Lecture 1: Fundamental Concept of Statistical Learning

Tianpei Xie

Jul. 25th., 2015

Contents

1 Fundamental Concepts		damental Concepts	2
	1.1	Definitions	2
	1.2	Bayes Error	4
	1.3	Consistency	8
	1.4	No Free Lunch	10
	1.5	Empirical Risk Minimization	11

1 Fundamental Concepts

1.1 Definitions

• Definition (Data)

Define an **observation** as a *d*-dimensional vector x. The *unknown* nature of the observation is called a **class**, denoted as y. The domain of observation is called an **input space** or **feature space**, denoted as $\mathcal{X} \subset \mathbb{R}^d$, whereas the domain of class is called the **target space**, denoted as \mathcal{Y} . For **classification task**, $\mathcal{Y} = \{1, \dots, M\}$; and for **regression task**, $\mathcal{Y} = \mathbb{R}$. Denote a collection of n **samples** as $\mathcal{D}_n := \{(x_i, y_i) : 1 \leq i \leq n\}$. \mathcal{D}_n is a finite subset in $\mathcal{X} \times \mathcal{Y}$.

• Definition (Concept Class as a Function Class)

A <u>concept</u> $c: \mathcal{X} \to \mathcal{Y}$ is the *input-output association* from the nature and is to be learned by a learning algorithm. Denote \mathcal{C} as the set of all concepts we wish to learn as the **concept class**:

$$\mathcal{C} := \{c : \mathcal{X} \to \mathcal{Y}\} = \mathcal{Y}^{\mathcal{X}}.$$

Concept class C is a function class.

- Learning is formalized into two different scenarios:
 - 1. In deterministic scenario: Assume that there exist measurable space $(\mathcal{X}, \mathcal{B})$, where $X \in \mathcal{X}$ is the random vector in \mathcal{X} , i.e.

$$X:(\Omega,\mathscr{F},\mathbb{P})\to(\mathcal{X},\mathscr{B})$$

is \mathscr{F}/\mathscr{B} measurable. Let \mathcal{P}_X be the induced probability distribution on X.

Remark (Sample in Deterministic Scenario)

In deterministic scenario, denote a collection of n independent identically distributed (i.i.d.) random samples generated by P_X as \mathcal{D}_n , i.e.

$$\mathcal{D}_n := \{X_i : 1 \le i \le n\}.$$

Note that \mathcal{D} is a finite subset in \mathcal{X} .

Remark (Learning Task in Deterministic Scenario)

Given a collection of *i.i.d.* samples \mathcal{D} generated by \mathcal{P}_X , a <u>learner</u> considers a fixed subset of concepts $\mathcal{H} \subset \mathcal{C}$, which is referred as a <u>hypothesis</u> class, and provides a <u>hypothesis</u> or a <u>classifier</u> or a <u>decision function</u> $g \in \mathcal{H} \subset \mathcal{Y}^{\mathcal{X}}$ based on \mathcal{D} . The task of supervised <u>learning</u> is to minimize

Definition (Generalization Error in Deterministic Scenario) [?]

Under a deterministic scenario, <u>generalization error</u> or the *risk* or simply *error* for the classifier $g \in \mathcal{H}$ is defined as

$$R(g) \equiv L(g) = \mathcal{P}_X \left\{ g(X) \neq c(X) \right\} \equiv \mathbb{E}_{\mathcal{P}_X} \left[\mathbb{1} \left\{ g(X) \neq c(X) \right\} \right] \tag{1}$$

with respect to the concept $c \in \mathcal{C}$.

2. In *stochastic* scenario: Assume *both* X and Y are random, i.e. there exists a probability space $(\mathcal{X} \times, \mathcal{Y}, \mathcal{B}, \mathcal{P}_{X,Y})$ so that

$$(X,Y):(\Omega,\mathscr{F},\mathbb{P})\to(\mathcal{X}\times\mathcal{Y},\mathscr{B},\mathcal{P}_{X,Y})$$

so that the pair (X,Y) is \mathscr{F}/\mathscr{B} measurable. Let $\mathcal{P}_{X,Y}$ be the induced **joint probability** distribution on (X,Y).

Remark (Sample in Stochastic Scenario)

In stochastic scenario, denote a collection of n independent identically distributed (i.i.d.) random sample pairs generated by joint probability $P_{X,Y}$ as \mathcal{D} , i.e.

$$\mathcal{D}_n := \{ (X_i, Y_i) : 1 \le i \le n \} .$$

Note that \mathcal{D}_n is a finite subset in $\mathcal{X} \times \mathcal{Y}$.

