Recitation 28: Cross Products and Lines and Curves in Space

Warm up:

If \vec{a} , \vec{b} , and \vec{c} are vectors in 3-space \mathbb{R}^3 , which of the following make sense?

- (a) $(\vec{a} \cdot \vec{b}) \cdot \vec{c}$ (d) $(\vec{a} \cdot \vec{b}) + \vec{c}$
- (g) $\vec{a} \cdot (\vec{b} \times \vec{c})$

- (b) $(\vec{a} \cdot \vec{b})\vec{c}$ (e) $(\vec{a} \times \vec{b}) + \vec{c}$ (h) $\vec{a} \times (\vec{b} \cdot \vec{c})$

- (c) $(\vec{a} \times \vec{b}) \cdot \vec{c}$ (f) $\vec{a} \cdot (\vec{b} + \vec{c})$ (i) $(\vec{a} \times \vec{b})\vec{c}$

Group work:

Problem 1 Given three dimensional vectors \vec{u} , \vec{v} , and \vec{w} , use dot product or cross product notation to describe the following vectors:

- (a) The vector projection of \vec{w} onto \vec{u} .
- (b) A vector orthogonal to both \vec{u} and \vec{v} .
- (c) A vector with the length of \vec{v} and the direction of \vec{w} .
- (d) A vector orthogonal to $\vec{u} \times \vec{v}$ and \vec{w} .

Problem 2 Let $\vec{u} = \langle 5, -1, 8 \rangle$ and $\vec{v} = \langle -2, 10, 5 \rangle$.

- (a) Find a vector that is perpendicular to both \vec{u} and \vec{v} .
- (b) Verify that your answer is perpendicular to both \vec{u} and \vec{v}
- (c) Find a vector of length 7 perpendicular to both \vec{u} and \vec{c} .

Problem 3 Find the area of the triangle in \mathbb{R}^3 with vertices at P(2,-1,0), Q(1,1,4) and R(2,-1,6).

Problem 4 Find a vector-valued function for the line segment connecting the points P = (-3, 7, 6) and Q = (5, -4, 7) in such a way that the value at t = 0 is P and the value at t = 1 is Q. Also, find the point two-thirds of the way from P to Q.

Problem 5 Find a vector-valued function for the line through the point (1, -2, 3) that is perpendicular to the lines

$$\vec{r}_1(t) = \langle 7, 8, -2 \rangle + t \langle 3, 5, 7 \rangle$$
 and $\vec{r}_2(s) = \langle 4, -3, -7 \rangle + s \langle 4, 9, -1 \rangle$

Problem 6 Show that the curve $\vec{r} = \langle t \cos t, t \sin t, t \rangle$ lies completely on the cone $z^2 = x^2 + y^2$.

Challenge Problems

Problem 7 Find the distance from the point P(-1,4,3) to the line $\langle 8+t,3-3t,-26t\rangle$. Hint: The distance from the point to the line is the distance from the point P and the closest point on the line.

Problem 8 Match each of the following curves to the corresponding vector-valued function.

- (a) $(3, t^2, 5)$
- (c) $\langle 3, \sin t, \cos t \rangle$
- (e) $\langle \sin t, \cos t, 2\cos t \rangle$

- (b) $\langle 3, t^2, t \rangle$
- (d) $\langle 3t, 5\sin t, 5\cos t \rangle$
- (f) $\langle 2\cos t, \sin t, \cos(3t) \rangle$

