Métodos Computacionais para Equações Diferenciais Aula 6

Prof.^a Dr.^a Analice Costacurta Brandi

Optativa - Tópicos de Matemática Aplicada Universidade Estadual Paulista "Júlio de Mesquita Filho"

Sumário

- 1. Solução Numérica de PVI's
- 2. Método de Runge-Kutta de Ordem 1 e Ordem 2
- 3. Método de Runge-Kutta de Ordem 3
- 4. Método de Runge-Kutta de Ordem 4
- 5. Exemplos Numéricos
- 6. Ordem, Custo e Estabilidade

Solução Numérica de PVI's

Método de Runge-Kutta

- ▶ Pode ser entendido como um aperfeiçoamento do método de Euler, com uma melhor estimativa da derivada da função.
- No método de Euler a estimativa do valor de y_{n+1} é realizado com o valor de y_n e com a derivada no ponto x_n .
- No método de Runge-Kutta busca-se uma melhor estimativa da derivada com a avaliação da função em mais pontos no intervalo $[x_n, x_{n+1}]$.
- ▶ Um método de Runge-Kutta de ordem n apresenta um erro da ordem de $0(h^{n+1})$.
- O método de Runge-Kutta de 4^a ordem é o mais usado na solução numérica de problemas com EDO.

Método de Runge-Kutta de Ordem 1 e Ordem 2

Método de Runge-Kutta de Ordem 1

O método de Runge-Kutta mais simples é 1-estágio, ou seja, R=1. Neste caso, não há parâmetros a determinar e o método é dado por

$$y_{n+1} = y_n + hk_1$$
, com $k_1 = f(x_n, y_n)$,

o que coincide com o **método de Euler**, isto é, o **método de Taylor de ordem 1**.

Método de Runge-Kutta de Ordem 2

O método de Runge-Kutta 2-estágios é dado por

$$y_{n+1} = y_n + h(c_1k_1 + c_2k_2), \text{ com } c_1 + c_2 = 1,$$

 $k_1 = f(x_n, y_n),$
 $k_2 = f(x_n + ha_2, y_n + h(b_{21}k_1)), a_2 = b_{21}.$

Para determinar os parâmetros c_1, c_2 e a_2 vamos comparar a expansão da função $\phi_R(x_n,y_n,h)$ em potências de h, com o método de Taylor de ordem 2. Ou seja,

$$y_n + h\underbrace{(c_1k_1 + c_2k_2)}_{(1)} = y_n + h\underbrace{(y'(x_n)) + \frac{h}{2}y''(x_n)}_{(2)}.$$

Para realizar esta comparação, vamos desenvolver k_2 por Taylor em torno do ponto (x_n, y_n) até ordem 2, então ∂f

$$k_2 = f(x_n, y_n) + (a_2h)\frac{\partial f}{\partial x}(x_n, y_n) + (b_{21}h)\frac{\partial f}{\partial y}(x_n, y_n)f(x_n, y_n) + 0(h^2).$$

Substituindo k_1 e k_2 em (1), temos

$$c_1k_1 + c_2k_2 = c_1f(x_n, y_n) + c_2f(x_n, y_n) + c_2a_2h\frac{\partial f}{\partial x}(x_n, y_n) + c_2b_{21}h\frac{\partial f}{\partial y}(x_n, y_n)f(x_n, y_n).$$

E, ainda, temos que

$$c_1k_1 + c_2k_2 = (c_1 + c_2)f(x_n, y_n) + c_2a_2h\frac{\partial f}{\partial x}(x_n, y_n) + c_2b_{21}h\frac{\partial f}{\partial y}(x_n, y_n)f(x_n, y_n).$$

Reescrevendo (2), temos

$$y'(x_n) + \frac{h}{2}y''(x_n) = f(x_n, y_n) + \frac{h}{2}\frac{\partial f}{\partial x}(x_n, y_n) + \frac{h}{2}\frac{\partial f}{\partial y}(x_n, y_n)f(x_n, y_n).$$

Comparando (1) e (2) e igualando, temos

$$c_1 + c_2 = 1;$$
 $c_2 a_2 = \frac{1}{2};$ $c_2 b_{21} = \frac{1}{2};$ $a_2 = b_{21}$
$$\begin{cases} c_1 + c_2 = 1 \\ c_2 a_2 = \frac{1}{2} \end{cases}$$

O sistema não-linear obtido possui infinitas soluções, as quais fornecem métodos de Runge-Kutta de ordem 2. Um método bastante conhecido decorre da solução particular do sistema:

$$c_1=rac{1}{2}; \quad c_2=rac{1}{2}; \quad a_2=1,$$

o que fornece o seguinte método:

$$y_{n+1} = y_n + \frac{h}{2}(k_1 + k_2),$$

 $k_1 = f(x_n, y_n),$
 $k_2 = f(x_n + h, y_n + hk_1),$

o qual é conhecido como método de Euler aperfeiçoado.

Outra solução do sistema não-linear bastante conhecida é dada por

$$c_1 = 0;$$
 $c_2 = 1;$ $a_2 = \frac{1}{2},$

que fornece o seguinte método:

$$y_{n+1} = y_n + hf\left(x_n + \frac{h}{2}, y_n + \frac{h}{2}k_1\right),$$

 $k_1 = f(x_n, y_n),$

o qual é conhecido como método de Euler modificado.

Método de Runge-Kutta de Ordem 3

Método de Runge-Kutta de Ordem 3

O método de Runge-Kutta 3-estágios é dado por

$$y_{n+1} = y_n + h(c_1k_1 + c_2k_2 + c_3k_3), \text{ com } c_1 + c_2 + c_3 = 1,$$

 $k_1 = f(x_n, y_n),$
 $k_2 = f(x_n + ha_2, y_n + h(b_{21}k_1)), a_2 = b_{21},$
 $k_3 = f(x_n + ha_3, y_n + h(b_{31}k_1 + b_{32}k_2)), a_3 = b_{31} + b_{32}.$

Para determinar os parâmetros $c_1, c_2, c_3, a_2, a_3, b_{31}$ e b_{32} , de maneira análoga ao desenvolvimento do método de Runge-Kutta de ordem 2, precisamos comparar a expansão da função $\phi_R(x_n, y_n, h)$ em potências de h, com o método de Taylor de ordem 3.

Esse procedimento nos fornece o seguinte sistema não-linear:

$$\begin{cases} c_1 + c_2 + c_3 = 1 \\ c_2 a_2 + c_3 a_3 = \frac{1}{2} \\ c_3 a_2 b_{32} = \frac{1}{6} \\ c_2 a_2^2 + c_3 a_3^2 = \frac{1}{3} \end{cases}$$

que possui infinitas soluções, as quais definem o método de Runge-Kutta de ordem 3. Uma solução para o sistema não-linear que define o método é dada por: $c_1 = \frac{2}{9}$; $c_2 = \frac{3}{9}$; $c_3 = \frac{4}{9}$; $a_2 = \frac{1}{2}$; $a_3 = \frac{3}{4}$; $b_{21} = \frac{1}{2}$; $b_{31} = 0$; $b_{32} = \frac{3}{4}$, e que nos fornece o seguinte método:

$$y_{n+1} = y_n + \frac{h}{9}(2k_1 + 3k_2 + 4k_3),$$

$$k_1 = f(x_n, y_n),$$

$$k_2 = f(x_n + \frac{1}{2}h, y_n + \frac{1}{2}hk_1),$$

$$k_3 = f(x_n + \frac{3}{4}h, y_n + \frac{3}{4}hk_2),$$

o qual é conhecido como método de Runge-Kutta de ordem 3.

Método de Runge-Kutta de Ordem 4

Método de Runge-Kutta de Ordem 4

O método de Runge-Kutta de ordem 4 é obtido seguindo o mesmo raciocínio desenvolvido para os métodos anteriores.

Neste caso, a comparação da função $\phi_R(x_n,y_n,h)$ com o método de Taylor de ordem 4 nos fornece um sistema não-linear de 11 equações e 13 incógnitas.

Uma solução particular para o sistema não-linear é dada por

$$\begin{cases} c_1 = \frac{1}{6}; & c_2 = \frac{2}{6}; & c_3 = \frac{2}{6}; & c_4 = \frac{1}{6}; \\ a_2 = \frac{1}{2}; & b_{21} = \frac{1}{2}; \\ a_3 = \frac{1}{2}; & b_{31} = 0; & b_{32} = \frac{1}{2}; \\ a_4 = 1; & b_{41} = 0; & b_{42} = 0; & b_{43} = 1. \end{cases}$$

E que nos fornece o seguinte método:

$$y_{n+1} = y_n + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4),$$

$$k_1 = f(x_n, y_n),$$

$$k_2 = f(x_n + \frac{1}{2}h, y_n + \frac{1}{2}hk_1),$$

$$k_3 = f(x_n + \frac{1}{2}h, y_n + \frac{1}{2}hk_2),$$

$$k_4 = f(x_n + h, y_n + hk_3).$$

o qual é conhecido como método de Runge-Kutta de ordem 4.

Exemplo 1

$$\begin{cases} y' = y, & x \in [0, 1] \\ y(0) = 1 \end{cases}$$

Solução exata: $y(x) = e^x$.

Malhas: $h \in \{0,4, 0,2, 0,1, 0,05, 0,025\}.$

Erro global em x = 1: $E(h) = |y_N - e|$, com $N = \frac{1}{h}$.

Métodos: RK2 (Ponto Médio), RK3 (Kutta), RK4 (clássico).

Ordem observada entre h e h/2:

$$p_{\text{obs}}(h) = \frac{\log(E(h)/E(h/2))}{\log 2}.$$

Expectativa: inclinações no log-log $\approx 2, 3, 4$ (RK2/3/4).

Resultados — Exemplo 1

Tabela de Resultados — Exemplo 1

h	RK2 (PM)	RK3 (Kutta)	RK4 (Clássico)
0.400	3.514093e-02	3.453817e-03	2.725907e-04
0.200	1.557367e-02	7.724512e-04	3.069185e-05
0.100	4.200982e-03	1.045660e-04	2.084324e-06
0.050	1.090774e-03	1.360301e-05	1.358027e-07
0.025	2.778841e-04	1.734686e-06	8.666192e-09

Exemplo 1: y' = y, y(0) = 1.

Ordem, Custo e Estabilidade

- ▶ Ordem (erro global): RK2 $\sim \mathcal{O}(h^2)$, RK3 $\sim \mathcal{O}(h^3)$, RK4 $\sim \mathcal{O}(h^4)$.
- Custo por passo (avaliações de f): 2 (RK2), 3 (RK3), 4 (RK4).
- Eficiência prática:

Problemas suaves e não-rígidos: RK4 costuma dar excelente acurácia por avaliação de f.

Problemas rígidos: métodos explícitos exigem passos h muito pequenos (devido ao limite de estabilidade).

Ordem, Custo e Estabilidade

▶ Estabilidade absoluta (teste $y' = \lambda y$, $\lambda < 0$): Para métodos de Runge–Kutta explícitos, a atualização em $y' = \lambda y$ é $y_{n+1} = R(z) y_n$ com $z = h\lambda$ (função de estabilidade). Aqui $\lambda = 1 \Rightarrow z = h$. Exige-se |R(z)| < 1.

Em y'=y, as funções R(z) dos métodos coincidem com o polinômio de Taylor truncado de e^z até o grau da ordem:

Euler explícito:
$$R(z)=1+z$$
,
RK2 (PM): $R(z)=1+z+\frac{z^2}{2}$,
RK3 (Kutta): $R(z)=1+z+\frac{z^2}{2}+\frac{z^3}{6}$,
RK4 (clássico): $R(z)=1+z+\frac{z^2}{2}+\frac{z^3}{6}+\frac{z^4}{24}$.

Regra prática (RK4, eixo real negativo):

Estabilidade — RK4 estável/instável para diferentes h

Teste de estabilidade: Considerando a equação y'=-15y e $\lambda=-15$. Pela regra prática do RK4 (eixo real negativo), $h\left|\lambda\right|\lesssim2,8$; logo

$$h\lesssim \frac{2,8}{15}\approx 0,186.$$

Teste: execute RK4 em [0,1] com $h \in \{0,2, 0,1, 0,05\}$. Denotando $z = h\lambda$ e

$$R_{\rm RK4}(z) = 1 + z + \frac{z^2}{2} + \frac{z^3}{6} + \frac{z^4}{24},$$

temos:

- ► $h = 0.2 \Rightarrow z = -3$ e $|R(-3)| \approx 1.375 > 1 \Rightarrow$ instável (explosão/oscilações).
- ▶ $h = 0.1 \Rightarrow z = -1.5 \text{ e } |R(-1.5)| \approx 0.273 < 1 \Rightarrow \text{estável}.$
- ▶ $h = 0.05 \Rightarrow z = -0.75 \text{ e } |R(-0.75)| \approx 0.474 < 1 \Rightarrow \text{estável}.$

Observação: "maior ordem" *não* implica estabilidade para qualquer *h*; há um *limite de passo* imposto pela região de estabilidade do método.

Resultados — Estabilidade

Exercícios

 Usando os métodos de Euler modificado, Euler aperfeiçoado, Runge-Kutta de ordem 3 e ordem 4, calcule a solução dos PVI's abaixo:

a)
$$\begin{cases} y' = f(x, y) = x - y + 2, & x \in [0, 1]. \\ y(0) = 2. \end{cases}$$

Solução exata: $y(x) = e^{-x} + x + 1$.

b)
$$\left\{ \begin{array}{l} y' = -2xy^2, \quad x \in [0,1]. \\ y(0) = 0, 5. \end{array} \right.$$

Solução exata: $y(x) = \frac{1}{x^2 + 2}$.

