

Impedance Measurement Plot for Head TSL

Certificate No: D2600V2-1012_Jul16 Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 22.07.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz D2600V2; Type: D2600V2; Serial: D2600V2 - SN:1012

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz; $\sigma = 2.2 \text{ S/m}$; $\varepsilon_r = 51.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(7.48, 7.48, 7.48); Calibrated: 15.06.2016;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 30.12.2015

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 108.8 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 28.9 W/kg

SAR(1 g) = 14 W/kg; SAR(10 g) = 6.25 W/kgMaximum value of SAR (measured) = 23.5 W/kg

Certificate No: D2600V2-1012_Jul16

Impedance Measurement Plot for Body TSL

Certificate No: D2600V2-1012_Jul16

Page 8 of 8

ANNEX I SPOT CHECK TEST

As the test lab for VFD502 from TCL Communication Ltd, we, CTTL (Shouxiang), declare on our sole responsibility that, according to "Declaration of changes" provided by applicant, only the Spot check test should be performed. The test results are as below.

I.1 Conducted power of selected case

Table I.1-1: The conducted Power for GSM/GPRS

GSM850							
Measured Power (dBm)							
O a raffini	Tune-up	CH25 1	CH190	CH128			
Config		848.8 MHz	836.6 MHz	824.2 MHz			
GSM Speech	33.30	31.52	31.59	31.62			
GPRS 1 Txslot	32.80	31.52	31.60	31.64			

PCS1900							
Measured Power (dBm)							
Config	Tune-up	CH810	CH661	CH512			
Coming		1909.8 MHz	1880 MHz	1850.2 MHz			
GSM Speech	30.30	28.82	29.19	29.33			
GPRS 4 Txslots	26.00 24.04 24.40 24.52						

Table I.1-2: The conducted Power for WCDMA

WCDMA1900							
		Measured Power (dBm)					
ltem		Tune-up	CH9538 1907.6 MHz	CH9400 1880 MHz	CH9262 1852.4 MHz		
WCDMA	RMC	24.00	22.60	22.45	22.25		

WCDMA850							
Measured Power (dBm)							
ltom	Tungun	CH4233	CH4715	CH4132			
ltem		Tune-up	846.6 MHz	835.4 MHz	826.4 MHz		
WCDMA	RMC	24.00	23.24	23.19	23.17		

Table I.1-3: The conducted Power for LTE

LTE band7							
BandWidth	RB Number/Start	Channel/Frequency	Tune-up	Measured Power			
	1H	21350	1	/			
		21100	22.9	21.95			
20MHz		20850	1	/			
ZUIVITZ	1L	21350	22.9	21.45			
		21100	1	/			
		20850	1	/			

I.2 Measurement results

Test Band	Channel	Frequncy	Tune-Up	Measured Power	Test Poisition	Measru 10g SA		sued SAR	Report 10g SAR	Report 1g SAR	I POWER DRIff	Figure
GSM850	251	848.8	33. 3	31. 52	Right Cheek	0. 203	3 0.	268	0.31	0.40	0.02	Fig. I. 1
GSM850	190	836.6	32.8	31.60	Rear	0. 231	0.	298	0.30	0.39	0	Fig. I. 2
GSM1900	512	1850. 2	30. 3	29. 33	Left Cheek	0.081	0.	128	0.10	0. 16	0. 01	Fig. I. 3
GSM1900	512	1850. 2	26	24. 52	Bottom	0. 465	5 0.	865	0.65	1. 22	-0. 01	Fig. I. 4
WCDMA850	4233	846. 6	24	23. 17	Right Cheek	0. 167	7 0.	219	0.20	0. 27	-0. 08	Fig. I. 5
WCDMA850	4132	826. 4	24	23. 24	Rear	0. 277	7 0.	357	0.33	0.43	-0.04	Fig. I. 6
WCDMA1900	9938	1907. 6	24	22.60	Left Cheek	0.073	3 0.	118	0.10	0. 16	0.02	Fig. I. 7
WCDMA1900	9938	1907. 6	24	22.60	Bottom	0.37	0.	68	0.51	0. 94	0.09	Fig. I. 8
LTE band7	21350	2560	22. 9	21.45	Right Cheek	0. 142	2 0.	275	0. 20	0.38	0.03	Fig. I. 9
LTE band7	21100	2535	22. 9	21. 95	Bottom	0. 371	0.	775	0. 46	0. 96	0.08	Fig. I. 10
GSM1900	512	1850. 2	26	24. 5	2 Botton	n H2	0. 361	0. 7	27	0. 36	0. 73	-0. 08
GSM1900	512	1850. 2		24. 5			0. 341	0.6		0. 34	0. 67	0. 11
LTE band7	21100	2535	22. 9	9 21.9	5 Botton	n H2	0. 353	0.	742	0.44	0. 92	0.08
LTE band7	21100	2535	22.9	9 21.9	5 Botton	n H3	0.342	0.	745	0. 43	0. 93	0. 11