Definition (Generalization Error in Stochastic Scenario) [Mohri et al., 2018] In stochastic scenario, generalization error or the risk or simply error for the classifier $g \in \mathcal{H} \subset \mathcal{C}$ is defined as

$$R(g) \equiv L(g) = \mathcal{P}_{X,Y} \left\{ g(X) \neq Y \right\} \equiv \mathbb{E}_{\mathcal{P}_{X,Y}} \left[\mathbb{1} \left\{ g(X) \neq Y \right\} \right] \tag{2}$$

Remark (Learning Task in Stochastic Scenario)

Given the sample set S generated from a (joint) probability distribution $P_{X,Y}$. Given a fixed hypothesis class \mathcal{H} , the task of learner is to find a hypothesis $g \in \mathcal{H} \subset \mathcal{C}$ so that the generalization error or the *risk* or simply the *error* is minimized.

• Remark (Deterministic vs. Stochastic)

The main difference between these two settings is the assumption on Y:

- 1. In deterministic scenario, Y = c(X) for some unknown but deterministic $c \in \mathcal{C}$ and the learning task is to approximate c by some function $g \in \mathcal{H}$.
- 2. In stochastic scenario, Y is a random variable, generated jointly with the feature X by some unknown distribution $\mathcal{P}_{X,Y}$.

The pair (X, Y) may not follow a **function relationship**. Note for a pair $(x, y) \in \mathcal{X} \times \mathcal{Y}$ to follow function relationship, for each given x, there can only be one correspoding $y \in \mathcal{Y}$. Under the stochastic assumption, any pair $(x, y) \in \mathcal{X} \times \mathcal{Y}$ would appear as long as the corresponding measure $\mathcal{P}_{X,Y}(x,y) > 0$.

3. An intermediate setting assumes feature is a random vector $X \sim P_X$, and class Y = q(X) for some unknown random function q.

$$g:(\Omega,\mathscr{F},\mathbb{P})\to(\mathcal{C},\mathscr{C})$$

where g is \mathscr{F}/\mathscr{C} measurable, and $g(\omega) \in \mathcal{C} = \mathcal{Y}^{\mathcal{X}}$ for each $\omega \in \mathcal{C}$.

One may assume that g is generated following an independent generation process from \mathcal{P}_X . Or, one may assume that (X,g) are not independent, e.g. $g = g(\cdot | \sigma(X_1, \ldots, X_n))$ is determined by a stochastic process $X_t : t \leq n$ of past events.

In [Devroye et al., 2013], the author defines the random function g as the function of stochastic process $\{(X_t, Y_t) : t \leq n\}$ of past events assuming both (X, Y) are random.

Definition (Random Function by Independent Random Samples) [Devroye et al., 2013]

Given a collection of samples $\mathcal{D}_n = ((X_i, Y_i), 1 \leq i \leq n)$, a <u>(stochastic) classifier</u> /hypothesis is defined as

$$g_n(x) = g_n(x; \mathcal{D}_n)$$

:= $g(x|\sigma((X_i, Y_i): 1 \le i \le n)).$

Thus g_n is a *(random) function* determined by σ -algebra $\sigma(\mathcal{D}_n) := \sigma((X_t, Y_t) : t \leq n)$, and its output is considered as a *random variable* depended upon data \mathcal{D}_n . Note that it should be distinguished with the fixed concept $c \in \mathcal{C}$ or a unknown but fixed hypothesis $g(\cdot) \in \mathcal{H}$, whereas $g_n(\cdot; \mathcal{D}_n) \in \mathcal{H}$.

A sequence of hypotheses $\{g_n\}_n$ is called <u>a classification rule</u> where each g_n is a function of data so is a random mapping

$$g_n: \mathcal{X} \times (\mathcal{X} \times \mathcal{Y})^n \to \mathcal{Y}.$$

• Definition (Generalization Error of Estimated Hypothesis) [Devroye et al., 2013] Given the data \mathcal{D}_n , we can define the conditional probability of error:

$$L_n(g) = L(g_n) := \mathcal{P}_{X,Y} \left\{ g_n(X; \mathcal{D}_n) \neq Y | \mathcal{D}_n \right\} \equiv \mathbb{E}_{X,Y} \left[\mathbb{1} \left\{ g_n(X) \neq Y \right\} | \mathcal{D}_n \right]$$
(3)

This is a random variable because it depends upon the data \mathcal{D}_n . So, L_n averages over the distribution of (X,Y), but the **data** is held **fixed**. Averaging over the data as well would be unnatural, because in a given application, one has to live with the data at hand.

