

Dynamic Motion Primitives

Research and Development Project

November 11, 2018

Abhishek Padalkar

Introduction

- Need for motion planning and motion policies
- Learning a motion from demonstration (*LfD*)
- Dynamic Motion Primitives

Formulation of DMP

$$\tau \dot{z} = \alpha_z (\beta_z (g - y) - z) + f(x) \tag{1}$$

$$\tau \dot{y} = z \tag{2}$$

$$f(x) = \frac{\sum_{i=1}^{N} \psi_i(x) w_i}{\sum_{i=1}^{N} \psi_i(x)} x(g - y_0)$$
 (3)

where,

$$\psi_i = \exp(-\frac{1}{2\sigma_i^2}(x - c_i)^2)$$
 (4)

and,

$$\tau \dot{x} = -\alpha_x x \tag{5}$$

Working of DMP

University of Applied Sciences

Figure 1: Forcing term - X

Analysis of the effects of the parameters used in DMP

Inverse Kinematic Solver

Whole Body Motion Control

Results

Conclusion

