```
NAME : Pradip S Karmakar
ROLL NO: 10
CLASS: MCA-II
SUBJECT: Computer Oriented Numerical Methods (CONM)
1. Apply Bisection method to solve the algebraic equation
#include<stdio.h>
#include<conio.h>
#include<math.h>
double fun(double x)
{
       double funx;
       funx=x*log(x)-1.2;
       return funx;
}
void content(double a,double b)
{
       double c;
       int no=0;
       printf("Enter Value of a:");
       scanf("%lf",&a);
       printf("\nEnter Value of b:");
       scanf("%lf",&b);
       //currunt - previos < epsilon
```

//epsilon have to be in macro

```
//function evaluation (divide by zero error) in the function
       while((fun(a)*fun(b))>0)
       {
              printf("\nInvalid input!");
              printf("\nEnter Value of a:");
              scanf("%lf",&a);
              printf("\nEnter Value of b:");
              scanf("%lf",&b);
       }
              c=(a+b)/2;
              printf("\nNO\tA\t\tf(A)\t\tf(B)\t\tC\t\tf(C)\n");
              printf("\n-----
---");
              while(fabs(fun(c))>0.0000005)
              {
                      fun(c);
                      if((fun(a)>0 && fun(c)>0) || (fun(a)<0 && fun(c)<0))
                      {
                             a=c;
                      }
                      if((fun(b)<0 && fun(c)<0) || (fun(b)>0 && fun(c)>0))
                      {
                             b=c;
                      }
                      c=(a+b)/2;
       printf("\n\%d\t\%lf\t\%lf\t\%lf\t\%lf\t\%lf\t\%lf\n",no++,a,fun(a),b,fun(b),c,fun(c));
              }
```

}

```
void main()
{
     double a=0,b=0;
     content(a,b);
     getch();
}
OUTPUT:
Enter Value of a:1
Enter Value of b:2
NO A f(A) B f(B) C f(C)
0 1.500000 -0.591802 2.000000 0.186294 1.750000 -0.220672
1 1.750000 -0.220672 2.000000 0.186294 1.875000 -0.021359
2 1.875000 -0.021359 2.000000 0.186294 1.937500 0.081460
3 1.875000 -0.021359 1.937500 0.081460 1.906250 0.029794
4 1.875000 -0.021359 1.906250 0.029794 1.890625 0.004153
5
  1.875000 -0.021359 1.890625 0.004153 1.882813 -0.008619
```

6	1.882813	-0.008619	1.890625	0.004153	1.886719	-0.002237
7	1.886719	-0.002237	1.890625	0.004153	1.888672	0.000957
8	1.886719	-0.002237	1.888672	0.000957	1.887695	-0.000640
9	1.887695	-0.000640	1.888672	0.000957	1.888184	0.000158
10	1.887695	-0.000640	1.888184	0.000158	1.887939	-0.000241
11	1.887939	-0.000241	1.888184	0.000158	1.888062	-0.000041
12	1.888062	-0.000041	1.888184	0.000158	1.888123	0.000059
13	1.888062	-0.000041	1.888123	0.000059	1.888092	0.000009
14	1.888062	-0.000041	1.888092	0.000009	1.888077	-0.000016
15	1.888077	-0.000016	1.888092	0.000009	1.888084	-0.000004
16	1.888084	-0.000004	1.888092	0.000009	1.888088	0.000002
17	1.888084	-0.000004	1.888088	0.000002	1.888086	-0.000001
18	1.888086	-0.000001	1.888088	0.000002	1.888087	0.000001
19	1.888086	-0.000001	1.888087	0.000001	1.888087	0.000000

```
NAME : Pradip S Karmakar
ROLL NO: 10
CLASS : MCA-II
SUBJECT: Computer Oriented Numerical Methods (CONM)
2. Apply Bisection method to solve the algebraic equation
#include<stdio.h>
#include<conio.h>
#include<math.h>
double fun(double x)
{
       double funx;
       funx=(x*x*x)-x-1;
       return funx;
}
void content(double a,double b)
{
       double c;
       int no=0;
       printf("Enter Value of a:");
       scanf("%lf",&a);
       printf("\nEnter Value of b:");
       scanf("%lf",&b);
       while((fun(a)*fun(b))>0)
```

```
{
            printf("\nInvalid input!");
            printf("\nEnter Value of a:");
            scanf("%lf",&a);
            printf("\nEnter Value of b:");
            scanf("%lf",&b);
      }
            c=(a+b)/2;
            printf("\nNO\tA\t\tf(A)\t\tB\t\tf(B)\t\tC\t\tf(C)\n");
            printf("\n-----
---");
            while(fabs(fun(c))>0.0000005)
            {
                  fun(c);
                  if((fun(a)>0 && fun(c)>0) || (fun(a)<0 && fun(c)<0))
                  {
                        a=c;
                  }
                  if((fun(b)<0 && fun(c)<0) || (fun(b)>0 && fun(c)>0))
                  {
                        b=c;
                  }
                  c=(a+b)/2;
      }
}
void main()
{
      double a=0,b=0;
```

```
content(a,b);
     getch();
}
OUTPUT:
Enter Value of a:0
Enter Value of b:1
Invalid input!
Enter Value of a:1
Enter Value of b:2
NO A f(A) B f(B) C f(C)
0 1.000000 -1.000000 1.500000 0.875000 1.250000 -0.296875
1 1.250000 -0.296875 1.500000 0.875000 1.375000 0.224609
2 1.250000 -0.296875 1.375000 0.224609 1.312500 -0.051514
3 1.312500 -0.051514 1.375000 0.224609 1.343750 0.082611
4 1.312500 -0.051514 1.343750 0.082611 1.328125 0.014576
```

