GUJARAT TECHNOLOGICAL UNIVERSITY

DIPLOMA ENGINEERING - SEMESTER - I (NEW) • EXAMINATION - SUMMER - 2018

Subject Code: 3300001 **Date: 25-May-2018**

Subject Name: Basic Mathematics

Time: 02:30 PM to 05:00 PM **Total Marks: 70**

Instructions:

- 1. Attempt all questions.
- 2. Make Suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Use of programmable & Communication aids are strictly prohibited.
- 5. Use of only simple calculator is permitted in Mathematics.
- 6. English version is authentic.
- **Q.1** Fill in the blanks using appropriate choice from the given options.
 - 1 The logarithmic form of $3^4 = 81$ is

(a)
$$\log_3 4 = 81$$
 (b) $\log_3 81 = 4$ (c) $\log_{81} 3 = 4$ (d) $\log_4 81 = 3$

(b)
$$\log_2 81 = 4$$

$$(c)\log_{21} 3 = 4$$

3⁴ = 81 નુ લધ્ગળકીય સ્વરૂપ 9

(a)
$$\log_3 4 = 81$$
 (b) $\log_3 81 = 4$ (c) $\log_{81} 3 = 4$ (d) $\log_4 81 = 3$

$$(4) \log_3 81 = 4$$

$$(\$)\log_{81} 3 = 4$$

2.
$$\log_3 27 + \log_3 9 =$$
 (b) 3

(d) 5

 $\log_3 27 + \log_3 9 =$

(S)5

3. $\log_3(\log_8 2)$ (a) 2

$$\frac{1}{2}$$
 (b) -1

(d) 8

 $\log_3(\log_8 2)$

(어)
$$-1$$

$$4. \quad \begin{vmatrix} e^{2x} & e^x \\ 1 & e^{-x} \end{vmatrix} = \underline{\qquad}$$

(c)
$$e^x$$

(d)
$$e^{2x}$$

(8)
$$e^x$$

(S)
$$e^{2x}$$

-8₇]

5.	If $A = \begin{bmatrix} 1 & 4 \\ 3 & -2 \end{bmatrix}$ then, $2A - 3I = $ (a) $\begin{bmatrix} 1 & 8 \\ 6 & -4 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 8 \\ 6 & 7 \end{bmatrix}$ (c) $\begin{bmatrix} -1 & 8 \\ 6 & -7 \end{bmatrix}$ (d) $\begin{bmatrix} 1 \\ -6 \end{bmatrix}$
ų	જો , $A = \begin{bmatrix} 1 & 4 \\ 3 & -2 \end{bmatrix}$ ફોય, તો $2A - 3I = \underline{\hspace{1cm}}$ (અ) $\begin{bmatrix} 1 & 8 \\ 6 & -4 \end{bmatrix}$ (બ) $\begin{bmatrix} 1 & 8 \\ 6 & 7 \end{bmatrix}$ (§) $\begin{bmatrix} -1 & 8 \\ 6 & -7 \end{bmatrix}$ (S) $\begin{bmatrix} 1 \\ -6 \end{bmatrix}$
6.	If $A_{2\times 3}$ and $B_{3\times 4}$ are the matrix then order of matrix AB
S	(a) 4×2 (b) 2×4 (c) 3×3 (d) AB is not possible જો $A_{2\times 3}$ અને $B_{3\times 4}$ શ્રેણીકો છે ,તો શ્રેણીક AB ની કક્ષા
7.	(અ) 4×2 (બ) 2×4 (ક) 3×3 (S) AB શક્ય નથી If $A = \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & -5 \\ -1 & 2 \end{bmatrix}$ then AB
	(a) $\begin{bmatrix} 3 & -5 \\ -1 & 2 \end{bmatrix}$ (b) $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$
૭	જો $A = \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$ અને $B = \begin{bmatrix} 3 & -5 \\ -1 & 2 \end{bmatrix}$ તો AB $(U) \begin{bmatrix} 3 & -5 \\ -1 & 2 \end{bmatrix} \qquad (U) \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad (U) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad (U) \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$
8.	$\frac{2\pi}{9}$ radian =
۷	^{2π} / ₉ રેડીયન = (અ) 40 ° (બ) 80 ° (ક) 20 ° (S) 10 °
9.	270° =redian
E	(a) $\frac{4\pi}{3}$ (b) $\frac{2\pi}{3}$ (c) $\frac{3\pi}{2}$ (d) $\frac{\pi}{9}$ 270° =} રેડીયન
	(신) $\frac{4\pi}{3}$ (선) $\frac{2\pi}{3}$ (통) $\frac{3\pi}{2}$ (S) $\frac{\pi}{9}$
10.	$\sin\frac{\pi}{6} \cdot \sin\frac{\pi}{3} + \sin\frac{\pi}{2} \cdot \sin\pi = \underline{\qquad}$
	(a) 1 (b) 0 (c) $\frac{1}{2}$ (d) $-\frac{\sqrt{3}}{4}$
90	$\sin\frac{\pi}{6} \cdot \sin\frac{\pi}{3} + \sin\frac{\pi}{2} \cdot \sin\pi = \underline{\qquad}$
	(원) 1 (여) θ (동) $\frac{1}{2}$ (S) $-\frac{\sqrt{3}}{4}$

