

# Tidy Forecasting in R





Rob J Hyndman useR2018

# forecast package

| Pre 2003         | Private functions used for consulting projects |   |
|------------------|------------------------------------------------|---|
| July/August 2003 | ets and thetaf added                           |   |
| August 2006      | v1.0 available on CRAN                         |   |
| May 2007         | auto.arima added                               |   |
| May 2010         | arfima added                                   |   |
| Feb/March 2011   | tslm, stlf, naive, snaive added                |   |
| August 2011      | v3.0. Box Cox transformations added            |   |
| December 2011    | tbats added                                    |   |
| April 2012       | Package moved to github                        |   |
| November 2012    | v4.0. nnetar added                             |   |
| June 2013        | Major speed-up of ets                          |   |
| February 2016    | v7.0. Added ggplot2 graphics                   |   |
| February 2017    | v8.0. Added checkresiduals, tsCV and %>%       |   |
| April 2018       | v8.3. Added mstl                               |   |
| June 2018        | pprox 100,000 package downloads per month      | 2 |
|                  |                                                |   |

# fable package



#### A replacement for the forecast package.

#### Why change?

- Integrating with tidyverse packages
- Designed for forecasting many related time series
- Consistency of interface using formulas
- Distribution forecasting rather than point + interval
- Flexible transformations
- Sub-daily data and multiple seasonal data handled more easily
- Simpler interface for forecast reconciliation

# Formula model specification

All modelling functions use a formula similar to lm() with automated modelling if RHS not specified.

```
t(y) ~ {model specification}
```

#### **LHS: Response**

- Defines the response variable from the data
- Specification of transformations (which are automatically back-transformed)

#### **RHS: Specials**

- Model specific special functions
- Exogenous regressors (if supported by model)

```
library(tsibble)
(cafe <- as_tsibble(fpp2::auscafe))

## # A tsibble: 426 x 2 [1MONTH]
## index value</pre>
```

```
library(fable)
cafe %>% ARIMA(log(value) ~ pdq(2,1,1) + PDQ(2,1,2))
## # A mable: 1 model [1MONTH]
```

```
## data model
## <list> <model>
## 1 <tsibble [426 x 2]> ARIMA(2,1,1)(2,1,2)[12]
```

```
cafe %>% ARIMA(log(value) ~ pdq(2,1,1) + PDQ(2,1,2)) %>%
  summary()
```

```
## Series: log(value)
  ARIMA(2,1,1)(2,1,2)[12]
##
  Coefficients:
##
    arl ar2 mal sar1 sar2 sma1 sma2
##
  -0.925 -0.318 0.588 0.724 -0.213 -1.44 0.557
## s.e. 0.182 0.060 0.189 0.174 0.074 0.17 0.149
##
  sigma^2 estimated as 0.000554: log likelihood=959
  ATC=-1903 ATCc=-1903 BTC=-1871
##
  Training set error measures:
##
                   ME
                        RMSE MAE
                                     MPE MAPE MASE
  Training set -0.00106 0.0371 0.0267 -0.0506 1.78 0.256
##
                 ACF1
 Training set -0.0184
```

```
cafe %>% ARIMA(log(value) ~ pdq(2,1,1) + PDQ(2,1,2)) %>%
    forecast()
```

```
cafe %>% ARIMA(log(value) ~ pdq(2,1,1) + PDQ(2,1,2)) %>%
forecast() %>% summary()
```

```
## # A tsibble: 24 x 4 [1MONTH]
##
        index mean 80%
                                      95%
##
        <mth> <dbl> <hilo> <hilo>
  1 2017 Oct 3.81 [3.70, 3.93]80 [3.64, 3.99]95
##
  2 2017 Nov 3.79 [3.65, 3.93]80 [3.58, 4.00]95
##
  3 2017 Dec 4.17 [3.99, 4.34]80 [3.91, 4.43]95
##
##
   4 2018 Jan 3.73 [3.55, 3.90]80 [3.46, 4.00]95
   5 2018 Feb 3.40 [3.22, 3.57]80 [3.14, 3.67]95
##
   6 2018 Mar 3.77 [3.56, 3.99]80 [3.46, 4.10]95
##
   7 2018 Apr 3.70 [3.48, 3.93]80 [3.37, 4.05]95
##
   8 2018 May 3.76 [3.52, 4.00]80 [3.40, 4.13]95
##
##
  9 2018 Jun 3.66 [3.41, 3.90]80 [3.29, 4.04]95
  10 2018 Jul 3.88 [3.61, 4.15]80 [3.48, 4.31]95
## # ... with 14 more rows
```

```
cafe %>% ARIMA(log(value) ~ pdq(2,1,1) + PDQ(2,1,2)) %>%
forecast() %>% summary(level=90)
```

```
## # A tsibble: 24 x 3 [1MONTH]
##
        index mean
                    90%
        <mth> <dbl> <hilo>
##
  1 2017 Oct 3.81 [3.66, 3.96]90
##
  2 2017 Nov 3.79 [3.62, 3.97]90
##
   3 2017 Dec 4.17 [3.95, 4.39]90
##
##
   4 2018 Jan 3.73 [3.50, 3.96]90
   5 2018 Feb 3.40 [3.18, 3.62]90
##
   6 2018 Mar 3.77 [3.51, 4.05]90
##
   7 2018 Apr 3.70 [3.42, 3.99]90
##
   8 2018 May 3.76 [3.46, 4.07]90
##
##
  9 2018 Jun 3.66 [3.35, 3.98]90
  10 2018 Jul 3.88 [3.54, 4.24]90
## # ... with 14 more rows
```

```
cafe %>% ARIMA(log(value) ~ pdq(2,1,1) + PDQ(2,1,2)) %>%
forecast() %>% autoplot()
```



