

Docket No.: 03818/100L652-US1
(PATENT)

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of:
Mladen Mercep et al.

Application No.: 10/616,046

Filed: July 8, 2003

Art Unit: 1623

For: NOVEL COMPOUNDS, COMPOSITIONS AS
CARRIERS FOR STEROID/NONSTEROID
ANTI-INFLAMMATORY, ANTOINEOPLASTIC
AND ANTIVIRAL ACTIVE MOLECULES

Examiner: E. Peselev

DECLARATION OF LINDA TOMAŠKOVIĆ UNDER 37 C.F.R. § 1.131

Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Dear Sir:

I, Linda Tomashkovic, declare that:

- (1) I am a citizen of Croatia and reside in Zagreb, Croatia, a WTO member country.
- (2) I am currently employed, and was employed at all relevant times, by Pliva-Istrazivacki Institut d.o.o. in Zagreb, Croatia.
- (3) I am one of the named inventors of the above-identified application published as U.S. Pat. Pub. No. 2004/0077612.
- (4) I re-affirm my duty of candor and good faith in dealing with the United States Patent and Trademark Office ("USPTO"), including the duty to disclose to the USPTO all information known to be material to the patentability of the invention as defined in 37 CFR §1.56.

{W:\03818\100L652US1\00757105.DOC *03818100L652US1* }

BEST AVAILABLE COPY

Application No.: 10/616,046

2

Docket No.: 03818/100L652-US1

(5) I submit this declaration to support patentability of claims of the present application that have been rejected based on Burnet (US 2004/0087517) on the grounds of either anticipation (prior identical disclosure of the invention) or obviousness.

(6) More specifically, I submit this declaration to show that my co-inventors and I conceived and reduced the present invention to practice at a time prior to February 15, 2002, the earliest filing date asserted by Burnet.

(7) From a time considerably earlier than February 15, 2002, my co-inventors and I formed part of a team that devoted considerable resources to an on-going program of development of macrolide conjugates that include an anti-inflammatory moiety linked to a macrolide molecule and that possess anti-inflammatory activity. The macrolides were predominantly azithromycin and other homoerythromycin derivatives.

(8) As evidence of the existence and purpose of this program, and the existence of a broad concept that led to the present invention, I attach a copy of the specification of International Patent Application WO 02/055531 (Exhibit A). Three of my present co-inventors and I are named as inventors in WO 02/055531. This application was filed January 3, 2002. In this document, we broadly state that conjugates having the general formula MLA have anti-inflammatory activity. M represents a macrolide subunit (Formulas M1, through M6), L is a linker linking M and A, and "A represents an anti-inflammatory subunit that can be steroid or nonsteroid." (Exhibit A, paragraph bridging pages 3 and 4, page 3 lines 12-13, pages 4 - 9 (macrolides), and pages 9 -12 (steroids)). Exhibit A also discloses a number of specific macrolide-steroid conjugates (Exhibit A, Table 1, pages 39-43) and their anti-inflammatory activity (Exhibit A, page 3 and pages 25 – 29).

(9) Further, as evidence that my co-inventors and I reduced the present invention to practice prior to February 15, 2002 I submit pertinent excerpts from the laboratory notebook which was regularly maintained in the laboratory pertaining to a compound that was synthesized prior to February 15, 2002. These laboratory entries were also made prior to February 15, 2002.

{W:\03818\100L652US1\00757105.DOC *03818100L652US1* }

BEST AVAILABLE COPY

Application No.: 10/616,046

3

Docket No.: 03818/100L652-US1

(10) To show that Compound 1 of the present application was synthesized before February 15, 2002, I submit as Exhibit B pages 9 - 15 from Laboratory Notebook having the Lab. Diary number 000959. Exhibit B sets forth the synthetic protocol for the synthesis of the dexamethasone with the peptide linker (pages 9 – 13) and the conjugation of the macrolide and dexamethasone-peptide moiety which produced the conjugate designated as Compound 1 in the present application:

The amount and identity of reagents used, solvents, yield, and product analytical data (mass spectra) are also set forth in these pages. These records demonstrate that Compound 1 disclosed in the present application was actually reduced to practice prior to February 15, 2002.

(11) My co-inventors and I worked diligently to reduce to practice the broad expression of the claimed invention as well as additional specific embodiments of the claimed invention from a time prior to February 15, 2002, until the filing of provisional application 60/395,190 on July 8, 2002 and thereafter until the filing date of the present application on July 8, 2003. For example, the provisional application 60/395,190 filed July 8, 2002 discloses both compounds 1 and 2 and the route to their synthesis. By the time the present application was filed, it included a total of 22 compounds in 8 examples. A description of how each of these conjugates can be made is also provided in the application. This demonstrates that we worked diligently in order to reduce the claimed invention to practice.

(12) I declare further that statements made in this Declaration are of my own knowledge and are true and that all statements made on information and belief are believed to be

{W:\03818\100L652US1\00757105.DOC *03818100L652US1* }

BEST AVAILABLE COPY

Application No.: 10/616,046

4

Docket No.: 03818/100L652-US1

true and further these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

Date: 26. 05. 2006.Linda T.

Linda Tomašković

BEST AVAILABLE COPY

{W:\03818\100L652US1\00757105.DOC *03818100L652US1* }

BEST AVAILABLE COPY

BEST AVAILABLE COPY

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
18 July 2002 (18.07.2002)

PCT

(10) International Publication Number
WO 02/055531 A1

(51) International Patent Classification⁷: C07J 43/00,
A61K 31/58, A61P 5/44

Boska [HR/HR]; Skolska 45, H-10410 Velika Gorica
(HR). MARKOVIC, Stribor [HR/HR]; Sarajevska 2A,
H-47 000 Karlovac (HR).

(21) International Application Number: PCT/HR02/00001

(74) Common Representative: PLIVA D.D.; Ulica Grada
Vikovara 49, H-10 000 Zagreb (HR).

(22) International Filing Date: 3 January 2002 (03.01.2002)

(25) Filing Language:

English

(81) Designated States (*national*): BA, BG, BR, CA, CN, CZ,
EE, GE, HU, IL, IN, IS, JP, KP, LT, LV, MK, PL, SI, SK,
UA, US, UZ, YU.

(30) Priority Data:

P20010018A 9 January 2001 (09.01.2001) HR

(84) Designated States (*regional*): Eurasian patent (AM, AZ,
BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE,
CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE, TR).

(71) Applicant (*for all designated States except US*): PLIVA
D.D. [HR/HR]; Ulica Grada Vikovara 49, 10 000 Zagreb
(HR).

Published:

- *with international search report*
- *before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments*

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 02/055531 A1

(54) Title: CONJUGATES OF IMMUNE CELL SPECIFIC MACROLIDE COMPOUNDS WITH ANTI-INFLAMMATORY
COMPOUNDS FOR IMPROVED CELLULAR TARGETING OF ANTI-INFLAMMATORY THERAPY

(57) Abstract: The present invention relates to novel compounds represented by the structure I and pharmaceutical preparations thereof for the treatment of inflammatory diseases in humans and animals.

CONJUGATES OF IMMUNE CELL SPECIFIC MACROLIDE COMPOUNDS WITH ANTI-INFLAMMATORY COMPOUNDS FOR IMPROVED CELLULAR TARGETING OF ANTI-INFLAMMATORY THERAPY

Technical problem

The present invention relates to new anti-inflammatory compounds represented by the general structure I, to their salts and solvates, to processes for their preparation and to the use of these compounds in the treatment of inflammatory diseases and conditions in humans and animals.

Prior art

Anti-inflammatory medicaments could be classified into those of steroid and of nonsteroid type. Steroid anti-inflammatory compounds are still the most effective ones in the treatment of inflammatory diseases and conditions such as asthma, chronic obstructive pulmonary disease, inflammatory nasal diseases such as allergic rhinitis, nasal polyps, intestinal diseases such as Crohn's disease, colitis, ulcerative colitis, dermatological inflammations such as eczema, psoriasis, allergic dermatitis, neurodermatitis, pruritis, conjunctivitis and rheumatoid arthritis. In addition to the excellent potency and effectiveness, medicaments of this type also possess numerous unfavourable effects e.g. on carbohydrate metabolism, calcium resorption, secretion of endogenous corticosteroids as well as on physiological functions of hypophysis, adrenal cortex and thymus. Hitherto developed steroids are highly effective against inflammation conditions and processes since they inhibit many inflammation mediators whereas their systemic unfavourable effects are diminished. Patent applications WO 94/13690, WO 94/14834, WO 92/13873 and WO 92/13872 disclose so-called "soft" steroids or hydrolysable corticosteroids designed for topical application on the inflammation site, whereas their systemic unfavourable effect is diminished due to the instability of "soft" steroids in serum, wherein the active steroid very rapidly hydrolyzes into the inactive form. An ideal steroid, however, without unfavourable effects in a long-term and continuous treatment as required for the control of diseases such as asthma or Crohn's disease has yet to be found and it has

been worked intensively on finding and developing steroids with an improved therapeutic profile.

Nonsteroid anti-inflammatory medicaments of different mechanisms act on particular inflammation mediators, thus providing a therapeutical effect. Due to different action mechanisms and differences in the inhibition of particular inflammation mediators, the steroid and nonsteroid medicaments possess different profiles of anti-inflammation effects, hence in particular conditions they are used alternatively or preferentially. Unfortunately, nonsteroid anti-inflammatory medicaments are not absolutely specific either and demonstrate unfavourable effects when used in greater concentrations or over long periods. It is known that many nonsteroid anti-inflammatory medicaments act as inhibitors of endogenous COX-1 enzyme, which is very important in maintaining the integrity of the gastric mucosa. Thus, the use of these medicaments causes injuries of the gastric mucosa and bleeding in numerous patients. For some anti-inflammatory compounds (theophylline) it is known that their therapeutic index is very narrow, which limits their usage.

Macrolide antibiotics accumulate within different cells of organism, especially within phagocyte cells such as mononuclear peripheral blood cells, peritoneal and alveolar macrophages as well as in the liquid surrounding the bronchoalveolar epithelium (Glaude R. P. et al, *Antimicrob. Agents Chemother.*, 33 1989, 277-282; Olsen K. M. et al, *Antimicrob. Agents Chemother.*, 40 1996, 2582-2585). Moreover, in the literature also relatively weak inflammatory effects of some macrolides are described. Thus, there has recently been described the anti-inflammatory effect of erythromycin derivatives (*J. Antimicrob. Chemother.*, 41, 1998, 37-46; WO 00/42055) and azithromycin derivatives (EP 0283055). An anti-inflammatory effect of some macrolides is also known from *in vitro* and *in vivo* studies in experimental animals such as at zimosane-induced peritonitis in mice (*J. Antimicrob. Chemother.* 30, 1992, 339-348) and at endotoxine-induced neutrophil accumulation in rat trachea (*J. Immunol.* 159, 1997, 3395-4005). The modulating effect of macrolides upon cytokines

such as interleukin 8 (IL-8) (*Am. J. Respir. Crit. Care. Med.* 156, 1997, 266-271) or interleukin 5 (IL-5) (EP 0775489 and EP 0771564) is known as well.

Technical Solution

Compounds of the structure I differ from hitherto known ones in their new action mechanism characterized by selective accumulation in the organs and cells targeted in the above-mentioned inflammation conditions and diseases. Such action of the new compounds represented by the structure I arises from the macrolide portion M due to the said specific pharmacokinetic properties. Such pharmacokinetic properties enable the compounds represented by the structure I to act exclusively in the inflammation site just in the inflammation cells themselves by inhibiting the production of inflammation mediators. In such a manner the unfavourable systemic effect of both corticosteroids and nonsteroid anti-inflammatory compounds is avoided. After topical application the molecules rapidly accumulate in inflammation cells, wherein they act by inhibiting the production of cytokines and chemokines as well as other inflammation mediators and thus suppressing the inflammation. According to the known and established prior art, the compounds represented by the structure I, which are the object of the present invention, their pharmacologically acceptable salts and pharmaceutical preparations comprising them have hitherto not been described. Moreover, none of the compounds being the object of the present invention has been described either as an anti-inflammatory substance or as an inhibitor of eosinophilic accumulation in inflammation tissues.

The object of the present invention are new compounds, their salts and solvates represented by the structure I

wherein **M** represents a macrolide subunit possessing the property of accumulation in inflammatory cells, **A** represents an anti-inflammatory subunit that can be steroid or nonsteroid and **L** represents a chain linking **M** and **A**, as well as an improved therapeutic effect of these compounds in treating inflammation diseases and conditions.

