А.Л. Гольдштейн

Пермский национальный исследовательский политехнический университет

МНОГОКРИТЕРИАЛЬНАЯ ОЦЕНКА АЛЬТЕРНАТИВ

Предлагается метод решения неструктуризованных задач принятия решений, сочетающий элементы известных методов ELECTRE, МАИ, ШНУР и др. Рассматриваются два варианта метода: для задач с качественными критериями и для задач с количественными критериями.

Как известно, неструктуризованные задачи принятия решений отличаются тем, что невозможно установить и тем более математически описать связи между основными параметрами задачи. Известными являются лишь альтернативы и критерии, по которым их опенивают.

В таких задачах оценки альтернатив по критериям могут быть как количественные, так и качественные, что отражается на выборе метода решения. Поэтому рассмотрим эти случаи по отдельности. При этом будем исходить из того, что имеются оценки всех альтернатив по всем критериям Q_k (k=1,m) и предварительно выделено множество парето-оптимальных альтернатив A_i (i=1,n). Ставится задача — упорядочить альтернативы из этого множества на основе предпочтений лица, принимающего решения (ЛПР) и, если возможно, выделить лучшую альтернативу.

1. Пусть все критерии могут оцениваться только качественно. Для нахождения глобальных оценок таких альтернатив предлагается подход, сочетающий идеи методов ELECTRE [1] и метода анализа иерархий [2]. В соответствии с ним ЛПР должно попарно сравнить альтернативы отдельно по каждому критерию. При каждом сравнении ЛПР либо отдает предпочтение одной из альтернатив, либо считает их неразличимыми. В результате сравнения n(n-1)/2 пар альтернатив определяется столько же пар подмножеств I_{ij} и I_{ji} , где I_{ij} — подмножество индексов критериев, по которым альтернатива A_i предпочтитель-

нее A_j , мощность $|I_{ij}| = n_i$; I_{ji} — подмножество индексов критериев, по которым альтернатива A_i предпочтительнее A_i , мощность $|I_{ii}| = n_i$.

Поскольку все сравниваемые альтернативы являются недоминируемыми, ни одно из этих подмножеств не может быть пустым.

Для получения глобальных оценок альтернатив по подмножествам I_{ij} и I_{ji} воспользуемся идеей Т. Саати [2]. Построим матрицу **A** размерности $n \times n$, подобную матрицам парных сравнений, однако ее определение при равнозначности критериев не требует привлечения ЛПР. Элементы матрицы находим по формулам:

$$a_{ij} = \frac{n_i}{n_j}, i \neq j, a_{ij} = 1, i = j.$$
 (1)

Если критерии имеют разную значимость для ЛПР, то заполнению матрицы предшествует определение весов критериев одним из известных методов, например методом Т. Саати. Полагая, что веса критериев w_k нормированы, элементы матрицы **A** определяем аналогично индексам в методе ELECTRE I:

$$a_{ij} = \frac{\sum_{k \in I_{ij}} w_k}{\sum_{k \in I_{ij}} w_k}, \quad i \neq j; \quad a_{ij} = 1, \quad i = j.$$
 (2)

Из формул (1) и (2) очевидно, что $a_{ji} = 1/a_{ij}$, то есть матрица **A** симметрическая.

Следующий шаг состоит в вычислении главного собственного вектора матрицы \mathbf{A} и его нормировании. Элементы нормированного вектора и есть искомые глобальные относительные оценки альтернатив, и, следовательно, они позволяют расставить альтернативы в порядке их предпочтения.

Если в сравнении альтернатив участвуют P (P > 1) экспертов, то в формуле (1) n_i заменяется на $\sum_{p=1}^P n_{ip}$ (аналогично заменяется n_j), где n_{ip} — число критериев, по которым альтернатива A_i превосходит A_j , по мнению p-го эксперта. При учете весов критериев числитель в формуле (2) заменяется на $\sum_{p=1}^P \sum_{k=I}^p w_k$, где I_{ij}^p — подмножество индексов критери-

ев, по которым альтернатива A_i превосходит A_j , по мнению p-го эксперта. Таким же образом изменяется знаменатель этой формулы.

При необходимости учета разной компетентности экспертов нетрудно внести соответствующие изменения в расчет элементов матрицы \mathbf{A} .

Отметим, что при рассмотренном подходе необязательно иметь градации оценок по критериям, достаточно чтобы ЛПР мог сказать, в какой из двух альтернатив данное свойство или качество проявляется в большей степени или оно в обеих примерно одинаково.