## **Example: Half-hourly electricity demand**

#### elecdemand

```
# A tsibble: 17,520 x 4 [30MINUTE]
##
    index
                      Demand Temperature WorkDay
                       <fdb>
                                 <db1>
                                        <fdb>>
##
  <dttm>
##
   1 2014-01-01 00:00:00 3.91
                                 18.2
                                           0
##
   2 2014-01-01 00:30:00 3.67
                               17.9
                                           0
##
   3 2014-01-01 01:00:00 3.50
                               17.6
##
   4 2014-01-01 01:30:00 3.34 16.8
##
   5 2014-01-01 02:00:00 3.20
                           16.3
##
   6 2014-01-01 02:30:00 3.10 16.6
   7 2014-01-01 03:00:00 3.04
##
                            16.6
                                           0
##
  8 2014-01-01 03:30:00 3.01 16.7
                                           0
   9 2014-01-01 04:00:00 3.02
                                16.2
##
##
  10 2014-01-01 04:30:00 3.03
                                 16.6
  # ... with 17,510 more rows
```

# **Example: Half-hourly electricity demand**

```
fit2 <- ARIMA(elecdemand,
  Demand ~ Temperature + I(Temperature^2) + WorkDay)
summary(fit2)</pre>
```

```
## Series: Demand
## Regression with ARIMA(1,1,0)(2,0,2)[2] errors
##
## Coefficients:
##
    ar1 sar1 sar2 sma1 sma2 Temperature
## 0.853 -0.181 0.523 -0.066 -0.792 -0.009
## s.e. 0.005 0.015 0.012 0.012 0.011 0.002
##
       I(Temperature^2) WorkDay
                     0 0.016
##
                       0.006
## s.e.
##
## sigma^2 estimated as 0.00846: log likelihood=16949
  AIC=-33881 AICc=-33881 BIC=-33811
##
##
  Training set error measures:
##
                    ME RMSE MAE MPE MAPE MASE ACF1
## Training set 6.5le-06 0.092 0.0634 0.00633 1.39 0.292 0.103
forecast(fit2, newdata=elecdemandfuture) %>% autoplot()
```