Note: H2: CCB0005A13C1 H3: CCB0005A16C6

I.3 Reported SAR Comparison

Exposure Configuration	Technology Band	Reported SAR 1g (W/Kg): spot check	Reported SAR 1g (W/Kg): original	
	GSM850	0.40	0.28	
	GSM1900	0.16	0.16	
Head	WCDMA 850	0.27	0.15	
	WCDMA 1900	0.16	0.16	
	LTE Band7	0.38	0.62	
	GSM850	0.39	0.37	
	GSM1900	1.22	1.3	
Body	WCDMA 850	0.43	0.27	
	WCDMA 1900	0.94	0.98	
	LTE Band7	0.96	1.43	

Note: The spot check results of Head for GSM850, WCDMA850, and body of GSM850, WCDMA850 are larger than the original result. So they replace the original results and others are shared.

GSM850_CH251 Right Cheek

Date: 1/1/2017

Electronics: DAE4 Sn1331 Medium: Head 835 MHz

Medium parameters used: f = 848.8; $\sigma = 0.886$ mho/m; $\epsilon r = 41.16$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.4°C, Liquid Temperature: 22.2°C Communication System: GSM850 848.8 Duty Cycle: 1:8.3 Probe: EX3DV4 – SN7307 ConvF(10.01,10.01,10.01)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.297 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.245 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.348 W/kg

SAR(1 g) = 0.268 W/kg; SAR(10 g) = 0.203 W/kgMaximum value of SAR (measured) = 0.294 W/kg

Figure I.1

GSM850_CH190 Rear

Date: 1/1/2017

Electronics: DAE4 Sn1331 Medium: Head 835 MHz

Medium parameters used: f = 836.6; $\sigma = 0.972$ mho/m; $\epsilon r = 54.33$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.4°C, Liquid Temperature: 22.2°C Communication System: GSM850 836.6 Duty Cycle: 1:8.3

Probe: EX3DV4 – SN7307 ConvF(9.83,9.83,9.83)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.323 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 18 V/m; Power Drift = 0 dB

Peak SAR (extrapolated) = 0.358 W/kg

SAR(1 g) = 0.298 W/kg; SAR(10 g) = 0.231 W/kg

Maximum value of SAR (measured) = 0.324 W/kg

Figure I.2

GSM1900_CH512 Left Cheek

Date: 1/2/2017

Electronics: DAE4 Sn1331 Medium: Head 1900 MHz

Medium parameters used: f = 1850.2; $\sigma = 1.416$ mho/m; $\epsilon r = 40.731$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.4°C, Liquid Temperature: 22.2°C Communication System: GSM1900 1850.2 Duty Cycle: 1:8.3

Probe: EX3DV4 – SN7307 ConvF(8.1,8.1,8.1)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.142 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.575 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.191 W/kg

SAR(1 g) = 0.128 W/kg; SAR(10 g) = 0.081 W/kg

Maximum value of SAR (measured) = 0.149 W/kg

Figure I.3

GSM1900_CH512 Bottom

Date: 1/2/2017

Electronics: DAE4 Sn1331 Medium: Head 1900 MHz

Medium parameters used: f = 1850.2; $\sigma = 1.523$ mho/m; $\epsilon r = 52.322$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.4°C, Liquid Temperature: 22.2°C Communication System: GSM1900 1850.2 Duty Cycle: 1:2

Probe: EX3DV4 – SN7307 ConvF(7.67,7.67,7.67)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mmMaximum value of SAR (interpolated) = 1.07 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 21.19 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.43 W/kg

SAR(1 g) = 0.865 W/kg; SAR(10 g) = 0.465 W/kg

Maximum value of SAR (measured) = 1.08 W/kg

Figure I.4

WCDMA850_CH4233 Right Cheek

Date: 1/1/2017

Electronics: DAE4 Sn1331 Medium: Head 835 MHz

Medium parameters used: f = 846.6; $\sigma = 0.888$ mho/m; $\epsilon r = 41.14$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.4°C, Liquid Temperature: 22.2°C Communication System: WCDMA850 846.6 Duty Cycle: 1:1

Probe: EX3DV4 – SN7307 ConvF(10.01,10.01,10.01)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.264 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.816 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 0.281 W/kg

SAR(1 g) = 0.219 W/kg; SAR(10 g) = 0.167 W/kg

Maximum value of SAR (measured) = 0.238 W/kg

Figure I.5

WCDMA850_CH4132 Rear

Date: 1/1/2017

Electronics: DAE4 Sn1331 Medium: Head 835 MHz

Medium parameters used: f = 826.4; $\sigma = 0.979$ mho/m; $\epsilon r = 54.268$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.4°C, Liquid Temperature: 22.2°C Communication System: WCDMA850 826.4 Duty Cycle: 1:1

Probe: EX3DV4 – SN7307 ConvF(9.83,9.83,9.83)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.394 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 20.77 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.436 W/kg

SAR(1 g) = 0.357 W/kg; SAR(10 g) = 0.277 W/kgMaximum value of SAR (measured) = 0.388 W/kg

Figure I.6

WCDMA1900_CH9938 Left Cheek

Date: 1/2/2017

Electronics: DAE4 Sn1331 Medium: Head 1900 MHz

Medium parameters used: f = 1907.6; $\sigma = 1.401$ mho/m; $\epsilon r = 40.749$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.4°C, Liquid Temperature: 22.2°C Communication System: WCDMA1900 1907.6 Duty Cycle: 1:1

Probe: EX3DV4 – SN7307 ConvF(8.1,8.1,8.1)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.136 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.785 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.18 W/kg

SAR(1 g) = 0.118 W/kg; SAR(10 g) = 0.073 W/kg

Maximum value of SAR (measured) = 0.141 W/kg

Figure I.7

WCDMA1900_CH9938 Bottom

Date: 1/2/2017

Electronics: DAE4 Sn1331 Medium: Head 1900 MHz

Medium parameters used: f = 1907.6; $\sigma = 1.504$ mho/m; $\epsilon r = 52.512$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.4°C, Liquid Temperature: 22.2°C Communication System: WCDMA1900 1907.6 Duty Cycle: 1:1

Probe: EX3DV4 – SN7307 ConvF(7.67,7.67,7.67)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.729 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 18.8 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 1.19 W/kg

SAR(1 g) = 0.68 W/kg; SAR(10 g) = 0.37 W/kgMaximum value of SAR (measured) = 0.829 W/kg

Figure I.8

LTE band7_CH21350 Right Cheek

Date: 1/4/2017

Electronics: DAE4 Sn1331 Medium: Head 2600 MHz

Medium parameters used: f = 2560; $\sigma = 1.942$ mho/m; $\epsilon r = 38.59$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.4°C, Liquid Temperature: 22.2°C Communication System: LTEband7 2560 Duty Cycle: 1:1

Probe: EX3DV4 – SN7307 ConvF(7.21,7.21,7.21)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.368 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.773 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.526 W/kg

SAR(1 g) = 0.275 W/kg; SAR(10 g) = 0.142 W/kg

Maximum value of SAR (measured) = 0.347 W/kg

Figure I.9

LTE band7_CH21100 Bottom

Date: 1/4/2017

Electronics: DAE4 Sn1331 Medium: Head 2600 MHz

Medium parameters used: f = 2535; $\sigma = 2.177$ mho/m; $\epsilon r = 53.104$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.4°C, Liquid Temperature: 22.2°C Communication System: LTEband7 2535 Duty Cycle: 1:1

Probe: EX3DV4 – SN7307 ConvF(7.03,7.03,7.03)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.971 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 10.74 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 1.51 W/kg

SAR(1 g) = 0.775 W/kg; SAR(10 g) = 0.371 W/kgMaximum value of SAR (measured) = 0.959 W/kg

Figure I.10

ANNEX J Accreditation Certificate

China National Accreditation Service for Conformity Assessment LABORATORY ACCREDITATION CERTIFICATE (Registration No. CNAS L0570)

Telecommunication Technology Labs,
Academy of Telecommunication Research, MIIT

No.52, Huayuan North Road, Haidian District, Beijing, China

No.51, Xueyuan Road, Haidian District, Beijing, China

TCL International E City, No. 1001 Zhongshanyuan Road, Nanshan

District, Shenzhen, Guangdong Province

is accredited in accordance with ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories(CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence to undertake testing and calibration service as described in the schedule attached to this certificate.

The scope of accreditation is detailed in the attached schedule bearing the same registration number as above. The schedule form an integral part of this certificate.

Date of Issue: 2015-11-13 Date of Expiry: 2017-06-19

Date of Initial Accreditation: 1998-07-03

Signed on behalf of China National Accreditation Service for Conformity Assessment

China National Accreditation Service for Conformity Assessment(CNAS) is authorized by Certification and Accreditation Administration of the People's Republic of China (CNCA) to operate the national accreditation schemes for conformity assessment. CNAS is a signatory of the International Laboratory Accreditation Cooperation Mutual Recognition Arrangement (ILAC MRA) and the Asia Pacific Laboratory Accreditation Cooperation Mutual Recognition Arrangement (APLAC MRA). The validity of the certificate can be checked on CNAS website at http://www.cnas.org.cn/english/findanaccreditedbody/index.shtml