	11	Period of $\cos (3x + 5) = $ (a) $\frac{\pi}{3}$ (b) $\frac{2\pi}{3}$ (c) $\frac{\pi}{5}$ (d) $\frac{2\pi}{5}$	
	99	$\cos(3x+5)$ નુ આવર્તમાન =	
		(U) $\frac{\pi}{3}$ (G) $\frac{2\pi}{5}$ (S) $\frac{\pi}{5}$	
	12.	If perimeter of a square is 20 cm then area of square = cm^2	
		(a) 50 (b) 25 (c) 40 (d) 100	
	૧ ૨	જો એક યોરસની પરિમિતી 20 સે.મી. છે તો યોરસનુ ક્ષેત્રફણ =સે.મી.²	
		(원) 50 (원) 25 (동) 40 (S) 100	
	13.	The area of a circle 154 cm^2 then circumference =cm	
		(a) 44 (b) 48 (c) 49 (d) 51	
	٩3	એક વર્તુળનુ ક્ષેત્રફણ 154 સે.મી.² છે , તો પરિધી =સે.મી.	
		(원) 44 (원) 48 (동) 49 (S) 51	
	14.	If diameter of hemisphere is 6 cm then volume $=$ cm^3	
		(a) 3π (b) 6π (c) 9π (d) 18π	
	98	જો એક અર્ધગોળકનુ વ્યાસ 6 સે.મી છે ,તો ધનફળ =સે.મી.³	
		(신) 3π (선) 6π (5) 9π (5) 18π	
Q.2	(a) 1.	Attempt any TWO ક્રોઇ પણ બે ના જવાબ આપો. Prove that : $\log(\log x^2) - \log(\log x) = \log 2$	06
	٩	સાબિત કરો કે: $\log(\log x^2) - \log(\log x) = \log 2$	
	2.	Find curved surface area of a cylinder whose radius is 7 meter and height is 10 meter.	
	5	એક નળાકારની ત્રિજ્યા 7 મી.અને ઉયાઇ 10 મી. છે તો નળાકારની વકસપાટીંનુ ક્ષેત્રફળ શોધો .	
	3.	Find volume of a cone having 164 sq. cm. base area and 12 cm height.	
	2	164 ചി ച പി വലപ് മിഷംഗ ലലപ്പ ലക് 12 ച പി ബേഴവശ്വ ല് കെ ലക്ക് എലി	