- Remark (Learning in Deterministic vs. Stochastic)
 - 1. (Function Approximation): The learning task in derministic scenario is to approximate $c \in \mathcal{C}$ with $g \in \mathcal{H} \subset \mathcal{C}$ given samples \mathcal{D} . The function approximator g should be "close" to the unknown c under the unknown distribution P_X .

The theoretial analysis concerns that under *the worst case scenario*, if it is possible for a function g in function class \mathcal{H} to approximate c so that the generation error approaches to zero.

- 2. (Distribution Approximation): The learning task in stochastic scenario is to approximate the joint probability measure $\mathcal{P}_{X,Y}$ with $\widehat{\mathcal{P}}_{X,Y}$ given samples \mathcal{D} . The distribution estimator $\widehat{\mathcal{P}}_{X,Y}$ should "converge" to the unknown $\mathcal{P}_{X,Y}$ asymptotically.
- Remark: (Statistical Decision) [Berger, 2013] The statistical learning theory is closely related to the statistical decision theory in which the terms such as (Empirical) Risk/Utility, decision function are used as an alternative to the terms like (Empirical) Error, hypothesis/classifier.

1.2 Bayes Error

• Definition (Bayes Error in Stochastic Scenario) Under a given distribution $\mathcal{P}_{X,Y}$, the Bayes error L^* or Bayes risk R^* is defined as

$$R^* \equiv L^* = \inf_{g \in \mathcal{C}} \left\{ L(g) \right\}, \tag{4}$$

where the infimum is with respect to all measureable function $g: \mathcal{X} \to \mathcal{Y}$. And the hypothesis g^* such that $L(g^*) = L^*$ is called the **Bayes classifier**.

• Remark The Bayes Error is only a function of underlying distribution $\mathcal{P}_{X,Y}$ and it does not depend on choice of function g or function class \mathcal{H} .

$$L^* = L^*(\mathcal{P}_{X,Y}) := \inf_{q} \{ \mathcal{P}_{X,Y} \{ g(X) \neq Y \} \}.$$

- Remark (Bayes Error in Deterministic Scenario) Under the deterministic setting, the Bayes error is $L^* = 0$ since by assumption Y = c(X) for some $c \in \mathcal{C}$, thus the infimum is zero.
- Remark (Bayes Classifier if $\mathcal{P}_{X,Y}$ is Known)

 The learning task is concerning about the situation when $\mathcal{P}_{X,Y}$ is unknown but if $\mathcal{P}_{X,Y}$ is \underline{known} , then $the \ optimal \ hypothesis$ is known as $the \ posterior \ conditional \ expectation$:

$$\eta(X) := \mathcal{P}[Y|X] = \frac{d\mathcal{P}_{X,Y}}{d\mathcal{P}_X}$$

Note that $\mathcal{P}[Y|X]_{\omega}$ is a function of X given each $\omega \in \Omega$, which means that $g(X,\omega) := \mathcal{P}[Y|X]_{\omega}$ is a random function itself. For $\mathcal{Y} = \{0,1\}$ and X be discrete random variables, it can be written as

$$\eta(x) = \mathcal{P}\left\{Y = 1 \middle| X = x\right\} \\
= \mathbb{E}_{p(y|x)}\left[y\middle| X = x\right].$$
(5)

and the Bayes classifier (decision function)

$$g^{*}(x) = \operatorname{argmax}_{y \in \{0,1\}} P(Y|X = x)$$

$$= \begin{cases} 1 & \eta(x) > \frac{1}{2} \\ 0 & \text{o.w.} \end{cases}$$
(6)

with the corresponding Bayes error

$$L^* = \mathbb{E}_{P(X)} \left[\min \left\{ P(Y = y | X) \mid y \in \{0, 1\} \right\} \right]$$

= 1 - \mathbb{E}_{P(X)} \left[\eta(X) \mathbb{1} \left\{ \eta(X) > 1/2 \right\} + (1 - \eta(X)) \mathbb{1} \left\{ \eta(X) \left\{ 1/2 \right\} \right] \quad (7)

• We summarizes our discussion as follows

Proposition 1.1 (Conditional Estimator is Bayes Classifer if Distribution is Known)
[Devroye et al., 2013]

Given the posterior (conditional) probability $\eta(x) = \mathcal{P}(Y = 1|X = x) = \mathbb{E}_{p(y|x)}[Y|X = x]$, where $\mathcal{P}(X,Y)$ is the underlying distribution of data and the Bayes decision function

$$g^{*}(x) = 1 \{ \mathcal{P}(Y = 1 | X = x) > 1/2 \}$$

= 1 \{ \mathbb{E}_{p(y|x)} \[|y| | X = x \] > 1/2 \},

for any decision function $g: \mathcal{X} \to \{0, 1\},\$

$$\mathcal{P}\left\{g^*(X) \neq Y\right\} \leq \mathcal{P}\left\{g(X) \neq Y\right\}$$

