1 [10 pts]

1.1 [6 pts]

1.
$$\frac{nh}{M}$$

2.
$$0.1 = \frac{nh}{M} = \frac{nh}{20h} = \frac{n}{20} \rightarrow n = 0.1 * 20 = 2$$

1.2 [4 pts]

Not Orthagonal

2 [5 pts]

$$d = \frac{x}{\tan \alpha} + \frac{x}{\tan \beta}$$

$$x = \frac{d}{\frac{1}{\tan \alpha} + \frac{1}{\tan \beta}} = \frac{1000}{\frac{1}{\tan(\frac{\pi}{3})} + \frac{1}{\tan(\frac{\pi}{4})}}$$

3 [5 pts]

Slot #	List of Winning Stations
Slot 1.	a,e,f,g,h
Slot 2.	a
Slot 3.	e,f,g,h
Slot 4.	e,f
Slot 5.	e
Slot 6.	f
Slot 7.	g,h
Slot 8.	g
Slot 9.	h

4 [10 pts]

4.1 [6 pts]

Face	List of Edges Being Traversed Using Face Routing
F_2	4
F_3	12,13
F_5	14,15

4.2 [4 pts]

List of Edges Being Traversed Using Compass Routing 4,9,10,11,14,15

5 [6 pts]

Network	Yes or No	If the answer is NO explain why
(a)	Yes	
(b)	No	A bridge can only connect 2 piconets

6 [4 pts]

$$n(\frac{1}{n^2}) = \frac{n}{n^2} = \frac{1}{n}$$

7 [5 pts]

1.
$$x_1 = 1 + (-1)^1 = 1 - 1 = 0$$

 $x_2 = 2 + (-1)^2 = 2 + 1 = 3$
 $x_3 = 3 + (-1)^3 = 3 - 1 = 2$

2. No beacause $d_{x_1,x_{any}} > 1$