Versión de 10 de febrero de 2022, 18:14h

Ejercicios de la sección 1.4 La ecuación matricial Ax = b

(Clase de prácticas: 3, 5, 7, 15, 19, 20, 21, 23, 25, 26, 32, 33.)

1. Sean
$$A = \begin{pmatrix} 1 & 5 & -2 & 0 \\ -3 & 1 & 9 & -5 \\ 4 & -8 & -1 & 7 \end{pmatrix}$$
, $\mathbf{p} = \begin{pmatrix} 3 \\ -2 \\ 0 \\ -4 \end{pmatrix}$, \mathbf{y}

$$\mathbf{b} = \begin{pmatrix} -7 \\ 9 \\ 0 \end{pmatrix}$$
. Comprueba que \mathbf{p} es una solución de $A\mathbf{x} = \mathbf{b}$.

Utiliza este hecho para mostrar una combinación lineal específica de las columnas de A que sea igual a b.

2. Sean
$$A = \begin{pmatrix} 2 & 5 \\ 3 & 1 \end{pmatrix}$$
, $\mathbf{u} = \begin{pmatrix} 4 \\ -1 \end{pmatrix}$, $\mathbf{v} \ \mathbf{v} = \begin{pmatrix} -3 \\ 5 \end{pmatrix}$. Comprueba la primera propiedad del producto de matrices por vectores calculando, en este caso, $A(\mathbf{u} + \mathbf{v}) \ y \ A\mathbf{u} + A\mathbf{v}$.

En los ejercicios 3 a 6 halla cada uno los productos de dos formas: (a) usando la definición del producto de una matriz por un vector y (b) usando la regla "fila por columna". Si un producto no está definido, explica por qué.

▶3.
$$\begin{pmatrix} -4 & 2 \\ 1 & 6 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ -2 \\ 7 \end{pmatrix}$$
. 4. $\begin{pmatrix} 2 \\ 6 \\ -1 \end{pmatrix} \begin{pmatrix} 5 \\ -1 \end{pmatrix}$.

▶5.
$$\begin{pmatrix} 6 & 5 \\ -4 & -3 \\ 7 & 6 \end{pmatrix} \begin{pmatrix} 2 \\ -3 \end{pmatrix}$$
. 6. $\begin{pmatrix} 8 & 3 & -4 \\ 5 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

En los ejercicios 7 y 8 usa la definición del producto Ax para escribir la ecuación matricial como una ecuación

▶7.
$$\begin{pmatrix} 5 & 1 & -8 & 4 \\ -2 & -7 & 3 & -5 \end{pmatrix} \begin{pmatrix} 5 \\ -1 \\ 3 \\ -2 \end{pmatrix} = \begin{pmatrix} -8 \\ 16 \end{pmatrix}$$
.

8.
$$\begin{pmatrix} 7 & -3 \\ 2 & 1 \\ 9 & -6 \\ -3 & 2 \end{pmatrix} \begin{pmatrix} -2 \\ -5 \end{pmatrix} = \begin{pmatrix} 1 \\ -9 \\ 12 \\ -4 \end{pmatrix}.$$

En los ejercicios 9 y 10 usa la definición del producto Ax para escribir la ecuación vectorial como una ecuación matricial.

$$\mathbf{9.} \ x_1 \begin{pmatrix} 4 \\ -1 \\ 7 \\ -4 \end{pmatrix} + x_2 \begin{pmatrix} -5 \\ 3 \\ -5 \\ 1 \end{pmatrix} + x_3 \begin{pmatrix} 7 \\ -8 \\ 0 \\ 2 \end{pmatrix} = \begin{pmatrix} 6 \\ -8 \\ 0 \\ -7 \end{pmatrix}$$

10.
$$z_1 \begin{pmatrix} 4 \\ -2 \end{pmatrix} + z_2 \begin{pmatrix} -4 \\ 5 \end{pmatrix} + z_3 \begin{pmatrix} -5 \\ 4 \end{pmatrix} + z_4 \begin{pmatrix} 3 \\ 0 \end{pmatrix} = \begin{pmatrix} 4 \\ 13 \end{pmatrix}$$
.