5	1.312500	-0.051514	1.328125	0.014576	1.320313	-0.018711
6	1.320313	-0.018711	1.328125	0.014576	1.324219	-0.002128
7	1.324219	-0.002128	1.328125	0.014576	1.326172	0.006209
8	1.324219	-0.002128	1.326172	0.006209	1.325195	0.002037
9	1.324219	-0.002128	1.325195	0.002037	1.324707	-0.000047
10	1.324707	-0.000047	1.325195	0.002037	1.324951	0.000995
11	1.324707	-0.000047	1.324951	0.000995	1.324829	0.000474
12	1.324707	-0.000047	1.324829	0.000474	1.324768	0.000214
13	1.324707	-0.000047	1.324768	0.000214	1.324738	0.000084
14	1.324707	-0.000047	1.324738	0.000084	1.324722	0.000018
15	1.324707	-0.000047	1.324722	0.000018	1.324715	-0.000014
16	1.324715	-0.000014	1.324722	0.000018	1.324718	0.000002
17	1.324715	-0.000014	1.324718	0.000002	1.324717	-0.000006
18	1.324717	-0.000006	1.324718	0.000002	1.324718	-0.000002
19	1.324718	-0.000002	1.324718	0.000002	1.324718	0.000000

```
NAME : Pradip S Karmakar
ROLL NO: 10
CLASS: MCA-II
SUBJECT: Computer Oriented Numerical Methods (CONM)
3. Apply False Position method to solve the algebraic equation
#include<stdio.h>
#include<conio.h>
#include<math.h>
double fun(double x)
{
       double funx;
       funx=x*log10(x)-1.2;
       return funx;
}
void content(double a,double b)
{
       double c;
       int no=0;
       printf("Enter Value of a:");
       scanf("%lf",&a);
       printf("\nEnter Value of b:");
       scanf("%lf",&b);
```

```
while((fun(a)*fun(b))>0)
      {
            printf("\nInvalid input!\n");
            printf("\nEnter Value of a:");
            scanf("%lf",&a);
            printf("\nEnter Value of b:");
            scanf("%lf",&b);
      }
            c=((b*(fun(a)))-(a*(fun(b))))/((fun(a))-(fun(b)));
            printf("\nNO\tA\t\tf(A)\t\tf(B)\t\tC\t\tf(C)\n");
            printf("\n-----
---");
            while(fabs(fun(c))>0.0000005)
            {
      fun(c);
                  if((fun(a)>0 && fun(c)>0) || (fun(a)<0 && fun(c)<0))
                  {
                        a=c;
                  }
                  if((fun(b)<0 && fun(c)<0) || (fun(b)>0 && fun(c)>0))
                  {
                        b=c;
                  }
                  c=((b*(fun(a)))-(a*(fun(b))))/((fun(a))-(fun(b)));
            }
            }
void main()
```

```
{
      double a=0,b=0;
      content(a,b);
      getch();
}
OUTPUT:
Enter Value of a:2
Enter Value of b:3
NO A f(A) B f(B) C f(C)
1 2.000000 -0.597940 3.000000 0.231364 2.721014 -0.017091
2 \quad 2.721014 \quad -0.017091 \quad 3.000000 \quad 0.231364 \quad 2.740206 \quad -0.000384
3 2.740206 -0.000384 3.000000 0.231364 2.740636 -0.000009
4 2.740636 -0.000009 3.000000 0.231364 2.740646 -0.000000
```

```
NAME: Pradip S Karmakar
ROLL NO: 10
CLASS: MCA-II
SUBJECT: Computer Oriented Numerical Methods (CONM)
4. Apply Secant method to solve the algebraic equation
#include<stdio.h>
#include<conio.h>
#include<math.h>
double fun(double x)
{
       double funx;
       funx=(3*x)-cos(x)-1;
       return funx;
}
void content(double a,double b)
{
       double c;
       int no=0;
       printf("Enter Value of a:");
       scanf("%lf",&a);
       printf("\nEnter Value of b:");
       scanf("%lf",&b);
               c=((a*(fun(b)))-(b*(fun(a))))/((fun(b))-(fun(a)));
```

```
printf("\nNO\tA\t\tf(A)\t\tB\t\tf(B)\t\tC\t\tf(C)\n");
        printf("\n-----
---");
        while(fabs(fun(c))>0.0000005)
        {
             fun(c);
    a = b;
             b = c;
             c=((a*(fun(b)))-(b*(fun(a))))/((fun(b))-(fun(a)));
        }
        }
void main()
{
    double a=0,b=0;
    content(a,b);
    getch();
}
OUTPUT:
```

