

Silver Oak College of Engineering and Technology College of Technology (01) Bachelor of Technology

Department of Information Technology(010)

Semester:	VI	Academic Year:	2023-24
Subject Name:	DMBI and DMDW	Subject Code:	1010103324/
			1010103323

QUESTION BANK

Sr. No.	Question	со	Bloom's Taxonomy	Marks
U	NIT: 1 OVERVIEW AND CONCEPTS OF DATA BUSINESS INTELLIGENCE		EHOUSING	AND
1	Define following terms & differentiate them: Data Mart, Enterprise Warehouse & Virtual Warehouse, Closed frequent item set, Outlier Analysis	CO1	U	06
2	Do feature wise comparison between BI and DW	CO1	U	04
3	Explain various features of Data Warehouse?	CO1	U	03
4	Discuss the application of data warehousing and data mining.	CO1	R	04
5	Explain Star, Snowflake, and Fact Constellation Schema for Multidimensional Database.	CO1	U	06
6	Give differences between OLAP and OLTP	CO1	R	04
7	Explain various OLAP operations.	CO1	U	06
8	Explain three tier data warehouse Architecture in details.	CO1	U	06
9	Compare data mart and data warehouse.	CO1	R	03

	UNIT: 2 INTRODUCTION TO DATA MINING PROCESSING	AND	DATA PRE	ξ-
9	Define the term "data mining". Discuss the major issues in data mining.	CO2	R	03
10	What is Data Mining? Why is it called data mining rather knowledge mining? Explain KDD process.	CO2	U	06
11	What is noise? Explain data smoothing methods as noise removal technique to divide given data into bins of size 3 by bin partition (equal frequency), by bin means, by bin medians and by bin boundaries. Consider the data:10, 2, 19, 18, 20, 18, 25, 28, 22	CO2	AN	04
12	Minimum salary is 20,000Rs and Maximum salary is 1,70,000 Rs. Map the salary 1,00,000 Rs in new Range of (60,000 , 2,60,000) Rs using min-max normalization method.	CO2	AN	04
13	If Mean salary is 54,000Rs and standard deviation is 16,000 Rs then find z-score value of 73,600 Rs salary.	CO2	AN	03
14	Explain Mean, Median, Mode Variance, Standard Deviation & five number summaries with suitable database example.	CO2	U	04
15	Enlist data reduction strategies and explain any two.	CO2	U	04
16	Explain the following terms: Numerosity reduction, Data Integration, Data transformation	CO2	R	03
17	Enlist the preprocessing steps with example. Explain procedure of any technique of preprocessing.	CO2	U	06
	UNIT: 3 DATA MINING TECHNI	QUES		
18	What is market basket analysis? Explain the two measures of rule interestingness: support and confidence with suitable example.	CO2	U	04
19	Consider following database of ten transactions. Let min_sup = 30% and min_confidence = 60%. A) Find all frequent itemsets using Apriori algorithm. B) Generate strong association rules	CO2	U/A	06

	TID	items bought		
	T1	pen, pencil		
	T2	book, eraser, pencil		
	T3	book, chalk, eraser, pen		
	T4	chalk, eraser, pen		
	T5	book, pen, pencil		
	Т6	book, eraser, pen, pencil		
	T7	ink, pen		
	T8	book, pen, pencil		
	Т9	eraser, pen, pencil		
	T10	book, chalk, pencil		
20	mining? Brie	e limitations of the Apriori approach for fly describe the techniques to improve the Apriori algorithm with an example.	U/A	06
21	rules based	quent item sets and generate association on it using Apriori algorithm. Minimum % and minimum confidence is 70%	U/A	06
	TID 100 200 300 400	Items 1, 3, 4 2, 3, 5 1, 2, 3, 5 2, 5		

22	associ follow minin	ation ru ving data	ules usir set witl	rty. Geneing Aprio h minimu value se	the and	CO2	U/A	06		
	TI	D		Items Purch	nased					
	T101 Cheese, Milk, Cookies									
	T1	02 Butter	, Milk, Bread							
	T1	03 Chees	e, Butter, Mil	k, Bread						
	T1	04 Butter	, Bread							
							•			
		U	NIT: 4 (CLASSIF	ICATION	N AND	PRE	DICT	ION	
23			fication a	sues	CO3	R/U	04			
24	_	in the st on trees.	eps of th	e ID3 alg	gorithm fo	r genera	iting	CO3	A	06
25	-		-		ion is cal tion with e		ve"?	CO3	A	06
26	Do fea		se compa	rison bety	ween class	ification	and	CO3	U	04
27		ate deci ing datas		using I	D3 algorit	hm for	the	CO3	AN	06
	Sr.	Outlook	Temperat ure	Humidity	Wind	Play				
	1	Sunny	hot	high	FALSE	No	1			
	2	Sunny	hot	high	TRUE	No]			
	3	Overcast	hot	high	FALSE	Yes				
	5	Rain Rain	mild	high	FALSE FALSE	Yes Yes	-			
	6	Rain	cool	normal	TRUE	No	-			
	7	Overcast	cool	normal	TRUE	Yes	1			
	8	Sunny	mild	high	FALSE	No]			
	9	Sunny	cool	normal	FALSE	Yes	-			
	10	Rain	mild	normal	FALSE	Yes	-			
	11	Sunny	mild mild	normal high	TRUE	Yes Yes	-			
	13	Overcast	hot	normal	FALSE	Yes	1			
	14	Rain	mild	high	TRUE	No]			
			-							