Proof: Given X = x, the conditional error probability of any g can be expressed as

$$\mathcal{P} \{g(X) \neq Y | X = x\}
= 1 - \mathcal{P} \{Y = g(X) | X = x\}
= 1 - (\mathcal{P} \{Y = 1, g(X) = 1 | X = x\} + \mathcal{P} \{Y = 0, g(X) = 0 | X = x\})
= 1 - (\mathbb{1} \{g(x) = 1\} \mathcal{P} \{Y = 1 | X = x\} + \mathbb{1} \{g(x) = 0\} \mathcal{P} \{Y = 0 | X = x\})
= 1 - [\mathbb{1} \{g(x) = 1\} \eta(x) + \mathbb{1} \{g(x) = 0\} (1 - \eta(x))]$$
(8)

For any $x \in \mathcal{X}$,

$$\begin{split} &\mathcal{P}\left\{g(X) \neq Y | X = x\right\} - \mathcal{P}\left\{g^*(X) \neq Y | X = x\right\} \\ &= \eta(x) \left(\mathbbm{1}\left\{g^*(x) = 1\right\} - \mathbbm{1}\left\{g(x) = 1\right\}\right) + \left(1 - \eta(x)\right) \left(\mathbbm{1}\left\{g^*(x) = 0\right\} - \mathbbm{1}\left\{g(x) = 0\right\}\right) \\ &= \left(2\eta(x) - 1\right) \left(\mathbbm{1}\left\{g^*(x) = 1\right\} - \mathbbm{1}\left\{g(x) = 1\right\}\right) \\ &\geq 0, \end{split}$$

since $g^*(x) = 1$ if and only if $(2\eta(x) - 1) > 0$ and $(\mathbb{1}\{g^*(x) = 1\} - \mathbb{1}\{g(x) = 1\}) \ge 0$ if and only if $g^*(x) = 1$.

• Proposition 1.2 (Plug-In Estimator) [Devroye et al., 2013] Consider a plug-in decision function

$$g(x) = 1 \{ \tilde{\eta}(x) > 1/2 \},$$

where $\tilde{\eta}(x)$ is an estimate of $\eta(x) = \mathcal{P}(Y = 1|X = x)$, then for the error probability of plug-in decision function g(x), we have

$$\mathcal{P}\left\{g(X) \neq Y\right\} - L^* = 2\int_{\mathcal{X}} |\eta(x) - 1/2| \, \mathbb{1}\left\{g(x) \neq g^*(x)\right\} \mu(dx) \tag{9}$$

and

$$\mathcal{P}\left\{g(X) \neq Y\right\} - L^* \leq 2 \int_{\mathcal{X}} |\eta(x) - \tilde{\eta}(x)| \,\mu(dx)$$
$$= 2\mathbb{E}_{p(X)} \left[\eta(X) - \tilde{\eta}(X)\right] \tag{10}$$

Proof: If for some $x \in \mathcal{X}$, $g(x) = g^*(x)$, the clearly the difference btw the conditional error probability of g and g^* is zero; i.e.

$$\mathcal{P}\left\{g(X) \neq Y | X = x\right\} - \mathcal{P}\left\{g^*(X) \neq Y | X = x\right\} = 0.$$

Otherwise, $g(x) \neq g^*(x)$, then

$$\mathcal{P} \{g(X) \neq Y | X = x\} - \mathcal{P} \{g^*(X) \neq Y | X = x\}$$

$$= (2\eta(x) - 1) (\mathbb{1} \{g^*(x) = 1\} - \mathbb{1} \{g(x) = 1\})$$

$$= |2\eta(x) - 1| \mathbb{1} \{g(x) \neq g^*(x)\}$$

Thus

$$\mathcal{P} \{g(X) \neq Y\} - L^* = 2 \int_{\mathcal{X}} |\eta(x) - 1/2| \, \mathbb{1} \{g(x) \neq g^*(x)\} \, \mu(dx)$$
$$\leq 2 \int_{\mathcal{X}} |\eta(x) - \tilde{\eta}(x)| \, \mu(dx),$$

since $g(x) \neq g^*(x)$ implies $|\eta(x) - \tilde{\eta}(x)| \ge |\eta(x) - 1/2|$.

