# Hermitian Forms and Zeros of a Polynomial

#### Pranshu Gaba \*

Indian Institute of Science, Bangalore pranshu@ug.iisc.in

September 5, 2017

#### **Abstract**

We looked at the general properties of Hermitian (self-adjoint) matrices, and used the Schur-Cohn theorem to find the number of roots of a polynomial lying within and without the unit circle.

#### I. Introduction

In this paper we see the properties of Hermitian matrices, which are very interesting, as well as useful. We also see and prove the Schur-Cohn theorem to find the number of roots of a polynomial lying within the unit circle.

There are many ways to locate the roots of a polynomial. Using the Schur-Cohn theorem gives a nice estimate on how many roots lie inside the unit circle.

#### II. HERMITIAN MATRICES

The adjoint of a matrix is its conjugate transpose. The ijth entry of  $A^*$  is  $\overline{a_{ji}}$ 

Hermitian matrices (also known as self-adjoint matrices) are matrices that satisfy  $A^* = A$ . All the eigenvalues of a Hermitian matrix are real.

**Definition.** Any matrix  $B \in \mathbb{M}_n$  that satisfies  $\langle Bx, x \rangle \geq 0$  for all  $x \in \mathbb{C}^n$  is called a positive semidefinite matrix.

**Corollary.** All the eigenvalues of positive semidefinite matrix are non-negative.

**Corollary.** Every positive semidefinite matrix is Hermitian.

Hermitian matrices can be diagonalized. For every Hermitian matrix A, there exists a diagonal matrix  $\Lambda$  such that  $A = U^*\Lambda U$ . Here U is some unitary matrix.

#### III. SCHUR-COHN THEOREM

Given a polynomial  $p(z) = a_0 z^n + a_1 z^{n-1} + \cdots + a_n$ . Suppose p has roots  $\alpha_i$ . Then  $p(z) = (z - \alpha_1)(z - \alpha_2) \cdots (z - \alpha_n)$ .

Without loss of generality, let  $a_0 = 1$  as it does not change the roots of the polynomial.

Let 
$$S$$
 be the  $n \times n$  square matrix  $\begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & & & \vdots \\ 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \dots & 0 \end{bmatrix}$ . Note that it is nilpotent

of order n, i.e.  $S^n$  is a zero matrix. Then p(S)

is 
$$\begin{bmatrix} a_n & a_{n-1} & \ddots & \ddots & a_1 \\ 0 & a_n & a_{n-1} & \ddots & \ddots \\ 0 & 0 & a_n & \ddots & \ddots \\ 0 & 0 & 0 & \ddots & a_{n-1} \\ 0 & 0 & 0 & 0 & a_n \end{bmatrix}$$

This can be factorized as  $p(S) = (S - \alpha_1 I)(S - \alpha_2 I) \cdots (S - \alpha_n I)$ .

Then define q as the polynomial with roots  $\frac{1}{\overline{\alpha_i}}$ . We get  $q(z) = (1 - \overline{\alpha_1}z)(1 - \overline{\alpha_2}z) \cdots (1 - \overline{\alpha_n}z)$ 

Let *H* be equal to  $||q(S)x||^2 - ||p(S)x||^2$ 

**Theorem.** The polynomial p, it will have k roots inside the circle, and n - k roots outside the circle iff k eigenvalues of H are positive and n - k are negative.

<sup>\*:)</sup> 

## IV. Proof

$$q(S)^*q(S) - p(S)^*p(S) = (C_1C_2C_3...C_n)^*(C_1C_2C_3...C_n) - (B_1B_2B_3...B_n)^*(B_1B_2B_3...B_n)$$

## V. Extensions

### VI. Conclusion