28	Explain Log	gistic Re	egressio	n with an ex	ample.		CO3	U	04
29	Explain Linear regression with example.						CO3	U	04
30	sing Naive Bayesian classification method, predict class label of X = (age = youth, income = medium, student = yes, credit_rating = fair) using following training dataset.							AN	06
	age	income	Student		Class: buys_computer				
	youth	high	no	Fair	no				
	youth	high	no	excellent	no				
	middle_aged	high	no	fair	yes				
	senior	medium	no	fair	yes				
	senior	low	yes	fair	yes				
	senior	low	yes	excellent	no				
	middle_aged	low	yes	excellent	Yes				
	youth	medium	no	fair	no				
	youth	low	yes	fair	yes				
	senior	medium	yes	fair	yes				
	youth	medium	yes	excellent	yes				
	middle_aged	medium	no	excellent	yes				
	middle_aged	high	yes	fair	yes				
	senior	medium	no	excellent	no				
31	Explain the Random Forest Algorithm with an example.						CO3	U	06
32	Explain the Naive Bayes Classifier with an example.						CO3	U	06
33	What is classification? Explain classification as a two-step process with diagram.						CO3	U	04
34	Briefly exp	lain Lin	ear and	Non-linear r	regression.		CO3	U	04

UN	UNIT: 5 DATA MINING FOR BUSINESS INTELLIGENCE APPLICATIONS						
35	Briefly explain the life-cycle of Data Analytics and discuss the role of data scientists.	CO3	U	06			
36	Discuss applications of data mining in Banking and Finance.	CO3	U	04			
37	How data Mining is useful for Business Intelligence applications viz. Balanced Scorecard, Fraud Detection, Clickstream Mining, Market Segmentation, retail industry, telecommunications industry, banking & finance and CRM	CO3	AN	06			
38	Discuss fraud detection and click-stream analysis using data mining.	CO3	U	06			
39	Explain data mining application for fraud detection.	CO3	U	03			
	UNIT: 6 R PROGRAMMING FOR DATA	A ANA	ALYSIS				
40	Define R programming language. Discuss its significance in data analysis.	CO4	R	04			
41	Explain the purpose of the help() function in R. How is it used?	CO4	A	03			
42	Define vectors in R. Provide examples of creating and manipulating vectors.	CO4	R	04			
43	Discuss the significance of factors in R. How are they useful in data analysis?	CO4	U	03			
44	Discuss the significance of the "filter()" function in "dplyr". How is it used to subset data?	CO4	U/A	06			
45	What are lists in R? Provide an example demonstrating their use.	CO4	R	06			
46	Discuss the significance of dimensions in arrays and matrices in R.	CO4	U	04			
47	Describe methods for imputing missing values in R. Provide examples using relevant functions or packages.	CO4	R	06			
48	Describe the purpose of the ggplot2 package in R. Provide examples of creating different types of plots.	CO4	R	06			

49	Discuss the difference between geom_point() and geom_line() in ggplot2. When would you use each?	CO4	U/A	06
50	Explain the process of fitting a linear regression model in R using the lm() function. Provide a code example.	CO4	U/A	06
51	Explain how to visualize time series data in R using plots such as time series plots and seasonal decomposition plots.	CO4	R	06
1	UNIT: 7 TABLEAU FOR BUSINESS INTELLIGEN	ICE V	ISUALIZAT	ION
52	Describe the main components of Tableau Desktop and their roles in the data visualization process.	CO5	R	04
53	How do you connect Tableau Desktop to various data sources? Provide examples.	CO5	U/A	06
54	Create basic visualizations such as bar charts, line charts, and scatter plots in Tableau. Provide step-by-step instructions.	CO5	U/A	03
55	Explain how Tableau supports data exploration through features like drill-down, filtering, and highlighting.	CO5	U	04
56	What is the purpose of Tableau Prep and how does it complement Tableau Desktop for data preparation and cleaning?	CO5	R	06
57	Describe techniques for implementing dynamic and parameterized visualizations in Tableau.	CO5	R	04
58	Discuss the use of custom SQL queries and R/Python integration for advanced data analysis in Tableau.	CO5	U/A	06
59	Describe techniques for optimizing Tableau data extracts for improved performance and scalability.	CO5	R	04
	UNIT: 8 ADVANCED TOPIC	S		
60	Describe the key components of Power BI Desktop.	CO5	R	04
61	Explain the purpose of the Query Editor in Power BI Desktop. How is it used for data transformation?	CO5	R	04
62	Explain the architecture of PowerBI in detail.	CO5	U	06

63	Compare main features and capabilities of Power BI and Tableau.	CO5	R	06
64	Describe the process of publishing Power BI reports to the Power BI Service.	CO5	R	04
65	Explain the concept of data modeling in Power BI. How does it differ from data transformation?	CO5	R	04
66	Explain web mining using example.	CO5	R	03
67	Explain Spatial mining using example.	CO5	R	03
68	Explain text mining using example.	CO5	R	03

Prof. Parvin Bloch Name & Sign Subject Co-ordinator Dr. Rahul Vaghela Name & Sign Head of Department