

Universidade Estadual de Campinas Mestrado Profissional em Matemática Aplicada PM009-Tópicos em Matemática I Introdução ao Cálculo Fracionário e Aplicações

Cálculo Fracionário aplicado no Sistema de Lotka-Volterra: Uma análise didática e computacional

Aluno(s): Diogo Takamori Barbosa - RA 037382 e Framilson José Ferreira Carneiro - RA 230113

9 de dezembro de 2023

Introdução

O trabalho analisado busca construir uma extensão do sistema de Lotka-Volterra a fim de incorporar derivadas de ordem não inteira. O modelo clássico que descreve as interações entre presa e predador, conhecido como "sistema de Lotka-Volterra", é abordado com duas derivadas de ordem inteira. Por meio de uma técnica de linearização, intenta-se obter uma solução em termos dos parâmetros constantes. Além disso, apresenta-se uma solução para o sistema assim denominado "Lotka-Volterra fracionário", que consiste em duas equações diferenciais não lineares com derivadas de ordem menor que a unidade. Tal solução é expressa em termos da função de Mittag-Leffler, por intermédio da aplicação do conceito de diferenças finitas, paralelamente à técnica de linearização utilizada.

Modelagem Sistema Clássico Lotka-Volterra em Python

O modelo Lotka-Volterra é um exemplo clássico de um sistema dinâmico que pode ser aplicado em uma ampla gama de contextos, não apenas na ecologia, mas também em campos como economia, epidemiologia e engenharia. Essa versatilidade torna o entendimento do modelo e sua implementação prática em linguagens de programação, como Python, uma habilidade valiosa.

Modelo Matemático Lotka-Volterra para Dinâmica de Populações de Presas e Predadores

$$\frac{dx}{dt} = \alpha x - \beta xy$$
$$\frac{dy}{dt} = \delta xy - \gamma y$$

onde:

- x é a população de coelhos;
- y é a população de raposas;
- α é a taxa de crescimento dos coelhos na ausência de predadores;
- β é a taxa de predação dos coelhos pelas raposas;
- γ é a taxa de morte das raposas na ausência de presas;
- δ é a taxa de crescimento das raposas devido à predação dos coelhos.

Modelo Matemático Lotka-Volterra para Dinâmica de Populações de Presas e Predadores

A simulação numérica do modelo usando o método de Euler é feita pelas seguintes equações de atualização:

$$x_{i+1} = x_i + \Delta t \cdot (\alpha x_i - \beta x_i y_i)$$

$$y_{i+1} = y_i + \Delta t \cdot (\delta x_i y_i - \gamma y_i)$$

onde: i é o índice da iteração; Δt é o intervalo de tempo;

 x_i , y_i são as populações de coelhos e raposas no passo i, respectivamente.

Simulação Computacional em Python:

```
Lotka-VolterraPython > 🍨 1-ModeloPresaPredadorLVGraficoBidimensional.py > ...
       import numpy as np
       import matplotlib.pvplot as plt
       # Parâmetros do modelo Lotka-Volterra
       alpha = 0.1 # Taxa de crescimento dos coelhos na ausência de predadores
       beta = 0.02  # Taxa de predação dos coelhos pelas raposas
       gamma = 0.1 # Taxa de morte das raposas na ausência de presas
       delta = 0.01 # Taxa de crescimento das raposas devido à predação dos coelhos
       x0 = 40 # População inicial de coelhos
       v0 = 9 # População inicial de raposas
       T = 200
       dt = 0.1
       num steps = int(T / dt)
```

Simulação Computacional em Python:

```
x values = np.zeros(num steps)
y values = np.zeros(num steps)
time values = np.zeros(num steps)
# Inicialização das populações iniciais
x = x0
v = v\theta
# Simulação do modelo Lotka-Volterra usando o método de Euler
for i in range(num steps):
    x \text{ values}[i] = x
    v values[i] = v
    time values[i] = i * dt
    # Equações de Lotka-Volterra usando o método de Euler
    dx = dt * (alpha * x - beta * x * v)
    dv = dt * (delta * x * v - gamma * v)
    # Atualização das populações
    x += dx
    v += dv
```

Plotagem do Gráfico para a modelagem - Bidimensional

Plotagem do Gráfico para a modelagem - População x Tempo

Equações Diferenciais Fracionárias (EDFs) são uma generalização das Equações Diferenciais Ordinárias (EDOs), onde a ordem da derivada ou integral é um número não inteiro. Em outras palavras, elas envolvem derivadas ou integrais de ordens fracionárias. A EDF mais comum é a Equação Diferencial Fracionária (EDF) de Caputo, que é uma generalização da derivada comum para ordens não inteiras.

A forma geral de uma EDF de Caputo de ordem q para uma função y(t) é dada por:

$$D_t^q y(t) = f(t, y(t), D_t^{\lceil q \rceil - 1} y(t), D_t^{\lceil q \rceil - 2} y(t), \dots, y'(t), y(t))$$

onde D_t^q representa a derivada de ordem fracionária de Caputo, f é uma função que descreve a dinâmica do sistema, e $\lceil q \rceil$ denota o arredondamento para cima de q para o inteiro mais próximo.

O modelo Lotka-Volterra com derivadas fracionárias é representado por:

$$\frac{dR}{dt} = \alpha R - \beta RF + \delta \mathcal{D}_{q}[R]$$

$$\frac{dF}{dt} = -\gamma F + \delta RF + \delta \mathcal{D}_{q}[F]$$

onde \mathcal{D}_q representa a derivada fracionária e q é a ordem da derivada fracionária.

