Aleksandra Kosińska 317841

Ćwiczenia Lista 1

Zadanie 1

Dla każdego z podanych poniżej adresów IP w notacji CIDR określ, czy jest to adres sieci, adres rozgłoszeniowy czy też adres komputera. W każdym przypadku wyznacz odpowiadający mu adres sieci, rozgłoszeniowy i jakiś adres IP innego komputera w tej samej sieci.

• 10.1.2.3/8 - jest to adres komputera

```
adres IP:
```

10.1.2.3 = 00001010.00000001.00000010.00000011

maska:

255.0.0.0 = 111111111.00000000.000000000.00000000

1. adres sieci:

2. adres broadcast:

3. adres ip innego komputera w tej sieci:

```
10.1.2.4/8
```

• 156.17.0.0/16 - jest to adres sieci

```
adres IP:
```

```
156.17.0.0 = 10011100.00010001.00000000.00000000
```

maska:

1. adres sieci:

2. adres broadcast:

3. adres ip innego komputera w tej sieci:

156.17.17.17/16

• 99.99.99.99/27 - jest to adres komputera

adres IP:

99.99.99.99 = 01100011.01100011.01100011.01100011

maska:

1. adres sieci:

adres IP AND maska: 01100011.01100011.01100011.01100000 = 99.99.99.96/27

2. adres broadcast:

adres IP AND maska OR ~maska: 01100011.01100011.01100011.011111111 = 99.99.99.127/27

3. adres ip innego komputera w tej sieci:

99.99.99.100/27

• 156.17.64.4/30 - jest to adres sieci

adres IP:

156.17.64.4 = 10011100.00010001.01000000.00000100

maska:

1. adres sieci:

adres IP AND maska: 156.17.64.4/30

2. adres broadcast:

adres IP AND maska OR ~maska: 10011100.00010001.01000000.00000111 = 156.17.64.7/30

3. adres ip innego komputera w tej sieci:

156.17.64.5/30

123.123.123.123/32 - jest to adres konkretnego komputera

ponieważ maska: 255.255.255

Zadanie 2

Podziel sieć 10.10.0.0/16 na 5 rozłącznych podsieci, tak aby każdy z adresów IP z sieci 10.10.0.0/16 był w jednej z tych 5 podsieci.

adres IP:

10.10.0.0 = 00001010.00001010.00000000.00000000

maska:

maska: 11111111.11111111.11000000.000000000

maska: 11111111.11111111.11000000.000000000

maska: 111111111111111111111100000.000000000

maska: 11111111.11111111.11100000.000000000

Jak zmieniła się liczba adresów IP możliwych do użycia przy adresowaniu komputerów?

Przed podziałem sieci na podsieci mieliśmy $2^{16}-2=65536-2=65534$ adresów do użycia adresowania komputerów.

Po podzieleniu mamy $2^{16}-2\cdot 5=65536-10=65526$ adresów do użycia adresowania komputerów.

(od wszystkich adresów odejmujemy adresy sieci i adresy rozgłoszeniowe)

Jaki jest minimalny rozmiar podsieci, który możesz uzyskać w ten sposób?

Robiąc podział w taki sposób:

maska: 11111111.11111111.10000000.000000000

 $maska: \quad 11111111.1111111.11000000.000000000$

3. adres IP: 00001010.00001010.11000000.000000000 = 10.10.192.0/19

maska: 11111111.11111111.11100000.000000000

4. adres IP: 00001010.00001010.11100000.000000000 = 10.10.224.0/20

maska: 11111111.11111111.11110000.000000000

maska: 11111111.11111111.11110000.000000000

Otrzymujemy podsieć, której liczba adresów wynosi: $2^{12}=4096$, czyli 4094 adresów do użycia adresowania komputerów.

Zadanie 3

Tablica routingu zawiera następujące wpisy (podsieć → dokąd wysłać):

- 0.0.0.0/0 → do routera A
- 10.0.0.0/23 → do routera B (10.0.0.0 10.0.1.255)
- 10.0.2.0/24 → do routera B (10.0.2.0 10.0.2.255)
- 10.0.3.0/24 → do routera B (10.0.3.0 10.0.3.255)
- 10.0.1.0/24 → do routera C (10.0.1.0 10.0.1.255)
- 10.0.0.128/25 → do routera B (10.0.0.128 10.0.0.255)
- 10.0.1.8/29 → do routera B (10.0.1.8 10.0.1.15)
- 10.0.1.16/29 → do routera B (10.0.1.16 10.0.1.24)
- 10.0.1.24/29 → do routera B (10.0.1.24 10.0.1.31)