More specifically, this invention relates to compounds, their salts and solvates represented by the structure I, wherein **M** represents a macrolide subunit represented by the formulas

wherein

R_1 is hydrogen or a methyl group,

R_2 and R_3 are both hydrogen or together form a bond, or

R_2 is an amino group represented by the substructure

wherein R' and R'' may be, independently from each other, hydrogen or any alkyl or cycloalkyl group having 1-6 carbon atoms, with the proviso that R_3 is then hydrogen,

R_4 is a hydroxyl or cladinosyl group represented by the structure

R_4 and R_5 may also together form a carbonyl group, with the proviso that R_1 is then a methyl group;

M2

wherein

R_1 is hydrogen or a methyl group,

R_2 and R_3 are both hydrogen or together form a bond, or

R_2 is an amino group represented by the substructure

wherein R' and R'' may be, independently from each other, hydrogen or any alkyl or cycloalkyl group having 1-6 carbon atoms, with the proviso that R_3 is then hydrogen,

R_4 may be any alkyl group having 1-4 carbon atoms, preferably a methyl group;

M3

wherein

R_1 is hydrogen or a methyl group,

R_2 and R_3 are both hydrogen or together form a bond, or

R_2 is an amino group represented by the substructure

wherein R' and R'' may be, independently from each other, hydrogen or any alkyl or cycloalkyl group having 1-6 carbon atoms, with the proviso that R_3 is then hydrogen,

R_4 is a hydroxyl or cladinosyl group represented by the structure

R_4 and R_5 may also together form a carbonyl group, with the proviso that R_1 is then a methyl group;

M4

wherein

R_1 is hydrogen or a methyl group,

R_2 and R_3 are both hydrogen or together form a bond, or

R_2 is an amino group represented by the substructure

wherein R' and R'' may be, independently from each other, hydrogen or any alkyl or cycloalkyl group having 1-6 carbon atoms, with the proviso that R₃ is then hydrogen,

R₄ is a hydroxyl or cladinosyl group represented by the structure

wherein

R₁ is hydrogen or a methyl group,

R₂ and R₃ are both hydrogen or together form a bond, or

R₂ is an amino group represented by the substructure

wherein R' and R'' may be, independently from each other, hydrogen or any alkyl or cycloalkyl group having 1-6 carbon atoms, with the proviso that R₃ is then hydrogen,

R₄ is a hydroxyl or cladinosyl group represented by the structure

R_5 may be any alkyl group having 1-4 carbon atoms, preferably a methyl group;

wherein

R_1 is hydrogen or an acetyl group,

R_2 and R_3 are both hydrogen or together form a bond, or

R_2 is amino group represented by the substructure

wherein R' and R'' may be, independently from each other, hydrogen or any alkyl or cycloalkyl group having 1-6 carbon atoms, with the proviso that R_3 is then hydrogen,

R_4 is a hydroxyl or cladinosyl group represented by the structure

R_5 may be any alkyl group having 1-4 carbon atoms, preferably a methyl group,

and **A** is an anti-inflammatory subunit represented by the formulas:

wherein Z represents oxygen or a NH group, R_1 is hydrogen or a hydroxyl or O-acyl or O-alkyl group,

R_2 represents hydrogen or a methyl group, which may be oriented in α - or β -position,

X_1 is hydrogen or halogen,

X_2 is hydrogen or halogen,

with halogen meaning fluorine, chlorine or bromine,

1,2-position may represent a double or a single carbon-carbon bond;

wherein Z represents oxygen or a NH group, R₁ is hydrogen or a hydroxyl or O-acyl or O-alkyl group,

R₂ represents hydrogen or an acyl group,

X₁ is hydrogen or halogen,

X₂ is hydrogen or halogen,

with halogen meaning fluorine, chlorine or bromine;

or stereoisomeric forms thereof, wherein the 1,2-position represents a saturated or unsaturated double bond, wherein Z represents oxygen or a NH group,

R₁ is hydrogen, a straight or branched hydrocarbon chain having 1-4 carbon atoms,

R₂ is hydrogen, a straight or branched hydrocarbon chain having 1-10 carbon atoms,

with the proviso that R₁ and R₂ are not simultaneously hydrogen,

X₁ is hydrogen or halogen,

X₂ is hydrogen or halogen,

with halogen meaning fluorine, chlorine or bromine;

or stereoisomeric forms thereof, wherein the 1,2-position represents a saturated or unsaturated double bond, wherein Z is oxygen or a NH group,

R_1 is hydrogen, a straight or branched hydrocarbon chain having 1-4 carbon atoms,

R_2 is hydrogen, a straight or branched hydrocarbon chain having 1-10 carbon atoms with the proviso that R_1 and R_2 are not simultaneously hydrogen,

X_1 is hydrogen or halogen,

X_2 is hydrogen or halogen,

with halogen meaning fluorine, chlorine or bromine;

or stereoisomeric forms thereof, wherein the 1,2-position represents a saturated or unsaturated double bond,

R_1 is hydrogen, a straight or branched hydrocarbon chain having 1-4 carbon atoms,

R_2 is hydrogen, a straight or branched hydrocarbon chain having 1-10 carbon atoms with the proviso that R_1 and R_2 are not simultaneously hydrogen,

X_1 is hydrogen or halogen,
 X_2 is hydrogen or halogen,
with halogen meaning fluorine, chlorine or bromine, preferably fluorine;

wherein Z is oxygen or a NH group, R_1 is hydrogen or a hydroxyl group with a free hydrogen or a hydroxyl group or O-acyl or O-alkyl group,
 R_2 is hydrogen or a methyl group, which may be oriented in α - or β -position,
 R_3 is hydrogen or a radical of an acid having 1-4 carbon atoms,

X_1 is hydrogen or halogen,
 X_2 is hydrogen or halogen,
with halogen meaning fluorine, chlorine or bromine, preferably fluorine,
1,2-position may represent a double or single carbon-carbon bond,

and L is a chain with the formula $-CR_1R_2(CR_3R_4)_nCR_5R_6-$,
wherein R_1 , R_2 , R_3 , R_4 , R_5 , R_6 may be hydrogen, C_1-C_4 -alkyl, aryl, metoxy, halogen, hydroxy or mercapto groups, wherein n is 1-10, and
one or more $-CR_3R_4-$ groups may be substituted with oxygen, sulphur, an aromatic nucleus or an amino group additionally bearing hydrogen or a C_1-C_4 alkyl or aryl group,
or R_1 , R_2 , R_3 , R_4 , R_5 , R_6 may also together form one or more double or triple bonds in a chain, thus forming alkenyl or alkinyl, with the proviso that at least one methylene group is situated at the end of linking L group.

The chain covalently links subunits M and A *via* functional groups such as amides, ureates, carbamates, ethers, esters or *via* alkyl-alkyl or carbon-carbon bonds.

The terms used in the present invention are defined as stated hereinafter if not specified otherwise.

“Alkyl” means a monovalent alkane (hydrocarbon), wherfrom a radical is derived, which may be a straight-chain one, a branched-chain one, a cyclic one or a combination of straight-chain and cyclic hydrocarbons and branched-chain and cyclic hydrocarbons. Preferred straight-chain or branched-chain alkyls include methyl, ethyl, propyl, *iso*-propyl, butyl, *sec*-butyl and *t*-butyl groups. Preferable cycloalkyls include cyclopentyl and cyclohexyl groups. Alkyl also represents both a straight-chain or a branched-chain alkyl group including or being interrupted by a cycloalkyl portion.

“Alkenyl” means a hydrocarbon radical, which is a straight-chain one, a branched-chain one, a cyclic one or a combination of straight-chain and cyclic hydrocarbons and branched-chain and cyclic hydrocarbons and comprises at least one double carbon-carbon bond. Mainly ethenyl, propenyl, butenyl and cyclohexenyl groups are meant thereby. As already mentioned above for “alkyls”, also alkenyls may be straight-chain, branched-chain or cyclic ones, where a part of the alkenyl group may include double bonds and may also be substituted when a substituted alkenyl group is in question. Alkenyl also represents both a straight-chain or a branched-chain alkenyl group including or being interrupted by a cycloalkenyl portion.

“Alkynyl” means a hydrocarbon radical, which is a straight-chain or a branched-chain one and includes at least one and at most three triple carbon-carbon bonds. Mainly ethynyl, propynyl and butynyl groups are meant thereby.

“Aryl” means an aromatic ring such as phenyl group, substituted phenyl or similar groups as well as rings that are fused such as naphtyl and the like. Aryl includes at least one ring having at least 6 carbon atoms or two rings having together 10 carbon

atoms, possessing alternating double (resonance) bonds between carbon atoms (mainly phenyl and naphtyl rings). Aryl groups may be additionally substituted with one or two substituents, which may be halogen (fluorine, chlorine or bromine) and hydroxy, C₁-C₇ alkyl, C₁-C₇ alkoxy or aryloxy, C₁-C₇ alkylthio or arylthio, alkylsulfonyl, ciano or amino groups.

A further object of the present invention relates to a process for the preparation of compounds represented by the structure I.

These compounds can be prepared from the corresponding steroid part represented by the general structures A1 to A6, wherein all radicals and symbols have the meanings as defined for substructures A1 to A6, and macrolide intermediates represented by the general structures M1 to M6 by linking them *via* appropriate functional L groups. In an analogous manner, it is also possible to prepare compounds represented by the structure I with nonsteroid anti-inflammatory subunits *via* their free functionalities suitable for linkage.

From carboxylic acids of steroid subunits represented by the structures A1 to A4 and A6, which are prepared as described in the literature (Suzuki, T. et al, *Chem. Soc., Perkin Trans. I* 1998, 3831-3836), (McLean, H. M. et al, *J. Pharm. Sci.* 1994, 83, 476-480), (Little, R. J. et al, *Pharm. Res.* 1999, 16, 961-967), (Kertesz D. J. et al, *J. Org. Chem.* 1986, 51, 2315-2328), (Bodor N. S. US Patent 4,710,495, 1987), a compound of the general formula I can be prepared, where the activation with carboxydiimide and benzotriazole (HOBT) in anhydrous dichloromethane in the presence of a base such as triethylamine at room temperature in a flow of argon is used for the formation of an amide bond (Scheme 1).

Scheme 1

When the linking of macrolide subunits to the steroid subunits takes place *via* an ester bond, the synthesis is performed *via* the macrolide intermediate **M7**.

Scheme 2

Esterification in position 2' of the macrolide can be performed by the reaction with a halogen-substituted acid in dry dichloromethane in the presence of pivaloyl chloride, triethylamine and dimethylaminopyridine (DMAP), thus forming intermediates **M7** for linking with carboxylic acids of the subunit **A** (Scheme 2).

Such an intermediate can further react with the carboxylic functionality of subunit **A** in case of a steroid subunit such as represented by the structures **A1** to **A4** and **A6**.

The reaction is performed in dry DMF in the presence of a base such as potassium carbonate (K_2CO_3) in a flow of argon, yielding a potassium salt of the acid, which in the reaction with the macrolide intermediate gives a compound I of the present invention (Scheme 3).

Scheme 3

When the macrolide subunit means **M2** (a macrolide free of cladinoose in position 3), it is also possible to perform the coupling with an anti-inflammatory subunit **A** *via* an ester bond, whereat the preparation of intermediates **M8** and **M9** is necessary (Scheme 4).

Scheme 4

Esterification with the carboxylic group of subunit A occurs selectively due to the protected 2' hydroxyl group of macrolide M9, which is also reactive.

Scheme 5

The synthesis of a compound of the structure **I** from a macrolide subunit indicated by **M1** is performed from an intermediate, whose synthesis is described in Agouridas C., *J. Med. Chem.* 1998, 41, 4080-4100, in the manner and by the use of reagents described therein. From said intermediate **M10** a compound of the structure **I** is synthesized by the reaction with an anti-inflammatory subunit **A** bearing a carboxylic functionality by the use of potassium carbonate in dry DMF at room temperature (Scheme 6).