En los ejercicios 11 y 12, primero escribe el sistema de como una ecuación matricial.

$$3x_1 + x_2 - 5x_3 = 9$$

$$8x_1 - x_2 = 4$$
$$5x_1 + 4x_2 = 1$$
$$x_1 - 3x_2 = 2$$

En los ejercicios 13 y 14, escribe la matriz ampliada para el sistema de ecuaciones lineales que corresponde a la ecuación matricial Ax = b. Después resuelve el sistema y escribe la solución en forma paramétrica vectorial.

13.
$$A = \begin{pmatrix} 1 & 2 & 4 \\ 0 & 1 & 5 \\ -2 & -4 & -3 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} -2 \\ 2 \\ 9 \end{pmatrix}.$$

 $A = \begin{pmatrix} 1 & 2 & 1 \\ -3 & -1 & 2 \\ 0 & 5 & 3 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$

▶15. Sean
$$\mathbf{u} = \begin{pmatrix} 0 \\ 4 \\ 4 \end{pmatrix}$$
 y $A = \begin{pmatrix} 3 & -5 \\ -2 & 6 \\ 1 & 1 \end{pmatrix}$. ¿Está \mathbf{u} en el plano

de \mathbb{R}^3 generado por las columnas de A?. ¿Por qué sí o por

16. Sean
$$\mathbf{u} = \begin{pmatrix} 2 \\ -3 \\ 2 \end{pmatrix}$$
 y $A = \begin{pmatrix} 5 & 8 & 7 \\ 0 & 1 & -1 \\ 1 & 3 & 0 \end{pmatrix}$. ¿Está \mathbf{u} en el subconjunto en \mathbf{R}^3 generado por las columnas de A ?. ¿Por qué sí o por qué no?.

En los ejercicios 17 y 18, demuestra que la ecuación $A\mathbf{x} = \mathbf{b}$ no tiene solución para todas las \mathbf{b} posibles, y describe el conjunto de todas las **b** para las cuales $A\mathbf{x} = \mathbf{b}$ sí tiene solución.

17.
$$A = \begin{pmatrix} 2 & -1 \\ -6 & 3 \end{pmatrix}$$
 y **b** $= \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$.

18.
$$A = \begin{pmatrix} 1 & -3 & -4 \\ -3 & 2 & 6 \\ 5 & -1 & -8 \end{pmatrix}$$
, $\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$.

Los ejercicios 19 a 22 se refieren a las matrices A y B que se presentan a continuación. Realiza los cálculos adecuados que justifiquen tus respuestas.

$$A = \begin{pmatrix} 1 & 3 & 0 & 3 \\ -1 & -1 & -1 & 1 \\ 0 & -4 & 2 & -8 \\ 2 & 0 & 3 & -1 \end{pmatrix}, B = \begin{pmatrix} 1 & 3 & -2 & 2 \\ 0 & 1 & 1 & -5 \\ 1 & 2 & -3 & 7 \\ -2 & -8 & 2 & -1 \end{pmatrix}$$

- ▶19. ¿Cuántas filas de A contienen una posición pivote?. La ecuación $A\mathbf{x} = \mathbf{b}$, ¿tiene solución para cada \mathbf{b} en \mathbf{R}^4 ?
- ecuaciones lineales como una ecuación vectorial y después ≥ 20 . ¿Las columnas de B generan \mathbb{R}^4 ?. La ecuación $B\mathbf{x} = \mathbf{y}$, ¿tiene solución para cada y en R⁴?

- ▶21. ¿Puede escribirse cada vector en \mathbb{R}^4 como una combinación lineal de las columnas de la matriz A?. ¿Las columnas de A generan \mathbb{R}^4 ?
 - **22.** ¿Puede escribirse cada vector en \mathbb{R}^4 como una combinación lineal de las columnas de la matriz B?. ¿Las columnas de B generan \mathbb{R}^4 ?

