Applied Physics EE (117)

LECTURE #1

DATE: 16TH SEPTEMBER, 2019

Classes Code

BAI

1A

Class code gerzfbz []

BSC

1B

Class code p7i5wfn []

BDF

1A

Class code czodtfv []

BSE

1C

Class code jwl34dm []

Applied Physics

Course Code	EE117
Course Title	APPLIED PHYSICS
Credit Hours	3

Current Catalog	Part A: Adding Vectors, Components of Vectors, Unit Vectors, Vector & Scalar Products, Position &
Description	Displacement (2/3 dimensions), Average/Instantaneous Velocity/Acceleration, Projectile Motion,
	Uniform Circular Motion, Newton Laws of Motion, Forces (1D/2D/3D): Gravitational, Friction, Tension,
	Weight. Part B: Simple Harmonic Motion, the Force Law for SHM, Angular SHM, Simple Pendulum,
	Damped SHM, Circular Motion & SHM, Types of Waves, Sinusoidal Waves, Wavelength and
	Frequency Part C: Electric Charge, Coulomb's Law, Electric Field, Electric Field Due To Point Charge,
	Due To Electric Dipole, Gauss' Law, Flux Of Electric Field, Cylindrical/Planar/Spherical Symmetries,
	Capacitance, Parallel Plate/Cylindrical/Spherical Capacitors, Capacitors In Parallel And In Series,
	Electric Current, Current Density, Drift Speed, Resistance & Resistivity, Ohm's Law, Magnetic Fields
	And Field Lines, Hall Effect, Circulating Charge Particles, Magnetic Force On Current Carrying Wire,
	Magnetic Field Due To Current, Ampere's Law, Magnetic Field Inside/Outside Wire/Between Parallel
	Wires
	1. Halliday & Resnick Fundamentals of Physics (Extended 10th Edition), Jean Walker, © 2013
Textbooks	John Wiley & Sons Inc.

Applied Physics

Reference Books/	1.	Physics for Scientists and Engineers with Modern Physics (6th Edition), Raymond A. Serway
Material		& John W. Jewett, © 2004 Thomson books/cole US
	2.	Physics for Scientists and Engineers (6th Edition), Paul A Tipler and Gene Mosca, W.H.
		Freeman and Company
	3.	Physics for Scientists and Engineers (3rd Edition), Fishbane, Gasiorowicz, Thornton, Pearson
		Prentice Hall.
	4.	Physics for Engineers & Scientists (3rd Edition Extended), Hans C. Ohanian and John T.
		Markert, W. W. Norton & Company New York. London

Applied Physics Week-Wise Course Outline:

Date	Duration	Topics Covered
Week	3 <u>hrs</u>	Adding Vectors, Components of Vectors, Unit Vectors,
1		Vector & Scalar Products,
		(1hr Lab Python for Applied Physics)
Week	3 <u>hrs</u>	Position & Displacement (2/3 dimensions)
2		Average/Instantaneous Velocity/Acceleration,
		(1hr Lab Python for Applied Physics)
Week	3 <u>hrs</u>	Projectile Motion, Uniform Circular Motion
3		horizontal/vertical motions, equation of the path and
		horizontal range,
		(1hr Lab Python for Applied Physics)
Week	3 <u>hrs</u>	Newton Laws of Motion, Forces (1D/2D): Gravitational,
4		Friction, Tension, Weight, (1hr Lab Python for Applied
		Physics)
Week	3 <u>hrs</u>	Simple Harmonic Motion, the Force Law for SHM,
5		Angular SHM (1hr Lab Python for Applied Physics)
Week	3 hrs	Mid Term –I
6		

Applied Physics Week-Wise Course Outline:

Week 7	3 <u>hrs</u>	Simple Pendulum, Damped SHM, Circular Motion & SHM, (1hr Lab Python for Applied Physics)
Week 8	3 <u>hrs</u>	Types of Waves, Sinusoidal Waves, Wavelength and Frequency (1hr Lab Python for Applied Physics)
Week 9	3 <u>hrs</u>	Electric Charge, Coulomb's Law, Electric Field, Electric Field Due To Point Charge and Dipole, (1hr Lab Python for Applied Physics)
Week 10	3 <u>hrs</u>	Gauss' Law, Flux, Flux Of Electric Field, Gauss's Law, Equivalency of Gauss's Law And Coulombs' Law (1hr Lab Python for Applied Physics)
Week 11	3 hrs	Capacitance, Parallel Plate, Cylindrical & Spherical Capacitors, Capacitors In Parallel And In Series. (1hr Lab Python for Applied Physics)
Week 12	3 hrs	Mid Term –II

Applied Physics Week-Wise Course Outline:

14				
Week	3 <u>hrs</u>	Electric Current, Current Density and Drift Speed,		
13		Resistance & Resistivity, Ohm's Law,		
		(1hr Lab Python for Applied Physics)		
Week	3 <u>hrs</u>	Magnetic Fields And Field Lines, Crossed Fields: Hall		
14		Effect, Circulating Charge Particles, Magnetic Force On		
		Current Carrying Wire.		
		(1hr Lab Python for Applied Physics)		
Week	3 hrs	Magnetic Field Due To Current, Ampere's Law,		
15		Magnetic Field Inside/Outside Wire, Solenoids & Toroids		
		& Between two Parallel Wires		
		(1hr Lab Python for Applied Physics)		
Week 16	3 <u>hrs</u>	Revision		

Applied Physics Marks Distribution

Midterms	30%
Lab	10%
Class Quizzes + projects	10%
Final Exam	50%
Total	100%