# **Example: Australian prison population**

#### prison

```
A tsibble: 1,536 x 5 [1QUARTER]
##
  # Key: state, gender, legal [32]
  state gender legal count qtr
##
##
  <fct> <fct> <fct> <fct> <fct> <dbl> <qtr>
  1 ACT Female Remanded
##
                            2 2005 01
   2 ACT Female Remanded
##
                            4 2005 02
   3 ACT Female Remanded
##
                            1 2005 03
   4 ACT Female Remanded
                            4 2005 04
##
   5 ACT Female Remanded
##
                            4 2006 01
   6 ACT Female Remanded
                            6 2006 02
##
   7 ACT Female Remanded
                            9 2006 03
##
   8 ACT Female Remanded
                             6 2006 04
##
   9 ACT Female Remanded
                             4 2007 01
##
  10 ACT Female Remanded
                             4 2007 02
  # ... with 1,526 more rows
```

#### **Example: Australian prison population**

prison %>% ETS(count)

```
# A mable: 32 models [1QUARTER]
  # Key: state, gender, legal [32]
##
##
  state gender legal data
                                            model
  ##
                                            <model>
   1 ACT Female Remanded <tsibble [48 x 2]> ETS(M,A,N)
##
   2 ACT Female Sentenced <tsibble [48 x 2]> ETS(A,A,N)
##
   3 ACT Male Remanded <tsibble [48 x 2]> ETS(M,N,N)
##
##
   4 ACT
          Male Sentenced <tsibble [48 x 2]> ETS(A.N.N)
   5 NSW Female Remanded <tsibble [48 x 2] > ETS(M.N.M)
##
   6 NSW
##
         Female Sentenced <tsibble [48 x 2]> ETS(M,N,M)
   7 NSW
          Male Remanded <tsibble [48 x 2]> ETS(M,A,A)
##
   8 NSW
          Male Sentenced <tsibble [48 x 2] > ETS(M,A,A)
##
##
   9 NT Female Remanded <tsibble [48 x 2]> ETS(M,N,N)
##
  10 NT Female Sentenced <tsibble [48 x 2] > ETS(M.A.A)
##
  # ... with 22 more rows
```

## **Example: Australian prison population**

```
prison %>% ETS(count) %>% forecast()
```

```
# A fable: 32 forecasts [1QUARTER]
  # Key: state, gender, legal [32]
##
##
  state gender legal data
                                            model forecast
##
  <model> <fc>
   1 ACT Female Remanded <tsibble [48 x 2]> ETS(M,A,N) ~N [h=8]
##
   2 ACT Female Sentenced <tsibble [48 x 2]> ETS(A,A,N) ~N [h=8]
##
##
   3 ACT Male Remanded <tsibble [48 x 2]> ETS(M.N.N) ~N [h=8]
##
   4 ACT
          Male Sentenced <tsibble [48 x 2] > ETS(A.N.N) ~N [h=8]
   5 NSW Female Remanded <tsibble [48 x 2]> ETS(M,N,M) ~N [h=8]
##
          Female Sentenced
##
   6 NSW
                          <tsibble [48 x 2]> ETS(M,N,M)
                                                      ~N [h=8]
   7 NSW
          Male Remanded
                          <tsibble [48 x 2]> ETS(M,A,A) ~N [h=8]
##
   8 NSW
                          <tsibble [48 x 2]> ETS(M,A,A)
                                                      ~N [h=8]
##
          Male Sentenced
##
   9 NT Female Remanded
                          <tsibble [48 x 2]> ETS(M,N,N) ~N [h=8]
  10 NT Female Sentenced <tsibble [48 x 2] > ETS(M,A,A) ~N [h=8]
##
  # ... with 22 more rows
##
```

Aggregation and reconciliation not yet implemented.

#### forecast → fable

- All forecast models will have an equivalent fable MODEL.
- All fable models produce mable class objects.
- forecast() works on all mable object to produce fable class objects.

# **Extending fable**

#### fable simplifies the model development process

#### Tools to easily create new fable models

- Easily create specials for model formulae
- Focus on model estimation and forecasts

#### Automatically supported fable functionality

- Transformations and back-transformations (with bias adjustments)
- Plotting tools
- Accuracy measures and evaluation
- Model combinations (hierarchies & ensembles)

#### More information





devtools::install\_github("tidyverts/tsibble")
devtools::install\_github("tidyverts/fable")



Di Cook



Earo Wang



Mitchell O'Hara-Wild

#### Follow our progress

- tidyverts.org
- robjhyndman.com/hyndsight