▶23. Sean
$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix}$$
, $\mathbf{v}_2 = \begin{pmatrix} 0 \\ -1 \\ 0 \\ 1 \end{pmatrix}$, $\mathbf{v}_3 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ -1 \end{pmatrix}$. ¿Genera $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ a \mathbf{R}^4 ?. ¿Por qué sí o por qué no?

24. Sean
$$\mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ -2 \end{pmatrix}$$
, $\mathbf{v}_2 = \begin{pmatrix} 0 \\ -3 \\ 8 \end{pmatrix}$, $\mathbf{v}_3 = \begin{pmatrix} 4 \\ -1 \\ -5 \end{pmatrix}$. ¿Genera $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ a \mathbf{R}^3 ?. ¿Por qué sí o por qué no?

En los ejercicios $25\ y\ 26$, indica para cada enunciado si es verdadero o falso. Justifica cada respuesta.

▶25.

- (a) La ecuación $A\mathbf{x} = \mathbf{b}$ se conoce como una ecuación vectorial.
- (b) Un vector \mathbf{b} es una combinación lineal de las columnas de una matriz A si, y sólo si, la ecuación $A\mathbf{x} = \mathbf{b}$ tiene al menos una solución.
- (c) La ecuación $A\mathbf{x} = \mathbf{b}$ es compatible si la matriz ampliada [A \mathbf{b}] tiene una posición pivote en cada fila.
- (d) El primer elemento en el producto *Ax* es una suma de productos.
- (e) Si las columnas de una matriz A de orden m × n generan R^m, entonces la ecuación Ax = b es compatible para cada vector b de R^m.
- (f) Si A es una matriz $m \times n$ y la ecuación A**x** = **b** es incompatible para algún **b** en \mathbf{R}^m , entonces A no puede tener una posición pivote en cada fila.

▶26.

- (a) Cualquier ecuación matricial Ax = b corresponde a una ecuación vectorial con el mismo conjunto solución.
- (b) Cualquier combinación lineal de vectores de R^m siempre puede escribirse en la forma de producto Ax para una matriz A y un vector x.
- (c) El conjunto solución de un sistema de ecuaciones lineales cuya matriz ampliada es [a₁ a₂ a₃ b] es el mismo que el conjunto solución de Ax = b, si A = [a₁ a₂ a₃].
- (d) Si la ecuación Ax = b es incompatible, entonces b no está en el conjunto generado por las columnas de A.
- (e) Si la matriz ampliada [A b] tiene una posición pivote en cada fila, entonces la ecuación A**x** = b es incompatible.
- (f) Si A es una matriz $m \times n$ cuyas columnas no generan \mathbf{R}^m , entonces necesariamente la ecuación $A\mathbf{x} = \mathbf{b}$ es incompatible para algún vector \mathbf{b} en \mathbf{R}^m .

27. Comprueba que
$$\begin{pmatrix} 4 & -3 & 1 \\ 5 & -2 & 5 \\ -6 & 2 & -3 \end{pmatrix} \begin{pmatrix} -3 \\ -1 \\ 2 \end{pmatrix} = \begin{pmatrix} -7 \\ -3 \\ 10 \end{pmatrix}.$$

Usa este hecho para (sin realizar operaciones de filas) hallar los valores de los coeficientes c_1 , c_2 y c_3 tales que

$$\begin{pmatrix} -7\\ -3\\ 10 \end{pmatrix} = c_1 \begin{pmatrix} 4\\ 5\\ -6 \end{pmatrix} + c_2 \begin{pmatrix} -3\\ -2\\ 2 \end{pmatrix} + c_3 \begin{pmatrix} 1\\ 5\\ -3 \end{pmatrix}$$

28. Sean
$$\mathbf{u} = \begin{pmatrix} 7 \\ 2 \\ 5 \end{pmatrix}$$
, $\mathbf{v} = \begin{pmatrix} 3 \\ 1 \\ 3 \end{pmatrix}$ y $\mathbf{w} = \begin{pmatrix} 6 \\ 1 \\ 0 \end{pmatrix}$. Comprueba

que $3\mathbf{u} - 5\mathbf{v} - \mathbf{w} = 0$ y utiliza este hecho para (sin realizar operaciones de filas) encontrar x_1 y x_2 que satisfagan la ecuación

$$\begin{pmatrix} 7 & 3 \\ 2 & 1 \\ 5 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 6 \\ 1 \\ 0 \end{pmatrix}.$$

