CISC 2210 Discrete Structures - Noson S. Yanofsky

Student: Ruslan Pantaev

March 7, 2018

1.6

1.

Calculate

(a)

$$\frac{7!}{5!} = \frac{7 * 6 * 5!}{5!} = 7 * 6 = 42$$

(e)

$$\sum_{k=0}^{5} k! = 5! + 4! + 3! + 2! + 1! + 0! = 120 + 24 + 6 + 2 + 1 + 1 = 154$$

(f)

$$\prod_{j=3}^{6} j = 3 * 4 * 5 * 6 = \frac{6!}{2!} = 360$$

3.

Calculate

(a)

$$\sum_{k=1}^{n} 3^{k} \text{ for } n = 1, 2, 3, \text{ and } 4$$

$$\text{for } n = 1 \text{: } 3$$

$$\text{for } n = 2 \text{: } 3 + 9 = 12$$

$$\text{for } n = 3 \text{: } 3 + 9 + 27 = 39$$

$$\text{for } n = 4 \text{: } 3 + 9 + 27 + 81 = 120$$

(b)

$$\sum_{k=3}^{n} k^3 \text{ for } n = 3, 4 \text{ and } 5$$

for
$$n = 3$$
: 27
for $n = 4$: 27 + 91 = 118
for $n = 5$: 27 + 64 + 125 = 216

4.

Calculate

(a)

$$\sum_{i=1}^{10} (-1)^i = -1 + 1 + -1 + 1 + -1 + 1 + -1 + 1 + -1 + 1 = 0$$

(b)

$$\sum_{k=0}^{3} (k^2 + 1) = 1 + 2 + 5 + 10 = 18$$

(c)

$$\left(\sum_{k=0}^{3} k^2\right) + 1 = (0+1+4+9) + 1 = 15$$

7.

Consider the sequence given by $a_n = \frac{n-1}{n+1}$ for $n \in \mathbb{P}$

(a)

List the first six terms of this seq:

$$\frac{1-1}{1+1} = 0, \frac{2-1}{2+1} = \frac{1}{3}, \frac{3-1}{3+1} = \frac{1}{2}, \frac{4-1}{4+1} = \frac{3}{5}, \frac{5-1}{5+1} = \frac{2}{3}, \frac{6-1}{6+1} = \frac{5}{7}$$

(b)

Claculate $a_{n+1} - a_n$ for n = 1, 2, 3

for n = 1:
$$\frac{1}{3}$$

for n = 2: $\frac{3}{6} - \frac{2}{6} = \frac{1}{6}$
for n = 3: $\frac{6}{10} - \frac{5}{10} = \frac{1}{10}$

Show that
$$a_{n+1} - a_n = \frac{2}{(n+1)(n+2)}$$
 for $n \in \mathbb{P}$

$$\frac{\frac{(n+1)-1}{(n+1)+1} - \frac{n-1}{n+1}}{= \frac{n}{n+2} - \frac{n-1}{n+1}}$$

$$= \frac{n(n+1)}{(n+1)(n+2)} - \frac{(n-1)(n+2)}{(n+1)(n+2)}$$

$$= \frac{n^2 - n^2 + 2n - 2n + 2}{(n+1)(n+2)}$$

$$= \frac{2}{(n+1)(n+2)}$$

8.

Consider the sequence given by $b_n = \frac{1}{2}[1 + (-1)^n]$ for $n \in \mathbb{N}$

(a)

List the first seven terms of this seq:

$$\frac{1}{2}[1+(-1)^{0}] = \frac{1}{2}(2) = 1$$

$$\frac{1}{2}[1+(-1)^{1}] = \frac{1}{2}(0) = 0$$

$$\frac{1}{2}[1+(-1)^{2}] = \frac{1}{2}(2) = 1$$

$$\frac{1}{2}[1+(-1)^{3}] = \frac{1}{2}(0) = 0$$

$$\frac{1}{2}[1+(-1)^{4}] = \frac{1}{2}(2) = 1$$

$$\frac{1}{2}[1+(-1)^{5}] = \frac{1}{2}(0) = 0$$

$$\frac{1}{2}[1+(-1)^{6}] = \frac{1}{2}(2) = 1$$

(b)

What is its set of values?

$$\{1, 0\}$$

10.

For n = 1,2,3,..., let SSQ(n) =
$$\sum_{i=1}^{n} i^2$$
 (where SSQ = "sum of squares")

(a)

Calculate SSQ(n) for 1,2,3, and 5

for n = 1: 1
for n = 2:
$$1 + 4 = 5$$

for n = 3: $1 + 4 + 9 = 14$
for n = 5: $1 + 4 + 9 + 16 + 25 = 55$

(b)

Observe that $SSQ(n + 1) = SSQ(n) + (n + 1)^2$ for $n \ge 1$

$$SSQ(2) = 5$$

$$SSQ(2+1) = 5 + (2+1)^{2}$$

$$= 5 + 9 = 14$$

(Here we're simply adding an n+1 operation outside of \sum)

(c)

It turns out that SSQ(73) = 132,349. Use this to calculate SSQ(74) and SSQ(72)

$$SSQ(74) = SSQ(73) + (73 + 1)^2 = 132,349 + 5,476 = 137,825$$

 $SSQ(72) = SSQ(73) - (72 + 1)^2 = 132,349 - 5,329 = 127,020$

13. (a)

Using a calculator or other device, complete the table [write E if the calculation is beyond the capability of your computing device]

n	n^4	4^n	n^{20}	20^{n}	n!
5	$6.25 * 10^2$	$1.02 * 10^3$	$9.54 * 10^{13}$	$3.2*10^6$	$1.2 * 10^2$
10	$1*10^{4}$	$1.05 * 10^6$	$1*10^{20}$	$1.02 * 10^{13}$	$3.63 * 10^6$
25	$3.91*10^{5}$	$1.13 * 10^{15}$	$9.09 * 10^{27}$	$3.36 * 10^{32}$	$1.55 * 10^{25}$
50	$6.25 * 10^6$	$1.27 * 10^{30}$	$9.54 * 10^{33}$	$1.13 * 10^{65}$	$3.04 * 10^{64}$

14.

Repeat Exercise 13 for the table in Figure 4

n	$\log_{10} n$	\sqrt{n}	$20 * \sqrt[4]{n}$	$\sqrt[4]{n} * \log_{10} n$
50	1.70	7.07	53.18	4.52
100	2	10	63.25	6.32
10^{4}	4	100	200	40
10^{6}	6	1000	632.46	189.74