Примером задачи с качественными критериями может служить задача выбора лучшего кинофильма из поступивших (отобранных) на конкурс. В качестве критериев здесь могут рассматриваться зрелищность, режиссерская работа, игра главных героев, исполнение ролей второго плана, работа оператора, актуальность сюжета и др. Аналогичный характер носят задачи выбора проектов по архитектуре, ландшафту и т.п.

2. Второй случай имеет место, когда оценки альтернатив по всем критериям заданы численно, в том числе в баллах. Подход к решению такой задачи аналогичен приведенному в п. 1, но при этом элементы матрицы **A** определяются по-другому.

Здесь мы используем некоторые идеи методов ШНУР [3] и компромиссного программирования [4]. По каждому критерию определим максимальное и минимальное значения на множестве заданных альтернатив:

$$\hat{Q}_{k} = \max(Q_{k1}, Q_{k2}, ..., Q_{kn}), \tag{3}$$

$$\check{Q}_k = \min(Q_{k1}, Q_{k2}, ..., Q_{kn}),$$
(4)

где Q_{ki} — оценка i-й альтернативы по k-му критерию. От исходных оценок Q_{ki} перейдем к оценкам относительным q_{ki} по формулам:

- для критериев на минимум

$$q_{ki} = \frac{\hat{Q}_k - Q_{ri}}{\hat{Q}_k - \breve{Q}_k},\tag{5}$$

для критериев на максимум

$$q_{ki} = \frac{Q_{ki} - \bar{Q}_k}{\bar{Q}_k - \bar{Q}}.$$
 (6)

Относительная оценка q_{ki} имеет смысл степени близости альтернативы A_i по критерию k к наилучшей по этому критерию альтернативе на заданном множестве альтернатив. Очевидно, что значения q_{ki} лежат в интервале [0, 1]; чем больше q_{ki} , тем лучше альтернатива A_i по критерию k независимо от направленности критерия.

Глобальные оценки альтернатив будем определять аналогично первому случаю, но элементы матрицы **A** вычислим по относительным оценкам, как отношение преимуществ одной альтернативы к преимуществам другой:

- при равнозначности критериев

$$a_{ij} = \frac{\sum_{k \in I_{ij}} (q_{ki} - q_{kj})}{\sum_{k \in I_{ii}} (q_{kj} - q_{ki})}, i \neq j; \quad a_{ii} = 1,$$
(7)

- при разной значимости критериев

$$a_{ij} = \frac{\sum_{k \in I_{ij}} w_k (q_{ki} - q_{kj})}{\sum_{k \in I_{ji}} w_k (q_{kj} - q_{ki})}, i \neq j; \quad a_{ii} = 1.$$
(8)

В приведенных формулах в числителе представлено суммарное превосходство альтернативы A_i над альтернативой A_j , а в знаменателе – суммарное превосходство альтернативы A_j над альтернативой A_i . Как и в первом случае, матрица **A** является симметрической.

Пример. Объявлен конкурс на создание некоторого технического устройства с электропитанием.

Для оценки предложений определены следующие критерии: Q_1 – срок разработки, месяцы; Q_2 – стоимость разработки, млн руб.; Q_3 – срок окупаемости, лет; Q_4 – рентабельность производства, %; Q_5 – надежность (вероятность безотказной работы); Q_6 – потребляемая мощность, кВт.

На конкурс поступили пять проектов, значения критериев которых представлены в табл. 1.

В последних двух столбцах определены максимальные и минимальные значения критериев на множестве проектов.

Таблица 1

15

0,9

3,4

20

0,92

2,7

20

0,97

15

0,9

2,7

			-				
Направление	Значен	начения критериев в проекте					
улучшения	A_1	A_2	A_3	A_4	A_5	\mathcal{Q}_k	\mathcal{Q}_k
min	12	15	10	8	11	15	8
min	2,1	2,0	2,5	1,6	2,5	2,5	1,6
min	3	3,5	2,5	4	3	4	2,5

15

0,95

По формулам (5) и (6) вычисляем степени близости, например:

$$q_{11} = \frac{15 - 12}{15 - 8} = \frac{3}{7}, \qquad q_{51} = \frac{0.92 - 0.9}{0.97 - 0.9} = \frac{2}{7}.$$

18

0,97

Характеристика проектов

Результаты вычислений сведены в табл. 2.