• Corollary 1.3 Consider a plug-in decision function

$$g(x) = 1 \{ \tilde{\eta}_1(x) > \tilde{\eta}_0(x) \},$$

where $\tilde{\eta}_1(x)$ is an estimate of $\eta(x)$ and $\tilde{\eta}_0(x)$ is an estimate of $1 - \eta(x)$, then for the error probability of plug-in decision function g(x), we have

$$\mathcal{P}\left\{g(X) \neq Y\right\} - L^* \leq \int_{\mathcal{X}} |(1 - \eta(x)) - \tilde{\eta}_0(x)| \,\mu(dx) + \int_{\mathcal{X}} |\eta(x) - \tilde{\eta}_1(x)| \,\mu(dx) \tag{11}$$

In particular, if $\tilde{\eta}_1(x) \equiv \tilde{q}_1\tilde{p}_1(x)$ and $\tilde{\eta}_0(x) \equiv \tilde{q}_0\tilde{p}_0(x)$, where \tilde{q}_1, \tilde{q}_0 are estimate of prior distribution for $\mathcal{P}\{Y=1\} = q$ and $\mathcal{P}\{Y=0\} = 1 - q$ and $\tilde{p}_1(x), \tilde{p}_0(x)$ are estimate of class conditional distribution of x given Y=1 and Y=0 respectively, then

$$\mathcal{P}\left\{g(X) \neq Y\right\} - L^* \leq \int_{\mathcal{X}} |(1 - q)p_0(x) - \tilde{q}_0\tilde{p}_0(x)| \, dx + \int_{\mathcal{X}} |qp_1(x) - \tilde{q}_1\tilde{p}_1(x)| \, dx$$

• Definition (Generative vs. Discriminative Model)

In stochastic scenario, following the proposition above, we have two *learning strategies*:

- A <u>generative model</u> is an estimate $\widehat{\mathcal{P}}_{X,Y}$ of joint distribution $\mathcal{P}_{X,Y}$. For high dimensional data, an <u>efficient</u> estimator is hard to find.
- A <u>deterministic model</u> $g: \mathcal{X} \to \mathcal{Y}$ is a function (hypothesis) in \mathcal{H} from input to output. The task of learner is to find $g \in \mathcal{H}$ so that the generalization error is minimized;

In probabilistic graphical models and Bayesian learning, e.g. [Koller and Friedman, 2009, Murphy, 2012], a deterministic model is interpreted as an **estimate** $\widehat{\mathcal{P}}(Y|X=x)$ of $\mathcal{P}(Y|X=x)$, the conditional distribution of Y given the observations X=x, so that

$$g(x) = \mathbb{1}\left\{\widehat{\mathcal{P}}(Y = 1|X = x) > 1/2\right\}$$
$$= \mathbb{1}\left\{\mathbb{E}_{\widehat{\mathcal{P}}(y|x)}\left[y|X = x\right] > 1/2\right\}$$

is close to the Bayes classifier

$$g^{*}(x) = 1 \{ \eta(x) > 1/2 \}$$

= 1 \{ \mathbb{E}_{\mathcal{P}(y|x)} \[|y| | X = x \] \] > 1/2 \}

 $\mathcal{P}(Y|X=x)$ is easier to estimate than $\mathcal{P}_{X,Y}$ since Y is of lower dimensionality.

• Exercise 1.4 (Transformation Increases Bayes Error) [Devroye et al., 2013] Let $T: \mathcal{X} \to \mathcal{X}'$ be an arbitrary measureable function. If $L_{\mathcal{X}}^*$ and $L_{T(\mathcal{X})}^*$ denote the Bayes error probability for (X,Y) and (T(X),Y), respectively, then prove that

$$L_{T(\mathcal{X})}^* \ge L_{\mathcal{X}}^*$$
.

This shows that transformation destroys information, because the Bayes risk increases.

Proof: We see that for any measureable set $B \subset \mathcal{X}'$, $\mathcal{P}(T(X) \in B) = \mathcal{P}\{X \in T^{-1}(B)\}$. Define the posterior distribution

$$\eta_T(t) \equiv \mathcal{P} \left\{ Y = 1 | T(x) = t \right\}$$
$$\eta_T(T(x)) = \mathbb{E} \left[\eta(X) | T(x) \right].$$

