Lösung 9.1: Entspannung in Düse.

a. 1. HS:

$$\underbrace{w_{t\,12}}_{=\,0} + \underbrace{q_{12}}_{=\,0} = h_2 - h_1 + \frac{1}{2}(c_2^2 - \underbrace{c_1^2}_{\approx\,0}) + g\underbrace{(z_2 - z_1)}_{z_2 = z_1}$$

$$c_2 = \sqrt{2(h_1 - h_2)} = \sqrt{2c_p(T_1 - T_2)} = \sqrt{2c_pT_1\left[1 - \left(\frac{p_2}{p_1}\right)^{\frac{\kappa - 1}{\kappa}}\right]} = 241 \text{ m/s}$$

$$T_2 = T_1\left(\frac{p_2}{p_1}\right)^{\frac{\kappa - 1}{\kappa}} = 271 \text{ K}$$

$$\text{wobei} \quad \kappa = \frac{c_p}{c_v} = \frac{c_p}{c_p - R_L} = 1.4$$

b.

Kontinuität:
$$\dot{m}_1 = \dot{m}_2$$

 $A_1 c_1 \rho_1 = A_2 c_2 \rho_2$
 $\text{mit } \rho_1 = \frac{p_1}{R_L T_1} \; ; \; \rho_2 = \frac{p_2}{R_L T_2}$
 $\text{gilt : } A_1 c_1 \frac{p_1}{R_L T_1} = A_2 c_2 \frac{p_2}{R_L T_2}$
 $\frac{A_1}{A_2} = \frac{c_2}{c_1} \frac{p_2 T_1}{p_1 T_2} = 0.77 \frac{c_2}{c_1}$

Da $c_2 \gg c_1$ ist, muss A_2 kleiner als A_1 sein.

c. Allgemein gilt: Wenn keine Wärme- und Strömungsverluste vorhanden sind, ist die Dissipation dj=0. Dies kann mit der Gleichung für die technische Arbeit bewiesen werden:

$$\underbrace{w_{t \, 12}}_{= \, 0} = \int_{1}^{2} v \, dp + \frac{1}{2} \left(c_{2}^{2} - \underbrace{c_{1}^{2}}_{= \, 0} \right) + g \underbrace{\left(z_{2} - z_{1} \right)}_{z_{2} = z_{1}} + j_{12}$$

$$j_{12} = -\int_{1}^{2} v \, dp - \frac{c_{2}^{2}}{2}$$

Das spezifische Volumen v und die Temperatur T sind wie folgt vom Druck p abhängig:

$$v(p) = \frac{R_L T}{p}$$

$$T(p) = T_1 \left(\frac{p}{p_1}\right)^{\frac{\kappa - 1}{\kappa}}$$

Dies ergibt:

$$j_{12} = -\int_{1}^{2} \frac{R_L T_1 \left(\frac{p}{p_1}\right)^{\frac{\kappa - 1}{\kappa}}}{p} dp - \frac{c_2^2}{2} \approx 0$$

Damit genau0erreicht wird, müssen für $c,\,R_L$ und κ die genauen Werte eingesetzt werden.

Lösung 9.2: Entspannung in Turbine.

$$w_{t \, 12} + \underbrace{q_{12}}_{=0} = h_2 - h_1 + \underbrace{\frac{1}{2} \left(c_2^2 - c_1^2\right)}_{c_2 = c_1} + g\underbrace{\left(z_2 - z_1\right)}_{z_2 = z_1}$$

$$w_{t \, 12} = h_2 - h_1 = c_p \left(T_2 - T_1\right) = c_p T_1 \left[\left(\frac{p_2}{p_1}\right)^{\frac{\kappa - 1}{\kappa}} - 1\right]$$

$$w_{t \, 12} = -29.1 \text{ kJ/kg}$$

$$P = \dot{m} \, w_{t \, 12} = -58.2 \text{ kW}$$

b. Isentrope Zustandsänderung:

$$T_2 = T_1 \left(\frac{p_2}{p_1}\right)^{\frac{\kappa - 1}{\kappa}} = 271 \text{ K}$$

c. Wärmeisolierte Turbine, keine Strömungsdruckverluste, d.h. keine Dissipation, $j_{12} = 0$ (siehe Aufgabe 9.1).

$$s_2 = s_1$$

Lösung 9.3: Entspannung in Turbine und anschliessende Erwärmung.

a. 1. HS:

$$\underbrace{w_{t\,12}}_{=\,0} + \underbrace{q_{12}}_{=\,0} = h_2 - h_1 + \frac{1}{2} \underbrace{\left(c_2^2 - c_1^2\right)}_{c_2 = c_1} + g \underbrace{\left(z_2 - z_1\right)}_{z_2 = z_1}$$

$$h_2 = h_1$$

$$T_2 = T_1 = 300 \text{ K}$$

- b. Es handelt sich um eine Drosselung bei konstanter Enthalpie (isenthalpe Drosselung).
- c. Dissipierte Energie:

$$\underbrace{w_{t\,12}}_{=\,0} = \int_{1}^{2} v \, dp + \frac{1}{2} \underbrace{\left(c_{2}^{2} - c_{1}^{2}\right)}_{c_{2} = c_{1}} + g \underbrace{\left(z_{2} - z_{1}\right)}_{z_{2} = z_{1}} + j_{12}$$

$$j_{12} = -\int\limits_{1}^{2} v \,\mathrm{d}p = -R_L \, T \, \ln \, rac{p_2}{p_1} = 30.7 \,\, \mathrm{kJ/kg}$$

Lösung 9.4: Drosselung in Blende.

a. 1. HS:

$$\underbrace{w_{t \, 12}}_{=\, 0} + \underbrace{q_{12}}_{=\, 0} = h_2 - h_1 + \frac{1}{2} \underbrace{\left(c_2^2 - c_1^2\right)}_{c_2 \, = \, c_1} + g \underbrace{\left(z_2 - z_1\right)}_{z_2 \, = \, z_1}$$

$$h_2 = h_1$$

$$T_2 = T_1 = 300 \text{ K}$$

Für die technische Arbeit gilt nach Aufgabe 3.3:

$$\underbrace{w_{t\,12}}_{=\,0} = \underbrace{\int\limits_{1}^{2} v\,\mathrm{d}p + \frac{1}{2}\underbrace{\left(c_{2}^{2} - c_{1}^{2}\right)}_{=\,0} + g\underbrace{\left(z_{2} - z_{1}\right)}_{=\,0} + \underbrace{j_{12}}_{\mathrm{Diss}}}_{\text{rev. Anteil}}$$

$$j_{12} = -\int_{1}^{2} v \, dp = -R_L T \ln \frac{p_2}{p_1} = 30.7 \text{ kJ/kg}$$

Man beachte: Gleiche Dissipation wie in Aufgabe 9.3!

b. 1. HS:

$$\underbrace{w_{t\,12}}_{=0} + \underbrace{q_{12}}_{=0} = h_2 - h_1 + \frac{1}{2} \left(c_2^2 - c_1^2 \right) + g \underbrace{\left(z_2 - z_1 \right)}_{z_2 = z_1}$$

$$h_2 - h_1 + \frac{1}{2} \left(c_2^2 - c_1^2 \right) = 0$$

Kontinuität:

$$\dot{m_1} = \dot{m_2}$$
 $c_1 \, \rho_1 \, A_1 = c_2 \, \rho_2 \, A_2$
 $\text{mit } A_1 = A_2 \, \text{und } \rho = \frac{1}{v} :$
 $\frac{c_1}{v_1} = \frac{c_2}{v_2}$

Perfektes Gas

$$v = \frac{R_L T}{p}$$

$$\frac{c_2}{c_1} = \frac{\frac{R_L T_2}{p_2}}{\frac{R_L T_1}{p_1}} = \left(\frac{p_1}{p_2}\right) \left(\frac{T_2}{T_1}\right); \quad \text{Einsetzen in 1. HS:}$$

$$c_p \left(T_2 - T_1\right) + \frac{1}{2} \left(\left[c_1 \left(\frac{p_1}{p_2}\right) \left(\frac{T_2}{T_1}\right)\right]^2 - c_1^2\right) = 0$$

$$\frac{1}{2} \left(\frac{c_1 p_1}{p_2 T_1}\right)^2 T_2^2 + c_p T_2 - \frac{c_1^2}{2} - c_p T_1 = 0$$

Quadratische Gleichung; nur eine positive Lösung ist physikalisch möglich:

$$T_2 = 299.79 \text{ K}$$

Man beachte: $T_1 = 300 \text{ K}$, $T_2 = 299.79 \text{ K}$, d.h. die Änderung der kinetischen Energie ist praktisch vernachlässigbar.

Dissipierte Energie:

$$\underbrace{w_{t\,12}}_{=\,0} = \int_{1}^{2} v \, \mathrm{d}p + \frac{1}{2} \underbrace{\left(c_{2}^{2} - c_{1}^{2}\right)}_{c_{2} \approx c_{1}} + g \underbrace{\left(z_{2} - z_{1}\right)}_{z_{2} = z_{1}} + j_{12}$$
$$j_{12} = -\int_{1}^{2} v \, \mathrm{d}p = -R_{L} T \ln \frac{p_{2}}{p_{1}} = 30.7 \, \mathrm{kJ/kg}$$

Vergleiche mit Aufgabe 9.3!

Lösung 9.5: Verdichtung von Sauerstoff.

a. isentrope Zustandsänderung:

$$T_{2s} = T_1 \left(\frac{p_2}{p_1}\right)^{\frac{\kappa - 1}{\kappa}} = 891.1 \text{ K}$$

$$\Delta T_s = T_{2s} - T_1 = T_1 \left[\left(\frac{p_2}{p_1}\right)^{\frac{\kappa - 1}{\kappa}} - 1\right] = 597.9 \text{ K}$$

$$\Delta T_p = 1.2 \Delta T_s = 717.5 \text{ K}$$

$$T_{2p} = T_1 + \Delta T_p = 1010.6 \text{ K}$$

Polytrope Zustandsänderung:

$$\frac{T_{2p}}{T_1} = \left(\frac{p_2}{p_1}\right)^{\frac{n-1}{n}} \quad \to \quad n = -\frac{\ln\frac{p_2}{p_1}}{\ln\frac{T_{2p}}{T_1} - \ln\frac{p_2}{p_1}} = 1.463$$

b. 1. HS:

$$w_{t12} + \underbrace{q_{12}}_{=0} = h_2 - h_1 + \frac{1}{2} \underbrace{\left(c_2^2 - c_1^2\right)}_{c_1 = c_2} + g \underbrace{\left(z_2 - z_1\right)}_{z_2 = z_1}$$

$$w_{t\,12\,p} = h_{2\,p} - h_1 = c_p \ (T_{2\,p} - T_1) = 655.9 \ \mathrm{kJ/kg}$$

c. Die spezifische technische Arbeit $w_{t\,12\,s}$ für eine isentrope Verdichtung berechnet sich mit:

$$w_{t\,12\,s} = c_p (T_{2\,s} - T_1) = \frac{\kappa R_{O2}}{\kappa - 1} (T_{2\,s} - T_1) = 546.6 \text{ kJ/kg}$$

$$\eta_s = \frac{w_{t\,12\,s}}{w_{t\,12\,p}} = \frac{T_{2\,s} - T_1}{T_{2\,p} - T_1} = 0.833$$

Lösung 9.6: Irreversibler Druckaufbau in einem adiabaten Diffusor.

