Problem R-65 ($C_{10}H_{10}O_4$). The 300 MHz ¹H NMR spectrum of phenylsuccinic acid in CDCl₃-DMSO-d₆ is shown below. From the line positions given, calculate the coupling constants J_{ax} , J_{bx} and J_{ab} (Source: Aldrich Spectra Collection).

Phenylsuccinic acid partially labeled with 13 C at the carboxyl group marked gave the 100 MHz 1 H NMR spectrum below (δ 2.2-3.3, acetone-d₆). What is the fraction of 13 C incorporation? Estimate the carbon-proton couplings $^{3}J_{\text{C-HA}}$ and $^{3}J_{\text{C-HB}}$ from this spectrum. Source: M. E. Rennekamp, C. A. Kingsbury *J. Org. Chem.* **1973**, *38*, 3959 (DOI: 10.1021/jo00962a036).

Draw Newman projections for the three possible staggered conformations of phenylsuccinic acid and determine which is the major one in acetone- d_6 solution.

Problem R-65 ($C_{10}H_{10}O_4$). The 300 MHz ¹H NMR spectrum of phenylsuccinic acid in CDCl₃-DMSO-d₆ is shown below. From the line positions given, calculate the coupling constants J_{ax} , J_{bx} and J_{ab} (Source: Aldrich Spectra Collection).

This can be treated as an AMX pattern - first order treatment will give accurate J values ($v_{AB} >> 5J_{AB}$)

The sample is ca 60% enriched in ¹³C, from the area of the ¹³C satellites vs the central peak.

This is what we see so this is the major conformation