Use the F-error theorem by observing that $L^* = d_F(X, Y)$ with $F(x) = \min\{x, 1 - x\}$, thus

$$\begin{split} L_{T(\mathcal{X})}^* &= d_F(T(X), Y) \\ &= \int \min \left\{ 1 - \eta_T(T(x)), \eta_T(T(x)) \right\} p(x) \mu(dx) \\ &= \int \min \left\{ 1 - \mathbb{E} \left[\eta(X) | T(x) \right], \mathbb{E} \left[\eta(X) | T(x) \right] \right\} p(x) \mu(dx) \\ &\geq \int \mathbb{E} \left[\min \left\{ 1 - \eta(X), \eta(X) \right\} | T(x) \right] p(x) \mu(dx) \\ &= \int \min \left\{ 1 - \eta(x), \eta(x) \right\} p(x) \mu(dx) \\ &= d_F(X, Y) = L_{\mathcal{X}}^*. \quad \blacksquare \end{split}$$

Note that for any measureable $T: (\mathcal{X}, \mathcal{B}) \to (\mathcal{X}', \mathcal{B}')$, let X' = T(X) for $X: \Omega \to \mathcal{X}$,

$$\mathbb{E}\left[Y|T(X)\right] = \mathbb{E}\left[Y|T^{-1}(\sigma(X'))\right]$$

$$= \mathbb{E}\left[Y|\sigma(X)|_{T^{-1}(\sigma(X'))}\right]$$

$$\equiv \mathbb{E}\left[\mathbb{E}\left[Y|\sigma(X)\right]|T(X)\right]$$
for $E \in T^{-1}(\sigma(X')) = \sigma(T^{-1}X') \subset \sigma(X) \subset \sigma(X,Y)$

$$\int_{E} \mathbb{E}\left[\mathbb{E}\left[Y|\sigma(X)\right]|\sigma(T^{-1}X')\right]dP_{X,Y} = \int_{E} \mathbb{E}\left[Y|\sigma(X)\right]dP_{X,Y}$$

$$= \int_{E} YdP_{X,Y}$$

$$= \int_{E} \mathbb{E}\left[Y|T(X)\right]dP_{X,Y} \quad \blacksquare$$

• Exercise 1.5 [Devroye et al., 2013] Let X' be independent with (X, Y). Show that

$$L_{X',X}^* = L_X^*.$$

Proof: Just need to see that $\eta'(x',x) = \mathcal{P}(Y|(X',X) = (x',x)) = \mathcal{P}(Y|X=x) = \eta(x)$ by independence, the result then follows directly.

1.3 Consistency

• **Remark** Without explict statement, we assume stochastic scenario, and the estimated hypothesis is written as

$$g_n(x) = g(x|\sigma((X_i, Y_i), i \le n)) = g(x; \mathcal{D}_n)$$

where $\mathcal{D}_n = ((X_i, Y_i), 1 \leq i \leq n), \ \sigma((X_i, Y_i), i \leq n)) = \sigma(\mathcal{D}_n)$. For each $x, g_n(x)$ is a random variable itself since it depends on \mathcal{D}_n , which is a collection of random variables.

• Definition (Consistent Classification Rules) A classification rule $\{g_n\}$ is consistent (asymoptotically Bayes-risk efficient) for a certain distribution $\mathcal{P}_{X,Y}$ if

$$L_n(g) := L(g_n) = \mathcal{P}_{X,Y} \{g_n(X) \neq Y | \mathcal{D}_n\} \xrightarrow{\mathcal{P}} L^*, \text{ as } n \to \infty$$

Since $1 \ge L_n \ge L^*$, the above is equivalent to **convergence** in **probability**

$$\lim_{n\to\infty} \mathcal{P}\left\{L_n - L^* \ge \epsilon\right\} = 0.$$

Also the classification rule is the strongly consistent if

$$L_n := L(g_n) \to L^*$$
 a.s.

- Remark Given (X_i, Y_i) are i.i.d., $\mathcal{P}(\mathcal{D}_n) = \mathcal{P}_{X,Y}^n$. And $\mathcal{P}\{L_n \leq \epsilon\} := \mathcal{P}_{X,Y}^n\{L_n \leq \epsilon\}$.
- Remark A consistent rule $\{g_n\}$ guarantees us that taking more samples essentially suffices to roughly reconstruct the unknown distribution of (X,Y) because L_n can be pushed as close as desired to L^* . In other words, infinite amounts of information can be gleaned from finite samples. Without this guarantee, we would not be motivated to take more samples.

We should be careful and **not impose conditions on** (X,Y) for the consistency of a rule, because such conditions may not be verifiable.