1. HS:
$$\underbrace{w_{t\,12}}_{=0} + \underbrace{q_{12}}_{=0} = h_2 - h_1 + \frac{1}{2} \underbrace{\left(\frac{c_2^2}{c_2^2} - c_1^2\right) + g}_{\approx 0} \underbrace{\left(z_2 - z_1\right)}_{z_2 = z_1}$$
$$h_2 + \underbrace{\frac{c_2^2}{2}}_{=0} = h_1 + \frac{c_1^2}{2}$$
$$h_2 - h_1 = \frac{c_1^2}{2}$$

$$\eta_s = \frac{h_{2\,s} - h_1}{h_2 - h_1}$$

$$h_{2\,s} - h_1 = \eta_s \, (h_2 - h_1) = 73.3 \text{ kJ/kg}$$

Von Zustand 1 aus kann die spezifische Enthalpiedifferenz $h_{2s} - h_1$ eingezeichnet werden. Damit ist der Druck im Zustand 2 und 2s bekannt. Der Zustand 2 ist durch den Schnittpunkt der $p_2 = \text{konst.}$ Linie und der spezifischen Enthalpiedifferenz $h_2 - h_1$ definiert.

Aus dem h, s-Diagramm kann für den Zustand 2s ein Druck von 62 bar(a) und eine Temperatur von ca. 340°C herausgelesen werden. Im Zustand 2 beträgt der Druck 62 bar(a) und die Temperatur 350°C.

$h,\!s\text{-}\mathrm{Diagramm}$ von Wasser

THFL+SY, FS 2016, B. Wellig, J. Worlitschek, L. Fischer

Lösung 9.7: Expansion von Luft mit einer adiabaten Turbine.

$$\dot{m} = \dot{V}_1 \, \rho_1 = 18.94 \, \, \text{kg/s}$$

$$\rho_1 = \frac{p_1}{R_L T_1} = 4.871 \text{ kg/m}^3$$

1. Spezifische technische Arbeit

$$c_1 = \frac{\dot{V}_1}{A_1} = 194.5 \text{ m/s}$$

$$T_{2s} = T_1 \left(\frac{p_2}{p_1}\right)^{\frac{\kappa - 1}{\kappa}} = 531.7 \text{ K}$$

$$\eta_{s} = \frac{h_{2} - h_{1}}{h_{2\,s} - h_{1}} = \underbrace{\frac{c_{p\,m} \left(T_{2\,s} - T_{1} \right)}{c_{p\,m} \left(T_{2\,s} - T_{1} \right)}}_{c_{p\,m} = \text{konst.}} = \frac{T_{2} - T_{1}}{T_{2\,s} - T_{1}}$$

$$T_2 = T_1 - \eta_s (T_1 - T_{2s}) = 612.9 \text{ K}$$

$$\rho_2 = \frac{p_2}{R_L \, T_2} = 0.568 \ \mathrm{kg/m^3}$$

$$c_2 = \frac{\dot{m}/\rho_2}{A_2} = 77.4 \text{ m/s}$$

$$c_p = \frac{\kappa R_L}{\kappa - 1} = 1107 \text{ J/(kg K)}$$

1. HS:

$$w_{t \, 12} + \underbrace{q_{12}}_{=0} = h_2 - h_1 + \frac{1}{2} \left(c_2^2 - c_1^2 \right) + g \underbrace{\left(z_2 - z_1 \right)}_{z_2 = z_1}$$

$$w_{t \, 12} = h_2 + \frac{c_2^2}{2} - \left(h_1 + \frac{c_1^2}{2} \right)$$

$$w_{t \, 12} = c_p \left(T_2 - T_1 \right) + \frac{1}{2} \left(c_2^2 - c_1^2 \right) = -525.3 \text{ kJ/kg}$$

2. Abgegebene Wellenleistung

$$P = \dot{m} w_{t,12} = -9.95 \text{ MW}$$

3. Dissipierte Energie

$$w_{t12} = \int_{1}^{2} v \, dp + \frac{1}{2} \left(c_2^2 - c_1^2 \right) + g \underbrace{\left(z_2 - z_1 \right)}_{=0} + j_{12}$$

Polytrope Zustandsänderung

$$n = \frac{\ln \frac{p_2}{p_1}}{\ln \frac{p_2}{p_1} - \ln \frac{T_2}{T_1}} = 1.26$$

$$\int_{1}^{2} v \, dp = \frac{n \, R_L}{n-1} \left(T_2 - T_1 \right) = -640.1 \, \text{kJ/kg}$$

$$j_{12} = -\int_{1}^{2} v \, dp - \frac{1}{2} \left(c_2^2 - c_1^2 \right) + w_{t \, 12} = 130.7 \text{ kJ/kg}$$

$h,\!s\text{-}\mathrm{Diagramm}$ von Luft

THFL+SY, FS 2016, B. Wellig, J. Worlitschek, L. Fischer

Lösung 10.1: System mit 3 Teilprozessen.

A.: Geschlossenes System

1. p, V- und T, s-Diagramme

 $1 \rightarrow 2$: Isotherme Verdichtung

 $2 \rightarrow 3$: Isochore Erwärmung

 $3 \rightarrow 1$: Isentrope Expansion

2. Berechnung der Kreisarbeit

Gegebene Zustandspunkte

$$\begin{array}{c|cccc} {\rm Punkt} & 1 & 2 & 3 \\ \hline p \, [{\rm bar(a)}] & 1 & ? & ? \\ T \, [{\rm K}] & 298.15 & 298.15 & ? \\ \end{array}$$

Berechnung der Temperatur 3:

$$\frac{T_3}{T_1} = \left(\frac{V_1}{V_3}\right)^{\kappa - 1}$$

$$T_3 = T_1 \left(\frac{V_1}{V_3}\right)^{\kappa - 1} = 567.6 \text{ K}$$

Mit diesen Angaben kann die technische Arbeit jedes Teilprozesses berechnet werden. Die Summe der einzelnen technischen Arbeiten ergibt die Kreisarbeit.

Spezifische Volumenänderungsarbeit:

$$w_{v\,12\,rev} = -R_L\,T_1\,\ln\frac{V_2}{V_1} = 137.72~{\rm kJ/kg}$$

 $w_{v\,23\,rev}=0$: keine Arbeit, da Volumenänderung dv=0

$$w_{v \, 31 \, rev} = \frac{R_L \, T_3}{\kappa - 1} \left[\left(\frac{V_3}{V_1} \right)^{\kappa \, - \, 1} - 1 \right] = -193.32 \, \, \text{kJ/kg}$$

Spezifische Kreisarbeit:

$$w_K = w_{v\,12\,rev} + w_{v\,23\,rev} + w_{v\,31\,rev} = -55.60 \text{ kJ/kg}$$

Es wird Arbeit abgegeben; die Bilanz ergibt eine negative Nettoarbeit (rechtslaufender Kreisprozess).

B.: Stationärer Kreisprozess 1. Prozessschema

2. p, v- und T, s-Diagramme

 $1 \rightarrow 2$: Isotherme Verdichtung $2 \rightarrow 3$: Isobare Erwärmung

THFL+SY, FS 2016, B. Wellig, J. Worlitschek, L. Fischer

3. Berechnung der Kreisarbeit

Gegebene Zustandspunkte

$$\begin{array}{c|cccc} {\rm Punkt} & 1 & 2 & 3 \\ \hline p \, [{\rm bar(a)}] & 1 & 7 & 7 \\ T \, [{\rm K}] & 298.15 & 298.15 & ? \\ \end{array}$$

Berechnung der Temperatur 3:

$$\frac{T_3}{T_1} = \left(\frac{p_3}{p_1}\right)^{\frac{\kappa - 1}{\kappa}}$$

$$T_3 = T_1 \left(\frac{p_3}{p_1}\right)^{\frac{\kappa - 1}{\kappa}} = 519.9 \text{ K}$$

Mit diesen Angaben kann die technische Arbeit jedes Teilprozesses berechnet werden. Die Summe der einzelnen technischen Arbeiten ergibt die Kreisarbeit.

Technische Arbeit:

$$w_{t\,12} = R_L\,T_1\,\ln\frac{p_2}{p_1} = 166.51~\mathrm{kJ/kg}$$

 $w_{t23} = 0$: keine technische Arbeit, da Druckänderung dp = 0

$$w_{t31} = c_p (T_1 - T_3) = R_L \frac{\kappa}{\kappa - 1} (T_1 - T_3) = -222.75 \text{ kJ/kg}$$

spezifische Kreisarbeit:

$$w_K = w_{t,12} + w_{t,23} + w_{t,31} = -56.20 \text{ kJ/kg}$$

Es wird Arbeit abgegeben; die Bilanz ergibt eine negative Nettoarbeit (rechtslaufender Kreisprozess).

Lösung 10.2: Kalte Luft auf einfache Weise erzeugen - idealisiert.

A.: Geschlossenes System 1. p, V und T, s-Diagramme

 $1 \rightarrow 2$: Isotherme Verdichtung $2 \rightarrow 3$: Isoentrope Expansion $3 \rightarrow 1$: Isochore Erwärmung

2. Druck und Volumen für 1 kg Luft

$$\frac{T_3}{T_2} = \left(\frac{V_2}{V_3}\right)^{\kappa - 1}$$

$$V_2 = V_3 \left(\frac{T_3}{T_2}\right)^{\frac{1}{\kappa - 1}} \quad V_3 = V_1 = \frac{m R_L T_1}{p_1} = 0.841 \text{ m}^3$$

$$V_2 = \frac{m R_L T_1}{p_1} \left(\frac{T_3}{T_2}\right)^{\frac{1}{\kappa - 1}} = 0.152 \text{ m}^3$$

$$p_2 = \frac{m R_L T_2}{V_2} = 5.51 \text{ bar(a)}$$

3. Berechnung der Kreisarbeit

Gegebene Zustandspunkte

Punkt	1	2	3
$\frac{p \left[\text{bar(a)} \right]}{T \left[\text{K} \right]}$	1	?	?
T[K]	293.15	293.15	148

Spezifische Volumenänderungsarbeit:

$$w_{v\,12\,rev} = -R_L\,T_1\,\ln\frac{V_2}{V_1} = 143.53\,\,\mathrm{kJ/kg}$$

$$w_{v\,23\,rev} = c_v\,(T_3 - T_2) = \frac{R_L}{\kappa - 1}\,(T_3 - T_2) = -104.04\,\,\mathrm{kJ/kg}$$

 $w_{v\,31\,rev}=0$ keine Arbeit, da Volumenänderung dv=0

Spezifische Kreisarbeit:

$$w_K = w_{v \, 12 \, rev} + w_{v \, 23 \, rev} + w_{v \, 31 \, rev} = 39.51 \, \text{kJ/kg}$$

Arbeit muss zugeführt werden; die Bilanz ergibt eine positive Nettoarbeit (linkslaufender Kreisprozess).