Napisz równoważną tablicę routingu zawierającą jak najmniej wpisów:

- 0.0.0.0/0 → do routera A
- 10.0.0.0/22 → do routera B
- 10.0.1.0/24 → do routera C
- 10.0.1.16/28 → do routera B
- 10.0.1.8/29 → do routera B

Zadanie 4

- $0.0.0.0/0 \rightarrow do routera A$
- 10.0.0.0/8 → do routera B (10.0.0.0 10.255.255.255)
- 10.3.0.0/24 → do routera C (10.3.0.0 10.3.0.255)
- 10.3.0.32/27 → do routera B (10.3.0.32 10.3.0.63)
- 10.3.0.64/27 → do routera B (10.3.0.64 10.3.0.95)
- 10.3.0.96/27 → do routera B (10.3.0.96 10.3.0.127)

Napisz równoważną tablicę routingu zawierającą jak najmniej wpisów:

- $0.0.0.0/0 \rightarrow do routera A$
- 10.0.0.0/8 → do routera B
- 10.3.0.0/27 → do routera C
- 10.3.0.128/25 → do routera B

Zadanie 5

Jak uporządkować wpisy w tablicy routingu, żeby zasada najlepszego dopasowania odpowiadała wyborowi "pierwszy pasujący" (tj. przeglądaniu tablicy od początku do końca aż do momentu napotkania dowolnej pasującej reguły)? Odpowiedź uzasadnij formalnie.

odpowiedź

Żeby zasada najlepszego dopasowania odpowiadała wyborowi "pierwszy pasujący" to wpisy w tablicy routingu powinny być uporządkowane malejąco względem długości prefiksu. Dzięki temu pierwszy wpis w tablicy będzie tym najlepiej dopasowanym.

dowód

Weźmy tablicę routingu uporządkowaną malejąco względem długości prefiksu oraz adres x. Weźmy pierwszy pasujący wpis w tablicy i nazwijmy go y. Wiemy, że x i y mają wspólne n bitów. Weźmy teraz dowolny wpis w tablicy (różny od y) i nazwijmy go z. Załóżmy, że z jest lepszym dopasowaniem niż y. Wtedy liczba wspólnych bitów z z x jest większa niż n. Ale, ponieważ nasza tablica jest posortowana to nie może taka sytuacja wystąpić. **Sprzeczność**.

Pokazaliśmy nie w prost, że uporządkowanie tablicy malejąco względem długości prefiksu po wyborze "pierwszy pasujący" dostajemy najlepsze dopasowanie.

Zadanie 6

W podanej niżej sieci tablice routingu budowane są za pomocą algorytmu wektora odległości. Pokaż (krok po kroku), jak będzie się to odbywać. W ilu krokach zostanie osiągnięty stan stabilny?

Stan początkowy

	A	В	С	D	Е	F
trasa do A	-	1				
trasa do B	1	-	1			
trasa do C		1	-		1	1
trasa do D				-	1	
trasa do E			1	1	-	1
trasa do F			1		1	-
trasa do S	1	1				

Krok 1

	A	В	С	D	Е	F
trasa do A	-	1	2 (via B)			
trasa do B	1	-	1		2 (via C)	2 (via C)
trasa do C	2 (via B)	1	-	2 (via E)	1	1
trasa do D			2 (via E)	-	1	2 (via E)
trasa do E		2 (via C)	1	1	-	1
trasa do F		2 (via C)	1	2 (via E)	1	-
trasa do S	1	1	2 (via B)			

Krok 2

	A	В	С	D	Е	F
trasa do A	-	1	2 (via B)		3 (via C)	3 (via C)
trasa do B	1	-	1	3 (via C)	2 (via C)	2 (via C)
trasa do C	2 (via B)	1	-	2 (via E)	1	1
trasa do D		3 (via C)	2 (via E)	-	1	2 (via E)
trasa do E	3 (via B)	2 (via C)	1	1	-	1
trasa do F	3 (via B)	2 (via C)	1	2 (via E)	1	-
trasa do S	1	1	2 (via B)		3 (via C)	3 (via C)

Krok 3

	A	В	С	D	Е	F
trasa do A	-	1	2 (via B)	4 (via E)	3 (via C)	3 (via C)
trasa do B	1	-	1	3 (via C)	2 (via C)	2 (via C)
trasa do C	2 (via B)	1	-	2 (via E)	1	1
trasa do D	4 (via B)	3 (via C)	2 (via E)	-	1	2 (via E)
trasa do E	3 (via B)	2 (via C)	1	1	-	1
trasa do F	3 (via B)	2 (via C)	1	2 (via E)	1	-
trasa do S	1	1	2 (via B)	4 (via E)	3 (via C)	3 (via C)

Zadanie 7

Załóżmy, że w powyższej sieci tablice routingu zostały już zbudowane. Co będzie się działo, jeśli zostanie dodane połączenie między routerami A i D?

