딥러닝팀

1팀

김예찬

윤지영

채소연

한지원

홍지우

1

머 신 러 닝

1 머신러닝(Machine Learning)

● 머신러닝

머신러닝(Machine Learning)이란?

머신러닝은 고전적 머신러닝 (지도 / 비지도 학습)과 강화학습으로 나눌 수 있으며, 딥러닝은 이 모두에 적용될 수 있음

1 머신러닝(Machine Learning)

강화학습

강화학습(Reinforcement Learning)

고전적 머신러닝 알고리즘

입력과 출력을 통해 데이터의 <mark>속성 파악</mark>, 라벨을 예측

강화학습

(X,Y)의 형태는 물론이고 입력과 출력이라는 개념조차 없음

1 머신러닝(Machine Learning)

● 딥러닝

딥러닝(Deep Learning)

- 데이터의 크기와 형태가 커질수록 더 좋은 성능 빅데이터 분석에 유용
- 지도학습, 비지도학습, 강화학습의 과제 모두에 적용될 수 있음

2

퍼 셉 트 론

2 퍼셉트론(Perceptron)

● 퍼셉트론

퍼셉트론이란?

: 다수의 입력 데이터에 대해 하나의 출력을 반환하는 형태

2 퍼셉트론(Perceptron)

• 다층 퍼셉트론

3

신 경 망

• 활성화 함수

활성화 함수(Activation Function)란?

: 입력과 가중치의 선형결합에 비선형성을 부여해주는 함수

• 손실 함수

손실 함수(Loss Function)란?

• 역전파를 위한 필수적인 단계

• 역전파

진행 과정

Optimizer

경사 하강법(Gradient Descent)

- 기울기를 <mark>작게 만들어</mark> 나가는 형태
- 미분계수 부호의 반대 방향으로 이동 → 최솟값

학습률
$$x_{i+1} = x_i - \alpha \frac{df}{dx}(x_i) - 가중치 1개$$

$$W \leftarrow W - \eta \left(\frac{\partial E}{\partial w}\right)$$
 - 각각의 가중치 업데이트

Optimizer

Momentum

Stochastic Gradient
Descent withhout
Momentum

기존 optimizer

미분값에 따라 한 단계씩 최적점으로 접근

Stochastic Gradient
Descent with
Momentum

Momentum

미분값이 클 경우, <mark>가속도</mark> 부여(큰 보폭으로 이동)

Optimizer의 문제점

Local Minima 문제

극소와 극대가 여러 곳에서 존재

기울기 소실 문제 (Gradient Vanishing Problem)

미분계수가 최적점과 현위치의 차이를 적절하게 반영했는가?

함수를 통과할 때마다 기울기에 1보다 작은 수를 곱하게 되므로 0에 수렴

정상적인 학습 X