B.: Stationärer Kreisprozess

1. Prozessschema

2. p, V- und T, s-Diagramme

 $1 \rightarrow 2$: Isotherme Verdichtung

 $2 \rightarrow 3$: Isoentrope Expansion

 $3 \rightarrow 1$: Isobare Erwärmung

3. Druck und spezifisches Volumen nach dem ersten Teilprozess

$$\frac{T_3}{T_2} = \left(\frac{p_3}{p_2}\right)^{\frac{\kappa - 1}{\kappa}}$$

$$p_2 = p_3 \left(\frac{T_2}{T_3}\right)^{\frac{\kappa}{\kappa - 1}} = 10.90 \text{ bar(a)}$$

$$v_2 = \frac{R_L T_2}{p_2} = 0.077 \text{ m}^3/\text{kg}$$

4. Berechnung der Kreisarbeit

Gegebene Zustandspunkte

$$\begin{array}{c|cccc} {\rm Punkt} & 1 & 2 & 3 \\ \hline p \; [{\rm bar(a)}] & 1 & ? & 1 \\ T \; [{\rm K}] & 293.15 & 293.15 & 148 \\ \end{array}$$

Technische Arbeit:

$$\begin{split} w_{t\,12} &= R_L\,T_1\,\ln\frac{p_2}{p_1} = 200.96~\mathrm{kJ/kg}\\ w_{t\,23} &= c_p\,(T_3-T_2) = R_L\,\frac{\kappa}{\kappa-1}(T_3-T_2) = -145.65~\mathrm{kJ/kg}\\ w_{t\,31} &= 0 \quad \text{keine technische Arbeit, da Druckänderung d}p = 0 \end{split}$$

Spezifische Kreisarbeit:

$$w_K = w_{t12} + w_{t23} + w_{t31} = 55.31 \text{ kJ/kg}$$

Arbeit muss zugeführt werden; die Bilanz ergibt eine positive Nettoarbeit (linkslaufender Kreisprozess).

Lösung 11.1: Rechts- und linksdrehender Carnot-Prozess. Rechtslaufender Carnot-Prozess im p, v-Diagramm:

Der linkslaufende Carnot-Prozess erfolgt analog. Hier ist jedoch die Fläche der Kompression grösser als jene der Expansion, womit die Kreisarbeit positiv ausfällt.

Rechtslaufender Carnot-Prozess im T, s-Diagramm: (ohne p = konst. und v = konst. Linien)

Die Summe der spezifischen Wärmen $\sum q$ ist positiv. Da $w_K = -\sum q$ ist, ist die Kreisarbeit negativ.

Analoges erhält man für den linkslaufenden Carnot-Prozess, wobei hier die Summe der spezifischen Wärme negativ ist, wodurch die Kreisarbeit positiv ist.

Lösung 11.2: Beurteilung eines Patentes. Wir betrachten die bestmögliche WKM zwischen den Temperaturniveaus der Wärmezufuhr und Wärmeabfuhr an die Umgebung:

- Carnot-WKM
- Wärmeübertragung ohne Temperaturdifferenz

Thermischer Wirkungsgrad:

$$\eta_C = 1 - \frac{T_U}{T} = 0.67$$

Thermischer Wirkungsgrad der WKM des Erfinders (E):

$$\eta_E = \frac{-P}{\dot{Q}} = 0.72$$

Der Wirkungsgrad ist höher als η_C , d.h. die WKM ist nicht realisierbar.

Alternative Beurteilung:

Für stationäre Prozesse gilt:

$$\begin{split} \dot{S}_{irr} &= -\sum \frac{\dot{Q}_i}{T_i} \geq 0 \\ \dot{S}_{irr} &= -\left(\frac{\dot{Q}}{T} + \frac{\dot{Q}_U}{T_U}\right) = -8.7 \text{ W/K} \end{split}$$

Der Prozess verletzt den 2.HS (Perpetuum Mobile 2.Art).

Lösung 11.3: Kombination von rechts- und linksdrehendem Carnot-Prozess.

a. Energieflussbild

b. Carnot-Wirkungsgrad der WKA:

$$\eta_C = \frac{T_2 - T_1}{T_2}$$

Leistungszahl der WP:

$$\varepsilon_{WP} = \frac{1}{\eta_c} = \frac{T_2}{T_2 - T_1}$$

Mit der gewonnenen Arbeit aus der WKA kann mit der WP gerade wieder gleich viel Wärme ins Energiereservoir 2 "gefördert" werden, wie von der WKA abgeführt wird:

$$\eta_C \, \frac{1}{\eta_C} = 1$$

Lösung 11.4: Energiebedarf eines Kühllagers.

a. Antriebsleistung der Carnot-Kältemaschine und jährlicher Energiebedarf Die Leistungszahl der Carnot-Kältemaschine ist:

$$\varepsilon_{KA} = \frac{T_K}{T_U - T_K} = 9.5$$

Daraus lässt sich die Antriebsleistung P_{el} berechnen:

$$P_{el} = \frac{\dot{Q}_K}{\varepsilon_{KA}} = 2.1 \text{ kW}$$

Der elektrische Energiebedarf ist:

$$W_{el} = P_{el} t = 17'430 \text{ kWh}$$

b. Antriebsleistung und Energiebedarf einer realen Kältemaschine

Annahmen:

Temperaturdifferenzen von 5 K bei der Wärmeübertragung Gütegrad des Prozesses von $\zeta=50\%$

$$\varepsilon_{KA} = \frac{T_K}{T_U - T_K} \, \zeta = 3.4$$

$$P_{el} = \frac{\dot{Q}_K}{\varepsilon_{KA}} = 5.9 \text{ kW}$$

$$W_{el} = P_{el} t = 48'970 \text{ kWh}$$

Lösung 11.5: Analyse einer Wärmepumpe.

a. Energieflussbild

b.

$$\varepsilon_{WP\,real} = \frac{\dot{Q}_H}{P_{el}} = 5$$

c.

$$\varepsilon_{WP\,rev,\,i} = \frac{1}{\eta_{C\,i}} = \frac{T_H}{T_H - T_U} = 8.94$$

d.

$$\varepsilon_{WP\,rev,\,a} = \frac{1}{\eta_{C\,a}} = \frac{T_S}{T_S - T_Q} = 19.53$$

e.

$$\varphi = \frac{P_{rev}}{P_{real}} = \frac{\frac{\dot{Q}_H}{\varepsilon_{WP\,rev}}}{P_{real}} = 0.26$$

Lösung 11.6: Idealer Wärmetransformator.

a. Prinzipskizze

b. Bei der idealen Wärmekraftmaschine kann berechnet werden, welche Leistung P bei dem gegebenem Wärmestrom und den Temperaturniveaus umgewandelt wird:

$$\frac{P}{\dot{Q}_1} = \frac{T_1 - T_U}{T_1}$$

$$-P = \dot{Q}_1 \, \eta_C = \dot{Q}_1 \left(1 - \frac{T_U}{T_1}\right) = 12.64 \text{ MW}$$

Diese Leistung P wird dazu gebraucht, um eine ideale Wärmepumpe zu betreiben. Daraus kann der maximale Heizstrom berechnet werden:

$$-\dot{Q}_A = \varepsilon_{WP}(-P) = \frac{1}{\eta_C}(-P) = \frac{T_A}{T_A - T_U}(-P) = 62.86 \text{ MW}$$

c.

$$\varsigma = \frac{\dot{Q}_A}{\dot{Q}_1} = \frac{\frac{T_A}{T_A - T_U} (-P)}{\frac{T_1}{T_1 - T_U} (-P)} = \frac{T_A}{T_A - T_U} \frac{T_1 - T_U}{T_1} = \varepsilon_{WP} \, \eta_C = 2.52$$

d. Energieflussbild

e. T, s-Diagramm

Lösung 11.7: Wärmekraftmaschine.

a. Thermischer Wirkungsgrad:

 η_{th} ist das Verhältnis von energetischem Nutzen (Kreisarbeit) zu energetischem Aufwand (zugeführte Wärmeenergie):

$$\eta_{th} = \frac{-w_K}{q_{zu}} = \frac{|w_K|}{q_{zu}} = \frac{|P_K|}{\dot{Q}_{zu}}$$

b. WKM unter bestmöglichen Bedingungen:

Nach dem 2. HS ist es nicht möglich, die gesamte zugeführte Wärmeenergie in Arbeit umzuwandeln; Ein Teil muss als Abwärme abgegeben werden.

Eine solche WKM müsste den eintretenden Entropiestrom S_{QII} vernichten (Perpetuum Mobile 2. Art). Dies widerspricht dem 2. HS, wonach bei jedem Prozess die Entropie zunimmt bzw. nur im reversiblen Fall konstant bleibt.

Die Bedingung für die Reversibilität lautet:

$$\frac{\dot{Q}}{T_{II}} = \frac{-\dot{Q}_U}{T_I}$$

Die Abweichung vom Idealwert $\eta_{th}=1$ resultiert also nicht aus der Unvollkommenheit der technischem Ausführung, sondern ist das Ergebnis eines Naturgesetzes!

c. Zusammenhang zwischen η_{th} und $T_{zu, m}$, $T_{ab, m}$:

Der thermische Wirkungsgrad ist:

$$\eta_{th} = \frac{|w_K|}{q_{zu}} = 1 - \frac{|q_{ab}|}{q_{zu}}$$

Wärmeströme:

$$|q_{ab}| = T_{ab,m} |\Delta s|, \quad q_{zu} = T_{zu,m} \Delta s$$

$$\eta_{th} = 1 - \frac{T_{ab,m}}{T_{zu,m}}$$

Der Wirkungsgrad wächst, wenn $T_{ab,m}$ sinkt (abgeführte Wärme wird kleiner) und/oder $T_{zu,m}$ steigt (zugeführte Wärme wird grösser).