29. Sean \mathbf{q}_1 , \mathbf{q}_2 , \mathbf{q}_3 y v vectores en \mathbf{R}^5 , y sean x_1 , x_2 , x_3 tres números desconocidos. Escribe la siguiente ecuación vectorial como una ecuación matricial explicando el significado de cada símbolo nuevo que necesites utilizar.

$$x_1\mathbf{q}_1+x_2\mathbf{q}_2+x_3\mathbf{q}_3=\mathbf{v}.$$

30. Reescribe la siguiente ecuación matricial (numérica) en forma simbólica como una ecuación vectorial, y utiliza los símbolos $\mathbf{v}_1, \mathbf{v}_2, \dots$ para los vectores y c_1, c_2, \dots para los coeficientes. Define lo que representa cada símbolo usando los datos de la ecuación matricial:

$$\begin{pmatrix} -3 & 5 & -4 & 9 & 7 \\ 5 & 8 & 1 & -2 & -4 \end{pmatrix} \begin{pmatrix} -3 \\ 2 \\ 4 \\ -1 \\ 2 \end{pmatrix} = \begin{pmatrix} 8 \\ -1 \end{pmatrix}.$$

- 31. Construye una matriz 3×3 , en forma no escalonada, cuyas columnas generen \mathbf{R}^3 . Demuestra que dicha matriz tiene la propiedad deseada.
- ▶32. Construye una matriz 3×3 , en forma no escalonada, cuyas columnas no generen \mathbb{R}^3 . Demuestra que dicha matriz tiene la propiedad deseada.
- ▶33. Sea A una matriz 3×2 . Explica por qué la ecuación $A\mathbf{x} = \mathbf{b}$ no puede ser compatible para toda \mathbf{b} en \mathbf{R}^3 . Generaliza tu argumento para el caso de una matriz A arbitraria con más filas que columnas.
- **34.** ¿Podría un conjunto de tres vectores en \mathbb{R}^4 generar todo \mathbb{R}^4 ? Explica tu respuesta. ¿Qué sucede con n vectores en \mathbb{R}^m cuando n es menor que m?
- **35.** Supongamos que A es una matriz 4×3 y **b** un vector en \mathbf{R}^4 con la propiedad de que $A\mathbf{x} = \mathbf{b}$ tiene una solución única. ¿Qué puede decirse acerca de la forma escalonada reducida de A? Justifica tu respuesta.
- **36.** Supongamos que A es una matriz 3×3 y b un vector en \mathbf{R}^3 con la propiedad de que $A\mathbf{x} = \mathbf{b}$ tiene una solución única. Explica por qué las columnas de A necesariamente generan todo \mathbf{R}^3 .
- 37. Sean A una matriz 3×4 , \mathbf{y}_1 e \mathbf{y}_2 dos vectores en \mathbf{R}^3 , \mathbf{y} w = $\mathbf{y}_1 + \mathbf{y}_2$. Supongamos que $\mathbf{y}_1 = A\mathbf{x}_1$ y $\mathbf{y}_2 = A\mathbf{x}_2$ para algunos vectores \mathbf{x}_1 y \mathbf{x}_2 en \mathbf{R}^4 . ¿Qué hecho permite concluir que el sistema $A\mathbf{x} = \mathbf{w}$ es compatible?.

38. Sean A una matriz de 5×3 , sea \mathbf{y} un vector en \mathbf{R}^3 , \mathbf{y} sea \mathbf{z} el vector de \mathbf{R}^5 dado por $\mathbf{z} = A\mathbf{y}$. ¿Qué hecho permite concluir que el sistema $A\mathbf{x} = 4\mathbf{z}$ es compatible?