Scheme 6

The compounds of the general structure I comprising a compound M3 as the macrolide unit are synthesized by linking a modified anti-inflammatory unit A8 with a macrolide M3, which is prepared according to the already mentioned method (Agouridas C., *J. Med. Chem.* 1998, 41, 4080-4100). The anti-inflammatory intermediate A8 is prepared from an acid of the anti-inflammatory compound and a corresponding protected diamine (Boc-protection only from one side) in the presence of hidroxybenzotriazole and EDC in a suitable solvent, preferably dichloromethane or DMF. After obtaining the corresponding amide A7, a deprotection of the terminal

amino group is performed by the use of TFA in dichloromethane at room temperature (Scheme 7).

Scheme 7

The intermediate obtained according to the Scheme 7 is reacted in acetonitrile in a flow of nitrogen with a macrolide subunit M12, which is activated by carboxydiimide and comprises protected hydroxyl groups in positions 2' 4'' (Scheme 8).

Scheme 8

If the steroid subunit is described as indicated for the general structure A5, wherein all groups and radicals have the meanings as described in the above-mentioned definitions, the coupling reaction with the macrolide group is performed by the esterification of the intermediate A9 obtained according to the literature (HU 55409) and of the macrolide hydroxyl group (Scheme 9).

Scheme 9

A further object of the present invention relates to the use of compounds of the general structure I as anti-inflammatory, anti-anaphylactic and immunomodulating agents, which, depending on the inflammation site, can be administered in different ways such as percutaneously, orally, buccally, rectally, parenterally or by inhalation when a topical application within the respiratory tract is intended.

A further object of the present invention relates to the preparation of such pharmaceutical forms of compounds to achieve the optimal bioavailability of the active compound I. For percutaneous administration the compound I can be prepared

in a form of an ointment or a cream, a gel or a lotion. Ointments, creams and gels can be formulated by the use of a water or oil base under the addition of an appropriate emulgator or gelling agent, when a gel form is formulated. The formulation is especially significant for respiratory inhalation, wherein the compound I can be in the form of an aerosol under pressure. For all forms of aerosol formulations it is recommended to micronise the compound I, which has been previously homogenised in lactose, glucose, higher fatty acids, sodium salt of dioctylsulfosuccinic acid or, most preferably, in carboxymethyl cellulose, in order to achieve the size of 5 µm for the greatest number of particles. For the inhalation formulation the aerosol can be mixed with a propellant serving for spraying the active substance.

The compound I for inhalation application can be applied in the form of a dry powder with micronised particles.

The compound can also be incorporated in a formulation for treating Crohn's disease, where it can be administered orally or rectally. The formulation for oral administration must be formulated so as to enable the bioavailability of the compound in the inflammation part of the intestine. This can be achieved by different combinations of delayed release formulations. The compound I can also be used in the treatment of Crohn's disease and intestine inflammation disease if the compound is applied in the form of a clyster, wherefor a suitable formulation can be used.

The appropriate preparations of the compounds that are the object of the present invention can be used in the prophylaxis or treatment of different diseases and pathological inflammatory conditions including asthma, chronic obstructive pulmonary disease, inflammatory nasal diseases such as allergic rhinitis, nasal polyps, intestinal diseases such as Crohn's disease, colitis, intestine inflammation, ulcerative colitis, dermatological inflammations such as eczema, psoriasis, allergic dermatitis, neurodermatitis, pruritis, conjunctivitis and rheumatoid arthritis.

The therapeutic effect of the compounds of the present invention was determined in the following *in vitro* and *in vivo* experiments.

Assay of binding to the human glucocorticoid receptor

The gene for alpha isoform of human glucocorticoid receptor was cloned by reverse polymerase chain reaction. The total RNA was isolated from human peripheral blood lymphocytes according to the instructions of the manufacturer (Qiagen), transcribed into cDNA with AMV reverse transcriptase (Roche) and the gene was multiplied by specific primers

- 1) 5' ATATGGATCCCTGATGGACTCCAAAGAACATTAACTCC3'
- 2) 5' ATATCTCGAGGGCAGTCACTTTGATGAAACAGAAG3'

The obtained reaction product was cloned into XhoI/BamHI site of Bluescript KS plasmid (Stratagene), subjected to sequencing by dideoxy fluorescent method with M13 and M13rev primers (Mycrosynth) and then it was cloned into XhoI/BamHI site of pcDNA3.1 hygro(+)plasmid (Invitrogen). 1×10^5 COS-1 cells were seeded onto a 12-well plate (Falcon) in DMEM medium (Life Technologies) with 10 % FBS (Biowhitaker) and cultivated up to a 70 % confluence at 37 °C in an atmosphere with 5 % CO₂. The medium was removed and 1 µg of DNA, 7 µl of PLUS reagent and 2 µl of Lipofectamine (Life Technologies) in 500 µl DMEM were added per well. The cells were incubated at 37 °C in an atmosphere with 5 % CO₂ and after 5 hours the same volume of 20 % FBS/DMEM was added. After 24 hours the medium was completely changed. 48 hours after the transfection, the test compounds in different concentrations and 24 nM [³H] dexamethasone (Pharmacia) in DMEM medium were added. The cells were incubated for 90 minutes at 37 °C in an atmosphere with 5 % CO₂, washed three times with PBS buffer (Sigma), cooled to 4 °C (pH = 7.4) and then lysed in Tris buffer (pH = 8.0) (Sigma) with 0.2 % SDS (Sigma). After the addition of UltimaGold XR (Packard) scintillation liquid, the residual radioactivity was read in a Tricarb (Packard) β-scintillation counter.

Compounds **9**, **10** and **27** are able to compete with radioactive dexamethasone in the binding site on the glucocorticoid receptor.

Assay of steroid introduction into cells

CHO and COS-1 cells were cultivated up to confluence in 75 cm² flasks in Hamm F 12 medium (Life Technologies) with 10 % FBS (CHO) or in DMEM medium with 10 % FBS (COS-1). 1µM of radioactive compound **10** with total 2 µCi activity was added onto the cells and it was incubated for 90 minutes at 37 °C in an atmosphere with 5 % CO₂. The cell supernatant was collected, the cells were lysed and then the radioactivity in the cell lysate as well as in the cell supernatant was read. The compound **10** was able to accumulate in the cells in a greater concentration than in the supernatant.

Assay of inhibition of mouse T-cell hybridoma 13 proliferation as a result of apoptosis induction

In a 96-well plate triplicates of test steroid dilution in RPMI medium (Imunološki zavod) with 10 % PBS were performed. To the solutions of compounds 20 000 cells per well were added and incubated overnight at 37 °C in an atmosphere with 5 % CO₂, then 1 µCi of [³H] thymidine (Pharmacia) was added and it was incubated for additional 3 hours. The cells were harvested by sucking over GF/C filter (Packard). Onto each well 30 µl of Microscynt O scintillation liquid (Packard) were added and the incorporated radioactivity was measured on a β-scintillation counter (Packard). The specificity of apoptosis induction by glucocorticoids was proven by antagonising the proliferation inhibition with mifepristone (Sigma).

Compounds **8**, **9**, **10** and **27** demonstrated an inhibition of cell hybridoma 13 proliferation.

Assay of inhibition of interleukin-2 production

Onto a 96-well plate (Nunc) 15 ng of 2C11 antibodies (Pharmingen) per well were added and left to adsorb in PBS buffer (pH = 7.4) overnight at 4 °C. PBS was removed, the plate was washed with RPMI medium and then 50 000 cells per well were added and incubated in the medium with and without a dilution of the test compounds. The concentration of IL-2 in the supernatant was measured by ELISA specific for mouse IL-2 (R&D Systems).

The compounds **9**, **10** and **27** demonstrate an inhibition of interleukin-2 production induced by the stimulation *via* CD3 receptor.

Table 2

Compound	Binding to the glucocorticoid receptor	Induction of H13 cells apoptosis	Inhibition of IL-2 synthesis
5	ND	-	-
8	+	+	+
9	+	+	+
10	+	+	+
11	ND	-	-
27	+	+	+
dexamethasone	+	+	+

ND - not determined

Model of croton oil-induced ear edema

Male Sprague Dawley rats with body weight of 200-250 g were randomly divided into groups, marked and the initial ear thickness was measured with a digital caliper.

To the control group 50 µl of solvent (acetone, Kemika) per ear were applied. In the same manner also the test compound in a dose of 1 mg/ear or the standard (1 mg/ear of dexamethasone, Krka) dissolved in acetone were applied. Thirty minutes later an ear edema was induced with 20 % croton oil (Sigma). The maximum intensity of the inflammation was reached five hours after the application of croton oil. The percentage of the ear edema inhibiton was determined by compariing the ears of the treated animals and of the control ones. In this model the compound **10** was tested, which demonstrated a similar activity as the tested standard.

Model of lung eosinophilia in mice

Male Balb/C mice with a body weight of 20-25 g were randomly divided into groups. They were sensibilized by an i.p. injection of ovalbumine (OVA, Sigma) on zero day and on the fourteenth day. On the twentieth day the mice were subjected to a provocative test by i.n. application of OVA (positive control or test groups) or PBS (negative control). 48 hours after i.n. application of OVA, the animals were anesthetized and the lungs were rinsed with 1 ml of PBS. The cells were separated on Cytospin 3 cytocentrifuge (Shandon). The cells were stained in Diff-Quick (Dade) and the percentage of eozinophiles was determined by differential counting of at least 100 cells.

Fluticasone and beclomethasone were used as standard substances under positive and negative control.

The compounds were administered daily i.n. or i.p. in different doses 2 days before provocative test and up to the completion of the test.

Compounds **8**, **9** and **10** statistically significantly (t-test, p<0.05) reduced the number of eosinophiles in the lung rinse with regard to the positive control.

Influence of compounds on the thymus weight

Male Sprague Dawley rats with a body weight of 200 g were randomly divided into groups of six animals. To anaesthetized animals sterilized weighed pellets of filter paper were implanted s.c. dorsally. The pellets in the control group were impregnated with acetone, whereas in the test groups they were impregnated either with the standard (prednisolone, Sigma) or with the compound **10**. After 7 days the animals were put to sleep and their thymuses were isolated and weighed. The systemic effects were estimated by comparing the thymus weight in the test and control groups.

The standard statistically significantly reduced the thymus weights with regard to the control, while the compound **10** did not affect the thymus weights.

Preparation processes with Examples

The present invention is illustrated but in no way limited by the following Examples.

Example 1

Intermediate M11, wherein R₄ represents a cladinose group (9-deoxo-9a-aza-9a-(γ -aminopropyl)-9a-homoerythromycin A)

To a solution of 9-deoxo-9a-aza-9a-(β -cianoethyl)-9a-homoerythromycin A (3 g; 3.8 mmole) in ethanol (100 ml), 500 mg of PtO₂ were added. The reaction was performed in an autoclave during 2 days under the pressure of 40 bar. Subsequently, the reaction mixture was filtered and ethanol was evaporated on a rotary evaporator. The residue was purified on a silica gel column (eluant: CH₃OH:CH₂Cl₂:NH₄OH = 50:30:2). 700 mg of the pure product were obtained. MS(ES⁺): 793 (MH⁺)

Intermediate M11, wherein R₄ represents a hydroxyl group

The intermediate M11 was prepared according to the process described in Example 1 from 3-decladinosyl-9-deoxo-9a-aza-9a(β -cianoethyl)-9a-homoerythromycin A (3.5 g; 5.55 mmole). 985 mg of the product were obtained. MS (ES⁺): 635 (MH⁺)

Example 2

Intermediate M7, wherein R₄ represents a cladinose group

To a solution of 5-bromo-2-methylvaleric acid (1.282 g; 7.07 mmole) in dry CH₂Cl₂ (10 ml), 1 ml (7.23 mmole) of triethylamine, 868 mg (7.10 mmole) of 4-dimethylaminopyridine and 0.940 ml (7.63 mmole) of pivaloyl chloride were added. The solution was stirred for 2 hours at room temperature in a flow of argon and then a solution of azithromycin (2 g; 2.67 mmole) in 10 ml of dry CH₂Cl₂ was added. The reaction mixture was stirred for three days at room temperature. Subsequently, 60 ml of saturated NaHCO₃ solution were added to the reaction mixture and the layers were

separated. The aqueous layer was twice more extracted with 40 ml of CH₂Cl₂. The combined organic extracts were washed with a saturated NaCl solution, dried over K₂CO₃ and evaporated in a rotary evaporator. The obtained oily product was purified on a silica gel column (eluant: CH₂Cl₂:CH₃OH:NH₄OH = 90:9:1.5). 511 mg of the pure product were obtained. MS(ES⁺): 912 (MH⁺)

The intermediates M7 and M9 were prepared according to the process described in Example 2.

Intermediate M7, wherein R₄ represents a hydroxyl group.

The intermediate M7 was prepared from 3-decladinosyl azithromycin (1 g; 1.71 mmole) and 5-bromovaleric acid (929 mg; 5.13 mmole). 400 mg of the product were obtained. MS(ES⁺): 754 (MH⁺)

Intermediate M9

The intermediate M9 was prepared from 2'-acetyl-3-decladinosyl azithromycin (1.1 g; 1.70 mmole) and 5-bromovaleric acid (921 mg; 5.09 mmole). 329 mg of the product were obtained. MS(ES⁺): 795 (MH⁺)

Example 3

Compound 1

To a suspension of 9 α -chloro-6 α -fluoro-11 β ,17 α -dihydroxy-16 α -methyl-3-oxoandrosta-1,4-diene-17 β -carboxylic acid (100 mg; 0.29 mmole) in dry CH₂Cl₂ (5 ml) cooled to 0°C under argon, 0.380 ml (2.73 mmole) of triethylamine, 80 mg (0.59 mmole) of 1-hydroxybenzotriazole, 230 mg (0.29 mmole) of 9-deoxo-9a-aza-9a-(γ -aminopropyl)-9a-homoerythromycin A and 235 mg (1.23 mmole) of 1-(3-dimethylaminopropyl)-3-ethyl-carbodiimide hydrochloride were added. The reaction mixture was stirred for 24 hours at room temperature in a flow of argon, then

evaporated to a smaller volume on a rotary evaporator and purified on a silica gel column. (eluant: CHCl₃:CH₃OH:NH₄OH = 6:1:0.1). 224 mg of white crystals were obtained (Table 1).

Compounds 2-12 were prepared from 9-deoxo-9a-aza-9a-(γ -aminopropyl)-9a-homoerythromycin A and the corresponding steroid acids according to the process described in Example 3 and stated in Table 1.

Compound 2

By a reaction of 9-deoxo-9a-aza-9a-(γ -aminopropyl)-9a-homoerythromycin A (230 mg; 0.29 mmole) and 11 β ,17 α -dihydroxyandrosta-1,4-diene-3-one-17 β -carboxylic acid (100 mg; 0.29 mmole), white crystals (285 mg) were obtained.

Compound 3

By a reaction of 9-deoxo-9a-aza-9a-(γ -aminopropyl)-9a-homoerythromycin A (197 mg; 0.25 mmole) and 11 β -hydroxy-17 α -methoxyandrost-4-ene-3-one-17 β -carboxylic acid (90 mg; 0.25 mmole), white crystals (115 mg) were obtained.

Compound 4

By a reaction of 9-deoxo-9a-aza-9a-(γ -aminopropyl)-9a-homoerythromycin A (174 mg; 0.22 mmole) and 9 α -fluoro-11 β -hydroxy-16 α -methyl-androsta-1,4-diene-3-one-17 β -carboxylic acid (80 mg; 0.22 mmole), white crystals (224 mg) were obtained.

Compound 5

By a reaction of 9-deoxo-9a-aza-9a-(γ -aminopropyl)-9a-homoerythromycin A (230 mg; 0.29 mmole) and 11 β -hydroxyandrost-4-ene-3-one-17 β -carboxylic acid (96 mg; 0.29 mmole), white crystals (238 mg) were obtained.

Compound 6

By a reaction of 9-deoxo-9a-aza-9a-(γ -aminopropyl)-9a-homoerythromycin A (230 mg; 0.29 mmole) and 9 α -fluoro-11 β ,17 α -dihydroxyandrosta-1,4-diene-3-one-17 β -carboxylic acid (106 mg; 0.29 mmole), white crystals (225 mg) were obtained.

Compound 7

By a reaction of 9-deoxo-9a-aza-9a-(γ -aminopropyl)-9a-homoerythromycin A (230 mg; 0.29 mmole) and 6 α -fluoro-11 β ,17 α -dihydroxy-16 α -methyl-androsta-1,4-diene-3-one-17 β -carboxylic acid (110 mg; 0.29 mmole), white crystals (107 mg) were obtained.

Compound 8

By a reaction of 9-deoxo-9a-aza-9a-(γ -aminopropyl)-9a-homoerythromycin A (230 mg; 0.29 mmole) and 11 β ,17 α -dihydroxyandrost-4-ene-3-one-17 β -carboxylic acid (100 mg; 0.29 mmole), white crystals (75 mg) were obtained.

Compound 9

By a reaction of 9-deoxo-9a-aza-9a-(γ -aminopropyl)-9a-homoerythromycin A (230 mg; 0.29 mmole) and 6 α ,9 α -difluoro-11 β ,17 α -dihydroxy-16 α -methylandrosta-1,4-diene-3-one-17 β -carboxylic acid (115 mg; 0.29 mmole), white crystals (258 mg) were obtained.

Compound 10

By a reaction of 9-deoxo-9a-aza-9a-(γ -aminopropyl)-9a-homoerythromycin A (230 mg; 0.29 mmole) and 9 α -fluoro-11 β ,17 α -dihydroxy-16 α -methylandrosta-1,4-diene-3-one-17 β -carboxylic acid (110 mg; 0.29 mmole), white crystals (224 mg) were obtained.

Compound 11

By a reaction of 9-deoxo-9a-aza-9a-(γ -aminopropyl)-9a-homoerythromycin A (197 mg; 0.24 mmole) and 9 α -chloro-11 β ,17 α -dihydroxy-16 α -methylandrosta-1,4-diene-3-one-17 β -carboxylic acid (96 mg; 0.24 mmole), white crystals (170 mg) were obtained.

Compound 12

By a reaction of 9-deoxo-9a-aza-9a-(γ -aminopropyl)-9a-homoerythromycin A (230 mg; 0.29 mmole) and 17 α -hydroxyandrost-4-ene-3,11-dione-17 β -carboxylic acid (100 mg; 0.29 mmole), white crystals (247 mg) were obtained.

Example 4

Compound 13

A mixture of 6 α ,9 α -difluoro-11 β ,17 α -trihydroxy-3-oxoandrosta-1,4-diene-17 β -carboxylic acid-16,17-acetonide (104 mg; 0.24 mmole), diisopropylethylamine (45 ml, 0.26 mmole), 1-hydroxybenzotriazole (65 mg; 0.48 mmole), 9-deoxo-9a-aza-9a-(γ -aminopropyl)-9a-homoerythromycin A (190 mg; 0.24 mmole) and 1-(3-dimethylaminopropyl)-3-ethyl-carbodiimide hydrochloride (184 mg; 0.96 mmole) in dry DMF (10 ml) was heated under reflux while stirring at 100 °C in an argon atmosphere. Subsequently, the reaction mixture was cooled and evaporated on a rotary evaporator. The residue was purified on a silica gel column (eluant: CHCl₃:CH₃OH:NH₄OH = 6:1:0.1). 31 mg of the pure product were obtained (Table 1).

Compound 14

Compound 14 was prepared according to the process described in Example 4 from 6 α ,9 α -difluoro-11 β ,16 α ,17 α -trihydroxy-3-oxoandrosta-1,4-diene-17 β -carboxylic acid-16,17-acetonide (104 mg; 0.24 mmole) and 3-decladinosyl-9-deoxo-9a-aza-9a-(γ -aminopropyl)-9a-homoerythromycin A (150 mg; 0.24 mmole). 60 mg of the product were obtained (Table 1).

Example 5**Compound 15**

To a suspension of 9α -chloro- 6α -fluoro- $11\beta,17\alpha$ -dihydroxy- 16α -methyl-3-oxoandrosta-1,4-diene- 17β -carboxylic acid (110 mg; 0.27 mmole) in dry CH_2Cl_2 (5 ml) cooled to 0 °C in a flow of argon, 0.348 ml (2.5 mmole) of triethylamine, 73 mg (0.54 mmole) of 1-hydroxybenzotriazole, 169 mg (0.27 mmole) of 3-decladinosyl-9-deoxo-9a-aza-9a-(- γ -aminopropyl)-9a-homoerythromycin A and 215 mg (1.12 mmole) of 1-(3-dimethylaminopropyl)-3-ethyl-carbodiimide hydrochloride were added. The reaction mixture was stirred for 24 hours at room temperature, evaporated to a smaller volume on a rotary evaporator and purified on a silica gel column (eluant: $\text{CHCl}_3:\text{CH}_3\text{OH}:\text{NH}_4\text{OH} = 6:1:0.1$). 235 mg of white crystals were obtained (Table 1).

Compounds 16-19 were prepared according to the process described in Example 5 and stated in Table 1.

Compound 16

By a reaction of 6α -fluoro- $11\beta,17\alpha$ -dihydroxy- 16α -methyl-3-oxoandrosta-1,4-diene- 17β -carboxylic acid (90 mg; 0.24 mmole) and 3-decladinosyl-9-deoxo-9a-aza-9a-(- γ -aminopropyl)-9a-homoerythromycin A (150 mg; 0.24 mmole), white crystals (138 mg) were obtained.

Compound 17

By a reaction of $6\alpha,9\alpha$ -difluoro- $11\beta,17\alpha$ -dihydroxy- 16α -methyl-3-oxoandrosta-1,4-diene- 17β -carboxylic acid (94 mg; 0.24 mmole) and 3-decladinosyl-9-deoxo-9a-aza-9a-(- γ -aminopropyl)-9a-homoerythromycin A (150 mg; 0.24 mmole), white crystals (163 mg) were obtained.

Compound 18

By a reaction of $11\beta,17\alpha$ -dihydroxyandrost-4-ene-3-one- 17β -carboxylic acid (84 mg; 0.24 mmole) and 3-decladinosyl-9-deoxo-9a-aza-9a- $(-\gamma$ -aminopropyl)-9a-homoerythromycin A (150 mg; 0.24 mmole), white crystals (112 mg) were obtained.

Compound 19

By a reaction of 9α -fluoro- $11\beta,17\alpha$ -dihydroxy- 16α -methyl-3-oxoandrosta-1,4-diene- 17β -carboxylic acid (110 mg; 0.29 mmole) and 3-decladinosyl-9-deoxo-9a-aza-9a- $(-\gamma$ -aminopropyl)-9a-homoerythromycin A (185 mg; 0.29 mmole), white crystals (155 mg) were obtained.

Example 6

Compound 20

To a suspension of stereoisomeric acid (20 *R,S*)- $11\beta,17,20$ -trihydroxy-3-oxoandrosta-1,4-diene-21-carboxylic acid (200 mg; 0.53 mmole) in dry CH_2Cl_2 (5 ml) under argon, 0.760 ml of triethylamine, 160 mg (1.2 mmole) of 1-hydroxybenzotriazole, 460 mg (0.58 mmole) of 9-deoxo-9a-aza-9a- $(\gamma$ -aminopropyl)-9a-homoerythromycin A and 470 mg (2.45 mmole) of 1-(3-dimethylaminopropyl)-3-ethyl-carbodiimide hydrochloride were added. The reaction mixture was stirred for 24 hours at room temperature, then evaporated to a smaller volume on a rotary evaporator and purified on a silica gel column (eluant: $\text{CHCl}_3:\text{CH}_3\text{OH}:\text{NH}_4\text{OH} = 6:1:0.1$). 405 mg of the product were obtained (Table 1).

Example 7

Compound 21

To a solution of 9α -fluoro- $11\beta,17\alpha$ -dihydroxy- 16α -methyl-3-oxoandrosta-1,4-diene- 17β -carboxylic acid (135 mg; 0.35 mmole) in dry DMF (3 ml), potassium carbonate (49 mg; 0.35 mmole) was added. The reaction mixture was stirred at 0°C in a flow of argon and then a solution of 311 mg (0.39 mmole) of the intermediate M9 in 4 ml of

dry DMF was added. After stirring for 5 days at room temperature, DMF was evaporated on a rotary evaporator and the residue was purified on a silica gel column (eluant: CHCl₃:CH₃OH:NH₄OH = 10:1:0.1). 53 mg of the pure product were obtained (Table 1).

Example 8

Compound 22

To a solution of 6 α ,9 α -difluoro-11 β ,17 α -dihydroxy-16 α -methyl-3-oxoandrosta-1,4-diene-17 β -carboxylic acid (100 mg; 0.25 mmole) in dry DMF (3 ml), potassium carbonate (35 mg; 0.25 mmole) was added. The reaction mixture was stirred at 0°C in a flow of argon and then a solution of 252 mg (0.28 mmole) of the intermediate M7, wherein R₄ represents cladinose, in 4 ml of dry DMF was added. After stirring for 2 days at room temperature, DMF was evaporated on a rotary evaporator and the residue was purified on a silica gel column (eluant: CHCl₃:CH₃OH:NH₄OH = 12:1:0.1). 42 mg of the pure product were obtained (Table 1).

Compounds 23 and 24 were prepared according to the process described in Example 8 and stated in Table 1.

Compound 23

By a reaction of 9 α -fluoro-11 β ,17 α -dihydroxy-16 α -methyl-3-oxoandrosta-1,4-diene-17 β -carboxylic acid (99 mg; 0.26 mmole) and 285 mg (0.31 mmole) of intermediate M7, wherein R₄ represents cladinose, white crystals (42 mg) were obtained.

Compound 24

By a reaction of 9 α -chloro-6 α -fluoro-11 β ,17 α -dihydroxy-16 α -methyl-3-oxoandrosta-1,4-diene-17 β -carboxylic acid (81 mg; 0.20 mmole) and 222 mg (0.24 mmole) of intermediate M7, wherein R₄ represents cladinose, white crystals (54 mg) were obtained (Table 1).

Example 9**Compound 25**

To a solution of 9α -fluoro- $11\beta,17\alpha$ -dihydroxy- 16α -methyl-3-oxoandrosta-1,4-diene- 17β -carboxylic acid (83 mg; 0.22 mmole) in dry DMF (3 ml), potassium carbonate (30 mg; 0.22 mmole) was added. The reaction mixture was stirred at 0°C in a flow of argon and then a solution of 182 mg (0.24 mmole) of intermediate M7, wherein R₄ represents a hydroxyl group, in 4 ml of dry DMF was added. After stirring for 24 hours at room temperature, DMF was evaporated on a rotary evaporator and the residue was purified on a silica gel column (eluant: CHCl₃:CH₃OH:NH₄OH = 10:1:0.1). 57 mg of the pure product were obtained.

Compounds 26 and 27 were prepared according to the process described in Example 9 and stated in Table 1.

Compound 26

By a reaction of 6α -fluoro- $11\beta,17\alpha$ -dihydroxy- 16α -methyl-3-oxoandrosta-1,4-diene- 17β -carboxylic acid (85 mg; 0.22 mmole) and 225 mg (0.25 mmole) of intermediate M7, wherein R₄ represents a hydroxyl group, white crystals (20 mg) were obtained.

Compound 27

By a reaction of 9α -chloro- 6α -fluoro- $11\beta,17\alpha$ -dihydroxy- 16α -methyl-3-oxoandrosta-1,4-diene- 17β -carboxylic acid (100 mg; 0.24 mmole) and 200 mg (0.26 mmole) of intermediate M7, wherein R₄ represents a hydroxyl group, white crystals (59 mg) were obtained.

Example 10**Compound 28**

To a solution of 9 α -fluoro-11 β ,17 α -dihydroxy-16 α -methyl-3-oxoandrosta-1,4-diene-17 β -carboxylic acid (80 mg; 0.21 mmole) in dry DMF (3 ml), potassium carbonate (30 mg; 0.21 mmole) was added. The reaction mixture was stirred for one hour at room temperature in a flow of argon and then a solution of 163 mg (0.23 mmole) of 3-O-decladinosyl-6-O-methyl-3-oxoerythromycin-9-O-(2-bromoethyl)oxime in 3 ml of dry DMF was added. The reaction mixture was heated for 4 hours at 100 °C. Then it was cooled to room temperature and 40 ml of ethyl-acetate and water (1:1) were added. The organic layer was separated, washed with water and dried over anhydrous potassium carbonate. The residue was purified on a silica gel column with a solvent system chlorophorm:methanol:ammonia = 10:1:0.1. 160 mg of white crystals were obtained (Table 1).

Table 1

Comp.	Structure	Molecular formula	M.p. (°C)	MF ⁺ (ES ⁺)
1		C ₆₁ H ₁₀₁ ClFN ₃ O ₁₆	194-202	1187
2		C ₆₀ H ₁₀₁ N ₃ O ₁₆		1121
3		C ₆₁ H ₁₀₅ N ₃ O ₁₆		1137
4		C ₆₁ H ₁₀₂ FN ₃ O ₁₅		1137

5		C ₆₀ H ₁₀₃ N ₃ O ₁₅	-	1106
6		C ₆₀ H ₁₀₀ FN ₃ O ₁₆	-	1139
7		C ₆₁ H ₁₀₂ FN ₃ O ₁₆	175-178	1153
8		C ₆₀ H ₁₀₃ N ₃ O ₁₆	144	1123
9		C ₆₁ H ₁₀₁ F ₂ N ₃ O ₁₆	169	1171
10		C ₆₁ H ₁₀₂ FN ₃ O ₁₆	170-175	1153
11		C ₆₁ H ₁₀₂ CIN ₃ O ₁₆	-	1169

12		C ₆₀ H ₁₀₁ N ₃ O ₁₆	-	1121
13		C ₆₃ H ₁₀₃ F ₂ N ₃ O ₁₇	178	1212
14		C ₅₅ H ₈₉ F ₂ N ₃ O ₁₄	-	1055
15		C ₅₃ H ₈₇ ClFN ₃ O ₁₃	130-132	1086
16		C ₅₃ H ₈₈ FN ₃ O ₁₃	202-204	995
17		C ₅₃ H ₈₇ F ₂ N ₃ O ₁₃	182	1013

18		C ₅₂ H ₈₉ N ₃ O ₁₃	160-161	965
19		C ₅₃ H ₈₈ FN ₃ O ₁₃	260-265	995
20		C ₆₁ H ₁₀₃ N ₃ O ₁₇		1151
21		C ₅₈ H ₉₃ FN ₂ O ₁₆	174-175	1094
22		C ₆₄ H ₁₀₄ F ₂ N ₂ O ₁₈	159-160	1228
23		C ₆₄ H ₁₀₅ FN ₂ O ₁₈	161-168	1210

24		$C_{64}H_{104}ClFN_2O_{18}$	91-99	1244
25		$C_{56}H_{91}FN_2O_{15}$	170	1052
26		$C_{56}H_{91}FN_2O_{15}$	145-151	1052
27		$C_{56}H_{90}ClFN_2O_{15}$	130-132	1086
28		$C_{53}H_{83}FN_2O_{15}$	-	1007

Claims

1. Compounds, their salts and solvates represented by the structure I

characterized in that **M** represents a macrolide subunit possessing the property of accumulation in inflammatory cells, **A** represents an anti-inflammatory subunit that can be steroid or nonsteroid and **L** represents a chain linking **M** and **A**, and improved therapeutic effect of these compounds in the treatment of inflammation diseases and conditions.

2. Compounds, their salts and solvates represented by the structure I

characterized in that **M** represents a macrolide subunit represented by the formulas

wherein

R_1 is hydrogen or a methyl group,

R_2 and R_3 are both hydrogen or together form a bond, or

R_2 is an amino group represented by the substructure

wherein R' and R'' may be, independently from each other, hydrogen or any alkyl or cycloalkyl group having 1-6 carbon atoms, with the proviso that R_3 is then hydrogen,

R_4 is a hydroxyl or cladinosyl group represented by the structure

R_4 and R_5 may also together form a carbonyl group, with the proviso that R_1 is then a methyl group,

M2

wherein

R_1 is hydrogen or a methyl group,

R_2 and R_3 are both hydrogen or together form a bond or

R_2 is an amino group represented by the substructure

wherein R' and R'' may be, independently from each other, hydrogen or any alkyl or cycloalkyl group having 1-6 carbon atoms, with the proviso that R_3 is then hydrogen,

R_4 may be any alkyl group having 1-4 carbon atoms, preferably a methyl group;

M3

wherein

R_1 is hydrogen or a methyl group,

R_2 and R_3 are both hydrogen or together form a bond or

R_2 is an amino group represented by the substructure

wherein R' and R'' may be, independently from each other, hydrogen or any alkyl or cycloalkyl group having 1-6 carbon atoms, with the proviso that R_3 is then hydrogen,

R_4 is a hydroxyl or cladinosyl group represented by the structure

R_4 and R_5 may also together form a carbonyl group, with the proviso that R_1 is then a methyl group,

M4

wherein

R₁ is hydrogen or a methyl group,

R₂ and R₃ are both hydrogen or together form a bond or

R₂ is an amino group represented by the substructure

wherein R' and R'' may be, independently from each other, hydrogen or any alkyl or cycloalkyl group having 1-6 carbon atoms, with the proviso that R₃ is then hydrogen,

R₄ is a hydroxyl or cladinosyl group represented by the structure

M5

wherein

R_1 is hydrogen or a methyl group,

R_2 and R_3 are both hydrogen or together form a bond, or

R_2 is an amino group represented by the substructure

wherein R' and R'' may be, independently from each other, hydrogen or any alkyl or cycloalkyl group having 1-6 carbon atoms, with the proviso that R_3 is then hydrogen,

R_4 is hydroxyl or cladinosyl group represented by the structure:

R_5 may be any alkyl group having 1-4 carbon atoms, preferably a methyl group,

wherein

R_1 is hydrogen or an acetyl group,

R_2 and R_3 are both hydrogen or together form a bond, or

R_2 is an amino group represented by the substructure

wherein R' and R'' may be, independently from each other, hydrogen or any alkyl or cycloalkyl group having 1-6 carbon atoms, with the proviso that R₃ is then hydrogen,

R₄ is a hydroxyl or cladinosyl group represented by the structure

R₅ may be any alkyl group having 1-4 carbon atoms, preferably a methyl group, and A represents an anti-inflammatory subunit represented by the formulas:

wherein Z represents oxygen or NH group, R₁ is hydrogen or hydroxyl or O-acyl or O-alkyl group,

R₂ represents hydrogen or a methyl group, which may be oriented in α- or β-position,

X₁ is hydrogen or halogen,

X₂ is hydrogen or halogen,

with halogen meaning fluorine, chlorine or bromine,

1,2-position may represent a double or single carbon-carbon bond,

wherein Z represents oxygen or a NH group, R₁ is hydrogen or a hydroxyl or O-acyl or O-alkyl group,

R₂ represents hydrogen or an acyl group,

X₁ is hydrogen or halogen,

X₂ is hydrogen or halogen,

whereat halogen represents fluorine, chlorine or bromine,

or stereoisomeric forms thereof, wherein the 1,2-position represents a saturated or unsaturated double bond, wherein Z represents oxygen or NH group,

R₁ represents hydrogen, a straight or branched hydrocarbon chain having 1-4 carbon atoms,

R₂ represents hydrogen, a straight or branched hydrocarbon chain having 1-10 carbon atoms, with the proviso that R₁ and R₂ are not simultaneously hydrogen

X₁ is hydrogen or halogen,

X₂ is hydrogen or halogen,

with halogen meaning fluorine, chlorine or bromine;

or stereoisomeric forms thereof, wherein the 1,2-position represents a saturated or unsaturated double bond, wherein Z represents oxygen or a NH group,

R_1 represents hydrogen, a straight or branched hydrocarbon chain having 1-4 carbon atoms,

R_2 represents hydrogen, a straight or branched hydrocarbon chain having 1-10 carbon atoms, with the proviso that R_1 and R_2 are not simultaneously hydrogen,

X_1 is hydrogen or halogen,

X_2 is hydrogen or halogen,

with halogen meaning fluorine, chlorine or bromine;

or stereoisomeric forms thereof, wherein the 1,2-position represents a saturated or unsaturated double bond,

R_1 represents hydrogen, a straight or branched hydrocarbon chain having 1-4 carbon atoms,

R_2 represents hydrogen, a straight or branched hydrocarbon chain having 1-10 carbon atoms, with the proviso that R_1 and R_2 are not simultaneously hydrogen,

X_1 is hydrogen or halogen,

X_2 is hydrogen or halogen,

with halogen meaning fluorine, chlorine or bromine;

wherein Z represents oxygen or a NH group, R_1 is hydrogen or a hydroxyl group with a free hydrogen or a hydroxyl group or O-acyl or O-alkyl group,

R_2 represents hydrogen or a methyl group, which may be oriented in α - or β -position,

R_3 represents hydrogen or a radical of an acid having 1-4 carbon atoms,

X_1 is hydrogen or halogen,

X_2 is hydrogen or halogen,

with halogen meaning fluorine, chlorine or bromine,

1,2-position may represents double or single carbon-carbon bond,

and L represents a chain with the formula

wherein R_1 , R_2 , R_3 , R_4 , R_5 , R_6 may be hydrogen, C_1 - C_4 alkyl, aryl, metoxy, halogen, hydroxy or mercapto groups, wherein n is 1-10, and one or more $-\text{CR}_3\text{R}_4-$ groups may be substituted with oxygen, sulphur, an aromatic nucleus or an amino group

additionally bearing hydrogen or a C₁-C₄ alkyl or aryl group with the proviso that at least one methylene group is situated at the end of the linking L group.

3. Compound and salt according to claims 1 and 2, characterized in that the macrolide subunit M from structure I is represented by the general structure M1, wherein

R₁ is a methyl group,

R₂ is a dimethylamino group,

with the proviso that R₃ is then hydrogen,

R₄ is cladinose,

R₄ and R₅ may also together form a carbonyl group,

and the steroid subunit of the structure I is represented by one of the structures A1 to A4 and A6,

wherein A1 is defined as in claims 1 and 2,

wherein Z represents oxygen or a NH group,

R₁ is a hydroxyl group which can have a free hydrogen or is additionally alkylated with an alkyl group R' having 1-4 carbon atoms, preferably a methyl group,

R₂ is hydrogen or a methyl group,

X₁ is hydrogen or fluorine,

X₂ is hydrogen,

wherein A2 is defined as in claims 1 and 2,

wherein Z represents oxygen or a NH group,

R₁ is hydrogen,

R₂ is hydrogen,

X₁ is fluorine,

X₂ is hydrogen,

wherein A3 is defined as in claims 1 and 2,

wherein Z represents oxygen or a NH group,

1,2-position is unsaturated,

R₁ and R₂ are methyl groups,

X₁ is fluorine,

X₂ is fluorine,

wherein A4 is defined as in claims 1 and 2,

wherein Z represents oxygen or a NH group,

1,2-position is unsaturated,

R₁ and R₂ are methyl groups,

X₁ is fluorine,

X₂ is fluorine,

wherein A6 is defined as in claims 1 and 2,

wherein Z represents oxygen or a NH group,

1,2-position is a double carbon-carbon bond,

R₁ is a hydroxyl group,

R₂ is hydrogen or a methyl group in α- or β-position, preferably in α-position,

R₃ is hydrogen,

X₁ is hydrogen, fluorine or chlorine,

X₂ is hydrogen or fluorine,

wherein chain L is indicated as defined in claim 2,

wherein R₁ to R₄ are hydrogen and n is 1-10.

4. Compound and salt according to claims 1 and 2, characterized in that the macrolide subunit M from the structure I is represented by the general structure M2, wherein

R₁ is hydrogen,

R₂ is a dimethylamino group,

with the proviso that R₃ is then hydrogen,

R₄ is a methyl group,

and the steroid subunit from the structure I is represented by one of the structures A1 to A4 and A6,

wherein A1 is defined as in claims 1 and 2,

wherein Z represents oxygen or a NH group,

R₁ is hydroxyl group, which can have a free hydrogen or is additionally alkylated with alkyl group R' having 1-4 carbon atoms, preferably methyl group,

R₂ is hydrogen or methyl group,

X₁ is hydrogen or fluorine,

X₂ is hydrogen,

wherein A2 is defined as in claims 1 and 2

wherein Z represents oxygen or a NH group,

R₁ is hydrogen,

R₂ is hydrogen,

X₁ is fluorine,

X₂ is hydrogen,

wherein A3 is defined as in claims 1 and 2

wherein Z represents oxygen or a NH group,

1,2-position is unsaturated,

R₁ and R₂ are methyl groups,

X₁ is fluorine,

X₂ is fluorine,

wherein A4 is defined as in claims 1 and 2

wherein Z represents oxygen or a NH group,

1,2-position is unsaturated,

R₁ and R₂ are methyl groups,

X₁ is fluorine,

X₂ is fluorine,

wherein **A6** is defined as in claims 1 and 2,
wherein Z represents oxygen or a NH group,
1,2-position is double carbon-carbon bond,
 R_1 is hydroxyl group,
 R_2 is hydrogen or methyl group in α - or β -position, preferably in α -position,
 R_3 is hydrogen,
 X_1 is hydrogen, fluorine or chlorine,
 X_2 is hydrogen or fluorine,

wherein chain **L** is indicated as defined in claim 2,
wherein R_1 to R_4 are hydrogen and n is 1-10.

5. Compound and salt according to claims 1 and 2, characterized in that the macrolide subunit **M** of the structure I is represented by the general structure **M3**,
wherein
 R_1 is hydrogen,
 R_2 is dimethylamino group,
with the proviso that R_3 is then hydrogen,
 R_4 and R_5 may together form carbonyl group,
and steroid subunit of the structure I is indicated with one of the structures **A1** to **A4** and **A6**,
wherein **A1** is defined as in claims 1 and 2,
wherein Z represents oxygen or a NH group,
 R_1 is hydroxyl group which can have a free hydrogen or is additionally alkylated with alkyl group R' having 1-4 carbon atoms, preferably methyl group,
 R_2 is hydrogen or methyl group,
 X_1 is hydrogen or fluorine,
 X_2 is hydrogen,
wherein **A2** is defined as in claims 1 and 2,
wherein Z represents oxygen or a NH group,

R₁ is hydrogen,

R₂ is hydrogen,

X₁ is fluorine,

X₂ is hydrogen,

wherein A3 is defined as in claims 1 and 2,

wherein Z represents oxygen or a NH group,

1,2-position is unsaturated,

R₁ and R₂ are methyl groups,

X₁ is fluorine,

X₂ is fluorine,

wherein A4 is defined as in claims 1 and 2,

wherein Z represents oxygen or a NH group,

1,2-position is unsaturated,

R₁ and R₂ are methyl groups,

X₁ is fluorine,

X₂ is fluorine,

wherein A6 is defined as in claims 1 and 2,

wherein Z represents oxygen or a NH group,

1,2-position is a double carbon-carbon bond,

R₁ is a hydroxyl group,

R₂ is hydrogen or a methyl group in α- or β-position, preferably in α-position,

R₃ is hydrogen,

X₁ is hydrogen, fluorine or chlorine,

X₂ is hydrogen or fluorine,

wherein chain L is indicated as defined in claim 2,

wherein R₁ to R₄ are hydrogen and n is 1-10.

6. Compound and salt according to claims 1 and 2, characterized in that the macrolide subunit M of the structure I is represented by the general structure M4, wherein

R₁ is hydrogen,

R₂ is a dimethylamino group,

with the proviso that R₃ is then hydrogen,

R₄ is a cladinose or hydroxyl group,

and the steroid subunit of the structure I is represented by one of the structures A1 to A4 and A6,

wherein A1 is defined as in claims 1 and 2,

wherein Z represents oxygen or a NH group,

R₁ is a hydroxyl group, which can have a free hydrogen or is additionally alkylated with an alkyl group R' having 1-4 carbon atoms, preferably a methyl group,

R₂ is hydrogen or a methyl group,

X₁ is hydrogen or fluorine,

X₂ is hydrogen,

wherein A2 is defined as in claims 1 and 2,

wherein Z represents oxygen or a NH group,

R₁ is hydrogen,

R₂ is hydrogen,

X₁ is fluorine,

X₂ is hydrogen,

wherein A3 is defined as in claims 1 and 2,

wherein Z represents oxygen or a NH group,

1,2-position is unsaturated,

R₁ and R₂ are methyl groups,

X₁ is fluorine,

X₂ is fluorine,

wherein A4 is defined as in claims 1 and 2,
wherein Z represents oxygen or a NH group,
1,2-position is unsaturated,
R₁ and R₂ are methyl groups,
X₁ is fluorine,
X₂ is fluorine,

wherein A6 is defined as in claims 1 and 2,
wherein Z represents oxygen or a NH group,
1,2-position is a double carbon-carbon bond,
R₁ is a hydroxyl group,
R₂ is hydrogen or a methyl group in α- or β-position, preferably in α-position,
R₃ is hydrogen,
X₁ is hydrogen, fluorine or chlorine,
X₂ is hydrogen or fluorine,

wherein chain L is indicated as defined in claim 2,
wherein R₁ to R₄ are hydrogen and n is 2-10.

7. Compound and salt according to claims 1 and 2, characterized in that the macrolide subunit M of the structure I is represented by the general structure M5, wherein
R₁ is hydrogen,
R₂ is a dimethylamino group,
with the proviso that R₃ is then hydrogen,
R₄ is a cladinose or hydroxyl group,
R₅ is a methyl group,
and the steroid subunit of the structure I is represented by one of the structures A1 to A4 and A6,
wherein A1 is defined as in claims 1 and 2,
wherein Z represents oxygen or a NH group,

R₁ is a hydroxyl group, which can have a free hydrogen or is additionally alkylated with an alkyl group R' having 1-4 carbon atoms, preferably a methyl group,

R₂ is hydrogen or a methyl group,

X₁ is hydrogen or fluorine,

X₂ is hydrogen,

wherein A2 is defined as in claims 1 and 2,

wherein Z represents oxygen or a NH group,

R₁ is hydrogen,

R₂ is hydrogen,

X₁ is fluorine,

X₂ is hydrogen,

wherein A3 is defined as in claims 1 and 2

wherein Z represents oxygen or a NH group,

1,2-position is unsaturated,

R₁ and R₂ are methyl groups,

X₁ is fluorine,

X₂ is fluorine,

wherein A4 is defined as in claims 1 and 2

wherein Z represents oxygen or a NH group,

1,2-position is unsaturated,

R₁ and R₂ are methyl groups,

X₁ is fluorine,

X₂ is fluorine,

wherein A6 is defined as in claims 1 and 2,

wherein Z represents oxygen or a NH group,

1,2-position is a double carbon-carbon bond,

R₁ is a hydroxyl group,

R₂ is hydrogen or a methyl group in α- or β-position, preferably in α-position,

R₃ is hydrogen,

X₁ is hydrogen, fluorine or chlorine,

X₂ is hydrogen or fluorine,

wherein chain L is indicated as defined in claim 2,

wherein R₁ to R₄ are hydrogen and n is 2-10.

8. Compound and salt according to claims 1 and 2, characterized in that the macrolide subunit M of the structure I is represented by the general structure M6, wherein

R₁ is hydrogen,

R₂ is a dimethylamino group,

with the proviso that R₃ is then hydrogen,

R₄ is a cladinose or hydroxyl group,

R₅ is a methyl group,

and the steroid subunit of the structure I is represented by one of the preferred structures A1 to A4 and A6,

wherein A1 is defined as in claims 1 and 2,

wherein Z represents oxygen or a NH group,

R₁ is a hydroxyl group, which can have a free hydrogen or is additionally alkylated with an alkyl group R' having 1-4 carbon atoms, preferably a methyl group,

R₂ is hydrogen or a methyl group,

X₁ is hydrogen or fluorine,

X₂ is hydrogen,

wherein A2 is defined as in claims 1 and 2,

wherein Z represents oxygen or a NH group,

R₁ is hydrogen,

R₂ is hydrogen,

X₁ is fluorine,

X₂ is hydrogen,

wherein A3 is defined as in claims 1 and 2,

wherein Z represents oxygen or a NH group,

1,2-position is unsaturated,

R₁ and R₂ are methyl groups,

X₁ is fluorine,

X₂ is fluorine,

wherein A4 is defined as in claims 1 and 2,

wherein Z represents oxygen or a NH group,

1,2-position is unsaturated,

R₁ and R₂ are methyl groups,

X₁ is fluorine,

X₂ is fluorine,

wherein A6 is defined as in claims 1 and 2,

wherein Z represents oxygen or a NH group,

1,2-position is a double carbon-carbon bond,

R₁ is a hydroxyl group,

R₂ is hydrogen or a methyl group in α- or β-position, preferably in α-position,

R₃ is hydrogen,

X₁ is hydrogen, fluorine or chlorine,

X₂ is hydrogen or fluorine,

wherein chain L is indicated as defined in claim 2,

wherein R₁ to R₄ are hydrogen and n is 2-10.

9. Compound 1 according to claims 1, 2 and 6, characterized by the formula

10. Compound 2 according to claims 1, 2 and 6, characterized by the formula

11. Compound 3 according to claims 1, 2 and 6, characterized by the formula

12. Compound 4 according to claims 1, 2 and 6, characterized by the formula

13. Compound 5 according to claims 1, 2 and 6, characterized by the formula

14. Compound 6 according to claims 1, 2 and 6, characterized by the formula

15. Compound 7 according to claims 1, 2 and 6, characterized by the formula

16. Compound 8 according to claims 1, 2 and 6, characterized by the formula

17. Compound 9 according to claims 1, 2 and 6, characterized by the formula

18. Compound 10 according to claims 1, 2 and 6, characterized by the formula

19. Compound 11 according to claims 1, 2 and 6, characterized by the formula

20. Compound 12 according to claims 1, 2 and 6, characterized by the formula

21. Compound 13 according to claims 1, 2 and 6, characterized by the formula

22. Compound 14 according to claims 1, 2 and 6, characterized by the formula

23. Compound 15 according to claims 1, 2 and 6, characterized by the formula

24. Compound 16 according to claims 1, 2 and 6, characterized by the formula

25. Compound 17 according to claims 1, 2 and 6, characterized by the formula

26. Compound 18 according to claims 1, 2 and 6, characterized by the formula

27. Compound 19 according to claims 1, 2 and 6, characterized by the formula

28. Compound 20 according to claims 1, 2 and 6, characterized by the formula

29. Compound 21 according to claims 1, 2 and 4, characterized by the formula

30. Compound 22 according to claims 1, 2 and 7, characterized by the formula

31. Compound 23 according to claims 1, 2 and 7, characterized by the formula

32. Compound 24 according to claims 1, 2 and 7, characterized by the formula

33. Compound 25 according to claims 1, 2 and 7, characterized by the formula

34. Compound 26 according to claims 1, 2 and 7, characterized by the formula

35. Compound 27 according to claims 1, 2 and 7, characterized by the formula

36. Compound 28 according to claims 1, 2 and 3, characterized by the formula

37. Process for the preparation of compounds represented by the general structure I wherein all symbols and radicals have the meanings as defined in claims 1 and 2, characterized in that the compounds can be prepared from a corresponding steroid part represented by the structures A1 to A4 and A6, wherein all radicals and symbols have the meanings as defined for the substructures A1 to A4 and A6, and a macrolide intermediate represented by the structure M11 by linking them *via* corresponding chains represented by the structure L, whereat for the formation of an amide bond from carboxylic acids of the steroid subunits indicated by the formulas A1 to A4 and A6, activation with carboxydiimide and benzotriazole (HOBT) in anhydrous

dichloromethane in the presence of a base such as triethylamine at room temperature under the flow of a suitable inert gas is used.

38. Process for the preparation of compounds represented by the general structure I, wherein all symbols and radicals have the meanings as defined in claims 1 and 2, characterized in that the compounds can be prepared from a corresponding steroid part represented by the structures A1 to A4 and A6, wherein all radical and symbols have the meanings as defined for the substructures A1 to A4 and A6, and a macrolide intermediate represented by the structure M7 by linking them *via* corresponding chains represented by the structure L, whereat for the formation of an ester bond from carboxylic acids of the steroid subunits indicated by the formulas A1 to A4 and A6, a reaction with K₂CO₃ in anhydrous dimethylformamide in the flow of a suitable inert gas is used.

39. Process for the preparation of compounds represented by the general structure I, wherein all symbols and radicals have the meanings as defined in claims 1 and 2, characterized in that the compounds can be prepared from a corresponding steroid part represented by the structures A1 to A4 and A6, wherein all radical and symbols have the meanings as defined for the substructures A1 to A4 and A6, and a macrolide intermediate represented by the structure M9 by linking them *via* corresponding chains represented by the structure L, whereat for the formation of an ester bond from carboxylic acids of the steroid subunits indicated by the formulas A1 to A4 and A6, a reaction with K₂CO₃ in anhydrous dimethylformamide in the flow of a suitable inert gas is used.

40. Process for the preparation of compounds represented by the general structure I, wherein all symbols and radicals have the meanings as stated in claims 1 and 2, characterized in that the compounds can be prepared from a corresponding steroid part represented by the structures A1 to A4 and A6, wherein all radical and symbols have the meanings as defined for the substructures A1 to A4 and A6, and a macrolide intermediate represented by the structure M10 by linking them *via* corresponding

chains represented by the structure **L**, whereat for the formation of an ester bond from carboxylic acids of the steroid subunits indicated by the formulas **A1** to **A4** and **A6**, a reaction with K_2CO_3 in anhydrous dimethylformamide in the flow of a suitable inert gas is used.

41. Process for the preparation of compounds represented by the general structure **I**, wherein all symbols and radicals have meanings as defined in claims 1 and 2, characterized in that the compounds can be prepared from a corresponding steroid part represented by the structures **A1** to **A4** and **A6**, wherein all radical and symbols have the meanings as defined for the substructures **A1** to **A4** and **A6**, with the synthesis being performed by mixing the steroid intermediate **A8** and the macrolide intermediate represented by the structure **M12** in acetonitrile at a temperature from 20 to 60 °C in the flow of a suitable inert gas.

42. Process for the preparation of compounds represented by the general structure **I**, wherein all symbols and radicals have the meanings as defined in claims 1 and 2, characterized in that the compounds can be prepared from a corresponding steroid part represented by the structures **A1** to **A4** and **A6**, wherein all radical and symbols have the meanings as defined for the substructures **A1** to **A4** and **A6**, with the esterification synthesis being performed using the steroid intermediate **A9** and a macrolide having a free reactive hydroxyl group and mixing them with pivaloyl chloride as an activator at room temperature in the presence of a base such as triethylamine in the flow of a suitable inert gas.

43. Use of compounds according to claims 1 to 36 in human or veterinary medicine.

44. Use of compounds according to claims 1 to 36 in therapy of patients with inflammation conditions and diseases.

45. Use of compounds according to claims 1 to 36 in therapy of patients with asthma, allergic rhinitis, nasal polyps, intestinal diseases such as Crohn's disease, colitis, ulcerative colitis, dermatological inflammations such as eczema, psoriasis, allergic dermatitis, neurodermatitis, pruritis, conjunctivitis and rheumatoid arthritis.
46. Use of compounds according to claims 1 to 36 in treatment and prophylaxis of inflammatory conditions and diseases induced by excessive nonregulated production of cytokines and inflammation mediators, wherein the suitable pharmaceutical preparations can be administered topically, parenterally or orally.
47. Use of compounds according to claims 1 to 36 as active substances in pharmaceutical preparations for oral, rectal, parenteral, percutaneous and inhalation application in humans and animals.

INTERNATIONAL SEARCH REPORT

International Application No

PCT/HR 02/00001

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 C07J43/00 A61K31/58 A61P5/44

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 IPC 7 C07J A61K A61P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the International search (name of data base and, where practical, search terms used)

CHEM ABS Data, BEILSTEIN Data, WPI Data, EPO-Internal, PAJ, BIOSIS, MEDLINE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	D. ROMO ET AL: "Total Synthesis and Immunosuppressive Activity of (-)-Pateamine A and Related Compounds: Implementation of beta-Lactam Based Macrolzyzation" JOURNAL OF THE AMERICAN CHEMICAL SOCIETY., vol. 120, no. 47, 1998, pages 12237-12254, XP002200620 AMERICAN CHEMICAL SOCIETY, WASHINGTON, DC., US ISSN: 0002-7863 page 12234, Scheme 12, compound 69 page 12234, column 2, paragraph 2 page 12246, column 1; table 3 ---	2-47
X	WO 97 41255 A (MASSACHUSETTS INST TECHNOLOGY) 6 November 1997 (1997-11-06) figure 7B; example 1 ---	2-47
	-/-	

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the International filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the International filing date but later than the priority date claimed

"T" later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the International search

Date of mailing of the International search report

30 May 2002

18/06/2002

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
 Fax: (+31-70) 340-3016

Authorized officer

Wachtorn, P

INTERNATIONAL SEARCH REPORT

ional Application No
PCT/HR 02/00001

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>DATABASE CA 'Online! CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; GRIFFITH, ERIC C. ET AL: "Yeast three-hybrid system for detecting ligand-receptor interactions" retrieved from STN Database accession no. 135:147811 XP002200621 abstract & METHODS IN ENZYMOLOGY (2000), 328(APPLICATIONS OF CHIMERIC GENES AND HYBRID PROTEINS, PT. C), 89-103 ,</p> <p>---</p>	2-47
Y	<p>DATABASE CA 'Online! CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; SCHENTAG, J. J. ET AL: "Relationships between serum, intracellular, and infection site concentrations of macrolide and azalide antibiotics. A theoretical exploration of the concept of white blood cell drug delivery to infection sites" retrieved from STN Database accession no. 126:135534 XP002200622 abstract & ANTIINFECT. DRUGS CHEMOTHER. (1996), 14(2), 137-146 ,</p> <p>---</p>	2-47
Y	<p>DATABASE CA 'Online! CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; IWAKI, RIICHIRO: "Analgesic, antiinflammatory, and pus-removing pharmaceuticals" retrieved from STN Database accession no. 112:104876 XP002200623 abstract & JP 01 163124 A (SANYU SEIKATSUSHA K. K., JAPAN) 27 June 1989 (1989-06-27)</p> <p>---</p> <p>-/-</p>	2-47

INTERNATIONAL SEARCH REPORT

International Application No
PCT/HR 02/00001

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	<p>DATABASE BIOSIS 'Online! BIOSCIENCES INFORMATION SERVICE, PHILADELPHIA, PA, US; 1988 ANDERSON R ET AL: "AN IN-VITRO EVALUATION OF THE CELLULAR UPTAKE AND INTRAPHAGOCYTIC BIOACTIVITY OF CLARITHROMYCIN A-56268 TE-031 A NEW MACROLIDE ANTIMICROBIAL AGENT" Database accession no. PREV198987045431 XP002200624 abstract & JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, vol. 22, no. 6, 1988, pages 923-934, ISSN: 0305-7453 ---</p>	2-47
Y	<p>DATABASE MEDLINE 'Online! February 1997 (1997-02) FIETTA A ET AL: "Requirements for intracellular accumulation and release of clarithromycin and azithromycin by human phagocytes." Database accession no. NLM9106014 XP002200625 abstract & JOURNAL OF CHEMOTHERAPY (FLORENCE, ITALY) ITALY FEB 1997, vol. 9, no. 1, February 1997 (1997-02), pages 23-31, ISSN: 1120-009X ---</p>	2-47
Y	<p>DATABASE MEDLINE 'Online! October 1997 (1997-10) VAZIFEH D ET AL: "Cellular accumulation of the new ketolide RU 64004 by human neutrophils: comparison with that of azithromycin and roxithromycin." Database accession no. NLM9333032 XP002200626 abstract & ANTIMICROBIAL AGENTS AND CHEMOTHERAPY. UNITED STATES OCT 1997, vol. 41, no. 10, October 1997 (1997-10), pages 2099-2107, ISSN: 0066-4804 ---</p>	2-47

-/-

INTERNATIONAL SEARCH REPORT

International Application No PCT/HR 02/00001	
---	--

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	<p>DATABASE MEDLINE 'Online! 1997 GEERDES-FENGE H F ET AL: "Comparative pharmacokinetics of dirithromycin and erythromycin in normal volunteers with special regard to accumulation in polymorphonuclear leukocytes and in saliva." Database accession no. NLM9403284 XP002200627 abstract & EUROPEAN JOURNAL OF CLINICAL PHARMACOLOGY. GERMANY 1997, vol. 53, no. 2, 1997, pages 127-133, ISSN: 0031-6970</p> <p>---</p>	2-47
Y	<p>DATABASE MEDLINE 'Online! June 1999 (1999-06) SCORNEAUX B ET AL: "Intracellular accumulation, subcellular distribution, and efflux of tilmicosin in bovine mammary, blood, and lung cells." Database accession no. NLM10386306 XP002200628 abstract & JOURNAL OF DAIRY SCIENCE. UNITED STATES JUN 1999, vol. 82, no. 6, June 1999 (1999-06), pages 1202-1212, ISSN: 0022-0302</p> <p>---</p>	2-47
Y	<p>DATABASE MEDLINE 'Online! March 1999 (1999-03) KHOSLA R ET AL: "Streptogramins: a new class of antibiotics." Database accession no. NLM10798011 XP002200629 abstract & INDIAN JOURNAL OF MEDICAL SCIENCES. INDIA MAR 1999, vol. 53, no. 3, March 1999 (1999-03), pages 111-119, ISSN: 0019-5359</p> <p>---</p>	2-47
Y	<p>DATABASE CA 'Online! CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; IANARO, ANGELA ET AL: "Anti- inflammatory activity of macrolide antibiotics" retrieved from STN Database accession no. 132:160867 XP002200630 abstract & JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS (2000), 292(1), 156-163 ,</p> <p>----</p>	2-47

-/-

INTERNATIONAL SEARCH REPORT

	tional Application No PCT/HR 02/00001
--	--

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	<p>DATABASE CA 'Online! CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; ABDELGHAFFAR, HOURIA ET AL: "Erythromycin A-derived macrolides modify the functional activities of human neutrophils by altering the phospholipase D-phosphatidate phosphohydrolase transduction pathway. L-Cladinose is involved both in alterations of neutrophil functions and modulation of this transductional pathway" retrieved from STN Database accession no. 127:341381 XP002200631 abstract & J. IMMUNOL. (1997), 159(8), 3995-4005 ,</p> <p>---</p>	2-47
Y	<p>DATABASE CA 'Online! CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; TRAVERS, JEFFREY B.: "Novel immunomodulators for topical skin disease therapy" retrieved from STN Database accession no. 132:189221 XP002200632 abstract & EXPERT OPINION ON INVESTIGATIONAL DRUGS (2000), 9(3), 529-542 ,</p> <p>---</p>	2-47
Y	<p>WO 99 64040 A (ADVANCED MEDICINE INC ;GRIFFIN JOHN H (US); JUDICE J KEVIN (US)) 16 December 1999 (1999-12-16) page 34, paragraph 1 page 68, line 24 -page 69, line 15</p> <p>---</p>	2-47
Y	<p>FR 2 776 927 A (UNIV PARIS CURIE) 8 October 1999 (1999-10-08) page 5, paragraph 3; claim 1 page 7, paragraph 1 page 16, paragraphs 3,4</p> <p>---</p>	2-47

INTERNATIONAL SEARCH REPORT

International Application No

PCT/HR 02/00001

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
WO 9741255	A	06-11-1997		CA 2252886 A1 EP 0907750 A1 JP 2000508923 T WO 9741255 A1 US 5928868 A		06-11-1997 14-04-1999 18-07-2000 06-11-1997 27-07-1999
JP 1163124	A	27-06-1989	NONE			
WO 9964040	A	16-12-1999		AU 4543799 A AU 4544099 A AU 4549999 A CA 2318547 A1 CA 2319085 A1 EP 1086065 A1 EP 1079845 A1 WO 9964032 A1 WO 9964036 A1 WO 9964040 A1		30-12-1999 30-12-1999 30-12-1999 16-12-1999 16-12-1999 28-03-2001 07-03-2001 16-12-1999 16-12-1999 16-12-1999
FR 2776927	A	08-10-1999		FR 2776927 A1 CA 2327737 A1 EP 1067969 A1 WO 9951274 A1 PL 343365 A1		08-10-1999 14-10-1999 17-01-2001 14-10-1999 13-08-2001

LABORATORIJSKI DNEVNIK

LINDA TOMAŠKOVIĆ

№ 000979

Prilaz baruna Filipovića 25, 10000 Zagreb, Hrvatska

Istraživački institut

9

Naslov: _____

Oznaka STER-PEPDatum (i): 5.03.2001.C₄₀H₅₃FN₄O₉M 752,87ref: J. Cassidy, Drug News Perspect. 13(8):477-480, 2000.

KEMIKALIJE:

2-Chlorotritityl chloride resin, Nova Biochem

Fmoc-Glycine, Dipeptid

Fmoc-Leu, Advanced ChemTech

HBTU, Advanced Chem Tech

Fmoc-Phe, Nova Biochem

APARATURA:

Rad obavio:

Tomislav ČinovićDatum: 5.03.2001.

Rad posvјedočio:

Denis ŠukerDatum: 5.3.2001.

PLIVA d.d.
Istraživački institut

10

Naslov:

Oznaka STER-PER

Datum (i): 5. 03. 2001

POSNUPAK:

600 mg 2-chlorotriethylchloride reag. (0,83 mmol/g; scle 1eq = 0,5 mmol) se naroč u holenicu, ispare s dilutometanom (DCM) i otari mijeti 10' da nahodi, zatim se dilutmetan isprati, norač se ispare još tri puta s DCM. Nalon toga se norač ispare s DMF-om i dode se Fmoc-Gly otopljen u 2 ml DMF-a.

1st AA → Fmoc-Gly

(H 297,3)

1,2 eq Fmoc-Gly = 0,6 mmol = 178 mg

Zatim se dode 210 µl diisopropyletilenamina, primijeren steklenim štapicem i otari mijeti 5 min. Nalon toga se dode još 315 µl DIPEA /50 min. Zatim se dode direktno 500 µl metanol i mijeti 10 min. Norač se xestim ispare 10x s DMF-om, DCM-om i metanolom. Sun' se preba noći na 30°C u vakuum sušnicu. Odvaja se na kon mješavina 732 mg. Nonač se naroč u holenicu i ihni se DMF da nahodi 10 min.

$$n = \frac{Dm}{M(\text{Fmoc-Gly}) - M(\text{HCl})} = \frac{732 - 600}{297,3 - 36,15} = 0,5 \text{ mmol}, \% \text{ vekanje } \approx 100\%.$$

Deprotektacija (nemoj nalon 1. aminohidrolinu, dolje ide 2',2',5',5')

5% piperidin / DMF 10 min. (~10ml)

30% - - - 15 min

50% - - - 30 min

Nalon deprotektacije nonač se ispare dolno s DMF-om.

2nd AA → Fmoc-Teu

6 eq = 3 mmol = 113,16 + 240,25 = 353,41 x 3 = 1060,2 mg] 3 ml

5,7 eq HBTU = 2,85 eq = 379,24 · 2,85 = 1081 mg] DMF

1,2 eq DMEA = 5 mmol = 174 ml/mmol · 5 = 870 µl

Rad obavio: Josip TomastovićDatum: 5. 03. 2001.Rad posvjedočio: Mirka StjepićDatum: 5. 3. 2001.

PLIVA d.d.
Istraživački institut

11

Naslov: _____

Oznaka STER-PEP

Datum (i): 6. 03. 2001.

$$\boxed{HBTU = eq \cdot 0,95}$$

F-moc-Lys i HBTU u stopci u 3 ml DMF-a u promoci
ultrazvučne lysisi. Nekon što se dodat DIPERA ne se
mora što poviši stvariti ne morać (može prvi reakcijski
nuklearni 7 min.)

End capping:

$$10 \text{ eq } Ac_2O + 10 \text{ eq DIPERA u DMF-u } 15 \text{ min}$$

$$510 \mu\text{l} \quad 870 \mu\text{l} \quad / \cdot 4$$

$$2,0 \text{ ml Ac}_2\text{O} + 3,430 \text{ ml DIPERA + 5 ml DMF}$$

2,5 ml održati na morać 5 min.

Test - 30 μl se izvedi propisanim, odeljantim se DMF iz
endorofic, oduzeti se etanol i odeljavati, a zatim
30 μl bromtimalplavilic - kuglice su obale vrelojne.

Deprotekacija 2', 2', 5', 5', dode se piperidin u mernici,
otem 2', ispušti, dodat nova molariteta std.

3rd AA → FMoc-Phe

$$6 \text{ eq } \cdot 3 \text{ mmol} = 3 \times 387,4 = 1162,2 \text{ mg FMoc-Phe} \quad \left. \begin{array}{l} \\ \end{array} \right\} 3 \text{ ml DMF}$$

$$1081 \text{ mg HBTU} \quad \left. \begin{array}{l} \\ \end{array} \right\}$$

$$870 \mu\text{l DIPERA}$$

Deprotekacija 2', 2', 5', 5'

4th AA → FMoc-Gly

$$6 \text{ eq } = 3 \text{ mmol} = 3 \times 297,3 = 891,9 \text{ mg FMoc-Gly} \quad \left. \begin{array}{l} \\ \end{array} \right\} 3 \text{ ml DMF}$$

$$1081 \text{ mg HBTU} \quad \left. \begin{array}{l} \\ \end{array} \right\}$$

$$870 \mu\text{l DIPERA}$$

Deprotekacija

Susjedi preko moci u vakuum mjenici na 30°C.

Rad obavio: hvala IstrastućíDatum: 6. 03. 2001.Rad posvјedočio: Ivana HorneDatum: 12. 3. 2001.

 PLIVA d.d.
Istraživački institut

12

Naslov: _____

Oznaka STER-PEPDatum (i): 7.03.2001.

Održevanje neline u množini 573 mg, došlo je do
gubitka zraka

Debrametazon hirudina	4 eg - 757 mg	} 3 ml DMF
HBTU	4.995 - 720 mg	

DIPEA 609 µl

Neline 5 h test pokazuje da još nijek i u
plastičnoj bavljici

2. put debrametazon hir.	3 eg 567,75 mg	} 3 ml DMF
HBTU	540 mg	

DIPEA 435 µl

Obavljeno je na monacu preko noći

End capping:	500 µl Ac ₂ O	} 5
	500 µl DIPEA	

3 ml DMF

Komponenti: DMF, DCM, MeOH, miješaju u vakuum
miješaju preko noći na 30°C.

Rad obavio:

Simone Tomashinić
Analitik Polimi.Datum: 7.03.2001.Datum: 12.3.2001.

BEST AVAILABLE COPY

PLIVA d.d.
Istraživački institut

13

Naslov: _____ Oznaka STER-PEP

Datum (i): 8. 03. 2001.

Odrage novca na konu mije 590 mg.

Shidanje s limitog novca:

2 x 10 me 50% -ne TFA u DCM-u 2 x 15'

Nakon toga 2 x isprati s DCM. Upuniti me
rotanaporu. Pred smjed dodati eter i ponov
isprati. Dohiveno je 61,91 mg produkta.

MS(ES⁻) : 751,6 (MH⁻)

Rad obavio: hinde Tomastović Datum: 8. 03. 2001.
Rad posvјedočio: Jelka Stojanović Datum: 12. 3. 2001.

 PLIVA d.d.
Istraživački institut

Naslov: _____

Oznaka LT-PEP2Datum (i): 12. 03. 2001.STER-PEP+ LT 37C₄₀H₅₃FN₄O₉C₄₀H₇₇O₁₂N₃M 752,87M 792,4družnik 080 mH. 98C₈₀H₁₂₈FN₇O₂₀M 1526,91

Ref: J. Cassidy, Drug News Perspect. 13(8):477-480, 2000

KEMIKALije:1-HYDROXYBENZOTRIAZOLE, ACROS, M 135,12 (HOBT)1-(3-DIMETHYLAMINOPROPYL)-3-ETHYL-CARBODIIMIDE HYDROCHLORIDE, ALDRICH, M 191,71 (EDC·HCl)N,N-DIISOPROPYLETHYL AMINE, ALDRICH, M 129,25; 90,742POSTUPAK:U suspenziji hiskline STER-PEP. (družnik, mH. 9) 130 mg;Rad obavio: Jinde TomastovićDatum: 12.03.2001.Rad posvјedočio: Zeljko StilacDatum: 12.3.2001.

PLIVA d.d.
Istraživački institut

Naslov: _____

Oznaka LT-PEP2

15

Datum (l): 12. 03. 2001.

0,0399 mmol) u niskom dihlorometanu (5 ml) ohlađenom na 0°C dodano je 61 µl diisopropiletilamina, zatim 10,8 mg HOBT (0,0799 mmol), amin LT 37 (32 mg, 0,0399 mmol) i PDC-HCl (30,4 mg; 0,1586 mmol). Reakcija je provodena 24 h uz argon i mijesajuće. Reakciju je mijenjao zatim neputna na manji volumen (~1 ml) i očišćena na koloni punjenoj sa milicagelom (eluirao: CHCl₃:MeOH:NH₄OH = 6:1:0,1). Dohvatio je 35,7 mg čistog proizvoda. Tvoristeće reakcije je 59%.

MS(ES⁺): 1526,83 (M⁺)

Rad obavio:

Jure Tomotić
Draža OžkunDatum: 12. 03. 2001.
Datum: 12. 3. 2001.

Rad posvjedočio:

BEST AVAILABLE COPY

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.