Generell gilt: Um einen guten thermischen Wirkungsgrad zu erreichen, muss die Wärme bei möglichst hoher Temperatur zugeführt und bei möglichst tiefer Temperatur abgeführt werden.

d. Wärmepumpen und Kältemaschinen:

Der "Wirkungsgrad" wird (wie bei der WKM) als Verhältnis von Nutzen zu Aufwand definiert. Er wird als Leistungszahl (Coefficient of Performance, COP) bezeichnet:

$$\varepsilon_{WP} = \frac{\dot{Q}_H}{P} \qquad \varepsilon_{KM} = \frac{|\dot{Q}_0|}{P}$$

Carnot-Prozess:

$$\varepsilon_{WP,C} = \frac{-\dot{Q}_{II}}{P} = \frac{|\dot{Q}_{II}|}{|\dot{Q}_{II}| - \dot{Q}_{I}} = \frac{T_{II} \, \dot{S}_{Q}}{(T_{II} - T_{I}) \, \dot{S}_{Q}} = \frac{T_{II}}{T_{II} - T_{I}} = \frac{1}{\eta_{C}}$$

$$\varepsilon_{KM,C} = \frac{\dot{Q}_{I}}{P} = \frac{\dot{Q}_{I}}{|\dot{Q}_{II}| - \dot{Q}_{I}} = \frac{T_{I} \, \dot{S}_{Q}}{(T_{II} - T_{I}) \, \dot{S}_{Q}} = \frac{T_{I}}{T_{II} - T_{I}}$$

e. Erreichung des absoluten Nullpunktes:

Um bei einer bestimmten tiefen Temperatur eine Kälteleistung von beispielsweise $-\dot{Q}_0=\dot{Q}_I=1$ kW aus einem "Kühlraum" abzuführen, benötigt man mit dem bestmöglichen Kältemaschinenprozess folgende Leistung P:

$$P = \frac{\dot{Q}_I}{\varepsilon_{KM,C}} = \frac{T_{II} - T_I}{T_I} \dot{Q}_I$$

Pgeht gegen unendlich, wenn T_I gegen Null geht! Für $\dot{Q}_I=1$ kW gilt:

$T_{IA} = 1 \text{ K}$	P = 272.15 kW
$T_{IB} = 0.5 \text{ K}$	P = 545.3 kW
$T_{IC} = 0.25 \text{ K}$	P = 1091.6 kW
$T_{ID} = 0.01 \text{ K}$	P = 27'314 kW

Im T, \dot{S}_Q -Diagramm ist zu sehen, dass die Fläche der Leistung P mit sinkender Temperatur T_I gegen unendlich geht.

f. Wärmepumpe:

Der Bedarf an Heizleistung wird im Wesentlichen durch die Aussentemperatur, die Bauweise des Gebäudes (Wärmedämmung) und das Nutzverhalten (z. B. langanhaltende Fensterlüftung) bestimmt. Die benötigte Heizleistung ist unabhängig vom Heizsystem (Öl, Gas, Wärmepumpe).

Nehmen wir an, die Heizleistung ist $\dot{Q}_H = -\dot{Q}_{II} = 10$ kW bei -5° C,und in beiden Fällen ist das gleiche Wärmeabgabesytem vorhanden (z. B. Bodenheizung):

Die Leistungszahl einer Carnot-Wärmepumpe zwischen T_I und T_{II} beträgt:

$$\varepsilon_{WPC} = \frac{\dot{Q}_H}{P} = \frac{-\dot{Q}_{II}}{P} = \frac{T_{II}}{T_{II} - T_I}$$

Die Antriebsleistung der Wärmepumpe beträgt

EWS-WP:

$$P_A = \dot{Q}_H \left(\frac{T_{II} - T_{IA}}{T_{II}} \right) = \dot{Q}_H \frac{\Delta T_{HA}}{T_{II}} = 1.21 \,\text{kW}$$

L/W-WP:

$$P_B = \dot{Q}_H \left(\frac{T_{II} - T_{IB}}{T_{II}} \right) = \dot{Q}_H \frac{\Delta T_{HB}}{T_{II}} = 1.76 \,\text{kW}$$

Die benötigte Leistung ist proportional zum Temperaturhub.

Lösung 11.8: Stromerzeugung aus Abwärme.

Im bestmöglichen Fall kann folgende Leistung gewonnen werden:

$$P = \left(1 - \frac{T_U}{T}\right)\dot{Q} = 1.11 \text{ MW}$$

Mit einer Carnot-Wärmekraftmaschine zwischen T und T_U würde die Rechnung aufgehen. Aus folgenden Gründen wird man jedoch nicht 1 MW gewinnen können:

- a. Temperaturdifferenzen für die Wärmeübertragung (Annahme: $\Delta\,T=5$ K, $T_I=292$ K, $T_{II}=318$ K)
- b. Der effektive thermische Wirkungsgrad ist nur ein Bruchteil des Carnot-Faktors: $\eta_{th} = \zeta \, \eta_{th,C}$ (Annahme: Gütegrad $\zeta = 0.5$)

$$P_{eff} = \zeta \left(1 - \frac{T_I}{T_{II}} \right) \dot{Q} = 0.41 \text{ MW}$$

Fazit: Die Idee des Konzernleiters ist nicht realisierbar. Unter den getroffenen Annahmen beträgt die Einsparung an Energiekosten rund $400~\mathrm{kFr/a}$.

Lösung 11.9: Carnot-Prozess mit Luft und Kohlendioxid (CO₂).

- a. Siehe T, s-Diagramme!
- b. Prozessdaten in den Eckpunkten

Luft:

Zustand Luft	1	2	3	4
θ [°C]	20	350	350	20
$p \left[bar(a) \right]$	14.28	200	14	1
$v [\mathrm{m}^3/\mathrm{kg}]$	0.0589	0.0089	0.1278	0.842

mit:

$$v_4 = R_L \frac{T_4}{p_4} = 0.842 \text{ m}^3/\text{kg}$$
 $v_2 = R_L \frac{T_2}{p_2} = 0.0089 \text{ m}^3/\text{kg}$
 $p_3 = p_4 \left(\frac{T_3}{T_4}\right)^{\frac{\kappa}{\kappa-1}} = 14 \text{ bar(a)}$
 $v_3 = R_L \frac{T_3}{p_3} = 0.1278 \text{ m}^3/\text{kg}$
 $p_1 = p_2 \left(\frac{T_1}{T_2}\right)^{\frac{\kappa}{\kappa-1}} = 14.28 \text{ bar(a)}$
 $v_1 = R_L \frac{T_1}{p_1} = 0.0589 \text{ m}^3/\text{kg}$

Kohlendioxid:

Zustand Kohlendioxid	1	2	3	4
θ [°C]	20	350	350	20
p [bar(a)]	7.62	200	26.25	1
$v [\mathrm{m}^3/\mathrm{kg}]$	0.0727	0.00588	0.0448	0.5537

Die Berechnungen erfolgen analog zu den Berechnungen mit Luft!

c. Wärmemengen Luft:

$$q_{zu} = R_L T_2 \ln \frac{p_2}{p_3} = 475.92 \text{ kJ/kg}$$

$$q_{ab} = R_L T_4 \ln \frac{p_4}{p_1} = -223.85 \text{ kJ/kg}$$

$$w_{rev} = -\sum q = -(q_{zu} + q_{ab}) = -252.07 \text{ kJ/kg}$$

Kohlendioxid:

$$q_{zu} = R_K \, T_2 \, \ln \frac{p_2}{p_3} = 239.03 \; \mathrm{kJ/kg}$$

$$q_{ab} = R_K T_4 \ln \frac{p_4}{p_1} = -112.46 \text{ kJ/kg}$$

$$w_{rev} = -\sum q = -(q_{zu} + q_{ab}) = -126.57 \text{ kJ/kg}$$

d. thermischer Wirkungsgrad

Luft:

$$\eta_{th} = \frac{|w_{rev}|}{q_{zu}} = 0.529$$

Kohlendioxid:

$$\eta_{th} = \frac{|w_{rev}|}{q_{zu}} = 0.529$$

Der thermische Wirkungsgrad ist nur abhängig von den Temperaturen!

T,s-Diagramm für Luft als perfektes Gas

T, s-Diagramm Kohlendioxid

Lösung 12.1: Kreisprozess für Verbrennungsmotoren.

- a. Vergleiche Skript.
- b. Diese Aussage ist korrekt.

$$\eta_{th} = 1 - \frac{T_{m,ab}}{T_{m,zu}}$$
$$\frac{T_{m,ab}}{T_{m,zu}} = \frac{T'_{m,ab}}{T'_{m,zu}}$$

$$\eta_{th} = 1 - \frac{1}{\varepsilon^{\kappa - 1}}$$

 η_{th} ist nur vom Verdichtungsverhältnis $\varepsilon = \frac{v_1}{v_2}$ abhängig.

c. T, s-Diagramm

$$\eta_{th} = 1 - \frac{T_{m,\,ab}}{T_{m,\,zu}}$$

 \boldsymbol{w}_K wird grösser während q_{ab} gleich gross bleibt.

d. T, s-Diagramm

$$\eta_{th} = 1 - \frac{T_{m,ab}}{T_{m,zu}}$$

Die Isochoren sind steiler als die Isobaren, daher nimmt $T_{m,ab}$ stärker ab als $T_{m,zu}$. Der thermische Wirkungsgrad ist bei Teillast höher als bei Volllast.

- e. Die angesaugte Luft wird vorverdichtet, bevor sie in den Zylinder gelangt (mehr Masse). Dadurch kann mehr Brennstoff eingespritzt und die Leistung erhöht werden.
 - Oft wird die vorverdichtete Luft zwischengekühlt, um die thermische Belastung der Bauteile zu senken.

Lösung 12.2: Otto-Kreisprozess.

a.

$$\eta_{th} = 1 - \frac{1}{\varepsilon^{\kappa - 1}} = 0.573$$

b.

$$W_K = -\eta_{th} Q_{zu} = -1.83 \text{ kJ}$$

c.

$$Q_{ab} = |W_K| - Q_{zu} = -1.37 \text{ kJ}$$

Lösung 12.3: Verbrennungsmotor nach dem Otto-Prozess.

a.

$$p v = R_L T$$

$$R_L = c_{pL} - c_{vL} = 287.2 \text{ J/kg K}$$

$$\kappa = \frac{c_{pL}}{c_{vL}} = 1.4$$

$$v_1 = \frac{R_L T_1}{p_1} = 0.8702 \text{ m}^3/\text{kg} = v_4$$

$$v_2 = \frac{v_1}{\varepsilon} = 0.1088 \text{ m}^3/\text{kg} = v_3$$

isentrope Zustandsänderung:

$$p_2 = p_1 \left(\frac{v_1}{v_2}\right)^{\kappa} = 18.4 \text{ bar(a)}$$

$$T_2 = \frac{v_2 p_2}{R_L} = 697 \text{ K}$$

$$p_3 = \frac{R_L T_3}{v_3} = 49.4 \text{ bar(a)}$$

isentrope Zustandsänderung:

$$p_4 = p_3 \left(\frac{v_3}{v_4}\right)^{\kappa} = 2.7 \text{ bar(a)}$$

$$T_4 = \frac{v_4 p_4}{R_L} = 814 \text{ K}$$

	θ [°C]	T[K]	$p \left[bar(a) \right]$	$v [\mathrm{m}^3/\mathrm{kg}]$
1	30	303	1	0.8702
2	424	697	18.4	0.1088
3	1600	1873	49.4	0.1088
4	541	814	2.7	0.8702

$$\psi = \frac{p_3}{p_2} = 2.7$$

$$q_{23} = c_{vL} (T_3 - T_2) = 844 \text{ kJ/kg}$$

$$q_{41} = c_{vL} (T_1 - T_4) = -367 \text{ kJ/kg}$$

$$w_K = -q_{23} - q_{41} = -477 \text{ kJ/kg}$$

$$\eta_{th} = \frac{\text{Nutzen}}{\text{Aufwand}} = \frac{|w_K|}{q_{23}} = 0.565$$

$$\eta_{th} = 1 - \frac{1}{\varepsilon^{\kappa - 1}} = 0.565$$

Lösung 12.4: Verbrennungsmotor nach dem Diesel-Prozess.