En los ejercicios 39 a 42, determina si las columnas de la matriz generan a ${\bf R}^4.$

$$\mathbf{39.} \begin{pmatrix} 7 & 2 & -5 & 8 \\ -5 & -3 & 4 & -9 \\ 6 & 10 & -2 & 7 \\ -7 & 9 & 2 & 15 \end{pmatrix}.$$

40.
$$\begin{pmatrix} 5 & -7 & -4 & 9 \\ 6 & -8 & -7 & 5 \\ 4 & -4 & -9 & -9 \\ -9 & 11 & 16 & 7 \end{pmatrix}.$$

41.
$$\begin{pmatrix} 12 & -7 & 11 & -9 & 5 \\ -9 & 4 & -8 & 7 & -3 \\ -6 & 11 & -7 & 3 & -9 \\ 4 & -6 & 10 & -5 & 12 \end{pmatrix}.$$

42.
$$\begin{pmatrix} 8 & 11 & -6 & -7 & 13 \\ -7 & -8 & 5 & 6 & -9 \\ 11 & 7 & -7 & -9 & -6 \\ -3 & 4 & 1 & 8 & 7 \end{pmatrix}.$$

43. En la matriz del ejercicio 41, halla una columna que se pueda borrar sin que las columnas restantes dejen de generar a ${\bf R}^4$.

44. En la matriz del ejercicio 42, halla una columna que se pueda borrar sin que las columnas restantes dejen de generar a ${\bf R}^4$. ¿Podría borrarse más de una columna?

Soluciones a ejercicios seleccionados de la sección 1.4

- **3.** Producto no definido porque el número de columnas de la matriz (2) no es igual al número de elementos del vector (3).
- 5. (a) Por la definición de producto matriz por vector: $\begin{pmatrix} 6 & 5 \\ -4 & -3 \\ 7 & 6 \end{pmatrix} \begin{pmatrix} 2 \\ -3 \end{pmatrix} = 2 \begin{pmatrix} 6 \\ -4 \\ 7 \end{pmatrix} + (-3) \begin{pmatrix} 5 \\ -3 \\ 6 \end{pmatrix} = \begin{pmatrix} 12 \\ -8 \\ 14 \end{pmatrix} \begin{pmatrix} 15 \\ -9 \\ 18 \end{pmatrix} = \begin{pmatrix} -3 \\ 1 \\ -4 \end{pmatrix}.$
- (b) Por la regla "fila por columna" $\begin{pmatrix} 6 & 5 \\ -4 & -3 \\ 7 & 6 \end{pmatrix}$ $\begin{pmatrix} 2 \\ -3 \end{pmatrix} = \begin{pmatrix} 2 \times 6 + (-3) \times 5 \\ 2 \times (-4) + (-3) \times (-3) \\ 2 \times 7 + (-3) \times 6 \end{pmatrix} = \begin{pmatrix} -3 \\ 1 \\ -4 \end{pmatrix}$

7. La ecuación vectorial es:

$$5 \begin{pmatrix} 5 \\ -2 \end{pmatrix} - \begin{pmatrix} 1 \\ -7 \end{pmatrix} + 3 \begin{pmatrix} -8 \\ 3 \end{pmatrix} - 2 \begin{pmatrix} 4 \\ -5 \end{pmatrix} = \begin{pmatrix} -8 \\ 16 \end{pmatrix}.$$

15. u estará en el plano de \mathbb{R}^3 generado por las columnas de A siempre y cuando \mathbf{u} sea combinación lineal de las columnas de A, lo que es igual a decir que la ecuación matricial $A\mathbf{x} = \mathbf{u}$ es compatible. A su vez, $A\mathbf{x} = \mathbf{u}$ es compatible si y sólo si el sistema cuya matriz es $[A|\mathbf{u}]$ es compatible. Por tanto basta poner esta matriz en forma escalonada:

$$\begin{pmatrix} 3 & -5 & 0 \\ -2 & 6 & 4 \\ 1 & 1 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 4 \\ -2 & 6 & 4 \\ 3 & -5 & 0 \end{pmatrix}$$
$$\rightarrow \begin{pmatrix} 1 & 1 & 4 \\ 0 & 8 & 12 \\ 0 & -8 & -12 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 4 \\ 0 & 8 & 12 \\ 0 & 0 & 0 \end{pmatrix}.$$

Sistema compatible, luego ${\bf u}$ está en el plano de ${\bf R}^3$ generado por las columnas de A porque ${\bf u}$ es combinación lineal de las columnas de A.