• A stronger version of consistency even if the underlying distribution \mathcal{P} is unknown

Definition (*Universal Consistency*)

A sequence of classification rules is called <u>universally consistent</u> (strongly) consistent for any distribution $\mathcal{P}(X,Y)$, i.e.

$$\lim_{n \to \infty} \mathcal{P}\left\{L_n - L^* \ge \epsilon\right\} = 0, \quad \forall \, \mathcal{P}$$

and

$$\mathcal{P}\left\{\limsup_{n\to\infty}\left\{L_n-L^*\geq\epsilon\right\}\right\}=0,\quad\forall\,\mathcal{P}.$$

• Recall the plug-in rule of an estimated posterior conditional probability $\eta_n(x)$

$$g_n(x) = \begin{cases} 0 & \eta_n(x) \le \frac{1}{2} \\ 1 & \text{o.w.} \end{cases}$$

Following Proposition 1.2, we have the following consistency results:

Remark (Error Estimate of Plug-In Rule, L^1 norm) [Devroye et al., 2013] The error probability of the classifier $g_n(x)$ defined above satisfies the inequality

$$L(g_n) - L^* \le 2 \int |\eta(x) - \eta_n(x)| \, \mu(dx) = 2\mathbb{E}\left[|\eta(X) - \eta_n(X)| \, |\mathcal{D}_n\right]$$

where $\eta(x) = \mathcal{P}[Y = 1|X = x]$ is the Bayes classifer.

By Cauchy-Schwartz inequality, we have

Corollary 1.6 (Error Estimate of Plug-In Rule, L^2 norm) [Devroye et al., 2013] If

$$g_n(x) = \begin{cases} 0 & \eta_n(x) \le \frac{1}{2} \\ 1 & o.w. \end{cases}$$

then its error probability satisfies

$$L(g_n) - L^* := \mathcal{P}_{X,Y} \{ g_n(X) \neq Y | \mathcal{D}_n \} - L^* \le 2\sqrt{\int |\eta(x) - \eta_n(x)|^2 \mu(dx)}$$
$$= 2\sqrt{\mathbb{E}\left[|\eta(X) - \eta_n(X)|^2 | \mathcal{D}_n \right]}$$
(12)

Thus if we can show that under any distribution $\mathcal{P}_{X,Y}$, $\eta_n \to \eta$, i.e.

$$\mathbb{E}\left[\left|\eta(X) - \eta_n(X)\right|^2 |\mathcal{D}_n\right] \to 0, \quad \text{as } n \to \infty,$$

we will have strong universal consistency.

• Remark (Weak Convergence for Functions) Recall for a function η_n converges to η weakly, $\eta_n \stackrel{w}{\to} \eta$ if and only if

$$I(\eta_n) \to I(\eta), \quad \forall I \in \mathcal{H}^*$$

Note that for continuous function $\eta_n \in \mathcal{C}_c(\mathcal{X})$ with compact support on a locally compact Hausdorff space \mathcal{X} , the dual space is the space of regular Borel measures on X. In other words, $\eta_n \stackrel{w}{\to} \eta$ if and only if

$$\int \eta_n d\mathcal{P} \to \int \eta d\mathcal{P}, \quad \forall \mathcal{P} \in \mathscr{P}(\mathcal{X}),$$

which coorresponds to the strong consistency definition.

1.4 No Free Lunch

- Remark There are some significant results known to the learning community
 - For every fixed n there exists a distribution where the classifier is arbitrarily bad. For any $\epsilon > 0$ and any integer n and classification rule g_n , there exists a distribution of (X,Y) with Bayes risk $L^* = 0$ such that

$$\mathbb{E}\left[L(g_n(\cdot|\mathcal{D}_n))\right] \ge \frac{1}{2}.$$

- <u>Universal rate</u> of convergence guarantees do not exist. That is, for any rule,

$$\liminf_{n \to \infty} \sup_{\forall \mathcal{P}_{X,Y}: L^* + \epsilon < 1/2} \mathcal{P}\left\{L_n \ge L + \epsilon\right\} > 0$$

Rate of convergence studies must involve certain subclasses of distributions of (X,Y).

Moreover, there exists no universally consistent learning algorithm such that $L(g_n)$ converges uniformly over all distributions to L^* .

- There exists no universally superior learning algorithm. For every sequence of classification rules f_n , there is a universally consistent sequence of classification rules g_n such that for some distribution on $\mathcal{X} \times \mathcal{Y}$

$$L(f_n) > L(g_n), \quad \forall n > 0$$

- Remark In summary, there are two issues:
 - 1. No Restriction on Function Class \mathcal{H} , i.e. convergence to Bayes risk L^* , i.e. the infimum generalization error for all possible functions.
 - 2. No Restriction on Underling Distribution $\mathcal{P}_{X,Y}$, i.e. be universally consistent for all possible distribution $\mathcal{P}_{X,Y}$.