a.

$$R_L = c_{p\,L} - c_{v\,L} = 287.2 \text{ J/kg K}$$

$$\kappa = \frac{c_{p\,L}}{c_{v\,L}} = 1.4$$

$$v_1 = \frac{R_L T_1}{p_1} = 0.8702 \text{ m}^3/\text{kg} = v_4$$

$$v_2 = \frac{v_1}{\varepsilon} = 0.0484 \text{ m}^3/\text{kg} = v_3$$

isentrope Zustandsänderung:

$$p_2 = p_1 \left(\frac{v_1}{v_2}\right)^{\kappa} = 57.2 \text{ bar(a)}$$

$$T_2 = \frac{v_2 p_2}{R_L} = 963 \text{ K}$$

$$v_3 = \frac{R_L T_3}{p_3} = 0.0940 \text{ m}^3/\text{kg}$$

isentrope Zustandsänderung:

$$p_4=p_3\,\left(\frac{v_3}{v_4}\right)^\kappa=2.5~\mathrm{bar(a)}$$

$$T_4=\frac{v_4\,p_4}{R_L}=769~\mathrm{K}$$

		ϑ [°C]	T[K]	p [bar(a)]	$v [\mathrm{m}^3/\mathrm{kg}]$
	1	30	303	1	0.8702
	2	690	963	57.2	0.0484
	3	1600	1873	57.2	0.0940
-	4	496	769	2.5	0.8702

$$\varphi = \frac{v_3}{v_2} = 1.942$$

$$q_{23} = c_{p\,L}\,(T_3 - T_2) = 915~{\rm kJ/kg}$$

$$q_{41} = c_{vL} (T_1 - T_4) = -335 \text{ kJ/kg}$$

d.

$$w_K = -q_{23} - q_{41} = -580 \text{ kJ/kg}$$

e.

$$\eta_{th} = \frac{\text{Nutzen}}{\text{Aufwand}} = \frac{|w_K|}{q_{23}} = 0.634$$

$$\eta_{th} = 1 - \frac{1}{\kappa} \left(\frac{1}{\varepsilon^{\kappa - 1}} \right) \left(\frac{\varphi^{\kappa} - 1}{\varphi - 1} \right) = 0.634$$

Lösung 12.5: Verbrennungsmotor nach dem Seiliger-Prozess.

In dieser Aufgabe wird das spezifische Volumen v stets durch das Verdichtungsverhältnis ε und das Einspritzverhältnis φ ausgedrückt.

a.

$$R_L = c_{pL} - c_{vL} = 287.2 \text{ J/kg K}$$

$$\kappa = \frac{c_{p\,L}}{c_{v\,L}} = 1.4$$

isentrope Zustandsänderung:

$$p_2 = p_1 \left(\frac{v_1}{v_2}\right)^{\kappa} = p_1 \,\varepsilon^{\kappa} = 32.4 \text{ bar(a)}$$

$$T_2 = T_1 \left(\frac{v_1}{v_2}\right)^{\kappa - 1} = T_1 \,\varepsilon^{\kappa - 1} = 819 \text{ K}$$

isochore Zustandsänderung:

$$T_3 = T_2 \left(\frac{p_3}{p_2}\right) = 1263 \text{ K}$$

b.

$$\psi = \frac{p_3}{p_2} = 1.542$$

isobare Zustandsänderung:

$$\frac{v_3}{T_3} = \frac{v_4}{T_4}$$

c.

$$\varphi = \frac{v_4}{v_3} = \frac{T_4}{T_3} = 1.484$$

isentrope Zustandsänderung:

$$\frac{p_4}{p_5} = \left(\frac{v_5}{v_4}\right)^{\kappa} = \left(\frac{v_5 \, v_2 \, v_3}{v_4 \, v_2 \, v_3}\right)^{\kappa}$$

$$\frac{v_5}{v_2} = \varepsilon \quad \text{da } v_5 = v_1; \quad \frac{v_2}{v_3} = 1 \quad \text{da } v = \text{konst.}; \quad \frac{v_3}{v_4} = \frac{1}{\varphi}$$

$$\frac{p_4}{p_5} = \left(\frac{\varepsilon}{\varphi}\right)^{\kappa}$$

$$p_5 = p_4 \, \left(\frac{\varphi}{\varepsilon}\right)^{\kappa} = 2.68 \, \text{bar(a)}$$

$$\frac{T_4}{T_5} = \left(\frac{\varepsilon}{\varphi}\right)^{\kappa-1}$$

$$T_5 = T_4 \, \left(\frac{\varphi}{\varepsilon}\right)^{\kappa-1} = 812 \, \text{K}$$

$$\frac{|\vartheta| \text{°C}| \, |T| \text{K}| \, p \, [\text{bar(a)}]}{1 \, 30 \, 303 \, 1}$$

$$\frac{1}{2 \, 546 \, 819 \, 32.4}$$

$$\frac{3 \, 990 \, 1263 \, 50}{4 \, 1600 \, 1873 \, 50}$$

$$\frac{1}{5 \, 539 \, 812 \, 2.68}$$

$$q_{23} = c_{vL} (T_3 - T_2) = 319 \text{ kJ/kg}$$

 $q_{34} = c_{pL} (T_4 - T_3) = 614 \text{ kJ/kg}$
 $q_{zu} = q_{23} + q_{34} = 932 \text{ kJ/kg}$
 $q_{51} = c_{vL} (T_1 - T_5) = -365 \text{ kJ/kg}$

$$w_K = -q_{23} - q_{34} - q_{51} = -567 \text{ kJ/kg}$$
f.
$$\eta_{th} = \frac{\text{Nutzen}}{\text{Aufwand}} = \frac{|w_K|}{q_{zu}} = 0.608$$
$$\eta_{th} = 1 - \frac{1}{\varepsilon^{\kappa - 1}} \left(\frac{\varphi^{\kappa} \psi - 1}{\psi - 1 + \kappa \psi (\varphi - 1)} \right) = 0.608$$

Lösung 13.1: Gasturbinen-Anlagen.

- a. Hier sind Sie gefordert!
- b. Die Zustandsgrössen für den idealisierten Joule-Prozess können direkt aus dem h, sDiagramm herausgelesen werden:

	$p \left[bar(a) \right]$	ϑ [°C]	T[K]	h [kJ/kg]
1	1	20	293	525
2'	30	489	762	1012
3'	30	950	1223	1537
4'	1	229	502	735

$$h_{2s}'' = h_2' \qquad \qquad \eta_{s\,12} = \frac{h_{2s}'' - h_1}{h_2'' - h_1} \longrightarrow h_2'' = 1105 \text{ kJ/kg}$$

$$h_{4s}'' = h_4' \qquad \qquad \eta_{s\,34} = \frac{h_4'' - h_3''}{h_{4s}'' - h_3''} \longrightarrow h_4'' = 831 \text{ kJ/kg}$$

	p [bar(a)]	ϑ [°C]	T[K]	h [kJ/kg]
1	1	20	293	525
2"	30	574	847	1105
3"	30	950	1223	1537
4''	1	320	593	831

$$\eta_{s\,34} = \frac{h_4''' - h_3'''}{h_{4's}''' - h_3'''} \longrightarrow h_4''' = 839 \text{ kJ/kg}$$

	$p \left[bar(a) \right]$	ϑ [°C]	T[K]	h [kJ/kg]
1	1	20	293	525
2""	30	574	847	1105
3""	28.5	950	1223	1537
4s'''	1	239	512	744
4'''	1	330	603	839

Berechnung des Luftmassenstroms:

$$w_K = h_2 - h_1 + h_4 - h_3$$

$$P_{Welle} = P_K \longrightarrow \dot{m}_L = \frac{P_K}{w_K}$$

c.

$$P_{Verd} = P_{12} = \dot{m}_L (h_2 - h_1)$$

$$P_{Turb} = P_{34} = \dot{m}_L (h_4 - h_3)$$

d.

$$\dot{m}_{BS} = \frac{\dot{m}_L \left(h_3 - h_2 \right)}{H_u}$$

	$w_K [kJ/kg]$	$\dot{m}_L [{ m kg/s}]$	P_{12} [MW]	P_{34} [MW]	\dot{m}_{BS} [t/h]
1.	-315	476	232	-382	22.5
2.	-126	1190	690	-840	46.3
3.	-118	1271	737	-887	49.4

Lösung	Zusatzaufgabe	(Bemerkung:	Die Lösungen	gelten fi	iir ein	$\kappa = 1.35$):
Losains	Z abadzaai 5 ab c	(Domesting)	Die Besangen	Scroon I	ar ciii	10 1.00).

	$p \left[bar(a) \right]$	ϑ [°C]	T[K]
1	1	20	293
2s	30	434.5	707.7
2	30	513.5	786.6
3	28.5	950	1223
4s	1	240.0	513.2
4	1	325.2	598.3

Berechnung der Zustandspunkte:

Isentrope Verdichtung:

$$T_{2s} = T_1 \left(\frac{p_{2s}}{p_1}\right)^{\frac{\kappa - 1}{\kappa}} = 707.7 \text{ K}$$

$$\eta_{s\,12} = \frac{T_{2\,s} - T_1}{T_2 - T_1} \longrightarrow T_2 = 786.6 \text{ K}$$

Isentrope Expansion:

$$T_{4s} = T_3 \left(\frac{p_{4s}}{p_3}\right)^{\frac{\kappa-1}{\kappa}} = 513.2 \text{ K}$$

$$\eta_{s\,34} = \frac{T_4 - T_3}{T_{4\,s} - T_3} \longrightarrow T_4 = 598.3 \text{ K}$$

b.

$$w_K = c_{p\,L} \left(T_2 - T_1 + T_4 - T_3 \right) = -131.7 \text{ kJ/kg}$$

$$\dot{m}_L = \frac{P_K}{w_K} = 1139.1 \text{ kg/s}$$

c.

$$P_{Verd} = P_{12} = \dot{m}_L c_{pL} (T_2 - T_1) = 565.1 \text{ MW}$$

 $P_{Turb} = P_{34} = \dot{m}_L c_{pL} (T_4 - T_3) = -715.1 \text{ MW}$

d.