Stan przed dodaniem

	A	В	С	D	Е	F
trasa do A	-	1	2 (via B)	4 (via E)	3 (via C)	3 (via C)
trasa do B	1	-	1	3 (via C)	2 (via C)	2 (via C)
trasa do C	2 (via B)	1	-	2 (via E)	1	1
trasa do D	4 (via B)	3 (via C)	2 (via E)	-	1	2 (via E)
trasa do E	3 (via B)	2 (via C)	1	1	-	1
trasa do F	3 (via B)	2 (via C)	1	2 (via E)	1	-
trasa do S	1	1	2 (via B)	4 (via E)	3 (via C)	3 (via C)

Po dodaniu

	A	В	С	D	Е	F
trasa do A	-	1	2 (via B)	1	3 (via C)	3 (via C)
trasa do B	1	-	1	3 (via C)	2 (via C)	2 (via C)
trasa do C	1	1	-	2 (via E)	1	1
trasa do D	4 (via B)	3 (via C)	2 (via E)	-	1	2 (via E)
trasa do E	3 (via B)	2 (via C)	1	1	-	1
trasa do F	3 (via B)	2 (via C)	1	2 (via E)	1	-
trasa do S	1	1	2 (via B)	4 (via E)	3 (via C)	3 (via C)

Krok 1

	A	В	С	D	Е	F
trasa do A	-	1	2 (via B)	1	2 (via D)	3 (via C)
trasa do B	1	-	1	2 (via A)	2 (via C)	2 (via C)
trasa do C	1	1	-	2 (via E)	1	1
trasa do D	4 (via B)	2 (via A)	2 (via E)	-	1	2 (via E)
trasa do E	2 (via D)	2 (via C)	1	1	_	1
trasa do F	3 (via B)	2 (via C)	1	2 (via E)	1	-
trasa do S	1	1	2 (via B)	2 (via A)	3 (via C)	3 (via C)

Zadanie 8

W przedstawionej poniżej sieci uszkodzeniu ulega połączenie między routerami D i E. Załóżmy, żew sieci działa algorytm wektora odległości wykorzystujący technikę zatruwania ścieżki zwrotnej (poison reverse). Pokaż — opisując krok po kroku jakie komunikaty są przesyłane między routerami — żemoże powstać cykl w routingu.

Przed awarią

	A	В	С	D	Е
trasa do A	-	1	1	2 (via C)	3 (via D)
trasa do B	1	-	2 (via A)	1	2 (via D)
trasa do C	1	2 (via D)	-	1	2 (via D)
trasa do D	2 (via B)	1	1	-	1
trasa do E	3 (via B)	2 (via D)	2 (via D)	1	-

Po awarii

KROK	A	В	С	D
1 trasa do E	3 (via B)	2 (via D)	2 (via D)	œ
2 trasa do E	3 (via B)	œ	œ	00
3 trasa do E	∞	4 (via A)	4 (via A)	∞
4 trasa do E	5 (via B)	∞	∞	5 (via C)
⁵ trasa do E	œ	6 (via A)	6 (via D)	œ

Opis kroków

Krok 1.

 ${\cal D}$ zaznacza u siebie awarię

Krok 2.

Informacja o awarii (w tablicy D) dotarła do C i B ale jeszcze nie do A

Krok 3.

Informacja o awarii dotarła do A (z tablicy od B) ale B i C zaaktualizowały swoje tablice na podstawie wcześniejszej tablicy wysłanej przez A.

Krok 4.

A i D aktualizuje tablicę na podstawie informacji przesłanych tablic z B i C, B i C aktualizują tablice na podstawie dostarczonej informacji z A i D.

Krok 5.

A i D aktualizuje tablicę na podstawie informacji przesłanych tablic z B i C, B i C aktualizują tablice na podstawie dostarczonej informacji z A i D.

i tak dalej informacje mogą przychodzić na zmianę ...