Lecture 2

Review of Basic Concepts

Thermochemistry

Enthalpy - H heat content

H Changes with all physical and chemical changes

 ΔH° Standard enthalpy (25°C, 1 atm)

(H=O for all elements in their standard forms – by definition)

 $\frac{\text{Exothermic}}{\Delta H < O} \quad \text{vs} \quad \frac{\text{Endothermic}}{\Delta H > O}$

Heat is released Heat is absorbed

Because $\Delta H = (H \text{ products} - H \text{ reactants})$

Many special Enthalpy changes:

- fusion (melting) (s \rightarrow 1)
- vaporization $(1 \rightarrow g)$
- sublimation $(s \rightarrow g)$
- ionization (loss of an e or electrons)
- electron affinities (capture of an e or electrons)

 ΔH : look at signs and rationalize

EXO
$$Cl(g) + e^{-} \rightarrow Cl^{-}(g)$$
 $\Delta H^{\circ} = -349 \text{ kJ/mol}$

EXO
$$O(g) + e^{-} \rightarrow O(g)$$
 $\Delta H^{\circ} = -142 \text{ kJ/mol}$

ENDO
$$O(g) + e \rightarrow O^2(g)$$
 $\Delta H = 844 \text{ kJ/mol}$

Bond Energies:

Simple case

$$HF(g) = H(g) + F(g)$$

$$\Delta H = 566 \text{ kJ/mol}$$
 ENDOTHERMIC

The enthalpy of this process is the "H-F" Bond energy – the energy released when the H-F bond is formed.

Not so simple case...

$$H_2$$
-N-N H_2 = 2N(g) + 4H(g)

$$\Delta H = 1724 \text{ kJ/mol}$$

NOTE: This is not the bond energy for any of the bonds – It is a total enthalpy change.

Need to **Estimate**

If we know that:

$$NH_3(g) \longrightarrow N(g) + 3H(g)$$

$$\Delta H = 1172 \text{ kJ/mol}$$
 Then
$$E_{N\text{-H}} = \frac{1172}{3} = 391 \text{ kJ/mol}$$

If we assume this number is valid to use for Hydrazine, the formula of which is H_2NNH_2 or N_2H_4

Then

$$E_{N-N} + 4E_{N-H} = 1724 \text{ kJ/mol}$$

 $E_{N-N} = 1724 - 4(391)$
 $= 160 \text{ kJ/mol}$

... we have to live with these estimates

Thermochemical data can be tabulated by this method:

12 Chapter 1 / Some Preliminaries

Table 1-1 Some Average Thermochemical Bond Energies at 25 °C (in kJ mol⁻¹)

A. Single bond energies														
	H	C	Si	Ge	N	P	As	0	S	Sc	F	Cl	Br	I
Н	436	416	323	289	391	322	247	467	347	276	566	431	366	299
C		356	301	255	285	264	201	336	272	243	485	327	285	213
Sī			226		335		353	368	226	_	582	391	310	234
Ge				188	256	34-33	-	-		S=33		342	276	213
N					160	-200	-	201		-	272	193	-	-
P						209	-	~340	-	-	490	319	264	184
As-							180	331		(c 	464	317	243	180
								146		100	190	205	2001	201
O S									226		326	255	213	-
Se										172	285	243		7
F											158	255	238	-
C1												242	217	209
Br													193	180
I														151
53					31	B. Multip	ole bor	d energ	gies					
		C=C 598				C=N 616		C=O 695			N=N 418			
			C≡C 813			C≡N 866		C≡O 1073			N≡N 946			

Use these values to calculate the energy that it would take to form a molecule.

Entropy and Free Energy

Two factors in chemical reactions:

- 1. Enthalpy, H, $\binom{kJ}{mol}$ Energy (heat) dissipated
- 2. Entropy, S, $\binom{kJ}{Tmol}$ State of organization "order versus disorder" which is a statistical probability

When ΔH is more negative (exothermic) and ΔS is more positive (more disordered) a reaction is more favored.

 ΔG Free energy which is in $^{kJ}/_{mol}$ Involves the relationship between ΔH , ΔS $\Delta G = \Delta H$ - $T\Delta S$ (T in degrees K)

Example:

CH₂Cl₂ Heat of formation of Dicholoromethane

C-H
$$H=416 \text{ kJ/mol}$$

C-Cl
$$H= 327 \text{ kJ/mol}$$

$$2 \times 416 + 2 \times 327 = H_{formation} (CH_2Cl_2)$$

= 1308 kJ/mol

Using ΔG° as a Predictive Tool

$$\Delta G^{\circ} = \sum \Delta G_f^{\circ} \text{ (products)} - \Delta G_f^{\circ} \text{ (reactants)}$$

Of course

$$\Delta G^\circ = \Delta H^\circ - (298.15) \ \Delta S^\circ$$
 (standard temperature)
$$T = 25^\circ C \text{ or } 298.15 \text{ K}$$

The entropy change for a reaction is the difference between the absolute entropies of reactants and products.

$$\Delta S^{\circ} = \sum S^{\circ}$$
 (products) – S° (reactants)

- Q When is S = 0?
- At absolute zero for a perfectly crystalline solid

Now, what is the relationship between ΔG and the Equilibrium Constant K?