On the other hand,

1. **Restriction** of the class of **distributions** on $\mathcal{X} \times \mathcal{Y}$ can lead to convergence rates to Bayes risk L^* for **universally consistent** learning algorithms.

Problem: Assumptions cannot be tested since $\mathcal{P}_{X,Y}$ is unknown. Performance guarantees are only valid under the made assumptions.

2. **Restriction** of the function class may lead to no universal consistency possible.

Problem: Comparison to the best possible function in the class is possible uniformly over all distributions. But no performance guarantees with respect to the Bayes risk.

1.5 Empirical Risk Minimization

• Definition (*Empirical Error*/ Risk) Given the data \mathcal{D}_n , the *training error* or the *empirical error*/risk of a hypothesis $g \in \mathcal{H}$ is defined as

$$\widehat{L}_n(g) = \frac{1}{n} \sum_{i=1}^n \mathbb{1} \left\{ g(X_i) \neq c(X_i) \right\}, \qquad \text{(deterministic setting)};$$

$$= \frac{1}{n} \sum_{i=1}^n \mathbb{1} \left\{ g(X_i) \neq Y_i \right\}, \qquad \text{(stochastic setting)}.$$

- Remark Not to be confused with $L_n(g) := L(g_n) = \mathcal{P}_{X,Y} \{g_n(X) \neq Y\}$, where the subscript n indicates the dependency of g on \mathcal{D}_n .
- Remark (Optimal Rule within A Subclass of Functions)
 Given a subset of functions/concepts $\mathcal{H} \subset \mathcal{C}$, the best possible error probability by

$$L = \inf_{g \in \mathcal{H}} L(g). \Rightarrow g^* \in \operatorname{argmin}_{g \in \mathcal{H}} L(g)$$

Note that $L \geq L^*$. The optimal error rate L is a function of $\mathcal{P}_{X,Y}$ and \mathcal{H} .

Figure 1: Estimation Error vs. Approximation Error [Devroye et al., 2013]

• Remark (Optimal Rule under Empirical Error Probability)
Given a subset of functions/concepts $\mathcal{H} \subset \mathcal{C}$, the empirically optimal rule g_n^* is given by

$$g_n^* := g_n^*(\cdot | \mathcal{D}_n) \in \arg\min_{g \in \mathcal{H}} \widehat{L}_n(g).$$

• Remark (*Estimation Error vs. Approximation Error*)
Their difference is the quantity that primarily interests us:

$$L(g_n^*) - L := L(g_n^*) - \inf_{g \in \mathcal{H}} L(g)$$

Note that both quantites are generalization error not training error. To compare with *Bayes* error, we have the following decomposition

$$L(g_n^*) - L^* = \left(L(g_n^*) - \inf_{g \in \mathcal{H}} L(g)\right) + \left(\inf_{g \in \mathcal{H}} L(g) - L^*\right).$$

- 1. The first difference term is called *the estimation error*;
- 2. the second difference term is called <u>the approximation error</u>. This latter term may be bounded in a distribution-free manner, and a rate of convergence results that only depends on the structure of \mathcal{H} .

When the sub-class of functions \mathcal{H} is large, $L = \inf_{g \in \mathcal{H}} L(g)$ may be close to L^* , but the former error, the estimation error, is probably large as well. If \mathcal{H} is **too** small, there is no hope to make the approximation error small.

In empirical risk minimization, the subclass \mathcal{H} is **fixed**, and we have to live with the functions in \mathcal{H} . The best we may then hope for is to minimize $L(g_n^*) - \inf_{g \in \mathcal{H}} L(g)$.

ullet Remark (Overfitting)

If $\mathcal{H} = \mathcal{Y}^{\mathcal{X}}$ is the class of all (measurable) decision functions, then we can always find a classifier in \mathcal{H} with **zero empirical error**, but it may have **arbitrary values** outside of the points X_1, \ldots, X_n . For example, an *empirically optimal classifier* is

$$g_n^*(x) = \begin{cases} Y_i & x = X_1, \dots, X_n \\ 0 & \text{otherwise} \end{cases}$$

This is clearly not what we are looking for. This phenomenon is called *overfitting*, as the overly large class \mathcal{H} overfits the data.

References

- James O Berger. Statistical decision theory and Bayesian analysis. Springer Science & Business Media, 2013.
- Luc Devroye, László Györfi, and Gábor Lugosi. A probabilistic theory of pattern recognition, volume 31. Springer Science & Business Media, 2013.
- Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and techniques. MIT press, 2009.
- Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning. MIT press, 2018.
- Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.