Enter Value of a:0

Enter Value of b:1

NO	Α	f(A) B	f(B)	C f(C)	
1	0.000000	-2.000000	1.000000	1.459698	0.578085	-0.103255
2	1.000000	1.459698	0.578085	-0.103255	0.605959	-0.004081
3	0.578085	-0.103255	0.605959	-0.004081	0.607106	0.000014
4	0.605959	-0.004081	0.607106	0.000014	0.607102	-0.000000

```
NAME : Pradip S Karmakar
ROLL NO: 10
CLASS : MCA-II
SUBJECT: Computer Oriented Numerical Methods (CONM)
5. Apply Newton Raphson method to solve the algebraic equation
#include<stdio.h>
#include<conio.h>
#include<math.h>
double fun(double x)
{
       double funx;
       funx = (x*x)-5;
       return funx;
}
double derfun(double x)
{
       double funx;
       funx = 2*x;
       return funx;
}
void cntnt(double a)
{
       double c;
```

int no=0;

```
printf("Enter Value:");
       scanf("%lf",&a);
       c = a-((fun(a))/(derfun(a)));
        printf("\nNO\tXn\t(Xn)\t(Xn)\t(Xn)\t(Xn+1\n");
       while(fabs(fun(a))>0.0000005)
       {
               printf("\n%d\t%lf\t%lf\t%lf\n",++no,a,fun(a),derfun(a),c);
               a = c;
               c = a-((fun(a))/(derfun(a)));
       }
       printf("\n%d\t%lf\t%lf\t%lf\n",++no,a,fun(a),derfun(a),c);
}
void main()
{
       double a=0;
       cntnt(a);
       getch();
}
OUTPUT:
```

Enter Value:1

NO	Xn	f(Xn) f'(X	(n) Xn+1	
1	1.000000	-4.000000	2.000000	3.000000
2	3.000000	4.000000	6.000000	2.333333
3	2.333333	0.444444	4.666667	2.238095
4	2.238095	0.009070	4.476190	2.236069
5	2.236069	0.000004	4.472138	2.236068
6	2.236068	0.000000	4.472136	2.236068

```
NAME: Pradip S Karmakar
ROLL NO: 10
CLASS: MCA-II
SUBJECT: Computer Oriented Numerical Methods (CONM)
#include<stdio.h>
#include<conio.h>
#include<math.h>
#define epsilone 0.0000005
double fun(double input)
{
       double funx;
       funx = (1+cos(input))/3;
       return funx;
}
void content(double input)
{
       double x;
       int num=1;
       printf("Enter value of X:");
       scanf("%lf",&x);
       printf("\nNO\tX\t(X)\n");
       printf("\n----");
```

```
while( fabs(x-(fun(x))) > epsilone)
       {
               if(num > 40)
               {
                       break;
               }
               else
               {
                       printf("\n%d\t%lf\t%lf\n",num,x,fun(x));
                       num++;
                       x = fun(x);
               }
       }
}
void main()
{
       double input=0;
       content(input);
       getch();
}?
```