Algorithm Design and Analysis

Tutorial 3, 2024

Question 1. Implement the exploration algorithm in DFS as *explore(int i)* method in *Digraph* Class. The underlying data structure of the *Digraph Class* is an adjacency list which maintains a hash map *data*. All the nodes in a digraph are associated with integers which can be retrieved from hash map *nodelist*. To implement this method, you need to do the following steps:

- 1. Set i true in hash map visited to indicate that a node has been visited.
- 2. Retrieve the neighbours of node i from data.
- 3. Make recursive calls of the exploration algorithm to all the neighbours of node i. If a node has been visited already, return.

Question 2. Implement the dfs() method in Digraph Class by calling the explore() method developed in Question 1. This method should implement the DFS traversal of the digraph.

Question 3. Implement the *transpose()* method to reverse the edges of a digraph.

Question 4. Implement the Kosaraju-Sharir algorithm as a method findSCC() which prints the strongly connected components of a graph G.

You may test your algorithm using the graphs below:

