Supplementary material Sub-Saharan Africa sweetpotato virome

Ricardo I. Alcalá-Briseño

May 21, 2021

Abstract

Results and supplementary figures of the Sub-Saharan Africa sweet-potato virome (SSA-SPV).

1 Gravity model

We evaluate the cropland density of sweetpotato using a cropland connecitvity risk index (Yanru et la., 2020). Implementing a gravity model using a negative exponential distribution using the sweetpotato density of 1degree pixel from the Monfreda and MapSpam databases (REFs).

Figure 1: Gravity model Sub-Saharan Africa sweetpotato virome.

$$2\mathrm{Mg} + \mathrm{O}_2 \longrightarrow 2\mathrm{MgO}$$

1.1 Regions

Seven regions of sweetpotato were identified with a gravity model (table 1).

K-cluster	Regions	Countries	Samples
Region 1	East	Tanzania, Uganda	228
Region 2	Near West	Ghana, Benin and Nigeria	36
Region 3	Southwest	Angola	171
Region 4	East group 1	Mozambique, Zimbabwe	262
Region 5	East group 2	Mozambique, Tanzania, Zimbabwe	151
Region 6	East group 3	Rwanda, Tanzania, Uganda	261
Region 7	Far East	Ethiopia	171
Total			1286

2 Regions

2.1 Region 1

Region 1 corresponding to East Africa (Tanzania and Uganda) of 228 samples collected. We identified 98 viruses species, in _____ genera, and _____ families. A barplot representing the frequency distribution and relative abundance of SSA-SPV region 1 (Fig. 2)

Figure 2: Incidence distribution Sub-Saharan Africa sweet potato virome region 1.

Figure 3: Rarefaction of Sub-Saharan Africa sweetpotato virome region 1.

- 2.2 Region 2
- 2.3 Region 3
- 2.4 Region 4
- 2.5 Region 5
- 2.6 Region 6
- 2.7 Region 7

3 Networks metrics

 $\begin{array}{lll} \text{Mass of magnesium metal} & = 8.59\,\mathrm{g} - 7.28\,\mathrm{g} \\ & = 1.31\,\mathrm{g} \\ \\ \text{Mass of magnesium oxide} & = 9.46\,\mathrm{g} - 7.28\,\mathrm{g} \\ & = 2.18\,\mathrm{g} \\ \\ \text{Mass of oxygen} & = 2.18\,\mathrm{g} - 1.31\,\mathrm{g} \\ & = 0.87\,\mathrm{g} \end{array}$

Because of this reaction, the required ratio is the atomic weight of magnesium:

Figure 4: Bipartite network Sub-Saharan Africa sweetpotato virome region 1.

 $16.00\,\mathrm{g}$ of oxygen as experimental mass of Mg: experimental mass of oxygen or $\frac{x}{1.31} = \frac{16}{0.87}$ from which, $M_{\mathrm{Mg}} = 16.00 \times \frac{1.31}{0.87} = 24.1 = 24\,\mathrm{g\,mol}^{-1}$ (to two significant figures).

4 Results and Conclusions

The atomic weight of magnesium is concluded to be $24 \,\mathrm{g} \,\mathrm{mol}^{-1}$, as determined by the stoichiometry of its chemical combination with oxygen. This result is in agreement with the accepted value.

5 Discussion of Experimental Uncertainty

The accepted value (periodic table) is $24.3\,\mathrm{g\,mol^{-1}}$ Smith and Jones (2012). The percentage discrepancy between the accepted value and the result obtained here is 1.3%. Because only a single measurement was made, it is not possible to calculate an estimated standard deviation.

The most obvious source of experimental uncertainty is the limited precision of the balance. Other potential sources of experimental uncertainty are: the reac-

Figure 5: Bipartite network Sub-Saharan Africa sweetpotato virome region 1, Kimura-Kawai layout

tion might not be complete; if not enough time was allowed for total oxidation, less than complete oxidation of the magnesium might have, in part, reacted with nitrogen in the air (incorrect reaction); the magnesium oxide might have absorbed water from the air, and thus weigh "too much." Because the result obtained is close to the accepted value it is possible that some of these experimental uncertainties have fortuitously cancelled one another.

6 Answers to Definitions

- a. The atomic weight of an element is the relative weight of one of its atoms compared to C-12 with a weight of 12.0000000..., hydrogen with a weight of 1.008, to oxygen with a weight of 16.00. Atomic weight is also the average weight of all the atoms of that element as they occur in nature.
- b. The units of atomic weight are two-fold, with an identical numerical value. They are g/mole of atoms (or just g/mol) or amu/atom.

Figure 6: Incidence distribution Sub-Saharan Africa sweetpotato virome region

Figure 7: Rarefaction of Sub-Saharan Africa sweet potato virome region 1.

Figure 8: Bipartite network Sub-Saharan Africa sweetpotato virome region 1.

c. $Percentage\ discrepancy$ between an accepted (literature) value and an experimental value is

 $\frac{\text{experimental result} - \text{accepted result}}{\text{accepted result}}$

References

Smith, J. M. and Jones, A. B. (2012). Chemistry. Publisher, 7th edition.

Figure 9: Bipartite network Sub-Saharan Africa sweet
potato virome region 1, Kimura-Kawai layout $\,$

Figure 10: Incidence distribution Sub-Saharan Africa sweet potato virome region ${\bf 1}$

Figure 11: Rarefaction of Sub-Saharan Africa sweetpotato virome region 1.

Figure 12: Bipartite network Sub-Saharan Africa sweetpotato virome region 1.

Figure 13: Bipartite network Sub-Saharan Africa sweetpotato virome region 1, Kimura-Kawai layout

Figure 14: Incidence distribution Sub-Saharan Africa sweet potato virome region $\ensuremath{\mathtt{1}}$

Figure 15: Rarefaction of Sub-Saharan Africa sweetpotato virome region 1.

Figure 16: Bipartite network Sub-Saharan Africa sweetpotato virome region 1.

Figure 17: Bipartite network Sub-Saharan Africa sweetpotato virome region 1, Kimura-Kawai layout

Figure 18: Incidence distribution Sub-Saharan Africa sweet potato virome region ${\bf 1}$

Figure 19: Rarefaction of Sub-Saharan Africa sweetpotato virome region 1.

Figure 20: Bipartite network Sub-Saharan Africa sweetpotato virome region 1.

Figure 21: Bipartite network Sub-Saharan Africa sweetpotato virome region 1, Kimura-Kawai layout

Figure 22: Incidence distribution Sub-Saharan Africa sweet potato virome region $\ensuremath{\mathtt{1}}$

Figure 23: Rarefaction of Sub-Saharan Africa sweetpotato virome region 1.

Figure 24: Bipartite network Sub-Saharan Africa sweetpotato virome region 1.

Figure 25: Bipartite network Sub-Saharan Africa sweetpotato virome region 1, Kimura-Kawai layout

Figure 26: Incidence distribution Sub-Saharan Africa sweet potato virome region ${\bf 1}$

Figure 27: Rarefaction of Sub-Saharan Africa sweetpotato virome region 1.

Figure 28: Bipartite network Sub-Saharan Africa sweetpotato virome region 1.

Figure 29: Bipartite network Sub-Saharan Africa sweetpotato virome region 1, Kimura-Kawai layout

Figure 30: Figure caption.