08

- (b) Attempt any TWO ક્રોઇ પણ બે ના જવાબ આપો.
- 1. solve the equation for x, $\log(x+3) + \log(x-3) = \log 27$
- ૧ x ની કીમત માટે સમીકરણ ઉકેલો, $\log(x+3) + \log(x-3) = \log 27$
- 2. If $\log(a-b) = \log 2 + \frac{1}{2}\log a + \frac{1}{2}\log b$, then prove that $\frac{a}{b} + \frac{b}{a} = 6$
- ર જો $\log(a-b) = \log 2 + \frac{1}{2}\log a + \frac{1}{2}\log b$,તો સાબિત કરો કે $\frac{a}{b} + \frac{b}{a} = 6$
- 3. A metal solid cylinder has diameter 9 cm and length 16 cm. How many small balls of 0.3 cm radius can be made from the sphere?
- **3** ધાતુ નો એક નળાકારનો વ્યાસ 9 સે.મી, અને લંબાઇ 16 સે.મી છે . આ ધાતુમાં થી 0.3 સે.મી.ત્રિજ્યાની કેટલી ગોળી બને?
- Q.3 (a) Attempt any TWO ક્રીઇ પણ બે ના જવાબ આપો.
 - 1. Solve the equation for x $\begin{vmatrix} x+3 & 4 \\ x-2 & 5 \end{vmatrix} = 13$
 - ૧ x ની કિંમત માટે સમીકરણ ઉકેલો, $\begin{vmatrix} x+3 & 4 \\ x-2 & 5 \end{vmatrix} = 13$
 - 2. If $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$ then prove that, $A^2 4A 5I = 0$
 - ર જો $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$ તો સાબિત કરો કે, $A^2 4A 5I = 0$
 - 3. If $A = \begin{bmatrix} 3 & 4 \\ 1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & -2 \\ 2 & 1 \end{bmatrix}$ then prove that $(A + B)^T = A^T + B^T$
 - 3 જો $A = \begin{bmatrix} 3 & 4 \\ 1 & 2 \end{bmatrix}$ અને $B = \begin{bmatrix} -1 & -2 \\ 2 & 1 \end{bmatrix}$ તો સાબિત કરો કે $(A+B)^T = A^T + B^T$
 - (b) Attempt any TWO. ક્રીઇ પણ બે ના જવાબ આપો .
 - 1. If $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 4 \\ 1 & 3 \end{bmatrix}$ then verify the result $(AB)^{-1} = B^{-1}A^{-1}$
 - ૧ જો $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ અને $B = \begin{bmatrix} 2 & 4 \\ 1 & 3 \end{bmatrix}$ તો $(AB)^{-1} = B^{-1}A^{-1}$ યકાસો .
 - 2. Solve the following equations by matrix method 2x + 3y = 2xy, 8x + 3y = 5xy

$$2x + 3y = 2xy$$
 , $8x + 3y = 5xy$

3. Solve the following equations by matrix method ,
$$3x+y+2z=3 \ , \qquad 2x-3y-z=-3 \ , \qquad x+2y+z=4$$

3 શ્રેણીકની રીત થી સમીકરણો ઉકેલો
$$3x + y + 2z = 3$$
 , $2x - 3y - z = -3$, $x + 2y + z = 4$

1. Prove that
$$\frac{\sin(180^{\circ}-A).\sin(270^{\circ}-A).\cot(90^{\circ}+A)}{\cos(270^{\circ}+A).\cos(90^{\circ}+A).\tan(360^{\circ}-A)} = \cot A$$

૧ સાબિત કરો કે
$$\frac{\sin(180^{\circ}-A).\sin(270^{\circ}-A).\cot(90^{\circ}+A)}{\cos(270^{\circ}+A).\cos(90^{\circ}+A).\tan(360^{\circ}-A)} = \cot A$$

2. Prove that :
$$\frac{\sin(A-B)}{\sin A \cdot \sin B} + \frac{\sin(B-C)}{\sin B \cdot \sin C} + \frac{\sin(C-A)}{\sin C \cdot \sin A} = 0$$

ર સાબિત કરો કે :
$$\frac{\sin(A-B)}{\sin A \cdot \sin B} + \frac{\sin(B-C)}{\sin B \cdot \sin C} + \frac{\sin(C-A)}{\sin C \cdot \sin A} = 0$$