$$\dot{m}_{BS} \, H_u = \dot{Q}_{23} \, \longrightarrow \, \dot{m}_{BS} = \frac{\dot{m}_L \, c_{p\,L} \, (T_3 - T_2)}{H_u} = 12.49 \, \, \text{kg/s} \quad \, \text{bzw.} \quad \, 44.96 \, \, \text{t/h}$$

Lösung 13.2: Strahltriebwerk einer Boeing 747.

a. Funktionsschema

b. h, s-Diagramm

c. Kräftebilanz

$$F_{Schub} = \dot{m}_{MTL} c_{MTL} + \dot{m}_{Kern} c_{Kern} - \dot{m}_{L} \underbrace{c_{Ein}}_{0}$$

$$F_{Schub} = 0.85 \,\dot{m}_L \, \frac{1}{2} \, c_{Kern} + \dot{m}_L \, \left(0.15 + \frac{1}{64} \right) \, c_{Kern}$$

Damit lässt sich nun die Kerngeschwindigkeit berechnen

$$c_{Kern} = \frac{F_{Schub\,max}}{\dot{m}_L} \left[\frac{1}{0.85 \cdot \frac{1}{2} + \left(0.15 + \frac{1}{64}\right)} \right] = 530.3 \text{ m/s}$$

d. Für ein perfektes Gas gilt

$$\eta_{sV} = \frac{h_{2s} - h_1}{h_2 - h_1} = \frac{c_p (T_{2s} - T_1)}{c_p (T_2 - T_1)} = 0.9$$

Mit

$$\begin{split} \frac{T_{2\,s}}{T_1} &= \left(\frac{p_2}{p_1}\right)^{\frac{\kappa-1}{\kappa}} \\ \Rightarrow T_{2\,s} &= T_1 \, \left(\frac{p_2}{p_1}\right)^{\frac{\kappa-1}{\kappa}} = 795.76 \text{ K} \quad \Rightarrow \quad \vartheta_{2\,s} = 522.6^{\circ}\text{C} \end{split}$$

Somit gilt für T_2

$$T_2 = \frac{T_{2s} - T_1}{n_{cV}} + T_1 = 852.1 \text{ K} \quad \Rightarrow \quad \vartheta_2 = 579.0^{\circ}\text{C}$$

e. Für die Verdichterleistung gilt

$$P_V = \dot{m}_L (h_{1a} - h_1) + 0.15 \, \dot{m}_L (h_2 - h_{1a})$$

Mit

$$\frac{T_{1as}}{T_1} = \left(\frac{1.5}{1}\right)^{\frac{\kappa - 1}{\kappa}}$$

$$\Rightarrow T_{1as} = 323.5 \text{ K}$$

Wie oben lässt sich über den Wirkungsgrad die Temperatur T_{1a} berechnen

$$T_{1a} = \frac{T_{1as} - T_1}{\eta_{sV}} + T_1 = 327.5 \text{ K}$$

$$c_p = \frac{\kappa R_L}{\kappa - 1} = 1005.2 \text{ J/kg K}$$

$$h_{1a} - h_1 = c_p (T_{1a} - T_1) = 39.53 \text{ kJ/kg}$$

 $h_2 - h_{1a} = c_p (T_2 - T_{1a}) = 527.33 \text{ kJ/kg}$

Damit folgt für die Leistung

$$P_V = 80.68 \text{ MW}$$

$$P_{34a} = -P_{12} = \dot{m}_L \, w_{t \, 34a} \, \left(0.15 + \frac{1}{64} \right)$$
$$w_{t \, 34a} = c_p \, (T_{4a} - T_3) = -716.3 \text{ kJ/kg}$$

Damit folgt für T_{4a}

$$T_{4a} = \frac{w_{t\,34a}}{c_p} + T_3 = 860.5 \text{ K}$$

Mit

$$\eta_{sT} = \frac{h_3 - h_{4a}}{h_3 - h_{4as}} = \frac{c_p (T_3 - T_{4a})}{c_p (T_3 - T_{4as})} = 0.9$$
$$T_{4as} = T_3 - \frac{T_3 - T_{4a}}{0.9} = 781.3 \text{ K}$$

$$\frac{T_3}{T_{4a\,s}} = \left(\frac{p_3}{p_{4a\,s}}\right)^{\frac{\kappa - 1}{\kappa}}$$

$$\Rightarrow p_{4a\,s} = p_{4a} = p_3 \left(\frac{T_{4a\,s}}{T_3}\right)^{\frac{\kappa}{\kappa - 1}} = 3.0 \text{ bar(a)}$$

Lösung 14.1: Zustandsgrössen von Wasser aus der Wasserdampftafel. Die Resultate der Aufgaben 14.1–14.5 wurden mit folgender Wasserdampftafel berechnet: E. Schmidt, U. Grigull: Zustandsgrössen von Wasser und Wasserdampf in SI-Einheiten, Fourth Enlarged Prining, Berlin/Heidelberg: Springer-Verlag, 1989. Kleine Abweichungen gegenüber anderer Wasserdampftafeln sind möglich.

```
a. für siedendes Wasser von 100 bar(a): \vartheta=310.96\,^{\circ}\text{C};\ \upsilon=0.0014526\ \text{m}^3/\text{kg};\ h=1408.0\ \text{kJ/kg};\ s=3.3605\ \text{kJ/kg\,K};\ x=0b. für Sattdampf von 100 bar(a): \vartheta=310.96\,^{\circ}\text{C};\ \upsilon=0.01804\ \text{m}^3/\text{kg};\ h=2727.7\ \text{kJ/kg};\ s=5.6198\ \text{kJ/kg\,K};\ x=1c. für Nassdampf von 100 bar(a) mit 70% Dampfgehalt: \vartheta=310.96\,^{\circ}\text{C};\ \upsilon=0.01306\ \text{m}^3/\text{kg};\ h=2331.79\ \text{kJ/kg};\ s=4.942\ \text{kJ/kg\,K};\ x=0.7d. für Wasser von 100 bar(a), 520°C: \upsilon=0.03391\ \text{m}^3/\text{kg};\ h=3425.1\ \text{kJ/kg};\ s=6.6640\ \text{kJ/kg\,K}
```

Aggregatzustand: gasförmig, überhitzt e. für Wasser von 100 bar(a), 30°C $v = 0.0009999 \text{ m}^3/\text{kg}; \ h = 134.7 \text{ kJ/kg}; \ s = 0.4334 \text{ kJ/kg K}$

Aggregatzustand: flüssig, unterkühlt

Lösung 14.2: Erwärmung von Wasser in einem Dampfkraftwerk.

a. T, s-Diagramm:

b. Spezifische Wärmen:

für das Überhitzen: q_{34}

für das Verdampfen: q_{23}

bis zum Sieden: q_{12}

für den gesamten Prozess: q_{14}

$$\begin{split} q_{12} &= h_2 - h_1 = h' - h_1 = 1273.3 \text{ kJ/kg} \\ q_{23} &= h_3 - h_2 = h'' - h' = r = 1319.7 \text{ kJ/kg} \end{split}$$

$$q_{34} = h_4 - h_3 = h_4 - h'' = 697.4 \text{ kJ/kg}$$

$$q_{14} = q_{12} + q_{23} + q_{34} = 3290.4 \text{ kJ/kg}$$

Darstellung der spezifischen Wärmen im T, s-Diagramm vgl. a.

c. 1. HS für offene Systeme:

$$P_{14} + \dot{Q}_{14} = \dot{m} \left[h_4 - h_1 + \frac{c_4^2}{2} - \frac{c_1^2}{2} + g(z_4 - z_1) \right]$$

Unter Vernachlässigung der kinetischen der und potenziellen Energieänderung und da dem System keine Leistung zu- oder abgeführt wird, vereinfacht sich der 1. HS:

$$\dot{Q}_{14} = \dot{m} (h_4 - h_1) = 329.04 \text{ MW}$$

Lösung 14.3: Zustandsänderung mit Wasser/Wasserdampf.

1. Adiabate Drosselung von siedendem Wasser

a. Verfahrensfliessbild:

b. p, T- und p, v-Diagramm

T, s- und h, s-Diagramm

c. Die Zustandsgrössen der Punkte 1, 3, 4 und 5 können aus der Wasserdampftafel gelesen werden. Vergleiche nachfolgende Tabelle. Die Zustandsgrössen in Punkt 2 lassen sich folgendermassen bestimmen.

Adiabate Drosselung:

$$w_{t 12} + q_{12} = h_2 - h_1 + \frac{c_2^2}{2} - \frac{c_1^2}{2} + g(z_2 - z_1)$$

 w_{t12}, q_{12} und $g(z_2 - z_1)$ betragen 0. Aufgrund der Änderung der Dichte ändert sich auch die Fluidgeschwindigkeit. Die Änderung der kinetischen Energie, die sich daraus ergibt, ist jedoch vernachlässigbar klein. Somit ergibt sich:

$$h_2 = h_1$$

Der Zustandspunkt 2 liegt im Nassdampfgebiet:

$$x_2 = \frac{h_2 - h_2'}{h_2'' - h_2'} = 0.058$$

$$s_2 = s_2' + x_2 (s_2'' - s_2') = 1.8547 \text{ kJ/kg K}$$

$$v_2 = v_2' + x_2 (v_2'' - v_2') = 0.0524 \text{ m}^3/\text{kg}$$

$$\dot{m}_3 = x_2 \dot{m}_1 = 0.58 \text{ kg/s}$$

$$\dot{m}_5 = (1 - x_2) \dot{m}_1 = 9.42 \text{ kg/s}$$

$$\dot{V}_3 = \dot{m}_3 v_3 = 0.514 \text{ m}^3/\text{s}$$

 $\dot{V}_5 = \dot{m}_5 \, v_5 = 0.0104 \, \, \mathrm{m}^3/\mathrm{s}$

d.

e.

$$\dot{Q} = \dot{m}_3 \, r_{34} = 1276.93 \text{ kW}$$

	1	2	3	4	5
θ [°C]	150	120.23	120.23	120.23	120.23
p [bar(a)]	4.760	2.0	2.0	2.0	2.0
x [-]	0	0.058	1	0	0
h [kJ/kg]	632.15	632.15	2706.3	504.7	504.7
$s [\mathrm{kJ/kg K}]$	1.8416	1.8547	7.1268	1.5301	1.5301
$v [\mathrm{m}^3/\mathrm{kg}]$	0.00109	0.0524	0.8854	0.00106	0.00106

2. Bestimmung der Zustandsgrössen des Nassdampfes

a.

$$h = h' + x (h'' - h') = 2615.62 \text{ kJ/kg}$$

b.

$$v = v' + x (v'' - v') = 0.021315 \text{ m}^3/\text{kg}$$

 $\mathrm{c}.$

$$m = \frac{1}{v} V_B = 4692.0 \text{ kg}$$

$$m' = m(1-x) = 469.2 \text{ kg}$$

d.

$$V^{'} = m^{'}v^{'} = 0.6495 \text{ m}^{3}$$

3. Isobare Wärmezufuhr in einem Dampferzeuger

a.