A derivada fracionária \mathcal{D}_q é aproximada usando o método de diferenças finitas fracionárias, como será demonstrado no código pela função 'fractional_d ifference':

$$\mathscr{D}_q[Y] = (1-q) \cdot Y_i + q \cdot Y_{i-1}$$

onde Y pode ser R ou F.

Para realizar os cálculos dentro do loop de atualização populacional:

Cálculo de $\frac{dR}{dt}$:

$$\frac{dR}{dt} = \alpha R - \beta RF + \delta \mathcal{D}_q[R]$$

Substituindo a expressão para $\mathcal{D}_q[R]$:

$$\frac{dR}{dt} = \alpha R - \beta RF + \delta \left((1 - q) \cdot R_i + q \cdot R_{i-1} \right)$$

Cálculo de $\frac{dF}{dt}$:

$$\frac{dF}{dt} = -\gamma F + \delta RF + \delta \mathcal{D}_q[F]$$

Substituindo a expressão para $\mathcal{D}_q[F]$:

$$\frac{dF}{dt} = -\gamma F + \delta RF + \delta \left((1 - q) \cdot F_i + q \cdot F_{i-1} \right)$$

Modelo em Python Para Simulação da Dinâmica Populacional

```
Lotka-VolterraPython > • 4-ModeloLVPresaPredFracDiff.py > ...
      import numpy as np
      import matplotlib.pvplot as plt
      def fractional difference(v, alpha, dt):
           Calcula a diferença fracionária usando o método de diferenças finitas fracionárias.
           Parâmetros:
           - v: Lista ou array contendo os valores da série temporal.
           - alpha: Ordem fracionária para a derivada.
           - dt: Incremento de tempo.
           - Valor fracionário calculado.
           if len(v) >= 2:
               return (1 - alpha) * y[-1] + alpha * y[-2]
               # Se houver menos de dois elementos, retorna o último elemento.
```

Modelo em Python Para Simulação da Dinâmica Populacional

```
# Parâmetros do modelo Lotka-Volterra
alpha = 0.1 # Taxa de crescimento das presas na ausência de predadores
beta = 0.02  # Taxa de predação (interação entre presas e predadores)
gamma = 0.1 # Taxa de diminuição dos predadores na ausência de presas
delta = 0.01 # Taxa de crescimento dos predadores em função das presas
a = 0.5
R0 = 40 # População inicial de coelhos (presas)
# Configuração do tempo
t max = 200 # Tempo máximo de simulação
time points = np.arange(0, t max, dt) # Lista de pontos temporais
# Inicialização das populações
R = np.zeros(len(time_points)) # Lista para armazenar a população de coelhos
F = np.zeros(len(time points)) # Lista para armazenar a população de raposas
F[0] = F0 # População inicial de raposas
```

Modelo em Python Para Simulação da Dinâmica Populacional

```
# Método de diferenças finitas fracionárias para resolver EDFs
for i in range(1, len(time points)):
   # Equações Lotka-Volterra discretizadas com derivadas fracionárias
    dRdt = alpha * R[i-1] - beta * R[i-1] * F[i-1] + delta *
    fractional difference(R[:i], a, dt)
    dFdt = -gamma * F[i-1] + delta * R[i-1] * F[i-1] + delta *
    fractional difference(F[:i], q, dt)
   # Atualização das populações usando o método de diferenças finitas
   R[i] = R[i-1] + dt * dRdt
   F[i] = F[i-1] + dt * dFdt
# Plotagem dos resultados
plt.figure(figsize=(10, 6))
plt.plot(time points, R, label='Coelhos (presas)')
plt.plot(time points, F, label='Raposas (predadores)')
plt.xlabel('Tempo')
plt.vlabel('População')
plt.title('Modelo de Lotka-Volterra com Derivadas Fracionárias (Diferencas
```

Calculos Matemáticos

Neste código, as equações do modelo Lotka-Volterra são discretizadas usando o método de diferenças finitas para aproximar as derivadas. O resultado é uma simulação temporal das populações de coelhos e raposas ao longo do tempo. O gráfico final mostra como as populações evoluem de acordo com o modelo. O código fornecido implementa o modelo Lotka-Volterra com a adição de cálculos fracionários, representados pela ordem fracionária q . As equações diferenciais discretizadas usando o método de diferenças finitas são:

$$R_{i+1} = R_i + \Delta t \cdot (\alpha R_i - \beta R_i F_i)$$

$$F_{i+1} = F_i + \Delta t \cdot (-\gamma F_i + \delta R_i F_i)$$

onde i é o índice da iteração, Δt é o intervalo de tempo, e R_i , F_i são as populações de coelhos e raposas no passo i, respectivamente.

Plotagem dos Resultados

Plotagem dos Resultados

Plotagem dos Resultados

Figura: Enter Caption

Conclusão

A introdução da função fractional_difference(código Python), ou Calculo Fracionário, no cálculo das derivadas fracionárias representa uma abordagem alternativa para incorporar efeitos fracionários no modelo Lotka-Volterra em comparação com o cálculo por Equações Diferenciais Ordinárias (EDOs) padrão. A diferença fundamental está na forma como as derivadas fracionárias são tratadas. O método de diferenças finitas fracionárias é uma técnica numérica que discretiza a derivada fracionária usando diferenças finitas, levando em consideração a ordem fracionária q. Isso pode ser especialmente útil, quando se lida com sistemas complexos ou comportamentos não lineares que podem ser capturados de maneira mais precisa por derivadas fracionárias.

Muito obrigado!