 10^5)^2 \frac{\mathbf{e}}{2q} \left(\frac{1}{N_a} + \frac{1}{N_d} \right) - V_0 = 8158V$$

This is an extremely high voltage. According to Fig. 5-22, the avalanche is going to happen at this voltage (even though the electrical field is not very high).

If assuming avalanche breakdown doesn't happen:

$$W = \sqrt{\frac{2eV}{q} \left(\frac{1}{N_a} + \frac{1}{N_d}\right)} = 326 mn$$

(This is also a very large W, even though the electrical field is not very high, the electron/hole accelerated over such long distance can reach a large enough kinetic energy to cause "impact ionization", and therefore avalanche breakdown as shown in Fig 5-21).

For N_a =
$$10^{19} / \text{cm}^3$$
, $V_0 = \frac{kT}{q} \ln \frac{N_a N_d}{n_i^2} = 1.05V$

$$V_r > (5 \times 10^5)^2 \frac{e}{2q} \left(\frac{1}{N_a} + \frac{1}{N_d} \right) - V_0 = -0.887V$$

Therefore, we don't need any reverse bias.

If using
$$V_r = 0V$$
, $W = \sqrt{\frac{2e(V_0 + V_r)}{q} \left(\frac{1}{N_a} + \frac{1}{N_d}\right)} = 1.66 \times 10^{-6} cm$

If using
$$V_r = -0.887V$$
, $W = \sqrt{\frac{2\mathbf{e}(V_0 + V_r)}{q} \left(\frac{1}{N_a} + \frac{1}{N_d}\right)} = 6.5 \times 10^{-7} cm$

- 3. A p^+ -n silicon diode ($V_o = 0.926$ volts) has a donor doping of 10^{17} /cm³ and an n-region width = 1 μ m. Assume that the diode has a uniform cross sectional area of 0.001 cm². Refer to Fig. 5-22 for the following questions. (a) Does it break down by avalanche or punchthrough? Determine the depletion capacitance when the breakdown happens. (b) If the doping is only $1x10^{16}$ /cm³, what is the minimum n-region width for punchthrough not to take place?
- (a), From Fig 5-22, $V_{br} = 1 \text{ 1Volts}$.

$$W_{br} = \sqrt{\frac{2e(V_0 + V_{br})}{qN_d}} = 0.395 \, \text{mm} < 1 \, \text{mm}$$

Avalanche breakdown will happen before punch-through.

$$C = \frac{eA}{W_{br}} = \frac{11.8 \times 8.85 \times 10^{-14} \times 0.001F}{3.95 \times 10^{-5}} = 2.65 \times 10^{-11}F$$

(b), $V_{br} = 60 Volts$.

$$W_{br} \approx x_n \ge \sqrt{\frac{2\mathbf{e}(V_0 + V_{br})}{qN_d}} = 2.82\,\mathbf{m}m$$