$$h = h_{\alpha} = h' + x (h'' - h') = 1970.77 \text{ kJ/kg}$$

b.

$$h = h_\omega = 3264.4 \text{ kJ/kg}$$

c.

$$q = h_\omega - h_\alpha = 1293.63 \text{ kJ/kg}$$

4. Isentrope Expansion in einer Dampfturbine

a.

$$h = h_{\alpha} = 3577.6 \text{ kJ/kg}$$

b. Liegt der Endpunkt im Nassdampfgebiet, gilt:

$$\vartheta_{\omega} = \vartheta_s (0.1 \text{ bar(a)}) = 45.83^{\circ}\text{C}$$

Bei einer isentropen Zustandsänderung gilt:

$$s_{\omega} = s_{\alpha} = s = 7.5706 \text{ kJ/kg K}$$

Somit gilt für den Dampfgehalt x und die spezifische Enthalpie h am Austritt:

$$x_{\omega} = \frac{s - s'}{s'' - s'} = 0.9226$$

$$h_{\omega} = h^{'} + x_{\omega} (h^{''} - h^{'}) = 2399.6 \text{ kJ/kg}$$

c.

$$h_{\omega} - h_{\alpha} = -1178.0 \text{ kJ/kg}$$

d.

$$P_T = \dot{m} (h_\omega - h_\alpha) = -117.8 \text{ MW}$$

$5.\$ Isentrope Druckerhöhung in einer Speisewasserpumpe

a.

$$h_{\alpha} = h^{'}(0.1 \text{ bar(a)}) = 191.83 \text{ kJ/kg}$$

Für die spezifischen Entropien vor und nach der Pumpe gilt:

$$s_{\omega}=s_{\alpha}=s=s^{'}\left(0.1~\mathrm{bar(a)}\right)=0.6492~\mathrm{kJ/kg\,K}$$

Jetzt kann der Endzustand aus der Dampftafel (bei 20 bar(a)) ermittelt werden:

$$h_{\omega} = 194.03 \text{ kJ/kg}$$

b. Die Endtemperatur kann ebenfalls aus der Dampftafel ermittelt werden:

$$\vartheta_{\omega} = 45.94^{\circ} \text{C}$$

c.

$$P_{t,12} = \dot{m} (h_{\omega} - h_{\alpha}) = 222 \text{ kW}$$

6. Isobare Wärmeabfuhr in einem Kondensator

a.

$$h = h_{\alpha} = h' + x (h'' - h') = 2456.9 \text{ kJ/kg}$$

b.

$$q = h^{'} - h_{\alpha} = -2283.04 \text{ kJ/kg}$$

c.

$$\dot{Q} = \dot{m} (h' - h_{\alpha}) = -228.3 \text{ MW}$$

7. Dissipationsbehaftete Expansion in einer Dampfturbine

a.

$$h = h_{\alpha} = 3577.6 \text{ kJ/kg}$$

b. Für den isentropen Wirkungsgrad gilt:

$$\eta_s = \frac{h_\omega - h_\alpha}{h_{\omega s} - h_\alpha}$$

Mit

$$h_{\omega s} - h_{\alpha} = -1178.9 \text{ kJ/kg}$$

aus Aufgabe 3 folgt für h_{ω} :

$$h_{\omega} = h_{\alpha} + \eta_s (h_{\omega s} - h_{\alpha}) = 2635.17 \text{ kJ/kg}$$

Die Temperatur am Austritt der Turbine kann jetzt wiederum aus der Dampftafel (bei 0.1 bar(a)) ermittelt werden:

$$\vartheta_{\omega} = 72.95^{\circ} \text{C}$$

c.

$$h_{\omega} - h_{\alpha} = -943.08 \text{ kJ/kg}$$

d.

$$P_T = \dot{m} (h_\omega - h_\alpha) = -94.24 \text{ MW}$$

8. Adiabate Drosselung

a. Bei der adiabaten Drosselung handelt es sich um eine isenthalpe Zustandsänderung.

$$h = h_{\alpha} = h_{\omega} = 3317.5 \text{ kJ/kg}$$

b. Da die spezifische Enthalpie am Austritt $h_{\omega} = h_{\alpha}$ ist, kann die Temperatur aus der Dampftafel (bei 10 bar(a)) abgelesen werden.

$$\vartheta_{\omega} = 426^{\circ} \text{C}$$

9. Bestimmen des Dampfgehaltes des Nassdampfes mit Hilfe einer adiabaten Drosselung

a. Nach der Entspannung handelt es sich um überhitzten Dampf.

$$h = h_{\omega} = h_{\alpha} = 2716 \text{ kJ/kg}$$

b. Der Dampfgehalt x lässt sich jetzt berechnen mit:

$$x = \frac{h - h'}{h'' - h'} = 0.96$$

10. Adiabate Drosselung des siedenden Wassers

a.

$$h = h_{\alpha} = h_{\omega} = 504.7 \text{ kJ/kg}$$

b.

$$x = \frac{h - h'}{h'' - h'} = 0.0386$$

11. Zwischenüberhitzer

a. Die spezifischen Enthalpien vor und nach der Zwischenüberhitzung können aus der Dampftafel ermittelt werden:

$$h_{\alpha} = 2944.2 \text{ kJ/kg}; \quad h_{\omega} = 3553.8 \text{ kJ/kg}$$

b.

$$q = h_{\omega} - h_{\alpha} = 609.6 \text{ kJ/kg}$$

Lösung 14.4: Steam power plant with real Clausius+Rankine-Cycle.

Skizze:

a. Der im Kondensator abgeführte Wärmestrom beträgt:

$$\dot{Q}_{41} = \dot{m} (h_1 - h_4)$$

In einem ersten Schritt muss der Massenstrom \dot{m} berechnet werden mit:

$$P_{Netto} = 1000 \text{ MW} = P_{el \, 34} - P_{el \, 12} = \dot{m} (h_3 - h_4 - w_{p \, 12})$$

Die spezifische Enthalpie h_3 und die spezifische Entropie s_3 können aus der Dampftafel ermittelt werden:

$$h_3 = 3450.47 \text{ kJ/kg}; \quad s_3 = 6.523 \text{ kJ/kg K}$$

Jetzt wird der Dampfgehalt x_{4s} berechnet mit:

$$x_{4s} = \frac{s_3 - s'}{s'' - s'} = 0.783$$

Daraus kann weiter die spezifische Enthalpie $h_{4\,s}$ berechnet werden:

$$h_{4s} = h^{'} + x_{4s} (h^{''} - h^{'}) = 2065.3 \text{ kJ/kg}$$

Für die spezifische Enthalpie h_4 folgt jetzt:

$$h_4 = h_3 + \eta_s (h_{4s} - h_3) = 2342.3 \text{ kJ/kg}$$

Die der Pumpe zugeführte spezifische Arbeit $w_{p\,12}$ beträgt:

$$w_{p\,12} = v_1 \, (p_2 - p_1) = 15.14 \text{ kJ/kg}$$

Jetzt lässt sich der Massenstrom \dot{m} über die Turbine berechnen mit:

$$\dot{m} = \frac{P_{Netto}}{h_3 - h_4 - w_{p12}} = 914.9 \text{ kg/s}$$

Die spezifische Enthalpie h_1 nach dem Kondensator kann wiederum aus der Dampftafel ermittelt werden und beträgt:

$$h_1 = 191.8 \text{ kJ/kg}$$

Im Kondensator wird somit der Wärmestrom \dot{Q}_{41} abgeführt:

$$\dot{Q}_{41} = \dot{m} (h_1 - h_4) = -1967.46 \text{ MW}$$

Der Kühlwassermassentrom \dot{m}_{KW} beträgt:

$$\dot{m}_{KW} = 83'333.33 \text{ kg/s}$$

Das Kühlwasser erwärmt sich im Kondensator um ΔT_{KW}

$$\Delta \, T_{KW} = \frac{|\dot{Q}_{41}|}{c_p \, \dot{m}_{KW}} = 5.65 \ \mathrm{K}$$

b. Der zugeführte Wärmestrom \dot{Q}_{23} beträgt:

$$\dot{Q}_{23} = \dot{m} (h_3 - h_2) = \dot{m} (h_3 - h_1 + w_{p12}) = 2995.21 \text{ MW}$$

Dies ergibt einen täglichen Schweröl- bzw. Kohle-Verbrauch von:

$$m_l = 6'469.65 \text{ t}$$

$$m_{Kohle} = 10'351 \text{ t}$$

Lösung 14.5: Analyse eines einfachen Dampfkraftwerkes.

a. Prozess und Verfahrensfliessbild

b. Tabelle der Zustandsgrössen und Darstellung im T,s- und h,s-Diagramm

Zustand 1:

Werte aus der Dampftafel: $v_1=0.03448~\mathrm{m^3/kg}$ und $h_1=3450.2~\mathrm{kJ/kg}$

$$\dot{V}_1 = \dot{m}_1 \, v_1 = 3.2 \, \text{m}^3/\text{s}$$

$$\dot{V}_1 = c_1 A_1 \rightarrow A_1 = \frac{{D_1}^2 \pi}{4} = \frac{\dot{V}_1}{c_1} \rightarrow c_1 = \frac{4 \dot{V}_1}{{D_1}^2 \pi} = 101.5 \text{ m/s}$$

Zustand 2:

Werte aus der Dampftafel: $v_2 = 31.32~\mathrm{m}^3/\mathrm{kg}$ und $h_2 = 2311.191~\mathrm{kJ/kg}$

$$\dot{V}_2 = \dot{m}_2 \, v_1 = 2900.2 \, \text{m}^3/\text{s}$$

$$c_2 = \frac{4 \, \dot{V}_2}{{D_2}^2 \, \pi} = 381.5 \, \, \mathrm{m/s}$$

Zustand 3:

Werte aus der Dampftafel: $v_3=1\cdot 10^{-3}~\mathrm{m}^3/\mathrm{kg}$ und $h_3=121.41~\mathrm{kJ/kg}$

$$\dot{V}_3 = \dot{m}_3 \, v_3 = 0.0926 \, \, \mathrm{m}^3/\mathrm{s}$$

$$D_3 = \sqrt{\frac{4\,\dot{V}_3}{c_3\,\pi}} = 217 \text{ mm}$$

Zustand 4:

spezifische Enthalpie aus der Dampftafel: $h_4=134.7~{\rm kJ/kg}$ mit $\dot{m}_4=\dot{m}_3=92.6~{\rm kg/s}$ folgt:

$$\dot{V}_4 = \dot{m}_4 \, v_4 = 0.0924 \, \, \mathrm{m}^3/\mathrm{s}$$

$$D_4 = \sqrt{\frac{4\,\dot{V}_4}{c_4\,\pi}} = 217 \text{ mm}$$

Tabelle:

	1	2	3	4	5.1	5.2
$\dot{m} [\mathrm{kg/s}]$	92.6	92.6	92.6	92.6	10025	10025
θ [°C]	530	29.0	29.0	29.8	20	25
$p \left[bar(a) \right]$	100	0.04	0.04	100	2	1.7
$v [\mathrm{m}^3/\mathrm{kg}]$	0.03448	31.32	1.10-3	$0.998 \cdot 10^{-3}$	1.10^{-3}	1.10^{-3}
h [kJ/kg]	3450.2	2311.191	121.41	134.7	84	104.9
x [-]	1	0.9	0	-	-	-
$c [\mathrm{m/s}]$	101.5	381.5	2.5	2.5	3	3
$\dot{V} [\mathrm{m}^3/\mathrm{s}]$	3.2	2900.2	0.0926	0.0924	9.7	9.7
D [mm]	200	2.2200	218	217	2063	2063

Prozess im h,s-Diagramm:

Prozess im T,s-Diagramm:

c. Turbine und Generator

Ohne Berücksichtigung der Geschwindigkeitsänderung über die Turbine gilt:

$$-P_{el} = \eta_G \, \eta_{Gen} \, \dot{m} \, (h_2 - h_1) = 100.26 \, \text{MW}$$

Unter Berücksichtigung der Geschwindigkeitsänderung wird die abgegebene elektrische Leistung kleiner:

$$-P_{el} = \eta_G \, \eta_{Gen} \, \dot{m} \, \left[h_2 + \frac{c_2^2}{2} - \left(h_1 + \frac{c_1^2}{2} \right) \right] = 94.31 \text{ MW}$$

Für den isentropen Turbinenwirkungsgrad gilt mit $h_{2s}=2020~{\rm kJ/kg}$ aus dem h,s-Diagramm:

$$\eta_{s,T} = \frac{T_1 - T_2}{T_1 - T_{2s}} = \frac{h_1 - h_2}{h_1 - h_{2s}} = 0.80$$

d. Kondensator

Der im Kondensator abzuführende Wärmestrom berechnet sich mit:

$$\dot{Q}_{23} = \dot{m}_2 \left[h_2 + \frac{c_2^2}{2} - \left(h_3 + \frac{c_3^2}{2} \right) \right] = 209.51 \text{ MW}$$

Dieser Wärmestrom wird im Kondensator an das Kühlwasser abgeführt. Der Kühlwasser-Massenstrom lässt sich berechnen mit:

$$\dot{Q}_{23} = -\dot{Q}_{KW} = \dot{m}_{KW} \, c_p \, (T_{5.2} - T_{5.1}) \, \rightarrow \, \dot{m}_{KW} = \frac{\dot{Q}_{23}}{c_p \, (T_{5.2} - T_{5.1})} = 10'025 \, \, \mathrm{kg/s}$$

Zustand 5.1:

spezifische Enthalpie aus "Stoffwerte von Wasser": $h_{5.1}=84$ kJ/kg mit $\dot{m}_{5.1}=10'025$ kg/s folgt:

$$\dot{V}_{5.1} = \dot{m}_{5.1} \, v_{5.1} = 10.025 \, \,\mathrm{m}^3/\mathrm{s}$$

$$D_{5.1} = \sqrt{\frac{4 \, \dot{V}_{5.1}}{c_{5.1} \, \pi}} = 2'063 \text{ mm}$$

Zustand 5.2:

spezifische Enthalpie aus "Stoffwerte von Wasser": $h_{5.2}=104.9~\mathrm{kJ/kg}$

mit $\dot{m}_{5.2} = 10'025 \text{ kg/s folgt}$:

$$\dot{V}_{5.2} = \dot{m}_{5.2} \, v_{5.2} = 10.025 \, \,\mathrm{m}^3/\mathrm{s}$$

$$D_{5.2} = \sqrt{\frac{4 \, \dot{V}_{5.2}}{c_{5.2} \, \pi}} = 2'063 \text{ mm}$$

e. Speisewasserpumpe

Für die der Speisewasserpumpe zugeführte Leistung gilt:

$$P_{SWP} = \dot{m}_3 (h_4 - h_3) \left(\frac{1}{\eta_m}\right) = 1'295 \text{ kW}$$

Die Verlustleistung (Dissipation) infolge des Strömungswirkungsgrades der Pumpe beträgt:

$$P_V = \dot{m}_3 (h_4 - h_3) (1 - \eta_i) = 308 \text{ kW}$$

Diese Dissipation führt dazu, dass sich das Wasser in der Pumpe erwärmt:

$$P_V = \dot{m}_3 c_p \Delta T \to \Delta T = \frac{P_V}{\dot{m}_3 c_p} = 0.8 \text{ K}$$

f. Dampferzeuger

Im Dampferzeuger wird dem Wasser der Wärmestrom \dot{Q}_{41} zugeführt:

$$\dot{Q}_{41} = \dot{m}_4 (h_1 - h_4) = 307.02 \text{ MW}$$

Die Wärmeverluste im Dampferzeuger führen dazu, dass über das Heizöl der Wärmestrom \dot{Q}_B zugeführt werden muss.

$$\dot{Q}_B = \dot{Q}_{41} \left(\frac{1}{\eta_{WV}} \right) = \dot{m}_B \, H_B \, \eta_V \, \rightarrow \, \dot{m}_B = \frac{\dot{Q}_{41}}{\eta_{WV} \, \eta_V \, H_B} = 8.48 \, \, \mathrm{kg/s}$$

Der Heizölbedarf pro Stunde beträgt somit:

$$m_B = \dot{m}_B \, \Delta \, t = 30.52 \, \mathrm{t}$$

g. Innerer und äusserer Gesamtwirkungsgrad

Der innere Gesamtwirkungsgrad berechnet sich mit:

$$\eta_{Th,i} = \frac{-P_{i\,12} - P_{i\,34}}{\dot{Q}_{41}} = \frac{(h_1 - h_2) - (h_4 - h_3)}{(h_1 - h_4)} = 0.34$$

Und für den äusseren Gesamtwirkungsgrad gilt:

$$\eta_{Th,a} = \frac{-P_{12} - P_{34}}{\dot{Q}_B} = \frac{-P_{el} - P_{SWP}}{\dot{Q}_B} = 0.27$$

h. Arbeitsverhältnis

Das Arbeitsverhältnis berechnet sich hier mit:

$$r_{wi} = \frac{-P_{el} - P_{SWP}}{-P_{el}} = 0.99$$

Lösung 14.6: Dampfkraftprozess mit thermischer Energie aus dem Ozean.

a. Darstellung im T, s-, h, s- und p, T-Diagramm:

b. Berechnung der abgegebenen Leistung und Ergänzen der Tabelle:
 Für die Berechnung der abgegebenen Leistung der Turbine gilt:

$$-P_{el} = \dot{m}_3(h_3 - h_4)$$

Dabei gilt für \dot{m}_3 :

$$\dot{m}_{3} = \dot{m}_{2}^{"}; \quad x_{2} = \frac{\dot{m}_{2}^{"}}{\dot{m}_{2}}; \quad h_{2} = h_{2}^{'} + x_{2}(h_{2}^{"} - h_{2}^{'})$$

Mit $h_2 = h_1$ und $\dot{m}_2 = \dot{m}_1$ folgt:

$$\dot{m}_3 = \dot{m}_2^{"} = \dot{m}_1 \left(\frac{h_1 - h_2^{'}}{h_2^{"} - h_2^{'}} \right)$$

Die spezifischen Enthalpien h_2 und h_2 können für den Druck p_2 aus der Dampftafel ermittelt werden. Der Druck p_2 beträgt 0.03 bar(a) (Siededruck bei 24°C). Es folgt:

$$\dot{m}_3 = 0.683 \cdot 10^3 \text{ kg/s}$$

Für die spezifische Enthalpie h_4 gilt:

$$h_4 = h_4' + x_4 (h_4'' - h_4')$$

Weiter gilt für die spezifische Entropie s_4 :

$$s_4 = s_4' + x_4 (s_4'' - s_4')$$

Mit den obigen zwei Gleichungen kann der Dampfgehalt x_4 eliminiert und die spezifische Enthalpie h_4 berechnet werden. Der Druck p_4 beträgt 0.012 bar(a) (Siededruck bei 10°C). Die spezifischen Enthalpien $h_4^{''}$ und $h_4^{''}$ sowie die spezifischen Entropien $s_4^{''}$ und $s_4^{''}$ können wiederum für den Druck p_4 aus der Dampftafel ermittelt werden. Die spezifische Entropie s_4 entspricht der spezifischen Entropie s_3 , da die Turbine einen insentropen Wirkungsgrad von 1 hat.

$$h_4 = h_4' + (h_4'' - h_4') \left(\frac{s_3 - s_4'}{s_4'' - s_4'} \right) = 2428.8 \text{ kJ/kg}$$

Die spezifische Enthalpie h_3 entspricht ${h_2}^{''}$ und kann für den Druck $p_3=p_2$ aus der Dampftafel ermittelt werden:

$$h_3 = 2545.5 \text{ kJ/kg}$$

Jetzt kann die von der Turbine abgegebene Leistung berechnet werden:

$$-P_{el} = \dot{m}_3 (h_3 - h_4) = 79'706.1 \text{ kW}$$

Tabelle ergänzen:

Die spezifische Entropie s_2 kann wie folgt berechnet werden:

$$h_2 = h_5 + x_2 (h_3 - h_5); \quad s_2 = s_5 + x_2 (s_3 - s_5)$$

Somit gilt für s_2 :

$$s_2 = s_5 + \frac{h_2 - h_5}{h_3 - h_5} (s_3 - s_5)$$

Die spezifische Enthalpie h_5 entspricht ${h_2}'$ und kann aus Dampftafel ermittelt werden. Das gleiche gilt für die spezifische Entropie s_5 . Es folgt:

$$s_2 = 0.4092 \text{ kJ/kg K}$$

Zur Berechnung von \dot{m}_6 bietet sich der folgende Ansatz:

$$\dot{H}_4 + \dot{H}_6 = \dot{H}_7$$

$$\dot{m}_4 \, h_4 + \dot{m}_6 \, h_6 = \underbrace{\dot{m}_7}_{\dot{m}_4 + \dot{m}_6} \, h_7$$

$$\dot{m}_6 = \dot{m}_4 \left(\frac{h_7 - h_4}{h_6 - h_7}\right) = 77.63 \cdot 10^3 \text{ kg/s}$$

Weiter gilt für \dot{m}_7 :

$$\dot{m}_7 = \dot{m}_6 + \dot{m}_4 = 78.31 \cdot 10^3 \text{ kg/s}$$

Tabelle:

	1	2	3	4	5	6	7
θ [°C]	28	24	24	10	24	5	10
p [bar(a)]	0.038	0.03	0.03	0.012	0.03	-	-
h [kJ/kg]	117.3	117.3	2545.5	2428.8	100.59	21	42
s [kJ/kg K]	0.4088	0.4092	8.5806	8.5806	0.3530	0.0762	0.151
$\dot{m} \ [10^3 \ {\rm kg/s}]$	100	100	0.683	0.683	99.317	77.63	78.31