

Pruebas de acceso a enseñanzas universitarias oficiales de grado Mayores de 25 y 45 años

Castilla y León

MATEMÁTICAS

EJERCICIO

Nº Páginas: 2

INDICACIONES: 1.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo desarrollar los cuatro ejercicios de la misma en el orden que desee.

2.- CALCULADORA: Se permitirá el uso de **calculadoras no programables** (que no admitan memoria para texto ni representaciones gráficas).

CRITERIOS GENERALES DE EVALUACIÓN: Cada ejercicio se puntuará sobre un máximo de 2,5 puntos. Se observarán fundamentalmente los siguientes aspectos: Correcta utilización de los conceptos, definiciones y propiedades relacionadas con la naturaleza de la situación que se trata de resolver. Justificaciones teóricas que se aporten para el desarrollo de las respuestas. Claridad y coherencia en la exposición. Precisión en los cálculos y en las notaciones. Deben figurar explícitamente las operaciones no triviales, de modo que puedan reconstruirse la argumentación lógica y los cálculos.

OPCIÓN A

E1.- Dado el sistema de ecuaciones lineales $\begin{cases} x-y+4z=0\\ x+y+3z=0\\ x-y+mz=0 \end{cases}$

- a) Encontrar "m" para que el sistema tenga infinitas soluciones y calcularlas. (1,5 puntos)
- **b**) Resolverlo para m=1.

(1 punto)

E2.- Dado el punto A (3,5,-1) y la recta $r = \frac{x-1}{2} = \frac{y+2}{1} = \frac{z+1}{4}$. Determinar el punto B de la recta r de forma que la recta AB sea paralela al plano 3x - 2y + z + 5 = 0.

(2,5 puntos)

- **E3.-** Consideremos la función $f(x) = \frac{x^2 + 1}{x}$.
 - a) Determinar el dominio y, si existen, sus asíntotas.

(1,5 puntos)

- b) Determinar los extremos relativos y los puntos de inflexión de la misma, si es que existen. (1 punto)
- **E4.- a)** Hallar el área del recinto del plano limitado por la gráfica de $f(x) = x^3 4x$ y el eje OX si x pertenece al intervalo [0,2]. (1,5 puntos)

b) Calcular
$$\lim_{x\to 1} \frac{\ln x}{x-1}$$

(1 punto)

OPCIÓN B

- E1.- Sean X e Y las soluciones del sistema de ecuaciones matriciales: $\begin{cases} X Y = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \\ X + Y = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix}$
 - a) Hallar $X \in Y$. (1 punto)
 - **b**) Suponiendo que $X = \begin{pmatrix} 3 & 4 \\ 5 & 6 \end{pmatrix}$ e $Y = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}$ calcular, cuando tenga sentido, X^{-1} e Y^{-1} (razonar la posible respuesta negativa). (1,5 puntos)
- **E2.-** Hallar la ecuación del plano que contiene a la recta $r \equiv \frac{x-2}{1} = \frac{y-1}{3} = \frac{z+1}{1}$ y al punto A(2,5,1). (2,5 puntos)
- **E3.- a)** Calcular a para que la función $f(x) = ax^3 3x + 1$ tenga un extremo relativo en x = 1. (1,5 puntos)
 - b) Calcular la recta tangente a la gráfica de la función $f(x) = x^3 3x + 1$, en el punto (1, -1). (1 punto)
- **E4.- a**) Calcular el área del recinto limitado por las curvas f(x) = |x| y $g(x) = x^2 2$. (1,5 puntos)
 - **b)** Calcular $\lim_{x \to 0} \frac{sen(x^2)}{e^{3x^2} 1}.$ (1 punto)