3. If
$$A+B = \frac{\pi}{4}$$
 then prove that $(\tan A + 1)(\tan B + 1) = 2$

3 જો
$$A+B=\frac{\pi}{4}$$
 તો સાબિત કરો કે $(\tan A+1)(\tan B+1)=2$

1. For the
$$\triangle$$
 ABC , prove that

(i)
$$\cos\left(\frac{A+B}{2}\right) = \sin\left(\frac{C}{2}\right)$$
 ,

$$(ii)\tan(A+C)=-\tan B$$

(i)
$$\cos\left(\frac{A+B}{2}\right) = \sin\left(\frac{C}{2}\right)$$
,

(ii)
$$\tan(A+C) = -\tan B$$

2. Prove that ,
$$\frac{\cos A + \cos 3A + \cos 5A}{\sin A + \sin 3A + \sin 5A} = \cot 3A$$

$$\frac{\cos A + \cos 3A + \cos 5A}{\sin A + \sin 3A + \sin 5A} = \cot 3A$$

- 3. Prove that , $tan^{-1}\frac{1}{2} + tan^{-1}\frac{1}{3} = \frac{\pi}{4}$
- 3 સાબિત કરો , $tan^{-1}\frac{1}{2} + tan^{-1}\frac{1}{3} = \frac{\pi}{4}$
- Q.5 (a) Attempt any TWO ક્રોઇ પણ બે ના જવાબ આપો.

- 06
- 1 If $\overline{a} = j + k i$, $\overline{b} = 2i + j 3k$ then find the value of $\left| 2\overline{a} + 3\overline{b} \right|$
- ૧ જો $\overline{a}=j+k-i$, $\overline{b}=2i+j-3k$ તો $\left|2\overline{a}+3\overline{b}\right|$ ની કિમંત શોધો.
- 2 if $\overline{x} = (-4, 9, 6)$, $\overline{y} = (0, 7, 10)$ and $\overline{z} = (-1, 6, 6)$ then prove that, $(\overline{x} \overline{z}) \cdot (\overline{y} \overline{z}) = 0$
- ર જો $\bar{x}=(-4,9,6)$, $\bar{y}=(0,7,10)$ અને $\bar{z}=(-1,6,6)$ તો સાબિત કરો , $(\bar{x}-\bar{z}).(\bar{y}-\bar{z})=0$
- For which value of m, vectors $2\hat{i} 3\hat{j} + 5\hat{k}$ and $m\hat{i} 6\hat{j} 8\hat{k}$ are perpendicular to each other.
- **3** m ની કઇ કિમત માટે સિંદિશો $2\hat{i} 3\hat{j} + 5\hat{k}$ અને $m\hat{i} 6\hat{j} 8\hat{k}$ પરસ્પર લંબ થાય?
- (b) Attempt any TWO. ક્રોઇ પણ બે ના જવાબ આપો .

- 1. find the unit vector perpendicular to both the vectors $\bar{a} = \hat{i} + \hat{j} + \hat{k}$ and $\bar{b} = 2\hat{i} 2\hat{j} + \hat{k}$.
- ૧ બે સદિશો $\bar{a}=\hat{\imath}+\hat{\jmath}+\hat{k}$ અને $\bar{b}=2\hat{\imath}-2\hat{\jmath}+\hat{k}$ ના સમતલમાં લંબ એકમ સદિશ મેળવો.
- 2. Prove that the angle between the vectors $3 \hat{i} + \hat{j} + 2\hat{k}$ and $2\hat{i} 2\hat{j} + 4\hat{k}$ is $\sin^{-1}\left(\frac{2}{\sqrt{7}}\right)$
- ર સાબિત કરો કે સિંદિશો $3 \hat{i} + \hat{j} + 2\hat{k}$ અને $2\hat{i} 2\hat{j} + 4\hat{k}$ વચ્ચેનો ખુણો $\sin^{-1}\left(\frac{2}{\sqrt{7}}\right)$ છે.
- 3. A partical moves from a point (0,1,-2) to (-1,3,2) under the action of forces (1,2,3), (-1,2,3) and (-1,2,-3). find the work done
- **3** એક કણ પર બળ (1,2,3), (-1,2,3) અને (-1,2,-3) લાગે છે, તેની અસરથી કણ બિન્દુ (0,1,-2) થી (-1,3,2). સુધી સ્થાનાંતર કરે છે. તો થયેલ કાર્ય શોધો.