...recall
$$K = \frac{[C]^c [D]^d}{[A]^a [B]^b}$$
 aA + bB \rightleftharpoons cC + dD

$$\Delta G = -RT \ln K$$

†
gas constant $R = 8.314 \text{ J/Kmol}$

at 25°C we have:

$$\Delta G^{\circ} = -5.69 \log K_{298.15}$$

Q for
$$\Delta G^{\circ} = 0$$
 what is K?

<u>A</u> 1

Note:

The more negative is ΔG° , the more the reaction proceeds as written *i.e.* K is large so -5.69 log K is getting larger and more negative. Conversely, the more positive is ΔG° , the more the reaction will tend to the left \leftarrow rather then to the right \rightarrow as written.

Q How does a reaction become overall thermodynamically favored?

 $\underline{\mathbf{A}}$ 3 Ways.

First consider $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$

- 1. ΔH° and ΔS° favor the reaction that is, $\Delta H^{\circ} < O$, $\Delta S^{\circ} > O$
- 2. ΔH° favors the reaction, but ΔS° does not that is, $\Delta H^{\circ} < O$, $\Delta S^{\circ} < O$ but ΔH° is still more negative than $T\Delta S^{\circ}$ is positive
- 3. ΔH° disfavors the reaction, but ΔS° favors it $\Delta H^{\circ}>O$, $\Delta S^{\circ}>O$ but $T\Delta S^{\circ}$ is larger

Examples of all three types of situations:

1.formation of CO; SO₂ common case

$$^{1}/_{2} O_{2}(g) + C(s) \implies CO(g)$$
 $\Delta G^{\circ} = -137.2 \text{ kJ/mol}$
 $\Delta H^{\circ} = -110.5 \text{ kJ/mol}$
 $\Delta S^{\circ} = 26.7 \text{ kJ/mol}$
In both cases:

 $S(s) + O_{2}(g) \implies SO_{2}(g)$
 $\Delta G^{\circ} = -300.4 \text{ kJ/mol}$
 $\Delta H^{\circ} = -292.9 \text{ kJ/mol}$
 $\Delta S^{\circ} = 7.5 \text{ kJ/mol}$

2.synthesis of ammonia (NH₃)

$$N_2(g) + 3H_2(g) \implies 2NH_3(g)$$

 $\Delta G^{\circ} = -16.7 \text{ kJ/mol}$
 $\Delta H^{\circ} = -46.2 \text{ kJ/mol}$ Enthalpy favors rxn
 $T\Delta S^{\circ} = -29.5 \text{ kJ/mol}$ Entropy disfavors rxn

3.rare

$$NaCl(s) = Na^{+}(ag) + Cl^{-}(ag)$$

$$\Delta G^{\circ} = -2.7$$

 $\Delta H^{\circ} = +1.9$ (endothermic) Enthalpy disfavors rxn
 $T\Delta S^{\circ} = +4.6$ Entropy favors rxn

(less ordered in the dissolved form)

Q Does ΔG° value (sign) tell you whether a reaction will occur or not?

A NO. It tells you what is thermodynamically possible to attain at 25°C but does not tell you whether it will happen to an appreciable extent at 25°C simply upon mixing reactants.

Q What else needs to be considered?

A Kinetics or rate of the reaction. Activation energies for reactants to go to products can be very high, and the reaction will require a catalyst to occur. e.g. $NH_3(g)$ synthesis

To occur, a reaction needs a $-\Delta G^{\circ}$ and for the rate to be appreciable.

The study of <u>Kinetics</u> is the way we know the mechanism of a reaction **à** how it occurs.

Reaction conditions affect rate

 Temperature, concentration, solvent, pressure, presence of a catalyst One can write a rate law for any reaction

$$4HBr(g) + O_2(g) = 2H_2O(g) + 2Br_2(g)$$

rate constant, k
$$\downarrow \frac{d[O_2]}{dt} = -k \text{ [HBr] } [O_2]$$

rate of disappearance of O_2 is related to the product of the concentration of the two reactants.

Q Did I make a mistake here?

Why isn't the [HBr] concentration reflecting the molar ratio of the reaction?

$$4 \text{ HBr}(g) + 1 \text{ O}_2(g)$$
?

A No mistake. The rate law that best describes the speed of the reaction is the one based on a rate-limiting step. Obviously, in this reaction the rate limiting step is the reaction of one mole of O_2 with one mole of HBr.

$$1 + 1 = 2$$

 2^{nd} order reaction (sum of exponents on conc.)

Q What is a first order reaction?

A One in which the rate law depends on the concentration of only one reactant. (easy to envision in decomposition reactions)

$$2N_{2}O_{5}(g) = 4NO_{2}(g) + O_{2}(g)$$

$$\frac{d[N_{2}O_{5}]}{dt} = -k[N_{2}O_{5}]$$

Effect of temperature on Rates
Dependence of the rate constant, k, on Temp.,
T, in degrees Kelvin follows the Arrhenius Law

$$K = A e^{-Ea/RT}$$

E_a is the activation energy A is called the "frequency factor"

- The higher the activation energy, the slower the reaction
- A plot of log K versus T allows for E_a to be determined