19. Las operaciones elementales $F_2 + F_1$, $F_4 - 2F_1$, $F_3 + 2F_2$, $F_4 + 3F_2$ transforman a A en

$$\begin{pmatrix} 1 & 3 & 0 & 3 \\ 0 & 2 & -1 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 5 \end{pmatrix}$$

por lo que, aún sin llegar a una forma escalonada, ya vemos que A tiene posición pivote sólo en tres filas (en la 1, en la 2 y en la 3). Como A no tiene una posición pivote en cada fila, la ecuación $A\mathbf{x} = \mathbf{b}$, no tiene solución para cada \mathbf{b} en \mathbf{R}^4 .

20. Las dos preguntas tienen la misma respuesta. "Sí" si *B* tiene una posición pivote en cada fila y "no" en caso

4

contrario. En este caso las operaciones elementales $F_3 - F_1$, $F_4 + 2F_1$, $F_3 + F_2$, $F_4 + 2F_2$ transforman a B en

$$\begin{pmatrix} 1 & 3 & -2 & 2 \\ 0 & 1 & 1 & -5 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -7 \end{pmatrix}$$

por lo que, aún sin llegar a una forma escalonada, ya vemos que *B* tiene posición pivote sólo en tres filas (en la 1, en la 2 y en la 3) y la respuesta a ambas preguntas es "no".

- **21.** Las dos preguntas tienen la misma respuesta, "no", porque *A* no tiene una posición pivote en cada fila.
- 23. El conjunto $\{v_1,v_2,v_3\}$ no genera a R^4 porque la matriz $[v_1 \ v_2 \ v_3]$ cuyas columnas son esos vectores no tiene bastantes columnas como para tener un pivote en cada fila.
- **25.** (a) **Falso** (Es una ecuación matricial.), (b) **Verdadero** (Es la definición.), (c) **Falso** (Debía decir: "si la matriz *A* tiene una posición pivote en cada fila".), (d) **Verdadero** (Es suma de los productos de los elementos de la primera fila de *A* por los correspondientes elementos de x.), (e) **Verdadero** (Por la definición del conjunto generado.), (f) **Verdadero** (Si la tuviera entonces también en toda matriz ampliada de *A* estarían todas las posiciones pivote en las columnas de *A* y no habría ninguna en la columna de términos independientes.).
- **26.** (a) **Verdadero** (Corresponde a la ecuación x_1 **a**₁ + · · · + x_n **a**_n = **b** donde $x_1, ..., x_n$ son los elementos de **x** y **a**₁, ..., **a**_n son las columnas de A.), (b) **Verdadero** (Basta coger A como la matriz cuyas columnas son los vectores dados y coger **x** como el vector formado por los coeficientes.), (c) **Verdadero** (Ver definición 1.4.8 y observaciones que le siguen.), (d) **Verdadero** (Si lo estuviera sería igual a una combinación lineal de las columnas de A y los coeficientes de esa comb. lin. serían una solución particular de la ecuación.), (e) **Falso** (El pivote de la última fila podría no estar en la columna de la derecha.), (f) **Verdadero** (Para cualquier **b** de **R**^m que no esté en el conjunto generado por las columnas de A.).
- 32. Si se pudiese dar una matriz escalonada sería fácil; luego bastaría reordenar las columnas. En general, basta que sea una matriz con una fila de ceros. Una matriz 3×3 con una fila de ceros puede tener a lo sumo dos posiciones pivote y por tanto sus columnas no pueden generar a \mathbb{R}^3 .
- **33.** Una matriz 3×2 no tiene bastantes columnas como para tener una posición pivote en cada fila y por tanto sus columnas no pueden generar a \mathbf{R}^3 . Generalizando: Una matriz $m \times n$ con más filas que columnas no tiene bastantes columnas como para tener una posición pivote en cada fila y por tanto sus columnas no pueden generar a \mathbf{R}^m