Отчёт по лабораторной работе №4

Алгоритмы Евклида нахождения наибольшего общего делителя

Милёхин Александр НПМмд-02-21

Содержание

1	Цел	ь работы	4
2	Teop	ретические сведения	5
	2.1	Наибольший общий делитель	5
	2.2	Алгоритм Евклида	5
	2.3	Бинарный алгоритм Евклида	6
		Расширенный алгоритм Евклида	7
3	Выполнение работы		
	3.1	Реализация алгоритмов Евклида на языке Python	8
	3.2	Контрольный пример	11
4 Выводы		оды	12
Сп	исок	литературы	13

List of Figures

3.1 Пример работы алгоритмов Евклида		1.
--------------------------------------	--	----

1 Цель работы

Изучение алгоритма Евклида нахождения наибольшего общего делителя (НОД) и его вариаций.

2 Теоретические сведения

2.1 Наибольший общий делитель

Наибольший общий делитель (НОД) – это число, которое делит без остатка два числа и делится само без остатка на любой другой делитель данных двух чисел. Проще говоря, это самое большое число, на которое можно без остатка разделить два числа, для которых ищется НОД.

2.2 Алгоритм Евклида

При работе с большими составными числами их разложение на простые множители, как правило, неизвестно. Но для многих прикладных задач теории чисел поиск разложения числа на множители является важной, часто встречающейся практической задачей. В теории чисел существует сравнительно быстрый способ вычисления НОД двух чисел, который называется алгоритмом Евклида.

- ** Алгоритм Евклида: **
 - Вход. Целые числа a, b; 0 < b < a.
 - Выход. d = HOД(a, b).
- 1. Положить $r_0 = a, r_1 = b, i = 1.$
- 2. Найти остаток r_i+1 от деления $r_i{-}1$ на r_i .
- 3. Если $r_i + 1 = 0$, то положить $d = r_i$. В противном случае положить i = i + 1 и вернуться на шаг 2.

4. Результат: d.

Пример: Найти НОД для чисел 22 и 10.

22 / 10 = 2 (остаток 2)

10/2 = 5 (остаток 0)

Таким образом, НОД = 2.

2.3 Бинарный алгоритм Евклида

Бинарный алгоритм Евклида вычисления НОД оказывается более быстрым при реализации этого алгоритма на компьютере, поскольку использует двоичное представление чисел а и b. Бинарный алгоритм Евклида основан на следующих свойствах наибольшего общего делителя (считаем, что 0 < b ≤ a).

- Вход. Целые числа $a, b; 0 < b \le a$.
- Выход. d = HOД(a, b).
- 1. Положить g = 1.
- 2. Пока оба числа a и b четные, выполнять a=a/2, b=b/2, g=2g до получения хотя бы одного нечетного значения a или b.
- 3. Положить u = a, v = b.
- 4. Пока $u \neq 0$, выполнять следующие действия.
 - Пока u четное, полагать u=u/2.
 - Пока v четное, полагать v = v/2.
 - При $u \geq v$ положить u = u v. В противном случае положить v = v u.
- 5. Положить d = gv.
- 6. Результат: d

2.4 Расширенный алгоритм Евклида

Расширенный алгоритм Евклида находит наибольший общий делитель d чисел a и b и его линейное представление, т. е. целые числа x и y, для которых ах + by = d, и не требует «возврата», как в рассмотренном примере. Пусть d – НОД для а и b, т. е. d = (a, b), где a > b. Тогда существуют такие целые числа x и y, что d = ах +by. Иными словам, НОД двух чисел можно представить в виде линейной комбинации этих чисел с целыми коэффициентами

- Вход. Целые числа $a, b; 0 < b \le a$.
- Выход: d = HOД(a, b); такие целые числа x, y, что ax + by = d.
- 1. Положить $r_0 = a, r_1 = b, x_0 = 1, x_1 = 0, y_0 = 0, y_1 = 1, i = 1$
- 2. Разделить с остатком r_i 1 на r_i : r_i i 1) = $q_i * r_i + r_i + 1$
- 3. Если $r_(i+1)=0$, то положить $d=r_i$, $x=x_i$, $y=y_i$. В противном случае положить $x_(i+1)=(x_(i-1)-q_i*x_i,y_(i+1)=y_(i-1)-q_i*y_i,i=i+1$ и вернуться на шаг 2.
- 4. Результат: d, x, y.

3 Выполнение работы

3.1 Реализация алгоритмов Евклида на языке Python

```
def evklid_algorithm(a, b):
   while a != 0 and b != 0:
        if a >= b:
            a %= b
        else:
            b %= a
    return a or b
def evklid_bin_algorithm(a, b):
    g = 1
    while (a \% 2 == 0 and b \% 2 == 0):
        a = a/2
       b = b/2
        g = 2*g
    u, v = a, b
    while u != 0:
        if u % 2 == 0:
           u = u/2
        if v % 2 == 0:
            v = v/2
```

```
if u \ge v:
           u = u - v
        else:
           v = v - u
    d = g*v
    return d
def evklid_extended(a, b):
    if a == 0:
        return(b, 0, 1)
    else:
        div, x, y = evklid_extended(b % a, a)
    return(div, y - (b // a) * x, x)
def evklid_bin_extended(a, b):
    g = 1
    while (a \% 2 == 0 \text{ and } b \% 2 == 0):
       a = a/2
       b = b/2
        g = 2*g
    u = a
    v = b
    A = 1
    B = 0
    C = 0
    D = 1
    while u != 0:
        if u % 2 == 0:
            u = u/2
```

```
if A % 2 == 0 and B % 2 == 0:
               A = A/2
               B = B/2
           else:
               A = (A+b)/2
               B = (B-a)/2
        if v % 2 == 0:
           v = v/2
           if C % 2 == 0 and D % 2 == 0:
               C = C/2
               D = D/2
           else:
               C = (C+b)/2
               D = (D-a)/2
        if u >= v:
           u = u - v
           A = A - C
           B = B - D
        else:
           v = v - u
           C = C - A
           D = D - B
   d = g*v
   x = C
    y = D
    return (d, x, y)
def main():
```

a = int(input("Введите число a: "))

```
b = int(input("Введите число b: "))
if a > 0 and 0 < b <= a:
    print("Алгоритм Евклида: ", evklid_algorithm(a, b))
    print("Бинарный алгоритм Евклида: ", evklid_bin_algorithm(a, b))
    print("Расширенный алгоритм Евклида: ", evklid_extended(a, b))
    print("Расширенный бинарный алгоритм Евклида: ", evklid_bin_extended(a, b))</pre>
```

main()

3.2 Контрольный пример

```
In [15]: main()

Введите число а: 20
Введите число b: 10
Алгоритм Евклида: 10
Бинарный алгоритм Евклида: 10.0
Расширенный алгоритм Евклида: (10, 0, 1)
Расширенный бинарный алгоритм Евклида: (10.0, 0, 1)
```

Figure 3.1: Пример работы алгоритмов Евклида

4 Выводы

Я изучил алгоритмы Евклида нахождения наибольшего общего делителя (НОД) и его вариаций, а также реализовал данные алгоритмы программно на языке Python.

Список литературы

- 1. ВЫЧИСЛЕНИЕ НАИБОЛЬШЕГО ОБЩЕГО ДЕЛИТЕЛЯ
- 2. В очередной раз о НОД