18

0,92

2,7

max

max

min

Таблица 2 Значения степеней близости критериев по проектам

Критерии	Степени близости q_{ki}						
	A_1	A_2	A_3	A_4	A_5		
Q_1	3/7	0	5/7	1	4/7		
Q_2	4/9	5/9	0	1	0		
Q_3	2/3	1/3	1	0	2/3		
Q_4	3/5	3/5	0	0	1		
Q_5	2/7	1	5/7	0	2/7		
Q_6	1	0,77	0	0,46	1		

По значениям степеней близости и формуле (7) вычисляем элементы матрицы **A**. Так, в паре альтернатив A_1 , A_2 первая имеет превосходство над второй по критериям Q_1 , Q_3 и Q_6 , а вторая над первой — по Q_2 и Q_5 , следовательно,

$$a_{12} = \frac{(3/7 - 0) + (2/3 - 1/3) + (1 - 0.77)}{(5/9 - 4/9) + (1 - 2/7)} = \frac{0.992}{0.825} = 1,202,$$

$$a_{21} = \frac{0.825}{0.992} = 0.832.$$

Критерии

 Q_1

 Q_2

 Q_3

 Q_4

 Q_5

 Q_6

В результате аналогичных вычислений получаем матрицу А:

Проекты	A_1	A_2	A_3	A_4	A_5
A_1	1	1,202	1,943	1,856	0,818
A_2	0,832	1	1,601	1,553	0,828
A_3	0,515	0,625	1	0,982	0,452
A_4	0,539	0,644	1,018	1	0,573
A_5	1,223	1,208	2,21	1,746	1

Интересно отметить, что в такой матрице равенства $a_{ik}=a_{ij}\cdot a_{jk}$ нарушаются в значительно меньшей степени (до 20 %), чем в матрицах парных сравнений в [2].

Теперь находим собственный вектор матрицы **A**: $(1,288; 1,114; 0,678;0,727; 1,416)^{\text{т}}$ и после нормирования получаем вектор глобальных весов проектов: $(0,247;0,213;0,130;0,139;0,271)^{\text{т}}$. Таким образом, лучшими проектами следует признать пятый и первый.

Предположим теперь, что ЛПР считает критерии неравнозначными и согласен сравнить их по схеме Т. Саати. Результаты парных сравнений и вычисленные веса критериев показаны в табл. 3.

Таблица 3 Матрица парных сравнений и веса критериев

Крите- рии	Срок разра- ботки	Стои- мость разра- ботки	Срок оку-паемости	Рентабель- ность	На- деж- ность	Потреб- ляемая мощ- ность	Собст- венный вектор	Норми- рован- ный вектор
Срок								
разра- ботки	1	0,5	0,5	0,333	0,5	1	0,589	0,09
Стои- мость разра- ботки	2	1	1	0,5	2	3	1,348	0,19
Срок окупае- мости	2	1	1	1	2	3	1,513	0,22
Рентабе- льность	3	2	1	1	3	5	2,117	0,31
Надеж- ность	2	0,5	0,5	0,333	1	2	0,832	0,12
Потреб- ляемая мощ- ность	1	0,333	0,333	0,2	0,5	1	0,472	0,07

Максимальное собственное значение этой матрицы $\lambda_{max} = 6,1$, а индекс согласованности ИС = 0,02, что свидетельствует о непротиворечивости предпочтений ЛПР на множестве критериев. Поэтому берем элементы нормированного вектора в качестве весов критериев и по формуле (8) определяем матрицу **A**:

Проекты	A_1	A_2	A_3	A_4	A_5
A_1	1	1,198	2,26	2,58	0,62
A_2	0,835	1	1,8	2,3	0,722
A_3	0,44	0,555	1	1,233	0,362
A_4	0,39	0,435	0,811	1	0,432
A_5	1,62	1,385	2,761	2,313	1

Вычислив нормированный собственный вектор матрицы **A**, получаем глобальные оценки проектов с учетом весов критериев: 0,246; 0,220; 0,118; 0,104; 0,312. Как видно из этих значений, учет весов критериев повысил оценку пятого проекта с 0,271 до 0,312, то есть этот проект снова наиболее предпочтительный, но с еще большим отрывом от остальных, чем при равнозначных критериях.

Для решения задач с качественными и количественными оценками можно также применить приведенный выше метод в тех случаях, когда исходно качественные критерии допускают оценку по балльной шкале.

На наш взгляд, достоинствами предлагаемого подхода являются его простота и меньшая субъективность при определении элементов матрицы \mathbf{A} , особенно при числовых оценках критериев.

Библиографический список

- 1. Ларичев О.И. Теория и методы принятия решений, а также Хроника событий в Волшебных странах: учебник для вузов. 3-е изд., перераб. и доп. М.: Логос, 2008. 391 с.
- 2. Саати Т. Принятие решений. Метод анализа иерархий: пер. с англ. М.: Радио и связь, 1993.
- 3. Ларичев О.И. Вербальный анализ решений / Ин-т системного анализа РАН. М.: Наука, 2006.
- 4. Evren R. Interactive compromise programming // J.Opl.Res.Soc. -1987. Vol. 38. No. 2. P. 163-172.

Получено 05.09.2012